Devoir Maison Équations Différentiels Ordinaires

Guines Antoine - Langolff Clément

April 5, 2023

Exercice 1:

Dans cette exercice on considère l'équation différentielle suivante :

$$y'(t) = 2t(y(t) + y^{2}(t))$$
(1)

Éxistence et unicité des solutions Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la dynamique associée à (1) défini par :

$$f:(t,X)\to 2t(X+X^2)$$

f est une fonction polynômiale, f est donc C^1 ce qui implique f localement Lipschitzienne. Ainsi, d'après le théorème de Cauchy-Lipschitz version locale, il existe une unique solution maximale (y,I) de (1) satisfaisant $y(0)=y_0$. De plus comme $t_0=0$ alors $0\in I$.

Par ailleurs on a

$$|\frac{\partial f(t,X)}{\partial X}| = 2t(1+2X) \rightarrow +\infty \; quand \; X \rightarrow +\infty$$

Donc f n'est pas globalement Lipschitzienne, et on ne peut pas étendre directement la solution maximale en une solution globale.

Solutions évidentes (1) possède des solutions évidentes. En effet, y(t)=0 est solution de l'équation. Par le théorème de Cauchy-Lipschitz, il existe une solution maximale unique définie sur un intervalle de temps ouvert I contenant 0 et telle que $y_0=0$. De plus on a en posant $I=]t_-;t_+[$

$$\lim_{t \to t+} ||y(t)|| = \lim_{t \to t-} ||y(t)|| = 0$$

Donc par le théorème d'explosion en temps finis, on obtient $I =]-\infty; +\infty[$, et la solution maximale est définie sur $\mathbb R$ tout entier.

Une autre solution est donnée par y(t) = -1. Le théorème de Cauchy-Lipschitz nous permet encore une fois de dire qu'il existe une solution maximale unique définie sur un ouvert I contenant 0 et tel que $y_0 = -1$. De plus, en posant $I =]t_-; t_+[$, on a

$$\lim_{t \to t+} ||y(t)|| = \lim_{t \to t-} ||y(t)|| = 1$$

La solution maximale est alors aussi définie sur \mathbb{R} tout entier.

Résolution de l'équation Ce type d'équation est une équation de Bernouilli de la forme :

$$y'(t) = a(t)y(t) + b(t)y^m(t)$$

Comme y(t)=0 est solution de (1) et qu'on a unicité des solutions, considèrons $y(t)\neq 0$. L'équation devient équivalente à

$$\frac{y'(t)}{y^2(t)} = 2t \frac{1}{y(t)} + 2t \tag{2}$$

Posons

$$z(t) = \frac{1}{y(t)}$$

Alors on a $z'(t) = \frac{-y'(t)}{y^2(t)}$. On peut donc réécrire l'équation (2) comme suit

$$-z'(t) = 2tz(t) + 2t$$
$$z'(t) + 2tz(t) = -2t$$

• Cherchons d'abord une solution à l'équation homogène

$$z'_h(t) + 2tz_h(t) = 0$$

$$\iff z_h(t) = Ce^{-t^2}$$

• Cherchons ensuite une solution particulière (méthode de variation de la constante)

Posons $z_p(t)=C(t)e^{-t^2}$, alors $z_p^{'}(t)=C^{\prime}(t)e^{-t^2}-2tC(t)e^{-t^2}$.

$$z'_{p}(t) + 2tz_{p}(t) = -2t$$

$$\iff C'(t)e^{-t^{2}} = -2t$$

$$\iff C(t) = -e^{t^{2}}$$

Ainsi une solution particulière de (2) est :

$$z_p(t) = -1$$

Les solutions de (2) sont alors de la forme :

$$z(t) = Ce^{-t^2} - 1$$

Or $z(0) = \frac{1}{y_0} = C - 1 \iff C = \frac{1}{y_0} + 1 \ (y_0 \neq 0 \text{ sinon } y(t) = 0 \text{ par unicit\'e de la solution})$

$$z(t) = (\frac{1}{y_0} + 1)e^{-t^2} - 1$$

Finalement, tant que $z(t) \neq 0$, on a :

$$y(t) = \frac{1}{z(t)}$$

$$\iff y(t) = \frac{1}{\left(\frac{1}{y_0} + 1\right)e^{-t^2} - 1}$$

Supposons $y_0 > 0$ alors y(t) reste positive à condition que :

$$\frac{1}{(\frac{1}{y_0} + 1)e^{-t^2} - 1} > 0$$

$$(\frac{1}{y_0} + 1)e^{-t^2} > 1$$

$$1 + \frac{1}{y_0} > e^{t^2}$$

$$\ln(1 + \frac{1}{y_0}) > t^2 \ car \ 1 + \frac{1}{y_0} > 0$$

Donc finalement : $t \in]-\sqrt{ln(1+\frac{1}{y_0})};\sqrt{ln(1+\frac{1}{y_0})}[.$

Supposons maintenant $y_0 < 0$ alors y(t) reste négatif à condition que :

$$\begin{split} \frac{1}{(\frac{1}{y_0}+1)e^{-t^2}-1} &< 0 \\ (\frac{1}{y_0}+1)e^{-t^2} &< 1 \\ \frac{1}{y_0}+1 &< e^{t^2} \\ \underbrace{ln(\frac{1}{y_0}+1)}_{C} &< t^2 ssi \ y_0 < -1 \end{split}$$

Donc si $y_0 \in [-1;0]$, alors $y(t) < 0 \ \forall t \in]-\infty; +\infty[$ car on a toujours $e^{t^2} > 0$. De même si $y_0 \in [-\infty; -1]$ alors $y(t) < 0 \ \forall t \in]-\infty; +\infty[$ car on a toujours $t^2 > 0$. Donc finalement si $y_0 < 0$ alors y(t) reste négatif $\forall t \in]-\infty; +\infty[$.

Exercice 2:

Soit $\alpha \in \mathbb{R}$. On considère la matrice suivante :

$$A = \begin{bmatrix} 1 & -2 \\ 2 & \alpha \end{bmatrix}$$

Valeurs propres et stabilité du système Cherchons les valeurs propres de A. On a :

$$det(A - \lambda I_2) = 0 \iff \begin{bmatrix} 1 - \lambda & -2 \\ 2 & \alpha - \lambda \end{bmatrix} = 0$$
$$\iff (1 - \lambda)(\alpha - \lambda) + 4 = 0$$
$$\iff \lambda^2 - \lambda(\alpha + 1) + 4 + \alpha = 0$$

Son déterminant vaut :

$$\Delta = (\alpha + 1)^2 - 4(4 + \alpha) = \alpha^2 - 2\alpha - 15$$

Pour trouver le signe de ce déterminant, cherchons à le factoriser. Le déterminant de ce polynôme vaut : $\Delta_{\alpha} = 4 + 60 = 64$ donc $\alpha_1 = -3$ et $\alpha_2 = 5$. Ainsi : $\Delta = (\alpha - \alpha_1)(\alpha - \alpha_2) = (\alpha + 3)(\alpha - 5)$.

Revenons à la résolution du determinant.

• Si $\alpha \in]-\infty, -3[\cup]5, +\infty[\Rightarrow \Delta > 0$ alors

$$\lambda_{1/2} = \frac{\alpha + 1 \pm \sqrt{(\alpha + 3)(\alpha - 5)}}{2}$$

La solution est table si est seulement si $\alpha \in]-\infty, -3[$ et instable si $\alpha \in]5, +\infty[.$

• Si $\alpha \in]-3,5[\Rightarrow \Delta < 0 \text{ alors}]$

$$\lambda_{1/2} = \frac{\alpha + 1 \pm i\sqrt{|(\alpha + 3)(\alpha - 5)|}}{2}$$

La solution est périodique si $\alpha = -1$, stable si $\alpha \in]-3,-1[$ et instable sinon.

• Si $\alpha = -3$ ou $\alpha = 5 \Rightarrow \Delta = 0$ alors

$$\lambda_1 = \frac{\alpha + 1}{2}$$

La solution est stable si $\alpha = -3$ et instable si $\alpha = 5$.

Diagonalisation de l'endomorphisme Regardons maintenant les valeurs de α pour lesquelles A est diagonalisable.

• Si
$$\alpha \in]-\infty, -3[\cup]5, +\infty[\Rightarrow \Delta > 0$$
 alors $\lambda_{1/2} = \frac{\alpha+1\pm\sqrt{(\alpha+3)(\alpha-5)}}{2}$

$$\begin{bmatrix} x \\ y \end{bmatrix} \in ker(A - \lambda_1 I_2) \iff$$

$$\begin{bmatrix} 1 - \frac{\alpha + 1 + \sqrt{\Delta}}{2} & -2 \\ 2 & \alpha - \frac{\alpha + 1 + \sqrt{\Delta}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} x \left(\frac{1 - \alpha - \sqrt{\Delta}}{4} \right) & = y \\ 2x + y \left(\frac{\alpha - 1 - \sqrt{\Delta}}{2} \right) & = 0 \end{cases}$$
$$\begin{cases} x \left(\frac{1 - \alpha - \sqrt{\Delta}}{4} \right) & = y \\ \frac{-4}{\alpha - 1 - \sqrt{\Delta}} x & = y \end{cases}$$

Ce système correspond enfaite à une seule équation puisque

$$\frac{1-\alpha-\sqrt{\Delta}}{4} = \frac{(1-\alpha-\sqrt{\Delta})(\alpha-1-\sqrt{\Delta})}{4(\alpha-1-\sqrt{\Delta})}$$
$$= \frac{-\alpha^2+2\alpha-1+\Delta}{4(\alpha-1-\sqrt{\Delta})}$$
$$= \frac{-16}{4(\alpha-1-\sqrt{\Delta})}$$
$$= \frac{-4}{(\alpha-1-\sqrt{\Delta})}$$

Ainsi
$$\begin{bmatrix} x \\ y \end{bmatrix} = \mathbb{R} \begin{bmatrix} 1 \\ \frac{1-\alpha-\sqrt{\Delta}}{4} \end{bmatrix}$$

De même pour λ_2 ,on a $\begin{bmatrix} x \\ y \end{bmatrix} = \mathbb{R} \begin{bmatrix} 1 \\ \frac{1-\alpha+\sqrt{\Delta}}{4} \end{bmatrix}$

Ces vecteurs sont indépendants donc ils forment une base de \mathbb{R}^2 la matrice A est alors diagonalisable.

• Si
$$\alpha \in]-3,5[\Rightarrow \Delta < 0 \Rightarrow \Delta < 0 \text{ alors } \lambda_{1/2} = \frac{\alpha + 1 \pm i \sqrt{(\alpha + 3)(5 - \alpha)}}{2}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \in ker(A - \lambda_1 I_2) \iff$$

$$\begin{bmatrix} 1 - \frac{\alpha + 1 + i\sqrt{-\Delta}}{2} & -2 \\ 2 & \alpha - \frac{\alpha + 1 + i\sqrt{-\Delta}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} x \left(\frac{1 - \alpha - i\sqrt{-\Delta}}{4} \right) & = y \\ 2x + y \left(\frac{\alpha - 1 - i\sqrt{-\Delta}}{2} \right) & = 0 \end{cases}$$

Ainsi
$$\begin{bmatrix} x \\ y \end{bmatrix} = \mathbb{R} \begin{bmatrix} 1 \\ \frac{1 - \alpha - i\sqrt{-\Delta}}{4} \end{bmatrix}$$

De même pour
$$\lambda_2,$$
 on a $\begin{bmatrix} x \\ y \end{bmatrix} = \mathbb{R} \begin{bmatrix} 1 \\ \frac{1-\alpha+i\sqrt{-\Delta}}{4} \end{bmatrix}$

Ces vecteurs sont indépendants est forment une base de \mathbb{C}^2 donc A est diagonalisable.

• Si
$$\alpha=-3$$
 ou $\alpha=5\Rightarrow \varDelta=0$ alors $\lambda_1=\frac{\alpha+1}{2}$

$$\begin{bmatrix} x \\ y \end{bmatrix} \in ker(A - \lambda_1 I_2) \iff$$

$$\begin{bmatrix} 1 - \frac{\alpha+1}{2} & -2 \\ 2 & \alpha - \frac{\alpha+1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \frac{1-\alpha}{2} & -2 \\ 2 & \frac{\alpha-1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} \frac{1-\alpha}{4}x & = y \\ \frac{-4}{\alpha-1}x & = y \end{cases}$$

Ce système correspond à une même équation, on a alors $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ \frac{1-\alpha}{4}x \end{bmatrix} =$

 $\mathbb{R}\left[\frac{1}{1-\alpha}\right]$. Cet Espace est de dimension 1, on ne peut donc pas diagonaliser la matrice A. Cependant on peut lui trouver une forme de Jordan.

Prenons $\alpha = 3$, alors

$$A = \begin{bmatrix} 1 & -2 \\ 2 & \alpha \end{bmatrix}$$

et $\lambda=-1$. Posons $M=A+I_d=\begin{bmatrix}2&-2\\2&-2\end{bmatrix}$. On peut remarquer que les colonnes sont bien liées et rg(M) = 1.

On a $M^2 = 0$ donc $rg(M^2) = dim(\mathbb{R}^2)$.

Comme dim(ker(M)) = 1 puisque $E_3 = \mathbb{R} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (vu précédement) alors on a un seul bloc de Jordan associé à la valeur propre 3.

$$J = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$

POur trouver une matrice passage, on cherche un vecteur qui n'appartienne pas au vect de E_3 , par exemple le vecteur $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. On pose alors la matrice de passage

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Ainsi $J = 3I_2 + N_2$ avec $N_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ et $A = PJP^{-1}$.

Exercice 3:

Question 1:

On considère sur $I=]1,+\infty[$ le système différentiel suivant :

$$\begin{cases} y'(t) &= 1 + \frac{\cos^2(y(t))}{4t^2} \\ y(2) &= y_0 \end{cases}$$
 (3)

Soit $f: I \times \mathbb{R} \to \mathbb{R}$ la dynamique associée à (3) et définie par :

$$f(t,y(t)) = 1 + \frac{\cos^2(y(t))}{4t^2}$$

f est continue sur $I \times \mathbb{R}$, de plus ses dérivées partielles $\frac{\partial f(t,X)}{\partial t} = \frac{-\cos^2(X)}{t^3}$ et $\frac{\partial f(t,X)}{\partial X} = \frac{\cos(X)\sin(X)}{2t^2}$ existent en tout points et sont de plus continues sur $I \times \mathbb{R}$. On peut ainsi conclure que $f \in C^1(I \times \mathbb{R})$. Ainsi, f est localement lipschitzienne donc par le théorème local de Cauchy-Lipschitz, il existe une unique solution maximale (J,y(t)) $\forall y_0$, avec $J \subset I$. De plus on a :

$$\begin{split} |\frac{\partial f(t,X)}{\partial t}| &= |\frac{-cos^2(X)}{t^3}| \leq \frac{1}{t^3} < 1 \; \forall t \in I \\ |\frac{\partial f(t,X)}{\partial X}| &= |\frac{cos(X)sin(X)}{2t^2}| \leq \frac{1}{2t^2} < \frac{1}{2} \; \forall t \in I \end{split}$$

Les dérivés partielles de f sont donc bornées, ce qui nous assure que f est Lipschitzienne. Le théorème de Cauchy-Lipschitz s'applique, donc on déduit qu'il existe une unique solution globale sur I.

Posons $z(t) = y(t) - t \iff z'(t) = y'(t) - 1) = \frac{\cos^2(y(t))}{4t^2} \ge 0 \ \forall t \in I \ \text{donc} \ z$ est croissante.

Question 2:

On pose z(t) = y(t) - t. On a donc :

$$\begin{cases} z'(t) = y'(t) - 1 = \frac{\cos^2(z(t) + 1)}{4t^2} \\ z_0 = y_0 - 2 = z(2) \end{cases}$$
 (4)

On remarque que $z'(t) \ge 0 \ \forall t \in I$. On en déduit que z est croissante sur I.

Question 3:

On cherche à majorer z en majorant z'. On a :

$$0 \le z'(t) = \frac{\cos^2(y(t))}{4t^2} \le \frac{1}{4t^2} \ \forall t \in I$$

On peut déjà remarquer que $\lim_{t\to+\infty}\frac{1}{4t^2}=0$. Cela nous indique que la pente de z(t) va tendre vers 0 lorsque t va grandir. On se doute donc que z(t) aura une asymptote horizontale. Intégrons l'expression précédente, on a :

$$0 \le \int_2^t z'(t)dt \le \int_2^t \frac{1}{4t^2}dt$$

$$\iff 0 \le z(t) - z_0 \le \frac{1}{8} - \frac{1}{4t}$$

$$\iff z_0 \le z(t) \le \frac{1}{8} - \frac{1}{4t} + z_0$$

$$\iff z_0 \le z(t) \le \frac{1}{8} + z_0$$

Donc z(t) est bien majorée $\forall t \in I$. Ainsi, z étant croissante et majorée, on déduit que z converge vers une limite l, lorsque $t \to +\infty$. z(t) admet donc l comme asymptote horizontale, et comme z(t) = y(t) - t, on a :

$$\lim_{t \to +\infty} z(t) = l$$

$$\iff \lim_{t \to +\infty} y(t) = t + l$$

Et y(t) converge également par dessous, donc $t \to t+l$ est bien une asymptote de y(t).

Question 4:

Reprenons l'inégalité trouvée précédemment. On a :

$$z_0 \le z(t) \le \frac{1}{8} + z_0$$

Comme z(t) est croissante et majorée, elle possède une borne sup et on a toujours $z(t) \leq l(y_0) \ \forall t \in I$. Ainsi on peut écrire que :

$$z_0 \le z(t) \le l(y_0) \le \frac{1}{8} + z_0$$

Donc si z_0 augmente alors $l(y_0)$ augmente également, car les trajectoires du plan ayant une condition initiale différente ne peuvent pas se couper. Ainsi si $z_{01} < z_{02}$ alors $z_1(t) < z_2(t) \ \forall t \in I$. Et par conséquent $l(y_{01}) \le l(y_{02})$ car sinon on aurait un certain temps t^* à partir duquel $z_1(t) > z_2(t) \ \forall t \ge t^*$, ce qui est impossible car les trajectoires ne peuvent se couper. Donc si z_0 croît alors $l(y_0)$ croît également, et comme $z_0 = y_0 - 2$, la croissance de z_0 est équivalente à celle de y_0 . Ainsi la croissance de y_0 implique celle de $l(y_0)$,ce qui est le propre d'une fonction croissante. Donc $y_0 \longmapsto l(y_0)$ est croissante.

Exercice 4:

On considère dans cette exercice les 3 systèmes suivants :

$$\begin{cases} y_1' = y_2 \\ y_2' = -\sin(y_1) \end{cases}$$
 (1)
$$\begin{cases} y_1' = y_2 \\ y_2' = y_1^2 - 3y_2 \end{cases}$$
 (2)
$$\begin{cases} y_1' = -y_1 - y_1 y_2^2 \\ y_2' = -y_2 + 3y_1^2 y_2 \end{cases}$$
 (3)

Système 1:

(a) Trouvons les points d'équilibre du système différentiel (1). La dynamique $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ associée à ce système est définie par :

$$f_1: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} y_2 \\ -sin(y_1) \end{pmatrix}$$

Les points d'équilibre de (1) sont les points tels que :

$$f_1\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} y_2 \\ -sin(y_1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Donc ils sont donnés par :

$$\begin{cases} y_1 = k\pi & k \in \mathbb{Z} \\ y_2 = 0 \end{cases}$$

(b) Déterminons le système linéarisé autour des points d'équilibre. La jacobienne de f_1 est donné par :

$$Jf_{1|_{(y_1,y_2)}} = \begin{pmatrix} 0 & 1 \\ -cos(y_1) & 0 \end{pmatrix}$$

On l'évalue aux points d'équilibre précédemment trouvés. On obtient :

$$Jf_{1|_{(k\pi,0)}} = \begin{pmatrix} 0 & 1\\ (-1)^{k+1} & 0 \end{pmatrix}$$

Ainsi le système linéarisé autour des points d'équilibre s'écrit :

$$\dot{y}(t) = Jf_{1|_{(k\pi,0)}} \times \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ (-1)^{k+1}y_1 \end{pmatrix} \Longleftrightarrow \begin{cases} y_1' = y_2 \\ y_2' = (-1)^{k+1}y_1 \end{cases}$$

La stabilité du linéarisé dépend des valeurs propres de $Jf_{1|(k\pi,0)}$. On a $det(Jf_{1|(k\pi,0)} - \lambda I_2) = \lambda^2 + (-1)^k$. On distingue alors 2 cas :

- Si k est pair alors $\lambda^2 + 1 = 0 \implies \lambda_{1/2} = \pm i$. Dans ce cas $Re(\lambda_1) = Re(\lambda_2) = 0$, donc la solution du système linéarisé est périodique car $Jf_{1|_{(k\pi,0)}}$ est diagonalisable dans \mathbb{C} .
- Si k est impair alors $\lambda^2 1 = 0 \implies \lambda_{1/2} = \pm 1$. Alors $Re(\lambda_1) = 1$ et $Re(\lambda_2) = -1$. La solution du linéarisé est donc instable.
- (c) On étudie maintenant la stabilité du système différentiel (1). On reprend les valeurs propres de $Jf_{1|_{(k\pi,0)}}$. Pour les points d'équilibre ou k est impair, on a $Re(\lambda_1)=1>0$, ce qui nous permet directement de conclure que ces points d'équilibre sont instables. Dans ce cas, les deux parties réelles étants non nulle,

ces points d'équilibre sont dits hyperboliques.

Cependant lorsque k est pair, on a $Re(\lambda_1) = Re(\lambda_2) = 0$ et donc on ne peut conclure à partir de ces valeurs propres quant à la stabilité de ces points d'équilibre. Pour essayer de conclure, cherchons une fonction de Lyapounov. Prenons $L(y_1, y_2) = 1 - cos(y_1) + \frac{1}{2}y_2^2$. Cette fonction est toujours positive, et lorsqu'on l'évalue en $\bar{y} = (k\pi, 0)$ on trouve que $L(k\pi, 0) = 0$ car k est pair donc $cos(k\pi) = 1$. Ainsi on a bien $L(\bar{y}) = 0$. De plus en dérivant $L(y_1, y_2)$ on a :

$$L'(y_1, y_2) = \nabla L(y_1, y_2).\dot{y}$$

$$= sin(y_1)y'_1 + y_2y'_2$$

$$= sin(y_1)y_2 - y_2sin(y_1)$$

$$= 0$$

Donc L est de plus décroissante (constante) ainsi L est une fonction de Lyapounov. Donc (1) admet une fonction de Lyapounov pour les points d'équilibre de la forme $\bar{y} = (k\pi, 0)$ avec k pair. Ainsi \bar{y} est stable.

Système 2:

(a) Cette fois la dynamique $f_2: \mathbb{R}^2 \to \mathbb{R}^2$ associée au système (2) est définie par :

$$f_2: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} y_2 \\ y_1^2 - 3y_2 \end{pmatrix}$$

Les points d'équilibre de (2) sont tels que

$$f_2 \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} y_2 \\ y_1^2 - 3y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Donc ils sont donnés par :

$$\begin{cases} y_1 = 0 \\ y_2 = 0 \end{cases}$$

(b) Déterminons le système linéarisé autour des points d'équilibre. La jacobienne de f_2 est donnée par :

$$Jf_{2|_{(y_1,y_2)}} = \begin{pmatrix} 0 & 1\\ 2y_1 & -3 \end{pmatrix}$$

On l'évalue au point d'équilibre précédemment trouvé. On obtient :

$$Jf_{2|_{(0,0)}} = \begin{pmatrix} 0 & 1 \\ 0 & -3 \end{pmatrix}$$

Ainsi le système linéarisé autour du point d'équilibre s'écrit :

$$\dot{y}(t) = Jf_{2|_{(0,0)}} \times \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -3y_2 \end{pmatrix} \Longleftrightarrow \begin{cases} y_1' = y_2 \\ y_2' = -3y_2 \end{cases}$$

On a cette fois $det(Jf_{2|_{(0,0)}}-\lambda I_2)=\lambda^2+3\lambda$. On obtient alors que $\lambda(\lambda+3)=0 \implies \lambda_1=0$ et $\lambda_2=-3$.

(c) Comme la partie réelle de λ_1 est nulle et pas strictement négative, on ne peut pas conclure quant à la stabilité du système différentiel (2).

Système 3:

(a) Pour ce dernier système la dynamique $f_3: \mathbb{R}^2 \to \mathbb{R}^2$ associée au système

(3) est définie par :

$$f_3: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} -y_1 - y_1 y_2^2 \\ -y_2 + 3y_1^2 y_2 \end{pmatrix}$$

Les points d'équilibre de (2) sont tels que

$$f_2 \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} -y_1 - y_1 y_2^2 \\ -y_2 + 3y_1^2 y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{cases} y_1 = -y_1 y_2^2 \\ y_2 = 3y_1^2 y_2 \end{cases} \iff \begin{cases} y_2^2 = -1 \\ y_1^2 = \frac{1}{3} \end{cases}$$

Donc on a 4 points d'équilibre qui sont donnés par les couples suivant : $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ i \end{pmatrix}$, $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ -i \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{\sqrt{3}} \\ i \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{\sqrt{3}} \\ -i \end{pmatrix}$.

(b) Déterminons le système linéarisé autour des points d'équilibre. La jacobienne de f_3 est donné par :

$$Jf_{3|_{(y_1,y_2)}} = \begin{pmatrix} -1 - y_2^2 & -2y_2y_1 \\ 6y_1y_2 & -1 + 3y_1^2 \end{pmatrix}$$

On l'évalue aux points d'équilibre précédemment trouvés. Pour $\binom{\frac{1}{\sqrt{3}}}{i}$ et $\binom{-\frac{1}{\sqrt{3}}}{-i}$ on a :

$$Jf_{3|_{(\overline{y})}} = \begin{pmatrix} 0 & \frac{-2i}{\sqrt{3}} \\ \frac{6i}{\sqrt{3}} & 0 \end{pmatrix}$$

Et pour $\binom{\frac{1}{\sqrt{3}}}{-i}$ et $\binom{-\frac{1}{\sqrt{3}}}{i}$ on a :

$$Jf_{3_{(\overline{y})}} = \begin{pmatrix} 0 & \frac{2i}{\sqrt{3}} \\ \frac{-6i}{\sqrt{3}} & 0 \end{pmatrix}$$

Dans les 2 cas, le déterminant est identique. On obtient $det(Jf_{3|_{\overline{y}}}-\lambda I_2)=\lambda^2-4$. Les racines de $\lambda^2-4=0$ sont donc $\lambda_1=-2$ et $\lambda_2=2$. L'une de ces valeurs propres à une parties réelles positives donc les solutions du système linéarisé sont instable au voisinage des points d'équilibre.

(c) Comme la partie réelle de λ_2 est positive strictement, on peut conclure que les 4 points d'équilibre précédemment trouvés sont instables. Par ailleurs les parties réelles de λ_1 et λ_2 sont toutes les 2 non nulles, donc les points d'équilibre sont des équilibres hyperboliques.