HPV Prevalence Data – Exploration & Missing Data Analysis

SAINATH R

NIT Raipur

May 30, 2025

Project Background & Replication

- Previous intern: Daljeet used XGBoost on HPV prevalence data.
- Target Variables: ncc_combined, high_cin_combined, ncc_16_prevalence, etc.
- I successfully replicated Daljeet's results for all target variables.
- Daljeet dropped many prevalence, pregnancy, and case-related features.

Daljeet's Setup (ncc_combined)

- Model: XGBoost Regressor
- Dropped Features: All prevalence & cases related
- Parameters:
 - eta=0.05, max_depth=3, gamma=0.3
 - min_child_weight=4, subsample=1.0
 - colsample_bytree=0.7, lambda=2.0, alpha=1.0
- Test $R^2 = 0.5281$

My Replication: ncc_combined

Dropped only target-related columns.

Model: XGBoost

• Test R²: 0.7416

High CIN Combined: Comparison

Metric	Daljeet	Me
Train MSE	33.3991	0.0024
Train R ²	0.4095	1.0000
Test MSE	172.7375	5.6040
Test R ²	-0.1423	0.9412

My Model Parameters (High CIN Combined)

- colsample_bytree=1.0, learning_rate=0.1
- max_depth=4, min_child_weight=3
- n_estimators=200, reg_alpha=0, reg_lambda=1
- subsample=0.7

NCC-16 Prevalence: Comparison

Metric	Daljeet	Me
Train R ²	0.8687	0.9932
Test R ²	0.8033	0.7416

My Parameters (ncc_16_prevalence)

- colsample_bytree=1.0, learning_rate=0.1
- max_depth=4, min_child_weight=3
- n_estimators=100, reg_alpha=1, reg_lambda=1
- subsample=0.9

Daljeet Parameters (ncc_16_prevalence)

- gamma = 0.9773, min_child_weight = 4
- subsample = 0.9999, colsample_bytree = 0.5012
- colsample_bylevel = 0.9995
- lambda = 9.9672, alpha = 0.0050

Additional Contributions

- Scraped data for:
 - Region-wise HPV prevalence in India.
 - Top cities with high cervical cancer incidence.
- This enriched the dataset and gave potential for future regional model training.

Learning Difficulty Calculation (Resampling Strategy)

This function estimates how hard it has been to learn a sample i over time.

Inputs:

- y_{true}: Actual label
- pred_hist: List of predictions for the sample across training iterations

Logic:

- For each iteration t:
 - Compute previous error: $|pred_{t-1} y_{true}|$
 - Compute current error: $|pred_t y_{true}|$
 - If error reduced ⇒ **learning**; else ⇒ **unlearning**
- Track total learning and unlearning over time

Difficulty Score:

$$\mathsf{Difficulty} = \frac{c + \mathsf{Total\ Unlearning}}{c + \mathsf{Total\ Learning}}$$

c is a small constant to avoid division by zero

Results: NCC Combined

- Train Performance:
 - RMSE = 3.0413
 - $R^2 = 0.8049$
- Test Performance:
 - RMSE = 4.4
 - $R^2 = 0.7379$

Results: NCC 16 Prevalence

- Train Performance:
 - RMSE = 6.4223
 - $R^2 = 0.6445$
- Test (Gold Standard) Performance:
 - RMSE = 7.3066
 - $Arr R^2 = 0.2527 \pm 0.6200$

Results: High CIN 16 Prevalence

- Train Performance:
 - RMSE = 10.1983
 - $R^2 = 0.4931$
- Test (Gold Standard) Performance:
 - RMSE = 9.6869
 - $R^2 = 0.2073$

parity plot: NCC Combined

parity plot: NCC 16 Prevalence

parity plot: High CIN 16 Prevalence