- 19 De Langer Zug in Oostenrijk is met een hellingshoek van 55° de steilste skipiste in de Alpen. Harry Egger heeft op deze helling een snelheid van 248 kmh⁻¹ gehaald. Figuur 3.36 is een tekening op schaal. Z is het zwaartepunt van de skiër. Egger heeft een massa van 105 kg.
 - a Bereken de grootte van de zwaartekracht op de skiër.
 - b Geef in de tekening de zwaartekracht weer met een pijl van 6,0 cm.
 - c Ontbind de zwaartekracht in een component evenwijdig aan de helling en een component loodrecht op de helling.
 - d Bepaal de grootte van de componenten.

Figuur 3.36

Opgave 19

a De zwaartekracht bereken je met de formule voor de zwaartekracht.

```
F_{zw} = m \cdot g

m = 105 \text{ kg}

g = 9.81 \text{ m s}^{-2}

F_{zw} = 105 \times 9.81 = 1.030 \cdot 10^3 \text{ N}

Afgerond: 1.03 \cdot 10^3 \text{ N}.

b Zie figuur 3.18.

c Zie figuur 3.18.
```


Figuur 3.18

d De grootte van een component bepaal je met de lengte en de krachtenschaal. De krachtenschaal bepaal je met de lengte van de krachtpijl en de grootte van de kracht.

```
De pijl van de zwaartekracht is 6,0 cm. De zwaartekracht is 1,03·10³ N. 6,0 cm \triangleq 1,030·10³ N 1,0 cm \triangleq 172 N
```

De lengte van de component $F_{zw,x}$ langs de helling is 4,9 cm. F_1 = 4,9 × 172 = 842,8 N Afgerond: F_1 = 8,4·10² N

De lengte van de component $F_{zw,y}$ loodrecht op de helling is 3,5 cm. $F_2 = 3,5 \times 172 = 602,0 \text{ N}$ Afgerond: $F_2 = 6,0\cdot10^2 \text{ N}$.