BST 219 Core Principles of Data Science

Lecture 17: Advanced Data Wrangling continued October 29, 2024

Recipe of the Day!

Quinoa stuffed butternut squash with cranberries and kale

When your head is too big for not one, but two costume hats

Agenda

- Announcements
 - Lab this week!
 - Homework 3 is due 11/8
 - Homework 2 grades by 11/4
 - o Midterm 11/8 11/17

- Continue the advanced data wrangling module
 - Combining tables
 - Dates and times
 - Publishable tables

Special Announcements

- Heather's 11/5 office hour will be moved to 12-1pm
- Heather's 11/12 office hour will be moved to 12-1pm
- The 11/14 lecture will be moved to **11/13, 12:30-2pm via Zoom**
- Lecture on 11/26 will be held via **Zoom**
- Heather's office hour on 11/26 will be Zoom only

Coding Question of the Day!

Using the murders dataset from the dslabs package and the state.x77 dataset that is built in to R. make a scatterplot with the total number of gun murders (total) on the y-axis and land area in square miles (Area) on the x-axis. You will need to use the left join function to join the state.x77 dataset to the murders dataset using the state column.

Bonus challenge: are there any NAs in the merged dataset? How are they created?

Make sure to run this code first

```
# Load necessary libraries
library(dplyr)
library(dslabs)
library(ggplot2)
# Load the state.x77 dataset and convert to a data frame
data("state")
state_data <- as.data.frame(state.x77)</pre>
# Add the state names to the state.x77 dataset
state_data$state <- rownames(state_data)</pre>
head(state_data)
# Load the murders dataset from the dslabs package
data("murders")
```