QUESTION 1:

- a) According to Izenman (1991) method, what is the recommended bin-width for the histogram of x is $h = 2(IQR)N^{-1/3}$ where IQR = interquartile range.
 - The minimum value of x is **26.3** and the maximum value of x is **35.4**.
- b) a = **26**, b = **36**
- c) Histogram at h = 0.25:

Coord	linat	es –	m _i ,	p((m_i))
-------	-------	------	------------------	----	---------	---

(26.125, 0.000)
(26.375, 0.004)
(26.625, 0.000)
(26.875, 0.000)
(27.125, 0.004)
(27.375, 0.000)
(27.625, 0.008)
(27.875, 0.016)
(28.125, 0.024)
(28.375, 0.036)
(28.625, 0.036)
(28.875, 0.072)
(29.125, 0.060)
(29.375, 0.148)
(29.625, 0.112)
(29.875, 0.188)
(30.125, 0.148)
(30.375, 0.268)
(30.625, 0.184)
(30.875, 0.228)
(31.125, 0.176)

(31.375,	0.332)
(31.625,	0.240)
(31.875,	0.324)
(32.125,	0.228)
(32.375,	0.284)
(32.625,	0.212)
(32.875,	0.228)
(33.125,	0.108)
(33.375,	0.132)
(33.625,	0.052)
(33.875,	0.064)
(34.125,	0.036)
(34.375,	0.024)
(34.625,	0.012)
(34.875,	0.008)
(35.125,	0.000)
(35.375,	0.008)
(35.625,	0.000)
(35.875,	0.000)
(36.125,	0.000)
-	,

d) Histogram at h = 0.50

Coordinates - m_i, p(m_i)

o o o i a i i a co o	ייין, אייון)
(26.250, 0.002)	
(26.750, 0.000)	
(27.250, 0.002)	
(27.750, 0.012)	
(28.250, 0.030)	
(28.750, 0.054)	
(29.250, 0.104)	
(29.750, 0.150)	
(30.250, 0.208)	
(30.750, 0.206)	
(31.250, 0.254)	

(31.750, 0.282) (32.250, 0.256) (32.750, 0.220) (33.250, 0.120) (33.750, 0.058) (34.250, 0.030) (34.750, 0.010) (35.250, 0.004) (35.750, 0.000) (36.250, 0.000)

e) Histogram at h = 1

$\textbf{Coordinates} - m_{_{\!i}}, \, p(m_{_{\!i}})$

(32.500, 0.238) (33.500, 0.089)

(34.500, 0.020)

(35.500, 0.002)

(36.500, 0.000)

f) Histogram at h = 2

$\textbf{Coordinates} - m_i, \ p(m_i)$

(27.000, 0.004)	(33.000, 0.163)
(29.000, 0.084)	(35.000, 0.011)
(31.000, 0.237)	(37.000, 0.000)

g) Personally, I would **histogram at h = 0.5** (at part e) as it portrays the shape and spread of the distribution of the data very well. The histogram at h = 0.25 provides an overly specific distribution of the data in which does not give an overall insight on the data. While, histograms at h = 1 and h = 2 projects the appropriate shape and spread of the data. These two histograms lack on specificity on the data as it gives a generalized trend over the data.

QUESTION 2

a) Five-number summary of x:

Min	26.3
Q1	30.4
Median	31.5
Q3	32.4
Max	35.4

IQR: 2.0

1.5IQR Whiskers: [27.4 - 35.4]

b) Five-number summary of x on group 0:

Min	26.3
Q1	29.4
Median	30.0
Q3	30.6
Max	32.2

IQR: 1.2

1.5IQR Whiskers: [27.6 - 32.4]

Five-number summary of x on group 1:

Min	29.1
Q1	31.4
Median	32.1
Q3	32.7
Max	35.4

IQR: 1.3

1.5IQR Whiskers: [29.45 - 32.65]

c) Yes, because it correctly represents two low outliers (<27.4) and no high outliers (>35.4).

d) **Box plots** (entire data, group 0 data, group 1 data)

OUTLIERS FOR THE ENTIRE DATA – (position, value)

70 27.2 295 26.3

OUTLIERS FOR GROUP 0 – (position, value)

70 27.2295 26.3

OUTLIERS FOR GROUP 1 – (position, value)

30	35.3	846	34.7
107	29.3	907	34.8
297	35.4	938	29.3
812	34.9	975	29.1

QUESTION 3

- a) % of fraudulent investigations = **0.1995**
- b) **Boxplots** (0 = non-fraud, 1 = fraud)

c) Orthonormalization

i) There were **six dimensions** used.

Eigenvalues of x = [6.84728061e+03 8.38798104e+03 1.80639631e+04 3.15839942e+05 8.44539131e+07 2.81233324e+12]

ii) Transformation matrix:

```
Transformation Matrix = [[-6.49862374e-08 -2.41194689e-07 2.69941036e-07 -2.42525871e-07 -7.90492750e-07 5.96286732e-07]
[ 7.31656633e-05 -2.94741983e-04 9.48855536e-05 1.77761538e-03 3.51604254e-06 2.20559915e-10]
[ -1.18697179e-02 1.70828329e-03 -7.68683456e-04 2.03673350e-05 1.76401304e-07 9.09938972e-12]
[ 1.92524315e-06 -5.37085514e-05 2.32038406e-05 -5.78327741e-05 1.08753133e-04 4.32672436e-09]
[ 8.34989734e-04 -2.29964514e-03 -7.25509934e-03 1.11508242e-05 2.39238772e-07 2.85768709e-11]
[ 2.10964750e-03 1.05319439e-02 -1.45669326e-03 4.85837631e-05 6.76601477e-07 4.66565230e-11]]
```

The resulting variable is **ORTHONORMAL** since xtx provides an **identity matrix**.

```
Expect an Identity Matrix =
[[ 1.00000000e+00 -3.00432422e-16 -4.61219604e-16 5.45323877e-15 1.20996962e-15 -1.28911638e-16]
[-3.00432422e-16 1.00000000e+00 -6.44449771e-16 -2.76820667e-14 -1.23512311e-15 7.78890841e-16]
[-4.61219604e-16 -6.44449771e-16 1.00000000e+00 3.49546780e-15 1.21430643e-16 -2.39391840e-16]
[ 5.45323877e-15 -2.76820667e-14 3.49546780e-15 1.00000000e+00 1.14968798e-14 -3.47812057e-15]
[ 1.20996962e-15 -1.23512311e-15 1.21430643e-16 1.14968798e-14 1.00000000e+00 -6.31439345e-16]
[-1.28911638e-16 7.78890841e-16 -2.39391840e-16 -3.47812057e-15 -6.31439345e-16 1.00000000e+00]
```

(see code for the resulting variable)

d) Score function

- i) The score function returned a value of ~81.96% (0.8196308724832215). I used 80/20 train-test data split. Without any train-test data split, the score function returns ~87.79% (0.8778523489932886).
- ii) The score function returns the mean (average) accuracy on the given test data and labels.
- e) Nearest neighbors (of transformed matrix)
 - i) [553, 3870, 31, 1030, 2748, 2173],
 - ii) [425, 3160, 5673, 1245, 2173, 2748],
 - iii) [1101, 5202, 4228, 1231, 2224, 776],
 - iv) [457, 4968, 5416, 733, 776, 2224],
 - v) [1232, 176, 4776, 369, 1893, 478]

f)	The predicted probability of fraudulent investigation is right around 10 % (0.10067114093959731). The observation at (e) would be misclassified as it was wrongfully classified as non-fraud even though it is a fraudulent investigation.