UTS

Nama: muhammad makhlufi makbullah

Kelas : TK 45 01

NIM : 1103210171

Pendahuluan

Proyek ini bertujuan untuk membuat robot yang bisa mengikuti dinding menggunakan platform simulasi robotika Webots. Robot yang digunakan adalah **e-puck**, yaitu robot kecil berbentuk bundar yang sering digunakan dalam riset dan pembelajaran robotika. **Wall follower robot** (robot pengikut dinding) adalah robot yang dirancang untuk bergerak di sepanjang dinding atau rintangan dengan mempertahankan jarak tertentu darinya.

Tujuan Proyek

Proyek ini memiliki beberapa tujuan utama:

- 1. **Memahami cara kerja sensor jarak** pada robot e-puck dan bagaimana memproses data sensornya.
- 2. **Mengendalikan gerakan motor** robot agar bisa mengikuti dinding tanpa menabrak.
- 3. **Mengimplementasikan logika wall-following** (mengikuti dinding) dengan menulis program di Python sebagai kontroler.

Komponen yang Dibutuhkan

Dalam proyek ini, beberapa komponen utama yang akan digunakan antara lain:

- 1. **e-puck robot**: Sebuah robot kecil yang dilengkapi dengan sensor jarak, motor, dan aktuator yang dapat dikontrol melalui Webots.
- 2. **Sensor Jarak**: e-puck memiliki beberapa sensor jarak inframerah yang dapat mendeteksi jarak ke objek di sekitarnya.
- 3. **Motor Roda**: Dua motor pada roda yang memungkinkan robot bergerak maju, mundur, atau berbelok.

Langkah-langkah Utama

1. Mengatur Lingkungan Simulasi

 Di Webots, kita akan membuka proyek baru atau mengunduh contoh proyek e-puck untuk memulai. Lingkungan simulasi ini akan memiliki dinding atau rintangan yang bisa diikuti oleh robot.

2. Membuat Kontroler Python

• Kontroler adalah program yang mengendalikan perilaku robot. Di sini, kita akan membuat kontroler dengan bahasa pemrograman Python untuk mengendalikan gerakan e-puck berdasarkan data sensor jarak.

3. Inisialisasi Motor dan Sensor

- Dalam kode Python, kita akan memulai dengan mengaktifkan **motor roda** robot e-puck dan menetapkan kecepatan awal.
- Kemudian, **sensor jarak inframerah** akan diaktifkan sehingga robot dapat mendeteksi jarak ke dinding atau rintangan.

4. Logika Wall Following

- Logika utama dari robot pengikut dinding adalah untuk menjaga jarak tertentu dari dinding:
 - o Jika robot terlalu dekat dengan dinding, robot akan sedikit menjauh.
 - o Jika robot terlalu jauh, robot akan mendekatkan diri ke dinding.
 - Robot harus menyesuaikan kecepatan roda kiri dan kanan untuk menjaga jarak ini saat bergerak maju.

5. Loop Utama

- Dalam loop utama program, robot akan terus memeriksa data sensor jarak dan menyesuaikan kecepatan roda kiri dan kanan sesuai logika wall-following.
- Ini memastikan bahwa robot terus bergerak di sepanjang dinding, mengikuti kontur dinding tanpa menabrak.

Penjelasan Kode

- Inisialisasi Motor dan Sensor: Bagian awal kode menginisialisasi motor dan sensor jarak.
- **Pembacaan Sensor**: Dalam loop utama, program membaca sensor depan dan kanan.
- Logika Wall Following: Jika ada objek dekat di depan, robot akan berputar menjauhinya. Jika terlalu jauh dari dinding kanan, robot akan mendekatkan diri, dan jika dalam jarak aman, robot akan melanjutkan bergerak maju.
- **Kecepatan Motor**: Kecepatan roda kiri dan kanan diatur sesuai dengan jarak sensor untuk mengatur arah gerakan robot.

Hasil yang Diharapkan

Setelah menjalankan simulasi, robot akan bergerak mengikuti dinding, dengan menyesuaikan kecepatan roda kiri dan kanannya berdasarkan jarak ke dinding.

LINK YOUTUBE

https://youtu.be/0rGa-7O8aF0?si=UECQYh5MhMM43WK2