```
SQL> create table student(
2 sid NUMBER,
3 sname VARCHAR2(20),
4 sage NUMBER,
 5 saddress VARCHAR2(20)
 6 );
Table created.
SQL> desc student
Name Null? Type
Name
SID
                                            NUMBER
SNAME
                                            VARCHAR2(20)
SAGE
                                            NUMBER
SADDRESS
                                            VARCHAR2(20)
SQL> select * from student;
no rows selected
```

SQL> ALTER TABLE student ADD sphone NUMBER;
Table altered.

SQL> DESC STUDENT		
Name	Null?	Туре
SID		NUMBER
SNAME		VARCHAR2(20)
SAGE		NUMBER
SADDRESS		VARCHAR2(20)
SPHONE		NUMBER
SQL> ALTER TABLE student DROP COLUMN sphon	e;	
Table altered.		
SQL> desc student		
Name	Null?	Туре
SID		NUMBER
SNAME		VARCHAR2(20)
SAGE		NUMBER
SADDRESS		VARCHAR2(20)

SQL> ALTER TABLE student modify sid VARCHAR2(20);						
Table altered.						
SQL> desc student Name	Null?	Tyne				
ivalie						
SID		VARCHAR2(20)				
SNAME		VARCHAR2(20)				
SAGE		NUMBER				
SADDRESS		VARCHAR2(20)				
SQL> ALTER TABLE student RENAME COLUMN sid	to rollno	o;				
Table altered.						
SQL> desc student						
Name	Null?	Type				
ROLLNO		VARCHAR2(20)				
SNAME		VARCHAR2(20)				
SAGE		NUMBER				
SADDRESS		VARCHAR2(20)				
SQL> ALTER TABLE student RENAME to students;						
Table altered.						
SQL> desc students						
Name	Null?	Туре				
ROLLNO		VARCHAR2(20)				
SNAME		VARCHAR2(20)				
SAGE		NUMBER				
SADDRESS		VARCHAR2(20)				

```
SQL> create table std(
2 sid NUMBER,
3 sname VARCHAR2(10),
4 AGE INT
5 );

Table created.

SQL> DROP TABLE STD;

Table dropped.
```

```
SQL> truncate table students;

Table truncated.

SQL> select * from students;

no rows selected
```

```
SQL> CREATE TABLE employee(
2 eid NUMBER,
3 ename VARCHAR2(20),
4 eage INT,
5 esalary NUMBER
6 );
Table created.
```

```
SQL> INSERT INTO employee
2 VALUES(1,'HARSHA',18,50000);

1 row created.

SQL> INSERT INTO employee
2 VALUES(2,'ARUN',19,60000);

1 row created.

SQL> INSERT INTO employee
2 VALUES(3,'DINESH',21,61000);

1 row created.

SQL> INSERT INTO employee
2 VALUES(4,'NIVAS',20,51000);

1 row created.
```

```
SQL> SELECT * FROM employee;

EID ENAME EAGE ESALARY

1 HARSHA 18 50000
2 ARUN 19 60000
3 DINESH 21 61000
4 NIVAS 20 51000
```

```
SQL> SELECT eid FROM employee;

EID

1
2
3
4
```

```
SQL> SELECT ename FROM employee;

ENAME

HARSHA

ARUN

DINESH

NIVAS
```

```
SQL> SELECT eid, esalary FROM employee;
      EID ESALARY
        1 50000
        2 60000
        3
              61000
        4
              51000
SQL> SELECT eid, ename, esalary FROM employee;
      EID ENAME
                                ESALARY
       1 HARSHA
                                  50000
       2 ARUN
                                  60000
       3 DINESH
                                  61000
        4 NIVAS
                                  51000
```

SQL> SELECT * from EMPLOYEE WHERE esalary>50000;				
EID	ENAME	EAGE	ESALARY	
2	ARUN	19	60000	
3	DINESH	21	61000	
4	NIVAS	20	51000	

```
SQL> UPDATE employee SET esalary=esalary+500 WHERE eid=1;

1 row updated.

SQL> SELECT * FROM employee;

EID ENAME EAGE ESALARY

1 HARSHA 18 50500
2 ARUN 19 60000
3 DINESH 21 61000
4 NIVAS 20 51000
```

SQL> DELETE FROM employee WHERE eid=4;

1 row deleted.

SQL> SELECT * FROM employee;

EID ENAME EAGE ESALARY

1 HARSHA 18 50500
2 ARUN 19 60000
3 DINESH 21 61000

TO perform create view we want to create a table

```
SQL> CREATE TABLE person(
2 pid NUMBER NOT NULL,
3 pname VARCHAR2(20),
4 pcity VARCHAR2(20)
5 );
Table created.
```

INSERT VALUES INTO THE TABLE

```
SQL> INSERT INTO person
2 VALUES(1,'ABC','ATP');

1 row created.

SQL> INSERT INTO person
2 VALUES(1,'ABC','AP');

1 row created.

SQL> INSERT INTO person
2 VALUES(3,'AC','AP');

1 row created.

SQL> INSERT INTO person
2 VALUES(4,'SDC','CSDP');

1 row created.
```

CREATE VIEWS FOR THE ABOVE TABLE USING BELOW SYNTAX

SYNTAX:

CREATE VIEW VIEW_NAME AS SELECT COLUMNS FROM TABLE;

EX:

```
SQL> CREATE VIEW employee AS SELECT pid ,pname FROM person;
View created.
```

To see the view we use the following keyword

SELECT * FROM employee

```
SQL> SELECT * FROM employee
2 ;
PID PNAME
1 ABC
1 ABC
3 AC
4 SDC
```

To add views to the table we use the folloeing syntax:

INSERT INTO VIEW_NAME(COL1,COL2)VALUES(value_list);

EX:

```
SQL> insert into employee(pid,pname)
2 VALUES(5,'AC');
1 row created.
```

```
SQL> SELECT * FROM employee
2 ;
PID PNAME
1 ABC
1 ABC
3 AC
4 SDC
5 AC
```

We observe that above table is updated.

TO delete the table

EX:

DATE:19/10/23

```
SQL> DELETE person;
5 rows deleted.
```

When you delete the table the views and the table is also deleted.

```
SQL> select*from person
2 ;
no rows selected
SQL> select*from employee
2 ;
no rows selected
```

```
SQL> CREATE TABLE instructor(
2 id NUMBER PRIMARY KEY,
3 name VARCHAR2(10),
4 dep_name VARCHAR2(10),
5 salary NUMBER
6 );

Table created.

SQL> CREATE TABLE department(
2 did NUMBER PRIMARY KEY,
3 dname VARCHAR2(15),
4 building VARCHAR2(15),
5 budget NUMBER
6 );

Table created.
```

```
SQL> INSERT ALL

2 INTO instructor VALUES(1, 'HARSHA', 'CSE', 50000)

3 INTO instructor VALUES(2, 'ARUN', 'CSE', 55000)

4 INTO instructor VALUES(3, 'DINESH', 'EEE', 52000)

5 INTO instructor VALUES(4, 'BASHA', 'ECE', 42000)

6 INTO instructor VALUES(5, 'SUMANTH', 'CSM', 32000)

7 INTO department VALUES(1, 'CSE', 'B', 35000000)

8 INTO department VALUES(2, 'ECE', 'A', 1780000)

9 INTO department VALUES(3, 'MECH', 'MAIN', 1734000)

10 SELECT * FROM dual;

8 rows created.
```

```
SQL> select * from department;

DID DNAME BUILDING BUDGET

1 CSE B 35000000
2 ECE A 1780000
3 MECH MAIN 1734000
```

```
SQL> select * from instructor;

ID NAME DEP_NAME SALARY

1 HARSHA CSE 50000
2 ARUN CSE 55000
3 DINESH EEE 52000
4 BASHA ECE 42000
5 SUMANTH CSM 32000
```

```
SQL> select dep_name from instructor

2 INTERSECT

3 select dname from department;

DEP_NAME

CSE
ECE
```

NAME	DNAME	BUDGET
 HARSHA	CSE	3500000
ARUN	CSE	35000000
DINESH		3500000
BASHA		35000000
SUMANTH		3500000
HARSHA	ECE	1780000
ARUN	ECE	1780000
DINESH		1780000
BASHA	ECE	1780000
SUMANTH	ECE	1780000
HARSHA	MECH	1734000
NAME	DNAME	BUDGET
ARUN	MECH	1734000
DINESH		1734000
BASHA	MECH	1734000
SUMANTH	MECH	1734000


```
SQL> create table instructors(
2 id NUMBER PRIMARY KEY,
3 name VARCHAR2(19),
4 salary NUMBER
5 );

Table created.

SQL> CREATE TABLE departments(
2 id NUMBER PRIMARY KEY,
3 dname VARCHAR2(10)
4 );

Table created.
```

```
SQL> INSERT ALL
2 INTO instructors VALUES(1, 'HARSHA', 80000)
3 INTO instructors VALUES(2, 'ARUN', 90000)
4 INTO instructors VALUES(3, 'DINESH', 70000)
5 INTO instructors VALUES(4, 'BASHA', 75000)
6 INTO departments VALUES(1, 'CSE')
7 INTO departments VALUES(2, 'EEE')
8 INTO departments VALUES(3, 'ECE')
9 SELECT * FROM dual;
7 rows created.
```

```
SQL> select * from instructors;
       ID NAME
                               SALARY
       1 HARSHA
                               80000
       2 ARUN
                                 90000
                                70000
       3 DINESH
        4 BASHA
                               75000
SQL> select * from departments;
       ID DNAME
       1 CSE
       2 EEE
        3 ECE
SQL> select * from instructors
 2 WHERE
 3 salary IS NULL;
     ID NAME
                           SALARY
       4 BASHA
SQL> select * from instructors
 2 where
 3 salary between 80000 and 90000;
     ID NAME
                            SALARY
      1 HARSHA
                             80000
      2 ARUN
                             90000
```

```
SQL> select * from instructors
2 where
3 name like'B%';

ID NAME
SALARY

4 BASHA
```

```
SQL> select * from instructors
2 where
3 salary IN(10000,80000,90000);

ID NAME SALARY

1 HARSHA 80000
2 ARUN 90000
```

```
SQL> select * from instructors

2 where

3 EXISTS(SELECT * FROM departments WHERE instructors.id=departments.id);

ID NAME

SALARY

1 HARSHA

80000
2 ARUN
90000
3 DINESH
70000
```

```
SQL> create table student(
2 rollno NUMBER PRIMARY KEY,
3 name VARCHAR2(20) NOT NULL,
4 dname VARCHAR2(10) NOT NULL
5 );

Table created.

SQL> CREATE TABLE building(
2 dname VARCHAR2(10),
3 bname VARCHAR2(10)
4 );

Table created.
```

```
SQL> INSERT ALL

2 INTO student VALUES(1,'harsha','cse')

3 INTO student VALUES(2,'basha','ece')

4 INTO student VALUES(3,'dinesh','eee')

5 INTO student VALUES(4,'hari','csd')

6 INTO building VALUES('cse','b')

7 INTO building VALUES('eee','a')

8 INTO building VALUES('csd','c')

9 select * from dual;

7 rows created.
```

```
SQL> select * from student;

ROLLNO NAME DNAME

1 harsha cse
2 basha ece
3 dinesh eee
4 hari csd
```

```
SQL> select * from building;

DNAME BNAME

-----
cse b
eee a
csd c
```

```
SQL> select * from student
 2 JOIN building ON
 3 student.dname=building.dname;
   ROLLNO NAME
                             DNAME
                                       DNAME BNAME
        1 harsha
                                                 b
                             cse
                                       cse
       3 dinesh
                             eee
                                       eee
                                                 a
      4 hari
                             csd
                                       csd
                                                  C
```

SQL> select 2 USING(udent JOIN building	
DNAME	ROLLNO	NAME	BNAME
cse	1	harsha	b
eee	3	dinesh	a
csd	4	hari	С

SQL> select * from student 2 LEFT OUTER JOIN building ON 3 student.dname=building.dname;						
ROLLNO	NAME	DNAME	DNAME	BNAME		
1	harsha	cse	cse	b		
3	dinesh	eee	eee	a		
4	hari	csd	csd	С		
2	basha	ece				

SQL> select * from student 2 RIGHT OUTER JOIN building ON 3 student.dname=building.dname; ROLLNO NAME DNAME DNAME BNAME 1 harsha b 3 dinesh eee eee а 4 hari csd csd

SQL> select	t * from student					
2 FULL (2 FULL OUTER JOIN building ON					
3 studer	3 student.dname=building.dname;					
	-					
ROLLNO	NAME	DNAME	DNAME	BNAME		
1	harsha	cse	cse	b		
2	basha	ece				
3	dinesh	eee	eee	а		
4	hari	csd	csd	c		

Experiment-5

Aggregate functions(min,max,count,sum,avg)

To perform the aggregate functions you need to create a table and insert values in it

For example we can take a table name called employee

```
SQL> select * from employee;

EID ENAME SALARY

1 raju 1000
2 dinesh 3000
3 arun 4000
4 harsha 6000
```

Min function

It is used to find the minimum value int the column of a table

For example we are performing the above aggregate functions in the example.

Syntax:

```
Select min(column_name) from table_name;
```

Ex:

Select min(salary) from table_name;

```
SQL> select min(salary) from employee;

MIN(SALARY)
-----
1000

SQL>
```

Max function:

It is used to find the maximum value int the column of a table.

Syntax:

```
Select max(column_name) from table_name;
```

Ex:

Select max(salary) from employee;

```
SQL> select max(salary) from employee;

MAX(SALARY)

6000
```

Count function:

It is used to count the how many rows in the column of a table.

Syntax:

Select count(column name) from table name;

Ex:

Select count(salary) from employee;

```
SQL> select count(salary) from employee;

COUNT(SALARY)

-----

4

SQL>
```

Sum function:

It is used to find the sum of the values in a row of a table.

Syntax:

Select sum(column_name) from table_name;

Ex:

Select sum(salary) from employee;

```
SQL> select sum(salary) from employee;
SUM(SALARY)
------14000
```

Avg function:

It is used to find the average of the column of a table.

Syntax:

Select avg(column_name) from table_name;

Ex:

Select avg(salary) from employee;

```
SQL> select avg(salary) from employee;

AVG(SALARY)

3500
```

```
SQL> CREATE TABLE name(
2 fname VARCHAR2(20) NOT NULL,
3 lname VARCHAR2(20) NOT NULL
4 );
Table created.
```

```
SQL> select UPPER(fname) from name;
UPPER(FNAME)
HARSHA
DINESH
ARUN
SYED
SQL> select INITCAP(fname) from name;
INITCAP(FNAME)
Harsha
Dinesh
Arun
Syed
SQL> select CONCAT(fname, lname) from name;
CONCAT(FNAME, LNAME)
HarshaReddy
DineshReddy
ArunNaik
SyedBasha
SQL> select SUBSTR(fname,1,3) from name;
SUBSTR(FNAME
Har
Din
Aru
Sye
```

```
SQL> select LENGTH(fname) from name;

LENGTH(FNAME)

6
6
4
4
```

```
SQL> select TRIM(' ' from fname) from name;

TRIM(''FROMFNAME)
------
Harsha
Dinesh
Arun
Syed
```

```
SQL> select MOD(25,2) from dual;

MOD(25,2)

1
```

Primary key:

```
SQL> create table college(
2 id varchar2(10) PRIMARY KEY,
3 name varchar2(20),
4 branch varchar2(10),
5 section varchar2(10)
6 );
Table created.
```

```
        SQL> desc college
        Null?
        Type

        ID
        NOT NULL VARCHAR2(10)

        NAME
        VARCHAR2(20)

        BRANCH
        VARCHAR2(10)

        SECTION
        VARCHAR2(10)
```

Foreign key:

```
SQL> create table marks(
2 id varchar2(10) PRIMARY KEY,
3 num NUMBER NOT NULL,
4 marks varchar2(20) REFERENCES college(id)
5 );
Table created.
```

```
SQL> desc marks

Name

Null? Type

NOT NULL VARCHAR2(10)

NOT NULL NUMBER

MARKS

VARCHAR2(20)

SQL>
```

```
SQL> ED
Wrote file afiedt.buf
 1 DECLARE
 2 n NUMBER;
 3 fac NUMBER:=1;
 4 n1 NUMBER;
 5 BEGIN
 6 n:=&n;
 7 n1:=n;
 8 WHILE N>0 LOOP
 9 fac:=n*fac;
10 n:=n-1;
11 END LOOP;
12 DBMS_OUTPUT.PUT_LINE('The factorial of '||n1||' is '||fac);
13* END;
SQL> /
Enter value for n: 5
old 6: n:=&n;
new 6: n:=5;
PL/SQL procedure successfully completed.
SQL> SET SERVEROUT ON
SQL> SET VERIFY OFF
SQL> /
Enter value for n: 5
The factorial of 5 is 120
PL/SQL procedure successfully completed.
```

```
SQL> ED
Wrote file afiedt.buf
 1 DECLARE
 2 n NUMBER;
 3 i NUMBER;
 4 temp NUMBER;
 5 BEGIN
 6 n:=&n;
 7 i:=2;
 8 temp:=1;
 9 FOR I IN 2..n/2
 10 LOOP
 11 IF MOD(n,i)=0
 12 THEN
 13 temp:=0;
 14 EXIT;
 15 END IF;
 16 END LOOP;
 17 IF temp=1
 18 THEN
19 DBMS_OUTPUT.PUT_LINE(n||' is a prime number');
 20 ELSE
 21 DBMS_OUTPUT.PUT_LINE(n||' is not a prime number');
 22 END IF;
 23* END;
SQL> /
Enter value for n: 12
12 is not a prime number
PL/SQL procedure successfully completed.
SQL> SET SERVEROUT ON
SQL> SET VERIFY OFF
SQL> /
Enter value for n: 3
3 is a prime number
PL/SQL procedure successfully completed.
```

```
SQL> ED
Wrote file afiedt.buf
  1 DECLARE
  2 first NUMBER:=0;
  3 second NUMBER:=1;
  4 temp NUMBER;
 5 n NUMBER;
  6 i NUMBER;
  7 BEGIN
 8 n:=&n;
  9 DBMS_OUTPUT.PUT_LINE('SERIES');
 10 DBMS_OUTPUT.PUT_LINE(first);
 11 DBMS_OUTPUT.PUT_LINE(second);
 12 FOR i IN 2..n
 13 LOOP
 14 temp:=first+second;
 15 first:=second;
 16 second:=temp;
 17 DBMS_OUTPUT.PUT_LINE(temp);
 18 END LOOP;
 19* END;
 20 /
Enter value for n: 5
SERIES
1
2
3
5
PL/SQL procedure successfully completed.
```

```
SQL> CREATE TABLE sailor(
2 id NUMBER PRIMARY KEY,
3 name VARCHAR2(20) NOT NULL
4 );
Table created.
```

```
SQL> ED
Wrote file afiedt.buf

1 CREATE OR REPLACE PROCEDURE insertuser(id IN NUMBER,name IN VARCHAR2)
2 AS
3 BEGIN
4 INSERT INTO sailor VALUES(id,name);
5 DBMS_OUTPUT.PUT_LINE('Record inserted successfully');
6* END;
7 /
Procedure created.
```

```
SQL> ED
Wrote file afiedt.buf

1 DECLARE
2 co NUMBER;
3 BEGIN
4 insertuser(26,'Harsha');
5 select count(*) INTO co FROM sailor;
6 DBMS_OUTPUT.PUT_LINE(co||' Record is inserted successfully');
7* END;
SQL> /
Record inserted successfully
1 Record is inserted successfully
PL/SQL procedure successfully completed.
```

```
SQL> ED
Wrote file afiedt.buf

1 DECLARE
2 co NUMBER;
3 BEGIN
4 insertuser(25,'Harsha');
5 select count(*) INTO co FROM sailor;
6 DBMS_OUTPUT.PUT_LINE(co||' Record is inserted successfully');
7* END;
SQL> /
Record inserted successfully
2 Record is inserted successfully
PL/SQL procedure successfully completed.
```

```
SQL> CREATE TABLE branch(
2 id NUMBER PRIMARY KEY,
3 name VARCHAR2(20) NOT NULL,
4 strength NUMBER
5 );
Table created.
```

```
SQL> INSERT ALL

2 INTO branch VALUES(1,'CSE',144)

3 INTO branch VALUES(2,'EEE',120)

4 INTO branch VALUES(2,'EEE',120)

5 SELECT * FROM DUAL;

INSERT ALL

*

ERROR at line 1:

ORA-00001: unique constraint (C##526.SYS_C008329) violated

SQL> INSERT ALL

2 INTO branch VALUES(1,'CSE',144)

3 INTO branch VALUES(2,'CSD',140)

4 INTO branch VALUES(3,'EEE',120)

5 SELECT * FROM DUAL;

3 rows created.
```

```
SQL> SET SERVEROUT ON
SQL> SET VERIFY OFF
SQL> CREATE OR REPLACE FUNCTION totalstrength RETURN NUMBER

2 AS
3 total NUMBER:=0;
4 BEGIN
5 SELECT sum(strength) INTO total FROM branch;
6 return total;
7 END;
8 /
Function created.
```

```
SQL> DECLARE

2 answer NUMBER;

3 BEGIN

4 answer:=totalstrength();

5 DBMS_OUTPUT.PUT_LINE('Total strength of students is '||answer);

6 END;

7 /

Total strength of students is 404

PL/SQL procedure successfully completed.
```

```
SQL> CREATE TABLE instruct(
  2 id NUMBER PRIMARY KEY,
  3 name VARCHAR2(10) NOT NULL,
  4 dname VARCHAR2(10) NOT NULL,
  5 salary NUMBER CHECK(salary>10000)
  6);
Table created.
SOL> INSERT ALL
  2 INTO instruct VALUES(1, 'HARSHA', 'CSE', 50000)
  3 INTO instruct VALUES(2, 'ARUN', 'CSE', 60000)
  4 INTO instruct VALUES(3, 'BASHA', 'ECE', 55000)
  5 INTO instruct VALUES(4, 'DINESH', 'EEE', 65000)
  6 SELECT * FROM DUAL;
4 rows created.
SQL> CREATE OR REPLACE TRIGGER display changes
 2 BEFORE UPDATE ON instruct
 3 FOR EACH ROW
 4 WHEN(NEW.ID=OLD.ID)
 5 DECLARE
 6 sal diff number;
 7 BEGIN
 8 sal diff:=:NEW.salary-:OLD.salary;
 9 DBMS_OUTPUT.PUT_LINE('OLD SALARY: '||:OLD.salary);
10 DBMS_OUTPUT.PUT_LINE('NEW SALARY: '||:NEW.salary);
11 DBMS OUTPUT.PUT LINE('Salary difference : '||sal diff);
12 END;
13 /
Trigger created.
```

```
SQL> DECLARE
 2 tot rows NUMBER;
 3 BEGIN
 4 UPDATE instruct
 5 SET salary=salary*1.5;
 6 IF sql%notfound THEN
 7 DBMS_OUTPUT.PUT_LINE('no instructors updated');
 8 ELSIF sql%found THEN
 9 tot_rows:=sql%rowcount;
 10 DBMS_OUTPUT.PUT_LINE(tot_rows||' instructors updated');
 11 END IF;
 12 END;
 13 /
PL/SQL procedure successfully completed.
SQL> SET SERVEROUT ON
SQL> SET VERIFY OFF
SQL> /
OLD SALARY: 75000
NEW SALARY: 112500
Salary difference : 37500
OLD SALARY: 90000
NEW SALARY: 135000
Salary difference : 45000
OLD SALARY: 82500
NEW SALARY: 123750
Salary difference : 41250
OLD SALARY: 97500
NEW SALARY: 146250
Salary difference : 48750
4 instructors updated
PL/SQL procedure successfully completed.
```

```
SQL> CREATE TABLE customers(
2 id NUMBER PRIMARY KEY,
3 name VARCHAR2(20) NOT NULL,
4 age NUMBER NOT NULL,
5 salary NUMBER NOT NULL
6 );
Table created.

SQL> INSERT ALL
```

```
SQL> INSERT ALL

2 INTO customers VALUES(1, 'HARSHA', 18,50000)

3 INTO customers VALUES(2, 'ARUN', 19,60000)

4 INTO customers VALUES(3, 'BASHA', 19,65000)

5 INTO customers VALUES(4, 'DINESH', 20,55000)

6 SELECT * FROM DUAL;

4 rows created.
```

```
SQL> DECLARE

2 tot_rows NUMBER;

3 BEGIN

4 UPDATE customers SET salary=salary*1.5;

5 IF sql%notfound THEN

6 DBMS_OUTPUT.PUT_LINE('No customers updated');

7 ELSIF sql%found THEN

8 tot_rows :=sql%rowcount;

9 DBMS_OUTPUT.PUT_LINE(tot_rows||' customers updated');

10 END IF;

11 END;

12 /

4 customers updated

PL/SQL procedure successfully completed.
```

```
SQL> DECLARE
  2 c_id customers.id%type;
 3 c_name customers.name%type;
  4 c_age customers.age%type;
  5 CURSOR c_customers IS
  6 SELECT id, name, age FROM customers;
  7 BEGIN
  8 OPEN c_customers;
  9 LOOP
 10 FETCH c_customers INTO c_id,c_name,c_age;
 11 EXIT WHEN c_customers%notfound;
 12 DBMS_OUTPUT.PUT_LINE(c_id||' '||c_name||' '||c_age);
 13 END LOOP;
 14 CLOSE c_customers;
 15 END;
 16 /
1 HARSHA 18
2 ARUN 19
3 BASHA 19
4 DINESH 20
PL/SQL procedure successfully completed.
```