Signals and Systems Homework 7 Due Time: 21:59 May 4, 2018 Submitted in-class on Thu (May 4), or to the box in front of SIST 1C 403E (the instructor's office).

- 1. (20 points) The following are discrete-time signals and Fourier transforms. Determine the signal/FT for each one.
 - (a) $x_1[n] = (\frac{1}{2})^{|n-1|}$
 - (b) $\sin(\frac{\pi}{3}n+\frac{\pi}{4})$ (Determine the Fourier transform for $-\pi \le \omega < \pi$. Hint: It's the Fourier transform for periodic signals).

(c)
$$X_1(jw) = \frac{e^{-jw} - \frac{1}{5}}{1 - \frac{1}{5}e^{-jw}}$$

(d)
$$X_2(jw) = \sum_{k=-\infty}^{+\infty} (-1)^k \delta(\omega - \frac{\pi}{2}k)$$

2. (15 points) Given that x[n] has Fourier transform X(jw), express the Fourier transforms of the following signals in the terms of X(jw).

(a)
$$x_1[n] = x[1-n] + x[-1-n]$$
.

(b)
$$x_2[n] = \frac{x^*[-n] + x[n]}{2}$$
.

(c)
$$x_3[n] = (n-1)^2 x[n]$$

3. (15 points) Let

$$y[n] = (\frac{\sin\frac{\pi}{4}n}{\pi n})^2 * (\frac{\sin\omega_c n}{\pi n})$$

where * denotes convolution and $|\omega_c n| \le \pi$. Determine a stricter constraint on $\omega_c n$, which ensures that

$$y[n] = (\frac{\sin\frac{\pi}{4}n}{\pi n})^2$$

4. (15 points) Let $x_1[n]$ be the discrete-time signal whose Fourier transform $X_1(jw)$ is depicted in Figure 1. Consider the signal $x_2[n]$ with Fourier transform $X_2(jw)$, as illustrated in Figure 2. Please express $x_2[n]$ in terms of $x_1[n]$.

Figure 1: The real and imaginary parts of the Fourier transform $X_1(jw)$

5. (15 points) Let $x[n] = e^{jwn}$ for $0 \le n < N$ and let X[k] be the DFT of x[n].

Figure 2: the Fourier transform $X_2(jw)$

- (a) Calculate a simplified expression for X[k] that is correct for any value of ω .
- (b) Calculate a simplified expression for X[k] when $\omega=2\pi m/N$ where m is an integer. And sketch a plot of $\mid X[k]\mid$
- 6. (20 points) Let x[n] be a signal of finite duration, that is, there is an integer N so that

$$x[n] = 0$$
 outside the interval $0 \le n \le N - 1$

The DFT of x[n] is denoted by X[k], and $X(j\omega)$ denote the Fourier transform of x[n].

(a) Show that

$$X[k] = \frac{1}{N} X(j(2\pi k/N))$$

(b) Let us consider samples of $X(j\omega)$ taken every $\frac{2\pi}{M}$, where M < N. These samples correspond to more than one sequence of duration N. To illustrate this, consider the two signals $x_1[n]$ and $x_2[n]$ depicted in Figure 3. Show that if we choose M=4, we have

$$X_1(2\pi k/4) = X_2(j(2\pi k/4))$$

for all values of k.

Figure 3: $x_1[n]$ and $x_2[n]$