Predicate logic Modal logic Determinacy

#### Formula Evaluation

Abraham Hinteregger

Vienna University of Technology

2016-06-07

#### Chapter

Logic as a game

Predicate logic

Modal logic

Determinacy

Game view of logic & extensions

Stuf

#### Motivation

- ightharpoonup Given is a formula  $\varphi$  in a model M with a variable setting s
- ▶ In model-theoretic semantics the question was whether this formula is true in this model with the setting  $(M, s \models \varphi)$  or not  $(M, s \nvDash \varphi)$
- ► If one person thinks the formula is true and another person doubts that an obvious game arises:
  - ► The first person (verifier, **V**) tries to verify that the formula is true
  - ▶ the second person (falsifier, **F**) tries to do the opposite

# First order predicate logic (reminder<sup>1</sup>)

- $\triangleright$  A formula is built from formulas (A, B, ...) and operators:
  - ightharpoonup Constants  $\top$ ,  $\bot$
  - ▶ Unary negation operator  $\neg A$
  - ▶ Binary operators ∧, ∨: A ∘ B
  - ▶ Quantifiers  $\exists$ ,  $\forall$ :  $\exists xA(x)$ ,  $\forall xB(x)$
  - Predicates, e.g. A(x), B(x, y)
- A model is a set of objects, also called the universe/domain
  - Constants are mapped to an object in the domain
  - Functions map one (or more) objects in the domain to another object in the domain
  - Predicates are mapped to a subset of the domain

<sup>&</sup>lt;sup>1</sup>in the spirit of CI

Predicate logic

Modal logic Determinacy

## Evaluation games for predicate logic

atoms  $P(x), R(x, y), \top, \bot$ disjunction  $\varphi \lor \psi$ conjunction  $\varphi \land \psi$ negation  $\neg \varphi$  V wins if atom is true, else F wins V chooses which disjunct to play F chooses which conjunct to play role switch of the two players

existential quantifier  $\exists x \varphi(x)$  universal quantifier  $\forall x \varphi(x)$ 

**V** picks an object *d* from the domain **F** picks an object *d* from the domain

# Evaluation games for modal logic

- Rules from evaluation games for predicate logic
- Additional rules that accommodate for the modal operators  $\square$  and  $\lozenge$  (or indexed versions  $\square_i, \lozenge_i$ ):

necessity  $\Box P$  **F** chooses a successor of the current world possibility  $\Diamond P$  **V** chooses a successor of the current world

Failure to choose a successor means a loss for either player

▶ Game state consists not only of setting s and current formula  $\varphi$  but also the current world w.

# Example of evaluation games for predicate logic

## Example of evaluation games for predicate logic

(domain consists of two objects, s and t)  $\mathbf{F}$   $\forall x \exists y \ x \neq y$ 

## Example of evaluation games for predicate logic

(domain consists of two objects, s and t)



lose<sub>V</sub>

win<sub>v</sub>

## Example of evaluation games for predicate logic

win<sub>v</sub>

(domain consists of two objects, s and t)  $\forall x \exists y \ x \neq y$  $\exists y \ s \neq y$  $\exists y \ t \neq y$ 

 $t \neq t$ 

lose<sub>V</sub>

- If V chooses world 3 F can't move and loses
- Else V can choose either world 1 or 2 and wins no matter what F does





- If V chooses world 3 F can't move and loses
- Else V can choose either world 1 or 2 and wins no matter what F does





- If V chooses world 3 F can't move and loses
- Else V can choose either world 1 or 2 and wins no matter what F does





- If V chooses world 3 F can't move and loses
- Else V can choose either world 1 or 2 and wins no matter what F does





- If V chooses world 3 F can't move and loses
- Else V can choose either world 1 or 2 and wins no matter what F does





▶ Both players can choose between two options (assigning either s or t to x, y or deciding a successor for the current world)

- Both players can choose between two options (assigning either s or t to x, y or deciding a successor for the current world)
- ▶ Both players can win and lose but only V does influence the outcome of the games (F cannot even force a loss)

- Both players can choose between two options (assigning either s or t to x, y or deciding a successor for the current world)
- ▶ Both players can win and lose but only V does influence the outcome of the games (F cannot even force a loss)
- ► V has a winning strategy ("don't assign the same thing as F", "go to world 1 or 2")

- Both players can choose between two options (assigning either s or t to x, y or deciding a successor for the current world)
- ▶ Both players can win and lose but only V does influence the outcome of the games (F cannot even force a loss)
- V has a winning strategy ("don't assign the same thing as F", "go to world 1 or 2")
- ► In the second game V has even two strategies for winning ("pick 3", "pick 4 and then pick either 2 or 1")

# Determinacy<sup>2</sup>

#### Success Lemma

 $M, s \models \varphi \iff V$  has a winning strategy in  $game(\varphi, M, s)$  $M, s \not\models \varphi \iff F$  has a winning strategy in  $game(\varphi, M, s)$ Proof by induction on formulas:

- ▶ If  $v_M(\varphi \lor \psi) = 1$ : w.l.o.g.  $v_M(\varphi) = 1$ . By inductive hypothesis **V** has a winning strategy for  $game(M, s, \varphi)$  and thus also for  $game(M, s, \varphi \lor \psi)$
- ▶ If  $v_M(\neg \varphi) = 1$ :  $\implies v_M(\varphi) = 0$  and by IH **F** has a winning strategy for  $game(M, s, \varphi)$ . Player switch yields a winning strategy for **V** for  $game(M, s, \neg \varphi)$ .
- **.**..

<sup>&</sup>lt;sup>2</sup>Hintikka referred to this as "determinateness" [Hintikka, 1982]

## Determinacy II

- Complexity of formula strictly decreases as game continues until only atomic formula is left
- At every branching the active player has a winning strategy if there is a winning strategy available for at least one of the branches
- As this propagates to the root there's a winning strategy for at least (and at most) one of the two players.
- ▶ This theory of truth coincides with Tarski's truth definition

#### Chapter

Logic as a game

Game view of logic & extensions

Formal definition of the game

Additional moves

More refined semantics

Stuf

### Inductive definition of the game

A game "game( $M, s, \varphi$ )" is defined as a tree where every node is a pair  $(s, \psi)$  where s is an M-assignment and  $\psi$  is a subformula of  $\varphi$ . Interpretation of  $game(M, s, \varphi)$ atomic one node game where **V** wins iff  $M, s \models \varphi$ game where **V** picks any available move s[x := d] and wins  $\exists x$ game is disjoint union of two games and it's V's turn  $\phi \vee \psi$ same as above but it's F's turn  $\phi \wedge \psi$  $game(M, s, \phi)$  with win markings reversed Game arising by taking  $game(M, s, \phi)$  with assignment t $\phi; \psi$ 

at end states and continuing with  $game(M, t, \psi)$ 

# Extended syntax of formulas

The changed quantifier and composition rules allow formulas such as:

▶  $\exists x$ : **V** chooses new assignment s[x := d] and wins.

## Extended syntax of formulas

The changed quantifier and composition rules allow formulas such as:

- $ightharpoonup \exists x : V$  chooses new assignment s[x := d] and wins.
- ▶ P(x);  $\exists x$ : Test whether P(s(x)) holds and then assign a new value to x.

#### Additional moves<sup>3</sup>

Until now the model M was fixed and remained unchanged. The game could be extended by allowing moves that manipulate the model in some way:

- Adding or removing objects from the domain
- Changing the interpretation

<sup>&</sup>lt;sup>3</sup>Chapter 16, [Van Benthem, 2014]

#### Refined semantics<sup>4</sup>

- ▶ Difference between the existence of one winning strategy and many of them.
- How many moves does a strategy need to win?
- ▶ Is it possible to lose on purpose?

<sup>&</sup>lt;sup>4</sup>Chapter 15, [Van Benthem, 2014]

#### Chapter

Logic as a game

Game view of logic & extensions

Stuff

References

Modal  $\mu$ -calculus

#### References I



Hintikka, J. (1982). Game-theoretical semantics: insights and prospects. Notre Dame J. Formal Logic, 23(2):219–241.



Hodges, W. (2013).

Logic and games.

In Zalta, E. N., editor, *The Stanford Encyclopedia of Philosophy*. Spring 2013 edition.



Keiff, L. (2011).

Dialogical logic.

In Zalta, E. N., editor, *The Stanford Encyclopedia of Philosophy*. Summer 2011 edition.

References Modal  $\mu$ -calculus Evaluation game for  $\mu$ -calculus

#### References II



Knaster-Tarski.

Knaster-Tarski theorem.

Wikipedia, the free encyclopedia.

Page Version ID: 723193149.



Van Benthem, J. (2014).

Logic in games.

MIT press.



Venema, Y. (2007).

Lectures on the modal  $\mu$ -calculus.

University of Amsterdam.

# Modal $\mu$ -calculus<sup>6</sup>

Adds two additional operators to propositional (multi-) modal logic:

- Least fixpoint operator  $\mu p : \varphi(p)$
- Greatest fixpoint operator  $\nu p : \varphi(p)$

Note that p occurs positively in  $\varphi(p)$ , meaning that there's an even amount of  $\neg$  in front of every occurence of p in  $\varphi^5$ 

<sup>&</sup>lt;sup>5</sup>The positive syntactic occurrence of p implies monotonicity concerning inclusion  $\implies$  least and greatest fixpoint exist [Knaster-Tarski, ].

<sup>6</sup>[Venema, 2007]

Formula

Interpretation

 $\mu p : (q \lor \Diamond p)$ 

| Formula                       | Interpretation                                                |
|-------------------------------|---------------------------------------------------------------|
| $\mu p : (q \lor \Diamond p)$ | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ |
|                               | is reachable with finite path                                 |

| Formula                         | Interpretation                                                                              |
|---------------------------------|---------------------------------------------------------------------------------------------|
| $\mu p:(q\lor\Diamond p)$       | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ is reachable with finite path |
| $ u p : (q \wedge \square_a p)$ |                                                                                             |

| Formula                      | Interpretation                                                                              |
|------------------------------|---------------------------------------------------------------------------------------------|
| $\mu p: (q \lor \Diamond p)$ | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ is reachable with finite path |
| $ u p : (q \wedge \Box_a p)$ | Set of all worlds $w$ where $M, w \models q$ on every $a$ -path                             |

| Formula                                 | Interpretation                                                                              |
|-----------------------------------------|---------------------------------------------------------------------------------------------|
| $\mu p:(q\vee\Diamond p)$               | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ is reachable with finite path |
| $ u p : (q \wedge \Box_a p)$            | Set of all worlds $w$ where $M, w \models q$ on every $a$ -path                             |
| $\nu p : (\lozenge \top \wedge \Box p)$ |                                                                                             |

| Formula                                | Interpretation                                                                                                 |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $\mu p:(q\vee\Diamond p)$              | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ is reachable with finite path                    |
| $\nu p: (q \wedge \Box_a p)$           | Set of all worlds $w$ where $M, w \models q$ on every $a$ -path                                                |
| $ u p : (\lozenge \top \wedge \Box p)$ | Set of all worlds that have outgoing transitions and don't have a path to a world without outgoing transitions |

| Formula                                | Interpretation                                                                                                 |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $\mu p: (q \lor \Diamond p)$           | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ is reachable with finite path                    |
| $ u p : (q \wedge \Box_a p)$           | Set of all worlds $w$ where $M, w \models q$ on every $a$ -path                                                |
| $ u p : (\lozenge \top \wedge \Box p)$ | Set of all worlds that have outgoing transitions and don't have a path to a world without outgoing transitions |

| Formula                                | Interpretation                                                                                                 |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $\mu p: (q \lor \Diamond p)$           | Set of all worlds $w$ where a world $v$ s.t. $M, v \models q$ is reachable with finite path                    |
| $ u p : (q \wedge \Box_a p)$           | Set of all worlds $w$ where $M, w \models q$ on every $a$ -path                                                |
| $ u p : (\lozenge \top \wedge \Box p)$ | Set of all worlds that have outgoing transitions and don't have a path to a world without outgoing transitions |

 $\nu$  means unfolding,  $\mu$  means finite unfolding

- Rules from modal evaluation game
- ▶ If fixed point formula  $\mu p : \varphi(p)$  or  $\nu p : \varphi(p)$  is reached, the game proceeds with  $\varphi(p)$

<sup>&</sup>lt;sup>7</sup>if there is more than one such variable the one with highest rank (contains the others as subformulas) counts

- Rules from modal evaluation game
- ▶ If fixed point formula  $\mu p : \varphi(p)$  or  $\nu p : \varphi(p)$  is reached, the game proceeds with  $\varphi(p)$
- ▶ p is not an atom but a bound variable and instead of testing the atom the original fixed point formula is substituted back in.

<sup>&</sup>lt;sup>7</sup>if there is more than one such variable the one with highest rank (contains the others as subformulas) counts

- Rules from modal evaluation game
- ▶ If fixed point formula  $\mu p : \varphi(p)$  or  $\nu p : \varphi(p)$  is reached, the game proceeds with  $\varphi(p)$
- ▶ p is not an atom but a bound variable and instead of testing the atom the original fixed point formula is substituted back in.
- ▶ If the evaluation loops (node visited multiple times) V wins if the infinitely many times substituted variable is bound to a  $\nu$ -formula and F wins if it's bound to a  $\mu$ -formula<sup>7</sup>

<sup>&</sup>lt;sup>7</sup>if there is more than one such variable the one with highest rank (contains the others as subformulas) counts