

East West University Department of Computer Science and Engineering Course Outline of CSE360/ICE469 Spring 2025 Semester

Course Information

Course: CSE360/ICE469 Computer Architecture

Credit and Teaching Scheme:

	Theory	Laboratory	Total
Credits	3	-	3
Contact	2.5 Hours/Week for 16 Weeks	-	2.5 Hours/Week for 16 Weeks
Hours			

Prerequisite: CSE325 Operating Systems, CSE345 Digital Logic Design

Instructor Information

Instructor: Md. Ezharul Islam, PhD

Professor, Department of Computer Science and Engineering

Office: TBA

Tel. No.: 01816203074 (only in emergency)

E-mail: ezharul.islam@ewubd.edu

Class	code:
-------	-------

Course Objective

The objective of this course is to study the structure, behavior, and characteristics of computer systems. This course will exhibit the design of the various functional units of digital computers, discuss different types of memories and their properties, and introduce basics of parallel computer architecture. Knowledge of this course will be needed as prerequisite knowledge for future course, such as CSE442 Microprocessors and Microcontrollers.

Course Outcomes (COs)

After completion of this course students will be able to:

1 111 001 0	ompletion of this course students will be take to.
CO1	Understand the structure, function, and characteristics of digital computers.
CO2	Understand, determine and analyze performance of memory and I/O subsystems.
CO3	Understand, implement, examine, and justify instruction set design for
	performance improvement, execute and demonstrate this knowledge, and write
	report for problem solving.
CO4	Implement, examine, and justify processor and control unit design, execute and
	demonstrate this knowledge, and write report to synthesize functional units of digital
	computers.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Х											
CO2	Х	X										
CO3	Х	X	Х						X	Х		X
CO4	Х	Х	X						Х	Х		Х

Complex Engineering Problems and Activities

Attributes of Complex Engineering Problems Involved

CO	PO	Attributes
CO1	PO1	Range of conflicting requirements
CO2	PO1, PO2	Range of conflicting requirements
CO3	PO1, PO2, PO3	Range of conflicting requirements, depth of analysis required
CO4	PO1, PO2, PO3	Range of conflicting requirements, depth of analysis required

Attributes of Complex Engineering Activities Involved

CO	PO	Attributes
CO3	PO10	Range of resources, Level of interaction, Familiarity
(Assignment)		
CO4	PO10	Range of resources, Level of interaction, Familiarity
(Assignment)		

Course Topics, Teaching-Learning Methods and Assessment Scheme

Mid Exam:

Course Topic	Teaching- Learning Method	СО	Mark of Cognitive Learning Levels		Mark psychor or Learn Levels	CO Mark		
			C2	C3	C4	P	P2	
Computer Evolution: Function and structure of a computer, Functional components of a computer, Interconnection of components, Performance analysis of a computer, Hardware architecture	Lecture, Class Discussion, Discussion Outside Class with Instructor/ Teaching Assistant	CO1	4	4				8
Representation of Instructions: Bus Interconnection, Scalar Data Types, Fixed and Floating- point CO1 12 5 17 Page 4 of 8 numbers,		CO1		12	5			17

Signed numbers,				
Integer Arithmetic,				
2's Complement				
method for				
multiplication,				
Booths Algorithm,				
Floating point				
representations, IEEE				
standards, Floating				
point arithmetic				

Mid Exam:

MIG Exam:						 	
Memory	Do	CO2	4	4	8		16
Organization							
Characteristics of							
memory systems,							
Internal and External							
Memory, Types of							
memories: ROM:							
PROM, EPROM,							
EEPROM, RAM:							
SRAM, DRAM,							
SDRAM, RDRAM,							
HighSpeed							
Memories: Cache							
Memory, elements of							
cache design,							
Pentium 4 cache,							
Organization and							
Mapping Techniques,							
Replacement							
Algorithms, Cache							
Coherence,							
Secondary Storage:							
Magnetic Disk, Tape,							
DAT, RAID, Optical							
memory, CDROM,							
DVD, Error							
correction memories,							
Interleaved							
memories, Hardware							
support of memory							
management							
Toward/Outland	_	COO			_		
Input/Output	Do	CO2			9		9
Organization:							
External Devices, I/O							
modules,							
Programmed I/O,							
Interruptdriven I/O,							
Direct memory							
access, I/O channels							
and processors,							

external interface						
Instruction Sets: Machine instruction, operands, operations, and assembly language, addressing, and instruction format	Do	CO3	6	4		10
CPU structure and function: processor and registers organization, instruction cycle and instruction pipelining, Reduced Instruction Set Computers (RISC), superscalar processors, parallel processing, Micro programmed control unit	Do	CO4	5	10		15

Mini Project/Assignment/Presentation

Course Topic	Teaching- Learning Method	СО	Cog	Mark of Cognitive Learning Levels		Mark of psychomotor Learning Levels		CO Mark	Exam (Mark)
			C2	C3	C4	P1	P2		
Mini Project	Team-based moderately complex project with report writing and oral presentation	CO3, CO4	1 1	1 1	1 1	1 1	1 1	5 5	Assignment (10)

Overall Assessment Scheme

		C	O	Assessment Area Mark	
Assessment Area	CO1	CO2	CO3	CO4	
Class Test/Quizzes	2.5	2.5	2.5	2.5	10
Midterm Exam – I	15.0	10.0	5.0		30
Final Exam		10.0	15.0	15.0	40
Mini Project				10.0	10
Assignment/Presentation		5.0	5.0		10
Total Mark					100

Teaching Materials/Equipment

Text Book:

- [1] William Stallings Computer Organization and Architecture, Seventh Edition, Prentice Hall Upper Saddle River
- [2] David A. Patterson, John L. Hennessy Computer Organization and Design Elsevier

Project/Assignment/Presentation:

Mini Project will be provided

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
80-100	A+	4.00	50-54	C+	2.50
75-89	A	3.75	45-49	С	2.25
70-74	A-	3.50	40-45	D	2.00
65-69	B+	3.25	0-39	F	0.00
60-64	В	3.00			
55-59	B-	2.75			

Exam Dates

Section	Term I	Final
*	*	05.06.2024 (Wed)

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 10 minutes of the starting time
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be NO make-up exam. However, in case of severe illness, death of
 any family member, any family emergency, or any humanitarian ground, if a student
 miss any exam, the student MUST get approval of makeup exam by written application to
 the Chairperson through the Course Instructor within 48 hours of the exam time. Proper
 supporting documents in favor of the reason of missing the exam have to be presented with
 the application.

- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.