

#### ISEL – Instituto Superior de Engenharia de Lisboa ADEETC – ÁREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES

#### LEIM

# LICENCIATURA EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA UNIDADE CURRICULAR DE PROJETO

#### ${\bf Space Manager-M\'odulo\ App}$



Ana Rita Venâncio Alves (42360)

Orientador

Professor Doutor Carlos Gonçalves

Julho, 2020

# Resumo

Escrever aqui uma perspectiva geral do seu trabalho . . .

Motivação, ideias mais relevantes, principais contributos, avaliações e breve conclusão.

Frases breves. Parágrafos concisos. Abordagem "top-down".

# Abstract

Write here an overview of your work ...

Motivation, most relevant ideas, main contributions, evaluations and brief conclusions.

Short sentences. Succinct paragraphs. Top-down approach.

# Agradecimentos

Escrever aqui eventuais agradecimentos  $\dots$ 

# Índice

| R            | esum  | o i                               |
|--------------|-------|-----------------------------------|
| A            | bstra | ct                                |
| $\mathbf{A}$ | grade | ecimentos v                       |
| Ín           | dice  | vii                               |
| Li           | sta d | e Figuras ix                      |
| Li           | sta d | e Tabelas xi                      |
| Li           | sta d | e Exemplos xiii                   |
| 1            | Intr  | odução 1                          |
|              | 1.1   | Objetivo                          |
|              | 1.2   | Organização do Documento          |
| 2            | Esta  | ado da Arte 3                     |
|              | 2.1   | Aplicações                        |
|              | 2.2   | Tecnologias                       |
| 3            | Mo    | delo Proposto 5                   |
|              | 3.1   | Requisitos                        |
|              |       | 3.1.1 Requisitos Funcionais       |
|              |       | 3.1.2 Requisitos Não Funcionais 6 |
|              | 3.2   | Casos de Utilização               |
|              | 3.3   | Modelo de Dados                   |

viii Conteúdo

|                                                   | 3.4   | Implementação do Modelo Relacional numa Base de Dados        |           |  |  |
|---------------------------------------------------|-------|--------------------------------------------------------------|-----------|--|--|
|                                                   |       | NoSQL                                                        | 9         |  |  |
| 4                                                 | Imp   | olementação                                                  | 11        |  |  |
|                                                   | 4.1   | Autenticação                                                 | 11        |  |  |
|                                                   | 4.2   | Reservas                                                     | 12        |  |  |
|                                                   |       | 4.2.1 Reserva de um Lugar                                    | 13        |  |  |
|                                                   |       | 4.2.2 Reserva Através do Mapa da Sala                        | 13        |  |  |
|                                                   |       | 4.2.3 Reserva por Grupo                                      | 13        |  |  |
|                                                   |       | 4.2.4 Reserva por Característica                             | 13        |  |  |
|                                                   | 4.3   | Prolongar Reserva                                            | 13        |  |  |
|                                                   | 4.4   | As Minhas Reservas                                           | 13        |  |  |
|                                                   | 4.5   | Integração com o Projeto SpaceManager – Módulo Sensores    . | 13        |  |  |
| 5                                                 | Val   | idação e Testes                                              | <b>15</b> |  |  |
| 6                                                 | Cor   | nclusões e Trabalho Futuro                                   | 17        |  |  |
| Bi                                                | bliog | grafia                                                       | 19        |  |  |
| Apêndice A Questionário da Usabilidade do Sistema |       |                                                              |           |  |  |
| Αı                                                | oênd  | ice B Outro Detalhe Adicional                                | 23        |  |  |

# Lista de Figuras

| 1.1 | Relação entre as três componentes do projeto $SpaceManager$ . | 1 |
|-----|---------------------------------------------------------------|---|
| 2.1 | Arquitetura do Firebase                                       | 4 |
| 3.1 | Casos de utilização                                           | 7 |
| 3.2 | Modelo entidade-associação                                    | 8 |

# Lista de Tabelas

| 3.1 | Requisitos funcionais     |  |  |  |  |  |  |  |  |  |  | 6 |
|-----|---------------------------|--|--|--|--|--|--|--|--|--|--|---|
| 3.2 | Requisitos não funcionais |  |  |  |  |  |  |  |  |  |  | 6 |

# Lista de Exemplos

| 3.1 | Modelo Relacional                       | 8  |
|-----|-----------------------------------------|----|
| 4.1 | Criação do código MD5 para o utilizador | 11 |
| B.1 | Utilizacao                              | 23 |

# Capítulo 1

# Introdução

No contexto de empresas que tem funcionários que passam pouco tempo nas instalações, e onde os locais de trabalho estão organizados em *open space*, não se justifica que cada funcionário tenha um local de trabalho fixo. Neste cenário surgiu a ideia de desenvolver o projeto *SpaceManager* que permite: i) Gerir a reserva dos postos de trabalho; ii) Verificar através de um conjunto de sensores quais os postos de trabalho efetivamente ocupados; iii) Definir a organização dos espaços *open space*.

Na figura 1.1 estão representadas as três partes que constituem o projeto *SpaceManager*. O trabalho que irá ser abordado neste relatório é o desenvolvimento da componente de *software* que permite gerir as reservas dos vários postos de trabalho.



Figura 1.1: Relação entre as três componentes do projeto SpaceManager

Como podemos ver na figura 1.1 este projeto é constituido por três partes. A primeira é a componente de *software*, representado pelo telemóvel, que permite gerir as reservas, como foi referido anteriormente. A segunda [1], re-

presentado pelo sensor, é a componente hardware cujo objetivo é desenvolver um sistema que consiga detetar se o posto de trabalho está efetivamente ocupado ou não. A terceira parte [2], representado pelo edifício, tem o objetivo de implementar uma componente de software, a ser executada num browser, que permite definir um edifício a quantidade de pisos que existem num edifício, o formato de cada piso, os postos de trabalho que existem em cada piso e os sensores que existem em cada posto de trabalho.

#### 1.1 Objetivo

O trabalho apresentado neste relatório corresponde à componente do projeto *SpaceManager* que visa o desenvolvimento da componente de gestão de reservas de postos de trabalho. O nome atribuído a este trabalho foi *SpaceManager – App* e disponibiliza uma aplicação para o sistema *Android*, na qual o utilizador tem a possibilidade de reservar um lugar. A aplicação permite reservar lugares de vários modos: i) Reservar um lugar aleatório; ii) Reservar um lugar através do mapa da sala; iii) Reservar um lugar aleatório com uma determinada característica, como por exemplo um lugar que seja perto de uma janela; iv) Reservar vários lugares para uma reunião. A aplicação permite ainda a possibilidade de prolongar uma reserva que esteja a decorrer. Como funcionalidades extra da aplicação é possível efetuar pesquisas que permitem saber se um determinado colaborador da empresa está com uma reserva ativa.

#### 1.2 Organização do Documento

Este documento além deste capítulo contém os seguintes capítulos. O capítulo 2 onde são apresentados trabalhos relacionados e as tecnologias utilizadas para o desenvolvimento do projeto. Os casos de utilização, os requisitos funcionais e não funcionais e a abordagem utilizada são apresentados no capítulo 3. No capítulo 4 é apresentada a implementação do projeto, incluindo o modelo entidade-associação e o modelo relacional. O capítulo 5 apresenta os testes realizados que comprovam o correto funcionamento da aplicação. Este trabalho termina com o capítulo 6 onde são apresentadas as conclusões e o trabalho futuro.

# Capítulo 2

#### Estado da Arte

Neste capítulo apresentam-se soluções já existentes semelhantes à temática tratada neste trabalho, secção 2.1, e as tecnologias utilizadas no desenvolvimento deste trabalho, secção 2.2.

#### 2.1 Aplicações

Existem várias soluções com funcionalidades semelhantes ao projeto *Space-Manager*. A Steelcase, uma empresa de venda de mobiliário tem uma solução proprietária para integrar com o mobiliário que é vendido por eles. O Ro-omWizard [3] é um sistema de reserva de salas de reunião. Foi projetado intencionalmente para mostrar informação importante de reuniões à distância, ajudar na localização e agendamento de espaços de reuniões da sua mesa ou do dispositivo. O software esta integrado no mobiliario, nao permite integrar software de outros fabricantes.

A Sony também apresenta um solução para a gestão de postos de trabalho inteligentes. TEOS [4] é um conjunto completo de soluções de gestão de postos de trabalho.

A Cisco

tabela com as ideias o trabalho apresentado neste relatorio...

#### 2.2 Tecnologias

Para a implementação deste projeto foi utilizado como ambiente de desenvolvimento o Android Studio [5]. Para o armazenamento dos dados e au-

tenticação foi utilizada a *framework* Firebase [6], cuja a arquitetura simplificada se apresenta na figura 2.1.



Figura 2.1: Arquitetura do Firebase

Esta framework foi utilizada pelo facto de ser a componente que auxilia o Android Studio na autenticação de utilizadores. Dado que o Android Studio disponibiliza uma base de dados, neste projeto, por uma questão de simplificação optou-se por utilizar essa base de dados. No entanto, a base de dados suportada pela framework Firebase é do tipo NoSQL, pelo que apenas permite um modelo de dados não relacional. Uma vez que as bases de dados NoSQL não garantem a integridade das relações dos dados, foi necessário implementar a nível da aplicação a verificação e manutenção destas integridades. Na secção 3.4 apresenta-se com mais detalhe como esta verificação foi implementada.

Neste projeto apenas foram utilizados os mecanismos de autenticação e armazenamento de dados. Os mecanismos *Cloud Storage* e *Google Analytics*, apesar de não terem sido utilizados, seriam uma hipótese a considerar se fosse necessário, respetivamente, guardar um conjunto de recursos, tais como ficheiros PDF associados a uma reunião ou efetuar uma análise estatística sobre quais os postos de trabalho mais reservados ou as características que os colaboradores procuram mais quando reservam um posto de trabalho.

## Capítulo 3

### Modelo Proposto

Neste capítulo apresenta-se o modelo proposto para o projeto. Na secção 3.2 são apresentados os casos de utilização. Na secção 3.1 apresentam-se os requisitos funcionais e não funcionais. O capítulo termina com a secção 3.3 onde é apresentada a arquitetura implementada.

#### 3.1 Requisitos

Nesta secção são apresentados os requisitos funcionais e não funcionais. Um requisito é uma descrição das necessidades ou propósitos do produto. Um requisito funcional é a descrição de uma funcionalidade do sistema, enquanto que um requisito não funcional é a descrição de como é realizada uma funcionalidade do sistema. Na subsecção 3.1.1 são apresentados os requisitos funcionais e na subsecção 3.1.2 são apresentados os requisitos não funcionais.

#### 3.1.1 Requisitos Funcionais

Os requisitos funcionais dividem-sem em três categorias: i) Evidentes – o utilizador tem que ter conhecimento da sua realização; ii) Invisíveis – não é possível ao utilizador visualizar-los; iii) Adornos – não afeta significativamente o custo ou outras funções. No contexto deste trabalho apenas foram considerados os requisitos funcionais evidentes e invisíveis. Os requisitos funcionais são apresentados na tabela 3.1.

Da análise da tabela 3.1 verifica-se que os requisitos funcionais que são realizados dentro do sistema são invisíveis, como é o caso do **Registar utilizador** e do **Iniciar sessão**. Os requisitos **Reservar lugar**, **Prolongar** 

| Tabela 3.1: Requisitos Requisito                                                                                                             | funcionais <i>Tipo</i>                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| <ol> <li>Registar utilizador</li> <li>Iniciar sessão</li> <li>Reservar lugar</li> <li>Prolongar reserva</li> <li>Pesquisar pessoa</li> </ol> | Invisível<br>Invisível<br>Evidente<br>Evidente<br>Evidente |
| 6. Ver reservas 7. Apagar reserva                                                                                                            | Evidente<br>Evidente                                       |

reserva, Pesquisar pessoa, Ver reservas e Apagar reserva como são funcionalidades que o utilizador vê, são classificados como requisitos funcionais evidentes.

#### 3.1.2 Requisitos Não Funcionais

Os requisitos não funcionais são apresentados na tabela 3.2. Como foi referido anteriormente estes representam a forma como vão ser implementadas as funcionalidades descritas nos requisitos funcionais.

Tabela 3.2: Requisitos não funcionais *Requisito* 

Mecanismo de autenticação Google Base de dados Sensores infravermelhos

Como se apresenta na tabela 3.2 existem três requisitos não funcionais. O primeiro, Mecanismo de autenticação Google, é a capacidade que o sistema tem de permitir a autenticação pelo Google através do Gmail. O segundo, Base de dados, é utilizar uma base de dados onde é guardada a informação sobre os utilizadores e os lugares. Por último, Sensores infravermelhos, são utilizados sensores infravermelhos para determinar se um lugar está ou não ocupado atualmente.

#### 3.2 Casos de Utilização

Na figura 3.1 estão representados os casos de utilização do sistema.



Figura 3.1: Casos de utilização

Como podemos aferir existem 4 casos de utilização. O utilizador tem a possibilidade de se **registar no sistema**, no qual este fica guardado num base de dados. Posteriormente pode **iniciar a sessão**, em que o sistema acede à base de dados para verificar as credenciais do utilizador e ver se as mesmas são válidas. Na **gestão das reservas** existem várias possibilidades, o utilizador pode fazer uma reserva, que fica guardada na base de dados, pode eliminá-la, e esta é removida da base de dados e pode prolongá-la e a reserva é alterada. Em relação à **pesquisa de utilizadores**, é possível consultar as reservas atuais de modo a perceber se existe uma reserva ativa para um colaborador que é especificado como argumento da pesquisa.

#### 3.3 Modelo de Dados

Na figura 3.2 está representado o modelo entidade-associação.

Como podemos ver no modelo na figura 3.2 a entidade Sala que é caracterizada por ter um identificador, uma descrição e um piso. Um Lugar está sempre associado a uma Sala e também tem um identificado. Um Lugar também está associado a um Sensor que é caraterizado por um identificador e por um URL. A Caracteristica está associada ao Lugar e tem como atri-



Figura 3.2: Modelo entidade-associação

butos o identificador e a descrição. A entidade Utilizador define o utilizador do sistema, é caracterizado pelo *e-mail*, nome e palavra-chave. Por fim, a entidade Reserva, depende de um Lugar e está associada a um Utilizador.

Do modelo entidade-associação apresentado na figura 3.2 obtém-se o modelo relacional apresentado na listagem 3.1.

Listagem 3.1: Modelo Relacional

```
SALA( idSala, piso, descricao )
2
   CK = { idSala }
3
   LUGAR ( idLugar , idSala )
   CK = { idLugar }
6
   FK = { idSala } em SALA
7
   CARACTERISTICA ( idCaracteristica, descricao )
9
   CK = { idCaracteristica }
10
   LUGAR_CARACTERISTICA ( idLugar, idSala,
      \hookrightarrowidCaracteristica )
12 | CK = { idLugar, idSala, idCaracteristica }
```

```
FK = { idLugar, idSala } em LUGAR
13
14
   UTILIZADOR( email, nome, palavraChave )
15
   CK = { email }
16
17
18
   RESERVA (data, horaInicio, horaFim, idLugar, idSala,
      \hookrightarrow email )
19
   CK = { data, horaInicio, horaFim, idLugar, idSala }
20
   FK1 = { idLugar, idSala } em LUGAR
   FK2 = { email } em UTILIZADOR not null
21
22
23
   LUGAR_SENSOR( idLugar, idSala, idSensor )
   CK = { idLugar, idSala, idSensor }
25
   FK1 = { idLugar, idSala } em LUGAR
   FK2 = { idSensor} em SENSOR
27
28
   SENSOR ( idSensor, URL )
   CK = { idSensor }
29
```

#### 3.4 Implementação do Modelo Relacional numa Base de Dados NoSQL

Do modelo entidade-associação apresentado na figura 3.2 foi derivado o modelo relacional da listagem 3.1. Como foi referido na secção 2.2 o tipo da base de dados utilizada é NoSQL, pelo que o modelo relacional apresentado no listagem 3.1 teve de ser implementada garantindo a integridade da relações. Foi criada uma Database Reference por cada tabela do modelo relacional. Também foi criada uma Database Reference para simular o estado de cada sensor, ou seja, determinar se o posto de trabalho está ou não ocupado.

Houve a necessidade de representar cada identificador através de um código único. Esse código é do tipo MD5 e cria um identificador de 128 bits e pode ser derivado de um ou mais valores. No capítulo 4 esta explicação será complementada.

## Capítulo 4

# Implementação

Neste capítulo apresenta-se a implementação da aplicação que foi desenvolvida para Android. Na secção 4.1 são apresentados os métodos de autenticação disponibilizados pela aplicação. Os diversos tipos de reserva são apresentados na secção 4.2. A funcionalidade de prolongar uma reserva é apresentada na secção 4.3. Na secção 4.4 é apresentada a funcionalidade que permite visualizar as reservas futuras.

#### 4.1 Autenticação

O utilizador tem a possibilidade de se autenticar através da aplicação. Primeiro tem que efetuar o registo, na qual insere o nome, endereço de *e-mail* e palavra-chave, de seguida inicia a sessão utilizando o endereço de *e-mail* e palavra-chave. Em alternativa é possível efetuar a autenticação através do endereço de *e-mail* do Google, o Gmail.

Quando o utilizador faz o registo na aplicação, os seus dados são adicionados à base de dados do Firebase na referência utilizadores, e onde cada utilizador fica associado a um código MD5. Este é utilizado para ser mais fácil organizar a informação dos utilizadores na base de dados. O código Java referente à criação do código MD5 para o utilizador encontra-se na listagem 4.1.

Listagem 4.1: Criação do código MD5 para o utilizador

```
public void onDataChange(@NonNull DataSnapshot ds) {
   String md5 = "";
   try {
```

```
MessageDigest md=MessageDigest.getInstance("MD5");
4
     md.update(sEmail.getBytes(),0,sEmail.length());
5
6
     md5 = new BigInteger(1, md.digest()).toString(16);
7
    }catch(NoSuchAlgorithmException e){
8
     System.err.println("Erro ao gerar o ócdigo MD5");
9
    }
10
11
    DatabaseReference user = users.child(md5);
12
    DatabaseReference nome = user.child("nome");
13
    nome.setValue(sNome);
14
    DatabaseReference email = user.child("email");
15
    email.setValue(sEmail);
16
    DatabaseReference pass = user.child("pass");
17
    pass.setValue(sPass);
18
   }
```

Neste caso o código md5 é derivado do e-mail. este codigo é utilizado como identificador único na referencia utilizadores. Este mecanismo foi utilizado em todas as situação onde foi necesario suportar o modelo sql numa base de dados nosql.

Quando o utilizador inicia a sessão, o sistema verifica se o endereço de e-mail introduzido corresponde à palavra-chave fornecida.

Para o inicio da sessão ser realizada através do endereço de e-mail do Google o sistema . . .

#### 4.2 Reservas

Na subsecção 4.2.1 é apresentada a implementação da reserva de um lugar aleatório. A implementação da reserva de um lugar escolhido do mapa da sala é apresentada na subsecção 4.2.2. A subsecção 4.2.3 apresenta a implementação da reserva de grupo. A implementação da reserva pela característica do lugar é apresentada na subsecção 4.2.4.

A figura ... apresenta o ecra inicial comum a todas as reservas.

Antes do utilizador efetuar qualquer reserva necessita de escolher o horário no formato data/hora. Na aplicação a seleção da data é efetuada com recurso e um Widget do tipo calendário (CalendarView). A escolha da hora é realizada com recurso a um Widget do tipo Spinner. Por omissão a duração inicial de uma reserva poderá ser uma ou duas horas.

sempre qe se carrega num botao...

#### 4.2.1 Reserva de um Lugar

ga

#### 4.2.2 Reserva Através do Mapa da Sala

Este tipo de reserva é realizado sobre um mapa, em que o utilizador seleciona o lugar que pretende clicando sobre ele.

#### 4.2.3 Reserva por Grupo

aga

#### 4.2.4 Reserva por Característica

ga

#### 4.3 Prolongar Reserva

ga

#### 4.4 As Minhas Reservas

O utilizador tem a possibilidade de poder ver as suas reservas futuras. O sistema vai à base de dados e percorre todas as reservas e vê quais é que pertencem ao utilizador coma sessão iniciada.

# 4.5 Integração com o Projeto SpaceManager – Módulo Sensores

ga

# Capítulo 5 Validação e Testes

 $explicar\ topicos/funcionalidades$ 

# Capítulo 6 Conclusões e Trabalho Futuro

hgxhxhxg Notificação quando reserva começa e quando vai acabar.

# Bibliografia

- [1] P. Marques, *SpaceManager Sensores*. Intituto Superior de Engenharia de Lisboa, Projeto Final de Curso ed., 2020. Licenciatura em Engenharia Informática e Multimédia.
- [2] B. Silva, SpaceManager Web Components. Intituto Superior de Engenharia de Lisboa, Projeto Final de Curso ed., 2020. Licenciatura em Engenharia Informática e Multimédia.
- [3] "Steelcase RoomWizard," July 2020.
- [4] "Sony TEOS," July 2020.
- [5] "Android Studio," June 2020.
- [6] "Firebase," June 2020.
- [7] "Arquitetura Firebase," June 2020.

20 Bibliografia

# Apêndice A

# Questionário da Usabilidade do Sistema

Neste apêndice são apresentadas as perguntas colocadas aos utilizadores que testaram a aplicação.

- 1 Usaria o sistema com frequência.
- 2 O sistema é demasiado complexo.
- 3 O sistema é fácil de usar
- 4 Precisei de ajuda de alguém com conhecimentos técnicos para utilizar o sistema.
- 5 As várias funções do sistema estão muito bem integradas.
- 6 O sistema apresenta muita inconsistência.
- 7 O sistema é de rápida aprendizagem.
- 8 O sistema é confuso.
- 9 Senti-me confiante a utilizar o sistema.
- 10 Foi necessário aprender coisas novas para conseguir utilizar o sistema.

resultados das perguntas

## Apêndice B

#### Outro Detalhe Adicional

Listagem B.1: Utilizacao

```
1
   public class Opcao extends AppCompatActivity
      \hookrightarrow implements View.OnClickListener{
2
3
     private ConstraintLayout constraintLayout;
4
5
     @Override
     protected void onCreate(Bundle savedInstanceState)
6
        \hookrightarrow {
7
       setRequestedOrientation(ActivityInfo.

SCREEN_ORIENTATION_PORTRAIT);
8
       super.onCreate(savedInstanceState);
9
       setContentView(R.layout.opcao);
10
11
       Button lugar = findViewById(R.id.BObter);
12
       lugar.setOnClickListener(this);
       Button voltar = findViewById(R.id.BVoltar);
13
14
       voltar.setOnClickListener(this);
     }
15
16
     @Override
17
     public void onClick(View v) {
18
19
       switch (v.getId()) {
20
         case R.id.BObter:
           Intent intent_lugar = new Intent(Opcao.this,
21
              22
           Opcao.this.startActivity(intent_lugar);
```

```
23
            break;
24
          case R.id.BVoltar:
            Intent intent_voltar = new Intent(Opcao.this
25
               \hookrightarrow, Reserva.class);
            Opcao.this.startActivity(intent_voltar);
26
27
            break;
28
        }
29
30
     }
31 }
```