Additional Problems

Joshua Maglione

October 14, 2024

Problem 1

Show that the following hold.

- (*i*) A hyperplane in \mathbb{R}^n is a convex set.
- (*ii*) A close half-space in \mathbb{R}^n is a convex set.
- (*iii*) An intersection of a finite collection of convex sets in \mathbb{R}^n is convex.
- (*iv*) Suppose $f: \mathbb{R}^a \to \mathbb{R}^b$ is a linear transformation. If $S \subseteq \mathbb{R}^a$ is a convex set, show that the following set is convex:

$${f(v) \mid v \in S} \subseteq \mathbb{R}^b.$$

Problem 2

Consider the following LP

Maximize

$$z = 3x + 2y$$

subject to $x, y \ge 0$ and

$$2x-y \leq 6,$$

$$2x + y \leq 10.$$

- (i) Transform this problem to a problem n canonical form.
- (ii) For each extreme point of the new problem, identify the basic variables.
- (iii) Solve the given LP.

Problem 3

Consider the following simplex tableau that is missing its objective row and column.

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	
x_4	0	0	2	1	5/2	0	0	6/7
x_1	1	0	5	0	-3	0	-2	2/7
x_6	0	0	3	0	4	1	-4	5/7
x_2	0	1	0	0	5/2 -3 4 3/2	0	0	1/7

Determine the departing variable if the entering variable is

- (*i*) x_5 ;
- (ii) x_3 ;
- (iii) x_7 .

Problem 4