Handreichungen zum Lehrplan Physik

Die vorliegenden Handreichungen geben die im Lehrplan für die Kurse Q1 bis Q3 benannten Themen sowie die zugehörigen verbindlichen Unterrichtsinhalte wieder. Die in der Spalte "Konkretisierung" benannten Stichworte dienen zur Ausschärfung, Konkretisierung und Erläuterung der verbindlichen Inhalte im Hinblick auf das Landesabitur. (In Einzelfällen sind aus Gründen der Fachsystematik verbindliche Inhalte des Lehrplans auch in der Spalte "Konkretisierung" eingeordnet.) Es wird ausdrücklich darauf hingewiesen, dass hieraus keine Einschränkung der im Lehrplan ausgewiesenen verbindlichen Unterrichtsinhalte abgeleitet werden kann. Grundlage für die Formulierung der Prüfungsaufgaben sind die im Lehrplan benannten verbindlichen Unterrichtsinhalte der Kurse Q1 bis Q3. Die hier formulierten Präzisierungen sind immer im Kontext der entsprechenden Festlegungen des Lehrplans zu lesen.

Unabhängig von der Anordnung der Unterrichtsinhalte und deren Auswahl durch die jeweiligen Fachkonferenzen dienen die Inhalte der Sekundarstufe I sowie der Einführungsphase als Grundlagenwissen.

Physik

Handreichungen zum Lehrplan

GK Q1 Elektrisches und magnetisches Feld

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Elektrisches Feld	homogenes und inhomogenes Feld, Influenz	 Feldlinienbilder; speziell: radialsymmetrisches Feld einer Punktladung und homogenes Feld eines Plattenkondensators Influenz bei Leitern und Polarisation bei Nichtleitern elektrische Ladung und ihre Einheit als abgeleitete Größe der konstanten Stromstärke I = ΔQ / Δt Ladung als Erhaltungsgröße
	Quantisierung der Ladung	- Millikan-Versuch im Schwebefall
	Coulombkraft	– Coulomb'sches Gesetz $F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$, Superpositionsprinzip (nur parallele Kräfte)
	Feldstärke	-E = F/q, Feldstärke in homogenen Feldern und im radialsymmetrischen Feld
	Spannung, Stromstärke	- Energieumwandlung im homogenen elektrischen Feld, $U = W/q$ - $E = U/d$ im homogenen Feld des Plattenkondensators - Gesetze des Gleichstromkreises (Widerstandsdefinition $R = U/I$, 1. und 2. Kirchhoff'sches Gesetz)
	Kapazität, Feldenergie	– Kapazität als Kenngröße eines Kondensators: $C=Q/U=const$, $C=\varepsilon_{\rm r}\varepsilon_0 A/d$ für den Plattenkondensator, $\varepsilon_{\rm r}$ als experimentell gewonnene Materialkonstante – Kondensator als Energiespeicher: $W_{\rm el}=\frac{1}{2}CU^2$
Magnetisches Feld	Feldstärke (B), Feldenergie	 Feldlinienbilder magnetischer Felder von stromdurchflossenen geraden Leitern und Spulen, B = F /(I·l) = const Bewegung von Ladungen als Ursache von Magnetfeldern, Richtungszusammenhang von Strom-, Feld- und Kraftrichtung (senkrechte Fälle) Magnetfeld im Innern einer langen Spule B = μ₀μ_rN·I/l

Physik Handreichungen zum Lehrplan

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Ladungsträger in elektrischen und	Lorentzkraft	– Bewegungen geladener Teilchen im Fall \vec{v}_0 parallel und im Fall \vec{v}_0 senkrecht zum magnetischen Feld
magnetischen Feldern	Bewegung von Ladungsträgern in den Feldern	 nichtrelativistische quantitative Betrachtung der Bewegung geladener Teilchen in elektrischen Feldern Aufbau, Wirkungsweise, Anwendung der Braun'schen Röhre Einheit Elektronenvolt Bewegung geladener Teilchen parallel und senkrecht zum magnetischen Feld, quantitative Betrachtungen Überlagerung homogener elektrischer und magnetischer Felder in einfachen Fällen, Geschwindigkeitsfilter
	Induktion, Selbstinduktion	- Induktionsspannung aufgrund einer zeitlichen Änderung des magnetischen Flusses, Induktionsgesetz in der Formulierung $U_i = -n \frac{\varDelta \Phi}{\varDelta t}$ - quantitativ nur für stückweise lineare Veränderung von A und B und nur in den Fällen A senkrecht B - Lenzsche Regel und Energieerhaltung - Selbstinduktion und Induktivität L einer langen Spule - Energie des Magnetfeldes der Spule (Analogie zum elektrischen Feld des Kondensators) $W_{\text{mag}} = \frac{1}{2} L \cdot I^2$

Physik

Handreichungen zum Lehrplan

GK Q2 Mechanische und elektromagnetischen Schwingungen und Wellen

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Mechanische und elektromagnetische	harmonische Schwingungen	 Grundlage: lineare Rückstellkraft bei mechanischen Schwingungen Fadenpendel, Federpendel, elektromagnetischer Schwingkreis
Schwingungen	charakteristische Größen	– Schwingungsdauer, Frequenz, Kreisfrequenz – Schwingungsgleichung $A(t) = A_0 \sin(\omega t)$, Formeln für Schwingungsdauer, Energieerhaltung
	Resonanzphänomene (Probleme und Anwendung)	 erzwungene mechanische und elektromagnetische Schwingungen, nur qualitative Behandlung von Eigenfrequenz und Dämpfung
Mechanische und elektromagnetische Wellen	Eigenschaften, charakteristische Größen	 Ausbreitungsgeschwindigkeit, Wellenlänge, Frequenz Wellenwanne, Seilwellen, Schallwellen, elektromagnetische Wellen (elektromagnetisches Spektrum) c = f · λ , Welle als räumlich und zeitlich periodischer Vorgang, t-A- und x-A- Diagramme Transversal- und Longitudinalwellen
Überlagerung von Wellen, Huygens'sches Prinzip	stehende Wellen	 stehende Wellen durch Reflexion, Wellenlängenbestimmung, z. B. Kundt'sches Rohr (ohne Behandlung von Phasensprüngen)
	Beugung und Interferenz (Doppelspalt, Gitter)	 Interferenzbedingungen herleiten (keine Zeigerdiagramme) Interferenzen von weißem und monochromatischem Licht am Gitter Maxima- und Minimabedingungen am Doppelspalt, Maxima am Gitter
	Reflexion, Brechung	$-\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$

Physik

Handreichungen zum Lehrplan

GK Q3 Quanten- und Atomphysik

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Vorstellungen vom Licht	Linienspektren	 quantenhafte Absorption und Emission empirische Balmer-Formel Resonanzabsorption, Franck-Hertz-Versuch
	Fotoeffekt / Einstein'sche Deutung	 Einstein'sche Deutung und Widersprüche zur Wellentheorie Messung der kinetischen Energie der Fotoelektronen mit der Gegenfeldmethode Grenzfrequenz, Austrittsenergie Planck'sches Wirkungsquantum Energie eines Photons Energie-Masse-Äquivalenz: E = m·c²
Quantenobjekte	Quanteneffekte	Photonen als Quantenobjekte, Impuls eines PhotonsElektronenbeugung
	stochastische Deutung	 Welleneigenschaften von Elektronen, De-Broglie-Wellen, De-Broglie-Gleichung Photonen-Elektronenverteilung hinter dem Doppelspalt
Überblick über die klassischen Atommodelle		- Berechnung der Energiezustände im Bohr'schen Atommodell, Termschema
	Grenzen dieser Modelle	

Physik

Handreichungen zum Lehrplan

LK Q1 Elektrisches und magnetisches Feld

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Elektrisches Feld	homogenes und inhomogenes Feld, Influenz	 Feldlinienbilder, speziell: radialsymmetrisches Feld einer Punktladung und homogenes Feld eines Plattenkondensators Influenz bei Leitern und Polarisation bei Nichtleitern elektrische Ladung und ihre Einheit als abgeleitete Größe der Stromstärke I = Q = dQ/dt bzw. Q = ∫ I dt , Ladung als Erhaltungsgröße
	Quantisierung der Ladung	- Millikan-Versuch im Schwebefall
	Coulombkraft	– Das Coulomb'sche Gesetz $F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$, Superpositionsprinzip
	Feldstärke	$-\vec{E} = \frac{\vec{F}}{q}$ Feldstärke in homogenen Feldern und im radialsymmetrischen Feld
	Potenzial, Spannung, Stromstärke	- Entwicklung des Potenzialbegriffes: $V_{01} = \frac{W_{01}}{q}$ - potenzielle Energie im elektrischen Feld, Äquipotenziallinien, $U = \Delta V$ - $U = \vec{E} \cdot \vec{s}$ bzw. $E = U/d$ im homogenen Feld des Plattenkondensators - Potenzial im Radialfeld - Gesetze des Gleichstromkreises (Widerstandsdefinition $R = U/I$, 1. und 2. Kirchhoff'sches Gesetz)

Physik

Handreichungen zum Lehrplan

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Elektrisches Feld (Fortsetzung)	Kapazität, Feldenergie	– Kapazität als Kenngröße eines Kondensators: $C=Q/U=const$, Herleitung von $C=\varepsilon_0\cdot A/d$ für den Plattenkondensator
		 die Naturkonstante ε₀ als Proportionalitätskonstante von Q / A und E oder von C_p und A / d Parallel- und Reihenschaltung von Kondensatoren Materie im elektrischen Feld, Dielektrikum, Dielektrizitätszahl ε_r = C_r / C₀ Kondensator als Energiespeicher: W_{el} = ½ CU² Betrachtung des Auf- und Entladevorgangs beim Kondensator, Entladung auch mit Differenzialgleichung, Lösung mithilfe eines Lösungsansatzes
Magnetisches Feld	Feldstärke (B)	- Feldlinienbilder magnetischer Felder von stromdurchflossenen geraden Leitern und Spulen, $B = F/(I \cdot l) = const$ - Bewegung von Ladungen als Ursache von Magnetfeldern - Richtungszusammenhang von Strom-, Feld- und Kraftrichtung (alle Fälle) - Materie im magnetischen Feld, Permeabilitätszahl $\mu_{\rm r} = B_{\rm r}/B_0$ - Magnetfeld im Innern einer langen Spule: $B = \mu_0 \mu_{\rm r} N \cdot I/l$

Physik

Handreichungen zum Lehrplan

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Ladungsträger in elektrischen und	Lorentzkraft	 quantitative Betrachtung der Bewegung geladener Teilchen in allen Richtungen zum magnetischen Feld
magnetischen Feldern	Bewegung von Ladungsträgern in den Feldern	- Aufbau, Wirkungsweise, Anwendung der Braun'schen Röhre - Einheit Elektronenvolt - nichtrelativistische ($v < \frac{1}{10}c$) quantitative Betrachtung der Bewegung geladener Teilchen in elektrischen Feldern - c als Grenzgeschwindigkeit, relativistische Massenzunahme als Phänomen - Hall-Effekt: $U_{\rm H} = b \cdot v_{\rm D} \cdot B$ (b Streifenbreite, $v_{\rm D}$ Driftgeschwindigkeit) und in der atomistischen Darstellung $U_{\rm H} = \frac{1}{n \cdot e} \cdot \frac{I \cdot B}{d}$ (n Ladungsträgerkonzentration, d Streifendicke) - Bestimmung von $e/m_{\rm e}$ mit dem Fadenstrahlrohr - Überlagerung homogener elektrischer und magnetischer Felder in einfachen Fällen, Geschwindigkeitsfilter
	Induktion, Selbstinduktion, Feldenergie	 Induktionsspannung auf Grund einer zeitlichen Änderung des magnetischen Flusses Induktionsgesetz in der Formulierung U_{ind} = -n·Φ, quantitative Betrachtung von A≠0 und B=0 bzw. A=0 und B≠0, auch in nicht linearen Fällen Lenz'sche Regel und Energieerhaltung Wirbel- und Ringströme (nur phänomenologisch) Selbstinduktion und Induktivität L einer langen Spule Betrachtung des Ein- bzw. Ausschaltvorganges in einem Stromkreis mit Spule, Ausschaltvorgang auch mit Differenzialgleichung, Lösung mithilfe eines Lösungsansatzes Energie des Magnetfeldes der Spule (Analogie zum elektrischen Feld des Kondensators) W_{mag} = ½L·I²

Physik

Handreichungen zum Lehrplan

LK Q2 Mechanische und elektromagnetische Schwingungen und Wellen

21 V2 Weenambere and eleveromagnesisers benyingangen and wence		
Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Mechanische und elektromagnetische	harmonische Schwingungen	Grundlage: lineare Rückstellkraft bei mechanischen SchwingungenFadenpendel, Federpendel, Beispiele wie U-Rohr
Schwingungen	charakteristische Größen	- Schwingungsdauer, Frequenz, Kreisfrequenz - Schwingungsgleichung $A(t) = A_0 \sin(\omega t + \varphi)$
		- Formeln für Schwingungsdauer, Energieerhaltung
	elektromagnetischer Schwingkreis	$-$ Analogien zwischen mechanischen und elektromagnetischen Schwingungen $-$ Phasendifferenz zwischen ${\cal U}$ und ${\cal I}$
	eindimensionale Schwingungsgleichung	 Differenzialgleichungen für ungedämpfte mechanische und elektromagnetische Schwingungen Lösen der zugeordneten Differenzialgleichungen mittels eines Lösungsansatzes Dämpfungsverhalten der Form $e^{-k \cdot t} \sin(\omega t)$, (ohne Herleitung, $\omega \approx \omega_0$)
	erzwungene Schwingungen und Resonanzphänomene (Probleme und Anwendungen)	 erzwungene Schwingungen: mechanisch und im L-C-Parallelkreis qualitative Beschreibung von Resonanzkurven und Phasenverschiebungen für verschiedene Dämpfungen
Mechanische und elektromagnetische Wellen	Erzeugung, harmonische Transversalwellen, eindimensionale Wellengleichung	- Wellenwanne, Seilwellen, Schallwellen, elektromagnetische Wellen, $c = f \cdot \lambda$ - Welle als räumlich und zeitlich periodischer Vorgang, t - A - und x - A -Diagramme - eindimensionale Wellengleichung $A(x,t) = A_0 \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$ zur Beschreibung der Wellenausbreitung
	Polarisation	- Transversal- und Longitudinalwellen

Physik Handreichungen zum Lehrplan

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Überlagerung von Wellen, Huygens'sches Prinzip	stehende Wellen	 stehende Welle durch Reflexion, Wellenlängenbestimmung (z.B. Kundt'sches Rohr) festes und loses Ende Phasensprünge (phänomenologisch), Hertzdipol (Zusammenhang von λ und Dipollänge)
	Reflexion, Brechung	- Reflexions- und Brechungsgesetz als Anwendungen des Huygens'schen Prinzips $\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$
		- akustischer Dopplereffekt
	Beugung und Interferenz (Einfachspalt, Doppelspalt, Gitter), Spektren, Kohärenz	 Kohärenz als Interferenzbedingung Interferenzbedingungen an Spalt, Doppelspalt und Gitter (auch Reflexionsgitter) herleiten Interferenzen von weißem und monochromatischem Licht Maxima- und Minimabedingungen am Doppelspalt, Minima am Spalt, Maxima am Gitter (auch in Materie) Interferenz durch Reflexion von Röntgenstrahlung an Kristallstrukturen (Bragg-Reflexion)
		Vergleich von Gitter- und Prismenspektrenelektromagnetisches Spektrum

Physik

Handreichungen zum Lehrplan

LK Q3 Quanten- und Atomphysik

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Quanteneffekte	Anregung von Atomen (Linienspektren, Resonanzabsorption)	quantenhafte Absorption und Emission, empirische Balmer-FormelFranck-Hertz-Versuch
	Fotoeffekt / Einstein'sche Deutung	 Einstein'sche Deutung und Widersprüche zur Wellentheorie Messung der kinetischen Energie der Fotoelektronen mit der Gegenfeldmethode, Grenzfrequenz, Austrittsenergie Planck'sches Wirkungsquantum Energie, Masse und Impuls eines Photons Erzeugung von Röntgenstrahlung charakteristische und kontinuierliche Röntgenspektren kurzweilige Grenze des kontinuierlichen Röntgenspektrums Bragg-Reflexion
	Comptoneffekt	- Comptonwellenlänge (Formel ohne Herleitung)
	De-Broglie-Beziehung, Beugung von Elektronen	De-Broglie-WellenlängeElektronenbeugung an Kristallen
Stochastische Deutung von Quantenobjekten	Doppelspaltversuch mit Elektronen und Photonen	 Verteilung der Photonen und Elektronen hinter dem Doppelspalt, insbesondere bei geringer Intensität Amplitudenquadrat der ψ-Funktion als Maß für die Aufenthaltswahrscheinlichkeit
	Unschärferelation	- Orts-Impuls-Unschärfe, Energie-Zeit-Unschärfe, Verbreiterung von Spektrallinien
	Erarbeitung einer quantenmechanischen Atomvorstellung, Potentialtopf	 Atommodell der Quantenphysik am Beispiel des linearen Potentialtopfs mit unendlich hohen Wänden Termschema eines einfachen Lasers, metastabile Niveaus, Inversion, stimulierte Emission

Physik Handreichungen zum Lehrplan

Thema	Verbindliche Unterrichtsinhalte	Konkretisierung
Überblick über die klassischen		 Berechnung der Energiezustände mit dem Bohr'schen Atommodell, Termschema Moseley-Formel
Atommodelle	Grenzen dieser Modelle	- Bohr'sches Modell und Heisenberg'sches Unschärfeprinzip
Philosophische Fragestellungen		

Allgemeines:

Formeln, die in zugelassenen Formelsammlungen aufgeführt sind, müssen nicht hergeleitet werden, es sei denn, dies wird in der Aufgabenstellung ausdrücklich verlangt.

Bei Berechnungen ist zunächst die verwendete Gleichung anzugeben, in diese sind dann die Maßzahlen mit zugehöriger Einheit einzusetzen, im Taschenrechner gespeicherte Naturkonstanten können jedoch als Platzhalter stehen bleiben. Die Angabe eines Endergebnisses allein genügt nicht.

Stand: 20.06.2012