## Homework 4 Solutions

## 1 Regression

- 1. Regression with one predictor variable
  - (a) We will predict the mean of the y-values:  $\hat{y} = (1+3+4+6)/4 = 3.5$ . The MSE of this prediction is exactly the variance of the y-values, namely:

$$MSE = \frac{(1 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (6 - 3.5)^2}{4} = 3.25.$$

(b) If we simply predict x, the MSE is

$$\frac{1}{4} \sum_{i=1}^{4} (y^{(i)} - x^{(i)})^2 = \frac{1}{4} \left( (1-1)^2 + (1-3)^2 + (4-4)^2 + (4-6)^2 \right) = 2.$$

(c) We saw in class that the MSE is minimized by choosing

$$a = \frac{\sum_{i} (y^{(i)} - \overline{y})(x^{(i)} - \overline{x})}{\sum_{i} (x^{(i)} - \overline{x})^{2}}$$
$$b = \overline{y} - a\overline{x}$$

where  $\overline{x}$  and  $\overline{y}$  are the mean values of x and y, respectively. This works out to a=1,b=1; and thus the prediction on x is simply x+1. The MSE of this predictor is:

$$\frac{1}{4} \left( 1^2 + 1^2 + 1^2 + 1^2 \right) = 1.$$

- 2. Lines through the origin
  - (a) The loss function is

$$L(a) = \sum_{i=1}^{n} (y^{(i)} - ax^{(i)})^{2}$$

(b) The derivative of this function is:

$$\frac{dL}{da} = -2\sum_{i=1}^{n} (y^{(i)} - ax^{(i)})x^{(i)}.$$

Setting this to zero yields

$$a = \frac{\sum_{i=1}^{n} x^{(i)} y^{(i)}}{\sum_{i=1}^{n} x^{(i)}^{2}}.$$

3. The loss induced by a linear predictor  $w \cdot x + b$  is

$$L(w,b) = \sum_{i=1}^{n} |y^{(i)} - (w \cdot x^{(i)} + b)|.$$

1

4. Define

$$X = \begin{bmatrix} \leftarrow x^{(1)} \to \\ \leftarrow x^{(2)} \to \\ \vdots \\ \leftarrow x^{(n)} \to \end{bmatrix}$$

$$XX^{T} = \begin{bmatrix} x^{(1)} \cdot x^{(1)} & x^{(1)} \cdot x^{(2)} & \cdots & x^{(1)} \cdot x^{(n)} \\ x^{(2)} \cdot x^{(1)} & x^{(2)} \cdot x^{(2)} & \cdots & x^{(2)} \cdot x^{(n)} \\ x^{(n)} \cdot x^{(1)} & x^{(n)} \cdot x^{(2)} & \cdots & x^{(n)} \cdot x^{(n)} \end{bmatrix}$$

## 2 Generative modeling

Pseudocode for training procedure:

- Load in the original training data matrix X and label vector y.
- Randomly split into validation set  $X_{\text{valid}}$ ,  $y_{\text{valid}}$  of size 10,000 and training set  $X_{\text{train}}$ ,  $y_{\text{train}}$ .
- For each digit i = 0, 1, 2, ...:
  - Calculate fraction of data points in training set with label i:  $\pi_i$
  - Calculate mean of data points in training set with label i:  $\mu^{(i)}$
  - Calculate covariance of data points in training set with label i:  $\Sigma^{(i)}$
- For  $c \in \{1, 51, 101, \dots, 10001\}$ :
  - Compute Gaussians  $P_0 = \mathcal{N}(\mu^{(0)}, \Sigma^{(0)} + cI), \dots, P_9 = \mathcal{N}(\mu^{(9)}, \Sigma^{(9)} + cI)$
  - Classify each validation point  $x \in X_{\text{valid}}$  as the digit j which maximizes  $\log \pi_j + \log P_j(x)$ .
  - Compute the validation error (i.e. the fraction of validation points we misclassified).
- Select  $c^*$  to be the c which gave us the smallest validation error.

For a particular run, the above training procedure gives a validation error curve that looks like the following.



The c which achieves the minimum above is c = 2151. Note that your procedure may produce a different c due to the randomness in the choice of the validation/training split. The test error with this value is 0.0425.

Now let's look at some randomly misclassified instances.

(a) The true label is 2, but it is predicted as 8.



| $\Pr(0 x)$ | $\Pr(1 x)$ | $\Pr(2 x)$ | $\Pr(3 x)$ | $\Pr(4 x)$ | $\Pr(5 x)$ | $\Pr(6 x)$ | $\Pr(7 x)$ | Pr(8 x) | Pr(9 x)   |
|------------|------------|------------|------------|------------|------------|------------|------------|---------|-----------|
| 2.917e-19  | 7.710e-35  | 3.353e-13  | 5.478e-28  | 4.731e-25  | 1.851e-36  | 4.832e-17  | 7.189e-35  | 0.999   | 2.995e-34 |

(b) The true label is 8, but it is predicted as 0.



| Pr(0 x) | $\Pr(1 x)$ | $\Pr(2 x)$ | $\Pr(3 x)$ | $\Pr(4 x)$ | $\Pr(5 x)$ | $\Pr(6 x)$ | $\Pr(7 x)$ | $\Pr(8 x)$ | $\Pr(9 x)$ |
|---------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0.999   | 2.865e-276 | 6.603e-44  | 4.556e-7   | 1.093e-140 | 4.074e-45  | 4.951e-16  | 6.812e-161 | 4.820e-32  | 2.71e-139  |

(c) The true label is 2, but it is predicted as 4.



| $\Pr(0 x)$ | $\Pr(1 x)$ | $\Pr(2 x)$ | $\Pr(3 x)$ | $\Pr(4 x)$ | $\Pr(5 x)$ | $\Pr(6 x)$ | $\Pr(7 x)$ | $\Pr(8 x)$ | $\Pr(9 x)$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 6.982e-35  | 4.744e-60  | 1.561e-12  | 2.882e-30  | 0.999      | 1.317e-27  | 8.505e-21  | 1.457e-36  | 2.046e-11  | 8.820e-23  |

(d) The true label is 7, but it is predicted as 9.



| $\Pr(0 x)$ | $\Pr(1 x)$ | $\Pr(2 x)$ | $\Pr(3 x)$ | $\Pr(4 x)$ | $\Pr(5 x)$ | $\Pr(6 x)$ | $\Pr(7 x)$ | $\Pr(8 x)$ | $\Pr(9 x)$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 3.971e-98  | 6.371e-45  | 5.722e-65  | 8.567e-44  | 4.629e-18  | 1.671e-52  | 2.375e-107 | 0.157      | 3.690e-18  | 0.842      |

(e) The true label is 6, but it is predicted as 0.



|   | $\Pr(0 x)$ | $\Pr(1 x)$ | $\Pr(2 x)$ | $\Pr(3 x)$ | $\Pr(4 x)$ | $\Pr(5 x)$ | $\Pr(6 x)$ | $\Pr(7 x)$ | $\Pr(8 x)$ | $\Pr(9 x)$ |
|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ì | 0.999      | 5.719e-196 | 5.547e-41  | 2.758e-67  | 5.297e-70  | 5.333e-48  | 4.119e-37  | 2.928e-88  | 8.732e-52  | 3.977e-106 |