### 27. SAS Club

Buchpräsentation:

Applying Data Science

Business Case Studies Using SAS

Gerhard Svolba, Franz Helmreich, Gernot Engel, Matthias Svolba, Mihai Paunescu

Wien, 23. November 2017 – ARES Tower, Wien







### SAS Tipps und Tricks Session

Mihai Paunescu (Bundesministerium für Finanzen) Gerhard Svolba (SAS)



### Listen to Your Data!

Unsupervised Machine Learning Techniken zeigen Ihnen Zusammenhänge in Ihren Daten (Mihai Paunescu)



### Lassen Sie ihre Daten sprechen!

#### Auffinden von Zusammenhängen in Ihren Analysedaten

• Daten aus der KFZ-Versicherung mit 6 Eigenschaften pro Versicherungsnehmer

| Variable  | Feature                                  |
|-----------|------------------------------------------|
| AGE       | YOUNG, MIDLIFE, OLD                      |
| GENDER    | MALE, FEMALE                             |
| DENSITY   | HIGHLY URBAN, URBAN, HIGHLY RURAL, RURAL |
| CAR_TYPE  | VAN, SPORTS CAR, SUV, SEDAN, PICK UP     |
| CAR_USAGE | PRIVATE, COMMERICIAL                     |
| CLM_FLAG  | CLAIM, NO CLAIM                          |

 Anwenden von unsupervised machine learning (Assoziationsanalyse) um Zusammenhänge zwischen den Eigenschaften aufzudecken.



### Vorbereitung der Daten: von one-row-per subject in eine multiple-row-per-subject Struktur

| POLICYNO | & CLM_FLAG | & CAR_USE  | ♠ CAR_TYPE | AGE   | GENDER | DENSITY      |       |
|----------|------------|------------|------------|-------|--------|--------------|-------|
| 160      | No         | Private    | Sedan      | 60    | M      | Highly Urban |       |
| 24836    | No         | Commercial | Sedan      | 43    | м      | Highly Urban |       |
| 28046    | No         | Private    | Van        | 48    | М      | Urban        |       |
| 28960    | No         | Private    | rivate SUV |       | F      | Highly Urban |       |
| 40933    | No         | Private    | Sedan      | 51    | М      | Highly Urban |       |
| 55277    | No         | Private    | SUV 50 F   |       | F      | Urban        |       |
| 63212    | Yes        | Commercial | Sports Car | 34    | F      | Highly Urban |       |
| 69651    | No         | Private    | SUV        | 54    | F      | Highly Urban |       |
| 88070    | Yes        | Private    | Private    | Sedan | 40     | M.           | Urban |
| 93663    | No         | Commercial | SUV        | 44    | F      | Rural        |       |
| 127444   | Yes        | Commercial | Van        | 37 M  |        | Highly Urban |       |
| 141509   | Yes        | Private    | SUV        | 34 F  |        | Highly Urban |       |
| 145326   | No         | Commercial | Van        | 50 M  |        | Rural        |       |
| 146809   | Yes        | Private    | Sports Car | 53 F  |        | Urban        |       |
| 148250   | No         | Private    | Sedan      | 43    | F      | Rural        |       |
| 157851   | No         | Commercial | Van        | 55    | М      | Urben        |       |





# Vorbereitung der Daten: von one-row-per subject in eine multiple-row-per-subject Struktur: SAS Code SAS Datastep oder PROC TRANSPOSE

```
data claims feature (keep = policyno
                           feature);
 set claims nodup;
 format Feature $40.;
 *** 1. Gender;
 if gender = 'M' then Feature = 'Male';
  else Feature = 'Female';
output;
*** 2. Age;
 if 0 < Age < 26 then feature = 'Young';</pre>
  else if 26 <= age <= 55 then feature =
  'Middle Age';
  else feature = 'Old';
 output;
 *** 3. Density;
 feature = Density; output;
 *** 4. Car Type;
 feature = Car type; output;
 *** 5. Car Use;
 feature = Car use; output;
 *** 6. Claim \overline{F}lag;
 if clm flag = 'Yes' then feature =
   'Claim':
 else feature = 'No Claim';
 output;
run;
```

```
data claims nodup2;
 set claims nodup;
Age=round (\overline{Age}, 10);
run;
proc transpose data=claims nodup2
                 out=claims Long;
 by policyno;
 var age gender Density car type car use
     clm flag;
run;
data Key Value(drop = label col1
                 rename=( name = Key));
 set claims Long;
  Value = \overline{\text{strip}}(\text{coll});
  Feature = catx('=', name , Value);
run;
```



### Association Analysis zur Auffinden der Kombinationen

Unsupervised Machine Learning mit dem SAS Enterprise Miner





#### Lassen Sie ihre Daten sprechen!

#### Männer fahren keine Sportwägen?

Rule 278 shows that sports cars are only driven in 2.54% of the cases by men, whereas this was expected in around 46% of the cases.

| index | A RULE                    | & _LHAND     | _RHAND       | COUNT 6 | SUPPORT 🔞 | EXP_CONF 6 | CONF  | ⊕ LIFT | 0 |
|-------|---------------------------|--------------|--------------|---------|-----------|------------|-------|--------|---|
| 267   | Commercial ==> Sports Car | Commercial   | Sports Car   | 200 00  | 1.94      | 11.44      | 5.28  | 0.46   |   |
| 268   | Rural ==> Claim           | Rural        | Claim        | 102.00  | 0.99      | 26.66      | 6.52  | 0.24   |   |
| 269   | Claim ==> Rural           | Claim        | Rural        | 102.00  | 0.99      | 15.18      | 3.71  | 0.24   |   |
| 270   | Young ==> Highly Urban    | Young        | Highly Urban | 10.00   | 0.10      | 34 93      | 8.33  | 0.24   |   |
| 271   | Highly Rural ==> Claim    | Highly Rural | Claim        | 32 00   | 0.31      | 26.66      | 6.30  | 0.24   |   |
| 272   | Claim ==> Highly Rural    | Claim        | Highly Rural | 32.00   | 0.31      | 4.93       | 1.17  | 0.24   |   |
| 273   | Van> Female               | Van          | Female       | 117.00  | 1.14      | 53.82      | 12.70 | 0.24   |   |
| 274   | Female> Van               | Female       | Van          | 117.00  | 1.14      | 8.94       | 2.11  | 0.24   |   |
| 275   | Panel Truck> Female       | Panel Truck  | Female       | 40.00   | 0.39      | 53.82      | 4.69  | 0.09   |   |
| 276   | Male> SUV                 | Male         | SUV          | 99.00   | 0.96      | 27.98      | 2.08  | 0.07   | 1 |
| 277   | SUV> Male                 | SUV          | Male         | 99.00   | 0.96      | 46.18      | 3.43  | 0.07   | 1 |
| 278   | Sports Car> Male          | Sports Car   | Male         | 30.00   | 0.29      | 46.18      | 2.54  | 0.06   |   |

- This might indicate a situation that for the customer base, sports cars are really predominantly driven by women.
- It could be a trigger to an investigation of the quality status of your data.
- A business interpretation could be that in a family, the sports car is the 2<sup>nd</sup> or 3<sup>rd</sup> car that is registered in the wife's name for financial reasons.
- The competitor is offering a policy to men for a much more attractive price.



### Erzeugen Sie Ihre individuellen Simulationsdaten mit SAS



### Erzeugen Sie Ihre individuellen Simulationsdaten mit SAS

- Saisonalität
- Trend
- Level Shifts
- Ausreißer



http://www.sascommunity.org/wiki/A simple and powerful way to simulate your in



## Automatisches Erkennen von Ausreißern und Break-Points mit SAS Analytics



### Automatisches Erkennen von Breakpoints und Ausreißern

Anwenden von analytischen Methoden zum Erkennen von Zeitpunkten wo der Verlauf der Daten vom "normalen" Muster abweicht.



Erkennen von Shifts und Pulse Events mit ARIMA Modellen



Verwenden von Multivariaten Regression Splines zum Auffinden von Bruchpunkten



### Coding Tipp: Automatisches Anzeigen der vertikalen Referenz-Linien bei den jeweiligen Breakpoints (3 Schritte)

```
proc adaptivereg data=patients 1997 2002
                      plots=all details=bases ;
 format randdate date9 .:
                                        / maxbasis=100;
                                                                         Coefficient &
                                                                                 Parent ..... Variable
 model PatientsCnt = randdate
                                                                  Basis0
                                                                            5.5580
                                                                                     Intercept
 output out=recruit adpt predicted=pred;
                                                                 2 Basis 1
                                                                           0.02000 Basis D
                                                                                              14386
                                                                                     Flanddeho
                                                                                              14781
                                                                 3 Besis 3
                                                                           -0.01830 Besis0
                                                                                     Randdate
 ods output BWDParams=BWDParams;
                                                                  Benisti
                                                                           -0.01131 BasinD
                                                                                              14092
                                                                                     Randdate
run;
filename reflines 'c:/tmp/reflines.sas';
data NULL ;
 set bwdparams;
                                                                 refline 14396
 where upcase (variable) eq upcase ('randdate');
                                                                                  / axis = x;
                                                                 refline 14701
 format knot 8.;
                                                                                    axis = x;
                                                                 refline 14092
                                                                                    axis = x;
 file reflines:
  put @04 "refline " knot " / axis = x;";
run;
proc sgplot data=recruit adpt;
 series x=randdate y=pred;
 series x=randdate y=PatientsCnt;
 %include reflines;
run;
                                                                             Personal Cook of Material In . . . . . Patrolating
```



### Key Takeaways

#### Analytics und Data Science sind da um Ihnen zu helfen!

- Sie sehen ein klareres, objektiveres Bild Ihrer Daten und Analyse-Subjekte
- Sie erhalten explizite Ergebnisse anstatt die Nadel im Heuhaufen zu suchen
- Die Daten sprechen zu Ihnen und Sie erhalten die Ergebnisse automatisch statt manuell
- Do it again! Behandeln Sie Ihre Modelle als "Asset" und wiederholen Sie Ihre Analyse

### Machine Learning and Data Science sind das Kernstück der SAS Analytic Platform

- Umfassendes Set an Methoden Entdecken und Produktivstellen
- Offen für unterschiedliche Benutzertypen (Coding, Point&Click, SAS, R, Python, ...)



#### More Information

Gerhard Svolba – Principal Analytic Solutions Architect sastools.by.gerhard@gmx.net





- Applying Data Science Business Case Studies Using SAS, SAS Press 2017
- Eight Case Studies showing how Data Science and Analytics can be applied to provide insight into yout data and improve your business decisions
- http://www.sascommunity.org/wiki/Applying Data
   Science Business Case Studies Using SAS

