Cairo University
Faculty of engineering
Dept. of Electronics and Electrical Communications
Second Year

ELECTRONICS ELC 2020 RF amplifier

Answer Sheet

ID	Section	Name
9220473	2	عبدالرحمن محمد صلاح الدين أبو هندي
9220640	3	محمد إبراهيم يوسف الدميري

	Expression	Calculated Values	Simulated Values
BE Junction Voltage	$\mathbf{V}_{ extbf{BE}}$	0.7 V	0.792 V
Base Current	$I_B = rac{V_{BB} - V_{BE}}{R_{BB} - (\beta + 1)R_E}$ $V_{BB} = V_{CC} rac{R_3}{R_2 + R_3}, R_{BB} = R_2 R_3$	22.096 μΑ	20.519 μΑ
Collector Current	$eta I_B$	2.2096 mA	2.0519 mA
Collector Voltage	$V_{CC}-I_C*R_1$	11.9779 V	11.9794 v
Load Impedance At Resonance	$Z_{res} = \frac{L_1}{R_1 C_2}$	0.15625 M Ω	0.155 M Ω
Quality Factor	$Q = \frac{Z_{res}}{X_L}$	125	121.541
Center Frequency	$F_c = \frac{1}{2\pi\sqrt{L_1C_2}}$	1.59154 MHZ	1.5922 MHZ
BW	$\frac{F_c}{Q}$	12732.32 HZ	13000 HZ

The simulated Circuit

Simualtion

1.BE Junction Voltage

- 2.Collector Voltage
- 3.Base Current
- 4.Collector Current

	Variable	Operating point value
1	V(1)-V(2)	792.79868 m
2	V(7)	11.97948
3	I(Q1[IB])	20.51899 u
4	I(Q1[IC])	2.05190 m

Load Impedance At Resonance

We calculated the load impedance at resonance by dividing the voltage at center frequency by the current at the center frequency.

Load Impedance =
$$\frac{12.3279 \text{ kV}}{79.3309 \text{mA}}$$
 = 155400 Ω =0.1554k Ω

Quality Factor

Quality Factor is calculated by dividing the simulated center frequency by the bandwidth.

Q2) The gain at 1.5MHz = 58.43 DB= 835.05 V/V

Gain

Decibel gain

Collector node voltage

- The Amplitude at 1.5MHz = 882 mV.
- The Expected Value from AC Simulation = 835.05 mV.