浙江大学 20<u>12</u> - 20<u>13</u> 学年<u>春夏</u> 学期 点集拓扑课程期末考试试卷参考答案及评分标准

- 1. (15 分) 设 $f: X \to Y$ 是映射, $A \subset X, B \subset Y$. 证明:
 - (a) $A = X f^{-1}(Y f(A))$ 当且仅当 A 是饱和子集, 即 $\exists C \subset Y$, s.t., $A = f^{-1}(C)$.
 - (b) $\forall B \subset Y, B = Y f(X f^{-1}(B))$ 当且仅当 f 是满射.
 - 证. (a) (\Longrightarrow) 由条件知 $f^{-1}(Y f(A)) = X A$, 于是 $A \subset f^{-1}(f(A)) \subset A(3 分)$, 即令 C = f(A), 则 $A = f^{-1}(C)$.

 - (b)(⇒) 令 B = f(X), 则 $f(X) = Y f(X f^{-1}(f(X))) = Y f(X X) = Y f(\emptyset) = Y \emptyset = Y$, 所以 f 是满射. (4 分)
 - (\iff) 若 f 是满射, $Y-B = f(f^{-1}(Y-B)) = f(f^{-1}(Y)-f^{-1}(B)) = f(X-f^{-1}(B)).$ (4 分)
- 2. (15 分) 在实数集 \mathbb{R} 中定义关系 \sim 如下: $\forall x, y \in \mathbb{R}, x \sim y \iff x y \in \mathbb{Q}$.
 - (a) 验证 ~ 是等价关系.
 - (b) 证明商集合 ℝ/ ~ 是不可数的.
 - (c) 商空间 ℝ/ ~ 与无理数子空间 ℝ ℚ 同胚吗? 为什么?
 - **证.** (a) $x \sim x$ 因为 $x x = 0 \in \mathbb{Q}(2 \text{ } f)$. 若 $x \sim y$, 则 $x y \in \mathbb{Q}$. 于是 $y x = -(x y) \in \mathbb{Q}$, 即有 $y \sim x(2 \text{ } f)$. 最后, 若 $x \sim y$, $y \sim z$, 则 $x y \in \mathbb{Q}$, $y z \in \mathbb{Q}$, 从而 $x z = x y + (y z) \in \mathbb{Q}$, 即 $x \sim z$. 所以 $\sim z$. 所以 $\sim z$. 是 $x \in \mathbb{Q}$ 是 $x \in$
 - (b) 首先每个等价类 \overline{x} 是 \mathbb{R} 的可数子集, $(2 \text{ } \beta)$ 因为 $\phi: \overline{x} \to \mathbb{Q}, \phi(y) = y x$ 是一一对应. 若商集合 \mathbb{R}/\sim 是可数的, 则实数集 \mathbb{R} 是可数个等价类集合的并集(3 分), 从而可数. 与实数集是不可数集合相矛盾. 所以商集合 \mathbb{R}/\sim 是不可数的.
 - (c) 不同胚(2 分). 例如, 商空间 \mathbb{R}/\sim 是连通的, 而无理数子空间 $\mathbb{R}-\mathbb{Q}$ 是不连通的.(2 分)

- 3. (10 分) 设 $\{A_{\lambda} \mid \lambda \in \Lambda\}$ 是拓扑空间 X 的一族子集. 证明: $\bigcup_{\lambda} \overline{A_{\lambda}} = \overline{\bigcup_{\lambda} A_{\lambda}}$ 当且仅当 $\bigcup_{\lambda} \overline{A_{\lambda}}$ 是闭集.
 - 证. (\Longrightarrow) 由于 $\overline{\bigcup_{\lambda} A_{\lambda}}$ 是闭集, 知 $\bigcup_{\lambda} \overline{A_{\lambda}}$ 是闭集. (5 分)
 - (\longleftarrow) 设 $\bigcup_{\lambda} \overline{A_{\lambda}}$ 是闭集. 因为闭包是包含该集合的最小闭集, 有 $\bigcup_{\lambda} \overline{A_{\lambda}} \supset \overline{\bigcup_{\lambda} A_{\lambda}}$. 又 $\forall \lambda \in \Lambda, A_{\lambda} \subset \bigcup_{\lambda} A_{\lambda}$, 所以, $\overline{A_{\lambda}} \subset \overline{\bigcup_{\lambda} A_{\lambda}}$, 于是 $\bigcup_{\lambda} \overline{A_{\lambda}} \subset \overline{\bigcup_{\lambda} A_{\lambda}}$. (5 分)
- 4. (10 分) 设 $f: X \to Y$ 是拓扑空间之间映射, 映射图形 $G(f) \subset X \times Y$ 是子空间 $\{(x, f(x)) \mid x \in X\}$. 证明 $F: X \to G(f), F(x) = (x, f(x))$ 是同胚当且仅当 f 连续.
 - **证.** (\Longrightarrow) 设 $p_1: X \times Y \to X, p_2: X \times Y \to Y$ 分别是投影映射. 则 $f = p_2|_{G(f)} \circ F: X \to Y$ 是连续映射的复合, 从而连续. (5 分)
 - (\iff) 注意到 $p_1|_{G(f)}:G(f)\to X$ 是一个连续双射, $F:X\to G(f)$ 也是连续双射, 且 $p_1|_{G(f)}\circ F=I_X$. 于是 F 是同胚. (5 分)
- 5. (12 分)
 - (a) 局部紧的度量空间是否完备?请证明或举出反例.
 - (b) 设 (X,d) 是度量空间且满足: $\exists \epsilon > 0, \forall x \in X, \overline{N(x;\epsilon)}$ 是紧的. 证明 (X,d) 是完备度量空间.
 - 证. (a) 不一定.(2 分) 例如开区间 (0,1) 在标准度量下是局部紧的但标准度量并不完备. (4 分)
 - (b) 设 (x_n) 是 Cauchy 序列. 存在 $k \in \mathbb{Z}^+$, 使得 $m \geq k, n \geq k$ 时, $d(x_m, x_n) < \epsilon$. 于是 $n \geq k$ 时, $x_n \in N(x_k; \epsilon) \subset \overline{N(x_k; \epsilon)}$. 而 $\overline{N(x_k; \epsilon)}$ 是紧度量子空间, 所以是序列 紧的. (x_n) 有收敛子序列 (x_{n_i}) .(3 分) 设其极限是 p. $\forall \delta > 0, \exists N, \text{ s.t., } n, m, n_i \geq N$ 时, $d(x_m, x_n) < \delta/2$, $d(x_{n_i}, p) < \delta/2$. 取 $m = n_i$, 有 $d(x_n, p) < \delta$. 即有 $\lim(x_n) = p$. (3 分)
- 6. (10 分) 设 p 是一个固定的素数. 在 \mathbb{Z} 中, 对于 $n, m \in \mathbb{Z}, m > 0$, 定义 $U(n; m) = \{n + kp^m \mid k \in \mathbb{Z}\}$. 证明 $\{U(n; m) \mid n, m \in \mathbb{Z}, m > 0\}$ 是 \mathbb{Z} 上一个拓扑的拓扑基. 在此拓扑下, 证明 $\lim(p^n) = 0$.

证. 首先 $\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} \{n\} \subset \bigcup_{n \in \mathbb{Z}} U(n; m) \subset \mathbb{Z}.$ (3 分)

设 $U(n_1; m_1) \cap U(n_2; m_2) \neq \emptyset$. 于是存在 k_1, k_2 使得 $n_1 + k_1 p^{m_1} = n_2 + k_2 p^{m_2}$ 若 $m_1 \geq m_2$,则 $U(n_1; m_1) \cap U(n_2; m_2) = U(n_1; m_1)$. 若 $m_1 \leq m_2$,则 $U(n_1; m_1) \cap U(n_2; m_2) = U(n_2; m_2)$. 我们只来证明前者. 设 $x \in U(n_1; m_1), x = n_1 + lp^{m_1} = n_2 + n_1 - n_2 + lp^{m_1} = n_2 + k_2 p^{m_2} - k_1 p^{m_1} + lp^{m_1} = n_2 + (k_2 + (l - k_1) p^{m_1 - m_2}) p^{m_2} \in U(n_2; m_2)$. 总之, $\{U(n; m) \mid n, m \in \mathbb{Z}, m > 0\}$ 是 \mathbb{Z} 上一个拓扑的拓扑基. $(4 \ \mathcal{D})$

含有 0 的拓扑基成员恰为 $U(0;m), m=1,2,\cdots$. $\forall U(0;m),$ 取 N=m, 则当 $n\geq N$ 时, $p^n=0+p^{n-m}p^m\in U(0;m)$. 此即证明 $\lim(p^n)=0$. (3 分)

7. (10 分) 设 (X, d) 是一个超度量空间, 即距离函数 d 满足更强的三角不等式: $\forall x, y, z \in X$,

$$d(x, z) \le \max\{d(x, y), d(y, z)\}.$$

证明: X 的连通分支是它的单点集 $\{x\}$.

证. 设 C 是 X 的连通分支, 若在其中存在 $x \neq y$, 令 $\epsilon = d(x,y)$. 则 $A = N(x;\epsilon) \cap C$ 是 C 的非空真开子集, 因为 $x \in A, y \notin A$. 另外 $N(x;\epsilon)$ 也是 X 的闭集,(5 分) 因为 若 $y \notin N(x;\epsilon)$, 则 $N(y;\epsilon) \cap N(x;\epsilon) = \emptyset$. 否则存在 z, 使得 $d(x,z) < \epsilon$, $d(z,y) < \epsilon$, 从而 $d(x,y) < \epsilon$, 矛盾! 这就证明了 A 是 C 的非空即开又闭的真子集, 与 C 的连通性矛盾! (5 分)

- 8. (6 分) 设 ~ 是拓扑空间 X 上等价关系. 对于任意 $x \in X$, 等价类 \overline{x} 是 X 的闭集, 且对于包含 \overline{x} 的开集 U, 存在开集 V, 使得 $\overline{x} \subset V \subset U$, 且 $\overline{y} \cap V \neq \emptyset \implies \overline{y} \subset U$. 证明: 自然投影 $\pi: X \to X/ \sim$ 是闭映射.
 - 证. 设 $C \in X$ 中闭集, 只需证明 $\pi^{-1}(X/\sim -\pi(C))$ 是 X 中开集即可. (3 分) $\forall x \in \pi^{-1}(X/\sim -\pi(C))$, 有 $\pi(x) \notin \pi(C)$. 于是 $\overline{x} \cap C = \emptyset$. 对于 X 中开集 U = X C, 存在开集 V, 使得 $\overline{x} \subset V \subset U$, 且 $\overline{y} \cap V \neq \emptyset \implies \overline{y} \subset U$. (3 分)我们 断言 $x \in \overline{x} \subset V \subset \pi^{-1}(X/\sim -\pi(C))$. 否则, 存在 y, 使得 $\overline{y} \cap V \neq \emptyset$, $\overline{y} \cap C \neq \emptyset$. (4 分) 与条件矛盾!
- 9. (6 分) 设 X 是紧连通 Hausdorff 空间, $f: X \to X$ 是连续开映射, 满足: 对于任意 $x \in X$, 存在 x 的邻域 U, 使得 $f|_{U}: U \to X$ 是单射. 证明: 存在正整数 d, 使对任意 $x \in X$, 基数 $|f^{-1}(x)| = d$.

证. 首先证明 $\forall x \in X, f^{-1}(x)$ 是有限集(2 分). 否则若 $f^{-1}(x)$ 是一无限闭子集, 从而是 X 的紧子集. $\forall y \in f^{-1}(x)$, 取 U_y 是 y 的邻域使 $f|_{U_y}$ 是单射. 有限个邻域 U_{y_1}, \dots, U_{y_n} 将覆盖 $f^{-1}(x)$, 必有一个, 比如 U_{y_1} , 含有 $f^{-1}(x)$ 中无限个元素. 与 $f|_{U_y}$ 是单射相矛盾.

定义映射 deg : $X \to \mathbb{Z}^+$, deg $(x) = |f^{-1}(x)|$. 我们要证 deg 是连续的 $(2 \, \mathcal{D})$. 设 $f^{-1}(x) = \{y_1, \cdots, y_n\}$, 取 y_1, \cdots, y_n 的两两不相交的邻域 U_{y_1}, \cdots, U_{y_n} 使 $f|_{U_{y_k}}, k = 1, \cdots, n$ 是单射. 令 $V = f(U_{y_1}) \cap \cdots \cap f(U_{y_n})$. 由 f 是开映射,知 V 是 X 的开集. $\forall x' \in V, f^{-1}(x')$ 交于每个 U_{y_k} 一个且仅有一个点. 于是 $|f^{-1}(x')| = |f^{-1}(x)| = n$. 此即证明了 deg 的连续性. 又 X 是连通的,deg(x) 取常值 d. $(2 \, \mathcal{D})$

- 10. (6 分) 设 X 是局部连通空间. $X = A \cup B$, A, B 是闭集, 且 $A \cap B$ 是局部连通的. 证明: $A \subseteq B$ 都是局部连通的.
 - **证.** 只需证明 A 是局部连通的. B 可同样证明是局部连通的.

设 $U \neq X$ 的开集, $C \neq U \cap A$ 的连通分支. 我们需要证明 $C \neq A$ 的开集. 我们有 $C = (C - B) \cup (C \cap (A \cap B))$. (2 分)

首先 C-B 是 X 的开集. 事实上, 注意到 $C-B \subset U-B \subset U \cap A$, 我们有 C-B 的连通分支 K 包含在 U-B 的某个连通分支中 K' 中, 而 K' 包含在 $U \cap A$ 的连通分支中, 此连通分支就是 C. 由于 K' 是 U-B 的连通分支,且 $K' \cap C \neq \emptyset$,则 $K' \subset C$,从而 $K' \subset C$,从 $K' \subset C \cap B$. 此即证明 K = K'. 由条件, X 是局部连通, U-B 是 X 的开集. 我们有 K' 从 K' 从

其次, 我们记 C_{λ} , $\lambda \in \Lambda$ 是 $C \cap (A \cap B)$ 的连通分支. 令 V_{λ} 是 X 的开集使得 $C_{\lambda} = V_{\lambda} \cap A \cap B$. 令 W_{λ} 是 $V_{\lambda} \cap W$ 含有 C_{λ} 的连通分支, 我们依然有 $C_{\lambda} = W_{\lambda} \cap A \cap B$. 因为 X 是局部连通的, W_{λ} 为 X 的开集. 我们将证明 $W_{\lambda} \cap A \subset C$. 否则 $W_{\lambda} \cap A$ 将与 $U \cap A$ 的其他连通分支, 比如 D, 相交. 首先 $W_{\lambda} \cap A \cap B \cap D = C_{\lambda} \cap D = \emptyset$. 因此, $W_{\lambda} \cap D = W_{\lambda} \cap (D - B)$. 同 C - B - H, D - B 是 X 的开集. 所以 $W_{\lambda} \cap D$ 是 X 的开集. 因为 D 是 $W \cap A$ 的连通分支, 从而是其中闭集. 即 $\overline{D} \cap W \cap A = D$. 于是 $W_{\lambda} \cap D = W_{\lambda} \cap \overline{D} \cap W \cap A = W_{\lambda} \cap \overline{D}$. 所以 $W_{\lambda} \cap D$ 是 W_{λ} 的闭集. 这与 W_{λ} 的连通性矛盾. 于是有 $C \cap (A \cap B) = \bigcup_{\lambda \in \Lambda} C_{\lambda} \subset \bigcup_{\lambda} (W_{\lambda} \cap A) \subset C$. 连同前面 C - B 是 X 的开集, 我们有 C 是 A 的开集. 证完.(2 分)