FAULTS manual

Montse Casas Cabanas (CIC Energigune), Jokin Rikarte Ormazabal (CIC Energigune), Marine Reynaud (CIC Energigune) and Juan Rodriguez Carvajal (ILL)

 ${\rm January}~2015$

Contents

1	The FAULTS program						
	1.1	1.1 Download and installation					
	1.2	Progra	m specifications	2			
	1.3	3 Input files					
		1.3.1	The input control file: CFILE.flts	4			
		1.3.2	Experimental pattern	22			
		1.3.3	Background: CFILE.bgr	25			
	1.4	Outpu	t files	25			
		1.4.1	Calculated profile: CFILEn.dat	25			
		1.4.2	Observed and calculated profile: $\mathbf{CFILEn.prf}$	25			
		1.4.3	Commands file for FullProf Studio: $\mathbf{CFILE.fst}$	26			
		1.4.4	Progress report: CFILEn.out	26			
		1.4.5	Final report: CFILE_new.flts	26			
	1.5	Running FAULTS					
2 Example							
	2.1	Stackin	$_{ m ng}$ faults in LiNiO $_{ m 2}$	19			
	2.2	Analys	is of simulated data	20			

Chapter 1

The FAULTS program

FAULTS is a Fortran90 program to refine X-ray Powder Diffraction (XRD) and Neutron Powder Diffraction (NPD) patterns of crystal systems with any type of coherent planar defect. This program is based on the DIFFaX program [1, 2] and on the CrysFML Fortran 95 crystallographic library [3, 4].

The DIFFaX program (Diffracted Intensities From Faulted Xtals) calculates diffraction intensities from defective crystals. This tool has been widely used to interpret the diffraction data of one-dimensionally disordered systems and it is based on an algorithm that exploits the recurring patterns found in randomized stacking sequences to compute the average interference wavefunction scattered from each layer type occurring in a faulted crystal (mathematical details can be found in references [5, 6]). However, as approximate or merely qualitative results sometimes are not sufficient for a thorough microstructural characterization, a computerized comparison of the DIFFaX calculated intensities with experimental data has been developed. The resulting code is the FAULTS program [7, 8]. The program is distributed in the hope that it will be useful, but without any warranty of

being free of internal errors. The authors acknowledge all suggestions and notification of possible bugs found in the program.

1.1 Download and installation

FAULTS can be obtained either as part of the FullProf Suite [9, 10, 11] at www.ill.eu/sites/fullprof/, or as a separate program by downloading the compressed file FAULTS.zip at www.cicenergigune.com/.

In the case the user chooses to install FAULTS with the FullProf Suite, the program FAULTS will be launched directly from the FullProf Suite Toolbar. If the user uses FAULTS as a separate program, it will be launched from a DOS window, after having copied the file data.scf into the working folder.

1.2 Program specifications

Conventionally, crystals are thought of in terms of unit cells of a determined symmetry. Nevertheless, to use FAULTS, as in the case of DIFFaX [12], we need to think of crystals in terms of sheets of atoms, or layers, which can interconnect via stacking operations that occur with a certain probability. By means of this description, planar defects can be described as different layer types and/or transition vectors. Frequently, the plane of the layers will not coincide conveniently with any of the unit cell faces of the parent crystal. Then, a transformation of atom coordinates to a new cell system is required.

The structural information as well as the refinement details are read by

FAULTS from a free format input data file, with .flts extension. Each value used to describe the structure is associated to a refinement code that allows the possibility of restrictions. The user must be aware of the way he(she) can control the refinement procedure: the number of parameters to be refined, fixing parameters, making constraints, etc. The experimental XRD or NPD patterns can be read from many different formats and background subtraction can be achieved by linear interpolation or polynomially after applying the scale factor. Impurities or other phases are treated as background as well, and their pattern information must be given by the user. Another major feature of FAULTS is the implementation of a more adequate isotropic size broadening treatment which takes into account the Gaussian and Lorentzian contributions to the FWHM in addition to the consideration of a finite number of layers per crystallite already present in DIFFaX [1, 2, 12]. The refinement is carried out using a Levenberg Marquardt fit. The quality of the agreement between observed and calculated profiles is given by the R-Factor and Chi² agreement factors that are calculated at the end of each refinement cycle and are defined as follows:

Profile factor:

$$Rp = 100 \frac{\sum_{i=1,n} |y_i - y_{ic}|}{\sum_{i=1,n} y_i}$$

where y_i is the profile intensity and y_{ic} is the number of calculated counts at the *i*th step.

Reduced Chi square:

$$Chi^2 = \left[\frac{R_{wp}}{R_{exp}}\right]^2$$

being $R_{\omega p}$ and R_{exp} the Weighted Profile Factor and the Expected Weighted

Profile Factor respectively, which are defined as:

$$R_{wp} = 100 \left[\frac{\sum_{i=1,n} w_i \mid y_i - y_{ic} \mid^2}{\sum_{i=1,n} w_i y_i^2} \right]^{1/2}$$

and

$$R_{exp} = 100 \left[\frac{n-p}{\sum_{i} w_i y_i^2} \right]^{1/2}$$

where n-p is the number of degrees of freedom and $w_i = 1/\sigma_i^2$, with σ_i^2 referring to the variance of the "obserbation" y_i .

1.3 Input files

1.3.1 The input control file: CFILE.flts

The input control file is a free format file that contains all the structural data and the type of calculation to be done. This file must be written by the user. Free format means that it is not case sensitive and that the different sections do not have to follow a concret sequence, however, a space is needed between each item and all the section headlines and parameter keywords must be present. Each line must not exceed 132 characters, taking into account the blank spaces. When the program is run, mistakes will normally generate error messages. Empty lines as well as lines starting with the exclamation symbol (!) in the first column are considered as comments and are ignored by the program. Also, comments can be placed at the end of a line if they are in braces ({}}). It is recommended not to use tabulator to introduce blank spaces when editing the file, as some editors do not consider

it as blank spaces.

An example of input control file can be found in figures 1.1, 1.2 and 1.3. The different section keywords that constitute the input control file appear in orange color, comments appear in italics (and of course after a ! symbol), subsection keywords in red, parameters in blue and refinement codes in green. The latter are codewords that allow the control of the refined parameters. As in the FullProf program [10, 11], these are the numbers C_x that are entered for each refined parameter. A zero codeword means that the parameter is not being refined. For each refined parameter, the codeword is formed as:

$$C_x = sign(a)(10p + |a|)$$

where p specifies the ordinal number of the parameter x and a is the factor by which the computed shift (the parameter variation in each refinement cycle) will be multiplied before use.

Below, each section, which has to begin with the corresponding keyword, is explained in more detail.

Title section

The document must begin with this section. TITLE keyword must be followed in the next line by the title chosen by the user.

Instrumental and size broadening section

The first line must contain the keyword INSTRUMENTAL AND SIZE BROADENING. The data that follow describe the type of radiation and

```
LiNiO2 ideal structure
Instrumental And Size Broadening
!Type Of Radiation
Radiation X-Ray
! lambda1 lambda2 ratio
Wavelength 1.5418 0.0 0.0
!instrumental aberrations zero sycos sysin
Aberrations
              0.0000 0.0000 0.0000
               0.00 0.00 0.00
!instr. broadening u v
                                            Dg
Pseudo-Voigt 0.11 -0.0036 0.009 0.7000 479.26 459.87 Trim
              0.00 0.00
                             0.00
                                   0.00
                                          0.00
                                                 0.00
Structural
! a
               b
                       c alpha beta gamma
Avercell 2.8659 2.8659 14.253 90 90 120.0
              b
                    С
    а
                            gamma
Cell 2.8659 2.8659 14.253 120.0
     11.00 11.00 1.00
                            0.00
! FullProf Studio commands
FST_CMD SEQ 9123123123
FST_CMD CONN Ni O 0.0 2.3
FST CMD box -2 2 -2 2 -0.01 1.01
FST_CMD stack_vect 0 0 0.5
!Laue symmetry
Symm unknown
!number of layer types
Nlayers 3
!layer width
Lwidth infinite
!Layer symmetry
LSYM none
!Atom name number x
                                      Occ
                      У
Atom Ni3+ 1 0.000 0.000 0.000 0.8 1.0
              0.00 0.00 0.00
                                1.00 0.00
!Atom name number x
                                Biso Occ
                     У
                           Ζ
Atom 02- 2 1/3 2/3 -0.075 1.0
               1.00 0.00 0.00
                                0.00 0.00
!Atom name number x y
                         Z
                                Biso Occ
Atom 02- 3 2/3 1/3 0.075 1.0 1.0
               0.00 0.00 0.00 0.00 0.00
```

Figure 1.1: Example of input control file, corresponding to the ideal structure of $LiNiO_2$.

6

```
!Atom name number x y
                            z Biso
                                        Осс
Atom Li1+ 4 2/3 1/3 -0.167 0.8
                                        1.0
                0.00 0.00 1.00 1.00 0.00
!stacking type
Recursive
!number of layers
infinite
Transitions
!layer 1 to layer 1
LT 0.00000000 0.000000 0.000000 1/3
 0.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 1 to layer 2
LT 1.00 2/3 1/3 1/3
 21.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 1 to layer 3
LT 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 2 to layer 1
LT 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 2 to layer 2
LT 0.00000 0.000000 0.000000 0.0000
 0.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 2 to layer 3
LT 1.00 2/3 1/3 1/3
 31.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 3 to layer 1
```

7

Figure 1.2: Cont. Example of input control file

```
LT 1.00 2/3 1/3 1/3
  41.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 3 to layer 2
LT 0.000000 0.000000 0.000000 0.000000
  0.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
!layer 3 to layer 3
LT 0.00000 0.000000 0.000000 0.0000
 0.000000 0.000000 0.000000 0.000000
FW 0.00 0.00 0.00 0.00 0.00 0.00
   0.00 0.00 0.00 0.00 0.00 0.00
Corrmax 30
Maxfun 2400
Tol 0.100000E-04
Nprint 0
Experimental
!Filename
                     Scale factor code
FILE LiNiO2_ideal.dat
                       1.0 0.00
Excluded_Regions 0
FFORMAT free
!Linear interpolation
Bgrinter sim.bgr
!Polynomial Number of coefficients
Bgrcheb 2
!Polynomial coefficients
 1.00000 0.20000
 0.0 0.0
!number of pattern backgrounds
Bgrnum 1
!Pattern file
           Filename Scale factor code
Bgrpatt cerusite1.sub 0.026000 1.00 cerusite.hkl
```

8

Figure 1.3: Cont. Example of input control file

the instrumental conditions as well as the parameters needed for size broadening, which are refinable parameters. To refine the parameters that constitute this section it is not necessary to recalculate the diffraction pattern in each cycle, so, for computational economy it is strongly recommended to refine them separately.

- Radiation type: The line must begin with the keyword radiation, followed by one of the different two options, which are X-RAY and NEUTRON.
- Wavelength: In addition to λ_1 , FAULTS reads also the value of λ_2 and the intensity ratio I_2/I_1 (although in the case of monochromatic radiation it is only necessary to introduce λ_1). λ unit is \mathring{A} and this line must begin with the keyword wavelength.
- **Aberrations:** Keyword *aberrations* followed by values for instrumental aberrations zero, sycos and sysin must be given. As they are refinable, refinement codes must be entered in the next line.
- Profile parameters: Instrumental and size broadening are treated differently than in DIFFaX. In both cases, the calculated pattern is convoluted with a profile function (indicated by the keyword Gaussian, Lorentzian or Pseudo-Voigt) that takes into account both instrumental and size effects. The FWHM of the Gaussian (H_G) and Lorentzian (H_L) components of the peak profile have an angular dependence given by:

$$H_G^2 = Utan^2\theta + Vtan\theta + W + \frac{4ln2\lambda^2}{\pi D_g^2 cos^2\theta} (\frac{180}{\pi})^2$$

$$H_L = X tan\theta + \frac{2\lambda}{\pi D_l cos\theta} (\frac{180}{\pi})$$

U, V, W and X, which must be introduced by the user, are refinable parameters that constitute the instrumental resolution function (IRF). It is always advisable to know their values a priori and fix them during the refinement (although U and X can be refined to account for strains). They must be followed by D_g and D_l , which are the parameters that are used to model the isotropic size broadening due to a finite size of the crystallites ($\leq 1~\mu \text{m}$). They are also refinable. If the sample is not affected by size broadening, D_g and D_l can take any value $\geq 5000~\text{Å}$.

• TRIM keyword: As in DIFFaX [12], the optional keyword trim, which has to be put in the same line as the profile parameters, tells the program to ignore intensity information close to the origin when simulating the instrumental broadening for a powder diffraction pattern. The peak at the origin is usually many orders of magnitude more intense than any other peak of the diffraction pattern, and the background that is generated by the tail of this peak, when broadened, can easily swamp peaks close to the origin. When trim is specified, the unbroadened pattern that is written to file retains the data at the origin, whereas the broadened data that is written to file suppresses the peak at the origin. It is generally desirable to specify trim whenever the powder pattern angular range includes the origin. trim has no effect if the powder pattern angular range requested by the user does not include the origin.

Structural section

This section must begin with a first line containing the keyword STRUC-TURAL.

- Cell parameters: The keyword which this line has to begin with is cell. The value of c, perpendicular to the a-b plane (and therefore parallel to the stacking direction), is needed to provide a reference scale along the stacking direction with which to define the z-component of the stacking vectors. c does not have to correspond to any special periodic dimension along the stacking direction for any of the layers. However all the layers must share the same dimensions, a,b and γ. These are all refinable parameters and the units are Å for a, b and c, and degrees for γ.
- Laue symmetry: In this case the keyword is symm. There are 12 options: -1, 2/M(1), 2/M(2), MMM, -3, -3M, 4/M, 4/MMM, 6/M, 6/MMM, AXIAL and UNKOWN. Axial constraints the program to integrate only along 00l (useful in turbostratic structures) and if UNKNOWN is specified the program will establish the symmetry by randomly sampling the reciprocal space. In this case, the user can specify a percentage of tolerance on intensity deviations for this search. Otherwise the program tests the user option and, if it is not consistent with the cell parameters, it is automatically changed.
- Number of layer types: The keyword is *nlayers*. It is the number of different layer types needed to describe the structure. If two layers are structurally identical but their stacking vectors are different, they are considered as two different layer types.

• Layer caracteristic width: Unlike in DiFFax, this line is compulsory, and it must begin with the keyword *lwidth*. Then the layer characteristic width is especified, in Å. There are two possible formats for this line: width along a and width along b, or *infinite*. For example,

!layer width Lwidth 120.00 300.00 0.0 0.0

or

!layer width Lwidth infinite

- Optional generation of the Bragg positions of the average cell: In case the cell parameters defined for the FAULTS refinement are different from the original cell (the cell from which the disordered model comes from; for instance, in the case of a monoclinic or triclinic average cell), the user can ask the program to generate the Bragg positions corresponding to the average cell. To do so, the user has two options:
 - (1) either he(she) indicates manually the space group (keyword SPGR) and the cell parameters $a, b, c, \alpha, \beta, \gamma$ (keyword Avercell) of the average cell by adding the following optional lines in the Structural section:

!Average cell parameters (for Bragg positions in .prf file) Avercell 3.12 4.15 4.60 90.00 118.79 90.0 !Average space group (for Bragg positions in .prf file) SPGR C 2/m

(2) or, by means of the keywords *CalcAverCell* and *SPGR*, he(she) asks the program to calculate the average cell from a sequence of stacking vectors that he(she) specifies with the following optional lines in the *Structural* section:

!Stacking vectors to be stacked and their names to !calculate the average cell CalcAvercell 2 1-2 2-1 !Average space group (for Bragg positions in .prf file) SPGR C 2/m

Note that the average cell parameters and space group are only used for the Bragg positions calculation for the .prf file and are not taken into account for the pattern calculation during the refinement or simulation.

• Optional commands for visualization of the structure with FullProf Studio: To make the construction of the structural easier and avoid errors, it is recommended to regularly draw the structure with the help of the visualization program FullProf Studio [13, 14]. To do so, the user should ask the program to generate an output file *.fst* suitable for FullProf Studio, by entering an optional line beginning by the keyword *FST_CMD*, followed by the keyword *SEQ*, the number of layers and the sequence of the layers to be drawn; for example:

!FullProf Studio commands FST_CMD SEQ 5 1 1 2 3 1

Then the user can add as many optional lines as needed, each of them beginning with the keyword $FST_{-}CMD$, followed by the required FullProf Studio commands (see the FullProf Studio manual for more details [14]). For example, to control the drawing of NiO_x polyhedra, the limit of the box and the position of the first layer in the artificial FullProf Studio cell, the user may add the following lines:

FST_CMD CONN Ni O 0.0 2.3 FST_CMD box -2 2 -2 2 -0.01 1.01 FST_CMD stack_vect 0 0 0.5

Layers section

- Layer number: The layers have to be described with the header LAYER followed by the ordinal corresponding number. If two layers are structurally identical it will be enough to write LAYER j=i where i and j are the ordinal numbers that correspond to each layer (a blank space is necessary between the number of layer and the = symbol). Then, for layer j the rest of the section can be avoided.
- Layer symmetry: The keyword *lsym* must be followed by one of the two options: **NONE** or **CENTROSYMMETRIC**. If the latter is specified, only the asymmetric half of the atom coordinates need to be entered, and the program will create another identical atom in (-x,-y,-z) per each atom described in the layer. Take care to halve the occupancy in case of the atoms located in (0,0,0).

• Atomic data: For each atom the keyword atom must be written, followed by a specific 4 characters name. The first two characters correspond to the atomic symbol and the last two represent the valence. If the symbol has only a character, contrary to DIFFAX, there must not be a space between the symbol and the charge (Ex. F1-, Ni2+). Some atoms do not require any valence (ex. C). In case of doubt, the user can check the correct form in the file data.sfc. After the name, the atom will be identified by an ordinal number. Then the atomic coordinates x, y, z will be detailed as well as the atomic displacement factor and finally the occupation, which has to take a value between 0 and 1. If the layer is centrosymmetric, the atom located in the centre of symmetry will have 1/2 for full occupancy. All the parameters are refinable. They can be written as real numbers or as fractions, which ensures maximum machine precision (except for the atomic displacements, which cannot be given as a fraction).

Stacking section

The first line of this section must start with the keyword STACKING.

- Stacking type: There are two possibilities: EXPLICIT and RECUR-SIVE. For an explicit sequence of layers, the diffracted intensities will be calculated for a unique layer sequence that will be specified in the next line. For a recursive sequence of layers, the diffracted intensities are to be calculated for a statistical ensemble of crystallites, each with a distinct stacking sequence, but weighted by the probability that such a sequence will occur.
- Explicit sequence: If the stacking type is explicit, there are three possibilities. One of them is SPECIFIC, in which the user has to

introduce a stacking sequence, up to 5000 layers. The list can occupy more than one line, and between each layer type there must be a space. Each line must not exceed 132 characters, taking into account the blank spaces. For example,

EXPLICIT
SPECIFIC
1 1 2 1 3 1 2

corresponds to a crystallite that consists of 7 layers of three different types. However, care has to be taken not to write a forbidden transition (with a zero stacking probability). If this happens, the program will stop and give an error message.

Another possibility is the RANDOM M option which tells the program to generate a sequence of M layers (with a maximum of 5000). The probability that a specific layer-to-layer transition will occur in the sequence will be weighted by the transition probabilities listed in the TRANSITIONS section, described next.

Finally, the program can also generate semi-random sequences of two different layer types, that is to say, the user can control certain parts of the sequence. To do so, the option SEMIRANDOM M must be used, where M is the number of layers (also with a maximum of 5000). Below this line, the user can specify parts of the sequence by the key word SEQ followed by the position of the first layer in the sequence, the position of the final layer and the two types of layers that will be alternated. For example,

EXPLICIT
SEMIRANDOM 60
SEQ 11 20 1 3

will generate a random sequence of layers but from layer 11 to layer 20 the sequence will be 1 3 1 3 1 3 1 3 1 3 1 3. If the sequence is incompatible with the last layer of the sequence that is generated automatically (due to the stacking probabilities), in this case layer number 10, this layer would be eliminated and the fixed sequence would move a position, starting in layer 10. If that was still not compatible with the stacking probabilities this process would be repeated until the program found a compatible sequence.

• Recursive sequence: In this case, the user can indicate the mean number of layers the crystallites contain. Any number larger than M \geq 1022, will be treated as infinite. Alternatively, an infinite number can be specified by the keyword INFINITE. If the latter is chosen, the refinement code underneath must be eliminated. If the number of layers is lower than 1022, the program will apply a line broadening due to a finite size in the stacking direction. This value (which can be refined) will have no physical meaning, but it is the only way to introduce a certain anisotropy in size broadening. However, if the crystallites induce a purely isotropic size broadening (represented by D_g and D_l , that will be lower than 5000) this value should be INFINITE as size broadening has already been taken into account in the Instrumental and size broadening section.

Transitions section

First line must contain the keyword TRANSITIONS. This section contains as many subsections as different layers constitute the system; And each subsection will contain as many lines (without taking into account the refinement codes) as different layers constitute the system. Each subsection refers to the transitions of layer i to the rest of layers, including itself. Each line must contain, after the keyword LT: the stacking probability α_{ij} , that will be a value comprised between zero (forbidden transition) and 1 (unique possible transition) and the stacking vector R_x, R_y, R_z , relative to **a**, **b** and \mathbf{c} respectively. A set of anisotropic Debye-Waller type factors (C_{11} , C_{22} , C_{33} , C_{12} , C_{23} , C_{31}) is specified after the stacking vector, in a separate line and beginning with the keyword FW. These factors are equivalent to specifying an ellipsoidal error spread for the stacking vectors and are useful for modeling systems where there is some coherence between nearest neighbor layers, but no long-range coherence, as in the case of liquid crystals or pillared clays. If the stacking probability α_{ij} is zero, everything on the line after it is ignored and set to zero. All the parameters constituting this section are refinable parameters and can be written as real numbers or as fractions.

Calculation section

First line must contain the keyword CALCULATION. This section contains the type of calculation the program is asked to perform. There are two options: SIMULATION and LMQ. The first one corresponds to the pattern calculation, and thus no parameter will be refined. The second option indicates that the refinement is to be done by means of the Levenberg Marquardt fit. Depending on the calculation type, the next lines must

contain:

• Simulation: The user has to specify $2\theta_{min}$, $2\theta_{min}$ and the step (in degrees). For example,

```
CALCULATION
SIMULATION { type of optimization } 5.0 90.0 0.02 { 2\theta_{min}, 2\theta_{max}, step }
```

• LMQ: The user has to specify the maximum correlation parameter (which defines the minimum correlation used to build the correlation matrix that will be given in the output file; keyword *Corrmax*), the maximum number of function evaluations (keyword *Maxfun*), the tolerance (i.e. convergence criterion; keyword *Tol*) and the print control parameter (keyword *Nprint*). Each of these parameters must be placed in a new line. For example,

CALCULATION

LMQ

Corrmax 30

Maxfun 2400

Tol 0.1E-04

Nprint 0

If the print control parameter *Nprint* is set to 0, the values of the agreement factors at the end of each evaluation are displayed in the FAULTS window (see subsection 1.5) during the refinement process. If *Nprint* is negative, the FAULTS windows displays the previous and new values of the refinable parameters at each evaluation step, in addition to the agreement factors, at the end of each evaluation.

Finally, the user can add an optional line with the instruction Replace_Files at the end of the Calculation section to make the program replace existent output files by the ones generated at the end of a new run, instead of creating new files.

Experimental section

This section is only necessary in case a refinement is to be done. The section must begin with a first line containing the keyword EXPERIMENTAL, followed by:

- Filename: In this line, which must begin with the keyword file, the user indicates the file name of the experimental intensity data file, which must not exceed 20 characters, extension included (.dat). After that, the scale factor and its refinement code must be given, in the same line.
- Excluded regions: Optionally the user can exclude some regions of the experimental data. To do so, *Excluded_Regions* must be written, followed by the number of excluded regions. In the next lines, 2θ min and 2θ max of each excluded region must be specified (in a separate line per excluded region). If these are not detailed, the program will use the whole 2θ range of the experimental data.
- File format: In this line the user writes a code to tell the program which is the format of the intensity data file, that depends on the instrument. The possibilities (which are detailed in the next subsection 1.2.2.) are: D1B, D20, NLS, G41, D1A, D2B, D1AOLD, D1BOLD, DMC, SOCABIM, XYSIGMA, GSAS, PANALYTICAL, TIMEVARIABLE and FREE. The line must begin with the keyword Fformat.

• Background file: To determine the background, three different possibilities are available, and at least one of them must be present. First, the background can be modeled by linear interpolation. To do so, the user must write the keyword *Bgrinter* followed by the name of the file (extension included) that contains background data. FAULTS only accepts *.bgr files which are lines with pairs of values, scattering variable \ intensity, in free format (see subsection 1.3.3). Note that background points are not refinable parameters. For example,

!Linear interpolation Bgrinter Sim.Bgr

If the background is to be treated as a polynomial, the keyword is *Bgrcheb* and the number of coefficients must be specified after it. In the following line the polynomial coefficients must be entered. These are refinable parameters, so the user must remember to write their refinement codes below them. For instance,

!Polynomial Number of coefficients
Bgrcheb 2
!Polynomial coefficients
1.00000 0.20000

1.0 1.0

Finally, a third background subsection is available in order to deal with possible impurities. In case the sample to be analysed has impurities, these will give extra peaks in the experimental pattern. In order to take them into account, FAULTS program can treat them as background. Thus, a file containing the diffraction pattern in free format

(see next section 1.2.2) must be added for each impurity present in the experimental pattern. This information must be given as follows: first the number of pattern backgrounds is to be expecified, preceded by the keyword *Bgrnum*; then the user must write in a separate line the keyword *Bgrpatt* followed by the filename, scale factor and its refinement code. Optionally, the name of an *.hkl file can be given after the scale's factor refinement code so that the Bragg reflections of each additional phase appear in the calculated *.prf file. A separate line will be writen for every given pattern. For example,

!Number of pattern backgrounds

Bgrnum 1

!Pattern file Filename Scale factor Code hkl file

Bgrpatt cerusite1.sub 0.026000 1.00 cerusite.hkl

1.3.2 Experimental pattern

The experimental intensity data file can have different formats that depend on the instrument. The files FAULTS is able to read are the following:

• D1B o D20 (Ins=3 in FullProf): These are the data file from D1B and D20 diffractometers (ILL) and have a *.dat extension.

Line 1-3: comments

Line 4: 2θ min, step (deg.) + other parameters

Line 5: number of points in the data file (npts)

Lines1 : npts pairs D Y1 D Y2 ... D Y10 (where D is the detector number and Y the measured intensity)

• NLS (Ins=4 in FP): Data file from N.L.S.(Brookhaven) synchrotron radiation with *.dat extension.

```
Line 1:2\thetamin, step size, 2\theta max (deg.)
Lines1: pairs of lines with 10 items like
Y1 Y2 ... Y10 (intensities)
S1 S2 ... S10 (sigmas)
```

• G41 (Ins=5 in FP): Data file from G41 multidetector neutron diffractometer at LLB with *.dat extension.

Line 1-3: comments Line4: npts Line 5:2 θ min, step size, 2θ max (deg.) Lines1: Y (one column)

• D1A o D2B (Ins=6 in FP): "Multicounters diffractometers data with *.dat extension.

Line 1: Comments Line 2: step size (deg.) Line 3: 2θ min Line 4: Comments Lines1: D Y1 D Y2 ... D Y10

• D1AOLD o D1BOLD (Ins=1 in FP): These are the data file from D1B and D20 diffractometers (ILL) (old format).

Line 1:2 θ min, step size, 2 θ max (deg.) Lines1: npts pairs D Y1 D Y2 ... D Y10

• DMC (Ins=8 in FP): These are files from DMC diffractometer from Paul Scherrer Institute with *.dat extension.

Line 1-3: comments Line 4: 2θ min, step size, 2θ max (deg.) Lines1: Lines1: pairs of lines with 10 items like Y1 Y2 ... Y10 (intensities)

```
S1 S2 ... S10 (sigmas)
```

• SOCABIM (Ins=9 in FP): Thee are XRD files with *.uxd extension generated by Socabim software.

Line 1-29: comments Lines1: Y1, Y2, ..., Yn.

• XYSIGMA (Ins=10 in FP): Files with *.dat extension

Line 1: keyword XYSIGMA

Line 2-6: comments Lines1: X, Y, S

• GSAS (Ins=12 in FP): data file for the GSAS analysis data program.

Line 1: text Line 2: npts

Lines1: intensities (diverse formats)

• TIMEVARIABLE (Ins=11 in FP): data from variable time data collection.

Line 1: 2θ min, step size, 2θ max (deg.) Lines1: T1 I1 T2 Y2 ... T10 I10 (T = time)

• FREE (Ins=0 in FP): free format files generally with *.dat extension. Up to 7 lines of comments are accepted, the first real numbers are $2\theta_{min}$, step size and $2\theta_{max}$ (deg.), and the *npts* following lines are the intensity values.

1.3.3 Background: CFILE.bgr

This file that will be used to calculate the background at each value of the scattering variable, is created by the user from the experimental data. The extension must be *.bgr. Comments can be written after a ! symbol. Example:

1.4 Output files

Once the program has finished, FAULTS will create the following output files, depending on the users requirements. These files will be saved to the same directory as the input data files.

1.4.1 Calculated profile: CFILEn.dat

If a simulation is to be done, the program writes the calculated profile in a *.dat file that is written in free format.

1.4.2 Observed and calculated profile: CFILEn.prf

If the user is performing a refinement, the program creates a file with the experimental pattern, the calculated one with the best fit, their difference plot and the Bragg reflections. This file is to be fed into a visualisation programs, such as WinPLOTR [15, 9]. It is essential to plot frequently the observed and experimental patterns. The examination of the difference pattern is a quick and efficient method to detect blunders in the model or in

the input file controlling the refinement process. It may also provide useful hints on the best sequence to refine the whole set of model parameters for each particular case. An example of this file can be found in figure 1.4.

1.4.3 Commands file for FullProf Studio: CFILE.fst

If the user has specified commands for the drawing of the structural model in FullProf Studio, the program creates a input file to be fed into the visualization program FullProf Studio [13]. Details on the format of this file can be found in the FullProf Studio manual [14]. It is recommended to regularly draw the structure during the construction of the structural model as well as during the refinement.

1.4.4 Progress report: CFILEn.out

An *.out file is generated, which contains the information of the structural model given in the CFILE.flts file. If a refinement is done, it also contains the information of the refimenent process. The information this file contains is the values the refinable parameters have taken during refinement, the values of the agreement factors for each evaluation and the best values of each parameter obtained during refinement.

1.4.5 Final report: CFILE_new.flts

When the process is finished a *.flts file is generated, containing the information of the refinement's final result. Its format is similar to the input file, with the same structure (section headings, keywords, parameters, refinement codes), but with the refined values for the refinable parameters. Thus, this file can be use as the input file in case the user wants to continue the refinement process. If the file is used as input file directly, at the end of

the refinement it will be overwritten.

1.5 Running FAULTS

The program is invoked from a DOS window and it will appear as in figure 1.5.

Once the user enters the filename CFILE.flts, if a refinement is to be done, the layout of the program will appear as in figure 1.6. During the refinement process, depending on the option chosen by the user (see the comments on the keyword *Nprint* in the *Calculation* subsection page 18), the DOS window will display the values of the agreement factors at the end of each evaluation, and optionally the list of the previous and new refinable parameters at each evaluation step.

Once the refinement has finished, the list of the best values obtained for the refinable parameters is displayed (see figure 1.7). The user can then open the CFILEn.prf to see the goodness of the refinement.

Figure 1.4: Example of observed and calculated profile plot

Figure 1.5: FAULTS layout when invoked

```
Enter the complete name of the structure input file: LiNiO2_defects.flts

>> Structure input file read in

>> Reading scattering factor datafile'C:\FullProf_Suite\data.sfc'. . .

>> Scattering factor datafile'C:\FullProf_Suite\data.sfc'. . .

>> Scattering factor data read in

>> Reading Pattern file=LiNiO2_simul.dat

>> Diffraction point symmetry is -1

>> Layers are to be treated as having infinite lateral width.

>> No overlap of atoms has been detected

>> Start LMQ refinement

>> Iteration 8 R-Factor = 95.52135 Chi2 = 358.53323

>> Iteration 1 R-Factor = 76.39742 Chi2 = 78.92947

>> Iteration 2 R-Factor = 77.89742 Chi2 = 78.92947

>> Iteration 2 R-Factor = 77.89742 Chi2 = 78.92947

>> Iteration 3 R-Factor = 77.89742 Chi2 = 79.9156

>> Iteration 4 R-Factor = 11.49328 Chi2 = 25.96539

>> Iteration 5 R-Factor = 12.54460 Chi2 = 7.95156

>> Iteration 6 R-Factor = 17.52989 Chi2 = 5.29328

>> Iteration 7 R-Factor = 17.52989 Chi2 = 5.29328

>> Iteration 8 R-Factor = 17.52989 Chi2 = 5.29328

>> Iteration 18 R-Factor = 16.81273 Chi2 = 5.89635

>> Iteration 18 R-Factor = 16.81273 Chi2 = 5.89635

>> Iteration 18 R-Factor = 16.81273 Chi2 = 5.89635

>> Iteration 18 R-Factor = 16.81577 Chi2 = 5.89572

>> Iteration 18 R-Factor = 16.81577 Chi2 = 5.805572

>> Iteration 18 R-Factor = 16.81577 Chi2 = 5.80514

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635

>> Iteration 18 R-Factor = 16.94872 Chi2 = 5.80635
```

Figure 1.6: FAULTS layout during refinement

Figure 1.7: FAULTS layout at the end of the refinement

Chapter 2

Example

A simulated XRD pattern for LiNiO₂ has been used to analyse and test out the program. The initial values of the refinement have been chosen far enough from the correct ones not to bias the result. The refinement has been carried out using the Levenberg-Marquardt fit.

2.1 Stacking faults in LiNiO₂

Lithium nickel oxide has been intensively studied as a positive electrode material in Li-ion batteries [16]. As other lithium transition metal oxides it presents an O3-type layered structure, consisting in three NiO₂ slabs per unit cell with an ABCABC oxygen stacking sequence and lithium ions located in the octahedral sites of the interlayer spaces (see figure 2.1). In order to explain the significant broadening of the (10l) and (01l) diffraction lines, DIFFaX simulations have been used for this material with the hypothesis of the existence of O1 stacking faults in the structure [17]. These stacking faults represent a break in the normal stacking sequence of the structure, with a local ABAB oxygen stacking sequence.

Figure 2.1: Structure of lithium nickel oxide (LiNiO₂).

The ideal structure can be described with three layers, each one containing a NiO₂ slab and a lithium sheet. The three layers are structurally identical, but shifted with respect to each other, resulting in transition vectors $\vec{t}12=\vec{t}23=\vec{t}31=(2/3\ 1/3\ 1/3)$ and a stacking probability of 1 for each transition. O1 defects require the definition of a new type of layer, structurally differente, since the position of Li atoms will be different (see figure 2.3). Therefore, in the faulted structure three more layers are defined, identical between them but different from the previous ones, and new transitions are allowed (see figure 2.2) in order to describe the defects.

2.2 Analysis of simulated data

By means of the stacking description described above, FAULTS has been used to simulate a diffraction pattern with the parameter's values described

in table 2.1. All the refined parameters using the Levenberg Marquardt optimisation algorithm are also detailed in table 2.1. The evolution of Chi^2 , R_p and the evolution of the cell parameter's throughout a run is shown in figure 2.4. Finally, a visual comparison between the calculated and the simulated powder patterns and their difference is shown in figure 2.5. Starting Rp and Chi^2 values were 76.38 % and 174.66 respectively and reached a final value of 0.96% and 0.06 respectively. All the refined parameters are very close to those used in the simulation except those involved in the IRF, but the obtained values of U, and X lead to a Caglioti curve practically identical to the one obtained with the values of these parameters used in the simulation.

Figure 2.2: Possible layer transitions for LiNiO₂ containing O1-type stacking faults, where α_{ij} is the probability transition from layer i to layer j.

Figure 2.3: a) Schematic representation and atomic coordinates of the layers required for describing stacking faults for LiNiO₂ in the FAULTS program. b) Graphic representation of the different transition possibilities from layer 1 and transition vectors.

Refined parameter	Simulation	Initial value	Final value
X	0.600	0.700	0.604
a,b	2.8659	2.7868	2.8662
c	14.253	14.453	14.253
\mathbf{x}_{Ni}	0.000	0.200	0.004
x_O	1/3	0.500	0.327
\mathbf{z}_{Li}	0.167	0.267	0.162
α_{11}	0.112	0.142	0.111
α_{12}	0.888	0.858	0.889
α_{22}	0.112	0.142	0.111
α_{23}	0.888	0.858	0.889
α_{31}	0.888	0.858	0.888
α_{33}	0.112	0.142	0.112

Table 2.1: Starting and final values of the parameters refined in the analysis of simulated data.

Figure 2.4: Evolution of the functions Rp and Chi² and of the cell parameters a and b, versus the cycle number.

Figure 2.5: Comparison of the X-ray diffraction patterns corresponding to the FAULTS analysis of the simulated data: simulated pattern (dotted curve) and calculated pattern using the FAULTS refinement (continuous curve). The diagram underneath shows the difference between them.

Bibliography

- [1] Treacy M.M.J., Newsam J.M. and Deem M.W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. *Proc. R. Soc. Lond. A*, 433:499-520, 1991.
- [2] Treacy M.M.J., Newsam J.M. and Deem M.W. DIFFaX. Available at: http://www.public.asu.edu/~mtreacy/DIFFaX.html.
- [3] Rodríguez-Carvajal J. and Gonzalez-Platas J., Crystallographic Fortran 90 modules library (CrysFML): a simple toolbox for crystallographic computing programs. *IUCr CompComm. Newsletter*, 1:50-58, 2003. Available at: http://www.iucr.org/iucr-top/comm/ccom/newsletters/.
- [4] Rodríguez-Carvajal J. and Gonzalez-Platas J., CrysFML repository. Available at: http://forge.epn-campus.eu/projects/crysfml/repository/.
- [5] Treacy M.M.J., Deem M.W., and Newsam J.M. DIFFaX Manual, 2005, Chap 8: How DIFFaX works (p48). Available at: http://www.public. asu.edu/~mtreacy/DIFFaX\$_\$manual.pdf.
- [6] Hendricks S. and Teller E. X-ray interference in partially ordered layer lattices. J. Chem. Phys., 10:147-167, 1942.

- [7] Casas-Cabanas M., Rodríguez-Carvajal J., Palacín M.R., Z. Kristallogr. Suppl., 23:243-248, 2006.
- [8] Casas-Cabanas M., Rikarte Ormazabal J., Reynaud M., Rodríguez-Carvajal J., in preparation.
- [9] Rodríguez Carvajal J., FullProf Suite. Available at: http://www.ill.eu/sites/fullprof.
- [10] Rodríguez Carvajal J., Physica B.(1993), 192, Recent advances in magnetic structure determination by neutron powder diffraction. *Physica B.*, 192:55-69, 1993.
- [11] Rodríguez Carvajal J., FullProf Manual. Available at http://www.ill.eu/sites/fullprof/php/tutorials.html.
- [12] Treacy M.M.J., Deem M.W., and Newsam J.M. DIFFaX Manual, 2005. Available at: http://www.public.asu.edu/~mtreacy/DIFFaX\$_\$manual.pdf.
- [13] Rodríguez Carvajal J. and Chapon L., FullProf Studio. Available at http://www.ill.eu/sites/fullprof/index.html.
- [14] Rodríguez Carvajal J. and Chapon L., FullProf Studio Manual. Available at http://www.ill.eu/sites/fullprof/index.html.
- [15] Roisnel T. and Rodríguez Carvajal J. WinPLOTR: A windows tool for powder diffraction pattern analysis. *Mater Sci Forum*, 378(3):128-123, 2000.
- [16] Whittingham M. S., Lithium Batteries and Cathode Materials. Chemical Reviews, 104:4271-4301, 2004.

[17] Croguennec L., Pouillerie C., Mansour A. N. and Delmas C. Structural characterisation of the highly deintercalated $\text{Li}_x \text{Ni}_{1.02} \text{O}_2$ phases (with $x \leq 0.30$). Journal of Materials Chemistry, 11:131-141, 2000