Problem S4: Minimum Cost Roads

Problem Description

As the newly elected mayor of Kitchener, Alanna's first job is to improve the city's road plan.

Kitchener's current road plan can be represented as a collection of N intersections with M roads, where the i-th road has length l_i meters, costs c_i dollars per year to maintain, and connects intersections u_i and v_i . To create a plan, Alanna must select some subset of the M roads to keep and maintain, and that plan's cost is the sum of maintenance costs of all roads in that subset.

To lower the city's annual spending, Alanna would like to minimize the plan's cost. However, the city also requires that she minimizes travel distances between intersections and will reject any plan that does not conform to those rules. Formally, for any pair of intersections (i, j), if there exists a path from i to j taking l meters on the existing road plan, Alanna's plan must also include a path between those intersections that is at most l meters.

Input Specification

The first line contains the integers N and M.

Each of the next M lines contains the integers u_i , v_i , l_i , and c_i , meaning that there currently exists a road from intersection u_i to intersection v_i with length l_i and cost c_i $(1 \le u_i, v_i \le N, u_i \ne v_i)$.

The following table shows how the available 15 marks are distributed.

Marks	Bounds on	Bounds on l_i	Bounds on c_i	Additional
	N and M			Constraints
3 marks	$1 \le N, M \le 2000$	$l_i = 0$	$1 \le c_i \le 10^9$	None
6 marks	$1 \le N, M \le 2000$	$1 \le l_i \le 10^9$	$1 \le c_i \le 10^9$	There is at most one road
				between any unordered
				pair of intersections.
6 marks	$1 \le N, M \le 2000$	$0 \le l_i \le 10^9$	$1 \le c_i \le 10^9$	None

Output Specification

Output one integer, the minimum possible cost of a road plan that meets the requirements.

Sample Input

5 7

1 2 15 1

2 4 9 9

5 2 5 6

La version française figure à la suite de la version anglaise.

Output for Sample Input

25

Explanation of Output for Sample Input

Here is a diagram of the intersections along with a valid road plan with minimum cost.

Each edge is labeled with a pair (l, c) denoting that it has length l meters and cost c dollars. Additionally, the roads that are part of the plan are highlighted in blue, with a total cost of 7 + 1 + 6 + 7 + 4 = 25.

It can be shown that we cannot create a cheaper plan that also respects the city's requirements.

La version française figure à la suite de la version anglaise.

Problème S4: Routes à coût minimum

Énoncé du problème

En tant que maire nouvellement élu de Kitchener, la première tâche d'Alanna est d'améliorer le plan routier de la ville.

Le plan routier actuel de Kitchener peut être représenté comme un ensemble de N intersections avec M routes où la $i^{\text{ième}}$ route a une longueur de l_i mètres, coûte c_i dollars par an à entretenir et relie les intersections u_i et v_i . Pour créer un plan, Alanna doit sélectionner un sous-ensemble des M routes à garder et à entretenir. Le coût de ce plan est égal à la somme des coûts d'entretien de toutes les routes du sous-ensemble.

Pour réduire les dépenses annuelles de la ville, Alanna souhaite minimiser le coût du plan. Cependant, la ville exige également qu'elle minimise les distances de déplacement entre les intersections et rejettera tout plan qui ne se conforme pas à ces règles. Officiellement, pour toute paire d'intersections (i,j), s'il existe dans le plan routier actuel un chemin de l mètres qui relie i et j, le plan d'Alanna doit également contenir un chemin reliant ces intersections qui fait au plus l mètres.

Précisions par rapport aux données d'entrée

La première ligne des données d'entrée doit contenir les entiers N et M.

Chacune des M lignes suivantes contient les entiers u_i , v_i , l_i et c_i , ce qui signifie qu'il existe actuellement une route reliant les intersections u_i et v_i dont la longueur est de l_i et dont le coût est c_i ($1 \le u_i, v_i \le N, u_i \ne v_i$).

Le tableau suivant indique la manière dont les 15 points disponibles sont répartis.

Points	Bornes de	Bornes de l_i	Bornes de c_i	Contraintes
	N et M			${f addition nelles}$
3 points	$1 \le N, M \le 2000$	$l_i = 0$	$1 \le c_i \le 10^9$	Aucune
6 points	$1 \le N, M \le 2000$	$1 \le l_i \le 10^9$	$1 \le c_i \le 10^9$	Il y a au plus une route
				entre toute paire
				non ordonnée d'intersections.
6 points	$1 \le N, M \le 2000$	$0 \le l_i \le 10^9$	$1 \le c_i \le 10^9$	Aucune

Précisions par rapport aux données de sortie

Les données de sortie devraient contenir un seul entier, soit le coût minimum possible d'un plan routier qui remplit les conditions.

Exemple de données d'entrée

5 7

1 2 15 1

Exemple de données de sortie

25

Justification des données de sortie

Dans la figure ci-dessous, on voit 5 intersections reliées par 7 routes. On y voit aussi un plan routier qui remplit les conditions énoncées et qui a également un coût minimum.

Chaque route contient une paire (l, c) indiquant sa longueur en mètres (soit l) et son coût d'entretien en dollars (soit c). De plus, les routes qui font partie du plan sont surlignées en bleu et ont un coût total de 7 + 1 + 6 + 7 + 4 = 25.

On peut démontrer qu'il est impossible de créer un plan moins cher qui respecte également les exigences de la ville.