

Calculus

Kishan Sawant

Master of Autonomous Systems

Summer Semester 2024

[Extension to slides created by Michal & Musharraf]

Introduction

What is Calculus?

A branch of mathematics which deals with "study of continuous change" of functions or sequences

Hochschule Bonn-Rhein-Sieg

Introduction

What is Calculus?

A branch of mathematics which deals with "study of continuous change" of functions or sequences

Major Branches

- Differential Calculus
- Integral Calculus

Hochschule Bonn-Rhein-Sieg

Introduction

What is Calculus?

A branch of mathematics which deals with "study of continuous change" of functions or sequences

Major Branches

- Differential Calculus
- Integral Calculus

General Applications

- Optimisation
- To Solve Differential Equations
- Function Approximations
- Length, Area, Volume, Center of Mass, Moment of Inertia Calculations

Kinematics

- Modelling mobile robot (eg: differential drive) and environment
- Transform between different spaces

Hochschule

- Kinematics
 - Modelling mobile robot (eg: differential drive) and environment
 - Transform between different spaces
- Dynamics
 - Euler-Lagrange equations

Hochschule

University of Applied Sciences

- Kinematics
 - Modelling mobile robot (eg: differential drive) and environment
 - Transform between different spaces
- Dynamics
 - Euler-Lagrange equations
- Machine Learning
 - Optimisation

- Kinematics
 - Modelling mobile robot (eg: differential drive) and environment
 - Transform between different spaces
- Dynamics
 - Euler-Lagrange equations
- Machine Learning
 - Optimisation
- Modelling Robot Control Systems
 - PID controllers

- Kinematics
 - Modelling mobile robot (eg: differential drive) and environment
 - Transform between different spaces
- Dynamics
 - Euler-Lagrange equations
- Machine Learning
 - Optimisation
- Modelling Robot Control Systems
 - PID controllers
- Computer Vision
 - Changes in color and intensities (Eg: MRI scan)

- Kinematics
 - Modelling mobile robot (eg: differential drive) and environment
 - Transform between different spaces
- Dynamics
 - Euler-Lagrange equations
- Machine Learning
 - Optimisation
- Modelling Robot Control Systems
 - PID controllers
- Computer Vision
 - Changes in color and intensities (Eg: MRI scan)
- Signal Processing
 - Data analysis (Eg: stock market, speech signals, sensor data)
 - Fourier transformations

- Kinematics
 - Modelling mobile robot (eg: differential drive) and environment
 - Transform between different spaces
- Dynamics
 - Euler-Lagrange equations
- Machine Learning
 - Optimisation
- Modelling Robot Control Systems
 - PID controllers
- Computer Vision
 - Changes in color and intensities (Eg: MRI scan)
- Signal Processing
 - Data analysis (Eg: stock market, speech signals, sensor data)
 - Fourier transformations
- > Logic
 - Situational calculus

Functions vs Relations

Functions

Eg:
$$y = x^2 + 4x$$

Relations

Eg:
$$x^2+y^2 = 25$$

FC-SS24: Calculus

Functions vs Relations

- Functions have one unique output for a given input Eg: $y = x^2+4x$
- Relations can have more than one output Eg: $x^2+y^2=25$

FC-SS24: Calculus

Functions vs Relations

- Functions have one unique output for a given input Eq: $y = x^2+4x$
- Relations can have more than one output Eq: $x^2+y^2=25$

Limit

 Unique value of a function when its input approaches a particular number from both sides

$$\lim_{x o c}f(x)=L$$

Eg:
$$f(x) = \frac{x^2-1}{x-1}$$
.

Functions vs Relations

- Functions have one unique output for a given input Eq: $y = x^2+4x$
- Relations can have more than one output Eg: $x^2+y^2 = 25$

Limit

 Unique value of a function when its input approaches a particular number from both sides

$$\lim_{x o c}f(x)=L$$

Eg:
$$f(x) = \frac{x^2-1}{x-1}$$
.

Continuity

- For all values of input to a function, it must satisfy,

$$\lim_{x \to c} f(x) = f(c)$$

Characteristics of Data

Analog

continuous

Digital

discrete

Derivative of a Function

- Rate of change
- In a 2D system, derivatives = slope = $tan(\theta)$

Leibniz notation: $y = x^2$; $\frac{dy}{dx} = 2x$

Derivative of a Function

- Rate of change
- In a 2D system, derivatives = slope = $tan(\theta)$
- Another view:

The line itself is the best <u>linear approximation</u>

Leibniz notation:
$$y = x^2$$
; $\frac{dy}{dx} = 2x$

How to handle discrete functions?

How to handle discrete functions?

Approximate!

$$f'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

h – small, positive, fixed epsilon

Hochschule Bonn-Rhein-Sieg

Differential Calculus - Rules (single variable)

Addition Rule
$$\frac{d}{dx}[f(x)+g(x)]=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)$$

Product Rule
$$extstyle extstyle extstyle$$

Power Rule
$$\longrightarrow \frac{d}{dx}[x^n] = n \cdot x^{n-1}$$

Quotient Rule
$$\qquad \qquad \frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} f(x) - f(x) \cdot \frac{d}{dx} g(x)}{(g(x))^2}$$

Derivative of Constant
$$\Longrightarrow rac{d}{dx}[c]=0$$

Chain Rule
$$\longrightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Other Rules: For logarithmic and exponential functions

Differential Calculus - Chain Rule

Dependent Systems

$$\frac{dz}{dx} = \frac{dz}{dy} * \frac{dy}{dw} * \frac{dw}{dv} * \frac{dv}{du} * \frac{du}{dx}$$

How to handle derivatives of multivariable functions?

Partial Derivatives: Taking derivative of each variable and holding others as constants

Notations:
$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f_x = rac{\partial f}{\partial x}$$
 $f_y = rac{\partial f}{\partial y}$

How to handle derivatives of multivariable functions?

Partial Derivatives: Taking derivative of each variable and holding others as constants

- Notations:
$$rac{\partial f}{\partial x}=\lim_{\Delta x o 0}rac{f(x+\Delta x,y)-f(x,y)}{\Delta x}$$
 $f_x=rac{\partial f}{\partial x}$ $f_y=rac{\partial f}{\partial y}$

- Application: Jacobians

$$\mathbf{J} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

How to handle derivatives of multivariable functions?

Partial Derivatives: Taking derivative of each variable and holding others as constants

- Notations:
$$rac{\partial f}{\partial x}=\lim_{\Delta x o 0}rac{f(x+\Delta x,y)-f(x,y)}{\Delta x}$$
 $f_x=rac{\partial f}{\partial x}$ $f_y=rac{\partial f}{\partial y}$

- Application: Jacobians

$$\mathbf{J} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

Cross Partial Derivatives

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

Total Derivatives: if there is a function f(x,y), then the total derivative is represented as sum f partial derivatives of each variable times the derivative of that variable

Total Derivatives: if there is a function f(x,y), then the total derivative is represented as sum f partial derivatives of each variable times the derivative of that variable

In this example, assuming function 'f' is not directly dependent on 't' and 't' is independent variable, the total derivative can be represented as,

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Total Derivatives: if there is a function f(x,y), then the total derivative is represented as sum f partial derivatives of each variable times the derivative of that variable

In this example, assuming function 'f' is not directly dependent on 't' and 't' is independent variable, the total derivative can be represented as,

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Taylor Series: Approximations of functions. At x=0, this series is also termed as Maclaurin series.

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Integration: it is analogous to summation. It is also termed as antiderivative

Integration: it is analogous to summation. It is also termed as antiderivative

Types:

- Indefinite integrals: bounds are undefined
- Definite integrals: bounds are defined

Integration: it is analogous to summation. It is also termed as antiderivative

Types:

- Indefinite integrals: bounds are undefined
- Definite integrals: bounds are defined

Example:

$$y_1 = x^2 + 20$$

 $y_2 = x^2 + 100$

$$y_1^l = y_2^l = 2x$$

Thus,
$$\int 2x \, dx = x^2 + c$$

Hochschule Bonn-Rhein-Siea

University of Applied Sciences

Bounds

What about discrete functions?

Hochschule Bonn-Rhein-Sieg

What about discrete functions?

Approximate!

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{k=0}^{n-1} (s_{k+1} + s_k)$$

h – small, positive, fixed epsilon

Optimisation

Inflection Point vs Critical Point

Hochschule Bonn-Rhein-Sieg

References

- 1. https://www.math.utoronto.ca/vohuan/mat13717.html
- 2. https://sites.nicholas.duke.edu/onboarding/files/2015/05/Calculus-Review-Presentation.pdf
- 3. https://www.sfu.ca/~vjungic//Precalculus/Precalculus.pdf
- 4. https://www.andrews.edu/~rwright/Precalculus-RLW/Text/12.html
- 5. https://en.wikipedia.org/wiki/Total_derivative
- 6. https://www.youtube.com/watch?v=wCZ1VEmVjVo

Thank You!