Theory of Automata and Formal Language Lecture-11

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj April 21, 2021

Theorem: For a given NFA M, there exists a DFA M' such that L(M) = L(M').

Proof:

Suppose the given NFA M is

$$M = (Q, \Sigma, \delta, q_0, F)$$

Now, we construct a DFA M' as following

$$M' = (Q', \Sigma, \delta', q'_0, F')$$

Where
$$Q' = P(Q)$$
, $q'_0 = \{q_0\}$

$$\mathit{F'} = \{ \mathsf{P} \subseteq \mathsf{Q} \; ! \; \mathsf{P} \cap \mathsf{F} \neq \; \phi \}$$

and $\delta' \equiv \hat{\hat{\delta}}$

i.e.
$$\delta'(P,a) = \hat{\hat{\delta}}(P,a) = \bigcup_{p \in P} \hat{\delta}(p,a) = \bigcup_{p \in P} \delta(p,a)$$

Now, we have to show that

$$L(M) = L(M')$$
(1)

To prove the equation (1), first we will prove that

$$\hat{\delta}'(q_0',w)=\hat{\delta}(q_0,w)$$
, $\forall w\in \Sigma^*$(2)

We will prove this by using induction method on the length of string w.

For
$$|w| = 0$$
, i.e. $w = \epsilon$

$$\hat{\delta}'(q_0',\epsilon) = q_0' = \{q_0\} = \hat{\delta}(q_0,\epsilon)$$

Therefore,
$$\hat{\delta}'(q_0',\epsilon) = \hat{\delta}(q_0,\epsilon)$$

Therefore, it is proved for $w = \epsilon$.

```
For \mid w \mid = 1, i.e. w = a, where a \in \Sigma \hat{\delta}'(q_0',a) = \delta'(q_0',a) = \hat{\delta}(\{q_0\},a) = \hat{\delta}(q_0,a) Therefore, \hat{\delta}'(q_0',a) = \hat{\delta}(q_0,a) Therefore, it is proved for w = a, i.e. \mid w \mid = 1. Suppose equation (2) is true for string w = x. Therefore, \hat{\delta}'(q_0',x) = \hat{\delta}(q_0,x), ......(3)
```

Now, we will prove for w = xa.

$$\begin{split} \hat{\delta'}(q'_0, xa) &= \delta'(\hat{\delta'}(q'_0, x), a) \\ &= \hat{\hat{\delta}}(\hat{\delta}(q_0, x), a) \\ &= \bigcup_{p \in \hat{\delta}(q_0, x)} \hat{\delta}(p, a) \\ &= \bigcup_{p \in \hat{\delta}(q_0, x)} \delta(p, a) \\ &= \hat{\delta}(q_0, x) \end{split}$$

Therefore,
$$\hat{\delta}'(q_0', xa) = \hat{\delta}(q_0, xa)$$

Therefore, it is proved for w = xa.

Therefore, equation (2) is proved.

Now, we prove the equation (1) by using equation (2).

Let
$$w \in L(M') \Leftrightarrow \hat{\delta}'(q'_0, w) \in F'$$

 $\Leftrightarrow \hat{\delta}'(q'_0, w) \cap F \neq \phi$
 $\Leftrightarrow \hat{\delta}(q_0, w) \cap F \neq \phi$
 $\Leftrightarrow w \in L(M)$

Therefore, L(M) = L(M')

Now, it is proved.

Some Examples

Example: Find DFA equivalent to the following NFA:- $M = (\{q_0, q_1, q_2\}, \{a,b\}, \delta, q_0, \{q_2\}),$ where δ is given by

δ	а	b
$\rightarrow q_0$	q_{0}, q_{1}	q_2
q_1	q_0	q_1
q ₂		q_{0}, q_{1}

Example: Find DFA equivalent to the following NFA:- $M = (\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\}),$ where δ is given by

δ	а	b
$\rightarrow q_0$	q_{0}, q_{1}	q_0
q_1	q_2	q_1
q_2	q_3	q_3
q_3		q_2

Example: Construct DFA equivalent to the following NFA:-

Example: Construct DFA equivalent to the following NFA:-

δ	а	b
$\rightarrow q_0$	q _{1,} q ₃	q_{2}, q_{3}
q_1	q_1	q_3
q_2	q_3	q_2
q_3		