Effects of Early Forming Massive Stars

Sean C. Lewis

January 2, 2023

1 / 18

Disruption of gas collapse, star formation, and cluster assembly

■ The feedback from massive stars likely dominates the self-regulation of star formation.

1 / 18

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.¹

¹Bressert et al. 2010; Longmore et al. 2014; Grudić et al. 2018; Dobbs et al. 2022 💣 🔻 😩 🖎 🤏 🔊

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.¹
- How gas is removed (rapidly, or slowly) may affect cluster structure.²

¹Bressert et al. 2010; Longmore et al. 2014; Grudić et al. 2018; Dobbs et al. 2022

²Smith et al. 2013; Portegies Zwart et al. 2010; Banjeree & Kroupa 2017

Disruption of gas collapse, star formation, and cluster assembly

- The feedback from massive stars likely dominates the self-regulation of star formation.
- Gas evacuation (via stellar feedback) is crucial to the completion of star cluster assembly.¹
- How gas is removed (rapidly, or slowly) may affect cluster structure.²
- What about when massive stars form? Using our computational model we test the effects of early forming massive stars.

¹Bressert et al. 2010: Longmore et al. 2014: Grudić et al. 2018: Dobbs et al. 2022

²Smith et al. 2013; Portegies Zwart et al. 2010; Banjeree & Kroupa 2017

Torch

Stars from gas

- Couples N-body, stellar evolution, and feedback in AMUSE with self-gravitating magnetized gas in MHD code FLASH.
- Resolved dynamics of stars and gas; study star cluster formation within collapsing GMCs.
- Form stars from sink particles which each have a randomized star mass list sampled from the Kroupa IMF.^[3]

A Controlled Experiment

t=4.51Mvr

Lewis et al. 2023

Effects on Gas Energy

Effects on Gas Accretion and Star Formation

Effects on Gas Accretion and Star Formation

Early forming massive stars reduces sink accretion and star formation rates.

Effects on Gas Accretion and Star Formation

Early forming massive stars reduces sink accretion and star formation rates.

Run	$\langle \epsilon_{\it ff} angle$	
Fid	0.23	
50M	0.08	
70M	0.03	
100M	0.04	

Effects on Star Clustering, Cluster Assembly

- DBSCAN to identify cluster with at least 50% bound members and 100 M_{\odot} at $2\tau_{\text{ff}}$.
- Clusters in runs with early massive stars are less massive and more fragmented compared to the fiducial run.

Run	Mass in Clusters	Frac Mass	r _h MMC	E _{bind} MMC
	$10^3~M_{\odot}$	M_c/M_{tot}	рс	10^{46} erg
Fid	3.6	0.99	0.25	-140
50M	1.4	0.97	0.17	-12
70M	0.86	0.85	0.21	-4.2
100M	0.62	0.46	0.18	-3.8

Effects of Early Forming Massive Stars

- Significantly disrupt the natal gas structure, resulting in premature unbinding of GMC.
- The star formation rate per free-fall time is suppressed by up to a factor of seven, reducing the total mass of stars formed.
- Stifle the hierarchical assembly process of massive star clusters, instead promoting the formation of spatially separate and more loosely bound subclusters.

8 / 18

The Problem with Initial Conditions

- Self consistent galactic scale simulations with resolution down to sub-tenth parsec scales and include Nbody individual stellar dynamics and individual stellar feedback all at once? A little tough.
- Creating our own isolated clouds from scratch? "Creative liberties..."

Clouds from Galactic Simulations

GMC identification⁴

⁴Li, H. et al. 2020

From AREPO to FLASH

Try CIC Mapping?

Cloud from raw AREPO data represented using SPH kernels

Cloud-in-cell mapping onto AMR FLASH grid_

Voronoi Mesh to AMR Grid

Voronoi Mesh to AMR Grid

VorAMR: Logic path

2a. Convert mesh to particles and construct refined AMR grid

2h Construct KDtree with field values assigned to leaf nodes

VorAMR: The Big Wins

- Provides a novel way to visualize Voronoi mesh-based hydrodynamical data.
- Represents a critical linkage in the star cluster simulation pipeline which will allow Torch to use realistic GMC initial conditions.
- Provides an avenue for increased collaboration between entrenched research groups.

Thank You!

_

Questions?

Appendix

$$\epsilon_{\mathsf{ff}} = \dot{M}_* rac{t_{\mathsf{ff}}}{M_{\mathsf{g}}}$$
 (1)

18 / 18