九州大学大学院数理学府 平成 26 年度修士課程入学試験 基礎科目問題

- 注意 問題 [1][2][3][4] のすべてに解答せよ.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.
- [1] 3次正方行列 A を

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

により定義する.

- (1) A は重複度 2 の固有値 λ と重複度 1 の固有値 μ をもつ . λ と μ を求め、その 固有ベクトルもそれぞれ求めよ .
- (2) \mathbb{R}^3 上の内積を $(\mathbf{x},\mathbf{y})={}^t\mathbf{x}\mathbf{y}$ で定める. 固有値 μ の長さ 1 の固有ベクトルを \mathbf{w} とし,線形写像 $f:\mathbb{R}^3\to\mathbb{R}^3$ を

$$f(\mathbf{x}) = \mathbf{x} - (\mathbf{x}, \mathbf{w})\mathbf{w}$$

により定義する.このとき $f(\mathbf{x}) = B\mathbf{x}$ を満たす3 次正方行列B を求めよ.

(3) f の像は固有値 λ の固有空間に一致することを示せ.

- [2] $A = \{a_1, ..., a_r\}$ と $B = \{b_1, ..., b_s\}$ をそれぞれ独立なベクトルの集合とする. 各 $a_j(j=1, ..., r)$ は B のベクトルの一次結合で表され、また各 $b_i(i=1, ..., s)$ は A のベクトルの一次結合で表されるとする. このとき次の問に答えよ.
 - (1) $b \in B$ で次を満たすものが存在することを示せ. A で a_r と b を入れ替えたベクトルの集合 $A' = \{a_1, ..., a_{r-1}, b\}$ が独立で各 $b_i (i=1, ..., s)$ は A' のベクトルの一次結合で表される.
 - (2) r = s を示せ.
 - (3) 各 $a_j(j=1,...,r)$ はベクトルの集合 $C = \{c_1,...,c_t\}$ の元の一次結合で表されるとする. このとき r < t を示せ.
 - (4) (3) でさらに, r=t のとき $C=\{c_1,...,c_t\}$ のベクトルは独立になることを示せ.
- [3] 広義積分

$$I = \int_0^{\pi/2} \log(\sin x) dx$$

について考える. このとき以下の問に答えよ.

- (1) $0 \le x \le \frac{\pi}{2}$ のとき , $\frac{2}{\pi}x \le \sin x$ が成り立つことを示せ .
- (2) 広義積分 I は収束することを示せ.
- (3)

$$2I = \int_0^{\pi/2} \log\left(\frac{\sin 2x}{2}\right) dx$$

を示し,これを用いて I の値を求めよ。

- $\begin{bmatrix} \mathbf{4} \end{bmatrix}$ \mathbb{R}^2 上の関数 f(x,y) を $f(x,y)=x^4+y^4-x^2-2xy-y^2$ とする.このとき以下の問に答えよ.
 - (1) $\frac{\partial f(x,y)}{\partial x} = \frac{\partial f(x,y)}{\partial y} = 0$ となる点 (x,y) を全て求めよ.
 - (2) f(x,y) の極値をすべて求めよ.
 - (3) $D=\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2\leq 4\}$ における f(x,y) の最大値・最小値を求めよ .