

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

MATERIA: PROYECTO INTEGRADOR

PROFESOR: GONZALO VERA

ALUMNO: RIOS LIONEL

AÑO: 2024

ACTIVIDADES

¿Qué es un transistor bipolar?

Un transistor bipolar, también conocido como transistor de unión bipolar (BJT por sus siglas en inglés: Bipolar Junction Transistor), es un tipo de transistor que se utiliza ampliamente en circuitos electrónicos para amplificar o conmutar señales eléctricas. Los BJTs están formados por tres capas de material semiconductor, lo que crea dos uniones pn (positivo-negativo). Estas capas se llaman:

- 1. **Emisor (E)**: Esta es la región que inyecta portadores de carga (electrones o huecos) en la base.
- 2. **Base (B)**: Esta es la región intermedia que controla el flujo de portadores entre el emisor y el colector.
- 3. **Colector (C)**: Esta es la región que recoge los portadores de carga inyectados desde el emisor a través de la base.

Los BJTs vienen en dos tipos principales, dependiendo de la disposición de las capas de material semiconductor:

- 1. **NPN**: Tiene una capa de tipo P (positiva) entre dos capas de tipo N (negativas).
- 2. **PNP**: Tiene una capa de tipo N (negativa) entre dos capas de tipo P (positivas).

Funcionamiento

El funcionamiento básico de un BJT se basa en la capacidad de controlar una corriente grande entre el colector y el emisor mediante una corriente pequeña entre la base y el emisor. En un BJT NPN, cuando se aplica una corriente pequeña a la base, se permite que una corriente mayor fluya desde el colector al emisor. En un BJT PNP, el flujo de corriente es en la dirección opuesta.

Regiones de operación

Los BJTs operan en varias regiones dependiendo de los voltajes aplicados:

- 1. **Región de corte**: El transistor está apagado, no fluye corriente entre el colector y el emisor.
- 2. **Región activa**: El transistor amplifica la corriente; la corriente del colector es proporcional a la corriente de la base.
- 3. **Región de saturación**: El transistor está completamente encendido, permitiendo que fluya la máxima corriente del colector al emisor.

Aplicaciones

Los transistores bipolares son utilizados en una amplia gama de aplicaciones, incluyendo:

- Amplificadores: Para aumentar la amplitud de señales eléctricas.
- Conmutadores: En circuitos digitales para encender y apagar dispositivos.
- Osciladores: En generadores de señales.
- Reguladores de voltaje: Para mantener un voltaje constante en un circuito.

Su capacidad para manejar altas corrientes y voltajes los hace esenciales en muchas aplicaciones electrónicas.

Como Utilizarlos

Utilizar un transistor bipolar de unión (BJT) implica conocer su configuración básica en un circuito y cómo se comporta en diferentes estados. Aquí te dejo una guía para usar un BJT en las aplicaciones más comunes: amplificación y conmutación.

1. Amplificación

Para usar un BJT como amplificador, necesitas configurarlo en la región activa. Aquí tienes los pasos básicos para una configuración de amplificador común (emisor común):

Componentes necesarios:

- Un transistor BJT (NPN o PNP)
- Resistencia de base (Rb)
- Resistencia de colector (Rc)
- Resistencia de emisor (Re) (opcional, para estabilización térmica)
- Fuente de señal de entrada
- Fuente de alimentación (Vcc)
- Carga (resistencia o altavoz, dependiendo de la aplicación)

Circuito básico:

1. Conexiones de la fuente de señal y la fuente de alimentación:

- o **Base**: Conecta una resistencia (Rb) entre la base y la fuente de señal.
- Colector: Conecta una resistencia (Rc) entre el colector y la fuente de alimentación (Vcc).
- Emisor: Conecta el emisor a tierra (para un transistor NPN) o a Vcc (para un transistor PNP).

2. Señal de entrada:

 La señal de entrada se aplica a través de un capacitor (para bloquear la corriente continua) a la base del transistor.

3. Señal de salida:

 La señal amplificada se recoge del colector y se puede conectar a una carga a través de un capacitor.

Ejemplo de circuito amplificador con un BJT NPN:

```
scss
Copiar código
Vcc
|
Rc
|
|----> Salida (señal amplificada)
|
Colector
|
Base
|\
| > Transistor NPN
|/
|/ Emisor
|
Re (opcional)
|
Tierra
```

2. Conmutación

Para usar un BJT como un interruptor, debes operarlo en las regiones de corte (apagado) y saturación (encendido).

Componentes necesarios:

- Un transistor BJT (NPN o PNP)
- Resistencia de base (Rb)
- Dispositivo de carga (como un LED, un relé, etc.)
- Fuente de alimentación (Vcc)
- Fuente de señal de control

Circuito básico:

1. Conexiones del transistor:

- Base: Conecta una resistencia (Rb) entre la base y la fuente de señal de control.
- Colector: Conecta el colector al dispositivo de carga, y el otro terminal del dispositivo de carga a Vcc.
- Emisor: Conecta el emisor a tierra (para un transistor NPN) o a Vcc (para un transistor PNP).

2. Control de encendido/apagado:

 Aplica una señal de control alta (para un transistor NPN) o baja (para un transistor PNP) a la base para encender el transistor.

 Aplica una señal de control baja (para un transistor NPN) o alta (para un transistor PNP) a la base para apagar el transistor.

Ejemplo de circuito de conmutación con un BJT NPN:

```
scss
Copiar código
Vcc
|
Carga (LED, relé, etc.)
|
Colector
|
Transistor NPN
|
Emisor
|
Tierra
|
|> Resistencia de base (Rb)
|/
|
Fuente de señal de control
```

Consideraciones Adicionales

- 1. **Polarización de la base**: Ajusta la resistencia de base (Rb) para controlar la corriente de base adecuada.
- 2. **Disipación de potencia**: Asegúrate de que el transistor puede manejar la potencia disipada.
- 3. **Protección**: Utiliza diodos de protección si estás conmutando cargas inductivas como motores o relés.

Estas configuraciones básicas te permitirán utilizar BJTs en una variedad de aplicaciones de amplificación y conmutación.