Uncertainty Quantification course

Lecture 8: Multidimensional SC and NISP

University of Amsterdam, fall 2023

1 November 2023

Outline

1 Homework assignment from last week

Stochastic collocation with dim>1

Oiscrete projection & NISP

Homework assignment from last week

Presentation by team 1

Stochastic Collocation: recap

PDE:
$$\mathcal{L}(u, Z) = \mathcal{F}(Z)$$
, $u = u(x, Z)$, dim $(Z)=1$

- (i) Select set of nodes in *Z*-space: $\theta_M := \{Z^{(j)}\}_{j=1}^M$
- (ii) Solve PDE on all nodes: $\mathcal{L}(u, Z^{(j)}) = \mathcal{F}(Z^{(j)})$ Solutions: $u^{(j)}(x)$ at node $Z^{(j)}$
- (iii) Interpolation: $\tilde{u}_M(x,Z) = \sum_{j=1}^M u^{(j)}(x) L_j(Z)$

with Lagrange basis functions $L_j(Z) := \prod_{i \neq j} \frac{Z - Z^{(i)}}{Z^{(j)} - Z^{(i)}}$

Uniform $\Theta_m := \{Z_i\}_{i=1}^m$: Runge phenomenon

standard SC in 1D

Better choice:

 non-uniform 1D quadrature points: building blocks SC method e.g. Clenshaw-Curtis (CC) nodes

standard SC in 1D

Better choice:

 non-uniform 1D quadrature points: building blocks SC method e.g. Clenshaw-Curtis (CC) nodes

Can be a nested rule over 'levels'.

Example over [0, 1] (rescaled from standard CC domain of [-1, 1])

- Level I = 1: $x_i^{(1)} \in \{0.5\}$,
- Level I = 2: $x_i^{(2)} \in \{0.0, 0.5, 1.0\},\$
- Level I = 3: $x_i^{(3)} \in \{0.0, 0.146, 0.5, 0.854, 1.0\}$.

Example over [0, 1] (rescaled from standard CC domain of [-1, 1])

- Level I = 1: $x_i^{(1)} \in \{0.5\},$
- Level I = 2: $x_i^{(2)} \in \{0.0, 0.5, 1.0\},\$
- Level I = 3: $x_i^{(3)} \in \{0.0, 0.146, 0.5, 0.854, 1.0\}$.

Exponential increase in number of points per level;

$$m_{I} = \begin{cases} 2^{I-1} + 1 & I > 1 \\ 1 & I = 1 \end{cases}$$

but useful for refinement.

Example over [0, 1] (rescaled from standard CC domain of [-1, 1])

- Level I = 1: $x_i^{(1)} \in \{0.5\},$
- Level I = 2: $x_i^{(2)} \in \{0.0, 0.5, 1.0\},\$
- Level I = 3: $x_i^{(3)} \in \{0.0, 0.146, 0.5, 0.854, 1.0\}$.

Exponential increase in number of points per level;

$$m_I = \begin{cases} 2^{I-1} + 1 & I > 1 \\ 1 & I = 1 \end{cases}$$

but useful for refinement.

Weights are such that $\sum_i f(x_i)w_i \approx \int f(x)p(x)dx = \mathbb{E}[f]$.

Extension to higher dimensions

• Remember gPC with d = 2 uncertain inputs:

$$f(Z_1, Z_2) \approx \tilde{f}(Z_1, Z_2) = \sum_{i} \hat{f}_i \Phi_{i_1}(Z_1) \Phi_{i_2}(Z_2)$$

• Here, **i** was a **multi index** (i_1, i_2) , determining the order of the basis functions.

Extension to higher dimensions

Remember gPC with d = 2 uncertain inputs:

$$f(Z_1, Z_2) \approx \tilde{f}(Z_1, Z_2) = \sum_{i} \hat{f}_i \Phi_{i_1}(Z_1) \Phi_{i_2}(Z_2)$$

- Here, **i** was a **multi index** (i_1, i_2) , determining the order of the basis functions.
- In SC, a multi index $I = (I_1, I_2)$ determines the order of 1D nodes used for each input.
- Example: level 1 nodes = $\{0\}$, level 2 nodes = $\{-1, 0, 1\}$

$$\textbf{I} = (1,2) \Rightarrow \{0\} \otimes \{-1,0,1\} = \{(0,-1),(0,0),(0,1)\}$$

Code is sampled at these 3 (Z_1, Z_2) via this multi index.

d=1: nodal set
$$\theta_M$$
, $\tilde{u}(Z)=\sum_{j=1}^M u(Z^{(j)})\,L_j(Z;\theta_M),\;\;Z^{(j)}\in\theta_M$

d>1: Tensor product, nodal set $\Theta_{\textit{M}} = \theta_{\textit{M}_1} \otimes \cdots \otimes \theta_{\textit{M}_d}$

$$\tilde{u}(Z) = \sum_{j_1=1}^{M_1} \cdots \sum_{j_d=1}^{M_d} u(Z^{(j_1,\dots,j_d)}) L_{j_1,\dots,j_d}(Z;\Theta_M)$$

nodes
$$Z^{(j_1,...,j_d)} = (Z_1^{(j_1)},...,Z_d^{(j_d)}) \in \Theta_M$$

and basis functions
$$L_{j_1,...,j_d}(Z;\Theta_M) = \prod_{n=1}^d L_{j_n}(Z_n;\theta_{M_n})$$

standard SC in multiple dimension

- More than 1 input: tensor products of 1D quad rules
- In 2D:

• Standard SC: user picks multi index $I = (l_1, l_2)$

standard SC in multiple dimension

- More than 1 input: tensor products of 1D quad rules
- In 2D:

• Standard SC: user picks multi index $I = (l_1, l_2)$

standard SC in multiple dimension

Surrogate in 2D:

$$\tilde{f}(\mathbf{Z}) = \sum_{j_1=1}^{m_{l_1}} \sum_{j_2=1}^{m_{l_2}} f\left(Z_1^{(j_1)}, Z_2^{(j_2)}\right) L_{j_1}(Z_1) \otimes L_{j_2}(Z_2)$$

2D basis functions:

Example: wing-weight function

$$f(\mathbf{Z}) = 0.036 S_w^{0.758} W_{fw}^{0.0035} \left(\frac{A}{\cos^2(\Lambda)}\right)^{0.6} q^{0.006} \lambda^{0.04} \left(\frac{100 t_c}{\cos(\Lambda)}\right)^{-0.3} \left(\frac{N_z}{W_{dg}}\right)^{0.49} + S_w W_D$$

S _w ∈ [150, 200]	wing area (ft ²)
W _{fw} ∈ [220, 300]	weight of fuel in the wing (lb)
A ∈ [6, 10]	aspect ratio
Λ ∈ [-10, 10]	quarter-chord sweep (degrees)
q ∈ [16, 45]	dynamic pressure at cruise (lb/ft ²)
$\lambda \in [0.5, 1]$	taper ratio
t _c ∈ [0.08, 0.18]	aerofoil thickness to chord ratio
N _z ∈ [2.5, 6]	ultimate load factor
W _{dg} ∈ [1700, 2500]	flight design gross weight (lb)
$W_p \in [0.025, 0.08]$	paint weight (lb/ft ²)

Example: wing-weight function

$$\begin{split} f(\mathbf{Z}) &= \\ 0.036 S_w^{0.758} W_{fw}^{0.0035} \left(\frac{A}{\cos^2(\Lambda)}\right)^{0.6} q^{0.006} \lambda^{0.04} \left(\frac{100 t_c}{\cos(\Lambda)}\right)^{-0.3} (N_{\mathbf{Z}} W_{dg})^{0.49} + \\ S_w W_0 \end{aligned}$$

SC can outperform MC

- SC can outperform MC
- Caveat 1: Accuracy poor if $f(\mathbf{x})$ is not smooth

- SC can outperform MC
- Caveat 2: $\mathbf{Z} = \{Z_1, \dots, Z_d\}$, d must be small (e.g. ≤ 5)

- SC can outperform MC
- Caveat 2: $\mathbf{Z} = \{Z_1, \dots, Z_d\}$, d must be small (e.g. \leq 5) 2D: given $\mathbf{I} = (I_1, I_2)$, there are $M = M_1 \times M_2$ code evaluations.

With tensor product $\Theta_M = \theta_{M_1} \otimes \cdots \otimes \theta_{M_d}$, total number of nodes is $M_1 \times M_2 \times \cdots \times M_d$.

Grows very rapidly with d: curse of dimension

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.
- 2 parameters, simulation time \approx 1.5 minutes.

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.
- 2 parameters, simulation time \approx 1.5 minutes.
- 3 parameters, simulation time \approx 15 minutes.

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.
- 2 parameters, simulation time \approx 1.5 minutes.
- 3 parameters, simulation time \approx 15 minutes.
- 4 parameters, simulation time \approx 3 hours.

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.
- 2 parameters, simulation time \approx 1.5 minutes.
- 3 parameters, simulation time \approx 15 minutes.
- 4 parameters, simulation time \approx 3 hours.
- 5 parameters, simulation time \approx 1.1 days.

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.
- 2 parameters, simulation time \approx 1.5 minutes.
- 3 parameters, simulation time \approx 15 minutes.
- 4 parameters, simulation time \approx 3 hours.
- 5 parameters, simulation time \approx 1.1 days.
- 6 parameters, simulation time \approx 1.5 weeks.

Curse of dimension example:

- You have a very fast code that takes 1 second to complete.
- You select 10 nodes per input parameter.
- 1 parameter, simulation time = 10 seconds.
- 2 parameters, simulation time \approx 1.5 minutes.
- 3 parameters, simulation time \approx 15 minutes.
- 4 parameters, simulation time \approx 3 hours.
- 5 parameters, simulation time \approx 1.1 days.
- 6 parameters, simulation time \approx 1.5 weeks.

...

20 parameters, simulation time $\approx 3.17 \cdot 10^{12}$ years, 226 times the age of the universe.

No supercomputer can beat this, need smarter algorithms.

• Postpone curse: sparse grids $\text{Select index set } \Lambda = \{\textbf{I}_1, \textbf{I}_2, \cdots \} \text{ instead of a single } \textbf{I}$

Smolyak sparse grids

Visually, a standard sparse grid with $\{I \mid |I| \le L + d - 1\}$ selects a 'triangle' of multi indices when d = 2 (2 uncertain inputs):

Remember: $|\mathbf{I}| = I_1 + \cdots + I_d$.

Isotropic sparse grids: sampling plan construction

- Given $\Lambda = \{(1,1),(1,2),\cdots\}$, create sampling plan by taking combination of tensor products for each $I \in \Lambda$
- For nested Clenshaw Curtis quad rule:

Isotropic sparse grids: sampling plan construction

- Given $\Lambda = \{(1,1),(1,2),\cdots\}$, create sampling plan by taking combination of tensor products for each $I \in \Lambda$
- For non-nested Gaussian quad rule:

Smolyak sparse grids

For d = 3, $\{I \mid |I| \le L + d - 1\}$ selects a 'simplex' of multi indices:

Smolyak sparse grids

• No explicit formula available to calculate M, total #nodes in sparse grid. Can be calculated via algorithm¹. For Clenshaw-Curtis:

DIM:	1	2	3	4	5	
CFN_E LEVEL						
0	1	1	1	1	1	
1	3	5	7	9	11	
2	5	13	25	41	61	
3	9	29	69	137	241	
4	17	65	177	401	801	
5	33	145	441	1,105	2,433	
6	65	321	1,073	2,929	6,993	
7	129	705	2,561	7,537	19,313	
8	257	1,537	6,017	18,945	51,713	
9	513	3,329	13,953	46,721	135,073	
10	1,025	7,169	32,001	113,409	345,665	
DIM:	6	7	8	9	10	ĺ
CFN_E LEVEL						1
0	1	1	1	1	1	
1	13	15	17	19	21	
2	85	113	145	181	221	
3	389	589	849	1,177	1,581	
4	1,457	2,465	3,937	6,001	8,801	Full t
5	4,865	9,017	15,713	26,017	41,265	equiva
6	15,121	30,241	56,737	100,897	171,425	
7	44,689	95,441	190,881	361,249	652,065	be
8	127,105	287,745	609,025	1,218,049	2,320,385	4
9	350,657	836,769	1,863,937	3,918,273	7,836,545	
10	943,553	2,362,881	5,515,265	12,133,761	25,370,753	

UQ course

tensor grid alent would $e 1025^{10}$

Burkardt, J. (2014). Counting Abscissas in Sparse Grids.

• Isotopic sparse grids: less points but all inputs are equal.

$$\Lambda = \{ \mathbf{I} \mid |\mathbf{I}|_1 - d + 1 \le L \}$$

• In practice: some inputs are more important than others.

- In practice: some inputs are more important than others.
- Dimension-adaptive sampling: find out 'on-the-fly' which ones
 - \rightarrow start with $\Lambda = \{1, 1, \cdots, 1\}$
 - \rightarrow adaptively refine Λ , add only 'important' $\mathbf{I} = (I_1, \cdots, I_d)$

- In practice: some inputs are more important than others.
- Dimension-adaptive sampling: find out 'on-the-fly' which ones
 - \rightarrow start with $\Lambda = \{1, 1, \cdots, 1\}$
 - \rightarrow adaptively refine Λ , add only 'important' $\mathbf{I} = (I_1, \dots, I_d)$

Which I are important?

One possibility: **hierarchical surplus**, error between **new** code value and **old** interpolant prediction.

From all candidate I, select the one with the highest surplus.

Example:

$$f(\mathbf{x}) = 6x_1 + 4x_2 + 5.5x_3 + 3x_1x_2 + 2.2x_1x_3 + 1.4x_2x_3 + x_4 + 0.5x_5 + 0.2x_6 + 0.1x_7$$

Polynomial function, adaptive algorithm should be able to **exactly** find it in 10 iterations

Example:

$$f(\mathbf{x}) = 6x_1 + 4x_2 + 5.5x_3 + 3x_1x_2 + 2.2x_1x_3 + 1.4x_2x_3 + x_4 + 0.5x_5 + 0.2x_6 + 0.1x_7$$

Polynomial function, adaptive algorithm should be able to **exactly** find it in 10 iterations

I = (1, 0, 0, 0, 0, 0, 0) refines x_1 line in 7-dimensional hypercube, enough to exactly describe $6x_1$ term.

Example:

$$f(\mathbf{x}) = 6x_1 + 4x_2 + 5.5x_3 + 3x_1x_2 + 2.2x_1x_3 + 1.4x_2x_3 + x_4 + 0.5x_5 + 0.2x_6 + 0.1x_7$$

Polynomial function, adaptive algorithm should be able to **exactly** find it in 10 iterations

I = (1, 0, 0, 0, 0, 0, 0) refines x_1 line in 7-dimensional hypercube, enough to exactly describe $6x_1$ term.

I = (1, 1, 0, 0, 0, 0, 0) refines (x_1, x_2) plane in 7-dimensional hypercube, enough to exactly describe $3x_1x_2$ term.

aka Non-Intrusive Spectral Projection (NISP) or pseudospectral method

Recall (lecture 2) approximation of function f(x) by projection:

$$f(x) pprox f_N(x) = \sum_{n=0}^N \hat{f}_n \, \phi_n(x)$$
 with orthogonal basis functions $\{\phi_n(x)\}$, and $\hat{f}_n = \frac{\langle f, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle}$ with appropriate (weighted) inner product $\langle ., . \rangle$

Discrete projection: approximate inner products with quadrature

Quadrature: numerical integration, $\int f(x)w(x) dx \approx \sum_{j=1}^{q} f(x^{(j)})\alpha^{(j)}$ with nodes $\{x^{(j)}\}$ and weights $\{\alpha^{(j)}\}$ (density w(x) absorbed into weights)

Quadrature in dim>1 is called cubature

Inner products for projection with *q*-point quadrature/cubature rule:

$$\langle f, \phi_n \rangle = \int f(x) \, \phi_n(x) \, w(x) \, dx \approx \sum_{j=1}^q f(x^{(j)}) \, \phi_n(x^{(j)}) \, \alpha^{(j)}$$

Stochastic system (e.g. PDE) with exact solution u(t, x, Z), $Z \in \mathbb{R}^d$

Spectral (gPC) approximation:
$$u_N(t, x, Z) = \sum_{n=0}^{N} \hat{u}_n(t, x) \Phi_n(Z)$$

$$\hat{u}_n(t,x) = \gamma_n^{-1} \langle u, \Phi_n \rangle = \gamma_n^{-1} \mathbb{E}[u(t,x,Z), \Phi_n(Z)]$$

$$\approx \tilde{u}_n(t,x) = \gamma_n^{-1} \sum_{j=1}^q u(t,x,z^{(j)}) \, \Phi_n(z^{(j)}) \, \alpha^{(j)}$$

Needed: q solutions of original (non-stochastic) system, $u(t, x, z^{(j)})$ with j = 1, ..., q

→ NISP is a non-intrusive method

dim(Z)>1: Cubature

From quadrature if dim(Z)=1 to cubature if dim(Z)>1:

Tensor product construction, based on 1-d quadrature and nodal sets

Again, sparse grids to reduce no. of nodes

888	8	8	8	8	8	8	8	8	8	888		0				8				0	
000	ō	0	0	0	0	0	0	0	0	0 00	0	0		0		0		0		0	0
000	0	0	0	0	0	0	0	0	0	0 00						0					
000	0	0	0	0	0	0	0	0	0	000		0				0				0	
000	0	0	0	0	0	0	0	0	0	000						0					
000	0	0	0	0	0	0	0	0	0	0 00	00 o	0	0	0	0	0	0	0	0	0	000
000	0	0	0	0	0	0	0	0	0	000						0					
000	0	0	0	0	0	0	0	0	0	000		0				0				0	
000	0	0	0	0	0	0	0	0	0	000						0					
000	0	0	0	0	0	0	0	0	0	000	0	0		0		0		0		0	0
888	8	8	8	8	8	0	8	8	0	888		0				8				0	

dim(Z)>1: Cubature

Example: your homework assignment from lecture 6!

Consider the following function with two random inputs:

$$f(Z_1, Z_2) = -(Z_1 - 2)(Z_2 - 1)^3 + \exp\left[-\frac{1}{2}(Z_1 - 2)^2 - \frac{1}{10}(Z_2 - 1)^2\right]$$

One input has a uniform distribution on [1,3], the other has a normal distribution with mean 1 and variance 1. Thus, $Z_1 \sim \mathcal{U}[1,3]$ and $Z_2 \sim \mathcal{N}(1,1)$.

- If $f(Z_1, Z_2)$ is considered as your 'code'.
- This involved computing $\mathbb{E}\left[f(Z_1,Z_1)\Phi_{i_1}^{(1)}(Z_1)\Phi_{i_2}^{(2)}(Z_2)\right]/\gamma_i$.
- This can be done with in-built (SciPy) integration routines.

dim(Z)>1: Cubature

But also with cubature:

 $p=1 \ q=1$

$$\mathbb{E}\left[f(Z_1,Z_1)\Phi_{i_1}^{(1)}(Z_1)\Phi_{i_2}^{(2)}(Z_2)\right] \approx \sum_{p=1}^{m_p} \sum_{q=1}^{m_q} f(Z_{1,p}Z_{2,q})\Phi_{i_1}^{(1)}(Z_1)\Phi_{i_2}^{(2)}(Z_2)\alpha_{1,p}\alpha_{2,q}$$

Multidim SC & NISP **UQ** course 1 Nov 2023 31/33 Solution u(t, x, Z) of PDE system, approximated by $\tilde{u}(t, x, Z) = \sum_{n=0}^{N} \hat{u}_n(t, x) \Psi_n(Z)$

- Galerkin method: projection-based, leading to coupled equations for coefficients $\{\hat{u}_n(t,x)\}_{n=0}^N$. Intrusive.
- Collocation: interpolation in Z-space of deterministic solutions $\{u(t,x,z^{(j)})\}_{j=1}^q$. Non-intrusive.
- NISP: projection coefficients $\{\hat{u}_n(t,x)\}_{n=0}^N$ approximated with cubature using deterministic solutions $\{u(t,x,z^{(j)})\}_{j=1}^q$. Non-intrusive.

- Inverse UQ: Bayesian calibration and MCMC.
 Xiu section 8.2, Smith section 8.1 8.3 (on Canvas)
- Presentation about homework by TEAM 2?
- Homework: Multi-dimensional SC (more details on Canvas)