MATH 1010 Tutorial Oct. 28th (English III)	
	Presenter: WANG, Yizi
	Email: yzwang@math.cuhk.edu.hk
Schedule:	V
	Tutarial roma contations
5:45-6:05 5:52	Tutorial presentation (5 Questions will be cliscussed)
: 05 - 6:15	Q & A
	(Hosted by: YI, Tianhan)
Remark:	
o download	isit yzwang.xyz or Blackboard the tutorial notes.
- Math Gym	(Faculty TA Q&A Centre)
	(Faculty TA Q&A Centre) 1. Please visit mathgym math culk edu hk formation.
is now oper for more info	

Q1. Let $f(x) = x^2 - 5x + 6$.

- 11) The critical point C of f is?
- (2) Determine the monotonicity of f on (-00, c) and (C, +00)
- (1) f'(x) = 2x 5

Let f'(x) = 0.

Then $x = \frac{5}{2}$ is the critical point.

Hence $C = \frac{5}{2}$

(2) For $x < \frac{5}{2}$, f(x) < 0.

For $x = \frac{5}{2}$, f'(x) > 0.

Hence f is increasing on $(\frac{5}{2}, +00)$

and f is decreasing on $(-\infty, \frac{5}{2})$

Q2. Let
$$f(x) = x - ln(2x)$$
, $x > 0$

(a) Critical point of
$$f = ?$$
 (n12) + (n1x)

(b) Is f a maximum or minimum at the critical point? (Apply the First Perivative Test)

$$(a) f'(x) = 1 - \frac{1}{x}.$$

Let f(x) = 0.

Then X = 1

Hence f has aritical point x = \frac{1}{2}.

(b) If x < 1, then f'(x) < 0If x > 1, then f'(x) > 0

Hence f(1) is the minimum of f.

Q3. Let $f(x) = e^x + e^{-x}$ on $[-1, \infty)$. Then f is increasing on $(0, +\infty)$ f is decreasing on (-1, 0)

 $f(x) = e^{x} - e^{-x}$

Let f(x) = 0, then we have x = 0.

 $e^{\times} = e^{-\times}$

 $e^{2x} = 1$

x = 0

 $f''(x) = e^{x} + e^{-x} > 0$

fix

Hence we have that f(x) > 0 on $(0, +\infty)$, f'(x) < 0 on (-1, 0).

- Q4. Consider a function of with graph
 - (a) Can we opply Mean Value Thm
 to f on [1,3]?
 - (b) Can we find $C \in (1,3)$ such that $f'(c) = \frac{f(3) - f(1)}{3 - 1}$?
- (a) No. Since f is not differentiable at 1.5 and 2.2.
- (b) Yes. $k = \frac{2.2 1.5}{2.2 1.5} = 1$
 - $k' = \frac{f(3) f(1)}{3 1} = \frac{2 D}{3 1} = 1$

Q5. Let $f(x) = e^x$ and g(x) = x+1. Apply Race track Principle to show that If f(0) = g(0) and f'(x) > g'(x) for x > 0, then flx) > gix) for x > 0 If f(0) = g(0) and $f(x) \leq g(x)$ for x < D, then f(x) > g(x) for $x \leq D$. $f(x) = e^{x} \qquad g'(x) = 1.$ Hence $f'(x) \ge g'(x)$ for x > 0. f(0) = 1 = g(0)Honce f(x) > g(x) for x > 0 For x<0, f(x) < g(x). Hence $f(x) \ge g(x)$ for $x \le 0$. Therefore, fixi >, gixi for x & IR.