Capítulo 4

Espaços Vetoriais

4.1 Motivação

Espaços vetoriais podem ser vistos como uma generalização da geometria de vetores no plano e no espaço, geralmente vistos em cursos de Geometria Analítica.

- Veja a introdução do Capítulo 4 do livro do Boldrini;
- Assista aos vídeos indicados no AVA;
- Recapitule a primeira aula síncrona sobre o tema.

4.2 Espaços Vetoriais

Definição 4.1. Um espaço vetorial é constituído de um conjunto V, cujos elementos são chamados vetores, no qual estão definidas duas operações:

- a soma (ou adição) que leva um par de vetores $(u, w) \in V \times V$ a um vetor $u + w \in V$; e
- a multiplicação por escalar, que leva um par $(a, u) \in \mathbb{R} \times V$ a um vetor $au \in V$,

que devem satisfazer as seguintes propriedades para quaisquer $a, b \in \mathbb{R}$ e $u, v, w \in V$:

- (i) u + w = w + u (comutatividade)
- (ii) (u+v)+w=u+(v+w) e (ab)u=a(bu) (associatividade)
- (iii) existe um vetor $\mathbf{0} \in V$, chamado vetor nulo tal que $u + \mathbf{0} = \mathbf{0} + u = \mathbf{0}$, para todo $u \in V$ (existência de vetor nulo)
- (iv) (a+b)u = au + bu e a(u+w) = au + aw (distributividade)
- (v) $1 \cdot u = u$ (multiplicação por 1)
- (vi) para todo $u \in V$, existe um vetor $-u \in V$ tal que $u + (-u) = \mathbf{0}$ (inverso aditivo)

Essas propriedades "imitam" a geometria de vetores no plano. No entanto, observe que o conjunto V pode ser formado de elementos muito mais gerais, tais como listas ordenadas de n escalares (vetores no \mathbb{R}^n), matrizes, ou até mesmo polinômios e funções!

Exemplo 4.1. 1. O conjunto $\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$ com as operações usuais

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$
 e $a(u_1, u_2) = (au_1, au_2).$

2. O conjunto $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ com as operações usuais

$$(u_1, u_2, u_3) + (v_1, v_2, v_3) = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$
 e $a(u_1, u_2, u_3) = (au_1, au_2, au_3).$

3. O conjunto $\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R}, \forall i\}$ com as operações usuais

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
 e $a(x_1, \dots, x_n) = (ax_1, \dots, ax_n).$

Note que essas operações coincidem com a geometria de vetores no plano e no espaço.

4. O conjunto M(m,n) das matrizes de ordem $m \times n$ com as operações usuais definidas anteriormente, a saber, a soma de matrizes e a multiplicação por escalar:

$$(A+B)_{ij} = a_{ij} + b_{ij}, \qquad (\alpha A)_{ij} = \alpha a_{ij}.$$

5. O conjunto P_n dos polinômios de grau $\leq n$ mais o polinômio nulo, munido das operações

$$(p+q)(x) = p(x) + q(x)$$
 e $(ap)(x) = ap(x)$.

Note que p+q e ap são polinômios. Por exemplo, se $p(x)=x^3-2x^2+4$ e $q(x)=3x^3+x^2-4x$, então

$$(p+q)(x) = 4x^3 - x^2 - 4x + 4$$
, $(2p)(x) = 2x^3 - 4x^2 + 8$, $(3p-q)(x) = -7x^2 + 4x + 12$.

Atividade 4.1. Verifique que os conjuntos do exemplo anterior com as suas operações são espaços vetoriais.

Neste texto, $\mathbf{0}$ (em negrito) será usado para o $vetor\ nulo$, para distinguir do número zero. Por exemplo,

- em \mathbb{R}^2 , $\mathbf{0} = (0,0)$
- em \mathbb{R}^n , $\mathbf{0} = (0, \cdots, 0)$
- em M(m,n), $\mathbf{0}$ = "matriz nula de ordem $m \times n$ "
- em P_n , **0** é o polinômio identicamente nulo p(x) = 0 para todo x.

São fatos acerca de qualquer espaço vetorial:

1. Vale a "lei do corte", tal como para números reais:

se
$$w + u = w + v$$
 então $u = v$.

Justificativa: Temos

$$u = \mathbf{0} + u = (-w + w) + u$$

= $-w + (w + u) = -w + (w + v)$
= $(-w + w) + v = \mathbf{0} + v$
= v .

2. Se w + u = w então $u = \mathbf{0}$.

Justificativa: Utilizando a lei do corte vem

$$w + u = w \Rightarrow w + u = w + \mathbf{0} \Rightarrow u = \mathbf{0}.$$

Isso mostra que o vetor nulo é único.

3. Se w + u = 0 então u = -w.

Justificativa: Utilizando a lei do corte vem

$$w + u = \mathbf{0} \Rightarrow w + u = w + (-w) \Rightarrow u = -w.$$

Isso mostra que o inverso aditivo de um vetor $w \in V$ é único. Em particular, esse fato implica que a propriedade (vi) da definição de espaço vetorial decorre das outras.

- 4. Dado $w \in V$, temos $0w = \mathbf{0}$ (a multiplicação de um vetor por zero é o vetor nulo).
 - Justificativa: De fato, $w + 0w = 1w + 0w = (1+0)w = 1w = w = w + \mathbf{0} \Rightarrow 0w = \mathbf{0}$.
- 5. Dado $a \in \mathbb{R}$, temos $a\mathbf{0} = \mathbf{0}$ (qualquer múltiplo do vetor nulo é o próprio vetor nulo).

 Justificativa: De fato, $a\mathbf{0} = a(-w+w) = a(-w) + aw = (-a)w + aw = (-a+a)w = 0w = \mathbf{0}$.
- 6. Se $a \neq 0$ e $w \neq \mathbf{0}$ então $aw \neq \mathbf{0}$ (múltiplos não nulos de vetores não nulos).

Justificativa. Suponha por absurdo que
$$a \neq 0$$
, $w \neq \mathbf{0}$ e $aw = \mathbf{0}$. Então $w = 1w = \left(\frac{1}{a} \cdot a\right)w = \frac{1}{a}(aw) = \frac{1}{a}\mathbf{0} = \mathbf{0}$, isto é, $w = \mathbf{0}$, um absurdo.

7. Dado $w \in V$, temos (-1)w = -w.

Justificativa.
$$w + (-1)w = 1w + (-1)w = (1-1)w = 0w = 0 \Rightarrow (-1)w = -w$$
.

4.3 Subespaços vetoriais

Definição 4.2. Dado um espaço vetorial V, um subconjunto $W \subset V$ é um subespaço vetorial $de\ V$ se

- (i) $u + v \in W$ para todos $u, v \in W$ (W é fechado para a soma)
- (ii) $au \in W$ para todos $a \in \mathbb{R}$ e $u \in W$ (W é fechado para multiplicação por escalar)

Naturalmente, as operações em W são as mesmas de V. Assim, um subespaço vetorial W de V é ele mesmo um espaço vetorial com as operações herdadas de V. Observe ainda que o vetor nulo de W é o vetor nulo de V.

Exemplo 4.2. Dado um espaço vetorial V, são subespaços vetoriais triviais de V os subconjuntos $\{0\}$ e o próprio V.

Exemplo 4.3. $W = \{(at, bt, ct) \in \mathbb{R}^3; t \in \mathbb{R}\}$ é subespaço vetorial de \mathbb{R}^3 . Geometricamente, se $(a, b, c) \neq \mathbf{0}$ então W é a reta do espaço na direção do vetor (a, b, c) e que passa pela origem. No caso em que $(a, b, c) = \mathbf{0}$, $W = \{\mathbf{0}\}$.

Exemplo 4.4. $W = \{(x, y, z) \in \mathbb{R}^3; z = 3x, x = 2y\}$ é subespaço vetorial de \mathbb{R}^3 . De fato, podemos escrever $W = \{(2y, y, 6y) \in \mathbb{R}^3; y \in \mathbb{R}\}$, e W é a reta na direção de (2, 1, 6) e que passa pela origem.

Exemplo 4.5. Considere um sistema linear homogêneo $AX = \mathbf{0}$, onde A tem ordem $m \times n$. Então o conjunto das soluções X desse sistema, munido das operações usuais sobre matrizes é um subespaço vetorial de M(n,1).

Exemplo 4.6. O conjunto $T_S(n)$ das matrizes traingulares superiores de ordem n é subespaço vetorial de M(n, n).

De fato, dadas $A = [a_{ij}]$ e $B = [b_{ij}]$ matrizes em $T_S(n)$ temos $a_{ij} = 0, b_{ij} = 0$ sempre que i > j. Assim, os elementos c_{ij} de A + B são tais que $c_{ij} = a_{ij} + b_{ij} = 0$ sempre que i > j, isto é, $A + B \in T_S(n)$. Isso mostra que $T_S(n)$ é fechado para a soma.

Agora, seja $\alpha \in \mathbb{R}$. Os elementos d_{ij} de αA são tais que $d_{ij} = \alpha a_{ij} = 0$ sempre que i > j, ou seja, $\alpha A \in T_S(n)$, e $T_S(n)$ é fechado para a multiplicação por escalar.

Exemplo 4.7. O conjunto $T_I(n)$ das matrizes traingulares inferiores de ordem n é subespaço vetorial de M(n,n). A prova disto é feita como no exemplo anterior.

Exemplo 4.8. O subconjunto de P_2 dado por $W = \{p \in P_2; p(0) = 0, p'(1) = 0\}$ é subespaço vetorial.

De fato, para que um polinômio $p(x) = ax^2 + bx + c$ esteja em W, temos que ter p(0) = 0 e p'(1) = 0. A primeira condição implica c = 0, e com a segunda condição, chegamos a 2a + b = 0. Assim, $W = \{ax^2 + bx; 2a + b = 0\}$. Mostremos agora que W é fechado para as operações em P_2 :

- (i) Se $p(x) = ax^2 + bx$ e $q(x) = \overline{a}x^2 + \overline{b}x$ estão em W, então $(p+q)(x) = p(x) + q(x) = (ax^2 + bx) + (\overline{a}x^2 + \overline{b}x) = (a+\overline{a})x^2 + (b+\overline{b})x$. Mas $2(a+\overline{a}) + (b+\overline{b}) = (2a+b) + (2\overline{a}+\overline{b}) = 0$, e logo $p+q \in W$.
- (ii) Se $p(x) = ax^2 + bx$ está em W e $\alpha \in \mathbb{R}$, então $(\alpha p)(x) = \alpha p(x) = \alpha(ax^2 + bx) = (\alpha a)x^2 + (\alpha b)x$. Mas $2(\alpha a) + \alpha b = \alpha(2a + b) = 0$, e portanto $\alpha p \in W$.

Teorema 4.1 (Interseção de subespaços). Sejam V um espaço vetorial e W_1 , W_2 subespaços seus. Então $W_1 \cap W_2$ é subespaço vetorial de V.

Exemplo 4.9. O conjunto $D(n) = T_S(n) \cap T_I(n)$ é o subespaço vetorial de M(n, n) das matrizes diagonais de ordem n.

Contrariando as expectativas, a união $W_1 \cup W_2$ de subespaços vetoriais W_1 e W_2 nem sempre é um subespaço vetorial.

Por exemplo, $W_1 = \{(t,0); t \in \mathbb{R}\}$ e $W_2 = \{(0,s); s \in \mathbb{R}\}$ são subespaços de \mathbb{R}^2 , mas

$$(1,0),(0,1)\in W_1\cup W_2$$

е

$$(1,0) + (0,1) = (1,1) \notin W_1 \cup W_2$$

o que mostra que $W_1 \cup W_2$ não é fechado para a soma, e portanto não é subespaço.

No entanto, se "unirmos" subespaços **somando vetores** seus, geramos um novo subespaço vetorial. Mais especificamente, temos o

Teorema 4.2 (Soma de subespaços). Sejam V um espaço vetorial e W_1, W_2 subespaços seus. Então o conjunto

$$W_1 + W_2 = \{v \in V; v = w_1 + w_2, w_1 \in W_1, w_2 \in W_2\}$$

é subespaço vetorial de V.

O subespaço $W_1 + W_2$ é chamado a soma dos subespaços W_1 e W_2 . Quando $W_1 \cap W_2 = \{\mathbf{0}\}$ a soma $W_1 + W_2$ é chamada soma direta, e escrevemos $W_1 \oplus W_2$.

Exemplo 4.10. Considere os subespaços de \mathbb{R}^2 dados por $W_1 = \{(t,0); t \in \mathbb{R}\}$ e $W_2 = \{(0,s); s \in \mathbb{R}\}$. Então $W_1 + W_2 = \{v \in \mathbb{R}^2; v = (t,0) + (0,s), t, s \in \mathbb{R}\} = \{(t,s); t, s \in \mathbb{R}\} = \mathbb{R}^2$. Ou seja, $\mathbb{R}^2 = W_1 + W_2$. Observe ainda que $W_1 \cap W_2 = \{(0,0)\}$, e logo $\mathbb{R}^2 = W_1 \oplus W_2$.

4.4 Combinação linear

Definição 4.3. Seja V um espaço vetorial e vetores $v_1, \ldots, v_n \in V$. Dados $a_1, \ldots, a_n \in \mathbb{R}$, o vetor de V

$$v = a_1 v_1 + \dots + a_n v_n$$

 \acute{e} uma combinação linear $de v_1, \ldots, v_n$.

Fixados $v_1, \ldots, v_n \in V$, o conjunto W de todas as combinações lineares de v_1, \ldots, v_n ,

$$W = [v_1, \dots, v_n] = \{ v \in V; \ v = a_1 v_1 + \dots + a_n v_n, \ a_1, \dots, a_n \in \mathbb{R} \}$$

é um subespaço vetorial de V, chamado subespaço gerado por v_1, \ldots, v_n . Dizemos também que v_1, \ldots, v_n geram W.

Vamos mostrar que $W=[v_1,\ldots,v_n]$ é subespaço: sejam dados $u,v\in W$ e $\alpha\in\mathbb{R}$. Existem $a_1,\ldots,a_n,b_1,\ldots,b_n\in\mathbb{R}$ tais que $u=\sum_{i=1}^n a_iv_i$ e $v=\sum_{i=1}^n b_iv_i$. Assim

(i)
$$u + v = \sum_{i=1}^{n} a_i v_i + \sum_{i=1}^{n} b_i v_i = \sum_{i=1}^{n} (a_i + b_i) v_i \in W$$

e W é fechado para a soma;

(ii) $\alpha u = \alpha \sum_{i=1}^n a_i v_i = \sum_{i=1}^n (\alpha a_i) v_i \in W$, e W é fechado para a multiplicação por escalar.

Concluímos portanto que W é subespaço.

Exemplo 4.11. Considere um vetor $v \in \mathbb{R}^3$ com $v \neq \mathbf{0}$. Então o subespaço gerado por v,

$$[v] = \{av \in \mathbb{R}^3; \ a \in \mathbb{R}\},\$$

é a reta que passa pela origem (0,0,0) na direção do vetor v.

Atividade 4.2. Faça uma figura que represente esta geometria e veja que a soma de vetores sobre a reta está contida na reta.

Agora, imagine uma reta que não passe pela origem. Porque essa reta **não** constitui um subespaço vetorial? Quais propriedades de subespaço vetorial não são satisfeitas?

Exemplo 4.12. Considere dois vetores $u, v \in \mathbb{R}^3$ não colineares (isto é, $u \neq av$ para todo $a \in \mathbb{R}$ e $v \neq \mathbf{0}$). Então

$$[u, v] = \{au + bv \in \mathbb{R}^3; \ a.b \in \mathbb{R}\}\$$

é o plano que passa pela origem e é paralelo aos vetores u e v.

Atividade 4.3. Faça uma figura que represente esta geometria e veja que a soma de vetores sobre o plano está contida no plano.

Exemplo 4.13. O subespaço de \mathbb{R}^3 gerado por (1,0,1) e (0,1,-1) é

$$W = [(1,0,1);(0,1,-1)] = \{a(1,0,1) + b(0,1,-1); \ a,b \in \mathbb{R}\} = \{(a,b,a-b); \ a,b \in \mathbb{R}\}.$$

Geometricamente, W é o plano que passa pela origem e é paralelo aos vetores (1,0,1) e (0,1,-1). Faça uma figura que represente esta geometria.

Exemplo 4.14. O subespaço de \mathbb{R}^2 gerado por (1,0) e (0,1) é

$$[(1,0);(0,1)] = \{a(1,0) + b(0,1); a,b \in \mathbb{R}\} = \{(a,b); a,b \in \mathbb{R}\} = \mathbb{R}^2.$$

O subespaço de \mathbb{R}^2 gerado por (1,0), (0,1) e (1,1) é

$$[(1,0);(0,1);(1,1)] = \{a(1,0) + b(0,1) + c(1,1); \ a,b,c \in \mathbb{R}\}\$$
$$= \{(a+c,b+c); \ a,b,c \in \mathbb{R}\} = \{(a',b'); \ a',b' \in \mathbb{R}\} = \mathbb{R}^2.$$

Assim,
$$[(1,0);(0,1);(1,1)] = [(1,0);(0,1)].$$

Exemplo 4.15. Generalizando o exemplo anterior, vale

$$u \in [v_1, \dots, v_n] \Leftrightarrow [v_1, \dots, v_n, u] = [v_1, \dots, v_n].$$

Ou seja, vetores que são combinações lineares de outros não fazem diferença no subespaço que eles geram. Isso será útil no estudo de base de um espaço vetorial.

Vamos mostrar tal afirmação. Se $u \in [v_1, \dots, v_n]$ então $u = \sum_{i=1}^n a_i v_i$ para certos $a_1, \dots, a_n \in \mathbb{R}$. Assim

$$[v_1, \dots, v_n, u] = [v_1, \dots, v_n, \sum_{i=1}^n a_i v_i]$$

$$= \left\{ v \in V; \ v = b_1 v_1 + \dots + b_n v_n + b \left(\sum_{i=1}^n a_i v_i \right), \ b_1, \dots, b_n, b \in \mathbb{R} \right\}$$

$$= \left\{ v \in V; \ v = (b_1 + ba_1) v_1 + \dots + (b_n + ba_n) v_n, \ b_1, \dots, b_n, b \in \mathbb{R} \right\}$$

$$= \left\{ v \in V; \ v = c_1 v_1 + \dots + c_n v_n, \ c_1, \dots, c_n \in \mathbb{R} \right\}$$

$$= [v_1, \dots, v_n].$$

Reciprocamente, $u=0v_1+\cdots+0v_n+1u\in [v_1,\ldots,v_n,u]=[v_1,\ldots,v_n]$, e logo $u\in [v_1,\ldots,v_n]$.

Exemplo 4.16. Vamos encontrar um conjunto de vetores que geram o subespaço $W = \{(x, y, 2x, x + y); x, y \in \mathbb{R}\}\$ de \mathbb{R}^4 . Observe que

$$(x,y,2x,x+y)=(x,0,2x,x)+(0,y,0,y)=x(1,0,2,1)+y(0,1,0,1),$$
e logo $W=[(1,0,2,1);(0,1,0,1)].$

4.5 Dependência e independência linear

Definição 4.4. Sejam V um espaço vetorial e $v_1, \ldots, v_n \in V$. Dizemos que o conjunto $\{v_1, \ldots, v_n\}$ é linearmente independente (LI) ou que os vetores v_1, \ldots, v_n são LI se a equação

$$a_1v_1 + \dots + a_nv_n = \mathbf{0}$$

adimitir somente a solução trivial $a_1 = a_2 = \cdots = a_n = 0$. Se $\{v_1, \ldots, v_n\}$ não for LI, então dizemos que este conjunto é linearmente dependente (LD), ou que os vetores v_1, \ldots, v_n são LD.

Observamos que o subconjunto $\{0\}$ de um espaço vetorial V qualquer não é LI, pois a equação da Definição 4.4 é satisfeita para todo $a_1 \in \mathbb{R}$.

Teorema 4.3. $\{v_1, \ldots, v_n\}$ é LD se, e somente se um dos vetores desse conjunto é combinação linear dos outros.

Uma forma equivalente de se por o Teorema anterior é a seguinte: " $\{v_1, \ldots, v_n\}$ é LI se, e somente se nenhum dos vetores desse conjunto é combinação linear dos outros".

Exemplo 4.17. Os vetores (1,0,0), (0,1,0), (0,0,1) de \mathbb{R}^3 são LI. De fato, da equação $a_1(1,0,0)+a_2(0,1,0)+a_3(0,0,1)=(0,0,0)$ segue que $(a_1,a_2,a_3)=(0,0,0)$, ou seja, $a_1=a_2=a_3=0$.

Exemplo 4.18. O subconjunto de M(2,2)

$$\left\{ \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 3 \\ 0 & -1 \end{array}\right] \right\}$$

é LI pois

$$\begin{bmatrix} a_1 + a_2 & 2a_1 + 3a_2 \\ 0 & a_1 - a_2 \end{bmatrix} = a_1 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

chegamos ao sistema

$$\begin{cases} a_1 + a_2 = 0 \\ 2a_1 + 3a_2 = 0 \\ a_1 - a_2 = 0 \end{cases}.$$

que possui somente a solução trivial $a_1 = a_2 = 0$

Exemplo 4.19. O subconjunto $\{(1,2);(2,2);(3,7)\}$ de \mathbb{R}^2 é LD pois $(3,7)=4(1,2)-\frac{1}{2}(2,2)$.

Exemplo 4.20. O subconjunto $\{p, q, r\}$ de P_2 , onde $p(x) = x^2$, q(x) = x + 1 e $r(x) = x^2 + x - 2$ é LI. De fato, a equação $a_1p + a_2q + a_3r = \mathbf{0}$ diz que $a_1p(x) + a_2q(x) + a_3r(x) = 0$ para todo $x \in \mathbb{R}$. Assim,

$$a_1(x^2) + a_2(x+1) + a_3(x^2 + x - 2) = (a_1 + a_3)x^2 + (a_2 + a_3)x + (a_2 - a_3) = 0$$

para todo $x \in \mathbb{R}$, donde segue o sistema

$$\begin{cases} a_1 & +a_3 = 0 \\ a_2 & +a_3 = 0 \\ a_2 & -a_3 = 0 \end{cases}.$$

Esse sistema possui somente a solução trivial (verifique!), e portanto $\{p, q, r\}$ é LI.

4.6 Base e dimensão de um espaço vetorial

Definição 4.5. Dado um espaço vetorial V, um conjunto $\beta = \{v_1, \dots, v_n\} \subset V$ é uma base de V se:

- (i) $\beta \notin LI$;
- (ii) β gera V, isto ϵ , $[\beta] = [v_1, \dots, v_n] = V$.

Exemplo 4.21. $\{e_1, e_2\} \subset \mathbb{R}^2$ onde $e_1 = (1, 0)$ e $e_2 = (0, 1)$ é base de \mathbb{R}^2 . De fato, temos $(a_1, a_2) = a_1(1, 0) + a_2(0, 1) = (0, 0) \Rightarrow a_1 = a_2 = 0$ e qualquer (x, y) em \mathbb{R}^2 pode ser escrito como a combinação linear (x, y) = x(1, 0) + y(0, 1). Portanto $\{e_1, e_2\}$ é LI e gera \mathbb{R}^2 , ou seja, é base. Esta é chamada a base canônica de \mathbb{R}^2 .

Exemplo 4.22. $\{e_1, e_2, \dots, e_n\} \subset \mathbb{R}^n$ onde

$$e_i = (0, \dots, 0, \underbrace{1}_{\text{posição } i}, 0, \dots, 0), \quad i = 1, \dots, n,$$

é o vetor de \mathbb{R}^n constituído de zeros, exceto na posição i igual a 1, é base de \mathbb{R}^n . Esta é chamada a base canônica de \mathbb{R}^n .

Atividade 4.4. Adapte o argumento do Exemplo 4.21 para mostrar que $\{e_1, e_2, \dots, e_n\}$ é base de \mathbb{R}^n .

Exemplo 4.23. $\{(1,1);(0,1)\}$ é base de \mathbb{R}^2 pois é LI e qualquer $(x,y) \in \mathbb{R}^2$ pode ser escrito como (x,y) = x(1,1) + (y-x)(0,1).

Exemplo 4.24. $\{(0,1);(0,2)\}$ não é base de \mathbb{R}^2 pois não é LI (um dos vetores é claramente combinação do outro). Também, este conjunto não gera \mathbb{R}^2 . Por exemplo, o vetor (1,0) não é combinação linear de (0,1) e (0,2).

Exemplo 4.25. $\{(1,0,0);(0,1,0)\}$ não é base de \mathbb{R}^3 pois não gera \mathbb{R}^3 (por exemplo, $(0,0,1) \notin [(1,0,0);(0,1,0)]$).

Exemplo 4.26. O conjunto

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é base chamada (base canônica) de M(2,2). De fato, β é LI pois

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} = a_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + a_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + a_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow a_1 = a_2 = a_3 = a_4 = 0$$

e gera M(2,2), como mostra a primeira igualdade acima.

Exemplo 4.27. Generalizando o exemplo anterior, a base canônica de M(m,n) é o conjunto das matrizes $A_{ij} = [a_{ij}]_{m \times n}$ tais que $a_{ij} = 1$ e $a_{kl} = 0$ sempre que $(k, l) \neq (i, j)$.

Atividade 4.5. Mostre que o conjunto das matrizes A_{ij} do exemplo anterior é base de M(m, n).

Exemplo 4.28. O conjunto de polinômios $\beta = \{1, x, x^2, \dots, x^n\}$ é base de P_n .

Atividade 4.6. Mostre que o conjunto β do exemplo anterior é base de P_n .

Observamos que, de acordo com o primeiro item da Definição 4.5, o espaço vetorial trivial $\{0\}$ não admite base.

Teorema 4.4. Sejam v_1, \ldots, v_n vetores não nulos que geram um espaço vetorial V. Então, dentre esses vetores podemos extrair uma base de V.

Exemplo 4.29. Afirmamos que $[(1,0,0);(0,1,-1);(1,1,0);(1,1,1)] = \mathbb{R}^3$. De fato, você pode verificar que (x,y,z) = x(1,0,1) + y(0,1,-1) + (x-y-z)(1,1,0) + (-x+y+z)(1,1,1). Agora, observe que

$$(1,1,0) = 1(1,0,1) + 1(0,1,-1) + 0(1,1,1),$$

isto é, $\alpha = \{(1,0,0); (0,1,-1); (1,1,0); (1,1,1)\}$ é LD. Mais ainda, isso mostra que

$$(1,1,0) \in [(1,0,1);(0,1,-1);(1,1,1)]$$

e logo $[(1,0,1);(0,1,-1);(1,1,1)] = \mathbb{R}^3$. Como $\beta = \{(1,0,1);(0,1,-1);(1,1,1)\}$ é LI (verifique!), segue que β é base de \mathbb{R}^3 . O que fizemos portanto foi extrair do conjunto α de geradores de \mathbb{R}^3 uma base β de \mathbb{R}^3 .

Teorema 4.5. Seja V um espaço vetorial. Se $V = [v_1, \ldots, v_n]$ (n vetores) então qualquer subconjunto de V com mais de n vetores é LD.

Exemplo 4.30. Sabemos que a base canônica de \mathbb{R}^3 tem três elementos, e que gera \mathbb{R}^3 . Com isso já sabemos de antemão que o conjunto α do exemplo 4.29 é LD, pois possui mais de três vetores de \mathbb{R}^3 .

Corolário 4.1. Qualquer base de um espaço vetorial V tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, e denotado por dim V.

Reforçando o que o resultado anterior diz: a **dimensão** de um espaço vetorial é a quantidade de vetores de uma base sua.

Exemplo 4.31. Como $\{(1,0);(0,1)\}$ é base de \mathbb{R}^2 , temos dim $\mathbb{R}^2=2$. Mais geralmente, considerando a base canônica de \mathbb{R}^n , segue que dim $\mathbb{R}^n=n$.

Exemplo 4.32. Do exemplo 4.26, segue que dim M(2,2)=4. Mais geralmente, do exemplo 4.27 concluímos que dim M(m,n)=mn.

Exemplo 4.33. Do exemplo 4.28 segue que dim $P_n = n + 1$.

Atividade 4.7. Seja W um subespaço vetorial de V. Mostre que dim $W = \dim V$ se, e somente se W = V.

O espaço vetorial trivial $\{0\}$ não admite base, pois não há subconjunto seu que seja LI. Convencionaremos no entanto que dim $\{0\} = 0$.

Teorema 4.6. Qualquer conjunto de vetores LI de um espaço vetorial V pode ser completado de modo a obter-se uma base de V.

Corolário 4.2. Se $n = \dim V$, qualquer subconjunto de V com n vetores LI é uma base de V.

Exemplo 4.34. Sabemos que dim $\mathbb{R}^3=3$. Então o conjunto LI $\{(1,0,-1);(0,1,2)\}$ não é base de \mathbb{R}^3 . A demonstração do Teorema 4.6 nos dá uma maneira de completar esse conjunto a uma base de \mathbb{R}^3 : basta escolher um vetor $(x,y,z)\notin [(1,0,-1);(0,1,2)]$ e uni-lo ao conjunto. Observe que

 $[(1,0,-1);(0,1,2)] = \{a(1,0,-1) + b(0,1,2); a,b \in \mathbb{R}\} = \{(a,b,2b-a) + b(0,1,2); a,b \in \mathbb{R}\},$ e logo $(1,1,0) \notin [(1,0,-1);(0,1,2)]$. Com isso $\beta = \{(1,0,-1);(0,1,2);(1,1,0)\}$ é LI, e como possui $3 = \dim \mathbb{R}^3$ vetores, é uma base de \mathbb{R}^3 .

Exemplo 4.35. Vamos completar o conjunto LI $\{(1,0,1,2); (2,1,0,0)\}$ a uma base de \mathbb{R}^4 . Primeiro, temos

$$W_1 = [(1,0,1,2); (2,1,0,0)] = \{(a+2b,b,a,2a); a,b \in \mathbb{R}\}.$$

Escolhemos $(1, 1, 0, 0) \notin W_1$. Agora,

$$W_2 = [(1,0,1,2); (2,1,0,0); (1,1,0,0)] = \{(a+2b+c,b+c,a,2a); a,b,c \in \mathbb{R}\}.$$

Escolhendo então $(1,0,2,0) \notin W_2$, obtemos a base

$$\beta = \{(1,0,1,2); (2,1,0,0); (1,1,0,0); (1,0,2,0)\}$$

 $de \mathbb{R}^4$.

Teorema 4.7. Se U e W são subespaços de V então $\dim U \leq \dim V$, $\dim W \leq \dim V$ e $\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$.

Exemplo 4.36. Considere os subespaços de \mathbb{R}^3 dados por $U = \{(x, y, z); x = y\}$ e $W = \{(x, y, z); x + y - z = 0\}$. Como $U = \{(x, x, z); x, z \in \mathbb{R}\}$ e $W = \{(x, y, x + y); x, y \in \mathbb{R}\}$ segue que $\beta_U = \{(1, 1, 0); (0, 0, 1)\}$ e $\beta_W = \{(1, 0, 1); (0, 1, 1)\}$ são bases de U e W, respectivamente. Assim, dim $U = \dim W = 2$, e $3 = \dim \mathbb{R}^3 = \dim U + \dim W - \dim(U \cap W) \Rightarrow \dim(U \cap W) = 1$. Vamos verificar que de fato $\dim(U \cap W) = 1$. Temos $U \cap W = \{(x, y, z); x + y - z = 0, x = y\} = \{(x, x, 2x); x \in \mathbb{R}\} = [(1, 1, 2)]$, ou seja, $\dim(U \cap W) = 1$.

Teorema 4.8. Dada uma base $\beta = \{v_1, \dots, v_n\}$ de V, cada vetor v de V se escreve de maneira única como combinação linear dos vetores de β .

Demonstração. Seja $v \in V$. Como $[v_1, \ldots, v_n] = V$, v é combinação linear de v_1, \ldots, v_n]. Escrevamos $v = \sum_{i=1}^{n} a_i v_i$ e $v = \sum_{i=1}^{n} b_i v_i$. Devemos mostrar que $a_i = b_i$ para todo i. Ora, como

$$\mathbf{0} = v - v = \sum_{1}^{n} a_i v_i - \sum_{1}^{n} b_i v_i = \sum_{1}^{n} (a_i - b_i) v_i$$

e β é LI, segue que $a_i - b_i = 0$ para todo i, como queríamos demonstrar.

Chamamos os coeficientes a_1, \ldots, a_n da escrita

$$v = a_1 v_1 + \dots + a_n v_n$$

de v na base $\beta = \{v_1, \dots, v_n\}$ de coordenadas de v em relação à β . Se levarmos em consideração a ordem dos vetores em β (que neste caso referimos a β como $base\ ordenada$), escrevemos

$$[v]_{\beta} = \left[\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right].$$

Poderemos omitir o termo "ordenada" quando o contexto deixar claro que se trata de uma base ordenada.

Exemplo 4.37. Em \mathbb{R}^2 , consideremos a base (ordenada) $\beta = \{(1,1); (-1,2)\}$. Como

$$(-1,8) = 2(1,1) + 3(-1,2)$$

segue que

$$[(-1,8)]_{\beta} = \begin{bmatrix} 2\\3 \end{bmatrix}.$$

Se considerarmos a base $\beta' = \{(-1,2); (1,1)\}$ proveniente da mudança de ordem em β , vemos que

 $[(-1,8)]_{\beta'} = \left[\begin{array}{c} 3\\2 \end{array}\right].$

Exemplo 4.38. Em M(2,2), considere a base canônica can. Como

$$v = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = 1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + (-1) \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 3 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

segue que

$$[v]_{can} = \begin{bmatrix} 1\\2\\-1\\3 \end{bmatrix}.$$

Exemplo 4.39. Em \mathbb{R}^n , considere a base canônica $can = \{e_1, \dots, e_n\}$. Qualquer vetor $v = (x_1, \dots, v_n) \in \mathbb{R}^n$ pode ser facilmente escrito na base can. De fato, temos

$$v = x_1 e_1 + \dots + x_n e_n$$

e logo

$$[v]_{can} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Exemplo 4.40. Um vetor de um espaço vetorial pode ser facilmente descrito em certas bases. Por exemplo, o exemplo anterior mostra que é fácil descrever um vetor de \mathbb{R}^n em sua base canônica. Outro exemplo é o seguinte: considere a base canônica $canP_n = \{1, x^2, x^3, \dots, x^n\}$ de P_n . Um vetor $p(x) = a_n x^n + \dots + a_1 x + a_0$ qualquer de P_n tem escrita na base canônica

$$[p]_{canP_n} = \left[\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right].$$

Outro exemplo: qualquer matriz $A = [a_{ij}]_{m \times n}$ do espaço vetorial M(m,n) tem escrita na base canônica canM de M(m,n)

$$[A]_{canM} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & a_{21} & \cdots & a_{2n} & \cdots & a_{m1} & \cdots & a_{mn} \end{bmatrix}^t.$$

4.7 Mudança de base

Seja V um espaço vetorial e $\beta = \{u_1, \ldots, u_n\}, \ \beta' = \{w_1, \ldots, w_n\}$ bases ordenadas suas. Nosso objetivo é descobrir qual a relação entre as escritas de um vetor $v \in V$ nessas bases, isto é, qual a relação entre $[v]_{\beta}$ e $[v]_{\beta'}$. Fixado $v \in V$, escrevamos

$$v = \sum_{1}^{n} x_i u_i \quad e \quad v = \sum_{1}^{n} y_i w_i,$$

isto é,

$$[v]_{\beta} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 e $[v]_{\beta'} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

Como β é base de V, podemos escrever cada vetor de β' como cominação linear dos vetores de β , digamos

$$\begin{cases} w_1 &= a_{11}u_1 + a_{21}u_2 + \cdots + a_{n1}u_n \\ w_2 &= a_{12}u_1 + a_{22}u_2 + \cdots + a_{n2}u_n \\ \vdots \\ w_n &= a_{1n}u_1 + a_{2n}u_2 + \cdots + a_{nn}u_n \end{cases}$$

Assim,

$$v = \sum_{1}^{n} y_{i} w_{i} = \sum_{1}^{n} y_{i} (a_{1i} u_{1} + a_{2i} u_{2} + \dots + a_{ni} u_{n})$$

$$(a_{11} y_{1} + a_{12} y_{2} + \dots + a_{1n} y_{n}) u_{1} + \dots + (a_{n1} y_{1} + a_{n2} y_{2} + \dots + a_{nn} y_{n}) u_{n}.$$

Mas a escrita de v na base β é única, de modo que

$$\begin{cases} x_1 = a_{11}y_1 + a_{12}y_2 + \cdots + a_{1n}y_n \\ x_2 = a_{21}y_1 + a_{22}y_2 + \cdots + a_{2n}y_n \\ \vdots \\ x_n = a_{n1}y_1 + a_{n2}y_2 + \cdots + a_{nn}y_n \end{cases}$$

ou ainda,

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Fazendo

$$[I]^{\beta'}_{\beta} = \left[\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array} \right],$$

chegamos à expressão

$$[v]_{\beta} = [I]_{\beta}^{\beta'}[v]_{\beta'}.$$

A matriz $[I]^{\beta'}_{\beta}$ é chamada matriz de mudança da base β' para a base β .

Observe que as colunas de $[I]^{\beta'}_{\beta}$ são os coeficientes da escrita dos vetores da base inicial $\beta' = \{w_1, \dots, w_n\}$ na base final $\beta = \{u_1, \dots, u_n\}$. Para indicar tal fato, podemos escrever

$$[I]^{\beta'}_{\beta} = \left[\begin{array}{ccc} | & & | \\ [w_1]_{\beta} & \cdots & [w_n]_{\beta} \\ | & & | \end{array} \right].$$

Dessa maneira, fica fácil saber o que fazer para calcular uma matriz de mudança de base.

Exemplo 4.41. Sejam $\beta = \{(2, -1); (3, 4)\}$ e $can = \{(1, 0); (0, 1)\}$ bases de \mathbb{R}^2 . Vamos calcular a matriz de mudança da base can para β :

$$[I]^{can}_{eta} = \left[\begin{array}{cc} | & | & | \\ [(1,0)]_{eta} & [(0,1)]_{eta} \end{array} \right].$$

Devemos então calcular a escrita dos vetores de can na base β :

- $(1,0) = a(2,-1) + b(3,4) \Rightarrow \begin{cases} 2a + 3b = 1 \\ -a + 4b = 0 \end{cases} \Rightarrow a = 4/11, b = 1/11 \text{ Logo } [(1,0)]_{\beta} = \begin{bmatrix} 4/11 \\ 1/11 \end{bmatrix}.$
- Fazendo as contas, conclui-se que $[(0,1)]_{\beta} = \begin{bmatrix} -3/11 \\ 2/11 \end{bmatrix}$.

Portanto

$$[I]^{can}_{\beta} = \left[\begin{array}{cc} 4/11 & 1/11 \\ -3/11 & 2/11 \end{array} \right].$$

Com isso podemos encontrar qualquer vetor na base β . Por exemplo, tomando v=(5,-8), vemos que $[v]_{can}=\begin{bmatrix} 5\\ -8 \end{bmatrix}$. Assim,

$$[v]_{\beta} = [I]_{\beta}^{can}[v]_{can} = \left[\begin{array}{c} 4/11 & 1/11 \\ -3/11 & 2/11 \end{array} \right] \left[\begin{array}{c} 5 \\ -8 \end{array} \right] = \left[\begin{array}{c} 4 \\ -1 \end{array} \right].$$

Você pode verificar que realmente

$$(5, -8) = 4(2, -1) - 1(3, 4)$$

Em geral, temos

$$[(x,y)]_{\beta} = [I]_{\beta}^{can}[(x,y)]_{can} = \begin{bmatrix} 4/11 & 1/11 \\ -3/11 & 2/11 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4x + y \\ -3x + 2y \end{bmatrix},$$

ou seja,

$$(x,y) = \frac{4x+y}{11}(2,-1) + \frac{-3x+2y}{11}(3,4).$$

Uma pergunta surge: se conhecermos $[I]^{\beta'}_{\beta}$, como obter $[I]^{\beta}_{\beta'}$? Vejamos: dado $v \in V$ qualquer, temos

$$[v]_{\beta} = [I]_{\beta}^{\beta'}[v]_{\beta'} \quad e \quad [v]_{\beta'} = [I]_{\beta'}^{\beta}[v]_{\beta}.$$

Assim,

$$[v]_{\beta'} = [I]_{\beta'}^{\beta} [I]_{\beta}^{\beta'} [v]_{\beta'}.$$

Agora, se $\beta' = \{w_1, \dots, w_n\}$ então

$$[w_1]_{\beta'} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 , $[w_2]_{\beta'} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$,..., $[w_n]_{\beta'} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$,

ou seja, $[w_i]_{\beta'}$ é a coluna i da identidade I_n . Então a expressão

$$[w_i]_{\beta'} = \left([I]_{\beta'}^{\beta} [I]_{\beta}^{\beta'} \right) [w_i]_{\beta'}$$

diz que a coluna i de $[I]_{\beta'}^{\beta}[I]_{\beta}^{\beta'}$ é a coluna i de I_n , para todo i. Portanto,

$$[I]^{\beta}_{\beta'}[I]^{\beta'}_{\beta} = I_n,$$

isto é, $[I]^{\beta'}_{\beta}$ é inversível e

$$[I]^{\beta}_{\beta'} = \left([I]^{\beta'}_{\beta} \right)^{-1}.$$

Exemplo 4.42. Considere as bases can canônica e $\beta = \{(1,0,1); (0,0,2); (2,2,0)\}$ de \mathbb{R}^3 . Vamos encontrar $[I]^{can}_{\beta}$. Observe que nessa matriz as colunas são as escritas dos vetores canônicos na base β . É conveniente portanto calculá-la invertendo a matriz

$$[I]_{can}^{\beta} = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 0 & 2 \\ 1 & 2 & 0 \end{array} \right] :$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_1 \to L_1 - 2L_2 \atop L_2 \to 1/2L_2} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1/2 & 0 \end{bmatrix}$$
$$\xrightarrow{L_2 \to L_2 - L_1 \atop L_2 \to 1/2L_2} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1/2 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 & 1/2 & 0 \end{bmatrix}$$

e logo

$$[I]_{\beta}^{can} = ([I]_{can}^{\beta})^{-1} = 2 \begin{bmatrix} 2 & -2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

4.8 Exercícios

Veja a lista de exercícios 4.

4.9 Demonstrações

Demonstração do Teorema 4.1. $u, w \in W_1 \cap W_2 \Rightarrow u, w \in W_1$ e $u, w \in W_2$. Como W_1 e W_2 são subespaços, temos $u + w \in W_1$ e $u + w \in W_2$. Assim $u + w \in W_1 \cap W_2$, ou seja, $W_1 \cap W_2$ é fechado para a soma.

Atividade 4.8. Mostre que a interseção $W_1 \cap W_2$ no teorema anterior é fechada para a multiplicação por escalar, e conclua a prova desse teorema.

Demonstração do Teorema 4.2. $u, v \in W_1 + W_2 \Rightarrow u = w_1 + w_2, v = \overline{w}_1 + \overline{w}_2, w_1, \overline{w}_1 \in W_1, w_2, \overline{w}_2 \in W_2 \Rightarrow u + v = (w_1 + w_2) + (\overline{w}_1 + \overline{w}_2) = (w_1 + \overline{w}_1) + (w_2 + \overline{w}_2) \in W_1 + W_2$ pois W_1 e W_2 são subespaços. Isso mostra que $W_1 + W_2$ é fechado para a soma.

Atividade 4.9. Mostre que $W_1 + W_2$ no teorema anterior é fechado para a multiplicação por escalar, e conclua a prova desse teorema.

Demonstração do Teorema 4.3. Se $\{v_1, \ldots, v_n\}$ é LD então existem $a_1, \ldots, a_n \in \mathbb{R}$ não todos nulos (digamos que $a_i \neq 0$) tais que $a_1v_1 + \cdots + a_nv_n = \mathbf{0}$. Assim,

$$v_{i} = -\frac{1}{a_{i}}(a_{1}v_{1} + \dots + a_{i-1}v_{i-1} + a_{i+1}v_{i+1} + \dots + a_{n}v_{n})$$

$$= \left(-\frac{a_{1}}{a_{i}}\right)v_{1} + \dots + \left(-\frac{a_{i-1}}{a_{i}}\right)v_{i-1} + \left(-\frac{a_{i+1}}{a_{i}}\right)v_{i+1} + \dots + \left(-\frac{a_{n}}{a_{i}}\right)v_{n},$$

ou seja, v_i é combinação linear de $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$.

Reciprocamente, se v_i é combinação dos outros vetores, então

$$v_i = a_1 v_1 + \dots + a_{i-1} v_{i-1} + a_{i+1} v_{i+1} + \dots + a_n v_n$$

$$\Rightarrow a_1 v_1 + \dots + a_{i-1} v_{i-1} + (-1) v_i + a_{i+1} v_{i+1} + \dots + a_n v_n = \mathbf{0}.$$

Com isso, a equação $a_1v_1+\cdots+a_nv_n=\mathbf{0}$ admite uma solução não trivial. Portanto $\{v_1,\ldots,v_n\}$ é LD.

Demonstração do Corolário 4.1. Sejam $\alpha = \{v_1, \dots, v_n\}$ e $\beta = \{w_1, \dots, w_k\}$ bases de V. Como $V = [\alpha]$ e β é LI, o Teorema 4.5 diz que $k \le n$. Por outro lado, como $V = [\beta]$ e α é LI, também $k \ge n$. Assim, k = n, como queríamos.

Demonstração do Teorema 4.6. Seja $n=\dim V$ e $v_1,\ldots,v_r\in V$ vetores LI. Se $[v_1,\ldots,v_r]=V$ então $\{v_1,\ldots,v_r\}$ já é base de V (r=n). Caso contrário, se $[v_1,\ldots,v_r]\subsetneq V$, existe $v_{r+1}\in V$ tal que $v_{r+1}\notin [v_1,\ldots,v_r]$ (r< n). Neste caso, $\{v_1,\ldots,v_r,v_{r+1}\}$ é LI. Com isso, se $[v_1,\ldots,v_r,v_{r+1}]=V$, então $\{v_1,\ldots,v_r,v_{r+1}\}$ é base de V. Caso contrário, existe $v_{r+2}\in V$ tal que

$$[v_1, \ldots, v_r, v_{r+1}] \subsetneq [v_1, \ldots, v_r, v_{r+1}, v_{r+2}].$$

Prosseguindo se necessário, existem então k = n - r vetores $v_{r+1}, \ldots, v_{r+k} \in V$ tais que $\beta = \{v_1, \ldots, v_r, v_{r+1}, v_{r+k}\}$ é LI e $[\beta] = V$, ou seja, β é base de V. Note que este processo pára pois qualquer conjunto com n vetores de V é LD.

 $Demonstração\ do\ Corolário\ 4.2$. Suponha por absurdo que o conjunto β com n vetores LI não é base de V. Assim, completamos β a uma base de V, obtendo uma base de V com mais de n vetores, um absurdo.

Demonstração do Teorema 4.8. Seja $v \in V$. Como $[v_1, \ldots, v_n] = V$, v é combinação linear de v_1, \ldots, v_n]. Escrevamos $v = \sum_{i=1}^{n} a_i v_i$ e $v = \sum_{i=1}^{n} b_i v_i$. Devemos mostrar que $a_i = b_i$ para todo i. Ora, como

$$\mathbf{0} = v - v = \sum_{1}^{n} a_i v_i - \sum_{1}^{n} b_i v_i = \sum_{1}^{n} (a_i - b_i) v_i$$

e β é LI, segue que $a_i - b_i = 0$ para todo i, como queríamos demonstrar.