Computer Architectures Exam of 18.9.2023 - part I

First name, Last name, ID.....

Question #2

Let's consider a superscalar MIPS64 architecture implementing dynamic scheduling, speculation, and multiple issues and composed of the following units:

- An issue unit able to process 2 instructions per clock period; in the case of a branch instruction, only one instruction is issued per clock period
- A commit unit able to process 1 instruction per clock period
- The following functional units (for each unit the number of clock periods to complete one instruction is reported):
 - o 1 unit for memory access:1 clock period
 - o 1 unit for integer arithmetic instructions: 1 clock period
 - o 1 unit for branch instructions: 1 clock period
 - o 1 unit for FP multiplication (pipelined): 5 clock periods
 - o 1 unit for FP division (unpipelined): 6 clock periods
 - o 1 unit for other FP instructions (pipelined): 3 clock periods
 - o 2 Common Data Bus.
- Let's also assume that:
 - o Branch predictions are always correct
 - O All memory accesses never trigger a cache miss.

You should use the following table to describe the behavior of the processor during the execution of the first 2 iterations of the cycle, computing the total number of required clock cycles.

Tip: For the EXE stage, it is recommended to add a lowercase letter to help distinguish between the different functional units available.

# iteration	Instruction	ISSUE x2	EXE	MEM	CDB x2	COMMIT	Notes
1	l.d f1,v1(r1)	1	2m	3	4	5	
1	I.d f2,v2(r1)	1	3m	4	5	6	
1	l.d f3,v3(r1)	2	4m	5	6	7	
1	div f4, f1, f2	2	6d		12	13	Wait for f1(4), f2(5)
1	add.d f5, f5, f3	3	7a		10	14	Wait for f3(6), f5(0)
1	mul f6, f4, f5	3	13x		18	19	Wait for f4(12), f5(10)
1	s.d f6,v4(r1)	4	5s			20	Can calculate address immediately, but must wait f6(18)
1	daddui r1,r1,8	4	5i		6	21	
1	daddi r2,r2,-1	5	6i		7	22	
1	bnez r2,loop	6	8b			23	Wait for r2(7)
2	I.d f1,v1(r1)	7	8m	9	10	24	
2	I.d f2,v2(r1)	7	9m	10	11	25	
2	l.d f3,v3(r1)	8	10m	11	12	26	
2	div f4, f1, f2	8	12d		18	27	Wait for f1(10), f2(11), div functional unit (11)
2	add.d f5, f5, f3	9	13a		16	28	Wait for f3(12), f5(10)
2	mul f6, f4, f5	9	19x		24	29	Wait for f4(18), f5(16)
2	s.d f6,v4(r1)	10	11s			30	Can calculate address immediately, but must wait f6(24)
2	daddui r1,r1,8	10	11i		13	31	FU stays busy one more cycle to wait for the CDB to be free
2	daddi r2,r2,-1	11	13i		14	32	
2	bnez r2,loop	12	15b			33	Wait for r2(14)

Small variations with respect to this solution could be accepted as correct in a case by case manner.