```
In [1]:  import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  from sklearn.preprocessing import LabelEncoder, StandardScaler
  from sklearn.linear_model import LinearRegression, Lasso
  from sklearn.metrics import mean_squared_error, mean_absolute_error
  from sklearn.ensemble import RandomForestRegressor
  import warnings
  warnings.filterwarnings("ignore")
```

Matplotlib is building the font cache; this may take a moment.

In [3]: participants_data=pd.read_csv(r'C:\Users\18F17884\Desktop\participants_data\p
participants_data.head()

Out[3]:

	age	city	weight	height	ВМІ	gender	qualification	employment_status	marital_sta
0	31.0	Karachi	73.0	165.0	26.8	Male	Bachelors	Self Emplyed	Mar
1	21.0	Turkey	70.0	170.0	24.9	Male	Intermediate	Unemployed	Ot
2	41.0	Faisalabad	72.5	156.0	NaN	Male	Bachelors	Employed	Sir
3	22.0	Rawalpindi	75.0	155.0	32.0	Male	Bachelors	Self Emplyed	Sir
4	26.0	Harbin	75.0	179.0	23.4	Male	Masters	Unemployed	Sir

```
In [4]: participants_data.shape
```

Out[4]: (90, 12)

```
In [5]: ▶ participants_data.isnull().sum()
```

```
Out[5]: age
                               0
         city
                               0
                               0
         weight
                               0
         height
         BMI
                               4
         gender
                               0
         qualification
                               0
         employment_status
                               0
         marital_status
                               0
                               0
         copilot user
         favourite_dish
                               0
         salary
                               0
         dtype: int64
```

```
In [6]: ▶ participants_data=participants_data.dropna()
```

```
In [7]:
            participants_data.isnull().sum()
   Out[7]: age
                                  0
            city
                                  0
            weight
                                  0
            height
                                  0
                                  0
            BMI
                                  0
            gender
            qualification
                                  0
            employment_status
                                  0
            marital_status
                                  0
            copilot_user
                                  0
            favourite_dish
                                  0
            salary
                                  0
            dtype: int64
In [8]:
            participants_data.shape
   Out[8]: (86, 12)
            participants_data.dtypes
In [9]:
   Out[9]: age
                                  float64
            city
                                   object
            weight
                                  float64
                                  float64
            height
            BMI
                                  float64
            gender
                                   object
                                   object
            qualification
                                   object
            employment_status
            marital_status
                                   object
            copilot_user
                                   object
            favourite_dish
                                   object
            salary
                                  float64
            dtype: object
```



```
In [12]:  plt.figure(figsize=(10,6))
    sns.regplot(x="weight", y="salary", data=participants_data)
```

Out[12]: <AxesSubplot:xlabel='weight', ylabel='salary'>

Out[13]: <AxesSubplot:xlabel='height', ylabel='salary'>

In [14]:

from scipy import stats

pearson_coef, p_value = stats.pearsonr(participants_data['weight'], participa

print("The Pearson who prefer indian or pakistani food is", pearson_coef, " w

The Pearson who prefer indian or pakistani food is 0.30568109669554944 with a P-value of P = 0.004207964445406958

In [15]: ▶ sns.boxplot(x="qualification", y="salary", data=participants_data)

Out[15]: <AxesSubplot:xlabel='qualification', ylabel='salary'>


```
In [16]: N sns.boxplot(x="favourite_dish", y="salary", data=participants_data)
```

Out[16]: <AxesSubplot:xlabel='favourite_dish', ylabel='salary'>


```
In [17]:  participants_data.drop(['age', 'weight', 'height', 'favourite_dish'], axis = 1
```

In [18]: ▶ participants_data.shape

Out[18]: (86, 8)

In [19]: ▶ participants_data.describe()

Out[19]:

	ВМІ	salary
count	86.000000	86.000000
mean	173.666315	48097.467674
std	1297.133846	63786.633342
min	0.800000	222.220000
25%	20.625000	5625.000000
50%	24.431500	20000.000000
75%	27.475000	60000.000000
max	12054.400000	300000.000000

Out[20]:

_		city	gender	qualification	employment_status	marital_status	copilot_user
	count	86	86	86	86	86	86
	unique	44	2	5	3	3	2
	top	Karachi	Male	Bachelors	Unemployed	Single	Yes
	freq	8	67	47	46	44	47

In [23]: participants_data.head(10)

Out[23]:

	city	BMI	gender	qualification	employment_status	marital_status	copilot_user	salary
0	20	26.8	1	0	1	0	1	10000.0
1	42	24.9	1	1	2	1	1	3000.0
3	36	32.0	1	0	1	2	1	50000.0
4	13	23.4	1	2	2	2	0	35000.0
6	25	22.7	1	0	2	2	1	20000.0
8	16	23.0	1	0	1	2	1	5000.0
9	20	26.0	1	0	2	0	1	10000.0
10	9	24.5	1	0	2	0	1	20000.0
11	2	27.1	1	0	2	2	1	15000.0
12	24	27.5	1	2	0	0	1	50000.0

In [24]: # Calculate the z-score from with scipy import scipy.stats as stats participants_data = stats.zscore(participants_data) participants_data = stats.zscore(participants_data)

In [25]: ▶ participants_data

Out[25]:

	city	ВМІ	gender	qualification	employment_status	marital_status	copilot_u
0	-0.120425	-0.113888	0.532524	-0.849909	-0.231608	-1.118212	0.9109
1	1.826966	-0.115361	0.532524	0.030720	0.874965	-0.084166	0.9109
3	1.295859	-0.109855	0.532524	-0.849909	-0.231608	0.949879	0.9109
4	-0.740050	-0.116524	0.532524	0.911348	0.874965	0.949879	-1.0977
6	0.322164	-0.117067	0.532524	-0.849909	0.874965	0.949879	0.9109
85	0.410681	-0.116524	0.532524	-0.849909	0.874965	0.949879	-1.0977
86	1.295859	-0.123581	0.532524	0.911348	-1.338181	-1.118212	-1.0977
87	-0.474497	-0.118696	-1.877849	-0.849909	0.874965	-1.118212	0.9109
88	-0.120425	-0.115778	-1.877849	-0.849909	0.874965	-1.118212	-1.0977
89	-0.297461	-0.108925	-1.877849	-0.849909	-0.231608	-1.118212	-1.0977

86 rows × 8 columns

In [27]: ► x_train.head()

Out[27]:

	city	BMI	gender	qualification	employment_status	marital_status	copilot_use
0	-0.120425	-0.113888	0.532524	-0.849909	-0.231608	-1.118212	0.91092
1	1.826966	-0.115361	0.532524	0.030720	0.874965	-0.084166	0.91092
3	1.295859	-0.109855	0.532524	-0.849909	-0.231608	0.949879	0.91092
4	-0.740050	-0.116524	0.532524	0.911348	0.874965	0.949879	-1.09778
6	0.322164	-0.117067	0.532524	-0.849909	0.874965	0.949879	0.91092

```
In [28]: ▶ y_train.head()
```

Out[28]: 0 -0.600767

1 -0.711152

3 0.030001

4 -0.206537

6 -0.443075

Name: salary, dtype: float64

```
In [29]:
          ▶ | from sklearn.model selection import train test split
            # splitting the data
            x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_si
In [30]:
          ▶ #print the shape of train and test data after spltting
            print (x train.shape)
            print (x_test.shape)
             (68, 8)
             (18, 8)
In [31]:
          ▶ | mlr = LinearRegression()
            model_mlr = mlr.fit(x_train,y_train)
          y_pred1 = model_mlr.predict(x_test)
In [32]:
In [47]:
            MSE1 = mean_squared_error(y_test,y_pred1)
            print('MSE is ', MSE1)
            MSE is 1.483271664811708e-30
In [48]:
          modelrf=rf.fit(x_train,y_train)
In [49]:
          y pred2 = modelrf.predict(x test)
In [50]:
          MSE2 = mean squared error(y test,y pred2)
            print('MSE is ', MSE2)
            MSE is 0.0010482534648488732
In [51]:
          ► LassoModel1=Lasso()
            lm=LassoModel1.fit(x_train,y_train)
In [52]:
          y_pred3 = modelrf.predict(x_test)
In [53]:
          MSE3 = mean_squared_error(y_test,y_pred2)
            print('MSE is ', MSE3)
            MSE is 0.0010482534648488732
In [54]:
          ▶ scores = [('MLR', MSE1), ('Random Forest', MSE2), ('Lasso', MSE3)]
```

```
In [55]:  MSE = pd.DataFrame(data = scores, columns=['Model', 'MSE Score'])
MSE
```

Out[55]:

```
        Model
        MSE Score

        0
        MLR
        1.483272e-30

        1
        Random Forest
        1.048253e-03

        2
        Lasso
        1.048253e-03
```

```
In [59]: MSE.sort_values(by=(['MSE Score']), ascending=False, inplace=True)

f, axe = plt.subplots(1,1, figsize=(10,7))
    sns.barplot(x = MSE['Model'], y=MSE['MSE Score'], ax = axe)
    axe.set_xlabel('Model', size=20)
    axe.set_ylabel('Mean Squared Error', size=20)

plt.show()
```



```
In [ ]: ▶
```