Statistical Modelling under Epistemic Data Imprecision

Some Results on Estimating Multinomial Distributions and Logistic Regression for Coarse Categorical Data

Julia Plass*, Thomas Augustin*, Marco Cattaneo**, Georg Schollmeyer*

*Department of Statistics, Ludwigs-Maximilians University and **Department of Mathematics, University of Hull

21st of July 2015

Our working group

Our working group

Epistemic vs. ontic interpretation (Couso, Dubois, Sánchez, 2014)

Examples of data under epistemic imprecision

Examples:

- Matched data sets with partially overlapping variables
- Coarsening as anonymization technique
- Missing data as special case

```
Here: PASS-data \Omega_{\mathcal{Y}} = \{<, \geq, \mathsf{na}\} "< 1000", "\geq 1000" and "< 1000\in or \geq 1000\in" (na)
```

Already existing approaches

- Still common to enforce precise results
 - ⇒ Biased results:

- Variety of set-valued approaches
 - via random sets (e.g. Nguyen, 2006)
 - via likelihood-based belief function (Denœux, 2014)

- using Bayesian approaches (de Cooman, Zaffalon, 2004)
- via profile likelihood (Cattaneo, Wiencierz, 2012)

Here: Likelihood-based approach influenced by methodology of partial identification (Manski, 2003) coarse categorical data only

OBSERVABLE

 \mathcal{V} coarse data

$$p_{\mathscr{Y}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{M}}$

Likelihood for parameters $\boldsymbol{p}=(p_1,\ldots,p_{|\Omega_{\mathcal{V}}|-1})^T$ $L(\boldsymbol{p}) \propto \prod_{\mathscr{Y} \in \Omega_{\mathcal{V}}} p_{\mathscr{Y}}^{n_{\mathscr{Y}}}$ is uniquely maximized by

$$\hat{p}_{\mathscr{Y}} = \frac{n_{\mathscr{Y}}}{n}, \qquad \mathscr{Y} \in \{1, \dots, |\Omega_{\mathcal{Y}}| - 1\}$$
and thus $\hat{p}_{|\Omega_{\mathcal{Y}}|} = 1 - \sum_{m=1}^{|\Omega_{\mathcal{Y}}| - 1} \hat{p}_m.$

Observation model Q
error-freeness

coarsening mechanism $q_{\mathcal{Y}|y} = P(\mathcal{Y} = \mathcal{Y}|Y = y)$

LATENT

Y latent variable

Main goal:

Estimation of $\pi_{ij} = P(Y_i = j)$ $\pi_{i1} = \pi_1, \dots, \pi_{iK} = \pi_K$

and the invariance of the likelihood under parameter transformations, i.e.:

$$\hat{\Gamma} = \{ oldsymbol{\gamma} \mid \Phi(oldsymbol{\gamma}) = \hat{oldsymbol{p}} \}$$

$$\begin{split} \hat{\pi}_y &\in \left[\frac{n_{\{y\}}}{n}, \, \frac{\sum_{\mathscr{Y} \ni y} n_{\mathscr{Y}}}{n}\right] \\ \hat{q}_{\mathscr{Y}|y} &\in \left[0, \, \frac{n_{\mathscr{Y}}}{n_{\{y\}} + n_{\mathscr{Y}}}\right] \end{split}$$

 $\gamma = (q_{w|u}^T, \pi_u^T)^T$

OBSERVABLE

 \mathcal{Y} coarse data

$$p_{\mathscr{Y}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{Y}}$

$$\begin{split} \text{Likelihood for parameters } \boldsymbol{p} &= (p_1, \dots, p_{|\Omega_{\mathcal{Y}}|-1})^T \\ L(\boldsymbol{p}) &\propto &\prod_{\mathscr{Y} \in \Omega_{\mathcal{Y}}} p_{\mathscr{Y}}^{n_{\mathscr{Y}}} \text{is } \textit{uniquely } \text{maximized by} \\ &\hat{p}_{\mathscr{Y}} = \frac{n_{\mathscr{Y}}}{n_r}, \qquad \mathscr{Y} \in \{1, \dots, |\Omega_{\mathcal{Y}}|-1\} \end{split}$$

and thus $\hat{p}_{|\Omega_{\mathcal{V}}|} = 1 - \sum_{m=1}^{|\Omega_{\mathcal{V}}|-1} \hat{p}_m$.

OBSERVABLE

 \mathcal{Y} coarse data

$$p_{\mathscr{Y}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{Y}}$

Likelihood for parameters $p = (p_1, \dots, p_{|\Omega_Y|-1})^T$ $L(p) \propto \prod_{\emptyset' \in \Omega_Y} p_{\emptyset'}^{n_{\emptyset'}}$ is uniquely maximized by

$$\hat{p}_{\mathscr{Y}} = \frac{n_{\mathscr{Y}}}{n}, \qquad \mathscr{Y} \in \{1, \dots, |\Omega_{\mathcal{Y}}| - 1\}$$
and thus $\hat{p}_{|\Omega_{\mathcal{Y}}|} = 1 - \sum_{m=1}^{|\Omega_{\mathcal{Y}}| - 1} \hat{p}_m.$

and the invariance of the likelihood under parameter transformations, i.e.:

$$\hat{\Gamma} = \{ \boldsymbol{\gamma} \mid \Phi(\boldsymbol{\gamma}) = \hat{\boldsymbol{p}} \}$$

$$\begin{split} \hat{\pi}_y &\in \left[\frac{n_{\{y\}}}{n}, \ \frac{\sum_{\mathcal{Y} \ni y} n_{\mathcal{Y}}}{n}\right] \\ \hat{q}_{\mathcal{Y}|y} &\in \left[0, \ \frac{n_{\mathcal{Y}}}{n_{\{y\}} + n_{\mathcal{Y}}}\right] \end{split}$$

OBSERVABLE

V coarse data

$$p_{\mathscr{Y}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{Y}}$

Likelihood for parameters $\boldsymbol{p} = (p_1, \dots, p_{|\Omega_{\mathcal{Y}}|-1})^T$ $L(\boldsymbol{p}) \propto \prod_{\mathscr{Y} \in \Omega_{\mathcal{Y}}} p_{\mathscr{Y}}^{n_{\mathscr{Y}}}$ is uniquely maximized by

$$\hat{p}_{\mathscr{Y}} = \frac{n_{\mathscr{Y}}}{n},$$
 $\mathscr{Y} \in \{1, \dots, |\Omega_{\mathcal{Y}}| - 1\}$ and thus $\hat{p}_{|\Omega_{\mathcal{Y}}|} = 1 - \sum_{m=1}^{|\Omega_{\mathcal{Y}}| - 1} \hat{p}_m.$

Observation model Q error-freeness

coarsening mechanism $q_{\mathscr{Y}|y} = P(\mathcal{Y} = \mathscr{Y}|Y = y)$

LATENT

Y latent variable

$\frac{\text{Main goal:}}{\text{Estimation of } \pi_{ij} = P(Y_i = j)}$

Use the connection between p and γ

and the **invariance of the likelihood** under parameter transformations, i.e.:

$$\hat{\Gamma} = \{ oldsymbol{\gamma} \mid \Phi(oldsymbol{\gamma}) = \hat{oldsymbol{p}} \}$$

Estimation of $\pi_{ij} = P(Y_i = j)$ $\pi_{i1} = \pi_1, ..., \pi_{iK} = \pi_K$

 $\gamma = (\boldsymbol{q}_{w|u}^T, \ \boldsymbol{\pi}_{u}^T)^T$

$$\begin{split} \hat{\pi}_y &\in \left[\frac{n_{\{y\}}}{n}, \ \frac{\sum_{\mathscr{Y}\ni_y} n_{\mathscr{Y}}}{n}\right] \\ \hat{q}_{\mathscr{Y}|y} &\in \left[0, \frac{n_{\mathscr{Y}}}{n_{\{y\}} + n_{\mathscr{Y}}}\right] \end{split}$$

OBSERVABLE

V coarse data

$$p_{\mathscr{X}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{Y}}$

Likelihood for parameters $\boldsymbol{p} = (p_1, \dots, p_{|\Omega_{\mathcal{Y}}|-1})^T$ $L(\boldsymbol{p}) \propto \prod_{\mathscr{Y} \in \Omega_{\mathcal{Y}}} p_{\mathscr{Y}}^{n_{\mathscr{Y}}}$ is uniquely maximized by

$$\hat{p}_{\mathscr{Y}} = \frac{n_{\mathscr{Y}}}{n},$$
 $\mathscr{Y} \in \{1, \dots, |\Omega_{\mathcal{Y}}| - 1\}$ and thus $\hat{p}_{|\Omega_{\mathcal{Y}}|} = 1 - \sum_{m=1}^{|\Omega_{\mathcal{Y}}| - 1} \hat{p}_m.$

Observation model \mathcal{Q} error-freeness

coarsening mechanism $q_{\mathscr{Y}|y} = P(\mathcal{Y} = \mathscr{Y}|Y = y)$

LATENT

Y latent variable

$\underline{\underline{\text{Main goal:}}}$ Estimation of $\pi_{ij} = P(Y_i = j)$

 $\pi_{i1} = \pi_1, \dots, \pi_{iK} = \pi_K$

Use the connection between p and γ

 $\Phi(\boldsymbol{\gamma}) = \mathbf{p}$

 $\gamma = (oldsymbol{q}_{\mathscr{Y}|oldsymbol{y}}^T, \; oldsymbol{\pi}_{oldsymbol{y}}^T)^T$

and the invariance of the likelihood under parameter transformations, i.e.:

$$\hat{\Gamma} = \{ \boldsymbol{\gamma} \mid \Phi(\boldsymbol{\gamma}) = \hat{\boldsymbol{p}}$$

 $\hat{\pi}_{y} \in \left[\frac{n_{\{y\}}}{n}, \frac{\sum_{\mathscr{Y} \ni y} n_{\mathscr{Y}}}{n}\right]$ $\hat{q}_{\mathscr{Y}|y} \in \left[0, \frac{n_{\mathscr{Y}}}{n_{\{y\}} + n_{\mathscr{Y}}}\right]$

OBSERVABLE

 \mathcal{Y} coarse data

$$p_{\mathscr{Y}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{Y}}$

Likelihood for parameters $\mathbf{p}=(p_1,\ldots,p_{|\Omega_{\mathcal{Y}}|-1})^T$ $L(\mathbf{p}) \propto \prod_{\mathscr{Y} \in \Omega_{\mathcal{Y}}} p_{\mathscr{Y}}^{n\mathscr{Y}}$ is uniquely mixized by $\frac{\hat{p}_{\mathscr{Y}} = \frac{n_{\mathscr{Y}}}{n},}{\mathscr{Y}} = \mathscr{Y} \in \{1,\ldots,|\Omega_{\mathcal{Y}}|-1\}$ and thus $\hat{p}_{|\Omega_{\mathcal{Y}}|} = 1 - \sum_{m=1}^{|\Omega_{\mathcal{Y}}|-1} \hat{p}_m.$

OBSERVABLE

coarse data

$$p_{\mathscr{Y}_i} = P(\mathcal{Y}_i = \mathscr{Y}_i), i = 1, \dots, n$$

Use random-set perspective and determine maximum-likelihood estimator $\hat{p}_{\mathscr{Y}}$

Likelihood for parameters $\mathbf{p} = (p_1, \dots, p_{|\Omega_V|-1})^T$ $L(\mathbf{p}) \propto \prod_{\mathscr{Y} \in \Omega_{\mathcal{V}}} p_{\mathscr{Y}}^{n_{\mathscr{Y}}}$ is uniquely maximized by and thus $\hat{p}_{|\Omega_{V}|} = 1 - \sum_{m=1}^{|\Omega_{V}|-1} \hat{p}_{m}$.

Observation model Qerror-freeness

coarsening mechanism

 $q_{\mathcal{Y}|y} = P(\mathcal{Y} = \mathcal{Y}|Y = y)$

LATENT

Y latent variable

Main goal:

Estimation of $\pi_{ij} = P(Y_i = j)$ $\pi_{i1} = \pi_1, \dots, \pi_{iK} = \pi_K$

and the invariance of the likelihood under parameter transformations, i.e.:

$$\hat{\Gamma} = \{ \boldsymbol{\gamma} \mid \Phi(\boldsymbol{\gamma}) = \hat{\boldsymbol{p}} \}$$

 $\hat{\pi}_y \in \left[\frac{n_{\{y\}}}{n}, \frac{\sum_{\mathcal{Y}\ni y} n_{\mathcal{Y}}}{n}\right]$ $\hat{q}_{\mathcal{Y}|y} \in \left[0, \frac{n_{\mathcal{Y}}}{n_{(w)} + n_{\mathcal{Y}}}\right]$

 $oldsymbol{\gamma} = (oldsymbol{q}_{w|oldsymbol{u}}^T, \ oldsymbol{\pi}_{oldsymbol{y}}^T)^T$

Illustration (PASS data) $n_{<} = 238, n_{>} = 835, n_{na} = 338$ $\hat{\pi}_{<} \in \left[\frac{238}{1411}, \frac{238+338}{1411}\right]$

Reliable incorporation of auxiliary information

Starting from point-identifying assumptions, we use sensitivity parameters to allow inclusion of partial knowledge.

Assumption about exact value

of
$$R = \frac{q_{na|\geq}}{q_{na|<}}$$
 (Nordheim, 1984):
e.g. \mathcal{Q} specified by $R=1$, $R=4$ where $R=1$ corresponds to CAR (Heitjan, Rubin, 1991).

Reliable incorporation of auxiliary information

Starting from point-identifying assumptions, we use sensitivity parameters to allow inclusion of partial knowledge.

Assumption about exact value

of
$$R = \frac{q_{na|\geq}}{q_{na|<}}$$
 (Nordheim, 1984):

e.g. Q specified by R=1, R=4 where R=1 corresponds to CAR

(Heitjan, Rubin, 1991).

Rough evaluation of R:

e.g. $\mathcal Q$ specified by $\mathsf{R} \le 1$: low income group has a higher tendency to report "na"

Summary and outlook

- ullet Via the observation model ${\cal Q}$ maximum-likelihood estimators referring to the latent variable may be obtained for both cases
 - ... the homogeneous case
 - ... the case with categorical covariates (cf. poster)
- \bullet Proper inclusion of auxiliary information via further restrictions on $\mathcal Q$

Next steps:

- Inclusion of auxiliary information via sets of priors
- Likelihood-based hypothesis tests and uncertainty regions for coarse categorical data
- Consideration of other "deficiency" processes

References

- Couso, I., Dubois, D., Sánchez, L.
 Random Sets and Random Fuzzy Sets as III-Perceived Random Variables, Springer, 2014.
- Heitjan, D., Rubin, D. Ignorability and Coarse Data, Annals of Statistics, 1991.
- Manski, C. Partial Identification of Probability Distributions, Springer, 2003.
- E. Nordheim. Inference from nonrandomly missing categorical data:An example from a genetic study on Turner's syndrome, J. Am. Stat. Assoc., 1984.
- Vansteelandt, S., Goetghebeur, E., Kenward, M., Molenberghs, G. Ignorance and uncertainty regions as inferential tools in a sensitivity analysis, Stat. Sin., 2006.