structure

Poisson equation perturbed at a position r_0	potential	$G_{\phi\phi}(\overrightarrow{r};\overrightarrow{r_0})$
	electron	$G_{n\phi}(\vec{r};r_0)$
	hole	$G_{p\phi}(\overrightarrow{r};\overrightarrow{r_0})$
electron continuity equation perturbed at a position $\overset{\longrightarrow}{r_0}$	potential	$G_{\phi n}(\vec{r}; \vec{r}_0)$
	electron	$G_{nn}(\vec{r};\vec{r}_0)$
	hole	$G_{pn}(r;r_0)$
hole continuity equation perturbed at a position r_0	potential	$G_{\phi p}(\overrightarrow{r}; \overrightarrow{r_0})$
	electron	$G_{np}(\overrightarrow{r};\overrightarrow{r_0})$
	hole	$G_{pp}(\overrightarrow{r};\overrightarrow{r_0})$

과제 설명

이번 과제는 homogeneous sample에 대해서 각 terminal current (δI)를 계산하는 것이다. structure에서 좌측을 terminal을 cathode라 지칭하고, 우측 terminal을 anode라 지칭한다. potential perturbed의 경우 result 분석이 어렵기에, equilibrium state에서 각 electron/hole continuity equation을 perturbed한 결과를 비교해볼 것이다.

displacement current의 경우, 다음 두 수식을 가우스 법칙을 이용한 수식을 이용하여 결과를 확인한다. 구조는 homogeneous sample이기에 terminal 은 anode와 cathode에서 확인한다.

$$\nabla \, \boldsymbol{\cdot} \, D {=} \, \rho$$

$$\int_{\Omega} \nabla \, \cdot \, D d \, V = \int_{S} D \cdot \, dS = \int_{anode} D \cdot \, dS + \int_{cathode} D \cdot \, dS = J_{d,anode} + J_{d,cathode}$$

 δ 항에 대한 AC simulation이기에 우측 항은 $\int_V \delta \rho d \ V = jw \delta Q$ 로 나타낼 수 있다.

좌측 항과 우측 항의 비교를 통해 $J_{d,anode} + J_{d,cathode} = jw\delta Q$ 를 알 수 있다.

 $jw\delta Q = jwq(-\delta n + \delta p) \cdot Control \ Volume$

total current의 경우, 전류 계산 결과를 분석하기에 정확한 방법은 아닐 것이라 예측되지만 수식을 통해 전개를 해보았다.

i) electron perturbed case

$$jw\delta n - \frac{1}{q} \nabla \cdot J_n = \delta(r - r_0)$$

$$\nabla \cdot J_n = jwq\delta n - q\delta(r - r_0)$$

$$\int J_n \cdot dS = [\int_V jwq \delta n dV - q \int \delta(r - r_0) dr] \times width$$

 $I_n = (qjw\delta n \cdot Control\ Volume - q) \times width$

$$jw\delta p + \frac{1}{q} \nabla \cdot J_p = 0$$

 $I_{\rm p} = -qjw$ δp × Control Volume × width

 $I_{dis} = jwq\delta Q \times width = jwq(-\delta n + \delta p) \times Control \ Volume \times width$

$$I = I_n + I_b + I_{dis} = -q \times width$$

electron 1개를 injected 한 전류의 크기를 측정한 것이므로, total current I의 real part는 $I=(-q)/(-q)\times width=1\times 10^{-6}A$ 가 나올 것이다.

하지만 노드 간 전류를 계산할 때, 방향성을 고려하여 $-1 \times 10^{-6} A$ 가 나올 것이다.

ii) hole perturbed case

$$jw\delta p + \frac{1}{a} \nabla \cdot J_p = \delta(r - r_0)$$

$$\nabla \cdot J_p = -jwq\delta p + q\delta(r - r_0)$$

$$\int J_p \cdot dS = \left[-\int_V jwq\delta pdV + q \int \delta(r - r_0)dr \right] \times width$$

$$I_{b} = (-qjw\delta p \cdot \textit{Control Volume} + q) \times \textit{width}$$

$$jw\delta n - \frac{1}{q} \nabla \cdot J_n = 0$$

 $I_n = qjw\delta n \times Control\ Volume \times width$

 $I_{dis} = jwq\delta Q \times width = jwq(-\delta n + \delta p) \times Control \ Volume \times width$

$$I = I_n + I_b + I_{dis} = q \times width$$

hole 1개를 injected 한 전류의 크기를 측정한 것이므로, total current I의 real part는 $I=q/q \times width=1 \times 10^{-6}A$ 가 나올 것이다.

동일하게 노드 간 전류를 계산할 때, 방향성을 고려하여 $-1 \times 10^{-6} A$ 가 나올 것이다.

Result

1) center node (node: 336)

	electron con. perturbed	hole con. perturbed
I [4/2]	-0.133292022528454 -	-0.133292022528459 -
$J_{displacement}$ [A/m ²]	0.339890069373534i	0.339890069373536i
:\$0 1 4/21	-0.133292022528440 -	-0.133292022528448 -
$\int w\delta Q \left[A/m^2\right]$	0.339890069373496i	0.339890069373503i
I [A]	-5.00000000424146e-07 -	-5.00000000424151e-07 +
I_{anode} [A]	3.97046694025453e-21i	2.99108509499175e-21i
I [A]	-4.99999999575969e-07 -	-4.99999999575975e-07 +
$I_{cathode}$ [A]	4.55280209149186e-21i	3.44107134822060e-22i
$I-I$ $+I$ $\Gamma \wedge 1$	-1.00000000000115e-06 -	-1.00000000000126e-06 +
$I = I_{anode} + I_{cathode}$ [A]	8.523269031746397e-21i	3.335192229813808e-21i

2) left node (node : 315)

	electron con. perturbed	hole con. perturbed
I	-0.133292020136145 -	-0.133291821662100 -
$J_{displacement}$ [A/m ²]	0.339890079118383i	0.339889623673247i
: 20 5 4 / 21	-0.133292020136141 -	-0.133291821662097 -
$\int w \delta Q \left[A/m^2 \right]$	0.339890079118373i	0.339889623673240i
I [A]	-1.50000000333637e-07 +	-1.50000000333639e-07 +
I_{anode} [A]	3.30872245021211e-22i	3.61312491563163e-21i
I [A]	-8.4999999666393e-07 +	-8.4999999666395e-07 +
$I_{cathode}$ [A]	3.38813178901720e-21i	7.51741740688192e-21i
I - I + I [A]	-1.000000000000030e-06 +	-1.00000000000034e-06 +
$I = I_{anode} + I_{cathode}$ [A]	3.719004034038412e-21i	1.113054232251354e-20i

3) right node (node: 361)

	electron con. perturbed	hole con. perturbed
T	-0.133269504526994 -	-0.133073952992588 -
$J_{displacement}$ [A/m ²]	0.339894795880419i	0.339992194738955i
. 20 5 4 / 21	-0.133269504526990 -	-0.133073952992583 -
$\int w\delta Q \left[A/m^2\right]$	0.339894795880403i	0.339992194738943i
<i>I</i> [A]	-9.166666666569688e-07 -	-9.16666666569689e-07 +
I_{anode} [A]	1.48230765769503e-21i	2.11758236813575e-21i
I [A]	-8.333333334303542e-08 -	-8.33333334303553e-08 +
$I_{cathode}$ [A]	1.07864351876915e-21i	6.08804930839028e-22i
$I-I$ $\perp I$ $\Gamma \wedge 1$	-1.000000000000042e-06 -	-1.00000000000044e-06 +
$I = I_{anode} + I_{cathode}$ [A]	2.560951176464174e-21i	2.726387298974779e-21i

- $J_{displacement}$ & $jw\delta Q$ 비교

 $J_{displacement}$ 와 $jw\delta Q$ 의 각 결과를 비교했을 때, 두 값의 오차는 매우 미미하며 거의 같다고 할 수 있습니다. 따라서 $J_{d,anode}+J_{d,cathode}=jw\delta Q$ 는 만족한다고 할 수 있다.

- $I = I_{anode} + I_{cathode}$ 비교

수식을 통해 계산 한 결과와 비교했을 때, real part는 1×10^{-6} 이 나온 것을 확인할 수 있었다. 하지만 정성적인 방법은 아니라고 생각하기에 LC.22에서 이와 관련하여 질문을 드릴 예정이다.