Slides for Chapter 1 Characterization of Distributed Systems

From Coulouris, Dollimore and Kindberg Distributed Systems:

Concepts and Design

Edition 4, © Pearson Education 2005

DISTRIBUTED SYSTEMS
CONCEPTS AND DESIGN

George Coulouris Jean Dollimore Tim Kindberg

Figure 1.1
A typical portion of the Internet

Figure 1.2 A typical intranet

Figure 1.3 Portable and handheld devices in a distributed system

Figure 1.4
Web servers and web browsers

Figure 1.5 Cloud computing

Sistema distribuído vs. rede de computadores

- Rede: um meio para interconectar computadores e trocar mensagens através de protocolos bem definidos. Entidades da rede são visíveis e endereçadas explicitamente
- Sistema distribuído: a existência de múltiplos computadores autônomos, de forma transparente
- Muitos problemas (e.g., abertura, confiabilidade) são comuns a ambos, mas tratados em diferentes níveis
 - As redes tratam no nível de **pacotes**, **roteamento**, etc, enquanto os sistemas distribuídos tratam no **nível das aplicações**
 - Todo sistema distribuído depende dos **serviços oferecidos** por uma ou mais redes de computadores

Definição de Sistemas Distribuídos

- Definição adotada no curso:
 - Um sistema no qual componentes de hardware e/ou software, localizados em diferentes computadores conectados em rede, se **comunicam** e **coordenam** suas ações apenas através da **troca de mensagens** [Coulouris et al. 05]
- Definição implica em três características:
 - Concorrência
 - Ausência de relógio global
 - Falhas independentes

Desafios

- Heterogeneidade
- Aberta
- Segurança
- Escalabilidade
- Tratamento de Falhas
- Concorrência
- Transparência

Heterogeneidade

- Variedade e diferença em termos de:
 - Hardware
 - Sistemas operacional
 - Rede
 - Linguagem de programação
 - Implementações de diferentes desenvolvedores
- Exemplos de heterogeneidade na Internet
 - Diferentes implementações do mesmo conjunto de protocolos para diferentes tipos de rede: IP, TCP, UDP, SMTP
 - Diferentes padrões de representação de dados: IDL, XML
 - Diferentes padrões de bibliotecas: POSIX, DLL
 - Diferentes padrões de invocação de serviços: COM, CORBA,RMI, SOAP
 - Diferentes plataformas de execução: JVM (Java), CLR (.NET)

Heterogeneidade

Figura 1.1 Sistema distribuído organizado como middleware.

A camada de middleware se estende por várias máquinas e oferece a mesma interface a cada aplicação.

Abertura

- Facilidade de extensão e atualização
 - Adição de **novos recursos** e serviços
 - Re-implementação de **serviços existentes**
- Depende que as **interfaces** de acesso aos principais componentes do sistemas sejam conhecidas e estejam disponíveis para os programadores
- Exemplos de abertura na Internet
 - Especificações controladas e atualizadas por um Comitê Gestor
 - Novos produtos e serviços implementados de acordo com as especificações vigentes
 - Conformidade da implementação deve ser testada e verificada para garantir o correto funcionamento do sistema

Segurança

- Proteção para recursos compartilhados
 - Confidencialidade (proteção contra usuários não autorizados)
 - Ex.: Acesso a dados sobre salário, histórico médico
 - Integridade (proteção contra alteração e corrupção)
 - Ex.: Alteração indevida de dados usados em transações bancárias
 - Disponibilidade (proteção contra interferência ao meio de acesso)
 - Ex.: Queda ou sobrecarga do servidor ou do meio de comunicação
- Principais mecanismos de segurança na Internet
 - Firewall
 - Assinaturas digitais
 - Canais seguros de comunicação
- Desafios recentes
 - Ataques de **negação de serviço**
 - Segurança para código móvel

Escalabilidade

- Capacidade do sistema permanecer operando de forma efetiva mesmo diante de um aumento significativo do número de usuários e/ou dos recursos disponíveis
- Principais desafios:
 - Controlar o **custo** dos recursos físicos -O(n)
 - Controlar **perdas de desempenho**
 - Prevenir o **esgotamento dos recursos** de software
 - Evitar "gargalos" de desempenho na rede ou nos próprios servidores
- Principais técnicas:
 - Replicação
 - Caching
 - Concorrência e paralelismo

Escalabilidade

Escalabilidade

Figura 1.2 A diferença entre deixar (a) um servidor ou (b) um cliente verificar formulários à medida que são preenchidos.

Figure 1.6
Growth of the Internet (computers and web servers)

Date	Computers	Web servers	Percentage
1993, July	1,776,000	130	0.008
1995, July	6,642,000	23,500	0.4
1997, July	19,540,000	1,203,096	6
1999, July	56,218,000	6,598,697	12
2001, July	125,888,197	31,299,592	25
2003, July	~200,000,000	42,298,371	21
2005, July	353,284,187	67,571,581	19

Computadores com endereços IP registrados na Internet

Tolerância a falhas

- Falhas são **inevitáveis** em sistemas computacionais
 - Resultados incorretos
 - Interrupção não planejada do serviço antes de sua conclusão
- Falhas em sistemas distribuídos são **parciais**
- Técnicas de tratamento de falhas mais comuns:
 - Detecção
 - (ex. bits de paridade, somas de verificação)
 - Ocultamento
 - (ex. retransmissão de mensagens)
 - **Tolerância**
 - (ex. informar o usuário do problema)
 - **Recuperação**
 - (ex. transações em BD's)
 - Redundância
 - (ex. replicação de tabelas no DNS)
- Sistemas distribuídos devem oferecer **alta disponibilidade** de recursos mesmo diante da ocorrência de falhas
 - **Disponibilidade**: medida da proporção do tempo que um recurso está disponível para uso

Concorrência

- Suporte para múltiplos acessos simultâneos a um ou mais recursos compartilhados
 - Possibilidade de inconsistências quando os recursos são alterados
- Serviços que representam recursos compartilhados devem ser responsáveis por garantir que as operações de acesso os mantenham em um estado consistente
 - Válido para servidores e objetos de aplicações
- Técnicas mais comuns:
 - Sincronização de acesso (ex.: exclusão mútua distribuída)
 - Protocolos de controle de concorrência (ex.: 2PC)

- Abstração/Ocultação, para os usuários e programadores de aplicação, da separação dos componentes em um sistema distribuído
 - Sistema percebido como um "**todo**" coerente ao invés de uma coleção de partes independentes
- Uma medida de sucesso de um sistema distribuído é dada pela sua transparência:
 - Em que medida é indistinguível de um sistema centralizado com a mesma funcionalidade?

- Transparência de acesso:
 - permite o acesso a componentes remotos e locais através das mesmas operações
 - Ex:
 - Network File System
 - Google Docs
- Transparência de localização:
 - permite o acesso a componentes sem conhecimento da sua localização física
 - existência de um mecanismo que determina a localização baseada num nome
 - Ex:
 - URL

- Transparência de concorrência:
 - permite a execução concorrente de múltipla operações sobre o mesmo conjunto de recursos sem causar interferência entre elas
 - Ex:
 - Impressoras compartilhadas
 - Leilão virtual
- Transparência de escala:
 - permite a expansão do sistema e de suas aplicações sem exigir mudanças significativas na infra-estrutura existente
 - o sistema não possui gargalos
- **Transparência de mobilidade** (migração):
 - permite a realocação de recursos e aplicações sem afetar o seu uso

- Transparência de Replicação
 - O usuário desconhece a existência de várias cópias do recurso
 - Fundamental para desempenho e tolerância a falhas

- Transparência de falhas
 - A presença de falhas no SD passa desapercebida pelos usuários.
 - Implica na ausência de um ponto único de falha

- Transparência de Desempenho
 - Recurso adicionais são adicionados para suprir a nova demanda.
 - Serviços oferecisdos pela Amazon (elasticidade)

- As duas formas mais importantes são:
 - acesso e localização!
 - Suas presenças (ou ausências) afetam profundamente a maneira como os recursos são utilizados em um sistema distribuído
 - Também conhecidas como *transparência de rede*
- Exemplos de falta de transparência:
 - Sistema distribuído onde só é possível acessar arquivos remotos via **FTP**
 - Serviço de jogos online que precisa ser **tirado do ar** para acrescentar ou trocar um servidor
 - Mais algum?

- Níveis de transparência
 - **Nível do usuário**: distribuição física dos recursos é imperceptível para os usuários das aplicações (ex.: navegador da Web)
 - Nível do programador: distribuição física dos recursos é imperceptível tanto para os usuários quanto para os programadores das aplicações (ex.: programação com middleware ou SO distribuído)
- Importante: transparência total pode ser indesejável ou até mesmo impossível na prática!!

Ciladas

- Premissas falsas que programadores inexperientes podem adotar ao implementar um Sistema Distribuído pela primeira vez:
 - A rede é confiável
 - A rede é segura
 - A rede é homogênea
 - A topologia não muda
 - A latência é zero
 - A largura de banda é infinita
 - O custo do transporte é zero
 - Há só um administrador