PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 10 (Apr 11 - Apr 18)

- 1 (10+10+5+5) Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove:
 - a) if E: K is separable, then EF: F is separable;
 - b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
 - c) if E: K is Galois, then EF: F is Galois;
 - d) if E: K and F: K are both Galois, then EF: K and $E \cap F: K$ are both Galois.
- **2** (5+5+10) a) Find the splitting field L of the polynomial $f(t) = t^4 4t^2 + 5$.
 - b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
 - c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
 - d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.
- 3 (30) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. *Hint*: Use the calculations (and the notation, if you like) from Lecture 18.