Design and Analysis of Algorithm

Greedy Methods (Minimum Spanning Tree)

Lecture - 65-66

Overview

- A greedy algorithm always makes the choice that looks best at the moment. (i.e. it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution).
- The objective of this section is to explores optimization problems that are solvable by greedy algorithms.

- In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions.
- Algorithms for optimization problems typically go through a sequence of steps, with a set of choices at each step.
- Many optimization problems can be solved using a greedy approach.
- Greedy algorithms are simple and straightforward.

- A greedy algorithm always makes the choice that looks best at the moment.
- That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
- Greedy algorithms do not always yield optimal solutions, but for many problems they do.
- This algorithms are easy to invent, easy to implement and most of the time provides best and optimized solution.

- Application of Greedy Algorithm:
 - A simple but nontrivial problem, the activityselection problem, for which a greedy algorithm efficiently computes a solution.
 - In combinatorics, (a branch of mathematics), a 'matroid' is a structure that abstracts and generalizes the notion of linear independence in vector spaces. Greedy algorithm always produces an optimal solution for such problems. Scheduling unit-time tasks with deadlines and penalties is an example of such problem.

- Application of Greedy Algorithm:
 - An important application of greedy techniques is the design of data-compression codes (i.e. Huffman code).
 - The greedy method is quite powerful and works well for a wide range of problems. They are:
 - Minimum-spanning-tree algorithms
 - (Example: Prims and Kruskal algorithm)
 - Single Source Shortest Path.

(Example: Dijkstra's and Bellman ford algorithm)

- Application of Greedy Algorithm:
 - A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems.
 - This property is a key ingredient of assessing the applicability of dynamic programming as well as greedy algorithms.
 - The subtleties between the above two techniques are illustrated with the help of two variants of a classical optimization problem known as knapsack problem. These variants are:
 - 0-1 knapsack problem (Dynamic Programming)
 - Fractional knapsack problem (Greedy Algorithm)

- Problem 4: Minimum Spanning Tree problem
 - Spanning Tree
 - A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph
 - Minimum Spanning Tree
 - Spanning tree with the minimum sum of weights

- Problem 4: Minimum Spanning Tree problem
 - Problem Definition
 - A town has a set of houses and a set of roads.
 - A road connects 2 and only 2 houses.
 - A road connecting houses u and v has a repair cost w(u,v)

Goal:

- Repair enough roads such that
 - 1. everyone stays connected: can reach every house from all other houses, and
 - 2. total repair cost is minimum.

- Problem 4: Minimum Spanning Tree problem
 - Graph model for MST
 - Undirected graph $G = \langle V, E \rangle$
 - Weight w(u, v) on each edge $(u, v) \in E$.
 - Find T ⊆ E such that
 - 1. T connects all vertices (T is a spanning tree), and
 - 2. $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

Properties of an MST:

- It has |V| 1 edges.
- It has no cycles.
- It might not be unique

- Problem 4: Minimum Spanning Tree problem
 - Generic MST Algorithm

```
GENERIC-MST (G, w)
A = \emptyset;
while A is not a spanning tree
find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

- Problem 4: Minimum Spanning Tree problem
 - Generic MST Algorithm

```
GENERIC-MST (G, w)
A = \emptyset;
while A is not a spanning tree
find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

return A

Use the loop invariant to show that this generic algorithm works.

- **Initialization:** The empty set trivially satisfies the loop invariant.
- Maintenance: Since we add only safe edges, A remains a subset of some MST.
- **Termination:** All edges added to A are in an MST, so when we stop, A is a spanning tree that is also an MST.

- Problem 4: Minimum Spanning Tree problem
 - Kruskal's Algorithm
 - Concept and Examples
 - Prim's Algorithm
 - Concept and Examples

- Problem 4: Minimum Spanning Tree problem
 - Kruskal's Algorithm
 - Concept and Examples
 - Prim's Algorithm
 - Concept and Examples

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm
 - Kruskal's Algorithm is a famous greedy algorithm.
 - It is used for finding the Minimum Spanning Tree (MST) of a given graph.
 - To apply Kruskal's algorithm, the given graph must be weighted, connected and undirected.

Problem 4: Minimum Spanning Tree problem

- Kruskal's Algorithm
 - Implementation of algorithm.
 - The implementation of Kruskal's Algorithm is explained in the following steps-
 - Step-01:
 - Sort all the edges from low weight to high weight.
 - Step-02:
 - Take the edge with the lowest weight and use it to connect the vertices of graph.
 - If adding an edge creates a cycle, then reject that edge and go for the next least weight edge.
 - Step-03:
 - Keep adding edges until all the vertices are connected and a Minimum Spanning Tree (MST) is obtained.

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm:

Example 1: Construct the minimum spanning tree (MST) for the given graph using Kruskal's Algorithm-

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm:

Example 1:

Solution: Read the edges

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Solution: Read the edges

Edge	Weight
ab	4
bc	8
cd	7
de	9
ef	10
df	14
cf	4
ci	2
ih	7
ig	6
gf	2
gh	1
ah	8
bh	11

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm
 - Implementation of algorithm.
 - The implementation of Kruskal's Algorithm is explained in the following steps-
 - Step-01:
 - Sort all the edges from low weight to high weight.
 - Step-02:
 - Take the edge with the lowest weight and use it to connect the vertices of graph.
 - If adding an edge creates a cycle, then reject that edge and go for the next least weight edge.
 - Step-03:
 - Keep adding edges until all the vertices are connected and a Minimum Spanning Tree (MST) is obtained.

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Solution: Apply Step 1

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm
 - Implementation of algorithm.
 - The implementation of Kruskal's Algorithm is explained in the following steps-
 - Step-01:
 - Sort all the edges from low weight to high weight.
 - Step-02:
 - Take the edge with the lowest weight and use it to connect the vertices of graph.
 - If adding an edge creates a cycle, then reject that edge and go for the next least weight edge.
 - Step-03:
 - Keep adding edges until all the vertices are connected and a Minimum Spanning Tree (MST) is obtained.

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Solution: Apply Step 2 and 3

Form a cycle

Edge	Weight
gh	1
ci	2
gf	
ab	4
cf	
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Solution: Apply Step 2 and 3

Form a cycle

Edge	Weight
gh	1
ci	2
gf	
ab	4
cf	
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm:

Example 1:

Solution: Apply Step 2 and 3

Form a cycle

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Solution: Apply Step 2 and 3

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Form a cycle

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm:

Example 1:

Form	a
cycle	9

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm:

Example 1:

Solution: Apply Step 2 and 3

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

Form a cycle

Problem 4: Minimum Spanning Tree problem

Kruskal's Algorithm:

Example 1:

Solution: Apply Step 2 and 3

Edge	Weight
gh	1
ci	2
gf	2
ab	4
cf	4
ig	6
cd	7
ih	7
bc	8
ah	8
de	9
ef	10
bh	11
df	14

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1  A \leftarrow \emptyset

2  for each vertex v V[G]

3  do MAKE-SET(v)

4  sort the edges of E into nondecreasing order by weight w \bigcirc O(E \lg E)

5  for each edge (u, v) E, taken in nondecreasing order by weight

6  do if FIND-SET(u) \neq FIND-SET(v)

7  then A \leftarrow A \{(u, v)\}

8  UNION(u, v)

9  return A
```

Hence the total Time Complexity is $O(V) + O(E \lg E) + O(E)$ $O(V + E + E \lg E) = O(E \lg E)$

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm(Analysis)
 - The running time of Kruskal's algorithm for a graph G = (V, E) depends on the implementation of the disjoint-set data structure.
 - Initializing the set A in line 1 takes O(1) time, and the time to sort the edges in line 4 is O(E lg E).
 - The for loop of lines 5-8 performs O(E) FIND-SET and UNION operations on the disjoint-set forest. Along with the |V| MAKE-SET operations, these take a total of O(V + E) time.

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm (Analysis)
 - the total running time of Kruskal's algorithm is $O(E \lg E)$.
 - Observing that $|E| < |V|^2$ (if the graph is a dense graph)
 - Apply log both side $\Rightarrow \lg |E| = O(\lg V)$
 - Hence the running time of Kruskal's algorithm as $O(E \lg V)$.

- Problem 4: Minimum Spanning Tree problem
- Kruskal's Algorithm:

Example 2: Construct the minimum spanning tree (MST) for the given graph using Kruskal's Algorithm-

Self Practice

- Problem 4: Minimum Spanning Tree problem
 - Kruskal's Algorithm
 - Concept and Examples
 - Prim's Algorithm
 - Concept and Examples

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm
 - Prim's Algorithm is a famous greedy algorithm.
 - It is used for finding the Minimum Spanning Tree (MST) of a given graph.
 - To apply Prim's algorithm, the given graph must be weighted, connected and undirected.

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm (Implimentation)
 - The implementation of Prim's Algorithm is explained in the following steps-
 - Step-1:
 - Randomly choose any vertex.
 - The vertex connecting to the edge having least weight is usually selected.

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm (Implementation)
 - Step-2:
 - Find all the edges that connect the tree to new vertices.
 - Find the least weight edge among those edges and include it in the existing tree.
 - If including that edge creates a cycle, then reject that edge and look for the next least weight edge.
 - Step-03:
 - Keep repeating step-2 until all the vertices are included and Minimum Spanning Tree (MST) is obtained.

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm (Implementation)
 - Step-2:
 - Find all the edges that connect the tree to new vertices.
 - Find the least weight edge among those edges and include it in the existing tree.
 - If including that edge creates a cycle, then reject that edge and look for the next least weight edge.
 - Step-03:
 - Keep repeating step-2 until all the vertices are included and Minimum Spanning Tree (MST) is obtained.

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm: (Algorithm)

```
MST-PRIM(G, w, r)
     for each u \in V[G]
            do key[u] \leftarrow \infty
                 \pi[\mathsf{u}] \leftarrow \mathsf{NIL}
4 key[r] \leftarrow 0
 5 Q ← V [G]
    while Q \neq \emptyset
            do u \leftarrow EXTRACT-MIN(Q)
8
                 for each v \in Adj[u]
                         do if v \in Q and w(u, v) < key[v]
                                     then \pi[v] \leftarrow u
10
11
                                            \text{key}[v] \leftarrow w(u, v)
```

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	i
key	8	∞	8	∞	∞	8	8	8	8
П	/	/	/	/	/	/	/	/	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	e	f	g	h	
key	0	8	8	8	8	8	8	8	8
П	/	/	/	/	/	/	/	/	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	
key	0	4	8	8	∞	8	8	8	8
П	/	а	/	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	
key	0	4	8	8	∞	8	8	8	8
П	/	а	/	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	
key	0	4	8	8	∞	8	8	8	8
П	/	а	/	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	i
key	0	4	8	8	∞	8	8	8	8
П	/	a	/	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	e	f	g	h	
key	0	4	8	8	8	8	8	8	8
П	/	а	b	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	e	f	g	h	.—
key	0	4	8	∞	8	8	8	8	8
П	/	а	b	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	i
key	0	4	8	8	8	8	8	8	8
П	/	a	b	/	/	/	/	а	/

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	
key	0	4	8	7	∞	4	8	8	2
П	/	a	b	C	/	С	/	а	C

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	ï
key	0	4	8	7	∞	4	8	8	2
П	/	а	b	С	/	С	/	а	C

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	ï
key	0	4	8	7	∞	4	8	8	2
П	/	а	b	С	/	С	/	а	C

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	e	f	g	h	.—
key	0	4	8	7	8	4	6	7	2
П	/	а	b	C	/	С	i	·—	U

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	e	f	g	h	·
key	0	4	8	7	8	4	6	7	2
П	/	a	b	C	/	U	·—	·—	С

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

V	а	b	С	d	е	f	g	h	i
key	0	4	8	7	10	4	2	1	2
П	/	a	b	С	f	С	f	h	U

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

Example 1: Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm-

Use step 2 and 3 until MST form

Since all the vertices have been included in the MST, so stop the process.

Now, Cost of Minimum Spanning Tree

- = Sum of all edge weights
- = w[ab]+w[bc]+w[cd]+w[ci]+w[cf]+w[de]+w[gh]+w[fg]
- =4+8+7+2+4+9+2+1+=37

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm: (Analysis)

Problem 4: Minimum Spanning Tree problem

Problem 4: Minimum Spanning Tree problem

- Problem 4: Minimum Spanning Tree problem
- Prim's Algorithm:

