УДК 621.039.54

ИСПОЛЬЗОВАНИЕ МЕТОДА ИНТЕРВАЛЬНЫХ ВЫЧИСЛЕНИЙ ДЛЯ ПОЛУЧЕНИЯ ОЦЕНОК ПОГРЕШНОСТЕЙ ХАРАКТЕРИСТИК ТОПЛИВА В ПРОЦЕССЕ КАМПАНИИ*

Д.А. Камаев, В.В. Колесов, В.Ф. Украинцев, Д.В. Хитрик

Обнинский государственный технический университет атомной энергетики, г. Обнинск

В работе приведены результаты применения метода интервальных вычислений для получения гарантированных оценок погрешностей концентраций нуклидов в процессе кампании реактора. В принципе, проблема зависимости точности концентраций нуклидов, получаемых в процессе кампании, от точности одногрупповых констант может в какой-то степени быть решена с использованием формализма коэффициентов чувствительности и линейной теории возмущений. Однако такая процедура является весьма трудоемкой и не дает гарантированных оценок для получаемых концентраций. Нами предложена и реализована методика оценки погрешностей концентраций, основанная на интервальных вычислениях. Основным преимуществом этой методики является возможность получения гарантированных оценок концентраций.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ИНТЕРВАЛЬНОЙ АРИФМЕТИКИ

Рассмотрим один из методов, позволяющий автоматически анализировать погрешность в процессе вычислений – интервальную арифметику. Метод достаточно широко освещен в литературе (см., например, [1]). Поэтому мы изложим лишь основные его положения.

Основная идея метода состоит в следующем. Пусть задана функция f(x) от одной вещественной переменной x из интервала X = [a, b], где a и b — некоторые числа, заданные точно. Диапазон изменения функции f(x) на отрезке X есть множество

$$f(X) = \{ y \mid y = f(x), a \le x \le b \}$$
 (1)

которое, вообще говоря, может не быть известно точно (например, точные границы могут не достигаться). Однако всегда можно найти числа c и d, такие что

$$c \le f(x) \le d$$
 при $a \le x \le b$. (2)

Тогда множество, определенное в (1) будет содержаться в интервале Y=[c, d], который можно определить как интервальную функцию F, связанную с f преобразованием интервала X=[a, b] в интервал Y=[c, d] способом, описанным выше, т.е.

$$Y = F(X). (3)$$

[©] Д.А. Камаев, В.В. Колесов, В.Ф. Украинцев, Д.В. Хитрик, 2007

^{*} Работа выполнена при поддержке РФФИ (проект 05-08-65420)

Эта интервальная функция содержит вещественную функцию f в том смысле, что $f(x) \subset F(X)$. Также F должна быть монотонным включением — если интервалы X и Z таковы, что $X \subset Z$, то и интервал $F(X) \subset F(Z)$. Монотонная функция F(X), являющаяся монотонным включением, называется интервальным расширением f. Аналогично можно рассмотреть интервальное расширение функции двух операндов (см. табл. 1). Ширинами интервалов X и Y являются соответственно b-a и d-c.

Основные интервальные операции

Таблица 1

Операция	Операция Интервальный результат			
[a, b]+[c, d]	[c, d] [a+c, b+d]			
k [a, b]	[k a, k b], если k □ 0, [k b, k a], если k<0	(5)		
[a, b]–[c, d]	[a-d, b-c]	(6)		
[a, b] [c, d]	[min(a c, a d, b c, b d), max(a c, a d, b c, b d)]	(7)		
$[a, b]^{-1}$	[a, b] ⁻¹ [1/b, 1/a], если а b>0, не определено в противном случае			
[a, b] ²	$[\min(a^2, b^2), \max(a^2, b^2)], \text{ если } a b > 0, [0, \max((a^2, b^2)], \text{ если } a b \Box 0$	(9)		
Составная операция:				
$[a, b] / [c, d] = [a, b] [c, d]^{-1}$ (не определено при $c d < 0$)				

Важность интервального анализа для оценки погрешности состоит в том, что если можно вычислить интервальное расширение какой-либо вещественной функции f(x), то $f(x) \in F(x)$, если $x \in X$. Результатом применения интервального расширения будет интервал, в котором гарантированно лежит результат в случае, если операнды изменяются в заданных интервалах.

В табл. 1 приводятся интервальные расширения для основных арифметических операций.

Определение квадрата интервала в (9), вообще говоря, не равно $[a, b] \cdot [a, b]$. Его можно использовать для вычисления $[a, b]^k$, где k — целое число.

Если мы имеем выражение, состоящее из набора арифметических операций и библиотечных функций, являющихся интервальными расширениями (с помощью специально реализованных процедур) точных операций и библиотечных функций, то результирующий интервал будет содержать результат соответствующих вычислений в точной вещественной арифметике.

РЕЗУЛЬТАТЫ ТЕСТОВЫХ РАСЧЕТОВ

Для проведения расчетов изотопной кинетики нами написан программный комплекс, основанный на методе матричной экспоненты. Одногрупповые константы рассчитываются на основе программы MCNP. В комплексе реализована как вещественная, так и интервальная арифметика. Комплекс позволяет учитывать в расчетах практически любое число нуклидов, для которых могут быть заданы одногрупповые нейтронные сечения.

Для верификации предлагаемого комплекса расчетов изотопной кинетики мы провели расчеты выгорания топлива в трехзонной ячейке LWR, содержащей МОХ-топливо с обогащением 7% [2]. Спецификации ячейки приведены в табл. 2 и 3. В расчетах учитывались 359 нуклидов, для которых были рассчитаны одногрупповые сечения, которые рассчитывались на основе библиотек JENDL-3.2 и JEF-2.2. Мы также использовали погрешности в одногрупповых сечениях для ряда нуклидов из [3] (табл. 4).

Расчеты проводились до выгорания 50 ГВт·сут/т. Пересчет плотности потока нейтронов для сохранения линейной мощности проводился с шагом 5 ГВт·сут/т. Результаты наших расчетов для некоторых нуклидов приведены в табл. 5 в сравнении с результатами работы [2]. Как видно из таблицы, отличия полученных нами концентра-

Таблица 2 Спецификации шестигранной ячейки с плутониевым МОХ-топливом

V_m/V_f	1.1
Шаг решетки (см)	1.2204
Топливо (PuO ₂ +UO ₂) Обогащение по Pu (%) Температура (K)	7.0 900
Оболочка Внешний диаметр (см) Толщина (см) Температура (К)	Цирконий 0.95 0.065 900
Замедлитель (H₂O) Температура (K)	600
Линейная мощность (Вт/см)	160

Ядерные концентрации (**×10**²⁴/**cм**³)

Топливо	Обогащение 7% по Pu	
U ²³⁵	6.194×10 ⁻⁵	
U ²³⁸	2.058×10 ⁻²	
Pu ²³⁹	1.367×10 ⁻³	
Pu ²⁴⁰	6.009×10 ⁻⁴	
Pu ²⁴¹	2.418×10 ⁻⁴	
Pu ²⁴²	1.844×10 ⁻⁴	
O ¹⁶	4.608×10 ⁻²	
Оболочка		
Zr (natural)	3.702×10 ⁻²	
Замедлитель		
Н	4.744×10 ⁻²	
0	2.372×10 ⁻²	

Таблица 4

Погрешности одногрупповых констант [3]

Цуугрия	Погрешности в %			
Нуклид	Сечение деления	Сечение радиационного захвата		
235	5	5		
238⋃	5	5		
²³⁷ Np	5	7		
²³⁹ Pu	5	5		
²⁴⁰ Pu	6	7		
²⁴¹ Pu	7	9		
²⁴² Pu	9	10		
²⁴¹ Am	4	5		
²⁴³ Am	25	2		
²⁴² Cm	40	3		
²⁴³ Cm	6	12		
²⁴⁴ Cm	20	5		
²⁴⁵ Cm	5	5		

ций от результатов работы [2] прекрасно укладываются в рамки рассчитанных нами погрешностей

ОЦЕНКА ПОГРЕШНОСТЕЙ ДЛЯ МОДЕЛЬНОЙ ЗАДАЧИ

Для оценки качества погрешностей, получаемых по методу интервальных вычислений, рассмотрим следующую модельную задачу: будем рассматривать только радиационный захват, деление и радиоактивный распад ²⁴²Pu, ²⁴³Pu и ²⁴³Am. Тогда система дифференциальных уравнений имеет вид:

$$\begin{split} \frac{dN_{\text{Pu42}}(t)}{dt} &= -\sigma_{c\text{Pu42}}\Phi N_{\text{Pu42}}(t) - \sigma_{f\text{Pu42}}\Phi N_{\text{Pu42}}(t) - \lambda_{\text{Pu42}}N_{\text{Pu42}}(t) \\ \frac{dN_{\text{Pu43}}(t)}{dt} &= -\sigma_{c\text{Pu43}}\Phi N_{\text{Pu43}}(t) + \sigma_{c\text{Pu42}}\Phi N_{\text{Pu42}}(t) - \sigma_{f\text{Pu43}}\Phi N_{\text{Pu43}}(t) - \lambda_{\text{Pu43}}N_{\text{Pu43}}(t) \\ \frac{dN_{\text{Am43}}(t)}{dt} &= -\sigma_{c\text{Am43}}\Phi N_{\text{Am43}}(t) - \sigma_{f\text{Am43}}\Phi N_{\text{Am43}}(t) - \lambda_{\text{Am43}}N_{\text{Am43}}(t) + \lambda_{\text{Pu43}}N_{\text{Pu43}}(t). \end{split}$$

Таблица 5 Сравнение концентраций и их погрешностей, рассчитанных по предлагаемой программе, с результатами из работы [2]

	Наст	namaa nafara		
Изотоп	Концентрация (А)	Настоящая работа онцентрация (A) Погрешности, полученные из интервального анализа		(Б−A)/Б ×100%
235	4.261×10 ⁻⁵	1.9	4.240×10 ⁻⁵	0.5
238 U	2.006×10-2	0.1	2.005×10 ⁻²	0.05
236⋃	5.006×10-6	5.9	5.233×10 ⁻⁶	4.3
²³⁹ Pu	1.118×10 ⁻³	4.0	1.124×10 ⁻³	0.5
²⁴⁰ Pu	5.639×10-4	5.4	5.675×10-4	0.6
²⁴¹ Pu	2.933×10-4	10.1	2.897×10 ⁻⁴	1.2
²⁴² Pu	1.790×10⁴	6.1	1.750×10 ⁻⁴	2.3
²⁴¹ Am	2.262×10 ⁻⁵	7.9	2.207×10 ⁻⁵	2,5
²⁴³ Am	3.224×10 ⁻⁵	14.7	3.572×10 ⁻⁵	9.7
²⁴⁴ Cm	1.445×10⁻⁵	16.1	1.382×10 ⁻⁵	4.6
¹³¹ Xe	1.915×10⁻⁵	8.2	1.859×10 ⁻⁵	3.0
¹³⁵ Cs	4.032×10 ⁻⁵	8.2	4.279×10 ⁻⁵	5.6
¹⁴⁷ Pm 6.339×10 ⁻⁶		8.9	6.430×10 ⁻⁶	1.4
	Ядерные конц	50 ГВт∙сут/т		
Изотоп		Погрешности, полученные	Работа [2] (Б)	(Б–А)/Б ×100%
	Концентрация (А)	из интервального анализа		×100%
235U	Концентрация (A) 3.269×10⁻⁵	из интервального анализа 3.3	3.239×10 ⁻⁵	0.9
235U 238U		·	3.239×10 ⁻⁵ 1.968×10 ⁻²	
	3.269×10 ⁻⁵	3.3		0.9
238U	3.269×10 ⁻⁵ 1.970×10 ⁻²	3.3 0.2	1.968×10 ⁻²	0.9
238U 236U	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶	3.3 0.2 6.6	1.968×10 ⁻² 7.261×10 ⁻⁶	0.9 0.1 4.7
238U 236U 239Pu	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³	3.3 0.2 6.6 6.1	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³	0.9 0.1 4.7 0.1
238U 236U 239Pu 240Pu	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³ 5.275×10 ⁻⁴	3.3 0.2 6.6 6.1 8.9	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³ 5.389×10 ⁻⁴	0.9 0.1 4.7 0.1 2.1
238U 236U 239Pu 240Pu 241Pu	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³ 5.275×10 ⁻⁴ 3.026×10 ⁻⁴	3.3 0.2 6.6 6.1 8.9 15.4	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³ 5.389×10 ⁻⁴ 2.976×10 ⁻⁴	0.9 0.1 4.7 0.1 2.1 1.7
238U 236U 239Pu 240Pu 241Pu 242Pu	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³ 5.275×10 ⁻⁴ 3.026×10 ⁻⁴ 1.799×10 ⁻⁴	3.3 0.2 6.6 6.1 8.9 15.4 11.2	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³ 5.389×10 ⁻⁴ 2.976×10 ⁻⁴ 1.726×10 ⁻⁴	0.9 0.1 4.7 0.1 2.1 1.7 4.2
238U 236U 239Pu 240Pu 241Pu 242Pu 241Am	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³ 5.275×10 ⁻⁴ 3.026×10 ⁻⁴ 1.799×10 ⁻⁴ 3.144×10 ⁻⁵	3.3 0.2 6.6 6.1 8.9 15.4 11.2 12.9	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³ 5.389×10 ⁻⁴ 2.976×10 ⁻⁴ 1.726×10 ⁻⁴ 3.063×10 ⁻⁵	0.9 0.1 4.7 0.1 2.1 1.7 4.2 2,6
238U 236U 239Pu 240Pu 241Pu 242Pu 241Am 243Am	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³ 5.275×10 ⁻⁴ 3.026×10 ⁻⁴ 1.799×10 ⁻⁴ 3.144×10 ⁻⁵ 4.242×10 ⁻⁵	3.3 0.2 6.6 6.1 8.9 15.4 11.2 12.9 19.0	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³ 5.389×10 ⁻⁴ 2.976×10 ⁻⁴ 1.726×10 ⁻⁴ 3.063×10 ⁻⁵ 4.900×10 ⁻⁵	0.9 0.1 4.7 0.1 2.1 1.7 4.2 2,6 13.4
238U 236U 239Pu 240Pu 241Pu 242Pu 241Am 243Am 244Cm	3.269×10 ⁻⁵ 1.970×10 ⁻² 6.920×10 ⁻⁶ 1.006×10 ⁻³ 5.275×10 ⁻⁴ 3.026×10 ⁻⁴ 1.799×10 ⁻⁴ 3.144×10 ⁻⁵ 4.242×10 ⁻⁵ 3.146×10 ⁻⁵	3.3 0.2 6.6 6.1 8.9 15.4 11.2 12.9 19.0 19.4	1.968×10 ⁻² 7.261×10 ⁻⁶ 1.007×10 ⁻³ 5.389×10 ⁻⁴ 2.976×10 ⁻⁴ 1.726×10 ⁻⁴ 3.063×10 ⁻⁵ 4.900×10 ⁻⁵ 2.958×10 ⁻⁵	0.9 0.1 4.7 0.1 2.1 1.7 4.2 2,6 13.4 6.4

Параметры системы уравнений

Таблица 6

Изотоп	σ _с , барн	σ _f ,барн	лс ⁻¹	N₀×10 -24 ядер/см³
²⁴² Pu	8.6749	0.4782	5.677×10 ⁻¹⁴	1.0×10 ⁻⁴
²⁴³ Pu	5.6121	11.5463	3.885×10⁻⁵	1.0×10 ⁻⁴
²⁴³ Am	28.8236	0.4607	2.976×10 ⁻¹²	0

Соответствующие сечения, постоянные распада и начальные концентрации приводятся в табл. 6. Время выгорания топлива T = 100 сут, плотность потока нейтронов $\Phi = 3.92 \cdot 10^{14}$ нейтр/(с·см²).

Такая простая модельная задача позволяет нам определить: не переоценивает ли предлагаемый интервальный метод реальные пределы изменения концентраций нуклидов при вариации констант. Реальные пределы изменения концентраций нуклидов при изменениях одногрупповых констант определялись нами простым перебором верхних и нижних значений границ одногрупповых констант.

Проанализируем влияние возмущения сечений на концентрации нуклидов. Будем брать возмущения сечений равными 3%.

Табл. 7 дает нам погрешности концентраций, получаемые из метода интервальных вычислений. В последних трех столбцах приведены концентрации, посчитанные для реально возмущенных сечений (например, -3%; -3%; 3%; 3%; 3%; 3% соответствует 3-процентному уменьшению сечения радиационного захвата 242 Pu, 3%-процентному уменьшению сечения деления 242 Pu, 242 Pu, 242 Pu, 243

Сравнение результатов интервальных вычислений с расчетами, использующими возмущенные сечения

Таблица 7

Нуклид	Концентрация (×10-4)	Погр. (%)	-3%; -3%; 3%; 3%; 3%; 3%	3%; 3%; 3%; 3%; 3%; 3%	-3%; 3%; 3%; 3%; 3%; 3%
²⁴² Pu	9.6947×10 ⁻⁵	0.093	9.7038×10 ⁻⁵ (0.093%)	9.6857×10 ⁻⁵ (0.092%)	9.7028×10 ⁻⁵ (0.084%)
²⁴³ Pu	8.4852×10 ⁻⁹	3.1	8.2382×10 ⁻⁹ (2.9%)	8.7316×10 ⁻⁹ (2.9%)	8.7238×10 ⁻⁹ (2.8%)
²⁴³ Am	9.3312×10 ⁻⁶	0.38	9.2958×10 ⁻⁶ (0.38%)	9.3120×10 ⁻⁶ (0.21%)	9.2958×10 ⁻⁶ (0.38%)

Из последней таблицы видно, что как для 242 Pu, так и для 243 Pu и 243 Am метод интервальных вычислений практически точно задает границы (верхние или нижние) изменения концентраций при изменениях сечений в ту или иную сторону.

В качестве следующего шага планируется сравнение погрешностей, определяемых по интервальному методу с погрешностями, получаемыми из коэффициентов чувствительности и линейной теории возмущений.

Литература

- 1. Алефельд Г., Херцбергер Ю. Введение в интервальные вычисления. М.: Мир, 1987.
- 2. Stepanek J., Vontobel P. EIR Results for the HCLWR NEACRP Burnup Benchmark Obtained Using EIR Version of DANDE System and JEF Library: Отчет NEACRP-A-851 (1987).
- 3. Cathalau S., Ukraintsev V., Benslimane A. et.al. Qualification of the JEF-2 Cross sections in the Epithermal and Thermal Energy Ranges Using a Statistical Approach//Nuc. Sci. Eng. 1995. V. 121. P. 326-334.

Поступила в редакцию 20.10.2006