ABES Engineering College, Ghaziabad MODEL PAPER (Odd Semester) 2023-24 B.TECH. [Branch/Section:All]

SEM: I.

ŭ	ct Name: Engineering Mathematics-I Subject Code : BAS103 Max. Ma :						
Instr	1. Attempt the questions as per the instructions given 2. Assume missing data suitably						
CO1	Statement of CO1: Understand the concept of complex matrices, Eigen values, Eigen vectors and apply the co	ncept of	rank to	evaluate			
CO2 CO3 CO4	linear simultaneous equations Statement of CO2: Remember the concept of differentiation to find successive differentiation, Leibnitz Theorer tracing, and find partial and total derivatives Statement of CO3: Identify the application of partial differentiation and apply for evaluating maxima, minima, Statement of CO4: Remember the concept of Beta and Gamma function; analyze area and volume and Dirichle integral	series an	ıd Jacob	ians.			
CO5	Statement of CO5: Apply the concept of Vector Calculus to analyze and evaluate directional derivative, line, su integrals	ırface an	d volum	ie			
Section – A							
Q.1	Attempt all the parts (2 x 7=14)						
(a)	Find the value of 'a' for which the vectors (1, -2, a), (2, -1, 5) and (3, -5, 7a) are linearly dependent.	K2	CO1	2			
(b)	Determine the values of λ , μ , for the following system of equations $3x-2y+z=\mu$, $5x-8y+9z=3$, $2x+y+\lambda z=-1$ has unique solution.	K2	CO1	2			
(c)	Find the nth derivative of the following function: $\frac{1}{(1-3x)^2}$	K2	CO2	2			
(d)	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.	K2	CO2	2			
(e)	Find the percentage error in the area of an ellipse when an error of $+1$ % is made in measuring the major and minor axis.	K2	CO3	2			
(f)	Prove that $f(mx) = f(x) + (m-1)xf'(x) + \frac{(m-1)^2 x^2}{2} f''(x) + \frac{(m-1)^3 x^3}{2} f'''(x) + \dots$ Discuss the value of 'b' for a Solenoidal vector $\vec{F} = (bx)\hat{i} - (5y)\hat{j} + (2z)\hat{k}$.	K2	CO4	2			
(g)	Discuss the value of 'b' for a Solenoidal vector $\vec{F} = (bx)\hat{i} - (5y)\hat{j} + (2z)\hat{k}$.	K2	CO5	2			
	Section – B						
Q.2	Attempt any three parts of the following $(7 \times 3 = 21)$)					
(a)	Find the eigen values and corresponding eigen vectors of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$	K4	CO1	7			
(b)	If $x = \sin \sqrt{y}$ find the value of y_n at $x = 0$.	K4	CO2	7			
(c)	If $u^3 + v^3 + w^3 = x + y + z, u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{(x - y)(y - z)(z - x)}{(u - v)(v - w)(w - u)}$	K4	CO3	7			
(d)	Prove that $\iiint \frac{dx dy dz}{\sqrt{1 - x^2 - y^2 - z^2}} = \frac{\pi^2}{8}$, the integral being extended to all positive values of the variables for which the expression is real.	K4	CO4	7			
(e)	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.	K4	CO5	7			

Section – C							
Q.3	Attempt any one part of the following $(7x 1 = 7)$						
(a)	If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ determine two non-singular matrices P and Q such that $PAQ = I$. Hence find A^{-1} .	К3	CO1	7			
(b)	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Hence Compute A^{-1} . Also evaluate $A^6 - 6A^5 + 9A^4 - 2A^3 - 12A^2 + 23A - 9I$.	K4	CO1	7			
Q.4	Attempt any one part of the following $(7x 1 = 7)$						
(a)	Find the <i>n</i> th derivative of $\tan^{-1} \left(\frac{2x}{1-x^2} \right)$	K4	CO2	7			
(b)	Trace the curve : $a^2x^2 = y^3(2a - y)$ and also write all necessary steps	K4	CO2	7			
Q.5	Attempt any one part of the following $(7x 1 = 7)$		<u> </u>				
(a)	Compute $f(1.1,0.9)$ for the function $f(x, y) = \tan^{-1}\left(\frac{x}{y}\right)$ by using Taylor's series expansion.	K4	CO3	7			
(b)	Find the dimensions of a rectangular box of maximum capacity whose surface area is given when (i) box is open at the top (ii) box is closed.	K4	CO3	7			
Q.6	Attempt any one part of the following $(7x 1 = 7)$						
(a)	Evaluate the following integral by changing the order of integration: $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$	K4	CO4	7			
(b)	Change into polar coordinates and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$. Hence show that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.	K4	CO4	7			
Q.7	Attempt any one part of the following $(7x 1 = 7)$						
(a)	Find the directional derivative of $\varphi(x, y) = 5x^2y - 5y^2z + \frac{5}{2}z^2x$ at the point (1,1,1) in the direction of line $\frac{x+1}{1} = \frac{y}{1} = \frac{1-2z}{-2}$.	K4	CO5	7			
(b)	A fluid motion is given by $v = (y+z)i + (z+x)j + (x+y)k$, verify that motion is irrational and hence find the velocity potential. Also prove that fluid is incompressible	K4	CO5	7			