FABYOLA LARASATI MASYITA

CHALLENGE - CHAPTER 2 CUSTOMER CHURN PREDICTION

GOOGLE COLABORATORY

https://colab.research.google.com/drive/1Q4Hids9HfFjl4x7Gr3z/WBTJu25Z65fe?usp=sharing

TO DO

IMPORT DATA

STATISTICAL ANALYSIS (EXPLORATORY DATA ANALYSIS)

DATA PREPROCESSING

MACHINE LEARNING ALGORITHM

USE CASE INTERPRETATION

PROBLEM

Pelanggan memiliki hak dalam memilih provider yang sesuai dan dapat beralih dari provider sebelumnya yang diartikan sebagai Customer Churn.

Peralihan ini dapat menyebabkan berkurangnya pendapatan bagi perusahaan telekomunikasi sehingga penting untuk ditangani.

IMPORT DATA

	Jeace	account_rengen	ar ca_coac	international_plan	voice_maii_pian	number_villarr_licssuges	cocar_aay_minaces	cocai_day_caiis	cocar_day_charge	cocal_cvc_minaces	cocar_cvc
0	ОН	107	area_code_415	no	yes	26	161.6	123	27.47	195.5	
1	NJ	137	area_code_415	no	no	0	243.4	114	41.38	121.2	
2	ОН	84	area_code_408	yes	no	0	299.4	71	50.90	61.9	
3	OK	75	area_code_415	yes	no	0	166.7	113	28.34	148.3	
4	MA	121	area_code_510	no	yes	24	218.2	88	37.09	348.5	

•

STATISTICAL DESCRIPTIVE

	account_length	number_vmail_messages	total_day_minutes	total_day_calls	total_day_charge	total_eve_minutes	total_eve_calls	total_eve_charge	total_night_minutes	total_n:
count	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4250.000000	4
mean	100.236235	7.631765	180.259600	99.907294	30.644682	200.173906	100.176471	17.015012	200.527882	
std	39.698401	13.439882	54.012373	19.850817	9.182096	50.249518	19.908591	4.271212	50.353548	
min	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	73.000000	0.000000	143.325000	87.000000	24.365000	165.925000	87.000000	14.102500	167.225000	
50%	100.000000	0.000000	180.450000	100.000000	30.680000	200.700000	100.000000	17.060000	200.450000	
75%	127.000000	16.000000	216.200000	113.000000	36.750000	233.775000	114.000000	19.867500	234.700000	
max	243.000000	52.000000	351.500000	165.000000	59.760000	359.300000	170.000000	30.540000	395.000000	

400

number customer service calls

Descriptive Statistics 0.008 0.4 --- 25% Quartile --- 25% Quartile --- 25% Quartile 0.010 --- Mean --- Mean --- Mean --- Median 0.3 --- Median 0.006 --- Median 0.008 --- 75% Quartile --- 75% Quartile --- 75% Quartile 0.2 0.2 £ 0.006 0.004 å _{0.004} 0.1 0.002 0.002 0.000 0.0 0.000 50 100 150 200 250 -10 20 40 60 0 100 300 30 200 account_length number_vmail_messages total_day_minutes 0.025 --- 25% Quartile --- 25% Quartile --- 25% Quartile 0.04 0.008 Mean Mean --- Mean 0.020 --- Median --- Median --- Median ≥ 0.006 --- 75% Quartile --- 75% Quartile --- 75% Quartile ≥ 0.03 ≥ 0.015 0.02 0.004 0.010 0.01 0.002 0.005 0.000 0.00 0.000 25 75 100 125 175 0 10 30 0 200 300 400 total_day_calls total_day_charge total_eve_minutes 0.025 --- 25% Quartile --- 25% Quartile --- 25% Quartile 0.10 0.008 --- Mean --- Mean --- Mean 0.020 --- Median 0.08 --- Median --- Median 0.006 --- 75% Quartile --- 75% Quartile --- 75% Quartile ₾ 0.015 € 0.06 0.004 0.04 ط ۵ 0.010 0.002 0.005 0.02 0.000 0.00 0.000 175 400 0 25 50 75 100 125 150 5 10 15 20 25 30 100 200 300 total_eve_calls total_eve_charge total_night_minutes --- 25% Quartile --- 25% Quartile --- 25% Quartile 0.020 --- Mean --- Mean --- Mean 0.15 --- Median 0.15 --- Median --- Median --- 75% Quartile 0.015 --- 75% Quartile --- 75% Quartile <u>₹</u> 0.10 E 0.10 0.010 0.05 0.05 0.005 0.000 0.00 0.00 0 25 50 75 100 125 150 175 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0 15 20 10 total_night_charge total_night_calls total_intl_minutes 0.5 2.0 --- 25% Quartile --- 25% Quartile --- 25% Quartile --- Mean 0.6 Mean --- Mean 0.4 --- Median --- Median --- Median 1.5 --- 75% Quartile --- 75% Quartile --- 75% Quartile 0.3 മ് 0.2 0.2 0.5 0.1 0.0 0.0 0.0 10 15 20 1 10 0

total_intl_charge

total_intl_calls

CHURN STATUS

Number of customers who churn: 598 , (14.070588235294117 %)

Number of customers who not churn: 3652 , (85.92941176470589 %)

Number of customers that are churn and not churn

CATEGORICAL DATA ANALYSIS

Customer churn by state

Customer churn by area code

CATEGORICAL DATA ANALYSIS

Customer churn by international plan

Customer churn by voice mail plan

Bivariate Analysis by Churn Status account_length number_vmail_messages total_day_minutes 0.008 0.010 --- No No 0.10 Yes 0.008 Yes 0.006 0.08 0.004 O.004 . € 0.006 0.06 0.004 0.002 0.002 0.02 0.00 0.000 0.000 250 300 50 100 150 200 -10 0 10 100 200 total_day_calls total_day_charge total_eve_minutes 0.020 0.008 --- No --- No 0.04 Yes 0.015 0.006 ≥ 0.03 0.004) 0.010 ē 0.02 0.005 0.002 0.01 0.000 0.00 0.000 175 100 -25 25 75 100 125 150 -1010 20 30 50 60 200 300 400 total_eve_charge total_night_minutes total_eve_calls 0.020 0.008 --- No --- No 0.08 Yes Yes 0.015 0.006 **≥** 0.06 0.010 0.004 0.04 0.005 0.002 0.02 0.000 0.00 0.000 25 50 100 125 150 175 100 200 300 400 20 total_night_calls total_night_charge total_intl_minutes 0.020 0.150 --- No --- No --- No 0.15 0.125 Yes Yes 0.015 Zig 0.010 ₹ 0.10 0.075 0.050 0.05 0.005 0.025 0.000 0.00 0.000 25 125 150 175 5.0 10.0 12.5 15.0 17.5 20.0 75 100 2.5 7.5 total_intl_calls total_intl_charge number_customer_service_calls 0.20 --- No -- No --- No 0.6 0.5 --- Yes 0.5 0.15 0.4 NSITY ... Density 0.10 0.3 0.2 0.05 0.1 0.1 0.00 0.0 0.0 10 15 20 -2

DATA PREPROCESSING

DATA CLEANING

Identify Missing Value

1 df_train.isna().any()

False state account length False area code False international_plan False voice mail plan False number vmail messages False total day minutes False total_day_calls False total day charge False total_eve_minutes False total eve calls False total_eve_charge False total night minutes False total night calls False total night charge False total intl minutes False total intl calls False total intl charge False number customer service calls False churn False dtype: bool

Identify Duplicate Value

1 df_train.duplicated().any()

False

Identify Outliers

1 check_out(df_out[numerical]).sum()

account_length	20
number_vmail_messages	86
total_day_minutes	25
total_day_calls	28
total_day_charge	26
total_eve_minutes	34
total_eve_calls	24
total_eve_charge	34
total_night_minutes	37
total_night_calls	33
total_night_charge	37
total_intl_minutes	62
total_intl_calls	100
total_intl_charge	62
number_customer_service_calls	335
dtype: int64	

Outlier Detection

Remove Outliers

FEATURES ENGINEERING

```
1 def preprocess(df):
      df['total nat minutes'] = df['total day minutes'] + df['total eve minutes'] + df['total night minutes']
      df['total_nat_calls'] = df['total_day_calls'] + df['total_eve_calls'] + df['total_night_calls']
      df['total_nat_charge'] = df['total_day_charge'] + df['total_eve_charge'] + df['total_night_charge']
      df['international plan'].replace({'no': 0, 'yes': 1}, inplace=True)
      df['voice mail plan'].replace({'no': 0, 'yes': 1}, inplace=True)
      df.drop(columns=['state', 'area code'], inplace=True)
      df.drop(columns=['account_length'] , axis=1 , inplace=True)
10
      df.drop(columns=['total day minutes', 'total eve minutes', 'total night minutes'], inplace=True)
11
      df.drop(columns=['total_day_calls', 'total_eve_calls', 'total_night_calls'], inplace=True)
12
      df.drop(columns=['total_day_charge', 'total_eve_charge', 'total_night_charge'], inplace=True)
13
14
15
      return df
```

i	nternational_plan	voice_mail_plan	number_vmail_messages	total_intl_minutes	total_intl_calls	total_intl_charge	number_customer_service_calls	churn	total_nat_minutes	total_nat_calls	total_nat_charge
0	0	1	26.0	13.7	3.0	3.70	1.0	0	611.50	329.0	55.540
1	0	0	0.0	12.2	5.0	3.29	0.0	0	527.20	328.0	59.000
2	1	0	0.0	6.6	7.0	1.78	2.0	0	560.45	248.0	65.215
3	1	0	0.0	10.1	3.0	2.73	3.0	0	501.90	356.0	49.360
4	0	1	24.0	7.5	7.0	2.03	3.0	0	766.35	314.0	75.175

DATA SPLITTING AND DATA SCALING

Data Splitting

```
1 from sklearn.model_selection import train_test_split
2 x = df_train_clean.drop('churn',axis=1).values
3 y = df_train_clean.churn.values
4 # splitting tha data into test and train
5 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
6 print(x_train.shape, x_test.shape)

(3400, 10) (850, 10)
```

Data Scaling

```
1 from sklearn.preprocessing import MinMaxScaler
2
3 # creating the object of minmax scaler
4 scaler = MinMaxScaler()
5 x_train = scaler.fit_transform(x_train)
6 x_test = scaler.transform(x_test)
```


MACHINE LEARNING MODELING

LOGISTIC REGRESSION

GAUSSIAN NAIVE BAYES

DECISION TREE

RANDOM FOREST

NEURAL NETWORK

SUPPORT VECTOR MACHINE

LOGISTIC REGRESSION

GAUSSIAN NAÏVE BAYES

DECISION TREE

RANDOM FOREST CLASSIFIER

SUPPORT VECTOR MACHINE

NEURAL NETWORK

MODEL SUMMARY

	Model	Accuracy	Precision	f1_score
2	Random Forest Classifier	0.976	0.974	0.918
5	Decission Tree	0.953	0.840	0.846
0	Neural Network	0.932	0.882	0.739
1	Support Vector Machine	0.925	0.933	0.686
4	Gaussian Naive Bayes	0.885	0.645	0.585
3	Logistic Regression	0.872	0.763	0.347

USE CASE INTERPRETATION

IMPORT DATA

PREPROCESSING DATA

CHURN PREDICTION

DATA TEST

Import Data

Preprocessing Data

	id	international_plan	voice_mail_plan	number_vmail_messages	total_intl_minutes	total_intl_calls	total_intl_charge	number_customer_service_calls	total_nat_minutes	total_na
0	1	0	1	25	10.0	3	2.70	1	707.2	
1	2	1	0	0	6.3	6	1.70	0	647.9	
2	3	0	0	0	13.1	6	3.54	4	630.9	
3	4	0	0	0	8.1	3	2.19	3	538.5	
4	5	0	0	0	15.5	5	4.19	3	652.1	

Info Data

Column

<class 'pandas.core.frame.DataFrame'> RangeIndex: 750 entries, 0 to 749 Data columns (total 20 columns):

***	COZUMII	14011	Mail Count	Deype			
0	id	750	non-null	int64			
1	state	750	non-null	object			
2	account_length	750	non-null	int64			
3	area_code	750	non-null	object			
4	international_plan	750	non-null	object			
5	voice_mail_plan	750	non-null	object			
6	number_vmail_messages	750	non-null	int64			
7	total_day_minutes	750	non-null	float64			
8	total_day_calls	750	non-null	int64			
9	total_day_charge	750	non-null	float64			
10	total_eve_minutes	750	non-null	float64			
11	total_eve_calls	750	non-null	int64			
12	total_eve_charge	750	non-null	float64			
13	total_night_minutes	750	non-null	float64			
14	total_night_calls	750	non-null	int64			
15	total_night_charge	750	non-null	float64			
16	total_intl_minutes	750	non-null	float64			
17	total_intl_calls	750	non-null	int64			
18	total_intl_charge	750	non-null	float64			
19	number_customer_service_calls	750	non-null	int64			
dtypes: float64(8), int64(8), object(4)							
memory usage: 117.3+ KB							

Non-Null Count Dtvpe

memory usage: 117.3+ KB

CHURN PREDICTION

```
1 predict = pd.Series(model_rf.predict(testing), name = 'churn').astype(int)
2 results = pd.concat([df_test_clean['id'], predict],axis = 1)
3 results['churn'].replace({0: 'no', 1: 'yes'}, inplace=True)
4 results.to_csv("predict application.csv", index = False)
5 results.head()
```

	id	churn
0	1	no
1	2	yes
2	3	yes
3	4	yes
4	5	yes

SUMMARY

Berdasarkan hasil machine learning yang telah diperoleh pada penggunaan data train, maka saat melakukan churn prediction, digunakan algortitma random forest classifier. Karena pada random forest classifier, diperoleh nilai akurasi, presisi, dan f1 yang tertinggi.

