Final_Project - Smith-Waterman Algorithm

1. 問題描述

本次練習為 Smith-Waterman 演算法的硬體實現。輸入序列的長度為 256, 共提供兩組測資,可參考課堂上所學的投影片進行硬體架構之設計,盡量壓低 cycle 數、cycle time 與 Area,除正確性外,最後評分也會以 Time*Area 做為依據。

2. 設計規格

圖一、系統方塊圖

信號名稱	輸出/入	位元寬度	說明
clk	input	1	時脈信號,本系統為同步於時脈正緣設計
reset	input	1	高位準非同步(active high asynchronous)系統重置訊號
data_s	input	2	字串 S 序列資料匯流排, Testbench 會在 valid 有效期
			間每 cycle 送出一筆資料。其中 0(A) 1(T) 2(C) 3(G)
data_t	input	2	字串 T 序列資料匯流排, Testbench 會在 valid 有效期
			間每 cycle 送出一筆資料。其中 0(A) 1(T) 2(C) 3(G)
valid	input	1	當為 high 時,送出的 data_s 和 data_t 為有效的
max	output	12	為 Smith-Waterman 運算後得出的最大 alignment 分數
finish	output	1	用以告知 SW 電路運算完畢,請 testbench 端開始檢查
			max 值是否運算正確。當為 low 時,表示 SW 電路還
			在運算;為 high 時,表示 SW 電路以運算完畢,可以
			進行檢驗 max 是否正確。

表一、輸入/輸出訊號

3. 系統功能描述

系統一開始會將 reset 訊號拉成 high 進行電路的重置,當 reset 結束,testbench 會將 valid 拉為 high,此時每一個 cycle 的 data_s / data_t 均代表字串 s/t 的輸入,總共有 256/256 個 data,之後 valid 訊號拉為 low。

當資料輸入完後,同學由自行完成的 SW 電路進行運算。當運算完成後,將 finish 拉至 high,此時 testbench 將會驗證同學 max 的輸出是否為正確答案。

詳細電路功能的說明請詳閱投影片。

4. 時序規格圖

SW 電路時序圖

圖二、valid 由負緣拉高,data 同時負緣給值,持續 256 筆,當經過運算後正緣將 finish 拉高,此時 testbench 檢查 max 的資料。

5 檔案說明

檔名	說明	
tb.v	測試樣本檔	
sw.v	設計檔,已包含系統輸入/輸出之宣告,同學請於此檔案內做設計	
./dat/s1.dat	第一組測資	
./dat/t1.dat		
./dat/s2.dat	第二組測資	
./dat/t2.dat	另一組別貝 	
./dat/golden1.dat	第一組比對樣本檔案	

./dat/golden2.dat	第二組比對樣本檔案
./datE1.xlsx	
./dat/F1.xlsx	第一組測資的 E/F/V scoring matrix
./dat/V1.xlsx	
./dat/E2.xlsx	
./dat/F2.xlsx	第二組測資的 E/F/V scoring matrix
./dat/V2.xlsx	
Layout 資料夾	APR 所需之檔案

其餘 Synthesis 與 APR 未提供的檔案表示沿用作業 1&2。

6. 模擬指令

RTL 設計完成的 testbench,使用模擬相關指令如下。 ncverilog tb.v sw.v +define+tb1

合成後的 testbench,模擬相關指令如下。(放入 sw_syn.sdf)

ncverilog tb.v sw syn.v -v tsmc13.v +define+tb1+SDFSYN

APR 後的 testbench, 模擬相關指令如下。(放入 sw_APR.sdf)

ncverilog tb.v sw APR.v -v ./syn/tsmc13 neg.v +define+tb1+SDFAPR +ncmaxdelays

欲測試第二組測資,請自行修改為+define+tb2。 如果要輸出波形,可以使用+define+FSDB 或者是+define+VCD 並且加上 +access+r 另外 tb.v 中的 CLK period 根據測試的階段進行修改。

7. 作業要求

- 1. 設計的 sw 能分別通過 RTL、Synthesis、APR 三種模擬。
- 2. 繳交檔案如下: b0*901***_Project.zip

分類	檔案名稱	描述
RTL	sw.v	RTL Verilog Code
Synthesis	sw_syn.v	Synthesis Verilog Code
Synthesis	sw_syn.sdf	SDF file
Synthesis	sw_timing.txt	Timing Report
Synthesis	sw_area.txt	Area Report
Synthesis	sw_power.txt	Power Report
APR	sw_APR.v	Netlist Verilog Code
APR	sw_APR.sdf	SDF file
APR	summaryReport.rpt	Innovus report file
Report	b0*901***_report.pdf	格式請參照 report.doc,填寫後存成 pdf

8. 繳交期限

1/20 (三)中午 12:00 以前上傳所有上述檔案至 Ceiba

同學如果有任何問題,請透過 email 詢問助教或約定時間。如果要寄 email 給助教,記得在信件前加 [專題研究] 避免漏信。

助教 陳傳諭 <u>r08943017@ntu.edu.tw</u> (Smith-Waterman 演算法相關)

助教 林奕憲 <u>d06943006@ntu.edu.tw</u> (硬體設計流程相關)

助教 葉陽明 d05943006@ntu.edu.tw (硬體設計流程相關)