

Questions JEE Main Crash Course

- 1. The number of solutions of the equation $\log_4(x-1) = \log_2(x-3)$ is _____.
- The number of distinct solutions of the equation, $\log_{\frac{1}{2}}|\sin x| = 2 \log_{\frac{1}{2}}|\cos x|$ in the interval $[0, 2\pi]$, is
- 3. Let a, b, c be the three distinct positive real numbers such that $(2a)^{\log_e a} = (bc)^{\log_e b}$ and $b^{\log_e 2} = a^{\log_e c}$. Then 6a + 5bc is equal to

NOTE: This question was BONUS in JEE Mains, We have modified the question statement

- If the solution of the equation $\log_{\cos x}(\cot x) + 4\log_{\sin x}(\tan x) = 1$, $x \in \left(0, \frac{\pi}{2}\right)$ is $\sin^{-1}\left(\frac{\alpha + \sqrt{\beta}}{2}\right)$, where α, β are integers, then
 - $\alpha + \beta$ is equal to: mathongo /// mathongo ///
 - (1) 3

(3) 6

- (4) 4
- 5. The sum of the roots of the equation, $x + 1 2\log_2(3 + 2^x) + 2\log_4(10 2^{-x}) = 0$, is:
 - $(1) \log_2 14$

- (3) $\log_2 13$
- /// mathongo /// mathongo /// (4) log₂ 11
- The number of solutions of the equation $\log_{(x+1)} \left(2x^2+7x+5\right) + \log_{(2x+5)} \left(x+1\right)^2 4 = 0, \ x>0$, is
- 7. If for $x \in (0, \frac{\pi}{2})$, $\log_{10} \sin x + \log_{10} \cos x = -1$ and $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n 1)$, n > 0, then the value of n is equal
 - toriathongo //// mathongo //// mathongo (1) 20
 - (2) 12

(3) 9

- (4) 16
- 8. Let $A = \{x \in \mathbb{R} : |x+1| < 2\}$ and $B = \{x \in \mathbb{R} : |x-1| \ge 2\}$. Then which one the following statements is NOT true?
 - (1) A B = (-1, 1)

(2) B - A = R - (-3, 1)

(3) $A \cap B = (-3, -1]$

- (4) $A \cup B = R [1, 3)$
- **9.** If $A = \{x \in R : |x| < 2\}$ and $B = \{x \in R : |x 2| \ge 3\}$; then
 - (1) $A \cap B = (-2, -1)$

(2) B-A=R-(-2,5) mathongo /// mathon

(3) $A \cup B = R - (2, 5)$

- nathongo ///. mathongo ///. mathongo ///. matho
- 10. The number of integral solution x of $\log_{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2x-3}\right)^2 \geq 0$ is
 - (1) 7 hongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo /// math

- 11. Let $S = \left\{ x \in [-6,3] \{-2,2\} : \frac{|x+3|-1|}{|x|-2|} \ge 0 \right\}$ and $T = \left\{ x \in Z : x^2 7|x| + 9 \le 0 \right\}$. Then the number of elements in $S \cap T$ is
 - (1) 7

(3) 4

- **12.** If $A = \left\{ x \in R : \left| x 2 \right| > 1 \right\}, B = \left\{ x \in R : \sqrt{x^2 3} > 1 \right\}, C = \left\{ x \in R : \left| x 4 \right| \geqslant 2 \right\}$ and Z is the set of all integers, then the number of subsets of the set $(A \cap B \cap C)^c \cap Z$ is ______ mothongo _____ mathongo _____ mathongo _____