Basic

Algorithms: A finite set of steps to solve a problem

Algorithm Analysis

The process of comparing two algorithms with respect to time, space, etc.

- Priori analysis:
 - Analyzing before execution, is not dependent on hardware.
 - We count the number of times a line of code executes.
 - Preferred, because it has an uniform value.
 - We use Asymptotic notation, like Big O to denote the time complexity.
- · Posterior Analysis:
 - Analyzing after execution, is dependent on hardware.
 - We determine the amount of time an algorithm takes to execute on a particular hardware platform.

Asymptotic Notation

- Also check: Algorithm Analysis
- It is a mathematical way of representing the time complexity.
- Example: Let's take the example of a notebook.
 - Best-case: I find the topic right on the first page, just after opening the notebook.
 - Worst-case: I find the topic on the last page of the notebook.
 - Average-case: I find the topic somewhere in the middle of the notebook, after traversing the pages one by one.

Big-oh (O)

- Worst-case | Upper Bound
- $f(n) = Og(n), f(n) \le c \cdot g(n)$

- \circ c is the constant, c>0
- \circ k is the point where f(n) and g(n) intercept, $k \geq 0$
- $\circ \ n \geq k$
- Example: $f(n) = 2n^2 + n$
 - \circ Find the **closest largest** term such that $g(n) \geq f(n) = 2n^2 + n$. The term is n^2 .
 - $_{\circ}$ So, $(2n^2+n)\leq c.g(n^2)$
 - $\sim (2n^2+n) \leq 2n^2$, let c = 2. This is **false**, so increment c by 1.
 - $0 \cdot (2n^2 + n) \le 3n^2$, which is **true**.
 - \circ So, $n < n^2$ or n > 1.
 - \circ This means that for all values of $n \geq 1$ & c = 3, the condition will hold true.
- Little o: f(n) = O g(n), f(n) < c.g(n)\$.

Big-Omega (Ω)

- Best-case | Lower Bound
- $f(n) = \Omega \ g(n), f(n) \geq c.g(n)$
- Example: $f(n) = 2n^2 + n$
 - \circ Find the **closest smallest** term such that $g(n) \leq f(n) = 2n^2 + n$. The term is n^2 .
 - \circ So, $(2n^2+n) \geq c.g(n^2)$
 - $\circ \ (2n^2+n) \geq 2n^2$, let c = 2. which is **true**.
 - \circ So, $n\geq 0$.
 - \circ This means that for all values of $n \geq 0$ & c = 2, the condition will hold true.
- Little Ω : f(n) = O g(n), f(n) > c.g(n)\$.

Theta (θ)

- Average-case | Between Upper & Lower Bound
 - $\circ \ f(n) = heta g(n), c_1.g(n) \leq f(n) \leq c_2.g(n)$
- Example: $f(n) = 2n^2 + n$
 - \circ Find both the closest smallest term and closest largest term, for g(n). Both the terms are same, n^2 .
 - $rac{1}{2}\circ$ So, $c_1.n^2\leq (2n^2+n)\leq c_2.n^2$
 - \circ For $c_1 n^2 \leq (2n^2+n)$, c = 2.
 - \circ For $(2n^2+n) \leq c_2.n^2$, c = 3.
 - \circ So, $2n^2 \leq (2n^2+n) \leq 3n^2$
 - \circ This means that between the values c=2 & c=3 and $g(n)=n^2$, the condition will hold true.

Properties of Asymptotic Notation

Asymptotic Notation	Representation as f(n)	Representation as $a\&b$	Reflexive	Symmetric	Transitive
Big O (O)	$f(n) \leq c \cdot g(n)$	$a \leq b$	1	0	1
Big Omega (Ω)	$f(n) \geq c \cdot g(n)$	$a \geq b$	1	0	1
Theta (θ)	$egin{aligned} c_1 \cdot g(n) \leq \ f(n) \leq c_2 \cdot \ g(n) \end{aligned}$	a = b	1	1	1
Small O (o)	$f(n) < c \cdot g(n)$	a < b	0	0	1
Small Omega (Ω)	$f(n) > c \cdot g(n)$	a > b	0	0	1

- ullet Reflexive: If $a\ (operator)\ a$ is valid.
- Symmetric: if a (operator) b is valid, then b (operator) a should also be valid.
- Transitive: If $a\ (operator)\ b$ is valid and $b\ (operator)\ c$ is valid, then $a\ (operator)\ c$ should also be valid.

Comparison of Time complexities

$$c/1 < \log(\log(n)) < \log(n) < n < n\log(n) < n^2 < n^3 < n^k < 2^n < n! < 2^{2^n}$$

Time Complexity	Notation	Time complexity, taking $n=10000$
Constant	O(c) / $O(1)$	1
null	$O(\log(\log(n)))$	1.1461
Logarithmic	$O(\log n)$	14
Linear	O(n)	10000
Linearithmic	$O(n \log n)$	132877
Quadratic	$O(n^2)$	100000000
Cubic	$O(n^3)$	1000000000000
Polynomial	$O(n^k)$	null

Time Complexity	Notation	Time complexity, taking $n=10000$
Exponential	$O(2^n)$	Very large number
Factorial	O(n!)	Very large number
Double Exponential	$O(2^{2^n})$	Very large number

Time Complexity Examples

```
• Example 0:
    publc int sum(int x, int y) {
        int result = x + y; // i
        return result; // ii
    }
    i. 1 unit
    ii. 1 unit
    \circ Time Complexity: O(1)
• Example 1:
    publc int get(int[] arr, int i) {
        return arr[i]; // i
    }
    i. 1 unit
    \circ Time Complexity: O(1)
• Example 2:
    public void findSum(int n) {
                                           // i
        int sum = 0;
        for(int i = 1; i <= n; i++) {</pre>
            sum = sum + i;
                                           // ii
                                           // iii
        return sum;
    }
    i. 1 unit
    ii. n units
   iii. 1 unit
    \circ Time Complexity: O(n)
• Example 3:
```

```
public void print (int n) {
	for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= n; j++) {
		System.out.println("i=" +i+ ", j="+j); // i
	}
	System.out.println("Enter of inner loop"); // ii
}
System.out.println("End of outer loop"); // iii
}
i. n^n units
ii. n units
iii. 1 unit

Time Complexity: O(n^n)
```

Common Time Complexities

- Legend:
 - V = Number of vertices
 - E = Number of edges

Algorithm	Best Case	Average Case	Worst Case
Binary Search	O(1)	$O(\log n)$	$O(\log n)$
Sequential Search	O(1)	O(n)	O(n)
Quick Sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$
Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Height of Complete Binary Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Insert in Heap	$O(\log n)$	$O(\log n)$	$O(\log n)$
Construct Heap	O(n)	O(n)	O(n)

Algorithm	Best Case	Average Case	Worst Case
Delete from Heap	$O(\log n)$	$O(\log n)$	$O(\log n)$
Huffman Coding	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Prims (Matrix)	$O((V+E)\log V)$	$O((V+E)\log V)$	$O((V+E)\log V)$
Prims (Heap)	$O(n^2)$	$O(n^2)$	$O(n^2)$
Kruskal	$O(E \log V)$	$O(E \log V)$	$O(E \log V)$
BFS	O(V+E)	O(V+E)	O(V+E)
DFS	O(V+E)	O(V+E)	O(V+E)
Floyd Warshall	$O(V^3)$	$O(V^3)$	$O(V^3)$
Dijkstra	$O((V+E)\log V)$	$O((V+E)\log V)$	$O((V+E)\log V)$

- ullet Example 1: $f_1=n^2\,\log n$ vs $f_2=n\log n^{10}$
 - $_{\circ}$ Method 1: Put a large value of n. Let $n=10^9$
 - $10^9 \ x \ 10^9 \ x \ \log_{10} 10^9 \ \text{vs} \ 10^9 \ \left(\log_{10} 10^9\right)^{10}$
 - $-10^9 \ x \ 9 \ \text{vs} \ 9^{10}$
 - $-10^9 x 9 vs 9 x 9^9$
 - $-10^9 \mathrm{\ vs}\ 9^9$
 - lacksquare So, $f_1>f_2$
 - Method 2: Simplify the equations.
 - $n \times n \log n$ vs $n \log n \times \log n^9$
 - $n \operatorname{vs} (\log n)^9$
 - $\log n \operatorname{vs} \log(\log n)^9$
 - $\log n \vee 9 \times \log(\log n)$
 - $\log n$ vs $\log(\log n)$ # 9 is constant, can be neglected
 - lacksquare So, $f_1>f_2$
- ullet Example 2: $f_1(n)=2^n$, $f_2(n)=n^{3/2}$, $f_3(n)=n\,\log_2 n$, $f_4(n)=n^{\log_2 n}$
 - \circ (1): $f_2 < f_3 < f_4 < f_1$
 - \circ (2): $f_2 < f_1 < f_3 < f_4$
 - \circ (3): $f_1 < f_2 < f_3 < f_4$
 - \circ (4): $f_3 < f_2 < f_4 < f_1$

- $_{\circ}$ Method 1: Put a large value of n. Let n=256
 - First of all, $2^n=2^{256}$ will be largest, since it increases exponentially . This leaves us with options (2) & (3).
 - $f_1 = 2^{256}$
 - $ullet f_2 = 256^{3/2} = 2^{8x3/2} = 2^{12}$
 - $ullet f_3 = 256 \ x \log_2 256 = 2^8 \ x \ \log_2 2^8 = 2^8 \ x \ 8 = 2^8$
 - $ullet f_4 = 256\ x\ 256^{\log_2 256} = 2^8\ x\ 2^{8x8} = 2^{24}$
 - So, $f_3 < f_2 < f_4 < f_1$
- Method 2: Simply the equations
 - $f_1 = 2^n$
 - $ullet f_2 = n^{3/2} = n \ x \ n^{1/2} = n \sqrt{n}$
 - $f_3 = n \log_2 n$
 - ullet In f_2 & f_3 , we can remove ${ t n}$ as it is common between both. So, $f_3 < f_2$.
 - $f_4 = n^{\log_2 n} = n^k$, which is greater than f_2 .
 - ullet So, $f_3 < f_2 < f_4 < f_1$

Recurrence Relation

• Example:

```
val start = 0
val end = arr.length-1
function binarySearch(start, end, arr[], target) {
    while(start<=end) {
       val mid = i+j/2
       if(arr[mid] == target) {
            return mid
       } else if(arr[mid] < target) {
            binarySearch(mid+1,end,arr,target)
       } else { // if (arr[mid] > target)
            binarySearch(start,mid-1,arr,target)
       }
    }
}
```

- Binary Search only works on sorted arrays.
- \circ Steps, example: $\{10, 20, 30, 40, 50, 60, 70\}$:
 - i. Here, we're first finding the middle index of the array.
 - ii. We're checking if the middle element is same as the target. If true, we're returning the element.
 - iii. If the middle element is less than the target, the target will be on the right half of the

array, ie amongst $\{50, 60, 70\}$.

- iv. If the middle element is greater than the target, the target will be on the left half of the array, ie amongst $\{10, 20, 30\}$.
- v. In essence, we're dividing our problem into half with each iteration, from $n \to n/2 \to n/4$ and so on. We're only solving one half at a time. This is called recurrence relation.
- \circ Relation: T(n/2) + c
- We solve recurrence relations using:
 - i. Back Substitution Method

Back Substitution Method

• Example 0:

Recurrence Relation: T(n) = T(n/2) + cTermination condition: $T(n) = 1 \ if \ n = 1$

- Step 1: n >> n/2.
 - -T(n) = T(n/2) + c
 - T(n/2) = T(n/4) + c
 - -T(n/4) = T(n/8) + c
- \circ Step 2: Substitute T(n/2) in T(n), and so on.
 - T(n) = [T(n/4) + c] + c
 - -T(n/4) + 2c
 - $T(n/2^2) + 2c$
 - T(n) = [T(n/8) + c] + 2c
 - -T(n/8) + 3c
 - $T(n/2^3)+3c$
 - ullet After k times, $T(n/2^k)+kc$
- \circ We need to make $T(n/2^k)=T(1).$ So, let $n/2^k=1.$
 - $n/2^k = 1$
 - $n=2^k$
 - $\log n = \log 2^k$
 - $\bullet \, \log_2 n = k \log_2 2$
 - log n = k or $k = \log n$
- \circ Substitute the value of k:
 - \bullet 1 + kc
 - $1 + \log n * c$
- $\circ \ (\log n)$ is the largest term. So, time complexity: $O(\log n)$

• Example 1:

Recurrence Relation: $T(n)=\{n*T(n-1)\}\ if\ n>1$ Termination condition: $T(n)=1\ if\ n=1$

 \circ Step 1: n >> n-1

$$T(n) = \{n * T(n-1)\}$$

$$T(n-1) = (n-1) * T((n-1) - 1) = (n-1) * T(n-2)$$

$$T(n-2) = (n-2) * T((n-2) - 1) = (n-2) * T(n-3)$$

 \circ Step 2: Substitute $\,\,{\mbox{\tt T(n-1)}}\,$, etc. with their RHS

$$ullet$$
 $T(n)=n*[(n-1)*T(n-2)]$ # Substitute $T(n-1)$ with $(n-1)*T(n-2)$

$$ullet T(n) = n*(n-1)*[(n-2)*T(n-3)] = n*(n-1)*(n-2)*T(n-3)$$

- We see a pattern here.
- So, after k iterations, n * (n-1) * (n-2) * (n-3) ... * T(n-k)
- \circ Step 3: Try to get (n-k)=1, so that the equation can be terminated

$$ullet$$
 Equation: $n*(n-1)*(n-2)*(n-3)...*T(n-k)$. If we take $k=(n-1)$,

•
$$T(n-(n-1)) = T(n-n+1) = T(1) = 1$$

$$ullet$$
 So, $T(n) = n*(n-1)*(n-2)*(n-3)*...*3*2*1$

Step 4: Simplify the equation

$$T(n) = n * (n-1) * (n-2) * (n-3) * ... * 3 * 2 * 1$$

$$n*n(n-1/n)*n(n-2/n)*n(n-3/n)*...*n(3/n)*n(2/n)*n(1/n)$$

$$n^n * (n-1/n) * (n-2/n) * (n-3/n) * ... * (3/n) * (2/n) * (1/n)$$

- So, n^n is the most significant term. Time complexity: O(n!), or Factorial.
- Example 2:

Recurrence Relation: T(n) = 2T(n/2) + n

Termination condition: T(n) = 1 if n = 1

• Step 1: n >> n/2.

$$T(n) = 2T(n/2) + n$$

$$T(n/2) = 2T(n/4) + (n/2)$$

$$T(n/4) = 2T(n/8) + (n/4)$$

 \circ Substitute value of T(n/2) in T(n), and so on.

$$T(n) = 2[2T(n/4) + (n/2)] + n$$

■
$$4T(n/4) + 2n$$

$$2^2T(n/2^2) + 2n$$

$$T(n) = 4[2T(n/8) + (n/4)] + 2n$$

•
$$8T(n/8) + 3n$$

$$2^3T(n/2^3) + 3n$$

- ullet After k times, $T(n)=2^kT(n/2^k)+kn$
- \circ We need to make $T(n/2^k)$ 1, using the termination condition, ie $n/2^k=1$ or $n=2^k$.
 - $n = 2^k$
 - $\bullet \, \log_2 n = log_2 2^k$
 - $\bullet \, \log_2 n = k \log_2 2$
 - $ullet \ \log_2 n = k \ {
 m or} \ k = \log_2 n$
- \circ Substitute the value of k:
 - $T(n) = n + n \log n$, $n \log n$ is the largest term.
 - So, time complexity = $O(n \log n)$.
- Example 3:

Recurrence Relation: $T(n-1) + \log n$

Termination condition: $T(n) = 1 \ if \ n = 1$

- \circ Step 1: n is decreasing by (n-1).
 - $T(n) = T(n-1) + \log n$
 - $T(n-1) = T(n-2) + \log(n-1)$
 - $T(n-2) = T(n-3) + \log(n-2)$
- \circ Substitute value of T(n-1) in T(n), and so on.
 - $ullet T(n) = [T(n-2) + \log(n-1)] + \log n \ T(n-2) + \log(n-1) + \log n$
 - $T(n) = T(n-2) + \log(n-1) + \log n$
 - $[T(n-3) + \log(n-2)] + \log(n-1) + \log n$

$$T(n-3) + \log(n-2) + \log(n-1) + \log n$$

- ullet After k times, $T(n)=T(n-k)+\log(n-(k-1))+\log(n-(k-2))+\log(n-(k-3))+...+\log(n-0)$
- \circ We need to make T(n-k)=T(1). So, let n-k=1 or n=k
- Substitute the value of k :
 - $1 + \log 1 + \log 2 + \log 3 + \dots + \log n$
 - 1 + log(1 * 2 * 3 * 4 * ... * n)
 - $1 + log(n^n)$
 - $1 + n \log n$
- $\circ \ (n \log n)$ is the largest term. So, time complexity: $O(n \log n)$