Machine Learning

By Ghazal Lalooha

Artificial Neural Networks Training

Neural Networks (classification)

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Total number of layers in the neural network = L

Number of units (without considering bias) in the layer $I = S_1$

Cost Function

Logistic regression:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Neural network:

$$h_{\Theta}(x) \in \mathbb{R}^{K}$$
 $(h_{\Theta}(x))_{i} = i^{th} output$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(h_{\theta}(x^{(i)}) \right)_k + \left(1 - y_k^{(i)} \right) \log \left(1 - \left(h_{\theta}(x^{(i)}) \right)_k \right) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_{l+1}} \left(\Theta_{ji}^{(l)} \right)^2$$

Back propagation algorithm

Computing gradient

Cost function:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(h_{\theta}(x^{(i)}) \right)_k + \left(1 - y_k^{(i)} \right) \log \left(1 - \left(h_{\theta}(x^{(i)}) \right)_k \right) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_l+1} \left(\Theta_{ji}^{(l)} \right)^2$$

Goal:

$$\min_{\Theta} J(\Theta)$$

Quantities which should be computed:

$$J(\Theta) \qquad \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Computing gradient

Having a training sample (x,y)

$$a^{(1)} = x$$
 Forward propagation
$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)}) \quad \left(\text{add } a_0^{(2)}\right)$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$a^{(3)} = g(z^{(3)}) \quad \left(\text{add } a_0^{(3)}\right)$$

$$z^{(4)} = \Theta^{(3)}a^{(3)}$$

$$a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

Computing gradient: Back propagation algorithm

The error of node j in the layer I = $\delta_j^{(l)}$

Error for output units: (l = 4)

$$\delta^{(4)} = (y - a^{(4)}) \times g'(z^{(4)})$$

Error for hidden units: (l = 2,3)

$$\delta^{(3)} = (\Theta^{(3)})^T \delta^{(4)} \times g'(z^{(3)})$$

$$\delta^{(2)} = (\Theta^{(2)})^T \delta^{(3)} \times g'(z^{(2)})$$

$$g'(z^{(3)}) = a^{(3)} \times (1 - a^{(3)})$$

$$g'(z^{(2)}) = a^{(2)} \times (1 - a^{(2)})$$

Back propagation algorithm

Training set:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

$$\begin{split} &\text{Set } \Delta_{ij}^{(l)} = 0 \text{ (for all } l, i.j). \\ &\text{For } i = 1 \text{ to } m \\ &\text{Set } a^{(1)} = x^{(i)} \\ &\text{Perform forward propagation to compute } a^{(l)} \text{ for } l = 2,3,\dots,L \\ &\text{Using } y^{(i)}, \text{ compute } \delta^{(L)} = a^{(L)} - y^{(i)} \\ &\text{Compute } \delta^{(L-1)}, \delta^{(L-2)}, \dots, \delta^{(2)} \\ &\Delta_{ij}^{(l)} \coloneqq \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)} \\ &D_{ij}^{(l)} \coloneqq \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} \quad \text{if } j \neq 0 \\ &D_{ij}^{(l)} \coloneqq \frac{1}{m} \Delta_{ij}^{(l)} \qquad \text{if } j = 0 \\ &\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} \end{split}$$

Back propagation algorithm: visual definition

Forward propagation

Forward propagation

Back propagation

Back propagation

Back propagation

Points about BP implementation

Advanced optimization

```
function [jVal, gradient] = costFunction(theta)  \in \mathbb{R}^{n+1}   \in \mathbb{R}^{n+1}  optTheta = fminunc(@costFunction, initialTheta, options);
```

- Parameters in a 4-layer network (2 hidden layers):
 - weight matrices (theta1, theta2, theta3)
 - Weight change matrices (D1, D2, D3)
- To use advanced optimization methods, all three matrices must be converted into a vector.

Example

```
\Theta^{(1)}
                                                                              \Theta^{(2)}
                                                                                       \Theta(3)
s_1 = 10 s_2 = 10 s_3 = 10 s_4 = 1
\Theta^{(1)} \in \mathbb{R}^{10 \times 11} \Theta^{(2)} \in \mathbb{R}^{10 \times 11} \Theta^{(3)} \in \mathbb{R}^{1 \times 11}
D^{(1)} \in \mathbb{R}^{10 \times 11} D^{(2)} \in \mathbb{R}^{10 \times 11} D^{(3)} \in \mathbb{R}^{1 \times 11}
                                                                                Converting matrices to
thetaVec = [ Theta1(:); Theta2(:); Theta3(:) ];
                                                                                      vector
DVec = [D1(:) ; D2(:) ; D3(:)];
                                                                                Converting vectors to
Theta1 = reshape(thetaVec(1:110), 10, 11);
                                                                                      matrix
Theta2 = reshape(thetaVec(111:220), 10, 11);
Theta3 = reshape(thetaVec(221:231), 1, 11);
```

Learning algorithm

- Having the initial parameters of theta1, theta2 and theta3
 - Convert these matrices to the vector initialTheta so that you can pass it as an argument to the following function:

```
fminunc(@costFunction, initialTheta, options)
```

Then write cost function in this way:

```
function [jVal, gradientVec] = costFunction(thetaVec)
```

- Retrieve the theta1, theta2, and theta3 matrices from the thetaVec vector.
- Calculate matrices D1, D2, D3 using forward propagation $j(\theta)$ and backpropagation.
- Convert matrices D1, D2, D3 to vector gradientVec.

Check the gradient

 How can we be sure that we have correctly implemented the error propagation algorithm?

Estimating the number of gradients (univariate cost function)

$$\frac{d}{d\theta}J(\theta) = \frac{J(\theta + \epsilon) - J(\theta - \epsilon)}{2\epsilon}$$

Estimating the number of gradients (univariate cost function)


```
gradApprox = (J(theta + EPSILON) - J(theta - EPSLION)) / (2 * EPSILON);
```

Estimating the number of gradients (univariate cost function)

$$\theta \in \mathbb{R}^n$$
 $\theta = \theta_1, \theta_2, \theta_3, \dots, \theta_n$ $(\theta \leftarrow \Theta^{(1)}, \Theta^{(2)}, \Theta^{(3)})$

$$\frac{d}{d\theta_1}J(\theta) \approx \frac{J(\theta_1 + \epsilon, \theta_2, \theta_3, \dots, \theta_n) - J(\theta_1 - \epsilon, \theta_2, \theta_3, \dots, \theta_n)}{2\epsilon}$$

$$\frac{d}{d\theta_2}J(\theta) \approx \frac{J(\theta_1, \theta_2 + \epsilon, \theta_3, \dots, \theta_n) - J(\theta_1, \theta_2 - \epsilon, \theta_3, \dots, \theta_n)}{2\epsilon}$$

$$\frac{d}{d\theta_n}J(\theta) \approx \frac{J(\theta_1,\theta_2,\theta_3,\dots,\frac{\theta_n+\epsilon})-J(\theta_1,\theta_2,\theta_3,\dots,\frac{\theta_n-\epsilon})}{2\epsilon}$$

Implementation: Numerical Calculation of gradient

```
for i = 1:n,
    thetaPlus = theta;
    thetaPlus(i) = thetaPlus(i) + EPSILON;
    thetaMinus = theta;
    thetaMinus(i) = thetaMinus(i) - EPSILON;
    gradApprox(i) = (J(thetaPlus) - J(thetaMinus)) / (2 * EPSILON);
end;
```

Make sure: DVec ≈ gradApprox

Implementation points:

- Implement the error backpropagation algorithm to calculate the DVec vector.
- Implement the gradient number calculation function to calculate gradApprox.
- Make sure these two vectors contain the same values.
- Disable the gradient check function.
- Use backpropagation algorithm to train neural network.

• Before starting the neural network training process, make sure you disable the gradient check function, otherwise your program will run very slowly.

Conclusion

A neural network training

 Choosing an architecture for the network (pattern of connections between neurons)

- Determining the number of layers and the number of neurons in each layer
 - Number of input units: equal to the number of features
 - Number of output units: equal to the number of classes
 - Number of hidden layers: It is usually equal to one, but if there is more than one hidden layer, it is better to have the same number of neurons in these hidden layers.

A neural network implementation

- Random assignment to weights
- Implement a forward propagation step to calculate the output of the network for each input such as $x^{(i)}$
- Implement a function to calculate the value of the cost function $j(\theta)$
- Implementation of error backpropagation stage to calculate partial differentials

```
for i = 1 : m { perform\ forward\ propagation\ and\ backpropagation\ using\ example\ (\mathbf{x}^{(i)},\ \mathbf{y}^{(i)}) (Get activations \mathbf{a}^{(1)} and delta terms \delta^{(1)} for 1 = 2,..., L) compute\ \Delta^{(1)} = \Delta^{(1)} + \delta^{(1)}\ (\mathbf{a}^{(1)})^T } compute partial derivatives of J(\Theta) considering regularization term
```

A neural network implementation

- Check the gradient:
- Implementing a function in order to numerically calculate the values of the gradients and compare these values with the values calculated by the error back propagation algorithm.
- Disabling the function of checking gradients
- Optimization:
- Using the decreasing gradient method or one of the advanced optimization methods along with the error back propagation algorithm in order to try to minimize the cost function $J(\theta)$ as a function of theta parameters.
- Due to the "non-convexity" of the cost function, gradient descent or any of the advanced optimization methods may get stuck at local optima.

Example: Autonomous driving

Autonomous driving

