

Final NLA Project Voice Gender Detection using Tensor Power Method MMODA Team:

Maxim Brazhnikov & Maxim Kuznetsov & Oleg Desheulin & Denis Rakitin & Anita Soloveva

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Problem Description

- ► Gender detection as one of the tasks of Speech Recognition, which has recently gained much popularity with the development of voice-based systems like Alexa, Siri and etc.
- ► Classical method for gender detection task is Gaussian Mixture Model (GMM) on Mel Frequency Cepstral Coefficients (MFCCs) (Neti & Roukos, 1997). Here we try another approach proposed by (Roy, Bhagath, & Das, 2020) which applies tensor power method to a tensor formed from MFCCs and compare this approach to GMM.

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Our goals

- ► Evaluate the accuracy of gender detection, perfomed by the approach proposed in (Roy et al., 2020), using different sizes of feature vectors, different number of eigenvectors, testing on two datasets:
 - ► TIMIT DR1 (New England dialect data)
 - ► SHRUTI (Bengali (minor Indo-Aryan language) data)

Additionally:

- ► Compare the performance with other approaches
- Test on our own Khanty (minor Finno-Ugric language) corpus

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Mel-frequency cepstral coefficients

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Tensor Formation

In order to build 3^{rd} order tensor we apply moment method.

$$m_1 = E[x] = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$M_2 = E[x \odot x] - \sigma^2 I$$

where σ^2 is the smallest eigenvalue of covariance matrix $\Sigma = \mathbb{E}[x\odot x] - m_1\odot m_1$ and M_2 can be decomposed as

$$M_2 = \sum_{i=1}^r w_i a_i \odot a_i \tag{1}$$

Naive approach is to calculate vectors a_i by eigendecomposition.

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Tensor Formation

To avoid problems with highly correlated components authors suggests to calculate M_3 rather then M_2 using formulation (Hsu & Kakade, 2013):

$$M_3 = \mathsf{E}[x \odot x \odot x] - \sigma^2 \sum_{i=1}^d (m_1 \odot e_i \odot e_i + \cdots + e_i \odot e_i \odot m_1)$$

And like M_2 can be decomposed onto eigenvalue decomposition, for M_3 it also exists in following form:

$$M_3 = \sum_{i=1}^r w_i a_i \odot a_i \odot a_i$$

Where a_i is our target eigenvectors of M_2 . Then eigenvectors of M_3 are also eigenvectors of M_2 .

Voice Gender Detection using Tensor Power Method MMODA Team:

Eigenvectors Computation

Similar to matrix eignevectors computation for tensors also exists Power Method:

$$a_{i,k+1} = \frac{A_i(I, a_{i,k}, a_{i,k})}{||A_i(I, a_{i,k}, a_{i,k})||_2}$$

And to project to next eigenvector space :

$$A_{i+1} = A_i - \lambda_i a_i \odot a_i \odot a_i$$

We apply this method to whitened M_3 and obtain our feature vectors.

Voice Gender Detection using Tensor Power Method

Maxim
Brazhnikov &
Maxim
Kuznetsov
& Oleg
Desheulin &
Denis Rakitin &

Anita Soloveva

Evaluation

During training stage we found k dominant eigenvectors for both A_f (female) and A_m (male) dataset.

Then distances $D_{f,m}$ between unknown feature vector $x_i \in \mathbb{R}^n$ and eigenvectors $a_{\{f,m\};k}$ of each dataset A_f and A_m is calculated as:

$$D_{\{f,m\}} = \sum_{i=1}^{N} \min_{k} d(a_{\{f,m\};k}, x_i)$$
 (2)

$$d(x,y) = 1 - \frac{(x,y)^2}{(x,x)(y,y)}$$
 (3)

After than we compare D_m and D_f and choose the lowest distance to determine gender of the speaker.

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Results with different sizes of feature vectors

Size	Female accuracy	Male accuracy	Total accuracy
13	0.694	0.897	0.796
20	0.810	0.841	0.825
26	0.828	0.852	0.840

Table: Accuracy on Khanty dataset with 1 eigenvector.

Size	Female accuracy	Male accuracy	Total accuracy
13	0.992	0.777	0.884
20	0.989	0.919	0.954
26	0.989	0.953	0.971

Table: Accuracy on SHRUTI dataset with 1 eigenvector.

Tables are represent dependence of accuracy on size of feature vector.

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Results with different number of eigenvectors

#	Female accuracy	Male accuracy	Total accuracy
1	0.871	0.822	0.847
2	0.835	0.851	0.843
4	0.828	0.852	0.840

Table: Accuracy on Khanty dataset with 26-size feature vector.

The tables is represent dependence of accuracy on the number of eigenvectors.

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

Comparison to other approaches

Method	Female accuracy	Male accuracy	Total accuracy
Article	0.871	0.822	0.847
Naive	0.802	0.856	0.829
GMM	0.968	0.914	0.945

Table: Accuracy on Khanty dataset with the best choice of number of eigenvectors and size of feature vectors

Final NLA Project Voice Gender Detection using Tensor Power Method MMODA Team:

Team Member contribution

- ► Maxim Brazhnikov: theoretical part, model building, presentation, report
- ► Maxim Kuznetsov: model testing, results analysis, presentation, report
- Oleg Desheulin: theoretical part, model building, presentation, report
- Denis Rakitin: model building, model testing, presentation, report
- Anita Soloveva: data preprocessing, model testing, presentation, report

Our GitHub repository

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

References

- Hsu, D. J., & Kakade, S. M. (2013). Learning mixtures of spherical gaussians: moment methods and spectral decompositions. In *Itcs* '13.
- Neti, C., & Roukos, S. (1997). Phone-context specific gender-dependent acoustic-models for continuous speech recognition. 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings, 192-198.
- Roy, P., Bhagath, P., & Das, P. (2020). Gender detection from human voice using tensor analysis. In *Proceedings of the 1st joint workshop on spoken language technologies for under-resourced languages (sltu) and collaboration and computing for under-resourced languages (ccurl)* (pp. 211–217).

Final NLA Project
Voice Gender
Detection using
Tensor Power
Method
MMODA Team:

