

 $Ex. No: 5 \\ \hspace{1.5cm} \text{Implementation of Longest Common Subsequence} \\ \hspace{0.5cm} Name: Venkates an M$

Date: 15.09.2024 Algorithm with experiments on analysis and efficiency. You have to print the length of the longest sequence Reg.No: 22BAI1259

and sequence of the string also

Aim

To implement the Longest Common Subsequence (LCS) algorithm using dynamic programming, analyze its efficiency by measuring execution time for varying input sizes, and visualize the time complexity through a plot.

Algorithm

- 1. Given two sequences X and Y of lengths m and n, we compute the length of the LCS using dynamic programming.
- 2. We initialize a 2D table dp where dp[i][j] holds the length of the LCS of the sequences X[0..i-1] and Y[0..j-1].
- 3. We fill the table using the recurrence relation:
 - If X[i-1] == Y[j-1], then dp[i][j] = dp[i-1][j-1] + 1.
 - Else, dp[i][j] = max(dp[i-1][j], dp[i][j-1]).
- 4. The length of the LCS is found at dp[m][n].
- 5. To retrieve the LCS, we trace back through the table from dp[m][n] to construct the sequence.

Pseudocode

```
LCS(X, Y, m, n):
  Create a 2D table dp of size (m+1) x (n+1)
  for i from 0 to m:
     for j from 0 to n:
       if i == 0 or j == 0:
         dp[i][j] = 0
       else if X[i-1] == Y[j-1]:
         dp[i][j] = dp[i-1][j-1] + 1
       else:
         dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  # Length of LCS is dp[m][n]
  # To retrieve the LCS:
  Initialize an empty string LCS_seq
  Set i = m, j = n
  while i > 0 and j > 0:
     if X[i-1] == Y[j-1]:
       Add X[i-1] to LCS_seq
       i = i - 1, j = j - 1
     else if dp[i-1][j] > dp[i][j-1]:
       i = i - 1
     else:
       j = j - 1
  return dp[m][n], reverse(LCS_seq)
```

C++ Implementation

```
#include <iostream>
#include <vector>
#include <string>
#include <chrono> // Include for timing
#include <cstdlib> // For random character generation
using namespace std;
// Function to find LCS
pair<int, string> LCS(string X, string Y) {
  int m = X.size();
  int n = Y.size();
  vector < vector < int >> dp(m + 1, vector < int >(n + 1, 0));
  // Fill dp table
  for (int i = 1; i \le m; i++) {
    for (int j = 1; j \le n; j++) {
       if (X[i-1] == Y[j-1])
         dp[i][j] = dp[i - 1][j - 1] + 1;
       else
         dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    }
  }
  // Backtrack to find the LCS
```

```
string lcs = "";
  int i = m, j = n;
  while (i > 0 \&\& j > 0) {
    if (X[i-1] == Y[j-1]) {
       lcs = X[i - 1] + lcs;
       i--, j--;
    } else if (dp[i - 1][j] > dp[i][j - 1]) {
       i--;
    } else {
       j--;
    }
  }
  return {dp[m][n], lcs};
}
int main() {
  vector<int> sizes = {1, 10, 100, 1000, 10000}; // Varying input sizes
  vector<long long> times;
  for (int n : sizes) {
    string X, Y;
    // Generate random strings of length n
    for (int i = 0; i < n; ++i) {
       X += 'A' + rand() % 26; // Random uppercase letters
       Y += 'A' + rand() % 26;
    }
    auto start = chrono::high_resolution_clock::now();
     pair<int, string> result = LCS(X, Y);
```

```
auto end = chrono::high_resolution_clock::now();

auto duration = chrono::duration_cast<chrono::microseconds>(end - start);

times.push_back(duration.count());

cout << "Input size: " << n << " -> Time: " << duration.count() << " microseconds" << endl;
}

// Output the times to a file for plotting
freopen("lcs_times.txt", "w", stdout);
for (size_t i = 0; i < sizes.size(); ++i) {
    cout << sizes[i] << " " << times[i] << endl;
}
fclose(stdout);

return 0;</pre>
```

Explanation

}

- 1. **LCS Function**: Computes the length of the longest common subsequence and reconstructs the sequence using the dynamic programming table.
- 2. **Timing**: For each random string pair (with varying lengths), the execution time is measured using chrono::high_resolution_clock.

Random Sampling

- Input sizes: {1, 10, 100, 1000, 10000}.
- Strings X and Y are generated randomly for each input size.

Plotting Time Complexity

```
Once the times are recorded in the file lcs_times.txt
 import matplotlib.pyplot as plt
# Read data from the file
sizes = []
times = []
with open('lcs_times.txt', 'r') as file:
  for line in file:
    size, time = map(int, line.split())
    sizes.append(size)
    times.append(time)
# Plotting the results
plt.plot(sizes, times, marker='o')
plt.xscale('log') # Use logarithmic scale for the x-axis
plt.yscale('log') # Use logarithmic scale for the y-axis
plt.title('Longest Common Subsequence Time Complexity')
plt.xlabel('Input Size (n)')
plt.ylabel('Time (microseconds)')
plt.grid(True)
plt.savefig('lcs_time_complexity.png')
plt.show()
```

Time Complexity Analysis

Input size	Time (microseconds)
1	6
10	7
100	228
1000	23283
10000	2284478

Graph between varying size of inputs and time

Complexity Analysis:

- Time Complexity: The time complexity of the LCS algorithm is $O(M\,x\,N)$, where m and n are the lengths of the two strings.
- Space Complexity: The space complexity is also $O(M \times N)$, due to the 2D DP table used to store intermediate LCS lengths.