Заряды. Теорема Радона-Никодима

Опр: 1. Пусть \mathcal{M} - σ -алгебра, функция $\varphi \colon \mathcal{M} \to \mathbb{R}$ называется зарядом тогда и только тогда, когда:

$$\forall A, A_1, \dots, A_n, \dots \in \mathcal{M} \colon A = \bigsqcup_{n=1}^{\infty} A_n, \ \varphi(A) = \sum_{n=1}^{\infty} \varphi(A_n)$$

Rm: 1. В определение входит существование суммы этого ряда, то есть это конечная функция.

Иными словами, заряд это знакопеременная мера. Вместе с этим, чтобы здесь всё было определено нет σ -конечного случая, в отличие от меры (когда мы можем допустить σ -конечность).

Rm: 2. Легко также понять, что если мы возьмем две σ -аддитивные различные меры на какой-то σ -алгебре, то если мы возьмем их разность, то вообще говоря это будет заряд, поскольку сохранится σ -аддитивность, но возможно, что мера какого-то множества будет отрицательной.

Опр: 2. Пусть \mathcal{M} - σ -алгебра, φ - заряд на \mathcal{M} и $A \in \mathcal{M}$, тогда A называется положительным множеством относительно φ тогда и только тогда, когда:

$$\forall B \in \mathcal{M} \colon B \subseteq A, \, \varphi(B) \ge 0$$

Опр: 3. Пусть \mathcal{M} - σ -алгебра, φ - заряд на \mathcal{M} и $A \in \mathcal{M}$, тогда A называется <u>отрицательным</u> множеством относительно φ тогда и только тогда, когда:

$$\forall B \in \mathcal{M} \colon B \subseteq A, \, \varphi(B) < 0$$

Rm: 3. Заметим, что это не тоже самое, что и потребовать $\varphi(A) \ge 0$ или $\varphi(A) \le 0$, поскольку внутри таких множеств может найтись подмножество B у которого $\varphi(B) \le 0$ или $\varphi(B) \ge 0$ соответственно.

Лемма 1. Пусть \mathcal{M} - σ -алгебра, φ - заряд на \mathcal{M} , $B_1 \in \mathcal{M}$ и $\varphi(B_1) < 0$. Тогда: $\exists B_0 \in \mathcal{M} : B_0 \subseteq B_1$, где B_0 - отрицательное, а при этом $\varphi(B_0) \le \varphi(B_1)$.

 \square $\forall C \in \mathcal{M}$ введём величину:

$$\gamma(C) = \sup_{\substack{A \in \mathcal{M}, \\ A \subseteq C}} \varphi(A)$$

Заметим, поскольку $\emptyset \in C$, $C \in \mathcal{M}$, то $\gamma(C) \geq 0$. Аналогично, пока мы не доказали обратное, $\gamma(C)$ не обязана быть конечной. Рассмотрим величину $\gamma(B_1)$. Если $\gamma(B_1) = 0$, то B_1 - само отрицательно и всё доказано. Предположим, что $\gamma(B_1) = \infty$, тогда выберем множество A_1 :

$$A_1 \in \mathcal{M} \colon A_1 \subset B_1, \ \varphi(A_1) > 1$$

и положим $B_2 = B_1 \setminus A_1 \in \mathcal{M}$. При этом:

$$\varphi(B_2) = \varphi(B_1) - \varphi(A_1) < \varphi(B_1)$$

Затем рассмотрим $\gamma(B_2)$, если $\gamma(B_2)=\infty$, то повторим процесс \Rightarrow выберем A_2 :

$$A_2 \in \mathcal{M} \colon A_2 \subset B_2, \ \varphi(A_2) > 1$$

и положим $B_3 = B_2 \setminus A_2 \in \mathcal{M}$ и так далее. Продолжая процесс дальше, либо на некотором шаге будет: $\gamma(B_{i_0}) < \infty$, либо мы построим последовательность попарно непересекающихся множеств A_i :

$$\{A_i\}_{i=1}^{\infty} \subset \mathcal{M} \colon \varphi(A_i) > 1 \Rightarrow \varphi\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \varphi(A_i) = \infty$$

Получаем противоречие с тем, что φ - конечная функция на \mathcal{M} . Действительно, тогда:

$$\exists i_0 : \gamma(B_{i_0}) < \infty \Rightarrow \gamma(B_{i_0}) > 0$$

Не ограничивая общности, будем считать, что: $i_0 = 1$. Тогда выберем A_1 :

$$A_1 \in \mathcal{M}: A_1 \subset B_1, \, \varphi(A_1) > \frac{\gamma(B_1)}{2} > 0$$

Положим $B_2 = B_1 \setminus A_1 \in \mathcal{M}$, тогда $\varphi(B_2) < \varphi(B_1)$ и $\gamma(B_2) < \frac{\gamma(B_1)}{2}$, иначе мы могли бы найти подмножество $D \subset B_2$ такое, что: $\varphi(A_1) + \varphi(D) > \gamma(B_1)$, что невозможно в силу определения γ . Если $\gamma(B_2) = 0$, то полагаем $B_0 = B_2$ и лемма доказана, иначе выберем A_2 :

$$A_2 \in \mathcal{M} \colon A_2 \subset B_2, \, \varphi(A_2) > \frac{\gamma(B_2)}{2}$$

И положим $B_3 = B_2 \setminus A_2$, при этом $\varphi(B_3) < \varphi(B_2) < \varphi(B_1)$ и кроме того:

$$\gamma(B_3) < \frac{\gamma(B_2)}{2} < \frac{\gamma(B_1)}{4}$$

И так далее. В результате, либо $\gamma(B_{i_0}) = 0$ на некотором шаге i_0 и тогда полагаем $B_0 = B_{i_0} \Rightarrow$ в силу неравенств: $\varphi(B_0) \le \varphi(B_1)$ и оно будет отрицательным из-за $\gamma(B_{i_0}) = 0$, либо получим:

$$B_1 \subset B_2 \subset B_3 \subset \dots : \forall i, \ \varphi(B_i) < \varphi(B_1), \ \gamma(B_i) \le \frac{\gamma(B_1)}{2^{i-1}}$$

Пусть $B_0 = \bigcap_{i=1}^{\infty} B_i \Rightarrow B_0 \in \mathcal{M}$ (поскольку σ -алгебра это автоматически и δ -алгебра), кроме того, согласно замечанию к теореме о непрерывности меры:

$$\varphi(B_0) = \lim_{i \to \infty} \varphi(B_i) \le \varphi(B_1)$$

Вдобавок, если $A \in \mathcal{M}$, $A \subseteq B_0$, то $\forall i, A \subseteq B_i$, тогда:

$$\varphi(A) \le \gamma(B_i) \le \frac{\gamma(B_1)}{2^{i-1}}$$

Так как i - произвольное, то $\varphi(A) \leq 0 \Rightarrow B_0$ это отрицательное множество.

Теорема 1. (о разложении Хана) Пусть \mathcal{M} - σ -алгебра с единицей X, φ - заряд на X, тогда:

$$\exists X_+, X_- \in \mathcal{M} \colon X = X_+ \sqcup X_-$$

причём X_+ - положительно, а X_- - отрицательно относительно φ .

Rm: 4. То есть мы раскладываем единицу σ -алегбры относительно заряда φ .

 \square Заметим, что если $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M} \colon \forall i, A_i$ - отрицательна относительно заряда φ , то $\bigcup_{i=1}^{\infty} A_i$ также отрицательно относительно φ . Действительно:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \sqcup (A_2 \setminus A_1) \sqcup (A_3 \setminus (A_2 \setminus A_1)) \sqcup \ldots \equiv \bigsqcup_{i=1}^{\infty} B_i$$

При этом $\forall i, B_i$ - отрицательно как подмножество отрицательного множества A_i . Тогда:

$$C \in \mathcal{M}, \bigcup_{i=1}^{\infty} A_i \Rightarrow C = \bigsqcup_{i=1}^{\infty} (C \cap B_i) \Rightarrow \varphi(C) = \sum_{i=1}^{\infty} \varphi(C \cap B_i) \leq 0$$