```
In [5]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [6]: df = pd.read_csv("aerofit_treadmill.csv")
 df

Out[6]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47
	•••									
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KP781	42	Male	18	Single	5	4	89641	200
	177	KP781	45	Male	16	Single	5	5	90886	160
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [7]: df.describe(include="all")

Out[7]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Inc
	count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.00
	unique	3	NaN	2	NaN	2	NaN	NaN	
	top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	
	freq	80	NaN	104	NaN	107	NaN	NaN	
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.57
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.68
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.00
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.75
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.50
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.00
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.00
1									•

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

Observations:

- 1. There are 180 Rows and 9 Columns.
- 2. There are no missing values in data.
- 3. Minimum and Maximum age of the person is 18 and 50, mean 28.79 and 75% of the persons have age less than or equal to 33.
- 4. Out of 180 data of gender, 104 persons are Male and rest are Female.
- 5. Most of the people are having 16 years of education i.e 75% of persons are having education <= 16 years.
- 6. Product name KP281 is the most frequent product with values 80.
 - 7. Frequency of Marital Status "PArtnered" is 107 out of 180.
- 8. There must be outliers in column Income and Miles as the standard deviation of these data are very high.

```
In [9]: df["Product"].value_counts()

Out[9]: KP281     80
     KP481     60
     KP781     40
     Name: Product, dtype: int64
```

1. There are 3 unique products "KP281", "KP481", "KP781".

Univariate Analysis

Understanding the distribution of the data for the quanitative attributes.

- 1. Age.
- 2. Education.
- 3. Usage.
- 4. Fitness.
- 5. Income.
- 6. Miles.

```
In [10]: fig,axis = plt.subplots(3, 2, figsize=(12,10))
sns.histplot(data=df, x='Age', kde=True, ax=axis[0, 0], color='blue')
```

```
sns.histplot(data=df, x='Education', kde=True, ax=axis[0, 1], color='blue')
sns.histplot(data=df, x='Usage', kde=True, ax=axis[1, 0], color='blue')
sns.histplot(data=df, x='Fitness', kde=True, ax=axis[1, 1], color='blue')
sns.histplot(data=df, x='Income', kde=True, ax=axis[2, 0], color='blue')
sns.histplot(data=df, x='Miles', kde=True, ax=axis[2, 1], color='blue')
plt.show()
```


Outliers detection using Boxplot

```
In [11]: fig, axis = plt.subplots(3, 2, figsize=(12,10))
    sns.boxplot(data=df, x='Age', orient="h", ax=axis[0, 0])
    sns.boxplot(data=df, x='Education', orient="h", ax=axis[0, 1])
    sns.boxplot(data=df, x='Usage', orient="h", ax=axis[1, 0])
    sns.boxplot(data=df, x='Fitness', orient="h", ax=axis[1, 1])
    sns.boxplot(data=df, x='Income', orient="h", ax=axis[2, 0])
    sns.boxplot(data=df, x='Miles', orient="h", ax=axis[2, 1])
    plt.show()
```


Observations.

From Boxplot we can clearly find out that:

1. "Income" and "Miles" have more outliers than other parameters.

Understanding the distribution of the qualitative attributes:

- 1. Product
- 2. Gender
- 3. Marital Status

```
In [12]: fig, axs = plt.subplots(1,3, figsize=(20, 6))
    sns.countplot(data=df, x='Product', ax=axs[0])
    sns.countplot(data=df, x='Gender', ax=axs[1])
    sns.countplot(data=df, x='MaritalStatus', ax=axs[2])
    plt.show()
```


Observations.

- 1. "KP281" is the most frequent product.
- 2. There are more "Males" in data than "Females".
- 3. More "Partnered" persons are there in the data.

To be precise - normalized count for each person variable is shown below

```
In [13]: df1 = df[['Product', 'Gender', 'MaritalStatus']].melt()
    df1.groupby(["variable", "value"])[['value']].count()/len(df)
```

Out[13]:

value

variable	value	
Gender	Female	0.422222
	Male	0.577778
MaritalStatus	Partnered	0.594444
	Single	0.405556
Product	KP281	0.444444
	KP481	0.333333
	KP781	0.222222

Observations.

Product

- 1. 44.44% of the customers have purchased KP281 product.
- 2. 33.33% of the customers have purchased KP481 product.
- 3. 22.22% of the customers have purchased KP781 product.

Gender

1. 57.78% of the customer are Male and rest are Females.

Marital Status

1. 59.44% of the customers are partnered.

Bivariate Analysis

checking if features - Gender and marital status have any effect on the product purchased

```
In [14]:
    sns.set_style(style='whitegrid')
    fig, axs = plt.subplots(1, 2, figsize=(15, 6.5))
    sns.countplot(data=df, x='Product', hue='Gender', palette=['#7fcdbb', '#edf8b1'], a
    axs[0].set_title("Product vs Gender")
    sns.countplot(data=df, x='Product', hue="MaritalStatus", palette=['#432371', '#fAAE
    axs[1].set_title("Product vs MaritalStatus")
    plt.show()
```


Oberservations

Product vs Gender

- 1. Equal number of Males and Females have purchased KP281 product and almost same for the product KP481.
- 2. Most of male customer have purchased the KP781.

Product vs MaritalStatus

1. Customers who is Partnered, is most likely to purchase the product and it is true for all the products.

Checking if following features have any effect on the product purchased

- 1. Age
- 2. Education
- 3. Usage

- 4. Fitness
- 5. Income
- 6. Miles

```
In [17]: var = ["Age", "Education", "Usage", "Fitness", "Income", "Miles"]
             sns.set_style("whitegrid")
             fig,axs = plt.subplots(2, 3, figsize=(18, 12))
             fig.subplots_adjust(top=1.3)
             count = 0
             for i in range(2):
                   for j in range(3):
                        sns.boxplot(data=df, x='Product', y=var[count], ax=axs[i, j], hue="Product"
                        axs[i,j].set_title(f"Product vs {var[count]}",pad=12,fontsize=13)
                        count += 1
                             Product vs Age
                                                                                                           Product vs Usage
                                                                   Product vs Education
                                                          Product
KP281
                                                                                                  Product
KP281
                                                          KP481
                                                                                                  KP481
                                                          KP781
               45
               40
             Age
               30
               25
                                            Product
               20
                                          KP281
                                                       12
                                           KP781
                                                                                   KP781
                                                                                                                           KP781
                                                                                                     KP281
                     KP281
                                                             KP281
                            Product vs Fitness
                                                                    Product vs Income
                                                                                                            Product vs Miles
                                                                                                  Product KP281 KP481
                                                          Product
KP281
              5.0
                                                          KP481
                                                                                              300
                                                     90000
              4.0
                                                                                              250
                                                     80000
              3.5
             Signal 3.0
                                                     60000
              2.5
              2.0
                                                                                              100
              1.5
                                            Product
                                           KP281
                                                     30000
              1.0
                                           KP781
                                                                                   KP781
                                                                                                                           KP781
                     KP281
                                KP481
Product
                                           KP781
                                                             KP281
                                                                                                     KP281
                                                                                                                KP481
```

Multivariate Analysis

Checking if following features have any effect on the product purchased

1. Age

- 2. Education
- 3. Usage
- 4. Fitness
- 5. Income
- 6. Miles

```
In [18]: var= ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
            sns.set_style("whitegrid")
            fig,axs=plt.subplots(3,2,figsize=(18,12))
            fig.subplots_adjust(top=1.3)
            count=0
            for i in range(3):
                 for j in range(2):
                       sns.boxplot(data=df,x='Gender',y=var[count],hue='Product',ax=axs[i,j],palet
                       axs[i,j].set_title(f"Product vs {var[count]}",pad=12,fontsize=13)
                       count+=1
                                    Product vs Age
                                                                                           Product vs Education
                                                                           Product
KP281
                50
                                                          KP281
                                                          KP481
                40
                35
              Age
                                    Product vs Usage
                                                                                            Product vs Fitness
                                                                        5.0
                                                          KP281
                                                                        4.5
                                                                        4.0
                                                                        3.5
                                                                        2.5
                                                                                                                  Product
                                                                        1.5
                                                                                                                  KP281
KP481
KP781
                                                                        1.0
                                   Product vs Income
                                                                                             Product vs Miles
                                                                                                                   Product
                                                                        350
                   KP281
                                                                                                                  KP281
                                                                                                                  KP481
                                                                        300
              90000
              80000
                                                                       250
              70000
              60000
              40000
```

Observations

- 1. In both Gender, Customers whose education is greater than 16 prefer to buy KP781 product.
- 2. In both Gender, Customer who are planning to use treadmill more than 4 times prefer to buy KP781 Product.
- 3. Females who are planning to use treadmill 3-4 times a week, are more likely to buy KP481 product
- 4. In both Gender, Customer whose income is more than 55000, are more likely to buy KP781 product

Computing Marginal and Conditional Probability

Marginal Probability

In [20]:	<pre>pd.concat([df.Product.value_counts(), df.Product.value_counts(normalize=True)], key</pre>							
Out[20]:		counts	Marginal_Prob					
	KP281	80	0.444444					
	KP481	60	0.333333					
	KP781	40	0.222222					

Conditinal Probability

Probability of each product given gender

```
In [21]:
    def p_prod_given_gender(gender, print_marginal=False):
        if gender!= "Female" and gender!= "Male":
            return "Invalid gender value."

        df1= pd.crosstab(index=df['Gender'],columns=[df['Product']])
        p_781= df1['KP781'][gender] / df1.loc[gender].sum()
        p_481= df1['KP481'][gender] / df1.loc[gender].sum()
        p_281= df1['KP281'][gender] / df1.loc[gender].sum()

        if print_marginal:
            print(f"P(Male): {df1.loc['Male'].sum()/len(df):.2f}")
            print(f"P(Female): {df1.loc['Female'].sum()/len(df):.2f}")

        print(f"P(KP781/{gender}):{p_781:.2f}")
        print(f"P(KP481/{gender}):{p_481:.2f}")
        print(f"P(KP281/{gender}):{p_281:.2f}\n")

        p_prod_given_gender('Male',True)
        p_prod_given_gender('Female')
```

```
P(Male): 0.58
P(Female): 0.42
P(KP781/Male):0.32
P(KP481/Male):0.30
P(KP281/Male):0.38

P(KP781/Female):0.09
P(KP481/Female):0.38
P(KP281/Female):0.53
```

Probability of each product given marital status

```
In [22]: def p_prod_given_MaritalStatus(status, print_marginal=False):
             if status!= "Single" and status!= "Partnered":
                 return " invalid MaritalStatus value."
             df1= pd.crosstab(index=df['MaritalStatus'],columns=[df['Product']])
             p_781= df1['KP781'][status] / df1.loc[status].sum()
             p_481= df1['KP481'][status] / df1.loc[status].sum()
             p_281= df1['KP281'][status] / df1.loc[status].sum()
             if print_marginal:
                 print(f"P(Single): {df1.loc['Single'].sum()/len(df):.2f}")
                 print(f"P(Partnered): {df1.loc['Partnered'].sum()/len(df):.2f}\n")
             print(f"P(KP781/{status}):{p_781:.2f}")
             print(f"P(KP481/{status}):{p_481:.2f}")
             print(f"P(KP281/{status}):{p_281:.2f}\n")
         p_prod_given_MaritalStatus('Single',True)
         p_prod_given_MaritalStatus('Partnered')
         P(Single): 0.41
         P(Partnered): 0.59
         P(KP781/Single):0.23
         P(KP481/Single):0.33
         P(KP281/Single):0.44
         P(KP781/Partnered):0.21
         P(KP481/Partnered):0.34
         P(KP281/Partnered):0.45
```

Recommendations

- 1. KP781 should bw marketed as a Premium Model and marketing it to high income groups and educational over 20 years market segments could result in more sales.
- 2. Aerofit should conduct market research to determine if it can attract customers with income under 40000 to expand its customer base.
- 3. The KP781 is a premium model, so it is ideally suited for sporty people who have a high average weekly mileage..

```
In [ ]:
```