

COMPLETE LISTING OF ALL CLAIMS IN THE APPLICATION

1. (original) Compounds of formula I

in which

R¹ is C₁-C₁₀-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkadienyl, C₁-C₁₀-haloalkyl, trihydrocarbysilyl, formyl, C₁-C₁₀-alkanoyl or C₁-C₁₀-alkoxycarbonyl group being attached either to the nitrogen in the 3- or 4-position;

A 1 R² is hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₄-C₁₀-alkadienyl, C₄-C₁₀-haloalkyl, C₃-C₆-cycloalkyl, C₈-C₁₄-bicycloalkyl, phenyl, naphthyl, 5- or 6-membered heteroaryl or heterocyclic groups containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members;

R³ is phenyl, C₃-C₆-cycloalkyl or 5- or 6-membered heteroaryl containing besides carbon atoms one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members;

R⁴ is halogen, amino, C₁-C₁₀-alkoxy, C₁-C₁₀-haloalkoxy, C₁-C₁₀-alkylamino or di-C₁-C₁₀-alkylamino;
wherein the bent line indicates that the double bond may be located

between the 3- and 9- position or the 4- and 9-position; and the zigzag line indicates that the groups connected may have the (E)-or (Z)- configuration;

R¹ to R₄ groups independently from one another may be unsubstituted or substituted by one to three groups R^a:

R^a halogen, nitro, cyano, hydroxy, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₁-C₆-haloalkyl, C₃-C₆-halocycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, tri-C₁-C₄-alkylsilyl, phenyl, halo- or dihalophenyl or pyridyl.

Al
2. (currently amended) Compounds of formula I

in which

R¹ is a straight chained or branched C₁-C₆-alkyl, C₂-C₆-alkenyl or formyl.

R² is hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₄-C₁₀-alkadienyl, C₄-C₁₀-haloalkyl, C₃-C₆-cycloalkyl, C₈-C₁₄-bicycloalkyl, phenyl, naphthyl, 5- or 6-membered heteroaryl or heterocyclic groups containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members;

R³ is phenyl, C₃-C₆-cycloalkyl or 5- or 6-membered heteroaryl containing

besides carbon atoms one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members;

R⁴ is halogen, amino, C₁-C₁₀-alkoxy, C₁-C₁₀-haloalkoxy, C₁-C₁₀-alkylamino or di-C₁-C₁₀-alkylamino;

wherein the bent line indicates that the double bond may be located between the 3- and 9- position or the 4- and 9-position; and the zigzag line indicates that the groups connected may have the (E)-or (Z)- configuration;

Al R¹ to R₄ groups independently from one another may be unsubstituted or substituted by one to three groups R^a:

R^a halogen, nitro, cyano, hydroxy, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₁-C₆-haloalkyl, C₃-C₆-halocycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, tri-C₁-C₄-alkylsilyl, phenyl, halo- or dihalophenyl or pyridyl.

3. (original) Compounds of formula I according to claim 1 in which R² represents a straight chained or branched C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₈-cycloalkyl, C₅-C₈-bicycloalkyl or C₂-C₆-alkenyl.

4. (original) Compounds of formula I according to claim 1 in which R³ represents optionally substituted phenyl.

5. (original) Compounds of formula I according to claim 1 in which R⁴ represents halogen.

6. (original) Compounds of formula I according to claim 1 in which R³ is an optionally substituted phenyl group of formula

wherein # denotes the bond to the triazolopyrimidine ring and L¹ is fluor, L² is hydrogen or fluor, L³ is hydrogen or fluor or methoxy and L⁴ is hydrogen, fluor or chloro.

7. (original) A process for the preparation of compounds of formula I as defined in claim
A 1 1 which comprises treating compounds of formula II

in which R², R³ and R⁴ are as defined in claim 1;
with alkylation agent of formula III

in which

R¹ is as defined in claim 1, and X represent a leaving group, in the presence of a base or a buffer system.

8. (currently amended) A fungicidal mixture having a first compound of formula I as defined in claim 1 wherein R¹ is at least 3-position, and a second compound of formula I where R¹ is at the 4-position .

9. (original) A fungicidal composition which comprises a carrier and a fungicidal

effective amount of at least one compound of formula I as defined in claim I.

A1 10. (currently amended) A method for controlling harmful fungi, which comprises treating fungi or the materials, plants, the soil or the seed to be protected against fungi attack with a fungicidal composition as claimed in claim 9.

A²
Table II

Ex.	Dose [ppm]	AS	GDM	PB	RB	SBC	TEB	WPM	PSDCH	PYTHU	RHIZSO
1A	200	9	4	0	6	8	3	8			
1A	50	6	6	5	0	6	0	7			
1A	12,5	0	5	0	0	0	0	0			
1A	25								0	0	7
1A	10								0	0	7
1A	1								0	0	5
1B	200	5	7	6	5	6	4	0			
1B	50	4	0	0	0	6	2	0			

Ex..	Dose [ppm]	AS	GDM	PB	RB	SBC	TEB	WPM	PSDCH	PYTHU	RHIZSO
1B	12,5	4	0	0	0	0	0	0			
1B	25								3	5	5
1B	10								1	1	5
1B	1								0	0	5
2	200	5	1	1	0	3	0	0			
2	50	0	2	1	0	0	0	0			
2	12,5	0	4	1	0	0	0	0			
3	200	6	4	0	5	0	0	3			
3	50	0	4	0	0	0	3	0			
3	12,5	0	0	2	0	0	3	0			
3	25								1	0	5
3	10								1	0	5
3	1								0	0	3
4	50	0	0	0	0	0	0	0			
4	12,5	0	0	0	0	0	0	0			
4	3,1	0	4	0	0	0	3	0			
5	200	0	5	1	0		0	6			
5	50	0	6	0	0		0	3			
5	12,5	0	6	0	0		0	0			
6	200	5	7	0	5		0	5			
6	50	0	0	0	0		0	0			
6	12,5	0	0	0	0		0	0			
6	25								0	0	0
6	10								1	0	0
6	1								0	0	0
7	200	6	8	0	4		0	6			
7	50	0	0	0	0		0	4			
7	12,5	0	0	2	0		0	0			
7	25								0	0	5
7	10								1	0	5
7	1								0	0	5
8	200	5	5	0	4		0	7			
8	50	0	4	0	0		0	4			
8	12,5	0	5	0	0		2	2			
8	25								0	0	7
8	10								0	0	7
8	1								0	0	7

12

Ex ..	Dose [ppm]	AS	GDM	PB	RB	SBC	TEB	WPM	PSDCH	PYTHU	RHIZSO
9	200	6	3	2	4	8	9	7			
9	50	6	3	1	3	8	8	6			
9	12,5	0	5	2	0	8	6	2			
9	25								5	0	7
9	10								3	0	7
9	1								3	0	7
10	200	6	0	0	6	6	5	0			
10	50	0	0	0	4	6	4	0			
10	12,5	0	0	4	0	3	0	0			
10	25								0	5	5
10	10								0	3	5
10	1								0	0	0
11	200	7	3	0	4	3	0	0			
11	50	6	0	0	3	0	0	0			
11	12,5	0	0	0	0	0	0	0			
11	25								0	1	0
11	10								0	1	0
11	1								0	0	0
12	200	0	0	0	0	0	0	0			
12	50	0	0	0	0	0	0	0			
12	12,5	0	0	0	0	0	0	0			
13	200	0	0	0	0		0	5			
13	50	0	0	0	0		0	3			
13	12,5	0	0	0	0		0	0			
14	200	6	7	0	0		0	0			
14	50	0	4	0	0		0	0			
14	12,5	0	0	0	0		0	0			
15	200	0	6	2	0		0	3			
15	50	0	4	0	0		0	0			
15	12,5	0	2	0	0		0	0			
15	25								0	0	3
15	10								0	0	0
15	1								0	0	0
16	200	6	7	0	0		0	0			
16	50	5	5	0	0		0	0			
16	12,5	0		0	0		0	0			
16	25								0	7	7

A²

A2

Ex..	Dose [ppm]	AS	GDM	PB	RB	SBC	TEB	WPM	PSDCH	PYTHU	RHIZSO
16	10								0	5	7
16	1								0	0	5
17	200	6	5	0	4		0	6			
17	50	2	0	0	3		0	2			
17	12,5	0	0	0	0		0	0			
17	25								3	7	7
17	10								1	5	7
17	1								0	0	7