

Service Manual

SYNTHEZIZED STEREO TUNER

TX-710 /HE

MODEL TX-710 COMES IN THREE VERSIONS DISTINGUISHED AS FOLLOWS:

Type	Voltage	Remarks
HE	AC 220 and 240V (Switchable)	Europe model
S	AC 110V, 120V, 220V and 240V (Switchable)	General export model
S/G	AC 110V, 120V, 220V and 240V (Switchable)	U.S. Military model

- This service manual is applicable to the HE type. When repairing the S and S/G type, please see the additional service manual (ART-547).

CONTENTS

1. SPECIFICATIONS	2	8. EXPLODED VIEWS	16
2. FRONT PANEL FACILITIES.....	2	9. SCHEMATIC DIAGRAM, P.C. BOARDS CONNECTION DIAGRAM AND PARTS LIST	18
3. BLOCK DIAGRAM.....	4		
4. CIRCUIT DESCRIPTIONS.....	5		
5. PARTS LOCATION	11		
6. ADJUSTMENTS.....	12		
7. PACKING	15		

LINE VOLTAGE SELECTION

Line voltage can be changed as follows:

1. Disconnect the AC power cord.
2. Remove the bonnet case.
3. Take out the fuse from the P.C. board.
4. Re-install the fuse in the correct voltage indication.
5. Stick the line voltage label on the rear panel.

Description	Part No.
220V label	AAX-193
240V label	AAX-192

1. SPECIFICATIONS

FM Tuner Section

Usable Sensitivity	10.8dBf (1.9μV)
Sensitivity (DIN)	
MONO	1.5μV
STEREO	50μV
50dB Quieting Sensitivity	
MONO	16dBf (3.5μV)
STEREO	38dBf (44μV)
Signal-to-Noise Ratio (at 85dBf)	
MONO	78dB
STEREO	75dB
Signal-to-Noise Ratio (DIN)	
MONO	71dB
STEREO	62dB
Distortion (at 65dBf)	
MONO	1kHz; 0.08%
STEREO	1kHz; 0.15%
Distortion (DIN)	
MONO	1kHz; 0.08%
STEREO	1kHz; 0.15%
Capture Ratio	1dB
Alternate Channel Selectivity (400kHz)	60dB
Stereo Separation	1kHz; 40dB
Frequency Response	20Hz to 15kHz $^{+0.2}_{-1}$ dB
Spurious Response Ratio	65dB
Image Response Ratio	45dB
IF Response Ratio	80dB
AM Suppression Ratio	55dB
Antenna Input	300 ohms balanced, 75 ohms unbalanced

AM Tuner Section

Sensitivity	
IHF ferrite antenna	300μV/m
IHF external antenna	30μV
Selectivity	25dB
Signal to Noise Ratio	50dB
Image Response Ratio	40dB
IF Response Ratio	70dB
Antenna	Ferrite loopstick antenna

Audio Section

Output (Level)	
FM (100% MOD)	650mV
AM (30% MOD)	150mV

Miscellaneous

Power Requirements	a.c. 220V, 50/60Hz
Power Consumption	16W
Dimensions	420(W) x 94(H) x 270(D)mm 16-9/16(W) x 3-11/16(H) x 10-5/8(D) in
Weight (Without Package)	3.3kg (7lb 4oz)

Furnished Parts

FM T-type antenna	1
Operating Instructions	1

NOTE:

Specifications and the design subject to possible modification without notice due to improvements.

2. FRONT PANEL FACILITIES

① POWER SWITCH

When this switch is set to the ON position, power is supplied to the tuner's main circuits. The unit's power switch is geared to selecting the transformer's secondary and so even at the STAND-BY position, the unit's circuitry will work as long as the power cord is connected to the power outlet. For this reason, the programmed broadcasting stations will not be erased.

Disconnect the power cord from the power outlet when you do not plan to use the unit for a long period of time. When it has been disconnected, the broadcasting stations remain programmed for about 3 days.

② POWER INDICATOR

This comes on as soon as the tuner's power switch is set to ON.

③ SIGNAL INDICATORS

These indicators "1" through "5" light up in accordance with the strength of the signal.

④ FM STEREO INDICATOR

This indicator lights up when the tuner is receiving a stereo program.

⑤ FREQUENCY DISPLAY

This indicates the tuned frequency.

⑥ FM LOCAL SWITCH

This selects the stop level with auto tuning.

When this switch is depressed to the LOCAL position, a broadcasting station with a relatively strong input level is chosen when the tuning switch is depressed and the frequency band is scanned, and the scanning operation stops.

When the switch is set to the OFF position (the indicator goes off), frequency scanning stops even with broadcasting stations with a weak input level, and the station's program can be received.

When the power switch is at the ON position, the FM LOCAL switch will always return to the OFF position.

⑦ MEMORY SWITCH

This is depressed when presetting a broadcasting station into one of the station call switches. For presetting, depress the memory switch and then depress the station call switch which will be used for presetting the station while the indicator above the memory switch remains lighted (about 5 seconds).

⑧ STATION CALL SWITCHES

These are depressed to call out preset broadcasting stations and to preset the stations.

To call out a station, first set the desired frequency band using the function switch and then depress the desired switch.

⑨ FUNCTION SWITCH

This switch is used to select the type of broadcasting waves.

FM . . . For reception of FM broadcasting.
AM . . . For reception of AM broadcasting.

⑩ FM MODE SWITCH

This is used to select the FM reception mode.

AUTO . . When an FM broadcast is being received in stereo, the unit will automatically set reception to mono in the event of an FM mono broadcast.

MONO . . If there is a great deal of noise or if the broadcasting station signals are weak during reception at the AUTO position, set the switch to this position.

⑪ AUTO TUNING DOWN SWITCH

When this switch is depressed lightly, the reception frequency automatically scans the frequencies below that on the frequency display. As soon as a station is received, the frequency display stops and the optimum tuned state is held by the AFC circuit.

NOTE:

If the switch is kept in the depressed position, scanning continues without automatically stopping even when there are broadcasting stations. When the lower limit of the frequency band is reached, scanning jumps to the highest frequency and then proceeds again down the band.

⑫ AUTO TUNING UP SWITCH

When this switch is depressed lightly, the reception frequency automatically scans the frequencies above that on the frequency display. As soon as a station is received, the frequency display stops and the optimum tuned state is held by the AFC circuit.

NOTE:

If the switch is kept in the depressed position, scanning continues without automatically stopping even when there are broadcasting stations. When the upper limit of the frequency band is reached, scanning jumps to the lowest frequency and then proceeds again up the band.

AFC: AFC stands for Automatic Frequency Control, and it is a circuit which is designed to prevent deviations in the tuning point brought about by fluctuations in the ambient temperature.

3. BLOCK DIAGRAM

4. CIRCUIT DESCRIPTIONS

The TX-710 tuner stage features an auto-tuning mechanism incorporating variable capacitor diodes (vari-caps) and voltage synthesizer IC circuitry. In addition, it is also possible to preset up to 7 different broadcasting stations in both the AM and FM bands.

FM TUNER

Front-end

The FM front-end in the TX-710 consists of a J-FET equipped single-stage RF amplifier and a variable capacitor diode type tuning capacitor (equivalent to a normal 3-ganged tuning capacitor). The basic operation involves the conversion of digital codes to analog voltages by a D-A converter made of ladder resistor and an LSI-incorporated 10-bit up/down counter, and applying this voltage to the variable capacitor.

IF Amplifier and Detector

The FM IF amplifier includes 2 ceramic filters, a differential amplifier equipped IC (HA1201), and an FM IF system IC (PA3001-A). In addition to filter loss compensation, HA1201 also serves as a limiter. PA3001-A contains the IF amplifier, limiter, and detector (quadrature detector) stages.

FM Stereo Decoder

The FM stereo decoder is incorporated in the PLL MPX IC (PA4006-A) which has been designed to include the functions formerly handled by PA1001-A (FM stereo decoder IC) and PA1002-A (AF muting IC). This FM decoder features the "direct through & chopper system" for improved S/N ratio and reduced distortion.

AM TUNER

The AM tuner stage features an IC (HA1138) incorporating the RF amplifier, mixer, local OSC, IF amplifier and detector, AGC circuits. The tuning circuit consists of variable capacitor diodes equivalent to a conventional 2-ganged tuning capacitor. As in the FM tuner, a voltage obtained

Fig. 4-1 AM tuner block diagram

by D-A conversion (ladder resistor and LC7207 LSI) is applied to this variable capacitor diodes. In addition, the S-curve involved in fine tuning by the auto tuning system is detected by a special ratio detector circuit.

VOLTAGE SYNTHESIZER

The "heart" of the auto-tuning mechanism is served by the LC7207 LSI which contains the AFC circuit (where the S-curve characteristics are employed for fine tuning purposes) in addition to the preset, auto-search tuning, auto-stop, and last-memory functions for up to 7 separate broadcasting stations in each of the FM and AM bands.

COUNTER

During FM mode output signals from the local oscillator are passed via an FET buffer amplifier, divided by a 1/100 prescalar (M54459L), and applied to the counter IC (LC7258).

During AM mode local oscillator output signals are passed via another FET buffer amplifier, but are then applied directly to the counter IC.

The input signal is compared with a reference signal (4MHz) generated by an external oscillator (i.e. not incorporated in the LC7258 LSI), resulting in the tuned frequency being displayed in 50kHz steps during FM mode, and 1kHz steps during AM mode.

FLUORESCENT TUBE INDICATOR

The fluorescent tube indicator employed here is of the static drive type. In addition to tuned frequency, this display also includes "MHz" during FM mode, and "kHz" during AM reception.

FM AUTO-STOP LEVEL CONTROL STAGE (FM LOCAL SWITCH)

During FM auto-search tuning mode, weak distant broadcasting stations are ignored. Only stations with an antenna input level above a certain fixed value will be tuned. However, if the FM LOCAL switch is pressed (ON position) and the corresponding indicator LED turned on, the front-end gain is reduced by the LC7207 LSI. Then following auto-stop, the front-end gain is increased again back to the former level to ensure high sensitivity reception of the tuned broadcasting station. This function is turned on and off alternately by a flip-flop circuit in conjunction with the μ PD4011C IC every time the FM LOCAL switch is pressed. Note, however, that it is always switched to the OFF position when the power supply is turned on.

POWER SUPPLY BACK-UP CIRCUIT

With the power switch in the TX-710 connected to the secondary coil of the power transformer, all frequencies stored in the STATION CALL channels, and also the frequency of the last-used channel, will be stored in the LC7207 LSI when the power switch is left in the STAND-BY position. And even if the power cord is unplugged from the AC mains socket (thereby cutting the power to the primary coil) the LSI memory will be retained for at least 3 days by charge stored in a capacitor in the LSI power supply circuit.

LSI (LC7207) Terminals and Functions

The functions of the various terminals of the voltage synthesizer (LC7207) are described in brief below.

- Pin 1 (CR1)

An oscillator circuit is formed by connecting this terminal to an external RC time constant circuit. The signals generated serve as the basic clock signals for the LSI.

- Pin 2 (CR2)

A timer circuit is formed by connecting this terminal to an external RC time constant circuit. This timer is used to determine the pulse width of the MUTE output signals employed during band switching.

- Pin 3 (BUC)

When a low level signal is applied to this terminal (LSI internal memory back-up control), all functions apart from "memory protect" are cancelled.

- Pin 5 (FM)

The TX-710 is switched to FM mode when a low level input signal is applied to this terminal, this status being maintained even if the terminal is subsequently switched to high level (low level holding time: 5ms min).

- Pin 6 (MW)

Likewise, the TX-710 is switched to AM mode when a low level input signal is applied to this terminal, this status being maintained even if it is switched to high level soon afterwards (low level holding time: 5ms min).

- Pin 10 (CV out)

This is the analog switch output terminal where the output voltage applied to the variable capacitor appears.

- Pin 11 (CV in)

This is the analog switch input terminal to which the R-2R ladder output voltage is applied.

- Pin 13 (S-curve)

FM and AM S-curve voltages (representing the degree of change in detector DC level when tuning to and away from a station) are applied to

this AFC (Automatic Frequency Control) control signal input terminal.

- Pin 14 (UP)

When a low level signal is applied to this auto-search tuning input terminal, UP search tuning is commenced. This tuning mode is stopped again following AFC operation when the S-curve voltage is applied to pin 13 (UP search low level holding time: 5ms min). If the low level signal is applied continually during the UP search tuning mode, the tuning operation will continue even if the S-curve voltage is applied to pin 13.

- Pin 15 (DOWN)

Likewise, the application of a low level signal to this auto-search tuning input terminal results in the start of DOWN search tuning. The DOWN

Fig. 4-2 Power supply back-up circuit

Fig. 4-3 LC7207 Top view

tuning mode is also stopped after AFC operation following the application of the S-curve voltage to pin 13 (DOWN search low level holding time: 5ms min). In this case, too, the search tuning mode is maintained if the low level signal is applied continually, even if the S-curve voltage is applied to pin 13.

- Pin 17 (MEMO)

The preset memory input terminal. Memory enable status is maintained only while a low level signal is applied to this terminal.

- Pin 19 (DX-LO)

This output terminal is used in the control of the reception sensitivity during auto-search mode. It is switched to low level only during search mode, and reverted to high level at all other times.

- Pin 21 (V_{DD})

The LSI power supply terminal.

- Pin 22 (MUTE)

During auto-search tuning and preset tuning modes, and when switching from one band to another, the high level output signal appearing at this terminal is used as the muting control signal.

- Pin 23 (F-Tune)

The 8-step PWM (pulse width modulation) output signal appearing at this terminal is used in fine tuning operations. (At all other times, a 50% duty signal, T = 1.5ms, is generated). The output signal is passed via an externally connected low-pass filter to form the compensatory voltage for fine tuning purposes.

- Pin 24 (V_{ref})

Reference voltage (for D-A converter, wind comparator and reference comparator).

- Pin 25 — Pin 34 (B10 — B1)

Outputs for the 10-bit up/down counter. With the R-2R ladder resistor connection, output signals are D-A (digital analog) converted.

- Pin 35 (V_{SS})

The LSI ground terminal.

- Pin 36 — Pin 42 (CH1 — CH7)

The frequencies of broadcasting stations stored in the memory are tuned by the corresponding terminal being switched to low level. And when the MEMO terminal is switched to low level, the frequency of the station tuned at that time will be stored in the memory. (Low level holding time for tuning and memory: 20ms min).

- Pins 12 and 16

FM and AM tracking purposes.

NOTE:

All other pins not included in the above list are not employed in the TX-710.

VOLTAGE SYNTHESIZER SYSTEM (LSI LC7207)

- Auto-Tuning

When either switch S8 (UP) or switch S7 (DOWN) is pressed, the corresponding LSI (LC7207) terminal pin 15 or pin 14 is connected to ground, resulting in the terminal being switched to low level. The control logic circuitry incorporated in the LSI is thereby activated, resulting in the start of either UP or DOWN search tuning operations. The subsequent sequence of events

Fig. 4-4 Auto-tuning

following the pressing of the UP switch (S8) is described below.

The 10-bit UP/DOWN counter (rough tuning) is activated by an instruction from the control logic circuit, resulting in the digital code outputs stored in the memory circuit being applied to pins 25 to 34. This 10-bit code is D-A converted (digital to analog conversion) by the R-2R ladder resistor, and then passed one step (1/1024) at a time as tuning voltage (V_T).

This V_T is progressively increased one step at a time, resulting in the tuning frequency also being increased stepwise. And when the frequency of a broadcasting station is approached, the S-curve voltage passes the V_{SL} a point as shown in Fig. 4-4. With further increases in the V_T voltage, the S-curve voltage starts to decline again, passing through point V_{SL} ②. Then with continued decrease, a counter voltage at V_{SH} ③ is encountered. After completing these 3 steps from ① to ③, the auto-search mode is halted (rough tuning).

A 3-bit U/D counter employed for fine tuning purposes is then activated by an instruction from the control logic incorporated in the LC7207 LSI, resulting in the AFC operation (fine tuning) being started up by the S-curve.

On the other hand, when S7 (DOWN) is pressed, the procedure described above occurs in the reverse order. And when the frequency of a broadcasting station is approached, the S-curve voltage passes via the V_{SH} ① and ② S-curve voltage points and encounters V_{SL} at ③. The search is stopped automatically, resulting in the start of the AFC operation.

• AFC Operation (Fig. 4-5)

The AFC operation makes use of the S-curve characteristics (voltage) of the detector circuit during both FM and AM reception. In the AM

circuit, a ratio detector S-curve generator circuit is used, an output being obtained with a sufficiently high enough gain from the DC amplifier (see Fig. 4-4).

If for some reason, the tuned frequency is displaced to the high side of the broadcasting frequency, the S-curve voltage will generate a minus potential. V_{SL} and V_{SH} represent the upper and lower threshold levels of the LC7207 comparator shown in Fig. 4-5. Once the minus potential drops below the V_{SH} threshold, an instruction from the control logic is passed to the 10-bit U/D counter (for rough tuning) and the 3-bit U/D counter (for fine tuning). This results in control of the variable capacitor, leading to change in the tuning voltage (V_T) in order to recover the precise tuning position. If, on the other hand, the frequency is displaced on the low side, the control logic circuit is again activated (but due to a positive potential exceeding the V_{SL} threshold) resulting in the retention of the precise tuning point.

• S-Curve Detector Circuit (Fig. 4-6)

When a broadcasting station is tuned by auto-tuning, the exact tuning position is attained by AFC operation. The S-curve required for this AFC operation is detected in the following way.

The IF output signal is obtained from pin 7 of Q7 (PA3001-A) during FM reception, and from pin 11 of Q9 (HA1138) during AM reception. This IF is amplified by a differential amplifier circuit, and the S-curve subsequently detected by the ratio detector. S-curve displacement (i.e. shift in the center voltage of the S-curve) in both FM and AM mode is compared with a reference voltage (LC7207 V_{ref}) in Q12 (μ PC4558C), and the consequent error then applied to pin 13 of Q13 as the AFC operation control signal.

Fig. 4-5 S-Curve characteristics

Fig. 4-6 S-Curve detector circuit

IC · Q19 (μ PD4011C) Functions

The NAND gate IC incorporated in Q19 forms a one-shot flip-flop which operates in combination with several other external circuit components for FM LOCAL and MEMORY control purposes.

• FM Local

(Note that FM LOCAL and FM MUTING involve the same type of operation).

Pin 3 of Q19 is switched to low level at the same time that the POWER switch is turned on. Q17 is thus turned on and the Q1 gate is dropped to 0V potential (normal bias), thereby resulting in normal front-end operation. In addition, switching pin 3 of Q19 to low level also keeps Q22 and D43 turned off.

If the FM LOCAL switch (S5) is then turned on, pins 6 and 1 of Q19 are also switched to low level, resulting in the pin 3 output being inverted to high level, and Q17 being turned off. The -B line voltage is thus applied to Q1 via R528 and R23 as reverse bias, thereby reducing the Q1 gain, and subsequently the sensitivity of the front-end. Any broadcasting frequencies below a certain fixed level will not, therefore, be received.

Pin 19 of Q13 is normally at high level, being switched to low level only during auto-search tun-

ing mode. Once a broadcasting station is tuned and the auto-search mode is stopped, the pin 19 output is switched back to high level, and Q27 consequently turned on. This results in Q17 being turned on, thereby cancelling the reverse bias applied to Q1. With Q1 operating normally again, the broadcasting frequency will be received at high sensitivity.

• MEMORY and STATION CALL

Frequencies of tuned broadcasting stations are stored in the memory by the following procedure.

As can be seen in Fig. 4-7, this circuit is also formed by a flip-flop. When the MEMORY switch S6 is turned on, pin 8 of Q19 is switched to low level, resulting in the output of Q19 pin 10 being switched to high level for a fixed period of time (determined by the C504/R510 time constant — memory enable period: approx. 5 seconds). This results in Q23 being turned on and pin 17 of Q13 being switched to low level, thereby enabling tuned frequencies to be stored in the memory block inside the LSI.

If the STATION CALL switch (preset switch) S9 is then pressed, +B will be connected to ground via R512, D28, D47 and D59, resulting in pin 13 of Q19 being switched to low level, and pin 10

Fig. 4-7 FM local, memory and station call circuit

being reset to high level. Q23 will thus be turned on and pin 17 of Q13 switched to low level (and the tuned broadcasting frequency will thus be stored in the memory).

Pins 36 to 42 of Q13 are the preset input terminals. When the S9 switch is pressed, the V_{DD} voltage (IC reference voltage) is passed to ground via R428, S9 and D59, resulting in a drop in the voltage being applied to pin 39 of Q13. Pin 39 is thus switched to low level, and the tuned broadcasting station is thereby stored in CH1.

Station Calling

The frequencies of preset broadcasting stations are retrieved in the following way.

When a STATION CALL switch (S9 – S15) is pressed, pin 17 of Q13 is switched to low level. An instruction is thus issued from the LSI (LC7207) control logic, resulting in the activation of the 10-bit U/D counter in accordance to the frequency data stored in the memory block. Then the memory stored frequency is hunted by ladder resistance, and the U/D counter again activated for AFC operation and fine tuning purposes.

DISPLAY CIRCUIT

This LSI controls the display of tuned FM frequencies (5 digit display to the nearest 50kHz) and tuned AM frequencies (4 digit display to the nearest 1kHz).

During FM reception, the FM LOCAL signal (the actual tuned frequency + IF frequency) divided by 100 in the prescalar IC (M54459L) is applied to pin 6 of Q25 (LS7258). A reference frequency (4MHz) is generated on pins 19 and 20 of Q25 by a crystal oscillator. This reference frequency is then divided by the LSI counter to a frequency which permits direct comparison with the input signal applied to pin 6.

Fig. 4-8 Display circuit

Upon comparison with the pin 6 input signal, the output is passed to the frequency counter. A latch circuit stores each signal temporarily for a brief period while waiting for the previous frequency display to be completed. The signal from the frequency counter is then displayed as the tuned frequency in the fluorescent display tube by command from the segment driver circuit.

Frequency display discrepancies (in 50kHz units in the FM band, and 1kHz units in the AM band) caused by drift in the IF circuit are corrected by the IF frequency fine tuning circuit where frequency shifts are converted to voltage levels in the VR connected to pins 13 and 14. In other words, frequency drift is corrected by voltage adjustment in the pin 13/14 VR.

Fig. 4-9 LC7258 Block diagram

5. PARTS LOCATION

Front Panel View

Rear Panel View

Front Panel with Panel Removed

Top View with Top Plate Removed

6. ADJUSTMENTS

FM Tuner

- Connect the FM SG (FM signal generator) to the FM ANTENNA 300Ω terminal via 300Ω dummy antenna.
- Set the FUNCTION switch to the FM position, FM LOCAL switch to the OFF position.
- Connect a terminal no. 14 on the tuner assembly to the ground.
- Apply a DC voltage [0.7V ~ V. REF (8.6V)] across no. 16 and ground of tuner assembly.

Step	FM SG (400Hz, 75kHz DEV)		Frequency on the display	Adjustment point	Adjustment method
	Frequency	Level			
1	Apply a DC 0.7V across terminal no. 16 and ground.				
2	87MHz	80dB	T3	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
3	Apply a DC 8.6V across terminal no. 16 and ground.				
4	109MHz	80dB	TC3	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
5	Repeat steps 1 to 4 until both requirements are satisfied.				
6	106MHz	80dB	
7	Adjust the applied voltage to maximum level at pin 13 of IC (PA3001-A).				
8	106MHz	20dB	106MHz (± 200 kHz)	TC1	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
9				TC2	
10	90MHz	80dB
11	Adjust the applied voltage to maximum level at pin 13 of IC (PA3001-A).				
12	90MHz	20dB	90MHz (± 200 kHz)	T1	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
13				T2	
14	Repeat steps 6 to 13 both requirements are statisfied.				
15	98MHz	20dB	98MHz (± 200 kHz)	T4	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
16	No signal	
17	Adjust the applied voltage to minimum level at pin 13 of IC (PA3001-A).				
18	No signal		T5 (A)	Obtain reading of DC 0V between terminals no. 30 and 31.
19	98MHz	20dB
20	Adjust the applied voltage to maximum level at pin 13 of IC (PA3001-A).				
21	98MHz	60dB	98MHz (± 200 kHz)	T5 (B)	Obtain minimum distortion in the demodulated output (OUTPUT).
22	Repeat steps 16 to 21 until both requirements are satisfied.				
23	No signal	
24	Adjust the applied voltage to minimum level at pin 13 of IC (PA3001-A).				
25	No signal		VR2	Obtain a reading of DC 4.75V (within ± 200 mV) between terminal no. 15 and ground.

FM Multiplex Decoder circuit

- Connect the MPX SG (FM multiplex signal generator) to the FM SG external modulator terminal.
- Set the FM SG output to 98MHz and 66dB (modulation mode to external), and tune the TX-710 to 98MHz.

Step	FM MPX SG	Adjustment point	Adjustment method
1	No signal (unmodulated)	VR3	Obtain a 76kHz (within ± 250 Hz) signal at terminal No.17.
2	Pilot signal only 19kHz ± 7.5 kHz DEV.	VR4	Obtain minimum leakage of the 19kHz pilot signal at the OUTPUT terminal.
3	Main: 1kHz, L+R, ± 67.5 kHz DEV. Pilot: 19kHz, ± 7.5 kHz DEV.	T4 (by up to 90° in either direction)	Reduce distortion in the output terminal to a minimum.

AM Tuner

- Connect the AM SG (AM signal generator) to the AM ANTENNA terminal via $1k\Omega$ resistor.
- Set the FUNCTION selector to the AM position.
- Connect a terminal no.14 on the tuner assembly to the ground.
- Apply a DC voltage [0.7V ~ V. REF (8.6V)] across no.16 and ground of tuner assembly.

Step	AM SG (400Hz, 30% MOD)		Frequency on the display	Adjustment point	Adjustment method
	Frequency	Level			
1	Apply a DC 0.7V across terminal no. 16 and ground.				
2	510kHz	100dB	T7	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
3	Apply a DC 8.6V across terminal no. 16 and ground.				
4	1650kHz	100dB	TC7	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
5	Repeat steps 1 to 4 until both requirements are satisfied.				
6	1400kHz	100dB
7	Adjust the applied voltage to maximum level at pin 9 of IC (HA1138).				
8	1400kHz	40dB	1400kHz (± 3 kHz)	TC5	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
9	600kHz	100dB
10	Adjust the applied voltage to maximum level at pin 9 of IC (HA1138).				
11	600kHz	40dB	600kHz (± 3 kHz)	T102 (Bar-ANT)	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
12	Repeat steps 6 to 11 until both requirements satisfied.				
13	1000kHz	40dB	Fine tuning (1000kHz)
14	Connect the terminals no.23 to no.27 tuner assembly.				
15	No signal		VR1	Obtain a reading of DC 4.75V (within ± 200 mV) between terminal no.15 and ground.
16	Adjust the applied voltage to maximum level at pin 9 of IC (HA1138).				
17	1000kHz	40dB	1000kHz (± 3 kHz)	TA8(A)	Obtain a reading of DC 4.75V (within ± 200 mV) between terminal no.15 and ground.

Counter**FM**

- Connect the FM SG (FM signal generator) to the FM ANTENNA 300Ω terminal via 300Ω dummy.
- Set the FUNCTION selector the FM position, FM LOCAL switch to the OFF position.
- Connect an $12k\Omega$ resistor between 34 pin and ground.

Step	FM SG (400Hz, ± 75 kHz DEV)		Frequency on the display	Adjustment point	Adjustment method
	Frequency	Level			
1	98MHz	60dB	98MHz	VR5	<ul style="list-style-type: none"> • Tune by auto-search tuning. • Then adjust VR5 so that the 100kHz unit in the digital display (98.00MHz) stops blinking on and off upon auto-stop.

Fig. 6-2 Adjustment of counter

AM

- Connect the AM SG (AM signal generator) to the AM ANTENNA terminal via $1\text{k}\Omega$ resistor.
- Set the FUNCTION selector to the AM position.
- Connect an $33\text{k}\Omega$ resistor between 34 pin and AM + B T.P

Step	AM SG (400Hz, 30% MOD)		Frequency on the display	Adjustment point	Adjustment method
	Frequency	Level			
1	1000kHz	60dB	1000kHz	VR6	<ul style="list-style-type: none"> • Tune by auto-search tuning. • Then adjust VR6 so that the 1kHz unit in the digital display (1000kHz) stops blinking on and off upon auto-stop.

7. PACKING**Parts List**

Key No.	Part No.	Description
1.	AHD-789	Packing case
2.	AHA-234	Side pad
3.	ADH-004	FM antenna
4.	ARB-377	Operating instructions (English)
5.	ARD-150	Operating instructions (German/French)

8. EXPLODED VIEWS

Exterior Components

NOTES:

- Parts without part number cannot be supplied.
- The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Parts List

Key No.	Part No.	Description	Key No.	Part No.	Description
1.	VBZ30P060FMC	Screw	6.	ANE-291	Bonnet case
2.	ANB-909	Front panel assembly	7.		Bottom plate
3.	FBT40P080FZK	Screw	8.	ABA-246	Screw
4.	AAD-200	Lever knob	9.	AEC-609	Foot assembly
5.		Acrylic plate A			

Interior Components

Parts List

Key No.	Part No.	Description	Key No.	Part No.	Description
1.		Side frame L	21.	AKP-016	Coaxial socket
2.		Panel stay	22.		Rear panel
3.		LED socket	⚠ 23.	ADG-039	AC power cord
4.	VBZ30P060FMC	Screw	24.	ATB-627	Bar-antenna assembly
5.	PMZ30P060FMC	Screw	25.	ADE-033	Connection cord
⚠ 6.	AEK-402	Fuse T1A (FU1)	26.	AEC-327	Strain relief
⚠ 7.	GWX-503	Fuse assembly	27.	BBT30P080FZK	Screw
8.	VBZ30P080FMC	Screw	28.	PMT30P060FZK	Screw
⚠ 9.	ATT-708	Power transformer	29.	VBZ30P100FZK	Screw
10.	VBZ40P080FZK	Screw	30.		FL cover
11.	GWX-506	FL assembly	31.		Felt A
12.	GWS-241	Switch assembly B	32.		Felt B
13.	AEC-510	Nylon rivet	33.		P.C. board
14.	GWS-242	Switch assembly A	34.	ABE-061	Washer
15.		PCB holder A			
16.	AEL-320	LED D1			
17.	GWE-137	Tuner assembly			
18.		Side frame R			
19.				
20.		PCB holder B			

9. SCHEMATIC DIAGRAM, P.C. BOARDS CONNECTION DIAGRAM AND PARTS LIST

External Appearance of Transistors and ICs

2SA733A
2SC945A

μ PD4011C
MB84011M

2SC461
2SC535

HA1138
PA3001

2SC1384

HA1201
 μ PC4558C
NJM4558DV

2SD836A

LC7207
LC7258

2SK61

PA4006-A

2SK168

LB1416

M54459L

Interior Components

Parts List

Key No.	Part No.	Description	Key No.	Part No.	Description
1.		Side frame L	21.	AKP-016	Coaxial socket
2.		Panel stay	22.		Rear panel
3.		LED socket	23.	ADG-039	AC power cord
4.	VBZ30P060FMC	Screw	24.	ATB-627	Bar-antenna assembly
5.	PMZ30P060FMC	Screw	25.	ADE-033	Connection cord
6.	AEK-402	Fuse T1A (FU1)	26.	AEC-327	Strain relief
7.	GWX-503	Fuse assembly	27.	BBT30P080FZK	Screw
8.	VBB30P080FMC	Screw	28.	PMT30P060FZK	Screw
9.	ATT-708	Power transformer	29.	VBB30P100FZK	Screw
10.	VBB40P080FZK	Screw	30.		FL cover
11.	GWX-506	FL assembly	31.		Felt A
12.	GWS-241	Switch assembly B	32.		Felt B
13.	AEC-510	Nylon rivet	33.		P.C. board
14.	GWS-242	Switch assembly A	34.	ABE-061	Washer
15.		PCB holder A			
16.	AEL-320	LED D1			
17.	GWE-137	Tuner assembly			
18.		Side frame R			
19.				
20.		PCB holder B			

9. SCHEMATIC DIAGRAM, P.C. BOARDS CONNECTION DIAGRAM AND PARTS LIST

External Appearance of Transistors and ICs

2SA733A
2SC945AμPD4011C
MB84011M2SC461
2SC535HA1138
PA3001

2SC1384

HA1201
μPC4558C
NJM4558DV

2SD836A

LC7207
LC7258

2SK61

PA4006-A

2SK168

LB1416

9.1 SCHEMATIC DIAGRAM

NOTE:
The indicated semiconductors are representative ones only. Other alternative semiconductors may be used and are listed in the parts list.

A

A

B

B

C

C

D

D

1

2

3

4

5

6

1

2

3

4

5

6

9.2 P.C. BOARDS CONNECTION DIAGRAM

1

2

3

4

5

6

9.3 PARTS LIST

NOTES:

- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J = 5%, and K = 10%).

560Ω	56 × 10 ¹	561	RD1/PS 561J
47kΩ	47 × 10 ³	473	RD1/PS 473J
0.5Ω	0R5		RN2H 0R5K
1Ω	010		RSIP 010K
- Ex. 2 When there are 3 effective digits (such as in high precision metal film resistors).

5.62kΩ	562 × 10 ¹	5621	RN1/SR 5621F
--------	-----------------------	------	--------------

- The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Miscellaneous Parts

P.C. BOARD ASSEMBLIES

Part No.	Symbol & Description
GWE-137	Tuner assembly
GWS-242	Switch assembly (A)
GWS-241	Switch assembly (B)
GWX-503	Fuse assembly
GWX-506	FL assembly

OTHERS

Part No.	Symbol & Description
▲ AEK-402	FU1 Fuse T1A
▲ ADG-039	AC power cord
▲ ATT-708	T101 Power transformer
AKP-016	Coaxial socket
ATB-627	Bar-antenna assembly
ADE-033	Connection cord

TUNER ASSEMBLY (GWE-137)

Parts List

TRANSFORMERS, COILS

Part No.	Symbol & Description
ATC-112	T1 FM antenna coil
ATC-121	T2 FM high frequency coil
ATC-115	T3 FM OSC coil
ATE-039	T4 FM IFT
ATE-043	T5 FM DET. transformer
ATB-067	T7 AM OSC coil
ATB-070	T8 AM DET. transformer
ATF-053	F1, F2 FM ceramic filter
ATF-108	F3 AM ceramic filter
ATF-089	F4, F5 Low pass filter
T24-028	L1 RF coil

Part No.	Symbol & Description
CEA 101M 25L	C26, C215
CEA 2R2M 50L	C25, C205, C206, C408, C412
CEA 220M 25L	C209, C319
CEA 330M 16L	C504
CEA 470M 10L	C110, C314
CEA 4R7M 50L	C807
CEA 472M 10L	C406
ACG-018	C214 Ceramic capacitor

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

RESISTORS

Part No.	Symbol & Description
RD1/PM □□□ J	R1—R24, R101—R118, R201—R218, R220, R301—R315, R401—R431, R433, R501—R507, R509—R532
RN1/PQ □□□□ F	R219
ACN-120	R432 Ladder resistor
ACP-078	VR1, VR2 Semi-fixed (2.2k)
C92-049	VR3 Semi-fixed (10k)
ACP-086	VR4 Semi-fixed (22k)

SEMICONDUCTORS

Part No.	Symbol & Description
2SK61-Y	Q1
2SC535	Q2
2SC461	Q3, Q10, Q11
2SK168	Q4, Q8
HA1201	Q5
2SA733A	Q6, Q15, Q17
PA3001-A	Q7
HA1138	Q9
μPC4558C (NJM4558DV)	Q12
LC7207	Q13
PA4006-A	Q14
2SC945A	Q16, Q27
2SC1384	Q18
μPD4011C (MB84011M)	Q19
M54459L	Q26

Part No.	Symbol & Description
1SV68-08	D1, D2, D5
KZL061	D3
1S2076	D4, D7, D8, D12—D15, D19—D26, D28, D60, D61, D63, D64
(1S2473)	
(1S1555)	
MZ-047	D6
KV1226-Y	D10
KZL-083	D27, D65

SWITCHES AND OTHER

Part No.	Symbol & Description
ASK-174	S2 Lever switch
ASK-172	S3 Lever switch
AKA-016	Terminal (ANTENNA)

SWITCH ASSEMBLY A (GWS-242)

Parts List

CAPACITORS

Part No.	Symbol & Description
CEA 101M 25L	C601, C602, C609, C610
CEA 101M 10L	C606, C607
CEA 101M 35L	C604
CEA 102M 25L	C608
CEA 470M 25L	C605
CEA 470M 50L	C603
CQMA 104K 50	C611

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

RESISTORS

Part No.	Symbol & Description
RD1/PM □□□ J	R601, R602, R604—R607
RD1/PS 331J	R603

SEMICONDUCTORS

Part No.	Symbol & Description
▲ 2SD836A	Q20
2SC1384	Q21
1S2076	D29—D32
(1S2473)	
(1S1555)	
KZL072	D33
KZL140	D34
▲ 10E2	D35, D36, D38—D41
MZ-270	D37
KZL083	D42

SWITCHES AND OTHER

Part No.	Symbol & Description
▲ ASK-179	S1 Lever switch
VBZ30P060FMC	Screw

9.3 PARTS LIST

NOTES:

- When ordering resistors, first convert resistance values into code form as shown in the following examples.

Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J = 5%, and K = 10%).

560Ω	56×10^1	561	RD ¹ PS 561J
$47k\Omega$	47×10^3	473	RD ¹ PS 473J
0.5Ω	0R5		RN2H 0R5K
1Ω	010		RSIP 010K

Ex. 2 When there are 3 effective digits (such as in high precision metal film resistors).

$5.62k\Omega$	562×10^1	5621	RN ¹ SR 5621F
---------------	-------------------	----------------	--------------------------

- The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Miscellaneous Parts

P.C. BOARD ASSEMBLIES

Part No.	Symbol & Description
GWE-137	Tuner assembly
GWS-242	Switch assembly (A)
GWS-241	Switch assembly (B)
GWX-503	Fuse assembly
GWX-506	FL assembly

OTHERS

Part No.	Symbol & Description
AEK-402	FU1 Fuse T1A
ADG-039	
ATT-708	T101 AC power cord
AKP-016	Power transformer
ATB-627	Coaxial socket
ADE-033	Bar-antenna assembly
	Connection cord

TUNER ASSEMBLY (GWE-137)

Parts List

TRANSFORMERS, COILS

Part No.	Symbol & Description
ATC-112	T1 FM antenna coil
ATC-121	T2 FM high frequency coil
ATC-115	T3 FM OSC coil
ATE-039	T4 FM IFT
ATE-043	T5 FM DET. transformer
ATB-067	T7 AM OSC coil
ATB-070	T8 AM DET. transformer
ATF-053	F1, F2 FM ceramic filter
ATF-108	F3 AM ceramic filter
ATF-089	F4, F5 Low pass filter
T24-028	L1 RF coil

CAPACITORS

Part No.	Symbol & Description
ACM-008	TC1, TC2, TC5 Film trimer
ACM-006	TC3 Ceramic trimer
ACM-010	TC7 Film trimer capacitor
CCDRH 080D 50	C1, C4, C13
CGB R47K 500	C10
CCDCH 020C 50	C7, C17
CCDCH 100D 50	C317
CCDCH 150J 50	C16
CCDCH 220J 50	C24
CCDCH 330J 50	C14
CCDPH 120J 50	C11
CCDTH 120J 50	C304
CCDSL 101J 50	C6, C106, C502, C503
CCDYB 102K 50	C18
CKDYB 221K 50	C313
CKDYB 472K 50	C401
CKDYB 682K 50	C407
CKDYF 103Z 50	C2, C3, C5, C8, C9, C12, C15, C20-C22, C27-C30, C107, C113, C114, C305-C307, C309, C318, C321, C510, C511

CKDYF 223Z 50	C101, C102, C105, C311, C315, C402-C405, C513, C508, C509
CKDYF 473Z 50	C104, C112, C316, C409-C111, C103
CKDYX 473M 25	C201
CQMA 332J 50	C203, C204
CQMA 683K 50	C310
CQSH 431K 50	C302
CEA 010M 50L	C211-C213, C207, C208, C109, C323
CEA 100M 50L	C210, C308, C411, C506, C512, C505
CEA 101M 10L	C19, C23, C202, C501

Part No.	Symbol & Description
----------	----------------------

CEA 101M 25L	C26, C215
CEA 2R2M 50L	C25, C205, C206, C408, C412
CEA 220M 25L	C209, C319
CEA 330M 16L	C504
CEA 470M 10L	C110, C314

CEA 4R7M 50L	C807
CEA 472M 10L	C406
ACG-018	C214 Ceramic capacitor

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

RESISTORS

Part No.	Symbol & Description
----------	----------------------

RD%PM □□□ J	R1—R24, R101—R118, R201—R218, R220, R301—R315, R401—R431, R433, R501—R507, R509—R532
RN%PQ □□□□ F	R219
ACN-120	R432 Ladder resistor
ACP-078	VR1, VR2 Semi-fixed (2.2k)
C92-049	VR3 Semi-fixed (10k)
ACP-086	VR4 Semi-fixed (22k)

SEMICONDUCTORS

Part No.	Symbol & Description
----------	----------------------

2SK61-Y	Q1
2SC535	Q2
2SC461	Q3, Q10, Q11
2SK168	Q4, Q8
HA1201	Q5
2SA733A	Q6, Q15, Q17
PA3001-A	Q7
HA1138	Q9
μPC4558C (NJM4558DV)	Q12
LC7207	Q13
PA4006-A	Q14
2SC945A	Q16, Q27
2SC1384	Q18
μPD4011C (MB84011M)	Q19
M54459L	Q26
1SV68-08	D1, D2, D5
KZL061	D3
1S2076	D4, D7, D8, D12—D15, D19—D26, D28, D60, D61, D63, D64
(1S2473) (1S1555)	
MZ-047	D6
KV1226-Y	D10
KZL-083	D27, D65

SWITCHES AND OTHER

Part No.	Symbol & Description
ASK-174	S2 Lever switch
ASK-172	S3 Lever switch
AKA-016	Terminal (ANTENNA)

SWITCH ASSEMBLY A (GWS-242)

Parts List

CAPACITORS

Part No.	Symbol & Description
CEA 101M 25L	C601, C602, C609, C610
CEA 101M 10L	C606, C607
CEA 101M 35L	C604
CEA 102M 25L	C608
CEA 470M 25L	C605
CEA 470M 50L	C603
CQMA 104K 50	C611

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

RESISTORS

Part No.	Symbol & Description
RD%PM □□□ J	R601, R602, R604—R607
RD%PS 331J	R603

SEMICONDUCTORS

Part No.	Symbol & Description
2SD836A	Q20
2SC1384	Q21
1S2076 (1S2473)	D29—D32
(1S1555)	
KZL072	D33
KZL140	D34
10E2	D35, D36, D38—D41
MZ-270	D37
KZL083	D42

SWITCHES AND OTHER

Part No.	Symbol & Description
ASK-179 VBZ30P060FMC	S1 Lever switch Screw

SWITCH ASSEMBLY B (GWS-241)**Parts List****RESISTORS AND SWITCHES**

Part No.	Symbol & Description
RD1/PM □□□ J ASG-163	R701—R705 S5, S6 Tact switch

SEMICONDUCTORS

Part No.	Symbol & Description
2SC945A	Q22, Q23
AEL-343	D43, D44 LED
1S2076 (1S2473) (1S1555)	D45

FL ASSEMBLY (GWX-506)**Parts List****CAPACITORS**

Part No.	Symbol & Description
CEB 100P 16	C801
CEB 010P 50	C802
CKDYX 473M 25	C803, C804
CCDCH 270J 50	C805, C806

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

RESISTORS

Part No.	Symbol & Description
ACP-036	VR5, VR6 Semi-fixed (10k)
RD1/PM 560J	R811
RD1/PM □□□ J	R801—R810, R812—R831

SEMICONDUCTORS

Part No.	Symbol & Description
LB1416	Q24
LC7258	Q25
AEL-343	D47—D53 LED
AEL-337	D54—D58 LED
1S2076 (1S2473) (1S1555)	D59
AEL-334	D46 LED (STEREO IND)

SWITCHES AND OTHERS

Part No.	Symbol & Description
ASG-163	S7—S14 Tact switch
ASS-013	X1 Crystal resonator
AAV-012	V1 Fluorescent indicator tube
VBZ30P100FZK	Screw
ABE-061	Washer