

Árvores

Introdução

- Como visto, listas podem ser convenientemente definidas da seguinte forma: Uma lista do tipo T é
 - Uma lista (estrutura) vazia ou
 - Uma concatenação (cadeia) de um elemento do tipo T com uma lista cujo tipo básico também seja T
- Nota-se que a recursão é utilizada como ferramenta de definição
- Um árvore é uma estrutura sofisticada cuja definição por meio de recursão é elegante e eficaz
- ☐ Uma árvore, com tipo T, pode ser definida recursivamente da seguinte forma:
 - Uma árvore (estrutura) vazia ou
 - Um nó do tipo T associado a um número finito de estruturas disjuntas de árvore do mesmo tipo T, denominadas subárvores

Introdução

- Observando a similaridade das definições é evidente que uma lista possa ser considerada como uma árvore na qual cada nó tem, no máximo, uma única subárvore
- □Por este motivo, uma lista é também denominada árvore degenerada

2

Definição

- ☐ Uma árvore é um conjunto finito de um ou mais nós (ou vértices) tais que
 - Existe um nó especial, denominado raiz
 - Os demais nós encontram-se desdobrados em n ≥ 0 conjuntos disjuntos T₁, ..., T_n sendo que cada conjunto se constitui numa árvore
 - T₁, ..., T_n são denominadas subárvores da raiz
- Utilizaremos grafos para representar árvores
- ☐ Todavia, existem outras representações equivalentes para árvores: conjuntos aninhados (diagrama de inclusão), parênteses aninhados, paragrafação (indentation)

4

☐Uma árvore é um grafo sem ciclos

_

□ Grafo

Conjuntos aninhados

c

☐ Grafo

☐ Parênteses aninhados

(A (B (E (K) (F)) C (G)
 D (H (L) (I) (J))))

7

□ Grafo

Paragrafação

A B F K C

D H I

0

□ Grafo

Paragrafação

Α

. .B

. . . E

. K

...F

. . C

. . . . G

. . D

...H

. I

. . . I

. . . J

Nós (Vértices)

☐ Esta árvore possui 12 nós (ou vértices)

Arestas (Arcos)

□Uma aresta (arco) liga um nó a outro

Raiz

■Normalmente as árvores são desenhadas de forma invertida, com a raiz em cima

Subárvores

□No exemplo, o nó A possui três subárvores (ramos) cujas raízes são B, C e D

Subárvores

■No exemplo, o nó B possui duas subárvores (ramos) cujas raízes são E e F

4.4

Folha

□ Um nó sem descendentes (sem filhos ou sem sucessores) é denominado terminal ou folha

Não-Folha

☐ Um nó com descendentes (com filhos ou com sucessores) é denominado não-terminal ou não-folha ou interior

Floresta

- Uma floresta é um conjunto de zero ou mais árvores
- ■No exemplo, temos 3 árvores que compõem uma floresta

Grau de um Nó

O número de descendentes (imediatos) de um nó

é denominado grau deste nó

,	
Nó	Grau
Α	
В	
С	
D	
E	
F	
G	
Н	
Ι	
J	
J K	

Grau de um Nó

O número de descendentes (imediatos) de um nó é

denominado grau deste nó

☐ Portanto, o grau de uma folha é zero

Nó	Grau
Α	3
В	2
С	1
D	3
E	1
F	0
G	0
Н	1
I	0
J	0
K	0
L	0

Grau de uma Árvore

- O grau máximo atingido pelos nós de uma árvore é denominado grau desta árvore
- No exemplo, o grau da árvore é 3

Árvore Completa

- ☐ Uma árvore de grau d é uma árvore completa (cheia) se
 - Todos os nós tem exatamente d filhos, exceto as folhas e
 - Todas as folhas estão na mesma altura
- No exemplo, a árvore de grau d=3 é completa

Pai

☐ As raízes das subárvores de um nó X são os filhos de X;

X é o pai dos filhos

Nó Pai	Nós Filhos
Α	B, C, D
В	E, F
С	G
D	H, I, J
E	K
F	-
G	-
Н	L
	-
J	-
K	-
L	-

Irmão

☐ Os filhos (descendentes) de um mesmo nó pai (antecessor) são denominados irmãos

Avô & Demais Parentes

□ Podemos estender essa terminologia para avô, bisavô, e demais parentes

Nós	Avô
E,F,G,H,I,J	Α
K	В
L	D

Nós	Bisavô
K, L	A

Caminho

- □ Uma seqüência de nós distintos v₁, v₂, ..., v_k tal que sempre existe a relação
 - "v_i é filho de v_{i+1}" ou "v_i é pai de v_{i+1}", 1 ≤ i < k
 é denominada um caminho entre v₁ e v_k
- □ Diz-se que v₁ alcança vk ou que vk é alcançado por v₁
- Um caminho de k vértices $v_1, v_2, ..., v_k$ é formado pela seqüência de k-1 pares de nós (v_1, v_2) , (v_2, v_3) , ..., (v_{k-2}, v_{k-1}) , (v_{k-1}, v_k)
 - k-1 é o comprimento do caminho
 - Cada par (v_i, v_{i+1}) é uma aresta ou arco, 1 ≤ i < k

Caminho

■ No Exemplo:

- A, D, H, L é um caminho entre A e L, formando pela seqüência de arestas (A,D), (D,H), (H,L)
- O comprimento do caminho entre A e L é 3

Antecessores

- □ Os antecessores (antepassados) de um nó são todos os nós no caminho entre a raiz e o respectivo nó
- No exemplo, os antecessores de L são A, D e H

Nível

- □ O nível (ou profundidade) de um nó é definido admitindo-se que a raiz está no nível zero (nível um)
- ☐ Estando um nó no nível i, seus filhos estarão no nível i+1
- Não existe um padrão quanto ao nível adotado para a raiz, que determina o nível dos demais nós
- ☐ Assim, a raiz pode ser admitida como estando
 - No nível zero
 - Alternativamente, no nível um
- No restante desta apresentação, vamos adotar a raiz no nível zero
 - A adequação das fórmulas e algoritmos caso a raiz seja considerada no nível um é deixada como exercício

Nível

- No exemplo, os nós:
 - B, C e D estão no nível 1
 - K e L estão no nível 3

Altura de um Nó

- ☐ A altura de um nó é o número de arestas no maior caminho desde o nó até um de seus descendentes
- ☐ Portanto, as folhas têm altura zero
- No exemplo, os nós:
 - K, F, G, L, I, J têm altura 0
 - E, C e H têm altura 1
 - B e D têm altura 2
 - A tem altura 3

Altura de uma Árvore

☐ A altura (ou profundidade) de uma árvore é o nível máximo entre todos os nós da árvore ou, equivalentemente, é a altura da raiz

No exemplo, a árvore possui altura 3

Número Máximo de Nós

- O número máximo de nós n(h,d) em uma árvore de altura h é atingido quando todos os nós possuírem d subárvores, exceto os de nível h, que não possuem subárvores
- □Para uma árvore de grau d
 - Nível 0 contém d⁰ (um) nó (raiz)
 - Nível 1 contém d¹ descendentes da raiz
 - Nível 2 contém d² descendentes
 - ...
 - Nível i contém di descendentes

Número Máximo de Nós

- ☐ Assumindo d=3
 - Nível 0: 1 nó (raiz)
 - Nível 1: 3 nós
 - Nível 2: 3² = 9 nós
 - Nível 3: 3³ = 27 nós
- \square n(3,3)= 1 + 3 + 9 + 27 = 40 nós

Número Máximo de Nós

□Portanto, o número máximo de nós n=n(h,d) é soma do número de nós em cada nível, ou seja:

$$n = n(h,d) = \sum_{i=0}^{h} d^{i} = d^{0} + d^{1} + d^{2} + \dots + d^{h}$$

$$\sum_{i=0}^{h} d^{i} = \frac{d^{h+1} - 1}{d - 1}, \ d > 1$$

25

Árvores (Perfeitamente) Balanceadas

- Uma árvore é balanceada se, para cada nó, a altura de suas subárvores diferem, no máximo, de uma unidade
- □Uma árvore é perfeitamente balanceada se, para cada nó, os *números de nós* em suas subárvores diferem, no máximo, de uma unidade
- ☐ Todas as árvores perfeitamente balanceadas também são árvores balanceadas

Árvores Perfeitamente Balanceadas de Grau 2

Árvores Balanceadas de Grau 2

