Regression to predict the price of house using Incremental **Extreme Machine Learning**

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import keras
import math
from keras.models import Sequential
from keras.datasets import mnist
from keras.layers import Dense
from keras.optimizers import Adam
import random
import keras
import keras.utils
from keras.utils.np_utils import to_categorical
from keras import utils as np_utils
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import accuracy_score
import time
from sklearn.metrics import mean_squared_error
import statistics
```

Using TensorFlow backend.

In [2]:

```
df = pd.read_csv('kc_house_data.csv')
print (df)
                  bedrooms
                             bathrooms
                                          sqft_living
                                                        sqft_lot floors
           price
0
       221900.0
                          3
                                   1.00
                                                 1180
                                                            5650
                                                                      1.0
1
                          3
                                   2.25
                                                 2570
                                                            7242
                                                                      2.0
       538000.0
                          2
2
       180000.0
                                   1.00
                                                  770
                                                           10000
                                                                      1.0
3
       604000.0
                          4
                                   3.00
                                                 1960
                                                            5000
                                                                      1.0
       510000.0
4
                          3
                                   2.00
                                                 1680
                                                            8080
                                                                      1.0
             . . .
                                    . . .
                                                  . . .
                                                             . . .
                                                                       . . .
                        . . .
. . .
21608
       360000.0
                          3
                                   2.50
                                                 1530
                                                            1131
                                                                      3.0
21609
       400000.0
                          4
                                   2.50
                                                 2310
                                                            5813
                                                                      2.0
                          2
21610
       402101.0
                                   0.75
                                                 1020
                                                            1350
                                                                      2.0
       400000.0
                          3
                                                 1600
                                                            2388
21611
                                   2.50
                                                                      2.0
                                                 1020
21612
       325000.0
                                   0.75
                                                            1076
                                                                      2.0
       waterfront view condition grade
                                               sqft above sqft basement
0
                 0
                        0
                                    3
                                            7
                                                      1180
                                                                          0
                                    3
                                            7
                 0
                        0
                                                      2170
                                                                        400
1
2
                 0
                        0
                                    3
                                            6
                                                       770
                                                                          0
3
                                    5
                                            7
                 0
                        0
                                                      1050
                                                                        910
                 0
                                    3
                                            8
                                                      1680
                                                                          a
```

In [3]:

```
total_train = df.drop(columns="price")#-----to guess the condition of the
a = df.iloc[:, 0]
total_labels = pd.DataFrame(a)
print(type(total_train))
print(type(total_labels))
print(total_labels)
start = time.time()
<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
         price
0
      221900.0
1
      538000.0
2
      180000.0
3
      604000.0
      510000.0
21608 360000.0
21609 400000.0
21610 402101.0
21611 400000.0
21612 325000.0
[21613 rows x 1 columns]
In [4]:
x_train = total_train.loc[0:10000, :]
y_labels = total_labels.loc[0:10000, :]
x_test = total_train.loc[10001:20000, :]
```

```
y_test_labels = total_labels.loc[10001:20000, :]
```

In [5]:

<pre>print(x_test)</pre>											
\	bedrooms	bathrooms	sqft_li	ving	sqft_lo	t floors	waterfront	view			
10001	5	3.25		3160		7 1.0	0	0			
10002	3	1.50		2020		3 1.0	0	0			
10003	4	3.75		3210		4 2.0	0	0			
10004	3	2.25		2350		1.0	0	0			
10005	4 2.50			1910		1 2.0	0	0			
	• • •						• • •				
19996	3	2.25		1530		5 2.0	0	0			
19997	3 2.50		1600		6315	5 2.0	0	0			
19998	2 1.50		1000		1253		0	0			
19999	4 3.50				3012	2 3.0	0	1			
20000	3 2.50		1260		1102		0	0			
	condition	grade s	qft_above	sqf	t_basemer	nt yr_bui	lt yr_reno\	/ated			
\											
10001	5 7		2190	2190		70 19	60	0			
10002	4 6		1190	1190		30 19	56	0			
10003	4 8		3210	3210		0 19	85	0			
10004	3 7		1390	1390		50 19	77	0			
10005	3	8	1910)		0 19	94	0			
• • •	• • •				•		• •	• • •			
19996	3		1116		42	14 20		0			
19997	3		1600			0 20		0			
19998	3		930		7	70 20		0			
19999	3		2446)		0 20	05	0			
20000	3	8	1260)		0 20	07	0			
	zipcode	lat	long s	af+ 1	iving15	sqft_lot1	c				
10001	•	47.7238 -1	_	941 L_1	2200	776					
10001		47.7238 -1 47.6641 -1			2370	952					
10002		47.0041 -1 47.7268 -1			2350	802					
10003		47.7200 1 47.7417 -1			2350	5140					
10004		47.7417 -1 47.3810 -1			2210	870					
10005			22.033								
19996	98177	 47.7034 -1	22 357		 1320	 142					
19997		47.7634 -1 47.2611 -1			1608	430					
19998		47.6529 -1			1420	118					
19999		47.6923 -1			1860	465					
20000		47.6750 -1			1320	250					
20000	20107	-,, , 0/50 -1	,,,,,,		1520	230	•				
[10000	0000 rows x 18 columns]										

```
In [6]:
```

```
X = (x_train, y_labels)
Y = (x_test, y_test_labels)
```

In [7]:

111 [7].												
<pre>print(x_train)</pre>												
	bedrooms	bathrooms	sqft_li	iving	sqft_lot	floors	waterfront	view				
\	_	4 00		4400	5656							
0	3	1.00	1180		5656		0	0				
1	3	2.25	2570		7242		0	0				
2	2	1.00			10000		0	0				
	4	3.00			5006 8086		0	0				
4	3	2.00		1680			0	0				
 9996	3	1.50		 1700		1.0						
9997	4	1.00		1550	9579 4750		0	0				
9998	3	1.75		1680	8106		0	2				
9999	3	2.25		1680			0	0				
10000	4	2.23		1910	35127 10300		0	0				
10000	4	2.30		1910	10306	1.0	O	U				
	condition	n grade s	qft_above	sqf	t_basemer	nt yr_bui	lt yr_reno	vated				
\												
0	3	3 7	1186)		0 19	55	0				
1	3	3 7	2170		46	90 19	51	1991				
2	3	6	5 770			0 19	33	0				
3	5	5 7	1056	1050 910		L0 19	65	0				
4	3	3 8		1680		0 19	87	0				
• • •	•••		•••		• •		• •	• • •				
9996	4 7		1100		66		62	0				
9997		3 7		1550			19	0				
9998		3 8		1680			50	0				
9999	3		1686				87	0				
10000	3	8	1916)		0 19	21	1968				
	zipcode	lat	long s	sqft_1	iving15	sqft_lot1	5					
0	98178	47.5112 -1	22.257		1340	565	0					
1	98125	47.7210 -1	22.319		1690	763	9					
2	98028	47.7379 -1	22.233		2720	806	2					
3	98136	47.5208 -1	22.393		1360	500	0					
4	98074	47.6168 -1	22.045		1800	750	3					
 9996	 98023	47.3209 -1			 1700	962						
9997		47.6824 -1			1320	962 475						
9998		47.7212 -1			1880	473 775						
9999		47.7212 -1			1820	3516						
10000		47.7581 -1			1910	775						
10000	20177	-1.1701 -1.			1910	, , ,	•					
[10001 rows x 18 columns]												

In [8]:

In []:

In [9]:

```
print(x_train)
```

```
1.18000e+03 ... -1.22257e+02 1.34000e+03
               1.00000e+00
[[ 3.00000e+00
  5.65000e+03]
 [ 3.00000e+00
                            2.57000e+03 ... -1.22319e+02 1.69000e+03
               2.25000e+00
  7.63900e+03]
 [ 2.00000e+00 1.00000e+00 7.70000e+02 ... -1.22233e+02 2.72000e+03
  8.06200e+03]
 [ 3.00000e+00
               1.75000e+00
                            1.68000e+03 ... -1.22364e+02 1.88000e+03
  7.75000e+03]
 [ 3.00000e+00
               2.25000e+00
                            1.68000e+03 ... -1.22067e+02 1.82000e+03
  3.51660e+04]
 [ 4.00000e+00 2.50000e+00 1.91000e+03 ... -1.22359e+02 1.91000e+03
  7.75000e+03]]
```

In [21]:

```
start = time.time()
1=0
acc=0
                          -----setting up number neu
1 max=50#----
beta=0
error=0
rmse=0
final=0.1
d=0
p=0
for i in range(1 max):
   if(final>0.00005):
       weights = pd.DataFrame(w)
       #weights =to_numpy.DataFrame(w)
       weights=pd.DataFrame(weights).to numpy()
       weights_transpose = np.transpose(weights)#-----transposing weight
       h_new = np.dot(x_train, weights)
       h_inv = np.linalg.pinv(h_new)
       beta = np.dot(h_inv, y_labels)
   #print(beta.shape)
   #print(h_new.shape)
       predicted_output = np.dot(h_new,beta)
       rounded_labels=np.round(predicted_output)
       rounded=pd.DataFrame(rounded labels).to numpy()
       #rmse = rmse + ((y_labels[i] - predicted_output[i])**2)
       #if(i==0):
          #i=i+1
       #rmse1=math.sqrt((1/i)*rmse)
       #print(rmse1)
       d = mean squared error(y labels, rounded)
       rmse=1/10000*(math.sqrt(d))
       print("RMSE", + i, + rmse)
   #print(predicted output.shape)
  # print(predicted_output[i][:])
  # print(predicted_output.shape)
       #print(y train)
  # print("p",+ rounded)
   #print(type(predicted_output))
   #print("y",+rounded)
end = time.time()
```

```
print("Time elapsed", end - start)
    #print(h_inv.shape)
    #print(h_new.shape)
    #print(beta)
    #print(weights.shape)
#print(error[1][9])
```

```
RMSE 0 65.3187934906508
RMSE 1 58.59238919015065
RMSE 2 38.14558851827319
RMSE 3 37.68989053431443
RMSE 4 26.692054763073475
RMSE 5 26.616501627450887
RMSE 6 26.5393831050097
RMSE 7 25.954065728475634
RMSE 8 25.613605014950217
RMSE 9 24.65734693954081
RMSE 10 23.745741270183125
RMSE 11 23.041154691045442
RMSE 12 22.670759022773435
RMSE 13 22.677096144179103
RMSE 14 22.022490048761114
RMSE 15 21.975676470442103
RMSE 16 21.471165237021943
RMSE 17 20.80337475941956
RMSE 18 20.80337479162249
RMSE 19 20.80337478474516
RMSE 20 20.80337478474516
RMSE 21 20.80337478072643
RMSE 22 20.80337478474516
RMSE 23 20.803374781921402
RMSE 24 20.803374790262605
RMSE 25 20.803374790262605
RMSE 26 20.803374790262605
RMSE 27 20.80337478474516
RMSE 28 20.80337478474516
RMSE 29 20.80337478474516
RMSE 30 20.80337479308636
RMSE 31 20.803374790262605
RMSE 32 20.80337478474516
RMSE 33 20.80337479308636
RMSE 34 20.80337479308636
RMSE 35 20.80337478474516
RMSE 36 20.80337479308636
RMSE 37 20.80337478474516
RMSE 38 20.80337478474516
RMSE 39 20.803374790262605
RMSE 40 20.80337478474516
RMSE 41 20.80337478474516
RMSE 42 20.80337478474516
RMSE 43 20.80337478474516
RMSE 44 20.80337479308636
RMSE 45 20.80337478474516
RMSE 46 20.80337479308636
RMSE 47 20.80337478474516
RMSE 48 20.80337478474516
RMSE 49 20.80337479308636
Time elapsed 0.992955207824707
```

```
In [ ]:
#h_inv = np.linalg.pinv(h_new)
#print(h_inv.shape)
In [ ]:
#beta = np.dot(h_inv, y_labels)
In [ ]:
#print(beta)
In [ ]:
#predicted_output= np.dot(h_new, beta) #-----
#print(predicted_output.shape)
In [ ]:
#print(np.round(predicted_output))
#rounded_labels=np.round(predicted_output)
#rounded=pd.DataFrame(rounded_labels).to_numpy()
#print(rounded_labels)
#print(type(y_labels))
#print(type(rounded_labels))
In [ ]:
#acc = accuracy_score(rounded_labels,y_labels)#-----FInding accuracy
#print("Accuracy is", + acc*100, "%")
#end = time.time()
#print("Time elapsed",end - start)
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```