LECTURE

4

*C*Y11001 Spring 2018

- Heat Capacity
- Enthalpy

How to measure ΔU ?

Heat Transactions and Heat Capacity:

In general change in the internal energy of a closed system is given by

$$dU = dq + dw_{\rm exp} + dw_{\rm add}$$

• For dV = 0; $dw_{\rm exp} = 0$ and if $dw_{\rm add} = 0$, then dU = dq (constant volume, no additional work) = dq_V

For a measurable change $\Delta U = q_V$

- **heat capacity**, C, the ratio of the heat supplied to the temperature rise it causes. C = dq/dT; $C = q/\Delta T$
- heat capacity at constant volume, $C_V = (\partial U/\partial T)_V$
- molar heat capacity, the heat capacity divided by the amount of substance, $C_{\rm m} = C/n$.
- **specific heat capacity,** the heat capacity divided by the mass, $C_s = C/m$

The measurement of internal energy change

• Adiabatic bomb calorimeter

Heat Capacity at Constant Pressure:

$$dU = dq + dw_{\text{exp}} + dw_{\text{add}}$$

For
$$dV \neq 0$$
; $dw_{\text{exp}} \neq 0$ Even if $dw_{\text{add}} = 0$, $dU \neq dq$

Define
$$H = U + pV$$

 $dH = dU + pdV + Vdp = dU - w$ (at const p) = dq_p

heat capacity at constant pressure, $C_p = (\partial H/\partial T)_p$

For ideal gas; **relation between** ΔU **and** ΔH , $\Delta H = \Delta U + \Delta n_g RT$.

Show that for a perfect gas, $C_p - C_V = nR$ (home work)

The measurement of enthalpic change

- isobaric calorimeter
- differential scanning calorimeter
- adiabatic flame calorimeter

• For most cases, $C_v > C_V$

Partial differentiation:

Consider a function of two variables \Rightarrow z = f(x,y)

A **partial derivative** of one of the variables: the rate of change of the function *wrt* that variable with all other variables kept fixed.

$$\left[\left(\frac{\partial z}{\partial x}\right)_{y} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}\right]$$

$$\left| \left(\frac{\partial z}{\partial y} \right)_{x} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \right|$$

Total differential of z(x,y):

$$dz = \left(\frac{\partial z}{\partial x}\right)_{y} dx + \left(\frac{\partial z}{\partial y}\right)_{x} dy$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$$

Clairaut's theorem

$$\left(\frac{\partial y}{\partial z}\right)_{x} \cdot \left(\frac{\partial z}{\partial x}\right)_{y} \cdot \left(\frac{\partial x}{\partial y}\right)_{z} = -1$$

Cyclic Rule

Variation of internal energy with T and V

$$U = f(V,T)$$
 $U = f(p,T)$ $U = f(p,V)$

$$U = f(p,T)$$

$$U = f(p,V)$$

$$dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$

$$\pi_T = \left(\frac{\partial U}{\partial V}\right)_T$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Internal pressure

Heat capacity

$$dU = \pi_T dV + C_V dT$$

Constant *V* process

$$dU_V = C_V dT$$

Constant *T* process

$$dU_T = \pi_T dV$$

Special case: Ideal gas

For ideal gas

$$\pi_{\mathrm{T}} = \left(\frac{\partial U}{\partial V}\right)_{T} = 0$$

$$\left(\frac{\partial U}{\partial p}\right)_T = 0$$

$$dU = C_V dT$$
 for ideal gas

Fig. 2.25 For a perfect gas, the internal energy is independent of the volume (at constant temperature). If attractions are dominant in a real gas, the internal energy increases with volume because the molecules become farther apart on average. If repulsions are dominant, the internal energy decreases as the gas expands.

Joule's Experiment (1843)

Figure 2-26

Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula

Purpose is to determine π_T ,

$$\left(\frac{\partial U}{\partial V}\right)_T$$

whether or not gases cool on expansion, and if so how much.

$$U = f(V,T); \ dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$

- In this experiment, observed dT = 0
- Heat change, q, for the system (gas) = 0
- no work done for free expansion, w = 0hence dU = 0, and,

as
$$dV \neq 0$$
, $\left(\frac{\partial U}{\partial V}\right)_T = 0$

Actually this is only valid for ideal gas

In reality, $dT \neq 0$, Joule's apparatus was not sensitive to find out the small value of dT

Keyes-Sears modification (1924)

$$dU = \pi_T dV + C_V dT$$
$$dU = -C_V \mu_J dV + C_V dT$$

- Heat change, q, for the system (gas) = 0
- no work done for free expansion, w = 0hence dU = 0,

Constant-energy process, *U* constant

$$\boxed{\left(\frac{\partial T}{\partial V}\right)_{U} = \mu_{J}} \quad \boxed{\approx \frac{\Delta T}{\Delta V}} \quad \text{Joule Coefficient,} \\ \mu_{J}$$

$$\overline{ \left(\frac{\partial T}{\partial U} \right)_{V} \left(\frac{\partial U}{\partial V} \right)_{T} \left(\frac{\partial V}{\partial T} \right)_{U} } = -1$$

$$\overline{\left(\frac{\partial U}{\partial V}\right)_{T} = -\left(\frac{\partial U}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial V}\right)_{U} = -C_{V}\mu_{J}}$$

Partial derivatives of p, V_m , and T with respect to each other:

$$V_m = f(p, T); \quad p = f(V_m, T); \ T = f(p, V_m)$$

$$dT = \left(\frac{\partial T}{\partial p}\right)_{Vm} dp + \left(\frac{\partial T}{\partial V_m}\right)_p dV_m$$

$$dp = \left(\frac{\partial p}{\partial T}\right)_{Vm} dT + \left(\frac{\partial p}{\partial V_m}\right)_T dV_m$$

$$dV_m = \left(\frac{\partial V_m}{\partial T}\right)_p dT + \left(\frac{\partial V_m}{\partial p}\right)_T dp$$

$$\left(\frac{\partial p}{\partial V_m}\right)_T \left(\frac{\partial V_m}{\partial T}\right)_p \left(\frac{\partial T}{\partial p}\right)_{V_m} = -1$$

$$\left| \frac{\partial^2 T}{\partial p \partial V_m} = \frac{\partial^2 T}{\partial V_m \partial p} \right| = \frac{1}{R} \text{ for ideal gas}$$

$$\alpha(T, p) = \frac{1}{V_m} \left(\frac{\partial V_m}{\partial T} \right)_p \qquad \kappa(T, p) = -\frac{1}{V_m} \left(\frac{\partial V_m}{\partial p} \right)_T$$

Expansion coefficient

Isothermal compressibility

$$\left(\frac{\partial p}{\partial T}\right)_{V_m} = -\frac{\left(\partial V_m / \partial T\right)_p}{\left(\partial V_m / \partial p\right)_T} = \frac{\alpha(T, p)}{\kappa(T, p)}$$

- How fast the (fraction of) volume increases with temperature and decreases with pressure
- For ideal gas, $\alpha = 1/T$ and $\kappa = 1/p$

FIRST YEAR TIME TABLE FOR SECTION 15

Strength: 82

SPRING SE	MESTER	2017 -	2018
-----------	--------	--------	------

	SPRING SEMESTER 2017								
Period	1	2	3	4	5	Г			
Time	8:00 AM -	9:00 AM -	10:00 ам -	11:00 лм -	12:00 Noon -	1			
Day	8:55 am	9:55 AM	10:55 ам	11:55 дм	12:55 рм	4			
MON			HEMISTRY I		I				
		(22.0	acanstry Depti			Įτ			
TUE			CAL TECHNO		N				
102		(In Sir J C		ď					
			HS	CY	EE	E			
WED			NR221	NR221	NR 221	ŀ			
THU				EE	CY				
				NR221	NR221	τ			
	CY	EE		HS					
FRI	NR221		R.20	NR221					
SAT			EAA			1			

	6	7	8	9
	2:00 рм-	3:00 рм -	4:00 PM-	5:00 PM-
	2:55 рм	3:55 PM	4:55 PM	5:55 PM
L	INTRO. TO M	(ANUF. PROC	ESSES LAB	
U	(In Mechanica			
1	HS I			
Ν	(In Langu			
C	Sir J C Bose Com			
н	Сощ			
		CY(T)	MA(T) NC241.NC242	
н		NC241,NC242	NC241,NC242	
		N		
0		ï		
U				
-		MA		
R		V2		
1				

FIRST YEAR TIME TABLE FOR SECTION 16

Strength: 80

SPRING SEMESTER 2017 - 2018

Period	1	2	3	4	5		6	7	8	9
Time	8:00 дм -	9:00 AM -	10:00 ам -	11:00 ам -	12:00 Noon -		2:00 PM-	3:00 рм -	4:00 PM-	5:00 PM-
Day \	8:55 AM	9:55 AM	10:55 AM	11:55 ам	12:55 PM		2:55 PM	3:55 PM	4:55 PM	5:55 PM
MON		HS LAB (In Language Lab, Sir J C Bose Laboratory Complex) CHEMISTRY LAB (In Chemistry Department)			L U	ELECTRICAL TECHNOLOGY LAB (In Sir J C Bose Laboratory Complex)				
TUE						N C	INTRO. TO MANUF. PROCESSES LAB (In Mechanical Engineering Department)			
WED			HS NR221	CY NR221	EE NR221	H		CY(T) NC243,NC244	MA(T) NC243,NC244	
THU		EE NR221			CY NR221	О		MA V2		
FRI	CY NR221		EE R 221		HS R221	U R		MA V2		
SAT		EAA								

NR222

11 Jan and 18 Jan 10 am at NR222