Project Notes

Replicating results 1

➤ Here are my plots for replicating what we did in first term:

- \blacktriangleright Like Oliver, the main difference seems to be with $b \to s\gamma$ where it fits higher than before the combined fit yields $m_{H^+} \gtrsim 970\,\text{GeV}$ at 2σ compared to $m_{H^+} \gtrsim \text{GeV}$ in my previous fits \blacktriangleright Note: all the plots here are showing contours for $1,2\sigma$

- ▶ I have modified the SM value in flavio for $b \to s\gamma$ to fit the current result of $(3.40 \pm 0.17)e^{-4}$ but still got this higher result
- ➤ It seems like it could be down to how flavio fits, but we would need to confirm this if we want to leave it as is
- ▶ I have also included the fit for B mixing from higher-order expressions in Crivellin 1903.10440 to show the difference the gap we find around $m_{H^+} \sim m_t(m_t)$ is due to divergences in the loop functions for this value
- \blacktriangleright Adding in $B_{s,d} \to \mu\mu$ and $\mathcal{R}(D^{(*)})$ yields similar results to what I had before

 \triangleright $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ are fitting simultaneously it seems right now, which wasn't what we had before, so looking at individual plots:

- ➤ It appears that both of them do fit individually which is not what we had before I'm not quite sure why this is the case currently
- For $B_{s,d} \to \mu\mu$, the left diagram is approximating $m_{H^+} \sim m_{H^0}$ which is the rough limit James has from the obliques, and the right diagram is fixing $m_{H^0} = 1500 \,\text{GeV}$
- ▶ Using the convention from 1903.10440 for the trilinear couplings means that instead of using $M = m_{12}/(\sin\beta\cos\beta)$ as I did previously, you use λ_3 from the 2HDM potential
- ➤ The two trilinear couplings we have to consider are

$$\lambda_{h^0H^+H^-} = v\sin(\beta - \alpha)\lambda_3, \qquad \lambda_{H^0H^+H^-} = v\cos(\beta - \alpha)\lambda_3$$

► In the alignment limit which I have been using so far for these, $\sin(\beta - \alpha) = 1$, so we only have to consider $\lambda_{h^0H^+H^-}$

- ➤ The contributions from the trilinear coupling seems to be minimal anyway, varying λ_3 from $0.01 \rightarrow 2$ doesn't change the results to any noticeable level, so for now I have set $\lambda_3 = 0.1$, but it's probably better to fit it properly at some point
- \blacktriangleright The coupling only contributes to C_S and C_P operators so far which only impact $B \to \mu\mu$
- ➤ Checking the combined fit for all these observables to compare to my overall project work (bar the inclusion of James' obliques):

- ► Left is approximating $m_{H^+} \sim m_{H^0}$ as above for $B \to \mu\mu$ (can't compare to project directly as didn't use this limit); right is fixing $m_{H^0} = 1500 \,\text{GeV}$
- ➤ For the right, we have $m_{H^+} \gtrsim 970\,\mathrm{GeV}$ and $\tan\beta \lesssim 7$; in my project for this, I had $m_{H^+} \gtrsim 500\,\mathrm{GeV}$ and $\tan\beta \lesssim 21$

2 New Observables and To Do

- ➤ Also started looking at the tree-level semileptonic decays
- For semileptonics and leptonics, I think the WC contributions work out the same, e.g. for $b \to u\mu\nu_{\mu}$ (using the subscript convention from flavio's WET basis)

$$\mathcal{O}_{SR} = -\frac{4G_F}{\sqrt{2}} V_{ub}(\bar{u}_L b_R)(\bar{\mu}_R \nu_{\mu L}) \to C_{SR} = \frac{m_u}{m_{H^+}^2}$$

$$\mathcal{O}_{SL} = -\frac{4G_F}{\sqrt{2}} V_{ub}(\bar{u}_R b_L)(\bar{\mu}_L \nu_{\mu R}) \to C_{SL} = \frac{m_b \tan^2 \beta}{m_{H^+}^2}$$

- For the tree-level leptonics, this transforms to r_H from 0907.5135, and looks to give the right results for semileptonics (including being used for the $\mathcal{R}(D)$ s above)
- ➤ So providing the SM calculations for the semileptonics are fine, it's quite simple to fit these too:

- ➤ The next thing is to look at R_K and $R_{K^{*0}}$
- From 1704.05340, the operators needed for the R_K s are $C_7, C_7, C_9, C_9, C_{10}, C_{10}$ for both $bs\mu\mu$ and bsee
- ► All these can be got from 1903.10440 already have the formulae for $C_{10}^{(\prime)}$ s from $B \to \mu\mu$ calculations
- ► For both $m_{H^+} \sim m_{H^0}$ and $m_{H^0} = 1500 \,\text{GeV}$ as I looked at $B \to \mu\mu$, we get no constraint in our parameter space from R_K and $R_{K^{*0}}$ (although I still need to check through all the formulae again for mistakes):

- \triangleright I want to check in literature as well for the R_K s in 2HDM Type II to see if there's any fits that include these to see what results have been found historically to give some at least a rough idea of what should be expected
- ▶ I will also look at fitting $b \to s\gamma$ using the expressions for C_7, C_8 in 1903.10440 since C_7 is in R_{KS} anyway
- \blacktriangleright I need to do the fits including $B \to \mu\mu$ in the wrong sign limit too and compare to my previous results