

Olympic Medal Prediction via Adaptive Triple-Fusion: Combining AAC Model with ARIMA-State Space Dynamics

¹ Wei Li, Shanghai University, China ² Zixin Wang, Shanghai University, China ³ Qixiang Gao, Fudan University, China Fenglei Yang*, Shanghai University, China

Introduction

The Olympic Games have turned into a highly complex dynamic network, the prediction of medals demands an analysis of multiple interactive subsystems like athlete development, national training systems, and the global regime of competitions.

Developments of Olympic prediction methods Mathematical method **Initial inventing stage** (1990-2005) without time differences Time series analysis for **Second stage** national strength modeling (2006-2015) Development of high-**Current stage** accuracy ML models (at the (2016-current) cost of interpretability)

AAC (senior Athlete-new Athlete-Country) Model

For athlete $i \in \mathcal{A}$, the state vector evolves as:

$$\mathbf{X}_{i,t} = \begin{bmatrix} P_{part}(t) \\ P_{perf}(t) \\ A_{eff}(t) \\ S_{str}(t) \end{bmatrix}$$

Following the stochastic differential equation:

$$d\mathbf{X}_{i,t} = \mu(\mathbf{X}_{i,t}, \theta)dt + \sigma(\mathbf{X}_{i,t}, \theta)dW_t$$

The model incorporates two key temporal effects:

- Historical influence decays exponentially over time, reflecting the diminishing relevance of past performances;
- Performance correlation between different time points decreases with temporal distance, capturing the natural evolution of athletic capabilities.

AAS (Adaptive ARIMA-AAC-State Space) Fusion Model

The AAS model introduces a triple-fusion framework integrating:

- A. Micro-level athlete dynamics (AAC)
- A. Macro-level time series patterns (ARIMA)
- S. Dynamic state evolution (State Space)

The AAS fusion estimator achieves minimal variance:

$$\widehat{M}_{AAS} = \min_{\widehat{M}} \left\{ \mathbb{E} \left[\left(M - \widehat{M} \right)^2 \right] \right\}$$
 subject to: $\widehat{M} = w_{AAC} M_{AAC} + w_{ARIMA} M_{ARIMA} + w_{SS} M_{SS}$, $\sum w_i = 1$, $w_i \ge 0$

Coach Effect Integration

The coach effect model captures 3 key aspects:

Technical expertise transfer

Institutional memory effects

Sport-specific adaptation

This provides a quantitative framework for evaluating coaching impact on Olympic performance.

Model Validation and Performance Assessment

Our empirical validation leverages data from the 2024 Olympics to rigorously evaluate the predictive capabilities of the proposed AAS fusion framework against its constituent models (AAC and ARIMA). The analysis demonstrates the superior performance of our integrated approach across multiple metrics.

Country	2024 Olympic Medals Prediction							
	Total Medals				Gold Medals			
	Actual	AAC	ARIMA	AAS	Actual	AAC	ARIMA	AAS
USA	126	115 (-8.7%)	118 (-6.3%)	120 (-4.8%)	40	42 (+5.0%)	41 (+2.5%)	41 (+2.5%)
China	91	90 (-1.1%)	87 (-4.4%)	89 (-2.2%)	40	40 (0.0%)	39 (-2.5%)	40 (0.0%)
France	64	59 (-7.8%)	62 (-3.1%)	61 (-4.7%)	16	20 (+25.0%)	17 (+6.3%)	17 (+6.3%)
UK	65	60 (-7.7%)	63 (-3.1%)	62 (-4.6%)	18	17 (-5.6%)	16 (-11.1%)	17 (-5.6%)
Japan	45	40 (-11.1%)	42 (-6.7%)	43 (-4.4%)	20	19 (-5.0%)	18 (-10.0%)	19 (-5.0%)
Note: Values in parentheses indicate relative prediction errors (- underprediction, + overprediction)								

Forward-Looking Projections: 2028 Olympics

Key Findings:

- •USA: 128 total medals including 55 gold medals
- China: 82 total medals including 39 gold medals
- •Enhanced precision with ±5.8% uncertainty intervals
- •Mean bias reduced to -1.2%

Our model projects significant dynamics for the 2028 Los Angeles Olympics, with particular attention to host nation effects and evolving competitive landscapes.

Conclusions

This research develops and validates the AAS fusion framework to advance Olympic medal prediction. It integrates athlete dynamics and national trends, achieving <5% mean error rates for major nations in the 2024 Olympics. The framework combines measure-theoretic probability and hierarchical Bayesian modeling, ensuring robust predictions and interpretability. Empirical results show superior performance in predicting total and gold medals for top nations. Future work will explore incorporating technological impacts and demographic changes, and enhancing adaptability to rapid shifts in Olympic competition dynamics.

Acknowledgements

We would like to thank our tutor and teammates, for their wonderful collaboration and patient support.

Contact

Wei Li

Phone: 13062764936 E-mail: liwei008009@163.com