TRIPLE INTEGRALS

SUPPOSE F: K - R WHERE

$$K = [a,b] \times [c,d] \times [e,f]$$

A PARTITION OF K IS AN ORDERED TRIPLE

OF PARTITIONS

THEN IF lim S(P, F) EXISTS, WHERE IPH > 0

$$S(P,f) = \sum_{(ijk)} F(\alpha_{ijk}, \beta_{ijk}, \gamma_{ijk}) |V_{ijk}|$$

$$(|V_{ijk}| = (X_i - X_{i-1})(Y_j - Y_{j-1})(Z_k - Z_{k-1}))$$

THEN WE SAY F IS INTEGRABLE AND WE

WRITE
$$\iint_{K} F(x,y,z) dxdydz = \lim_{\|P\| \to 0} S(P,F)$$

IF F IS CONTINUOUS THEN F IS INTEGRABLE.
(SFT OF DISTONTINUITIES HAS 3-MEASURE ZERO -) F IS INTEGRABLE) F, G ARE INTEGRABLE ->
P, G ARE INTEGRATION =
∭ F±G = ∭ F ± ∭ G
SS aF = d SSF (d € R) K
K
/ SSS F ∫ ≤ SSS IFI
K
LIKE IN THE 2-VARIABLE CASE, WE CAN
EXTEND THE TRIPLE INTEGRAL OVER CLOSED
BOUNDED REGIONS.
dV = dx dy dz

FUBINI'S THEOREM

SUPPOSE D IS CLOSED AND BOUNDED AND

$$D = \left\{ (x,y,z) \middle| (x,y) \in R, g(x,y) \le z \le h(x,y) \right\} (R \le \mathbb{R}^2)$$

WHERE g, h: R -> IR ARE CONTINUOUS. IF

$$\iiint f(x,y,z) dV = \iiint f(x,y,z) dz dx dy$$

$$D \qquad R \qquad Q(x,y)$$

R IS A TYPE - I ELEMENTARY FUNCTION,

$$R = \{(x,y) \mid a \in x \leq b, \phi_i(x) \leq y \leq \phi_i(x)\}$$
 THEN

$$\iiint_{K} f(x,y,z) dV = \int_{a}^{b} \left(\int_{a}^{b} f(x,y,z) dz \right) dy dx$$

WE CAN WRITE A SIMILAR FORMULA IF R

IS FLEMENTARY TYPE - II.

EXAMPLES

K FIND THE VOLUME OF THE SOLID BOUNDED BY 4x2+ 4x2+ 22 = 16 $\mathcal{R} = \left\{ (x,y) \mid x^2 + y^2 \leq 4 \right\}$ g(x,y) (ToP) = $\sqrt{16-4(x^2+y^2)}$ = $2\sqrt{4-(x^2+y^2)}$ h(x,y) (BOTTOM) = $-\sqrt{16-4(x^2+y^2)}$ = $-2\sqrt{4-(x^2+y^2)}$ HEACE THE VOLUME EQUALS R IS A TYPE I FLEMENTARY REGION, SO THE INTEGRAL HENCE, VOWNE OF K EQUALS (\(\(\sigma \) \(\sigma \)

EXAMPLES (CONTINUED)

FIND VOLUME OF SOUD ENCLOSED BETWEEN

SET
$$X^{2}+3Y^{2}=8-X^{2}-Y^{2}$$
, so,
 $2x^{2}+4Y^{2}=8$, i.e. $\frac{X^{2}}{4}+\frac{Y^{2}}{2}=1$

$$\frac{x^{2}+y^{2}}{4} \le 1$$

$$\frac{x^{2}+y^{2}}{4} \le 1$$

$$\frac{x^{2}+y^{2}}{4} \le 1$$

$$\frac{x^{2}+y^{2}}{4} \le 1$$

CHANGE OF VARIABLE FORMULA

SUPPOSE D IS AN ELEMENTARY REGION, $f:D \to \mathbb{R}$ IS CONTINUOUS, $\Omega \subseteq \mathbb{R}^3$ IS OPEN, AND

$$g: \Omega \rightarrow \mathbb{R}^3$$
 $g(u,v,\omega) = (g_1,g_2,g_3)$ is 1-1

WITH ALL PARTIAL DERIVATIVES CONTINUOUS.

FURTHER, SUPPOSE THE JACOBIAN $J(u,v,\omega) \neq 0$

¥ (u,v,ω) ∈ Ω, AND g(E) = D FOR SOME

GLEMENTARY REGION F. THEN

$$\iiint f dV = \iiint f(g_1, g_2, g_2)(u, v, w) |J(u, v, w)| dW$$

WHERE dW = dudvdw AND

$$J(x,v,w) = \frac{\partial g_1}{\partial x} \frac{\partial g_1}{\partial v} \frac{\partial g_1}{\partial w} \\
\frac{\partial g_2}{\partial x} \frac{\partial g_2}{\partial v} \frac{\partial g_2}{\partial w} \\
\frac{\partial g_3}{\partial x} \frac{\partial g_3}{\partial v} \frac{\partial g_3}{\partial w}$$

SPHERICAL COORDINATES

EXAMPLE

FIND	VO WME	OF	THE	SOUD	LUT	FROM
x2+ Y	2+22=9	BY	THE	CONE	Z	$=\sqrt{\chi^2+\gamma^2}$

LET US DESCRIBE THESE

IN SPHERICAL COORDINATES:

$$\chi^{2} + \chi^{2} + z^{2} = 9 = \{ (\rho, \theta, \phi) | \rho \leq 3, 0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi \} = \mathbb{R},$$

THE CONE Z2 = X2+ Y2, (Z>O) IN SPHERICAL

COORDINATES:

SO CONE IN SPHERICAL COORDINATES IS:

$$\Re_{2} = \left\{ (\rho, \theta, \phi) \mid \rho \geqslant 0, 0 \le \theta \le 2\pi, 0 \le \phi \le \frac{\pi}{4} \right\}$$

$$\mathbb{R}_1 \cap \mathbb{R}_2 = \left\{ 0 \le \rho \le 3, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{4} \right\}$$

So VOLOME ((R, 1 R2) =

$$\int \int \int \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$
000

THIS IS NOW A ROUTINE CALCULATION

(COMPLETE IT: EXERCISE)

CYLINDRICAL COORDINATES

A POINT (x, y, z) IN CYLINDRICAL COORDINATES

IS GIVEN BY THE TRIPLE (Y,0,2)

X = Y cos 0

Y = Y sin 0

AND THE Z-GORDINATE REMAINS

THE SAME.

CHANGE OF VARIABLE FORMULA FOR CHANGING

INTO CYUNDRICAL COORDINATES:

IF $g(r,\theta,z) = (x,y,z)$, g(E) = D, THEN

 $\iiint f(x,y,z) dV = \iiint f \circ g(r,\theta,z) |J(r,\theta,z)| d(r,\theta,z)$ E

= SSSfog(r,0,2) rdrd0dz.

SINCE

EXAMPLE

FIND THE VOLUME OF THE SOLID CUT FROM	FIND	THE	VOLUME	OF	THE	SOLID	CUT	FROI
---------------------------------------	------	-----	--------	----	-----	-------	-----	------

LET US EXPRESS THIS SOLD IN CYLINDRICAL V

COORDINATES:

$$\frac{\partial^2}{\partial x} \leq \frac{\partial}{\partial x} = \frac{$$

$$R_1 \cap R_2 = \left\{ (r, \theta, z) \middle| 0 \le r \le \sin \theta, z^2 \le 1 - r^2 \right\}$$

So, Vol(
$$\mathbb{R}_1 \cap \mathbb{R}_2$$
) =
$$\int \left(\left(\left(r dz \right) dr \right) d\theta \right)$$

