Транспортный уровень OSI Протоколы TCP и UDP

Транспортный уровень

- Транспортный уровень определяет сервисы для сегментации,
 передачи и сборки данных для отдельных сообщений между оконечными устройствами
- Обеспечивает приложениям (или верхним уровням стека прикладному и сеансовому) передачу данных с требуемой степенью надёжности, где критерии надёжности:
 - срочность
 - возможность восстановления прерванной связи
 - возможность исправления ошибок передачи
- Примеры протоколов: TCP, UDP
- Единица данных дейтаграмма/блок данных (datagram)

Протоколы транспортного уровня стека ТСР/ІР

- Transmission control protocol (TCP)
 - с установкой логического соединения до передачи данных
 - с подтверждением доставки данных
 - надёжность в ущерб скорости
- User datagram protocol (UDP)
 - без установки логического соединения
 - без подтверждения доставки данных
 - скорость в ущерб надёжности

Порты и сокеты

Порт — системная очередь пакетов к точке входа прикладного процесса (не путать с портами оборудования: USB, COM, PS/2 и т.д.)

Coket (socket)

- IP-адрес однозначно идентифицирует сетевой интерфейс в пределах составной сети
- Порт однозначно идентифицирует прикладной процесс в пределах компьютера

Способы присвоения портов

- Централизованный способ (0-1023) – для популярных общедоступных служб (НТТР, FTP, telnet, DNS, SMTP и т.д.) – т.н. «младшие порты»
 - authority)
 - RFC 1700
- Локальный способ (1024-65535) для служб, еще не ставших столь распространенными, чтобы закреплять за ними стандартные номера (т.н. «старшие порты»)

ssh = 22 TCP

http = 80 TCP

RIP = 520 UDP

telnet = 23 TCP

- 1024 49151 зарегистрированные
- 49152 65535 динамические

(Де)мультиплексирование (1)

- Множества ТСР и UDP портов не пересекаются (независимы): порты ТСР1750 ≠ UDP1750
- Для каждого порта существует 2 очереди дейтаграмм: входящая и исходящая
- Мультиплексирование процедура приёма протоколом ТСР (UDP) данных, поступающих от нескольких прикладных служб (по портам), и формирования единого потока дейтаграмм
- **Демультиплексирование** распределение протоколом ТСР (UDP) поступающих с сетевого уровня пакетов между набором высокоуровневых служб, идентифицированных номерами портов

(Де)мультиплексирование (2)

TCP – Transmission Control Protocol

■ Особенности:

- установка соединения (сессии)
- надёжная доставка (контроль доставки и автоматическая пересылка потерявшихся сегментов)
- доставка сегментов и сборка их в том же порядке, в каком происходило сегментирование
- управление потоком данных
- RFC 793

ТСР-сегмент

	биты 0-3	4-7	8	9	10	11	12	13	14	15	16-18	19-31
0	Source port (SP) — номер порта отправителя										Destino	ution port (SP) — номер порта получателя
32	Sequence number (SEQ, номер последовательности) — последний порядковый номер байта, переданный в рамках данного соединения (исходящий поток)											
64	Acknowledgement number (ACK, номер подтверждения) – последний порядковый номер байта в рамках данного соединения, корректное получение которого подтверждается в данном сегменте (входящий поток)											
96	Data offset — смещение данных	Reserved	C W R	E C E	U R G	A C K	P S H	R S T	S Y N	FI N	Window siz	ze (размер окна) — количество байт, которое получатель готов принять
128	Checksum — контрольная сумма										U	rgent pointer — указатель важности
160	Options (только если Data offset>5) – дополнительные параметры											
160 (192+)	DATA — данные верхнего уровня											

Логические соединения

- **Сокет** (socket) набор идентифицирующих параметров. Включает IP-адрес и номер порта.
 - Каждый взаимодействующий процесс однозначно идентифицируется сокетом в пределах составной сети.
- Соединение идентифицируется парой сокетов {(IP1,n1), (IP2,n2)} и представляет собой договоренность о параметрах процедуры обмена данными между процессами:
 - Максимальный размер принимаемого сегмента [Байт]
 - Максимальный объем данных, который разрешено передавать до получения подтверждения о доставке предыдущего набора данных (размер «окна») [Байт]
 - Начальный порядковый номер байта, с которого начинается отсчёт потока данных в рамках соединения

Тройное рукопожатие

Тройное рукопожатие (3-way handshake) — процесс установки ТСРсоединения, представляющий собой последовательный обмен сегментами с флагами SYN (запрос на синхронизацию номеров SEQ) и АСК (подтверждение синхронизации)

Диаграмма состояний ТСР

Квитирование

- ■Квитирование в протоколе ТСР процесс подтверждения доставки данных с использованием полей сегмента SEQ (номер байта в последовательности) и АСК (номер байта-подтверждения, не путать с флагом АСК)
- Учет переданных байт осуществляется в обоих направлениях <u>независимо</u>

Квитирование – SEQ

- Поле SEQ указывает последний порядковый номер переданного байта
- При безошибочной передаче $SEQ_n = SEQ_{n-1} + DATA_n$

Квитирование – АСК

- Поле АСК содержит последний порядковый номер успешно принятого байта, увеличенный на 1, то есть первый порядковый номер <u>ожидаемого</u> байта
- При безошибочной передаче ACK=SEQ_{rcvd}+1

ТСР окно

- **ТСР окно** алгоритм управления интенсивностью потока данных, основанный на изменении максимального количества данных, которое получатель готов принять и подтвердить одним ответным сегментом
- Размер окна всегда назначает получатель, исходя из статистики количества ошибок

UDP – User datagram protocol

- Особенности:
 - отсутствие сессий
 - ненадёжная доставка «best effort»
 - отсутствие упорядочивания сегментов (дейтаграмм)
 - отсутствие контроля за скоростью передачи
 - максимально возможная скорость передачи данных за счёт всего вышеперечисленного
- RFC 768

UDP дейтаграмма

	0-15	16-31					
0	Source port (SP) — номер порта отправителя	Destination port (SP) — номер порта получателя					
32	Length – полная длина дейтаграммы в байтах (до 65535)	Checksum — контрольная сумма					
64	Data — данные верхнего уровня						

