تمرین سری ششم کارگاه حل تمرین ریاضی ۱ نیمسال اول ۹۹–۹۸

انجمن علمی دانشکدهی علوم ریاضی آبان ۱۳۹۸

۱. در مورد هر یک از توابع زیر تحقیق کنید که در نقطهی صفر مشتق پذیر است یا خیر.

$$f(x) = x|\sin x| \ \tilde{(1)}$$

$$g(x) = |x| \sin x \ (\mathbf{y})$$

$$h(x) = \begin{cases} \circ & x = \circ \\ x \sin \frac{1}{x} & x \neq \circ \end{cases} (z)$$

$$k(x) = \begin{cases} \circ & x = \circ \\ x^{\mathsf{Y}} \sin \frac{1}{x} & x \neq \circ \end{cases}$$
 (5)

را در نظر بگیرید. $f:\mathbb{R} \to \mathbb{R}$ تابع

ست. اگر f'(a) در a مشتق پذیر باشد، حد زیر موجود و برابر با f'(a) است.

$$\lim_{h \to \circ} \frac{f(a+h) - f(a-h)}{\mathsf{Y}h}$$

(ب) نشان دهید که اگر این حد وجود داشته باشد، لزومی ندارد که تابع f در نقطه ی a مشتق پذیر باشد.

(ج) قرض کنید F(h,k) عبارتی بر حسب دو متغیر h و k باشد. منظور از

$$\lim_{h,k\to^{\circ^+}} F(h,k) = L$$

$$\lim_{h,k\to^{+}} \frac{f(a+h) - f(a-k)}{h+k}$$

(د) فرض کنید h < k < 0 نشان دهید که اگر f در نقطه ی a مشتق پذیر باشد لزومی ندارد که حد زیر وجود داشته باشد.

$$\lim_{h,k\to^{+}} \frac{f(a+k) - f(a+h)}{k-h}$$

(از تابع قسمت (د) سوال قبل استفاده نمایید.)

- ۳. فرض کنید $f:\mathbb{R} \to \mathbb{R}$ تابعی مشتقپذیر است و f(0)>0، f(0)=0، از میلا تابعی مشتقپذیر است و f(0)>0 و از f(0)>0 و از f(0)>0 دهید معادلهی f'(0)>0 د دو ریشه معادلهی مشتقپذیر است کم دو ریشه معادله و نشان دهید
- ۴. ثابت کنید که اگر f در $f(\cdot)=1$ پیوسته، مشتق پذیر و ناصفر باشد و داشته باشیم $f(\circ)=1$ و $f(\circ)=1$. آنگاه معادله ی f'(x)=f'(x)=1 در f'(x)=1 در f'(x)=1 در ارد.
- و $f(\circ)=\circ$ فرض کنید \mathbb{R} فرض کنید $f:[\circ,1]\to\mathbb{R}$ تابعی پیوسته باشد که در هر نقطه ی از $f:[\circ,1]\to\mathbb{R}$ مشتق پذیر باشد. اگر $f:[\circ,1]\to\mathbb{R}$ فرض کنید نقاط $f:[\circ,1]\to\mathbb{R}$ تابت کنید نقاط $f:[\circ,1]\to\mathbb{R}$ تابت کنید نقاط $f:[\circ,1]\to\mathbb{R}$ تابت کنید نقاط $f:[\circ,1]\to\mathbb{R}$

$$\frac{1}{f'(x_1)} + \frac{1}{f'(x_1)} + \dots + \frac{1}{f'(x_n)} = n$$

- $x=\sqrt{\ln 7}$ محصور به معور x و معدود به دو خط $x=\sqrt{\ln 7}$ ، محصور به معور $x=\sqrt{\ln 7}$. سطح زیر منحنی تابع $x=\sqrt{\ln 7}$ با ضابطه ی و با نصاب کنید. $x=\sqrt{\ln 7}$ دا حول معور $x=\sqrt{\ln 7}$ معور $x=\sqrt{\ln 7}$ دا حول معور $x=\sqrt{\ln 7}$ دوران می دهیم.
- ۷. گربهای وسط نردبانی به طول ۴ متر که به درختی تکیه داده شده است، نشسته است. فردی پایهی نردبان روی سطح زمین را با سرعت ۱ متر بر ثانیه از درخت دور میکند و گربه با سرعت نیم متر بر ثانیه شروع به بالا رفتن از نردبان میکند. بیشترین ارتفاع گربه از سطح زمین را در هر یک از حالات زیر محاسبه کنید.
 - (آ) اگر در شروع فاصلهی پایهی نردبان از درخت برابر ۲ متر باشد.
 - (ب) اگر در شروع فاصلهی پایهی نردبان از درخت برابر ۲.۵ متر باشد.
 - داریم: $a,b\in [-1,1]$ نشان دهید برای $f(x)=x^{arphi}-x^{arphi}-x$ داریم: ۸.

$$|f(a) - f(b)| \le 1/4\Delta |a - b|$$

 $x\in\mathbb{R}$ فرض کنید $\mathbb{R} o\mathbb{R}$ تابعی پیوسته و تناوبی با دوره تناوب $f:\mathbb{R} o\mathbb{R}$ است. یعنی برای هر

$$f(x + \mathbf{T}\pi) = f(x)$$

- $f(a+\pi)=f(a)$ نشان دهید $a\in\mathbb{R}$ وجود دارد که (آ)
- (ب) اگر f مشتقپذیر باشد نشان دهید f' در هر بازه ی بسته به طول τ دست کم دو بار صفر می شود.

$$f(a+h) < g(a+h)$$

- ۱۱. متحرکی روی دایره ی $x^{\mathsf{r}}+y^{\mathsf{r}}=R^{\mathsf{r}}$ با سرعت زاویه ای ثابت ω رادیان بر ثانیه در جهت مثلثاتی گردش می نماید. $\frac{\mathrm{d}D}{\mathrm{d}t}$ با سرعت زاویه ای ثابت در زمان t را با t نمایش می دهیم. t نمایش می دهیم. t وقتی متحرک در نقطه یt را با t را با t را با t نمایش می دهیم. وقتی متحرک در نقطه یt را با t را با را
- در شرایط زیر صدق $x\in\mathbb{R}$ مفروضند به طوری که برای هر $x\in\mathbb{R}$ در شرایط زیر صدق $g:\mathbb{R}\to\mathbb{R}$ و $f:\mathbb{R}\to\mathbb{R}$ در شرایط زیر صدق میکنند.

$$(*) \begin{cases} f'(x) = g(x) \mathfrak{g} g' = -f(x) \\ f(\circ) = \mathfrak{g} g(\circ) = 1 \end{cases}$$

- $f^{\mathsf{T}}(x)+g^{\mathsf{T}}(x)=\mathsf{N}$ داریم $x\in\mathbb{R}$ داریم کنید که برای هر
- $(x\in\mathbb{R}$ هر g_\circ و g_\circ و تابع دلخواه باشند که در روابط g_\circ صدق میکند. ثابت کنید برای هر $g_\circ(x)=g_\circ(x)=f_\circ(x)=f(x)$
- ۱۳. فرض کنید $[\circ,1] \to [\circ,1] \to [\circ,1]$ یک تابع پیوسته باشد به طوری که روی $x \in (\circ,1) \to [\circ,1]$ مشتق پذیر باشد و همچنین عدد $x \in (\circ,1)$. برای هر $x \in (\circ,1)$. برای هر $x \in (\circ,1)$
 - روی $[\circ, 1]$ دارای جوابی یکتا مانند s است. (آ) ثابت کنید معادلهی f(x) = x روی (آ)
 - (ب) نقطه ی دلخواه $a \in [0, 1]$ را در نظر بگیرید. دنباله ی میکنیم: $a \in [0, 1]$ را به صورت زیر تعریف میکنیم:

$$x_{\circ} = a$$
 و $x_{1} = f(x)$ و $x_{n+1} = f(x_{n})$

ثابت کنید دنبالهی $\sum_{n=0}^{\infty} \{x_n\}_{n=0}^{\infty}$ به s همگراست.

- ۱۴. فرض کنید I یک بازه ی باز و $\mathbb{R} \to \mathbb{R}$ تابعی مشتق پذیر با مشتق پیوسته باشد و $I \to x_\circ$ و جود داشته باشد که $I \to x_\circ$ نشان دهید بازه ی باز مانند $I \to x_\circ$ و بازه ی بازه ی بازه و بازه ی با
 - $f(x) \geq f(x)$ ، $x \in \mathbb{R}$ هر $f(\circ) = f(x)$ و جود دارد که $f(\circ) = f(x)$ و برای هر $f(x) \geq f(x)$ هر $f(x) \geq f(x)$ و برای هر $f(x) \geq f(x)$ هر $f(x) \geq f(x)$ هر $f(x) \geq f(x)$ و برای هر $f(x) \geq f(x)$
- ال فرض کنید $\mathbb{R} \to \mathbb{R}$ تابعی مشتقپذیر باشد که $f(\circ)=\circ$ و برای هر f(x)=f(x) . ثابت کنید $f(x)=\circ$. $f(x)=\circ$ ، $f(x)=\circ$.
- ۱۷. فرض کنید تمام مشتقات تابع $\mathbb{R} \to [\circ, 1] \to f: [\circ, 1] \to f: [\circ, 1]$ ثابت کنید یا $x \in (\circ, 1)$ و $x \in (\circ, 1)$ ناصفر و همعلامتند یا $x \in (\circ, 1)$ تابعی ثابت است.
- در $x\in (\circ,1)$ مشتقپذیر است. و برای هر $f:[\circ,1]\to \mathbb{R}$ در فرض کنید $f:[\circ,1]\to \mathbb{R}$ تابعی پیوسته باشد که روی $f:[\circ,1]\to \mathbb{R}$ نابت کنید $f:[\circ,1]\to \mathbb{R}$ در شرط $f:[\circ,1]\to \mathbb{R}$ تابع ثابت صدق میکند. اگر $f:[\circ,1]\to \mathbb{R}$ ثابت کنید $f:[\circ,1]\to \mathbb{R}$ در نابع ثابت صدق میکند. اگر $f:[\circ,1]\to \mathbb{R}$
 - و د $c > \circ$ و نان باشد که $f: \mathbb{R} \to \mathbb{R}$ و نان باشد که .۱۹

$$\forall x, y \in \mathbb{R}: |f(x) - f(y)| \le c|x - y|$$

اگر برای هر f تابعی مشتقپذیر است. $\lim_{n \to \infty} (f(x + \frac{1}{n}) - f(x)) = \circ$ ، $x \in \mathbb{R}$ اگر برای هر