Bayesian Statistics

Generalized Linear Mixed Effects Model

Nan Lin

Department of Mathematics

Washington University in St. Louis

Generalized Linear Mixed Effects Model (GLMM)

- Extension of Linear mixed effects model to non-normal response
 - e.g. binary or count

$$\beta_1, \ldots, \beta_m \sim \text{i.i.d. multivariate normal}(\boldsymbol{\theta}, \Sigma)$$

$$p(\mathbf{y}_j|\mathbf{X}_j,\boldsymbol{\beta}_j,\gamma) = \prod_{i=1}^{n_j} p(y_{i,j}|\boldsymbol{\beta}_j^T \mathbf{x}_{i,j},\gamma),$$

Metropolis-within-Gibbs

- For simplicity, we assume no γ parameter (such as in logistic and Poisson regression)
- Full conditional distributions of (θ, Σ) can be standard under proper prior specifications
 - Prior $\theta \sim \text{multivariate normal}(\mu_0, \Lambda_0)$ $\Sigma \sim \text{inverse-Wishart}(\eta_0, \mathbf{S}_0^{-1})$
 - Full conditional distributions are of the same type
- $\{\beta_j\}$ requires Metropolis updating
 - We consider updating $\{\beta_i\}$ sequentially one at a time

Metropolis updating of $\{\beta_i\}$

- Consider a multivariate normal proposal distribution with mean as the current value $\beta_j^{(s)}$ with proposal variance $V_j^{(s)}$
 - A common choice is to set $V_j^{(s)} = \text{scale} \times \Sigma^{(s)}$
- 1. Sample $\beta_j^* \sim \text{multivariate normal}(\beta_j^{(s)}, V_j^{(s)}).$
- 2. Compute the acceptance ratio

$$r = \frac{p(\boldsymbol{y}_j | \mathbf{X}_j, \boldsymbol{\beta}_j^*) p(\boldsymbol{\beta}_j^* | \boldsymbol{\theta}^{(s)}, \boldsymbol{\Sigma}^{(s)})}{p(\boldsymbol{y}_j | \mathbf{X}_j, \boldsymbol{\beta}_j^{(s)}) p(\boldsymbol{\beta}_j^{(s)} | \boldsymbol{\theta}^{(s)}, \boldsymbol{\Sigma}^{(s)})}.$$

3. Sample $u \sim \text{uniform}(0,1)$. Set $\beta_j^{(s+1)}$ to β_j^* if u < r and to $\beta_j^{(s)}$ if u > r.

Putting together

- 1. Sample $\theta^{(s+1)}$ from its full conditional distribution.
- 2. Sample $\Sigma^{(s+1)}$ from its full conditional distribution.
- 3. For each $j \in \{1, ..., m\}$,
 - a) propose a new value β_j^* ;
 - b) set $\beta_j^{(s+1)}$ equal to β_j^* or $\beta_j^{(s)}$ with the appropriate probability.

Example: tumor location data*

- A certain population of laboratory mice experiences a high rate of intestinal tumor growth. One item of interest to researchers is how the rate of tumor growth varies along the length of the intestine.
- Study: the intestine of each of 21 sample mice was divided into 20 sections and the number of tumors occurring in each section was recorded.
- ▶ Code the 20 locations as $x \in (0.05, 0.10, ..., 0.95)$
- Response: # of tumors

^{*}From Haigis KM, Hoff PD, White A, Shoemaker AR, Halberg RB, Dove WF (2004) Tumor regionality in the mouse intestine reflects the mechanism of loss of apc function. *PNAS* 101(26):9769–9773

Fig. 11.4. Tumor count data. The first panel gives mouse-specific tumor counts as a function of location in gray, with a population average in black. The second panel gives quadratic, cubic and quartic polynomial fits to the log sample average tumor count.

Hierarchical Poisson regression

- Let $Y_{x,j}$ be mouse j's tumor count at location x of their intestine
- Level I:
 - Assume $Y_{x,j} \sim Poisson(e^{f_j(x)})$
 - $f_j(x) = \beta_{1,j} + \beta_{2,j}x + \dots + \beta_{p,j}x^{p-1}$, use p = 5
- Level 2:

$$\beta_1, \ldots, \beta_m \sim \text{i.i.d. multivariate normal}(\boldsymbol{\theta}, \Sigma)$$

Level 3:

 $\theta \sim \text{multivariate normal}(\mu_0, \Lambda_0)$

 $\Sigma \sim \text{inverse-Wishart}(\eta_0, \mathbf{S}_0^{-1})$

Choosing the hyper-prior

- Unit information prior
 - the prior distributions for the parameters are weakly centered around estimates derived from the observed data
- Get a rough estimate $\hat{\beta}_j$ by fitting a polynomial regression using data from mouse j only
 - ▶ Regress $\left\{ \log \left(y_{1,j} + \frac{1}{n} \right), \dots, \log \left(y_{n,j} + \frac{1}{n} \right) \right\}$ on $\{x_1, \dots, x_{20}\}$
- > Set $\mu_0=\frac{1}{m}\sum_j \tilde{\beta}_j$ and Λ_0 as the sample covariance matrix from $\tilde{\beta}_j$'s
- Set S_0 also as the sample covariance matrix from $\tilde{\beta}_j$'s
- $\eta_0 = p + 2 = 7$

MCMC

- Proposal distribution for β_j : multivariate normal $(\beta_j^{(s)}, \Sigma^{(s)}/2)$
 - Acceptance rate is around 31%
- ▶ 50,000 scans
- ▶ Thinning: every 10th scan

```
## data
data (chapter 11)
Y \leftarrow XY \cdot tumor Y; X \leftarrow XY \cdot tumor X; M \leftarrow dim(Y)[1]; M \leftarrow dim(X)[2]
## priors
BETA<-NULL
for (j in 1:m)
  BETA<-rbind (BETA, \ln (\log (Y[j], 1+1/20)^{-1} - 1 + X[j], j]) $coef)
mu0<-apply (BETA, 2, mean)
S0 < -cov(BETA); eta0 < -p+2
iL0 < -iSigma < -solve(S0)
## MCMC
THETA. post <-NULL ; set. seed (1)
for (s in 1:50000)
  ##update theta
  Lm < -solve(iL0 + m*iSigma)
  mum<-Lm\%*\%( iL0\%*\%mu0 + iSigma\%*\%apply(BETA, 2, sum) )
  theta <-t (rmvnorm (1, mum, Lm))
  ##
  ##update Sigma
  mtheta <-- matrix (theta, m, p, byrow=TRUE)
  iSigma < -rwish(1, eta0+m,
             solve (S0+t (BETA-mtheta)%*%(BETA-mtheta)))
  ##
```

```
##update beta
Sigma <-- solve (iSigma) ; dSigma <- det (Sigma)
for (i in 1:m)
   beta.p < -t(rmvnorm(1,BETA[j,],.5*Sigma))
   lr \leftarrow sum(dpois(Y[j,], exp(X[,,j]\%*\%beta.p), log=TRUE) -
         dpois (Y[j,], \exp(X[,,j]\%*\%BETA[j,]), \log=TRUE) +
       ldmvnorm( t(beta.p), theta, Sigma,
               iSigma=iSigma , dSigma=dSigma ) -
       ldmvnorm( t(BETA[j,]), theta, Sigma,
               iSigma=iSigma, dSigma=dSigma)
  if (\log(\operatorname{runif}(1)) < \operatorname{lr}) \in \operatorname{BETA}[j,] < -\operatorname{beta.p} 
##
##store some output
if (s\%\%10==0){THETA.post<-rbind(THETA.post,t(theta))}
##
```

Results

Fig. 11.5. 2.5, 50 and 97.5% quantiles for $\exp(\boldsymbol{\theta}^T \boldsymbol{x})$, $\exp(\boldsymbol{\beta}^T \boldsymbol{x})$ and $\{Y | \boldsymbol{x}\}$.

The widening confidence bands of the three plots in this figure describe cumulative sources of uncertainty

- Uncertainty in theta + across-mouse heterogeneity + fluctuation in the response around its mean

Discussion

- Posterior approximation via MCMC for hierarchical models can suffer from poor mixing.
 - Many of the parameters in the model are highly correlated, and generating them one at a time in the Gibbs sampler can lead to a high degree of autocorrelation

- ▶ R package MCMCglmm
 - ▶ Tutorial of the package