Performance measures and model comparison

Occam's Razor

• If two models are generally similar in terms of their error statistics and other diagnostics, you should prefer the one that is simpler and/or easier to understand

Regression

Regression

- Simple approach: compare errors (eg RMSE)
- Or R-squared (variance explained). If the models do not have the same complexity, then use adjusted R-squared
- There is no absolute standard for a "good" value of adjusted R-squared

Categorization

		Condition (as determined by "Gold standard")		
	Total population	Condition positive	Condition negative	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	
outcome	Test outcome negative	False negative (Type II error)	True negative	

Why do we need different performance measures

Example with lots of bias

A simple model says 'A' all the time

Accuracy: 90%

			Condition (as determined by "Gold standard")			
		Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
Test outcom		Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	
	outcome	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Ne
		Accuracy (ACC) = <u>Σ True positive + Σ True negative</u> Σ Total population	True positive rate (TPR), Sensitivity, Recall = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$		
			2 Condition positive	2 Condition negative	ROC Curve	TPR

ROC curve

y-axis is true positive rate, and the *x*-axis is false positive rate

Interpretation:

Pick a random negative and a random positive example; The AUC gives you the probability that your classifier assigns a higher score to the positive example (ie, ranks the positive higher than the negative).

ROC curve

- The most common method for combining sensitivity and specificity into a single value uses the receiver operating characteristic (ROC) curve.
- The ROC curve is useful for determining alternate cutoffs for class probabilities

Precision and recall

- Origins: information retrieval
- Precision is the probability that a (randomly selected) retrieved document is relevant.
- Recall is the probability that a (randomly selected) relevant document is retrieved in a search.
- They are balanced: you can increase one at the cost of the other

		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	
outcome	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Ne ₁
	Accuracy (ACC) =	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), $Fall-out = \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	D
	Σ True positive + Σ True negative Σ Total population	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	

		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
Test	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$:
outcome	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Ne
	Accuracy (ACC) =	True positive rate (TPR), Sensitiv (1) Recall =	False positive rate (FPR), $Fall-out = \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	D
	Σ True positive + Σ True negative Σ Total population	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True regards rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	

ROC curve

http://www.navan.name/roc/

Note: ROC curve needs a probability

Picking a good performance metrics is still a open question

The paper <u>Facing Imbalanced Data Recommendations for the Use of</u>

<u>Performance Metrics</u> found that "while ROC was unaffected by skew, the precision-recall curves suggest that ROC may mask poor performance in some cases."

Picking a good performance metrics is still a open question, but in publications, competitions etc ROC is a safe bet.

Always check what your problem needs first

All in all, things to keep in mind

The measure you optimize to makes a difference

The measure you report makes a difference

Use measure appropriate for problem/community

Accuracy often is not sufficient/appropriate;

ROC is gaining popularity in the ML community

Only accuracy generalizes to >2 classes!

END

ROC Curve Demo

From Dave Dickey, used with permission

AUC Area Under Curve = concordant pair plus ½ ties (proportions)
Pairs: 25x35=875 with 0 paired with 1.

Proportion Concordant:

(18x23+12x15)/(25x35)=(18/25)x(23/35)+(12/25)x(15/35)

1/ Describing Time 1//00/40 + 00/40 + 4EVE\//0EV0E\