PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(30) Priority Data:

60/016,868

(22) International Filing Date:

7 May 1996 (07.05.96)

US

5 May 1997 (05.05.97)

(71) Applicant (for all designated States except US): PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SHINABARGER, Dean, L. [US/US]; 10810 Cora Drive, Portage, MI 49002 (US). SWANEY, Steven, M. [US/US]; 216 Garland Street, Kalamazoo, MI 49001 (US). EGAN, Sara, E. [US/US]; 10177 North 32nd Street, Richland, MI 49083 (US).
- (74) Agent: WOOTTON, Thomas, A.; Pharmacia & Upjohn Company, Intellectual Property Legal Services, 301 Henrietta Street, Kalamazoo, MI 49001 (US).

Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: TEICHOIC ACID ENZYMES AND ASSAYS

(57) Abstract

This invention discloses a novel substrate and assay for the TAP enzyme. In addition novel DNA, proteins and peptides from genes and proteins associated with bacterial teichoic acid biosynthetic pathways, specifically the rodC gene and proteins and variations thereof are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			•			67	Slovenia
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
	Belarus	is	Iceland	MW	Malawi	US	United States of America
BY	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CA	Canada Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CF	•	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CG	Congo	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CH	Switzerland	KP	Democratic People's	NZ	New Zealand		
CI	Côte d'Ivoire	Kr	Republic of Korea	PL	Poland		
СМ	Cameroon	7.5	Republic of Korea	PT	Portugal	*	
ĆN	China	KR	•	RO	Romania		
CU	Cuba	KZ	Kazakstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein		Sweden		
DK	Denmark	LK	Sri Lanka	SE	-		
EE	Estonia	LR	Liberia	SG	Singapore		

TEICHOIC ACID ENZYMES AND ASSAYS

5

Field of the Invention

This invention relates to the field of cell biology, more specifically the teichoic acid pathway. Genes and proteins related to this pathway include: Teichoic Acid Polymerase (or TAP), and CDP-Glycerol:Poly(glycerophosphate)

Glycerophosphotransferase.

10

15

20

Information Disclosure

A.L.Honeyman, G.C. Stewart, "Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis" Mol. Microbiol. (1988) 2:735-741.

A.L.Honeyman, G.C. Stewart, "The nucleotide sequence of the *rodC* operon of *Bacillus subtilis*. *Mol. Microbiol*. (1989) 3:1257-1268.

- C. Mauel, M. Young, P. Margot, D. Karamata "The essential nature of teichoic acids in *Bacillus subtilis* as revealed by insertional mutagenesis" *Mol. Gen. Genet.* (1991) 215:388-394.
- C. Mauel, M.Young, D. Karamata, "Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in *Bacillus subtilis* strain 168, are organized in two divergent transcription units" *J. Gen. Microbiol.* (1991) 137:929-941.
- Y.S. Park, T.D. Sweitzer, J.E. Kison, C. Kent. "Expression, purification, and characterization of CTP:Glycerol-3-phosphate cytidyltransferase from *Bacillus*" subtilis." J. Biol. Chem. (1993) 268:16648-16654.

25

35

Background of the Invention

The spread of antibiotic resistance in gram positive pathogenic bacteria is a serious problem which is only beginning to be registered in the clinic. The incidence of drug resistance is increasing - especially in Staphylococcus aureus, Streptococcus pneumonia, and the enterococci. Methicillin resistant S. aureus (MRSA), penicillin resistant S. pneumoniae, and vancomycin resistant enterococci, pose a serious threat to compromised patients. Vancomycin is the only antibiotic effective against MRSA. See, C.T. Walsh, "Vancomycin resistance: decoding the molecular logic" Science (1993) 261:308-309; I.R. Friedland, "Therapy of penicillin- and cephalosporin-resistant pneumococcal infections" Trends Clinic Pract. (1993) 25:451-455 and S. Dutka-Malen, and P. Courvalin, "Update on glycopeptide resistance in enterococci" Antimicrob News (1990) 7:81-88.

The cell wall teichoic acid pathway is found in the majority of gram positive bacteria, and studies with *Bacillus subtilis* have revealed that it is essential to cell viability. See, C. Mauel, M. Young, P. Margot, D. Karamata, "The essential nature of teichoic acids in *Bacillus subtilis* as revealed by insertional mutagenesis" *Mol Gen Genet* (1991) 215:388-394. The essential nature of cell wall teichoic acid may be due to the covalent attachment that it forms with peptidoglycan.

Cell wall teichoic acid, like peptidoglycan, is synthesized at the outer surface of the cell membrane using a nucleotide precursor (CDPglycerol) as the building block. Teichoic acid is a polymer of polyglycerolphosphate that is covalently attached to the peptidoglycan of gram positive bacteria. The enzyme CDP-Glycerol: Poly(glycerophosphate) glycerophosphotransferase catalyzes the polymerization of glycerolphosphate monomers from CDP-glycerol into a chain of polyglycerolphosphate linked via 1,3-phosphodiester bonds. Lipoteichoic acid is a related polymer of polyglycerolphosphate which is anchored to the cell membrane but is not attached to peptidoglycan.

There is an obvious clinical need for new antimicrobial agents which inhibit novel targets. In order to screen for unique inhibitors, essential metabolic pathways of gram positive pathogens, such as the cell wall teichoic acid pathway must be identified and their respective enzymes studied, cloned and made into useful assays and screens in order to identify novel antimicrobial agents.

Summary of the Invention

This invention discloses a method of measuring and assaying the activity of the TAP enzyme. This invention also demonstrates how a common commercially available material may be used as a substrate for an important biological reaction that has previously had no substrate available for evaluating this reaction. This invention teaches the researcher and clinician that lipoteichoic can be used as a substrate to elucidate the presence and even the activity of the TAP enzyme. An embodiment of this invention is the application of this teaching to create an assay that enables one to monitor the activity of the TAP enzyme.

This invention also discloses, for the first time, the sequence of an active TAP enzyme and the nucleic acid sequence of the DNA that codes for this sequence.

This invention includes: the entire DNA sequence shown in Sequence Chart 1 and Sequence Listing I.D. no. 1, and the DNA from residues 4 to 2274, first to last restriction site, and the DNA residues 24 to 2264. The coding DNA sequence shown in Sequence Chart 1, alternatively named, "the rodC gene." The DNA sequences corresponding to the sequence in Sequence Chart 1 where the residue at

5

10

15

20

25

30

position 1872 is tyrosine in place of cytosine.

A bacterial DNA sequence that is capable of hybridizing to the DNA sequence of Sequence Chart 1, under standard stringent conditions, to about 70 or more including, 75, 80, 85, 90, 95 or greater percent homology and having the ability to catalyze the reaction of CDP-glycerol plus H₂O into teichoic or lipoteichoic acid.

The DNA sequence from Staphylococcus aureus that codes for the protein or protein sequence fragment from Staphylococcus aureus having at least 70% homology to related fragments described by Sequence Charts 1 and 2, and that yield fragments of 7.0 kb, 5 kb, and 4.2 kb after EcoRI digest, or that yield fragments of 4.5, 3.3, 2.8 kb, after HindIII digest.

In addition to the DNA sequence, this invention describes various mutants, including: A collection of randomly mutated rodC genes. A selection of one or more randomly mutated rodC genes. A collection of bacteria having randomly mutated rodC genes. A selection of one or more bacteria having a random mutation selected from the collection of bacteria. The mutated bacteria selected from a mutant form of B. subtilis or S. aureus.

Various proteins and peptide fragments from the expressed DNA are also described. The entire protein sequence shown in Sequence Charts 1 and 2, Sequence I.D. NO. 2, the protein sequence from residues 1-746, and the protein sequence shown in Sequence Charts 1 and 2 where valine is the amino acid at position 616 in place of alanine. Also described are the protein sequence fragment from Staphylococcus aureus having at least 70% homology to related fragments described by Sequence Charts 1 and 2, that yield fragments of 7.0 kb, 5 kb, and 4.2 kb after EcoRI digest; and the protein sequence fragment from Staphylococcus aureus having at least 70% homology to related fragments described by Sequence Charts 1 and 2, that yield fragments of 4.5, 3.3, 2.8 kb, after HindIII digest. The protein disclosed in the Southern Blot shown in Figure 2 is described as well..

÷ē

In addition to the DNA and proteins disclosed herein, this invention comprises various intermediates, intermediate vectors, plasmids and transformed or mutated cell lines. This invention comprises the DNA of the sequence disclosed in Sequence Chart 1 incorporated into a vector selected from a cloning vector, a shuttle vector or an expression vector, any of these vectors may be plasmid vectors. The cloning vector or plasmid can be selected from any widely available or commercially available plasmids. The plasmid can be any suitable pUC type or pBR type of plasmid, such as pUC18, or pUC19, or any other suitable plasmid such as pBR322. The vector may be a typical shuttle vector. The shuttle vector may be a plasmid

10

15

20

25

such as, pMK4, or pYL112 Δ 119. An expression vector may also be used, the expression vector is a plasmid with a very strong promoter, such as the following very strong promoters: pTrc99A, pDR540, or pET-21(+). In this nomenclature pTRC99A would be the name of the plasmid. Each plasmid used for expression of proteins has a unique promoter as follows: pTRC99A (trc promoter), pDR540 (tac promoter), pET-21(+) (T7 promoter).

Examples of plasmids would be a plasmid named pRODCAP18 comprising the cloned rodC gene, placed into the cloning vector, pUC18, the plasmid named pMKRODC comprising the the cloned rodC gene, placed into the shuttle vector pMK4, the plasmid where the plasmid was created from a rodC gene excised from a pRODCAP18 plasmid, the plasmid selected from the plasmids named pBSRODC1 or pBSRODC1, comprising the rodC gene, placed into an expression vector with a strong promoter that is pTrc99A and plasmids created where the rodC gene is excised from the pMKRODC plasmid.

These plasmids may be used to create transformed bacterial cells and collections of mutant cells and plasmids may be easily created. So there are further descriptions of a bacterial cell transformed with the various disclosed plasmids and a bacterial cell that is an *E.coli* cell, and an *E.coli* cell variously transformed that is of type DH10B.

New and novel assays are also disclosed and a most important assay disclosed herein does NOT demand the newly discovered DNA and protein although in some embodiments they are required. This invention comprises: A method of measuring the activity of the TAP enzyme comprising combining CDP-glycerol plus H₂O or water plus TAP enzyme plus lipoteichoic acid and measuring the amount of lipoteichoic acid formed. In one embodiment the CDP-glycerol is radioactive CDPglycerol, in one embodiment the activity of the TAP enzyme comprises combining radioactive CDP-glycerol plus H₂O plus TAP enzyme plus lipoteichoic acid plus strepavidin SPA beads and a suitable lectin such as a wheat germ agglutinin and measuring the amount of radioactive lipoteichoic acid formed as indicated by measuring the lectin bound to the SPA bead. In all these embodiments the radioactive CDP-glycerol cna be made from [3H]glycerol-3-phosphate (a.k.a. [3H]glycerophosphate). A preferred method of practicing any of these assays is to treat the lipoteichoic acid to remove the alanine residues before using it in the assays, that is, before combining with the other ingredients, the lipoteichoic acid is treated to remove alanine. These assays may be used to measure the activity of TAP enzyme when it is from an impure preparation or the methods may be used

10

15

20

where the TAP enzyme is the enzyme disclosed in Sequence Chart 1 or 2, or Sequence ID listing number 2. The assays herein may be configured into kits for ease of application.

Also disclosed is a method of using lipoteichoic acid as a substrate for the enzymatic reaction catalyzed by the TAP protein. Lipoteichoic acid, unlike teichoic acid, is commercially available and thus makes an excellent substrate. The lipoteichoic acid can serve as an acceptor of CDP[³H]glycerol. The TAP protein can be obtained from crude sources or extracts, preferably the lipoteichoic acid is prepared from B. subtilis, S. aureus, or E. faecalis, or it can be the TAP protein described in Sequence Charts 1 and 2 and Sequence Listing I.D. no. 2, or a protein having at least about 70% homology to that protein.

A diagnostic kit utilizing the TAP enzyme and CDPglycerol to detect and monitor disease caused by gram positive bacteria can be created using the information disclosed herein. Following appropriate instructions from such a kit, a portion of the biological sample which is thought to contain lipoteichoic acid could be added to TAP and CDPglycerol, incubated for an hour or so, and the transfer of glycerol-3-phosphate from CDPglycerol to lipoteichoic acid present in the sample could be detected using the precipitation assay described below under "Precipitation Assay."

20 Brief Description of the Drawings

Figure 1. SDSPAGE of TAP purification scheme. Lanes 1 and 7 are molecular weight markers; lane 2 is the soluble protein fraction from cells containing overexpressed TAP; lane 3 is the membrane from the vector pTrc99A control; lane 4 is the 2M NaCl membrane extract from cells overexpressing TAP; lane 5 is the High Q purified TAP; and lane 6 is the Superose 12 purified TAP.

Figure 2. Southern blot showing the DNA sequence identified as being homologous to the sequence disclosed in Sequence Chart 1 only from the bacteria Staphylococcus aureus.

Additional Description of the Invention

This invention discloses a recombinant form of Teichoic Acid Polymerase (or TAP), also known as CDP-Glycerol:Poly(glycerophosphate)

Glycerophosphotransferase, its amino acid sequence and the DNA that codes for this enzyme. In addition, vectors, plasmids, probes and cells expressing this enzyme and assays incorporating the enzyme and disclosed herein, and all useful in some stage of discovery of new antibiotics, or the monitoring of disease states.

The genes responsible for cell wall teichoic acid synthesis in B. subtilis have

5

10

been located in an operon on the chromosome, C. Mauel, M.Young, D. Karamata, "Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in *Bacillus subtilis* strain 168, are organized in two divergent transcription units" *J. Gen. Microbiol.* (1991) 137:929-941. The *tag* genes, A-F, have all been sequenced, *Id.*, but only the *tagD* gene protein product has been purified and characterized. Y.S. Park, T.D. Sweitzer, J.E. Kison, C. Kent. "Expression, purification, and characterization of CTP:Glycerol-3-phosphate cytidyltransferase from *Bacillus subtilis*." *J. Biol. Chem.* (1993) 268:16648-16654.

RodC or rodc, also called TagF, Tagf, tagf or tagF codes for CDP-Glycerol:Poly(glycerolphosphate) Glycerophosphotransferase, which will be referred 10 to as Teichoic Acid Polymerase, or more frequently, TAP herein. This enzyme, TAP, catalyzes the polymerization of the polyglycerolphosphate backbone of teichoic acid by linking together the glycerolphosphate moiety of CDP-glycerol into 1,3 phosphodiester linkages. Attempts to isolate deletion mutants of rodC have been unsuccessful, see, C. Mauel, M. Young, P. Margot, D. Karamata "The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis" Mol. Gen. Genet. (1991) 215:388-394 and A.L.Honeyman, G.C. Stewart "Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis" Mol. Microbiol. (1988) 2:735-741; however, there is one temperature sensitive mutant RODC113 available for study. This strain has a point mutation in 20 the rodC gene which decreases enzyme activity sufficiently at 55°C to stop growth. See, Honeyman AL, Stewart GC. "The nucleotide sequence of the rodC operon of Bacillus subtilis." Mol. Microbiol. (1989) vol. 3 pp.1257-1268.

The inability of deletion mutants of rodC to survive and the fact that TAP is essential to the viability of B. subtilis suggest the temperature sensitive rodC enzyme and mutants described herein are particularly valuable. The cloning, sequencing, and partial purification of a novel form of TAP are described below.

Cloning theory. Previous investigators have attempted to identify and clone the rodc gene and protein. See, A.L.Honeyman, G.C. Stewart, "Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis" Mol. Microbiol. (1988) 2:735-741 and A.L.Honeyman, G.C. Stewart, "The nucleotide sequence of the rodC operon of Bacillus subtilis. Mol. Microbiol. (1989) 3:1257-1268. These previous investigations, using the bacillus known as Bacillus subtilis, did not result in the successful production of the TAP enzyme. The previous investigations disclosed a different sequence than the open reading frame of the rodc gene disclosed here. The previous investigations disclosed a different protein, one that had a very different

35

size and one where no compositional analysis of the putative protein sequence was ever provided. The enzyme produced from the cDNA disclosed herein has never before been produced from expressed cDNA, nor has the shortened cDNA sequence disclosed here been reported as that responsible for the entire TAP protein.

Previous disclosures reported a different, larger DNA sequence and a different, purely notional protein. The sequence of an active TAP enzyme has never been reported. However, the previously reported information was useful for the creation of probes, which were then used to discover and create the DNA.

In addition to creating the sequence from *Bacillus subtilis*, the authors herein have isolated DNA sequences from *Staphylococcus aureus* that arehomologous to the *tagF B. subtilis* residues.

Cloning and sequencing.

10

15

20

25

30

35

The B. subtilis rodC gene encoding TAP was amplified from chromosomal DNA using PCR. Sequencing revealed that Taq polymerase had performed a nucleotide misincorporation, resulting in a C to T transition at bp 1871. However, the resulting alanine to valine change in the expressed protein did not prevent the cloned gene from complementing a temperature sensitive defect in the rodC gene of B. subtilis strain RODC113.

Sequence Chart 1 shows that the DNA sequence of the PCR product cloned into pUC18 (pRODCAP18) matched the published rodC sequence exactly except for a C to T transition at bp 1871. The resulting point mutation changed an alanine in the wild-type TAP to valine. This mutant rodC gene was capable of complementing the rodC defect in the temperature sensitive B. subtilis strain RODC113 by allowing growth at the nonpermissive 55°C temperature.

4

The mutant rodC gene (rodCCT) was excised from pMKRODC as a 2.3 kb BamHI fragment and cloned into the expression vector pTrc99A to form pBSRODC1. Induction of E. coli DH10B/pBSRODC1 cells with 5 mM IPTG resulted in the appearance of a ca. 85 kd band in the cell membrane preparation (Figure 1, lane 4). The vector control (pTrc99A) membrane preparation did not contain this band (Figure 1, lane 3), but the 100,000 x g cell extract supernatant from pBSRODC1 did show slightly less 85 kd protein than the membrane preparation (compare lanes 2 and 4, Figure 1). N-terminal sequence analysis of the blotted protein revealed that the 85 kd polypeptide amino acid sequence began with MIENTVIKC. Sequence Chart 1 shows that this sequence corresponds to a 2163 bp open reading frame beginning with ATG at bp 100 and ending with TAA at bp 2263.

Cloning an homologous sequence from Staphylococcus aureus.

Chromosomal DNA from S. aureus was isolated and digested with restriction enzymes. The cut DNA was subjected to a Southern using the B. subtilis tagF gene (TAP producer) as a DNA probe. This experiment showed that S. aureus has DNA sequences that are highly homologous to the B. subtilis tagF gene.

Chromosomal DNA from S. aureus (reference = American Type Culture Collection [ATCC] 29213) was isolated and digested with the restriction enzymes EcoRI and HindIII. The DNA digests were separated by electrophoresis on a 1% agarose gel and blotted to a Nylon membrane generally following the method of Southern (Southern, E.M. 1975. "Detection of specific sequences among DNA fragments separated by gel electrophoresis," J. Mol. Biol. vol. 98, pp. 503, incorporated by reference.) A DNA probe was prepared using the method of nick translation and a 2.3 kb segment of the cloned tagF gene from B. subtilis. The S. aureus digests were hybridized to the tagF probe and several bands were identified which had homology to the cloned B. subtilis tagF gene. For example, the EcoRI digest of S. aureus chromosomal DNA yielded DNA fragments that were 7.0 kb, 5 kb, and 4.2 kb in size which hybridized well to the B. subtilis tagF gene. In addition, a HindIII digest of the same S. aureus chromosomal DNA yielded three homologous bands that migrated at 4.5 kb, 3.3 kb and 2.8 kb, respectively. As judged by visual inspection of the autoradiograms, the 4.5 kb HindIII fragment was much less homologous than either the 3.3 or 2.8 kb bands. This Southern analysis has identified tagF homologs in S.aureus that hybridize to the tagF gene of B. subtilis. These homologous S. aureus sequences represent genes coding for teichoic acid synthesis.

Production and Purification of the TAP enzyme.

TAP was overproduced under control of the *trc* promoter in *E. coli* DH10B cells. The protein was primarily located in the cell membrane, and salt extraction was used to initiate purification. TAP is associated with the membrane in *B. subtilis*, but the amino acid sequence does not indicate membrane spanning regions. It appears that TAP is loosely associated with the cell membrane.

Purification of TAP was hindered by the association of DNA with the enzyme preparation. Gel filtration chromatography did not improve purification, indicating that nucleic acid and protein formed a tight complex. Incubation of this preparation with Benzonase released nucleic acid fragments, but did not alter the size of the complex significantly. Future purification will require the addition of Benzonase early in purification in order to prevent the complex from forming.

Despite the nucleic acid problem, TAP was purified four-fold from the

5

10

15

20

25

30

membrane preparation. The enzyme was stable for two weeks when stored in ice. Though TAP synthesizes cell wall teichoic acid in situ, lipoteichoic acid from either B. subtilis, S. aureus, or E. faecalis could serve as an acceptor of CDP[³H]glycerol. The availability of a commercial source of lipoteichoic acid will allow the development of the TAP assay for a high volume screen which could lead to the discovery of TAP inhibitors. It appears that TAP recognizes the polyglycerol-phosphate backbone of either cell wall teichoic acid or lipoteichoic acid and largely ignores the proximal portion of either polymer.

The biosynthetic pathway for teichoic acid has been established for many years, yet the exact function of this anionic polymer has never been determined. One report describes the use of teichoic acid as a reserve phosphate source in which gram positive bacteria draw upon the glycerolphosphate when phosphate levels in the environment are low (Grant WD. "Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis" J Bacteriol (1979) vol. 137, pp. 35-43, incorporated by reference). While this role for teichoic acid cannot be disputed, the fact that B. subtilis cannot survive in the absence of teichoic acid synthesis under conditions of high phosphate levels (Mauel C, Young M, Margot P, Karamata D. "The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis" Mol Gen Genet (1991) vol. 215, pp. 388-394, incorporated by reference) indicate that a more essential role is likely. Some reports point to the ability of teichoic acid to chelate divalent cations (Fischer, W. "Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus" Med. Microbiol. Immunol. (1994) vol. 183, pp. 61-76, incorporated by reference), but lipoteichoic acid would presumably chelate in the absence of cell wall teichoic acid. It is far more likely that the essential nature of teichoic acid is in maintaining the structural integrity of the cell wall, due to the covalent attachment to peptidoglycan (Technical Chart 1). Given the information disclosed herein it would be obvious to one skilled in the art to randomly mutate the cloned rodC gene, integrate the mutated gene back into the chromosome, and produce a pool of TAP mutants which can be used to study the effects of teichoic acid on gram positive cell wall integrity.

Partial purification of TAP.

The enzymatic activity of TAP was assayed using CDP[³H]glycerol as the glycerolphosphate donor and *B. subtilis* lipoteichoic acid as the acceptor. If active, the recombinant TAP enzyme should lengthen lipoteichoic acid with radioactive glycerolphosphate monomers, producing acid precipitable radioactivity. Preliminary experiments demonstrated that the overexpressed TAP was active, therefore a

10

15

20

25

30

purification method was initiated. Extraction of TAP from the *E. coli* membrane with 2 M NaCl produced an active TAP preparation that could be separated from the cell membrane by ultracentrifugation. Dialysis of the TAP membrane extract against Buffer A (see Material and Methods) produced the protein pattern shown in **Figure 1**, lane 4.

Ten mg of the dialyzed membrane extract was placed in an ion-exhange column. Equilibration of the column with Buffer A containing 50 mM NaCl resulted in a small amount of TAP activity passing through the column in fractions 2-4, but the majority of activity eluted at the end of the 0.05 M to 0.5 M NaCl gradient. Table 1 shows that High Q chromatography resulted in a four-fold purification of 10 TAP, and SDSPAGE analysis of these pooled fractions demonstrated that TAP was enriched (Figure 1, lane 4). Gel filtration chromatography on Superose 12 did not increase the specific activity of the enzyme (data not shown) and this result is supported by the lack of purification evident in lane 5 of Figure 1. TAP eluted with the void volume (mol. wt. >200 kd) in the Superose 12 column, while it 15 migrated as a ca. 400-600 kd protein using a TSK-400 gel filtration column. A spectrophotometric wavelength scan revealed that the sample contained a high amount of nucleic acid which presumably forms a high molecular weight complex with the proteins in the sample, including TAP.

Applications and uses of the TAP enzyme, lipoteichoic acid as a substrate, and the expressed cloned cDNA sequence.

Enzymatic Synthesis of Polyglycerolphosphate (Teichoic Acid) by TAP and alternative substrates for the TAP enzyme.

TAP catalyzes the synthesis of the polyglycerolphosphate backbone of cell wall teichoic acid in *B. subtilis*, and this polymer is covalently attached to peptidoglycan (Technical Chart 1). Lipoteichoic acid is a structurally related polymer that is anchored to the cell membrane of gram positive bacteria by the fatty acyl side chains of a phospholipid moiety (Technical Chart 2). Both lipoteichoic acid and cell wall teichoic acid share the same polyglycerolphosphate backbone but there is evidence that TAP does not synthesize lipoteichoic acid in situ (Fischer, W. "Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus" Med. Microbiol. Immunol. (1994) vol. 183, pp. 61-76). Herein, we present data that shows that lipoteichoic acid can serve as an alternate substrate for TAP. This is an important discovery, both because lipoteichoic acid is available commercially and cell wall teichoic acid is not, and because tests have suggested that soluble teichoic acid does not serve as a suitable substrate for TAP. This discovery now makes it

35

20

possible to develop mechanistic screens for TAP inhibitors.

Assay Conditions.

Several assays may be constructed using the TAP enzyme. Precipitation and SPA are two examples. Modification (alanine removal) of lipoteichoic acid resulted in improved activity of the recombinant TAP enzyme. Alanine ester was removed from lipoteichoic acid by resuspending 1 mg. in 0.1M Tris-HCL buffer (pH 8.0) for 24 hr. at 37° C. Free alanine was removed by dialysis in 3500 dalton cutoff membrane agains deionized water (Fischer, W., H.U. Koch, P. Rosel, and F. Fiedler "Alanine ester-containing native lipoteichoic acids do not act as lipoteichoic acid carrier" *J. Biol. Chem.*, (1980) vol. 255, pp. 4557-4562, incorporated by reference.

Precipitation Assay

10

15

20

25

30

35

The method of Burger and Glaser was generally followed. Burger MM, Glaser L. "The synthesis of teichoic acids" *J. Biol. Chem.* (1964) vol. 239, pp. 3168-3177, incorporated by reference. A typical assay contained 1-100 µl of enzyme, 10 µl of lipoteichoic acid (1 mg/ml *B. subtilis* lipoteichoic acid [Sigma] in water), 25 µl of CDP[³H]glycerol (10 mM CDPglycerol Specific Activity 8.8 µCi/µMole), and enough Buffer A to bring the total volume to 250 µl. The reaction was incubated at 37°C for one hour, mixed with 80 µl of 3N perchloric acid, and placed on ice for 5 min. The acid treated sample was spotted on a GF/C filter and washed with 4 x 5 ml of 0.15 N perchloric acid before liquid scintillation counting. Control reactions lacking either lipoteichoic acid or CDP[³H]glycerol were included as negative controls.

Preliminary experiments demonstrated that incubation of lipoteichoic acid and CDP[³H]glycerol with TAP resulted in the formation of an acid precipitable material. When this material was analyzed by cellulose thin-layer chromatography, it remained at the origin, indicating that a high molecular weight compound had been formed in the TAP assay. Hydrolysis of this product at 100°C in the presence of 1 N HCl resulted in the formation of degradation products which comigrated with glycerol and glycerol-3-phosphate. The chromatography profile matches that which has been reported for the acid catalyzed degradation of polyglycerol-phosphate (Burger MM, Glaser L. "The synthesis of Teichoic Acids" *J. Biol. Chem.* (1964), vol. 239, pp. 3168-3177, incorporated by reference) the data demonstrate that lipoteichoic acid can serve as an acceptor for the transfer of [³H]glycerol-3-phosphate from CDP[³H]glycerol in the TAP catalyzed reaction, thereby lengthening the polyglycerol-phosphate chain. **Tabl 2** shows that commercial lipoteichoic acid preparations from *S. aureus* and *S. faecalis* can also serve as acceptors for the

 $transfer\ of\ [^3H] glycerol-3-phosphate\ from\ CDP[^3H] glycerol.$

Scintillation Proximity Assay (or SPA)

This assay is based on the ability of lectins such as wheat germ agglutinin (WGA) and concanavalin A (conA) to bind the sugar moieties present on lipoteichoic acids isolated from a variety of gram positive bacteria. For example, the enzyme can be mixed with buffer, [3H]CDP-glycerol, and 10 µg of Enterococcus faecalis lipoteichoic acid as described for the precipitation assay above. After incubating at 37°C for 1 hour, strepavidin SPA beads (Amersham) containing biotinylated concanavilin A are added to the assay and the entire mix is incubated at room temperature for 30 min. in a 96 well plate. The conA::SPA bead conjugate will bind the radioactive lipoteichoic acid formed in the assay and the activity of the enzyme can be quantitated using a counter such as a Packard Top Counter. A variety of lipoteichoic acids can serve as substrates and the appropriate lectin can be bound to a SPA bead. For example, the glucose moieties present on the lipoteichoic acids of Enterococcus faecalis, Enterococcus faecium, and Enterococcus hirae can be bound to SPA beads containing conA. The cell wall teichoic and lipoteichoic acids of Staphylococcus aureus containing N-acetylglucosamine residues can be bound to WGA beads.

Alternative uses for the discovery that lipoteichoic acid can be used as a substrate for the TAP enzyme.

The discovery that lipoteichoic acid can be used as a substrate for the TAP enzyme suggests other practical applications. One obvious application of this discovery will be the creation of kits and diagnostic devises useful for the monitoring and management of disease states caused or influenced by gram positive bacteria.

Since lipoteichoic acid serves as a substrate for TAP, in that TAP will extend the lipoteichoic acid chain by adding glycerol-3-phosphate residues from CDPglycerol, TAP could therefore be used to detect the presence of lipoteichoic acid in biological samples including blood and other bodily fluids. For example, a portion of the biological sample which is thought to contain lipoteichoic acid could be added to TAP and CDPglycerol, incubated for an hour or so, and the transfer of glycerol-3-phosphate from CDPglycerol to lipoteichoic acid present in the sample could be detected using the precipitation assay described under "Precipitation Assay."

Potential uses of TAP could therefore include the diagnosis of bacterial infection in which bacteria release lipoteichoic acid into body fluids. TAP can be used to detect lipoteichoic acid in body fluids. Antibodies which target lipoteichoic acid are currently used for lipoteichoic acid detection in clinical samples, but the

10

20

25

30

discovery disclosed here makes it possible for the TAP enzyme to be used to perform the same function.

Materials and Methods

One skilled in the art should be able to reproduce and practice this invention with the information provided above, the materials and methods below are provided to further illuminate the invention and should not be considered limiting in any way.

Cloning rodC From B. subtilis

5

25

The published sequence of *rodC* was utilized to clone the gene from the *B. subtilis* chromosome using PCR, according to the following:. The primers: C1A (5'-TTCAGGATCCTTCTCTTGGAGG GTCACGGAAATAAAAG-3'), SEQ. ID NO. 3 and

C2A (5'-ATTTGGATCCCCTAAATTATTCAGCTTTAAATAC-3') SEQ. ID NO. 4 hybridized to sequences -35 to -8 bases upstream of the putative translational start site and -15 to +9 from the stop site, respectively. Primer sequences are reproduced in Sequence Chart 3 and sequence identification numbers 3 and 4. Amplification using a program of 94°C for 45 sec/48°C for 45 sec/ and 72°C for 2 min (30 cycles) resulted in the production of a 2.3 kb product which yielded *EcoRI* fragments of 1.5 and 0.8 kb, characteristic of *rodC*. The *Bam*HI sites engineered into the primers C1A and C2A allowed for the cloning of *rodC* into pUC18, yielding pRODCAP18. Any other commonly available cloning vector could be used in place of pUC, including such vectors as pUC's, pUC18, pUC19, pBR322, and many other commonly available plasmids.

Complementation of the B. subtilis rodC mutant RODC113

The rodC gene from pRODCAP18 was excised as a 2.3 kb BamHI fragment and ligated into the BamHI site of the E. coli/gram positive shuttle vector pMK4 to produce pMKRODC. The pMK4 plasmid was selected because it reproduces in both gram negative bacteria like E.coli and it reproduces in gram positive bacteria like B. subtilis. Any shuttle vector of this type should be suitable. pMKRODC was electroporated into the temperature sensitive B. subtilis rodC mutant RODC113 using an standard methods. The cells were plated on LB/chloramphenicol and incubated at 55°C.

Sequencing

The rodC gene present in pRODCAP18 was sequenced using deltaTaq cycle sequencing (Amersham®) and [35S]dATP direct incorporation.

Overexpression of TAP

In order to achieve overexpression of TAP, the rodC gene was excised from pMKRODC as a 2.3 kb BamHI fragment and ligated into the BamHI site of the expression vector pTrc99A (Pharmacia) to form pBSRODC1. The expression vector pTrc99A was chosen here but any plasmid with a very strong promoter, such as pTrc99A, pDR540, or pET-21(+) should make a suitable expression plasmid. A second isolate containing rodC in the opposite orientation was designated pBSRODC2. In these examples pTRC99A would be the name of the plasmid. Each plasmid used for expression of proteins has a unique promoter as follows: pTRC99A (trc promoter), pDR540 (tac promoter), pET-21(+) (T7 promoter).

Overexpression and Partial Purification of TAP From Escherichia coli

A. Cell Growth and Lysis

DH10B (E. coli) cells transformed with pBSRODC1 were grown in 2 liters of 2X LB for 3 hr, induced with IPTG (5 mM) for 4 hr, harvested via centrifugation, and stored at -70°C. The cell pellet was resuspended in 5 ml of Buffer A (50 mM Tris-HCl, 10 mM MgCl₂, 1 mM DTT, 1 mM EDTA, pH 7.5) and lysed by two passages through a French Pressure Cell at 10,000 psi. Note, 2X LB can be restated as double strength Lennox Broth. IPTG stands for isopropylthio-beta-D-galactoside.

B. Extraction of TAP From the Cell Membrane

The cell lysate was centrifuged at 5,000 x g for 15 min to remove unbroken cells, and the supernatant was centrifuged at 100,000 x g for one hour. The resulting membrane pellet was resuspended in 25 ml of Buffer A containing 2M NaCl and extracted for two hours on a rotary shaker at 4°C. The sample was then centrifuged at 100,000 x g for one hour to pellet the membrane, and the supernatant was dialyzed overnight against four liters of Buffer B (Buffer A containing 50 mM NaCl).

C. High Q Anion Exchange Chromatography

A 5 ml High Q column (BioRad®) was equilibrated with Buffer B using an Econosystem Automated Chromatography Unit (BioRad®). A portion of the 2M NaCl extract of the cell membrane representing 10 mg of total protein was applied to the column and unbound proteins were washed out with the same buffer. TAP was eluted from the column using a 0.05 to 0.5 M NaCl gradient and fractions containing TAP activity were pooled and concentrated using a Centriprep 30 ultrafiltration unit (Amicon®). The concentrated protein was dialyzed overnight against two liters of Buffer A.

TAP Enzyme Assay

30

35

10

The method of Burger and Glaser was generally followed. Burger MM, Glaser L. "The synthesis of teichoic acids" *J Biol Chem* (1964) vol. 239, pp. 3168-3177, incorporated by reference. A typical assay contained 1-100 µl of enzyme, 10 µl of lipoteichoic acid (1 mg/ml *B. subtilis* lipoteichoic acid [Sigma] in water), 25 µl of CDP[³H]glycerol (10 mM CDPglycerol Specific Activity 8.8 µCi/µMole), and enough Buffer A to bring the total volume to 250 µl. The reaction was incubated at 37°C for one hour, mixed with 80 µl of 3N perchloric acid, and placed on ice for 5 min. The acid treated sample was spotted on a GF/C filter and washed with 4 x 5 ml of 0.15 N perchloric acid before liquid scintillation counting. Control reactions lacking either lipoteichoic acid or CDP[³H]glycerol were included as negative controls.

Identification of the TAP Product as Polyglycerolphosphate

The TAP assay was performed as described above in a total volume of 1 ml by scaling up the appropriate reagents. After one hour at 37°C, the product of the reaction was precipitated with 3N perchloric acid and centrifuged at 14,000 x g for 15 min. The pellet was washed two times with 0.5 ml of 0.15 N perchloric acid and dried in a speed vac before resuspending in 0.1 ml of 0.3 M NH₄OH. At this point the soluble material represented 5.3 x 10⁶ cpm per ml. Approximately 0.09 ml of this material was dried in the speed vac and subsequently resuspended in 0.1 ml of 1N HCl. This material was refluxed in a sealed vial at 100°C and samples were removed after 16 hr of hydrolysis for analysis by thin layer chromatography using cellulose plates and the following solvent systems: Ethanol - NH₄acetate, pH 7.5 (7.5:3) and n-propanol - ammonia - water (6:3:1). After developing the plates in the solvent, they were dried at room temperature and cut into 1 x 2 cm sections for liquid scintillation counting.

Additional disclosed embodiments of the invention

With this disclosure of the TAP sequence, random mutation of the cloned rodC gene may be constructed and integrated back into the chromosome thus producing a pool of TAP mutants which can be used to study the effect of teichoic acid on gram positive cell wall integrity.

30 Definitions

Words in this document should be given the meaning that one skilled in the art with give those words. Some examples of this follow.

BioRad® is the name of a biochemical supply company located in Hercules, California

Amicon® is the name of a biochemical supply company located in Beverly, Massachusetts.

10

15

20

h or hr is hour

WO 97/42343

10

15

20

25

homology and homologous sequences and residues are referred to in this document. In general, these terms have meanings generally accepted by one skilled in the art. The following definitions are also provided and should control and explain any scientific disagreement concerning the meaning of the terms. Here are two definitions of homology, one in reference to DNA, or nucleic acid sequences and one in reference to peptide or protein sequences. Nucleic acid homology definition: a nucleic acid sequence from one organism is X% homologous to that of a second organism when a gene from the second organism contains, at any point within the sequence, X nucleotide residues out of 100 which were identical to that of a similar gene of the first organism. For example, a nucleic acid sequence from S. aureus which is 70% homologous to that of the B. subtilus rodC gene would contain at any point within the sequence, 7 nucleotide residues out of 10 which were identical to that of the B. subtilis rodC gene. Peptide or protein homology: a peptide or protein, which is X % homologous to that of another peptide or protein, would contain, at any point within its amino acid sequence, X amino acid residues out of 100 which were either identical or similar to that of the first amino acid sequence. For example, a peptide or protein which is 70 % homologous to that of the B. subtilis TAP enzyme, would contain, at any point within its amino acid sequence, 7 amino acid residues out of 10 which were either identical or similar to that of the B. subtilis amino acid sequence. A similar amino acid is one that is of similar size, charge or hydrophilic property.

IPTG stands for isopropylthio-beta-D-galactoside.

m. or min. is minute

Cloning vectors are vectors such as pUC's pUC18, pUC19, pBR322, and many other commonly available plasmids.

A cloning vector may be a shuttle vector.

A shuttle vector is a plasmid that replicates in either gram negative or gram positive bacteria. Example shuttle vectors are pMK4, and pYL112Δ119.

An expression vector is a plasmid with a very strong promoter, such as pTrc99A, pDR540, or pET-21(+).

TAP Enzymatic Activity in Purification Procedure.

TABLE 1

5	Purification Step	Specific Activity nmoles/hr/mg protein
	Membrane	4.7
	2M NaCl Extract of Membrane	10.3
	High Q Chromatography	39.9

10

TABLE 2

15 Effect of Lipoteichoic Acid Source on TAP Activity.

Source of Lipoteichoic Acid	cpm of [³ H] glycerol Incorporated
Bacillus subtilis	155,930
Streptococcus faecalis	93,814
Staphylococcus aureus	15,632

TECHNICAL CHART 1

Teichoic Acid Pathway in B. subtilis. Biosynthetic pathway for cell wall teichoic acid synthesis in B. subtilis. The polyglycerolphosphate polymer of teichoic acid is linked to peptidoglycan in gram positive bacteria.

5
$$CH_{2}-OH$$

$$H-C-OH$$

$$H_{2}C-OH$$

$$glycerol$$

$$glycerolkinase$$

$$CH_{2}-OH$$

$$ATP$$

$$ADP$$

$$CH_{2}-OH$$

$$H-C-OH$$

$$H_{2}C-O$$

$$P-OH$$

glycerophosphate or glycerol - 3 - phosphate

30

TECHNICAL CHART 2

Biosynthesis of Lipoteichoic Acid in *Staphylococcus aureus*. Biosynthetic pathway for lipoteichoic acid synthesis. The fatty acyl chains of lipoteichoic acid are embedded in the cell membrane and the polyglycerolphosphate backbone is oriented out towards the cell surface.

Lipoteichoic acid

TECHNICAL CHART 3

B. subtilis teichoic acid biosynthetic operon showing the location of the rodC
 (tagF) gene which codes for teichoic acid polymerase.

2.0 kb

SEQUENCE CHART 1

The DNA Sequence of the *rodC* gene from *B. subtilis*. Restriction sites are indicated. The translated protein sequence is also provided. This CHART also shows the mutation at position 1871, a "T for C" DNA substitution resulting in a "V for A" amino acid substitution. The DNA from this Sequence Chart 1 is listed as Sequence Identification number 1, SEQ. ID. NO. 1, (SEQ. ID. NO. 1 is the sequence without the mutation at position 1871). The protein from this Sequence Chart 1 is listed in Sequence Chart 2 and is listed as SEQ. ID. NO. 2. The numbers in the left margin in the Chart below indicate nucleic acid residues. The ATG shown below is the true start codon for the actual first amino acid of the isolated TAP enzyme. In practice, an upstream ribosome binding site is also required. The actual DNA sequence that was inserted into the plasmid is shown in Sequence Chart 4. Here this protein, sequence shown below, SEQ. ID. 2, and Sequence Chart 2, was actually expressed in *E. coli* using the plasmid pBSRODC1.

ATGATTGAAAACACTGTGATT 20 MIENTVI AAATGTATTTTGAAAAGCTTGAAAAACAATTTAGGAAGTCTTGAATTGTTAATCTCAATT 25 K C I L K S L K N N L G S L E L L S I GATTCAGAACACCAATTTTTAGAGGATTACCAGTTATTTTTAAAGCTGAAAGAGAGACGT 30 82 D S E H Q F L E D Y Q L F L K L K E R R TCAGGAACGGAATCTGAATTTCCGCTTCAAAACACTGGCTCATTAGAGTATAAAACTGAG 35 142 SGTESEFPLQNTGSLEYKTE ATAAATGCTCATGTTTTGCCTATGCCTGTTGAAATGGGACAAACATATGATTTTTATGTC 40 202 HVLPMPVEMGQTYDFYV GAATTTCGAAAAAATATGAAGATGCGGAGCAGGAACCACTCTTGAAGCGTCTTTCTGCT 45 262 RKKYEDAEQEPLLKRLSA GAAGTAAATTCAATTGAGCGCGCCTTTCATGTCGATCAAACCACAGAACTTTTGATTTTA 50 322 EVNSIERAFHVDQTTELLIL

5

10

		CC:	rta:	rac	AAC	TGA	TAA	AGG	CAA	CTT	TTC	TAT	TAA	GGT	GAA	AAG.	AGA	GGC	CAA	TAA	CAT	C +
	382	P	Y	т	т	D	ĸ	G	N	F	s	I	ĸ	V	ĸ	R	E	A	K	I	Ι	
5		. ~	. mm	T () N	ጥ ር አ	ייימא	CGA	GAT	ጥልር	СТС	TGA	AGA	AAT	AAC	CAT	AAC	AGG'	TTA	TGC	GGG	GTA	С
	442	R	 F	 D	-+-	I		+ I				+ E			-+- I	T			A		Y	+
10		-	-	_	_																	
10	502	CT	GAG'	TTC	CGA	AAA	TCA	ATA	TCG	GAT	AAA	AAA. +	CTI	GAA	CCT	TAT						+
	302	L	s	s	E	N	Q	Y	R	I	ĸ	N	L	N	L	I	L	K	K	G	G	
15		GA.	AAC	ACC	TAT	TGA	GGA	AAA	ATT.	TCC	TAA	CAA	GC?	rag <i>i</i>	AAAC	AAA	AAC	ACA	TGG	ССТ	GGA	A
	562		 T	 P	-+- I	 E	E.	·+	F		ı	+			R			н	G	L	E	+
20																					~~~	
	622	AA	CAT	GAC	AGC	AGA	TGC	TTT	TGI	TCC	GGF	ACI			+ -	TGA		+				YG +
	0	N	M	R	A	D	G	F	V	P	Ė	L	Y	D	F	E	V	К	V	Þ	L	
25		AA	AGA	AAT	TCC	TTT	rcto	CAA	ATG#	AAA	ACC	TT	ATG'	TTT	ATC	GTCI	TTT	TAT	rgga	GTA	CAT	'A
	682	 К	 E	·	+ ·	F	s	 N	E	·	·	-+-			R		F	М		Y		
30																						. ~
00	742	TO	CAA	TG	ACG	ATG	AAG	GAAG	GG.	ATA	rTC/	AGT' -+-	rca 	ACA	GCA(CTG						AT - +
	,	С	N	D	D	E	G	т	D	I	Q	F	N	S	T	A	L	V	L	G	D _.	
35		CC	SAAA	AA.	ACA.	AAT'	TAA	AAG	GAT:	rag:	TAA	GTA'	TTA	TTA	AAA	CAA	ACA	ACG(CAC	CAG	rtc	GT
	802		- - -	 N	+ K				+		S	- + -		ĸ	+			A	₽	٧	R	~ ~
40																	C 3 C	TI A A	א כיכי	۱ (۲۳۰)	מידה	GC.
	862		ATG	AAG	TCT +	TTA.	- 		+			-+-				TCA						
		Y	E	V	F	К	К	K	K	K	Q	Т	L	. 0	, 1	R	V	IN	ט	r	٦	
45		C.	TGA	AAA	CAA	GGA	TGA	AAT	ACT	ATT	TTA	AA G	GAA	AGA	AGA	AGA	GAT	TAG	TAT	CAA	AAA	TA
	922	- L	 к	 Т	+ R	м	 K	Y	+ F	ī	K	- + - G	; F	(F	K	R	L	V	s	ĸ	I	
50																		ת ה מה	יריייר	ጥልጥ	тса	TG
	982							_				- + -			-,	CAT			T			
		K	K	1	T	· K	(N	1 F	e N	ı K	(L					Y				•	-	•
55		A	TGG	CTA	GCA	GAA	ATGO	CAC	STTA	AAA	\GG#	AAA	CA	GTC	ATTI	TTC	AAA	GTI	TTA	ATG	GGA	AA.
	1042	2 - M			4 5 F		4 I	? \	7 K	·	R 1	(1	ָר ׳	v	I I	E	E 9	S F	r N	1 0	F	ζ .
60														~ · ~	.		יא אי	\ N C C	י א כי כ	-C-T-C	: A G1	ጥልግ
	110:	_				i.						+				CGG(•
		C	} ¥		S (C 1	N I	P I	R A	A :	Ι,	Y :	Ľ	ĭ	ri i	R I	€ وست	, r				•
65		A	AAA	\TG'	TAT'	rgg	AGT	GTA	AAT	AAA	CAA'	TAT	TCA	GCG	CCT	TTT	GAT	GAA	AAG	GGA?	ATT(CCT
	116	_														F !						
~ 0																						

		TAC	CAT	raa:	rcg	CCT	CTC	ATT!	\AA/	ATGO	CTC	CTTC	GC	TAT	GC/	AAG!	AGC1	rgac	TAI	TGC	GTT
	1222	Y	I	N	R	L	s	L	ĸ	w	L	F	A	М	Α	R	A	E	Y	W	v
5															0030	0 N C 1		י איי	יל ידי ידי י	. C A A	
	1282	GT:	TAA(-+-			+							- +						ACA
_		v	N	s	R	L	P	L	W	I	P	K	P	S	Н	T	T	Y	Ļ	Q	T
10			GCA:	rgg	CAC	ACC	rtt!	AAA!	AAGA	ACT	rgcz	TAA	GGA?	rato	GGA!	AGA	AGTO	CAT	TATO	CCI	rggī
	1342		H	<i>-</i>	T	P	L	+·	R	L	A	м	D	M	E	E	v	н	М	P	G
15		AC	AAA	CAC	CAA	AAA	ATA:	LAA1	AAGO	GAA:	rtt:	rato	CAAC	GA.	AGC:	TC	raa:	TGC	GAT	TAC	CTTG
	1402	T	N	·	- + - ·	ĸ	Y			N		ı	ĸ	E	A	s	N	W	D	Y	L
20	1462	AT	TTC	CCC	AAA' -+-	TGG:	TTA:	TTC!	AAC	rga	SAT	CTT	raca	ACG	GGC(STT	CAC	3TTT	AAC	CAAC	SACA
		I	s	P	N	G	Y	s	T	E	I	F	Т	R	Α	F	Q	F	N	K	T
25		AT	GAT'	TGA	ATC'	TGG	ATA:	rcc	rag/	AAA:	rga:	rrri	rcT:	rca:	raa:	rga:	raa:	raa1	GAC	GAA	ACA
	1522	 М	 I	·	-+- S	 G	Y	P	R	N	D	F	L	н	N .	D.	N N	N.	E	E	T
30	1582	AT	ATC.	ATT(GAT	AAA	GAG	TAG	GTT/	AAA:	rat:	rcc	rcg	rga:	TAA!	AAA	GGT?	TAT1	TT	CATA	rGCC
		I	s	L	I	K	s	R	L	N	I	P	R	D	К	K	V	1	L	Y	A
35		CC:	TAC	ATG	GAG	AGA'	rga:	rcad	GTT	CTA:	rgc:	AAA	AGGG	GCG:	rta:	raa(STT	GA1	стс	CGAT	ATT
	1642	 P	T	 W	-+- R		D	+	F			+ · К			Y		F	+ -	L		L .
								_													
40	1702		TTT	GCA	TCA.	ACT'				ACT						rgt/	AAT	TTF.	AAG?	ATC	CAT
			L	Н	Q	L	R	Q	E	L	G	N	E	Y	I	V	I	L	R	M	Н
45					т																
	1762	TA	TCT	GGT	AGC	TGA	GAA'	TTT:	rga:	TTT	AGG'	rcc	TTT:	rga/	AGG/	ATT	rgc	ATA	GA7	TTT	TCT
		Y	L	v	A V	E	N	F	D	L	G	P	F	E	G	F	Α	Y	D	F	s
50					·																
	1822	GC'						AGA			TAT	GGT:	TTC	rga:	TTT(GCT	GAT:	raci	GA?	TAT	TCT
55		A	Y	E	D	I.	R	E	L	Y	M	v	s	D	Ĺ	L	I	T	D	Y	S
		TC	AGT.	ል ጥጥ ል	רדירי	TGA'	ተጥጥ'	rgcz	AAA	r T T	AAA	ACG	GCC	AATO	GCTA	ATT	CTT	rgro	2001	rgac	CATC
	1882				-+-			+		L		+			-+-			+ -	- - -		+
60		-	·	•	•		•			_	••	• `	•		_	-	-	·	•		_
	1942		AAC	CTA	CCG	GGA	CAA	GTT(GCG:	rgg:	TTT	CTAC	CTT:	rga:	rtt:	rga.	AAA	AGA	AGC	CCI	rggr
65	1342		T	Y	R	D	ĸ	L	R	G	F	Y	F	D	F	E	ĸ	E	A	P	G
00		C C !	The state of	C C TO		8 B C'	T 3 ~	TC > 1	N (7 ×)	n n ~	יתימי	TC N	zec:	יתמי	ית מי	20 N	ገል ጥ /	، باشر	ነ ጥር ረ		TGAT
	2002				-+-			+			- 	+ •		:	-+-			+ -		·	+
70		r	1.	٧	ĸ	Т	T	E	£	T	Ţ	£	A	1	r.	Ų	T	3	3	2	U

PCT/US97/07123

	2064							TTT				CTA							AGA	GTC	AGGA
6 -	2064							F			F	Y	Ø	ĸ	F	C	Y	L	E	s	G
Э																					a
	2122				-+-			+				+			-+-			+			CAAAT
10		R	s	s	E	K	V	v	N	T	V	F	K.	A	E	*					

SEQUENCE CHART 2

The amino acids, or protein from SEQUENCE CHART 1, including the single amino acid mutation, shown below. The amino acids from this Sequence Chart 2 are listed in as SEQuence IDentification Number 2 (SEQ. I.D. NO. 2 is the sequence without the mutation at position 616).

10	1	м	I	E	N	T	v	I													
	8	к	С	I	L	к	s	L	к	N	N	L	G	s	L	E	L	L	I	s	I
•	28	D	s	E	н	Q	F	L	E	D	Y	Q	L	F	L	K	L	K	E	R	R
15	48	s	G	T	E	s	E	F	P	L	Q	N	T	G	s	L	E	Y	к	T	E
	68	I	N	A	н	v	L	Р	М	P	v	E	M	G	Q	T	Y	D	F	Y	V
20	88	E	F	R	ĸ	ĸ	Y	E	D	Α	E	Q	E	P	L	L	K	R	L	s	A
20	108	E	v	N	s	I	Ε	R	A	F	н	v	D	Q	T	T	E	L	L	I	L
	128	p	Y	T	T	D	ĸ	G	N	F	s	I	ĸ	v	ĸ	R	E	A	К	I	I
25	148	R	F	D	Q	I	E	1	s	s	E	E	I	s	I	T	G	Y	A	G	Y
	168	L	s	s	E	Ŋ	Q	Y	R	I	к	И	L	N	L	1	L	K	ĸ	G	G
30	188	E	T	P	1	E	E	к	F	P	I	к	L	E	R	K	T	Н	G	L	Ε
50	208	N	M	R	A	D	G	F	v	P	E	L	Y	D	F	Ε	V	ĸ	v	P	L
	228	к	E	I	P	F	s	N	E	к	R	Y	v	Y	R	L	F	M	E	Y	I
35	248	С	N	D	D	E	G	T	ם	I	Q	F	N	s	T	A	L	V	L	G	D
	268	R	ĸ	N	к	L	К	G	L	v	s	ı	ı	к	T	N	N	A	P	v	R
40	288	Y	E	v	F	к	ĸ	ĸ	к	ĸ	Q	T	L	G	I	R	v	N	D	Y	s
10	308	L	ĸ	т	R	М	Κ.	Y	F	I	ĸ	G	ĸ	ĸ	ĸ	R	L	v	s	ĸ	I
	328	к	ĸ	I	T	к	М	R	N	К	L	I	T	к	т	Y	ĸ	S	L	F	М
45	348	М	A	s	R	М	P	v	к	R	к	Т	v	I	F	E	s	F	N	G	К
	368	Q	Y	s	С	N	P	R	A	I	Y	E	Y	M	R	E	N	H	P	E	Y
50	388	к	M	Y	W	s	v	N	K	Q	Y	s	A	P	F	D	E	ĸ	G	I	P
00	408	Y	I	N	R	L	s	L	ĸ	W	L	F	A	M	A	R	A	E	Y	W	V
	428	v	N	s	R	L	P	L	W	I	P	ĸ	P	s	н	T	T	Y	L	Q	T
55	448	W	н	G	т	P	L	к	R	L	A	M	D	M	E	E	v	Н	M	P	G
	468	T	N	Ť	ĸ	ĸ	Y	К	R	N	F	1	к	E	A	s	N	W	D	Y	L
60	488	I	s	P	N	G	Y	s	T	E	I	F	T	R	A	F	Q	F	N	ĸ	T
00	508	M	I	E	s	G	Y	Р	R	N	D	F	L	Н	N	D	N	N	E	E	T
	528	I	s	L	I	к	s	R	L	N	I	P	R	D	K	к	v	I	L	Y.	A
65	548	P	T	W	R	D	D	ġ	F	Y	A	K	G	R	Y	к	F	D	L	D	L
	568	D	L	н	Q	L	R	Q	E	L	G	N	E	Y	I	V	I	L	R	M	н

WO 97/42343 PCT

	588	Y	L	V	A V	E	N	F	D	L	G	P	F	E	G	F	A	Y	D	F	s
E	608	A	Y	E	D	ı	R	E	L	Y	М	V	s	D	L	L	I	T	D	Y	s
o o	628	s	٧	F	F	D	F	A	N.	L	ĸ	R	Þ	M	L	F	F	v	P	D.	I
	648	E	T	Y	R	D	ĸ	L	R	G	F	Y	F	D	F	E	ĸ	E	A	P	G
10	668	P	L	v	к	T	T	E	E	T	I	E	A	I	K	Q	I	s	S	P	D
	688	Y	ĸ	L	P	v	s	F	G	P	F	Y	D	ĸ	F	С	Y	L	E	S	G
15	708	R	s	s	E	ĸ	v	v	N	T	v	F	ĸ	A	E	- 7	21				

y 1. 13. 2

SEQUENCE CHART 3

The following two primers were used to clone rodC from B. subtilits.

5 C1A is 5'-TTCAGGATCCTTCTCTTGGAGG GTCACGGAAATAAAAG-3', this is sequence I.D. number 3.

And C2A is 5'-ATTTGGATCCCCTAAATTATTCAGCTTTAAATAC-3', this is sequence I.D. number 4.

SEQUENCE CHART 4

The DNA Sequence of the rodC gene from B. subtilis. Restriction sites are indicated. The translated protein sequence is also provided. This CHART also shows the mutation at position 1871, a "T for C" DNA substitution resulting in a "V for A" amino acid substitution. The DNA from this Sequence Chart 4 is listed as Sequence Identification number 5 (seq. I.D. no.5 is the sequence without the mutation at position 1871). The protein only from this Sequence Chart 4 is listed in Sequence Chart 5 and is listed as SEQ. ID. NO. 6. The numbers in the left margin in the Chart below indicate nucleic acid residues. The ATG at nucleic acid residue 25-27 corresponds to the methionine translation start site predicted through computer analysis by reference to Honeyman and Stewart. The ATG underlined in nucleic acid residues 100-102 corresponds to the methionine (underlined and bold M) which is the actual first amino acid of the isolated TAP enzyme. Note, the actual DNA sequence, (with restriction sites noted), that was inserted into the plasmid is shown here and it includes an upstream ribosome binding site that is downstream from the putative start codon at position 25-27. The actual ribosome binding site is at position, 83-87. The actual ribosome binding site is apparently AGGAG, other ribosome binding sites could be engineered such as in AGGAGA site.

20

25			mH I					.	_ m_m	አአጥ	יכייני	- С Т	TAG	TAG	ጥጥር	ACA	CTA	ΑT	AA	.AAC	GA.	AGC	:AA
25	1		·		-+-			+			M	s - + -	L	v	v	D	T	 N	-+	ĸ	R		
20		AA!	AGG	AAA	GAG	CTT'	TTA'	TAC	AGA	ADD.	GC	AGA	AAA	AAG	TAA	TGA	TTG	AA	.AA	CAC	CTG	TGA	TT
30	61	ĸ	G	K	s	F Hin	Y dII	T I	E	E	Q	ĸ	к	V	M	Ι	E	:	N	Т	v	1	-
05		AA	ATG	TAT'	TTT	GAA	l AAG	CTT	GAA	AAA	ACA.	TTA	TAG	GAA	GTC	TTG	raa	TC	TT:	'AA'	rct	CAF	ATT
35	121	ĸ		I	L	К	s	L	ĸ	N	N		_						L	I	S		<u>.</u>
	181		TTC.	AGA	ACA	CCA	ATT	TTT	AGA	AGG?	ATT.	ACC	AGT	TAT	TTT	TAA	AGC	TC	SAF	AAG.	AGA	GAG	CGT +
40	101	D	_	E	н	Q	F	L	Е	D	_		_	_			_	_	K		_	. 1	
	241		AGG	AAC	GGA	ATC	TGA	ATI	TC	GC:	rtc	AAA -+-	AC#	CTC	GCT	CAI	'TAC	SAC	3T <i>I</i>	ATA +			
45		S	G	T	E	s	E	F	P		_			rc				Ξ	Y				E
	301						TTT	GCC	TA	rgc	CTG	TTC	AAA	ATGO	GA	CAAF				+			
		I	N	A	н	V		P	M					4 (- '	2 7		Y	D	-		•	v
50	361		ATT	TCG	AAA	AAA	ATA	TG	AAG	ATG	CGG	AGC	AGG	3AA(CA	CTC	rtg. 	AA(GC(GTC +	TT	CT	+
	30,1	E	F	R	K	ĸ	_	E	D			•	•			C 1		K	-	L			A
55	421		AGI	AAA	TTC	CAAT	TG	AGC	SCG	CCT	TTC	TAC	STC	GAT	CAA.	ACC	ACA	GA 	AC 	TTI +	TG	TT.	TTA +
50	421	E	V	N	s	I	E	R			_	•	•		_	-	-	E	L				L
	401		TT	ATAC	CAAC	TG	ATA	AAG	GCA	ACT	TTT	CT	ATT	AAG	GTG	AAA. +	AGA	GA 	.GG	CC#	AAA	ATC	ATC
60	481	P	Y	T	Т	D	K	G	N	F	٠	3	I	K	V	K	R	E	A	. F	ζ	Í	I KpnI
		AC	SATT	rtg <i>i</i>	ATC	'AAA'	rcg	AGA	TTA	.GCI	CTC	GAA	GAA	ATA.	AGC	ATA	ACA	.GG	TT	'ATC	GCG	GGG	TAC

BNSDOCID: <WO 9742343A2 1 >

\$

The putative amino acids, or protein from SEQUENCE CHART 4, including the single amino acid mutation, shown below. The amino acids from this Sequence Chart 5 are listed separately as SEQ. ID. NO. 6 (SEQ. ID. NO. 6 is the sequence without the mutation at position 616).

10	1	М	s	L	v	v	D	T	N	ĸ	R	K	Q								
10	13	к	G	ĸ	S	F	Y	T	E	E	Q	ĸ	ĸ	v	М	I	E	N	T	v	1
	33	К	С	I	L	ĸ	s	L	K	N	N	L	G	s	L	E	L	L	I	s	I
15	53	D	s	E	н	Q	F	L	E	D	Y	Q	L	F	L	ĸ	L	ĸ	E	R	R
	73	s	G	T	E	s	E	F	Þ	L	Q	N	T	G	s	L	E	Y	к	T	E
20	93	I	N	A	н	v	L	P	М	P	v	E	М	G	Q	T	Y	D	F	Y	v
20	113	E	F	R	ĸ	к	Y	E	D	A	E	Q	E	P	L	L	к	R	L	s	A
	133	E	v	N	s	I	E	R	A	F	н	v	D	Q	T	T	E	L	L	I	L
25	153	P	Y	T	T	D	ĸ	G	N	F	s	I	к	v	к	R	E	A	к	I	I
	173	R	F	ā	Q	ı	E	I	s	s	E	E	I	s	I	T	G	Y	A	G	Y
30	193	L	S	s	E	N	Q	Y	R	I	к	N	L	N	L	I	L	к	ĸ	G	G
30	213	E	T	P	I	E	E	K.	F	P	I	ĸ	L	E	R	ĸ	T	Н	G	L	·E
	233	N	M	R	Α	D	G	F	v	P	E	L	Y	D	F	E	v	ĸ	v	P	L
35	253	к	E	I,	P	F	s	N	E	к	R	Y	v	Y	R	L	F	М	E	Y	- I
	273	С	N	D	D	E	G	T	D	1	Q	F	N	s	Т	A	L	v	L	G	D
40	293	R	к	N	ĸ	L	ĸ	G	L	v	s	I	I	к	T	N	N	A	P	v	-R
40	313	Y	E	v	F	к	к	ĸ	ĸ	ĸ	Q	T	L	G	I	R	v	N	D	Y	s
	333	L	к	T	R	М	ĸ	Y	F	I	к	G	ĸ	к	ĸ	R	L	v	s	ĸ	I
45	353	К	к	I	T	к	М	R	N	к	L	1	T	к	Ť	Y	к	s	L	F	M
	373	М	A	s	R	М	₽	v	к	R	ĸ	T	v	I	F	E	s	F	N	G	к
50	393	Q	Y	s	С	N	P	R	A	I.	Y	E	Y	М	R	E	N	Н	P	E	Y
30	413	K	М	Y	W	s	v	N	ĸ	Q	Y	s	A	P	F	D	E	ĸ	G	I	P
	433	Y	I	N	R	L	s	L	ĸ	W	L	F	A	M	A	R	A	Ē	Y	W	v
55	453	Ÿ	N	s	R	L	P	L	W	I	P	к	P	s	H	T	т	Y	L	Q	T
	473	W	н	G	T	P	L	ĸ	R	L	A	М	D	M	E	E	v	н	М	P	G
60	493	T	N	T	ĸ	ĸ	Y	ĸ	R	N	F	ı	к	E	A	s	N	W.	D	Y	L
00	513	ı	s	P	N	G	Y	s	T	E	I	F	T	R	A	F	Q	F	N	ĸ	т
	533	M	ı	E	s	G	Y	P	R	N	D	F	L	н	N	D	N	N	E	E	T
65	553	I	s	L	I	ĸ	s	R	L	N	I	P	R	D	ĸ	ĸ	v	I	L	Y	A
	573	P	T	W	R	D	D	Q	F	Y	Α	к	G	R	Y	ĸ	F	D	L	D	L

THO 05/102/2	*	PCT/US97/07123
WO 97/42343		FC1/039//0/125

	593	D	L	н	Q	L	R	Q	E	L	G	N	E	Y	I	v	I	L	R	М	Н	
	613	Y	L	v	A V	E	N	F	D	L	G	P	F	E	G	F	A	Y	D	F	s	
5	633	A	Y	E	D	r	R	E	L	Y	М	v	s	D	L	L	I	T	D	Y	s	
	653	s	v	F	F	D	F	A	N	L	ĸ	R	P	M	L	F	F	v	P	D	I	
10	673	E	T	Y	R.	D	K	L	R	G	F	Y	F	D	F	E	К	E	A	P	G	
	693	P	L	v	к	T	т	E	E	T	I	E	A	I	ĸ	Q	I	s	S	P	D	
	713	Y	ĸ	L	p	v	s	F	G	P	F	¥	D	ĸ	F	С	Y	L	E	s	G	
15	733	R	s	s	E	ĸ	v	v	N	т	v	F	K	A	Ε	- 7	46					

1 1 1 1 1 1 T

SEQUENCE LISTING

=	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: Pharmacia and Upjohn Co.	
	(ii) TITLE OF INVENTION: TEICHOIC ACID ENZYMES AND ASSAYS	
10	(iii) NUMBER OF SEQUENCES: 6	
15	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Pharmacia and Upjohn, Co., Intel. Prop. Law (1920-32-LAW) (B) STREET: 301 Henrietta Street (C) CITY: Kalamazoo (D) STATE: Michigan (E) COUNTRY: U.S.A.	
20	(F) ZIP: 49001	
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 	
30	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:</pre>	
35	(Viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Wootton, Thomas A. (B) REGISTRATION NUMBER: 35,004 (C) REFERENCE/DOCKET NUMBER: 6084	
40	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (616) 833-7914 (B) TELEFAX: (616) 833-8897	
	(2) INFORMATION FOR SEQ ID NO:1:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2182 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
55	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
60	ATGATTGAAA ACACTGTGAT TAAATGTATT TTGAAAAGCT TGAAAAACAA TTTAGGAAGT	60
	CTTGAATTGT TAATCTCAAT TGATTCAGAA CACCAATTTT TAGAGGATTA CCAGTTATTT 1	20
65	TTAAAGCTGA AAGAGAGACG TTCAGGAACG GAATCTGAAT TTCCGCTTCA AAACACTGGC 1	80
-	TCATTAGAGT ATAAAACTGA GATAAATGCT CATGTTTTGC CTATGCCTGT TGAAATGGGA 2	40
	CAAACATATG ATTTTTATGT CGAATTTCGA AAAAAATATG AAGATGCGGA GCAGGAACCA 3	00

	CTCTTGAAGC	GTCTTTCTGC	TGAAGTAAAT	TCAATTGAGC	GCGCCTTTCA	TGTCGATCAA	360
	ACCACAGAAC	TTTTGATTTT	ACCTTATACA	ACTGATAAAG	GCAACTTTTC	TATTAAGGTG	420
5	AAAAGAGAGG	CCAAAATCAT	CAGATTTGAT	CAAATCGAGA	TTAGCTCTGA	AGAAATAAGC	480
	ATAACAGGTT	ATGCGGGGTA	CCTGAGTTCC	GAAAATCAAT	ATCGGATAAA	AAACTTGAAC	540
10	CTTATTTTAA	AAAAGGGTGG	AGAAACACCT	ATTGAGGAAA	AATTTCCAAT	CAAGCTAGAA	600
	AGAAAAACAC	ATGGCCTGGA	AAACATGAGA	GCAGATGGTT	TTGTTCCGGA	ACTGTATGAT	660
	TTTGAAGTGA	AAGTGCCTTT	GAAAGAAATT	CCTTTCTCAA	ATGAAAAACG	TTATGTTTAT	720
15	CGTCTTTTTA	TGGAGTATAT	ATGCAATGAC	GATGAAGGAA	CGGATATTCA	GTTCAACAGC	780
	ACTGCTCTTG	TTTTAGGAGA	TCGAAAAAAC	AAATTAAAAG	GATTAGTAAG	TATTATTAAA	840
	ACAAACAACG	CACCAGTTCG	TTATGAAGTC	TTTAAGAAAA	AGAAAAAGCA	GACTCTAGGT	900
20	ATCAGAGTAA	ACGACTATAG	CCTGAAAACA	AGGATGAAAT	ACTTTATTAA	AGGAAAGAAG	960
	AAGAGATTAG	TATCAAAAAT	AAAAAAGATC	ACAAAAATGA	GAAACAAGTT	AATCACTAAA	1020
25	ACATACAAAT	CTCTATTCAT	GATGGCTAGC	AGAATGCCAG	TTAAAAGGAA	AACAGTCATT	1080
	TTTGAAAGTT	TTAATGGGAA	ACAATACAGT	TGTAATCCGA	GAGCGATTTA	CGAATATATG	1140
30	CGGGAAAACC	ACCCTGAGTA	TAAAATGTAT	TGGAGTGTAA	ATAAACAATA	TTCAGCGCCT	1200
	TTTGATGAAA	AGGGAATTCC	TTACATTAAT	CGCCTCTCAT	TAAAATGGCT	CTTCGCTATG	1260
35	GCAAGAGCTG	AGTATTGGGT	TGTTAACAGC	CGGCTTCCAT	TATGGATTCC	GAAACCTAGT	1320
	CATACAACAT	ATTTACAAAC	ATGGCATGGC	ACACCTTTAA	AAAGACTTGC	AATGGATATG	1380
	GAAGAAGTCC	ATATGCCTGG	TACAAACACC	AAAAAATATA	AAAGGAATTT	TATCAAGGAA	1440
40	GCTTCTAATT	GGGATTACTT	GATTTCCCCA	AATGGTTATT	CAACTGAGAT	CTTTACACGG	1500
	GCGTTTCAGT	TTAACAAGAC	AATGATTGAA	TCTGGATATC	CTAGAAATGA	TTTTCTTCAT	1560
	AATGATAATA	ATGAGGAAAC	AATATCATTG	ATAAAGAGTA	GGTTAAATAT	TCCTCGTGAT	1620
45	AAAAAGGTTA	TTTTATATGC	CCCTACATGG	AGAGATGATC	AGTTCTATGC	AAAAGGGCGT	1680
	TATAAGTTCG	ATCTCGATTT	AGATTTGCAT	CAACTTAGAC	AAGAACTTGG	AAATGAATAT	1740
50	ATTGTAATCT	TAAGAATGCA	TTATCTGGTA	GCTGAGAATT	TTGATTTAGG	TCCTTTTGAA	1800
	GGATTTGCAT	ATGATTTTTC	TGCTTATGAG	GATATTCGAG	AATTGTATAT	GGTTTCTGAT	1860
	TTGCTGATTA	CTGATTATTC	TTCAGTATTC	TTTGATTTTG	CAAATTTAAA	ACGGCCAATG	1920
55	CTATTCTTTG	TCCCTGACAT	CGAAACCTAC	CGGGACAAGT	TGCGTGGTTT	CTACTTTGAT	1980
	TTTGAAAAAG	AAGCTCCTGG	TCCTTTGGT	AAAACTACTG	AAGAAACGAT	TGAGGCTATC	2040
60	AAGCAGATCT	CATCGCCTGA	TTATAAGCT	CCGGTTTCT1	TTGGTCCTT	CTATGATAAG	2100
	TTTTGCTATT	TAGAGTCAGG	ACGTTCATC	r GAAAAGGTTC	TTAATACTG	T ATTTAAAGCT	2160
	GAATAATTTA	GGGGATCCAA	AT				2182

- 65 (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 721 amino acids(B) TYPE: amino acid

- (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein 5
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- 10 (v) FRAGMENT TYPE: N-terminal

	(xi)	SEQ	UENCI	E DES	SCRII	PTIO	4: SI	EQ II	ОИС	: 2 :						
15	Met 1	Ile	Glu	Asn	Thr 5	Val	Ile	Lys	Cys	Ile 10	Leu	Lys	Ser	Leu	Lys 15	Asn
20	Asn	Leu	Gly	Ser 20	Leu	Glu	Leu	Leu	Ile 25	Ser	Ile	Asp	Ser	Glu 30	His	Gln
	Phe	Leu	Glu 35	Asp	Tyr	Gln	Leu	Phe 40	Leu	Lys	Leu	Lys	Glu 45	Arg	Arg	Ser
25	Gly	Thr 50	Glu	Ser	Glu	Phe	Pro 55	Leu	Gln	Asn	Thr	Gly 60	Ser	Leu	Glu	Tyr
30	Lys 65	Thr	Glu	Ile	Asn	Ala 70	His	Val	Leu	Pro	Met 75	Pro	Val	Glu	Met	Gly 80
30	Gln	Thr	Tyr	Asp	Phe 85	Tyr	Val	Glu	Phe	Arg 90	Lys	Lys	Tyr	Glu	Asp 95	Ala
35	Glu	Gln	Glu	Pro 100	Leu	Leu	Lys	Arg	Leu 105	Ser	Ala	Glu	Val	Asn 110	Ser	Ile
	Glu	Arg	Ala 115	Phe	His	Val	Asp	Gln 120	Thr	Thr	Glu	Leu	Leu 125	Ile	Leu	Pro
40	туr	Thr 130	Thr	Asp	Lys	Gly	Asn 135	Phe	Ser	Ile	Lys	Val 140	Lys	Arg	Glu	Ala
45	Lys 145	Ile	Ile	Arg	Phe	Asp 150	Gln	Ile	Glu	Ile	Ser 155	Ser	Glu	Glu	Ile	Ser 160
10	Ile	Thr	Gly	туг	Ala 165	Gly	туг	Leu	Ser	Ser 170	Glu	Asn	Gln	Tyr	Arg 175	Ile
50	Lys	Asn	Leu	Asn 180	Leu	Ile	Leu	Lys	Lys 185	Gly	Gly	Glu	Thr	P.ro 190	Ile	Glu
	Glu	Lys	Phe 195	Pro	Ile	Lys	Leu	Glu 200	Arg	Lys	Thr	His	Gly 205	Leu	Glu	Asn
55	Met	Arg 210	Ala	Asp	Gly	Phe	Val 215	Pro	Glu	Leu	Tyr	Asp 220	Phe	Glu	Val	Lys
60	Val 225	Pro	Leu	Lys	Glu	11e 230	Pro	Phe	Ser	Asn	Glu 235	Lys	Arg	Tyr	Val	Tyr 240
00	Arg	Leu	Phe	Met	Glu 245	Tyr	Ile	Cys	Asn	Asp 250	Asp	Glu	Gly	Thr	Asp 255	Ile
65	Gln	Phe	Asn	Ser 260	Thr	Ala	Leu	Val	Leu 265	Gly	Asp	Arg	Lys	Asn 270	Lys	Leu
	Lys	Gly	Leu 275	Val	Ser	Ile	Ile	Lys 280	Thr	Asn	Asn	Ala	Pro 285	Val	Arg	туг

	Glu	Val 290	Phe	Lys	Lys	Lys	Lys 295	Lys	Gln	Thr	Leu	Gly 300	Ile	Arg	Val	Asn
5	Asp 305	Tyr	Ser	Leu	Lys	Thr 310	Arg	Met	Lys	Tyr	Phe 315	Ile	Lys	Gly	Lys	Lys 320
	Lys	Arg	Leu	Val	Ser 325	Lys	Ile	Lys	Lys	Ile 330	Thr	Lys	Met	Arg	Asn 335	Lys
10	Leu	Ile	Thr	Lys 340	Thr	Tyr	Lys	Ser	Leu 345	Phe	Met	Met	Ala	Ser 350	Arg	Met
15	Pro	Val	Lys 355	Arg	Lys	Thr	Va1	11e 360	Phe	Glu	Ser	Phe	Asn 365	Gly	Lys	Gln
10	-	Ser 370	_				375					380				
20	385	Glu				390					395				٠	400
		Asp			405					410					415	
25		Phe		420					425					430		
30		Leu	435					440					445			
50		Gly 450					455					460				
35	465					470					4/5					400
		ser			485					490		•			493	
40		Phe		500					505					510		
45		Pro	515					520					525			
40		530					535					540				Ile
50	545	,				550					222					Arg 560
					565					570					3/3	
55				580)				585	•				390	,	Glu
60			595	i				600)				603)		Ala
00	_	610)				615	i				620	,			thr
65	62	5				630),				633)				640
	Le	u Phe	e Phe	e Val	1 Pro 64	Asg 5	, I1e	e Glu	a Th	650	r Arg	, Asp	Lys	s Le	Arg 655	g Gly

WO 97/42343 PCT/US97/07123

	Phe	e Tyr	Phe	Asp 660	Phe	Glu	Lys	Glu	Ala 665	Pro	Gly	Pro	Leu	Va1 670	Lys	Thr	
5	Th	r Glu	Glu 675	Thr	Ile	Glu	Ala	Ile 680	Lys	Gln	Ile	Ser	Ser 685	Pro	Asp	Tyr	
	Lys	690	Pro	Val	Ser	Phe	Gly 695	Pro	Phe	Tyr	Asp	Lys 700	Phe	Cys	Tyr	Leu	
10	G1:	ı Ser	Gly	Arg	Ser	Ser 710	Glu	Lys	Val	Val	Asn 715	Thr	Val	Phe	Lys	Ala 720	
15	Glu	1															
15	(2) INFO	RMAT	ION I	FOR S	SEQ 1	D NO):3:										
20	(i)	(B)	JENCI) LEI) TYI) STI) TOI	NGTH: PE: r RANDE	38 ucle	base ic a SS: s	e pai cid singl	rs									
25	(ii)	MOLE	ECULE	TYF	E: c	DNA											
	(iii)	нүрс	THET	ICYL	.: NC)										į	
30	(iv)	ANTI	-SEN	ISE:	NO											-	
٠	(xi)	SEQU	JENCE	DES	CRIP	TION	l: SE	Q ID	NO:	3:							
05	TTCAGGAT	CC TI	CTCI	TGGA	GGG	TCAC	GGA	AATA	AAAG	-							3 8
35	(2) INFO	RMATI	ON F	OR S	EQ I	D NO	:4:										
40	(i)	(B) (C)	ENCE LEN TYP STR TOP	GTH: E: n ANDE	34 ucle DNES	base ic a S: s	pai cid ingl	rs									
45	(ii)	MOLE	CULE	TYP	E: c	DNA.											
	(iii)	нурс	THET	ICAL	: NO												
	(iv)	ANTI	-SEN	SE:	NO								•				
50	_																
		SEQU							NO:	4:							
55	(2) INFO							ATAC									34
	(1)																
60	(-)	(A) (B) (C)	LENG TYP: STR.	GTH: E: ni ANDE!	228 ucle DNES	l ba ic a S: s	se po cid inglo	airs									
65	(ii)	MOLE	CULE	TYP	E: cl	DNA											
	(iii)	нүро	THET	ICAL	: NO					•					,		

(1v) ANTI-SENSE: NO

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
_	TTTTGGATCC AAGGAAGAGA GTTAATGTCC TTAGTAGTTG ACACTAATAA AAGGAAGCAA	60
5	AAAGGAAAGA GCTTTTATAC AGAGGAGCAG AAAAAAGTAA TGATTGAAAA CACTGTGATT	120
	AAATGTATTT TGAAAAGCTT GAAAAACAAT TTAGGAAGTC TTGAATTGTT AATCTCAATT	180
10	GATTCAGAAC ACCAATTTTT AGAGGATTAC CAGTTATTTT TAAAGCTGAA AGAGAGACGT	240
	TCAGGAACGG AATCTGAATT TCCGCTTCAA AACACTGGCT CATTAGAGTA TAAAACTGAG	300
	ATAAATGCTC ATGTTTTGCC TATGCCTGTT GAAATGGGAC AAACATATGA TTTTTATGTC	360
15	GAATTTCGAA AAAAATATGA AGATGCGGAG CAGGAACCAC TCTTGAAGCG TCTTTCTGCT	420
	GAAGTAAATT CAATTGAGCG CGCCTTTCAT GTCGATCAAA CCACAGAACT TTTGATTTTA	480
20	CCTTATACAA CTGATAAAGG CAACTTTTCT ATTAAGGTGA AAAGAGAGGC CAAAATCATC	540
	AGATTTGATC AAATCGAGAT TAGCTCTGAA GAAATAAGCA TAACAGGTTA TGCGGGGTAC	600
	CTGAGTTCCG AAAATCAATA TCGGATAAAA AACTTGAACC TTATTTTAAA AAAGGGTGGA	660
25	GAAACACCTA TTGAGGAAAA ATTTCCAATC AAGCTAGAAA GAAAAACACA TGGCCTGGAA	720
	AACATGAGAG CAGATGGTTT TGTTCCGGAA CTGTATGATT TTGAAGTGAA AGTGCCTTTG	. 780
30	AAAGAAATTC CTTTCTCAAA TGAAAAACGT TATGTTTATC GTCTTTTTAT GGAGTATATA	840
	TGCAATGACG ATGAAGGAAC GGATATTCAG TTCAACAGCA CTGCTCTTGT TTTAGGAGAT	900
	CGAAAAACA AATTAAAAGG ATTAGTAAGT ATTATTAAAA CAAACAACGC ACCAGTTCGT	960
35	TATGAAGTCT TTAAGAAAAA GAAAAAGCAG ACTCTAGGTA TCAGAGTAAA CGACTATAGC	1020
•	CTGAAAACAA GGATGAAATA CTTTATTAAA GGAAAGAAGA AGAGATTAGT ATCAAAAATA	1080
40	AAAAAGATCA CAAAAATGAG AAACAAGTTA ATCACTAAAA CATACAAATC TCTATTCATG	1140
	ATGGCTAGCA GAATGCCAGT TAAAAGGAAA ACAGTCATTT TTGAAAGTTT TAATGGGAAA	1200
	CAATACAGTT GTAATCCGAG AGCGATTTAC GAATATATGC GGGAAAACCA CCCTGAGTAT	1260
45	AAAATGTATT GGAGTGTAAA TAAACAATAT TCAGCGCCTT TTGATGAAAA GGGAATTCCT	1320
	TACATTAATC GCCTCTCATT AAAATGGCTC TTCGCTATGG CAAGAGCTGA GTATTGGGTT	1380
50	GTTAACAGCC GGCTTCCATT ATGGATTCCG AAACCTAGTC ATACAACATA TTTACAAACA	1440
	TGGCATGGCA CACCTTTAAA AAGACTTGCA ATGGATATGG AAGAAGTCCA TATGCCTGGT	1500
	ACAAACACCA AAAAATATAA AAGGAATTTT ATCAAGGAAG CTTCTAATTG GGATTACTTG	1560
55	ATTTCCCCAA ATGGTTATTC AACTGAGATC TTTACACGGG CGTTTCAGTT TAACAAGACA	1620
	ATGATTGAAT CTGGATATCC TAGAAATGAT TTTCTTCATA ATGATAATAA TGAGGAAACA	1680
60		174
	CCTACATGGA GAGATGATCA GTTCTATGCA AAAGGGCGTT ATAAGTTCGA TCTCGATTTA	180
	GATTTGCATC AACTTAGACA AGAACTTGGA AATGAATATA TTGTAATCTT AAGAATGCAT	186
65	TATCTGGTAG CTGAGAATTT TGATTTAGGT CCTTTTGAAG GATTTGGATH TOHTTOO	192
	GCTTATGAGG ATATTCGAGA ATTGTATATG GTTTCTGATT TGCTGATTAC TGATTATTCT	198

WO 97/42343 PCT/US97/07123

•	VO 97/42343													PC	1/08	97/071
	TCAGTATT	ст т	TGAT	TTTG	C AA	ATTT	AAA	CGG	CCAA	TGC	TATT	СТТТ	GT C	CCTG	ACAT	С
	GAAACCTA	CC G	GGAC.	AAGT'	r GC	GTGG'	TTTC	TAC	TTTG	ATT	TTGA	AAAA	GA A	GCTC	CTGG	Т
5	CCTTTGGT	AA A	AACT.	ACTG.	A AG	AAAC	GATT	GAG	GCTA	TCA	AGCA	GATC	TC A	TCGC	CTGA	т
	TATAAGCT	TC C	GGTT'	PCTT'	T TG	GTCC'	TTTC	TAT	GATA.	AGT	TTTG	CTAT	TT A	GAGT	CAGG	A
	CGTTCATC	TG A	AAAG	GTTG	TA.	ATAC:	IGTA	TTT	AAAG	CTG	AATA.	ATTT.	AG G	GGAT	CCAA.	A
10	T															
	(2) INFO	RMAT	ION I	FOR :	SEQ	ID N	D:6:									
15	(i)	_				reri:										
		(B) TY	PE: a	amin	6 am o ac	id		S							
00		-	-			SS:	-	re								
20	(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(iii)	нүр	OTHE'	ricai	L: Y	ES										
25	(iv)	ANT	I-SE	NSE:	МО											
	(v)	FRA	GMEN'	r TY	PE: I	N-te:	rmina	al								
30																
30	(xi.)	SEQ	UENC	E DES	SCRI	PTIO	N: Si	EQ II	ои о	: 6 :						
25	Met 1	Ser	Leu	Val	Val 5	Asp	Thr	Asn	Lys	Arg 10	Lys	Gln	Lys	Gly	Lys 15	Ser
35	Phe	Tyr	Thr	Glu 20	Glu	Gln	Lys	Lys	Val 25	Met	Ile	Glu	Asn	Thr 30	Val	Ile
40	Lys	Cys	Ile 35	Leu	Lys	Ser	Leu	Lys 40	Asn	Asn	Leu	Gly	Ser 45	Leu	Glu	Leu
	Leu	Ile 50	Ser	Ile	Asp	Ser	Glu 55	His	Gln	Phe	Leu	Glu 60	Asp	Tyr	Gln	Leu
45	Phe 65	Leu	Lys	Leu	Lys	G1u 70	Arg	Arg	Ser	Gly	Thr 75	Glu	Ser	Glu	Phe	
		Cla	A	mh =	C1.	Ser	Lou	C1.1	T115	T 11 C	_	C1 v	Tlo	N a n	7 l n	80:
50	Lea	GIII	ASII	1111	85 85	Ser	Lea	GIU	ıyı	90	7111	GIU	116	ASII	95	uis
00	Val	Leu	Pro	Met 100	Pro	Val	Glu	Met	Gly 105	Gln	Thr	Tyr	Asp	Phe 110	Tyr	Val
55	Glu	Phe	_	Lys	Lys	Tyr	Glu	-	Ala	Glu	Gln	Glu		Leu	Leu	Lys
00	Ara	Len	115	Δ1 =	G1 ··	Va l	Δen	120	T10	C1 ··	۸۳۵	λ1 a	125	n; c	17 = 1	Acn
	, Alg	130	261	VIa	GIG	AGT	135	361	116	GIU	ary	140	FIIE	uis	AGI	vah
60	Gln 145	Thr	Thr	Glu	Leu	Leu 150	Ile	Leu	Pro	Tyr	Thr 155	Thr	Asp	Lys	Gly	Asn 160

Leu Ser Ser Glu Asn Gln Tyr Arg Ile Lys Asn Leu Asn Leu Ile Leu

Phe Ser Ile Lys Val Lys Arg Glu Ala Lys Ile Ile Arg Phe Asp Gln 165 170 175

Ile Glu Ile Ser Ser Glu Glu Ile Ser Ile Thr Gly Tyr Ala Gly Tyr 180 185 190

65

BNSDOCID: <WO___9742343A2_I_>

			195					200					205			
	Lys	Lys 210	Gly	Gly	Glu	Thr	Pro 215	Ile	Glu	Glu	Lys	Phe 220	Pro	Ile	Lys	Leu
5	Glu 225	Arg	Lys	Thr	His	Gly 230	Leu	Glu	Asn	Met	Arg 235	Ala	Asp	Gly	Phe	Val 240
10	Pro	Glu	Leu	Tyr	Asp 245	Phe	Glu	Val	Lys	Val 250	Pro	Leu	Ĺys	Glu	Ile 255	Pro
	Phe	Ser	Asn	Glu 260	Lys	Arg	туr	Val	Tyr 265	Arg	Leu	Phe	Met	Glu 270	Tyr	Ile
15	Cys	Asn	Asp 275	Asp	Glu	Gly	Thr	Asp 280	Ile	Gln	Phe	Asn	Ser 285	Thr	Ala	Leu
90	Val	Leu 290	Gly	Asp	Arg	Lys	Asn 295	Lys	Leu	Lys	Gly	Leu 300	Val	Ser	Ile	Ile
20	305					310				Glu-	313					320
25					325					Asp 330						
				340					345					330		
30			355					360		Leu			303			
35		370	,				375			Pro		300				
30	385	•				390				Tyr	393					
40					405					410						
	•			420)				42							
45			435	5				440)				712	•		Ala
50		45	0				455					40	J			Pro
	46	5				470)				4 / .	,				480
55					485	5				4 9	J				• • • •	
	•			50	0				50	5				J -	•	Leu
60			51	5				52	U					,		e Gln
65		5 3	0				53	5				٠.	•			e Leu
	54	5				55	0				, ,	,				560
	As	in Il	le Pr	o Ar	g As	p Ly	s Ly	s Va	1 11	.e Le	и Ту	r Al	.a Pr	o Th	r Tr	p Arg

					565					570					575	
5	Asp	Asp	Gln	Phe 580	Tyr	Ala	Lys	Gly	Arg 585	Tyr	Lys	Phe	Asp	Leu 590	Asp	Leu
5	Asp	Leu	His 595	Gln	Leu	Arg	Gln	Glu 600	Leu	Gly	Asn	Glu	Tyr 605	Ile	Val	Ile
10	Leu	Arg 610	Met	His	туr	Leu	Va1 615	Ala	Glu	Asn	Phe	Asp 620	Leu	Gly	Pro	Phe
	Glu 625	Gly	Phe	Ala	Tyr	Asp 630	Phe	Ser	Ala	туг	Glu 635	Asp	Ile	Arg	Glu	Leu 640
15	Tyr	Met	Val	Ser	Asp 645	Leu	Leu	Ile	Thr	Asp 650	Tyr	Ser	Ser	Val	Phe 655	Phe
20	Asp	Phe	Ala	Asn 660	Leu	Lys	Arg	Pro	Met 665	Leu	Phe	Phe	Val	Pro 670	Asp	Ile
20	Glu	Thr	Tyr 675	Arg	Asp	Lys	Leu	Arg 680	Gly	Phe	Tyr	Phe	Asp 685	Phe	Glu	Lys
25	Glu	Ala 690	Pro	Gly	Pro	Leu	Val 695	Lys	Thr	Thr	Glu	Glu 700	Thr	Ile	Glu	Ala
	Ile 705	Lys	Gln	Ile	Ser	Ser 710	Pro	Asp	туr	Lys	Leu 715	Pro	Val	Ser	Phe	Gly 720
30	Pro	Phe	Tyr	Asp	Lys 725	Phe	Cys	Tyr	Leu	Glu 730	Ser	Gly	Arg	Ser	Ser 735	Glu
35	Lys	Val	Val	Asn 740	Thr	Val	Phe	Lys	Ala 745	Glu						

20

25

CLAIMS

(SUBSTRATE and ASSAY)

- 1*. The use of lipoteichoic acid as a substrate for the enzymatic reaction catalyzed by the TAP protein.
 - 2. The use of lipoteichoic acid as in claim 1, where the lipoteichoic acid is isolated or purified from B. subtilis, S. aureus, or E. faecalis, or obtained from a commercially available source.
 - 3. The use of lipoteichoic acid as in claim 1, where the lipoteichoic acid is prepared from B. subtilis, S. aureus, or E. faecalis.
- 4. The use of lipoteichoic acid as in claim 3, where the lipoteichoic acid serves as an acceptor of CDP[³H]glycerol.
 - 5. The use of lipoteichoic acid as in claim 1, where the TAP protein is a peptide or protein expressed from a cloned cell where the peptide or protein comprises a peptide or protein that is at least about 70% homologous to the amino acid residues of Chart 2, or SEQ. ID. No. 2.
 - 6. The use of lipoteichoic acid as in claim 5, where the TAP protein is a peptide or protein comprised of amino acid residues substantially the same as the amino acid residues of Chart 2, or SEQ. ID. No. 2.
 - 7. A method of measuring the activity of TAP enzyme comprising, combining CDP-glycerol (which contains glycerol-3-phosphate), plus H₂O, plus TAP enzyme, plus lipoteichoic acid, and measuring the amount of glycerol-3-phosphate that is transferred to lipoteichoic acid.
 - 8. The method of claim 7 where the CDP-glycerol is radioactive CDP-glycerol.
 - 9. The method of claim 8 where the radioactive CDP-glycerol is made from [³H]glycerol-3-phosphate (a.k.a. [³H]glycerophosphate).

97/42343

- 10. The method claim 7, where the lipoteichoic acid is treated to remove alanine before it is combined with the other ingredients.
- 11. The method of claim 8, where radioactive CDP-glycerol, plus H₂O, plus TAP enzyme, plus lipoteichoic acid, plus strepavidin SPA beads and a suitable lectin such as a wheat germ agglutinin are combined and the amount of glycerol-3-phosphate that is transferred to lipoteichoic acid is measured by measuring the lectin bound to the SPA beads.
- 10 12. The method of claims 7, where the TAP enzyme is from any impure preparation.
- 13. The method of claim 7, where the TAP enzyme is a peptide or protein expressed from a cloned cell where the expressed protein comprises a peptide or protein that has at least about 90% identity to the first 20 N-Terminal amino residues of SEQ. ID. NO. 2 and is at least about 70% homologous to the entire amino acid residues of Chart 2, or SEQ. ID. No. 2.
- 14. The method of claim 7, where the TAP enzyme is substantially the same as 20 the protein disclosed in SEQ. ID. NO. 2.

(PROTEIN)

- 15*. A peptide or protein expressed from a cloned cell where the peptide or protein comprises a peptide or protein that has at least about 90% homology to the first 20 N-Terminal amino residues of SEQ. ID. NO. 2 and is at least about 70% homologous to the entire amino acid residues of Chart 2, or SEQ. ID. No. 2.
- 16. A peptide or protein of claim 15 being at least about 80% homologous to the entire protein in Chart 2, or SEQ. ID. No. 2.
 - 17. A peptide or protein of claim 16 being at least about 90% homologous to the entire protein in Chart 2, or SEQ. ID. No. 2.
- 35 18. A peptide or protein of claim 17 being at least about 95% homologous to the entire protein in Chart 2, or SEQ. ID. No. 2.

- 19. A peptide or protein of claim 18 comprising residues substantially the same or similar to those in Chart 2, or SEQ. ID. No. 2.
- 20. A peptide or protein of claim 19 comprising the residues disclosed in Chart 2, or SEQ. ID. No. 2.
 - 21. A peptide or protein of claim 19 where valine is the amino acid at position 616 in place of alanine.

10 (DNA)

- 22*. A cloned nucleic acid residue sequence comprising a nucleic acid residue sequence having the ability to catalyze the reaction of CDP-glycerol plus H₂O into teichoic or lipoteichoic acid, having at least about 90 % homology to the first 20 nucleic acid residues of SEQ. ID. NO. 1 (5' end) and capable of hybridizing to the DNA sequence of SEQ. ID. NO. 1, under standard stringent conditions to about 70 or more percent homology.
- 23. A cloned nucleic acid residue sequence of claim 22, capable of hybridizing to the DNA sequence of SEQ. ID. NO. 1, under standard stringent conditions to about 80 or more percent homology.
- 24. A cloned nucleic acid residue sequence of claim 23, capable of hybridizing to the DNA sequence of SEQ. ID. NO. 1, under standard stringent conditions to about
 25. 90 or more percent homology.
 - 25. A cloned nucleic acid residue sequence of claim 24, capable of hybridizing to the DNA sequence of SEQ. ID. NO. 1, under standard stringent conditions to about 95 or more percent homology.
 - 26. A cloned nucleic acid residue sequence of claim 25, comprising residues substantially the same or similar as those in the DNA sequence of SEQ. ID. NO. 1.
- 27. A cloned nucleic acid residue sequence of claim 26, comprising the residues shown in the DNA sequence of SEQ. ID. NO. 1.

- 28. A fragment of the nucleic acid residue sequence of claim 27, comprising the residues from residue 4 to 2274, or from the first to the last restriction site, as indicated on Chart 2.
- 29. A fragment of the nucleic acid residue sequence of claim 27, comprising the residues from residue 24 to 2264, or from the first start to the last stop codons, as indicated in Chart 2.
- 30. The nucleic acids of claim 26 comprising the nucleic acids that code for the protein described in SEQ. ID. NO. 2.
 - 31. A cloned nucleic acid residue sequence of claim 26, where the residue at position 1872 is tyrosine in place of cystine, where the protein expressed from this sequence expresses a valine in place of alanine at position 616 of the expressed peptide.
 - 32*. An isolated nucleic acid residue sequence fragment from Staphylococcus aureus where said sequence fragment is about 7.0, 5.0 or 4.2 K bases, where said sequence fragment is produced from EcoR1 digest of Staphylococcus aureus genome, where the sequence of said sequence fragment is at least about 70% homologous to related residues in SEQ. ID. No. 2.
- 33*. An isolated nucleic acid residue sequence fragment from Staphylococcus aureus where the sequence fragment is about 4.5, 3.3 or 2.8 K bases, where said sequence fragment is produced from a HindIII digest of Staphylococcus aureus genome, where said sequence fragment is at least about 70% homologous to residues in SEQ. ID. No. 2.

(VECTORS)

30

35

15

20

34*. A vector, comprising either a cloning vector, a shuttle vector or an expression vector, having a cloned nucleic acid residue sequence comprising a nucleic acid residue sequence having the ability to catalyze the reaction of CDP-glycerol plus H₂O into teichoic or lipoteichoic acid, having 90% homology to the first 20 nucleic acid residues of SEQ. ID. NO. 1 (5' end) and capable of hybridizing to the DNA sequence of SEQ. ID. NO. 1, under standard stringent conditions to about 70 or

more percent homology,

- 35. A plasmid of claim 34, comprised of a plasmid selected from any plasmid suitable as a cloning vector.
- 36. A plasmid of claim 35, selected from any suitable, widely available or commercially available plasmids.
- 37. A plasmid of claim 36 selected from any suitable pUC or suitable pBR 10 plasmid.
 - 38. A plasmid of claim 37, selected from pUC18, pUC19 or pBR322.
 - 39. A vector of Claim 34, where the vector is a suitable shuttle vector.
- 40. A shuttle vector of claim 39, selected from pMK4, or pYL112Δ119.
 - 41. An expression vector of Claim 34 where the expression vector is a plasmid with a strong promoter.
- 20
 42. An expression vector of Claim 41 where the plasmid with the strong promoter is selected from pTrc99A, pDR540, or pET-21(+).
- 43. A plasmid of claim 35, named pRODCAP18, comprising a cloning plasmid containing a DNA sequence substantially the same as the DNA sequence of SEQ. ID. NO. 1, placed into the cloning plasmid, pUC18.
- 44. A plasmid of claim 39, named pMKRODC, comprising a shuttle plasmid containing a DNA sequence substantially the same as the DNA sequence of SEQ.
 30 ID. NO. 1, placed into the shuttle vector pMK4.
 - 45. A plasmid of claim 35, where the plasmid is produced as the product from the process of excising the nucleic acids comprising the nucleic acids from SEQ. ID. NO. 1, that code for the protein described in SEQ. ID. NO. 2 from a pRODCAP18 plasmid, of claim 43.

- 46. A plasmid of claim 41, named pBSRODC1 or pBSRODC1, where the plasmid is produced as the product from the process of excising the nucl ic acids comprising the nucleic acids from SEQ. ID. NO. 1, that code for the protein described in SEQ. ID. NO. 2 from a pRODCAP18 plasmid, of claim 43, which is then placed into an expression vector with a strong promoter.
- 47. A plasmid of claim 46 where the expression vector with a strong promoter is pTrc99A.
- 10 48. A plasmid of claim 41, where the plasmid is produced as the product from the process of excising the nucleic acids comprising the nucleic acids from SEQ. ID. NO. 1, that code for the protein described in SEQ. ID. NO. 2 from a pMKRODC plasmid of claim 44, which is then placed into an expression vector with a strong promoter.
- 15 49. A plasmid of claim 48 where the expression vector with a strong promoter is pTrc99A.
 - 50. A diagnostic kit utilizing the TAP enzyme and CDPglycerol to detect and monitor disease caused by gram positive bacteria.

(CELL)

20

30

- 51. A bacterial cell transformed with a vector of claim 34.
- 25 52. A bacterial cell of claim 501where the bacterial cell is an E. coli cell.
 - 53. A bacterial cell of claim 52, where the E. coli cell is type DH10B.
 - 54. Any of the DNA of claims 22-23, incorporated into a vector of claims 34-49.
 - 55. A bacterial cell of claim 51, transformed with any of the plasmids from claims 34-49.
 - 56. A bacterial cell of claim 55 that is an E.coli cell
 - 57. A bacterial E.coli cell of claim 56 that is type DH10B.

- 58. The proteins disclosed in the Southern Blot shown in Figure 2.
- 59. The method of claims 7-14, where the lipoteichoic acid is treated with a suitable agent to remove alanine before it is combined with the other ingredients.

60. The inventions and discoveries disclosed in this application.

Figure 1

1/2

Figure 2

2/2

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number	r: WO 97/42343
C12Q 1/48, C12N 15/54, 1/21, 9/12, 15/63	A3	(43) International Publication Date:	13 November 1997 (13,11,97)

(21) International Application Number:

PCT/US97/07123

(22) International Filing Date:

5 May 1997 (05.05.97)

(30) Priority Data:

60/016,868

7 May 1996 (07.05.96)

US

(71) Applicant (for all designated States except US): PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SHINABARGER, Dean, L. [US/US]; 10810 Cora Drive, Portage, MI 49002 (US). SWANEY, Steven, M. [US/US]; 216 Garland Street, Kalamazoo, MI 49001 (US). EGAN, Sara, E. [US/US]; 10177 North 32nd Street, Richland, MI 49083 (US).
- (74) Agent: WOOTTON, Thomas, A.; Pharmacia & Upjohn Company, Intellectual Property Legal Services, 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI

Published

With international search report.

SN, TD, TG).

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,

(88) Date of publication of the international search report:

16 April 1998 (16.04.98)

(54) Title: TEICHOIC ACID ENZYMES AND ASSAYS

(57) Abstract

This invention discloses a novel substrate and assay for the TAP enzyme. In addition novel DNA, proteins and peptides from genes and proteins associated with bacterial teichoic acid biosynthetic pathways, specifically the *rodC* gene and proteins and variations thereof are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
	AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
	BG		·HU	Hungary	ML	Mali	TT	Trinidad and Tobago
		Bulgaria	IE	Ireland	MN	Mongolia	UA	Ukraine
	BJ	Benin	IL	Israel	MR	Mauritania	UG	Uganda
	BR	Brazil	IS	Iceland	MW	Malawi	US	United States of America
ı	BY	Belarus			MX	Mexico	UZ	Uzbekistan
	CA	Canada	IT	Italy	NE NE	Niger	VN	Viet Nam
	CF	Central African Republic	JP	Japan	NL	Netherlands	YU	Yugoslavia
	CG	Congo	KE	Kenya			zw	Zimbabwe
	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimoaowe
ı	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	CM	Cameroon		Republic of Korea	PL	Poland		•
l	CN	China	KR	Republic of Korea	PT	Portugal		
ı	CU	Cuba	KZ	Kazakstan	RO	Romania		
1	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
ı	DE	Germany	LI	Liechtenstein	SD	Sudan		
1	DK	Denmark	LK	Sri Lanka	SE	Sweden		
l	EE	Estonia	LR	Liberia	SG	Singapore		

<u> </u>					rc1/03 9	7/0/123
ÎPC 6	C12Q1/48	C12N9/12	C12N15/54	C12N15/6	3 C12	N1/21
According	to International Patent Classif	ication(IPC) or to bo	th national classification a	nd IPC		
8. FIELDS	SEARCHED					
Minimum d IPC 6	ocumentation searched (clas C12Q C12N	sification system folk	owed by classification sym	bols)		
Documenta	tion searched other than min	mumdocumentation	to the extent that such do	cuments are include	d in the fields s	earched .
Electronic o	lata base consulted during the	international searc	n (name of data base and	where practical, se	arch terms used	2)
C. DOCUM	ENTS CONSIDERED TO BE	RELEVANT		· · · · · · · · · · · · · · · · · · ·		
Category '	Citation of document, with i	ndication, where app	ropriate, of the relevant po	assages		Relevant to claim No.
X	polyglycerol PROC. NAT. A 69(9), 2386- 1972, XPOO2 See passage	ohosphate p CAD. SCI. U 90 CODEN: P 040448 from first on page 239	. S. A. (1972), n of		1-9, 12-21,58
			-/			
·						
X Furth	er documents are listed in the	continuation of box	с.	Patent family mem	bers are listed i	n annex.
A" documer conside E" earlier do filing da L" documen which is citation O" documer other m	t which may throw doubts on cited to establish the publica or other special reason (as s at referring to an oral disclosu	nce after the international priority claim(s) or tiondate of another pecified) re, use, exhibition or	or cit inv "X" doc ca inv "Y" doc ca do me in in	ument of particular r nnot be considered t cument is combined	in conflict with a principle or the clevance; the clevance or cannot be power the document of the clevance; the clevance; the clevance or involve an involve an involve or moon being obviou	the application but soory underlying the lairned invention be considered to cument is taken atone lairned invention rentive step when the re other such docusts to a person skilled
ate of the ac	tual completion of theinterna	tional search		e of mailing of the in	ternational sear	
29	January 1998			0	4. 03. 98	
lame and ma	tiling address of the ISA European Patent Office, P NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Ty Fax: (+31-70) 340-3016		Autl 2	Hoekstra,	S	:

Form PCT/ISA/210 (second sheet) (July 1992)

(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u></u>	
ategory ,	Citation of document, with indication, where appropriate, of the relevant passages	F	elevant to claim No.
	HONEYMAN, A.L. AND STEWART G.C.: "The nucleotide sequence of the rodC operon of Bacillus subtilis" MOL. MICROBIOL., vol. 3, 1989, pages 1257-1268, XP002053854 Nucleic acid residues 2178 until 4415. see figure 3 & DATABASE SWISS-PROT (EMBL) EMPRO X15200; 940098, 3 May 1989 HONEYMAN A.C. AND STEWART, G.C.: "The nucleotide sequence of the rodC operon of Bacillus subtilis" see abstract		15-59
	POLLACK, JORDAN H. ET AL: "Changes in wall teichoic acid during the rod-sphere transition of Bacillus subtilis 168" J. BACTERIOL. (1994), 176(23), 7252-9 CODEN: JOBAAY; ISSN: 0021-9193, 1994, XP002040449 see the whole document		1-59
A	POOLEY, HAROLD M. ET AL: "CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC)" J. BACTERIOL. (1992), 174(2), 646-9 CODEN: JOBAAY;ISSN: 0021-9193, 1992, XP002040450 see page 646, left-hand column		1 - -59

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

ational application No.

PCT/US 97/07123

Box I	Observations where certain claims wer found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 📗	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1. 2.	Claims 1-14, 59, 60 (part) Claims 15-58, 60 (part)
1 X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

THIS PAGE BLANK (USPTO)