

Formulaire Electrotechnique

lom :

1AE

Nom:

Formules inscrites au référentiel Formules fournies aux candidats pendant l'épreuve EP1

Lois générales en continu	Lois générales en alternatif	Lois sur le magnétisme et l'electromagnétisme
Energie : Puissance :	Fonction sinusoïdale $u = \hat{U} \times \sin(\omega \times t + \varphi)$	Loi de Laplace
Loi de Joule Loi d'ohm :	Dipôle purement résistif $\boxed{Z=R}$ $\boxed{ \Omega \Omega }$	Loi de Lenz $E = \Delta \Phi / \Delta t$ $V \mid Wb \mid s$
Résistivité $ \begin{bmatrix} R = \rho & x & L / S \end{bmatrix} $	Dipôle purement inductif $ \underline{Z = L \times \omega} $ $ \underline{ \Omega H rad.s^{-1} } $	Lois sur les machines électrotechniques
$\begin{array}{c c} R = \rho & x & L & / & S \\ \hline \Omega & \overline{\Omega}m & m & m^2 \\ \hline R_{\theta} & \overline{R_{\theta}} & \overline{\Omega} & \overline{\Omega} & \overline{C} \end{array}$	Dipôle purement capacitif $ \begin{array}{c c} \hline Z = 1 / (C \times \omega) \\ \hline \Omega & F & rad.s^{-1} \end{array} $	$ \begin{array}{c c} Rendement \\ \hline \eta = Pu \ / \ Pa \\ \hline \underline{\bar{[W]}} & \underline{\bar{[W]}} \\ \end{array} $
Association de résistance • Groupement série Req = R1 + R2 + R3	Circuits monophasés $ S = U \times I \\ VA V A $	Loi mécanique
• Groupement parallèles 1/Req = 1/R1 + 1/R2 + 1/R3 Association de condensateurs	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
• Groupement série 1/Ceq = 1/C1 + 1/C2 + 1/C3	Circuits triphasés $ S = U \times I \times \sqrt{3} $ $ [VA V] [A] $	Génératrices à courant continu Fem :
• Groupement parallèles Ceq = C1 + C2 + C3 Loi des nœuds Loi des mailles	$ \frac{ VA V A }{ P = U \times I \times \sqrt{3} \times \cos \varphi } $ $ \frac{ W }{ V X A } $ $ Q = U \times I \times \sqrt{3} \times \sin \varphi $	Moteur à courant continu Couple :
	$ \begin{array}{c c} \hline Var & V & A \\ \hline Var & V & A \\ \hline Relation P, Q, S \\ \hline S & - \sqrt{P^2 + Q^2} \end{array} $	Transformateur Rapport de transformation
	$ \begin{array}{c c} \hline S - \sqrt{P + Q} \\ \hline [VA] & W & Var \\ \hline Q = P \times Tan \phi & Sin \phi = Q / S \\ \hline Cos \phi = P / S \end{array} $	m = Ns / Np = N2 / N1 $m = Us0 / Up = U20 / U1$ $m = I1 / I2$
		111 - 11 / 12

 $U2(t) = \text{Ueff x } \sqrt{2} \text{ x sin } (\omega t - 2\pi/3)$

 $U3(t) = \text{Ueff x } \sqrt{2} \text{ x sin } (\omega t + 2\pi/3)$

Formulaire Electrotechnique

Nom:

1AE

Date:

Formules inscrites au référentiel Formules fournies aux candidats pendant l'épreuve EP1

Déphasage des dipôles

Cercle trigonométrique

θ (en radian)	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
Sin (x)	0	1/2	$\sqrt{2/2}$	$\sqrt{3/2}$	1
Cos (x)	1	$\sqrt{3/2}$	$\sqrt{2/2}$	1/2	0
Tan (x)	0	$\sqrt{3/3}$	1	√3	

Triangle des puissances

P: Puissance active (W)

Q : Puissance réactive (Var)

S: Puissance apparente (VA)

Dipôles	P (W)	Q (VAr)	S (VA)
Résistance	$P = U.I$ $= R.I^2$	Q = 0	S = P
Condensateur	P = 0	$Q = - U.I$ $= -U^2.C.w$	S = Q
Inductance	P = 0	$Q = U.I = Lw.I^2$	S = Q

Multiples / sous-multiples

Préfixe	Symbole	Facteur	Valeur
peta	P	10^{15}	1 000 000 000 000 000
téra	T	10 ¹²	1 000 000 000 000
giga	G	10 ⁹	1 000 000 000
méga	M	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
déca	da	10^{1}	10
-	-	-	
déci	d	10-1	0,1
centi	c	10-2	0,01
milli	m	10 ⁻³	0,001
micro	μ	10 ⁻⁶	0,000 001
nano	n	10-9	0,000 000 001
pico	p	10-12	0,000 000 000 001
femto	f	10 ⁻¹⁵	0,000 000 000 000 000 001

Les grandeurs sinusoïdales:

T : Période en Seconde (s) f : Fréquence en Hertz (Hz)

ω: Pulsation en Radian par seconde (Rad/s)

Ueff et Ieff: Valeurs efficaces (V) ou (A) Û et Î: Valeurs maximales (V) ou (A) Umoy et Imoy: Valeurs moyennes (V) ou (A) u(t) et i(t): Valeurs instantanées (V) ou (A)

φ: Déphasage entre U et I en Radian (Rad) θ: Phase à l'origine en Radian (Rad) to: Décalage horaire en Seconde (s)

$$\begin{aligned} u(t) &= U_{eff} \ x \ \sqrt{2} \ x \ sin \ \omega t \\ i(t) &= I_{eff} \ x \ \sqrt{2} \ x \ sin \ (\ \omega t + \theta \) \end{aligned}$$