IN THE CLAIMS

Please amend the claims as follows:

- 1. (Currently Amended) A composition comprising:
- (i) at least one structuring polymer having a weight-average molecular weight of from 500 to 500,000 and comprising at least one moiety comprising:
- at least one polyorganosiloxane group, comprising from 1 to 1,000 organosiloxane units in the chain of the moiety or in the form of a graft, and
- at least two groups, which may be the same or different, selected from the group consisting of ester, amide, sulphonamide, carbamate, thiocarbamate, urea, urethane, thiourea, oxamido, guanamido and biguanidino groups

the structuring polymer being solid at 25°C;

- (ii) at least one oil selected from the group consisting of hydrocarbon-based liquid oils and silicone oils; and
- (iii) silicone elastomer particles comprising a composite of spherical or globular particles of cured silicone rubber having an average particle size of from 0.1 to 100 μm and a coating layer of a polyorganosilsesquioxane resin bonded to the spherical or globular particles of cured silicone rubber, wherein the coating is present in an amount of from 1 to 500 parts by weight per 100 parts by weight of the particles of cured silicone rubber a silicone rubber core bonded to a silicone resin coating.
- 2. (Previously Presented) Composition according to Claim 1, in which the structuring polymer comprises at least one moiety corresponding to the formula (I):

$$\left[\begin{bmatrix} R^1 \\ Si \end{bmatrix} \quad O \right]_{m} \left[\begin{bmatrix} R^2 \\ Si \end{bmatrix} \quad X \quad G \quad Y \quad G \quad X \right]_{n}$$
(I)

in which:

- 1) R¹, R², R³ and R⁴, which may be identical or different, represent a group chosen from:
- linear, branched or cyclic, saturated or unsaturated, C₁ to C₄₀ hydrocarbon-based groups, possibly containing in their chain one or more oxygen, sulphur and/or nitrogen atoms, and optionally being partially or totally substituted with fluorine atoms,
- C_6 to C_{10} aryl groups, optionally substituted with one or more C_1 to C_4 alkyl groups,
- polyorganosiloxane chains possibly containing one or more oxygen, sulphur and/or nitrogen atoms;
- 2) the groups X, which may be identical or different, represent a linear or branched C₁ to C₃₀ alkylenediyl group, optionally containing in its chain one or more oxygen and/or nitrogen atoms;
- 3) Y is a saturated or unsaturated, C₁ to C₅₀ linear or branched divalent alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene group, optionally comprising one or more oxygen, sulphur and/or nitrogen atoms, and/or optionally bearing as substituent one of the following atoms or groups of atoms:

fluorine, hydroxyl, C_3 to C_8 cycloalkyl, C_1 to C_{40} alkyl, C_5 to C_{10} aryl, phenyl optionally substituted with 1 to 3 C_1 to C_3 alkyl groups, C_1 to C_3 hydroxyalkyl and C_1 to C_6 aminoalkyl, or

4) Y represents a group corresponding to the formula:

in which

- T represents a linear or branched, saturated or unsaturated, C_3 to C_{24} trivalent or tetravalent hydrocarbon-based group optionally substituted with a polyorganosiloxane chain, and optionally containing one or more atoms chosen from O, N and S, or T represents a trivalent atom chosen from N, P and Al, and
- R⁵ represents a linear or branched C₁ to C₅₀ alkyl group or a polyorganosiloxane chain, optionally comprising one or more ester, amide, urethane, thiocarbamate, urea, urethane, thiourea and/or sulphonamide groups, which may optionally be linked to another chain of the polymer;

5) The groups G, which may be identical or different, represent divalent groups chosen from:

$$\begin{array}{c} - C & - O & - C & - N(R^6) & - C & - \\ 0 & - C & - N(R^6) & - C & - N(R^6) & - C & - \\ 0 & - N(R^6) & - C & - O & - C & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - C & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O & - \\ 0 & - N(R^6) & - C & - O$$

in which R^6 represents a hydrogen atom or a linear or branched C_1 to C_{20} alkyl group, on condition that at least 50% of the groups R^6 of the polymer represents a hydrogen atom and that at least two of the groups G of the polymer are a group other than:

- 6) n is an integer ranging from 2 to 500 and m is an integer ranging from 1 to 1,000.
- 3. (Previously Presented) Composition according to Claim 2, in which Y represents a group selected from the group consisting of:
 - a) linear C_1 to C_{20} alkylene groups,
- b) C_{30} to C_{50} branched alkylene groups possibly comprising rings and unconjugated unsaturations,
 - c) C₅-C₆ cycloalkylene groups,

- d) phenylene groups optionally substituted with one or more C_1 to C_{40} alkyl groups,
- e) C₁ to C₂₀ alkylene groups comprising from 1 to 5 amide groups,
- f) C_1 to C_{20} alkylene groups comprising one or more substituents chosen from hydroxyl, C_3 to C_8 cycloalkane, C_1 to C_3 hydroxyalkyl and C_1 to C_6 alkylamine groups,
 - g) polyorganosiloxane chains of formula:

in which R¹, R², R³, R⁴, T and m are as defined above,

h) polyorganosiloxane chains of formula:

in which R¹, R², R³, R⁴, T and m are as defined above.

4. (Previously Presented) Composition according to Claim 1, in which the structuring polymer comprises at least one moiety corresponding to formula (II):

in which

- R^1 and R^3 , which may be identical or different, which may be identical or different, represent a group chosen from:

- linear, branched or cyclic, saturated or unsaturated, C₁ to C₄₀ hydrocarbon-based groups, possibly containing in their chain one or more oxygen, sulphur and/or nitrogen atoms, and optionally being partially or totally substituted with fluorine atoms,
- C_6 to C_{10} aryl groups, optionally substituted with one or more C_1 to C_4 alkyl groups,
- polyorganosiloxane chains possibly containing one or more oxygen, sulphur and/or nitrogen atoms;
- R^7 represents a group as defined above for R^1 and R^3 , or represents a group of formula -X-G- R^9 in which X represents a linear or branched C_1 to C_{30} alkylenediyl group, optionally containing in its chain one or more oxygen and/or nitrogen atoms and G represents divalent groups chosen from:

$$\begin{array}{c} - C & - O & - C & - N(R^6) & - C & - C & - N(R^6) & - C & - C & - N(R^6) & - C & - C & - C & - N(R^6) & - C & -$$

in which R^6 represents a hydrogen atom or a linear or branched C_1 to C_{20} alkyl group, on condition that at least 50% of the groups R^6 of the polymer represents a hydrogen atom and that at least two of the groups G of the polymer are a group other than:

and R^9 represents a hydrogen atom or a linear, branched or cyclic, saturated or unsaturated, C_1 to C_{50} hydrocarbon-based group optionally comprising in its chain one or more atoms chosen from O, S and N, optionally substituted with one or more fluorine atoms and/or one or more hydroxyl groups, or a phenyl group optionally substituted with one or more C_1 to C_4 alkyl groups,

- R^8 represents a group of formula -X-G- R^9 in which X, G and R^9 are as defined above,
 - m₁ is an integer ranging from 1 to 998, and
 - m₂ is an integer ranging from 2 to 500.
- 5. (Previously Presented) Composition according to Claim 1, in which the polymer comprises at least one moiety of formula (III) or (IV):

$$\begin{bmatrix}
C & X & \begin{bmatrix}
R^1 \\
SiO
\end{bmatrix} & Si & X & C & NH & Y & NH
\end{bmatrix}$$

$$\begin{bmatrix}
R^2 \\
SiO
\end{bmatrix} & R^4 & O$$
(III)

or

in which R¹, R², R³, and R⁴may be identical or different, represent a group chosen from:

- linear, branched or cyclic, saturated or unsaturated, C₁ to C₄₀ hydrocarbon-based groups, possibly containing in their chain one or more oxygen, sulphur and/or nitrogen atoms, and optionally being partially or totally substituted with fluorine atoms,
- C_6 to C_{10} aryl groups, optionally substituted with one or more C_1 to C_4 alkyl groups,
- polyorganosiloxane chains possibly containing one or more oxygen, sulphur and/or nitrogen atoms;
- 2) the groups X, which may be identical or different, represent a linear or branched C_1 to C_{30} alkylenediyl group, optionally containing in its chain one or more oxygen and/or nitrogen atoms;
- 3) Y is a saturated or unsaturated, C₁ to C₅₀ linear or branched divalent alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene group, possibly optionally comprising one or more oxygen, sulphur and/or nitrogen atoms, and/or optionally bearing as substituent one of the following atoms or groups of atoms:

fluorine, hydroxyl, C_3 to C_8 cycloalkyl, C_1 to C_{40} alkyl, C_5 to C_{10} aryl, phenyl optionally substituted with 1 to 3 C_1 to C_3 alkyl groups, C_1 to C_3 hydroxyalkyl and C_1 to C_6 aminoalkyl, or

4) Y represents a group corresponding to the formula:

in which

- T represents a linear or branched, saturated or unsaturated, C_3 to C_{24} trivalent or tetravalent hydrocarbon-based group optionally substituted with a polyorganosiloxane chain, and optionally containing one or more atoms chosen from O, N and S, or T represents a trivalent atom chosen from N, P and Al, and
- R⁵ represents a linear or branched C₁ to C₅₀ alkyl group or a polyorganosiloxane chain, optionally comprising one or more ester, amide, urethane, thiocarbamate, urea, urethane, thiourea and/or sulphonamide groups, which may possibly optionally be linked to another chain of the polymer;

n is an integer ranging from 2 to 500; and m is an integer ranging from 1 to 1,000.

- 6. (Withdrawn) Composition according to Claim 2, in which X and/or Y represent an alkylene group containing in its alkylene portion at least one of the following elements:
 - 1°) 1 to 5 amide, urea or carbamate groups,
 - 2°) a C₅ or C₆ cycloalkyl group, and
- 3°) a phenylene group optionally substituted with 1 to 3 identical or different C₁ to C₃ alkyl groups, and/or substituted with at least one element chosen from the group consisting of:
 - a hydroxyl group,
 - a C₃ to C₈ cycloalkyl group,
 - one to three C_1 to C_{40} alkyl groups,
 - a phenyl group optionally substituted with one to three C₁ to C₃ alkyl groups,
 - a C₁ to C₃ hydroxyalkyl group, and
 - a C₁ to C₆ aminoalkyl group.
 - 7. (Withdrawn) Composition according to Claim 2, in which Y represents:

in which R⁵ represents a polyorganosiloxane chain and T represents a group of formula:

in which a, b and c are, independently, integers ranging from 1 to 10, and R^{10} is a hydrogen atom or a group such as those defined for R^1 , R^2 , R^3 and R^4 , in Claim 2.

8. (Previously Presented) Composition according to Claim 2, in which R^1 , R^2 , R^3 and R^4 represent, independently, a linear or branched C_1 to C_{40} alkyl group, a polyorganosiloxane chain or a phenyl group optionally substituted with one to three methyl or ethyl groups.

9. (Withdrawn) Composition according to Claim 2, in which the structuring polymer comprises at least one moiety of formula:

in which X^1 and X^2 , which may be identical or different, have the meaning given for X in Claim 2, n, Y and T are as defined in Claim 2, R^{11} to R^{18} are groups chosen from the same group as R^1 to R^4 of Claim 2, m_1 and m_2 are numbers in the range from 1 to 1,000, and p is an integer ranging from 2 to 500.

- 10. (Withdrawn) Composition according to Claim 9, in which:
 - p is in the range from 1 to 25,
 - R¹¹ to R¹⁸ are methyl groups,
 - T corresponds to one of the following formulae:

in which R^{19} is a hydrogen atom or a group chosen from the groups defined for R^1 to R^4 , and R^{20} , R^{21} and R^{22} are, independently, linear or branched alkylene groups:

- m₁ and m₂ are in the range from 15 to 500,
- X¹ and X² represent -(CH₂)₁₀-, and
- Y represents -CH₂-.
- 11. (Withdrawn) Composition according to Claim 2, in which the polymer comprises at least one moiety corresponding to the following formula:

$$\begin{bmatrix}
R^{1} \\
Si \\
Si
\end{bmatrix} = O \begin{bmatrix}
Si \\
Si
\end{bmatrix} = X = U = C = NH = Y = NH = C = U = X$$

$$\begin{bmatrix}
C \\
NH
\end{bmatrix} = O \begin{bmatrix}
C \\
NH
\end{bmatrix} = O$$

in which R¹, R², R³, R⁴, X, Y, m and n have the meanings given above for formula (I) in Claim 2, and U represents -O- or -NH-, such that:

corresponds to a urethane or urea group,

or

Y represents a C_5 to C_{12} cycloaliphatic or aromatic group that may be substituted with a C_1 to C_{15} alkyl group or a C_5 to C_{10} aryl group, for example a radical chosen from the methylene-4,4-biscyclohexyl radical, the radical derived from isophorone diisocyanate, 2,4-and 2,6-tolylenes, 1,5-naphthylene, p-phenylene and 4,4'-biphenylenemethane

or

Y represents a linear or branched C_1 to C_{40} alkylene radical or a C_4 to C_{12} cycloalkylene radical,

or

Y represents a polyurethane or polyurea block corresponding to the condensation of several diisocyanate molecules with one or more coupling agents of the diol or diamine type, corresponding to the formula:

in which B¹ is a group chosen from the groups given above for Y, U is -O- or -NH- and B² is chosen from:

linear or branched C_1 to C_{40} alkylene groups, which can optionally bear an ionizable group such as a carboxylic acid or sulphonic acid group, or a neutralizable or quaternizable tertiary amine group,

 C_5 to C_{12} cycloalkylene groups, optionally bearing alkyl substituents, for example one to three methyl or ethyl groups, or alkylene,

phenylene groups that may optionally bear C_1 to C_3 alkyl substituents, and groups of formula:

$$R^5$$
 — T

in which T is a hydrocarbon-based trivalent radical possibly containing one or more hetero atoms such as oxygen, sulphur and nitrogen and R^5 is a polyorganosiloxane chain or a linear or branched C_1 to C_{50} alkyl chain.

12. (Withdrawn) Composition according to Claim 1, in which the structuring polymer comprises at least one moiety of formula:

in which R¹, R², R³, m₁ and m₂ have the meanings given above for formula (I),

- U represents O or NH,
- R^{23} represents a C_1 to C_{40} alkylene group, optionally comprising one or more hetero atoms chosen from O and N, or a phenylene group, and
- R^{24} is chosen from linear, branched or cyclic, saturated or unsaturated C_1 to C_{50} alkyl groups, and phenyl groups optionally substituted with one to three C_1 to C_3 alkyl groups.
- 13. (Withdrawn) Composition according to Claim 10, in which the structuring polymer comprises at least one moiety of formula:

in which X¹ and X², which are identical or different, have the meaning given for X in Claim 10, n, Y and T are as defined in Claim 10, R¹¹ to R¹⁸ are groups chosen from the same group

as R^1 to R^4 of Claim 10, m_1 and m_2 are numbers in the range from 1 to 1,000, and p is an integer ranging from 2 to 500.

- 14. (Previously Presented) Composition according to Claim 1, in which the structuring polymer comprises a hydrocarbon-based moiety comprising two groups capable of establishing hydrogen interactions, chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, urethane, thiourea, oxamido, guanamido and biguanidino groups, and combinations thereof.
- 15. (Previously Presented) Composition according to Claim 2, in which the structuring polymer comprises a hydrocarbon-based moiety comprising two groups capable of establishing hydrogen interactions, chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, urethane, thiourea, oxamido, guanamido and biguanidino groups, and combinations thereof.
- 16. (Original) Composition according to claim1, in which the at least one structuring polymer represents from 0.5% to 80% relative to the total weight of the composition.
- 17. (Original) Composition according to claim 1, wherein said at least one structuring polymer has a softening point greater than 50°C.
- 18. (Original) Composition according to Claim 1, wherein said at least one structuring polymer has a softening point of less than 150°C.
- 19. (Original) Composition according to Claim 1, wherein said at least one structuring polymer has a softening point ranging from 70°C to 130°C.
- 20. (Original) Composition according to Claim 1, wherein said at least one structuring polymer has a weight-average molecular weight ranging from 500 to 300,000.
- 21. (Original) Composition according to Claim 1, wherein said composition has a hardness ranging from 30 to 300 gf.

- 22. (Original) Composition according to Claim 1, wherein said composition has a hardness ranging 30 to 200 gf.
- 23. (Original) Composition according to Claim 21, wherein said at least one oil is a hydrocarbon chosen from linear and branched, volatile and non-volatile hydrocarbons of synthetic and mineral origin.
- 24. (Original) Composition according to Claim 1, wherein said composition is in the form of a rigid gel.
- 25. (Original) Composition according to Claim 1, wherein said composition is anhydrous.
- 26. (Original) The composition according to Claim 25, wherein said structuring polymer has the following formula:

$$-\begin{bmatrix} O & O & O \\ \parallel & \parallel & \parallel \\ (CH_2)_x & CN (CH_2)_x & NC (CH_2)_x \end{bmatrix}_y \begin{bmatrix} CH_3 \\ NC (CH_2)_x \end{bmatrix}_y \begin{bmatrix} CH_3 \\ SiO \\ CH_3 \end{bmatrix}_z$$

where x, which may be the same or different, is from 1-100 and the ratio y/z is from 1-10.

- 27. (Withdrawn) The composition according to Claim 26, wherein said oil is a dimethicone.
- 28. (Withdrawn) The composition according to Claim 26, wherein said oil is a silicone oil.
- 29. (Withdrawn) The composition according to Claim 27, wherein said composition is in the form of a rigidified or solid gel that is reversible thermally and/or upon the application of shear.

- 30. (Withdrawn) The composition according to Claim 28, wherein said composition is in the form of a rigidified or solid gel that is reversible thermally and/or upon the application of shear.
 - 31. (Original) The composition according to Claim 1, further comprising a colorant.
 - 32. (Original) The composition of Claim 1, further comprising a wax.
- 33. (Withdrawn) The composition according to Claim 1, further comprising polyethylene.
- 34. (Withdrawn) A method comprising applying to keratin material the composition of Claim 1.
- 35. (Original) The composition according to Claim 1, wherein said composition is in the form of an emulsion.
- 36. (New) The composition according to Claim 1, wherein the silicone elastomer particles are functionalized with fluoroalkyl groups.
- 37. (New) The composition according to Claim 1, wherein the silicone elastomer particles are functionalized with phenyl groups.