Problem Set #03

October 1, 2019

1. We have a DFA for language A and a DFA for language B

Want to show: language C

"perfect shuffle": { w|w = $a_1b_1...a_kb_k$, where $a_1...a_k \in A$ $b_1...b_k \in B$, each $a_ib_i \in \sum^*$ }

$$D_A = (Q_A, \sum, \delta_A q_A, F_A)$$
 and $D_B = (Q_B, \sum, \delta_B, q_B, F_B)$

To create this DFA, call it D_C I need to construct one that essentially switches between D_A and D_B . To do this D_C will need to keep track of the current state in D_A and D_B as well as whether the character in the string should advance D_A or D_B . The accept state for D_C is if D_A and D_B are both in accept states

 D_C is defined as follows:

 $Q = Q_A \times Q_B \times \{A, B\}$ This will track the current state for both D_A and D_B as well as whether the character in the string should advance D_A or D_B

 $\mathbf{q} = (\mathbf{q}_A \ \mathbf{q}_B, \mathbf{A})$ So \mathbf{D}_C starts at \mathbf{q}_A applies the first character then switches to \mathbf{q}_B applies the next and then the following character should be in \mathbf{A}

 $\sum = \sum_A \cup \sum_B$ as it can accept the alphabet of either

 $\delta((x,y,A),i) = (\delta_A(x,i),y,B)$ If the current state of D_A is x while the current state of D_B is y and the next character to be read is i we will change to current state in D_A to $\delta_A(x,i)$.

Following similar logic: $\delta((x,y,B),i) = (x, \delta_B(y,i),A)$ if i is read into D_B the next state for D_B is $\delta_B(y,i)$ and the next character will be read will change D_A

 $F = F_A \times F_B$ shows that if we are in an accept state for both D_A and D_B then D_C accepts

Since we have defined a DFA for C, C is then normal.