FORMA CANÓNICA REAL DE JORDAN

Dada AEMIR, dehotaremos J(A) al conjunto de todos sus valores propros o espectro, es dear,

J(A) = 1 DEC: P(X) := det (A-DIN) = 01.

Su DET(A), denotaremos:

- m(x) = multiplicaded algebraica de 2, es decu, multiplicaded de λ como raiz del polinomio característico, $p(\lambda)=0$.

- $V(\lambda)$ = multiplicaded geométrica de λ , esto es, dim ber $(\Delta - \lambda I_B)$.

- DR(X):= dum ker (A-XIn)?.

Observa que $V(\lambda) \leq m(\lambda)$, $V(\lambda) = V_3(\lambda)$ y $V_{m(\lambda)}(\lambda) = V_{m(\lambda)+n}(\lambda)$, n = 1, 2...

TEOREMA: FR Mr(R), detP +O y J & Mr(R) diagonal por Hoques, es decir, J = diag (Js,..., Js, Ls,...Lr), tales que

J se denomina forma canónica real " de A y a cada una de los bloques Ji, i=1,...s, Lj, j=1,...r, "bloques elementales" de Jordan Juriene determinada por las orquientes propriededes:

1. Cada une de les bloques elementales, Ji, está associado a un mismo valor propio real, DE T(D) NR, y es de la forma

$$\mathcal{J}_{i} = \begin{pmatrix} \lambda & \delta & 0 & \cdots & 0 \\ 0 & \lambda & \Delta & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix} = \lambda \mathcal{I}_{P_{i}} + \mathcal{N}_{P_{i}}$$

sundo $N_{P_i} = \begin{pmatrix} 0 & 1 \\ & \ddots & 1 \end{pmatrix}$.

dos bloques Lj estan asociados a un mismo por de valores complejos conjugados, $\lambda, \bar{\lambda} \in \mathcal{T}(\Delta) \setminus \mathbb{R}$ y, si $\lambda = a + ib$, b > 0,

$$L_{j} = \begin{pmatrix} -\Lambda & I_{2} & O_{2} \dots O_{2} \\ O_{2} & \Lambda & I_{2} \dots O_{2} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2} & \dots & \Lambda & I_{2} \\ O_{2} & \dots & O_{2} & \Lambda \end{pmatrix} \text{ suppose } \Lambda = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

2- Cada valor proprio real Δ se repute exactamente $m(\lambda)$ veces en la diagonal de J y para cada valor proprio complejo, $\lambda = a + ib$, b > 0, el bloque $\Delta = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ aparece exactamento $m(\lambda)$ veces en la diagonal de J.

3. El número de bloques elementales correspondiente al valor propro λ es $\nu(\lambda)$.

4- El número de bloques elementales de dumension ℓ , si λ es real, o de dumension 2ℓ , cuando A=a+ib, b>0, viene dado por

tomando $P_0(\lambda) = 0$, por definición.

de forma camonica real de Jordan de una matriz es única, salvo reordenación de los bloques.