

1.1 About the Subject: STAFF

Dr Liang Zhao

Subject Coordinator

- Telephone (02) 9514 1223
- Email: <u>Liang.Zhao@uts.edu.au</u>

1.1 About the Subject: STAFF

Mr Maleen Jayasuriya

Tutor

Email:

<u>DaluwatumullagamageMaleen.N.Jayasuriya@student.uts.edu.au</u>

1.5 About the Subject: Description

- The objectives of this subject are
- To develop the student's theoretical and practical understanding on active and passive sensing and feedback control techniques;
- Ability to select and evaluate sensors, process the sensor data, and apply computer-based tools for practical control system design using the sensory information.

1.5 About the Subject: SLOs

Subject learning objectives

- Implement sensors and processing techniques and control strategies;
- Apply knowledge of image processing and active sensor processing;
- 3. Apply knowledge of advanced control techniques;
- 4. Design sensors, signal processing and control solutions to practical problems.

Course Information

- All information will be available in UTSOnline
- Lecture slides and tutorials will be uploaded during the week
- There is a significant portion of hands on exercise
- Generally the first half (90 minutes) is used for the lectures and the second half (90 minutes) is used for tutorial and lab classes

Lectures will cover

- Introduction to sensors
- Camera and image processing
- RGB-D sensors
- TOF sensors
- Feature detection and tracking
- Feedback control techniques
- Integrating image processing and control

Tutorial will cover

- Log data from different sensors
- Introduction to Matlab©
- Image processing in Matlab©
- Laser data processing and visualization
- RGBD data processing and visualization
- Group project

- Quiz, Group project and Exam
- ❖ Quiz 1: 5%, On Week 3
 - Short Written Answers + Computer Experiments
- * Quiz 2: 15%, On Week 9
 - Short Written Answers + Computer Experiments
- Group Project: 30%, due on Week 12
 - Proposal + Presentation + Report
- Final Exam: 50%
 - 2 hours
 - Short Written Answers + Long Written Answers
 - Restrict Open Book: 2x A4 hand writing papers

Moderation of marks

- A pass in this subject is 50% provided the following conditions are met:
- A reasonable attempt has been made at all design projects and assignments;
- * Mark of at least 50% of the final exam is obtained.

Lecture-1

Lecture:

- Introduction
- Different sensors

Active hands on:

- "Play" with cameras
- Read/Show/Save images in Linux
- Write your code to convert RGB image to greyscale

2.1 Sensors and Control: Example 1

Robocup soccer

2.1 Sensors and Control: Example 2 UNIVERSITY OF TECHNOLOGY SYDNEY

LSD-SLAM

https://www.youtube.com/watch?v=GnuQzP3gty4

2.1 Sensors and Control: Example 3

LSD-SLAM

https://www.youtube.com/watch?v=oJt3Ln8H03s

2.1 Sensors and Control: Example 4

https://www.youtube.com/watch?v=qYaU1GeEiR8&list=PLDFDB5B8C80DB3AD6

2.1 Sensors and Control: Example 5 UNIVERSITY OF TECHNOLOGY SYDNEY

ROBOTIC ARM: VISUAL SERVOING (GEORGIA TECH)

https://www.youtube.com/watch?v=nLq9xbTuBpI

2.1 Sensors and Control: Example 6 UNIVERSITY OF TECHNOLOGY SYDNEY

ULTRASOUND-GUIDED ROBOTIC STEERING OF A NEEDLE

3D ultrasound-guided robotic steering of a flexible needle via visual servoing

> Pierre Chatelain Alexandre Krupa **Nassir Navab**

https://www.youtube.com/watch?v=8lyknL44n5s

2.2 Activity 1

Group discussion

- Group 1: Example 1
- Group 2: Example 2-4
- Group 3: Example 5-6

Questions

- What sensor(s) is/are used?
- What can the system achieve based on the sensor/control?
- How can it be done?

2.3 Activity 2

Group discussion

Fetch Robot Navigation and Grasping

2.3 Activity 2

* How many problems involved in this application?

What sensors and control methods are used in each problem?

THANK YOU

Questions?

cas.uts.edu.au