Logique et Langage Examen

Lundi 7 janvier 2019

Consignes

Durée: 2 heures

S'il y a des problèmes de compréhension / de français, ne pas hésiter à me demander

1 Logique du premier ordre

1.1 Traduction

Question 1 (6 points) Modéliser (traduire) en logique du premier ordre (du mieux que possible) les phrases suivantes, en introduisant vos propres prédicats (<u>atomiques</u>) et constantes. Si votre traduction ne vous satisfait pas, ne pas hésiter à la commenter, ça sera valorisé.

- 1. Elsa et Julie sont en train de travailler
- 2. Lucien cherche ses poules
- 3. Personne n'aide Lucien
- 4. Lucien énerve tous les gens à qui il demande de l'aide
- 5. Julie ne mange un âne que s'il est au fromage
- 6. Si Lucien ne retrouve pas ses poules, il sera triste
- 7. Elsa a mangé toutes les poules de Lucien
- 8. Jules a mangé tous les cookies qui étaient dans son frigo
- 9. Tous les ânes que Elsa a mangés aimaient beaucoup son frère

Indication Attention à bien utiliser le prédicat $H(x) \equiv x$ est un être humain quand il est nécessaire.

Indication bis Les phrases sont (à peu près) classées par ordre de difficulté.

Question 2 (5 points) Calculer la négation des formules que vous avez données pour les phrases 1, 3, 5, 6 et 8 dans l'exercice précédent, puis les exprimer en français de la façon la plus naturelle possible.

1.2 Distributivité du ∃

Soient les deux formules suivantes :

- $\phi = \exists x.(S(x) \land H(x))$
- $\psi = (\exists x. S(x) \land \exists x. H(x))$

Question 1 (0,75 point) Après avoir donné des interprétations de votre choix pour les prédicats S(x) et H(x), montrer que les formules ne sont pas équivalentes en décrivant une situation dans laquelle ψ est vraie mais pas ϕ

Question 2 (1,25 point) Est-il possible d'avoir une situation dans laquelle, à l'inverse, ϕ est vraie et pas ψ , et pourquoi ?

On définit maintenant ϕ et ψ comme :

- $\phi = \exists x.(S(x) \lor H(x))$
- $\psi = (\exists x. S(x) \lor \exists x. H(x))$

Question 3 (1,5 point) Les formules sont-elles équivalentes, et pourquoi?

2 Logique propositionnelle

Soit les formules suivantes :

$$\phi_1 \equiv ((A \to B) \land (A \land \neg B))$$

$$\phi_2 \equiv ((A \to C) \to ((B \to C) \to (\neg C \to \neg (A \lor B))))$$

$$\phi_3 \equiv (((A \to B) \land (C \to D)) \to ((A \lor C) \to (B \lor D)))$$

$$\phi_4 \equiv ((A \to \neg B) \to ((C \to B) \to \neg (A \land C)))$$

Question (6 points) Donnez l'arbre syntaxique (2 points) et la table de vérité (4 points) de chacune de ces formules.

Question bonus Essayez maintenant d'expliquer avec vos propres mots pourquoi les résultats obtenus à la question précédente sont *logiques*. Dit autrement, exprimer le raisonnement derrière la validité ou non-validité de ces formules. Même si vous n'êtes pas sûrs ou que vous n'avez pas de réponse pour chaque formule, écrivez ce que vous pouvez, ça sera (très potentiellement) valorisé.