My Projects / Machine_Learning_Capstone / Final_Machine_Learning_Assign... **①** 0 믦 8 **▶**0 ∨ ♨ Out[171]: 0.8 In [172]: from sklearn.metrics import classification report, confusion matrix

```
import itertools
def plot_confusion_matrix(cm, classes,
                            normalize=False.
                            title='Confusion matrix',
                            cmap=plt.cm.Blues):
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')
    print(cm)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
\verb|print(confusion_matrix(y_test, yhat_test2, labels=['PAIDOFF', 'COLLECTION'])||
[[55 3]
[11 1]]
```

In [173]: # Compute confusion matrix $\verb|cnf_matrix| = \verb|confusion_matrix| (y_test, yhat_test2, labels=['PAIDOFF', 'COLLECTION'])| \\$ np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=['loan_status=PAIDOFF','loan_status=COLLECTION'],normalize= False, title='Confusion matr ix')

Confusion matrix, without normalization [[55 3] [11 1]]

In [174]: print (classification_report(y_test, yhat_test2))

	precision	recall	f1-score	support
COLLECTION	0.25	0.08	0.12	12
PAIDOFF	0.83	0.95	0.89	58
micro avg	0.80	0.80	0.80	70
macro avg	0.54	0.52	0.51	70
weighted avg	0.73	0.80	0.76	70

Report

You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm	Jaccard	F1-score	LogLoss
IZNINI	0	0	NIA