GCE August, 2016

Jiamin JIAN

Exercise 1:

Suppose that u is a real-valued function defined on [0,1], that $u \geq 0$ and that $u \in L^1([0,1])$. Define $E_n := \{x \in [0,1] : n-1 \leq u(x) \leq n\}$ for each positive integer n. Show that

$$\sum_{n=1}^{\infty} n|E_n| < +\infty.$$

Solution:

As $u \in L^1([0,1])$ and $u(x) \ge 0$, we have

$$\int_0^1 |u(x)| \, dx = \int_0^1 u(x) \, dx < +\infty.$$

And since

$$\int_0^1 u(x) dx = \sum_{n=1}^\infty \int_{E_n} u(x) dx$$

$$\geq \sum_{n=1}^\infty (n-1)|E_n|$$

$$= \sum_{n=1}^\infty n|E_n| + \sum_{n=1}^\infty |E_n|,$$

and $\sum_{n=1}^{\infty} |E_n| < +\infty$, then we have

$$\sum_{n=1}^{\infty} n|E_n| < +\infty.$$

Exercise 2:

Show that a subset E of a metric space X is open if and only if there is a continuous real-valued function f on X such that $E = \{x \in x : f(x) > 0\}$.

Solution:

If there is a continuous real-valued function f on X such that $E = \{x \in x : f(x) > 0\}$, we want to show that E is an open set. Since $(0, +\infty)$ is an open set, $E = \{x \in x : f(x) > 0\} = f^{-1}((0, +\infty))$ is also an open set as f is continuous on X. We can also verify the statement by definition. Suppose $y \in E$, since $E = \{x \in x : f(x) > 0\}$, we have f(y) > 0. Since f in continuous on X, we know that there exists a δ such that when $d(x, y) < \delta$, then |f(x) - f(y)| < f(y), which implies -f(y) < f(x) - f(y) < f(y), hence we have

f(x) > 0. Then we know that there exists a $\delta > 0$, when $x \in B_{\delta}(y)$, we have f(x) > 0. Thus for any $y \in E$, there exists a δ , and $B_{\delta}(y) \subset E$. So we know that E is an open set.

On the other direction, we want to show that if $E \subset X$ is open, there exists a continuous function f on X such that $E = \{x \in x : f(x) > 0\}$. For $E \in X$, we denote

$$f(x) = d(x, E^c) = \min_{y \in E^c} d(x, y).$$

Then we have when $x \in E^c$, f(x) = 0 and when $x \in E$, f(x) > 0, so we have $E = \{x \in x : f(x) > 0\}$. Next we need to show f is continuous on X. Let $x, y \in X$ and p is the any point in E^c , then

$$d(x,p) \le d(x,y) + d(y,p),$$

and so

$$d(x, E^c) \le d(x, y) + d(y, p)$$

as d(x, A) is the minimum. Then we have $d(y, p) \ge d(x, E^c) - d(x, y)$ for all $p \in E^c$, thus we can get that $d(y, E^c) \ge d(x, E^c) - d(x, y)$, which is equivalent to

$$d(x, E^c) - d(y, E^c) \le d(x, y).$$

Similarly, we can change the position of x and y then get

$$d(y, E^c) - d(x, E^c) < d(x, y),$$

so we have for any $x, y \in X$,

$$|d(x, E^c) - d(y, E^c)| \le d(x, y).$$

Then for any $\epsilon > 0$, there exists a $\delta = \epsilon$, such that when $d(x, y) < \delta$, we have $|d(x, E^c) - d(y, E^c)| < d(x, y) = \epsilon$. So, we have showed that f is a continuous function on X.

Exercise 3:

Consider the sequence of functions $\{f_n\}$ defined on the non-negative reals: $[0, +\infty)$ where $f_n(x) = 2nxe^{-nx^2}$. Let g be a continuous and bounded function on $[0, +\infty)$ valued in \mathbb{R} .

(i) Find with proof

$$\lim_{n\to\infty}\int_0^\infty f_n(t)g(t)\,dt.$$

(ii) Define for x in $[0, +\infty)$,

$$g_n(x) = \int_0^\infty f_n(t)g(x+t) dt.$$

Assuming g is zero outside the interval [0, M], where M > 0, does the sequence g_n have a limit in $L^1([0, +\infty))$?

(iii) If h is in $L^1([0, +\infty))$, define for x in $[0, +\infty)$,

$$h_n(x) = \int_0^\infty f_n(t)h(x+t) dt.$$

Show that h_n is measurable on $[0, +\infty)$ and is in $L^1([0, +\infty))$.

(iv) Find, if it exists, with proof, the limit of h_n in $L^1([0, +\infty))$.

Solution:

(i) We denote $y = nt^2$, then we have

$$\int_0^\infty 2nte^{-nt^2}g(t)\,dt = \int_0^\infty e^{-y}g\left(\sqrt{\frac{y}{n}}\right)dy.$$

Since g(x) is a continuous and bounded function on $[0, +\infty)$, we suppose that $|g(x)| \leq C$ for any $x \in [0, +\infty)$. Then we know that $|e^{-y}g(\sqrt{\frac{y}{n}})| \leq Ce^{-y}$ and $Ce^{-y} \in L^1([0, +\infty))$ as $\int_0^\infty |Ce^{-y}| \, dy = C < +\infty$. And for any fixed $y \in [0, +\infty)$, when $n \to \infty$, $g(\sqrt{\frac{y}{n}}) \to g(0)$ and then $e^{-y}g(\sqrt{\frac{y}{n}}) \to e^{-y}g(0)$. By the dominate convergence theorem, we have

$$\lim_{n \to \infty} \int_0^\infty f_n(t)g(t) dt = \int_0^\infty \lim_{n \to \infty} e^{-y} g\left(\sqrt{\frac{y}{n}}\right) dy$$
$$= \int_0^\infty e^{-y} g(0) dy$$
$$= g(0).$$

(ii) Since $f_n(x) = 2nxe^{-nx^2}$, we denote $y = nt^2$, then we have

$$g_n(x) = \int_0^\infty f_n(t)g(x+t) dt = \int_0^\infty e^{-y} g\left(x + \sqrt{\frac{y}{n}}\right) dy.$$

Next we want to show that g_n converges to g in $L^1([0,+\infty))$. Since

$$\int_0^\infty |g_n(x) - g(x)| \, dx = \int_0^\infty \left| \int_0^\infty e^{-y} g\left(x + \sqrt{\frac{y}{n}}\right) dy - g(x) \right| \, dx$$

$$= \int_0^\infty \left| \int_0^\infty e^{-y} g\left(x + \sqrt{\frac{y}{n}}\right) dy - \int_0^\infty g(x) e^{-y} \, dy \right| \, dx$$

$$= \int_0^\infty \left| \int_0^\infty e^{-y} \left(g\left(x + \sqrt{\frac{y}{n}}\right) - g(x)\right) dy \right| \, dx$$

$$\leq \int_0^\infty \int_0^\infty e^{-y} \left| g\left(x + \sqrt{\frac{y}{n}}\right) - g(x) \right| \, dy \, dx,$$

and by Fubini theorem,

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-y} \left| g \left(x + \sqrt{\frac{y}{n}} \right) - g(x) \right| dy \, dx = \int_{0}^{\infty} \int_{0}^{M - \sqrt{\frac{y}{n}}} e^{-y} \left| g \left(x + \sqrt{\frac{y}{n}} \right) - g(x) \right| dx \, dy + \int_{0}^{\infty} \int_{M - \sqrt{\frac{y}{n}}}^{M} e^{-y} |g(x)| \, dx \, dy,$$

when $n \to \infty$, we have

$$\int_0^\infty \int_{M-\sqrt{\frac{y}{n}}}^M e^{-y} |g(x)| \, dx \, dy \to 0,$$

thus we know that

$$\lim_{n \to \infty} \int_0^\infty |g_n(x) - g(x)| \, dx \le \lim_{n \to \infty} \int_0^\infty \int_0^{M - \sqrt{\frac{y}{n}}} e^{-y} \left| g\left(x + \sqrt{\frac{y}{n}}\right) - g(x) \right| \, dx \, dy$$
$$\le \lim_{n \to \infty} \int_0^\infty \int_0^M e^{-y} \left| g\left(x + \sqrt{\frac{y}{n}}\right) - g(x) \right| \, dx \, dy.$$

Since $e^{-y}|g(x+\sqrt{\frac{y}{n}})-g(x)| \leq 2Ce^{-y}$ and $2Ce^{-y} \in L^1([0,+\infty))$, then by the dominate convergence theorem we have

$$\lim_{n \to \infty} \int_0^\infty \int_0^M e^{-y} \left| g\left(x + \sqrt{\frac{y}{n}}\right) - g(x) \right| dx \, dy = 0,$$

thus we know that

$$\lim_{n \to \infty} \int_0^\infty |g_n(x) - g(x)| \, dx = 0.$$

So, we have showed that g_n converges to g in $L^1([0,+\infty))$.

(iii) Since $C_c([0, +\infty))$ is dense in $L^1([0, +\infty))$ and $h(x) \in L^1([0, +\infty))$, we can find a sequence $\{h^k\}_{k=1}^{\infty}$ such that $h^k \to h$ in $L^1([0, +\infty))$. We want to show h_n is measurable by showing it is the limit of a sequence of measurable functions. By the result we got from (ii), for any $k \in \mathbb{N}$, we have $h_n^k = \int_0^\infty f_n(t)g(t) dt$ converges to $h^k(x)$ in $L^1([0, +\infty))$. Firstly we show that $h_n^k(x)$ converges to $h_n(x)$ almost everywhere. For any $x \in [0, +\infty)$, we have

$$|h_n(x) - h_n^k(x)| = \left| \int_0^\infty f_n(t)h(x+t) dt - \int_0^\infty f_n(t)h^k(x+t) dt \right|$$

$$= \left| \int_0^\infty f_n(t)(h(x+t) - h^k(x+t)) dt \right|$$

$$\leq \int_0^\infty f_n(t)|h(x+t) - h^k(x+t)| dt,$$

we denote z = x + t, then

$$|h_n(x) - h_n^k(x)| \le \int_x^\infty f_n(z - x)|h(z) - h^k(z)| dz.$$

Since $f_n(x) = 2nxe^{-nx^2}$, when $x = \frac{1}{\sqrt{2n}}$, the $f_n(x)$ gets the maximum value as $\sqrt{2n}e^{-\frac{1}{2}}$, thus we have

$$|h_n(x) - h_n^k(x)| \leq \int_x^{\infty} f_n(z - x) |h(z) - h^k(z)| dz$$

$$\leq ||f_n||_{\infty} \int_x^{\infty} |h(z) - h^k(z)| dz$$

$$\leq ||f_n||_{\infty} \int_0^{\infty} |h(z) - h^k(z)| dz$$

$$= ||f_n||_{\infty} ||h - h^k||_1 \to 0$$

as $k \to +\infty$. Then we show that h_n^k is continuous. This means we want to show that for $x \in [0, +\infty)$, let $x_j \to x$, then $h_n^k(x_j) \to h_n^k(x)$. By the definition of $h_n^k(x_j)$, we have

$$h_n^k(x_j) = \int_0^\infty f_n(t)h^k(x_j + t) dt = \int_0^\infty e^{-y}h^k(x_j + \sqrt{\frac{y}{n}}) dy.$$

And since $h^k \in C_c([0, +\infty))$, $|e^{-y}h^k(x_j + \sqrt{\frac{y}{n}}| \le ||h^k||_{\infty}e^{-y} \in L^1([0, +\infty))$, by the dominate convergence theorem, we have

$$\lim_{j\to\infty}h_n^k(x_j)=\int_0^\infty\lim_{j\to\infty}e^{-y}h^k\Big(x_j+\sqrt{\frac{y}{n}}\Big)\,dy=\int_0^\infty e^{-y}h^k\Big(x+\sqrt{\frac{y}{n}}\Big)\,dy=h_n^k(x),$$

thus we know that h_n^k is uniformly continuous. From above, we have $h_n^k \to h_n$ almost everywhere and h_n^k is uniformly continuous, then we have h_n is the limit of a sequence of measurable functions. So, we get that h_n is measurable on $[0, +\infty)$.

Next we show that h_n is in $L^1([0,+\infty))$. Since

$$||h_n||_1 = \int_0^\infty |h_n(x)| dx$$

$$= \int_0^\infty \left| \int_0^\infty f_n(t)h(x+t) dt \right| dx$$

$$\leq \int_0^\infty \int_0^\infty |f_n(t)h(x+t)| dt dx,$$

by Fubini theorem, we have

$$||h_n||_1 \leq \int_0^\infty \int_0^\infty |f_n(t)h(x+t)| \, dx \, dt$$

$$= \int_0^\infty f_n(t) \left(\int_0^\infty |h(x+t)| \, dx \right) dt$$

$$= \int_0^\infty f_n(t) \left(\int_t^\infty |h(z)| \, dz \right) dt$$

$$\leq \int_0^\infty f_n(t) \left(\int_0^\infty |h(z)| \, dz \right) dt$$

$$= ||h||_1 \int_0^\infty f_n(t) \, dt$$

$$= ||h||_1 < +\infty.$$

Thus we know that h_n is in $L^1([0, +\infty))$.

(iv) We want to show that h_n converges to h in $L^1([0,+\infty))$. Let $\epsilon > 0$, since $C_c([0,+\infty))$ is dense in $L^1([0,+\infty))$, then there exists a $g \in C_c([0,+\infty))$ such that $||h - g||_1 < \epsilon$. So we have

$$||h_n - h||_1 = ||h_n - g_n + g_n - g + g - f||_1$$

$$\leq ||h_n - g_n||_1 + ||g_n - g||_1 + ||g - f||_1,$$

where the definition of g_n is as question (ii). By the result we get form (ii), for the ϵ above, we have $||g_n - g|| < \epsilon$, then we know that

$$||h_n - h||_1 < ||h_n - g_n||_1 + 2\epsilon.$$

Next we need to deal with $||h_n - g_n||_1$. Since

$$||h_n - g_n||_1 = \int_0^\infty |h_n(x) - g_n(x)| dx$$

$$\leq \int_0^\infty \int_0^\infty f_n(t) |h(x+t) - g(x+t)| dt dx,$$

we denote z = x + t and by Fubini theorem we have

$$||h_{n} - g_{n}||_{1} \leq \int_{0}^{\infty} \int_{0}^{\infty} f_{n}(t)|h(x+t) - g(x+t)| dt dx$$

$$= \int_{0}^{\infty} f_{n}(t) \int_{t}^{\infty} |h(z) - g(z)| dz dt$$

$$\leq \int_{0}^{\infty} f_{n}(t) \int_{0}^{\infty} |h(z) - g(z)| dz dt$$

$$= \int_{0}^{\infty} f_{n}(t)||h - g||_{1} dt$$

$$= ||h - g||_{1} \int_{0}^{\infty} f_{n}(t) dt$$

$$= ||h - g||_{1} < \epsilon.$$

Thus we know that

$$||h_n - h||_1 < ||h_n - g_n||_1 + 2\epsilon < 3\epsilon$$

for any $\epsilon > 0$. So, we have showed that h_n converges to h in $L^1([0, +\infty))$.

Exercise 4:

Show that a set $E \subset \mathbb{R}$ is Lebesgue measurable if and only if $E = H \cup Z$ where H is a countable union of closed sets and Z has measure zero. You may use the following property: for any Lebesgue measurable subset A of \mathbb{R} and any $\epsilon > 0$, there is a closed subset F of \mathbb{R} such that $F \subset A$ and the measure of $A \setminus F$ is less than ϵ .

Solution:

If $E \subset \mathbb{R}$ is Lebesgue measurable, then we know that $\forall \epsilon > 0$, there is a closed subset H of \mathbb{R} such that $H \subset E$ and the measure of $E \setminus H$ is less than ϵ . We denote $Z = E \setminus H$, then we have m(Z) = 0 and $Z \cup H = (E \setminus H) \cup H = E$.

Since H is a countable union of closed sets, then H is a \mathcal{F}_{σ} set and it is measurable. And as Z is a zero measure set, it is also Lebesgue measurable. Thus we know that $E = H \cup Z$ is Lebesgue measurable.

Exercise 5:

Give an example of a sequence f_n in $L^1((0,1))$ such that $f_n \to 0$ in $L^1((0,1))$ but f_n does not converge to zero almost everywhere.

Solution:

We suppose that

$$f_n(x) = \mathbb{I}_{\left[\frac{n-2k}{2k}, \frac{n-2k+1}{2k}\right]}(x),$$

whenever $k \geq 0, 2^k \leq n < 2^{k+1}$. For any $n \in \mathbb{N}$, we have

$$\int_0^1 |f_n(x)| \, dx = \int_0^1 \mathbb{I}_{\left[\frac{n-2^k}{2^k}, \frac{n-2^k+1}{2^k}\right]}(x) \, dx = \frac{1}{2^k} < +\infty,$$

so we know that $f_n \in L^1((0,1))$. And similarly we have

$$\int_0^1 |f_n(x) - 0| \, dx = \int_0^1 \mathbb{I}_{\left[\frac{n-2^k}{2^k}, \frac{n-2^k+1}{2^k}\right]}(x) \, dx = \frac{1}{2^k} < \frac{2}{n},$$

then when $n \to +\infty$, $\int_0^1 |f_n(x) - 0| dx \to 0$, thus we get $f_n \to 0$ in $L^1((0,1))$. But for any $x \in (0,1)$, and for any $N \in \mathbb{N}$, we can find a n > N with $f_n(x) = 1$. Thus f_n can not converges to 0 anywhere for $x \in (0,1)$.