DFO-HS: Department of Fisheries and Oceans Canada Hecate Strait survey data processing summary

fishglob, Aurore A. Maureaud, Juliano Palacios Abrantes, Zoë Kitchel, Dan Forrest, & Michelle Stuart

December, 2022

Contents

General info
Data cleaning in R
1. Overview of the survey data table
2. Summary of sampling intensity
3. Summary of sampling variables from the survey
4. Summary of biological variables
5. Extreme values
6. Summary of variables against swept area
7. Abundance or Weight trends of the six most abundant species
8. Distribution mapping
9. Taxonomic flagging
10. Spatio-temporal standardization
a. Standardization method 1
b. Standardization method 2
c. Standardization summary

General info

This document presents the cleaning code and summary of the Hecate Strait Survey (Department of Fisheries Oceans Canada) bottom trawl survey provided by Shelee Hamilton, and Maria Cornthwaite. It contains data from 2005 and up to 2019.

Data cleaning in R

```
library(lubridate)
library(googledrive)
library(taxize) # for getting correct species names
library(magrittr) # for names wrangling
library(readr)
library(dplyr)
library(PBSmapping)
source("functions/clean taxa.R")
source("functions/write_clean_data.R")
#Data for the Hecate Strait Survey can be best accessed using the Pinsky
#Lab Ocean Adapt Git Hub Repository.
#Contact malin.pinsky@rutgers.edu for questions or help accessing
#### PULL IN AND EDIT RAW DATA FILES ####
HS_catch <- read_csv(</pre>
  "https://github.com/pinskylab/OceanAdapt/raw/master/data_raw/HS_catch.csv",
                     col_types = cols(
  Survey.Year = col_integer(),
  Trip.identifier = col_integer(),
 Set.number = col_integer(),
  ITIS.TSN = col_integer(),
  Species.code = col_character(),
 Scientific.name = col_character(),
 English.common.name = col_character(),
 French.common.name = col_character(),
 LSID = col_character(),
 Catch.weight..kg. = col_double(),
 Catch.count..pieces. = col_integer()
))
HS_effort <- read_csv(</pre>
  "https://github.com/pinskylab/OceanAdapt/raw/master/data_raw/HS_effort.csv",
                      col_types =
                         cols(
                           Survey.Year = col_integer(),
                           Trip.identifier = col_integer(),
                           Vessel.name = col_character(),
                           Trip.start.date = col_character(),
                           Trip.end.date = col_character(),
                           GMA = col_character(),
                           PFMA = col_character(),
                           Set.number = col_integer(),
                           Set.date = col_character(),
                           Start.latitude = col_double(),
                           Start.longitude = col_double(),
                           End.latitude = col_double(),
                           End.longitude = col_double(),
```

```
Bottom.depth..m. = col_double(),
                           Tow.duration..min. = col integer(),
                           Distance.towed..m. = col_double(),
                           Vessel.speed..m.min. = col double(),
                           Trawl.door.spread..m. = col_double(),
                           Trawl.mouth.opening.height..m. = col_double()
                         )) %>%
  select(Trip.identifier, Set.number, Survey. Year, Set.date, Trip.start.date, Trip.end.date,
         GMA, PFMA, Set.date, Start.latitude, Start.longitude, End.latitude, End.longitude,
         Bottom.depth..m., Tow.duration..min., Distance.towed..m., Trawl.door.spread..m.,
         Trawl.mouth.opening.height..m. )
#### REFORMAT AND MERGE DATA FILES ####
HS <- left_join(HS_catch, HS_effort, by = c(</pre>
                             "Trip.identifier", "Set.number", "Survey.Year"))
HS <- HS %>%
  # Create a unique haul_id
  mutate(
    haul id = paste(formatC(Trip.identifier, width=3, flag=0),
                    formatC(Set.number, width=3, flag=0), sep= "-"),
    # Add "strata" (define by lat, lon and depth bands) where needed # degree bins
    # 100 m bins # no need to use lon grids on west coast (so narrow)
    stratum = paste(floor(Start.latitude), floor(Start.longitude),
                    floor(Bottom.depth..m./100)*100, sep= "-"),
    # catch weight (kg.) per tow/
                      (distance towed in m * trawl door spread m) * 1km^2/1000000m^2
    wgt_cpue = Catch.weight..kg./(Distance.towed..m.*Trawl.door.spread..m.) /1000000,
    # catch weight (kg.) per tow/
                      time of tow in minutes*60 minutes/hour
    wgt_h = Catch.weight..kg./Tow.duration..min.*60,
    # catch abundance per tow/
                      (distance towed in m * trawl door spread m) * 1km^2/1000000m^2
    num_cpue = Catch.count..pieces./(Distance.towed..m.*Trawl.door.spread..m.) /1000000,
    # catch weight (kg.) per tow/
                      time of tow in minutes*60 minutes/hour
    num_h = Catch.count..pieces./Tow.duration..min.*60,
    area_swept = (Distance.towed..m.*Trawl.door.spread..m.)/1000000
HS <- HS %>%
  rename(
    latitude = Start.latitude,
    longitude = Start.longitude,
    depth = Bottom.depth..m.,
    verbatim_name = Scientific.name,
   year = Survey.Year,
   num = Catch.count..pieces.,
```

```
wgt = Catch.weight..kg.
   ) %>%
   mutate(
   date = as.Date(Set.date),
   haul dur = Tow.duration..min./60 #convert minutes to hours
 ) %>%
  filter(
   verbatim_name != "" &
      !grepl("egg", verbatim_name)
  ) %>%
  # adjust verbatim_name names
  mutate(verbatim_name = ifelse(grep1("Lepidopsetta", verbatim_name),
                                "Lepidopsetta sp.", verbatim_name),
         verbatim_name = ifelse(grepl("Bathyraja", verbatim_name),
                                 'Bathyraja sp.', verbatim_name),
         verbatim_name = ifelse(grepl("Squalus", verbatim_name),
                                 'Squalus suckleyi', verbatim_name))
# Does the spp column contain any eggs or non-organism notes?
#As of fall 2021, nothing stuck out as needing to be removed
test <- HS %>%
  select(verbatim_name) %>%
 filter(!is.na(verbatim_name)) %>%
 distinct() %>%
 mutate(verbatim name = as.factor(verbatim name)) %>%
  filter(grepl("egg", verbatim_name) & grepl("", verbatim_name))
stopifnot(nrow(test)==0)
# combine the wtcpue for each species by haul which is necessary
#because sometimes there are multiple observations for a single genus or family
#this removes duplicates
#i.e.
#HEXACTINELLIDA, GLASS SPONGES; WILLEMOES'S WHITE SEA PEN; CRANGONS
HS <- HS %>%
  group_by(haul_id,year, latitude, longitude, depth, verbatim_name, area_swept,
           date, haul dur) %>%
  summarise(wgt_cpue = sum(wgt_cpue, na.rm = T), wgt_h = sum(wgt_h, na.rm = T),
            num_h = sum(num_h, na.rm = T), num_cpue = sum(num_cpue, na.rm = T),
            wgt = sum(wgt, na.rm = T), num = sum(num, na.rm = T)) %>%
  ungroup()
HS <- HS %>%
# add survey column
 mutate(survey = "DFO-HS",
         country = "Canada",
         continent = "n_america",
         stat_rec = NA,
         verbatim_aphia_id = NA,
         aphia_id = NA,
         sub_area = NA,
         station = NA,
```

```
stratum = NA,
         month = lubridate::month(date),
         day = lubridate::day(date),
         season = NA,
         quarter = NA,
         gear = NA,
         sbt = NA,
         sst = NA
  ) %>%
    select(survey, haul_id, country, sub_area, continent, stat_rec, station, stratum,
           year, month, day, quarter, season, latitude, longitude, haul_dur, area_swept,
           gear, depth, sbt, sst, verbatim_name, num, num_h, num_cpue,
           wgt, wgt_h, wgt_cpue, verbatim_name, verbatim_aphia_id)
#check for duplicates, should not be any with more than 1 obs
#check for duplicates
count_HS <- HS %>%
  group_by(haul_id, verbatim_name) %>%
 mutate(count = n())
#none!
#which ones are duplicated?
unique_name_match <- count_HS %>%
 group_by(verbatim_name) %>%
 filter(count>1) %>%
 distinct(verbatim_name)
unique_name_match
#empty
#### INTEGRATE CLEAN TAXA FROM TAXA ANALYSIS ####
# Get WoRM's id for sourcing
wrm <- gnr_datasources() %>%
 filter(title == "World Register of Marine Species") %>%
 pull(id)
### Automatic cleaning
# Set Survey code
hs_survey_code <- "DFO-HS"
HS <- HS %>%
 mutate(
   taxa2 = str_squish(verbatim_name),
   taxa2 = str_remove_all(taxa2," spp.| sp.| spp| sp|NO "),
   taxa2 = str_to_sentence(str_to_lower(taxa2))
 )
# Get clean taxa
clean_auto <- clean_taxa(unique(HS$taxa2), input_survey = hs_survey_code,</pre>
```

```
save = F, output=NA)
#This leaves out the following species, which are all inverts
#Cancer branneri
#Cancer gracilis
#Cheiraster dawsoni
#Pandalopsis
#-----#
#### INTEGRATE CLEAN TAXA in DFO-HS survey data ####
correct_taxa <- clean_auto %>%
 select(-survey)
clean_hs <- left_join(HS, correct_taxa, by=c("taxa2"="query")) %>%
 filter(!is.na(taxa)) %>% # query does not indicate taxa entry that were
 #removed in the cleaning procedure
 # so all NA taxa have to be removed from the surveys because: non-existing,
 #non marine or non fish
 rename(accepted_name = taxa,
        aphia_id = worms_id) %>%
 mutate(verbatim_aphia_id = NA,
        source = "DFO",
        timestamp = "09/2020") %>%
 select(survey, source, timestamp, haul_id, country, sub_area, continent, stat_rec, station, stratum,
        year, month, day, quarter, season, latitude, longitude,
        haul_dur, area_swept, gear, depth, sbt, sst, num, num_h, num_cpue, wgt,
        wgt_h, wgt_cpue,
        verbatim_name, verbatim_aphia_id, accepted_name, aphia_id, SpecCode,
        kingdom, phylum, class, order, family, genus, rank)
#check for duplicates
count_clean_hs <- clean_hs %>%
 group_by(haul_id, verbatim_name, accepted_name) %>%
 mutate(count = n())
#none!
#which ones are duplicated?
unique_name_match <- count_clean_hs %>%
 group_by(verbatim_name, accepted_name) %>%
 filter(count>1) %>%
 distinct(verbatim_name, accepted_name)
unique_name_match
#empty
#### SAVE DATABASE IN GOOGLE DRIVE ####
```

```
# Just run this routine should be good for all
write_clean_data(data = clean_hs, survey = "HS", overwrite = T)
```

1. Overview of the survey data table

survey	source	timestamp	haul_id	country	sub_area	continent
DFO-HS	DFO	09/2020	59140-001	Canada	NA	n_america
DFO-HS	DFO	09/2020	59140-001	Canada	NA	$n_america$
DFO-HS	DFO	09/2020	59140-001	Canada	NA	n _america
DFO-HS	DFO	09/2020	59140-001	Canada	NA	$n_america$
DFO-HS	DFO	09/2020	59140-001	Canada	NA	$n_america$

stat_rec	station	stratum	year	month	day	quarter	season
NA	NA	NA	2005	5	27	NA	NA
NA	NA	NA	2005	5	27	NA	NA
NA	NA	NA	2005	5	27	NA	NA
NA	NA	NA	2005	5	27	NA	NA
NA	NA	NA	2005	5	27	NA	NA

latitude	longitude	haul_dur	area_swept	gear	depth
52.68587	-130.6156	0.3666667	0.133224	NA	137
52.68587	-130.6156	0.3666667	0.133224	NA	137
52.68587	-130.6156	0.3666667	0.133224	NA	137
52.68587	-130.6156	0.3666667	0.133224	NA	137
52.68587	-130.6156	0.3666667	0.133224	NA	137

sbt	sst	num	num_h	num_cpue	wgt
NA	NA	0	0.00000	0	2.40
NA	NA	4	10.90909	0	0.50
NA	NA	0	0.00000	0	0.44
NA	NA	0	0.00000	0	2.30
NA	NA	0	0.00000	0	1.80

wgt_h	wgt_cpue	verbatim_name	verbatim_aphia_id	accepted_name
6.545454	0	ATHERESTHES STOMIAS	NA	Atheresthes stomias
1.363636	0	CLUPEA PALLASII	NA	Clupea pallasii
1.200000	0	EOPSETTA JORDANI	NA	Eopsetta jordani
6.272727	0	GADUS CHALCOGRAMMUS	NA	Gadus chalcogrammus
4.909091	0	GADUS MACROCEPHALUS	NA	Gadus macrocephalus

aphia_id	${\bf SpecCode}$	kingdom	phylum	class	order	family
279792	517	Animalia	Chordata	Actinopteri	Pleuronectiformes	Pleuronectidae
151159	1520	Animalia	Chordata	Actinopteri	Clupeiformes	Clupeidae
280690	4237	Animalia	Chordata	Actinopteri	Pleuronectiformes	Pleuronectidae
300735	318	Animalia	Chordata	Actinopteri	Gadiformes	Gadidae
254538	308	Animalia	Chordata	Actinopteri	Gadiformes	Gadidae

2. Summary of sampling intensity

Number of hauls per year performed during the survey after data processing.

3. Summary of sampling variables from the survey

Here we show the yearly total and average of the following variables reported in the survey data:

- $area_swept$, swept area by the bottom trawl gear km^2
- depth, sampling depth in m
- haul_dur, haul sampling duration hour
- number of marine fish taxa, taxa were cleaned following the last version of taxonomy from the World Register of Marine Species (https://www.marinespecies.org/, October 2021)

4. Summary of biological variables

Here we display the yearly total and average across hauls of the following variables recorded in the data:

- num_cpue , number of individuals (abundance) in $\frac{individuals}{km^2}$
- num_h , number of individuals (abundance) in $\frac{individuals}{h}$
- num, number of individuals (abundance)
- wgt_cpue , weight in $\frac{kg}{km^2}$
- wgt_h , weight in $\frac{kg}{h}$
- wgt, weight in kg

5. Extreme values

Here we show a yearly total distribution of the biomass data to visualize outliers:

- wgt, total weight in kg per haul and year per haul and year, if available in the survey data
- num, total number of individuals, if available in the survey data

6. Summary of variables against swept area

Here we show the total abundance and number of taxa relationships with the area swept:

- nbr_taxa , number of marine fish taxa after taxonomic data cleaning
- num, number of individuals, if available in the survey data
- wgt, weight in kg, if available in the survey data

7. Abundance or Weight trends of the six most abundant species

8. Distribution mapping

9. Taxonomic flagging

This species flagging method was adapted from https://github.com/pinskylab/OceanAdapt/blob/master/R/add-spp-to-taxonomy.Rmd#L33

Visualization of flagged taxa

Statistics related to the taxonomic flagging outputs

Total number of species	165.0
Percentage of species flagged	13.3

10. Spatio-temporal standardization

a. Standardization method 1

This standardization method was adapted from https://github.com/zoekitchel/trawl_spatial_turnover/blob/master/data_prep_code/species/explore_NorthSea_trimming.Rmd It was run for hex resolution 7 and 8.

Plot of number of cells x years with overlaid flagging options

Map of hauls retained and removed per flagging method and threshold

Map of numbers of years removed per grid cell and flagging method/threshold

b. Standardization method 2

This standardization method was adapted from BioTIME code from https://github.com/Wubing-Xu/Range $_$ size $_$ winners $_$ losers

Map of hauls retained and removed

c. Standardization summary

Statistics of hauls removed for each standardization method

summary	grid cell 7, 0% threshold	grid cell 7, 2% threshold	grid cell 8, 0% threshold	grid cell 8, 2% threshold	method 2 (biotime)
number of hauls removed	0	0	15.0	15.0	617.0
percentage of hauls removed	0	0	1.2	1.2	3.1