§2. Hàm số lượng giác

Khái niệm:

Hàm số f(x) xác định trên D gọi là hàm tuần hoàn nếu tồn tại một số $T \neq 0$ sao cho với mọi x thuộc D $\int x - T \in D; x + T \in D$

ta có
$$\begin{cases} x - T \in D; x + T \in I \\ f(x + T) = f(x) \end{cases}$$

Số dương T nhỏ nhất (nếu có) thỏa mãn tính chất trên gọi là chu kỳ của hàm tuần hoàn.

A. Lý thuyết

1. Hàm số $y = \sin x$ và hàm số $y = \cos x$

Quy tắc đặt tương ứng mỗi số thực x với sin của góc lượng giác có số đo rađian bằng x được gọi là hàm số sin, kí hiệu là $y = \sin x$.

Quy tắc đặt tương ứng mỗi số thực x với côsin (cos) của góc lượng giác có số đo rađian bằng x được gọi là hàm số côsin, kí hiệu là $y = \cos x$.

Tập xác định của các hàm số $y = \sin x$; $y = \cos x$ là \mathbb{R} .

a) Hàm số $y = \sin x$

Nhận xét: Hàm số $y = \sin x$ là hàm số lẻ do hàm số có tập xác định $D = \mathbb{R}$ là tập đối xứng và $-\sin x = \sin(-x)$.

Hàm số $y = \sin x$ tuần hoàn với chu kì 2π .

Sự biến thiên: Sự biến thiên của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$ được biểu thị trong sơ đồ (hình 1.4) phía dưới:

Khi x tăng từ $-\pi$ đến $-\frac{\pi}{2}$ thì điểm M chạy trên

đường tròn lượng giác theo chiều dương từ A' đến B'và điểm N chạy dọc trục sin từ O đến B', ta thấy $ON = \sin x$ giảm dần từ 0 đến -1.

Khi x tăng từ $-\frac{\pi}{2}$ đến $\frac{\pi}{2}$ thì điểm M chạy trên đường tròn lượng giác theo chiều dương từ B' đến B và điểm N chạy dọc trục sin từ B' đến B, ta thấy $\overline{ON} = \sin x$ tăng dần từ −1 đến 1.

Khi x tăng từ $\frac{\pi}{2}$ đến π thì điểm M chạy trên đường tròn lượng giác theo chiều dương từ B đến A' và điểm N chạy dọc trục sin từ B đến O, ta thấy $\overline{ON} = \sin x$ giảm dần từ 1 đến 0.

Hình 1.4

Bảng biến thiên:

Từ đây ta có bảng biến thiên của hàm số $y = \sin x$ trên đoạn $\left[-\pi; \pi \right]$ như sau:

STUDY TIP

Hàm số $y = \sin x$ đồng biến trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Do tính chất tuần hoàn với chu kì 2π , hàm số $y = \sin x$ đồng biến trên mỗi khoảng

$$\left(-\frac{\pi}{2}+k2\pi;\frac{\pi}{2}+k2\pi\right),k\in\mathbb{Z}$$

Tương tự ta suy ra được hàm số $y = \sin x$ nghịch biến trên mỗi khoảng

$$\left(\frac{\pi}{2}+k2\pi;\frac{3\pi}{2}+k2\pi\right),k\in\mathbb{Z}.$$

STUDY TIP Hàm số $y = \cos x$ đồng biến

trên khoảng $(-\pi;0)$. Do tính chất tuần hoàn với chu kì

 2π , hàm số $y = \cos x$ đồng

Tương tự ta suy ra được

số $y = \cos x$ nghịch

trên mỗi khoảng

biến trên mỗi khoảng $(-\pi + k2\pi; k2\pi), k \in \mathbb{Z}$

 $(k2\pi;\pi+k2\pi),k\in\mathbb{Z}.$

hàm

Đồ thi hàm số:

Nhận xét: Do hàm số $y = \sin x$ là hàm số lẻ trên $\mathbb R$ và tuần hoàn với chu kì 2π nên khi vẽ đồ thị hàm số $y = \sin x$ trên $\mathbb R$ ta chỉ cần vẽ đồ thị hàm số trên đoạn $[0;\pi]$, sau đó lấy đối xứng đồ thị qua gốc tọa độ O, ta được đồ thị hàm số $y = \sin x$ trên đoạn $[-\pi;\pi]$, cuối cùng, tịnh tiến đồ thị vừa thu được sang trái và sang phải theo trục hoành ta được các đoạn có độ dài 2π ; 4π ,...

Jaghi NHÓ

Hàm số $y = \sin x$:

- Có tập xác định là \mathbb{R} .
- Có tập giá trị là [−1;1].
- Là hàm số lẻ.
- Đồ thị nhận gốc tọa độ làm tâm đối xứng.
- Có đồ thị là một đường hình sin.
- Tuần hoàn với chu kỳ 2π .
- Đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k2\pi; \frac{\pi}{2} + k2\pi\right), k \in \mathbb{Z}$
- Nghịch biến trên mỗi khoảng $\left(\frac{\pi}{2} + k2\pi; \frac{3\pi}{2} + k2\pi\right), k \in \mathbb{Z}$.

b) Hàm số $y = \cos x$

Ta thấy $\cos x = \sin\left(x + \frac{\pi}{2}\right)$ nên bằng cách tịnh tiến đồ thị hàm số $y = \sin x$ sang

trái một đoạn có độ dài $\frac{\pi}{2}$, ta được đồ thị hàm số $y = \cos x$.

Bảng biến thiên của hàm số $y = \cos x$ trên $[-\pi; \pi]$:

Đồ thị hàm số $y = \cos x$:

Hình 1.6

₃GHI NHỚ

Hàm số $y = \cos x$:

- Có tập giá trị là [−1;1]. - Có tập xác định là \mathbb{R} .
- Là hàm số chẵn. - Đồ thi nhân truc tung làm truc đối xứng.
- Là một đường hình sin. - Tuần hoàn với chu kỳ 2π .
- Đồng biến trên mỗi khoảng $(-\pi + k2\pi; k2\pi), k \in \mathbb{Z}$.
- Nghịch biến trên mỗi khoảng $(k2\pi; \pi + k2\pi), k \in \mathbb{Z}$.

Đoc thêm

Hàm số $y = a \sin(\omega x + b) + c$, $(a, b, c, \omega \in \mathbb{R}, a\omega \neq 0)$ là một hàm tuần hoàn với chu kì cơ

sở
$$\frac{2\pi}{|\omega|}$$
 vì: $a\sin(\omega(x+T)+b)+c=a\sin(\omega x+b)+c, \ \forall x \in \mathbb{R}$ $\Leftrightarrow \sin(\omega x+b+\omega T)=\sin(\omega x+b), \ \forall x \in \mathbb{R}$ $\Leftrightarrow \omega T=k2\pi, \ (k \in \mathbb{Z}) \Leftrightarrow T=k\frac{2\pi}{\omega}, \ (k \in \mathbb{Z}).$

Và đồ thị của nó cũng là một đường hình sin.

Tương tự hàm số $y = a\cos(\omega x + b) + c$, $(a, b, c, \omega \in \mathbb{R}, a\omega \neq 0)$ cũng là một hàm

tuần hoàn với chu kì cơ sở $\frac{2\pi}{|\omega|}$ và đồ thị của nó cũng là một đường hình sin.

<mark>Ứng dụng thực tiễn:</mark> Dao động điều hòa trong môn Vật lý chương trình 12

2. Hàm số y = tan x và hàm số y = cot x

từ $-\infty$ đến +∞ (qua giá trị 0 khi x = 0).

Hình 1.7

Với $D_1 = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi | k \in \mathbb{Z} \right\}$, quy tắc đặt tương ứng mỗi số $x \in D_1$

với số thực $\tan x = \frac{\sin x}{\cos x}$ được gọi là **hàm số tang**, kí hiệu là $y = \tan x$.

Hàm số $y = \tan x$ có tập xác định là D_1 .

Với $D_2=\mathbb{R}\setminus \left\{k\pi\big|k\in\mathbb{Z}\right\}$, quy tắc đặt tương ứng mỗi số $x\in D_2$ với số

thực $\cot x = \frac{\cos x}{\sin x}$ được gọi là hàm số côtang, kí hiệu là $y = \cot x$. Hàm số $y = \cot x$ có tập xác định là D_2 .

Nhận xét: - Hai hàm số $y = \tan x$ và $y = \cot x$ là hai hàm số lẻ.

- Hai hàm số này là hai hàm số tuần hoàn với chu kì π .

a) Hàm số $y = \tan x$

Sự biến thiên: Khi cho x = (OA, OM) tăng từ $-\frac{\pi}{2}$ đến $\frac{\pi}{2}$ thì điểm M chạy trên đường tròn lượng giác theo chiều dương từ B' đến B (không kể B' và B). Khi đó điểm T thuộc trục tang At sao cho $AT = \tan x$ chạy dọc theo At, nên $\tan x$ tăng

Nhân xét:

đường tiệm cận.

Hàm số $y = \tan x$ đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right)$, $k \in \mathbb{Z}$.

Đồ thị của hàm số $y = \tan x$ nhận mỗi đường thẳng $x = \frac{\pi}{2} + k\pi, (k \in \mathbb{Z})$ làm một

Hình 1.8

Giải thích $\tan x = AT$ vì

STUDY TIP

Hàm số $y = \tan x$ nhận mỗi đường thẳng

$$x = \frac{\pi}{2} + k\pi$$
, $(k \in \mathbb{Z})$ làm một

đường tiệm cận (xem đồ thị hình bên).

Đồ thị hàm số

Nhận xét: Do hàm số $y = \tan x$ là hàm số lẻ trên \mathbb{R} và tuần hoàn với chu kì π nên khi vẽ đồ thị hàm số $y = \tan x$ trên \mathbb{R} ta chỉ cần vẽ đồ thị hàm số trên đoạn

$$\left[0;\frac{\pi}{2}\right]$$
, sau đó lấy đối xứng đồ

thị qua gốc tọa độ O, ta được đồ thị hàm số $y = \tan x$ trên đoạn

$$\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$$
, cuối cùng, tịnh tiến đồ

Hình 1.9

- Là hàm số lẻ

thị vừa thu được sang trái và sang phải theo trục hoành.

Hàm số $y = \tan x$:

- Có tập xác định: $D_1 = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \middle| k \in \mathbb{Z} \right\}$
- Là hàm số tuần hoàn với chu kì π . Có tập giá trị là \mathbb{R} .
- Đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right), k \in \mathbb{Z}$.
- Có đồ thị nhận mỗi đường thẳng $x = \frac{\pi}{2} + k\pi$, $(k \in \mathbb{Z})$ làm một đường tiệm cận.

b) Hàm số $y = \cot x$

Hàm số $y = \cot x$ xác định trên $D_2 = \mathbb{R} \setminus \left\{ k\pi \middle| k \in \mathbb{Z} \right\}$ là một hàm số tuần hoàn với chu kì π . Tương tự khảo sát như đối với hàm số $y = \tan x$ ở trên thì ta có thể vẽ đồ thị hàm số $y = \cot x$ như sau:

Hình 1.10

Hàm số $y = \cot x$:

- Có tập xác định: $D_2 = \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$
- Là hàm số lẻ
- Là hàm số tuần hoàn với chu kì π .
- Có tập giá trị là \mathbb{R} .
- Nghịch biến trên mỗi khoảng $(k\pi; \pi + k\pi), k \in \mathbb{Z}$.
- Có đồ thị nhận mỗi đường thẳng $x=k\pi$, $\left(k\in\mathbb{Z}\right)$ làm một đường tiệm cận.