Основные вопросы

1. Уравнение с разделяющимися переменными: общее решение, общая схема исследования.

Уравнение с разделенными переменными имеет вид:

$$X(x)dx + Y(y)dy = 0$$

У него решение имеет вид:

$$\int X(x)dx + \int Y(y)dy = C$$

Доказательство.

$$\int X(x)dx + \int Y(y)dy = \int X(x)dx + \int Y(y)y'dx = \int (X(x) + Y(y)y')dx = \int 0dx = C$$

При этом мы получаем общее решение, когда находим такие C, что ответ $\in C^1$.

Уравнение с разделяющимися переменными имеет вид:

$$p_1(x)q_1(y)dx + p_2(x)q_2(y)dy = 0$$

Если поделить на $p_2(x)q_1(y)$, то получим уравнение с разделенными переменными. При этом необходимо убедиться, что мы не делим на ноль.

Если $\exists y_0: q_1(y_0)=0$, то $y\equiv y_0$ — решение исходного уравнения. Исключив y_0 , мы разбиваем область возможных решений на две подобласти.

Аналогично для x.

После разбиения нужно на каждой области найти решение.

2. Линейное уравнение 1-го порядка: общее решение ЛОУ, общее решение ЛНУ. Метод Лагранжа и метод интегрирующего множителя.

Линейное уравнение первого порядка это

$$y' = p(x)y + q(x)$$

Если $q \equiv 0$, то это уравнение **однородно**, иначе **неоднородно**.

Общее решение ЛОУ это $y = Ce^{\int p}, C \in \mathbb{R}$

M3137y2019

Конспект к экзамену

Доказательство. Заметим, что $y \equiv 0$ — решение. По теореме о единственности оно не является особым. т.к. мы рассматриваем $p \in C(a,b)$.

 $\triangleleft y > 0$.

$$\frac{dy}{y} = p(x)dx$$

$$\ln y = \int p(x)dx + C$$

$$y = e^{C} e^{\int p(x)dx}$$

По теореме об общем решении уравнения с разделенными переменными это семейство всех решений исходного уравнения при y>0.

Аналогично при y < 0

Общее решение ЛНУ это

$$y = \left(C + \int qe^{-\int p}\right)e^{\int p}$$

Доказательство. Подстановкой легко показать, что это решение. Покажем, что нет других решений.

Пусть есть решение φ на (α, β) , не подходящее под искомую формулу.

Пусть $x_0 \in (\alpha, \beta)$ и $\varphi(x_0) = y_0$.

Функция

$$C = \left(y_0 e^{-\int p} - \int q e^{-\int p} dx \right) \bigg|_{x=x_0}$$

подходит под искомую формулу, но при этом является решением задачи Коши $y(x_0)=y_0$, поэтому $y\equiv \varphi$ — противоречие.

Метод Лагранжа (вариации произвольной постоянной) — постоянную C считают функцией от x и получают дифур относительно C.

3. Равностепенно непрерывные функции. Лемма Арцела-Асколи.

Множество функций F, определенных на D, равностепенно непрерывно, если:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall f \in F \ \forall x_1, x_2 \in D \ |x_2 - x_1| < \delta \Rightarrow |f(x_2) - f(x_1)| < \varepsilon$$

Пемма 1. Пусть функции последовательности $\{f_n\}_{n=1}^{\infty}$ равномерно ограничены ($\exists C: \forall n, x | f_n(x) | < C$) и равностепенно непрерывны на [a,b]. Тогда из нее можно выделить подпоследовательность, равномерно сходящуюся на [a,b].

Доказательство. Пусть M ограничивает (равномерно) f_n :

$$M := \sup_{n,x} |f_n(x)|$$

$$\sphericalangle \varepsilon_k = \frac{M}{2^{k+1}}$$

$$\forall \varepsilon_k > 0 \ \exists \delta_k > 0 \ \forall f \in F \ \forall x_1, x_2 \in D \ |x_2 - x_1| < \delta_k \Rightarrow |f(x_2) - f(x_1)| < \varepsilon_k$$

Поделим всю область $[a,b] \times (-M,M)$ на прямоугольники со стороной ε_1 и δ_1 .

Рассмотрим первый столбец. Возьмём два произвольных соседних прямоугольника, таких что по ним проходит бесконечное число f. Вырежем все f, которые по этим прямоугольникам не подходят. Сделаем то же самое для каждого столбца. Получим в итоге (бесконечную) подпоследовательность F_1^* .

Повторим то же самое для всех ε_n, δ_n .

$$\forall f, g \in F_i^* \ \forall x \in [a, b] \ |f(x) - g(x)| < 2\varepsilon_n$$

Нам нужно показать, что $\forall \varepsilon>0 \ \ \forall N,k \ \ \forall x\in [a,b] \ \ |f_N^*(x)-f_{N+k}^*(x)|<\varepsilon$

Тогда возьмём $N:2\varepsilon_N<\varepsilon$ и все получится, т.к. $F_N^*\supset F_{N+k}^*$

4. ЗК для нормальной системы. Лемма о равносильном интегральном уравнении. Лемма: свойства ломаной Эйлера, определённой на отрезке Пеано.

Задача Коши для нормальной системы — нахождение решения, подходящего под условие $r(t_0)=r_0$

 $f:\mathbb{R}^{n+1} o \mathbb{R}^n$, тогда arphi — решение на [a,b] интегрального уравнения

$$r(t) = r_0 + \int_{t_0}^t f(\tau, r(\tau)) d\tau$$

, если:

1.
$$\varphi \in C([a,b] \to \mathbb{R}^n)$$

2.
$$\varphi(t) \equiv r_0 + \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau$$
 на $[a,b]$

Пемма 2. arphi — решение задачи Коши $\dot{r}=f(t,r), r$ эквивалентно тому, что arphi — решение

$$r(t) = r_0 + \int_{t_0}^t f(\tau, r(\tau)) d\tau$$

Доказательство.

- \Rightarrow Проинтегрируем $\dot{\varphi}(t)=f(au,arphi(au))$ от t_0 до t
- ⇐ Продифференцируем интегральное уравнение.

Определение (Отрезок Пеано). $G \subset \mathbb{R}^{n+1}_{t,r}$ — область, $(t_0,r_0) \in G$. Т.к. G открыто, $\exists a,b>0$, такие что параллелепипед с центром в (t_0,r_0) и сторонами a,b $(|t-t_0| \le a,|r-r_0| \le b)$ лежит в G.

По теореме Вейерштрасса на компакте есть максимум, т.е. $\exists M=\max_\Pi |f|$. Пусть $h=\min\{a,\frac{b}{M}\}$. Тогда отрезок $[t_0-h,t_0+h]$ — **отрезок Пеано**

Рассмотрим некоторый отрезок Пеано и поделим его правую часть на N равных частей точками t_k .

Пусть ломаная Эйлера E_N определена рекурсивно:

- 1. $E_N(t_0) = r_0$
- 2. $E_N(t) = E_N(t_k) + f(t_k, E_N(t_k))(t t_k)$, если $t \in (t_k, t_{k+1}]$

Лемма 3. $\forall t \in [t_0, t_0 + h]$:

- 1. $\exists E_N(t)$
- 2. $|E_N(t) r_0| \le M(t t_0)$, т.е. оно лежит в треугольнике.

Доказательство. Докажем по индукции, что это верно при $t \in [t_0, t_k]$ для всех k.

При k=1 E_N действительно определена, т.к. $E_N(t)=r_0+f(t_0,r_0)(t-t_0)$

$$|E_N(t) - r_0| = |f(t_0, r_0)(t - t_0)| \le M(t - t_0)$$

Переход индукции:

$$|E_N(t_k) - r_0| \le M(t_k - t_0) \le Mh \le M\frac{b}{M} = b$$

Таким образом мы лежим в Π , все определено.

$$|E_N(t) - r_0| = |E_N(t) - E_N(t_0)| \le |E_N(t) - E_N(t_0)| + |E_N(t_k) - E_N(t_0)| \le |f(t_k, E_N(t_k))|(t - t_k) + M(t_k - t_0) \le M(t - t_k) + M(t_k - t_0) = M(t - t_0)$$

5. Теорема Пеано о существовании решения ЗК.

Теорема 1. $G \subset \mathbb{R}^{n+1}_{t,r}$ — область, $f \in C(G \to \mathbb{R}^n), (t_0, r_0) \in G$. Тогда задача Коши имеет решение, определенное на отрезке Пеано для (t_0, r_0) .

Доказательство. Пусть $t_0=0, r_0=0$ (сдвиг координат). Пусть [-h,h] — искомый отрезок Пеано. Докажем для [0,h], для другой части аналогично. Объединить оба решения можно по лемме о гладкой стыковке решений.

Построим бесконечную последовательность ломаных Эйлера. Мы знаем, что $|E_N(t)| \le b$, т.е. она равномерно ограничена.

$$|E_N(t_2) - E_N(t_1)| = \left| \int_{t_1}^{t_2} \dot{E}_N(\tau) d\tau \right| \le \int_{t_1}^{t_2} |\dot{E}_N(\tau)| d\tau$$

Мы знаем, что $|\dot{E}_N(t)| \leq M$, поэтому:

$$|E_N(t_2) - E_N(t_1)| \le \int_{t_1}^{t_2} |\dot{E}_N(\tau)| dt \le M(t_2 - t_1)$$

Пусть $|t_2-t_1|<\delta$, тогда $|E_N(t_2)-E_N(t_1)|< M\delta$ и пусть $\delta=\frac{\varepsilon}{M}$, тогда $|E_N(t_2)-E_N(t_1)|<\varepsilon$, т.е. E_N равностепенно непрерывна. По лемме Арцела–Асколи у этой последовательности есть подпоследовательность, равномерно сходящаяся к некоторой функции φ . Покажем, что φ — решение задачи Коши. Для этого достаточно показать, что:

$$arphi(t) \equiv \int_0^t f(au, arphi(au)) d au$$
 на $[0,h]$

Пусть теперь E_N — подпоследовательность исходной последовательности.

По формуле Ньютона-Лейбница для отображений:

$$E_N(t) = \int_0^t \dot{E}_N(\tau) d\tau$$

$$\varphi(t) = \lim_{N \to +\infty} \int_0^t \dot{E}_N(\tau) d\tau$$

Таким образом, надо показать, что

$$\lim_{N \to +\infty} \int_0^t \dot{E}_N(\tau) d\tau = \int_0^t f(\tau, \varphi(\tau)) d\tau$$

Покажем, что

$$\Delta_N = \left| \int_0^t f(\tau, \varphi(\tau)) d\tau - \int_0^t \dot{E}_N(\tau) d\tau \right| \to 0$$

$$\Delta_{N} \leq \int_{0}^{t} |\dot{E}_{N}(\tau) - f(\tau, \varphi(\tau))| d\tau \leq \int_{0}^{h} |\dot{E}_{N}(\tau) - f(\tau, \varphi(\tau))| d\tau = \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}} |\dot{E}_{N}(\tau) - f(\tau, \varphi(\tau))| d\tau = \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}} |f(t_{k}, E_{N}(t_{k})) - f(\tau, \varphi(\tau))| d\tau$$

f равномерно непрерывна на параллелепипеде, поэтому $|(t_k,E_N(t_k))-(\tau,\varphi(\tau))|<\delta\Rightarrow|f(t_k,E_N(t_k))-f(\tau,\varphi(\tau))|<\varepsilon$

$$\int_{t_k}^{t_{k+1}} |f(t_k, E_N(t_k)) - f(\tau, \varphi(\tau))| d\tau < \varepsilon h$$

Тогда по двойной бухгалтерии $\Delta_N \to 0$.

Но мы не доказали, что $|(t_k, E_N(t_k)) - (\tau, \varphi(\tau))| < \delta$.

$$|(t_k, E_N(t_k)) - (\tau, \varphi(\tau))| \le |(t_k, E_N(t_k)) - (t_k, \varphi(t_k))| + |(t_k, \varphi(t_k)) - (\tau, \varphi(t_k))| + |(\tau, \varphi(t_k)) - (\tau, \varphi(\tau))|$$

$$= |E_N(t_k) - \varphi(t_k)| + |t_k - \tau| + |\varphi(t_k) - \varphi(\tau)|$$

При достаточно больших N все три слагаемых $<\frac{\delta}{3}$

6. Достаточное условие того, что функция удовлетворяет локальному условию Липшица по заданной переменной.

Пусть $G\subset \mathbb{R}^{n+1}_{t,r}$ — область, $f\in C(G o \mathbb{R}^n), f'_r\in M_{m,n}(C(G))$. Тогда $f\in \mathrm{Lip}_{r,loc}(G)$

Кроме того, если $K\subset G$ — выпуклый компакт, то $M_1:=\max_{(t,r)\in K}|f_r'(t,r)|$, то:

$$\forall (t, r_1), (t, r_2) \in K |f(t, r_2) - f(t, r_1)| \le nM_1|r_2 - r_1|$$

Доказательство. Докажем, что на выпуклом компакте $f \in \operatorname{Lip}_r(K)$.

Зададим $g(s) = f(t, r_1 + s(r_2 - r_1))$ (т.к. K выпуклый, функция везде определена)

$$f(t,r_2) - f(t,r_1) = g(1) - g(0) = \int_0^1 g'(s)ds = \int_0^1 f'_r(t,r_1+s(r_2-r_1))(r_2-r_1)ds$$

По лемме об оценке нормы произведения матриц (вектор — тоже матрица)

$$|f(t,r_2) - f(t,r_1)| \le \left| \int_0^1 f_r'(t,r_1 + s(r_2 - r_1))(r_2 - r_1) ds \right|$$

$$\le \int_0^1 |f_r'(t,r_1 + s(r_2 - r_1))(r_2 - r_1)| ds$$

$$\leq \int_0^1 n |f'_r(t, r_1 + s(r_2 - r_1))| |(r_2 - r_1)| ds
\leq \int_0^1 n M_1 |(r_2 - r_1)| ds
\leq n M_1 |r_2 - r_1|$$

Тогда константа Липшица nM_1 и искомое выполнено.

Почему $f \in \mathrm{Lip}_{r,loc}(G)$? Потому что можно для каждой точки взять параллелепипед K (выпуклый компакт) вокруг этой точки и тогда в IntK выполняется условие Липшица.

7. Достаточное условие того, что функция удовлетворяет глобальному условию Липшица по заданной переменной.

Пусть $G\subset \mathbb{R}^{n+1}_{t,r}$ — область, $f\in C(G\to\mathbb{R}^n)\cap \mathrm{Lip}_{r,loc}(G), K\subset G$ — компакт. Тогда $f\in \mathrm{Lip}_r(K)$

Доказательство. Докажем от противного. Пусть $\forall N \in \mathbb{N} \ \exists (t_N, r_N), (t_N, \tilde{r}_N) \in K$, для которых $|f(t_N, r_N) - f(t_N, \tilde{r}_N)| > N|r_N - \tilde{r}_N|$

Т.к. K компакт, то он секвенциальный компакт, т.е. в (t_N, r_N) и (t_N, \tilde{r}_N) есть сходящиеся подпоследовательности. Пусть они сходятся к (t, r) и (t, \tilde{r}) соответственно.

Либо $r = \tilde{r}$, либо нет.

1.
$$r=\tilde{r}$$

$$\exists U(t,r): f\in \mathrm{Lip}_r(U),$$
 т.к. f лок. Липшицева, т.е.
$$\exists L: |f(t',r')-f(t',r'')|\leq L|r'-r''|$$
 Пусть $N>L$, тогда $|f(t',r')-f(t',r'')|>N|r'-r''|>L|r'-r''|$ — противоречие.

Пусть теперь $r \neq \widetilde{r}$. Выберем непересекающиеся параллелепипеды $R = [a,b] \times X$ и $\widetilde{R} = [a,b] \times \widetilde{X}$, для которых точки (t,r) и (t,\widetilde{r}) соответственно являются внутренними. Рассмотрим функцию

$$g(t, x, y) := \frac{|f(t, x) - f(t, y)|}{|x - y|},$$

определённую на компакте $[a,b] \times X \times \widetilde{X}$, где она непрерывна, а значит, ограничена некоторым числом L. Выбирая номер N>L, такой что $(t_N,r_N)\in R$ и $(t_N,\widetilde{r}_N)\in \widetilde{R}$, из (4.9) получаем

$$q(t_N, r_N, \widetilde{r}_N) > N > L.$$

2 Это противоречие завершает доказательство леммы.

8. Лемма Гронуолла. Теорема Пикара (доказательство единственности решения).

Лемма 4 (Гронуолл). $\varphi \in C[a,b], t_0 \in [a,b], \lambda, \mu \geq 0$ и

$$\forall t \in [a, b] \ 0 \le \varphi(t) \le \lambda + \mu \left| \int_{t_0}^t \varphi(\tau) d\tau \right|$$

Тогда

$$\forall t \in [a, b] \ \varphi(t) \le \lambda e^{\mu|t - t_0|}$$

Доказательство. Рассмотрим $t \geq t_0$ без потери общности.

Рассмотрим случай $\lambda>0$ и пусть $v(t)=\lambda+\mu\int_{t_0}^t \varphi(\tau)d\tau.$ Тогда $v'(t)=\mu\varphi(t)\leq \mu v(t).$

Таким образом, $\frac{v'(t)}{v(t)} \leq \mu$. Проинтегрировав по $[t_0,t]$, получаем $v(t) \leq v(t_0)e^{\mu(t-t_0)}$. Таким образом, $\varphi(t) \leq v(t) \leq v(t_0)e^{\mu(t-t_0)} = \lambda e^{\mu(t-t_0)}$

Рассмотрим $\lambda=0$, тогда для любого λ_1 верно $\varphi(t)\leq \mu\int_{t_0}^t \varphi(\tau)d\tau<\lambda_1+\mu\int_{t_0}^t \varphi(\tau)d\tau$, для этого уже доказали.

При
$$\lambda_1 \to 0$$
 получаем $\varphi(t) \le 0$.

Теорема 2. $G\subset \mathbb{R}^{n+1}_{t,r}$ — область, $f\in C(G\to\mathbb{R}^n)\cap \mathrm{Lip}_{r,loc}(G), (t_0,r_0)\in G$. Тогда на отрезке Пеано существует решение задачи Коши $\dot{r}=f(t,r), r(t_0)=r_0$ и оно единственно.

Доказательство. Мы доказываем последний пункт, что решение φ единственно.

Пусть ψ_1 и ψ_2 — решения на (a,b). По лемме об эквивалентном интегральном уравнении:

$$\psi_1(t) = \int_0^t f(\tau, \psi_1(\tau)) d\tau \quad \psi_2(t) = \int_0^t f(\tau, \psi_2(\tau)) d\tau$$

$$|\psi_1(t) - \psi_2(t)| \le \int_0^t |f(\tau, \psi_1(\tau)) - f(\tau, \psi_2(\tau))| d\tau$$

Пусть $[\alpha, \beta] \subset (a, b), a < 0, b > 0.$

Т.к. графики ψ_1 и ψ_2 на $[\alpha, \beta]$ компактны, $f(\tau, \psi_1(t))$ и то же самое для 2 Липшницевы, поэтому:

$$|f(\tau, \psi_1(t)) - f(\tau, \psi_2(t))| \le \tilde{L}|\psi_1(\tau) - \psi_2(\tau)|$$

Итого:

$$|\psi_1(t) - \psi_2(t)| \le \tilde{L} \int_0^t |\psi_1(\tau) - \psi_2(\tau)| d\tau$$

По лемме Гронуолла $|\psi_1(t)-\psi_2(t)|$, т.к. $\lambda=0$, таким образом ψ_1 и ψ_2 совпадают на $[\alpha,\beta]$, а в силу произвольности они совпадают и на (a,b)

9. Теорема Пикара (доказательство существования решения).

Доказательство. Без потери общности $t_0=0, r_0=0$. Рассмотрим правую часть отрезка Пеано [0,h], для левой аналогично и решения можно сшить. Возьмём Π,M,h из определения отрезка Пеано.

Рассмотрим последовательность функций:

- $\varphi_0(t) = 0$
- $\varphi_{k+1}(t) = \int_0^t f(\tau, \varphi_k(\tau)) d\tau$

У нас будет три этапа (в этом билете):

- 1. Докажем, что последовательность верно определена, т.е. $(t, \varphi_k(t)) \in G$.
- 2. Докажем, что последовательность равномерно сходится на [0,h] к некоторой φ
- 3. Докажем, что φ решает интегральное уравнение, эквивалентное искомому.
- 1. Докажем по индукции. База тривиальна. Переход:

$$|\varphi_{k+1}(t)| \le \int_0^t |f(\tau, \varphi_k(\tau))| d\tau \le Mt \le Mh \le \frac{Mb}{M} = b$$

2. Докажем, что $\forall \varepsilon>0 \;\; \exists N: \forall t,m>N, k \;\; |\varphi_{m+k}(t)-\varphi_m(t)| \leq \varepsilon$

По лемме о достаточном условии Липшица $f \in \operatorname{Lip}_r(\Pi)$ с константой L. Докажем по индукции, что

$$|\varphi_{m+k}(t) - \varphi_m(t)| \le \frac{ML^m t^{m+1}}{(m+1)!}$$

, тогда искомое будет доказано, т.к. t < h и дробь $\to 0$.

База очевидна:

$$|\varphi_k(t) - \varphi_0(t)| \le \int_0^t |f(\tau, \varphi_{k-1}(\tau))| d\tau \le Mt$$

Переход:

$$|\varphi_{m+1+k}(t) - \varphi_{m+1}(t)| \leq \int_0^t |f(\tau, \varphi_{m+k}(\tau)) - f(\tau, \varphi_m(\tau))| d\tau$$

$$\leq \int_0^t L|(\tau, \varphi_{m+k}(\tau)) - (\tau, \varphi_m(\tau))| d\tau$$

$$\leq \int_0^t L \frac{ML^m \tau^{m+1}}{(m+1)!} d\tau$$

$$\leq \frac{ML^{m+1} t^{m+2}}{(m+2)!} d\tau$$

3.

$$\varphi(t) = \lim_{m \to +\infty} \int_0^t f(\tau, \varphi_m(\tau)) d\tau$$

Т.к. $(t, \varphi_m(t)) \in \Pi$, то и $(t, \varphi(t)) \in \Pi$. Таким образом:

$$|f(\tau, \varphi_m(\tau)) - f(\tau, \varphi(\tau))| \le L|\varphi_m(\tau) - \varphi(\tau)|$$

В силу равномерной сходимости φ_m мы получаем, что $f(t,\varphi_m(t)) \to f(t,\varphi(t))$ при $m \to +\infty$ равномерно. Тогда мы можем внести предел под знак интеграла по теореме о предельном переходе под знаком интеграла.

$$\varphi(t) = \int_0^t f(\tau, \varphi(\tau)d\tau)$$

По лемме об эквивалентном интегральном уравнении получаем, что φ — решение искомого уравнения.

10. Теорема существования и единственности решения 3К для уравнения n-го порядка. Следствие с более простыми условиями.

Теорема 3. $G \subset \mathbb{R}^{n+1}_{t,y,\dot{y},\dots,y^{(n-1)}}$ — область, $f \in C(G)$, $f \in \mathrm{Lip}_{(y,\dot{y},\dots,y^{(n-1)}),loc}(G)$, $(t_0,y_0,\dot{y}_0,\dots,y_0^{(n-1)}) \in G$. Тогда в некоторой окрестности t_0 есть решение задачи Коши для уравнения $y^{(n)} = f(t,y,\dot{y},\dots,y^{(n-1)})$

Доказательство. Рассмотрим эквивалентную систему. Каждое из уравнений имеет единственное решение задачи Коши по теореме Пикара. По Пикару у эквивалентной системы есть решение. \Box

Следствие 1. $G \subset \mathbb{R}^{n+1}_{t,y,\dot{y},\dots,y^{(n-1)}}$ — область, $f,f'_y,f'_{y'},\dots,f'_{y^{(n-1)}} \in C(G), (x_0,y_0,y'_0,\dots,y_0^{(n-1)}) \in G$. Тогда в некоторой окрестности есть единственное решение задачи Коши для уравнения $y^{(n)} = f(t,y,\dot{y},\dots,y^{(n-1)})$.

Доказательство. Была лемма, по которой $f \in \mathrm{Lip}_{(y,\dot{y},\dots,y^{(n-1)}),loc}(G)$ и по теореме в этом билете.

11. Критерий продолжимости.

Теорема 4. $G\subset \mathbb{R}^{n+1}_{t,r}$ — область, $f\in C(G\to\mathbb{R}^n)$. Тогда решение φ уравнения $\dot{r}=f(t,r)$ на промежутке [a,b) продолжимо вправо $\Leftrightarrow \exists \lim_{x\to b-0} \varphi(x)=\tilde{r}$ и при этом $(b,\tilde{r})\in G$

Доказательство.

- \Rightarrow Пусть ψ продолжение вправо φ . Т.к. ψ непрерывна, то $\varphi(b-0)=\psi(b-0)=\psi(b)$. Т.к. $b\in \mathrm{dom}\psi$, $(b,\psi(b))\in G$.
- \Leftarrow Доопределим φ на [a,b]. На [a,b):

$$\varphi(t) - \varphi(t_1) = \int_{t_1}^t \varphi'(\tau) d\tau = \int_{t_1}^t f(\tau, \varphi(\tau)) d\tau$$

Пусть $t_1 \to b$.

$$\varphi(t) = \tilde{r} + \int_{b}^{t} f(\tau, \varphi(\tau)) d\tau$$

По лемме об экв. интегральном уравнении φ — решение задачи $\dot{r}=f(t,r), r(b)=\tilde{r}$ По теореме Пеано есть решение ϑ на [b-h,b+h]. Тогда можем сшить ϑ,φ и получить ψ , это будет решение [a,b+h].

12. Теорема существования и единственности максимального решения.

Теорема 5.
$$G \subset \mathbb{R}^{n+1}_{t,r}$$
 — область, $f \in \mathrm{Lip}_{r,loc}(G), f \in C(G \to \mathbb{R}^n), (t_0,r_0) \in G$

Тогда максимальное решение задачи Коши существует и единственно.

Доказательство. Пусть все решения задачи Коши на интервалах образуют множество S. По теореме Пеано $|S| \neq 0.$ Пусть для $\varphi \in S$ область определения $(a_{\varphi},b_{\varphi}).$ Пусть $(A,B):=\bigcup_{\varphi \in S} (a_{\varphi},b_{\varphi})$

Для $t\in(a_{\varphi},b_{\varphi})$ пусть $\psi(t):=\varphi(t)$. Т.к. все решения задачи Коши совпадают (теорема Пикара), функция задана однозначно. Вполне очевидно, что ψ — максимальное решение.

Другого решения ϑ нет, т.к. если $\mathrm{dom}\vartheta \neq \mathrm{dom}\psi$, то одно из них не максимально, а иначе они равны.

13. Теорема о выходе интегральной кривой за пределы любого компакта.

Теорема 6. Пусть $n \in \mathbb{N}$, $G \subset \mathbb{R}^{n+1}_{t,r}$ — область, $f \in C(G \to \mathbb{R}^n) \cap Lip_{r,loc}(G)$, φ — максимальное решение на (a,b) уравнения $\dot{r} = f(t,r)$, $K \subset G$ — компакт. Тогда найдется $\Delta > 0$, такое что $(t,\varphi(t)) \notin K$ при всех $t \in (a,a+\Delta) \cup (b-\Delta,b)$.

Доказательство. Заметим, что расстояние $\rho = \rho(K, \partial G)$ от компакта K до границы ∂G области G положительно (иначе можно было бы построить последовательность точек из K, сходящейся к точке на границе, но $\partial G \cap K = \varnothing$). Если $\rho < +\infty$, положим $c = \frac{\rho}{2}$, иначе пусть c = 1.

Вокруг каждой точки $(t',r')\in K$ построим содержащийся внутри G параллелепипед

$$\Pi(t',r') = \left\{ (t,r) \in \mathbb{R}^{n+1} \, | \, |t-t'| \le c, \, |r-r'| \le c \right\}$$

и рассмотрим множество

$$K_c = \bigcup_{(t',r')\in K} \Pi(t',r')$$

Поскольку K — компакт, то максимум нормы достигается, пусть это d. Если (t,r) — произвольная точка из K_c , то для некоторой точки $(t',r')\in K$ будет $(t,r)\in \Pi(t',r')$, поэтому

$$|(t,r)| \leq |(t,r) - (t',r')| + |(t',r')| \leq c + d$$

Значит, множество K_c ограничено.

Докажем его замкнутость. Рассмотрим последовательность $\{(t_{m_k}, r_{m_k})\}$ точек из K_c , сходящуюся к $(t,r) \in \mathbb{R}^{n+1}$. Для каждой такой точки найдется параллелепипед $\Pi(t'_{m_k}, r'_{m_k})$, которому она принадлежит. Раз K — компакт, то существует подпоследовательность $\{(t'_{m_k}, r'_{m_k})\}$, сходящаяся к некоторой точке $(t', r') \in K$. Переходя к пределу в неравенствах

$$|t_{m_k} - t'_{m_k}| \le c, \quad |r_{m_k} - r'_{m_k}| \le c$$

находим $|t-t'| \leq c$ и $|r-r'| \leq c$. Следовательно $(t,r) \in K_c$.

Таким образом, K_c — компакт, и функция f достигает на нем максимального значения

$$M = \max_{(t,r) \in K_c} |f(t,r)|$$

Теперь предположим, что утверждение теоремы неверно. Пусть $\Delta=\frac{h}{2}$, где $h=\min\{c,\frac{c}{M}\}$. Тогда при некотором $t_0\in(b-\frac{h}{2},b)$ будет $(t_0,\varphi(t_0))\in K$.

Рассмотрим ЗК $\dot{r}=f(t,r),\,r(t_0)=\varphi(t_0).$ По теореме Пеано она имеет решение ψ на отрезке $[t_0-h,t_0+h].$ Пусть

$$\widetilde{arphi}(t) = egin{cases} arphi(t), & \mbox{если } t \in (a,t_0) \ \psi(t), & \mbox{если } t \in [t_0,t_0+h] \end{cases}$$

По лемме о гладкой стыковке решений $\widetilde{\varphi}$ — решение уравнения $\dot{r}=f(t,r)$ на (a,t_0+h) . Функция $\widetilde{\varphi}\equiv \varphi$ на $(a,b)\cap (a,t_0+h)$ по теореме Пикара. Но

$$t_0 + h > b - \frac{h}{2} + h = b + \frac{h}{2} > b$$

то есть $\widetilde{\varphi}$ — продолжение φ вправо за точку b. Так как φ по условию является максимальным решением, приходим к противоречию.

14. Признак продолжимости решения системы, сравнимой с линейной. Теорема о существовании и единственности максимального решения ЛС.

Теорема 7. Пусть $G=(a,b)\times\mathbb{R}^n_r,$ $f\in C(G\to\mathbb{R}^n)\cap Lip_{r,loc}(G)$, функции $u,v\in C(a,b)$ таковы, что для любых $(t,r)\in G$

$$|f(t,r)| \le u(t)|r| + v(t)$$

Тогда каждое максимальное решение уравнения $\dot{r}=f(t,r)$ определено на (a,b).

Доказательство. По теореме о существовании и единственности максимального решения любая задача Коши с начальными данными $(t_0,r_0)\in G$ имеет единственное максимальное решение φ , заданное на некотором интервале (α,β) . Докажем, что границы

интервала (α,β) совпадают с границами интервала (a,b). Пойдем от противного. Пусть, например, $\beta < b$. Принимая во внимание лемму о равносильном интегральном уравнении, при $t \in [t_0,\beta)$ находим

$$|\varphi(t)| = \left| r_0 + \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau \right| \le |r_0| + \int_{t_0}^t |f(\tau, \varphi(\tau))| d\tau \le$$

$$\le |r_0| + \int_{t_0}^t |u(\tau)| |\varphi(\tau)| d\tau + \int_{t_0}^t |v(\tau)| d\tau$$

Из непрерывности функций u и v вытекает их ограниченность на отрезке $[t_0,\beta]$. Следовательно, найдутся такие числа $\lambda,\mu\geq 0$, что при $t\in [t_0,\beta)$

$$|\varphi(t)| \le \lambda + \mu \int_{t_0}^t |\varphi(s)| ds$$

Тогда по лемме Гронуолла

$$|\varphi(t)| \le \lambda e^{\mu(t-t_0)} \le L$$

где $L=\lambda e^{\mu(\beta-t_0)}$. Отсюда следует, что график решения φ не покидает компакт

$$K = \{(t, r) \in G \mid t \in [t_0, \beta], |r| \le L\} \subset G$$

при $t \in [t_0, \beta)$, что противоречит теореме о выходе интегральной кривой за пределы компакта. \square

Определение. Линейной системой дифференциальных уравнений называют систему вида

$$\dot{r} = P(t)r + q(t) \tag{1}$$

где $P \in M_n(C(a,b)), q \in C((a,b) \to \mathbb{R}^n).$

Теорема (существование и единственность максимального решения ЛС). Пусть $P \in M_n(C(a,b)), q \in C((a,b) \to \mathbb{R}^n), t_0 \in (a,b), r_0 \in \mathbb{R}^n$. Тогда максимальное решение задачи Коши

$$\begin{cases} \dot{r} = P(t)r + q(t) \\ r(t_0) = r_0 \end{cases} \tag{2}$$

существует, единственно и определено на интервале (a, b).

Доказательство. Заметим, что правая часть системы f(t,r) = P(t)r + q(t) и ее производная $f'_r = P(t)$ непрерывны в области $(a,b) \times \mathbb{R}^n$. Тогда существует единственное максимальное решение задачи (2) по теореме о ! \exists максимального решения.

Имеем

$$|f(t,r)| \le |P(t)r| + |q(t)| \le n|P(t)||r| + |q(t)|$$

Так как функции u(t) = n|P(t)| и v(t) = |q(t)| непрерывны на (a,b), то по признаку продолжимости системы, сравнимой с линейной, решение задачи (2) продолжимо на интервал (a,b).

15. Формула Остроградского-Лиувилля для решений ЛОС.

Определение. Если $q \equiv 0$ на (a, b), то система (1), то есть

$$\dot{r} = P(t)r \tag{3}$$

называется однородной, в противном случае неоднородной.

Определение. Определителем Вронского (вронскианом) вектор-функций $\{r_k\}_{k=1}^n$, где $r_k=(x_{k1},x_{k2},\dots,x_{kn})^T$, называют определитель

$$W(t) = det(r_1(t), r_2(t), \dots, r_n(t)) = \begin{vmatrix} x_{11}(t) & x_{21}(t) & \dots & x_{n1}(t) \\ x_{12}(t) & x_{22}(t) & \dots & x_{n2}(t) \\ \dots & & & & \\ x_{1n}(t) & x_{2n}(t) & \dots & x_{nn}(t) \end{vmatrix}$$

Теорема (формула Остроградского-Лиувилля для решений ЛОС). Пусть $t,t_0\in(a,b)$, $P\in M_n(C(a,b)), r_1,r_2,\ldots,r_n$ — решения системы (3). Тогда их вронскиан

$$W(t) = W(t_0) \exp \int_{t_0}^t \operatorname{tr} P(\tau) d\tau$$

Доказательство. Пусть X — матрица со столбцами r_1, r_2, \ldots, r_n , а R_k — ее k-ая строка. Используя формулу полного разложения определителя, нетрудно убедиться, что

$$\dot{W} = \det \begin{pmatrix} \dot{R}_1 \\ R_2 \\ \dots \\ R_n \end{pmatrix} + \det \begin{pmatrix} R_1 \\ \dot{R}_2 \\ \dots \\ R_n \end{pmatrix} + \dots + \det \begin{pmatrix} R_1 \\ R_2 \\ \dots \\ \dot{R}_n \end{pmatrix}$$

Так как

$$\dot{X} = (\dot{r}_1, \dot{r}_2, \dots, \dot{r}_n) = (Pr_1, Pr_2, \dots, Pr_n) = PX$$

то k-ая строка матрицы \dot{X} совпадает с k-ой строкой матрицы PX, то есть

$$\dot{R}_k = \sum_{k=1}^n p_{kj} R_j$$

где p_{kj} — элемент матрицы P в k-ой строке и j-ом столбце.

Подставляя выражение для \dot{R}_k в формулу для \dot{W} и используя свойства определителя, находим

$$\dot{W} = p_{11} \det \begin{pmatrix} R_1 \\ R_2 \\ \dots \\ R_n \end{pmatrix} + p_{22} \det \begin{pmatrix} R_1 \\ R_2 \\ \dots \\ R_n \end{pmatrix} + \dots + p_{nn} \det \begin{pmatrix} R_1 \\ R_2 \\ \dots \\ R_n \end{pmatrix} = W \operatorname{tr} P$$

Интегрируя полученное уравнение, приходим к требуемой формуле.

16. Общее решение ЛОС. Лемма о множестве фундаментальных матриц. Лемма об овеществлении.

Теорема (Общее решение ЛОС). Пусть $P \in M_n(C(a,b))$. Тогда множество решений системы $\dot{r} = P(t)r$ образуют n-мерное линейное пространство.

Доказательство. Пусть $t_0 \in (a,b)$, $\{a_k\}_{k=1}^n$ — базис в \mathbb{R}^n . Тогда для любого $k \in [1:n]$ существует r_k — решение задачи Коши $\dot{r} = P(t)r$, $r(t_0) = a_k$. Вронскиан этих решений $W(t_0) = \det(a_1,a_2,\ldots,a_n) \neq 0$. Тогда функции $\{r_k\}_{k=1}^n$ линейно независимы.

Рассмотрим произвольное решение r системы $\dot{r}=P(t)r$. Пусть $\{c_k\}_{k=1}^n$ — координаты вектора $r(t_0)$ в базисе $\{a_k\}_{k=1}^n$. Положим

$$\varphi = c_1 r_1 + c_2 r_2 + \ldots + c_n r_n$$

Ясно, что φ — решение системы $\dot{r}=P(t)r$, при этом $\varphi(t_0)=r_0$. Тогда $r\equiv\varphi$ в силу теоремы о единственности максимального решения ЛС.

Таким образом, функции $\{r_k\}_{k=1}^n$ линейно независимы, и любое решение есть их линейная комбинация. Значит, $\{r_k\}_{k=1}^n$ — базис в пространстве решений.

Определение. Фундаментальной системой решений системы уравнений $\dot{r}=P(t)r$ называется совокупность ее n линейно независимых решений.

Определение. Фундаментальная матрица системы $\dot{r}=P(t)r$ — матрица, столбцы которой образуют фундаментальную систему решений.

Лемма (о множестве фундаментальных матриц). Пусть Φ — фундаментальная матрица системы $\dot{r}=P(t)r$. Тогда $\{\Phi A \mid A\in M_n(\mathbb{R}),\ det A\neq 0\}$ — множество всех фундаментальных матриц этой системы.

Доказательство. Пусть Ψ — фундаментальная матрица системы $\dot{r}=P(t)r$. Тогда каждый ее столбец, будучи решением этой системы, является линейной комбинацией столбцов матрицы Φ . Записывая коэффициенты разложения в столбцы матрицы A, имеем $\Psi=\Phi A$. А так как $det\Psi\neq 0$ и $\det\Phi\neq 0$, то и $detA\neq 0$.

Обратно, пусть $A \in M_n(\mathbb{R})$ — произвольная невырожденная матрица. Тогда матрица ΦA состоит из решений, а ее определитель не обращается в ноль. Следовательно, эти решения линейно независимы, поэтому ΦA — фундаментальная матрица.

Лемма (Об овеществлении). Пусть $n\in\mathbb{N},$ $\Phi=(r_1,r_2,r_3,\ldots,r_n)$ — фундаментальная матрица системы $\dot{r}=P(t)r$, при этом $r_1=\overline{r}_2$. Тогда

$$\Psi = (Re \, r_1, Im \, r_1, r_3, \dots, r_n)$$

— фундаментальная матрица той же системы.

Доказательство. Так как

$$\Re r_1 = \frac{1}{2}(r_1 + \overline{r}_1) = \frac{1}{2}r_1 + \frac{1}{2}r_2$$

$$\Im r_1 = \frac{1}{2i}(r_1 - \overline{r}_1) = \frac{1}{2i}r_1 - \frac{1}{2i}r_2$$

то

$$\Psi = \Phi \begin{pmatrix} \frac{1}{2} & \frac{1}{2i} & 0\\ \frac{1}{2} & -\frac{1}{2i} & 0\\ 0 & E_{n-2} \end{pmatrix}$$

где E_{n-2} — единичная матрица порядка n-2. По лемме о множестве фундаментальных матриц матрица Ψ является фундаментальной.

- 17. Теорема о фундаментальной системе решений ЛОС с постоянными коэффициентами (случай жорданова базиса общего вида). Определение и свойства матричной экспоненты (без доказательств). Решение задачи Коши при помощи матричной экспоненты.
- 18. Общее решение ЛНС и метод вариации постоянных.
- 19. Теорема об изоморфизме решений ЛОС и ЛОУ, формула Остроградского-Лиувилля для решений ЛОУ. Метод вариации постоянных для ЛНУ.
- 20. Общее решение ЛОУ с постоянными коэффициентами.

Дополнительные вопросы

Уравнение 1-го порядка и его решение.

Это уравнение вида F(x,y,y')=0. Функция φ — решение такого дифференциального уравнения, если:

- 1. $\varphi \in C^1(a,b)$
- 2. $F(x, \varphi(x), \varphi'(x)) \equiv 0$ на (a, b)

Пример. y' - x = 0, решение $y = \frac{x^2}{2} + C$.

Методов решения много, все относятся к частным случаям.

Интегральная кривая уравнения.

Это график решения уравнения.

Общее решение уравнения.

Это множество всех его решений.

Уравнение 1-го порядка, разрешённое относительно производной. Геометрический смысл.

Это уравнение вида y' = f(x, y).

Пусть φ решение этого уравнения. Тогда $\varphi'(x) = f(x, \varphi(x))$, то есть тангенс угла наклона касательной к интегральной кривой в точке (x_0, y_0) это $f(x_0, y_0)$

Ломаная Эйлера.

См. 4

Уравнение в дифференциалах, его решение и параметрическое решение.

Уравнение в дифференциалах получается, если в уравнении, разрешенном относительно производной, записать $y'=\frac{dy}{dx}$:

$$P(x,y)dx + Q(x,y)dy = 0$$

Функция φ — решение такого дифференциального уравнения, если:

- 1. $\varphi \in C^1(a,b)$
- 2. $P(x,\varphi(x)) + Q(x,\varphi(x))\varphi'(x) \equiv 0$ на (a,b)

Аналогично можно определить решение вида $x = \psi(y)$.

Функция $r=(arphi(t),\psi(t))$ — параметрическое решение такого уравнения на lpha,eta, если:

1.
$$\varphi,\psi\in C^1(\alpha,\beta)$$
 и $r'(t)\neq 0$ на $t\in (\alpha,\beta)$

2.
$$P(\varphi(t), \psi(t)) + Q(\varphi(t), \psi(t))\psi'(t) \equiv 0$$
 на $t \in (\alpha, \beta)$

Пример.

$$xdx + ydy = 0$$

Подстановкой тривиально можно убедиться, что $y = \sqrt{C^2 - x^2}$ — решение этого уравнения.

Параметрическое решение $(C\cos t, C\sin t)$

Особые точки уравнения в дифференциалах.

$$(x_0,y_0)$$
 — особая, если $P(x_0,y_0)=Q(x_0,y_0)=0$

Пример.

$$xdx + ydy = 0$$

Особая точка (0,0), через нее ничто не проходит.

Геометрический смысл уравнения в дифференциалах и его решения.

Пусть r=(x(t),y(t)) есть параметрическое решение уравнения на (α,β) . Тогда при $t\in(\alpha,\beta)$:

$$P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) = 0$$
$$F(r(t))r'(t) = 0$$

Таким образом, любая интегральная кривая в каждой своей точке перпендикулярная вектору F(x,y)

Задача Коши (ЗК) для уравнения 1-го порядка, разрешённого относительно производной.

Задача Коши — задача поиска решения уравнения, удовлетворяющему $y(x_0) = y_0$.

Теорема 8. $G \subset \mathbb{R}^2$ — область, $f \in C(G), (x_0, y_0) \in G$. Тогда в некоторой окрестности x_0 существует решение задачи Коши.

Теорема 9. Как в предыдущей теореме, но $f_y' \in C(G)$. Тогда решение задачи Коши единственно.

Таким образом, может быть такое, что в некоторых (*или всех*) точках решение не единственно.

Особое решение уравнения.

Это решение уравнения, в каждой точке которого нарушается локальная единственность решения задачи Коши.

Пример.

$$y' = \sqrt[3]{y^2}$$

Тогда особое решение $y'\equiv 0$, его в любой точке $(x_0,0)$ пересекает решение вида $y=(x-x_0)^3/3$

Однородное уравнение.

Функция однородна степени α , если $\forall t, x, y \; F(tx, ty) = t^{\alpha} F(x, y)$

Однородное уравнение — уравнение вида

$$P(x,y)dx + Q(x,y)dy = 0$$

, где P и Q однородные функции одной степени.

Замена $z=\frac{y}{x}$ сводит это уравнение к уравнению с разделяющимися переменными.

Геометрическое свойство решений однородного уравнения.

Пусть $x=\varphi(t), y=\psi(t)$ — параметрическое решение однородного дифура. Растянем пространство в λ раз, получим $x=\lambda\varphi(t), y=\lambda\psi(t)$. При подстановке получим:

$$P(\lambda\varphi,\lambda\psi)\lambda\varphi' + Q(\lambda\varphi,\lambda\psi)\lambda\psi' = 0$$

По однородности:

$$P(\varphi, psi)\varphi' + Q(\varphi, \psi)\psi' = 0$$

Таким образом, любое растяжение (или сжатие) решения однородного уравнения приводит к другому решению однородного уравнения.

Уравнение Бернулли.

Это уравнение вида

$$y' = p(x)y + q(x)y^{\alpha}, \alpha \in \mathbb{R} \setminus \{0, 1\}$$

Поделив на y^{α} и заменив $z=y^{1-\alpha}$, получаем линейное.

Уравнение Риккати.

$$y' = p(x)y^2 + q(x)y + r(x)$$

Оно решается только в особых случаях (например, $\alpha=2$), но если нашел какое-то решение φ , то замена $y=z+\varphi$ сводит к Бернулли.

Уравнение в полных дифференциалах.

Это уравнение вида

$$P(x,y)dx + Q(x,y)dy = 0$$

, при этом

$$\exists u : du = P(x, y)dx + Q(x, y)dy$$

Решение имеет вид u(x, y) = C

Обязательное условие на существование u это $P'_y=Q'_x$. Если при этом $P,Q\in C^1(G)$ и G односвязна, то это условие еще и достаточно.

Если область прямоугольная, то можно решить систему $\begin{cases} u'_x = P \\ u'_y = Q \end{cases}$ следующим образом: Решаем первое уравнение при фиксированном y, после чего заменяем C = C(y) и находим C как функцию.

В таком случае u есть потенциал векторного поля (P,Q).

Интегрирующий множитель.

Это то, на что мы домножаем уравнение, чтобы получить уравнение в полных дифференциалах.

Если μ — инт. множитель, то

$$(\mu P)_y' = (\mu Q)_x'$$

, то есть

$$\mu'_{y}P - \mu'_{x}Q = (Q'_{x} - P'_{y})\mu$$

Это сложно решить, но иногда решается при $\mu_x'\equiv 0$ или $\mu_y'\equiv 0.$

Уравнение п-го порядка и его решение.

Это уравнение вида:

$$F(x, y, y', \dots, y^{(n)}) = 0$$

Его решение на $a,b-\varphi$, такое что:

1.
$$\varphi \in C^n(a,b)$$

2.
$$F(x,\varphi(x),\varphi'(x),\ldots,\varphi^{(n)}(x))\equiv 0$$
 на (a,b)

ЗК для уравнения, разрешённого относительно старшей производной.

Это уравнение вида $y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$

Задача Коши для него имеет вид
$$y(x_0)=y_0,y'(x_0)=y_1,\ldots,y^{(n-1)}(x_0)=y_{n-1}$$

Методы понижения порядка уравнения.

•
$$y^{(n)} = f(x) \implies y^{(n-1)} = \int f(x) dx$$

•
$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) \xrightarrow{z=y^{(k)}} F(x, z, \dots, z^{(n-k)}) = 0$$

•
$$F(y,y',\dots,y^{(n)})=0$$
. Тогда пусть $z=y',$ $y''_{xx}=z'_yz,$ $y'''_{xxx}=z''_{yy}z^2+z'^2_yz$ и т.д.

• Пусть F линейна по y. Тога можно заменить $z=y^{\prime}/y$

•
$$F(x, y, y', \dots, y^{(n)}) = \frac{d}{dx} \Phi(x, y, y', \dots, y^{(n-1)}) \Rightarrow \Phi(x, y, y', \dots, y^{(n-1)}) = C$$

Нормальная система уравнений, её решение.

Нормальная система порядка n это система вида:

$$\begin{cases} \dot{x}_1 = f_1(t, x_1, \dots x_n) \\ \vdots \\ \dot{x}_n = f_n(t, x_1, \dots x_n) \end{cases}$$

Можно ввести пару обозначений для краткости:

$$r = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad f(t,r) = \begin{pmatrix} f_1(t,r) \\ \vdots \\ f_n(t,r) \end{pmatrix} \quad \dot{r} = f(t,r)$$

 φ — решение такой системы, если:

1.
$$\varphi \in C^1((a,b) \to \mathbb{R}^n)$$

2.
$$\dot{\varphi}(t) \equiv f(t, \varphi(t))$$
 на (a, b)

Интегральная кривая нормальной системы.

Это график решения, но теперь он в (n+1)-мерном пространстве.

Глобальное и локальное условие Липшица.

Функция $f:\mathbb{R}^m \to \mathbb{R}^n$ удовлетворяет условию Липшица на множестве D, если $\exists L-$ константа Липшица, что для $\forall r_1, r_2 \in D \ |f(r_2) - f(r_1)| \leq L |r_2 - r_1|$

Пример. Пусть
$$f(x)=\sqrt{x}$$
. Тогда $f\in \mathrm{Lip}[1/2,1], f\not\in \mathrm{Lip}(0,1], f\in \mathrm{Lip}_{loc}(0,1]$

Функция $f:\mathbb{R}^{n+1}_{t,r}\to\mathbb{R}^n$ удовлетворяет условию Липшица по r (равномерно по t) на множестве D, если $\exists L$, что для $\forall (t,r_1), (t,r_2)\in D\ |f(t,r_2)-f(t,r_1)|\leq L|r_2-r_1|$, обозначается $f\in \mathrm{Lip}_r(D)$

 $f \in \mathrm{Lip}_{loc}(D)$ локально, если $\forall x_0 \in D \ \exists U(x_0) \ f \in \mathrm{Lip}(U(x_0))$

Приближения Пикара.

- $\varphi_0(t) = 0$
- $\varphi_{k+1}(t) = \int_0^t f(\tau, \varphi_k(\tau)) d\tau$

Сведение уравнения п-го порядка к равносильной системе.

Пусть $\Lambda_n y = (y, \dot{y}, \dots, y^{(n-1)})^T$

Лемма 5. y — решение $y^{(n)}=f(t,y,\dot{y},\ldots,y^{(n-1)})$ на $(a,b)\Leftrightarrow \Lambda_n y$ — решение на (a,b)

$$\begin{pmatrix} \dot{y}_1 \\ \vdots \\ \dot{y}_{n-1} \\ \dot{y}_n \end{pmatrix} = \begin{pmatrix} y_2 \\ \vdots \\ y_n \\ f(t, y_1, \dots, y_n) \end{pmatrix}$$

Доказательство.

- $\Rightarrow \ \Pi$ усть y- решение первого уравнения. Тогда пусть $y_k=y^{(k-1)}$. Тогда первые n-1 уравнений решаются, а $\dot{y}_n=y^{(n)}=f(t,y,\dot{y},\dots,y^{(n-1)})$, искомое верно.
- \leftarrow Пусть r решение второго уравнения. Будем последовательно дифференцировать первое уравнение и получим искомое.

Максимальное решение.

Решение φ продолжимо, если есть решение ψ на большем отрезке, равное φ на dom φ . Если у решения нет продолжения, оно максимально.

Определитель Вронского (решений ЛОС и ЛОУ) и его свойства.

Вронскиан множества вектор-фукнций $\{r_k\}_{k=1}^n$, где $r_k=(x_{k1},x_{k2},\ldots,x_{kn})^T$:

$$W(t) = \det(r_1(t), \dots, r_n(t)) = \begin{vmatrix} x_{11}(t) & x_{21}(t) & \dots & x_{n1}(t) \\ x_{12}(t) & x_{22}(t) & \dots & x_{n2}(t) \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n}(t) & x_{2n}(t) & \dots & x_{nn}(t) \end{vmatrix}$$

M3137y2019

Конспект к экзамену

Фундаментальная система решений.

Фундаментальная матрица.

Метод неопределённых коэффициентов для ЛС.