(NATURAL SCIENCE)

Vol. 61 No. 3 JUCHE104(2015).

주체104(2015)년 제61권 제3호

재조합플라즈미드 pCB109와 pCB136에 대한 제한효소분석

김동선, 리영철, 리일천

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《생물공학부문에서는 세포공학과 유전자공학, 미생물공학을 비롯한 현대생물학의 발전에 큰 힘을 넣으며 현대생물학의 성과를 농업과 축산업, 의학과 식료공업에 널리 받아들여 생산성이 높은 농작물과 집짐승의 새 품종을 만들어내며 질좋은 여러가지 의약품과 식료품을 많이 생산할수 있도록 하여야 합니다.》(《김정일선집》 중보관 제15권 487~488폐지)

엽록체게놈전이기술을 리용한 엽록체전이식물은 지난 시기 핵게놈전이기술과 핵게놈 전이식물이 가지고있던 결함들을 극복하고 여러가지 우점을 가지고있는것으로 하여 많이 주 목되고있다.[5, 6] 엽록체공학을 위한 운반체를 설계하는데서는 상동재조합을 진행할수 있 는 경계배렬을 찾아내는것이 중요하다. 또한 보편적인 엽록체형질전환용운반체를 만들기 위하여서는 그 경계배렬이 모든 식물에서 고도로 보존된 배렬이여야 한다.[3]

우리는 보존성이 높고 상동경계배렬로 될수 있는 엽록체유전자토막을 동정하기 위한 기초연구로서 고추엽록체DNA의 클론모임으로부터 분리한 재조합플라즈미드들에 대한 제한 효소절단지도를 작성하였다.

재료와 방법

재료 균주로는 Escherichia coli HB101(pCB109, pCB136보유균주)을 리용하였다.

제한효소 제한효소로는 *Eco*R I, *Bam*H I, *Hind* Ⅲ을, 제한효소완충액은《Multi-Core buffer》 (1배, 조성: 25mmol/L Tris-초산, pH 7.8, 100mmol/L 초산카리, 10mmol/L 초산마그네시움, 1mmol/L PTT, 25°C)를 리용하였다.

DNA토막들의 크기를 결정하기 위하여 분자량표식자(1kb Ladder)를 리용하였다.

재조합플라즈□드의 분리정제 및 확인 재조합플라즈미드는 알카리변성법으로 분리정제하고 0.8∼1.0% 아가로즈겔에서 전기영동하여 확인하였다.

재조합플라즈미드에 대한 제한효소분석 재조합플라즈미드를 제한효소 BamH I로 처리하여 운반체(pBR322)와 삽입DNA토막에 해당한 띠를 얻은 다음 분자량표식자와 비교하였다. 제한효소의 완전분해물은 1h, 부분분해물은 20min동안 처리하여 얻었다. 제한효소절단점위치를 알기 위하여 매 효소들을 개개로 또는 함께 반응시켜 각이한 크기의 DNA토막을 얻었다.

제한효소부분분해시켰을 때 나타난 각이한 크기의 띠와 완전분해물에서 생긴 DNA띠들을 비교종합하여 물리적지도를 작성하였다.

결과 및 론의

1) 재조합플라즈미드 pCB109의 제한효소분석

분리한 재조합플라즈미드 pCB109시료 4 μ L (약 2.5 μ g)를 취하여 각각 완전분해(60min), 부 분분해(20min)하여 1.0% 아가로즈겔전기영동한 다음 나타난 각이한 DNA토막들을 관찰하였 다.(그림 1)

그림 1에서 보는바와 같이 제한효소 BamH I로 완전분해하였을 때 약 4.3kb와 2.1kb 크

그림 1. pCB109의 몇가지 제한효소분석상 1.0% 아가로즈전기영동상; 1-pCB109/ (BamH I+Hind III), 2-pCB109/BamH I, 3-pCB109/(BamH I+EcoR I)(부분 분해), 4-pCB109/(BamH I+EcoR I) (완전분해), 5-1kb DNA표식자

기의 DNA토막이 얻어졌다. 이것은 엽록체DNA의 삽 입토막의 크기가 2.1kb정도라는것을 보여준다.[4]

제한효소 BamH I과 Hind Ⅲ을 동시에 작용시켰 을 때도 제한효소 BamH I을 처리한 결과와 비슷하였 다. 이것은 운반체 pBR322에 있는 BamH I과 Hind Ⅲ 의 인식절단부위가 매우 가깝기(약 30bp)때문에 해당 분석조건에서 그 차이를 분간해내지 못한데 있다. 그 리므로 삽입토막에는 Hind Ⅲ절단부위가 없는것 같다.

전기영동상에 나타난 토막들의 크기를 종합하면 표 1과 같다.

표 1에서 보는바와 같이 EcoR I과 BamH I을 동 시에 처리하여 완전분해시켰을 때 크기가 4.0, 1.5, 0.6, 0.3kb, 부분분해하였을 때 4.9, 4.0, 2.1, 1.5, 0.6, 0.3kb 되는 토막들이 얻어졌다.

丑	1.	완전분해	및	부분분해한	pCB109	9로막들의	크기
---	----	------	---	-------	--------	-------	----

		•		
제한효	소	크기/kb		
ВатН	I	4.3, 2.1		
BamH I+Hi	nd III	4.3, 2.1		
BamH I+EcoR I	부분분해 완전분해	4.9, 4.0, 2.1, 1.5, 0.6 0.3		
	건건선에	4.0, 1.5, 0.6 0.3		

여기서 2.1kb 토막을 EcoR I로 절단시키면 1.5와 0.6kb 크기의 토막으로 나누어지고 4.9kb 토 막은 4.0, 0.6, 0.3kb로 나누어지는데 운 반체 pBR322와 삽입토막의 0.6kb 토막 이 이웃하여 놓여있다고 볼수 있다. 이 리한 실험자료에 기초하여 재조합플라 즈미드 pCB109의 물리적지도를 그릴수 있다.(그림 2)

2) 재조합플라즈미드 pCB136의 제한효소분석

pCB136을 제한효소로 처리하여 전기영동한 결과는 그림 3과 같다.

그림 3에서 보는바와 같이 제한효소 Hind III의 절단점은 삽입토막에는 없는것으로 볼 수 있다

그림 3. 재조합플라즈미드 pCB136의 제한효소분석(1.0% 아가로즈겔 전기영동상)

1 - pCB136/(BamH I+Hind III), 2-pCB136/BamH I, 3-pCB136/(BamH I+ EcoR I)(부분분해), 4-pCB136/(BamH I+ *Eco*R I)(완전분해), 5-1kb DNA표식자

맺 는 말

1) 재조합플라즈미드 pCB109와 pCB136에 삽입된 고추엽록체토막의 크기는 각각 2.1kb와 2.5kb이다.

제한효소 EcoR I와 BamH I을 동시에 작용시키고 부분분해하였을 경우 4개의 DNA띠, 완전분해에서는 3 개의 DNA띠가 나타났다

매 토막들의 크기를 표 2에서 보여주었다.

표 2. 몇가지 제한효소처리에 의한 pCB136절단로막들의 크기

제 한 효 소	크기/kb		
ВатН І	4.3, 2.5		
BamH I+Hind Ⅲ	4.3, 2.5		
Pamu L+FaoD I 부분분해	4.9, 4.0, 1.25, 0.3		
BamH I+EcoR I 완전분해	4.0, 1.25, 0.3		

제한효소 EcoR I와 BamH I을 동시에 작용시켜 완 전분해하면 매 토막들의 크기합(4.0+1.3+0.3)이 5.6kb 밖에 되지 않았다. 그런데 BamH I로 처리한데 의하면 4.3kb와 2.5kb로서 삽입토막의 크기가 2.5kb라는것을 알 수 있다. 이것은 어느 한 토막이 겹치였다는것을 말해 준다.[1, 2] 여기서 1.25kb 토막이 겹치였다고 보면 6.8kb(4.0kb, 1.25kb 2개, 0.3kb)로서 pCB136의 크기와 일 치하였다. 이로부터 삽입토막의 중심(1.25kb)에 제한효 소의 절단점이 1개 있다는것을 알수 있다.(그림 4)

2) 재조합플라즈미드 pCB109와 pCB136에 삽입된 고추엽록체DNA토막내부에 제한효 소 EcoR Ⅰ의 절단점이 각각 1개, Hind Ⅲ절단점은 없다는것을 확인하고 물리적지도를 그 리였다.

참 고 문 헌

- [1] **김일성**종합대학학보(자연과학편), 1, 100, 1986.
- [2] 김일성종합대학학보(자연과학편), 3, 109, 1986.
- [3] 김일성종합대학학보(자연과학), 52, 9, 131, 주체95(2006).
- [4] 리영철; 핵바깥유전자와 그 기능, **김일성**종합대학출판사, 3~239, 주체96(2007).
- [5] 리영철 등; 생물공학학회지, 1, 3, 주체99(2010).
- [6] 리영철 등: 생물공학학회지, 2, 3, 주체99(2010).

주체103(2014)년 11월 5일 원고접수

Restriction Analysis on the Recombination Plasmid pCB109 and pCB136

Kim Tong Son, Ri Yong Chol and Ri Il Chon

The chloroplast DNA fragments of red pepper (*Capsicum annuum*) inserted to the recombinant plasmid pCB109 and pCB136 were respectively 2.1kb and 2.5kb in size.

We clarified that there was a cut site of a restriction enzyme, *EcoR* I, but no that of *Hind* III in the chloroplast DNA fragments of red pepper inserted to the recombinant plasmid pCB109 and pCB136 and then mapped their restriction maps.

Key words: red pepper, chloroplast DNA, pCB109, pCB136