Takeuti's conjecture And Prawitz's proof

Jelle Tjeerd Fokkens

Initial Types Club

April 8, 2021

Outline

Step 1

Interlude

Step 2

Interlude 2

Step 3

Summary

► Gerhard Gentzen, 1934 proved the Hauptsatz for first order sequent calculus.

- ► Gerhard Gentzen, 1934 proved the Hauptsatz for first order sequent calculus.
- ► Gaisi Takeuti stated the conjecture for STT in 1953.

- Gerhard Gentzen, 1934 proved the Hauptsatz for first order sequent calculus.
- Gaisi Takeuti stated the conjecture for STT in 1953.
- Proved by Tait for second-order logic in 1966.

- Gerhard Gentzen, 1934 proved the Hauptsatz for first order sequent calculus.
- Gaisi Takeuti stated the conjecture for STT in 1953.
- Proved by Tait for second-order logic in 1966.
- Proved independently by Motoo Takahashi and Dag Prawitz in 1967.

Russell's paradox: 'The class of all classes that do not contain themselves as elements.'

- Russell's paradox: 'The class of all classes that do not contain themselves as elements.'
- ► Supposed underlying problem: self-reference.

- Russell's paradox: 'The class of all classes that do not contain themselves as elements.'
- Supposed underlying problem: self-reference.
- Impredicativity is supposed to be bad.

$$\frac{\Gamma \vdash \forall XA(X)}{\Gamma \vdash A(X := T)} \text{ , where } T \text{ is any term.}$$

- Russell's paradox: 'The class of all classes that do not contain themselves as elements.'
- Supposed underlying problem: self-reference.
- Impredicativity is supposed to be bad.

$$\frac{\Gamma \vdash \forall XA(X)}{\Gamma \vdash A(X := T)}$$
 , where T is any term.

► Furthermore, extensionality:

$$\forall x (P(x) \leftrightarrow Q(x)) \rightarrow (RP \rightarrow RQ)$$

Proof outline

We're proving three claims which together imply the Hauptsatz.

1. if A is not derivable without cut then there is a semi-valuation with A false

Proof outline

We're proving three claims which together imply the Hauptsatz.

- 1. if A is not derivable without cut then there is a semi-valuation with A false
- 2. semi-valuations are extendable to total valuations.

Proof outline

We're proving three claims which together imply the Hauptsatz.

- 1. if A is not derivable without cut then there is a semi-valuation with A false
- 2. semi-valuations are extendable to total valuations
- 3. if A is false in a total valuation, then A is not derivable

So, if *A* is derivable, it is derivable without cut.

- ► Types:
 - ▶ 0 (individuals) and 1 (truth values) are types

- ► Types:
 - ▶ 0 (individuals) and 1 (truth values) are types
 - if $\tau_1, ..., \tau_n$ are types, then $(\tau_1, ..., \tau_n)$ is a type (predicate with indicated argument places)

- ► Types:
 - 0 (individuals) and 1 (truth values) are types
 - if $\tau_1, ..., \tau_n$ are types, then $(\tau_1, ..., \tau_n)$ is a type (predicate with indicated argument places)
- Basic symbols:
 - free (a_i^{τ}) and bound (x_i^{τ}) variables of any type.

- ► Types:
 - 0 (individuals) and 1 (truth values) are types
 - if $\tau_1, ..., \tau_n$ are types, then $(\tau_1, ..., \tau_n)$ is a type (predicate with indicated argument places)
- Basic symbols:
 - free (a_i^{τ}) and bound (x_i^{τ}) variables of any type.
 - **c** constants (c_i^{τ}) of any type.

- ► Types:
 - 0 (individuals) and 1 (truth values) are types
 - if $\tau_1, ..., \tau_n$ are types, then $(\tau_1, ..., \tau_n)$ is a type (predicate with indicated argument places)
- Basic symbols:
 - free (a_i^{τ}) and bound (x_i^{τ}) variables of any type.
 - ightharpoonup constants (c_i^{τ}) of any type.
 - function symbols (f_i) denoting functions with arguments and values of type 0.

- ► Types:
 - 0 (individuals) and 1 (truth values) are types
 - if $\tau_1, ..., \tau_n$ are types, then $(\tau_1, ..., \tau_n)$ is a type (predicate with indicated argument places)
- Basic symbols:
 - free (a_i^{τ}) and bound (x_i^{τ}) variables of any type.
 - ightharpoonup constants (c_i^{τ}) of any type.
 - function symbols (f_i) denoting functions with arguments and values of type 0.
 - ▶ ¬ for negation, \vee for disjunction, \exists for existence, λ for abstraction and \in for membership.

Expressions:

 \blacktriangleright free variables and constants of type τ is an expression of type τ

- \blacktriangleright free variables and constants of type τ is an expression of type τ
- if ϕ is a function symbol with n argument places and $e_1,...,e_n$ are expressions of type 0, then $\phi(e_1,...,e_n)$ is an expression of type 0

- \blacktriangleright free variables and constants of type τ is an expression of type τ
- if ϕ is a function symbol with n argument places and $e_1, ..., e_n$ are expressions of type 0, then $\phi(e_1, ..., e_n)$ is an expression of type 0
- ▶ if $e_1,...,e_n$ are expressions of types $\tau_1,...,\tau_n$, and e is an expression of type $(\tau_1,...,\tau_n)$, then $(e_1,...,e_n \in e)$ is an expression of type 1

- \blacktriangleright free variables and constants of type τ is an expression of type τ
- if ϕ is a function symbol with n argument places and $e_1, ..., e_n$ are expressions of type 0, then $\phi(e_1, ..., e_n)$ is an expression of type 0
- ▶ if $e_1, ..., e_n$ are expressions of types $\tau_1, ..., \tau_n$, and e is an expression of type $(\tau_1, ..., \tau_n)$, then $(e_1, ..., e_n \in e)$ is an expression of type 1
- ▶ if A is an expression of type 1, then $\neg A$ is an expression of type 1

- \blacktriangleright free variables and constants of type τ is an expression of type τ
- if ϕ is a function symbol with n argument places and $e_1, ..., e_n$ are expressions of type 0, then $\phi(e_1, ..., e_n)$ is an expression of type 0
- ▶ if $e_1, ..., e_n$ are expressions of types $\tau_1, ..., \tau_n$, and e is an expression of type $(\tau_1, ..., \tau_n)$, then $(e_1, ..., e_n \in e)$ is an expression of type 1
- ▶ if A is an expression of type 1, then $\neg A$ is an expression of type 1
- ▶ if A and B are expressions of type 1, then $(A \lor B)$ is an expression of type 1

- \blacktriangleright free variables and constants of type τ is an expression of type τ
- if ϕ is a function symbol with n argument places and $e_1, ..., e_n$ are expressions of type 0, then $\phi(e_1, ..., e_n)$ is an expression of type 0
- ▶ if $e_1, ..., e_n$ are expressions of types $\tau_1, ..., \tau_n$, and e is an expression of type $(\tau_1, ..., \tau_n)$, then $(e_1, ..., e_n \in e)$ is an expression of type 1
- ▶ if A is an expression of type 1, then $\neg A$ is an expression of type 1
- ▶ if A and B are expressions of type 1, then $(A \lor B)$ is an expression of type 1
- if x^{τ} is a bound variable which does not occur in an expression $A(a^{\tau})$ of type 1, then $\exists x^{\tau} A(x^{\tau})$ is an expression of type 1.

- \blacktriangleright free variables and constants of type τ is an expression of type τ
- if ϕ is a function symbol with n argument places and $e_1, ..., e_n$ are expressions of type 0, then $\phi(e_1, ..., e_n)$ is an expression of type 0
- ▶ if $e_1, ..., e_n$ are expressions of types $\tau_1, ..., \tau_n$, and e is an expression of type $(\tau_1, ..., \tau_n)$, then $(e_1, ..., e_n \in e)$ is an expression of type 1
- ▶ if A is an expression of type 1, then $\neg A$ is an expression of type 1
- ▶ if A and B are expressions of type 1, then $(A \lor B)$ is an expression of type 1
- ▶ if x^{τ} is a bound variable which does not occur in an expression $A(a^{\tau})$ of type 1, then $\exists x^{\tau} A(x^{\tau})$ is an expression of type 1.
- if $x_1^{\tau_1},...,x_n^{\tau_n}$ are different bound variables which do not occur in an expression $A(a_1^{\tau_1},...,a_n^{\tau_n})$ of type 1, then $\lambda x_1^{\tau_1}...x_n^{\tau_n}A(x_1^{\tau_1},...,x_n^{\tau_n})$ is an expression of type $(\tau_1,...,\tau_n)$.

Definition

A semi-valuation is an assignment of at most one of the two values t and f to any wff with the following conditions:

▶ if $\neg A$ is t, then A is f

Definition

- ▶ if $\neg A$ is t, then A is f
- ▶ if $\neg A$ is f, then A is t

Definition

- ightharpoonup if $\neg A$ is t, then A is f
- ightharpoonup if $\neg A$ is f, then A is t
- ▶ if $A \lor B$ is t, then at least one of the wffs A and B is t.

Definition

- ightharpoonup if $\neg A$ is t, then A is f
- ightharpoonup if $\neg A$ is f, then A is t
- ▶ if $A \lor B$ is t, then at least one of the wffs A and B is t.
- ▶ if $A \lor B$ is f, then both wffs A and B are f.

Definition

- ▶ if $\neg A$ is t, then A is f
- ightharpoonup if $\neg A$ is f, then A is t
- ▶ if $A \lor B$ is t, then at least one of the wffs A and B is t.
- ▶ if $A \lor B$ is f, then both wffs A and B are f.
- ▶ if $\exists x^{\tau} A(x^{\tau})$ is t, then there exists an expression e^{τ} of type τ such that $A(e^{\tau})$ is t.

Definition

- ▶ if $\neg A$ is t, then A is f
- ightharpoonup if $\neg A$ is f, then A is t
- ▶ if $A \lor B$ is t, then at least one of the wffs A and B is t.
- ▶ if $A \lor B$ is f, then both wffs A and B are f.
- ▶ if $\exists x^{\tau} A(x^{\tau})$ is t, then there exists an expression e^{τ} of type τ such that $A(e^{\tau})$ is t.
- ▶ if $\exists x^{\tau} A(x^{\tau})$ is f, then $A(e^{\tau})$ is f for every expression e^{τ} of type τ .

Definition

- ightharpoonup if $\neg A$ is t, then A is f
- ightharpoonup if $\neg A$ is f, then A is t
- ▶ if $A \lor B$ is t, then at least one of the wffs A and B is t.
- ▶ if $A \lor B$ is f, then both wffs A and B are f.
- ▶ if $\exists x^{\tau} A(x^{\tau})$ is t, then there exists an expression e^{τ} of type τ such that $A(e^{\tau})$ is t.
- ▶ if $\exists x^{\tau} A(x^{\tau})$ is f, then $A(e^{\tau})$ is f for every expression e^{τ} of type τ .
- if $(e_1,...,e_n \in \lambda x_1...x_n A(x_1,...,x_n))$ has a value, then $A(e_1,...,e_n)$ has the same value.

Step 1.1

Definition

▶ Every variable or constant of type 1 is a *prime formula*

Step 1.1

Definition

- ▶ Every variable or constant of type 1 is a *prime formula*
- A formula $(e_1, ..., e_n \in e)$ is a *prime formula* if e is a free variable or a constant.

Definition

- ▶ Every variable or constant of type 1 is a *prime formula*
- ▶ A formula $(e_1, ..., e_n \in e)$ is a *prime formula* if e is a free variable or a constant.

Definition

By recursion.

F is a positive part (pp) of F

Definition

- Every variable or constant of type 1 is a prime formula
- A formula $(e_1, ..., e_n \in e)$ is a *prime formula* if e is a free variable or a constant.

Definition

By recursion.

- F is a positive part (pp) of F
- ▶ if $\neg A$ is a pp of F, then A is a *negative part* (np) of F

Definition

- Every variable or constant of type 1 is a prime formula
- A formula $(e_1, ..., e_n \in e)$ is a *prime formula* if e is a free variable or a constant.

Definition

By recursion.

- F is a positive part (pp) of F
- ▶ if $\neg A$ is a pp of F, then A is a negative part (np) of F
- ▶ if $\neg A$ is an np of F, then A is a pp of F

Definition

- Every variable or constant of type 1 is a prime formula
- A formula $(e_1, ..., e_n \in e)$ is a *prime formula* if e is a free variable or a constant.

Definition

By recursion.

- F is a positive part (pp) of F
- ▶ if $\neg A$ is a pp of F, then A is a *negative part* (np) of F
- ▶ if $\neg A$ is an np of F, then A is a pp of F
- ▶ if $A \lor B$ is a pp of F, then A and B are pps of F

Definition

- Every variable or constant of type 1 is a prime formula
- A formula $(e_1, ..., e_n \in e)$ is a *prime formula* if e is a free variable or a constant.

Definition

By recursion.

- F is a positive part (pp) of F
- ▶ if $\neg A$ is a pp of F, then A is a negative part (np) of F
- ▶ if $\neg A$ is an np of F, then A is a pp of F
- ightharpoonup if $A \lor B$ is a pp of F, then A and B are pps of F

Remark: if A is a true pp or false np of F, then F is true.

Definition

▶ Every axiom $F[P_+, P_-]$, where P is a prime formula, is *derivable*.

Definition

- ▶ Every axiom $F[P_+, P_-]$, where P is a prime formula, is *derivable*.
- ▶ If the premises of a basic inference are *derivable*, then the conclusion is derivable.

Definition

- ▶ Every axiom $F[P_+, P_-]$, where P is a prime formula, is *derivable*.
- ▶ If the premises of a basic inference are *derivable*, then the conclusion is derivable.
- ▶ A wff is *strictly derivable* if no use is made of S5.

Definition

- ▶ Every axiom $F[P_+, P_-]$, where P is a prime formula, is *derivable*.
- ► If the premises of a basic inference are derivable, then the conclusion is derivable.
- A wff is *strictly derivable* if no use is made of S5.

The basic inferences:

S1
$$\frac{F[A_{-}], F[B_{-}]}{F[(A \lor B)_{-}]}$$
 S4a $\frac{F[A(e_{1}, ..., e_{n})_{+}]}{F[(e_{1}, ..., e_{n} \in \lambda x_{1} ... x_{n} A(x_{1}, ..., x_{n}))_{+}]}$ S2 $\frac{F[A(a^{\tau})_{-}]}{F[\exists x^{\tau} A(x^{\tau})_{-}]}$ S4b $\frac{F[A(e_{1}, ..., e_{n})_{-}]}{F[(e_{1}, ..., e_{n} \in \lambda x_{1} ... x_{n} A(x_{1}, ..., x_{n}))_{-}]}$

S3
$$\frac{F[\exists x^{\tau} A(x^{\tau})_{+}] \vee A(e^{\tau})}{F[\exists x^{\tau} A(x^{\tau})_{+}]} \quad \text{S5} \frac{F \vee \exists x^{1} \neg (x^{1} \vee \neg x^{1})}{F}$$

Definition

A deduction string of a wff F is a finite or infinite sequence of wffs $F_1, F_2, F_3, ...$ that satisfies:

 $ightharpoonup F_1 = F$

Definition

A deduction string of a wff F is a finite or infinite sequence of wffs $F_1, F_2, F_3, ...$ that satisfies:

- $ightharpoonup F_1 = F$
- ▶ if F_n is neither an axiom nor a primitive wff, then F_{n+1} is a reductum or a weakening of F_n .

Definition

A deduction string of a wff F is a finite or infinite sequence of wffs $F_1, F_2, F_3, ...$ that satisfies:

- $ightharpoonup F_1 = F$
- ▶ if F_n is neither an axiom nor a primitive wff, then F_{n+1} is a reductum or a weakening of F_n .
- ▶ if F_n is an axiom or a primitive wff, then F_n is the last wff of the string.

Definition

A deduction string of a wff F is a finite or infinite sequence of wffs $F_1, F_2, F_3, ...$ that satisfies:

- $ightharpoonup F_1 = F$
- ▶ if F_n is neither an axiom nor a primitive wff, then F_{n+1} is a reductum or a weakening of F_n .
- ▶ if F_n is an axiom or a primitive wff, then F_n is the last wff of the string.

No use is made of rule S5.

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

Proof.

All the deduction strings can be combined together to form a deduction tree of F. This deduction tree is finite, because there are finitely many deduction strings and the tree has finite branching. Only inferences S1-S4 are being used in the derivation, so no use is made of the cut rule.

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Proof.

Let ϕ be the deduction string $(F=)F_1, F_2, F_3, ...$ not containing an axiom. We define V(e)=t for e a negative part in ϕ and V(e)=f for e a positive part in ϕ . V is a semi-valuation, by induction on the rank of a wff A:

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Proof.

Let ϕ be the deduction string $(F=)F_1, F_2, F_3, ...$ not containing an axiom. We define V(e)=t for e a negative part in ϕ and V(e)=f for e a positive part in ϕ . V is a semi-valuation, by induction on the rank of a wff A:

▶ IB: There is no prime formula P with V(P) = t = f.

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Proof.

Let ϕ be the deduction string $(F=)F_1, F_2, F_3, ...$ not containing an axiom. We define V(e)=t for e a negative part in ϕ and V(e)=f for e a positive part in ϕ . V is a semi-valuation, by induction on the rank of a wff A:

- ▶ IB: There is no prime formula P with V(P) = t = f.
- ▶ IS: V satisfies all the conditions of a semi-valuation.

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Proof.

Let ϕ be the deduction string $(F=)F_1, F_2, F_3, ...$ not containing an axiom. We define V(e)=t for e a negative part in ϕ and V(e)=f for e a positive part in ϕ . V is a semi-valuation, by induction on the rank of a wff A:

- ▶ IB: There is no prime formula P with V(P) = t = f.
- ▶ IS: V satisfies all the conditions of a semi-valuation.

Also, because F is a positive part of itself: V(F) = f.

We proved:

We proved:

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

We proved:

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

And we proved also:

We proved:

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

And we proved also:

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

We proved:

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

And we proved also:

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Combining this, we get:

We proved:

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

And we proved also:

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Combining this, we get:

Theorem

If a wff F is not derivable without cut, then there exists a semi-valuation V in which F is f.

We proved:

Theorem

If every deduction string of a wff F contains an axiom, then F is strictly derivable.

And we proved also:

Theorem

If a wff F has a deduction string which does not contain an axiom, then there exists a semi-valuation V in which F is f.

Combining this, we get:

Theorem

If a wff F is not derivable without cut, then there exists a semi-valuation V in which F is f.

And thereby we proved the first step.

Assume a semi-valuation V fixed.

Definition

Basic set contains:

variables of any type

Assume a semi-valuation V fixed.

Definition

Basic set contains:

- variables of any type
- arbitrarily many constants of certain types

Assume a semi-valuation V fixed.

Definition

Basic set contains:

- variables of any type
- arbitrarily many constants of certain types
- arbitrarily many function symbols with certain argument places.

Assume a semi-valuation V fixed.

Definition

Basic set contains:

- variables of any type
- arbitrarily many constants of certain types
- arbitrarily many function symbols with certain argument places.

Definition

Basic set S:

 $ightharpoonup P = \{e | V(e) \text{ is defined}\}$

Assume a semi-valuation V fixed.

Definition

Basic set contains:

- variables of any type
- arbitrarily many constants of certain types
- arbitrarily many function symbols with certain argument places.

Definition

Basic set S:

- $ightharpoonup P = \{e | V(e) \text{ is defined}\}$
- $ightharpoonup Q = \{s | s \text{ is a symbol occurring in } P\}$

Assume a semi-valuation V fixed.

Definition

Basic set contains:

- variables of any type
- arbitrarily many constants of certain types
- arbitrarily many function symbols with certain argument places.

Definition

Basic set S:

- $ightharpoonup P = \{e | V(e) \text{ is defined}\}$
- $ightharpoonup Q = \{s | s \text{ is a symbol occurring in } P\}$
- $ightharpoonup R = \{e | e \text{ is expression with only symbols from } Q\}$

Assume a semi-valuation V fixed.

Definition

Basic set contains:

- variables of any type
- arbitrarily many constants of certain types
- arbitrarily many function symbols with certain argument places.

Definition

Basic set S:

- $ightharpoonup P = \{e | V(e) \text{ is defined}\}$
- $ightharpoonup Q = \{s | s \text{ is a symbol occurring in } P\}$
- $ightharpoonup R = \{e | e \text{ is expression with only symbols from } Q\}$
- \triangleright S = least basic set containing R

Step 2.1

Definition

Entities of finite type are defined by induction on τ :

 \triangleright E is an entity of type 0 iff E is an expression of type 0 over S.

Step 2.1

Definition

Entities of finite type are defined by induction on τ :

- \triangleright E is an entity of type 0 iff E is an expression of type 0 over S.
- ightharpoonup E is an entity of type 1 iff E is t or f.

Definition

Entities of finite type are defined by induction on τ :

- \triangleright E is an entity of type 0 iff E is an expression of type 0 over S.
- \triangleright E is an entity of type 1 iff E is t or f.
- ▶ E is an entity of type $(\tau_1, ..., \tau_n)$ iff E is a set of n-tuples $((e_1, E_1), ..., (e_n, E_n))$ where e_i is an expression of type τ_i over S and E_i is an entity of type τ_i .

Definition

Definition

Possible values of expressions. By induction over the types:

ightharpoonup if e is of type 0, then it is a possible value of itself.

Definition

- if e is of type 0, then it is a possible value of itself.
- ▶ if e is of type 1, then E is a possible value of e iff

Definition

- if e is of type 0, then it is a possible value of itself.
- ▶ if e is of type 1, then E is a possible value of e iff
 - \triangleright E is t or f, and

Definition

- ▶ if *e* is of type 0, then it is a possible value of itself.
- ▶ if e is of type 1, then E is a possible value of e iff
 - \triangleright E is t or f, and
 - ▶ if V assigns some value to e, then E = V(e).

Definition

- ▶ if *e* is of type 0, then it is a possible value of itself.
- \blacktriangleright if e is of type 1, then E is a possible value of e iff
 - \triangleright E is t or f, and
 - ▶ if V assigns some value to e, then E = V(e).
- ▶ if e is of type $(\tau_1, ..., \tau_n)$, then E is a possible value of e iff:

Definition

- if *e* is of type 0, then it is a possible value of itself.
- ▶ if e is of type 1, then E is a possible value of e iff
 - \triangleright E is t or f, and
 - ▶ if V assigns some value to e, then E = V(e).
- ▶ if *e* is of type $(\tau_1, ..., \tau_n)$, then *E* is a possible value of *e* iff:
 - ▶ E is a set of elements are n-tuples $((e_1, E_1), ..., (e_n, E_n))$ where e_i is an expression of type τ_i over S and E_i is some possible value of e_i .

Definition

- if *e* is of type 0, then it is a possible value of itself.
- ▶ if e is of type 1, then E is a possible value of e iff
 - \triangleright E is t or f, and
 - ▶ if V assigns some value to e, then E = V(e).
- ▶ if e is of type $(\tau_1, ..., \tau_n)$, then E is a possible value of e iff:
 - ▶ E is a set of elements are n-tuples $((e_1, E_1), ..., (e_n, E_n))$ where e_i is an expression of type τ_i over S and E_i is some possible value of e_i .
 - ▶ if V assigns t to an expression $(e_1, ..., e_n) \in e$ over S and each E_i is a possible value of e_i , then $((e_1, E_1), ..., (e_n, E_n))$ belongs to E.

Definition

- if *e* is of type 0, then it is a possible value of itself.
- ▶ if e is of type 1, then E is a possible value of e iff
 - \triangleright E is t or f, and
 - ▶ if V assigns some value to e, then E = V(e).
- ▶ if *e* is of type $(\tau_1, ..., \tau_n)$, then *E* is a possible value of *e* iff:
 - ▶ E is a set of elements are n-tuples $((e_1, E_1), ..., (e_n, E_n))$ where e_i is an expression of type τ_i over S and E_i is some possible value of e_i .
 - ▶ if V assigns t to an expression $(e_1, ..., e_n) \in e$ over S and each E_i is a possible value of e_i , then $((e_1, E_1), ..., (e_n, E_n))$ belongs to E.
 - ▶ if V assigns f to an expression $(e_1, ..., e_n) \in e$ over S and each E_i is a possible value of e_i , then $((e_1, E_1), ..., (e_n, E_n))$ does not belong to E.

Definition

New constants. To each pair (e,E) where e is an expression of type τ and E is a possible value of e, we assign a constant $c_{e,E}$ of type τ , different from each other and from all the symbols in the basic set S. The set of these constants is S_c and we define $S' = S \cup S_c$.

Definition

New constants. To each pair (e,E) where e is an expression of type τ and E is a possible value of e, we assign a constant $c_{e,E}$ of type τ , different from each other and from all the symbols in the basic set S. The set of these constants is S_c and we define $S' = S \cup S_c$.

Definition

If e is an expression over S', then e^* is the expression obtained from e by replacing each constant $c_{e',E}$ with e'.

Definition

Definition

V', the extension of V defined over expressions e over S'.

▶ if e is a constant $c_{e',E}$, then V'(e) = E.

Definition

- ▶ if e is a constant $c_{e',E}$, then V'(e) = E.
- if e is not in S_c and is of type 0, then $V'(e) = e^*$.

Definition

- ▶ if e is a constant $c_{e',E}$, then V'(e) = E.
- if e is not in S_c and is of type 0, then $V'(e) = e^*$.
- if e is not in S_c and is of type 1, then V'(e) = t if V(e) = t and otherwise V'(e) = f.

Definition

- ▶ if e is a constant $c_{e',E}$, then V'(e) = E.
- if e is not in S_c and is of type 0, then $V'(e) = e^*$.
- if e is not in S_c and is of type 1, then V'(e) = t if V(e) = t and otherwise V'(e) = f.
- ▶ if e is of type $(\tau_1, ..., \tau_n)$, then V'(e) is the set of all n-tuples $((e_1, E_1), ..., (e_n, E_n))$ such that E_i is a possible value of e_i and $V'((e_1, ..., e_n \in e)) = t$.

Definition

- ▶ if e is a constant $c_{e',E}$, then V'(e) = E.
- if e is not in S_c and is of type 0, then $V'(e) = e^*$.
- if e is not in S_c and is of type 1, then V'(e) = t if V(e) = t and otherwise V'(e) = f.
- ▶ if e is of type $(\tau_1, ..., \tau_n)$, then V'(e) is the set of all n-tuples $((e_1, E_1), ..., (e_n, E_n))$ such that E_i is a possible value of e_i and $V'((e_1, ..., e_n \in e)) = t$.
- ▶ if e is $(e_1, ..., e_n \in e)$, then V'(e) = t if $((e_1^*, V'(e_1)), ..., (e_n^*, V'(e_n)))$ belongs to V'(e) and V'(e) = f otherwise.

Definition

▶ if e is $\neg A$, then V'(e) = t if V'(A) = f and vice versa.

Definition

- ▶ if e is $\neg A$, then V'(e) = t if V'(A) = f and vice versa.
- if e is $A \vee B$, then V'(e) = t if V'(A) = t or V'(B) = t and V'(e) = f otherwise.

Definition

- ▶ if e is $\neg A$, then V'(e) = t if V'(A) = f and vice versa.
- ▶ if e is $A \vee B$, then V'(e) = t if V'(A) = t or V'(B) = t and V'(e) = f otherwise.
- ▶ if e is $\exists x^{\tau}A(x^{\tau})$, then V'(e) = t if V'(A(c)) = t for some constant c of type τ in S_c and V'(e) = f if V'(A(c)) = f for all such constants.

Definition

- ▶ if e is $\neg A$, then V'(e) = t if V'(A) = f and vice versa.
- ▶ if e is $A \vee B$, then V'(e) = t if V'(A) = t or V'(B) = t and V'(e) = f otherwise.
- ▶ if e is $\exists x^{\tau}A(x^{\tau})$, then V'(e) = t if V'(A(c)) = t for some constant c of type τ in S_c and V'(e) = f if V'(A(c)) = f for all such constants.
- if e is $\lambda x_1^{\tau_1}...x_n^{\tau_n}A(x_1^{\tau_1}...x_n^{\tau_n})$, then V'(e) is the set of all n-tuples $((e_1, E_1), ..., (e_n, E_n))$ such that e_i is an expression of type τ_i over S, E_i is a possible value of e_i and $V'(A(x_1^{\tau_1}...x_n^{\tau_n})) = t$.

Theorem

For each expression e over S_1 , V'(e) is a possible value of e^* .

Theorem

For each expression e over S_1 , V'(e) is a possible value of e^* .

Proof.

By induction over the length of *e*. There are several cases to consider.

Theorem

For each expression e over S_1 , V'(e) is a possible value of e^* .

Proof.

By induction over the length of *e*. There are several cases to consider.

▶ e is $c_{e',E}$. Then, by definition, E is a possible value of $e' = e^*$ and by definition of V', V'(e) = E.

Theorem

For each expression e over S_1 , V'(e) is a possible value of e^* .

Proof.

By induction over the length of *e*. There are several cases to consider.

- ▶ e is $c_{e',E}$. Then, by definition, E is a possible value of $e' = e^*$ and by definition of V', V'(e) = E.
- ▶ e is of type 0 or a constant or variable in S. Then by definition V'(e) is a possible value of e^* .

Theorem

For each expression e over S_1 , V'(e) is a possible value of e^* .

Proof.

By induction over the length of *e*. There are several cases to consider.

- ▶ e is $c_{e',E}$. Then, by definition, E is a possible value of $e' = e^*$ and by definition of V', V'(e) = E.
- ▶ e is of type 0 or a constant or variable in S. Then by definition V'(e) is a possible value of e^* .
- e is $(e_1, ..., e_n \in e')$. Assume V assigns some value to e^* . We have $e^* = (e_1^*, ..., e_n^* \in e'^*)$. By the IH, for all i, $V'(e_i)$ is a possible value E_i of e_i^* . In case $V(e^*) = t$, since V'(e') is a possible value of e'^* , it follows that $((e_1^*, E_1), ..., (e_n^*, E_n))$ belongs to V'(e'), so V'(e) = t. Similar in case $V(e^*) = f$.

• e is $\neg A$. Assume V assigns some value to e^* . We have $e^* = \neg A^*$, so if $V(e^*)$ is t, then $V(A^*) = f$. By IH V'(A) = f and hence V'(e) = t. Similar if $V(e^*)$ is f.

- e is $\neg A$. Assume V assigns some value to e^* . We have $e^* = \neg A^*$, so if $V(e^*)$ is t, then $V(A^*) = f$. By IH V'(A) = f and hence V'(e) = t. Similar if $V(e^*)$ is f.
- e is $A \vee B$. Assume V assigns some value to e^* . We have $e^* = A^* \vee B^*$. If $V(e^*) = t$, then $V(A^*) = t$ or $V(B^*) = t$. By IH V'(A) = t or V'(B) = t and hence V'(e) = t. Similar if $V(e^*) = f$.

- e is $\neg A$. Assume V assigns some value to e^* . We have $e^* = \neg A^*$, so if $V(e^*)$ is t, then $V(A^*) = f$. By IH V'(A) = f and hence V'(e) = t. Similar if $V(e^*)$ is f.
- e is $A \lor B$. Assume V assigns some value to e^* . We have $e^* = A^* \lor B^*$. If $V(e^*) = t$, then $V(A^*) = t$ or $V(B^*) = t$. By IH V'(A) = t or V'(B) = t and hence V'(e) = t. Similar if $V(e^*) = f$.
- e is $\exists x^{\tau}A(x^{\tau})$ and assume V assigns some value to e^* . We have $(\exists x^{\tau}A(x^{\tau}))^* = \exists x^{\tau}(A(x^{\tau}))^*$. If $V(e^*) = t$, then $V((A(e^{\tau}))^*) = t$ for some expression e^{τ} over S. For each possible value E of e^{τ} , $(A(c_{e^{\tau},E}))^* = A^*(e^{\tau})$. By IH $V'(A(c_{e^{\tau},E})) = t$ for some $c_{e^{\tau},E}$ and therefore V'(e) = t. Similar if $V(e^*) = f$.

• e is $\lambda x_1^{\tau_1}...x_n^{\tau_n}A(x_1^{\tau_1}...x_n^{\tau_n})$. By construction, V'(e) is the set of n-tuples $((e_1, E_1), ..., (e_n, E_n))$, where e_i is an expression over S of type τ_i and E_i is a corresponding possible value. Assume V assigns t to $(e_1, ..., e_n \in e^*)$ and $E_1, ..., E_n$ are possible values for $e_1, ..., e_n$. We note that $e^* = \lambda x_1^{\tau_1}...x_n^{\tau_n}A^*(x_1^{\tau_1}...x_n^{\tau_n})$ Now: $V(A^*(e_1, ..., e_n)) = t$. Since $A(c_{e_1, E_1}, ..., c_{e_n, E_n})^* = A^*(e_1, ..., e_2)$, it follows from the IH that $V'(A(c_{e_1, E_1}, ..., c_{e_n, E_n})) = t$ and hence $((e_1, E_1), ..., (e_n, E_n))$ belongs to V'(e).

Two useful results.

Lemma

For each expression e over S', there is a constant $c_{e^*,E}$ such that $V'(e) = V'(c_{e^*,E})$.

Two useful results.

Lemma

For each expression e over S', there is a constant $c_{e^*,E}$ such that $V'(e) = V'(c_{e^*,E})$.

Proof.

V'(e) is a possible value of e^* , so there exists a constant $c_{e^*,V'(e)}$. Now by definition: $V'(c_{e^*,V'(e)}) = V'(e)$.

Two useful results.

Lemma

For each expression e over S', there is a constant $c_{e^*,E}$ such that $V'(e) = V'(c_{e^*,E})$.

Proof.

V'(e) is a possible value of e^* , so there exists a constant $c_{e^*,V'(e)}$. Now by definition: $V'(c_{e^*,V'(e)}) = V'(e)$.

Lemma

If e_2 is obtained from e_1 by replacing some occurrences of $c_{e^*,E}$ by e and $V'(e) = V'(c_{e^*,E})$ then $V'(e_1) = V'(e_2)$.

Two useful results.

Lemma

For each expression e over S', there is a constant $c_{e^*,E}$ such that $V'(e) = V'(c_{e^*,E})$.

Proof.

V'(e) is a possible value of e^* , so there exists a constant $c_{e^*,V'(e)}$. Now by definition: $V'(c_{e^*,V'(e)}) = V'(e)$.

Lemma

If e_2 is obtained from e_1 by replacing some occurrences of $c_{e^*,E}$ by e and $V'(e) = V'(c_{e^*,E})$ then $V'(e_1) = V'(e_2)$.

Proof.

By induction on the length of e_1 .

Theorem V' is a total valuation

Step 2.6, continued

Theorem

V' is a total valuation

Proof.

 V^\prime assigns exactly one truth value to all the formulas over S^\prime . By definition, it satisfies the first five conditions of a semi-valuation. The remaining two conditions need to be checked.

Step 2.6, continued

Theorem

V' is a total valuation

Proof.

 V^\prime assigns exactly one truth value to all the formulas over S^\prime . By definition, it satisfies the first five conditions of a semi-valuation. The remaining two conditions need to be checked.

Suppose V' assigns f to $\exists x^{\tau}A(x^{\tau})$. Let e be an expression of type τ over S'. By definition V' assigns f to each formula $A(c_{e^*,E})$. By a previous lemma, $V'(e) = V(c_{e^*,E})$ for some constant $c_{e^*,E}$. By another previous lemma, $V'(A(c_{e^*,E})) = V(A(e))$ for such a constant, so V'(A(e)) = f.

Step 2.6, continued

Theorem

V' is a total valuation

Proof.

V' assigns exactly one truth value to all the formulas over S'. By definition, it satisfies the first five conditions of a semi-valuation. The remaining two conditions need to be checked.

- ▶ Suppose V' assigns f to $\exists x^{\tau} A(x^{\tau})$. Let e be an expression of type τ over S'. By definition V' assigns f to each formula $A(c_{e^*,E})$. By a previous lemma, $V'(e) = V(c_{e^*,E})$ for some constant $c_{e^*,E}$. By another previous lemma, $V'(A(c_{e^*,E})) = V(A(e))$ for such a constant, so V'(A(e)) = f.
- ▶ Suppose V' assigns t to $e_1, ..., e_n \in \lambda x_1, ..., x_n A(x_1, ..., x_n)$. By definition of V', $((e_1^*, V'(e_1)), ..., (e_n^*, V'(e_n)))$ belongs to $V'(\lambda x_1,...,x_nA(x_1,...,x_n))$. So V' assigns t to $A(c_{e_i^*,V'(e_1)},...,c_{e_n^*,V'(e_n)})$. Because $V'(c_{e_i^*,V'(e_i)})=V'(e_i)$ and a lemma, $V'(A(e_1,...,e_n))=t$. Idem for V'(e)=f

Earlier we saw that, for a wff F which is not derivable without cut, there exists a semi-valuation V that makes it f. We have proved that a semi-valuation V can be extended to a total valuation V'. Now we need to prove that any wff F which is f in a total valuation, is not derivable. The argument runs as follows:

Assume V(F) = f for some total valuation V.

- Assume V(F) = f for some total valuation V.
- then there is a semi-valuation in which F ∨ E is false for a certain E.

- Assume V(F) = f for some total valuation V.
- then there is a semi-valuation in which F ∨ E is false for a certain E.
- ▶ then $F \lor E$ is not strictly derivable.

- Assume V(F) = f for some total valuation V.
- then there is a semi-valuation in which F ∨ E is false for a certain E.
- ▶ then $F \lor E$ is not strictly derivable.
- ▶ then *F* is not derivable.

Step 3

Definition

$$E = \exists x^1 \neg (x^1 \vee \neg x^1)$$

Step 3

Definition

$$E = \exists x^1 \neg (x^1 \vee \neg x^1)$$

V'(E)=f iff V' is total. So, if V'(F)=f for some total valuation V', then there exists a semi-valuation, namely V' itself, such that $V'(F \vee E)=f$.

Definition

The *reducible parts* of a wff F are its negative parts of the form $(A \lor B)$ and $\exists xA(x)$ and the positive and negative parts of the form $(e_1,...,e_n \in \lambda x_1,...,x_nA(x_1,...,x_n))$. i.e. corresponding to conclusions of rules S1, S2, S4a and S4b.

Definition

The *reducible parts* of a wff F are its negative parts of the form $(A \lor B)$ and $\exists xA(x)$ and the positive and negative parts of the form $(e_1,...,e_n \in \lambda x_1,...,x_nA(x_1,...,x_n))$. i.e. corresponding to conclusions of rules S1, S2, S4a and S4b.

Definition

The rank of a wff F is the length of the longest subformula string of F.

Definition

The *reducible parts* of a wff F are its negative parts of the form $(A \lor B)$ and $\exists x A(x)$ and the positive and negative parts of the form $(e_1, ..., e_n \in \lambda x_1, ..., x_n A(x_1, ..., x_n))$. i.e. corresponding to conclusions of rules S1, S2, S4a and S4b.

Definition

The rank of a wff F is the length of the longest subformula string of F.

Definition

The *reducibility rank* of a wff F is the ordinal number $\omega r + s$, where r is the maximal rank of reducible parts of F and s is the number of reducible parts of F.

Definition

The *derivability order* is defined inductively:

Definition

The derivability order is defined inductively:

axioms have derivability order 0.

Definition

The derivability order is defined inductively:

- > axioms have derivability order 0.
- ▶ if premises of S1 have derivability orders n_1 and n_2 , the the conclusion has derivability order $\max(n_1, n_2) + 1$

Definition

The *derivability order* is defined inductively:

- > axioms have derivability order 0.
- ▶ if premises of S1 have derivability orders n_1 and n_2 , the the conclusion has derivability order $\max(n_1, n_2) + 1$
- ▶ if premises of any other basic inference has derivability order n, then the conclusion has derivability order n + 1.

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

Let F be a wff of reducibility rank ρ which has derivability order n. We use two IHs:

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

Let F be a wff of reducibility rank ρ which has derivability order n. We use two IHs:

▶ for every wff F, strictly derivable with order < n there is no semi-valuation in which F is f.

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

Let F be a wff of reducibility rank ρ which has derivability order n. We use two IHs:

- ▶ for every wff F, strictly derivable with order < n there is no semi-valuation in which F is f.
- for every wff F with reducibility rank < ρ which is strictly derivable with order < n there is no semi-valuation in which F is f.

There are the following cases:

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

Let F be a wff of reducibility rank ρ which has derivability order n. We use two IHs:

- for every wff F, strictly derivable with order < n there is no semi-valuation in which F is f.
- for every wff F with reducibility rank < ρ which is strictly derivable with order < n there is no semi-valuation in which F is f.

There are the following cases:

▶ if F is an axiom, i.e. of the form $G(P_+, P_-)$ then it cannot be f in any semi-valuation.

▶ if F is of the form $G((A \vee B)_{-})$, then $G(A_{-})$ and $G(B_{-})$ are strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So there is no semi-valuation in which they are f, so there is no semi-valuation in which F is f.

- ▶ if F is of the form $G((A \vee B)_{-})$, then $G(A_{-})$ and $G(B_{-})$ are strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So there is no semi-valuation in which they are f, so there is no semi-valuation in which F is f.
- if F is of the form $G(e_1,...,e_n \in \lambda x_1,...,x_n A(x_1,...,x_n))$, then $G(A(e_1,...,e_n))$ is strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So, by IH there is no semi-valuation making $G(A(e_1,...,e_n))$ false, so the same thing holds for F.

- ▶ if F is of the form $G((A \lor B)_{-})$, then $G(A_{-})$ and $G(B_{-})$ are strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So there is no semi-valuation in which they are f, so there is no semi-valuation in which F is f.
- if F is of the form $G(e_1,...,e_n \in \lambda x_1,...,x_n A(x_1,...,x_n))$, then $G(A(e_1,...,e_n))$ is strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So, by IH there is no semi-valuation making $G(A(e_1,...,e_n))$ false, so the same thing holds for F.
- ▶ if F is of the form $G(\exists x^{\tau}A(x^{\tau})_{-})$, then ... (complicated)

- ▶ if F is of the form $G((A \lor B)_-)$, then $G(A_-)$ an $G(B_-)$ are strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So there is no semi-valuation in which they are f, so there is no semi-valuation in which F is f.
- if F is of the form $G(e_1,...,e_n \in \lambda x_1,...,x_n A(x_1,...,x_n))$, then $G(A(e_1,...,e_n))$ is strictly derivable with order $\leq n$ and reducibility rank $< \rho$. So, by IH there is no semi-valuation making $G(A(e_1,...,e_n))$ false, so the same thing holds for F.
- ▶ if *F* is of the form $G(\exists x^{\tau}A(x^{\tau})_{-})$, then ... (complicated)
- ▶ if F is of the form $G(\exists x^{\tau}A(x^{\tau})_{+})$ and follows from rule S3. Then the premise of that rule is strictly derivable with order n-1. By IH, there is no semi-valuation with F false.

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

Proof.

By induction on order n.

▶ if F is an axiom, then $F \lor E$ is also an axiom.

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

Proof.

By induction on order n.

- ▶ if F is an axiom, then $F \lor E$ is also an axiom.
- ▶ if F is the conclusion of a basic inference S1, S2 or S4, whose premises F_i are derivable with orders < n, then $F_i \lor E$ are strictly derivable by IH, so by applying S1, S2, S4, $F \lor E$ is strictly derivable.

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

Proof.

By induction on order n.

- ▶ if F is an axiom, then $F \lor E$ is also an axiom.
- ▶ if F is the conclusion of a basic inference S1, S2 or S4, whose premises F_i are derivable with orders < n, then $F_i \lor E$ are strictly derivable by IH, so by applying S1, S2, S4, $F \lor E$ is strictly derivable.
- ▶ if F is the conclusion of a basic inference S3, whose premise $F \vee G$ is derivable with order n-1, then $F \vee E$ is strictly derivable by a short inference.

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

Proof.

By induction on order n.

- ▶ if F is an axiom, then $F \lor E$ is also an axiom.
- ▶ if F is the conclusion of a basic inference S1, S2 or S4, whose premises F_i are derivable with orders < n, then $F_i \lor E$ are strictly derivable by IH, so by applying S1, S2, S4, $F \lor E$ is strictly derivable.
- ▶ if F is the conclusion of a basic inference S3, whose premise $F \vee G$ is derivable with order n-1, then $F \vee E$ is strictly derivable by a short inference.
- ▶ if F is the conclusion of a basic inference S5, whose premise $F \vee E$ is derivable with order n-1, then $F \vee E$ is strictly derivable by a short inference.

So, we've seen:

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \lor E$ is strictly derivable.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \lor E$ is strictly derivable.

So,

▶ If V(F) = f for some total valuation V.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

- ▶ If V(F) = f for some total valuation V.
- ▶ then there is a semi-valuation in which $F \lor E$ is false.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

- ▶ If V(F) = f for some total valuation V.
- ▶ then there is a semi-valuation in which $F \lor E$ is false.
- ▶ so, $F \lor E$ is not strictly derivable.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

- ▶ If V(F) = f for some total valuation V.
- ▶ then there is a semi-valuation in which $F \lor E$ is false.
- ightharpoonup so, $F \lor E$ is not strictly derivable.
- ▶ so, *F* is not derivable.

So, we've seen: if V'(F) = f for some total valuation V', then there exists a semi-valuation, such that $V'(F \vee E) = f$. and

Theorem

If F is strictly derivable, then there exists no semi-valuation in which F is f.

and

Theorem

If F is derivable, then $F \vee E$ is strictly derivable.

So,

- ▶ If V(F) = f for some total valuation V.
- ▶ then there is a semi-valuation in which $F \lor E$ is false.
- ightharpoonup so, $F \lor E$ is not strictly derivable.
- ▶ so, *F* is not derivable.

And we proved the claim: if V(F) = f for some total valuation V, then F is not derivable.

Having just proved the last step, we proved all three:

1. if A is not derivable without cut then there is a semi-valuation with A false

- 1. if A is not derivable without cut then there is a semi-valuation with A false
- 2. semi-valuations are extendable to total valuations

- 1. if A is not derivable without cut then there is a semi-valuation with A false
- 2. semi-valuations are extendable to total valuations
- 3. if A is false in a total valuation, then A is not derivable

- 1. if A is not derivable without cut then there is a semi-valuation with A false
- 2. semi-valuations are extendable to total valuations
- 3. if A is false in a total valuation, then A is not derivable
- So, if *A* is derivable, it is derivable without cut.

References

- ▶ Gaisi Takeuti, 1953, "On a generalized logic calculus".
- Dag Prawitz, 1968, "Hauptsatz for higher order logic".
- Motoo Takahashi, 1967, "Proof of cut-elimination in simple type theory".
- Kurt Schütte, 1960, "Syntactical and semantical properties of type theory."
- ► Thierry Coquand, "Type Theory", The Stanford Encyclopedia of Philosophy (Fall 2018 Edition).