装

**

**

**

**

订

**

线

课程代码:

座位号:

新疆大学 2018 — 2019 学年度第一学期期末考试

《线性代数》试卷(18周汉本)

姓名:				学号:_							
学院:		10 m 10 m) (1) (2	班组	及:	2019	年 1月	月		
	题号	_	=	Ξ	四	五	总分		, .		
	得分	, i	A.M.	各 E 将	Pr 2	B 73		536, 1°			

得分	评卷人
11.11.11	

-、单项选择题(本大题共5小题, 每题只有一个正 确答案, 答对一题得 2 分, 共 10 分)

1,	行列	式 2 y	4 5 x	6 7 8	中元素	x的	余子	式和个	代数余	子:	式值	分名	川为		ľ		1
	A.	-9,	-!	9	B.	-9,	9	•	C.	9,	-9			D.	9,	9	

2、设
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, 若 $AB = BA$, 则必有

A. $b_{11} = b_{22}$ B. $b_{12} = b_{21}$ C. $b_{12} = 0$ D. $b_{11} + b_{22} = 0$

3、向量组α, β, γ线性相关的充要条件是

A. α, β, γ中有一个零向量

Β. α, β, γ中任意两个向量分量成比例

C. α, β, γ中有一个向量是其余向量的线性组合

D. α, β, γ中任意一个向量都是其余向量的线性组合

4、二次型的标准形为 $f=y_1^2-y_2^2+3y_3^2$,则二次型的正惯性指数为【

A. 2

B. -1 C. 1

线性代数 试题 第 1页 (共 6 页)

5 32	一队好阵人	1的特征值为2	2, 1,	1,	则 A^{-1}	的特征值为
------	-------	---------	-------	----	------------	-------

A. 4, 1, 1 B. 2, 1, 1 C. 4, 2, 2 D. $\frac{1}{2}$, 1, 1

二、判断题(本大题共5小题, 每题2分, 共10分, 答 A 表示说法正确. 答B表示说法不正确,本题只需指出正确与错误,不需要修改)

6.	克拉默法则可用于解任意的线性方程组. ()
U,		 ,

7、对任意矩阵
$$A$$
, A^TA 是对称矩阵. ()

9、 若
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$$
, 则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关. ()

10、二次型
$$f(x_1,x_2,x_3)=x_1^2-4x_1x_2+2x_1x_3-2x_2^2+6x_3^2$$
的秩等于 2. ()

得分	评卷人

三、填空题(本大题共10小题, 每题2分,共20分)

- 11、五阶行列式的项 $a_{13}a_{22}a_{35}a_{41}a_{54}$ 的符号为_____。
- 12、四阶行列式 D中第 3 列元素依次为 -1, 2, 0, 1, 它们的代数余子式的值依次 为 5, 3, -7, 4, 则 D =_____。
- 13、如果矩阵 $A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$,则A'' =_______。
- 14、n阶方阵A满足 $A^2-3A+2E=0$,则 $A^{-1}=$ ____
- 15、如果向量 β =(1,0,k,2)能由向量组 α_1 =(1,3,0,5), α_2 =(1,2,1,4), α_3 =(1,1,2,3)线性表

线性代数 试题 第 2页 (共 6 页) **

**

**

** 装

**

**

**

**

**

**

订

**

**

**

** ** ** 线

17、设
$$3(\alpha_1 - \alpha) + 2(\alpha_2 + \alpha) = 5(\alpha_3 + \alpha)$$
, 其中 $\alpha_1 = (2,5,1,3)$, $\alpha_2 = (10,1,5,10)$,

$$\alpha_3 = (4,1,-1,1)$$
 , $\mathbb{N} \alpha =$

18、设向量
$$\alpha=(2,-1,\frac{1}{2},1)$$
,则 α 的长度为_____。

19、二次型
$$f(x_1,x_2,x_3) = 2x_1^2 + 3x_2^2 + tx_3^2 + 2x_1x_2 + 2x_1x_3$$
 是正定的,则 t 的取值范围是______。

20、已知矩阵
$$A$$
 与对角矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则 $A^2 = \underline{\hspace{1cm}}$

得分	评卷人

四、计算题(本大题共5小题, 每题10分,共50分)

21、已知行列式
$$\begin{vmatrix} 3 & 2 & -4 & 5 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 ,计算 $A_{11} + A_{12} + A_{13} + A_{14}$

 $(A_{i,j}$ 是行列式中元素 $a_{i,j}$ 的代数余子式)。

22、已知矩阵
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, 且 $AB = A + 2B$, 求矩阵 B .

当方程组有解时,求出方程组的通解.

24、已知向量组 $\alpha_1 = (1,1,2,3)$, $\alpha_2 = (-1,-1,1,1)$, $\alpha_3 = (1,3,3,5)$,

$$\alpha_4 = (4, -2, 5, 6)$$

**

装

**

**

** 订

**

**

**

**

**

线

- (1) 求向量组的秩;
- (2) 求向量组的一个最大无关组,并将其余向量用该最大无关组线性表示出来.

25、已知矩阵
$$A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- (1) 求矩阵 A 的特征值与特征向量;
- (2) 求一个正交矩阵 P 使得 P-1 AP 为对角矩阵;
- (3)写出矩阵 A 所对应的二次型,并求正交变换 $x = P_y$ 化该二次型为标准形.

得分 评卷人

五、证明题(本大题共1小题,共10分)

26、设 $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, \dots, \beta_r = \alpha_1 + \alpha_2 + \dots + \alpha_r$, 且向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,证明: 向量组 $\beta_1, \beta_2, \dots, \beta_r$ 线性无关.