T	ohn	\mathbf{R}	Emmons
.,	um	T1.	THIIIIOHS

Contact	email: john.emmons@wustl.edu	web: johnemmons.com		
Summary	Master's student with a strong background in high performance computing and data science research. Solid understanding of several subject areas and proven record of solving significant problems in diverse fields. Plans to enter computer science PhD program next fall; seeking a summer 2016 internship before graduate school.			
Education	Washington University in St. Louis, St. Louis, MO MS Computer Science (dual enrollment with BS) BS Computer Engineering and BS Electrical Engineering	August 2014 - May 2016 GPA: 4.00 GPA: 3.98		
	Drake University, Des Moines, IA (3+2 transfer to WU) BS Computer Science, Mathematics, and Physics (triple major)	August 2011 - May 2016 GPA: 4.00		
Relevant Skills	Languages: C/C++, Fortran, MATLAB, Python, R Parallelism: CilkPlus, CUDA, Hadoop, Intel SSE, MPI, OpenMP, Pthreads Publishing: Gnuplot, LATEX, R (contributor to knitR package) Software Development: Doxygen, Git, Jenkins, Subversion Systems: Solid sysadmin fundamentals for *nix. Experienced with clusters/supercomputers			
Selected Internships	California Institute of Technology Topic: numerical different PI: Oscar Bruno • Simulated EM-fields propagating along dielectric waveguides with the supplemented a generic, high-order numerical method (MATLAR	Summer 2015 th arbitrary shape		
	Washington University in St. Louis Topic: GPU motif find: PI: Jeremy Buhler • Implemented the expectation maximization motif finding algorit • Ported CPU implementation of MEME to Nvidia GPU (CUDA)	Spring 2015 - present thm MEME		
	Carnegie Mellon University Topic: DNA read mapping (string algorithms) PI: Onur Mutlu Spring 2014 - Fall 2014 • Implemented generic, SMID-parallel DNA sequence alignment filter using Intel SSE3 • Achieved a 3x speedup over state of the art using bit-vector approach (C, SSE3)			
	 University of California, Berkeley Topic: large-scale paralle PI: Allison Andrews Implemented a massively scalable file system backup algorithm Used Hadoop to perform distributed computing on supercompu 	Summer 2013 at NERSC		
	Drake University Topic: computational atomic physics PI: Klaus Bartschat S o Simulated ultrafast, high-intensity laser pulses (attosecond times o Parallelized simulations to run on the Stampede supercomputer	,		
Significant Awards	Washington University Harold P. Brown Fellowship winner o Full-tuition scholarship awarded to a WU engineering student en	Spring 2014 ach year		
	Barry Goldwater Scholarship winner o Highly selective, national scholarship for STEM undergrads	Spring 2013		
	Drake University Physics Prize winner • Physics exam and interview competition for a full-tuition scholar	Spring 2011 rship		
Selected Publications	[1] H. Xin, J. Emmons, O. Mutlu, et al. "Optimal Seed Solver: Opti Read Mapping". Oxford Bioinformatics, Nov. 2015	-		
	[2] H. Xin, J. Emmons, O. Mutlu, et al. "Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly Filter for Local Alignment in Read Mapping". Oxford Bioinformatics, Dec 2014.			
	[3] I. Ivanov, J. Emmons, K. Bartschat, et al. "Displacement effectionization by an XUV pulse". Physical Review A, Oct. 2014.	et in strong-field atomic		