

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : G21C 19/42	A2	(11) International Publication Number: WO 99/23667 (43) International Publication Date: 14 May 1999 (14.05.99)
(21) International Application Number: PCT/GB98/03199 (22) International Filing Date: 28 October 1998 (28.10.98)		(81) Designated States: CA, CN, JP, KR, RU, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 9722930.6 31 October 1997 (31.10.97) GB		Published <i>Without international search report and to be republished upon receipt of that report.</i>
(71) Applicant (for all designated States except US): BRITISH NUCLEAR FUELS PLC [GB/GB]; Risley, Warrington, Cheshire WA3 6AS (GB).		
(72) Inventors; and (75) Inventors/Applicants (for US only): GAUBERT, Emmanuel, Thomas [FR/GB]; 7 Ventura Close, Fallowfield, Manchester M14 7EX (GB). TOWLER, Gavin, Paul [GB/US]; 147 N. Hagger Avenue, Barrington, IL 60010 (US). WALLWORK, Andrew, Lindsay [GB/GB]; British Nuclear Fuels plc, Research & Technology, Sellafield, Seascale, Cumbria CA20 1PG (GB).		
(74) Agent: GILHOLM, Steve; Harrison Goddard Foote, Belmont House, 20 Wood Lane, Leeds LS6 2AE (GB).		
(54) Title: NUCLEAR FUEL REPROCESSING		
(57) Abstract		
<p>There is described a nuclear fuel reprocessing method which is particularly concerned with the separation of uranium, plutonium and neptunium. The reprocessing method is adapted to reduce Pu to Pu(III) and Np to Np(IV) by first treating a mixture containing Pu and Np, and optionally U, with hydroxylamine and treating the hydroxylamine reduced mixture with U(IV). There is also described a Purex reprocessing plant adapted to use the new method.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

NUCLEAR FUEL REPROCESSING

This invention relates to nuclear fuel reprocessing and is particularly concerned with the separation of uranium, plutonium and neptunium.

5

Most commercial reprocessing plants use the Purex process, in which the spent fuel is dissolved in nitric acid and the dissolved uranium and plutonium are subsequently extracted from the nitric acid solution into an organic phase of tributyl phosphate (TBP) dissolved in an inert hydrocarbon such as odourless kerosene. The organic phase is then subjected to solvent extraction techniques to partition the uranium from the plutonium.

10

More particularly, the organic phase is subjected to separation of fission products by solvent extraction and typically then to removal of technetium, before the so-called U/Pu split. In the U/Pu split, Pu(IV) is reduced to Pu(III) which is inextractable into the organic phase and therefore follows the aqueous stream while the U remains in the organic stream. Usually, the reducing agent used in the U/Pu split is U(IV). Hydrazine nitrate is normally used to stabilise the U(IV) and Pu(III) against oxidation by, in particular, HNO₃. The unit for carrying out the partitioning of the U and Pu in practice comprises a contactor having a multiplicity of stages, for example six stages might be used in a modern centrifugal contactor.

15

20

25

In Purex reprocessing, neptunium valency control can be a significant problem. Neptunium is present in the Purex process as a mixture of three different valence states: Np(IV), (V) and (VI). Np(IV) and (VI) are both extractable into the solvent phase whereas Np(V) is inextractable into this phase. In order to direct Np to raffinate streams, Np is normally stabilised in the (V) oxidation state. This is a complex matter, since not only is it the middle oxidation state of three but Np(V) also undergoes competing reactions, such as disproportionation to Np(IV) and (VI) and is oxidised to Np(VI) by nitric acid. Neptunium control is therefore difficult and efficient neptunium control is a major aim of an advanced reprocessing programme.

30

After fuel dissolution, Np is likely to be present as a mixture of all three oxidation states. Np(V) will be separated with the aqueous phase at an earlier stage. Np(IV) and (VI) will follow the solvent (containing uranium and plutonium) into the U/Pu split. In the U/Pu

split, Np is reduced to Np(IV) which follows the uranium stream into the solvent product. Np is then separated from uranium during the uranium purification cycle.

Commercial reprocessing plants operate multi-cycle processes in which each separation or purification step is performed a plurality of times. It would be desirable to provide a single cycle process, enabling the more efficient reprocessing of fuel.

The present invention provides a spent fuel reprocessing method adapted to reduce Pu to Pu(III) and Np to Np(IV) which includes;

10 (i) a first step of treating a mixture, containing Pu and Np, and optionally U, with hydroxylamine; and
(ii) a second step of treating the mixture resulting from step (i) with U(IV).

15 The method is normally performed as part of the U/Pu partition operation. The invention enables the efficient reduction of Pu and Np in the same contactor(s) and obviates the routing of some of the reductant to the subsequent contactor where Np is rejected from the solvent phase. Moreover, the method provides an opportunity to decrease the number of stages in the U/Pu split because the load of U to recover is less than with prior methods which exclusively use U(IV) to reduce Pu and Np.

20 In preferred methods the mixture is treated first with the hydroxylamine and subsequently with the U(IV). Preferably, the aqueous phase containing the U(IV), is then held at an elevated temperature to allow all or most of the Np to be reduced to Np(IV).

25 A preferred class of processes are those performed as part of the U/Pu split operation and in which a solvent stream containing U, Pu and Np is contacted with the hydroxylamine and passed through a contactor stage, the aqueous stream from which is then contacted with concentrated U(IV) and supplied to a tank where it is maintained at an elevated temperature for a time sufficient for at least a majority of the Np to be reduced to Np(IV).

30 The resultant liquid is passed through one or more further contactor stages for the re-extraction of U and Np(IV) into the solvent phase.

In another aspect, the invention resides in a spent fuel reprocessing method comprising

the partitioning of U and Pu(III) by solvent extraction and the subsequent polishing of the solvent to remove Np therefrom. This method includes the step of recycling solvent from the Np rejection/U recovery (NpA solvent product) operation to the U/Pu partitioning operation. The method enables a reduction in solvent feed and solvent effluent volumes.

5

In preferred methods of this aspect, the U/Pu split operation is performed in a multi-stage contactor and the NpA solvent product is fed into the solvent stream immediately prior to the final contactor through which the solvent flows.

- 10 A further aspect of the invention is a Purex reprocessing plant in which the U/Pu partitioning apparatus includes a criticality safe vessel for temporarily storing the aqueous stream. Preferably the vessel includes means for heating the aqueous stream and/or an inlet for introducing U(IV) into the vessel. The partitioning apparatus may comprise a multi-stage contactor, the vessel being located in the flowpath of the aqueous stream
- 15 between two contactors.

In a fourth aspect, the invention provides a Purex reprocessing plant in which a conduit is provided between the solvent outlet of the Np rejection/U recovery operation and the U/Pu split apparatus to enable polished solvent to be recycled to the split operation.

- 20 Preferably, the split apparatus comprises a multi-stage contactor and the conduit enters the solvent flowpath of the partitioning apparatus prior to the final contactor through which the solvent flows.

- 25 In the fifth aspect, the invention provides a Purex reprocessing plant in which a conduit is provided between the aqueous product outlet of the Np rejection operation and the U/Pu split apparatus to enable a fraction of the Np rejection aqueous stream to be recycled to the split operation. This conduit normally includes a vessel to allow formohydroxamic acid hydrolysis to go to completion and so produce hydroxylamine to be used in the U/Pu split. This recycle would minimise the effluent flowrates and, normally, the flowrate of
- 30 fresh hydroxylamine. The invention therefore includes a spent fuel reprocessing method which includes recycling a fraction of the aqueous stream of the Np rejection operation to the U/Pu split.

In the sixth aspect, the invention provides a Purex reprocessing plant in which a conduit is provided between the solvent stream of the U/Pu split and the Tc rejection or fission product removal operation to enable a fraction of the U/Pu split solvent stream to be recycled to earlier operations. This conduit normally includes a vessel to allow U(IV) oxidation and Pu(III) re-oxidation to go to completion. This recycle would enable a reduction in the solvent feed and minimise the solvent effluent flowrates. The invention therefore includes a spent fuel reprocessing method which includes recycling a fraction of the solvent of the U/Pu split to the Tc rejection or fission product removal operation.

5 10 The present invention is further described by way of example only with reference to the accompanying drawings, in which:

Figure 1 is an overview of a single-cycle reprocessing flowsheet; and

15 Figure 2 is a partial flowsheet of a Purex reprocessing process incorporating the methods of the invention .

Figure 1 is therefore a flowsheet of a notional, single-cycle Purex reprocessing plant which does not include any inventive feature. The flowsheet contains the units shown in

20 20 Table 1 and uses the following symbols:

A_i = Aqueous Feeds
S_i = Solvent feeds
25 I_i= Intermediate solvent streams
P_i = Product streams
Double arrows = Solvent streams
Single arrows = Aqueous streams
Dotted arrows = Recycle streams

Table 1.

Unit name	Part of flowsheet	Role
HS	Fission products separation	Strip to aqueous phase fission products and Zr
HA	Fission products separation	Recover U and Pu by a back extraction to the organic phase. Rejection of fission products
TcSS	Tc rejection	Acidity washing of organic phase
TcS	Tc rejection	High acidity Tc scrubbing to the aqueous phase
TcA	Tc rejection	Recovery with a back extraction to the organic phase. Tc rejection
BX	U/Pu split (Partition)	Reduce acidity for Np reduction
BS	U/Pu split	Pu rejection with Np (U recovery)
BSS	U/Pu split	Pu rejection with Np (U recovery)
Tank 1	U/Pu split	Np reduction with U(IV)
Tank 2	Between Np rejection & U/Pu split	Hydrolysis of FHA
Tank 3	Between U/Pu split & Tc rejection or Fission product separation	Oxidation of U(IV) and Pu(III)
NpS	Np rejection	Scrubbing of Np
NpA	Np rejection	Recover U with a back extraction to the organic phase Np rejection

5

The nitric acid solution resulting from dissolution of spent fuel is subject to removal of fission products and Tc, for example in conventional manner using units HS, HA, TcSS, TcS and TcA (Figure 1). The resulting organic stream containing U, Pu and Np is sent to the U/Pu split operation which is performed in units BX, BS and BSS (Figure 2). The aqueous feeds, intermediate solvent streams and product streams shown in Figure 2 are as follows:

A5: hydroxylamine	I2: solvent product of Tc removal
A6: U(IV)	I3: solvent product of U/Pu split
15 A7: water	P4: Np product
A8: formohydroxamic acid	P3: Pu product

In the U/Pu split, the organic stream is contacted with hydroxylamine (HAN), in this case in unit BX. The HAN is used as a reductant: it reduces Np(VI) to Np(V) and it reduces Pu(IV) to give Pu(III). The aqueous liquor goes from unit BX to unit BS, to partially re-extract U. In this example, unit BS contains a single centrifugal contactor stage.

The aqueous product from unit BS is mixed with a concentrated U(IV) feed and passed to a criticality safe tank 1, where it is stored at an elevated temperature, for example from 30 to 90 °C and more particularly of about 50 °C, to allow the reduction of inextractable Np(V) to extractable Np(IV). The residence time in the tank may be about 6 hours, for 5 example.

The product liquid from the tank 1 goes to unit BSS, where the remainder of the U is re-extracted as well as the Np.

10 As compared with a conventional process in which Np and Pu are reduced solely with U(IV), the above described process in its preferred embodiments uses a very small amount of depleted U(IV). As a result, little or no U(IV) is found in the Np product. Moreover, almost no U(IV) is backwashed with the Pu product, which is thus purer. The process gives an opportunity for the number of stages in the U/Pu split operation to be 15 decreased. The reduced uranium load in the solvent makes the solvent easier to recycle (see below). Finally, less depleted U(IV) is added to the 235U to be recovered and the final U stream is therefore more suitable for a uranium enrichment process.

20 The solvent stream containing uranium and neptunium leaves unit BX for unit NpS, where Np removal occurs. Formohydroxamic acid (FHA) may be used to reduce and complex the Np, as described in WO 97/30456. Specifically, Np is removed from the uranium product solvent stream in a "Neptunium Polish" contactor using FHA as a complexant for Np(IV) and a reductant for Np(VI). This gives a relatively pure 237Np stream which can be disposed of independently if desired. Any residual Pu(IV) in this 25 contactor will also be removed by complexation with FHA. Generally, the contactor is operated at room temperature to minimise FHA hydrolysis, but this is not an essential requirement.

30 The aqueous stream which leaves unit NpS goes to unit NpA, where U recovery is performed, for example in conventional manner. The treated solvent can be recycled from unit NpA to the U/Pu split operation. The recycled solvent is preferably fed to where it matches best the nitric acid concentration and U loading of the U recovery unit BS/BSS of the split operation. Accordingly, in the illustrated embodiment, the solvent is

fed into the solvent stream of the U recovery operation immediately before unit BS.

A fraction of the Np aqueous product can also be recycled to the U/Pu split operation to reduce the inventory of fresh HAN used. In preferred embodiments, a fraction of the
5 NpA aqueous product is fed to tank 2 to allow further (and preferably complete) hydrolysis of formohydroxamic acid to hydroxylamine and formic acid. In practice, it is then diluted to reduce the acidity before being mixed with the hydroxylamine feed to the BS contactors.

10 A fraction of the BS solvent product can also be recycled to the Tc rejection or fission product removal contactors to reduce the solvent inventory used. It is normally first fed to tank 3 to ensure complete oxidation of U(IV) and Pu(III).

15 The Decontamination Factor (DF) of an operation is calculated as feed molar flowrate divided by the outlet molar flowrate. The DF values and U concentrations were determined for a simulated operation of a reprocessing plant incorporating the NpA to BS recycle. Satisfactory results were obtained, but a decrease was noted in the uranium DF value in the Pu product. This recycle operation may therefore be particularly suitable for use where the Pu stream is used for the fabrication of MOX fuel (MOX = Mixed Oxide
20 (U + Pu)).

It will be appreciated that the above-described process exemplifies a Purex reprocessing method in which the U/Pu split operation involves treating the solvent stream with hydroxylamine to reduce Pu(IV) to Pu(III) and Np to Np(V) and subsequently treating the
25 aqueous stream with U(IV) to reduce Np to Np(IV), and in which polished solvent from the neptunium rejection/U recovery operation is recycled to the U/Pu partitioning operation. It also includes the option to recycle a fraction of the Np product to reduce the inventory of fresh hydroxylamine. Of course, the reprocessing method may include just one or two of these methods of the invention.

30

Uranium and/or plutonium recovered using a method of the invention may be formed into fissile material, for example a fuel pellet. Exemplary fissile material is MOX fuel. The invention therefore includes a process for reprocessing nuclear fuel to form a fissile

material optionally in the form of a fuel pellet, a fuel pin or a fuel assembly, the process comprising performing a method of the invention.

CLAIMS

1. A spent fuel reprocessing method adapted to reduce Pu to Pu(III) and Np to Np(IV) which includes;
 - 5 (i) a first step of treating a mixture, containing Pu and Np, and optionally U, with hydroxylamine; and
 - (ii) a second step of treating the mixture resulting from step (i) with U(IV).
- 10 1. A method of claim 1 wherein the mixture when containing the U(IV) is held at an elevated temperature to allow all or most of the Np to be reduced to Np(IV).
2. A method of claim 1 which is performed as part of the U/Pu split operation.
- 15 3. A method of claim 3 wherein a solvent stream containing U, Pu and Np is contacted with the hydroxylamine and passed through a contactor stage, the aqueous stream from which is supplied to a tank where it is contacted with U(IV) and maintained at an elevated temperature for a time sufficient for at least a majority of the Np to become Np(IV), the resultant liquid being passed through one or more further contactor stages for the recovery of U and Np.
- 20 4. A method of claim 2 or claim 4 wherein the elevated temperature is from 30 to 90 °C.
- 25 5. A Purex reprocessing method, characterised in that the U/Pu split operation involves treating the solvent stream with hydroxylamine to reduce Pu(IV) to Pu(III) and Np to Np(V) and subsequently treating the aqueous stream with U(IV) to reduce Np to Np(IV).
- 30 6. A spent fuel reprocessing method comprising the partitioning of U and Pu(III) by solvent extraction and the subsequent polishing of the solvent to remove Np therefrom, which method includes the step of recycling solvent from a neptunium rejection operation to the U/Pu split operation.

7. A method of claim 7 wherein the U/Pu partitioning operation is performed in a multi-stage contactor and the recycled solvent is fed into the solvent stream immediately prior to the final contactor through which the solvent flows.

5 8. A Purex reprocessing method, characterised in that solvent from the neptunium rejection operation is recycled to the U/Pu split operation.

9. A method of any of claims 7 to 9 which further includes the feature(s) recited in one or more of claims 1 to 7.

10

10. A process for reprocessing nuclear fuel to form a fissile material optionally in the form of a fuel pellet, a fuel pin or a fuel assembly, the process comprising performing a method of any of claims 1 to 11.

15

11. A Purex reprocessing plant in which the U/Pu partitioning apparatus includes a vessel for temporarily storing the aqueous stream.

12. A plant of claim 11 wherein the vessel includes means for heating the aqueous stream.

20

13. A plant of claim 12 or claim 13 wherein the partitioning apparatus comprises a multi-stage contactor and the vessel is located in the flowpath of the aqueous stream between two series of contactors through which the aqueous stream flows.

25

14. A Purex reprocessing plant in which a conduit is provided between the solvent outlet of the Np rejection apparatus and the U/Pu partitioning apparatus to enable recycled solvent to be fed to the U/Pu split operation.

30 15. A plant of claim 15 wherein the partitioning apparatus comprises a multi-stage contactor and the conduit enters the solvent flowpath of the partitioning apparatus prior to the final contactor through which the solvent flows.

16. A plant of claim 15 or claim 16 which further includes the feature(s) of one or

more of claims 13 to 15.

18. A spent fuel reprocessing method which includes recycling a fraction of the aqueous stream of the Np rejection operation to the U/Pu split.

5

19. A method of claim 18 in which the aqueous stream fraction contains formohydroxamic acid and it is held in a vessel to allow complete hydrolysis of the formohydroxamic acid before being supplied to the U/Pu split.

10 20. A plant in which a conduit is provided between the aqueous product outlet of the Np rejection operation and the U/Pu split apparatus.

21. A spent fuel reprocesing method which includes recycling a fraction of the solvent of the U/Pu split to the Tc rejection or fission product removal operation.

15

22. A method of claim 21 in which the solvent fraction is treated to oxidise U(IV) and Pu(III) before being supplied to the Tc rejection or fission product removal operation.

20 23. A plant in which a conduit is provided between the solvent stream of the U/Pu split and the Tc rejection or fission product removal operation.

1/2

Figure 1

2/2

Fig 2