

Equilibrio e stabilità di sistemi dinamici

Stabilità interna di sistemi dinamici

Stabilità interna di sistemi dinamici

- Introduzione allo studio della stabilità
- Stabilità interna di sistemi dinamici TC
- Stabilità interna di sistemi dinamici TD
- Stabilità dell'equilibrio

Stabilità interna di sistemi dinamici

Introduzione allo studio della stabilità

Introduzione allo studio della stabilità (1/2)

- Nell'analisi di un sistema dinamico, bisogna saper valutare qualitativamente se il suo comportamento risulti indifferente a perturbazioni agenti sullo stato iniziale, sugli ingressi e sui parametri presenti nelle varie equazioni che descrivono il sistema stesso
- ➤ La proprietà di **stabilità interna** del sistema, così come definita dal matematico russo **Lyapunov** alla fine dell'Ottocento, fa riferimento agli effetti sul movimento dello stato provocati da perturbazioni sullo stato iniziale, assumendo che gli ingressi e i parametri siano costanti e noti

Introduzione allo studio della stabilità (2/2)

- Un sistema è detto stabile se la sua evoluzione è poco sensibile a perturbazioni sullo stato iniziale, per cui piccole perturbazioni iniziali danno luogo a piccole variazioni nella sua successiva evoluzione
- Un sistema è detto instabile se la sua evoluzione è molto sensibile a perturbazioni sullo stato iniziale, per cui piccole perturbazioni iniziali allontanano decisamente la sua successiva evoluzione dalla situazione dinamica corrispondente all'assenza di perturbazioni

Stabilità interna di sistemi dinamici

Stabilità interna di sistemi dinamici TC

Stabilità interna di sistemi dinamici TC (1/2)

- Dato un sistema dinamico, a dimensione finita, MIMO, a tempo continuo, non lineare, stazionario, descritto dall'equazione di stato $\dot{x}(t) = f(x(t), u(t))$, se ne considerino due diverse evoluzioni temporali:
 - Un movimento "nominale" $\tilde{x}(t)$ ottenuto applicando un ingresso "nominale" $\tilde{u}(t)$ al sistema posto in uno stato iniziale "nominale" $\tilde{x}(t_0 = 0) = \tilde{x}_0$
 - Un movimento "perturbato" x(t) ottenuto applicando lo stesso ingresso "nominale" $\tilde{u}(t)$ al sistema posto in uno stato iniziale differente ("perturbato") $x_0 \neq \tilde{x}_0$
- La differenza fra i due diversi movimenti costituisce la perturbazione sullo stato del sistema:

$$\delta X(t) = X(t) - \tilde{X}(t) \in \mathbb{R}^n \Rightarrow X(t) = \tilde{X}(t) + \delta X(t)$$

Stabilità interna di sistemi dinamici TC (2/2)

- In base all'effetto di una perturbazione sullo stato iniziale $\delta x(t_0) \neq 0$, un movimento nominale $\tilde{x}(t)$ è
 - **Stabile** se la perturbazione sullo stato $\delta x(t)$ resta sempre limitata nel tempo
 - **Instabile** se la perturbazione sullo stato $\delta x(t)$ non resta limitata nel tempo (anzi, tipicamente diverge)
 - **Asintoticamente stabile** se la perturbazione sullo stato $\delta x(t)$, oltre a restare sempre limitata nel tempo, tende anche ad annullarsi asintoticamente $(t \to \infty)$
 - Globalmente asintoticamente stabile se, per qualsiasi perturbazione iniziale, la perturbazione $\delta x(t)$ resta limitata e tende ad annullarsi asintoticamente
 - **Semplicemente stabile** se la perturbazione $\delta x(t)$ è limitata ma non tende ad annullarsi asintoticamente

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\|$$

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità. In tal caso, esiste almeno un $\varepsilon > 0$ tale che, per ogni $\gamma > 0$, almeno uno degli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$ è tale che

$$\exists t \geq 0 : \|\delta x(t)\| = \|x(t) - \tilde{x}(t)\|$$

Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità. In tal caso, esiste almeno un $\varepsilon > 0$ tale che, per ogni $\gamma > 0$, almeno uno degli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$ è tale che

$$\exists t \geq 0 : \|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| > \varepsilon$$

Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità. In tal caso, esiste almeno un $\varepsilon > 0$ tale che, per ogni $\gamma > 0$, almeno uno degli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$ è tale che

$$\exists t \geq 0 : \|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| > \varepsilon$$

Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità. In tal caso, esiste almeno un $\varepsilon > 0$ tale che, per ogni $\gamma > 0$, almeno uno degli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$ è tale che

$$\exists t \geq 0 : \|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| > \varepsilon$$

Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità. In tal caso, esiste almeno un $\varepsilon > 0$ tale che, per ogni $\gamma > 0$, almeno uno degli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$ è tale che

$$\exists t \geq 0 : \|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| > \varepsilon$$

Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità. In tal caso, esiste almeno un $\varepsilon > 0$ tale che, per ogni $\gamma > 0$, almeno uno degli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$ è tale che

$$\exists t \geq 0 : \|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| > \varepsilon$$

Un movimento $\tilde{x}(\cdot)$ si dice **asintoticamente stabile** se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia:

1) $\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\|$

Un movimento $\tilde{x}(\cdot)$ si dice **asintoticamente stabile** se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia:

1) $\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$

Un movimento $\tilde{x}(\cdot)$ si dice **asintoticamente stabile** se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia:

y(t) = Cx(t)

1) $\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$

 \rightarrow Un movimento $\tilde{x}(\cdot)$ si dice asintoticamente stabile se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta \dot{x}(t_0=0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia:

1)
$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

1)
$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon$$
, $\forall t \ge 0$
2) $\lim_{t \to \infty} \|\delta x(t)\| = \lim_{t \to \infty} \|x(t) - \tilde{x}(t)\| = 0$

 \rightarrow Un movimento $\tilde{x}(\cdot)$ si dice asintoticamente stabile se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta \dot{x}(t_0=0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia:

y(t) = Cx(t)

1) $\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon$, $\forall t \ge 0$ 2) $\lim_{t \to \infty} \|\delta x(t)\| = \lim_{t \to \infty} \|x(t) - \tilde{x}(t)\| = 0$

 \rightarrow Un movimento $\tilde{x}(\cdot)$ si dice asintoticamente stabile se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta \dot{x}(t_0=0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia:

1)
$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

1)
$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon$$
, $\forall t \ge 0$
2) $\lim_{t \to \infty} \|\delta x(t)\| = \lim_{t \to \infty} \|x(t) - \tilde{x}(t)\| = 0$

Movimento globalmente asintoticamente stabile

> Un movimento $\tilde{x}(\cdot)$ si dice **globalmente asintoticamente stabile** se:

y(t) = Cx(t)

1) è stabile, cioè per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui risulta che $\|\delta x(t_0 = 0)\| = \|x_0 - \tilde{x}_0\| \le \gamma$, si abbia

$$\|\delta x(t)\| = \|x(t) - \tilde{x}(t)\| \le \varepsilon, \quad \forall t \ge 0$$

- 2) $\lim_{t\to\infty} \|\delta x(t)\| = \lim_{t\to\infty} \|x(t) \tilde{x}(t)\| = 0, \quad \forall x_0 \in X$
- In questo caso, ogni movimento perturbato x(t) converge quindi asintoticamente $(t \to \infty)$ al movimento nominale $\tilde{x}(t)$, quale che sia l'entità della perturbazione iniziale $\delta x(t_0)$

Movimento semplicemente stabile

Un movimento $\tilde{x}(\cdot)$ si dice **semplicemente stabile** se è stabile ma non asintoticamente, cioè se non soddisfa la seconda condizione richiesta per poter risultare asintoticamente stabile

Classificazione dei movimenti

Le precedenti definizioni permettono di classificare i movimenti a seconda delle diverse caratteristiche di stabilità interna:

Stabilità interna di sistemi dinamici

Stabilità interna di sistemi dinamici TD

Stabilità interna di sistemi dinamici TD (1/3)

- Definizioni analoghe valgono anche nel caso di sistemi dinamici, a dimensione finita, MIMO, a tempo discreto, non lineari, stazionari, descritti da equazioni di stato del tipo x(k+1) = f(x(k), u(k)), di cui si considerino due diverse evoluzioni temporali:
 - Un movimento "nominale" $\tilde{x}(k)$ ottenuto applicando un ingresso "nominale" $\tilde{u}(k)$ al sistema posto in uno stato iniziale "nominale" $\tilde{x}(k_0 = 0) = \tilde{x}_0$
 - Un movimento "perturbato" x(k) ottenuto applicando lo stesso ingresso "nominale" $\tilde{u}(k)$ al sistema posto in uno stato iniziale differente ("perturbato") $x_0 \neq \tilde{x}_0$
- ➤ La differenza fra i due diversi movimenti costituisce la perturbazione sullo stato del sistema:

$$\delta X(k) = X(k) - \tilde{X}(k) \in \mathbb{R}^n \Rightarrow X(k) = \tilde{X}(k) + \delta X(k)$$

Stabilità interna di sistemi dinamici TD (2/3)

- Un movimento $\tilde{x}(\bullet)$ si dice **stabile** se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui risulta $\|\delta x(k_0 = 0)\| = \|x_0 \tilde{x}_0\| \le \gamma$, si abbia $\|\delta x(k)\| = \|x(k) \tilde{x}(k)\| \le \varepsilon$, $\forall k \ge 0$
- Un movimento $\tilde{x}(\cdot)$ si dice **instabile** se non soddisfa le condizioni di stabilità
- Un movimento $\tilde{x}(\cdot)$ si dice **asintoticamente stabile** se, per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui $\|\delta x(k_0 = 0)\| = \|x_0 \tilde{x}_0\| \le \gamma$, si abbia:

1)
$$\|\delta x(k)\| = \|x(k) - \tilde{x}(k)\| \le \varepsilon, \quad \forall k \ge 0$$

2)
$$\lim_{k\to\infty} \|\delta x(k)\| = \lim_{k\to\infty} \|x(k) - \tilde{x}(k)\| = 0$$

Stabilità interna di sistemi dinamici TD (3/3)

- **>** Un movimento $\tilde{x}(\cdot)$ si dice **globalmente asintoticamente stabile** se:
 - 1) è stabile, cioè per ogni $\varepsilon > 0$, esiste un $\gamma > 0$ tale che, per tutti gli stati iniziali x_0 per cui risulta che $\|\delta x(k_0 = 0)\| = \|x_0 \tilde{x}_0\| \le \gamma$, si abbia $\|\delta x(k)\| = \|x(k) \tilde{x}(k)\| \le \varepsilon$, $\forall k \ge 0$
 - 2) $\lim_{k\to\infty} \|\delta x(k)\| = \lim_{k\to\infty} \|x(k) \tilde{x}(k)\| = 0, \quad \forall x_0 \in X$
- Un movimento $\tilde{x}(\cdot)$ si dice **semplicemente stabile** se è stabile ma non asintoticamente

Stabilità interna di sistemi dinamici

Stabilità dell'equilibrio

Stabilità dell'equilibrio

- Si parla di stabilità dell'equilibrio nel caso in cui il movimento nominale considerato sia uno stato di equilibrio corrispondente ad un ingresso di equilibrio
- Un sistema dinamico non lineare può presentare stati di equilibrio con caratteristiche di stabilità interna differenti ⇒ si parla di studio della stabilità "locale"
- > Ad ogni stato di equilibrio asintoticamente stabile è associata una regione di attrazione (o regione di asintotica stabilità), costituita da quegli stati iniziali che danno origine a movimenti perturbati convergenti asintoticamente allo stato d'equilibrio
- In corrispondenza di un dato ingresso di equilibrio, un sistema dinamico ammette al più un unico stato di equilibrio globalmente asintoticamente stabile

Esempio #1 di studio della stabilità dell'equilibrio

Stato di equilibrio asintoticamente stabile

Esempio #2 di studio della stabilità dell'equilibrio

Stato di equilibrio semplicemente stabile

Esempio #3 di studio della stabilità dell'equilibrio

Stato di equilibrio instabile

