

最大概率汉语切分 &命名实体识别

王小捷 智能科学与技术中心 北京邮电大学

■N-gram语言模型包含了语言知识,如何用?

- ■词预测、句子概率计算
- ■更复杂的任务

■用于汉语切分:消除汉语切分的某些歧义

■用于信息检索: 消除检索中的某些歧义

■用于机器翻译: 获得更好的翻译结果

基于N-gram的汉语切分-解决什么问题

- ■切分歧义:汉字字串C有多种可能的切分方案,每种方案 可以产生一个句子,问题是:那个切分较好?
- ■例如: C=他们有意见分歧
 - ■C1=他们/有意/见/分歧
 - ■C2=他们/有/意见/分歧

基于N-gram的汉语切分-基本想法

- ■1)计算每个可能的句子的概率
- ■2)选择概率最大的那个作为切分结果
- ■上例中,采用bigram分别计算两个句子概率
 - ■P(C1)=P(他们/s)P(有意/他们)P(见/有意)P(分歧/见)=0.00018
 - ■P(C2)= P(他们/s)P(有/他们)P(意见/有)P(分歧/意见)=0.00065
- ■C2的概率最大,选择C2作为切分结果
- ■因此成为最大概率 (MP:Maximum Probability)模型

- ■问题:复杂一点的句子
 - ■等部长发现他们有意见分歧
 - ■幸运:交集字段为2的基本(>98%)是AB/CD

- P(C1)=P(等/s)P(部长/等)P(发现/部长)P(他们/发现)P(有意/他们)P(见/有意)P(分歧/见)
- P(C2)= P(等/s)P(部长/等)P(发现/部长)P(他们/发现)P(有/他们)P(意见/有)P(分歧/意见)
- ■重复计算

- ■问题:复杂一点的句子
 - ■等到部长发现他们有意见分歧

- P(C1)=P(等到/s)P(部长/等到)P(发现/部长)P(他们/发现)P(有/他们)P(意见/有)P(分歧/意见)
- P(C2)=P(等到/s)P(部长/等到)P(发现/部长)P(他们/发现)P(有意/他们)P(见/有意)P(分歧/见)
- P(C3)=P(等/s)P(到/等)P(部长/到)P(发现/部长)P(他们/发现)P(有/他们)P(意见/有)P(分歧/意见)
- P(C4)=P(等/s)P(到/等)P(部长/到)P(发现/部长)P(他们/发现)P(有意/他们)P(见/有意)P(分歧/见)
- ■更多的重复计算

TOSIS AND THE PROPERTY OF THE

- ■问题:再复杂一点
 - ■等*到处长发现*他们<mark>有意见</mark>分歧

- P(C1)=P(等到/s)P(处长/等到)P(发现/处长)P(他们/发现)P(有/他们)P(意见/有)P(分歧/意见)P(End/分歧)=...
- ...
- \blacksquare P(C8)=
- ■更多重复的计算

- ■保持中间某些中间结果避免重复计算:
 - ■中间状态定义
 - ■构建基于中间状态的递推运算
- ■反向寻优

一些术语(以bigram为例)

- ■左邻词(Left adjacent word, LAW)
 - ■w_{i-1} 是w_i 的 LAW
 - ■例子:在"有意见分歧"中
 - ■Case1(无切分歧义时): "意见"的LAW:
 - ■有/意见/分歧
 - "意见"的LAW 就是一个"有"
 - ■Case2(有切分歧义时): LAW of "分歧",:
 - ■有意/见/分歧: "分歧"的LAW 是"见"
 - 有/意见/<mark>分歧:"分歧"的LAW 是"意见"</mark>
 - "见" 和 "意见" 都是 "分歧" 的LAW

一些术语(以bigram为例)

- ■累积概率(Accumulative Probability, AP)
 - $\blacksquare P_a(w_i) = P_a(w_{i-1}) * P(w_i/w_{i-1})$
 - ■w_{i-1} 是 w_i 的LAW
 - ■例子: 有意见分歧
 - ■Casel(unambiguous): P_a(意见)
 - P_a(意见)= P_a(有)*P(<mark>意见</mark>/有), 一个累积概率
 - ■Case2(ambiguous): P_a(分歧)
 - 有意/见/<mark>分歧</mark>: P_a(<mark>分歧from见</mark>)=P_a(见)*P(分歧/见)
 - 有/意见/分歧: P_a(分歧from意见)=P_a(意见)*P(分歧/意见)
 - 有两个LAW,每一个对应一个累积概率值
- ■最大累积概率(Maximum Accumulative Probability, MAP)
 - ■只有一个LAW的就只有一个累积概率, MAP就是它
 - ■有多个LAW的有多个累积概率,最大的那个就是MAP

一些术语(以bigram为例)

- ■最佳左邻词(Best LAW, BLAW)
 - ■在 w_i 的几个LAW中,带来最大累积概率(MAP)的LAW
 - ■例子:
 - ■有意/见/<mark>分歧</mark>: P_a(分歧from见)=P_a(见)*P(分歧/见)
 - ■有/意见/**分**歧: P_a(**分**歧from意见)=P_a(意见)*P(分歧/意见)
 - ■如果 P_a(分歧from意见)>P_a(分歧from见)
 - ■那么"意见"为"分歧"的最佳左邻词

FOSIS AND THE STATE OF THE STAT

算法(动态规划)

- ■状态:每个词的状态包括两部分
 - ■(其最大累积概率(MAP), 其最佳左邻词(BLAW))
- ■状态计算:
 - ■计算每个LAW为该词带来的AP, P_a(w_i)=P_a(w_{i-1})*P(w_i/w_{i-1})
 - ■比较后保留最大累积概率(MAP)
 - ■即: 状态= $max_{w_{i-1}} P_a (w_{i-1}) * P(w_i/w_{i-1})$
 - ■同时可得到该词的最佳(BLAW)
 - $\blacksquare \mathbf{w}^* = argmax_{w_{i-1}} P_a (\mathbf{w}_{i-1})^* P(\mathbf{w}_i/\mathbf{w}_{i-1})$

算法(动态规划)

■初始化:

■对输入串, 获取所有的切分候选词, 构建成切分词网络。开始词s的状态: $(MAP=1, BLAW=\phi)$ 。

■前向:

■从左到右计算每个候选词的状态(最大累积概率),并记录每个词的最佳LAW

■后向:

■从右到左,输出每个词的最佳LAW,即得到切分序列

- ■初始化:
 - ■1、获得词网络

■2、第一个词s的状态

- ■前向计算每个节点的状态
- ■节点:他们

- Pa(他们)=Pa(S)*P(他们/S)=0.2 (假设)
- 因为当前词只有S一个LAW, 无需比较
- 所以它的 MAP=0.2, BLAW=S

- ■前向计算每个节点的状态
- ■类似其他节点:有、意见,有意、见

• 每个词的左邻词都只有一个,类似"他们"获得各个词的状态。

■节点:分歧

- 分歧有两个LAW,分别计算其AP: Pa(分歧from意见)=Pa(意见)*P(分歧/意见)=0.0048 (假设) Pa(分歧from见)=Pa(见)*P(分歧/见)=0.0008 (假设)
- 比较得到: MAP=0.0048, BLAW=意见

- ■前向计算每个节点的状态
- ■节点: End

- 只有一个LAW,计算其AP,即为MAP:
- Pa(End from分歧)=Pa(分歧)*P(End/分歧)=0.00096 (假设)
- 因此: MAP=0.00096, BLAW=分歧

■反向通过BLAW获取切分结果

■MP算法处理能力

■歧义:能依据语言模型处理切分歧义

■交集: 有/意见分歧

■组合:破获一/起盗窃案件

■OOV:

■李子坚走到桌子前面

■语言模型中无数据:包含李子坚的概率均为零

- ■MP算法问题(影响MP性能的因素)
 - ■1、歧义处理能力依赖语言模型
 - ■下页例子

以unigram语言模型为例

- ■交集歧义(Overlap ambiguity)
 - ■这事的确定不下来
 - ■W1= 这/ 事/ 的确/ 定/ 不/ 下来/
 - ■W2= 这/事/的/确定/不/下来/
 - ■当 Pa(定)<Pa(确定)
- ■组合歧义(Combination ambiguity)
 - ■做完作业才能看电视
 - ■W1=做/ 完/ 作业/ 才能/ 看/ 电视/
 - ■W2= 做/ 完/ 作业/ 才/ 能/ 看/ 电视/
 - ■当 Pa(能)<Pa(才能)
- ■N-gram结果直接影响

- ■MP算法问题(影响MP性能的因素)
 - ■1、歧义处理能力依赖语言模型

- ■2、构建所有可能切分的网络: 哪里有歧义, MP 本身不能找出歧义,发现歧义需要其他方法帮助
 - ■<u>有意见</u>分歧时我们<u>举手表</u>决

TOSIS AND THE POPULATION OF TH

■交集歧义的发现

■现象:

- ■交集字段小于2的歧义占总交集歧义的95.41%
- ■交集字段小于3的歧义占总交集歧义的98%
 - ■基于500万新闻语料的统计结果[1]
- ■交集起义的发现:链长为奇数(1,3)的交集歧义
 - ■FMM+ BMM切分结果是不一致的,可以因此侦测到
- ■链长为偶数(2)时
 - ■双向最大匹配切分的结果相同,即双向匹配得到的结果都是正确的,不能发现。
 - ■但是: 98%链长为2的交集歧义字段的正确切分形式是AB/CD [2]。
 - [1]周强. 汉语语料库的短语自动划分和标注研究 [学位论文] 北京:北京大学,2002
- **2020/10/22** [2]闫引堂,周晓强. 交集型歧义字段切分方法研究 情报学报, Vol. 19(6), 2000.12

■组合歧义的发现

- ■[1]在6千万语料: 461词(含非双字词)
- ■[2]基于1998年人民日报得到双字词组合歧义358个,其中分、合样例均大于5的有66个
 - ■不大: 不大爱说话; 不大于2
 - ■正当:正当他进来时;他是正当年
 - ■总会: 总会下设3个分会; 他总会说起这事

...

- [1]侯敏,汉语自动分词中的上下文相关歧义字段(CSAS)研究 [A] 孙茂松 陈群秀《自然语言理解与大规模内容计算》[C] 北京:清华大学出版社2005.7
- [2]秦颖,王小捷,张素香,汉语分词中组合歧义字段的研究,中文信息学报,2007,21(1),...

■完整的基于MP算法的切分

- ■构建切分网络(这部分需要外部方法帮助达成)
- ■MP算法
 - ■前向
 - ■计算累计概率,比较获得每个节点的最大累积概率、并记录带来 最大累积概率的最佳左邻词
 - ■反向
 - ■查找每个词的最佳左邻词,获得切分序列

■基于MP进行汉语切分时利用的知识

- N-gram相邻词间的同现关系
 - 例如: 有意见的话可以提: 2-gram,3-gram...
 - 有\意见\的\话\可以\提
 - 有意\见\的\话\可以\提
- 更多的知识还没有在N-gram模型中体现(问题)
 - 例如:远距离相依信息,
 - 有意见的话你们随时都可以通过各种渠道向各级组织提
 - 后有的动词"提"对于将前面切为"意见"提供了重要信息
 - 怎么能用上这个信息?
- 需要更强大的模型去挖掘和利用更多的知识

■看切分问题的角度分析:

- ■有意见分歧 => 有/意见/分歧
- ■,有,意,见,分,歧,: 每个位置上是分还是不分的决策
- ■每个位置上进行二分类
 - ■例如:有意见的话你们随时都可以通过各种渠道向各级组织提
 - 有0/1意见的话你们随时都可以通过各种渠道向各级组织提
 - 有意0|1见的话你们随时都可以通过各种渠道向各级组织提
- ■将切分问题转化为一系列的二分类问题

■优势:

- ■已有各种有监督分类器: Naïve Bayes、KNN、MaxEnt、DNN...
- ■很多分类器可以使用更多的上下文特征:上例"提"可以作为特征

- ■基于有监督分类算法的切分
 - ■以基于NB为例:

- ■一、监督二分类问题的定义
- 已知 (x_j, y_j) , j = 1, 2, ..., N, $x_j = (x_{j1}, x_{j2}, ... x_{jm})$, x_{ji} 为特征空间的某个特征, $y_j = \{0, 1\}$, 对于任意新的 $x = (x_1, x_2, ... x_m)$, x_i 是相同特征空间的某个特征, 求其y
- ■二、朴素贝叶斯分类器
- $= \operatorname{argmax}_{y_i} p(x|y_j) p(y_j) / p(x) = \operatorname{argmax}_{y_i} p(x|y_j) p(y_j)$
- $= \operatorname{argmax}_{y_j} p(x_1, x_2, ... x_m | y_j) p(y_j)$
- $= \operatorname{argmax}_{y_j} \prod_i p(x_i | y_j) p(y_j)$
- 三、参数估计,如何估计 $p(x_i|y_j)$ 和 $p(y_j)$,基于监督数据的极大似然估计
- $p(x_i|y_j) = \#(x_i, y_j) / \#(y_j), p(y_j) = \#(y_j) / \sum_j y_j$

■ 基于NB分类的切分:

■ 训练样本: (x_i, y_i) , $x_i = (x_{i1}, ... x_{im})$, x_{ii} 为词表W= $\{w_1, ... w_{|V|}\}$ 中的词, $y_i = \{0,1\}$

...

...

■ 参数估计

$$p(w_i|y=1) = \#(w_i, y=1)/\#(y=1),$$

$$p(w_i|y=0) = \#(w_i, y=0)/\#(y=0),$$

$$p(y = 1) = \#(y = 1)/\sum_i y_i, \ p(y = 0) = \#(y = 0)/\sum_i y_i$$

■ 测试:

■ 新的句子,例 "又/一(1|0)起/事故/发生/了"

$$\blacksquare y = \operatorname{argmax}_{y_i} \prod_i p(x_i|y_j) p(y_j)$$

■
$$y = 1$$
: $\prod_i p(x_i|y_j) p(y_j) = p(X|y=1) p(事故|y=1) p(发生|y=1) p(了|y=1) p(y=1)$

■
$$y = 0$$
: $\prod_i p(x_i|y_i) p(y_i) = p(X|y=0)p(事故|y=0)p(发生|y=0)p(了|y=0)p(y=0)$

■ 选择值最大的决策

■前面NB算法里分类的依据只用了一种特征:

- ■单词(unigram)特征
 - 单词"事故"是否在某种样本中出现
- ■更多的可能有用的特征
 - ■单词的位置特征
 - 单词"事故"在某种样本中出现时离目标词的距离
 - ■两个单词的组合(bigram)
 - 单词"事故"和单词"发生"是否在某种样本中同时出现
 - ...
- ■越细粒度的特征区分能力就越强
- ■NB不能利用更多的细粒度特征,更多能利用细粒度特征的分类器
 - ■极大熵分类器(MaxEnt): 例如MaxEnt中的特征函数==>
 - ■支撑向量机(SVM)
 - **...**

■例如: MaxEnt中的特征函数

$$p(y \mid x) = \frac{1}{Z_{\lambda}(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y))$$

■可以直接基于语料来设计细粒度特征

■去/一(1)起/事故现场→
$$f_1(x, y) = \begin{cases} 1 & if(w_{-1} = \pm, w_{+1} = 事故) \\ 0 & else \end{cases}$$

■/**一(0)起/去事故现场→**
$$f_2(x,y) = \begin{cases} 0 & if(w_{+1} = \pm, w_{+2} = \pm) \\ 1 & else \end{cases}$$

- ■人工设计特征,陷入特征工程(设计并研究各种特征的作用)
- ■近年来基于深度学习的表示学习能力,采用深度学习模型自动学习表示(特征)
 - ■向量词表示: 比符号的词表示能提供更多词间相似性信息
 - ■n-gram表示:多个词、句子的表示
 - ■多层次抽象表示:词组、句法?
- ■学习到的表示(特征)可以作为经典分类器的输入
- ■更多的直接用深层神经网络作为分类器,基于分类任务联合训练分类器和表示学习,获得更好的性能。

■基于分类视角切分的问题

- $■_0$ 有₁意₂见₃分₄歧₅
- ■1\2\3\4每个位置都要进行二分类决策,但是,每个分类器都会利用上下文特征,按什么次序决策?先 决策会影响后面的决策(上下文变化了)!
- ■联合决策→基于MP的方法是一种联合决策
- ■但MP需要先有词网络、且只能用LM的知识
- ■既要联合决策,又能自足,并进而利用丰富知识
- ■→把切分看成是一类序列标注问题

■处理切分问题角度二:序列标注

■例如:对象是词,给词打标签,标签集={P,N}

■给一个词打标签,可以视为是把标签集作为类标的分类问题

■序列标注:给一个有关联的对象序列中的每个对象打标签,标注集L

■例如:词序列 $w_1, w_2, \dots w_n$,标签集 $L=\{\text{Noun, Verb}\}$

■则序标问题为: $w_1, w_2, ... w_n \rightarrow t_1, t_2, ... t_n$, 其中 $t_i \in L, i = 1, 2, ... n$

■多个分类,但是由于对象间有关联,分类时相互影响,因此要联合进行

■切分问题转化为序标问题要解决两个问题:对象序列是什么?标签集的设计?

■1、对象序列是"词序列"还是"字序列":尚未切分,因此是字序列!

■2、标签集设计:为字序列中的每个字打上一个标签后能成为词序列!

■L={B, I, O}, B: 一个词的开始字、I: 一个词的非开始字、O: 该字单独成词

0	В	I	В	I
有	意	见	分	歧

→ 有/意见/分歧

- ■这样,序列标注算法均可用于做切分,因此切分 的进展主要与序标模型的进展关联起来
 - ■HMM (后面词性标注问题中再具体介绍)
 - ■HMM只能利用较少的语言知识
 - MEMM
 - ■可以用更多特征,综合更多语言知识,但存在模型偏置
 - **■**CRF
 - ■更丰富特征,更多语言知识。
 - ■2005年, 基于字序列标注的CRF模型取得最好切分性能
 - ■CRF一直到现在仍是序列标注问题的最好模型之一

- ■在序列标注框架下其他提升切分性能的发展
 - ■不断设计新特征和新标注集以捕获更多的知识
 - ■新特征:上下文、成词能力的各类度量等
 - ■N-gram特征: C-1,C0,C+1,C-1C0,C0C1,C-1C1,...
 - ■字符类型特征:数字、单位、标点、字母、中文数字...
 - ■结构特征: AAB、AABB、ABAB、...
 - ■位置特征:标签更细的词的第几个字...
 - ■字的成词能力特征:字C前后不同字的情况...
 - ■偏旁部首特征:
 - ■新的标注集: BIO、BIEO、BB₂B₃EO...
 - ■E、B₂、B₃等可以更精细地定位字,发现更细致的知识
 - ■例如:某个字更常作为E、某个字更常作为词的第二个字等等这些知识对于切分都有用。
 - ■但是, 标注集规模增大, 增加了标注的难度(例如: 从3选1到5选1)

- ■基于字序列标记的CRF模型在2005年后就逐渐成为最常用模型,后面的一个研究焦点就集中在特征上了。
- ■深度学习带来了深刻的影响,和分类任务一样,从特征工程转变为由深层神经网络自动提取表示。
- ■直接基于DNN模型的汉语切分技术的性能与之前的 CRF模型相比有所提高,但与DNN在图像、语音信息 处理上取得的重大进展相比,还是比较小的。

模型 /NLPCC2015数据集	P	R	F
FDNLP(CRF)	94.1	93.9	94.0
GRNN(一种DNN模型)	94.7	94.8	94.8

- ■更多的还是将学到的表示交给CRF模型来进行序标(目前也有某些研究表明无需CRF, 只需要简单的softmax分类器,表示层已经学习到足够好的词间关系了)
 - ■RNN-CRF, LSTM-CRF, BiLSTM-CRF...(词性标注任务时再介绍)
 - ■BERT-CRF: 目前的state-of-the-art模型...

	PKU	MSR	AS	CITYU	CTB6	SXU	UD	CNC	WTB	ZX
Zhou et al. (2017)	96.0	97.8	2	말	96.2	2	(*L=)	21.	(4)	(4)
Yang et al. (2017)	96.3	97.5	95.7	96.9	96.2	=	-	8	-	-
Chen et al. (2017)	94.3	96.0	94.6	95.6	96.2	96.0	-	-	-	-
Xu and Sun (2017)	96.1	96.3	_	-	95.8	_	-	-	-	-
Yang et al. (2018)	95.9	97.7	-	-	96.3	-	-	-	-	-
Ma et al. (2018)	96.1	97.4	96.2	97.2	96.7	=	96.9	(E)	-	-
Gong et al. (2018)	96.2	97.8	95.2	96.2	97.3	97.2	-	-	-	-
He (2019)	96.0	97.2	95.4	96.1	96.7	96.4	94.4	97.0	90.4	95.7
Ours (3 layer)	96.6	97.9	96.6	97.6	97.6	97.3	97.3	97.2	93.1	97.0
Ours (3 layer+FP16)	96.5	97.9	96.4	97.5	97.5	97.3	97.3	97.1	92.7	97.0

- ■更多的还是将学到的表示交给CRF模型来进行序标(目前也有某些研究表明无需CRF,只需要简单的softmax分类器,表示层已经学习到足够好的词间关系了)
 - ■RNN-CRF, LSTM-CRF, BiLSTM-CRF...
 - ■BERT-CRF: 目前的state-of-the-art模型...

	PKU	MSR	PKU数据	P	R	F	R _{in}	R _{oov}
Zhou et al. (2017)	96.0	97.8						
Yang et al. (2017)	96.3	97.5	2003	0.956	0.963	0.959	0.975	0.799
Chen et al. (2017)	94.3	96.0						
Xu and Sun (2017)	96.1	96.3	2005	0.969	0.968	0.969	0.976	0.838
Yang et al. (2018)	95.9	97.7						
1000		~		,				
Ma et al. (2018)	96.1	97.4	MSR数据		R	F	R.	R
	7 7 7 7		MSR数据	P	R	F	R _{in}	R_{oov}
Ma et al. (2018)	96.1	97.4		P	R 0.98	F 0.972	R _{in}	0.59
Ma et al. (2018) Gong et al. (2018)	96.1 96.2	97.4 97.8	MSR数据 2005					
Ma et al. (2018) Gong et al. (2018) He (2019)	96.1 96.2 96.0	97.4 97.8 97.2		P				

- ■更多的还是将学到的表示交给CRF模型来进行序标(目前也有某些研究表明无需CRF,只需要简单的softmax分类器,表示层已经学习到足够好的词间关系了)
 - ■RNN-CRF, LSTM-CRF, BiLSTM-CRF...
 - ■BERT-CRF: 目前的state-of-the-art模型...

	PKU	MSR	PKU数据	P	R	F	R _{in}	R _{oov}
Zhou et al. (2017)	96.0	97.8						
Yang et al. (2017)	96.3	97.5	2003	0.956	0.963	0.959	0.975	0.799
Chen et al. (2017)	94.3	96.0						
Xu and Sun (2017)	96.1	96.3	2005	0.969	0.968	0.969	0.976	0.838
Yang et al. (2018)	95.9	97.7						
				and the second				
Ma et al. (2018)	96.1	97.4	MSR数据	12.2	R	F	R	R
	7 7 7 7		MSR数据	P	R	F	R _{in}	R _{oov}
Ma et al. (2018)	96.1	97.4		12.2	R 0.98	F 0.972	R _{in}	0.59
Ma et al. (2018) Gong et al. (2018)	96.1 96.2	97.4 97.8	MSR数据 2005	P				
Ma et al. (2018) Gong et al. (2018) He (2019)	96.1 96.2 96.0	97.4 97.8 97.2		P				

■在POS任务时再回到序列标注模型

■切分性能的发展

- ■SIGHAN WS 评测推动汉语切分技术的重要力量
- **2**003,2005,2006,2007,2010,2012,2014
- ■NLPCC 2015,2016
- ■2007语料(主要是各类新闻数据):

	Training	data	Test data	OOV	
	Token	Type	Token	Type	
CITYU	1092687	43639	235631	23303	19382
CKIP	721549	48114	90678	14662	6718
CTB	642246	42159	80700	12188	4480
NCC	913466	58592	152354	21352	7218
SXU	528238	32484	113527	12428	5815

■2007 results

语料来源	评测种类	最好F	最好F _{IV}	最好Foov
CITYU	Close	0.9510	0.9667	0.7698
	Open	0.9697	0.9785	0.8750
CKIP	Close	0.9470	0.9623	0.7524
	Open	0.9563	0.9692	0.7925
CTB	Close	0.9589	0.9697	0.7745
	Open	0.9920	0.9936	0.9654
NCC	Close	0.9405	0.9573	0.6080
	Open	0.9757	0.9800	0.8880
SXU	Close	0.9623	0.9752	0.7292
	Open	0.9735	0.9820	0.8109

■切分性能的发展

- ■对于有较大规模训练数据的规范语言,切分性能达到可用水平
- ■但并不是每个领域都有这样的大规模标注数据(跨领域研究)

领域	P	R	F	R _{in}	R _{oov}
文学	0.953	0.958	0.955	0.981	0.655
计算机	0.929	0.948	0.929	0.986	0.735
医药	0.92	0.951	0.935	0.986	0.67
财经	0.95	0.964	0.957	0.983	0.763

■2010年SIGHAN评测中某系统在各领域的成绩,文学领域最佳, 其他领域非最佳。没有系统在所有领域最佳。

■存在大量非规范用法的网络文本、跨领域成为两 个基本问题

- ■2012年的SIGHAN汉语切分技术评测的评测数据来自微博。性能最好的系统取得了P=0.946、R=0.9496和F=0.9478的成绩。但是,整句完全切分正确的比例只有44.88%。
- ■2014年的SIGHAN汉语切分技术评测的评测数据采用的是多领域混合数据。性能最好的系统取得了P=0.9681、R=0.9779和F=0.9730的成绩。

■2015 更复杂的微博数据导致较低的性能

■2016 更复杂的微博数据

Close		Precision	Recall	F_b
byu-2	(1st)	0.792917	0.816246	0.804412
byu-1	(3rd)	0.7834	0.813453	0.798144
Semi		Precision	Recall	F_b
byu-2	(1st)	0.816755	0.843353	0.829841
byu-1	(2nd)	0.804658	0.835274	0.81968
Open		Precision	Recall	F_b
byu-1	(1st)	0.812359	0.832221	0.82217

2020/10/22 47

基本结论

- ■汉语切分中歧义的问题已大体解决,未登录词 (OOV)的问题依然存在
- ■OOV的主体是命名实体(Named Entity)
 - ■人名:中国人名、外国人名(不同国)、网名、...
 - ■地名、组织机构名;
 - ■电影名、书名、设备名、药名......
- ■命名实体识别(NER, Named Entity Recognition) 成为重点问题

TOSTS AND THE SAME TO SAME THE SAME THE

■NER

- ■早期设计规则
 - ■前缀、后缀、规则.....
 - ■人名:姓氏字典、名字字典、称呼前缀&后缀、人类行为...
 - ■刘英说他今天要去报到。
 - ■卧龙<mark>先生</mark>不在
 - ■很多例外问题:
 - ■词典构建的问题:很多姓氏也是常用字:马上回去、牛劲上来了...
 - ■称呼单用: 劳烦<mark>先生过来一趟</mark>
- ■NER的视角?

■基于序列标注的统计NER

■序标设计:

P_B	P_I	P_I	O	O	O	L_B	L_I	O	Z_B	Z_I	Z_I	Z_I	Z_I	
刘	修	行	参	观	了	绍	<u> </u>	的	鲁	迅	纪	念	馆	0

- ■序列标注模型: CRF等
- ■同样,近年来BERT-CRF取得了最好性能
- ■NE在不同领域有共性,但更多会具有一些各自不同的特点:

	政治	体育	科学	•••
NE	人名、组织机构名、职名	人名、队伍名、 赛事名	人名、理论名、 对象名、	•••

■NER难点: 跨领域的NER

总结

- ■汉语切分
 - ■问题:
 - ■歧义: OA、CA
 - ■未登录词: OOV
 - ■问题视角:基于字的序标标注
 - ■模型:序列标注模型
 - ■知识: N-gram、更复杂的特征、神经编码表示...

- ■3:视频中提到可以使用神经网络为序列标注模型自动构建特征,如何实现的呢?【问题频次:1】
- ■答:以采用BiLSTM(双向长短时记忆)为例,网络结构如下图所示,其中红色框圈出来的部分,是BiLSTM编码得到的每个字位置上的输出表示,这些就是作为神经网络自动构建的特征,这些表示传给上层的CRF模型进行序列标注。

