# Isogeny graphs in cryptography

#### Luca De Feo

Université Paris Saclay, UVSQ & Inria

March 19-23, 2018, Post-Scryptum Spring School, Les 7 Laux

Slides online at http://defeo.lu/docet/

### Overview

- Foundations
  - Elliptic curves
  - Isogenies
  - Complex multiplication
- Isogeny-based cryptography
  - Isogeny walks
  - Key exchange from ordinary graphs
  - Key exchange from supersingular graphs

# Projective space

### Definition (Projective space)

Let  $\bar k$  an algebraically closed field, the projective space  $\mathbb P^n(\bar k)$  is the set of non-null (n+1)-tuples  $(x_0,\dots,x_n)\in \bar k^n$  modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by  $(x_0 : \cdots : x_n)$ .

Picture here

## Weierstrass equations

Let k be a field of characteristic  $\neq 2, 3$ . An elliptic curve defined over k is the locus in  $\mathbb{P}^2(\bar{k})$  of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$
,

where  $a, b \in k$  and  $4a^3 + 27b^2 \neq 0$ .



# Weierstrass equations

Let k be a field of characteristic  $\neq 2, 3$ . An elliptic curve defined over k is the locus in  $\mathbb{P}^2(\bar{k})$  of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$
,

where  $a, b \in k$  and  $4a^3 + 27b^2 \neq 0$ .

•  $\mathcal{O} = (0:1:0)$  is the point at infinity;



# Weierstrass equations

Let k be a field of characteristic  $\neq 2, 3$ . An elliptic curve defined over k is the locus in  $\mathbb{P}^2(\bar{k})$  of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where  $a, b \in k$  and  $4a^3 + 27b^2 \neq 0$ .

- $\mathcal{O} = (0:1:0)$  is the point at infinity;
- $y^2 = x^3 + ax + b$  is the affine equation.



# The group law

#### Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.



## The group law

#### Bezout's theorem

Every line cuts *E* in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

 The law is algebraic (it has formulas);



# The group law

### Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- O is the group identity;
- Opposite points have the same x-value.



## Group structure

#### Torsion structure

Let E be defined over an algebraically closed field  $\bar{k}$  of characteristic p.

$$E[m] \simeq ~~ \mathbb{Z}/m\mathbb{Z} imes \mathbb{Z}/m\mathbb{Z}$$

if 
$$p \nmid m$$
,

$$E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} \ \{\mathcal{O}\} \end{cases}$$

ordinary case, supersingular case.

### Free part

Let E be defined over a number field k, the group of k-rational points E(k) is finitely generated.

# Maps: isomorphisms

### Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some  $u \in \overline{k}$  .

They are group isomorphisms.

### *j*-Invariant

Let  $E: y^2 = x^3 + ax + b$ , its *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

## Maps: isogenies

#### **Theorem**

Let  $\phi: E \to E'$  be a map between elliptic curves. These conditions are equivalent:

- $\phi$  is a surjective group morphism,
- $\bullet$   $\phi$  is a group morphism with finite kernel,
- $\phi$  is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold  $\phi$  is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

### Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{ll} [m] \; : \; E 
ightarrow E, \ P \mapsto [m]P. \end{array}$$



$$E' : y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$



$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$



$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$



$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Kernel generator in red.



$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.



$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to  $x\mapsto x^2$  in  $\mathbb{F}_q^*$ .

### Curves over finite fields

### Frobenius endomorphism

Let E be defined over  $\mathbb{F}_q$ . The Frobenius endomorphism of E is the map

$$\pi : (X : Y : Z) \mapsto (X^q : Y^q : Z^q).$$

### Hasse's theorem

Let E be defined over  $\mathbb{F}_q$ , then

$$|\#E(k)-q-1|\leq 2\sqrt{q}.$$

#### Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field k are isogenous over k if and only if #E(k)=#E'(k).



Let  $\omega_1, \omega_2 \in \mathbb{C}$  be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$ 

 $\mathbb{C}/\Lambda$  is a complex torus.











Two lattices are homotetic if there exist  $\alpha \in \mathbb{C}$  such that

 $\alpha\Lambda_1=\Lambda_2$ 



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$lpha \Lambda_1 = \Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$



$$\alpha\Lambda_1=\Lambda_2$$

# The *j*-invariant

We want to classify complex lattices/tori up to homothety.

#### Eisenstein series

Let  $\Lambda$  be a complex lattice. For any integer k>0 define

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-2k}.$$

Also set

$$g_2(\Lambda) = 60 G_4(\Lambda), \qquad g_3(\Lambda) = 140 G_6(\Lambda).$$

# Modular *j*-invariant

Let  $\Lambda$  be a complex lattice, the modular j-invariant is

$$j(\Lambda) = 1728 \frac{g_2(\Lambda)^3}{g_2(\Lambda)^3 - 27g_3(\Lambda)^2}.$$

Two lattices  $\Lambda$ ,  $\Lambda'$  are homothetic if and only if  $j(\Lambda) = j(\Lambda')$ .

# Elliptic curves over $\mathbb C$

#### Weierstrass p function

Let  $\Lambda$  be a complex lattice, the Weierstrass  $\wp$  function associated to  $\Lambda$  is the series

$$\wp(z;\Lambda) = rac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight).$$

Fix a lattice  $\Lambda$ , then  $\wp$  and its derivative  $\wp'$  are elliptic functions:

$$\wp(z+\omega)=\wp(z), \qquad \wp'(z+\omega)=\wp'(z)$$

for all  $\omega \in \Lambda$ .

# Uniformization theorem

Let  $\Lambda$  be a complex lattice. The curve

$$E: y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda)$$

is an elliptic curve over  $\mathbb{C}$ . The map

$$egin{aligned} \mathbb{C}/\Lambda &
ightarrow E(\mathbb{C}), \ 0 &
ightarrow (0:1:0), \ z &
ightarrow (\wp(z):\wp'(z):1) \end{aligned}$$

is an isomorphism of Riemann surfaces and a group morphism.

Conversely, for any elliptic curve

$$E: y^2 = x^3 + ax + b$$

there is a unique complex lattice  $\Lambda$  such that

$$g_2(\Lambda) = -4a, \qquad g_3(\Lambda) = -4b.$$

Moreover  $j(\Lambda) = j(E)$ .

# Multiplication

# Multiplication

# Multiplication [3]a

# **Torsion subgroups**



The ℓ-torsion subgroup is made up by the points

$$\left(rac{i\omega_1}{m{\ell}},rac{j\omega_2}{m{\ell}}
ight)$$

It is a group of rank two

$$egin{aligned} E[oldsymbol{\ell}] &= \langle \, a, \, b 
angle \ &\simeq (\mathbb{Z}/oldsymbol{\ell}\mathbb{Z})^2 \end{aligned}$$





Let  $\mathbf{a} \in \mathbb{C}/\Lambda_1$  be an  $\ell$ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then  $\Lambda_1 \subset \Lambda_2$  and we define a degree  $\ell$  cover

$$\phi:\mathbb{C}/\Lambda_1\to\mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.



Let  $\mathbf{a} \in \mathbb{C}/\Lambda_1$  be an  $\ell$ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then  $\Lambda_1 \subset \Lambda_2$  and we define a degree  $\ell$  cover

$$\phi:\mathbb{C}/\Lambda_1\to\mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.



Taking a point  $\frac{b}{\phi}$  not in the kernel of  $\phi$ , we obtain a new degree  $\ell$  cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$ 

The composition  $\hat{\phi} \circ \phi$  has degree  $\ell^2$  and is homothetic to the multiplication by  $\ell$  map.

 $\hat{\phi}$  is called the dual isogeny of  $\phi$ .



Taking a point  $\frac{b}{b}$  not in the kernel of  $\phi$ , we obtain a new degree  $\ell$  cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 o \mathbb{C}/\Lambda_3$ 

The composition  $\hat{\phi} \circ \phi$  has degree  $\ell^2$  and is homothetic to the multiplication by  $\ell$  map.

 $\hat{\phi}$  is called the dual isogeny of  $\phi$ .



Taking a point  $\frac{b}{b}$  not in the kernel of  $\phi$ , we obtain a new degree  $\ell$  cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 o \mathbb{C}/\Lambda_3$ 

The composition  $\hat{\phi} \circ \phi$  has degree  $\ell^2$  and is homothetic to the multiplication by  $\ell$  map.

 $\hat{\phi}$  is called the dual isogeny of  $\phi$ .

# Isogenies: back to algebra

Let  $\phi: E \to E'$  be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^* k(E')$  is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

# Degree, separability

- The degree of  $\phi$  is deg  $\phi = [k(E) : \phi^* k(E')]$ . It is always finite.
- $\phi$  is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- **3** If  $\phi$  is separable, then deg  $\phi = \# \ker \phi$ .
- ④ If  $\phi$  is purely inseparable, then  $\ker \phi = \{\mathcal{O}\}$  and  $\deg \phi$  is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

# Isogenies: back to algebra

Let  $\phi: E \to E'$  be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^* k(E')$  is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

# Degree, separability

- The degree of  $\phi$  is deg  $\phi = [k(E) : \phi^* k(E')]$ . It is always finite.
- $\phi$  is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- **3** If  $\phi$  is separable, then deg  $\phi = \# \ker \phi$ .
- **③** If  $\phi$  is purely inseparable, then  $\ker \phi = \{\mathcal{O}\}$  and  $\deg \phi$  is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

# Isogenies: separable vs inseparable

# Purely inseparable isogenies

#### Examples:

- The Frobenius endomorphism is purely inseparable of degree q.
- All purely inseparable maps in characteristic p are of the form  $(X:Y:Z)\mapsto (X^{p^e}:Y^{p^e}:Z^{p^e}).$

#### Separable isogenies

Let E be an elliptic curve, and let G be a finite subgroup of E. There are a unique elliptic curve E' and a unique separable isogeny  $\phi$ , such that  $\ker \phi = G$  and  $\phi : E \to E'$ .

The curve E' is called the quotient of E by G and is denoted by E/G.

# The dual isogeny

Let  $\phi:E o E'$  be an isogeny of degree m. There is a unique isogeny  $\hat{\phi}:E' o E$  such that

$$\hat{\phi}\circ\phi=[m]_E,\quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$  is called the dual isogeny of  $\phi$ ; it has the following properties:

- $\bullet$   $\hat{\phi}$  is defined over k if and only if  $\phi$  is;
- ②  $\widehat{\psi \circ \phi} = \hat{\phi} \circ \hat{\psi}$  for any isogeny  $\psi : E' \to E''$ ;
- $oldsymbol{\widehat{\psi}+\phi}=\widehat{\psi}+\widehat{\phi}$  for any isogeny  $\psi:E o E'$ ;
- $\hat{\hat{\phi}} = \phi.$

# Algebras, orders

- A quadratic imaginary number field is an extension of  $\mathbb{Q}$  of the form  $Q[\sqrt{-D}]$  for some non-square D>0.
- A quaternion algebra is an algebra of the form  $\mathbb{Q} + \alpha \mathbb{Q} + \beta \mathbb{Q} + \alpha \beta \mathbb{Q}$ , where the generators satisfy the relations

$$lpha^2, eta^2 \in \mathbb{Q}, \quad lpha^2 < 0, \quad eta^2 < 0, \quad etalpha = -lphaeta.$$

#### **Orders**

Let K be a finitely generated  $\mathbb{Q}$ -algebra. An order  $\mathcal{O} \subset K$  is a subring of K that is a finitely generated  $\mathbb{Z}$ -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

#### Examples:

- ullet  $\mathbb Z$  is the only order contained in  $\mathbb Q$ ,
- $\mathbb{Z}[i]$  is the only maximal order of  $\mathbb{Q}[i]$ ,
- $\mathbb{Z}[\sqrt{5}]$  is a non-maximal order of  $\mathbb{Q}[\sqrt{5}]$ ,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

# The endomorphism ring

The endomorphism ring  $\mathrm{End}(E)$  of an elliptic curve E is the ring of all isogenies  $E \to E$  (plus the null map) with addition and composition.

# Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

•  $\mathbb{Z}$ , only if p=0

E is ordinary.

• An order  $\mathcal O$  in a quadratic imaginary field:

E is ordinary with complex multiplication by  $\mathcal{O}$ .

• Only if p > 0, a maximal order in a quaternion algebra<sup>a</sup>:

E is supersingular.

 $^a$ (ramified at p and ∞)

#### The finite field case

# Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism  $\pi$  satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in  $\operatorname{End}(E)$  for some  $|t| \leq 2\sqrt{q}$ , called the trace of  $\pi$ . The trace t is coprime to q if and only if E is ordinary.

Suppose E is ordinary, then  $D_{\pi}=t^2-4q<0$  is the discriminant of  $\mathbb{Z}[\pi]$ .

- $K = \mathbb{Q}[\pi] = \mathbb{Q}[\sqrt{D_{\pi}}]$  is the endomorphism algebra of E.
- Denote by  $\mathcal{O}_K$  its ring of integers, then

$$\mathbb{Z} 
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

In the supersingular case,  $\pi$  may or may not be in  $\mathbb{Z}$ , depending on q.

# Isogeny volcanoes

#### Serre-Tate theorem reloaded

Two elliptic curves E, E' defined over a finite field are isogenous iff their endomorphism algebras  $\operatorname{End}(E) \otimes \mathbb{Q}$  and  $\operatorname{End}(E') \otimes \mathbb{Q}$  are isomorphic.

# Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

#### Isogeny volcanoes

- Curves are ordinary,
- Isogenies all have degree a prime ℓ.



Isogeny volcano of degree  $\ell=3$ .

# Isogeny volcanoes

# Classifying quadratic orders

Let K be a quadratic number field, and let  $\mathcal{O}_K$  be its ring of integers.

- Any order  $\mathcal{O} \subset K$  can be written as  $\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K$  for an integer f, called the conductor of  $\mathcal{O}$ , denoted by  $[\mathcal{O}_k : \mathcal{O}]$ .
- If  $d_K$  is the discriminant of K, the discriminant of  $\mathcal{O}$  is  $f^2d_K$ .
- If  $\mathcal{O}$ ,  $\mathcal{O}'$  are two orders with discriminants d, d', then  $\mathcal{O} \subset \mathcal{O}'$  iff d'|d.

Let E, E' be curves with respective endomorphism rings  $\mathcal{O}, \mathcal{O}'$ .

Let  $\phi: E o E'$  be an isogeny of prime degree  $\ell$ , then:

• if 
$$\mathcal{O} = \mathcal{O}'$$
,

 $\phi$  is horizontal;

• if 
$$[\mathcal{O}':\mathcal{O}]=\ell$$
,

 $\phi$  is ascending;

$$ullet$$
 if  $[\mathcal{O}:\mathcal{O}']=\ell$ ,

 $\phi$  is descending.



# Volcanology



|                                                                         |                                                                    | Horizontal                        | Ascending | Descending                                                 |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|-----------|------------------------------------------------------------|
| $oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$             | $oldsymbol{\ell}  mid \left[ \mathcal{O} : \mathbb{Z}[\pi]  ight]$ | $1+\left(\frac{D_K}{\ell}\right)$ |           |                                                            |
| $oldsymbol{\ell}  mid \left[ \mathcal{O}_K : \mathcal{O}  ight]  ight]$ | $oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$              | $1+\left(\frac{D_K}{\ell}\right)$ |           | $oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$ |
|                                                                         | $oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$              |                                   | 1         | $\ell$                                                     |
| $oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$                     | $\ell  mid [\mathcal{O}: \mathbb{Z}[\pi]]$                         |                                   | 1         |                                                            |

# Volcanology

 $\mathsf{Height} = \mathit{v}_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$ 



|                                                          |                                                       | Horizontal                          | Ascending | Descending                                                 |
|----------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------|------------------------------------------------------------|
| $\ell  mid [\mathcal{O}_K : \mathcal{O}]]$               | $oldsymbol{\ell}  mid [\mathcal{O}: \mathbb{Z}[\pi]]$ | $1 + \left(\frac{D_K}{\ell}\right)$ |           |                                                            |
| $\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$ | $oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$ | $1+\left(\frac{D_K}{\ell}\right)$   |           | $oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$ |
|                                                          | $oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$ |                                     | 1         | $\hat{\boldsymbol{\ell}}$                                  |
| $oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$      | $\ell  mid [\mathcal{O}: \mathbb{Z}[\pi]]$            |                                     | 1         |                                                            |

# Volcanology

$$\mathsf{Height} = \mathit{v}_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$$

How large is the crater?



|                                                                         |                                                       | Horizontal                        | Ascending | Descending                                                 |
|-------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|-----------|------------------------------------------------------------|
| $oldsymbol{\ell}  mid \left[ \mathcal{O}_K : \mathcal{O}  ight]  ight]$ | $oldsymbol{\ell}  mid [\mathcal{O}: \mathbb{Z}[\pi]]$ | $1+\left(\frac{D_K}{\ell}\right)$ |           |                                                            |
| $\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$                | $oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$ | $1+\left(\frac{D_K}{\ell}\right)$ |           | $oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$ |
| $oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$                     | $oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$ |                                   | 1         | $\hat{\boldsymbol{\ell}}$                                  |
| $oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$                     | $\ell  mid [\mathcal{O}: \mathbb{Z}[\pi]]$            |                                   | 1         |                                                            |

# The class group

Let 
$$\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$$
. Define

- $\bullet$   $\mathcal{I}(\mathcal{O})$ , the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$ , the group of principal ideals,

# The class group

The class group of  $\mathcal{O}$  is

$$Cl(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order  $h(\mathcal{O})$  is called the class number of  $\mathcal{O}$ .
- It arises as the Galois group of an abelian extension of  $\mathbb{Q}(\sqrt{-D})$ .

# Complex multiplication

#### The a-torsion

- Let a ⊂ Ø be an (integral invertible) ideal of Ø;
- Let  $E[\mathfrak{a}]$  be the subgroup of E annihilated by  $\mathfrak{a}$ :

$$E[\mathfrak{a}] = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \};$$

ullet Let  $\phi: E o E_{\mathfrak a}$  , where  $E_{\mathfrak a} = E/E[{\mathfrak a}]$  .

Then  $\operatorname{End}(E_{\mathfrak a})=\mathcal O$  (i.e.,  $\phi$  is horizontal).

# Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by  $\mathcal{O}$  defined by  $\mathfrak{a}*j(E)=j(E_{\mathfrak{a}})$  factors through  $\mathrm{Cl}(\mathcal{O})$ , is faithful and transitive.

#### Corollary

If E is on the crater of an  $\ell$  volcano, the crater contains  $h(\operatorname{End}(E))$  curves.

# Supersingular graphs

- Every supersingular curve is defined over  $\mathbb{F}_{p^2}$ .
- For every maximal order type of the quaternion algebra  $\mathbb{Q}_{p,\infty}$  there are 1 or 2 curves over  $\mathbb{F}_{p^2}$  having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over  $\overline{\mathbb{F}}_p$  of size  $\sim p/12$ .
- Left ideals act on the set of maximal orders like isogenies.
- The graph of  $\ell$ -isogenies is  $(\ell + 1)$ -regular.



Figure: 3-isogeny graph on  $\mathbb{F}_{97^2}$ .

