Design Throng of Relational DBr.

- · What makes a good database?
 - · Normalization
 - · Avoid "anomalies"

Functional Dependencies (FD)

two set of attributes of a relation.

Given R, a set of attributes X in R is said to functionally determine another set of attributes Y in R (X > Y) iff 2 tiples have the same values of attributes X then they must have the same values Y.

We write them as:

Attributes written as list.

	Example:		×	V	" Mayor	Juna
`	Litle	Je ar .	sug.	Corre.	Sign	Stone
	Star Wars	477	124	Sci Fi	Fox	Carry Fisher
	Star Wars	477	124	Sci Fi	Fox	Mark Homill
	Star Wars	977	124	Sci Fi	Fox	Harrison Ford
	The Godfather	972	175	Drama	Paramount	Robert Duvall
	The God ather	972	175	Drama		Marlon Brandon
	Apocalyte Now	1953	153	War		Marlon Brandon

I claim by design that
litle, year -> lenght, genre, studioName
litle, year -> starName

Superkey (SK)

A set of attributes of A...An is a superkey of Riff A...An > R

Candidate key (key)
A candidate key is a superker that
is minimal:

There is no proper subset of C of AA...And s.t. C > R

One candidate Key becomes the Primary Key!

EX:

F={AB⇒C} Fis minimal basis basis

 $B_1 = ABC$ with $AB \rightarrow C$ $B_2 = CB$ with $C \rightarrow B$ $C \rightarrow B$

None of them contains a SX.

(see previous exercise, you can

verify it by computing (Right)

We know its begs are AEB and AEC

We need only one. So add

124=AEB with mortos.

Decomposition of R is

P1, R2, R3 and R4 with

corresponding FDs

For ar example:

- · All attributes of R are always a SK.
- · title, year, starhame is a candidate title, year, star Name -> R
- · Any superset of a candidate Key is

Reasoning about FD's.

- . Given a relation R two sets of FDs A & B are equivalent if. The set of instances of 12 that satisfy A is exactly the same that
- · A follows from B if every instance of R that satisfies Balso satisfies A.
- A & B are equivalent ild.

 A follows B and B follows A

Armstrong's Axioms (3.2 page 81)

Given relation 12 with subsets of attributes X, Y, Z E R

Agmentation:

It X -> Y then XZ > YZ for any Z

Transituity:

If X > Y, Y > Z then X > Z

Addition as Rules.

They can be derived from axisms.

Union:

If X > Y, X > Z then X > YZ Decomposition

If X => YZ then X => Y and X => Z

Decomposition of a Relation into 3NF relations that is loss-less join and FD preserving: (Synthesis alg 3.5.2)

Given R with set of FDs F

- 1) Find G, a minimal basis of F
- 2) For each FD A...An → B in G.

 add a relation with schema

 A...An B with FD

 A...An → B
- 3) If none of the added relations in step 2 is a SK of R add another relation whose schema is a key of R.

Back to testing if Ris 3NF

AB > C c is part of Ck. V

C > B C is not SK. but

B is part of CK.

A > D A is not SK.

D is not part of CK

> 2 Is not 3 NF.

Ex: Derve Union from axioms X → Y , X → {Z XZ -> YZ Agmontation $\times \times \rightarrow \times =$ } Augmentation. $\times \rightarrow \times =$ X > XZ > YZ y Transituity × → Y ? Ø Derve decomposition X -> YZ YZ > Y] Peflexivity. X -> Y X -> Z 1/20 } Transitivity. Closure of attributes (3.2.4)

Given a relation R and a set of of FDs, what other FDs can be computed from a set of FDs f?

The closure of a set of attributes

A...An denoted $\{A_1...A_n\}^{t}$ is the set of attr. that can be derived from $A_1...A_n$ using f.

Hard to do and error prone via axioms!!

1) Rewrite FDs in f in canonical form

 $2) \times \leftarrow A_{1..} A_{n}$

3) for each B₁... B_m ⊃ C in FDs

if B₁... B_m ⊆ X and C ∉ X

add C to X

4) Repeat (3) until X does not change X is h A. ... Anyt

Ex: B(ABCDE) Isit 3NF? AB -> C AB rota SK. is C partofa Ck? Need to compte candidate keys of R · Heuristic: AE never on righthand side of > always part of a key Use closure of attr. to compute SKs. all combination of atter. closure. AE BC D AE BD C AEB D all SK. AEBCD AED AED. minimal > Candidate Keyr. JAEC 3rd Normal Form (3NF)

If we cannot decompose a relation into BCNF relations that are FD preserving we are happy if they can be decompose into 3NF relations.

Any relation R with a set of FDs F has a 3NF decomposition that is loss-less join and FD preserving.

△ relation R with FDs Fisin 3NF

if for every non-trivial FD

A1...An → B1...Bm

- · it is a:SK
- · C ∈ {B₁...B_m} is either C ∈ {A₁...A_n} or
 - C is part of some candidate key.

Ex:

$$R(ABCDE) \qquad (1) \qquad AB \rightarrow C \qquad BC \rightarrow A \qquad BC \rightarrow D \qquad BC \rightarrow D \qquad D \rightarrow E \qquad CF \rightarrow B$$

Compute 4B3+

× & AB

First pass:

all attributes hence X will not change any more

AB is a SK of R. Is it a condidate key?

Closure of attr. can help us find CKs of a relation: Compute hart land 413-4+

Closure of set of FDs Given a set of FDs, its closure

It is the set of all FDs

derived from f.

Ex: f=\(A > B \)
A > C ∈ f + B > C Two sets A&B of FDs are equivalent iff $AA^{+} = ABA^{+}$ $\begin{cases} A \rightarrow B \\ B \rightarrow C \end{cases} = \begin{cases} A \rightarrow B \\ A \rightarrow C \end{cases}$ We can easily test if X > Y e f X = Y eft iff Y = 1xyt using f. $A \rightarrow C \in \left\{ \begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array} \right\}$ 4A3+=4ABC3 ⇒ A→ABC

Any non BCNF relation has a BCNF loss-less join decomposition but not a BCNF FD preserving decomposition.

Ex: 8 († CH) H > C TC > H.

H -> C not BCNF.

HCHC HC HT HTC

H > C

De composition $R_1 = HC$ $FD_1 = \frac{1}{2}H \rightarrow C^{2}$ R = HT $FD_2 = 6$

Not FD preserving lost TC > H.

Algorithm to de compose into BCNF relations

Gruen Rand set F of FDs:

Ris not BCNF.

1) Choose one FD X > Y not in BCNF 2). De compose:

$$P_{i} = \sqrt{\times j^{+}} \times \rightarrow Y$$

$$P_{2} = \times \cup (P - P_{i})$$

- 3) Compute FDs for R, and Ez (projection of FDs of R into P1, R2)
- 4) If R1 or R2 are not BCNF recursively decompose.

Guaranteed to be lossless join but not FD preserving.

Basis of a relation

Given a relation R and FDs f we say that any set g s.t. $f^{\dagger} = g^{\dagger}$ is a basis of R.

Minimal Basis of FDs. (3.2.7)

Any relation R has many equivalent set of FDs. (many basis-es).

To avoid an exposion of FDs we usually use a minimal basis

A minimal basis B of a relation R is a basis of R s.t.

- 1) All FDs in Bare in canonical form
- 2) If for any FD we remove one or more after from the left hand side the result is no longer a basis,
- 3) If any FD is removed from B, the result is no longer a basis

Ex:
$$1S A$$
 a minimal basis of B ?

 $A \rightarrow B$
 $A \rightarrow C$
 $C \rightarrow A$
 $C \rightarrow B$
 $A \rightarrow C$
 $C \rightarrow B$
 $A \rightarrow C$
 $A \rightarrow C$
 $C \rightarrow B$
 $A \rightarrow C$
 A

GNEN FDS in A, can we generate FDs in B?

(1), (3), (4), (6) already in A. Can we generate (2), (5), (5), (9)? (A) 1 = (ABC).

> 2 can be generated, and also 3,8 by using augmentation. (or comple 1AByt, 4ACyt)

(3) (augmentation) can be generated.

So from A we can generate B. Hence A is a basis of B Boyce Codd Normal Form (BCNF)

A relation R is in BCNF iff for every non trivial FD A...An > B...Bm A...An is a Superkey.

Ex;

Movies is not BCNF title, year → lenght, studio Name is a not a SK of Movies

If a relation Ris not BCNF then decompose into relations R₁... R_n s.t R₁ × R₂ ... × R_n = R

> Loss-less join decomposition.

Call this Movies 3

Good de compositions.

Given a relation R we want to decompose it into two relations S and T s.t.

- 1) R = SMT lossless join
- 2) The projection of FDs Fr of R into S (F's) and T (FT) sortsfies: 4Fs UFTJ+ =4FRJ+

Dependency preserving.

Bis also a basis of A (ACB)

Is A minimal?

• Can we drop $A \rightarrow B$?

A $\rightarrow B$ be generated from $C \rightarrow B$ $B \rightarrow C$ 4A)+= 4A) so no, A→B cannot be removed.

Com we drop B > A?

B > A be generated from C > B

B > C 187+ = 18 CZ, so ro, it can not

be removed.

Repeat for C > B and B > C.

Yes, it is minimal.

Another Example.

Given AC >D AD >C A > CD C > D Compte its minimal over

1) Write in caronical form

O AC>D OA>C S C>D

(2) AD > C (4) A > D

2) Remove redundant attr. for LHS

Test A in (1)

Can we generate A form c?

4 cy+ = CD NO

Can we generate c from A:

Drop C from (1) > A > D. (Replace (1))

Can me generate A form Di? NO Can we genrate D fam A? Ges.

⇒ A → C (Replace (2))

Decomposing Relations To deal with anomalies we decompose relations.

Given R (A... An) a decomposition into $S(B_1...B_m)$ and $T(C_1...C_k)$ s.t.

1) {A,... An} = 1B,... Bm > U 1 C1 ... Cx 9

 $z) S = \prod_{B_1 \dots B_m} R$ and T = T CI ... CK R

We can decompose Moures into

S (title, year, length, genre, shows Name)

T (title, year, star Name) title Year Vito Gir Grand Paramount Apocalyse Now 1953 153 War Zoetrope

Call this Movies 2

FDs: title, year -> length, studio Name

Anomalies

- · Redundancy: Un necessary repeated
- · Update anomalies: If we change one typle we might have to change another: Ex: change length of a movie.
- · Deletion anomalies: If we delete a type we might lose other info: Ex: Remove M. Brandon from Ap. Now.

Now he have. (1) A > D (3) A > C (3) C > D ② A→ E 4 A→ D

3 Remove redundant FDr. 1) and 2) are obviously redundant. ⇒ Pemor.

 $\begin{array}{cccc}
3 & A \rightarrow C & (S) & C \rightarrow D \\
4 & A \rightarrow D &
\end{array}$

can 3 be serveted from 4,5? No. <u>Ver</u>p.

Can (4) be generated from (3)?

Can (5) be generated from (3)? No. Veep.

Minimal Cover

 $\begin{array}{cccc} \textcircled{3} & A \rightarrow C \\ \textcircled{5} & C \rightarrow D \end{array}$

Projection of FDs (3.2.8) Gren R and set F of FDS The projection of Fon RI=TILR is the set of FDs that follows from F that involve only attributes in R. Algorithm: $T \leftarrow \emptyset$ for each subset X EL compute(X)+ for every attribute A in 1 x3+
add X > A to T iff A ∈ L and A ∉ X (non-trivial)

Prove it!!