- 1. Give a partial order set (P, ⊑) and a subset S of P such that
 - 1) S has at Least one minimal element but no least element.
 - 2) S has exactly one minimal element but no least element.
 - 3) S has no minimal element.
- 2. Explain why the following definitions are not free.
 - 1) The set E, a subset of the universe Int, defined by
 - (a) 0∈E,
 - (b) if $n \in E$, then $n + 2 \in E$ and $n 2 \in E$.
 - 2) The set Zn for some n≥1, a subset of the universe Int, defined by
 - (a) 0∈Zn
 - (b) if $m \in Zn$, then $(m+1) \mod n \in Zn$.
- 3. Which of the following partial orders are well-founded sets?
 - 1) (P(Nat),⊆).
 - 2) The set of all finite subsets of Nat with "⊆".
 - 3) The set of all non-negative rational numbers with "≤".
 - 4) The set of all non-aagative numbers with finite decimal expansions with "

 <".
- 4. Give an example of a partial order (D, \leq) and a subset S of D such that:
 - (1) S has no upper bounds.
 - (2) S has upper bounds but no lub.
 - Is (2) possible if S is finite?
- 5. Which of the following partial orders (D, \sqsubseteq) are complete?
 - (i) $D = \{a, b\}^*$ where $v \sqsubseteq w$ iff v is a prefix of w.
 - (ii) $D = \{a, b\}^* \setminus \{\varepsilon\}$ with $v \sqsubseteq u$ iff v is a prefix of u or there exist strings x, y, $z \in \{a, b\}^*$ such that v = xay and u = xbz.
 - (iii) D = P(H) for an arbitrary set H with the subset relation.
 - (iv) $D = Nat \cup \{\infty\}$, where $d \sqsubseteq d'$ iff $d' = \infty$ or $(d, d' \neq \infty)$ and $d \leq d'$.
 - (v) $D = Q_{+} \cup \{\infty\}$ (where Q_{+} is the set of non-negative rational numbers) with \sqsubseteq as defined in (iv).
 - (vi) $D = R_+ \cup \{\infty\}$ (where R_+ is the set of non-negative real numbers) with \sqsubseteq as defined in (iv).
- 6. Let (D, \sqsubseteq) be as defined in Exercise 5-iv. Determine the lub of:
 - (i) $S = \{(0,n) | n \in Nat\} \cup \{(n,0) | n \in Nat\}$ in (D^2, \sqsubseteq) .
 - (ii) $S = \{f_i | i \in D\}$ in $((D \to D), \sqsubseteq)$, where $f_i : D \to D$ is defined for each $i \in D$ by $f_i(i) = i$, and $f_i(d) = 0$ for $d \ne i$.
- 7. Let (D, \sqsubseteq) be a partial order. D is called a lattice if every two elements $a, b \in D$ —and hence every finite number of elements—has a lub (denoted $a^{\square}b$) and a gib (denoted $a^{\square}b$). A lattice is *complete* if every subset of D has a lub and gib. Prove:
 - (i) Every complete lattice has a least and a greatest element (hence it is a cpo).
 - (ii) A (complete) partial order for which every set has a lub is a complete lattice.
- 8. For all the *complete* partial orders (D,\sqsubseteq) in Exercise 5 determine the set of continuous functions $f: D \to D$. In each case is there a monotonic function which is not continuous?
- 9. Consider P(Nat) ordered by the subset relation. Prove that each of the following functionals Φ : P(Nat) \rightarrow P(Nat) is continuous and determine the least fixpoint.
 - (i) $\Phi(S) = S \cup T$ for a fixed set $T \subseteq N$ at.
 - (ii) $\Phi(S) = S \cup \{0\} \cup \{n+2 \mid n \in S\}.$
- 10. Prove that the function $\Phi: (Nat_{\omega} \rightarrow Nat_{\omega}) \rightarrow Nat_{\omega}$ be defined by
 - $\Phi(f) = 0$ if $f(n) \neq \omega$, for all $n \in \mathbb{N}$ at,
 - $\Phi(f) = \omega$ otherwise.
 - is monotonic but not continuous.