A possible solution to assignment: basic mathematics for TLA+

Dr. Tianxiang Lu

April 27, 2015

Note:

- There is no standard solution, this is one possible solution.
- The errors introduced to the assignment by intention are corrected in this solution.
- If you find further errors in this solution, please send an Email to contact@tiit.lu
- 1. Absolute Value

Definition 1. For a number x, the absolute value function |x| is defined by

$$|x| := \left\{ \begin{array}{ll} x & \text{if } x \ge 0 \\ -x & \text{otherwise} \end{array} \right.$$

Prove some properties of real function. (Hint: practice case analysis)

Theorem 1. For every real number x, $|x| \ge 0$.

Proof. As the absolute function is defined by cases, it is very natural to prove the theorem by cases on x.

Case 1: $x \ge 0$.

In this case, $x \ge 0$, and |x| = x, therefore $|x| \ge 0$.

Case 2: x < 0.

In this case, |x| = -x. As x is negative, -x is positive, and thus, -x > 0.

Theorem 2. $|x| \ge x$ for all x.

Proof. Here, we do cases, as above.

Case 1: $x \ge 0$.

In this case, |x| = x, and therefore $|x| \ge x$.

Case 2: x < 0.

In this case, |x| = -x, and as x is negative, -x is positive. Positive numbers are always larger than negative numbers, and thus |x| = -x > x.

Theorem 3 (Triangle Inequality). For every a, b real numbers, we have

$$|a+b| \le |a| + |b|$$

Proof 1. One idea may be to enumerate all the cases on how a and b are comparable to 0.

Case 1: $a, b \ge 0$

|a + b| = a + b = |a| + |b|.

Case 2: $a, b \leq 0$

$$|a+b| = -a - b = |a| + |b|$$

Case 3: a < 0 and b > 0.

Now, don't know what exactly a + b is. Imagine however we are b. We know when we get a added to us, we get smaller, so we know b > a + b. We want to conclude that |b| > |a + b|, but we cannot because a might be very negative, and might have made this number very small. In a way, we see that our current path is stuck unless we know more about a + b. Therefore, we do more cases.

Case 3.1: a + b > 0

Now we have even more information. We have already seen b > a + b, and now we know that a + b is itself positive. Therefore, |b| > |a + b|. Here, we are already done though, because adding something positive a quantity which is already larger than another quantity preserves that inequality; that is, since |a| > 0:

$$|a+b| < |b| < |b| + |a|$$

Case $3.2 \ a + b < 0$

The roles of a and b switch in this case. Now, making the same observations in the beginning of case 3 we see that a < a + b. But of course, when you take the absolute value a smaller negative becomes a larger positive, so |a| > |a + b|. Then we have

$$|a+b| < |a| < |b| + |a|$$

Case $3.3 \ a + b = 0$

This is an easy case to forget, but without it the proof would not be complete. If a+b=0, then |a+b|=0. $0 \le p$ for any positive number p, so as |a|+|b|>0

$$|a+b| = 0 < |a| + |b|$$

Case 4: a > 0 and b < 0

Notice, we will be doing the same work here as we did in case 3.1 and 3.2. As an exercise, you should do this case.

Proof. We can shorten the above and really think about what cases we need to get the job done.

Case 1: $a + b \ge 0$

If $a+b \ge 0$ then |a+b| = a+b. By the theorem above, we have $a \le |a|$ and $b \le |b|$. But then we have $a+b \le |a|+|b|$. Chaining these together, we get

$$|a+b| = a+b \le |a| + |b|$$

Case 2: a + b < 0

Here, we nice that -a-b>0, and moreover |a+b|=|-a-b|. Therefore, we have that

$$|a+b| = |-a-b| = -a-b \le |-a| + |-b| = |a| + |b|$$

2. Proof by contradiction

Theorem 4. For all positive real numbers x, y, If x > y then $\sqrt{x} > \sqrt{y}$

Proof. Suppose that we were wrong about this theorem being correct. Then we would have an x and y that witness this.

Given x>y, assuming the negation of the hypothesis, namely $\sqrt{x}\le \sqrt{y}$. We know that squaring is monotone over the positive reals, so if $\sqrt{x}\le \sqrt{y}$ we can square both sides and get $x\le y$. This contradict to our given fact x>y. So, the assumption is wrong, therefore, the original hypothesis is correct.

The above proof is called a **proof by contradiction**.

- 3. Set construction:
 - (1) If a set A has n members, how many members does the power set of A has? Answer. $|\wp(A)| = 2^{|A|} = 2^n$
 - (2) Can you build a set of all sets? How does it look like?

Theorem 5 (Bertrand Russell 1901). If one is able to do comprehension (set builder notation) to form new sets, there cannot be a set of all sets.

Proof. For sake of contradiction, let us suppose that this theorem is false. Then we know that there is a set of all sets, and we are able to do comprehension. Let Ω be the set of all set. Now, we want to get a contradiction, and we suspect (given the way the theorem was stated) it has something to do with comprehension. So define a set B as follows:

$$B = \{ x \in \Omega \mid x \notin x \}$$

That is, B is the set of all sets which do not contain themselves as members. We don't know much about B; maybe it is empty, maybe it is very large. But as B is a set, we are allowed to ask questions to B about who are its members. B itself is either a member of B, or not.

Case 1: $B \in B$.

We defined B by comprehension, so something gets inside of B only when it satisfies the above formula. Therefore, we know $B \notin B$, which is a contradiction.

Case 2: $B \notin B$.

Look at the definition of B. We put a set x in B exactly when $x \notin x$. As $B \notin B$ we know therefore that $B \in B$, which of course is a contradiction.

As B is a set, one of these two cases must hold, but they both lead to contradictions. Therefore, we can conclude that our initial assumption was incorrect: Ω is not a set.

4. Prove the following theory

Theorem 6. If $f: A \to B$ and $X, Y \subseteq A$ then

- $f[X \cup Y] = f[X] \cup f[Y]$
- $f[X \cap Y] \subseteq f[X] \cap f[Y]$

Proof. Here I only show the proof of the first theory, the proof of the second one is similar and therefore omitted.

• ' \subseteq ': Let $a \in A$ and $b \in B$. By definition of f, for every $b \in f[X \cup Y]$ there exists an $a \in (X \cup Y) \subseteq A$ such that f(a) = b.

By definition of \cup : $a \in X \lor a \in Y$.

Case 1: $a \in X$: by definition of f, we have $b \in f[X]$,

Case 2: $a \in Y$: by definition of $f, b \in f[Y]$.

By definition of \cup again, we have $b \in f[X] \cup f[Y]$.

• ' \supseteq ': Let $a \in A$ and $b \in B$. Assume $b \in f[X] \cup f[Y]$.

By definition of \cup : $b \in f[X] \lor b \in f[Y]$.

Case 1: $b \in f[X]$: by definition of f, there must exist an $a \in X$, such that f(a) = b. By definition of \cup , $a \in X \cup Y$. By definition of f, $g \in f[X \cup Y]$.

Case 2: $b \in f[Y]$: by definition of f, there must exist an $a \in Y$, such that f(a) = b. By definition of \cup , $a \in X \cup Y$. By definition of f, $g \in f[X \cup Y]$.