1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura:	Física del Estado Sólido
Carrera:	Ingeniería en Nanotecnología
Clave de la asignatura	NAF-0908
SATCA ¹	3-2-5

2.- PRESENTACIÓN

Caracterización de la asignatura

La Física del Estado Sólido es la ciencia que estudia las propiedades físicas de los materiales sólidos, apoyándose en disciplinas como la cristalografía, mecánica cuántica, termodinámica y metalurgia física, formando la base teórica de la ciencia de los materiales. La asignatura de física del estado sólido aporta al estudiante de la carrera de ingeniería en nanotecnología los conocimientos básicos para entender las propiedades físicas de los sólidos, abordando temas a nivel atómico y relacionándolos con sus propiedades a nivel macroscópico.

Los temas integrados en esta asignatura incluyen un análisis de la estructura cristalina, electrónica y de la mecánica cuántica en general, lo que da soporte a las asignaturas relacionadas al ordenamiento atómico (nanoestructura), distribución de las fases y cristales (microestructura), hasta la macroestructura. En términos generales, se puede establecer que la física del estado sólido es la base para el entendimiento de las propiedades físicas de la materia, incluyendo a los nanomateriales.

Intención didáctica

El programa de Física del Estado Sólido está diseñado de tal manera que el alumno integre los conocimientos de las áreas de química y física en el estudio del comportamiento de los materiales. En la primera y segunda unidades se adquieren los conocimientos que ayudan al alumno a entender el arreglo atómico que asumen los materiales en respuesta a su estructura electrónica. Dichos contenidos refuerzan los temas abordados en la tercera unidad, donde se exponen los arreglos cristalinos que asumen los materiales bajo una consideración ideal. Algunos temas de las primeras dos unidades ayudarán al alumno a considerar al sólido como algo imperfecto donde la diversidad atómica genera arreglos atómicos irregulares que mediante un análisis macroscópico del sólido, dan lugar a los temas abordados en la cuarta y quinta unidades. Finalmente, en la sexta unidad, se abordan las propiedades físicas del sólido desde un punto de vista macroscópico.

¹ Sistema de asignación y transferencia de créditos académicos

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas:

Comprender el comportamiento físico de los sólidos a partir del estudio de su estructura.

Competencias Genéricas:

Competencias instrumentales

- Capacidad de análisis, síntesis y abstracción.
- Capacidad de comunicación oral y escrita.
- Capacidad de gestión de información
- Capacidad para identificar, plantear y resolver problemas.

Competencias interpersonales

- Capacidad crítica y autocrítica.
- Razonamiento crítico.
- Trabajo en equipo

Competencias sistémicas

- Habilidades de investigación
- Capacidad para aplicar los conocimientos en la práctica
- Capacidad de aprender
- Capacidad de generar nuevas ideas (creatividad).

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Ciudad Juárez del 27 al 29 de Abril de 2009.	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Celaya, Saltillo, Ciudad Juárez, Superior de Irapuato, San Luis Potosí, Chihuahua.	Primera Reunión Nacional de diseño e innovación curricular para el desarrollo de competencias profesionales de las carreras de Ingeniería en Nanotecnología e Ingeniería Logística del SNEST.
Instituto Tecnológico de Puebla del 8 al 12 de Junio de 2009	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Celaya, Saltillo, Ciudad Juárez, Superior de Irapuato, San Luis Potosí, Chihuahua	Reunión de seguimiento de diseño e innovación curricular para el desarrollo de competencias profesionales de las carreras de Ing. en Nanotecnología, Gestión Empresarial, Logística, y asignaturas comunes del SNEST.
Instituto Tecnológico de Mazatlán del 23 al 27 de Noviembre de 2009	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Ciudad Juárez, Superior de Irapuato, San Luis Potosí, Chihuahua	Segunda Reunión de seguimiento de diseño e innovación curricular para el desarrollo de competencias profesionales de la carrera de Ing. en Nanotecnología, del SNEST.
Instituto Tecnológico de Villahermosa del 24 al 28 de Mayo de 2010	Representantes de los Institutos Tecnológicos de: Tijuana, Querétaro, Superior de Irapuato, Chihuahua, Saltillo.	Reunión de consolidación de diseño e innovación curricular para el desarrollo de competencias profesionales de la carrera de Ing. en Nanotecnología, del SNEST.

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencias específicas a desarrollar en el curso)

Comprender el comportamiento físico de los sólidos a partir del estudio de su estructura.

6.- COMPETENCIAS PREVIAS

- Conoce la estructura atómica de la materia y los enlaces químicos de los elementos
- Identifica las propiedades físicas de la materia
- Lee el inglés técnico.

7.- TEMARIO

Unidad	Temas	Subtemas
1	Fundamentos de Mecánica Cuántica	1.1 Conocimientos básicos: 1.1.1 La funciones de onda de un electrón y de un fotón 1.1.2 Valores esperados 1.1.3 Probabilidad y superposición 1.1.4 El operador de momento 1.2. Ecuación de Schrödinger 1.2.1 Solución de la ecuación de Schrödinger 1.2.2 Problemas típicos: Barreras y pozos de potencial rectangulares
2	Estructura Electrónica de los Materiales	2.1 Modelo del electrón libre2.2 Funciones de Bloch2.3 Modelo de Kronig-Penney2.4 Modelo de bandas de energía
3	Estructura Cristalina	 3.1 Simetría 3.2 Proyección estereográfica 3.3 Red recíproca 3.4 Principios de difracción cristalina 3.5 Determinación de la estructura cristalina mediante la Ley de Bragg
4	Soluciones sólidas y difusión	4.1 Soluciones sólidas intersticiales4.2 Soluciones sólidas sustituibles4.3 Soluciones ordenadas y desordenadas4.4 Primera y segunda Ley de Fick4.5 Mecanismos de Difusión
5	Defectos estructurales	5.1 Tipos de defectos5.2 Defectos puntuales5.3 Defectos lineales5.4 Defectos superficiales
6	Propiedades Físicas de los Materiales.	6.1 Propiedades Eléctricas6.2 Propiedades Térmicas6.3 Propiedades Magnéticas6.4 Propiedades Ópticas6.5 Propiedades Mecánicas

8.- SUGERENCIAS DIDÁCTICAS (desarrollo de competencias genéricas)

- Propiciar la búsqueda de información relacionada con la aplicación de la ecuación de Schrödinger
- Fomentar la investigación de las variables que contiene la ecuación de Schrödinger
- Propiciar la aplicación de herramientas computacionales para representar gráficamente y de la mejor manera una estructura cristalina de sulfuro de zinc
- Investigar el método para evaluar ensayos de tensión de los materiales
- Desarrollar reportes de prácticas demostrativas donde evalúen gráficamente la ductilidad de una probeta de acero y un polímero
- Propiciar la discusión en mesas de trabajo para explicar el motivo de la diferencia de ductilidad entre el acero y el polímero
- Propiciar la discusión, mediante experimentos sencillos, los resultados de la evaluación de la conducción de calor del Aluminio, Latón, cobre y hierro.

9.- SUGERENCIAS DE EVALUACIÓN

La evaluación de la asignatura se hará con base en el siguiente desempeño:

- Exámenes parciales
- Prácticas de laboratorio
- Trabajos de investigación
- Tareas

10.- UNIDADES DE APRENDIZAJE

Unidad 1. FUNDAMENTOS DE MECÁNICA CUÁNTICA.

Competencia específica a desarrollar	Actividades de Aprendizaje
Predecir la relación que tienen las ecuaciones de mecánica cuántica con las propiedades físicas de los materiales. Analizar la relación directa de la teoría estructural y electrónica de los materiales con sus propiedades físicas.	 Describir la naturaleza dual del electrón mediante la ecuación de De Broglie. Explicar como el predominio de un tipo de enlace determina el comportamiento eléctrico, magnético, térmico de los materiales. Distinguir la diferencia entre las bandas de

Unidad 2. ESTRUCTURA ELECTRÓNICA DE LOS MATERIALES.

Competencia específica a desarrollar	Actividades de Aprendizaje
Relacionar la estructura electrónica con las propiedades físicas de los materiales.	amorormoo mpoo ao matemato magnetico

Unidad 3. ESTRUCTURA CRISTALINA.

Competencia específica a desarrollar	Actividades de Aprendizaje
Identificar las diferentes estructuras cristalinas. Relacionar la estructura cristalina con propiedades de los materiales. Aplicar el concepto de simetría y aprender a usar las notaciones. Aprender los métodos teóricos de caracterización estructural de los materiales aplicando los conceptos de red recíproca; así como el principio de funcionamiento de un tubo de rayos X.	 Discutir los conceptos de refracción, reflexión, difracción. Integrar los conocimientos de química y física para establecer el efecto de la estructura atómica sobre la estructura cristalina de un material. Investigar los nuevos materiales que se están desarrollando y relacionarlo con los conceptos de estructura cristalina. Aplicar el método de indexación de Miller en direcciones y planos de compactación de átomos. Interpretar los conceptos de arreglo de corto y largo alcance y relacionarlo con algunas propiedades de materiales que presentan estos ordenamientos. Resolver ejemplos de densidades teóricas y factor de empaquetamiento empleando datos de estructura cristalina. Discutir el concepto de anisotropía y polimorfismo y establecer las ventajas de los materiales que presentan este tipo de fenómeno. Relacionar los conceptos de simetría y

relacionarlos con la caracterización

 estructural de materiales. Emplear la red de Wulff como herramienta sencilla en la medición de ángulo entre planos y direcciones cristalinos.
 Analizar y aplicar la Ley de Bragg en la solución de algunos problemas que incluya el uso e interpretación de fichas bibliográficas.
 Indexar difractogramas de rayos X haciendo uso de la Ley de Bragg en la comprobación de datos cristalinos. Utilizar software de indexación de patrones de difracción de rayos X.

Unidad 4. SOLUCIONES SÓLIDAS Y DIFUSIÓN.

Competencia específica a desarrollar	Actividades de Aprendizaje
	 Identificar los diferentes tipos de soluciones sólidas Aplicar las reglas de Hume – Rothery para la formación de una solución sólida parcial y totalmente soluble.
	Aplicar la segunda Ley de Fick en la

	solución de problemas.
•	Analizar el efecto de la temperatura en la
	magnitud del coeficiente de difusión y
	establecer las condiciones óptimas en
	relación a tiempo y temperatura de
	tratamientos de endurecimiento superficial.

Unidad 5. DEFECTOS ESTRUCTURALES.

Competencia específica a	
desarrollar	

Conocer y analizar los diferentes tipos de defectos que se presentan en las estructuras cristalinas.

Estudiar la repercusión de la presencia de defectos estructurales en las propiedades mecánicas y eléctricas de los materiales.

Establecer los mecanismos de control de los diferentes tipos de defectos en materiales cristalinos.

Actividades de Aprendizaje

- Clasificar los diferentes tipos de defectos estructurales de acuerdo a sus dimensiones.
- Estudiar el efecto térmico en la generación de vacancias de acuerdo al establecimiento matemático tipo Arrhenius.
- Definir el término de energía de activación para la creación de vacancias y relacionarlo con el punto de fusión de los materiales.
- Analizar el efecto que tiene la presencia de vacancias en términos de estados de tensión o compresión de la red cristalina para establecer el efecto sobre las propiedades mecánicas.
- Estudiar el efecto de las vacancias en las propiedades eléctricas de los materiales.
- Identificar y calcular el tamaño de los sitios octaédricos y tetraédricos.
- Identificar la presencia de átomos intersticiales en una red cristalina para evaluar su efecto en las propiedades mecánicas de un material en términos de estados de tensión o compresión.
- Establecer ejemplos de materiales ingenieriles que presenten el tipo de defecto de átomo intersticial.
- Identificar la presencia de átomos sustitutos en una red cristalina para evaluar su efecto en las propiedades mecánicas de un material en términos de estados de tensión o compresión.
- Distinguir los tipos de dislocaciones, su multiplicación, movimiento y reacción entre

ellas.
 Relacionar el movimiento de las
dislocaciones con el comportamiento
mecánico de los materiales cristalinos.
 Establecer la reacción de las dislocaciones
con los defectos puntuales y superficiales
• Realizar cálculos de magnitudes de
vectores de Burgers y densidad de
dislocaciones.
 Analizar el efecto de de los límites y
tamaño de grano sobre las propiedades de
los metales.
 Analizar la presencia de las fallas de
apilamiento y maclas en un material y su
efecto sobre las propiedades mecánicas

Unidad 6. PROPIEDADES FÍSICAS.

Competencia específica a desarrollar	Actividades de Aprendizaje
Seleccionar y recomendar el uso de materiales en aplicaciones industriales, en base a las propiedades físicas que exhiban Crear criterio en seleccionar, diferentes materiales de ingeniería para el sector industrial, de acuerdo a sus propiedades mecánicas.	 de corriente. Realizar cálculos de capacidad calorífica y térmica, expansión térmica y resistencia al choque térmico. Realizar una investigación acerca del comportamiento de las fibras ópticas y de

11. FUENTES DE INFORMACIÓN

- 1. Kittel, C. H. Introduction to Solid State Physics. John Wiley & Sons
- 2. Cullity, B. D. *Elements of X Ray Diffraction*. Addison Wesley, 1976
- 3. Callister, W. D. Jr. *Materials Science and Engineering: An Introduction*. Wiley Sons.
- 4. Thornton, Peter A., Colangelo, Vito J. *Ciencia de Materiales Para Ingeniería*. Prentice Hall, 1987.
- 5. Shackenford, J. F. Ciencia de Materiales para Ingenieros. Prentice Hall, 1995.
- 6. Askeland, Donald R. Ciencia e Ingeniería de los Materiales. Internacional Thomson.
- 7. Reed Hill Robert. Principios de Metalurgia Física. CECSA, 2ª. Edición.
- 8. Verhoeven, John D., J. D. Fundamentos de Metalurgia Física. Limusa
- 9. Guy, A. G. *Metalurgia Física para Ingenieros*. Fondo Educativo Interamericano, 1970.
- 10. Avner, Sydney H. Introducción a la Metalurgia Física. McGraw Hill, 1987.
- 11. Chalmers, Bruce. Metalurgia Física. Edición Aguilar
- 12. Cahn, R. W. Physical Metallurgy. North Holland Publisdhing, 1984.
- 13. Woolfson, M. M. *An Introduction to X Ray Crystallography*. Cambridge University Press, 1978.
- 14. Gaskell, David R. *Introduction to Metallurgical Thermodynamics*. McGraw Hill, 1973.
- 15. Dieter, G. E. Metalurgia Mecánica. Ed. John Wiley & Sons.
- 16. Shewmon, P. G. *Transformation in Metals*. McGraw Hill.
- 17. Porter, D. A. & K. E. Easterling Phase Transformation in Metals and Alloys. Van Nostrand Reinhold.
- 18. Riedderer Verlag F., Haessner Recrystallization of Metallic Materials. GMBH.
- 19. Himmel, L. Recovery and Recrystallization of Metals. Gordon and Breach.
- 20. Smith, William F. Fundamento de la Ciencia e Ingeniería de Materiales. McGraw Hill, 1998.
- 21. Pavlov, P. V., Joilov, A. F. Física del Estado Sólido. MIR Moscú, 1987.
- 22. Flint, E. Principios de Cristalografía. Moscú: Paz.
- 23. Yacamán, José Miguel, Reyes, José. *Microscopía Electrónica: Una Visión del Microcosmos*. México: Consejo Nacional de Ciencia y Tecnología, Fondo de Cultura Económica, 1995.

12.- PRÁCTICAS PROPUESTAS

- Elaboración de las redes de Bravais del sistema cúbico y hexagonal animados, empleando software sencillo de diseño como Solid Works o equivalentes con el objetivo de visualizarlas de manera más clara.
- 2. Determinar los ángulos entre planos y direcciones haciendo uso de la proyección estereográfica.

- 3. Observación de micrografías de diferentes tamaños de grano para analizar los defectos de superficie y relacionarlo con la diferencia en dureza determinada experimentalmente.
- 4. Evaluar propiedades físicas mediante un experimento simple:
 - Medición de la conductividad eléctrica utilizando un metal sometido a temperaturas extremas,
 - Evaluar la flexibilidad de un polímero a temperaturas extremas
 - Ensayo de tensión de un polímero y un metal
- 5. Observar por MEB defectos en metales y en polímeros
- 6. Indexar patrones simples de difracción de rayos X de un metal y un cerámico