

Interpreting Simulation Output

Simulation Inputs

- Sensor positions and normals
 - Position = X, Y, Z coordinates
 - Normal = facing direction
- Sensor field of view
 - ±60° from normal
- Self occlusion
 - Shadows cast by the sensor object
- Obstacle occlusion
 - Shadows cast by nearby objects
 - Model hands, heads, handles, accessories, etc

Sensor Field of View

- BPW 34 S has a ±60° field of view from normal
- At 60°, the sensitivity is 50% of 0° sensitivity
- System is specified for 5 meters at 60° off axis
- Simulation output accounts for the 60° viewing angle limitation

Directional Characteristics

$$S_{\text{rel}} = f(\varphi)$$

2D Plots

Uses

- Compare results at a glance
- Share via email
- Copy into documentation

Navigation

- +Z is in the center
- +Y is up
- Y down
- +X to the right
- -X to the left
- -Z wraps around the sides
- Blue is good
- Red is bad

3D Plots

Uses

- Pinpoint poses that exhibit low performance
- Show visible sensors in a pose

Navigation

- Use numbers 1-4 to select the plot
- Click and drag the mouse to rotate
- Scale the model using the slider

Number of Visible Sensors - 2D

- Initial indicator of placement quality
- 4 required to boot
- 5 preferred
- Where to expect problems?

Number of Visible Sensors - 3D

- Line up the POV marker with the problem area
- What about sensors on the back face?
- How could we fix this pose?
- What about the -Z pose?

Initial Pose Possible - 2D

- What are the criteria for booting?
- Resembles the Number of Visible Sensors plot
- Object boots or not from a given pose
- Discrete colors come from hard limits on criteria

Initial Pose Possible - 3D

- 3D plots advantages
 - Highlights visible sensors
 - Helps find poses with coplanar sensors
- How could we fix these poses?

Pose Rotation Error - 2D

- What drives rotation error?
- What can we infer about the areas of poor performance?
- Which sides of the object have problems?

Pose Rotation Error - 3D

- 3D plots demonstrate how coplanar sensors lead to rotation error
- How is the distance changing when rotated up and down?
- How could we fix this pose?

Pose Rotation Error - 3D

- This pose demonstrates the benefits of baseline in three axes
- How is the relationship between the two highlighted sensors changing?

Pose Translation Error - 2D

- What drives translation error?
- What can we infer about the areas of poor performance?
- Which sides of the device have problems?

Pose Translation Error - 3D

- The model scale on the 3D plot demonstrates the foreshortening of sensor distance with translation away from a base station.
- Green sensor distance shrinks, but remains significant

Red sensor distance is already marginal, and only gets worse with

translation

Pose Translation Error - 3D

- 3D plot identifies poses with insufficient baseline
- Looks like lots of baseline in X, why poor performance?
- How could we fix this pose?

Summary

- Blue is good, brown is bad
- 2D plots are great for snapshots, emails, and documentation
- 3D plots are great for visible sensors and inspecting specific problem areas
- How good is good enough?
 - Plots are a good way to gauge relative performance
 - Compare against the simulation results of known good objects
 - There is no substitute for building a prototype and trying it in VR
 - Recommend getting an HTC Vive and using it often to develop a golden eye