

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ по лабораторной работе № 3

		r	
Название	Алгоритмы сортировки		
Дисципли	на: Анализ алгоритмов		
Студент	ИУ7-55Б		Д.О. Склифасовский
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподоват	сель	Л.Л. Волкова	
		(Подпись, дата)	(И.О. Фамилия)

Оглавление

Bı	Введение					
1	Аналитическая часть					
	1.1	Сортировка пузырьком				
	1.2	Сортировка шейкером				
	1.3	Сортировка вставками				
	1.4	Вывод				
2	структорская часть					
	2.1	Разработка алгоритмов				
	2.2	Модель трудоемкости				
	2.3	Оценка трудоемкости алгоритмов сортировки				
		2.3.1 Сортировка пузырьком				

Введение

Цель работы: изучение алгоритмов сортировки массивов. В данной лабораторной работе рассматриваются 3 алгоритма:

- 1) сортировка пузырьком;
- 2) сортировка шейкером;
- 3) сортировка вставками.

Также требуется изучить рассчет сложности алгоритмов. В ходе лабораторной работы необходимо:

- 1) изучить алгоритмы сортировки;
- 2) дать теоритическую оценку сортировок пузырьком, шейкером и вставками;
- 3) реализовать три алгоритма сортировки на одном из языков программирования;
- 4) сравнить алгоритмы сортировки.

1 Аналитическая часть

В данном разделе представлено описание алгоритмов сортировки массивов.

1.1 Сортировка пузырьком

Сортировка пузырьком — один из самых известных алгоритмов сортировки. Здесь нужно последовательно сравнивать значения соседних элементов и менять числа местами, если предыдущее оказывается больше последующего. Таким образом элементы с большими значениями оказываются в конце списка, а с меньшими остаются в начале.

Этот алгоритм считается учебным и почти не применяется на практике из-за низкой эффективности: он медленно работает на тестах, в которых маленькие элементы (их называют «черепахами») стоят в конце массива. Однако на нём основаны многие другие методы, например, шейкерная сортировка и сортировка расчёской.

1.2 Сортировка шейкером

Шейкерная сортировка отличается от пузырьковой тем, что она двунаправленная: алгоритм перемещается не строго слева направо, а сначала слева направо, затем справа налево.

1.3 Сортировка вставками

При сортировке вставками массив постепенно перебирается слева направо. При этом каждый последующий элемент размещается так, чтобы он оказался между ближайшими элементами с минимальным и максимальным значением.

1.4 Вывод

Было представлено описание алгоритмов сортировки массивов. В основном все алгоритмы сортировок основаны на алгоритме сортировки пузырьком.

2 | Конструкторская часть

В данном разделе представлены съемы разработанных алгоритмов. Также оценивается трудоемкость алгоритмов.

2.1 Разработка алгоритмов

На рисунке 1 изображена схема алгоритма сортировки пузырьком.

Рисунок 1. Схема алгоритма сортировки пузырьком

На рисунке 2 изображена схема алгоритма сортировки шейкером.

Рисунок 2. Схема алгоритма сортировки шейкером

На рисунке 3 изображена схема алгоритма сортировки вставками.

Рисунок 1. Схема алгоритма сортировки вставками

2.2 Модель трудоемкости

Модель трудоемкости для оценки алгоритмов:

1) стоимость базовых операций единица:

$$=, +, *, \simeq, <, >, \ge, \le, ==, !=, [], +=, -=, *=, /=, ++, --;$$

2) стоимость цикла:

$$f_{for} = f_{init} + f_{comp} + M(f_{body} + f_{increment} + f_{comp})$$

Пример:
$$for(i=0, i < M; i++)/*body*/$$

Результат: $2 + M(2 + f_{body})$;

3) стоимость условного оператора

Пусть goto (переход к одной из ветвей) стоит 0, тогда

$$f_f = \left\{egin{array}{ll} min(f_A,f_B), & \mbox{лучший случай} \ max(f_A,f_B), & \mbox{худший случай} \end{array}
ight.$$

4) операция обращения к ячейки матрицы [i, j] имеет трудоёмкость равную двум.

2.3 Оценка трудоемкости алгоритмов сортировки

Оценим трудоемкость алгоритмов.

2.3.1 Сортировка пузырьком

Лучший случай (массив отсортирован):

$$2+1+1+2+(len-1)(1+2+)$$