Homework 1

CSC 445-01: Theory of Computation

Matthew Mabrey, Luke Kurlandski

February 7, 2021

Question I

We will show that A = B using three proofs by contradiction. First, it is helpful to expand the following

$$A \times B = \left\{ (a, b) | a \in A, b \in B \right\}$$

$$B \times A = \left\{ (b, a) | b \in B, a \in A \right\}$$

Thus the original condition is

$$A\times B\subseteq B\times A$$

$$\bigg\{(a,b)|a\in A,b\in B\bigg\}\subseteq \bigg\{(b,a)|b\in B,a\in A\bigg\}$$

1

Suppose $A \not\subseteq B$. Then $\exists \ a \in A$ where $(a \not\in B)$. Then $\exists \ (a,b) \in A \times B$ where $((a,b) \not\in B \times A)$. This defies the original condition. We have proven

$$A \subseteq B$$

 $\mathbf{2}$

Suppose $B \not\subseteq A$. Then $\exists b \in B$ where $(b \not\in A)$. Then $\exists (a,b) \in A \times B$ where $((a,b) \not\in B \times A)$. This defies the original condition. We have proven

$$B \subseteq A$$

3

Suppose $A \neq B$. Then one of the following two statements must be true:

- 1. $\exists a \in A \text{ where } (a \notin B), \text{ which violates } A \subseteq B$
- 2. $\exists b \in B$ where $(b \notin A)$, which violates $B \subseteq A$

Thus we have proven

$$A = B$$

Question II

 \mathbf{a}

b

 \mathbf{c}

Question III

We will prove

$$P(n): \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} \mid n \ge 0, n \in \mathbb{Z}$$

Base case:

$$P(0) : \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

$$: \sum_{i=1}^{0} \frac{1}{i(i+1)} = \frac{0}{0+1}$$

$$: 0 = 0$$

$$: TRUE$$

Inductive Hypothesis:

$$P(k): \sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1} \mid k \ge 0, k \in \mathbb{Z}$$

Induction:

$$P(k+1): \frac{k+1}{k+2} = \sum_{i=1}^{k+1} \frac{1}{i(i+1)}$$

$$= \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)((k+1)+1)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2)+1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$\frac{k+1}{(k+2)} = \frac{k+1}{(k+2)}$$

$$P(k+1): \text{TRUE}$$

Conclusion:

$$\left(P(0) \wedge \left(P(k) \to P(k+1)\right)\right) \to P(n)$$

Question IV

Truth Table

p	q	$(p \to q) \land (p \to \neg q)$	$p \land (p \to q)$	$(p \to q) \land (\neg p \to q)$	$p \iff (p \iff q)$	$q \wedge (p \to q)$
T	T	F	T	T	T	T
T	F	F	F	F	F	F
F	T	T	F	T	F	T
F	F	T	F	F	F	F

Equivalence

Problem	Original	Simplified
a	$(p \to q) \land (p \to \neg q)$	$\neg p$
b	$p \land (p \rightarrow q)$	$p \wedge q$
c	$(p \to q) \land (\neg p \to q)$	q
d	$p \iff (p \iff q)$	$p \wedge q$
e	$q \wedge (p \to q)$	q

${\bf Question} \ {\bf V}$

- 0.1 1
- 0.2 2
- 0.3 3

Question VI

- 0.4 1
- 0.5 2

Question VII

- 0.6 1
- 0.7 2