Dictionary Learning Using Wavelets

Daniel Mckenzie

University of Georgia

25 April 2016

Overview

This talk is about using wavelets for compression .

The plan:

- Review wavelets.
- Discuss Dictionary learning.
- Explain how one can combine dictionary learning and wavelets to achieve better compression.

I will only consider discrete, finite signals.

Motivation for wavelets: review of Fourier Theory

Consider the following signals:

Each is a discrete signal consisting of 1024 double precision floating point values, i.e. 65536 bits per signal.

Now consider their (discrete) Fourier Transforms:

Each signal has three non-zero entries, i.e. now 192 bits per signal.

The Point Using Prior knowledge of our signals, we switched basis for \mathbb{R}^{1024} from $\{\mathbf{e}_n\}_{n=1}^{1024}$ to $\{\sin(2\pi n)\}_{n=1}^{1024}$. Signals are sparse in new basis and thus can easily be compressed.

Some remarks on Discrete Fourier Transfom:

- Linear transformation $\mathbb{R}^N \to \mathbb{R}^N$, hence can be represented as a matrix: $\hat{\mathbf{f}} = \mathbf{F}\mathbf{f}$.
- Matrix multiplication takes $\mathcal{O}(N^2)$ operations.
- The Fast Fourier Transform takes $\mathcal{O}(N \log(N))$.
- 'The Fast Fourier Transform is the most important numerical algorithm of our lifetime.' Gilbert Strang. [Str94]

From The Fourier Transform to Wavelets

Problem with Fourier Transform

Unable to detect time localized frequency events.

Example (Linear Chirp)

Figure: signal with 4096 entries

Figure: Fourier Transform of signal

Figure: Graph of a Linear Chirp: $y = \sin(2\pi t^2)$ and its Fourier Transform

One Solution:

Instead of basis of sine waves, use a basis of function with compact support in time.

Example (Haar Wavelets ([JJWW00]))

Consider discrete signals of length 8, e.g. $\mathbf{f} = (4, 6, 10, 12, 8, 6, 5, 5)$, in basis $\{\mathbf{e}_i\}_{i=1}^8$. Let

$$arphi = rac{1}{\sqrt{2}}(1, 1, 0, \dots, 0)$$
 $\psi = rac{1}{\sqrt{2}}(1, -1, 0, \dots, 0)$

and define translations:

$$\varphi_k[i] = \varphi[i - 2k]$$

$$\psi_k[i] = \psi[i - 2k]$$

Example (Haar Wavelets cont.)

Then $(\varphi_0, \ldots, \varphi_3 | \psi_0, \ldots, \psi_3)$ is a basis. In this basis:

$$\mathbf{f} = \sqrt{2}(5, 11, 7, 5|-1, -1, 1, 0)$$

Figure: **f** plotted in red and $\sqrt{2}(5,11,7,5|0,0,0,0)$ plotted in blue

So $\mathbf{a}_1=(5,11,7,5)$ is a (very) good approximation to \mathbf{f} . Can think of \mathbf{a} as low frequency approximation, $\mathbf{d}_1=(-1,-1,1,0)$ as high frequency details.

Example (Haar Wavelets (cont.))

Consider translations and dilations:

$$\begin{split} \varphi_{j,k} &= \frac{1}{\sqrt{2^{j+1}}} \varphi \left[\textit{floor}(\frac{n-k+1}{2^{j}}) \right] \\ \psi_{j,k} &= \frac{1}{\sqrt{2^{j+1}}} \psi \left[\textit{floor}(\frac{n-k+1}{2^{j}}) \right] \\ \varphi_{1,0} &= (1/2,1/2,1/2,0,0,0,0) \end{split}$$

Claim $(\varphi_{2,1}, \varphi_{2,2}|\psi_{2,1}\psi_{2,2}|\psi_{1,1}, \dots, \psi_{1,4})$ is a basis. In this basis:

$$\mathbf{f} = (16, 12|-6, 2|-\sqrt{2}, -\sqrt{2}, \sqrt{2}, 0)$$

 $\mathbf{a}_2 = (16, 12)$ is still a good approximation to \mathbf{f} . ψ is the Haar Wavelet and φ is its scaling function.

 $\mathbf{f} \rightarrow (\mathbf{a}_1 | \mathbf{d}_1)$ is a 1-level Haar Wavelet transform.

 $\mathbf{f} \rightarrow (\mathbf{a}_2 | \mathbf{d}_2 | \mathbf{d}_1)$ is a 2-level Haar Wavelet transform.

We shall restrict attention to orthogonal, compactly supported wavelets which come from an MRA, specifically Daubechies wavelets. Some properties:

- Changing to wavelet basis is linear tranformation $\mathbb{R}^N \to \mathbb{R}^N$, hence can be represented as a matrix: $\hat{\mathbf{f}} = \mathbf{W}_{\psi} \mathbf{f}$.
- Has a 'Fast Transform' (Conjugate Mirror Filters).
- Preserves ℓ^2 norm.
- Is an invertible transformation.

A General Compression Scheme

• Given 1-dim signal **f**, take its wavelet transform:

$$\hat{f} = W_{\psi}\mathbf{f} = (\mathbf{a}_n | \mathbf{d}_n | \dots | \mathbf{d}_1)$$

- ② Either set $\mathbf{d}_\ell = \mathbf{0}$ for $\ell = 1, \dots, k$ or threshold to get $\hat{\mathbf{f}}$, which should be sparse.
- **3** Encode and store $\hat{\mathbf{f}}$.
- $oldsymbol{0}$ Reconstruct approximation to ${f f}$ as needed via: $ilde{f} = {f W}_\psi^T ilde{{f f}}$

The Point Wavelets are good for (lossy) compression.

Using Wavelets for Image Compression

 Given image I, represented as matrix of grayscale values, take an n-level wavelet transform to get:

$$\hat{\mathbf{I}} = (\mathbf{a}_n | \mathbf{h}_n, \mathbf{v}_n, \mathbf{d}_n | \dots | \mathbf{h}_1, \mathbf{v}_1, \mathbf{d}_1)$$

- Set $\mathbf{v}_\ell = \mathbf{h}_\ell = \mathbf{d}_\ell = \mathbf{0}$ for $\ell = 1, \dots, k$ or threshold to get $\hat{\mathbf{l}}$.
- ullet Encode and store $\hat{oldsymbol{\hat{I}}}$

Example

 512×512 fingerprint image analysed with db4 wavelet using MATLAB's Wavelet Toolbox.

Any Questions?

Dictionaries and Learning

- Recall that an (orthogonal) wavelet transform is like switching to a new basis.
- Wavelet transforms suffer from the 'Curse of Generality'.
- Idea: Given a collection of 'similar' signals $\{\mathbf{y}_1,\ldots,\mathbf{y}_N\}\subset\mathbb{R}^n$ (e.g. all fingerprint images of same size). Determine a basis $\{\mathbf{d}_1,\ldots,\mathbf{d}_n\}$ of \mathbb{R}^n s.t. representations of the \mathbf{y}_i in this basis are as sparse as possible.

Definition (Dictionary)

A collection $\{\mathbf{d}_1,\ldots,\mathbf{d}_K\}\subset\mathbb{R}^n$ which spans \mathbb{R}^n is a **Dictionary**. $(K\geq n)$

Frequently shall write dictionary as $n \times K$ matrix **D** whose columns are \mathbf{d}_i . The \mathbf{d}_i are called 'atoms'.

Definition (Dictionary Learning Problem)

Given $\{\mathbf y_1,\ldots,\mathbf y_N\}$ with N>>K find a dictionary $\mathbf D^*$ s.t. $\mathbf x_i^*\approx \mathbf D^*\mathbf y_i$ and the $\mathbf x_i$ are sufficiently sparse. Mathematically:

$$\begin{aligned} (\mathbf{D}^*, \mathbf{X}^*) &= \operatorname{argmin}_{\mathbf{D}, \mathbf{X}} \sum_{i=1}^N ||\mathbf{y}_i - \mathbf{D}\mathbf{x}_i||_2^2 \text{ subject to } ||\mathbf{x}||_0 \leq T \\ &= \operatorname{argmin}_{\mathbf{D}, \mathbf{X}} ||\mathbf{Y} - \mathbf{D}\mathbf{X}||_F^2 \text{ subject to } ||\mathbf{x}||_0 \leq T \end{aligned}$$

If \boldsymbol{Y} $n \times N$ matrix with column \boldsymbol{y}_i and \boldsymbol{X} a $K \times N$ matrix with columns \boldsymbol{x}_i .

The 'one-bit' approach, cf. [AEB06]

- Suppose T = 1, and we require that \mathbf{x}_i are binary vectors.
- Problem becomes:

$$(\mathbf{D}^*, \mathbf{X}^*) = \operatorname{argmin}_{\mathbf{D}, \mathbf{X}} ||\mathbf{Y} - \mathbf{D}\mathbf{X}||_F^2 \text{ subject to } \mathbf{x}_i = \mathbf{e}_j \in \mathbb{R}^K$$
 (1)

Efficient Algorithm for solution to (1):

Algorithm 1 k-means

```
Input Y
Initialize \mathbf{D}^{(0)} \in \mathbb{R}^{n \times K}
for J=1:J_{\max} do
      for k = 1 : K do
            C_{\nu}^{(J)} = \{\} (an empty list)
      for i = 1 : N  do

    ▶ The Sparse Coding Stage

            if ||\mathbf{y}_i - \mathbf{d}_{i*}^{(J-1)}||_2 = \min_k ||\mathbf{y}_i - \mathbf{d}_{i}^{(J-1)}|| then Add i to list C_{i*}^{(J)}
      for k = 1 : K do

    ▶ The Dictionary Update Stage

            \mathbf{d}_k^{(J)} = \frac{1}{|C_k^{(J)}|} \sum_{i \in C_k^{(J)}} \mathbf{y}_i
Output \mathbf{D}^* = \mathbf{D}^{(J_{\text{max}})} and \mathbf{x}_i = \mathbf{e}_k if i \in C_k^{J_{\text{max}}}
```

The general approach: The K-SVD algorithm [AEB06]

Consider again the general problem:

$$(\mathbf{D}, \mathbf{X}) = \operatorname{argmin}_{\mathbf{D}, \mathbf{X}} ||\mathbf{Y} - \mathbf{D}\mathbf{X}||_F^2 \text{ subject to } ||\mathbf{x}||_0 \le T$$
 (2)

Generalize the previous algorithm to the K-SVD algorithm as follows:

- Input: sample signals $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_N]$, sparsity parameter T, size of dictionary K.
- Initialize dictionary $\mathbf{D}^{(0)} \in \mathbb{R}^{n \times K}$ with normalized columns.
- Until stopping criteria met, repeat:
 - **1** (Sparse coding step) Find \mathbf{x}_i such that

$$\mathbf{x}_i = \operatorname{argmin}_{\mathbf{x}}\{||\mathbf{y}_i - \mathbf{D}\mathbf{x}||_2\} \text{ subject to: } ||\mathbf{x}||_0 \le T$$
 (3)

Using MP,OMP etc.

② Let $\mathbf{X} \in \mathbb{R}^{K \times N}$ have columns \mathbf{x}_i .

- **1** (Dictionary Update) Update each atom \mathbf{d}_k in turn:
 - Let ω_k be the set of examples that use \mathbf{d}_k : $\omega_k = \{j : (\mathbf{x}_j)_k\} \neq 0\}$.
 - For each $j \in \omega_k$ compute $\mathbf{e}_{j,k} = \mathbf{y}_j \sum_{\ell,\ell \neq k} (\mathbf{x}_j)_\ell \mathbf{d}_\ell$, residual without \mathbf{d}_k .
 - We are going to update \mathbf{d}_k and the coefficients $(\mathbf{x}_\ell)_k$ (for $\ell \in \omega_k$) so as to minimize this residual error \mathbf{E}_k .
 - Let $\mathbf{E}_k \in \mathbb{R}^{n,|\omega_k|}$ have columns $\mathbf{e}_{i,k}$.
 - Solve:

$$(\mathbf{d}_k^*, \xi^*) = \operatorname{argmin}_{\xi, \mathbf{d}} ||\mathbf{E}_k - \mathbf{d}\xi||_F^2 \text{ subject to: } \xi \in \mathbb{R}^{|\omega_k|} \text{ and } ||\mathbf{d}||_2 = 1$$
(4)

- $\mathbf{d}\xi\in\mathbb{R}^{n,|\omega_k|}$ is rank one. so (4) is solved by choosing $\mathbf{d}\xi$ to be optimal rank one approximation to \mathbf{E}_k
- (by Eckart-Young-Mirsky theorem) if $U\Sigma V^T = \mathbf{E}_k$ is SVD, then $\mathbf{d}_k^* = \mathbf{u}_1$ and $\xi^* = \sigma(1)\mathbf{v}_1$ solves (4).
- Update \mathbf{d}_k to \mathbf{d}_k^* and $(\mathbf{x}_{j_\ell})_k = \xi_\ell$ where $\omega_k = \{j_1, j_2, \ldots\}$

Output: Learned dictionary **D** and sparse representation matrix **X** such that if **X** has columns \mathbf{x}_i then $||\mathbf{x}_i||_0 \leq T$ and $\mathbf{D}\mathbf{x}_i \approx \mathbf{y}_i$

Some Remarks

- Updating only coefficients $(\mathbf{x}_j)_k$ for $j \in \omega_k$ ensures that sparsity of the \mathbf{x}_i can only improve.
- If in sparse coding step (3) solution is always found, then representation error $|\mathbf{Y} \mathbf{D}\mathbf{X}||_F^2$ is non-increasing, thus algorithm will converge.
- OMP works well enough for fairly small T to 'practically' ensure convergence

Implementation

- In [AEB06] K-SVD is implemented for images of faces.
- N=11~000 and the \mathbf{y}_i for $i=1,\ldots,K$ are 8×8 pixel blocks (i.e. n=64), randomly sampled from a database of 4752×4752 facial images.
- K-SVD run with K = 441

Figure: Learned dictionary on right, Haar dictionary on left (from [AEB06]

• For further details see [AEB06]

Experimental Results

- I randomly sampled image from same database, split into 594 8 \times 8 blocks B_i .
- Fix # bits per coefficient, Q.
- \bullet Fix an error goal ϵ
- Encode each B_i to \tilde{B}_i using OMP such that if $e^2 = \frac{||B_i \tilde{B}_i||^2}{64}$ then $e^2 < \epsilon$.
- Let $PSNR = 10 \log_{10}(\frac{1}{e^2})$ (higher PSNR = better quality)
- ullet Let TNB denote the total number of bits required to encode $ilde{I}$.

$$TNB = \# blocks \times a + \# coefs(b + Q)$$

where a is # bits required to code # coefficients per block, b is # bits required to code index of each atom.

• BPP (Bits Per Pixel) is given by:

$$BPP = \frac{TNB}{\# pixels}$$

Experimental Results cont.

Figure: BPP vs. PSNR for learned dictionary, Haar wavelet transform and DCT. From [AEB06]

Experimental Results cont.

K-SVD dictionary 8 bits per coefficients PSNR =34.1564 Rate = 0.70651 BPP

Complete DCT dictionary 8 bits per coefficients PSNR =32.3917 Rate = 0.70302 BPP

Hale = 0.70302 BPP

Figure: Reconstruction of compressed images. From [AEB06]

Remarks about Learned Dictionaries

Learned dictionaries appear to offer better compression rates, at least at low PSNR. However:

- 1 Learning is computationally intensive.
- 2 Lack of fast transform
- Not multiscale; loses out on some potential compression.

Question: Can we combine strengths of learned and wavelet dictionaries?

Any questions?

Dictionary Learning Using Wavelets

- [OLE11] attempts to combine a wavelet transform with a learned dictionary.
- Idea: First take wavelet transform, then apply a dictionary learning algorithm (K-SVD).
- Formally, solve:

$$(\tilde{\mathbf{D}}^*, \mathbf{X}^*) = \operatorname{argmin}_{\tilde{\mathbf{D}}, \mathbf{X}} ||\mathbf{Y} - \mathbf{W}_{\psi} \tilde{\mathbf{D}} \mathbf{X}||_F^2 = \operatorname{argmin}_{\tilde{\mathbf{D}}, \mathbf{X}} ||\mathbf{W}_{\psi} \mathbf{Y} - \tilde{\mathbf{D}} \mathbf{X}||_F^2$$

where the columns of $\tilde{\mathbf{D}}$ are constrained to be very sparse.

• Effective dictionary is now $\mathbf{D} = \mathbf{W}_{\psi} \tilde{\mathbf{D}}$ whose atoms are linear combinations of several wavelet atoms, adapted to training set \mathbf{Y} .

Implementation

- In [AEB06] a 3 layer db4 wavelet transform was taken on data base of 20 coastal scenery images.
- 3 levels gives 10 bands: $\mathbf{a}_3, \mathbf{d}_3, \mathbf{v}_3, \mathbf{h}_3, \dots, \mathbf{h}_1$. Will train a dictionary \mathbf{D}_b for each band (10 in total).
- \bullet For each band, take K=64 (# of atoms), and again each atom will be a $8\times$ 8 block
- As before, train \mathbf{D}_b using a training set $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_N]$ of 8×8 blocks randomly drawn from b-th band of images using K-SVD.

Experimental Results

- Given image I, take 3 level wavelet transform \hat{I} .
- For each band b, split \hat{l}_b into 8 × 8 blocks B_i .
- encode each block B_i to \tilde{B}_i using OMP such that in total only M atoms are used.
- This is compared to Wavelet transform compression using thresholding to keep only the M largest coefficients, and to regular K-SVD using M coefficients.

Figure: Comparing PSNR to M for three methods. [OLE11]

Figure: reconstructions using 32 000 terms. Top left is original, top right is wavelet (db4) reconstruction, bottom left is regular K-SVD, bottom right is K-SVD + Wavelet. [OLE11]

Conclusions

To conclude:

- In order to compress one first needs to choose a dictionary such that signal becomes sparse.
- 'generic dictionaries' (Wavelets etc.) provide fast transforms, but are not adapted to signals at hand.
- 'learned dictionaries' provide good sparsity, but lack of fast transform can be prohibitive.
- learning a dictionary whose atoms are made up of generic atoms may allow one to squeeze out some extra sparsity by adapting to a given class of signals.

Thank You!

Michal Aharon, Michael Elad, and Alfred Bruckstein.

K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation.

IEEE Transactions on Signal Processing, 54(11):4311-4322, 2006.

Sreenivasa Rao Jammalamadaka, Sreenivasa Rao Jammalamadaka, James S. Walker, and James S. Walker.

A Primer on Wavelets and Their Scientific Applications, volume 95. 2000.

B Ophir, M Lustig, and M Elad.

Multi-Scale Dictionary Learning Using Wavelets.

Selected Topics in Signal Processing, IEEE Journal of, 5(5):1014–1024, 2011.

Gilbert Strang.

Wavelets.

American scientist, 82(3):256-266, 1994.