Laporan Tugas Kecil Strategi Algoritma 2021/2022 Convex Hull

Disusun Oleh:

Andreas Indra Kurniawan 13520091/K-1

Algoritma Divide and Conquer

Secara garis besar algoritma divide and conquer membagi 2 sebuah data yang akan diproses(divide) dan menyelesaikannya satu persatu(conquer). Biasanya algoritma ini akan menggunakan rekursif karena tidak diketahui perlu dilakukan pembagian berapa kali untuk mencapai base case dimana data akan diproses lebih lanjut.

Pada tugas kecil kali ini algoritma divide and conquer digunakan dengan cara membagi 2 dataset sesuai label targetnya, lalu langsung melakukan proses terhadap hasil pembagian ini. Setelah itu dilakukan proses lalu dilanjutkan dengan membagi 2 data yang ada lagi dan melakukan proses berulang kali hingga akhirnya data hanya tersisa satu titik atau tidak ada titik sama sekali.

Kode Program

```
import numpy as np
import numpy.linalg as lg
def myConvexHull(ListTitik): #MENENTUKAN TITIK AWAL HULL
   hull = []
    panjangList = len(listTitik)-1
    hull.append([[listTitik[0,0],listTitik[0,1]],[listTitik[panjangList,0],lis
tTitik[panjangList,1]]]) #MENENTUKAN GARIS AWAL BERDASARKAN SUMBU X
PALING KIRI DAN KANAN
    listTitik = np.delete(listTitik,0, axis = 0)
    listTitik = np.delete(listTitik,len(listTitik)-1, axis=0)
   S1 = []
    S2 = []
    for i in listTitik:
        kuadran = sisiKiri(hull[0][0],hull[0][1],[i[0,0],i[0,1]])
       if( kuadran == 1):
            S1.append([i[0,0],i[0,1]])
       elif(kuadran == -1):
            S2.append([i[0,0],i[0,1]])
    kiri = hull[0][0]
    kanan = hull[0][1]
    nextHull(S1,hull,kiri,kanan)
    nextHull(S2,hull,kanan,kiri)
    return hull
def nextHull(S,hull,kiri,kanan): #MENENTUKAN TITIK SELANJUTNYA DARI HULL
    if(len(S) != 0):
       kiri = np.array(kiri)
       kanan = np.array(kanan)
       cS = np.array(S)
       maksHull = cS[0]
```

```
if(len(S) != 1):
DIPERIKSA
            maks = jarakPerpLine(kiri,kanan,cS[0]) #MENGECEK TITIK YANG
            for i in cS:
                maksLok = jarakPerpLine(kiri,kanan,i)
                if(maks<maksLok):</pre>
                    maks = maksLok
                    maksHull = i
        maksHull = [maksHull[0], maksHull[1]]
        calonHapus = [[kiri[0],kiri[1]],[kanan[0],kanan[1]]]
        index = 0
        ketemu = False
        for i in hull:
            if(calonHapus== i):
                ketemu = True
                break
            else:
                index += 1
                                #JIKA KETEMU GARIS AKAN DITIMPA
        if(ketemu):
            hull[index] = [[kiri[0],kiri[1]],maksHull]
            hull.append([maksHull,[kanan[0],kanan[1]]])
        else:
            hull.append([maksHull,[kanan[0],kanan[1]]])
            hull.append([[kiri[0],kiri[1]],maksHull])
        S1 = []
        S2 = []
        if(len(cS) != 1):
            for i in cS:
DAN KANAN TITIK LALU MENGAMBIL SISI KIRINYA SAJA
                iFunc = [i[0], i[1]]
                kuadran = sisiKiri([kiri[0],kiri[1]],maksHull,iFunc)
BERISI SISI KIRI DARI GARIS PERTAMA
                if( kuadran == 1):
DARI GARIS KEDUA
                    S1.append(iFunc)
                                                            #GARIS PERTAMA
                kuadran =
sisiKiri(maksHull,[kanan[0],kanan[1]],iFunc) #GARIS KEDUA TERBENTUK DARI
                if(kuadran == 1):
                    S2.append(iFunc)
        nextHull(S1,hull,kiri,maksHull)
        nextHull(S2,hull,maksHull,kanan)
        return
```

```
else:
    return

def sisiKiri(a,b,c):
    det = a[0]*b[1] + c[0]*a[1] + b[0]*c[1] - c[0]*b[1] - b[0]*a[1] -
a[0]*c[1]
    if(det>0):
        return 1
    elif (det==0):
        return 0
    else:
        return -1

def jarakPerpLine(a,b,c):  #MENCARI JARAK ANTARA TITIK DAN GARIS
    jarak = lg.norm(np.cross(b-a,a-c)/lg.norm(b-a))
    return jarak
```

Skrinsut Input-Output Program

1. Input dataset iris(lebar petal dan panjang petal, total barisxkolom = 150x5)

Besa	ar data: (150, 5))			
	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

2. Output dataset iris

3. Input dataset wine(Alkohol dan Malic Acid, total barisxkolom = 178x14)

٠٠٠٣	at aata	, , , , , ,		o. aaac				·= · /			
Bes	ar data:	(178, 14)									
	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phe	nols proant	thocyanins	co
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06		0.28	2.29	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76		0.26	1.28	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24		0.30	2.81	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49		0.24	2.18	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69		0.39	1.82	
р	roanth	ocyanins	C	olor_intensity	hue	od280/od3	15_of_dil	luted_wines	proline	Target	t
		2.29		5.64	1.04			3.92	1065.0	0)
		1.28		4.38	1.05			3.40	1050.0	0)
		2.81		5.68	1.03			3.17	1185.0	0)
		2.18		7.80	0.86			3.45	1480.0	0)
		1.82		4.32	1.04			2.93	735.0	O)

4. Output dataset wine

5. Input dataset digits(pixel_0_0 dan pixel_0_1, total barisxkolom = 1797x65)

·· [oesa		(1797, 65)											
		pixel_U_U	pixei_0_1	pixel_0_2	pixei_0_3	pixel_0_4	pixei_0_5	pixei_0_6	pixei_0_/	pixei_1_0	pixel_1_1		pixel_6_/	pixel_/_U
	0	0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0		0.0	0.0
	1	0.0	0.0	0.0	12.0	13.0	5.0	0.0	0.0	0.0	0.0		0.0	0.0
	2	0.0	0.0	0.0	4.0	15.0	12.0	0.0	0.0	0.0	0.0		0.0	0.0
	3	0.0	0.0	7.0	15.0	13.0	1.0	0.0	0.0	0.0	8.0		0.0	0.0
	4	0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
р	ixe	l_7_0	pixel_7_	1 pixe	I_7_2	pixel_7_:	3 pixel	_7_4 p	oixel_7_5	pixel	7_6 p	ixe	I_7_7 1	arget

pixel_7_0	pixel_7_1	pixel_7_2	pixel_7_3	pixel_7_4	pixel_7_5	pixel_7_6	pixel_7_7	Target
0.0	0.0	6.0	13.0	10.0	0.0	0.0	0.0	0
0.0	0.0	0.0	11.0	16.0	10.0	0.0	0.0	1
0.0	0.0	0.0	3.0	11.0	16.0	9.0	0.0	2
0.0	0.0	7.0	13.0	13.0	9.0	0.0	0.0	3
0.0	0.0	0.0	2.0	16.0	4.0	0.0	0.0	4

6. Output dataset digits

7. Input dataset breast cancer(radius dan texture, total barisxkolom = 569x31)

Bes	ar data:	(569,	31)									
	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	worst texture	worst perimeter
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	17.33	184.60
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	23.41	158.80
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	25.53	152.50
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	26.50	98.87
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 16.67	152.20

worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension	Target
184.60	2019.0	0.1622	0.6656	0.7119	0.2654	0.4601	0.11890	0
158.80	1956.0	0.1238	0.1866	0.2416	0.1860	0.2750	0.08902	0
152.50	1709.0	0.1444	0.4245	0.4504	0.2430	0.3613	0.08758	0
98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638	0.17300	0
152.20	1575.0	0.1374	0.2050	0.4000	0.1625	0.2364	0.07678	0

8. Output dataset breast cancer

Poin		Ya	Tidak
1.	Pustaka myConvexHull berhasil	V	
	dibuat dan tidak ada kesalahan		
2.	Convex hull yang dihasilkan sudah	V	
	benar		
3.	Pustaka myConvexHull dapat	V	
	digunakan untuk menampilkan		
	convex hull setiap label dengan		
	warna yang berbeda		
4.	Bonus: program dapat menerima	V	
	input dan menuliskan output untuk		
	dataset lainnya.		

Link github:

https://github.com/IMYELI/Tugas-Kecil-2-Stima-Convex-Hull.git