Pros cons and challenges

Amplicons/marker genes/16S rRNA gene/microbiomics

Open & reproducible microbiome data analysis spring school Wageningen, The Netherlands, May 28-30, 2018

Some learning goals

Understand

- Critical steps in sample prep & data analysis
- Limitations (which conclusions can and can't you draw)
- Data (biological!) interpretation (day 2/3)

Interpret literature sense & nonsense

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com

Commentary

Suddenly everyone is a microbiota specialist!

S.A. Boers ¹, R. Jansen ², J.P. Hays ^{1, *}

Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam, Rotterdam
 Department of Molecular Biology, Regional Laboratory of Public Health Kennemerland, Haarlem, The Netherlands

Literature & microbial biomarkers

Catherine A. Lozupone et al. Genome Res. 2013;23:1704-1714

Microbial biomarkers for obesity

Before sample prep/data generation

- How will you obtain fecal samples in your study?
- What do you want to do with it?
 - Functional (transcriptome -> quenching)
 - Metabolome
 - In vitro fermentations

- Freezing (how fast? What temperature? Freezer space)
- Pre-label tubes

Typical amplicon sequencing workflow

1. DNA isolation

UNIVERSITY & RESEARCH

Kennedy NA, Walker AW, Berry SH, Duncan SH, Farquarson FM, et al. (2014) The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing. PLOS ONE 9(2): e88982. https://doi.org/10.1371/journal.pone.0088982

Bacterial Family	Kit	Extraction Site					
	FastDNA 2 fold change	р	MoBio fold change	Р	RINH fold change	р	Patients included
Lachnospiraceae	0.96 (0.74–1.25)	0.775	0.63 (0.49-0.81)	0.001	1.17 (0.95–1.44)	0.160	H3,H4,I1,I2
Bacteroidaceae	1.13 (0.79–1.63)	0.501	2.13 (1.49–3.05)	<0.001	1.09 (0.81–1.46)	0.561	H3,H4,I1,I2
Ruminococcaceae	0.94 (0.79-1.13)	0.524	1.32 (1.11–1.58)	0.005	0.95 (0.82-1.10)	0.516	H3,H4,I1
Enterobacteriaceae	1.08 (0.74–1.57)	0.695	0.61 (0.43-0.88)	0.016	0.85 (0.63-1.15)	0.311	11,12
Sutterellaceae	0.77 (0.18-3.37)	0.735	1.11 (0.26-4.69)	0.892	3.84 (1.18-12.46)	0.031	H3,H4,I1,I2
Clostridiaceae	1.00 (0.77–1.30)	0.976	0.46 (0.36-0.59)	<0.001	0.88 (0.71–1.08)	0.243	11,12
Porphyromonadaceae	1.46 (0.41-5.19)	0.560	4.03 (1.16-14.01)	0.035	0.70 (0.26-1.94)	0.502	H3,H4,I1,I2
Erysipelotrichaceae	1.21 (0.81–1.81)	0.361	0.32 (0.21-0.47)	<0.001	0.88 (0.64–1.22)	0.445	H3,H4,I1,I2
Rikenellaceae	0.35 (0.16-0.76)	0.016	0.72 (0.33-1.56)	0.418	0.65 (0.35-1.19)	0.181	H3,H4

RINH: Rowett Institute of Nutrition and Health.

Participants were excluded if all data points for that bacterial family were < 0.5%. Reference sample was from participant H3 using FastDNA method 1 and extracted at the Institute of Medical Sciences. Differences are shown as fold change with 95% confidence intervals.

 $R^2 = 0.8076$

60

40

 $R^2 = 0.9445$

Additional considerations

- (Preferably) Don't work with low DNA yield samples
 - Can "contaminate" other samples
- Use negative extraction controls
- Laboratory reagent specific microbiota

Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples.

Glassing A¹, Dowd SE², Galandiuk S³, Davis B⁴, Chiodini RJ⁵

Author information

2. Barcoded PCR:

Primers & Region: Coverage, Resolution, bias 16S rRNA gene

- Target for detection & identification of bacteria.
- Ideal phylogenetic marker.
 - -Universally distributed, functionally constant,
 - -Sufficiently conserved, no horizontal transfer (?)
- More than 3,000,000 sequences in databases.
- Alternating variable and conserved sequence domains.

Nature Reviews | Microbiolo

2. Barcoded PCR: Primers

In silico Coverage

Check for your ecosystem of interest

- Americans didn't have Bifidobacterium up to ~2006
- No Verrucomicrobia in soil (actually 20%)

2. Barcoded PCR: Primers Resolution

Unequal sequence conservation

Be very careful with species level classification

Up to genus level identification is recommended!

base position

Be careful with functional interpretations!

"Luckily we found THIS bone, so we were able to reconstruct the whole creature..."

2. Barcoded PCR: Primers

Bias

- Polymerase
- Primer-dimers
- Amplification bias: sequence of the bacteria themselves (high GC)
- Rate of chimera formation
- Sequencing specific sequence specific error rates
- Etc...

Polymerase	1 kb template	3 kb templati
Phusion High-Fidelity DNA Polymerases (HF Buffer)	1.32%	3.96%
Phusion High-Fidelity DNA Polymerases (GC Buffer)	2.85%	8.55%
Pyrococcus furiosus DNA polymerase	8.4%	25.2%
Taq DNA polymerase	68.4%	205.2%

2. Barcoded PCR: Primers No universal primer (yet ?)

Table 1 Cor	nparison of	sequencing	technolo	gies							
	Read	Maximum	Run time	Reads	Relative	Scale of	Scale of samples per run	Raw error rate (%)			
	length	insert size	(hours (h) or days (d))	per run	cost factor (per Mb)	reads per sample		Total	Insertions	Deletions	Mismatches
ABI 3730	800 b	>1 Kb	2 h	96	100	102	101	0.001	<<0.1	<<0.1	<<0.1
454 FLX Titanium	300-400 b	800 b	9 h	106	1	103	102	1	<1	<< 0.1	<<1
454 FLX+	500-600 b	1200 b	23 h	106	0.7	103	10 ²				
Illumina GAIIx	76–101 b	500 b	6-9 d	4 × 10 ⁸	0.1	105-106	10 ³ -10 ⁴	<1	<<1	<<1	<1
Illumina HiSeq 2000	101–151 b	500 b	9–15 d	3 × 10°	0.002	105-106	103-104				
Illumina MiSeq	36-151 b	500 b	4h–27 h	107	0.06	104	102				
PacBio	1100 b	>1 Kb	1.5 h	3.5 × 10 ⁷	1.5	101	10 ¹	15	13	1	1
IonTorrent	200 Ь	400 b	2-3 h	1.5 × 10 ⁶ - 3 × 10 ⁶	0.4	10 ³	102	2	1	1	<1

Kuczynski et al., Nature rev. 2011

Pacific Biosciences

2. Barcoded PCR: barcoding strategy

Analysis pipeline

Analysis pipeline OTU picking

Analysis pipeline:

OTU picking

Schmidt et al 2014, Limits to robustness and reproducibility in the demarcation of operational taxonomic units. Env micr.

Analysis pipeline

Taxonomic classification

Different methods of classification -> different name (scoring system)

- BLAST
- Kmer
- MisMatches

16s rRNA gene Databases

- Ribosomal Database Project (RDP-II)
- Greengenes (13_05) (poor alignment/outdated)
- SILVA

Challenges

Effects of all these different parameters in literature

Catherine A. Lozupone et al. Genome Res. 2013;23:1704-1714

Microbial biomarkers

Pros & cons

	Who is there?	Who is there, what can they do?	Who is there and w	What are the enproducts?	
	16S rRNA gene	Metagenomics	Metaproteomics	Meta transcriptomics	Metabolomics
What	Amplicons	DNA	RNA	Proteins	Metabolites
Cost/sample	€	€€€	$\epsilon\epsilon\epsilon\epsilon$	€€€	€€
Complexity	Medium	High	High	High	High
Taxonomic resolution	High	Very high	Medium	High	Low
Activity (precision)	-	-	Medium	High	High
Remarks	Bias associated with primers	Relatively low depth of analysis	Peptide spectrum matching is complex	RNA isolation challenging	No taxonomic information

Keep in mind/challenges/interpretation

OTUs

- Prokaryotic species level boundary is still hotly debated
- Species level concept for organisms with mobile genetic elements....
- Function & 16S are 'only' correlated (sometimes actually not that much)
- E coli: probiotic (*nissle*), pathogen (O157:H7 acute haemorrhagic colitis, Shiga-toxin) & everything in between (K12)
- Most bacteria are opportunists

Recap

