Vivekanand Education Society's Institute of Technology Department of Computer Engineering

Subject: AI

Class:- CMPN Semester:-6 Div:- D12A

Roll No:	Name:			
08	Varnit Batheja			
Exp No:	Title:			
08	To implement an adversarial searching algorithm.			
DOP:	24-03-20	122	DOS:	31-03-2022
DOI.	24-03-20	722	DOS.	31-03-2022
GRADE:		LAB OUTCOMES:	SIGNAT	URE:

Bage So		
Date		

_	AI EXPERIMENT NO:8
	AIM:
	Implement an adversial searching algorithm.
	THEORY:
	Terrinology
	Mane Tree:
-	It is a structure in the form at a tree consisting of all possible moves which allow you to move from state
	of game to next state
_	& game can use defined as a search problem with
_	tallowing components
_	Initial estale:
	It compress the position of the choard and showing
_	ushose mouse it is
_	Successor function:
_	It defines what the legal moves a player can make
_	OSE
_	Jerminal Itale
_	It is the position of books when the game gets over
_	Utility function
	Il in a function which assigns a numeric value for the outcome of a game. For wistance in chess cor
÷	with amount by a guira . Jose arisation of Criss our

Teacher's Sign. _

tic tac toe the oulcome is either a win a loss or a draw and these can be represented by values +1-1 or 0 sespectively. There are games that thouse a much larger stonge of possible outcomes for unistance the utility in background varies from +192 to -192. A utility function can also be called play of function.

dlpha:

dlpha is the doest choice on the highest value that we have found at any unstance along the path of maximize the initial value of alpha is -20

Beta is the lost choice or the douest value that we have found at any unstance along path of municiper. The unital realus for losts in +0

Condition for alpha Beta pruning is X > B

Each node show to keep track of it's alpha and Beta salves Alpha can see updated centry when it's more's twen and similarly sher; can see updated when it's wink theme?

. More will updale only alpha values and Min player will updale only ilsela value

· Wode values will be passed to upper nodes instead of values of alpha and beeta deviency got into a reverse of tree.

Teacher's Sign

	Tage No.
•	Alpha and Bela value only be passed to child nodes
	Advarlages:
1)	Allows elimination of the search tree brances
2)	Limited the search time to more prainting seels dress
	which inables a deeper sourch
3),	Reduces computation and securching during the minmax
4	Prevents the use of additional computational time making
	Prevents the use of additional campulational time making the process more responsive and fast
	Duadiantage
1)	It does not save all the providen associated with original
,	muimax algorithm
2)	Requires a eset depth dimet as in mess cases ut is
	not bearible to sourch the entire game weel.
3)	Though designed to colculate the good move it
	also colculates the value of all the legal maios
	' '
)	CONCLUSION
	In this experiment We have succesfully implemented
	In this experiment We have succesfully unplemented an adversial severthing algorithm alpha lasta praining
	Teacher's Sign::

EXPERIMENT-08

Code:

```
MAX, MIN = 1000, -1000
def minimax(depth, nodeIndex, maximizingPlayer, values):
    if depth == 2:
       return values[nodeIndex]
    if maximizingPlayer:
       best = MIN
       for i in range(0, 2):
            val = minimax(depth + 1, nodeIndex * 2 + i, False, values)
            best = max(best, val)
       return best
   else:
       best = MAX
       for i in range(0, 2):
           val = minimax(depth + 1, nodeIndex * 2 + i, True, values)
           best = min(best, val)
       return best
if __name__ == "__main__":
   values = [3,5,10,2,8,19,2,7,3]
   print("The optimal value is :", minimax(0, 0, True, values))
```

Output:

```
The optimal value is: 3
...Program finished with exit code 0
Press ENTER to exit console.
```