模块一 相关定理的基本应用

第1节 正弦定理、余弦定理基础模型(★★☆)

强化训练

1. (★★) 在 $\triangle ABC$ 中, $A = 30^{\circ}$, $B = 45^{\circ}$, a = 2,则 c = 1.

答案: $\sqrt{6} + \sqrt{2}$

解析: 已知 A, B 可求出 C, 此时题干的 a, c, A, C 即为两边两对角,可用正弦定理求 c,

由题意, $A = 30^{\circ}$, $B = 45^{\circ}$,所以 $C = 180^{\circ} - A - B = 105^{\circ}$,

故 $\sin C = \sin 105^\circ = \sin (60^\circ + 45^\circ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ = \frac{\sqrt{6 + \sqrt{2}}}{\sqrt{2}}$,

由正弦定理, $\frac{a}{\sin A} = \frac{c}{\sin C}$, 所以 $c = \frac{a \sin C}{\sin A} = \sqrt{6} + \sqrt{2}$.

2. $(2023 \cdot 北京模拟 \cdot ★★)$ 在 $\triangle ABC$ 中, a = 4, $\cos A = \frac{3}{5}$, $\cos B = \frac{4}{5}$,则 $\triangle ABC$ 的面积为_____.

答案: 6

解析:给出 $\cos A$ 和 $\cos B$,等同于给出了A和B,已知两角一对边,可用正弦定理求另一角对边,

因为 $A, B \in (0, \pi)$,且 $\cos A = \frac{3}{5}$, $\cos B = \frac{4}{5}$,所以 $\sin A = \sqrt{1 - \cos^2 A} = \frac{4}{5}$, $\sin B = \sqrt{1 - \cos^2 B} = \frac{3}{5}$,

由正弦定理, $\frac{a}{\sin A} = \frac{b}{\sin B}$, 所以 $b = \frac{a \sin B}{\sin A} = 3$, 求面积还差 $\sin C$, 可用内角和为 π 来算,

 $\sin C = \sin[\pi - (A+B)] = \sin(A+B) = \sin A \cos B + \cos A \sin B = \frac{4}{5} \times \frac{4}{5} + \frac{3}{5} \times \frac{3}{5} = 1$

所以 $S_{\Delta ABC} = \frac{1}{2}ab\sin C = \frac{1}{2} \times 4 \times 3 \times 1 = 6.$

3. (2022 •四川内江期末 •★★) $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 若 $a\cos B = b\sin A$, $C = \frac{\pi}{2}$,

 $c = \frac{3}{2}$, $\bigcup b = ($

$$(A) \frac{\sqrt{6}}{2}$$

$$(B) \frac{3\sqrt{2}}{2}$$

(A)
$$\frac{\sqrt{6}}{2}$$
 (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{3\sqrt{2}+\sqrt{6}}{4}$ (D) $\frac{3\sqrt{3}-3}{2}$

(D)
$$\frac{3\sqrt{3}-3}{2}$$

答案: A

解析: 等式 $a\cos B = b\sin A$ 左右两侧都有边,可利用正弦定理边化角,看能否求出某内角,

因为 $a\cos B = b\sin A$,所以 $\sin A\cos B = \sin B\sin A$,又 $0 < A < \pi$,所以 $\sin A > 0$,故 $\cos B = \sin B$,

从而 $\tan B = 1$, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{\Lambda}$,

到此就已知了B,C和c,求b,这是两边两对角问题,用正弦定理解,

由正弦定理, $\frac{b}{\sin B} = \frac{c}{\sin C}$, 所以 $b = \frac{c \sin B}{\sin C} = \frac{\sqrt{6}}{2}$.

4.(2022 •江苏南京模拟 •★★)已知 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 若 b=2c, $a=\sqrt{6}$,

 $\cos A = \frac{7}{8}$,则 $\triangle ABC$ 的面积为(

(A)
$$\frac{\sqrt{30}}{2}$$
 (B) $\sqrt{15}$ (C) $\sqrt{30}$ (D) $\frac{\sqrt{15}}{2}$

(B)
$$\sqrt{15}$$

(C)
$$\sqrt{30}$$

(D)
$$\frac{\sqrt{15}}{2}$$

答案: D

解析: 所给条件涉及三边一角, 可用余弦定理建立方程, 求边,

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$,将 $a = \sqrt{6}$ 和 $\cos A = \frac{7}{8}$ 代入可得: $b^2 + c^2 - \frac{7}{4}bc = 6$ ①,

又b=2c,代入式①可得 $4c^2+c^2-\frac{7}{4}\cdot 2c\cdot c=6$,解得: c=2,所以b=4,

因为已知 $\cos A$,所以算面积选择公式 $S = \frac{1}{2}bc \sin A$,

又 $\cos A = \frac{7}{8}$,且 $0 < A < \pi$,所以 $\sin A > 0$,从而 $\sin A = \sqrt{1 - \cos^2 A} = \frac{\sqrt{15}}{8}$,

故 $S_{\Delta ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times 4 \times 2 \times \frac{\sqrt{15}}{8} = \frac{\sqrt{15}}{2}$.

5. (★★) 在 $\triangle ABC$ 中,内角 A, B, C 所对的边长分别为 a, b, c, 若 $A = \frac{\pi}{2}$, b = 4, $\triangle ABC$ 的面积为 $3\sqrt{3}$,

则 $\sin B = ($)

(A)
$$\frac{2\sqrt{39}}{13}$$
 (B) $\frac{\sqrt{39}}{13}$ (C) $\frac{5\sqrt{2}}{13}$ (D) $\frac{3\sqrt{13}}{13}$

(B)
$$\frac{\sqrt{39}}{13}$$

(C)
$$\frac{5\sqrt{2}}{13}$$

(D)
$$\frac{3\sqrt{13}}{13}$$

答案: A

解析: 给出了角 A, 边 b 和面积, 那面积可用 $S = \frac{1}{2}bc\sin A$ 来算,

由题意, $S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times 4 \times c \times \sin \frac{\pi}{3} = \sqrt{3}c = 3\sqrt{3}$,所以c = 3,

到此就已知了两边及夹角,可先用余弦定理求第三边,再用正弦定理求 $\sin B$,

由余弦定理, $a^2 = b^2 + c^2 - 2bc \cos A = 16 + 9 - 2 \times 4 \times 3 \times \cos \frac{\pi}{3} = 13$, 所以 $a = \sqrt{13}$,

由正弦定理, $\frac{a}{\sin A} = \frac{b}{\sin B}$, 所以 $\sin B = \frac{b \sin A}{a} = \frac{4 \times \frac{\sqrt{3}}{2}}{\sqrt{13}} = \frac{2\sqrt{39}}{13}$.

- 6. $(2023 \cdot 全国乙卷 \cdot ★★★)$ 在 $\triangle ABC$ 中,已知 $\angle BAC = 120^{\circ}$, AB = 2 , AC = 1.
- (1) 求 $\sin \angle ABC$;
- (2) 若 D 为 BC 上一点,且 $\angle BAD = 90^{\circ}$,求 $\triangle ADC$ 的面积.

解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)

由余弦定理, $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos \angle BAC$

 $=2^{2}+1^{2}-2\times2\times1\times\cos120^{\circ}=7$,所以 $BC=\sqrt{7}$,

由正弦定理,
$$\frac{AC}{\sin \angle ABC} = \frac{BC}{\sin \angle BAC}$$
,

所以
$$\sin \angle ABC = \frac{AC \cdot \sin \angle BAC}{BC} = \frac{1 \times \sin 120^{\circ}}{\sqrt{7}} = \frac{\sqrt{21}}{14}$$
.

(2) 因为 ∠BAC = 120°, ∠BAD = 90°, 所以 ∠CAD = 30°,

 $(求 S_{\Delta ADC}$ 还差 AD,如图,只要求出 $\angle ABC$,就能在 ΔABD 中求 AD, $\angle ABC$ 可放到 ΔABC 中来求)

由余弦定理推论,
$$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC}$$

$$=\frac{2^2+(\sqrt{7})^2-1^2}{2\times2\times\sqrt{7}}=\frac{5}{2\sqrt{7}},$$

所以
$$BD = \frac{AB}{\cos \angle ABC} = \frac{4\sqrt{7}}{5}$$
, $AD = \sqrt{BD^2 - AB^2} = \frac{2\sqrt{3}}{5}$,

故
$$S_{\triangle ADC} = \frac{1}{2}AC \cdot AD \cdot \sin \angle CAD = \frac{1}{2} \times 1 \times \frac{2\sqrt{3}}{5} \times \sin 30^{\circ} = \frac{\sqrt{3}}{10}$$
.

- 7. (2023・新高考 I 卷・★★★) 已知在 $\triangle ABC$ 中, A+B=3C, $2\sin(A-C)=\sin B$.
- (1) 求 $\sin A$;
- (2) 设 AB = 5,求 AB 边上的高.

解: (1) 由题意,
$$A+B=\pi-C=3C$$
, 所以 $C=\frac{\pi}{4}$,

(要求的是
$$\sin A$$
, 故用 $C = \frac{\pi}{4}$ 和 $A + B = \frac{3\pi}{4}$ 将

 $2\sin(A-C) = \sin B$ 消元, 把变量统一成 A)

曲
$$A+B=3C=\frac{3\pi}{4}$$
 可得 $B=\frac{3\pi}{4}-A$,

代入
$$2\sin(A-C) = \sin B$$
 可得 $2\sin(A-\frac{\pi}{4}) = \sin(\frac{3\pi}{4}-A)$,

所以
$$2(\sin A\cos\frac{\pi}{4} - \cos A\sin\frac{\pi}{4}) = \sin\frac{3\pi}{4}\cos A - \cos\frac{3\pi}{4}\sin A$$
,

整理得:
$$\cos A = \frac{1}{3} \sin A$$
,

代入
$$\sin^2 A + \cos^2 A = 1$$
 可得 $\sin^2 A + \frac{1}{9}\sin^2 A = 1$,

所以
$$\sin A = \pm \frac{3\sqrt{10}}{10}$$
,结合 $0 < A < \pi$ 可得 $\sin A = \frac{3\sqrt{10}}{10}$.

(2) 设内角 A, B, C 的对边分别为 a, b, c,

则
$$c = AB = 5$$
, 如图,作 $CD \perp AB$ 于点 D ,

则
$$AB$$
 边上的高 $CD = b \sin A = \frac{3\sqrt{10}}{10}b$ ①,

(接下来求 b. 已知 A, C 可用内角和为 π 求 B, 题干又给了 a, 故已知三角一边,用正弦定理求 b)

$$\sin B = \sin(\frac{3\pi}{4} - A) = \frac{\sqrt{2}}{2}\cos A + \frac{\sqrt{2}}{2}\sin A = \frac{2}{\sqrt{5}},$$

由正弦定理,
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
 , 所以 $b = \frac{c \sin B}{\sin C} = 2\sqrt{10}$,

代入①得
$$CD = \frac{3\sqrt{10}}{10} \times 2\sqrt{10} = 6$$
,故 AB 边上的高为 6.

8. $(2023 \cdot 新高考 II 卷节选 \cdot ★★★) 记 <math>\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\triangle ABC$ 的面积为 $\sqrt{3}$, D为 BC 的中点,且 AD=1. 若 $\angle ADC=\frac{\pi}{3}$, 求 $\tan B$.

解法 1: 如图 1,因为
$$\angle ADC = \frac{\pi}{3}$$
,所以 $\angle ADB = \frac{2\pi}{3}$,

(要求 $\tan B$,可到 ΔABD 中来分析,所给面积怎么用?可以用它求出 $S_{\Delta ABD}$,从而得到 BD)

因为D是BC中点,所以 $S_{\Delta ABC} = 2S_{\Delta ABD}$,

又
$$S_{\Delta ABC} = \sqrt{3}$$
,所以 $S_{\Delta ABD} = \frac{\sqrt{3}}{2}$,

曲图 1 可知
$$S_{\triangle ABD} = \frac{1}{2}AD \cdot BD \cdot \sin \angle ADB = \frac{1}{2} \times 1 \times BD \times \sin \frac{2\pi}{3}$$

$$=\frac{\sqrt{3}}{4}BD$$
,所以 $\frac{\sqrt{3}}{4}BD=\frac{\sqrt{3}}{2}$,故 $BD=2$,

(此时 $\triangle ABD$ 已知两边及夹角,可先用余弦定理求第三边 AB,再用正弦定理求角 B)

在 ΔABD 中, 由余弦定理, $AB^2 = AD^2 + BD^2 - 2AD \cdot BD \cdot$

$$\cos \angle ADB = 1^2 + 2^2 - 2 \times 1 \times 2 \times (-\frac{1}{2}) = 7$$
,所以 $AB = \sqrt{7}$,

由正弦定理,
$$\frac{AB}{\sin \angle ADB} = \frac{AD}{\sin B}$$
,

所以
$$\sin B = \frac{AD \cdot \sin \angle ADB}{AB} = \frac{1 \times \frac{\sqrt{3}}{2}}{\sqrt{7}} = \frac{\sqrt{3}}{2\sqrt{7}}$$
,

由
$$\angle ADB = \frac{2\pi}{3}$$
可知 B 为锐角,

从而
$$\cos B = \sqrt{1 - \sin^2 B} = \frac{5}{2\sqrt{7}}$$
,故 $\tan B = \frac{\sin B}{\cos B} = \frac{\sqrt{3}}{5}$.

解法 2: (如图 2, 已知 AD 和 $\angle ADC$, 容易求出 BC 边上的高,故可用它来算面积,建立方程求 BC)

作
$$AE \perp BC$$
 于点 E , 因为 $AD = 1$, $\angle ADC = \frac{\pi}{3}$, 所以

$$AE = AD \cdot \sin \angle ADC = \frac{\sqrt{3}}{2}$$
, $\&S_{\Delta ABC} = \frac{1}{2}BC \cdot AE = \frac{\sqrt{3}}{4}BC$,

又由题意, $S_{\triangle ABC} = \sqrt{3}$,所以 $\frac{\sqrt{3}}{4}BC = \sqrt{3}$,故BC = 4,

(再求 $\tan B$, 观察发现图中有 $Rt\Delta ABE$, 故考虑计算对边和邻边,已有对边 AE , 只需再求出邻边 BE)

因为
$$BD = \frac{1}{2}BC = 2$$
, $DE = AD \cdot \cos \angle ADC = \frac{1}{2}$,

所以 $BE = BD + DE = \frac{5}{2}$,故 $\tan B = \frac{AE}{BE} = \frac{\sqrt{3}}{5}$.

【反思】在某些解三角形问题中,适时地运用一些初中平面几何的方法(如解法2),可以使问题简化.

《一数•高考数学核心方法》