Cvičení k přednášce Atomová fyzika (NFUF301)

Pavel Stránský

5. října 2022

Obsah

1	Cerné těleso			
	1.1	Rayleighův-Jeansův zákon	2	
	1.2	Planckův zákon	2	
	1.3	Wienův posunovací zákon	2	
		Stefanův-Boltzmannův zákon		
	1.5	Střední energie fotonu	2	
	1.6	Teplota Slunce	2	
	1.7	Ztráta hmotnosti Slunce	2	
		Žárovka		
		Hlava		
	1.10	Fotonová plachetnice	3	
	1.11	Vlákno žárovky	3	
	1.12	Kosmické mikrovlnné záření	3	

1 Černé těleso

1.1 Rayleighův-Jeansův zákon

Odvoď te objemovou hustotu energie černého tělesa pro frekvenci ν a vlnovou délku λ . Předpokládejte, že energie jednotlivých módů elektromagnetického záření může nabývat jakýchkoliv hodnot.

1.2 Planckův zákon

Odvoď te objemovou hustotu energie černého tělesa za předpokladu, že energie jednotlivých energie módů elektromagnetického záření může nabývat jen celočíselných násobků frekvence módů v_i^1

$$E_n = h \nu n$$

kde *n* je přirozené číslo a *h* je konstanta (Planckova konstanta).

1.3 Wienův posunovací zákon

Odvoď te, pro jakou frekvenci a pro jakou vlnovou délku je objemová hustota energie černého tělesa daná Planckovým zákonem maximální.

1.4 Stefanův-Boltzmannův zákon

Odvoď te celkový zářivý výkon černého tělesa o teplotě *T*.

1.5 Střední energie fotonu

Určete počet fotonů v jednotkovém objemu pro frekvenci ν a vlnovou délku λ a celkový počet fotonů přes všechny vlnové délky. Jaká je střední energie jednoho fotonu v záření černého tělesa o teplotě T?

1.6 Teplota Slunce

Je-li Slunce v zenitu, je intenzita slunečního záření dopadající na vodorovný zemský povrch I_{\oplus} = 1367 Wm⁻². Za předpokladu, že vyzařování Slunce lze považovat za záření černého tělesa, a znáte-li poloměr Slunce R_{\odot} a vzdálenost Země od Slunce d, určete teplotu na povchu Slunce.

1.7 Ztráta hmotnosti Slunce

Jakou hmotnost ztratí Slunce vyzařováním za 1 s?

1.8 Žárovka

Wolframové vlákno v klasické žárovce se rozžhaví na teplotu $T = 3000 \,\text{K}$. Jaké procento vyzařované energie je ve viditelné části spektra mezi vlnovými délkami $\lambda \in [380 \,\text{nm}, 750 \,\text{nm}]$?

$$E_n = \hbar \omega n \tag{1.2.1}$$

 $^{^1}$ Vztah lze ekvivalentně zapsat pomocí úhlové frekvence ω a redukované Planckovy konstanty \hbar jako

1 ČERNÉ TĚLESO 1.9 Hlava

1.9 Hlava

Odhadněte celkový zářivý výkon holé lidské hlavy bez pokrývky. Jaký je rozdíl zářivého výkonu a zářivého příkonu v prostředí, které má $t_{\rm okolí}=0\,^{\circ}{\rm C}$? Bazální metabolismus dospělého člověka je přibližně $P_B=1700\,{\rm kcal\,den^{-1}}$. Určete, jaké procento energie získané metabolismem se v chladném počasí ztratí hlavou pouhým vyzařováním.²

1.10 Fotonová plachetnice

Určete, jaká síla by díky slunečnímu záření působila na čtvercovou plachtu o rozměru 100 m × 100 m, nacházející se na oběžné dráze Země. Jak musí být plachta orientovaná, aby síla byla co největší? Je síla větší, když plachta záření pohltí, nebo když ho odrazí?

1.11 Vlákno žárovky

Odhadněte délku a poloměr wolframového vlákna žárovky s příkonem $P=100\,\mathrm{W}$, víte-li, že teplota vlákna je $T=2700\,\mathrm{K}$.

1.12 Kosmické mikrovlnné záření

Kosmické mikrovlnné záření (reliktní záření) je odkaz z počátečních fází vývoje vesmíru. Má charakter přibližně izotropního záření černého tělesa o teplotě $T \approx 2,7\,\mathrm{K}$. Určete, na jaké frekvenci a pro jakou vlnovou délku je hustota energie nejvyšší. Spočítejte, kolik fotonů reliktního záření dopadá na jednotkovou plochu zemského povrchu za sekundu.

²Proto je dobré nosit v zimě čepici.