Compte rendu TP3 Optique

Introduction aux lentilles minces

Objectif: Vérifier la formule de conjugaison, dite de Descartes, donnant la position de l'image A' d'un point objet A, situé sur l'axe optique:

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

Expériences

Nous avons étudiés 3 cas possible avec une lentille mince convergente de vergence $+4\delta$:

• Objet et image réel

• Objet réel, Image virtuelle

• Objet virtuelle, Image réel

Dans chaque cas, nous avons effectué plusieurs mesures de $\overline{OA'}$ pour des distances de \overline{OA} différentes. Cela nous a permit d'obtenir les tableau de valeurs suivant:

\overline{OA}	$\overline{OA'}$	$\frac{1}{\overline{OA}}$	$\frac{1}{\overline{OA'}}$
-100cm	36cm	-0.01cm	0.028cm
-80cm	38.5cm	-0.0125cm	0.026cm
-60cm	46cm	-0.0167cm	0.022cm
-50cm	53cm	-0.02cm	0.019cm
-40cm	71cm	-0.025cm	0.014cm
-35cm	92cm	-0.029cm	0.01cm
-15.5cm	-47.5cm	-0.065cm	-0.021cm
-13.5cm	-39cm	-0.074cm	-0.027cm
-12.5cm	-33.5cm	-0.05cm	-0.03cm
15cm	10.5cm	0.07cm	0.1cm
20cm	12cm	0.05cm	0.08cm
25cm	13.5cm	0.04cm	0.074cm
30cm	14.6cm	0.03cm	0.07cm
40cm	16.7cm	0.025cm	0.06cm
50cm	17.3cm	0.02cm	0.058cm

Ce tableau va nous permettre de tracer les courbes suivantes.

La courbe de la fonction $\overline{OA'}=f(\overline{OA})$

La courbe de la fonction $\dfrac{1}{\overline{OA'}}=f(\dfrac{1}{\overline{OA}})$

Régression linéaire

On peut remarquer que la courbe de $\frac{1}{\overline{OA'}}$ en fonction de $\frac{1}{\overline{OA}}$ est linéaire, on peut alors effectuer la régression linéaire de celle-ci avec Regressi. On trouve alors

$$\frac{1}{\overline{OA'}} = \frac{0.90}{\overline{OA}} + 0.038$$

Or, nous pouvons déterminé que l'ordonnée à l'origine de cette fonction correspond a l'inverse de la distance focale de la lentille. Ceci est le cas car l'ordonné à l'origine est équivalent à:

$$\frac{1}{\overline{OA}} = 0 \iff \overline{OA} \to +\infty$$

Soit un objet à l'infini, or nous savons que l'image d'un objet à l'infini ce trouve sur le foyer image de la lentille.

On a donc
$$rac{1}{f'}=0.038cm \iff f'=\boxed{26.3cm}$$
 .

On a donc vérifié la formule de Descartes (à quelques imprécisions près):

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

Python

Avec le script python suivant, on peut tracer les même courbes:

```
import matplotlib.pyplot as plt
import numpy as np

oa = [-100,-80, -60,-50,-40,-35, -15.5, -13.5, -12.5, 15,20,25,30,40,50]
oaprime = [36,38.5,46,53,71,92,-47.5,-39,-33.5,10.5,12,13.5,14.6,16.7,17.3]
oa_inv = [1/dist for dist in oa]
oaprime_inv = [1/dist for dist in oaprime]

plt.xlabel ("1/oa")
plt.ylabel ("1/oa")
plt.plot(oa_inv, oaprime_inv, 'ro')
plt.show()
```


De même, on peut effectuer un régression linéaire avec python. Naturellement, on trouve la même fonction.

Analyse de mesures

On peut aussi estimer la valeur de f^\prime en faisant la moyenne de chaque valeur de f^\prime à chaque mesure. On peut élaborer la formule de f^\prime suivante grâce à la formule de conjugaison:

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \tag{1}$$

$$\iff \frac{1}{f'} = \frac{OA - OA'}{\overline{OA} \times \overline{OA'}}$$
 (2)

$$\iff \frac{1}{f'} = \frac{\overline{OA} - \overline{OA'}}{\overline{OA} \times \overline{OA'}}$$

$$\iff f' = \boxed{\frac{\overline{OA} \times \overline{OA'}}{\overline{OA} - \overline{OA'}}}$$
(2)

Avec python, on peut alors facilement, trouver les valeurs de f' et en faire la moyenne.

```
import numpy as np

oa = [-100,-80, -60,-50,-40,-35, -15.5, -13.5, -12.5, 15,20,25,30,40,50]
oaprime = [36,38.5,46,53,71,92,-47.5,-39,-33.5,10.5,12,13.5,14.6,16.7,17.3]

fprime = [(x*y)/(x-y) for (x, y) in zip(oa, oaprime)]
f_avg = np.average(fprime)
```

On trouve alors un valeur de $f'=\boxed{26.4cm}$, avec un écart-type de 3.60cm.

La courbe de f' en fonction de \overline{OA}

On peut aussi tracer la courbe de f' en fonction de \overline{OA} :

D'après la formule de conjugaison, f' est inversement proportionnel à \overline{OA} donc il est normal de retrouver une hyperbole. On a aussi tracé la valeur de f' trouvé précédemment. Il semblerait que cette valeur serait la limite de cette fonction quand $\overline{OA} \to +\infty$. Cela à bien un sens car d'après la formule de f' trouvé précédemment, quand $\overline{OA} \to +\infty$, On trouve alors:

$$lim_{\overline{OA} o +\infty} f' = lim_{\overline{OA} o +\infty} rac{\overline{OA} imes \overline{OA'}}{\overline{OA} - \overline{OA'}}$$
 (4)

$$= \frac{\overline{OA'}}{1}$$

$$= \overline{OA'}$$

$$(5)$$

$$= \overline{OA'}$$

$$= \overline{OA'}$$
 (6)

Et comme noté précédemment, quand un objet se trouve à l'infini, son image se trouve sur le foyer image de la lentille, c'est à dire $\overline{OA'}=f'$.