Conf. dr. habil. Brigitte Breckner

Integrale

- 1. Fie $a, b \in \mathbb{R}$ cu a < b. Să se stabilească valoarea de adevăr a următoarelor afirmații.
- **A**: $Dacă f: [a,b] \to \mathbb{R}$ este o funcție continuă cu proprietatea că f(x) > 0, oricare ar fi $x \in [a,b]$, atunci $\int_a^b f(x) dx > 0$.
- **B**: $Dac\ a\ g,\ h\colon [a,b]\to\mathbb{R}$ sunt funcții continue cu proprietatea că g(x)< h(x), oricare ar fi $x\in [a,b],$ atunci $\int_a^b g(x)\mathrm{d}x<\int_a^b h(x)\mathrm{d}x.$
- C: $Dacă f: [a,b] \to \mathbb{R}$ este o funcție continuă, care nu este identic nulă și pentru care $f(x) \ge 0$, oricare ar fi $x \in [a,b]$, atunci $\int_a^b f(x) dx > 0$.
- **2.** Fie $a, b \in \mathbb{R}$ cu 0 < a < b. Să se arate că $\int_a^b x^e dx < \int_a^b e^x dx$.
- 3. Fie $\alpha \in \mathbb{R}$ un parametru și $f : [2, \infty) \to \mathbb{R}$ funcția definită prin

$$f(x) = \frac{1}{x(\ln x)^{\alpha}}.$$

- a) Să se determine $\int f(x) dx$.
- b) Notând cu $F: [2, \infty) \to \mathbb{R}$ o primitivă a funcției f, să se determine mulțimea M formată din toate valorile lui α pentru care funcția F are asimptotă orizontală spre $+\infty$.
- **4.** Se consideră șirul $(a_n)_{n\in\mathbb{N}^*}$ definit prin

$$a_n = \int_0^1 \frac{x^n}{x^{2021} + 1} dx$$
, oricare ar fi $n \in \mathbb{N}^*$.

- a) Să se calculeze a_{2020} .
- **b)** Să se arate că șirul $(a_n)_{n\in\mathbb{N}^*}$ este descrescător.
- c) Să se determine $\lim_{n\to\infty} a_n$.