Assignment 2 for DSSE - Bayesian modeling

Anuinder Sekhon, V01022326 Sri Surya Jitendra Palaparty, V01022218

Submitted to: Neil Ernst

June 9, 2023

THIS ASSIGNMENT INVOLVED demonstrated the concepts learned from the lectures by developing a Bayesian workflow analysis to evaluate the software engineering result derived from conventional means. The data used in this analysis has been partly published before[1]. The idea was to use COCOMO (Constructive Cost Model) model to understand how well the predictors, like project type and size, will estimate the eventual project costs like salaries and effort.

THE DATASET USED is taken from the link provided in the problem statement of the assignment[2]. It describes the project characteristics of the NASA software projects. The dimensions of the dataset are (93,8), which implies that it has 93 rows and 8 attributes, including the standard COCOMO model discrete attributes in the range from Very_Low to Very_High [3]. To summarize, the attributes are effort required to complete the project (act_effort) in person months, record number (recordNumber), categories (cat2), project complexity (cplx), year (year), project category (pcat), analyst capability (acap), programmer capability (pcap). The aim is to predict act_effort using the predictors cplx, year, pcat, acap, pcap.

X	recordnumber	cat2	year	X	recordnumber	cat2	year	cplx
Min. : 1	Min. : 1.00	Length:93	Min. :1971	Min. : 1	Min. : 1.00	Min. : 1.000	Min. :1971	Min. :1.000
1st Qu.:24	1st Qu.: 24.00	Class :character	1st Qu.:1979	1st Qu.:24	1st Qu.: 24.00	1st Qu.: 3.000	1st Qu.:1979	1st Qu.:1.000
Median :47	Median : 47.00	Mode :character	Median :1980	Median:47	Median : 47.00	Median : 6.000	Median :1980	Median :1.000
Mean :47	Mean : 47.75		Mean :1981	Mean :47	Mean : 47.75	Mean : 6.032	Mean :1981	Mean :2.011
3rd Qu.:70	3rd Qu.: 70.00		3rd Qu.:1983	3rd Qu.:70	3rd Qu.: 70.00	3rd Qu.: 8.000	3rd Qu.:1983	3rd Qu.:3.000
Max. :93	Max. :101.00		Max. :1987	Max. :93	Max. :101.00	Max. :14.000	Max. :1987	Max. :5.000
cplx	acap	pcap	act_effort	acap	pcap	act_effort		
Length:93	Length:93	Length:93	Min. : 8.4	Min. :1.0	00 Min. :1.000	Min. : 8.	4	
Class :chara	acter Class :cha	racter Class :cha	racter 1st Qu.: 70.0	1st Qu.:1.0	00 1st Qu.:1.000	1st Qu.: 70.	0	
Mode :chara	acter Mode :cha	racter Mode :cha	racter Median : 252.0	Median :1.0	00 Median :2.000	Median : 252.	0	
			Mean : 624.4	Mean :1.5	59 Mean :1.688	Mean : 624.	4	
			3rd Qu.: 600.0	3rd Qu.:2.0	00 3rd Qu.:2.000	3rd Qu.: 600.	0	
			Max. :8211.0	Max. :3.0	00 Max. :3.000	Max. :8211.	0	

Figure 1. The descriptive statistics of the dataset before (left) and after (right) preprocessing

The R file demonstrating all the work performed on the dataset has been attached to this report. The preprocessing steps performed were:

- The dataset does not contain any null values.
- The conversion of categorical attributes, namely, *cat2*, *cplx*, *acap*, *pcap*, to the numeric values for the purpose of analyzing.
- The conversion of the data type of the *recordNumber*, *year*, *act_effort attributes* from integer to numeric type.
- Various plots were created to get more insight into the data and study the relationships and correlations between the dataset's attributes.

Figure 2. Scatter Plot Matrix, Bar Plots, Violin Plot and Box Plot

Observations: The Violin Plot and the Box Plot of the *act_effort* shows that the data is heavy-tailed. This clearly implies that this distribution of the *act_effort* is in such as way that there are some projects that require a lot of effort, but they cannot be considered outliers as they are in significant numbers,

- No outlier removal was performed, as all the data is useful.
- The process of normalization was not performed as the descriptive analysis shows that the data is overall within a similar scale.

BAYESIAN ANALYSIS was applied to the dataset. Bayesian analysis can be helpful as it allows to integrate the knowledge of the prior information in the estimation process, the uncertainty around the estimated effort schedule, and the cost can be obtained by the posterior distribution, updating and refining the model iteratively as the new data becomes available and supporting the probabilistic project planning.

The likelihood chosen has a significant effect on the results and the complexity of the Bayesian modeling for the estimation process. In our assignment, *ulam* was used to fit different distributions with different likelihoods. As demonstrated in our analysis, the different values of the likelihoods handle the model's sensitivity to the outliers differently; the heavy-tailed likelihood function can cause the posterior distributions, which indicate more uncertainty in the estimates and the value of likelihood function that

matches the data distribution leads to better fit. Along with the model was analysis by experimenting with the different values of the prior. The choice of prior can impact the posterior distribution and can be used to introduce the bias toward certain parameter values. Default prior was used - Normal \sim (0,10).

	mean <dbl></dbl>	sd <dbl></dbl>	5.5% <dbl></dbl>	94.5% <dbl></dbl>	n_eff <dbl></dbl>	Rhat4 <dbl></dbl>
intercept	-0.64	0.76	-1.72	0.36	2	11.48
beta1	-0.06	0.01	-0.08	-0.05	2	13.65
beta2	0.06	0.10	0.00	0.24	2	343.33
beta3	0.11	0.57	-0.88	0.44	2	225.87
beta4	-0.43	0.13	-0.65	-0.34	2	9.77
beta5	-0.60	0.54	-1.53	-0.28	2	11.45
	mean <dbl></dbl>	sd <dbl></dbl>	5.5% <dbl></dbl>	94.5% <dbl></dbl>	n_eff <dbl></dbl>	Rhat4 <dbl></dbl>
intercept	4.78	9.47	-10.36	19.69	941	1.02
beta1	-0.03	0.03	-0.07	0.01	9075	1.00
beta2	0.00	0.00	-0.01	0.01	943	1.01
beta3	0.24	0.06	0.14	0.34	8043	1.00
beta4	-0.31	0.17	-0.57	-0.04	6488	1.00
beta5	-0.08	0.16	-0.33	0.17	7000	1.00
log_scale	6.69	0.19	6.40	6.99	8702	1.00
	mean <dbl></dbl>	sd <dbl></dbl>	5.5% <dbl></dbl>	94.5% <dbl></dbl>	n eff <dbl></dbl>	Rhat4 <dbl></dbl>
intercept	6.04	9.67	-9.44	21.55	4740	1
beta1	-0.03	0.03	-0.08	0.03	8297	1
beta2	0.00	0.00	-0.01	0.01	4750	1
beta3	0.41	0.09	0.27	0.57	7907	1
beta4	-0.10	0.22	-0.44	0.24	6246	1
beta5	-0.13	0.19	-0.42	0.19	7216	1
log_phi	-0.31	0.13	-0.52	-0.11	8691	1

Figure 3. Statistics of Poisson, Gamma, Negative Binomial (top to bottom) with default prior

THE CHOICE OF MODEL was based on the statistics explained in this paragraph. Based on the analysis and the information provided above, it was concluded that the Negative Binomial best fits the data and has an Rhat below 1.01. Poisson cannot be used because the mean and variance (624 and 1290333) are quite different (Possion assumes that mean and variance are similar). Normal cannot be used because it seems to be a heavy-tailed distribution. Negative Binomial can be used as it best fits the data and has an Rhat below 1.01. The random max log normal values were 4.855616e+17, 7287821605, 6397519, and 4059.888 for (0,10), (0,5), (0,3) and (0,2), respectively. Normal $\sim (0,3)$ was picked because it is closer to the actual max values. Additionally, the statistics from Figure 5 imply that the models perform (lower Rhat values) better when we change the prior from Normal $\sim (0,10)$ to Normal $\sim (0,3)$. Hence, Normal $\sim (0,3)$ was chosen for the final model.

```
E \sim NegativeBionomial(\mu, \varphi)
                                                          E \sim Poisson(\lambda)
                                                                                                                    E \sim Gamma(a, x)
                                                                                                                    logit(a) = \alpha + (\beta 1 * cat 2 + \beta 2 * year +
logit(\mu) = \alpha + (\beta 1 * cat 2 + \beta 2 * year +
                                                          logit(\lambda) = \alpha + (\beta 1 * cat 2 + \beta 2 * year +
\beta 3 * cplx + \beta 4 * acap + \beta 5 * pcap
                                                          \beta 3 * cplx + \beta 4 * acap + \beta 5 * pcap
                                                                                                                    \beta3 * cplx + \beta4 * acap + \beta5 * pcap)
logit(\varphi) = log\varphi
                                                         \alpha \sim Normal(0, 3)
                                                                                                                   logit(x) = logx
                                                         \beta1 ~ Normal(0, 3)
\alpha \sim Normal(0, 3)
                                                                                                                   \alpha \sim Normal(0, 3)
\beta1 ~ Normal(0, 3)
                                                         \beta 2 \sim Normal(0, 3)
                                                                                                                   \beta1 ~ Normal(0, 3)
\beta 2 \sim Normal(0, 3)
                                                         \beta3 ~ Normal(0, 3)
                                                                                                                   \beta 2 \sim Normal(0, 3)
\beta3 ~ Normal(0, 3)
                                                         \beta 4 \sim Normal(0, 3)
                                                                                                                   \beta3 ~ Normal(0, 3)
\beta 4 \sim Normal(0, 3)
                                                         \beta5 ~ Normal(0, 3)
                                                                                                                    \beta 4 \sim Normal(0, 3)
\beta5 ~ Normal(0, 3)
                                                                                                                    \beta5 ~ Normal(0, 3)
log \phi \sim Normal(0, 3)
                                                                                                                    logx \sim Normal(0, 3)
```

Figure 4. Mathematical notations for the Negative Binomial, Poisson and Gamma Distribution models

	mean <dbl></dbl>	sd ∢dbl>	5.5% <dbl></dbl>	94.5% <dbl></dbl>	n eff <dbl></dbl>	Rhat4 <dbl></dbl>
intercept	5.25	9.86	-0.83	30.13	3	3.94
beta1	-0.07	0.13	-0.09	-0.04	14	1.28
beta2	0.00	0.01	-0.01	0.00	3	3.83
beta3	0.37	0.32	-0.26	0.53	13	1.38
beta4	-0.06	0.50	-0.36	0.87	2	25.85
beta5	-0.62	0.57	-1.84	-0.28	2	11.94
	mean <dbl></dbl>	sd <dbl></dbl>	5.5% <dbl></dbl>	94.5% <dbl></dbl>	n_eff <dbl></dbl>	Rhat4 <dbl></dbl>
intercept	0.58	2.57	-3.18	4.81	12	1.15
beta1	0.46	0.84	-0.06	1.91	2	39.56
beta2	0.02	0.03	0.00	0.07	2	27.55
beta3	-0.20	0.76	-1.51	0.33	2	15.32
beta4	-0.58	0.48	-1.37	-0.07	2	3.50
beta5	0.21	0.53	-0.31	1.10	2	4.16
log_scale	5.43	2.17	1.69	6.94	2	14.75
	mean <dbl></dbl>	sd <dbl></dbl>	5.5% <dbl></dbl>	94.5% <dbl></dbl>	n eff <dbl></dbl>	Rhat4 <dbl></dbl>
intercept	0.56	3.03	-4.31	5.42	6999	1
beta1	-0.03	0.04	-0.08	0.03	7937	1
beta2	0.00	0.00	0.00	0.01	7020	1
beta3	0.42	0.09	0.27	0.57	7027	1
beta4	-0.10	0.22	-0.45	0.24	6704	1
beta5	-0.13	0.19	-0.42	0.17	6978	1
log_phi	-0.32	0.13	-0.52	-0.11	7087	1

Figure 5. Statistics of the Possion, Gamma, Negative Binomial (top to bottom) with $N \sim (0,3)$ priors

Posterior validation check

Posterior validation check

Poisson Model

Figure 6. Posterior validation checks of all three models

POSTERIOR CHECKS have also been performed to defend our argument further. Figure 6 shows that the Gamma model does not fit the data correctly, and Poisson also does not fit the model well. Overall, the Negative Binomial model best fits the data as it models the distribution better.

	PSIS <dbl></dbl>	SE <dbl></dbl>	dPSIS <dbl></dbl>	dSE <dbl></dbl>	pPSIS <dbl></dbl>	weight <dbl></dbl>
m_negbinom_f	1.347894e+03	3.012428e+01	0.000000e+00	NA	6.949740e+00	1
m_poisson_f	5.000696e+05	1.153220e+05	4.987217e+05	1.153065e+05	2.364693e+05	0
m_gamma_f	1.331255e+81	1.218349e+78	1.331255e+81	1.218349e+78	6.656273e+80	0
	WAIC <dbl></dbl>	SE <dbl></dbl>	dWAIC <dbl></dbl>	dSE <dbl></dbl>	pWAIC «dbl»	weight <dbl></dbl>
m_negbinom_f	1.347424e+03	2.983574e+01	0.000000e+00	NA	6.714634e+00	1
m_poisson_f	2.581051e+08	1.339830e+08	2.581038e+08	134709227	1.290390e+08	0
m_gamma_f	1.999842e+157	NaN	1.999842e+157	Inf	9.999212e+156	0

Figure 7. LOO (top) and WAIC (bottom) model comparisons

MODEL COMPARISON has been performed using both LOO and WAIC; the Negative Binomial model has the lowest value of PSIS and the highest weight. It also has the lowest value of WAIC and the highest weight. In contrast, the Poisson and Gamma models have much higher PSIS and WAIC values with much lower weights. These factors reinforce the fact that Negative binomial is the best-fitting model for the data.

Figure 8. Trank plots of the final model (Negative Binomial)

The trank plots of the final Negative Binomial Model appear to be good as chains in the center of the plot are well mixed; this indicates good convergence and mixing of the samples. It also suggests that the chains have explored the posterior distribution effectively and are providing reliable estimates.

THE CAUSAL GRAPH drawn (figure 9) based on our understanding of the features, represented in the form of a DAG (directed acyclic graph), shows that all 5 features (category, year, complexity, analyst capability, programmer capability) have a direct causal implication on the actual effort required. It also

shows other interesting relationships, such as the category of a project having a causal implication on its complexity.

Figure 9. Causal graph of the features

IN CONCLUSION, the Bayesian analysis compared three different models: Negative Binomial, Poisson, and Gamma. The results consistently favored the Negative Binomial model over the other two. This suggests that the Negative Binomial distribution is better suited for modeling the effort required in software projects based on the given dataset. This was evidenced by several factors, including the posterior validation checks showing a better fit for the Negative Binomial model compared to the Poisson and Gamma models, lower PSIS and WAIC values for the Negative Binomial model, and higher weights assigned to it during model comparison.

Several predictors were considered, including project category, year, complexity, analyst capability, and programmer capability. By incorporating these predictors into the model, the analysis accounted for the influence of experience and other factors on project effort estimation. This allows for a more comprehensive and accurate estimation process, as it takes into account the varying levels of expertise and project characteristics.

PRACTICAL IMPLICATIONS of the results suggest that using the Negative Binomial distribution, along with the identified predictors, can lead to more reliable and accurate estimates of project effort in software engineering. This knowledge can help practitioners and project managers make informed decisions regarding resource allocation, scheduling, and budgeting. Organizations can improve their project planning and control processes by considering the factors that influence effort estimation, leading to more successful outcomes.

References:

- [1] Afzal, W., Ghazi, A.N., Itkonen, J. et al. An experiment on the effectiveness and efficiency of exploratory testing. Empir Software Eng 20, 844–878 (2015). https://doi.org/10.1007/s10664-014-9301-4
- [2] https://github.com/UVic-Data-Science-for-SE/course/blob/main/Assignments/a2-files/nasa93 subset.csv
- [3] Tim Menzies. (2008). nasa93 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.268419

Appendix:

Source Code is attached below

Bayesian Data Analytics on NASA software projects dataset (For Data Science and Software Engineering (CSC 578A) - Assignment 2

Anuinder Sekhon (V01022326) and Sri Surya Jitendra Palaparty (V01022218)

Version: 2023-06-10 05:31:02.492128

Initial setup

Load necessary libraries

```
library(RWeka)
library(rethinking)
library(posterior)
library(rstanarm)
library(rstan)
library(tidyverse)
library(ggplot2)
library(bayesplot)
library(foreign)
library(here)
library(coda)
library(mvtnorm)
library(devtools)
library(loo)
library(dagitty)
library(cmdstanr)
library(dplyr)
library(tidyverse)
library(GGally)
library(vioplot)
library(MASS)
library(ggdag)
library(bnlearn)
```

Question 1:

Reading csv

```
nasa_df <- read.csv("nasa93_subset.csv")</pre>
```

Descriptive statistics

```
# Before conversion
str(nasa_df)
## 'data.frame':
                 93 obs. of 8 variables:
                 : int 1 2 3 4 5 6 7 8 9 10 ...
## $ X
## $ recordnumber: int 1 2 3 4 5 6 7 8 9 10 ...
           : chr "avionicsmonitoring" "avionicsmonitoring" "avionicsmonitoring" "avionicsmonito
## $ year
                 : int 1979 1979 1979 1979 1979 1979 1982 1980 1980 ...
## $ cplx
                 : chr "h" "h" "h" "h" ...
                 : chr "n" "n" "n" "n" ...
## $ acap
## $ pcap
                 : chr "n" "n" "n" "n" ...
   $ act_effort : num 117.6 117.6 31.2 36 25.2 ...
head(nasa_df)
    X recordnumber
                                 cat2 year cplx acap pcap act_effort
## 1 1
                1 avionicsmonitoring 1979
                                             h
                                                  n
                                                              117.6
## 2 2
                 2 avionicsmonitoring 1979
                                                       n
                                                              117.6
## 3 3
                 3 avionicsmonitoring 1979
                                                               31.2
                                             h
                                                  n
                                                       n
## 4 4
                 4 avionicsmonitoring 1979
                                             h
                                                               36.0
                                                  n
                                                       n
## 5 5
                                                               25.2
                 5 avionicsmonitoring 1979
                                             h
                                                  n
                                                       n
## 6 6
                 6 avionicsmonitoring 1979
                                                                8.4
summary(nasa df)
##
         Х
                 recordnumber
                                     cat2
                                                        year
                                 Length:93
## Min. : 1
                Min. : 1.00
                                                   Min.
                                                          :1971
  1st Qu.:24
                1st Qu.: 24.00
                                 Class :character
                                                   1st Qu.:1979
## Median :47
                Median : 47.00
                                 Mode :character
                                                   Median:1980
## Mean
         :47
                Mean : 47.75
                                                   Mean
                                                         :1981
                3rd Qu.: 70.00
                                                   3rd Qu.:1983
##
   3rd Qu.:70
                Max. :101.00
          :93
## Max.
                                                   Max. :1987
##
       cplx
                                                             act_effort
                          acap
                                            pcap
## Length:93
                      Length:93
                                        Length:93
                                                           Min. : 8.4
   Class :character Class :character
                                        Class : character
                                                           1st Qu.: 70.0
##
   Mode :character Mode :character
                                        Mode :character
                                                           Median : 252.0
##
                                                           Mean : 624.4
##
                                                           3rd Qu.: 600.0
##
                                                           Max. :8211.0
# Convert categorical variables into numeric
nasa_df <- nasa_df %>%
 mutate(
   cat2 = as.numeric(as.factor(cat2)),
    cplx = as.numeric(as.factor(cplx)),
   acap = as.numeric(as.factor(acap)),
   pcap = as.numeric(as.factor(pcap))
```

```
# Convert to numeric
nasa_df$year <- as.numeric(nasa_df$year)</pre>
nasa_df$X <- as.numeric(nasa_df$X)</pre>
nasa df$recordnumber <- as.numeric(nasa df$recordnumber)</pre>
# After conversion
str(nasa_df)
## 'data.frame':
                  93 obs. of 8 variables:
## $ X
               : num 1 2 3 4 5 6 7 8 9 10 ...
## $ recordnumber: num 1 2 3 4 5 6 7 8 9 10 ...
## $ cat2
           : num 333333388 ...
               : num 1979 1979 1979 1979 ...
## $ year
## $ cplx
               : num 1 1 1 1 1 1 1 1 1 1 ...
## $ acap
                : num 2 2 2 2 2 2 2 2 1 1 ...
## $ pcap
                : num 2 2 2 2 2 2 2 2 1 3 ...
## $ act_effort : num 117.6 117.6 31.2 36 25.2 ...
head(nasa df)
    X recordnumber cat2 year cplx acap pcap act_effort
## 1 1
                     3 1979
                                       2
                1
                              1
                                  2
                                              117.6
## 2 2
                     3 1979
                                              117.6
## 3 3
                3
                     3 1979
                                       2
                                              31.2
                              1
                                 2
## 4 4
                     3 1979
                            1
                                       2
                4
                                              36.0
## 5 5
                5
                     3 1979
                                  2
                                       2
                                              25.2
                            1
## 6 6
                     3 1979
                6
                                               8.4
summary(nasa_df)
                recordnumber
##
         X
                                   cat2
                                                   year
                                                                 cplx
## Min. : 1
               Min. : 1.00
                              Min. : 1.000
                                              Min. :1971 Min. :1.000
## 1st Qu.:24
              1st Qu.: 24.00
                              1st Qu.: 3.000
                                             1st Qu.:1979 1st Qu.:1.000
## Median :47
               Median : 47.00
                              Median : 6.000
                                              Median :1980 Median :1.000
## Mean :47
               Mean : 47.75
                              Mean : 6.032
                                              Mean :1981 Mean :2.011
## 3rd Qu.:70
               3rd Qu.: 70.00
                               3rd Qu.: 8.000
                                              3rd Qu.:1983
                                                            3rd Qu.:3.000
## Max. :93 Max. :101.00 Max. :14.000
                                              Max.
                                                     :1987
                                                            Max. :5.000
                                  act_effort
##
        acap
                     pcap
## Min. :1.000 Min. :1.000
                                 Min. : 8.4
## 1st Qu.:1.000 1st Qu.:1.000
                                 1st Qu.: 70.0
## Median :1.000 Median :2.000
                                 Median : 252.0
         :1.559
## Mean
                 Mean :1.688
                                 Mean : 624.4
## 3rd Qu.:2.000
                  3rd Qu.:2.000
                                 3rd Qu.: 600.0
## Max.
          :3.000
                Max.
                        :3.000
                                 Max.
                                       :8211.0
```

Data Visualization

Did not normalize because the values are relatively in similar ranges

```
# Scatter plot and correlation matrix
ggpairs(nasa_df[, c("cat2","year", "cplx", "acap", "pcap", "act_effort")])
```


Violin plot for 'act_effort'
vioplot(nasa_df\$act_effort, col = "skyblue", main = "Violin Plot of act_effort")

Violin Plot of act_effort


```
# Box plot for 'act_effort'
boxplot(nasa_df$act_effort, col = "skyblue", main = "Box Plot of act_effort")
```

Box Plot of act_effort


```
# Create a 2x3 grid of plots
par(mfrow = c(2, 3))
# Bar plot for "cat2"
cat2_counts <- table(nasa_df$cat2)</pre>
barplot(cat2_counts, col = "skyblue", main = "Bar Plot of cat2")
# Bar plot for "year"
year_counts <- table(nasa_df$year)</pre>
barplot(year_counts, col = "skyblue", main = "Bar Plot of year")
# Bar plot for "cplx"
cplx_counts <- table(nasa_df$cplx)</pre>
barplot(cplx_counts, col = "skyblue", main = "Bar Plot of cplx")
# Bar plot for "acap"
acap_counts <- table(nasa_df$acap)</pre>
barplot(acap_counts, col = "skyblue", main = "Bar Plot of acap")
# Bar plot for "pcap"
pcap_counts <- table(nasa_df$pcap)</pre>
barplot(pcap_counts, col = "skyblue", main = "Bar Plot of pcap")
```


Question 2:

Bayesian Analysis

Likelihoods

```
# Using ulam to fit different distributions with different likelihoods
m_normal <- ulam(</pre>
 alist(
    act_effort ~ normal(mu, sigma),
    mu <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap,</pre>
    intercept ~ normal(0, 10),
    beta1 ~ normal(0, 10),
    beta2 ~ normal(0, 10),
    beta3 ~ normal(0, 10),
    beta4 ~ normal(0, 10),
    beta5 ~ normal(0, 10),
    sigma ~ exponential(1)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
```

```
cmdstan = TRUE,
  log_lik = TRUE,
  iter = 5e3
m_poisson <- ulam(</pre>
  alist(
    act_effort ~ poisson(lambda),
    log(lambda) <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap
    intercept ~ normal(0, 10),
    beta1 ~ normal(0, 10),
    beta2 ~ normal(0, 10),
    beta3 ~ normal(0, 10),
    beta4 ~ normal(0, 10),
    beta5 ~ normal(0, 10)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
  log lik = TRUE,
  iter = 5e3
)
m_gamma <- ulam(</pre>
  alist(
    act_effort ~ gamma(shape, scale),
    log(shape) <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap,
    log(scale) <- log_scale,</pre>
    intercept ~ normal(0, 10),
    beta1 ~ normal(0, 10),
    beta2 ~ normal(0, 10),
    beta3 ~ normal(0, 10),
    beta4 ~ normal(0, 10),
    beta5 ~ normal(0, 10),
    log_scale ~ normal(0, 10)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
 log_lik = TRUE,
  iter = 5e3
)
m_negbinom <- ulam(</pre>
  alist(
    act_effort ~ neg_binomial_2(mu, phi),
    log(mu) <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap,
    log(phi) <- log_phi,</pre>
    intercept ~ normal(0, 10),
    beta1 ~ normal(0, 10),
    beta2 ~ normal(0, 10),
```

```
beta3 ~ normal(0, 10),
    beta4 ~ normal(0, 10),
    beta5 ~ normal(0, 10),
    log_phi ~ normal(0, 10)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
 log_lik = TRUE,
  iter = 5e3
# Model Statistics
precis(m_normal)
precis(m_poisson)
precis(m_gamma)
precis(m_negbinom)
# Pick Negative Binomial as it best fits the data and has an Rhat below 1.01
# Calculate mean and variance
var(nasa_df$act_effort)
## [1] 1290333
mean(nasa_df$act_effort)
## [1] 624.4118
# Cannot pick Poisson because the mean and variance are quite different
# Cannot pick Normal because it seems to be a heavy tailed distribution
# Pick Negative Binomial as it best fits the data and has an Rhat below 1.01
```

Question 3:

Priors

```
# Default prior (very high)
max(rlnorm(1e5, 0, 10))

## [1] 4.855616e+17

# Normal (0,5) (still high)
max(rlnorm(1e5, 0, 5))
```

[1] 7287821605

```
# Normal (0,3) (reasonable)
max(rlnorm(1e5, 0, 3))
## [1] 6397519
# Normal (0,2) (very low)
max(rlnorm(1e5, 0, 2))
## [1] 4059.888
# Intercept only
# Normal (0,3)
m_negbinom_p1 <- ulam(</pre>
 alist(
    act_effort ~ neg_binomial_2(mu, phi),
    log(mu) <- intercept,</pre>
   log(phi) <- log_phi,</pre>
   intercept ~ normal(0, 3),
    log_phi ~ normal(0, 3)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
  log_lik = TRUE,
  iter = 5e3
# Normal (0,10)
m_negbinom_p2 <- ulam(</pre>
  alist(
    act_effort ~ neg_binomial_2(mu, phi),
    log(mu) <- intercept,</pre>
    log(phi) <- log_phi,</pre>
    intercept ~ normal(0, 10),
   log_phi ~ normal(0, 10)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
  log_lik = TRUE,
  iter = 5e3
)
precis(m_negbinom_p1)
precis(m_negbinom_p2)
```

```
# Both perform similarly but we pick Normal (0,3) as its closer to max values
```

Question 4 and 5:

Calculating the posterior

```
# Testing models with the selected priors
m_poisson_f <- ulam(</pre>
  alist(
    act_effort ~ poisson(lambda),
    log(lambda) <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap
    intercept ~ normal(0, 3),
    beta1 ~ normal(0, 3),
    beta2 ~ normal(0, 3),
    beta3 \sim normal(0, 3),
    beta4 ~ normal(0, 3),
    beta5 ~ normal(0, 3)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
 log_lik = TRUE,
  iter = 5e3
m_gamma_f <- ulam(</pre>
  alist(
    act_effort ~ gamma(shape, scale),
    log(shape) <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap,</pre>
    log(scale) <- log_scale,</pre>
    intercept ~ normal(0, 3),
    beta1 \sim normal(0, 3),
    beta2 ~ normal(0, 3),
    beta3 ~ normal(0, 3),
    beta4 ~ normal(0, 3),
    beta5 \sim normal(0, 3),
    log_scale ~ normal(0, 3)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
 log_lik = TRUE,
  iter = 5e3
m_negbinom_f <- ulam(</pre>
 alist(
```

```
act_effort ~ neg_binomial_2(mu, phi),
    log(mu) <- intercept + beta1 * cat2 + beta2 * year + beta3 * cplx + beta4 * acap + beta5 * pcap,</pre>
    log(phi) <- log_phi,</pre>
    intercept ~ normal(0, 3),
    beta1 ~ normal(0, 3),
    beta2 ~ normal(0, 3),
    beta3 ~ normal(0, 3),
    beta4 ~ normal(0, 3),
    beta5 ~ normal(0, 3),
   log_phi ~ normal(0, 3)
  ),
  data = nasa_df,
  cores = 4,
  chains = 4,
  cmdstan = TRUE,
 log_lik = TRUE,
  iter = 5e3
# Model Statistics
precis(m_poisson_f)
precis(m_gamma_f)
precis(m_negbinom_f)
```

Sanity check of the posterior

```
postcheck(m_poisson_f, window=94)
title("Poisson Model", line = -1.5)
```



```
postcheck(m_gamma_f, window=94)
title("Gamma Model", line = -1.5)
```



```
postcheck(m_negbinom_f, window=94)
title("Negative Binomial Model", line = -1.5)
```


Model comparisons

```
# Compare the models using LOO
loo_est <- rethinking::compare(m_poisson_f, m_gamma_f, m_negbinom_f, func=L00)</pre>
# Compare the models using WAIC
waic_est <- rethinking::compare(m_poisson_f, m_gamma_f, m_negbinom_f, func=WAIC)</pre>
# Print the comparison results
print(loo_est)
                        PSIS
##
                                        SE
                                                  dPSIS
                                                                  dSE
                                                                             pPSIS
## m_negbinom_f 1.347894e+03 3.012428e+01 0.000000e+00
                                                                   NA 6.949740e+00
## m_poisson_f 5.000696e+05 1.153220e+05 4.987217e+05 1.153065e+05 2.364693e+05
## m_gamma_f
                1.331255e+81 1.218349e+78 1.331255e+81 1.218349e+78 6.656273e+80
##
                weight
## m_negbinom_f
                     1
## m_poisson_f
                     0
## m_gamma_f
                     0
print(waic_est)
```

```
WAIC
                                                dWAIC
                                                           dSE
##
                                                                      pWAIC
## m_negbinom_f 1.347424e+03 2.983574e+01 0.000000e+00
                                                           NA 6.714634e+00
## m_poisson_f 2.581051e+08 1.339830e+08 2.581038e+08 134709227 1.290390e+08
## m_gamma_f 1.999842e+157
                               NaN 1.999842e+157
                                                         Inf 9.999212e+156
               weight
## m_negbinom_f
## m_poisson_f
## m_gamma_f
                   0
# Negative Binomial is the best model from these scores
```

Question 6:

Causal Graph

Question 7:

log_lik[4]

-5.76

0.00

0.14

Model Diagnostics

```
# Summary statistics
summary(m_negbinom_f)
## Inference for Stan model: ulam_cmdstanr_57474790a21da4c6acb423357c9e2910-202306100549-1-378428.
## 4 chains, each with iter=5000; warmup=2500; thin=1;
## post-warmup draws per chain=2500, total post-warmup draws=10000.
##
##
                                           2.5%
                                                     25%
                                                             50%
                                                                      75%
                                                                            97.5%
                   mean se_mean
                                     sd
                                                            0.55
                                          -5.41
                                                                             6.56
## intercept
                   0.56
                           0.04
                                   3.03
                                                   -1.46
                                                                     2.60
                  -0.03
                           0.00
                                   0.04
                                          -0.10
                                                   -0.05
                                                           -0.03
                                                                             0.04
## beta1
                                                                    -0.01
## beta2
                   0.00
                           0.00
                                   0.00
                                           0.00
                                                    0.00
                                                            0.00
                                                                     0.00
                                                                             0.01
## beta3
                   0.42
                           0.00
                                   0.09
                                           0.24
                                                    0.35
                                                            0.41
                                                                     0.48
                                                                             0.60
                           0.00
                                   0.22
                                          -0.52
                                                           -0.10
                                                                     0.04
                                                                             0.33
## beta4
                  -0.10
                                                  -0.25
## beta5
                  -0.13
                           0.00
                                   0.19
                                          -0.48
                                                   -0.25
                                                           -0.13
                                                                     0.00
                                                                             0.25
## log_phi
                  -0.32
                           0.00
                                   0.13
                                          -0.57
                                                   -0.40
                                                           -0.31
                                                                    -0.23
                                                                            -0.06
                                                                            -6.05
## log_lik[1]
                  -6.25
                           0.00
                                   0.11
                                          -6.47
                                                   -6.32
                                                           -6.24
                                                                    -6.18
## log_lik[2]
                           0.00
                                          -6.47
                                                           -6.24
                                                                            -6.05
                  -6.25
                                   0.11
                                                   -6.32
                                                                    -6.18
## log_lik[3]
                  -5.71
                           0.00
                                   0.15
                                          -6.02
                                                   -5.80
                                                           -5.70
                                                                    -5.60
                                                                            -5.43
```

-5.85

-5.75

-5.66

-5.49

-6.05

##	log_lik[5]	-5.64	0.00	0.16	-5.97	-5.74	-5.63	-5.53	-5.34
##	log_lik[6]	-5.30	0.00	0.23	-5.80	-5.45	-5.29	-5.14	-4.89
##	log_lik[7]	-5.37	0.00	0.21	-5.82	-5.50	-5.35	-5.22	-4.98
##	log_lik[8]	-7.07	0.00	0.08	-7.23	-7.12	-7.07	-7.01	-6.92
##	log_lik[9]	-6.07	0.00	0.14	-6.36	-6.16	-6.07	-5.98	-5.82
##	log_lik[10]	-5.94	0.00	0.21	-6.39	-6.07	-5.92	-5.79	-5.59
##	log_lik[11]	-5.69	0.00	0.18	-6.08	-5.81	-5.68	-5.56	-5.36
##	log_lik[12]	-7.17	0.00	0.15	-7.57	-7.22	-7.14	-7.07	-6.96
##	log_lik[13]	-5.74	0.00	0.17	-6.10	-5.85	-5.73	-5.62	-5.43
	log_lik[14]	-6.66	0.00	0.10	-6.86	-6.72	-6.65	-6.59	-6.48
	log_lik[15]	-5.92	0.00	0.15	-6.24	-6.02	-5.91	-5.82	-5.65
	log_lik[16]	-7.10	0.00	0.09	-7.29	-7.16	-7.10	-7.04	-6.95
	log_lik[17]	-7.04	0.00	0.13	-7.35	-7.09	-7.02	-6.96	-6.85
	log_lik[18]	-6.01	0.00	0.14	-6.30	-6.10	-6.00	-5.91	-5.74
	log_lik[19]	-5.92	0.00	0.15	-6.24	-6.02	-5.91	-5.82	-5.65
	log_lik[20]	-5.93	0.00	0.15	-6.25	-6.03	-5.92	-5.82	-5.65
	log_lik[21]	-5.95	0.00	0.12	-6.21	-6.04	-5.95	-5.87	-5.72
	log_lik[22]	-6.91	0.00	0.08	-7.07	-6.96	-6.91	-6.85	-6.76
	log_lik[23]	-6.15	0.00	0.12	-6.42	-6.23	-6.14	-6.07	-5.94
	log_lik[24]	-6.60	0.00	0.12	-6.98	-6.72	-6.59	-6.47	-6.27
	log_lik[25]	-6.61	0.00	0.10	-6.81	-6.67	-6.60	-6.54	-6.44
	log_lik[26]	-6.39	0.00	0.10	-6.84	-6.53	-6.38	-6.24	-6.01
	log_lik[27]		0.00			-5.94	-5.82		-5.56
	0 -	-5.84		0.16	-6.19			-5.72	
	log_lik[28]	-6.70	0.00	0.09	-6.89	-6.76	-6.69	-6.64	-6.54
	log_lik[29]	-5.92	0.00	0.15	-6.26	-6.01	-5.90	-5.81	-5.65
	log_lik[30]	-5.87	0.00	0.17	-6.25	-5.98	-5.86	-5.75	-5.57
	log_lik[31]	-6.44	0.00	0.12	-6.71	-6.51	-6.43	-6.35	-6.24
	log_lik[32]	-6.51	0.00	0.10	-6.74	-6.57	-6.50	-6.44	-6.34
	log_lik[33]	-5.45	0.00	0.15	-5.76	-5.54	-5.44	-5.34	-5.18
	log_lik[34]	-5.89	0.00	0.13	-6.15	-5.97	-5.88	-5.80	-5.65
	log_lik[35]	-5.96	0.00	0.12	-6.21	-6.04	-5.95	-5.87	-5.73
	log_lik[36]	-5.71	0.00	0.11	-5.95	-5.79	-5.71	-5.63	-5.51
##	log_lik[37]	-5.85	0.00	0.11	-6.07	-5.92	-5.85	-5.78	-5.66
##	log_lik[38]	-7.35	0.00	0.11	-7.59	-7.41	-7.34	-7.28	-7.17
##	log_lik[39]	-5.71	0.00	0.11	-5.95	-5.79	-5.71	-5.63	-5.51
##	log_lik[40]	-6.16	0.00	0.09	-6.36	-6.23	-6.16	-6.10	-5.99
##	log_lik[41]	-9.15	0.00	0.37	-10.02	-9.37	-9.10	-8.88	-8.58
##	$log_lik[42]$	-12.20	0.01	1.11	-14.74	-12.85	-12.09	-11.40	-10.38
##	log_lik[43]	-8.80	0.00	0.26	-9.43	-8.93	-8.76	-8.62	-8.43
##	log_lik[44]	-8.21	0.00	0.15	-8.56	-8.28	-8.19	-8.11	-7.99
##	log_lik[45]	-7.37	0.00	0.13	-7.64	-7.45	-7.36	-7.28	-7.15
	log_lik[46]	-9.89	0.01	0.62	-11.45	-10.22	-9.77	-9.44	-9.06
##	log_lik[47]	-7.31	0.00	0.12	-7.59	-7.38	-7.30	-7.23	-7.12
	log_lik[48]	-6.76	0.00	0.09	-6.94	-6.81	-6.75	-6.70	-6.59
	log_lik[49]	-7.13	0.00	0.25	-7.66	-7.30	-7.12	-6.96	-6.69
	log_lik[50]	-7.76	0.00	0.24	-8.41	-7.86	-7.70	-7.60	-7.46
	log_lik[51]	-6.15	0.00	0.17	-6.53	-6.25	-6.13	-6.02	-5.85
	log_lik[52]	-6.41	0.00	0.14	-6.72	-6.49	-6.39	-6.31	-6.18
	log_lik[53]	-7.87	0.00	0.10	-8.08	-7.93	-7.87	-7.81	-7.70
	log_lik[54]	-12.11	0.00	0.10	-14.02	-12.66	-12.03	-11.50	-10.63
	log_lik[55]	-7.23	0.00	0.15	-7.62	-7.30	-7.20	-7.12	-7.01
	log_lik[56]	-10.09	0.00	0.13	-12.21	-10.62	-7.20 -9.95	-7.12 -9.43	-7.01 -8.74
	•								
	log_lik[57]	-7.28	0.00	0.20	-7.72 -5.80	-7.40 -5.45	-7.27	-7.15	-6.95
##	log_lik[58]	-5.30	0.00	0.23	-5.80	-5.45	-5.29	-5.14	-4.89

```
-11.30
## log_lik[59]
                             0.00
                                                     -10.39
                                                              -10.08
                                                                        -9.85
                                                                                 -9.62
                  -10.18
                                     0.45
                   -8.72
                             0.01
                                     0.56
                                           -10.08
                                                      -9.02
                                                               -8.62
                                                                        -8.31
                                                                                 -7.92
## log_lik[60]
                                                      -7.82
  log_lik[61]
                   -7.72
                             0.00
                                     0.18
                                             -8.12
                                                               -7.70
                                                                        -7.59
                                                                                 -7.41
                   -9.25
                                            -10.12
                                                      -9.35
                                                               -9.15
                                                                                 -8.91
   log_lik[62]
                             0.00
                                     0.32
                                                                        -9.05
                                                     -7.04
##
  log_lik[63]
                   -6.96
                             0.00
                                     0.12
                                             -7.21
                                                               -6.96
                                                                        -6.88
                                                                                 -6.75
                   -6.95
                             0.00
                                     0.12
                                             -7.21
                                                      -7.03
                                                               -6.94
                                                                        -6.86
                                                                                 -6.73
## log_lik[64]
                                                               -7.73
## log_lik[65]
                   -7.75
                             0.00
                                     0.12
                                             -8.03
                                                      -7.81
                                                                        -7.66
                                                                                 -7.55
## log_lik[66]
                   -8.28
                             0.00
                                     0.21
                                             -8.77
                                                      -8.39
                                                               -8.25
                                                                        -8.13
                                                                                 -7.97
                                                                                 -7.15
## log_lik[67]
                   -7.31
                             0.00
                                     0.08
                                             -7.48
                                                      -7.36
                                                               -7.30
                                                                        -7.25
   log_lik[68]
                   -6.82
                             0.00
                                     0.10
                                             -7.04
                                                      -6.89
                                                               -6.82
                                                                        -6.75
                                                                                 -6.63
   log_lik[69]
                   -7.61
                             0.00
                                     0.11
                                             -7.85
                                                      -7.67
                                                               -7.60
                                                                        -7.54
                                                                                 -7.43
                                                                                 -7.27
   log_lik[70]
                   -7.45
                             0.00
                                     0.10
                                             -7.64
                                                      -7.51
                                                               -7.44
                                                                        -7.38
                   -6.16
                             0.00
                                             -6.45
                                                      -6.25
                                                               -6.15
                                                                                 -5.90
##
   log_lik[71]
                                     0.14
                                                                        -6.06
                                             -7.13
                                                                                 -6.78
   log_lik[72]
                   -6.94
                             0.00
                                     0.09
                                                      -7.00
                                                               -6.94
                                                                        -6.88
                                             -7.13
                                                      -7.00
                                                               -6.94
   log_lik[73]
                   -6.94
                             0.00
                                     0.09
                                                                        -6.88
                                                                                 -6.78
   log_lik[74]
                   -7.15
                             0.00
                                     0.11
                                             -7.37
                                                      -7.21
                                                               -7.14
                                                                        -7.07
                                                                                 -6.95
                   -7.66
                             0.00
                                     0.09
                                             -7.84
                                                      -7.72
                                                               -7.66
                                                                        -7.60
                                                                                 -7.50
##
   log_lik[75]
                   -8.01
                             0.00
                                     0.16
                                             -8.39
                                                      -8.10
                                                               -7.99
                                                                        -7.90
                                                                                 -7.77
   log_lik[76]
                   -8.31
                             0.00
                                     0.08
                                             -8.48
                                                      -8.36
                                                               -8.30
                                                                        -8.25
                                                                                 -8.15
   log_lik[77]
##
  log_lik[78]
                   -6.94
                             0.00
                                     0.20
                                             -7.37
                                                      -7.07
                                                               -6.92
                                                                        -6.79
                                                                                 -6.57
## log_lik[79]
                   -7.49
                             0.00
                                     0.13
                                             -7.76
                                                      -7.57
                                                               -7.48
                                                                        -7.40
                                                                                 -7.26
                   -7.83
                                             -8.04
                                                               -7.82
                                                                                 -7.64
## log_lik[80]
                             0.00
                                     0.10
                                                      -7.89
                                                                        -7.76
## log_lik[81]
                   -8.44
                             0.00
                                             -8.66
                                                      -8.49
                                                               -8.43
                                                                        -8.37
                                                                                 -8.27
                                     0.10
                                                               -7.39
## log_lik[82]
                   -7.39
                             0.00
                                     0.09
                                             -7.57
                                                      -7.45
                                                                        -7.33
                                                                                 -7.23
  log_lik[83]
                   -7.70
                             0.00
                                     0.15
                                             -8.05
                                                      -7.77
                                                               -7.67
                                                                        -7.59
                                                                                 -7.48
   log_lik[84]
                   -7.46
                             0.00
                                     0.19
                                             -7.90
                                                      -7.57
                                                               -7.43
                                                                        -7.33
                                                                                 -7.19
                  -10.15
                             0.00
                                            -10.99
                                                     -10.35
                                                              -10.09
                                                                        -9.90
                                                                                 -9.64
   log_lik[85]
                                     0.35
                                                                                 -8.58
##
  log_lik[86]
                   -8.82
                             0.00
                                     0.19
                                             -9.31
                                                      -8.90
                                                               -8.78
                                                                        -8.70
                   -8.62
                                     0.09
                                             -8.80
   log_lik[87]
                             0.00
                                                      -8.68
                                                               -8.62
                                                                        -8.56
                                                                                 -8.46
  log_lik[88]
                   -8.79
                             0.00
                                     0.09
                                             -8.99
                                                      -8.85
                                                               -8.78
                                                                        -8.73
                                                                                 -8.62
  log_lik[89]
                   -7.82
                             0.00
                                     0.11
                                             -8.07
                                                      -7.90
                                                               -7.82
                                                                        -7.74
                                                                                 -7.62
   log_lik[90]
                  -12.35
                             0.01
                                     0.87
                                            -14.36
                                                     -12.86
                                                              -12.24
                                                                       -11.73
                                                                                -10.97
   log_lik[91]
                   -7.61
                             0.00
                                     0.14
                                             -7.91
                                                      -7.70
                                                               -7.60
                                                                        -7.51
                                                                                 -7.37
                                             -7.06
                   -6.34
                             0.00
                                     0.34
                                                      -6.56
                                                               -6.32
                                                                        -6.10
                                                                                 -5.73
  log_lik[92]
                   -6.46
                             0.00
                                     0.26
                                             -7.02
                                                      -6.63
                                                               -6.44
                                                                        -6.27
                                                                                 -5.99
## log_lik[93]
                                                             332.89
## mu[1]
                  340.65
                             0.74
                                   71.72
                                           223.11
                                                     289.13
                                                                       382.51
                                                                               506.01
## mu[2]
                  340.65
                             0.74
                                    71.72
                                           223.11
                                                     289.13
                                                              332.89
                                                                       382.51
                                                                               506.01
## mu[3]
                             0.74
                                    71.72
                                           223.11
                                                     289.13
                                                              332.89
                                                                       382.51
                                                                               506.01
                  340.65
                 340.65
                             0.74
                                    71.72
                                           223.11
                                                     289.13
                                                              332.89
                                                                       382.51
## mu[4]
                                                                               506.01
## mu[5]
                  340.65
                             0.74
                                   71.72
                                           223.11
                                                     289.13
                                                              332.89
                                                                       382.51
                                                                               506.01
## mu[6]
                  340.65
                             0.74
                                    71.72
                                           223.11
                                                     289.13
                                                              332.89
                                                                       382.51
                                                                               506.01
## mu[7]
                             0.74
                                    71.72
                                           223.11
                                                     289.13
                                                              332.89
                                                                       382.51
                  340.65
                                                                               506.01
## mu[8]
                  343.46
                             0.74
                                   72.40
                                           224.87
                                                     291.62
                                                              335.37
                                                                       385.80
                                                                               510.11
                             0.98
                                   89.39
                                           233.31
                                                     311.35
                                                              362.47
                                                                       425.91
## mu[9]
                  374.45
                                                                               584.51
## mu[10]
                  304.49
                             1.67 126.52
                                           137.24
                                                     216.12
                                                              278.40
                                                                       362.99
                                                                               618.56
                                    90.67
                                                     314.50
                                                              366.50
                                                                       430.45
## mu[11]
                  378.61
                             0.99
                                           235.67
                                                                               591.92
## mu[12]
                  304.49
                             1.67 126.52
                                           137.24
                                                     216.12
                                                              278.40
                                                                       362.99
                                                                               618.56
## mu[13]
                  336.29
                             1.13
                                    89.70
                                           199.39
                                                     272.25
                                                              323.19
                                                                       385.64
                                                                               550.79
## mu[14]
                  374.45
                             0.98
                                    89.39
                                           233.31
                                                     311.35
                                                              362.47
                                                                       425.91
                                                                               584.51
## mu[15]
                  377.56
                             0.99
                                    90.34
                                           235.27
                                                     313.81
                                                              365.39
                                                                       429.21
                                                                               590.36
                             1.12
## mu[16]
                  333.52
                                    88.80
                                           198.27
                                                     270.06
                                                              320.46
                                                                       382.53
                                                                               546.25
## mu[17]
                  304.49
                             1.67 126.52
                                           137.24
                                                     216.12
                                                              278.40
                                                                       362.99
                                                                               618.56
## mu[18]
                  378.61
                             0.99
                                    90.67
                                           235.67
                                                     314.50
                                                              366.50
                                                                       430.45
                                                                               591.92
## mu[19]
                  377.56
                             0.99
                                   90.34
                                           235.27
                                                    313.81
                                                             365.39
                                                                      429.21
                                                                               590.36
```

```
## mu[20]
                 335.36
                            1.13
                                  89.39
                                          199.01
                                                   271.59
                                                           322.11
                                                                    384.67
                                                                             549.25
## mu[21]
                                  73.12
                                          226.69
                                                   293.92
                                                           338.31
                                                                    388.93
                                                                             514.30
                 346.30
                            0.75
## mu[22]
                                          226.69
                 346.30
                            0.75
                                  73.12
                                                   293.92
                                                           338.31
                                                                    388.93
                                                                             514.30
## mu[23]
                                                           253.77
                 264.76
                            0.84
                                  76.46
                                          152.81
                                                   210.90
                                                                    304.03
                                                                             445.86
## mu[24]
                 776.78
                            2.79 225.28
                                          443.43
                                                   616.13
                                                           744.71
                                                                    899.14 1306.04
## mu[25]
                 335.25
                            0.95
                                  85.07
                                          204.19
                                                   275.56
                                                           321.87
                                                                    383.71
                                                                             534.27
## mu[26]
                            2.79 225.28
                                          443.43
                                                   616.13
                                                           744.71
                                                                    899.14 1306.04
                 776.78
## mu[27]
                                  84.21
                                          135.69
                                                   195.48
                                                           238.87
                                                                             458.08
                 253.99
                            0.90
                                                                    295.80
## mu[28]
                 253.99
                            0.90
                                  84.21
                                          135.69
                                                   195.48
                                                           238.87
                                                                    295.80
                                                                             458.08
## mu[29]
                                  84.21
                                          135.69
                                                           238.87
                                                                             458.08
                 253.99
                            0.90
                                                   195.48
                                                                    295.80
## mu[30]
                 300.85
                            1.05
                                  97.17
                                          161.89
                                                   231.66
                                                           284.59
                                                                    350.11
                                                                             538.18
## mu[31]
                 310.80
                            1.14 104.46
                                          161.54
                                                   236.45
                                                           293.13
                                                                    364.07
                                                                             564.28
## mu[32]
                 291.58
                            0.98
                                  91.45
                                          161.05
                                                   226.56
                                                           275.65
                                                                    337.79
                                                                             516.70
## mu[33]
                            0.52
                                  51.50
                                          213.95
                                                   261.60
                                                           292.72
                                                                    328.09
                                                                             416.95
                 298.10
## mu[34]
                 348.21
                            0.76
                                  73.63
                                          227.90
                                                   295.29
                                                           340.18
                                                                    391.31
                                                                             517.05
## mu[35]
                 348.21
                            0.76
                                  73.63
                                          227.90
                                                   295.29
                                                           340.18
                                                                    391.31
                                                                             517.05
## mu[36]
                            0.56
                                  54.33
                                          204.01
                                                   252.59
                                                           284.71
                                                                    322.62
                 291.17
                                                                             416.27
## mu[37]
                 291.17
                            0.56
                                  54.33
                                          204.01
                                                   252.59
                                                           284.71
                                                                    322.62
                                                                             416.27
## mu[38]
                 335.25
                            0.95
                                  85.07
                                          204.19
                                                   275.56
                                                           321.87
                                                                    383.71
                                                                             534.27
## mu[39]
                 291.17
                            0.56
                                  54.33
                                          204.01
                                                   252.59
                                                           284.71
                                                                    322.62
                                                                             416.27
## mu[40]
                 291.17
                            0.56
                                  54.33
                                          204.01
                                                   252.59
                                                           284.71
                                                                    322.62
                                                                             416.27
## mu[41]
                 395.02
                            0.95
                                  87.66
                                          254.61
                                                   332.72
                                                           383.94
                                                                    446.44
                                                                             599.55
## mu[42]
                 343.27
                                  81.60
                                          215.67
                                                   285.48
                                                           330.84
                                                                    389.33
                                                                             534.01
                            0.91
## mu[43]
                            1.87 162.07
                                          368.47
                                                   504.44
                                                           592.92
                                                                    703.85
                                                                             995.35
                 616.46
## mu[44]
                            1.87 162.07
                                          368.47
                                                   504.44
                                                           592.92
                                                                    703.85
                                                                             995.35
                 616.46
## mu[45]
                 914.39
                            3.42 274.56
                                          508.90
                                                   719.97
                                                           871.59 1063.54 1559.82
## mu[46]
                 789.46
                            3.65 298.14
                                          385.34
                                                   583.51
                                                           734.00
                                                                    929.60 1522.83
## mu[47]
                            3.22 260.35
                                                   504.86
                                                           634.78
                 685.48
                                          338.83
                                                                    809.22 1332.21
## mu[48]
                                  89.39
                                                   271.59
                 335.36
                            1.13
                                          199.01
                                                           322.11
                                                                    384.67
                                                                             549.25
## mu[49]
                            7.28 605.94
                1628.12
                                          783.58 1193.32 1513.91 1931.11 3103.36
## mu[50]
                 337.71
                            1.38 121.22
                                          166.90
                                                   253.14
                                                           315.69
                                                                    395.95
                                                                             638.50
## mu[51]
                 338.64
                            1.38 121.58
                                          167.22
                                                   253.84
                                                           316.56
                                                                    397.09
                                                                             640.22
## mu[52]
                 339.58
                            1.39 121.96
                                          167.67
                                                   254.76
                                                           317.28
                                                                    398.17
                                                                             642.44
## mu[53]
                1151.42
                            3.42 309.11
                                          690.42
                                                   933.65 1102.76 1308.80 1898.84
## mu[54]
                 293.26
                            0.50
                                  50.55
                                          210.50
                                                   257.56
                                                           288.31
                                                                    322.68
                                                                             408.36
## mu[55]
                 255.34
                            0.91
                                  82.19
                                          137.82
                                                   197.49
                                                           242.12
                                                                    296.40
                                                                             454.36
## mu[56]
                 255.14
                            0.78
                                  81.76
                                          139.28
                                                   197.03
                                                           241.59
                                                                    296.38
                                                                             453.49
## mu[57]
                1168.36
                            5.38 457.95
                                          555.58
                                                  854.87 1080.18 1375.44 2317.37
## mu[58]
                 340.65
                            0.74
                                  71.72
                                          223.11
                                                   289.13
                                                           332.89
                                                                    382.51
                                                                             506.01
                            8.25 706.14
## mu[59]
                1899.42
                                          932.46 1409.70 1764.37 2243.08 3654.19
## mu[60]
                 225.44
                                  73.30
                                          121.71
                                                  174.08
                                                           213.05
                                                                    261.41
                            0.70
## mu[61]
                1682.55
                            7.13 628.70
                                          824.44 1243.88 1562.76 1971.75 3269.30
## mu[62]
                            9.00 757.58
                                          629.64 1058.63 1398.17 1875.03 3536.55
                1568.90
## mu[63]
                 960.14
                            1.93 192.49
                                          650.54
                                                   825.43
                                                           937.57 1070.03 1401.44
## mu[64]
                 984.02
                            1.97 197.73
                                          664.86
                                                   844.52
                                                           960.35 1095.26 1439.19
## mu[65]
                                                   357.30
                                                           416.82
                 430.84
                            1.12 103.73
                                          267.83
                                                                    489.33
                                                                             670.51
## mu[66]
                 428.47
                            1.11 102.99
                                          266.48
                                                   355.40
                                                           414.53
                                                                    486.79
                                                                             666.88
## mu[67]
                 427.29
                            1.11 102.63
                                          266.07
                                                   354.40
                                                           413.50
                                                                    485.35
                                                                             664.25
## mu[68]
                 654.46
                            1.32 130.39
                                          442.72
                                                   563.54
                                                           639.60
                                                                    729.98
                                                                             954.57
## mu[69]
                 429.65
                            1.11 103.36
                                          267.13
                                                   356.29
                                                           415.60
                                                                    487.95
                                                                             668.48
## mu[70]
                 981.33
                            1.97 197.09
                                          663.73
                                                   842.08
                                                           958.06 1092.63 1435.06
## mu[71]
                 430.84
                            1.12 103.73
                                          267.83
                                                   357.30
                                                           416.82
                                                                    489.33
                                                                             670.51
## mu[72]
                 430.84
                            1.12 103.73
                                          267.83
                                                   357.30
                                                           416.82
                                                                    489.33
                                                                             670.51
                                          267.83
## mu[73]
                 430.84
                            1.12 103.73
                                                  357.30
                                                          416.82
                                                                    489.33
                                                                             670.51
```

```
## mu[74]
                989.43
                           1.99 199.05
                                         668.17 848.65 965.12 1100.89 1446.09
## mu[75]
                978.65
                                                         955.67 1089.80 1431.02
                           1.96 196.47
                                         662.40
                                                 840.07
## mu[76]
                                         267.13
                                                 356.29 415.60 487.95 668.48
                429.65
                           1.11 103.36
## mu[77]
               1497.34
                           4.01 370.80
                                         927.83 1234.30 1446.55 1697.94 2382.40
## mu[78]
               1244.96
                           4.23 373.52
                                         695.90
                                                 982.19 1183.53 1437.04 2134.84
## mu[79]
                           3.46 313.05
                                         699.44
                                                 945.54 1118.95 1328.10 1927.05
               1167.13
## mu[80]
               1167.13
                                                 945.54 1118.95 1328.10 1927.05
                           3.46 313.05
                                         699.44
## mu[81]
                           4.71 397.70
                                                 972.59 1193.02 1458.63 2206.22
               1253.93
                                         673.77
## mu[82]
                446.23
                           1.24 114.99
                                         268.80
                                                 365.04 430.04 509.45 714.09
## mu[83]
               1048.68
                           6.03 521.46
                                         400.02
                                                 693.49 935.87 1267.80 2347.50
## mu[84]
               1048.68
                           6.03 521.46
                                         400.02 693.49 935.87 1267.80 2347.50
## mu[85]
               1541.48
                           4.36 403.24
                                         927.07 1254.68 1487.83 1756.32 2507.71
## mu[86]
               1187.27
                           4.91 421.94
                                         598.84 892.59 1113.26 1387.05 2248.16
## mu[87]
               1541.48
                           4.36 403.24
                                         927.07 1254.68 1487.83 1756.32 2507.71
## mu[88]
               2379.88
                           9.09 792.94 1242.39 1825.10 2250.24 2770.24 4323.09
## mu[89]
               1378.57
                           3.97 373.42
                                         817.77 1118.93 1325.38 1572.71 2252.68
## mu[90]
                                         931.91 1265.67 1500.12 1770.72 2532.93
               1554.13
                           4.38 406.64
## mu[91]
               1264.13
                           4.73 400.69
                                         679.53
                                                 980.85 1202.88 1471.09 2223.10
## mu[92]
                           4.73 400.69
                                                 980.85 1202.88 1471.09 2223.10
               1264.13
                                         679.53
## mu[93]
                959.60
                           3.97 336.60
                                         487.87
                                                 721.07
                                                         900.09 1126.04 1766.49
## phi
                  0.74
                           0.00
                                  0.10
                                           0.57
                                                   0.67
                                                            0.73
                                                                    0.80
                                                                             0.94
## lp__
               -670.45
                           0.03
                                  1.90 -675.00 -671.53 -670.16 -669.05 -667.70
##
               n eff Rhat
                6999
## intercept
                         1
## beta1
                7937
                         1
## beta2
                7020
                         1
## beta3
                7027
                         1
                6704
## beta4
                         1
## beta5
                6978
## log_phi
                7087
                         1
## log_lik[1]
                8740
## log_lik[2]
                8740
                         1
## log_lik[3]
                9408
## log_lik[4]
                9528
                         1
## log_lik[5]
                9214
                         1
## log_lik[6]
                8339
                         1
## log lik[7]
                8468
## log_lik[8]
                6504
                         1
## log_lik[9]
                8723
                         1
## log_lik[10]
                6167
                         1
## log lik[11]
                8255
                         1
## log_lik[12]
                5935
                         1
## log_lik[13]
                6655
                         1
## log_lik[14]
                7535
                         1
                8653
## log_lik[15]
                         1
## log_lik[16]
                6298
                         1
## log_lik[17]
                5770
                         1
## log_lik[18]
                8764
## log_lik[19]
                8653
                         1
## log_lik[20]
                6550
                         1
## log_lik[21]
                9684
                         1
## log_lik[22]
                6491
## log_lik[23]
                7852
                         1
## log_lik[24]
                6973
```

```
## log_lik[25]
                 6994
                          1
## log_lik[26]
                 7154
                          1
## log_lik[27]
                 9136
## log_lik[28]
                 5947
                          1
## log_lik[29]
                 8886
                          1
## log_lik[30]
                 8947
                          1
## log_lik[31]
                 7504
                          1
## log_lik[32]
                 7044
                          1
## log_lik[33]
                 9063
                          1
## log_lik[34]
                 9681
                          1
## log_lik[35]
                 9679
                          1
                 9842
## log_lik[36]
## log_lik[37]
                 9792
                          1
                 6908
## log_lik[38]
## log_lik[39]
                 9842
                          1
## log_lik[40]
                 8372
                          1
## log_lik[41]
                 9021
                          1
## log_lik[42]
                 8163
## log_lik[43]
                 7662
                          1
## log_lik[44]
                 7116
                          1
## log_lik[45]
                 6560
                          1
## log_lik[46]
                 7441
                          1
                 6438
## log_lik[47]
                          1
## log_lik[48]
                 6414
                          1
## log_lik[49]
                 7633
                          1
## log_lik[50]
                 6782
                          1
## log_lik[51]
                 8074
                          1
                 7596
## log_lik[52]
                          1
                 6901
## log_lik[53]
## log_lik[54]
                 9424
                          1
## log_lik[55]
                 7187
                          1
## log_lik[56] 11398
                          1
## log_lik[57]
                 7707
                 8339
## log_lik[58]
                          1
## log_lik[59]
                 8176
                          1
## log_lik[60] 11070
                          1
## log_lik[61]
                 8014
## log_lik[62]
                 7650
                          1
## log_lik[63] 10407
                          1
## log_lik[64] 10528
                          1
## log_lik[65]
                 7728
                          1
## log_lik[66]
                 8813
                          1
                 6420
## log_lik[67]
                          1
## log_lik[68]
                 9625
                          1
                 7278
## log_lik[69]
                          1
## log_lik[70]
                 8378
                          1
## log_lik[71]
                 9021
                          1
                 6901
## log_lik[72]
## log_lik[73]
                 6901
                          1
## log_lik[74]
                10050
                          1
## log_lik[75]
                 7373
                          1
## log_lik[76]
                 8431
## log_lik[77]
                 6598
                          1
## log_lik[78]
                8441
```

```
## log_lik[79]
                  7882
                           1
## log_lik[80]
                  7043
                           1
## log_lik[81]
                  6958
                           1
## log_lik[82]
                  6351
                           1
## log_lik[83]
                  6473
                           1
## log_lik[84]
                  7327
                           1
## log_lik[85]
                  9432
                           1
## log_lik[86]
                  7602
                           1
## log_lik[87]
                  6785
                           1
## log_lik[88]
                  6266
                           1
## log_lik[89]
                  7727
                           1
## log_lik[90]
                  9182
                           1
## log_lik[91]
                  7061
                           1
## log_lik[92]
                  7802
## log_lik[93]
                  7946
                           1
## mu[1]
                  9502
                           1
## mu[2]
                  9502
                           1
## mu[3]
                  9502
                           1
## mu[4]
                  9502
                           1
## mu[5]
                  9502
                           1
## mu[6]
                  9502
                           1
## mu[7]
                  9502
                           1
## mu[8]
                  9498
                           1
## mu[9]
                  8400
                           1
## mu[10]
                  5761
                           1
## mu[11]
                  8398
                           1
## mu[12]
                  5761
                           1
## mu[13]
                  6280
                           1
## mu[14]
                  8400
## mu[15]
                  8399
                           1
## mu[16]
                  6286
## mu[17]
                  5761
                           1
## mu[18]
                  8398
                           1
## mu[19]
                  8399
                           1
## mu[20]
                  6284
                           1
## mu[21]
                  9489
                           1
## mu[22]
                  9489
                           1
## mu[23]
                  8341
                           1
## mu[24]
                  6541
                           1
## mu[25]
                  8089
                           1
## mu[26]
                  6541
                           1
## mu[27]
                  8764
                           1
## mu[28]
                  8764
                           1
## mu[29]
                  8764
                           1
## mu[30]
                  8539
                           1
## mu[31]
                  8399
                           1
## mu[32]
                  8674
                           1
## mu[33]
                  9972
## mu[34]
                  9481
                           1
## mu[35]
                  9481
                           1
## mu[36]
                  9543
                           1
## mu[37]
                  9543
## mu[38]
                  8089
                           1
## mu[39]
                  9543
```

## mu [40]				
## mu [42]				
## mu [43]				
## mu [44]				
## mu [45] 6451 1 ## mu [46] 6671 1 ## mu [47] 6524 1 ## mu [48] 6284 1 ## mu [49] 6925 1 ## mu [50] 7744 1 ## mu [51] 7744 1 ## mu [52] 7744 1 ## mu [53] 8166 1 ## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1 ## mu [92] 7166 1				
## mu [46] 6671 1 ## mu [47] 6524 1 ## mu [48] 6284 1 ## mu [49] 6925 1 ## mu [50] 7744 1 ## mu [51] 7744 1 ## mu [52] 7744 1 ## mu [53] 8166 1 ## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [81] 7117 1 ## mu [82] 8548 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1 ## mu [92] 7166 1				
## mu [47] 6524 1 ## mu [48] 6284 1 ## mu [49] 6925 1 ## mu [50] 7744 1 ## mu [51] 7744 1 ## mu [52] 7744 1 ## mu [53] 8166 1 ## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 8599 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8548 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1				
## mu [48] 6284 1 ## mu [49] 6925 1 ## mu [50] 7744 1 ## mu [51] 7744 1 ## mu [52] 7744 1 ## mu [53] 8166 1 ## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 8599 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8548 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1				
## mu [49] 6925 1 ## mu [50] 7744 1 ## mu [51] 7744 1 ## mu [52] 7744 1 ## mu [53] 8166 1 ## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8548 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7166 1 ## mu [89] 8842 1				
## mu [50] 7744 1 ## mu [51] 7744 1 ## mu [52] 7744 1 ## mu [53] 8166 1 ## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [89] 8842 1 ## mu [89] 8842 1 ## mu [89] 8603 1 ## mu [90] 8603 1 ## mu [91] 7166 1				
## mu[51] 7744 1 ## mu[52] 7744 1 ## mu[53] 8166 1 ## mu[54] 10036 1 ## mu[55] 8180 1 ## mu[56] 10949 1 ## mu[57] 7239 1 ## mu[58] 9502 1 ## mu[59] 7334 1 ## mu[60] 10865 1 ## mu[61] 7779 1 ## mu[62] 7089 1 ## mu[63] 9965 1 ## mu[64] 10032 1 ## mu[66] 8597 1 ## mu[66] 8597 1 ## mu[68] 9831 1 ## mu[69] 8599 1 ## mu[70] 10026 1 ## mu[71] 8600 1 ## mu[72] 8600 1 ## mu[73] 8600 1 ## mu[74] 10041 1 ## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[79] 8166 1 ## mu[81] 7117 1 ## mu[82] 8548 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[91] 7166 1				
## mu[52] 7744 1 ## mu[53] 8166 1 ## mu[54] 10036 1 ## mu[55] 8180 1 ## mu[56] 10949 1 ## mu[57] 7239 1 ## mu[58] 9502 1 ## mu[59] 7334 1 ## mu[60] 10865 1 ## mu[61] 7779 1 ## mu[62] 7089 1 ## mu[63] 9965 1 ## mu[64] 10032 1 ## mu[66] 8597 1 ## mu[66] 8597 1 ## mu[67] 8595 1 ## mu[68] 9831 1 ## mu[69] 8599 1 ## mu[70] 10026 1 ## mu[71] 8600 1 ## mu[72] 8600 1 ## mu[73] 8600 1 ## mu[74] 10041 1 ## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[91] 7166 1 ## mu[92] 7166 1				
## mu [53]				
## mu [54] 10036 1 ## mu [55] 8180 1 ## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 8599 1 ## mu [79] 8166 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1 ## mu [92] 7166 1				
## mu [55]				
## mu [56] 10949 1 ## mu [57] 7239 1 ## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [90] 8603 1 ## mu [90] 8603 1 ## mu [90] 7166 1				
## mu [57]				
## mu [58] 9502 1 ## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8595 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1 ## mu [92] 7166 1				
## mu [59] 7334 1 ## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1 ## mu [92] 7166 1				
## mu [60] 10865 1 ## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [66] 8595 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1 ## mu [92] 7166 1	##		9502	
## mu [61] 7779 1 ## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##		7334	
## mu [62] 7089 1 ## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##		10865	
## mu [63] 9965 1 ## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##			
## mu [64] 10032 1 ## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [87] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##	mu[62]	7089	
## mu [65] 8600 1 ## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##	mu[63]	9965	
## mu [66] 8597 1 ## mu [67] 8595 1 ## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##	mu[64]	10032	1
## mu [67]	##	mu[65]	8600	1
## mu [68] 9831 1 ## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##	mu[66]	8597	1
## mu [69] 8599 1 ## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##	mu[67]	8595	1
## mu [70] 10026 1 ## mu [71] 8600 1 ## mu [72] 8600 1 ## mu [73] 8600 1 ## mu [74] 10041 1 ## mu [75] 10020 1 ## mu [76] 8599 1 ## mu [77] 8559 1 ## mu [78] 7809 1 ## mu [79] 8166 1 ## mu [80] 8166 1 ## mu [81] 7117 1 ## mu [82] 8554 1 ## mu [83] 7481 1 ## mu [84] 7481 1 ## mu [85] 8548 1 ## mu [86] 7382 1 ## mu [87] 8548 1 ## mu [88] 7615 1 ## mu [89] 8842 1 ## mu [90] 8603 1 ## mu [91] 7166 1	##	mu[68]	9831	1
## mu[71] 8600 1 ## mu[72] 8600 1 ## mu[73] 8600 1 ## mu[73] 8600 1 ## mu[74] 10041 1 ## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##	mu[69]		1
## mu[72] 8600 1 ## mu[73] 8600 1 ## mu[74] 10041 1 ## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##		10026	1
## mu[73] 8600 1 ## mu[74] 10041 1 ## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[85] 8548 1 ## mu[85] 8548 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##		8600	1
## mu[74] 10041 1 ## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##			
## mu[75] 10020 1 ## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8603 1 ## mu[91] 7166 1	##		8600	
## mu[76] 8599 1 ## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##	mu[74]		1
## mu[77] 8559 1 ## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##	mu[75]	10020	
## mu[78] 7809 1 ## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##	mu[76]	8599	1
## mu[79] 8166 1 ## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##		8559	1
## mu[80] 8166 1 ## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##	mu[78]	7809	1
## mu[81] 7117 1 ## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1	##	mu[79]	8166	1
## mu[82] 8554 1 ## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[80]	8166	1
## mu[83] 7481 1 ## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[81]	7117	1
## mu[84] 7481 1 ## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[82]	8554	1
## mu[85] 8548 1 ## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[83]	7481	1
## mu[86] 7382 1 ## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[84]	7481	1
## mu[87] 8548 1 ## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[85]	8548	
## mu[88] 7615 1 ## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[86]	7382	
## mu[89] 8842 1 ## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[87]	8548	1
## mu[90] 8603 1 ## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[88]	7615	1
## mu[91] 7166 1 ## mu[92] 7166 1	##	mu[89]	8842	
## mu[92] 7166 1	##		8603	
	##		7166	1
## mu[93] 7183 1	##			1
	##	mu[93]	7183	1

```
## phi
                7085
                        1
## lp__
                4048
                        1
##
## Samples were drawn using NUTS(diag_e) at Sat Jun 10 5:51:30 AM 2023.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
precis(m_negbinom_f)
                                               5.5%
                                                           94.5%
                     mean
                                   sd
                                                                    n_eff
## intercept 0.556222436 3.029628637 -4.3107516000 5.416517400 6998.666
            -0.028532178 0.035044606 -0.0836030225 0.028061207 7937.029
## beta1
## beta2
              0.002718877\ 0.001543939\ 0.0002491828\ 0.005195026\ 7019.920
## beta3
            0.415681008 0.094672028 0.2677967450 0.567255035 7027.359
## beta4
            -0.101503957 0.215463160 -0.4455532750 0.243966520 6704.052
## beta5
            -0.127300338 0.185511093 -0.4215274250 0.169995950 6978.091
## log_phi
            -0.315775778 0.129137236 -0.5248961050 -0.108636260 7086.769
                 Rhat4
## intercept 1.0003442
## beta1
            1.0003609
## beta2
            1.0003140
## beta3
            0.9999171
## beta4
            1.0001161
## beta5
            0.9999814
## log_phi
            1.0002706
# Trank plots
selected_vars <- c("mu[90]", "phi", "log_phi", "intercept", "beta1", "beta2", "beta3", "beta4", "beta5"</pre>
trankplot(m_negbinom_f, pars = selected_vars )
```


Environment

```
#CORES = 4 # set to the number of available CPU cores
\#remotes::install\_github("stan-dev/cmdstanr")
#cmdstanr::install_cmdstan(cores = CORES)
# you can now run rethinking with cmdstan instead of rstan
cmdstanr::cmdstan_version()
## [1] "2.32.2"
print(sessionInfo(), locale=FALSE)
## R version 4.3.0 (2023-04-21 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 11 x64 (build 22621)
## Matrix products: default
##
##
## attached base packages:
## [1] parallel stats
                       graphics grDevices utils datasets methods
```

```
## [8] base
##
## other attached packages:
    [1] digest_0.6.31
                             bnlearn_4.8.3
                                                  ggdag_0.2.10
##
    [4] MASS_7.3-60
                             vioplot 0.4.0
                                                  zoo_1.8-12
                             GGally 2.1.2
                                                  dagitty_0.3-1
##
   [7] sm 2.2-5.7.1
## [10] loo 2.6.0
                             devtools 2.4.5
                                                  usethis 2.2.0
                                                  here 1.0.1
## [13] mvtnorm 1.2-2
                             coda 0.19-4
## [16] foreign_0.8-84
                             bayesplot_1.10.0
                                                  lubridate_1.9.2
## [19] forcats_1.0.0
                             stringr_1.5.0
                                                  dplyr_1.1.2
## [22] purrr_1.0.1
                             readr_2.1.4
                                                  tidyr_1.3.0
## [25] tibble_3.2.1
                             tidyverse_2.0.0
                                                  rstanarm_2.21.4
## [28] Rcpp_1.0.10
                             posterior_1.4.1
                                                  rethinking_2.31
## [31] cmdstanr_0.5.3
                             rstan_2.21.8
                                                  ggplot2_3.4.2
## [34] StanHeaders_2.26.26 RWeka_0.4-46
##
## loaded via a namespace (and not attached):
##
     [1] RColorBrewer 1.1-3
                               tensorA 0.36.2
                                                     rstudioapi 0.14
     [4] jsonlite_1.8.5
                               shape_1.4.6
                                                     magrittr_2.0.3
##
##
     [7] farver_2.1.1
                               nloptr 2.0.3
                                                     rmarkdown 2.21
##
    [10] fs_1.6.2
                               RWekajars_3.9.3-2
                                                     vctrs_0.6.2
    [13] memoise 2.0.1
                               minga 1.2.5
                                                     base64enc 0.1-3
##
    [16] htmltools_0.5.5
                               curl_5.0.0
                                                     distributional_0.3.2
##
    [19] htmlwidgets 1.6.2
                                                     cachem 1.0.8
##
                               plyr_1.8.8
##
   [22] igraph 1.4.2
                               mime_0.12
                                                     lifecycle_1.0.3
   [25] pkgconfig_2.0.3
                               colourpicker_1.2.0
                                                     Matrix 1.5-4
##
    [28] R6_2.5.1
                               fastmap_1.1.1
                                                     shiny_1.7.4
                                                     ps_{1.7.5}
##
    [31] reshape_0.8.9
                               colorspace_2.1-0
##
   [34] rprojroot_2.0.3
                                                     crosstalk_1.2.0
                               pkgload_1.3.2
   [37] labeling_0.4.2
                               fansi_1.0.4
                                                     timechange_0.2.0
##
    [40] abind_1.4-5
                               compiler_4.3.0
                                                     remotes_2.4.2
                               backports_1.4.1
##
    [43] withr_2.5.0
                                                     inline_0.3.19
   [46] shinystan_2.6.0
                               highr_0.10
                                                     pkgbuild_1.4.0
   [49] sessioninfo_1.2.2
                               gtools_3.9.4
                                                     tools_4.3.0
##
    [52] httpuv 1.6.11
                               threejs_0.3.3
                                                     glue 1.6.2
##
    [55] callr_3.7.3
                               nlme_3.1-162
                                                     promises_1.2.0.1
    [58] grid 4.3.0
                               checkmate 2.2.0
                                                     reshape2 1.4.4
##
    [61] generics_0.1.3
                               gtable_0.3.3
                                                     tzdb_0.4.0
    [64] data.table_1.14.8
                               hms_1.1.3
                                                     tidygraph_1.2.3
##
##
    [67] utf8_1.2.3
                                                     markdown_1.7
                               pillar_1.9.0
                                                     splines 4.3.0
   [70] later 1.3.1
                               rJava 1.0-6
##
   [73] lattice_0.21-8
                               survival_3.5-5
                                                     tidyselect 1.2.0
##
    [76] miniUI_0.1.1.1
                               knitr_1.42
                                                     gridExtra 2.3
   [79] V8_4.3.0
##
                               stats4_4.3.0
                                                     xfun_0.39
##
   [82] matrixStats_1.0.0
                               DT_0.28
                                                     stringi_1.7.12
##
    [85] yaml_2.3.7
                               boot_1.3-28.1
                                                     evaluate_0.21
##
    [88] codetools_0.2-19
                               cli_3.6.1
                                                     RcppParallel_5.1.7
                                                     munsell_0.5.0
##
    [91] shinythemes_1.2.0
                               xtable_1.8-4
                               rstantools_2.3.1
   [94] processx_3.8.1
                                                     ellipsis_0.3.2
   [97] prettyunits_1.1.1
                               dygraphs_1.1.1.6
                                                     profvis_0.3.8
                               lme4_1.1-33
                                                     scales_1.2.1
## [100] urlchecker_1.0.1
## [103] xts_0.13.1
                               crayon 1.5.2
                                                     rlang_1.1.1
## [106] shinyjs_2.1.0
```