Exploratory Data Analysis using ggplot2

Varis A.

Content

- 1. Loading libraries
- 2. Analysis I. Carbon Dioxide Uptake in Grass Plants
- 3. Analysis II. Wine quality based on physicochemical tests
- 4. Analysis III. Netflix Daily Top 10
- 5. Analysis IV. Starbucks Locations

Loading libraries

```
library(tidyverse)
library(patchwork)
```

Analysis I. Carbon Dioxide Uptake in Grass Plants

 $\mathbf{Q}:$ Are plants from different origins have the same cold tolerance?

Prepare data

• Change all column names to lowercase for easier operation

```
co2 <-tibble(CO2) %>%
  mutate(plant=Plant, type=Type, treatment=Treatment) %>%
  select(plant, type, treatment, conc, uptake)
```

Plot graph using ggplot()

Source: CO2 package dataset

Cold tolerance of plants from different origins

This graph shows that plants from Quebec have more resistant to cold temperature than plants from Mississippi

Analysis II. Wine quality based on physicochemical tests

Q: How each factors affect the quality of wine?

Prepare data

• Gather factor data into one columns for easier plotting

```
wine_red <- winequality_red %>%
  gather(c(`citric acid`,chlorides,pH,sulphates,alcohol),key='factor',value='value') %>%
  select(factor,value,quality)
```

• Find the average value of each factor on each quality score to see the trend.

```
sumwine_red <- winequality_red %>%
  group_by(quality) %>%
  summarise(alcohol=mean(alcohol),chlorides=mean(chlorides),'citric acid'=mean(`citric acid`),pH=mean(pigather(alcohol:sulphates,key='factor',value='avg_value')
```

Plot the graphs

```
box_red <- wine_red %>%
    ggplot(aes(quality,value,group=quality))+
    geom_boxplot(color='black',fill='steelblue',alpha=0.7)+
    facet_wrap(-factor,scales='free',nrow=1)+
    theme_minimal()+
    labs(title='Boxplot of factors and quality of red wine',x='',y='Value')

line_red <- sumwine_red %>%
    ggplot(aes(quality,avg_value))+
    geom_point(color='darkblue')+
    geom_smooth(color='steelblue')+
    facet_wrap(~factor,scales = 'free',nrow=1)+
    theme_minimal()+
    labs(title='Average value of each factors and quality of red wine',x='Quality',y='Average Value')

(box_red/line_red)+
    labs(caption="Source: http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/")
```

Boxplot of factors and quality of red wine

Average value of each factors and quality of red wine

Source: http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Now, let's see white wine data

```
wine_white <- winequality_white %% gather(c(`citric acid`,chlorides,pH,sulphates,alcohol),key='factor'
  select(factor, value, quality)
sumwine_white <- winequality_white %>%
  filter(quality<9) %>%
  group_by(quality) %>%
  summarise(alcohol=mean(alcohol), chlorides=mean(chlorides), 'citric acid'=mean(`citric acid'), pH=mean(p)
  gather(alcohol:sulphates,key=factor,value=avg_value)
box_white<- wine_white %>%
  ggplot(aes(quality,value,group=quality))+
  geom_boxplot(color='black',fill='steelblue',alpha=0.7)+
  facet_wrap(~factor,scales='free',nrow=1)+
  theme_minimal()+
  labs(title='Boxplot of factors and quality of white wine',x='',y='Value')
line_white <- sumwine_white %>%
  ggplot(aes(quality,avg_value))+
  geom_point(color='darkblue')+
  geom_smooth(color='steelblue')+
  facet_wrap(~factor,scales = 'free',nrow=1)+
  theme_minimal()+
  labs(title='Average value of each factors and quality of white wine',x='Quality',y='Average Value')
(box_white/line_white)+
  labs(x='Quality',caption='Source: http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quali
```

Boxplot of factors and quality of white wine

Average value of each factors and quality of white wine

Source: http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Compare between red and white wine

Average value of each factors and quality of red and white wine

Analysis III. Netflix Daily Top 10

Q: What are the top 10 long lasting Netflix original content in Netflix

Prepare data

```
arrange(days_in_top_10) %>%
mutate(title=factor(title, levels=title))
```

Plot the graph

Top 10 long lasting content in Netflix from 2020 to March 202

Source:https://www.kaggle.com/datasets/prasertk/netflix-daily-top-10-in-us

Analysis IV. Starbucks Locations

Q : Which country has the most Starbucks stores

Prepare data

Where are the stores?


```
directory %>%
  count(Country) %>%
  arrange(desc(n)) %>%
  head(10) %>%
  arrange(n) %>%
  mutate(Country=factor(Country, levels=Country)) %>%
  ggplot(aes(n, Country, fill = n))+
  geom_col(alpha=0.7)+
  scale_fill_gradient(low = 'steelblue',high ='#193678')+
  geom_text(aes(label=n),
           hjust = 1,
            vjust = .3,
           size = 3, color = 'black',)+
  labs(title ='Top countries with the most Starbucks stores in 2017',
       x ='Number of stores',
      y = '',
       caption = 'Source: https://www.kaggle.com/datasets/starbucks/store-locations')+
```

Top countries with the most Starbucks stores in 2017

Source: https://www.kaggle.com/datasets/starbucks/store-locations