CONTE - PICCO BOTTA - ROMAGNOLI
Def: X, Y insiemi
Jua CORRISPONDENZA F di
dominio X e Codominio Y e un
dominio X e Codominio Y é un Sottoinsieme di XxX_
$\{(x,y) \mid x \in X, y \in Y \}$
Se $(x,y) \in F$ diremo che $x \in in$
Se $(x,y) \in F$ diremo che $x \in in$ Couispondenta con $y = (x \in fy)$
es: « De XXY couispondeure banali
· X = {studenti Polito}
· X = {studenti Polito} Y = {obcenti Polito}
$F = \frac{1}{2}(x,y) x \text{ segue un corso ohi } y = X \times Y$
Jef: X, Y insieuri _ Una courispondenta F

Def: X, Y insiemi - Una comispondenta F di dominio X e coolominio Y e detta Funzione da Xa Y (F: X-) X & $\forall x \in X$ $\exists ! y \in Y t. c. x f y$ <math>y = F(x)

YX = insieme di tutte le funzioni da Xa Y

es: · la couispondenza dell'esempio precedente non é una funzione.

•
$$F = \frac{1}{2}(x,y) \mid x+2y=5$$
 $\int \subseteq \mathbb{R} \times \mathbb{R}$ $y = \frac{5-x}{2}$

Def: X insieme.

Vina RELAZIONE R é una conispondenza di X in X (cioé un sottoinsieme di XXX)

R si dice · RIFLESSIVA se xRx YxeX

•TRANSITIVA &

ocky, ykz => ockz tzyżeX

· SIMMETRICA: xRy > yRx Yx,yeX

· ANTISIMMETRICA: xRy, yRx => x=y \x,y eX

es: · X = { spati vett. di dim. fiuita ou IR }

R = relatione di isomorfsmo $R = \{(V, W) \mid V \cong W \} \subseteq X \times X$

Révuna relatione di equivalenta.

Def: Una relazione che gode delle proprietà riflessiva, transitiva, simmetrica e detta RELAZIONE Di EQUIVACENZA.
Notazione: xRy (x~y)
es: $\ln 72 \times 72$ prenshiamo $R = \{(a,b) \mid a \leq b \}$
Se $a \le b \le a \implies a = b$ autisimmetria
Et una relatione d'ordine. Def: Una relatione riflessiva, transitiva e antisimmetrica e deta RELATIONE DISCIPILIT
D'ORDINE - Ordine totale = ordine + 4 coppia (x,y) o xxxy oppure yxxx XXX
Ordine parziale = non totale
es: la relatione d'ordine dell'esempio precedente é totale.

• X insieme con almeno 2 elementi
L'insieme di tutti i sottoinsiemi di
$$X \in A$$
 detto insieme Delle PARTI di X
 $P(X) = {Y \mid Y \subseteq X}$
 $SU P(X) definiamo la relatione
 $Y, RY_2 \iff Y, \subseteq Y_2$$

$$R = \{(Y_1, Y_2) \mid Y_1, Y_2 \subseteq X \in Y_1 \subseteq Y_2\}$$

Relazione d'ordine parziale

$$X = \{a, b\}$$
 $Y_1 = \{a\}$ $Y_2 = \{b\}$

Def: Sia Xuminsieune, e sia \sim una relatione di equivalenta su X _ L'insieune $\bar{x} = 2y \in X \mid x \sim y$? [x]

e dello CLASSE Di FQUIVALENZA dell'elemento xeX_

$$V = \{W \in X \mid W \cong V \}$$

 $= \{W \in X \mid dim(W) = dim(V) \}$

vedi ALG LIN

es (X=Z) Fissiamo ne IN e deficiamo a~b ⇔ a-b € un mulFiplo di n, cioé se f ceZ t.c. a-b= cn hotazione: $a \equiv_n b$ $a = b \pmod{n}$ "a é congruo modulo n a b" $a \equiv a$ pendré a-a=0=0. X=nB: Fct.c. X-β=cn B=u Y: Fdt.c. B-Y=dn $\alpha - \gamma = \alpha - \beta + \beta - \gamma = cn + dn = (c+d) n$ $\Rightarrow \alpha \equiv_{\mathsf{N}} \chi$ Sia a e Z, diré a
[a]?

 $\overline{a} = \frac{1}{2} |b \in \mathbb{Z}| |a = \frac{1}{2} |b \in \mathbb{Z}| |a - b = cn \text{ per qualche } (c \in \mathbb{Z})$ $= \frac{1}{2} |b \in \mathbb{Z}| |b = a - cn, \text{ per qualche } c \in \mathbb{Z}$ |b = a + dn

dim: x e x Yx e X

$$X = \bigcup_{x \in X} x \subseteq \bigcup_{x \in X} x = \bigcup_{x \in X}$$

$$\Rightarrow \times \sim y$$

$$x \in \overline{y} \implies \overline{x} \subseteq \overline{y}$$

$$y \in \overline{x} \implies \overline{y} \subseteq \overline{x} \implies \overline{x} = \overline{y}$$

CVD

Def: X insieune, ~ relatione di equivalenta su X_ L'INSIEME

QUOZIENTE (X/2) "X modulo ~"

É l'insieme dette classi di equivalenta:

$$\times / = \{ \overline{x} \}_{x \in X}$$

$$\frac{es:}{=} \sim = =_2 \qquad \mathbb{Z} = \overline{0} \cup \overline{1}$$

$$\mathbb{Z}/_{\sim} = \mathbb{Z}_{2} = \{\overline{0}, \overline{1}\}$$

NOTATIONE
$$\mathbb{Z}_n = \mathbb{Z}_n$$

$$Z_3 = \{\bar{0}, \bar{1}, \bar{2}\}$$
multipli di $3 + 1$
 $\{0, 3, 6, -3, ... \}$

$$Z_{N} = \frac{2}{5}, \overline{1}, \overline{2}, ..., \overline{n-1}$$

 $n \in \mathbb{N}$
 $1N = \frac{4}{2}, 3, ..., \frac{3}{2}$
 $1N_{0} = \mathbb{N} \cup \frac{2}{3}$
 $Z_{12} = \frac{2}{5}, \overline{1}, ..., \overline{n}$

7/24

OSS: l'insieme quoziente Zn contiene n elementi

$$\frac{es:}{\forall x, y \in \mathbb{R}} = \frac{\mathbb{R}}{\mathbb{R}} = \mathbb{R} = \mathbb{R}$$

· n é una relazione di equiv.

•
$$R/N = [0, 1)$$

fe
$$x \in \mathbb{R}$$
 $x = a_1 a_0 a_1 a_2 a_3 \cdots$
 $x \sim 0_1 a_0 a_1 a_2 \cdots$

Sia IN = numeri naturali NOTATIONE: In={1,2,3,...,n} = N PRINCIPO D'INDUTIONE de P(k) € una propriera che dipende da KEN e vale che: (1) P(1) e vera 2) Yn>1 se P(n) Evera -> P(n+1) E vera, allora P(K) & vera Y KEIN_ es: Vsiamo l'induzione per mostrare che $\sum_{i=1}^{\infty} n^i = \frac{N(n+1)}{2}$ $\frac{d_{im}}{d_{i}} = \frac{1}{n} : \sum_{i=1}^{n} \frac{2}{i} = \frac{1(1+1)}{2}$ N>1, supporriamo che la tesi sia vera per n $\sum_{i=1}^{N+1} i = \left(\sum_{i=1}^{N} i + (N+1)\right) = \frac{ipolesi induttiva}{2} + (N+1)$ $= \frac{N(n+4)+2(n+4)}{2} = \frac{N^2+N+2n+2}{2} = \frac{(n+4)(n+2)}{2}$

esercitio per casa: dimostrare che per agui zeZ, z³-z é divisibile per 6_

PRINCIPIO DEL BUON ORDINAMENTO
Prop: Ogui sottoinsierne non vuoto SEIN ha un primo elemento_
dim: dimostriamo che se S nou ha un primo elt., allora S=Ø (cioé IN\S=IN)
osserviamo che 1¢S, altrimenti S avrebbe un primo elt. (=> 1 € IN \S)
Supposition the $I_n = \{1,2,3,,n\} \subseteq N \setminus S$: se $n+1 \notin N \setminus S \Longrightarrow n+1 \in S$, ma non puó essere, perché soubbe un primo elemento!
In altre parole: Se In & IN/S => Int & IN/S => per induzione, to the IN & IN/S
Abbiamo dimostrato: INDUZIONE >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dim: SEIN sottoinsierne definito cost: . 1ES
. Sha la proprieto che se ne S \Rightarrow n+1eS Vogliamo dimostrare che S= IN, cioé $ N \setminus S = \emptyset$:

Se per assurdo MNS + Ø, & ccome vale
Se per asserndo INNS # \$, Siccome vale il buon ordinamento per ipores; INNS deve avere un primo ett, diamiamolo m_
avere un primo ett, diamiamolo m_
Osserviamo che m>1, perché 1 ES 1 & MS_
m-1 non può appartenere a NNS (altrimenti sarebbe lui il 1° ett, non m.)
quindi $m-1 \in S \implies (m-1)+1 \in S$ ASSURDO
7-130 KIO

ALGORITMO EUCLIDEO DI DIVISIONE tae No e bell 7! que No, con 0 sacb tali che:

q = qb + n q = qvoziente n = resto