Master in Artificial Intelligence

POS tagging
POS Taggers

Introduction to Human Language Technologies 4. POS tagging

POS tagging
POS Taggers

- POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

POS tagging Goal and motivation

POS Taggers

- POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

Goal

POS tagging Goal and motivation

POS Taggers

- Morphological analysis provides lexical information related to forms (POS, num, gen, tense, ...)
- Multiple analyses can result (POS tags from Penn Treebank tagset)

form	analyses	example of use
fish	NNS	'Cats eat fish'
	VBG	'I am fishing'
bass	NN	'I saw you play the bass'
	JJ	'Bass clarinets sound good'

■ Goal: disambiguate POS of word forms occurring in text

Motivation

POS tagging

POS Taggers

Examples of applications of POS tagging:

Syntactic parsing: words with the same POS tag play a similar syntactic role

Ex: a determiner followed by a common noun is a noun phrase

Machine translation

Ex: (POS tags from Penn Treebank tagset)

'El hombre	bajo	toca el	bajo	bajo	el puente'
POS	NN		NN	NN	
tagging	JJ		JJ	JJ	
	IN		IN	IN	
	VB		VB	VB	
possible	low		bass	under	
English	small			below	
words	short				
	poor				
'The	small	man plays the	bass	under	the bridge'

POS tagging Part of Speech categories

POS Taggers

- 1 POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

Open class vs. Closed class

- General classes:
 - Closed class: never invent new closed items (functional words)

Usual subclasses for indo-european languages:

prepositions, conjunctions, determiners, pronouns,
auxiliary verbs or particles (prepositions or adverbs in
phrasal verbs)

- Open class: new open items can be invented Usual subclasses for indo-european languages: nouns, non-auxiliary verbs, adjectives and adverbs
- Each language defines its particular set of subclasses
- Subclasses can be represented with a particular granularity by a set of categories

Ex: Brown corpus: annotated with 87 different POS tags
Ex: Penn Treebank corpus: with 45 different POS tags

POS tagging Part of Speech categories

POS Taggers

Penn Treebank tagset

POS tagging Part of Speech categories

POS Taggers

CC	Coordinating conjunction	PP	Possessive pronoun		
CD	Cardinal number	RB	Adverb		
DT	Determiner	RBR	Adverb, comparative		
EX	Existential there	RBS	Adverb, superlative		
FW	Foreign word	RP	Particle		
IN	Preposition	SYM	Symbol		
JJ	Adjective	TO	to		
JJR	Adjective, comparative	UH	Interjection		
JJS	Adjective, superlative	VB	Verb, base form		
LS	List item marker	VBD	Verb, past tense		
MD	Modal	VBG	Verb, gerund		
NN	Noun, singular	VBN	Verb, past participle		
NNP	Proper noun, singular	VBP	Verb, non-3rd ps. sing. present		
NNS	Noun, plural	VBZ	Verb, 3rd ps. sing. present		
NNPS	Proper noun, plural	WDT	wh-determiner		
PDT	Predeterminer	WP	wh-pronoun		
POS	Posessive ending	WP	Possessive wh-pronoun		
PRP	Personal pronoun	WRB	wh-adverb		

12 categories more related to punctuation marks

Ex: to/TO give/VB priority/NN to/IN teacher/NN pay/NN rises/NNS

POS tagging
POS Taggers

- 1 POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

POS tagging methods

POS tagging POS Taggers

Frequently used methods:

- Rule-based methods:
 - Rules built manually are not frequently used. High production cost
 - Rules learnt automatically from training corpus.
 - Ex: Brill's tagger.
- Stochastic methods:
 - Based on Hidden Markov Models learnt automatically from training corpus.

POS tagging

POS Taggers Stochastic taggers

- 1 POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

Stochastic taggers

Goal: Assign the most likely POS-tag sequence to a word sequence.

$$W = w_1 \dots w_n$$
 (a word sequence)
 $T = t_1 \dots t_n$ (a POS-tag sequence)

Tagger result:
$$\hat{T} = \underset{T}{\operatorname{argmax}} P(T|W)$$

- I How is P(T|W) computed? Apply a Hidden Markov Model
- 2 How is \hat{T} found? Apply Viterbi algorithm

POS tagging

POS Taggers Stochastic taggers

POS tagging

- 1 POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

Preliminaries: Markov model

- $X = (X_1, ..., X_T)$ sequence of random variables taking values in observed states $S = \{s_1, ..., s_N\}$
- Inference: Sequence probability P(X)?
- Markov Properties
 - Limited Horizon: $P(X_{t+1} = s_k \mid X_1, \dots, X_t) = P(X_{t+1} = s_k \mid X_t)$
 - Time Invariant (Stationary): $P(X_{t+1} = s_k \mid X_t) = P(X_2 = s_k \mid X_1)$
- Transition matrix: $a_{ij} = P(X_{t+1} = s_j \mid X_t = s_i); \quad \forall i, j \ a_{ij} \ge 0; \quad \forall i \ \sum_{j=1}^N a_{ij} = 1$
- Initial probabilities (or extra state s_0): $\pi_i = P(X_1 = s_i); \sum_{i=1}^N \pi_i = 1$

POS tagging

Preliminaries: Markov model

POS tagging

POS Taggers Hidden Markov Model Sequence probability: (Bayesian rule+limited horizon)

$$P(X_1, ..., X_T) = = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1X_2) ... P(X_T \mid X_1..X_{T-1}) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2) ... P(X_T \mid X_{T-1}) = \pi_{X_1} \prod_{t=2}^{T} a_{X_{t-1}X_t}$$

Example:

$$P(t, h, e, t, i, p, p) = 1 \cdot (0.4 \cdot 1 \cdot 1 \cdot 0.3 \cdot 0.6 \cdot 1 \cdot 1) = 0.42$$

Hidden Markov model

■ $X = (X_1, ..., X_T)$ sequence of random variables taking values in unobserved [hidden] states $S = \{s_1, ..., s_N\}$ given a sequence of observations $O = (O_1, ..., O_T)$

- Inference: Probability of . . .
 - \blacksquare a process: P(O) ?
 - the state of a process at the end: $P(X_T \mid O)$?
 - the explanation of a process: $P(X_1,...,X_T \mid O)$? POS tagging: X = POS tags; O = words
- Transition matrix:

$$a_{ij} = P(X_{t+1} = s_j \mid X_t = s_i); \quad \forall i, j \ a_{ij} \geq 0; \quad \forall i \ \sum_{j=1}^N a_{ij} = 1$$

Initial probabilities (or extra state s_0): $\pi_i = P(X_1 = s_i); \quad \sum_{i=1}^N \pi_i = 1$

■ Emission Probability:

$$b_{ik} = P(O_t = k \mid X_t = s_i) \quad \forall i, k \ b_{ik} \ge 0; \quad \forall i \ \sum_{k=1}^N b_{ik} = 1$$

POS tagging

Hidden Markov model

Example (horizon=1; bigrams)

b_{ik}		the	this	cat	kid	eats	runs	fish	fresh	little	big
<ff></ff>	1.0										
Dt		0.6	0.4								İ
N				0.3	0.1		0.1	0.3	0.2		İ
V					0.1	0.5	0.3	0.1			
Adj					0.1				0.2	0.3	0.4

POS tagging

Hidden Markov model

Example (horizon=2; trigrams)

b_{ik}		the	this	cat	kid	eats	runs	fish	fresh	little	big
?, <ff></ff>	1.0										
?,Dt		0.6	0.4								
?,N				0.3	0.1		0.1	0.3	0.2		
?,V					0.1	0.5	0.3	0.1			
?,Adj					0.1				0.2	0.3	0.4

POS tagging

Learning of parameters

POS tagging

- Parameters a_{ij} , b_{ik} and π_i can be estimated over a training corpus C
- Use smoothing techniques
- Use Baum-Welch algorithm
- learning of parameters will be studied in AHLT

Learning of parameters

Example: MLE estimator; u, v, w different POS tags in the training corpus

bigram-based HMM

POS tagging POS Taggers

Hidden Markov

$$a(u, v) pprox P_{MLE}(v \mid u) = rac{c(u, v)}{c(u)}$$
 $b(O_i, u) pprox P_{MLE}(O_i \mid u) = rac{c(u, O_i)}{c(u)}$
 $\pi(u) pprox P_{MLE}(u \mid *) = rac{c(*, u)}{c(*)}$

trigram-based HMM

$$a(uv, vw) \approx P_{MLE}(vw \mid uv) = \frac{c(u, v, w)}{c(u, v)}$$

 $b(O_i, uv) = b(O_i, v) \approx P_{MLE}(O_i \mid v) = \frac{c(v, v)}{c(v)}$

$$b(O_i, uv) = b(O_i, v) \approx P_{MLE}(O_i \mid v) = \frac{c(v, O_i)}{c(v)}$$

$$\pi(*u) \approx P_{MLE}(*u \mid **) = \frac{c(*, *, u)}{c(**)} \quad \pi(uv) \approx P_{MLE}(uv \mid *u) = \frac{c(*, u, v)}{c(*u)}$$

Exercise

Given the following corpus,

```
horse/NN flies/NNS time/VBP morning/NN rays/NNS ./. eat/VB breakfast/NN at/IN morning/NN time/NN ./. take/VB time/NN with/IN arrow/NN projects/NNS ./. dinner/NN time/NN goes/VBZ before/IN sleep/NN ./. flies/NNS smell/VBP an/DT arrow/NN drink/NN ./. bees/NNS sting/VBP like/IN some/DT flies/NNS ./.
```

apply MLE to estimate the non-zero parameters for the POS-tags involved in the sentence:

"time flies like horse flies ."

- Using bigrams
- Using trigrams

POS tagging

How is the prob. of a POS-tag sequence computed?

POS tagging

POS Taggers Hidden Markov Model

Explanation probability:

Generative model (joint probabilities) instead of conditional model

$$P(X \mid O) = \frac{P(X,O)}{P(O)} \approx P(X,O)$$
 $P(O)$ constant

$$P(X_1,..,X_T,O) = P(X_1,..,X_T) \cdot P(O \mid X_1 ... X_T)$$

$$P(X_1,..,X_T) = \pi_{X_1} \prod_{t=2}^T a_{X_{t-1}X_t}$$

 $P(O \mid X_1...X_T) = \prod_{t=1}^T b_{O.X_t}$

$$P(X_1,..,X_T,O) = \pi_{X_1} \cdot b_{O_1X_1} \cdot \prod_{t=2}^T a_{X_{t-1}X_t} \cdot b_{O_tX_t}$$

How is the prob. of a POS-tag sequence computed?

Following the previous example

POS tagging
POS Taggers
Hidden Markov

b_{ik}		this	cat	eats	fish	
<ff></ff>	1.0					
Dt		0.4				
N			0.3		0.3	
V				0.5	0.1	
Adj						

P(X, O) = P(X, ., this, cat, eats, fish) ? 8 possible X sequences

```
 \begin{array}{l} X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{Adj},\operatorname{N},<\operatorname{FF}> \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{Adj},\operatorname{N},\operatorname{V} \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{N},<\operatorname{FF}>,\operatorname{Dt} \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{N},<\operatorname{FF}>,\operatorname{Dt} \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{N},\operatorname{V},<\operatorname{FF}> \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{N},\operatorname{V},\operatorname{N} \\ P(X,O) = & (1\cdot1)\cdot(1\cdot0.4)\cdot(0.6\cdot0.3)\cdot(0.3\cdot0.5)\cdot(0.4\cdot0.3) = 0.001296 \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{N},\operatorname{V},\operatorname{Adj} \\ X = & <\operatorname{FF}>,\operatorname{Dt},\operatorname{N},\operatorname{V},\operatorname{Dt} \end{array}
```

How is the best POS-tag sequence found?

POS tagging

POS Taggers Hidden Markov Model We want to find

$$\hat{X} = \operatorname*{argmax}_{X} P(X \mid O) \approx \operatorname*{argmax}_{X} P(X, O)$$

- Brute force, O(N^T)
 N states (POS tags) and T observations (word sequence length)
- Viterbi algorithm, dinamic programming, $O(T * N^2)$

POS tagging

POS Taggers Viterbi algorithm

- 1 POS tagging
 - Goal and motivation
 - Part of Speech categories
- 2 POS Taggers
 - Stochastic taggers
 - Hidden Markov Model
 - Viterbi algorithm

Auxiliary structure: Trellis/Lattice

POS tagging **POS Taggers**

$$\{s_j, t\}: \quad \delta_t(j) = \max_{X_1, \dots, X_{t-1}} P(X_1, \dots, X_{t-1}, s_j, O)$$
$$\varphi_t(j) = last(\underset{X_1, \dots, X_{t-1}}{\operatorname{argmax}} P(X_1, \dots, X_{t-1}, s_j, O))$$

Viterbi algorithm

POS tagging

POS Taggers Viterbi algorithm **1** Initialization: $\forall i = 1 \dots N$

$$\delta_1(j) = \pi_j b_{jo_1}$$

2 Induction: $\forall t = 1 \dots T - 1$

$$\begin{aligned} \delta_{t+1}(j) &= (\max_{1 \leq i \leq N} \delta_t(i) a_{ij}) b_{jo_{t+1}} \quad \forall j = 1 \dots N \\ \varphi_{t+1}(j) &= \operatorname*{argmax}_{1 \leq i \leq N} \delta_t(i) a_{ij} \quad \forall j = 1 \dots N \end{aligned}$$

3 Termination

$$\hat{X}_T = \operatorname*{argmax}_{1 \leq i \leq N} \delta_T(i)$$

4 Backwards path readout

$$\hat{X}_t = \varphi_{t+1}(\hat{X}_{t+1}) \quad \forall t = 1 \dots T - 1$$

Viterbi algorithm

Induction

POS tagging
POS Taggers
Viterbi algorithm

Viterbi algorithm

Termination and backwards path readout

POS tagging

POS Taggers Viterbi algorithm

Exercise

Apply Viterbi algorithm using the following HMM to

The	kid	fishes	fish
DT	NN	NNS	NN
			NNS
	JJ	VBZ	VBP

POS tagging

POS Taggers Viterbi algorithm

Α	DT	JJ	NN	NNS	BVZ	VBP
DT		0.2	0.5	0.3		
JJ			0.8	0.2		
NN					1	
NNS						1
VBZ	0.5		0.2	0.3		
VBP	0.4		0.4	0.2		

π	
DT	0.4
JJ	0.2
NN	
NNS	0.3
VBZ	
VBP	0.1

В	the	big	kid	fish	time	fishes	times
DT	1						
JJ		0.8	0.2				
NN			0.3	0.4	0.3		
NNS				0.3		0.4	0.3
VBZ						0.6	0.4
VBP				0.7	0.3		