COMP9020 18s1 Week 3 Problem Set Foundations of Computer Science

Week 3 Problem Set Logic – Boolean Algebra

[Show with no answers] [Show with all answers]

1. (Disjunctive normal form)

Consider the formulae $\phi_1 = (r \Rightarrow p)$ and $\phi_2 = (p \Rightarrow (q \lor \neg r))$. Transform the formula $\neg q \Rightarrow (\phi_1 \land \phi_2)$ into **DNF**. Simplify the result as much as possible.

[show answer]

2. (Karnaugh maps)

Consider the following canonical DNF of a Boolean function *f*:

$$vwx\overline{y} + vw\overline{x}\overline{y} + v\overline{w}xy + \overline{v}\overline{w}x\overline{y} + \overline{v}\overline{w}\overline{x}y + \overline{v}wx\overline{y} + \overline{v}w\overline{x}\overline{y} + \overline{v}w\overline{x}y$$

What is the minimal number of clauses required in any DNF representation of f? Justify your answer visually by drawing a Karnaugh map.

[show answer]

3. (Boolean functions)

Digital circuits are often built only from **nand**-gates with two inputs. A **nand** B is defined as $A \cdot B$, that is, $\neg (A \wedge B)$. Show that **nand**-gates are sufficient to encode *any* Boolean function over 2 variables.

[show answer]

4. Challenge Exercise

- a. Give all elements of BOOL(1), that is, all functions over a single Boolean variable.
- b. Prove that there are 2^{2^n} elements in BOOL(n) for $n \in \mathbb{P}$.

[show answer]