# Corso di Architettura degli Elaboratori a.a. 2021/2022

Il livello logico digitale:
Algebra Booleana e
Circuiti logici digitali di base

## Livello della logica digitale

#### Livello della Logico-Digitale

Costituenti di base del computer:

- porte
- registri
- memoria

Sotto questo livello ci sono i dispositivi (funzionamento interno delle porte: transistor)



## Circuiti digitali

- Gli elementi di base con cui si sono costruiti i calcolatori si chiamano circuiti digitali (o reti digitali)
- Sono dispositivi che utilizzano solo due valori logici:
   0 (segnale tra 0 e 1 volt) e 1 (segnale tra 2 e 5 volt).
  - I valori di tensione possono anche essere altri.
- Un circuito digitale trasforma segnali (binari) di **ingresso**  $x_1, x_2, ..., x_n$  nei segnali (binari) di **uscita**  $z_1, z_2, ..., z_m$ .



- I circuiti sono detti *combinatori* quando l'uscita è funzione esclusivamente dell'ingresso; sono detti *sequenziali* quando l'uscita è funzione oltre che dell'ingresso anche di uno *stato*.
- Gli elementi primitivi dei circuiti digitali sono chiamati porte logiche e calcolano alcune funzioni di questi segnali a due valori.
- Questi dispositivi si basano sul fatto che si può far funzionare un transistor come un interruttore binario molto veloce.



#### **Transistor**

transistor si comporta come un interruttore binario molto veloce:

- quando  $V_{in}$  è basso, il transistor si disabilita (circuito aperto) e si comporta come "una resistenza infinita", quindi  $V_{out}$  è alto; viceversa quando  $V_{in}$  è alto, il transistor si attiva e si comporta come "un filo" mettendo a terra  $V_{out}$
- pochi *nanosecondi* per passare da uno stato all'altro: "alto" (tensione V<sub>CC</sub>) 1 logico, "basso" (terra) 0 logico



- Logica positiva (0 = bassa tensione; 1= alta tensione)
  - (b) una porta NAND: due transistor collegati in serie
  - (c) una porta NOR: due transistor collegati in parallelo



| $V_1$ $V_2$ | V <sub>out</sub> | $V_1$ $V_2$ | $V_{out}$ |
|-------------|------------------|-------------|-----------|
| 0 0         | 1                | 0 0         | 1         |
| 0 1         | 1                | 0 1         | 0         |
| 1 0         | 1                | 1 0         | 0         |
| 1 1         | 0                | 1 1         | 0         |
| (b)         | )                | (c)         | )         |

- Logica negativa (0 = alta tensione; 1 = bassa tensione)
  - (b) una porta NOR: due transistor collegati in serie
  - (c) una porta NAND: due transistor collegati in parallelo



| $V_1$ $V_2$ | $V_{out}$ | $V_1$ $V_2$ | V <sub>out</sub> |
|-------------|-----------|-------------|------------------|
| 1 1         | 0         | 1 1         | 0                |
| 1 0         | 0         | 1 0         | 1                |
| 0 1         | 0         | 0 1         | 1                |
| 0 0         | 1         | 0 0         | 1                |
| (h)         | •         | ( a         | `<br>.\          |

(b) (c)



- NOT: un transistor (invertitore)
- NAND e NOR: due transistor
- AND e OR: tre transistor
   (quelli del NAND e NOR, rispettivamente, più un invertitore
- XOR: 8 transistor (A XOR B) = (A OR B) AND (A NAND B)

# Algebra Booleana (George Boole, 1815-1864)

- L'analisi e la progettazione del comportamento dei circuiti digitali si fonda sull'Algebra di Boole
  - Analisi: modo sintetico di descrivere le funzioni dei circuiti digitali
  - Progettazione: data una funzione del circuito digitale sviluppo di implementazione semplificata (o ottimizzata)
- Come ogni altra algebra si fa uso di variabili e di operazioni
  - Variabili logiche: possono assumere solo il valore 0 (FALSO) o 1 (VERO)
  - Operazioni logiche: AND, OR e NOT

# Algebra Booleana (George Boole, 1815-1864)

- Due valori costanti 0 e 1
- Operatore unario "NOT":
  - A: "not" A (¬ A)
- Operatori binari "AND" e "OR":
  - AB: A "and" B
  - A + B: A "or" B
- Una qualunque combinazione di variabili o costanti booleane legate tra loro dagli operatori fondamentali è una

#### espressione logica

- Esempio: AB + BC (è vera solo quando A = 1 e B = 0 oppure B = 1 e C = 0)
- In assenza di parentesi AND ha precedenza su OR

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

#### Dimostriamola:

$$A+BC=(A+B)(A+C)$$
 TESI
$$(A+B)(A+C)=$$

| Name             | AND form                                      |         | OR form                                       |
|------------------|-----------------------------------------------|---------|-----------------------------------------------|
| Identity law     | 1A = A                                        |         | 0 + A = A                                     |
| Null law         | 0A = 0                                        |         | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        |         | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           |         | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | AB = BA |                                               |
| Associative law  | (AB)C = A(BC)                                 |         | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       |         | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  |         | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ |         | $\overline{A + B} = \overline{A}\overline{B}$ |

Diversa dall'algebra ordinaria

#### Dimostriamola:

$$A+BC=(A+B)(A+C)$$
 TESI

| Name             | AND form                                      |         | OR form                                       |
|------------------|-----------------------------------------------|---------|-----------------------------------------------|
| Identity law     | 1A = A                                        |         | 0 + A = A                                     |
| Null law         | 0A = 0                                        |         | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        |         | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           |         | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | AB = BA |                                               |
| Associative law  | (AB)C = A(BC)                                 |         | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       |         | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  |         | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ |         | $\overline{A + B} = \overline{A}\overline{B}$ |

Diversa dall'algebra ordinaria

#### Dimostriamola:

$$(\overline{A+B})=\overline{A}\overline{B}$$
 TESI

$$(\overline{A+B})(A+B)=0$$
  
se vale la tesi allora  
 $(\overline{AB})(A+B)=0$ 

$$\overline{A}\overline{B}A+\overline{A}\overline{B}B=0\overline{B}+\overline{A}0=0$$

**CVD** 

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

Una forma della legge di De Morgan

#### Dimostriamola:

$$\overline{(AB)} = \overline{A} + \overline{B}$$
 TESI

$$\overline{(AB)}(AB)=0$$
  
se vale la tesi allora  
 $(\overline{A}+\overline{B})(AB)=0$ 

$$\overline{A}BA+A\overline{B}B=0B+A0=0$$

**CVD** 

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |



$$(A+B)\overline{(AB)}=A\overline{B}+\overline{A}B$$



| Α   | В | Х |  |
|-----|---|---|--|
| 0   | 0 | 0 |  |
| 0   | 1 | 1 |  |
| 1   | 0 | 1 |  |
| 1   | 1 | 0 |  |
| (f) |   |   |  |

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

 Dimostrate le due equivalenti forme per lo XOR e calcolate numero di porte e di transistor:

$$(A+B)(\overline{AB})=A\overline{B}+\overline{AB}$$
  
partiamo da  
 $(A+B)(\overline{AB})=(A+B)(\overline{A}+\overline{B})$ 

De Morgan

| i i i i i i i i i i i i i i i i i i i |                                               | â                                             |
|---------------------------------------|-----------------------------------------------|-----------------------------------------------|
| De Morgan's law                       | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

$$(A+B)(\overline{AB})=A\overline{B}+\overline{AB}$$
  
Sempre 1, per cui posso metterli in AND partiamo da  $(A+B)(\overline{AB})=(A+B)(\overline{A}+\overline{B})=(A+B)(\overline{B}+\overline{B})(\overline{A}+\overline{B})$ 

$$(A+B)(\overline{AB})=A\overline{B}+\overline{AB}$$

Idempotenza ed AND con propria negazione partiamo da
$$(A+B)(\overline{AB})=(A+B)(\overline{A}+\overline{B})=(A+B)(B+\overline{B})(\overline{A}+\overline{B})=(A+B)(A+\overline{A})=$$

$$=(AB+A\overline{B}+BB+B\overline{B})(\overline{AA}+\overline{AA}+A\overline{B}+\overline{AB})=$$

```
(A+B)(\overline{AB})=A\overline{B}+\overline{AB}
partiamo da
(A+B)(\overline{AB})=(A+B)(\overline{A}+\overline{B})=(A+B)(B+\overline{B})(\overline{A}+\overline{B})(A+\overline{A})=
=(AB+A\overline{B}+BB+B\overline{B})(\overline{A}A+\overline{A}\overline{A}+A\overline{B}+\overline{A}\overline{B})=
=(AB+A\overline{B}+B)(\overline{A}+A\overline{B}+\overline{A}\overline{B})
```

```
(A+B)(\overline{AB})=\overline{AB}+\overline{AB}
partiamo da
(A+B)(\overline{AB})=(A+B)(\overline{A}+\overline{B})=(A+B)(B+B)(\overline{A}+\overline{B})(A+\overline{A})=
=(AB+\overline{AB}+BB+BB)(\overline{AA}+\overline{AA}+\overline{AB}+\overline{AB})=
=(AB+\overline{AB}+B)(\overline{A}+\overline{AB}+\overline{AB})=(AB+\overline{AB}+B)(\overline{AB}+\overline{AB}+\overline{AB})=
```

```
(A+B)(\overline{AB})=A\overline{B}+\overline{AB}
AND con propria negazione: sempre 0
partiamo da
(A+B)(\overline{AB})=(A+B)(\overline{A}+\overline{B})=(A+B)(B+\overline{B})(\overline{A}+\overline{B})(A+\overline{A})=
=(AB+A\overline{B}+BB+B\overline{B})(\overline{A}A+\overline{A}\overline{A}+A\overline{B}+\overline{A}\overline{B})=
=(AB+A\overline{B}+B)(\overline{A}+A\overline{B}+\overline{A}\overline{B})=(A\overline{B}+B(A+1))(A\overline{B}+\overline{A}(1+\overline{B}))=
=(AB+B)(AB+A)=ABAB+\overline{ABA}+BAB+\overline{AB}=AB+\overline{AB}
```

#### Funzioni Booleane

Una *funzione booleana* di *n* variabili  $x_1, x_2,...,x_n$  è una *relazione* che associa un valore booleano a ciascuna delle  $2^n$  configurazioni possibili delle n variabili:

$$y = f(x_1, x_2, ..., x_n)$$

Una funzione booleana può essere espressa in varie forme:

- Tabelle di verità
- Formule algebriche
- . Mappe di Karnaugh
- Binary Decision Diagrams (BDDs)

- Tabelle di verità: descrivono completamente il valore di una funzione Booleana attraverso tutte le combinazioni di input; *n* input corrispondono a 2<sup>n</sup> combinazioni (righe)
- È **finito** l'insieme delle funzioni Booleane di *n* input:  $2^{2^n}$ funzioni (es., se n = 2 allora 16 funzioni diverse)
- Forma canonica: righe ordinate per valori crescenti degli ingressi interpretando i valori delle variabili di ingresso come cifre di una codifica binaria



(valore funzione)

#### Equivalenza con tabelle di verità

Due, o più, diverse espressioni algebriche sono equivalenti se hanno identiche tabelle di verità



Espressione 1

Espressione 2

#### Algebra Booleana: forme canoniche

#### Formula normale disgiuntiva (FND):

- Sommatoria (OR) di termini ciascuno dei quali è una produttoria (AND) di *letterali* costituiti da nomi di variabili di ingresso o da negazioni dei nomi di variabili di ingresso.
- È *minimale* quando, applicando le proprietà algebriche di equivalenza non è possibile ottenere una FND equivalente contenente un numero di letterali inferiore

#### Formula normale congiuntiva (FNC)

 Concetto "duale" del precedente ossia è una produttoria (AND) di termini ciascuno dei quali è una sommatoria (OR) di *letterali* costituiti da nomi di variabili di ingresso o da negazioni di nomi di variabili di ingresso

- Funzione di maggioranza su tre input: restituisce 1 se la maggioranza degli input è 1, 0 altrimenti
- La funzione produce 1 nella quarta, sesta, settima e ottava riga
- La funzione Mè 1 nelle righe: ABC, ABC, ABC
- $. M = \overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC}$  ABC
- Forma normale disgiuntiva

| Α | I | 3 | С                   | М |
|---|---|---|---------------------|---|
| 0 |   | o | 0                   | 0 |
| 0 |   | כ | 1                   | 0 |
| 0 |   | 1 | 0                   | 0 |
| 0 |   | 1 | 1                   | 1 |
| 1 |   | ) | 0                   | 0 |
| 1 |   | 2 | $\langle - \rangle$ | 1 |
| 1 | - | 1 | 0                   | 1 |
| 1 |   | 1 | 1                   | 1 |

Se mettessimo in OR anche i casi dove M vale 0 non cambierebbe nulla

La funzione produce 0 nella prima, seconda, terza e quinta riga

La funzione M è 0 nelle righe:

$$M = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)$$

Forma normale congiuntiva

| Α | В | С                              | М |
|---|---|--------------------------------|---|
| 0 | 0 | 0                              | 0 |
| 0 | 0 | $\left\langle - \right\rangle$ | 0 |
| 0 | 1 | 0                              | 0 |
| 0 | 1 | \ <b>-</b> /                   | 1 |
| 1 | 0 | 0                              | 0 |
| 1 | 0 | 1                              | 1 |
| 1 | 1 | 0                              | 1 |
| 1 | 1 | 1                              | 1 |

Se mettessimo in AND anche i casi dove M vale 1 non cambierebbe nulla

#### Da formula algebrica a tabella di verità

- Elencare tutte le possibili configurazioni delle n variabili di ingresso
- Per ogni configurazione, valutare i valori di uscita delle funzioni elementari NOT, AND e OR che compongono l'espressione
- Assumendo l'espressione iniziale una FND (FNC), l'uscita della funzione OR (AND) rappresenta il valore da inserire nella corrispondente riga della tabella che si sta costruendo

Tabella di verità - Formula algebrica

## Da tabella di verità a formula algebrica

- 1. Scrivere la tabella di verità per la funzione
- 2. Disporre gli invertitori per generare il complemento di ogni input
- 3. Introdurre una porta AND per ogni termine con un 1 nella colonna dei risultati
- 4. Collegare le porte AND agli input appropriati
- 5. Inviare l'output di tutte le porte AND in una porta OR

ABC ABC Convenzione: l'incrocio tra due linee non implica alcuna connessione a meno che non sia presente il simbolo • nel ABC punto di intersezione ABC + ABC + ABC + ABCABC

ABC

ABC

#### Implementazione di circuiti

- Sostituire le porte con più input con dei circuiti equivalenti che usano porte a due input
- Convertire il circuito in un solo tipo di porta (per convenienza)
- NAND e NOR sono porte complete
- Usate le identità per dimostrare l'equivalenza dei circuiti fatti solo con NAND e NOR
- Nota: in generale non si ottiene il circuito ottimale (per numero di porte impiegate)







# Implementazione di circuiti



| Name             | AND form                                      | OR form                                       |  |
|------------------|-----------------------------------------------|-----------------------------------------------|--|
| Identity law     | 1A = A                                        | 0 + A = A                                     |  |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |  |
| Idempotent law   | AA = A                                        | A + A = A                                     |  |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |  |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |  |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |  |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |  |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |  |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |  |









(c)

#### Implementazione di circuiti

- Equivalenza di circuiti:
   esistono più circuiti che
   realizzano la stessa
   funzione booleana
- È importante trovare quella più semplice nel senso del minor numero di porte
- Usare a tal fine le proprietà dell'algebra Booleana



| Α | В | С | AB | AC | AB + AC |
|---|---|---|----|----|---------|
| 0 | 0 | 0 | 0  | 0  | 0       |
| 0 | 0 | 1 | 0  | 0  | 0       |
| 0 | 1 | 0 | 0  | 0  | 0       |
| 0 | 1 | 1 | 0  | 0  | 0       |
| 1 | 0 | 0 | 0  | 0  | 0       |
| 1 | 0 | 1 | 0  | 1  | 1       |
| 1 | 1 | 0 | 1  | 0  | 1       |
| 1 | 1 | 1 | 1  | 1  | 1       |



| A | В | С | Α | B+C | A(B + C) |
|---|---|---|---|-----|----------|
| 0 | 0 | 0 | 0 | 0   | 0        |
| 0 | 0 |   | 0 | 1   | 0        |
| 0 | 1 | 0 | 0 | 1   | 0        |
| 0 | 1 | 1 | 0 | 1   | 0        |
| 1 | 0 | 0 | 1 | 0   | 0        |
| 1 | 0 | 1 | 1 | 1   | 1        |
| 1 | 1 | 0 | 1 | 1   | 1        |
| 1 | 1 | 1 | 1 | 1   | 1        |

(a)

#### Circuiti di base

- Circuiti integrati (IC) o chip
- I chip si possono classificare in:
  - SSI (Small Scale Integrated): da 1 a 10 transistor
  - MSI (Medium Scale Integrated): da 10 a 100 transistor
  - LSI (Large Scale Integrated): da 100 a 100.000 transistor
  - VLSI (Very Large Scale Integrated): più di 100.000 transistor
  - ULSI (Ultra Large Scale Integrated): fino a 10 milioni di transistor

#### Circuiti combinatori

Circuito combinatorio:
 l'output viene
 determinato solo dagli
 input

 Convenzione: l'incrocio tra due linee non implica alcuna connessione a meno che non sia presente il simbolo • nel punto di intersezione



#### Circuiti combinatori: decoder

- Decoder: prende un numero di n bit come ingresso e lo usa per selezionare (mettere a 1, asserire) una delle 2<sup>n</sup> linee di uscita
- Può essere utilizzato per attivare una certa componente (vedi ALU più avanti), oppure un banco di memoria, ecc.
- Interpretiamo gli ingressi A B C (o I2 I1 I0) come le cifre di un numero in base 2 con A (I2) quella più significativa



b. The truth table for a 3-bit decoder

#### Circuiti combinatori: decoder



### Circuiti combinatori: multiplexer

- Multiplexer (o <u>selettore</u>):
  - 2 ingressi, 1 uscita e 1 ingresso di controllo
- La linea di controllo determina quale dei 2 ingressi deve essere selezionato per essere inviato all'uscita
- Esempio con 2 ingressi (A e B), un uscita (C) ed un ingresso di controllo (S)



# Circuiti combinatori: multiplexer

- Multiplexer: In generale,
   possiamo avere 2<sup>n</sup> ingressi, 1
   uscita e n ingressi di controllo
- Le linee di controllo determinano quale dei  $2^n$  ingressi deve essere selezionato per essere inviato all'uscita
- Esempio con 8 ingressi (D<sub>0</sub>,.. D<sub>7</sub>), un uscita (F) e tre ingressi di controllo (A,B e C)



# Multiplexer



Un multiplexer è composto da un decoder dove ogni AND accoglie un ingresso e l'OR finale

### Circuiti combinatori: multiplexer

- Multiplexer (o <u>selettore</u>):
   2 ingressi da 64 line
   ciascuno, 1 uscita da 64
   line e 1 ingresso di
   controllo
- La linea di controllo determina quale dei 2 ingressi da 64 line deve essere selezionato per essere inviato all'uscita da 64 linee
- Esempio con 2 ingressi

   (A e B), un uscita (C) ed
   un ingresso di controllo
   (Select)





- riceve in ingresso due bit (cifre in base 2) da sommare, a e b nello schema
- riceve in ingresso un bit (cifra in base 2) di riporto, Carryln nello schema
- restituisce un bit (cifra in base 2) in uscita che rappresenta il risultato, Sum nello schema
- restituisce un bit (cifra in base 2) in uscita che rappresenta il riporto, CarryOut nello schema

| Inputs |   |         | Out      | puts |
|--------|---|---------|----------|------|
| а      | b | Carryin | CarryOut | Sum  |
| 0      | 0 | 0       | 0        | 0    |
| 0      | 0 | 1       | 0        | 1    |
| 0      | 1 | 0       | 0        | 1    |
| 0      | 1 | 1       | 1        | 0    |
| 1      | 0 | 0       | 0        | 1    |
| 1      | 0 | 1       | 1        | 0    |
| 1      | 1 | 0       | 1        | 0    |
| 1      | 1 | 1       | 1        | 1    |



$$C_{Out} = (b CIn) + (a C_{In}) + (a b)$$

| Inputs |   | Outputs |          |     |                        |
|--------|---|---------|----------|-----|------------------------|
| а      | b | Carryln | CarryOut | Sum | Comments               |
| 0      | 0 | 0       | 0        | 0   | $0 + 0 + 0 = 00_{two}$ |
| 0      | 0 | 1       | 0        | 1   | $0 + 0 + 1 = 01_{two}$ |
| 0      | 1 | 0       | 0        | 1   | $0 + 1 + 0 = 01_{two}$ |
| 0      | 1 | 1       | 1        | 0   | $0 + 1 + 1 = 10_{two}$ |
| 1      | 0 | 0       | 0        | 1   | $1 + 0 + 0 = 01_{two}$ |
| 1      | 0 | 1       | 1        | 0   | $1 + 0 + 1 = 10_{two}$ |
| 1      | 1 | 0       | 1        | 0   | $1 + 1 + 0 = 10_{two}$ |
| 1      | 1 | 1       | 1        | 1   | $1 + 1 + 1 = 11_{two}$ |

$$C_{Out} = (b CIn) + (a C_{In}) + (a b)$$



 $Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$ 

$$Sum = (a XOR b) XOR C_{In}$$

| Inputs |   |         | Out      | puts |
|--------|---|---------|----------|------|
| а      | b | Carryin | CarryOut | Sum  |
| 0      | 0 | 0       | 0        | 0    |
| 0      | 0 | 1       | 0        | 1    |
| 0      | 1 | 0       | 0        | 1    |
| 0      | 1 | 1       | 1        | 0    |
| 1      | 0 | 0       | 0        | 1    |
| 1      | 0 | 1       | 1        | 0    |
| 1      | 1 | 0       | 1        | 0    |
| 1      | 1 | 1       | 1        | 1    |

$$C_{Out} = (\bar{a} \ b \ CIn) + (a \ \bar{b} \ C_{In}) + (a \ b \ \bar{C}_{In}) + (a \ b \ C_{In})$$

$$C_{Out} = (\bar{a} \ b \ CIn) + (a \ \bar{b} \ CIn) + a \ b$$

$$C_{Out} = C_{In}(\bar{a} \ b + a \ \bar{b}) + a \ b$$

$$C_{Out} = C_{In}(a \ XOR \ b) + a \ b$$

| Inputs |   | Out     | puts     |     |                        |
|--------|---|---------|----------|-----|------------------------|
| a      | b | Carryln | CarryOut | Sum | Comments               |
| 0      | 0 | 0       | 0        | 0   | $0 + 0 + 0 = 00_{two}$ |
| 0      | 0 | 1       | 0        | 1   | $0 + 0 + 1 = 01_{two}$ |
| 0      | 1 | 0       | 0        | 1   | $0 + 1 + 0 = 01_{two}$ |
| 0      | 1 | 1       | 1        | 0   | $0 + 1 + 1 = 10_{two}$ |
| 1      | 0 | 0       | 0        | 1   | $1 + 0 + 0 = 01_{two}$ |
| 1      | 0 | 1       | 1        | 0   | $1 + 0 + 1 = 10_{two}$ |
| 1      | 1 | 0       | 1        | 0   | $1 + 1 + 0 = 10_{two}$ |
| 1      | 1 | 1       | 1        | 1   | $1 + 1 + 1 = 11_{two}$ |

#### Circuiti numerici: addizionatori con XOR

$$C_{Out} = CIn(a XOR b) + a b$$





Carry out

Carry in

Sum

|   | Inputs |         | Out      | puts |
|---|--------|---------|----------|------|
| а | b      | Carryin | CarryOut | Sum  |
| 0 | 0      | 0       | 0        | 0    |
| 0 | 0      | 1       | 0        | 1    |
| 0 | 1      | 0       | 0        | 1    |
| 0 | 1      | 1       | 1        | 0    |
| 1 | 0      | 0       | 0        | 1    |
| 1 | 0      | 1       | 1        | 0    |
| 1 | 1      | 0       | 1        | 0    |
| 1 | 1      | 1       | 1        | 1    |

### RISC-V: ALU ad 1 bit

Dati a e b è in grado di calcolare:

- Result = a AND b
- Result = a OR b
- Result = a + b (somma)
- Un ingresso di controllo
  (Operation) seleziona
  l'operazione desiderata.
  Dovendo selezionare 3 possibili
  ingressi in realtà abbiamo 2 linee
  Operation di controllo.
- Un terzo ingresso fornisce in Carryln per la somma
- Una seconda uscita rappresenta il CarryOut



Addizionatore

#### RISC-V: ALU a 64 bit

- Dati a e b su 64 bit è in grado di calcolare:
  - Result = a AND b (bit a bit)
  - Result = a OR b (bit a bit)
  - Result = a + b (somma su 64 cifre)
- Un ingresso di controllo
   (Operation) seleziona
   I'operazione desiderata.
   Dovendo selezionare 3 possibili ingressi in realtà abbiamo 2
   linee Operation di controllo.

| <del></del> |          |
|-------------|----------|
| Operation   | Function |
| 00          | AND      |
| 01          | OR       |
| 10          | SUM      |
| 11          | ??       |



### RISC-V: ALU a 64 bit

- Una ALU per operandi a e b ad n bit si ottiene utilizzando n ALU ad 1 bit
- Ogni ALU esegue l'operazione sulla coppia di bit degli operandi a e b nella stessa posizione (bit slice)
- Per sommare due operandi a e b di n bit il CarryOut dell'ALU per il bit in posizione i diventa il CarryIn del bit in posizione i + 1
- II CarryIn del bit meno significativo (a0 e b0) può essere usato come segnale di incremento per calcolare a + b + 1 (servirà per le sottrazioni)

| Operation | Function |
|-----------|----------|
| 00        | AND      |
| 01        | OR       |
| 10        | SUM      |
| 11        | ??       |



### RISC-V: ALU ad 1 bit (sub)

- Dati a e b è in grado di calcolare le funzioni precedenti con b o  $\overline{b}$
- Un ingresso di controllo aggiuntivo (Binvert) seleziona l'operazione desiderata
- Serve, ad esempio, per le sottrazioni (a - b)
  - . Ricordare il complemento a 2
  - . Con l'uso di  $\overline{\mathbf{b}}$
  - CarryIn = 1 per il bit meno significativo

Multiplexer



### RISC-V: ALU ad 1 bit (nor)

- Dati a e b è in grado di calcolare le funzioni precedenti con a o a
- Un ingresso di controllo aggiuntivo (Ainvert) seleziona l'operazione desiderata
- Serve, ad esempio, per funzioni NOR: (a OR b) con l'uso di (ā AND b)



- L'istruzione Set on Less Than (slt) restituisce 1 se rs1 < rs2 e 0 altrimenti
- Il valore di tutti i bit in uscita tranne quello <u>meno significativo</u> deve essere 0
- . Il valore del bit *meno significativo* dipende dal confronto

Idea: usare la sottrazione

$$(a - b) < 0$$
 implica  $a < b$ 

Per vedere se (a - b) è negativo verifico se il bit più significativo vale 1

ALU estesa per ognuno dei 63 bit meno significativi degli operandi



ALU estesa per il 64-esimo bit, quello più significativo degli operandi



- L'ingresso Less dell'ALU per i bit da 1 a 63 deve essere uguale a 0
- L'ingresso Less dell'ALU per il bit 0 (il meno significativo) deve essere uguale al bit di segno del risultato della differenza a – b
  - ovvero il bit della somma dell'ALU del bit 63
- Per questo l'ALU per il bit 63 ha un'uscita Set per il risultato dell'addizionatore



Ingresso a 0 per tutti tranne che per il bit meno significativo



Ingresso a 0



#### RISC-V: overflow

- Figura: Nella somma o differenza di due interi con segno in complemento a due, abbiamo overflow se I due operandi hanno lo stesso segno ma il risultato ha segno opposto.
- Ricordate la teoria del complemento a 2? Si ha overflow quando il CarryIn ed il CarryOut del bit più significativo sono discordi.



### Controllo operazioni dell'ALU

 Ogni volta che vogliamo che l'ALU esegua sottrazioni dobbiamo asserire (porre a 1) sia Carryln sia Binvert

| Operazione | Funzione | Binvert | CarryIn0 |
|------------|----------|---------|----------|
| 0          | AND      | 0       | 0        |
| 1          | OR       | 0       | 0        |
| 2          | ADD      | 0       | 0        |
| 2          | SUB      | 1       | 1        |
| 3          | SLT      | 1       | 1        |

CarryIn0 = Binvert Usiamo una sola linea chiamata **Bnegate** 

# RISC-V: ALU per beq

- L'istruzione Branch if Equal (beq) realizza un salto se due registri sono uguali
- Si realizza il salto eseguendo (a b) e controllando se il risultato è uguale a 0
- L'ALU fornisce il valore 1 quando tutti i bit del risultato sono a zero, in quanto:

$$(a-b) == 0 -> a == b$$

# RISC-V: ALU per beq



### Controllo operazioni dell'ALU

- Per il controllo dell'ALU, possiamo pensare alla combinazione di
  - 1 bit per l'ingresso Ainvert
  - 1 bit per l'ingresso Bnegate
  - 2 bit per gli ingressi Operation
- come a linee di controllo a 4 bit per fare in modo che l'ALU esegua la somma, la sottrazione, l'AND, l'OR, la NOR o la slt

| Ainvert<br>0 | Bnegate<br>0 | Operation 00 |
|--------------|--------------|--------------|
| 0            | 0            | 01           |
| 0            | 0            | 10           |
| 0            | 1            | 10           |
| 0            | 1            | 11           |
| 1            | 1            | 00           |

| ALU control lines | Function      |
|-------------------|---------------|
| 0000              | AND           |
| 0001              | OR            |
| 0010              | add           |
| 0110              | subtract      |
| 0111              | set less than |
| 1100              | NOR           |

#### RISC-V: ALU

- Il simbolo comunemente usato per rappresentare una ALU
- Anche comunemente usato per indicare un addizionatore, quindi è prassi indicare esplicitamente con una scritta quale di questi due componenti si intende.

| ALU control lines | Function      |
|-------------------|---------------|
| 0000              | AND           |
| 0001              | OR            |
| 0010              | add           |
| 0110              | subtract      |
| 0111              | set less than |
| 1100              | NOR           |



#### Clock

- Clock: un circuito che emette una serie di impulsi con una specifica larghezza e intermittenza
- Tempo di ciclo di clock: intervallo fra i fronti corrispondenti di due impulsi consecutivi
- Fronte di salita di C1 fronte di discesa di C1 fronte di salita di C2 fronte di discesa di C2



500 MHz = 2 nsec di tempo di ciclo di clock

#### Clock

#### Tempo di ciclo di clock

Il tempo si misura nei calcolatori in sottomultipli di secondo:

- 1 ms (millisecondo) =  $1*10^{-3}$  sec.
- 1 μs (microsecondo) = 1\*10<sup>-6</sup> sec.
- 1 ns (nanosecondo) = 1\*10<sup>-9</sup> sec.

Frequenza = 1/Tempo di ciclo

#### Frequenza di clock

La frequenza specifica il numero di periodi di clock per unità di tempo (ovvero per secondo).

La frequenza si calcola come inverso del tempo di ciclo di clock. L'unità di misura è l'Hertz, di cui si utilizzano per i calcolatori, i multipli:

1 KHz (KiloHertz) =  $1*10^3$  Hertz

1 MHz (MegaHertz) = 1\*10<sup>6</sup> Hertz

**1 GHz** (GigaHertz) = 1\*10<sup>9</sup> Hertz