Speaker Verification Hung-yi Lee 李宏毅

Some slides are from 袁培傑

One slide for this course

Related Tasks

We only focus on speaker verification today.

Outline

Task Introduction

Speaker Embedding

End-to-end

- Speaker Recognition / Identification
 - 語者識別
 - 一段語音是誰所說的
- Speaker Verification
 - 語者驗證
 - 兩段語音是否為同一人所說
- Speaker Diarization
 - 語者分段標記
 - 在一段語音中, 誰在何時說話

- Speaker Recognition / Identification
 - 語者識別
 - 一段語音是誰所說的

A multi-class classification problem

- Speaker Recognition / Identification
 - 語者識別
 - 一段語音是誰所說的
- Speaker Verification
 - 語者驗證
 - 兩段語音是否為同一人所說

Speaker Verification

Application: 銀行客服

Equal Error Rate (EER)

threshold 1.0 TP FP 0 0 FN TN 100 100

threshold

0.4

FP

52

TN

48

TP

78

FN

22

threshold	
0.8	
TP	FP
30	23
FN	TN
70	77

threshold 0.2		
TP	FP	
84	76	
FN	TN	
16	24	

threshold 0.0		
TP	FP	
100	100	
FN	TN	
0	0	

threshold

0.6

FP

34

TN

67

TP

50

FN

50

False Negative (FN) Rate

同一語者被判斷成 不同語者

False Positive (FP) Rate

不同語者被判斷成同一語者

- Speaker Recognition / Identification
 - 語者識別
 - 一段語音是誰所說的
- Speaker Verification
 - 語者驗證
 - 兩段語音是否為同一人所說
- Speaker Diarization
 - 語者分段標記
 - 在一段語音中,誰在何時說話

diarize: to write down your future arrangements, meetings, etc. in a diary

Speaker Diarization

Record of meeting, record of telephone conversion, etc.

Step 1: Segmentation

Step 2: Clustering

The number of speakers can be known or unknown.

- Speaker Recognition / Identification
 - 語者識別
 - 一段語音是誰所說的
- Speaker Verification
 - 語者驗證
 - 兩段語音是否為同一人所說
- Speaker Diarization
 - 語者分段標記
 - 在一段語音中,誰在何時說話

Outline

Task Introduction

Speaker Embedding

End-to-end

Metric-based meta learning

https://youtu.be/yyKaACh_j3M

Framework

The speakers in stages 2 and 3 are not seen in stage 1.

Stage 1: Development

- Google's Dataset (private) [Wan, et al., ICASSP'18]
 - 36M utterances, 18000 speakers
- VoxCeleb [Nagrani, et al., INTERSPEECH'17]
 - 0.15M utterances, 1251 speakers
- VoxCeleb2 [Chung, et al., INTERSPEECH'18]
 - 1.12M utterances, 6112 speakers

i-vector

"i" means "identity"

Source of image: https://www.slideshare.net/xavigiro/speaker-id-d3l3-deep-learning-for-speech-and-language-upc-2017

d-vector and i-vector are only comparable

Attention Mechanism

[Chowdhury, et al., ICASSP'18]

NetVLAD

[Xie, et al., ICASSP'19]

VLAD = Vector of Locally Aggregated Descriptors

Outline

Task Introduction

Speaker Embedding

End-to-end

End-to-end

Can we jointly learn speaker embedding and similarity computation?

K Enrollment Utterances

Positive Examples:

Also refer to generalized end-to-end (GE2E) [Wan, et al., ICASSP'18]

End-to-end

[Heigold, et al., ICASSP'16]

Table 1: Data set statistics. #utts / spk #utterances #speakers (#augmented) train 2M >500 2M (9M) 4k 22M (73M) train_22M 80k >150enrollment 18k 3k 1-9 evaluation 20k 3k 3-5

End-to-end

Text-dependent v.s. Text-independent

[Heigold, et al., ICASSP'16]

Text-independent

Discriminator —

► text

[Yun, et al., INTERSEECH'19]

Concluding Remarks

Task Introduction

Speaker Embedding

End-to-end

Reference

- [Variani, et al., ICASSP'14] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, Javier Gonzalez-Dominguez, Deep neural networks for small footprint text-dependent speaker verification, ICASSP, 2014
- [Heigold, et al., ICASSP'16] Georg Heigold, Ignacio Moreno, Samy Bengio, Noam Shazeer, End-to-End Text-Dependent Speaker Verification, ICASSP, 2016
- [Snyder, et al., ICASSP'18] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, Sanjeev Khudanpur, X-Vectors: Robust DNN Embeddings for Speaker Recognition, ICASSP, 2018
- [Wan, et al., ICASSP'18] Li Wan, Quan Wang, Alan Papir, Ignacio Lopez Moreno, Generalized End-to-End Loss for Speaker Verification, ICASSP, 2018
- [Yun, et al., INTERSEECH'19] Sungrack Yun, Janghoon Cho, Jungyun Eum, Wonil Chang, Kyuwoong Hwang, An End-to-End Text-independent Speaker Verification Framework with a Keyword Adversarial Network, INTERSPEECH, 2019

Reference

- [Nagrani, et al., INTERSPEECH'17] Arsha Nagrani, Joon Son Chung, Andrew Zisserman, VoxCeleb: a large-scale speaker identification dataset, INTERSPEECH, 2017.
- [Chung, et al., INTERSPEECH'18] Joon Son Chung, Arsha Nagrani, Andrew Zisserman, VoxCeleb2: Deep Speaker Recognition, INTERSPEECH, 2018
- [Xie, et al., ICASSP'19] Weidi Xie, Arsha Nagrani, Joon Son Chung, Andrew Zisserman, Utterance-level Aggregation For Speaker Recognition In The Wild, ICASSP, 2019
- [Chowdhury, et al., ICASSP'18] F A Rezaur Rahman Chowdhury, Quan Wang, Ignacio Lopez Moreno, Li Wan, Attention-Based Models for Text-Dependent Speaker Verification, ICASSP, 2018