Evaluating the Cost-Effectiveness of Alternatives

James C. Felli

Naval Postgraduate School
19 May 2000

A mental model

An indicator of the degree to which an alternative meets two objectives:

Maximize Effectiveness

Minimize Cost

We use a two dimensional framework

The CE of an alternative is a point

The tyranny of fixed requirements

The optimal alternative will be an efficient one

Which effective alternative is best?

That depends on what matters most to you

Which effective alternative is best?

What if both cost and effectiveness matter?

Cost-Effectiveness Tradeoff

What if we assume linear indifference curves?

$$V(A) = w_E E(A) - w_C C(A)$$

Cost-Effectiveness Tradeoff

Constant trade-offs and the "best" alternative

Marginal C-E Tradeoffs

Or we can look at marginals...

	Cost per Year (\$M)									
Tank	1	2	3	4	5	6	7	8	9	10
A	2.69	0.41	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50
В	2.33	0.36	0.37	0.38	0.39	0.40	0.41	0.43	0.44	0.45
C	2.84	0.43	0.44	0.45	0.46	0.48	0.49	0.50	0.52	0.53
D	3.10	0.46	0.47	0.48	0.50	0.51	0.53	0.54	0.56	0.57
E	2.48	0.38	0.39	0.40	0.41	0.42	0.44	0.45	0.46	0.47

Example: MBT with uncertainty

So, which tank should we procure?

Example: MBT with uncertainty

	P(dLCC≤6)	P(MOE≥0.7)	P(CE∈R)
Tank A	1.000	0.032	0.033
Tank B	1.000	0.000	0.000
Tank C	0.514	1.000	0.505
Tank D	0.000	1.000	0.000
Tank E	0.790	0.888	0.698

So, which do you want?

So What?

>CE is a composite measure.

Cost: Input

Effectiveness: Output

It's useful to think about CE in 2-space.

Dominance

Efficiency

Finding optimality requires making trade-offs.

Trade-off weights

Marginal trade-offs

Um... that's all, folks...

Effectiveness

Effectiveness is a measure of *output* or *capability delivered* by an alternative.

A few examples: Winter Coat

Personal Automobile

New Aquarium Program

Main Battle Tank

Alternatives could be systems of objects, broadly defined courses of action, policies, portfolios, etc.

Cost

Cost is a measure of *resources consumed* as a consequence of an alternative.

A few examples: Present/Future

Once-Time/Recurring

Fixed/Variable

Certain/Uncertain

Relevant/Irrelevant

•

Opportunity

Winter Coat

Personal Automobile

Main Battle Tank

New Aquarium Program

Life Cycle Cost

