Bootstrap con R

26 noviembre 2018

Problema de estimación

- Dada una muestra,
 - ▶ Interés en estimar un parámetro θ .

Problema de estimación

- Dada una muestra,
 - Interés en estimar un parámetro θ .
- ▶ Por ejemplo, un estimador puntual para μ es \overline{X} , y un IC puede estar dado por

$$\overline{X} \pm \mathsf{algo} \mathcal{SE}(\overline{X})$$

Problema de estimación

- Dada una muestra,
 - ▶ Interés en estimar un parámetro θ .
- ▶ Por ejemplo, un estimador puntual para μ es \overline{X} , y un IC puede estar dado por

$$\overline{X} \pm \mathsf{algo} \mathcal{SE}(\overline{X})$$

En general, algo= $z_{\alpha/2}$, y si 1 – α = 0.95, $z_{\alpha/2}$ \approx 2

$$(\overline{X}-2SE(\overline{X}),\overline{X}+2SE(\overline{X}))$$

$$(\overline{X}-2SE(\overline{X}),\overline{X}+2SE(\overline{X}))$$

$$SE(\overline{X}) = ?$$

$$(\overline{X}-2SE(\overline{X}),\overline{X}+2SE(\overline{X}))$$

$$SE(\overline{X}) = ?$$

Respuesta: Bootstrap (Efrom 1983)

$$(\overline{X}-2SE(\overline{X}),\overline{X}+2SE(\overline{X}))$$

$$SE(\overline{X}) = ?$$

Respuesta: Bootstrap (Efrom 1983)

Estimar la distribución del estimador (perdón)

Método para una media

Dada una muestra fija x_1, x_2, \ldots, x_n .

Repetir B veces

- Extraer una muestra de tamaño n con reposición de la muestra original, se obtiene una muestra bootstrap x₁^{*}, x₂^{*},...,x_n^{*}.
- Calcular el promedio (el estadístico de interés) con la muestra bootstrap.

Resultado:

Estimación de la distribución de \overline{X} .