INTEGRACION DE SISTEMAS CMOS – ING MARIANO MOREL 1ERA PARTE – TP1

1. Identificación de necesidades

En esta etapa, debemos analizar los requerimientos de los diferentes Stakeholders involucrados en el proyecto. Vamos a desglosarlos en función de su impacto en el diseño y desarrollo del IC.

Stakeholders y sus necesidades

Stakeholder	Rol	Necesidades / Requerimientos		
Cliente	Empresa que integrará el sensor	Medición de hasta 500 Gauss		
Automotriz	en su producto	con error ≤ 1%. Cumplimiento		
		de normas automotrices.		
Ingenieros de	Desarrolladores del Circuito	Definición clara de		
Diseño	Integrado	especificaciones. Facilidad para		
		validar el diseño mediante		
		simulaciones.		
Fabricante de	Encargado de la producción del	Proceso de fabricación		
Semiconductores	IC	compatible con la tecnología		
		estándar. Consumo de energía		
		optimizado.		
Reguladores de la	Organismos que establecen	Cumplimiento de EMC (IEC		
Industria	normas	62132-4, IEC 61967-4) y		
		protección ESD (HBM 2 kV).		
Usuarios Finales	Personas que utilizarán el	Funcionamiento estable en		
	vehículo con el sensor	temperatura automotriz. Alta		
		confiabilidad y durabilidad.		
Integradores del	Equipo que instalará el sensor	Interfaz clara y sencilla para		
Sistema	en el producto final	integración con otros		
		componentes del sistema.		

2. Captura y organización de requerimientos

Ahora organizamos los requerimientos en una estructura jerárquica y desarrollamos una Matriz de Trazabilidad.

Organización jerárquica de los requerimientos

1. <u>Requerimientos funcionales (qué debe hacer el sensor)</u>

Medir campos magnéticos hasta 500 Gauss.

Error total menor al 1% del rango de medición.

Compensación de offset en la señal de salida.

2. Requerimientos no funcionales (condiciones que debe cumplir)

Alimentación de 3V, minimizando el consumo de energía.

Cumplimiento de normativas IEC 62132-4 e IEC 61967-4.

Robustez contra descargas electrostáticas (2 kV HBM).

3. Requerimientos de diseño y manufactura

Implementación de Current Spinning para minimizar errores.

Circuito de polarización y acondicionamiento de señal.

Integración con otros bloques funcionales en futuros TPs.

Matriz de Trazabilidad

ID	Requerimiento	Fuente	Verificación
RQ-01	Medición de hasta	Cliente	Simulación del transductor Hall
	500 Gauss		con diferentes campos
			magnéticos.
RQ-02	Error total ≤ 1% del	Cliente	Análisis de sensibilidad ante
	rango completo		temperatura y proceso.
RQ-03	3V de alimentación	Especificaciones del	Simulación de consumo de
		ТР	energía.
RQ-04	Implementación de	Buenas prácticas en	Simulación de reducción de offset
	Current Spinning	sensores Hall	en la señal Hall.
	para compensación		
	de offset		
RQ-05	Robustez ante 2 kV	Normativas	Simulación de descarga
	HBM (protección	automotrices	electrostática en los pines del IC.
	ESD)		
RQ-06	Compatibilidad	Normativas	Simulación de emisiones e

	EMC (IEC 62132-4,	automotrices	inmunidad electromagnética.			
	IEC 61967-4)					
RQ-07	Inmunidad	Normativas	Simulación de inmunidad en			
	conducida (IEC	automotrices	pines de alimentación.			
	62132-4) en					
	alimentación (24					
	dBm)					
RQ-08	Inmunidad	Normativas	Simulación de inmunidad en			
	conducida (IEC	automotrices	pines de entrada/salida.			
	62132-4) en I/O (18					
	dBm)					
RQ-09	Emisiones	Normativas	Simulación de emisiones en pines			
	conducidas (IEC	automotrices	de alimentación.			
	61967-4) en					
	alimentación (12-M					
	Ω)					
RQ-10	Emisiones	Normativas	Simulación de emisiones en pines			
	conducidas (IEC	automotrices	de entrada/salida.			
	61967-4) en I/O					
	(10-Κ Ω)					
RQ-11	Optimización del	Cliente / Diseño del	Simulación de consumo en estado			
	consumo de	IC	activo e inactivo.			
	energía					
RQ-12	Estabilidad del	Cliente	Simulación de variaciones de			
	offset y la		temperatura y proceso (Monte			
	sensibilidad ante		Carlo, corners).			
	variaciones de					
	temperatura y					
	proceso					
RQ-13	Amplificación de la	Diseño del IC	Simulación del amplificador de			
	señal Hall con bajo		instrumentación.			

	ruido		
RQ-14	Filtrado de ruido en	Diseño del IC	Simulación del filtro pasa bajos.
	la señal de salida		
RQ-15	Interfaz de salida	Cliente	Validación del formato de salida
	analógica/digital		según requerimientos.
RQ-16	Integración con	Trabajo práctico	Revisión del esquema de
	otros bloques	futuro	integración.
	funcionales		

3. Modelado de la arquitectura del IC

Ahora que identificamos y organizamos los requerimientos, pasamos a definir la arquitectura del Circuito Integrado (IC). Este modelo servirá para analizar y evaluar su funcionamiento antes de la implementación.

Diagrama de bloques del sensor magnético

El sensor basado en efecto Hall debe contar con varias etapas para garantizar precisión y estabilidad. El diseño puede dividirse en los siguientes bloques funcionales:

1. Fuente de alimentación y polarización del transductor Hall

Suministra la corriente necesaria para la operación estable del sensor.

Optimiza el consumo de energía.

2. Transductor Hall

Convierte el campo magnético en una señal de voltaje diferencial.

3. Circuito de compensación de offset (Current Spinning)

Reduce errores debidos a variaciones de temperatura y proceso.

4. Acondicionamiento de señal (Amplificación y filtrado)

Amplifica la señal Hall y filtra ruido.

5. Conversión a señal digital (opcional)

Si se requiere salida digital, se incorpora un ADC.

6. **Interfaz de salida**

Entrega la señal procesada al sistema del vehículo.

En esta etapa es clave considerar las características eléctricas, que se detallan a continuación:

Características Eléctricas a 25°C, Vcc = 3.8V a 24V						
Características	Símbolo	Condiciones de prueba	Mín.	Típ.	Máx.	Unidad
Voltaje de alimentación	Vcc	En operación	3.8	_	24	V
Voltaje de saturación de salida	Vout(sat)	lout = 20 mA	_	150	400	mV
Corriente de fuga de salida	Ioff	Vout = 24 V	_	<1.0	10	μΑ
Corriente de alimentación	Icc	Vcc = 4.5V	_	4.7	8.0	mA
Tiempo de subida de salida	tr	Vcc = 12 V, RL = 820Ω, CL = 20pF	_	0.04	2.0	μs
Tiempo de bajada de salida	tf	Vcc = 12 V, RL = 820Ω, CL = 20pF	_	0.18	2.0	μs
Corriente de salida (absorber)	lout	Vout = 0.4V	_	-	25	mA
Punto de operación del sensor	Вор	Campo magnético aplicado	-	87	500 (+1% max.)	G
Rango de temperatura operativa	Тор	Funcionamiento confiable	-40	-	85	°C

El dispositivo incluye un regulador de voltaje, un generador de voltaje Hall cuadrático, un circuito de compensación de temperatura, un amplificador de señal, un disparador Schmitt y una salida de colector abierto en un solo chip de silicio. La salida se puede usar directamente con circuitos lógicos bipolares o MOS. Se muestra a continuación un diagrama en bloques:

Un bosquejo de la fuente regulada podría ser:

