Λήμμα 0.0.1. Το n-οστό πολυώνυμο $Hermite\ H_n(x)$ έχει n διακεκριμένες πραγματικές ρίζες.

Aπόδειξη. Με επαγωγή στο n. Το λήμμα είναι φανερό για n=0 και n=1 καθώς $H_1(x)=x$. Έστω $n\geq 1$, και υποθέτουμε ότι το λήμμα ισχύει για n. Τότε το $H_n(x)$ έχει n το πλήθος διαφορετικές μεταξύ τους πραγματικές ρίζες οι οποίες θα είναι και απλές. Αυτό σημαίνει ότι υπάρχουν πραγματικοί αριθμοί

$$\beta_n < \dots < \beta_2 < \beta_1$$

τέτοιοι ώστε

$$H_n(\beta_i) = 0$$

και

$$H'_n(\beta_j) \neq 0$$

για $j=1,\ldots,n$. Καθώς το $H_n(x)$ είναι μονικό πολυώνυμο βαθμού n, προκύπτει ότι

$$\lim_{x \to \infty} H_n(x) = \infty.$$

και έτσι

$$H'_n(\beta_1) > 0.$$

Από το θεώρημα του Rolle προχύπτει ότι κάθε ένα από τα διαστήματα (β_j, β_{j-1}) για $j=2,\ldots,n$ περιέχει αχριβώς μία από τις n-1 το πλήθος ρίζες του πολυωνύμου $H'_n(x)$. Από αυτό εύκολα προχύπτει ότι

$$(-1)^{j+1}H'_n(\beta_j) > 0$$

για $j=1,\dots,n$. Από την αναδρομική σχέση $H_{n+1}(x)=xH_n(x)-\frac{1}{2}H_n'(x)$ θέτοντας $x=\beta_j$ έχουμε ότι

$$H_{n+1}(\beta_j) = -\frac{1}{2}H'_n(\beta_j),$$

και έτσι

$$(-1)^{j}H_{n+1}(\beta_{j}) = \frac{(-1)^{j+1}}{2}H'_{n}(\beta_{j}) > 0$$

για $j=1,\ldots,n$. Εφαρμόζοντας τώρα το θεώρημα Bolzano σε καθένα από τα κλειστά διαστήματα $[\beta_j,\beta_{j-1}]$ για $j=2,\ldots,n$, παίρνουμε ότι το πολυώνυμο $H_{n+1}(x)$ έχει μία ρίζα β_j^* σε καθένα από τα διαστήματα (β_j,β_{j-1}) . Επίσης καθώς $\lim_{x\to\infty}H_{n+1}(x)=\infty$ και $H_{n+1}(\beta_1)<0$ βλέπουμε ότι το πολυώνυμο $H_{n+1}(x)$ έχει μία ρίζα $\beta_1^*>\beta_1$. Αν τώρα ο n είναι άρτιος, $H_{n+1}(\beta_n)>0$. Επιπλέον ο n+1 έιναι περιττός αριθμός και συνεπώς το για το H_{n+1} ως πολυώνυμο περιττού βαθμού ισχύει ότι $\lim_{x\to\infty}H_{n+1}(x)=-\infty$. Πάλι από το θεώρημα Bolzano παίρνουμε ότι το $H_{n+1}(x)$ έχει μία ρίζα $\beta_{n+1}^*<\beta_n$. Με ανάλογο συλλογισμό προκύπτει ότι το $H_{n+1}(x)$ έχει μία ρίζα $\beta_{n+1}^*<\beta_n$ αν το n ειναι περιττος. Σε κάθε λοιπον περίπτωση το $H_{n+1}(x)$ έχει n+1 το πλήθος και διαφορετικές μεταξύ τους πραγματικές ρίζες.