

Exploring Size-Speed Trade-Offs in Static Index Pruning

Juan Rodriguez

Torsten Suel

Tandon School of Engineering
New York University
Brooklyn, NY

Supported by NSF Grant IIS-1718680 and Amazon.

https://github.com/JC-R/BD2018

Introduction

- Inverted Index: structure used in search engines
- For each word, we store where it is used
- Inverted list for term t contains index entries (postings)

 Postings have form (did, f) where did is the ID of a document containing t and f is the number of occ.

Introduction

Inverted Index

tern posting (inverted) list

posting

aardvark	3425	3889	111232	234432			
			•				
			•				
cat	23	44	123	454	1224	4432	
cataract	1121	22365	33498	100223	122344	15001	
catering	4434	9845	10554	54665	98001	203400	•••
			•				
			•				
mouse	~ 44	454	4332	5565	9980	13443	
			•				
			•				
zebra	44	123	454	4432	6547	10012	

Problem Definition

Query processing in a nutshell:

- Traverse inverted lists for query terms
- Apply a ranking function to docs in union or intersect
- E.g., cosine, BM25, or more complex ranker
- Then return the top-k results to the user

Problem Definition

cat 23 44 123 454 1224 4432 ...

mouse 44 454 4332 5565 9980 13443 ...

- Many inverted lists are very long
- •We cannot afford to traverse and rank complete lists
- search engines use shortcuts: "early termination techniques":
- Index tiering, impact ordering, maxscore/wand etc.
- Index pruning is one early termination (ET) techn.

Index Pruning

"would anybody search for doc 454 using this term?"

"will this posting ever lead to a top-k result for a likely query?"

If "no", remove this posting from the index

Motivation – Index Pruning

Goal: Remove postings that are (fairly) useless, while keeping quality "almost" the same

Why? Shorter lists lead to faster query processing

Smaller indexes: need less RAM or disk accesses

Smaller indexes: bring search to devices at the edge

Index pruning is a non-safe ET technique (lossy)

Motivation

- Suppose a search engine indexes 4 trillion documents
- •250 index entries per document → 10^15 entries
- •5B queries per day, with 3.4 terms on average
- •< 170 billion index entries lead to top-10 in a month Actually, far less ...

•Can we find and remove them from the index?

Related Work

- Introduced by Carmel et al (SIGIR 2001)
- A lot of subsequent work
- •Three main approaches:
 - Algorithmic heuristics: based on impact, rank
 - Hit-based methods: based on past top results
 - Curation-based: build a high-quality subset
- •Not the same as spam detection/removal

Our Work

1. Optimize index quality, given a constraint on size

Given a bound S on index size, produce a pruned index I' of size at most S that maximizes the average quality of queries under distribution Q.

2. Trading-Off between Index Size and Query Cost

Given a lower bound S on index size, and a bound R on result quality, produce a pruned index $I^{'}$ that satisfies the constraints while minimizing query cost C.

- o posting p = (d, f) is part of a top-k result for query q if document d is among the top-k results for q
- o $\Pr(p \in top-k)$ is the probability p is part of a top-k result for query q
- o $Pr(p \in q)$ is the probability the term associated with p occurs in query q
- $\circ \Pr(p \in top-k) = \Pr(p \in q) \bullet \Pr(p \in top-k | p \in q)$

1. Optimize index quality, given a constraint on size

Approach:

- Estimate $Pr(p \in q)$
- Machine learn $Pr(p \in top k | p \in q)$

Prune policy:

- compute $Pr(p \in top-k)$ for each posting
- global ordering, select until size constraint achieved

Estimating $Pr(p \in q)$

- Language Model from 100k TREC 01-09 and 2002-2009 relevance and ad-hoc queries
- Interpolate with 5k random sampled pages from the corpus
- Unigram as $Pr(p \in q)$

Machine learning: $Pr(p \in top-k|p \in q)$

Family	Feature	Description				
term	tf tl p_bm25 $Pr[p \in q]$	term frequency in the corpus term list size partial BM25 score probability of posting in a random query				
document	docSize docTerms xdoc	# words in document # unique terms in document promise of document				
dochits	bins 1 - 17 top10 top1k	dochit ranges, quantized by rank top10 dochits from language model queries top1k dochits from language model queries				
posthits bins 1 - 17 top10 top1k		posthit ranges, quantized by rank top10 posthits from language model queries top1k posthits from language model queries				

- Random Forest
- Training size: 1M
- Predict on entire index16 billion postings
- Spark cluster on Hadoop1024 Vcores3Tb RAM
- 200 Tb HD

Experimental Results

Machine Learned Pruning

- Very high pruning ratios
- Quality metrics
 P@10
 Postings Kept*
 Results Kept*

IEEE Big Data 2018 Index Size 16

2. Trading-Off between Index Size and Query Cost

· Benefit of a posting:

$$Pr(p \in to-k|p \in q)$$

Query Cost: A simple model = ∑ (length of lists for the terms in disjunctive query q)
 A posting in this model has an Expected Cost proportional to:

$$Pr(p \in q)$$

Size Speed Trade-Offs

 Actual query speed measurements show near linear relationship to our cost model!

Size Cost Trade-Off

Goal: Given a lower bound S on index size, and a bound R on result quality, produce a pruned index I' that satisfies the constraints while minimizing query cost C.

Benefit: $Pr(p \in to - k | p \in q)$

Cost: $Pr(p \in q)$

Size Cost Trade-Off

LP formulation:

$$min(\sum_{i=1}^n x_i \cdot c_i)$$

$$(\sum_{i=1}^n b_i) \ge B$$

$$\sum_{i=1}^{n} i = S + \Delta$$

$$x_i = posting i$$

$$b_i = \text{benefit for } x_i$$

$$c_i = \text{cost for } x_i$$

$$B = total benefit$$

$$S = size$$

$$\Delta = \text{size increment}$$

Size Cost Trade-Off

- Cannot express an LP formula for all postings (billions)
- We quantize all postings using simple logarithmic quantization
- Assign each posting into one of k classes, k = 1000 in our work
- Result in 1 million variables, easily solvable and fast

$$min(\sum^{1000} x_i \cdot c_i)$$

Size Cost Trade-Off Results

• S = 5% of full index

• $\Delta = 0.5\%$

• *Q* = total quality constant

Size Cost Trade-Off Results

- S = 15% of full index
- $\Delta = 0.5\%$
- *Q* = total quality constant

Conclusions

1. Learning to prune. Optimize for size.

- 2. Significantly increase query processing speed if we allow a very small increment in index size
- 1 + 2 = optimal size/cost at any index pruning size

Open Questions

- We learned to optimize size for a simple ranking function, BM25.
- Need to explore learning for complex ranking functions

Thanks for listening!

Questions?