Inference rules in natural deduction.

Name	rule	coq forward	coq backward
1141110	H1:A	ooq for ward	ooq saerwara
$\wedge I$	$\frac{H2:B}{A\wedge B}$	pose proof(conj H1 H2).	split.
$\wedge E_1$	$\frac{H1:A\wedge B}{A}$	${ t pose proof(proj1 \ H1)}$.	_
$\wedge E_2$	$\frac{H1:A\wedge B}{B}$	${ t pose proof(proj2\ H1)}$.	_
$\vee I_1$	$\frac{H1:C}{C\vee X}$	<pre>pose proof(or_introl (B:=X) H1). or pose proof(@or_introl _ X H1).</pre>	left.
$\lor I_2$	$\frac{H1:C}{X\vee C}$	pose proof(or_intror (A:= X) $H1$). or pose proof(@or_intror $X - H1$).	right.
$\vee E$	$\begin{array}{c} H1: A \vee B \\ H2: A \Rightarrow C \\ \underline{H3: B \Rightarrow C} \\ \hline C \end{array}$	destruct $H1$. ($H2$ and $H3$ are not needed)	_
$\Rightarrow I$	assumption/discharge	assert(A->B). intros Hn .	intros Hn .
$\Rightarrow E$	$H1: A \Rightarrow B$ $H2: A$ B	${ t pose proof}(H1 \; H2)$.	apply $H1$.
$\neg I$	$\frac{H1:A\Rightarrow\bot}{\neg A}$	pose proof $(H1: \tilde{\ }A)$.	_
$\neg E$	$\frac{H1: \neg A}{A \Rightarrow \bot}$	unfold not in *.	unfold not.
⇔I	$\begin{array}{c} H1:A\Rightarrow B\\ H2:B\Rightarrow A\\ \hline A\Leftrightarrow B \end{array}$	pose proof(conj H1 H2:A <->B).	split.
⇔E	$\begin{array}{c} H1:A\Leftrightarrow B\\ H2:(\ldots A\ldots)\\ \hline (\ldots B\ldots) \end{array}$	rewrite $H1$ in $H2$. or rewrite <- $H1$ in $H2$.	rewrite $H1$. or rewrite <- $H1$.
$\perp E$	$\frac{H1:\bot}{X}$	${\tt destruct}\ H1.$	exfalso.
op I		${ t pose proof(I)}.$	_
$\forall I$	assumption/discharge	-	$\verb"intros"c$
$\forall E$	$\frac{H1: \forall x, Px}{c \text{ is a constant}}$	${\tt pose\ proof}(H1\ c).$	_
$\exists I$	$\frac{c \text{ is a constant}}{H1:Pc}$ $\exists x, Px$	${\tt pose\ proof(ex_intro}\ P\ c\ H1).$	exists c .
$\exists E$	$ \frac{H1: \exists x, Px}{c \text{ is a constant (fresh)}} $ $ \frac{Pc}{c} $	$\mathtt{destruct}\ H1.$	_
=I	$\frac{c \text{ is a constant}}{c = c}$	${\tt pose\ proof(eq.refl}\ c).$	reflexivity
=E	c is a constant d is a constant $H1:c=d$ $H2:Pc$ Pd	rewrite $H1$ in $H2$. or rewrite <- $H1$ in $H2$.	rewrite $H1$. or rewrite <- $H1$.