Change point detection

What is a change point?

Skoltec

What is a change point?

Change point: change of statistical properties of a series

«Change point» problem

identify the change moment

Real world example: financial data

S&P 500 index during 27 years

Real world example: internet data

Internet service audience

Is it important? Examples of applications

- Intrusion into networks detection (attack on change of transferred traffic)
- Detection of anomalies in data transmission networks (video streams in video surveillance systems, network traffic, etc.)
- Detection and isolation of system node failures for vehicle management
- Disease outbreak detection
- Automatic detection of abnormal human behaviour via video surveillance
- Monitoring and analysis of mortality and incidence of lung cancer

Change point detection (CPD)

Skoltech

Typical scenario for observations with a change point

Source: Polunchenko, Aleksey S., and Alexander G. Tartakovsky. "State-of-the-art in sequential change-point detection." Methodology and computing in applied probability 14.3 (2012): 649-684.

Change point detection: alarm

We have observations up to time n

$$\mathbf{X}_n = (X_1, \dots, X_n)$$

- ullet We want to give alarm at au=n, if there is a change point
- Stopping time: statistic $au = au(\mathbf{X}_n)$

$$\tau \in \{0, 1, \infty\}, \quad \{\mathbf{X}_n : \tau(\mathbf{X}_n) = n\} \in \sigma(\mathbf{X}_n)$$

- Note, that we can't use information from future
- lacktriangle Stopping time au is based on the statistic of observations

$$\gamma = (\gamma_t)_{t \geqslant 0}, \gamma_n = \gamma_n(\mathbf{X}_n)$$

Typical scenario for observations with a change point

Source: Polunchenko, Aleksey S., and Alexander G. Tartakovsky. "State-of-the-art in sequential change-point detection." Methodology and computing in applied probability 14.3 (2012): 649-684.

Skoltech

High quality of the stopping time $\tau(X_n)$

- The stopping time: statistic $\tau = \tau(\mathbf{X}_n)$
- ullet E_{∞} au: (mean) false detection delay, FDD(au)
- Good: $E_{\infty} \tau \to \infty$ (rare false alarms)
- $E_0 \tau$ or $E_{\theta}[\tau \theta | \tau > \theta]$: average detection delay, $ADD(\tau)$
- Good: $E_0 \tau \to 0$ (fast detection)

coltech

- ullet Π : detector, procedure for change point detection (takes into account assumptions about the signal and about the change point)
- Π : alarm time $\tau = \inf\{t \geqslant 0: \gamma_t \geqslant h\}$

Pruned Exact Linear Time (PELT)

- We try to find the underlying pattern such as a regression line to forecast the future
- Regression line is not straight if there are change points

build segmented regression lines where the kinked points are the change points

PELT illustration

PELT algorithm

Slide the cut point from left to right of the TS

 Find the appropriate change point for the time series that minimizes the sum of the distances or errors:

$$\min \sum_{i=1}^{m+1} [C(y_{\tau_{i-1}+1}, \dots, y_{\tau_i}) + \beta],$$

where C(.) is the distance or the cost function,

 β - number of segments as a penalty term to prevent the search from yielding too many segments

ruptures package

Pros:

- Many methods available
- Many other configurable options
- Python

Cons:

Offline

Requires careful selection of configuration

https://centre-borelli.github.io/ruptures-docs/

Skoltech

Change detection for semi-structured data

- CPD model signals about time of change in the data distribution
- Semi-structured data sequences of semi-structured data (images, texts)
- Goal: minimize Detection Delay & minimize number of False Alarms
- Problem: Can't apply classic method for semi-structured data

Change detection for semi-structured data

Change detection for semi-structured data

Method	Mean Time	Mean DD ↓	AUC↓	F1 ↑	Covering ↑
	to FA ↑				
Explosions					
BCE simple	11.20	0.44	8.388	0.3023	0.8484
CPD seq2seq	14.23	1.54	9.466	0.4048	0.8798
BCE seq2seq	14.95	1.81	8.546	0.4667	0.8836
InDiD (ours)	12.76	0.64	7.470	0.5472	0.8955
Road Accidents					
BCE simple	9.69	0.48	12.486	0.0417	0.7817
CPD seq2seq	14.64	<u>2.18</u>	13.257	0.1176	0.8299
BCE seq2seq	15.23	2.32	12.770	0.1860	0.8440
InDiD (ours)	<u>15.20</u>	2.31	12.896	0.1647	0.8418

Conclusion

- CPD play crucial role in various applications
- CPD algorithms have Python implementation
- We can do change point detection for semi-structured data

Next lecture: TS in discrete events