

RNA-Seq Analysis of Gene Expression: A Walk-Thru and Tutorial

Helen Nigussie, Michael Mayhew, Dina Machuve June 4, 2019 Data Science Africa 2019 Addis Ababa University, Ethiopia

What is RNA-Seq analysis?

 RNA sequencing (RNA-Seq for short) is a process of assessing the expression of genes across a genome by sequencing the RNA transcripts from a collection of cells

What is RNA-Seq analysis?

These short strands that result from sequencing are called 'reads'

https://en.wikipedia.org/wiki/RNA-Seq

What are the different stages of RNA-Seq analysis?

analysis

What are the different stages of RNA-Seq analysis?

Stage 1: Processing and quality control of raw sequencing reads

- Reads are often assessed for:
 - Sequencing quality per base
 - We expect generally high quality at all bases
 - Sequencing quality per read
 - We expect high quality for longer reads
 - Sequence content (nucleotide base composition)
 - We expect a roughly uniform base composition across the read (except maybe for the initial bases; depends on how RNA prepared)
 - Per base 'N' content (or non-call)
 - · Indicates potential instrument failure
 - Other measures

Stage 1: Processing and quality control of raw sequencing reads (cont'd)

Stage 2: Mapping of sequencing reads to genome

The histogram-like plot to the left indicates the cumulative counts of sequencing reads at different positions in the genome.

Stage 3: Assignment of reads to individual genes to attain expression measurements

- Sequencing reads are aligned ('mapped') to a reference genome in which locations of genes are known
- Algorithms (like featureCounts) assign the aligned reads to each gene
 - Results in 'digital' measures of expression one unit of expression per mapped read
- Counts are then normalized according to sequencing depth and/or gene length
 - Two common normalized expression measures are:
 - CPM transcripts or counts per million

1.
$$RPK_i = \frac{R_i}{L_i}$$
 2. $S = \frac{\sum_{i} RPK_i}{10^6}$ **3.** $CPM_i = \frac{RPK_i}{S}$

RPKM - reads per kilobase per million

1.
$$S = \frac{\sum_{i} R_{i}}{10^{6}}$$

1.
$$S = \frac{\sum_{i} R_{i}}{10^{6}}$$
 2. $RPM_{i} = \frac{R_{i}}{S}$ 3. $RPKM_{i} = \frac{RPM_{i}}{L_{i}}$

NOTE:

R_i – read counts for gene i L_i – length in kilobases of gene i

Important considerations when performing an RNA-Seq analysis

 Should I consider all genes in my analysis?
 What about those with low or no expression across all conditions/platforms?

 Are the expression differences I'm seeing solely due to the condition? Or some other factor?

What is the structure in my expression data?

Most genes cluster by condition.

> However, some genes clearly show platformspecific effects.

What genes show different expression patterns in my conditions of interest?

	MiSeq	NextSeq 500	Combined
WASH7P	-0.000268	-0.000969	-0.000385
LOC729737	-0.000134	-0.000529	-0.000198
LOC100133331	-0.000755	-0.000849	-0.000701
MIR6723	-0.001514	-0.000954	-0.001068
LOC100288069	-0.000337	-0.000720	-0.000428

Are differentially expressed genes enriched for any biological processes or pharmacological targets?

Genes with *low* expression in Zika-

infected samples are enriched for cell-

cycle and DNA replication processes.

Genes with *high* expression in Zikainfected samples are enriched for prenatal lethality phenotypes in mice.

An unsolicited advertisement

Oral Presentation Submission Deadline: September 13, 2019 Poster Presentation Submission Deadline: October 15, 2019

https://www.iscb.org/iscbafrica2019

Additional resources

 Galaxy Community Hub's RNA-Seq Introduction: https://galaxyproject.org/tutorials/rb_rnaseq/

 FastQC Tutorial & FAQ: <u>https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/</u>

 Description of normalized RNA-Seq expression measures: https://statquest.org/2015/07/09/rpkm-fpkm-and-tpm-clearly-explained/

Thanks for your attention and see you at the workshop!

Any questions?