

## One Tailed and Two Tailed Tests, Critical Values, & Significance Level - Inferential Statistics

- A company makes potato chips and the average weight of each bag is 100g and an employee believes that the mean is not a 100g



Two-tailed test

- $\circ~H_0$  is given by  $\mu=100g$
- $\circ~H_a$  is given by  $\mu 
  eq 100g$
- $\circ$  This is an example of a two-tailed test since the alternative hypothesis has a " $\neq$  " condition
- $\circ$  There are two regions separated by  $z_c$  values on the positive side and  $-z_c$  values on the negative side and these are the critical values

- Rejection Region
- Fail To Reject Region
- $\circ$  If the employee conducts a test with 95% confidence then c=0.95=1-lpha where lpha is the significance level so lpha=0.05 and this is split across the two Rejection regions
- $\circ$  Calculate the z value to accept or reject the hypothesis by comparing it with the critical value  $z_c$

$$egin{cases} Accept, & ext{if } -z_c \leq z \leq z_c \ Reject & ext{if } otherwise \end{cases}$$

• There are two types of one-tailed test



One-tailed test

- $\bullet$  A company makes potato chips and the average weight of each bag is 100g and an employee believes that the mean is less than 100g then this a left one-tailed test
  - $\circ~H_0$  is given by  $\mu=100g$
  - $\circ~~H_a$  is given by  $\mu < 100g$
- $\bullet$  A company makes potato chips and the average weight of each bag is 100g and an employee believes that the mean is greater than 100g then this a right one-tailed test
  - $\circ~~H_0$  is given by  $\mu=100g$

 $\circ~~H_a$  is given by  $\mu>100g$