Algorithm-1

	G + C 1 + '	T + 1 // C/: + 1
Step	Cost of each execution	Total # of times executed
1	1	1
2	1	N+1
3	1	$\sum_{\substack{l=1\\n}}^{n} n - l + 2$
4	1	$\sum_{l=1}^{n} n - l + 1$
5	1	$\sum_{u=1}^{n} \sum_{i=1}^{u} i + 1$
6	6	$\sum_{u=1}^{n} \sum_{i=1}^{u} i$
7	4	$\sum_{l=1}^{n} n - l + 1$
8	1	1

Multiply col.1 with col.2, add across rows and simplify

Multiply col.1 with col.2, add across rows and simplify
$$T_1(n) = 1 + n + 1 + \frac{n^2 + 3n}{2} + \frac{n^2 + n}{2} + \frac{n(n+1)(n+5)}{6} + \frac{6n(n+1)(n+2)}{6} + 4\frac{n^2 + n}{2} + 1$$

$$= 3 + n + \frac{6n^2 + 8n}{2} + \frac{n(n+1)(7n+17)}{6} = 3 + n + 3n^2 + 4n + \frac{7n^3 + 24n^2 + 17n}{6}$$

$$= \frac{7n^3}{6} + 7n^2 + \frac{47n}{6} + 3$$

$$= 0(n^3)$$

Algorithm-2

	Aigoriumi-2	
Step	Cost of each execution	Total # of times executed
1	1	1
2	1	n+1
3	1	n
4	1	$\sum_{l=1}^{n} n - l + 2$
5	6	$\sum_{l=1}^{n} n - l + 1$
6	4	$\sum_{l=1}^{n} n - l + 1$
7	1	1

Multiply col.1 with col.2, add across rows and simplify

$$T_{2}(n) = 1 + n + 1 + n + 1 + \frac{n^{2} + 3n}{2} + 6\frac{n^{2} + n}{2} + 4\frac{n^{2} + n}{2}$$

$$= 3 + 2n + \frac{11n^{2} + 13n}{2} = \frac{(11n + 6)(n + 1)}{2}$$

$$= \frac{11n^{2}}{2} + \frac{17n}{2} + 3$$

$$= \frac{0(n^{2})}{2}$$

Algorithm-3

	11.501.11.11.1	
Step	Cost of each execution	Total # of times executed in any single recursive
		call
1	3	1

2	8	1		
Steps executed when the input is a base case: 1, 2				
First recurrence relation: T(n=1 or n=0) = 4				
3	5	1		
4	2	1		
5	1	$\left \frac{n}{2}+1\right $		
6	6	$\frac{\overline{n}}{2}$		
7	4	$\frac{\overline{n}}{2}$		
8	2	1		
9	1	$\frac{n}{2}+1$		
10	6	$\frac{\overline{n}}{2}$		
11	4	$\frac{\overline{n}}{2}$		
12	4	1		
13	1	(cost excluding the recursive call) 1		
14	1	(cost excluding the recursive call) 1		
15	5	1		
Steps executed when input is NOT a base case: 3 - 15				
Second recurrence relation: $T(n>1) = 11n+33$				
Simplif	ied second recurrence relation (ignore the constant ter	rm): $T(n>1) = \overline{11n}$		

Solve the two recurrence relations using any method (recommended method is the Recursion Tree). Show your work below:

 $T_3(n) = 11nlog(n) + 11n$ = O(nlog(n))

Algorithm-4

4	ingoriumi-4	
Step	Cost of each execution	Total # of times executed
1	1	1
2	1	1
3	1	n+1
4	7	n
5	4	n
6	2	1

Multiply col.1 with col.2, add across rows and simplify $T_4(n) = 1 + 1 + n + 1 + 7n + 7 + 4n + 2$

$$T_4(n) = 1 + 1 + n + 1 + /n + / + 4n + 2$$

= 12n + 12= O(n)