泛函分析作业题

第1周

定义 1.1. 等价距离

设集合 X 上有两种距离: d_1 , d_2 . 如果 X 中按距离 d_1 收敛的点列 $\{x_n\}$ 都在距离 d_2 下收敛于同一点, 并且按距离 d_2 收敛的点列 $\{x_n\}$ 都在距离 d_1 下收敛于同一点, 即

$$d_1(x_n, x) \to 0 \iff d_2(x_n, x) \to 0,$$

则称距离 d_1 和 d_2 等价.

△ 作业题 1.1 设 d(x,y) 是集合 X 上的距离, 令

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

证明: $\tilde{d}(x,y)$ 也是 X 上的距离, 并且 \tilde{d} 与 d 等价.

证明 显然, 对任意 $x, y \in X$,

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)} \in \mathbb{R}.$$

- (i) 由距离 d(x,y) 的正定性可知 $\tilde{d}(x,y) \ge 0$,并且 $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} = 0$ 等价于 d(x,y) = 0,进而等价于 x = y.
- (ii) 由距离 d(x,y) 的三点不等式可知,对任意 $x,y,z \in X$, 总有

$$d(x,y) \le d(x,z) + d(y,z),$$

从而,根据函数

$$f(t) = \frac{t}{1+t}, \quad t \in [0, +\infty)$$

的单调递增性,就有

$$\begin{split} \tilde{d}(x,y) &= \frac{d(x,y)}{1+d(x,y)} & \leq & \frac{d(x,z)+d(y,z)}{1+d(x,z)+d(y,z)} \\ & = & \frac{d(x,z)}{1+d(x,z)+d(y,z)} + \frac{d(y,z)}{1+d(x,z)+d(y,z)} \\ & \leq & \frac{d(x,z)}{1+d(x,z)} + \frac{d(y,z)}{1+d(y,z)} \\ & = & \tilde{d}(x,z) + \tilde{d}(y,z). \end{split}$$

综上, $\tilde{d}(x,y)$ 也是空间 X 上的距离.

注意到

$$0 \leq \tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} < 1,$$

于是

$$d(x,y) = \frac{\tilde{d}(x,y)}{1 - \tilde{d}(x,y)}. (1)$$

若点列 $\{x_n\} \subset X$ 和点 $x \in X$ 满足

$$d(x_n, x) \to 0 \quad (n \to \infty),$$

则根据数列极限的四则运算法则,就有

$$\tilde{d}(x_n, x) = \frac{d(x_n, x)}{1 + d(x_n, x)} \to 0 \quad (n \to \infty).$$

若点列 $\{x_n\} \subset X$ 和点 $x \in X$ 满足

$$\tilde{d}(x_n, x) \to 0 \quad (n \to \infty),$$

同样根据 (??) 式以及数列极限的四则运算法则, 就有

$$d(x_n, x) = \frac{\tilde{d}(x_n, x)}{1 - \tilde{d}(x_n, x)} \to 0 \quad (n \to \infty).$$

所以距离 d 和 \tilde{d} 等价.

 $\frac{\mathbf{\dot{L}}}{\mathbf{\dot{L}}}$ 上述距离空间 (X,\tilde{d}) 中任何两点的距离都小于 1, 从而任何子集都是有界集. 上述结论说明, 任何距离空间上 (X,d) 上都能够找到与 d 等价的"有界"距离 \tilde{d} .

 \triangle 作业题 1.2 在 \mathbb{R}^N 中可定义两种距离:

$$d_1(x,y) = \sqrt{\sum_{i=1}^{N} |\xi_i - \eta_i|^2},$$

$$d_2(x,y) = \max_{1 \le i \le N} |\xi_i - \eta_i|,$$

其中 $x = (\xi_1, \xi_2, \dots, \xi_N) \in \mathbb{R}^N$, $y = (\eta_1, \eta_2, \dots, \eta_N) \in \mathbb{R}^N$. 证明: d_1 和 d_2 等价. 证明 对任意 $x = (\xi_1, \xi_2, \dots, \xi_N) \in \mathbb{R}^N$, $y = (\eta_1, \eta_2, \dots, \eta_N) \in \mathbb{R}^N$, 都有

$$\max_{1 \le i \le N} |\xi_i - \eta_i|^2 \le \sum_{i=1}^N |\xi_i - \eta_i|^2 \le N \max_{1 \le i \le N} |\xi_i - \eta_i|^2,$$

从而

$$\max_{1 \le i \le N} |\xi_i - \eta_i| \le \sqrt{\sum_{i=1}^N |\xi_i - \eta_i|^2} \le \sqrt{N} \max_{1 \le i \le N} |\xi_i - \eta_i|,$$

即

$$d_2(x,y) \le d_1(x,y) \le \sqrt{N} d_2(x,y).$$

若点列 $\{x_n\} \subset \mathbb{R}^N$ 和点 $x \in \mathbb{R}^N$ 满足

$$d_1(x_n, x) \to 0 \quad (n \to \infty),$$

由 (??) 式的前半部分以及数列极限的迫敛性可知

$$d_2(x_n, x) \to 0 \quad (n \to \infty).$$

若点列 $\{x_n\} \subset \mathbb{R}^N$ 和点 $x \in \mathbb{R}^N$ 满足

$$d_2(x_n, x) \to 0 \quad (n \to \infty),$$

由 (??) 式的后半部分以及数列极限的迫敛性可知

$$d_1(x_n, x) \to 0 \quad (n \to \infty).$$

综上, d_1 和 d_2 等价.

注 若距离空间 X 上的两种距离 d_1 和 d_2 满足

$$C_1 d_1(x, y) \le d_2(x, y) \le C_2 d_1(x, y), \quad \forall x, y \in X,$$

其中 C_1 , $C_2 > 0$ 是正的常数, 则 d_1 与 d_2 一定等价.