		Villicius	1 avancin vi	anna - NUSP 3155408 -
Tamanho	Sinal IEEE 754 expoente	(bits) polarização	mantissa	
$\frac{13111311110}{32}$	1 8	127	32	-
64	1 11	1023	52	Forma interpoladora de Lagrange
Formato E_{min} E_{max} menor \mathbb{N}° ϵ Precisão $F(\beta, t)$ $f(x)$		$ \begin{array}{c c} \hline 1023 \\ \hline Doul \\ -10 \\ 102 \\ \approx 2, 2 \times \\ \approx 1, 8 \times \\ 2^{-52} \approx 2, 2 \\ \text{s} \approx 16 \text{ digitos} \\ \times \beta^e e \in [-n] \\ s \leq 1 - \frac{1}{2}\beta - t \end{array} $ $ \begin{array}{c c} c \\ c \\$	ble 22 23 10^{-308} 10^{308} 2×10^{-16} $3 \times 3 \times$	Forma interpoladora de Lagrange $f(x) \approx P_1(x) = a_0(x - x_1) + a_1(x - x_0)$ $a_0 = \frac{f(x_0)}{x_0 - x_1}; a_1 = \frac{f(x_1)}{x_1 - x_0}$ $f(x) \approx P_2(x) = (x - x_1)(x - x_2) \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)}$ $+ (x - x_0)(x - x_2) \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)}$ $+ (x - x_0)(x - x_1) \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$ $L_i(x) = \prod_{k=0, k \neq i}^n \frac{x - x_k}{x_i - x_k}, i = 0 \dots n$ $f(x) \approx P_n(x) = \sum_{k=0}^n f(x_k) L_k(x)$ Forma interpoladora de Newton $f(x) \approx P_n(x) = a_1$ $+ a_2(x - x_0) + a_3(x - x_0)(x - x_1) + \dots$
			; bx	$ + a_{n}(x - x_{0})(x - x_{1}) \dots (x - x_{x-1}) $ $ a_{1} = f(x_{0}) $ $ a_{2} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} $ $ a_{3} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{1} - x_{0}}}{\frac{x_{1} - x_{0}}{x_{1} - x_{0}}} $ Forma Interpoladora de Newton - Diferenças divididas $ f[x_{i}] = f(x_{i}) $ $ f[x_{i}, x_{i+1}] = \frac{f[x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}} $ $ f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{i}, x_{i+1}, \dots x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{i}, x_{i+1} \dots x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{0}, x_{1}, x_{1}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{0}, x_{1}, x_{1}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{0}, x_{1}, x_{1}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{0}, x_{1}, x_{1}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{0}, x_{1}, x_{1}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{i+1}, x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}} $ $ f[x_{0}, x_{1}, x_{2}] $
$= \sum_{n=-N}^{N} c_n e^{i\frac{2\pi nx}{P}}$ $a_n = \frac{2}{P} \int_{x_0}^{x_0+P} s(x) \cos(\frac{2\pi nx}{P}) dx$ $b_n = \frac{2}{P} \int_{x_0}^{x_0+P} s(x) \sin(\frac{2\pi nx}{P}) dx$ $c_n = \frac{1}{P} \int_{x_0}^{x_0+P} s(x) e^{-i\frac{2\pi nx}{P}} dx$				$P_{n}(x) = 2^{n} \times \sum_{k=0}^{n} x^{k} \binom{n}{k} \binom{\frac{n+k-1}{2}}{n}$ $P_{0}(x) = 1 P_{1}(x) = x P_{2}(x) = \frac{1}{2} \times (3x^{2} - 1)$ $\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \frac{2}{2n+1} \delta_{mn}$

Métodos de Integração Numérica

Ponto Central
$$\int_{a}^{b} f(x) dx \approx h \sum_{i+1} Nf\left(\frac{x_{i} + x_{i+1}}{2}\right)$$
 Trapézio
$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f(x_{0}) + 2\left(f(x_{1}) + \dots + f(x_{N-1})\right) + f(x_{N})\right]$$
 Simpson 1/3
$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N})\right]$$
 Simpson 3/8
$$\int_{a}^{b} f(x) dx \approx \frac{3h}{8} \left[f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + 2f(x_{3}) + \dots + 2f(x_{3N-3}) + 3f(x_{3N-2}) + 3f(x_{3N-1}) + f(x_{3N})\right]$$

Quadratura de Gauss

Geral	$\int_a^b w(x)f(x)dx \approx \sum_{i=1} nC_i f(x_i) \ (C_i \text{ são os pesos e } x_i \text{ são os pontos tabelados}$
Gauss-Legendre	$w(x) = 1, a = -1, b = 1, \stackrel{i=1}{n} = 2 \implies C_1 = C_2 = 1, x_1 = -0,57735027ex_2 = -0$
	$n=2 \implies \int_{-1}^{1} f(x)dx \approx f(-0.57735027) + f(0.57735027)$
Gauss-Chebyshev	$w(x) = \frac{1}{\sqrt{1-x^2}}, a = -1, b = 1$ $w(x) = e^{-x}, a = 0, b = \infty$
Gauss-Laguerre	$w(x) = e^{-x}, a = 0, b = \infty$
Gauss-Hermite	$w(x) = e^{-x^2}, a = -\infty, b = \infty$

Erro na Integração Numérica

Trapézio	$R_1(f) = -\frac{(b-a)}{12}h^2f''(\xi), \xi \in (x_0, x_1)$
Simpson $1/3$	$R_2(f) = -\frac{(b-\tilde{a})}{180} h^4 f^{(4)}(\xi), \xi \in (x_0, x_{2N})$
Simpson 3/8	$R_3(f) = -\frac{\binom{180}{b-a}}{80} h^4 f^{(4)}(\xi), \xi \in (x_0, x_{3N})$

Lista de Exercícios	Livro Neide
$y_n = \int_0^1 \frac{x^n}{x+a} dx \Longrightarrow \int_0^1 \frac{x^1}{1+a} dx < y_n < \int_0^1 \frac{x^n}{a} dx$ $\frac{1}{(n+1)(1+a)} < y_n < \frac{1}{(n+1)a}$ $x^n = [(x+a)-a)]^n = \sum_{k=0}^\infty (-1)^k \binom{n}{k} (x+a)^{n-k} a^k$	$I_n = e^{-1} \int_0^1 x^n e^x dx \implies I_n < e^{-1} \max_{0 \le x \le 1} (e^x) \int_0^1 x^n dx < \frac{1}{n+1}$ $I_n = e^{-1} \left\{ [x^n e^x]_0^1 - \int_0^1 nx^{n-1} e^x dx \right\}$
$y_n = \int_0^1 \sum_{k=0}^n (-1)^k \binom{n}{k} (x+a)^{n-k-1} a^k dx$	$c_r = \frac{ P'(x) }{P(x)} \qquad c_r \le 1 \implies \text{bem condicionado}$
$\int_0^{g_n} \int_{k=0}^{\infty} (1)^{k} \left(\frac{k}{k} \right)^{(k+k)} dk$	Formulas Gerais
$= \sum_{k=0}^{n} (-1)^k a^k \binom{n}{k} \int_0^1 (x+a)^{n-k-1} dx$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$ $\sum_{k=0}^{\infty} f^{(n)}(a)$
$= \sum_{k=0}^{n-1} (-1)^k a^k \binom{n}{k} \int_0^1 (x+a)^{n-k-1} dx$	$f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$ $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
$+ (-1)^n a^n \binom{n}{n} \int_0^1 (x+a)^{-1} dx$	$\sum_{k=0}^{n-1} ar^k = a\left(\frac{1-r^n}{1-r}\right)$