am	1 -1	PH	121	1
----	------	----	-----	---

Name: H. Vahl			Ý			Total No. of Pages					
Quiz I		uiz II/ Mi	d-Sem	End-Semester Make-up Date :					Fol 7 (2020		
Semes	ter & Deg	ree :	1	/		Course	Nø.		Par	t:	
	tion No.	1	2	3	4	5/	6	7	8	9	10
Marks		(1	Q (U)	(8)	(4)	(0)					
11	12	13	14	15	16	17	18	19	20	To	tal
										-(33	100
1 0	, p	An	swer on bo	th sides	of the pap	er includ	ing the s	pace belo	w		
	•			. 1					_	7	

$$\Psi_{1} \times \left[-\frac{\hbar^{2}}{2m} \frac{d^{2}\Psi_{2}}{dx^{2}} + v\Psi_{2} \right] = E\Psi_{2}$$

Salve fing the

$$-\frac{t^{2}}{2m} \left[\begin{array}{cccc} \psi_{2} & \frac{d^{2}\psi_{1}}{dn^{2}} & - & \psi_{1} & \frac{d^{2}\psi_{2}}{dn^{2}} \end{array} \right] = \frac{E\psi_{1}\psi_{2} - E\psi_{1}\psi_{2}}{4n^{2}} = 0$$

$$+ \frac{V\psi_{1}\psi_{2} - V\psi_{1}\psi_{2}}{4n^{2}} = 0$$

$$-(3)$$

Also, $\frac{d}{dn}$ | ψ_2 $\frac{d\psi_1}{dn}$ - ψ_1 $\frac{d\psi_2}{dn}$

$$= \psi_{2} \frac{d^{2}\psi_{1}}{dn^{2}} + \frac{d\psi_{2}}{dn} \frac{d\psi_{1}}{dn} - \frac{d\psi_{1}}{dn} \frac{d\psi_{2}}{dn} - \psi_{1} \frac{d\psi_{2}}{dn}^{2}$$

$$\frac{1}{2m} \frac{d}{dx} \left[\begin{array}{cccc} \psi_1 & d\psi_1 & -\psi_1 & d\psi_2 \\ 2m & dx & \end{array} \right] = 0$$

Since 4, , 42 are brearly dep, they aren't relly unique and therefore the solutions are not distinct

③ ,

$$A^{\dagger} = \begin{pmatrix} a & 0 & a \\ 0 & -a & 0 \\ 0 & a & -a \end{pmatrix} = A$$

$$B = \begin{pmatrix} b & 0 & 0 & T \\ 0 & 0 & ib \\ 0 & -ib & 0 & ib \end{pmatrix}$$

Both Â, B are Hermitian = B

They be represent observable

b) No. they tarnot be meased simultanally

$$AB = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -ih \\ 0 & 0 & ih & 0 \end{pmatrix}$$

$$= \begin{pmatrix} ab & 0 & 0 \\ 0 & 0 & iab \end{pmatrix}$$

BA =
$$\begin{pmatrix} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{pmatrix}$$
 $\begin{pmatrix} ab & 0 & 0 \\ 0 & 0 & -iab \\ 0 & -iab & 0 \end{pmatrix}$

AB = AB

 $\Rightarrow [A, B] = 0$ sull makes

Since constituting is zero, the electricalise on the measural simultaneously

At $(A - \lambda I) = (a - \lambda)(-a - \lambda)(-a - \lambda) = 0$
 $\Rightarrow \lambda = -a, -a, a$ are the cipe value of $(A - \lambda)(a -$

(c)

(A) 1 $\left\langle \gamma, \zeta \right\rangle - 0 \Rightarrow \tilde{\zeta} = \left\langle \chi_{\zeta} \right\rangle$

[no , 7 (a)] = - (1 + d) + d f (x) (b) < \$1 \hat{\pi} \ \pi $= c < \sqrt{| xT - Tn| \gamma}$ = c < 4/n/47 - c < 4/n/47 = ((= \psi | \hat{\psi} | \psi | \psi) - < \psi | \hat{\psi} | \psi)

$$\beta_{\lambda}(x) = A \exp\left(-\frac{m\omega x^{2}}{2t}\right)$$

$$\beta_{\lambda}(x) = A_{\lambda} H_{\lambda}\left(-\frac{m\omega x^{2}}{2t}\right)$$

$$\psi_{\lambda}(x) = A_{\lambda} H_{\lambda}\left(-\frac{m\omega$$

$$\Delta A^{2} \quad \Delta R^{2} \Rightarrow \frac{1}{4} \left| \left\langle \begin{bmatrix} \hat{A} & \hat{B} \\ \hat{A} & \hat{B} \end{bmatrix} \right\rangle^{2}$$

$$\Delta S_{1}^{2} \quad \Delta S_{2}^{2} \Rightarrow \frac{1}{4} \left| \left\langle \begin{bmatrix} \hat{S}_{1}^{2} & \hat{S}_{2}^{2} \\ \hat{S}_{2}^{2} & \hat{S}_{2}^{2} \end{bmatrix} \right\rangle^{2}$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right) = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right) + \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left(\frac{1}{6} \right)$$

$$\left| \left\langle + \right\rangle \right| = \left($$

$$S_{x}^{2} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\langle S_{x}^{3} \rangle = \frac{1}{4}^{2} & f_{yy} & Sp_{yy} = \frac{1}{2}$$

$$S_{xx}^{3} \rangle = \langle S_{y}^{3} \rangle - \langle S_{z}^{3} \rangle + \langle S_{z}^{2} \rangle = \frac{3}{2}$$

$$\langle S_{y}^{3} \rangle = \frac{1}{4} \begin{pmatrix} u_{0} & 0 & s_{x} & 0 \\ s_{y}^{2} \rangle + \langle S_{y}^{2} \rangle + \langle S_{z}^{2} \rangle = \frac{3}{2} \begin{pmatrix} u_{0} & 0 & s_{y} & 0 \\ s_{y}^{2} \rangle + \langle S_{y}^{2} \rangle + \langle S_{z}^{2} \rangle + \langle S_{z}^{2} \rangle = \frac{3}{4} \begin{pmatrix} u_{0} & 0 & s_{y} & 0 \\ s_{y}^{2} \rangle + \langle S_{y}^{2$$

$$AS_{x}^{2} AS_{y}^{2} = \frac{H^{2}(1-5n^{2}0)}{4}$$

$$= \frac{H^{1}(1-5n^{2}0)}{16}$$

$$= \frac{H^{$$

IIT MADRAS

Roll No.

1	Part House of	AND RES	10000000	instalcia	Constitution of	THE WATER	Live Total Later Wa	departies.	
		-			-			75	
	M	1 1				0	100	9400	
	CONTRACTOR	1		TOWN THE PARTY OF		Contract of the last			ļ

Additional Sheet

$$(S_{3}) = 2 \left(10 \frac{0}{2} - \frac{1}{10} \right) \left(\frac{1}{2} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} \right) \left(\frac{1}{2} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} \right) \left(\frac{1}{2} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} \right) \left(\frac{1}{2} - \frac{1}{10} - \frac{1}$$

$$=\frac{1}{2}\left(\begin{array}{cccc} \cos \alpha & -i\alpha & 0 \\ 0 & \cos \alpha & 0 \\ 0 & 0 \end{array}\right)\left(\begin{array}{cccc} -i\alpha & \sin \alpha \\ 0 & 0 \\ 0 & 0 \end{array}\right)$$

$$=\frac{1}{2}i\frac{\sin\theta}{2}$$

$$=\frac{x_1}{2} i \sin \theta \left(-x i \sin \theta\right)$$

$$=\frac{1}{2}\sin\theta\sin(-i^2)=\frac{1}{2}\sin\theta\sin\theta$$

$$\Rightarrow \Delta s_{y}^{2} = \frac{\pi^{2}}{4} \left(1 - \frac{1}{s_{y}} \right)$$