

FIG. 12: (Color online) Distribution of Bragg peaks in the (h,0,l) reciprocal lattice plane. $J_1=-1$. $J_2=1.5$, and J_3 is changed as a parameter. (a) F $(J_3=-0.5)$ and (b) G $(J_3=-1.5)$.

FIG. 13: (Color online) Distribution of Bragg peaks in the (h,0,l) reciprocal lattice plane. $J_1=-1$. $J_2=-1.5$, and J_3 is changed as a parameter. (a) H ($J_3=-0.2$), (b) I ($J_3=-0.5$), (c) J ($J_3=-0.667$), (d) K ($J_3=-1.2$), and (e) L ($J_3=-1.5$).

C. The points H, I, J, K, and L with $J_1 = -1.0$ and $J_2 = -1.5$

Typical contour plot of (h,0,l) at the points H, I, J, K, and K in the (J_2, J_3) phase diagram are shown in Fig. 13. The point H $(J_3 = -0.2)$ is in the helical phase along the c axis. The point I $(J_3 = -0.5)$ is in the helical

FIG. 14: (Color online) Distribution of Bragg peaks in the (h,0,l) reciprocal lattice plane. $J_1=-1$. $J_2=-2$, and J_3 is changed as a parameter. (a) M $(J_3=-0.2)$, (b) N $(J_3=-0.5)$, (c) O $(J_3=-0.7)$, and (d) P $(J_3=-0.8)$.

phase with the c axis and is on the line $(J_2 + J_3 = 2J_1)$. The point J $(J_3 = -0.667)$ is on the phase boundary between the helical phase with the c axis and the phase with (h = 1.2, k = 0, l = 1/2). The points K $(J_3 = -1.2)$ and L $(J_3 = -1.5)$ are in the phase with (h = 1/2, k = 0, l = 1/2).

D. The points M, N, O, and P with $J_1 = -1.0$ and $J_2 = -2$

Typical contour plot of (h,0,l) at the points M, N, O, and P in the (J_2,J_3) phase diagram are shown in Fig. 14 The point M $(J_3=-0.2)$ is in the helical phase along the c axis. The point N $(J_3=-0.5)$ is on the phase boundary $(J_2+J_3=2J_1)$ between the helical phase with the c axis and the phase with (h=1.2,k=0,l=1/2). The points O $(J_3=-0.7)$ and P $(J_3=-0.8)$ are in the phase with (h=1/2,k=0,l=1/2).

IX. 3D SPIN STRUCTURES

What is the three dimensional (3D) spin structure which is characterized with the wavevector of the magnetic Bragg peaks? The vector of spin at the site \mathbf{R}_i of the real lattice space is given by

$$\mathbf{S}_i = S[\cos(\mathbf{Q} \cdot \mathbf{R}_i)\mathbf{e}_x + \sin(\mathbf{Q} \cdot \mathbf{R}_i\phi)\mathbf{e}_y]$$

where S=3/2, we assume that the phase factor ϕ is equal to zero, and ${\bf Q}$ is defined as

$$\mathbf{Q} = (ha^*, ka^*, lc^*).$$