CORRIGÉ PROBLÈME II (CENTRALE PC 2011)

Partie I : Intervention de séries entières

I.A Résultat du cours concernant les séries entières sur l'ouvert de convergence.

$$\forall k \in \mathbb{N}, \quad \forall x \in]-\delta, \delta[, \quad f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)....(n-k+1)a_n x^{n-k}$$

$$f^{(k)}(0) = k! a_k$$

I.B Exemples

I.B 1) Si f existe, pour tout n, $a_n = \frac{u_n}{n!} = \frac{2^n}{n!}$. Sur un ouvert à déterminer $f(x) = \sum_{n=0}^{+\infty} \frac{2^n x^n}{n!} = e^{2x}$. Le rayon de convergence est $R = +\infty$ et la fonction trouvée est solution sur n'importe quel intervalle $] - \delta, \delta[$ avec $\delta > 0$.

I.B 2) Idem :
$$f(x) = \sum_{p=0}^{+\infty} \frac{(-1)^p (2p)! x^{2p}}{(2p)!} = \sum_{p=0}^{+\infty} (-x^2)^p = \frac{1}{1+x^2}$$
 si $|x| < 1$ (série géométrique). Ici $R = 1$, on choisit $\delta \in]0,1[$.

I.C La solution éventuelle est la somme de la série entière $\sum_{n=0}^{+\infty} \frac{(2n)!x^n}{n!}$.

Pour $x \neq 0$, notons $v_n = \frac{(2n)!x^n}{n!}$; pour tout $n, v_n \neq 0$ et $\frac{|v_{n+1}|}{|v_n|} = 2(2n+1)|x| \to +\infty$. La série diverge d'après le critère de d'Alemebert et R = 0. On ne peut donc trouver de $\delta > 0$.

Partie II : Le théorème de Borel

II.A Une fonction en cloche.

II. A. 1) a) Notons $F: x \mapsto \frac{1}{x(x-1)}$ de sorte que $g = e^F$. La restriction de g à]0,1[est composée de deux fonctions de classe \mathscr{C}^{∞} , donc est de classe \mathscr{C}^{∞} sur]0,1[. Montrons la formule demandée par récurrence sur p.

•
$$p = 0$$
: $\forall x \in]0,1[$, $g^{(0)}(x) = g(x) = \frac{e^{F(x)}}{(x(x-1))^{2\times 0}}Q_0(x)$ avec $Q_0(x) = 1$.

• Supposons la formule vraie pour un entier p donné : $\forall x \in]0,1[$:

$$g^{(p+1)}(x) = (g^{(p)})'(x) = \frac{Q_p'(x)(x(x-1))^{2p} - Q_p(x)2p(x(x-1))^{2p-1}(2x-1)}{(x(x-1))^{4p}}e^{F(x)} + R(x)$$

$$\operatorname{avec} R(x) = \frac{Q_p(x)}{(x(x-1))^{2p}}e^{F(x)}F'(x) \quad \text{où } F'(x) = \frac{-(2x-1)}{(x(x-1))^2}$$

En regroupant:

$$g^{(p+1)}(x) = e^{F(x)} \frac{Q_p'(x)(x(x-1))^2 - 2pQ_p(x)(2x-1)(x(x-1)) - (2x-1)Q_p(x)}{(x(x-1))^{2p+2}}$$

On obtient bien :

$$g^{(p+1)}(x) = \frac{Q_{p+1}(x)}{(x(x-1))^{2(p+1)}} e^{F(x)}$$

où Q_{p+1} est la fonction polynôme définie par :

$$Q_{p+1}(x) = Q'_p(x)x^2(x-1)^2 - (2x-1)Q_p(x)(2px(x-1)+1)$$

ce qui est le résultat voulu à l'ordre p+1.

b) Montrons par récurrence sur p que Q_p est de degré 3p-2 si $p\geqslant 1$.

- $p = 1 : Q_1(x) = -(2x 1)$, $\deg(Q_1) = 1 = 3 \times 1 2$.
- Supposons Q_p de degré 3p-2.

Notons C_p son coefficient dominant, $C_p \neq 0$.

 Q_{p+1} apparaît comme la somme de deux polynômes de degrés (3p-2)-1+4=3p+1 pour le premier et 3p-2+3=3p+1 pour le deuxième.

Le terme dominant de la somme est :

 $C_p(3p-2-4p)x^{3p+1}=C_p(-p-2)x^{3p+1}\neq 0$, donc $\deg(Q_{p+1})=3p+1=3(p+1)-2$ et la formule est vraie au rang p+1.

c) Une procédure peut être :

```
Calcul:=proc(n)
local k,E;
if n=0 then 1 else
    E:=1;
    for k from 1 to n do
        E:=diff(E,X)* X^2 *(X-1)^2-(2*X-1)*E*(2*(k-1)*X*(X-1)+1)
    od;
simplify(E)
fi
end proc;
```

- II. A. 2) La fonction $F: x \mapsto \frac{1}{x(x-1)}$ est croissante sur]0,1/2], décroissante sur [1/2,1[de limite égale $\lambda \infty$ en 0^+ et 1^- .
 - a) Par composition de limites :

$$\forall r \in \mathbb{N}, \lim_{x \to 0^+} e^{F(x)} F(x)^r = \lim_{X \to -\infty} e^X X^r = 0$$

Comme Q_p est une fonction polynôme, elle a une limite finie en 0. En utilisant la formule définissant $g^{(p)}$ on a

$$\lim_{x \to 0^+} g^{(p)}(x) = 0$$

Même étude en 1^- .

b) On dispose du théorème de prolongement du caractère dérivable d'une fonction : si f est continue sur [a, b], de classe \mathscr{C}^1 sur [a, b] et si f' admet une limite en a alors f et de classe \mathscr{C}^1 sur [a, b].

On applique ce théorème à la restriction de g à [0,1/2]. g est continue sur [0,1/2] car $\lim_{x\to 0^+}g(x)=0$ et g(0)=0, g est \mathscr{C}^1 sur]0,1/2] et $\lim_{x\to 0^+}g'(x)=0$.

Comme g est nulle à gauche de 0, g est continue en 0, est dérivable à droite et à gauche en 0 avec $g'_{g}(0) = g'_{d}(0) = 0$. g est dérivable en 0 avec g'(0) = 0. g est bien de classe \mathscr{C}^{1} sur $]-\infty, 1/2]$.

Ce même théorème et la même démarche s'appliquent successivement à g', g'',..., $g^{(k)}$...et on montre ainsi que g est classe \mathscr{C}^{∞} sur $]-\infty,1/2]$. Même étude en 1.

En conclusion, q est de classe \mathscr{C}^{∞} sur \mathbb{R} et nulle en dehors de $[0,1]: q \in \mathcal{W}$.

II.B Une fonction en plateau

II.B 1) La fonction g est continue positive et non égale à la fonction nulle sur [0,1]. Son intégrale sur [0,1] est strictement positive. Notons $K=\int_0^1 g(t)dt$. g de classe \mathscr{C}^∞ sur $\mathbb R$ admet une primitive G sur $\mathbb R$ qui est de classe \mathscr{C}^∞ .

$$\forall x \in \mathbb{R}, \ h(x) = \frac{G(1) - G(x - 1)}{K}$$

Ceci montre que h est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Prenons $G: x \mapsto \int_0^x g(t)dt$. Comme g est nulle à l'extérieur de [0,1], si $x \leqslant 0, G(x) = 0$ et si $x \geqslant 1, G(x) = \int_0^1 g(t)dt + \int_1^x g(t)dt = K + 0 = K$. Donc :

- Si
$$x \le 1$$
, $x - 1 \le 0$ et $h(x) = K/K = 1$.

- Si
$$x \ge 2$$
, $x - 1 \ge 1$ et $h(x) = (K - K)/K = 0$.

Comme pour tout x, h'(x) = -g(x-1), h est strictement décroissante sur [0,1].

- II.B 2) $\varphi(x) = h(2x)h(-2x)$.
 - a) φ est de classe \mathscr{C}^{∞} sur \mathbb{R} par composition et produit. En utilisant la formule de Leibniz :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ \varphi^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} 2^k h^{(k)}(2x) (-2)^{n-k} h^{(n-k)}(-2x)$$

h est constante sur $]-\infty,1]$. Toutes ses dérivées successives sont égales à 0 sur cet intervalle. En particulier : $\forall n \in \mathbb{N}^*, h^{(n)}(0) = 0$. Il vient :

$$\forall n \in \mathbb{N}^*, \ \varphi^{(n)}(0) = h(0)(-2)^n h^{(n)}(0) = 0$$

b) Par construction φ est paire. Pour $x \ge 1$, $2x \ge 2$ et h(2x) = 0 d'où $\varphi(x) = 0$. Par parité si $x \le -1$, $\varphi(x) = 0$. On étudie h sur [0,1]: si $x \ge 0$, $-2x \le 0$ et h(-2x) = 1 d'où $\varphi(x) = h(2x)$. φ est constante, égale à 1 sur [0,1/2], décroissante sur [1/2,1].

c) $|\varphi^{(k)}|$ est continue sur le compact [0,1] à valeurs dans \mathbb{R} . Elle est donc bornée sur ce segment et les bornes sont atteintes. D'où l'existence de $\max_{x \in [0,1]} \left| \varphi^{(k)}(x) \right| = \sup_{[0,1]} \left| \varphi^{(k)} \right|$.

 λ_p est le plus grand de p réels.

II.C Le théorème de Borel. $u \in \mathbb{C}^{\mathbb{N}}$.

$$\forall x \in \mathbb{R}, g_0(x) = \varphi(x)$$
 et si $n \geqslant 1$, $g_n(x) = \frac{x^n}{n!} \varphi(\beta_n x)$ avec $\beta_n = \max(1, 4^n | u_n | \lambda_n)$

- II.C 1) a) g_n est produit et composée de fonctions de classe \mathscr{C}^{∞} sur \mathbb{R} . Elle est donc de classe \mathscr{C}^{∞} sur \mathbb{R}
 - b) Si $|X| \ge 1$, $\varphi(X) = 0$ donc si $|\beta_n x| \ge 1$, $g_n(x) = 0$.
- II.C 2) $n \in \mathbb{N}, j \in \mathbb{N} \text{ avec } j < n.$
 - a) On peut appliquer la formule de Leibniz. Notons $f_1: x \mapsto \varphi(\beta_n x)$ et $f_2: x \mapsto x^n$. Pour $i \leqslant j < n$ on a :

$$\forall x \in \mathbb{R}, \ f_1^{(i)}(x) = \beta_n^i \varphi^{(i)}(\beta_n x) \ f_2^{(j-i)}(x) = n(n-1)...(n-(j-i)+1)x^{n-(j-i)}$$

En appliquant la formule de Leibniz et en divisant par n! il vient :

$$\forall x \in \mathbb{R}, \quad g_n^{(j)}(x) = \sum_{i=0}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{x^{n-j+i}}{(n-j+i)!}$$

- b) Pour tout entier $p \geqslant 1$, $\varphi^{(p)}(0) = 0$. Par suite : $g_n^{(j)}(0) = \beta_n^0 \varphi(0) \frac{0^{n-j}}{(n-j)!} = 0 \text{ car } n-j > 0.$
- c) Si $|x| > 1/\beta_n$, la fonction g_n est nulle sur un intervalle ouvert de centre x. Toutes ses dérivées sont égales à 0 en ce point. Le résultat reste vrai en $\pm 1/\beta_n$ par continuité de toutes les dérivées.
- d) Si $|\beta_n x| \le 1$, comme $(n-j+i)! \ge 1$ et $j \le n-1$ on a :

$$|g_n^{(j)}(x)| \leqslant \sum_{i=0}^{j} {j \choose i} \beta_n^i \sup_{[0,1]} |\varphi^{(i)}| (1/\beta_n)^{n-j+i} \leqslant \lambda_n \beta_n^{j-n} \sum_{i=0}^{j} {j \choose i}$$

De plus $n-j\geqslant 1$ et $1\leqslant \beta_n$ donc $1\leqslant \beta_n\leqslant \beta_n^{n-j}$ et $\beta_n^{j-n}\leqslant \beta_n^{-1}$. Enfin, par définition de β_n , $4^n|u_n|\lambda_n\leqslant \beta_n$. On obtient :

$$|u_n g_n^{(j)}(x)| \le |u_n| \lambda_n \frac{1}{\beta_n} 2^j \le \frac{2^j}{4^n} \le \frac{2^{n-1}}{2^{2n}} = 2^{-n-1}$$

II.C 3) La formule de Leibniz s'applique encore mais pour j > n la dérivée d'ordre j de $x \mapsto x^n$ est nulle. On a alors :

$$\forall j \geqslant n, \forall x \in \mathbb{R}, \ g_n^{(j)}(x) = \sum_{i=j-n}^{j} {j \choose i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{x^{n-j+i}}{(n-j+i)!}$$

avec la convention , pour tout x, $x^0 = 1$.

Pour j = n, $g_n^{(n)}(0) = \varphi(0)\frac{1}{1} = 1$. Pour j > n tous les termes de la somme sont nuls.

$$\forall (n,j) \in \mathbb{N}^2, \ g_n^{(j)}(0) = \delta_{i,j}$$

II.C 4) Notons pour cette question $f_n: x \mapsto u_n g_n(x)$. Ces fonctions sont de classe \mathscr{C}^{∞} sur \mathbb{R} à valeurs dans \mathbb{C} . Fixons j dans \mathbb{N} et prenons $n \geq j$. En utilisant les majorations précédentes :

$$\forall x \in \mathbb{R}, \ |f_n^{(j)}(x)| \leqslant \frac{1}{2^{n+1}} \quad \text{et donc} \quad \sup_{\mathbb{R}} |f_n^{(j)}| \leqslant \frac{1}{2^{n+1}} \quad \text{pour tout} \ n \geqslant j$$

Toutes les séries de fonctions $\sum f_n^{(j)}$ convergent normalement sur $\mathbb R$. On dispose du théorème suivant : si $\sum F_n$ est une série de fonctions de classe $\mathscr C^1$ qui converge simplement sur un intervalle I de $\mathbb R$ et telle que $\sum F_n'$ converge normalement sur I, alors la somme F de $\sum F_n$ est $\mathscr C^1$ sur I de dérivée la somme de la série $\sum F_n'$. On applique ce théorème à $\sum f_n$ et à toutes les séries dérivées successives. La fonction σ ainsi définie est de classe Cinf sur $\mathbb R$ et

$$\forall j \in \mathbb{N}, \forall x \in \mathbb{R}, \ \sigma^{(j)}(x) = \sum_{n=0}^{+\infty} u_n g_n^{(j)}(x)$$

En particulier:

$$\forall j \in \mathbb{N}, \ \sigma^{(j)}(0) = \sum_{n=0}^{+\infty} u_n g_n^{(j)}(0) = u_j \times 1 = u_j$$

Partie III : Un autre élément de W

 $(a_n)_{n\in\mathbb{N}}$ est une suite de réels strictement positifs, de limite 0 telle que $\sum a_n$ converge.

III.A
$$f_0(x) = \frac{1}{2a_0^2} (|x + a_0| + |x - a_0| - 2|x|).$$

III.A.1) Étudions les différents cas :

- Si
$$x \le -a_0$$
, $f_0(x) = \frac{1}{2a_0^2} (-x - a_0 - x + a_0 - 2(-x)) = 0$.
- Si $x \in [-a_0, 0]$, $f_0(x) = \frac{1}{2a_0^2} (x + a_0 - x + a_0 + 2x) = \frac{x + a_0}{a_0^2}$
- Si $x \in [0, a_0]$, $f_0(x) = \frac{1}{2a_0^2} (x + a_0 - x + a_0 - 2x) = \frac{-x + a_0}{a_0^2}$
- Si $x \ge a_0$, $f(x) = \frac{1}{2a_0^2} (x + a_0 + x - a_0 - 2x) = 0$.

La fonction $x \mapsto |x|$ est continue sur \mathbb{R} donc f_0 est somme de composée de fonctions continues : elle est continue. Un exemple de graphe :

III.A.2) L'étude précédente montre que f_0 est positive, croissante sur \mathbb{R}^- , décroissante sur \mathbb{R}^+ .

- a) $\forall x \in \mathbb{R}, |f_0(x)| \le |f_0(0)| = \frac{1}{a_0}$.
- b) Pour $x \neq y$, $\frac{f_0(y) f_0(x)}{y x}$ est le coefficient directeur (pente) de la droite qui joint les points $M_0(x, f(x))$ et $M_1(y, f(y))$. On constate que la valeur absolue de ce coefficient est majorée par

$$\forall (x,y) \in \mathbb{R}^2, |f_0(x) - f_0(y)| \leqslant k|x - y|$$

III.B
$$f_1(x) = \frac{1}{2a_1} \int_{x-a_1}^{x+a_1} f_0(t) dt$$

III. B. 1) f_0 continue sur \mathbb{R} admet sur \mathbb{R} une primitive F_0 de classe \mathscr{C}^1 sur \mathbb{R} .

$$\forall x \in \mathbb{R}, f_1(x) = \frac{F_0(x + a_1) - F_0(x - a_1)}{2a_1} \quad \text{donc} \quad f_1'(x) = \frac{f_0(x + a_1) - f_0(x - a_1)}{2a_1}$$

III. B. 2) Étudions deux cas:

- si $x \leqslant -a_0 a_1$, alors $x + a_1 \leqslant -a_0$ et f_0 est nulle sur $[x a_1, x + a_1]$ d'où $f_1(x) = 0$.
- si $x \ge a_0 + a_1$, alors $x a_1 \ge a_0$ et f_0 est nulle sur $[x a_1, x + a_1]$ d'où $f_1(x) = 0$.
- III. B. 3) $\forall x \in \mathbb{R}, x a_1 \leqslant x + a_1 \text{ donc}$

$$|f_1(x)| \le \frac{1}{2|a_1|} \int_{x-a_1}^{x+a_1} |f_0(t)| dt \le \frac{1}{2a_1} \int_{x-a_1}^{x+a_1} \frac{1}{a_0} dt = \frac{1}{a_0}$$

Comme f_0 est lipschitzienne de rapport k sur \mathbb{R} , la formule donnant f_1' obtenue en III.B.1 donne

$$\forall x \in \mathbb{R}, |f_1'(x)| \le \frac{1}{2a_1}k|2a_1| = k$$

Comme la suite des a_n est décroissante on a : $0 < a_1 \leqslant a_0 \Rightarrow 0 < a_0 a_1 \leqslant a_0^2 \Rightarrow k = \frac{1}{a_0^2} \leqslant \frac{1}{a_1 a_0}$. D'où le résultat demandé.

III. B. 4) Application de l'inégalité des accroissements finis à f_1 entre x et y, $(f_1$ de classe \mathscr{C}^1 sur \mathbb{R})

$$\forall (x,y) \in \mathbb{R}^2, |f_1(x) - f_1(y)| \leq \sup_{[x,y]} |f_1'| \times |x - y| \leq k|x - y|$$

III.C
$$f_n(x) = \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} f_{n-1}(t) dt$$

III.C 1) Par récurrence. Avec $n \ge 1$: f_{n-1} est supposée de classe \mathscr{C}^{n-1} , donc possède une primitive

$$f_n(x) = \frac{F_{n-1}(x+a_n) - F_{n-1}(x-a_n)1}{2a_n} \qquad f'_n(x) = \frac{f_{n-1}(x+a_n) - f_{n-1}(x-a_n)}{2a_n}$$

 f_n est \mathscr{C}^n par composition.

III.C.2) Par récurrence, f_{n-1} nulle en dehors de $[-S_{n-1},S_{n-1}]$ entraı̂ne f_n nulle en dehors de $[-S_{n-1}-a_n,S_{n-1}+a_n].$

III.C.3) Montrons déjà par récurrence sur n que la fonction $f_n^{(n)}$ est toujours lipschitzienne de rapport k_n , avec $k_0 = k$ et pour tout n > 0, $k_n = \frac{k_{n-1}}{a_n}$.

On l'a démontré pour n=0. Supposons que pour $n\geqslant 1$, $f_{n-1}^{(n-1)}$ soit k_{n-1} -lipschitzienne. Par dérivations successives :

$$f_n^{(n)}(x) = \frac{f_{n-1}^{(n-1)}(x+a_n) - f_{n-1}^{(n-1)}(x-a_n)}{2a_n}$$

$$f_n^{(n)}(x) - f_n^{(n)}(y) = \frac{f_{n-1}^{(n-1)}(x+a_n) - f_{n-1}^{(n-1)}(x-a_n)}{2a_n} - \frac{f_{n-1}^{(n-1)}(y+a_n) - f_{n-1}^{(n-1)}(y-a_n)}{2a_n}$$

Or
$$|f_{n-1}^{(n-1)}(x+a_n) - f_{n-1}^{(n-1)}(y+a_n)| \le |x-y| \frac{k_{n-1}}{2a_n}$$
.

Avec deux inégalités on a bien

$$\forall (x,y) \in \mathbb{R}^2, |f_n^{(n)}(x) - f_n^{(n)}(y)| \le \frac{k_{n-1}}{a_n} |x - y|$$

D'où le résultat avec $k_n = \frac{1}{a_0^2 a_1 ... a_n}$.

Démontrons alors le résultat demandé dans la question par récurrence toujours. Vrai pour n=0, supposé vrai pour n-1

$$\forall x \in \mathbb{R}, |f_n(x)| \le \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} \frac{1}{a_0} dt = \frac{1}{a_0}$$

On calcule facilement les dérivées successives et on utilise l'inégalité des accroissements finis jusqu'à la dérivée d'ordre n-1 : :

$$\forall x \in \mathbb{R}, \forall p, 0$$

Pour la dernière dérivée on utilise le fait que $f_{n-1}^{(n-1)}$ est lipschitzienne. On obtient comme dans le calcul du début de cette question, mais en regroupant les termes en $x + a_n, x - a_n$ et $y + a_n, y - a_n$:

$$|f_n^{(n)}(x) - f_n^{(n)}(y)| \le \frac{2}{2a_n} k_{n-1} |a_n| = \frac{1}{a_0^2 a_1 \dots a_{n-1}} \le \frac{1}{a_0 a_1 \dots a_n}$$

car la suite (a_n) est décroissante et donc $0 < a_n \le a_0$

III.C.4) Récurrence encore avec accroissements finis.

III.C.5) On a pour tout n, $S_n = \sum_{k=0}^{\infty} a_k \leqslant S < +\infty$. f_n est nulle à l'extérieur de $[-S_n, S_n]$ donc :

$$\int_{-S}^{S} f_n(t)dt = \int_{-S_n}^{S_n} f_n(t)dt = \frac{1}{2a_n} \int_{-S_n}^{S_n} \left(\int_{t-a_n}^{t+a_n} f_{n-1}(u)du \right) dt = \frac{1}{2a_n} \int_{-S_n}^{S_n} \int_{-a_n}^{a_n} f_{n-1}(t+v)dv dt$$

Utilisons le théorème de Fubini :

$$I_n = \int_{-S}^{S} f_n(t)dt = \frac{1}{2a_n} \int_{-a_n}^{a_n} \left(\int_{-S_n}^{S_n} f_{n-1}(t+v)dt \right) dv$$

Soit alors v tel que $|v| \leq a_n$. Par changement de variable

$$\int_{-S_n}^{S_n} f_{n-1}(t+v)dt = \int_{-S_n+v}^{S_n+v} f_{n-1}(t')dt'$$

Comme $-a_n \le v \le a_n : -S_n + v \le -S_n + a_n = -S_{n-1}$ et $S_n + v \ge S_n - a_n = S_{n-1}$.

Comme f_{n-1} est nulle à l'extérieur de $[-S_{n-1}, S_{n-1}]$ on a :

$$\int_{-S_n}^{S_n} f_{n-1}(t+v)dt = \int_{-S_n+v}^{S_n+v} f_{n-1}(t')dt' = \int_{-S_{n-1}}^{S_{n-1}} f_{n-1}(t')dt' = \int_{-S}^{S} f_{n-1}(t')dt' = I_{n-1}(t')dt' = I_{n$$

En reportant:

$$I_n = \frac{1}{2a_n} \int_{-a_n}^{a_n} I_{n-1} dv = I_{n-1}$$

Les intégrales sont toutes égales à $I_0 = \int_{-a_0}^{a_0} f_0(t)dt = 2a_0 \times \frac{1}{a_0} \times \frac{1}{2} = 1$. (aire d'un triangle)

III. D La limite

III.D.1)
$$k_n = f_n - f_{n-1}$$

a) On remarque que :
$$\forall x \in \mathbb{R}, \ k_n(x) = \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} (f_{n-1}(t) - f_{n-1}(x)) dt$$

$$|k_n(x)| \le \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} |t - x| k dt \le \frac{1}{2a_n} k \int_{-a_n}^{a_n} |t'| dt' = \frac{ka_n}{2}$$

b) $\sup_{\mathbb{R}} |k_n| \leq \frac{ka_n}{2}$. Par majoration la série $\sum \sup_{\mathbb{R}} |k_n|$ converge. La série $\sum k_n$ converge normalement sur \mathbb{R} .

III.D.2)
$$s(x) = \lim_{n \to +\infty} \left(\sum_{p=0}^{n-1} k_p(x) \right).$$

a) Pour tout n, tout x, $\sum_{p=0}^{n-1} k_p(x) = f_n(x) - f_0(x)$ (somme télescopique). D'où l'existence de la limite et, par passage à la limite :

$$s(x) = \lim_{n \to +\infty} f_n(x) - f_0(x)$$

- b) Pour tout n, tout x, $|f_n(x)| \leq 1/a_0$. Par passage à la limite : $|w(x)| \leq 1/a_0$.
- c) $\forall (x,y) \in \mathbb{R}^2$, $|f_n(x) f_n(y)| \leq k|x-y|$. On fait tendre n vers $+\infty$ et on obtient : $|w(x) w(y)| \leq |x-y|$.
- d) Si $|x| \ge S \ge S_n$, $f_n(x) = 0$, donc w(x) = 0.

III.D.3) Pour tout
$$n$$
, $\int_{-S}^{S} f_n(t)dt = \int_{-S_n}^{S_n} f_n(t)dt = 1$.

a) Pour tout n, tout $x \in [-S, S]$, $|f_n(x)| \leq \frac{1}{a_0}$, fonction constante intégrable sur [-S, S]. Le théorème de convergence dominée s'applique sans problème.

$$\int_{-S}^{S} w(t)dt = \lim_{n \to +\infty} \int_{-S}^{S} f_n(t)dt = 1$$

- b) La fonction w n'est donc pas nulle sur \mathbb{R} .
- III.D.4) a) Pour $n \ge 2$ et x réel on peut écrire :

$$k'_n(x) = f'_n(x) - f'_{n-1}(x) = \frac{f_{n-1}(x + a_n) - f_{n-1}(x - a_n)}{2a_n} - f'_{n-1}(x)$$

$$k'_n(x) = \frac{\int_{x-a_n}^{x+a_n} \left(f'_{n-1}(t) - f'_{n-1}(x) \right) dt}{2a_n}$$

Pour $n \ge 3$, f'_{n-1} est \mathscr{C}^1 sur \mathbb{R} , la valeur absolue de sa dérivée est majorée par $\frac{1}{a_0a_1}$ d'après III.C3). Le théorème des accroissements finis permet de dire que f'_{n-1} est lipschitzienne de rapport $\frac{1}{a_0a_1}$ et on obtient

$$|k'_n(x)| \le \frac{1}{2a_n} \int_{x-a_n}^{x+a_n} |t-x| \frac{1}{a_1 a_0} dt = \frac{a_n}{2a_1 a_0}$$

On a donc pour $n \geqslant 3$, $\sup_{\mathbb{R}} |k'_n| \leqslant \frac{a_n}{2a_0a_1}$

La série $\sum k'_n$ converge normalement sur \mathbb{R} . $\sum_{n\geqslant 2}k_n$ est une série de fonctions de classe \mathscr{C}^1 qui converge simplement sur \mathbb{R} et telle que la série $\sum_{n\geqslant 2}k'_n$ converge normalement sur \mathbb{R} . La somme est donc de classe \mathscr{C}^1 sur \mathbb{R} .

- b)c) $w f_0 = s = \sum_{n=2}^{+\infty} (f_n f_{n-1}) + f_1 f_0$ donc $w = \sum_{n=2}^{+\infty} (f_n f_{n-1}) + f_1$ est \mathscr{C}^1 comme somme de deux fonctions de classe \mathscr{C}^1 .
- d) Pour tout x, $w'(x) = \sum_{n=2}^{+\infty} (f'_n(x) f'_{n-1}(x)) + f'_1(x) = \lim_{n \to +\infty} f'_n(x)$. Or pour tout x, $|f'_n(x)| \leq \frac{1}{a_0 a_1}$. Résultat obtenu par passage à la limite. endenumerate

III.D.5) Démarche entièrement identique à la question précédente en utilisant l'expression de la dérivée d'ordre p et les majorations de III.C.3)..

Partie IV: classes quasi-analytiques

- IV.A Quelques propriétés d'une classe
 - IV.A. 1) Soit $f \in C(M)$ et A, B les constantes associées. Soit $(a, b) \in \mathbb{R}^2$ et $g; x \mapsto f(ax + b)$. g est de classe c^{∞} sur \mathbb{R} et

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |g^{(n)}(x)| = |a^n f^{(n)}(ax + b)| \le |a|^n A B^n M_n = A(|a|B)^n M_n$$

IV.A. 2) Si f_1, f_2 sont deux éléments de C(M) et $\alpha \in \mathbb{C}$, $f_1 + \alpha f_2$ est de classe c^{∞} sur \mathbb{R} et, en notant A_1, B_1, A_2, B_2 les constantes associées on a :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |(f_1 + \alpha f_2)^{(n)}(x)| = |f_1^{(n)}(x) + \alpha f_2^{(n)}(x)| \leq A_1 B_1^n M_n + |\alpha| A_2 B_2^n M_n$$

Soit $B = \max(B_1, B_2)$

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |(f_1 + \alpha f_2)^{(n)}(x)| = \leqslant (A_1 + |\alpha|A_2)B^n M_n$$

 $f_1 + \alpha f_2 \in C(M)$. C(M) est un sev de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$.

- IV.A.3) Pour tout $n \in \mathbb{N}^*$, $M_n^2 \leqslant M_{n-1}M_{n+1}$ et comme les termes sont tous strictement positifs, $\frac{M_n}{M_{n+1}} \leqslant \frac{M_{n-1}}{M_n}$. La suite de terme général $w_n = \frac{M_{n-1}}{M_n}$ est donc décroissante.
 - a) Soit p fixé et pour $n \geqslant p$, $v_n = \frac{M_n}{M_{n-n}}$.

$$\frac{v_{n+1}}{v_n} = \frac{M_{n+1}}{M_{n+1-p}} \frac{M_{n-p}}{M_n} = \left(\frac{M_{n+1}}{M_n}\right) / \left(\frac{M_{n+1-p}}{M_{n-p}}\right) = w_{n+1}/w_{n+1-p} \geqslant 1$$
 d'après la décroissance de la suite (w_n) . Comme $v_n > 0$ on obtient $v_{n+1} \geqslant v_n$

Cette suite est croissante et tous les termes sont supérieurs au premier terme $v_p = \frac{M_p}{M_0} = M_p$. D'où

 $\frac{M_n}{M_{n-p}} \geqslant M_p$ ce qui est le résultat demandé.

b) Si f,g sont deux éléments de C(M), fg est de classe c^{∞} sur $\mathbb R$ et , en utilisant la formule de Leibniz et en notant A, B, A', B' les constantes associées à f et g on a pour tout n de \mathbb{N} , tout x de

$$|(fg)^{(n)}(x)| \leqslant \sum_{k=0}^{n} \binom{n}{k} |f^{(k)}(x)| \times |g^{(n-k)}(x)| \leqslant \sum_{k=0}^{n} \binom{n}{k} AB^k M_k A' B'^{n-k} M_{n-k}$$

Notons $B'' = \max(B, B') > 0$; les réels sont tous positifs et $M_k M_{n-k} \leq M_n$

$$|(fg)^{(n)}|(x) \le \sum_{k=0}^{n} {n \choose k} AA'B''^n M_n = AA'(2B'')^n M_n$$

 $fg \in \mathbb{C}(M)$.

IV.B un exemple de classe quasi-analytique. $U_n = n!$

IV.B.1)
$$U_n = n! > , U_0 = 0! = 1, U_{n-1}U_{n+1} = (n-1)!^2 n(n+1) \ge n!^2 = U_n^2$$
.

IV.B.2) $f \in C(U)$.

a) On applique la formule de Taylor avec reste intégrale à l'ordre n entre α et x et on obtient directement:

$$f(x) = 0 + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$$

b) La majoration du reste (cf. cours) donne :

$$|f(x)| \le \frac{|x-\alpha|^{n+1}}{(n+1)!} \sup_{[\alpha,x]} |f^{(n+1)}| \le \frac{|x-\alpha|^{n+1}}{(n+1)!} AB^{n+1} U_{n+1} = A (|x-\alpha|B)^{n+1}$$

Pour tout n et tout x tel que $|x-\alpha| \leqslant \frac{1}{2B}$, $|f(x)| \leqslant \frac{A}{2n+1}$.

En faisant tendre n vers l'infini, on obtient par encadrement f(x) = 0.

c) Soit $f \in C(U)$ dont toutes les dérivées s'annulent en 0. D'après la question précédente f est nulle sur [-1/2B, 1/2B]. Toutes les dérivées de f s'annulent en 1/2B et -1/2B. On applique le résultat précédent en $\alpha = \pm 1/2B$. On montre ainsi de proche en proche que f est nulle sur tous les intervalles [-k/2B, k/2B], $k \in \mathbb{N}$. f = 0. C(U) est quasi-analytique.

IV.C Caractérisation

- IV.C.1) Supposons C(M) quasi-analytique. Soit $f \in C(M) \cap W$. f est nulle en dehors d'un segment [-a,a]. Prenons $\alpha=a+1$. Soit $g:x\mapsto f(x+\alpha)$. D'après IV.A.1), $g\in \mathbb{C}(M)$. g est nulle sur un intervalle de centre 0, donc g et toutes ses dérivées s'annulent en 0. Comme la classe est quasi-analytique, g=0 et par conséquent f=0.
- IV.C.2) Supposons que la classe C(M) ne soit pas quasi-analytique. Il existe donc une fonction f de cette classe non-nulle et dont toutes les dérivées s'annulent en 0. Quitte à considérer $f_1: x \mapsto f(-x)$ $(f_1 \in C(M))$, on peut supposer qu'il existe un réel strictement positif α tel que $f(\alpha) \neq 0$. Considérons alors g définie par g(x) = 0 si $x \leqslant 0$ et g(x) = f(x) sinon. On vérifie facilement que $g \in C(M)$: le raccord en 0 est \mathscr{C}^{∞} et sur \mathbb{R}^- toutes les dérivées sont nulles. Soit alors $h: x \mapsto g(x)g(2\alpha x)$. h est un produit de deux fonctions de C(M), donc $h \in C(M)$. Si $x \leqslant 0$, g(x) = 0 donc h(x) = 0 et si $x \geqslant 2\alpha$, $g(2\alpha x) = 0$ et h(x) = 0. $h \in \mathcal{W}$. $h(\alpha) = g(\alpha)^2 = f(\alpha)^2 \neq 0$ donc $h \neq 0$.
- IV.D Autour du théorème de Denjoy-Carleman.

Par contraposition $C(M) \cap \mathcal{W} = \{0\} \Rightarrow C(M)$ quasi-analytique.

IV.D.1) $\alpha_1 \times ... \times \alpha_n = \frac{M_{n-1}}{M_n} \times \frac{M_{n-2}}{M_{n-1}} \times ... \times \frac{M_0}{M_1} = \frac{M_0}{M_n} = \frac{1}{M_n}$ Comme la suite (α_n) est décroissante on a :

 $\forall n \in \mathbb{N}^*, 0 \leqslant \alpha_n^n \leqslant \alpha_1 ... \alpha_n = \frac{1}{M_n}$ et donc $0 \leqslant \frac{M_{n-1}}{M_n} \leqslant \left(\frac{1}{M_n}\right)^{\frac{1}{n}}$

Le critère de majoration des séries de réels positifs permet d'affirmer que (IV.4) entraı̂ne (IV.5).

IV. D.2) Définissons la suite (a) par $a_0 = a_1$ et pour $n \ge 1$, $a_n = \frac{M_{n-1}}{M_n}$. Supposons (IV.5) vérifié. La suite (a_n) est une suite décroissante de réels strictement positifs. De plus la série $\sum a_n$ converge donc $\lim a_n = 0$.

On peut définir comme en partie III, une fonction w de classe Cinf, élément de W. Cette fonction vérifie :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |w^{(n)}(x)| \leqslant \frac{1}{a_0 a_1 \dots a_n} = \frac{M_n}{a_0}$$

Cette fonction est élément de $C(M) \cap W$ et elle est non nulle. D'après IV.C.2), la classe C(M) n'est pas quasi-analytique..

