Weighted Parity-Check Codes for Channels with State and Asymmetric Channels

Chih Wei Ling, Yanxiao Liu and Cheuk Ting Li chihweiLing@link.cuhk.edu.hk yanxiaoliu@link.cuhk.edu.hk ctli@ie.cuhk.edu.hk

Department of Information Engineering, The Chinese University of Hong Kong

1st July 2022

Table of Contents

- Introduction and Motivation
- Our Construction: Weighted Parity-Check (WPC) Codes
- Main Result: Capacity-Achieving WPC
- Simulation and Result

 Background: Find practical construction for the Gelfand-Pinsker setting with cost constraint and for the asymmetric channels

- Background: Find practical construction for the Gelfand-Pinsker setting with cost constraint and for the asymmetric channels
 - Barron et al. [2003] proposed nested linear code, but not sparse

- Background: Find practical construction for the Gelfand-Pinsker setting with cost constraint and for the asymmetric channels
 - Barron et al. [2003] proposed nested linear code, but not sparse
 - Martinian and Wainwright [2006] used sparse graphical code to generate nested linear code which is practical, but the construction induces two error events

- Background: Find practical construction for the Gelfand-Pinsker setting with cost constraint and for the asymmetric channels
 - Barron et al. [2003] proposed nested linear code, but not sparse
 - Martinian and Wainwright [2006] used sparse graphical code to generate nested linear code which is practical, but the construction induces two error events
 - Li and Anantharam [2021] proposed Poisson functional representation construction, with the best known second-order error bound (Scarlett [2015]) compared to other finite-blocklength schemes, but is impractical

- Background: Find practical construction for the Gelfand-Pinsker setting with cost constraint and for the asymmetric channels
 - Barron et al. [2003] proposed nested linear code, but not sparse
 - Martinian and Wainwright [2006] used sparse graphical code to generate nested linear code which is practical, but the construction induces two error events
 - Li and Anantharam [2021] proposed Poisson functional representation construction, with the best known second-order error bound (Scarlett [2015]) compared to other finite-blocklength schemes, but is impractical
- Our goal:
 - Construct code that is simultaneously practical and having error performance as good as (and sometimes better than) the construction in Barron et al. [2003]

• Let $\mathbf{H} \in \mathbb{F}_2^{n \times n}$ be a full-rank matrix, called the *full parity check matrix*

- ullet Let $oldsymbol{\mathsf{H}} \in \mathbb{F}_2^{n imes n}$ be a full-rank matrix, called the *full parity check matrix*
 - \bullet H uniformly chosen random full-rank matrix

- Let $\mathbf{H} \in \mathbb{F}_2^{n \times n}$ be a full-rank matrix, called the *full parity check matrix*
 - H uniformly chosen random full-rank matrix
- For a bias vector $\mathbf{q} = [q_1, \dots, q_n] \in [0, 1]^n$, define the \mathbf{q} -weight of a vector $\mathbf{u} \in \mathbb{F}_2^n$ as

$$w_{\mathbf{q}}(\mathbf{u}) := \prod_{i=1}^{n} q_i^{u_i} (1 - q_i)^{1 - u_i} = 2^{-\sum_{i=1}^{n} H_b(u_i, q_i)}$$

- ullet Let $oldsymbol{\mathsf{H}} \in \mathbb{F}_2^{n imes n}$ be a full-rank matrix, called the *full parity check matrix*
 - H uniformly chosen random full-rank matrix
- For a bias vector $\mathbf{q} = [q_1, \dots, q_n] \in [0, 1]^n$, define the \mathbf{q} -weight of a vector $\mathbf{u} \in \mathbb{F}_2^n$ as

$$w_{\mathbf{q}}(\mathbf{u}) := \prod_{i=1}^{n} q_i^{u_i} (1 - q_i)^{1 - u_i} = 2^{-\sum_{i=1}^{n} H_b(u_i, q_i)}$$

Definition

Given the bias vectors $\mathbf{p}, \mathbf{q} \in [0,1]^n$ (we call \mathbf{p} the *codeword bias*, and \mathbf{q} the *parity bias*), the *query function* with respect to \mathbf{H} is given by

$$f_{\mathsf{H}}(\mathsf{p},\mathsf{q}) := \operatorname{argmax}_{\mathsf{x} \in \mathbb{F}_2^n} w_{\mathsf{p}}(\mathsf{x}) w_{\mathsf{q}}(\mathsf{x}\mathsf{H}^T)$$
 (1)

Weighted Parity-Check Codes (WPC)

Definition: Encoder

Given the encoder codeword bias function $\mathbf{p}_e: \mathbb{F}_2^k \to [0,1]^n$, which maps a message $\mathbf{m} \in \mathbb{F}_2^k$ (and other information available at the encoder) to a bias vector $\mathbf{p}_e(\mathbf{m})$, and the encoder parity bias function $\mathbf{q}_e: \mathbb{F}_2^k \to [0,1]^n$. The encoding function is

$$\mathbf{m} \mapsto \mathbf{x} = f_{\mathsf{H}} \left(\mathbf{p}_{\mathsf{e}}(\mathbf{m}), \, \mathbf{q}_{\mathsf{e}}(\mathbf{m}) \right)$$
 (2)

Weighted Parity-Check Codes (WPC)

Definition: Encoder

Given the encoder codeword bias function $\mathbf{p}_e: \mathbb{F}_2^k \to [0,1]^n$, which maps a message $\mathbf{m} \in \mathbb{F}_2^k$ (and other information available at the encoder) to a bias vector $\mathbf{p}_e(\mathbf{m})$, and the encoder parity bias function $\mathbf{q}_e: \mathbb{F}_2^k \to [0,1]^n$. The encoding function is

$$\mathbf{m} \mapsto \mathbf{x} = f_{\mathsf{H}} \left(\mathbf{p}_{\mathsf{e}}(\mathbf{m}), \, \mathbf{q}_{\mathsf{e}}(\mathbf{m}) \right)$$
 (2)

Definition: Decoder

Similarly, given the decoder codeword and parity bias functions $\mathbf{p}_d, \mathbf{q}_d : \mathbb{F}_2^n \to [0,1]^n$. For a corrupted version \mathbf{y} of \mathbf{x} , the decoding function is

$$\mathbf{y} \mapsto \hat{\mathbf{m}} = \left| (\hat{\mathbf{x}} \mathbf{H}^T)_1, \dots, (\hat{\mathbf{x}} \mathbf{H}^T)_k \right|, \tag{3}$$

where

$$\hat{\mathbf{x}} := f_{\mathsf{H}} \left(\mathbf{p}_d(\mathbf{y}), \, \mathbf{q}_d(\mathbf{y}) \right) \tag{4}$$

Recovering Conventional Linear Codes by WPC

• Given the binary symmetric channel with parameter β , i.e., $P(y_i|x_i)$ is $BSC(\beta)$

Recovering Conventional Linear Codes by WPC

- Given the binary symmetric channel with parameter β , i.e., $P(y_i|x_i)$ is $BSC(\beta)$
- To recover the conventional linear code, we take

$$\mathbf{p}_{e}(\mathbf{m}) = \frac{1}{2}\mathbf{1}^{n},$$
 $\mathbf{q}_{e}(\mathbf{m}) = [\mathbf{m}, \mathbf{0}^{n-k}],$ $\mathbf{p}_{d}(\mathbf{y}) = \beta\mathbf{1}^{n} + (1 - 2\beta)\mathbf{y},$ $\mathbf{q}_{d}(\mathbf{y}) = \frac{1}{2}\mathbf{1}^{n},$

and substitute into Equations (2) and (4)

Recovering Conventional Linear Codes by WPC

- Given the binary symmetric channel with parameter β , i.e., $P(y_i|x_i)$ is $BSC(\beta)$
- To recover the conventional linear code, we take

$$\mathbf{p}_{e}(\mathbf{m}) = \frac{1}{2}\mathbf{1}^{n},$$
 $\mathbf{q}_{e}(\mathbf{m}) = [\mathbf{m}, \mathbf{0}^{n-k}],$ $\mathbf{p}_{d}(\mathbf{y}) = \beta\mathbf{1}^{n} + (1-2\beta)\mathbf{y},$ $\mathbf{q}_{d}(\mathbf{y}) = \frac{1}{2}\mathbf{1}^{n},$

and substitute into Equations (2) and (4)

• Note that $w_{\mathbf{p}_d(\mathbf{y})}(\mathbf{x}) = P(\mathbf{x}|\mathbf{y})$ is the posterior distribution of \mathbf{x}

WPC for Gelfand-Pinsker Setting

WPC for Gelfand-Pinsker Setting

- We construct the weighted parity-check codes with state as follows
- Encoder: after observing **m** and **s**, takes

$$\mathbf{p}_e(\mathbf{m}, \mathbf{s}) = [p_e(s_1), \dots, p_e(s_n)], \quad \mathbf{q}_e(\mathbf{m}, \mathbf{s}) = [\mathbf{m}, \mathbf{q}], \quad (5)$$

and substitutes into (2) to obtain the codeword \mathbf{x}

WPC for Gelfand-Pinsker Setting

- We construct the weighted parity-check codes with state as follows
- Encoder: after observing **m** and **s**, takes

$$\mathbf{p}_e(\mathbf{m}, \mathbf{s}) = [p_e(s_1), \dots, p_e(s_n)], \quad \mathbf{q}_e(\mathbf{m}, \mathbf{s}) = [\mathbf{m}, \mathbf{q}], \quad (5)$$

and substitutes into (2) to obtain the codeword x

• Decoder: after observing y, takes

$$\mathbf{p}_d(\mathbf{y}) = [p_d(y_1), \dots, p_d(y_n)], \quad \mathbf{q}_d(\mathbf{y}) = [\frac{1}{2}\mathbf{1}^k, \mathbf{q}], \tag{6}$$

and outputs $\hat{\mathbf{m}} = [(\hat{\mathbf{x}}\mathbf{H}^T)_1, \dots, (\hat{\mathbf{x}}\mathbf{H}^T)_k]$ after substituting into (4)

WPC is Capacity-achieving (1/3)

We first state our main result as follows:

Theorem 1

• Assume $|\mathcal{S}|, |\mathcal{Y}| < \infty$. Fix any $P_{X|S}$, and let $S \sim P_S$, $X|S \sim P_{X|S}$, $Y|(S,X) \sim P_{Y|S,X}$

WPC is Capacity-achieving (1/3)

• We first state our main result as follows:

Theorem 1

- Assume $|\mathcal{S}|, |\mathcal{Y}| < \infty$. Fix any $P_{X|S}$, and let $S \sim P_S$, $X|S \sim P_{X|S}$, $Y|(S,X) \sim P_{Y|S,X}$
- Consider the weighted parity-check code with state, where $p_e(s) = P_{X|S}(1|s)$, $p_d(y) = P_{X|Y}(1|y)$, and P_Q is a discrete distribution over [0,1] with finite support satisfying

$$\mathbf{E}[H_b(Q)] = (1 - H(X|S))/(1 - R) \tag{7}$$

WPC is Capacity-achieving (1/3)

• We first state our main result as follows:

Theorem 1

- Assume $|\mathcal{S}|, |\mathcal{Y}| < \infty$. Fix any $P_{X|S}$, and let $S \sim P_S$, $X|S \sim P_{X|S}$, $Y|(S,X) \sim P_{Y|S,X}$
- Consider the weighted parity-check code with state, where $p_e(s) = P_{X|S}(1|s)$, $p_d(y) = P_{X|Y}(1|y)$, and P_Q is a discrete distribution over [0,1] with finite support satisfying

$$\mathbf{E}[H_b(Q)] = (1 - H(X|S))/(1 - R) \tag{7}$$

• Then, for any R < I(X;Y) - I(X;S), the probability of error of the code tends to 0, and the empirical joint distribution of $\{(s_i,x_i)\}_{i=1,\dots,n}$ tends to $P_SP_{X|S}$ in probability as $n \to \infty$

WPC is Capacity-achieving (2/3)

Lemma 1

• Consider the WPC with state, where $|\mathcal{S}|, |\mathcal{Y}| < \infty$, and P_Q is a discrete distribution over [0,1] with finite support

WPC is Capacity-achieving (2/3)

Lemma 1

- Consider the WPC with state, where $|\mathcal{S}|, |\mathcal{Y}| < \infty$, and P_Q is a discrete distribution over [0,1] with finite support
- Let $S \sim P_S$, $X|S \sim P_{X|S}$, $Y|(S,X) \sim P_{Y|S,X}$, $Q \sim P_Q$, $V \in \{0,1\}$, $V|Q \sim P_{V|Q}$, where $(P_{X|S}, P_{V|Q})$ is the minimizer of

min
$$\mathbf{E}[H_b(X, p_e(S))] + (1 - R)\mathbf{E}[H_b(V, Q)]$$

s.t. $H(X|S) + (1 - R)H(V|Q) \ge 1$ (8)

WPC is Capacity-achieving (2/3)

Lemma 1

- Consider the WPC with state, where $|\mathcal{S}|, |\mathcal{Y}| < \infty$, and P_Q is a discrete distribution over [0,1] with finite support
- Let $S \sim P_S$, $X|S \sim P_{X|S}$, $Y|(S,X) \sim P_{Y|S,X}$, $Q \sim P_Q$, $V \in \{0,1\}$, $V|Q \sim P_{V|Q}$, where $(P_{X|S}, P_{V|Q})$ is the minimizer of

min
$$\mathbf{E}[H_b(X, p_e(S))] + (1 - R)\mathbf{E}[H_b(V, Q)]$$

s.t. $H(X|S) + (1 - R)H(V|Q) \ge 1$ (8)

 \bullet If the minimizer of (8) is unique, and for all $P_{\tilde{X}|Y},\,P_{\tilde{V}|Q}$ satisfying

$$H(\tilde{X}|Y) + (1-R)H(\tilde{V}|Q) \ge 1 - R, \tag{9}$$

we have

$$\mathbf{E}[H_b(\ddot{X}, p_d(Y))] + (1 - R)\mathbf{E}[H_b(\ddot{V}, Q)] > \mathbf{E}[H_b(X, p_d(Y))] + (1 - R)\mathbf{E}[H_b(V, Q)]$$
(10)

WPC is Capacity-achieving (3/3)

Lemma 1 (Continued)

• Then the probability of error of the code tends to 0, and the empirical joint distribution of $\{(s_i,x_i)\}_{i=1,\dots,n}$ tends to $P_SP_{X|S}$ in probability, as $n\to\infty$

WPC is Capacity-achieving (3/3)

Lemma 1 (Continued)

• Then the probability of error of the code tends to 0, and the empirical joint distribution of $\{(s_i,x_i)\}_{i=1,\dots,n}$ tends to $P_SP_{X|S}$ in probability, as $n\to\infty$

Proof of Lemma 1

(Sketch): Use Sanov's theorem and robust typicality

WPC is Capacity-achieving (3/3)

Lemma 1 (Continued)

• Then the probability of error of the code tends to 0, and the empirical joint distribution of $\{(s_i, x_i)\}_{i=1,...,n}$ tends to $P_S P_{X|S}$ in probability, as $n \to \infty$

Proof of Lemma 1

(Sketch): Use Sanov's theorem and robust typicality

Proof of Theorem 1

(Sketch):

- Use the Lagrange multiplier method to find a general expression for the minimizer for minimization problem (8) with the parameter $\lambda \geq 0$
- Set $\lambda=1$, after some algebra manipulations with the facts in information theory and Lemma 1, we get the conclusion

How to Choose P_Q satisfying Equation (7)

- (Threshold) Take $P_Q(0) = P_Q(1) = (1 \gamma)/2$, $P_Q(1/2) = \gamma$, where $\gamma = (1 H(X|S))/(1 R)$
 - Essentially equivalent to the nested linear code

How to Choose P_Q satisfying Equation (7)

- (Threshold) Take $P_Q(0) = P_Q(1) = (1 \gamma)/2$, $P_Q(1/2) = \gamma$, where $\gamma = (1 H(X|S))/(1 R)$
 - Essentially equivalent to the nested linear code
- ullet (Linear) Take P_Q to be the uniform distribution $\mathrm{Unif}[0,1]$
 - May not achieve the capacity
 - "Universal" the decoder does not need to know P_S or p_e

How to Choose P_Q satisfying Equation (7)

- (Threshold) Take $P_Q(0) = P_Q(1) = (1 \gamma)/2$, $P_Q(1/2) = \gamma$, where $\gamma = (1 H(X|S))/(1 R)$
 - Essentially equivalent to the nested linear code
- ullet (Linear) Take P_Q to be the uniform distribution $\mathrm{Unif}[0,1]$
 - May not achieve the capacity
 - "Universal" the decoder does not need to know P_S or p_e
- (Threshold linear) Construct P_Q using the cdf

$$F_{Q}(t) := \begin{cases} 0 & \text{if } t < 0 \\ \max\{\theta/2, 0\} & \text{if } 0 \le t < |\theta|/2 \\ t & \text{if } |\theta|/2 \le t < 1 - |\theta|/2 \\ 1 - \max\{\theta/2, 0\} & \text{if } 1 - |\theta|/2 \le t < 1 \\ 1 & \text{if } t \ge 1 \end{cases}$$
 (11)

where $\theta \in [-1, 1]$ is chosen such that (7) holds

• Combines the linear method for t close to 1/2, and the threshold method for smaller and larger t's

Simulation Result

Figure: Performance evaluation with $n=20,\ \beta=0.05$

Reference

- Richard J Barron, Brian Chen, and Gregory W Wornell. The duality between information embedding and source coding with side information and some applications. *IEEE Transactions on Information Theory*, 49 (5):1159–1180, 2003.
- Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the Poisson matching lemma. *IEEE Transactions on Information Theory*, 67(5):2624–2651, 2021.
- Emin Martinian and Martin J Wainwright. Low-density constructions can achieve the Wyner-Ziv and Gelfand-Pinsker bounds. pages 484–488, 2006.
- Jonathan Scarlett. On the dispersions of the Gel'fand–Pinsker channel and dirty paper coding. *IEEE Trans. Inf. Theory*, 61(9):4569–4586, 2015.