Clase práctica de Cálculo Avanzado - 16/6

Recuerdo. Sea X un espacio métrico completo. Entonces

- Unión numerable de conjuntos nunca densos tiene interior vacío.
- Intersección numerable de abiertos densos es denso.

Ejercicio 1. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de homeomorfismos de \mathbb{R} en \mathbb{R} y sea $F\subseteq\mathbb{R}$ cerrado tal que $F\cap\mathbb{Q}$ es finito. Probar que existe $x\in\mathbb{R}$ tal que $x\notin f_n(F)$, $\forall n\in\mathbb{N}$.

Solución. Debemos probar que $\bigcup_{n\in\mathbb{N}} f_n(F) \neq \mathbb{R}$. Una forma de ver esto es probar que dicha unión tiene interior vacío. Por el lema de Baire, eso sucede si $f_n(F)$ es nunca denso para todo $n\in\mathbb{N}$.

Como cada f_n es un homeomorfismo y F es cerrado, $f_n(F)$ es cerrado para todo $n \in \mathbb{N}$. Luego debemos ver que $f_n(F)^\circ = \emptyset$. Supongamos que $f_n(F)$ contiene un abierto U. Entonces $f_n^{-1}(U)$ es abierto y está contenido en F. Pero esto es absurdo, porque cualquier abierto en \mathbb{R} contiene infinitos racionales. Por lo tanto $f_n(F)^\circ = \emptyset$.

Ejercicio 2. Sea $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ una función continua. Supongamos que $\lim_{n\to\infty} f(nx) = 0$ para todo $x \in \mathbb{R}_{\geq} 0$. Probar que $\lim_{x\to\infty} f(x) = 0$.

Solución. Sea $\varepsilon > 0$, y sean $K_n = \{x : |f(mx)| \le \varepsilon \ \forall m \ge n\}$ para cada $n \in \mathbb{N}$. Es fácil ver que los K_n son cerrados. Además, por nuestra hipótesis $\mathbb{R}_{\ge 0} = \bigcup_{n \in \mathbb{N}} K_n$. Entonces por el lema de Baire, existe un K_n con interior no vacío. Es decir que existe un intervalo $[a,b] \subseteq K_n$ con a < b. Esto nos dice que $f(x) \le \varepsilon$ para todo x en el siguiente conjunto:

$$[\mathfrak{n}\mathfrak{a},\mathfrak{n}\mathfrak{b}]\cup[(\mathfrak{n}+1)\mathfrak{a},(\mathfrak{n}+1)\mathfrak{b}]\cup[(\mathfrak{n}+2)\mathfrak{a},(\mathfrak{n}+2)\mathfrak{b}]\cup...=\bigcup_{\mathfrak{m}\geq\mathfrak{n}}[\mathfrak{m}\mathfrak{a},\mathfrak{m}\mathfrak{b}].$$

Veamos que este conjunto contiene un intervalo de la forma $[M;+\infty)$. Como a < b, existe un $m_0 > n$ tal que $m_0 b > (m_0 + 1)a$. A partir de este m_0 , los intervalos se solapan. Luego $[m_0 a, \infty) \subseteq \bigcup_{m \ge n} [ma, mb]$. En consecuencia, $f(x) \le \varepsilon \ \forall x \ge m_0 a$. Como ε era arbitrario, $l\text{im}_{x \to \infty} f(x) = 0$.

Ejercicio 3. Sea $f \in C^{\infty}[0, 1]$. Supongamos que para cada $x \in [0, 1]$ existe $n \in \mathbb{N}$ tal que $f^{(n)}(x) = 0$. Probar que f es un polinomio.

Solución. Supongamos que f no es un polinomio. Consideramos los siguientes conjuntos: $S_n = \{x \mid f^{(n)}(x) = 0\}$. También consideramos

$$X = \{x \mid \forall (a, b) \ni x, f|_{(a,b)} \text{ no es un polinomio}\}.$$

Como f no es un polinomio, X es no vacío. Además es claro que X es cerrado y sin puntos aislados. Por hipótesis, $\{S_n\}_{n\in\mathbb{N}}$ es un cubrimiento de [0,1]. Entonces $\{X\cap S_n\}_{n\in\mathbb{N}}$ es un cubrimiento de X. Luego podemos aplicar el lema de Baire al espacio X y a dicho cubrimiento. Esto nos dice que existe un intervalo (a,b) tal que $(a,b)\cap X\neq\emptyset$ y $X\cap(a,b)\subseteq S_n$ para algún n.

Como X no tiene puntos aislados, todo $x \in (a,b) \cap X$ es un punto de acumulación de $(a,b) \cap X$. Entonces como $f^{(n)}(x) = 0$ para todo x en $(a,b) \cap X$, $f^{(m)}(x) = 0$ para todo m > n y $x \in (a,b) \cap X$.

Ahora consideramos un intervalo maximal $(c,d) \subseteq (a,b) \setminus X$. Por definición de X, eso significa que f es un polinomio de un cierto grado k en (c,d). Luego $f^{(k)} = cte \neq 0$ en [c,d]. Esto nos dice que k < n, pues c o d están en X.

Como esto último vale para cualquier intervalo maximal, concluimos que $f^{(n)}(x) = 0 \ \forall x \in (a,b)$. Entonces f es un polinomio en (a,b). Esto contradice el hecho de que $(a,b) \cap X \neq \emptyset$.