Inhalt Reelle Vektorräume, Untervektorräume, lineare Gleichungssysteme, die lineare Hülle einer Menge von Vektoren

1 Reelle Vektorräume

Definition Ein reeller Vektorraum ist eine Menge V mit zwei Operationen $+: V \times V \to V$, $(v, w) \mapsto v + w$ (Addition) und $\mathbb{R} \times V \to V$, $(a, v) \mapsto av$ (skalare Multiplikation), so dass gilt:

V1 (u+v) + w = u + (v+w) und v+w = w+v für alle $u, v, w \in V$.

V2 Es gibt ein $o \in V$ mit v + o = v für alle $v \in V$, zu jedem $v \in V$ existiert ein $v' \in V$ mit v + v' = o.

V3 Distributivgesetze: (a+b)v = av + bv, a(v+w) = av + aw für alle $a, b \in \mathbb{R}$, $v, w \in V$.

V4 (ab)v = a(bv) für alle $a, b \in \mathbb{R}, v \in V$.

V5 1v = v für alle $v \in V$.

Bemerkung Das Element o ist durch V2 (und die Kommutativität der Addition) eindeutig bestimmt, es heißt *Nullvektor* von V und wird auch mit 0_V oder 0 bezeichnet. Beweis: Erfüllt o' ebenfalls V2, so gilt o' = o' + o = o + o' = o.

Für jedes $v \in V$ ist v' mit v + v' = 0 eindeutig bestimmt; v' heißt das Negative von v und wird mit -v bezeichnet.

Beispiele Sei $n \in \mathbb{N}$. Dann ist $\mathbb{R}^n := \{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mid a_i \in \mathbb{R} \}$ mit den komponentenweise

definierten Verknüpfungen

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} := \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}, \quad a \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} := \begin{pmatrix} aa_1 \\ \vdots \\ aa_n \end{pmatrix}$$

ein reeller Vektorraum; der Nullvektor von \mathbb{R}^n ist die Spalte mit lauter Nullen. Speziell für n=1 folgt: \mathbb{R} ist selbst ein reeller Vektorraum.

2 Untervektorräume

Definition Sei V ein reeller Vektorraum. $U \subset V$ heißt Untervektorraum von V, falls gilt: U1 $U \neq \emptyset$.

U2 Für alle $u, u' \in U$ ist $u + u' \in U$.

U3 Für alle $a \in \mathbb{R}$, $u \in U$ ist $au \in U$.

In diesem Fall ist U mit den eingeschränkten Verknüpfungen selbst ein reeller Vektorraum; es ist $0_V \in U$ (denn $0_V = 0u \in U$ mit einem $u \in U$) und $-u = (-1)u \in U$ für alle $u \in U$.

Proposition Seien U, U' Untervektorräume eines reellen Vektorraumes V. Dann gilt:

- a) $U \cap U' := \{v \mid v \in U \text{ und } v \in U'\}$ ist ein Untervektorraum von V.
- b) $U + U' := \{u + u' \mid u \in U, u' \in U'\}$ ist ein Untervektorraum von V.

Beweis: a) Wegen $0 \in U \cap U'$ ist $U \cap U'$ nicht leer. Für $a \in \mathbb{R}$ und $v, w \in U \cap U'$ ist $av \in U$ und $av \in U'$, also $av \in U \cap U'$, und $v + w \in U$, $v + w \in U'$, also $v + w \in U \cap U'$.

b) Wegen $U \subset U + U'$ ist U + U' nicht leer. Für $a \in \mathbb{R}$ und $u, v \in U$, $u', v' \in U'$ ist $a(u + u') = au + au' \in U + U'$ und $(u + u') + (v + v') = (u + v) + (u' + v') \in U + U'$.

3 Lineare Gleichungssysteme

Sei G $\sum_{j=1}^{n} a_{ij}x_j = b_i$ $(1 \leq i \leq m)$ mit $a_{ij}, b_i \in \mathbb{R}$ ein lineares Gleichungssystem mit m Gleichungen in n Unbekannten x_1, \ldots, x_n .

$$L(G) := \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid \sum_{j=1}^n a_{ij} x_j = b_i \text{ für } 1 \le i \le m \right\}$$

heißt $L\ddot{o}sungsmenge$ von G.

G heißt homogen, falls alle $b_i = 0$ sind, andernfalls inhomogen.

Das lineare Gleichungssystem G^0 $\sum_{j=1}^n a_{ij}x_j = 0$ $(1 \le i \le m)$ heißt Homogenisierung von G.

Satz Ist G $\sum_{j=1}^{n} a_{ij}x_j = 0$ $(1 \le i \le m)$ ein homogenes lineares Gleichungssystem, so ist L(G) ein Untervektorraum von \mathbb{R}^n , der Lösungsraum von G.

Beweis: Der Nullvektor liegt in L(G), also ist L(G) nicht leer. Für $a \in \mathbb{R}$ und $x, y \in L(G)$ mit den Komponenten x_1, \ldots, x_n bzw. y_1, \ldots, y_n sind $x + y, ax \in L(G)$ wegen

$$\sum_{j=1}^{n} a_{ij}(x_j + y_j) = \sum_{j=1}^{n} a_{ij}x_j + \sum_{j=1}^{n} a_{ij}y_j = 0 + 0 = 0 \text{ und } \sum_{j=1}^{n} a_{ij}(ax_j) = a\sum_{j=1}^{n} a_{ij}x_j = a0 = 0.$$

Also ist L(G) ein Untervektorraum von \mathbb{R}^n .

Satz Ist $v \in \mathbb{R}^n$ eine spezielle Lösung von G $\sum_{i=1}^n a_{ij}x_j = b_i$ $(1 \le i \le m)$, so ist

$$L(G) = \{ v + x \mid x \in L(G^0) \}.$$

Beweis: v habe die Komponenten a_1, \ldots, a_n , wegen $v \in L(G)$ gilt $\sum_{j=1}^n a_{ij}a_j = b_i$, $1 \le i \le m$. ">": Liegt x mit den Komponenten x_1, \ldots, x_n in $L(G^0)$, so gilt

$$\sum_{j=1}^{n} a_{ij}(a_j + x_j) = \sum_{j=1}^{n} a_{ij}a_j + \sum_{j=1}^{n} a_{ij}x_j = b_i + 0 = b_i \text{ für } 1 \le i \le m.$$

Also ist $v + x \in L(G)$.

"C": Gehört y mit den Komponenten y_1, \ldots, y_n zu L(G), so liegt x := y - v in $L(G^0)$ wegen $\sum_{j=1}^n a_{ij}(y_j - a_j) = \sum_{j=1}^n a_{ij}y_j - \sum_{j=1}^n a_{ij}a_j = b_i - b_i = 0 \text{ für } 1 \le i \le m, \text{ also } y = v + x, \ x \in L(G^0).$

Korollar G besitze eine Lösung v. Dann sind folgende Aussagen äquivalent:

- (i) G hat genau eine Lösung.
- (ii) G^0 hat nur den Nullvektor als Lösung.

Beweis: (i) \Rightarrow (ii): Ist $x \in L(G^0)$, so ist $v + x \in L(G)$, also v + x = v nach (i), also x = 0. (ii) \Rightarrow (i): Aus $L(G^0) = \{0\}$ folgt $L(G) = \{v + x \mid x \in L(G^0)\} = \{v + 0\} = \{v\}$.

4 Die lineare Hülle einer Menge von Vektoren

Sei V ein reeller Vektorraum.

Definition Für eine Teilmenge $M \neq \emptyset$ von V definiert man

$$\operatorname{Lin}(M) := \{ \sum_{i=1}^{m} a_i v_i \mid m \in \mathbb{N}, \ a_i \in \mathbb{R}, \ v_i \in M \text{ für } i = 1, \dots, m \}.$$

(Ein Vektor der Form $\sum_{i=1}^{m} a_i v_i$ mit $a_i \in \mathbb{R}$ heißt Linearkombination der v_1, \ldots, v_m .) Für endliches $M = \{v_1, \ldots, v_m\}$ schreibt man $Lin(v_1, \ldots, v_m) := Lin(\{v_1, \ldots, v_m\})$. Für $M = \emptyset$ sei $Lin(\emptyset) := \{0_V\}$. Dann ist Lin(M) ein Untervektorraum von V, der M enthält.

Beweis: $\operatorname{Lin}(\emptyset) = \{0\}$ ist sicher ein Untervektorraum von V. Sei nun $M \neq \emptyset$. Für jedes $v \in M$ ist $v = 1v \in \operatorname{Lin}(M)$, also $\emptyset \neq M \subset \operatorname{Lin}(M)$. $\operatorname{Lin}(M)$ ist abgeschlossen unter der Addition (denn die Summe von zwei Linearkombinationen von Vektoren aus M ist wieder eine solche), und für $a \in \mathbb{R}$, $\sum_{i=1}^{m} a_i v_i \in \operatorname{Lin}(M)$, $v_i \in M$ ist $a \sum_{i=1}^{m} a_i v_i = \sum_{i=1}^{m} (aa_i) v_i \in \operatorname{Lin}(M)$.

 $\operatorname{Lin}(M)$ heißt der von M erzeugte Untervektorraum oder die lineare Hülle von M in V.

Proposition Lin(M) ist der kleinste Untervektorraum von V, der M enthält.

Beweis: 1. Lin(M) ist ein Untervektorraum von V, der M enthält.

2. Ist U ein Untervektorraum von V mit $M \subset U$, so enthält U auch alle Vektoren der Form $\sum_{i=1}^m a_i v_i \text{ mit } v_i \in M, \ a_i \in \mathbb{R}, \text{ also gilt } \operatorname{Lin}(M) \subset U.$

Beispiele a) Für einen einzelnen Vektor $v \in V$ ist $Lin(v) = \{av \mid a \in \mathbb{R}\} =: \mathbb{R}v$.

b) Für $v_1 := \binom{1}{1}$, $v_2 := \binom{2}{1} \in \mathbb{R}^2$ ist $\text{Lin}(v_1, v_2) = \mathbb{R}^2$, denn für jeden Vektor $x = \binom{x_1}{x_2} \in \mathbb{R}^2$ gilt

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (2x_2 - x_1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (x_1 - x_2) \begin{pmatrix} 2 \\ 1 \end{pmatrix} \in \text{Lin}(v_1, v_2).$$

c) Für
$$v_1 := \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
, $v_2 := \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \in \mathbb{R}^3$ gilt $\text{Lin}(v_1, v_2) = \{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 \mid 2a_1 - a_2 - a_3 = 0 \}$.

Beweis: Die rechte Seite U ist als Lösungsraum der homogenen Gleichung $2a_1 - a_2 - a_3 = 0$ ein Untervektorraum von \mathbb{R}^3 , und es gilt $v_1, v_2 \in U$. Nach der Proposition ist also $\operatorname{Lin}(v_1, v_2) \subset U$. Andererseits gilt

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in U \Rightarrow \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ 2a_1 - a_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ 0 \\ 2a_1 \end{pmatrix} + \begin{pmatrix} 0 \\ a_2 \\ -a_2 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \in \operatorname{Lin}(v_1, v_2).$$

Damit ist $U \subset \text{Lin}(v_1, v_2)$, also insgesamt $\text{Lin}(v_1, v_2) = U$.

Definition Ein Erzeugendensystem von V ist eine Teilmenge E von V mit Lin(E) = V, d. h. jedes $v \in V$ ist Linearkombination von Vektoren aus E. Man sagt auch: E erzeugt V. V heißt endlich erzeugt, falls V ein endliches Erzeugendensystem besitzt.

Beispiele a) \mathbb{R}^n wird von den *Einheitsvektoren* $\begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$ erzeugt.

b) Im obigen Beispiel c) wird U von v_1, v_2 erzeugt.