```
In [1]:
          # Experiment No: 9
 In [2]:
          # Aim: Simple Linear Regression
 In [3]:
          # Name: Sakshi Padmakar Yeole
 In [4]:
          # Class: 3rd year(B)
 In [5]:
          # Roll No: 69
 In [6]:
          # Date: 5th October 2024
 In [7]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          import numpy as np
 In [8]:
          import pandas as pd
 In [4]:
          import os
 In [5]:
          os.getcwd()
          'C:\\Users\\hp'
 Out[5]:
 In [6]:
          os.chdir("C:\\Users\\hp\\OneDrive\\Desktop")
 In [9]:
          df=pd.read_csv("Salary.csv")
In [10]:
          df.head()
            YearsExperience Salary
Out[10]:
                      1.1 39343
                       1.3 46205
          2
                       1.5 37731
                       2.0 43525
          3
                       2.2 39891
In [11]:
          df.tail()
             YearsExperience Salary
Out[11]:
         30
                       11.2 127345
          31
                      11.5 126756
          32
                       12.3 128765
          33
                      12.9 135675
                     13.5 139465
          34
In [12]:
          df.head(20)
           YearsExperience Salary
Out[12]:
                        1.1 39343
```

1.3 46205

2	1.5	37731
3	2.0	43525
4	2.2	39891
5	2.9	56642
6	3.0	60150
7	3.2	54445
8	3.2	64445
9	3.7	57189
10	3.9	63218
11	4.0	55794
12	4.0	56957
13	4.1	57081
14	4.5	61111
15	4.9	67938
16	5.1	66029
17	5.3	83088
18	5.9	81363
19	6.0	93940

In [13]:

df[5:10]

Out[13]:

	YearsExperience	Salary
5	2.9	56642
6	3.0	60150
7	3.2	54445
8	3.2	64445
9	3.7	57189

In [14]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 35 entries, 0 to 34 Data columns (total 2 columns): # Column 0 YearsExperience 35 non-null float64
1 Salary 35 non-null Non-Null Count Dtype 1 Salary 35 non-null dtypes: float64(1), int64(1) memory usage: 688.0 bytes

In [15]:

df.describe()

Out[15]:

	YearsExperience	Salary
count	35.000000	35.000000
mean	6.308571	83945.600000
std	3.618610	32162.673003
min	1.100000	37731.000000
25%	3.450000	57019.000000
50%	5.300000	81363.000000
75%	9.250000	113223.500000
max	13.500000	139465.000000

In [16]:

df.shape

Out[16]: (35, 2)

```
In [17]:
           df.size
Out[17]: 70
In [18]:
           df.ndim
Out[18]: 2
In [19]:
           df.columns
Out[19]: Index(['YearsExperience', 'Salary'], dtype='object')
In [20]:
           df.isnull().sum()
Out[20]: YearsExperience
Salary
                               0
          dtype: int64
In [21]:
           # Assiging values in X & Y
x=df.iloc[:,:-1].values
           y=df.iloc[:,-1].values
           #x=df['year of experience']
           #y=df['salary']
In [22]:
           print(x)
          [[ 1.1]
           [ 1.3]
           [ 1.5]
           [ 2. ]
[ 2.2]
           [ 2.9]
           [ 3. ]
           [ 3.2]
           [ 3.2]
           [ 3.7]
           [ 3.9]
           [ 4. ]
           [ 4. ]
           [ 4.1]
           [ 4.5]
[ 4.9]
           [5.1]
           [5.3]
           [ 5.9]
           [ 6. ]
           [ 6.8]
           [ 7.1]
           [ 7.9]
           [ 8.2]
           [ 8.7]
           [ 9. ]
           [ 9.5]
           [ 9.6]
           [10.3]
           [10.5]
           [11.2]
           [11.5]
           [12.3]
           [12.9]
           [13.5]]
In [23]:
           print(y)
```

[39343 46205 37731 43525 39891 56642 60150 54445 64445 57189

```
63218 55794 56957 57081 61111 67938 66029 83088 81363 93940 91738 98273 101302 113812 109431 105582 116969 112635 122391 121872 127345 126756 128765 135675 139465]
```

```
In [24]:
          # Splitting testdata into x_train,x_test,y_train,y_test
          from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=.3,random_state=42)
In [25]:
          print(x_train)
          [[12.9]
           [ 1.1]
           [ 2.2]
           [5.3]
           [ 9.6]
           [ 2.9]
           [4.]
           [ 1.3]
           [ 1.5]
           [12.3]
           [ 2. ]
           [11.2]
           [ 8.2]
           [11.5]
           [ 3.9]
           [ 7.9]
           [5.9]
           [ 9. ]
           [ 3. ]
           [ 6.8]
           [13.5]
           [ 3.2]
           [ 4.5]
           [10.3]]
In [26]:
          print(x_test)
          [[ 9.5]
           [ 4.1]
           [ 8.7]
           [7.1]
           [ 4.9]
           [10.5]
           [ 6. ]
           [4.]
           [ 3.2]
           [5.1]
           [ 3.7]]
In [27]:
          print(y_train)
          [135675 39343 39891 83088 112635 56642 55794 46205 37731 128765 43525 127345 113812 126756 63218 101302 81363 105582 60150 91738
           139465 54445 61111 122391]
In [28]:
          print(y_test)
          [116969 57081 109431 98273 67938 121872 93940 56957 64445 66029
            57189]
In [29]:
          from sklearn.linear model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[29]: LinearRegression()
In [30]:
          #Assigning Coefficient (slope) to m
```

m = lr.coef

```
In [31]:
             print("Coefficient :" , m)
            Coefficient : [8555.33918938]
  In [32]:
             #Assigning Y-intercept to a
             c = lr.intercept_
  In [33]: print("Intercept : ", c)
            Intercept : 29602.07353482097
  In [34]: lr.score(x_test,y_test) * 100
  Out[34]: 91.71426108885095
  In [35]:
             df.isnull().any()
  Out[35]: YearsExperience Salary
                                False
                                False
            dtype: bool
   In [ ]:
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```