

Neural Networks

Convolutional Neural Networks

Discord Link in Description

Recap of Artificial Neural Networks

- Parameters in ANNs
- Classification / Regression
- Training process
- Elements in Neural Networks for optimization
- Created, trained and predicted with a ANN from scratch

What is Convolution?

- 1. Overlay the filter on top of the image
- 2. Element-wise multiplication between values in the filter and the corresponding value in the image
- 3. Summing all products Sum is the output value
- 4. Repeat for all locations Column by column and row by row

1	2	1	3	5
4	2	1	5	3
3	5	2	1	4
3	1	4	2	1
2	2	4	1	2

X

1	0	-1	
2	0	-2	
1	0	-1	

=

7	

Convolutional Neural Networks

Applications - Convolutional Neural Networks

Layers and Filters in Convolutional Networks

What does the CNN learn?

- Features layer by layer
- Different layers and parameters
- How to create a CNN?
 - How to specify parameters?
 - What layers to use?

Trainable Parameters in CNNs

number of filters x (number of filters x size of filters) + biases

Input	Conv1	Conv2	Output
		3x3	
	3x3		
		3x3	
	3x3		
		3x3	

CNNs in Keras

Conv2D class

```
tf.keras.layers.Conv2D(
filters,
kernel_size,
strides=(1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1),
groups=1,
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
```


Feature Extraction