Definition

Wave

- Pattern of disturbances [1] which transport energy but does not transport matter[1]
- a wave have pattern of disturbances as the particles are ocillating
- how to draw a wave moving in the right direction
 - parallel move the wave
 - draw parallel for the coincidence point
 - notice for crust they are at the point about to move
- For electromagnetic waves not particles but electric and magnetic fields vibrate

Amplitude, Wavelength, Frequency, Period

- Amplitude(A) is the maximum displacement from **equillibrium position** of the wave
- Wavelength(λ) is the distance between two consecutive disturbances
- Frequency(f) is the number of waves made in second[Hz] = $[s^{-1}]$
- Period(T) is the time for a wave to made a complete ocillation
- $T = \frac{1}{f} \Longleftrightarrow f = \frac{1}{T}$

Doppler effect

- the **apparent** change[1] in frequency for the **observer**[1] if there is **relative motion** between observer and source[1]
- $f_o=rac{f_S v}{v\pm v_S}$
- the wavelength get smaller && frequency get bigger for source moving toward observer
- the wavelength get bigger && frequency get smaller for source moving away from observer

Longitudinal/Transverse wave

· Longitudinal

- Longitudinal wave are the wave that the particles of the wave vibrate along the direction of propagation of the wave
- compression(the closest part of particles)/rerafraction(between compression)
- λ = distance between two consecutive compression
- A = half distance ocillate by the point at compression
- T = time taken for the particles to vibrate one ocillation
- example: P wave, slinky spring, sound wave
- Transverse
 - Transverse wave are the wave that the particles of the wave vibrate perpendicular to the direction of propagation of the wave
 - direction of propgation of wave is the direction where the energy is transfer
 - wave front(birds eye view of wave) and the direction of propagation are always perpendicular
 - Example: electromagenetic wave, S wave, ocean wave

Intensity

- Intensity is the energy per time per area
- $I = \frac{\frac{E}{t}}{A} = \frac{E}{At} = \frac{P}{A}$
- · Factor affecting Intensity
 - For 3D situation, $I=\frac{P}{4\pi R^2}\Rightarrow I\propto \frac{1}{r^2}$ $I\propto A^2\Rightarrow I=kA^2$

Standing Wave

- Standing Wave is the result of superposition of a progressive wave and its relection travelling in opposite direction at certain frequency
- nodes: the place where the particle of standing wave doesn't vibrate
- antinodes: the place where the particle of standing wave are vibrate at maximum distance
- frequency at which the standing waves are form is called harmonics
 - f_0 Fundamental harmonic/first harmonic
 - $2f_0$ second harmonic
 - etc.
- $\lambda = \frac{2L}{n}$ (for fundamental frequency, the Length is half the wavelength)
- change in position for the wave is calculate by T and then deduce to shift up or down
- open end tube && closed end tube
 - open end: $L = \frac{1}{2}L$
 - close end: $L = \frac{1}{4}L$, end correction(c) may be found by changing the length of the tube

Concept

Wave Equation

- $v = \lambda f$
- · Derivation:

$$v = \frac{s}{t} = \frac{\lambda}{T} = \lambda \frac{1}{T} = \lambda f$$

Phase difference

- Phase differnce is an angle/relationship
 - simple harmonic motion can be related to a wave if extended in time, and then the phase difference can be related from points between waves
 - thus we would obtain $\phi = \frac{\pi}{2} rad = 90^o = \frac{\lambda}{n} m$
- · Progressive Wave
 - In phase: $\phi = 2k\pi = k\lambda (k \in N)$
 - Anti phase: $\phi = (2k+1)pi = rac{2k+1}{2}\lambda(k\in N)$
 - $\phi = \frac{2\pi}{T}t$ where t = difference between two points
- · Standing wave
 - two consecutive point:0
 - between opposite point: π
 - between diagnoal point: π

Principal of Superposition

- when two or more wave comes together, the displacement of corespond wave is the Algebraic Sum for the displacement of the waves
- Interference is the superposistiuon of two coherent sources(pitcture doesn't change)
- Coherent source are the source that the phase difference between waves in time are constant
 - Constructive Superposisiton: $\Delta d = n\lambda(n \in N)$ (maxima)
 - Destructive Superposistion: $\Delta d = \frac{n+1}{2} \lambda(n \in N)$ (minima they are between two maxima)
- Δd are the path difference, which is the difference in wavelength between two waves

Double slit experiment

• one light source to a monochromatic filter with single slit follow by a double slit and a screen

- $\lambda = \frac{ax}{D}$ where a is the slit separation, x is the fringe separation, D is the distance between double slit and light screen
- · Derivation:
 - Path difference between the waves from two slit to 1° maxima is λ
 - It would then obtain $sin\theta_1 = \frac{\lambda}{a}$
 - Obtain another triangle between distance from cetnre between slits to 0^o maxima and to 1^o maxima (isolecese if $D \gg biq$)
 - $\theta_1 \simeq \theta_2$ as both are small
 - therefore $\sin \theta_1 \simeq \tan \theta_2 \Rightarrow \frac{\lambda}{a} = \frac{x}{D} \Rightarrow \lambda = \frac{ax}{D}$
- This is the only ways to calculate the wavelength of light
- · Diffracting grating:
 - $d\sin\theta = n\lambda(n \in N)$, derivation comes from the double slit experiment if change the λ to different maxima and a to d(grating spacing)
- Changes to the effect with different effect:
 - close one slit no pattern of diffraction and dimmer
 - narrw the slit dimmer but pattern still there
 - different light source is used fringe sepreation change because λ change

Experiment Demonstratge

- · Diffraction of a wave
 - light, water tank with screen and ocillator
- · Standing wave
 - o ocillrater, string, generator
- · Wave length of Light wave:
 - · Young's double slit
- · Wavelength of sound wave:
 - Kant's dust tube