Université de Batna 2 Département de Mathématiques L2 SAD S4 Variables aléas multiples 2021/2022

Contrôle final

durée 01H30

Exercice 1 (8 pts)

Soit
$$X = (X_1, X_2)^T \sim N(\mu_X, \Sigma_X)$$
 où $\mu_X = (0,0)^T$ et $\Sigma_X = \begin{pmatrix} 3 & \rho\sqrt{3} \\ \rho\sqrt{3} & 1 \end{pmatrix}$, avec $|\rho| < 1$.

- 1- 2 pts : Dans quel cas on a $X_1 \perp \!\!\! \perp X_2$? D'après la matrice Σ_X on a $cov(X_1,X_2) = \rho\sqrt{3} = 0$ seulement si $\rho=0$ et donc on n'a. $X_1 \perp \!\!\! \perp X_2$ seulement si $\rho=0$ et sinon on aura pas indépendance.
- $\text{2- Posons} \begin{cases} Y_1 = \frac{1}{\sqrt{3}} X_1 X_2 \\ Y_2 = \frac{1}{\sqrt{3}} X_1 + X_2 \end{cases} \text{, calculer } cov(Y_1, Y_2), \ \ var(Y_1) \text{ et } var(Y_2). \end{cases}$

On sait que 3 pts : $cov(Y_1, Y_2) = E(Y_1, Y_2) - E(Y_1) \cdot E(Y_2) = E(Y_1, Y_2)$, car $\mu_X = (0,0)^T$ avec :

$$\begin{split} E(Y_1,Y_2) &= E\left(\frac{1}{3}X_1^2 - X_2^2\right) = \frac{1}{3}E(X_1^2) - E(X_2^2) = \frac{1}{3}var(X_1^2) - var(X_2^2) = 0 \text{ et ceci est dû} \\ \text{au fait que } \mu_X &= (0,0)^T \text{ avec } var(X_i^2) = E(X_i^2) - \left(E(X_i^2)\right)^2 = E(X_i^2), \ i = 1,2. \end{split}$$

1 pt : $var(Y_1) = \left(\frac{1}{\sqrt{3}}, -1\right)^T \cdot \Sigma_X \cdot \left(\frac{1}{\sqrt{3}}\right) = 2 - 2\rho > 0$ et

1 pt : $var(Y_2) = \left(\frac{1}{\sqrt{3}}, 1\right)^T \cdot \Sigma_X \cdot \left(\frac{1}{\sqrt{3}}\right) = 2 + 2\rho > 0.$

3- 1 pt : Est-ce que $Y_1 \perp \!\!\! \perp Y_2$? $cov(Y_1, Y_2) = 0 \Longrightarrow Y_1 \perp \!\!\! \perp Y_2$.

Exercice 2 (8pts)

On suppose que X et Y sont des variables aléatoires indépendantes ayant pour lois de probabilités respectives :

X=x _i	1	2
p _i	0,7	0,3

Y=y _j	-2	5	8
p _j	0,3	0,5	0,2

1- 4 pts : Déterminer la loi de probabilité conjointe de X et Y . L'indépendance de X et Y nous donnera les p_{ij} , i=1,2 et j=1,2,3, avec $p_{ij}=p_i$. p_j d'où

$X = x_i \setminus Y = y_j$	-2	5	8	Σ
1	0,21	0,35	0,14	0,7
2	0,09	0,15	0,06	0,3
Σ	0,3	0,5	0,2	1

2- 1 pt : Quelle est la probabilité que X et Y soient pairs ? P(X=2k,Y=2k')=P(X=2,Y=-2)+P(X=2,Y=8)=0,09+0,06=0,15 3- 1 pt : Quelle est la probabilité que X vaille 1 sachant que Y est positif ?

$$P\left(X = \frac{1}{Y} \ge 0\right) = \frac{P(X = 1, Y \ge 0)}{P(Y \ge 0)} = \frac{P(X = 1, Y = 5) + P(X = 1, Y = 8)}{P(Y = 5) + P(Y = 8)} = \frac{0.35 + 0.14}{0.5 + 0.2}$$

$$= 0.7.$$

4- 2 pts: Calculer Cov(X; Y).

$$cov(X,Y) = E(X,Y) - E(X).E(Y)$$
, avec

$$E(X.Y) = \sum_{i=1}^2 \sum_{j=1}^3 p_{ij} x_i \, y_j \, , \big(E(X) = \sum_{i=1}^2 x_i . \, p_i \big), \big(E(Y) = \sum_{i=1}^3 x_i \, . \, p_i \big), \big(E(Y) = \sum_{i=1}^3$$

 $\sum_{i=1}^{2} y_{j}. p_{j} \text{ bet donc } cov(X, Y) = -0.78 + 3.25 + 2.08 - (1.3). (3.5) = 4.55 - 4.55 = 0.$

Exercice 3 (4pts)

Soit un réel α et soit (X; Y) un couple de v.a. continu dont la loi jointe a pour densité

$$f(x,y) = \begin{cases} \alpha e^{-x} e^{-2y}, & x > 0, y > 0 \\ 0, & sinon \end{cases}$$

1. 3 pts : Déterminer la constante α .

Puisque la fonction f est une densité de probabilité alors $\alpha \geq 0$ et $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$ et donc

$$\iint_{\mathbb{R}^{2}} f(x,y) dx dy = 1 = \alpha \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-x} e^{-2y} dx dy$$

$$= \alpha \int_{0}^{+\infty} \left[\int_{0}^{+\infty} e^{-x} dx \right] e^{-2y} dy = \alpha \int_{0}^{+\infty} [-e^{-x}|_{0}^{\infty+}] e^{-2y} dy$$

$$= \alpha \int_{0}^{+\infty} e^{-2y} dy = \alpha \cdot -\frac{1}{2} e^{-2y}|_{0}^{+\infty} = \frac{\alpha}{2} \Rightarrow \alpha = 2$$

Alors

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y}, & x > 0, y > 0\\ 0, & sinon \end{cases}.$$

 1 pt : Déterminer la loi marginale de X. On précisera la densité de cette loi marginale si elle existe.

$$f(x) = \int_{\mathbb{R}} f(x,y) dy = 2e^{-x} \int_0^{+\infty} e^{-2y} dy = 2e^{-x} \cdot -\frac{1}{2}e^{-2y} |_0^{+\infty} = e^{-x}, \qquad x > 0$$
 et bien sûr $f(x) = 0$ sinon.

Bonne continuation