Problem Set 1

Your Name Phil 411: Type Theory

For each of the following strings of symbols, state whether it is or is not a term. Use our syntactic convenience of writing $(\lambda x.A)$ without the outermost parentheses in A, but do not omit any other parentheses.

Examples. $(\lambda v.v'v)$

Term

 $\lambda v.v'v$

Not a term

1. (vv)

Term / Not a term

2. (v'v)v

Term / Not a term

3. $(\lambda v.v)$

Term / Not a term

4. $(\lambda v.v'v')$

Term / Not a term

5. $(\lambda v.vv'v')$

Term / Not a term

6. $(\lambda v.v(v'v'))$

Term / Not a term

In the following strings of symbols, identify the free variables by putting a * in front of them (which makes them turn green). You can edit the terms in place; you don't need to copy them or anything.

Example. $(v(\lambda v.vv'))$

Answer: $(v(\lambda v.vv'))$

- 7. $(\lambda v'.v'v)$
- 8. $((vv')(\lambda v.v'v))$
- 9. $((\lambda v.vv')v)$

Complete the following substitutions. I now omit outermost parentheses.

Example. $v(\lambda v.vv')[(v'v')/v]$

$$(v'v')(\lambda v.(v'v')v')$$

- 10. v'v[v'/v]
- 11. $v'v[(\lambda v.vv)/v']$
- 12. $(v'v)(\lambda v'.v'v)[(\lambda v.vv)/v']$

 β -reduce the following terms until you cannot perform any more β -conversions. You don't need to provide the intermediate steps, but I include them in the example for illustration.

Example.
$$(\lambda v'.(\lambda v.v'v)(v''v''))(v''')$$

 $v'''(v''v''')$

There are two chains of β -conversions that can reach this term:

$$\begin{array}{ccc} (\lambda v'.(\lambda v.v'v)(v''v'))(v''') & \rightarrow_{\beta} & (\lambda v.v'''v)(v''v'') & \rightarrow_{\beta} & v'''(v''v''') \\ (\lambda v'.(\lambda v.v'v)(v''v'))(v''') & \rightarrow_{\beta} & (\lambda v'.v'(v''v'))(v''') & \rightarrow_{\beta} & v'''(v''v''') \end{array}$$