CHAPTER 1: SETS, RELATIONS and LANGUAGES

1.1 SETS

- 1.1.1 (a) **True**. In fact every set is a subset of itself
 - (b) False. \emptyset has no members
 - (c) **True**. $\{\emptyset\}$ has one member, which is \emptyset .
 - (d) **True**. In fact \emptyset is a subset of any set
 - (e) **True**. $\{a, b, c, \{a, b\}\}$ has four elements, one of which is the set $\{a, b\}$

1.2 RELATIONS AND FUNCTIONS

1.2.1 (a)
$$\{(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3)\}$$

(b) Ø

$$\begin{array}{l} (c) \ = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \times \{1,2\} \\ \ = \{(\emptyset,1), (\{1\},1), (\{2\},1), (\{1,2\},1), (\emptyset,2), (\{1\},2), (\{2\},2), (\{1,2\},2)\} \end{array}$$

1.2.2 •
$$R \cdot R = \{(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c)\}$$

- $\bullet \ R^{-1} = \{(b,a), (a,a), (d,c), (a,a), (a,b)\}$
- None of $R, R \cdot R, R^{-1}$ is a function.

1.3 SPECIAL TYPES OF BINARY RELATIONS

1.3.1 See below

- 1.3.2 (a) R is not reflexive, not symmetric and not transitive. S is symmetric, but not reflexive or transitive
 - (b) $R \cup S$ is reflexive, but is neither symmetric not transitive
- 1.3.4 (a) R is not reflexive
 - (b) R is symmetric
 - (c) R is anti-symmetric
 - (d) R is transitive
- 1.3.5 $R = \{(a, b) \mid f(a) = f(b)\}$. R is an equivalence relation because:
 - \bullet R is reflexive:
 - \bullet R is transitive:
 - \bullet R is symmetric:
- 1.3.6 (a) R is a partial order because
 - R is reflexive because for any $a \in \mathbf{Z}^+$ (the set of positive integers), $a \mod a = 0$ and hence $(a, a) \in R$

- R is transitive because if $(a, b), (b, c) \in R$ then $(a, c) \in R$
- R is anti-symmetric because if $(a, b) \in R$ and $a \neq b$ then a > b and hence $(b, a) \notin R$

R is not a total order since for many pairs (a,b), a is not divisible by b and b is not dividable by a, for example when a=2,b=3. Hence neither (a,b) nor (b,a) are in R.

- (b) R is not a partial order (and so not a total order) since it is not anti-symmetric: $((1,2),(2,1)) \in R$ and $((2,1),(1,2)) \in R$ but $(1,2) \neq (2,1)$.
- (c) R is not a partial order (and hence not a total order) since it is not transitive: $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$
- 1.3.7 $R_1 \cap R_2$ is reflexive: for any $a \in A$, $(a, a) \in R_i$ (since R_i is reflexive) and hence $(a, a) \in R_1 \cap R_2$.
 - $R_1 \cap R_2$ is transitive:
 - $R_1 \cap R_2$ is anti-symmetric:

1.3.8 (a)

- 1.3.9 when for each node, there is exactly one edge going out.
- 1.3.10 Let $f: A \to A$ where A is finite. Since $\{f^i(a) \mid i \in \mathbb{N}\} \subseteq A$, there exists $i < j \in \mathbb{N}$ such that $f^i(a) = f^j(a)$

1.4 FINITE AND INFINITE SETS

• Exercises in lecture notes (p 32)

- Every subset of a finite set is finite: Let $B \subseteq A$. If A is finite, then there exists a bijection $f: \{1, 2, ..., n\} \to A$ for some $n \in \mathbb{N}$, or equivalently we can enumerate A as $A = \{a_1, a_2, ..., a_n\}$ where $a_i = f(i)$. If for each $a_i \notin B$, we delete a_i from this enumeration, then we obtain an enumeration for B. Hence B is finite.
- Every subset of a countably infinite set is finite or countably infinite: similar to the above proof.
- $N \times N$ is countably infinite: (proof in the text book, page 21) We can enumerate $N \times N$ by "dovetailing" as follows.

Figure 1-8

Alternatively, we can show that $f: \mathbf{N} \times \mathbf{N} \to \mathbf{N}$ where $f(i,j) = \frac{1}{2}((i+j)^2 + 3i + j)$ is a bijection.

- **Theorem** in p 33: The union of countably infinite collection of countably infinite sets is again countable infinite.

Let $\mathcal{A} = \{A_1, A_2, \dots\}$ be a countably infinite set where each A_i is countably infinite.

There is a bijection from A_i to $\{i\} \times \mathbf{N}$

Hence there is a bijection from $A_1 \cup A_2 \cup ...$ to $\{1\} \times \mathbf{N} \cup \{2\} \times \mathbf{N} \cup ...$

There there is a bijection from $\bigcup A$ to $\{1, 2, 3, ...\} \times \mathbf{N} = N \times N$

Hence $\bigcup \mathcal{A}$ and \mathbf{N}^2 are equinumerous. Since \mathbf{N}^2 is countable, $\bigcup \mathcal{A}$ is also countable.

1.4.1 (b) Let $X = \{Y \in 2^N \mid Y \text{ is finite}\}\$

For $n \in \mathbb{N}$, let $\mathbb{N}_n = \{Y \in X \mid sum(Y) = n\}$. It is easy to see that \mathbb{N}_n is finite.

Consider $Y \in X$. Since Y is finite, there exists $n \in \mathbb{N}$ such that sum(Y) = n. Hence $Y \in \mathbb{N}_n$. Hence $Y \in \mathbb{N}_1 \cup \mathbb{N}_2 \cup \cdots = \bigcup \{\mathbb{N}_n \mid n \in \mathbb{N}\}$. Note that $\bigcup \{\mathbb{N}_n \mid n \in \mathbb{N}\}$ is an union of countably infinite collection of finite sets, and hence is countably infinite.

1.4.2 (a)
$$f(n) = 2n + 1$$

(b)
$$f(x) = 2x - 1$$
 if $x > 0$; $-2x$ otherwise.

1.5 THREE PROOF TECHNIQUES

(a) Exercise in p 36 of lecture note:

$$f: \{1, 2, \dots, n, \dots\} \to 2^{\mathbf{N}}$$

$$2^{\mathbf{N}} = R_1 \cup R_2 \cup \dots \cup R_n \cup \dots$$

(b) **Theorem**: The set $2^{\mathbb{N}}$ is uncountable.

$$f: 2^{\mathbf{N}} \to \{1, 2, \dots, n, \dots\}$$

$$2^{\mathbf{N}} = R_1 \cup R_2 \cup \dots \cup R_n \cup \dots$$

 $D \neq R_n$ for any $n \in \mathbf{N}$ and hence f is not an onto \mathbf{N} function

1.5.11 • The set of real numbers in the interval [0,1] is uncountable. Suppose $[0,1]=\{r_1,r_2,r_3,\ldots,r_n,\ldots\}$

 \bullet Exercise: The set of floats in the interval [0,1] is countable.

1.7 ALPHABET AND LANGUAGES

1.7.4 a
$$\{e\}^* = \{e\}$$

By definition, $\{e\}^* = \{\omega_1 \dots \omega_n \mid \omega_i \in \{e\}\}$. $\omega_i \in \{e\}$ means that $\omega_i = e$ and thus $\{e\}^* = \{e^n \mid n \geq 0\} = \{e\}$
b It is clear that for any $L_1 \subseteq L_2$, $L_1^* \subseteq L_2^*$
* $L \subseteq L^*$ and hence $L^* \subseteq (L^*)^*$

$$* (L^*)^* \subseteq L^*$$
?

- c * $\{a,b\}^*\subseteq \{a\}^*(\{b\}\{a\}^*)^*$ because any language over $\Sigma=\{a,b\}$ is a subset of Σ^*
 - $* \{a\}^*(\{b\}\{a\}^*)^* \subseteq (\{b\}\{a\}^*)^*??$
- 1.7.5 (a) $abbaab \in L$ but $ababab \notin L$
 - (b) $e \in L$ but $a \notin L$
 - (c) $L = \{a, b\}^*$ (i.e. any string is in L)
 - (d) $aa \in L$ but $a \notin L$
- 1.7.6 $L^+ = L^*$ iff $e \notin L$

1.8 FINITE REPRESENTATION OF LANGUAGES

Page 49 example:
$$\alpha = (a \cup b)^*a$$

$$L(\alpha) = L((a \cup b)^*)L(a)$$

$$= L((a \cup b)^*)\{a\}$$

$$= L((a \cup b))^* \{a\}$$

$$= (L(a) \cup L(b))^* \{a\}$$

$$= (\{a\} \cup \{b\})^* \{a\}$$

$$=(\{a,b\})^*\{a\}=\{\omega\mid\omega\in\{a,b\}^* \text{ and } \omega \text{ ends with an } a\}$$

- 1.8.1 The language $\{a,b\}^*b$ consisting of only symbols a,b and end with b
- 1.8.2 (a) $(a \cup b)^*$. The language is Σ^*
 - (b) Also $(a \cup b)^*$
 - (c) Also $(a \cup b)^*$
 - (d) $\Sigma^* a \Sigma^*$
- 1.8.3 (a) $b^* \cup b^*ab^* \cup b^*ab^*ab^* \cup b^*ab^*ab^*ab^*$
 - (b) $b^*(ab^*ab^*ab^*)b^*$
- 1.8.5 (a) True; (b) True; (c) False; (d) False