Contrôle final de Statistique Descriptive I Durée: 2heures

Exercice 1

On a relevé pendant 50 quinzaines successives les niveaux de ventes, exprimés en milliers d'unités d'un certain produit cosmétique. Les résultats sont les suivants :

Niveau de vente	[0;5[[5; 10[[10; 12[[12; 20[
Nombre de quinzaines	5	20	15	10

- 1. Calculer les effectifs cumulés croissants et les fréquences cumulées croissantes de cette série statistique.
- 2. Donner sa fonction de répartition F(x) et représenter la courbe cumulative.
- 3. Calculer sa moyenne arithmétique et donner son interprétation économique.
- 4. Déterminer le mode Mo de cette série, graphiquement et par le calcul.
- 5. Calculer la médiane Me de cette série statistique en explicitant vos calculs.
- 6. La série étudiée est-elle symétrique? Justifier votre réponse.

Exercice 2:

Une association de la défense des droits de la femme a mené une enquête auprès du personnel ouvrier d'un secteur industriel. Les résultats concernant les salaires annuels nets en milliers de dirhams sont résumés dans le tableau suivant :

Salaire annuel (en milliers de DH)	Nombre d'ouvrières
[30; 36]	10
[36; 42]	8
[42; 54[4
[54; 60[n_4
Total	N

- 1. Calculer l'étendue de cette distribution statistique.
- Sachant que le salaire annuel moyen des femmes enquêtées est égal à 39500 DH, déterminer l'effectif n_4 de la dernière classe de la distribution du salaire de ces femmes, ainsi que l'effectif total N.
- 3. Quel est le pourcentage des ouvrières qui ont un salaire annuel inférieur à 42000 DH.
- 4. Déterminer les quartiles Q_1 , Q_2 et Q_3 . Calculer l'écart interquartile relatif.
- 5. Représenter le diagramme de Box & Wiskers correspondant. L'étendue est-il est un bon outil de mesuer la dispersion? Pourquoi?
- 6. Calculer la variance et l'écart-type de cette distribution.
- 7. Déterminer le coefficient de variation. Conclure.

Bon courage!

2010/2011

Correction du contrôle final de Statistique Descriptive I

	xercice 1						. 1	,	
4)	[0;-0,0;[ni	nicc	g;	ficc	ci	nici	Qi	$hi = \frac{ni}{ai}$
_	[0,5] [5,10[[10,12]	5	5	0,1	0,1	2,5	12,5	5	1
		90	25	0,4	0,5	7,5	V20	5	4
	[5,10L			03	0,8	M	165	2/	7,5
	[10,12[/15	40	0,7				a	
	[12,20[10	50	0,2	1	16	160	8	1,25
_		N=50		Ef-1	Vo		487,5		

2) la fonction de réportition F(x) est définie par : F(n) = fice pour chaque ei, (n < ei on encore $f(x) = \sum_{x \le e_i} f_i$ avec $e_{i,x} \le x \le e_i$ Alors, dans le cos de notre série: $\begin{cases} 0, \lambda & \text{sin} \ x < 0 \\ 0, \lambda & \text{sin} \ x \in [0, 5[$ $F(n) = \begin{cases} 0.5 & \text{if } x \in [5,10[\\ 0.8] & \text{if } x \in [10,12[\\ 0.8] & \text{if } x \in [10,12[] & \text{if } x \in [10,12[\\ 0.8] & \text{if } x \in$ か マントな 3) Moyenne arithmétique: $X = \frac{1}{N} \sum_{i=1}^{N} nici = \frac{487.5}{50} = 9.75$ ist le niveau de verte morren peudant ces 50 quinzaines. 4) Détermination du Mode Moper la méthode graphique; Cela se fait sur l'histogramme. Donc d'abord, on trace l'histogramme. Mais comme c'est une série statistique quantitative continue avec amplitudes de classes différentes, alors on trace l'histogramme pour les hi- ni

les hi = ni ai.

$$M_0 = 10 + \frac{1,25}{4 + 1,25} + 2 = \frac{10,48}{4}$$

Par utilisation de (II):

$$M_0 = 40 + \frac{7,5 - 4}{(7,5 - 1,25) + (7,5 - 4)} \times 2 = \frac{10,72}{}$$

Alon, on word
$$\underline{\underline{He} = ei = 10}$$

6) Qua: $\overline{\lambda} = 9,75 \neq M_0 = 10,72 \neq He' = 10$

Donc cette série est asymétrique.

Exercise 2:

txucuc				10			1 .	
[ei, ai[ni	ci	nicc	ai	$(ci-\bar{x})^2$	ni(ci-z)2	J Ji	fice
[30,36[10	33	10	6	42,25	422,5	0,4	0,4
[36, 42T]	. 8.	B9'	18	6	0,25	2	0,3	0,7
	:4	48	22,	12	72,25	289	0,2	0,9
[42,54]	17	70		1	20025	6196		
54,60	N. 42	57	24	6	306,25	612,5	0,1	24
	1 -91	-			1	1326	1	
N=4								
ona: $x = 39,5$								

1º) l'atendre on l'intervalle de variation et la façon la plus simpliste de messurer la dispussion. E = amax - amin = boine sup de la derniere classe - bour uf de la 1ère = 60 - 30 x=39,55 en milliers de dirliams 10x33+8x39+4x48+57n4 = (N)x39,55 mais N = 10+8+4+ny 834+57n4 = 39,55 x (22+ h4) >> 834 +57 ng = 8969 + BO, 55 ng ⇒ 45 n4 = 35 \Rightarrow $|n_4=2|$ et |N=24| $\frac{N}{4} = \frac{24}{4} = 6$ on then the te 6 pormi les nico => il n'existe pas exactement, mais 10 est la 1 ere valeur qui déparse ce 6 on applique $Q_{1} = e_{i-1} + \frac{\frac{N}{4} - n_{i-1} cc}{n_{i}}$ la formule:

www.elmerouani.jimdo.com

$$Q_{\Lambda} = 30 + \frac{6 - 0}{10} \times 6$$

$$Q_{\Lambda} = 30 + 3.6 = 33.6$$

 $R_2 = 12$ cette valeur n'existe pas parni les nice, mais 18 est la Mêre valeur qui le dépasse, on applique la formule $Q_2 = e_{1-1} + \frac{N}{4} \times 2 - n_{1-1} cc$ $\times a_1$

$$= 36 + \frac{12 - 10}{8} \times 6 = 36 + 1,5 = 37,5$$

Q3? Nx3=18 cette valeur existe paruri las nicc alors on prand Q3=ei = 42

la dérivation quartile en le semi-interquartile est

 $\frac{Q_3 - Q_{\Delta}}{2} = \frac{42 - 33.6}{2} = \frac{4.2}{2}$ L'écart interguarthe relatif:

$$\frac{Q_3 - Q_1}{Q_2} = \frac{42 - 33,6}{37,5} = \frac{0,224}{3}$$

Diagramme de Box & Wishers

$$Van(x) = \frac{1}{N} \sum_{i} ni(xi - xi)^2 = \frac{1326}{24} = \frac{55,25}{24}$$

$$O(x) = \sqrt{m(x)} = \frac{7.43}{2}$$

$$C_{V} = \frac{\sigma(x)}{X} = \frac{7.43}{39.5} = 0.188$$

W=18,8 %

l'ette série est pen dispersée (homogène). On lit directement du tableau des calailes dans la colonne des fice en face de la clarse [36,42] on a la valour 0,7 Donc le pourcentage des ouvlieres qui ont un

ralaire inférieure à 42000 DIA est 70%