Rajalakshmi Engineering College

Name: Subhalakshmi M

Email: 240701539@rajalakshmi.edu.in

Roll no: 240701539 Phone: 6379032776

Branch: REC

Department: I CSE FE

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are tasked with implementing basic operations on a queue data structure using a linked list.

You need to write a program that performs the following operations on a queue:

Enqueue Operation: Implement a function that inserts an integer element at the rear end of the queue.Print Front and Rear: Implement a function that prints the front and rear elements of the queue. Dequeue Operation: Implement a function that removes the front element from the queue.

Input Format

The first line of input consists of an integer N, representing the number of elements to be inserted into the queue.

The second line consists of N space-separated integers, representing the queue elements.

Output Format

The first line prints "Front: X, Rear: Y" where X is the front and Y is the rear elements of the queue.

The second line prints the message indicating that the dequeue operation (front element removed) is performed: "Performing Dequeue Operation:".

The last line prints "Front: M, Rear: N" where M is the front and N is the rear elements after the dequeue operation.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 5
12 56 87 23 45
Output: Front: 12, Rear: 45
Performing Dequeue Operation:
Front: 56, Rear: 45
Answer
#include <stdio.h>
#include <stdlib.h>
struct Node {
  int data:
  struct Node* next:
};
struct Node* front = NULL;
struct Node* rear = NULL;
void enqueue(int data) {
 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
  newNode->data = data;
```

```
newNode->next = NULL;
   if (rear == NULL) {
      front = rear = newNode;
    } else {
       rear->next = newNode;
      rear = newNode;
    }
  }
  void dequeue() {
    if (front == NULL) {
      printf("Queue is empty.\n");
       return;
    struct Node* temp = front;
    front = front->next:
    if (front == NULL) {
      rear = NULL;
    }
    free(temp);
void printFrontRear() {
    if (front == NULL) {
      printf("Queue is empty.\n");
    } else {
      printf("Front: %d, Rear: %d\n", front->data, rear->data);
    }
  }
  int main() {
    int n, data;
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
    scanf("%d", &data);
      enqueue(data);
```

```
240101539
printf("Performing Dequeue Operation:\n");
dequeue();
printFrants
                                                      240101539
      printFrontRear();
      return 0;
    }
                                                                          Marks: 10/10
    Status: Correct
                                                      240701539
                                                      240701539
```

2,40701539

2,40701539

240701539

240101539