CSE 2331 Homework 1 Summer, 2014

- 1. Give the asymptotic complexity of each of the following functions in simplest terms. Your solution should have the form $\Theta(n^{\alpha})$ or $\Theta((\log_{\mu}(n))^{\beta})$ or $\Theta(n^{\alpha}(\log_{\mu}(n))^{\beta})$ or $\Theta(\gamma^{\delta n})$ or $\Theta(1)$ where $\alpha, \beta, \gamma, \delta, \mu$ are constants. (No need to give any justification or proof.)
 - (a) $f_a(n) = \log_3(2n+7) \times \log_4(5n+9) + \log_2(5n^4+3n^2+8);$
 - (b) $f_b(n) = 3\log_4(n^3 + 7n^2) + 9n^{0.3}$;
 - (c) $f_c(n) = 5\log_4(8n+3) + 9\log_6(5n+9)$;
 - (d) $f_d(n) = 6\log_{10}(n) + 3n + 2\sqrt{5n}$;
 - (e) $f_e(n) = 4n + 5n \log_3(6n^{0.4} + 3n^{0.3});$
 - (f) $f_f(n) = 3\log_3(4n^2 + 3n + 19) + 9\log_7(8n^4 + 2n);$
 - (g) $f_q(n) = 4^6 + 3^9 \times 2\log_3(5^8);$
 - (h) $f_h(n) = 5(2n+3)\log_3(n^4+16n^2+55)+4n+62;$
 - (i) $f_i(n) = (6\log_5(n^3+1)+3\log_3(n+9))\times(3\sqrt{6n+2}+2\log_6(2n^2+12));$
 - (j) $f_i(n) = \sqrt{5\log_3(n) + 7n + 26}$;
 - (k) $f_k(n) = 2\sqrt{3n^3 + 5n + 20}$;
 - (1) $f_l(n) = \sqrt{5(\log_4(n))^3 + 6n^2}$;
 - (m) $f_m(n) = 5n^{0.7} + 2n^{0.8}$;
 - (n) $f_n(n) = (2n^2 + n + 1) \times (4n^3 + 6n^2 + n + 13) \times (7n + 2);$
 - (o) $f_o(n) = 3^n + 6^n + 9^n$;
 - (p) $f_n(n) = 9 \times 5^{n+3} + 4 \times 5^{n+7}$;
 - (q) $f_q(n) = 5n^3 + 3^{n+5} + 5^{n+3}$;
 - (r) $f_r(n) = 3^{5n} + 3 \times 5^n$;
 - (s) $f_s(n) = 5 \times 5^{\log_5(3n^2 + 2n)}$:
 - (t) $f_t(n) = 6\log_3(8^n + n^8 + 8);$
- 2. Give an example of a function f(n) such that:
 - $f(n) \in O(n^2)$ and $f(n) \in \Omega(n \log_2(n))$ but $f(n) \notin \Theta(n^2)$ and $f(n) \notin \Theta(n \log_2(n))$.
- 3. Give an example of a function f(n) such that:
 - $f(n) \in O(n)$ and $f(n) \in \Omega(\sqrt{n})$ but $f(n) \notin \Theta(n)$ and $f(n) \notin \Theta(\sqrt{n})$.
- 4. Prove that $5\sqrt{5n^3+6n^2+7} \in \Theta(n^{1.5})$ using the definition of $\Theta(n^{1.5})$ as functions f(n) such that $c_1n^{1.5} \leq f(n) \leq c_2n^{1.5}$ for constants $c_1, c_2 \geq 0$ for all large n.
- 5. Let $f(n) = 3n(\log_4(7n+5))^3$ and $g(n) = 4n\log_3(n^2+2) \times 5\log_2(n^5+n^4)$. Prove that $f(n) \in \Omega(g(n))$ using $\lim_{n\to\infty} f(n)/g(n)$.