Mathematik für Anwender II — Blatt 1

Rasmus Diederichsen

6. April 2016

Aufgabe 1.1

(1)

Wir nehmen an, \mathbf{v}_1 und \mathbf{v}_2 seien linear abhängig. Folglich existieren $\alpha_1, \ \alpha_2 \in \mathbb{K}$, sodass $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = \mathbf{0}$

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = \mathbf{0} \qquad | \cdot A \qquad (1)$$

$$\alpha_1 A \mathbf{v}_1 + \alpha_2 A \mathbf{v}_2 = \mathbf{0} \tag{2}$$

$$\alpha_1 \lambda_1 \mathbf{v}_1 + \alpha_2 \lambda_2 \mathbf{v}_2 = \mathbf{0}$$
 | \mathbf{v}_i Eigenvektoren (3)

Multipliziert man (1) mit λ_1 , so erhält man

$$\alpha_1 \lambda_1 \mathbf{v}_1 + \alpha_2 \lambda_1 \mathbf{v}_2 = \mathbf{0} \tag{4}$$

Subtraktion (1) - (6) ergibt

$$\mathbf{0} + (\lambda_2 - \lambda_1)\alpha_2 \mathbf{v}_2 = \mathbf{0} \tag{5}$$

Es muss also entweder (a) $\lambda_1=\lambda_2$ oder (b) $\alpha_2=0$ oder (c) $\mathbf{v}_2=\mathbf{0}$ gelten. (a) gilt nicht nach Aufgabenstellung. (c) gilt nicht aufgrund der Definition eines Eigenvektors. Wenn $\alpha_2=0$, muss aber nach Gleichung (1) Aauch $\alpha_1=0$ sein. Daraus folgt, dass \mathbf{v}_1 und \mathbf{v}_2 linear unabhängig sein müssen.

(2)

Da v_1, v_2 Eigenvektoren sind, gilt

$$A(\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2) = \alpha_1A\mathbf{v}_1 + \alpha_2A\mathbf{v}_2 = \alpha_1\lambda\mathbf{v}_1 + \alpha_2\lambda\mathbf{v}_2 = \lambda(\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2)$$

Die Linearkombination ist also Eigenvektor von A.

(3)

In (1) wurde gezeigt, dass zwei Eigenvektoren linear unabhängig sind, wenn ihre Eigenwerte unterschiedlich sind. Wir beweisen zunächst, dass dies für n unterschiedliche Eigenwerte mit zugehörigen Eigenvektoren gilt.

Beweis. Induktionsanfang: Aussage gilt für n = 2.

Induktionsschritt: Sei bis n bewiesen. Gegeben seien paarweise verschiedene Eigenwerte $\lambda_1, \lambda_2, \dots, \lambda_{n+1}$ und Eigenvektoren $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n+1}$, wobei $\mathbf{v}_1, \dots, \mathbf{v}_n$ linear unabhängig sind, nach Vorraussetzung. Wir nehmen an, \mathbf{v}_{n+1} wäre linear abhängig von $\mathbf{v}_1, \dots, \mathbf{v}_n$. Es existieren also Skalare α_i mit

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n + \alpha_{n+1} \mathbf{v}_{n+1} = \mathbf{0}$$
 (1)

Multiplikation mit A liefert

$$\alpha_1 \lambda_1 \mathbf{v}_1 + \dots + \alpha_n \lambda_n \mathbf{v}_n + \alpha_{n+1} \lambda_{n+1} \mathbf{v}_{n+1} = \mathbf{0}$$
 (2)

denn \mathbf{v}_i sind Eigenvektoren. Multiplikation von (1) mit λ_{n+1} ergibt

$$\alpha_1 \lambda_{n+1} \mathbf{v}_1 + \dots + \alpha_n \lambda_{n+1} \mathbf{v}_n + \alpha_{n+1} \lambda_{n+1} \mathbf{v}_{n+1} = \mathbf{0}$$
 (3)

Subtraktion (2)–(3) ergibt

$$\alpha_1(\lambda_1 - \lambda_{n+1})\mathbf{v}_1 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})\mathbf{v}_n = \mathbf{0}$$
(4)

Da die λ_i unterschiedlich sind und $\mathbf{v}_1, \dots, \mathbf{v}_n$ linear unabhängig, muss $\alpha_1 = \dots = \alpha_n = 0$ gelten. Mit (1) folgt $\alpha_{n+1} = 0$ und alle \mathbf{v}_i sind linear unabhängig.

A hat also n linear unabhängige Eigenvektoren \mathbf{v}_i . Nach Satz 11.10 ist A als $B = S^{-1}AS$ diagonalisierbar mit

$$S = (\mathbf{v}_1 \dots, \mathbf{v}_n)$$

Aufgabe 1.2

(1) *A*₁

Es ist
$$\chi_{A_1}(\lambda) = det(A_1 - \lambda I) = \left| \begin{pmatrix} 1 - \lambda & 2 \\ 0 & 3 - \lambda \end{pmatrix} \right| = (1 - \lambda)(3 - \lambda)$$

 A_1 hat also Eigenwerte

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

Wir berechnen die Eigenvektoren.

 λ_1 :

$$0x_1 + 2x_2 = 0$$
$$0x_1 + 2x_2 = 0$$

also ist $x_2 = 0$ und x_1 beliebig $\Rightarrow \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ oder irgendein Vielfaches. Der Eigenraum zu λ_1 ist also der Spann von (die Gerade durch) \mathbf{v}_1 oder $\{\mu \cdot \mathbf{v}_1 \mid \mu \in \mathbb{K}\}$. λ_2 :

$$-2x_1 + 2x_2 = 0$$

0 = 0

Es folgt

$$x_1 = x_2$$

 \Rightarrow $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Der Eigenraum zu λ_2 ist $\{\mu \cdot \mathbf{v}_2 \mid \mu \in \mathbb{K}\}$

(2) A₂

Es ist $\chi_{A_2}(\lambda) = det(A_2 - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 \\ -2 & -2 - \lambda \end{vmatrix} = (3 - \lambda)(-2 - \lambda) + 4 = \lambda^2 - \lambda - 2$. Die pq-Formel liefert hierfür

$$\lambda_{1,2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 2}$$

$$\lambda_1 = 2$$

$$\lambda_2 = -1$$

Wir berechnen die Eigenvektoren.

 λ_1 :

$$1x_1 + 2x_2 = 0$$
$$-2x_1 - 4x_2 = 0$$
$$\Rightarrow x_1 = -2x_2$$

 \Rightarrow $\mathbf{v}_1 = inom{-2}{1}$ oder irgendein Vielfaches. Der Eigenraum zu λ_1 ist also der Spann von (die Gerade durch) \mathbf{v}_1 oder $\{\mu \cdot \mathbf{v}_1 \mid \mu \in \mathbb{K}\}$. λ_2 :

$$4x_1 + 2x_2 = 0$$
$$-2x_1 - 1x_2 = 0$$
$$\Rightarrow x_2 = -2x_1$$

 \Rightarrow $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Der Eigenraum zu λ_2 ist $\{\mu \cdot \mathbf{v}_2 \mid \mu \in \mathbb{K}\}$

(3) A₃

Es ist $\chi_{A_3}(\lambda) = det(A_3 - \lambda I) = \begin{vmatrix} -3 - \lambda & -1 \\ 1 & -3 - \lambda \end{vmatrix} = \lambda^2 + 6\lambda + 10$. Die pq-Formel liefert hierfür

$$\lambda_{1,2}=-3\pm\sqrt{3-10}$$

Die Matrix hat also nur komplexe Eigenwerte.

$$\lambda_1 = -3 + i$$
$$\lambda_2 = -3 - i$$

Wir berechnen die Eigenvektoren.

 λ_1 :

$$-ix_1 - x_2 = 0$$
$$x_1 - ix_2 = 0$$
$$\Rightarrow x_1 = ix_2$$

 \Rightarrow $\mathbf{v}_1 = \begin{pmatrix} i \\ 1 \end{pmatrix}$ oder irgendein Vielfaches. Der Eigenraum zu λ_1 ist also der Spann von (die Gerade durch) \mathbf{v}_1 oder $\{\mu \cdot \mathbf{v}_1 \mid \mu \in \mathbb{K}\}$. λ_2 :

$$ix_1 - x_2 = 0$$
$$x1 + ix_2 = 0$$
$$\Rightarrow x_2 = ix_1$$

$$\Rightarrow$$
 $\mathbf{v}_2 = inom{1}{i}$. Der Eigenraum zu λ_2 ist $\{\mu \cdot \mathbf{v}_2 \mid \mu \in \mathbb{K}\}$

Es ist offensichtlich, dass für A_1, A_2, A_3 die beiden Eigenvektoren jeweils linear unabhängig sind. Da es sich um 2×2 -Matrizen handelt, findet Satz 11.10 Anwendung und die Matrizen sind mit $P_i = (\mathbf{v}_1, \mathbf{v}_2)$ diagonalisierbar.