

Katedra Grafiki Wizji Komputerowej

i Systemów Cyfrowych Karta projektu SMiW

Rok akademicki	Rodzaj studiów*: SSI Glw/SSI Ktw/NSI Glw	Dzień tygodnia i godzina zajęć:	Numer sekcji:	
2023/2024	SSI Glw	Poniedziałek 11:30	1	
lmię:	Bartosz			
Nazwisko:	Heliński	11:30	<u> </u>	

Temat projektu

Inteligentny kask rowerowy

Analiza zadania i wybór rozwiązania

1. Potrzebne elementy

- -mocne światło białe
- -czujnik zmierzchu
- -światło czerwone
- -moduł akcelerometru i żyroskopu
- -2 czerwone ledy
- -zdalny przycisk
- -mikrokontroler
- -moduł zasilania (akumulator)
- -ogniwo słoneczne

2. Analiza komponentów

1) mocne światło białe

Lp.	Nazwa	Rozmiar	Zasilanie	Pobór prądu	Źródło światła	Cena
1	Rsled RSLED Lampa 4 SMD	59x35x21	12/24V	ok. 55mA	led SMD	28,00zł
2	Ks trailers lc-066	120x57x39	12/24V	ok 40mA	żarówka	20,00zł
3	WAŚ 701Z	112x72x71	12-24V	ok 60mA	led	16,00zł
4	LED WAŚ W236 1531AR	80x60x25	12-24V	ok 60mA	led	34,00zł

Tab.1 "Porównanie źródeł mocnego światła białego"

Potrzebne jest możliwie jak najmniejsze źródło mocnego światła białego w przystępnej cenie i niskim poborem prądu z zasilaniem 12V. Porównanie różnych modeli pod względem wszystkich kryteriów pokazało przewagę pierwszego (Rsled RSLED Lampa 4 SMD) nad innymi modelami pod względem wielkości, która jest tu kluczowa. Jego cena oraz inne parametry również idealnie pasują do projektu.

2) czujnik zmierzchu

Lp.	Nazwa	Rozmiar	Zasilanie	Informacja	Cena
1	Czujnik fotorezystor Arduino	32x14x7	3,3/5V	Wy analog/cyfrowe	9,20zł
2	Czujnik XH-M131	40x17x10	12V	automaczyny switch	9,80zł
3	ACS GY-30 BH1750	15x33x3	3-5V	interfejs IIC	10,40zł
4	Moduł ACS PSL4P	32x14x6	3,2-5V	Wy analog/cyfrowe	4,90zł

Tab.2 "Porównanie czujników zmierzchu"

Najważniejszymi parametrami w szukanym czujniku był ponownie mały rozmiar, zasilanie najlepiej 3,3V w tym przypadku, przekazanie informacji do mikrokontrolera portem analogowym bądź cyfrowym oraz niska cena. Ostatni moduł wydaje się perfekcyjnym wyborem, natomiast z opinii użytkowników wynika, że nie jest najlepszej jakości, co może potwierdzić jego cena, dlatego ostatecznie wybrany został pierwszy moduł.

3) światło czerwone

Lp.	Nazwa	Rozmiar	Zasilanie	Źródło światła	Cena
1	Lampa 6 LED - 597R	112x28x10	12-18V	led	17,65zł
2	WAŚ W236 1531F	80x60x25	12-24V	led	48,60zł
3	WAŚ 699Z	80x50x40	12-24V	żarówka	16,00zł
4	WAS 1481KR RF W225	117x56x20	12-24V	led	54,00zł

Tab.3 "Porównanie źródeł światła czerwonego"

Ponownie szukane było źródło światła, tym razem czerwonego z zasilaniem 12V, w przystępnej cenie. Dominowały tu modele WOŚ, które jednak bardziej pasują do oświetleń samochodowych, dlatego ostatecznie wygrał model lampy 6 LED – 597R. Działa on na ledy, jest tani i niedużych rozmiarów.

4) moduł akcelerometru i żyroskopu

Lp.	Nazwa	Rozmiar	Zasilanie	Osie	Cena
1	BMI160 6DoF IMU	6x5,5x2,5	3,2-6V	3	49,50zł
2	MPU-6050	6x5,5x2,5	3-5V	3	69,50zł
3	LSM6DS3 - Seeedstudio	6,5x3,5x1	3,3-5V	6	55,90zł

Tab.4 "Porównanie modułów akcelerometru i żyroskopu"

Wszystkie porównywane modele nadają się do projektu, lecz potrzebne są pomiary tylko na 3 osiach, dlatego pierwszy najtańszy wygrywa.

5) 2 czerwone ledy

Lp.	Nazwa	Zasilanie	miganie	Cena
1	Dioda LED PRC 1629# 5mm	12V	tak	6,50zł
2	LED CZERWONA 3mm/12V	12V	nie	5,00zł
1 1	Kontrolka LED 5/8 mm, 12V RED	12V	nie	8,00zł

Tab.5 "Porównanie czerwonych diod led"

Projekt wymaga 2 prostych czerwonych diod led. W przypadku pierwszego modelu przeważa fakt, że jest ona migająca, co jest bardzo korzystne.

6) zdalny przycisk

Lp.	Nazwa	Zasilanie	autonomiczność	Cena
1	Zdalne sterowanie 5V 4 kanalowe	5V	nie	55,50zł
2	Pilotem 12V 433MHz Przełącznik	10-14V	tak	37,50zł
3	Przekaźnik 1CH 433Mhz 12V	12V	tak	36,00zł

Tab.6 "Porównanie zdalnych przycisków"

Pierwszy z modeli wymaga podpięcia go do mikrokontrolera, podczas gdy pozostałe mogą działać autonomicznie, natomiast wymagają większego napięcia. Z tego powodu wybrany został pierwszy model.

7) mikrokontroler

Lp.	Nazwa	Zasilanie	Taktowanie	Pamięć	Wyprowadzenia	Cena
1	Arduino Uno Rev3	7-12V	16MHz	32kB Flash, 2kB RAM	14 GPIO	100,00zł
2	Arduino micro ATMega32U4	7-12V	16MHz	32kB Flash, 2.5kB RAM, 1kB EEPROM	14 GPIO	32,00zł
3	Arduino nano SP32-S3	6-21V	133MHz	512kB SRAM, 384kB ROM	13 GPIO	90,00zł

Tab.7 "Porównanie mikrokontrolerów"

Większość współczesnych mikrokontrolerów pasuje do tego projektu. Porównano 3 przykładowe, odpowiadające wymaganiom. Wybrany został pierwszy, ponieważ posiada trafną ilością portów, odpowiednie zasilanie oraz taktowanie. Jest to interesujący moduł mikrokontrolera, który warto przetestować.

8) moduł zasilania

Do zasilenia układu użyty zostanie powerbank Powerbank Swissten, który posiada odpowiednie napięcia (5/9/12V) oraz dostatecznie dość dużą pojemność wymaganą w projekcie.

9) ogniwo słoneczne

Jako źródło dodatkowego ładowania układu znaleziona zostały został nieduży panel słoneczny Solar 5V 8W USB, pozwalający doładować akumulator w słoneczne dni w trakcie używania układu.

3. Schemat blokowy

