MATH 2 Lecture Notes

Tejas Patel

Tuesday, 14 January, 2025

Contents

1	Chapter 1		
	1.1	Terminology	
	1.2	Some Mathematical Models	
2	Firs	st-Order Differential Equations	
	2.1	Preliminary Theory	
		Separable Variables	
		Homogenous Equations	
		Exact Equations	
		Preliminary Theory	
_			
3		ample Problems with Solutions	
	3.1		

Chapter 1 1

1.1 **Terminology**

Definition A differential equation is an equation containing the derivatives or differentials of one or more dependent variables, with respect to one or more independent variables.

- · An Ordinary Differential Equation (ODE) involves only ordinary derivatives
- · A Partial Differential Equation (PDE) involves partial derivatives.

Definition The order of a DE is the order of the highest-order derivative that appears in the DE

Notation $F(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2})$ Definition A linear DE is any DE that can be written in form:

 $a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^{(n)} = b(x)$

For a DE to be linear:

- 1. Y and all of its derivatives much be of the 1st degree
- 2. Any term that does not include y or any of its derivatives must be a function of x

1.2Some Mathematical Models

I. Free-falling body

Goal: Find s(t).

2

Set up a differential equation in S, model it, then solve

$$ma = mg$$

$$\frac{d^2s}{dt^2} = g$$

$$v = \frac{ds}{ds} \quad a = \frac{dv}{ds}$$

 $v=\frac{ds}{dt}, g=\frac{dv}{dt}$ What if there is air resistance. Assume force scales linear with velocity

$$\frac{dv}{dt} = g - \frac{kv}{m} \rightarrow \frac{dv}{dt} = g - \frac{k}{m} \cdot \frac{ds}{dt}$$

II: Series Circuit

Voltage drops:
$$V = L \frac{dI}{dt}, V = L \frac{d^2q}{dt^2}$$

$$V = IR, V = R \frac{dq}{dt}$$

$$V = \frac{q}{C}$$

$$d^2q = dq$$

$$E(t) = L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C}$$

III: Population Growth

P = P(t) = population at time t - use exponential model $\frac{dp}{dt} \propto P \rightarrow \frac{dp}{dt} = kP \rightarrow = Ce^{kt}$ where C is the initial population

IV: Population Growth with Finite Capacity

"Carrying Capacity" = N — uses the logistic growth model $\frac{dp}{dt} \propto \text{both P and amount to carrying capacity (N-P)}$ $\frac{dp}{dt} = kP(N-P)$

V: Chemical Reaction

 $A + B \rightarrow C$ Concentrations of A and B decreases by amount of C formed

Can we write DE governing the concentration of C x(t)?

The rate at which the reaaction takes place \propto Product of the remaining concentrations of A and B α initial concentration of A

 β initial concentration of B

$$\frac{dx}{dt} = k(\alpha - x)(\beta - x)$$

2 First-Order Differential Equations

2.1 Preliminary Theory

Example DE: $y' = 3y \Rightarrow y = Ce^{3x}$ the general solution where C is an arbitrary constant

Add initial condition y(0) = 5 plug in x=0 to $5 = Ce^{3*0}$, 5 = C*1, $C = 5 \Leftarrow$ Initial Value Problem $y = 5e^{3x}$ is the general solution for the Initial Value Problem

Theorem
$$f(x) = \begin{cases} \frac{dy}{dx} = f(x,y) & \text{Differential Equation} \\ y(x_0) = y_0 & \text{Initial Condition} \end{cases}$$

Let R be a rectangular region in the xy-plane defined by $a \le x \le b, c \le y \le d$, that contains the point (x_0, y_0) in its interior.

If f(x,y) and $\partial f \partial y$ are continuous on R, then there exists an interval I centered at x_o , and on this interval I there exists a unique solution y(x) for this IVP

Key Questions:

Does every IVP have at least one solution?

If an IVP has a solution is it the only solution?

- 2.2 Separable Variables
- 2.3 Homogenous Equations
- 2.4 Exact Equations
- 2.5 Preliminary Theory

Example Problems with Solutions 3

3.1

$$\begin{cases} \frac{dy}{dx} = 2xy^{\frac{2}{3}} \\ y(0) = 0 \end{cases} \quad y = 0 \text{ and } y = \frac{x^6}{27} \text{ are solutions}$$

$$\frac{dy}{dx}\frac{x^6}{27} = 2x \cdot \frac{x^4}{9} = y^{\frac{2}{3}}$$

$$\begin{cases} \frac{dy}{dx} = 2yx^{\frac{2}{3}} \\ y(0) = 0 \end{cases}$$
 and $y = 0$ is the only solution. This IVP satisfies a certain condition and that makes

it have a unique solution

$$\begin{cases} \frac{dy}{dx} = xy^{\frac{1}{2}} \\ y(0) = 0 \end{cases}$$

Does the IVP have a unique solution? When on \mathbb{R}^2 is $\frac{\partial f}{\partial y}$ continuous? $\frac{\partial f}{\partial y} = \frac{1}{2}xy^{-\frac{1}{2}} = \frac{x}{2\sqrt{y}}$

$$\begin{cases} \frac{dy}{dx} = 3y & \text{Yes there is a unique solution, } \frac{\partial f}{\partial y} = 3 \\ y(0) = 5 & \end{cases}$$

Determine the region R for which the DE would have a unique solution through a point (x_0, y_0) in the region $\frac{dy}{dx} = \sqrt{xy}$

Where on
$$\mathbb{R}^2$$
 is $\frac{\partial f}{\partial y}$ continuous? $\frac{\partial f}{\partial y} = \frac{1}{2}(xy)^{-1/2} * \frac{\partial}{\partial y}(xy) = \frac{x}{2\sqrt{xy}}$

$$\frac{\mathbf{DIY}}{\frac{dy}{dx}} - y = x$$