Resumen Teórico: Variables Aleatorias

Profesor: Reinaldo B. Arellano-Valle Departamento de Estadística, PUC

1. Variables Aleatorias

Definición Informal y Formal

Una variable aleatoria es una función real valorada que asigna a cada resultado $\omega \in \Omega$ un número en \mathbb{R} .

Definición 1.1 (Variable aleatoria). Sea (Ω, A, P) un espacio de probabilidad. Una función

$$X:\Omega\to\mathbb{R}$$

se dice variable aleatoria si, para todo $x \in \mathbb{R}$, el conjunto

$$\{\omega \in \Omega : X(\omega) \le x\}$$

pertenece a A; es decir, la imagen inversa de los intervalos del tipo $(-\infty, x]$ es un evento.

1.2. Distribución de Probabilidad Inducida

La variable aleatoria induce una medida de probabilidad sobre $\mathbb R$ mediante la asignación

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), \quad \forall B \in \mathcal{B},$$

donde \mathcal{B} es la σ -álgebra de Borel en \mathbb{R} .

Definición 1.2 (Distribución de probabilidad). La distribución de probabilidad de una variable aleatoria X es la función

$$P_X : \mathcal{B} \to [0, 1], \quad P_X(B) = P(X \in B),$$

lo que convierte a $(\mathbb{R}, \mathcal{B}, P_X)$ en un modelo de probabilidad inducido por X.

2. Función de Distribución Acumulativa (FDA)

Definición 2.1 (Función de distribución acumulativa). La función de distribución acumulada (fda) de una variable aleatoria X se define por

$$F_X(x) = P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}), \quad \forall x \in \mathbb{R}.$$

La FDA determina la distribución de X y satisface las siguientes propiedades:

Teorema 2.1 (Propiedades de la FDA). Sea F_X la fda de X. Entonces:

F1: Límites extremos: $\lim_{x \to -\infty} F_X(x) = 0$ $y \lim_{x \to \infty} F_X(x) = 1$.

F2: No-decreciente: Si $x \le y$ entonces $F_X(x) \le F_X(y)$. F3: Continua por la derecha: $\lim_{h\downarrow 0} F_X(x+h) = F_X(x)$ para cada x.

• F1: Sea $A_n = \{X \leq n\}$; como $\bigcup_{n=1}^{\infty} A_n = \Omega$ se tiene Esbozo de demostración.

$$\lim_{n \to \infty} P(A_n) = P(\Omega) = 1.$$

De forma similar, para $B_n = \{X \le -n\}$ se obtiene $\lim_{n \to \infty} P(B_n) = 0$.

■ F2: Si $x \leq y$, entonces $\{X \leq x\} \subseteq \{X \leq y\}$ y por la monotonía de P,

$$F_X(x) = P(X \le x) \le P(X \le y) = F_X(y).$$

■ F3: Para h > 0 pequeño, se observa que $F_X(x+h) - F_X(x) = P(x < X \le x+h)$ y, al disminuir h, esta diferencia converge a cero por la propiedad de continuidad de la medida.

Corolario 2.1 (Relación entre saltos y probabilidades puntuales). Para cualquier $a \in \mathbb{R}$ se tiene

$$P(X = a) = F_X(a) - \lim_{h \downarrow 0} F_X(a - h),$$

es decir, el tamaño del salto en a es igual a P(X = a).

3. Funciones de Masa y de Densidad de Probabilidad

Cuando X es discreta se define la función de masa de probabilidad.

Definición 3.1 (Función de masa de probabilidad (fmp)). Sea X discreta. La función de masa de probabilidad se define como

$$f_X(x) = P(X = x), \quad \forall x \in \mathbb{R}.$$

Cuando X es continua se utiliza la función de densidad de probabilidad (fdp).

Definición 3.2 (Función de densidad de probabilidad (fdp)). Se dice que $f_X : \mathbb{R} \to [0, \infty)$ es la función de densidad de X si

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt, \quad \forall x \in \mathbb{R}.$$

Teorema 3.1 (Caracterización de fdp y fmp). Una función $f_X(x)$ es la fdp (o fmp) de una variable aleatoria X si y sólo si:

- a) $f_X(x) \ge 0$ para todo $x \in \mathbb{R}$;
- b) $\int_{-\infty}^{\infty} f_X(x) dx = 1$ en el caso continuo, o $\sum_x f_X(x) = 1$ en el caso discreto.

Esbozo de demostración. Si f_X es fdp (o fmp) se verifica de inmediato que $F_X(x)$ se obtiene integrando (o sumando) f_X y, evaluando en $+\infty$, se tiene la normalización. La implicación inversa se obtiene diferenciando F_X en el caso continuo (o notando la representación puntual en el caso discreto).

4. Igual Distribución de Variables Aleatorias

Definición 4.1 (Igual distribución). Se dice que dos variables aleatorias X e Y tienen la misma distribución si, para todo $B \in \mathcal{B}$,

$$P(X \in B) = P(Y \in B).$$

Teorema 4.1. Las siguientes afirmaciones son equivalentes:

- (I) X e Y tienen la misma distribución;
- (II) $F_X(x) = F_Y(x)$ para todo $x \in \mathbb{R}$.

Esbozo de demostración. Si X e Y tienen la misma distribución, entonces para el intervalo $(-\infty, x]$ se tiene

$$F_X(x) = P(X \le x) = P(Y \le x) = F_Y(x).$$

La implicación inversa se obtiene utilizando que la familia de intervalos $(-\infty, x]$ genera la σ -álgebra de Borel.

Notas Finales

- Para describir completamente la distribución de X es suficiente conocer su fda F_X , ya que ésta determina la medida P_X en \mathbb{R} .
- En el caso discreto el recorrido de X es un conjunto discreto; en el continuo se tiene que P(X = x) = 0 para cualquier x.

Referencias

- Blanco, L., Arunachalam, V. y Dharmaraja, S. (2012). Introduction to Probability and Stochastic Processes. John Wiley.
- Casella, G. y Berger, R.L. (2002). Statistical Inference, Second Edition. Duxbury.