CLAIMS

What is claimed is:

l	1. A method for determining a parameter proportional to the cardiac stroke
2	volume of a subject comprising:
3	sensing an input signal that is proportional to arterial blood pressure;
4	calculating the standard deviation of the input signal over a measurement
5	interval; and
5	calculating an estimate of the cardiac stroke volume as a function of the
7	standard deviation of the input signal.
i	2. A method as in claim 1, further comprising:
2	measuring the heart rate of the subject; and
3	estimating current cardiac output of the subject by calculating the product of the
4	heart rate and the standard deviation and scaling the product by a calibration constant
1	3. A method as in claim 2, further comprising:
2	measuring a calibration cardiac output value; and
3	calculating the calibration constant as the quotient between a calibration cardiac
4	output estimate and the product of the heart rate and the standard deviation.
1	4. A method as in claim 1, further comprising sensing the input signal non-
2	invasively.
1	5. A method as in claim 1, in which the measurement interval extends over
2	more than one cardiac cycle.
l	6. A method as in claim 5, in which the measurement interval is a plurality o
2	cardiac cycles.

l	7. A method as in claim 5, further comprising.
2	calculating a component standard deviation value of the input signal for each of
3	a plurality of measurement intervals;
4	computing a composite standard deviation value as an average of the
5	component standard deviation values; and
6	using the composite standard deviation value in calculating the estimate of the
7	cardiac stroke volume.
1	8A method as in claim 5, further comprising:
2	for each of a plurality of cardiac cycles, calculating a mean pressure value; and
3	adjusting the measurement interval as a function of change in the mean
4	pressure value.
1	9. A method as in claim 5, further comprising high-pass filtering the input
2	signal before the step of calculating the standard deviation.
1	10. A method as in claim 1, in which the input signal is a measurement of the
2	arterial blood pressure.
1	11. A method as in claim 10, further comprising:
2	determining a maximum value and a minimum value of the arterial blood
3	pressure; and
4	calculating the standard deviation as a function of the difference between the
5	maximum and minimum values.
1	A method as in claim 1, in which the step of calculating the estimate of the
2	cardiac stroke volume as a function of the standard deviation of the input signal
3	comprises calculating the product of the standard deviation and a calibration factor
l	13. A method for determining cardiac stroke volume of a subject comprising:
2	sensing arterial blood pressure;
3	converting the sensed arterial blood pressure to a pressure signal;

4	calculating the standard deviation of the pressure signal over a measurement
5	interval;
6	calculating an estimate of the stroke volume as a function of the standard
7	deviation of the pressure signal.
1	14. A method as in claim 13, further comprising:
2	measuring the heart rate of the subject; and
3	estimating current cardiac output of the subject by calculating the product of the
4	heart rate and the standard deviation and scaling the product by a calibration constant.
1	15. A method as in claim 14, further comprising:
2	measuring a calibration cardiac output value; and
3	calculating the calibration constant as the quotient between a calibration cardiac
4	output estimate and the product of the heart rate and the standard deviation.
1	16. A method for estimating cardiac output of a subject comprising:
2	sensing arterial blood pressure;
3	converting the sensed arterial blood pressure to a pressure signal;
4	calculating the standard deviation of the pressure signal over a measurement
5	interval;
6	calculating an estimate of stroke volume as a function of the standard deviation of
7	the pressure signal;
8	measuring the heart rate of the subject; and
9	estimating current cardiac output of the subject by calculating the product of the
10	heart rate and the standard deviation and scaling the product by a calibration constant.
1	17. A system for determining a parameter proportional to the cardiac stroke
2	volume of a subject comprising:
3	a sensor located in or on the body of the subject and generating a sensor signal
4	that is proportional to arterial blood pressure;
5	conversion circuitry that receives the sensor signal and converts it to an input
6	signal;

7	a processing system that receives the input signal and that includes processing
8	modules for calculating the standard deviation of the input signal over a measurement
9	interval and for calculating an estimate of the cardiac stroke volume as a function of the
10	standard deviation of the input signal; and
11	a display for presenting the estimate of the cardiac stroke volume to a user.
1	18. A system as in claim 17, further comprising a heart rate monitor
2	measuring the heart rate of the subject;
3	the processing system estimating current cardiac output of the subject by
4	calculating the product of the heart rate and the standard deviation and scaling the
5	product by a calibration constant.
1	19. A system as in claim 17, further comprising a high pass filter connected
2	between the sensor and the processing system.
1	20. A system as in claim 17, in which the sensor is a direct blood pressure
2	sensor.
1	21. A system for determining a parameter proportional to the cardiac stroke
2	volume of a subject comprising:
3	a sensor located in or on the body of the subject and generating a sensor signal
4	that is proportional to arterial blood pressure;
5	conversion circuitry that receives the sensor signal and converts it to an input
6	signal;
7	a processing system including computer-executable code for calculating the
8	standard deviation of the input signal over a measurement interval; and for calculating
9	an estimate of the cardiac stroke volume as a function of the standard deviation of the
10	input signal; and
11	a display for presenting the estimate of the cardiac stroke volume to a user.

measuring the heart rate of the subject, the processing system further including

22.

1

2

A system as in claim 21, further comprising a heart rate monitor

- computer-executable code for estimating current cardiac output of the subject by
 calculating the product of the heart rate and the standard deviation and scaling the
- 5 product by a calibration constant.

1

6

7

- 23. A system as in claim 22, further comprising a calibration system
 measuring a calibration cardiac output value, the processing system further including
 computer-executable code for calculating the calibration constant as the quotient
 between a calibration cardiac output estimate and the product of the heart rate and the
 standard deviation.
 - 24. A system as in claim 1, in which the sensor is non-invasive.
- 25. A method for determining cardiac stroke volume of a subject comprising: sensing arterial blood pressure;
- 3 converting the sensed arterial blood pressure to a pressure signal;
- detecting a maximum and a minimum pressure value over a measurement interval; and
 - calculating an estimate of the stroke volume as a function of the difference between the maximum and a minimum pressure values.
- 26. A method for determining cardiac stroke volume of a subject comprising: sensing arterial blood pressure;
- 3 converting the sensed arterial blood pressure to a pressure signal;
- detecting a maximum value of the first time derivative of the pressure value during a measurement interval; and
- 6 calculating an estimate of the stroke volume as a function of the maximum value.
- 27. A method for determining cardiac stroke volume of a subject comprising: sensing arterial blood pressure;
- 3 converting the sensed arterial blood pressure to a pressure signal;
- detecting a minimum value of the first time derivative of the pressure value during a measurement interval; and

6	calculating an estimate of the stroke volume as a function of the minimum value.
1	28. A method for determining cardiac stroke volume of a subject comprising:
2	sensing arterial blood pressure;
3	converting the sensed arterial blood pressure to a pressure signal;
4	detecting a maximum value and a minimum value of the first time derivative of
5	the pressure value during a measurement interval; and
6	calculating an estimate of the stroke volume as a function of the maximum and
7	minimum values.
1	29. A method for determining cardiac stroke volume of a subject comprising:
2	sensing arterial blood pressure;
3	converting the sensed arterial blood pressure to a pressure signal;
4	determining the heart rate of the subject;
5	determining the amplitude of a spectral component of the pressure signal for a
6	frequency corresponding to a multiple of the heart rate;
7	calculating an average value of the pressure signal; and
8	calculating an estimate of the stroke volume as a function of the ratio of the
9	amplitude of the spectral component and the average value of the pressure signal