Contents

0	Preamble	2
	0.1 Changing Output Dimensions	2
	0.2 Source Code Adaptations	2
1	Training AlexNet from Scratch and Fine-Tuning the Model on CIFAR-10	2
	1.1 Training from Scratch	2
	1.1.1 Hyperparameters	2
	1.1.2 Results	2
	1.2 Fine-Tuning	3
	1.2.1 Hyperparameters	3
	1.2.2 Results	3
	1.3 Comparison	4
2	Fine-Tuning ResNet-18 and VGG16 on CIFAR-10	4
	2.1 ResNet-18	4
	2.1.1 Hyperparameters	4
	2.1.2 Results	4
	2.2 VGG16	5
	2.2.1 Hyperparameters	5
	2.2.2 Results	5
	2.3 Comparison	5
3	Training Softmax Regression from Scratch on ResNet-18 Features and CIFAR-10	6
	3.1 ResNet-18 Features at Last Convolutional Layer	6
	3.1.1 Hyperparameters	6
	3.1.2 Results	6
	3.2 ResNet-18 Features at Selected Intermediate Layer	7
	3.2.1 Hyperparameters	7
	3.2.2 Results	7
	3.3 Original Input	7
	3.3.1 Hyperparameters	8
	3.3.2 Results	8
	3.4 Comparison	8
R	eferences	8

0 Preamble

0.1 Changing Output Dimensions

Since the selected dataset, CIFAR-10, classifies images into 10 distinct classes, each of the models therefore needed to have their output dimensions reconfigured. For details as to where and how this was accomplished for each model, view the notebook implementing each model, in particular. Each notebook will be referenced in the appropriate section.

0.2 Source Code Adaptations

Furthermore, the train and evaluate methods utilised in each of the following models are adapted from the train_ch6 [source] and evaluate_accuracy_gpu [source] methods from Dive into Deep Learning, listed in References.

1 Training AlexNet from Scratch and Fine-Tuning the Model on CIFAR-10

1.1 Training from Scratch

The notebook is given by alexnet_from_scratch.ipynb. The file path is given by Assignment/Source/src/section_1/alexnet_from_scratch/alexnet_from_scratch.ipynb.

1.1.1 Hyperparameters

For this implementation of AlexNet, learning_rate, num_epochs, and batch_size are defined as 0.05, 10, and 256, respectively.

1.1.2 Results

Epoch Training Loss		Training Accuracy	Testing Accuracy
1	2.302	0.102	0.101
2	2.301	0.115	0.119
3	2.298	0.116	0.106
4	2.256	0.127	0.196
5	2.132	0.232	0.257
6	2.015	0.265	0.269
7	1.952	0.282	0.298

8	1.876	0.312	0.307
9	1.791	0.347	0.385
10	1.704	0.379	0.399

Table 1.1 Training AlexNet from Scratch

The raw output is given in alexnet_from_scratch.txt. The file path is given by Assignment/Source/src/section_1/alexnet_from_scratch/alexnet_from_scratch.txt.

1.2 Fine-Tuning

The notebook is given by alexnet_fine_tuned.ipynb. The file path is given by Assignment/Source/src/section_1/alexnet_fine_tuned/alexnet_fine_tune d.ipynb.

1.2.1 Hyperparameters

For this implementation of AlexNet, learning_rate, num_epochs, and batch_size are defined as 0.05, 10, and 256, respectively.

1.2.2 Results

Epoch	Training Loss	Training Accuracy	Testing Accuracy
1	0.762 0.734		0.822
2	2 0.470 0		0.835
3	0.404	0.859	0.873
4	0.353 0.877		0.860
5 0.320		0.887	0.862
6	0.300		0.859
7	7 0.277		0.899
8	0.256	0.910	0.891
9 0.238		0.917	0.885
10	0.223	0.922	0.897

Table 1.2. Fine-Tuning AlexNet

The raw output is given in alexnet_fine_tuned.txt. The file path is given by Assignment/Source/src/section_1/alexnet_fine_tuned/alexnet_fine_tune d.txt.

1.3 Comparison

Ultimately, the most performant model was the fine-tuned AlexNet. It classified unseen images with 225% greater accuracy than the AlexNet model trained from scratch.

2 Fine-Tuning ResNet-18 and VGG16 on CIFAR-10

2.1 ResNet-18

The notebook is given by resnet18.ipynb. The file path is given by Assignment/Source/src/section_2/resnet18/resnet18.ipynb.

2.1.1 Hyperparameters

For this implementation of ResNet-18, learning_rate, num_epochs, and batch_size are defined as 0.05, 10, and 256, respectively.

2.1.2 Results

Epoch	Training Loss Training Accuracy		Testing Accuracy
1	0.420	0.866	0.918
2			0.927
3			0.943
4	0.032 0.994		0.946
5	0.015		0.941
6			0.947
7			0.947
8	0.003	1.000	0.948
9	0.002	1.000	0.949
10	0.002	1.000	0.950

Table 2.1. Fine-Tuning ResNet-18

The raw output is given in resnet18.txt. The file path is given by Assignment/Source/src/section_2/resnet18.txt.

2.2 VGG16

The notebook is given by vgg16.ipynb. The file path is given by Assignment/Source/src/section_2/vgg16/vgg16.ipynb.

2.2.1 Hyperparameters

For this implementation of ResNet-18, learning_rate, num_epochs, and batch_size are defined as 0.05, 10, and 256, respectively.

2.2.2 Results

Epoch	Training Loss Training Accuracy		Testing Accuracy
1	1.234	0.566	0.862
2	0.336 0.885 0.196 0.933		0.881
3			0.906
4	0.137 0.953		0.900
5	0.108 0.965		0.907
6	0.056 0 0.047 0		0.926
7			0.916
8	0.063	0.980	0.918
9	0.025	0.992	0.935
10	0.021	0.994	0.937

Table 2.2. Fine-Tuning VGG16

The raw output is given in vgg16.txt. The file path is given by Assignment/Source/src/section_2/vgg16/vgg16.txt.

2.3 Comparison

Overall, the most performant model was the fine-tuned ResNet-18. It classified unseen images with 1.4% and 5.9% greater accuracy than VGG16 and AlexNet, respectively.

3 Training Softmax Regression from Scratch on ResNet-18 Features and CIFAR-10

3.1 ResNet-18 Features at Last Convolutional Layer

The notebook is given by softmax_resnet18_last.ipynb. The file path is given by Assignment/Source/src/section_3/softmax_resnet18_last/softmax_resnet 18_last.ipynb.

3.1.1 Hyperparameters

For this model, learning_rate, num_epochs, and batch_size are defined as 0.05, 10, and 256, respectively.

3.1.2 Results

Epoch	Training Loss	Training Accuracy	Testing Accuracy
1	1.744	0.762	0.909
2 1.543 0.9		0.934	0.931
3	1.513	0.958	0.937
4	1.497	0.972	0.940
5	1.487	0.980	0.942
6	1.481	0.985	0.944
7	1.476 0.989		0.944
8	1.473	0.991	0.946
9	1.471	0.992	0.949
10	1.470	0.993	0.945

Table 3.1. Training Softmax Regression Model on ResNet-18 Features at the Last Convolutional Layer

The raw output is given in softmax_resnet18_last.txt. The file path is given by Assignment/Source/src/section_3/softmax_resnet18_last/softmax_resnet 18_last.txt.

3.2 ResNet-18 Features at Selected Intermediate Layer

The notebook is given by softmax_resnet18_intermediate.ipynb. The file path is given by

Assignment/Source/src/section_3/softmax_resnet18_intermediate/softmax_resnet18_intermediate.ipynb.

3.2.1 Hyperparameters

For this model, learning_rate, num_epochs, and batch_size are defined as 0.05, 10, and 256, respectively.

3.2.2 Results

Epoch	Training Loss	Training Accuracy	Testing Accuracy
1	2.361	0.100	0.100
2	2.361	0.100	0.100
3	3 2.361 0		0.100
4	2.361	0.100	0.100
5	2.361	0.100	0.100
6	2.361		0.100
7	2.361	0.100	0.100
8	2.361	0.100	0.100
9	2.361	0.100	0.100
10	2.361	0.100	0.100

Table 3.2. Training Softmax Regression Model on ResNet-18 Features at a Selected Convolutional Layer

The raw output is given in softmax_resnet18_intermediate.txt. The file path is given by

Assignment/Source/src/section_3/softmax_resnet18_intermediate/softmax_resnet18_intermediate.txt.

3.3 Original Input

The notebook is given by softmax_resnet18_original.ipynb. The file path is given by

Assignment/Source/src/section_3/softmax_resnet18_original/softmax_resnet18_original.ipynb.

3.3.1 Hyperparameters

For this model, learning_rate, num_epochs, and batch_size are defined as 0.1, 10, and 256, respectively.

3.3.2 Results

Epoch	Training Loss	Training Accuracy	Testing Accuracy
1	1.744	0.762	0.909
2	1.543	0.934	0.931
3	1.513	0.958	0.937
4	1.497	0.972	0.940
5	1.487	0.980	0.942
6	1.481	0.985	0.944
7	1.476	0.989	0.944
8	1.473	0.991	0.946
9	1.471	0.992	0.949
10	1.470	0.993	0.945

Table 3.3. Training Softmax Regression Model on the Original Input

The raw output is given in softmax_original.txt. The file path is given by Assignment/Source/src/section_3/softmax_original/softmax_original.txt.

3.4 Comparison

Overall, the most performant model was the Softmax Regression Model trained on the ResNet-18 features at the last convolutional layer. It classified unseen images with 945% greater accuracy than both the Softmax Regression model trained on the ResNet-18 features at an intermediate layer and the Softmax Regression model trained on the original input.

References

Zhang, Aston, Lipton, Zachary C., Li, Mu, and Smola, Alexander J. *Dive into Deep Learning*. https://d2l.ai/.