

January 1995 Revised February 2005

74ABT126

Quad Buffer with 3-STATE Outputs

General Description

The ABT126 contains four independent non-inverting buffers with 3-STATE outputs.

Features

- Non-inverting buffers
- Output sink capability of 64 mA, source capability of 32 m
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention

Ordering Code:

Order Number	Package Number	Package Description
74ABT126CSC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ABT126CSJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT126CMTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT126CMTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

Connection Diagram

Pin Descriptions

Pin Names	Descriptions			
A _n , B _n	Inputs			
O_n	Outputs			

Function Table

Inpu	Output	
An	B _n	O _n
Н	L	L
Н	Н	Н
L	Χ	Z

- H = HIGH Voltage Level L = LOW Voltage Level Z = HIGH Impedance

Absolute Maximum Ratings(Note 2)

-65°C to +150°C

Storage Temperature -55°C to +125°C Ambient Temperature under Bias

Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V

Input Voltage (Note 3) -0.5V to +7.0VInput Current (Note 3) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-Off State -0.5V to 5.5Vin the HIGH State –0.5V to $V_{\mbox{\footnotesize CC}}$

Current Applied to Output

twice the rated I_{OL} (mA) in LOW State (Max)

DC Latchup Source Current

(Across Comm Operating Range)

Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature -40°C to +85°C Supply Voltage +4.5V to +5.5V

Minimum Input Edge Rate ($\Delta V/\Delta t$)

Data Input 50 mV/ns **Enable Input** 100 mV/ns

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied.

-300 mA Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	2.5			V	Min	$I_{OH} = -3 \text{ mA}$
		2.0			V	Min	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage			0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current			1	μА	Max	V _{IN} = 2.7V (Note 4)
				1	po v	IVIAX	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakdown Test			7	μА	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current			-1	μА	Max	V _{IN} = 0.5V (Note 4)
				-1	·	IVIAX	$V_{IN} = 0.0V$
V_{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$, All Other Pin Grounded
l _{OZH}	Output Leakage Current			10	μΑ	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
l _{OZL}	Output Leakage Current			-10	μА	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
los	Output Short-Circuit Current	-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output HIGH Leakage Current			50	μА	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test			100	μА	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current			50	μА	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			15	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current			50	μА	Max	$\overline{OE}_n = V_{CC};$
							All Others at V _{CC} or Ground
ГССТ	Additional I _{CC} /Input Outputs Enabled			1.5	mA		$V_I = V_{CC} - 2.1V$
	Outputs 3-STATE			1.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
	Outputs 3-STATE			50	μА	IVIAX	Data Input V _I = V _{CC} - 2.1V
							All Others at V _{CC} or Ground
I _{CCD}	Dynamic I _{CC} No Load				mA/		Outputs Open
	(Note 4)			0.1	MHz	Max	$\overline{OE}_n = GND$, (Note 5)
							One Bit Toggling, 50% Duty Cycle

Note 4: Guaranteed, but not tested.

Note 5: For 8 bits toggling, $I_{CCD} < 0.8 \text{ mA/MHz}.$

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25$ °C $V_{CC} = +5V$ $C_L = 50$ pF			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} - 5.5\text{V}$ $C_L = 50 \text{ pF}$		Units	
		Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	1.0		4.4	1.0	4.4		
t _{PHL}	Data to Outputs	1.0		4.6	1.0	4.6	ns	
t _{PZH}	Output Enable	1.0		6.5	1.0	6.5	20	
t_{PZL}	Time	1.0		6.5	1.0	6.5	ns	
t _{PHZ}	Output Disable	1.0		5.8	1.0	5.8		
t _{PLZ}	Time	1.0		5.5	1.0	5.5	ns	

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V
C _{OUT} (Note 6)	Output Capacitance	9.0	pF	V _{CC} = 5.0V

 $\textbf{Note 6: } C_{OUT} \text{ is measured at frequency } f = 1 \text{ MHz, per MIL-STD-883, Method 3012.}$

Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH,
- AND TIE BAR EXTUSIONS

 D. DIMENSIONING AND TOLERANCES PER ANSI
 Y14.5M, 1982

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com