第七章练习题 7.11

按照书P261,公式7.56构造求积公式如下

$$\int_{-1}^{1} f(x) dx = \frac{5}{9} f(-\frac{\sqrt{15}}{5}) + \frac{8}{9} f(0) + \frac{5}{9} f(\frac{\sqrt{15}}{5})$$
 (1)

7.12

按照书P261,公式7.55构造求积公式如下

$$\int_{-1}^{1} f(x) dx = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$
 (2)

其中

$$f(x) = \sqrt{1+2x}$$

第八章练习题

8.1			
X	1.0	2.0	3.0
f(x)	0.2500	0.2268	0.2066

构造二次插值多项式 $P_2(x)$ 作为f(x)的近似

$$P_2(x) = \frac{(x-x_1)(x-x_2)}{2h^2}f(x_0) - \frac{(x-x_0)(x-x_2)}{h^2} + \frac{(x-x_0)(x-x_1)}{2h^2}$$

代入表格,数据,得

$$P_2(x) = \frac{1}{0.1^2} (\frac{0.2500(x-1.1)(x-1.2)}{2} - \frac{0.2268(x-1.0)(x-1.2)}{1} + \frac{0.2066(x-1.0)(x-1.1)}{2})$$

$$P_2(x) = 0.001250(x-1.1)(x-1.2) - 0.002268(x-1.0)(x-1.2) + 0.001033(x-1.0)(x-1.1)$$
 化简有

$$P_2(x) = \frac{150 x^2 - 547 x + 647}{10} \tag{3}$$

从而

$$f'(0.6) = -3.6700405 \times 10^{-5} del(0.6)$$
(4)

利用课本P275公式8.10

$$2hf'(1.0) = -0.0494$$

$$2hf'(1.1) = -0.0433$$

$$2hf'(1.2) = -0.0373$$

从而

$$hf'(1.0) = -0.247$$

$$hf'(1.1) = -0.216$$

$$hf'(1.2) = -0.186$$

8.2 利用下表, 求x = 0.6处的导数.

X	0.4	0.5	0.6	0.7	0.8			
f(x)	1.5836494	1.7974426	2.0442376	2.3275054	2.6510818			
利用课本P275公式8.14, 有								

12hf'(0.4) = 2.380297

12hf'(0.5) = 2.756952

12hf'(0.6) = 3.173070

12hf'(0.7) = 3.633028

12hf'(0.8) = 20.297579

从而

$$f'(0.4) = 1.983580$$

f'(0.5) = 2.297460

f'(0.6) = 2.644225

f'(0.7) = 3.027523

f'(0.8) = 16.914649

第九章练习题

9.1 在区间[0, 1]上使用欧拉法解下列初值问题, 取步长h=0.1, 保留到小数点后4位.

$$\begin{cases} y' = \sin x + e^{-x} \\ y(0) = 0 \end{cases}$$

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
У	0	0.1000	0.2005	0.3022	0.4058	0.5118	0.6204	0.7318	0.8458	0.9625	1.0815

$$\Big\{y' = -yy(0) = 2$$

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
У	2.0000	1.8000	1.6200	1.4580	1.3122	1.1810	1.0629	0.9566	0.8609	0.7748	0.6974

9.2 在区间[0, 1]上用欧拉方法, 改进的欧拉方法和梯形法解初值问题, 取步长为h=0.1, 精确到小数点后4位, 并比较三种算法结果的误差.

9.3 用四阶RungeKuttaEuler法求解初值问题, h=0.1精确到小数点后4位.

$$\begin{cases} y' = y^2 e^{-x} \\ y(1) = 1, x \in [1, 2] \end{cases}$$

X		1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
У	1.0000	1.0363	1.0714	1.1054	1.1380	1.1692	1.1990	1.2273	1.2540	1.2793 1.	3030
X	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
y	1.0000	1.2401	1.5873	2.1032	2.8979	4.1785	6.3577	10.3105	18.0306	34.4383	72.81

9.6 用欧拉方法和预估-校正方法求解初值问题

$$\begin{cases} y' = x + y \\ y(0) = 0, x \in [0, 1] \end{cases}$$
 (5)

h=0.1,精确到小数点后5位,并与精确解 $y=-x-1+2e^x$ 相比较

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
y_{Euler}	0	0	0.01	0.03100	0.06410	0.11051	0.17156	0.24872	0.34359	0
y	oiv									
精确值	1.00000	1.11034	1.24281	1.39972	1.58365	1.79744	2.04424	2.32751	2.65108	3