國立成功大學

工程科學系

112 學年度第二學期 電子學實驗課程

第十二實驗報告

工程科學系 2 年級 E94114073 張哲維

繳交日期: 2023/6/4

一、 實驗目的

- 1. 觀測場效電晶體 (FET) 的特性曲線,瞭解其工作原理。
- 2. 認識不同的場效電晶體偏壓電路。
- 3. 以場效電晶體導通與截止的工作特性來實現類比開關。

二、實驗步驟

- 1. 場效電晶體特性曲線之量測:
 - i. V_i 為正弦波,ch1 鉤 A 點、ch2 鉤 V_O點,示波器調 X-Y 檔
 - ii. 觀察特性曲線及波型
 - iii. 說明電路原理
- 2. 場效電晶體之偏壓:

A. Without Rs:

- i. 調整 V_R 讓 $V_{GS} = -0.5V_{CC}$,紀錄 $V_R \times V_{GSQ} \times I_{DQ} \times V_{DS}$
- ii. 用烙鐵接觸電晶體,觀察變化
- iii. 說明電路工作原理
- B. WithRs:
 - i. 重複 A 實驗的步驟

3. 開關電路:

- i. 令 V_i 為正弦波、 V_C 為方波,並將 ch1 鉤住 V_i 、ch2 鉤住 V_O
- ii. 說明電路工作原理

三、 實驗結果

1. 場效電晶體特性曲線之量測:

工作原理:

特性曲線為 I_D 和 V_{GS} 的關係圖,所以透過定不同的 V_I (使用正弦波),讓 Drain 端電壓產生改變,搭配 $1K\Omega$ 電阻的電壓(I_D*1K) 和 X-Y 檔位形成此曲線。

2. 場效電晶體之偏壓:

A. Without Rs:

當 $V_{GS} = -0.5VCC \cdot V_D = 12.03V \cdot I_G = 0A \cdot$

可變電阻的阻值為 9.9KΩ

加熱 MOS 的時候會讓 V_D 電壓持續上升。

B. With R_S

加熱 MOS 時 VD 電壓不太會改變

工作原理:

當 $V_p = V_{GS}$ 則 $i_D = 0$ 為截止區,而加入 R_S 會讓熱漂移的影響減到 最低,如果沒有 R_S 則溫度上升 $\rightarrow i_D$ 下降 $\rightarrow Q$ 會變 而有 R_S 則溫度上升 $\rightarrow i_D$ 下降 $\rightarrow V_{GS}$ 上升 $\rightarrow Q$ 不變

3. 開關電路:

正弦波切方波(正弦波速度快)

方波切正弦波(方波速度快)

工作原理:

當 V_C = -10V → V_{GS} < -5 → diode on

當 $V_C = 10V \rightarrow \text{diode off} \rightarrow V_{GS} = 0$, $I_D = I_{DS}$

FET D-S 導通 → V_O = V_S

四、 問題與討論

在場效電晶體特性曲線之量測中,將波行產生器加上 offset 比較好觀察 X-Y 檔的圖形,否則可能過高無法看到完整圖像。

在場效電晶體之偏壓實驗中,需要用到烙鐵去接觸 MOS。接觸最好是接在黑色外殼的部分,且不要長時間接觸,否則 MOS 可能會燒壞。

五、 心得

這次實驗的電路因為有設計的問題導致實驗無法達到理想的結果, 不過該有特性都有做出來,其中最後一個電路是我覺得最有趣的, 可以透過改變兩個輸入電壓的頻率,去切出開關電路的波型。