IF3111 Basis Data – Functional Dependency

Wikan Danar Departemen Teknik Informatika Institut Teknologi Bandung

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Functional Dependencies

- Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- A functional dependency is a generalization of the notion of a key.

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – <u>Functional Dependency</u>

Functional Dependencies (Cont.)

• Let R be a relation schema

$$\alpha \subseteq R$$
 and $\mathbf{b} \subseteq R$

• The functional dependency

$$\alpha \rightarrow b$$

holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes \boldsymbol{a} , they also agree on the attributes \boldsymbol{b} . That is,

$$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\boldsymbol{b}] = t_2[\boldsymbol{b}]$$

• Example: Consider r(A,B) with the following instance of r.

• On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Functional Dependencies (Cont.)

- K is a superkey for relation schema R if and only if $K \to R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

Loan-info-schema = (customer-name, loan-number, branch-name, amount).

We expect this set of functional dependencies to hold:

loan-number \rightarrow amount loan-number \rightarrow branch-name

but would not expect the following to hold:

loan-number → *customer-name*

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Use of Functional Dependencies

- We use functional dependencies to:
 - test relations to see if they are legal under a given set of functional dependencies.
 - If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*.
 - specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - For example, a specific instance of Loan-schema may, by chance, satisfy

loan-number \rightarrow customer-name.

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Functional Dependencies (Cont.)

- A functional dependency is trivial if it is satisfied by all instances of a relation
 - *E.g.*
 - customer-name, loan-number → customername
 - customer-name → customer-name
 - In general, $\alpha \rightarrow \boldsymbol{b}$ is trivial if $\boldsymbol{b} \subseteq \alpha$

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – <u>Functional Dependency</u>

Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - E.g. If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of all functional dependencies logically implied by F is the closure of F.
- We denote the closure of F by F+.
- We can find all of F+ by applying Armstrong's Axioms:
 - if \mathbf{b} ⊆ α, then α → \mathbf{b}

(reflexivity)

- if $\alpha \rightarrow \boldsymbol{b}$, then $\gamma \alpha \rightarrow \gamma \boldsymbol{b}$

(augmentation)

Page 7

- if $\alpha \to \boldsymbol{b}$, and $\boldsymbol{b} \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- These rules are
 - sound (generate only functional dependencies that actually hold)
 - complete (generate all functional dependencies that hold).

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Example

•
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H\}$

- some members of F⁺
 - $-A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $-AG \rightarrow I$
 - by augmenting $A \to C$ with G, to get $AG \to CG$ and then transitivity with $CG \to I$
 - $-CG \rightarrow HI$
 - from $CG \rightarrow H$ and $CG \rightarrow I$: "union rule" can be inferred from
 - definition of functional dependencies, or
 - Augmentation of $CG \to I$ to infer $CG \to CGI$, augmentation of $CG \to H$ to infer $CGI \to HI$, and then transitivity

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Procedure for Computing F+

• To compute the closure of a set of functional dependencies F:

 $F^+ = F$ repeat

for each functional dependency f in F^+ apply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^+ for each pair of functional dependencies f_1 and f_2 in F^+ if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+ until F^+ does not change any further

NOTE: We will see an alternative procedure for this task later

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Closure of Functional Dependencies (Cont.)

- We can further simplify manual computation of F⁺ by using the following additional rules.
 - If $\alpha \to \boldsymbol{b}$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \boldsymbol{b} \gamma$ holds **(union)**
 - If $\alpha \to \boldsymbol{b}$ γ holds, then $\alpha \to \boldsymbol{b}$ holds and $\alpha \to \gamma$ holds (decomposition)
 - If $\alpha \to b$ holds and $\gamma b \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Closure of Attribute Sets

Given a set of attributes α, define the *closure* of α under F (denoted by α⁺) as the set of attributes that are functionally determined by α under F:

```
\alpha \to \beta is in F^+ \Leftrightarrow \beta \subseteq \alpha^+
```

• Algorithm to compute α^+ , the closure of α under F

```
 \begin{array}{l} \textit{result} := \alpha; \\ \textbf{while} \; (\text{changes to } \textit{result}) \; \textbf{do} \\ \textbf{for each} \; \beta \rightarrow \gamma \; \textbf{in} \; \textit{F} \; \textbf{do} \\ \textbf{begin} \\ \textbf{if} \; \beta \subseteq \textit{result} \; \textbf{then} \; \textit{result} := \textit{result} \cup \gamma \\ \textbf{end} \\ \end{array}
```


IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Example of Attribute Set Closure

- R = (A, B, C, G, H, I)• $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- (AG)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. $result = ABCGH \quad (CG \rightarrow H \text{ and } CG \subseteq AGBC)$
 - 4. $result = ABCGHI \quad (CG \rightarrow I \text{ and } CG \subseteq AGBCH)$
- Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2. Does $G \rightarrow R$? == Is (G)⁺ \supseteq R

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^+ , and check if α^+ contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - Eg: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - E.g. on RHS: $\{A \to B, B \to C, A \to CD\}$ can be simplified to

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

• E.g. on LHS: $\{A \to B, B \to C, AC \to D\}$ can be simplified to

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

 Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Extraneous Attributes

- Consider a set F of functional dependencies and the functional dependency α → β in F.
 - Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.
 - Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies $A \rightarrow C$ (I.e. the result of dropping B from $AB \rightarrow C$).
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in $AB \to CD$ since $AB \to C$ can be inferred even after deleting C

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Testing if an Attribute is Extraneous

- Consider a set *F* of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in *F*.
- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. check that $({\alpha} A)^+$ contains A; if it does, A is extraneous
- To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $F' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\},$
 - 2. check that α^+ contains A; if it does, A is extraneous

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency

Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_{c} and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.
- To compute a canonical cover for F: repeat

Use the union rule to replace any dependencies in F $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_1$ with $\alpha_1 \to \beta_1$ β_2 Find a functional dependency $\alpha \to \beta$ with an extraneous attribute either in α or in β If an extraneous attribute is found, delete it from $\alpha \to \beta$ until F does not change

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – Functional Dependency Page 17

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example of Computing a Canonical Cover

- R = (A, B, C) $F = \{A \rightarrow BC$ $B \rightarrow C$ $A \rightarrow B$ $AB \rightarrow C\}$
- Combine $A \to BC$ and $A \to B$ into $A \to BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - Check if the result of deleting A from $AB \rightarrow C$ is implied by the other dependencies
 - Yes: in fact, $B \rightarrow C$ is already present!
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in A → BC
 - Check if $A \to C$ is logically implied by $A \to B$ and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$

IF-ITB/WD dari Silberschatz, modifikasi TW/27 Okt 2003 IF3111 – <u>Functional Dependency</u>