

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$

$$a = \sigma(z)$$

$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ \alpha_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ \alpha_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ \alpha_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ \alpha_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Vectorizing across multiple examples

```
for i = 1 to m: z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]} a^{[1](i)} = \sigma(z^{[1](i)}) z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]} a^{[2](i)} = \sigma(z^{[2](i)})
```


One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples

$$X = \begin{bmatrix} & | & & | & & | \\ & \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} \\ & | & & | & & | \end{bmatrix}$$

$$A^{[1]} = \begin{bmatrix} | & | & | & | \\ a^{1} a^{[1](2)} & a^{[1](m)} \\ | & | & | \end{bmatrix}$$

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

One hidden layer Neural Network

Activation functions

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Pros and cons of activation functions

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

Tanh activation function

ReLU and Leaky ReLU

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Formulas for computing derivatives

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Neural network gradients $W^{[2]}$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Summary of gradient descent

$$\begin{aligned} dz^{[2]} &= a^{[2]} - y \\ dW^{[2]} &= dz^{[2]}a^{[1]^T} \\ db^{[2]} &= dz^{[2]} \end{aligned} \qquad \begin{aligned} dW^{[2]} &= \frac{1}{m}dZ^{[2]}A^{[1]^T} \\ db^{[2]} &= dz^{[2]} \\ dz^{[1]} &= W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]}) \end{aligned} \qquad \begin{aligned} dZ^{[1]} &= W^{[2]T}dZ^{[2]} * g^{[1]'}(Z^{[1]}) \\ dW^{[1]} &= dz^{[1]}x^T \end{aligned} \qquad \begin{aligned} dW^{[1]} &= \frac{1}{m}dZ^{[1]}X^T \\ db^{[1]} &= dz^{[1]} \end{aligned} \qquad \end{aligned}$$

$$\begin{split} dZ^{[2]} &= A^{[2]} - Y \\ dW^{[2]} &= \frac{1}{m} dZ^{[2]} A^{[1]^T} \\ db^{[2]} &= \frac{1}{m} np. sum(dZ^{[2]}, axis = 1, keepdims = True) \\ dZ^{[1]} &= W^{[2]T} dZ^{[2]} * g^{[1]'}(Z^{[1]}) \\ dW^{[1]} &= \frac{1}{m} dZ^{[1]} X^T \\ db^{[1]} &= \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to zero?

Random initialization

