Санкт-Петербургский Государственный Электротехнический Университет им. В.И. Ульянова-Ленина "ЛЭТИ"

кафедра БЖД

Отчёт по лабораторной работе N2 "Исследование условий электробезопасности в трёхфазных четырёхпроводных сетях с заземлённой нейтралью"

Студентка группы 1231 Коржова О.А.

Преподаватель: Демидович О.В.

Санкт-Петербург 2004 Исследование зависимости условий электробезопасности от состояния изоляции и величины ёмкости фаз сети относительно земли.

No	3	начени	я сопрот	гивлени	й	Напряжения фаз и корпусов								
	Ra,	R _b ,	R _c ,	R _{зам} ,	R_3 ,	U_{a-3} ,	U_{b-3} ,	U _{c-3} ,	U_{k1} ,	U_{k2}	U_{k3} ,			
	кОм	кОм	кОм	Ом	Ом	В	В	В	U_0		Uпр			
1	5	5	5			23	25	24,5	0	0	23			
	150	150	150			23	25	24,5	0	0	23			
2				50		31	32	12,5	10,5		31			
				100		24,5	26	22,5	1		24			
3					4	9,5	33,5	33,5	12,5		10			
					100	21	26,5	26	2		20,5			

Векторные диаграммы для оценки напряжений при однофазном прикосновении:

При замыкании фазы С на землю:

Векторные диаграммы для оценки опасности заземления корпусов электроприёмников:

Неисправность 1: неправильно выбрана установка срабатывания аппаратов защиты от коротких замыканий. В этом режиме защита от КЗ не срабатывает, и опасные напряжения присутствуют.

$N_{\underline{0}}$	Значения сопротивлений						Напряжения фаз и корпусов						
1	Ra,	R _b ,	R _c ,	R _{зам} ,	R_3 ,	U_{a-3} ,	U_{b-3} ,	U_{c-3} ,	U_{k1} ,	U_{k2}	U_{k3} ,		
	кОм	кОм	кОм	Ом	Ом	В	В	В	U_0		U_{np}		
								16.5	16.5				

Неисправность 2: выключатель нагрузки установлен не в фазном, а в нулевом проводе. Напряжения занулённых корпусов К1 и К2 относительно земли уменьшаются в 2 раза при включении повторного заземления нулевого провода.

№	Значен	ия сопро	тивлени	й		Напряжения фаз и корпусов						
	Ra,	R _b ,	R _c ,	R _{зам} ,	R_3 ,	U_{a-3} ,	U_{b-3} ,	U_{c-3} ,	U_{k1} ,	U_{k2}	U_{k3} ,	
	кОм	кОм	кОм	Ом	Ом	В	В	В	U_0		U_{np}	
								17	25			
								11	12			

Неисправность 3: для случая, когда корпуса К1 и К2 занулены, а К3 заземлён.

$\mathcal{N}_{\underline{0}}$	Значения сопротивлений						Напряжения фаз и корпусов						
	Ra,	R _b ,	R _c ,	R _{зам} ,	R_3 ,	U_{a-3} ,	U_{b-3} ,	U _{c-3} ,	U_{k1} ,	U_{k2}	U_{k3} ,		
	кОм	кОм	кОм	Ом	Ом	В	В	В	U_0		U_{np}		
					4			25	25				
					100			18,5	18,5				

Векторные диаграммы:

Неисправность 4: для случая, когда произошёл обрыв цепи заземления нейтрали источника при замыкании на землю одной из фаз при:

- 1) включённом
- и
- 2) выключенном повторном заземлении нулевого провода.

№	Значен	Значения сопротивлений						Напряжения фаз и корпусов						
	Ra,	R _b ,	R _c ,	R _{зам} ,	R_3 ,	U_{a-3} ,	U_{b-3} ,	U_{c-3} ,	U_{k1} ,	U_{k2}	U_{k3} ,			
	кОм	кОм	кОм	Ом	Ом	В	В	В	U_0		U_{np}			
				100	100				1,5	1,5	21			
				100	100				1	1	23,5			

Вывод: выполнив эту работу, мы убедились, что

при однофазном прикосновении $U_{np}>U_{\varphi}$;

при увеличении R_3 опасный потенциал на корпусе уменьшается, а U_{np} увеличивается; при неисправности №1 возникают опасные потенциалы на занулённых корпусах; при неисправности №2 опасный потенциал возникает только на K2, т.к. он соединён с фазой;

при включении повторного заземления потенциал распределяется между К2 и землёй.

Цель работы: изучить способы защиты от поражений током.

Общие сведения

Трёхфазные четырёхпроводные сети с заземлённой нейтралью — наиболее часто применяемый в народном хозяйстве вид электрических сетей. Такие сети имеют большое экономическое преимущество: наряду с трёхфазными приёмниками напряжением 380 В (станки, насосы, вентиляторы и прочее силовое оборудование) от них могут получать питание без применения трансформаторов и однофазные приёмники напряжением 220 В (сети освещения, переносные потребители и т.п.). С точки зрения электробезопасности данная сеть является не лучшей, т.к. в ней может создаваться целый ряд опасных ситуаций. Именно в таких сетях возникает большинство электротравм.

К наиболее опасным относится режим однофазного прикосновения, когда человек касается какой-либо токоведущей части или корпуса приёмника электроэнергии, не зная о том, что в нём есть неисправность типа замыкания фазы на корпус . Ток через тело человека в режиме однофазного прикосновения всегда будет опасным для жизни:

$$I_h = U_{\pi p} / R_h = U_{\varphi} / R_h$$

Если в сети есть неисправности изоляции типа замыканий на землю, то опасность режима однофазного прикосновения возрастает.

Защитное заземление корпусов приёмников электроэнергии, выполненное с соблюдением требований к заземляющему устройству ($R_3 < 4$ Ом), из-за влияния цепи заземления нейтрали R_0 в этих сетях оказывается неэффективным :

$$U_{\pi p} = U_{\phi} * R_3 / (R_3 + R_0) \sim U_{\phi} / 2$$
,

т.е. всегда напряжение прикосновения к корпусу неисправного приёмника будет больше допустимого; при этом опасные потенциалы относительно земли появляются и на нулевом проводе. Опасность режима существенно повышается, когда в качестве заземлителей используют батареи отопления, водопроводные трубы, или другие металлические конструкции, случайным образом связанные с землёй (R₃ > 100 Ом).

Действенной мерой защиты от поражения током в режиме замыкания фазы на корпус является зануление — электрическая связь корпуса с нулевым проводом. При занулении замыкание фазы на корпус приводит к однофазному короткому замыканию. Ток короткого замыкания $I_{\kappa,3}$, протекающий по петле 'фаза — нуль', должен вызывать срабатывание максимальной защиты и отключение повреждённого приёмника . В случае неправильного выполнения зануления могут возникнуть различные опасные для жизни людей ситуации, изучаемые в настоящей лабораторной работе.