Math 571 - Homework 2

Richard Ketchersid

Definition 1. A set $S \subseteq X$ is **discrete** iff every point in S is isolated.

Problem 2.1 (R:2:5*). Prove the following for discrete $S \subset \mathbb{R}$:

- a) $Lim(S) \cap S = \emptyset$ and S is countable.
- b) There is discrete set $A \subset \mathbb{R}$ so that Lim(A) = Cl(S).
- c) Give an example of a discrete set S where there is no set A such that Lim(A) = S.

For the following use the definition that I provided for Cl(E), namely, $Cl(E) = \bigcap \{F \mid F \text{ is closed and } E \subseteq F\}.$

Problem 2.2 (R:2:6). For X a metric space and $E \subseteq X$, show that

- a) $\operatorname{Lim}(\operatorname{Lim}(E)) \subseteq \operatorname{Lim}(E)$ and equality need not obtain.
- b) $\operatorname{Lim}(A \cup B) = \operatorname{Lim}(A) \cup \operatorname{Lim}(B)$.
- c) $E \cup \text{Lim}(E)$ is closed and $E \cup \text{Lim}(E) = \text{Cl}(E)$.
- d) Lim(E) is closed and Lim(E) = Lim(Cl(E)).

Problem 2.3 (R:2:9*). Let X be a metric space, or just any topological space. Are the following true for all $E \subseteq X$? For each either prove the statement true or give a counterexample. For a counterexample you must provide both X and E.

- a) $\operatorname{Int}(E)^c = \operatorname{Cl}(E^c)$.
- b) $Cl(E) = Int(E^c)^c$?
- c) Cl(E) = Cl(Int(E))?
- d) Int(E) = Int(Cl(E))

Problem 2.4. Let $\tau = \{(a, \infty) \mid a \in \mathbb{R} \cup \{\infty, -\infty\}\}$. This might be called *the (right) ray topology.*

- (a) Show that (\mathbb{R}, τ) is a topological space.
- (b) Compute Int((0,1)).
- (c) Compute Ext((0,1)).
- (d) Compute $\partial(0,1)$.
- (e) Compute Cl((0,1)).
- (f) Compute Lim((0,1)). (The derived set of (0,1)).)

Definition 2. A metric space X is **separable** iff there is a countable $E \subseteq X$ with E dense in X.

Problem 2.5 (R:2:22). Show the \mathbb{R}^k is separable.

Definition 3. A set \mathcal{B} of open sets is called a **base** for X iff for all $x \in X$ and open set U with $x \in U$, there is $V \in \mathcal{B}$ so that $x \in V \subset U$.

Problem 2.6 (R:2:23*). Prove that if a topological space has a countable base, i.e., is second countable, then it is separable. Prove that a metric space is separable iff it has a countable base.

Problem 2.7 (R:2:24). Prove that if X is a metric space and every infinite sequence has a limit point, then X is separable. (See the hint in the text.)