© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°16

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Mines-Ponts MP 2009 – Théorème de Müntz

On désigne par $\mathcal{C}([0,1])$ l'espace vectoriel des fonctions réelles continues sur [0,1]. Pour tout $\lambda \geq 0$, on note ϕ_{λ} l'élément de $\mathcal{C}([0,1])$ défini par $\phi_{\lambda}(x) = x^{\lambda}$. Par convention on a posé $0^0 = 1$ de sorte que ϕ_0 est la fonction constante 1.

Soit $(\lambda_k)_{k\in\mathbb{N}}$ une suite de réels ≥ 0 deux à deux distincts. On note W le sous-espace vectoriel de $\mathcal{C}([0,1])$ engendré la famille $(\varphi_{\lambda_k})_{k\in\mathbb{N}}$. Le but du problème est d'établir des critères de densité de l'espace W dans $\mathcal{C}([0,1])$ pour l'une ou l'autre des deux normes classiques N_{∞} ou N_2 définies par :

$$N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)|$$
 et $N_2(f) = \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}$

La question préliminaire et les parties I, II, III et VI sont indépendantes les unes des autres.

Question préliminaire

1 Montrer que $(\phi_{\lambda})_{\lambda \geq 0}$ est une famille libre de $\mathcal{C}([0,1])$.

I Déterminants de Cauchy

On considère un entier n > 0 et deux suites finies $(a_k)_{1 \le k \le n}$ et $(b_k)_{1 \le k \le n}$ de réels telles que $a_k + b_k \ne 0$ pour tout $k \in [1, n]$. Pour tout entier m tel que $0 < m \le n$, le *déterminant de Cauchy* d'ordre m est défini par :

$$\mathbf{D}_{m} = \begin{vmatrix} \frac{1}{a_{1} + b_{1}} & \frac{1}{a_{1} + b_{2}} & \cdots & \frac{1}{a_{1} + b_{m}} \\ \frac{1}{a_{2} + b_{1}} & \frac{1}{a_{2} + b_{2}} & \cdots & \frac{1}{a_{2} + b_{m}} \\ \vdots & \vdots & & \vdots \\ \frac{1}{a_{m} + b_{1}} & \frac{1}{a_{m} + b_{2}} & \cdots & \frac{1}{a_{m} + b_{m}} \end{vmatrix}$$

On définit la fraction rationnelle :

$$R(X) = \frac{\prod_{k=1}^{n-1} (X - a_k)}{\prod_{k=1}^{n} (X + b_k)}$$

2 Montrer que si R(X) est de la forme R(X) = $\sum_{k=1}^{n} \frac{A_k}{X + b_k}$, alors

$$A_n D_n = R(a_n) D_{n-1}$$

© Laurent Garcin MP Dumont d'Urville

On pourra pour cela considérer le déterminant obtenu à partir de D_n en remplaçant la dernière colonne par

$$\begin{pmatrix} R(a_1) \\ R(a_2) \\ \vdots \\ R(a_n) \end{pmatrix}$$

3 En déduire que

$$D_n = \frac{\prod_{1 \le i < j < \le n} (a_j - a_i)(b_j - b_i)}{\prod_{1 \le i \le n \atop 1 \le i \le n} (a_i + b_j)}$$

II Distance d'un point à une partie d'un espace normé

Soit E un espace vectoriel normé par une norme $\|\cdot\|$. On rappelle que la distance d'un élément $x \in E$ à une partie non vide A de E est le réel noté d(x, A) défini par :

$$d(x, A) = \inf_{y \in A} ||x - y||$$

- 4 Montrer que d(x, A) = 0 si et seulement si x est adhérent à A.
- $\boxed{\bf 5} \ \ \text{Montrer que si } (\mathbf{A}_n)_{n\geq 0} \ \text{est une suite croissante de parties de E et si } \mathbf{A} = \bigcup_{n\geq 0} \mathbf{A}_n \ \text{alors } d(x,\mathbf{A}) = \lim_{n\to\infty} d(x,\mathbf{A}_n).$

On considère un sous-espace vectoriel V de dimension finie de E, et on note B = $\{y \in E; \|y - x\| \le \|x\|\}$.

- Montrer que $B \cap V$ est compacte et que $d(x, V) = d(x, B \cap V)$ pour tout $x \in E$.
- 7 En déduire que pour tout $x \in E$, il existe un élément $y \in V$ tel que d(x, V) = ||x y||.

III Distance d'un point à un sous-espace de dimension finie dans un espace euclidien

Dans cette partie, on suppose que la norme sur l'espace vectoriel E est définie à partir d'un produit scalaire $\langle \cdot, \cdot \rangle$ sur E : $||x|| = \sqrt{\langle x, x \rangle}$.

Montrer que si V est un sous-espace vectoriel *de dimension finie* de E, alors pour tout $x \in E$, la projection orthogonale de x sur V est l'unique élément $y \in V$ vérifiant d(x, V) = ||x - y||.

Pour tout suite finie $(x_1, x_2, ..., x_n) \in E^n$, on désigne par $G(x_1, x_2, ..., x_n)$ le déterminant de la *matrice de Gram* d'ordre n définie par :

$$\mathbf{M}(x_1, x_2, \dots, x_n) = \begin{pmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_2 \rangle & \cdots & \langle x_1, x_n \rangle \\ \langle x_2, x_1 \rangle & \langle x_2, x_2 \rangle & \cdots & \langle x_2, x_n \rangle \\ \vdots & \vdots & & \vdots \\ \langle x_n, x_1 \rangle & \langle x_n, x_2 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}$$

- **9** Montrer que $G(x_1, x_2, ..., x_n) = 0$ si et seulement si la famille $(x_1, x_2, ..., x_n)$ est liée.
- On suppose que la famille $(x_1, x_2, ..., x_n)$ est libre et l'on désigne par V l'espace vectoriel qu'elle engendre. Montrer que, pour tout $x \in E$,

$$d(x, V)^{2} = \frac{G(x_{1}, x_{2}, \dots, x_{n}, x)}{G(x_{1}, x_{2}, \dots, x_{n})}$$

© Laurent Garcin MP Dumont d'Urville

IV Comparaison des normes N_{∞} et N_2

Pour toute partie A de $\mathcal{C}([0,1])$, on note \overline{A}^{∞} et \overline{A}^2 les adhérences de A pour les normes N_{∞} et N_2 respectivement. Pour $f \in \mathcal{C}([0,1])$, la notation d(f,A) désigne toujours la distance de f à A relativement à la norme N_2 (on ne considérera jamais, dans l'énoncé, la distance d'un élément à une partie relativement à la norme N_{∞}).

Montrer que pour tout $f \in \mathcal{C}([0,1])$, $N_2(f) \leq N_{\infty}(f)$. En déduire que pour toute partie A de $\mathcal{C}([0,1])$, on $a \, \overline{A}^{\infty} \subset \overline{A}^2$.

On considère l'ensemble $V_0=\{f\in\mathcal{C}([0,1]);\ f(0)=0\},$ et on rappelle que φ_0 désigne la fonction constante 1.

- 12 Montrer que $\phi_0 \in \overline{V_0}^2$.
- En déduire que V_0 est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 , mais n'est *pas* dense pour la norme N_{∞} .
- Montrer que si V est un sous-espace vectoriel d'un espace vectoriel normé, alors son adhérence \overline{V} est également un espace vectoriel.
- Montrer qu'un sous-espace vectoriel V de $\mathcal{C}([0,1])$ est dense pour la norme N_{∞} si et seulement si pour tout entier $m \geq 0$, $\phi_m \in \overline{V}^{\infty}$.
- En déduire qu'un sous-espace vectoriel V de $\mathcal{C}([0,1])$ est dense pour la norme N_2 si et seulement si pour tout entier $m \ge 0$, $\phi_m \in \overline{V}^2$.

V Un critère de densité de W pour la norme N₂

Pour tout $n \in \mathbb{N}$, on note W_n l'espace vectoriel engendré par la famille finie $(\phi_{\lambda_k})_{0 \le k \le n}$.

- Montrer que l'espace W est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 si et seulement si $\lim_{n\to+\infty}d(\phi_\mu,W_n)=0$ pour tout entier $\mu\geq 0$.
- 18 Montrer que pour tout $\mu \geq 0$,

$$d(\phi_{\mu}, \mathbf{W}_n) = \frac{1}{\sqrt{2\mu + 1}} \prod_{k=0}^{n} \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}$$

- Montrer que pour tout $\mu \ge 0$, la suite $\left(\frac{|\lambda_k \mu|}{\lambda_k + \mu + 1}\right)_{k \in \mathbb{N}}$ tend vers 1 si et seulement si la suite $(\lambda_k)_{k \in \mathbb{N}}$ tend vers $+\infty$.

 (On pourra pour cela étudier les variations de la fonction $x \in [0, \mu] \mapsto \frac{\mu x}{x + \mu + 1}$.)
- **20** En déduire que l'espace W est dense dans $\mathcal{C}([0,1])$ pour la norme N_2 si et seulement si la série $\sum_k \frac{1}{\lambda_k}$ est divergente.

VI Un critère de densité de W pour la norme N_{∞}

- **21** Montrer que si W est dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞} , alors la série $\sum_{k} \frac{1}{\lambda_{k}}$ est divergente.
- Soit $\psi = \sum_{k=0}^{n} a_k \varphi_{\lambda_k}$ un élément quelconque de W_n . Montrer que si $\lambda_k \ge 1$ pour tout $k \in [1, n]$, alors pour tout $\mu \ge 1$, on a :

$$N_{\infty}(\phi_{\mu} - \psi) \le N_2(\mu\phi_{\mu-1} - \sum_{k=0}^{n} a_k \lambda_k \phi_{\lambda_k-1})$$

- 23 On suppose que la suite $(\lambda_k)_{k\in\mathbb{N}}$ vérifie les deux conditions suivantes :
 - (i) $\lambda_0 = 0$;
 - (ii) $\lambda_k \ge 1$ pour tout $k \ge 1$;

Montrer que sous ces conditions, si la série $\sum_k \frac{1}{\lambda_k}$ est divergente, alors W est dense dans $\mathcal{C}([0,1])$ pour la norme N_{∞} .

Montrer que la conclusion précédente est encore valable si on remplace la condition (ii) par la condition plus faible :

(ii'):
$$\inf_{k\geq 1}\lambda_k>0$$