Revised Scaffolded Questions for Algebra 2 Assessment (Questions 9–12)

This document provides revised scaffolded questions to help students prepare for questions 9 through 12 of the enVision Algebra 2 Progress Monitoring Assessment Form C. Each question includes four scaffolded steps to build understanding from basic concepts to the level required by the assessment, with clear guidance for concept-naive students.

Question 9: Polynomial Long Division

The original question asks to divide $x^3 - 4x^2 + 6x - 2$ by x - 1 and complete the quotient. The following questions build understanding of polynomial division.

- 9.1 **Basic Polynomial Division**: Divide each term by the divisor, matching powers of x:
 - a) $\frac{8x^3}{2x} =$ _____
 - b) $\frac{10x^4+4x^2}{2x^2} = \frac{10x^4}{2x^2} + \frac{4x^2}{2x^2} = \underline{\qquad} + \underline{\qquad}$
 - c) Why divide term by term?
- 9.2 Simple Long Division: Divide $x^2 + 4x + 3$ by x + 1:
 - a) $x^2 \div x =$ _____, multiply: x(x+1) =_____, subtract: $(x^2 + 4x + 3) (x^2 + x) =$ _____
 - b) Continue: $3x \div x =$ _____, multiply, subtract to get remainder 0.
 - c) Result: $x^2 + 4x + 3 = (x+1)(\underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$
- 9.3 **Synthetic Division**: Use synthetic division for $x^2 + 5x + 6$ by x 2:
 - a) Divisor x-2, so use 2. Coefficients: 1, 5, 6. Setup:

- b) Quotient: _____, Remainder: _____
- c) Why is synthetic division faster for linear divisors?
- 9.4 **Applying to the Original Problem**: Divide $x^3 4x^2 + 6x 2$ by x 1 using synthetic division:
 - a) Coefficients: _____, ____, ____. Divisor: x-1, so use _____.
 - b) Perform synthetic division:

c) Quotient: _____, Remainder: _____. Write as: $x^3 - 4x^2 + 6x - 2 = (x - 1)(____) + ____.$

Question 10: Solving Literal Equations

The original question asks to solve N = S(P - V) - F for the variable cost per unit V. The following questions build understanding of solving literal equations.

- 10.1 **Simple Literal Equations**: Solve for the indicated variable, isolating it like solving for x:
 - a) A = lw, for $l: l = _____$
 - b) P = 2l + 2w, for $w: w = _____$
 - c) Why isolate variables? _____
- 10.2 Equations with Grouping: Solve:
 - a) y = m(x + b), for $m: m = \frac{y}{x+b}$
 - b) $C = \pi d + k$, for $d: d = _____$
- 10.3 Business Context: Solve profit-related formulas:
 - a) P = R C, for $C: C = _____$
 - b) P = S(R C), for R: P = SR SC, so $R = ____$
- 10.4 Applying to the Original Problem: Given N = S(P V) F, solve for V:
 - a) Isolate the term with V: N + F = S(P V)
 - b) Divide: $\frac{N+F}{S} = P V$
 - c) Solve: $V = \underline{\hspace{1cm}}$

Question 11: Inverse Functions

The original question asks for the inverse of $f(x) = \sqrt{x-10}$, representing years as a function of profits. The following questions build understanding of inverse functions.

- 11.1 **Inverse Function Basics**: If f(a) = b, then $f^{-1}(b) = a$. The inverse swaps x and y-coordinates:
 - a) If f(4) = 9, then $f^{-1}(9) =$ _____
 - b) If $f^{-1}(2) = 5$, then f(5) =_____
 - c) Why swap x and y?
- 11.2 **Linear Inverses**: Find the inverse of f(x) = 2x + 3:

- a) Set y = 2x + 3, switch: x = 2y + 3
- b) Solve: x 3 = 2y, so $y = _____$
- c) Inverse: $f^{-1}(x) =$ _____
- 11.3 Square Root Inverses: Find the inverse of $f(x) = \sqrt{x-4}$, $x \ge 4$:
 - a) Set $y = \sqrt{x-4}$, switch: $x = \sqrt{y-4}$
 - b) Solve: Square both sides: $x^2 = y 4$, so y =_____
 - c) Inverse: $f^{-1}(x) = x^2 + 4$, for $x \ge 0$ (since $y \ge 0$). Why the restriction?
- 11.4 **Applying to the Original Problem**: For $f(x) = \sqrt{x-10}$, representing profit after x years:
 - a) Find inverse: Set $y = \sqrt{x-10}$, switch: $x = \sqrt{y-10}$, solve: $y = \underline{\hspace{1cm}}$
 - b) Inverse: $f^{-1}(x) = \underline{\hspace{1cm}}$, for $x \ge 0$. What does $f^{-1}(x)$ represent?
 - c) Compare to choices: $(x-10)^2$, x^2+10 , with domains $x\geq 0$ or $x\geq -10$.

Question 12: Average Rate of Change

The original question asks for the average rate of change of $f(x) = -2x^2 + 5$ over $-3.5 \le x \le 0$. The following questions build understanding of average rate of change.

- 12.1 Basic Average Rate of Change: The average rate of change is the slope of the secant line: $\frac{f(b)-f(a)}{b-a}$. For f(x)=3x+1, find from x=1 to x=3:
 - a) $f(1) = \underline{\hspace{1cm}}, f(3) = \underline{\hspace{1cm}}$
 - b) Rate: $\frac{f(3)-f(1)}{3-1} =$ _____
- 12.2 Quadratic Functions: For $f(x) = -x^2 + 2$, find from x = -1 to x = 1:
 - a) $f(-1) = \underline{\hspace{1cm}}, f(1) = \underline{\hspace{1cm}}$
 - b) Rate: $\frac{f(1)-f(-1)}{1-(-1)} =$ _____
- 12.3 Negative and Decimal Intervals: For $f(x) = -x^2 + 4$, find from x = -2.5 to x = 0:
 - a) $f(-2.5) = -(-2.5)^2 + 4 =$
 - b) f(0) =_____
 - c) Rate: $\frac{f(0)-f(-2.5)}{0-(-2.5)} =$ _____
- 12.4 Applying to the Original Problem: For $f(x) = -2x^2 + 5$, find from x = -3.5 to x = 0:
 - a) $f(-3.5) = -2(-3.5)^2 + 5 =$

- b) f(0) =_____
- c) Rate: $\frac{f(0)-f(-3.5)}{0-(-3.5)} =$ _____. Compare to choices: 19.5, 7, -7, -19.5.