Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.01.2012

Arbeitszeit: 120 min

Name:								
Vorname(n):								
Matrikelnumme	er:						Not	e:
	Aufgabe	1	2	3	4	\sum		
	erreichbare Punkte	9	8	11	12	40		
	erreichte Punkte							
							'	
${\bf Bitte}\;$								
tragen Sie	e Name, Vorname und	Matrik	ælnumr	ner auf	dem I	eckbla [†]	tt ein,	
rechnen S	ie die Aufgaben auf se	eparate	n Blätte	ern, ni e	c ht auf	dem A	Ingabeblatt,	
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	leite,		
geben Sie	auf jedem Blatt den I	Namen	sowie d	die Mat	rikelnu	mmer a	an,	
begründer	n Sie Ihre Antworten a	ausführ	lich und	d				
	ie hier an, an welcher antreten können:	n der f	olgende	n Tern	nine Sie	nicht	zur mündliche	n
	Fr., 03.02.2012	□ Mo.	, 06.02.	2012		Di., 07	7.02.2012	

1. In Abbildung 1 ist eine Prinzipskizze eines elektrohydraulischen Druckregelsystems dargestellt. Das System besteht aus einer mit einem permanenterregten Gleichstrommotor (Spannung u_m , Strom i_m , Widerstand R_m , Induktivität L_m , Ankerkreiskonstante k_m , Drehzahl ω , vgl. Abbildung 2) angetriebenen verstellbaren Pumpe (Stelleingang der Pumpe u_p). Das gesamte Trägheitsmoment der Pumpe und des Motors wird mit I_m bezeichnet. Durch Veränderung der Drehwinkelgeschwindigkeit ω des Motors und der Pumpe sowie durch Veränderung der Fördermenge mit Hilfe von u_p kann der Volumenstrom q_p der Pumpe in der Form

$$q_p = k_p \omega u_p^2, \quad k_p > 0$$

vorgegeben werden. Dieser Volumenstrom wird in das Volumen V gefördert, womit der Druck p in diesem Volumen gezielt beeinflusst werden kann. Zusätzlich fließt vom Volumen V ein Lastvolumenstrom q_l ab, welcher durch einen Störeingang d in der Form

$$q_l = k_l \sqrt{p}d, \quad k_l > 0$$

verändert wird. Der Druck im Volumen V errechnet sich somit aus der Massenerhaltung in der Form

$$\frac{\mathrm{d}}{\mathrm{d}t}p = \frac{\beta}{V} \left(q_p - q_l \right),\,$$

mit dem Kompressionsmodul β . Das mechanische Moment M_p der Pumpe kann direkt aus der Leistungserhaltung

$$q_p p = M_p \omega$$

errechnet werden und das elektrische Moment eines Gleichstrommotors lautet $M_m = k_m i_m$. Weiterhin errechnet sich die induzierte Spannung u_{ind} des Gleichstrommotors in der Form $u_{ind} = k_m \omega$.

Abbildung 1: Prinzipskizze des Systems zu Aufgabe 1.

Abbildung 2: Elektrisches Ersatzschaltbild des Gleichstrommotors.

a) Bestimmen Sie für das elektrohydraulische System aus den Abbildungen 1 und 4 P.| 2 ein mathematisches Modell der Form

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{f}\left(\mathbf{x}, \mathbf{u}, d\right)$$
$$y = h\left(\mathbf{x}, \mathbf{u}, d\right),$$

wobei $\mathbf{x}^T = \begin{bmatrix} i_m & \omega & p \end{bmatrix}$ der Zustand des Systems ist, $\mathbf{u}^T = \begin{bmatrix} u_m & u_p \end{bmatrix}$ den Stelleingang beschreibt, d die Störung und y = p den Ausgang des System darstellt.

- b) Berechnen Sie für den Fall, dass $p=p_r,\,u_m=u_{m,r}$ sowie $u_p=u_{p,r}$ gilt, die 2 P.| Werte von $d,\,i_m$ und ω so, dass sich das System in einer Ruhelage befindet.
- c) Ermitteln Sie für eine allgemeine Ruhelage das linearisierte Modell in der Form 3 P.

$$\frac{\mathrm{d}}{\mathrm{d}t} \Delta \mathbf{x} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B}_u \Delta \mathbf{u} + \mathbf{b}_d \Delta d$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}.$$

Hinweis: Sie müssen die Ausdrücke für die Ruhelage aus Aufgabe 1.b) nicht einsetzen.

- 2. Die folgenden Teilaufgaben können unabhängig voneinander gelöst werden.
 - a) Der Mittelwertsatz der Differentialrechnung besagt, dass für eine auf dem abgeschlossenen Intervall [a, b] stetige und auf dem offenen Intervall (a, b) differenzierbare, skalare Funktion $f : [a, b] \to \mathbb{R}$ gilt:

$$\exists \ \xi \in (a,b) : f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Zeigen Sie mit Hilfe des Mittelwertsatzes der Differentialrechnung die Existenz und Eindeutigkeit des Differentialgleichungssystems

$$\dot{x} = f(x)$$
 mit $f(x) = \sin(x)$

und geben Sie eine geeignete Lipschitz Konstante an.

b) Die Lösung eines finit-dimensionalen, linearen, autonomen Systems der Ordnung n vereinfache sich für einen beliebigen Anfangszustand \mathbf{x}_0 aufgrund einer speziellen Systemeigenschaft zu

$$\mathbf{x}(t) = \sum_{k=0}^{n-1} \mathbf{A}^k \frac{t^k}{k!} \mathbf{x}_0$$

mit der Dynamikmatrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. Berechnen Sie die Eigenwerte der Dynamikmatrix \mathbf{A} .

c) Von einem linearen, zeitinvarianten Eingrößensystem seien die Laplacetrans- 4 P.| formierte der Transitionsmatrix und der Eingangsvektor in der Form

$$\hat{\mathbf{\Phi}}(s) = \begin{bmatrix} \frac{1}{s-1} & \frac{1}{s^2 + 3s - 4} \\ 0 & \frac{1}{s+4} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ \beta \end{bmatrix}$$

gegeben.

- Berechnen Sie die Dynamikmatrix $\mathbf{A} \in \mathbb{R}^{2\times 2}$ und geben Sie das System in Zustandsraumdarstellung an.
- Ist das autonome System global asymptotisch stabil? Begründen Sie ihre Antwort ausführlich.
- Für welche Werte des Parameters β ist das System nicht vollständig erreichbar? Begründen Sie ihre Antwort ausführlich.

3. Gegeben ist das lineare zeitdiskrete System der Form

$$\mathbf{x}_{k+1} = \underbrace{\begin{bmatrix} \frac{3}{4} & \frac{1}{2} \\ -\frac{1}{4} & 0 \end{bmatrix}}_{\mathbf{f}} \mathbf{x}_k + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{f}} u_k \tag{1a}$$

$$y_k = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{\mathbf{c}^T} \mathbf{x}_k. \tag{1b}$$

2 P.

Lösen Sie folgende Teilaufgaben.

- a) Weisen Sie mit Hilfe des PBH-Eigenvektortests die vollständige Erreichbarkeit 3 P. des Systems (1) nach.
- b) Erweitern Sie das System (1) um einen Integratorzustand $x_{I,k}$ in der Form 6 P.

$$x_{I,k+1} = x_{I,k} + \left(r_k - \mathbf{c}^T \mathbf{x}_k\right),\,$$

mit dem Sollwert r_k . Entwickeln Sie für das resultierende System einen Zustandsregler der Form

$$u_k = \begin{bmatrix} \mathbf{k}_1^T & k_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ x_{I,k} \end{bmatrix}$$

mit Hilfe der Formel von Ackermann so, dass alle Eigenwerte des geschlossenen Kreises bei $\lambda_i=1/2$ liegen.

c) Der gesamte PI-Zustandsregler ergibt sich in der Form

$$u_k = \begin{bmatrix} \mathbf{k}_x^T & k_I \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ x_{I,k} \end{bmatrix} + k_P (r_k - \mathbf{c}^T \mathbf{x}_k),$$

wobei $k_I = k_2$ und $\mathbf{k}_x^T - \mathbf{c}^T k_P = \mathbf{k}_1^T$, mit \mathbf{k}_1^T und k_2 aus Teilaufgabe 3.b), gilt. Bestimmen Sie den Faktor k_P so, dass die Stellgröße u_k des Reglers für $\mathbf{x}_0 = \mathbf{0}$, $x_{I,0} = 0$ jenem Wert von u entspricht, welcher im stationären Fall notwendig ist, damit $y_s = r$ gilt. Berechnen Sie anschließend den Wert für \mathbf{k}_x^T .

- 4. Die folgenden Teilaufgaben können unabhängig voneinander gelöst werden.
 - a) Gegeben ist der Standardregelkreis nach Abbildung 3 mit der Reglerübertragungsfunktion $R(s) = V_R$, der Streckenübertragungsfunktion $G(s) = \frac{V}{s(1+sT)}$ sowie V_R , V, T > 0.

Abbildung 3: Standardregelkreis.

- Berechnen Sie den stationären Regelfehler e_{∞} für eine Führungsgröße der Form r(t) = t.
- Berechnen Sie den stationären Regelfehler e_{∞} für eine Störgröße der Form $d(t) = \sigma(t)$.
- b) Gegeben ist die kontinuierliche Übertragungsfunktion

4 P.|

$$G(s) = \frac{(s+4)}{(s+7)(s+3)}.$$

Bestimmen Sie für das zugehörige Abtastsystem die z-Übertragungsfunktion G(z) vom Eingang u zum Ausgang y mit einer allgemeinen Abtastzeit $T_a > 0$. Ist die Übertragungsfunktion G(z) BIBO-stabil? Begründen Sie Ihre Antwort!

c) Berechnen Sie für das Abtastsystem mit der z-Übertragungsfunktion

3 P.

$$G(z) = \frac{z+1}{z-\frac{1}{2}}$$

und der Abtastzeit $T_a=1$ s die eingeschwungene Lösung (y_k) als Antwort des Systems auf die Eingangsfolge

$$(u_k) = \left(3\sin\left(\frac{\pi}{3}k + \frac{\pi}{12}\right)\right).$$

d) Gegeben ist das Blockschaltbild einer Regelkreisstruktur nach Abbildung 4. 3 P.|

Abbildung 4: Regelkreisstruktur.

- Berechnen Sie allgemein die Übertragungsfunktion $T_{r,y}(s)$ vom Eingang r zum Ausgang y.
- Für die Übertragungsfunktionen gelte nun $G_1(s) = \frac{1}{s}$, $G_2(s) = \frac{1}{1+sT}$, $G_3(s) = V$ und $G_4(s) = 1$. Für welche Werte von T und V ist der geschlossene Regelkreis BIBO-stabil?