

لجامعة اللبنانية كلية الإعلام الفرع الاول

الامتحانات النهائية للفصل الأول

Final round 2 2018-2019

المادة: Statistics and probability

المدة:120 د

الأستاذ: د. مروى الحاج

السنة المنهجية: الاولى

Data science: الاختصاص

Exercise 1 (4 points):

The lengths of service of all the executives employed by Standard Chemicals are:

Name	Years
Mr. Snow	20
Mr. Tolson	22
Mr. Kraft	26
Ms. Irwin	24
Mr. John	28

- a) How many different samples of 4 are possible?
- b) List all possible samples of size 4, and compute the mean number of cases in each sample.
- c) Compare the mean of the distribution of sample means to the population mean.

Exercise 2 (4 points):

The rent for a car Audi A8 follows the normal distribution with a mean of \$50 per hour and a standard deviation of \$30 per hour. We select a sample of 9 cars.

- a) What can we say about the shape of the distribution of the sample mean?
- b) What is the standard error of the mean in this example?
- c) What is the likelihood the sample mean is greater than \$60?
- d) What is the likelihood the sample mean is between \$40 and \$60?

Exercise 3 (3 points):

It is reported that 8 percent of products produced by Concord industry are defected. In a sample of 60 products, and by using the Poisson probability distribution find:

- a) The mean and standard deviation of the distribution
- b) The probability that none of the product is defected?
- c) The probability that at least three products are defected?

Exercise 4 (5 points):

The waiting time for customers at Noura Restaurant follows a normal distribution. A sample of 36 observations is selected. The sample mean is 21 minutes and the population standard deviation is 5 minutes. Conduct the following test of hypothesis using the 0.05 significance level.

H₀ : μ≤20 H₁ : μ>20

- a) Can we use z as the test statistic? Tell why or why not.
- b) Show the decision rule graphically.
- c) State your decision regarding the null hypothesis.
- d) What is the p-value?

Exercise 5 (4 points):

A sample of 65 observations is selected from one population with a population standard

deviation of 0.75. The sample mean is 2.67. A sample of 50 observations is selected from a second population with a population standard deviation of 0.66. The sample mean is 2.59. Conduct the following test of hypothesis using the .08 significance level.

 $H_0: \mu_1 \le \mu_2$ $H_1: \mu_1 > \mu_2$

- a) Is this a one-tailed or a two-tailed test?
- b) State the decision rule.
- c) Compute the value of the test statistic.
- d) What is your decision regarding H₀?

Good luck

B.2 Student's t Distribution

Confidence Intervals, c								Confidence Intervals, c						
	80%	80% 90% 95% 98% 99% 99.9%						80%	90%	95%	98%	99%	99.9%	
		Level of	Significano	e for One-T	ailed Test, o			Level of Significance for One-Tailed Test, α						
df	0.10	0.10 0.05		0.025 0.01 0.005		0.0005	df	0.10	0.05	0.025	0.01	0.005	0.0008	
	Level of Significance for Two-Tailed Test, α							Level of Significance for Two-Tailed Test, α						
	0.20	0.10	0.05	0.02	0.01	0.001		0.20	0.10	0.05	0.02	0.01	0.001	
1	3.078	6.314	12.706	31.821	63.657	636.619	36	1.306	1.688	2.028	2.434	2.719	3.582	
2	1.886	2.920	4.303	6.965	9.925	31.599	37	1.305	1.687	2.026	2.431	2.715	3.574	
3	1.638	2.353	3.182	4.541	5.841	12.924	38	1.304	1.686	2.024	2.429	2.712	3.566	
4	1.533	2.132	2.776	3.747	4.604	8.610	39	1.304	1.685	2.023	2.426	2.708	3.558	
5	1.476	2.015	2.571	3.365	4.032	6.869	40	1.303	1.684	2.021	2.423	2.704	3.551	
6	1.440	1.943	2.447	3.143	3.707	5.959	41	1.303	1.683	2.020	2.421	2.701	3.544	
7	1.415	1.895	2.365	2.998	3,499	5.408	42	1.302	1.682	2.018	2.418	2.698	3.538	
8	1.397	1.860	2.306	2.896	3.355	5.041	43	1.302	1.681	2.017	2.416	2.695	3.532	
9	1.383	1.833	2.262	2.821	3.250	4.781	44	1.301	1.680	2.015	2.414	2.692	3.526	
10	1.372	1.812	2.228	2.764	3.169	4.587	45	1.301	1.679	2.014	2.412	2.690	3.520	
11	1.363	1.796	2.201	2.718	3.106	4.437	46	1.300	1.679	2.013	2.410	2.687	3.515	
12	1.356	1.782	2.179	2.681	3.055	4.318	47	1.300	1.678	2.012	2.408	2.685	3.510	
13	1.350	1.771	2.160	2.650	3.012	4.221	48	1.299	1.677	2.011	2.407	2.682	3.505	
14	1.345	1.761	2.145	2.624	2.977	4.140	49	1.299	1.677	2.010	2.405	2.680	3.500	
15	1.341	1.753	2.131	2.602	2.947	4.073	50	1.299	1.676	2.009	2.403	2.678	3.496	
16	1.337	1.746	2.120	2.583	2.921	4.015	51	1.298	1.675	2.008	2.402	2.676	3.492	
17	1.333	1.740	2.110	2.567	2.898	3.965	52	1.298	1.675	2.007	2.400	2.674	3.488	
18	1.330	1.734	2.101	2.552	2.878	3.922	53	1.298	1.674	2.006	2.399	2.672	3.484	
19	1.328	1.729	2.093	2.539	2.861	3.883	54	1.297	1.674	2.005	2.397	2.670	3.480	
20	1.325	1.725	2.086	2.528	2.845	3.850	55	1.297	1.673	2.004	2.396	2.668	3.476	
21	1.323	1.721	2.080	2.518	2.831	3.819	56	1.297	1.673	2.003	2.395	2.667	3.473	
22	1.321	1.717	2.074	2.508	2.819	3.792	57	1.297	1.672	2.002	2.394	2.665	3.470	
23	1.319	1.714	2.069	2.500	2.807	3.768	58	1.296	1.672	2.002	2.392	2.663	3.466	
24	1.318	1.711	2.064	2.492	2.797	3.745	59	1.296	1.671	2.001	2.391	2.662	3.463	
25	1.316	1.708	2.060	2.485	2.787	3.725	60	1.296	1.671	2.000	2.390	2.660	3.460	
26	1.315	1.706	2.056	2.479	2.779	3.707	61	1.296	1.670	2.000	2.389	2.659	3.457	
27	1.314	1.703	2.052	2.473	2.771	3.690	62	1.295	1.670	1.999	2.388	2.657	3.454	
28	1.313	1.701	2.048	2.467	2.763	3.674	63	1.295	1.669	1.998	2.387	2.656	3.452	
29	1.311	1.699	2.045	2.462	2.756	3.659	64	1.295	1.669	1.998	2.386	2.655	3.449	
30	1.310	1.697	2.042	2.457	2.750	3.646	65	1.295	1.669	1.997	2.385	2.654	3.447	
31	1.309	1.696	2.040	2.453	2.744	3.633	66	1.295	1.668	1.997	2.384	2.652	3.444	
32	1.309	1.694	2.037	2.449	2.738	3.622	67	1.294	1.668	1.996	2.383	2.651	3.442	
33	1.308	1.692	2.035	2.445	2.733	3.611	68	1.294	1.668	1.995	2.382	2.650	3.439	
34	1.307	1.691	2.032	2.441	2.728	3.601	69	1.294	1.667	1.995	2.382	2.649	3.437	
35	1.306	1.690	2.032	2.438	2.724	3.591	70	1.294	1.667	1.993	2.381	2.648	3.435	

B.1 Areas under the Normal Curve

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

= F (-t)	0,000	0,001	0,002	0,003	0.004	0,005	0,006	0,007	0,008	0.009	0.010	
0.00		3,0902	2,8782	2,7478	2,6521	2,5758	2,5121	2,4573	2,4089	2,3656	2.3263	0,99
0,01	2,3263	2,2904	2,2571	2,2262	2,1973	2,1701	2,1444	2,1201	2,0969	2,0749	2.0537	0,98
	2.0537	2,0335	2,0141	1,9954	1,9774	1,9600	1,9431	1,9268	1,9110	1,8957	1,8808	0,97
0.02		1,8663	1,8522	1,8384	1,8250		1,7991	1,7866	1.7744	1,7624	1,7507	0,96
0.03	1,8808	1,7392	1,7279	1,7169		1,8119			1,6646	1,6546		
0.04	1,7507		100000000000000000000000000000000000000		1,7060	1,6954	1,6849	1,6747	3,87,307,30.	1,0546	1,6449	0,95
0.05	1,6449	1,6352	1,6258	1,6164	1,6072	1,5982	1,5893	1,5805	1,5718	1,5632	1,5548	0,94
0.06	1,5548	1,5464	1,5382	1,5301	1,5220	1,5141	1,5063	1,4985	1,4909	1,4833	1,4758	0,93
0,07	1,4758	1,4684	1,4611	1,4538	1,4466	1,4395	1,4325	1,4255	1,4187	1,4118	1,4051	0,92
0.08	1,4051	1,3984	1,3917	1,3852	1,3787	1,3722	1,3658	1,3595	1,3532	1,3469	1,3408	0,91
0,09	1,3408	1,3346	1,3285	1,3225	1,3165	1,3106	1,3047	1,2988	1,2930	1,2873	1,2816	0,90
0.10	1,2816	1,2759	1,2702	1,2646	1,2591	1,2536	1,2481	1,2426	1,2372	1,2319	1,2265	0,89
0.11	1,2265	1,2212	1,2160	1,2107	1,2055	1,2004	1,1952	1,1901	1,1850	1,1800	1,1750	0.88
		1,1700	1,1650	1,1601	1,1552			1,1407	1,1359	1,1311		
0.12	1,1750					1,1503	1,1455				1,1264	0.87
0,13	1,1264	1,1217	1,1170	1,1123	1.1077	1,1031	1,0985	1,0939	1,0893	1,0848	1,0803	0,86
0,14	1,0803	1,0758	1,0714	1,0669	1,0625	1,0581	1,0537	1,0494	1,0450	1,0407	1,0364	0,85
0,15	1,0364	1,0322	1,0279	1,0237	1,0194	1,0152	1,0110	1,0069	1,0027	0,9986	0,9945	0,84
0.16	0.9945	0,9904	0,9863	0,9822	0,9782	0,9741	0,9701	0.9661	0.9621	0,9581	0,9542	0,83
0.17	0.9542	0,9502	0,9463	0,9424	0,9385	0.9346	0,9307	0.9269	0,9230	0,9192	0,9154	0.82
0,18	0,9154	0,9116	0.9078	0,9040	0,9002	0.8965	0,8927	0.8890	0.8853	0,8816	0,8779	0,81
0.19	0,8779	0,8742	0,8705	0,8669	0,8633	0,8596	0,8560	0,8524	0,8488	0,8452	0,8416	0.80
0.20	0.8416	0.8381	0.8345	0.8310	0.8274	0,8239	0,8204	0.8169	0,8134	0,8099	0,8064	0.79
0,21	0,8064	0,8030	0.7995	0,7961	0.7926	0,7892	0,7858	0.7824	0,7790	0,7756	0,7722	0.78
0.22	0.7722	0,7688	0,7655	0,7621	0,7588	0,7554	0,7521	0.7488	0,7454	0,7421	0,7388	0,77
0,23	0,7388	0,7356	0,7323	0.7290	0,7257	0.7225	0,7192	0.7160	0,7128	0,7095	0,7063	0,76
0,24	0,7063	0,7031	0,6999	0,6967	0,6935	0,6903	0,6871	0,6840	0,6808	0,6776	0,6745	0,75
0,25	0,6745	0,6713	0,6682	0,6651	0,6620	0,6588	0,6557	0,6526	0,6495	0,6464	0,6433	0,74
0.26	0.6433	0,6403	0,6372	0.6341	0.6311	0,6280	0.6250	0.6219	0.6189	0.6158	0.6128	0.73
0,27	0,6128	0,6098	0,6063	0.6038	0,6008	0.5978	0.5948	0.5918	0,5888	0,5858	0,5828	0,72
0.28	0.5828	0,5799	0.5769	0,5740	0,5710	0,5681	0,5651	0.5622	0,5592	0,5563	0,5534	0,71
0,29	0,5534	0,5505	0,5476	0,5446	0,5417	0,5388	0,5359	0,5330	0,5302	0,5273	0,5244	0,70
0.30	0.5244	0.5215	0.5187	0,5158	0.5129	0.5101	0,5072	0.5044	0,5015	0.4987	0.4959	0.69
0,31	0,4959	0,4930	0,4902	0,4874	0,4845	0,4817	0,4789					
0.32	0,4677	0,4530						0.4761	0,4733	0,4705	0,4677	0,68
			0,4621	0,4593	0,4565	0,4538	0,4510	0,4482	0,4454	0,4427	0,4399	0,67
0.33	0,4399	0,4372	0,4344	0,4316	0,4289	0,4261	0,4234	0,4207	0,4179	0,4152	0,4125	0,66
0,34	0,4125	0,4097	0,4070	0,4043	0,4016	0,3989	0,3961	0,3934	0,3907	0,3880	0,3853	0,65
0.35	0,3853	0,3826	0,3799	0.3772	0,3745	0,3719	0,3692	0,3665	0,3638	0,3611	0,3585	0.64
0,36	0,3585	0,3558	0,3531	0,3505	0.3478	0,3451	0,3425	0.3398	0.3372	0.3345	0.3319	0.63
0,37	0,3319	0,3292	0.3266	0,3239	0.3213	0,3186	0,3160	0.3134	0,3107	0,3081	0,3055	0,62
0.38	0,3055	0,3029	0.3002	0,2976	0,2950	0,2924	0,2898	0,2871	0,2845	0,2819	0,2793	0.61
0,39	0,2793	0,2767	0,2741	0,2715	0,2689	0,2663	0,2637	0.2611	0,2585	0,2559	0,2533	0,60
0,40	0.2533	0.2506	0,2482	0,2456	0,2430	0.2404	0,2378	0.2353	0.2327	0,2301	0,2275	0,59
0.41	0.2275	0,2250	0,2224	0,2198	0,2430	0.2147	0.2121	0,2096	0,2070			
0,42	0.2019	0.1993								0,2045	0,2019	0.58
0.43	0,2019		0,1968	0,1942	0,1917	0,1891	0,1860	0.1840	0,1815	0,1789	0,1764	0.57
		0.1738	0,1713	0,1687	0,1662	0,1637	0,1611	0,1586	0,1560	0,1535	0,1510	0,56
0.44	0,1510	0,1484	0,1459	0,1434	0,1408	0,1383	0,1358	0,1332	0,1307	0,1282	0,1257	0.55
0,45	0,1257	0,1231	0.1206	0,1181	0,1156	0,1130	0,1105	0,1080	0,1055	0,1030	0,1004	0.54
0,46	0,1004	0,0979	0,0954	0,0929	0,0904	0,0878	0,0853	0.0828	0,0803	0,0778	0,0753	0.53
0,47	0,0753	0,0728	0,0702	0,0677	0.0652	0,0627	0.0602	0,0557	0.0552	0.0527	0,0502	0.52
0.48	0,0502	0.0476	0,0451	0.0426	0,0401	0.0376	0,0351	0,0326	0,0301	0,0276	0,0251	0.51
0,49	0,0251	0,0226	0,0201	0,0175	0,0150	0.0125	0,0100	0.0075	0,0050	0,0025	0,0000	0,50
	0.010	0.009	0.008	0.007	0.006	0.005	0.004	0,003	0.002	0.001	0.000	P = F(