# unex

**Arquitetura de Computadores** 

Gerenciamento de memória

# Quem sou eu



Júlio César Andrade

Bacharel em Engenharia de Computação - UEFS Especialista em User Experience - UNIFACS Mestrando em Ciências da Computação - UEFS

### Introdução

- Os computadores utilizam uma hierarquia de memória em sua organização, combinando memórias voláteis e não-voláteis;
- Ao sistema operacional é destinada a função de coordenar e gerenciar a utilização dessas memórias de forma eficiente.



# Introdução

 Na memória principal residem os programas em execução;

 Na memória secundária são armazenados os dados de forma permanente;

 Para um programa ser executado, ele deve ser carregado da memória secundária para a principal.



## Introdução

Para a eficiência da multiprogramação é necessário que vários programas estejam na memória principal ao mesmo tempo.





Dúvida comum

Mas, o que é multiprogramação mesmo?

## Multiprogramação

O conceito fundamental da multiprogramação é ter vários programas em execução simultaneamente, compartilhando os recursos do sistema.



#### Gerenciador de memória

O gerenciador de memória desempenha um papel crítico na eficiência e estabilidade de um sistema operacional, garantindo que os recursos de memória sejam utilizados de maneira eficaz e que os processos possam ser executados de forma coordenada e segura.



## Funções do Gerenciador de memória

- a) Manter registro das partes da memória que estão sendo usadas no momento e por qual processo;
- b) Decidir quais processos deverão ser carregados na memória quando houver espaço disponível;
- c) Alocar e desalocar espaço na memória, conforme necessário;
- d) Tratar do problema do swapping (quando a memória é insuficiente).



#### Abstração da memória

A abstração de memória é uma parte fundamental do design de sistemas operacionais e é crucial para o funcionamento eficiente e seguro de um computador.



#### Vantagens da abstração de memória

#### Isolamento de Processos:

- Cada processo tem seu próprio espaço de endereçamento.
- Evita interferência e corrupção entre processos.

#### Gestão Eficiente de Recursos:

 Otimização na alocação e desalocação de recursos de memória.



#### Vantagens da abstração de memória

#### Facilidade de Programação:

- Programadores lidam com endereços virtuais, enquanto o sistema opera em endereços físicos.
- Simplifica a codificação, abstraindo detalhes de localização física na memória.

#### Proteção contra Acesso Indevido:

- Atribuição de permissões (leitura, gravação, execução) para regiões de memória.
- Evita operações não autorizadas.



#### **Endereçamento em SO**

No contexto de sistemas operacionais, o endereçamento pode ser dividido em dois tipos principais: endereçamento lógico e endereçamento físico.

### **Endereçamento Lógico**

- Os programas utilizam endereços lógicos ao acessar a memória, sem conhecer a localização real na memória física.
- Oferece uma visão abstrata e isolada da memória para cada processo.
- Facilita a implementação da memória virtual.



#### **Endereçamento Físico**

- Refere-se aos endereços reais na memória física do sistema.
- O hardware traduz endereços lógicos para endereços físicos;
- Envolve a localização real dos dados na RAM.
- É gerenciado pelo sistema operacional para garantir a integridade e proteção dos dados.





Dúvida

"Hardware traduz endereços lógicos para endereços físicos"?

Qual hardware?

#### Unidade de Gerência de Memória

(Memory Management Unit (MMU)

A MMU é um módulo de hardware que faz o mapeamento entre os endereços lógicos (end. da memória virtual) e os endereços físicos da memória (RAM), ou seja, é um dispositivo que transforma endereços virtuais em endereços físicos.



### Alocação de memória

A alocação de memória em um sistema operacional refere-se ao processo de reservar e gerenciar espaços de memória para diferentes partes do sistema, como programas em execução.



### Alocação estática

Alocação estática: Divisão da memória em n partições fixas de tamanhos diferentes. Os jobs são alocados na menor partição capaz de armazená-los.



#### Fragmentação interna

Pelo fato de usarmos partições de tamanho fixo, todo o restante de espaço de memória não utilizado pelo job será perdido. Este desperdício de memória é chamado de fragmentação interna.



## Fragmentação externa

Imagine que exista duas partições livres, uma de 25 e outra de 100 Kbytes, não contíguas. Nesse instante é criado um processo de 110 Kbytes que não poderá ser carregado em memória pela forma como ela é gerenciada.



Neste esquema de organização, o tamanho das partições é ajustado dinamicamente às necessidades exatas dos processos.



#### Como funciona?

- 1. Os espaços livres na memória são armazenados em uma lista de lacunas;
- Quando um processo é criado, a lista é percorrida em busca de uma lacuna de tamanho maior ou igual;
- 3. Se a lacuna for maior, é criado uma nova lacuna com a porção que sobra;
- 4. O processo recebe o tamanho exato que precisa.



Métodos para percorrer a lista de lacunas:

#### **First Fit**

**Funcionamento:** Aloca o primeiro bloco de memória que é grande o suficiente para atender às necessidades do processo.

Vantagens: Simplicidade e eficiência razoável.

**Desvantagens:** Pode levar a fragmentação, pois espaços menores podem ser ocupados primeiro, deixando lacunas maiores.

Métodos para percorrer a lista de lacunas:

#### **Best Fit**

Funcionamento: Aloca o bloco de memória mais próximo do tamanho solicitado pelo processo.

Vantagens: Tenta minimizar o desperdício de memória ao escolher o bloco mais próximo do tamanho necessário.

**Desvantagens:** Pode ser menos eficiente, pois tem que percorrer toda a lista.

Métodos para percorrer a lista de lacunas:

#### **Worst Fit (Ajuste Pior):**

**Funcionamento:** Aloca o maior bloco de memória disponível, mesmo que seja muito maior do que o necessário.

Vantagens: Útil quando temos processos que consomem mais memória com o tempo.

**Desvantagens:** Pode resultar em um desperdício significativo de memória, especialmente se os blocos disponíveis forem muito maiores que o necessário. Tempo de busca elevado.

Métodos para percorrer a lista de lacunas:

#### **Circular Fit:**

**Funcionamento:** Similar ao First Fit, mas começa a procurar a lacuna seguinte a última sobra.

**Vantagens:** Pode ajudar a evitar a fragmentação se houver muitos espaços pequenos no início do espaço de memória.

**Desvantagens:** Pode introduzir complexidade e potencialmente levar a uma busca mais longa. Desconsidera espaços anteriores.

#### Sobrecarga de Memória

Manter todos os processos na memória constantemente requer grande quantidade de memória.

Impraticável na maioria dos casos.

#### Duas estratégias são comuns:

- Swapping
- Memória Virtual

### Swapping (Troca de Processos):

- Processos são trazidos para a memória, executados e colocados de volta no disco.
- Processos ociosos ocupam principalmente espaço em disco, minimizando uso de memória quando não em execução.



#### Swapping (Troca de Processos):

- 1. Carregue todos os processos que couberem na memória;
- Se faltar espaço retire um processo da memória principal (RAM) e copie seu conteúdo na memória secundária(HD/SSD) (SWAP OUT)
- Quando o processo for executar traga-o de volta da memória secundária(HD/SSD) para a primária(RAM) (SWAP IN)

# O problema da fragmentação

Depois de várias operações de swap-in e swap-out, a memória pode se tornar fragmentada.



33

#### Memória virtual

- Permite a execução de programas mesmo parcialmente na memória principal.
- Programas podem ser executados mesmo que não estejam completamente carregados na memória.

#### Memória virtual

- Fornece espaço de endereçamento maior que a RAM física.
- Espaço de endereçamento do programa é dividido em páginas.
- Não é necessário carregar todas as páginas na memória física de uma vez.
- Páginas são trazidas conforme necessário durante a execução do programa.

## Memória virtual: Página

- Unidade de alocação de memória na implementação da memória virtual;
- Cada programa tem seu espaço de endereçamento dividido em páginas;
- Páginas são blocos lógicos;
- Páginas têm tamanhos fixos.



## **Paginação**

#### Divisão em Blocos Fixos:

A memória é dividida em blocos de tamanho fixo chamados páginas. Da perspectiva do processo, ele enxerga apenas páginas e não tem conhecimento da estrutura física da memória.

#### Divisão Lógica e Física:

O espaço de endereçamento lógico do processo é dividido em páginas, e a memória física é dividida em quadros (frames) de tamanho correspondente às páginas.

#### Eliminação de Fragmentação Externa:

Elimina a fragmentação externa, pois as páginas podem ser alocadas de forma não contígua na memória física.

# **Paginação**



## Como funciona a paginação



### Algoritmos de paginação

O melhor algoritmo de substituição de página é aquele em que:

A página retirada da memória para o disco seja a página que está mais longe de ser usada novamente.

### Valendo 10 pontos na prova!



Como poderíamos implementar esse algoritmo perfeito?

### Não dá!

Infelizmente, ainda não podemos prever o futuro.

Portanto, este algoritmo como descrito, não pode ser implementado na prática.



### Algoritmos de paginação

#### FIFO (First-In-First-Out):

Este algoritmo substitui a página que está na memória há mais tempo. Funciona como uma fila, onde a primeira página a entrar é a primeira a sair.

#### LRU (Least Recently Used):

Substitui a página que não foi utilizada por mais tempo. Mantém um registro do tempo em que cada página foi referenciada pela última vez.

#### LFU (Least Frequently Used):

Substitui a página que foi referenciada menos frequentemente. Mantém um contador para cada página, incrementando-o sempre que a página é referenciada.

### Algoritmos de paginação

#### Clock (Relógio):

Usa uma abordagem semelhante ao ponteiro de um relógio. As páginas são organizadas em um círculo, e um ponteiro avança. Quando uma página precisa ser substituída, o ponteiro encontra a próxima página a ser removida.

#### NRU (Not Recently Used):

Classifica as páginas em quatro categorias (não referenciada recentemente e não modificada, não referenciada recentemente e modificada, referenciada recentemente e não modificada, referenciada recentemente e modificada). Substitui uma página de uma das categorias menos prioritárias.

### Segmentação

- Visa organizar e gerenciar a memória do sistema de uma maneira mais flexível;
- Em vez de dividir a memória em blocos de tamanho fixo, como na abordagem de paginação, a segmentação divide a memória em segmentos de diferentes tamanhos.

## Segmentação

Na segmentação existe uma relação entre a lógica do programa e sua alocação na memória principal



Normalmente, a definição dos segmentos é realizada pelo compilador, a partir do código fonte do programa, e cada segmento pode representar um procedimento, função, vetor ou pilha.



## Segmentação x Paginação

A principal diferença entre a paginação e a segmentação é a alocação da memória de maneira não fixa, a alocação depende da lógica do programa.





### Vantagens da segmentação

- Sem fragmentação interna.
- A Tabela de segmentos consome menos espaço em comparação à tabela de páginas na paginação.



### Desvantagem da segmentação

 Conforme os processos são carregados e removidos da memória, o espaço livre da memória é quebrado em pequenos pedaços, causando fragmentação externa.

### **Gravou tudinho?**



### **Bibliografia**

SILBERSCHATZ, A. & GAGNE, G. & GALVIN, P. B. **Fundamentos de Sistemas Operacionais.** Rio de Janeiro, 2004.

TANENBAUM, A.S. **Sistemas Operacionais Modernos**. 2ª.ed. São Paulo, 2009.



