Dioda półprzewodnikowa

Bartosz Kundera

01.04.2024

STRESZCZENIE

Celem doświadczenia było wykonanie charakterystyk prądowo-napięciowych różnych diod. Na początku rozpoznano je, mierząc napięcie przewodzenia (Tabela 1) i podzielono na odpowiednie diody: krzemowe, germanowe, LED, zenera. Następnie zbudowano układ (Rysunek 3), oraz przeprowadzono charakterystykę prądowo-napięciową dla diody krzemowej (Wykres 1). Obliczono dla niej również współczynniki $I_G=(14.41\pm0.67)$ nA, $M=(2.2128\pm0.13)$, które były potrzebne do policzenia napięcia przewodzenia dla diody krzemowej. To napięcie wynosi $U_p=(0,513\pm0,038)$ V. Przez brak czasu oraz problemy techniczne nie była możliwa kontynuacja dalszej części doświadczenia, dlatego też skończono na charakterystyce prądowo-napięciowej diody krzemowej dla pierwszego układu.

1.WSTĘP TEORETYCZNY

Dioda półprzewodnikowa to element elektroniczny, w którego strukturze znajduje się złącze p–n. Jej kluczową właściwością jest to, że przewodzi prąd tylko w jednym kierunku – włączenie diody do obwodu w odwrotnym kierunku skutkuje całkowitym zablokowaniem przepływu prądu. Ze względu na nieliniową charakterystykę prądowo-napięciową, dioda jest elementem nieliniowym. Równanie opisujące prąd przepływający przez złącze p–n, znane jako równanie Shockley'a, definiuje się następująco (1):

$$I_D = I_G \left(exp \left(\frac{eU_D}{Mk_B T} \right) - 1 \right) \tag{1}$$

Gdzie I_G jest prądem generacji, e ładunkiem elementarnym, M współczynnikiem związanym z typem półprzewodnika, k_B stałą Boltzmanna, a T temperaturą złącza. Dla większych prądów równanie Schokley'a modyfikuję się do następującej postaci (2) :

$$U_D = \frac{Mk_BT}{e}ln\left(\frac{I_D}{I_G} + 1\right) + Ir \tag{2}$$

Gdzie r jest pasożytniczą rezystancją materiały, z którego wykonana jest dioda. Napięcie w kierunku przewodzenia, dla którego prąd diody osiąga umownie dużą wartość nazywamy napięciem przewodzenia U_p . Po przekroczeniu tej wartości natężenie prądu przez diodę gwałtownie wzrasta, co wynika z eksponencjalnego charakteru tej zależności. Na poniższym rysunku (Rysunek 1), można zaobserwować charakterystyki prądową napięciowe różnych rodzajów diód.

Rysunek 1. Charakterystyki prądowo-napięciowe diody Germanowej(Ge), krzemowej (Si) oraz LED(GaAs) z przykładowymi wartościami napięć przewodzenia \boldsymbol{U}_p

Dla diody Zenera istnieje specyficzne napięcie, przyłożone w polaryzacji zaporowej, po przekroczeniu którego dioda zaczyna przewodzić prąd w kierunku zaporowym. Napięcie to określa się mianem napięcia Zenera. Charakterystykę prądowo-napięciową diody Zenera przedstawiono na rysunku poniżej (Rysunek 2).

Rysunek 2. Charakterystyka prądowo-napięciowa diody Zenera

2.UKŁAD DOŚWIADCZALNY I POMIARY

Podczas doświadczenia zostały wykorzystane następujące urządzenia:

- Oscyloskop RIGOL;
- Generator funkcyjny RIGOL;
- 2 oporniki o rezystancji 0.991kΩ;
- Miernik uniwersalny Multimetr BRYMEN BM805
- Przewody;

- Lutownica;
- Cyna;
- Płytka montażowa
- 2 diody krzemowe
- 2 diody germanowe
- 2 diody Zenera
- 2 diody LED

Na początku doświadczenia, w celu identyfikacji każdej z diod, przeprowadzono pomiary napięcia przewodzenia dla każdej z osobna, korzystając z miernika uniwersalnego BRYMEN. Po zidentyfikowaniu diod, wzięto jedną diodę krzemową oraz jeden opornik i zlutowano je lutownicą do płytki montażowej w celu zbudowania poniższego układu elektrycznego (Rysunek 3). Następnie po odpowiednim połączeniu elementów do oscyloskopu i generatora, ustawiono w kanałach oscyloskopu sprzężenie stało-prądowe oraz wprowadzono na wejście generatora sygnał piłokształtny o wartości napięcia wejścia ok. 2V i częstotliwości 100 Hz. Następnie korzystając z odczytu na oscyloskopie, posługując się kursorami, zmierzono napięcie wejścia U_g oraz napięcie wyjścia U_r , aby następnie korzystając z poniższego wzoru (3), wyznaczyć U_D .

$$U_D = U_G - U_r \tag{3}$$

Gdzie ${\cal U}_{\cal G}$ to napięcie na generatorze, a ${\cal U}_r$ to napięcie na oporniku.

Rysunek 3. Układ do pomiarów charakterystyki prądowo napięciowej diody krzemowej

Po wykonaniu odpowiednich pomiarów, przebudowano układ, tym razem w celu wyznaczenia charakterystyki prądowo-napięciowej diody LED. W tym celu zbudowano układ przedstawiony na poniższym schemacie(Rysunek 4):

Rysunek 4. Układ do pomiarów charakterystyki prądowo napięciowej diody LED

Niestety, ze względu braku czasu, oraz błędów związanych z oscyloskopem nie udało się prawidłowo przeprowadzić tej oraz dalszej części doświadczenia. W tym przypadku analizę diod zakończono na charakterystyce prądowo-napięciowej diody krzemowej.

3.ANALIZA DANYCH

Na początku analizy danych przedstawiono wyniki pomiarów napięć przewodzenia, w celu identyfikacji diod. Wyniki tego pomiaru przedstawiono w tabeli poniżej:

Rodzaj diody	Numer diody	$U_p(V)$
Germanowa	1	0,242
	2	0,237
Krzemowa	1	0,503
	2	0,502
Zenera	1	0,684
	2	0,683

Tabela 1. Wartości napięcia przewodzenia dla wszystkich diod z wyjątkiem diody LED

Następnie dla układu ze schematu (Rysunek 3) przeprowadzono szereg pomiarów posługując się podłączonym do układu generatorem funkcyjnym oraz oscyloskopem. Korzystając z kursorów w oscyloskopie zmierzono spadek napięcia na oporniku tj. U_r oraz spadek napięcia na generatorze tj. U_G . Korzystając ze wzoru (3) było możliwe wyznaczenie wartości spadku napięcia U_D na diodzie. Ponieważ opornik, przy którym mierzono spadek napięcia, został podłączony szeregowo z diodą, prąd przepływający przez opornik jest taki sam, jak prąd przepływający przez diodę. W obwodzie szeregowym prąd jest stały dla wszystkich elementów, co oznacza, że prąd diody jest równy prądowi opornika. Zgodnie z prawem Ohma, wzór na natężenie prądu przez diodę ma postać(4):

$$I_D = \frac{U_R}{R} \tag{4}$$

Dokładność pomiaru napięcia obliczono korzystając ze wzoru $\Delta_u=3\%U$. Niepewność pomiaru napięcia wyjściowego wyznaczono wykorzystując znany wzór(5):

$$u = \frac{\Delta}{\sqrt{3}} \tag{5}$$

Natomiast niepewność natężenia prądu obliczono korzystając ze wzoru na złożoną niepewność standardową, która w tym konkretnym przypadku przyjmuję postać(6):

$$u_I = \sqrt{\left(\frac{u_{U_R}}{R}\right)^2 + \left(\frac{u_R U_R}{R^2}\right)^2} \tag{6}$$

Następnie, aby dokonać charakterystyki prądowo-napięciowej dla diody, skorzystano ze wzoru (1) oraz dokonano najlepszego dopasowania funkcji do zebranych pomiarów. Przy dopasowaniu przyjęto, że k_B = 1.38064852 \times 10⁻²³, e = 1.602176634 \times 10⁻¹⁹ C oraz T = 295.15K. Poniższy wykres (Wykres 1) przedstawia charakterystykę prądowo napięciową dla diody krzemowej.

Wykres 1. Charakterystyka prądowo-napięciowa dla diody krzemowej

Wykorzystując metodę najmniejszych kwadratów wyznaczono wartości współczynników M, i I_G oraz ich niepewności odczytując wartości dla dopasowania modelu funkcji. Wartości współczynników są następujące: I_G = (14.41 ± 0.67) nA, M = (2.2128 ± 0.13). W celu sprawdzenia modelu przeprowadzono test χ^2 Pearsona. Wartość χ^2 dla poziomu zgodności α = 0.05, wynosi χ^2 = 24,21. Następnie wyznaczono wartość p = 0.152, która spełnia wymóg p > 0.05, zatem mamy prawo do stwierdzenia ze model został prawidłowo dobrany.

Następnie wyznaczono napięcie przewodzenia dla diody krzemowej dla tego układu. W tym celu, w oparciu o wykres (Wykres 1) przyjęto wartość graniczną natężenia prądu I_G na około 0.0005 A. Do wyznaczenia napięcia przewodzenia, użyto równania (2) i przekształcono go do następującej postaci.

$$U_D = \frac{Mk_BT}{e}ln\left(\frac{I_D}{I_G} + 1\right) \tag{7}$$

Korzystając z powyższego wzoru, oraz wyznaczonych wcześniej parametrów, obliczono napięcie przewodzenia dla diody krzemowej. Niepewność napięcia przewodzenia obliczono podobnie jak niepewność prądu, korzystając z złożonej niepewności standardowej. Obliczona wartość napięcia przewodzenia i jego niepewność wynoszą: U_p = (0,513 \pm 0,038) V.

Jak już wcześniej wspomniano, ze względów czasowych i technicznych nie udało się przeprowadzić dalszych pomiarów i eksperymentów, a całe doświadczenie zakończono na charakterystyce prądowo-napięciowej diody krzemowej dla układu z schematu powyżej(Rysunek3).

4.PODSUMOWANIE

W pracy dokonano analizy własności diody krzemowej, a również przeprowadzono charakterystykę prądowo-napięciową. Dokonano pomiaru wartości napięcia przewodzenia diod: krzemowej, germanowej, Zenera (Tabela 1), a dla diody krzemowej obliczono to napięcie, które wynosi : U_p = (0,513 \pm 0,038) V.