Using Monte Carlo for Action Values

- Học giá trị hành động bằng Monte Carlo tương tự như học giá trị trạng thái:
 - Thay vì chỉ tính giá trị của trạng thái, ta tính giá trị của cặp trạng thái-hành động (state-action) bằng cách lấy trung bình các return thu được khi theo chính sách từ cặp đó.
- Tại sao cần học giá trị hành động?
 - Giúp so sánh các hành động trong cùng một trạng thái.
 - Từ đó có thể chuyển sang hành động tốt hơn, nếu có.
- Vấn đề về khám phá (exploration):
 - Nếu một hành động không bao giờ được chọn bởi chính sách hiện tại, ta không thể ước lượng giá trị của nó.
 - Điều này khiến ta không học được đầy đủ giá trị của tất cả hành động → gây sai lệch trong việc đánh giá và cải thiện chính sách.
- Giải pháp 1: Exploring Starts (Khởi đầu khám phá):
 - Bắt đầu mỗi tập bằng một cặp trạng thái-hành động được chọn ngẫu nhiên.
 - Sau hành động đầu tiên, agent sẽ làm theo chính sách hiện tại.
 - Yêu cầu: có thể kiểm soát điểm bắt đầu của mỗi tập → phù hợp trong môi trường như grid world.
- Giải pháp 2 (gơi ý):
 - Epsilon-greedy là chiến lược khám phá khác, phù hợp với chính sách ngẫu nhiên (stochastic policies). Sẽ được trình bày kỹ hơn sau.
- Kết luận:
 - Monte Carlo có thể dùng để ước lượng giá trị hành động.
 - Tuy nhiên, cần duy trì sự khám phá để đảm bảo agent học đầy đủ và chính xác.

- GPI Generalized Policy Iteration là quá trình gồm hai bước lặp lại:
 - Đánh giá chính sách (Policy Evaluation): Ước lượng giá trị hành động (action-value) của chính sách hiện tại.
 - Cải thiện chính sách (Policy Improvement): Cập nhật chính sách bằng cách chọn hành động greedy với các giá trị hành động đã học.

Monte Carlo trong GPI:

- Sau mỗi tập (episode), cập nhật chính sách bằng cách chọn hành động có
 Q cao nhất trong mỗi trạng thái đã thấy → thực hiện policy improvement.

• Exploring Starts (Khởi đầu khám phá):

- Mỗi tập được bắt đầu từ một cặp trạng thái–hành động ngẫu nhiên → đảm bảo mọi hành động đều được khám phá và đánh giá.
- o Điều kiện cần để Monte Carlo đảm bảo hội tụ.

Yêu cầu của GPI:

 Không cần ước lượng chính xác toàn bộ Q(s, a), chỉ cần các ước lượng cải thiện dần theo thời gian là đủ để đảm bảo hội tụ.

Monte Carlo Control with Exploring Starts:

- Một ví dụ cụ thể về GPI sử dụng Monte Carlo.
- Kết hợp cả hai bước policy evaluation và policy improvement sau mỗi episode.

Epsilon-soft policies

1. Vấn đề với Exploring Starts:

• Yêu cầu khắt khe: Thuật toán cần bắt đầu từ mọi cặp trạng thái-hành động, điều này khó hoặc không khả thi trong nhiều bài toán thực tế.

2. Giải pháp: Epsilon-Greedy (Epsilon-Soft)

- Epsilon-Greedy: Chính sách chọn hành động tốt nhất (greedy) đa số thời gian,
 nhưng thi thoảng chọn hành động ngẫu nhiên.
- Epsilon-Soft: Chính sách mà mỗi hành động đều có xác suất ≥ ε / số hành động.
 Đây là tập con của các chính sách ngẫu nhiên (stochastic policies).

3. Lợi ích của Epsilon-Soft:

- Duy trì khám phá liên tục: Vì luôn có xác suất để thử mọi hành động, agent sẽ dần trải nghiệm hết mọi trạng thái–hành động.
- Không cần Exploring Starts nữa.
- Tuy không tìm được chính sách tối ưu hoàn toàn, nhưng tìm được chính sách tối ưu trong tập Epsilon-Soft.

4. So sánh với Chính sách Deterministic:

- Chính sách deterministic luôn chọn cùng một hành động → thiếu khám phá.
- Chính sách epsilon-greedy tạo ra hành vi đa dạng hơn → khám phá tốt hơn và học được nhiều hơn.

5. Thuật toán Monte Carlo Control với Epsilon-Soft:

- Khởi tạo: Chính sách ban đầu là epsilon-soft (ví dụ: chính sách ngẫu nhiên).
- Sinh dữ liệu: Agent theo chính sách epsilon-soft để tạo tập.
- Đánh giá chính sách: Cập nhật giá trị Q bằng trung bình return.

• Cải thiện chính sách: Cập nhật chính sách thành epsilon-greedy theo Q hiện tại.

✓ 6. Kết luận:

- Dù không đạt chính sách tối ưu tuyệt đối, Monte Carlo với epsilon-soft giúp học được chính sách tốt gần tối ưu, đồng thời loại bỏ rào cản từ Exploring Starts.
- Trong tương lai, các phương pháp như **Q-learning** sẽ giúp tìm chính sách tối ưu thực sự.