Computer Organization: A Programmer's Perspective

Optimizing for Cache Performance

Gal A. Kaminka galk@cs.biu.ac.il

Cache Performance Metrics

Miss Rate

- Fraction (percent) of memory references not found in cache
- Typical numbers (misses/references):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycles for L1
 - 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
- Typically 50-200 cycles for main memory (trend: increasing!)

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

Repeated references to variables are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Examples:

cold cache, 4-byte words, 4-word cache blocks

```
int sumarrayrows(int a[M][N])
{
   int i, j, sum = 0;

   for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sumarraycols(int a[M][N])
{
   int i, j, sum = 0;

   for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
   return sum;
}</pre>
```

Miss rate = 1/4 = 25%

Miss rate = 100%

The Memory Mountain

Read throughput (read bandwidth)

Number of bytes read from memory per second (MB/s)

Memory mountain

Measured read throughput as a function of spatial and temporal locality.

Compact way to characterize memory system performance.

The Memory Mountain

Ridges of Temporal Locality

Slice through the memory mountain with stride=1 illuminates read throughputs of different caches and memory

A Slope of Spatial Locality

Slice through memory mountain with size=256KB shows cache block size.

Computer Organization: A Programmer's Perspective

Matrix Multiplication Example

- Major Cache Effects to Consider
 - Total cache size
 - Exploit temporal locality and keep the working set small (e.g., by using blocking)
 - Block size
 - Exploit spatial locality

- Description:
 - Multiply N x N matrices
 - O(N³) total operations
 - Accesses
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

Miss Rate Analysis for Matrix Multiply

- Assume:
 - Line size = 32B (big enough for 4 64-bit words)
 - Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
 - Cache is not even big enough to hold multiple rows
- Analysis Method:
 - Look at access pattern of inner loop

Layout of C Arrays in Memory

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > sizeof(a[i][j]), exploit spatial locality
 - miss rate = sizeof(a[i][j]) / B
- Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)


```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)


```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (kij)


```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
       c[i][j] += r * b[k][j];
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)


```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)


```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Matrix Multiplication (kji)


```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Summary of Matrix Multiplication

Julililialy of Matrix Multiplicat

ijk (& jik): 2 loads, 0 stores misses/iter = 1.25

kij (& ikj): 2 loads, 1 store misses/iter = 0.5

jki (& kji): 2 loads, 1 store misses/iter = 2.0

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}</pre>
```

```
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}</pre>
```

```
for (j=0; j<n; j++) {
   for (k=0; k<n; k++) {
     r = b[k][j];
   for (i=0; i<n; i++)
     c[i][j] += a[i][k] * r;
  }
}</pre>
```

Core i7 Matrix Multiply Performance

Based on class notes by Bryant and O'Hallaron

Improving Temporal Locality by Blocking

Example: Blocked matrix multiplication

"block" (in this context) does not mean "cache block".

Instead, it mean a sub-block within the matrix.

Example: N = 8; sub-block size = 4

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} X \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

<u>Key idea:</u> Sub-blocks (i.e., \mathbf{A}_{xy}) can be treated just like scalars.

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Blocked Matrix Multiply (bijk)


```
for (jj=0; jj<n; jj+=bsize) {</pre>
  for (i=0; i<n; i++)
    for (j=jj; j < min(jj+bsize,n); j++)
      c[i][j] = 0.0;
  for (kk=0; kk<n; kk+=bsize) {</pre>
    for (i=0; i<n; i++) {
      for (j=jj; j < min(jj+bsize,n); j++) {</pre>
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
           sum += a[i][k] * b[k][j];
        c[i][j] += sum;
```

Blocked Matrix Multiply Analysis

Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize X bsize block of B and accumulates into 1 X bsize sliver of C Loop over i steps through n row slivers of A & C, using same B

```
for (i=0; i<n; i++) {
           for (j=jj; j < min(jj+bsize,n); j++) {
              sum = 0.0
             for (k=kk; k < min(kk+bsize,n); k++) {
                sum += a[i][k] * b[k][j];
             c[i][i] += sum;
Innermost
Loop Pair
                                                              Update successive
                       row sliver accessed
                                                              elements of sliver
                       bsize times
                                         block reused n times
                                         in succession
```

Pentium Blocked Matrix Multiply Performance

Blocking (bijk and bikj) improves performance by a factor of two over unblocked versions (ijk and jik) relatively insensitive to array size.

Concluding Observations

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique
- All systems favor "cache friendly code"
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)

#