# Ensemble methods

#### **Hard voting:**

Count the number of votes for each class.

#### **Soft voting:**

Sum or multiply probabilities.

# Voting



### Random Forests

Train many small trees on random subsamples.

Sampling types:

**Pasting** – simple sampling with no repeats.

**Bagging** (bootstrap aggregating) – sample with repeats of the same size as the original dataset.

**Random Subspaces** – sample of features.

**Random Patches** – sample both features and examples.

Final result could be determined by either hard or soft voting.

You can even use extremely randomized trees!



# Pulling yourself up by your bootstraps





Münchhaufen

O. Herrfurth pinx

Start with uniform sample weights:  $D_1(i) = \frac{1}{N}$ ,  $for(x_1, y_1), ..., (x_N, y_N)$ .

Start with uniform sample weights:  $D_1(i) = \frac{1}{N}$ ,  $for(x_1, y_1), ..., (x_N, y_N)$ .

Train a weak hypothesis (weak tree hypothesis are called stumps)  $h_t$  by either using a weighted impurity or weighted sampling.

$$E_t = \sum_{i=1}^{N} D_t(i) \ E(h_t(x_i), y_i), \qquad the \ weight \ of \ hypothesis \ h_t: \alpha_t = \frac{1}{2} \ln \left( \frac{1 - E_t}{E_t} \right)$$

Start with uniform sample weights:  $D_1(i) = \frac{1}{N}$ ,  $for(x_1, y_1), ..., (x_N, y_N)$ .

Train a weak hypothesis (weak tree hypothesis are called stumps)  $h_t$  by either using a weighted impurity or weighted sampling.

$$E_t = \sum_{i=1}^{N} D_t(i) \ E(h_t(x_i), y_i), \qquad the \ weight \ of \ hypothesis \ h_t: \alpha_t = \frac{1}{2} \ln \left( \frac{1 - E_t}{E_t} \right)$$

Change the sample weights:

For incorrectly classified points:  $D_{t+1}(i)=D_t(i)e^{\alpha_t}$  then normalize For correctly classified points:  $D_{t+1}(i)=D_t(i)e^{-\alpha_t}$ 

Start with uniform sample weights:  $D_1(i) = \frac{1}{N}$ ,  $for(x_1, y_1), ..., (x_N, y_N)$ .

Train a weak hypothesis (weak tree hypothesis are called stumps)  $h_t$  by either using a weighted impurity or weighted sampling.

$$E_t = \sum_{i=1}^{N} D_t(i) \ E(h_t(x_i), y_i), \qquad the \ weight \ of \ hypothesis \ h_t: \alpha_t = \frac{1}{2} \ln \left( \frac{1 - E_t}{E_t} \right)$$

Change the sample weights:

For incorrectly classified points:  $D_{t+1}(i)=D_t(i)e^{\alpha_t}$  then normalize For correctly classified points:  $D_{t+1}(i)=D_t(i)e^{-\alpha_t}$ 

The final hypothesis is summed by hard or soft voting with coefficients  $\alpha_t$  .

# AdaBoost



### **Gradient Boosting**

$$H_{t+1}(x) = H_t(x) + h_{t+1}(x) \rightarrow y \Rightarrow h_{t+1}(x) \rightarrow y - H_t(x)$$

### **Gradient Boosting**

$$H_{t+1}(x) = H_t(x) + h_{t+1}(x) \rightarrow y \Rightarrow h_{t+1}(x) \rightarrow y - H_t(x)$$

### First – simple!



### **Gradient Boosting Learning Rate**

Pseudo Residual

$$h_{t+1}(\mathbf{x}) \to y - H_t(\mathbf{x})$$

$$H_{t+1}(\mathbf{x}) = H_t(\mathbf{x}) + \alpha h_{t+1}(\mathbf{x})$$
Learning Rate

### Now – complicated!

$$H_t(x) = H_{t-1}(x) + h_t(x) = \sum_{j=1}^{t} h_j(x)$$

### eXtreme Gradient Boosting (XGBoost)

$$H_t(x) = H_{t-1}(x) + h_t(x) = \sum_{j=1}^{t} h_j(x)$$

We want to minimize: 
$$E_t = \sum_{i=1}^N L(H_t(\mathbf{x}_i), y_i) + \sum_{j=1}^t \Omega(h_j)$$
 Regularization

### eXtreme Gradient Boosting (XGBoost)

$$H_t(x) = H_{t-1}(x) + h_t(x) = \sum_{j=1}^{t} h_j(x)$$

We want to minimize: 
$$E_t = \sum_{i=1}^{N} L(H_t(\mathbf{x}_i), y_i) + \sum_{j=1}^{t} \Omega(h_j) = \sum_{i=1}^{N} L\left(\left(H_{t-1}(\mathbf{x}_i) + h_t(\mathbf{x}_i)\right), y_i\right) + \sum_{j=1}^{t-1} \Omega(h_j) + \Omega(h_t)$$
Regularization

$$E_{t} = \sum_{i=1}^{N} L((H_{t-1}(x_{i}) + h_{t}(x_{i})), y_{i}) + \sum_{j=1}^{t-1} \Omega(h_{j}) + \Omega(h_{t})$$

$$E_{t} = \sum_{i=1}^{N} L((H_{t-1}(x_{i}) + h_{t}(x_{i})), y_{i}) + \sum_{j=1}^{t-1} \Omega(h_{j}) + \Omega(h_{t})$$

In the general case: 
$$E_t = \sum_{i=1}^{N} \left( L(H_{t-1}(\mathbf{x}_i), y_i) + u_i h_t(\mathbf{x}_i) + \frac{1}{2} v_i (h_t(\mathbf{x}_i))^2 \right) + \Omega(h_t) + const,$$

$$E_{t} = \sum_{i=1}^{N} L((H_{t-1}(x_{i}) + h_{t}(x_{i})), y_{i}) + \sum_{j=1}^{t-1} \Omega(h_{j}) + \Omega(h_{t})$$

In the general case: 
$$\begin{split} E_t &= \sum_{i=1}^N \left( L(H_{t-1}(\mathbf{x}_i), y_i) + u_i h_t(\mathbf{x}_i) + \frac{1}{2} v_i \big( h_t(\mathbf{x}_i) \big)^2 \right) + \Omega(h_t) + const, \\ u_i &= \partial_{H_{t-1}(\mathbf{x}_i)} \big( L(H_{t-1}(\mathbf{x}_i), y_i) \big) \\ v_i &= \partial_{H_{t-1}(\mathbf{x}_i)}^2 \big( L(H_{t-1}(\mathbf{x}_i), y_i) \big) \end{split}$$

$$E_{t} = \sum_{i=1}^{N} L((H_{t-1}(x_{i}) + h_{t}(x_{i})), y_{i}) + \sum_{j=1}^{t-1} \Omega(h_{j}) + \Omega(h_{t})$$

In the general case: 
$$\begin{split} E_t &= \sum_{i=1}^N \left( L(H_{t-1}(\mathbf{x}_i), y_i) + u_i h_t(\mathbf{x}_i) + \frac{1}{2} v_i \big(h_t(\mathbf{x}_i)\big)^2 \right) + \Omega(h_t) + const, \\ u_i &= \partial_{H_{t-1}(\mathbf{x}_i)} \big( L(H_{t-1}(\mathbf{x}_i), y_i) \big) \\ v_i &= \partial_{H_{t-1}(\mathbf{x}_i)}^2 \big( L(H_{t-1}(\mathbf{x}_i), y_i) \big) \end{split}$$

We want to minimize: 
$$E_t = \sum_{i=1}^{N} \left( u_i h_t(\mathbf{x}_i) + \frac{1}{2} v_i \left( h_t(\mathbf{x}_i) \right)^2 \right) + \Omega(h_t)$$

$$E_{t} = \sum_{i=1}^{N} L((H_{t-1}(x_{i}) + h_{t}(x_{i})), y_{i}) + \sum_{j=1}^{t-1} \Omega(h_{j}) + \Omega(h_{t})$$

In the general case: 
$$\begin{split} E_t &= \sum_{i=1}^N \left( L(H_{t-1}(\mathbf{x}_i), y_i) + u_i h_t(\mathbf{x}_i) + \frac{1}{2} v_i \big(h_t(\mathbf{x}_i)\big)^2 \right) + \Omega(h_t) + const, \\ u_i &= \partial_{H_{t-1}(\mathbf{x}_i)} \big( L(H_{t-1}(\mathbf{x}_i), y_i) \big) \\ v_i &= \partial_{H_{t-1}(\mathbf{x}_i)}^2 \big( L(H_{t-1}(\mathbf{x}_i), y_i) \big) \end{split}$$

We want to minimize: 
$$E_t = \sum_{i=1}^{N} \left( u_i h_t(\mathbf{x}_i) + \frac{1}{2} v_i \left( h_t(\mathbf{x}_i) \right)^2 \right) + \Omega(h_t)$$

For MSE: 
$$E_t = \sum_{i=1}^{N} \left( \left( H_{t-1}(\mathbf{x}_i) + h_t(\mathbf{x}_i) \right) - y_i \right)^2 + \sum_{j=1}^{l} \Omega(h_j) = \sum_{i=1}^{N} \left( 2(H_{t-1}(\mathbf{x}_i) - y_i)h_t(\mathbf{x}_i) + \left( h_t(\mathbf{x}_i) \right)^2 \right) + \Omega(h_t) + const$$

$$\Omega(f) = \gamma M + \frac{1}{2}\lambda \sum_{j=1}^{M} w_j^2$$
,  $M - number\ of\ leaves$ ,  $w_j - otput\ number\ in\ the\ leaf\ j$ 

$$\Omega(f) = \gamma M + \frac{1}{2}\lambda \sum_{j=1}^{M} w_j^2$$
,  $M - number\ of\ leaves$ ,  $w_j - otput\ number\ in\ the\ leaf\ j$ 

$$\Omega(f) = \gamma M + \frac{1}{2}\lambda \sum_{j=1}^{M} w_j^2$$
,  $M - number\ of\ leaves$ ,  $w_j - otput\ number\ in\ the\ leaf\ j$ 

$$E_{t} = \sum_{i=1}^{N} \left( u_{i} h_{t}(\mathbf{x}_{i}) + \frac{1}{2} v_{i} (h_{t}(\mathbf{x}_{i}))^{2} \right) + \Omega(h_{t}) = \sum_{i=1}^{N} \left( u_{i} w_{q(\mathbf{x}_{i})} + \frac{1}{2} v_{i} (w_{q(\mathbf{x}_{i})})^{2} \right) + \gamma M + \frac{1}{2} \lambda \sum_{j=1}^{M} w_{j}^{2}$$

 $q(\mathbf{x}_i)$  is the leaf of  $\mathbf{x}_i$ .

$$\Omega(f) = \gamma M + \frac{1}{2}\lambda \sum_{j=1}^{M} w_j^2$$
,  $M - number\ of\ leaves$ ,  $w_j - otput\ number\ in\ the\ leaf\ j$ 

$$E_{t} = \sum_{i=1}^{N} \left( u_{i} h_{t}(\mathbf{x}_{i}) + \frac{1}{2} v_{i} (h_{t}(\mathbf{x}_{i}))^{2} \right) + \Omega(h_{t}) = \sum_{i=1}^{N} \left( u_{i} w_{q(\mathbf{x}_{i})} + \frac{1}{2} v_{i} (w_{q(\mathbf{x}_{i})})^{2} \right) + \gamma M + \frac{1}{2} \lambda \sum_{j=1}^{M} w_{j}^{2}$$

 $q(x_i)$  is the leaf of  $x_i$ .

Group by leaves:

$$E_{t} = \sum_{j=1}^{M} \left( \sum_{q(\mathbf{x}_{i})=j} u_{i} w_{j} + \frac{1}{2} \left( \sum_{q(\mathbf{x}_{i})=j} v_{i} + \lambda \right) w_{j}^{2} \right) + \gamma M$$

$$\Omega(f) = \gamma M + \frac{1}{2}\lambda \sum_{j=1}^{M} w_j^2$$
,  $M - number\ of\ leaves$ ,  $w_j - otput\ number\ in\ the\ leaf\ j$ 

$$E_{t} = \sum_{i=1}^{N} \left( u_{i} h_{t}(\mathbf{x}_{i}) + \frac{1}{2} v_{i} (h_{t}(\mathbf{x}_{i}))^{2} \right) + \Omega(h_{t}) = \sum_{i=1}^{N} \left( u_{i} w_{q(\mathbf{x}_{i})} + \frac{1}{2} v_{i} (w_{q(\mathbf{x}_{i})})^{2} \right) + \gamma M + \frac{1}{2} \lambda \sum_{j=1}^{M} w_{j}^{2}$$

 $q(x_i)$  is the leaf of  $x_i$ .

#### Group by leaves:

$$E_{t} = \sum_{j=1}^{M} \left( \sum_{q(\mathbf{x}_{i})=j} u_{i} w_{j} + \frac{1}{2} \left( \sum_{q(\mathbf{x}_{i})=j} v_{i} + \lambda \right) w_{j}^{2} \right) + \gamma M$$

$$U_j = \sum_{q(\mathbf{x}_i)=j} u_i \qquad V_j = \sum_{q(\mathbf{x}_i)=j} v_i$$

$$\Omega(f) = \gamma M + \frac{1}{2}\lambda \sum_{j=1}^{M} w_j^2$$
,  $M - number\ of\ leaves$ ,  $w_j - otput\ number\ in\ the\ leaf\ j$ 

$$E_{t} = \sum_{i=1}^{N} \left( u_{i} h_{t}(\mathbf{x}_{i}) + \frac{1}{2} v_{i} (h_{t}(\mathbf{x}_{i}))^{2} \right) + \Omega(h_{t}) = \sum_{i=1}^{N} \left( u_{i} w_{q(\mathbf{x}_{i})} + \frac{1}{2} v_{i} (w_{q(\mathbf{x}_{i})})^{2} \right) + \gamma M + \frac{1}{2} \lambda \sum_{j=1}^{M} w_{j}^{2}$$

 $q(\mathbf{x}_i)$  is the leaf of  $\mathbf{x}_i$ .

#### Group by leaves:

$$E_{t} = \sum_{j=1}^{M} \left( \sum_{q(\mathbf{x}_{i})=j} u_{i} w_{j} + \frac{1}{2} \left( \sum_{q(\mathbf{x}_{i})=j} v_{i} + \lambda \right) w_{j}^{2} \right) + \gamma M = \sum_{j=1}^{M} \left( U_{j} w_{j} + \frac{1}{2} (V_{j} + \lambda) w_{j}^{2} \right) + \gamma M$$

$$U_j = \sum_{q(\mathbf{x}_i)=j} u_i \qquad V_j = \sum_{q(\mathbf{x}_i)=j} v_i$$

$$E_{t} = \sum_{j=1}^{M} \left( U_{j} w_{j} + \frac{1}{2} (V_{j} + \lambda) w_{j}^{2} \right) + \gamma M$$

$$E_{t} = \sum_{j=1}^{M} \left( U_{j} w_{j} + \frac{1}{2} (V_{j} + \lambda) w_{j}^{2} \right) + \gamma M$$

$$w_j^{opt} = -\frac{U_j}{V_j + \lambda} \qquad \qquad E_t^{opt} = -\frac{1}{2} \sum_{j=1}^M \frac{U_j^2}{V_j + \lambda} + \gamma M$$

$$E_{t} = \sum_{j=1}^{M} \left( U_{j} w_{j} + \frac{1}{2} (V_{j} + \lambda) w_{j}^{2} \right) + \gamma M$$

$$w_j^{opt} = -\frac{U_j}{V_j + \lambda} \qquad E_t^{opt} = -\frac{1}{2} \sum_{j=1}^M \frac{U_j^2}{V_j + \lambda} + \gamma M$$

MSE!

For MSE, the average of residuals!

$$Gain = \frac{1}{2} \left[ \frac{U_L^2}{V_L + \lambda} + \frac{U_R^2}{V_R + \lambda} - \frac{(U_L + U_R)^2}{V_L + V_R + \lambda} \right] - \gamma$$

## **Gradient Boosting Learning Rate**

Pseudo Residual

$$h_{t+1}(\mathbf{x}) \to y - H_t(\mathbf{x})$$

$$H_{t+1}(x) = H_t(x) + \alpha h_{t+1}(x)$$

#### **GB** libraries









