CHAPTER 9: THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

9.1-1.

While growing continuously as a global company, Procter & Gamble faced the need to restructure for enhanced effectiveness. The goal was to optimize work processes and to minimize expenses while maintaining customer satisfaction. Lowered transportation costs due to changes in the trucking industry and reduced product packages suggested that the total transportation costs could be decreased. In the meantime, shorter product life cycles justified smaller number of plants. Consequently, P&G had to decide on where to locate the plants, what and how much to produce in each. This would be impossible without reviewing the distribution system. Hence, two problems for each product category needed to be solved: a distribution-location problem and a product-sourcing problem.

First, optimal distribution center (DC) locations and optimal customer assignments are found by solving an uncapacitated facility-location model. The objective in this problem is to minimize the total cost of transportation and supply while the primary restriction is to satisfy customer demand. Fixed costs involved in locating DCs are ignored. The total number of DCs is determined beforehand subjectively. The solution of this problem is an input to the product sourcing problem.

With fixed DC locations and their capacities, product sourcing is modeled as a transportation problem. Sources are plants, destinations are DCs and customers. The location and capacity of the plants are specified by the product-strategy teams. Decision variables are the amounts of demand at each destination to be met from each source. The objective is to minimize the total cost while satisfying the demand at each destination without exceeding the capacity of each source. The costs consist of manufacturing, warehousing and transportation costs. An out-of-kilter algorithm is used to solve this problem for each product category.

The benefits of this study included a reduction in the number of plants in North America by 20% and savings of over \$200 million per year. The reduction in manufacturing costs, due to lowered number of plants and personnel coupled with improved efficiency of the supply chain, outweighs the increase in delivery costs. The gains from this study led P&G to making OR/MS a part of its decision-making process.

9.1-2.

(a)

		Dest	Unit (ination (Di	Center)		
		4	Supply			
Source	1	500	750	300	450	12
(Plant)	2	650	800	400	600	17
_	3	400	700	500	550	11
Demand		10	10	10	10	

(b)

(c)

Shipments		Distribution	Distribution Center					
		1	2	3	4	Total Shipped		Supply 12
	1	0	0	2	10	12	=	12
Plant	2	0	9	8	0	17	=	17
	3	10	1	0	0	11	=	11
Total Recei	ved	10	10	10	10			
		=	=	=	=			Total Cost
Dema	and	10	10	10	10			\$20,200

9.1-3.

(a) Let x_1 and x_2 be the number of pints purchased from Dick today and tomorrow respectively, x_3 and x_4 be the number of pints purchased from Harry today and tomorrow respectively.

subject to

and

X1 >= 0, X2 >= 0, X3 >= 0, X4 >= 0.

INITIAL TABLEAU

Bas Eq				Coeff	icient	of				Right
Var No Z	X1	X2	x3	X4	X5	Х6	X7	8 X	х9	side
- -	-1H	- 1M	-1M	- 1H	1M					-7H
z 0 -1	3	2.7	2.9	2.8	0	0	0	0	0	0
X6 1 0	1	1	0	0	0	1	0	0	0	5
X7 2 0	0	0	1	1	0	0	1	0	0	4
X8 3 0	1	0	1	0	0	0	0	1	0	3
X9 4 0	0	1	0	1	-1	0	0	0	1	4

(b)

		Des	Destination						
		1 _1	_ 2	3	Supply				
	_	Today	Tomerrow	Dunny	<u> </u>				
Dick	1	3	2.7	0	 5				
Harry	2	2.9	2.8	0	4				
Deman	ď	3	4	2					

(c)

	Desti	I		
	1	2	3	Supply
1		4	1	5
Source 2	3		1	4
Demand	3	4	2	Cost is
				19.5

9.1-4.

(a)

		Cost Pe	Cost Per Unit Distributed Destination product							
		1	2	3'	durany	Supply				
	1	31	45	38	0	400				
	2	29	41	35	0	600				
Source	3	32	46	40	0	400				
plant	4	28	42	1M	0	600				
	5	29	43	1M	0	1000				
Demand		600	1000	800	600					

(b)

	Destination										
		1	2	3	4	Supply					
	1			200	200	400					
	2			600		600					
Source	3				400	400					
	4	600				600					
	. 5		1000			1000					
Dema	and	600	1000	800	600	Cost is 88400					

9.1-5. Variable Cells

		Final F	Reduced	l Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$D\$12	Bellingham Sacramento	0	15	464	1E+30	15
\$E\$12	Bellingham Salt Lake City	20	0	513	15	21
\$F\$12	Bellingham Rapid City	0	84	654	1E+30	84
\$G\$12	Bellingham Albuquerque	55	0	867	21	351
\$D\$13	Eugene Sacramento	80	0	352	15	1E+30
\$E\$13	Eugene Salt Lake City	45	0	416	21	15
\$F\$13	Eugene Rapid City	0	217	690	1E+30	217
\$G\$13	Eugene Albuquerque	0	21	791	1E+30	21
\$D\$14	Albert Lea Sacramento	0	728	995	1E+30	728
\$E\$14	Albert Lea Salt Lake City	0	351	682	1E+30	351
\$F\$14	Albert Lea Rapid City	70	0	388	84	1E+30
\$G\$14	Albert Lea Albuquerque	30	0	685	351	84

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$15	Total Received Sacramento	80	-418	80	45	0
\$E\$15	Total Received Salt Lake City	65	-354	65	55	0
\$F\$15	Total Received Rapid City	70	-297	70	30	0
\$G\$15	Total Received Albuquerque	85	0	85	0	1E+30
\$H\$12	Bellingham Total Shipped	75	867	75	0	55
\$H\$13	Eugene Total Shipped	125	770	125	0	45
\$H\$14	Albert Lea Total Shipped	100	685	100	0	30

		Range of Optimality Destination							
		Sacramento	Salt Lake City	Rapid City	Albuquerque				
Source	Bellingham	449 to ∞	492 to 528	570 to ∞	516 to 888				
	Eugene	-∞ to 367	401 to 437	473 to ∞	770 to ∞				
	Albert Lea	267 to ∞	331 to ∞	-∞ to 472	601 to 1036				

These ranges tell the management how much each individual cost can be changed without changing the optimal solution.

9.1-6.

(a) Introduce a dummy customer 5 to represent the excess amount sent to customer 3 and a dummy plant 4 to represent the units that are sold to, but not received by customers 4 and 5.

(a), (c), (d)

Unit Profit			Cust	omer					
		1	2	3	4	Dummy			
	1	\$800	\$700	\$500	\$200	\$500			
Plant	2	\$500	\$200	\$100	\$300	\$100			
	3	\$600	\$400	\$300	\$500	\$300			
Dum	my	(\$9,999)	(\$9,999)	(\$9,999)	\$0	\$0			
Shipments	3		Cust	omer					
		1	2	3	4	Dummy	Total Shipped		Supply
	1	0	60	0	0	0	60	=	60
Plant	2	40	0	0	40	0	80	=	80
	3	0	0	20	20	0	40	=	40
Dum	my	0	0	0	0	60	60	=	60
Total Recei	ved	40	60	20	60	60			
		=	=	=	=	=			Total Profit
Commitm	ent	40	60	20	60	60			\$90,000

(b), (e)

Unit Cost			Cust	omer					
		1	2	3	4	Dummy			
	1	(\$800)	(\$700)	(\$500)	(\$200)	(\$500)			
Plant	2	(\$500)	(\$200)	(\$100)	(\$300)	(\$100)			
	3	(\$600)	(\$400)	(\$300)	(\$500)	(\$300)			
Dum	my	\$9,999	\$9,999	\$9,999	\$0	\$0			
Shipments	3		Cust	omer					
		1	2	3	4	Dummy	Total Shipped		Supply
	1	0	60	0	0	0	60	=	60
Plant	2	40	0	0	40	0	80	=	80
	3	0	0	20	20	0	40	=	40
Dum	my	0	0	0	0	60	60	=	60
Total Recei	ved	40	60	20	60	60			
		=	=	=	=	=			Total Cost
Commitm	ent	40	60	20	60	60			-\$90,000

The profit is \$90,000.

9.1-7.

(a)

			Distribu	ition center		
		1	2	3	4 Dummy	Supply
Plant	1	800	700	400	0	50
	2	600	800	500	0	50
	Demand	20	20	20	40	

(b), (c)

Unit Cost		Dist	ribution Ce	enter				
		1	2 3		Dummy			
Plant	Α	\$800	\$700	\$400	\$0			
	В	\$600	\$800 \$500		\$0			
Shipments	3	Dist	ribution Ce	enter				
		1	2	3	Dummy	Total Shipped		Supply
Plant	Α	0	20	20	10	50	=	50
	В	20	0	0	30	50	=	50
Total Recei	ved	20	20	20	40			
		=	=	=	=			Total Cost
Dema	and	20	20	20	40			\$34,000

9.1-8.

(a) Let destination 2i-1 represent the demand of 10 at center i and destination 2i represent the extra demand up to 20 shipped to center i=1,2,3 in the parameter table below.

			Cost per u Destination	ınit distribut n					
		1	2	3	4	5	6	7 Dummy	Supply
plant	1	800	800	700	700	400	400	0	50
plant	2	600	600	800	800	500	500	0	50
dummy	3	1.00E+06	0	1.00E+06	0	1.00E+06	0	1.00E+06	30
,	Demand	10	20	10	20	10	20	40	

(b), (c)

Unit Cost			Dist	ribution Co	enter						
		1	1 Extra	2	2 Extra	3	3 Extra	Dummy			
Plant	Α	\$800	\$800	\$700	\$700	\$400	\$400	\$0			
Plant	В	\$600	\$600	\$800	\$800	\$500	\$500	\$0			
Dum	my	\$99,999	\$0	\$99,999	\$0	\$99,999	\$0	\$999,999			
Shipments	5		Dist	ribution Co	enter						
		1		2		3		Dummy	Total Shipped		Supply
Plant	Α	0	0	10	0	10	20	10	50	=	50
Plant	В	10	10	0	0	0	0	30	50	=	50
Dum	my	0	10	0	20	0	0	0	30	=	30
Total Recei	ved	10	20	10	20	10	20	40			
		=	=	=	=	=	=	=			Total Cost
Dema	and	10	20	10	20	10	20	40			\$31,000

9.1-9.

(a) Let source 2i-1 be regular time production and 2i be overtime production in month i=1,2,3. Let destination 2i-1 represent the contracted sales for product 1 and 2i represent the contracted sales for product 2 in month i=1,2,3. Destination 7 is dummy.

		<u> </u>	Cost	Per Un: Dest:	it Dist ination	ributed	(i^ 81	,000′5)	l
		1	2	3	4	5	6	7	Supply
	1	15	16	16	18	18	19	0	10
	2	18	20	19	22	21	23	0	3
	3	1M	1M	17	15	19	16	ñ	8
Source	4	1M	1M	20	18	22	19	ő	2
	5	1M	1M	1M	1M	19	17	οÍ	10
	6	1M	1,M	1M	1M	22	22	ŏ	3
Dema	and	5	3	3	5	4	4	12	

(b) Destination 2 3 Source Demand 12 | Cost is 389,0∞

Hence, the total cost is \$389,000 and no overtime is necessary.

9.2-1.

(a) Vogel's approximation method would choose x_{21} as the first basic variable.

a)	Dest	inatio	n	1	0
	1	2	3	Supply	Row Difference
1	6	3	5	4	٤
Source2	4	H	7	3	2 4
3	3	4	3	į 2 I	ó
Demand	4	2	3		
Column Difference	l	1	ر ا		

(b) Russell's approximation method would choose x_{12} as the first basic variable.

	D	estinat	ion	ł	
)	1	2	3	Supply	Row
	<u> </u>	ļ		l	Maximum
	6	3	5	1	
1	'			1 1	
	1 -61	-M-3	ı -8	41	6
				ĺ	
	4	M	7	ĺ	
2				ĺĺ	
	-M-2	-M	-M	3	M
			I	i	
	3 1	41	3	i	
3	1			i	
1	-71	-M	-8 j	2	4
			i	i_	
Demand	4	2	3		
			i		
Column Maximum	6	M	71		
Maximum			'i		

(c) Initial BF solution using northwest corner rule:

9.2-2.

(a) Northwest Corner Rule

Cost: 53

(b) Vogel's Approximation Method

Cost: 45

(c) Russell's Approximation Method

Cost: 45

Note that Vogel's and Russell's approximation methods return an optimal solution.

9.2-3.

(a) Northwest Corner Rule

Cost: M + 279

(b) Vogel's Approximation Method

Cost: 286 $\mbox{Arbitrarily breaking the tie differently returns the solution below with cost $M+260$.}$

(c) Russell's Approximation Method

Cost: 301

9.2-4.

- (a) All the supply and demand values are integers. By the integer solutions property, the resulting basic feasible solutions will be integral. All the supplies and demands are one, so the only possible values of the variables in a basic feasible solution are 0 and 1. The 1's indicate the assignment of a source to a destination.
- (b) There are 7 basic variables in every basic feasible solution and 3 of them are degenerate.
- (d) The variables are chosen in the order $x_{13}, x_{24}, x_{44}, x_{32}, x_{41}, x_{43}, x_{42}$.

Optimal assignment (source, destination): (1,3), (2,1), (3,2), (4,4), cost: 13

9.2-5.

					. u.
	464	515	654	867	
	15	മെ	94	63	182
	351	416	600	341	
	2	710	970	' ''.	85
	™	(45)	217	21	83
	195	682	388	685	
	119	351	ക	ത	٥
	100	337			ı
٧.	267	331	388	685	
J					

Cost: \$152, 535, $c_{ij}-u_i-v_j\geq 0$ for all i and j, so the solution is optimal. 9.2-6.

	l	De	stinati	ion	1	l	
(0)	1 1	2	3	4 .	5	Supply	u[i]
	8]	6	3	7	5		
•	. 1	3	20	1	2	20	2
	5	H	8	41	71		
2	25	1M- 1	7	5	6	30	0
	6	3	91	6	8		
3	 -1	P	6	P 5	5	 30	2
	 	0	0	0	0		
4	E 4	L	B 0	 -3	B	 20	-1
	<u> </u>			İ		<u> </u>	
Demand	25 	25	20	10	20	l I	
v[j]	5	1	1	4	1		

- 1	l	De	stinati	on	1		
(1)	1	2	3	4	5	Supply	u[i]
1	8	6	3	71	5		-
' '	5	7	20	5	2	20	3
	51	MI !	8	41	7	İ	
2	P 25	1M- 1	3	5	2	30	5
	6	3	위	6	8	į	
3	E	25	2	L	1	30	7
	01	미	0	01	0		
4	B 0	4	B 0	1	20	20	0
Demand	25	25	20	10	20		
v(j)	0	-4	0	-1	0		
	ı	D	estinat	ion		ı	
(2)	į 1	i s	3	4	5	Supply	y u[i]
		.			_!	_	
	8	.l	3	7	5	- 	
1	-I 	j	j B	į	j	_ 2 20	 3
	8 5 5	 6 H	B	į	j	- 2 20 -] 3
1	8 5 5	 6 M	B 20		 7 B	-	
2	8 5 8 20	6 M 1M- 2	B 20 		 7 7 8	_ 2 30	
	8 5 8 20	6 M 1M- 2	20 8 8 3 9	4	 7 7 8 8	_ 2 30	 5
2	8 5 8 20	M 6 6 6 6 6 6 6 6 6 6 6 6 6	20 8 8 3 9	4	 7 7 8 8	_ 2 30 	 5
2	8 	6 6 N 1M- 2 3 3 25	20 8 9	4 4 1 6 6 1 0	7 7 8 8 	_ 2 30 	 5
2	8 8 5 8 6 8	M 6 6 6 6 6 6 6 6 6 6 6 6 6	20 8 8 	4 6 0	7 7 8 8 0	_ 2 30 	
3	8 	M 6 6 6 6 6 6 6 6 6 6 6 6 6	20 8 8 9	4 6 6 1	7 7 8 8 0 1 2	_ 2 30 2 30 	

The current solution is optimal: $x_{13}=20, x_{21}=20, x_{24}=10, x_{31}=5, x_{32}=25$ and $x_{45}=20$, with cost 305. The optimality condition $c_{ij}-u_i-v_j\geq 0$ for all i and j is met.

9.2-7.

(a) Northwest Corner Rule

3 iterations are required to reach optimality.

(b) Vogel's Approximation Method

The solution is optimal, no iteration of network simplex is needed.

(c) Russell's Approximation Method

The solution is optimal, no iteration of network simplex is needed.

9.2-8.

(a)

]				
	i	1	2	3	4	Supply
	1	500	600	400	200	10
Source	2	200	900	100	300	20
(Plant)	3	300	400	200	100	20
	4	200	100	300	200	10
Demand		20	10	10	20	

(b)

	1	Dest		l		
(0)	1	2	3	4	Supply	u[i]
1	5 P	· ·	j	E	 	- /
	10 	-1M+ 3 	-1M+ 3 	-1M+ 2	10 	1M + 3
•	2	M	1	3		
2	10	10	-1M+ 3	 -1M+ 6	20	1M
3	3	4	2 B	1 1		
,	1M- 3	0			20	4
4	2	1	3	'_ :		
4	1M- 5	-4	0	10	10	5
Demand	20	10	10	20		
vtj)	-1M + 2	0	-2	-3		

(c)

	l	Dest	ination	1	ı	
(1)	1 _	2	3	1 4	Supply	u[i]
1	5 B	61	41	2 B		
	0 	1 	i 1	10	10	1
2	2 B	M	1	3	į	
	20	1M- 2	1	4	20	-2
3	3	41	'-	11	į	
,	-1	10	10	P 0	20	0
4	2	1	3	2		
•	-3	-4	0	10	10	1
Demand	20	10	10	20	l-	
v[j]	4	4	2	1		

	ŀ	Dest	ination		i	
(2)	1	2	3 	4	Supply	u[i]
1	5	61	41	2		
	0	5	,1	10	10	2
	2	M	11	3		
2	20	1M+ 2	1	4	20	-1
7	3	41	2	1	j	
3	-1	4	10	B 10	20	1
	2	1	3	2		
4	E	10	0	L 0	10	2
Demand	20	10	10	20	<u> </u>	
v(j)	3	-1	1	 0 		

	1	Dest	ination		I	
(3)	1	2	3	1 4	Supply	u[i]
	 	l	l	 	l	
	5	6	41	2	1 1	
1	F	1		P		
	0	2	1	10	10	5
	<u> </u>	<u> </u>		!		
•	2	M	1 1	3	!	
2	B			!		
	20	1M- 1	1	4 !	20	2
				<u> </u>	ļ ļ	
-	3	41	\$	1 1	!	
3	E		B	P	!	
	-1	11	10	10	20	4
	2	1	3	2	;	
4	R	R		 	-	
,	0	10]	3	3	10	2
ľ	· •	i	j	1		
Demand	20	10	10	20		
i				i		
v[j]	0	-1	-2	-3		
Ì				i		
				•		

4.1	1	Dest	ination		l	
(4)	1	2	3 	4	Supply 	u[i]
	5	6	41	2		
•	1	3	1	10	10	1
	21	M	1	3		
2	20	1M- 1	0	3	20	-1
3	3 B	41	2 B	1 1 B		
į	0	2	10	10	20	0
4	2 B	1 B	3	2	1	
ĺ	0	10	2	2	10	-1
Demand	20	10	10	20		
v[j] 	3	2	2	1 1		

Optimal Solution: $x_{14} = 10, x_{21} = 20, x_{33} = 10, x_{34} = 10, x_{42} = 10, \text{cost: } $100.$

9.2-9.

(a) Since there is no limit on the electricity and natural gas available, let the supply of electricity be the sum of demands for electricity, water and space heating and the supply of natural gas be the sum of demands for water and space heating.

		Product			
	Electricity	Water	Space	Dummy	Supply
	(1)	(2)	(3)	(4)	
Electricity (1)	50	50	140	0	100
Natural Gas (2)	M	110	100	0	70
Solar Heater (3)	M	70	90	0	40
Demand	30	20	50	110	

(b), (c)

(D) was	γ • ••	Dest	ination		1	
(0)	1	2	3	4	Supply	u[i]
	50	90	80	0		1
1	B	P	P		1	1
	20	10	30	-30	0) 60	0
	 M	60	50	0	-1	!
2	j i		Ì L	j r	۱,	İ
	1M-20	0	0	40	40	-30
	 M	30	40	0		!
3	j	E		F	2	l
	1M-20	-30	-10	30	30	-30
Demand	20	10	30	70		l
v(j)	50	90	80	30	- 	
		Desti	nation		1	
	,					
(1)	1	2	3	4	Supply	u[i]
	1 50	2 90	3 80	4 0	Supply	u[i]
1	50 B	90 L	80 B	0 E		
		i.	i			u[i]
1	50 B	90 L	80 B	0 E		
	50 B 20 	90 L 10 60	80 B 30 50	0 E -60 B	60	0
1	50 B 20	90 L 10	80 B 30	0 E -60	60	
2	50 B 20 	90 L 10 60	80 B 30 50	0 E -60 B	60	0
1	50 B 20 M 1M+10	90 10 10 30 30 1 30 1	80 30 50 30 40	0 E -60 0 B 40 0	60 	-60
2	50 B 20 1M+10	90 10 60 30	80 B 30 50 30	0 E -60 0 B 40	60 	0
2	50 B 20 M 1M+10	90 10 10 30 30 1 30 1	80 30 50 30 40	0 E -60 0 B 40 0	60 	-60
2	50 B 20 1M+10 M	90 L 10 60 30 30	80 B 30 50 30 40 20	0 E -60 0 B 40 0 P 30	60 	-60

	1	Dest	ination		l	
(2)	1	2	3	4	Supply	u[i]
	l					
	50	90	80			
1	B		P	P		
	20	60	30	10	60	0
	 		[
	M	60	50	0	1	
2				B		
	1M-50	30	-30	40	40	0
					ļ	
_		30	'_:	0	l	
3		B	E	L	ļ	
	1M-50	10	-40	20	30	0
					1.	
Demand	20	10	30	70		
v[j]	50	30	80	0		

	!	Dest	ination		I	
(3)	וֹ 1 إ	2	3	4	Supply	u[i]
***************************************	50	901	80	01		
1	B 20	20	L 10	30	 60	0
	 M	60	50	01		
2	i i	Î	E	P		
	1M-50 	-10 	-30	40	40 40	0
_	M	30	'-'	0		
3 (1M-10	10	20	40	30	-40
Demand	20		30	70	l.	
Deliki K						
v(j)	50	70	80	0		
	l			'		

	i	Dest	ination		1	
(4)	1	2	3	4	Supply	u[i]
1	50 B 20	90	80 	0 B 40	 60	0
2	M	60	50 B	 0 B		. 0
3	M 1M-40	30 B 10	40 B 20	0	30	-10
Demand	20	10	30	70	I.	
v(j) 	50	40	50	0		

The optimal solution is to meet 20 units of electricity with electricity, 10 units of space heating with natural gas, 10 units of water heating with solar heating, and 20 units of space heating with solar heating. The cost is \$2,600.

(d), (e) The initial basic feasible solution provides the same optimal solution as in (c).

;	l	Dest	ination			
(0)	1	2	3 	4	Supply 	u[i]
	50	901	80	01		
1	20	50	30 30	B 40	60 60	0
2	 	60	50 B	B		
-	1M-50	20		_	40	0
7	M	30	'-'	0		
3	1M-40	10	B 20	10	30 <u> </u>	-10
Demand	20	10	30	70		
v[j]	50	40	50	0		

(f) The initial basic feasible solution provides the same optimal solution as in (c).

(g) The initial BF solution using Vogel's and Russell's methods provides the same optimal solution as in (c). The optimal solution obtained starting from each of the three rules is the same. (c) required four iterations of the transportation simplex while (d) and (f) required none..

9.2-10. Vogel's Approximation Method

Optimal Solution:

Quantity	Production Month	Installation Month
10	1	1
15	1	2
5	2	4
25	3	3
5	3	4
10	4	4

This schedule incurs a cost of 77.3 million dollars.

9.2-11.

(a)

	1	Dest	ination		ł	
(0)	1	2	3	4	Supply	u[i]
	5001	750	300	450		
'	10	2	-50	50	12	0
2	650	800	400 P	600		
	100	8	9	150	17	50
_ !	400	700	500]	550	;	
3	-250	-200	L 1	10	11	150
Demand	10	10	10	10		
v(j)	500	750	350	400		

(b)

	1	Dest	ination		I	
(1)	1 1	2	3	4	Supply	u[i]
			l		!	
	500	750	300	450		
1	L	B		E	l i	
	9	3	-50	-200	12	0
	650	800	400	600		
2	·	B	B			
	100	7	10	-100	17	50
					1	
	400	700	500	550		
3	P	1		P		
	1	50	250	10	11	- 100
	ll					
Demand	10	10	10	10		
v[j]	500	750	350	650		
ì	i			i		

121	1	Dest	ination		1	
(a)	1	2	3	4	Supply	u[i]
	500	750	300	450	1	
1		L	E		! !	
] 200 	3	-50	9	12	0
	650	800	400	600	i i	
2		P	P		!	
	300	1	10	100	17	50
	400	700	500	550	i	
3	B			В	!	400
	10	1001	50	' '	11	100
Demand	10	10	10	10		
v(j)	300	750	350	450		
- 1	ı	Dest	ination		I	
(3)	1		ination 3		 Supply	u(i)
(3)	 1 	2 	3		 Supply 	u(i)
(3)	500	2 750 	300 P	4 	 	
	5001	2 	300 P	4 P	 Supply 	
	500	2 	3 	4 P	 	
	500 200 	2 750 50 800 P	3 	4 P 9 600	 12 	0
1	500	2 750 50 800 P	3 300 P 3 400 P	4 P 9 600	 12 	0
1	500 200 	2 750 50 800 P	3 300 P 3 400 P	4 P 9 600	 12 	0
1	500 200 650 	2 50 800 P 10 700 E	300 300	4 450 P 9 600 50	 12 	100
1	500 200 650 	750 50 50 10 10 700 10 10 10 10	300 300	4 450 P 9 600 50	 12 	100
1	500 200 650 250 400	2 50 800 P 10 700 E	300 300	4 450 P 9 600 50	12 12 17 17 11	100
1 2	500 200 650 250 400 B	750 50 800 P 10 700 E -100	3 300 P 3 400 P 7 500	4 450 P 9 600 550 L 10	12 12 17 17 11 11 11 11	100

11/1	1	Dest	ination		1	
(4)	1	2	3	1 4	Supply	u[i]
	ļ					
	500	750	300	450	1 1	
1			B	B	1 1	
	100	50	2	10	12	0
	I		l		İ	
	650	800	400]	600]	i	
2		B	B	i i	i	
	150	9	8	50	17	100
	İi	i	ii	i	i	
	400	700	500	5501	i	
3	B	B	i	i	i	
	10	1	200	100	11	0
		i	i	i	i	
Demand	10	10	10	10		
i				i		
v(j)	400	700	300	450		
i				i		

The optimal solution is to send 2 shipments from plant 1 to center 3, 10 to center 4, 9 from plant 2 to center 2, 8 to center 3, 10 from plant 3 to center 1 and 1 to center 2. This has a total cost of \$20,200.

9.2-12.

The optimal solution is to purchase 4 pints from Dick tomorrow and 3 pints from Harry today, with a cost \$19.50.

9.2-13.

1	l	Destin					
1	1 		3 		Supply 	u[i]	
1	41 B	55	48	0			
		2		-1		41	
_ i	39	51	45	01	į		
2	300		E -1M+46			39	
_	42	56	50	01	į		
	 -2 	400		-4		44	
į		52	M	01	į		
4	 -2 	300	300 L	0	 600 	40	
_		53	M	0	į		
5		1	600	400	1000	40	
Demand	700	1000	900				
(i]v	 0 	12	1M - 40)OM+81400	
	I	Desti	nation		I		
	1 1 		3 		 Supply 	u[i]	
	1 41	2 	3 48	01	 Supply 	u[i]	
	1 41	55 ₁	3 48 	0 1M-47	 Supply 400	<u> </u>	
	1 41 B 400 	55 2 1	3 48 1 	0 1M-47	 	<u> </u>	
	1 41 B 400 	2 55 2 51 B	3 48 1	0 1M-47 	 400 		
2	1 B 400 I 39 L 300	55 2 B 0	3 1 300 	O 1M-47 1M-45	 400 		
2	1 B 41 B 400 39 L 300 	55 2 B 0 B	3 1 300 	O 1M-47 1M-45	 		
2	1	55 2 51 B 0 B 400	3 45 P 300 50 	O 1M-47 1M-45 1M-50	 	2	
2	1	55 2 B 0 B 400 B	3 45 P 300 50 	O 1M-47 O 1M-45 O 1M-50		2	
2 3 4	1	55 2 51 B 0 56 B 400 52 B 600	3 48 1 45 1 P 300 50 1 50 1 0 1 M 1 1	O 1M-47 O 1M-45 O 1M-50 O 1M-46		2	
2 3 4 5	1	55 B 56 B 400 52 B 600	3 48 1 45 1 P 300 50 1 M 1 P M	O 1M-47 O 1M-45 O 1M-50 O 1M-46		2 0 5 1	
2 3 4 5	1	55 B 56 B 400 52 B 600	3 48 1 48 1 1 45 1 300 50 1 50 1 1 M 1 1 M - 46 M 1 1 M - 46	O 1M-47 O 1M-45 O 1M-50 O 1M-46		2	

ı		Destin				
	1	2 		4 	Supply	u[i]
		55	48		- !	
1	400 -	-1M+47	-1M+46		400 	2
i		51	45	<u> </u>	į	
2 	1M-45		600			-1M + 45
 3	42	56	50	0		
	1M-47		0		400 	-1M + 50
4 1	38	52	M		İ	
7 	1M-47	600	1M-46	1M-46		-1M + 46
_ [39	53	<u> </u>	<u> </u>	1	
5 		-1M+47	300	400		0
Demand	700					
 [ز]v	39	1 M	1 M	ı		
I		+ 6		I	Z = 30	0M+1E5
	I	Desti	nation		I	
				4 	 Supply 	u[i]
1	1 1	2 —55	3 48	 0	l	u[i]
1	1 41 P 400	2 55 	3 	 	 	
	1 41 P 400 	2 55 0 51	3 		 	
1 2	1 41 400 39 	2 55 0 51 1M-47	3 -1M+46 45 8		 	 2 2 -1M
2	1	2 55 0 51 1M-47 56	3 E -1M+46 B B 600 	0 -2 0 1M-45	 	
2	1 P 400 39 1M-45	2 55 0 51 1M-47 56 B	3 E -1M+46 B B 600 	0 -2 -2 -2 -2 -2 -2 -2 -		2 2 1 1 -1 45
2	1	2 55 0 51 1M-47 56 B 400	3	0 -2 -2 -2 -2 -2 -2 -2 -		2 2 1 1 -1 45
2	1	2 55 0 51 1M-47 56 B 400 52 B 600	3	0 -2 0 1M-45 -3 0 1 1 1 1 1 1 1 1 1		2 2 1 -1M + 45 3 3
2 3 4	1	2 55 51 1M-47 56 B 400 52 B 600	3	0 -2 0 1M-45 0 1 1 1 1 1 1 1 1 1		2 2 1 -1M + 45 3 3
2	1	2 55 51 B 400 52 B 600 53 B	3	O O 1M-45 O 1		2 2 1 -1M + 45 3 3
2 3 4	1	2 55 0 51 B 400 52 B 600 53 B	3	O 23333333333		2
2 3 4 5	1	2 55 0 51 B 400 52 B 600 53 B	3	O 233		2

			nation		 Gumm 1 ==	
	lI	I	I	l	Supply 	u[1]
		55			I	
1		0	300	-2		 2
		51			i	
	 1		600	1	-	 -1
_	42	56	50	01		ĺ
3		400 L	1		400	 3
	38	52	M	0	 	
4		600	1M-45	1	600	 -1
_	<u>39 </u>	53		01		
5	B 600 	0	1M-46	400	1000	 0
Demand	700	1000	900	400	i ——	
(i]v	 39 	53	46		 Z = 12	22500
1		Destin		1		
 	1			 4 	Supply	u[i]
	41	2 55	3 48	 	Supply	u[i]
 1		2 55 	3 48	 E		u[i]
 	41 P 100	2 55 0	3 48 B 300	 O E -2		
 	41 P 100 	2 55 0 51	3 8 300 8 8	 O E -2 O	400 	2
 	 41 P 100 39 	2 55 0 51 -1	3 -48 B 300 45 B 600	 O E -2 O 1	400 	
 2 1	41 P 100 39 11 42	2 55 55 0 51 -1 56	3 48 48 300 45 600		400 	2
 2 1	 41 P 100 39 	2 55 55 0 51 -1 56	3 48 48 300 45 600	O E -2 O 1 O B	400 400 1 600 1	2
 2		2 55 55 0 51 56 3 52	3 48 48 300 45 600 50 41 M	O E -2 O 1 O B	400 400 1 600 1	2
 2 1	41	2 55 55 0 51 56 56 52 52 600	3 48 48 300 45 600 50 50 11111111111111111111111111111111111		400 400 1 600 1	2
 2	41 P 100 39 42 38 38 39	2	3 48 48 300 45 600 50 41 111-45		400 400 600 400	
 2	41	2	3 48 48 300 45 600 50 50 111-45 111-46		400 400 600 400 600 1000	2 -1 0
 2	41 P 100 39 42 38 39 P 600	2	3 48 48 300 45 600 50 50 1114-45 M 1114-46		400 400 600 400 600 1000	2 -1 0

1		Destin			I	
1				4	Supply 	u[i]
	41	55	48	0		<u> </u>
1 -		0	300	0	 400	 0
	39	51		<u> </u>	 	l
2 -			600		 600	 -3
1. 		56	 50 			
	1	1	2	400		0
į.			 M		 	I
4 - 	- - -	600		3	I 600 	 -3
į.	39	53	M	01	 	i İ
5 - -		400	1M-46	2		
Demand			900			
ا [ز]v	41	55	48		 Z = 12	21300
	1	Desti	nation	ı		
	, 1 1 1	2] 3	4	Supply	u[i]
1	41		48 B			
-	1	1	400 400	01	400 	54
2		51	45	0		
				3 j		51
2	42 		50	 		
3	2					54
а	38		M M		į	
4	0	600	 1M-46 	2	600	52
5	39	53	M	01 1	į	
3				1	1000	53
Demand	700	1000	900	400 400		
v[i]v	-i -14 	0	-6	!	Z = 12:	1200

Optimal Solution:

. $x_{13}=x_{34}=400, x_{22}=100, x_{23}=500, x_{42}=600, x_{51}=700, x_{52}=300,$ Cost: \$121,200

9.2-14. Using Russell's approximation method:

		. 1 .			Destina	tion			-			
(0)		1		2	3	4	1	5	Su	pply	u[1]
	1	-800	Ţ	-700	-500	-200	-50	100	_			
	-		40	20		600		300		60	-	500
	•	-500		-200	-100	-300	=10	100				
	2	-2	00	I		60	_	200		80		0
	3	-600	Γ	-400	-300	-500	-30	10				
	•	-10	00	40		0		200		40	-	200
	4	M	디	M	M	0 B	_	01 B				
	•	1M+	0	1M-1e	1M-2e	0		60		60	:	300
Dema	nd	-	10	60	20	60		60		I		
]٧	11	-30	00	-200	-100	-300		300	_			_
	-							1	z	= -8	2000	0
				Des	tinatio	on			1			
u)		1		2	3	4		5		Supp	ly	u[i]
	-80		-7	700	-500	-200	- =:	500	-			
1		P		P	-100	400	0	10	0		60	-300
					-100	-300	- -	100	_			
2	-50 	00 P		200	L		3 -					
		0		200	20	60	9	20	0		80	0
	-60	00	-4	1001	-300	-500	- =	300	_			
3		-100		P 40	E -200	-200	0		0		40	0
	_	М			M	0	- -	0	-			
4		I		'	'	1	в -		В			
	11	M+2e] 1	lM+le	1M-2e	'	۱۹	6	0		60	300
Demand	-	40		60	20	60	ō'-	6	0			
v[j]		-500		-400	-100	-30	0	-30	00	_		2000
	1									Z =	= -{	32000

	1	Des	stinatio	on		1	
(Z)	1	2	3	4	5	Supply	u[i]
1	-800 P	-700 P	-500	-200	-500		
-	20	40	100	400	100	60	0
2	-500 P	-200	-100	-300 P	-100		
-	20	200	200	60	200	80	300
3	-600	-400 L	-300 B	-500 E	-300		
3	-100	20	20	-200	0	40	300
4	M	M	M	B	B		
3	1M+2e	1M+1e	1M+ 0	ō	60	60	600
Demand	40	60	20	60	60		·
v[j]	-800	-700	-600	-600	-600	z = -	86000
	l					1 -	
	1	ъ.					
(3)	1	De 2	stinati	on 4	5	Supply	uſiì
(3)	.	2	3	4		Supply	u[i]
(3)	-800 B	2 -700 B	-500 	-200	-500		
	-800 B 0	2 -700	3	4		Supply 60	u[i]
1	-800 	2 -700 B	-500 	4 -200 400 -300	-500		
	-800 B 0	2 -700 B 60	3 -500 -100	4 -200 400	100		
2	-800 B 0 B	2 -700 -8 60 -200 	3 -500 -100 -100 0 -300	4 -200 400 -300 -300 -300 -300 -300	100 -100	60	-600
1	-800 B 0 -500 B 40	2 -700 -00 -200 -200 -200	3 -500 -100 -100 0	4 -200 400 -300 -300 B 40	100 -100 -100 200	60	-600
2	-800 -500 -500 -600	2 -700 -00 -200 -200 -400	3 -500 -100 -100 -100 0 -300 B	4 -200 400 -300 -300 B 40 -500 -500 0	-500 100 -100 200 -300 200	80	-600 -300
2	-800 -500 -600 -100	2 -700 -8 60 -200 -400 -200 -400	3 -500 -100 -100 -300 -300 -8 20	4 -200 400 -300 -300 B 40 -500 B 20	-500 100 -100 200 -300 200	80	-600 -300
2	-800 -500 -500 -600 100	2 -700 B 60 -200 200 -400 200 M	3 -500 -100 -100 0 -300 -300 B 20	4 -200 400 -300 B 40 -500 B 20 0	-500 100 -100 200 -300 200 0 B	60 80 40	-600 -300 -500
1 2 3	-800 -500 -600 100 M 1M+2e	2 -700 -60 -200 200 -400 200 M 1M+1e	3 -500 -100 -100 0 -300 -300 B 20 M	4 -200 400 -300 -8 40 -500 -500 B 20 0	-500 100 -100 200 -300 200 0 B 60	60 80 40	-600 -300 -500

The optimal solution is to ship 60 units from plant 1 to customer 2, 40 from plant 2 to customer 1, 40 from plant 2 to customer 4, 20 from plant 3 to customer 3 and 4. This offers a profit of \$90,000.

9.2-15.

$$(a) - (b) - (c)$$

Using northwest corner rule:

(6)	1	Desti 2	nation 3	4	Supply	u[i]
,	800	700	400	0		
. 1	20	20	10		50	-100
2	600 E	800	500 L	01		
	-300	0	10	40	50	0
Demand	20	20	20	40		
[t]v	900	800	500	0	Z = 30	9000
·						,000
7.1	I	Destir	nation		I	
(ι)	1	2	3	4	Supply	u[i]
	800	700	400	0		
1	10	20	20	-200	50	0
2	600 P	800	500	0 P		
-	10	300	300	40	50	-200
Demand	20	20	20	40		
[t]v	800	700	400	200	z = 36	5000
	•			'		
ı		Destin	ation			
(2)	1	2	3	4	Supply	u[i]
1	800	700 B	400 B	0 B		
-	200	20	20	10	50	0
	600	800	500	0 B		
2	—— В 20	100	100	30	50	0
Demand	20	20	20	40		
[t]v	600	700	400	0	Z = 34	1000

With northwest corner rule, it took 22 seconds to find the initial BF solution and its objective value is 15% above the optimal cost. The two iterations took 48 seconds.

Using Vogel's approximation method:

6	1	Destin 2	ation 3	4	Supply	u[i]
1	800 L 10	700 B 20	400 B 20	0 E -200	50	200
2	600 P	300	300	0 P 40	50	c
Demand	20	20	20	40		
[j]	600	500	200	0	z = 36	
(1)	1	Desti 2	ination 3	4	Supply	u[i]
1	200	700 				0
2	600 B	100	500	0 F		0
Demand	20	20	20	40	5	.
v[j]	600	700	400	0	1	4000

With Vogel's approximation method, it took 44 seconds to find the initial BF solution and its objective value is 6% above the optimal cost. One iteration took 28 seconds.

Using Russell's approximation method:

With Russell's approximation method, it took 25 seconds to find the initial BF solution and its objective value is 9% above the optimal cost. The two iterations took 45 seconds.

Let x_0 denote the initial BF solution. The results are summarized in the following table.

Method	Time to Get x_0	Opt. Gap of x_0	No. Iter.'ns	Time Iter.'ns	Total Time
NW Corner	22 seconds	15%	2	48 seconds	70 seconds
Vogel's	44 seconds	6%	1	28 seconds	72 seconds
Russell's	25 seconds	9%	2	45 seconds	70 seconds

9.2-16.

$$(a) - (b) - (c)$$

Using northwest corner rule:

With northwest corner rule, it took 40 seconds to find the initial BF solution and its objective value is M% above the optimal cost. The seven iterations took 4 minutes.

Using Vogel's approximation method:

With Vogel's approximation method, it took 55 seconds to find the initial BF solution and its objective value is 6% above the optimal cost. The two iterations took 1 minute.

Using Russell's approximation method:

With Russell's approximation method, it took 63 seconds to find the initial BF solution and its objective value is 26% above the optimal cost. The five iterations took 2 minutes.

Optimal Solution: cost 31,000

Let x_0 denote the initial BF solution. The results are summarized in the following table.

Method	Time to Get x_0	Opt. Gap of x_0	No. Iter.'ns	Time Iter.'ns	Total Time
NW Corner	40 seconds	M%	7	4 minutes	280 seconds
Vogel's	55 seconds	6%	2	1 minute	115 seconds
Russell's	63 seconds	26%	5	2 minutes	183 seconds

9.2-17.

(a) Initial solution using northwest corner rule:

Final tableau: cost 35

(b) minimize
$$8x_{11} + 5x_{12} + 6x_{21} + 4x_{22}$$
 subject to
$$x_{11} + x_{12} = 4$$

$$x_{21} + x_{22} = 2$$

$$x_{11} + x_{21} = 3$$

$$x_{12} + x_{22} = 3$$

$$x_{11}, x_{12}, x_{21}, x_{22} \geq 0$$

Iten:	B.V.	Eq. #	Z	X11	XIA	Xas	Xxx	W1.	Wa	W ₃	W4	RH5
	2	0	-1	8-2 M	5-2M	6-2M		0	0	0	0	-12M
	W ₁	1	0	1	1	0	0	1	0	0	0	4
0	Wa	2	0	0	0	1	1	0	1	0	0	2
	W ₂	3	0	. 1	Q	1	o,	0	Õ	1	Ò	3
	W4	4	0	0	1_	0	1_	0	0		1	3
	쿤	0	-1	0	٥	0	1	2M-8	2M-6	0	3	-35
1.	X14	1	0	1	0	0	-1	1	0	D	-1	1
4	XA1	1	0	0	0	1	1	0	1	D	0	2
	W3	3	0	0	O	0	0	-1	-1	1	1	0
	×12	4	0	. 0	1	0	11	0	0	0_	1_	3

Hence, the transportation simplex method takes one iteration while the general simplex method takes four iterations. The computation times vary.

9.2-18.

Let
$$z_1=x_1-10,$$
 $z_2=x_1+x_2-25,$ $z_3=x_1+x_2+x_3-50,$ $z_4=x_1+x_2+x_3+x_4-70.$ minimize $1.08x_1+1.11x_2+1.10x_3+1.13x_4+0.15(z_1+z_2+z_3+z_4)$ subject to
$$x_1 -z_1 =10$$
 $x_1+x_2+x_3-z_2 =25$ $x_1+x_2+x_3-z_3 =50$ $x_1+x_2+x_3+x_4-z_4=70$ $0 \le x_1 \le 25$ $0 \le x_2 \le 35$ $0 \le x_2 \le 35$ $0 \le x_3 \le 30$ $0 \le x_4 \le 10$ $z_1, z_2, z_3, z_4 \ge 0$

Initial simplex tableau:

B.V.	East	z	X,	×.	χ,	X	Z١	2.	₹,	24 W.	w,	w,	WH	Υ,	Υ,	у, `	Y 4	RHS
Z	0	-1	-4841.06	-3M+Uf	2141	-M+U3			M+.015	M+.045 0	0	0	0	0	0	0	-	-155M
w,	4		1				-1			1								40
Wa	2		1	1				-1			1							25
ws	3		1	1	- 1				-1			. 1						50
W4	4		1	1	1	1				-1			١					10
74	5		1											1				25
1/2	6			1											1			30
Y3	7				1											1		30
Y4	8					1											1_	10

Simplex tableau: 16 variables and 8 constraints

Transportation tableau: 20 variables and 9 constraints

Even though the transportation tableau is larger, it requires less work than the simplex tableau.

9.2-19.

If we multiply the demand constraints by -1, each constraint column will have exactly two nonzero entries, one -1 and one +1. Summing all these constraints gives the equality:

$$0x = \sum \text{supplies} - \sum \text{demands} = 0,$$

since the total supply equals the total demand. Hence, there is a redundant constraint.

9.2-20.

In the initialization step, after selecting the next basic variable, the allocation made is equal to either the (remaining) supply or demand for that row or column. Since these quantities are known to be integer, the allocation will be integer.

Given a current BF solution that is integer, step 3 of an iteration adds and subtracts, around the chain-reaction cycle, the current value of the leaving basic variable. Since we know this is an integer, and all the other basic variables on the cycle began with integer values, the new BF solution must be all integer.

During the initialization step, we can select the next basic variable for allocation arbitrarily from among the rows and columns not already eliminated. Thus, by altering our selections, we can construct any BF solution as our initial one. Because we have shown that the initialization step gives integer solutions, all BF solutions must be integer.

9.2-21.

(a) Let x_{ij} be the number of tons hauled from pit i = 1, 2 (North, South) to site j = 1, 2, 3.

minimize
$$400x_{11} + 490x_{12} + 460x_{13} + 600x_{21} + 530x_{22} + 560x_{23}$$
 subject to
$$x_{11} + x_{12} + x_{13} \le 18$$

$$x_{21} + x_{22} + x_{23} \le 14$$

$$x_{11} + x_{21} = 10$$

$$x_{12} + x_{22} = 5$$

$$x_{13} + x_{23} = 10$$

$$x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$$

Initial tableau:

Bas Eq			Co	pefficie	ent of							-	Right
Var No Z	X11	X12	X13	X21	X22	X23	Х7	X8	Х9	X10	X11	- 1	side
III.												_1_	
Z 0 -1	-M+400	-M+490	-M+460	-M+600	-M+530	-M+560	0	0	0	0	0		-25M
X7 1 0	1	1	1	0	0	0	1	0	0	0	0		18
X8 2 0	0	0	0	1	1	1	0	1	0	0	0		14
X9 3 0	1	0	0	1 *	0	0	0	0	1	0	0		10
X1 4 0	0	1	0	0	1	0	0	0	0	1	0		5
X1 5 0	0	0	1	0	0	1	0	0	0	0	1	-	10

(b) This table is much smaller than the simplex tableau and it stores the same information.

		Cost Pe	r Unit	Distrib	uted					
	- 1		Destination							
	- 1	1	2	3	4	Supply				
	I_				I					
Source	1	400	490	460	0	18				
	2	600	530	560	0	14				
Demand		10	5	10	7					

(c) The solution is not optimal, since $c_{13} - u_1 - v_3 = -100$.

	I	Destin	ation	ı		
	1	2	3	4	Supply	u[i]
	lI	I	I			
	400	490	460	0	I	
1	B	B		B	1	
	10	5	-100	3	18	0
	II	I	I	I	1	
	600	530	560	0	- 1	
2		I	B	B	1	
	200	40	10	4	14	0
	lI	I	I	I		
Demand	10	5	10	71		
	l			I		
v[j]	400	490	560	0		
	l			I	Z = 120	050

(d)

		Destin	ation		I	
	1	2	3	4	Supply	u[i]
	 4001	l 490	I	01	l	
1	400 B		BI			
_	10	- 1	3	0	18	0
	 6001	I	I			
2	000 	I	560	- 1		
	, , oi	0	- 1			0
i	i	i	i		ii	
Demand	10	5	10	7	I	
	<u> </u>	0	0			
v[j]	0	U	U	0	 Z = 11	750
'						
					•	
		Destin	nation		I	
	 1	Destin 2		4	 Supply	
	ii	2 l	3 l		 Supply 	
	400	2 490	3 460	01	 Supply 	
1	400 B	2 490 L	3 460 P		 	u[i]
1	400	2 490 L	3 460 P	01	 	
1	 400 B 10	2 490 L	3 460 P 3	0 100	 	u[i]
1 2	 400 B 10 600	2 490 L 5 530	3 460 P 3 560	0 100	 18 	u[i]
- , 	 400 B 10 600	2 490 L 5 530	3 460 P 3 560	0 100 B	 18 	u[i]
2	 400 B 10 600 100	2 490 L 5 E -60	3 460 P 3 560 P 7	O 100 B 7	 	u[i]
- , 	 400 B 10 600	2 490 L 5 530	3 460 P 3 560	0 100 B	 	u[i]
2	 400 B 10 600 100	2 490 L 5 E -60	3 460 P 3 560 P 7	O 100 7 7	 	u[i]

	l	Destin	nation	ı		
	1	2	3	4	Supply	u[i]
	lI	I				
	400	490	460	0		
1	B	I	B			
	10	60	8	100	18	-100
	lI	I	I			
	600	530	560	0		
2		B	B	B		
	100	5	2	71	14	0
	lI	I	I	I	1	
Demand	10	5	10	7		
	l					
v[j]	500	530	560			
	I			1	Z = 11	450

The optimal solution is to haul 10 tons from the north pit to site 1 and 8 tons to site 3, 5 tons from the south pit to site 2 and 2 tons from the south pit to site 3. This incurs a cost of \$11,450.

(e) From the reduced costs $(c_{ij} - u_i - v_j)$ in the final tableau, we see that

$$\Delta c_{12} \ge -60 \quad \Rightarrow c_{12} \ge 430$$

$$\Delta c_{21} \ge -100 \implies c_{21} \ge 500.$$

If the contractor can negotiate a hauling cost per ton of 130 or less from the north pit to site 2, or of 80 or less from the south pit to site 1, a new solution using these options would give a cost at least as small as the current optimal cost \$11,450.

9.2-22.

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$11	Colombo River Berdoo	0	0	160	1E+30	0
\$D\$11	Colombo River Los Devils	5	0	130	20	1E+30
\$E\$11	Colombo River San Go	0	10	220	1E+30	10
\$F\$11	Colombo River Hollyglass	0	0	170	0	20
\$C\$12	Sacron River Berdoo	2	0	140	0	1E+30
\$D\$12	Sacron River Los Devils	0	20	130	1E+30	20
\$E\$12	Sacron River San Go	2.5	0	190	10	10
\$F\$12	Sacron River Hollyglass	1.5	0	150	20	0
\$C\$13	Calorie River Berdoo	0	10	190	1E+30	10
\$D\$13	Calorie River Los Devils	0	50	200	1E+30	50
\$E\$13	Calorie River San Go	1.5	0	230	10	20
\$F\$13	Calorie River Hollyglass	0	-190	0	1E+30	190

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$C\$14	Total To City Berdoo	2	180	2	2.5	1.5
\$D\$14	Total To City Los Devils	5	150	5	0	1.5
\$E\$14	Total To City San Go	4	230	4	3.5	1.5
\$F\$14	Total To City Hollyglass	1.5	190	1.5	2.5	1.5
\$G\$11	Colombo River From River	· 5	-20	5	1.5	0
\$G\$12	Sacron River From River	6	-40	6	1.5	2.5
\$G\$13	Calorie River From River	1.5	0	5	1E+30	3.5

- (a) The optimal solution would change because the decrease of \$30 million is outside the allowable decrease of \$20 million.
- (b) The optimal solution would remain the same, since the allowable increase is ∞ .
- (c) By the 100% rule for simultaneous changes, the optimal solution must remain the same.

$$C_{CS}$$
: \$230 \rightarrow \$215 % of allowable decrease = $100\left(\frac{230-215}{20}\right) = 75\%$

$$C_{SL}$$
: \$130 \rightarrow \$145 % of allowable decrease = $100 \left(\frac{130-145}{\infty} \right) = 0\%$

These sum up to 75%.

(d) By the 100% rule for simultaneous changes, the shadow prices may or may not remain valid.

$$C_S$$
: \$6 \to \$5.5 % of allowable decrease = $100 \left(\frac{6-5.5}{2.5} \right) = 20\%$

$$C_H$$
: \$1.5 \rightarrow \$1 % of allowable decrease = $100\left(\frac{1.5-1}{0}\right) = \infty\%$

These sum up to ∞ %.

9.2-23.

(a)
$$\Delta c_{34} = -3 \Rightarrow \Delta (c_{34} - u_3 - v_4)^* = -3, (c_{34} - u_3 - v_4)^* = -2$$

Iterat	юя			Destination				
3		1	2	3	4	5	Supply	٤,
	ı	16 +4	16	13 39	+7	+2	50	-7
	2	141	+2	13	19 +4	15	60	-7
Source	3	19 30	20	20	<u>2</u>	M - 22	50	. 0
	4(D)	.M + 3	+3	M + 2	30	@ @	50	- 22
Demand		30	· 20	70	30	60	2=2	+60
	•,	19	19	20	22	22	1	

The current feasible solution is feasible, but not optimal.

(b)
$$\Delta c_{23} = 3 \Rightarrow \Delta (c_{23} - u_2 - v_3)^* = 3$$

We can revise the tableau by changing u_2 from -7 to -7+3=-4. This causes v_5 to change to 22-3=19, u_4 to -22+3=-19, and v_4 to 22-3=19.

$$\Delta(\text{reduced cost }x_{41})=\Delta(\text{reduced cost }x_{42})=\Delta(\text{reduced cost }x_{43})=-\Delta u_4=-3$$

$$\Delta$$
(reduced cost x_{34}) = Δ (reduced cost x_{14}) = $-\Delta v_4 = 3$

$$\Delta({
m reduced\ cost\ }x_{35})=\Delta({
m reduced\ cost\ }x_{15})=-\Delta v_5=3$$

itera	1				Desi	ination	•				I		
3	<u> </u>		1		2		3		4		5	Supply	44,
	ı	16	+4	16	+4	13	99	22	10	17	5	50	-7
	2	14	+2	4	+2	16	30	t9	+4	15	ම	60	-4
Source	3	19	<u>j</u> 39	19	20	20	9	23	4	M	1-19	50	
	4(D)	М	M	0	0	×	n-1	0	®	•	9	50	-19
Demand			30		20		to		X 0	(60	2 = 21	160
	•,		19	1	19		20		19	t t	9		

The basic solution remains feasible and optimal.

(c)
$$\Delta s_2 = -10, \Delta d_5 = 10 \Rightarrow \Delta x_{25} = 10$$

The basic solution remains feasible and optimal.

(d)
$$\Delta s_2=\Delta d_2=20\Rightarrow \Delta x_{23}=\Delta x_{32}=20$$
 and $\Delta x_{33}=-20$

ltero	Hion	1		Destinación	•		ı	
) 	1 /		3	4	5	Supply	ie,
	i	+4	+4	13	22 +7	+2	50	-7
	2	+2	+2	13 E	19 +4	15	80	_7
Source	3	<u>19</u>	19 4	20	23 +1	M - 22	50	0
	4(D)	M M+3	+3	M + 2	30	3	50	-22
Demand		30	40	70	30	60	2=24	60
	,	19	19	20	22	22		

This solution satisfies the optimality criterion, but it is infeasible.

9.3-1.

(a)

(b)

			Unit Cost (\$)							
		i	Task							
		1	2	3	4	Supply				
	Α	8	6	5	7	1				
Assignee	В	6	5	3	4	1				
	С	7	8	4	6	1				
	D	6	7	5	6	1				
Demand		1	1	1	1					

(c), (d)

Unit Cost			Ta	Task				
		1	2	3	4			
	Α	\$8	\$6	\$5	\$7			
Assignee	В	\$6	\$5	\$3	\$4			
	С	\$7	\$8	\$4	\$6			
	D	\$6	\$7	\$5	\$6			
Assignmen	nts		Ta	ask		Total		
		1	2	3	4	Assignments		Supply
	Α	0	1	0	0	1	=	1
Assignee	В	0	0	0	1	1	=	1
	С	0	0	1	0	1	=	1
	D	1	0	0	0	1	=	1
Total Assign	ned	1	1	1	1			
		=	=	=	=			Total Cost
Demand		1	1	1	1			\$20

9.3-2.

(a) Ships are assignees and ports are assignments.

(b)

			7	Γask		
Assignee	۱:	A	В	С	D	
	Ĺ					_
1	1	500	400	600	700	
2	1	600	600	700	500	
3	1	700	500	700	600	
4	1	500	400	600	600	
	1					

Optimal Solution:

Task A is assigned to Assignee 1 Task D is assigned to Assignee 2 Task B is assigned to Assignee 3 Task C is assigned to Assignee 4

This incurs a cost of \$2, 100.

(c)

		De				
	ļ	1 2 3 4				Supply
					!	
1	i	500	400	600	70d	1
2	1	6∞		700	500	
3		7 00 0	5∞	7∞	600	1
4	l	500	400	600	6cc	1
					Ì.	
Demand		1	1	1	1	
-		-			600	1

(d) - (e)

One optimal assignment is: (1,1), (2,4), (3,2), (4,3), where the first entry is ship and the second port.

(f) Continuing to pivot where reduced costs are zero:

Alternative optimal matching: (1,1), (2,4), (3,3), (4,2)

Alternative optimal matching: (1,2), (2,4), (3,3), (4,1)

Alternative optimal matching: (1, 3), (2, 4), (3, 2), (4, 1)

9.3-3.

(a)

a)				t Table Task		
		1	2	3	4	5
	1	7440	18000	12160	0	0
	2	6960	16400	11200	0	0
Assignee	3	7680	18400	12800	0	0
_	4	6720	16800	1M	0	0
	5	6960	17200	1M	0	0

(b) The optimal cost is \$34,960.

	- 1		Ta	sk			
		1	2	3	4	5_	
	1				X		
	2			X			
Assignee	3					X	
3	4		Х				
	5	x					
	•						Cost is
							34960

(c)

		İ	Pr	oduet			
		1	2	3	4	5	Supply
		ļ					
	1	 74.4	180	121.6	0	0	1 1
	2	69.6	164	112	0	0	1
Olant	3	76.8	184	128	0	0	1
	4	67.2	168	M	0	0	1
	5	69.6	172	M	0	0	1
Deman	d d	 1 	1	1	1	1	

(d)

(0)	1	2	3	4	5	Supply	u[i]
	74.4	180	122	0	0		
1					B	1	
	4.8	9.6	3.2	0	1	1	6.4
	69.6	164	112	0	0		
2		B	B				
	6.4	0	1	6.4	6.4	1	0
	76.8	184	128	0	0		
3				B	B		
	7.2	13.6	9.6	1	0	1	6.4
	67.2	168	M	0	01		
4	B	B				ĺ	
	0	1	1M-e3	2.4	2.4	1	4
	 69.6	1721	M	0	01	! !	
5	107.01	1/2	M M				
,	B 1 1	1 4	1M-e3	0	0	1 1	6.4
	['! []	1.0	IM-63 	"		' 	0.4
Demand	1	1	1	1	1	1	
	l						
v [j]	63.2	164	112	-6.4	-6.4		

The initial solution from Vogel's approximation method is optimal. Plant 2 produces product 3, plant 4 produces product 2, plant 5 produces product 1. This incurs a cost of \$34,960.

9.3-4.

(a) After adding a dummy stroke, which everyone can swim in zero seconds, the problem becomes that of assigning 5 swimmers to 5 strokes. The optimal solution turns out to be the following: David swims the backstroke, Tony swims the breaststroke, Chris swims the butterfly, and Carl swims the freestyle.

				Task			
		Carl	Chris	David	Tony	Ken	
Assig	gnee	A	В	С	D	E	Row Min
		1					1
Back	1	37.7	32.9	33.8	37	35.4	32.9
Breast	2	43.4	33.1	42.2	34.7	41.8	33.1
Fly	3	33.3	28.5	38.9	30.4	33.6	28.5
Free	4	29.2	26.4	29.6	28.5	31.1	26.4
Dummy	5	0	0	0	0	0	0
		1					1

(b) Cost: 126.2

Task C is assigned to Assignee 1
Task D is assigned to Assignee 2
Task B is assigned to Assignee 3
Task A is assigned to Assignee 4
Task E is assigned to Assignee 5

9.3-5.

(a)

	 	1	Pr. 2	oduct 3	4	5	 Supply
	1	820	810	840	960		2
Plant	2	800	870	M	920	0	2
,	3	740	900	810	840	0	ļ 1
Demand	-	1	1	1	1	1	

(b) - (c)

Since all the reduced costs are nonnegative, this solution is optimal.

(d)

١		Pro	duct			ł
- [1	2	3	4	5	Supply
ļ						<u> </u>
i	820	810	840	960	0] [1
١į	820	810	840	960	0	1
1	800	870	M	920	0	1
- 1	800	870	M	920	0	1
-	740	900	810	840	H	1
_l.						
1	1	1	1	1	1	
		820 8 800 8 800	1 2 	820 810 840 2 820 810 840 3 800 870 M 6 800 870 M	1 2 3 4 	1 2 3 4 5

This is identical to the table in (a) except that plants 1 and 2 have been split into two plants each.

(e)

	ı	D	estinat	ion		l	
,	1	2	3	! 4	5	Supply	u[i]
	820	810	840	 960	01		
1		В	j`	j`	j`	i i	
	20	1	0	40	0	1	0
	820	810	840	960	0	i	
2		В	B		B	1	
	20	0	1	40 	0	1	0
	800	870	M	920	0	i i	
3	B						
	1 1	60	1M-e3	0	0	1	0
	800	870	H	920	0 1	ļ	
4	B	-,		B	B	- 1	
	0	60	1M-e3	0	1	1	0
	740	900	810	840	MI I	i	
5				B		- 1	
	20	170	50	1	1M+80	1	-80
Demand	1	1	1	1	1	1.	
v[j]	800	810	840	920			

The basic feasible solution for the transformed problem above corresponds to that given in part (c).

	ı	Dest	ination		ı	
0	1 1	2	3 	4	Supply	u[i]
1	13	16	12	11	<u> </u>	!
-	7	8	8	1	1	-9
2	15	MI	'	20		
2	1	1H-17	0	0	1	0
3	5 B	7 B	10	61		
	0	1	7	-4	1	-10
4	0	01	0	01		
į	-2	-4	1	E -7	1	-13
Demand	1	1	1	1		
r(j)	15	17	13	20		
1		Desti	nation	1		
(1)	1	Desti 2	nation 3	4	Supply	u[i]
	1			4 11	Supply	u[i]
1)	i	2	3		Supply	u[i]
1	13	2	12	11 B 1		
	13	2 	12 1 13 P	11 B		
2	13 0 L	2 1 	12 1 13 P	11 B 1 20		-2
1	13 0 15 L	2 16 1 1 M 1 1 1 7	3 12 13 13 0	20 7	1 1 1	-2
2	13 0 15 L 1 5	2 16 1 1 M 1 1 1 7	3 12 1 13 P 0 10	20 7	1 1 1	-2 0
2	13 0 L 1 5 P	2 16 1 1 1 1 1 1 1 1 1 1	3 12 1 13 P 0 10 7	11 B 1 20 7 3	11	-2 0
2	13 0 15 L 5 5 0	2 16 1 1 1 1 1 1 1 1 1 1	3 12 1 13 P 0 10 7	20 7 3 8	11	-2 0 -10

1		Desti	nation	1		
(a)	1 [2	3	4	Supply	u[i]
		16	12	11		
1	13	16	12	B	i i	
· i	4	5	1	1	1	11
i	i		i			
	15	M)	13	20	!	
2	,!	44.47	B 1	7	1	13
	41	1H-13	' 'I	' '	¦ '¦	
i	51	7	10	61	i i	
3	В	L		E		
	1	0	3	-1	1	7
		01	l	0	!	l I
4	0	P	0 B	" P	1 1	
-	2	1	0	0	1	0
					ii	İ
Demand	1	- 1	1	1	İ	
					!	
v[j]	-2	0	0	0	!	
,	•				•	
	ļ	Dest	ination		ı	
(3)	1 1			4	 Supply	u[i]
(3)		2 	3 	4 	 Supply	u[i]
					 Supply 	u(i)
(3)	13	2 16 	3 12 	4 11 8	 Supply 1	
		2 16 	3 12 	4 11 8	 Supply 1	u[i]
1	13	2 16 	3 12 	4 11 8	 Supply 	
	13 3 15	2 16 5 	3 12 1 B	4 11 B 1 20	 	 11
1	13	2 16 5 	3 12 1 B	4 11 B 1	 	
1	13 3 15	2 16 5 M 1M-13	3 12 1 13 B 1	4 	 	 11
1	13 3 15 	2 16 5 M 1M-13	3 12 1 13 B 1	4 	 	 11
2	13 3 15 	2 16 5 M 1M-13	3 12 1 13 B 1	4 	 	 11
2	13 3 5 B 1	2 16 5 M 1M-13 7 1	3 12 1 13 B 1 10 	4 	 	 11 13 13
2	13 3 15 	2 16 5 M 1M-13	3 12 1 13 8 1 10 4	4 	 	 11 13 13
2	13 3 5 B 1	2 16 5 M 1M-13 7 1	3 12 1 13 8 1 10 4 0 8	4 		 11 13 13
2	13 3 5 B 1	2 16 5 M 1M-13 7 1	3 12 1 13 8 1 10 4	4 		 11 13 13 6
2	13 3 5 B 1	2 16 5 M 1M-13 7 1	3 12 1 13 8 1 10 4 0 8	4 		 11 13 13 6
1 2 3 4 Demand	13 3 5 B 1 B 1	2 16 5 M 1M-13 7 1 0 1	3 12 12 1 13 B 1 10 B 0 0	4 11 8 1 7 6 6 0 0 0 1		 11 13 13 6
1 2 3	13 3 5 B 1	2 16 5 M 1M-13 7 1	3 12 12 1 13 B 1 10 B 0 0	4 11 8 1 7 6 6 0 0 0 1		 11 13 13 6

This solution corresponds to that given in Section 9.3; although the set of basic variables is different, the values of the variables are the same.

9.3-7.

(a) Let assignees 1 and 2 represent plant A, assignees 3 and 4 represent plant B, and the tasks be the distribution centers.

		Task			dummy
		1	2	3	au 4 7
_	1	8000	140∞	12000	0
	2	8000	140∞	120∞	0
Assignee	3	60∞	160∞	15000	0
_	4	60æ	16000	150∞	0

(b) Cost: 32,000

			Task		
		111	2	3	4_
	1		х		
	2			Х	
Assignee	3	х			
	4				Х

(c)

Cost Per Unit Distributed							
		D	estinat	ion			
		11	2	3	4	Supply	
	1	8000	14000	12000	0	1	
	2	8000	14000	12000	0	1	
Source	3	6000	16000	15000	0	1	
	4	60€	16000	15000	0	1	
Demand 1 1 1 1							

(d)

			Destination			
		1	_2_	3	4_	Supply
	1		1			1
	2			1		1
Source	3	1				1
Bource	4	_			1	1
Dem	and	1	1	1	1	Cost is
2011						320 <i>0</i> 0

(e)

		Cost Per	Unit D	istribu	ted		
		D	Destination				
		1	2	3	4	Supply	
	1	8000	14000	12000	0	2	
Source	2	60 <i>0</i> 5	16000	15000	0	2	
Dema	and	1	1	1	1		

(f)

9.3-8.

(a)

(b)

	Cost Per Unit Distributed						
		Desti	nation	i			
		11	2	3	Supply		
	1	5	7	4	1		
Source	2	3	6	5	1		
	3	2	3	4	1		
Demand 1 1 1							

(c)

		Destination			
		1	2	3	Supply
	1			1	1
Source	2	1			1
	. 3		1		1
Dema	and	1	1	1	Cost is
					10

- (d) A transportation problem of size $m \times n$ has m+n-1 basic variables. Since m=n for the assignment problem, there are 2(3)-1=5 basic variables, but only 3 assignments. Thus, 2 basic variables are degenerate, they equal zero. Assignment problems are always highly degenerate. This can be seen using the interactive routine in the OR Courseware.
- (e) x_{A1}, x_{A2}, x_{B2} and one of (x_{B3}, x_{C3}) are nonbasic, too. x_{C1} and one of (x_{B3}, x_{C3}) are basic and equal zero.

Dual variables:

							$\mathbf{u_i}$
	5		7		4		
		+3		+4		1	0
	3		6		5		
		1		+2		0	1
	2		3		4		
		0		1		0	0
vj		2		3		4	

Looking at $c_{ij} - u_i - v_j$, we see that the allowable ranges for this solution to stay optimal are: $c_{A1} \ge 2$, $c_{A2} \ge 3$, $c_{B1} \ge 4$, $c_{B2} \ge 5$.

9.3-9.

minimize
$$\sum_{i=1}^n\sum_{j=1}^nc_{ij}x_{ij}$$
 subject to
$$\sum_{j=1}^nx_{ij}=1 \qquad \text{for } i=1,2,\ldots,n$$

$$\sum_{i=1}^nx_{ij}=1 \qquad \text{for } j=1,2,\ldots,n$$

$$x_{ij}\geq 0 \qquad \text{for } i,j=1,2,\ldots,n$$

The table of constraint coefficients is identical to that for the transportation problem (Table 9.6). The assignment problem has a more special structure because m = n and $s_i = d_i = 1$ for every i.

9.4-1.

Start with:

5	4	6	7
6	6	7	5
7	5	7	6
5	4	6	6

Subtract the minimum element from each element in the column and continue the algorithm.

$$\begin{bmatrix} 0 & 0 & 0 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 2 \end{bmatrix}$$

One optimal solution is to assign ships (1, 2, 3, 4) to ports (3, 4, 2, 1), with cost 21.

9.4-2.

Subtract the minimum element in each row from each element in the row and continue the algorithm.

4.8 10.3 4.8 2.8	0 0 0	0.9 9.1 10.4 3.2	4.1 1.6 1.9 2.1	25 8.7 5.1 4.7	3.9 9.4 3.9 1.9	0 0 0	0 8.2 9.5 2.3	3.2 0.7 1 1.2	1.6 7.8 4.2 3.6
0	0	0	0	0	0][0.9	0	0	0
3.9 8.7 3.2	0.7 0 0	0 7.5 8.8	3.2 0 0.3	1.6 7.1 3.5	2.7 7.5 2.0	0.7	7.5 8.8	3.2 0 0.3	0.4 5.9 2.3
1.2	0 1.6	1.6 0	0.5 0	2.9	0	0 2.8	1.6 1.2	0.5 1.2	1.7

One optimal solution is that David swims the backstroke, Tony the breaststroke, Chris the butterfly and Carl the freestyle. The total time is 126.2.

9.4-3.

Cost: 3, 260

9.4-4.

Subtract the minimum element in each row from every element in the row and continue the algorithm. This gives an optimal solution with cost 12.

9.4-5.

Subtract the minimum element in each column from every element in the column and continue the algorithm.

An optimal assignment is (A, 3), (B, 1), (C, 2), (D, 4), with cost 3.

9.4-6. Subtracting the minimum element in each row from each element in the row, and then continuing the algorithm, we get:

An optimal assignment is (A, 1), (B, 3), (C, 4), (D, 2). Cost = 16.information is needed to determine this.

Case 9.1

Option 1 (Shipping by Rail):

option I (ompping by Rain).											
4	Α	В	C	D	E	F	G	Н			
1	Shipping Cost (\$thousand	s)								
2		Market 1	Market 2	Market 3	Market 4	Market 5					
3	Source 1	61	72	45	55	66					
4	Source 2	69	78	60	49	56					
5	Source 3	59	66	63	61	47					
6											
7											
8	Shipment Quan	tity (millior	board feet	:)			Total		Total		
9		Market 1	Market 2	Market 3	Market 4	Market 5	Shipped		Available		
10	Source 1	6	0	9	0	0	15	=	15		
11	Source 2	2	0	0	10	8	20	=	20		
12	Source 3	3	12	0	0	0	15	=	15		
13	Total Received	11	12	9	10	8					
14		=	=	=	=	=			Total Cost (\$thousands)		
15	Total To Sell	11	12	9	10	8			2816		

Option 2 (Shipping by Ship):

Opt												
	Α	В	С	D	E	F	G	Н	I			
1	Shipping Cost (\$tho	usands)										
2		Market 1	Market 2	Market 3	Market 4	Market 5						
3	Source 1	31	38	24	55	35			bold = rail cost			
4	Source 2	36	43	28	24	31			(only rail feasible)			
5	Source 3	59	33	36	32	26						
6												
7	Ship Investment (\$t											
8		Market 1	Market 2	Market 3	Market 4	Market 5						
9	Source 1	275	303	238	0	285						
10	Source 2	293	318	270	250	265						
11	Source 3	0	283	275	268	240						
12												
13	Equivalent Annual (Cost (\$thou							Equivalent Annual			
14		Market 1	Market 2	Market 3	Market 4	Market 5			Investment Cost Factor			
15	Source 1	58.5	68.3	47.8	55	63.5			10%			
16	Source 2	65.3	74.8	55	49	57.5						
17	Source 3	59	61.3	63.5	58.8	50						
18												
19	Shipment Quantity	(million boa	ard-feet)				Total		Total			
20		Market 1	Market 2	Market 3	Market 4	Market 5	Shipped		Available			
21	Source 1	6	0	9	0	0	15	=	15			
22	Source 2	5	0	0	10	5	20	=	20			
23	Source 3	0	12	0	0	3	15	=	15			
24	Total Received	11	12	9	10	8						
25		=	=	=	=	=			Total Cost (\$thousands)			
26	Total To Sell	11	12	9	10	8			2770.8			

Option 3 (Shipping by Best Available for each Route):

A B C D E F G H	υpι	Option 3 (Snipping by Best Available for each Route):											
Market 1		A	В	С	D	E	F	G	Н				
Market 1	1	Shipping Cost (Ra	il) (\$thousan	ds)									
Source 2 69 78 60 49 56	2				Market 3	Market 4	Market 5						
Source 3 59 66 63 61 47 65	3	Source 1	61	72	45	55	66						
Shipping Cost (Ship) (Sthousands)	4	Source 2	69	78	60	49	56						
Shipping Cost (Ship) (Sthousands)	5	Source 3	59	66	63	61	47						
Market 1	6												
Source 31 38 24 55 35 35 35 36 32 26 36 43 28 24 31 31 36 32 26 36 43 38 36 32 26 36 43 36 32 26 36 43 36 32 26 36 43 36 32 26 36 43 36 32 26 36 43 36 32 26 36 43 36 32 26 36 43 36 32 26 36 36 36 36 3		Shipping Cost (Sh	ip) (\$thousai	nds)									
10			Market 1			Market 4							
11													
13													
Ship Investment (\$thousands) Market 1 Market 2 Market 3 Market 4 Market 5 Market 5 Source 1 275 303 238 0 285		Source 3	59	33	36	32	26						
Market 1													
15		Ship Investment (\$											
16													
17						_							
Equivalent Annual Cost (\$thousands)													
Equivalent Annual Cost (\$thousands) Market 1 Market 2 Market 3 Market 5 Market 5 Market 5 Market 6 Market 5 Market 6 Market 7 Market 7 Market 8 Market 8 Market 8 Market 8 Market 9 Ma		Source 3	U	283	2/5	268	240						
Market 1		Fauricalant Americal	O4 (64b	d-\						Carried ant Americal			
Source 1 Source 2 Source 2 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 3 Source 4 Source 5 Source 5 Source 5 Source 6 Source 7 Source 8 Source 9 Source 9 Source 9 Source 9 Source 9 Source 9 Source 9 Source 1 Source 1 Source 1 Source 1 Source 1 Source 1 Source 9 Source 9 Source 9 Source 9 Source 9 Source 1 Source 2 Source 1 Source 2 Source 3		Equivalent Annual			Morket 2	Morket 4	Morket F						
Source 2 Source 3 59 61.3 63.5 58.8 50		Source 1											
Source 3 59 61.3 63.5 58.8 50										10%			
24 25													
25 Annual Cost (Best Method) (\$thousands)		Source 5	33	01.5	00.0	30.0	30						
Market 1		Annual Cost (Best	Method) (\$ti	nousands)									
Source S		7 0001 (2001			Market 3	Market 4	Market 5						
28 Source 2 65.3 74.8 55 49 56 29 Source 3 59 61.3 63 58.8 47 30 31 Shipment Quantity (million board feet) Total Total Total 32 Market 1 Market 2 Market 3 Market 5 Shipped Available 33 Source 1 6 0 9 0 0 15 = 15 = 15 = 20 30 30 30 </td <td></td> <td>Source 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Source 1											
Source 3 59 61.3 63 58.8 47	28				55								
Shipment Quantity (million board feet)	29	Source 3			63	58.8	47						
Shipment Quantity (million board feet)	30												
Market 1		Shipment Quantity	(million boa	ard feet)				Total		Total			
33 Source 1 6 0 9 0 0 15 = 15 34 Source 2 5 0 0 10 5 20 = 20 35 Source 3 0 12 0 0 3 15 = 15 36 Total Received 11 12 9 10 8 - <t< td=""><td></td><td>ompinent quantity</td><td></td><td></td><td>Market 3</td><td>Market 4</td><td>Market 5</td><td></td><td></td><td></td></t<>		ompinent quantity			Market 3	Market 4	Market 5						
34 Source 2 5 0 0 10 5 20 = 20 35 Source 3 0 12 0 0 3 15 = 15 36 Total Received 11 12 9 10 8 10 8 10		Source 1							=				
Total Received	34		5	Ō	0	10	5		=				
37	35	Source 3	0	12	0	0	3	15	=	15			
38	36	Total Received	11	12	9	10	8						
39	37		=	=	=	=	=			Total Cost (\$000)			
40 Method of Shipment Market 1 Market 2 Market 3 Market 4 Market 5 42 Source 1 Ship Rail 43 Source 2 Ship Ship Rail	38	Total To Sell	11	12	9	10	8			2729.1			
41 Market 1 Market 2 Market 3 Market 4 Market 5 42 Source 1 Ship Rail 43 Source 2 Ship Ship Rail	39												
42 Source 1 Ship Rail 43 Source 2 Ship Ship Rail	40	Method of Shipme	nt										
43 Source 2 Ship Ship Rail	41		Market 1	Market 2	Market 3	Market 4	Market 5						
					Rail								
44 Source 3 Ship Rail			Ship			Ship							
	44	Source 3		Ship			Rail						

When comparing the three options, it is best to use the combination plan, while shipping entirely by rail leads to the highest costs.

If costs of shipping by water are expected to rise considerably more than for shipping by rail, stay with rail and use Option 1. If the reverse is true, then use Option 2. If the cost comparisons will remain roughly the same, use Option 3. Option 3 is clearly the most feasible but may not be chosen if it is too logistically cumbersome. More knowledge of the situation is necessary to determine this.

Case 9.2

a) \$20 million is saved in comparison with the results in Figure 6.13 by shipping 20 million fewer barrels to Charleston and 20 million more to St. Louis.

	В	С	D	E	F	G	Н	Ι	J			
3				Refineri	es							
4	Unit Cost	(\$millions)	New Orleans	Charleston	Seattle	St. Louis						
5		Texas	2	4	5	1						
6	Oil	California	5	5	3	4						
7	Fields	Alaska	5	7	3	7						
8		Middle East	2	3	5	4						
9												
10												
11	Shipment	Quantity		Refineri	es							
12	(millions	of barrels)	New Orleans	Charleston	Seattle	St. Louis	Total Shipped		Supply			
13		Texas	0	0	0	80	80	=	80			
14	Oil	California	0	0	0	60	60	=	60			
15	Fields	Alaska	20	0	80	0	100	=	100			
16		Middle East	80	40	0	0	120	=	120			
17		Total Received	100	40	80	140						
18			<=	<=	<=	<=			Total Cost			
19		Capacity	100	60	80	150			(\$millions)			
20									940			

b) \$40 million is saved in comparison with the results in Figure 6.17.

<u> </u>										
В	С	D	E	F	G	Н	Ι	J		
			Distribution	Center						
Unit Cost (\$r	nillions)	Pittsburgh	Atlanta	Kansas City	San Francisco					
	New Orleans	6.5	5.5	6	8					
Refineries	Charleston	7	5	4	7					
	Seattle	7	8	4	3					
	St. Louis	4	3	1	5					
Shipment Qu	antity		Distribution							
(millions of b	arrels)	Pittsburgh	Atlanta	Kansas City	San Francisco	Total Shipped		Supply		
	New Orleans	60	40	0	0	100	=	100		
Refineries	Charleston	0	40	0	0	40	=	40		
	Seattle	0	0	0	80	80	=	80		
	St. Louis	40	0	80	20	140	=	140		
	Total Received	100	80	80	100					
		=	=	=	=			Total Cost		
	Demand	100	80	80	100			(\$millions)		
								1,390		
	Unit Cost (\$r Refineries Shipment Qu (millions of b	Unit Cost (\$millions) Refineries Refineries Charleston Seattle St. Louis Shipment Quantity (millions of barrels) New Orleans Refineries Charleston Seattle St. Louis Total Received	Unit Cost (\$millions)	Distribution	Distribution Center	B C D E F G Unit Cost (\$millions) Pittsburgh Atlanta Kansas City San Francisco Refineries Charleston 7 5 4 7 Seattle 7 8 4 3 St. Louis 4 3 1 5 Shipment Quantity (millions of barrels) Pittsburgh Atlanta Kansas City San Francisco Refineries Charleston 0 40 0 0 Refineries Charleston 0 40 0 0 Seattle 0 0 0 80 20 Total Received 100 80 80 100 = = = = =	B C D E F G H Distribution Center Unit Cost (\$millions) Pittsburgh Atlanta Kansas City San Francisco New Orleans 6.5 5.5 6 8 Refineries Charleston 7 5 4 7 Seattle 7 8 4 3 St. Louis 4 3 1 5 Shipment Quantity Distribution Center (millions of barrels) Pittsburgh Atlanta Kansas City San Francisco Total Shipped New Orleans 60 40 0 0 100 100 Refineries Charleston 0 40 0 0 40 40 0 80 80 80 80 80 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 <td< td=""><td> B C D E F G H I </td></td<>	B C D E F G H I		

The cost of shipping both crude oil and finished product under this plan is \$940 million + \$1,390 million = \$2,330 million or \$2.33 billion — a savings of \$60 million compared to the original results in Table 6.20.

c) \$35 million is saved in comparison with the results in part (b). \$75 million is saved in comparison with the results in Figure 6.17.

	В	С	D	E	F	G	Н	ı	J
3				Distribution	Center				
4	Unit Cost (\$r	nillions)	Pittsburgh	Atlanta	Kansas City	San Francisco			
5		New Orleans	6.5	5.5	6	8			
6	Refineries	Charleston	7	5	4	7			
7		Seattle	7	8	4	3			
8		St. Louis	4	3	1	5			
9									
10									
11	Shipment Qu	antity		Distribution	Center				
12	(millions of l	parrels)	Pittsburgh	Atlanta	Kansas City	San Francisco	Total Shipped		Capacity
13		New Orleans	50	20	0	0	70	<=	100
14	Refineries	Charleston	0	60	0	0	60	<=	60
15		Seattle	0	0	0	80	80	<=	80
16		St. Louis	50	0	80	20	150	<=	150
17		Total Received	100	80	80	100			
18			=	=	=	=			Total Cost
19		Demand	100	80	80	100			(\$millions)
20									1,355

d) This solution costs \$40 million more than the solution in part (a). This solution costs \$20 million more than the solution is Figure 6.13.

	В	С	D	E	F	G	Н		J
3				Refineri	es				
4	Unit Cost	(\$millions)	New Orleans	Charleston	Seattle	St. Louis			
5		Texas	2	4	5	1			
6	Oil	California	5	5	3	4			
7	Fields	Alaska	5	7	3	7			
8		Middle East	2	3	5	4			
9									
10									
11	Shipment	Quantity		Refineri	es				
12	(millions	of barrels)	New Orleans	Charleston	Seattle	St. Louis	Total Shipped		Supply
13		Texas	0	0	0	80	80	=	80
14	Oil	California	0	0	0	60	60	=	60
15	Fields	Alaska	10	0	80	10	100	=	100
16		Middle East	60	60	0	0	120	=	120
17		Total Received	70	60	80	150			
18			=	=	=	=			Total Cost
19		Demand	70	60	80	150			(\$millions)
20									980

The total cost of shipping both crude oil and finished product under this plan is \$1,355 million + \$980 million = \$2,335 million or \$2.335 billion. This is \$5 million more than the cost of the combined total obtained in part (b), but \$55 million less than the total in Table 6.20.

e) The two transportation problems (shipping to refineries and shipping to distributions centers) are combined into a single model. The amount shipped to the refineries is constrained to be no more than capacity: TotalReceived(D16:G16) ≤ Capacity(D18:G18). The total shipped out of the refineries is constrained to equal the total amount shipped in: ShippedOut(H31:H34) = ShippedIn(J31:J34). The goal is to minimize the total combined cost (in J45) which is the sum of the two intermediate costs (in J20 and J39).

	Α	В	С	D	E	F	G	Н	Ι	J
1	Shi	pping to	Refineries							
2					Refi	neries				
3		Unit Cost	(\$millions)	New Orleans	Charleston	Seattle	St. Louis			
4			Texas	2	4	5	1			
5		Oil	California	5	5	3	4			
6		Fields	Alaska	5	7	3	7			
7			Middle East	2	3	5	4			
8										
9	Ш									
10		Shipment				neries				
11	Ш	(millions		New Orleans		Seattle	St. Louis	Total Shipped		Supply
12			Texas	0	0	0	80	80	=	80
13	Ш	Oil	California	0	0	0	60	60	=	60
14	Ш	Fields	Alaska	20	0	80	0	100	=	100
15			Middle East	80	30	0	10	120	=	120
16	Ш		Total Received	100	30	80	150			
17	Ш			<=	<=	<=	<=			Cost
18	Ш		Capacity	100	60	80	150			(Oil Fields> Refineries)
19										(\$millions)
20	Shi	Shipping to Distribution		Centers						950
21					Distribut	ion Center				
22		Unit Cost	(\$millions)	Pittsburgh	Atlanta	Kansas City	San Francisco			
23			New Orleans	6.5	5.5	6	8			
24		Refineries	Charleston	7	5	4	7			
25			Seattle	7	8	4	3			
26			St. Louis	4	3	1	5			
27	Ш									
28	Ш									
29		Shipment				ion Center				
30	Ш	(millions	of barrels)	Pittsburgh	Atlanta		San Francisco			Shipped In
31	Ш		New Orleans	100	0	0	0	100	=	100
32	\sqcup	Refineries		0	10	0	20	30	=	30
33	\square		Seattle	0	0	0	80	80	=	80
34	\vdash		St. Louis	0	70	80	0	150	=	150
35	\vdash		Total Received	100	80	80	100			04
36	\vdash		Demand	=	=	=	=			Cost
37	\vdash		Demand	100	80	80	100			(Refineries> D.C.'s)
38	\vdash									(\$millions)
39 40	\vdash									1,370
41	\vdash									Combined
42	\vdash									Total
43	\vdash									Cost
44										(\$millions)
45	\vdash								_	2,320
73	Ш									2,320

The total combined cost is \$2,320 million or \$2.32 billion, which is \$10 million less than in part (b), \$15 million less than in part (d), and \$70 million less than in Table 6.20.

f) If the Los Angeles refinery is chosen instead, then the combined shipping cost is \$2,450 million.

	Α	В	С	D	E	F	G	Н	П	J
1		pping to Ref					- C		Ė	
2		11 5			Refi	neries				
3		Unit Cost (\$mil	lions)	New Orleans	Charleston	Seattle	Los Angeles			
4			Texas	2	4	5	3			
5		Oil	California	5	5	3	1			
6		Fields	Alaska	5	7	3	4			
7			Middle East	2	3	5	4			
8										
9										
10		Shipment Quar	ntity		Refi	neries	•			
11		(millions of bar	rrels)	New Orleans	Charleston	Seattle	St. Louis	Total Shipped		Supply
12			Texas	40	0	0	40	80	=	80
13		Oil	California	0	0	0	60	60	Τ=	60
14		Fields	Alaska	0	0	80	20	100	Τ=	100
15			Middle East	60	60	0	0	120	=	120
16			Total Received	100	60	80	120			
17				<=	<=	<=	<=			Cost
18			Capacity	100	60	80	150			(Oil Fields> Refineries)
19										(\$millions)
				3						880
21					Distribut	ion Center	•			
22		Unit Cost (\$mil		Pittsburgh	Atlanta	Kansas City	San Francisco			
23			New Orleans	6.5	5.5	6	8			
24		Refineries	Charleston	7	5	4	7			
25			Seattle	7	8	4	3			
26			Los Angeles	8	6	3	2			
27										
28										
29		Shipment Quar				ion Center				
30		(millions of bar		Pittsburgh	Atlanta	Kansas City	San Francisco	Shipped Out		Shipped In
31			New Orleans	80	20	0	0	100	=	100
32		Refineries	Charleston	0	60	0	0	60	=	60
33			Seattle	20	0	60	0	80	=	80
34			St. Louis	0	0	20	100	120	=	120
35			Total Received	100	80	80	100		\vdash	
36				=	=	=	=		\vdash	Cost
37			Demand	100	80	80	100		\perp	(Refineries> D.C.'s)
38										(\$millions)
39									Н	1,570
40	\Box								\vdash	
41	\Box								\vdash	Combined
42	\Box								\vdash	Total
43									\vdash	Cost
44									\vdash	(\$millions)
45										2,450

If the Galveston refinery is chosen instead, then the combined shipping cost is \$2,470 million.

	Α	В	С	D	E	F	G	Н	П	J
1	Shipping to Refineries									
2	1				Refineries					
3		Unit Cost (\$mil	lions)	New Orleans	Charleston	Seattle	Galveston			
4		,	Texas	2	4	5	1			
5		Oil	California	5	5	3	3			
6		Fields	Alaska	5	7	3	5			
7			Middle East	2	3	5	3			
8										
9										
10		Shipment Quar	ntity		Refi	neries				
11		(millions of bar		New Orleans	Charleston	Seattle	Galveston	Total Shipped		Supply
12		,	Texas	0	0	0	80	80	Τ=	80
13		Oil	California	0	0	0	60	60	=	60
14		Fields	Alaska	10	0	80	10	100	-	100
15			Middle East	90	30	0	0	120	=	120
16			Total Received	100	30	80	150			-
17				<=	<=	<=	<=			Cost
18			Capacity	100	60	80	150			(Oil Fields> Refineries)
19										(\$millions)
20	O Shipping to Distribution Center		S						870	
21		•		Distribution Center						
22		Unit Cost (\$mil	lions)	Pittsburgh	Atlanta	Kansas City	San Francisco			
23			New Orleans	6.5	5.5	6	8			
24		Refineries	Charleston	7	5	4	7			
25			Seattle	7	8	4	3			
26			Galveston	5	4	3	6			
27									\Box	
28									\Box	
29		Shipment Quar	ntity		Distribut	ion Center				
30		(millions of bar	rels)	Pittsburgh	Atlanta	Kansas City	San Francisco	Shipped Out	П	Shipped In
31			New Orleans	100	0	0	0	100	1 = 1	100
32	П	Refineries	Charleston	0	0	30	0	30	=	30
33			Seattle	Ö	Ö	0	80	80	1=1	80
34			Galveston	0	80	50	20	150	-	150
35			Total Received	100	80	80	100		П	
36	П			=	=	=	=		П	Cost
37			Demand	100	80	80	100		П	(Refineries> D.C.'s)
38	П								П	(\$millions)
39										1,600
40										,
41	\Box								\vdash	Combined
42									Н	Total
43									Н	Cost
44	Н								Н	(\$millions)
45	H									2,470
43										2,470

Site	Total Cost of Shipping Crude Oil	Total Cost of Shipping Finished Product	Operating Cost for New Refinery	Total Variable Cost
Los Angeles	\$880 million	\$1.57 billion	\$620 million	\$3.07 billion
Galveston	870 million	1.60 billion	570 million	3.12 billion
St. Louis	950 million	1.37 billion	530 million	2.92 billion

g) Answers will vary.

Case 9.3

a) Assign one scientist to each of the five projects to maximize the total number of bid points.

	Α	В	С	D	Е	F	G	Н	I	
1	Bid	Project Up	Project Stable	Project Choice	Project Hope	Project Release				
2	Dr. Kvaal	100	400	200	200	100				
3	Dr. Zuner	0	200	800	0	0				
4	Dr. Tsai	100	100	100	100	600				
5	Dr. Mickey	267	153	99	451	30				
6	Dr. Rollins	100	33	33	34	800				
7										
8							Total			
9	Assignment	Project Up	Project Stable	Project Choice	Project Hope	Project Release	Assignments		Supply	
10	Dr. Kvaal	0	1	0	0	0	1	=	1	
11	Dr. Zuner	0	0	1	0	0	1	=	1	
12	Dr. Tsai	1	0	0	0	0	1	=	1	
13	Dr. Mickey	0	0	0	1	0	1	=	1	
14	Dr. Rollins	0	0	0	0	1	1	=	1	
15	Total Assigned	1	1	1	1	1				
16		=	=	=	=	=			Total Bid Points	
17	Demand	1	1	1	1	1			2551	

To maximize the scientists preferences you want to assign Dr. Tsai to lead project Up, Dr. Kvaal to lead project Stable, Dr. Zuner to lead project Choice, Dr. Mickey to lead project Hope, and Dr. Rollins to lead project Release.

b) Since there are only four assignees, we introduce a dummy assignee with preferences of –1. The task that gets assigned the dummy assignee will not be done.

Project Up would not be done.

c) Since two of the assignees can do two tasks, we need to double them. We include assignees Zuner-1, Zuner-2, Mickey-1, and Mickey-2 into the problem. In order to have an equal number of assignees and tasks we also need to include one dummy task. In order to ensure that neither Dr. Kvall nor Dr. Tsai can get assigned the dummy task and thus no project, we insert a large negative number as their point bid for the dummy project.

Dr. Kvaal leads project Stable, Dr. Zuner leads project Choice, Dr. Tsai leads project Release, and Dr. Mickey leads the projects Hope and Up.

d) Under the new bids of Dr. Zuner the assignment does not change:

e) Certainly Dr. Zuner could be disappointed that she is not assigned to project Stable, especially when she expressed a higher preference for that project than the scientist assigned. The optimal solution maximizes the preferences overall, but individual scientists may be disappointed. We should therefore make sure to communicate the reasoning behind the assignments to the scientists.

f) Whenever a scientist cannot lead a particular project we use a large negative number as the point bid.

	Α	В	С	D	Е	F	G	Н	I
1	Bid	Project Up	Project Stable	Project Choice	Project Hope	Project Release			
2	Dr. Kvaal	86	343	171	-10000	-10000			
3	Dr. Zuner	0	200	800	0	0			
4	Dr. Tsai	100	100	100	100	600			
5	Dr. Mickey	300	-10000	125	-10000	175			
6	Dr. Rollins	-10000	50	50	100	600			
7									
8							Total		
9	Assignment	Project Up	Project Stable	Project Choice	Project Hope	Project Release	Assignments		Supply
10	Dr. Kvaal	0	1	0	0	0	1	=	1
11	Dr. Zuner	0	0	1	0	0	1	=	1
12	Dr. Tsai	0	0	0	0	1	1	=	1
13	Dr. Mickey	1	0	0	0	0	1	=	1
14	Dr. Rollins	0	0	0	1	0	1	=	1
15	Total Assigned	1	1	1	1	1			
16		=	=	=	=	=			Total Bid Points
17	Demand	1	1	1	1	1			2143

Dr. Kvaal leads project Stable, Dr. Zuner leads project Choice, Dr. Tsai leads project Release, Dr. Mickey leads project Up, and Dr. Rollins leads project Hope.

g) When we want to assign two assignees to the same task we need to duplicate that task.

Project Up is led by Dr. Mickey, Stable by Dr. Kvaal, Choice by Dr. Zuner, Hope by Dr. Arriaga and Dr. Santos, and Release by Dr. Tsai and Dr. Rollins.

h) No. Maximizing overall preferences does not maximize individual preferences. Scientists who do not get their first choice may become resentful and therefore lack the motivation to lead their assigned project. For example, in the optimal solution of part (g), Dr. Santos clearly elected project Release as his first choice, but he was assigned to lead project Hope.

In addition, maximizing preferences ignores other considerations that should be factored into the assignment decision. For example, the scientist with the highest preference for a project may not be the scientist most qualified to lead the project.