Anàlisi Real—Tema 0

1. Sigui a_n una successió de nombres reals fitada i $L(a_n)$ el conjunt dels seus punts límit. Recordem que $\alpha \in L(a_n)$ si i només si existeix una subsuccessió de a_n amb límit α . Com que a_n és fitada, també ho és $L(a_n)$ i podem definir

$$a^* = \sup L(a_n), \quad a_* = \inf L(a_n).$$

- a) a^* i a_* són elements de $L(a_n)$.
- b) per a tot $\varepsilon > 0$ existeix $\nu \in \mathbb{N}$ tal que si $n \ge \nu$ llavors $a_n < a^* + \varepsilon$.
- c) per a tot $\varepsilon > 0$ existeix $\nu \in \mathbb{N}$ tal que si $n \ge \nu$ llavors $a_n > a_* \varepsilon$.
- 2. Si a_n és una successió qualsevol de nombres reals definim

$$\limsup a_n = \begin{cases} a^* & \text{si } a_n \text{ està fitada superiorment,} \\ +\infty & \text{altrament.} \end{cases}$$

$$\liminf a_n = \begin{cases} a_* & \text{si } a_n \text{ està fitada inferiorment,} \\ -\infty & \text{altrament.} \end{cases}$$

Calculeu lím sup i lím inf de les successions

$$(-1)^n$$
, $(-1)^{n-1}(1+\frac{1}{n})$, $(-1)^n\frac{n}{n+1}+(-1)^{n+1}\frac{2n}{n+1}$.

3. Trobeu exemples que demostrin que, en general,

 $\limsup(a_k+b_k)\neq \limsup a_k+\limsup b_k,\ \ \limsup(a_kb_k)\neq (\limsup a_k)(\limsup b_k),$ i el mateix per a lím inf.

4. Demostreu que, si $a_k \leq b_k$

 $\limsup a_k \le \limsup b_k$, $\liminf a_k \le \liminf b_k$.

5. Demostreu que,

$$\limsup (a_k + b_k) \le \limsup a_k + \limsup b_k$$

mentre que

$$\liminf (a_k + b_k) \ge \liminf a_k + \liminf b_k$$
.

6. Demostreu que una successió a_n convergeix si i només si $a_*=a^*$, i llavors

$$\lim_{n} a_n = a_* = a^*.$$

- 7. Demostreu que si v_n és una successió fitada i lím $u_n = 1$, llavors lím sup $v_n =$ lím sup $v_n u_n$.
- 8. Demostreu que, si $a_n > 0$ llavors

$$\limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n}, \ \ \liminf \sqrt[n]{a_n} \ge \liminf \frac{a_{n+1}}{a_n}.$$

9. Demostreu que si $a_n > 0$ i existeix lím $\frac{a_{n+1}}{a_n}$ llavors també existeix lím $\sqrt[n]{a_n}$ i els dos límits coincideixen. Apliqueu-ho al càlcul de

$$\lim_{n} \frac{1}{n} \sqrt[n]{(n+1)(n+2) - 2n}.$$

10. Sigui $a_k \longrightarrow a$ i sigui la successió de valors mitjans

$$s_k = \frac{a_1 + a_2 + \dots + a_k}{k}.$$

Demostreu que $s_k \longrightarrow a$. Indicació: demostreu que $a_* \le s_* \le s^* \le a^*$.

11. Definim el nombre e mitjançant la sèrie convergent

$$e = \sum_{k=0}^{\infty} \frac{1}{k!}.$$

Proveu que la successió

$$e_k = \left(1 + \frac{1}{k}\right)^k,$$

convergeix a e. Indicació: proveu que

$$\limsup e_k \le e \le \liminf e_k$$

.