Here is the hierarchical model we will fit:

$$y_i = \beta_{0c[i]} + \beta_{1c[i]} X_{i1} + \beta_{2c[i]} X_{i2} + \beta_{3c[j]} X_{i3} + \eta_{c[i]} + \epsilon_i$$

The β_j are the coefficients, y_i is the response variable, X_{ij} are the predictor variables, $\eta_{c[i]}$ are the category error terms, one for each category containing the i data point. ϵ_i is the global error term.

$$eta_j \sim N(\mu_{jc}, \sigma_{jc}) \text{ for each } j \text{ and } c$$
 $\eta_c \sim N(0, \sigma_\eta^2) \text{ for each } c$
 $\epsilon_i \sim N(0, \sigma_\epsilon^2)$

We have to fit the μ_{jc} 's, the σ_{jc} 's the σ_{η_c} 's and the σ_{ϵ} .