Übungsblatt 8 zur Linearen Algebra I

Aufgabe 24. Anwendung des Austauschlemmas

Man mache im \mathbb{R} -Vektorraum \mathbb{R}^4 durch zweimalige Anwendung des Austauschlemmas aus der Standardbasis (e_1,e_2,e_3,e_4) eine Basis von \mathbb{R}^4 , deren erster Basisvektor $v_1=(2,-1,3,-2)$ und deren zweiter Basisvektor $v_2=(3,2,-6,1)$ ist.

Aufgabe 25. Zur Austauschbarkeit von Vektoren

Kann man im \mathbb{R} -Vektorraum \mathbb{R}^4 zwei der Vektoren (1,1,0,0),(1,0,0,1),(0,1,1,0),(0,0,1,1) durch (2,-3,-2,3),(1,-1,1,3) ersetzen, so dass die sich dadurch ergebenden vier Vektoren linear unabhängig sind? Man begründe die Antwort.

Aufgabe 26. Eine interessante \mathbb{R} -lineare Abbildung in \mathbb{R}^2

Es sei im \mathbb{R} -Vektorraum \mathbb{R}^2 die Basis (a_1,a_2) mit $a_1=(1,0)$ und $a_2=(1,1)$ gegeben. Die \mathbb{R} -lineare Abbildung $A:\mathbb{R}^2\to\mathbb{R}^2$ wird durch lineare Fortsetzung von

$$Aa_1 = a_2$$
 und $Aa_2 = a_1$ (Aa_1 bzw. Aa_2 Kurzschreibweise für $A(a_1)$ bzw. $A(a_2)$)

definiert.

- a) Man bestimme die Untervektorräume U_1,U_2 von \mathbb{R}^2 , für die gilt: Ax=x für alle $x\in U_1$, Ax=-x für alle $x\in U_2$. Man skizziere diese in der Ebene \mathbb{R}^2 .
- b) Man gebe an, wie man für $x\in\mathbb{R}^2$ das Bild $Ax\in\mathbb{R}^2$ konstruiert. Man skizziere geeignete Parallelogramme.
- c) Offensichtlich gilt $A^2 = id$. Ist A geometrisch eine Spiegelung? (A^2 steht kurz für $A \circ A$ und id ist die identische Abbildung $\mathbb{R}^2 \to \mathbb{R}^2$, $x \mapsto x$)

Aufgabe 27. Projektionen als wichtige \mathbb{R} -lineare Abbildungen in \mathbb{R}^2

Es sei im \mathbb{R} -Vektorraum \mathbb{R}^2 die Basis (a_1,a_2) wie in **Aufgabe 26** gegeben. Die \mathbb{R} -lineare Abbildung $A:\mathbb{R}^2\to\mathbb{R}^2$ wird durch lineare Fortsetzung von

$$Aa_1 = a_1 \text{ und } Aa_2 = 0$$

definiert.

- a) Man bestimme im(A) und ker(A) und skizziere die Untervektorräume in \mathbb{R}^2 .
- b) Man gebe an, wie man für $x \in \mathbb{R}^2$ das Bild $Ax \in \mathbb{R}^2$ konstruiert. Man bestätige $A^2 = A$ und interpretiere die Aussage "A projiziert x auf im(A) längs ker(A)".