

Pronóstico con regresión lineal múltiple

Enfoque de aprendizaje supervisado

Práctica 7

Guillermo Molero-Castillo

Fuente de datos

 Se tienen mediciones de registros geofísicos convencionales: RC1 (Registro Neutrón), RC2 (Registro Sónico), RC3 (Registro Densidad-Neutrón), y RC4 (Registro Densidad -corregido por arcilla-)

- Para la toma de registros se cuenta con cables electromecánicos, sensores, dispositivos eléctricos y sistemas computarizados.
- Se procesan los datos a través de los sensores, para luego ser enviados a la superficie por medio del cable.
 - RC1 = Registro Neutrón
 - RC2 = Registro Sónico
 - RC3 = Registro Densidad-Neutrón
 - RC4 = Registro Densidad (corregido por arcilla)

Objetivo

Obtener el pronóstico de la saturación de aceite remanente (ROS, Residual Oil Saturation) a partir de las cuatro mediciones de los registros geofísicos convencionales: (RC1) Registro Neutrón, (RC2) Registro Sónico, (RC3) Registro Densidad-Neutrón, y (RC4) Registro Densidad Corregido por Arcilla.

1. Importar las bibliotecas y los datos

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import seaborn as sns
import seaborn as sns
# Para la manipulación y análisis de datos
# Para crear vectores y matrices n dimensionales
# Para la generación de gráficas a partir de los datos
# Para la visualización de datos basado en matplotlib
# Para la visualización de datos basado en matplotlib
```

1. Importar las bibliotecas y los datos

0		ofisicos = pd ofisicos	.read_csv	/('RGeofi	sicos.csv	·')
₽		Profundidad	RC1	RC2	RC3	RC4
	0	5660.0	0.777924	0.814029	0.675698	0.757842
	1	5660.5	0.796239	0.813167	0.748670	0.793872
	2	5661.0	0.769231	0.797562	0.702285	0.748362
	3	5661.5	0.764774	0.790365	0.680289	0.738451
	4	5662.0	0.773813	0.788184	0.700248	0.718462
	5	5662.5	0.795627	0.798850	0.753472	0.777537
	6	5663.0	0.802155	0.837717	0.785441	0.807957
	7	5663.5	0.797878	0.833851	0.756847	0.779641
	8	5664.0	0.777206	0.813117	0.718713	0.761454
	9	5664.5	0.788604	0.820041	0.729582	0.765600
	10	5665.0	0.776924	0.815917	0.737350	0.788688

2) Gráfica de las mediciones de aceite

```
plt.figure(figsize=(20, 5))
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC1'], color='green', marker='o', label='RC1')
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC2'], color='purple', marker='o', label='RC2')
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC3'], color='blue', marker='o', label='RC3')
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC4'], color='yellow', marker='o', label='RC4')
plt.xlabel('Profundidad / Pies')
plt.ylabel('Porcentaje / %')
plt.title('Registros geofísicos convencionales')
plt.grid(True)
plt.legend()
plt.show()
0.85
0.80
0.75
0.65
0.60
0.55
                                                 5667.5
                                                                             5672.5
                                                                                           5675.0
                                                                                                         5677.5
       5660.0
                     5662.5
                                   5665.0
                                                               5670.0
                                                                                                                       5680.0
```

Profundidad / Pies

3. Aplicación del algoritmo

```
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, max_error, r2_score
```

Se seleccionan las variables predictoras (X) y la variable a pronosticar (Y)

0	<pre>X_train = np.array(RGeofisicos[['Profundidad', pd.DataFrame(X_train)</pre>	'RC1',	'RC2','RC3']])
---	---	--------	----------------

Y_train = np.array(RGeofisicos[['RC4']])
pd.DataFrame(Y_train)

₽		0	1	2	3
	0	5660.0	0.777924	0.814029	0.675698
	1	5660.5	0.796239	0.813167	0.748670
	2	5661.0	0.769231	0.797562	0.702285
	3	5661.5	0.764774	0.790365	0.680289
	4	5662.0	0.773813	0.788184	0.700248
	5	5662.5	0.795627	0.798850	0.753472
	6	5663.0	0.802155	0.837717	0.785441

	0
0	0.757842
1	0.793872
2	0.748362
3	0.738451
4	0.718462
5	0.777537
6	0.807957

3. Aplicación del algoritmo

Se utiliza una regresión lineal múltiple

```
RLMultiple = linear_model.LinearRegression()
RLMultiple.fit(X_train, Y_train) #Se entrena el modelo

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

3. Aplicación del algoritmo

Se genera el pronóstico

```
#Se genera el pronóstico
Y_pronostico = RLMultiple.predict(X_train)
pd.DataFrame(Y_pronostico)
```

C→ 0
0 0.747294

1 0.792029

2 0.752073

3 0.737382

4 0.751189

5 0.790661

6 0.818408

7 0.801339

8 0.767461

3. Aplicación del algoritmo

Valores pronosticados

RGeofisicos['Pronostico'] = Y_pronostico
RGeofisicos

_}		Profundidad	RC1	RC2	RC3	RC4	Pronostico
	0	5660.0	0.777924	0.814029	0.675698	0.757842	0.747294
	1	5660.5	0.796239	0.813167	0.748670	0.793872	0.792029
	2	5661.0	0.769231	0.797562	0.702285	0.748362	0.752073
	3	5661.5	0.764774	0.790365	0.680289	0.738451	0.737382
	4	5662.0	0.773813	0.788184	0.700248	0.718462	0.751189
	5	5662.5	0.795627	0.798850	0.753472	0.777537	0.790661
	6	5663.0	0.802155	0.837717	0.785441	0.807957	0.818408
	7	5663.5	0.797878	0.833851	0.756847	0.779641	0.801339
	8	5664.0	0.777206	0.813117	0.718713	0.761454	0.767461
	9	5664.5	0.788604	0.820041	0.729582	0.765600	0.780089
	10	5665.0	0.776924	0.815917	0.737350	0.788688	0.776995

4. Obtención de los coeficientes, intercepto, error y Score

```
print('Coeficientes: \n', RLMultiple.coef )
print('Intercepto: \n', RLMultiple.intercept )
print("Residuo: %.4f" % max_error(Y_train, Y_pronostico))
print("MSE: %.4f" % mean squared error(Y train, Y pronostico))
print("RMSE: %.4f" % mean squared error(Y train, Y pronostico, squared=False))
                                                                               #True devuelve MSE, False devuelve RMSE
print('Score (Bondad de ajuste): %.4f' % r2 score(Y train, Y pronostico))
Coeficientes:
 [[-7.50589329e-05 5.06619053e-01 2.27471256e-01 4.89091335e-01]]
Intercepto:
 [0.26237022]
Residuo: 0.0684
MSE: 0.0004
RMSE: 0.0195
Score (Bondad de ajuste): 0.8581
                                   Y = a + b_1 X_1 + b_2 X_2 ... + b_n X_n + u
```

$$Y = 0.2624 - 0.000075$$
(Profundidad) + 0.5066 (RC1) + 0.2275 (RC2) + 0.4891 (RC3) + 0.0684

5. Conformación del modelo de pronóstico

```
Coeficientes:

[[-7.50589329e-05 5.06619053e-01 2.27471256e-01 4.89091335e-01]]

Intercepto:

[0.26237022]

Residuo: 0.0684

MSE: 0.0004

RMSE: 0.0195

Score (Bondad de ajuste): 0.8581
```

$$Y = a + b_1 X_1 + b_2 X_2 \dots + b_n X_n + u$$

Y = 0.2624 - 0.000075(Profundidad) + 0.5066(RC1) + 0.2275(RC2) + 0.4891(RC3) + 0.0684

- Se tiene un Score de 0.8581, el cual indica que el pronóstico de la saturación de aceite remanente (SOR), en un determinado nivel de profundidad, se logrará con un 85.81% de efectividad (grado de intensidad).
- Además, los pronósticos del modelo final se alejan en promedio 0.0004 y 0.0195 unidades del valor real, esto es, MSE y RMSE, respectivamente.

6. Proyección de los valores reales y pronosticados

```
plt.figure(figsize=(20, 5))
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC1'], color='green', marker='o', label='RC1')
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC2'], color='purple', marker='o', label='RC2')
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC3'], color='blue', marker='o', label='RC3')
plt.plot(RGeofisicos['Profundidad'], RGeofisicos['RC4'], color='yellow', marker='o', label='RC4')
plt.plot(RGeofisicos['Profundidad'], Y_pronostico, color='red', marker='o', label='Pronóstico')
plt.xlabel('Profundidad / Pies')
plt.ylabel('Porcentaje / %')
plt.title('Registros geofísicos convencionales')
plt.grid(True)
plt.legend()
plt.show()
```


6. Proyección de los valores reales y pronosticados

```
plt.figure(figsize=(20, 5))
plt.plot(RGeofisicos['Profundidad'], Y_pronostico, color='red', marker='o', label='Pronóstico')
plt.xlabel('Profundidad / Pies')
plt.ylabel('Porcentaje / %')
plt.title('Registros geofísicos convencionales')
plt.grid(True)
plt.legend()
plt.show()
```


Porcentaje / % 0.80 0.70 0.75

Práctica

7. Nuevos pronósticos

Pronóstico sin el residuo

```
ROS = pd.DataFrame({'Profundidad': [5680.5], 'RC1': [0.45], 'RC2': [0.64], 'RC3': [0.5]})
RLMultiple.predict(ROS)
array([[0.45410379]])
```