Homework

Problems on UD

6.7

- (1) $B \setminus (A \cap B)$
- (2) $(A \cup B) \setminus (A \cap B)$
- (3) $A \cap B \cap C$
- (4) $(B \cap C) \setminus (A \cap B \cap C)$
- (5) $((A \cap B) \cup (B \cap C) \cup (A \cap C)) \setminus (A \cap B \cap C)$

6.16

- (a) Consider $\forall n \in A, n = x^2$, where $x \in Z$. Because x is an integer, then $x \times x$ is also a integer, namely x^2 is also an integer. Since $n = x^2$, then n is a integer, namely $n \in Z$. Now we have shown that all the elements in A are contained in B, namely $A \subseteq B$.
- **(b)** Consider $\forall n \in A$, namely $\forall n \in R$. $\forall n \in A$, suppose $x = \frac{n}{2}$, since $n \in R$, then $\frac{n}{2} \in R$, namely $x \in R$, so $2x \in B$. Since n = 2x, so $n \in B$. Now we have proved $\forall n \in A, n \in B$, namely $A \subseteq B$.
- (c) Consider $\forall (x,y) \in A$, namely where $y=\frac{5-3x}{2}$. Since $y=\frac{5-3x}{2}$, we can transform the equation into 2y+3x=5. So we have $\forall (x,y) \in A, 2y+3x=5$, namely $(x,y) \in B$. So we have proved $\forall (x,y) \in A, (x,y) \in B$. Namely $A \subseteq B$.

6.17

(a) $A \subsetneq B$

Proof.

 $\forall (x,y) \in A$, namely xy>0. Because $x^2+y^2 \geq xy$, so $x^2+y^2>0$. So $\forall (x,y) \in A, x^2+y^2>0$, namely $(x,y) \in B$. Now we have proved $\forall (x,y) \in A, (x,y) \in B$. Meanwhile, consider $(1,-1) \in B$, but it isn't contained in A, so $A \subseteq B$.

(b) $A \subsetneq B$

Proof.

First, we have to show that if an element is contained in A, then it's contained in B. Consider A is \emptyset , then no element is contained in A, so the statement we have to show is a tautology. So $A \subset B$. Since every element contained in B can't be contained in A, then furthermore we have proved $A \subsetneq B$.

Suppose U is the universe.

(a)

Proof.

$$x \in (A^c)^c$$

$$\leftrightarrow x \in U \setminus A^c$$

$$\leftrightarrow x \in U \setminus (U \setminus A)$$

$$\leftrightarrow x \in A$$
.

(b)

Proof.

$$x \in (A \cap (B \cup C))$$

$$\leftrightarrow x \in A \land (x \in B \lor x \in C)$$

$$\leftrightarrow$$
 $(x \in A \land x \in B) \lor (x \in A \land x \in C)$

$$\leftrightarrow x \in (A \cap B) \lor x \in (A \cap C)$$

$$\leftrightarrow x \in (A \cap B) \cup (A \cap C)$$

(c)

Proof.

$$x \in X \setminus (A \cap B)$$

$$\leftrightarrow x \in X \land x \notin (A \cap B)$$

$$\leftrightarrow (x \in X \land x \in A \land x \notin B) \lor (x \in X \land x \in B \land x \notin A) \lor (x \in X \land x \notin A \land x \notin B)$$

$$\leftrightarrow$$
 $(x \in X \land x \notin A) \lor (x \in X \land x \notin B)$

$$\leftrightarrow x \in (X \setminus A) \lor x \in (X \setminus B)$$

$$\leftrightarrow x \in ((X \setminus A) \cup (X \setminus B))$$

(d)

Proof.

$$A \subseteq B$$

$$\leftrightarrow \forall x \in A \rightarrow x \in B$$

$$\leftrightarrow \forall x \notin B \to x \notin A$$

$$\leftrightarrow \forall x \in X \land x \notin B \to x \in X \land x \notin A$$

$$\leftrightarrow \forall x \in (X \setminus B) \to x \in (X \setminus A)$$

$$\leftrightarrow$$
 $(X \setminus B) \subseteq (X \setminus A)$

(e)

Proof.

$$A \cap B = B$$

$$\leftrightarrow (\forall x \in A \land x \in B \rightarrow x \in B) \land (\forall x \in B \rightarrow x \in A \land x \in B)$$

$$\leftrightarrow \forall x \in B \to x \in A$$

$$\leftrightarrow B \subseteq A$$

```
(a)
```

(ii)

(b)

(i)(iii)(iv)(v)

(c)

Proof.

$$x \in (A \cap B) \setminus C$$

$$\leftrightarrow x \in (A \cap B) \land x \notin C$$

$$\leftrightarrow x \in A \land x \in B \land x \notin C$$

$$\leftrightarrow (x \in A \land x \notin C) \land (x \in B \land x \notin C)$$

$$\leftrightarrow x \in (A \setminus C) \land (x \in B \setminus C)$$

$$\leftrightarrow x \in ((A \setminus C) \cap (B \setminus C))$$

7.9

(a)

Proof.

$$x\in (A\setminus B)$$
 $\leftrightarrow x\in A\wedge x\notin B$ So $orall x\in (A\setminus B) o x\notin B$

Namely $A \setminus B$ and B are disjoint.

(b)

Proof.

$$x \in (A \cup B)$$

$$\leftrightarrow x \in A \lor x \in B$$

$$\leftrightarrow (x \in A \land x \notin B) \lor (x \in A \land x \in B) \lor x \in B$$

$$\leftrightarrow (x \in A \land x \notin B) \lor x \in B$$

$$\leftrightarrow x \in (A \setminus B) \lor x \in B$$

$$\leftrightarrow x \in ((A \setminus B) \cup B)$$

7.10

Disproof.

By counterexample:

Suppose
$$A = \{1, 2, 3\}, B = \{1\}, C = \{1, 2\}$$

Such A,B and C satisfy $A\cup B=A\cup C$, but obviously $B\neq C$

7.11

Counterexample:

Suppose
$$A=\{1,2,3,4\}, B=\{1,2,3\}, Y=\{1\}$$

Such A,B and Y satisfy $A\cap Y=B\cap Y$, but obviously $A\neq B$

8.1

(a)

$$\cup_{n=1}^{\infty}A_n=[0,1)$$

$$\cup_{n=1}^{\infty}B_n=[0,1]$$

$$\bigcup_{n=1}^{\infty} C_n = (0,1)$$

(b)

$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$

$$\cap_{n=1}^{\infty} B_n = \{0\}$$

$$\cap_{n=1}^{\infty} C_n = \emptyset$$

(c)

No, because $0 \in N$, but n can't be 0.

8.4

Proof.

If there are sets in $\{A_n:n\in\mathbb{Z}^+\}$ such that the sets disjoint, then $\cap_{n=1}^\infty A_n=\emptyset$. Then obviously $\cap_{n=1}^\infty A_n\subset \cap_{n=1}^\infty B_n$.

If all the sets in $\{A_n:n\in\mathbb{Z}^+\}$ intersect with each other, we use contradictory. Suppose $A_n\subset B_n$ for all $n\in\mathbb{Z}^+$ and $\bigcap_{n=1}^\infty A_n\not\subset \bigcap_{n=1}^\infty B_n$, so there is an element in $\bigcap_{n=1}^\infty A_n$ that isn't in $\bigcap_{n=1}^\infty B_n$. Since it's in $\bigcap_{n=1}^\infty A_n$, then it must be an element of all A_k , where $k\in\mathbb{Z}^+$, because $A_n\subset B_n$ for all $n\in\mathbb{Z}^+$, so the element must be in all B_j , where $j\in\mathbb{Z}^+$, furthermore, it must be in $\bigcap_{n=1}^\infty B_n$. But we suppose it shouldn't be, so it contradicts. Then we have proved $\bigcap_{n=1}^\infty A_n\subset \bigcap_{n=1}^\infty B_n$.

8.7

(a)

By contradictory.

According to the definition, the element in $\cap_{\alpha \in I} A_{\alpha}$ must be in every A_{α} where $\alpha \in I$. Suppose $\cap_{\alpha \in I} A_{\alpha} \neq \emptyset$, namely there are elements in $\cap_{\alpha \in I} A_{\alpha}$, and they have to be in all the A_{α} where $\alpha \in I$, but for $\alpha \in I$, $A_{\alpha} = \emptyset$, namely there are no elements in them.Contradicts. So we have proved if $A_{\alpha} = \emptyset$ for some $\alpha \in I$, then $\cap_{\alpha \in I} A_{\alpha} = \emptyset$.

(b)

Suppose $A_k=X, k\in I$, then according to the definition, $\cup_{\alpha\in I}A_\alpha=\cup_{\alpha\in I\setminus\{k\}}A_\alpha\cup A_k$, namely $\cup_{\alpha\in I\setminus\{k\}}A_\alpha\cup X=X$.

(c)

If $B\subseteq A_{\alpha}$ for every $\alpha\in I$, then $B\cap A_{\alpha}=B$ for every $\alpha\in I$. So $\cap_{\alpha\in I}(B\cap A_{\alpha})=B$, namely $B\cap (\cap_{\alpha\in I}A_{\alpha})=B$. So $B\subseteq \cap_{\alpha\in I}A_{\alpha}$.

$$A = \mathbb{Z}$$

Proof.

$$egin{aligned} &\cap_{n\in\mathbb{Z}^+}(R\setminus\{-n,-n+1,...,0,...,n-1,n\})\ &\leftrightarrow\cap_{n\in\mathbb{Z}^+}(R\cap\{-n,-n+1,...,0,...n-1,n\}^c)\ &\leftrightarrow R\cap\mathbb{Z}^c\ &\leftrightarrow R\setminus\mathbb{Z}\ &\hbox{So }A=R\setminus\cap_{n\in Z^+}(R\setminus\{-n,-n+1,...,0,...,n-1,n\})\ &=R\setminus(R\setminus\mathbb{Z})\ &=\mathbb{Z} \end{aligned}$$

8.9

$$A=\{x:x=2n,n\in\mathbb{Z}\}$$

Proof.

$$Q\setminus\cap_{n\in\mathbb{Z}}(\mathbb{R}\setminus\{2n\})$$

$$\leftrightarrow Q \setminus \cap_{n \in \mathbb{Z}} (\mathbb{R} \cap \{2n\}^c)$$

$$\leftrightarrow Q \cap (\cap_{n \in \mathbb{Z}} (\mathbb{R} \cap \{2n\}^c))^c$$

$$\leftrightarrow Q \cap \cup_{n \in \mathbb{Z}} (\mathbb{R} \cap \{2n\}^c)^c$$

$$\leftrightarrow Q \cap \cup_{n \in \mathbb{Z}} (\mathbb{R}^c \cup \{2n\})$$

$$\leftrightarrow Q\cap \cup_{n\in Z}\{2n\}$$

$$\leftrightarrow \{x: x=2n, n\in \mathbb{Z}\}$$

8.11

(a)

$$A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, ..., A_n = \{n\}.$$

(b)

If
$$A_{lpha}
eq A_{eta}$$
, then $A_{lpha} \cap A_{eta} = \emptyset$.

(C)

If
$$A_{lpha}=A_{eta},$$
 then $A_{lpha}\cap A_{eta}
eq\emptyset.$

(d)

Yes.

(e)

Yes.

(f)

Yes.

(g)

No.

$$x \in (P(A) \cup P(B))$$

 $\leftrightarrow x \in P(A) \lor x \in P(B).$

If $x \in P(A)$, so $x \subseteq A$, then $x \subseteq (A \cup B)$, namely $x \in P(A \cup B)$.

In the same way, we can prove if $x \in P(B)$, then $x \in P(A \cup B)$.

So $x \in (P(A) \cup P(B)) \rightarrow x \in P(A \cup B)$.

Namely $P(A) \cup P(B) \subseteq P(A \cup B)$.

(b)

$$A = \{1\}, B = \{2\}, \mathcal{P}(A) \cup \mathcal{P}(B) = \{\{1\}, \{2\}, \emptyset\}, \mathcal{P}(A \cup B) = \{\{1, 2\}, \{1\}, \{2\}, \emptyset\}$$

9.4

 \rightarrow :

 $\forall X\subseteq A$, namely $X\in \mathrm{P}(A)$, because $A\subseteq B$, so $X\subseteq B$, namely $X\in \mathrm{P}(B)$. So if $A\subseteq B$, then $\forall X\in \mathrm{P}(A)\to X\in \mathrm{P}(B)$, namely $\mathrm{P}(A)\subseteq \mathrm{P}(B)$.

 \leftarrow :

Consider the contrapositive:If $A \not\subseteq B$, then $\mathrm{P}(A) \not\subseteq \mathrm{P}(B)$. Obviously that if A isn't contained in B, then there must exist a subset of A which contains an element that doesn't belong to B, so it can't be a subset of B. So we find a subset of A that isn't a subset of B, thus have proved $\mathrm{P}(A) \not\subseteq \mathrm{P}(B)$.

9.12

(a)

Proof.

 \leftarrow :

Obviously that for all nonempty sets A,B,C and D, if A=C and B=D, we have $A\times B=C\times D.$

 \rightarrow :

Considering A,B,C and D are all nonempty sets

$$A \times B = C \times D$$

$$\leftrightarrow (\forall (x,y) \in A \times B \to (x,y) \in C \times D) \land (\forall (x,y) \in C \times D \to (x,y) \in A \times B)$$

$$\leftrightarrow ((\forall x \in A \to x \in C) \land (\forall y \in B \to y \in D)) \land ((\forall x \in C \to x \in A) \land (\forall y \in D \to y \in B))$$

$$\leftrightarrow ((\forall x \in A \to x \in C) \land (\forall x \in C \to x \in A)) \land ((\forall y \in B \to y \in D) \land (\forall y \in D \to y \in B))$$

$$\leftrightarrow ((A \subseteq C) \land (C \subseteq A)) \land ((B \subseteq D) \land (D \subseteq B))$$

$$\leftrightarrow$$
 $(A = C) \land (B = D)$

Q.E.D

(b)

Without loss of generality, suppose $A=\emptyset$, then without $B\subseteq D$, we can still have $A\times B\subseteq C\times D$, because $\forall (x,y)\in A\times B\to (x,y)\in C\times D$ will be a tataulogy as there are no elements in A hence no elements in $A\times B$. Then the proof will be invalid.

9.13

Yes.

Proof.

 \rightarrow :

If $A \subseteq C$ and $B \subseteq D$, then

$$\forall (x,y) \in A imes B$$

$$\leftrightarrow x \in A \land y \in B$$

$$\rightarrow x \in C \land x \in D$$

$$\leftrightarrow (x,y) \in C \times D$$

So
$$A \times B \subseteq C \times D$$
.

 \leftarrow :

Consider the contrapositive: If $A \not\subseteq C \vee B \not\subseteq D$, then $A \times B \not\subseteq C \times D$.

Without loss of generality, we suppose $A \not\subseteq C$, so $\exists x \in A \land x_0 \notin C$, consider (x_0,y) for every $y \in B$, obviously $(x_0,y) \in A \times B$, but $(x_0,y) \notin B \times D$, so $A \times B \not\subseteq C \times D$.

9.14

(a)

True.

Proof.

$$orall (x,y) \in A imes (B \cup C)$$

$$\leftrightarrow x \in A \land y \in B \cup C$$

$$\leftrightarrow x \in A \land (y \in B \lor y \in C)$$

$$\leftrightarrow$$
 $(x \in A \land y \in B) \lor (x \in A \land y \in C)$

$$\leftrightarrow ((x,y) \in A \times B) \lor ((x,y) \in A \times C)$$

$$\leftrightarrow (x,y) \in (A \times B) \cup (A \times C)$$

So
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

(b)

True.

Proof.

$$orall (x,y) \in A imes (B \cap C)$$

$$\leftrightarrow x \in A \land y \in B \cap C$$

$$\leftrightarrow x \in A \land (y \in B \land y \in C)$$

$$\leftrightarrow$$
 $(x \in A \land y \in B) \land (x \in A \land y \in C)$

$$\leftrightarrow ((x,y) \in A \times B) \wedge ((x,y) \in A \times C)$$

$$\leftrightarrow (x,y) \in (A \times B) \cap (A \times C)$$

So $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

(a)

Proof.

If
$$(a,b)=(x,y),$$
 namely $\{\{a\},\{a,b\}\}=\{\{x\},\{x,y\}\}$

So the elements of the two sets must be all equal.

So
$$\{a\} = \{x\} \land \{a,b\} = \{x,y\}$$
 or $\{a\} = \{x,y\} \land \{a,b\} = \{x\}$.

If the latter part of the statement is true, then $\{a\}=\{x,y\}$, oviously $\{a\}\neq\{x,y\}$ because the number of elements in them are not even equal. So the first part of the statement is true, namely $\{a\}=\{x\}\wedge\{a,b\}=\{x,y\}$ is true.

Now that $\{a\}=\{x\}$, so a=x. Furthermore, $\{a,b\}=\{x,y\}\to (a=x\wedge b=y)\vee (a=y\wedge b=x)$. Since a=x, then b=y.

(b)

Proof.

If $a \in A$ and $b \in B$, then $\{a\} \subseteq A, \{a\} \in \mathrm{P}(A)$, namely $\{a\} \in \mathrm{P}(A \cup B); \{a,b\} \subseteq A \cup B, \{a,b\} \in \mathrm{P}(A \cup B)$. So $\{\{a\}, \{a,b\}\} \subseteq \mathrm{P}(A \cup B)$, namely $\{\{a\}, \{a,b\}\} \in \mathrm{P}(\mathrm{P}(A \cup B))$. So $(a,b) \in \mathrm{P}(\mathrm{P}(A \cup B))$.

(c)

Proof.

$$A \subseteq C \land B \subseteq D$$

 $\leftrightarrow \forall x \in A, \forall y \in B, \{x\} \subseteq A \to \{x\} \subseteq C \to \{x\} \subseteq C \cup D, \{x,y\} \subseteq A \cup B \to \{x,y\} \subseteq C \cup D$

- $\leftrightarrow orall \{\{x\}, \{x,y\}\} \subseteq \mathrm{P}(A \cup B) \to \{\{x\}, \{x,y\}\} \subseteq \mathrm{P}(C \cup D)$
- $\leftrightarrow \forall \{\{x\},\{x,y\}\} \in \mathrm{P}(\mathrm{P}(A \cup B)) \to \{\{x\},\{x,y\}\} \in \mathrm{P}(\mathrm{P}(C \cup D))$
- $\leftrightarrow \forall (x,y) \in A \times B \rightarrow (x,y) \in C \times D.$

So if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.