ÚLOHY Z PREDIKÁTOVÉ LOGIKY

Instance, varianty.

UF.1.1. Substituovatelnost.

1. Buď φ formule

$$(\exists z)(x = z) \& y < x$$

a dále x,y,z různé proměnné, F unární funkční symbol, c konstantní symbol.

Uveďte, zda je termt substituovatelný do φ za proměnnou v v následujících případech:

- a) t je F(z), v je x. Řešení: Ne.
- b) t je F(z), v je y. Řešení: Ano.
- c) $t \text{ je } F(x), \quad v \text{ je } x.$ Řešení: Ano.
- d) $t \neq F(c)$, $v \neq y$. Řešení: Ano.
- 2. Buď φ formule

$$(\forall x)((\exists z)(z < x \& y = z) \lor z \neq x)$$

a dále x, y, z různé proměnné, G binární funkční symbol, c konstantní symbol.

Uveďte, zda je termt substituovatelný do φ za proměnnou v v následujících případech:

- a) $t \text{ je } G(c, x), \quad v \text{ je } y$ Řešení: Ne.
- b) $t \text{ je } G(c, y), \quad v \text{ je } y$ Řešení: Ano.
- c) t je G(c,c), v je z Řešení: Ano.
- d) $t \text{ je } G(z, x), \quad v \text{ je } z$ Řešení: Ne.

UF.1.2. Instance. Varianty.

1. Nechť y není volná ve φ a je substituovatelná za x do φ , φ' je $\varphi(x/y)$. Zjistěte, zda $\varphi'(y/x)$ je φ . Zdůvodněte odpověď.

Řešení: Oba předpoklady dohromady zaručují, že volný výskyt y ve φ' je právě tam, kde je volný výskyt x v φ . Tedy x je substituovatelné za y do φ' a také rovnost obou uvažovaných formulí platí.

2. Buďte x,y,z,u různé proměnné, Q kvantifikátor. Odpovězte a zdůvodněte, zda v následujících případech platí:

$$\psi$$
 je varianta φ .

a)
$$\varphi$$
 je $(Qx)(x < y \lor (\exists z)(z = y \& z \neq x))$
 ψ je $(Qz)(z < y \lor (\exists z)(z = y \& z \neq z))$

Řešení: Ne. z není substituovatelné za x do $x < y \lor (\exists z)(z = y \& z \neq x)$.

b)
$$\varphi$$
 je $(Qx)(x < y \lor (\forall z)(z = y \& z \neq x))$
 ψ je $(Qy)(y < y \lor (\forall z)(z = y \& z \neq y))$

Řešení: Ne. y je volná ve φ .

c)
$$\varphi$$
 je $(Qx)(x < y \lor (\exists z)(z = y \& z \neq x))$
 ψ je $(Qu)(u < y \lor (\exists z)(z = y \& z \neq u))$

Řešení: Ano. u není volná ve φ a je substituovatelná za x do $x < y \lor (\exists z)(z = y \& z \neq x)$.

3. Buď P unární predikátový symbol,

$$\varphi$$
 formule $(\exists y)(y=x) \& P(x)$, φ' formule $(\exists y)(y=y) \& P(y)$.

a) Je $(\forall x)\varphi'$ varianta $(\forall x)\varphi$?

Řešení: Ne.

b) Je x substituovatelné do φ' za y?

Řešení: Ano.

c) Je φ rovno $\varphi'(y/x)$?

Řešení: Ne. $\varphi'(y/x)$ je $(\exists y)(y=y) \& P(x)$.

d) Je $\vdash \varphi \leftrightarrow \varphi'(y/x)$?

Řešení: Ano. Je $\vdash (\exists y)(y=x) \leftrightarrow (\exists y)(y=y)$, protože obě formule z ekvivalence jsou dokazatelné. Odtud $\vdash (\exists y)(y=x) \& P(x) \leftrightarrow (\exists y)(y=y) \& P(x)$.

Pojem modelu a splňování. Axiomatizovatelnost.

UF.1.3. Platnost formule v modelu.

1. Buď φ formule $P(x) \to (\forall x)P(x)$, kde P je unární relační symbol. V právě kterých strukturách $\langle A, P^A \rangle$ neplatí φ ani $\neg \varphi$?

Řešení: Právě když $\emptyset \neq P^A \neq A$.

2. Buď φ formule x=c,kde c je konstantní symbol. V právě kterých strukturách $\langle A,c^A\rangle$ neplatí φ ani $\neg\varphi?$

Řešení: Právě když $|A| \ge 2$.

3. Buď φ formule $P(x) \to (\forall x)R(x)$, kde P,R jsou různé unární predikátové symboly. V právě kterých strukturách $\mathcal{A} = \langle A, P^A, R^A \rangle$ neplatí φ ani $\neg \varphi$?

Řešení: Právě když $\emptyset \neq P^A \neq A \neq R^A$.

Zřejmě totiž:

$$\mathcal{A} \not\models \varphi \Leftrightarrow P^A \neq \emptyset$$
 a $R^A \neq A$, $\mathcal{A} \not\models \neg \varphi \Leftrightarrow P^A \neq A$ nebo $R^A = A$.

UF.1.4. Korektnost substituce.

Buď φ formule $(\exists y)(x \neq y)$ s různými proměnnými x, y. Buď φ' výsledek "nekorektní substituce" y do φ za volný výskyt x. Buď \mathcal{A} struktura. Uvažujme tvrzení:

Pro každé
$$e: \text{Var} \to A$$
 je $\mathcal{A} \models \varphi'[e] \Leftrightarrow \mathcal{A} \models \varphi[e(x/y[e])].$ (*)

- a) Uveďte, zda (*) platí pro $\mathcal{A}=\langle\mathbb{N},+\rangle$, kde + je sčítání přirozených čísel. Řešení: Ne.
- b) Uveďte, zda (*) platí pro $\mathcal{A} = \langle \{0\}, R \rangle$, kde $R = \{\langle 0, 0 \rangle\}$.

Řešení: Ano.

c) Právě pro které modely $\mathcal{A}=\langle A\rangle$ (teorie čisté rovnosti) platí (*)? Řešení: Právě pro \mathcal{A} s A jednoprvkovým.

UF.1.5. Axiomatizovatelnost.

1. Buď K = $\{\langle A \rangle$; velikost A je sudá nebo nekonečná $\}$ třída modelů jazyka L čisté rovnosti. Zjistěte, zda je K axiomatizovatelná, případně najděte její axiomatiku.

Řešení: $T = \{\neg,\text{existuje právě } 2k+1 \text{ prvků"}; k \in \mathbb{N}\}$ axiomatizuje K.

- 2. Nechť T je teorie v jazyce L s rovností taková, že T má model a každý její model je nekonečný. Buď $0 < n \in \mathbb{N}$. Najděte L-teorii T' tak, aby $\mathsf{M}^\infty(T') = \mathsf{M}^\infty(T)$ a T' měla nějaké konečné modely, a to všechny:
 - a) právě *n*-prvkové,
 - b) právě *n*-prvkové nebo 2*n*-prvkové.

Řešení: Buď $T' = \{ \varphi \lor \psi; \varphi \in T \}$ s vhodným ψ .

3. Buď 0 < $n \in \mathbb{N}$. Najděte teorii T v nějakém jazyce s rovností, která má nekonečné modely, nemá spočetný model, má konečné modely, všechny kardinality nejvýše n.

Řešení: Buď $L = \langle c_i; i \in \mathbb{R} \rangle$ s konstantními symboly c_i a T_0 buď L-teorie $\{c_i \neq c_j; i, j \in \mathbb{R}, i \neq j\}$; hledaná T je L-teorie

$$\{\varphi\vee\text{ "existuje nejvýše }n\text{ prvků"; }\varphi\in T_0\}.$$

4. Buď $L = \langle U \rangle$ s rovností, přičemž U je unární relační symbol, $0 < n \in \mathbb{N}$ a

$$\mathsf{K} = \{\langle A, U^A \rangle;\, U^A$$
je nekonečná nebo nejvýše $n\text{-prvková}\}$

je třída L-struktur. Zjistěte, zda je K axiomatizovatelná, případně najděte její axiomatiku.

Řešení: Nechť T_0 je teorie L-teorie

$$\{(\exists x_0,\ldots,x_{m-1})(\bigwedge_{i< j< m} x_i \neq x_j \& \bigwedge_{i< m} U(x_i)); 0 < m \in \mathbb{N}\}.$$

Pro L-strukturu \mathcal{A} platí: $\mathcal{A} \models T_0 \Leftrightarrow |U^A| \geq \omega$. Buď χ sentence "existuje nejvýše n prvků x s U(x)". Pak $T = \{ \varphi \lor \chi; \varphi \in T_0 \}$, axiomatizuje K.

Izomorfní spektra.

UF.1.6. Izomorfní spektra v jazyce $\langle U, c \rangle$.

Buď $L = \langle U, c \rangle$, kde U je unární relační a c konstantní symbol.

1. Popište izomorfní spektrum L-teorie $T = \{U(c)\}.$

Řešení: $I(\kappa, T) = |\mathbf{Cn} \cap \kappa|$. Modely $\langle \kappa, U', c' \rangle$, $\langle \kappa, U'', c'' \rangle$ teorie T jsou izomorfní, právě když $\langle |U'|, |\kappa - U'| \rangle = \langle |U''|, |\kappa - U''| \rangle$, přičemž $|U'| \geq 1$. Všech různých dvojic $\langle |U'|, |\kappa - U'| \rangle$ s $|U'| \geq 1$, $|U'| \leq \kappa$ je právě $|\mathbf{Cn} \cap \kappa|$. Pro $\kappa < \omega$ je totiž $|\mathbf{Cn} \cap \kappa| = \kappa$. Pro $\kappa \geq \omega$ je buď |U'| jakékoli kardinality $< \kappa$, nebo $|U'| = \kappa$ a pak může být $|\kappa - U'|$ jakékoli kardinality $\leq \kappa$; takových možností je $|\mathbf{Cn} \cap \kappa|$ + $|\mathbf{Cn} \cap \kappa| = |\mathbf{Cn} \cap \kappa|.$

2. Popište izomorfní spektrum L-teorie $T = \{(\exists!x)U(x)\}.$

Řešení: $I(\kappa, T) = 1$ pro $\kappa = 1$ a 2 pro $\kappa > 1$.

UF.1.7. Izomorfní spektrum jazyka spočetně konstant.

Buď $L = \langle c_i \rangle_{i \in \omega}$, kde c_i jsou konstantní symboly.

1. Pro L-strukturu \mathcal{A} definujeme ekvivalenci E^A na ω :

$$i E^A j \Leftrightarrow c_i^A = c_j^A.$$

Buďte \mathcal{A}, \mathcal{B} dvě L-struktury téže velikosti.

a) Platí:

$$\mathcal{A} \cong \mathcal{B} \quad \Leftrightarrow \quad E^A = E^B \text{ a } |A - \{c_i^A; i < \omega\}| = |B - \{c_i^B; i < \omega\}|. \tag{1}$$

Speciálně je nejvýše kontinuum neizomorfních L-struktur dané kardinality.

b) Jsou-li \mathcal{A} , \mathcal{B} konečné nebo nespočetné, platí:

$$\mathcal{A} \cong \mathcal{B} \quad \Leftrightarrow \quad E^A = E^B. \tag{2}$$

- c) Najděte spočetné \mathcal{A} , \mathcal{B} , pro které (2) neplatí.
- 2. Pro $\kappa \geq 2$ je $I(\kappa, L) = 2^{\omega}$.

Návod: Užijte toho, že na ω je kontinuum různých ekvivalencí s λ třídami, když $2 \leq \lambda \leq \omega$.

Řešení: Buď E ekvivalence na $\omega,\,\lambda(E)$ počet tříd E. Pro $\kappa\geq\lambda(E)$ definujme L-strukturu $\kappa^E = \langle \kappa, c_i^E \rangle_{i < \omega}$ tak, aby platilo: $c_i^E = c_i^E \Leftrightarrow i E j$. Pak:

Jsou-li
$$E, E'$$
 ekvivalence na ω tak $\kappa^E \cong \kappa^{E'} \Leftrightarrow E = E'$.

Tedy: jelikož je na ω kontinuum různých ekvivalencí s λ třídami, jakmile $2 \le$ $\lambda \leq \omega$, existuje alespoň kontinuum neizomorfních L-struktur kardinality $\kappa (\geq 2)$ a dle (1) jich není více.

UF.1.8.

Teorie DiLO diskrétního lineárního uspořádání má pro každé $\kappa \geq \omega$ právě 2^{κ} neizomorfních modelů kardinality κ .

Návod: Užijte toho, že pro každé $\kappa \geq \omega$ je právě 2^{κ} neizomorfních lineárních uspořádání s univerzem kardinality κ .

Řešení: Pro ostré lineární uspořádání $\mathcal{A} = \langle A, <^A \rangle$ buď $\mathcal{A}(\mathbb{Z}) = \langle A \times \mathbb{Z}, <_{Le} \rangle$ lexikografické uspořádání. Je diskrétní a kardinality $\max(|A|, \omega)$. Nechť $\mathcal{B} = \langle B, <^B \rangle$ je lineární uspořádání. Pak platí $\mathcal{A}(\mathbb{Z}) \cong \mathcal{B}(\mathbb{Z}) \Rightarrow \mathcal{A} \cong \mathcal{B}$. Buď totiž h isomorfizmus $\mathcal{A}(\mathbb{Z})$ a $\mathcal{B}(\mathbb{Z})$; definujme $H:A\to B$ takto:

$$H(a) = b_a \Leftrightarrow \text{existuje } j_a \in \mathbb{Z} \text{ s } h(\langle a, 0 \rangle) = \langle b_a, j_a \rangle.$$

Pak to je jasně zobrazení na B a

$$\begin{array}{lll} a<^Aa'&\Leftrightarrow&h(\langle a,0\rangle)<^{\mathcal{B}(\mathbb{Z})}\;h(\langle a',0\rangle)\;\text{a mezi}\;h(\langle a,0\rangle),\,h(\langle a',0\rangle)\;\text{je nekonečně}\\ &\text{prvků}\\ &\Leftrightarrow&b_a<^Bb_{a'}&\Leftrightarrow&H(a)<^BH(b). \end{array}$$

$$\Leftrightarrow b_a <^B b_{a'} \Leftrightarrow H(a) <^B H(b)$$

Jelikož na $\kappa \geq \omega$ je 2^{κ} neizomorfních lineárních uspořádání \mathcal{A} , máme 2^{κ} neizomorfních lineárních uspořádání $\mathcal{A}(\mathbb{Z})$ na $\kappa \times \mathbb{Z}$, tedy 2^{κ} neizomorfních diskrétních lineárních uspořádání, majících každé velikost univerza κ .

Základy dedukce.

UF.1.9. Syntaktický důkaz bezespornosti teorie rovnosti v L.

Nechť T je teorie rovnosti v L, tj. L-teorie s rovností bez mimologických axiomů. Buď d nový konstantní symbol. Pro L-formuli φ buď φ^* formule, která se získá z φ odstraněním všech kvantifikací a nahrazením každého termu konstantním symbolem d. Pak φ^* je výrok nad prvovýroky d=d, $R(d,\ldots,d)$, kde R je relační symbol z L.

a) Je-li φ logický axiom nebo axiom rovnosti, kromě axiom
ux=x,je φ^* tautologie.

Řešení: Pro logický axiom φ , který není axiomem rovnosti, to je jasné. Axiomy rovnosti φ kromě x=x přejdou na φ^* tvaru

$$d = d \rightarrow d = d \rightarrow \cdots \rightarrow (R(d, \dots, d) \rightarrow R(d, \dots, d))$$

nebo

$$d = d \rightarrow d = d \rightarrow \cdots \rightarrow d = d$$

a pak ovšem $\overline{v}(\varphi^*) = 1$.

b) $T \vdash \varphi \Rightarrow \overline{v}(\varphi^*) = 1$, jakmile v je ohodnocení uvedených prvovýroků takové, že platí v(d=d) = 1. Speciálně je T bezesporná.

Návod: Užijte indukci na teorémech T.

Řešení: Indukcí na teorémech T. Pro axiom φ to platí, neboť $(x=x)^*$ je d=d. Buď v(d=d)=1. Nechť pro $\psi,\,\psi\to\varphi$ to platí. Pak $1=\overline{v}((\psi\to\varphi)^*)=\overline{v}(\psi^*\to\varphi^*)$ a $\overline{v}(\psi^*)=1$, tedy $\overline{v}(\varphi^*)=1$. Platí-li to pro φ , tak $\overline{v}(((\forall x)\varphi)^*)=\overline{v}(\varphi^*)=1$.

UF.1.10. Dokazatelné, vyvratitelné, nezávislé a bezesporné formule.

1. Buďte P,R různé unární predikátové symboly. Zdůvodněte, zda formule φ je dokazatelná, vyvratitelná či nezávislá v logice, kde φ je

a)
$$P(x)$$
 b) $P(x) \to R(x)$ c) $(\forall x, y)(P(x) \to (R(x) \to P(x)))$ d) $(\exists x)P(x)$

Řešení: a) Nezávislá. $\langle 1,\emptyset \rangle \models \neg \varphi, \langle 1,1 \rangle \models \varphi$. b) Nezávislá. $\langle 2,\emptyset,2 \rangle \models \varphi, \langle 2,2,\emptyset \rangle \models \neg \varphi$. c) Dokazatelná, neboť $P(x) \to (R(x) \to P(x))$ je tautologie. d) Nezávislá. $\langle 1,\emptyset \rangle \models \neg \varphi, \langle 1,1 \rangle \models \varphi$.

- 2. Najděte nějaké nezávislé sentence teorie čisté rovnosti, teorie lineárního uspořádání, teorie grup, teorie těles.
- 3. Nechť $T \vdash (\exists x) \varphi(x)$. Co lze říci o dokazatelnosti, vyvratitelnosti, nezávislosti, konzistenci φ , $\neg \varphi$ vzhledem k T?

UF.1.11. Vlastnosti kvantifikátorů.

 $1. \vdash (\forall x)(\varphi \to \psi) \to ((Qx)\varphi \to (Qx)\psi), \text{ kde } Q \text{ značí kvantifikátor.}$

Návod: Užijte větu o konstantách.

Řešení: Buďte T logické axiomy v jazyce rozšířeném o nové konstantní symboly c_i ; $\varphi(x, x_1/c_1, \cdots)$ resp. $\psi(x, x_1/c_1, \cdots)$ označme $\varphi'(x)$ resp. $\psi'(x)$ (konstanty substituujeme za všechny volné proměnné, kromě x). Pak $T, (\forall x)(\varphi' \to \psi') \vdash \varphi' \to \psi'$, dle pravidla distribuce kvantifikátoru i $T, (\forall x)(\varphi' \to \psi') \vdash (Qx)\varphi' \to (Qx)\psi'$ a zbytek dá věta o dedukci a konstantách.

2.

a)
$$\vdash (\forall x)\varphi \rightarrow (\exists x)\varphi$$
.

Řešení: Je $\vdash (\forall x)\varphi \to \varphi$, $\vdash \varphi(x) \to (\exists x)\varphi$; odtud pomocí pravidla tranzitivity implikace plyne dokazované.

b)
$$\vdash \varphi \to (\forall x)\varphi \iff \vdash (\exists x)\varphi \to (\forall x)\varphi \iff \vdash (\forall x)\neg\varphi \lor (\forall x)\varphi.$$

Řešení: Prvá ekvivalence. Implikace \Rightarrow : $\vdash \varphi \to (\forall x)\varphi \Leftrightarrow \vdash (\forall x)(\varphi \to (\forall x)\varphi) \Rightarrow$ $\vdash (\exists x)\varphi \to (\forall x)\varphi$. Implikace \Leftarrow : $\vdash (\exists x)\varphi \to (\forall x)\varphi \Rightarrow \vdash (\forall x)(\varphi \to (\forall x)\varphi) \Rightarrow \vdash \varphi \to$

3.

a) $\vdash (\forall x)(\forall x)\varphi \leftrightarrow (\forall x)\varphi$.

Řešení: i) $\vdash (\forall x)(\forall x)\varphi \rightarrow (\forall x)\varphi$ dává axiom substituce.

 $(\forall x)\varphi$. Užitím de Morganových vztahů plyne druhá ekvivalence.

ii) $\vdash (\forall x)\varphi \rightarrow (\forall x)(\forall x)\varphi$ plyne z $\vdash (\forall x)\varphi \rightarrow (\forall x)\varphi$ pravidlem \forall -zavedení. Z i),

- ii) plyne ihned dokazované.
 - b) $\vdash (\exists x)(\forall x)\varphi \leftrightarrow (\forall x)\varphi$. Řešení: i) $(\exists x)(\forall x)\varphi \rightarrow (\forall x)\varphi$ dává pravidlo \exists -zavedení.
- ii) $(\forall x)\varphi \to (\exists x)(\forall x)\varphi$ plyne z platného vztahu $\vdash \psi \to (\exists x)\psi$. Z i), ii) plyne ihned dokazované.

UF.1.12. Vytýkání kvantifikátorů - protipříklady.

1.
$$\forall (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$$
.

Řešení: Buď $\mathcal{A} = \langle A, P^A, R^A \rangle$, kde P, R jsou unární predikátové symboly, $a \in P^A \subseteq R^A \subsetneq A$. Pak

 $\mathcal{A} \models (\forall x)(P(x) \to R(x)), \qquad \mathcal{A} \not\models (P(x) \to (\forall x)R(x))[a].$ Tedy $\mathcal{A} \not\models (\forall x)(P(x) \to R(x)) \to (P(x) \to (\forall x)R(x)).$

$$2. \not\vdash (\varphi \to (\forall x)\psi) \to (\forall x)(\varphi \to \psi).$$

Řešení: Buď $\mathcal{A}=\langle A,P^A,R^A\rangle$, kde P,R jsou unární predikátové symboly, $a\in A-P^A,\emptyset\neq P^A\not\subseteq R^A$. Pak

$$\mathcal{A} \models (P(x) \to (\forall x)R(x))[a], \qquad \mathcal{A} \not\models (\forall x)(P(x) \to R(x)).$$

Tedy $\mathcal{A} \not\models (P(x) \to (\forall x) R(x)) \to (\forall x) (P(x) \to R(x)).$

3.
$$\forall (\exists x)(\varphi \to \psi) \to (\varphi \to (\exists x)\psi)$$
.

Řešení: Buď $\mathcal{A}=\langle A,P^A,R^A\rangle$, kde P,R jsou unární predikátové symboly, $a\in P^A\subsetneq A,\,R^A=\emptyset$. Pak

$$A \models (\exists x)(P(x) \to R(x))$$
 (protože existuje $b \in A - P^A$),

$$\mathcal{A} \not\models (P(x) \to (\exists x) R(x))[a]$$
 (protože je $a \in P^A$).

Tedy $\mathcal{A} \not\models (\exists x)(P(x) \to R(x)) \to (P(x) \to (\exists x)R(x)).$

Rozšíření o funkční symbol a definovaný funkční symbol.

UF.1.13.

Teorie těles má axiomatiku $T = T_0 \cup \{(\exists y)\varphi\}$, kde T_0 je jistá množina otevřených formulí jazyka $L = \langle +, -, \cdot, 0, 1 \rangle$ těles a φ je $x \neq 0 \rightarrow x \cdot y = 1$.

 \bullet Buď F nový unární funkční symbol a

$$T^{\varphi} = T_0 \cup \{ \varphi(y/F(x)) \}.$$

• Buď ψ formule $x \cdot y = 1 \vee (x = 0 \& y = 1)$; je $T \vdash (\forall x)(\exists! y)\psi$. Buď

$$T^{\psi} = T_0 \cup \{\psi(y/F(x))\}.$$

Platí:

1. T^{φ} je konzervativní otevřená extenze teorie T (a $(\forall x)\varphi(y/F(x))$ je Skolemova varianta $(\forall x)(\exists y)\varphi$.)

Řešení: $S = T \cup \{\varphi(y/F(x))\}$ je rozšíření T o funkční symbol F, tedy to je konzervativní rozšíření. Protože $\vdash \varphi(y/F(x)) \to (\exists y)\varphi$, je $T^{\varphi} = S - \{(\exists y)\varphi\}$ ekvivalentní s S a tedy to je konzervativní rozšíření T, které je ovšem tvořeno jen otevřenými axiomy. (Evidentně je $(\forall x)\varphi(y/F(x))$ Skolemova varianta $(\forall x)(\exists y)\varphi$.)

2. Neexistuje L-formule $\chi(x,y)$ taková, že $T^{\varphi} \vdash F(x) = y \leftrightarrow \chi(x,y)$.

Řešení: Sporem. Nechť χ existuje. Pak speciálně, díky tomu, že T^{φ} je konzervativní rozšíření T, máme $T \vdash (\exists ! y) \chi(0, y)$. Pro těleso racionálních čísel $\underline{\mathbb{Q}}$ buď $a \in \mathbb{Q}$ takové, že $\underline{\mathbb{Q}} \models \chi[0, a]$; takové a je jediné. Interpretujme F tak, že $F^{\mathbb{Q}}(0) \neq a$ a $F^{\mathbb{Q}}(q) = q^{-1}$ pro $q \neq 0$; to ovšem můžeme, neboť $\vdash \varphi(0, y) \leftrightarrow y = y$. Pak

 $\langle \mathbb{Q}, F^{\mathbb{Q}} \rangle \models T^{\varphi} \cup \{\neg \chi(0, F(0))\}.$ To je spor s $T^{\varphi} \vdash \chi(0, F(0)).$

3. T^{ψ} je konzervativní otevřená extenze teorie T v jazyce teorie T^{φ} . Rozšiřuje T^{φ} a není ekvivalentní s T^{φ} .

Řešení: $S=T\cup\{\psi(y/F(x))\}$ je rozšíření T o funkční symbol F, tedy to je konzervativní rozšíření. Z $T_0\vdash\psi(x,y)\to\varphi(x,y)$ plyne

$$T_0, \psi(y/F(x)) \vdash (\exists y)\varphi,$$
 (*)

tudíž $T^{\psi}=S-\{(\exists y)\varphi\}$ je ekvivalentní s S a tedy to je konzervativní rozšíření T, které je ovšem tvořeno jen otevřenými axiomy. Dále $T^{\psi} \vdash \varphi(y/F(x))$ dává (*). Tudíž je T^{ψ} silnější, než T^{φ} . Konečně $T^{\psi} \vdash F(0)=1$, ale $T^{\varphi} \not\vdash F(0)=1$; o tom svědčí např. $\langle \mathbb{Q}, F^{\mathbb{Q}} \rangle \models T^{\varphi}$ s $F^{\mathbb{Q}}(0)=0$.

Otevřené teorie.

Teorie je otevřená, je-li množina jejích mimologických axiomů tvořená otevřenými formulemi. Teorie T je axiomatizovatelná otevřenými formulemi čili otevřeně axiomatizovatelná, existuje-li otevřená teorie ekvivalentní s T.

UF.1.14.

1. Buď T teorie čisté rovnosti, tj. teorie v jazyce L_0 s rovností bez mimologických symbolů, která nemá mimologické axiomy. Pro nenulové $n \in \mathbb{N}$ buď teorie

 $T_n/T_{\leq n}/T_{\geq n}$ s jediným axiomem "existuje právě/nejvýše/alespoň n prvků".

- a) Je T_n axiomatizovatelná otevřenými formulemi? Odpověď zdůvodněte.
- b) Je $T_{\leq n}$ axiomatizovatelná otevřenými formulemi? Odpověď zdůvodněte.
- c) Je $T_{>n}$ axiomatizovatelná otevřenými formulemi? Odpověď zdůvodněte.

d) Která kompletní rozšíření teorie T v jazyce L_0 jsou otevřeně axiomatizovatelná? Návod: Užijte tvrzení, že podstruktura modelu otevřené teorie je její model.

Řešení: Budeme užívat tvrzení:

podstruktura modelu otevřené teorie je model této teorie. (*)

- a) Pro n=1 je, a to jediným axiomem x=y. Pro n>1 není. Je-li totiž $\langle A \rangle \models T_n$, pro $\emptyset \neq A' \subsetneq A$ je $\langle A' \rangle$ podstruktura $\langle A \rangle$ a není to model T_n .
- b) Každá $T_{\leq n}$ je, neboť je ekvivalentní s teorií $\bigvee \{x_i = x_j; i \neq j, i, j \leq n\}$.
- c) Pro n=1 je, neboť T_1 je ekvivalentní s T. Pro n>1 není. Je-li totiž $\langle A \rangle \models T_{\geq n}$, jednoprvková podstruktura modelu $\langle A \rangle$ není model $T_{>n}$.
- d) Kompletní rozšíření teorie T v jazyce L_0 jsou T_n s $0 < n \in \mathbb{N}$ a $T_\infty = \bigcup_{0 < n \in \mathbb{N}} T_{\geq n}$. Axiomatizovatelná otevřenými formulemi je jen T_1 . To plyne z a) a díky tomu, že T_∞ není otevřeně axiomatizovatelná podle (*), protože její model má konečnou podstrukturu, která ovšem není modelem T_∞ .
 - 2. Teorie těles (v jazyce $\langle +, -, \cdot, 0, 1 \rangle$ těles) není otevřeně axiomatizovatelná.

Návod: Užijte tvrzení, že podstruktura modelu otevřené teorie je její model.

Řešení: Užijeme tvrzení, že podstruktura modelu otevřené teorie je model této teorie. Buď $\underline{\mathbb{Z}}$ podstruktura tělesa $\underline{\mathbb{Q}}$ racionálních čísel, jejíž univerzum jsou celá čísla; $\underline{\mathbb{Z}}$ není těleso.

3. Buď T otevřená axiomatika teorie lineárního uspořádání v jazyce $L=\langle \leq \rangle$ uspořádání. Označme pro $0< n\in \mathbb{N}$ jako $T_{\leq n}$ rozšíření T o axiom "existuje nejvýše n prvků".

Pak L-teorie T' rozšiřující T je axiomatizovatelná otevřenými formulemi právě když

T' je ekvivalentní $T_{\leq n}$ nebo T' je ekvivalentní T.

Návod: Užijte tvrzení, že podstruktura modelu otevřené teorie je její model.

Řešení: Stačí dokázat implikaci \Rightarrow , neboť opačná platí proto, že $T_{\leq n}$, T jsou axiomatizovatelné otevřenými formulemi. Buď dále T' otevřená teorie. Užijeme tvrzení:

Podstruktura modelu otevřené teorie je její model. (*)

- i) Nechť T' má jen konečné modely. Existuje největší $n \in \mathbb{N}$ takové, že existuje model $\mathcal{A} \models T'$, A velikosti n. Platí pak $\mathcal{B} \models T' \Rightarrow \mathcal{B} \models T_{\leq n}$; tudíž T' je silnější, než $T_{\leq n}$. Dále $\mathcal{B} \models T_{\leq n} \Rightarrow \mathcal{B} \models T'$, neboť ze $\mathcal{B} \models T_{\leq n}$ plyne, že až na izomorfizmus, převádějící i-tý prvek uspořádání \leq^B na i-tý prvek uspořádání \leq^A , je \mathcal{B} podstruktura \mathcal{A} , a tedy $\mathcal{B} \models T'$. Tudíž $T_{\leq n}$ je silnější než T'.
- ii) Nechť T' má i nekonečné modely. Pak dle (*) má model každé konečné nenulové velikosti. Dokážeme, že libovolný model $\mathcal{A} \models T$ je až na izomorfizmus podstrukturou nějakého modelu teorie T' a tedy to je model T'. Odtud plyne, že T' je ekvivalentní T.

Definujme jazyk $L_A = \langle \leq, c_a \rangle_{a \in A}$, kde c_a jsou nové konstantní symboly. Buď \mathcal{A}_A expanze \mathcal{A} do L_A -struktury, přičemž c_a interpretujeme jako a (c_a je tzv. jméno

prvku a). Buď $\Delta(\mathcal{A})$ množina všech uzavřených formulí χ jazyka L_A takových, že χ je literál (tj. atomická nebo negace atomické formule) a $\mathcal{A} \models \chi$. ($\Delta(\mathcal{A})$ je tzv. diagram \mathcal{A} .) Buď $T_A = T' \cup \Delta(\mathcal{A})$. T_A je bezesporná, neboť pro $S \subseteq \Delta(\mathcal{A})$ konečnou je jistá konečná podstruktura $\mathcal{B} \subseteq \mathcal{A}$ taková, že $\mathcal{B}_B \models S$. (\mathcal{B} nechť obsahuje všechny prvky $a \in A$ takové, že c_a má výskyt v S.) Díky konečnosti B je $\mathcal{B} \models T'$ a tedy $\mathcal{B}_B \models T' \cup S$. Buď $\langle \mathcal{B}, c_a^B \rangle_{a \in A} \models T_A$ (je $\mathcal{B} \models T'$). Pak zobrazení $h: A \to B$, kde $h(a) = c_a^B$ je vnoření \mathcal{A} do \mathcal{B} , tj. h je prosté a pro každé $a, b \in A$ je $a \leq^A b \Leftrightarrow h(a) \leq^B h(b)$. Máme totiž $a \leq^A b \Leftrightarrow c_a \leq c_b \in \Delta(\mathcal{A}) \Leftrightarrow c_a^B \leq^B c_b^B \Leftrightarrow h(a) \leq^B h(b)$ a stejně pro = místo \leq . Podstruktura \mathcal{A}^h struktury \mathcal{B} s univerzem $\{h(a); a \in A\}$ je jednak model T' díky (*), jednak je \mathcal{A} izomorfní s \mathcal{A}^h prostřednictvím h; to jsme měli dokázat.

Robinsonova aritmetika Q

Robinsonova aritmetika Q je teorie v jazyce $L^A=\langle S,+,\cdot,0,\leq \rangle$ aritmetiky. Její axiomy jsou:

$$\begin{array}{lll} (\mathrm{Q1}) \ 0 \neq \mathrm{S}x & (\mathrm{Q2}) \ \ \mathrm{S}x = \mathrm{S}y \to x = y \\ (\mathrm{Q3}) \ \ x + 0 = x & (\mathrm{Q4}) \ \ x + \mathrm{S}y = \mathrm{S}(x + y) \\ (\mathrm{Q5}) \ \ x \cdot 0 = 0 & (\mathrm{Q6}) \ \ x \cdot \mathrm{S}y = x \cdot y + x \\ (\mathrm{Q7}) \ \ x \neq 0 \to (\exists y)(x = \mathrm{S}y) & (\mathrm{Q8}) \ \ x \leq y \leftrightarrow (\exists z)(z + x = y). \end{array}$$

UF.1.15. Dokazatelné formule Robinsonovy aritmetiky Q.

1. $Q \vdash 0 \le x$.

Řešení: Q $\vdash x + 0 = x$, tedy dle věty o rovnosti Q $\vdash x = y \to y + 0 = x$ (první výskyt termu x v x + 0 = x je nahrazen termem y). Pak Q $\vdash (\exists y)(x = y) \to (\exists y)(y + 0 = x)$ pomocí pravidla distribuce \exists . Jelikož $\vdash (\exists y)(y = x)$, dostáváme Q $\vdash (\exists y)(y + 0 = x)$ pomocí MP a nakonec Q $\vdash 0 \le x$ pomocí Q8.

2. a) $Q \vdash x \leq y \leftrightarrow Sx \leq Sy$, b) $Q \vdash Sx + \underline{n} = S(x + \underline{n}) \text{ pro } n \in \mathbb{N}$.

Řešení: a) V Q máme: $x \le y \leftrightarrow (\exists z)(z+x=y) \leftrightarrow (\exists z)(\mathrm{S}(z+x)=\mathrm{S}y) \leftrightarrow (\exists z)(z+\mathrm{S}x=\mathrm{S}y) \leftrightarrow \mathrm{S}x \le \mathrm{S}y.$ 2. \leftrightarrow plyne z Q2, 3. z Q4, 1. a 4. z Q8.

- b) Matematickou indukcí přes n. Q $\vdash Sx + \underline{0} = Sx = S(x + \underline{0})$ užitím Q3. Indukční krok. Nechť Q $\vdash Sx + \underline{n} = S(x + \underline{n})$. Pak v Q máme: $Sx + S\underline{n} = S(Sx + \underline{n}) = SS(x + \underline{n}) = S(x + \underline{n})$; užili jsme Q4 a v 2. rovnosti indukční předpoklad.
 - 3. a) $Q \vdash z + x = 0 \to x = 0$, b) $Q \vdash x \le 0 \to x = 0$.

Řešení: a) Dokazujeme v Q logický ekvivalent $x \neq 0 \rightarrow z + x \neq 0$. V Q máme $x \neq 0 \rightarrow (\exists y)(x = \mathrm{S}y \ \& \ z + x = \mathrm{S}(z + y) \neq 0)$; užili jsme Q7, Q4, Q7, tautologie $A \ \& \ (A \rightarrow B) \leftrightarrow A \ \& \ B$. Tedy $x \neq 0 \rightarrow (\exists y)(z + x \neq 0)$, tedy i $x \neq 0 \rightarrow z + x \neq 0$, protože y nemá výskyt v $z + x \neq 0$.

b) je důsledek a), neboť v Q je:

$$x \le 0 \leftrightarrow (\exists z)(z+x=0) \rightarrow (\exists z)(x=0) \rightarrow x=0.$$

4. a) $m = 0 \Leftrightarrow Q \vdash \underline{m} = 0$, b) $m = n \Leftrightarrow Q \vdash \underline{m} = \underline{n}$, jakmile $m, n \in \mathbb{N}$.

Řešení: a) Implikace \Rightarrow plyne z $\underline{0} = 0$. Implikace \Leftarrow . Pro $m \neq 0$ buď m = n + 1.

Pak $Q \vdash \underline{m} = \underline{Sn} \neq 0$ dle Q1. b) Implikace \Rightarrow plyne z $m = n \Rightarrow \underline{m} = \underline{n}$. Implikace \Leftarrow . Bud' m < n. Pak $Q \vdash 0 \neq n - m$ dle a). Odtud $Q \vdash \underline{m} \neq \underline{n}$ plyne užitím Q2.

5. a)
$$Q \vdash \underline{m+n} = \underline{m} + \underline{n}$$
, b) $m \le n \Leftrightarrow Q \vdash \underline{m} \le \underline{n}$, jakmile $m, n \in \mathbb{N}$.

Řešení: a) Matematickou indukcí podle n. V Q: $\underline{m+0} = \underline{m} = \underline{m} + 0 = \underline{m} + \underline{0}$. Indukční krok. V Q: $\underline{m+(n+1)} = \underline{(m+n)+1} = \underline{S(\underline{m}+\underline{n})} = \underline{S(\underline{m}+\underline{n})} = \underline{(m+\underline{n})+1} = \underline{S(\underline{m}+\underline{n})} = \underline{(m+\underline{n})+1} = \underline{S(\underline{m}+\underline{n})} = \underline{S($

Q4, v 5. definice numerálu. b) Implikace \Rightarrow . $m \le n \Leftrightarrow$ existuje k s k+m=n; pak Q $\vdash \underline{k}+\underline{m}=\underline{n}$, tedy i Q $\vdash (\exists z)(z+\underline{m}=\underline{n})$.

Implikace \Leftarrow . Nechť $Q \vdash \underline{m} \leq \underline{n}$; pak $Q \vdash (\exists x)(x + \underline{m} = \underline{n})$. Když $n \leq m$, tak také $Q \vdash (\exists x)(x + \underline{m-n} = 0)$ dle Q2, Q4. Díky $Q \vdash x + y = 0 \rightarrow y = 0$ máme m = n (neboť $k \neq 0 \Rightarrow Q \vdash \underline{k} \neq 0$ dle Q1). Tedy nutně $m \leq n$.

6. Q $\vdash \underline{m \cdot n} = \underline{m} \cdot \underline{n}$, jakmile $m, n \in \mathbb{N}$.

Návod: Lze užít Q $\vdash \underline{k+l} = \underline{k} + \underline{l}$ pro k, l z $\mathbb N$

Řešení: Matematickou indukcí podle n. V Q: $\underline{m\cdot 0}=0=\underline{m}\cdot 0=\underline{m}\cdot \underline{0}.$ Indukční krok. V Q: $\underline{m\cdot (n+1)}=\underline{(m\cdot n)+n}=\underline{m\cdot n}+\underline{n}=\underline{m}\cdot \underline{n}+\underline{n}=\underline{m}\cdot \underline{Sn}=\underline{m}\cdot (n+1).$ V 2. = užito Q $\vdash \underline{k+l}=\underline{k+l},$ v 3. indukční předpoklad, ve 4. Q6, v 5. Q $\vdash \underline{k+1}=\underline{Sk}.$

7. $Q \vdash x \leq \underline{n} \vee \underline{n} \leq x \text{ pro } n \in \mathbb{N}.$

Návod: Lze užít $Q \vdash 0 \le x, m \le n \Rightarrow Q \vdash \underline{m} \le \underline{n}$.

Řešení: Předpokládáme, že máme již dokázáno (s $m,n\in\mathbb{N})$

$$Q \vdash 0 \le x, \qquad m \le n \Rightarrow Q \vdash \underline{m} \le \underline{n}.$$
 (*)

Matematickou indukcí dle n. Pro n=0 máme $Q \vdash \underline{n} \leq x$ dle (*). Indukční krok. Nechť platí $Q \vdash x \leq \underline{n} \vee \underline{n} \leq x$. V Q máme užitím (*):

$$x \le \underline{n} \to x \le \underline{N}\underline{n}. \tag{**}$$

Dále také $\underline{n} \le x \to ((\underline{n} = x \& x \le \underline{Sn}) \lor (\underline{n} \ne x \& (\exists y)(\underline{Sy} + \underline{n} = x)))$ a $\underline{Sy} + \underline{n} = \underline{S(y + \underline{n})} = y + \underline{Sn}$ užitím (*); odtud a pomocí Q8:

$$\underline{n} \le x \to ((\underline{n} = x \& x \le \underline{S}\underline{n}) \lor (\underline{n} \ne x \& \underline{S}\underline{n} \le x)). \tag{***}$$

Pomocí (**), (***) tedy máme žádané Q \vdash $(x \leq \underline{n} \lor \underline{n} \leq x) \rightarrow (x \leq \underline{S}\underline{n} \lor \underline{S}\underline{n} \leq x).$

8. Q $\vdash x \leq \underline{S}\underline{n} \leftrightarrow x \leq \underline{n} \lor x = \underline{S}\underline{n}$ pro každé $n \in \mathbb{N}$.

Návod: Užijte Q $\vdash x \leq 0 \rightarrow x = 0$, Q $\vdash x \leq y \rightarrow Sx \leq Sy$, $m \leq n \Rightarrow Q \vdash \underline{m} \leq \underline{n}$. Řešení: Předpokládáme, že máme již dokázáno (s $m, n \in \mathbb{N}$)

$$Q \vdash x \le 0 \to x = 0, \quad Q \vdash x \le y \to Sx \le Sy, \quad m \le n \Rightarrow Q \vdash \underline{m} \le \underline{n}.$$
 (*)

Implikace \to . Užijeme matematickou indukcí dle n. Pro n=0: Q $\vdash x \leq S\underline{0} \to x=0 \lor x=S\underline{0}$ plyne užitím (*). Indukční krok: nechť dokazované platí pro n. Pak máme v Q

$$x \le S(n+1) \to (x = 0 \lor (x \ne 0 \& A)),$$

kde A je $(\exists y)(x=Sy \& y \le \overline{S\underline{n} \& (y \le \underline{n} \lor y = S\underline{n})} \& (x \le \underline{n+1} \lor x = S(\underline{n+1}));$ užili jsme (*), Q7. Jelikož také $x=0 \to x \le \underline{n+1} \lor x = S(\underline{n+1}),$ máme i požadované $x \le S(\underline{n+1}) \to x \le \underline{n+1} \lor x = S(\underline{n+1}).$

Implikace \leftarrow . Máme $Q \vdash \underline{n} \subseteq \underline{Sn}$ dle (*) a odtud plyne ihned dokazované.

9. Q
⊢ $x \leq \underline{n} \leftrightarrow \bigvee_{i \leq n} x = \underline{i}$ pro každé $n \in \mathbb{N}.$

Návod: Užijte $x \leq \overline{S}\underline{n} \to x \leq \underline{n} \lor x = S\underline{n}, m \leq n \Rightarrow Q \vdash \underline{m} \leq \underline{n}.$

Řešení: Předpokládáme, že máme již dokázáno (s $m, n \in \mathbb{N}$)

$$Q \vdash x \leq \underline{Sn} \to x \leq \underline{n} \lor x = \underline{Sn}, \quad m \leq n \Rightarrow Q \vdash \underline{m} \leq \underline{n}.$$
 (*)

Implikace \rightarrow . Matematickou indukcí dle n pomocí (*). Pro n=0 to platí. Indukční krok: když to platí pro n, tak v Q máme:

$$x \le \underline{n+1} \to x \le \underline{n} \lor x = \underline{n+1} \to \bigvee_{i \le n} x = \underline{i} \lor x = \underline{n+1}.$$

Implikace \leftarrow . Pro $i \le n$ dle (*) máme Q $\vdash \underline{i} \le \underline{n}$ a odtud plyne dokazovaná implikace.

UF.1.16. Modely Robinsonovy aritmetiky Q.

1. Buď $\mathcal{A} \models Q$. Pak zobrazení $h : \mathbb{N} \to A$, kde $h(n) = \underline{n}^A$, splňuje $h(m \diamond n) = h(m) \diamond^A h(n) \text{ pro } \diamond \text{ roven} + \text{nebo } \cdot, \quad h(Sm) = S^A h(m)$ $h(0) = 0^A, \ m \leq n \Leftrightarrow h(m) \leq^A h(n).$

Říkáme, že h je $\emph{přirozené vnoření}$ standardního modelu do modelu $\mathcal{A}.$

Řešení: Je to bezprostřední důsledek následujících vlastností Q:

$$\mathbf{Q} \vdash \underline{m \diamond n} = \underline{m} \diamond \underline{n}, \quad \mathbf{Q} \vdash \underline{n+1} = \mathbf{S}\underline{n}, \quad \underline{0} = 0, \quad m \leq n \Leftrightarrow \mathbf{Q} \vdash \underline{m} \leq \underline{n}.$$

2. Buď $\mathcal{A}=\langle A,S^A,+^A,\cdot^A,0^A,\leq^A\rangle$ struktura pro jazyk aritmetiky, definovaná takto:

A je množina všech polynomů p(X,Y)dvou proměnných X,Ys celočíselnými koeficienty a p(X,Y)má buď koeficienty u nejvyšších mocnin kladné nebo jde o polynom nulový. (Speciálně konstantní polynom z A je právě tvaru $p(X,Y)=aX^0Y^0$ s $a\in\mathbb{N};$ ztotožňujeme jej s a.) $\mathbf{S}^Ap=p+1,+^A$ a \cdot^A je sčítání a násobení polynomů, 0^A je polynom 0, $p\leq q\Leftrightarrow$ existuje $r\in A$ s $r+^Ap=q.$ Pak

a)
$$\mathcal{A}$$
 je nestandardní model Q, b) $\mathcal{A} \not\models x \leq y \vee y \leq x$.

Řešení: a) $\mathcal{A} \models \mathbf{Q}$ plyne ihned z vlastností sčítání a násobení a toho, že definice \leq^A zaručuje platnost $\mathbf{Q}8$. Dále $\underline{n}^A = n$, tedy X je nestandardní prvek modelu \mathcal{A} . b) Jasně není $X \leq^A Y$ a není $Y \leq^A X$, neboť polynomy X - Y a Y - X nepatří do A. Tedy $\mathcal{A} \models \neg(x \leq y \lor y \leq x)[X, Y]$.

Aritmetika IO.

Aritmetika IO je extenze Robinsonovy aritmetiky o schema indukce

$$I_{OFm_{L^A}} = \{I_{\varphi}; \ \varphi \in OFm_{L^A}\}.$$

pro otevřené formule jazyka jazyka L^A aritmetiky. (OFm $_{L^A}$ značí obor otevřených formulí jazyka L^A aritmetiky.)

UF.1.17. Dokazatelné formule v IO.

1. IO $\vdash Sx + y = S(x + y)$.

Řešení: Indukcí podle y. $\mathbf{S}x+0=\mathbf{S}x=\mathbf{S}(x+0)$ dle Q3. Indukční krok: v Q máme

$$Sx + Sy = S(Sx + y) = SS(x + y) = S(x + Sy).$$

1. rovnost plyne z Q4, 2. je indukční předpoklad, 3. dle Q4.

2. IO $\vdash 0 + x = x + 0$.

Řešení: Indukcí dle x. 0+0=0+0. Indukční krok: máme

$$0 + Sx = S(0 + x) = S(x + 0) = Sx = Sx + 0.$$

3. IO $\vdash x + y = y + x$.

Návod: Lze předpokládat, že 0 + x = x, Sx + y = S(x + y).

Řešení: Předpokládáme, že v IO již máme dokázáno

$$0 + x = x$$
, $Sx + y = S(x + y)$. (*)

Dále indukcí dle x. 0 + y = y + 0 platí díky (*) a užitím Q3. Indukční krok:

1. rovnost plyne z Q4, 2. dle indukčního předpokladu, 3. dle Q3, 4. dle Q3.

$$Sx + y = S(x + y) = S(y + Sx);$$

1. rovnost plyne z (*), 2. je indukční předpoklad, 3. plyne z Q4.

4. IO $\vdash (x + y) + z = x + (y + z)$.

Návod: Lze užit 0 + x = x, S(x + y) = Sx + y.

Řešení: Předpokládáme, že v IO již máme dokázáno

$$0 + x = x$$
, $Sx + y = S(x + y)$. (*)

Dále indukcí dle x. Pro x=0 to platí: (0+y)+z=y+z=0+(y+z) užitím (*).

Indukční krok:

$$(Sx + y) + z = S(x + y) + z = S((x + y) + z) = S(x + (y + z)).$$

1. a 2. rovnost plyne z (*), 3. z indukčního předpokladu.

5. IO
$$\vdash 0 \cdot x = 0$$
.

Řešení: Indukcí podle x. Platí $0 \cdot 0 = 0$ dle Q5. Indukční krok: $0 \cdot \mathbf{S} x = 0 \cdot x + 0 = 0$ užitím Q6 a Q5.

6. IO $\vdash Sx \cdot y = xy + y$.

Návod: Lze užít Sx + y = S(x + y) a komutativitu a asociativitu +.

Řešení: Předpokládáme, že v IO již máme dokázáno

$$Sx + y = S(x + y)$$
, komutativita a asociativita +. (*)

Indukcí dle y. Je $Sx \cdot 0 = 0 = x \cdot 0 + 0$ užitím Q5, Q6. Indukční krok: $Sx \cdot Sy = S(Sx \cdot y + x) = S((xy + y) + x) = S((xy + x) + y) = S(x \cdot Sy + y) = x \cdot Sy + Sy$. 1.

rovnost dává Q6, Q4, 2. plyne z indukčního předpokladu, 3. a 4. plyne užitím (*).

7. IO $\vdash xy = yx$.

Návod: Lze užít $0 \cdot x = 0$, $Sx \cdot y = xy + y$.

Řešení: Předpokládáme, že v IO již máme dokázáno

$$0 \cdot x = 0$$
, $Sx + y = S(x + y)$. (*)

Indukcí dle x. Je $0 \cdot y = 0 = y \cdot 0$ užitím (*) a Q5. Indukční krok: $Sx \cdot y = xy + y = yx + y = y \cdot Sx$. 1. rovnost platí dle (*), 2. plyne z indukčního předpokladu.

8. IO $\vdash (x \neq 0 \lor y \neq 0) \to x + y \neq 0$.

Návod: Lze užít Sx + y = S(x + y).

Řešení: Předpokládáme, že v IO již máme dokázáno

$$Sx + y = S(x + y). \tag{*}$$

Máme $x \neq 0 \rightarrow (\exists z)(\mathrm{S}z = x)$ dle Q7. Dále $(\exists z)(\mathrm{S}z = x) \rightarrow x + y \neq 0$ dle (*) a Q1. Užitím tranzitivity implikace pak máme IO $\vdash x \neq 0 \rightarrow x + y \neq 0$. Stejně dokážeme IO $\vdash y \neq 0 \rightarrow x + y \neq 0$, přičemž místo (*) užijeme Q4. Pravidlo rozbor případů dá výsledek.

9. IO $\vdash x \neq 0 \rightarrow y \neq x + y$.

Řešení: Indukcí podle y. Platí $x\neq 0 \to 0 \neq x+0$ užitím Q3. Indukční krok platí, neboť to je formule

$$(x \neq 0 \rightarrow y \neq x + y) \rightarrow (x \neq 0 \rightarrow Sy \neq x + Sy).$$

Má totiž tvar $(\varphi \to \psi) \to (\varphi \to \psi')$, kde φ je $x \neq 0$, ψ je $y \neq x+y$, ψ' je $Sy \neq x+Sy$. Přitom $(\varphi \to \psi)$ & $(\psi \to \psi') \to (\varphi \to \psi')$ je tautologie a Q $\vdash \psi \to \psi'$ díky Q2, Q4, tedy Q $\vdash (\varphi \to \psi) \to (\varphi \to \psi')$.

10. IO $\vdash x \le x \& (x \le y \& y \le x \to x = y) \& (x \le y \& y \le z \to x \le z).$

Návod: Lze užít komutativitu a asociativitu +, $x+y=0 \rightarrow x=0=y,$ $x+y=y \rightarrow x=0.$

Řešení: Předpokládáme, že v IO již je dokázána

komutativita a asociativita +, $x + y = 0 \rightarrow x = 0 = y$, $x + y = y \rightarrow x = 0$.

- a) $x \le x$ plyne z 0 + x = x, Q8 a komutativity +. (*)
- b) Dokážeme (v IO), že $(x \le y \& y \le x) \to x = y$. Máme $(x \le y \& y \le x) \to (\exists z, z')(z + x = y \& z' + y = x)$, tedy i $(x \le y \& y \le x) \to (\exists z, z')(z' + z + x = x \& (z + x = y \& z' + y = x))$ užitím (*). Opětovným užitím (*) získáme $(x \le y \& y \le x) \to (\exists z, z')(z' = 0 = z \& (z + x = y \& z' + y = x))$, tj. i $x \le y \& y \le x \to x = y$.
- c) Dokážeme $(x \le y \& y \le z \to x \le z)$. Máme (v IO) $(x \le y \& y \le z) \to (\exists u, u')(u + x = y \& u' + y = z \& u' + u + x = z) \to (\exists v)(v + x = z) \to x \le z$ užitím Q8 a (*) (a vět o rovnosti).
 - 11. IO $\vdash x \leq y \lor y \leq x$.

Návod: Lze užít Sx + y = x + Sy.

Řešení: Předpokládáme, že v IO je již dokázané

$$Sx + y = x + Sy. (*)$$

Indukcí dle x. Pro x=0 máme (v Q) $0 \le y$, tedy i $0 \le y \lor y \le 0$. Dokážeme indukční krok. Předpoklad je $(\exists z)(z+x=y) \lor y \le x$. Platí (v IO):

- a) $(\exists z)(z+x=y) \to x=y \lor (\exists z')(\mathbf{S}z'+x=y) \to x=y \lor \mathbf{S}x \le y$. Užili jsme Q7, Q8, (*).
- b) $y \le x \to y \le Sx$ (díky $z + y = x \to Sz + y = Sx$; užili jsme (*)).

Z a), b) tedy dostaneme požadovanou implikaci:

$$(x \le y \lor y \le x) \to (x = y \lor Sx \le y \lor y \le Sx) \to (Sx \le y \lor y \le Sx).$$
 (**)

Použili jsme $T \vdash \varphi \rightarrow \varphi', T \vdash \psi \rightarrow \psi' \Rightarrow T \vdash (\varphi \lor \psi) \rightarrow (\varphi' \lor \psi')$, což plyne z tautologie $(\varphi \rightarrow \varphi')$ & $(\psi \rightarrow \psi') \rightarrow ((\varphi \lor \psi) \rightarrow (\varphi' \lor \psi'))$; odtud jsme dostali prvou implikaci. Druhá plyne díky implikaci $x = y \lor y \le Sx \rightarrow y \le Sx$, jejíž platnost plyne z $x = y \rightarrow y \le Sx$ a to z S0 + y = S0 + x = Sx.