## SSN COLLEGE OF ENGINEERING, KALAVAKKAM – 603 110 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

**B.E.** Computer Science and Engineering **DISTRIBUTED SYSTEMS** 

Date: 01.02.2018, 8.00-9.30 AM

Semester: 6.

**UNIT TEST - 1 ReTest** 

Academic Year: 2017-2018 EVEN

Max. Marks: 50 Batch: 2015-2019

Faculty: Mr. H.Shahul Hamead & Ms. Y.V.Lokeswari

## PART - A (5X2 = 10 Marks)

| 1.<br>2.<br>3.<br>4.<br>5.                                                    | Why physical clock is not suitable for Distributed Systems?  Define Transit-less state.  Define Causal Ordering of messages.  Mention the drawbacks of Vector clock.  What kind of security threats could occur in Distributed Systems? | (K2, CO1)<br>(K2, CO4)<br>(K2, CO4)<br>(K3, CO4)<br>(K2, CO1) |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                               | PART – B                                                                                                                                                                                                                                | (8 Marks)                                                     |
| 6.                                                                            | Discuss about the following challenges in Distributed Systems.  a. Failure Handling. b. Concurrency. c. Transparency.  OR                                                                                                               | ( <b>K2, CO1</b> ) ( <b>8</b> ) (3) (2) (3)                   |
| 7. What is a Cut? Draw the Space Time diagram in question no. 10 and mark the |                                                                                                                                                                                                                                         |                                                               |
| /٠                                                                            | following cuts separately.                                                                                                                                                                                                              | (K2, CO4) (2)                                                 |
|                                                                               | a. Inconsistent Cut.                                                                                                                                                                                                                    | (2)                                                           |
|                                                                               | b. Consistent Cut.                                                                                                                                                                                                                      | (2)                                                           |
|                                                                               | c. Strongly Consistent Cut.                                                                                                                                                                                                             | (2)                                                           |
|                                                                               | PART – C                                                                                                                                                                                                                                | (32 Marks)                                                    |

## Answer any two questions

- 8. Illustrate the working of Chandy Lamport's Global state recording protocol with step by step traces having at least 3 processes and 2 incoming channels for the initiator process. (K3, CO4) (16)
- 9. For the following Space Time diagram, ensure the causal ordering of messages using Broadcast message ordering protocol. (K3, CO4) (16)



## 10. Consider the following Space Time diagram, and answer the following questions. (K3, CO4)



- a) Compute Lamport's Logical Clock values for all the events
- b) Compute Vector clock values for all the events (4)
- c) Show that the limitations of Lamport's clock can be resolved using vector clocks by choosing any appropriate events (4)
- d) What does the set of clock values C(i,j,k) at any event represents for Process Pj in Vector Clock? (2)
- e) Identify and prove a pair of concurrent events in the above space-time diagram. (4)

Prepared By Reviewed By

H. Shahul Hamead HOD / CSE

Y. V. Lokeswari



(2)