RECOMMENDATION ENGINES

Prepared By....

Sandeep Singh [C0727422]

Febin Roy Edakalathur [C0723559]

Amal Das [C0724011]

Alan Salo [C0727079]

Enamol Hassan [C0728399]

Agenda

- Introduction
- Applications
- Recommendation Models Types
- Similarity Algorithms
- Implementation using R
- Implementation using Python

Introduction

- A **recommendation engine** filters the data using different algorithms and recommends the most relevant items to users.
- It first captures the past behavior of a customer and based on that, recommends products which the users might be likely to buy.

Applications

- Online Shopping
- Entertainment
- Advertisements
- Social Sites
- Travel Advisor
- E Learning
- Mobile Applications

Recommendation Models Types

- Content based filtering
- Collaborative filtering

Content Based Filtering

- Selects items based on the correlation between the content of the items and the user's preferences.
- Works with existing profiles of users and particular item.
- Does not depend on lots of user data, so it is possible to give recommendations to even your first customer.
- For instance In adjacent pic you can see amazon's recommender system recommends products based on viewed and purchased history.

Trance 100% Cotton

Pillow Covers/Pillow

13" (Golden Vellow)

f 299.00 / prime

case/Pack of 2-25" X

Ahmedabad Cotton

Luxurious Striped 2: Piece Sateen Pillow Cover Set - 18"x27", Navy Blot 南南南部(2) 142

£ 249.00 Jprime

Trance Home Lines Cotton Waterproof Pillow Protector (18x29inch, White) - Set of 2 ****** 216 ₹ 439.00 / prime

Trance Home Lines Waterproof & Dustproof Pillow Protector-18 x 26" (Dyor'y Yellow) £ 628.00 - prime

Inspired by your purchas

Aptitude - A New ... +Ohristy Wirghese Paperback:

\$ 290.00

£ 737.00 / prime

COMBO: CSIR-IRF-NET: Pathfinder Academy CSIR-30F-NET Life... + Printay Komer 京京市市(2.7) Paperback:

- Protein Kamer 食食食が立てき Paperback 5 609.00 Jantene

Exam Solved Papers Editorial Board 常常常见① 14 **Fagerback** £ 144.00

Problems in Content Based Filtering

- Requires manual or automatic indexing Item feature do not capture everything.
- Needs to learn what content features are important for the users, so takes time.
- It assumes that user's taste and preference remains more constant over time.
- Provision of discovering something fortunate, especially while looking for something entirely unrelated is absent.

Collaborative Filtering

- Collaborative Filtering is the process of filtering or evaluating items using the opinions of other people.
- For each user, recommender systems recommend items based on how similar users liked the item.
- Let's say Alice and Bob have similar interests in video games. Alice recently played and enjoyed the game Legend of Zelda: Breathe of the Wild. Bob has not played this game, but because the system has learned that Alice and Bob have similar tastes, it recommends this game to Bob.

Similarity Algorithms

- Jaccard Similarity
- Cosine Similarity
- Pearson Coefficient

Cosine Similarity

- With this, we are going to evaluate the similarity between two vectors based on the angle between them.
- The smaller the angle, the more similar the two vectors are.

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Implementation using R

```
#Load datasets
movies=read.csv(file.choose())
head(movies)
links=read.csv(file.choose())
head(links)
ratings=read.csv(file.choose())
head(ratings)
tags=read.csv(file.choose())
head(tags)
#Import the reshape2 and stringi library.
library(stringi)
library(reshape2)
#Create ratings matrix with rows as users and columns as movies. We don't need timestamp
rmatrix = dcast(ratings, userId~movieId, value.var = "rating", na.rm=FALSE)
print(rmatrix)
#Removing user ids
rmatrix = as.matrix(rmatrix[,-1])
library(recommenderlab)
#Convert ratings matrix to real rating matrx which makes it dense
real_rmatrix = as(rmatrix, "realRatingMatrix")
print(real_rmatrix)
```

```
#Create Recommender Model. The parameters are UBCF and Cosine similarity. We take 10 near
rec_mod = Recommender(real_rmatrix, method = "UBCF", param=list(method="Cosine",nn=10))
#Obtain top 5 recommendations for 1st user entry in dataset
Top_5_pred = predict(rec_mod, real_rmatrix[1], n=5)
Top_5_pred
#Convert the recommendations to a list
Top_5_List = as(Top_5_pred, "list")
Top_5_List
library(dplyr)
#We convert the list to a dataframe and change the column name to movieId</em>
Top_5_df=data.frame(Top_5_List)
colnames(Top_5_df)="movieId"
#Since movieId is of type integer in Movies data, we typecast id in our recommendations a
Top_5_df$movieId=as.numeric(levels(Top_5_df$movieId))
#Merge the movie ids with names to get titles and genres</em>
names=left_join(Top_5_df, movies, by="movieId")
#Print the titles and genres</em>
names
```

Output

```
> movies=read.csv(file.choose())
> head(movies)
  movieId
                                        title
                                                                                    genres
                            Toy Story (1995) Adventure | Animation | Children | Comedy | Fantasy
1
                              Jumanji (1995)
                                                               Adventure | Children | Fantasy
                    Grumpier Old Men (1995)
                                                                           Comedy | Romance
                    Waiting to Exhale (1995)
                                                                     Comedy | Drama | Romance
        5 Father of the Bride Part II (1995)
                                                                                    Comedy
                                                                    Action|Crime|Thriller
                                 Heat (1995)
> #Create Recommender Model. The parameters are UBCF and Cosine similarity. We take 10 nearest
 neighbours
> rec_mod = Recommender(real_rmatrix, method = "UBCF", param=list(method="Cosine",nn=10))
> #Obtain top 5 recommendations for 1st user entry in dataset
> Top_5_pred = predict(rec_mod, real_rmatrix[1], n=5)
> Top_5_pred
Recommendations as 'topNList' with n = 5 for 1 users.
> #Convert the recommendations to a list
> Top_5_List = as(Top_5_pred, "list")
> Top_5_List
[[1]]
[1] "58559" "1207" "1721" "1357" "8533"
> #Merge the movie ids with names to get titles and genres</em>
> names=left_join(Top_5_df, movies, by="movieId")
> #Print the titles and genres</em>
> names
  movieId
                                  title
                                                         genres
     1207 To Kill a Mockingbird (1962)
                                                          Drama
                           Shine (1996)
     1357
                                                 Drama Romance
     1721
                         Titanic (1997)
                                                  Drama Romance
               Dark Knight, The (2008) Action|Crime|Drama|IMAX
    58559
     8533
                  Notebook, The (2004)
                                                  Drama Romance
```

Implementation using Python

```
import turicreate
 import pandas as pd
 import numpy as np
#Reading ratings file:
r cols = ['user_id', 'movie_id', 'rating', 'unix_timestamp']
ratings = pd.read csv('u.data', sep='\t', names=r cols,encoding='latin-1')
 print(ratings.shape)
 ratings.head()
 (100000, 4)
    user_id movie_id rating unix_timestamp
       196
               242
                             881250949
       186
               302
                             891717742
               377
                             878887116
       244
                             880606923
       166
               346
                             886397596
```

```
r cols = ['user id', 'movie id', 'rating', 'unix timestamp']
ratings train = pd.read csv('ua.base', sep='\t', names=r cols, encoding='latin-1')
ratings_test = pd.read_csv('ua.test', sep='\t', names=r_cols, encoding='latin-1')
ratings_train.shape, ratings_test.shape
((90570, 4), (9430, 4))
n users = ratings.user id.unique().shape[0]
n items = ratings.movie id.unique().shape[0]
data matrix = np.zeros((n users, n items))
for line in ratings.itertuples():
    data matrix[line[1]-1, line[2]-1] = line[3]
from sklearn.metrics.pairwise import pairwise distances
user similarity = pairwise distances(data matrix, metric='cosine')
item similarity = pairwise distances(data matrix.T, metric='cosine')
def predict(ratings, similarity, type='user'):
   if type == 'user':
        mean user rating = ratings.mean(axis=1)
       #We use np.newaxis so that mean user rating has same format as ratings
        ratings diff = (ratings - mean user rating[:, np.newaxis])
       pred = mean user rating[:, np.newaxis] + similarity.dot(ratings diff) / np.array([np.abs(similarity).sum(axis=1)]).T
   elif type == 'item':
        pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
    return pred
user prediction = predict(data matrix, user similarity, type='user')
item prediction = predict(data matrix, item similarity, type='item')
train data = turicreate.SFrame(ratings train)
test data = turicreate.SFrame(ratings test)
popularity model = turicreate.popularity recommender.create(train data, user id='user id', item id='movie id', target='rating
```

```
popularity_recomm = popularity_model.recommend(users=[1,2,3,4,5],k=5)
popularity_recomm.print_rows(num_rows=25)
```

```
user id | movie id | score | rank
        1599 | 5.0 | 1
        1201
        1189
        1122
        814
             1 5.0
    | 1599 | 5.0
        1201
             1 5.0
    I 1189
             | 5.0 | 3
    1122
            | 5.0 | 4
    814
    | 1599 | 5.0 | 1
        1201
            1 5.0
        1189
        1122
             1 5.0
        814
        1599
             1 5.0
             | 5.0
        1201
    | 1189
             | 5.0 | 3
    1122
    814
        1599 | 5.0 | 1
        1201
             | 5.0 | 2
        1189 | 5.0 | 3 |
```

```
#Training the model
item_sim_model = turicreate.item_similarity_recommender.create(train_data, user_id='user_id', item_id='movie_id', target='rat:
#Making recommendations
item_sim_recomm = item_sim_model.recommend(users=[1,2,3,4,5],k=5)
item_sim_recomm.print_rows(num_rows=25)
```

Output

+-		+-		+		+-		+
Ţ	user_id	l	movie_id	I	score	I	rank	ļ
ī	1	ı -	423	Ī	0.988204108622238	ī	1	Ī
Ī	1	ı	202	ī	0.949776457466242	Ī	2	I
Ĺ	1	ı	655	ī	0.8052522974614879	Ĺ	3	ı
Ĺ	1	L	403	ī	0.7722151641172307	Ĺ	4	Ī
L	1	L	568	T	0.7653118053465399	ľ	5	ī
L	2	L	50	1	1.1256258487701416	L	1	1
L	2	l	181	1	1.0651773168490484	L	2	1
L	2	L	7	1	0.9998190838557023	L	3	1
L	2	l	121	1	0.94162796323116	L	4	1
L	2	ı	9	1	0.831989913032605	L	5	1
L	3	l	313	1	0.6353766620159149	L	1	1
L	3	L	328	1	0.6032880300825293	L	2	1
L	3	l	315	1	0.5422587123784152	L	3	1
L	3	L	331	1	0.5355071858926252	L	4	1
L	3	l	332	1	0.5316696112806146	L	5	1
L	4	L	50	1	1.1311477082116264	L	1	1
L	4	l	288	1	1.0487151145935059	L	2	1
L	4	L	181	1	0.9505999386310577	L	3	1
L	4	ı	7	1	0.9417778807027	I	4	1
L	4	L	302	1	0.9139021464756557	L	5	1
L	5	l	195	Ī	1.0183543920516969	L	1	1
L	5		202	1	0.9353599468866984	L	2	1
I	5	I	56	I	0.8479394096316714	I	3	I

• You receive recommended movie_id for user_id 1,2,3,4 and 5.

References

- https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-simple-aec8c71a823e
- https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-recommendation-engine-python/
- https://medium.com/@mark.rethana/building-a-song-recommendation-system-using-cosine-similarity-and-euclidian-distance-748fdfc832fd
- https://towardsdatascience.com/collaborative-filtering-based-recommendationsystems-exemplified-ecbffe1c20b1
- https://en.wikipedia.org/wiki/Cosine similarity
- https://www.data-mania.com/blog/how-to-build-a-recommendation-engine-in-r/
- https://www.analyticsvidhya.com/blog/2016/03/exploring-building-banksrecommendation-system/