

COUNTER CIRCUIT 0-2000 BCD counter: (up compter) (T flip-flip). (4 bit)

	P	resen	t Sta	te	· ·	Next	tState	20	Output	Flip-Flop Inputs			
→	Q_8	Q_4	Q_2	Q_1	→ Q ₈	Q_4	Q_2	Q_1	y	T_{Q8}	T_Q4	T _{Q2}	T_{Q1}
0-	0	0	0	0	(*) 0	0	0	1	0	0	Ō.	0 \	11/
17		0	0	1	27 0	0	1	0	0	0	0	1	1
2-3	0	0	1	0	3= 0	0	1	1 ·	0	0	0	1 1	1
	0	0	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	1	0 0	0. 1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0	$\frac{1}{0}$	1 0	1 V
	0	1	0	1	0	1	1	0	0	0	0	1	1
	0	1	1	0	0	1	1	1	0	0	0	0	1
	0	1	1	1	1	0	0	0	0	1	1	1	1
	1	0	0	0	1	0	0	1	0	0	0	0	1
9 7	1	0	0	U	700	0	0	0	اللا	<u> </u>	0	0	1

Tag 2 7 to	yachice
------------	---------

$T_{Q1} = 1$
$T_{Q2} = Q_8'Q_1$
$T_{Q4} = Q_2 Q_1$
$T_{Q8} = Q_8 Q_1 + Q_4 Q_2 Q_1$
$y = Q_8 Q_1$

- Synchronous counter with different control input:
- A circuit with n flip-flops has 2ⁿ binary states. There are occasions when a sequential circuit uses fewer than this maximum possible number of states.
- States that are not used in specifying the sequential circuit are not listed in the state table.
- In simplifying the input equations, the unused states may be treated as don't-care conditions or may be assigned specific next states

PRE	SENT S	State		(NEXT State						
С	В	Α	Jc	Kc	J_B	K _B	J_A	KA	С	В	Α
0	0	0	0	0	0	0	1	1	0	0	1
0	0	1	0	0	1	1	1	1	0	1	0
0	1	0	0	0	0	0	1	1	0	1	1
0	1	1	1	0	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	1	0	1	1	1	0	0	0	1	1
1	1	0	0	1	0	0	0	0	0	1	0
1	1	1	1	1	1	1	0	0	0	0	1

• Synchronous counter with different control input:

- Synchronous counter with different control input:
- Homework:

PRES	SENT S	State	NE	XT Sta	ate
С	В	Α	С	В	Α
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

T Flip-Flop

T	Q(t +	1)
0	Q(t)	No change
1	Q'(t)	Complement

Synchronous counter with different control input:

- J-K excitation Table:

	Transition at FF Output	PRESENT State Q _n	NEXT State Q_{n+1}	J	K
5	$0 \rightarrow 0$	0	0	0	х
1	$0 \rightarrow 1$	0	1	1	Х
1	$1 \rightarrow 0$	1	0	X	1
4	1 → 1	1	1	X	0

J	K	CLK	Q
0	0	↑	Q ₀ (no change)
1	0	1	1
0	1	1	0
1	1	1	Q ₀ (toggles)

		PRE	SENT	State	NE	KT S	tate						
		С	В	Α	С	В	Α	J _C	Kc	J B	K _B	J_A	KA
State	Line #	0 0	0	0	9 0	0	1	0	Х	0	X V	1	Х
	7	0	0	1 -) 0	1	0	0	X	1	X	X	1
	3	20	1	0 🗕	-> 0	1	1	0	X	X	0	1	X
	4	3 0	1	1 -	71	0	0	1	X	Χ	1	X	1
	5	4 1	0	0		0	0	X	1	0	X	0	X
	6	51	0	1 -	0	0	0	X	1	0	X	X	1
	7	<u>,</u> 1	1	0 -	7 0	0	0	X	1	X	1	0	X
	8	71	1	1 •	7 0	0	0	X	1	X	_1	X	1

Synchronous counter with different control input:

- J-K excitation Table:

	PRES	SENT	State	NE	XT S	ate						
	С	В	Α	С	В	Α	J _C	Kc	J_B	K _B	J_A	KA
Line 1	0	0	0	0	0	1	0	X	0	X	1	X
2	0	0	1	0	1	0	0	X	1	X	X	1
3	0	1	0	0	1	1	0	X	X	0	1	X
4	0	1	1	1	0	0	1	X	X	1	X	1
5	1	0	0	0	0	0	X	1	0	X	0	X
6	1	0	1	0	0	0	X	1	0	X	X	1
7	1	1	0	0	0	0	X	1	X	1	0	X
8	1	1	1	0	0	0	X	1	X	1	X	1

Synchronous counter with different control input:

Y control command.

Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up when an UP/DOWN control input is 1 and count down when the control input is 0.

Next-state table for 3-bit up/down Gray code counter.

			1		Nex	xt State	State				
Pı	resent Sta	ite	Y	= 0 (DO)	WN)	Y	= 1 (UI)	P)			
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0			
0-7 0	0	0	4 1	0	0	() 0	0	1			
$1 \rightarrow 0$	0	1	0-7 0	0	0	3-> 0	1	1			
0	1	1	170	0	1	2-7 0	1	0			
120	1	0	3 70	1	1	6-1	1	0			
671	1	0	27 0	1	0	7-71	1	1			
71 1	1	1	67 1	1	0	5-71	0	1			
59 1	0	1	131	1	1	4->1	0	0			
471	0	0	71	0	1	07 0	0	0			

 $Y = \text{UP}/\overline{\text{DOWN}}$ control input.

	nchronous 3-bit up/down of DOWN control input is 1				p-flops.	The cour	nter shou	ld count t	L		T 6	Jo Ko
				4/6	12 Q1	A.	A2+	QI+	a _o t	J2K2	Ji ki	J0 10
Transition at FF Output	PRESENT State Q _n	NEXT State Q_{n+1}	J	К	010	0.1	10	0	0	0 %		
0 → 0	0	0	0	x	<u> </u>	0	110	11	1	ο×		
$0 \rightarrow 1$	0	1_	1	X	ין פ		115		1	OX		
$1 \rightarrow 0$	1	0	X	1	0		12		i	XO		
1 → 1	1_	1_	X	0		0 0	117	- ',	•	XO		
1 111		010		0 0	1-4-1	11010		0 1	0	X O		
J2= YA	40 4 00 11 10	00 01 11 1) X X X X X		1 Day 1	Oldaci		1 6 1 0 1	0101-10101-1-1-1		0 X X X X X X X X X X X X X X X X X X X	R	ef (1): pp 469-470

Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up

when an UP/\overline{DOWN} control input is 1 and count down when the control input is 0.

Next-state table for 3-bit up/down Gray code counter.

 $J_0 = \underline{Q}_2 Q_1 Y + \underline{Q}_2 \overline{Q}_1 \overline{Y} + \overline{Q}_2 \overline{Q}_1 Y + \overline{Q}_2 Q_1 \overline{Y} \qquad K_0 = \underline{\overline{Q}}_2 \overline{Q}_1 \overline{Y} + \overline{Q}_2 Q_1 Y + \underline{Q}_2 \overline{Q}_1 Y + \underline{Q}_2 \overline{Q}_1 \overline{Y}$

 $J_1 = \overline{Q}_2 Q_0 Y + Q_2 Q_0 \overline{Y}$

 $J_2 = Q_1 \overline{Q}_0 Y + \overline{Q}_1 \overline{Q}_0 \overline{Y}$

110	22211	22211
$K_1 =$	$\overline{Q}_2Q_0\overline{Y} \ +$	Q_2Q_0Y

$$K_2 = Q_1 \overline{Q}_0 \overline{Y} + \overline{Q}_1 \overline{Q}_0 Y$$

	00	01	11	10
00	m _o	m₁	m ₃	m ₂
01	m ₄	m ₅	m ₇	m ₆
11	m ₁₂			
10				
	m ₈	m ₉	m ₁₁	m ₁₀

			Next State					
Present State		Y = 0 (DOWN)		Y	Y = 1 (UP)			
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	1
0	1	1	0	0	1	0	1	0
0	1	0	0	1	1	1	1	0
1	1	0	0	1	0	1	1	1
1	1	1	1	1	0	1	0	1
1	0	1	1	1	1	1	0	0
1	0	0	1	0	1	0	0	0

 $Y = \text{UP}/\overline{\text{DOWN}}$ control input.

	00	01	11	10	
00	m_0	m_1	m ₃	m_2	
01					
11	$_{ m m_4}$	m ₅	m _z	m ₆	
10	m ₁₂	m ₁₃	m ₁₅	m ₁₄	
	m ₈	m _o	m ₁₁	m ₁₀	

	00	01	11	10
00	m_0	m_1	m ₃	m ₂
01	 m ₄			
11	m ₁₂	m ₁₃		
10	m ₈	m ₉		

	00	01	11	10
00	m_0	m_1	m_3	m_2
01				
11	m ₄	m ₅	m ₇	m ₆
10	m ₁₂	m ₁₃	m ₁₅	m ₁₄
	m ₈	m ₉	m ₁₁	m ₁₀

Ref (1): pp 469-470