23/05/2019 T - Permutation

T - Permutation

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 100 points

Problem Statement

Let N be a positive integer. You are given a string s of length N-1, consisting of < and >.

Find the number of permutations (p_1, p_2, \dots, p_N) of $(1, 2, \dots, N)$ that satisfy the following condition. modulo $10^9 + 7$:

• For each i ($1 \le i \le N-1$), $p_i < p_{i+1}$ if the i-th character in s is <, and $p_i > p_{i+1}$ if the i-th character in s is >.

Constraints

- N is an integer.
- $2 \le N \le 3000$
- s is a string of length N-1.
- s consists of < and >.

Input

Input is given from Standard Input in the following format:

N

S

Output

Print the number of permutations that satisfy the condition, modulo $10^9 + 7$.

Sample Input 1

Copy

<><

Sample Output 1

Сору

23/05/2019 T - Permutation

5

There are five permutations that satisfy the condition, as follows:

- (1,3,2,4)
- (1,4,2,3)
- (2,3,1,4)
- (2,4,1,3)
- (3,4,1,2)

Samp	le I	nput	2
------	------	------	---

Sample Output 2

1

Сору

There is one permutation that satisfies the condition, as follows:

• (1,2,3,4,5)

Sample Input 3

20

Сору

Sample Output 3

217136290

Copy

Be sure to print the number modulo $10^9 + 7$.