CMPS1134

Fundamentals of Computing

Data Abstractions 1

Computer Science: An Overview
Eleventh Edition

J. Glenn Brookshear

Chapter 8

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Chapter 8: Data Abstractions

- □ Data Structure Fundamentals
- □ Related Concepts
- Implementing Data Structures
 - Storing Arrays
 - Storing Lists
- ☐ Implementing Data Structures (continued)
 - Storing Stacks and Queues
 - Storing Binary Trees
 - Manipulating Data Structures
- □ A Short Case Study
- □ Customized Data Types
- □ Classes and Objects
- □ Pointers in Machine Language

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Basic Data Structures

- Arrays
- □ Lists
- □ Stacks
- Queues
- ☐ Trees

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Terminology for Arrays

Homogeneous Array: A "rectangular" block of data whose entries are of same type.

- May have multiple **dimensions**. Example: A two-2 dimensional array consists rows and columns
- Indices are used to identify positions (i, j)
- ☐ Heterogeneous Array (or Aggregate): A block of data items that might be of different type or sizes.
 - Each data item is called a field
 - Fields are usually accessed by name

3 4 7 6 5 8

Employee Name Age Skill

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Basic Data Structures

Terminology for Lists

List:

A collection of data whose entries are arranged sequentially

- ☐ **Head:** The beginning of the list
- □ Tail: The end of the list

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

5

Basic Data Structures

Terminology for Stacks

Stack:

A list in which entries are removed and inserted only stack at the head

- ☐ **LIFO:** Last-in-first-out
- ☐ **Top:** The head of list (stack)
- ☐ **Bottom** or **base:** The tail of list (stack)
- □ **Pop:** To remove the entry at the top
- □ Push: To insert an entry at the top

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Basic Data Structures

Terminology for Queues

Queue:

A list in which entries are removed at the head and are inserted at the tail

☐ **FIFO:** First-in-first-out

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

7

Basic Data Structures

Terminology for a Tree

Tree:

A collection of data whose entries have a hierarchical organization

- Node: An entry in a tree
- □ **Root node:** The node at the top
- ☐ **Terminal** or **leaf node:** A node at the

bottom

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Implementing Data Structures

Different techniques are used for storing data structures in a computer's main memory.

We look at:

- □ **Storing Arrays** (homo/heterogeneous)
- Storing Lists
- ☐ Storing Stacks and Queues
- ☐ Storing Binary Trees
- Manipulating Data Structures

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

13

Implementing Data Structures

Storing Homogeneous Arrays

Memory address of a particular cell can be computed

- Row-major order versus column major order
 - Row major order (by rows) used in most languages: 3,4,7,6,2,5,1,3,8
 - Column major order (by columns) used in Fortran: 3,6,1,4,2,3,7,5,8

- $(c \times (i-1)) + (j-1)$
- Cell size (c) multiplied by the number of rows (i-1) above an element, plus the number of elements to the left of the element (i-1)

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Implementing Data Structures

Storing Heterogeneous Arrays

- ☐ Fields can be stored one after the other in a contiguous block:
 - Memory cell address of each field can be computed
- ☐ Fields can be stored in separate locations identified by pointers

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Implementing Data Structures

Storing Lists

- □ Contiguous list: List stored in a homogeneous array
- ☐ **Linked list:** List in which each entries are linked by pointers
 - Head pointer: Pointer to first entry in list
 - null pointer: A "non-pointer" value used to indicate end of list

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)

Chapter 8: Topics Covered

- □ Data Structure Fundamentals
- □ Related Concepts
- ☐ Implementing Data Structures
 - Storing Arrays
 - Storing Lists

Copyright © 2012/ 2015 Pearson Education, Inc. Modified for UB-CMPS1134 (DGV2015, Rev18S1)