

 $Hom(C,G) = \{f: C \to G \mid \}$

 $Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}\$

```
Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}

f: C_1 \to C_2 \text{ induces}

f^*: Hom(C_2,G) \to Hom(C_1,C),

defined by f^*(h) = h \circ f
```

 $C^n(X;G) := Hom(C_n(X),G)$

```
Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}

f: C_1 \to C_2 \text{ induces}

f^*: Hom(C_2,G) \to Hom(C_1,C),

defined by f^*(h) = h \circ f
```

 $Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$ $f: C_1 \to C_2 \text{ induces}$ $f^*: Hom(C_2,G) \to Hom(C_1,C),$ defined by $f^*(h) = h \circ f$

$$C^n(X;G) := Hom(C_n(X),G)$$

$$\delta_n: C^n(X;G) \to C^{n+1}(X;G)$$

 $Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$ $f: C_1 \to C_2 \text{ induces}$ $f^*: Hom(C_2,G) \to Hom(C_1,C),$ defined by $f^*(h) = h \circ f$

$$C^n(X;G) := Hom(C_n(X),G)$$

 $\delta_n: C^n(X;G) \to C^{n+1}(X;G)$ defined by $\delta_n(f) = f \circ \partial_{n+1}$

 $Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$ $f: C_1 \to C_2 \text{ induces}$ $f^*: Hom(C_2,G) \to Hom(C_1,C),$ defined by $f^*(h) = h \circ f$ $C^n(X;G) := Hom(C_n(X),G)$

$$\delta_n: C^n(X;G) \to C^{n+1}(X;G)$$
defined by $\delta_n(f) = f \circ \partial_{n+1}$

$$\delta_n \circ \delta_{n+1} = 0$$

 $Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$ $f: C_1 \to C_2 \text{ induces}$ $f^*: Hom(C_2,G) \to Hom(C_1,C),$ defined by $f^*(h) = h \circ f$ $C^n(X;G) := Hom(C_n(X),G)$

$$\delta_n: C^n(X;G) \to C^{n+1}(X;G)$$

defined by $\delta_n(f) = f \circ \partial_{n+1}$
 $\delta_n \circ \delta_{n+1} = 0$ (exercise!)

$$Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$$

 $f: C_1 \to C_2 \text{ induces}$
 $f^*: Hom(C_2,G) \to Hom(C_1,C),$
defined by $f^*(h) = h \circ f$

$$C^n(X;G) := Hom(C_n(X),G)$$

$$\delta_n: C^n(X;G) \to C^{n+1}(X;G)$$

defined by $\delta_n(f) = f \circ \partial_{n+1}$
 $\delta_n \circ \delta_{n+1} = 0$ (exercise!)

$$Z^n(C;G) := ker \delta_n$$

$$Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$$
 $f: C_1 \to C_2 \text{ induces}$
 $f^*: Hom(C_2,G) \to Hom(C_1,C),$
defined by $f^*(h) = h \circ f$

$$C^n(X;G) := Hom(C_n(X),G)$$

$$\delta_n: C^n(X;G) \to C^{n+1}(X;G)$$

defined by $\delta_n(f) = f \circ \partial_{n+1}$
 $\delta_n \circ \delta_{n+1} = 0$ (exercise!)

$$Z^n(C;G) := ker \ \delta_n$$

 $B^n(C;G) := Im \ \delta_{n-1}$

 $B^n(C;G) := Im \ \delta_{n-1}$

 $H^{n}(X;G) := Z^{n}(X;G)/B^{n}(X;G)$

$$Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$$
 $f: C_1 \to C_2 \text{ induces}$
 $f^*: Hom(C_2,G) \to Hom(C_1,C),$
defined by $f^*(h) = h \circ f$

$$C^n(X;G) := Hom(C_n(X),G)$$
 $\delta_n: C^n(X;G) \to C^{n+1}(X;G)$
defined by $\delta_n(f) = f \circ \partial_{n+1}$
 $\delta_n \circ \delta_{n+1} = 0 \text{ (exercise!)}$

$$Z^n(C;G) := \ker \delta_n$$

 $B^n(C;G) := Im \ \delta_{n-1}$

 $H^{n}(X;G) := Z^{n}(X;G)/B^{n}(X;G)$

$$Hom(C,G) = \{f: C \to G \mid f \text{ is a homomorphism}\}$$
 $f: C_1 \to C_2 \text{ induces}$
 $f^*: Hom(C_2,G) \to Hom(C_1,C),$
defined by $f^*(h) = h \circ f$

$$C^n(X;G) := Hom(C_n(X),G)$$
 $\delta_n: C^n(X;G) \to C^{n+1}(X;G)$
defined by $\delta_n(f) = f \circ \partial_{n+1}$
 $\delta_n \circ \delta_{n+1} = 0 \text{ (exercise!)}$

$$Z^n(C;G) := \ker \delta_n$$

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

What is its exactness under Hom?

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

What is its exactness under Hom?

Exercise. If $0 \to A \to B \to C \to 0$ is exact

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

What is its exactness under Hom?

Exercise. If $0 \to A \to B \to C \to 0$ is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

 $\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$ a free resolution,

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

What is its exactness under Hom?

Exercise. If $0 \to A \to B \to C \to 0$ is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

 $\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$ a free resolution, then,

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$ What is its exactness under Hom?

Exercise. If $0 \to A \to B \to C \to 0$ is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

 $\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$ a free resolution, then, $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

What is its exactness under Hom?

Exercise. If $0 \to A \to B \to C \to 0$ is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

 $\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$ a free resolution, then, $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex Ext(H,G) = 1st homology

Exercise. 1. $Ext(H_1 \oplus H_2, G) =$

Example. $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$

What is its exactness under Hom?

Exercise. If $0 \to A \to B \to C \to 0$ is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

 $\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$ a free resolution, then, $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex Ext(H,G) = 1st homology

Exercise. 1. $Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$

2. If H is free, $Ext(H_1, G) =$

Example.
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

What is its exactness under Hom?

Exercise. If
$$0 \to A \to B \to C \to 0$$
 is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

$$\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$$
 a free resolution, then,
 $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex $Ext(H,G) = 1$ st homology

Exercise. 1.
$$Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$$

2. If H is free, $Ext(H_1, G) = 0$

Example.
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

What is its exactness under Hom?

Exercise. If
$$0 \to A \to B \to C \to 0$$
 is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

$$\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$$
 a free resolution, then,
 $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex $Ext(H,G) = 1$ st homology

Exercise. 1.
$$Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$$

- 2. If H is free, $Ext(H_1, G) = 0$
- 3. $Ext(\mathbb{Z}/n,G) =$

Example.
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

What is its exactness under Hom?

Exercise. If
$$0 \to A \to B \to C \to 0$$
 is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

$$\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$$
 a free resolution, then,
 $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex $Ext(H,G) = 1$ st homology

Exercise. 1.
$$Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$$

- 2. If H is free, $Ext(H_1, G) = 0$
- 3. $Ext(\mathbb{Z}/n, G) = G/nG$

Example.
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

What is its exactness under Hom?

Exercise. If
$$0 \to A \to B \to C \to 0$$
 is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

$$\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$$
 a free resolution, then,
 $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex $Ext(H,G) = 1$ st homology

Exercise. 1.
$$Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$$

- 2. If H is free, $Ext(H_1, G) = 0$
- 3. $Ext(\mathbb{Z}/n, G) = G/nG$

Theorem. $H^n(C;G) \to Hom(H_n(C),G)$

Example.
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

What is its exactness under Hom?

Exercise. If
$$0 \to A \to B \to C \to 0$$
 is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

$$\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$$
 a free resolution, then,
 $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex $Ext(H,G) = 1$ st homology

Exercise. 1.
$$Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$$

- 2. If H is free, $Ext(H_1, G) = 0$
- 3. $Ext(\mathbb{Z}/n, G) = G/nG$

Theorem. $H^n(C;G) \to Hom(H_n(C),G) \to 0$

Example.
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

What is its exactness under Hom?

Exercise. If
$$0 \to A \to B \to C \to 0$$
 is exact then, $0 \to Hom(C, G) \to Hom(B, G) \to Hom(A, G)$ is exact

$$\cdots \to F_2 \to F_1 \to F_0 \to H \to 0$$
 a free resolution, then,
 $0 \to Hom(H,G) \to Hom(F_0,G) \to Hom(F_1,G) \to Hom(F_2,G) \to \cdots$ is a complex $Ext(H,G) = 1$ st homology

Exercise. 1.
$$Ext(H_1 \oplus H_2, G) = Ext(H_1, G) \oplus Ext(H_2, G)$$

- 2. If H is free, $Ext(H_1, G) = 0$
- 3. $Ext(\mathbb{Z}/n, G) = G/nG$

Theorem. $0 \to Ext(H_{n-1}(C), G) \to H^n(C; G) \to Hom(H_n(C), G) \to 0$ is natural and splits

 $[f] \in H^n(C)$ $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$ $[f] \in H^n(C)$ $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$ $f|_{Z_n} : Z_n \to G$ $[f] \in H^n(C)$ $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$ $f|_{Z_n} : Z_n \to G$

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0
```

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G
```

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G
```

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G

Defines a map

H^n(C; G) \to Hom(H_n(C), G)
```

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G

Defines a map

H^n(C; G) \to Hom(H_n(C), G)
```

Surjectivity?

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G

Defines a map

H^n(C; G) \to Hom(H_n(C), G)
```

Given $g \in Hom(H_n(C), G)$

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G

Defines a map

H^n(C; G) \to Hom(H_n(C), G)
```

Given
$$g \in Hom(H_n(C), G)$$

 $Z_n/B_n \xrightarrow{g} G$

```
[f] \in H^n(C)

f \in Hom(C_n, G) such that \delta(f) = f \circ \partial = 0

f|_{Z_n} : Z_n \to G

f(B_n) = 0

f|_{Z_n} : H_n \to G

Defines a map

H^n(C; G) \to Hom(H_n(C), G)
```

Given
$$g \in Hom(H_n(C), G)$$

 $Z_n \xrightarrow{q} Z_n/B_n \xrightarrow{g} G$

$$[f] \in H^n(C)$$

 $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$
 $f|_{Z_n} : Z_n \to G$
 $f(B_n) = 0$
 $f|_{Z_n} : H_n \to G$
Defines a map
 $H^n(C; G) \to Hom(H_n(C), G)$

Given
$$g \in Hom(H_n(C), G)$$

 $Z_n \xrightarrow{q} Z_n/B_n \xrightarrow{g} G$

$$0 \longrightarrow Z_n$$

$$\downarrow^{g \circ q}$$

$$G$$

$$[f] \in H^n(C)$$

 $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$
 $f|_{Z_n} : Z_n \to G$
 $f(B_n) = 0$
 $f|_{Z_n} : H_n \to G$
Defines a map
 $H^n(C; G) \to Hom(H_n(C), G)$

Given
$$g \in Hom(H_n(C), G)$$

 $Z_n \xrightarrow{q} Z_n/B_n \xrightarrow{g} G$

$$0 \longrightarrow Z_n \xrightarrow{i} C_n$$

$$\downarrow^{g \circ q}$$

$$G$$

$$[f] \in H^n(C)$$

 $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$
 $f|_{Z_n} : Z_n \to G$
 $f(B_n) = 0$
 $f|_{Z_n} : H_n \to G$
Defines a map
 $H^n(C; G) \to Hom(H_n(C), G)$

Given
$$g \in Hom(H_n(C), G)$$

 $Z_n \xrightarrow{q} Z_n/B_n \xrightarrow{g} G$

$$0 \longrightarrow Z_n \xrightarrow{i} C_n$$

$$\downarrow^{g \circ q} ???$$

$$G$$

$$[f] \in H^n(C)$$

 $f \in Hom(C_n, G)$ such that $\delta(f) = f \circ \partial = 0$
 $f|_{Z_n} : Z_n \to G$
 $f(B_n) = 0$
 $f|_{Z_n} : H_n \to G$
Defines a map
 $H^n(C; G) \to Hom(H_n(C), G)$

Given
$$g \in Hom(H_n(C), G)$$

 $Z_n \xrightarrow{q} Z_n/B_n \xrightarrow{g} G$

$$0 \longrightarrow Z_n \xrightarrow{i} C_n$$

$$\downarrow^{g \circ q} ??$$

$$G$$

$$Hom(C_n, G) \xrightarrow{i^*} Hom(Z_n, G) \to 0??$$

 $0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$

$$0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$$

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$$

$$\downarrow \partial$$

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$$

$$\downarrow_{\partial=0} \qquad \downarrow_{\partial}$$

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$$

$$\downarrow_{\partial=0} \qquad \downarrow_{\partial} \qquad \downarrow_{\partial}$$

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow Z_{n+1} \longrightarrow C_{n+1} \longrightarrow B_n \longrightarrow 0$$

$$\downarrow \partial = 0 \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial = 0$$

$$0 \longrightarrow Z_n \longrightarrow C_n \longrightarrow B_{n-1} \longrightarrow 0$$

$$0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$\downarrow^0 \qquad \qquad \downarrow^\delta \qquad \qquad \downarrow^0$$

$$0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$$

 $0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$ $\downarrow^0 \qquad \qquad \downarrow^\delta \qquad \qquad \downarrow^0$ $0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$ $\cdots \longrightarrow Hom(Z_{n-1}, G) \xrightarrow{i^*} Hom(B_{n-1}, G) \longrightarrow H^n(C; G) \longrightarrow Hom(Z_n, G) \xrightarrow{i^*} Hom(B_n, G) \longrightarrow \cdots$

$$0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$\downarrow 0 \qquad \qquad \downarrow \delta \qquad \qquad \downarrow 0$$

$$0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$$

$$\cdots \longrightarrow Hom(Z_{n-1}, G) \xrightarrow{i^*} Hom(B_{n-1}, G) \longrightarrow H^n(C; G) \longrightarrow Hom(Z_n, G) \xrightarrow{i^*} Hom(B_n, G) \longrightarrow \cdots$$

$$0 \to Hom(B_{n-1}, G)/i^*(Hom(Z_{n-1}, G)) \to H^n(C; G) \to Hom(Z_n/B_n, G) \to 0$$

$$0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$\downarrow 0 \qquad \qquad \downarrow \delta \qquad \qquad \downarrow 0$$

$$\downarrow 0 \qquad \qquad \downarrow Mom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$$

$$\cdots \to Hom(Z_{n-1},G) \xrightarrow{i^*} Hom(B_{n-1},G) \to H^n(C;G) \to Hom(Z_n,G) \xrightarrow{i^*} Hom(B_n,G) \to \cdots$$

$$0 \to Hom(B_{n-1}, G)/i^*(Hom(Z_{n-1}, G)) \to H^n(C; G) \to Hom(Z_n/B_n, G) \to 0$$

$$0 \to B_n \xrightarrow{i} Z_n \to H_n \to 0$$

$$0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$\downarrow 0 \qquad \qquad \downarrow \delta \qquad \qquad \downarrow 0$$

$$0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$$

$$\cdots \to Hom(Z_{n-1},G) \xrightarrow{i^*} Hom(B_{n-1},G) \to H^n(C;G) \to Hom(Z_n,G) \xrightarrow{i^*} Hom(B_n,G) \to \cdots$$

$$0 \to Hom(B_{n-1}, G)/i^*(Hom(Z_{n-1}, G)) \to H^n(C; G) \to Hom(Z_n/B_n, G) \to 0$$

$$0 \to B_n \xrightarrow{i} Z_n \to H_n \to 0$$

$$0 \to Hom(H_n, G) \to Hom(Z_n, G) \xrightarrow{i^*} Hom(B_n, G) \to 0$$

$$0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$\downarrow 0 \qquad \qquad \downarrow \delta \qquad \qquad \downarrow 0$$

$$0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$$

$$\cdots \to Hom(Z_{n-1},G) \xrightarrow{i^*} Hom(B_{n-1},G) \to H^n(C;G) \to Hom(Z_n,G) \xrightarrow{i^*} Hom(B_n,G) \to \cdots$$

$$0 \to Hom(B_{n-1}, G)/i^*(Hom(Z_{n-1}, G)) \to H^n(C; G) \to Hom(Z_n/B_n, G) \to 0$$

$$0 \to B_n \xrightarrow{i} Z_n \to H_n \to 0$$

$$0 \to Hom(H_n, G) \to Hom(Z_n, G) \xrightarrow{i^*} Hom(B_n, G) \to 0$$

Theorem. $0 \to Ext(H_{n-1}, G) \to H^n(C; G) \to Hom(H_n, G) \to 0$

$$0 \longrightarrow Hom(B_{n-1}, G) \longrightarrow Hom(C_n, G) \longrightarrow Hom(Z_n, G) \longrightarrow 0$$

$$\downarrow^0 \qquad \qquad \downarrow^0 \qquad \qquad \downarrow^0$$

$$0 \longrightarrow Hom(B_n, G) \longrightarrow Hom(C_{n+1}, G) \longrightarrow Hom(Z_{n+1}, G) \longrightarrow 0$$

$$\cdots \to Hom(Z_{n-1},G) \xrightarrow{i^*} Hom(B_{n-1},G) \to H^n(C;G) \to Hom(Z_n,G) \xrightarrow{i^*} Hom(B_n,G) \to \cdots$$

$$0 \to Hom(B_{n-1}, G)/i^*(Hom(Z_{n-1}, G)) \to H^n(C; G) \to Hom(Z_n/B_n, G) \to 0$$

$$0 \to B_n \xrightarrow{i} Z_n \to H_n \to 0$$

$$0 \to Hom(H_n, G) \to Hom(Z_n, G) \xrightarrow{i^*} Hom(B_n, G) \to 0$$

Theorem. $0 \to Ext(H_{n-1}, G) \to H^n(C; G) \to Hom(H_n, G) \to 0$ is a natural short exact sequence that splits.

 $f: X \to Y$
 $f_{\#}: C_n(X) \to C_n(Y)$

```
f: X \to Y
f_{\#}: C_n(X) \to C_n(Y)
f^{\#}: Hom(C_n(Y), G) \to Hom(C_n(X), G)
```

```
f: X \to Y
f_{\#}: C_n(X) \to C_n(Y)
f^{\#}: Hom(C_n(Y), G) \to Hom(C_n(X), G)
f^{\#}: C^n(Y; G) \to C^n(X; G)
```

 $f: X \to Y$

 $f_{\#}:C_n(X)\to C_n(Y)$

 $f^{\#}: Hom(C_n(Y), G) \rightarrow Hom(C_n(X), G)$

 $f^{\#}: C^n(Y;G) \to C^n(X;G)$

$$f_{\#} \circ \partial = \partial \circ f_{\#}$$

 $f: X \to Y$

 $f_{\#}:C_n(X)\to C_n(Y)$

 $f^{\#}: Hom(C_n(Y), G) \to Hom(C_n(X), G)$

 $f^{\#}: C^n(Y;G) \to C^n(X;G)$

$$f_{\#} \circ \partial = \partial \circ f_{\#}$$
$$\partial^* \circ f^* = f^* \circ \partial^*$$

$$f: X \to Y$$

$$f_{\#}:C_n(X)\to C_n(Y)$$

$$f^{\#}: Hom(C_n(Y), G) \to Hom(C_n(X), G)$$

$$f^{\#}:C^n(Y;G)\to C^n(X;G)$$

$$f_{\#} \circ \partial = \partial \circ f_{\#}$$

$$\partial^* \circ f^* = f^* \circ \partial^*$$

$$\delta \circ f^* = f^* \circ \delta$$

```
f: X \to Y
f_{\#}: C_n(X) \to C_n(Y)
f^{\#}: Hom(C_n(Y), G) \to Hom(C_n(X), G)
f^{\#}: C^n(Y; G) \to C^n(X; G)
```

$$f_{\#} \circ \partial = \partial \circ f_{\#}$$

$$\partial^* \circ f^* = f^* \circ \partial^*$$

$$\delta \circ f^* = f^* \circ \delta$$

$$f^* : H^n(Y; G) \to H^n(X; G)$$

```
f: X \to Y
f_{\#}: C_n(X) \to C_n(Y)
f^{\#}: Hom(C_n(Y), G) \to Hom(C_n(X), G)
f^{\#}: C^n(Y; G) \to C^n(X; G)
```

$$f_{\#} \circ \partial = \partial \circ f_{\#}$$

$$\partial^* \circ f^* = f^* \circ \partial^*$$

$$\delta \circ f^* = f^* \circ \delta$$

$$f^* : H^n(Y; G) \to H^n(X; G)$$

$$0 \to C_n(A) \to C_n(X) \to C_n(X, A) \to 0$$

$$0 \to C_n(A) \to C_n(X) \to C_n(X, A) \to 0$$

$$0 \to Hom(C_n(X, A), G) \to Hom(C_n(X), G) \to Hom(C_n(A), G) \to 0$$

.

$$0 \to C_n(A) \to C_n(X) \to C_n(X, A) \to 0$$

$$0 \to Hom(C_n(X, A), G) \to Hom(C_n(X), G) \to Hom(C_n(A), G) \to 0$$

•

$$\cdots \to H^n(X,A;G) \to H^n(X;G) \to H^n(A;G) \to H^{n+1}(X,A;G) \to \cdots$$

$$0 \to C_n(A) \to C_n(X) \to C_n(X, A) \to 0$$

$$0 \to Hom(C_n(X, A), G) \to Hom(C_n(X), G) \to Hom(C_n(A), G) \to 0$$

•

$$\cdots \to H^n(X,A;G) \to H^n(X;G) \to H^n(A;G) \to H^{n+1}(X,A;G) \to \cdots$$

Chain homotopy:

$$f_{\#} - g_{\#} = \partial \circ P + P \circ \partial$$

$$f_{\#} - g_{\#} = \partial \circ P + P \circ \partial$$

 $f^{\#} - g^{\#} = \partial^* \circ P^* + P^* \circ \partial^*$

$$f_{\#} - g_{\#} = \partial \circ P + P \circ \partial f^{\#} - g^{\#} = \partial^* \circ P^* + P^* \circ \partial^* f^{\#} - g^{\#} = P^* \circ \delta + \delta \circ P^*$$

$$f_{\#} - g_{\#} = \partial \circ P + P \circ \partial$$

$$f^{\#} - g^{\#} = \partial^* \circ P^* + P^* \circ \partial^*$$

$$f^{\#} - g^{\#} = P^* \circ \delta + \delta \circ P^*$$

$$f^{\#} - g^{\#} = \delta \circ P^* + P^* \circ \delta$$

$$f_{\#} - g_{\#} = \partial \circ P + P \circ \partial$$

$$f^{\#} - g^{\#} = \partial^* \circ P^* + P^* \circ \partial^*$$

$$f^{\#} - g^{\#} = P^* \circ \delta + \delta \circ P^*$$

$$f^{\#} - g^{\#} = \delta \circ P^* + P^* \circ \delta$$

Theorem. f and g homotopic imply $f^* = g^*$

Corollary. X and Y homotopically equivalent implies $H^n(X) \cong H^n(Y)$ for all n.

 $A \subset X$

 $A \subset X$ (X, A)

 $A \subset X$ (X, A)

 $H^n(X,A)$

$$B \subset A \subset X$$
$$(X,A)$$

$$H^n(X,A)$$

$$B \subset A \subset X$$
$$(X \setminus B, A \setminus B) \xrightarrow{i} (X, A)$$

$$H^n(X,A)$$

$$B \subset A \subset X$$
$$(X \setminus B, A \setminus B) \xrightarrow{i} (X, A)$$

$$H^n(X,A) \xrightarrow{i^*} H^n(X \setminus B, A \setminus B)$$

Mayer-Vietoris:

 $X = Int \ A \cup Int \ B$

Mayer-Vietoris:

 $X = Int \ A \cup Int \ B$

$$\cdots \to H^n(X) \to H^n(A) \oplus H^n(B) \to H^n(A \cap B) \to H^{n+1}(X) \to \cdots$$

Cellular cohomology: $H^i(X^n, X^{n-1})$

 $H^{i}(X^{n}, X^{n-1})$ is $\oplus \mathbb{Z}$ if i = n and 0 otherwise.

 $H^i(X^n, X^{n-1})$ is $\oplus \mathbb{Z}$ if i = n and 0 otherwise.

$$H^n(X) \cong H^n(X^{n+1})$$

 $H^i(X^n, X^{n-1})$ is $\oplus \mathbb{Z}$ if i = n and 0 otherwise.

$$H^n(X) \cong H^n(X^{n+1})$$

$$\cdots \to H^{n-1}(X^{n-1}, X^{n-2}) \to H^n(X^n, X^{n-1}) \to H^{n+1}(X^{n+1}, X^n) \to \cdots$$

 $H^i(X^n, X^{n-1})$ is $\oplus \mathbb{Z}$ if i = n and 0 otherwise.

$$H^n(X) \cong H^n(X^{n+1})$$

 $\cdots \to H^{n-1}(X^{n-1}, X^{n-2}) \to H^n(X^n, X^{n-1}) \to H^{n+1}(X^{n+1}, X^n) \to \cdots$ is the cellular chain complex whose homology is $H^n(X)$.

 $H^i(X^n, X^{n-1})$ is $\oplus \mathbb{Z}$ if i = n and 0 otherwise.

$$H^n(X) \cong H^n(X^{n+1})$$

 $\cdots \to H^{n-1}(X^{n-1}, X^{n-2}) \to H^n(X^n, X^{n-1}) \to H^{n+1}(X^{n+1}, X^n) \to \cdots$ is the cellular chain complex whose homology is $H^n(X)$. Is dual to the cellular homology chain complex. $H^n(X^{n+1})$

