Math 135 Homework 2

Alexandre Lipson

January 16, 2024

11.7.69

Let f > 0 be continuous and decreasing on $[1, \infty)$.

We will show that,

$$\int_{1}^{\infty} f(x) dx \text{ converges iff } a_{n} = \int_{1}^{n} f(x) dx \text{ converges.}$$

(\Longrightarrow) We define $\int_1^\infty f(x)\,dx$ converging to L as,

$$\lim_{n \to \infty} \int_{1}^{n} f(x) \, dx = L.$$

We also see that,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \int_1^n f(x) \, dx = L.$$

So,

$$\lim_{n\to\infty} a_n = L.$$

Therefore, the sequence (a_n) converges to L when $\int_1^\infty f(x) dx$ converges to L.

(\Leftarrow) We follow the same definitions in the other direction to arrive at the fact that the converge of (a_n) implies the convergence of $\int_1^\infty f(x) dx$.

12.2.31

Let $\sum a_k$ converge.

Define the remainder as $R_n = \sum_{k=n+1}^{\infty} a_k$.

Let S_n be the n^{th} partial sum of $\sum a_k$.

Proof. We will prove that, as $n \to \infty$, $R_n \to 0$.

We begin by splitting the series into the two parts of the partial sum and the remainder at the index n.

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{n} a_k + \sum_{k=n+1}^{\infty} a_k = S_n + R_n.$$

$$R_n = \sum_{k=0}^{\infty} a_k - \sum_{k=0}^n a_k.$$

We then consider the behavior of R_n as n tends toward infinity.

$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[\sum_{k=0}^{\infty} a_k - \sum_{k=0}^{n} a_k \right]$$
$$= \sum_{k=0}^{\infty} a_k - \lim_{n \to \infty} \sum_{k=0}^{n} a_k$$
$$= \sum_{k=0}^{\infty} a_k - \sum_{k=0}^{\infty} a_k$$
$$= 0.$$

So, the remainder of a convergent series tends toward zero.

11. Review. 28

Suppose that (a_n) converges to L.

Define $m_n = \frac{1}{n} \sum_{k=1}^n a_k$.

Prove that m_n converges to L.

Proof. Since (a_n) converges to L, then, for all $\epsilon > 0$, there exists a K such that for all $k \geq K$,

$$|a_k - L| < \epsilon$$
.

So,

$$L - \epsilon < a_k < L + \epsilon$$

$$\sum_{k=1}^{n} L - \epsilon < \sum_{k=1}^{n} a_k < \sum_{k=1}^{n} L + \epsilon$$

$$\frac{1}{n} \sum_{k=1}^{n} L - \epsilon < \frac{1}{n} \sum_{k=1}^{n} a_k < \frac{1}{n} \sum_{k=1}^{n} L + \epsilon$$

$$\frac{1}{n} \cdot n(L - \epsilon) < \frac{1}{n} \sum_{k=1}^{n} a_k < \frac{1}{n} \cdot n(L + \epsilon)$$

$$L - \epsilon < \frac{1}{n} \sum_{k=1}^{n} a_k < L + \epsilon.$$

Thus,

$$\left| \frac{1}{n} \sum_{k=1}^{n} a_k - L \right| < \epsilon$$
$$|m_n - L| < \epsilon.$$

So, for all k sufficiently large, m_n is ϵ -close to L.

12.2.42

Prove that $\sum_{k=1}^{\infty} (a_{k+1} - a_k)$ converges iff a_n converges.

Proof. (\Longrightarrow) Let $\sum (a_{k+1} - a_k)$ converge to L.

So,

$$\lim_{n \to \infty} \sum_{k=1}^{n} (a_{k+1} - a_k) = L.$$

Then,

$$L = \lim_{n \to \infty} \left[\sum_{k=1}^{n} a_{k+1} - \sum_{k=1}^{n} a_k \right]$$

$$= \lim_{n \to \infty} \left[\sum_{k=2}^{n+1} a_k - \sum_{k=1}^{n} a_k \right]$$

$$= \lim_{n \to \infty} \left[a_{n+1} + \sum_{k=2}^{n} a_k - \left(\sum_{k=2}^{n} a_k + a_1 \right) \right]$$

$$= \lim_{n \to \infty} [a_{n+1} - a_1]$$

$$L + a_1 = \lim_{n \to \infty} a_{n+1}$$

$$L + a_1 = \lim_{n \to \infty} a_n.$$

So, a_n converges.

(\iff) Let (a_n) converge to L; Since $a_n \to L$, then $a_{n+1} \to L$ as well.

We compute the sum,

$$\sum_{k=1}^{\infty} (a_{k+1} - a_k) = \sum_{k=1}^{\infty} a_{k+1} - \sum_{k=1}^{\infty} a_k$$

$$= \lim_{n \to \infty} \left[\sum_{k=1}^{n} a_{k+1} - \sum_{k=1}^{n} a_k \right]$$

$$= \lim_{n \to \infty} \left[\sum_{k=2}^{n+1} a_k - \sum_{k=1}^{n} a_k \right]$$

$$= \lim_{n \to \infty} \left[a_{n+1} \sum_{k=2}^{n} a_k - \left(\sum_{k=2}^{n} a_k + a_1 \right) \right]$$

$$= \lim_{n \to \infty} [a_{n+1} - a_1]$$

$$= \lim_{n \to \infty} a_{n+1} - a_1$$

$$= L - a_1.$$

So, the sum also converges.

12.3.48

Let the series $\sum a_k$ and $\sum b_k$ be defined such that, for all $k, a_k, b_k > 0$.

Suppose that $\frac{a_k}{b_k} \to \infty$ as $k \to \infty$.

So, $a_k > b_k$ for all sufficiently large k.

- (a) Since $\sum b_k$ diverges and $a_k > b_k$ for all sufficiently large k, then, by the Basic Comparison Theorem, $\sum a_k$ diverges as well.
- (b) Since $\sum a_k$ converges and $a_k > b_k$ for all sufficiently large k, then, by the Basic Comparison Theorem, $\sum b_k$ must converge as well.
- (c) Let $a_k = \frac{1}{k}$, the harmonic series. This series diverges.

First, Let $b_k = \frac{1}{k^2}$, the *p*-series with p = 2 > 1, which converges.

Then,
$$\frac{a_k}{b_k} = \frac{1/k}{1/k^2} = k$$
.

So,
$$\lim_{k \to \infty} \frac{a_k}{b_k} = \lim_{k \to \infty} k = \infty$$
.

Next, let $a_k = \frac{1}{\sqrt{k}}$, the p-series with $p = \frac{1}{2} < 1$, which diverges, and b_k be the harmonic series.

Then, $\frac{a_k}{b_k} = \frac{1/\sqrt{k}}{1/k} = \sqrt{k}$, which tends to infinity as k tends to infinity.

So, if $\sum a_k$ diverges and $\frac{a_k}{b_k} \to \infty$ as $k \to \infty$, then b_k can either converge or diverge.

(d) First, note that a_k can diverge when b_k converges as in the first example in (c).

So, we will consider an a_k and b_k which converge. We will choose the 2 and 3 p-series respectively,

$$a_k = \frac{1}{k^2}, \quad b_k = \frac{1}{k^3}.$$

Then,

$$\frac{a_k}{b_k} = \frac{1/k^2}{1/k^3} = k,$$

which we have already seen tends toward infinity as k tends toward infinity.

Thus, a_k can either diverge or converge when b_k converges.

Problem Six

(a) We will show that $\int_2^\infty \frac{dx}{x(\ln x)^p}$ converges iff p > 1.

We make the substitution $u = \ln x$, which produces, $\int_{\ln 2}^{\infty} \frac{du}{u^p}$.

We note that this converges where p > 1 by the p-series convergence theorem (11.7.1).

(b) By the integral test theorem (12.3.2), $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$ converges when $\int_2^{\infty} \frac{dx}{x(\ln x)^p}$ converges.

With p=2, the series $\sum_{k=2}^{\infty} \frac{1}{k \ln^2 k}$ will converge by part (a).

We note that a series can be represented as the sum of its n^{th} partial sum and the remainder at the n^{th} index.

So, we will write.

$$\sum_{k=2}^{\infty} \frac{1}{k \ln^2 k} = \sum_{k=2}^{n} \frac{1}{k \ln^2 k} + \sum_{k=n+1}^{\infty} \frac{1}{k \ln^2 k}.$$

We note that $\frac{1}{x \ln^2 x}$ is a positive decreasing function, so the series, which models right-hand Reimann sums given by the indexing n+1 of the regular partition of width one, will always be less than or equal to the area of the integral.

Thus,

$$R_n = \sum_{n+1}^{\infty} \frac{1}{k \ln^2 x} \le \int_n^{\infty} \frac{dx}{x \ln^2 x}.$$

We desire that the maximum error R_n should be no greater than $0.05 = \frac{1}{20}$; we will find an index n that serves this purpose.

$$R_n \le \int_n^\infty \frac{dx}{x \ln^2 x} \le \frac{1}{20}.$$

We evaluate the integral, considering that the multiplicative inverse of the natural log tends toward zero, to see that,

$$\frac{1}{\ln n} \le \frac{1}{20}$$
$$\ln n \ge 20$$
$$n \ge e^{20}.$$

We verify using a calculator that with a series index of e^{20} , the partial sum will be within 0.05 of 2.1,

$$\sum_{k=2}^{e^{20}} \frac{1}{k \ln^2 k} \approx 0.06.$$

(c)

We demonstrated the following chain of inequalities in class as a result of the integral test ibid,

$$\int_{m}^{n} f(x) dx \le \sum_{k=m}^{n} f(k) \le f(m) + \int_{m}^{n} f(x) dx.$$

So, with $f(x) = \frac{1}{x \ln x}$, m = 2, and $n = 10^{1000}$, the above becomes,

$$\int_{2}^{10^{1000}} \frac{dx}{x \ln x} \le \sum_{k=2}^{10^{1000}} \frac{1}{k \ln k} \le \frac{1}{2 \ln 2} + \int_{2}^{10^{1000}} \frac{dx}{x \ln x}.$$

We then compute the integral $\int \frac{dx}{x \ln x}$ with the substitution $u = \ln x$.

We see that the indefinite integral equates to $\ln(\ln x)$. We compute via calculator the definite integral on the interval $[2, 10^{1000}]$, $\ln(\ln 10^{1000}) - \ln(\ln 2) \approx 8.1$.

Additionally, we calculate that $\frac{1}{2 \ln 2} \approx 0.72$.

Thus,

$$8.11 \le \sum_{k=2}^{10^{1000}} \frac{1}{k \ln k} \le 8.83.$$