

# Auswuchttechnik

Übung 1: Signalerfassung/-verarbeitung



Auswuchttechnik



### **Datenerfassung**







analoges Signal





Datenerfassung (DAQ)

Analog-Digital-Wandler A/D-Wandler







digitales Signal



Auswuchttechnik

## A/D-Wandler



- Auflösung in bit
  - Wie genau wird der der Wert des Signals aufgenommen?
- Abtastrate/-frequenz  $f_s$  in 1/s:
  - Wie oft wird der Wert Signals aufgenommen?

analoges Signal





digitales Signal

1.5



- Abtastrate/-frequent  $f_s$  in 1/s:
  - Wie oft wird der Wert Signals aufgenommen?

höchste zu messende Frequenz im Signal

Nyquist-Shannon-Abtasttheorem:

$$f_{\rm s} > 2 \cdot f_{\rm m}$$

#### analoges Signal



A/D-Wandler



digitales Signal







analoges Signal



Datenerfassung (DAQ)

Analog-Digital-Wandler A/D-Wandler



PC

digitales Signal

ADXL 355



Arduino UNO



Laptop



### Wuchtkit: Signale









Frequenz: f=1/TKreisfrequenz:  $\omega=2\pi f$ Nullphasenwinkel:  $\varphi=\left(1-\frac{\tau}{T}\right)\cdot 2\pi$ 

Harmonische Schwingung:

$$x(t) = a \cdot \cos(\omega t + \varphi)$$

• Fourier-Transformation eines periodischen Signals

#### Zeitsignal x(t)





#### Fourier-Transformation



#### Frequenzsprektrum X(f)





Fourier-Transformation eines periodischen Signals

Zeitsignal x(t)

Frequenzsprektrum X(f)



Signal x(t)

-2

-3

0

1

Zeit in s



Fourier-Transformation







5

4

### Fourier-Transformation

- Annäherung: Diskrete Fourier-Transformation (DFT)
- Algorithmus: Fast Fourier-Transformation (FFT)



Daten zum einlesen in Matlab über ISIS herunterladen.



### Vorgehen: Signal zuschneiden

Steigende Flanken des Triggersignals identifizieren.



Alle 3 Signale an der ersten und letzten steigenden Flanke abschneiden







### Vorgehen: Fourier-Transormation

















### Isolierung der drehfrequenten Schwingung











#### Ergebnis:

Eine komplexe Zahl pro Beschleunigungssignal zur Beschreibung der drehzahlfrequenten Schwingung