Foundations of Computing Science (CS60005)

TUTORIAL 1

1. Find the error in the 'proof' of the following 'theorem'.

Theorem: Let R be a relation on a set A that is symmetric and transitive. Then R is reflexive.

Proof: Let $a \in A$. Take an element $b \in A$ such that $(a,b) \in R$. Because R is symmetric, we also have $(b,a) \in R$. Now using the transitive property, we can conclude that $(a,a) \in R$ because $(a,b) \in R$ and $(b,a) \in R$.

- 2. Let R be a symmetric relation. Show that R^n is symmetric for all positive integers n.
- 3. How many reflexive, symmetric relations can be there in a set of n elements?
- 4. Find the maximal and minimal elements of the poset (2, 4, 5, 10, 12, 20, 25, |). Draw the Hasse diagram.
- 5. Construct the Hasse diagram for the divisors of 84.
- 6. Is the set A = [0, 2) of real numbers with the operation \leq a partial order? Is it a lattice?
- 7. Let R be a relation on the set of ordered pairs of positive integers such that $((p,q),(r,s)) \in \mathcal{R}$ if and only if p-s=q-r. Which one of the following is true about R? (Give reason for your answer)
 - (a) Symmetric and Reflexive
 - (b) Reflexive but not symmetric
 - (c) Not Reflexive but Symmetric
 - (d) Neither Reflexive nor Symmetric