Math 357 Long quiz 04A

2024–02–19 (M)

Your name:	

Let **Q** denote the field of rational numbers; given a prime $p \in \mathbf{Z}_{>0}$, let $\mathbf{F}_p \cong \mathbf{Z}/(p)$ denote the finite field with p elements; and let t be an indeterminate. For each of the quotient rings below, characterize its algebraic structure as "field", "integral domain but not field", or "ring but not integral domain". Justify your characterization.

$$R_1 = F_2[t]/(t^4 + t^2 + 1) \qquad R_2 = \mathbf{Q}[t]/(t^3 + t^2 - t + 1) \qquad R_3 = \mathbf{Q}[t]/(3t^3 + 4t^2 + 2t - 4)$$

Hint: If you feel inclined to do a lot of computation, then I invite you to first check with me.

Solution: We analyze each quotient ring in turn.

 R_1 : Ring but not integral domain. Let $f_1=t^4+t^2+1\in F_2[t]$. If f_1 is reducible, then it has a factor of degree 1 or degree 2. The polynomial $f_1\in F_2[t]$ has a factor of degree 1 if and only if the function $f_1:F_2\to F_2$ has a zero, which direct computation shows is not the case. There are only four polynomials in $F_2[t]$ with degree 2 (why?), and three of them factor into linear factors, which we checked for in the previous case. Thus it remains only to check whether

$$f_1 = (t^2 + t + 1)^2$$

which direct computation shows is a valid equation. Thus $f_1 \in F_2[t]$ is reducible, so $F_2[t]/(f_1)$ is a ring but not an integral domain.

 R_2 : Field. Let $f_2 = t^3 + t^2 - t + 1 \in \mathbf{Z}[t]$. If we apply the reduction homomorphism corresponding to the ideal $(3) \triangleleft \mathbf{Z}$ to f_2 , then we get the polynomial $\overline{f}_2 \in \mathbf{F}_3[t]$, which we may express with the same coefficients as f_2 (viewed in \mathbf{F}_3 , rather than in \mathbf{Z} or \mathbf{Q}). Because $\deg \overline{f}_2 = 3$, the polynomial $\overline{f}_2 \in \mathbf{F}_3[t]$ is reducible if and only if the function $\overline{f}_2 : \mathbf{F}_3 \to \mathbf{F}_3$ has a zero. Direct computation shows that for all $\alpha \in \mathbf{F}_3$, $\overline{f}_2(\alpha) \neq 0$, so \overline{f}_2 is irreducible. Because f_2 is nonconstant and monic, and $f_2 \in \mathbf{Q}[t]$ is proper, this implies that $f_2 \in \mathbf{Z}[t]$ is irreducible. Thus Gauß's lemma implies that $f_2 \in \mathbf{Q}[t]$ is irreducible. Hence $\mathbf{Q}[t]/(f_2)$ is a field.

Note that we cannot apply the Eisenstein–Schönemann criterion directly to f_2 (why not?), nor may we (correctly) argue that f_2 must have a zero because deg f_2 is odd (why not?).

 R_3 : Ring but not integral domain. Let $f_3=3t^3+4t^2+2t-4\in \mathbf{Z}[t]$. Because deg $f_3=3$, the polynomial $f_3\in \mathbf{Q}[t]$ is reducible if and only if the function $f_3:\mathbf{Q}\to\mathbf{Q}$ has a zero. If $\frac{a}{b}\in \mathbf{Q}$ is a zero of f_3 , and if $\gcd(a,b)=1$, then we have seen that, in \mathbf{Z} , $a\mid -4$ (the constant term of f_3) and $b\mid 3$ (the leading coefficient of f_3). We have finitely many possibilities for $\frac{a}{b}$ —24 in this case (why?)—but we may reduce our work significantly if we view $f_3\in \mathbf{R}[t]$ and note that

$$f_3(0) = -4 < 0$$
 $f_3(1) = 5 > 0$

Because the function induced by a polynomial is continuous, the intermediate value theorem implies that f_3 has a zero (in **R**) on the interval (0,1). The only values of $\frac{\alpha}{b}$ in this interval, and consistent with the divisibility requirements on α and β , are $\frac{1}{3}$ and $\frac{2}{3}$. Checking these possibilities, we find $f_3(\frac{2}{3}) = 0$. Hence f_3 is reducible in $\mathbf{Q}[t]$, so $\mathbf{Q}[t]/(f_3)$ is a ring but not an integral domain.

Note that we cannot apply the Eisenstein–Schönemann criterion directly to f₃ (why not?).