

MASTER IN CITY & TECHNOLOGY DIGITAL TOOLS AND BIG DATA 2019/2020

FACULTY DIEGO PAJARITO

Zonal Statistics

Making sense of indexes and land units

Raster: Continuous surfaces

Vector: Delimited areas

These differences make these two formats (sometimes) incompatible

Spatial resolution is the strongest limitation for Raster while the geometric complexity (i.e., **arc-node topology** and vertices) limits vector.

Visual disparities are examples of such issues

Orthophoto from: Institut Cartogràfic i Geològic de Catalunya https://www.icqc.cat/es/Administracion-y-empresa/Descargas/Fotografias-aereas-y-ortofotos/Ortofoto-convenciona

Spatial Aggregation plus summary statistics: Digital Values

Sum, Average, max, min, mean

*There are limitations for calculating areas

Changes in green areas from 2015 to 2019

- Co-location
- Distance, direction and spatial weights matrices
- Multidimensional scaling
- Spatial context
- Neighborhood
- Spatial heterogeneity, dependence, sampling, interpolation
- Smoothing and sharpening

^{*} Compatible reference system for area/distance in metres

Aggregation of digital values Defined categories Change detection Raster from two or more times

Reclassify

A change of domain

Key Elements:

- Data type (Integer / Numeric)
- Range (min max)
- Categories and associated values

Reclass tool

Rules.txt

-100 thru 30 = NULL 30 thru 100 = 1

Raster Calculator

```
("T31TDF_20150802_NDBI@1" <= 0) * 1 +

(("T31TDF_20150802_NDBI@1" > 0) AND ("T31TDF_20150802_NDBI@1" <= 0.1)) * 2 +

(("T31TDF_20150802_NDBI@1" > 0.1) AND ("T31TDF_20150802_NDBI@1" <= 0.3)) * 3 +

("T31TDF_20150802_NDBI@1" > 0.3) * 4
```


Reclassify by Table

Zonal Statistics

A simple operation

Vegetation Pixels

Comparison, as with other statistics

What are the most convenient units of analysis?

Which indexes coming from satellite images worth to aggregate?

What variables are missing in your studio project?

Hands-on

Creating zonal statistics for vegetation and buildings

Let's see what we are thinking

http://etc.ch/wDKV

https://www.directpoll.com/

* This survey is designed only for the live session

COVERAGES

VEGETATION

NDVI - Integer values

Vegetation (NDVI > 0.3)

CHANGE

NDVI 2019 - NDVI 2015

Reclassified difference

INDEXES

VEGETATION
BUILT UP AREA
DIFFERENCES BETWEEN 2019 AND 2015

RAW IMAGE TRUE COLOR

Reclass NDIV (Table)

-1 thru 0 = 1 Water

0 thru 0.1 = 2 Barren areas of rock, sand, or snow

0.1 thru 0.3 = 2 Shrub and grassland

0.3 thru 1 = 3 vegetation

Reclass NDVI Difference (Table)

-2 thru -0.2 = 0 vegetation lost

 $-0.1 \text{ thru } 0.1 = 1 \quad \text{no change}$

0.2 thru 2 = 2 vegetation gain

Reclass NDIV (Raster calculator)

```
("RASTER" <= 0) * 1 +
(("RASTER" > 0) AND ("RASTER" <= 0.1)) * 2 +
(("RASTER" > 0.1) AND ("RASTER" <= 0.3)) * 3 +
("RASTER" > 0.3) * 4
```

Reclass NDBI (Raster calculator)

("T31TDF_20150802_NDBI@1" <= 0) * 1 + (("T31TDF_20150802_NDBI@1" > 0) AND ("T31TDF_20150802_NDBI@1" <= 0.1)) * 2 + ("T31TDF_20150802_NDBI@1" > 0.1) * 3

Video

- 1. Calculate zonal statistics for vegetation using city blocks
- 2. Find a convenient visualisation for greener city blocks
- 3. Calculate zonal statistics for built-up area
- 4. Find a convenient visualisation for built-up areas

Aerial Photography

A high-resolution data source

Source: ICGC https://www.icgc.cat/es/Administracion-y-empresa/Descargas/Fotografias-aereas-y-ortofotos

Grid Skeletonization

Superpixel segmentation

Textural features (contrast, Measure of Correlation, Entropy)

Tool Libraries / Imagery / Tools

Edge Detection

Tool Libraries / Imagery / VIGRA

Watershed Segmentation

Tool Libraries / Imagery / VIGRA

By Jonathan Amos BBC Science Correspondent

Hands-on

Creating zonal statistics for vegetation and buildings

- 1. Get infrared aerial photography for Barcelona
- 2. Apply one of the presented methods for both true color and infrared photographies. Change the Area of Interest.
- 3. Optional (Perform a supervised classification for either sentinel-2 or aerial photography)

Tutorial: https://sagatutorials.wordpress.com/supervised-segmentation-classification/

Let's see what we are thinking

http://etc.ch/h3EP

https://www.directpoll.com/

* This survey is designed only for the live session

Video

MASTER IN CITY & TECHNOLOGY DIGITAL TOOLS AND BIG DATA 2019/2020

FACULTY DIEGO PAJARITO