Büchi Automata and their closure properties

- Ajith S and Ankit Kumar

Motivation

- Conventional programs accept input, compute, output result, then terminate
- Reactive program: not expected to terminate
- "react" to their environment continuously
- eg: discrete event controllers, schedulers, operating systems, network protocols, infinite computation involving multiple agents etc...

Modelling infinite computations of reactive systems

• An infinite string (ω word) α over Σ is a mapping $\mathbb{N} \to \Sigma$ and is shown by the infinite sequence

$$a_0, a_1, a_2, \dots$$

• Set of all ω words over Σ is denoted by

$$\Sigma^{\omega} = \{a_1 a_2 a_3 \dots \mid a_i \in \Sigma\}$$

• A subset $L \subseteq \Sigma^{\omega}$ is called ω -language

Examples

Let $\Sigma = \{a,b\}$, $L = \{\alpha \mid \alpha \in \Sigma^{\omega}, \alpha \text{ has infinitely many b's}\}$

Then L is an ω language and $\alpha = a^*b^{\omega} \in L$, $\beta = (ab)^{\omega} \in L$ and $\gamma = (ba)^{\omega} \in L$.

Büchi Automata - Formal Definition

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

By \sum^{ω} we denote the set of all infinite words over \sum .

A non-deterministic Büchi automaton (NBA) over \sum is a tuple $A = \langle Q, I, T, F \rangle$, where:

- Q is a finite set of *states*,
- $I \subseteq Q$ is a set of *initial states*,
- $T \subseteq Q \times \sum \times Q$ is a transition relation,
- $F \subseteq Q$ is a set of *final states*.

Acceptance Condition

A *run* of a Büchi automaton is defined over an infinite word $\omega:\alpha_1\alpha_2\dots$ as an infinite sequence of states $\pi:q_0q_1q_2\dots$ such that:

- $q_0 \in I$ and
- $(q_i, \alpha_{i+1}, q_{i+1}) \in T$, for all $i \in \mathbb{N}$.

Let $\inf(\pi) = \{q \mid q \text{ appears infinitely often on } \pi \}$.

Run π of A is said to be *accepting* iff $inf(\pi) \cap F \neq \phi$.

Example

The following finite ω - automata with $F = \{q_1, q_2\}$ accept the ω - language

$$A = \{ \alpha \in \{a,b\}^{\omega} \mid \alpha \text{ ends with either } a^{\omega} \text{ or } (ab)^{\omega} \}$$
$$= \sum^* a^{\omega} \cup \sum^* (ab)^{\omega}$$

Figure 2: Finite ω -automata which accept A

Closure Properties

Whether a Büchi automaton is closed under the following operations ??

- union
- intersection
- concatenation
- complementation

Closure Under Union

Lemma: If L_I and L_2 , languages over Σ^ω , are recognised by Büchi automata $B_I = (Q_I, I_I, T_I, F_I)$ and $B_2 = (Q_2, I_2, T_2, F_2)$ respectively, then $L_I \cup L_2$ is also recognised by a Büchi automaton.

Proof: w.l.o.g we assume that $Q_l \cap Q_2 = \phi$

- Recogniser for L is $B = (Q_1 \cup Q_2, I_1 \cup I_2, T_1 \cup T_2, F_1 \cup F_2)$.
- Claim : Any $\alpha \in L_1 \cup L_2$ is accepted by B

If α has an successful run on B_1 , then it also has a successful run on B. Similar is the case if has a successful run on B_2 . In the other direction, if has a successful run on B, then it must have a successful run on B_1 or B_2 component of B.

By our construction these two components are disjoint.

Example

Consider the following two languages:

 L_I : each string has either exactly one θ or exactly one I.

 L_2 : there are finitely many l 's in each sequence.

The automaton for $L = L_1 \cup L_2$ is

Closure Under Intersection

Lemma: If L_I and L_2 , languages over Σ^ω , are recognised by Büchi automata $B_I = (Q_I, I_I, F_I, T_I)$ and $B_2 = (Q_2, I_2, F_2, T_2)$ respectively, then $L_I \cap L_2$ is also recognised by a Büchi automaton.

Proof: using product construction

- Recogniser for L is B = (Q, I, T, F) where

$$F - \{ (Q_1, Q_2, 2) \mid Q_2 \in F_2 \}$$

Claim: By construction

 $r'=(q^0_{\ l'},q^0_{\ 2'}i^0),\ (q^1_{\ l'},q^1_{\ 2'}i^l),...\ \text{is a run of automaton }B\ \text{on input word }\omega\ \text{iff}$ $r_1=q^0_{\ l'},\ q^1_{\ l'}...\ \text{is run of }B_1\ \text{on }\omega\ \text{and }r_2=q^0_{\ 2'},\ q^1_{\ 2'}...,...\ \text{is run of }B_2\ \text{on }\omega.$

 r_1 is accepting and r_2 is accepting iff r' is concatenation of an infinite series of finite segments of 1-states and 2-states alternatively.

There is such a series of segments of r' iff r' is accepted by B.

Closure Under Concatenation

Lemma: If L_1 and L_2 , languages over \sum^{ω} , are recognised by Büchi automata $B_1 = (Q_1, I_1, T_1, F_1)$ and $B_2 = (Q_2, I_2, T_2, F_2)$ respectively, then L_1 . L_2 is also recognised by a Büchi automaton.

Proof: w.l.o.g we assume that $Q_1 \cap Q_2 = \phi$

- Recogniser for L is $B = (Q_1 \cup Q_2, I, T, F_1 \cup F_2)$.

$$T = T_1 \cup T_2 \cup \{(q,a,q') \mid q' \in I_2 \text{ and } \exists f \in F_1. (q,a,f) \in T_1\}$$

if $I_1 \cap F_I$ is empty then $I = I_I$ otherwise $I = I_I \cup I_2$

Buchi Characterization

Lemma 1 : If a regular language is accepted by a DFA $M = \{Q,s,\delta,F\}$ over \sum , there is an equivalent DFA $M' = \{Q',s,\delta',F'\}$ with no incoming transitions to start state.

Lemma 2 : If language $L \subseteq \sum^*$ is recognized by M, then there is a Buchi automaton for L^{ω}

Lemma 3 : If L_1, L_2 are regular, then $L_1L_2^{\omega}$ is Buchi recognizable.

Theorem 1: An ω language is Buchi recognizable iff $L = L_i K_i^{\omega}$ where L_i , $K_i \subseteq \Sigma^*$ are regular.

Corollary: Any non-empty Buchi recognizable language contains an ultimate periodic word of the form uvvv...

Equivalence Classes: Define a binary relation $\sim_{\rm B}$ on Σ^* .

Let
$$x,y \in \Sigma^*$$
, then $x \sim_B y$ iff

i)
$$\forall (p,q) \in Q, p \rightarrow_{x} q \text{ iff } p \rightarrow_{v} q$$

ii)
$$\forall (p,q) \in Q, p \rightarrow_x^F q \text{ iff } p \rightarrow_y^F q$$

Lemma 4: ~_B is an equivalence relation (reflexive, symmetric and transitive)

Lemma 5: ∼_B is a congruence relation (due to transitivity)

Lemma 6: $\sim_{\rm B}$ has finite index i.e. partitions Σ^* in finite number of equivalence classes.

Corollary: From Myhill-Nerode theorem, if there is an equivalence relation of finite index over Σ^* , and the relation is a congruence relation, then the equivalence classes are regular languages.

Lemma 7: Given a Buchi automaton B = {Q,s, δ ,F}, the equivalence class [x]_{\sim B} is the intersection of all languages of the form L_{p,q}, L_{p,q} , Σ *\L_{p,q} and Σ *\L_{p,q} .

Complementation

Approach to show closure under complementation:

- we have already shown construction of a congruence relation ~_R
- \sim_B divides Σ^* into finite number of equivalence classes, each of which is regular.
- For any 2 equivalence classes L₁ and L₂, L₁L₂^ω is Buchi recognizable.
- Given a Buchi automaton B, we will show that if $L_1L_2^{\omega} \cap L_{\omega}(B) \neq \Phi$ then $L_1L_2^{\omega} \subseteq L_{\omega}(B)$.
- We also need to show that each $\alpha \in L_{\omega}(B)$ belongs to some $L_1L_2^{\omega}$ where L_1 and L_2 are equivalence classes.

Lemma 8 : \sim_{B} defined on Σ^* saturates L if for any pair of equivalence classes L_1 and L_2 , whenever $\mathsf{L}_1\mathsf{L}_2^\omega\cap\mathsf{L}_\omega\neq\Phi$ then $\mathsf{L}_1\mathsf{L}_2^\omega\subseteq\mathsf{L}$

Lemma 9 : Given a Buchi automata B = (Q,s,δ,F) and an ω -string α , we define a binary relation on the positions in the string, or on the set of positive integers $\mathbb N$ as follows:

 $k \sim_{\alpha} I$, if there is a position m > k, I, such that $\alpha_{k,m} \sim_{\alpha} \alpha_{l,m}$ Clearly \sim_{α} is reflexive and symmetric.

It is also transitive.

Lemma 10 : Given a Buchi automata B = (Q,s,δ,F) and an ω -string α , the equivalence relation \sim_{α} has finite index i.e. it divides $\mathbb N$ in finite number of equivalence classes.

Corollary: As there are infinite number of letters in an ω -string α , but only finitely many equivalence classes, there must be an equivalence class with infinite number of positions in it.

We define two subsets of Σ^* as follows:

 $L_1 = \{x \in \Sigma^* : x \sim_B \alpha_{1,p0} \}, L_2 = \{x \in \Sigma^* : x \sim_B \alpha_{p0,p1} \}.$ Clearly L_1 and L_2 are two equivalence classes under \sim_B .

Closure Under Complementation

Lemma 11: The ω -string $\alpha \in L_1L_2^{\omega}$

Lemma 12 : Let B be a Buchi automaton over Σ. The language $\Sigma^{\omega} \setminus L_{\omega}(B)$ is Buchi recognizable.

In the previous theorem we proved that any ω -string is a member of some $L_1L_2^{\omega}$. So, the complement language, $\Sigma^{\omega} \setminus L_{\omega}(B) = UL_1L_2^{\omega}$, where L_1 and L_2 are equivalence classes generated by B, and the union is over all pairs of such L_1 and L_2 such that $L_1L_2^{\omega}\cap L_{\omega}(B)=\Phi$. So Buchi recognisable languages are closed under complementation.

References

- Automata theory and its applications by Anil Nerode and Bakhadyr Khoussainov
- Lecture Notes by
 - Gautam Biswas, IIT Kgp
 - K Narayan Kumar, CMI