Pacific Coast Shellfish Growers
Association
September 19, 2023

Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following heatwaves

Matthew George, Ph.D.

Matthew.George@dfw.wa.gov

School of Aquatic & Fishery Sciences University of Washington

Pacific Oysters – tolerance is

survival

Introduction

Pacific Oyster

Introduction

Reproductive control in Pacific oysters

- 1. Various methods used to induce triploidy (tetraploid cross, heat-shock, pressure, etc.) developed in the late 1970's.
- 2. Triploid oysters have an extra chromosome set (3n).
- 3. Triploidy significantly reduces energetic investment in gonad production.
- 4. Triploid oysters have superior growth rates.
- 5. Harvesting triploids in the summer avoids the *unpleasant* taste of 'spawny' oysters.

Introduction

Diploid vs. Triploid mortality in the field

Introduction

Triploid morality is associated with environmental variability

Crushing heat wave in Pacific Northwest and Canada cooked shellfish alive by the millions

Raymond et al 2022; https://doi.org/10.1002/ecy.3798

Partners:

JAMESTOWN STITUTE

Point Whitney Shellfish Hatchery

Experimental Design

2. Mortality

Reproductive Condition

3. Metabolic Rate

Experimental Design

30°C seawater temperature

Experimental Design

Simulated Low Tide

Measurements

Destructively sampled

- 1. Metabolic Enzyme Activity (NKA)
- 2. Gene Expression (3'mRNA 'Tag-seq')

Results

Mortality

Results

Metabolic Rate

Results

Metabolic Rate

Metabolic Rate

Metabolic Enzyme Activity

Na+/K+ ATPase (NKA)

NKA is essential for maintenance of ionic and osmotic balance

20-77% of energy expenditure depending on life stage

Gene Expression

Gene expression profiles of diploid and triploid oysters **diverged** as additional **stressors** were applied

Diploid

Gene Expression

Gene Ontology

Results

Gene Dysregulation

Triploids exhibited dysregulated expression of stress-related proteins

following multiple stress

exposure, including:

Heat Tolerance:

- 1. Heat Shock Proteins
- 2. Molecular Chaperones

Antiapoptotic proteins:

- 1. Inhibitor of apoptosis (IAP) proteins
- 2. E3 ubiquitin-protein ligases

Mitochondrial genes:

- 1. rRNA methyltransferases
- 2. NADH-ubiquinone oxidoreductase

Conclusions

- Elevated seawater temperature alone did not result in differences in mortality across ploidy.
- 2. Triploids exhibited **metabolic depression**, reduced **NKA activity**, and a 2.5-fold greater mortality rate than diploids (36.4% vs. 14.8%) following **multiple stressors**.
- 3. Biological processes associated with **metabolism**, **stress tolerance**, and **immune function** were overrepresented within triploids.
- 4. However, the expression of key molecular chaperones, antiapoptotic proteins, and mitochondrial proteins were dysregulated within triploids following multiple stressor exposure.

Partners

Funding Sources

RESEARCH ARTICLE

Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following heatwaves

Matthew N. George ⋈, Olivia Cattau, Mollie A. Middleton, Delaney Lawson, Brent Vadopalas, Mackenzie Gavery, Steven B. Roberts

First published: 18 July 2023 | https://doi.org/10.1111/gcb.16880

