7月22日前,以实验报告形式提交,要附上详细的分析、结果图和源代码,发到 signals_dzm@163.com,文件命名: 学号_姓名。

使用 Matlab 或者其它软件编写程序完成以下题目:

给定一个连续时间信号:
$$f(t) = \begin{cases} \frac{1}{2}[1+\cos(t)], & 0 \le |t| \le \pi \\ 0, & |t| > \pi \end{cases}$$

- (1)画出这个信号的波形和它的频谱。
- (2) 当采样周期分别满足T=1, $T=\pi/2$, T=2时,分别画出三个采样信号 $f_p(n)$ 和他们各自的频谱,并对结果给出解释。
- (3) 使用截止频率 $\omega_c = 2.4$ 的理想低通滤波器从 $f_p(n)$ 重建信号 $f_r(t)$ 。 当采样周期分别是 T=1和T=2时,画出重建信号 $f_r(t)$ 及其频谱,并画出 $f_r(t)$ 和原始信号 f(t)之间的绝对误差,并对结果给出解释。

可能用到的 Matlab 函数:

plot; subplot; axis; exp; cos; sinc; ones; length; stem; abs