Colle 1 MPSI/MP2I Jeudi 5 octobre 2023

Planche 1

- 1. Formules d'addition du cosinus et du sinus. Énoncé et démonstration.
- 2. Soit $n \in \mathbb{N}$. Déterminer l'ensemble des complexes z vérifiant $(z+i)^n = (z-i)^n$.
- 3. Le plan est muni d'un repère orthonormé. Pour tout réel m, on note C_m le cercle d'équation cartésienne

 $x^{2} + y^{2} - 4mx - 2my + \frac{9m^{2}}{2} - m - \frac{1}{2} = 0$

dans ce repère. Montrer qu'il existe deux tangentes communes à tous les cercles $(C_m)_{m \in \mathbb{R}}$, en donner des équations cartésiennes dans le repère considéré.

Planche 2

- 1. Énoncé et démonstration de l'inégalité triangulaire et de ses cas d'égalité dans C.
- 2. En s'aidant de l'irrationnel $\sqrt{2}$, montrer que

$$\exists (a,b) \in (\mathbb{R}_+^* \setminus \mathbb{Q})^2, a^b \in \mathbb{Q}$$

3. Déterminer l'ensemble des complexes z vérifiant $16z^4 - 20z^2 + 5 = 0$. En déduire une expression de $\cos(\pi/10)$ et $\cos(\pi/5)$.

Planche 3

- 1. Soit p et q deux réels. Comment factoriser $e^{ip} e^{iq}$? Le démontrer et l'appliquer à la factorisation de $\sin(p) \sin(q)$.
- 2. Pour toutes assertions \mathcal{P} et \mathcal{Q} , on note $\mathcal{P}|\mathcal{Q}$ l'assertion $\neg(\mathcal{P} \land \mathcal{Q})$. Le séparateur | est appelé « barre de Sheffer ». Soit \mathcal{A} et \mathcal{B} deux assertions, exprimer les assertions $\neg(\mathcal{A})$ et $\mathcal{A} \lor \mathcal{B}$ uniquement à l'aide de la barre de Sheffer.
- 3. Étudier la transformation du plan complexe $f: \mathbb{C} \to \mathbb{C}, z \mapsto 2\overline{z} + 1 2i$.

Bonus

Soit ABCD un quadrilatère convexe. On construit extérieurement à ce quadrilatère les quatre carrés s'appuyant sur ses côté. On note P,Q,R et Q les centres des carrés ainsi construits. Montrer que le quadrilatère PQRS possède des diagonales orthogonales de même longueur.