

ESC201: Introduction to Electronics

MODULE 1: CIRCUIT ANALYSIS

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Recap: Techniques of Circuit Analysis

Nodal Analysis

- 1. Identify and number the nodes
- 2. Pick Ground node/Reference node wisely, if it is not already specified
- 3. Writing KCL Equations in Terms of the Node Voltages

Mesh Analysis

- 1. Assign mesh currents i_1 , i_2 , ..., in to the n meshes.
- 2. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. Solve the resulting n simultaneous equations to get the mesh currents.

Superposition Method for <u>Linear</u> Circuits

The superposition principle states that the total response is the sum of the responses to each of the independent sources acting individually.

Linear circuit: linear elements, independent voltage/current

Sources, and linear dependent sources

Non-ideal sources

- How to model non-ideal batteries?
- Draw intuition from the VI characteristic

Non-ideal battery

- The non-ideal battery consists of linear elements inside it
- Thevenin equivalent of a battery!

Validity: only when current magnitude is not too large and voltage is around V_{BATT}

General Case

Maximum power is delivered to the load when $R_L = R_t$

Thévenin's Theorem

"Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load"

Any linear circuit with power supplies (voltage sources and/or current sources) and resistances can be replaced by a single resistance connected in series with a voltage source to make it equivalent to the original circuit.

Thévenin Equivalent Circuits

Thévenin's Theorem Applies to Any Part of the Circuit

Thévenin Voltage

Thévenin equivalent circuit

Since the circuits are equivalent their v_{oc} must be same!

Thévenin Resistance

What is R_t ?

The first level solution:

Thévenin equivalent

Thévenin equivalent circuit

10

Since the circuits are equivalent their i_{sc} must be same!

Thévenin Parameters

$$V_t = v_{oc}$$

$$R_{t} = \frac{v_{oc}}{i_{sc}}$$

V_{TH} and R_{TH} from V-I Characteristics

Examples

Thévenin equivalent circuit

$$V_t = V_{oc}$$

$$V_t = \frac{R_2}{R_2 + R_1} \times 15 = 5 \text{ V}$$

$$i_{sc} = \frac{v_s}{R_1} = 0.15A$$

$$R_{t} = \frac{v_{oc}}{i_{sc}} = 33.3\Omega$$

For Circuits with Only Independent Sources

Suppose we make all independent sources zero in the circuit

circuit

Evaluation of R_t

- Turn off independent sources in the original network:
 - Replace a voltage source with a short circuit
 - Replace a current source with an open circuit
- 2. Compute the resistance between the terminals

Procedure to Directly Evaluate R_t

Thevenin Equivalent: Example

Thevenin Equivalent: Example: Direct R_{TH}

Thevenin Equivalent: Example: Direct R_{TH}

$$R_{TH} = 100||50 = 33.3\Omega$$

How to Use Thevenin Equivalent

Compute Current in R

$$i = \frac{5}{33.3 + 100} A$$

Example

$$R_{eq} = \frac{5 \times 20}{5 + 20} = 4\Omega$$

Example

Find Thévenin resistance R_t for each of the circuits shown below

$$R_{\rm t} = 10 + 20 = 30 \ \Omega$$

Example

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown below. Hence find i.

Use Superposition

$$v_{oc} = 6V$$

$$V_{oc} = V_{oc1} + V_{oc2} = 6$$

Dr. Shubham Sahay
$$V_{oc1} = \frac{4}{4+12} \times 12 = 3$$

$$V_{oc2} = 4 \times \left(2 \times \frac{6}{6+10}\right) = 3$$

What If There Are Dependent Power Supplies?

Thévenin Resistance for Circuit with <u>Dependent</u> Sources

Procedure:

Add a power sources at evaluation nodes and then evaluate R_t

Norton's Theorem

"Any linear circuit containing several energy sources and resistances can be replaced by a single Constant Current generator in parallel with a Single Resistor"

Parameters I_n and $R_n = R_t$

Norton Current

How do we find I_n ?

Norton Resistance

How do we find R_t ?

$$v_{oc} = I_n \times R_t$$

Norton Parameters

$$I_n = i_{sc}$$

$$R_{t} = \frac{v_{oc}}{i_{sc}}$$

Norton resistance is the same as Thévenin Resistance

Norton Equivalent: example

$$v_x = \frac{R_3}{R_2 + R_3} v_{oc} = 0.25 v_{oc}$$

$$v_{\rm oc} = 4.62 \text{V}$$

Source Transformation

Example $5\,\Omega$ $20 \mathrm{V}$ $R_2 = 10 \Omega$ $R_1 = 5 \Omega$

Summary

Series/Parallel resistances

Voltage division

$$v_2 = R_2 i = \frac{R_2}{R_1 + R_2 + R_3} v_{\text{total}}$$

Nodal Analysis:

- 1. Identify and number the nodes
- 2. Choose a reference node
- 3. Write KCL for each node such that Sum of currents leaving a node is zero

Mesh Analysis

- 1. Assign mesh currents i_1 , i_2 , ..., in to the n meshes.
- 2. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. Solve the resulting n simultaneous equations to get the mesh currents.

$$i_2 = \frac{v}{R_2} = \frac{R_1}{R_1 + R_2} i_{\text{total}}$$

Source Transformation

The **superposition principle** states that the total response is the sum of the responses to each of the independent sources acting individually.