

From 5G Advanced to 6G: the 5G-STARDUST Journey

ASMS/SPSC 2025

Sitges, 26-28.02.2025

SWS Sitges, 26-28 February 2025

Tomaso de Cola

German Aerospace Center (DLR)

The outlook of NTN into 6G

5G & B5G

6G & beyond

Satellite Networks

Terrestrial Networks

Airborne networks

Unified Design 2030

Integrated Design

NTN as <u>native component</u> of 6G network and protocols

Satellite and Terrestrial Access for Distributed, Ubiquitous and Smart Telecommunications

Project Overview (1/2)

Project name: 5G-STARDUST (<u>www.5g-stardust.eu</u>)

Satellite and Terrestrial Access for Distributed, Ubiquitous and Smart Telecommunications

- Co-funded by EU: Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme
- Stream: A-01-02 Ubiquitous Radio Access

Objective:

To design, develop and demonstrate a deeper integration of TN and NTN: Deliver a fully integrated 5G-NTN autonomous system with novel self-adapting end-to-end connectivity models for enabling ubiquitous radio access

Project Overview (2/2)

Consortium:

Project Coordinator: Tomaso De Cola, DLR

Technical Manager: Albekaye Traore, Thales Alenia Space France

Design, develop and demonstrate a deeper integration of TN and NTN:

Deliver a fully integrated 5G-NTN autonomous system with novel self-adapting end-to-end connectivity models for enabling ubiquitous radio access.

- Regenerative payloads for GEO and NGSO systems
- Unified radio interface for cost-effective converged TN/NTN multi-tenant networks
- Softwarised self-organised network architecture
- E2E AI-Driven Network Design

5G-STARDUST.EU © 2023-2025 5G-STARDUST

Project Methodology

5G

Architecture

definition

Radio interface and networking functions PoC

Integration

5G-STARDUST.EU

© 2023-2025 5G-STARDUST

Use-Cases and Scenarios

5G-STARDUST.EU

Reference Satellite Architecture

Composite LEO satellite constellation:

- OBP satellite payload
- gNB onboard satellite (different functionalsplitting options)
- 5G capabilities dynamically switched on and off

Functional Splits (example)

AI/ML application

Reference O-RAN architecture

- RIC decomposition
- Differerent control loops

Al exploitation for:

- RRM (O-DU control loop)
- Network slicing/orchestration (non-RT RIC control loop)

Dual steer/multi-link optimisation

 Link selection, steering, switching (ATSSS-inspired)

Network slicing optimisation

- Dedicated vs. sharing slices
- Multiple functional splits affecting the establishment and optimisation of network slices
- Different control framework possible depending on system requirements and HW/SW capabilities

Multi-Connectivity optimisation

ATSSS-support

NWDAF for data analytic functions

TN-gNB

E2E ML/AI controller for dynamic optimisation of multi-link management

To design, implement, and demonstrate (TRL 5) E2E services over a fully integrated TN-NTN advanced network architecture with regenerative space nodes

High-level objectives of the PoCs

Build an E2E laboratory demonstrator functionally representative of the 5G NTN from the 5GC to the UE able to support the assessment of internal/external I/F and SW/HW performance high-level requirements

- support NR waveforms on the service link with SCS=60 kHz and 100 MHz bandwidth
- implement the following gNB functional split options
 - full gNB on-board: RU+CU+DU co-located on a single payload
 - gNB split and functionally allocated to 3 separate parts: RU on-board, DU on-ground/on-board a secondary payload, CU on-ground
- demonstrate TN/NTN switching
- implement or emulate the IAB behaviour

PoC Use Cases

5G Stardust

PoC #1 Residential Broadband

- PoC#1.1: Residential broadband for energy saving
- PoC#1.2: Residential broadband for large sparsely populated areas

PoC #2 Air traffic

- PoC#2.1: TN/NTN switch at boarding
- PoC#2.2: in-flight entertainment

PoC macro-architecture

Two setups considered

- Direct Access
- Indirect Access

PoC functional architecture: full gNB onboard with 5G functions

Full gNB and Core Network User Plane Functions on-board

 \equiv

 \equiv

Summary

- Lessons Learnt
 - 5G is a complex ecosystem → integration of NTN components is a hard task!
 - Additional deeper investigations needed about:
 - Selection of the most appropriate functional splitting options
 - Overall architecture approaches
 - Achieving end-to-end integration encompasses many system elements:
 - RAN, CN, etc.
 - Unified approach towards QoS support, seamless connectivity, and service continuity
 - Some key questions:
 - Can existing standards be applied with minimum adaptation to a unified 6G-NTN system
 - Can existing standards from the terrestrial domain be extended to a TN/NTN framework (e.g., security, routing, QoS, etc.)
- Next Steps
 - Final demo, Q3-Q4 2025

THANKS FOR YOUR ATTENTION

GET IN TOUCH

5G-STARDUST project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101096573.