Map-matching

T. Akamatsu, G. Gress, K. Huneycutt, S. Omura Academic Mentor: Dr. Kano Industry Mentor: Dr. Yamazaki

> July 15, 2022 g-RIPS

Map-matching

Given GPS trajectory data and a road map, **map-matching** is the process of determining the route on the map that corresponds to the trajectory data.

Web mapping services

Autonomous Vehicles [H]

Example Movie

00:00

Let us fix $d \ge 2$ (but almost everywhere we consider the case d = 2).

Definition (Trajectory)

A **trajectory** Tr is a sequence of points $\mathbf{p} = (p_1, p_2, \dots, p_n)$ where $p_i \in \mathbb{R}^d$ for $1 \le i \le n$ equipped with

- a sequence $t(\mathbf{p}) = (t_1, \dots, t_n)$ such that $t_i \in \mathbb{R}^+$ for $1 \le i \le n$ and $t_1 < t_2 < \dots < t_n$, called the **timestamp** of \mathbf{p} ,
- a sequence $\operatorname{spd}(\mathbf{p}) = (\operatorname{spd}_1, \dots, \operatorname{spd}_n)$ such that $\operatorname{spd}_i \in \mathbb{R}^+$ for $1 \le i \le n$, called the **speed** of **p** (optional),
- a sequence $u(\mathbf{p}) = (u_1, \dots, u_n)$ such that $u_i \in \mathbb{R}^d$ and ||u|| = 1 for $1 \le i \le n$, called the **direction** of **p** (optional).

Definition (Road Network)

A **road network** (also known as a map) is a directed graph G = (V, E) consists of the set V (resp. E) of vertices (resp. edges) with an embedding $\phi : |G| \to \mathbb{R}^d$ of the geometric realization |G| of G. We will identify G and the image $\phi(|G|)$ by ϕ as long as there is no confusion.

Definition (Route)

A **route** r on a road network G = (V, E) is a sequence of connected edges $(e_1, e_2, \ldots, e_n) \subset E$, i.e. the head of e_i coincides with the tail of e_{i+1} for each $i = 1, 2, \ldots, n-1$. Let R denote the set of all routes.

Example Movie

00:00

Definition (Map-Matching)

Given a road network G = (V, E) and a trajectory Tr, the map-matching, $\mathcal{MR}_G(Tr)$, is the route that is the argument of the minimum of some function $L: R \to \mathbb{R}^+$, called the **loss function**.

Approaches to Map-Matching

Geometric

- Point-to-point method
- Point-to-curve method

Data-Driven

Hidden Markov model

Point-to-Curve Method

Point-to-Curve Method

Problem & Our strategy

A square model.

•
$$V = \{v_1, v_2, v_3, v_4\},\ E = \{v_1 v_2, v_2 v_4, v_1 v_3, v_3 v_4\}.$$

- $\mathbf{p} = \{p_1, \dots, p_n\}$: trajectory points which are located near the diagonal w/ coordinates and timestamps.
- Route $A = \{v_1 v_2, v_2 v_4\}.$
- Route **B** = $\{v_1v_3, v_3v_4\}$.

Strategy: Construction of the "**trajectory-to-route**"-type method.

"Wasserstein" method

Definition ((L^1 -)Wasserstein distance (" W_1 distance"))

Let (X, d) be a complete and separable metric space.

For $\mu, \nu \in \mathscr{P}(X) \coloneqq \big\{ \text{ all (Borel) probability measures on } (X, d) \text{ w/ finite support } \big\}$, define

$$W_1(\mu,\nu) := \min_{\pi \in \Pi(\mu,\nu)} \sum_{x \in X} \sum_{y \in X} d(x,y)\pi(x,y),$$

where
$$\pi \in \Pi(\mu, \nu) :\Leftrightarrow {}^\forall x, y \in X, \ \sum_{y \in X} \pi(x, y) = \mu(x), \ \sum_{x \in X} \pi(x, y) = \nu(y).$$

- W_1 distance is a distance function on $\mathcal{P}(X)$, i.e. quantifies the differences between two probability measures.
- W_1 distance can be calculated by linear programming (under our setting conditions).
- W₁ distance is also called "Earth-Mover's distance" or "Word-Mover's distance" (in areas such as Natural Language Processing).

Figure: A prob. meas. $\mu_{\mathbf{p}}$ associated w/ the trajectory \mathbf{p} . A weight 1/n is placed on each trajectory point; $\mu_{\mathbf{p}} := (1/n) \sum_{i=1}^{n} \delta_{p_i}$.

Figure: Prob. meas.s $\nu_{\mathbf{A}} = \nu_{\mathbf{A},m}$ and $\nu_{\mathbf{B}} = \nu_{\mathbf{B},m}$ associated w/ the route \mathbf{A} and \mathbf{B} ; $\nu_{\mathbf{A}} := (1/m) \sum_{j=1}^m \delta_{a_j}, \, \nu_{\mathbf{B}} := (1/m) \sum_{j=1}^m \delta_{b_j}.$

We define $\varphi(A) = \varphi(A, m) := W_1(\mu_p, \nu_A), \ \varphi(B) = \varphi(B, m) := W_1(\mu_p, \nu_B).$ If we obtain $\varphi(A) < \varphi(B)$, then we conclude that the route **A** is the true route.

Further problem: Construction of W_1 method taking speed and direction information into account.

- Modification of transport way (, i.e. the objective function of W_1 distance).
 - Loss function of W_1 method: $\sum_{x \in X} \sum_{y \in X} d(x, y) \pi(x, y)$.
 - Modified W_1 distance is likely to be difficult to handle.
- Modification of probability measures $\mu_{\mathbf{p}}$ (or $\nu_{\mathbf{A}}$ and $\nu_{\mathbf{B}}$).
 - We are trying to modify $\mu_{\mathbf{p}}$ using information from speed and direction information. (Under consideration...)

"Electrical charge" method

Figure: Connecting trajectory points.

- Considering not only trajectory points, but also the entire polyline.
- Comparing it with the entirety of each route.

"Electrical charge" method

- Giving the candidate routes and polyline opposing electrical charges.
- Choosing the route which exerts the most force on the polyline as the true route.

Figure: Giving electrical charges.

Figure: Moving to "closer" route.

"Electrical charge" method

Further problem: Taking into account information such as

- speed,
- direction,
- error.
- Varying the electric density instead of assuming uniformity.

Jupyter Demonstration

