393 PU M Tech Environmental Engineering and Management

1 of 100 188 PU_2016_393_E Time taken by sunlight to penetrate a window pan of 3mm thick is of the order of {speed of light (c) = 3 x 10 8 m/sec}:-10⁻¹¹ sec 10⁻⁷ sec 10⁻¹³ sec 10⁻⁹sec 2 of 100 101 PU_2016_393_E Which is different in isotopes of an element? 0 number of electrons atomic number mass number number of protons 3 of 100 166 PU 2016 393 E The relationship between mean, median and mode for a moderately skewed distribution is:-0 mode = 3 median - 2 mean mode = median - 2 mean mode = 2 median - mean O mode = 2 median - 3 mean 4 of 100 121 PU_2016_393_E The agricultural field that produces maximum methane gas into atmosphere is:-0 wheat ground nut paddy cotton 5 of 100 159 PU_2016_393_E $\int_{\pi/6}^{\pi/3} \frac{dx}{\sin 2x}$ is equal to:-

```
O log √3
    log (-1)
    log 3
     \frac{1}{2}\log(-1)
6 of 100
158 PU_2016_393_E
The minimum value of x^2 + 250/x is:-
    50
    0
    75
    25
7 of 100
163 PU_2016_393_E
A row matrix has only:-
0
    one row with one or more columns
0
    one column with one or more rows
    one row and one column
    one element
8 of 100
218 PU_2016_393_E
A perfect black body is one whose:-
    absorptive power is infinity
0
    absorptive power is 1
    absorptive power is 0
    emissive power is 1
9 of 100
132 PU_2016_393_E
Substances used in bringing down the body temperature in high fever are called:-
0
    antibiotics
O
    antipyretics
0
    pyretics
    antiseptic
10 of 100
151 PU_2016_393_E
```

	$\lim_{x\to 0} \frac{\log \cos x}{x}$ is equal to:-
0	0 2
1	100 10,000
1	1/2 8/3 4/3
1 If C	$-1 \le x \le 4$ $-1 < x < 4$ $x \le -1 \text{ or } x \ge 4$
2 If	01 PU_2016_393_E the car at rest, accelerates uniformly and attains a speed of 72 km/hr in 10 sec. then it covers a istance of:- 100m 50 m

0	400m
118 Whe	of 100 PU_2016_393_E en a litmus solution is shaken with a piece of charcoal:-
0	no change
0	it turns red to blue
0	it turns blue to red
0	it is decolourised
191 Whi	of 100 PU_2016_393_E ch of the following pair of physical quantities has same dimensional formula?
0	Latent heat and specific heat
0	Force and power
0	Work and power
0	Work and couple
186	PU_2016_393_E measuring radius accurately of a thin wire, we use:- Hygrometer Vernier caliper Screw gauge Spherometer
164	of 100 PU_2016_393_E A be a square matrix. Then A+A ^T will be:-
0	the identity matrix
0	diagonal matrix
0	skew-symmetric
0	symmetric matrix
19 of 100 127 PU_2016_393_E In order to increase the volume of a gas by 10%, the pressure of the gas should be	
0	decreased by 1%
0	increased by 10%
0	increased by 1%

0	decreased by 10%
178 If y= O	PU_2016_393_E esin (e ^x -1), then y3 (0)= 4 0 1
102 Two	PU_2016_393_E solutions have different osmotic pressures. The solution of higher osmotic pressure is called:- hypotonic solution hypertonic solution isotonic solution none
109 A so O	PU_2016_393_E plution is called saturated if :- ionic product < solubility product ionic product = solubility product ionic product > solubility product none
129 Whi	PU_2016_393_E ch is the most easily liquefiable rare gas? Argon Krypton Xenon Neon
202 A ca	of 100 PU_2016_393_E ar moving with a speed of 50 km/hr can be stopped by brakes in 6 m. If the same car is moving with a ed of 100 km/hr, then minimum stopping distance is:- 6 m 24 m

0	12 m 18 m
219 A p resp	of 100 PU_2016_393_E iece of steel floats in mercury. The specific gravities of mercury and steel are 13.6 and 7.8 pectively. For covering the whole piece, some water is poured over the mercury. What part of the steel ce will be inside the mercury? 0.62 0.48
0	0.42
0	0.54
146 The O	of 100 PU_2016_393_E evalue of $(i^5 + i^6 + i^7 + i^8 + i^9)/(1+i) = \frac{1}{2}(1+i)$ 1 $\frac{1}{2}(1-i)$
165 If th	of 100 PU_2016_393_E ne matrix product AB is zero, then:-
0	A = 0 or B = 0
0	It is not necessary that either of A or B should be zero
0	A = 0 and $B = 0$
28 of 100 174 PU_2016_393_E	
0	te angle between a and b is $\pi/6$, then angle between 2a and 3b is:- $\pi/4$
0	π/6
0	π/2
0	π/3
	of 100 PU_2016_393_E

	is th	ery large no. of balls are thrown vertically upwards in quick succession in such a way that the next ball brown when the previous one is at the maximum height. If maximum height is $5m$, then no. of balls own per min is (take $g = 10 \text{ m/sec}$).
	0	
	0	60
	Ö	80
		40
	199 A be	of 100 PU_2016_393_E ody starts from rest and has an acceleration 20 cm/sec ² .What is the distance covered by the body in 8 sec?
	0	160 cm
	0	640 cm
	0	1640 cm
	0	1280 cm
1 H	108	of 100 PU_2016_393_E Irochloric acid is stronger acid than acetic acid because:-
		it can neutralize large quantity of alkali
	0	it can corrode anything it comes in contact
	0	it ionizes completely into ions in aqueous solution
	0	none
	145 If O	of 100 PU_2016_393_E P makes 4 revolutions in one second, the angular velocity in radians per second is:-
	0	8π
	0	4π
	0	2π
	0	π
1 F (117	of 100 PU_2016_393_E e methane can be produced by:-
	0	reduction with H ₂
	0	Soda lime decarboxylation
	0	Kolbe's electrolytic method
	0	Wurtz reduction

34 of 100 208 PU_2016_393_E A body freely falling from rest has a velocity v after it falls through a height h . The distance it ha down further for its velocity to become double, is:-	
C _{4h}	
○ _{8h}	
C 6h	
C 10h	
35 of 100 149 PU_2016_393_E The line segment joining the points (-3, -4) and (1, -2) is divided by y-axis in the ratio:-	
° 3:1	
O 3:2	
C _{1:3}	
° _{2:3}	
36 of 100 162 PU_2016_393_E A matrix is:-	
A collection of real or complex numbers	
An array of real numbers	
A collection of real numbers	
An array of real or complex numbers	
37 of 100 128 PU_2016_393_E Waxes are esters of:-	
glycerol	
glycerol + fatty acids	
long chain alcohol	
long chain alcohol and long chain fatty acids	
38 of 100 189 PU_2016_393_E Which of the following are dimensions of coefficient of friction ?	
[©] M²LT⁻²	
[©] M°L°T°	
C MLT ⁻²	

131 PU_2016_393_E

Liquor NH₃ bottles are opened only after cooling. This is because:-

- it is mild explosive
- it is corrosive liquid
- it is lactymatory
- it generates high vapour pressure

40 of 100

144 PU_2016_393_E

$$\lim_{x\to 0} \left\{ (\sin x - x)/x^3 \right\}$$
 equals:-

- $-\frac{1}{3}$
- $\begin{array}{c} 1 \\ \bigcirc \overline{3} \end{array}$
- _ 1
- 0
- $-\frac{1}{6}$

41 of 100

161 PU_2016_393_E

The indefinite integral of x.dx is:-

$$0 \frac{x^2}{2} + c$$

$$x^2$$

42 of 100

177 PU_2016_393_E

The triangle joining the points (2,7), (4,-1),(-2,6) is:-

Equilateral

Isosceles Right angled Square
43 of 100 122 PU_2016_393_E The presence of which of the following in drinking water is responsible for mottling of teeth? iodine chlorine fluorine mercury
44 of 100 203 PU_2016_393_E A car, starting from rest, accelerates at the rate f through a distance S , then continues at constant specifor time t and then decelerates at the rate $f/2$ to come to rest. If the total distance traversed is 15 S , then $S = 24 f t$ $S = ft$ $S = ft^2/36$ $S = ft^2/72$
45 of 100 187 PU_2016_393_E A wire has a mass (0.3 ± 0.003) g, radius (0.5 ± 0.005) mm and length (6 ± 0.06) cm. The maximum percentage error in the measurement of its density is:-
46 of 100 152 PU_2016_393_E
If $x = t + \frac{1}{t}$, $y = t - \frac{1}{t}$ then d^2y/dx^2 :-
$(t^{2}+1/(t^{2}-1))$ $-4t/(t^{2}-1)$ $-4t^{3}/(t^{2}-1)^{3}$ $-4t^{2}/(t^{2}-1)^{2}$

47 of 100 111 PU_2016_393_E According to periodic law, the chemical properties of elements are the periodic function of their:-		
	nass number	
	atomic mass	
_	atomic number	
O d	lensity	
A mot	F 100 PU_2016_393_E torcycle is moving with a velocity 80 km/hr ahead of a car moving with a velocity of 65 km/hr in the direction. What is the relative velocity of the motorcycle with respect to the car?	
_	5 km/hr	
	5 km/hr	
_	45 km/hr	
° 2	20 km/hr	
49 of 100 211 PU_2016_393_E Velocity - time curve for a body , projected vertically upwards, is:-		
	łyperbola	
_	Ellipse	
_	Parabola	
O s	Straight line	
50 of 100 147 PU_2016_393_E If $2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25} = x + iy$, then:-		
O x	x = 4, y = -1	
O x	x = -1, $y = -4$	
O x	x = 1, y = 4	
° x	x = 1, y = -4	
51 of 100 198 PU_2016_393_E A car covers the first half of the distance between two places with a speed of 40 km/hr and other half at 60km/hr. The average speed of the car is:-		
0 4	8 km/hr	
° 6	60 km/hr	
O 5	50 km/hr	

C 40km/hr
52 of 100 112 PU_2016_393_E The extraction of metals from sulphide ores is generally done by:-
electrolysis
metal displacement
smelting
froath floatation process
53 of 100 119 PU_2016_393_E Haemoglobin is a complex of:-
° Fe ³⁺
^ℂ Fe⁴⁺
° _{CN}
○ Fe ²⁺
54 of 100 184 PU_2016_393_E Faraday is the unit of:-
Current
Resistance
Charge
Voltage
55 of 100 209 PU_2016_393_E The initial velocity of a body moving along a straight line is 7m/sec . It has a uniform acceleration of 4 m/sec². The distance covered by the body in the 5 th second of its motion is:-
[©] 25 m
° 35 m
50 m
C 85 m
56 of 100 206 PU_2016_393_E A body projected vertically upwards with a velocity u returns to the starting point in 4 sec . If $g = 10 \text{ m/sec}^2$, the value of u is:-
5 m/sec
15 m/sec

10 m/sec
20 m/sec
57 of 100 176 PU_2016_393_E i ⁵⁷ + 1/i ¹²⁵ , when simplified has the value:- 2i -2i 0 2
58 of 100 107 PU_2016_393_E Which of the following is always true for an exothermic process?
$\Delta S = 0$
Ο ΔH<0
$\Delta G = 0$
^C ΔH>0
59 of 100 185 PU_2016_393_E The S.I unit of radioactivity is:-
Rutherford
Curie
Roentgen
Becqueral
60 of 100 148 PU_2016_393_E If $x = \frac{1}{2} (\sqrt{3} + i)$, then x^3 is:-
° ₋₁
\circ ,
61 of 100 238 PU_2016_393_M The electric field required to keep a water drop of mass m just to remain suspended, when charged with one electron, is:-

(e=charge of one electron)

000	mg (mg)/e (e m)/g
0	e mg
243 Wa surf	of 100 B PU_2016_393_M ter is flowing over a fixed horizontal surface. If the velocity gradient at a distance 10 cm above the face is 2 sec ⁻¹ , then velocity of layer will be:-
0	0.4 m/sec
0	0.2m/sec
0	0.1 m/sec
0	0.3m/sec
222 The	of 100 PU_2016_393_M Ph of blood does not appreciably change by a small addition of acid or a base because blood:-
0	can be easily coagulated
0	contains serum protein which acts as buffer
0	contains iron as a part of the molecule
0	is body fluid
236 Wh the	of 100 SPU_2016_393_M en a body is connected to the earth, then electrons from the earth, flow into the body. It means that body is:-
0	An insulator
0	Positively charged
0	Uncharged
0	Negatively charged
255 The a se	of 100 5 PU_2016_393_M 6 maximum possible area that can be enclosed by a wire of length 20 cm by bending it into the form of ector in square cm is:
0	30
0	10
0	25
0	50

241 PU 2016 393 M

A 20 cm long capillary tube is dipped in water. The water rises upto 8 cm. If entire arrangement is put in a freely falling elevator, the length of water column in the capillary tube will be:-

- 10 cm
- C 8 cm
- 20 cm
- 6 4 cm

67 of 100

244 PU_2016_393_M

In plant, sucrose solution of coefficient of viscosity 0.0015 N-S-m⁻² is driven at a velocity of 10⁻³ m/sec through xylem vessels of radius 2 micrometer and length 5 micrometer. The pressure difference across the length of xylem vessels is

- 10 N/m²
- 15 N/m²
- 5 N/m²
- 20 N/m²

68 of 100

248 PU_2016_393_M

$$\int_0^1 \frac{\log(1+x)}{x} dx =$$

- $0 \frac{\pi^2}{2}$
- $\frac{\pi^2}{6}$
- ОΠ
 - π^2
- O 12

69 of 100

223 PU_2016_393_M

Methane reacts with excess of chlorine in presence of diffused sunlight to give:-

- methyl chloride
- carbon tetrachloride
- methylene chloride
- chloroform

0	x = 45°, y = 135°
245 24 o to a	of 100 PU_2016_393_M cm³ of water flows per second through a capillary tube of radius r cm and length I cm, when connected pressure head h cm of water. If a tube of the length I/2 cm and radius r/2 cm is connected to the ne pressure head, then volume of water flowing per second through the tube is:-
0	24cm³/sec
0	3cm ³ /sec
0	12cm ³ /sec
0	6cm ³ /sec
228	of 100 PU_2016_393_M composition of benzene diozonium chloride by using Cu ₂ Cl ₂ / HCl to form chlorobenzene is:- Raschig's reaction Sand Meyers reaction Cannizarros Kolbe's reaction
254 An	of 100 PU_2016_393_M ordinary cube has 4 blank faces, one face marked 2 and another marked 3. Then the probability of aining 12 in 5 throws is:-
0	5/3646
0	5/1944
0	5/1296
0	5/2592
231	PU_2016_393_M Frmodynamics standard conditions of temperature and pressure are:- 0° C and 101.3 K pa 0° C and 1 atm 273K and 101.3 K pa 298 K and 1atm
232 The	of 100 PU_2016_393_M gaseous envelope around the earth is known as atmosphere. The lowest layer of this is extended up 0km, from sea level, this layer is:- stratosphere

0	hydrosphere
0	mesosphere
	troposphere
224 CC O	of 100 PU_2016_393_M l₄ can be used as a fire extinguisher because:- it gives incombustible vapour of its low boiling point of its covalent bond
0	of its high melting point
	of 100 3 PU_2016_393_D
If f($f(x).f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \text{ and } f(3) = 28,$ then f(4)=
0	63
\circ	65
\circ	7
0	17
271	of 100 PU_2016_393_D e ionization of hydrogen atom gives:-
0	proton hydravid ion
0	hydroxyl ion hydronium ion
0	hydride ion
282 At s tem	of 100 2 PU_2016_393_D 3 perature T, a bronze pin is little to large to fit into a hole drilled in a steel block .The change in a sperature required for exact fit is minimum, when:-
0	Both block and pin are cooled
0	Both block and pin are heated
0	Bronze pin is heated
0	Steel block heated

Wat noz	PU_2016_393_D ter enters in a horizontal pipe of radius 2 cm with a velocity of 1 m/sec. If the water comes from the zle with a velocity of 4 m/sec, then radius of the nozzle is:-
0	2cm
0	4 cm
0	0.5 cm
0	1cm
261	of 100 PU_2016_393_D rimary amine can be distinguished from secondary and tertiary amines by:-
0	reaction with methyl iodide
0	P ^H test
0	reaction with acetyl chloride
0	carbylamine reaction
260	of 100 PU_2016_393_D blasting purposes TNT is mixed with:-
0	NH_4NO_2
0	$(NH_4)_2SO_4$
0	NH ₄ CI
0	NH_4NO_3
292 In a	of 100 PU_2016_393_D triangle ABC, if $a=4,b=3,\angle A=60^{\circ}$, then c is the root of the equation:-
_	c^2 -3c-7 = 0
0	c^2 -3c+7 = 0
0	$c^2+3c-7=0$
	$c^2 + 3c + 7 = 0$
262 The	of 100 PU_2016_393_D IUPAC name of tertiary butyl iodide is:-
0	2- iodo, 2-methyl propane
O	4 - iodobutane

C 1- iodo, 3-metyhl propane

84 of 100

```
2 - iodobutane
89 of 100
297 PU_2016_393_D
 If p = q, then \int_0^n \sin px \cos qx \, dx =
    π/2
90 of 100
267 PU_2016_393_D
Heat produced in calories by the combustion of 1g of Carbon is called:-
    heat of combustion of Carbon
    calorie value of Carbon
    heat of formation of Carbon
    heat of product of Carbon
91 of 100
272 PU_2016_393_D
Acetaldehyde is the rearrangement product of:-
    methyl alcohol
    allyl alcohol
    ethyl alcohol
    vinyl alcohol
92 of 100
296 PU_2016_393_D
The derivative of \sin^{-1} x w.r.t \cos^{-1} \sqrt{(1-x^2)} is:-
    \cos^{-1} x
    sin<sup>-1</sup> x
    1/\sqrt{(1-x^2)}
93 of 100
266 PU_2016_393_D
In which of the following cases entropy decreases?
    polymerization
```

0	liquid changing to gas
0	expansion of a gas
0	crystals dissolve
283	PU_2016_393_D 00°C, the substance that causes the most severe burn, is:- Hot air Steam Water Oil
281	PU_2016_393_D ch of the following material has the largest specific heat? Mercury Water Iron Diamond
287	PU_2016_393_D area of the triangle with vertices at the points (a,b+c), (b,c+a), (c,a+b) is:- 0 1 a+b+c ab+bc+ca
277 If bloof floor	PU_2016_393_D pood flows in an artery of radius 2 mm with maximum average velocity, in laminar flow, then the rate low of blood in artery is (Density of blood = $1.06 \times 10^3 \text{ kg/m3}$ and viscosity of blood = 0.021 poise):- 1.25 x 10 ⁻⁵ m ³ /sec. 5 x 10 ⁻⁵ m ³ /sec. 2.5 x 10 ⁻⁵ m ³ /sec. 8.5 x 10 ⁻⁵ m ³ /sec.
286	of 100 PU_2016_393_D as perform no work, when it expands:-

0000	Isobarically Adiabatically Isothermally Isochorically
273 Afte	of 100 PU_2016_393_D er terminal velocity is reached, acceleration of a spherical body in a viscous fluid is:-
0	Equal to g
0	Zero
0	More than g
0	Less than g
291 Equ	O of 100 PU_2016_393_D patient of the curve passing through (3, 9) which satisfies the differential equation dy/dx=x+(1/x²) is
0	$6xy = 3x^3 + 29x - 6$
0	$6xy = 3x^2 - 6x + 29$
0	$6xy = 3x^3 + 29x + 6$
0	$6xy = 3x^3 - 29x + 6$

PU M Tech Environmental Engineering and Mgmt

1 of 100

152 PU_2015_393

Size of colloidal particles varies:-

- $10^{-9} 10^{-12} \text{ m}$
- $10^{-3} 10^{-9} \text{ m}$
- $10^{-6} 10^{-9} \,\mathrm{m}$
- $10^{-12} 10^{-19} \,\mathrm{m}$

2 of 100

108 PU_2015_393

With a rise in temperature, the surface tension of a liquid:-

- Changes erratically
- Decreases
- Does not change
- Increases

3 of 100

172 PU_2015_393

Conversion of KMnO⁴ to MnSO⁴ is a process of:-

- Reduction
- Dehydration
- Oxidation
- Both oxidation and reduction

4 of 100

205 PU_2015_393

In a triangle ABC, if a = 4, b = 3, $\angle A = 60^\circ$, then c is the root of the equation

- $c^2-3c+7=0$
- $c^2+3c+7=0$
- $c^2-3c-7=0$
- $c^2+3c-7=0$

5 of 100

141 PU_2015_393

Molarity of a solution relates the?

Moles of the solute and solvent

	Volume of solute and the volume of solvent
	Moles of solute and mass of solvent
	Volume of solution and moles of solute
121 A pl of v	f 100 PU_2015_393 ate of area 10 cm² is separated from another plate by a 1 mm thick layer of glycerine. If the coefficient iscosity is 20 poise then the force required to move the upper plate with a velocity of 1 cm/sec. over lower one is:-
	80 dyne
	2000 dyne
	200 dyne
	800 dyne
126 Whe	f 100 PU_2015_393 en light travels from an optically rarer medium to an optically denser medium, the velocity decreases ause of change in:-
	Amplitude
	Phase
	Wavelength
	Frequency
130	F 100 PU_2015_393 ollen clothes keep the body warm, because:-
	wood rejects heat from the outer objects
	wool absorbs radiant heat from outer objects
	wool increases the temperature of the body
	wool is a bad conductor of heat, so it will not allow heat to flow out from the body
101 The	F 100 PU_2015_393 number of grams in one pound is:-
0 0 0	226
	526
	453.6
	of 100 PU_2015_393

Which of the following bond is most reactive?		
	$C \equiv C$	
9	C - C	
	C = C	
	All	
166	PU_2015_393 ch of the following relates to light the wave as well as particle nature? Diffraction $E = hv$ $E = mc^2$ Interference	
137	PU_2015_393 onochromatic visible light consist of:- A single ray of light	
0		
0	Light of a single wavelength	
0	Light of a single wavelength with all the colours of the spectrum of white light	
	Light consisting of many wavelengths with a single colour	
146 Whi	of 100 PU_2015_393 ch of the following is an emulsifier?	
	NaCl	
	Soap	
	Oil	
	Water	
155 In th	of 100 PU_2015_393 ne solution of a gas in liquid the solubility?	
	Increases with temperature	
	Is unaffected by temperature	
	Increases with decrease in pressure	
	Increases with pressure	
	of 100 PU_2015_393	

Para	affin wax contracts on solidification. The melting point of wax will:-
	Not change with pressure
	Decrease linearly with pressure
	Decrease with pressure
	Increase with pressure
169 In the power of the power o	PU_2015_393 ne coagulation of positively charged colloidal solution which of the following has maximum coagulating ver? C1 ⁻ [Fe(CN) ₆] ⁴⁻ PO ³⁻ ₄ SO ²⁻ ₄
127	PU_2015_393 e of the devices to produce plane polarised light is:- a biprism a nicol prism a half-wave plate a crystal
160	PU_2015_393 ecomposition reactions, enthalpy of products is always than the enthalpy of reactants? Lesser Constant Infinite Greater
140	of 100 PU_2015_393 ensitive magnetic instrument can be shielded very effectively from outside fields by placing it inside a of:- soft iron of high permeability teak wood
	plastic material
	a metal of high conductivity

20 of 100 195 PU_2015_393 Which of the following pairs of solutions can we expect to be isotonic at the same temperature?		
	0.1 M NaCl and 0.1 M Na ₂ SO ₄	
	0.1M Ca(NO ₃) ₂ and 0.1 M Na ₂ SO ₄	
	0.1 M urea and 0.2 M MgCl ₂	
	0.1 M urea and 0.1 M NaCl	
04		
143	of 100 3 PU_2015_393	
B-1	urally occurring polymer is?	
	PVC	
	Polyethylene	
	Proteins	
	CH₃COOH	
22 of 100		
	YPU_2015_393 ap action is due to:-	
	Colloidal dispersion of micelles in water	
	Oil drop dispersal	
	Micelle formation	
	All of these	
	of 100	
189 PU_2015_393 How many grams of CH_3OH would have to be added to water to prepare 150 mL of solution that is 2.0 M CH_3OH ?		
	9.6	
	4.3×10^2	
0.00	2.4	
	9.6×10^3	
24 of 100 133 PU_2015_393		
in a	in ordinary heater if the length of the coil is halved, then a given quantity of water will boil in:-	
	same time	
	cannot be compared because specific resistance of material of wire is not given	
	less time	
	more time	

107 PU_2015_393

The principle of the operation of a hydraulic press is based on:-

Newton's law of gravitation

Dalton's law of partial pressure

Boyle's law

Pascal's law

26 of 100

136 PU_2015_393

A electric field can deflect:-

Gamma rays

X-rays

α particles

Neutrons

27 of 100

203 PU_2015_393

If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the value of x and y are:-

 $x_{x=4, y=8}$

x=1, y=4

x=4, y=1

x=8, y=2

28 of 100

211 PU_2015_393

$$jx^2 e^{2x} dx =$$

$$\Box \frac{1}{2}e^{2x}[2x^2-2x+1]+c$$

$$e^{2x}[2x^2-2x+1]+c$$

2x+c

29 of 100

162 PU_2015_393

The solvent which is neither proton donor nor proton acceptor is called?

	Aprotic
	Amphoteric
	Protonic
	Neutral
122 A cl	PU_2015_393 osed bottle containing water at 30°C is carried to the moon in a space ship. If it is placed on the face of the moon, what will happen to the water as soon as the lid is opened? Nothing will happen to it The water will freeze It will decompose into H ₂ and O The water will boil
132	of 100 PU_2015_393 ectric field is uniform, then the electric lines of forces are:- circular convergent parallel divergent
184	of 100 PU_2015_393 ctrophiles are:-
	Nucleus hating reagents
	Nucleus loving reagents
	Electron loving species
	Electron hating species
147	PU_2015_393 substance which completely destroys or reduces the activity of the catalyst is called? Promoter Catalyst poison Catalyst Inhibitor
	of 100 PU_2015_393

The	weight of a body at the centre of the earth is:-
	Same as on the surface of earth
	Infinite
	Indeterminate
	Zero
171	of 100 PU_2015_393 metal in a complex acts as:-
	Lewis base
	Catalyst
	Neutral compound
	Lewis acid
159	of 100 PU_2015_393 pative catalyst is that?
	Promotes the side reaction
	Retards the side reaction
	Which retards the rate of reaction
	Takes the reaction in backward direction
150	of 100 PU_2015_393 adsorption theory explains the action of all except:-
	Catalytic poisons
0	Heterogeneous catalysis
	Acid-base catalysis
	Catalytic promoters
199 The	of 100 PU_2015_393 rate for the reaction RCl + NaOH(aq.) \rightarrow ROH + NaCl is given by, Rate = k_1 [RC]. The rate of the ction will be?
	Unaffected by increasing the temperature of the reaction
	Decreased on increasing the temperature of the reaction
	Doubled on doubling the concentration of NaOH
	Halved on reducing the concentration of RCI to one half

	PU_2015_393 attion of normal to the curve $y = x (2 - x)$ at the point (2, 0) is:-
	x-2y+2=0
	2x + y = 4
	<i>x=y</i> =2
	x-2y=2
104	PU_2015_393 of shaving brush cling together when it is removed from water, due to:- Elasticity Surface tension Viscosity Friction
105	PU_2015_393 Emperature degree on the Kelvin scale in same as:- Temperature on the Richter scale A temperature degree on the Fahrenheit scale Temperature degree on Reaumer scale Temperature degree on the Celsius scale
213	of 100 PU_2015_393 atrix is:- A collection of real or complex numbers An array of real numbers An array of real or complex numbers A collection of real numbers
149	of 100 PU_2015_393 a general rule, adding a catalyst to a reacting system:- Increases and decreases to yield irregularly Does not affect the yield of product Decreases the yield of the product
	Increase the yield of the product

	PU_2015_393 ch of the following is the unit of electric charge?	
	ampere	
	volt	
	coulomb	
	newton	
148 In th	PU_2015_393 ne case of osmosis, solvent molecules move from?	
	Higher concentration to lower concentration	
	One region to another	
	Higher vapour pressure to lower vapour pressure	
	Lower vapour pressure to higher vapour pressure	
156	of 100 PU_2015_393 substance dissolves at saturation with the evolution of heat, the solubility?	
	Decreases with increasing temperature	
	Does not change with temperature	
	Increases with increasing temperature	
	Becomes exactly half	
47 of 100		
	PU_2015_393 cimum possibility of turbulent flow is in a fluid of:-	
0	Low density and low viscosity	
0	High density and low viscosity	
0	Low density and high viscosity	
0	High density and high viscosity	
48 of 100		
	PU_2015_393 hole camera is based upon:-	
0	Rectilinear propagation of light	
	Corpuscular theory of light	
0	Refraction of light	
	Wave theory of light	

	PU_2015_393 ixture of acetone and methanol can be separated by?
	Flash distillation
	Vacuum distillation
	Steam distillation
	Fractional distillation
139	PU_2015_393 ceptibility is positive and small for a:- paramagnetic substance diamagnetic substance non-magnetic substance ferromagnetic substance
135	PU_2015_393 infrared spectrum lies between:- radio wave and micro-wave region the visible and ultraviolet region the micro-wave and visible region the ultraviolet and the X-ray region
134	PU_2015_393 ording to classical theory the proposed circular path of an electron in Rutherford atom model will be: circular spiral parabolic straight line
124	PU_2015_393 Ilight filtering through a tree often makes circular patches on the ground because:- The space through which light penetrates is round The sun is round Due to diffraction phenomenon Light is transmitted as wave motion

144 PU_2015_393 In which of the following Bakelite, the phenol and formaldehyde plastic is not used?			
	Combs and fountain pen		
	Gramophone records		
	Electrical fuses		
	Paints		
153 Che	of 100 3 PU_2015_393 emical equilibrium is dynamic in nature because:-		
	The concentration of reactants and products become same at equilibrium		
	The equilibrium is maintained rapidly		
	The concentration of reactants and products are constant but different		
	Both forward and backward reactions occur at all times with same speed		
119 Wh	of 100 PU_2015_393 ich one of the waves cannot be polarised?		
	Sound waves		
	Ultraviolet rays		
	Radio waves		
	X-rays		
57 of 100 128 PU_2015_393 Water evaporates under the atmospheric pressure. If now the same water is placed under the rate of evaporation:-			
	Will double		
	Will remain unchanged		
	Will increase		
	Will decrease		
138 A s	of 100 B PU_2015_393 ample of an ideal gas occupies a volume 'V' at a pressure 'P' and absolute temperature 'T' the mass each molecule is 'm'. the expression for the density of gas is" (R: gas constant). Pm / RT		
	m RT		
	P/RT		
	P/RTC		
	F / NTO		

157	of 100 PU_2015_393 ich of the following is not an intensive property? Mass Temperature Density Molarity
110	of 100 PU_2015_393 en a sealed glass vessel filled with water at 4°C is cooled, it breaks because:- of anomalous expansion of contraction of the glass both of expansion of the glass
225 A s C	of 100 5 PU_2015_393 colution of pH 9.0 is one thousand times as basic as a solution of pH? 4 6 10 7
237 Two coa	of 100 'PU_2015_393 be equal drops of water are falling through the air with a terminal velocity of 10 cm/sec. If the drops elesce, then the terminal velocity is:- 5 cm/sec 20 cm/sec 10(2) ^{2/3} cm/sec
235 10	of 100 5 PU_2015_393 gm of ice at -20°C is dropped into a calorimeter containing 10 gm of water at 10°C. The specific heat vater is twice that of ice. When equilibrium is reached, the calorimeter will contain:- 20 gm ice 20 gm water 5 gm ice and 15 gm water

	10 gm ice and 10 gm water		
64 of 100 254 PU_2015_393			
If in a \triangle ABC, \sin A= \sin^2 B and 2 \cos^2 A = 3 \cos^2 B, then the \triangle ABC is			
	right angled obtuse angled equilateral isosceles		
223 F Area	of 100 PU_2015_393 bounded by the curve y=x³, the x-axis and the ordinates x=-2 and x=1 is:9 17/4 -15/4		
221 F If a +	of 100 PU_2015_393 - $b + c = 0$, the straight line $2ax + 3by + 4c = 0$ passes through the fixed point:- (2, 2) (4/3, 4/3) (2, 4/3) no such fixed point		
231 F The ti veloci	PU_2015_393 total area of cross-section is 0.25 m². If blood is flowing at the rate of 100 cm³/sec then the average city of flow of blood through the capillaries is:- 0.4 mm/s 4 mm/s 25 mm/s 400 mm/s		
	of 100 PU_2015_393		

The acceleration of a particle at time t is given by $A = -a\omega^2 \sin \omega t$ Its displacement at time t is:
$\Box -a\omega^2 \sin \omega t$
C a sin ωt
$\Box (a\omega^2 \sin \omega t/2)$
$\Box a \cos \omega t$
69 of 100 256 PU_2015_393 Water rises to a height of 10 cm when a glass tube is dipped vertically in it, what will be the rise if the tube is inclined at 30° to the vertical:-
10 cm
$C = \frac{5\sqrt{3}}{2}$
\Box $\frac{20}{\sqrt{3}}$
70 of 100 252 PU_2015_393 If $A + B + C = \pi$, then the value of $\tan A + \tan B + \tan C$ is given by: $\begin{array}{c} \Box \\ 1 \end{array}$ $\begin{array}{c} \cot A \cot B \cot C \end{array}$ $\begin{array}{c} \cot A \tan B \tan C \end{array}$
71 of 100
239 PU_2015_393 A dish of light material, partially filled with water, floating in a pan of water. A small stone, tied to string, is carefully lowered into the water in the dish such that it does not touch the sides or the bottom of the dish. Check the correct statement.
The level of the dish sinks a little lower
The level of the dish rises a little higher
The dish sinks to the bottom of the pan
The dish maintains its level in the pan
72 of 100 227 PU_2015_393 The pH of a solution is 4. The [H ⁺] ion concentration of the solution is? 0.4 moles/litre

	4 x 10 ⁴
	10^{-4}
	4 moles/litre
233 Two Fah bath	of 100 3 PU_2015_393 5 thermometers, one Celsius and the other Fahrenheit are put in a hot bath. The reading on arenheit thermometer is just three times the reading on Celsius thermometer. The temperature of the is:-
	70°C
	80°C
	100°C
	80/3°C
248 A to	of 100 $^{\circ}$ PU_2015_393 by of mass M_1 is pulled along a horizontal frictionless surface by a rope of mass M_2 . A force F is died to the free end of the rope. The force exerted on the cart is:-
	$\frac{FM_1}{M_1+M_2}$
	F
	$\frac{FM_1}{M_1 - M_2}$
	$\frac{FM_2}{M_1+M_2}$
246	of 100 i PU_2015_393 en a 1 Newton force acts on a 1 kg body that is able to move freely, the body receives:- An acceleration of 1 m/sec ²
	A speed of 1 m/sec
	An acceleration of 1 cm/sec ²
	An acceleration of 980 cm/sec ²
229 The	of 100 PU_2015_393 weight of 11.2 litres of CO ₂ at S.T.P. would be?
	32 gm
	88 gm
	44 gm

	22 gm
	of 100 PU_2015_393
lir x-	$\int_{0}^{1-\cos x} \sin x dx$ is equal to
	1/ ₂ 0
78 250 Two r ₂ (r	of 100 PU_2015_393 So satellites of masses m_1 and m_2 ($m_1 > m_2$) are revolving round the earth in circular orbits of radii r_1 and $r_1 > r_2$) respectively. Which of the following statements is true regarding their speed v_1 and v_2 ? $v_1/r_1 = v_2/r_2$ $v_1 < v_2$ $v_2 > v_2$ $v_3 > v_2$
245 The	PU_2015_393 Prate law for a reaction A + B → Product is rate = K [A] ¹ [B] ² . Then, which one of the following ements is false? If [B] is held constant while [A] is doubled, the reaction will proceed twice as fast This is a third order reaction If [A] is held constant while [b] is reduced to one quarter, the rate will be halved If [A] and [B] are both doubled, the reaction will proceed 8 times as fast
243 In th	of 100 PU_2015_393 ne following reaction, 4P + 3KOH + 3H ₂ O → 3KH ₂ PO ₂ + PH ₃ Only P is reduced P is neither oxidised nor reduced Only P is oxidised P is oxidised as well as reduced of 100
265	PU_2015_393

The complex number $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for:-

No value of x

$$x = 0$$

$$C \quad x = n\pi$$

82 of 100

298 PU_2015_393

What is the percentage of ionization of 0.1 M Ch₃COOH, at 298 K ($K_{\infty} = 1.8 \times 10^{-5}$)?

1.34

0.64

1.0

3.44

83 of 100

297 PU_2015_393

If x=log t+sin t, y=e^t+cos t, then $\frac{dy}{dx}$ =

$$t(e^t - \sin t)$$

$$\Box$$
 1+tcost

$$1+t\cos t$$

$$\Box \quad \overline{t(e^t - \sin t)}$$

Sin t

$$\frac{t(1+t\cos t)}{e^{\epsilon}\sin t}$$

84 of 100

273 PU 2015 393

If $y = \sin(m \sin^{-1} x)$, then

$$(1-x^2)y_2 - xy_1 - m^2y = 0$$

$$\Box (1-x^2)y_2 - xy_1 + m^2y = 0$$

0.00	Carrie	25	24.5 August 15 (15)		
III. X	(-)	C+ I Wa	+ YV	$-m^{2}y =$: 11
		J - 7 - 2	1 70 7 1	F F W X	_

$$\Box (1-x^2)y_2 - xy_1 - m^2y = 1$$

85 of 100

263 PU_2015_393

A cube of size 10 cm is floating in equilibrium in a tank of water. When a mass of 10 gm is placed on the cube. The depth of cube inside water increases by:(g = 10 ms⁻², density of water = 10³ kg m⁻³)

- 1 mm
- 0.1 m
- 0.1 mm
- 1 cm

86 of 100

279 PU_2015_393

The positive values of a which satisfies

$$\int_0^a (3x^2 + 4x - 5)dx = a^3 - 2, \text{ are}$$

- **2**, -1/2
- **2**, 1/2
- L 1,2
- **□** _{1, −2}

87 of 100

289 PU_2015_393

Let the vectors $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ be perpendicular. Then:-

- a = 4, b = 5, c = -4
- a = 4, b = 4, c = 5
- a = 2, b = 3, c = -4
- a = 4, b = 4, c = -5

88 of 100

275 PU_2015_393

The area bounded by the normal at (1, 2) to the parabola $y^2=4x$, x-axis and the curve is given by:-

- **7/3**
- **4/3**
- 1/3

	10/3
	of 100 PU_2015_393
So	Jution of the diff. eqn. $\frac{dy}{dx} + \frac{3x + 2y - 5}{2x + 3y - 5} = 0$ is
	(x+y)+3z = c $x^2+4xy-y^2-4x+6y = c$ $(x+2y)^2+3y = c$ $3x^2+4xy+3y^2-10x-10y = c$
287 The	PU_2015_393 area of the triangle whose two sides are given by $4i - j + k$ and $4j + 2k$ is:- $\sqrt{(14)}$ $4\sqrt{(14)}$ $2\sqrt{(14)}$ $16\sqrt{(14)}$
291 The	PU_2015_393 sum of 20 terms of the series 1 + 4 + 5 + 6 + 7 + is 248 247 249
281 Vec C C C	of 100 PU_2015_393 stors 2a-b+c, 4a-7b-c and 3a+6b+6c; a, b, c are non-zero; non-coplanar; are:- both collinear and coplanar neither collinear nor coplanar coplanar collinear
	PU_2015_393

```
If \mathbf{a} \times \mathbf{b} = \mathbf{c}, \mathbf{b} \times \mathbf{c} = \mathbf{a}, then:-
     c=1. a=1
□ <sub>a=1, b=c</sub>
     b=1, c=a
     b=2. c=2a
94 of 100
285 PU_2015_393
The work done by the force \mathbf{F} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} in moving a particle from (3, 4, 5) to (1, 2, 3) is:-
-4
□ 0
C <sub>3/2</sub>
-2
95 of 100
271 PU_2015_393
If f(x) = (x - x_0)g(x) where g(x) is continuous at x_0, then f'(x_0) is equal to
G g(x_0)
C x_0
0
96 of 100
293 PU_2015_393 The derivative of \sin^{-1} x w.r.t \cos^{-1} \sqrt{(1-x^2)} is:-
\Box 1/\sqrt{[(1-x^2)]}
C cos<sup>-1</sup> x
97 of 100
267 PU_2015_393
If \sin \theta + \cos \theta = 1, then the value of \sin 2\theta is
```

3/4

1/2

98 of 100

261 PU_2015_393

Equation of the diameter of the circle $x^2 + y^2 - 2x + 4y = 0$ which passes through the origin is:

x-2y=0

x + 2y = 0

 $\Box_{2x+y=0}$

 \square 2x-y=0

99 of 100

269 PU_2015_393

If u = f(y - z, z - x, x - y) then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} =$

5 3

 $\Box \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$

L _{1/3}

100 of 100

277 PU_2015_393

The area of the figure bounded by the curves y = x + 1 and $y = \cos x$ and x-axis is:-

1/3

2/3

Examination: M.Tech. Environmental Engineering and Management
Section 1 - Section 1
Question No.1 Bookmark □ Whenever a system in equilibrium is disturbed the system will adjust itself in such a way that the effect of the change will be reduced or moderated. Who proposed this principle? Gibbs Le Chatelier Lowry Newton
Question No.2 Which of the following is used in the treatment of lead poisoning? ○ EBT ○ Zeise salt ○ Cis platin ○ EDTA
Question No.3 4.00 Bookmark □ Montreal protocol is related to ○ Ozone layer depletion ○ Sustainable development ○ Food security ○ Global warming
Question No.4 Calculate $\lim x \to 1[(x^X - 1) / (x \log(x))] a) e^e$ C 1 C 2 C 0 C -1
Question No.5 4.00 Bookmark □ Choose the best antonym of the italicized word. The task assigned to him was arduous. ○ plain ○ good ○ easy ○ absorbing
Question No.6 Bookmark ☐ A right circular cone has a height of 40 cm and its semi vertical angle is 45°, then its base circle radius is © 80 cm © 60 cm © 20 cm © 40 cm

Question No.7 4.00
Correct the error in the italicized part of the sentence by choosing the most appropriate option. Whenever the two sisters <i>go out for shopping</i> , they take their pet dog with them. o go out to shopping o go out shopping o go out on shopping
© go out of shopping
Question No.8
These <u>poultry</u> belong to Mr. Kishen, our new neighbor The underlined word is anoun. ○ proper
C collective C common
abstract
Question No.9 4.00 Bookmark
The organisms such as Alexandrium fundyense, Alexandrium catenella, Karenia brevis are all algal groups which could spread or be carried long distances by winds, currents, storms, or ships and they result in a phenomenon called as. Red tides Green waves
Oligotrophic lakes
Question No.10 Bookmark The curve which represents the reduction in dissolved oxygen and the increase in biological oxygen demand in an aquatic ecosystem due to industrial effluent discharge is called as.
© BOD curve © Oxygen sag curve
C Logarithmic curve C Oxygenation curve
Question No.11 4.00
Identify the adverb in the following sentence: We looked upwards and saw a bright shooting star shooting looked
C upwards C bright
Question No.12 4.00
Bookmark ☐ The Minamata Convention is an international treaty designed to protect human health and the environment from anthropogenic emissions and releases of a heavy metal namely - ○ Iron
MercuryLeadChromium

Question No.13	4.00
Rusting of iron in sea water is	Bookmark
 Slower due to the absence of electrolyte in sea water Slower due to the presence of electrolyte in sea water Rapid due to the presence of electrolyte in sea water Rapid due to the absence of electrolyte in sea water 	
Question No.14	4.00 Bookmark
\leftarrow \rightarrow \rightarrow	
(A) (B) (C) (D) • C • B	
O D O A	
Question No.15 Due to, the subways were closed all morning. its flooding floods are flooded flood	4.00 Bookmark ☐
Due to, the subways were closed all morning. o its flooding floods are flooded	
Due to, the subways were closed all morning. or its flooding floods are flooded flood Question No.16 Following are the fundamental forces from which all other forces are derived Electromagnetic, physical and chemical Nuclear, gravitational and chemical Nuclear, gravitational and physical	Bookmark 4.00 Bookmark 4.00
Due to, the subways were closed all morning. c its flooding floods are flooded flood Cuestion No.16 Following are the fundamental forces from which all other forces are derived Electromagnetic, physical and chemical Nuclear, gravitational and chemical Nuclear, gravitational and physical Electromagnetic, nuclear and gravitational Question No.17 If a particle is moving in uniform circular motion, which of the following is true?	Bookmark 4.00 Bookmark
Due to, the subways were closed all morning. its flooding floods are flooded flood Question No.16 Following are the fundamental forces from which all other forces are derived Electromagnetic, physical and chemical Nuclear, gravitational and chemical Nuclear, gravitational and physical Electromagnetic, nuclear and gravitational Question No.17 If a particle is moving in uniform circular motion, which of the following is true? V = wr ²	Bookmark 4.00 Bookmark 4.00
Due to, the subways were closed all morning. its flooding floods are flooded flood Question No.16 Following are the fundamental forces from which all other forces are derived Electromagnetic, physical and chemical Nuclear, gravitational and chemical Nuclear, gravitational and physical Electromagnetic, nuclear and gravitational Question No.17 If a particle is moving in uniform circular motion, which of the following is true? V = ωr² There is no tangential acceleration Speed is not constant	Bookmark 4.00 Bookmark 4.00
Due to, the subways were closed all morning. its floods floods are flooded flood Question No.16 Following are the fundamental forces from which all other forces are derived Electromagnetic, physical and chemical Nuclear, gravitational and chemical Nuclear, gravitational and physical Electromagnetic, nuclear and gravitational Question No.17 If a particle is moving in uniform circular motion, which of the following is true? v = ωr² There is no tangential acceleration	Bookmark 4.00 Bookmark 4.00

Question No.18	4.00
NA/high of the fallowing is not a theorem and an	Bookmark □
Which of the following is not a thermometer? © Thermotube	
© Thermocouple	
© Thermistor	
© Radiation thermometer	
· Nadiation the moneter	
Question No.19	4.00
	Bookmark □
If $\tan \tau + ab \cot \tau = a + b$ then $\tan \tau =$	
Са	
$^{\circ}$ $\pi/4$	
⊙ b	
O a or b	
Question No.20	4.00 Bookmark □
India's maiden Ocean Thermal Energy Conversion (OTEC) project planned for India to be 6 by 2019, off the south-western coast after almost three and a half decades of initial plans. To proposed for the same is O Kavaratti,Lakshadweep	executed
O Nicobar	
O Cochin	
O Andaman	
Maximum potential is produced in a voltaic cell, when the two metals connected have Same standard reduction potential values Different standard reduction potential values Lesser difference in standard reduction potential values	4.00 Bookmark ☐
Greater difference in standard reduction potential values	
Question No.22	4.00
Calculate the electronic polarizability of an argon atom whose $\varepsilon r = 1.0024$ at NTP and N = 2.7×10^{25} atoms/m ³ .	Bookmark □
© 6.1x10 ⁴⁰ Fm ²	
© 8.7x10 ⁴⁰ Fm ²	
^C 5.2x10 ⁴⁰ Fm ²	
[©] 7.87x10 ⁴⁰ Fm ²	
	'

Question No.23	4.00 Bookmark
can posses a non-trivial solution then λ =	
O 6 O 3	
© 2 © 1	
Question No.24	4.00
The mother gripped her child's arm he be trampled. © lest © if not	Bookmark □
o if unless	
Question No.25	4.00 Bookmark
The enthalpy of formation of compounds A, B, C and D are -90, +25, +10, - 26 kJ/mol respective increasing order of stability of compounds is C < B < D < A A < D < C < B B < C < D < A	
Question No.26	4.00
Bristle : Brush Art: Sculpture Arm : Leg	Bookmark □
C Stage: Chairs C Key: Piano	
Question No.27	4.00 Bookmark
Given the following entropy values (Al ₂ O ₃ is 51.00; Al(s) is 28.32; H ₂ O(g) is 188.7; H ₂ (g) is determine dS for the reaction:Al ₂ O ₃ (s) + 3H ₂ (g)> 2Al(s) + 3H ₂ O(g)	
© 179.9K © 17.99J/K	
© 179.9J/K © 179.9J	

4.00

Question No.28

Bookmark □

Find It $(x,y,z,w) \rightarrow (0,0,0,0) x^{-6}.y^2.(z.w)^3/x+y^2+z-w$

 $^{\circ}$

- C Does Not Exist
- O 900
- 0

Question No.29 4.00

Bookmark □

The probability that at least one of the events M and N occur is 0.6. If M and N have probability of occurring together as 0.2, then $P(\sim M) + P(\sim N)$ is

- \circ 3
- 0 1.2
- 02
- 0.1

Question No.30 4.00

Bookmark [

Find the area of a function $f(x) = x^2 + xCos(x)$ from x = 0 to a, where , a>0

 $^{\circ}$ $a3/_{3} + \cos(a) + \sin(a) - 1$

a3/3 + aSin(a) + Cos(a)

 $a^{3}/_{3} + a\sin(a) + \cos(a) - 1$

^o $a2/2 + a\sin(a) + \cos(a) - 1$

Question No.31	4.00
	Bookmark □
The graph in the xy plane represented by $x = 3 + 2$	
$\sin t$ and $y = 2 \cos t - 1$, for $-\pi \le t \le \pi$ is	
○ half of an ellipse	
© a semicircle	
○ a circle	
o an ellipse	
Question No.32	4.00
A hose lying on the ground has water coming out of it at a speed of 5.4 meters per second. nozzle of the hose to a height of 1.3 meters above the ground. At what speed does the wate come out of the hose? 1.0m/s 1.9m/s	
© 0.9m/s	
Question No.33	4.00
When gas expands into vacuum,	Bookmark □
Question No.34	4.00
On the interval 1 < x < 2, f(x)equals	Bookmark □
C -x-2	
O -x-4 O -x+2	
C -x-3	
Question No.35	4.00
How is charge carriers produced in intrinsic semiconductors?	Bookmark □
○ By impure atoms	
© By holes	
By electrons By pure atoms	
Rachel Carson's book, first published in 1962, alerted readers to how the widespread use of chemical pesticides was posing a serious threat to public health and leading to the destruct wildlife. The title of the book is Population bomb	
O Desert Solitaire	
C Silent Spring	
© Silent Spring	

Question No.37 4.00 Bookmark □ Reduction in fluid pressure that results when a fluid flows through a constricted section of a pipe
C Viscosity effect C Venturi effect
○ Bernoulli effect ○ Pascal effect
Question No.38
Based on the information given, answer the below question. 1. A,B,C,D,E and F are travelling in a bus. 2. There are two reporters, two mechanics, one photographer and one writer in the group. 3. Photographer A is married to D who is a reporter. 4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C.
Which of the following is the pair of reporters?
© Cannot be determined
O DF O AE
Question No.39 Bookmark ☐ The internal energy of an ideal gas does not change if volume and pressure change, but does change if temperature changes. Bernoulli's second law Bernoulli's first law Joule's first law Joule's second law
Question No.40 Bookmark □ X is twice as good a workman as Y and together they finish a piece of work in 18 days. In how many days will X alone finish the work? □ 26 □ 28 □ 27 □ 25
Question No.41 4.00 Bookmark □
If a 2.34 g substance at 22°C with a specific heat of 3.88 cal/g-°C is heated with 124 cal of energy, what is the new temperature of the substance?
© 3.57°C © 30.7°C
© 25.7°C
© 35.7°C

Question No.42 4.00	
Bookmark ☐ An organic compound (A) with molecular formula C ₈ H ₁₆ O ₂ was hydrolyzed with dilute sulphuric acid to give a carboxylic acid (B) and an alcohol (C). Oxidation of C with chromic acid also produced B. On dehydration, C gives but-2-ene. What is A? C Alcohol C Ketone	
© Ester	
© Ether	
Question No.43 4.00	\neg
Bookmark Assertion: Crude oil is abundantly found in nature	
Reason: It is the main raw material for all automobiles	
© Both A and R are true and R is the correct explanation of A	
© Both A and R are true and R is not the correct explanation of A	
O A is false but R is true	
O A is true but R is false	
Question No.44 4.00 Bookmark □	•
If length of an arc is 52 cm and θ is 45°, radius should be	
O 56cm	
O 55cm	
○ 60cm	
O 66.21cm	
Question No.45	\Box
Study the following information carefully and answer the question below it:	
Aasha, Bhuvnesh, Charan, Danesh, Ekta, Farhan, Ganesh and Himesh are sitting around a circle, facing the centre. Aasha sits fourth to the right of Himesh while second to the left of Farhan. Charan is not the neighbour of Farhan and Bhuvnesh. Danesh sits third to the right of Charan. Himesh never sits next to Ganesh.	
Who is to the immediate left of Aasha?	
© Bhuvnesh	
○ Aasha	
C Charan	
○ Ganesh	
Question No.46 4.00 Bookmark	
For the function $f(x) = \sin(x)/x^2$ How many points exist in the interval [0, 7π] Such that $f'(c) = 0$	
© 8	
0.5	
0.7	
0 6	
. ∪	

Question No.47	4.00
Which are of the following sail is the least paraus?	Bookmark
Which one of the following soil is the least porous? © peaty	
© silty	
•	
C loamy	
○ clayey	
Question No.48	4.00
Consider the vertical cone. The minimum value of the function in the region $f(x,y) = c$ is	Bookmark
© 1	
0 0	
O -1	
© Constant	
Question No.49	4.00
	Bookmark □
Surface tension of sea water is that of fresh water.	
© Equal to	
C Lesser than	
○ Higher than	
Not related to	
Ougstion No 50	4.00
Question No.50	4.00 Bookmark □
	4.00 Bookmark □
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride	
Which of the following solution is an example for acidic buffer	
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride	
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate	
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride	
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate	Bookmark 4.00
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid	Bookmark 4.00 Bookmark
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to company the company of the following mentioned standard Probability density functions is applicable to company the company of the following mentioned standard Probability density functions is applicable to company the company of the following mentioned standard Probability density functions is applicable to company the company of the following mentioned standard Probability density functions is applicable to company the company of the following mentioned standard Probability density functions is applicable to company the company of the com	Bookmark 4.00 Bookmark
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables?	Bookmark 4.00 Bookmark
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution	Bookmark 4.00 Bookmark
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution Poisson distribution	Bookmark 4.00 Bookmark
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution Poisson distribution Gaussion Distribution	Bookmark 4.00 Bookmark
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution Poisson distribution	Bookmark ☐ 4.00 Bookmark ☐
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution Poisson distribution Gaussion Distribution	Bookmark ☐ 4.00 Bookmark ☐
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution Poisson distribution Gaussion Distribution	Bookmark ☐ 4.00 Bookmark ☐
Which of the following solution is an example for acidic buffer Ammonium hydroxide and ammonium chloride Ammonia and ammonium chloride Ethanoic acid and sodium ethanoate Ethanoic acid and hydrochloric acid Question No.51 Which of the following mentioned standard Probability density functions is applicable to a Random Variables? Rayleigh Distribution Poisson distribution Gaussion Distribution	Bookmark ☐ 4.00 Bookmark ☐

Question No.52	4.00
Study the following information carefully and answer the question below it	Bookmark
(i) There is a group of five persons- A, B, C, D and E (ii) One of them is manual scavenger, one is sweeper, one is watchman, one is human	scarecrow and
one is grave-digger (iii) Three of them – A, C and grave-digger prefer tea to coffee and two of them – B and	d the watchman
prefer coffee to tea (iv) The human scarecrow and D and A are friends to one another but two of these prefetea.	er coffee to
(v) The manual scavenger is C's brother	
Which of the above statements is unnecessary? © (ii)	
© (iv)	
O (iii) O Nill	
Question No.53	4.00
If 50 joules of energy is supplied in 5 seconds, the power produced is 1 Watt 25 Watts 5 Watts 10 Watts	Bookmark
Question No.54 The law which is an explicit formula for the solution of a system of linear equations with a equations as unknowns, valid whenever the system has a unique solution is termed as Associative law Commutative law Distributive law Cramer's rule / law	4.00 Bookmark ☐ as many
The law which is an explicit formula for the solution of a system of linear equations with a equations as unknowns, valid whenever the system has a unique solution is termed as Associative law Commutative law Distributive law	Bookmark
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as Associative law Commutative law Distributive law Cramer's rule / law	Bookmark □ as many 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as . Associative law . Commutative law . Distributive law . Cramer's rule / law	Bookmark □ as many 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as . Associative law . Commutative law . Distributive law . Cramer's rule / law	Bookmark □ as many 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as . Associative law . Commutative law . Distributive law . Cramer's rule / law	Bookmark □ as many 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as . Associative law . Commutative law . Distributive law . Cramer's rule / law	Bookmark as many 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as . Associative law . Commutative law . Distributive law . Cramer's rule / law	Bookmark as many 4.00 Bookmark 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as $^{\circ}$ Associative law $^{\circ}$ Commutative law $^{\circ}$ Distributive law $^{\circ}$ Cramer's rule / law	Bookmark as many 4.00 Bookmark 4.00
The law which is an explicit formula for the solution of a system of linear equations with equations as unknowns, valid whenever the system has a unique solution is termed as	Bookmark as many 4.00 Bookmark 4.00

Question No.57	4.00
What will happen to the rate of an Exothermic reaction when the temperature is decreased?	Bookmark
O increases	
○ decreases○ No change	
None of the above	
Question No.58	4.00 Bookmark □
	DOOKIIIAI K
$tan^{-1}(tan 4) - tan^{-1}(tan(-6)) + cos^{-1}(cos 10) =$	
○ 16	
$^{\circ}$ π	
ο 5π-12	
Ο -π	
Question No.59	4.00
The second COD should for	Bookmark □
The acronym CSR stands for Corporate Social Reality	
Corporate Sensitive Reliability	
C Corporate Search and Rescue	
Corporate Social Responsibility	
Question No.60	4.00
	Bookmark □
Which solid will precipitate first if an aqueous solution of Na ₂ CrO ₄ at 25°C is slowly added to	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25 ^o C?	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄	
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61	4.00 Bookmark
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂	4.00 Bookmark
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but	4.00 Bookmark
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? Jagan Pandian	4.00 Bookmark
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? Jagan Pandian Anand	4.00 Bookmark
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? Jagan Pandian	4.00 Bookmark
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? Jagan Pandian Anand	4.00 Bookmark □ lighter
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? Jagan Pandian Anand Gopal Question No.62	4.00 Bookmark □ lighter 4.00 Bookmark □
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? NaNO ₃ PbCrO ₄ BaCrO ₄ Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? Jagan Pandian Anand Gopal	4.00 Bookmark □ lighter 4.00 Bookmark □
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? © NaNO ₃ © PbCrO ₄ © BaCrO ₄ © Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? © Jagan © Pandian © Anand © Gopal Question No.62 A gardener pushes a lawn roller through a distance of 20m. If he applies a force of 20kg weidirection inclined at 60° to the ground, find the work done by him. (g=9.8m/s²) © 1960 joules	4.00 Bookmark □ lighter 4.00 Bookmark □
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? C NaNO ₃ C PbCrO ₄ C BaCrO ₄ C Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? C Jagan C Pandian C Anand C Gopal Question No.62 A gardener pushes a lawn roller through a distance of 20m. If he applies a force of 20kg weidirection inclined at 60° to the ground, find the work done by him. (g=9.8m/s²) C 1960 joules C 19 joules	4.00 Bookmark □ lighter 4.00 Bookmark □
aqueous solution containing 0.001 M Pb(NO ₃) ₂ and 0.100 M Ba(NO ₃) ₂ at 25°C? C NaNO ₃ C PbCrO ₄ C BaCrO ₄ C Pb(NO ₃) ₂ Question No.61 Anand is heavier than Gopal.Mohan is lighter than Jagan.Pandian is heavier than Jagan but than Gopal. Who is the heaviest of all? C Jagan C Pandian C Anand C Gopal Question No.62 A gardener pushes a lawn roller through a distance of 20m. If he applies a force of 20kg weidirection inclined at 60° to the ground, find the work done by him. (g=9.8m/s²) C 1960 joules	4.00 Bookmark □ lighter 4.00 Bookmark □

Question No.63	4.00 Bookmark
Choose the missing term: SHG, RIF, QJE, PKD, ? © NMD	вооктагк [
○ MLB	
○ OLC	
OLD	
Question No.64	4.00 Bookmark
A theorem in fluid dynamics relating the speed of fluid flowing out of an orifice to the height above the opening	
○ Torricelli theorem	
© Bernoulli theorem	
Pascal theorem Archimedes theorem	
Ald liftledes theorem	
Question No.65	4.00
Study the following information carefully and answer the question below it	BOOKIIAIK [
The Director of an MBA college has decided that six guest lectures on the topics of Motivat Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion and Company of the Assessment Centre, Leadership and Group Discussion and Company of the Assessment Centre, Leadership and Group Discussion and Centre of the Company of the Centre of the Cen	
organised on each day from Monday to Sunday. (i) One day there will be no lecture (Saturday is not that day), just before that day Group Dis will be organised.	cussion
(ii) Motivation should be organised immediately after Assessment Centre.(iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion)
(iv) Decision Making should be organised on Friday and there should be a gap of two days Leadership and Group Discussion	between
Which of the pairs of lectures were organised on first and last day?	
Quality Circle and Motivation	
© Group Discussion and Quality Circle	
 Group Discussion and Decision Making 	
© None of these	

For a reaction A + B → Product, the rate law is given by r = K [A]¹/² [B]². What is the order of the reaction? ○ 1 ○ 2.5 ○ 1.5 ○ 2 Question No.67 4.00 Bookmark □ The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as ○ Earth Summit 2012 ○ Kyoto meet ○ Montreal meet ○ IPCC
given by r = K [A] ^{1/2} [B] ² . What is the order of the reaction? C 1 C 2.5 C 1.5 C 2 Question No.67 4.00 Bookmark The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as C Earth Summit 2012 C Kyoto meet C Montreal meet
given by r = K [A] ^{1/2} [B] ² . What is the order of the reaction? C 1 C 2.5 C 1.5 C 2 Question No.67 4.00 Bookmark The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as C Earth Summit 2012 C Kyoto meet C Montreal meet
reaction? 1
C 1 C 2.5 C 1.5 C 2 Question No.67 4.00 Bookmark □ The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as C Earth Summit 2012 Kyoto meet Montreal meet
C 2.5 C 1.5 C 2 Question No.67 4.00 Bookmark The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as C Earth Summit 2012 C Kyoto meet C Montreal meet
C 1.5 C 2 Question No.67 4.00 Bookmark The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as Earth Summit 2012 Kyoto meet Montreal meet
Question No.67 4.00 Bookmark □ The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as □ Earth Summit 2012 □ Kyoto meet □ Montreal meet
Question No.67 Bookmark ☐ The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as Earth Summit 2012 Kyoto meet Montreal meet
Bookmark ☐ The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as ○ Earth Summit 2012 ○ Kyoto meet ○ Montreal meet
The third international conference on sustainable development aimed at reconciling the economic and environmental goals of the global community. This conference is called as © Earth Summit 2012 © Kyoto meet © Montreal meet
environmental goals of the global community. This conference is called as © Earth Summit 2012 © Kyoto meet © Montreal meet
C Earth Summit 2012 C Kyoto meet C Montreal meet
C Kyoto meet C Montreal meet
© Montreal meet
o IPCC
Question No.68 4.00
Bookmark ☐ As per Earth system research laboratory's report of March 2018, the global CO₂ level in the
atmosphere has passed about
○ 600ppm
○ 300 ppm
○ 400ppm
© 200ppm
Question No.69 4.00
Bookmark □
The process that uses electric current to reduce the dissolved metal cations so that they form a thin
coherent metal coating on an electrode is called as. © reduction
© Coating
© Deposition
© Electroplating
Question No.70 4.00
Bookmark ☐ Liquid water at 100 ^o c and 1 bar has an internal energy(on an arbitrary scale) at 460KJ/Kg and a
specific volume of 1.044 cm ³ /g. Calculate the enthalpy.
© 406.1044
C 46.01044
C 460.1044
C 40610.44

Question No.71	4.00
	Bookmark □
The clouds in the winter polar stratosphere at altitudes of 15,000–25,000 meters (49,000–82	
which are best observed during civil twilight when the sun is between 1 and 6 degrees below	
horizon as well as in winter and in more northerly latitudes which are implicated in the formation	
of ozone holes are called	JII
© cirrostratus	
O cirrus	
O cirrocumulus	
nacreous clouds	
Question No.72	4.00
	Bookmark □
A 2 kg ball on a string is rotated about a circle of radius 10 m. The maximum tension allowed	in the
string is 50 N. What is the maximum speed of the ball?	
○ 15.4 m/s	
○ 13.8 m/s	
O 12.8 m/s	
O 15.8 m/s	
Overtion No 70	1.00
Question No.73	4.00
	Bookmark ☐
If the system of equations $x + ky + 3z = 0$, $3x + ky - 2z = 0$, $2x + 3y - 4z = 0$ has non-trivial solution	i, ii lett
$xy/z^2 =$	
C -5/6	
o 5/6	
○ 6/5	
○ -6/5	
Question No.74	4.00
	Bookmark □
The increase in internal energy of a system is equal to the work done in the system. Which pro	
does the system undergo?	00633
© adiabatic	
O Isobaric	
○ Isothermal	
○ Isochoric	
Question No.75	4.00
	Bookmark □
A solution of CuSO4 is electrolyzed for 600 s with a current of 1.5 A. The mass of Cu deposite	
cathode is	- · · · -
© 2.938 g	
-	
© 2.938 mg	
○ 0.2938 g	
© 0.2938 mg	

Question No.76	4.00 Bookmark □
The outer ends of two bars A and B are at 100° C and 50° respectively. Calculate the temp the welded joint if they have the same cross-section and the same length and their thermal conductivities are in the ratio of A:B = 7:5	
[©] 78.166°C	
[©] 79.166 ^o C	
© 89.166°C	
[©] 77.166°C	
Question No.77	4.00
The equations $x + 2y + 3z = 1$, $2x + y + 3z = 2$, $5x + 5y + 9z = 4$ have	Bookmark □
© No solution	
C Unique solution	
C Infinity solutions	
Cannot say anything	
Question No.78	4.00
The rate constant unit of a zero order reaction is	Bookmark □
Moll-1 s-1	
E-PC-AS TO THE STATE OF THE STA	
C S-1	
○ Mol ⁻¹ s ⁻¹	
O Mol-11 e-1	
O Mol-1 l s-1	
Question No.79	4.00
	Bookmark □
The by-product in the working of the Hydrogen-oxygen fuel cell is	
c ethanol	
o Water	
o CO ₂	
5 552	
Question No.80	4.00 Bookmark □
The temperature at which a real gas obeys the ideal gas laws at fairly wide range of pressucalled as	
Critical temperature	
© Boyle's temperature	
C Inversion temperature	
Constant temperature	
Question No.81	4.00
Have a second and a fine and invite days (2/Alberta and the 1/Alberta and the 1/Albe	Bookmark <u></u> ☐
How many points of discontinuity does f'(x) have on the interval $-6 < x < 7$?	
05	
0 2	
0 4	

Question No.82 4.00	
Bookmark ☐ The maximum lift provided by a 700 kg airplane is 10000 N. If the plane travels at 100 m/s, what is its shortest possible turning radius?	
© 700 © 600	
0 70	
o 7000	
Question No.83 4.00	┪
Bookmark ☐ The organisms which may benefit from higher CO ₂ conditions in the ocean, as they require CO ₂ to	
live just like plants on land are namely.	
○ oysters, clams	
C deep sea corals, and calcareous plankton	
sea urchins, shallow water corals	
 Photosynthetic algae and seagrasses 	
Question No.84 4.00	
Bookmark	
Choose the best synonym of the italicized word. Reena has an <i>insatiable</i> love for music.	
© unchanging	
© unquenchable	
O undesirable	
© irreconcilable	
Question No.85	
Which of the following are used in food preservation? ■ Bookmark □	
C Ethanoic acid and methanoic acid	
Sodium benzoate and ethanoic acid	
 Acetic acid and benzoic acid Sodium benzoate and methanoic acid 	
O Social Delizoate and Methanoic acid	
Question No.86 4.00	
Bookmark ☐ The Navier–Stokes equations form a vector continuity equation describing the conservation of	
Angular velocity	
C Linear velocity	
C Linear momentum	
C Angular momentum	
Question No.87 4.00	
Bookmark □	
As a country, the United States is that there are five time zones.	
O too big	
O very big	
much bigso big	
So big	

Question No.88 Bookmark □ To how many places is the symmetric difference accurate when it is used to approximate f ' (0) for f (x) = 4' and h = 0.08?
Question No.90 A gas occupies one litre under atmospheric pressure. What will be the volume of the same amount of gas under 730 mm of Hg at the same temperature? ○ 141.1L ○ 141.1mL ○ 1041.1L ○ 1041.1mL
Question No.91 Alpha diversity means
Question No.92 4.00 Bookmark \square $\sin^{-1}(\sin 10) \text{ is}$ $ \circ 10\text{-}3\pi $ $ \circ 3\pi\text{-}10 $ $ \circ 2\pi\text{-}10 $ $ \circ 10 $
Question No.93 Bookmark ☐ Species are classified by the IUCN Red List into nine groups. As per this classification, CR refers to Known only to survive in captivity Extremely high risk of extinction in the wild Likely to become endangered in the near future High risk of endangerment in the wild

Question No.94	4.00
What is the n-factor of H ₃ PO ₃ ?	Bookmark
03	
C 2	
O -1	
○ 0	
Question No.95	4.00
Under sub-adiabatic conditions (ELR < ALR), there exists limited vertical mixing and enviro	Bookmark nment is
slightly stable, the plume which is not suitable for dispersion of pollutants. Such plume is ca	
Coning plume	
© Fanning plume	
C Looping plume	
Neutral plume	
Question No.96	4.00
Which of the following is not an effect of electric current?	Bookmark
O Physical effect	
Heating effectMagnetic effect	
Chemical effect	
S Gridinical Gride	
Question No.97	4.00
If Milk is water water is awar awar is really well is alward alwais treals where do correla	Bookmark
If Milk is water, water is sugar, sugar is road, road is sky and sky is track where do aeropla Sky	nes ily?
O Road	
o Sugar	
o Milk	
Question No.98	4.00
In the following question, the first two words (given in italics) have a definite relationship.	Bookmark Choose
one word out of the given four alternatives which will fill the blank space and showthe san	
relationship with the third word as between the first two.	
Truthfulness is to Liar as Loyalty is to?	
○ Falsehood	
○ Traitor	
○ Worker	
© Devotion	

Question No.99

4.00 Bookmark

Find the standard Gibbs energy change for the reaction

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

The ΔG_f° values for the three components of this reaction system are CaCO₃(s): -1128 kJ mol⁻¹, CaO(s): $-603.5 \text{ kJ mol}^{-1}$, $CO_2(g)$: $-137.2 \text{ kJ mol}^{-1}$.

- © 300.3KJ mol⁻¹
- C 387.3KJ mol⁻¹
- © 87.3KJ mol⁻¹
- C 307.3KJ mol⁻¹

Question No.100

4.00 Bookmark

Angles between 0° and 90° lies in

- 2nd quadrant
- 3rd quadrant
- 4th quadrant
- 1st quadrant

Sr No.	MTech Environmental Engineering and Management
	Which term will replace the question mark in the series: ABD,DGK,HMS,MTB,SBL, ?
Alt1	
	ZKW
Alt3	
	XKW
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears: Illiteracy: Education:: Flood:?
Alt1	Rain
Alt2	Bridge
Alt3	Dam
Alt4	River
3	Select the lettered pair that has the same relationship as the original pair of words: Sip: Gulp
Alt1	Touch: Push
Alt2	Cup: Class
Alt3	Tent: Hut
Alt4	Soup: Water
4	Select the lettered pair that has the same relationship as the original pair of words:
	Low : Cattle
Alt1	Sheep: Beef
Alt2	Gaggle: Chicken
Alt3	Grunt: Hogs
Alt4	Flock: Goat
	Find out the number that has the same relationship as the numbers of the given pair: $8:81::64:?$
Alt1	125
Alt2	137
Alt3	525
Alt4	625
6	Spot the defective segment from the following:
Alt1	It's time
Alt2	the students dispersed
Alt3	to go to home
Alt4	after study hours
7	There is no in our car and it is already crowded.
Alt1	room
Alt2	place
Alt3	seat

Alt4	space
	Newton loved his pet dog very much.
	a scientist
	the scientist
	scientist
Alt4	one scientist
0	
9	Choose the option closest in meaning to the given word:
	JINGOISM
	deism
	chauvinism
	extremism pacifism
AIL4	paciiisiii
10	Chaosa the antenumous ention you consider the best
10	Choose the antonymous option you consider the best: QUACK
Λ I+1	bizarre
	procurer
	charlatan
	authority
AICT	dutionty
11	In a village there are 1000 persons. Out of which 800 are literates. Out of 1000,700 are criminals. There are 550
	literate criminals in that village. How many Illiterate non criminals are there?
Alt1	
Alt2	
Alt3	
Alt4	200
12	Average weight of A,B,C is 45;
	Average weight of A&B is 40;
	Average weight of B&c is 43, Weight of B is
Alt1	17
Alt2	20
Alt3	
Alt4	31
	Which of the following cannot be the Median of the three positive Integers X,Y & Z?
Alt1	X
Alt2	
Alt3	
Alt4	(X+Z)/3
	How many Zero's are there in the product 1*2*3**10
Alt1	
Alt2	
Alt3	5

Alt4	6
15	A,B,C,D work on a project. Together A,B &C can complete in 100 days; Together B,C &D can complete in 101
	days; Together C,D & A can complete in 102 days; together D,A & B can complete in 103 days . Rank them from
	the best to the worst performer.
Alt1	C>B>A>D
Alt2	C>A>B>D
Alt3	D>B>A>C
Alt4	D>A>B>C
16	22 Students are evenly spaced on the circumference of a big circle. They are numbered 1to 22. which number is
	opposite to 17?
Alt1	8
Alt2	5
Alt3	7
Alt4	6
17	The fare of a luxury cab is Rs. X for the first five Kilometres and Rs,13/- per Kilometre thereafter. If a
	passenger pays Rs.2402/- for a journey of 187 kilometres, what is the value of X?
Alt1	Rs.29
Alt2	Rs.39
Alt3	Rs.36
Alt4	Rs.31
18	An HR Company employs 4800 people out of which 45 per cent are males and 60 per cent of males are either
	25 years or older. How many males are employed in that company who are younger than 25 years?
Alt1	2640
Alt2	2160
	1296
Alt4	864
19	A person buys a shirt with marked price Rs.400/- at 20% discount. In order to make a profit of 20% the person
	should sell the shirt for
	Rs.400/-
	Rs.384/-
	Rs.320/-
Alt4	Rs.480/-
20	The following information is given:(i) Five friends P, Q, R. S and T travelled to five different cities of Chennai,
	Calcutta, Delhi, Bangalore and Hyderabad by five different modes of transport of Bus, Train,
	Aeroplane, Car and Boat from Mumbai. (ii) The person who travelled to Delhi did not travel by boat.
	(iii) R went to Bangalore by car and Q went to Calcutta by aeroplane.(iv) S travelled by boat whereas T travelled
	by train.
	(v) Mumbai is not connected by bus to Delhi and Chennai. Which of the following combinations of place and
	mode is not correct?

Alt1	Delhi — Bus
Alt2	Calcutta — Aeroplane
Alt3	Bangalore — Car
Alt4	Chennai — Boat
21	Which of the following is a dimensionless quantity?
	Stress
Alt2	Quantity of heat
	Strain
	Specific heat
22	The physical quantities, not having the same dimensions, are:-
	Momentum and Planck's constant
	Torque and work
	Strain and coefficient of friction
	Stress and Young's Modulus
Alt4	Stress and Tourig's Wouldes
23	If curve $y = x^2 + bx + c$ touches the straight line $y = x$ a the point $(1, 1)$, then b and c are given by:-
Alt1	
	-1, 1
Alt3	
	1, 2
AIL4	1, 2
2.4	Cupaço the sup expands so that its radius becomes 100 times its present radius and its surface temperature
24	Suppose the sun expands, so that its radius becomes 100 times its present radius and its surface temperature
24	Suppose the sun expands, so that its radius becomes 100 times its present radius and its surface temperature becomes half of its present value. The total energy emitted by it will increase by a factor of:-
	becomes half of its present value. The total energy emitted by it will increase by a factor of:-
Alt1	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16
Alt1 Alt2	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000
Alt1 Alt2 Alt3	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256
Alt1 Alt2	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256
Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625
Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres
Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:-
Alt1 Alt2 Alt3 Alt4 25 Alt1	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt1 Alt2	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2 0 m/s2
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt2 Alt3	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2 0 m/s2 48 m/s2
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt2 Alt3	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2 0 m/s2
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2 0 m/s2 48 m/s2 36 m/s2
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:-
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:- -36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1 Alt2 Alt1 Alt2	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8 114
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8 114 108
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8 114
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1 Alt2 Alt3 Alt4	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8 114 108 121
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1 Alt2 Alt3 Alt4 27	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8 114 108 121 Maximum area of a rectangle of perimeter 176 cm is:-
Alt1 Alt2 Alt3 Alt4 25 Alt1 Alt2 Alt3 Alt4 26 Alt1 Alt2 Alt3 Alt4 27	becomes half of its present value. The total energy emitted by it will increase by a factor of:- 16 1000 256 625 A particle is moving in a straight line according to the formula s=t3-9t2+3t+1, Where s is measured in metres and t in seconds. When the velocity is -24 m/s, the acceleration is:36 m/s2 0 m/s2 48 m/s2 36 m/s2 The greatest value of f(x)=2x3-3x2-12x+1 in the interval [-2, 5] is:- 8 114 108 121

∧ I+つ	1854 cm2
AIL4	3600 cm2
28	The transmission of heat by molecular collision is called:-
	Radiation
	Convection
Alt3	Condensation
Alt4	Conduction
29	Air pollution is not caused by:-
Alt1	hydroelectric power
Alt2	industries
Alt3	pollen grains
Alt4	automobiles
30	$\int_{2}^{4} \frac{dx}{\sqrt{\{(x-2)(4-x)\}}} =$
Alt1	1
Alt2	π/2
Alt3	0
Alt4	π
31	If two compounds have the same empirical formula but different molecular formulae, they must have :-
Alt1	same viscosity
	same vapour density
	different molecular weights
Alt4	different % composition
- 1	Which of the following is not a reducing agent?
	NO2
Alt2	H2O2
Alt4	
AIL4	502
33	If energy (E), velocity (v) and force (F) be taken as fundamental quantity, then what are the dimensions of
Alt1	E v2
Alt2	E v-2
Alt3	F v-1
	F. 2
Alt4	F V-Z

Alt1 negative catalysis

Alt2	auto-catalysis
Alt3	anti-catalysis
Alt4	acid catalysis
35	A car moves along a straight line whose motion is given by S = 12t + 3 t2- 2t3, where (s) is in meters and (t) is in
	seconds . The velocity of the car at start will be:-
Alt1	9 m/sec
	12 m/sec
	16 m/sec
	7 m/sec
36	"Parsec" is the unit of:-
	Angular momentum
	Distance
	Time
	Frequency
7.1.0	. requesto;
37	A stone is released from the top of a tower, reaches the ground in 4 sec. The height of the tower is (g =
3,	10m/sec2):-
Alt1	160 m
	20 m
	40 m
	80 m
38	Disease caused by eating fish found in water contaminated with industrial waste having mercury is:-
Alt1	osteosclerosis
Alt2	hasimatos disease
Alt3	brights disease
	minamata disease
39	Transition elements are hard because of :-
	Vander Waal's forces
	ionic bonds
Alt3	covalent bonds
Alt4	hydrogen bonds
40	"If external force on a body is zero, its acceleration is also zero" is a statement or consequence of the:-
Alt1	Newton's second law of motion
Alt2	Newton's first law of motion
	First Law of thermodynamics
	Newton's thirds law of motion
41	Which of the following is a good conductor of electricity?
	graphite
WILT.	graphile

	amorphous carbon
Alt4	silicon
42	A particle is moving on a line, where its position s in metres is a function of time t in seconds given by s=t3 + at2
	+ bt + c, where a, b, c are constants. It is known that at t=1 seconds, the position of the particle is given by s=7
	m, velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are
Alt1	3, 2, 1
Alt2	3, -2, 5
Alt3	-3, 2, 7
Alt4	3, 2, -1
43	Locus of a point such that the ratio of its distances from two fixed points is constant is:
Alt1	a straight line
Alt2	a parabola
Alt3	an ellipse
Alt4	a circle
44	Which one of the following is a molecular crystal?
Alt1	quartz
Alt2	diamond
Alt3	dry ice
Alt4	rock salt
45	The error in the measurement of mass and velocity of a moving body are 2% and 3 % respectively. Error , in
	kinetic energy obtained by measuring mass and speed ,will be:-
Alt1	0.08
Alt2	0.02
Alt3	0.12
Alt4	0.1
46	A 100m long train is moving with uniform velocity of 45 km/hr. The time taken by the train to cross a bridge of
	length 1 km is:-
Alt1	68 sec
Alt2	78 sec
	88 sec
Alt4	58 sec
	The ratio of Hydrogen and Oxygen in water molecule by volume is:-
	0.084027778
	0.167361111
	0.043055556
Alt4	0.125694444
<u> </u>	
	Which of the following is not a characteristic of the fundamental units?
	They change with change of conditions
	They are easily reproductive
Alt3	They are well defined

Alt4 They are not related to each other

49	The tangent to the curve $y = e2x$ at the point $(0, 1)$ meets the x-axis at:-

Alt1 (0,-1/2)

Alt2 (0, 2)

Alt3 (-1/2, 0)

Alt4 (2, 0)

	50	A line passes throug	h (2, 2) and is	perpendicular to th	ne line 3x+v=3	. Its v intercept is:
--	----	----------------------	-----------------	---------------------	----------------	-----------------------

Alt1 4/3

Alt2 1/3

Alt3 1

Alt4 2/3

51 Bleaching action of chlorine in presence of moisture is:-

Alt1 reduction

Alt2 substitution

Alt3 oxidation

Alt4 hydrolysis

52	Load	in	water	may	cause:-
22	Leau	ш	water	IIIdV	cause:-

Alt1 arthritis

Alt2 hair falling

Alt3 fever

Alt4 kidney damage

53 Hess's law deals with:

Alt1 rates of reaction

Alt2 change in heat of a reaction

Alt3 influence of pressure on volume of a gas

Alt4 equilibrium constants

54 World Ozone day is celebrated on:-

Alt1 March 16

Alt2 June 16

Alt3 December 16

Alt4 September 16

55

If
$$u = f(y - z, z - x, x - y)$$
 then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} =$

Alt1 3

Alt2 0

Alt3 1

Alta
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$

56	If (x,y,z)=(x2+y2+z2)-1/2, then fxx+fyy+fzz=
Alt1	8
Alt2	-1
Alt3	0
Alt4	1

57	The product of the roots of the equation mx2 + 6x + (2m - 1) = 0 is -1. Then m =
Alt1	-1/3
Alt2	1/3
Alt3	1
Alt4	-1

58	The three fundamental quantities are:-	
Alt1	Mass, length and time	
Alt2	Mass, force and length	
Alt3	Mass, pressure and energy	
Alt4	Momentum, force and torque	

59	The positive values of a which satisfies:- $\int_0^a (3x^2 + 4x - 5) dx = a^3 - 2, \text{ are}$
Alt1	1, 2
Alt2	2, 1/2
Alt3	1, -2
Alt4	2, -1/2

60	The principal quantum number of an atom represents:-
Alt1	orbital angular momentum
Alt2	spin angular momentum
Alt3	size of the orbital
Alt4	space orientation of the orbital

61	Entropy of the Universe is:-
Alt1	zero
Alt2	continuously increasing
Alt3	constant
Alt4	continuously decreasing

62 A catalyst in the finely divided form is most effective because:-

Alt1	more energy gets stored in the catalyst
Alt2	more active centres are formed
Alt3	less surface area is available
Alt4	none

63	The value of a for which the difference of the roots of the equation ax2+(a-1)x+2=0 is min, is given by:-
Alt1	. 5
Alt2	1/5
Alt3	-1/5
Alt4	-5

64	64 Argon is used:-	
Alt1	It1 in radiotherapy for treatment of cancer	
Alt2	It2 in filling airships	
Alt3	lt3 to obtain low temperature	
Alt4	lt4 in high temperature welding	

65	The numerical ratio of displacement to the distance covered by a particle is always:-
Alt1	Equal to or less than one
Alt2	Less than one
Alt3	Equal to one
Alt4	Equal to or greater than one

66	A U- tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are
	in level with 18 cm of water in one arm and 20 cm in other arm. The density of spirit is (density of water 1g/cm3).
Alt1	1.2 g/cm3
Alt2	0.3 g/cm3
Alt3	0.9 g/cm3
Alt4	0.6 g/cm3

67	From a solution of CuSO4, the metal used to recover copper is:-
Alt1	Sodium
Alt2	Silver
Alt3	Iron
Alt4	Mercury

68	If y=axn+1 + bx-n, then $x^2 \frac{d^2y}{dx^2}$ =
Alt1	n(n+1)y
Alt2	n(n-1)y
Alt3	ny
Alt4	n2y

	69	A tree is broken by wind, its upper part touches the ground at appoint 10 m from the foot of the tree and makes
		an angles of 45° with the ground. The entire length of the tree is:-
ŀ	Alt1	10 (1+√3/2) metres
	Alt2	10 (1+v2) metres

Alt3 15 metres
Alt4 20 metres

70	Solution of the differential equation $(dy/dx) + (y/x) = \sin x$ is:-
Alt1	$x(y - \cos x) = \sin x + c$
Alt2	$x(y + \cos x) = \cos x + c$
Alt3	$x(y + \cos x) = \sin x + c$
Alt4	$x(y + \cos x) = -\sin x + c$

The Value of $\int_0^{\pi/2} \frac{dx}{1+\tan^3 x}$ is:
Alt1 $\pi/2$ Alt2 1
Alt3 $\pi/4$ Alt4 0

72	The line which is parallel to x-axis and crosses the curve $y = \sqrt{x}$ at an angle of 45° is:-
Alt1	y = 1
Alt2	y = 1/4
Alt3	y = 1/2
Alt4	x = 1/4

73	$\int_0^{2/3} \frac{dx}{4 + 9x^2} =$
Alt1	π/6
Alt2	π/48
Alt3	$\pi/12$
Alt4	π/24

74	When 100ml of 1M NaOH and 10ml of 1 N H2SO4 solution are mixed together the resulting solution will be:-
Alt1	acidic
Alt2	strongly acidic
Alt3	neutral
Alt4	alkaline

75	Temporary hardness can be removed by adding:-
Alt1	02
Alt2	lime
Alt3	slaked lime
Alt4	Carbon

76	Nascent hydrogen consists of:-
Alt1	solvated protons
Alt2	Hydrogen ions in excited state
Alt3	Hydrogen molecules with excess energy
Alt4	Hydrogen atom with excess of energy

77	If thermal conductivity of a conductor is 4, then its thermal resistivity will be:-
Alt1	4
Alt2	1
Alt3	16
Alt4	0.25

In a DABC, if $\frac{\cos A}{a} = \frac{\cos \mathcal{E}}{b} = \frac{\cos \mathcal{C}}{c}$, and the side a = 2, then the area of the triangle is:
Alt1 1

Alt2 $\sqrt{3}/2$ Alt3 $\sqrt{3}$ Alt4 2

79	A spherical balloon is being inflated so that its volume increases uniformly at the rate of 40 cm3/min. When
	radius is 8 cm, the surface area is increasing at the rate:-
Alt1	100 cm2/min
Alt2	10 cm2/min
Alt3	400 cm2/min
Alt4	1 cm2/min

80	Two insulated charged copper sphere A and B each having charge of 6.5 x 10-7C are separated by a distance 50
	cm. If they are placed in water of dielectric constant 80, then electrostatic force of repulsion between them is:
Alt1	1.9 x 10-4 N
Alt2	3.8 x 10-4 N
Alt3	3.8 x 10-7 N
Alt4	1.9 x 10-7N

81	In a brown ring test, the brown colour of the ring is due to:-
Alt1	ferrous nitrite
Alt2	nitroso ferrous sulphate

Alt1 wixture of NO and NO2 82 A metal plate of area 103 cm2 rest on a layer of oil 6 mm thick. A tangential force of 10-2N is applied on it move it with a constant velocity of 6 cm/sec. The coefficient of viscosity of the liquid is: Alt1 0.9 P Alt2 0.5 P Alt3 0.1 P Alt4 0.7 P 83 A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor: Alt1 Remains unchanged Alt2 Decreases Alt3 Increases Alt4 Becomes infinite 84 The Value of dax (x*)is 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to: Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is: Alt1 pold 87 The metal always found in the free state is: Alt1 gold Alt3 pold Alt3 pold Alt4 pold Alt5 pold Alt5 pold Alt6 pold Alt8 pold Alt9 pold	Alt3	ferrous nitrate
move it with a constant velocity of 6 cm/sec. The coefficient of viscosity of the liquid is:- Alt1 0.9 P Alt2 0.5 P Alt3 0.1 P Alt4 0.7 P 83 A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor:- Alt1 Remains unchanged Alt2 Decreases Alt3 Increases Alt3 Increases Alt4 Excomes infinite 84 The Value of	Alt4	mixture of NO and NO2
Alt2 0.5 P Alt3 0.1 P Alt4 0.7 P 83 A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor:- Alt1 Remains unchanged Alt2 Decreases Alt3 Increases Alt4 Becomes infinite 84 The Value of Alt1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8 Alt9 Alt9 Alt9 Alt1 Alt2 Alt3 Alt4 Alt4 Alt4 Alt4 Alt4 Alt4 Alt4 Alt4 Alt7 Alt8 Alt9 Alt9 Alt1 Alt4 Alt4 Alt4 Alt4 Alt4 Alt7 Alt8 Alt9 Alt9 Alt9 Alt1 Alt4 Alt4 Alt7 Alt8 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 Alt9 A	82	
Alta 0.1 P 83 A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor:- Alta Remains unchanged Alta Decreases Alta Increases Alta Becomes infinite 84 The Value of	Alt1	0.9 P
Alta 0.7 P 83 A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor:- Alta Remains unchanged Alta Decreases Alta Increases Alta Becomes infinite 84 The Value of	Alt2	0.5 P
83 A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor:- Alt1 Remains unchanged Alt2 Decreases Alt3 Increases Alt4 Becomes infinite 84 The Value of	Alt3	0.1 P
capacitance of the capacitor:- Alt1 Remains unchanged Alt2 Decreases Alt3 increases Alt4 Becomes infinite 84 The Value of	Alt4	0.7 P
Alt2 Decreases Alt3 Increases Alt4 Becomes infinite 84 The Value of		capacitance of the capacitor:-
Alt3 Increases Alt4 Becomes infinite The Value of (x*) is Alt1 xx log x Alt2 x log x Alt3 xx log ex Alt4 xxx-1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to: Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A Alt4 oncentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 t1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold		
Alt1 xx log x Alt2 x log x Alt3 xx log ex Alt4 x xx-1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to: Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A Alt4 concentration of A Alt4 doubling the concentration of A Alt5 underoot of concentration of A Alt6 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 t1 Alt4 Only 1 Alt4 The metal always found in the free state is:- Alt1 gold		
Alt1 xx log x Alt2 x log x Alt3 xx log ex Alt4 x xx-1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A Alt4 concentration of A Alt5 only -1 Alt6 only 1 Alt7 Alt7 Alt8 The metal always found in the free state is:- Alt1 gold		
Alt1 xx log x Alt2 x log x Alt3 xx log ex Alt4 x xx-1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt4	Becomes infinite
Alt4 x xx-1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold		
Alt4 x xx-1 85 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold		xx log x
increases the rate 9 times, the rate is proportional to:- Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2	xx log x x log x
increases the rate 9 times, the rate is proportional to:- Alt1 square of concentration of A Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3	xx log x x log x x log ex
Alt2 cube of concentration of A Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4	xx log x x log x xx log ex xx xx-1
Alt3 underoot of concentration of A Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4	xx log x x log x xx log ex xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A
Alt4 concentration of A 86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4	xx log x x log x xx log ex xx xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:-
86 The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4 85 Alt1	xx log x x log x xx log ex xx xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A
Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2	xx log x x log x xx log ex xx xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A
Alt1 only -1 Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3	xx log x x log x xx log ex xx xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A
Alt2 only 1 Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4	xx log x x log x xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A
Alt3 ±1 Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4	xx log x x log x xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:-
Alt4 0 87 The metal always found in the free state is:- Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4 86 Alt1	xx log x x log ex xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- only -1
Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4 86 Alt1 Alt2 Alt3	xx log x x log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- only -1 only 1
Alt1 gold	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4 86 Alt1 Alt2 Alt3 Alt4	xx log x x log x xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- only -1 only 1 ±1
	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4 86 Alt1 Alt2 Alt3 Alt4 Alt4	xx log x x log x xx log ex xxx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- only -1 only 1 ±1 0
	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4 86 Alt1 Alt2 Alt3 Alt4 87	xx log x x log x xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- only-1 only 1 ±1 0 The metal always found in the free state is:-
/ NEJ LJOMMIN	Alt2 Alt3 Alt4 85 Alt1 Alt2 Alt3 Alt4 86 Alt1 Alt2 Alt3 Alt4 87 Alt1 Alt2	xx log x x log x xx log ex x xx log ex x xx-1 If doubling the concentration of a reactant A increases the rate 4 times and trebling the concentration of A increases the rate 9 times, the rate is proportional to:- square of concentration of A cube of concentration of A underoot of concentration of A concentration of A The value of a so that f(x)=sin2ax/x2,x≠0,f(0)=1, is continuous at x=0 is:- only -1 only 1 ±1 0 The metal always found in the free state is:-

Alt4 silver

88	A carnot engine has an efficiency of 25%. If energy is fed into the engine at the rate of 1 kw , then output of the
	engine is:-
Alt1	750 W
Alt2	1250 W
Alt3	40 W
Alt4	250 W
89	Air is streaming over both the aeroplane wings such that its speed is 85 m/sec over the upper surface and 75
	m/sec at the lower surface. If the wings are 10m long and have an average width of 2m, then lift of wind on
	aeroplane is (take density of air : 1.5 kg/m3)
Alt1	12 kN
Alt2	72 kN
Alt3	24 kN
	48 kN
90	If a reversible engine and an irreversible engine are operating between the same temperature, then efficiency
30	of:-
Δl+1	Both the engines will be 100%
	Irreversible engine will be greater
	Reversible engine will be 100%
	Reversible engine will be greater
Alt	neversible eligine will be greater
01	If $x = \sin \theta v(\cos 2\theta)$, $y = \cos \theta v(\sin 2\theta)$, then dy/dx at $\theta = \pi/4$ is:-
Alt1	
Alt1	
Alt3	
Alt4	
AIL4	
0.2	When solid notacsium svanida is added in water the
	When solid potassium cyanide is added in water, the:-
	the pH will increase
	electrical conductivity will not change
	the pH will decrease
Alt4	pH will remain same
	The contribution of the first of the contribution of the contribut
	The metallic lusture exhibited by sodium is explained by:-
	oscillation of loose electrons
	diffusion of Na+ions
	excitation of free protons
Alt4	existence of body centred cubic lattice
	If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non-zero common root, then $\lambda = 0$
Alt1	
Alt2	
Alt3	
Alt4	3
95	The value of $y''(1)$, when $x3-2x2y2=5x=y-5=0$ and $y(1)=1$, is given by:-

Alt1	-238/27
Alt2	22/27
Alt3	-182/23
Alt4	8

96	A circle is inscribed in a triangle with sides 8 cm, 15 cm and 17 cm. The radius of the circle is:-
Alt1	6 cm
Alt2	5 cm
Alt3	3 cm
Alt4	2 cm

$\int x^2 e^{x^2} \cos(e^{x^2})$)dx =
Alt1 $\frac{1}{3}\sin(e^{x^3})$	
Sin (e^{x^3})	
Alt3 $3\sin(e^{x^3})$	
$-\frac{1}{3}\sin(e^{x3})$	

98	If the pressure of 250 cc of dry oxygen measured at 700 mm and at constant temperature be raised to 875 mm,
	then volume occupied by the gas will be:-
Alt1	200 cc
Alt2	100 cc
Alt3	300 cc
Alt4	400 cc

99 Solutio	n of the equation dy/dx+(1/x) y=x2y6 is:-
Alt1	$5y^5 = \frac{5}{2}x^2 + c$
Alt2 xy=c	
Alt3	$x^5/y^5 = 5x^2 + c$
Alt4	$(x^5y^5)=5/(2x^2)+c$

100	The letter 'D' in D - Glucose signifies:-
Alt1	that it is a monosaccharide
Alt2	configuration at a particular chiral Carbon
Alt3	configuration at all chiral Cs
Alt4	dextrorotatory

