Código de Shannon-Fano-Elias

<u>Ideia</u>: Definir como palavras de código a representação binária da distribuição de probabilidade acumulada F(x) truncada a l(x) bits.

Vantagens:

- O cálculo das palavras de código é muito rápida a partir das probabilidades p(x).
- Não é necessário manipular árvores.
- Não é necessário nenhuma ordenação especial das probabilidades

Desvantagens:

- Não é óptimo.
- É necessário conhecer as probabilidades à partida.

Define-se a distribuição acumulada modificada $\bar{F}(x) = \sum_{a < x} p(a) + \frac{1}{2} p(x)$

Usam-se como palavras de código os primeiros l(x) bits de $\overline{F}(x)$ em que $l(x) = \left[-\log p(x)\right] + 1$

Note-se que o comprimento do código tem mais um bit, que tem como consequência que L(C) < H(X) + 2.

Exemplo:

X	p(x)	F(x)	F'(x)	bin F'(x)	l(x)	C(x)
1	0.25	0.25	0.125	0.001	3	001
2	0.5	0.75	0.5	0.1	2	10
3	0.125	0.875	0.8125	0.1101	4	1101
4	0.125	1.0	0.9375	0.1111	4	1111
	L(C) = 2.75 bits		H(X) = 1.75 bits			

O código não é o melhor que se pode obter, mas desenhando o código para blocos de vários símbolos pode obter-se um comprimento médio arbitráriamente perto da entropia. O algoritmo de **codificação aritmética** explora esta vertente.