HALOGEN

Vishay Semiconductors

High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

DESCRIPTION

TSAL6200 is an infrared, 940 nm emitting diode in GaAlAs/GaAs technology with high radiant power molded in a blue-gray plastic package.

FEATURES

Package type: leaded
Package form: T-1¾
Dimensions (in mm): Ø 5

• Peak wavelength: $\lambda_p = 940 \text{ nm}$

· High reliability

· High radiant power

· High radiant intensity

• Angle of half intensity: $\phi = \pm 17^{\circ}$

· Low forward voltage

• Suitable for high pulse current operation

· Good spectral matching with Si photodetectors

 Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

• Halogen-free according to IEC 61249-2-21 definition

APPLICATIONS

- · Infrared remote control units with high power requirements
- Free air transmission systems
- · Infrared source for optical counters and card readers

PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (deg)	λ _P (nm)	t _r (ns)	
TSAL6200	60	± 17	940	800	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
TSAL6200	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	T-1¾		

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		I _F	100	mA	
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	1.5	А	
Power dissipation		P _V	160	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 85	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	$t \le 5$ s, 2 mm from case	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, leads 7 mm soldered on PCB	R _{thJA}	230	K/W	

Note

T_{amb} = 25 °C, unless otherwise specified

Vishay Semiconductors High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.35	1.6	V
	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	V _F		2.6	3	V
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		- 1.8		mV/K
Reverse current	V _R = 5 V	I _R			10	μΑ
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	C _j		25		pF
De dieut interesite	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	40	60	200	mW/sr
Radiant intensity	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	l _e	340	500		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e		35		mW
Temperature coefficient of φ _e	I _F = 20 mA	TKφe		- 0.6		%/K
Angle of half intensity		φ		± 17		deg
Peak wavelength	I _F = 100 mA	λ_{p}		940		nm
Spectral bandwidth	I _F = 100 mA	Δλ		50		nm
Temperature coefficient of λ_p	I _F = 100 mA	$TK\lambda_p$		0.2		nm/K
Rise time	I _F = 100 mA	t _r		800		ns
Fall time	I _F = 100 mA	t _f		800		ns
Virtual source diameter	Method: 63 % encircled energy	d		2.4		mm

Note

 T_{amb} = 25 °C, unless otherwise specified

High Power Infrared Emitting Diode, Vishay Semiconductors 940 nm, GaAlAs/GaAs

BASIC CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

Fig. 3 - Pulse Forward Current vs. Pulse Duration

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Radiant Intensity vs. Forward Current

Fig. 6 - Radiant Power vs. Forward Current

Fig. 7 - Relative Radiant Intensity/Power vs. Ambient Temperature

Fig. 8 - Relative Radiant Power vs. Wavelength

Vishay Semiconductors High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

Fig. 9 - Relative Radiant Intensity vs. Angular Displacement

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5259.06-4

Issue: 6; 19.05.09

19257

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com