Türkçe için Konuşma Tanıma ve Derin Öğrenmeyle Dil Modelleme

Ebru Arısoy

Elektrik-Elektronik Mühendisliği Bölümü MEF Üniversitesi

3 Temmuz 2018

EBRU ARISOY

- 2002 Boğaziçi Universitesi EE (BS)
- 2004 Boğaziçi Universitesi EE (MS)
- 2009 Boğaziçi Universitesi EE (PhD)
- 2010 2013 IBM T.J. Watson Research Center
- 2014 2015 IBM Türkiye
- 2015 MEF Üniversitesi

Içerik

- Part 1: Otomatik Konuşma Tanıma (Genel Bilgi)
- Part 2: Türkçe Konuşma Tanıma
- Part 3: Derin Öğrenme ile Dil Modelleme

Part I

Otomatik Konuşma Tanıma (Genel Bilgi)

Amaç:

Bir ses sinyaline karşılık gelen metinleri otomatik olarak belirlemek.

$$W=\{w_1\dots ext{nice cat}\dots w_n\},\ w_i\in\mathcal{V}$$
: sabit ve sınırlı dağarcık — Dağarcık Dışı Kelime (DDK)

 $A=\{a_1a_2\dots a_t\},\, a_i\in \mathcal{A}$: sinyal işleme yöntemleri ile öznitelik çıkarım

 $\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$

Amaç:

Bir ses sinyaline karşılık gelen metinleri otomatik olarak belirlemek.

$$\textit{W} = \{\textit{W}_1 \dots \textit{nice cat} \dots \textit{W}_n\}, \; \textit{W}_i \in \mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

 $A=\{a_1a_2\dots a_t\},\ a_i\in\mathcal{A}$: sinyal işleme yöntemleri ile öznitelik çıkarım

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

Amaç:

Bir ses sinyaline karşılık gelen metinleri otomatik olarak belirlemek.

$$W=\{ extit{W}_1\dots ext{nice cat}\dots extit{W}_n\},\ extit{W}_i\in\mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

$$\mathcal{A} = \{a_1 a_2 \dots a_t\}, \ a_i \in \mathcal{A}$$
: sinyal işleme yöntemleri ile öznitelik çıkarımı

 $\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$

Amaç:

$$W=\{ extit{W}_1\dots ext{nice cat}\dots extit{W}_n\},\ extit{W}_i\in\mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

$$\mathcal{A}=\{a_1a_2\dots a_t\},\,a_i\in\mathcal{A}$$
: sinyal işleme yöntemleri ile öznitelik çıkarımı

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

Amaç:

$$W=\{ extit{W}_1\dots ext{nice cat}\dots extit{W}_n\},\ extit{W}_i\in\mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

$$A = \{a_1 a_2 \dots a_t\}, \ a_i \in \mathcal{A}$$
: sinyal işleme yöntemleri ile öznitelik çıkarımı

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

Amaç:

$$\textit{W} = \{\textit{w}_1 \dots \text{nice cat} \dots \textit{w}_n\}, \; \textit{w}_i \in \mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

$$A = \{a_1 a_2 \dots a_t\}, \ a_i \in \mathcal{A}$$
: sinyal işleme yöntemleri ile öznitelik çıkarımı

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

Amaç:

$$\textit{W} = \{\textit{w}_1 \dots \text{nice cat} \dots \textit{w}_n\}, \; \textit{w}_i \in \mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

$$A = \{a_1 a_2 \dots a_t\}, \ a_i \in \mathcal{A}$$
: sinyal işleme yöntemleri ile öznitelik çıkarımı

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

Amaç:

$$\textit{W} = \{\textit{w}_1 \dots \text{nice cat} \dots \textit{w}_n\}, \; \textit{w}_i \in \mathcal{V}$$
: sabit ve sınırlı dağarcık \longrightarrow Dağarcık Dışı Kelime (DDK)

$$A = \{a_1 a_2 \dots a_t\}, \ a_i \in \mathcal{A}$$
: sinyal işleme yöntemleri ile öznitelik çıkarımı

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} \frac{P(A|W)P(W)}{P(A)} = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

Akustik Model

Akustik Model:

- Akustik model olarak Saklı Markov Model (SMM) kullanılır.
- Ses kayıtları ve bunlara karşılık gelen referans metinleri kullanılarak eğitilir.

Akustik Model

SMM'deki durum çıktı olasılıkları için kullanılan modeller.

P(A/Q) A: Akustik öznitelik vektörü Q: Sescik/durum etiketleri

- Gauss Karışım Modeli (GKM)
 - P(A/Q) hesabı GKM ile yapılır.
- Derin Sinir Ağları (DSA)
 - P(Q/A) hesabı DSA ile yapılır.
 - $P(A/Q) \approx P(Q/A)/P(Q)$
 - SMM'de P(A/Q) kullanılır.

İstatistiksel Dil Modeli

Bir dildeki her kelime dizilimine olasılık atar, P(W).

n'li Dizilimli Dil Modeli

$$W = \{w_1 \dots w_N\} = \mathsf{bu} \; \mathsf{kedi} \; \mathsf{çok} \; \mathsf{sevimli}$$

```
P(W) = P(bu \text{ kedi } cok \text{ sevimli})
= P(bu)P(kedi|bu)P(cok|bu \text{ kedi})P(sevim
```

İstatistiksel Dil Modeli

Bir dildeki her kelime dizilimine olasılık atar, P(W).

n'li Dizilimli Dil Modeli

$$W = \{w_1 \dots w_N\} = \mathsf{bu} \; \mathsf{kedi} \; \mathsf{çok} \; \mathsf{sevimli}$$

$$P(W) = P(bu \text{ kedi çok sevimli})$$

= $P(bu)P(\text{kedi|bu})P(\text{çok|bu kedi})P(\text{sevimli|bu kedi çok})$

İstatistiksel Dil Modeli

Bir dildeki her kelime dizilimine olasılık atar, P(W).

n'li Dizilimli Dil Modeli

$$W = \{w_1 \dots w_N\} =$$
bu kedi çok sevimli

$$P(W) = P(\text{bu kedi çok sevimli})$$

= P(bu)P(kedi|bu)P(çok|bu kedi)P(sevimli|bu kedi çok)

İstatistiksel Dil Modeli

Bir dildeki her kelime dizilimine olasılık atar, P(W).

n'li Dizilimli Dil Modeli

$$W = \{w_1 \dots w_N\} =$$
bu kedi çok sevimli $)$
 $= P(bu)P(kedi|bu)P(çok|bu kedi)P(\underbrace{sevimli}_{lahmin} |\underbrace{bu kedi çok}_{lahmin})$

<ロ > ← □

aecmis

İstatistiksel Dil Modeli

Bir dildeki her kelime dizilimine olasılık atar, P(W).

n'li Dizilimli Dil Modeli

```
W = \{w_1 \dots w_N\} = bu kedi çok sevimliP(W) = P(bu kedi çok sevimli) = P(bu)P(kedi|bu)P(çok|bu kedi)P(sevimli) bu kedi çok) Eğer n = 2 \rightarrow (2'li dizilim)
```

 $P(W) \approx P(bu)P(kedi|bu)P(cok|kedi)P(sevimli|cok)$

İstatistiksel Dil Modeli

Bir dildeki her kelime dizilimine olasılık atar, P(W).

n'li Dizilimli Dil Modeli

```
W = \{w_1 \dots w_N\} = \text{bu kedi çok sevimli}
P(W) = P(\text{bu kedi çok sevimli})
= P(\text{bu})P(\text{kedi}|\text{bu})P(\text{çok}|\text{bu kedi})P(\underbrace{\text{sevimli}}|\text{bu kedi çok})
= P(\text{bu})P(\text{kedi}|\text{bu})P(\text{çok}|\text{bu kedi})P(\underbrace{\text{sevimli}}|\text{cok})
= P(W) \approx P(\text{bu})P(\text{kedi}|\text{bu})P(\text{çok}|\text{kedi})P(\text{sevimli}|\text{cok})
= P(\text{bu})P(\text{kedi}|\text{bu})P(\text{cok}|\text{kedi})P(\text{sevimli}|\text{cok})
```

n'li Dizilimli Dil Modeli

 Koşullu olasılıklar en büyük olabilirlik kestirimi ile metin verisi üzerinden öğrenilir.

$$P(w|h) = P(w_k|w_{k-n+1} \ldots w_{k-1}) = \frac{C(w_{k-n+1} \ldots w_{k-1} w_k)}{C(w_{k-n+1} \ldots w_{k-1})}$$

3'lü dizilim:

$$P(\text{çok}|\text{bu kedi}) = \frac{C(\text{bu kedi çok})}{C(\text{bu kedi})}$$

Veri tabanında geçmeyen n'li dizilimlere küçük olasılık dağıtımları yapılır.

Sinir Ağları Dil Modeli

- Koşullu olasılıklar sinir ağları kullanılarak hesaplanır.
- Kelimeler için sürekli uzay gösterimleri öğrenilir.

İleribesleme Sinir Ağı Dil Modeli

Öznitelik Tabanlı Dil Modeli

- Dilbilimsel bilginin dil modelinde kullanılmasını kolaylaştırır.
- Dilbilimsel bilgi öznitelik vektörüne dönüştürülüp dil modellinde kullanılır.
- En büyük entropi dil modeli:

$$P(w|h) = \frac{1}{Z(h)} e^{\sum_i \alpha_i \Phi_i(w,h)}$$

Ayırıcı dil modeli:

$$F(W) = \sum_{i} \alpha_{i} \Phi_{i}(W)$$

Öznitelik Tabanlı Dil Modeli

- Dilbilimsel bilginin dil modelinde kullanılmasını kolaylaştırır.
- Dilbilimsel bilgi öznitelik vektörüne dönüştürülüp dil modellinde kullanılır.
- En büyük entropi dil modeli:

$$P(w|h) = \frac{1}{Z(h)} e^{\sum_i \alpha_i \Phi_i(w,h)}$$

Ayırıcı dil modeli:

$$F(W) = \sum_{i} \alpha_{i} \Phi_{i}(W)$$

Part II

Türkçe Konuşma Tanıma

Türkçe'nin Dil Özellikleri

Türkçe üretken biçimbilimsel yapıya sahip sondan eklemeli bir dildir.

```
bildiridekiler → bildiri -de -ki -ler

ruhsatlandırılamamasındaki →

ruhsat -lan -dır -ıl -ama -ma -sı -nda -ki
```

Türkçe serbest kelime dizilimine sahiptir.

Ben çocuğa kitabı verdim

Çocuğa kitabı ben verdim

Ben kitabı çocuğa verdim

Sondan eklemeli (üretken biçimbilimsel yapı)

bildiridekiler → bildiri -de -ki -ler

*Şekil için Mathias Creutz'a teşekkür ederiz.

Sondan eklemeli diller: Türkçe, Fince, Estonyaca, Macarca

Sondan eklemeli (üretken biçimbilimsel yapı) → yüksek DDK oranı

Her DDK 1.5 Kelime Hata Oranı (KHO) verir!

Sondan eklemeli diller: Türkçe, Fince, Estonyaca, Macarca

lacktriangle Sondan eklemeli (üretken biçimbilimsel yapı) ightarrow yüksek DDK oranı

Her DDK 1.5 Kelime Hata Oranı (KHO) verir!

 $oldsymbol{Q}$ Serbest kelime dizilimi ightarrow Koşullu olasılıklar için gürbüz kestirimler yapılamaz

Ben çocuğa **kitabı** verdim

 $P(W) \approx P(ben)P(\text{çocuğa}|\text{ben}) \dots P(\text{verdim}|\text{kitabı})$

Çocuğa kitabı ben verdim

Ben kitabı çocuğa verdim

 $oldsymbol{Q}$ Serbest kelime dizilimi ightarrow Koşullu olasılıklar için gürbüz kestirimler yapılamaz

Ben çocuğa kitabı verdim

$$P(W) \approx P(ben)P(cocuğa|ben) \dots P(verdim|kitabı)$$

Çocuğa kitabı ben verdim

```
P(W) \approx P(\text{çocuğa})P(\text{kitabı}|\text{çocuğa})\dots P(\text{verdim}|\text{ben})
```

Ben kitabı çocuğa verdim

```
P(W) \approx P(\text{ben})P(\text{kitabi|ben}) \dots P(\text{verdim|cocuga})
```

Sondan eklemeli diller için önerilen çözüm:

Kelimeler yerine kelime-altı birimlerin konuşma tanımada kullanılması.

Kelime-altı birimler: Anlamlı kelime bölütleri

bildiridekiler ightarrow bildiri -de -ki -ler

Sondan eklemeli diller için önerilen çözüm:

Kelimeler yerine kelime-altı birimlerin konuşma tanımada kullanılması.

Kelime-altı birimler: Anlamlı kelime bölütleri

bildiridekiler → bildiri -de -ki -ler

- hatalı ses değişimi: bildiri-de-ki-lar
- hatalı ek dizilimi: hatalı ek dizilim
- anlamlı olmayan dizilim:

Sondan eklemeli diller için önerilen çözüm:

Kelimeler yerine kelime-altı birimlerin konuşma tanımada kullanılması.

Kelime-altı birimler: Anlamlı kelime bölütleri

```
bildiridekiler → bildiri -de -ki -ler
```

- hatalı ses değişimi: bildiri-de-ki-lar
- hatalı ek dizilimi: bildiri-ki-de-ler
- anlamlı olmayan dizilim: -ki-de-ler

Sondan eklemeli diller için önerilen çözüm:

Kelimeler yerine kelime-altı birimlerin konuşma tanımada kullanılması.

```
Kelime-altı birimler: Anlamlı kelime bölütleri
```

```
bildiridekiler → bildiri -de -ki -ler
```

- hatalı ses değişimi: bildiri-de-ki-lar
- hatalı ek dizilimi: bildiri-ki-de-ler
- anlamlı olmayan dizilim: -ki-de-ler

Sondan eklemeli diller için önerilen çözüm:

Kelimeler yerine kelime-altı birimlerin konuşma tanımada kullanılması.

Kelime-altı birimler: Anlamlı kelime bölütleri

bildiridekiler → bildiri -de -ki -ler

- hatalı ses değişimi: bildiri-de-ki-lar
- hatalı ek dizilimi: bildiri-ki-de-ler
- anlamlı olmayan dizilim: -ki-de-ler

Türkçe'nin Konuşma Tanıma Açısından Zorlukları

Sondan eklemeli diller için önerilen çözüm:

Kelimeler yerine kelime-altı birimlerin konuşma tanımada kullanılması.

Kelime-altı birimler: Anlamlı kelime bölütleri

```
bildiridekiler → bildiri -de -ki -ler
```

Kelime-altı birimlerin konuşma tanıma açısından zorlukları

- hatalı ses değişimi: bildiri-de-ki-lar
- hatalı ek dizilimi: bildiri-ki-de-ler
- anlamlı olmayan dizilim: -ki-de-ler

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

• kelimeleri daha kısa ve anlamlı birimlere bölmek

harfler: bildiridekiler \rightarrow b i l d i r i d e k i l e r heceler: bildiridekiler \rightarrow bil di ri de ki ler

kök ve kök sonrası: bildiridekiler → bildiri dekiler

kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

bil: b i l

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

• kelimeleri daha kısa ve anlamlı birimlere bölmek

```
harfler: bildiridekiler \rightarrow b i l d i r i d e k i l e l heceler: bildiridekiler \rightarrow bil di ri de ki ler
```

kök ve kök sonrası: bildiridekiler ightarrow bildiri dekiler

2 kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

```
bil: b i l
```

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

kelimeleri daha kısa ve anlamlı birimlere bölmek

```
harfler: bildiridekiler \rightarrow bildiridekiler r
```

heceler: bildiridekiler ightarrow bil di ri de ki ler

kök ve ekler: bildiridekiler → de ki ler

kök ve kök sonrası: bildiridekiler ightarrow bildiri dekiler

2 kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

bil: b i l

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

• kelimeleri daha kısa ve anlamlı birimlere bölmek

harfler: bildiridekiler \rightarrow bildiridekile i

heceler: bildiridekiler → bil di ri de ki ler

kök ve ekler: bildiridekiler ightarrow bildiri de ki ler

kök ve kök sonrası: bildiridekiler ightarrow <u>bildiri</u> dek

kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

bil: b i l

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

kelimeleri daha kısa ve anlamlı birimlere bölmek

```
harfler: bildiridekiler \rightarrow b i l d i r i d e k i l e
```

```
heceler: bildiridekiler → bil di ri de ki ler
kök ve ekler: bildiridekiler → bildiri de ki ler
```

```
kök ve kök sonrası: bildiridekiler → bildiri dekiler
```

2 kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

```
bil: b i l -
```

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

kelimeleri daha kısa ve anlamlı birimlere bölmek

```
harfler: bildiridekiler \rightarrow b i I d i r i d e k i I e r
```

heceler: bildiridekiler → bil di ri de ki ler kök ve ekler: bildiridekiler → bildiri de ki ler

kök ve kök sonrası: bildiridekiler ightarrow bildiri dekiler

```
kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)
```

bil: b i l →

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

• kelimeleri daha kısa ve anlamlı birimlere bölmek

```
harfler: bildiridekiler \rightarrow b i I d i r i d e k i I e
```

heceler: bildiridekiler → bil di ri de ki ler kök ve ekler: bildiridekiler → bildiri de ki ler kök ve kök sonrası: bildiridekiler → bildiri dekiler

🝳 kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

```
bil: b i I \rightarrow
```

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

kelimeleri daha kısa ve anlamlı birimlere bölmek

harfler: bildiridekiler \rightarrow b i I d i r i d e k i I e r

heceler: bildiridekiler → bil di ri de ki ler
kök ve ekler: bildiridekiler → bildiri de ki ler
kök ve kök sonrası: bildiridekiler → bildiri dekiler

kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

bil: b i $l \rightarrow \text{(tar)} \rightarrow \text{(b1)} \rightarrow \text{(b2)} \rightarrow \text{(b3)} \rightarrow \text{(1)} \rightarrow \text{(2)} \rightarrow \text{(3)} \rightarrow \text{(not)}$

Kelime-altı birimler üzerinden dil modeli eğitmek

Motivasyon:

Konuşma Tanımadaki DDK problemini çözmek.

Yöntem:

kelimeleri daha kısa ve anlamlı birimlere bölmek

```
harfler: bildiridekiler \rightarrow bildiridekiler
```

heceler: bildiridekiler → bil di ri de ki ler
kök ve ekler: bildiridekiler → bildiri de ki ler
kök ve kök sonrası: bildiridekiler → bildiri dekiler

2 kelime-altı birimleri sözlükte kullanmak (Akustik model aynı kalır!)

```
bil: b i l \rightarrow \text{(tar)} \rightarrow \text{(b1)} \rightarrow \text{(b2)} \rightarrow \text{(b3)} \rightarrow \text{(i1)} \rightarrow \text{(i2)} \rightarrow \text{(i3)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow \text{(i4)} \rightarrow
```

3 Kelime-altı birimler üzerinden dil modeli eğitmek

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

 $\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"ok}$ ve ekler $< \mathcal{V}_{
m k\"ok}$ ve k\"ok sonrası $\ll \mathcal{V}_{
m kelimeler}$

• dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

• dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

• bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Kelime-altı birimler

bir dildeki kelimeleri üretebilmeli.

$$\mathcal{V}_{
m harfler} \ll \mathcal{V}_{
m heceler} < \mathcal{V}_{
m k\"{o}k}$$
 ve ekler $< \mathcal{V}_{
m k\"{o}k}$ ve k\"{o}k sonrası $\ll \mathcal{V}_{
m kelimeler}$

dil modeli olasılıklarının hesabı açısından anlamlı birimler olmalı.

harfler < heceler < kök ve ekler < kök ve kök sonrası

• fazladan (anlamsız) kelime üretmeye karşı dayanıklı olmalı.

Dilbilgisel Birimler

Kural tabanlı biçimbilimsel ayrıştırıcı kullanılarak elde edilir.

kök ve ekler, kök ve kök sonrası, ...

İstatistiksel Birimler

Metin verisinden eğitmensiz öğrenme ile elde edilir.

• Linguistica, Morfessor¹, Paramor, ...

kök ve ekler: bildiridekiler \rightarrow bildiri -de -ki -ler istatistiksel birimler: bildiridekiler \rightarrow bildir -ide -kiler

Kelimelerin sürekli uzay gösterimi ile bölütleme de yapılmaktadır².

¹Creutz M, Lagus K (2005) Unsupervised morpheme segmentation and morphology induction from text corpora using Morfessor 1.0. Publications in Computer and Information Science Report A81, HUT, Helsinki, Finland

²Üstün A, Can B. Unsupervised Morphological Segmentation Using Neural Word Embeddings. In Proceedings of SLSP 2016, Pilsen, Czech Republic, 2016

Dilbilgisel Birimler

Kural tabanlı biçimbilimsel ayrıştırıcı kullanılarak elde edilir.

kök ve ekler, kök ve kök sonrası, ...

İstatistiksel Birimler

Metin verisinden eğitmensiz öğrenme ile elde edilir.

• Linguistica, Morfessor¹, Paramor, ...

```
kök ve ekler: bildiridekiler → bildiri -de -ki -ler istatistiksel birimler: bildiridekiler → bildir -ide -kiler
```

• Kelimelerin sürekli uzay gösterimi ile bölütleme de yapılmaktadır².

¹Creutz M, Lagus K (2005) Unsupervised morpheme segmentation and morphology induction from text corpora using Morfessor 1.0. Publications in Computer and Information Science Report A81, HUT, Helsinki, Finland

²Üstün A, Can B. Unsupervised Morphological Segmentation Using Neural Word Embeddings. In Proceedings of SLSP 2016, Pilsen, Czech Republic, 2016

Türkçe Konuşma Tanıma Sistemi Geliştirilmesi

- Veri tabanı oluşturulması
 - Akustik veri: Ses kayıtları ve referans metinleri
 - Metin verisi: Örün sitelerinden toplanmış metinler
- Akustik model eğitimi
 - SMM-GKM ve DSA ile eğitim
 - Yöntemler dilden bağımsızdır
 - Türkçe için sözlükte (genelde) sesler için harfler kullanılır.
- Oli modeli eğitimi
 - Türkçe için anlamlı kelime-altı birimlerinin araştırılması
 - Ayırıcı dil modellerinin dilbilimsel ve istatistiksel özniteliklerle kullanılması
 - Sinir Ağları (SA) dil modellerinin kullanılması

Türkçe Konuşma Tanıma Sistemi Geliştirilmesi

- Veri tabanı oluşturulması
 - Akustik veri: Ses kayıtları ve referans metinleri
 - Metin verisi: Örün sitelerinden toplanmış metinler
- Akustik model eğitimi
 - SMM-GKM ve DSA ile eğitim
 - Yöntemler dilden bağımsızdır
 - Türkçe için sözlükte (genelde) sesler için harfler kullanılır.
- Oli modeli eğitimi
 - Türkçe için anlamlı kelime-altı birimlerinin araştırılması
 - Ayırıcı dil modellerinin dilbilimsel ve istatistiksel özniteliklerle kullanılması
 - Sinir Ağları (SA) dil modellerinin kullanılması

Türkçe Veri tabanları

Akustik Veri Tabanı = Ses Kayıtları + Referans Metinleri

- Mikrofon ile Toplanan Kayıtlar:
 - GlobalPhone: Türkçe için ≈17 saat (ELRA ve Appen Butler Hill Pty Ltd.)
 - METU Microphone Speech: ≈10 saat (LDC LDC2006S33)
 - Sabancı Üniversitesi'nde toplanan akustik veri: ≈30 saat³
- Telefon Üzerinden Toplanan Kayıtlar:
 - OrienTel Projesi: 1700 konuşmacı (ELRA)
 - IARPA Babel Turkish Language Pack: ≈213 saat (LDC LDC2016S10)
 - SESTEK'in topladığı çağrı merkezi konuşmaları: ≈1000 saat ⁴
- Haber Programı Kayıtları: ≈130 saat Türkçe programlar (LDC LDC2012S06)

³Erdogan H, Büyük O, Oflazer K (2005) Incorporating language constraints in sub-word based speech recognition. In: Proceedings of ASRU, San Juan, PR, pp 98 –103

⁴Haznedaroğlu A, Arslan LM, Büyük O, Eden M (2010) Turkish LVCSR system for call center conversations. In: Proceedings of SIU, Diyarbakır, Turkey, pp 372 – 375

Türkçe Veri tabanları

MetinVeritabani

- 184 M kelimelik gazete haberleri metinleri ⁵
- 81 M kelimelik haber ve e-kitap metinleri

⁵Sak H, Güngör T, Saraçlar M (2011) Resources for Turkish morphological processing. Language Resources and Evaluation 45(2):249–261

⁶Erdogan H, Büyük O, Oflazer K (2005) Incorporating language constraints in sub-word based speech recognition. In: Proceedings of ASRU, San Juan, PR. pp 98 −103

Türkçe için Akustik Model

- Akustik model olarak Saklı Markov Model (SMM) kullanılmıştır.
- SMM'deki durum çıktı olasılıkları için GKM ve DSA denemiştir.
- DSA Akustik Modeli
 - Derin sinir ağı mimarileri
 - Çok katmanlı ileribesleme
 - Yinelemeli ve türevleri
 - Zaman gecikmeli
 - Amaç işlevleri
 - Çapraz entropi
 - Dizisel ayırıcı eğitim
 - Örüsüz en büyük ortak bilgi

Türkçe için Akustik Model - Sonuçlar

Türkçe Haber Programları için GDSKT⁷

- Akustik Veri: 188 saat (eğitim), 3 saat (geliştirme), 3 saat (sınama)
- Metin Verisi: 182.3 M kelime (haber metinleri) + 1.8 M kelime (referans metinler)
- Dil Modeli: 200 K dağarcık, 3'lü dizilim kelime

Akustik Model	Sınama KHO (%)
SMM-GKM	18.30
Çok katmanlı ileribesleme (çapraz entropi)	14.24
Çok katmanlı ileribesleme (dizisel ayırıcı eğitim)	13.42
Zaman gecikmeli SA (çapraz entropi)	12.45
Zaman gecikmeli SA (örüsüz en büyük ortak bilgi)	10.92

⁷Arısoy E, Saraçlar M (2018) Turkish Broadcast News Transcription Revisited. In: Proceedings of SIU 2018, Çeşme, Türkiye.

Türkçe için Akustik Model - Sonuçlar

Türkçe Haber Programları için GDSKT⁷

- Akustik Veri: 188 saat (eğitim), 3 saat (geliştirme), 3 saat (sınama)
- Metin Verisi: 182.3 M kelime (haber metinleri) + 1.8 M kelime (referans metinler)
- Dil Modeli: 200 K dağarcık, 3'lü dizilim kelime

Akustik Model	Sınama KHO (%)
SMM-GKM	18.30
Çok katmanlı ileribesleme (çapraz entropi)	14.24
Çok katmanlı ileribesleme (dizisel ayırıcı eğitim)	13.42
Zaman gecikmeli SA (çapraz entropi)	12.45
Zaman gecikmeli SA (örüsüz en büyük ortak bilgi)	10.92

⁷Arısoy E, Saraçlar M (2018) Turkish Broadcast News Transcription Revisited. In: Proceedings of SIU 2018, Çeşme, Türkiye. 🔻 🗦 🔻 📑

kelimeler:	sunulacak	bildiridekiler
istatistiksel birimler:	sunul -acak	bildir -ide -kiler
kök ve ekler (yüzeysel):	sun -ul -acak	bildiri -de -ki -ler
kök ve kök sonrası (yüzeysel):	sun -ul-acak	bildiri -de-ki-ler

/A/ yüzeysel gösterimde /a/ veya /e/ olabilir. /H/ yüzeysel gösterimde /ı/, /i/, /u/, veya /ü/ olabilir.

Sözlüksel Gösterim

- ullet Farklı yüzeysel gösterimler için aynı sözlüksel gösterim o Gürbüz dil modeli kestirimleri
- Ses değişimlerinin doğruluğu → Fazladan (anlamsız) kelimeleri üretme hataları azalır

^{*}Arrsoy E, Sak H, Saraçlar M (2007) Language modeling for automatic Turkish broadcast news transcription. In: Proceedings of INTERSPEECH Antwerp, Belgium, pp 2381 – 2384

kelimeler:	sunulacak	bildiridekiler
istatistiksel birimler:	sunul -acak	bildir -ide -kiler
kök ve ekler (yüzeysel) (sözlüksel ⁸)		bildiri -de -ki -ler
kök ve kök sonrası (yüzeysel)	sun -ul-acak	bildiri -de-ki-ler

/A/ yüzeysel gösterimde /a/ veya /e/ olabilir. /H/ yüzeysel gösterimde /ı/, /i/, /u/, veya /ü/ olabilir.

Sözlüksel Gösterim

- ullet Farklı yüzeysel gösterimler için aynı sözlüksel gösterim o Gürbüz dil modeli kestirimleri
- Ses değişimlerinin doğruluğu → Fazladan (anlamsız) kelimeleri üretme hataları azalır

^{*}Arrsoy E, Sak H, Saraçlar M (2007) Language modeling for automatic Turkish broadcast news transcription. In: Proceedings of INTERSPEECH.

Antwerp, Belgium, pp 2381 – 2384

kelimeler:	sunulacak	bildiridekiler
istatistiksel birimler:	sunul -acak	bildir -ide -kiler
	sel): sun -ul -acak	
(sözlükse	el ⁸): sun -HI -AcAk	bildiri -d <mark>A</mark> -ki -lAr
	sel): sun -ul-acak	bildiri -de-ki-ler
(sözlükse	el ⁸): sun -Hl-AcAk	bildiri -d <mark>A</mark> -ki-l <mark>A</mark> r

/A/ yüzeysel gösterimde /a/ veya /e/ olabilir. /H/ yüzeysel gösterimde /ı/, /i/, /u/, veya /ü/ olabilir.

Sözlüksel Gösterim

- ullet Farklı yüzeysel gösterimler için aynı sözlüksel gösterim o Gürbüz dil modeli kestirimleri
- Ses değişimlerinin doğruluğu → Fazladan (anlamsız) kelimeleri üretme hataları azalır

⁸Arisoy E, Sak H, Saraçlar M (2007) Language modeling for automatic Turkish broadcast news transcription. In: Proceedings of INTERSPEECH, Antwerp, Belgium, pp 2381 – 2384

kelimeler:	sunu	lacak	bildirid	lekiler
istatistiksel birimler:	sunu	I -acak	bildir	-ide -kiler
	/üzeysel): sun			
(sö	zlüksel ⁸): sun	-HI -AcAk	bildiri	-dA -ki -lAr
	/üzeysel): sun		bildiri	-de-ki-ler
(sö	zlüksel ⁸): sun	-HI-AcAk	bildiri	-d <mark>A</mark> -ki-lAr

/A/ yüzeysel gösterimde /a/ veya /e/ olabilir. /H/ yüzeysel gösterimde /ı/, /i/, /u/, veya /ü/ olabilir.

Sözlüksel Gösterim

ullet Farklı yüzeysel gösterimler için aynı sözlüksel gösterim o Gürbüz dil modeli kestirimleri

$$ev - IAr \rightarrow ev - Ier$$
 kitap $-IAr \rightarrow kitap - Iar$

Ses değişimlerinin doğruluğu → Fazladan (anlamsız) kelimeleri üretme hataları azalır

⁸Arisoy E, Sak H, Saraçlar M (2007) Language modeling for automatic Turkish broadcast news transcription. In: Proceedings of INTERSPEECH, Antwerp, Belgium, pp 2381 – 2384

kelimeler:	sunulacak	bildiridekiler
istatistiksel birimler:	sunul -acak	bildir -ide -kiler
kök ve ekler (yüzeysel):	sun -ul -acak	bildiri -de -ki -ler
(sözlüksel ⁸):	sun -HI -AcAk	bildiri -dA -ki -lAr
	sun - <mark>ul-aca</mark> k	bildiri -de-ki-ler
(sözlüksel ⁸):	sun -HI-AcAk	bildiri -d <mark>A</mark> -ki-l <mark>A</mark> r

/A/ yüzeysel gösterimde /a/ veya /e/ olabilir. /H/ yüzeysel gösterimde /ı/, /i/, /u/, veya /ü/ olabilir.

Sözlüksel Gösterim

ullet Farklı yüzeysel gösterimler için aynı sözlüksel gösterim o Gürbüz dil modeli kestirimleri

$$ev - IAr \rightarrow ev - Ier$$
 kitap $-IAr \rightarrow kitap - Iar$

Ses değişimlerinin doğruluğu → Fazladan (anlamsız) kelimeleri üretme hataları azalır

⁸Arisoy E, Sak H, Saraçlar M (2007) Language modeling for automatic Turkish broadcast news transcription. In: Proceedings of INTERSPEECH, Antwerp, Belgium, pp 2381 – 2384

Türkçe için Dil Modeli – Sonuçlar

Türkçe Haber Programları için GDSKT9

- Akustik Veri: 188 saat (eğitim), 3 saat (geliştirme), 3 saat (sınama)
- Metin Verisi: 182.3 M kelime (haber metinleri) + 1.8 M kelime (referans metinler)
- Akustik Model: SMM-GKM

Dil Modeli	Sınama KHO (%)
Kelime	23.1
Kök ve kök sonrası (yüzeysel)	21.9
Kök ve ekler (sözlüksel)	21.8
İstatistiksel birimler	21.7
Kök ve kök sonrası (sözlüksel)	21.3

⁹Sak H, Saraçlar M, Güngör T (2012) Morpholexical and discriminative language models for Turkish automatic speech recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(8):2341–2351.

Türkçe için Dil Modeli – Sonuçlar

Türkçe Haber Programları için GDSKT9

- Akustik Veri: 188 saat (eğitim), 3 saat (geliştirme), 3 saat (sınama)
- Metin Verisi: 182.3 M kelime (haber metinleri) + 1.8 M kelime (referans metinler)
- Akustik Model: SMM-GKM

Dil Modeli	Sınama KHO (%)
Kelime	23.1
Kök ve kök sonrası (yüzeysel)	21.9
Kök ve ekler (sözlüksel)	21.8
İstatistiksel birimler	21.7
Kök ve kök sonrası (sözlüksel)	21.3

⁹Sak H, Saraçlar M, Güngör T (2012) Morpholexical and discriminative language models for Turkish automatic speech recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(8):2341–2351.

Türkçe için Dil Modeli - Sonuçlar

Türkçe Haber Programları için GDSKT¹⁰

Akustik Model	Dil Modeli	Sınama KHO (%)
SMM-GKM	3'lü kelime	18.30
Zaman gecikmeli SA	3'lü kelime	10.92
Zaman gecikmeli SA	3'lü kök ve kök sonrası*	10.12

* Yüzeysel gösterim

Arısoy E, Saraçlar M (2018) Turkish Broadcast News Transcription Revisited. In: Proceedings of SIU 2018, Çeşme, Türkiye. 4 💈 >

Türkçe için Dil Modeli - Sonuçlar

Türkçe Haber Programları için GDSKT10

Akustik Model	Dil Modeli	Sınama KHO (%)
SMM-GKM	3'lü kelime	18.30
Zaman gecikmeli SA	3'lü kelime	10.92
Zaman gecikmeli SA	3'lü kök ve kök sonrası*	10.12

* Yüzeysel gösterim

¹⁰ Arısoy E, Saraçlar M (2018) Turkish Broadcast News Transcription Revisited. In: Proceedings of SIU 2018, Çeşme, Türkiye.

Üretici Dil Modeli - Ayırıcı Dil Modeli

Üretici Dil Modeli: n-li dizilim klasik model

Koşullu olasılıklar en büyük olabilirlik kestirimi ile hesaplanır.

Ayırıcı Dil Modeli:

- Üretici modeli tamamlayıcı bir yöntemdir.
- Hata oranını en iyilemek için ses kayıtları ve onların referans metinleri ile eğitilir.
- Avantajları:
 - Model hem doğru hem de yanlış örneklerden öğrenir.
 - Farklı öznitelikler aynı modelde kolayca kullanılabilir.
 - biçimbilimsel, sözdizimsel, anlambilimsel,...

Ayırıcı Dil Modeli

haberleri sundu cümlesinin ses sinyalinin konuşma tanıma çıktısı

En iyi N hipotez

- 1. haberler sundu 0.48
- 2. haberleri sundu 0.24
- 3. haberler sorduk 0.12
- Φ(x, y): Öznitelik vektörü → x: Konuşma y: Aday hipotez
 Φ_k(x, y) = "haberleri sundu" dizilimin y'de kaç defa geçtiği
- $\bar{\alpha}$: Öznitelik parametreleri \rightarrow Ayırıcı eğitim ile öğrenilir.
- $F(x) = \underset{y \in GEN(x)}{\operatorname{argmax}} \Phi(x, y) \cdot \bar{\alpha} \to GEN(x)$: x'e karşılık gelen en iyi N hipotez

Ayırıcı Dil Modeli

haberleri sundu cümlesinin ses sinyalinin konuşma tanıma çıktısı

En iyi N hipotez

- 1. haberler sundu 0.48
- 2. haberleri sundu 0.24 (Doğru)
- 3. haberler sorduk 0.12

- $\Phi(x, y)$: Öznitelik vektörü $\to x$: Konuşma y: Aday hipotez $\Phi_k(x, y) =$ "haberleri sundu" dizilimin y'de kaç defa geçtiği
- $\bar{\alpha}$: Öznitelik parametreleri \rightarrow Ayırıcı eğitim ile öğrenilir.
- $F(x) = \underset{y \in GEN(x)}{\operatorname{argmax}} \Phi(x, y) \cdot \bar{\alpha} \to GEN(x)$: x'e karşılık gelen en iyi N hipotez

Türkce Ayırıcı Dil Modeli 11

Kullanılan öznitelikler:

- Kelimelerin n'li dizilimleri
- Kelime-altı birimlerin n'li dizilimleri
 - Dilbilimsel: kelimelerin bicimbilimsel analizinden elde edilir.
 - Istatistiksel: kelimelerin istatistiksel yöntemlerle bölütlenmesinden elde edilir.
- Sözdizimsel öznitelikler: cümlelerin bağlılık analizinden elde edilir.

¹¹ Arisoy E, Saraclar M, Roark B, Shafran I (2012) Discriminative language modeling with linguistic and statistically derived features. IEEE Transactions on Audio, Speech, and Language Processing 20(2):540-550 4 D > 4 A > 4 B > 4 B >

Part III

Derin Öğrenmeyle Dil Modelleme

Klasik ile Sinir Ağı Dil Modellerinin Karşılaştırması

Klasik n'li Dizilimli Dil Modeli:

- Kelimeler ayrık birimlerdir.
- Veri tabanında geçmeyen veya az geçen dizilimler için gürbüz kestirimler yapılamaz.

$$P(\text{sevimli}|\text{bu kedi çok}) = \frac{C(\text{bu kedi çok sevimli})}{C(\text{bu kedi çok})} = 0.25$$

$$P(\text{sevimli}|\text{bu k\"{o}pek }\text{cok}) = \frac{C(\text{bu k\"{o}pek }\text{cok sevimli})}{C(\text{bu k\"{o}pek }\text{cok})} = 0$$

Klasik ile Sinir Ağları Dil Modellerinin Karşılaştırması

Sinir Ağları (SA) Dil Modeli

- Kelimler için sürekli uzay gösterimleri öğrenilir.
 - Anlamsal ve dilbilimsel olarak benzer kelimeler sürekli uzayda yakın yerlerde bulunurlar.
- Olasılık kestirimleri sürekli uzayda SA kullanılarak yapılır.
- SA dil modeli ile daha gürbüz kestirimler yapılabilmektedir.
 - $P(\text{sevimli}|\text{bu kedi }\text{cok}) \approx P(\text{sevimli}|\text{bu k\"{o}pek }\text{cok})$
- SA Mimarileri:
 - ileribesleme, yinelemeli, uzun kısa-süreli bellek

İleribesleme Sinir Ağı (SA) Dil Modeli¹² ¹³

Olasılık kestirimleri kelimelerin sürekli uzay gösterimleri ile yapılır.

- Giriş Katmanı
- İzdüşüm Katmanı
- Saklı Katman

$$d_j = anh\left(\sum_{l=1}^{(n-1) imes P} M_{jl} c_l + b_j
ight)$$

$$o_i = \sum_{j=1}^H V_{ij} d_j + k_i$$

$$p_i = \frac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

¹²Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. Journal of Machine Learning Research 3:1137–1155

¹³ Schwenk H (2007) Continuous space language models. Computer Speech and Language 21(3):492-518 🔻 🗆 🔭 🕊

lleribesleme Sinir Ağı (SA) Dil Modeli 12 13

Olasılık kestirimleri kelimelerin sürekli uzay gösterimleri ile yapılır.

- Giris Katmanı
- İzdüşüm Katmanı
- Saklı Katman

$$d_j = anh\left(\sum_{l=1}^{(n-1) imes P} M_{jl} c_l + b_j
ight)$$

$$o_i = \sum_{j=1}^H V_{ij} d_j + k_i$$

$$p_i = \frac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

¹²Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural protabilistic language model. Journal of Machine Learning Research 3:1137–1155

¹³Schwenk H (2007) Continuous space language models. Computer Speech and Language 21(3):492–518

İleribesleme Sinir Ağı (SA) Dil Modeli^{12 13}

Olasılık kestirimleri kelimelerin sürekli uzay gösterimleri ile yapılır.

- Giriş Katmanı
- İzdüşüm Katmanı
- Saklı Katman

$$d_{j} = anh\left(\sum_{l=1}^{(n-1) imes P} extit{M}_{jl} extit{c}_{l} + extit{b}_{j}
ight)$$

$$o_i = \sum_{j=1}^H V_{ij} d_j + k_i$$

$$p_i = \frac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

¹²Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. Journal of Machine Learning Research 3:1137–1155

¹³Schwenk H (2007) Continuous space language models. Computer Speech and Language 21(3):492–518

İleribesleme Sinir Ağı (SA) Dil Modeli 12 13

Olasılık kestirimleri kelimelerin sürekli uzay gösterimleri ile yapılır.

- Giriş Katmanı
- İzdüşüm Katmanı
- Saklı Katman

$$d_{j} = anh\left(\sum_{l=1}^{(n-1) imes P} extit{M}_{jl} extit{c}_{l} + extit{b}_{j}
ight)$$

$$o_i = \sum_{j=1}^H V_{ij} d_j + k_i$$

$$p_i = \frac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

¹² Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. Journal of Machine Learning Research 3:1137–1155

¹³ Schwenk H (2007) Continuous space language models. Computer Speech and Language 21(3):492–518

İleribesleme Sinir Ağı (SA) Dil Modeli 12 13

Olasılık kestirimleri kelimelerin sürekli uzay gösterimleri ile yapılır.

- Giriş Katmanı
- İzdüşüm Katmanı
- Saklı Katman

$$d_{j}= anh\left(\sum_{l=1}^{(n-1) imes P} extit{ extit{M}}_{jl} extit{ extit{c}}_{l}+ extit{ extit{b}}_{j}
ight)$$

$$o_i = \sum_{j=1}^H V_{ij} d_j + k_i$$

$$p_i = \frac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

¹² Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic lariguage model. Journal of Machine Learning Research 3:1137–1155

¹³ Schwenk H (2007) Continuous space language models. Computer Speech and Language 21(3):492–518

İleribesleme Sinir Ağı (SA) Dil Modeli^{12 13}

İleribesleme SA dil modeli hata geri yayılım algoritması is eğitilir.

- Giriş Katmanı
- İzdüşüm Katmanı
- Saklı Katman

$$d_{j}= anh\left(\sum_{l=1}^{(n-1) imes P} extit{M}_{jl} extit{c}_{l}+ extit{b}_{j}
ight)$$

$$o_i = \sum_{j=1}^H V_{ij} d_j + k_i$$

$$p_i = \frac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

¹² Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. Journal of Machine Learning Research 3:1137–1155

¹³ Schwenk H (2007) Continuous space language models. Computer Speech and Language 21(3):492-518

İleribesleme Sinir Ağı (SA) Dil Modeli

SA Dil Modelindeki Zorluklar:

Türkçe Sinir Ağı Dil Modeli Çalışmaları

• Çıktı katmanındaki hesaplama karmaşıklığı $(H \times |V|)$

$$p_i = rac{\exp(o_i)}{\sum_{r=1}^{|V|} \exp(o_r)} = P(w_j = i|h_j)$$

• $H \approx 300 - 500$, $|V| \approx 60K - 200K$

Önerilen Çözümler:

- ullet Daha küçük çıkış dağarcığı kullanmak: $|V_o| << |V|
 ightarrow |V_o| pprox 20 K$
- Hiyerarşik bir çıkış katmanı tanımlamak: P(w|h) = P(c(w)|h)P(w|h,c(w))

Derin Sinir Ağı (DSA) Dil Modeli 14

DSA birden fazla doğrusal olmayan katmana sahiptir.

¹⁴ Arrsoy E, Sainath T, Kingsbury B, Ramabhadran B (2012) Deep neural network language models. In: Proceedings of NAACL-HLT Workshop,

Derin Sinir Ağı (DSA) Dil Modeli 14

DSA birden fazla doğrusal olmayan katmana sahiptir.

¹⁴ Arrsoy E, Sainath T, Kingsbury B, Ramabhadran B (2012) Deep neural network language models. In: Proceedings of NAACL-HLT Workshop,

- Olasılık kestirimleri yinelemeli SA ile yapılır.
- Daha uzun geçmiş kelime kullanılarak koşullu olasılıklar hesaplanır.
- Zaman boyunca geri yayılım algoritması ile eğitim yapılır.

¹⁵ Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neutral network based language model. In: Proceedings of INTERSPEECH, Japan, pp 1045–1048

- Olasılık kestirimleri yinelemeli SA ile yapılır.
- Daha uzun geçmiş kelime kullanılarak koşullu olasılıklar hesaplanır.
- Zaman boyunca geri yayılım algoritması ile eğitim yapılır.

¹⁵ Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neutral network based language model. In: Proceedings of INTERSPEECH, Japan, pp 1045–1048

- Olasılık kestirimleri yinelemeli SA ile yapılır.
- Daha uzun geçmiş kelime kullanılarak koşullu olasılıklar hesaplanır.
- Zaman boyunca geri yayılım algoritması ile eğitim yapılır.

¹⁵ Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neutral network based language model. In: Proceedings of INTERSPEECH, Japan, pp 1045–1048

- Olasılık kestirimleri yinelemeli SA ile yapılır.
- Daha uzun geçmiş kelime kullanılarak kosullu olasılıklar hesaplanır.
- Zaman boyunca geri yayılım algoritması ile eğitim yapılır.

- Olasılık kestirimleri yinelemeli SA ile yapılır.
- Daha uzun geçmiş kelime kullanılarak koşullu olasılıklar hesaplanır.
- Zaman boyunca geri yayılım algoritması ile eğitim yapılır.

¹⁵ Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neutral network based language model. In: Proceedings of INTERSPEECH, Japan, pp 1045–1048

Yinelemeli Sinir Ağı (SA) Dil Modeli

Yinelemeli SA modeli zaman boyunca hata geri yayılım algoritması ile eğitilir.

Şekiller Mikolov 2012'den alınmıştır 16.

¹⁶ Mikolov T (2012) Statistical Language Models Based on Neural Networks. Ph. D. thesis, Brno University of Technology 🗇 🕟 📲

Çift Yönlü Yinelemeli Sinir Ağı (SA) Dil Modeli

Zamanda açılmış tek yönlü yinelemeli SA

$$h_{t} = \tanh(W_{xh}x_{t} + W_{hh}h_{t-1} + b_{h})$$

$$y_{t} = W_{hy}h_{t} + b_{y}$$

$$p(w_{t} = i|w_{t-1}, h_{t-2}) = \frac{\exp(y_{t}^{i})}{\sum_{j=1}^{N} \exp(y_{t}^{j})}$$

Zamanda açılmış çift yönlü yinelemeli SA

$$h_t^F = \tanh(W_{xh}^F x_t + W_{hh}^F h_{t-1}^F + b_h^F)$$

 $h_t^B = \tanh(W_{xh}^B x_t + W_{hh}^B h_{t+1}^B + b_h^B)$
 $y_t = W_{hy}^F h_t^F + W_{hy}^B h_t^B + b_y$

Uzun Kısa-Sureli Bellik Sinir Ağı (SA) Dil Modeli 17

Yinelemeli SA Dil Modelinin Kısıtları:

- Yinelemeli SA pratikte 5-10 zaman adımından bilgi kullanır.
- Gradyan zaman içerisinde üstel olarak azalır.
- Uzun Kısa-Süreli Bellik SA: Doğrusal olmayan birimler hafıza bloklarıyla değiştirilir.
 Zaman içindeki bağımlılıkları daha iyi modeller.

$$\begin{aligned} i_t &= \sigma(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) \\ f_t &= \sigma(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) \\ c_t &= f_tc_{t-1} + i_t \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c) \\ o_t &= \sigma(W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o) \\ h_t &= o_t \tanh(c_t) \end{aligned}$$

¹⁷ Sundermeyer M, Schluter R, Ney H (2012) LSTM Neural Networks for Language Modeling. In: Proceedings of INTERSPEECH, Portland OR, USA

Sinir Ağı Dil Modeli – Sonuçlar

İngilizce Haber Programları için GDSKT¹⁸

Dil Modeli	KHO (%)
4'lü kelime*	13.0
+ tek yönlü - yinelemeli**	12.7
+ çift yönlü - yinelemeli**	12.5
+ tek yönlü - uzun kısa-süreli bellek**	12.4
+ çift yönlü - uzun kısa-süreli bellek**	12.4

^{*} eğitim verisi: 350 M kelime

^{**}P = 180, H = 300, eğitim verisi: 12 M kelime

¹⁸ Arisoy E, Sethy A, Ramabhadran B, Chen S (2015) Bidirectional recurrent neural network language models for automatic speech recognition. In:
Proceedings of ICASSP, Brisbane, Australia, pp 5421-5425

Sinir Ağı Dil Modeli – Sonuçlar

İngilizce Haber Programları için GDSKT¹⁸

Dil Modeli	KHO (%)
4'lü kelime*	13.0
+ tek yönlü - yinelemeli**	12.7
+ çift yönlü - yinelemeli**	12.5
+ tek yönlü - uzun kısa-süreli bellek**	12.4
+ çift yönlü - uzun kısa-süreli bellek**	12.4

^{*} eğitim verisi: 350 M kelime

^{**}P = 180, H = 300, eğitim verisi: 12 M kelime

¹⁸ Arisoy E, Sethy A, Ramabhadran B, Chen S (2015) Bidirectional recurrent neural network language models for automatic speech recognition. In:
Proceedings of ICASSP, Brisbane, Australia, pp 5421-5425

Sürekli Uzay Gösterimleri

• Sürekli uzay gösterimleri doğal dil işleme uygulamaları için önemli bilgiler taşır 19.

$$\overrightarrow{\textit{France}} - \overrightarrow{\textit{Paris}} + \overrightarrow{\textit{Italy}} = \overrightarrow{\textit{Roma}}$$

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

¹⁹ Mikolov T, et al. (2013) Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS 2013, pages 3111–3119

Klasik Dil Modeli ile Sinir Ağı Dil Modeli Karşılaştırması Sinir Ağı Dil Modelleri Sürekli Uzay Gösterimleri Türkçe Sinir Ağı Dil Modeli Çalışmaları

Sürekli Uzay Gösterimleri

²⁰Mikolov T, et al. (2013) Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS 2013, pages 3111–3119

Sürekli Uzay Gösterimleri

Türkçe kök ve kök sonrası sürekli uzay vektörlerinin iki boyutta gösterimi (TSNE)

Sürekli Uzay Gösterimleri

Türkçe kök ve kök sonrası sürekli uzay vektörlerinin iki boyutta gösterimi (TSNE)

Türkçe Yinelemeli Sinir Ağı Dil Modeli

Türkçe Haber Programları için GDSKT²¹

Akustik Model	Dil Modeli	Sınama KHO (%)
Zaman gecikmeli SA	3'lü kelime	10.92
Zaman gecikmeli SA	3'lü kök ve kök sonrası*	10.12
	+ Uzun Kısa-Süreli Bellek**	9.83

^{*} Yüzeysel gösterim

**P = 180, H = 300, eğitim verisi: 1.3 M kelime

²¹ Arısoy E, Saraçlar M (2018) Turkish Broadcast News Transcription Revisited. In: Proceedings of SIU 2018, Çeşme, Türkiye

Türkçe Yinelemeli Sinir Ağı Dil Modeli

Türkçe Haber Programları için GDSKT²¹

Akustik Model	Dil Modeli	Sınama KHO (%)
Zaman gecikmeli SA	3'lü kelime	10.92
Zaman gecikmeli SA	3'lü kök ve kök sonrası*	10.12
	+ Uzun Kısa-Süreli Bellek**	9.83

**P = 180, H = 300, eğitim verisi: 1.3 M kelime

^{*} Yüzeysel gösterim

²¹ Arısoy E, Saraçlar M (2018) Turkish Broadcast News Transcription Revisited. In: Proceedings of SIU 2018, Çeşme, Türkiye

Türkçe Sinir Ağı Dil Modeli Mimarileri

Kelime ve Kelime-altı Birimlerin Yinelemeli Sinir Ağı Dil Modelinde Beraber Kullanılması 22

²²Arisoy E, Saraçlar M (2015) Multi-Stream Long Short-Term Memory Neural Network Language Model. In: Proceedings of Interspeech, Dresden, Germany

Yinelemeli sinir ağı

Sondan eklemeli diller için önerilen yinelemeli sinir ağı 23

Türkçe Sinir Ağı Dil Modeli Calısmaları

²³ Arisoy E, Saraçlar M (2016) Compositional Neural Network Language Models for Agglutinative Languages. In: Proceedings of Interspeech, San Francisco, USA

Kök Cıktı Katmanı

Türkçe Sinir Ağı Dil Modeli Calısmaları

 \bullet $P_s(s_t \mid s_{t-1}, e_{t-1}, h_{t-2})$

$$ullet P_{\phi} = P(\phi \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

•
$$P_e = P_e(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

$$P(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2}) = \\ \begin{cases} P_\phi & \text{ek yoksa,} \\ (1 - P_\phi) \times P_e & \text{ek varsa.} \end{cases}$$

Kök Çıktı Katmanı

Türkçe Sinir Ağı Dil Modeli Calısmaları

 \bullet $P_s(s_t \mid s_{t-1}, e_{t-1}, h_{t-2})$

$$\bullet P_{\phi} = P(\phi \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

•
$$P_e = P_e(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

$$P(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2}) = \\ \begin{cases} P_\phi & \text{ek yoksa,} \\ (1 - P_\phi) \times P_e & \text{ek varsa.} \end{cases}$$

Kök Cıktı Katmanı

Türkçe Sinir Ağı Dil Modeli Calısmaları

 \bullet $P_s(s_t \mid s_{t-1}, e_{t-1}, h_{t-2})$

•
$$P_{\phi} = P(\phi \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

•
$$P_e = P_e(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

Kök Çıktı Katmanı

Türkçe Sinir Ağı Dil Modeli Calısmaları

 \bullet $P_s(s_t \mid s_{t-1}, e_{t-1}, h_{t-2})$

$$ullet P_{\phi} = P(\phi \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

•
$$P_e = P_e(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2})$$

$$P(e_t \mid s_t, s_{t-1}, e_{t-1}, h_{t-2}) = \\ \begin{cases} P_{\phi} & \text{ek yoksa,} \\ (1 - P_{\phi}) \times P_e & \text{ek varsa.} \end{cases}$$

Türkçe Sinir Ağı Dil Modeli Mimarileri

Dil Modelinde Kullanılan Olasılıklar

$$\begin{array}{c} \bullet \ \ P(s_t,e_t \mid s_{t-1},e_{t-1},h_{t-2}) = \\ \\ P_s(s_t \mid s_{t-1},e_{t-1},h_{t-2}) \\ \\ \times P(e_t \mid s_t,s_{t-1},e_{t-1},h_{t-2}) \end{array}$$

Derin Öğrenme ile Dil Modelleme

Klasik Dil Modeli ile Sinir Ağı Dil Modeli Karşılaştırması Sinir Ağı Dil Modelleri Sürekli Uzay Gösterimleri Türkce Sinir Ağı Dil Modeli Calısmaları

TEŞEKKÜRLER