Total No. of Questions: 6

#### Total No. of Printed Pages:3

Enrollment No.....



### Faculty of Engineering End Sem (Odd) Examination Dec-2022 CA5CO35 Modern Operating System

Branch/Specialisation: CA Programme: MCA

**Duration: 3 Hrs. Maximum Marks: 60** 

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

| Q.1 | i.   | In domain structure, what is a  | access-right equal to?               | 1    |
|-----|------|---------------------------------|--------------------------------------|------|
|     |      | (a) Object-name, rights-set     | (b) Read-name, write-set             |      |
|     |      | (c) Read-name, execute-set      | (d) Object-name, execute-set         |      |
|     | ii.  | What is linux operating system  | m?                                   | 1    |
|     |      | (a) Private operating system    |                                      |      |
|     |      | (b) Windows operating system    | n                                    |      |
|     |      | (c) Open-source operating sys   | stem                                 |      |
|     |      | (d) None of these               |                                      |      |
|     | iii. | A process is-                   |                                      | 1    |
|     |      | (a) A program in high level la  | anguage kept on disk                 |      |
|     |      | (b) Content of main memory      |                                      |      |
|     |      | (c) A program in execution      |                                      |      |
|     |      | (d) None of these               |                                      |      |
|     | iv.  | Which system call is used by    | the operating system to create a new | 1    |
|     |      | process?                        |                                      |      |
|     |      | (a) fork()                      | (b) exec()                           |      |
|     |      | (c) pipe()                      | (d) open()                           |      |
|     | v.   | Which of the following is true  | e about concurrent processes?        | 1    |
|     |      | (a) Do not overlap              |                                      |      |
|     |      | (b) Overlap in time             |                                      |      |
|     |      | (c) At the same time, a process | ssor executes                        |      |
|     |      | (d) None of these               |                                      |      |
|     | vi.  | Which of the following "ser     | maphore" can take the non-negative   | 1    |
|     |      | integer values?                 |                                      |      |
|     |      | (a) Binary semaphore            | (b) Counting semaphore               |      |
|     |      | (c) Real semaphore              | (d) All of these                     |      |
|     |      |                                 | P                                    | O.T. |

1

1

1

1

2

3

5

3 7

|     | vii.  | In distributed system, each processor has its own                                                            |                |                   |               | •                |
|-----|-------|--------------------------------------------------------------------------------------------------------------|----------------|-------------------|---------------|------------------|
|     |       | (a) Local men                                                                                                |                | (b) Clock         |               |                  |
|     |       | (c) Both (a) ar                                                                                              | nd (b)         | (d) None o        | f these       |                  |
|     | viii. | If one site fail                                                                                             | s in distribut | ted system then   | ı             |                  |
|     |       | (a) The remain                                                                                               | ning sites ca  | n continue ope    | rating        |                  |
|     |       | <ul><li>(b) All the sites will stop working</li><li>(c) Directly connected sites will stop working</li></ul> |                |                   |               |                  |
|     |       |                                                                                                              |                |                   |               |                  |
|     |       | (d) None of th                                                                                               | iese           |                   |               |                  |
|     | ix.   | What are the o                                                                                               | characteristic | es of a distribut | ed file syste | em?              |
|     |       | (a) Its users, se                                                                                            | ervers and s   | torage devices    | are disperse  | d                |
|     |       | (b) Service ac                                                                                               | tivity is not  | carried out acro  | oss the netw  | ork              |
|     |       | (c) They have                                                                                                | single centr   | alized data rep   | ository       |                  |
|     |       | (d) None of th                                                                                               | iese           |                   |               |                  |
|     | х.    |                                                                                                              | -              | distributed file  | •             |                  |
|     |       | (a) File replica                                                                                             |                | (b) Migrati       |               |                  |
|     |       | (c) Client inte                                                                                              | rface          | (d) Remote        | access        |                  |
| Q.2 | i.    | What is the relationship between OS and computer hardware?                                                   |                |                   |               |                  |
|     | ii.   | How buffering can improve the performance of a computer system?                                              |                |                   |               |                  |
|     | iii.  | What is the need of OS? Explain types of task done by OS.                                                    |                |                   |               |                  |
| OR  | iv.   | Explain the pu                                                                                               | urpose of sys  | stem calls and    | discuss the d | calls related to |
|     |       | device manage                                                                                                | ement and c    | ommunications     | in brief.     |                  |
| Q.3 | i.    | Compare user                                                                                                 | level thread   | and kernel lev    | el thread.    |                  |
|     | ii.   | -                                                                                                            |                | of processes, v   |               | th of the CPU    |
|     |       | burst given in                                                                                               | Ū              | •                 |               |                  |
|     |       |                                                                                                              | Process        | Burst Time        | Priority      |                  |
|     |       |                                                                                                              | P1             | 2                 | 2             |                  |
|     |       |                                                                                                              | P2             | 1                 | 1             |                  |
|     |       |                                                                                                              | Р3             | 8                 | 4             |                  |
|     |       |                                                                                                              | P4             | 4                 | 2             |                  |
|     |       |                                                                                                              |                |                   |               | i                |

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

5

P5

What is the average waiting time and average turnaround time for these processes using PRIORITY scheduling algorithm?

| OR | iii. | Consider the following set of 4 processes whose arrival time and | 7 |
|----|------|------------------------------------------------------------------|---|
|    |      | burst time are given below                                       |   |

| Process ID | Arrival Time | Burst Time |
|------------|--------------|------------|
| P1         | 3            | 5          |
| P2         | 1            | 6          |
| Р3         | 2            | 2          |
| P4         | 4            | 3          |

If the CPU scheduling is round robin with time quantum = 3, calculate the average waiting time and average turnaround time.

#### Q.4 Attempt any two:

i. What is critical section problem? Give the conditions that a solution 5 to the critical section problem must satisfy.

5

5

5

- ii. What is semaphore? How can we achieve the synchronization using 5 semaphore for producer consumer problem?
- iii. Discuss about monitors in detail with syntax.

#### Q.5 Attempt any two:

- i. Explain distributed OS. What are the major issues of designing a 5 distributed OS?
- ii. What is multiprocessing operating system and its advantages?
- iii. Discuss different algorithms for implementing mutual exclusion in distributed environment.

#### Q.6 Attempt any two:

- i. Explain distributed file system. Write feature of distributed file 5 system.
- ii. What is distributed scheduling and how scheduling is done in 5 distributed system. Why it is needed?
- iii. Discuss distributed shared memory with suitable illustrations.

\*\*\*\*\*

# Marking Scheme CA5CO35 Modern Operating System

| Q.1 | 1)    | object-name, rights-set                                                          | 1 |
|-----|-------|----------------------------------------------------------------------------------|---|
|     | ii)   | Open-source operating system                                                     | 1 |
|     | iii)  | a program in execution                                                           | 1 |
|     | iv)   | fork()                                                                           | 1 |
|     | v)    | Overlap in time                                                                  | 1 |
|     | vi)   | Counting Semaphore                                                               | 1 |
|     | vii)  | both local memory and clock                                                      | 1 |
|     | viii) | the remaining sites can continue operating                                       | 1 |
|     | ix)   | Its users, servers and storage devices are dispersed                             | 1 |
|     | x)    | Migration                                                                        | 1 |
| Q.2 | i.    | What is the relationship between operating systems and computer hardware?        | 2 |
|     | ii.   | How Buffering can improve the performance of a Computer system?                  | 3 |
|     | iii.  | CPU and I/O Speed concept - 3 marks                                              | _ |
|     | 111.  | What is the need of OS? Explain different types of task done by OS.              | 5 |
|     |       | Need of OS - 2 marks                                                             |   |
|     |       | Types of Task - 3 marks                                                          |   |
| OR  | :     | <b>71</b>                                                                        | 5 |
| OK  | iv.   | Explain the purpose of system calls and discuss the calls related to             | 3 |
|     |       | device management and communications in brief.  Purpose of System Call - 2 marks |   |
|     |       | Device management call- 1.5 marks                                                |   |
|     |       | Communication Call -1.5 marks                                                    |   |
|     |       | Communication Can -1.3 marks                                                     |   |
| Q.3 | i.    | Compare User level thread and Kernel level thread.                               | 3 |
|     |       | User level Thread- 1.5 marks                                                     |   |
|     |       | Kernel Level Thread - 1.5 marks                                                  |   |

ii. Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process Burst Time Priority

P1 2 2

P2 1 1

P3 8 4

P4 4 2

P5 5 3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

Consider the following set of processes, with the length of the CPU burst given in milliseconds:

| Process | Burst Time | Priority |
|---------|------------|----------|
| P1      | 2          | 2        |
| P2      | 1          | 1        |
| P3      | 8          | 4        |
| P4      | 4          | 2        |
| P5      | 5          | 3        |

The Processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

What is the average waiting time and average Turnaround time for these processes using PRIORITY scheduling algorithm?

- 1. Gantt Chart 2 marks
- 2. Turnaround Time Formula (TAT=CT-AT)-1 marks
- 3. Waiting Time Formula (WT=TAT-BT)- 1 marks
- 4. Average Waiting time 1.5 marks
- 5. Average Turnaround time 1.5 marks

| OR | iii. | Consider the following set of 4 processes whose arrival time and | 7 |
|----|------|------------------------------------------------------------------|---|
|    |      | burst time are given below                                       |   |

| Process ID | Arrival Time | Burst Time |
|------------|--------------|------------|
| P1         | 3            | 5          |
| P2         | 1            | 6          |
| P3         | 2            | 2          |
| P4         | 4            | 3          |

If the CPU scheduling is Round Robin with time quantum = 3, calculate the average waiting time and average Turnaround time.

- 1. Gantt Chart 2 marks
- 2. Turnaround Time Formula (TAT=CT-AT) 1 marks
- 3. Waiting Time Formula (WT=TAT-BT) 1 marks
- 4. Average Waiting time 1.5 marks
- 5. Average Turnaround time 1.5 marks

## Q.4 i. What is Critical Section Problem? Give the conditions that a 5 solution to the critical section problem must satisfy.

Explanation - 2 marks

Condition for Critical section problem solution -3 marks

ii. What is a Critical Section problem? Give the conditions that a solution to the critical section problem must satisfy

What is a Critical Section problem? Give the conditions that a solution to the critical section

problem must satisfy

What is a Critical Section problem? Give the conditions that a solution to the critical section

problem must satisfy

What is semaphore? How can we achieve the synchronization using semaphore for Producer consumer problem?

5

Semaphore explanation - 2 marks

Producer Consumer problem solution - 3 marks

OR iii. Discuss about Monitors in detail with syntax.

Monitor - 2 marks

Syntax - 3 marks

| Q.5 | 1.   | Explain distributed OS. What are the major issues of designing a distributed OS? | 5 |
|-----|------|----------------------------------------------------------------------------------|---|
|     |      | Explanation -2 marks                                                             |   |
|     |      | Designing issue - 3 marks                                                        |   |
|     |      | Heterogeneity                                                                    |   |
|     |      | • Openness                                                                       |   |
|     |      | <ul><li>Scalability</li></ul>                                                    |   |
|     |      | • Security                                                                       |   |
|     |      | Failure Handling                                                                 |   |
|     |      | • Concurrency                                                                    |   |
|     |      | <ul><li>Transparency</li></ul>                                                   |   |
|     | ii.  | What is multiprocessing operating system and its advantages?                     | 5 |
|     | 11.  | Explanation - 2 marks                                                            | J |
|     |      | Advantage - 3 marks                                                              |   |
|     | iii. | Discuss different algorithms for implementing mutual exclusion in                | 5 |
|     | 111. | distributed environment.                                                         |   |
|     |      | Name of algorithm - 2 marks                                                      |   |
|     |      | Explanation of algorithm - 3 marks                                               |   |
| Q.6 |      |                                                                                  |   |
|     | i.   | Explain distributed file system. Write feature of distributed file system.       | 5 |
|     |      | Explanation - 2 marks                                                            |   |
|     |      | Feature - 3 marks                                                                |   |
|     | ii.  | What is distributed scheduling and how scheduling is done in                     | 5 |
|     |      | distributed system. Why it is needed?                                            |   |
|     |      | Explanation - 3 marks                                                            |   |
|     |      | Reason - 2 marks                                                                 |   |
|     | iii. | Discuss distributed Shared Memory with suitable illustrations.                   | 5 |
|     |      | Explanation- 2.5 marks                                                           |   |
|     |      | Illustration - 2.5 marks                                                         |   |

\*\*\*\*\*