GENERAL EXAM - ANALYSIS

January 2010

Closed book, closed notes. Please pledge. In each problem, justify all assertions, show calculations, and identify those theorems which you invoke in your arguments.

- 1. Let w_1, w_2, \dots, w_n be n points on the unit circle $\mathbb{T} \equiv \{z \in \mathbb{C} : |z| = 1\}$. Show that there exists a point $z \in \mathbb{T}$ so that the product of the distances from z to w_j (i.e., $\prod_{j=1}^n |z w_j|$) is at least 1. Then show there there is a point $v \in \mathbb{T}$ so that the product of the distances from v to the points w_j is exactly 1.
- 2. Suppose that f is analytic in an open set containing the closed unit disk $\overline{\mathbb{D}} = \{z : |z| \leq 1\}$, except for a simple pole at z_0 where $|z_0| = 1$. Show that if

$$\sum_{n=0}^{\infty} a_n z^n$$

is the power series for f in \mathbb{D} , then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0.$$

3. Suppose that f and g are analytic in an open set containing the closed unit disk $\overline{\mathbb{D}}=\{z\in\mathbb{C}:|z|\leq 1\}$. Suppose that f has a simple zero at z=0 and no other zero in $\overline{\mathbb{D}}$. Set

$$f_{\epsilon}(z) = f(z) + \epsilon g(z).$$

Show that if ϵ is sufficiently small, then f_{ϵ} has a unique zero in $\overline{\mathbb{D}}$.

4. Evaluate

$$\int_0^\infty \frac{dx}{1+x^n}$$

for n=2,3,4,... by integrating over the boundary of an appropriately chosen "pie-shaped" region.

- 5. Let $\mathcal{B}(\mathbb{R}^1)$ be the collection of Borel sets on the real line and $\mathcal{B}(\mathbb{R}^2)$ those of the plane.
 - (a) Show that sections of Borel sets in the plane, e.g., sets of the form $B_y = \{x \in \mathbb{R} : (x, y) \in \mathcal{B}\}$ with $B \in \mathcal{B}(\mathbb{R}^2)$ are in $\mathcal{B}(\mathbb{R}^1)$.
 - (b) Suppose that f(x,y) is a Borel measurable function on the plane, \mathbb{R}^2 . Show that for fixed $y, f_y(x) = f(x,y)$ is a Borel function on \mathbb{R} .

1

6. Let 0 < a < 1 < b be real constants. Define the function S(x) on $[0, \infty)$ by the equation

$$S(x) = \sum_{n=1}^{\infty} a^n \chi_{[0,b^n]}(x)$$

where $\chi_{[0,b^n]}(x)$ is the characteristic function for $[0,b^n]$, equal to 1 on this interval and zero otherwise.

- (a) Show that $S(x) \in L^p([0,\infty),dx)$, i.e., is L^p -integrable (with Lebesgue measure), provided $ab^{1/p} < 1$.
- (b) Show that

$$S(x) \le \frac{x^{(\ln a/\ln b)}}{1-a}.$$

7. Let $\{\phi_n\}$ be a complete orthonormal set of functions in the real Hilbert space $L^2([0,1])$ with inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx.$$

For $0 \le a \le 1$, set

$$h(x) = \sum_{n=1}^{\infty} \phi_n(x) \int_0^a \phi_n(y) \, dy.$$

- (a) Show that the series converges in an L^2 -sense to an L^2 function.
- (b) Show that for any $b, 0 \le b \le 1$,

$$\int_0^b h(x) \, dx = \sum_{n=1}^\infty \int_0^b \phi_n(x) \, dx \int_0^a \phi_n(y) \, dy.$$

(c) Show that

$$\int_0^b h(x) \, dx = \min(a, b).$$