Algebras associated to set-theoretical solutions of YBE

1 Generalities

Given $n, m \in \mathbb{Z}$ we set $[n, m] = \{k \in \mathbb{Z} \mid n \le k \le m\}$, and if $n \in \mathbb{N}$ we will also write [n] = [1, n]. We work over \mathbb{C} , so all vector spaces, tensor products, etc. are over this field.

We denote by ISyb the category of all non-degenerate and involutive set theoretical solutions to the Yang-Baxter equation, and by YB the category of all finite dimensional solutions over the complex numbers.

1.1. Let $n \in \mathbb{N}$. Given $i, j \in [n]$ we denote by $e_i \in \mathbb{C}^n$ the i-th element of the canonical basis, and by $E_j^i \in \mathsf{Mat}_n(\mathbb{C})$ the matrix having a 1 as its (i,j)-th entry, all other entries equal to zero. We identify $\mathbb{C}^n \otimes \mathbb{C}^n$ with $\mathsf{Mat}_n(\mathbb{C})$ through the linear correspondence $e_i \otimes e_j \mapsto E_j^i$.

Define the map $i: \operatorname{Mat}_n(\mathbb{C}) \otimes \operatorname{Mat}_n(\mathbb{C}) \longrightarrow \operatorname{End}(\operatorname{Mat}_n(\mathbb{C}))$ where for each $A, B, C \in \operatorname{Mat}_n(\mathbb{C})$ we have $i(A \otimes B)(C) = AC^tB$. If $F \in \operatorname{End}(\operatorname{Mat}_n(\mathbb{C}))$ and $F(E_j^i) = \sum_{k,l} \alpha_{i,k}^{j,l} E_l^k$ then setting $\overline{F} = \sum_{i,j,k,l} \alpha_{i,k}^{j,l} E_j^k \otimes E_l^i$ we obtain $i(\overline{F}) = F$. Thus i is an epimorphism, and since the dimensions of domain and codomain are the same it is an isomorphism, with inverse $F \mapsto \overline{F}$.

Denote by $\tau \in \operatorname{End}(\operatorname{Mat}_n(\mathbb{C}))$ the transposition map. Then we have

$$\overline{F \circ \tau} = \sum_{i,j,k,l} \alpha_{j,k}^{i,l} E_j^k \otimes E_l^i = \sum_{i,j,k,l} \alpha_{i,k}^{j,l} E_i^k \otimes E_l^j;$$

$$\overline{\tau \circ F} = \sum_{i,j,k,l} \alpha_{i,k}^{j,l} E_j^l \otimes E_k^i = \sum_{i,j,k,l} \alpha_{i,l}^{j,k} E_j^k \otimes E_l^i.$$

Denote by $\langle -, - \rangle$ the only inner product on $\mathbb{C}^n \longrightarrow \mathbb{C}^n$ such that $\{e_i \otimes e_j \mid i, j \in [n]\}$ forms an orthogonal basis. This is the pullback of the usual inner product on $\mathsf{Mat}_n(\mathbb{C})$ for which the basis $\{E_j^i \mid i, j \in [n]\}$ is an orthogonal basis. We denote by F^{t_1} the only map such that $\langle F^{t_1}(E_j^k), E_l^i \rangle = \langle F(E_j^i), E_l^k \rangle$. In other words $F^{t_1}(E_j^k) = \sum_{i,l} \alpha_{i,k}^{j,l} E_l^i$. We define F^{t_2} analogously, so $F^{t_2}(E_l^i) = \sum_{k,j} \alpha_{i,k}^{j,l} E_j^k$. Thus we have

$$\begin{split} \overline{F^{t_1}} &= \sum_{i,j,k,l} \alpha_{k,i}^{j,l} E_j^k \otimes E_l^i = \sum_{i,j,k,l} \alpha_{i,k}^{j,l} E_j^i \otimes E_l^k \\ \overline{F^{t_2}} &= \sum_{i,j,k,l} \alpha_{i,k}^{l,j} E_j^k \otimes E_l^i = \sum_{i,j,k,l} \alpha_{i,k}^{j,l} E_i^k \otimes E_j^i. \end{split}$$

1.2. Let $n \in \mathbb{N}$ and let ([n], S) be an symmetric set, and for each $i, j \in [n]$ put $S(i, j) = (g_i(j), f_j(i))$. Then S induces a classical solution to the YBE by setting $S(e_i \otimes e_j) = e_{g_i(j)} \otimes e_{f_i(i)}$. Using the notation from the previous paragraph

$$\overline{S} = \sum_{i,j} E_j^{g_i(j)} \otimes E_{f_j(i)}^i; \qquad \overline{\tau \circ S} = \sum_{i,j} E_j^{f_j(i)} \otimes E_{g_i(j)}^i;$$

$$\overline{S^{t_1}} = \sum_{i,j} E_j^i \otimes E_{f_j(i)}^{g_i(j)}; \qquad \overline{S^{t_2}} = \sum_{i,j} E_{f_j(i)}^{g_i(j)} \otimes E_j^i.$$

1.3. In [ESS99, §3.2] Etingof, Schedler and Soloviev introduced the *retraction* of an involutive solution (X, r). Writing $i \equiv j$ if and only if $g_i = g_j$ for $i, j \in X$, they show that $i \equiv j$ also implies that $f_i = f_j$. Setting $Y = X / \equiv$ and writing [i] for the class of i in Y, they also show that $s([i], [j]) = ([g_i(j)], [f_j(i)])$ is an involutive solution with underlying set Y.

References

[ESS99] P. Etingof, T. Schedler, and A. Soloviev, *Set-theoretical solutions to the quantum Yang-Baxter equation*, Duke Math. J. **100** (1999), no. 2, 169–209.