东南大学 2012-2013 学年《高等数学(上)》期末考试试卷

课程名称_______考试学期__12-13-2 得分_____

适用专业 选高数 AB 的专业 考试形式 闭卷 考试时间长度 150 分钟

题号	_	=	Ξ	四	五	六	七	八
得分								

一.填空题(本题共9小题,每小题4分,满分36分)

1.
$$\lim_{x \to 0} \frac{\int_0^{x^2} e^{t^2} \sin t dt}{x^2 \tan^2 x} = \frac{1}{1 + \frac{1}{2}}$$

- 2. 设常数 k > 0 , 则方程 $\frac{\ln x}{x} + k = 0$ 在 $(0, +\infty)$ 内根的个数为______;
- 3. 曲线 $\begin{cases} x = \sec t \\ y = e^{4t-\pi} \end{cases}$ 在点 $(x, y) = (\sqrt{2}, 1)$ 处的切线方程是_____;
- 5. 若连续函数 f(x)满 足 $f(x) = \int_0^x f(t)dt$,则 f(x) =______
- 6. $\int_0^{2\pi} (\sin^3 x^{\square} e^{\cos x} + \sin^4 \frac{x}{2}) dx =$ _____;
- 7. 曲线 $x^2 + xy + y^2 = 3$ 在点(1,1) 处的曲率 k =_____;
- 8. $\int_0^{+\infty} \frac{dx}{1+e^x} =$;
- 9. 微分方程 $y \ln y dx + (x \ln y) dy = 0$ 的通解为
- 二.计算下列各积分(本题共5小题,每小题7分,满分35分)
- 1. $\int_0^1 \frac{x}{\sqrt{1-x^2}} \arcsin x \, dx$
- $2. \int \frac{dx}{x + \sqrt{x + 2}}$

$$3. \int \frac{2\sin x - x}{1 + \cos x} dx$$

$$4. \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos x \arctan e^{x} dx$$

5. 设
$$f(x)$$
在 $[0,+\infty)$ 上连续,且 $\lim_{x\to+\infty} f(x) = 2014$,计算 $\lim_{n\to\infty} \int_0^1 f(nx) dx$ 。

三. (本题满分 6 分) 设方程 $x^y + \sin \pi x + y = 0$ 确定了 x = 1 附近的一个二阶可导的隐函数 y = y(x),求 $\frac{d^2y}{dx^2}\bigg|_{x=1}$

四. (本题满分 6 分)设
$$f(x) = a \left| \cos x \right| + b \left| \sin x \right|$$
 在 $x = -\frac{\pi}{3}$ 处取得极小值,且
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f^2(x) dx = 2(\sqrt{3} + \pi), 求常数 a \pi b .$$

五. (本题满分8分)

设
$$f(x)$$
 为二阶可导函数,且满足 $f(x) = \sin x - \int_0^x (x-t) f(t) dt$ 。
试求函数 $f(x)$ 。

六. (本题满分9分)

- (1) 求由曲线 $y = x^2 = \sin(\frac{\pi}{2}x)$ 围成的平面图形 D 的面积;
- (2) 求 (1) 中平面图形 D 绕直线 y = 1 旋转而成的旋转体的体积。

12-13-2 高数(上)期末试卷参考答案

一.填空题(本题共9小题,每小题4分,满分36分)

1.
$$\frac{1}{2}$$
;

2. 1; 3.
$$y = 2\sqrt{2}x - 3$$
;

4.
$$x = \pm 1$$
,

$$6. \qquad \frac{3}{4}\pi \qquad ;$$

7.
$$\frac{\sqrt{2}}{6}$$
 ;

9.
$$x = \frac{1}{2} \ln y + \frac{C}{\ln y}$$

二.计算下列各积分(本题共5小题,每小题7分,满分35分)

2.
$$\frac{4}{3}\ln(\sqrt{x+2}+2)+\frac{2}{3}\ln(\sqrt{x+2}-1)+C$$

3.

$$\int \frac{2\sin x}{1 + \cos x} dx - \int \frac{x}{1 + \cos x} dx = -2\ln(1 + \cos x) - \int \frac{x}{2\cos^2 \frac{x}{2}} dx$$

$$= -2\ln(1+\cos x) - \int x\,d\,\tan\frac{x}{2} = -2\ln(1+\cos x) - x\tan\frac{x}{2} - 2\ln\cos\frac{x}{2} + C$$

$$\int_0^{\frac{\pi}{4}} (\cos x \arctan e^x + \cos(-x) \arctan e^{-x}) dx$$

$$= \int_0^{\frac{\pi}{4}} \cos x (\arctan e^x + \arctan e^{-x}) dx = \frac{\pi}{2} \int_0^{\frac{\pi}{4}} \cos x dx = \frac{\sqrt{2}}{4} \pi$$

5.
$$\lim_{n \to \infty} \frac{\int_0^n f(t)dt}{n} = \lim_{x \to +\infty} \frac{\int_0^x f(t)dt}{x} = \lim_{x \to +\infty} \frac{f(x)}{1} = 2014$$

三. (本题满分6分)

$$e^{y \ln x} + \sin \pi x + y = 0, \quad x = 1 \Rightarrow y = -1$$

$$e^{y \ln x} (y' \ln x + \frac{y}{x}) + \pi \cos \pi x + y' = 0 \implies y' \Big|_{x=1} = 1 + \pi$$

...

 $\Rightarrow y'' \Big|_{x=1} = -2(\pi + 2)$

四. (本题满分6分)

在
$$x = -\frac{\pi}{3}$$
附近, $f(x) = a\cos x - b\sin x$,由 $f'(-\frac{\pi}{3}) = 0 \Rightarrow b = \sqrt{3}a$ (1)

$$f(x)$$
为偶, $\int_{-\frac{x}{2}}^{\frac{x}{2}} f^2(x) dx = 2 \int_{0}^{\frac{x}{2}} f^2(x) dx = 2 \int_{0}^{\frac{x}{2}} (a \cos x + b \sin x)^2 dx$

$$= 2[\frac{\pi}{4}(a^2 + b^2) + ab] = 2(\sqrt{3} + \pi)$$
 (2)

$$(1),(2) \Rightarrow a = \pm 1, b = \pm \sqrt{3}$$

$$x = -\frac{\pi}{3}$$
 为 极 小 点 、 $f''(-\frac{\pi}{3}) = -\frac{1}{2}(a + \sqrt{3}b) > 0$, $a = -1, b = -\sqrt{3}$

五. (本题满分8分)

方程:
$$f''(x) + f(x) = -\sin x$$
, $f(0) = 0$, $f'(0) = 1$

通解为
$$f(x) = C_1 \cos x + C_2 \sin x + \frac{1}{2} x \cos x$$

特解为
$$f(x) = \frac{1}{2}(\sin x + x \cos x)$$

六. (本题满分9分)

$$A = \int_0^1 (\sin \frac{\pi}{2} x - x^2) dx = \frac{2}{\pi} - \frac{1}{3}$$

$$V = V_{\pm} - V_{\pm} = \pi \int_0^1 (1 - x^2)^2 dx - \pi \int_0^1 (1 - \sin \frac{\pi}{2} x)^2 dx = 4 - \frac{29}{30} \pi$$