Műveletek nyelvekkel

Formális nyelvek, 3. gyakorlat

Célja: A formális nyelvek elmélete alapfogalmainak elmélyítése, a műveletek gyakorlása

Fogalmak: Műveletek szavakon, nyelveken, reguláris műveletek, halmazműveletek, homomorfizmus, helyettesítés, párhuzamos kompozíció

Feladatok jellege: A műveletek bemutatása konkrét nyelvekre való alkalmazásukon keresztül, műveletekre vonatkozó azonosságok felismerése, bizonyítása.

2005/06 II. félév

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév

év 1/13

Házi feladatok megoldása

1. feladat

Milyen rekurzív tulajdonsággal rendelkeznek a Fibonacci fák? Adjuk meg ez alapján a Fibonacci fák $\mathcal{L}_{\text{FibFa}}$ nyelvcsaládjának rekurzív definícióját!

Megoldás:

A Fibonacci fák éppen azok az AVL fák, melyek rendelkeznek a következő tulajdonsággal:

(*) A fa bármely csúcsa által definiált két részfa magassága pontosan eggyel különbözik.

Ezt átfogalmazhatjuk a következő rekurzív feltétellé:

A fa gyökeréhez tartoző két részfa magassága pontosan eggyel különbözik és a két részfa rendelkezik a (*) tulajdonsággal.

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév

Házi feladatok megoldása

1. feladat

Milyen rekurzív tulajdonsággal rendelkeznek a Fibonacci fák? Adjuk meg ez alapján a Fibonacci fák $\mathcal{L}_{\text{FibFa}}$ nyelvcsaládjának rekurzív definícióját!

Tehát az \mathcal{L}_{FibFa} nyelvcsalád rekurzív definíciója:

- **1.** $\{\varepsilon\}, \{\varepsilon, 0\}, \{\varepsilon, 1\} \in \mathcal{L}_{FibFa}$
- $\label{eq:local_local_local} \begin{array}{l} \textbf{2.} \ \ \text{ha} \ L_1, L_2 \in \mathcal{L}_{FibFa} \ \text{\'es} \ |\ell(L_1) \ell(L_2)| = 1, \\ \ \ \text{akkor} \ \ (\{\varepsilon\} \cup 0L_1 \cup 1L_2) \in \mathcal{L}_{FibFa} \end{array}$

Házi feladatok megoldása

2. feladat

L_{BinKupac} rekurzív definíciójának értelme

Megoldás:

$$\mathcal{L}_{\text{BinKupac}} = \{\text{BK}_0, \text{BK}_1, \text{BK}_2, \text{BK}_3, \ldots\}.$$

$$\ell(BK_i) = i, |BK_n \cap \{0, 1, \dots, n-1\}^k| = \binom{n}{k}, |BK_n| = 2^n.$$

Indukcióval:

$$|BK_{n+1} \cap \{0,1,\ldots,n\}^k| = |BK_n \cap \{0,1,\ldots,n-1\}^k| + |BK_n \cap \{0,1,\ldots,n-1\}^{k-1}| = {n \choose k} + {n \choose k-1} = {n+1 \choose k}.$$

Formális nyelvek (3. gyakorlat) Műveletek nyelvekkel 2005/06 II. félév 3/13 Formális nyelvek (3. gyakorlat) Műveletek nyelvekkel 2005/06 II. félév 4/13

Házi feladatok megoldása

3. feladat

Írjunk programot, mely kirajzolja n = 4-ig

- **a.** a Koch szigeteket

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév

Házi feladatok megoldása

3. feladat

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév

6/12

Nyelvek

Definíció

Legyen *T* egy véges halmaz, a szimbólumok (terminálisok) halmaza. Ezt a halmazt ábécének nevezzük.

 $T^* = \bigcup_{i=0}^{\infty} T^i$ -t a T lezártjának nevezzük.

Nyely

L egy T feletti nyelv, ha $L \subset T^*$

 $T^+=T^*\backslash\{\varepsilon\}$, ahol ε az üres szó (v. szöveg). $\{\varepsilon\}=T^0$.

Műveletek nyelvek között

Unió, metszet, konkatenáció, ...

Példa: $T = \{a, b\}$ $L_1 = \{a^n b^n \mid n \ge 0\}$ $L_2 = \{a^{2n+1} b \mid n \ge 0\}$ $L_3 = \{a^{2n} \mid n \ge 0\}$

- 1. $L_1 \cup L_2 = ? \{x | (x = a^n b^n \land n \ge 0) \lor (x = a^{2n+1} b \land n \ge 0)\},$
- 2. $L_1 \cap L_2 = ? \{ab\},$
- 3. $L_1L_2 = ? \{a^nb^na^{2k+1}b|n \ge 0 \land k \ge 0\},$
- **4**. $L_2 \cap L_3 = ? \emptyset$,
- 5. $L_1 \cap L_3 = ? \{\varepsilon\},$
- 6. $L_2^* = ? ((a^2)^*ab)^*$.

Formális nyelvek (3. gyakorlat) Műveletek nyelvekkel 2005/06 II. félév 7/13 Formális nyelvek (3. gyakorlat) Műveletek nyelvekkel 2005/06 II. félév 8/1

Műveletek nyelvek között

Tartalmazási problémák

$$L_1 = \{a^n b^n \mid n \ge 0\}$$

$$L_2 = \{a^{2n+1} b \mid n \ge 0\}$$

1.
$$\{a^nb^na^nb|n\geq 0\} \stackrel{?}{\subseteq} L_1L_2$$

2.
$$\{a^nb^na^{2n+1}b|n\geq 0\} \stackrel{?}{\subseteq} L_1L_2$$

3.
$$\{(a^nb^n)^n|n\geq 0\} \stackrel{?}{\subseteq} L_1^* = \bigcup_{i=0}^{\infty} L_1^i$$

4.
$$\{(ab)^n | n \ge 0\} \stackrel{?}{\subseteq} L_2^+ = \bigcup_{i=1}^{\infty} L_2^i$$

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév

Műveleti tulajdonságok

Monotonitások, a konkatenáció unióra való disztributívitása

1.
$$\{L_{\lambda}\}_{\lambda\in\Lambda}$$
, $\{L'_{\lambda}\}_{\lambda\in\Lambda}$, $\forall\lambda\in\Lambda:\ L_{\lambda}\subseteq L'_{\lambda}\Rightarrow\bigcup_{\lambda\in\Lambda}L_{\lambda}\subseteq\bigcup_{\lambda\in\Lambda}L'_{\lambda}$

3.
$$L \subseteq L' \Rightarrow L^* \subseteq (L')^*$$

4.
$$(\bigcup_{\lambda \in \Lambda} L_{\lambda})L = \bigcup_{\lambda \in \Lambda} L_{\lambda}L$$

5. Nem igaz!
$$L_1(L_2 \cap L_3) = L_1L_2 \cap L_1L_3$$

PI. $L_1 = \{a, \varepsilon\}, L_2 = \{a, a^2\}, L_3 = \{a^3, a^4\}$

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév 10/13

Helyettesítés

Helyettesítésnek nevezünk egy $h: 2^{X^*} \longrightarrow 2^{Y^*}$ leképezést, ha unióés konkatenációtartó, valamint $h(\{\varepsilon\}) = \{\varepsilon\}$ és $h(\emptyset) = \emptyset$. Elegendő X elemein megadni.

Ha
$$u = x_1x_2 \cdots x_\ell$$
, akkor $h(u) = h(x_1)h(x_2) \cdots h(x_\ell)$. (Jelölés: $h(x) := h(\lbrace x \rbrace)$.)

$$h(L) = \bigcup_{u \in L} h(u)$$
 a helyettesítéssel kapott nyelv.

$$h^{-1}(u) = \{v | u \in h(v)\}, h^{-1}(L) = \bigcup_{u \in L} h^{-1}(u)$$

Helvettesítés

Példák

Példa:
$$X = \{a, b\}$$

 $h(a) = \{a, \varepsilon\}, h(b) = \{b\}$

A helyettesítéssel kapott nyelv jelölése: $S(L, \{a, \varepsilon\}, \{b\})$.

Példa: HE, helyes zárójelezések nyelve, azaz

$$HE = \{u; \ell_{\ell}(u) = \ell_{\ell}(u) \land \forall v \in Pre(u) : \ell_{\ell}(v) \ge \ell_{\ell}(v)\}.$$

Legyen a helyettesítés $X = \{(,)\}, Y = \{(,)\},$ $h(() = \{(\}, h()) = \{\varepsilon, \}\}$. Mi lesz S(HE)?

$$S(HE) = \{u; \forall v \in Pre(u) : \ell_1(v) \ge \ell_1(v)\}.$$

Műveletek nyelvekkel 2005/06 II. félév Formális nyelvek (3. gyakorlat) 2005/06 II. félév 11 / 13 Formális nyelvek (3. gyakorlat) Műveletek nyelvekkel 12/13

Helyettesítés tulajdonságai

$$h(L_1 \cap L_2) \stackrel{?}{=} h(L_1) \cap h(L_2) \neq$$

$$L_1 = \{a\}, L_2 = \{b\}, h(a) = h(b) = \varepsilon$$

$$h^{-1}(h(L)) \stackrel{?}{=} L \neq$$

$$L \text{ tetszőleges, nemüres, } h(L) = \{\varepsilon\}, h^{-1}(h(L)) = \{a, b\}^*$$

$$h(h^{-1}(L')) \stackrel{?}{=} L' \neq$$

$$L' \text{ tetszőleges, nemüres, melyre } \varepsilon \notin L'$$

$$\text{ekkor } h^{-1}(L') = \emptyset, h(h^{-1}(L')) = \emptyset.$$

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév 13 /

Házi feladat

1.
$$L_4 = \{ab\}.$$
 $L_4^* \subseteq L_1^*.$

2.
$$L^* = L^*L^*$$
.

3.
$$(L^*)^* = L^*$$
.

4.
$$(L_1 \cup L_2)^* = (L_1^* L_2^*)^*$$
.

5.
$$(L_1L_2)^{-1} = L_1^{-1}L_2^{-1}$$
.

6. x palindrom $\Leftrightarrow x^k$ palindrom $(k \ge 1)$. $(x \text{ palindrom}, \text{ ha } x = x^{-1})$

7.
$$h(L^{-1}) \stackrel{?}{=} h(L)^{-1}$$
.

8.
$$L = \{(n)^n; n \ge 0\}$$
. Jelölés: $L^{\parallel i} = L \parallel L \parallel \dots \parallel L$

Lássuk be, hogy HE = $\bigcup_{i=0}^{\infty} L^{\parallel i}$.

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév

15/13

Párhuzamos kompozíció a HE nyelv példáján

Párhuzamos kompozíció:

A párhuzamos kompozíció a konkatenáció kiterjesztése:

$$u \parallel v = \{z_1 w_1 \cdots z_k w_k; z_1 \cdots z_k = u, w_1 \cdots w_k = v, \\ z_2 \cdots z_k \neq \varepsilon, w_1 \cdots w_{k-1} \neq \varepsilon\}.$$

Tulajdonságai:
$$u \parallel v = v \parallel u$$
, $u \parallel \varepsilon = u$, $(u \parallel v) \parallel w = u \parallel (v \parallel w)$.

Példa: $ab \parallel cd = \{cdab, cadb, cabd, acdb, acbd, abcd\}$. Legfeljebb hány elemű lehet $u \parallel v$, ha $\ell(u) = n$ és $\ell(v) = m$? $\binom{n+m}{n}$

Példa: lehet ennél sokkal kevesebb! A zárójelezések nyelvében:

$$(()) \parallel () = \{()(()), (()()), ((())), (())()\}$$

Ha h_1 és h_2 helyes zárójelezések, akkor $h_1 \parallel h_2 \subseteq HE$.

$$L_1 \parallel L_2 = \bigcup_{\substack{u \in L_1 \\ v \in L_2}} u \parallel v$$
 HE \parallel HE = HE.

Formális nyelvek (3. gyakorlat)

Műveletek nyelvekkel

2005/06 II. félév 14 /