

COLLEGE OF ENGINEERING
SCHOOL OF AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

AAE 666: NONLINEAR DYNAMICS, SYSTEMS, AND CONTROL

HW6

Professor:
Martin Corless
Purdue AAE Professor

Student: Tomoki Koike Purdue AAE Senior

Table of Contents

1	Exercise 1	2
2	Exercise 2	4
3	Exercise 3	7
4	Exercise 4	11

Prove the following result: Suppose there exists a positive-definite symmetric matrix P and a positive scalar α which satisfy

$$PA_1 + A_1^T P + 2\alpha P \le 0$$

 $PA_2 + A_2^T P + 2\alpha P \le 0$

where $A_1 := A_0 + a\Delta A$ and $A_2 := A_0 + b\Delta A$. Then system

$$\dot{x} = A(x)x$$

$$A(x) = A_0 + \psi(x)\Delta A$$

$$a \le \psi(x) \le b$$

is globally exponentially stable about the origin with rate of convergence α .

Solution:

As a candidate Lyapunov function for GES we consider $V(x) = x^T P x$. Then,

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x}
= 2x^T P \dot{x}
= 2x^T P (A_0 + \psi(x) \Delta A) x
= 2x^T P A_0 x + 2x^T P \psi(x) \Delta A x
= 2x^T (P A_0) x + 2x^T (P \Delta A) x \psi(x).$$

Now the upper bound of $\psi(x)$ can be a or b so

$$\dot{V} = 2x^{T}(PA_{0})x + 2x^{T}(P\Delta A)x\psi(x)$$

$$= 2x^{T}P(A_{1} - a\Delta A)x + 2x^{T}(P\Delta A)xa$$

$$= 2x^{T}(PA_{1})x - 2ax^{T}(P\Delta A)x + 2ax^{T}(P\Delta A)x$$

$$= 2x^{T}(PA_{1})x$$

$$= x^{T}(PA_{1} + A_{1}^{T}P)x.$$

Similarly, if $\psi(x) = b$

$$\dot{V} = x^T (PA_2 + A_2^T P)x.$$

We are given that

$$PA_1 + A_1^T P + 2\alpha P \le 0$$

$$PA_2 + A_2^T P + 2\alpha P \le 0$$

and if this holds true for some positive-definite symmetric matrix P and a positive scalar α , we can say

$$PA_1 + A_1^T P \le -2\alpha_1 P$$

$$PA_2 + A_2^T P \le -2\alpha_2 P.$$

Thus, we obtain

$$\dot{V} = \begin{cases} x^T (PA_1 + A_1^T P) x \le -2\alpha_1 x^T P x \\ x^T (PA_2 + A_2^T P) x \le -2\alpha_2 x^T P x. \end{cases}$$

Hence,

$$\dot{V} = -2\alpha V.$$

This guarantees the system is GES with rate α .

What is the supremal value of $\gamma > 0$ for which Theorem 16 guarantees that the following system is guaranteed to be stable about the origin?

$$\dot{x}_1 = -2x_1 + x_2 + \gamma e^{-x_1^2} x_2$$
$$\dot{x}_2 = -x_1 - 3x_2 - \gamma e^{-x_1^2} x_1$$

Theorem 16 Suppose there exists a positive-definite symmetric matrix P which satisfies the following linear matrix inequalities:

$$PA_1 + A_1^T P < 0$$
$$PA_2 + A_2^T P < 0$$

Then system

$$\dot{x} = A(x)x$$

$$A(x) = A_0 + \psi(x)\Delta A$$

$$a \le \psi(x) \le b$$

is globally exponentially stable (GES) about the origin with Lyapunov matrix P.

Solution:

From the given system equation, we know that

$$A_0 = \begin{bmatrix} -2 & 1 \\ -1 & -3 \end{bmatrix}, \quad \Delta A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

and

$$\psi(x) = \gamma e^{-x_1^2} \quad .$$

Because of the negative exponential, we have

$$0 \le \gamma e^{-x_1^2} \le \gamma \quad .$$

Hence, a = 0 and $b = \gamma$,

$$A_1 := A_0 + a\Delta A = A_0$$

$$A_2 := A_0 + b\Delta A = A_0 + \gamma \Delta A .$$

From what we have defined, we can formulate LMI for the problem

$$PA_1 + A_1^T P < 0$$

$$PA_2 + A_2^T P < 0$$

$$P > I.$$

To solve this we run the LMI Toolbox commands in MATLAB and run it inside a loop where the gamma value is incremented by a small value (e.g. 0.0001). For each iteration we check if the following condition

$$V_1 = PA_1 + A_1^T P$$
$$V_2 = PA_2 + A_2^T P$$

then

$$V_1 = V_1^T$$
$$V_2 = V_2^T$$

and

all
$$eig(V_1) < 0$$

all $eig(V_2) < 0$.

Or this could be done by simply checking the tfeas to be less than 0.

The MATLAB code is as follows.

```
% AAE 666 HW6 Exercise 2
2
   % Tomoki Koike
   close all; clear all; clc;
4
   %%
5
   echo off;
6
   %gamma=1;
   gamma=2.6;
   A0 = [-2 \ 1; \ -1 \ -3];
   DelA = [0 1; -1 0];
9
10
   while true
11
        % Quadratic stability LMI of the problem
12
        A1 = A0;
        A2 = A0 + gamma*DelA;
13
14
15
        % Setup LMI
16
        setlmis([]);
17
        % Equation 1
18
        p=lmivar(1, [2,1]);
19
        lmi1=newlmi;
20
        lmiterm([lmi1,1,1,p],1,A1,'s');
21
        % Equation 2
22
        lmi2=newlmi;
23
        lmiterm([lmi2,1,1,p],1,A2,'s');
```

```
24
        % Equation 3
25
        Plmi= newlmi;
26
        lmiterm([-Plmi,1,1,p],1,1);
27
        lmiterm([Plmi,1,1,0],1);
        % Configure for solver
28
29
        lmis = getlmis;
        % Results
30
31
        [tfeas, xfeas] = feasp(lmis);
32
        P = dec2mat(lmis,xfeas,p);
33
34
        v1 = P*A1 + A1'*P;
35
        v2 = P*A2 + A2'*P;
36
        % Check symmetry
37
        cp11 = issymmetric(v1);
38
        cp12 = issymmetric(v2);
39
        cp1 = cp11 \& cp12;
40
        % Check negative eigenvalues
        cp21 = all(eig(v1) < 0);
41
42
        cp22 = all(eig(v2) < 0);
43
        cp2 = cp21 \& cp22;
        % Check if the conditions are negative definite
44
45
        if ~(cp1 && cp2)
46
            break;
47
        end
        % Increment gamma value
48
49
        gamma = gamma + 0.0001;
50
   end
```

The supremal γ value gave the following results for the LMI

```
\gamma_{max} = \infty
```

The code keeps on running infinitely and we cannot find a supremal value.

Consider the pendulum system example of 119 with $\gamma = 1$. Obtain the largest rate of exponential convergence that can be obtained using the results of Exercise 31 and LMI toolbox.

Example 119 Inverted pendulum under linear feedback. Consider an inverted pendulum under linear control described by

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -2x_1 - x_2 + \gamma \sin x_1 \\ \gamma &> 0 \end{split}$$

This system can be described by

$$\dot{x} = A(x)x$$

$$A(x) = A_0 + \psi(x)\Delta A$$

$$a \le \psi(x) \le b$$

with

$$A_0 = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}, \quad \Delta A = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$$

and

$$\psi(x) = \begin{cases} \gamma \sin x_1 / x_1 & \text{if } x_1 \neq 0 \\ \gamma & \text{if } x_1 = 0 \end{cases}$$

Since $|\sin x_1| \le |x_1|$, we have

$$-\gamma \le \psi(x) \le \gamma.$$

hence $a = -\gamma$ and $b = \gamma$.

Solution:

To solve for the possible largest rate of convergence, α we have to change the MATLAB LMI code accordingly to

$$\begin{split} PA_1 + A_1^T P + 2\alpha P &\leq 0 \\ PA_2 + A_2^T P + 2\alpha P &\leq 0 \\ P &> I \end{split} .$$

And then we will iterate over the code to find the α using the following conditions

$$V_1 = PA_1 + A_1^T P + 2\alpha P$$
$$V_2 = PA_2 + A_2^T P + 2\alpha P$$

then

$$V_1 = V_1^T$$
$$V_2 = V_2^T$$

and

all
$$eig(V_1) \le 0$$

all $eig(V_2) \le 0$.

Or this could be done by simply checking the tfeas to be less than 0.

The MATLAB code is as follows.

```
% AAE 666 HW6 Exercise 3
   % Tomoki Koike
   close all; clear all; clc;
 4
   %%
 5
   echo off;
 6
   gamma=1;
   A0 = [0 \ 1; -2 \ -1];
   DelA = [0 \ 0; \ 1 \ 0];
 9
   alpha = 0.1
10
   while true
11
        % Quadratic stability LMI of the problem
12
        A1 = A0 - gamma*DelA;
13
        A2 = A0 + gamma*DelA;
14
15
        % Setup LMI
        setlmis([]);
16
17
        % Equation 1
18
        p=lmivar(1, [2,1]);
19
        lmi1=newlmi;
20
        lmiterm([lmi1,1,1,p],1,A1,'s');
21
        lmiterm([lmi1,1,1,p],2*alpha,eye(2));
22
        % Equation 2
23
        lmi2=newlmi;
24
        lmiterm([lmi2,1,1,p],1,A2,'s');
25
        lmiterm([lmi2,1,1,p],2*alpha,eye(2));
26
        % Equation 3
27
        Plmi= newlmi;
28
        lmiterm([-Plmi,1,1,p],1,1);
29
        lmiterm([Plmi,1,1,0],1);
30
        % Configure for solver
31
        lmis = getlmis;
```

```
32
        % Results
33
        [tfeas, xfeas] = feasp(lmis);
34
        P = dec2mat(lmis,xfeas,p);
35
36
        v1 = P*A1 + A1'*P + 2*alpha*P;
        v2 = P*A2 + A2'*P + 2*alpha*P;
37
38
        % Check symmetry
39
        cp11 = issymmetric(v1);
40
        cp12 = issymmetric(v2);
41
        cp1 = cp11 \& cp12;
42
        % Check negative eigenvalues
43
        cp21 = all(eig(v1) \le 0);
44
        cp22 = all(eig(v2) \le 0);
45
        cp2 = cp21 \& cp22;
        % Check if the conditions are negative semi—definite
46
47
        if ~(cp1 && cp2)
48
            alpha = alpha - 0.0001;
49
            break:
50
        end
51
        % Increment gamma value
52
        alpha = alpha + 0.0001;
53
   end
54
55
56 | setlmis([]);
57 % Equation 1
58 | p=lmivar(1, [2,1]);
59 | lmi1=newlmi;
60 | lmiterm([lmi1,1,1,p],1,A1,'s');
61 | lmiterm([lmi1,1,1,p],2*alpha,eye(2));
62 % Equation 2
63 | lmi2=newlmi;
64 | lmiterm([lmi2,1,1,p],1,A2,'s');
65 | lmiterm([lmi2,1,1,p],2*alpha,eye(2));
66 % Equation 3
67 | Plmi= newlmi;
68 | lmiterm([—Plmi,1,1,p],1,1);
69 | lmiterm([Plmi, 1, 1, 0], 1);
70 % Configure for solver
71 | lmis = getlmis;
72 % Results
73 [tfeas, xfeas] = feasp(lmis);
74 \mid P = dec2mat(lmis,xfeas,p);
```

This MATLAB computation gave us the following result.

The largest convergence rate of

$$\alpha_{max} = 0.1220$$

where tfeas = -0.0014 and corresponding Lyapunov matrix is

$$P = \begin{pmatrix} 207.3728 & 51.9072 \\ 51.9072 & 103.6427 \end{pmatrix} .$$

We can verify this by using the gevp command that solves a generalized eigenvalue minimization problem. The MATLAB code is as follows.

```
close all; clear all; clc;
2
   gamma=1;
   A0 = [0 \ 1; -2 \ -1];
   DelA = [0 0; 1 0];
 4
6
   % Quadratic stability LMI of the problem
   A1 = A0 - gamma*DelA;
   A2 = A0 + gamma*DelA;
9
10
   setlmis([]);
11
   p = lmivar(1, [2 1]);
12
13
   lmiterm([1 1 1 0], 1); % P > I : I
   lmiterm([-1 \ 1 \ 1 \ p], \ 1, \ 1); \ % P > I : P
14
   lmiterm([2 1 1 p], A1, 1, 's'); % LFC#1 {lhs)
15
   lmiterm([-2 1 1 p], 2, 1); % LFC#1 (rhs)
16
17
   lmiterm([3 1 1 p], A2, 1, 's'); % LFC#2 {lhs)
18
   lmiterm([-3 1 1 p], 2, 1); % LFC#2 (rhs)
19
   lmis = getlmis;
20
21
   % Results
   [alpha, popt] = gevp(lmis,2);
```

This code gives us

$$\lambda = -0.1220$$

which means

$$\alpha_{max} = -\lambda = 0.1220$$

This agrees with results obtain from the iterative approach we took in the first MATLAB code. Thus the α_{max} value is correct.

Consider the double inverted pendulum described by

$$\ddot{\theta}_1 + 2\dot{\theta}_1 - \dot{\theta}_2 + 2k\theta_1 - k\theta_2 - \sin\theta_1 = 0$$
$$\ddot{\theta}_2 - \dot{\theta}_1 + \dot{\theta}_2 - k\theta_1 + k\theta_2 - \sin\theta_2 = 0$$

Using the results of Theorem 17, obtain a value of the spring constant k which guarantees that this system is globally exponentially stable about the zero solution.

Theorem 17 Suppose there exists a positive-definite symmetric matrix P which satisfies the following linear matrix inequalities:

$$PA + A^T P < 0 \quad \forall A \text{ in } A$$

Then system

$$\dot{x} = A(x)x$$

$$A(x) = A_0 + \psi_1(x)\Delta A_1 + \psi_l(x)\Delta A_l$$

$$a_i \le \psi_i(x) \le b_i$$

is globally exponentially stable about the origin with Lyapunov matrix P.

Solution:

The given system equations can be modified as

$$\ddot{\theta}_1 = -2\dot{\theta}_1 + \dot{\theta}_2 - 2k\theta_1 + k\theta_2 + \sin\theta_1$$

$$\ddot{\theta}_2 = \dot{\theta}_1 - \dot{\theta}_2 + k\theta_1 - k\theta_2 + \sin\theta_2$$

In space-state representation it becomes

$$\begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2k & k & -2 & 1 \\ k & -k & 1 & -1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \sin \theta_1 \\ \sin \theta_2 \end{bmatrix}$$

Now if we define $x_1 := \theta_1$, $x_2 := \theta_2$, $x_3 := \dot{\theta}_1$, and $x_4 := \dot{\theta}_2$, we can rewrite this as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \ddot{x}_3 \\ \ddot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2k & k & -2 & 1 \\ k & -k & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \sin x_1 \\ \sin x_2 \end{bmatrix}.$$

We structure the nonlinearity to be

$$\psi_1(x) = \sin x_1$$

$$\psi_2(x) = \sin x_2$$

and since

$$-1 \le \sin x_1 \le 1$$

$$-1 \le \sin x_2 \le 1$$

we can write the extreme matrices to be

$$A_{1} = A_{0} - \Delta A_{1} - \Delta A_{2}$$

$$A_{2} = A_{0} - \Delta A_{1} + \Delta A_{2}$$

$$A_{3} = A_{0} + \Delta A_{1} - \Delta A_{2}$$

$$A_{4} = A_{0} + \Delta A_{1} + \Delta A_{2}$$

where

Now we can find k value that guarantees stability by solving the following LMI problem

$$PA_{1} + A_{1}^{T}P < 0$$

$$PA_{2} + A_{2}^{T}P < 0$$

$$PA_{3} + A_{3}^{T}P < 0$$

$$PA_{4} + A_{4}^{T}P < 0$$

$$P > I$$

The following MATLAB code runs an iterative process to find the possible k value.

```
1 % AAE 666 HW6 Exercise 4
2 % Tomoki Koike
3 close all; clear all; clc;
4 %%
5 echo off;
6 %k = 1;
7 k = 17.9;
8 while true
9 % Quadratic stability LMI of the problem
10 A0 = [ 0 0 1 0;
```

```
11
                 0 0 0 1;
12
              -2*k k -2 1;
13
                 k - k 1 - 1;
        DelA1 = [0 \ 0 \ 0 \ 0;
14
15
                 0 0 0 0;
16
                 1 0 0 0;
17
                 0 0 0 0];
18
        DelA2 = [0 \ 0 \ 0 \ 0;
19
                 0 0 0 0;
20
                 0 0 0 0;
21
                 0 1 0 0];
22
        A1 = A0 - DelA1 - DelA2;
23
        A2 = A0 - DelA1 + DelA2;
24
        A3 = A0 + DelA1 - DelA2;
25
        A4 = A0 + DelA1 + DelA2;
26
27
        % Setup LMI
28
        setlmis([]);
29
        % P matrix
30
        p=lmivar(1, [4,1]);
31
        % Equation 1
32
        lmi1=newlmi;
33
        lmiterm([lmi1,1,1,p],1,A1,'s');
34
        % Equation 2
35
        lmi2=newlmi;
36
        lmiterm([lmi2,1,1,p],1,A2,'s');
37
        % Equation 3
38
        lmi2=newlmi;
39
        lmiterm([lmi2,1,1,p],1,A3,'s');
40
        % Equation 4
41
        lmi2=newlmi;
42
        lmiterm([lmi2,1,1,p],1,A4,'s');
43
        % Equation 5
44
        Plmi= newlmi;
45
        lmiterm([-Plmi,1,1,p],1,1);
46
        lmiterm([Plmi,1,1,0],1);
47
        % Configure for solver
48
        lmis = getlmis;
49
        % Results
        [tfeas, xfeas] = feasp(lmis);
50
51
        P = dec2mat(lmis,xfeas,p);
52
53
        v1 = P*A1 + A1'*P;
54
        v2 = P*A2 + A2'*P;
        v3 = P*A3 + A3'*P;
55
```

```
56
        v4 = P*A4 + A4'*P;
57
        % Check symmetry
58
        cp11 = issymmetric(v1);
        cp12 = issymmetric(v2);
59
60
        cp13 = issymmetric(v3);
        cp14 = issymmetric(v4);
61
        cp1 = cp11 \& cp12 \& cp13 \& cp14;
62
        % Check negative eigenvalues
63
64
        cp21 = all(eig(v1) < 0);
65
        cp22 = all(eig(v2) < 0);
66
        cp23 = all(eig(v3) < 0);
        cp24 = all(eig(v4) < 0);
67
        cp2 = cp21 \& cp22 \& cp23 \& cp24;
68
69
        % Check tfeas to be negative
        cp3 = tfeas < 0;
70
71
        % Check if the conditions are negative definite
72
        cp = cp1 \& cp2 \& cp3
73
        % Check if the conditions are negative definite
74
        if cp
75
            break;
76
        end
77
        % Increment gamma value
78
        %k = k + 0.1;
79
        k = k + 0.0001;
80
   end
```

As a result, we obtain the minimal spring constant k that guarantees that this system is GES about the zero solution to be

k = 18.0398

with a corresponding P matrix of

$$P = \begin{bmatrix} 7.1787e + 03 & -1.9663e + 03 & 53.2057 & 35.5866 \\ -1.9663e + 03 & 5.2124e + 03 & 35.5862 & 88.7925 \\ 53.2057 & 35.5862 & 288.9914 & 179.9061 \\ 35.5866 & 88.7925 & 179.9061 & 468.8980 \end{bmatrix}$$