Task 1

1-Difference Between Spinning Disk and Solid State Disk (SSD):

Spinning Disk (HDD):

- 1. Uses magnetic storage with spinning platters for data storage.
- 2. Slower speed due to mechanical movement of the read/write head and rotational delay.
- 3. Prone to mechanical failure because of moving parts.

Solid State Disk (SSD):

- 1. Uses flash memory with no moving parts.
- 2. Faster performance as it has no mechanical delay.
- 3. More durable as it is not affected by wear from moving parts.

2-Logical Block Addressing (LBA):

LBA is a method of addressing sectors on a hard drive as a linear list of blocks, ignoring the physical geometry of the disk (cylinders, heads, sectors).

Maximum Disk Size with 24-bit LBA:

2*24×512 bytes=8 GB

Maximum Disk Size with 28-bit LBA:

2*28×512 bytes=128 GB= 128

3-Hard Disk Interface and Features:

A hard disk interface is the connection between the hard disk and the computer system for data transfer. Examples include:

1. IDE (Integrated Drive Electronics):

- o Parallel data transfer.
- Legacy interface.

2. SATA (Serial ATA):

- High speed (up to 6 Gbps).
- Supports hot swapping.

3. SCSI (Small Computer System Interface):

- Used in servers.
- o Allows multiple devices on one bus.

4. NVMe (Non-Volatile Memory Express):

- Extremely high speeds for SSDs.
- o Direct connection to PCIe lanes.

4-Reading and Writing on CHS Disk:

Reading/Writing Process:

- o CHS Addressing: Disk is accessed based on the Cylinder, Head, and Sector number.
- Steps:

- 1. Seek to the specified cylinder.
- 2. Move to the head.
- 3. Wait for the sector to rotate under the read/write head.
- Seek Time vs. Rotational Delay:
 - **Seek Time:** Time to position the read/write head to the correct track.
 - o Rotational Delay: Time for the disk to rotate the desired sector under the head.
- Mapping CHS to LBA: LBA reduces seek time by treating sectors as a sequential array, eliminating the complexity of CHS calculations.

Task 2

1-Advantages of Partitioning a Hard Disk:

- 1. Better organization of data (e.g., OS, applications, personal files).
- 2. Easier backups and recovery.
- 3. Multiple operating system installations.
- 4. Improved performance by separating swap space.
- 5. Enhanced security by isolating critical data.

2-Primary Partition vs. Logical Partition:

Feature	Primary Partition	Logical Partition
Definition	Main partitions (up to 4 per disk)	Subdivisions of an extended partition
Bootable	Can store bootable OS	Cannot directly boot
Limit	Maximum of 4 (or 3 + 1 extended)	Unlimited within the extended partition

3-Partition Table:

A partition table is a data structure stored on the disk that contains information about the partitions.

Schematic View of Partition Table:

plaintext

Copy code

Ox01FE | 2 bytes | Boot Signature (0x55AA)

4-Shell Commands:

1. Boot Signature of Hard Disk:

sudo dd if=/dev/sdX bs=512 count=1 | hexdump -C | grep 55 aa

2. Stage 1 Boot Loader Program:

sudo dd if=/dev/sdX bs=446 count=1 | hexdump -C

3. Partition Type of First Partition:

sudo fdisk -l /dev/sdX

Partition Types and Numbers:

1. **NTFS**: 7

2. **FAT32**: b

3. Linux Filesystem: 83

4. **Swap**: 82

5. EFI System Partition: ef

Create Partitions with fdisk:

sudo fdisk /dev/sdX

Task 3

File System and Journaling File System:

• File System: Organizes and manages data on a storage device (e.g., ext4, NTFS).

• **Journaling File System:** Logs changes before committing them to the main file system, ensuring data integrity.

Features of a Good File System:

- 1. Efficient storage allocation.
- 2. Data security and integrity.
- 3. File indexing and metadata management.
- 4. Scalability.
- 5. Error recovery.

Commands:

List Loaded File System Drivers:

cat /proc/filesystems

Maximum File and Partition Size:

File System	Max File Size	Max Partition Size
ext3	2 TB	16 TB
ext4	16 TB	1 EB
vfat	4 GB	2 TB
ntfs	16 EB	16 EB
zfs	16 EB	256 ZB

Display Disk Information:

lsblk -o NAME, SIZE, FSTYPE, PARTTYPE, MODE

Assign Label:

sudo e2label /dev/sdX pucit9

Undo Label:

sudo e2label /dev/sdX ""

Format Partition to NTFS:

sudo mkfs.ntfs /dev/sdX2

Confirm NTFS Partition:

sudo blkid /dev/sdX2