哈尔滨工业大学 (威海)

推免生数值分析 上机实验报告 (2022 级)

姓名:	
江 石·	 ٠

学号: ______.

指导教师:陈 忠

数值实验一

1.实验题目:用递推公式求积分,求解函数值。

2.实验目的:熟悉编程语言,用循环语句编译迭代过程;观察实验数据,分析误差;理解递推计算的稳定性问题。

3. 上机求解

考虑函数 $f(x) = \frac{1-\cos x}{x^2}$ 对于任意的 x, $0 \le f(x) \le 1/2$. 计算函数值

方案(1):
$$f(1.2 \times 10^{-5}) =$$

又由于 $\cos x = 1 - 2\sin^2(x/2)$, 重新计算函数 $f(x) = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^2$ 的函数值

分析哪种结果更好。

结果分析:以计算机 long 精度计算为例,方案(1)的计算过程如下:

$$\cos(1.2 \times 10^{-5}) = 0.99999999999$$

$$1 - \cos(1.2 \times 10^{-5}) = 0.0000000001 = 10^{-10}$$

$$(1.2 \times 10^{-5})^{2} = 1.44 \times 10^{-10}$$

$$f(1.2 \times 10^{-10}) = \frac{10^{-10}}{1.44 \times 10^{-10}} = 0.6944...$$

同时,方案(2)的计算过程如下:

$$1.2 \times 10^{-5} / 2 =$$

$$\sin(1.2 \times 10^{-5} / 2) =$$

$$\frac{\sin(x / 2)}{x / 2} =$$

$$f(1.2 \times 10^{-5}) = \frac{1}{2} \left(\frac{\sin(x / 2)}{x / 2}\right)^{2} =$$

说明我们在计算过程中要避免:

题目3. 用递推公式求解积分:

$$I_n = \int_0^1 \frac{x^n}{a+x} dx, \quad n = 0, 1, \dots, 10$$

其中 a 为参数,分别为 a=0.05 及 a=15.注意到

$$I_n + aI_{n-1} = \int_0^1 \frac{x^n + ax^{n-1}}{a + x} dx = \int_0^1 x^{n-1} dx = \frac{1}{n}, \quad n = 0, 1, \dots, 10$$

所以有两种方案:

方案(1):
$$I_n = -aI_{n-1} + \frac{1}{n}$$
, $n = 1, 2, \dots, 10$

方案(2):
$$I_{n-1} = \frac{1}{a} \left(-I_n + \frac{1}{n} \right), n = 10, 9, \dots, 0$$

请根据表中给出的初始值,利用循环语句。计算其它的积分值。

	方案	(1)	方案	(2)
n	a=0.05	a=15	a=0.05	a=15
0	3.04452	0.06454		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10			0.10000	0.00600

结果分析:比较用方案(1)和方案(2)方法得到的结果。

不管哪种方案,都需要输入初始数据 I_0 (或 I_{10})。由于计算机存储数据时具有 舍入误差或者计算初始数据时具有误差,计算机实际开始计算的初始值为 \tilde{I}_0 (或 \tilde{I}_{10}).记 $e_n = \left|I_n - \tilde{I}_n\right|$.对于方案(1),我们有

$$e_n = |I_n - \tilde{I}_n| = |a| |I_{n-1} - \tilde{I}_{n-1}| = |a| e_{n-1} = \dots = |a|^n e_0$$

所以|a|为每次迭代误差的放大或缩小系数,当|a|>1时,误差会越来越大,当|a|<1时,误差会越来越小。同理,对于方案(2),我们有

$$e_{n-1} = \left| I_{n-1} - \tilde{I}_{n-1} \right| = \left| \frac{1}{a} \right| \left| I_n - \tilde{I}_n \right| = \left| \frac{1}{a} \right| e_n = \dots = \left| \frac{1}{a} \right|^i e_{n+i-1}$$

所以,与方案(1)截然相反,当|a|>1时,误差会越来越小;当|a|<1时,误差会越来越大。

数值实验二

1.实验题目: 求解线性方程组

$$\begin{pmatrix} -0.002 & 2 & 2 \\ 1 & 0.78125 & 0 \\ 3.996 & 5.5625 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 1.3816 \\ 7.4178 \end{pmatrix}$$

(精确解 $x = (1.92730, -0.698496, 0.900423)^T$)

- **2.实验目的:** 能够应用 Gauss 列主元素消元法、LU 分解法求解线性方程组的数值解。
- 3.程序流程图:

Gauss 列主元消去法:	LU 分解法:

(1) Gauss 列主元素消元法:

$$A^{(n-1)} = \left(\begin{array}{c} \\ \\ \end{array} \right), \qquad x = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

(2) LU 分解:

$$L = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right), U = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right), y = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$$

5.结果分析: 比较用不同方法得到的结果的区别。

数值实验三

1.实验题目:应用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解线性方程组:

$$\begin{cases} 10x_1 - x_2 = 9 \\ -x_1 + 10x_2 - 2x_3 = 7 \\ -2x_2 + 10x_3 = 6 \end{cases}$$

取初始值 $x^{(0)} = (0,0,0)^T$,精确到 10^{-5} 。($x = (0.99555, 0.95725, 0.79110)^T$)

2.实验目的: 能够应用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解线性方程组,分析方法的收敛性。

3.程序流程图:

Jacobi 迭代法:	Gauss-Seidel 迭代法:

数值方法	方程的数值解	迭代次数 n

5.结果分析: (比较两种方法的收敛性)

6.思考题: 1、实验的难点、遇到的问题及解决方案。

2、如何判定迭代终止?

数值实验四

上机时间:		_地点:		
1.实验题目:	构造5次、	10 次 Lagrang	ge 插值多项式、	Hermit 插值多项式和三次
样条插值多	项式 (自然)	也界条件)逼迫	近函数 $f(x) = \frac{1}{1+x}$	$\frac{1}{9x^2}$
				项式、Hermit 插值多项式
和三次样条	插值多项式			
3.程序流程图	ਹੋ: 			

数值方法	逼近函数
Lagrange 插值多项式	
Hermit 插值多项式	
三次样条插值多项式	

5. 结果分析: (画出原函数与三种方法得到的逼近函数图象)

图像粘贴处

6. 练习题:观测得一个二次多项式 $p_2(x)$ 的值如下表。表中 $p_2(x)$ 的某一个数值有错误,试找出并校正它。

x	-2	-1	0	1	2
$p_2(x)$	3	1	1	6	15

数值实验五

上机时间:		
\V un 1 11 •	~~·	

1.实验题目:对给定的数据分别求出 3 次、4 次多项式的曲线拟合;再根据数据曲线形状,求出不同形式的曲线拟合,并用图示出数据曲线及拟合的曲线。

X	0.0	0.1	0.2	0.3	0.5	0.8	1.0
у	1.0	0.41	0.50	0.61	0.91	2.02	2.46

2.实验目的:对于给定的数据作出较好的曲线拟合

3	积	序流程图	1.
.7.	. /!'→	//////////////////////////////////////	7:

4.实验结果:					
•	3 次拟合多项式:				
•	4 次拟合多项式:				
			图像粘贴如	Ł	

5.结果分析:

数值实验六						
上机时间:						
1.实验题目: 用复合求积公式和 Romberg 公式计算定积分 $\int_1^3 \frac{100}{x^2} \sin \frac{10}{x} dx$.						
$\left(\int_{1}^{3} \left(\frac{10}{x}\right)^{2} \sin \frac{10}{x} dx \approx -1.426014\right)$ 误差界为 $\varepsilon = 10^{-5}$.						
2.实验目的 : 会应用数值方法求得给定的定积分。						
3.程序流程图:						

N	$T_{i,1}$	$T_{i,2}$	$T_{i,3}$	$T_{i,4}$	
1					
2					
3					
4					
•••					

5.结果分析:

数值实验七

上机时间:	
1.实验题目: 用迭代法求方程 $f(x) = 2x^3 - x - 1 = 0$ 的根(真解 $x = 1, -0.5 \pm 0.5i$)) ,
要求 ε <10 ⁻⁴ .	
2.实验目的:能够应用二分法、Newton 法、割线法求解非线性方程的数值解。	o
3.初值的选取: 请画出函数 $f(x) = 2x^3 - x - 1, x \in [-10,10]$ 的图像。	
图像粘贴处	
选取解区间:	
4. 程序流程图:	

	二分法	Newton 迭代	割线法
x_0			
x_1			
x_2			
x_3			
X_n			
n			
近似收敛阶 r			

请用下面公式计算一个近似收敛阶: $r(n) \approx \frac{\log \left(\frac{x_{n+2} - x_{n+1}}{x_{n+1} - x_n}\right)}{\log \left(\frac{x_{n+3} - x_{n+2}}{x_{n+2} - x_{n+1}}\right)}$

5.结果分析: (1、简要说明初值的选取对迭代法和结果的影响。2、比较不同方法得到的结果的好坏。)

6.思考题: 如果要求解方程的复根,应该怎么处理?