DBMS Week 5 TA Session

Redundancy

- Having multiple copies of same data in the database
- It leads to anomalies

Anomaly

 Inconsistencies that can arise due to data changes in a database with insertion, deletion, and update

Types of Anomalies

- Insertions Anomaly
- Deletion Anomaly
- Update Anomaly

Redundancy and Anomaly

- Redundancy

 Anomaly
- Dependency

 Redundancy
- Good Decomposition

 Minimization of Dependency
- Normalization

 Good Decomposition

Functional Dependencies

- It is a relationship between two sets of attributes.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes
- Let R be a relational schema, $\alpha \subseteq R$ and $\beta \subseteq R$
- The functional dependencies or **FD** is $\alpha \to \beta$ holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2 of r agree on the attributes α , they also agree on the attributes β .

$$t1[\alpha] = t2[\alpha] \implies t1[\beta] = t2[\beta]$$

StudentID	Semester	Lecture	TA
1234	6	Numerical methods	John
1221	4	Numerical methods	Smith
1234	6	Visual computing	Bob
1201	2	Numerical methods	Peter
1201	2	Physics II	Simon

- StudentID \rightarrow Semester
- {StudentID, Lecture} \rightarrow TA
- {StudentID, Lecture} \rightarrow {TA, Semester}

Trivial Dependencies

- A functional dependency is trivial if it satisfies below condition
- $\alpha \to \beta$ is trivial if $\beta \subseteq \alpha$

Example

- ID, name \rightarrow ID
- name \rightarrow name

Note

- ullet Relationship between a set functional dependencies F and its closure F^+
- ullet $F\subset F^+$

Armstrong's Axioms

- **Reflexivity**: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- Augmentation: if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- Transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$

- Union: if $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds
- **Decomposition:** if $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds
- Pseudotransitivity: if lpha oeta holds and $\gammaeta o\delta$ holds, then $lpha\gamma o\delta$ holds

Closure of Attribute set

• The set of all those attributes which can be functionally determined from an attribute set is called as a closure of that attribute set.

Example

Consider a R(A,B,C,G,H,I) and $FD=\{A o B,G o CH,BC o GI\}$

- $(AC)^+ = AC$
- $(AC)^+ = ACB$
- $(AC)^+ = ACBGI$
- $(AC)^+ = ACBGIH$

Candidate Key

A set of minimal attributes that uniquely identifies a tuple/row

Super Key

Super set of any candidate key is Super Key

Prime Attribute

Attributes that are present in the candidate key is prime attribute

Note

- Every Candidate key is a Super Key, $C.K \subseteq S.K$
- If closure of any attribute covers all the attributes in a relation, then it is a SuperKey and if it is minimal, then it is called Candidate key

Formula's to find maximum number of Super Keys

- N attributes, only 1 candidate key(by single attribute) = 2^{N-1}
- N attributes,1 candidate key formed k by attributes = 2^{N-k}
- ullet N attributes, each attribute is a candidate key = 2^N-1

- N attributes, 2 different candidate key(formed by one or many attribute)
 - Maximum number of super keys = (S.K with A1) + (S.K with A2) (S.K with both A1 and A2)
 - \circ Max no of Super Keys = $2^{N-m} + 2^{N-n} 2^{N-(m+n)}$

studentInfo{enrollment_num, class, section, roll, name}.

{enrollment_num} and {class, section, roll} are two possible candidate keys.

What is the maximum number of possible superkeys of studentInfo?

• Max no of Super Keys = $2^{N-m} + 2^{N-n} - 2^{N-(m+n)}$

$$= 2^{5-1} + 2^{5-3} - 2^{5-(1+3)}$$

$$= 2^4 + 2^2 - 2^1$$

$$= 16 + 2 - 2$$

$$= 18$$

Extraneous Attribute

An attribute of a functional dependency is said to be extraneous if we can remove
it without changing the closure of the set of functional dependencies

Let's consider $\alpha \to \beta$

- 1. If $X \in \alpha$, $(\alpha X)^+$ contains β , then it is extraneous attribute.
- 2. If $X \in \beta$, Compute α^+ using $F' = (F \{\alpha \to beta\}) \cup (\alpha \to (\beta X))$, if α^+ contains X, then it is extraneous attribute.

Example for 1st condition

•
$$F = \{A \rightarrow B, AB \rightarrow C\}$$

Let's check B for is an extraneous attribute or not

Now,
$$F^{'}=\{A
ightarrow B,A
ightarrow C\}$$
 $(AB-B)^{+}$ = A^{+} = ABC

We got B attribute after taking an closure.

... B is an extraneous attribute

Example for 2nd condition

•
$$F = \{A \rightarrow BC, AB \rightarrow CD\}$$

Let's check C for is an extraneous attribute or not

Now,
$$F^{'}=\{A \rightarrow BC, AB \rightarrow D\}$$

$$(AB)^{+}=AB^{+}=ABCD$$

We got C attribute after taking an closure.

... C is an extraneous attribute

Canonical Cover

• A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number of dependencies

Steps to find an canonical cover

- 1. Write all single attributes on right hand side
- 2. Remove redundant functional dependencies by Armstrong axioms
- 3. Remove extraneous attributes

$$F = \{A \rightarrow BC, A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

$$A o B$$
, $A o C$

A-->B (by redundancy)

$$B \rightarrow C$$

A-->BC (by redundancy, extraneous attribute)

Canonical cover is A o B, B o C

Equivalence of Functional Dependency

- 1. F covers G $G \subseteq F^+$
 - All relation should satisfy on G while taking the closure of F
- 2. G covers F $F\subseteq G^+$
 - All relation should satisfy on F while taking the closure of G

If it satisfies both F is equivalent to G

$$F1 = \{P
ightarrow Q, Q
ightarrow R, R
ightarrow P\} \ F2 = \{P
ightarrow R, Q
ightarrow R, R
ightarrow Q\}$$

Let's check F1 covers F2

Taking Closure on F1

- $P^+ = PQR$
- $Q^+ = QRP$
- $R^+ = RPQ$

F1 covers F2 because by taking the closure on F1, all the relation satisfies on F2

Example (continued)

$$F1 = \{P
ightarrow Q, Q
ightarrow R, R
ightarrow P\}$$
 $F2 = \{P
ightarrow R, Q
ightarrow R, R
ightarrow Q\}$

Let's check F2 covers F1

Taking Closure on F2

- $P^+ = PQR$
- $Q^+ = QR$
- $R^{+} = RQ$

F2 not covers F1 because by taking the closure on R, it's not able satisfy the dependency $R \to P$ on F1

Loseless Join Decomposition

• Original relation decomposed into smaller relations in such a way that it can be reconstructed through natural joins without any loss of information

- $R_1 \bowtie R_2 = R$
- $R_1 \cap R_2 \neq \phi$
- $R_1 \cup R_2 = R$
- $R_1 \cap R_2 \rightarrow R_1 \ or \ R_2$

• If all the above conditions satisfies, then it's a loseless decompostion

A relation R(A,B,C,D) with functional dependencies $FD=\{A \to B, B \to C, C \to D\}$ is decomposed into three relations as follows:

- $R_1 \cup R_2 \cup R_3 = R$
- $R_1 \cap R_2 = B$
- $B^+ = BCD$ (R_2 relation)

- Now, $R_{12}(A, B, C)$
- $R_{12} \cap R_2 = C$
- $C^+ = CD$ (R_3 relation)

Dependency Preservation

- When a relation is decomposed, it is important to ensure that functional dependencies that held in original relation still maintained.
- It helps to prevent anomalies and ensures data integrity
- ullet $F\subseteq F^+$, F^+ should preserve all dependency in F

Note

• Loseless Decompostion and Dependency preservation are independent to each other.

A relation R(A,B,C,D) with functional dependencies $FD=\{A o B,B o C,C o D,D o A\}$ is decomposed into three relations as follows:

$$R1(A,B),R2(B,C),R3(C,D)$$
 $F_1=\{A o B,B o A\}$ based on R_1 $F_2=\{B o C,C o B\}$ based on R_2 $F_3=\{C o D,D o C\}$ based on R_3

Example (Continued)

$$F^+=F_1\cup F_2\cup F_3$$
 $F^+=\{A o B, B o A, B o C, C o B, C o D, D o C\}$

Now, D o A is missing F^+

Let's take D^+ closure on F^+

$$D^+ = DCBA$$

 $\therefore D \to A$ dependency is preserved after decomposing it.