Week 3: Classification

Contents

- 1. Classification with Logistic Regression
 - Motivations
 - Logistic Regression
 - Decision Boundary
- 2. Cost Function for Logistic Regression
 - Cost Function for Logistic Regression
 - Simplified Cost Function for Logistic Regression
- 3. Gradient Descent for Logistic Regression

Contents

4. The Problem of Overfitting

- Overfitting
- Addressing Overfitting
- Cost Function with Regularization
- Regularized Linear Regression
- Regularized Logistic Regression

1. Classification with Logistic Regression

Motivations

Classification

Motivations

Motivations

Want outputs between 0 and 1

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z) < 1$

Want outputs between 0 and 1

logistic function

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z) < 1$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + \underline{b}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + \underline{b})}}$$

"logistic regression"

Interpretation of logistic regression output

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

"probability" that class is 1

Example:

x is "tumor size"
y is 0 (not malignant)
or 1 (malignant)

$$f_{\vec{\mathbf{w}}, \mathbf{b}}(\vec{\mathbf{x}}) = 0.7$$

70% chance that \mathbf{y} is 1

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = P(\mathbf{y} = 1 | \overrightarrow{\mathbf{x}}; \overrightarrow{\mathbf{w}},b)$$

Probability that y is 1, given input \vec{x} , parameters \vec{w} , b

$$P(y = 0) + P(y = 1) = 1$$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

$$= P(y = 1 | x; \overrightarrow{\mathbf{w}}, b) \quad 0.7 \quad 0.3$$

$$0 \text{ or } 1? \quad \text{threshold}$$

$$\text{Is } f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) \ge 0.5?$$

$$\text{Yes: } \widehat{y} = 1 \qquad \text{No: } \widehat{y} = 0$$

$$\text{When is } f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) \ge 0.5?$$

$$g(z) \ge 0.5$$

$$z \ge 0$$

$$\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b \ge 0 \qquad \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b < 0$$

$$\widehat{y} = 1 \qquad \widehat{y} = 0$$

Non-linear decision boundaries

Non-linear decision boundaries

Training set

	tumor size (cm)	 patient's age	malignant?	i=1,,m training examples
	X ₁	Xn	У	j=1,,n features
i=1	10	52	1	target y is 0 or 1
:	2	73	0	target y is 0 or 1
	5	55	0	$f \rightarrow f(\vec{\mathbf{y}}) = \frac{1}{f(\vec{\mathbf{y}})}$
	12	49	1	$f_{\overrightarrow{\mathbf{w}},b}(\mathbf{x}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$
i=m				

How to choose $\vec{w} = [w_1 \ w_2 \ \cdots \ w_n]$ and b?

Squared error cost

$$J(\overrightarrow{\mathbf{w}}, \boldsymbol{b}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, \boldsymbol{b}}(\overrightarrow{\mathbf{x}}^{(i)}) - \boldsymbol{y}^{(i)})^{2}$$

linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

Logistic loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

Logistic loss function

Logistic loss function

Cost

$$J(\vec{w},b) = \frac{1}{m} \sum_{i=1}^{m} L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)})$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 1 \\ -\log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

Simplified loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}))$$

Simplified cost function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \frac{1}{m} \underbrace{\sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) - (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right]}_{\mathbf{w},b} \underbrace{\left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{y}}^{(i)}) \right]}_{\mathbf{w},b} \underbrace{$$

3. Gradient Descent for Logistic Regression

Gradient Descent for Logistic Regression

Training logistic regression

Find $\vec{\mathbf{w}}$, **b**

Given new
$$\vec{x}$$
, output $f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}\cdot\vec{x}+b)}}$

$$P(y=1|\vec{x};\vec{w},b)$$

Gradient Descent for Logistic Regression

Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

Gradient Descent for Logistic Regression

Gradient descent for logistic regression

} simultaneous updates

Linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

Logistic regression
$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

- (learning curve)
- Vectorized implementation
- Feature scaling

4. The Problem of Overfitting

Overfitting

Regression example

underfit

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

 Fits the training set extremely well

high variance

Overfitting

Classification

Collect more training examples

Select features to include/exclude

Regularization

Reduce the size of parameters w_i

Addressing overfitting

Options

- 1. Collect more data
- 2. Select features
 - Feature selection
- 3. Reduce size of parameters
 - "Regularization"

Cost Function with Regularization

Intuition

make w_3 , w_4 really small (≈ 0)

$$\min_{\vec{\mathbf{w}},b} \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + 1000 \underbrace{0.002}_{0.002} + 1000 \underbrace{0.002}_{0.002}$$

Cost Function with Regularization

Regularization simpler model W320 small values w_1, w_2, \cdots, w_n, b W+20 less likely to overfit bedrooms floors size distance to price age avg income coffee shop X4 X100 n = 100 n features $w_1, w_1, w_2, \cdots, w_{100}, b$

Cost Function with Regularization

Linear Regression with Regularization

Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$

Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})$$

Linear Regression with Regularization

Implementing gradient descent

repeat {
$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left[\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} \right] + \frac{\lambda}{m} w_j \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
 } simultaneous update

Logistic Regression with Regularization

Regularized logistic regression

$$\vec{z} = w_1 x_1 + w_2 x_2
+ w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2
+ w_5 x_1^2 x_2^3 + \dots + b$$

$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-z}}$$

Cost function

$$J(\vec{\mathbf{w}},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(\mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - \mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2 m} \sum_{j=1}^{m} \mathbf{w}_{j}^{2}$$

$$\underset{\overline{\mathbf{w}},b}{\min} J(\overline{\mathbf{w}},b) \longrightarrow \mathbf{w}_{\mathbf{j}}$$

Logistic Regression with Regularization

Regularized logistic regression

$$J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

