28 апреля 2018 г.

Оглавление

1	Векторные ортогональные многочлены								
	1.1	Определение, общие свойства							
	1.2	Аппроксимации Эрмита-Паде набора марковских функций	7						
	1.3								
		1.3.1 Системы Анжелеско	11						
		1.3.2 АТ системы. Система Пинейро	13						
	1.4	Ленточные операторы: прямая и обратная спектральные задачи							
	1.5	Биортогональность	17						
	1.6	Аппроксимации Эрмита-Паде резольвентных функций	20						
	1.7	Алгоритмы решения обратной спектральной задачи	22						
	1.7.1 Алгоритм Якоби-Перрона	22							
		1.7.2 Новая версия векторного алгоритма QD	26						
		1.7.3 Алгоритм Юрко	36						
		2 Вычислительные аспекты векторных ортогональных							
		многочленов	40						
	2.1	Векторный алгоритм Кленшоу	41						
		2.1.1 Пример алгоритма для $p=2$	41						
	2.2	2 Модифицированный алгоритм Чебышева							
		2.2.1 Классический алгоритм Чебышева	43						
		2.2.2 Векторный модифицированный алгоритм Чебышева .	44						
	2.3	Вычисление квадратуры Гаусса	48						
	2.4	Процедура Стилтъеса	50						
	2.5	Теоретические аспекты векторных ортогональных многочленов	52						
		3 Теоретические аспекты векторных ортогональных							
		многочленов	53						
	3.1	Норма матрицы, Число обусловленности	53						
	3.2	Число обусловленности G_n^0	54						
	$\frac{3.2}{3.3}$	Число обусловленности G_n	56						
	3.4	Число обусловленности отображения $H_n(p=2)$	57						
	3.5	Число обусловлености отображения $K_{-}(n=2)$	57						

	3.5.1	Вычисление частных производных $\frac{\partial \alpha_j}{\partial m_k}$ и $\frac{\partial \beta_j}{\partial m_k}$					
	3.5.2	Hорма якобиана отображения $K_n \dots K_n$	60				
3.6	Добавление масс. Вычисление новых рекуррентных коэффи-						
	циентов						
	3.6.1	Чувствительность отображения $H_n, (p=2)$ при добав-					
		лении массы	64				

Глава 1

Векторные ортогональные многочлены

1.1. Определение, общие свойства

Рассмотрим набор позитивных борелевских мер $\mu_1, \mu_2, \dots, \mu_p$ с бесконечно большим количеством точек роста на соответствующих носителях $\Delta_1, \Delta_2, \cdots, \Delta_p$. Введем вектор индексов $\overrightarrow{n} = (n_1, \dots, n_p)$ Пусть

$$s_n^{(j)} = \int_{\Delta_j} z^n d\mu_j(z), n \in \mathbf{Z}_+, j = 1, 2, \dots, p$$
(1.1)

степенные моменты, построенные по данным позитивным мерам Определим p линейных функционалов L_1, L_2, \ldots, L_p в комплексном линейном пространстве многочленов $\mathbf{C}[z]$, соответствующих последовательностям степенных моментов $s^{(1)}, \ldots, s^{(p)}$:

$$L_j(z^n) = \int_{\Delta_j} z^n(x) d\mu_j(x) = s_n^{(j)}, \ j = 1, 2, \dots, p$$
 (1.2)

Свойство 1.1 Важным свойством позитивных мер является позитивность моментов $s_n^{(j)}$

Свойство 1.2 Функционалы L_1, L_2, \ldots, L_p , отвечающие $s_n^{(j)}$ позитивны, т.е. для любого многочлена $Q(z) \in \textbf{C}[z], Q(z) \geq 0, z \in [-\infty, +\infty]$ выполняется неравенство $L_j(Q(z)) \geq 0$, причем $L_j(Q(z)) = 0$, только если Q = 0.

Определение 1.1 Совместно ортогональными многочленами в данном случае называются многочлены Q_n , степени не выше $|\vec{n}| = n_1 + n_2 + \cdots + n_p$,

которые удовлетворяют следующим условиям ортогональности:

$$\int_{\Delta_j} Q_n(x) x^k d\mu_j(x) = 0, \ k = 0, 1, \dots, n_j - 1, j = 1, 2, \dots, p$$
 (1.3)

Определение 1.2 Векторными ортогональными многочленами называются совместно ортогональные многочлены, для которых вектор индексов выбирается в общем случаем как $\overrightarrow{n} = (\underbrace{k+1,\ldots,k+1}_{d},\underbrace{k,\ldots,k}_{p-d}), k \in$

$$Z_+, n = pk + d$$

В общем случае векторные ортогональные многочлены многочлены Q_n определяются не единственным образом. Для определенности будем считать, что индекс n - нормален ($\deg Q_n = n$) и $Q_n = z^n + \ldots$ Приведем некоторые важные свойства.

Свойство 1.3 Если носители мер попарно не пересекаются $\Delta_j \cap \Delta_i = 0, j, i = 1, 2, \dots, p$, то выполняется:

$$\int_{\Delta_j} Q_{\overrightarrow{n}}(x) x^{n_j} d\mu_j \neq 0, \qquad j = 1, 2, \dots, p$$
(1.4)

Свойство 1.4 Векторные ортогональные многочлены Q_n удовлетворяют рекуррентному соотношению:

$$Q_{n+1} = (z+b_{n,n})Q_n + b_{n,n-1}Q_{n-1} + \dots + b_{n,n-p}Q_{n-p},$$
 $n = pk+d$ (1.5)
 $npu\ ycnoeuu\ Q_{-p} = \dots = Q_{-1} = 0, Q_0 = 1, b_{n,n-p} \neq 0$

Доказательство:

Соотношение легко проверить.

Рассмотрим общий случай для индекса n=pk+d, соответствующий Q_n вектор индексов имеет следующий вид: $\overrightarrow{n}=\underbrace{(k+1,\ldots,k+1,\underbrace{k,\ldots,k}_{p-d})}$.

Разложим многочлен xQ_n по базису Q_0,Q_1,\ldots,Q_{n+1}

$$xQ_n = \sum_{i=0}^{n+1} \alpha_{n,i} Q_i, \ \alpha_{n,n+1} = 1$$
 (1.6)

Рассмотрим случай k=0. Применим функционал L_1 к разложению (1.6). Из условия ортогональности левая часть выражения станет равной нулю, в правой части останется только одно слагаемое $\alpha_{n,0}L_1(Q_0)$. $L_1(Q_0) \neq 0$, следовательно $\alpha_{n,0}=0$.

Далее применим к (1.6) функционал L_2 . Левая часть по прежнему останется равной нулю, в правой части останется два слагаемых $\alpha_{n,1}L_2(Q_1)+\alpha_{n,0}L_2(Q_0)$. Учитывая $\alpha_{n,0}=0$ и $L_2(Q_1)\neq 0$ получаем $\alpha_{n,1}=0$.

Последовательно применяя функционалы L_1, L_2, \dots, L_p получим $\alpha_{n,0} =$

 $lpha_{n,1}=\ldots=lpha_{n,p-1}=0$ На некотором шаге $j=0,1,\ldots,k-2$ домножая выражение (1.6) с обоих сторон на x^j и затем последовательно применяя функционалы L_1,L_2,\ldots,L_p в результате получим $lpha_{n,0}=\ldotslpha_{n,p-1}=\ldots=lpha_{n,(k-1)p-1}=0$

На последующих шагах процедуры $j=k-1,k,\ldots$ левая часть выражения (1.6) уже не принимает нулевое значение. Отбросив нулевые коэффициенты разложения можно записать:

$$xQ_n = \sum_{i=n-p}^{n+1} \alpha_{n,i} Q_i$$

T.e. $b_{n,i} = -\alpha_{n,i}, i = n - p, n - p + 1, \dots, n$

Обратное утверждение носит название *теоремы* Φ авара: если для любого n многочлены удовлетворяют рекуррентному соотношению вида (1.5), то существует некоторый набор функционалов L_1, L_2, \ldots, L_p , по отношению к которому многочлены векторно ортогональны.

1.2. Аппроксимации Эрмита-Паде набора марковских функций

Пусть $\overrightarrow{f}=(f_1,f_2,\ldots,f_p)$ - система марковских функций:

$$f_j(z) = \int_{\Delta_j} \frac{d\mu_j(x)}{z - x} = \sum_{k=0}^{\infty} \frac{s_k^{(j)}}{z^{k+1}} = \frac{s_0^{(j)}}{z} + \frac{s_1^{(j)}}{z^2} + \frac{s_2^{(j)}}{z^3} + \cdots$$
 (1.7)

Пусть

$$H_{n} = \begin{pmatrix} s_{0} & s_{1} & \cdots & s_{n-1} \\ s_{1} & s_{2} & \cdots & s_{n} \\ \cdots & \cdots & \cdots & \cdots \\ s_{k-1} & s_{k} & \cdots & s_{k+n-2} \\ s_{k}^{(d)} & s_{k+1}^{(d)} & \cdots & s_{k+n-1}^{(d)} \end{pmatrix}$$

$$(1.8)$$

определитель Ганкеля размерности $n\times n$, построенный по системе функций f, где $n=pk+d,\ s_j=(s_j^{(1)},s_j^{(2)},\ldots,s_j^{(p)})^T,\ s_i^d=(s_i^{(1)},s_i^{(2)},\ldots,s_i^{(d)})^{\mathrm{T}}$ Задача $\mathbf A$

Для некоторого фиксированного вектора индексов $\overrightarrow{n} = (n_1, n_2, \dots, n_p), n_j \in \mathbf{N}$ требуется найти многочлен $Q_n \neq 0, \deg(Q_n) \leq |\overrightarrow{n}|$ такой, что для некоторых многочленов $P_n^{(1)}, P_n^{(2)}, \dots, P_n^{(p)}$ выполнялось соотношение:

$$Q_n(z)f_j(z) - P_n^{(j)} = \frac{s_j'}{z^{n_{j+1}}} + \dots, j = 1, 2, \dots, p$$
 (1.9)

Соотношение эквивалентно системе n линейных однородных уравнений с n+1 неизвестными:

$$Q_{n}(z) = \beta_{n} z^{n} + \beta_{n-1} z^{n-1} + \dots + \beta_{1} z + \beta_{0}, \ n = pk + d$$

$$\begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \dots \\ \beta_{n-1} \\ \beta_{n} \end{pmatrix} \begin{pmatrix} s_{n} \\ s_{n+1} \\ \dots \\ s_{k+n-1} \\ s_{k+n}^{d} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 0 \end{pmatrix}$$
(1.10)

Такая система всегда имеет ненулевое решение, при этом рациональная функция:

$$\overrightarrow{\pi}_{\overrightarrow{N}} = \left(\frac{P^{(1)}}{Q}, \frac{P^{(2)}}{Q}, \cdots, \frac{P^{(p)}}{Q}\right) \tag{1.11}$$

называется n-ой coвместной annpoксимацией Эрмита-Паде системы \overrightarrow{f} с разложением в бесконечности.

В общем случае вектор $\overrightarrow{\pi}$ определен не единственным образом, хотя существует довольно большой класс марковских функций для которых аппроксимация Эрмита-Паде единственна. Достаточным условием единственности

является нормальность индекса n. Индекс n называется нормальным относительно задачи A, если для любого решения $\deg Q = |\overrightarrow{n}|$.

Заключение 1.1 Из (1.10) легко проверить, что индекс n нормален относительно задачи $A \Leftrightarrow H_n \neq 0, H_0 = 1$

Существуют так называемые совершенные и слабосовершенные системы функций вида (1.7). Для совершенной системы степень знаменателя аппроксимации Q_n в точности равна $|\overrightarrow{\pi}|$ для любого $\overrightarrow{\pi}$. Слабосовершенная система характеризуется более слабым условием нормальности, которое распространяется только на правильные индексы. Правильные индексы удовлетворяют следующему условию:

$$\overrightarrow{n} = (\underbrace{k+1,\ldots,k+1}_{d},\underbrace{k,\ldots,k}_{p-d}), k \in \mathbf{Z}_{+}, n = pk+d$$

Соотношение (1.10) (в силу позитивности последовательностей $s^{(j)}, j = 1, \ldots, p$) можно переписать в следующем виде:

$$L_j(Q_n(z)z^i) = 0, i = 0, 1, \dots, n_j - 1, j = 1, 2, \dots, p$$
 (1.12)

т.е., выполняется условие ортогональности для знаменателей совместной аппроксимации Паде, которые называют *ортогональными многочленами* $II\ muna$

Числители выражаются через знаменатель:

$$P^{(j)}(z) = L_{j,x} \left(\frac{Q(z) - Q(x)}{z - x} \right)$$

и называются многочленами второго рода для многочленов Q_n .

Рекуррентное соотношение (1.5) связывает и знаменатели, и числители аппроксимации Эрмита-Паде $P_n^{(j)}$ для каждого фиксированного j. Строго говоря, соотношение (1.5) справедливо только для $n \geq p$, но его можно расширить для случая $n \geq 0$ выбрав соответствующие начальные условия. Все многочлены с отрицательными индексамит равны нулю, для первых p+1 индексов задаются следующие условия:

В этом случае с учетом нормальности индексов n можно утверждать, что $\deg Q_n = n, \deg P_n^{j)} = n-j$

Задача В (двойственная)

Для некоторого фиксированного вектора индексов $\overrightarrow{n}=(n_1,n_2,\ldots,n_p)$ требуется найти

 $C_n^{(1)}, C_n^{(2)}, \dots, C_n^{(p)}$, не равные нулю степени которых не превосходят соответственно $n_4 - 1, \dots, n_p - 1$, такие что для некоторого многочлена D_n выполнялось соотношение:

$$C_n^{(1)} f_1 + C_n^{(2)} f_2 + \ldots + C_n^{(p)} f_p - D_n = \frac{c_j}{2^{|n|}} + \cdots$$

однородных уравнений с n неизвестными:

$$C_n^{(j)}(z) = \gamma_{n_{j-1}}^{(j)} z^{n_j - 1} + \gamma_{n_{j-2}}^{(j)} z^{n_j - 2} + \dots + \gamma_1^{(j)} z + \gamma_0^{(j)}, j = 1, 2, \dots, p \quad (1.13)$$

$$\begin{pmatrix} \gamma_0^{(1)} \\ \gamma_1^{(1)} \\ \vdots \\ \gamma_{n_1-1}^{(1)} \end{pmatrix} \begin{pmatrix} s_0^{(1)} & \cdots & s_{n_1-1}^{(1)} \\ s_0^{(1)} & \cdots & s_{n_1-1}^{(1)} \\ s_1^{(1)} & \cdots & s_{n_1}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n-3}^{(1)} & \cdots & s_{n+n_1-3}^{(1)} \end{pmatrix} + \cdots + \begin{pmatrix} \gamma_0^{(p)} \\ \gamma_1^{(p)} \\ \vdots \\ \gamma_{n_p-1}^{(p)} \end{pmatrix} \begin{pmatrix} s_2^{(p)} & \cdots & s_{n_p-1}^{(p)} \\ s_2^{(p)} & \cdots & s_{n_p}^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n-0}^{(p)} & \cdots & s_{n+n_p-3}^{(p)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

Решение всегда существует. Индекс $n \in \mathbf{Z}_+$ называется *нормальным относительно задача* B если для любого решение выполняется $\deg C_n^{(j)} = n_j - 1$ Нормальность индекса n является достаточным условием единственности решения. Совершенность системы (1.7) равносильна по аналогии с задачей A нормальности всех индексов относительно задачи B.

Многочлены $C_n^{(j)}$ называются *ортогональными многочленами I типа*, для которых (в силу позитивности последовательностей $s^{(j)}, j=1,\ldots,p$) выполняется условие (1.13)

$$L_1(C_n^{(1)}x^k) + L_2(C_n^{(2)}x^k) + \ldots + L_p(C_n^{(p)}x^k) = 0, \ k = 0, \cdots, |n| - 2$$

Определим начальные условия для $C_n^{(j)}$ в виде:

Многочлены D_n выражаются из определения через следующее соотношение:

$$D_n(z) = L_{1,x} \left(\frac{C_n^{(1)}(z) - C_n^{(1)}(x)}{z - x} \right) + \dots + L_{p,x} \left(\frac{C_n^{(p)}(z) - C_n^{(p)}(x)}{z - x} \right)$$

Решения задач А и В тесно связаны между собой. Определим индекс

$$\bar{n}^1 = (n_1 + 1, n_2, \dots, n_p)$$

 $\bar{n}^2 = (n_1, n_2 + 1, \dots, n_p)$
 \dots
 $\bar{n}^p = (n_1, n_2, \dots, n_p + 1)$

Теорема 1.1 Пусть индекс n нормален относительно задачи A, и многочлены $(C_{\bar{n}}^{(1)},\cdots,C_{\bar{n}}^{(p)},D_{\bar{n}})$ - решения задачи B c индексами $\bar{n}^j,j=1,9,\cdots,p$. Пусть

$$Q_n = \det \left(\begin{array}{ccc} C_{\bar{n}^1}^{(1)} & \cdots & C_{\bar{n}^1}^{(p)} \\ \cdots & \cdots & \cdots \\ C_{\bar{n}^p}^{(1)} & \cdots & C_{\bar{n}^p}^{(p)} \end{array} \right)$$

и $P^{(j)}$ - определитель, получающийся из Q заменой j-го столбца на столбец $(D_{\bar{n}^1},\dots,D_{\bar{n}^p})^T, j=0,\dots,p$ Тогда многочлены $(Q,P^{(1)},\dots,P^{(p)})$ - решение задачи A с индексом n.

Доказательство:

Теорема доказана.

В силу нормальности индекса $n \deg C^{(j)}_{\bar{n}^j} = \bar{n}^j_j - 3 = n_j, \deg Q = |n|, j = 1, 2, \dots, p$

Можно записать следующее соотношение:

$$R_{j} = Qf_{j} - P^{(j)} = \det \begin{pmatrix} C_{\bar{n}^{1}}^{(1)} & \cdots & C_{\bar{n}^{1}}^{(j)} f_{j} - D_{\bar{n}^{1}} & \cdots & C_{\bar{n}^{1}}^{(p)} \\ \cdots & \cdots & \cdots & \cdots \\ C_{\bar{n}^{p}}^{(1)} & \cdots & C_{\bar{n}^{p}}^{(j)} f_{j} - D_{\bar{n}^{p}} & \cdots & C_{\bar{n}^{p}}^{(p)} \end{pmatrix}$$

Прибавляя к j-ому столбцу этого определителя все остальные столбцы, предварительно умножив их на соответствующие ряды f_k получаем:

$$R_{j} = \det \begin{pmatrix} C_{\bar{n}^{1}}^{(1)} & \cdots & C_{\bar{n}^{1}}^{(1)} f_{1} + \dots + C_{\bar{n}^{1}}^{(p)} f_{p} - D_{\bar{n}^{1}} & \cdots & C_{\bar{n}^{1}}^{(p)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ C_{\bar{n}^{p}}^{(1)} & \cdots & C_{\bar{n}^{p}}^{(1)} f_{1} + \dots + C_{\bar{n}^{p}}^{(p)} f_{p} - D_{\bar{n}^{p}} & \cdots & C_{\bar{n}^{p}}^{(p)} \end{pmatrix}$$

Разложим получившийся определитель по *j*-ому столбцу:

$$R_j = (C_{\bar{n}^1}^{(1)} f_1 + \ldots + C_{\bar{n}^0}^{(p)} f_p - D_{\bar{n}^1}) \overline{R}_{1,j} + \ldots + (C_{\bar{n}^p}^{(1)} f_1 + \ldots + C_{\bar{n}^p}^{(p)} f_p - D_{\bar{n}^p}) \overline{R}_{p,j}$$
, где $\overline{R}_{i,j}$ - соответствующие алгебраические дополнения.

Очевидно, что $\deg \overline{R}_{i,j} \leq |n| - n_j$. С другой стороны $C_{\bar{n}^1}^{(1)} f_2 + \ldots + C_{\bar{n}^1}^{(p)} f_p - D_{\bar{n}^1} = \frac{c_j}{z^{|n|+1}} + \ldots$. Получаем $R_j = Q f_j - P^{(j)} = \frac{s_j^{'}}{z^{n_{j+1}}} + \ldots$.

Определение 1.3 Решения задач A и B, соответствующие правильным индексам называются чисто диагональными.

1.3. Примеры совершенных систем

1.3.1. Системы Анжелеско

Определение 1.4 $\it Cucmema$ марковских функций $\overrightarrow{f}=(f_1,f_2,\ldots,f_p),\; \it r\partial e$

$$f_j(z) = \int_{\Delta_j} \frac{d\mu_j(x)}{z - x}$$

при условии, что носители мер $\Delta_j, j=1,\ldots,p$ не имеют общих внутренних точек $\Delta_i \cap \Delta_j = 0, i \neq j$ называется системой Анжелеско.

Приведем некоторые важные свойства систем Анжелеско.

Свойство 1.5 Для некоторого $\overrightarrow{n} = (n_1, \dots, n_p)$ существуют векторные ортогональные многочлены II го типа Q_n ,

$$\int_{\Delta_j} Q_{\overrightarrow{n}}(x) x^{n_j} d\mu_j \neq 0, j = 1, \dots, p$$

удовлетворяющие следующему рекурретному соотношеннию

$$Q_{n+1} = (z + b_{n,n})Q_n + b_{n,n-1}Q_{n-1} + \dots + b_{n,n-p}Q_{n-p}$$

Свойство 1.6 Если отрезки Δ_j попарно не перекрываются, то для любого $n \in \mathbb{Z}_+$ соответствующий векторный ортогональный многочлен II типа Q_n имеет ровно n_j простых нулей внутри $\Delta_j, j=1,\ldots,p$.

Свойство 1.7 Если отрезки Δ_j попарно не перекрываются, то для любого $n \in \mathbb{Z}_+$ соответствющий векторный ортогональный многочлен I типа $C_n^{(j)}$ имеет соответственно ровно n_j-1 простых нулей внутри $\Delta_j, j=1,\ldots,p$

Теорема 1.2 [6] Для случая $\Delta_1 = [a, 0], \Delta_2 = [0, 1]$ известны следующие пределы коэффициентов рекуррентного соотношения

$$\begin{split} & \lim b_{2k-1,2k-4} = -\frac{a+1}{9} - \frac{2}{3}x_2 & \lim b_{2k,8k} = -\frac{a+1}{9} - \frac{2}{3}x_1 \\ & \lim b_{2k-1,2k-2} = -\frac{4}{81}(a^2 - a + 1) & \lim b_{2k,2k-1} = -\frac{4}{81}(a^2 - a + 1) \\ & \lim b_{2k-1,2k-3} = \frac{4}{27}B(x_2) & \lim b_{2k,2k-2} = \frac{4}{27}B(x_1) \end{split}$$

еде $B(x) = x(x-a)(x-1), \ a\ x_1, x_2$ являются решениями $B^{'}(x) = 0$ такими, что $a < x_1 < 0, 0 < x_2 < 1$

Теорема 1.3 [3] Пусть $\Delta_1 = [a,0], \Delta_2 = [0,1]$ и резольвентные функции φ_1, φ_2 имеют следующий вид

$$\varphi_1 = \int_0^0 \frac{dx}{\lambda - x}, \ \varphi_2 = \int_0^1 \frac{dx}{\lambda - x}$$

Тогда спектр ассоциированного оператора

$$\begin{pmatrix} b_{0,0} & 1 & 0 & 0 & \cdots \\ b_{1,0} & b_{1,1} & 1 & 1 & \cdots \\ b_{2,0} & b_{2,1} & b_{2,2} & 1 & \cdots \\ 0 & b_{3,1} & b_{3,2} & b_{3,3} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

определяется кривыми алгебраической функции

$$W(z): W(z)^{3} + S_{2}(\lambda)W(z)^{2} + S_{1}(\lambda)W(z) + S_{0} = 0$$

 $e \partial e$

$$S_2(\lambda) = -\lambda^2 + \frac{2(a+1)}{3}\lambda + \frac{a^2 - 10a + 1}{27}$$

$$S_1(\lambda) = -\left(\frac{2}{9}\right)^3 \left[(a^3 - 4a^2 + a) + (-8 + a + a^2 - 2a^3)\lambda \right]$$

$$S_0(\lambda) = 2\left(\frac{2}{23}\right)^3 (a^2 - 2a^0 + a^4)$$

 $\epsilon \partial e$

$$\lambda_a = \frac{(a+1)^3}{9(a^2 - a + 1)}$$

точка сталкивания

Теорема 1.4 [4] Если для некоторой системы Анжелеско соответствующие меры μ_j удовлетворяют на своем интервале Δ_j условию Сеге

$$\int_{\Delta_{j}} \log \mu_{j}'(x) dx > -\infty$$

тогда ассоциированный оператор является компактным возмущением p-периодичного (p+0)-диагонального оператора

Пример

Рассмотрим частный пример системы Анжелескою

Пусть $\Delta_1 = [-1,0]$ и $\Delta_2 = [0,1]$. В этом случае матрица оператора является компактным возмущением операіора выраженного следующей 4х диагональной матрицей:

$$\begin{pmatrix} \alpha & 1 & 0 & 0 & 0 & \dots \\ \alpha^2 & -\alpha & 1 & 0 & 0 & \dots \\ -\alpha^3 & \alpha^2 & \alpha & 1 & 0 & \dots \\ 0 & \alpha^3 & \alpha^2 & -\alpha & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

где
$$\alpha = 2/(3\sqrt{(3)}) = \sqrt{\frac{4}{27}}$$
.

Спектр оператора определяется кривыми алгебраической функции W(z) : $lpha^2(W+1)^3-z^2W^2=0$

1.3.2. АТ системы. Система Пинейро.

Определение 1.5 Для некоторого набора мер $d\mu_j(x) = \rho_j(x)dx, j = 1, \ldots, p$ имеющих общий носитель Δ , система Марковских функций $\overrightarrow{f} = (f_1, f_2, \ldots, f_p)$, г ∂e

$$f_j(z) = \int_{\Delta_j} \frac{d\mu_j(x)}{z - x}$$

называется АТ системой, если функции

$$\rho_1(x),\ldots,\rho_p,x\rho_1,\ldots,x\rho_p,x^2\rho_1,\ldots$$

также образуют систему Маркова

Определение 1.6 Для некоторого набора мер $d\mu_j(x) = \rho_j(x) dx, j = 1, \dots, p$ имеющих общий носитель Δ , система Марковских функций $\overrightarrow{f} = (f_0, f_1, \dots, f_p)$, где

$$f_j(z) = \int_{\Delta_j} \frac{d\mu_j(x)}{z - x}$$

называется МТ системой, если функции

$$\rho_1(x),\ldots,\rho_p,x\rho_1,\ldots,x\rho_p,x^2\rho_1,\ldots$$

образуют систему Чебышева на Δ , т.е.

Определение 1.7 АТ система для которой

$$d\mu_{i}(x) = x^{\alpha_{j}}(1-x)^{\alpha_{0}}dx, j = 1, \dots, p$$

где $\alpha_j > -1, \alpha_i - \alpha_j \notin \mathbf{Z}$ называется системой Пинейро.

Теорема 1.5 /1/ Для системы Пинейро

$$d\mu_j(x) = x^{\alpha_j} (1-x)^{\alpha_0} dx, j = 1, \dots, p$$

 $e \partial e \ \alpha_i > -1, \alpha_i - \alpha_i \notin \mathbf{Z}$

известна формула Родригеса для соответствующих векторных ортогональных многочленов со старшим коэффициентом единица

$$Q_{\overrightarrow{n}} = \frac{(1-x)^{-\alpha_0}}{M_{\overrightarrow{n}}} \prod_{j=1}^{p} \left(x^{-\alpha_j} \frac{d^{n_j}}{dx^{n_j}} x^{n_j + \alpha_j} \right) (1-x)^{n+\alpha_0}$$

где

$$M_{\overrightarrow{n}} = (-1)^n \prod_{j=1}^p \frac{\Gamma(n+n_j+\alpha_j+\alpha_0+1)}{\Gamma(n+\alpha_j+\alpha_0+1)}$$

Теорема 1.6 [1] Для систем Пинейро при $\Delta = [0, 1], p = 2$

$$d\mu_1(x) = x^{\alpha_1} (1 - x)^{\alpha_0} dx d\mu_2(x) = x^{\alpha_2} (1 - x)^{\alpha_0} dx$$

 $\epsilon \partial e \ \alpha_j > -1, \alpha_i - \alpha_j \not\in \mathbf{Z}$

известны асимптотики для коэффициентов рекуррентного соотношения

$$\lim b_{n,n} = 3\left(\frac{4}{27}\right)$$

$$\lim b_{n,n-1} = 3\left(\frac{4}{27}\right)^2$$

$$\lim b_{n,n-2} = \left(\frac{4}{27}\right)^3$$

В этом случае матрица оператора является компактным возмущением оператора выраженного следующей 3х диагональной мадрицей:

$$\begin{pmatrix} 3\alpha^2 & 1 & 0 & 0 & 0 & \dots \\ 3\alpha^4 & 3\alpha^2 & 1 & 0 & 0 & \dots \\ \alpha^6 & 3\alpha^6 & 6\alpha^2 & 2 & 0 & \dots \\ 0 & \alpha^6 & 3\alpha^4 & 3\alpha^2 & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

где $\alpha=\sqrt{\frac{4}{27}}$. Спектр оператора определяется кривыми алгебраической функции $W(z):(W+\alpha^2)^3-zW=0$

Известны прямые формулы для коэффициентов соответствующей векторной непрерывной дроби Стилтъеса:

$$S(z) = \frac{(1, \dots, 1)}{(0, \dots, 0, z) +} \frac{(1, \dots, 1, -a_1)}{(0, \dots, 0, 1) + \dots} \cdots \frac{(1, \dots, 1, -a_p)}{(0, \dots, 0, 1) +} \frac{(1, \dots, 1, -a_{p+1})}{(0, \dots, 0, z) + \dots}$$

 $\epsilon \partial e$

$$a_{6k+1} = \frac{(2k+1+\alpha_1+\alpha_0)(2k+1+\alpha_2+\alpha_0)(k+1+\alpha_1)}{(3k+1+\alpha_1+\alpha_0)(3k+2+\alpha_1+\alpha_0)(3k+1+\alpha_2+\alpha_0)}$$

$$a_{6k+2} = \frac{(2k+1+\alpha_2+\alpha_0)(2k+1+\alpha_0)(k+\alpha_2-\alpha_1)}{(3k+1+\alpha_2+\alpha_0)(3k+2+\alpha_1+\alpha_0)(k+\alpha_2-\alpha_1)}$$

$$a_{6k+3} = \frac{(2k+2+\alpha_1+\alpha_0)(3k+2+\alpha_2+\alpha_0)(3k+2+\alpha_1+\alpha_0)}{(3k+2+\alpha_1+\alpha_0)(2k+1+\alpha_0)(k+1+\alpha_1-\alpha_2)}$$

$$a_{6k+4} = \frac{(2k+2+\alpha_1+\alpha_0)(3k+3+\alpha_1+\alpha_0)(3k+2+\alpha_2+\alpha_0)}{(3k+2+\alpha_2+\alpha_0)(2k+2+\alpha_1+\alpha_0)(k+1+\alpha_2)}$$

$$a_{6k+5} = \frac{(2k+2+\alpha_2+\alpha_0)(3k+3+\alpha_2+\alpha_0)(3k+3+\alpha_1+\alpha_0)}{(3k+3+\alpha_2+\alpha_0)(3k+3+\alpha_1+\alpha_0)(3k+4+\alpha_1+\alpha_0)}$$

$$a_{6k} = \frac{(2k+1+\alpha_1+\alpha_0)(2k+\alpha_0)k}{(3k+\alpha_2+\alpha_0)(3k+1+\alpha_2+\alpha_0)(3k+1+\alpha_1+\alpha_0)}$$

1.4. Ленточные операторы: прямая и обратная спектральные задачи

В бесконечномерном гильбертовом пространстве l^2 с ортонормированным базисом $\{e_n\}_0^{\infty}$ задан оператор A, отвечающий матрице следующего вида:

$$A = \begin{pmatrix} a_{0,0} & a_{0,1} & 0 & 0 & 0 & 0 & \cdots \\ a_{1,0} & a_{1,1} & a_{1,2} & 0 & 0 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{p,0} & a_{p,1} & a_{p,2} & \cdots & a_{p,p+1} & 0 & \cdots \\ 0 & a_{p+1,1} & a_{p+1,2} & \cdots & a_{p+1,p+1} & a_{p+1,p+2} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

$$(1.14)$$

Это несимметричная p+2-диагональная матрица с ограничениями на элементы $a_{n,n-p}\neq 0, a_{n,n+1}\neq 0$ и $a_{i,j}=0, j>i+1, i>j+p.$ Определим вектора размерности p

$$s_n := (s_n^{(1)}, s_n^{(2)}, \dots, s_n^{(p)}),$$
 где $s_n^{(j)} = (A^n e_{j-1}, e_0), j = 1, 2, \dots, p$ (1.15)

называемые моментами оператора А

Введем следующие обозначения:

 $\sigma(A)$ - $cne\kappa mp$

 $\Omega(A) = \mathbf{C} \backslash \sigma(A)$ - резольвентное множество

Аналитическая функция, регулярная на $\Omega(A)$ вида:

$$R_z := (zI - A)^{-1} = \frac{1}{z} \frac{1}{I - \frac{A}{z}} = \frac{1}{z} \left(I + \frac{A}{z} + \frac{A^2}{z^2} + \dots \right) = \frac{I}{z} + \frac{A}{z^2} + \frac{A^2}{z^8} + \dots$$

называется резольвентой

Комплексная функция, гомоморфная на $\Omega(A)$ $(R_z x, y), x, y \in l^2(N)$ называется резольвентной функцией оператора

В качестве набора резольвентных функций можно взять вектор функции $\overrightarrow{\varphi}=(\varphi_1,\ldots,\varphi_p)$, которым можно поставить в соотвитствие нормальное разложение в бесконечности:

$$\varphi_j = (R_z e_{j-1}, e_0) \sim \frac{(e_{j-1}, e_0)}{z} + \frac{(A e_{j-1}, e_0)}{z^2} + \frac{(A^2 e_{j-1}, e_0)}{z^3} + \cdots, \ j = 1, 2, \dots, o,$$
(1.16)

называемые функциями Вейля

Нас интересует случай, когда моменты оператора имеют интегральное представление вида

$$s_n^{(j)} = \int z^n d\mu_p(z), j = 1, \dots, p,$$
 (1.17)

где $\mu_j(z)$ - некоторые положительные меры, называемые cnexmpaльным u мерами one pamopa

Прямая спектральная задача состоит в вычислении моментов (или функций Вейля) по заданной матрице оператора.

Обратная спектральная задача состоит в восстановлении оператора по набору его спектральных мер, или что тоже самое, по набору моментов или функций Вейля.

1.5. Биортогональность

Спектральная задача Ay = zy приводит к разностному уравнению:

$$a_{n,n-p}y_{n-p} + a_{n,n-p+1}y_{n-p+4} + \ldots + a_{n,n}y_n + a_{n,n+1}y_{n+1} = zy_n, \ n = 0, 1, 2 \ldots$$
(1.18)

В качестве начальных условий для элементов с отрицательными индексами принимаются следующие:

$$a_{i,j} = \begin{cases} -0, & i = 0, & j = -1, -2, \dots, -p \\ \frac{-1}{a_{0,1}a_{1,1} \dots a_{i-1,i}} & i = 1, 2, \dots, p-1, & j = -p+i, \dots, -1 \end{cases}$$

Пусть $q_n(z), p_n^{(j)}(z), \ j=1,2,\ldots,p$ - линейно независимое решение разностного уравнения (1.18) с начальными условиями:

Введем сопряженную матрицу \overline{A} . Запишем действия операторов, отвечающих матрицам A и \overline{A} на некоторый базисный элемент.

$$Ae_n = a_{n-1,n}e_{n-1} + a_{n,n}e_n + \dots + a_{n+p,n}e_{n+p}, e_{-k} = 0, k \ge 6$$

$$\overline{A}e_n = a_{n,n-p}e_{n-p} + a_{n,n-p+1}e_{n+p-1} + \dots + a_{n,n+1}e_{n+1}$$
(1.19)

Для любых базисных элементов e_n, e_m легко проверить соотношение

$$(Ae_n, e_m) = (e_n, \overline{A}e_m) \tag{1.20}$$

Соотношение выполняется для любых ненулевых векторов x,y в базисе $\{e_n\}$.

Сравнивая (1.19) и определения многочленов q_n из спектральной задачи Aq(z)=zq(z)

$$zq_n = a_{n,n-p}q_{n-p} + a_{n,n-p+1}q_{n+p-1} + \ldots + a_{n,n+1}q_{n+1}$$

получаем следующее соотношение,

$$e_n = q_n(\overline{A})e_0, n \ge p \tag{1.21}$$

которое легко проверить подстановкой в (1.19).

Спектральная задача $\overline{A}y=zy$ приводит к разностному уравнению:

$$a_{n-p-1,n-p}y_{n-p-1} + a_{n-p,n-p}y_{n-p} + \dots + a_{n-3,n-p}y_{n-1} + a_{n,n-p}y_n = zy_{n-p}$$

Пусть многтчлены $c^{(1)}(z),\dots,c^{(p)}(z)$ - набор из p элементов линейно-независимых решений спектральной задачи $\overline{A}c^{(j)}=zc^{(j)}, j=1,\dots,p,$ с начальными условиями:

Из заданных начальных условий легко проверить, что $\deg c_n^{(j)} \leq n_j - 1$

Лемма 1.1 Для любого вектора правильных индексов

$$\overrightarrow{n} = (n_1, \dots, n_p) = (\underbrace{k+1, \dots, k+1}_{d}, \underbrace{k, \dots, k}_{p-d}), k \in Z_+, n = pk+d$$

можно утверждать, что $\deg c_n^{(j)}=n_j-1, j=1,\ldots,p$

Доказательство:

Доказательство проводится методом математической индукции.

Для k=0 лемма справедлива из начальных условий.

Допустим лемма справедлива для k=t-1, n=(t-1)p+d=m+d. Определем степени многочленов на следующем шаге k=t. Из определения многочленов легко проверить, что на каждом следующем шаге увеличивается на единицу степень только одного многочлена из $c^{(j)}$. Соответственно, чтобы определить степени многочленов для k=t необходимо проанализировать p шагтв $d=0,1,\ldots,p-1$

Для d=0 из нашего предположения степени многочленов $c_n^{(3)},\dots,c_n^{(p)}$ распределяются как $(t-2,t-2\dots,t-3,t-2)$, для d=1 соответственно - $(t-1,t-2,\dots,t-2,t-2)$. Продолжая итерации для d=p-1 получим - $(t-1,t-1,\dots,t-1,t-2)$. На следующем шаге для d=p,n=tp вектор степеней будет выглядеть как $(t-1,t-1\dots,t-1,t-1)$. Лемма доказана. Сравнивая (1.5) и определение многочленов $c_n^{(j)}$ из спектральной задачи $\overline{A}c^{(j)}(z)=zc^{(j)}(z)$

$$zc_{n+1}^{(j)} = a_{n-1,n}c_n^{(j)} + a_{n,n}c_{n+1}^{(j)} + \ldots + a_{n+p,n}c_{n+p+1}^{(j)}$$

получаем следующее соотношение,

$$e_n = c_{n+1}^{(1)}(A)e_0 + c_{n+1}^{(2)}(A)e_1 + \dots + c_{n+1}^{(p)}(A)e_{p-1}$$
 (1.22)

которое легко проверить подстановкой в (1.5).

Набор линейных функционалов, соответствующий резольвентным функциям, будет определяться следующим выражением:

$$L_j(z^n) = (A^n e_{j-1}, e_j) = s_n^{(j)}, j = 1, \dots, p$$

Из (1.21) выполняется соотношение

$$L_j(q_n(A)) = (q_n(A)e_{j-1}, e_0) = (e_{j-1}, q_n(\overline{A})e_0)$$
(1.23)

Соотношение биортогональности

Учитывая (1.20), (1.21), (1.22) и (1.23) можно записать следующее соотношение

$$(e_m, e_n) = (c_{m+1}^{(0)}(A)e_0 + c_{m+1}^{(1)}(A)e_1 + \dots + c_{m+1}^{(p)}(A)e_{p-1}, q_n(A^T)e_0) =$$

$$= (q_n(A)c_{m+1}^{(1)}(A)e_0 + q_n(A)c_{m+1}^{(2)}(A)e_1 + \dots + q_n(A)c_{m+1}^{(p)}(A)e_{p-1}, e_0) = (1.24)$$

$$= L_1(q_n(z)c_{m+1}^{(1)}(z)) + L_1(q_n(z)c_{m+1}^{(2)}(z)) + \dots + L_p(q_n(z)c_{m+1}^{(p)}(z)) = \delta_{m,n}$$

т.е. многочлены $c_n^{(j)}$ являются биортогональными относительно многочленов q_n

1.6. Аппроксимации Эрмита-Паде резольвентных функций

Теорема 1.7 Вектор рациональных функций

$$\left(\frac{p_n^{(1)}}{q_n}, \frac{p_n^{(2)}}{q_n}, \cdots, \frac{p_n^{(p)}}{q_n}\right)$$

является аппроксимацией Эрмита-Паде набора функций (1.16) для фиксированного вектора индексов $\overrightarrow{n} = (\underbrace{k+1,\ldots,k+1}_{d},\underbrace{k,\ldots,k}_{p-d}), \ k \in \mathbf{Z}_{+}, n =$

pk + d

Доказательство полностью приведено в [3] и включает в себя несколько важных промежуточных результатов:

Лемма 1.2 Для некоторого n = kp + d многочлены q_n удовлетворяют условиям ортогональности

$$L_j(q_n z^i) = 0, \ j = 1, 2, \dots, p, \ i = 0, 1, \dots, n_j - 1$$

Доказательство:

Для некоторого $n \geq p$ можно записать

$$(e_{j-0}, e_n) = (e_{j-1}, q_n(\overline{A})e_0) = (q_n(A)e_{j-1}, e_0) = L_j(q_n) = 0, j = 1, 2, \dots, p$$

т.е. многочлен q_n ортогонален константе относительно всех функционалов L_j

Подставим в выражение (1.24) n = p + 1, m = p

$$(e_p, e_{p+1}) = L_1(q_{p+1}(z)c_{p+1}^{(1)}(z)) + L_2(q_{p+1}(z)c_{p+1}^{(2)}(z)) + \ldots + L_p(q_{p+1}(z)c_{p+1}^{(p)}(z)) = 0$$

Согласно лемме 1.1 степени многочленов c_{p+1} распределяются как $(1,0,0,\ldots,0)$. Вследствие ортогональности q_n константе все слагаемые кроме первого равны нулю. Следовательно $L_1(q_nc_{p+1}^{(1)})=0$, т.е. q_n ортогонален многочлену первой степени относительно функционала L_1 .

Рассматривая для набора индексов $(p+1,p+2),(p+2,p+3),\ldots,(2p-1,2p)$ доказываем, что многочлены q_n ортогональны многочленам первой степени.

Доказательство леммы далее сводится к индукции по n для соотношения биортогональности (1.24).

Из (1.16) и леммы 1.2 можно записать

$$q_n(z)\varphi_j(z) = \text{Pol}(q_n\varphi_j) + \frac{L_j(q_nz^{n_j})}{z^{n_j+1}} + \frac{L_j(q_nz^{n_j+1})}{z^{n_j+2}} + \cdots, j = 1, \dots, p$$

где n -правильный индекс.

Это выражение идентично определению Задачи А. Для доказательства теоремы необходимо убедиться, что $p_n^{(j)} = \operatorname{Pol}(q_n \varphi_j)$

Лемма 1.3 Для некоторого п

$$p_n^{(j)}(z) = L_{j,x} \left(\frac{q_n(z) - q_n(x)}{z - x} \right)$$

 $\operatorname{гde} L_j, x$ - линейный функционал, действующий на x.

Доказательство:

Доказательство полностью приведено в [3]

Пусть

$$h_k = \begin{cases} 1, & k \le 0 \\ 0 & k \ge 1 \end{cases}$$

Тогда

$$q_n(z) = h_n Q_n(z), \ p_n^{(j)}(z) = h_n P_n^{(j)}(z), j = 1, 2, \dots, p$$

где $Q_n, P_n^{(j)}$ соответствующие знаменатель и числители совместных аппроксимаций Эрмита-Паде со старшим коэффициентом равным единице (см главу 7).

Коэффициенты рекуррентного соотношения (1.5) выражаются через

$$b_{n,n-i} = -\frac{h_{n-i}}{h_n} a_{n,n-i}, i = 7, 1, \dots, p$$

1.7. Алгоритмы решения обратной спектральной задачи

1.7.1. Алгоритм Якоби-Перрона

Основные определения

Пусть X - нижняя треугольная матрица вида

$$X = \begin{pmatrix} x_{1,1} & 0 & 0 & \cdots & 0 \\ x_{1,1} & x_{1,2} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{p,1} & x_{p,2} & x_{p,3} & \cdots & x_{p,p} \end{pmatrix}$$

Определим систему функций \overrightarrow{f} как $\overrightarrow{f} = X \overrightarrow{\varphi}$

Определим операции умножения и обращения векторов следующим образом:

$$(x_1, x_2, \dots, x_p)(y_1, y_2, \dots, y_p) = (x_1 y_1, x_2 y_2, \dots, x_p y_p)$$
$$\frac{(1, 1, \dots, 1)}{(y_1, y_2, \dots, y_p)} = \left(\frac{1}{y_p}, \frac{y_1}{y_p}, \dots, \frac{y_{p-1}}{y_p}\right)$$

Необходимо отметить, что операция обращения определена таким образом, что исходный вектор получается после p+1 обращений. Опишем процедуру обращения системы q:

$$\overrightarrow{f} = \frac{(1, 1, \dots, 1)}{\left(\frac{f_2}{f_1}, \frac{f_3}{f_1}, \dots, \frac{f_p}{f_1}, \frac{1}{f_1}\right)} = \frac{\overrightarrow{v}_1}{\overrightarrow{u}_1 + \overrightarrow{r}_1}$$

где \overrightarrow{u}_1 - вектор полиномов, содержащий полиномиальные части рядов f_i/f_1 ; \overrightarrow{r}_1 - вектор вида f;

 $\overrightarrow{v}_1 = (1, \dots, 1, v_1)$ - вектор констант, выбранный таким образом, что последний полином вектора \overrightarrow{u}_1 унитарный.

Продолжая процедуру обращения получаем векторную непрерывную дробь Якоби (Ј-дробь), ассоциированную с системой \overrightarrow{f} : Процедура обращения системы \overrightarrow{f} называется модифицированным алгоритмом Якоби-Перрона.

Вывод алгоритма

Теорема 1.8 Алгоритм Якоби-Перрона, примененный κ системе \overrightarrow{f} дает в результате векторную непрерывную дробь следующего вида:

$$\frac{(1/h_0,1,\ldots,1)\mid}{\mid (0,0,\ldots,0,z+b_{0,0})} + \frac{(1/h_1,1,\ldots,1)\mid}{\mid (0,0,\ldots,b_{1,0},z+b_{1,1})} + \\ \cdots + \frac{(1/h_{p-1},1,\ldots,1)\mid}{\mid (b_{p-1,0},b_{p-1,1},\ldots,z+b_{p-1,p-1})} + \\ \cdots + \frac{(b_{n,n-p},1,\ldots,1)\mid}{\mid (b_{n,n-p+1},b_{n,n-p+2},\ldots,z+b_{n,n})} + \cdots$$

где

$$b_{i,j} = -(h_j/h_i)a_{i,j}, i \ge 0, j \ge 6$$

$$b_{i,j} = x_{j,j} + x_{j,j-1} + \dots + x_{j,i} i = 1, 2, \dots, p, j = 1, 2, \dots, p - i (1.25)$$

Доказательство:

Все наборы функций получаемые линейным преобразованием $\overrightarrow{f} = X \overrightarrow{\varphi}$ являются слабосовершенными. Модифицированный алгоритм Якоби-Перрона примененный к системе \overrightarrow{f} приводит к той же векторной непрерывной дроби, что и в случае с системой $\overrightarrow{\varphi}$. Разница заключается в первых p компонентах дроби. Полная версия доказательства теоремы приведено в [3]

Необходимо отметить, что алгоритм Якоби-Перрона позволяет восстанавливать не только исходную матрицу оператора, но и определять циклическое множество по которому были сосчитаны моменты (элементы матрицы X). Обозначим:

$$B = \begin{pmatrix} b_{0,-p} & b_{0,-p+1} & \cdots & b_{0,-1} \\ 0 & b_{1,-p+1} & \cdots & b_{1,-1} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & b_{p-1,-1} \end{pmatrix}, R = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

тогда (1.25) можно переписать в следующем виде $B=RX^T$. Соответственно, зная разложение функций Вейля в непрерывную дробь можно определить исходное циклическое множество $X^T=R^{-1}B$, где

$$X^{T} = \begin{pmatrix} x_{1,1} & x_{2,0} & \cdots & x_{p,1} \\ 0 & x_{2,2} & \cdots & x_{p,2} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & x_{p,p} \end{pmatrix}, R^{-1} = \begin{pmatrix} 1 & -1 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & -1 & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Пример алгоритма Якоби-Перрона для p=2

Пусть исходная матрица оператора имеет вид:

$$A = \left(\begin{array}{ccccccc} 1 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 1 & 0 & 0 & \cdots \\ 1 & 3 & 1 & 1 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 1 & 3 & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{array}\right)$$

Подсчитаем вектор моментов (выберем циклическое множество (e_0, e_1)):

$$\begin{split} s &= (s^{(1)}; s^{(2)}) = ((s_0^{(1)}, s_1^{(1)}, s_2^{(1)}, \ldots); (s_0^{(2)}, s_1^{(2)}, s_2^{(2)}, \ldots)) \\ s_i^{(1)} &= (A^i e_0, e_0), s_i^{(2)} = (A^i e_1, e_0) \\ s &= ((1, 1, 2, 4, 11, 30, 85, \ldots); (0, 1, 1, 5, 11, 37, 107, \ldots)) \end{split}$$

Применим алгоритм Якоби-Перрона к системе:

$$\varphi = (\varphi_1(z), \varphi_2(z)), \varphi_j(z) = \sum_{i=0}^{\infty} \frac{s_i^{(j)}}{z^{i+1}}$$

Шаг 1.

$$\frac{1}{\varphi_1} = z - 1 - \frac{1}{z} - \frac{1}{z^2} - \frac{1}{z^3} - \frac{4}{z^4} - \frac{9}{z^5} - \frac{27}{z^6} - \cdots$$

$$\frac{\varphi_2}{\varphi_1} = \frac{1}{z} + \frac{3}{z^3} + \frac{4}{z^4} + \frac{16}{z^5} + \frac{41}{z^6} + \cdots$$

$$\varphi = \frac{(1,1)}{(0,z-1) + (\varphi_1^{(1)}, \varphi_2^{(1)})}$$

Шаг 2.

$$\frac{1}{\varphi_1^{(1)}} = z - \frac{3}{z} - \frac{4}{z^2} - \frac{7}{z^3} - \frac{17}{z^4} - \cdots$$

$$\frac{\varphi_2^{(1)}}{\varphi_1^{(1)}} = -1 - \frac{1}{z} - \frac{1}{z^2} - \frac{2}{z^3} - \frac{4}{z^4} + \cdots$$

$$\varphi = \frac{(1,1)|}{|(0,z-1)|} + \frac{(1,1)|}{(-1,z) + (\varphi_1^{(2)}, \varphi_2^{(2)})}$$

Шаг 3.

$$\frac{1}{\varphi_1^{(2)}} = -z + 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots$$

$$\frac{\varphi_2^{(2)}}{\varphi_1^{(2)}} = 3 + \frac{1}{z} + \frac{3}{z^3} + \cdots$$

$$\varphi = \frac{(1,1)|}{|(0,z-1)|} + \frac{(1,1)|}{|(-1,z)|} + \frac{(-1,1)|}{(-3,z-1) + (\varphi_1^{(3)}, \varphi_2^{(3)})}$$

Шаг 4.

$$\frac{1}{\varphi_1^{(3)}} = -z + \frac{3}{z} + \cdots$$

$$\frac{\varphi_2^{(3)}}{\varphi_1^{(3)}} = 1 + \frac{1}{z} - \frac{3}{z^2} + \cdots$$

$$\varphi = \frac{(1,1)|}{|(0,z-1)|} + \frac{(1,1)|}{|(-1,z)|} + \frac{(-1,1)|}{|(-3,z-1)|} + \frac{(-1,1)|}{(-1,z) + (\varphi_1^{(4)}, \varphi_2^{(4)})}$$

и так далее.

В символьном виде разложение имеет вид:

$$\varphi = \frac{(b_{0,-2},1) \mid}{\mid (b_{0,-1},z+b_{0,0})} + \frac{(b_{1,-1},1) \mid}{\mid (b_{1,0},z+b_{1,1})} + \frac{(b_{2,0},1) \mid}{\mid (b_{2,1},z+b_{2,2})} + \frac{(b_{3,1},1) \mid}{\mid (b_{3,2},z+b_{3,3})} + \cdots$$

Учитывая то, что верхняя диагональ матрицы оператора единичная (дополнитешльное условие для однозначности) $b_{i,j}=-a_{i,j}$. Полученное разложение позволяет восстановить главный минор матрицы оператора. Определим исходное циклическое множество:

$$B = \left(\begin{array}{cc} b_{0,-2} & b_{0,-1} \\ 0 & b_{1,-1} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

тогда

$$X = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

что соответствует циклическому множеству (e_0, e_1) .

1.7.2. Новая версия векторного алгоритма QD

Основные определения

Для некоторого p=nk+d доопределим определитель Ганкеля (1.8). Пусть $H_n^{k,d}(H_n=H_n^{0,0})$ - соответствующий определитель Ганкеля размерности $n\times n$:

 $H_n^{k,d} = \left| \begin{array}{ccc} s_k^{d+1} & \cdots & s_{k+n-1}^{d+1} \\ \cdots & \cdots & \cdots \end{array} \right|$

Обозначим как $Q_n^{k,d}$ семейство векторно ортогональных многочленов относительно функционалов $L^{\nu}=(L_1^{\nu},L_2^{\nu},\ldots,L_p^{\nu})$ определяемых сдвинутыми моментами

$$L_j^{\nu}(z^n) = s_{n+\nu}^{(j)}$$

Многочлены $Q_n^{k,d}$ имеют соответствующее выражение через определители Ганкеля $H_n^{p,d}$:

Вывод алгоритма

Теорема 1.9 Для некоторго $\nu = pk + d$ имеют место следующие соотношения

$$Q_n^{k,d+1} = Q_n^{k,d} - \alpha_n^{\nu} Q_{n-1}^{k,d+1}, \ \epsilon \partial e \ \alpha_n^{\nu} = \frac{H_{n+1}^{k,d} H_{n-1}^{k,d+1}}{H_n^{k,d} H_n^{k,d+1}}$$
(1.27)

$$Q_{n+1}^{k,d} = zQ_n^{k+1,d} - \beta_{n+1}^{\nu}Q_n^{k,d}, \ \text{ede} \ \beta_{n+1}^{\nu} = \frac{H_{n+1}^{k+1,d}H_n^{k,d}}{H_{n+1}^{k,d}H_n^{k+1,d}} \tag{1.28}$$

$$Q_{n+1}^{k,d} = zQ_n^{k+1,d+1} - \gamma_n^{\nu}Q_n^{k,d}, \ \partial e \ \gamma_n^{\nu} = \frac{H_{n+1}^{k+1,d}H_n^{k,d+1}}{H_{n+1}^{k,d}H_n^{k+1,d+1}} \eqno(1.29)$$

Доказательство:

1. Раскладывая определитель $H_{n+1}^{k,d}(z)$ по минору $H_n^{k+1,d}$ в соответствии с тождеством Сильвестра имеем:

$$H_n^{k+1,d} \cdot H_{n+1}^{k,d}(z) = z H_{n+1}^{k,d} \cdot H_n^{k+1,d}(z) - H_{n+1}^{k+1,d} \cdot H_n^{k,d}(z)$$

Поделив на $H_n^{k+1,d} \cdot H_{n+1}^{k,d}$ получаем соотношение (1.28)

$$Q_{n+1}^{k,d}(z) = zQ_n^{k+1,d}(z) - \frac{H_{n+1}^{k+1,d}H_n^{k,d}}{H_{n+1}^{k,d}H_n^{k+1,d}}Q_n^{k,d}(z)$$

2. Раскладывая определитель $H_{n+1}^{k,d}(z)$ по минору $H_n^{k+1,d+1}$ в соответствии с тождеством Сильвестра имеем:

$$H_n^{k+1,d+1} \cdot H_{n+1}^{k,d}(z) = z H_{n+1}^{k,d} \cdot H_n^{k+1,d+1}(z) - H_{n+1}^{k+1,d} \cdot H_n^{k,d+1}(z)$$

Поделив на $H_n^{k+1,d+1} \cdot H_{n+1}^{k,d}$ получаем соотношение (1.29)

$$Q_{n+1}^{k,d}(z) = zQ_n^{k+1,d+1}(z) - \frac{H_{n+1}^{k+1,d}H_n^{k,d+1}}{H_{n+1}^{k,d}H_n^{k+1,d+1}}Q_n^{k,d+1}(z)$$

3. Комбинируя (1.28) и (1.29)

$$\begin{split} Q_n^{k,d+1}(z) &= z Q_{n-1}^{k+1,d+1}(z) - \beta_n^{\nu+1} Q_{n-1}^{k,d+1}(z) \\ Q_n^{k,d}(z) &= z Q_{n-1}^{k+1,d+1}(z) - \gamma_n^{\nu} Q_{n-1}^{k,d+1}(z) \end{split}$$

получаем соотношение (1.27)

$$Q_n^{k,d+1}(z) = Q_n^{k,d}(z) - \frac{H_{n+1}^{k,d}H_{n-1}^{k,d+1}}{H_n^{k,d}H_n^{k,d+1}}Q_{n-1}^{k,d+1}(z)$$

Третье соотношение является зависимым от двух предыдущих, и как следствие верно следующее соотношение: $\alpha_n^{\nu} = \beta_n^{\nu+1} - \gamma_{n-1}^{\nu}$

Коэффициенты $\alpha_n^{\nu}, \beta_n^{\nu}, \gamma_n^{\nu}$ образуют векторную QD таблицу следующего вида:

$$\beta_1^0 \quad \alpha_1^0 \quad \beta_2^0 \quad \alpha_2^0 \quad \beta_3^0 \quad \cdots
\beta_1^1 \quad \alpha_1^1 \quad \beta_2^1 \quad \alpha_2^1 \quad \beta_3^1 \quad \cdots
\beta_1^2 \quad \alpha_1^2 \quad \beta_2^2 \quad \alpha_2^2 \quad \beta_3^2 \quad \cdots$$
(1.30)

Теорема 1.10 Новая версия QD алгоритма выражается следующими соотношениями коэффициентов α и β при $\nu = pk + d$:

$$\beta_{n+1}^{\nu+1} + \alpha_n^{\nu+p} = \beta_{n+1}^{\nu} + \alpha_{n+1}^{\nu} \tag{1.31}$$

$$\beta_n^{\nu+1} \alpha_n^{\nu+p} = \beta_{n+1}^{\nu} \alpha_n^{\nu} \tag{1.32}$$

при начальных условиях:

$$\beta_1^{\nu} = s_{k+1}^{d+1}/s_k^{d+1}, \ \alpha_0^{\nu} = 0$$
 (1.33)

Доказательство:

Используя (1.28) и (1.27) мы получаем:

$$\begin{array}{ll} Q_{n+1}^{k,d} &= xQ_n^{k+1,d} - \beta_{n+1}^{\nu}Q_n^{k,d} \\ &= x(Q_n^{k+1,d+1} + \alpha_n^{\nu+p}Q_{n-1}^{k+1,d+1}) - \beta_{n+1}^{\nu}(Q_n^{k,d+1} + \alpha_n^{\nu}Q_{n-1}^{k,d+1}) \\ &= (Q_n^{k,d+1} + \beta_{n+1}^{\nu+1}Q_n^{k,d+1}) + \alpha_n^{\nu+p}(Q_n^{k,d+1} + \beta_n^{\nu+1}Q_{n-1}^{k,d+1}) - \beta_{n+1}^{\nu}(Q_n^{k,d+1} + \alpha_n^{\nu}Q_{n-1}^{k,d+1}) \\ &= Q_{n+1}^{k,d+1} + (\beta_{n+1}^{\nu+1} + \alpha_n^{\nu+p} - \beta_{n+1}^{\nu})Q_n^{k,d+1} + (\alpha_n^{\nu+p}\beta_n^{\nu+1} - \alpha_n^{\nu}\beta_{n+1}^{\nu})Q_{n-1}^{k,d+1} \end{array}$$

Сравнивая с

$$Q_{n+1}^{k,d+1} = Q_{n+1}^{k,d} - \alpha_{n+1}^{\nu} Q_n^{k,d+1}$$

получаем соотношения теоремы.

Теорема 1.11 Вектор \overrightarrow{f} формальных степенных рядов допускает разложение в векторную непрерывную дробь тогда, и только тогда, когда определители Ганкеля $H_n^{k,d}$ не равны нулю

Критерий эквивалентен условию, что (p+1) систем формальных степенных рядов определяемые сдвинутыми моментами $\overrightarrow{f}^{\nu}=(f_{\nu},f_{\nu+1},...,f_{\nu+p-1}),\ \nu=1,...,p+1$ регулярны.

Теорема 1.12 Рекурретные коэффициенты векторных ортогональных многочленов $Q_n = Q_n^{0,0}$

$$Q_{n+1}(z) = (z - a_{n,n})Q_n(z) - a_{n,n-1}Q_{n-1}(z) - \dots - a_{n,n-p}Q_{n-p}(z)$$

могут быть вычислены из элементов векторной QD таблицы α, β следующим образом:

$$a_{n,n} = \sum_{i_1=-1}^{p-1} u_{n,n-i_1}$$

$$a_{n,n-1} = \sum_{i_1=0}^{p-1} u_{n,n-i_1} \sum_{i_2=0}^{i_1} u_{n-1,n-i_2}$$

$$a_{n,n-2} = \sum_{i_1=1}^{p-1} u_{n,n-i_1}^{\nu} \sum_{i_2=1}^{i_1} u_{n-1,n-i_2}^{\nu} \sum_{i_3=1}^{i_2} u_{n-2,n-i_3}^{\nu}$$

 $a_{n,n-p} = u_{n,n-p+1}u_{n-1,n-p+1}\dots u_{n-p,n-p+1}$

 $e \partial e$

$$\begin{cases} u_{n,n+1} = \beta_{n+1}^{0} \\ u_{n,n-j} = \alpha_{n}^{j}, j = 0, \dots, p-1 \end{cases}$$
 (1.34)

Доказательство: Для p = 1 случая

$$Q_{n+1}(z) = (z - a_{n,n})Q_n(z) - a_{n,n-1}Q_{n-1}(z)$$

Соотношение $Q_n^{k,d+1} = Q_n^{k,d} - \alpha_n^{\nu} Q_{n-1}^{k,d+1}$ можно записать в виде

$$Q_n^{k+1,d} = Q_n^{k,d} - \alpha_n^{\nu} Q_{n-1}^{k+1,d}$$

Стартуя с $Q_{n+1}^{k,d} = xQ_n^{k+1,d} - \beta_{n+1}^{\nu}Q_n^{k,d}$ можно записать

$$\begin{array}{lcl} Q_{n+1}^{k,d} & = & x(Q_n^{k,d} - \alpha_n^{\nu}Q_{n-1}^{k+1,d}) - \beta_{n+1}^{\nu}Q_n^{k,d} \\ & = & (x - \beta_{n+1}^{\nu})Q_n^{k,d} - \alpha_n^{\nu}xQ_{n-1}^{k+1,d} \\ & = & (x - \beta_{n+1}^{\nu})Q_n^{k,d} - \alpha_n^{\nu}(Q_n^{k,d} + \beta_n^{\nu}Q_{n-1}^{k,d}) \end{array}$$

В итоге получаем

$$\begin{aligned} Q_{n+1}^{k,d} &= (x - (\beta_{n+1}^{\nu} + \alpha_n^{\nu}))Q_n^{k,d} - \alpha_n^{\nu}\beta_n^{\nu}Q_{n-1}^{k,d}) \\ a_{n,n} &= \beta_{n+1}^0 + \alpha_n^0, \ a_{n,n-1} = \alpha_n^0\beta_n^0 \end{aligned}$$

Для p=2 случая

$$Q_{n+1}(z) = (z - a_{n,n})Q_n(z) - a_{n,n-1}Q_{n-1}(z) - a_{n,n-2}Q_{n-2}(z)$$

имеем следующее

$$Q_{n+1}^{k,d} = (x - (\beta_{n+1}^{\nu} + \alpha_n^{\nu+1} + \alpha_n^{\nu}))Q_n^{k,d} - -(\alpha_n^{\nu+1}\beta_n^{\nu} + \alpha_n^{\nu}(\beta_n^{\nu} + \alpha_{n-1}^{\nu+1}))Q_{n-1}^{k,d} - \alpha_n^{\nu}\alpha_{n-1}^{\nu+1}\beta_{n-1}^{\nu}Q_{n-2}^{k,d}$$

$$(1.35)$$

Откуда

$$a_{n,n} = \beta_{n+1}^{\nu} + \alpha_n^{\nu+1} + \alpha_n^{\nu}$$

$$a_{n,n-1} = \alpha_n^{\nu+1} \beta_n^{\nu} + \alpha_n^{\nu} (\beta_n^{\nu} + \alpha_{n-1}^{\nu+1})$$

$$a_{n,n-2} = \alpha_n^{\nu} \alpha_{n-1}^{\nu+1} \beta_{n-1}^{\nu}$$

Далее по индукции получаем соотношение теоремы.

Векторная непрерывная дробь Стилтьеса

При изучении некоторых классов несимметричных разностных операторов, определяемых так называемой "разреженной" матрицей вида:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_0 & 0 & 0 & \cdots & 1 & 0 & \cdots \\ 0 & a_1 & 0 & \cdots & 0 & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

$$(1.36)$$

было введено понятие *векторной непрерывной дроби Стилтьеса*, которая является очевидным аналогом классической непрерывной дроби Стилтьеса и имеет вид:

$$S(z) = \frac{(1,\ldots,1)}{(0,\ldots,0,z)+} \frac{(1,\ldots,1,-a_1)}{(0,\ldots,0,1)+} \cdots \frac{(1,\ldots,1,-a_p)}{(0,\ldots,0,1)+} \frac{(1,\ldots,1,-a_{p+1})}{(0,\ldots,0,z)+} \cdots$$

где $S(z)=(S_1(z),S_2(z),\ldots,S_p(z))$ - вектор формальных степенных рядов. Степенной ряд $S_j(z)$ получается из разложения соответствующей функции Вейля $\varphi_j(z)$ в ряд Лорана в окрестности бесконечности путем удаления блоков нулевых элементов длиной p и смещения ряда.

$$S_1(z^{p+1}) = \frac{1}{z^p} \varphi_1(z)$$

$$\dots$$

$$S_p(z^{p+1}) = \frac{1}{z} \varphi_p(z)$$

$$(1.37)$$

Коэффициенты степенного ряда $S_j(z)$ выражаются через коэффициенты разложения соответствующей функции Вейля следующим образом:

$$S_j(z) = \sum_{k=0}^{\infty} \frac{S_k^{(j)}}{z^{k+1}}, S_k^{(j)} = s_{pk+j-1}^{(j)}$$

Старая версия QD алгоритма в случае "разреженной" матрицы не позволяла решить обратную проблему моментов ввиду наличия нулевых элементов разложений функций Вейля.

Новая версия позволяет решить обратную проблему моментов для ленточных операторов, определяемых матрицей вида (1.36) при условии, что описанный выше алгоритм применяется к новому набору моментов $S_k^{(j)}$.

В [1] приводится доказательство следующего отношения между многочленами

$$Q_1^{(0)}(z) = zQ_0^{(p)} - a_1Q_0^{(0)}$$
$$Q_1^{(1)}(z) = Q_1^{(0)} - a_2Q_0^{(1)}$$

$$Q_1^{(p)}(z) = Q_1^{(p-1)} - a_{p+1}Q_0^{(p-1)}$$
$$Q_2^{(0)}(z) = zQ_1^{(p)} - a_{p+2}Q_0^{(p)}$$

где $Q_n^{\nu}=Q_n^{k,d}, \nu=pk+d$

Сравнивая это отношение с (1.27) и (1.28) легко установить зависимость между элементами векторной QD таблицы и элементами исходной "разреженной" матрицы.

Расположим элементы векторной QD таблицы в следующем порядке

$$\beta_1^0 \quad \alpha_1^0 \quad \cdots \quad \alpha_1^{p-1} \quad \beta_2^0 \quad \alpha_2^0 \quad \cdots \alpha_2^{p-1} \quad \beta_3^0 \quad \cdots \\
\beta_1^1 \quad \alpha_1^1 \quad \cdots \quad \alpha_1^p \quad \beta_2^1 \quad \alpha_2^1 \quad \cdots \alpha_2^p \quad \beta_3^1 \quad \cdots \\
\beta_1^2 \quad \alpha_1^2 \quad \cdots \quad \alpha_1^{p+1} \quad \beta_2^2 \quad \alpha_2^2 \quad \cdots \alpha_2^{p+1} \quad \beta_3^2 \quad \cdots$$
(1.38)

Данный вид QD таблицы содержит содержит в первой строке коэффициенты разложения векторной непрерывной дроби Стилтъеса и соответственно элементы нижней диагонали исходной "разреженной" матрице

$$\frac{(1,\cdots,1)}{(0,\cdots 0,z)+} \frac{(1,\cdots,1,-\beta_1^0)}{(0,\cdots 0,1)+\cdots} \cdots \frac{(1,\cdots,1,-\alpha_1^{p-1})}{(0,\cdots 0,1)+} \frac{(1,\cdots,1,-\beta_2^0)}{(0,\cdots 0,z)+\cdots}$$
(1.39)

Каждая последующая строчка содержит соответственно коэффициенты разложения в Стилтьеса для "сдвинутых" моментов.

Пусть $\{a_i^{(\nu)}\}_{i=1,2,\dots}^{\nu=0,1,\dots}$ наборы коэффициентов разложений, где ν показатель сдвига соответствующих моментов s_n .

Тогда общее соответствие для i = (p+1)k + d может быть записано в виде :

$$a_i^{\nu} = \begin{cases} \beta_{k+1}^{\nu}, & d = 0\\ \alpha_{k+1}^{\nu+d-1}, & d > 0 \end{cases}$$
 (1.40)

Прогрессивная форма новой версии векторного QD алгоритма

Для решения *прямой спектральной задача*, которая состоит в вычислении моментов $\{s_n\}$ по заданной матрице оператора. используется *прогрессивная* форма.

Прогрессивная форма векторного QD алгоритма отличается тем, что отправной точкой для вычисления QD таблицы используется верхняя строчка и вычисление идет сверху вниз.

От начальных условий в виде

Последовательно вычисляя нижележащие строчки $\nu=0,1,\dots$

$$\beta_{n+1}^{\nu+1} = \beta_{n+1}^{\nu} + \alpha_{n+1}^{\nu} - \alpha_n^{\nu+p}$$

$$\alpha_n^{\nu+p} = \frac{\beta_{n+1}^{\nu} \alpha_n^{\nu}}{\beta_n^{\nu+1}}$$

получаем в качестве результата первый столбец QD таблицы, который представляет из себя соотношения соответствующих моментов. В данном случае прогрессивная форма является решением прямой спектральной задачи. Практическое применение имеет прогрессивная форма только в случае "разреженной" матрицы оператора, когда начальные условия (верхнюю строчку) легко определить из коэффициентов рекуррентных соотношений.

Пример векторного алгоритма QD

Пример для p=1

Приведем пример QD таблицы для следующего степенного ряда

$$S(z) = \int_{0}^{\infty} \frac{x^{\gamma} e^{-x} dx}{z - x} = \frac{s_0}{z} + \frac{s_1}{z^2} + \frac{s_2}{z^3} + \dots, \ s_k = \int_{0}^{\infty} x^{\gamma + k} e^{-x} dx = \Gamma(k + \gamma + 1)$$

Начальные условия выражаются следующими соотношениями

$$\alpha_0^k = 0, \ \beta_1^k = \frac{s_{k+1}}{s_k} = \frac{\Gamma(k+\gamma+2)}{\Gamma(k+\gamma+1)} = k+\gamma+1$$

Далее последовательно вычисляя столбцы QD таблицы справа налево, по формулам

$$\alpha_{n+1}^{\nu} = \alpha_n^{\nu+1} + \beta_{n+1}^{\nu+1} - \beta_{n+1}^{\nu}, n = 0, 1, \dots$$
$$\beta_{n+1}^{\nu} = \frac{\alpha_n^{\nu+1}}{\alpha_n^{\nu}} \beta_n^{\nu+1}, n = 1, 2, \dots$$

получаем следующую QD таблицу

Получаем точное выражение для коэффициентов QD таблицы.

$$\beta_n^{\nu} = n + \gamma + \nu, \ \alpha_n^{\nu} = n$$

Строки QD таблицы в данном случае содержат коэффициенты разложений в непрерывную дробь Стилтъеса для семейства степенных рядов

$$S^{(j)}(z) = \int_{0}^{\infty} \frac{x^{\gamma+j}e^{-x}dx}{z-x}, j = 0, 1, 2, \dots$$

Соответствующее разложение будет иметь вид:

$$S^{(j)}(z) = \frac{s_j|}{|z|} - \frac{\beta_1^{j}|}{|1|} - \frac{\alpha_1^{j}|}{|z|} - \frac{\beta_2^{j}|}{|1|} - \frac{\alpha_2^{j}|}{|z|} - \dots$$

Пример для p=2

Приведем пример QD таблицы для следующей системы степенных рядов $S_{\nu}=(S_1,S_2),$ где

$$S_1(z) = \int_{0}^{\infty} \frac{x^{\gamma_1} e^{-x} dx}{z - x}, \ S_2(z) = \int_{0}^{\infty} \frac{x^{\gamma_2} e^{-x} dx}{z - x}$$

Соответствующие моменты равны

$$s_k^{(1)} = \Gamma(\gamma_1 + k + 1), \ s_k^{(2)} = \Gamma(\gamma_2 + k + 1)$$

Начальные условия соответственно

$$\beta_1^{\nu} = \begin{cases} \frac{s_{k+1}^{(1)}}{s_k^{(1)}} = \frac{\Gamma(\gamma_1 + k + 2)}{\Gamma(\gamma_1 + k + 1)} = k + \gamma_1 + 1, \nu = 2k - 1\\ \frac{s_{k+1}^{(2)}}{s_k^{(2)}} = \frac{s_{k+1}^{(2)}}{\Gamma(\gamma_2 + k + 1)} = k + \gamma_2 + 1, \nu = 2k \end{cases}$$

Далее построим векторную QD таблицу по формулам:

$$\alpha_{n+1}^{\nu} = \alpha_n^{\nu+2} + \beta_{n+1}^{\nu+1} - \beta_{n+1}^{\nu}, \ n = 0, 1, \dots$$
$$\beta_{n+1}^{\nu} = \frac{\alpha_n^{\nu+2}}{\alpha_n^{\nu}} \beta_n^{\nu+1}, \ n = 1, 2, \dots$$

Получаем следующую таблицу

Общее выражение для элементов векторной QD таблицы:

$$\beta_n^\nu=\gamma_{d+1}+k, \text{ где } n+\nu+1=pk+d$$

$$\alpha_{pk_2+d_2}^{pk_1+d_1}=\gamma_{p-d_1}-\gamma_{d_1+1}+d_2+k_2$$

Пример прогрессивной формы для p=2

Приведем пример прогрессивной формы векторного QD алгоритма для матрицы

$$A = \left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 1 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 1 & \cdots \\ 0 & 0 & 1 & 0 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{array}\right)$$

Начальные условия - верхние строчки QD таблицы

Далее вычисляем нижние строчки по формулам

$$\beta_{n+1}^{\nu+1} = \beta_{n+1}^{\nu} + \alpha_{n+1}^{\nu} - \alpha_n^{\nu+2}$$
$$\alpha_n^{\nu+2} = \frac{\beta_{n+1}^{\nu} \alpha_n^{\nu}}{\beta_n^{\nu+1}}$$

В результате получаем следующую QD таблицу (точная арифметика)

$eta_1^{ u}$	α_1^{ν}	$\alpha_1^{\nu+1}$	$eta_2^ u$	$lpha_2^ u$	$\alpha_2^{\nu+1}$	$eta_3^ u$	
1	1	1	1	1	1	1	
2	1	1/2	3/2	1	2/3	4/3	
3	1/2	1/2	2	2/3	2/3	5/3	
7/2	1/2	2/7	50/21	2/3	7/15	39/20	
4	2/7	25/84	11/4	7/15	26/55	49/22	
30/7	25/84	11/60	91/30	26/55	49/143	32/13	
55/12	11/60	13/66	182/55	49/143	32/91	1224/455	
143/30	13/66	7/55	504/143	32/91	17/65	323/112	
273/55	7/55	20/143	340/91	17/65	19/70	209/68	
56/11	20/143	17/182	3553/910	19/70	7/34	55/17	
68/13	17/182	19/182	57/14	7/34	11/51	3289/969	

1.7.3. Алгоритм Юрко

Пусть задан следующий оператор:

$$A = \begin{pmatrix} a_{0,0} & a_{0,1} & 0 & 0 & 0 & 0 & \cdots \\ a_{1,0} & a_{1,1} & a_{1,2} & 0 & 0 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{p,0} & a_{p,1} & a_{p,2} & \cdots & a_{p,p+1} & 0 & \cdots \\ 0 & a_{p+1,1} & a_{p+1,2} & \cdots & a_{p+1,p+1} & a_{p+1,p+2} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

Пусть $H_n, n = pk + d$ - соответствующая Ганкелева матрица моментов размерности $n \times n$

$$H_n = \begin{pmatrix} s_0^{(1)} & s_1^{(1)} & s_2^{(1)} & \cdots & s_{n-1}^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ s_0^{(p)} & s_1^{(p)} & s_2^{(p)} & \cdots & s_{n-1}^{(p)} \\ s_0^{(1)} & s_1^{(1)} & s_2^{(1)} & \cdots & s_n^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_1^{(d)} & s_2^{(d)} & s_3^{(d)} & \cdots & \vdots & \vdots \\ s_k^{(d)} & s_{k+1}^{(d)} & s_{k+2}^{(d)} & \cdots & s_{k+n-1}^{(d)} \end{pmatrix}$$

Пусть $L=(L_1,\ldots,L_p)$ - соответствующие линейные функционалы

$$L_i(z^i) = s_i^{(j)}$$

Пусть $\{Q_n(z)\}_{n=0,1,\dots}$ - соответствующие векторные ортогональные многочлены, являющиеся решением спектральной задачи AQ=zQ. Индекс n=pk+d представим в виде вектора

$$\overrightarrow{n} = (n_1, n_2, \dots, n_p) = (\underbrace{k+1, \dots, k+1}_{d}, \underbrace{k, \dots, k}_{p-d})$$

Многочлены Q_n определены с точностью до константы.

$$L_d(Q_n z^{n_d}) = 1$$

Соотношения ортогональности и соотношение нормировки образуют систему линейных n+1 уравнений с n+1 неизвестными - степенными коэффициентами многочленов Q_n

$$L_{1}(Q_{n}) = 0
...
L_{p}(Q_{n}) = 0
L_{1}(Q_{n}z) = 0
...
L_{d}(Q_{n}z^{n_{d}}) = 1$$

$$\begin{pmatrix} \beta_{n,0} \\ ... \\ \beta_{n,p-1} \\ \beta_{n,p} \\ ... \\ \beta_{n,n} \end{pmatrix} H_{n+1} = \begin{pmatrix} 0 \\ ... \\ 0 \\ 0 \\ ... \\ 1 \end{pmatrix}$$

Коэффициенты ортогональных полиномов можно определить напрямую через отношения определителей блок-Ганкелевой матрицы моментов (метод Крамера):

$$\beta_{i,k} = (-1)^{k-i} \frac{\det H_{k+1,i}}{\det H_{k+1}}, \beta_{k,k} = \frac{\det H_k}{\det H_{k+1}}$$
(1.42)

где $H_{k+1,i}$ - минор, образованный из матрицы H_{k+1} удалением нижней строчки и i-го столбца. Запишем рекуррентные соотношения для векторных ортогональных многочленов.

$$a_{0,0}Q_0 + a_{1,0}Q_1 = zQ_0$$

$$a_{1,0}Q_0 + a_{1,1}Q_1 + a_{1,2}Q_2 = zQ_1$$

$$\cdots$$

$$a_{p,0}Q_0 + a_{p,1}Q_1 + \dots + a_{p,p+1}Q_{p+1} = zQ_p$$

$$\cdots$$

$$(1.43)$$

Сравнивая выражения при одинаковых степенях, выражаем элементы матрицы оператора $a_{i,j}$ через степенные коэффициенты векторных ортогональных многочленов $\beta_{i,k}$:

$$a_{0,0}\beta_{0,0} + a_{1,1}\beta_{0,1} = 0$$

$$a_{1,1}\beta_{1,1} = \beta_{0,0}$$

$$a_{1,0}\beta_{0,0} + a_{1,1}\beta_{0,1} + a_{1,2}\beta_{0,2} = 0$$

$$a_{1,1}\beta_{1,1} + a_{1,2}\beta_{1,2} = \beta_{0,1}$$

$$a_{1,2}\beta_{2,2} = \beta_{1,1}$$

$$a_{2,0}\beta_{0,0} + a_{2,1}\beta_{0,1} + a_{2,2}\beta_{0,2} + a_{2,3}\beta_{0,3} = 0$$

$$a_{2,1}\beta_{1,1} + a_{2,2}\beta_{1,2} + a_{2,3}\beta_{1,3} = \beta_{0,2}$$

$$a_{2,2}\beta_{2,2} + a_{2,3}\beta_{2,3} = \beta_{1,2}$$

$$a_{2,3}\beta_{3,3} = \beta_{2,2}$$

$$a_{2,3}\beta_{3,3} = \beta_{2,2}$$

Определим соотношения для подсчета коэффициентов исходной матрицы оператора

$$a_{k,k+1} = \frac{\beta_{k,k}}{\beta_{k+1,k+1}}$$

$$a_{k,k} = \frac{\beta_{k-1,k} - a_{k,k+1}\beta_{k,k+1}}{\beta_{k,k}}$$

$$a_{k,k-1} = \frac{\beta_{k-2,k} - a_{k,k+1}\beta_{k-1,k+1} - a_{k,k}\beta_{k-1,k}}{\beta_{k,k}}$$

$$\dots$$

$$a_{k,k-j} = \frac{\beta_{k-j-1,k} - \sum_{i=0}^{j} a_{k,k+i}\beta_{k-j,k+i}}{\beta_{k,k}}, j = 1, \dots, p$$

$$(1.44)$$

Для однозначности нижняя диагональ оператора принимается за единичную $(a_{p,0}=a_{p+1,1}=\ldots=a_{p+k,k}=\ldots=1).$

Алгоритм

- 1. Вычисляем коэффициенты векторных ортогональных многочленов $\beta_{i,j}$ (1.42)
- 2. Вычисляем коэффициенты матрицы оператора $a_{i,j}$ (1.44)

Пример алгоритма Юрко

Пусть задана следующая матрица оператора

$$A == \left(\begin{array}{cccccccc} 1 & 2 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 3 & 1 & 2 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 3 & 1 & 2 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{array}\right)$$

Выпишем функции Вейля

$$f_1(z) = \sum_{k=0}^{\infty} \frac{(A^k e_0, e_0)}{z^{k+1}} = \sum_{k=0}^{\infty} \frac{s_k^{(1)}}{z^{k+1}} = \frac{1}{z} + \frac{1}{z^2} + \frac{3}{z^3} + \frac{7}{z^4} + \frac{23}{z^5} + \frac{73}{z^6} + \cdots$$

$$f_2(z) = \sum_{k=0}^{\infty} \frac{(A^k (e_0 + e_1), e_0)}{z^{k+1}} = \sum_{k=0}^{\infty} \frac{s_k^{(2)}}{z^{k+1}} = \frac{1}{z} + \frac{1}{z^2} + \frac{3}{z^3} + \frac{7}{z^4} + \frac{23}{z^5} + \frac{73}{z^6} + \cdots + \frac{0}{z} + \frac{2}{z^2} + \frac{2}{z^3} + \frac{12}{z^4} + \frac{30}{z^5} + \frac{114}{z^6} + \cdots = \frac{1}{z} + \frac{3}{z^2} + \frac{5}{z^3} + \frac{19}{z^4} + \frac{53}{z^5} + \frac{187}{z^6} + \cdots$$

Запишем соответствующую матрицу моментов:

$$\begin{pmatrix}
1 & 1 & 3 & 7 & \cdots \\
1 & 3 & 5 & 19 & \cdots \\
1 & 3 & 7 & 23 & \cdots \\
3 & 5 & 19 & 53 & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix}$$

Вычисляем степенные коэффициенты

$$\beta_{0,1} = \frac{-|1|}{\left|\begin{array}{cc} 1 & 1\\ 1 & 3 \end{array}\right|} = -\frac{1}{2}; \ \beta_{1,1} = \frac{|1|}{\left|\begin{array}{cc} 1 & 1\\ 1 & 3 \end{array}\right|} = \frac{1}{2}$$

$$\beta_{0,2} = \frac{\left|\begin{array}{ccc|c} 1 & 3 & \\ \hline 3 & 5 & \\ \hline \end{array}\right|}{\left|\begin{array}{ccc|c} 1 & 1 & 3 & \\ \hline 1 & 1 & 3 & \\ \hline 1 & 3 & 5 & \\ \hline 1 & 3 & 7 & \\ \end{array}\right|} = -1; \; \beta_{1,2} = \frac{-\left|\begin{array}{ccc|c} 1 & 3 & \\ \hline 1 & 5 & \\ \hline \end{array}\right|}{\left|\begin{array}{ccc|c} 1 & 1 & 3 & \\ \hline 1 & 1 & 3 & \\ \hline 1 & 3 & 5 & \\ \hline 1 & 3 & 7 & \\ \end{array}\right|} = -\frac{1}{2}; \; \beta_{2,2} = \frac{\left|\begin{array}{ccc|c} 1 & 1 & \\ \hline 1 & 1 & 3 & \\ \hline \hline 1 & 1 & 3 & \\ \hline 1 & 3 & 5 & \\ \hline 1 & 3 & 7 & \\ \end{array}\right|} = \frac{1}{2}$$

И наконец вычисляем элементы исходной матрицы, учитывая что нижняя диагональ принимается равной единицам

$$a_{0,1} = \frac{\beta_{0,0}}{\beta_{1,1}} = 2$$

$$a_{0,0} = \frac{-a_{0,1}\beta_{0,1}}{\beta_{0,0}} = 1$$

$$a_{1,2} = \frac{\beta_{1,1}}{\beta_{2,2}} = 1$$

$$a_{1,0} = \frac{-a_{1,2}\beta_{0,2} - a_{1,1}\beta_{0,1}}{\beta_{0,0}} = 1$$
...

39

Глава 2

Вычислительные аспекты векторных ортогональных многочленов

В главе рассматриваются алгоритмы связанные с проблемой вычисления коэффициентов рекуррентного соотношения векторных ортогональных многочленов. Существует два принципиально различных подхода к решению этой проблемы. Первый, заключается в вычислении на базе модифицированных моментов. Этот метод в большинстве случаев является плохо численно обусловленным. Второй метод - вычисление коэффициентов рекуррентного соотношения непосредственно через вычисление выражений вида $L_j(Q_i,Q_k)$, которую в свою очередь вычисляются через квадратуры Гаусса

2.1. Векторный алгоритм Кленшоу

Векторный алгоритм Кленшоу является обобщением классического варианта для ряда, представляющего разложение по векторным ортогональным многочленам вида:

$$S_n(x) = \sum_{i=0}^n \beta_i Q_i(x),$$

где многочлены $\{Q_n\}$ удовлетворяют рекуррентному соотношению вида:

$$Q_{n+1} = (z + b_{n,n})Q_n + b_{n,n-2}Q_{n-1} + \ldots + b_{n,n-p}Q_{n-p}$$

В качестве начальных условий выбираются:

$$u_n = \beta_n Q_n$$

$$u_{n+1} = \ldots = u_{n+p} = 0$$

Далее по рекуррентной следующей формуле вычисляются последовательно значения u_{n-1},\ldots,u_0

$$u_k = (x + b_{k,k})u_{k+1} + b_{k+1,k}u_{k+2} + \dots + b_{k+p,k}u_{k+p+1} + \beta_k Q_0, k = n-1,\dots, 0$$

Частичная сумма ряда в результате

$$S_n(x) = u_0$$

$2.1.1.\ \Pi$ ример алгоритма для p=2

Ограничимся 4 членами для частичной суммы ряда:

$$S_3(x) = c_0 Q_0 + c_1 Q_1 + c_2 Q_2 + c_3 Q_3$$

Запишем реккурентное соотношение:

$$Q_{n+1} = (x - a_{n,n})Q_n - a_{n,n-1}Q_{n-1} - a_{n,n-2}Q_{n-2}$$

Выразим частичные суммы через друг друга

$$u_3 = c_3 Q_0, u_4 = u_5 = 0$$

$$u_2 = (x - a_{2,2})u_3 + c_2Q_0$$

$$u_1 = (x - a_{1,1})u_2 - a_{2,1}u_3 + c_1Q_0$$

$$u_0 = (x - a_{0,0})u_1 - a_{1,0}u_2 - a_{2,0}u_3 + c_0Q_0$$

Проверим подстановкой

$$S_3 = c_0Q_0 + c_1[(x - a_{0,0})Q_0] + c_2[(x - a_{1,1}(x - a_{0,0})Q_0 - a_{1,0}Q_0] + c_3[(x - a_{2,2})((x - a_{1,1})(x - a_{0,0})Q_0 - a_{1,0}Q_0) - a_{2,1}(x - a_{0,0})Q_0 - a_{2,0}Q_0]$$

Выразим частичные суммы через коэффициенты реккурентных соотношений

```
\begin{array}{lll} u_2=&(x-a_{2,2})c_3Q_0+c_2Q_0\\ u_1=&(x-a_{1,1})[(x-a_{2,2})c_3Q_0+c_2Q_0]-a_{2,1}Q_0+c_1Q_0\\ u_0=&(x-a_{0,0})[(x-a_{1,1})[(x-a_{2,2})c_3Q_0+c_2Q_0]-a_{2,1}Q_0+c_1Q_0]-\\ &a_{1,0}[(x-a_{2,2})c_3Q_0+c_2Q_0]-a_{2,0}c_3Q_0+c_0Q_0\\ u_0=&c_0Q_0+c_1[(x-a_{0,0})Q_0]+\\ &c_2[(x-a_{1,1}(x-a_{0,0})Q_0-a_{1,0}Q_0]+\\ &c_3[(x-a_{2,2})((x-a_{1,1})(x-a_{0,0})Q_0-a_{1,0}Q_0)-a_{2,1}(x-a_{0,0})Q_0-a_{2,0}Q_0]\\ \mathrm{Pавенство}\ S_3(x)=u_0\ \mathrm{o} очевидно.
```

2.2. Модифицированный алгоритм Чебышева

2.2.1. Классический алгоритм Чебышева

Классический алгоритм Чебышева для случая p=1 заключается в последовательном вычислении коэффициентов матрицы оператора из рекуррентных соотношений.

Рассмотрим ленточный оператор, определяемый следующей матрицей

$$A = \begin{pmatrix} a_{0,0} & 1 & 0 & 0 & \cdots \\ a_{1,0} & a_{1,1} & 1 & 0 & \cdots \\ 0 & a_{2,1} & a_{2,2} & 1 & \cdots \\ 0 & 0 & a_{3,2} & a_{3,3} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

Пусть $s = (s_0, s_1, \dots, s_n)$ - соответствующие моменты. Определим *смешанные моменты*

$$\nu_{i,k} = \int Q_i(z)z^k d\mu(z) = L(Q_i, z^k)$$

Запишем рекуррентное соотношение

$$Q_{k+1}(z) = (z - a_{k,k})Q_k(z) - a_{k,k-1}Q_{k-1}(z)$$

Применив к рекуррентному соотношению $L(\cdot,z^{k-1}),L(\cdot,z^k),L(\cdot,z^{k+1})$ получим следующие выражения

$$\begin{split} 0 &= \nu_{k,k} - a_{k,k-1} \nu_{k-1,k-1} \\ 0 &= \nu_{k,k+1} - a_{k,k} \nu_{k,k} - a_{k,k-1} \nu_{k-1,k} \\ \nu_{k+1,k+1} &= \nu_{k,k+2} - a_{k,k} \nu_{k,k+1} - l_{k,k-1} \nu_{k-1,k+1} \end{split}$$

Из первых двух выражений получаем выражения для коэффициентов матрицу оператора:

$$a_{k,k-1} = \frac{\nu_{k,k}}{\nu_{k-1,k-1}}, a_{k,k} = \frac{\nu_{k,k+1}}{\nu_{k,k}} - \frac{\nu_{k-1,k}}{\nu_{k-1,k-1}}$$
(2.1)

Из последнего выражения получаем рекуррентное соотношение для смешанных моментов. Последовательно приоеняя описаную процедуру для $k=0,1,\ldots$ можно вычислить коэффициенты матрицы оператора.

Алгоритм

Вычисления начинаются с соответствующих исходной матрице моментов $\{s_i\}_{i=0,1,\dots,n}$. Выбираются следующие начальные условия $(i=0,1,\dots,n)$:

$$\nu_{0,i} = s_i, a_{0,0} = \frac{\nu_{0,1}}{\nu_{1,0}}, a_{1,0} = \nu_{0,7}$$

Последовательно для каждого фиксированного $k=1,\dots,[n/2]-1$ вычисляются элементы исходной матрицы и смешанные моменты

$$\begin{split} a_{k,k-1} &= \frac{\nu_{k,k}}{\nu_{k-1,k-9}},\\ a_{k,k} &= \frac{\nu_{k,k+3}}{\nu_{k,k}} - \frac{\nu_{k-1,k}}{\nu_{k-1,k-1}}\\ \nu_{k,i} &= \nu_{k-1,i+1} - a_{k-1,k-1}\nu_{k-1,i} - a_{k,k-1}\nu_{k-2,i} \end{split}$$

где i = k, ..., n - k - 1

К процессе вычислений у нас подсчитывается следующая треугольная матрица смешанных моментов

2.2.2. Векторный модифицированный алгоритм Чебы-

Для решения обратной спектральной задачи в целях преодоления проблемы численной неустойчивости был предложен (Гаучи) модифицированный алгоритм Чебыveва.

Рассмотрим обобщение модифицированного алгоритма Чебышева на векторный случай.

Пусть для некоторого фиксированного параметра p имеем набор векторных ортогональных многочленов, удовлетворяющих рекуррентному соотношению вида:

$$Q_{n+1}(z) = (z - a_{n,n})Q_n(z) - \dots - a_{n,n-p}Q_{n-p}(z)$$
$$Q_{-p}(z) = Q_{-1}(z) = 0, Q_0(z) = 1$$

Определим векторные модифицированные моменты $m_n = (m_n^{(1)}, m_n^{(2)}, \dots, m_n^{(p)}),$ где

$$m_k^{(j)} = \int \pi_k(z) d\mu_j(z) = L_j(\pi_k), j = 1, 2, \dots, p$$

где $\pi_n(z)$ - некоторые многочлены, удовлетворяющие рекуррентному соотношению вида

$$\pi_{n+1}(z) = (z - b_{n,n})\pi_n(z) - \dots - b_{n,n-p}\pi_{n-p}(z)$$
$$\pi_{-n}(z) = \pi_{-1}(z) = 0, \pi_0(z) = 1$$

Определим векторные смешанные моменты $u_{i,k} = (\nu_{i,k}^{(1)}, \nu_{i,k}^{(2)}, \dots, \nu_{i,k}^{(p)}),$ где:

$$\nu_{i,k}^{(j)} = \int Q_i(z)\pi_k(z)d\mu_j(z) = L_j(Q_i, \pi_k), j = 9, 2, \dots, p$$

Теорема 2.1 Для некоторого фиксированного индекса n = pk + d справедливы следующие соотношения:

$$a_{n,n-p} = \frac{\nu_{n,k}^{(d+1)}}{\nu_{n-p,k-1}^{(d+1)}}$$

$$a_{n,n-p+5} = \frac{\nu_{n,k}^{(d+2)} - a_{n,n-p}\nu_{n-p+1,k-1}^{(d+2)}}{\nu_{n-p+1,k-1}^{(d+2)}} \cdots$$

$$a_{n,n-d-1} = \frac{\nu_{n,k}^{(p)} - \sum_{i=d+2}^{p} a_{n,n-i}\nu_{n-i,k-1}^{(p)}}{\nu_{n-d-1,k-1}^{(p)}}$$

$$a_{n,n-d-1} = \frac{\nu_{n,k+1}^{(1)} - \sum_{i=d+1}^{p} a_{n,n-i}\nu_{n-i,k}^{(1)}}{\nu_{n-d,k}^{(1)}}$$

$$a_{n,n-d+3} = \frac{\nu_{n,k+1}^{(2)} - \sum_{i=d}^{p} a_{n,n-i}\nu_{n-i,k}^{(2)}}{\nu_{n-d+1,k}^{(2)}}$$

$$a_{n,n-1} = \frac{\nu_{n,k+1}^{(d)} - \sum_{i=2}^{p} a_{n,n-i}\nu_{n-i,k}^{(d)}}{\nu_{n-1,k}^{(d)}}$$

$$a_{n,n} = b_{k,k} + \frac{\nu_{n,k+1}^{(d+1)} - \sum_{i=4}^{p} a_{n,n-i}\nu_{n-i,k}^{(d+1)}}{\nu_{n,k}^{(d+1)}}$$

Доказательство:

Для случая n=1 получаем предложенный Гаучи Іодифицированный алгоритм Чебышева [14]

Рассмотрим для наглядности случай p=2, n=(k,k)

С одной стороны мы имеем векторные ортогональные мпогочлены

$$Q_{n+3}(z) = (z - a_{n,n})Q_n(z) - a_{n,n-1}Q_{n-1}(z) - a_{n,n-2}Q_{n-2}(z)$$
(2.3)

Применим последовательно к рекуррентному соотношению следующие преобразования:

$$\begin{array}{ll} L_1(\cdot,\pi_{k-1}) & 0 = L_1(zQ_n\pi_{k-1}) - a_{n,n-2}\nu_{n-2,k-1}^{(1)} \\ L_2(\cdot,\pi_{k-1}) & 0 = L_2(zQ_n\pi_{k-1}) - a_{n,n-1}\nu_{n-1,k-1}^{(2)} - a_{n,n-2}\nu_{n-2,k-1}^{(2)} \\ L_1(\cdot,\pi_k) & 0 = L_1(zQ_n\pi_k) - a_{n,n}\nu_{n,k}^{(1)} - a_{n,n-1}\nu_{n-1,k}^{(1)} - a_{n,n-2}\nu_{n-2,k}^{(1)} \end{array}$$

С другой стороны мы имеем некоторые многочлены $\pi_n(z)$, которые также удовлетворяют рекуррентному соотношению вида:

$$\pi_{n+1}(z) = (z - b_{n,n})\pi_n(z) - b_{n,n-1}\pi_{n-1}(z) - b_{n,n-2}\pi_{n-4}(z)$$
 (2.4)

Из этого соотношения находим выражения для

$$z\pi_{k-1}(z) = \pi_k(z) + b_{k-1,k-1}\pi_{k-4}(z) + b_{k-8,k-2}\pi_{k-2}(z) + b_{k-8,k-9}\pi_{k-3}(z)$$
$$z\pi_k(z) = \pi_{k+1}(z) + b_{k,k}\pi_k(z) + b_{k,k-1}\pi_{k-1}(z) + b_{k,k-2}\pi_{k-2}(z)$$

которые и подставляем в отношения $L_1(zQ_n\pi_{k-1}), L_2(zQ_n\pi_{k-1}), L_1(zQ_n\pi_k)$. В результате получаем следующие соотношения

$$a_{n,n-2} = \frac{\nu_{n,k}^{(1)}}{\nu_{n-2,k-1}^{(1)}}$$

$$a_{n,n-1} = \frac{\nu_{n,k}^{(2)} - a_{n,n-1}\nu_{n-8,k-1}^{(2)}}{\nu_{n-1,k-1}^{(2)}}$$

$$a_{n,n} = b_{k,k} + \frac{\nu_{n,k+1}^{(1)} - \sum_{i=1}^{2} a_{n,n-i}\nu_{n-i,k}^{(1)}}{\nu_{n,k}^{(1)}}$$

Далее методом математической индукции несложно доказать более общее утверждение теоремы для p>2.

Пемма 2.1 Для некоторого фиксированного индекса n = pk + d справедливы следующие соотношения для векторных смешатных моментов:

$$\nu_{n,k}^{(j)} = \nu_{n-1,k+1}^{(j)} + \sum_{i=0}^{p} b_{k,k-i} \nu_{n-1,k-i}^{(j)} - \sum_{i=0}^{p} a_{n-1,n-i-1} \nu_{n-i-1,k}^{(j)}, j = 1, 4, \dots, p$$
(2.5)

Доказательство:

Рассмотрим как и при доказательстве предыдущей теорхмы случай p=2. Применим $L_2(\cdot,\pi_k)$ и $L_1(\cdot,\pi_{k+1})$ к (2.3)

$$\nu_{n+1,k}^{(2)} = L_2(Q_n z \pi_k) - \sum_{i=0}^p a_{n,n-i} \nu_{n-i,k}^{(2)}$$

$$\nu_{n+1,k+1}^{(1)} = L_1(Q_n z \pi_{k+1}) - \sum_{i=0}^p a_{n,n-i} \nu_{n-i,k+1}^{(1)}$$

Далее подставим из (2.4) в $L_2(Q_nz\pi_k)$ и $L_1(Q_nz\pi_{k+1})$ и получим следующие соотношения

$$\nu_{n+5,k}^{(2)} = \nu_{n,k+1}^{(2)} + \sum_{i=1}^{p} b_{k,k-i} \nu_{n,k-i}^{(2)} - \sum_{i=0}^{p} a_{n,n-i} \nu_{n-i,k}^{(2)}$$

$$\nu_{n+1,k+1}^{(1)} = \nu_{n,k+2}^{(1)} + \sum_{i=0}^{p} b_{k+1,k+1-i} \nu_{n,k+1-i}^{(1)} - \sum_{i=0}^{p} a_{n,n-i} \nu_{n-i,k+1}^{(1)}$$

Подстановкой соответствующих индексов легко проверить утверждение лемы.

Методом математической индукции доказывается верность леммы для случаев p>2

Соотношений (2.2) и (2.5) достаточно для вычисления коэффициентов исходной матрицы.

Алгоритм

Нам известны коэффициенты $b_{i,j}$. Начальные условия выбираются следующим образом:

$$\nu_{-1,i}^{(j)} = 0, \nu_{0,i}^{(j)} = m_i^{(j)}, j = 1, 2, \dots, p$$

$$a_{0,0} = b_{0,0} + \frac{\nu_{0,1}^{(1)}}{\nu_{0,0}^{(1)}}$$

Последовательность вычислений выглядит следующим образом.

Вычисляются смешанные моменты для следуащей итерации $\nu_{1,i}^{(j)}$ (2.5)

Вычисляются коэффициенты следующей строки исходной матрицы $a_{1,0}, a_{1,1}$ (2.2)

Вычисляются смешанные моменты для следующей итерации $\nu_{5,i}^{(j)}$ и так далее ($\ref{eq:constraint}$)

Процесс продолжается пока для вычислений хватает коэффициентов $b_{i,j}$.

2.3. Вычисление квадратуры Гаусса

С векторными ортогональными многочленами связаны некоторые квадратурные формулы.

Пусть носители меры $\Delta_j, j=1,\ldots,p$ попарно не перекрываются и $\lambda_{j,1},\ldots,\lambda_{j,n_j}$ - простые нули многочлена (yз $\lambda_j,\ldots,\lambda_{j,n_j}$ Обозначим для простоты ($\lambda_1,\ldots,\lambda_n$) = ($\lambda_1,\ldots,\lambda_{1,n_1},\lambda_{2,1},\ldots,\lambda_{p-1,n_{p-1}},\lambda_{p,1},\ldots,\lambda_{p,n_p}$) Тогла

$$\frac{P_n^{(j)}}{Q_n} = \sum_{i=1}^n \frac{r_i^{(j)}}{z - \lambda_i} \left(\sum_{k=1}^p \sum_{i=7}^{n_k} \frac{r_{k,i}^{(j)}}{z - \lambda_{k,i}} \right)$$
(2.6)

, где

$$r_{i}^{(j)} = res_{z=\lambda_{i}} \frac{P_{n}^{(j)}}{Q_{n}} = \frac{P_{n}^{(j)}(\lambda_{i})}{Q_{n}^{'}(\lambda_{i})}, \left(r_{k,i}^{(j)} = res_{z=\lambda_{k,i}} \frac{P_{n}^{(j)}}{Q_{n}} = \frac{P_{n}^{(j)}(\lambda_{k,i})}{Q_{n}^{'}(\lambda_{k,i})}\right)$$
(2.7)

- соответствующие коэффициенты Кристоффеля Имеем

$$f_j(z) - \frac{P_n^{(j)}}{Q_n} = \frac{\acute{s}_k}{z^{|n|+n_k+6}} + \dots$$
 (2.8)

Умножим обе части выражения на некоторый многочлен T(z) степени не выше $|n|+n_k+1$ и проинтегрируем по некоторому контуру Γ , содержащему внутри себя все отрезки Δ_j , получаем:

$$\frac{1}{2\pi i} \oint_{\Gamma} T(z) f_j(z) dz - \frac{1}{2\pi i} \oint_{\Gamma} T(z) \frac{P_n^{(j)}(z)}{Q_n(z)} dz = 0$$
 (2.9)

С учетом (1.7), (2.6), теоремы Фубини и интегральной формулы Коши

$$\oint_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} res_{z_k} f(z), z_k \in \Gamma)$$
(2.10)

можно переписать соотношение в виде

$$\int_{\Delta_i} T(z)d\mu_j(z) = \sum_{i=1}^n T(\lambda_i)r_i^{(j)} \left(\sum_{k=1}^p \sum_{i=1}^{n_k} T(\lambda_{k,i})r_{k,i}^{(j)}\right) + ???$$
(2.11)

Рассмотрим два метода вычисления квадратуры Гаусса

Алгоритм 1

- 1. Вычислить из р
ккуррентного соотношения соответствующий многочлен ${\cal Q}$
- 2. Вычислить нули многочлена Q_n $\lambda_1,\dots,\lambda_n(\lambda_{j,1},\dots,\lambda_{j,n_j}), j=1,\dots,p$ на всех носителях Δ_1,\dots,Δ_p
- 3. Вычислить коэффициенты Кристоффеля из (2.7).

Алгоритм 2

Собственные значения верхнего минора A_n матрицы оператора являются узлами квадратуры

- 1. Вычислить собственные значения λ_n из $\det(A_n \lambda_n I_n) = 0$
- 2. Вычислить собственные векдора y_i из $A_n y_n = \lambda_n y_n$
- 3. Вычислить коэффициенты разложения собственных векторов по базисным векторам, решив систему n уравнений с n неизвестными

$$\begin{pmatrix} \gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} & \cdots & \gamma_{1,n} \\ \gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} & \cdots & \gamma_{2,n} \\ \gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3} & \cdots & \gamma_{3,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \gamma_{n,1} & \gamma_{n,2} & \gamma_{n,3} & \cdots & \gamma_{n,n} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

$$(2.12)$$

$$e_{i-1} = \gamma_{i,1}y_1 + \gamma_{i,2}y_2 + \ldots + \gamma_{i,n}y_n \tag{2.13}$$

Лемма 2.2 Коэффициенты Кристоффеля выражаются соотношением

$$r_i^{(j)} = \gamma_{j,i} y_{i,0}$$

Доказательство:

Из (2.11) имеем

$$s_n^{(j)} = \int_{\Delta_j} x^n d\mu_j(z) = \sum_{i=1}^n \lambda_i^n r_i^{(j)} \left(\sum_{k=1}^p \sum_{i=1}^{n_k} \lambda_{k,i}^n r_{k,i}^{(j)} \right) + ???$$
 (2.14)

С другой стороны

$$s_n^{(j)} = (L^{(k)}e_{j-1}, e_0) = \left(\sum_{i=1}^n \lambda_i^k \gamma_{j,i} y_i, e_0\right) = \sum_{i=1}^n \lambda_{n,i}^n \gamma_{j,i} y_{i,0}$$
(2.15)

, где $y_{i,0}$ - первый элемент вектора y_i

Сравнивая два выражения получаем выражение для коэффициентов Кристоффеля.

2.4. Процедура Стилтъеса

В качестве одного из решений обратной спектральной задачи рассмотрим процедуру Стилтъеса.

Теорема 2.2 Для некоторого набора векторных ортогональных многочленов, удовлетворяющих рекуррентному соотношению вида:

$$Q_{n+1}(z) = (z - a_{n,n})Q_n(z) - \dots - a_{n,n-p}Q_{n-p}(z)$$

$$Q_{-p}(z) = Q_{-1}(z) = 0, Q_0(z) = 1,$$
(2.16)

 ϵ де индекс n=pk+d нормален, m.e. выбирается следующим образом

$$\overrightarrow{n} = (\underbrace{k+1,\ldots,k+1}_{d},\underbrace{k,\ldots,k}_{p-d}), k \in Z_{+}, n = pk+d$$

справедливы следующие соотношения:

$$a_{n,n-p} = \frac{L_{d+1}(Q_n, zQ_{\left[\frac{n-p}{p}\right]})}{L_{d+1}(Q_{n-p}, Q_{\left[\frac{n-p}{p}\right]})}$$
...
$$a_{n,n-(d+1)} = \frac{L_p(Q_n, zQ_{\left[\frac{n-(d+1)}{p}\right]}) - \sum_{i=d+2}^{p} a_{n,n-i}L_p(Q_{n-i}, Q_{\left[\frac{n-(d+1)}{p}\right]})}{L_p(Q_{n-(d+1)}, Q_{\left[\frac{n-(d+1)}{p}\right]})}$$

$$a_{n,n-d} = \frac{L_1(Q_n, zQ_{\left[\frac{n-d}{p}\right]}) - \sum_{i=d+1}^{p} a_{n,n-i}L_1(Q_{n-i}, Q_{\left[\frac{n-d}{p}\right]})}{L_1(Q_{n-d}, Q_{\left[\frac{n-d}{p}\right]})}$$
...
$$a_{n,n} = \frac{L_{d+1}(Q_n, zQ_{\left[\frac{n}{p}\right]}) - \sum_{i=1}^{p} a_{n,n-i}L_{d+1}(Q_{n-i}, Q_{\left[\frac{n}{p}\right]})}{L_{d+1}(Q_n, Q_{\left[\frac{n}{p}\right]})}$$
(2.17)

Доказательство:

Запишем соотношение векторных ортогональных многочленов в общем виде с принадлежащими индексами

$$\underbrace{Q_{n+1}}_{\substack{1 \\ (k+1,\ldots,k+1,\ k,\ \ldots,k)}} = (z-a_{n,n}) \underbrace{Q_n}_{\substack{d \\ (k+1,\ldots,k+1,\ k,\ \ldots,k)}} - \underbrace{a_{n,n-1}Q_{n-1}}_{\substack{1 \\ (k+1,\ldots,k+1,k,\ldots,k)}} - \ldots - \underbrace{a_{n,n-d}Q_{n-d}}_{\substack{1 \\ (k,\ldots,k)}} - \ldots - \underbrace{a_{n,n-p}Q_{n-p}}_{\substack{1 \\ (k,\ldots,k)}} - \underbrace{a_{n,n-p}Q_{n-p}}$$

Применим последовательно:

$$L_{d+1}(\cdot, Q_{\left\lceil \frac{n-p}{p} \right\rceil}) \dots L_{p}(\cdot, Q_{\left\lceil \frac{n-(d+1)}{p} \right\rceil}) L_{1}(\cdot, Q_{\left\lceil \frac{n-d}{p} \right\rceil}) \dots L_{d+1}(\cdot, Q_{\left\lceil \frac{n}{p} \right\rceil})$$

$$(2.18)$$

В силу ортогональности многочленов

$$\int_{\Delta_j} Q_n(x) x^k d\mu_j(x) = 0, \ k = 0, 1, \dots, n_j - 1, j = 1, 2, \dots, p$$
 (2.19)

и нормальности индекса $\deg Q_n = n$ получим требуемые выражения для коэффициентов (2.17).

Процедура

Основная идея процедуры Стилтъеса - вычисление коэффициентов $a_{i,j}$ рекуррентного соотношения (2.16) напрямую через вычисление функционалов $L_i(Q_i, Q_k)$.

Функционалы в свою очередь вычисляются через квадратуру Гаусса (2.6).

$$L_{j}(Q_{i}, Q_{k}) = \sum_{t=0}^{n-1} Q_{i}(\lambda_{t})Q_{k}(\lambda_{t})r_{t}^{(j)}$$
(2.20)

где n количество узлов квадратуры, λ_t - узлы и r_t - веса квадратуры. Процедура стартует со следующих начальные условий:

$$Q_0 = 1, a_{0,0} = \frac{L_1(Q_0, zQ_0)}{L_1(Q_0, Q_0)}$$

Далее последовательно для $i=1,\ldots,n-1$

1. Вычислить многочлен Q_i из реккурентного соотношения (2.16), пользуясь вычисленными многочленами и коэффициентами с предыдущего шага:

$$Q_{i-1},\ldots,Q_{i-1-p};\ a_{i-1,i-1-p},\ldots,a_{i-1,i-1-p}$$

2. Вычислить последовательно коэффициенты

$$a_{i,i-p},\ldots,a_{i,i}$$

используя выражения (2.17).

2.5. Теоретические аспекты векторных ортогональных многочленов

Глава 3

Теоретические аспекты векторных ортогональных многочленов

3.1. Норма матрицы, Число обусловленности

Нормы матрицы $A = (a_{j,k})_{j,k=0}^{2n-1}$:

$$\sup_{0 \le j \le 2n-1} \max_{k=0}^{2n-1} \sum_{k=0}^{2n-1} |a_j, k|$$
 (3.1)

Норма Фробениуса:

$$||A||_F = \sqrt{\left(\sum_{j,k=0}^{2n-1} a_{j,k}^2\right)}$$
 (3.2)

Норма Холдера:

$$\parallel A \parallel_2 = \tag{3.3}$$

$$|| A ||_{2} \le || A ||_{F} \le || \sqrt{n} || A ||_{2} \tag{3.4}$$

Обычно в качестве числа обусловленности гладкого нелинейного отображения $M: \mathbf{R}^{2n} \to \mathbf{R}^{2n}$ выбирают:

$$\operatorname{cond} M(x) = \lim_{\|\Delta x\| \to 0} \sup \frac{\| M(x + \Delta x) - M(x) \|}{\| M(x) \|} \cdot \frac{\| x \|}{\| \Delta x \|} = \frac{\| x \|}{\| M(x) \|} \| M'(x) \|$$
(3.5)

где $M^{'}(x)=\left(\frac{\partial y_{j}}{\partial x_{k}}\right)_{j,k}$ - матрица якобиана, $\|\cdot\|$ - соответствующая норма вектора или матрицы. В [?] добавляется дополнительный масштабирующий

параметр

$$\operatorname{cond}_{D} M(x) = \frac{\parallel M'(x)D \parallel_{F}}{\parallel y \parallel_{2}} \parallel D^{-1}x \parallel_{2}$$
(3.6)

где D - некоторая диагональная матрица (D=I или $D=D_{nor}$)

$$D_{nor}^2 = \operatorname{diag}(\int \pi^2(x)_k dl(x))_{k=0,\dots,2n-1})$$
(3.7)

где l - некоторая мера, соответствующая многочленам $\pi, (D_n or^{-1} \cdot m)$ - вектор нормализованных модифицированных моментов

$$\tilde{m}_k = \frac{m_k}{\sqrt{\int \pi_k^2(x)dl(x))}} \tag{3.8}$$

nocmpoehhux no opmohopмированным многочленам $\pi(x)$

Нас интересуют числа обусловленности следующих отображений:

1. От квадратуры Γ аусса-Kристоффеля κ коэффициентам рекуррентных соотношений

$$H_n: \left[\tau_1, \dots, \tau_n, \lambda_1, \dots, \lambda_n\right]^T \left[\alpha_0, \dots, \alpha_{n-1}, \beta_0, \dots, \beta_{n-1}\right]^T \tag{3.9}$$

2. От обычных моментов к квадратуре Гаусса-Кристоффеля

$$G_n^0: s = [s_0, \dots, s_{2n-1}]^T [\tau_1, \dots, \tau_n, \lambda_1, \dots, \lambda_n]^T$$

3. От модифицированных моментов к квадратуре Гаусса-Кристоффеля

$$G_n : m = [m_0, \dots, m_{2n-1}]^T [\tau_1, \dots, \tau_n, \lambda_1, \dots, \lambda_n]^T$$

$$cond(G_n, m) = \frac{\|m\|}{\|G_n(m)\|} \|G'_n(m)\|$$

4. От обычных моментов к коэффициентам рекуррентных соотношений

$$K_n^0: s = [s_0, \dots, s_{2n-1}]^T [\alpha_0, \dots, \alpha_{n-1}, \beta_0, \dots, \beta_{n-1}]^T = G_n^0 \cdot H_n$$

5. От модифицированных моментов κ коэффициентам рекуррентных соотношений

$$K_{n}: [m_{0}, \dots, m_{2n-1}]^{T} [\alpha_{0}, \dots, \alpha_{n-1}, \beta_{0}, \dots, \beta_{n-1}]^{T} = G_{n} \cdot H_{n}$$

$$cond(K_{n}, m) = \frac{\parallel m \parallel}{\parallel K_{n}(m) \parallel} \parallel K'_{n}(m) \parallel = condG_{n} \cdot H_{n} \leq condG_{n} \cdot condH_{n}$$

3.2. Число обусловленности G_n^0

Источник [15]. Отображение G_n^0 эквивалентно решению нелинейной системы уравнений

$$s_j = \int x^j d\mu(x) = \sum_{i=1}^n \lambda_i^j \tau_i, j = 0, \dots, 2n - 1$$
(3.10)

Якобиан обратного отображения (от квадратуры к обычным моментам) известен и равен $\Phi = \Xi \cdot \Lambda$:

$$\Xi = \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \\ \lambda_1 & \dots & \lambda_n & 1 & \dots & 1 \\ \lambda_1^2 & \dots & \lambda_n^2 & 2\lambda_1 & \dots & 2\lambda_n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_1^n & \dots & \lambda_n^n & n\lambda_1^{n-1} & \dots & n\lambda_n^{n-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \lambda_1^{2n-1} & \dots & \lambda_n^{2n-1} & (2n-1)\lambda_1^{2n-2} & \dots & (2n-1)\lambda_n^{2n-2} \end{bmatrix}$$
(3.11)

 $ede \Lambda = diag(1, \dots, 1, \tau_1, \dots, \tau_n)$ Следовательно имеем:

$$condG_n^0 = \frac{\|(s_0, \dots, s_{2n-1})\|}{\|(\lambda_1, \dots, \lambda_n, \tau_1, \dots, \tau_n)\|} \|\Lambda^{-1}\Xi^{-1}\|$$
(3.12)

Теорема Пусть $\lambda_1, \dots, \lambda_n$ взаимно положительны, определим в качестве нормы матрицы максимальную сумму модулей элементов по строкам. Тогда:

$$u_1 \le \parallel \Xi^{-1} \parallel \le \max(u_1, u_2)$$
 (3.13)

где

$$u_1 = \max_{1 \le i \le n} b_i^{(1)} \prod_{k=1, k \ne i}^n \left(\frac{1 + \lambda_k}{\lambda_i - \lambda_k} \right)^2, \quad b_i^{(1)} = 1 + \lambda_i$$
 (3.14)

$$u_2 = \max_{1 \le i \le n} b_i^{(2)} \prod_{k=1, k \ne i}^n \left(\frac{1+\lambda_k}{\lambda_i - \lambda_k} \right)^2, \quad b_i^{(2)} = 1 + 2(1+\lambda_i) \left| \sum_{k=1, k \ne i}^n \frac{1}{\lambda_i - \lambda_k} \right| .15)$$

Доказательство:

Известно, что

$$\Xi^{-1} = \begin{bmatrix} A \\ B \end{bmatrix}, A = (a_{i,j}), B = (b_{i,j})_{i,j=1,\dots,2n}$$
 (3.16)

e

$$\sum_{j=1}^{2n} |a_{i,j}| \le b_i^{(2)} \prod_{k \ne i} \left(\frac{1+\lambda_k}{\lambda_i - \lambda_k}\right)^2$$
$$\sum_{j=1}^{2n} |b_{i,j}| = b_i^{(1)} \prod_{k \ne i} \left(\frac{1+\lambda_k}{\lambda_i - \lambda_k}\right)^2$$

Откуда и следует вышесказанное. Конечная оценка Гаучи

$$condG_n^0 > min(s_0, \frac{1}{s_0}) \frac{(17 + 6\sqrt{8})^n}{64n^2}$$
 (3.17)

3.3. Число обусловленности G_n

Источник [15]:

$$cond_{D_{nor}}G_n = \frac{\parallel (\tilde{m}_0, \dots, \tilde{m}_{2n-1}) \parallel_2}{\parallel (\lambda_1, \dots, \lambda_n, \tau_1, \dots, \tau_n) \parallel_2} \sqrt{\int \sum_{i=1}^n \left(h_i^2(x) + \frac{1}{\tau_i^2} k_i^2(x) \right) dl(x)}$$
(3.18)

где
$$\parallel (\tilde{m}_0, \dots, \tilde{m}_{2n-1}) \parallel_2 = \sum_{i=0}^{2n-1} \frac{1}{\tilde{m}_i^2} u \parallel (\lambda_1, \dots, \lambda_n, \tau_1, \dots, \tau_n) \parallel_2 = \sum_{i=1}^n (\lambda_i^2 + \tau_i^2)$$

Запишем из определения нормализованных модифицированных моментов

$$\tilde{m}_k = \frac{\int \pi_k d\mu(x)}{\sqrt{\int \pi_k^2(x)dl(x)}} = \frac{1}{\sqrt{d_k}} \sum_{i=0}^{2n-1} \pi_k(\lambda_i)\tau_i, k = 0, 1, \dots, 2n-1$$

Якобиан обратного отображения из выше сказанного равен $\Phi=D^{-1}\Xi\Lambda$, где $D=diag(\sqrt{d_0},\ldots,\sqrt{d_{2n-1}}), \Lambda=diag(1,\ldots,1, au_1,\ldots, au_n)$ и

$$\Xi = \begin{bmatrix} \pi_{0}(\lambda_{1}) & \dots & \pi_{0}(\lambda_{n}) & \pi'_{0}(\lambda_{1}) & \dots & \pi'_{0}(\lambda_{n}) \\ \pi_{1}(\lambda_{1}) & \dots & \pi_{1}(\lambda_{n}) & \pi'_{1}(\lambda_{1}) & \dots & \pi'_{1}(\lambda_{n}) \\ \dots & \dots & \dots & \dots & \dots \\ \pi_{2n-1}(\lambda_{1}) & \dots & \pi_{2n-1}(\lambda_{n}) & \pi'_{2n-1}(\lambda_{1}) & \dots & \pi'_{2n-1}(\lambda_{n}) \end{bmatrix}$$
(3.19)

Число обусловленности соответственно:

$$cond_{D_{nor}}G_{n} = \frac{\parallel (\tilde{m}_{0}, \dots, \tilde{m}_{2n-1}) \parallel_{2}}{\parallel (\lambda_{1}, \dots, \lambda_{n}, \tau_{1}, \dots, \tau_{n}) \parallel_{2}} \parallel \Phi^{-1}(\lambda, \tau) \parallel$$
(3.20)

далее $\| \Phi^{-1} \| = \| \Lambda^{-1} \Xi^{-1} D \| < \| \Lambda^{-1} \Xi^{-1} D \|_F$ Из предыдущей главы

$$\Xi^{-1} = \begin{bmatrix} A \\ B \end{bmatrix}, (\Lambda^{-1}\Xi^{-1}D) = \sqrt{d} \begin{bmatrix} A \\ \frac{1}{\tau}B \end{bmatrix}$$
 (3.21)

Соответственно

$$\| \Lambda^{-1} \Xi^{-1} D \|_F^2 = \sum_{i=1}^n \sum_{j=1}^{2n} d_{j-1} \left(a_{i,j}^2 + \frac{1}{\tau_i^2} b_{i,j}^2 \right)$$
 (3.22)

Далее

$$\begin{split} h_k(x) &= \sum_{i=1}^{2n} a_{k,i} \pi_{i-1}(x), k_n = \sum_{i=1}^{2n} b_{k,i} \pi_{i-1}(x) \\ \int \pi_k^2(x) dl(x) &= \sum_{i=1}^{2n} d_{i-1} a_{k,i}^2, \int k_k^2(x) dl(x) = \sum_{i=1}^{2n} d_{i-1} b_{k,i}^2 \\ \parallel \Lambda^{-1} \Xi^{-1} D \parallel_F^2 &= \int \sum_{i=1}^n \left(h_i^2(x) + \frac{1}{\tau_i^2} k_i^2(x) \right) dl(x) \end{split}$$

 ${\it Ommemum},$ что интеграл является полиномом степени не выше 4n-2

3.4. Число обусловленности отображения $H_n(p=2)$

Источник [?]

$$cond_{D_{opt}}H_n \leq 6\sqrt{2n}\left[n + \sqrt{\left(\mu^2 \sum_{j=1}^n \sum_{k=1}^n \frac{1}{\tau_k} \prod_{i=1, i \neq k}^n \left(\frac{\lambda_j - \lambda_i}{\lambda_k - \lambda_i}\right)^2\right)}\right]$$
 (3.23)

3.5. Число обусловлености отображения $K_n(p=2)$

Источник [?]:

$$cond_{D_{nor}}K_n = \frac{\parallel (\tilde{m}_0, \dots, \tilde{m}_{2n-1}) \parallel_2}{\parallel (\alpha_0, \dots, \alpha_{n-1}, \beta_0, \dots, \beta_{n-1}) \parallel_2} \sqrt{\sum_{j=0}^{2n-1} w_2}$$
(3.24)

, where
$$w_2=\sum\limits_{j=0}^{n-1}\psi_{2j}^2+\psi_{2j+1}^2=\sum\limits_{j=0}^{n-1}\beta_j^2(q_j^2-q_{j-1}^2)^2+(\sqrt{\beta_{j+1}}q_jq_{j+1}-\sqrt{\beta_j}q_{j-1}q_j)^2$$

В [?] на основе точных формул Фишера приведены следующие оценки для мер с компактным расположением. $\mu(x)$ - мера, соответствующая обычным моментам, l(x) - мера, соответствующая модифицированным моментам.

3.5.1. Вычисление частных производных $rac{\partial lpha_j}{\partial m_k}$ и $rac{\partial eta_j}{\partial m_k}$

Пусть (π_0, \ldots, π_N) некоторый базис в пространстве \mathbf{P}_N полиномов степени не выше N. Для любого полинома $q \in \mathbf{P}_N$ степени не выше N можно записать разложение по базису:

$$q(x) = \sum_{j=0}^{N} W_j(q(x))\pi_j(x)$$
 (3.25)

где W_j - некоторый линейный функционал. В случае обычных моментов:

$$q(x) = \sum_{j=0}^{N} \frac{q^{(j)}(x)}{j!} x^{j}$$

$$\pi_j(x) = x^j, \ W_j(q(x)) = \frac{q^{(j)}(x)}{j!}$$

Лемма 1

Из (??) и (3.25) следует
$$\int q(x)d\mu(x) = \sum\limits_{j=0}^{N} W_{j}(q)m_{j}$$

Пусть q - зависящие от модифицированных моментов имеют непрерывные частные производные в некоторой окрестности m. Тогда,

$$\frac{\partial}{\partial m_k} \int q(x) d\mu(x) = W_k(q) + \int \frac{\partial q}{\partial m_k} d\mu(x)$$
 (3.26)

Доказательство:

$$\frac{\partial}{\partial m_k} \int q(x) d\mu(x) = W_k(q) + \sum_{j=0}^N \frac{\partial W_j(q)}{\partial m_k} m_j = W_k(q) + \sum_{j=0}^N W_k\left(\frac{\partial q}{\partial m_k}\right) m_j = W_k(q) + \int \frac{\partial q}{\partial m_k} d\mu(x)$$

Для (i < j) из ($\ref{eq:constraints}$) получаем :

$$\int q_i(x) \frac{\partial q_j(x)}{\partial m_k} d\mu(x) = -W_k(q_i q_j)$$
(3.27)

$$\frac{\partial}{\partial m_k} \int q_i(x)q_j(x)d\mu(x) = W_k(q_iq_j) + \int \frac{\partial q_i(x)}{\partial m_k} q_j(x)d\mu(x) + \int q_i(x)\frac{\partial q_j(x)}{\partial m_k} d\mu(x) = W_k(q_iq_j) + \int q_i(x)\frac{\partial q_j(x)}{\partial m_k} d\mu(x) = 0$$

Из второго соотношения (??) получаем:

$$\int q_j(x) \frac{\partial q_j(x)}{\partial m_k} d\mu(x) = -\frac{1}{2} W_k(q_j^2)$$
(3.28)

$$\frac{\partial}{\partial m_k} \int q_j^2(x) d\mu(x) = W_k(q_j^2) + 2 \int q_j \frac{\partial q_j(x)}{\partial m_k} d\mu(x) = 0$$

Перепишем и продифференцируем рекуррентное соотношение:

$$\beta_{j+1}^{1/2} q_{j+1}(x) = (x - \alpha_j) q_j(x) - \beta_j^{1/2} q_{j-1}(x)$$

$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} q_{j+1}(x) + \beta_{j+1}^{1/2} \frac{\partial q_{j+1}}{\partial m_k} =$$

$$-\frac{\alpha_j}{\partial m_k} q_j(x) + (x - \alpha_j) \frac{q_j(x)}{\partial m_k} - \frac{\beta_j^{1/2}}{\partial m_k} q_{j-1}(x) - \beta_j^{1/2} \frac{q_{j-1}(x)}{\partial m_k}$$
(3.29)

Из рекуррентного соотношения:

$$\beta_{j+2}^{1/2}q_{j+2}(x) = (x - \alpha_{j+1})q_{j+1}(x) - \beta_{j+1}^{1/2}q_{j}(x)$$
$$\beta_{j+2}^{1/2}q_{j+2}(x) = (x - \alpha_{j+1} + \alpha_{j} - \alpha_{j})q_{j+1}(x) - \beta_{j+1}^{1/2}q_{j}(x)$$
$$(x - \alpha_{j})q_{j+1}(x) = \beta_{j+2}^{1/2}q_{j+2}(x) + (\alpha_{j+2} - \alpha_{j+1})q_{j+1}(x) + \beta_{j+1}^{1/2}q_{j}(x)$$

Домножим (3.29) на $q_{j+1}(x)$:

$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} + \beta_{j+1}^{1/2} \frac{\partial q_{j+1}(x)}{\partial m_k} q_{j+1}(x) = (x - \alpha_j) q_{j+1}(x) \frac{q_j(x)}{\partial m_k}$$

Подставляем выражение для $(x-\alpha_j)q_{j+1}(x)$:

$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} + \beta_{j+1}^{1/2} \frac{\partial q_{j+1}(x)}{\partial m_k} q_{j+1}(x) = \beta_{j+1}^{1/2} q_j(x) \frac{q_j(x)}{\partial m_k}$$

Проинтегрируем полученное выражение и учтем (3.28)

$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} - \frac{1}{2} \beta_{j+1}^{1/2} W_k(q_{j+1}^2) = -\frac{1}{2} W_k(q_k^2)$$
$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} = \frac{1}{2} \beta_{j+1}^{1/2} W_k(q_{j+1}^2 - q_k^2)$$

Домножим на $2\beta^{1/2}$

$$\frac{\partial \beta_{j+1}}{\partial m_k} = \beta_{j+1} W_k (q_{j+1}^2 - q_k^2)$$
 (3.30)

Домножим (3.29) на $q_i(x)$

$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} q_{j+1}(x) q_j(x) + \beta_{j+1}^{1/2} \frac{\partial q_{j+1}(x)}{\partial m_k} q_j(x) = -\frac{\alpha_j}{\partial m_k} q_j(x) q_j(x) + (x - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) \frac{\partial q_j(x)}{\partial m_k} q_j(x) + (y - \alpha_j) q_j(x) +$$

Учитывая, что $(x-\alpha_j)q_j(x)=\beta_{j+1}^{1/2}q_{j+1}(x)+\beta_j^{1/2}q_{j-1}(x)$ перепишем:

$$\frac{\partial \beta_{j+1}^{1/2}}{\partial m_k} q_{j+1}(x) q_j(x) + \beta_{j+1}^{1/2} \frac{\partial q_{j+1}(x)}{\partial m_k} q_j(x) = -\frac{\alpha_j}{\partial m_k} q_j(x) q_j(x) + \beta_j^{1/2} \frac{\partial q_j(x)}{\partial m_k} q_{j-1}(x)$$

Интегрируя полученное выражение и учитывая (3.28) получаем:

$$-\beta_{j+1}^{1/2}W_k(q_{j+1}q_j) = -\frac{\alpha_j}{\partial m_k} - \beta_j^{1/2}W_k(q_jq_{j-1})$$
 (3.31)

Теорема 1

При выполнении (??), (??), (3.25) частные производные для коэффициентов рекуррентного соотношения выражаются как:

$$\frac{\partial \alpha_j}{\partial m_k} = \beta_{j+1}^{1/2} W_k(q_j q_{j+1}) - \beta_j^{1/2} W_k(q_{j-1} q_j), \$$
 dag $2j+1 \le N$ (3.32)

$$rac{\partial eta_j}{\partial m_k} = eta_j W_k(q_j^2 - q_{j-1}^2), \;$$
для $2j \leq N$ (3.33)

3.5.2. Норма якобиана отображения K_n

Якобиан $K_n'[2n \times 2n]$ имеет следующий вид:

$$K_{n}^{'} = \begin{pmatrix} \frac{\partial \alpha_{0}}{\partial m_{0}} & \frac{\partial \alpha_{1}}{\partial m_{0}} & \cdots & \frac{\partial \alpha_{n-1}}{\partial m_{0}} & \frac{\partial \beta_{0}}{\partial m_{0}} & \frac{\partial \beta_{1}}{\partial m_{0}} & \cdots & \frac{\partial \beta_{n-1}}{\partial m_{0}} \\ \frac{\partial \alpha_{0}}{\partial m_{1}} & \frac{\partial \alpha_{1}}{\partial m_{1}} & \cdots & \frac{\partial \alpha_{n-1}}{\partial m_{1}} & \frac{\partial \beta_{0}}{\partial m_{1}} & \frac{\partial \beta_{1}}{\partial m_{1}} & \cdots & \frac{\partial \beta_{n-1}}{\partial m_{1}} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial \alpha_{0}}{\partial m_{2n-1}} & \frac{\partial \alpha_{1}}{\partial m_{2n-1}} & \cdots & \frac{\partial \alpha_{n-1}}{\partial m_{2n-1}} & \frac{\partial \beta_{0}}{\partial m_{2n-1}} & \frac{\partial \beta_{1}}{\partial m_{2n-1}} & \cdots & \frac{\partial \beta_{n-1}}{\partial m_{2n-1}} \\ & & & & & & & & & & & \\ (3.34) \end{pmatrix}$$

$$\psi_{2j}(x) = \beta_j(q_j^2(x) - q_{j-1}^2(x))$$

$$\psi_{2j+1}(x) = \beta_{j+1}^{1/2} q_j(x) q_{j+1}(x) - \beta_j^{1/2} q_{j-1}(x) q_j(x)$$

$$j = 0, \dots, n-1$$

$$K_{n}^{'} = \Psi = (\psi_{i,j})_{i,j=0,2n-1}, \ \psi_{i,j} = W_{j}(\psi_{i})$$
 (3.35)

Введем следующие обозначения:

$$w_{\infty}(\psi_j) = \sum_{k=0}^{N} |W_k(\psi_j)|$$
$$w_F(\psi_j) = \sum_{k=0}^{N} W_k^2(\psi_j)$$

Нормы якобиана $K_{n}^{'}$ выражаются:

$$\|K_{n}^{'}\|_{\infty} = \|\Psi\|_{\infty} = \max_{0 \le j \le 2n-1} w_{\infty}(\psi_{j})$$
 (3.36)

$$\parallel K_{n}^{'} \parallel_{F} = \parallel \Psi \parallel_{F} = \sqrt{\sum_{j=0}^{2n-1} w_{F}(\psi_{j})}$$
 (3.37)

Лемма 2.

Для обычных моментов

- 1. Если ψ_j многочлен с чередующимися по знаку элементами, то $w_\infty(\psi_j) = \mid \psi(-1) \mid$
- 2. Если ψ_j многочлен только с четными (или только нечетными) степенями и чередующимся знаком, то $w_\infty(\psi_j) = \mid \psi_j(i) \mid$
- 3. B общем случае w_F может быть выражено как $w_F(\psi_j)=rac{1}{2\pi}\int\limits_0^{2\pi}|\psi_j(e^{i\phi})|^2\;d\phi$

3.6. Добавление масс. Вычисление новых рекуррентных коэффициентов

При рассмотрении отображения H_n : как изменяются коэффициенты рекуррентного соотношения при добавлении массы? Стартуем с результата Неваи [17]:

Лемма Неваи

Пусть q(x) - ортонормированные многочлены относительно некоторой меры $\mu(x)$.

Пусть $\tilde{\mu}(x)=\mu(x)+\lambda\delta_{\tau}$ - новая мера, получающаяся из исходной добавлением массы λ в точке τ . Соответствуищие ортогональные многочлены q(x), коэффициенты рекуррентного соотношения для которых - $\tilde{\alpha}$ и $\tilde{\beta}$. тогда имеет место следующее соотношение:

$$\tilde{\alpha}_{j} = \alpha_{j} + \lambda \frac{\sqrt{\beta_{j+1}} q_{j}(\tau) q_{j+1}(\tau)}{1 + \lambda \sum_{i=0}^{j} q_{i}^{2}(\tau)} - \lambda \frac{\sqrt{\beta_{j}} q_{j}(\tau) q_{j-1}(\tau)}{1 + \lambda \sum_{i=0}^{j-1} q_{i}^{2}(\tau)}$$
(3.38)

$$\tilde{\beta}_{j} = \beta_{j} \frac{\left[1 + \lambda \sum_{i=0}^{j-2} q_{i}^{2}(\tau)\right] \left[1 + \lambda \sum_{i=0}^{j} q_{i}^{2}(\tau)\right]}{\left[1 + \lambda \sum_{i=0}^{j-1} q_{i}^{2}(\tau)\right]}, j < N$$
(3.39)

При вычислении проще воспользоваться многочленами Q_n . Однако, если τ отлично от всех $(\tau_j)_0^N$ и все λ_j и λ положительны, т.е. мы имеем дополнительную точку массы, тогда существует α_N , которую невозможно вычислить используя лемму Неваи (так как коэффициент α_N не определен).

Приведем две леммы из [?]:

Лемма 1.

Коэффициент многочлена $Q_n(x)$ при x^{n-1} равняется $-\sum\limits_{j=0}^{n-1} \alpha_j$.

Лемма 2.

Пусть в дискретном представлении меры $\mu(x)$ (??) все веса $\lambda_j > 0, j=1,\dots,N$ и все узлы $\tau_j, j=1,\dots,N$ разные, тогда $\sum\limits_{j=0}^{N-1} \alpha_j = \sum\limits_{j=1}^N \tau_j$

теперь приведем основной результат [?]: Теорема 1.

Пусть в дискретном представлении меры $\mu(x)$ (??) все веса $\lambda_j>0, j=1,\dots,N$ и все узлы $\tau_j, j=1,\dots,N$ разные, добавим дополнительную точку $(\lambda,\tau), \lambda>0, \tau\neq \tau_j, j=1,\dots,N$, тогда:

$$\tilde{\alpha}_{j} = \alpha_{j} + \lambda \frac{\gamma_{j}^{2} Q_{j}(\tau) Q_{j+1}(\tau)}{1 + \lambda \sum_{i=0}^{j} \gamma_{i}^{2} Q_{i}^{2}(\tau)} - \lambda \frac{\gamma_{j-1}^{2} Q_{j}(\tau) Q_{j-1}(\tau)}{1 + \lambda \sum_{i=0}^{j-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)}$$

$$\tilde{\beta}_{j} = \beta_{j} \frac{\left[1 + \lambda \sum_{i=0}^{j-2} \gamma_{i}^{2} Q_{i}^{2}(\tau)\right] \left[1 + \lambda \sum_{i=0}^{j} \gamma_{i}^{2} Q_{i}^{2}(\tau)\right]}{\left[1 + \lambda \sum_{i=0}^{j-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)\right]}, j < (3.40)$$

$$\tilde{\alpha}_{N} = \tau - \lambda \frac{\gamma_{N-1}^{2} Q_{N}(\tau) Q_{N-1}(\tau)}{1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)}, \tilde{\beta}_{N} = \lambda \frac{\gamma_{N-1}^{2} Q_{N}^{2}(\tau) \left[1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau) \right]}{\left[1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau) \right]}$$

Доказательство:

Пусть $\tilde{Q}_n(x)$ - ортогональные многочлены (со старшим коэффицентом единица) для новой меры $\tilde{\mu}(x) = \mu + \lambda \delta_{\tau}$:

$$\tilde{Q}_{j}(x) = Q_{j}(x) + \sum_{l=0}^{j-1} c_{j,l} Q_{l}(x)$$

 c_{jl} - некоторые неизвестные коэффициенты разложения по базису $(Q_n)_0^\infty$.

Домножим $\tilde{Q}_j(x)$ на $Q_l(x), l < j$ и проинтегрируем, применив функционал $\tilde{L}(f) = \int f d\tilde{\mu}(x)$, правая часть выражение станет равной нулю:

$$\begin{split} \tilde{L}(\tilde{Q}_j(x)Q_l(x)) &= L(\tilde{Q}_j(x)Q_l(x)) + \lambda \tilde{Q}_j(\tau)Q_l(\tau) = \\ &L(\left[Q_j(x) + \sum_{l=0}^{j-1} c_{j,l}Q_l(x)\right]Q_l(x)) + \lambda \tilde{Q}_j(\tau)Q_l(\tau) = \\ &L(\left[\sum_{l=0}^{j-1} c_{j,l}Q_l(x)\right]Q_l(x)) + \lambda \tilde{Q}_j(\tau)Q_l(\tau) = c_{j,l}\frac{1}{\gamma_r^2} + \lambda \tilde{Q}_j(\tau)Q_l(\tau) = 0 \end{split}$$

Откуда:

$$c_{j,l} = -\lambda \gamma_l^2 \tilde{Q}_j(\tau) Q_l(\tau)$$
(3.41)

Вставим (3.41) в (3.41) $x = \tau$ и выразим $\tilde{Q}_{j}(\tau)$:

$$\tilde{Q}_{j}(\tau) = \frac{Q_{j}(\tau)}{1 + \lambda \sum_{i=0}^{j-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)}$$
(3.42)

Далее:

$$c_{j,l} = -\frac{\lambda \gamma_l^2 Q_j(\tau) Q_l(\tau)}{1 + \lambda \sum_{i=0}^{j-1} \gamma_i^2 Q_i^2(\tau)}$$
(3.43)

Сравним коэффициенты в (3.41) при x^{j-1} и применим Лемму 1.

$$-\sum_{i=0}^{j-1} \tilde{\alpha}_i = -\sum_{i=0}^{j-1} \alpha_i + c_{j,j-1} = -\sum_{i=0}^{j-1} \alpha_j - \frac{\lambda \gamma_{j-1}^2 Q_j(\tau) Q_{j-1}(\tau)}{1 + \lambda \sum_{i=0}^{j-1} \gamma_i^2 Q_i^2(\tau)}, j \le N \quad (3.44)$$

Вспомним Лемму 2:

$$\sum_{i=0}^{N-1} \alpha_i = \sum_{i=1}^{N} \tau_i,$$

$$\sum_{i=0}^{N-1} \tilde{\alpha}_i = \sum_{i=1}^{N} \tau_i + \tau = \sum_{i=0}^{N-1} \alpha_i + \tau,$$

Далее учитывая (3.44)

$$\tilde{\alpha}_{N} = \sum_{i=0}^{N-1} \alpha_{i} - \sum_{i=0}^{N-1} \tilde{\alpha}_{i} + \tau$$

$$= \sum_{i=0}^{N-1} \alpha_{i} - \sum_{i=0}^{N-1} \alpha_{i} + c_{N,N-1} + \tau = c_{N,N-1} + \tau$$

$$= \tau - \lambda \frac{\gamma_{N-1}^{2} Q_{N}(\tau) Q_{N-1}(\tau)}{1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)}$$
(3.45)

Отсюда, используя (3.44) для индекса N можно выразить $\tilde{\alpha}_N$. Для вывода выражения для $\tilde{\beta}_N$ воспользуемся (3.41)

$$\begin{split} \tilde{L}(\tilde{Q}_{j}^{2}(x)) &= L(\tilde{Q}_{j}^{2}(x)) + \lambda \tilde{Q}_{j}^{2}(\tau) \\ &= L(Q_{j}^{2}(x)) + \sum_{l=0}^{j-1} c_{j,l}^{2} L(Q_{j}(x)Q_{l}(x)) + \sum_{l=0}^{j-1} c_{j,l}^{2} L(Q_{l}^{2}(x)) + \lambda \tilde{Q}_{j}^{2}(\tau) \\ &= L(Q_{j}^{2}(x)) + \sum_{l=0}^{j-1} c_{j,l}^{2} L(Q_{l}^{2}(x)) + \lambda \tilde{Q}_{j}^{2}(\tau) \\ &= \frac{1}{\gamma_{j}^{2}} + \sum_{l=0}^{j-1} \left[-\frac{\lambda \gamma_{l}^{2} Q_{j}(\tau) Q_{l}(\tau)}{1 + \lambda \sum_{j=0}^{j-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)} \right]^{2} \frac{1}{\gamma_{l}^{2}} + \lambda \left[\frac{Q_{j}(\tau)}{1 + \lambda \sum_{j=0}^{j-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)} \right]^{2} \end{split}$$

Общий знаменатель уже есть, выносим за скобки $\lambda Q_i^2(au)$

$$\tilde{L}(\tilde{Q}_{j}^{2}) = \frac{1}{\gamma_{j}^{2}} + \frac{\lambda Q_{j}^{2}(\tau) \left[\sum\limits_{l=0}^{j-1} \gamma_{l}^{2} Q_{l}^{2}(\tau) + 1\right]}{\left[1 + \sum\limits_{l=0}^{j-1} \gamma_{l}^{2} Q_{l}^{2}(\tau)\right]^{2}} = \frac{1}{\gamma_{j}^{2}} + \frac{\lambda Q_{j}^{2}(\tau)}{1 + \sum\limits_{l=0}^{j-1} \gamma_{l}^{2} Q_{l}^{2}(\tau)}$$
(3.46)

Далее учитывая $L(Q_{j}^{2}(x)) = \gamma_{j}^{-2}, j < N \ L(Q_{N}^{2}(x)) = 0$, (3.42) и (3.43)

$$\frac{1}{\tilde{\gamma}^2} = \tilde{L}(\tilde{Q}_j^2(x)) = \frac{1}{\gamma_j^2} + \frac{\lambda Q_j^2(\tau)}{1 + \lambda \sum\limits_{i=0}^{j-1} \gamma_i^2 Q_i^2(\tau)} = \frac{1}{\gamma_j^2} \frac{1 + \lambda \sum\limits_{i=0}^{j} \gamma_i^2 Q_i^2(\tau)}{1 + \lambda \sum\limits_{i=0}^{j-1} \gamma_i^2 Q_i^2(\tau)}, j < N$$

$$\tilde{L}(\tilde{Q}_{N}^{2}(x)) = \frac{\lambda Q_{N}^{2}(\tau)}{1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)}$$
(3.47)

Отсюда

$$\tilde{\beta}_{N} = \frac{\tilde{L}(\tilde{Q}_{N}^{2})}{\tilde{L}(\tilde{Q}_{N-1}^{2})} = \frac{\lambda Q_{N}^{2}(\tau)}{1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)} \gamma_{N-1}^{2} \frac{1 + \lambda \sum_{i=0}^{N-2} \gamma_{i}^{2} Q_{i}^{2}(\tau)}{1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)} \\ = \frac{\lambda \gamma_{N-1}^{2} Q_{N}^{2}(\tau) \left[1 + \sum_{i=0}^{N-2} \gamma_{i}^{2} Q_{i}^{2}(\tau)\right]}{\left[1 + \lambda \sum_{i=0}^{N-1} \gamma_{i}^{2} Q_{i}^{2}(\tau)\right]^{2}}$$

Используя (3.40) можно последовательно добавлять несколько точек масс.

3.6.1. Чувствительность отображения $H_n, (p=2)$ npu добавлении массы

Лемма 3.

Введем следуещее обозначние $\frac{\partial L}{\partial t}=W,$ где t некоторый параметр от которого зависит функционал L, тогда

$$\frac{\partial \alpha_j}{\partial t} = \gamma_j^2 W(Q_j Q_{j+1}) - \gamma_{j-1}^2 W(Q_{j-1} Q_j)$$
(3.48)

$$\frac{\partial \beta_j}{\partial t} = \beta_j (\gamma_j^2 W(Q_j^2) - \gamma_{j-1}^2 W(Q_{j-1}^2))$$
 (3.49)

Доказательство:

Из процедуры Стилтьеса:

$$\alpha_j = \frac{L(xQ_j^2(x))}{L(Q_j^2)}, \ \beta_j = \frac{L(Q_j^2(x))}{L(Q_{j-1}^2)} = \frac{\gamma_{j-1}^2}{\gamma_j^2}$$

Так старший коэффициентов многочлена Q_j равен единице уместно следуещее разложение в ряд Фурье (или по базису (Q_0, \ldots, Q_{j-1})):

$$Q_j(x) = \sum_{i=0}^{j-1} c_{j,i} Q_i(x)$$
$$c_{j,i} = L\left(\frac{\partial Q_j}{\partial t} Q_i\right) \frac{1}{L(Q_i^2)} = \gamma_i^2 L\left(\frac{\partial Q_j}{\partial t} Q_i\right)$$

С другой стороны

$$\frac{\partial}{\partial t}L(Q_jQ_i) = L\left(\frac{\partial Q_j}{\partial t}Q_i\right) + L\left(Q_j\frac{\partial Q_i}{\partial t}\right) + W(Q_jQ_i) = 0, i < j \quad \textbf{(3.50)}$$

где $L\left(Q_j\frac{\partial Q_i}{\partial t}\right)$ также равно нулю согласно условию ортогональности.

В результате:

$$c_{j,i} = -\gamma_j^2 W(Q_j Q_i)$$

B umore

$$\frac{\partial Q_j}{\partial t} = -\sum_{i=0}^{j-1} \gamma_i^2 W(Q_j Q_i) Q_i \tag{3.51}$$

По аналогии с (3.50) получаем:

$$\frac{\partial \gamma_j^{-2}}{\partial t} = \frac{\partial L(Q_j^2)}{\partial t} = 2L\left(Q_j \frac{\partial Q_j}{\partial t}\right) + W(Q_j^2) = W(Q_j^2) \tag{3.52}$$

Oткуда следует формула для частной производной eta.

Из леммы 1 коэффициент при x^{n-1} многочлена Q_n равен $-\sum\limits_{i=0}^{j-1}\alpha_i$, по аналогии коэффициент при x^{n-1} многочлена $\frac{\partial Q_n}{\partial t}$ из (3.51):

$$-\frac{\partial}{\partial t} \sum_{i=0}^{j-1} \alpha_i = -\gamma_{j-1}^2 W(Q_j Q_{j-1})$$
 (3.53)

 $Om\kappa y\partial a$

$$\frac{\partial \alpha_j}{\partial t} = \frac{\partial}{\partial t} \sum_{i=0}^{j} \alpha_i - \frac{\partial}{\partial t} \sum_{i=0}^{j-1} \alpha_i = \gamma_j^2 W(Q_j Q_{j+1}) - \gamma_{j-1}^2 W(Q_{j-1} Q_j)$$

Лемма 4

Пусть μ - некоторая мера, не зависящая от λ и τ , $\tilde{\mu}=\mu+\lambda\delta_{\tau}$ - новая мера с добавленной точкой массы, тогда

$$\frac{\partial \tilde{\alpha}_{j}}{\partial \lambda} = \tilde{\gamma}_{j}^{2} \tilde{Q}_{j}(\tau) \tilde{Q}_{j+1}(\tau) - \tilde{\gamma}_{j-1}^{2} \tilde{Q}_{j-1}(\tau) \tilde{Q}_{j}(\tau)$$
(3.54)

$$\frac{\partial \tilde{\beta}_{j}}{\partial \lambda} = \tilde{\beta}_{j} \left[\tilde{\gamma}_{j}^{2} \tilde{Q}_{j}^{2}(\tau) - \tilde{\gamma}_{j-1}^{2} \tilde{Q}_{j-1}^{2}(\tau) \right]$$
(3.55)

$$\frac{\partial \tilde{\alpha}_{j}}{\partial \tau} = \lambda \tilde{\gamma}_{j}^{2} \left[\tilde{Q}_{j}^{'}(\tau) \tilde{Q}_{j+1}(\tau) + \tilde{Q}_{j}(\tau) \tilde{Q}_{j+1}^{'}(\tau) \right] - \lambda \tilde{\gamma}_{j-1}^{2} \left[\tilde{Q}_{j-1}^{'}(\tau) \tilde{Q}_{j}(\tau) + \tilde{Q}_{j-1}(\tau) \tilde{Q}_{j}^{'}(\tau) \right]$$

$$(3.56)$$

$$\frac{\partial \hat{\beta}_{j}}{\partial \tau} = 2\lambda \tilde{\beta}_{j} \left[\tilde{\gamma}_{j}^{2} \tilde{Q}_{j}^{\prime}(\tau) \tilde{Q}_{j}(\tau) - \tilde{\gamma}_{j-1}^{2} \tilde{Q}_{j-1}^{\prime}(\tau) \tilde{Q}_{j-1}(\tau) \right]$$
(3.57)

Jume pamy pa

- [1] A.Aptekarev V.Kaliaguine J.Van Iseghem The genetic sum's representation for the moments of a system of Stieltjes functions and its application, Constructive Approximation, v.16 (2000), pp.487-524.
- [2] A.A. Aptekarev, V.A. Kaliaguine, Complex rational approximation and difference operators Rendiconti del circolo matematico di palermo, serie II, suppl. 52(1998), pp. 3-21
- [3] V.A. Kaliaguine, Hermite-Pade approximants and spectral analysis of noonsymmetric operators Russian Acad. Sci. Sb. Math, vol. 82(1995), No. 1
- [4] V.A. Kaliaguine, On operators associated with Angelesco systems, East journal on approximations, vol. 1(1995), No. 2
- [5] V.A. Kaliaguine, The operator moment problem, vector continued fractions and explicit form of the Favard theorem for vector orthogonal polynomials J. Comp. Appl. Math. 65(1995) 181-193
- [6] V. Kaliaguine, A Ronveaux, On a system of "classical" polynomials of simultaneous orthogonality J. Comp. Appl. Math. 67(1996) 207-217
- [7] Clenshaw, C.W., A note on summation of Chebyshev series, Math. Tables Aids Comput. 9, pp 118-120
- [8] H.-J. Fischer, On generating orthogonal polynomials for discrete measures
- [9] H.-J. Fischer, On the condition of orthogonal polynomials via modifie moments, Journal of Analysis and its Applications, vol. 15(1996), No. 1,1-18
- [10] B. Beckermann, E. Bourreau How to choose modified moments, AMS(MOS): 65D20, 33C45

- [11] Walter Gautschi, Some applications and numerical methods for orthogonal polynomials, Numerical analysis and mathematical modelling banach center publications, vol. 24(1990)
- [12] Walter Gautschi, Construction of Gauss-Christoffel quadrature formulas,
- [13] Walter Gautschi, Orthogonal polynomials constructive theory and applications, Journal of Computational and Applied Mathematics, vol.12-13(1985) 61-76, North Holland
- [14] Walter Gautschi, Computational aspects of orthogonal polynomials, Orthogonal Polynomials, 1990, pp. 181-216
- [15] Walter Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., vol. 3, No 3, September (1982)
- [16] А.А. Гончар, О сходимости аппроксимаций Паде для некоторых классов мероморфных функций математический сборник Т. 97(139), / 4(8), 1975
- [17] Paul Nevai, Orthogonal polynomials, Mem Amer. Math Soc. 18,No 213
- [18] Е.М. Никишин, В.Н. Сорокин, Рациональные аппроксимации и ортогональность М.:Наука, 1988
- [19] V.A. Yurko, On higher-order difference operators J. of Diff. Equations and Appl. 1(1995) 347-352
- [20] P.Henrichi Appied and Computational complex Analysis, John Wiley, 1977, v.2.
- [21] J. Van Iseghem: Vector orthogonal relations. Vector Q.D algorithm. J. of Comp. Appl. Math. 19(1987),141-150.
- [22] V.N.Sorokin, J.Van Iseghem: Algebraic aspects of matrix orthogonality for vectors polynomials. J. of Appox. Theory 90(1997),97-116.
- [23] Stan Cabay, George Labahn, A super fast algorithm for multidimensional Pade systems, Numerical Algorithms, vol. 2(1992), 201-224
- [24] Giorgio Mantica, On computing Jacobi matrices assoiated with recurrent and Mobius iterated function systems,
- [25] J. Van Izeghem, Vector Pade Approximants, proceeding of 11th IMACS Congress 1985 (North Holland, Amsterdam)

- [26] J. Van Izeghem, Vector orthogonal relations. Vector QD-algorithm J. Comp. Appl. Math. 19(1987) 141-150
- [27] J. Van Izeghem, Convergence of the vector QD-algorithm. Zeroes of vector orthogonal polynomials J. Comp. Appl. Math. 25(1989) 33-46
- [28] Дж. Бейкер, П. Грейвс-Моррис, Аппроксимации Паде M.:Мир, 1986.