#8 Relations

! In this section we will go over **Relations** by means of logical definitions and mathematical proofs.

Relations

<u>Relation:</u> A subset of $A \times B$ is called a «relation». $R \subseteq A \times B$

If
$$|A| = m$$
, $|B| = n$ then,
 $|\mathcal{D}(A \times B)| = 2^{mn}$

Defining Relations Logically

Example

Let $L \subseteq \mathbb{R} \times \mathbb{R}$.

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, x \perp y \iff x < y$$

Example

Let R be a relation on/over \mathbb{Z} . $(R \subseteq \mathbb{Z} \times \mathbb{Z})$ $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z}, x R y \Leftrightarrow x-y \text{ is even.}$

Some Concepts on Relations

- 1. Inverse of a relation
- 2. Representation of relations over \mathbb{R} or \mathbb{Z} on the Cartesian Plane.
- 3. Directed Graph of a relation
- 4. Matrix Representation of a Relation

Properties of a Relation

Definition

Let R be a relation on a set A.

- 1. *R* is reflexive if, and only if, for all $x \in A$, $x \in A$, $x \in A$.
- 2. R is symmetric if, and only if, for all $x, y \in A$, if x R y then y R x.
- 3. R is transitive if, and only if, for all $x, y, z \in A$, if x R y and y R z then x R z.

- 1. R is reflexive \Leftrightarrow for all x in A, $(x, x) \in R$.
- 2. R is symmetric \Leftrightarrow for all x and y in A, if $(x, y) \in R$ then $(y, x) \in R$.
- 3. R is transitive \Leftrightarrow for all x, y and z in A, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

Negations...

Example

• Let R be a relation over \mathbb{Z} . $(R \subseteq \mathbb{Z} \times \mathbb{Z})$ $\forall x,y \in \mathbb{Z}, \quad x \, R \, y \Leftrightarrow 3 | \, x - y$ Check reflexivity, symmetry, transitivity.

Examples

1.
$$R_1 = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}$$

2.
$$R_2 = \{(0,0), (0,1), (1,1), (1,2), (2,2), (2,3)\}$$

3.
$$R_3 = \{(2,3), (3,2)\}$$

4.
$$R_4 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$$

5.
$$R_5 = \{(0,0), (0,1), (0,2), (1,2)\}$$

6.
$$R_6 = \{(0, 1), (0, 2)\}$$

7.
$$R_7 = \{(0,3), (2,3)\}$$

8.
$$R_8 = \{(0,0), (1,1)\}$$

Equivalence Relations

Definition

Let A be a set and R a relation on A. R is an equivalence relation if, and only if, R is reflexive, symmetric, and transitive.

Equivalence Classes:

Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the equivalence class of a, denoted [a] and called the class of a for short, is the set of all elements x in A such that x is related to a by R.

In symbols:

$$[a] = \{x \in A \mid x R a\}$$

Lemma

Let A be a set and R an equivalence relation on A. If a R b then [a] = [b].

Lemma

Let A be a set and R an equivalence relation on A, if $a,b \in A$ then, $[a] \cap [b] = \emptyset$ or [a] = [b].

$$p \Rightarrow (q \lor r) \equiv (p \land \sim q) \Rightarrow r$$

Theorem

If A is a set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A.

(Partition):

$$[A_1, A_2, ..., A_n]$$
, is a partition for $A \Leftrightarrow (A_i \cap A_j = \emptyset, \forall i \neq j) \land (\bigcup_{i=1}^n A_i = A)$

Examples

In each of 3-14, the relation R is an equivalence relation on the set A. Find the distinct equivalence classes of R.

3.
$$A = \{0, 1, 2, 3, 4\}$$

 $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$

4.
$$A = \{a, b, c, d\}$$

 $R = \{(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)\}$