Acta Crystallographica Section E

### **Structure Reports**

#### **Online**

ISSN 1600-5368

# 4-({[4-Amino-6-(*p*-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}-acetyl)-3-phenylsydnone

### Hoong-Kun Fun,<sup>a</sup>\*‡ Ching Kheng Quah,<sup>a</sup>§ Nithinchandra<sup>b</sup> and Balakrishna Kalluraya<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 19 March 2011; accepted 23 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma(C-C) = 0.003 \text{ Å}$ ; R factor = 0.032; wR factor = 0.089; data-to-parameter ratio = 20.7.

In the title compound,  $C_{20}H_{15}BrN_6O_4S$  [symstematic name: 4-({[4-amino-6-(p-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate], the 4,5-dihydro-1,2,4-triazine ring is essentially planar [maximum deviation = 0.020 (1) Å] and is inclined at dihedral angles of 89.06 (9), 82.21 (8) and 83.98 (8)° with respect to the oxadiazol-3-ium, phenyl and benzene rings. The oxadiazol-3-ium ring forms dihedral angles of 52.71 (9) and 8.77 (9)°, respectively, with the phenyl and benzene rings. In the crystal, the molecules are linked via pairs of intermolecular N— $H\cdots$ O hydrogen bonds, generating  $R_2^2(10)$  ring motifs and are further linked via intermolecular N— $H\cdots$ N and weak C— $H\cdots$ O hydrogen bonds into infinite columns along [100].

### Related literature

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008); Jyothi et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

### **Experimental**

Crystal data

| $C_{20}H_{15}BrN_6O_4S$          | $\gamma = 98.189 \ (1)^{\circ}$           |
|----------------------------------|-------------------------------------------|
| $M_r = 515.35$                   | $V = 1050.99 (9) \text{ Å}^3$             |
| Triclinic, $P\overline{1}$       | Z = 2                                     |
| a = 6.3842 (3)  Å                | Mo $K\alpha$ radiation                    |
| b = 10.0832 (5)  Å               | $\mu = 2.10 \text{ mm}^{-1}$              |
| c = 17.1563 (8) Å                | T = 100  K                                |
| $\alpha = 104.873 \ (1)^{\circ}$ | $0.32 \times 0.26 \times 0.06 \text{ mm}$ |
| $\beta = 93.507 \ (1)^{\circ}$   |                                           |

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.553, T_{\max} = 0.892$  21938 measured reflections 6161 independent reflections 5241 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.029$ 

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.032 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.089 & \text{independent and constrained} \\ S=1.03 & \text{refinement} \\ 6161 \text{ reflections} & \Delta\rho_{\max}=0.95 \text{ e Å}^{-3} \\ 297 \text{ parameters} & \Delta\rho_{\min}=-0.50 \text{ e Å}^{-3} \end{array}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$                      | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|------------------------------------|----------|-------------------------|-------------------------|------------------------|
| N6−H1 <i>N</i> 6···N3 <sup>i</sup> | 0.81 (3) | 2.47 (3)                | 2.9835 (19)             | 123 (2)                |
| $N6-H1N6\cdots N4^{i}$             | 0.81(3)  | 2.40(3)                 | 3.050(2)                | 138 (3)                |
| $N6-H2N6\cdots O4^{ii}$            | 0.86(3)  | 2.15 (3)                | 2.989(2)                | 164 (2)                |
| $C14-H14B\cdots O3^{iii}$          | 0.97     | 2.50                    | 3.416 (2)               | 157                    |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z; (iii) -x, -y, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5224).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.

Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem, 43, 1715–1720.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

<sup>‡</sup> Thomson Reuters ResearcherID: A-3561-2009

<sup>§</sup> Thomson Reuters ResearcherID: A-5525-2009

| supplementary m | aterials |  |
|-----------------|----------|--|
|                 |          |  |
|                 |          |  |
|                 |          |  |
|                 |          |  |

Acta Cryst. (2011). E67, o1004 [doi:10.1107/S1600536811010798]

# 4-({[4-Amino-6-(p-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenylsydnone

### H.-K. Fun, C. K. Quah, Nithinchandra and B. Kalluraya

#### Comment

Sydnones are mesoionic heterocyclic aromatic chemical compounds. The study of sydnones remains as a field of interest because of their electronic structures and varied types of biological activities (Rai *et al.*, 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Jyothi *et al.*, 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the mesoionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone affords 3-aryl-4 bromoacetylsydnones. Condensation of 4-amino-6-(4-bromobenzyl)-3- sulfanyl-1,2,4-triazin-5(4H)-one with 3-aryl-4-bromoacetylsydnones yields S-substituted triazinone derivatives (Jyothi *et al.*, 2008).

The molecular structure is shown in Fig. 1. The 4,5-dihydro-1,2,4-triazine ring (N3-N5/C11-C13) is essentially planar [maximum deviation = 0.020 (1) Å at atom N5] and is inclined at angles of 89.06 (9), 82.21 (8) and 83.98 (8) ° with respect to the oxadiazol-3-ium (O1/N1/N2/C7/C8) phenyl (C1-C6) and benzene (C15-C20) rings. The dihedral angles between oxadiazol-3-ium ring (O1/N1/N2/C7/C8) and the phenyl and benzene rings (C1-C6 and C15-C20) are 52.71 (9) and 8.77 (9)°, respectively. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges.

In the crystal (Fig. 2), the molecules are linked *via* pairs of intermolecular N6–H2N6···O4<sup>ii</sup> hydrogen bonds (Table 1), generating R<sub>2</sub><sup>2</sup>(10) ring motifs (Bernstein *et al.*, 1995) and are further linked *via* intermolecular N6–H1N6···N3<sup>i</sup>, N6–H1N6···N4<sup>i</sup> and weak C14–H14B···O3<sup>iii</sup> hydrogen bonds (Table 1) into infinite one-dimensional columns along [100].

### **Experimental**

To a solution of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 4-amino-6-(4-bromobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

### Refinement

H1N6 and H2N6 were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and  $U_{\rm iso}({\rm H})$  = 1.2  $U_{\rm eq}({\rm C})$ . The highest residual electron density peak is located at 0.88 Å from Br1 and the deepest hole is located at 0.72 Å from Br1.

### **Figures**



Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.



Fig. 2. Part of the crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

### 4-({[4-Amino-6-(p-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl] sulfanyl}acetyl)-3-phenylsydnone

Crystal data

C20H15BrN6O4S

 $M_r = 515.35$ 

Triclinic,  $P\overline{1}$ 

Hall symbol: -P 1

a = 6.3842 (3) Å

b = 10.0832 (5) Åc = 17.1563 (8) Å

 $\alpha = 104.873 (1)^{\circ}$ 

 $\beta = 93.507 (1)^{\circ}$ 

 $\gamma = 98.189 (1)^{\circ}$ 

 $V = 1050.99 (9) \text{ Å}^3$ 

Z=2

F(000) = 520

 $D_{\rm x} = 1.628 \; {\rm Mg \; m}^{-3}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ 

Cell parameters from 8506 reflections

 $\theta = 2.5 - 30.1^{\circ}$ 

 $\mu = 2.10 \text{ mm}^{-1}$ 

T = 100 K

Plate, colourless

 $0.32 \times 0.26 \times 0.06 \text{ mm}$ 

### Data collection

Bruker SMART APEXII DUO CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube

graphite

 $\phi$  and  $\omega$  scans

Absorption correction: multi-scan (SADABS; Bruker, 2009)

 $T_{\min} = 0.553, T_{\max} = 0.892$ 

21938 measured reflections

6161 independent reflections

5241 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.029$ 

 $\theta_{\text{max}} = 30.2^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ 

 $h = -9 \rightarrow 8$ 

 $k = -14 \rightarrow 14$ 

 $l = -24 \rightarrow 24$ 

Refinement

Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 

Primary atom site location: structure-invariant direct

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

sites

| $wR(F^2) = 0.089$ | H atoms treated by a mixture of independent and constrained refinement                              |
|-------------------|-----------------------------------------------------------------------------------------------------|
| S = 1.03          | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0469P)^{2} + 0.5765P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 6161 reflections  | $(\Delta/\sigma)_{\text{max}} = 0.001$                                                              |
| 297 parameters    | $\Delta \rho_{max} = 0.95 \text{ e Å}^{-3}$                                                         |
| 0 restraints      | $\Delta \rho_{min} = -0.50 \text{ e Å}^{-3}$                                                        |

### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x             | y             | Z              | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|---------------|----------------|---------------------------|
| Br1 | 0.14494 (4)   | 0.177407 (19) | -0.446529 (11) | 0.02915 (7)               |
| S1  | 0.25040 (6)   | 0.42973 (4)   | 0.10384 (3)    | 0.01811 (9)               |
| O1  | -0.50655 (19) | 0.68942 (12)  | 0.23590 (8)    | 0.0188(2)                 |
| O2  | -0.2801 (2)   | 0.71471 (13)  | 0.14077 (8)    | 0.0208(3)                 |
| O3  | -0.0592 (2)   | 0.36960 (13)  | 0.21831 (8)    | 0.0220(3)                 |
| O4  | 0.3090(2)     | -0.01318 (13) | -0.08910 (8)   | 0.0205(3)                 |
| N1  | -0.3930 (2)   | 0.52932 (14)  | 0.27862 (9)    | 0.0149(3)                 |
| N2  | -0.5387 (2)   | 0.60958 (15)  | 0.28897 (9)    | 0.0186(3)                 |
| N3  | -0.0707 (2)   | 0.26436 (15)  | 0.00189 (9)    | 0.0170(3)                 |
| N4  | -0.1524 (2)   | 0.14792 (15)  | -0.06048 (9)   | 0.0181 (3)                |
| N5  | 0.2602(2)     | 0.18642 (14)  | 0.00230 (9)    | 0.0143 (3)                |
| N6  | 0.4749 (2)    | 0.22357 (17)  | 0.03542 (11)   | 0.0206(3)                 |
| C1  | -0.2106 (3)   | 0.44195 (17)  | 0.37978 (11)   | 0.0196(3)                 |
| H1A | -0.0839       | 0.4967        | 0.3756         | 0.024*                    |
| C2  | -0.2207 (3)   | 0.36200 (19)  | 0.43441 (11)   | 0.0238 (4)                |
| H2A | -0.0994       | 0.3628        | 0.4675         | 0.029*                    |
| C3  | -0.4115 (3)   | 0.28031 (19)  | 0.44025 (12)   | 0.0259 (4)                |
| Н3А | -0.4172       | 0.2280        | 0.4777         | 0.031*                    |
| C4  | -0.5930 (3)   | 0.2768 (2)    | 0.39032 (12)   | 0.0248 (4)                |
| H4A | -0.7196       | 0.2214        | 0.3940         | 0.030*                    |
| C5  | -0.5857 (3)   | 0.35610 (18)  | 0.33486 (11)   | 0.0200(3)                 |
| H5A | -0.7060       | 0.3541        | 0.3009         | 0.024*                    |
| C6  | -0.3950 (3)   | 0.43812 (16)  | 0.33132 (10)   | 0.0159(3)                 |
|     |               |               |                |                           |

| C7   | -0.3307 (3) | 0.65627 (16)  | 0.19113 (10)  | 0.0158 (3) |
|------|-------------|---------------|---------------|------------|
| C8   | -0.2595 (3) | 0.54977 (16)  | 0.22188 (10)  | 0.0147(3)  |
| C9   | -0.0958 (3) | 0.46663 (16)  | 0.19248 (10)  | 0.0155(3)  |
| C10  | 0.0227 (3)  | 0.51392 (17)  | 0.12772 (11)  | 0.0171 (3) |
| H10A | 0.0694      | 0.6137        | 0.1461        | 0.021*     |
| H10B | -0.0740     | 0.4948        | 0.0789        | 0.021*     |
| C11  | 0.1283 (2)  | 0.28045 (16)  | 0.02926 (10)  | 0.0140(3)  |
| C12  | -0.0334 (3) | 0.05691 (17)  | -0.09056 (10) | 0.0155(3)  |
| C13  | 0.1916 (3)  | 0.06871 (16)  | -0.06161 (10) | 0.0150(3)  |
| C14  | -0.1255 (3) | -0.06046 (17) | -0.16342 (11) | 0.0186(3)  |
| H14A | -0.2789     | -0.0807       | -0.1640       | 0.022*     |
| H14B | -0.0672     | -0.1437       | -0.1621       | 0.022*     |
| C15  | -0.0681 (3) | -0.01499 (16) | -0.23796 (10) | 0.0169(3)  |
| C16  | -0.1898 (3) | 0.07165 (18)  | -0.26599 (11) | 0.0204(3)  |
| H16A | -0.3123     | 0.0922        | -0.2421       | 0.024*     |
| C17  | -0.1300 (3) | 0.12721 (18)  | -0.32900 (11) | 0.0229 (4) |
| H17A | -0.2116     | 0.1841        | -0.3479       | 0.027*     |
| C18  | 0.0541 (3)  | 0.09602 (17)  | -0.36308 (11) | 0.0204(3)  |
| C19  | 0.1758 (3)  | 0.00851 (18)  | -0.33787 (11) | 0.0208(3)  |
| H19A | 0.2972      | -0.0125       | -0.3625       | 0.025*     |
| C20  | 0.1132 (3)  | -0.04737 (17) | -0.27502 (11) | 0.0191 (3) |
| H20A | 0.1929      | -0.1067       | -0.2577       | 0.023*     |
| H1N6 | 0.538 (4)   | 0.226 (3)     | -0.0038 (17)  | 0.032 (7)* |
| H2N6 | 0.512 (4)   | 0.153 (3)     | 0.0487 (14)   | 0.021 (6)* |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Br1 | 0.04790 (14) | 0.02057 (9)  | 0.01944 (10) | 0.00057 (8)  | 0.00410(8)   | 0.00878 (7)  |
| S1  | 0.01188 (18) | 0.01887 (18) | 0.0231(2)    | 0.00468 (14) | 0.00303 (15) | 0.00339 (15) |
| O1  | 0.0194 (6)   | 0.0176 (5)   | 0.0236 (6)   | 0.0084 (4)   | 0.0060 (5)   | 0.0094 (5)   |
| O2  | 0.0218 (6)   | 0.0192 (6)   | 0.0270 (7)   | 0.0074 (5)   | 0.0063 (5)   | 0.0132 (5)   |
| O3  | 0.0233 (6)   | 0.0210(6)    | 0.0275 (7)   | 0.0115 (5)   | 0.0070 (5)   | 0.0118 (5)   |
| O4  | 0.0215 (6)   | 0.0212 (6)   | 0.0228 (6)   | 0.0122 (5)   | 0.0050 (5)   | 0.0075 (5)   |
| N1  | 0.0147 (6)   | 0.0137 (6)   | 0.0175 (7)   | 0.0047 (5)   | 0.0021 (5)   | 0.0048 (5)   |
| N2  | 0.0192 (7)   | 0.0186 (6)   | 0.0221 (7)   | 0.0086 (5)   | 0.0057 (6)   | 0.0088 (5)   |
| N3  | 0.0129 (6)   | 0.0191 (6)   | 0.0196 (7)   | 0.0047 (5)   | 0.0035 (5)   | 0.0046 (5)   |
| N4  | 0.0138 (6)   | 0.0205 (6)   | 0.0205 (7)   | 0.0030 (5)   | 0.0039 (5)   | 0.0060 (5)   |
| N5  | 0.0105 (6)   | 0.0176 (6)   | 0.0183 (7)   | 0.0064 (5)   | 0.0035 (5)   | 0.0080 (5)   |
| N6  | 0.0103 (6)   | 0.0258 (7)   | 0.0270(8)    | 0.0081 (5)   | 0.0019 (6)   | 0.0064 (6)   |
| C1  | 0.0211 (8)   | 0.0175 (7)   | 0.0207(8)    | 0.0038 (6)   | 0.0011 (6)   | 0.0057 (6)   |
| C2  | 0.0283 (9)   | 0.0234 (8)   | 0.0210(8)    | 0.0065 (7)   | -0.0025 (7)  | 0.0080(7)    |
| C3  | 0.0376 (11)  | 0.0219 (8)   | 0.0211 (9)   | 0.0050(7)    | 0.0044 (8)   | 0.0106 (7)   |
| C4  | 0.0277 (9)   | 0.0236 (8)   | 0.0236 (9)   | -0.0007 (7)  | 0.0056 (7)   | 0.0093 (7)   |
| C5  | 0.0203 (8)   | 0.0199 (7)   | 0.0205 (8)   | 0.0027 (6)   | 0.0028 (6)   | 0.0069 (6)   |
| C6  | 0.0197 (8)   | 0.0137 (6)   | 0.0162 (7)   | 0.0049 (6)   | 0.0032 (6)   | 0.0061 (6)   |
| C7  | 0.0139 (7)   | 0.0136 (6)   | 0.0207 (8)   | 0.0041 (5)   | 0.0028 (6)   | 0.0049 (6)   |
| C8  | 0.0146 (7)   | 0.0135 (6)   | 0.0178 (7)   | 0.0045 (5)   | 0.0032(6)    | 0.0058 (6)   |

| C9          | 0.0140(7)         | 0.0148 (7)  | 0.0178 (8) | 0.0048 (5) | 0.0014(6)   | 0.0033 (6) |
|-------------|-------------------|-------------|------------|------------|-------------|------------|
| C10         | 0.0150(7)         | 0.0164 (7)  | 0.0222 (8) | 0.0066 (6) | 0.0047 (6)  | 0.0062 (6) |
| C11         | 0.0131 (7)        | 0.0158 (7)  | 0.0162 (7) | 0.0061 (5) | 0.0059 (5)  | 0.0070(6)  |
| C12         | 0.0155 (7)        | 0.0175 (7)  | 0.0167 (7) | 0.0032 (6) | 0.0049 (6)  | 0.0094 (6) |
| C13         | 0.0168 (7)        | 0.0166 (7)  | 0.0161 (7) | 0.0062 (6) | 0.0050(6)   | 0.0101 (6) |
| C14         | 0.0190(8)         | 0.0161 (7)  | 0.0219 (8) | 0.0021 (6) | 0.0040(6)   | 0.0071 (6) |
| C15         | 0.0190(8)         | 0.0143 (7)  | 0.0177 (8) | 0.0038 (6) | 0.0005 (6)  | 0.0044 (6) |
| C16         | 0.0215 (8)        | 0.0188 (7)  | 0.0221 (8) | 0.0086 (6) | 0.0019 (6)  | 0.0047 (6) |
| C17         | 0.0310 (9)        | 0.0177 (7)  | 0.0216 (8) | 0.0094 (7) | -0.0017 (7) | 0.0062 (6) |
| C18         | 0.0301 (9)        | 0.0150 (7)  | 0.0158 (8) | 0.0018 (6) | 0.0018 (7)  | 0.0047 (6) |
| C19         | 0.0219 (8)        | 0.0216 (8)  | 0.0201 (8) | 0.0059 (6) | 0.0055 (7)  | 0.0056 (6) |
| C20         | 0.0217 (8)        | 0.0176 (7)  | 0.0203 (8) | 0.0078 (6) | 0.0021 (6)  | 0.0068 (6) |
| Geometric j | parameters (Å, °) |             |            |            |             |            |
| Br1—C18     |                   | 1.9049 (18) | С3—        | -Н3А       | 0.9         | 300        |
| S1—C11      |                   | 1.7508 (17) | C4—        | -C5        | 1.3         | 90 (3)     |
| S1—C10      |                   | 1.8020 (16) | C4—        | -H4A       | 0.9         | 300        |
| O1—N2       |                   | 1.3680 (19) | C5—        | -C6        | 1.3         | 85 (2)     |
| O1—C7       |                   | 1.429 (2)   | C5—        | -H5A       | 0.9         | 300        |
| O2—C7       |                   | 1.200(2)    | C7—        | -C8        | 1.4         | 28 (2)     |
| O3—C9       |                   | 1.218 (2)   | C8—        | -C9        | 1.4         | 65 (2)     |
| O4—C13      |                   | 1.2187 (19) | C9—        | -C10       | 1.5         | 19 (2)     |
| N1—N2       |                   | 1.3088 (19) | C10-       | -H10A      | 0.9         | 700        |
| N1—C8       |                   | 1.368 (2)   | C10-       | —H10B      | 0.9         | 700        |
| N1—C6       |                   | 1.445 (2)   | C12-       | C13        | 1.4         | 69 (2)     |
| N3—C11      |                   | 1.300(2)    | C12-       | C14        | 1.5         | 604 (2)    |
| N3—N4       |                   | 1.381 (2)   | C14-       | C15        | 1.5         | 14 (2)     |
| N4—C12      |                   | 1.300(2)    | C14-       | -H14A      | 0.9         | 700        |
| N5—C11      |                   | 1.3680 (19) | C14-       | —H14B      | 0.9         | 700        |
| N5—C13      |                   | 1.389(2)    | C15-       | C20        | 1.3         | 93 (2)     |
| N5—N6       |                   | 1.4112 (19) | C15-       | C16        | 1.4         | 01 (2)     |
| N6—H1N6     |                   | 0.81(3)     | C16-       | -C17       | 1.3         | 89 (3)     |
| N6—H2N6     |                   | 0.86(3)     | C16-       | -H16A      | 0.9         | 300        |
| C1—C2       |                   | 1.383 (3)   | C17-       | C18        | 1.3         | 84 (3)     |
| C1—C6       |                   | 1.389 (2)   | C17-       | —H17А      | 0.9         | 300        |
| C1—H1A      |                   | 0.9300      | C18-       | -C19       | 1.3         | 86 (2)     |
| C2—C3       |                   | 1.394(3)    | C19-       | -C20       | 1.3         | 93 (3)     |
| C2—H2A      |                   | 0.9300      | C19-       | —H19А      | 0.9         | 300        |
| C3—C4       |                   | 1.389 (3)   | C20-       | -H20A      | 0.9         | 300        |
| C11—S1—C    | C10               | 99.93 (8)   | C8—        | -C9—C10    | 11:         | 3.52 (13)  |
| N2—O1—C     | 27                | 110.81 (12) | C9—        | -C10—S1    | 112         | 2.99 (11)  |
| N2—N1—C     | 28                | 114.46 (14) | C9—        | -C10—H10A  | 109         | 9.0        |
| N2—N1—C     |                   | 114.57 (14) |            | C10—H10A   |             | 9.0        |
| C8—N1—C     | 6                 | 130.92 (14) | C9—        | -C10—H10B  |             | 9.0        |
| N1—N2—C     | 01                | 105.56 (13) | S1—        | C10—H10B   |             | 9.0        |
| C11—N3—     | N4                | 118.15 (13) | H102       | A—C10—H10B | 10          | 7.8        |
| C12—N4—     | N3                | 120.73 (14) | N3—        | -C11—N5    | 124         | 4.05 (15)  |
| C11—N5—     | C13               | 121.19 (13) | N3—        | -C11—S1    | 12          | 1.47 (12)  |
|             |                   |             |            |            |             |            |

| C11—N5—N6            | 116.73 (13)  | N5—C11—S1                    | 114.47 (12)  |
|----------------------|--------------|------------------------------|--------------|
| C13—N5—N6            | 121.61 (13)  | N4—C12—C13                   | 123.59 (15)  |
| N5—N6—H1N6           | 103.2 (19)   | N4—C12—C14                   | 118.19 (15)  |
| N5—N6—H2N6           | 107.7 (15)   | C13—C12—C14                  | 118.02 (14)  |
| H1N6—N6—H2N6         | 103 (2)      | O4—C13—N5                    | 122.36 (15)  |
| C2—C1—C6             | 118.14 (17)  | O4—C13—C12                   | 125.46 (16)  |
| C2—C1—H1A            | 120.9        | N5—C13—C12                   | 112.17 (13)  |
| C6—C1—H1A            | 120.9        | C12—C14—C15                  | 107.41 (13)  |
| C1—C2—C3             | 120.50 (17)  | C12—C14—H14A                 | 110.2        |
| C1—C2—H2A            | 119.8        | C15—C14—H14A                 | 110.2        |
| C3—C2—H2A            | 119.8        | C12—C14—H14B                 | 110.2        |
| C4—C3—C2             | 120.25 (18)  | C15—C14—H14B                 | 110.2        |
| C4—C3—H3A            | 119.9        | H14A—C14—H14B                | 108.5        |
| C2—C3—H3A            | 119.9        | C20—C15—C16                  | 119.23 (16)  |
| C3—C4—C5             | 120.06 (18)  | C20—C15—C14                  | 121.51 (15)  |
| C3—C4—H4A            | 120.0        | C16—C15—C14                  | 119.03 (15)  |
| C5—C4—H4A            | 120.0        | C17—C16—C15                  | 120.87 (17)  |
| C6—C5—C4             | 118.46 (17)  | C17—C16—H16A                 | 119.6        |
| C6—C5—H5A            | 120.8        | C15—C16—H16A                 | 119.6        |
| C4—C5—H5A            | 120.8        | C18—C17—C16                  | 118.47 (16)  |
| C5—C6—C1             | 122.58 (16)  | C18—C17—H17A                 | 120.8        |
| C5—C6—N1             | 118.14 (15)  | C16—C17—H17A                 | 120.8        |
| C1—C6—N1             | 119.16 (15)  | C17—C18—C19                  | 122.11 (17)  |
| O2—C7—C8             | 136.11 (16)  | C17—C18—C17<br>C17—C18—Br1   | 119.06 (14)  |
| O2—C7—C8<br>O2—C7—O1 | 120.39 (14)  | C19—C18—Br1                  | 118.83 (14)  |
| C8—C7—O1             | 103.49 (14)  | C19—C19—C20                  | 118.84 (16)  |
| N1—C8—C7             |              | C18—C19—C20<br>C18—C19—H19A  | 120.6        |
| N1—C8—C9             | 105.67 (13)  | C10—C19—H19A<br>C20—C19—H19A | 120.6        |
| C7—C8—C9             | 126.27 (14)  |                              |              |
|                      | 127.67 (15)  | C19—C20—C15                  | 120.45 (16)  |
| O3—C9—C8             | 122.63 (16)  | C19—C20—H20A                 | 119.8        |
| O3—C9—C10            | 123.85 (15)  | C15—C20—H20A                 | 119.8        |
| C8—N1—N2—O1          | 0.65 (18)    | N4—N3—C11—N5                 | -2.7(2)      |
| C6—N1—N2—O1          | 178.30 (13)  | N4—N3—C11—S1                 | 176.05 (12)  |
| C7—O1—N2—N1          | -0.32 (17)   | C13—N5—C11—N3                | 4.4 (2)      |
| C11—N3—N4—C12        | 0.3 (2)      | N6—N5—C11—N3                 | 176.67 (16)  |
| C6—C1—C2—C3          | -0.1(3)      | C13—N5—C11—S1                | -174.36 (12) |
| C1—C2—C3—C4          | 0.9(3)       | N6—N5—C11—S1                 | -2.14 (19)   |
| C2—C3—C4—C5          | -0.7(3)      | C10—S1—C11—N3                | 6.15 (16)    |
| C3—C4—C5—C6          | -0.4(3)      | C10—S1—C11—N5                | -175.02 (12) |
| C4—C5—C6—C1          | 1.3 (3)      | N3—N4—C12—C13                | 0.4(2)       |
| C4—C5—C6—N1          | -174.73 (16) | N3—N4—C12—C14                | -174.35 (15) |
| C2—C1—C6—C5          | -1.1 (3)     | C11—N5—C13—O4                | 176.57 (15)  |
| C2—C1—C6—N1          | 174.91 (15)  | N6—N5—C13—O4                 | 4.7 (2)      |
| N2—N1—C6—C5          | 51.6 (2)     | C11—N5—C13—C12               | -3.4(2)      |
| C8—N1—C6—C5          | -131.18 (18) | N6—N5—C13—C12                | -175.22 (15) |
| N2—N1—C6—C1          | -124.54 (17) | N4—C12—C13—O4                | -178.76 (17) |
| C8—N1—C6—C1          | 52.6 (2)     | C14—C12—C13—O4               | -4.1 (2)     |
| N2—O1—C7—O2          | 179.06 (15)  | N4—C12—C13—N5                | 1.2(2)       |
| N2—O1—C7—C8          | -0.09 (17)   | C14—C12—C13—N5               | 175.89 (14)  |
|                      |              |                              |              |

| N2—N1—C8—C7   | -0.71 (19)   | N4—C12—C14—C15  | 92.39 (18)   |
|---------------|--------------|-----------------|--------------|
| C6—N1—C8—C7   | -177.89 (16) | C13—C12—C14—C15 | -82.61 (17)  |
| N2—N1—C8—C9   | -173.89 (15) | C12—C14—C15—C20 | 93.65 (18)   |
| C6—N1—C8—C9   | 8.9 (3)      | C12—C14—C15—C16 | -80.78 (19)  |
| O2—C7—C8—N1   | -178.5 (2)   | C20—C15—C16—C17 | -1.1 (3)     |
| O1—C7—C8—N1   | 0.44 (17)    | C14—C15—C16—C17 | 173.41 (16)  |
| O2—C7—C8—C9   | -5.4 (3)     | C15—C16—C17—C18 | -0.6(3)      |
| O1—C7—C8—C9   | 173.50 (15)  | C16—C17—C18—C19 | 1.9 (3)      |
| N1—C8—C9—O3   | -1.7(3)      | C16—C17—C18—Br1 | -177.44 (13) |
| C7—C8—C9—O3   | -173.40 (16) | C17—C18—C19—C20 | -1.4 (3)     |
| N1—C8—C9—C10  | 178.64 (15)  | Br1—C18—C19—C20 | 177.91 (13)  |
| C7—C8—C9—C10  | 6.9 (2)      | C18—C19—C20—C15 | -0.4(3)      |
| O3—C9—C10—S1  | -9.0 (2)     | C16—C15—C20—C19 | 1.6 (3)      |
| C8—C9—C10—S1  | 170.66 (11)  | C14—C15—C20—C19 | -172.79 (16) |
| C11—S1—C10—C9 | 87.24 (13)   |                 |              |

### Hydrogen-bond geometry (Å, $^{\circ}$ )

| D— $H$ ··· $A$               | <i>D</i> —H | H··· $A$ | D··· $A$    | $D\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|------------------------------|-------------|----------|-------------|------------------------------------------------------------------------------|
| N6—H1N6···N3 <sup>i</sup>    | 0.81 (3)    | 2.47 (3) | 2.9835 (19) | 123 (2)                                                                      |
| N6—H1N6···N4 <sup>i</sup>    | 0.81 (3)    | 2.40 (3) | 3.050(2)    | 138 (3)                                                                      |
| N6—H2N6···O4 <sup>ii</sup>   | 0.86 (3)    | 2.15 (3) | 2.989 (2)   | 164 (2)                                                                      |
| C14—H14B···O3 <sup>iii</sup> | 0.97        | 2.50     | 3.416 (2)   | 157                                                                          |

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) -x, -y, -z.

Fig. 1



Fig. 2

