PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISH	HED L	JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 97/21836
C12Q 1/68, 1/70	A1	(43) International Publication Date: 19 June 1997 (19.06.97
(21) International Application Number: PCT/US (22) International Filing Date: 13 December 1996 (CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL
(30) Priority Data: 08/572,645 (71) Applicant: THE GENERAL HOSPITAL CORPO [US/US]: 55 Fruit Street, Boston, MA 02110 (US) (72) Inventor: FISHMAN, Jay, A.; 383 Linden Street, V MA 02181 (US). (74) Agents: MYERS, Paul, Louis et al.; Lahive & Cockfic 60 State Street, Boston, MA 02109 (US).	5) URATIO). Vellesie	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(54) Tide: MOLECULAR SEQUENCE OF SWINE RET (57) Abstract Purified nucleic acid which can specifically hybridiz		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
ВG	Bulgaria	IT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
. CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	τσ	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	11	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Vict Nam

MOLECULAR SEQUENCE OF SWINE RETROVIRUS AND METHODS OF USE

This application is a continuation-in-part of U.S.S.N. 08/572,645, filed December 14, 1995, which is hereby incorporated by reference.

5

10

15

20

25

30

35

Field of the Invention

The invention relates to porcine retroviral sequences, peptides encoded by porcine retroviral sequences, and methods of using the porcine retroviral nucleic acids and peptides.

Background of the Invention

Advances in solid organ transplantation and a chronic shortage of suitable organ donors have made xenotransplantation an attractive alternative to the use of human allografts. However, the potential for introduction of a new group of infectious diseases from donor animals into the human population is a concern with the use of these methods.

The term applied to the natural acquisition by humans of infectious agents carried by other species is zoonosis. The transplantation of infection from nonhuman species into humans is best termed "direct zoonosis" or "xenosis."

Nonhuman primates and swine have been considered the main potential sources of organs for xenotransplantation (Niekrasz et al. (1992) Transplant Proc 24:625; Starzl et al. (1993) Lancet 341:65; Murphy et al. (1970) Trans Proc 4:546; Brede and Murphy (1972) Primates Med 7:18; Cooper et al. In Xenotransplantation: The Transplantation of Organs and Tissues between Species, eds. Cooper et al. (1991) p. 457; RY Calne (1970) Transplant Proc 2:550; H. Auchineloss, Jr. (1988) Transplantation 46:1; and Chiche et al. (1993) Transplantation 6:1418). The infectious disease issues for primates and swine are similar to those of human donors. The prevention of infection depends on the ability to predict, to recognize, and to prevent common infections in the immunocompromised transplantation recipient (Rubin et al. (1993) Antimicrob Agents Chemother 37:619). Because of the potential carriage by nonhuman primates of pathogens easily adopted to humans, ethical concerns, and the cost of maintaining large colonies of primates, other species have received consideration as organ donors (Brede and Murphy (1972) Primates Med 7:18; Van Der Riet et al. (1987) Transplant Proc 19:4069; Katler In Xenotransplantation: The Transplantation of Organs and Tissues between Species, eds. Cooper et al. (1991) p. 457; Metzger et al. (1981) J Immunol 127:769; McClure et al. (1987) Nature 330:487; Letvin et al. (1987) J Infect Dis 156:406; Castro et al. (1991) Virology 184:219; Benveniste and Todaro (1973) Proc Natl Acad Sci USA 70:3316; and Teich, in RNA Tumor viruses, eds. Weiss et. al. (1985) p. 25) The economic importance of swine and experience in studies of transplantation in the miniature swine model have allowed some of the potential pathogens associated with these animals to be defined (Niekrasz et al. (1992) Transplant Proc 24:625;

WO 97/21836 - 2 - PCT/US96/19680

5

10

15

20

25

30

35

Cooper et al. In Xenotransplantation: The Transplantation of Organs and Tissues between Species, eds. Cooper et al. (1991) p. 457; and Leman et al. (1992) Diseases of Swine. 7th ed. Ames, Iowa:Iowa State University). Miniature swine have received consideration as organ donors because of a number of features of the species. The structure and function of the main pig organs are comparable to those of man. Swine attain body weights and organ sizes adequate to the provision of organs for human use. Lastly, veterinarians and commercial breeders have developed approaches to creation of specific-pathogen-free (SPF) swine with the ability to eliminate known pathogens from breeding colonies (Alexander et al. (1980) Proc 6th Int Congr Pig Vet Soc, Copenhagen; Betts (1961) Vet Rec 73:1349; Betts et al. (1960) Vet Rec 72:461; Caldwell et al. (1959) J Am Vet Mcd Assoc 135:504; and Yong (1964) Adv Vet Sci 9:61).

Concern exists over the transfer of porcine retroviruses by xenotransplantation (Smith (1993) N Engl J Med 328:141). Many of the unique properties of the retroviruses are due to the synthesis of a complementary DNA copy from the RNA template (by reverse transcriptase), and integration of this DNA into the host genome. The integrated retroviral copy (which is referred to as an endogenous copy or "provirus") can be transmitted via the germ line.

Summary of the Invention

In general, the invention features a purified swine or miniature swine retroviral nucleic acid, e.g., a Tsukuba nucleic acid, a purified miniature swine retroviral nucleic acid sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, and methods of their use in detecting the presence of porcine, e.g., miniature swine, retroviral sequences.

In another aspect, the invention features a purified nucleic acid, e.g., a probe or primer, which can specifically hybridize with a purified swine or miniature swine retroviral genome, e.g., a Tsukuba genome, the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments the nucleic acid is other than the entire retroviral genome of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., it is at least 1 nucleotide longer, or at least 1 nucleotide shorter, or differs in sequence at at least one position, e.g., the nucleic acid is a fragment of the sequence of SEQ ID NO:1 or its complement SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or it includes sequence additional to that of SEQ ID NO:1, or its complement, SEQ ID NO:2 or its complement.

In preferred embodiments, the nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from

SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other embodiments: the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO: 1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by 1, 2, 3, 4, or 5 base pairs; the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO: 1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by at least 1, 2, 3, 4, or 5 base pairs but less than 6, 7, 8, 9, or 10 base pairs.

5

10

15

20

25

30

35

In other preferred embodiments: the nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000. 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length.

In yet other preferred embodiments: the nucleic acid can specifically hybridize with a translatable region of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., a region from the gag, pol, or env gene; the probe or primer can specifically hybridize with an untranslated region of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement; the probe or primer can specifically hybridize with a non-conserved region of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement; the probe or primer can specifically hybridize with the highly conserved regions of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the primer is selected from the group consisting of SEQ ID NOs:4-74.

In preferred embodiments, hybridization of the probe to retroviral sequences can be detected by standard methods, e.g., by radiolabeled probes or by probes bearing nonradioactive markers such as enzymes or antibody binding sites. For example, a probe can be conjugated with an enzyme such as horseradish peroxidase, where the enzymatic activity of the conjugated enzyme is used as a signal for hybridization. Alternatively, the probe can be coupled to an epitope recognized by an antibody, e.g., an antibody conjugated to an enzyme or another marker.

In another aspect, the invention features a reaction mixture which includes a target nucleic acid, e.g., a human, <u>swine</u>, or a miniature swine nucleic acid, and a purified second nucleic acid, e.g., a probe or primer, as, e.g., is described herein, which specifically

WO 97/21836 - 4 - PCT/US96/19680

5

10

15

20

25

30

35

hybridizes with the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, a swine or a miniature swine retroviral nucleic acid, e.g., a Tsukuba nucleic acid.

In preferred embodiments, the target nucleic acid: includes RNA; or includes DNA. In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, c.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In preferred embodiments the second nucleic acid is: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from

nucleotides 2452-4839 (e.g. from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g. from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g. from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g. from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g. from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof.

10

15

20

25

30

35

In another aspect, the invention features a method for screening a cell or a tissue, e.g., a cellular or tissue transplant, e.g., a xenograft, for the presence or expression of a swine or a miniature swine retrovirus or retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes:

contacting a target nucleic acid from the tissue with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g, from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an

WO 97/21836 - 6 - PCT/US96/19680

endogenous miniature swine retrovirus or retroviral sequence in the tissue or an endogenous swine retrovirus in the tissue.

5

10

15

20

25

30

35

In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the tissue or cellular transplant is selected from the group consisting of: heart, lung, liver, bone marrow, kidney, brain cells, neural tissue, pancreas or pancreatic cells, thymus, or intestinal tissue.

In other preferred embodiments, the target nucleic acid is: DNA; RNA; or cDNA.

In other preferred embodiments, the target nucleic acid is taken from: a tissue sample, or a blood sample, e.g., a tissue biopsy sample, e.g., a tissue sample suitable for *in situ* hybridization or immunohistochemistry.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA. DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

In a preferred embodiment the target nucleic acid is RNA, or a nucleic acid amplified from RNA in the tissue, and hybridization is correlated with expression of an endogenous miniature swine retrovirus or retrovirul sequence or an endogenous swine retrovirus.

In a preferred embodiment the target nucleic acid is DNA, or a nucleic acid amplified from DNA in the tissue, and hybridization is correlated with the presence of an endogenous miniature swine retrovirus or an endogenous swine retrovirus.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%. most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence

from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

5

10

15

20

25

30

35

In another aspect, the invention features a method of screening a porcine derived cell or tissue for the presence of an activatable porcine retrovirus, e.g., an activatable porcine provirus. The method includes:

stimulating a porcine derived cell or tissue with a treatment which can activate a retrovirus;

contacting a target nucleic acid from the porcine derived cell or tissue with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g, from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g. from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2. or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid hybridization being indicative of the presence of an activatable porcine provirus in the porcine derived cell or tissue.

In preferred embodiments the treatment is: contact with a drug, e.g., a steroid or a cytotoxic agent, infection or contact with a virus, the induction of stress, e.g., nutritional stress or immunologic stress, e.g., contact with a T-cell, e.g., a reactive T-cell.

In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

5

10

15

20

25

30

35

In other preferred embodiments, the target nucleic acid is taken from: a tissue sample, or a blood sample, e.g., a tissue biopsy sample, e.g., a tissue sample suitable for *in situ* hybridization or immunohistochemistry.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

10

15

20

25

30

35

In another aspect, the invention features a method for screening a miniature swine genome or a swine genome for the presence of a porcine retrovirus or retroviral sequence. e.g., an endogenous porcine retrovirus. The method includes:

contacting the miniature swine (or swine) genomic DNA with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g, from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g, from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which the sequences can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequence in the miniature swine (or swine) genome.

In preferred embodiments, the method further includes amplifying all or a portion of the miniature swine (or swine) genome with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence

WO 97/21836 - 10 - PCT/US96/19680

from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

5

10

15

20

25

30

35

In another aspect, the invention features a method for screening a genetically modified miniature swine or a genetically modified swine for the presence or expression of a miniature swine or swine retrovirus or retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes:

contacting a target nucleic acid from the genetically modified miniature swine or swine with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an endogenous miniature swine retrovirus or retroviral sequence or swine retrovirus or retroviral sequence in the genetically modified miniature swine or swine.

WO 97/21836 - 11 - PCT/US96/19680

5

10

15

20

25

30

35

In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method of assessing the potential risk associated with the transplantation of a graft from a donor miniature swine or swine into a recipient animal, e.g., a miniature swine or swine, a non-human primate, or a human. The method includes:

contacting a target nucleic acid from the donor, recipient or the graft, with a second sequence chosen from the group of: a nucleic acid sequence which specifically hybridizes a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a

WO 97/21836 - 12 - PCT/US96/19680

sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

10

15

20

25

30

35

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which the sequences can hybridize, hybridization being indicative of a risk associated with the transplantation.

In a preferred embodiment: the second nucleic acid is a Tsukuba-1 retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a

WO 97/21836 - 13 - PCT/US96/19680

5

10

15

20

25

30

35

swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method of determining if an endogenous miniature swine or swine retrovirus or retroviral sequence genome includes a mutation which modulates its expression, e.g., results in misexpression. The method includes:

determining the structure of the endogenous retroviral genome, and comparing the structure of the endogenous retroviral genome with the retroviral sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, a difference being predictive of a mutation.

In preferred embodiments the method includes sequencing the endogenous genome and comparing it with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the method includes using primers to amplify, e.g., by PCR, LCR (ligase chain reaction), or other amplification methods, a region of the endogenous retroviral genome, and comparing the structure of the amplification product to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement to determine if there is difference in sequence between retroviral genome and SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement. The method further includes determining if one or more restriction sites exist in the endogenous retroviral genome, and determining if the sites exist in SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the mutation is a gross defect, e.g., an insertion, inversion, translocation or a deletion, of all or part of the retroviral genome.

WO 97/21836 - 14 - PCT/US96/19680

5

10

15

20

25

30

35

In preferred embodiments, detecting the mutation can include: (i) providing a labeled PCR probe amplified from DNA (e.g., SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3) containing a porcine retroviral nucleotide sequence which hybridizes to a sense or antisense sequence from the porcine retroviral genome(e.g., SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3), or naturally occurring mutants thereof; (ii) exposing the probe/primer to nucleic acid of the tissue (e.g., genomic DNA) digested with a restriction endonuclease; and (iii) detecting by *in situ* hybridization of the probe/primer to the nucleic acid, the presence or absence of the genetic lesion. Alternatively, direct PCR analysis, using primers specific for porcine retroviral genes (e.g., genes comprising the nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3), can be used to detect the presence or absence of the genetic lesion in the porcine retroviral genome by comparing the products amplified.

In another aspect, the invention features a method of providing a miniature swine or a swine free of an endogenous retrovirus or retroviral sequence, e.g., activatable retrovirus, insertion at a preselected site. The method includes:

performing a breeding cross between a first miniature swine (or swine) having a retroviral insertion at the preselected site and a second miniature swine (or swine) not having a retroviral insertion at a preselected site, e.g., the same site, and recovering a progeny miniature swine (or swine), not having the insertion, wherein the presence or absence of the retroviral insertion is determined by contacting the genome of a miniature swine(or swine) with a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 598-2169) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2.

10

15

20

25

30

35

or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof: a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

In preferred embodiments, the nucleic acid is hybridized to nucleic acid, e.g., DNA from the genome, of the first animal or one of its ancestors.

In preferred embodiments, the nucleic acid is hybridized to nucleic acid, e.g., DNA from the genome, of the second animal or one of its ancestors.

In preferred embodiments, the nucleic acid is hybridized to nucleic acid, e.g., DNA from the genome, of the progeny animal or one of its descendants.

In preferred embodiments, the nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method of evaluating a treatment, e.g., an immunosuppressive treatment, for the ability to activate a retrovirus, e.g., an endogenous porcine retrovirus. The method includes:

administering a treatment to a subject, e.g., a miniature swine (or a swine), having an endogenous porcine retrovirus; and

detecting expression of the porcine retrovirus with-a purified nucleic acid sequence which specifically hybridizes to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the immunosuppresive treatment includes radiation, chemotherapy or drug treatment.

In preferred embodiments: the treatment is one which can induce immunological tolerance; the treatment is one which can introduce new genetic material, e.g., introduce new genetic material into a miniature swine genome (or a swine genome) or into the genome of a host which receives a swine or a miniature swine graft, e.g., the treatment is one which introduces a new genetic material via retroviral mediated transfer.

In a preferred embodiment: the purified nucleic acid is a Tsukuba-1 retroviral sequence, probe or primer, e.g., as described herein; the purified nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein; the purified nucleic acid is the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ

WO 97/21836 - 16 - PCT/US96/19680

ID NO:3 or its complement, or a fragment of such sequence or complement at least 10, 20, or 30, basepairs in length.

In preferred embodiments, the purified nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

5

10

15

20

25

30

35

In other preferred embodiments: the purified nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the purified nucleic acid is a full length retroviral genome.

In preferred embodiments the second nucleic acid is: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof.

In another aspect, the invention features a method of localizing the origin of a porcine retroviral infection. The method includes:

contacting a target nucleic acid from the graft with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence: a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from

10

15

20

25

30

35

nucleotides 3112-4683) of SEO ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEO ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEO ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid contacting a target nucleic acid from the recipient with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEO ID NO:1. nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid; hybridization to the nucleic acid from the graft correlates with the porcine retroviral infection in the graft; and hybridization to the nucleic acid from the recipient correlates with the porcine retroviral infection in the recipient.

WO 97/21836 - 18 - PCT/US96/19680

In preferred embodiments, the target nucleic acid includes: genomic DNA, RNA or cDNA, e.g., cDNA made from an RNA template.

In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

In preferred embodiments, the recipient is an animal, e.g., a miniature swine, a swine, a non-human primate, or a human.

5

10

15

20

25

30

35

In preferred embodiments, the graft is selected from the group consisting of: heart, lung, liver, bone marrow or kidney.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most

preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method of screening a cell, e.g., a cell having a disorder, e.g., a proliferative disorder, e.g., a tumor cell, e.g., a cancer cell, e.g., a lymphoma or a hepatocellular carcinoma, developing in a graft recipient, e.g., a xenograft, for the presence or expression of a porcine retrovirus or retroviral sequence. The method includes:

contacting a target nucleic acid from a tumor cell with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides

10

15

20

25

30

35

585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g, from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g, from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid, under conditions in which the sample and the nucleic acid sequence can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequence in the tumor cell.

In preferred embodiments, the target nucleic acid from a tumor cell includes: genomic DNA, RNA or cDNA, e.g., cDNA made from an RNA template.

In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method of screening a human subject for the presence or expression of an endogenous porcine retrovirus or retroviral sequence comprising:

contacting a target nucleic acid derived from the human subject with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the

10

15

20

25

30

35

sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g, from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g. from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g, from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which the sequences can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequence in the human subject.

In preferred embodiments, the target nucleic acid derived from a human subject is DNA, RNA or cDNA sample, nucleic acid from a blood sample or a tissue sample, e.g., a tissue biopsy sample.

In preferred embodiments, the human subject is a miniature swine <u>or swine</u> xenograft recipient, or a person who has come into contact with a miniature swine <u>or swine</u> xenograft recipient.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In preferred embodiments: the recipient is tested for the presence of porcine retroviral sequences prior to implantation of swine or miniature swine tissue.

10

15

20

25

30

35

In another aspect, the invention features a method of screening for viral mutations which modulate, e.g., increase or decrease, susceptibility of a porcine retrovirus to an antiviral agent, e.g., an antiviral antibiotic. The method includes:

administering a treatment, e.g., an antiviral agent, e.g., an antiviral antibiotic; isolating a putative mutant porcine retroviral strain;

determining a structure of the putative mutant retroviral strain; and comparing the structure to SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In another aspect, the invention features a method of screening for viral mutations which modulate, e.g., increase or decrease, susceptibility of a porcine retrovirus to an antiviral agent, e.g., an antiviral antibiotic. The method includes:

growing the porcine retrovirus in a presence of a treatment, e.g., an antiviral agent, e.g., an antiviral antibiotic; and

determine the amount of porcine retroviral DNA synthesized by hybridizing the porcine retroviral DNA to a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g, from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g. from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g. from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

In preferred embodiments, the method further includes amplifying the porcine retroviral nucleic acid with primers which specifically hybridize to the sequence of SEQ ID

WO 97/21836 - 22 - PCT/US96/19680

NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., by polymerase chain reaction quantitative DNA testing (PDQ).

5

10

15

20

25

30

35

In a preferred embodiment: the second nucleic acid is a Tsukuba-1 retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method for screening a porcine-derived product for the presence or expression of a swine or miniature swine retrovirus or retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes:

contacting a target nucleic acid from the porcine-derived product with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g, from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g. from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides

10

15

20

25

30

35

of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid, under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an endogenous miniature swine or swine retrovirus or retroviral sequence s in the porcine-derived product.

In preferred embodiments the product is: a protein product, e.g., insulin; a food product; or a cellular transplant, e.g., a swine or miniature swine cell which is to be transplanted into a host, e.g., a swine or miniature swine cell which is genetically engineered to express a desired product,

In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments, the target nucleic acid is: DNA; RNA; or cDNA.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a transgenic miniature swine or swine having a transgenic element, e.g., a base change, e.g., a change from A to G, or an insertion or a deletion of one or more nucleotides at an endogenous porcine retroviral insertion site, e.g., a retroviral insertion which corresponds to the retroviral genome of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the transgenic element is a knockout, e.g., a deletion, insertion or a translocation, of one or more nucleic acids, which alters the activity of the endogenous porcine retrovirus.

In another aspect, the invention features a method of inhibiting expression of an endogenous porcine retrovirus, including: inserting a mutation, e.g. a deletion into the endogenous retrovirus.

In preferred embodiments, the endogenous porcine retrovirus is inactivated.

WO 97/21836 - 24 - PCT/US96/19680

In preferred embodiments, the mutation can be a point mutation, an inversion, translocation or a deletion of one or more nucleotides of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In another aspect, the invention features a method of detecting a recombinant virus or other pathogen, e.g., a protozoa or fungi. The method includes:

providing a pathogen having porcine retroviral sequence; and determining if the pathogen includes non-porcine retroviral sequence, the presence

of non-porcine retroviral sequence being indicative of viral recombination.

5

10

15

20

25

30

35

mutants thereof:

In preferred embodiments, the method further includes determining the structure of a retrovirus by comparing the retrovirus sequence with sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, a difference being indicative of viral recombination.

In preferred embodiments, the method further includes comparing the structure of the retrovirus with a human retroviral sequence, e.g., HTLV1, HIV1, or HIV2, a similarity in structure being indicative of viral recombination.

In another aspect, the invention features a method of determining the copy number, size, or completeness of a porcine retrovirus or retroviral sequence, e.g., in the genome of a donor, recipient or a graft. The method includes:

contacting a target nucleic acid from the donor, recipient or a graft, with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g. from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g. from nucleotides 4738-6722) of SEQ ID NO:2, or

nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

In preferred embodiments, the method further includes amplifying the porcine retroviral nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., by polymerase chain reaction quantitative DNA testing (PDQ) or nested PCR.

5

10

15

20

25

30

35

Ĺ,

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%. more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

In another aspect, the invention features a method for screening a tissue, e.g., a cellular or tissue transplant, e.g., a xenograft, or a tissue from a graft recipient, for the presence or expression of a swine or a miniature swine retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes: contacting a tissue sample with an antibody specific for a retroviral protein, e.g., an anti-gag, pol, or env antibody, and thereby determining if the sequence is present or expressed.

WO 97/21836 - 26 - PCT/US96/19680

In preferred embodiments the protein is encoded by a sequence from: the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments, the tissue is selected from the group consisting of: heart, lung, liver, bone marrow, kidney, brain cells, neural tissue, pancreas or pancreatic cells, thymus, or intestinal tissue.

5

10

15

20

25

30

35

A "purified preparation" or a "substantially pure preparation" of a polypeptide as used herein, means a polypeptide which is free from one or more other proteins, lipids, and nucleic acids with which it naturally occurs. Preferably, the polypeptide, is also separated from substances which are used to purify it, e.g., antibodies or gel matrix, such as polyacrylamide. Preferably, the polypeptide constitutes at least 10, 20, 50 70, 80 or 95% dry weight of the purified preparation. Preferably, the preparation contains: sufficient polypeptide to allow protein sequencing; at least 1, 10, or 100 µg of the polypeptide; at least 1, 10, or 100 mg of the polypeptide.

Specifically hybridize, as used herein, means that a nucleic acid hybridizes to a target sequence with substantially greater degree than it does to other sequences in a reaction mixture. By substantially greater means a difference sufficient to determine if the target sequence is present in the mixture.

A "treatment", as used herein, includes any therapeutic treatment, e.g., the administration of a therapeutic agent or substance, e.g., a drug or irradiation.

A "purified preparation of nucleic acid", is a nucleic acid which is one or both of: not immediately contiguous with one or both of the coding sequences with which it is immediately contiguous (i.e., one at the 5' end and one at the 3' end) in the naturally-occurring genome of the organism from which the nucleic acid is derived; or which is substantially free of a nucleic acid sequence or protein with which it occurs in the organism from which the nucleic acid is derived. The term includes, for example, a recombinant DNA which is incorporated into a vector, e.g., into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other DNA sequences. Substantially pure DNA also includes a recombinant DNA which is part of a hybrid gene encoding additional sequences. A purified retroviral genome is a nucleic acid which is substantially free of host nucleic acid or viral protein.

"Homologous", as used herein, refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same amino acid or base monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position. The percent of homology between two sequences is a

WO 97/21836 - 27 - PCT/US96/19680

function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared x 100. For example, if 6 of 10, of the positions in two sequences are matched or homologous then the two sequences are 60% homologous. By way of example, the DNA sequences ATTGCC and TATGGC share 50% homology. Generally, a comparison is made when two sequences are aligned to give maximum homology. The term sequence identity has substantially the same meaning.

The term "provirus" or "endogenous retrovirus," as used herein, refers to an integrated form of the retrovirus.

5

10

15

20

25

30

35

The terms "peptides", "proteins", and "polypeptides" are used interchangeably herein.

As used herein, the term "transgenic element" means a nucleic acid sequence, which is partly or entirely heterologous, i.e., foreign, to the animal or cell into which it is introduced but which is designed to be inserted, or is inserted, into the animal's genome in such a way as to alter the genome of the cell into which it is inserted. The term includes elements which cause a change in the sequence, or in the ability to be activated, of an endogenous retroviral sequence. Examples of transgenic elements include those which result in changes, e.g., substitutions (e.g., A for G), insertions or deletions of an endogenous retroviral sequence (or flanking regions) which result in inhibition of activation or misexpression of a retroviral product.

As used herein, the term "transgenic cell" refers to a cell containing a transgenic element.

As used herein, a "transgenic animal" is any animal in which one or more, and preferably essentially all, of the cells of the animal includes a transgenic element. The transgenic element can be introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection. This molecule may be integrated within a chromosome, or it may be extrachromosomally replicating DNA.

As described herein, one aspect of the invention features a pure (or recombinant) nucleic acid which includes a miniature swine (or swine) retroviral genome or fragment thereof, e.g., nucleotide sequence encoding a gag-pol or env polypeptide, and/or equivalents of such nucleic acids. The term "nucleic acid", as used herein, can include fragments and equivalents. The term "equivalent" refers to nucleotide sequences encoding functionally equivalent polypeptides or functionally equivalent polypeptides which, for example, retain the ability to react with an antibody specific for a gag-pol or env polypeptide. Equivalent nucleotide sequences will include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants, and will, therefore, include sequences that differ from the nucleotide sequence of gag, pol, or env shown in herein due to the degeneracy of the genetic code.

WO 97/21836 - 28 - PCT/US96/19680

"Misexpression", as used herein, refers to a non-wild type pattern of gene expression, e.g., porcine retroviral, e.g.. Tsukuba-1 gene expression, e.g., gag, pol or env gene expression. It includes: expression at non-wild type levels, i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms of the splicing, size, amino acid sequence, post-translational modification, stability, or biological activity of the expressed ,porcine retroviral, e.g., Tsukuba-1, polypeptides; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the porcine retroviral, e.g., Tsukuba-1 genes, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus.

Methods of the invention can be used with swine or miniature swine.

10

15

20

25

30

35

Endogenous retrovirus is a potential source of infection not always susceptible to conventional breeding practices. Many proviruses are defective and unable to replicate. Provirus, if intact, can be activated by certain stimuli and then initiate viral replication using the host's cellular mechanisms. Retroviral infection will often not harm the host cell. However, replication of virus may result in viremia, malignant transformation (e.g., via insertion of retroviral oncogenes), degeneration, or other insertional effects (e.g., gene inactivation). The effects of such infection may not emerge for many years. The spectrum of behavior of active lentiviral infection in humans is well described relative to HIV. These include AIDS, unusual infections and tumors, recombinant and other viruses, and antigenic variation which may prevent the generation of protective immunity by the infected host.

Screening of animals will allow elimination of donors with active replication of known viruses. Inactive proviruses can be detected with genetic probes and removed or inactivated. These novel approaches will allow the identification and elimination of potential human pathogens derived from swine in a manner not possible in the outbred human organ donor population and, thus, will be important to the development of human xenotransplantation.

The porcine retroviral sequences of the invention are also useful as diagnostic probes to detect activation of endogenous porcine retroviruses following transplantation and xenotransplantation of organs derived from swine or miniature swine. The porcine retroviral sequences of the invention also provide diagnostic tools necessary to assess the risks associated with transplantation of organs from swine or miniature swine into human recipients. These sequences are also useful for the longitudinal evaluation of retroviral activation in the human recipient of miniature swine-derived organs.

The practice of the present invention will employ, unless otherwise indicated. conventional techniques of cell biology, cell culture, molecular biology, transgenic biology. microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are described in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Patent No: 4.683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. 10 Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.). Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook 15 Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described below. All publications mentioned herein are incorporated by reference. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Detailed Description of the Drawings

Figure 1 is the nucleotide sequence (SEQ ID NO: 1) of the Tsukuba-1 cDNA. Figure 2 is the nucleotide sequence (SEQ ID NO: 2) of a defective retroviral genome isolated from the retrovirus from the PK-15 cell line.

Figure 3 is the nucleotide sequence (SEQ ID NO: 3) of a retrovirus found in miniature swine.

Detailed Description

Miniature Swine Retroviruses

20

25

30

35

Transplantation may increase the likelihood of retroviral activation, if intact and infectious proviruses are present. Many phenomena associated with transplantation, e.g., immune suppression, graft rejection, graft-versus-host disease, viral co-infection, cytotoxic therapies, radiation therapy or drug treatment, can promote activation of retroviral expression.

Many species are thought to carry retroviral sequences in their genomic DNA. The number of intact (complete) retroviral elements that could be activated is often unknown.

WO 97/21836 - 30 - PCT/US96/19680

Once activated, swine-derived viruses would require the appropriate receptor on human tissues to spread beyond the transplanted organ. Most intact endogenous proviruses (usually types B and C), once activated, are not pathogenic. However, coinfection with other viruses, recombination with other endogenous viruses, or modification of viral behavior in the foreign human environment may alter the pathogenicity, organ specificity or replication of the retroviruses or other infectious agents.

5

10

15

20

25

30

35

The lack of sequence data on pig viruses has impeded efforts to assess the number of porcine sequences, or porcine retroviral sequences, that have incorporated into the human genome or the frequency of incorporation.

The inventor, by showing that the Tsukuba-1 retrovirus is found in miniature swine, and by providing the entire sequence of the porcine retroviral (Tsukuba-1) genome, has allowed assessment of the risk of endogenous retroviruses in general clinical practice and more importantly in xenotransplantation.

The porcine retroviral sequences of the invention can be used to determine the level (e.g., copy number) of intact (i.e., potentially replicating) porcine provirus sequences in a strain of xenograft transplantation donors. For example, the copy number of the miniature swine retroviral sequences can be determined by the Polymerase Chain Reaction DNA Quantitation (PDQ) method, described herein, or by other methods known to those skilled in the art. This quantitation technique will allow for the selection of animal donors, e.g., miniature swine donors, without an intact porcine retroviral sequence or with a lower copy number of viral elements.

The porcine retroviral sequences of the invention can be used to determine if mutations, e.g., inversions, translocations, insertions or deletions, have occurred in the endogenous porcine retroviral sequence. Mutated viral genomes may be expression-deficient. For example, genetic lesions can be identified by exposing a probe/primer derived from porcine retrovirus sequence to nucleic acid of the tissue (e.g., genomic DNA) digested with a restriction endonucleases or by *in situ* hybridization of the probe/primer derived from the porcine retroviral sequence to the nucleic acid derived from donor, e.g., miniature swine, tissue. Alternatively, direct PCR analysis, using primers specific for porcine retroviral genes (e.g., genes comprising the nucleotide sequence shown in SEQ ID NO: 1, 2, or 3), can be used to detect the presence or absence of the genetic lesion in the porcine retroviral genome.

Miniature swine retroviral sequences of the invention can also be use to detect viral recombinants within the genome, or in the circulation, cells, or transplanted tissue, between the porcine retrovirus and other endogenous human viruses or opportunistic pathogens (e.g. cytomegalovirus) of the immunocompromised transplant recipient. For example, pieces of the viral genome can be detected via PCR or via hybridization, e.g., Southern or Northern

WO 97/21836 - 31 - PCT/US96/19680

5

10

15

20

25

30

35

blot hybridization, using sequences derived from SEQ ID NO: 1, 2, or 3 as primers for amplification or probes for hybridization.

Miniature swine retroviral sequences of the invention, e.g., PCR primers, allow quantitation of activated virus. Sequences of the invention also allow histologic localization (e.g., by in situ hybridization) of activated retrovirus. Localization allows clinicians to determine whether a graft should be removed as a source of potential retroviral infection of the human host or whether the retroviral infection was localized outside the graft. Sequences of the invention, e.g., PCR primers, allow the detection of actively replicating virus, e.g., by using reverse transcribed PCR techniques known in the art. Standard techniques for reverse transcriptase measurements are often complicated, species-specific, and are of low sensitivity and specificity, and false positive results may develop using full-length probes for Southern and Northern molecular blotting. Sequences of the invention allow for sensitive and specific assays for the activation of virus and this will allow performance of a wide variety of tests, some of which are outlined below.

The invention provides for the testing and development of donor animals having reduced numbers of intact proviral insertions. It also provides for the testing of immunosuppressive regimens less likely to provide the conditions for active replication of retrovirus. Conditions likely to activate one retrovirus are generally more likely to activate other viruses including unknown retroviruses and known human pathogens including cytomegalovirus, hepatitis B and C viruses, Human Immunodeficiency Viruses (I and II). Given the availability of preventative therapies for these infections, these therapies could be used prophylactically in patients known to be susceptible to the activation of porcine retrovirus.

The miniature swine retroviral sequences of the invention can be used to measure the response of the miniature swine retroviral infection in humans to therapy, e.g., immunomodulatory or antiviral therapy, e.g., antiviral agents, e.g., antiviral antibiotics. With HIV, susceptibility to antiviral antibiotics is determined by the genetic sequence of the reverse transcriptase gene (RT pol region) and other genes. The ability to determine the exact sequence of the retroviral genes will allow the detection of mutations occurring during infection which would then confer resistance of this virus to antiviral agents. Primers, e.g., for the RT-pol region, of the invention can be used to detect and to sequence clinical viral isolates from patients which have developed mutations by PDQ method described herein. The primers of the invention can also be used to determine whether tumor cells, e.g., cancer cells, e.g. lymphoma or hepatocellular carcinoma, developing in xenograft recipients contain porcine retroviral elements.

The porcine retroviral sequences of the invention can also be used to detect other homologous retroviruses and to determine whether these are the same or different as compared to the Tusukuba-1 retroviral sequences. For example, within a species, the

10

15

20

25

30

35

polymerase genes are highly conserved. PCR assays aimed at the gag-pol region followed by sequence analysis allow for this detection of homologous viruses. The appropriate regions of the Tsukuba-I virus can be determined by using sequences derived from SEQ ID NO:1, described herein, to identify additional 5' and 3' viral genomic sequences. As is discussed elsewhere herein, the sequences from SEQ ID NO:1 were used to obtain the sequence of the PK-15 retroviral insert (SEQ ID NO:2) and of a retroviral insertion in a miniature swine (SEQ ID NO:3).

Miniature swine retroviral sequences of the invention can be used to screen donor animals and xenograft recipients after transplantation both for infection, and as a measure of the appropriate level of immune suppression, regarding susceptibility to infection. Physicians, medical staff, family, or individuals who come into contact with graft recipients, and others, can be screened for infection with virus derived from the xenograft recipient. Members of the population in general can also be screened. Such screening can be used for broad epidemiologic studies of the community. These methods can help in meeting the requirements of the F.D.A. regarding enhancing the safety of the recipients and of the community to exposure to new viruses introduced into the community by xenograft transplantation.

As is shown in Suzuka et al., 1986, FEBS 198:339, the swine retroviruses such as the Tsukuba-1 genome can exist as a circular molecule. Upon cloning the circular molecule is generally cleaved to yield a linear molecule. As will be understood by one skilled in the art, the start point and end point of the resulting linear molecule, and the relative subregions of the viral sequence will of course vary with the point of cleavage. For example, in the Suzuka et al. reference the LTR is shown to be in an internal fragment. This is indicated herein in that the order of gag, pol, env in SEQ ID NO 1 is shown as env, gag, pol, while elsewhere herein the order of these regions is given as the naturally occurring gag, pol, env order.

Primers Derived from the Porcine Retroviral (Tsukuba-1) Genome Sequence

A number of different primers useful in the methods of the invention have been described herein. One skilled in the art can identify additional primers from the viral sequence of SEQ ID NO:1 by using methods known in the art. For example, when trying to identify potentially useful primers one skilled in the art would look for sequences (sequences should be between about 15 and 30 nucleotides in length) which hybridize to SEQ ID NO:1 with high melting temperature; have a balanced distribution of nucleotides, e.g., a balanced distribution of A, T, C and Gs; have a terminal C or G; do not self-hybridize or internally complement.

Use of Primers Derived from the Porcine Retroviral (Tsukuba-1) Genome Sequence

I. Testing of organs or cells prior to transplantation

Potential donor animals can be screened for active retroviral replication prior to being used in transplantation. This allows avoidance of animals undergoing active viral replication. Replicating virus is often infectious in 100% of recipients, while nonreplicating, latent provirus generally causes infection in 5 to 25% of recipients.

II. Testing of recipients

5

10

15

20

25

30

35

Serial samples, e.g., of white blood cells, can be obtained from a graft recipient monthly, e.g., for the first month and every three months thereafter. Tissue biopsics obtained for evaluation of graft function can be used to evaluate the activation of retroviral sequences or of theexpression retroviral sequences in graft tissue. Samples can be screened for the presence of retrovirus infection both specifically for the homologous virus, for viral recombinants containing portions of the viral genome, and for other retroviruses, using, e.g., PCR primers for the pol region of the virus, which is the region most likely to be conserved. If virus is detected, quantitative PCR can be used to determine the relative stability of viral production. Cells isolated from xenograft recipients can be tested by cocultivation with permissive human and porcine (e.g., pig fallopian tube, pig macrophage, or pig testis) cell lines known to contain endogenous viruses. Isolated virus will be tested for homology with the parental strain and for mutations which might affect susceptibility to antiviral agents, e.g., antiviral antibiotics.

III. Testing of surgical and medical personnel and family members of graft recipient

Samples, e.g., white blood cells, can be banked (archived) from the surgical and medical personnel and from family members of the recipient prior to transplantation and at three months intervals for the first year and at least annually thereafter. Epidemiologic studies can be performed on these samples as well. These samples can be tested if the recipient becomes viremic or if unusual clinical manifestations are noted in these individuals.

IV. Testing of tumor cells

Turnor cells which develop from a graft, or a graft recipient, can be tested for the presence of active retrovirus and for proviruses.

V. Testing of patients

Patients can be retested for any significant change in clinical condition or for increased immune suppression of graft rejection which may be associated with an increased risk of viral activation.

Sequencing of the porcine retroviral (Tsukuba-1) genome

A clone (P λ 8.8) containing the 8060 bp XhoI porcine retrovirus (Tsukuba-1) insert was used to transfect competent *E. coli*, and DNA was isolated for sequencing. The strategy used to sequence the 8060 bp porcine retrovirus genome included a combination of procedures which are outlined below.

Random fragments (1-3 kb) of the clone (P\lambda 8.8) were generated by sonication. The fragments were blunt-ended and were subcloned into the EcoRV site of the pBluescript SK vector. Plasmid DNA was prepared using a modified alkaline lysis procedure. DNA sequencing was performed using DyeDeoxy termination reactions (ABI). Base specific fluorescent dyes were used as labels. Sequencing reactions were analyzed on 4.75% polyacrylamide gels by an ABI 373A-S or 373S automated sequencer. Subsequent data analysis was performed on SequencerTM 3.0 software. The following internal sequencing primers were synthesized:

10	API	5'	GATGAACAGGCAGACATCTG 3'	(SEQ ID NO:48)
	AP2	5'	CGCTTACAGACAAGCTGTGA 3'	(SEQ ID NO:49)
	AP3	5'	AGAACAAAGGCTGGGAAAGC 3'	(SEQ ID NO:50)
	AP4	5'	ATAGGAGACAGCCTGAACTC 3'	(SEQ ID NO:51)
	AP5	5'	GGACCATTGTCTGACCCTAT 3'	(SEQ ID NO:52)
15	AP6	5'	GTCAACACCTATACCAGCTC 3'	(SEQ ID NO:53)
	AP7	5'	CATCTGAGGTATAGCAGGTC 3	(SEQ ID NO:54)
	AP8	5.	GCAGGTGTAGGAACAGGAAC 3'	(SEQ ID NO:55)
	AP9	5'	ACCTGTTGAACCATCCCTCA 3'	(SEQ ID NO:56)
	APIO	5'	CGAATGGAGAGATCCAGGTA 3'	(SEQ ID NO:57)
20	APH	5'	CCTGCATCACTTCTCTTACC 3'	(SEQ ID NO:58)
	AP12	5'	TTGCCTGCTTGTGGAATACG 3'	(SEQ ID NO:59)
	AP13	5'	CAAGAGAAGAAGTGGGGAATG 3'	(SEQ ID NO:60)
	AP14	5'	CACAGTCGTACACCACGCAG 3'	(SEQ ID NO:61)
	AP15	5	GGGAGACAGAAGAAGG3'	(SEQ ID.NO:62)
25	AP16	5'	CGATAGTCATTAGTCCCAGG 3'	(SEQ ID NO:63)
	AP17	5'	TGCTGGTTTGCATCAAGACCG 3'	(SEQ ID NO:64)
	AP18	5'	GTCGCAAAGGCATACCTGCT 3'	(SEQ ID NO:65)
	AP19	5.	ACAGAGCCTCTGCTAAGAAG 3'	(SEQ ID NO:66)
	AP20	5'	GCAGCTGTTGACAATCATC 3'	(SEQ ID NO:67)
30	AP21	5'	TATGAGGAGAGGGCTTGACT 3'	(SEQ ID NO:68)
	AP22	5'	AGCAGACGTGCTAGGAGGT 3'	(SEQ ID NO:69)
	AP23	5'	TCCTCTTGCTGTTTGCATC 3'	(SEQ ID NO:70)
	AP24	5'	CAGACACTCAGAACAGAGAC 3'	(SEQ ID NO:71)
	AP25	5'	ACATCGTCTAACCCACCTAG 3'	(SEQ ID NO:72)
35	AP26	5'	CTCGTTTCTGGTCATACCTGA 3'	(SEQ ID NO:73)
	AP27	5'	GAGTACATCTCTCTAGGCA 3'	(SEQ ID NO:74)
	AP28	5'	TGCCTAGAGACATGTACTC 3'	(SEQ ID NO:4)
	AP29	5'	CCTCTTCTAGCCATTCCTTCA 3'	(SEQ ID NO:5)

5

45

The clone (Pλ8.8) containing the 8060 bp Xhol porcine retrovirus (Tsukuba-1) insert was deposited with ATCC on December 27, 1995 (ATCC Deposit No.97396).

Determination of the porcine retroviral (Tsukuba-1) copy number in a miniature swine

Total genomic DNA was isolated from miniature swine kidney by the methods known in the art. The isolated genomic DNA was digested with either EcoRI or HindIII restriction enzyme. The DNA digests were electrophoresed on an agarose gel, Southern blotted and hybridized to the full-length, purified, Tsukuba-1 sequence (SEQ ID NO:1) under high stringency conditions (0.1 X SSC, 65°C). In both digested samples (EcoRI or HindIII) at least six copies of the high molecular fragments of the miniature swine genome

(over 16 Kb in size) hybridized to SEQ ID NO:1, indicating the presence of homologous retroviral sequences in porcine DNA.

Susceptibility Testing by Polymerase Chain Reaction DNA Quantitation (PDQ)

10

15

20

25

30

35

Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing can be used to rapidly and directly measure nucleoside sensitivity of porcine retrovirus isolates.

PCR can be used to quantitate the amount of porcine retroviral RNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of porcine retroviral RNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. With the PDQ method both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells.

The PDQ experiments can be performed essentially as described by Eron et al., *PNAS USA* 89:3241-3245, 1992. Briefly, aliquots (150µl) of serial dilutions of virus sample can be used to infect 2 x 10⁶ PHA-stimulated donor PBMCs in 1.5 ml of growth medium per well of a flat-bottom 24-well plate (Corning). Separate cell samples can be counted, harvested, and lysed at 48, 72 and 96 hr. Quantitative PCR and porcine retrovirus copy-number determination can then be performed in duplicate on each lysate.

The results of a PDQ infectivity titration assay can be used to determine the virus dilution and length of culture time employed in a subsequent PDQ susceptibility test. These parameters should be chosen so that the yield of porcine retrovirus specific PCR product for the untreated control infection would fall on the porcine retrovirus copy-number standard curve before the curve approached its asymptotic maximum, or plateau. PHA-stimulated donor PBMCs can be incubated with drug for 4 hr prior to infection. Duplicate wells in a 24-well plate should receive identical porcine retrovirus inocula for each drug concentration tested and for the untreated infected controls. Uninfected controls and drug toxicity controls should be included in each experiment. All cultures can be harvested and cells lysed for PCT after either 48 or 72 hr. Previously characterized isolates can be used as assay standards in each experiment.

Cell pellets can be lysed in various volumes of lysis buffer (50 mM KCl/10mM Tris •HCl, pH 8.3/2.5 mM MgCl₂/0.5% Nonidet P-40/0.5% Tween 20/0.01% proteinase K) to yield a concentration of 1.2 x 10⁴ cell equivalents/µl. Uniformity to cell lysate DNA concentrations should be confirmed in representative experiments by enhancement of Hoechst 33258 fluorescence (Mini-Fluorometer, Hoefer).

A conserved primer pair can be synthesized according to the pol gene sequences. The primers can than be used to amplify a 1580-base pair fragment of the porcine retrovirus pol gene from 1.2 x 10⁵ cell equivalents of lysate by using PCR (GeneAmp, Cetus) under

WO 97/21836 - 36 - PCT/US96/19680

standard conditions. Amplifications should be repeated if porcine retrovirus DNA is amplifiable from reagent controls.

5

10

15

20

25

30

35

Porcine retrovirus pol gene amplification products can be specifically detected and quantitated as described (Conway, B.C. (1990) in <u>Techniques in HIV Research</u>. (Aldovani & Walker, eds.) (Stockton, New York) pp.40-46). Heat-denatured PCR products can be hybridized in a Streptavidin-coated microtiter plate well with both biotinylated capture probe and horseradish peroxidase (HRP)-labeled detector probe [enzyme-linked oligonucleotide solution sandwich hybridization assay ((ELOSA), DuPont Medical Products, Billerica, MA) for 60 min at 37°C. After extensive washing to remove all reactants except probe-DNA hybrids, an HRP chromogen, tetramethylbenzidine (TMBlue, Transgenic Sciences, Worcester, MA), should be added to each well. The HRP-catalyzed color development should be stopped after 1 hr by addition of sulfuric acid to 0.65 M. Absorbance (OD) at 450 nm can be measured in an automated microtiter plate reader (SLT Labinstruments, Hillsborough, NC).

A standard curve of porcine retrovirus DNA copy number can be generated in each PCR by using a dilution series of cells containing one porcine proviral genome per cell.

Preparation of a miniature swine having a knockout of Tsukuba-1 viral sequence using isogenic DNA targeting vectors

Isogenic DNA, or DNA that is substantially identical in sequence between the targeting vector and the target DNA in the chromosomes, greatly increases the frequency for homologous recombination events and gene targeting efficiency. Using isogenic-DNA targeting vectors, targeting frequencies of 80% or higher can be achieved in mouse embryonic stem cells. This is in contrast to non-isogenic DNA vectors which normally yield targeting frequencies of around 0.5% to 5%. i.e., approximately two orders of magnitude lower than isogenic DNA vectors. Isogenic DNA constructs are predominantly integrated into chromosomes by homologous recombination rather than random integration. As a consequence, targeted mutagenesis of viral sequences, e.g., viral genes, can be carried out in biological systems including zygotes, which do not lend themselves to the use of elaborate selection protocols, resulting in production of animals, e.g., miniature swine, free of, or having a reduced number of, activatable viral sequences. In order for the isogenic DNA approach to be feasible, targeting vectors should be constructed from a source of DNA that is identical to the DNA of the organism to be targeted. Ideally, isogenic DNA targeting is carried out in inbred strains of animals, e.g., inbred miniature swine, in which all genetic loci are homozygous. Any animal of that strain can serve as a source for generating isogenic targeting vectors. This protocol for isogenic gene targeting is outlined in TeRiele et al., PNAS 89:5128-5132, 1992 and PCT/US92/07184, herein incorporated by reference. A protocol for producing Tsukuba-1 knockout miniature swine is described briefly below.

WO 97/21836 - 37 - PCT/US96/19680

An insertion vector is designed as described by Hasty and Bradley (Gene Targeting Vectors for Mammalian Cells, in Gene Targeting: A Practical Approach, ed. Alexandra L. Joyner, IRL Press 1993). Insertion vectors require that only one crossover event occur for integration by homologous recombination into the native locus. The double strand breaks, the two ends of the vector which are known to be highly recombinogenic, are located on adjacent sequences on the chromosome. The targeting frequencies of such constructions will be in the range of 30 to 50%. One disadvantage of insertion vectors, in general, concerns the sequence duplications that are introduced and that potentially make the locus unstable. All these constructions are made using standard cloning procedures.

Replacement vectors have also been extensively described by Hasty and Bradley. Conceptually more straight forward than the insertion vector, replacement vectors use an essentially co-linear fragment of a stretch of Tsukuba-1 genomic sequence. Preferably, the DNA sequence from which an isogenic replacement vector is constructed includes approximately 6 to 10 kb of uninterrupted DNA. Two crossovers, one on either side of the selectable marker causes the mutant targeting vector to become integrated and replace the wild-type gene.

10

15

20

25

30

35

Microinjection of the isogenic transgene DNA into one of the pronuclei of a porcine embryo at the zygote stage (one-cell embryo) is accomplished by modification of a protocol described earlier (Hammer et al. 1985, Nature 315, 680; Pursel et al. 1989, Science 244, 1281). The age and the weight of the donor pigs, e.g., haplotype specific mini-swine, are critical to success. Optimally, the animals are of age 8 to 10 months and weigh 70 to 85 lbs. This increases the probability of obtaining an adequate supply of one-cell embryos for microinjection of the transgenes. In order to allow for accurate timing of the embryo collections at this stage from a number of embryo donors, the gilts are synchronized using a preparation of synthetic progesterone (Regumate). Hormone implants are applied to designated gilts 30 days prior to the date of embryo collection. Twenty days later, ten days prior to the date of collection, the implants are removed and the animals are treated with additional hormones to induce superovulation to increase the number of embryos for microinjection. Three days following implant removal, the animals are treated with 400 to 1000 IU of pregnant mare serum gonadotropin (PMSG) and with 750 IU of human chorionic gonadotropin (hCG) three to four days later. These animals are bred by artificial insemination (AI) on two consecutive days following injection of hCG.

Embryo collections are performed as follows: three days following the initial injection of hCG, the animals are anesthetized with an intramuscular injection of Telazol (3 mg/lb), Rompum (2 mg/lb) and Atropine (1 mg/lb). A midline laparotomy is performed and the reproductive tract exteriorized. Collection of the zygotes is performed by cannulating the ampulla of the oviduct and flushing the oviduct with 10 to 15 ml phosphate buffered saline, prewarmed to 39° C. Following the collection the donor animals are

prepared for recovery from surgery according to USDA guidelines. Animals used twice for embryo collections are euthanized according to USDA guidelines.

Injection of the transgene DNA into the pronuclei of the zygotes is carried out as summarized below: Zygotes are maintained in medium HAM F-12 supplemented with 10% fetal calf serum at 38° C in 5% CO₂ atmosphere. For injection the zygotes are placed into BMOC-2 medium, centrifuged at 13,000 g to partition the embryonic lipids and visualize the pronuclei. The embryos are placed in an injection chamber (depression slide) containing the same medium overlaid with light paraffin oil. Microinjection is performed on a Nikon Diaphot inverted-microscope equipped with Nomarski optics and Narishige micromanipulators. Using 40x lens power the embryos are held in place with a holding pipette and injected with a glass needle which is back-filled with the solution of DNA containing the transgenic element, e.g., a mutant viral gene (2 µg/ml). Injection of approximately 2 picoliters of the solution (4 femptograms of DNA), which is equivalent to around 500 copies of the transgenic element, e.g., a mutant viral gene, is monitored by the swelling of the pronucleus by about 50%. Embryos that are injected are placed into the incubator prior to transfer to recipient animals.

Recipient animals are prepared similarly to the donor animals, but not superovulated. Prior to the transfer of the injected embryos, recipient gilts are anesthetized, the abdomen opened surgically by applying a longitudinal incision and the ovaries exteriorized. The oviduct ipsilateral to the ovary with the larger number of corpus lutei is flushed, the embryos checked to evaluate if the animals is reproductively sound. Approximately 4 to 6 zygotes injected with the transgenic element, e.g., a mutant viral gene, are transferred to the flushed oviduct, the abdominal incision sutured and the animals placed in a warm area for recovery. The status of the pregnancy is monitored by ultrasound starting at day 25, or approximately one week following the expected date of implantation. Pregnant recipients are housed separately until they are due to farrow.

Newborn piglets are analyzed for integration of the transgenic element into chromosomal DNA. Genomic DNA is extracted from an ear punch or a blood sample and initial screening is performed using PCR. Animals that are potentially transgenic element-positive are confirmed by Southern analysis. Transgenic founder animals are subjected to further analysis regarding the locus of transgenic element integration using Southern analysis.

The isolation and sequencing of an endogenous swine retroviral insert and of a retroviral insert in porcine PK-15 cells

35 Cloning of PK15 and PAL endogenous retroviruses

I. Poly A⁺ RNA isolation

5

10

15

20

25

30

Peripheral blood lymphocytes (PBLs) were prepared from haplotype d/d miniswine using standard protocols known in the art. The PBLs were cultured in the presence of 1% phytohemagglutinin (PHA) for about 84 hours. The activated PBLs were collected and total RNA was isolated using commercially available kits, such at Gentra's (Minneapolis.

Minnesota) PUREscript Kit. Poly A+RNA was isolated from the total RNA using another commercially available product, Dynal Dynabeads (Lake Success, NY). Northern analysis of the RNA using a pig retroviral probe confirmed the presence of potentially full-length retroviral genome RNA. RNA from PK15 cells was isolated using similar protocols.

10 II. Construction of the cDNA libraries

Using Superscript Choice System (Life Technologies Ltd, Gibco BRL, Gaithersburg, MD) for cDNA Synthesis, a cDNA library was constructed using oligo dT to make the first strand cDNA. The use of Superscript reverse transcriptase was important in order to obtain full-length retroviral (RV) cDNAs, due to the length of the RV RNA. The cDNA library was enriched for large cDNA fragments by size selecting >4 kb fragments by gel electrophoresis. The cDNAs were cloned into Lambda ZAP Express (Clontech Laboratories, Inc. Palo Alto, CA), which is one of the few commercially available cDNA vectors that would accept inserts in the 1-12kb range.

20 III. Screening of the cDNA libraries

15

30

35

0.75 - 1.2 x 10⁶ independent clones were screened using either gag and pol or gag and env probes. Double positive clones were further purified until single isolates were obtained (1 or 2 additional rounds of screening).

25 IV. Characterization of the clones

Between 18 and 30 double positive clones were selected for evaluation. Lambda DNA was prepared using standard protocols, such as the Lambda DNA Kit (Qiagen Inc., Chatsworth, CA). The clones were analyzed by PCR to check for (a) RV genes, and (b) determine the size of insert and LTR regions. Restriction digests were also done to confirm the size of insert and to attempt to categorize the clones. Clones containing the longest inserts and having consistent and predicted PCR data were sequenced.

Development of a PCR-based assay for the detection of the presence of an endogenous retrovirus in cells, tissues, organs, miniswine or recipient hosts (e.g., primates, humans)

Using a commercially available computer software program (such as RightPrimer, Oligo 4.0, MacVector or Geneworks), one can analyze sequences disclosed herein for the selection of PCR primer pairs. The criteria for the general selection of primer pairs includes:

a. The Tm of each primer is between 65-70°C

WO 97/21836 - 40 - PCT/US96/19680

- b. The Tm's for each pair differ by no more than 3°C
- c. The PCR fragment is between 200-800 bp in length

d. There are no repeats, self complementary bases, primer-dimer issues, etc for each pair

5

10

15

20

25

30

35

A. Additional criteria for: A pig-specific PCR assay

- a. Primers are selected within porcine-specific regions of the sequence -- such as within gag, env, or U3. Porcine-specific primers are defined as sequences which overall have <70% homology to the corresponding region in human, mouse and primate retroviruses. In addition, the last five bases at the 3' end of the primer should be unique to the pig retroviral sequence.
- b. Primers should have no more than one or two mismatched bases based on the miniswine, and retroviral sequences disclosed herein. These mismatched bases should not be within the last three or four bases of the 3' end of the primer.

B. Additional criteria for: Miniswine-specific PCR assay

a. Primers are selected such that there are at least one or two mismatches between miniswine and domestic pig sequences. At least one of these mismatches should be located within the last three or four bases at the 3' end of the primer. Preferably, these mismatches would be a change from either a G or C in miniswine to either an A or T in domestic pig. RT-PCR Strategy

There are a number of commercially available RT-PCR Kits for routine amplification of fragments. Several primer pairs should be tested to confirm Tm and specificity. Location of primers within the sequence depends in part on what question is being answered. RT-PCR should answer questions about expression and presence of RV sequences. PCR will not necessarily answer the question of whether the retroviral sequence is full-length or encodes a replication competent retrovirus. A positive signal in these tests only says there is RV sequence present. Indication of the possibility of full-length viral genomes being present can be obtained by performing long PCR using primers in U5 and U3. A commercial kit for long RT-PCR amplification is available (Takara RNA LA PCR Kit). Confirmation of full-length viral genomes requires infectivity studies and/or isolation of viral particles.

Northern analyses would complement RT-PCR data. Detection of bands at the predicted size of full-length viral genomes with hybridization probes from env, U3 or U5 would provide stronger evidence. The presence of other small bands hybridizing would indicate the amount of defective viral fragments present.

Elisa-Based Assay To Detect The Presence Of Porcine Retroviral Proteins, Polypeptides Or Peptides

In addition to the use of nucleic acid-based, e.g., PCR-based assays, to detect the presence of retroviral sequences, ELISA based assays can detect the presence of porcine retroviral proteins, polypeptides and peptides.

5

10

15

20

25

30

35

The basic steps to developing an ELISA include (a) generation of porcine retroviral specific peptides, polypeptides and proteins; (b) generation of antibodies which are specific for the porcine retroviral sequences; (c) developing the assay.

Using the retroviral sequences disclosed herein, antigenic peptides can be designed using computer based programs such as MacVector or Geneworks to analyse the retroviral sequences. Alternatively, it is possible to express the porcine retroviral sequences in gene expression systems and to purify the expressed polypeptides or proteins. After synthesis, the peptides, polypeptides or proteins are used to immunize mice or rabbits and to develop serum containing antibodies.

Having obtained the porcine retroviral specific antibodies the ELISA can be developed as follows. ELISA plates are coated with a volume of polyclonal or monoclonal antibody (capture antibody) which is reactive with the analyte to be tested. Such analytes include porcine retroviruses or retroviral proteins such as env or p24. The ELISA plates are then incubated at 4°C overnight. The coated plates are then washed and blocked with a volume of a blocking reagent to reduce or prevent non-specific hybridization. Such blocking reagents include bovine serum albumin (BSA), fetal bovine serum (FBS), milk, or gelatin. The temperature for the blocking process is 37°C. Plates can be used immediately or stored frozen at -20°C until needed. The plates are then washed, loaded with a serial dilution of the analyte, incubated at 37°C, and washed again. Bound analyte is detected using a detecting antibody. Detecting antibodies include enzyme-linked, fluoresceinated, biotin-conjugated or other tagged polyclonal or monoclonal antibodies which are reactive with the analyte. If monoclonal antibodies are used the detecting antibody should recognize an epitope which is different from the capture antibody.

Other Embodiments

In another aspect, the invention provides a substantially pure nucleic acid having, or comprising, a nucleotide sequence which encodes a swine or miniature swine, e.g., a Tsukuba-1 retroviral gag polypeptide.

In preferred embodiments: the nucleic acid is or includes the nucleotide sequence from nucleotides 2452-4839 of SEQ ID NO:1; the nucleic acid is at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% homologous with a nucleic acid sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1; or by a sequence which, hybridizes under high stringency conditions to nucleotides 2452-4839 of SEQ ID NO:1; the nucleic acid includes a fragment of SEQ ID NO:1 which is at least 25, 50, 100, 200, 300, 400, 500, or 1,000

WO 97/21836 - 42 - PCT/US96/19680

5

10

15

20

25

30

35

bases in length; the nucleic acid differs from the nucleotide sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1 due to degeneracy in the genetic code: the nucleic acid differs from the nucleic acid sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1 by at least one nucleotide but by less than 5, 10, 15 or 20 nucleotides and preferably which encodes an active peptide.

In yet another preferred embodiment, the nucleic acid of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from nucleotides 2452-4839 of SEQ ID NO:1, or more preferably to at least 20 consecutive nucleotides from nucleotides 2452-4839 of SEQ ID NO:1, or more preferably to at least 40 consecutive nucleotides from nucleotides 2452-4839 of SEQ ID NO:1.

In another aspect, the invention features, a purified recombinant nucleic acid having at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% homology with a nucleotide sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1.

The invention also provides a probe or primer which includes or comprises a substantially purified oligonucleotide. The oligonucleotide includes a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 of SEQ ID NO:1, or naturally occurring mutants thereof. In preferred embodiments, the probe or primer further includes a label attached thereto. The label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, and/or an enzyme co-factor. Preferably the oligonucleotide is at least 10 and less than 20, 30, 50, 100, or 150 nucleotides in length. Preferred primers of the invention include oligonucleotides having a nucleotide sequence shown in any of SEQ ID NOs:32-37.

The invention involves nucleic acids, e.g., RNA or DNA, encoding a polypeptide of the invention. This includes double stranded nucleic acids as well as coding and antisense single strands.

In another aspect, the invention provides a substantially pure nucleic acid having, or comprising, a nucleotide sequence which encodes a swine or miniature swine, e.g., a Tsukuba-1 retroviral pol polypeptide.

In preferred embodiments: the nucleic acid is or includes the nucleotide sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1; the nucleic acid is at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% homologous with a nucleic acid sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1; or by a sequence which, hybridizes under high stringency conditions to nucleotides 4871-8060 of SEQ ID NO1: the nucleic acid includes a fragment of SEQ ID NO:1 which is at least 25, 50, 100, 200, 300, 400, 500, or 1,000 bases in length; the nucleic acid differs from the nucleotide sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1 due to degeneracy in the genetic code; the nucleic acid differs from the nucleic acid sequence corresponding to nucleotides

4871-8060 of SEQ ID NO:1 by at least one nucleotide but by less than 5, 10, 15 or 20 nucleotides and preferably which encodes an active peptide.

5

10

15

20

25

30

35

In yet another preferred embodiment, the nucleic acid of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from nucleotides 4871-8060 of SEQ ID NO:1, or more preferably to at least 20 consecutive nucleotides from nucleotides 4871-8060 of SEQ ID NO:1, or more preferably to at least 40 consecutive nucleotides from nucleotides 4871-8060 of SEQ ID NO:1.

In another aspect, the invention features, a purified recombinant nucleic acid having at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% homology with a nucleotide sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1.

The invention also provides a probe or primer which includes or comprises a substantially purified oligonucleotide. The oligonucleotide includes a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, or naturally occurring mutants thereof. In preferred embodiments, the probe or primer further includes a label attached thereto. The label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, and/or an enzyme co-factor. Preferably the oligonucleotide is at least 10 and less than 20, 30, 50, 100, or 150 nucleotides in length. Preferred primers of the invention include oligonucleotides having a nucleotide sequence shown in any of SEQ ID NOs:38-47.

The invention involves nucleic acids, e.g., RNA or DNA, encoding a polypeptide of the invention. This includes double stranded nucleic acids as well as coding and antisense single strands.

In another aspect, the invention provides a substantially pure nucleic acid having, or comprising, a nucleotide sequence which encodes a swine or miniature swine, e.g., a Tsukuba-1 retroviral env polypeptide.

In preferred embodiments: the nucleic acid is or includes the nucleotide sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1; the nucleic acid is at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% homologous with a nucleic acid sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1; or by a sequence which, hybridizes under high stringency conditions to nucleotides 2-1999 of SEQ ID NO:1; the nucleic acid includes a fragment of SEQ ID NO:1 which is at least 25, 50, 100, 200, 300, 400, 500, or 1,000 bases in length; the nucleic acid differs from the nucleotide sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1 due to degeneracy in the genetic code; the nucleic acid differs from the nucleic acid sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1 by at least one nucleotide but by less than 5, 10, 15 or 20 nucleotides and preferably which encodes an active peptide.

5

10

15

20

25

30

35

In yet another preferred embodiment, the nucleic acid of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from nucleotides 2-1999 of SEQ ID NO:1, or more preferably to at least 20 consecutive nucleotides from nucleotides 2-1999 of SEQ ID NO:1, or more preferably to at least 40 consecutive nucleotides from nucleotides 2-1999 of SEQ ID NO:1.

In another aspect, the invention features, a purified recombinant nucleic acid having at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% homology with a nucleotide sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1.

The invention also provides a probe or primer which includes or comprises a substantially purified oligonucleotide. The oligonucleotide includes a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 of SEQ ID NO:1, or naturally occurring mutants thereof. In preferred embodiments, the probe or primer further includes a label attached thereto. The label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, and/or an enzyme co-factor. Preferably the oligonucleotide is at least 10 and less than 20, 30, 50, 100, or 150 nucleotides in length. Preferred primers of the invention include oligonucleotides having a nucleotide sequence shown in any of SEQ ID NOs:6-31.

The invention includes nucleic acids, e.g., RNA or DNA, encoding a polypeptide of the invention. This includes double stranded nucleic acids as well as coding and antisense single strands.

Included in the invention are: allelic variations, natural mutants, induced mutants, that hybridize under high or low stringency conditions to the nucleic acid of SEQ ID NO:1, 2, or 3 (for definitions of high and low stringency see Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989, 6.3.1 - 6.3.6, hereby incorporated by reference).

The invention also includes purified preparations of swine or miniature swine retroviral polypeptides, e.g., gag pol, or env polypeptides, or fragments thereof, preferably biologically active fragments, or analogs, of such polypeptides. In preferred embodiments: the polypeptides are miniature swine retroviruses polypeptides; the polypeptides are Tsukuba polypeptides; the polypeptides are gag, pol, or env polypeptides encoded by SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or naturally occurring variants thereof.

A biologically active fragment or analog is one having any in vivo or in vitro activity which is characteristic of the Tsukuba-1 polypeptides described herein, or of other naturally occurring Tsukuba-1 polypeptides. Fragments include those expressed in native or endogenous cells, e.g., as a result of post-translational processing, e.g., as the result of the removal of an amino-terminal signal sequence, as well as those made in expression systems, e.g., in CHO cells. A useful polypeptide fragment or polypeptide analog is one

which exhibits a biological activity in any biological assay for Tusukuba-1 polypeptide activity. Most preferably the fragment or analog possesses 10%, preferably 40%, or at least 90% of the activity of Tsukuba-1 polypeptides, in any in vivo or in vitro Tsukuba-1 polypeptide assay.

In order to obtain a such polypeptides, polypeptide-encoding DNA can be introduced into an expression vector, the vector introduced into a cell suitable for expression of the desired protein, and the peptide recovered and purified, by prior art methods. Antibodies to the polypeptides can be made by immunizing an animal, e.g., a rabbit or mouse, and recovering antibodies by prior art methods.

The invention also features a purified nucleic acid. which has least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

In preferred embodiments the nucleic acid is other than the entire retroviral genome of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., it is at least 1 nucleotide longer, or at least 1 nucleotide shorter, or differs in sequence at at least one position. E.g., the nucleic acid is a fragment of the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or it includes sequence additional to that of SEQ ID NO:1, or its complement, SEQ ID NO:2 or its complement.

In preferred embodiments: the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO: 1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by 1, 2, 3, 4, or 5 base pairs; the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO: 1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by at least 1, 2, 3, 4, or 5 base pairs but less than 6, 7, 8, 9, or 10 base pairs.

In other preferred embodiments: the nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length.

Equivalents

5

10

15

20

25

30

35

Those skilled in the art will be able to recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Jay A. Fishman
10	(ii) TITLE OF INVENTION: MOLECULAR SEQUENCE OF SWINE RETROVIRUS AND METHODS OF USE
10	(iii) NUMBER OF SEQUENCES: 74
15	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: LAHIVE & COCKFIELD, LLP (B) STREET: 60 State Street (C) CITY: Boston (D) STATE: Massachusetts (E) COUNTRY: USA
20	(F) ZIP: 02109-1875
	(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible
25	(C) OPERATING SYSTEM: PC-DOS/MS-DOS(D) SOFTWARE: PatentIn Release #1.0, Version #1.25
30	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
30	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/572,645 (B) FILING DATE: 14-DEC-1995</pre>
35	(Viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Louis Myers (B) REGISTRATION NUMBER: 35,965 (C) REFERENCE/DOCKET NUMBER: MGP-038CP
40	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (617)227-7400 (B) TELEFAX: (617)227-5941
45	(2) INFORMATION FOR SEQ ID NO:1:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 8060 base pairs(B) TYPE: nucleic acid
50	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- •	CTCGAGACTC GGTGGAAGGG CCCTTATCTC GTACTTTTGA CCACACCAAC GGCTGTGAAA 60

	GTCGAAGGA	A TCTCCACCTC	G GATCCATGCA	TCCCACGTT	AGCCGGCGC	C ACCTCCCGA	T 120
	TCGGGGTGG	A AAGCCGAAAA	GACTGAAAAI	CCCCTTAAG	TTCGCCTCC	A TCGCGTGGT	T 180
5	CCTTACTCT	G TCAATAACCI	CTCAGACTAA	TGGTATGCGC	CATAGGAGAC	A GCCTGAACT	C 240
	CCATAAACC	TTATCTCTCA	CCTGGTTAAT	TACTGACTCC	GGCACAGGT.	A TTAATATCA	A 300
10	CAACACTCA	A GGGGAGGCTC	CTTTAGGAAC	CTGGTGGCCT	GATCTATAC	G TTTGCCTCA	G 360
. •	ATCAGTTATT	CCTAGTCTGA	CCTCACCCC	AGATATCCTC	CATGCTCAC	G GATTTTATG	T 420
	TTGCCCAGGA	CCACCAAATA	ATGGAAAACA	TTGCGGAAAT	CCCAGAGAT	T TCTTTTGTA	A 480
15	ACAATGGAAC	TGTGTAACCT	CTAATGATGG	ATATTGGAAA	TGGCCAACC	r ctcagcagg	A 540
	TAGGGTAAGT	TTTTCTTATG	TCAACACCTA	TACCAGCTCT	GGACAATTT	ATTACCTGAG	600
20	CTGGATTAGA	ACTGGAAGCC	CCAAGTGCTC	TCCTTCAGAC	CTAGATTAC	TAAAAATAA	660
	TTTCACTGAG	AAAGGAAAAC	AAGAAAATAT	CCTAAAATGG	GTAAATGGTA	TGTCTTGGG	720
	AATGGTATAT	TATGGAGGCT	CGGGTAAACA	ACCAGGCTCC	ATTCTAACTA	TTCGCCTCAP	780
25	AATAAACCAG	CTGGAGCCTC	CAATGGCTAT	AGGACCAAAT	ACGGTCTTGA	CGGGTCAAAG	840
	ACCCCCAACC	CAAGGACCAG	GACCATCCTC	TAACATAACT	TCTGGATCAG	ACCCCACTGA	900
30	GTCTAGCAGC	ACGACTAAAA	TGGGGGCAAA	ACTTTTTAGC	CTCATCCAGG	GAGCTTTTCA	950
	AGCTCTTAAC	TCCACGACTC	CAGAGGCTAC	CTCTTCTTGT	TGGCTATGCT	TAGCTTTGGG	1020
	CCCACCTTAC	TATGAAGGAA	TGGCTAGAAG	AGGGAAATTC	AATGTGACAA	AAGAACATAG	1080
35	AGACCAATGC	ACATGGGGAT	CCCAAAATAA	GCTTACCCTT	ACTGAGGTTT	CTGGAAAAGG	1140
	CACCTGCATA	GGAAAGGTTC	CCCCATCCCA	CCAACACCTT	TGTAACCACA	CTGAAGCCTT	1200
40	TAATCAAACC	TCTGAAAGTC	AATATCTGGT	ACCTGGTTAT	GACAGGTGGT	GGGCATGTAA	1260
	TACTGGATTA	ACCCCTTGTG	TTTCCACCTT	GGTTTTTAAC	CAAACTAAAG	ATTTTTGCAT	1320
	TATGGTCCAA	ATTGTTCCCC	GAGTGTATTA	CTATCCCGAA	AAAGCAATCC	TTGATGAATA	1380
45	TGACTACAGA	AATCATCGAC	AAAAGAGAGA	ACCCATATCT	CTGACACTTG	CTGTGATGCT	1440
	CGGACTTGGA	GTGGCAGCAG	GTGTAGGAAC .	AGGAACAGCT	GCCCTGGTCA	CGGGACCACA	1500
50	GCAGCTAGAA	ACAGGACTTA	GTAACCTACA	TCGAATTGTA	ACAGAAGATC	TCCAAGCCCT	1560
	AGAAAAATCT	GTCAGTAACC	TGGAGGAATC (CCTAACCTCC	TTATCTGAAC	TAGTCCTACA	1620
	GAATAGAAGA	GGGTTAGATT	TATTATTTCT A	AAAAGAAGGA	GGATTATGTG	TAGCCTTGAA	1680
55	GGAGGAATGC	TGTTTTTATG	TGGATCATTC /	AGGGGCCATC	AGAGACTCCA	TGAACAAACT	1740
	TAGAGAAAGG	TTGGAGAAGC (GTCGAAGGGA A	AAAGG AAA CT	ACTCAAGGGT	GGTTTGAGGG	1800

	ATGGTTCAAC	AGGTCTCCTT	GGTTGGCTAC	CCTACTTTCT	GCTTTAACAG	GACCCTTAAT	1860
5	AGTCCTCCTC	CTGTTACTCA	CAGTTGGGCC	ATGTATTATT	AACAAGTTAA	TTGCCTTCAT	1920
J	TAGAGAACGA	ATAAGTGCAG	TCCAGATCAT	GGTACTTAGA	CAACAGTACC	AAAGCCCGTC	1980
	TAGCAGGGAA	GCTGGCCGCT	AGCTCTACCA	GTTCTAAGAT	TAGAACTATT	AACAAGAGAA	2040
10	GAAGTGGGGA	ATGAAAGGAT	GAAAATACAA	CCTAAGCTAA	TGAGAAGCTT	AAAATTGTTC	2100
	TGAATTCCAG	AGTTTGTTCC	TTATAGGTAA	AAGATTAGGT	TTTTTGCTGT	TATAAAATAT	2160
15	GCGGAAGTAA	AATAGGCCCT	GAGTACATGT	CTCTAGGCAT	GAAACTTCTT	GAAACTATTT	2220
13	GAGATAACAA	GAAAAGGGAG	TTTCTAACTG	CTTGTTTAGC	TTCTGTAAAA	CTGGTTGCGC	2280
	CATAAAGATG	TTGAAATGTT	GATACACATA	TCTTGGTGAC	AACATGTCTC	CCCCACCCCG	2340
20	AAACATGCGC	AAATGTGTAA	CTCTAAAACA	ATTTAAATTA	ATTGGTCCAC	GAAGCGCGGG	2400
	CTCTCGAAGT	TTTAAATTGA	CTGGTTTGTG	ATATTTTGAA	ATGATTGGTT	TGTAAAGCGC	2460
25 ·	GGGCTTTGCT	GTGAACCCCA	TAAAAGCTGT	CCCGACTCCA	CACTCGGGGC	CGCAGTCCTC	2520
23	TACCCCTGCG	TGGTGTACGA	CTGTGGGCCC	CAGCGCGCTT	GGAATAAAAA	TCCTCTTGCT	2580
	GTTTGCATCA	AGACCGCTTC	TCGTGAGTGA	TTAAGGGGAG	TCGCCTTTTC	CGAGCCTGGA	2640
30	GGTTCTTTTT	GCTGGTCTTA	CATTTGGGGG	CTCGTCCGGG	ATCTGTCGCG	GCCACCCCTA	2700
	ACACCCGAGA	ACCGACTTGG	AGGTAAAAAG	GATCCTCTTT	TTAACGTGTA	TGCATGTACC	2760
35	GGCCGGCGTC	TCTGTTCTGA	GTGTCTGTTT	TCAGTGGTGC	GCGCTTTCGG	TTTGCAGCTG	2820
	TCCTCTCAGG	CCGTAAGGGC	TGGGGGACTG	TGATCAGCAG	ACGTGCTAGG	AGGATCACAG	2880
	GCTGCTGCCC	TGGGGGACGC	CCCGGGAGGT	GAGGAGAGCC	AGGGACGCCT	GGTGGTCTCC	2940
40	TACTGTCGGT	CAGAGGACCG	AATTCTGTTG	CTGAAGCGAA	AGCTTCCCCC	TCCGCGACCG	3000
	TCCGACTCTT	TTGCCTGCTT	GTGGAATACG	TGGACGGGTC	ACGTGTGTCT	GGATCTGTTG	3060
45	GTTTCTGTTT	TGTGTGTCTT	TGTCTTGTGT	GTCCTTGTCT	ACAGTTTTAA	TATGGGACAG	3120
	ACGGTGACGA	CCCCTCTTAG	TTTGACTCTC	GACCATTGGA	CTGAAGTTAA	ATCCAGGGCT	3180
	CATAATTTGT	CAGTTCAGGT	TAAGAAGGGA	CCTTGGCAGA	CTTTCTGTGT	CTCTGAATGG	3240
50	CCGACATTCG	ATGTTGGATG	GCCATCAGAG	GGGACCTTTA	ATTCTGAGAT	TATCCTGGCT	3300
	GTTAAAGCAA	TTATTTTCA	GACTGGACCC	GGCTCTCATC	CCGATCAGGA	GCCCTATATC	3360
55	CTTACGTGGC	AAGATTTGGC	AGAGGATCCT	CCGCCATGGG	TTAAACCATG	GCTGAATAAG	3420
J J	CCAAGAAAGC	CAGGTCCCCG	AATTCTGGCT	CTTGGAGAGA	AAAACAAACA	CTCGGCTGAA	3480

	111CEC110C	aamamaama.	mamama 0000	CNCNTTGAGG	AACCACCGGC	TTGGCCGGAA	3540
					CCGCGAGGGG		
5	CCTCCTGGAG	CTCCGGCGGT	GGAGGGACCT	TCTGCAGGGA	CTCGGAGCCG	GAGGGGCGCC	3660
	ACCCCGGAGC	GGACAGACGA	GATCGCGACA	TTACCGCTGC	GCACGTACGG	CCCTCCCACA	3720
10	CCGGGGGGCC	AATTGCAGCC	CCTCCAGTAT	TGGCCCTTTT	CTTCTGCAGA	TCTCTATAAT	3780
	TGGAAAACTA	ACCATCCCCC	TTTCTCGGAG	GATCCCCAAC	GCCTCACGGG	GTTGGTGGAG	3840
	TCCCTTATGT	TCTCTCACCA	GCCTACTTGG	GATGATTGTC	AACAGCTGCT	GCAGACACTC	3900
15	TTCACAACCG	AGGAGCGAGA	GAGAATTCTA	TTAGAGGCTA	GAAAAATGT	TCCTGGGGCC	3960
	GACGGGCGAC	CCACGCGGTT	GCAAAATGAG	ATTGACATGG	GATTTCCCTT	AACTCGCCCC	4020
20	GGTTGGGACT	ACAACACGGC	TGAAGGTAGG	GAGAGCTTGA	AAATCTATCG	CCAGGCTCTG	4080
20	GTGGCGGGTC	TCCGGGGCGC	CTCAAGACGG	CCCACTAATT	TGGCTAAGGT	AAGAGAAGTG	4140
	ATGCAGGGAC	CGAATGAACC	CCCCTCTGTT	TTTCTTGAGA	GGCTCTTGGA	AGCCTTCAGG	4200
25	CGGTACACCC	CTTTTGATCC	CACCTCAGAG	GCCCAAAAAG	CCTCAGTGGC	TTTGGCCTTT	4260
	ATAGGACAGT	CAGCCTTGGA	TATTAGAAAG	AAGCTTCAGA	GACTGGAAGG	GTTACAGGAG	4320
30	GCTGAGTTAC	GTGATCTAGT	GAAGGAGGCA	GAGAAAGTAT	ATTACAAAAG	GGAGACAGAA	4380
30	GAAGAAAGGG	AACAAAGAAA	AGAGAGAGAA	AGAGAGGAAA	GGGAGGAAAG	ACGTAATAAA	4440
	CGGCAAGAGA	AGAATTTGAC	TAAGATCTTG	GCTGCAGTGG	TTGAAGGGAA	AAGCAATACG	4500
35	GAAAGAGAGA	GAGATTTTAG	GAAAATTAGG	TCAGGCCCTA	GACAGTCAGG	GAACCTGGGC	4560
	AATAGGACCC	CACTCGACAA	GGACCAATGT	GCATATTGTA	AAGAAAGAGG	ACACTGGGCA	4620
40	AGGAACTGCC	CCAAGAAGGG	AAACAAAGGA	CCAAGGATCC	TAGCTCTAGA	AGAAGATAAA	4680
10	GATTAGGGGA	GACGGGGTTC	GGACCCCCTC	CCCGAGCCCA	GGGTAACTTT	GAAGGTGGAG	4740
	GGGCAACCAG	TTGAGTTCCT	GGTTGATACC	GGAGCGAAAC	ATTCAGTGCT	ACTACAGCCA	4800
45	TTAGGAAAAC	TAAAAGATAA	AAAATCCTGG	GTGATGGGTG	CACAGGGCAA	CAACAGTATC	4860
	CATGGACTAC	CCGAAGACAG	TTGACTTGGG	AGTGGGACGG	GTAACCCACT	CGTTTCTGGT	4920
50	CATACCTGAG	TGCCCAGCAC	CCCTCTTAGG	TAGAGACTTA	TTGACCAAGA	TGGGAGCACA	4980
50	AATTTCTTTT	GAACAAGGGA	AACCAGAAGT	GTCTGCAAAT	AACAAACCTA	TCACTGTGTT	5040
	GACCCTCCAA	TTAGATGACG	AATATCGACT	ATACTCTCCC	CTAGTAAAGC	CTGATCAAAA	5100
55	TATACAATTC	TCGTTGGAAC	AGTTTCCCCA	AGCCTGGGCA	GAAACCGCAG	GGATGGGTTT	5160
	GGCAAAGCAA	GTTCCCCCAC	AAGTTATTCA	ACTGAAGGCC	AGTGCCACAC	CAGTGTCAGT	5220

	CAGACAGTAC	CCCTTGAGTA	AAGAAGCTCA	AGAAGGAATT	CGGCCGCATG	TCCAAAGATT	5280
5	AATCCAACAG	GGCATCCTAG	TTCCTGTCCA	ATCTCCCTGG	AATACTCCCC	TGCTACCGGT	5340
	TAGAAAGCCT	GGGACTAATG	ACTATCGACC	AGTACAGGAC	TTGAGAGAGG	TCAATAAACG	5400
	GGTGCAGGAT	ATACACCCAA	CAGTCCCGAA	CCCTTATAAC	CTCTTGTGTG	CTCTCCCACC	5460
10	CCAACGGAGC	TGGTATACAG	TATTGGACTT	AAAGGATGCC	TTCTTCTGCC	TGAGATTACA	5520
	CCCCACTAGC	CAACCACTTT	TTGCCTTCGA	ATGGAGAGAT	CCAGGTACGG	GAAGAACCGG	5580
15	GCAGCTCACC	TGGACCCGAC	TGCCCCAAGG	GTTCAAGAAC	TCCCCGACCA	TCTTTGACGA	5640
• 5	AGCCCTACAC	AGAGACCTGG	CCAACTTCAG	GATCCAACAC	CCTCAGGTGA	CCCTCCTCCA	5700
	GTACGTGGAT	GACCTGCTTC	TGGCGGGAGC	CACCAAACAG	GACTGCTTAG	AAGGCACGAA	5760
20	GGCACTACTG	CTGGAATTGT	CTGACCTAGG	CTACAGAGCC	TCTGCTAAGA	AGGCCCAGAT	5820
	TTGCAGGAGA	GAGGTAACAT	ACTTGGGGTA	CAGTTTACGG	GACGGGCAGC	GATGGCTGAC	5880
25	GGAGGCACGG	AAGAAAACTG	TAGTCCAGAT	ACCGGCCCCA	ACCACAGCCA	AACAAATGAG	5940
	AGAGTTTTTG	GGGACAGCTG	GATTTTGCAG	ACTGTGGATC	CCGGGGTTTG	CGACCTTAGC	6000
	AGCCCCACTC	TACCCGCTAA	CCAAAGAAAA	AGGGGAATTC	TCCTGGGCTC	CTGAGCACCA	6060
30	GAAGGCATTT	GATGCTATCA	AAAAGGCCCT	GCTGAGCGCA	CCTGCTCTGG	CCCTCCCTGA	6120
	CGTAACTAAA	CCCTTTACCC	TTTATGTGGA	TGAGCGTAAG	GGAGTAGCCC	GGGGAGTTTT	6180
3.5	AACCCAAACC	CTAGGACCAT	GGAGAAGACC	TGTCGCCTAC	CTGTCAAAGA	AGCTCGATCC	6240
	TGTAGCCAGT	GGTTGGCCCA	TATGCCTGAA	GGCTATCGCA	GCTGTGGCCA	TACTGGTCAA	6300
	GGACGCTGAC	AAATTGACTT	TGGGACAAGA	ATATAACTGT	AATAGCCCCC	CATGCATTGG	6360
10	AGAACATCGT	TCGGCAGCCC	CCAGACCGAT	GGATGACCAA	CGCCCGCATG	ACCCACTATC	6420
	AAAGCCTGCT	TCTCACAGAG	AGGGTCACGT	TCGCTCCACC	AACCGCTCTC	AACCCTGCCA	6480
15	CTCTTCTGCC	TGAAGAGACT	GATGAACCAG	TGACTCATGA	TTGCCATCAA	CTATTGATTG	6540
	AGGAGACTGG	GGTCCGCAAG	GACCTTACAG	ACATACCGCT	GACTGGAGAA	GTGCTAACCT	6600
	GGTTCACTGA	CGGAAGCAGC	TATGTGGTGG	AAGGTAAGAG	GATGGCTGGG	GCGGCGGTGG	6660
50	TGGACGGGAC	CCGCACGATC	TGGGCCAGCA	GCCTGCCGGG	AGGAACTTCA	GCACAAAAGG	6720
	CTGAGCTCAT	GGCCCTCACG	CAAGCTTTGC	GGCTGGCCGA	AGGGAAATCC	ATAAACATTT	6780
55	ATACGGACAG	CAGGTATGCC	TTTGCGACTG	CACACGTACA	TGGGGCCATC	TATAAACAAA	6840
; J	GGGGGTTGCT	TACCTCAGCA	GGGAGGGAAA	TAAAGAACAA	AGAGGAAATT	CTAAGCCTAT	6900

	TAGAAGCCGT	ACATTTACCA	AAAAGGCTAG	CTATTATACA	CTGTCCTGGA	CATCAGAAAG	6960
	CTAAAGATCT	CATATCCAGA	GGAAACCAGA	TGGCTGACCG	GGTTGCCAAG	CAGGCAGCCC	7020
5	AGGGTGTTAA	CCTTCTGCCT	ATAATAGAAA	TGCCCAAAGC	CCCAGAACCC	AGACGACAGT	7080
	ACACCCTAGA	AGACTGGCAA	GAGATAAAAA	AGATAGACCA	TTCTCTGAGA	CTCCGGAAGG	7140
1.0	GACCTGCTAT	ACCTCAGATG	GGAAGGAAAT	CCTGCCCCAC	AAAGAAGGGT	TAGAATATGT	7200
10	CCAACAAGAT	ACATCGTCTA	ACCCACCTAG	GAACTAAACA	CCTGCAGCAG	TTGGTCAGAA	7260
	CATCCCCTTA	TCATGTTCTG	AGGCTACCAG	GAGTGGCTGA	CTCGGTGGTC	AAACATTGTG	7320
15	TGCCCTGCCA	GCTGGTTAAT	GCTAATCCTT	CCAGAATGCC	TCCAGGGAAG	AGACTAAGGG	7380
	GAAGCCACCC	AGGCGCTCAC	TGGGAAGTGG	ACTTCACTGA	GGTAAAGCCG	GCTAAATATG	7440
20	GAAACAAATA	CCTATTGGTT	TTTGTAGACA	CCTTTTCAGG	ATGGGTAGAG	GCTTATCCTA	7500
20	CTAAGAAAGA	GACTTCAACC	GTGGTAGCTA	AAAAAATACT	GGAAGAAATT	TTTCCAAGAT	7560
	TTGGAATACC	TAAGGTAATA	GGGTCAGACA	ATGGTCCAGC	TTTTGTTGCC	CAGGTAAGTC	7620
25	AGGGACTGGC	CAAGATATTG	GGGATTGATT	GGAAACTGCA	TTGTGCATAC	AGACCCCAAA	7680
	GCTCAGGACA	GGTAGAGAGG	ATGAATAGAA	CCATTAAAGA	GACCCTTACT	AAATTGACCG	7740
30	CGGAGACTGG	CGTTAATGAT	TGGATAGCTC	TCCTGCCCTT	TGTGCTTTTT	AGGGTTAGGA	7800
30	ACACCCCTGG	ACAGTTTGGG	CTGACCCCCT	ATGAATTACT	CTACGGGGGA	CCCCCCCAT	7860
	TGGTAGAAAT	TGCTTCTGTA	CATAGTGCTG	ATGTGCTGCT	TTCCCAGCCT	TTGTTCTCTA	7920
35	GGCTCAAGGC	ACTTGAGTGG	GTGAGACAAC	GAGCGTGGAG	GCAACTCCGG	GAGGCCTACT	7980
	CAGGAGGAGG	AGACTTGCAG	ATCCCACATC	GTTTCCAAGT	GGGAGATTCA	GTCTACGTTA	8040
40	GACGCCACCG	TGCAGGAAAC					8060
40							

(2) INFORMATION FOR SEQ ID NO:2:

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7333 base pairs

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CTACCCCTGC GTGGTGTACG ACTGTGGGCC CCAGCGCGCT TGGAATAAAA ATCCTCTTGC 60

55 TGTTTGCATC AAGACCGCTT CTTGTGAGTG ATTTGGGGTG TCGCCTCTTC CGAGCCCGGA 120

CGAGGGGGAT TGTTCTTTTA CTGGCCTTTC ATTTGGTGCG TTGGCCGGGA AATCCTGCGA 180

	CCACCCCTTA CACCCGAGAA CCGACTTGGA GGTAAAGGGA TCCCCTTTGG AACATATGTG 240
5	TGTGTCGGCC GGCGTCTCTG TTCTGAGTGT CTGTTTTCGG TGATGCGCGC TTTCGGTTTG 300
	CAGCTGTCCT CTCAGACCGT AAGGACTGGA GGACTGTGAT CAGCAGACGT GCTAGGAGGA 360
	TCACAGGCTG CCACCCTGGG GGACGCCCCG GGAGGTGGGG AGAGCCAGGG ACGCCTGGTG 420
10	GTCTCCTACT GTCGGTCAGA GGACCGAGTT CTGTTGTTGA AGCGAAAGCT TCCCCCTCCG 480
	CGGCCGTCCG ACTCTTTTGC CTGCTTGTGG AAGACGCGGA CGGGTCGCGT GTGTCTGGAT 540
15	CTGTTGGTTT CTGTTCGTG TGTCTTTGTC TTGTGCGTCC TTGTCTACAG TTTTAATATG 600
	GGACAGACAG TGACTACCCC CCTTAGTTTG ACTCTCGACC ATTGGACTGA AGTTAGATCC 660
	AGGGCTCATA ATTTGTCAGT TCAGGTTAAG AAGGGACCTT GGCAGACTTT CTGTGCCTCT 720
20	GAATGGCCAA CATTCGATGT TGGATGGCCA TCAGAGGGGA CCTTTAATTC TGAAATTATC 780
	CTGGCTGTTA AGGCAATCAT TTTTCAGACT GGACCCGGCT CTCATCCTGA TCAGGAGCCC 840
25	TATATCCTTA CGTGGCAAGA TTTGGCAGAA GATCCTCCGC CATGGGTTAA ACCATGGCTA 900
	AATAAACCAA GAAAGCCAGG TCCCCGAATC CTGGCTCTTG GAGAGAAAAA CAAACACTCG 960
	GCCGAAAAAG TCGAGCCCTC TCCTCGTATC TACCCCGAGA TCGAGGAGCC GCCGACTTGG 1020
30	CCGGAACCCC AACCTGTTCC CCCACCCCCT TATCCAGCAC AGGGTGCTGT GAGGGGACCC 1080
	TCTGCCCCTC CTGGAGCTCC GGTGGTGGAG GGACCTGCTG CCGGGACTCG GAGCCGGAGA 1140
35	GGCGCCACCC CGGAGCGGAC AGACGAGATC GCGATATTAC CGCTGCGCAC CTATGGCCCT 1200
	CCCATGCCAG GGGGCCAATT GCAGCCCCTC CAGTATTGGC CCTTTTCTTC TGCAGATCTC 1260
	TATAATTGGA AAACTAACCA TCCCCCTTTC TCGGAGGATC CCCAACGCCT CACGGGGTTG 1320
40	GTGGAGTCCC TTATGTTCTC TCACCAGCCT ACTTGGGATG ATTGTCAACA GCTGCTGCAG 1380
	ACACTCTTCA CAACCGAGGA GCGAGAGAGA ATTCTGTTAG AGGCTAAAAA AAATGTTCCT 1440
45	GGGGCCGACG GGCGACCCAC GCAGTTGCAA AATGAGATTG ACATGGGATT TCCCTTGACT 1500
	CGCCCCGGTT GGGACTACAA CACGGCTGAA GGTAGGGAGA GCTTGAAAAT CTATCGCCAG 1560
	GCTCTGGTGG CGGGTCTCCG GGGCGCCTCA AGACGGCCCA CTAATTTGGC TAAGGTAAGA 1620
50	GAGGTGATGC AGGGACCGAA CGAACCTCCC TCGGTATTTC TTGAGAGGCT CATGGAAGCC 1680
	TTCAGGCGGT TCACCCCTTT TGATCCTACC TCAGAGGCCC AGAAAGCCTC AGTGGCCCTG 1740
55	GCCTTCATTG GGCAGTCGGC TCTGGATATC AGGAAGAAC TTCAGAGACT GGAAGGGTTA 1800
	CAGGAGGCTG AGTTACGTGA TCTAGTGAGA GAGGCAGAGA AGGTGTATTA CAGAAGGGAG 1860

	ACAGAAGAGG	AGAAGGAACA	GAGAAAAGAA	AAGGAGAGAG	AAGAAAGGGA	GGAAAGACGT	1920
	GATAGACGGC	AAGAGAAGAA	TTTGACTAAG	ATCTTGGCCG	CAGTGGTTGA	AGGGAAGAGC	1980
5	AGCAGGGAGA	GAGAGAGA	TTTTAGGAAA	ATTAGGTCAG	GCCCTAGACA	GTCAGGGAAC	2040
	CTGGGCAATA	GGACCCCACT	CGACAAGGAC	CAGTGTGCGT	ATTGTAAAGA	AAAAGGACAC	2100
1/)	TGGGCAAGGA	ACTGCCCCAA	GAAGGGAAAC	AAAGGACCGA	AGGTCCTAGC	TCTAGAAGAA	2160
10	GATAAAGATT	AGGGGAGACG	GGGTTCGGAC	CCCCTCCCCG	AGCCCAGGGT	AACTTTGAAG	2220
	GTGGAGGGC	AACCAGTTGA	GTTCCTGGTT	GATACCGGAG	CGGAGCATTC	AGTGCTGCTA	2280
15	CAACCATTAG	GAAAACTAAA	AGAAAAAAA	TCCTGGGTGA	TGGGTGCCAC	AGGGCAACGG	2340
	CAGTATCCAT	GGACTACCCG	AAGAACCGTT	GACTTGGGAG	TGGGACGGGT	AACCCACTCG	2400
20	TTTCTGGTCA	TCCCTGAGTG	CCCAGTACCC	CTTCTAGGTA	GAGACTTACT	GACCAAGATG	2460
20	GGAGCTCAAA	TTTCTTTTGA	ACAAGGAAGA	CCAGAAGTGT	CTGTGAATAA	CAAACCCATC	2520
	ACTGTGTTGA	CCCTCCAATT	AGATGATGAA	TATCGACTAT	ATTCTCCCCA	AGTAAAGCCT	2580
25	GATCAAGATA	TACAGTCCTG	GTTGGAGCAG	TTTCCCCAAG	CCTGGGCAGA	AACCGCAGGG	2640
	ATGGGTTTGG	CAAAGCAAGT	TCCCCCACAG	GTTATTCAAC	TGAAGGCCAG	TGCTACACCA	2700
30	GTATCAGTCA	GACAGTACCC	CTTGAGTAGA	GAGGCTCGAG	AAGGAATTTG	GCCGCATGTT	2760
	CAAAGATTAA	TCCAACAGGG	CATCCTAGTT	CCTGTCCAAT	CCCCTTGGAA	TACTCCCCTG	2820
	CTACCGGTTA	GGAAGCCTGG	GACCAATGAT	TATCGACCAG	TACAGGACTT	GAGAGAGGTC	2880
35	AATAAAAGGG	TGCAGGACAT	ACACCCAACG	GTCCCGAACC	CTTATAACCT	CTTGAGCGCC	2940
	CTCCCGCCTG	AACGGAACTG	GTACACAGTA	TTGGACTTAA	AAGATGCCTT	CTTCTGCCTG	3000
40	AGATTACACC	CCACTAGCCA	ACCACTTTTT	ACCTTCGAAT	GGAGAGATCC	AGGTACGGGA	3060
	AGAACCGGGC	AGCTCACCTG	GACCCGACTG	CCCCAAGGGT	TCAAGAACTC	CCCGACCATC	3120
	TTTGACGAAG	CCCTACACAG	GGACCTGGCC	AACTTCAGGA	TCCAACACCC	TCAGGTGACC	3180
45	CTCCTCCAGT	ACGTGGATGA	CCTGCTTCTG	GCGGGAGCCA	CCAAACAGGA	CTGCTTAGAA	3240
	GGTACGAAGG	CACTACTGCT	GGAATTGTCT	GACCTAGGCT	ACAGAGCCTC	TGCTAAGAAG	3300
50	GCCCAGATTT	GCAGGAGAGA	GGTAACATAC	TTGGGGTACA	GTTTGCGGGG	CGGGCAGCGA	3360
	TGGCTGACGG	AGGCACGGAA	GAAAACTGTA	GTCCAGATAC	CGGCCCCAAC	CACAGCCAAA	3420
	CAAGTGAGAG	AGTTTTTGGG	GACAGCTGGA	TTTTGCAGAC	TGTGGATCCC	GGGGTTTGCG	3480
55	ACCTTAGCAG	CCCCACTCTA	CCCGCTAACC	AAAGAAAAAG	GGGGTTGCTT	ACCTCAGCAG	3540
	GGAGGGAAAT	AAAGAACAAA	GAGGAAATTC	TAAGCCTATT	AGAAGCCTTA	CATTTGCCAA	3600 .

	AAAGGCTAGC	TATTATACAC	TGTCCTGGAC	ATCAGAAAGC	CAAAGATCTC	ATATCTAGAG	3660
5	GGAACCAGAT	GGCTGACCGG	GTTGCCAAGC	AGGCAGCCCA	GGCTGTTAAC	CTTCTGCCTA	3720
J	TAATAGAAAC	GCCCAAAGCC	CCAGAACCCA	GACGACAGTA	CACCCTAGAA	GACTGGCAAG	3780
	AGATAAAAAA	GATAGACCAG	TTCTCTGAGA	CTCCGGAGGG	GACCTGCTAT	ACCTCATATG	3840
10	GGAAGGAAAT	CCTGCCCCAC	AAAGAAGGGT	TAGAATATGT	CCAACAGATA	CATCGTCTAA	3900
	CCCACCTAGG	AACTAAACAC	CTGCAGCAGT	TGGTCAGAAC	ATCCCCTTAT	CATGTTCTGA	3960
15	GGCTACCAGG	AGTGGCTGAC	TCGGTGGTCA	AACATTGTGT	GCCCTGCCAG	CTGGTTAATG	4020
13	CTAATCCTTC	CAGAATACCT	CCAGGAAAGA	GACTAAGGGG	AAGCCACCCA	GGCGCTCACT	4080
	GGGAAGTGGA	CTTCACTGAG	GTAAAGCCGG	CTAAATACGG	AAACAAATAT	CTATTGGTTT	4140
20	TTGTAGACAC	CTTTTCAGGA	TGGGTAGAGG	CTTATCCTAC	TAAAAAAGAG	ACTTCAACCG	4200
	TGGTGGCTAA	GAAAATACTG	GAGGAAATTT	TTCCAAGATT	TGGAATACCT	AAGGTAATAG	4250
25	GGTCAGACAA	TGGTCCAGCT	TTCGTTGCCC	AGGTAAGTCA	GGGACTGGCC	AAGATATTGG	4320
23	GGATTGATTG	AAAACTGCAT	TGTGCATACA	GACCCCAAAG	CTCAGGACAG	GTAGAGAGGA	4380
	TGAATAGAAC	CATTAAAGAG	ACCCTTACCA	AATTGACCAC	AGAGACTGGC	ATTAATGATT	4440
30	GGATGGCTCT	CCTGCCCTTT	GTGCTTTTTA	GGGTGAGGAA	CACCCCTGGA	CAGTTTGGGC	4500
	TGACCCCCTA	TAAATTGCTC	TACGGGGGAC	CCCCCCGTT	GGCAGAAATT	GCCTTTGCAC	4560
35	ATAGTGCTGA	TGTGCTGCTT	TCCCAGCCTT	TGTTCTCTAG	GCTCAAGGCG	CTCGAGTGGG	4620
J.J	TGAGGCAGCG	AGCGTGGAAG	CAGCTCCGGG	AGGCCTACTC	AGGAGGAGAC	TTGCAAGTTC	4680
	CACATCGCTT	CCAAGTTGGA	GATTCAGTCT	ATGTTAGACG	CCACCGTGCA	GGAAACCTCG	4740
40	AGACTCGGTA	GAAGGGACCT	TATCTCGTAC	TTTTGACCAC	ACCAACGGCT	GTGAAAGTCG	4800
	AAGGAATCCC	CTTAAGCTTC	GCCTCCATCG	CGTGGTTCCT	TACTCTGTCA	ATAACTCCTC	4860
45	AAGTTAATGG	TAAACGCCTT	GTGGACAGCC	CGAACTCCCA	TAAACCCTTA	TCTCTCACCT	4920
,,,	GGTTACTTAC	TGACTCCGGT	ACAGGTATTA	ATATTAACAG	CACTCAAGGG	GAGGCTCCCT	4980
	TGGGGACCTG	GTGGCCTGAA	TTATATGTCT	GCCTTCGATC	AGTAATCCCT	GGTCTCAATG	5040
50	ACCAGGCCAC	ACCCCCGAT	GTACTCCGTG	CTTACGGGTT	TTACGTTTGC	CCAGGACCCC	5100
	CAAATAATGA	AGAATATTGT	GGAAATCCTC	AGGATTTCTT	TTGCAAGCAA	TGGAGCTGCA	5160
55	TAACTTCTAA	TGATGGGAAT	TGGAAATGGC	CAGTCTCTCA	GCAAGACAGA	GTAAGTTACT	5220
,,	CTTTTGTTAA	CAATCCTACC	AGTTATAATC	AATTTAATTA	TGGCCATGGG	AGATGGAAAG	5280

	ATTGGCAACA	GCGGGTACAA	AAAGATGTAC	GAAATAAGCA	AATAAGCTGT	CATTCGTTAG	5340
	ACCTAGATTA	СТТАААААТА	AGTTTCACTG	AAAAAGGAAA	ACAAGAAAAT	ATTCAAAAGT	5400
5	GGGTAAATGG	TATATCTTGG	GGAATAGTGT	ACTATGGAGG	CTCTGGGAGA	AAGAAAGGAT	546C
	CTGTTCTGAC	TATTCGCCTC	AGAATAGAAA	CTCAGATGGA	ACCTCCGGTT	GCTATAGGAC	5520
1.0	CAAATAAGGG	TTTGGCCGAA	CAAGGACCTC	CAATCCAAGA	ACAGAGGCCA	TCTCCTAACC	5580
10	CCTCTGATTA	CAATACAACC	TCTGGATCAG	TCCCCACTGA	GCCTAACATC	ACTATTAAAA	5640
	CAGGGGCGAA	ACTTTTTAGC	CTCATCCAGG	GAGCTTTTCA	AGCTCTTAAC	TCCACGACTC	5700
15	CAGAGGCTAC	СТСТТСТТСТ	TGGCTTTGCT	TAGCTTCGGG	CCCACCTTAC	TATGAGGGAA	5760
	TGGCTAGAGG	AGGGAAATTC	AATGTGACAA	AGGAACATAG	AGACCAATGT	ACATGGGGAT	5820
20	СССААААТАА	GCTTACCCTT	ACTGAGGTTT	CTGGAAAAGG	CACCTGCATA	GGGATGGTTC	5880
	CCCCATCCCA	CCAACACCTT	TGTAACCACA	CTGAAGCCTT	TAATCGAACC	TCTGAGAGTC	5940
	AATATCTGGT	ACCTGGTTAT	GACAGGTGGT	GGGCATGTAA	TACTGGATTA	ACCCCTTGTG	6000
25	TTTCCACCTT	GGTTTTCAAC	CAAACTAAAG	ACTTTTGCGT	TATGGTCCAA	ATTGTCCCCC	6060
	GGGTGTACTA	CTATCCCGAA	AAAGCAGTCC	TTGATGAATA	TGACTATAGA	TATAATCGGC	6120
3.0	CAAAAAGAGA	GCCCATATCC	CTGACACTAG	CTGTAATGCT	CGGATTGGGA	GTGGCTGCAG	6180
30	GCGTGGGAAC	AGGAACGGCT	GCCCTAATCA	CAGGACCGCA	ACAGCTGGAG	AAAGGACTTA	6240
	GTAACCTACA	TCGAATTGTA	ACGGAAGATC	TCCAAGCCCT	AGAAAAATCT	GTCAGTAACC	6300
35	TGGAGGAATC	CCTAACCTCC	TTATCTGAAG	TGGTTCTACA	GAACAGAAGG	GGGTTAGATC	6360
	TGTTATTTCT	AAAAGAAGGA	GGGTTATGTG	TAGCCTTAAA	AGAGGAATGC	TGCTTCTATG	6420
40	TAGATCACTC	AGGAGCCATC	AGAGACTCCA	TGAGCAAGCT	TAGAGAAAGG	TTAGAGAGGC	6480
40	GTCGAAGGGA	AAGAGAGGCT	GACCAGGGGT	GGTTTGAAGG	ATGGTTCAAC	AGGTCTCCTT	6540
	GGATGACCAC	CCTGCTTTCT	GCTCTGACGG	GGCCCCTAGT	AGTCCTGCTC	CTGTTACTTA	6600
45	CAGTTGGGCC	TTGCTTAATT	AATAGGTTTG	TTGCCTTTGT	TAGAGAACGA	GTGAGTGCAG	6660
	TCCAGATCAT	GGTACTTAGG	CAACAGTACC	AAGGCCTTCT	GAGCCAAGGA	GAAACTGACC	6720
50	TCTAGCCTTC	CCAGTTCTAA	GATTAGAACT	ATTAACAAGA	CAAGAAGTGG	GGAATGAAAG	6780
30	GATGAAAATG	CAACCTAACC	CTCCCAGAAC	CCAGGAAGTT	AATAAAAGC	TCTAAATGCC	6840
	CCCGAATTCC	AGACCCTGCT	GGCTGCCAGT	AAATAGGTAG	AAGGTCACAC	TTCCTATTGT	6900
55	TCCAGGGCCT	GCTATCCTGG	CCTAAGTAAG	ATAACAGGAA	ATGAGTTGAC	TAATCGCTTA	6960
	TCTGGATTCT	GTAAAACTGA	CTGGCACCAT	AGAAGAATTG	ATTACACATT	GACAGCCCTA	7020

	GTGACCTATC	TCAACTGCAA	TCTGTCACTC	TGCCCAGGAG	CCCACGCAGA	TGCGGACCTC	7080
5	CGGAGCTATT	TTAAAATGAT	TGGTCCACGG	AGCGCGGGCT	CTCGATATTT	TAAAATGATT	7140
J	GGTCCATGGA	GCGCGGGCTC	TCGATATTTT	AAAATGATTG	GTTTGTGACG	CACAGGCTTT	7200
	GTTGTGAACC	CCATAAAAGC	TGTCCCGATT	CCGCACTCGG	GGCCGCAGTC	CTCTACCCCT	7260
10	GCGTGGTGTA	CGACTGTGGG	CCCCAGCGCG	CTTGGAATAA	AAATCCTCTT	GCTGTTTGCA	7320
	тсаааааааа	AAA					7333

(2) INFORMATION FOR SEQ ID NO:3:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8132 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 20 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

30	GCGTGGTGTA	CGACTGTGGG	CCCCAGCGCG	CTTGGAATAA	AAATCCTCTT	GCTGTTTGCA	60
50	TCAAGACCGC	TTCTCGTGAG	TGATTAAGGG	GAGTCGCCTT	TTCCGAGCCT	GGAGGTTCTT	120
	TTTGCTGGTC	TTACATTTGG	GGGCTCGTCC	GGGATCTGTC	GCGGCCACCC	CTAACACCCG	180
35	AGAACCGACT	TGGAGGTAAA	AAGGATCCTC	TTTTTAACGT	GTATGCATGT	ACCGGCCGGC	240
40	GTCTCTGTTC	TGAGTGTCTG	TTTTCAGTGG	TGCGCGCTTT	CGGTTTGCAG	CTGTCCTCTC	300
	AGGCCGTAAG	GGCTGGGGGA	CTGTGATCAG	CAGACGTGCT	AGGAGGATCA	CAGGCTGCTG	360
40	CCCTGGGGGA	CGCCCCGGGA	GGTGAGGAGA	GCCAGGGACG	CCTGGTGGTC	TCCTACTGTC	420
	GGTCAGAGGA	CCGAATTCTG	TTGCTGAAGC	GAAAGCTTCC	CCCTCCGCGA	CCGTCCGACT	480
45	CTTTTGCCTG	CTTGTGGAAG	ACGTGGACGG	GTCACGTGTG	TCTGGATCTG	TTGGTTTCTG	540
	TTTTGTGTGT	CTTTGTCTTG	TGTGTCCTTG	TCTACAGTTT	TAATATGGGA	CAGACGGTGA	600
50	CGACCCCTCT	TAGTTTGACT	CTCGACCATT	GGACTGAAGT	TAAATCCAGG	GCTCATAATT	660
50	TGTCAGTTCA	GGTTAAGAAG	GGACCTTGGC	AGACTTTCTG	TGTCTCTGAA	TGGCCGACAT	720
	TCGATGTTGG	ATGGCCATCA	GAGGGGACCT	TTAATTCTGA	GATTATCCTG	GCTGTTAAAG	780
55	CAGTTATTTT	TCAGACTGGA	CCCGGCTCTC	ATCCCGATCA	GGAGCCCTAT	ATCCTTACGT	840
	GGCAAGATTT	GGCAGAGGAT	CCTCCGCCAT	GGGTTAAACC	ATGGCTGAAT	AAGCCAAGAA	900

	ACCCAGGTCC CCGAATTCTG GCTCTTGGAG AGAAAACAA ACACTCGGCT GAAAAAGTCA	960
	AGCCCTCTCC TCATATCTAC CCCGAGATTG AGGAGCCACC GGCTTGGCCG GAACCCCAAT	1020
5	CTGTTCCCCC ACCCCCTTAT CTGGCACAGG GTGCCGCGAG GGGACCCTTT GCCCCTCCTG	1080
	GAGCTCCGGC GGTGGAGGGA CCTGCTGCAG GGACTCGGAG CCGGAGGGGC GCCACCCCGG	1140
10	AGCGGACAGA CGAGATCGCG ACATTACCGC TGCGCACGTA CGGCCCTCCC ACACCGGGGG	1200
	GCCAATTGCA GCCCCTCCAG TATTGGCCCT TTTCTTCTGC AGATCTCTAT AATTGGAAAA	1260
1.6	CTAACCATCC CCCTTTCTCG GAGGATCCCC AACGCCTCAC GGGGTTGGTG GAGTCCCTTA	1320
15	TGTTCTCTCA CCAGCCTACT TGGGATGATT GTCAACAGCT GCTGCAGACA CTCTTCACAA	1380
	CCGAGGAGCG AGAGAGAATT CTATTAGAGG CTAGAAAAAA TGTTCCTGGG GCCGACGGGC	1440
20	GACCCACGCG GTTGCAAAAT GAGATTGACA TGGGATTTCC CTTAACTCGC CCCGGTTGGG	1500
	ACTACAACAC GGCTGAAGGT AGGGAGAGCT TGAAAATCTA TCGCCAGGCT CTGGTGGCGG	1560
25	GTCTCCGGGG CGCCTCAAGA CGGCCCACTA ATTTGGCTAA GGTAAGAGAA GTGATGCAGG	1620
23	GACCGAATGA ACCCCCCTCT GTTTTTCTTG AGAGGCTCTT GGAAGCCTTC AGGCGGTACA	1680
	CCCCTTTTGA TCCCACCTCA GAGGCCCAAA AAGCCTCAGT GGCTTTGGCC TTTATAGGAC	1740
30	AGTCAGCCTT GGATATTAGA AAGAAGCTTC AGAGACTGGA AGGGTTACAG GAGGCTGAGT	1800
	TACGTGATCT AGTGAAGGAG GCAGAGAAAG TATATTACAA AAGGGAGACA GAAGAAGAAA	1860
35	GGGAACAAAG AAAAGAGAGA GAAAGAGAGG AAAGGGAGGA AAGACGTAAT AAACGGCAAG	192¢
33	AGAAGAATTT GACTAAGATC TTGGCTGCAG TGGTTGAAGG GAAAAGCAAT ACGGAAAGAG	1980
	AGAGAGATTT TAGGAAAATT AGGTCAGGCC CTAGACAGTC AGGGAACCTG GGCAATAGGA	2040
40	CCCCACTCGA CAAGGACCAA TGTGCATATT GTAAAGAAAG AGGACACTGG GCAAGGAACT	2100
	GCCCCAAGAA GGGAAACAAA GGACCAAGGA TCCTAGCTCT AGAAGAAGAT AAAGATTAGG	2160
45	GGAGACGGGG TTCGGACCCC CTCCCCGAGC CCAGGGTAAC TTTGAAGGTG GAGGGGCAAC	2220
.5	CAGTTGAGTT CCTGGTTGAT ACCGGAGCGA AACATTCAGT GCTACTACAG CCATTAGGAA	2280
	AACTAAAAGA TAAAAAATCC TGGGTGATGG GTGCCACAGG GCAACAACAG TATCCATGĞA	2340
50	CTACCCGAAG AACAGTTGAC TTGGGAGTGG GACGGGTAAC CCACTCGTTT CTGGTCATAC	2400
	CTGAGTGCCC AGCACCCCTC TTAGGTAGAG ACTTATTGAC CAAGATGGGA GCACAAATTT	2460
55	CTTTTGAACA AGGGAAACCA GAAGTGTCIG CAAATAACAA ACCTATCACT GTGTTGACCC	
22	TCCAATTAGA TGACGAATAT CGACTATACT CTCCCCTAGT AAAGCCTGAT CAAAATATAC	2580

	AATTCTGGTT	GGAACAGTTT	CCCCAAGCCT	GGGCAGAAAC	CGCAGGGATG	GGTTTGGCAA	2640
	AGCAAGTTCC	CCCACAAGTT	ATTCAACTGA	AGGCCAGTGC	CACACCAGTG	TCAGTCAGAC	2700
5	AGTACCCCTT	GAGTAAAGAA	GCTCAAGAAG	GAATTCGGCC	GCATGTCCAA	AGATTAATCC	2760
	AACAGGGCAT	CCTAGTTCCT	GTCCAATCTC	CCTGGAATAC	TCCCCTGCTA	CCGGTTAGAA	2820
10	AGCCTGGGAC	TAATGACTAT	CGACCAGTAC	AGGACTTGAG	AGAGGTCAAT	AAACGGGTGC	2880
10	AGGATATACA	CCCAACAGTC	CCGAACCCTT	ATAACCTCTT	GTGTGCTCTC	CCACCCCAAC	2940
	GGAGCTGGTA	TACAGTATTG	GACTTAAAGG	ATGCCTTCTT	CTGCCTGAGA	TTACACCCCA	3000
15	CTAGCCAACC	ACTTTTTGCC	TTCGAATGGA	GAGATCCAGG	TACGGGAAGA	ACCGGGCAGC	3060
	TCACCTGGAC	CCGACTGCCC	CAAGGGTTCA	AGAACTCCCC	GACCATCTTT	GACGAAGCCC	3120
20	TACACAGAGA	CCTGGCCAAC	TTCAGGATCC	AACACCCTCA	GGTGACCCTC	CTCCAGTACG	3180
20	TGGATGACCT	GCTTCTGGCG	GGAGCCACCA	AACAGGACTG	CTTAGAAGGC	ACGAAGGCAC	3240
	TACTGCTGGA	ATTGTCTGAC	CTAGGCTACA	GAGCCTCTGC	TAAGAAGGCC	CAGATTTGCA	3300
25	GGAGAGAGGT	AACATACTTG	GGGTACAGTT	TGCGGGACGG	GCAGCGATGG	CTGACGGAGG	3360
	CACGGAAGAA	AACTGTAGTC	CAGATACCGG	CCCCAACCAC	AGCCAAACAA	ATGAGAGAGT	3420
30	TTTTGGGGAC	AGCTGGATTT	TGCAGACTGT	GGATCCCGGG	GTTTGCGACC	TTAGCAGCCC	3480
	CACTCTACCC	GCTAACCAAA	GAAAAAGGGG	AATTCTCCTG	GGCTCCTGAG	CACCAGAAGG	3540
	CATTTGATGC	TATCAAAAAG	GCCCTGCTGA	GCGCACCTGC	TCTGGCCCTC	CCTGACGTAA	3600
35	CTAAACCCTT	TACCCTTTAT	GTGGATGAGC	GTAAGGGAGT	AGCCCGGGGA	GTTTTAACCC	3660
	AAACCCTAGG	ACCATGGAGA	AGACCTGTCG	CCTACCTGTC	AAAGAAGCTC	GATCCTGTAG	3720
40	CCAGTGGTTG	GCCCATATGC	CTGAAGGCTA	TCGCAGCTGT	GGCCATACTG	GTCAAGGACG	3780
	CTGACAAATT	GACTTTGGGA	CAGAATATAA	CTGTAATAGC	CCCCCATGCA	TTGGAGAACA	3840
	TCGTTCGGCA	GCCCCAGAC	CGATGGATGA	CCAACGCCCG	CATGACCCAC	TATCAAAGCC	3900
45	TGCTTCTCAC	AGAGAGGGTC	ACGTTCGCTC	CACCAGCCGC	TCTCAACCCT	GCCACTCTTC	3960
	TGCCTGAAGA	GACTGATGAA	CCAGTGACTC	ATGATTGCCA	TCAACTATTG	ATTGAGGAGA	4020
50	CTGGGGTCCG	CAAGGACCTT	ACAGACATAC	CGCTGACTGG	AGAAGTGCTA	ACCTGGTTCA	4080
	CTGACGGAAG	CAGCTATGTG	GTGGAAGGTA	AGAGGATGGC	TGGGGCGGCG	GTGGTGGACG	4140
	GGACCCGCAC	GATCTGGGCC	AGCAGCCTGC	CGGAAGGAAC	TTCAGCACAA	AAGGCTGAGC	4200
55	TCATGGCCCT	CACGCAAGCT	TTGCGGCTGG	CCGAAGGGAA	ATCCATAAAC	ATTTATACGG	4260
	ACAGCAGGTA	TGCCTTTGCG	ACTGCACACG	TACATGGGGC	CATCTATAAA	CAAAGGGGGT	4320

	TGCTTACCTC	AGCAGGGAGG	GAAATAAAGA	ACAAAGAGGA	AATTCTAAGC	CTATTAGAAG	4380
5	CCGTACATTT	ACCAAAAAGG	CTAGCTATTA	TACACTGTCC	TGGACATCAG	AAAGCTAAAG	4440
3	ATCTCATATC	CAGAGGAAAC	CAGATGGCTG	ACCGGGTTGC	CAAGCAGGCA	GCCCAGGGTG	4500
	TTAACCTTCT	GCCTATAATA	GAAATGCCCA	AAGCCCCAGA	ACCCAGACGA	CAGTACACCC	4560
10	TAGAAGACTG	GCAAGAGATA	AAAAAGATAG	ACCAGTTCTC	TGAGACTCCG	GAAGGGACCT	4620
	GCTATACCTC	AGATGGGAAG	GAAATCCTGC	CCCACAAAGA	AGGGTTAGAA	TATGTCCAAC	4680
1.5	AGATACATCG	TCTAACCCAC	CTAGGAACTA	AACACCTGCA	GCAGTTGGTC	AGAACATCCC	4740
15	CTTATCATGT	TCTGAGGCTA	CCAGGAGTGG	CTGACTCGGT	GGTCAAACAT	TGTGTGCCCT	4800
	GCCAGCTGGT	TAATGCTAAT	CCTTCCAGAA	TGCCTCCAGG	GAAGAGACTA	AGGGGAAGCC	4860
20	ACCCAGGCGC	TCACTGGGAA	GTGGACTTCA	CTGAGGTAAA	GCCGGCTAAA	TACGGAAACA	4920
	AATACCTATT	GGTTTTTGTA	GACACCTTTT	CAGGATGGGT	AGAGGCTTAT	CCTACTAAGA	4980
25	AAGAGACTTC	AACCGTGGTG	GCTAAAAAAA	TACTGGAAGA	AATTTTTCCA	AGATTTGGAA	5040
د ع	TACCTAAGGT	AATAGGGTCA	GACAATGGTC	CAGCTTTTGT	TGCCCAGGTA	AGTCAGGGAC	5100
	TGGCCAAGAT	ATTGGGGATT	GATTGGAAAC	TGCATTGTGC	ATACAGACCC	CAAAGCTCAG	5160
30	GACAGGTAGA	GAGGATGAAT	AGAACCATTA	AAGAGACCCT	TACTAAATTG	ACCGCGGAGA	5220
	CTGGCGTTAA	TGATTGGATA	GCTCTCCTGC	CCTTTGTGCT	TTTTAGGGTT	AGGAACACCC	5280
35	CTGGACAGTT	TGGGCTGACC	CCCTATGAAT	TACTCTACGG	GGGACCCCCC	CCATTGGTAG	5340.
33	AAATTGCTTC	TGTACATAGT	GCTGACGTGC	TGCTTTCCCA	GCCTTTGTTC	TCTAGGCTCA	5400
	AGGCACTTGA	GTGGGTGAGA	CAACGAGCGT	GGAGGCAACT	CCGGGAGGCC	TACTCAGGAG	546C
40	GAGGAGACTT	GCAGATCCCA	CATCGTTTCC	AAGTGGGAGA	TTCAGTCTAC	GTTAGACGCC	5520
	ACCGTGCAGG	AAACCTCGAG	ACTCGGTGGA	AGGGCCCTTA	TCTCGTACTT	TTGACCACAC	5580
45	CAACGGCTGT	GAAAGTCGAA	GGAATCTCCA	CCTGGATCCA	TGCATCCCAC	GTTAAACCGG	5640
72	CGCCACCTCC	CGATTCGGGG	TGGAAAGCCG	AAAAGACTGA	AAATCCCCTT	AAGCTTCGCC	5700
	TCCATCGCGT	GGTTCCTTAC	TCTGTCAATA	ACCTCTCAGA	CTAATGGTAT	GCGCATAGGA	5760
50	GACAGCCTGA	ACTCCCATAA	ACCCTTATCT	CTCACCTGGT	TAATTACTGA	CTCCGGCACA	5820
	GGTATTAATA	TCAACAACAC	TCAAGGGGAG	GCTCCTTTAG	GAACCTGGTG	GCCTGATCTA	5880
55	TACGTTTGCC	TCAGATCAGT	TATTCCTAGT	CTGACCTCAC	CCCCAGATAT	CCTCCATGCT	5940
رر	CACGGATTTT	ATGTTTGCCC	AGGACCACCA	AATAATGGAA	AACATTGCGG	AAATCCCAGA	6000

	GATTTCTTTT	GTAAACAATG	GAACTGTGTA	ACCTCTAATG	ATGGATATTG	GAAATGGCCA	6060
	ACCTCTCAGC	AGGATAGGGT	AAGTTTTTCT	TATGTCAACA	CCTATACCAG	CTCTGGACAA	6120
5	TTTAATTACC	TGACCTGGAT	TAGAACTGGA	AGCCCCAAGT	GCTCTCCTTC	AGACCTAGAT	6180
	TACCTAAAAA	TAAGTTTCAC	TGAGAAAGGA	AAACAAGAAA	ATATCCTAAA	ATGGGTAAAT	6240
	GGTATGTCTT	GGGGAATGGT	ATATTATGGA	GGCTCGGGTA	AACAACCAGG	CTCCATTCTA	6300
10	ACTATTCGCC	тсаааатааа	CCAGCTGGAG	CCTCCAATGG	CTATAGGACC	AAATACGGTC	6360
	TTGACGGGTC	AAAGACCCCC	AACCCAAGGA	CCAGGACCAT	CCTCTAACAT	AACTTCTGGA	6420
15	TCAGACCCCA	CTGAGTCTAA	CAGCACGACT	AAAATGGGGG	CAAAACTTTT	TAGCCTCATC	6480
	CAGGGAGCTT	TTCAAGCTCT	TAACTCCACG	ACTCCAGAGG	CTACCTCTTC	TTGTTGGCTA	6540
20	TGCTTAGCTT	CGGGCCCACC	TTACTATGAA	GGAATGGCTA	GAAGAGGGAA	ATTCAATGTG	6600
20	ACAAAAGAAC	ATAGAGACCA	ATGCACATGG	GGATCCCAAA	ATAAGCTTAC	CCTTACTGAG	6660
	GTTTCTGGAA	AAGGCACCTG	CATAGGAAAG	GTTCCCCCAT	CCCACCAACA	CCTTTGTAAC	6720
25	CACACTGAAG	CCTTTAATCA	AACCTCTGAG	AGTCAATATC	TGGTACCTGG	TTATGACAGG	6780
	TGGTGGGCAT	GTAATACTGG	ATTAACCCCT	TGTGTTTCCA	CCTTGGTTTT	TAACCAAACT	6840
30	AAAGATTTTT	GCATTATGGT	CCAAATTGTT	CCCCGAGTGT	ATTACTATCC	CGAAAAAGCA	6900
30	ATCCTTGATG	AATATGACTA	CAGAAATCAT	CGACAAAAGA	GAGAACCCAT	ATCTCTGACA	6960
	CTTGCTGTGA	TGCTCGGACT	TGGAGTGGCA	GCAGGTGTAG	GAACAGGAAC	AGCTGCCCTG	7020
35	GTCACGGGAC	CACAGCAGCT	AGAAACAGGA	CTTAGTAACC	TACATCGAAT	TGTAACAGAA	7080
	GATCTCCAAG	CCCTAGAAAA	ATCTGTCAGT	AACCTGGAGG	AATCCCTAAC	CTCCTTATCT	7140
40	GAAGTAGTCC	TACAGAATAG	AAGAGGGTTA	GATTTATTAT	TTCTAAAAGA	AGGAGGATTA	7200
40	TGTGTAGCCT	TGAAGGAGGA	ATGCTGTTTT	TATGTGGATC	ATTCAGGGGC	CATCAGAGAC	7260
	TCCATGAACA	AGCTTAGAGA	AAGGTTGGAG	AAGCGTCGAA	GGGAAAAGGA	AACTACTCAA	7320
45	GGGTGGTTTG	AGGGATGGTT	CAACAGGICT	CTTTGGTTGG	CTACCCTACT	TTCTGCTTTA	7380
	ACAGGACCCT	TAATAGTCCT	CCTCCTGTTA	. CTCACAGTTG	GGCCATGTAT	TATTAACAAG	7440
50	TTAATTGCCT	TCATTAGAGA	ACGAATAAGT	GCAGTCCAGA	TCATGGTACT	TAGACAACAG	7500
UC	TACCAAAGCC	CGTCTAGCAG	GGAAGCTGGC	CGCTAGCTCT	ACCAGTTCTA	AGATTAGAAC	7560
	TATTAACAAG	G AGAAGAAGTG	GGGAATGAAA	GGATGAAAAT	· ACAACCTAAG	CTAATGAGAA	7620
55	GCTTAAAATT	GTTCTGAATI	CCAGAGTTTG	TTCCTTATAG	GTAAAAGATT	AGGTTTTTTG	7680
	CTGTTTTAAA	A ATATGCGGAA	GTAAAATAGG	CCCTGAGTAC	ATGTCTCTAG	GCATGAAACT	7740

	TCTTGAAACT ATTTGAGATA ACAAGAAAAG GGAGTTTCTA ACTGCTTGTT TAGCTTCTGT	7609
5	AAAACTGGTT GCGCCATAAA GATGTTGAAA TGTTGATACA CATATCTTGG TGACAACATG	7860
)	TCTCCCCCAC CCCGAAACAT GCGCAAATGT GTAACTCTAA AACAATTTAA ATTAATTGGT	7920
	CCACGAAGCG CGGGCTCTCG AAGTTTTAAA TTGACTGGTT TGTGATATTT TGAAATGATT	7980
10	GGTTTGTAAA GCGCGGGCTT TGTTGTGAAC CCCATAAAAG CTGTCCCGAC TCCACACTCG	8040
	GGGCCGCAGT CCTCTACCCC TGCGTGGTGT ACGACTGTGG GCCCCAGCGC GCTTGGAATA	8100
15	AAAATCCTCT TGCTGTTTGC ATCAAAAAAA AA	8132
1)	(2) INFORMATION FOR SEQ ID NO:4:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 19 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
30	TGCCTAGAGA CATGTACTC	19
	(2) INFORMATION FOR SEQ ID NO:5:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	CCTCTTCTAG CCATTCCTTC A	21
45	(2) INFORMATION FOR SEQ ID NO:6:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	

	TCGAGACTCG GTGGAAGGGC CC	2.2
	(2) INFORMATION FOR SEQ ID NO:7:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
15	GGGCCCTTCC ACCGAGTCTC GA	22
	(2) INFORMATION FOR SEQ ID NO:8:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
30	ACCTGGATCC ATGCATCCCA CG	22
30	(2) INFORMATION FOR SEQ ID NO:9:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	CGTGGGATGC ATGGATCCAG GT	22
45	(2) INFORMATION FOR SEQ ID NO:10:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	GGCGCCACCT CCCGATTCGG	20

	(2) INFORMATION FOR SEQ ID NO:11:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
15	CCGAATCGGG AGGTGGCGCC	20
13	(2) INFORMATION FOR SEQ ID NO:12:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
23	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	TCCCCTTAAG CTTCGCCTCC	20
30	(2) INFORMATION FOR SEQ ID NO:13:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	GGAGGCGAAG CTTAAGGGGA	20
45	(2) INFORMATION FOR SEQ ID NO:14:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	AAAAGCACAA AGGGCAGGAG AGC	23

	(2) INFORMATION FOR SEQ ID NO:15:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	GCTCTCCTGC CCTTTGTGCT TTT	2 3
15	(2) INFORMATION FOR SEQ ID NO:16:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: CDNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	CCTTTAGGAA CCTGGTGGCC	20
30	(2) INFORMATION FOR SEQ ID NO:17:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
40		
	GGCCACCAGG TTCCTAAAGG	20
	(2) INFORMATION FOR SEQ ID NO:18:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
55	CCCCCAGATA TCCTCCATGC	20
	(2) INFORMATION FOR SEQ ID NO:19:	

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: CDNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	GCATGGAGGA TATCTGGGGG	20
15	(2) INFORMATION FOR SEQ ID NO:20:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
25	GCAGTTTCCA ATCAATCCCC AA	22
	(2) INFORMATION FOR SEQ ID NO:21:	
30 35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
))	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
10	TTGGGGATTG ATTGGAAACT GC	22
	(2) INFORMATION FOR SEQ ID NO:22:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
0	(ii) MOLECULE TYPE: cDNA	
	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
55	TTTATGTTTG CCCAGGACCA CCA	23
	(2) INFORMATION FOR SEO ID NO.23.	

(11) MOLECULE TYPE: cDNA

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

CCCCCAACCC AAGGACCAGG ACCA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

24

50

55

	(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
5	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
10	TGGTCCTGGT CCTTGGGTTG GGGG	24
	(2) INFORMATION FOR SEQ ID NO:28:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
26	GCAGCACGAC TAAAATGGGG GC	22
25	(2) INFORMATION FOR SEQ ID NO:29:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	GCCCCCATTT TAGTCGTGCT GC	22
40	(2) INFORMATION FOR SEQ ID NO:30:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	CCCCCATCCC ACCAACACCT	2.0
	(2) INFORMATION FOR SEQ ID NO:31:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	

	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
10	AGGTGTTGGT GGGATGGGGG	2
, ,	(2) INFORMATION FOR SEQ ID NO:32:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	TCTCCCCCAC CCCGAAACAT	20
25	(2) INFORMATION FOR SEQ ID NO:33:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: GDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	ATGTTTCGGG GTGGGGGAGA	20
40	(2) INFORMATION FOR SEQ ID NO:34:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	AGCCAAGAAA GCCAGGTCCC CGAA	24
	(2) INFORMATION FOR SEQ ID NO:35:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid	

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
_	(ii) MOLECULE TYPE: cDNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	TTCGGGGACC TGGCTTTCTT GGCT	24
10	(2) INFORMATION FOR SEQ ID NO:36:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
25	AGGCTCTGGT GGCGGGTCTC C	21
25	(2) INFORMATION FOR SEQ ID NO:37:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: cDNA	
35	 -	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
40	GGAGACCCGC CACCAGAGCC T	21
	(2) INFORMATION FOR SEQ ID NO:38:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA .	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
55	CCGCAGGGAT GGGTTTGGCA	20

(ii) MOLECULE TYPE: cDNA

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
5	GTTTACGGGA CGGGCAGCGA TGGC	24
	(2) INFORMATION FOR SEQ ID NO:43:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: cDNA	·
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
	GCCATCGCTG CCCGTCCCGT AAAC	24
25	(2) INFORMATION FOR SEQ ID NO:44:	
23	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
	TGGCTGGGGC GGCGGTGGTG GACGGG	26
40	(2) INFORMATION FOR SEQ ID NO:45:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs	
45	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
55	CCCGTCCACC ACCGCCGCCC CAGCCA	26
رر	(2) INFORMATION FOR SEQ ID NO:46:	

ŧ.

(i) SEQUENCE CHARACTERISTICS:

(ii) MOLECULE TYPE: cDNA

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

50

55

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
_	CGCTTACAGA CAAGCTGTGA	20
5	(2) INFORMATION FOR SEQ ID NO:50:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
20	AGAACAAAGG CTGGGAAGC	19
	(2) INFORMATION FOR SEQ ID NO:51:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: cDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
	ATAGGAGACA GCCTGAACTC	20
	(2) INFORMATION FOR SEQ ID NO:52:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
	GGACCATTGT CTGACCCTAT	20
55	(2) INFORMATION FOR SEQ ID NO:53:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

	ACCTGTTGAA CCATCCCTCA	20
5	(2) INFORMATION FOR SEQ ID NO:57:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
	CGAATGGAGA GATCCAGGTA	20
20	(2) INFORMATION FOR SEQ ID NO:58:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
35	CCTGCATCAC TTCTCTTACC	20
	(2) INFORMATION FOR SEQ ID NO:59:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
50	TTGCCTGCTT GTGGAATACG	20
	(2) INFORMATION FOR SEQ ID NO:60:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: CAAGAGAAGA AGTGGGGAAT G

21

- (2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

20

15

10

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:
- 25 CACAGTCGTA CACCACGCAG

20

- (2) INFORMATION FOR SEQ ID NO:62:
- (i) SEQUENCE CHARACTERISTICS: 30
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62: 40

GGGAGACAGA AGAAGAAAGG

20

(2) INFORMATION FOR SEQ ID NO:63:

45 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

50

(ii) MOLECULE TYPE: cDNA

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

CGATAGTCAT TAGTCCCAGG

20

	(2) INFORMATION FOR SEQ ID NO:64:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64: TGCTGGTTTG CATCAAGACC G	21
	(2) INFORMATION FOR SEQ ID NO:65:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
	GTCGCAAAGG CATACCTGCT	20
35	(2) INFORMATION FOR SEQ ID NO:66: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
	ACAGAGCCTC TGCTAAGAAG	20
50	(2) INFORMATION FOR SEQ ID NO:67:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 19 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(2) INFORMATION FOR SEQ ID NO:71:

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: GCAGCTGTTG ACAATCATC 19 (2) INFORMATION FOR SEQ ID NO:68: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 15 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68: TATGAGGAGA GGGCTTGACT 20 25 (2) INFORMATION FOR SEQ ID NO:69: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69: AGCAGACGTG CTAGGAGGT 19 40 (2) INFORMATION FOR SEQ ID NO:70: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs 45 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70: 55 TCCTCTTGCT GTTTGCATC 19

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
15	CAGACACTCA GAACAGAGAC	20
13	(2) INFORMATION FOR SEQ ID NO:72:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
30	ACATCGTCTA ACCCACCTAG	20
	(2) INFORMATION FOR SEQ ID NO:73:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
45	CTCGTTTCTG GTCATACCTG A	2:
	(2) INFORMATION FOR SEQ ID NO:74:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
55	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	

GAGTACATCT CTCTAGGCA

19

5

10

20

30

35

What is claimed is:

- 1. A purified nucleic acid which can specifically hybridize with the sequence of SEQ ID NO: 1 or its complement, provided that said nucleic acid is other than the entire retroviral genome of SEQ ID NO:1 or its complement.
- 2. The purified nucleic acid of claim 1, wherein said nucleic acid is at least one nucleotide longer, or at least 1 nucleotide shorter, or differs in sequence at at least one position from SEQ ID NO: 1 or its complement.
- 3. The purified nucleic acid of claim 1 wherein said nucleic acid has at least 72% sequence identity or homology with a sequence from SEQ ID NO: 1 or its complement.
- 4. The purified nucleic acid of claim 1, wherein said nucleic acid is at least 15 nucleotides in length.
 - 5. The purified nucleic acid of claim 1, wherein said nucleic acid can specifically hybridize with a translatable region of the retroviral genome of SEQ ID NO: 1, or its complement.
 - 6. The purified nucleic acid of claim 1, wherein said nucleic acid can specifically hybridize with a region from the gag, pol, or env gene.
- 7. The purified nucleic acid of claim 1, wherein said nucleic acid can specifically hybridize with an untranslated region of the retroviral genome of SEQ ID NO: 1, or its complement.
 - 8. The purified nucleic acid of claim 1, wherein said nucleic acid can specifically hybridize with a non-conserved region of the retroviral genome of SEQ ID NO: 1, or its complement.
 - 9. The purified nucleic acid of claim 1, wherein said nucleic acid can specifically hybridize with highly conserved regions of the retroviral genome of SEQ ID NO: 1, or its complement.
 - 10. The purified nucleic acid of claim 1, wherein the nucleic acid is selected from the group consisting of SEQ ID NOs: 4-74.

11. A purified nucleic acid which hybridizes under stringent conditions to a nucleic acid chosen from: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 of SEQ ID NO:1, or naturally occurring mutants thereof, a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, or naturally occurring mutants thereof, and a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 of SEQ ID NO:1, or naturally occurring mutants thereof.

5

10

15

20

25

30

35

- 12. The purified nucleic acid of claim 11, wherein said nucleic acid is a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 of SEQ ID NO:1, or naturally occurring mutants thereof.
 - 13. The purified nucleic acid of claim 11, wherein said nucleic acid is a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, or naturally occurring mutants thereof.
 - 14. The purified nucleic acid of claim 11, wherein said nucleic acid is a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 of SEQ ID NO:1, or naturally occurring mutants thereof.
 - 15. A reaction mixture which includes a target nucleic acid and a second nucleic acid, wherein the second nucleic acid is chosen from: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;
 - a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g. from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g. from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

5

10

- 16. A purified nucleic acid which can specifically hybridize with the sequence of SEQ ID NO: 2 or its complement.
- 17. The purified nucleic acid of claim 16, wherein said nucleic acid is at least one nucleotide longer, or at least 1 nucleotide shorter, or differs in sequence at at least one position from SEQ ID NO: 2 or its complement.
- 18. The purified nucleic acid of claim 16, wherein said nucleic acid has at least 72% sequence identity or homology with a sequence from SEQ ID NO: 2 or its complement.
- 19. The purified nucleic acid of claim 16, wherein said nucleic acid is at least 1520 nucleotides in length.
 - 20. The purified nucleic acid of claim 16, wherein said nucleic acid can specifically hybridize with a region from the gag, pol. or env gene.
- 21. The purified nucleic acid of claim 16, wherein said nucleic acid hybridizes under stringent conditions to a nucleic acid chosen from: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 598-2169 of SEQ ID NO:2, or naturally occurring mutants thereof, a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2320-4737 of SEQ ID NO:2.

 30 or naturally occurring mutants thereof, and a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4738-6722 of SEQ ID NO:2. or naturally occurring mutants thereof.
- 22. A purified nucleic acid which can specifically hybridize with the sequence of SEQ ID NO: 3 or its complement.

- 23. The purified nucleic acid of claim 22, wherein said nucleic acid is at least one nucleotide longer, or at least 1 nucleotide shorter, or differs in sequence at at least one position from SEQ ID NO: 3 or its complement.
- 5 24. The purified nucleic acid of claim 22, wherein said nucleic acid has at least 72% sequence identity or homology with a sequence from SEQ ID NO: 3 or its complement.
- 25. The purified nucleic acid of claim 22, wherein said nucleic acid is at least 15 nucleotides in length.
 - 26. The purified nucleic acid of claim 22, wherein said nucleic acid can specifically hybridize with a region from the gag, pol, or env gene.
- 27. The purified nucleic acid of claim 22, wherein said nucleic acid hybridizes under stringent conditions to a nucleic acid chosen from: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof, a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 585-2156 of SEQ ID NO:3, or naturally occurring mutants thereof, and a nucleic acid of at least 3 consecutive nucleotides of sense or antisense sequence from nucleotides2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof.
 - 28. A method for screening a cell or a tissue for the presence or expression of a swine or miniature swine retrovirus comprising:

25

30

35

contacting a target nucleic acid from the tissue with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence

from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g, from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g, from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof, under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an endogenous swinw or miniature swine retrovirus or retroviral sequence in the tissue.

10

15

20

25

30

29. A method for screening a swine or miniature swine genome for the presence of a porcine retrovirus, comprising:

contacting the miniature swine genomic DNA with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g. from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g. from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g. from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof, under conditions in which the sequences can hybridize,

hybridization being indicative of the presence of the endogenous porcine retroviral sequence in the miniature swine genome.

5

10

15

20

25

30

35

30. A method of assessing the potential risk associated with the transplantation of a graft from a donor swine or miniature swine into a recipient animal, comprising:

contacting a target nucleic acid from the donor, recipient or the graft, with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g, from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g, from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g, from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g, from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof, under conditions in which the sequences can hybridize, hybridization being indicative of a risk associated with the transplantation.

31. A method of providing a swine or miniature swine free of an activatable retrovirus insertion at a preselected site, comprising:

performing a cross between a first miniature swine having a retroviral insertion at the preselected site and a second miniature swine not having a retroviral insertion at a preselected site, and recovering a progeny miniature swine, not having the insertion, wherein the presence or absence of the retroviral insertion is determined by contacting the genome of a miniature swine with a nucleic acid chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense

sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g, from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g, from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g, from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

10

15

20

25

30

35

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof.

32. A method of localizing the origin of a porcine retroviral infection, comprising: contacting a target nucleic acid from the graft or organ with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g, from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g, from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof;

5

10

15

contacting a target nucleic acid from the recipient with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g. from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g. from nucleotides 598-2156) of SEQ ID NO:2, or nucleotides 585-2156 (e.g. from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; hybridization to the nucleic acid from the graft correlates with the porcine retroviral infection in the graft; and hybridization to the nucleic acid from the recipient correlates with the porcine retroviral infection in the recipient.

25

30

35

20

33. A method of screening a human subject for the presence or expression of an endogenous porcine retrovirus comprising:

contacting a target nucleic acid derived from the human subject with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (c.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof, under conditions in which the sequences can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequences in the human subject.

10

15

20

25

30

- 34. A transgenic miniature swine having a transgenic element at an endogenous porcine retroviral insertion site which corresponds to the retroviral genome of SEQ ID NO: 1,2, or 3, and wherein said element alters the activity of the endogenous porcine retrovirus.
 - 35. A method of detecting a recombinant virus or other pathogen, comprising: providing a pathogen having porcine retroviral sequence; and determining if the pathogen includes non-porcine retroviral sequence, the presence of non-porcine retroviral sequence being indicative of viral recombination.
 - 36. A method of determining the copy number, size, or completeness of a porcine retrovirus, comprising:

contacting a target nucleic acid from the donor, recipient or a graft, with a second nucleic acid selected from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737

of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof.

37. A method for screening a tissue for the presence or expression of a swine or a miniature swine retroviral sequence comprising:

10

contacting a tissue sample with an antibody specific for a retroviral protein, thereby determining if the sequence is present or expressed.

38. A purified nucleic acid which can specifically hybridize to a nucleic acid sequence comprising nucleotides 2-1999 of SEQ ID NO:1, nucleotides 4871-8060 of SEQ ID NO:1, or nucleotides 2452-4839 of SEQ ID NO:1.

CTUGAGACIC GGIGGAAGOG CCCITATCIC GTACTTTIGA CCACACCAAC	50	(SEQ ID NO: 1)
GCCTGTGAAA GTCGAAGGAA TCTCCACCTG GATCCATGCA TCCCACGTTA	100	
ACCCOGCECC ACCTICCOGAT TOCCOGTOGA AAGCCGAAAA GACTGAAAAT	150	
COCCUTANCE TROCCIOCA TOCCGIOGIT COTTACTOTE TOAATAACCT	200	
CTCAGACTAA TOGTATGCGC ATAGGAGACA GCCTGAACTC CCATAAACCC	250	
TTATCTCTCA CCTGGTTAAT TACTGACTCC GGCACAGGTA TTAATATCAA	300	
CAACACTCAA GOOGAGOCTC CTTTACGAAC CTGGTGGCCT GATCTATACG	350	
TTTGCCTCAG ATCAGTTATT CCTAGTCTGA CCTCACCCCC AGATATCCTC	4C0	
CATUCTCACG GATTTTATGT TTGCCCCAGGA CCACCAAATA ATGGAAAACA	450	
TIGCOGAAAT COCAGAGATI TOITTIGTAA ACAATOGAAC IGIGTAACCT	500	
CTANTGATGG ATATICGAAA TCCCCAACCI CTCACCAGGA TAGGGTAAGT	550	
THTTCTTATG TCAACACCTA TACCACCTCT GGACAATTTA ATTACCTGAC	600	
CTGGATTAGA ACTGGAAGCC CCAAGTGCTC TCCTTCAGAC CTAGATTACC	650	
TAAAAATAAG TITCACTGAG AAAGGAAAAC AAGAAAATAT CCTAAAATGG	700	
GTAAATGGTA TGTCTTGGGG AATGGTATAT TATGGAGGCT CCGGTAAACA	750	
ACCAGGCICC APTCTAACTA TICGCCTCAA AATAAACCAG CTGGAGCCTC	800	
CAATGGCTAT AGGACCAAAT ACGGTCTTGA CGGGTCAAAG ACCCCCAACC	850	
CAADGACCAG GACCATCCTC TAACATAACT TCTGGATCAG ACCCCACTGA	900	
CTCTACCACC ACGACTAAAA TCCCCCCAAA ACTTTTTAGC CTCATCCACG	950	
GAGCTITICA AGCICITAAC TOCACGACIC CAGAGGCTAC CICTICTIGT	1000	
TOGCTATGCT TAGCTTTOGG CCCACCTTAC TATGAAGGAA TOGCTAGAAG	1050	
AGGGAAATTIC AATGTGACAA AAGAACATAG AGACCAATGC ACATGGGGAT	1100	
CCCAAAATAA GCTTACCCTT ACTGAGGTTT CTGGAAAAGG CACCTGCATA	1150	
GGAAAGGITC CCCCATCCCA CCAACACCTT TGTAACCACA CTGAAGCCTT	1200	
TAATCAAACC TCTGAAAGTC AATATCTOGT ACCTOGTTAT GACAGGTOGT	1250	
OCCCATGUAA TACTGGATTA ACCCCTTGTG TTTCCACCTT GGTTTTTAAC	1300)
FIGURE I		

CAAACTAAAG ATTITTOCAT TATOGTOCAA ATTGTTCCCC GAGTGTATTA	1350	(SEQ ID NO: 1) cont'd
CTATCCCGAA AAAGCAATCC TIGATGAATA IGACTACAGA AATCATCGAC	1400	
AAAAGAGAGA ACCCATATCT CTGACACTTG CTGTGATGCT CGGACTTGGA	1450	
GTGGCAGCAG GTGTAGGAAC AGGAACACCT GCCCTGGTCA CGGGACCACA	1500	
GCAGCTAGAA ACAGGACTTA GTAACCTACA TCGAATTGTA ACAGAAGATC	1550	
TOCAMOCOCT AGAAAAATOT GTCAGTAACC TOGAGGAATC CCTAACCTCC	1600	
TTATCTGAAG TAGTCCTACA GAATAGAAGA GOGTTAGATT TATTATTTCT	1650	
AAAAGAAGGA GGATTATGTG TAGCCTTGAA GGAGGAATGC TGTTTTTATG	1700	
TGGATCATTC AGGGCCCATC AGAGACTCCA TGAACAAACT TAGAGAAAGG	1750	
TTOGAGAGGC GTOGAAGOGA AAAOGAAACT ACTCAAGOGT OGTTTGAGGG	1800	
ATGGTTCAAC AGGTGTCCTT GGTTGGCTAC CCTACTTTCT GCTTTAACAG	1850	
GACCCITAAT AGICCICCIC CIGIFACTCA CAGITOOGCC ATGIATTATT	1900	
AACAAGITAA TIOOCITCAT TAGAGAACGA ATAAGIOCAG TOCAGATCAT	1950	
OGTACTTAGA CAACAGTACC AAAGCCCGTC TAGCAGGGAA GCTGGCCGCT	2000	
AGCTCTACCA GTTCTAAGAT TAGAACTATT AACAAGAGAA GAAGTCOOGA	2050	
ATGAAAGGAT GAAAATACAA CCIAAGCTAA TGAGAAGCIT AAAATTGTTC	2100	
TGAATTICCAG AGTTTIGTTICC TTATAGGTAA AAGATTAGGT TTTTTGCTGT	2150	
TITAAAATAT GOGGAAGTAA AATAGGCCCT GAGTACATGT CTCTAGGCAT	2200	
GAAACTICTT GAAACTATIT GAGATAACAA GAAAAGGGAG TITCTAACTG	2250	
CITIGITITAGC TICIGIAAAA CIGGITGCCC CATAAAGATG TIGAAATGIT	2300	
GATACACATA TOTTGOTGAC AACATGICIC COCCACCCC AAACATGCCC	2350)
AAATGTGTAA CTCTAAAACA ATTTAAATTA ATTGGTCCAC GAAGCGCGGG	2400)
CICTOGAAGT TITAAATIGA CIGGITIGIG ATATITIGAA ATGATIGGIT	2450)
TGTAAACCGC COCCTTTCCT GTGAACCCCA TAAAACCTGT CCCGACTCCA	2500)
CACTOGOGGC OGCAGTOCTC TACCCCTGCG TGGTGTACGA CTGTGGGMC	2550)

CACCOCCTT OGANTAAAAA TOCTOTTGCT GTTTGCATCA AGACCGCTTC	2600	(SEQ ID NO: 1)
TOGIGAGIGA TTAAQQQGAG TOGOCTTTTC OGAGCCTGGA GGTTCTTTTT	2650	cont'd
GCTOGTCTTA CATTIOGGG CTCGTCCGGG ATCTGTCGCG GCCACCCCTA	2700	
ACACCOGAGA ACCGACTICG ACCTAAAAAG GATCCTCTTT TIVACCIGIA	2750	
TECATETACC GOCCOCCETC TCTGTTCTGA GIGICTGTTT TCAGTGGTGC	2800	
COCCITICOS TITOCASCIG TOCTCICASS COSTAAGGC TG999GACIG	2850	
TGATCAGCAG ACGTOCTAGG AGGATCACAG GCTGCTGCCC TGGGGGACGC	2900	
CCCCCCGAGGT GAGGAGACCC AGGGACCCCT GGTGGTCTCC TACTGTCGGT	2950	
CAGAGGACCG AATTICTIGTTIC CTGAAGCGAA AGCTTCCCCC TCCGCGACCG	3000	
TOOGACTOTT TIGOCTICOTT GTOGAATACG TOGACCOGTC ACGTGTGTCT	3050	
CONTRIBUTE GENERALLY TOTALIST TOTALIST GEOGRAPHICE	310C	
ACAGITITIAA TATOGGACAG ACGGIGACGA CCCCICTIAG TITGACTCIC	3120	
GACCATTOGA CTGAAGTTAA ATCCAGGOCT CATAATTTGT CAGTTCAGGT	3200	
TAAGAAGOGA CCTTGCCAGA CTTTCTGTGT CTCTGAATGG CCGACATTCG	3250	•
ATGITIGGATG GCCATCAGAG GCGACCTTTA ATTCTGAGAT TATCCTGCCT	3300	
GITAAAGCAA TTATTTTTCA GACTOGACCC GGCTCTCATC COGATCAGGA	3350	
GCCCTATATC CTTACGTGGC AAGATTTGGC AGAGGATCCT CCGCCATGGG	3400	
TTAAACCATG GCTGAATAAG CCAAGAAAGC CAGCTCCCCG AATTCTGGCT	3450	
CTTGGAGAGA AAAACAAACA CTCGGCTGAA AAAGTCAAGC CCTCTCCTCA	3500	
TATCTACCCC GAGATTGAGG AACCACCGCC TTGGCCGGAA CCCCAATCTG	3550	
TTCCCCCACC CCCTTATCTG GCACAGGGTG CCGCGAGGGG ACCCTTTGCC	3600	
CCTCCTOGAS CTCCCCCCT GSASSGACCT TCTGCAGGGA CTCCGAGCCG	3650	
GACOCCCCC ACCCCCGCACC GGACAGACGA GATCGCGACA TTACCGCTGC	3700	
CCACCTACCC CCCTCCCACA CCCCCCCCC AATTICCACCC CCTCCACTAT	3750	
TOGCCCITTT CITCIGCAGA TCTCIWTAAT TOGAAAACTA ACCATCCCCC	3800	
TOGCCCTTTT CTTCTGCAGA TCTCTWTAAT TOGAAAACTA ACCATCCCCC	3800	

FIGURE 1, CONT.

TTICIOGGAG GATCOCCAAC GOOTCACGGG GITGGIGGAG TOOCTTATGT	3850 (SEQ ID NO: 1) cont'd
TCTCTCACCA GCCTACTTGG GATGATTGTC AACAGCTGCT OCAGACACTC	3900
TTCACAACCG AGGACCGAGA GAGAATTCTA TTAGAGCCTA GAAAAAATGT	3950
TCCTGGGGCC GACGGGGGAC CCACGCGGTT GCAAAATGAG ATTGACATGG	4000
GATTTCCCTT AACTCGCCCC GGTTGGGACT ACAACACGGC TGAAGGTAGG	4050
GAGASCITICA AAATCTATCS CCACGCTCTG GTGGCCGGGTC TCCGGGGCGC	4100
CTCAAGACGG CCCACTAATT TOCCTAAGGT AAGAGAAGTG ATGCAGGGAC	4150
CGAATGAACC CCCCTCTGTT TTTCTTGAGA GGCTCTTGGA AGCCTTCAGG	4200
COGTACACCC CTTTTGATCC CACCTCAGAG GCCCAAAAAG CCTCAGTGGC	4250
TTTOOCCTTT ATAGGACAGT CAGCCTTOGA TATTAGAAAG AAGCTTCAGA	4300
GACTOGAAGS GITTACAGGAG GCTGAGTTAC GTGATCTAGT GAAGGAGGCA	4350
GAGAAAGTAT ATTACAAAAG GGAGACAGAA GAAGAAAGGA AACAAAGAAA	4400
ACACACAGAA AGAGAGGAAA OOGACGAAAG ACGTAATAAA COOCCAAGAGA	4450
AGAATTIGAC TAAGATCTIG GCTGCAGIGG TTGAAGGGAA AAGCAATACG	4500
GAAAGAGAGA GAGATTITAG GAAAATTAGG TCAGGCCCTA GACAGTCAGG	4550
GAACCIGGGC AATAGGACCC CACTCGACAA GGACCAATGT GCATATIGTA	4600
AAGAAAGAG ACACTOOOCA AGGAACTGCC CCAAGAAGGG AAACAAAGGA	4650
CCAACGATCC TACCICTAGA AGAAGATAAA GATTAGGGGA GACGGGGTTC	4700
GGACCCCCIC CCCGAGCCCA GGGTAACTIT GAACGTGGAG GGGCAACCAG	4750
TIGAGITICCT GGITIGATACC GGAGCGAAAC ATTCAGTGCT ACTACAGCCA	4800
TTAGGAAAAC TAAAAGATAA AAAATCCTGG GTGATGGGTG CACAGGGCAA	4850
CAACAGTATC CATGGACTAC CCGAAGACAG TTGACTTGGG AGTGGGACGG	4900
GIAACCCACT CGTTICTGGT CATACCTGAG TOCCCAGCAC CCCTCTTAGG	4950
TAGAGACTTA TIGACCAAGA TOOGAGCACA AATTICTTIT GAACAAGOGA	5000
AACCAGAAGI GICIOCAAAT AACAAACCTA TCACIGIGIT GACCCTCCAA	5050

TTAGATGACG AATATCGACT ATACTCTCCC CTAGTAAAGC CTGATCAAAA	5100	(SEQ ID NO: 1) cont'd
TATACAATTC TGGTTGGAAC AGTTTCCCCCA AGCCTGGGCCA GAAACCGCAG	5150	
OGATOGGTTT GOCAAAGCAA GTTCCCCCAC AAGTTATTCA ACTGAACGCC	5200	
NGTOCCACAC CAGIGICAGT CAGACAGTAC CCCTTGAGTA AAGAAGCTCA	5250	
AGAAGGAATT CGCCCCCATG TCCAAAGATT AATCCAACAG GCCATCCTAG	5300	
TICCIGICCA ATCICCCICC AATACICCCC TCCTACCOGT TAGAAAGCCT	5350	
GGGACTAATG ACTATOGACC ACTACAGGAC TIGAGAGAGG TCAATAAACG	5400	
GGTGCAGGAT ATACACOCAA CAGTCCCGAA CCCTTATAAC CTCTTGTGTG	5450	
CICTOCCACO CCAACOGAGO TGGTATACAG TATTOGACTT AAAGGATGCC	5500	
TICTICIOCO IGAGATIACA CCCCACTAGO CAACCACITI TICCCIICGA	5550	
ATGGAGAGAT CUAGGTACGE GAAGAACCGE GCAGGTCACC TEGACCCGAC	5600	
TOCCCCAAGG GITCAAGAAC TCCCCGACCA TCTTTGACGA ASCCCTACAC	5650	
AGAGACCIGG OCAACTICAG GATOCAACAC OCTCAGGIGA COCTOCTOCA	5700	
GTACGTOGAT GACCTOCTTC TOOCGGGACC CACCAAACAG GACTOCTTAG	5750	
AAGGCACGAA GCCACTACTG CTGGAATTGT CTGACCTAGG CTACAGAGCC	5800	
TCTCCTAAGA ACCCCAGAT TTCCACCAGA GACCTAACAT ACTTCCCCTA	5850	
CACTITIACOS GACOSCICASC GATGOCTICAC OGAGOCACOS AAGAAAACTIG	5900	
TAGTOCAGAT ACCOGCCCCA ACCACAGCCA AACAAATGAG AGAGTTTTTIG	5950	
COGACACCIG GATTITOCAG ACTGIGGATC CCGGGGTTTIG CGACCITTAGC	6000	
AGCCCCACTC TACCCCCTAA CCAAAGAAAA AGCGGAATTC TCCTGGGCTC	6050	
CTGAGCACCA GAAGGCATTT GATGCTATCA AAAAGGCCCT GCTGAGCGCA	6100)
CCTCCTCTCC CCCTCCCTCA CCTAACTAAA CCCTTTACCC TTTATGTCCA	6150)
TGAGCGTAAG GGAGTAGCCC GGGCAGTTTT AACCCAAACC CTAGGACCAT	6200)
GGAGAAGACC TGTCGCCTAC CTGTCAAAGA AGCTCGATCC TGTACCCAGT	625	0
CONTROCCIO TATECCTIGAA COCTATOGCA COTGTOCCCA TACTOGTICAA.	630	0

FIGURE 1, CONT.

GGACGCTGAC AAATTGACTT TOOGACAAGA ATATAACTGT AATAGCCCCC	6350	(SEQ ID NO: 1)
CATOCATTOG AGAACATOGT TOGGCAGCOC COAGACOGAT GGATGACCAA	6400	cont'd
CGCCCCCATG ACCCACTATC AAAGCCTCCT TCTCACAGAG ACCGTCACGT	6450	
TOSCTOCACO AACOGCTCTC AACOCTGCCA CTCTTCTGCC TGAAGAGACT	6500	
GATGAACCAG TGACTCATGA TTGCCATCAA CTATTGATTG AGGAGACTGG	6550	
GGICCGCAAG GACCTIACAG ACATACCGCT GACTGGAGAA GIGCTAACCT	6600	
GGTTCACTGA COGAAGCAGC TATGTOGTOG AAGGTAAGAG GATGCCTOOG	6650	
GCCCCCGTCG TOGACCCCACC CCCCACGATC TGCCCCACCA GCCTCCCCCC	6700	
AGGAACTICA GCACAAAAGG CIGAGCICAT GGCCCICACG CAAGCITIGC	6750	
GECTIGECCGA AGGGAAATCC ATAAACATTI ATACGGACAG CAGGTATGCC	6800	
TTTGCGACTG CACACGTACA TGGGGCCATC TATAAACAAA GGGGGTTOCT	6850	
TACCTCAGCA COGAGOGAAA TAAAGAACAA AGAGGAAATT CTAAGCCTAT	6900	
TAGAAGCCGT ACATTTACCA AAAAGGCTAG CTATTATACA CTGTCCTGGA	6950	
CATCAGAAAG CTAAAGATCT CATATCCAGA GGAAACCAGA 166CTGACCG	7000	
COTTICCCAAG CAGGCAGCCC AGGGTGTTAA CCTTCTGCCT ATAATAGAAA	7050	
TECOCAAAGC OCCAGAACCC AGACGACAGT ACACCCTAGA AGACTGOCAA	7100	
GAGATAAAAA AGATAGACCA TICTCTGAGA CTCCGGAAGG GACCTGCTAT	7150	
ACCTCAGATG GGAAGGAAAT CCTGCCCCAC AAAGAAGOGT TAGAATATGT	7200	
CCAACAAGAT ACATOGTOTA ACOCACOTAG GAACTAAACA COTOCAGCAG	7250	
TIGGICAGAA CATCCCCITA TCATGITCIG AGGCTACCAG GAGTOSCTGA	7300	
CICGGIGGIC AAACATIGIG IGCCCIGCCA GCIGGITAAT GCIAATCCIT	7350	
CCACAATOCC TCCACCCAAC AGACTAACCC GAAGCCACCC AGGCCTCAC	7400	
TOCCAACTOC ACTICACTGA CCTAAACCCC CCTAAATATC GAAACAAATA	7450	
CCTATTGGTT TTTGTAGACA CCTTTTCAGC ATGGGTAGAG GCTTATCCTA	7500)
CTAAGAAAGA GACTICAACC GTOGTAGCTA AAAAAATACT GGAAGAAATT	7550)

TITICCAAGAT TIGGAATACC TAAGGTAATA COGTCAGACA ATGGTCCAGC	7600	(SEQ ID NO: 1) cont'd
TTTTGTTGCC CAGGTAAGTC AGGGACTGGC CAAGATATTG GGGATTGATT	7650	
GGAAACTOCA TTGTOCATAC AGACCCCAAA GCTCAGGACA GCTAGAGAGG	7700	
ATGAATAGAA CCATTAAAGA GACCCTTACT AAATTGACCG CGGAGACTGG	7750	
COTTAATGAT TOGATAGCTC TCCTOCCCTT TGTGCTTTTT AGGGTTAGGA	7800	
ACACCCCTCG ACAGTTTCCG CTGACCCCCT ATGAATTACT CTACCCCCGA	7850	
CCCCCCCCAT TOGTAGAAAT TOCTTCTGTA CATAGTGCTG ATGTGCTGCT	7900	
TTCCCAGCCT TTGTTCTCTA GGCTCAAGCC ACTTGAGTOG GTGAGACAAC	7950	
CACCGTOGAG CCAACTCCCG GACCCCTACT CACCACGACGACG AGACTTCCAG	8000	
ATCCCACATC GTTTCCAAGT GGGAGATTCA GTCTACGTTA GACCCCACCC	8050	
TGCAGGAAAC	8060	

10	20	30	40	50	60	(SEQ ID NO: 2)
CIVOCCCIAC ÉLA	* *	* * TOO (CA)	· · · · Kaccci iog/	· · · ATAAAA ATC	CICTICC	,
CIVCCCCICC dier						
70	* *	90	100	110	120	
TOTTTGCATC AAG	ACCOCTT CTTC	SIGAGIG ATT	recegie tec	CCICITC CG	reccicaey	
130	140	150	160	170	180	
CGAGGGGGAT TGT	TCTTTTA CIC	OCCUPIC ATT	TOGICCG MG	GCCGCGA AA		
190	200	210	220	230	240	
CCACCCCTTA CAC	CCGAGAA CCG	actigga ggi	'AAAGOGA TCC	CCTTIGG AA	CATATGIG	
	260					
TGTGTCGGCC GGC	* *	سر، سرين رين *	* * * ********************************	ATGCCCCC TI	TOGGTTTG	
TETETCOSCC GC						
310	320	330	340	350	360	
CAGCICICCT CT	CAGACOGT AAC	GACIOGA OG	ACTGTGAT CA	GCAGACGT CO	TAGGAGGA.	
370	380	390	400	410	420	
TCACAGGCTG CC	* * ACCCTGGG GG	* * * *CCCCCCC CC	AGGTGGGG AG	AGCCAGGG A	CGCCTGGTG	
430	440		460			
GTCTCCTACT GI	* * CCGTCAGA GG	ACCGAGIT CI	GTTGTTGA AC	CGAAACCT T	cccccarace	
490	500	510			540	
			* *	* *	* * TYTTCTIOGAT	
CGGCCGTCCG A	CICITIFIC CI	CCLICICS W	BALBCOUM C	XXX COCOL C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
550	560	570	580	59 0	600 * *	
CIGITGGITT C	TOTTICGIG TO	MCIMCIC T	TGTGCGTCC T	IGICTACAG	TTTAAT ATG Met	>
61	.0	520	630	640		
_			*	• • ተም ርነር ርስጥ	ست الاست. *	
GGA CAG ACA Gly Gln Thr	GTG ACT ACC Val Thr Thr	Pro Leu Se	er Leu Thr I	eu Asp His	Trp Thr>	
650	660	670	680	690 * *		
* * GAA GTT AGA Glu Val Arg	TCC AGG GCT Ser Arg Ala	CAT AAT T His Asn L	NG TCA GTT (Bu Ser Val (CAG GTT AAC Gln Val Lys	AAG OGA Lys Gly>	
700	710	720	73		740	
CCT TOG CAG Pro Trp Gln	ACT TIC TG	T GCC TCT G s Ala Ser G	AA TGG CCA lu Trp 210	ACA TTC GA Thr Phe Asi	r GTT GGA p Val Gly>	

FIGURE 2

750	760	770 *	780	790	(SEQ ID NO: 2)
TGG CCA TCA G	AG 000 ACC TTT A Lu Gly Thr Phe A	AT TCT GAA sn Ser Glu	ATT ATC CTG	OCT GIT AAG Ala Val Lys>	Corre C
800	810	820	830	840	
	TT CAG ACT GGA	* * *	CAT CCT GAT	CAG GAG CCC	
Ala Ile Ile P	he Gln Thr Gly	Pro Gly Ser	His Pro Asp	Gln Glu Pro>	
850	860	870	. 88	30	
TAT ATC CTT A	CG TGG CAA GAT hr Trp Gln Asp	TTG GCA GAA Leu Ala Glu	GAT CCT CCG ASP Pro Pro	CCA TOG GTT Pro Trp Val>	
890 9	91	0	920	930	
AAA CCA TGG (Lys Pro Trp)	TA AAT AAA CCA Leu Asn Lys Pro	AGA AAG CC Arg Lys Pr	A GGT CCC CGA o Gly Pro Arg	ATC CTG GCT Ile Leu Ala>	
940	950	960	970	980	
CTT GGA GAG	AAA AAC AAA CAC Lys Asn Lys His	TCG GCC GA Ser Ala Gl	A AAA GTC GAC	CCC TCT CCT Pro Ser Pro>	
			1020	1030	
990	1000	1010	•	* *	
CGT ATC TAC Arg Ile Tyr	CCC GAG ATC GAG Pro Glu Ile Glu	GAG CCG CC Glu Pro Pr	C ACT TOG CCC	G GAA CCC CAA	
1040	1050	1060	1070	1080	
CCT GTT CCC Pro Val Pro	CCA CCC CCT TAT	CCA GCA C	AG OGT GCT GT ln Gly Ala Va	G AGG GGA CCC 1 Arg Gly Pro	>
10		11		120	
	CCT GGA GCT CO	*	* * *	T GOC GGG ACT	
TCT GCC CCT Ser Ala Pro	Pro Gly Ala Pr	Val Val C	lu Gly Pro Al	la Ala Gly Thr	>
1130		150	1160	1170	
	AGA GGC GCC AC	· · · ·	* * * YYS ACA GAC G	AG ATC GCG ATA	\
Arg Ser Arg	Arg Gly Ala Th	r Pro Glu	Arg Thr Asp G	lu Ile Ala Ile	2>
1180	1190	1200	1210	1220	
TTA CCG CT	G CGC ACC TAT G	ac acr acc	ATG CCA COG G	GC CAA TTG CA	3
Leu Pro Le	u Arg Thr Tyr G	ly Pro Pro	met Pio Gly G	717 021 500 02	
1230	1240	1250	1260	1270	
CCC CTC CA	G TAT TOG CCC T n Tyr Trp Pro P	MT TCT TCT he Ser Ser	GCA GAT CTC T Ala Asp Leu 1	TAT AAT TOG AA Tyr Asn Trp Ly	A ·s>
1280		130			
ACT AAC CA	AT CCC CCT TTC T is Pro Pro Phe S	CG GAG GAT er Glu Asp	CCC CAA CCC Pro Gln Arg	CTC ACG COC T Leu Thr Gly L	eu>

1330	1340	1350	1360	(SEQ ID NO: 2)
GTG GAG TCC CTT AT Val Glu Ser Leu Me	G TTC TCT CAC et Phe Ser His	CAG CCT ACT ' Glm Pro Thr '	Lub yeb yeb Cal Lub Yeb Yeb Cal	CAA
1370 1380	1390	1400	1410	*
CAG CTG CTG CAG AG Gln Leu Leu Gln Ti	CA CTC TTC ACF or Leu Phe Thi	ACC GAG GAG Thr Glu Glu	CGA GAG AGA AT Arg Glu Arg Il	r CTG e Leu>
1420 143		1.45		
TTA GAG GCT AAA A Leu Glu Ala Lys L	AA AAT GTT CC ys Asn Val Pro	r GOG GCC GAC o Gly Ala Asp	GGG CGA CCC AC Gly Arg Pro Th	G CAG r Gln>
1470	1480	1490	500 1	510
TTG CAA AAT GAG A Leu Cln Asn Glu I	TT GAC ATG GG	A TIT CCC TIG y Phe Pro Leu	ACT CGC CCC GC Thr Arg Pro Gl	T TOG y Trp>
1520	1530	1540	1550	1560
GAC TAC AAC ACG (Asp Tyr Asn Thr A	XT GAA GGT AC Ala Glu Gly Ar	S GAG AGC TTG g Glu Ser Leu	AAA ATC TAT CC Lys Ile Tyr A	XC CAG rg Gln>
1570	1580	1590	1600	•
GCT CTG GTG GCG (Ala Leu Val Ala	GIY Leu Arg Ci	XC GCC TCA AGA Iy Ala Ser Arg	CGG CCC ACT AN	NT TTG STL Leu>
1610 1620	1630	1640	1650	•
GCT AAG GTA AGA Ala Lys Val Arg	GAG GTG ATG C Glu Val Met G	AG GGA CCG AAC ln Gly Pro Asr	GAA CCT CCC T Glu Pro Pro S	CG GTA er Val>
	70 16	*	\$90 170	+
TTT CTT CAG AGG Phe Leu Glu Arg	CTC ATG GAA G Leu Met Glu A	CC TTC AGG CCA Lla Phe Arg Arg	TTC ACC CCT T Phe Thr Pro I	TT GAT Phe Asp>
1710	1720	1730	1740	1750
CCT ACC TCA GAG Pro Thr Ser Glu	GCC CAG AAA G Ala Gln Lys A	CC TCA GTG GC Lla Ser Val Al	C CTG CCC TTC / a Leu Ala Phe :	ATT GGG Ile Gly>
1760	1770	1780	1790	1800
CAG TCG GCT CTG Gln Ser Ala Leu	GAT ATC AGG	AAG AAA CTT CA Lys Lys Leu Gl	G AGA CTG GAA n Arg Leu Glu	GGG TTA Gly Leu>
1810	1820	1830	1840	*
CAG GAG OCT GAC Gln Glu Ala Glu	TTA CGT GAT Leu Arg Asp	CTA GTG AGA G Leu Val Arg G	NG GCA GAG AAC Lu Ala Glu Lys	GTG TAT Val Tyr>
1850 1860	187	0 188	1890	•
TAC AGA AGG GAG Tyr Arg Arg Glu	G ACA GAA GAG 1 Thr Glu Glu	GAG AAG GAA C Glu Lys Glu G	AG AGA AAA GAA ln Arg Lys Glu	AAG GAG Lys Glu>

1900				10		*	920			193	•	*		40		(SEQ ID NO: 2)
AGA G	SAA Slu	GAA Glu	AGG Arg	GAG Glu	GAA Glu	AGA Arg	CGT Arg	Vzb GYL	AGA Arg	CGG Arg	CAA Gln	GAG Glu	AAG Lys	AAT Asn	TTG Leu>	come
19	950			196	50		19	70		. 1	980		•	199	90	
ACT A	* AAG Lys	ATC Ile	TTG Leu	GCC Ala	GCA Ala	GTG Val	GTT Val	GAA Glu	GGG Gly	AAG Lys	AGC Ser	AGC Ser	AGG Arg	GAG Glu	AGA Arg>	
	20	00		:	2010		_	202	20	•	2	030			2040	
GAC A	AGN Arg	* GAT Asp	TTT Phe	ACG Arg	AAA Lys	ATT Ile	AGG Arg	TCA Ser	GGC Gly	CCT Pro	AGA Arg	CAG Gln	TCA Ser	ccc Gly	AAC Asn>	
		20	50		2	060			2070			20	80			
CTG Leu	GGC Gly	AAT Asn	AOG λrg	ACC Thr	CCA Pro	CTC	GAC Asp	AAG Lys	GAC Asp	ÇAG Gln	TG! Cys	GCC Ala	TAT Tyr	' TGT Cys	AAA Lys>	
2090			2100		*	21	10		2	120			2130)	*	
GAA Glu	AAA Lys	OGA Gly	. CAC	TCC Trp	GCA Ala	AGC Arg	AAC AST	TGC Cys	CCC Pro	AAG Lys	AAC Lys	Gly	AAC / Asr	Lys	Gly>	
214	10		. 2	2150			2160			21	.70		218	30 *		
CCG Pro	AAC Lys	GIY Val	CT/ L Lev	A GCT a Ala	CTA a Lev	GAV 1 Glv	A GAA	A GAT	r AW c Lys	GAT S Asp	T 1 >>	4G3G(CAGAG	œ		
		2190		*	200		223	*	* *	2220	•	*	2230	AACY	224 * CAGITO	•
GGG		XGAC 2250	CCC		260	MCXCC.	22		*	228			2290		230	
GIT	CCI	GTT	GAT	'ACCG	GAG	CGGA	GCAT	TC A	GTGC	TGCT	A CA	ACCA	TTAG	GAA	AACTAA	4.A
		2310			2320			233	0	•	23	40 *		•	2350	
AGA	AAA	аааа	100	71000	A DT	TG 0 let 0	GT G	XXX A	CA G Thr G	og c	AA C	rg (AG I	YT P	CA TG To TI	3 p>
•		2360)	*	237	0		, 2	380		*	2390)		2400	
AC! Thi	r AC	r Aı	ga ad ng Ab	GA AC	nc Gi	rr G/ al As	AC TI	rG OC ∋u G]	BA GT Ly Va	rj ej .c oo	.y Ai	og Ci	ra ac al Tì	CC Cr Tr Hi	C TCG Ls Ser	; •>
		. :	2410			242	0	•	243	30		•	2440			
TT Ph	T CI	ig G	IC A' al I	TC C le P	OT G	AG T lu C	GC (X ys P	CA G ro V	TA C al P	cc c ro L	MT C eu D	TA G eu G	GT A	GA GA	AC TTA sp Leu	1>
2450		*	24	*		*	2470 *			248	*		24	*		
CT Le	G Ad	CC A	AG A ys M	TG G	GA G ly A	CT C	AA A	TT T le S	CT T er P	TT G he G	AA C lu G	ln G	GA A	rg P	CA GAA	A u>

2500	*	251	.0		. 2	520		*	253	0	•	25	40		(SEQ ID NO: 2)
GTC TCT Val Ser	GTG A Val A	A TA A ne	AC A	AAA (Lys	CCC Pro	ATC Ile	ACT Thr	GTG Val	TTG Leu	ACC Thr	CTC Leu	CAA Gln	TTA Leu	GAT Asp>	cont'd
2550		*	256	0	*	25	70		* 2	580		*	259	0	
GAT GAA Asp Glu	TAT C	GA (TA ' Leu '	TAT Tyr	TCT Ser	CCC Pro	CAA Gln	GTA Val	AAG Lys	CCT Pro	GAT Asp	CAA Gln	GAT Asp	ATA Ile>	
26	500	,	2	610		•	262	20	*	26	530		. 2	2640	
CAG TCC Gln Ser	TCC T	MC (Leu (GAG Glu	CAG Gln	TTT Phe	CCC Pro	CAA Gln	GCC Ala	TCG Trp	GCA Ala	GAA Glu	ACC Thr	GCA Ala	Gly:	•
•	2650	•		26	60		*	2670		•	26	30	•		
ATG GGT Met Gly	TTG C	CCA A	AAG Lys	CAA Gln	GTT Val	CCC Pro	CCA Pro	CAG Gln	GTT Val	ATT Ile	CAA Gln	CTG Leu	AAG Lys	Ala:	•
2690	27	700		*	271	*	*	27	720		•	2730		•	
AGT GCT Ser Ala	ACA (Thr !	CCA (Pro	GTA Val	TCA Ser	GTC Val	AGA Arg	CAG Gln	TAC Tyr	CCC Pro	TTG Leu	AGT Ser	AGA Arg	GAG Clu	OCT Ala:	,
2740	*	27	50			2760			27	70		2	780 •		
CGA GAA Arg Glu	GGA A	ATT Ile	TGG Trp	CCG Pro	CAT His	GTT Val	CAA Gln	AGA Arg	TTA Leu	ATC Ile	CAA Gln	CAG Gln	Gly	ATC Ile	>
2790	ı	•	280	00		2	810			2820			28	30	
CTA GTT Leu Val	CCT Pro	GTC Val	CAA Gln	TCC Ser	CCT Pro	TGG Trp	AAT Asn	ACT Thr	CCC Pro	CTG Leu	CTA Leu	CCC Pro	GTT Val	AGG Arg	>
. 2	840			2850			28	60		2	870			2880	
AAG CCI Lys Pro	Gly	ACC Thr	AAT Asn	GAT Asp	TAT TYT	CGA Arg	CCA Pro	GTA Val	CAG Gln	GAC Asp	: TTG	AGA Arg	GAG Glu	GTC Val	>
*	289	0	*	2	900			2910			29	20	•		
AAT AA! Asn Lys	A AGG S Arg	GTG Val	CAG Gln	GAC Asp	ATA	CAC His	C CCF Fro	ACG Thr	GTC Val	CCC Pro	AAC Asr	CCI Pro	TAT Tyr	AAC Asn	: >
2930	. 2	2940		*	29	50		. 2	960			2970)		
CIC TIC Leu Leu	G AGC u Ser	GCC Ala	CTC Leu	Pro	Pro	GAZ Glu	n yxd A CCX	G AAC g Asn	TCC	TAC Tyr	AC/	GT/ C Val	TTC Let	GAC 1 Asp	>>
2980		25	990			3000) *		30	010		•	3020		
TTA AA Leu Ly:	A GAT s Asp	GCC Ala	Phe	TTC Phe	Cys	CTY Le	G AG. u Ar	A TTA g Lei	A CAC	ccc s Pro	AC Th	r AC : Se:	C CAV	A CCA 1 Pro	A >>
303	*	*		40		•	3050		٠	306	*			070	
CTT TT Leu Ph	T ACC e Thr	TTC Phe	GA/ Glu	TYP TYP	G AG	A GA g As	p Pr	A GG o Gly	r ACt y Th	g og r Gl	A AG y Ar	A AC g Th	c cc r Gl	G CAG y Gli	G N>

```
3080 3090 3100 3110 3120 (SEQ ID NO: 2)
CTC ACC TOG ACC CGA CTG CCC CAA GCG TTC AAG AAC TCC CCG ACC ATC
Leu Thr Trp Thr Arg Leu Pro Gln Gly Phe Lys Asn Ser Pro Thr Ile>
     3130 3140 3150 3160
TTT GAC GAA GCC CTA CAC AGG GAC CTG GCC AAC TTC AGG ATC CAA CAC
Phe Asp Glu Ala Leu His Arg Asp Leu Ala Asn Phe Arg Ile Glm His>
      3180 3190 3200 3210
CCT CAG CTG ACC CTC CTC CAG TAC GTG GAT GAC CTG CTT CTG GCG GGA
Pro Gln Val Thr Leu Leu Gln Tyr Val Asp Asp Leu Leu Leu Ala Gly>
3220 3230 3240 3250 3260
CCC ACC AAA CAG GAC TOC TTA GAA OGT ACG AAG GCA CTA CTG CTG GAA
Ala Thr Lys Gln Asp Cys Leu Glu Gly Thr Lys Ala Leu Leu Leu Glu>
3270 3280 3290 3300 3310
TTG TCT GAC CTA GGC TAC AGA GCC TCT GCT ANG ANG GCC CAG ATT TGC
Leu Ser Asp Leu Gly Tyr Arg Ala Ser Ala Lys Lys Ala Gln Ile Cys>
 3320 3330 3340 3350
ACC AGA GAG GTA ACA TAC TITG GGG TAL ALT TITG CGG GGC GGG CAG CGA
Arg Arg Glu Val Thr Tyr Leu Gly Tyr Ser Leu Arg Gly Gly Gln Arg>
     3370 3380 3390 3400
TOG CTG ACG GAG OCA COG AAG AAA ACT GTA GTC CAG ATA CCC GCC CCA
Trp Leu Thr Glu Ala Arg Lys Lys Thr Val Val Gln Ile Pro Ala Pro>
         3420 3430 3440 3450
ACC ACA CCC AAA CAA GTG AGA GAG TIT TTG GGG ACA GCT GGA TIT TGC
Thr Thr Ala Lys Gln Val Arg Glu Phe Leu Gly Thr Ala Gly Phe Cys>
 3460 3470 3480 3490 3500
• • • • • • • • • • •
 AGA CTG TGG ATC CCG GGG TTT GCG ACC TTA GCA GCC CCA CTC TAC CCG
 Arg Leu Trp Ile Pro Gly Phe Ala Thr Leu Ala Ala Pro Leu Tyr Pro>
 3510 3520 3530 3540 3550
 CTA ACC AAA GAA AAA GOG GGT TOC TTA CCT CAG CAG OGA GOG AAA TA AAG
 Leu Thr Lys Glu Lys Gly
            Lys Arg Gly Leu Leu Thr Ser Ala Gly Arg Glu Ile Lys>
 AAC AAA GAG GAA ATT CTA AGC CTA TTA GAA OOC TTA CAT TTG OOA AAA
 Asn Lys Glu Glu Ile Leu Ser Leu Leu Glu Ala Leu His Leu Pro Lys>
  3610 3620 3630 3640 3650
 AGG CTA GCT ATT ATA CAC TGT CCT GGA CAT CAG AAA OCC AAA GAT CTC
 Arg Leu Ala Ile Ile His Cys Pro Gly His Gln Lys Ala Lys Asp Leu>
```

FIGURE 2, CONT.

	(ID NO: 2) nt'd
ATA TOT AGA GGG AAC CAG ATG GCT GAC CGG GTT GCC AAG CAG GCA GCC CO Ile Ser Arg Gly Asn Gln Met Ala Asp Arg Val Ala Lys Gln Ala Ala>	
3700 3710 3720 3730 3740	
CAG OCT GTT AAC CTT CTG CCT ATA ATA GAA ACG CCC AAA GCC CCA GAA Gln Ala Val Asn Leu Leu Pro Ile Ile Glu Thr Pro Lys Ala Pro Glu>	
3750 3760 3770 3780 3790	
CCC AGA CGA CAG TAC ACC CTA GAA GAC TGG CAA GAG ATA AAA AAG ATA Pro Arg Arg Gln Tyr Thr Leu Glu Asp Trp Gln Glu Ile Lys Lys Ile>	
3800 3810 3820 3830 3840	
GAC CAG TTC TCT GAG ACT CCG GAG GGG ACC TGC TAT ACC TCA TAT GGG Asp Gln Phe Ser Glu Thr Pro Glu Gly Thr Cys Tyr Thr Ser Tyr Gly>	
3850 3860 3870 3880 3890	
AAG GAA ATC CTG CCC CAC AAA GAA GOS TTA GAA TAT GTC CAA CAG ATA Lys Glu Ile Leu Pro His Lys Glu Gly Leu Glu Tyr Val Gln Gln Ile>	
3900 3910 3920 3930	
CAT CGT CTA ACC CAC CTA GGA ACT AAA CAC CTG CAG CAG TTG GTC AGA His Arg Leu Thr His Leu Gly Thr Lys His Leu Gln Gln Leu Val Arg>	
3940 3950 3960 3970 3980	
ACA TOO COT TAT CAT GTT CTG AGG CTA CCA GGA GTG COT GAC TOO GTG Thr Ser Pro Tyr His Val Leu Arg Leu Pro Gly Val Ala Asp Ser Val>	
3990 4000 4010 4020 4030	
GTC AAA CAT TGT GTG CCC TGC CAG CTG GTT AAT GCT AAT GCT TGC AGA Val Lys His Cys Val Pro Cys Gln Leu Val Asn Ala Asn Pro Ser Arg>	
4040 4050 4060 4070 4080	
ATA CCT CCA GGA AAG AGA CTA AGG GGA AGC CAC CCA GGC GCT CAC TGG Ile Pro Pro Gly Lys Arg Leu Arg Gly Ser His Pro Gly Ala His Trp>	
4090 4100 4110 4120 4130	
GAA GTG GAC TTC ACT GAG GTA AAG CCG GCT AAA TAC GGA AAC AAA TAT Glu Val Asp Phe Thr Glu Val Lys Pro Ala Lys Tyr Gly Asn Lys Tyr>	
4140 4150 4160 4170	
CTA TTG GTT TTT GTA GAC ACC TTT TCA GGA TGG GTA GAG GCT TAT CCT Leu Leu Val Phe Val Asp Thr Phe Ser Gly Trp Val Glu Ala Tyr Pro>	
4180 4190 4200 4210 4220	<i>;</i>
ACT AAA AAA GAG ACT TCA ACC GTG GTG CCT AAG AAA ATA CTG GAG GAA Thr Lys Lys Glu Thr Ser Thr Val Val Ala Lys Lys Ile Lou Glu Glu>	

4230			424	10		425	0	_	4	260			427	70			Q II	ONC): 2)
ATT T	TT C	CA A	NGA T	* TTT G Phe G	GA AT	ra CC Le Pr	T AAG o Ly:	G GT s Va	A AT	'A GC .e Gl	S TO	ca (BAC A	NAT C	ely>		JOHE	· u	
	80		-9	4290			4300			43:	_			4320					
· CCA C	· cri	TC (* 3 TT (0 000	, DAG G	* TA AC	T CA	G QC	A C	rg G	ЭС А	AG	ATA '	TTG (3336 3146				
Pro I	lla F	he '	Val	Ala (Sln V	al Se	er Gi	n Gl	.y 🗷	eu A	ıa L	,y S	70	Leu (4380	n			
TTA	433	*	•	434(*	150 •	יאר ז	43	*			•	OGA		•			
Ile A	GAT (Asp	rg a	Lys	Leu	His	Cys A	la 1	yr i	Arg	Pro	Gln	Ser	Ser	GJA	Gln	>			
		438		•	439	*	+	44	*		•	441	*	٠					
GTA (GAG Glu	AGG Arg	ATG Met	AAT Asn	AGA A	icc a'	rr A/ le Ly	AA G ys G	AG A lu T	cc c hr L	mr 1 .eu 1	ACC Thi	ANN Lys	TTG Leu	ACC Thr>				
4420			430			4440			445				4460						
* ACA	GA:G	ACT	GGC	TTA	AAT (AT T	GG A	rg g	CT C	TC (TIG (z~o CCC	TTT	GTG Val	CTT				
		Thr			Asn A	T GZA	90 æ	ec <i>r</i>	ud 1	4500		0		510	D. W				
447		•		480	አርር ፣	· CCT G	•	'AG T	* TTT (*	ACC	ccc	* TAT	AAA				
Phe	Arg	Val	Arg	Asn	Thr	Pro C	sly G	ln I	?he (Gly	Leu	Thr	Pro	Tyr	Lys:	>			
4	4520 •		•	45		•	454	*		•	550		•	45	*				
TIG Leu	CTC Leu	TAC Tyr	GCC	GGA Gly	Pro	CCC (Pro 1	ro I	MG (Leu ,	SCA Ala	GAA Glu	ATT	Ala	Phe	· GLA · Ala	His	>			
	4	570			4580			459	0	*	46	500		*	4510 *				
AGT	GCT	GAT	GIG	CTG	CTT	TCC (CAG (CT Pro	TTG Leu	TTC Phe	TCT Ser	ACC Arc	G CIY	Lys	GCCG Ala	; i>			
Jei	ALG		520 520	L		630			640				650						
CTC	• C GAC	محملات	· ~	, DOA D	G CAG	• CGA	ccc ·	* TGG	• AAG	CAG	CIC	cc	G GA	e ecc	TAC	3			
Lev	ı Glu	ן צל ד	p Va	l Arq	g Gln	Arg	Ala	Trp	Lys	GIn	Leu	. Ar	g G1 470	u Air	ı Tyr	?			
4660		•	467			468	•	•		590 •	Chi	•		*	ייי גיייריייי	A			
TC) Se:	A OG	y Gl	y As	c Tr	u Gln	CTT Val	Pro	His	Arg	Phe	Glr	ı Va	l Gl	y As	p Se	r			
	710		*	4720		•	4730 *		•		40			4750 *					
GT Va	· ጥለ	r Gi r Va	T AC	A CG	C CAC	CGT Arg	GCA Ala	GGA Gly	AAC Asn	Leu	GAC Glu	א כ ור נ	or Co or Ai	e ta	G AA	G s>			
	476				770			780			479				1800				
GG	A CC	T TA	AT C	rc GI	A CT	r TTG : Leu	ACC	ACA Thr	CCA	ACC	c VT	T G a V	TG A	AA G1 ys Va	C GA	AA Lu>			

4810	4820	4830	4840	485C	(SEQ ID NO: 2 cont'd
GGA ATC CCC TI Gly Ile Pro Le	A AGC TTC GCC TC u Ser Phe Ala Se	C ATC GCG TC er Ile Ala Tr	X3 TTC CTT A .p Phe Leu T	CT CTG TCA hr Leu Ser>	
4860	4870	4880	4890	•	
ATA ACT CCT C	A CTT AAT OCT A In Val Asn Gly L	AA COC CIT G ys Arg Leu Va	NG GAC AGC C al Asp Ser F	rcg AAC TCC Pro Asn Ser>	
4900 493		493	* *	940	
CAT AAA CCC T His Lys Pro L	TA TCT CTC ACC T Bu Ser Leu Thr T	OG TTA CTT A TP Leu Leu T	CT GAC TCC (hr Asp Ser (OGT ACA OGT Gly Thr Gly>	
4950	* *	* *	4980	4990	
ATT AAT ATT A Ile Asn Ile A	AC AGC ACT CAA C sn Ser Thr Gln C	XXX GAG GCT C Gly Glu Ala P	TCC TTG GGG . To Leu Gly	ACC TOG TOG Thr Trp Trp>	
5000	5010	5020	5030	5040	
CCT GAA TTA T	TAT GTC TGC CTT (TYP Val Cys Leu	CGA TCA GTA A	VTC CCT OGT	CTC AAT GAC Leu Asn Asp>	
5050	5060	5070	5080	5090	
CAG GCC ACA (Gln Ala Thr :	CCC CCC GAT GTA' Pro Pro Asp Val	CTC CGT GCT ' Leu Arg Ala '	TAC GGG TIT Tyr Gly Phe	TAC GTT TGC Tyr Val Cys>	
510	0 5110	5120	513	30	
CCA GGA CCC Pro Gly Pro	CCA AAT AAT GAA Pro Asn Asn Glu	GAA TAT TGT Glu Tyr Cys	GGA AAT CCT Gly Asn Pro	CAG GAT TTC Gln Asp Phe>	
51.40 5	150 516	50 51	.70	5180	
TTT TGC AAG Phe Cys Lys	CAA TGG AGC TGC Gln Trp Ser Cys	ATA ACT TCT Ile Thr Ser	AAT GAT OOG Asn Asp Gly	AAT TOG AAA Asn Trp Lys>	
5190	5200	5210	5220	5230	
TOG CCA GTC Trp Pro Val	TCT CAG CAA GAC Ser Gln Gln Asp	AGA GTA AGT Arg Val Ser	TAC TCT TTT Tyr Ser Phe	GTT AAC AAT Val Asn Asn	,
5240	5250	5260	5270 * *	5280	•
CCT ACC AGT Pro Thr Ser	TAT AAT CAA TTI Tyr Asn Gln Phe	AAT TAT OGC Asn Tyr Gly	CAT COG AC	A TOG AAA GAT g Typ Lys Asp	>
5290	5300	5310	5320	5330	
TOG CAA CAO Trp Gln Glr	COG GTA CAA AAA Arg Val Gln Lys	A GAT GTA CGA 5 Asp Val Arg	A AAT AAG CA J Asn Lys Gl	A ATA AGC TGT n Ile Ser Cys	· ·>
53	5350	5360	5	370	
CAT TOG TTA His Ser Lev	A GAC CTA GAT TW J ASP Leu ASP Ty	C TTA AAA ATA r Leu Lys Ile	NGT TTC AC	T GAA AAA OGA ur Glu Lys Gly	\ \?
	FIG	URE 2, CON	IT.		

5380	5390		5400	5410	•	5420	(SE	EQ ID No cont'd	D: 2)
* AAA CA Lys Gl	A GAA AAT n Glu Asn	ATT CAA	AAG TOG CI Lys Tip Va	TA AAT GGT al Asn Gly	ATA TCT Ile Ser	TOG GGA Trp Gly	ATA Ile>		
5430		440	5450	54 •	60	5470			
GTG TX Val Ty	C TAT CC/ T Tyr Gly	OCC TCT Gly Ser	GGG AGA A Gly Arg L	AG AAA OG! ys Lys Cly	TCT GTT Ser Val	CTG ACT	ATT Ile>		
541		5490	550 *	• •	5510	557	•		
CGC C Arg L	IC AGA AT eu Arg Il	A GAA ACT e Glu Thr	CAG ATG C	SAA CCT CO	GTT GC	a Ile Gly	Pro>		
		30	5540	555 *		5560	G) C		
	AAT AAC Asn Lys	GGT TTG Gly Leu	GCC GAA C Ala Glu G	AA GGA CCT ln Gly Pro	Pro Ile	Gln Glu	Glr>		
	.70	5580	55 ⁻		5600	•	10		
AGG (Arg 1	CA TCT CO Pro Ser P	CT AAC CCC to Asn Pro	TCT GAT	TAC AAT AC Tyr Asn Ti	A ACC TO ir Thr Se	er Gly Ser	Val>		
•	5620	563		5640	5650		5660		
CCC . Pro	ACT GAG C Thr Glu P	CT AAC AT TO ASN Il	C ACT ATT e Thr Ile	AAA ACA G Lys Thr G	ly Ala Ly	ys Leu Ph	e Ser>		•
	5670		5680 *	5690	*	5700 * CT CC) GN	ت ترست *		
CTC Leu	ATC CAG C Ile Gln C	KA OCT TI Sly Ala Pr	T CAA OCT ne Gln Ala	CIT AAC 1 Leu Asn S	er Thr T	hr Pro Gl	u Ala>		
5710		720	5730 *	574	* *	5750	• O4O T4		
ACC Thr	TCT TCT Ser Ser	IGI IGG C Cys Trp L	TT TGC TTA eu Cys Leu	Ala Ser (Sly Pro F	ro Tyr Ty	r Glu>		
57		5770 •	5780		5790	1980 * וב דיבר בכר	•		
GGA Gly	ATG OCT Met Ala	AGA GGA G Arg Gly G	OG AAA TIO Ily Lys Phe	a Asn Val	Thr Lys (Glu His A	rg Asp>		
	5810	5820	*	5830	5840	*	5850 *		
Glr CA	TGT ACA Cys Thr	TGG GGA T	rcc caa aa Ser Gln As	n Lys Leu	Thr Leu	Thr Glu V	al Ser>		
,	5860		370	5880	+	90 * .	5900 *		
GJ.	AAA GGC y Lys Gly	ACC TGC . Thr Cys	ATA GGG AT Ile Gly Me	t Val Pro	Pro Ser	His Gln I	His Leu>	•	
		10	5920 *	5930	ייי אר מיירי א	5940 •	ייים ידמיד		
TG CY	T AAC CAC s Asn His	ACT GAA Thr Glu	GCC TTT A Ala Phe A	aT CGA ACC sn Arg Thr	Ser Glu	Ser Gln	Tyr Leu	>	

5950	59	960		5970	5	980	*	5990		•	(SEQ I	D NO	2)
GTA (ccr ccr '	* TAT G	C AGG	10G 10G	GCA TGT	TAA	ACT GG	a TTA	ACC Thr	CCT Pro>			
Val	CCT GGT ' Pro Gly '	Tyr As	sp Arg '	IID ITD	ята Суз			-	040				
600		601		6020 * *	•	6030	•	,	*	7.0V			
TGT Cys	GTT TCC Val Ser	ACC T Thr L	TG GTT eu Val	TTC AAC Phe Asn	Gln Thi	Lys .	GAC TI Asp Ph	ne Cys	Val	Met:	>		
	6050		6060	•	070	*	080		609	•			
* GTC Val	CAA ATT Gln Ile	GTC C	to Arg	GTG TAC	TAC TAC TYT TY	r CCC r Pro	GAA A Glu L	AA GCA ys Ala	GTC Val	CTT Leu	>		
	6100		6110		6120		613	*	*	6140			
* GAT ASP	GAA TAT Glu Tyr	GAC (IAT AGA Iyr Arg	TAT AA'	r COG CC	A AAA o Lys	AGA C	AG CCC Slu Pro	TATA	TCC Ser	: ->		
		.50		160	617		•	6180	,				
CTC Let	ACA CTA Thr Leu	* GCT i Ala	GTA ATG Val Met	CTC GG	A TTG GO y Leu G	A GTG ly Val	OCT (GCA GO Ala Gl	C GTC y Val	GC/	\ (*		
6190		6200		6210		6220		623 •	0				
AC. Th	A GGA AC r Gly Th	G GCT r Ala	GCC CIV	A ATC AC L Ile Th	A GGA C ur Gly F	CG CAA	CAG n Glm	CTG GA Leu Gl	G AA .u Ly	A GG s Gl	A جرح		
	240		250	62	+	*	270	*	6280				
CI Le	* T AGT AA eu Ser As	* .C CTA in Leu	CAT CG His Ar	A ATT G g Ile V	TA ACS (al Thr (IAA GA Slu Asj	T CTC p Leu	CAA C Gln A	CC CI la Le	'A GA eu Gl	u>		
	6290		6300		6310		6320			5330			
A/ Lv	• AA TCT GI ys Ser Va	* C AGI al Ser	* AAC CI Asn Le	ng GAG G eu Glu G	AA TCC (Slu Ser	CTA AC Leu Th	rc TCC ir Ser	TTA T Leu S	CT G er G	NA G	rG al>		
	6340		635		636			370		63			
G	* TT CTA C 'al Leu G	* AG AAI ln Asi	* CAGA A n Arg A	· cc ccc ' rg Gly !	* TTA GAT Leu Asp	CTG TI Leu Le	ra TIT eu Phe	CTA A	AAA G Jys G	AA G Slu G	GA ly>		
		6390		6400		5410	*	642	_	*			
C	DOG TTA T Gly Leu (r Gr Gr Cys Va	A GCC I 1 Ala I	TA AAA eu Lys	GAG GAA Glu Glu	TGC T Cys C	GC TI Ys Ph	e Tyr	GTA (Val <i>l</i>	O TAS	CAC His>		
643	30	644	ıC	645	50	646	50 *	• 6	470		. .		
•	* TCA GGA (Ser Gly)	* SCC M Ala I!	* C AGA (le Arg /	GAC TCC Asp Ser	ATG AGC Met Ser	AAG C Lys I	MT AG Leu Ar	A GAA g Glu	AGG ' Arg	TTA (Leu	GAG Glu>		
	6480	,	6490		6500		6510	*		20			
	ACG CGT Arg Arg	CGA A Arg A	G GAA	AGA GAG Arg Glu	OCT GAC	CAG (OOG TO Gly Ti	G TTT Op Phe	GAA Glu	CCA Gly	ליזT) אייזד)		

6530	6540 * *	6550	6560	•	*	(SEQ ID NO: 2) cont'd
TIC AAC AGG TCT Phe Asn Arg Ser	CCT TOG ATG	The The Lev	Leu Ser Al	la Leu Th	r Gly>	
6580	6590	6600	6610		662C •	
CCC CTA GTA GTC Pro Leu Val Val	CTG CTC CTG Leu Leu Leu	TTA CTT AC Leu Leu Th	A GTT GOG C r Val Gly P	OT TGC TI ro Cys Le	N ATT	
6630	6640	665 *	* *	6660	*	
AAT AGG TIT GT Asn Arg Phe Va	r GCC TTT GTT l Ala Phe Val	AGA GAA CG Arg Glu Ar	A GTG AGT G g Val Ser A	CA GTC CI la Val G	AG ATC ln Ile>	
6670 668	_		6700	6710	•	
ATG GTA CTT AG Met Val Leu Ar	G CAA CAG TAC g Gln Gln Tyr	CAA GOC CI Gln Gly Le	MT CTG AGC (eu Leu Ser (CAA OGA C Gin Gly G	AA ACT Slu Thr>	
	730 6740	*			770	
GAC CTC TAGCCT Asp Leu>	MC CCAGTICTAA	GATTACAAC	T ATTAACAAG	A CAAGAAC	etog	
6780	6790	6800	6810	6820	683	•
GGAATGAAAG GA	TGAAAATG CAAC	CIVACC CICC	CAGNAC CCAC	GAAGTT A	АААА АТА	∞
6840	6850	6860	6870	6880	68 *	•
TCTAAATGCC CC	CGAATTCC AGAC	caicai oca	CCCAGT AAA	raggtag A	AGGTCAC	AC
6900	6910	6920	6930	6940	69 *	•
TICCTATIGE TO	CAGGGCCT GCTA	TOCTOG CCT.	aagtaag ata	ACAGGAA A	ATGAGTTO	<u> </u>
6960	6970	6980	6990	7000	•	
TAATCCCTTA T	CTGGATTCT GTA	AAACTGA CTG	GCACCAT AGA	AGAATIG A	ATTACAC	ATT
7020	7030	7040	7050	7060	7	070
GACAGCCCTA G	TGACCTATC TCA	ACTGCAA TC	IGICACIC IO	CCAGGAG	CCCACOC	NGA
7080	7090	7100	7110	7120		130
TGCGGACCTC (COGAGCTATT TTA	AAATGAT TG	JICCACOG AO	CGCCGGGCI	CTCGATA	ATTT
7140	7150	7160	7170	7180		7190
TAAAATGATT (GTICCATOGA GCI	SCERCETC TO	CATATIIT A	AATGATTG	Gillian	GACG
7200	7210	7220	7230	7240	•	7250
CACAGGCTTT	GTIGTGAACC CC	ATAAAAAC TO	TCCCCATT C	CCACTCGG	000000	AGTC

FIGURE 2, CONT.

7260 7270 7280 7290 7300 7310 (SEQ ID NO: 2)
CTCTACCCCT CCGTGGIGTA CGACTGTGGG CCCCAGCGCG CTTGGAATAA AAATCCTCTT

7320 7330
GCTGTTTGCA TCAAAAAAAA AAA

FIGURE 2, CONT.

10	2	0 .30	40	50	60	(SEQ ID NO: 3)
CCCTCCTCTA	CCACTGTGG	c caccyeaca	CTIGGAATAA	AAATCCTCTT	CCTGTTTGCA	
70	8	i0 90	100	110	120	
TCAAGACCCC		C TCATTAAGC				
130	14	10 15) 160	170	180	
	TIACATTIC	E COCTOSTO	COCCATCTOTO	CCCCCCACCC	CTAACACCCG	
190	20	00 21) 220	230	240	
AGAACCGACI	''ITXGAGGTAI	AA AAGGATCCT	TTTTTAACGI	GTATGCATGT		
250		50 27				
GTCTCTGTTC		* * IG TITTICAGIG				
310) 32	20 33	0 340	350	360	
AGGCCGTAAC	GCTGCCC	BA CTGTGATCA	CAGACCTCC	ACCACGATICA	CAGGCTGCTG	
370) 31	80 39	0 400) 410	420	
CCCIGGGGG	, ceccees	·	У ОССУДДДУС	calcalcalc	TCCTACTGTC	
430) 4	40 45	0 460	370		
			C GAAAGCTTC		CCCTCCGACT	
49	0 5	00 51	-	530		
· CTTTTGCCT		AG ACGTCGACO			TIGGITICIG	•
55	0 5	60 5	70 58	0 9	590	
TTTTGTGTG	· · · T CTTTGTCI	TG TGTGTCCT	· · · NG TCTACAGTT	· · · T TAAT ATG (GA CAG ACG	
				Met (Gly Gln Thr>	
600	610	*		630	640 *	
GTG ACG A Val Thr T	CC CCT CT hr Pro Lei	AGT TTG AC Ser Leu Th	r CTC GAC CA r Leu Asp Hi	T TOG ACT G s Trp Thr G	AA GTT AAA lu Val Lys>	
650	*	560	670	680	690	
TOO AGG O	CT CAT AA	TTG TCA GT	r cag git az	G AAG OGA C	CT TOG CAG	
					740	
*		710 * * * T GAA TGG CC	720 * G ACA TIC GA			

FIGURE 3

Thr Phe Cys Val Ser Glu Trp Pro Thr Phe Asp Val Gly Trp Pro Ser>

	750		760		770		*	780			(SEQ ID NO: 3 cont'd
GAG GGG Glu Gly	ACC TI	r AAT 1 e Asn S	CT GAG Ser Glu	ATT A	TC CTG le Leu	OCT G Ala V	TT AN Val Lys	GCA Ala	GTT . Val	ATT Ile>	
790	80			10		320		830		•	
TTT CAG	* ACT GG Thr Gl	* A CCC (v Pro (SC TCT	CAT C	CC GAT	CAG C	BAG CO Blu Pr	C TAT O Tyr	λTC Ile	CIT Leu>	
840	01	850	3	860	_	-870			380		
ACG TGG	* CAA GA Gln As	T TTG	* GCA GAG Ala Glu	GAT C	CT CCC	CCA '	IOG GI Trp Va	T AAA l Lys	CCA Pro	TCC Trp>	
890		. 90		91			920	_		30	
CTG AA	r AAG CC n Lys Pr	LA AGA	* AAG CCA	GT (* DCC CGA Pro Arg	ATT Ile	CIG GC Leu Al	T CTT .a Leu	oga Gly	GAG Glu>	
Dea Asi	940	.0 .2.9	950		960		970			980	
AAA AA	C AAA C n Lys H	* AC TOG	GCT GAZ	A AAA (onc AAC Val Lv:	CCC S Pro	TCT C	T CAT TO His	ATC	TAC Tyr>	
Lys As:	990	12 Ser	1000	, by	101			1020			
* CCC GA	G ATT G u Ile G	AG GAG	CCA CC	G GCT	* TGG CCI	· G GAA	ecc c	* AA TCI ln Sei	f GTI Val	CCC Pro>	
Pro G1		40		050		1060		107			
~ ·	د ست ۱ ۴	יאיה כחוב •	GCA CA	· s cor	• • • • • • • • • • • • • • • • • • •	G AGG	GGA C	CC TT	. ccc	CCT	
	ro Pro T	yr Leu 1090	Ala Gl	n Gly	Ala Al	a Arg 11			1120	1 1102	
1080 * CCT G	* GA GCT (*	GIG G	* AG OGA	ccr cc	T GCA	+ GGG A	CT CC	G AC		
Pro G	ly Ala I	Pro Ala	(Val Gl	u Gly	P∓o Al 150	a Ala	1160	nr Ar	g se	r Arg> 170	•
AGG G	*	* *	.40 * GAG C	G ACA	• GAC G≟	* AG ATC	· ccc	* CA TI	A CC	c crc	
Arg G	ly Ala	Thr Pro	o Glu A	rg Thr	Asp G	lu Il∈	Ala .	inr Le	ru Pr	o Leu:	•
*	1180 * ACG TAC	~ ~	1190 *	* CA (Y)	1200 • GGG G	GC CAA	. TTG	*	* CC CI	*	
Arg 1	hr Tyr	Gly Pro	o Pro T	hr Pro	o Gly G	ly GI	n Leu	Gin P	ro Le	eu Gln	>
	123 * **********************************		124	*	*	50 * 'מב ידמי	* TTGG	1260 * AAA A	CT A	AC CAT	
TAT I	Lth 5to	Phe Se	r Ser A	la Asp	Leu 1	yr As	n Trp	Lys T	hr As	sn His	s>
1270	*	1280		1290		1300		•	10 •	* AC: TYY	•
ccc (CT TIC	TCG GA	NG GAT (Ju Asp 1	CC CA Pro Gl:	a CCC (n Arg !	eu Th	r Gly	Leu V	al G	lu Ser	- :>

1320	13	30	1340			135	0		13	60		(SEQ ID NO: 3 cont'd)
CTT ATG	TTC TCT Phe Ser	CAC CAC His Glr	CCT ACT	Trp	GAT Asp	GAT Asp	TGT Cys	CAA Gln	CAG Gln	CTG Leu	CIG Leu>	COILC G	
1370		1380	. 1	390		. 1	400		*	141	.0		
CAG ACA Gln Thr	CTC TTC Leu Phe	ACA ACC	GAG GAC	CGA Arg	GAG Glu	AGA Arg	ATT Ile	CTA Leu	TTA Leu	GAG Clu	OCT Ala>		
14	420	143	D * *	14	40	•	14	450 *			1460		
AGA AAA Arg Lys	AAT GTT Asn Val	Pro Gl	G GCC GA y Ala As	c GGG p Gly	CGA Arg	CCC Pro	ACG Thr	CGG Arg	TTG Leu	CAA Gln	AAT Asn>		
	1470		1480	•	1490		•	15	00				
GNG ATT	GAC ATO	G OGA TI Gly Ph	T CCC TI se Pro Le	A ACI u Thr	CGC Arg	CCC	Gly	TYP	GAC Asp	TAC Tyr	AAC Asn>		
1510	1520)	1530	,	. 1	540		*	1550		•		
ACG GCT Thr Ala	GAA GG Glu Gl	r acc ca y arg ci	AG AGC TI lu Ser Le	C AAA	A ATC	TAT TYT	CGC Arg	CAC Glr	G GCT n Ala	CTC a Leu	GTG Val:	,	
1560	*	1570	158	*	*		590 •		•	1600			
GCG GGT Ala Gly	r CTC CG y Leu Ar	G CCC CA g Cly A	CC TCA A la Ser A	GA CG rg Ar	g Pro	C AC	r AA: c Asi	r TN n Le	g cc u Al	r AX a Ly:	G GTA S Val:	>	
161		1620	•	1630			164	*			650 •		
AGA GA Arg Gl	a GTG AT u Val Me	CG CAG G	GA CCG A ly Pro A	AT GA Sn Gl	ιλ CC .u Pr	c cc o Pr	c TC o Se	T GI r Va	T TI .1 Ph	T CT e Le	T GAG u Glu	; ;>	
•	1660		70				•	1690		•	1700	•	
AGG CT Arg Le	C TTG G Leu G	AA GCC I lu Ala E	MC AGG C The Arg A	CG T/	AC AC	x CC ur Pr	T TI o Pr	T GF ne As	T CC Sp Pi	C AC	r Se:	A >	
	1710	•	1720 *	*	173	30 *		. 1	1740 •		*		
GAG GC Glu Al	CC CAA A la Gln L	AA GCC ' ys Ala :	NCA GTG (Ser Val)	GCT T Ala L	TG CX eu Al	CC T la Pl	m Al ne Il	ra G Le G	GA CI ly Gi	AG TY In Se	er Ala	C a>	
1750		60	177	•	•	178	*	*	17	*	•		
TTG G Leu A	AT ATT A sp Ile A	AGA AAG Arg Lys	AAG CTT Lys Leu	CAG A Gln A	GA C	TG G eu G	AA G lu G	OG T ly L	TA C eu G	AG G ln G	AG CC lu Al	T a>	
1800		1810	•	820			1830 *		*	184	*		
GAG T Glu L	TA CGT (eu Arg /	GAT CTA Asp Leu	GTG AAG Val Lys	GAG (Glu /	SCA G Ala C	AG A	.AA G .ys V	TAT Val T	'AT I	AC A Yr L	AA AC ys Ai	eg>	
*	350	18		18	*	,		*		•	1890		
GAG /	NCA GAA Thr Glu	GAA GAA Glu Glu	AOG GAA Arg Glu	CAA . Gln .	AGA / Arg !	Lys (GAG <i>F</i>	rd (GAA A Glu A	AGA (GAG G	AA lu>	

		10	900		1	910			192	20		19	30		1	940	(SEQ ID N	IO: 3)
	*		*		*	*		•		*	*		•		•	*	cone d	
	AGG Arg	GAG Glu	GAA Glu	AGA Arg	CGT Arg	AAT Asn	ANA Lys	CCC Arg	CAA Gln	GAG Glu	AAG Lys	AAT Asn	TIG Leu	ACT Thr	AAG Lys	ATC Ile>		
		_	19	50		19	96Ó		. !	1970			199	30	*			
	TTG	GCT	OCA	GTG	GTT	GAA	600C	AAA	AGC	AAT	ACC	GAA	AGA	GAG	AGA	GAT Asp>		
	œu	ALA	ALa	val	vaı	GIU	Giy	Lys	Ser	ASII	1111	Giu	λιg	GIU	rrg	~db>		
1	990			2000		*	201	10		20	020			2030				
	TTT Phe	AGG Arg	AAA Lys	ATT Ile	AGG Arg	TCA Ser	OGC Gly	CCT Pro	AGA Arg	CAG Gln	TCA Ser	GGG Gly	AAC Asn	CTG Leu	GCC Gly	AAT Asn>		
	20				050			2060			20			_	080		•	
	AGG	* ACC	* CCA	CTC	GAC	AAG	GAC	CAA	TGT	GCA	TAT	TGT	AAA	GAA	AGA	OGA		
	Arg	Thr	Pro	Leu	Asp	Lys	Asp	Gln	Cys	Ala	Tyr	Cys	Lys	Glu	Arg	Gly>		
		2090			21	00		2	110		*	2120			21	30		
	CAC His	TOG Trp	OCA Ala	AGG Arg	AAC Asn	TGC Cys	CCC Pro	AAC Lys	AAG Lys	GGA Gly	AAC Asn	λλΑ Lys	GGA Gly	CCA Pro	AGG Arg	NTC Ile>		
		2	140		_	2150			216	0	٠	2170		2	180			
						GAT Asp				G 0G	AGAC	933G	TTC	OGAC	ccc			
	Leu		190	OLO		:00 :00	- L) 3	221			2220		2	230		2240	n	
	CITY	*	*	CCAC	*	*	خځکندند *		*	.0000	•		*	•	CCTG	GTTGA	*	
			2250			260		227			2280			290		2300		
		٠	•		*	*	•		•	•	•		*	•		•	•	
	ACC	CGGAC	3CGA	AACA	ATTC	KGT C	CTAC	TACA	s cc	CATTA	(GGA)	A.A.C	<u>M</u> AT:	ŇŒV	TAAA	ZTAAA	C	
			23	10		23	320			2330		_	234	10		235	0	
	TCX	ELC														CGA A		
			236	_			370			2380	-1-		2390				— 3	
		•		*	•		*		•	*	- C)	*	•	•	•			
																E ATA E Ile>		
2	400			2410			242	0		2	430		;	2440		•		
																S ATG		
	Pr	o Gl	u Cy	s Pr	o Al	a Pr	o Le	u Le	u Gl	у Лг	g As	p Len	u Lei	u Th	r Ly:	s Met>	•	
	245	0		2	460			2 4 70		٠	248	0		2	490 •			
																TAA A		
	GI	λ YT	الک ته	11 11	e se	r hu	رو ل	u GI	n OT	A PA	5 FI	0 61	u va	1 2e	r AT	a Asno	>	

25	500	0 2510 · · · · · · · · · · · · · · · · · · ·				252	0	•	29	530		. 2	2540		(SEQ ID NO: 3)	
															CGA Arg>	cont'd
	259	50		25	60 *		. 2	2570			258	30		25	590 •	
													TTC Phe		TTG Leu>	
	. :	2600			261	10		26	520			2630				
													ogr Gly		GCA Ala>	
2640		26	550		. 2	2660			267	70		26	580			
													GCC Ala		CCA Pro>	
2690			270	00	*	27	710		. :	2720		,	273	80		
_													GAA Glu		ATT Ile>	
2	740		. :	2750		*	27	50		2	770		. 2	2780		
													GTT Val		GTC Val>	
*	27	90		28	300		*	2810		*	282	20	*	28	330	
	TCT			AAT	* ACT		* CIG	CTA			AGA	λAG	cci Pro	œ	•	
	TCT Ser			AAT	* ACT	Pro	* CIG	CTA Leu			AGA Arg	λAG		œ	ACT	
Gln AAT	TCT Ser	CCC Pro 2840	Trp	AAT Asn •	ACT Thr 289	Pro 50 • CAG	CTG Leu GAC	CTA Leu 2:	Pro 860 AGA	Val GAG	AGA Arg	AAG Lys 2870	Pro AAA	ccc Gly ccc	ACT Third	
Gln AAT	TCT Ser	CCC Pro 2840 TAT Tyr	Trp	AAT Asn •	ACT Thr 289 GTA Val	Pro 50 • CAG	CTG Leu GAC	CTA Leu 2:	Pro 860 AGA	Val GAG Glu	AGA Arg	AAG Lys 2870 AAT Asn	Pro AAA	ccc Gly ccc	ACT Thr>	
AAT Asn 2880	TCT Ser GAC Asp	CCC Pro 2840 TAT Tyr	CGA Arg 890 *	AAT Asn CCA Pro	ACT Thr 289 GTA Val	Pro CAG Gln 2900 GTC	CTG Leu GAC Asp	CTA Leu 2: TTG Leu AAC	Pro 860 AGA Arg 29:	GAG Glu 10	AGA Arg GTC Val	AAG Lys 2870 AAT Asn 29	Pro AAA Lys 920 TTG	GCG Gly	* ACT Thr> GIG Val>	
AAT Asn 2880	TCT Ser GAC Asp	CCC Pro 2840 TAT Tyr	CGA Arg 890 *	AAT Asn CCA Pro	ACT Thr 289 GTA Val	Pro CAG Gln 2900 GIC Val	CTG Leu GAC Asp	CTA Leu 2: TTG Leu AAC	Pro 860 AGA Arg 29: CCT Pro	GAG Glu 10	AGA Arg GTC Val	AAG Lys 2870 AAT Asn 29	Pro AAA Lys 920 TTG	CCG Arg	ACT Thur> GIG Val>	
AAT Asn 2880 CAG Gln 2930	TCT Ser GAC Asp GAT Asp	CCC Pro 2840 TAT Tyr ZI ATA Ile	CGA Arg 890 * CAC His 29 CAA	AAT ASN CCA Pro CCA Pro CCA CCA	ACT Thr 289 GTA Val ACA Thr	Pro CAG Gln 2900 CTC Val 20 TCG	CTG Leu GAC Asp CCG Pro TAT	CTA Leu 2: TTG Leu AAC ASN	Pro 860 AGA Arg 29 CCT Pro	GAG Glu 10 TAT Tyr 2960	AGA Arg GTC Val AAC Asn	AAG Lys 2870 AAT Asn 2: CTC Leu	AAA Lys 920 * TTG Leu 29°	CCG Arg	ACT Thur> GIG Val> COT Ala>	
AAT Asn 2880 CAG Gln 2930	TCT Ser GAC Asp GAT Asp	CCC Pro 2840 TAT Tyr ZI ATA Ile	CGA Arg 890 * CAC His 29 CAA Gln	AAT ASN CCA Pro CCA Pro CCA CCA	ACT Thr 289 GTA Val ACA Thr	Pro CAG Gln 2900 CTC Val 20 TCG	CTG Leu GAC Asp CCG Pro TAT	CTA Leu 2: TTG Leu AAC Asn ACA	Pro 860 AGA Arg 29 CCT Pro	GAG Glu 10 TAT Tyr 2960 TIG Leu	AGA Arg GTC Val AAC Asn	AAG Lys 2870 AAT Asn 2: CTC Leu	AAA Lys 920 * TTG Leu 29'	CCG Arg	ACT Thir> GIG Val> CCT Ala>	
AAT Asn 2880 CAG Gln 2930 CTC Leu	TCT Ser GAC Asp GAT Asp CCA Pro	CCC Pro 2840 TAT Tyr 21 ATA Ile	CGA Arg 890 * CAC His CAA Gln * CIG	AAT Asn CCA Pro CCA Pro Arg	ACT Thr 28: GTA Val ACA Thr ACC Ser	Pro Pro CAG Gln 2900 Val TGG Trp CAC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTA Leu 2: TTG Leu AAC Asn ACA Thr	Pro 860 AGA Arg 29 CCT Pro GTA Val AGC	GAG Glu 10 TAT Tyr 2960 TIG Leu 3	AGA Arg GTC Val AAC Asn GAC Asp	AAG Lys 2870 AAT Asn 25 CTC Leu TTA Leu CTT	Pro AAA Lys 920 TTG Leu 29 AAG Lys	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	ACT Thr> GIG Val> CT Ala> CCC Ala>	
AAT Asn 2880 CAG Gln 2930 CTC Leu	TCT Ser GAC Asp GAT Asp CCA Pro	CCC Pro 2840 TAT Tyr 21 ATA Ile	CGA Arg 890 * CAC His CAA Gln * CIG	AAT Asn CCA Pro CCA Pro Arg AGA Arg	ACT Thr 28: GTA Val ACA Thr ACC Ser	Pro Pro CAG Gln 2900 Val TGG Trp CAC	CCG Leu GAC Asp CCG Pro TAT Tyr 30 CCC Pro	CTA Leu 2: TTG Leu AAC Asn ACA Thr	Pro R60 AGA Arg 29 CCT Pro GTA Val AGC Ser	GAG Glu 10 TAT Tyr 2960 TIG Leu 3	AGA Arg GTC Val AAC Asn GAC Asp	AAG Lys 2870 AAT Asn 29 CTC Leu TTA Leu CTT Leu	Pro AAA Lys 920 TTG Leu 29 AAG Lys	CCC Ala	ACT Thr> GIG Val> CTT Ala> TTC	

	. 3	080		•	309	0	*	31	.00		. 3	3110				(SEQ ID NO: 3)
CGA (Arg															OCC Ala>	
3120	*	31	.30		* 3	140			315			31	60			
CTA Leu	CAC His	AGA Arg	GAC Asp	CTG Leu	GCC Ala	AAC Asn	TTC Phe	ACG Arg	ATC Ile	CAA Gln	CAC His	CCT Pro	CAG Gln	GTG Val	ACC Thr>	
3170		*	318	30	•	31	.90			3200		*	321	. 0	*	
						GAC Asp									CAG Gln>	
32	20		_ 3	3230			324	0		3:	250		. :	3260		
						AAG Lys									CTA Lew	
	327	70		32	280			3290			33	00		33	310	
						AAG Lys									GTA Val>	
		3320			33	30	*	3	340			3350		,		
						TTG Leu									GAG Glu>	
3360		3	370		*	3380		*	33	90		3	400		*	
						GTC Val									AAA Lys>	
3410			34	20	*	3	430			3440			34	50	*	
						GGG Gly									ATC Ile>	
3.	460			3470			34	.80		3	490			3500		
															GAA Glu>	
•	35	10	•	. 3	520		*	3530			35	40		3	550 *	
															GCT Ala>	
		3560)		35	570	,	. 3	580			3590)			
															GTA Val>	
3600	,		610		٠	3620		•	36	530	·		8640		*	
															yrgs COG	

3650			366	0	•	36	70 *		3	680		•	36	90			EQ I cont	 D: 3)
GGA (GTT Val	TTA Leu	ACC Thr	CAA Gln	ACC (CTA Leu	GGA Gly	CCA Pro	TGG Trp	AGA Arg	AGA Arg	CCT Pro	GTC Val	GCC Ala	TAC Tyr>	-		
37	*		*	710		•	372	*	*		730		*	3740 •				
CTG Leu	TCA Ser	AAG Lys	AAG Lys	CTC Leu	GAT ASP	CCT Pro	CTA Val	GCC Ala	NGT Ser	CCT Gly	TGG Trp	CCC Pro	ATA	TGC Cys	CIG Lew	>		
	375	0		37	60			3770		+	37	80		3	790 *			
AAG	CCT	ATC	GCA	CCT	GTG	ccc	ATA	CTG	GIC	AAG	GAC	GCI	GAC	AAA	TTG			
Lys			Ala	Ala			TTE			Lys	No.			, Lys	Leu			
	*	3800		*	381	*	•		320		•	3830		•				
ACT Thr	TTG Leu	GGA Gly	CAG Gln	AAT Asn	ATA Ile	ACT Thr	GTA Val	ATA Ile	GCC Ala	Pro	His	: GC/	Let	GAG 1 Glu	Asn	>		
3840		3	850			3860			38	70			8880					
* ATC	CIT	ccc	* CAG	ccc	· CCA	GAC	CGA	. 103G	ATG	ACC	: AAC	GCC	. cc	OTA C	ACC	:		
Ile	Val	Arg	Gln	Pro	Pro	Asp	Arg	Trp	Met			Ala		j Met	Thr	'>		
3890		*		00	٠		910			3920	٠	•		930	•			
CAC His	TAT Tyr	CAA Glm	AGC Ser	CIG Leu	CTT Leu	CTC Leu	ACA Thi	GAG Glu	ACC Arg	GI Va	ACT L Th	G TT r Ph	e Ala	r ccr a Pro	CCA Pro) >		
	940			3950				960			3970			3980				
GCC	· GCT	r CIC	* CAAC	• cci	. ecc	ACI	CI	r CIO	ca	r GA.	۰ A G۸	G AC	т GA	T GA	A CCZ	Ą		
Ala	Ala	. Lei	ı Ast	n Pro	Ala	Thu	Lev	ı Let	ı Pro	o Gl	u Gl	u Th	r As	p Gli	u Pro	>>		
•	39	990		4	000			4010) •	•	4	020		•	4030			
GTG Val	AC.	r CAS	r GAS	TGC	CAT His	CA Gl	A CT.	a TTO u Leo	AT Il	T GA e Gl	G GA u Gl	G AC u Tr	T GC	g gr y Va	C CGG	g>		
		404		, ,,		250			1060			407	_					
AAC	* : GA:		*	*)AD A		*	G CT	G AC	r cc	A GA	AG1	rg cn	* CA AC	· OT OC	G TT	C		
Lys	AS	p Le	u Th	r Ası	o Ile	e Pr	o Le	u Th	r Gl	λ C;	u Va	al Le	eu Th	ır Tr	p Ph	e>		
4080			4090		*	410	0	*	4	110			4120	•	*			
AC	r GA	.c oc	A AG	C AG	C TA	T GI	G GI	G GA	A 00	T A	AG A	G A	rg ox	or oo la Gl	G GC	.G .a>		
		b GT		140	r ry	1 40	4150		u 0.	41		-9		4170	,			
413	*	•		*	~	*	•	•	*		•	Or L	•	ig ca	ים כו	Δ.		
Al.	G GI a Va	il Va	al As	ac GC ap Gl	y Th	ır Aı	rg Ti	r I	e Tr	A qr	la S	er S	er L	eu P	ro G	lu>		
	4180)		419	0			1200			421	0		42:	20			
GG G1	A AC Try	IT TO Ur Se	ZA GO er Al	CA CA	- VA AA Ln Ly	AG G /s A	CT G la G	AG CI	rc Ar eu M	rg g et A	CC C	TC A eu I	es c hr s	AA G	CT T	rG eu>		

4230	4240	4250	4260	4270	(SEQ ID NO: 3) cont'd
CGG CTG GCC (Arg Leu Ala (GAA GOG AAA TCC	C ATA AAC ATT	TAT ACG GAC AGC Tyr Thr Asp Ser	AGG TAT Arg Tyr>	
4280	4290	4300	4310		
GCC TTT GCG : Ala Phe Ala '	ACT GCA CAC GT Thr Ala His Va	A CAT GOG GCC 1 His Gly Ala	ATC TAT AAA CAA Ile Tyr Lys Gln	AGG GGG Arg Gly>	
4320 43	30 434	0 435	4360	•	
TTG CTT ACC Leu Leu Thr	TCA GCA GGG AG Ser Ala Gly Ar	G GAA ATA AAG g Glu Ile Lys	AAC AAA GAG GAA Asn Lys Glu Glu	ATT CTA	
4370	4380	4390	1400 44	110	
ACC CTA TTA Ser Leu Leu	GAA GCC GTA CA Glu Ala Val Hi	AT TTA CCA AAA is Leu Pro Lys	AGG CTA GCT AT Arg Leu Ala Ilo	r ATA CAC e Ile His>	
4420	4430	4440	4450	4460	
TGT CCT GGA Cys Pro Gly	CAT CAG AAA G His Gln Lys A	CT AAA GAT CTC la Lys Asp Leu	ATA TCC AGA GG Ile Ser Arg Gl	A AAC CAG y Asn Gln>	
4470	4480	4490	4500 * *	4510	
ATG GCT GAC Met Ala Asp	COG GTT CCC A Arg Val Ala L	AG CAG GCA GCC ys Gln Ala Ala	CTC TTT GIT AA Gln Gly Val As	C CTT CTG n Leu Leu>	
4520	4530	4540	4550	•	
CCT ATA ATA Pro Ile Ile	GAA ATG CCC A Glu Met Pro L	AA GCC CCA GAV ys Ala Pro Gli	A CCC AGA CGA CA 1 Pro Arg Arg Gl	NG TAC ACC .n Tyr Thr>	
4560 4	1570 45	80 45	4600		
CTA GAA GAC Leu Glu A sp	TOG CAA GAG A	ATA AAA AAG AT Ile Lys Lys Il	A GAC CAG TTC TO e Asp Gln Phe So	OT GAG ACT Er Glu Thro	•
4610	4620	4630	4640	4650	
CCG GAA GC Pro Glu Gly	G ACC TGC TAT I	ACC TCA GAT OG Thr Ser Asp Gl	G AAG GAA ATC C y Lys Glu Ile L	TG CCC CAC eu Pro His	>
4660	4670	4680 * *	4690	4700	
AAA GAA 60 Lys Glu Gl	G TTA GAA TAT y Leu Glu Tyr	GTC CAA CAG AT Val Gln Gln II	A CAT CGT CTA A e His Arg Leu T	CC CAC CTA Thr His Leu	>
4710	4720	4730	4740 * •	4750	
CGA ACT AA Gly Thr Ly	A CAC CTG CAG s His Leu Gln	CAG TTG GTC AG Gln Leu Val A	GA ACA TCC CCT T rg Thr Ser Pro T	TAT CAT GIT (yr His Va)	; :>
476	50 477	70 478	4790	•	
CTG AGG CT Leu Arg La	ra CCA OGA GTG	GCT GAC TCG C Ala Asp Ser V	TG GTC AAA CAT ' al Val Lys His	TGT GTG CCC Cys Val Pro	C >>

4800		48	10		4	820			4	830			48	340		*	(5		Q II cont): 3)
* 160	CAG	CIG	GTT	TAA	· cct	ТАА	CCT	1000	AG	λА	TG (CT	CCA	000	AA	3 A	GA			
Cys	Gln	Leu	Val	Asn	Ala	Asn	Pro	Ser	Ar			Pro	PIO			5 6	ug>			
4850 *		*	486	*	•		370		*		80		•		190		*			
CTA Leu	AGG Arg	GGA Glv	AGC Ser	CAC His	CCA Pro	GGC Gly	GCT Ala	CAC	TY	75 G	aa (Slu	GTG Val	CAC Asp	Pho	AC Th	T C	AG Slu>			
	000	•		1910			49				49				494					
	*	\sim	*	*	TAC	GGA	244	* AA	ч т <i>г</i>	· AC (TA	TTG	GTT	· TTT	rGI	* 'A (GAC			
Val	Lys	Pro	Ala	Lys	Tyr	Gly	Asn	Lys	s Ty	/T [Leu	Leu	Val	Phe	e Va	1 /	Asp>			
	49	50	_	4	960			497	o •		*	49	80		•	49	90			
ACC	TTT	TCA	œy.	TOG	GTA	GAG	GCI	'TA'	rα	er A	ACT	AAG	AAA	GA	G AC	ir.	TCA			
Thr	Phe	Ser	Gly	Trp	Val		Ala				1111	гìэ			u	<u>.</u> .				
	•	5000 *		•	50	•			502	*		•	5030			•				
ACC Thr	GTG Vål	GIC Val	GCT Ala	AAA Lys	AAA Lys	ATA	CTC	GA GL	A G u G	AA lu	ATT Ile	TTI Phe	CCF Pro	A AG	AT gPl	rr re	GGA Gly>			
5040			5050			5060				507				5080						
	•		*	· rm	• 4 000	י מידי	2 GM	* 44 ~	ጥ G	CTP.	• CCA	GCT	י יידי	r or	T C	œ	* CAG			
Ile	Pro	Lys	val	l Ile	e Gly	Sei	c As	o As	n G	ly	Pro	Ala	a Ph	e Va	l A	la	Gln>			
5090)		5:	100			5110		_	5	120			5	130					
GTA	AG.	* CA(G GG	A CIY		AA	G AT	A T	rg c	œ	ATT	GA'	т то	G A	W C	TG	CAT			
Va)	. Se	c Gl:	n Gl	y Lei	ı Ala	a Ly	s Il	e Le	eu C	31y	He	· As	b 17	b r?			His>	•		
	5140		•	515	*	•		160		+		170				80				
TG:	r GC	A TA	C AG	A CC	C CA	A AG	c To	A G	GA (CAG Gln	GTA Val	GA Gl	G AC u Ar	S A' g M	rG A et A	AT LSN	AGA Arga	>		
Cy.			·	9 11	5200		_	52					220				230			
*		190		*	*		*		*	•~	· ~~		*	~r ~	·		*			
AO Th	c at r Il	Т А. ^д е L _. у	A GA 's Gl	ug AC Lu Th	r Le	T AC	nt l'	s L	eu '	Thr	Ala	a Gl	u Tr	r G	ly v	/al	AAT Asn:	>		
		524	10		5	250			52	60			527	70						
GA	* T TC	XG AT	* PA GO	er en	, na an	* 22 27	C T	+ rr G	TG	CIT	TT	r AC	3G G	* A T1	.GG i	* AAC	ACC			
As	גע ק	p I	le Al	la Le	eu Le	eu Pr	ro Pl	ne V	al	Leu	. Ph	e Aı	ng Va	al A	rg :	ASI1	Thr	>		
5280			529)	_	53	00			53	10		-	532	0.		*			
· cc	T GO	A C	AG T	rr co	3G C	rg A	ac 0	QC 1	TAT	GAA	TT	ΑC	IC T	AC C	XX	œ	. ccc	:		
Pı	6 G.	ly G	ln P	he G	ly L	≘u T	hr P	ro 7	ľyr	Glu	ı Le	u L	eu T	yr (ЗlУ	GLy	/ Pro	>		
533	30			5340			535	0			536	•			537	0	•			
ά	x 0	CA T	TG G	TA G	AA A	TT G	CT I	Cr (Tra	CAT	r AC	T G	CT G	NC (STG Val	CT(G CM	1> L		

5380 5390 5400 5410 5420 (SEQ ID NO: 3) cont'd TOO CAG OUT THE THE TOT AGG CHE AAG GCA CIT GAG TOO GTG AGA CAA Ser Gln Pro Leu Phe Ser Arg Leu Lys Ala Leu Glu Trp Val Arg Gln> 5430 5440 5450 5460 CGA CCC TOG AGG CAA CTC CGG GAG GCC TAC TCA GGA GGA GGA GAC TTG Arg Ala Trp Arg Gln Leu Arg Glu Ala Tyr Ser Gly Gly Asp Leu> 5480 5490 5500 5510 * * * * * * CAG ATC CCA CAT COT TTC CAA STG OGA GAT TCA GTC TAC GTT AGA COC Gln Ile Pro His Arg Phe Gln Val Gly Asp Ser Val Tyr Val Arg Arg> 5520 5530 5540 5550 5560 CAC CGT OCA OGA AAC CTC GAG ACT COG TOG AAG GOC CCT TAT CTC GTA His Arg Ala Gly Asn Leu Glu Thr Arg Trp Lys Gly Pro Tyr Leu Val> 5570 5580 5590 5600 **5**610 CTT TTG ACC ACA CCA ACG OCT GTG AAA GTC GAA OGA ATC TCC ACC TQG Leu Leu Thr Thr Pro Thr Ala Val Lys Val Glu Gly Ile Ser Thr Trp> 5620 5630 5640 5650 5660 ATC CAT GCA TOC CAC GIT AAA COG GCG CCA CCT CCC GAT TOG GGG TGG Met His Pro Thr Leu Asn Arg Arg His Leu Pro Ile Arg Cly Gly> Ile His Ala Ser His Val Lys Pro Ala Pro Pro Pro Asp Ser Gly Trp> 5680 5690 5700 5710 AAA GCC GAA AAG ACT GAA AAT CCC CTT AAG CTT CGC CTC CAT CGC GTG Lys Pro Lys Arg Leu Lys Ile Pro Leu Ser Phe Ala Ser Ile Ala Trp> Lys Ala Glu Lys Thr Glu Asn Pro Leu Lys Leu Arg Leu His Arg Val> 5730 5740 5750 5760 GIT CCT TAC TCT GTC AAT AAC CTC TCA GAC T AAT OGT ATG CGC ATA OGA Phe Leu Thr Leu Ser Ile Thr Ser Gln Thr Asn Gly Met Arg Ile Gly> Val Pro Tyr Ser Val Asn Asn Leu Ser Asp> 5780 5790 5800 GAC AGC CTG AAC TOO CAT AAA CCC TTA TOT CTC ACC TGG TTA ATT ACT Asp Ser Leu Asm Ser His Lys Pro Leu Ser Leu Thr Trp Leu Ile Thr> 5810 5820 5830 5840 5850 GAC TCC GGC ACA GGT ATT AAT ATC AAC AAC ACT CAA GGG GAG GCT CCT Asp Ser Gly Thr Gly Ile Asn Ile Asn Asn Thr Cln Gly Glu Ala Pro>

5860 *	5870	5880) • •	5890	5900 *	(SEQ ID NO: 3) cont'd
TTA GGA AC	C TOG TOG	CCT GAT CT	A TAC GIT	TOC CTC AGA	TCA CTT ATT Ser Val Ile>	
			5930	5940	5950	
5910	59 •	* *	•	* *	• •	
CCT AGT C Pro Ser L	NG ACC TCA eu Thr Ser	CCC CCA GA Pro Pro As	T ATC CIC p Ile Leu	CAT GCT CAC His Ala His	GGA TIT TAT Gly Phe Tyr	
596	0	5970	5980	5990	6000	
GTT TOC O	CA GGA CCA	CCA AAT AA	T GGA AAA	CAT TOC OGA	AAT CCC AGA	
Val Cys P	ro Gly Pro				Asn Pro Arg	,
•	6010	6020	6030	60 *	•	
GAT TTC T Asp Phe P	TT TGT AA/ he Cys Lys	A CAA TGG AA 5 Gln Trp As	C TGT GTA on Cys Val	ACC TCT AAT Thr Ser Asn	GAT GGA TAT Asp Gly Tyr	>
6050	6060	6070			6090	
* *	***	י יי י	t AC CAT ACC	* * * * * * * * * * * * * * * * * * * *	TCT TAT GIC	
Trp Lys T	rp Pro Th	r Ser Gln G	in Asp Arg	Val Ser Phe	Ser Tyr Val	>
6100	6110	612	* *	6130	6140	
AAC ACC T Asn Thr 1	TAT ACC AG Tyr Thr Se	C TCT GGA C r Ser Gly G	AA TTT AAT ln Phe Asi	TAC CTG ACC	TOG ATT AGA	
6150	6	160	6170	6180	6190	
ACT GGA	AGC CCC AA	G TOC TOT O	CT TCA GA	CTA GAT TAC	CTA AAA ATA	
Thr Gly	Ser Pro Ly	s Cys Ser P	ro Ser As	o rea veb la	r Leu Lys Ile	
62	00	6210	6220	6230 * *-	— · · · · · · · · · · · · · · · · · · ·)
AGT TTC . Ser Phe	ACT GAG AA Thr Glu Ly	A GGA AAA C 's Gly Lys G	AA GAA AA In Glu As	T ATC CTA AA. n Ile Leu Ly	A TOG GTA AAT s Trp Val Asi	: ン
	6250	6260	627	_	280	
CCT ATC	* TCT TGG G	* * * * * GTA T	* PAT TAT GO	·	T AAA CAA CC.	A
Gly Met	Ser Trp G	ly Met Val 7	lyr Tyr Gl	y Gly Ser Gl	y Lys Gln Pr	>>
6290	6300	6310		6320	6330	
GGC TCC Gly Ser	ATT CTA A	CT ATT CGC (hr Ile Arg I	CTC AAA AT Leu Lys Il	TA AAC CAG CI Le Asn Gln Le	G GAG CCT CC u Glu Pro Pr	A o>
6340	635		360	6370	6380	
\$mc	* >TO CON CO	* * * * * * * * * * * * * * * * * * *	14 ETTP 17ED	· YG OGT CAA AC	A CCC CCA AC	rc
Met Ala	Ile Gly F	ro Asn Thr	Val Leu Ti	nr Cly Gln Ar	rg Pro Pro Tr	r>
6390		6400	6410	6420	6430	
CAA CGA	CCA GGA C	CA TOC TOT	AAC ATA A	TOT GGA TO	CA GAC CCC AC	T
Gln Gly	Pro Gly E	Pro Ser Ser	Asn Ile T	hr Ser Gly Se	er Asp Pro Ti	מני

6440	6450 * * AGC ACG ACT AAA	6460 * * ATG GGG GCA AA	6470 • • A CTT TTT AGC	6480 	(SEQ ID NO: 3) cont'd
Glu Ser Asn S	Ser Thr Thr Lys	Met Gly Ala Ly	's Leu Phe Ser	Leu Ile>	
6490	0 6500	6510	6520	•	
CAG OGA OCT ' Gln Gly Ala	TTT CAA GCT CTT Phe Gln Ala Leu	AAC TCC ACG AC Asn Ser Thr Tr	or oca gag got ur Pro Glu Ala	ACC TCT Thr Ser>	
6530 6	540 65	50 6560	6570) • •	
TCT TGT TGG Ser Cys Trp	CTA TGC TTA GCT Leu Cys Leu Ala	TCG GGC CCA CC Ser Gly Pro P	CT TAC TAT GAV ro Tyr Tyr Glu	A OGA ATG 1 Gly Met>	
6580	6590	5600	6610	6620 •	
GCT AGA AGA Ala Arg Arg	GOG AAA TTC AAT	GTG ACA AAA G Val Thr Lys G	AA CAT AGA GA lu His Arg As	C CAA 1GC p Gln Cys>	
6630	6640	6650	6660	6670 *	
ACA TOG GGA Thr Trp Gly	TCC CAA AAT AAG Ser Gln Asn Lys	G CTT ACC CIT A 5 Leu Thr Leu T	CT GAG GTT TO Thr Glu Val Se	T OGA AAA r Gly Lys>	
6680	6690	6700	6710	6720	
GGC ACC TGC Gly Thr Cys	ATA GGA AAG GT Ile Gly Lys Va	T CCC CCA AUG C 1 Pro Pro Ser !	CAC CAA CAC CI His Gln His Lo	TT TGT AAC ou Cys Asn>	
67	30 6740	6750	6760	•	
CAC ACT GAA His Thr Glu	GCC TTT AAT CA Ala Phe Asn Gl	A ACC TCT GAG A n Thr Ser Glu	AGT CAA TAT C Ser Gln Tyr L	NG GTA CCT eu Val Pro>	
6770	6780	5790 68	00 68		
GGT TAT GAC Gly Tyr Asp	AGG TGG TGG GC Arg Trp Trp A	A TGT AAT ACT La Cys Asn Thr	OGA TTA ACC C Gly Leu Thr P	CT TGT GTT ro Cys Val>	
6820	6830	6840	6850	6860	
TCC ACC TT Ser Thr Le	G GTT TTT AAC C u Val Phe Asn G	AA ACT AAA GAT ln Thr Lys Asp	TTT TGC ATT A Phe Cys Ile M	ATG GTC CAA Met Val Gln>	
6870	6880	6890	6900	6910	
ATT GTT CC Ile Val Pr	C CGA GTG TAT I	AC TAT CCC GAA Yr Tyr Pro Glu	AAA CCA ATC (Lys Ala Ile	CTT GAT GAA Leu Asp Glu>	
6920	6930	6940	6950	6960	
TAT GAC TA Tyr Asp T	AC AGA AAT CAT (yr Arg Asn His /	CGA CAA AAG AGA Arg Gln Lys Arg	GAA CCC ATA Glu Pro Ile	TCT CTG ACA Ser Leu Thr:	,
•	6970 691	30 6990	700	0	
CTT GCT G izu Ala V	TG ATG CTC GGA (al Met Leu Gly	CTT OGA GTG CCA Leu Gly Val Ala	A GCA GGT GTA a Ala Gly Val	OGA ACA OGA Gly Thr Gly	?

701.0 7020 7030 7040 7050 (SEQ ID NO: 3) cont'd ACA CCT GCC CTG GTC ACG GGA CCA CAG CAG CTA GAA ACA GGA CTT AGT Thr Ala Ala Leu Val Thr Gly Pro Gln Gln Leu Glu Thr Gly Leu Ser> 7060 7070 7080 7090 7100 AAC CTA CAT CGA ATT GTA ACA GAA GAT CTC CAA GCC CTA GAA AAA TCT Asn Leu His Arg Ile Val Thr Glu Asp Leu Gln Ala Leu Glu Lys Ser> 7110 7120 7130 7140 GTC AGT AAC CTG GAG GAA TOO CTA ACC TOO TTA TOT GAA GTA GTC CTA Val Ser Asn Leu Glu Glu Ser Leu Thr Ser Leu Ser Glu Val Val Leu> CAG AAT AGA AGA GOG TTA GAT TTA TTA TTT CTA AAA GAA GGA GGA TTA Gln Asn Arg Arg Gly Leu Asp Leu Leu Phc Leu Lys Glu Gly Gly Leu> 7210 7220 7230 7240 TOT GTA GCC TIG AAG GAG GAA TOC TOT TTT TAT GTG GAT CAT TCA GCG Cys Val Ala Leu Lys Glu Glu Cys Cys Phe Tyr Val Asp His Ser Gly> 7270 7280 7290 GCC ATC 1.2% GAC TCC ATG AAC AAG CTT AGA GAA AGG TTG GAG AAG CGT Ala Ile Arg Asp Ser Met Asn Lys Leu Arg Glu Arg Leu Glu Lys Arg> 7300 7310 7320 7330 7340 CCA AGG GAA AAC GAA ACT ACT CAA GOG TOG TTT GAG GGA TOG TTC AAC Arg Arg Glu Lys Glu Thr Thr Gln Gly Trp Phe Glu Gly Trp Phe Asn> AGG TOT CIT TOG TIG GOT ACC CITA CIT TOT GOT THA ACA GGA COC TITA Arg Ser Leu Trp Leu Ala Thr Leu Leu Ser Ala Leu Thr Gly Pro Leu> 7400 7410 7420 7430 7440 ATA GTC CTC CTC TTA CTC ACA GTT GGG CCA TGT ATT ATT AAC AAG Ile Val Leu Leu Leu Leu Thr Val Gly Pro Cys Ile Ile Asn Lys> 7450 7460 7470 7480 TTA ATT GCC TTC ATT AGA GAA CGA ATA AGT GCA GTC CAG ATC ATG GTA Leu Ile Ala Phe Ile Arg Glu Arg Ile Ser Ala Val Gln Ile Met Val> 7500 7510 7520 7530 CTT AGA CAA CAG TAC CAA AGC CCC TCT AGC AGG GAA CCT GGC CCC Leu Arg Gln Gln Tyr Gln Ser Pro Ser Ser Arg Glu Ala Gly Arg> 7540 7550 7560 7570 7580 7590

FIGURE 3, CONT.

TAGCTCT -CCAGTTCTA AGATTAGAAC TATTAACAAG AGAAGAAGTG GOGAATGAAA

7600	7610	7620	7630	7640	7650	(SEQ ID NO: 3) cont'd
						cont'd
CGATGAAAAT	ACAACCTAAG	CTAATGAGAA	GCTTAAAATT	GMCIGAATT	CCAGAGTTIG	
7660	7670	7680	7690	7700	7710	
* *	* *	* *	* *	* *	* *	
TTCCTTATAG	GTAAAAGATT	AGGTTTTTTG	CTGTTTTAAA	ATATOCOGAA	CTAAAATACC	
				22.50	5554	
	7730	7740	7750	7760 * *	7770	
				ATTTGAGATA		
CCCIGAGIAC	AIGICICIAG	GCATGAAACT	ICTIONVICT	Allionam	16161446	
7780	7790	7800	7810	7820	7830	
* *	* *		* *	*	* *	
GGAGTITCTA	ACTOCTTGTT	TACCTTCTGT	AAAACTGGTT	GCGCCATAAA	GATGTTGAAA	
		7050	2070	7000	7000	
7840	7850	/860	/8/0	7880	7890	
туттуатаса				CCCGAAACAT		
10114111141	4					
7900	7910	7920	7930	7940	7950	
				* *		
GTAACICTAA	AACAATTTAA	ATTAATTOGT	CCACGAAGCG	COSSICICO	AAGTTTTAAA	
7960	7970	7980	7990	8000	8010	
* *	* *	* *			* *	
TTGACTGGTT	TGTGATATTT	TGAAATGATT	GTTTGTAAA	GCCCCCCCTT	TOTTGTGAAC	
8020	8030	8040	8050	8060	8070	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					TOCOTOGIGI	
CCCATAAAAG	CIGICCOAC	* CACACICO			130100101	
8080	8090	8100	8110	8120	8130	
ACGACICICE	CCCCACCCC	GCTTGGAATA	AAAATCCTCT	r recremmed	ATCAAAAAAA	

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/19680

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.:  because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:  1-14, 28, and 38
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

# INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/19680

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(6) :C12Q 1/68, 1/70 US CL :435/5, 6; 536/22.1					
According to International Patent Classification (IPC) or to bot	th national classification and IPC				
B. FIELDS SEARCHED	is also supposed				
Minimum documentation searched (classification system follow	ved by classification symbols)	٠			
U.S. : 435/5, 6; 536/22.1					
Documentation searched other than minimum documentation to	the extent that such documents are included	in the fields scarched			
Electronic data base consulted during the international search	(name of data base and, where practicable,	search terms used)			
APS, STN search terms: swine, retrovirus, DNA, nucleic acid, h					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
X BOWES. Localization of a retro gene coding the Beta Subunit of Proc. Natl. Acad. Sci. USA. A 2955-2959, especially page 299 38	cGMP phosphodiesterase pril 1993. Vol. 90, pages	1, 4-9, 11, 12, 28, and 38			
DELASSUS et al. Genetic Or. Leukemia Virus, Virology. 1989. especially pages 207-208.	DELASSUS et al. Genetic Organization of Gibbon Ape Leukemia Virus, Virology. 1989. Vol. 173, pages 205-213, especially pages 207-208.				
Y Further documents are listed in the continuation of Bo	x C. See patent family annex.				
later document published after the international filing date or priority					
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
to be of particular relevance  'E' cartier document published on or after the international filing date	'X' document of particular relevance; the considered movel or cannot be considered.	he claimed invention cannot be ered to involve an inventive step			
'L' document which may throw doubts on priority claim(s) or which	is when the document is taken alone				
cited to establish the publication date of another citation or other pecant reason (as specified)	considered to involve an inventive	e step when the document is			
*O* document referring to an oral disclosure, use, exhibition or otherwise.	being obvious to a person skulled in				
"P" document published prior to the international filing date but later the priority date claimed	document member of the same pater	at family			
Date of the actual completion of the international search	Date of mailing of the international se	earch report			
03 APRIL 1997	30 APR 1997				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks	Authorized officer TW For				
Box PCT Washington, D.C. 2023 l	JEZIA RILĒY				
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196				

Form PCT/ISA/210 (second sheet)(July 1992)*

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/19680

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	Similar of document, trial minimatori, many appropria	
	DEVARE et al. Nucleotide Sequence of the Simian Sarcoma Virus Genome: Demonstration that its Acquired Cellular Sequences Encode the Transforming Gene Product p28 Proc. Natl. Acad. Sci. USA. February 1983. Vol 80. pages 731-735, especially page 732.	1, 4-9, 11-14, 28, and 38
	<del></del> .	