Алгебра. КТ. Осенний семестр

III. Гомоморфизмы групп. Нормальные подгруппы. Факторгруппы

4				1		U		1
1.	Привелите	примеры	плоских	murvn.	группы	симметрии	KOTODLIX	изоморфны:
	ттриводите	11P11111CPD1	1101001(1111	T J P ,	- PJ	CIIIIIICIPIIII	TOTOPER	moomop quin.

- a) \mathbb{Z}_2 ; б) \mathbb{Z}_3 ; в) S_3 ; г) V_4 .

2. Докажите, что группы
$$\langle \mathscr{P}(M), \cap \rangle$$
 и $\langle \mathscr{P}(M), \cup \rangle$ изоморфны.

3. Изоморфны ли группы:

- а) \mathbb{Z}_4 и D_4 ;
- б) \mathbb{Z}_4 и V_4 :
- в) \mathbb{Z}_4 и R_4 :
- г) \mathbb{Z}_{24} и S_4 :
- Δ) $\langle 3\mathbb{Z}, + \rangle$ и $\langle 5\mathbb{Z}, + \rangle$;
- e) $\langle \mathbb{R}, + \rangle$ и $\langle \mathbb{R}^*, \cdot \rangle$?

4. Является ли отображение φ гомоморфизмом групп? В случае положительного ответа найдите его ядро и образ:

- a) $\varphi \colon \mathbb{O}^* \to \mathbb{O}^*$, $\varphi(x) = |x|$;
- б) $\varphi \colon \mathbb{Q}^* \to \mathbb{Q}^*, \ \varphi(x) = -|x|;$
- в) $arphi \colon \mathbb{R}^* o \mathbb{R}^*$, $arphi(x) = x^2$;
- г) $arphi\colon\mathbb{Z}_{36} o\mathbb{Z}_8,\ arphi(x)$ равно остатку от деления числа 2x на 8.
- 5. Докажите, что в абелевой группе любая подгруппа является нормальной.

6. Верно ли, что

- a) $A_n \leq S_n$;
- б) $S_4^1 \leqslant S_4 \ (S_4^1$ все перестановки, оставляющие на месте 1)?

7. Найдите левое и правое разложения:

- а) группы \mathbb{Z} по подгруппе $5\mathbb{Z}$;
- б) группы D_3 по подгруппе R_3 ;
- в) группы S_3 по подгруппе $\{\varepsilon, (12)\};$
- Γ) группы D_4 по подгруппе отражений относительно центра;
- д) группы D_4 по подгруппе отражений относительно одной из диагоналей;

- 8. Докажите, что подгруппа является нормальной тогда и только тогда, когда левое и правое разложения группы по этой подгруппе совпадают.
- 9. Докажите, что если порядок подгруппы в два раза меньше порядка группы, то эта подгруппа является нормальной.
- 10. Найдите:
 - a) $3\mathbb{Z}/15\mathbb{Z}$;
 - 6) $\mathbb{Z}_{12}/\mathbb{Z}_3$;
 - в) \mathbb{R}/\mathbb{Z} ;
 - г) факторгруппы по ядрам гомоморфизмов задачи 4.
- 11. Найдите все нормальные подгруппы и соответствующие факторгруппы группы симметрий правильного треугольника.
- 12. Среди функций $\mathbb{R}^{\mathbb{R}}$ рассмотрим функции вида y=kx+b $(k\neq 0)$, которые образуют группу относительно композиции (проверьте это!). Докажите, что функции
 - а) вида y = x + b;
 - б) вида y=kx

образуют нормальные подгруппы и найдите соответствующие факторгруппы.

- 13. Пусть R группа всех вращений плоскости вокруг центра правильного n-угольника. Докажите, что $R_n \leqslant R$ и найдите R/R_n .
- 14.* Может ли группа иметь неизоморфные нормальные подгруппы, факторгруппы по которым изоморфны?
- 15.* Является ли отношение «быть нормальной подгруппой» транзитивным?

4. 2)
$$\forall i : Z_{3k} \rightarrow Z_{2}$$
 $x = 36k, i \circ i \mapsto 72k, i \cdot 12c \pmod{3} = 2a \pmod{8}$
 $y = 36k, i \circ i \mapsto 72k, i \cdot 12c \pmod{3} = 26 \pmod{8}$
 $y = 36k, i \circ i \mapsto 72k, i \cdot 12c \pmod{3} = 26 \pmod{8}$
 $x \cdot 15 = 36(K_{11}K_{1}) \cdot 10 \cdot 16 \mapsto i \mapsto (3b(K_{11}K_{2}) \cdot 12(a_{1}b)) = 2(a_{1}b) \pmod{8}$

6. $d) S_{4}^{1} \triangleq S_{4}^{4}$
 $G_{1}^{-1}G_{2}(1) = G_{1}(1)$
 $G_{2}(1) = G_{1}(1)$
 $G_{3}(1) = G_{1}^{-1}G_{1}(1)$
 $G_{4}^{-1}G_{2}(1) = G_{1}^{-1}G_{2}(1)$
 $G_{1}^{-1}G_{2}(1) = G_{$

11. P3 ~ S3 S_{3} , $\{E, (123), (123)\}, \{E, (12)\}, \{E, (13)\}, \{E, (13)\}$ S3/S3 = {e3 S3/ {e} = S3 S3/ R3 = Z/2 12. a) $(a \times +c) \circ (x +b) \circ (\frac{x}{a} - \frac{c}{a})$