Certamen No. 1 MAT-269 Análisis Multivariado

Profesor: Felipe Osorio. 28 de abril de 2011.

1. (20 puntos) Considere el estadístico

$$T = \sum_{i=1}^{m} \frac{(nX_i - n\mu_i)^2}{n\mu_i},$$

donde n es un entero positivo, $\mathbf{X} = (X_1, \dots, X_m)^T$ es un vector aleatorio tal que $\mathbf{E}(\mathbf{X}) = \boldsymbol{\mu}$, $\mathbf{Cov}(\mathbf{X}) = \boldsymbol{\Omega}$, con $\boldsymbol{\Omega} = \boldsymbol{\Delta} - \boldsymbol{\mu}\boldsymbol{\mu}^T$ y $\boldsymbol{\Delta} = \mathrm{diag}(\mu_1, \dots, \mu_m)$ tal que las constantes no negativas μ_i s satisfacen $\mu_1 + \dots + \mu_m = 1$.

- (a) Muestre que Ω es una matriz singular.
- (b) Muestre que si $\sqrt{n}(X \mu) \sim \mathcal{N}_m(\mathbf{0}, \Omega)$, entonces $T \sim \chi^2_{m-1}$.
- 2. (20 puntos) Si $\mathbf{A} \sim W_m(n, \mathbf{\Sigma})$, donde n > m-1 y $\mathbf{\Sigma} > 0$. Muestre que el estimador máximo verosímil de $\mathbf{\Sigma}$ es $\frac{1}{n}\mathbf{A}$.

Sugerencia: Recuerde que la densidad de una matriz \boldsymbol{A} con distribución $W_m(n, \boldsymbol{\Sigma})$, está dada por

$$f(\boldsymbol{A}) = \frac{1}{2^{mn} \, \Gamma_m(n/2)} \, |\boldsymbol{\Sigma}|^{-n/2} \exp\{-\frac{1}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}\} \, |\boldsymbol{A}|^{(n-m-1)/2}.$$

3. (30 puntos) Sea X una matriz aleatoria $n \times m$ y P una matriz $n \times n$ simétrica e idempotente de rango $k \ge m$. Si $X \sim \mathcal{N}(\mathbf{0}, I_n \otimes \Sigma)$, muestre que $X^T P X \sim W_m(k, \Sigma)$.

Sugerencia: Note que, si P es simétrica e idempotente, entonces existe una matriz M tal que $P = MM^T$ y $M^TM = I_k$.

- 4. (30 puntos) Sea X_1, \ldots, X_n muestra aleatoria desde $\mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ independiente de Y_1, \ldots, Y_n muestra aleatoria desde $\mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$, donde $\boldsymbol{\Sigma}_1$ y $\boldsymbol{\Sigma}_2$ son desconocidas y designales. Considere la hipótesis $H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$ contra la alternativa $H_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$.
 - (a) Haga $Z_i = X_i Y_i$, de modo que Z_1, \ldots, Z_n son vectores aleatorios independientes $\mathcal{N}_p(\mu_1 \mu_2, \Sigma_1 + \Sigma_2)$. A partir de Z_1, \ldots, Z_n contruya un estadístico T^2 apropiado para probar H_0 . Indique la distribución de T^2 .
 - (b) Suponga $\Sigma_1 = k\Sigma_2$ con k conocido. Derive un estadístico T^2 de Hotelling para probar H_0 .