SoSe 2019

Prof. Dr. Margarita Esponda

Objektorientierte Programmierung

1. Übungsblatt

Ziel: Auseinandersetzung mit logischen Ausdrücken, Schleifen und Funktionen in Python.

1. Aufgabe (3 Punkte)

Schreiben Sie eine Funktion **leap_year** in Python, die bei Eingabe eines Jahres entscheidet, ob es sich um einem Schaltjahr handelt.

Anwendungsbeispiele:

>>> False

2. Aufgabe (9 Punkte)

Verbessern Sie das weekday Programmbeispiel aus der Vorlesung wie folgt:

- a. Definieren Sie eine Funktion weekday, die als Argumente die Variablen day, month und year bekommt und den Wochentag mit Hilfe der Formel des gregorianischen Kalender berechnet (siehe Vorlesungsfolien).
- b. Kontrollieren Sie, dass der Wertbereich der Argumente korrekt ist, sonnst muss die Funktion mit der Rückgabe eines Textfehlers beendet werden. Verwenden Sie dafür die leap_year Funktion der 1. Aufgabe.
- c. Das Ergebnis der Funktion soll anstatt nur einer Zahl den Name des Tages als Ergebnis zurückgeben. Z.B. Sontag anstatt 0.

Anwendungsbeispiele:

>>> Monday

>>> weekday (0, 4, 2019)

>>> ERROR: 0 is an illegal day value

3. Aufgabe (12 Punkte)

Die Fläche eines beliebigen Dreiecks mit Seitenlängen *a*, *b*, *c* kann mit Hilfe folgender Heron-Formel berechnet werden:

$$A = \sqrt{s(s-a)(s-b)(s-c)} \qquad \text{where} \qquad s = \frac{1}{2}(a+b+c)$$

- a. Schreiben Sie eine Python-Funktion triangle_area, die bei Eingabe der Seitenlängen a,
 b, c, die Fläche des Dreiecks berechnet.
- b. Verbessern Sie ihre Funktion indem Sie kontrollieren, ob mit der eingegebenen Seitenlängen ein Dreieck möglich ist. Z.B. (7, 1, 1) oder (0, -2, 7) können nicht die Seitenlängen eines Dreiecks sein.

c. Programmieren Sie eine zweite Funktion **convex_polygon**, die bei Eingabe einer Liste von Zahlenpaaren (Tuple), die die Eckpunkte des Polygons darstellen, die Fläche des Polygons berechnet. Verwenden Sie dabei die **triangle_area** Funktion.

4. Aufgabe (6 Punkte)

Jede natürliche positive Zahl n>1 lässt sich als Produkt aus nur Primzahlen darstellen. Z.B. die Zahl 60 kann in das Produkt 2*2*3*5 zerlegt werden.

Schreiben Sie eine Python-Funktion **factors**, die bei Eingabe einer natürlichen Zahl **n** die Primfaktorzerlegung berechnet und das Ergebnisse in einer Liste zurückgibt.

Anwendungsbeispiel:

>>> **factors**(250)

>>> [2, 5, 5, 5]

5. Aufgabe (10 Punkte)

a. In dieser Aufgabe sollen die Funktionen **easter_egg** und **chessboard** definiert werden, die die unten stehenden Zeichenbilder produzieren.

Eine **print_char_picture** Funktion, die als Argument eine Funktion bekommt, wird vorgegeben. Diese Funktion darf nicht verändert werden. Innerhalb der **print_char_picture** Funktion bekommen die eingegebenen Funktionen eine **x**, **y** Koordinate und einen ganzzahligen **size** Wert, der der Seitenlänge des Bildes entspricht und entscheidet, welches Zeichen an einer bestimmten Position zurückgegeben wird.

Innerhalb der zu implementierenden Funktionen dürfen keine Schleifen verwendet werden. Die Lösung benötigt nur **if-else**-Anweisungen, logische Ausdrücke und arithmetische Operationen.

- Die **print_char_picture** Funktion sowie zwei Beispielsfunktionen sind auf der Veranstaltungsseite unter Ressourcen herunter zu laden.
- b. (3 Bonuspunkte) Eine **decide_char_own_picture** Funktion kann für die Erstellung eines eigenen Bildes programmiert werden. Das erstellte Bild soll beabsichtigt gewesen sein und nicht ein triviales Bild, das als Ergebnis von zufälligen Fehlern entstanden ist.

Wichtige Hinweise:

- 1) Verwenden Sie geeignete Namen für Ihre Variablen und Funktionen, die den semantischen Inhalt der Variablen oder die Funktionalität der Funktionen darstellen.
- 2) Verwenden Sie vorgegebene Funktionsnamen, falls diese angegeben werden.
- 3) Kommentieren Sie Ihre Programme.
- 4) Verwenden Sie geeignete Hilfsvariablen und Hilfsfunktionen in Ihren Programmen.
- 5) Löschen Sie alle Programmzeilen und Variablen, die nicht verwendet werden.
- 6) Schreiben Sie getrennte Test-Funktionen für alle 4 Aufgaben für Ihren Tutor.
- 7) Die Lösungen sollen in Papierform und elektronisch (KVV-Upload) abgegeben werden.