This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-269822

(43)Date of publication of application: 08.11.1988

(51)Int.CI.

H03K 5/26 H03L 7/08

(21)Application number : 62-106030

(71)Applicant:

JAPAN RADIO CO LTD

(22)Date of filing:

28.04.1987

(72)Inventor:

YAMASHITA KAZUO

(54) PHASE DETECTION CIRCUIT

(57)Abstract:

PURPOSE: To obtain a phase detecting characteristic without having a blind sector and with superior linearity, by providing a delay circuit to be connected to the common reset terminal of two signal detection circuits in a reset circuit which generates a reset signal.

CONSTITUTION: When an input signal R1 is set at an L level, a sigmal is detected by setting both outputs of NAND gates 1 and 3 at H levels. Also, when an input signal V1, changes from the H level to the L level, the signal is detected by setting both outputs of NAND gates 6 and 7 at the H levels. Thus, since the both outputs of the NAND gates 1 and 3, and 6 and 7 go to the H levels by the arrival of two signals with the L levels, the output of the NAND gate 9 of the reset circuit 13 changes to the L level, and it is inputted to the delay circuit 10. And a reset operation can be performed by delaying it at the circuit 10 and adding it on the NAND gates 4 and 5 via the common reset terminal A of the signal detection circuits 11 and 12. In such a way, it is possible to obtain the phase detecting characteristic without having the blind sector and with the superior linearity.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Dat of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

44.4

· [.

の特許出願公告

報(B2) 公

 $\Psi 4 - 34329$

⑤Int. Cl. 5

識別記号

庁内整理番号

2020公告 平成4年(1992)6月5日

H 03 K 5/26 P 7125-5 J

発明の数 1 (全4頁)

64発明の名称

位相検波回路

砂特 顧 昭62-106030

開 昭63-269822 60公

顧 昭62(1987)4月28日 20出

@昭63(1988)11月8日

和郎 伊発 明 ılı F 日本無線株式会社 勿出 願 人

東京都三鷹市下連雀5丁目1番1号 日本無線株式会社内

東京都三鷹市下連後5丁目1番1号

保 男 浅 見 宝 杏 官

1

2

釣特計請求の範囲

1 信号の到来を検出し出力する2つの信号検出 回路と、該2つの信号検出回路の両者への信号の 🐭 到来を受けてリセツト信号を発生するリセツト回 ツトして繰り返し2つの信号の到来を検出するよ うに構成した位相検出回路に於て、前記リセット 回路に前記2つの信号検出回路の共通リセット端 子へ接続する遅延回路を設け、該遅延回路を経た リセツト信号により、前記2つの信号検出回路の 10 となる欠点があつた。 出力を共に十分飽和レベルに達するようにしたこ とを特徴とする位相検波回路。

発明の詳細な説明

(産業上の利用分野)

を検出する位相検波回路に関する。

(従来の技術)

従来この種の回路は第5図のように2つの信号 検出回路16,17と、リセット回路18とから 構成されており、2つの信号RiとViが到来した 20 (実施例) ことを検出したリセツト信号 (NANDゲート9) の出力信号)を、2つの信号到来検出出力にそれ ぞれゲート合成 (NANDゲート2及び8に加え る)して位相検波出力Ui, Diを出力していた。

(発明が解決しようとする問題点)。

しかしそのような構成に於ては、先に信号が到 来した側の出力にのみ検出信号が現われ、同時に 到来した場合は何れにも検出信号が現われない。

第2図aは従来回路の入力信号Ri, Vi、

NANDゲート9の出力信号及び出力信号U., D. の波形について例示したものである。同図に於 て、入力信号Riが点線の如く入力信号Viより僅 かに早いときは、出力信号U、は点線の如く出力 路とを有し、前配2つの信号検出回路を共にリセー5 するが、同時に到来するときは実線の如く出力信 号Ui, Diは出力しない。

> 従つて、2つのパルスの積分差を位相検波出力 とする位相検波特性は第3図のaのように位相差 0 の近くに不感帯が現われ、PLL制御が不安定

(問題点を解決するための手段)

本発明は2つの信号到来検出出力を何れも十分 飽和させた後リセツトさせ、2つの信号が到来し ** たことを検出したリセット信号を、2つの信号到 本発明はPLL制御に用いる2信号間の位相差 15 来検出出力何れにもゲート合成しないことによ 🐰 り、位相差0の近くの不感帯をなくし、更に、位 相差に対する検出のリニアリティを改善するよう にししたものである。以下本発明の実施例を図面 により詳細に説明する。

第1図は本発明の一実施例で1,2,3,4. 5, 6, 7, 8及び9はNANDゲートで、10 は遅延回路、Ri及びViは入力信号、Ui及びDiは 位相検波出力である。

NANDゲート 1, 2, 3 及び 4 で信号検出回 路11を構成し、NANDゲート5, 6, 7及び 8でもう1つの信号検出回路12を構成し、更 に、NANDゲート§及び遅延回路10でリセッ ト回路13を構成している。

3

入力信号RiがHレベルのときにNANDゲート 1の出力はLレベルとなり、従つて、NANDゲ ート3及び4により構成されたSRフリップフロ ップの動作によりNANDゲート3の出力はHレ ベルになり、NANDゲート2の出力UiはHレベ 5 ルとなる。

次に、入力信号RiがLレベルとなると、 NANDゲート1及び3の出力は共にHレベルと なることで信号を検出する。また、このとき NANDゲート2の出力U」はLレベルに変わる。

同様に、入力信号V:がHレベルからLレベル に変化するとNANDゲート 6 及び 7 の出力は共 にHレベルとなることで信号を検出する。また、 このときNANDゲート8の出力DiはLレベルに

2つのL信号が到来したことで、NANDゲー ト1、3、6及び7の出力が共にHレベルとなる ことから、リセット回路13のNANDゲート9 の出力はレレベルに変わり、これを遅延回路 10 で遅延させて信号検出回路11,12の共通リセ 20 図面の簡単な説明 ツト端子Aを経てNANDゲート4及び5に加え ることでリセツト動作させる。

リセット動作によりNANDゲート3及び6の 出力をレレベルとし、従つてリセツト動作は解除 され、また、NANDゲート 2 及び 8 の出力U₁及 25 びDiは共にHレベルに戻る。

リセット信号の遅延には、パッフア回路を多段

に接続するか或はR, C(抵抗コンデンサ)によ る遅延回路を用いる。

このように構成することにより、第3図のbの ように不感帯のないリニアリテイの良い位相検波 特性が得られる。

第2図bは入力信号Riが入力信号Viより僅か に早く到来した場合の位相検波出力U、及びD、の 波形、リセット検出のNANDゲート9の出力波 形及び遅延後のリセツト信号波形を現わしたもの 10 である。又同時到来の場合も示してあり、その場 合も出力信号UL, Diは実線の如く出力する。

第4図は本発明の他の実施例で、第1図回路に 対し、リセット信号をNORゲートで作り出した ものである。個別の動作は周知であるので説明は 15 略す。

(発明の効果)

以上説明したように、本発明によれば不感帯の ない、リニアリテイの良い位相検波特性が得られ るため、安定なPLL制御が可能となる。

第1図は本発明の一実施例を示す回路図、第2 図は各部の波形説明図、第3図は検波出力特性説 明図、第4図は他の実施例、第5図は従来の回路 図である。

路、13……リセット回路。

第3図 不感带

— 52 —

第1図

1~9 NANDゲート

第2図

(b)

第5図

