

Missing Data Workflows: The Shadow matrix and Nabular data

Nicholas Tierney Statistician

An example

Census data containing:

- Income
- Education

income	education	
48.69087	NA	
40.93218	NA	
52.69245	high_school	
31.33808	NA	
89.35671	university	
103.87278	university	

What we are going to cover

The shadow matrix

name	height	age		name	height	age	name_NA	height_NA	age_NA
Sophie	174	NA		0	0	1	 !NA	!NA	NA
NA	185	26	_	1	0	0	NA	!NA	!NA
Dan	NA	42		0	1	0	!NA	NA	!NA

The shadow matrix

name	height	age	name	height	age	name_NA	height_NA	age_NA
Sophie	174	NA	 0	0	1	!NA	!NA	NA
NA	185	26	1	0	0	NA	!NA	!NA
Dan	NA	42	0	1	0	!NA	NA	!NA

Two main features

- 1. Coordinated names
- 2. Clear values.

Creating nabular data

income	education	income_NA	education_NA
48.69087	NA	!NA	NA
40.93218	NA	!NA	NA
52.69245	high_school	!NA	!NA
31.33808	NA	!NA	NA
89.35671	university	!NA	!NA
103.87278	university	!NA	!NA

Using nabular data to perform summaries

bind shadow(airquality)

```
# A tibble: 153 x 12
                                        Day Ozone NA Solar.R NA Wind NA Temp NA
   Ozone Solar.R Wind
                         Temp Month
           <int> <dbl> <int> <int> <int> <fct>
                                                      <fct>
                                                                  <fct>
   <int>
                                                                          <fct>
      41
             190
                    7.4
                            67
                                          1 !NA
                                                      !NA
                                                                  !NA
                                                                           !NA
      36
             118
                    8
                                          2 !NA
                                                      !NA
                                                                  !NA
                                                                           !NA
                   12.6
             149
                            74
                                          3 !NA
                                                      !NA
                                                                  !NA
                                                                           !NA
                   11.5
      18
             313
                                          4 !NA
                                                      !NA
                                                                  !NA
                                                                           !NA
                  14.3
                            56
                                          5 NA
      NA
              NA
                                                      NA
                                                                  !NA
                                                                           !NA
      28
                  14.9
              NA
                            66
                                          6 !NA
                                                      NA
                                                                  !NA
                                                                           !NA
      23
             299
                    8.6
                                          7 !NA
                                                      !NA
                                                                           !NA
                                                                  !NA
      19
                   13.8
                            59
                                          8 !NA
                                                      !NA
                                                                  !NA
                                                                           !NA
 9
                                          9 !NA
              19
                   20.1
                                                      !NA
                                                                  !NA
                                                                           !NA
10
                    8.6
                            69
      NA
             194
                                         10 NA
                                                      !NA
                                                                  !NA
                                                                           !NA
      with 143 more rows, and 2 more variables: Month NA <fct>, Day NA <fct>
```


Using nabular data to perform summaries

```
airquality %>%
   bind_shadow() %>%
   group_by(Ozone_NA) %>%
   summarise(mean = mean(Wind))
```

Ozone_NA	mean
!NA	9.862069
NA	10.256757

Let's practice!

Exploring conditional missings with ggplot

Nicholas Tierney Statistician

What we are going to cover

- How to use nabular data to explore how values change according to other values going missing
- Explore visualizations:
 - densities
 - boxplots
 - different methods of splitting the visualization

Visualizing missings using densities

```
ggplot(airquality,
        aes(x = Temp)) +
   geom_density()
```


Visualizing missings using densities

Visualizing missings using boxplots

Visualizing missings using facets

```
airquality %>%
  bind_shadow() %>%
  ggplot(aes(x = Temp)) +
  geom_density() +
  facet_wrap(~Ozone_NA)
```


Visualizing missings using facets

Visualizing missings using colour

Adding layers of missingness

Let's practice!

Visualizing missingness across two variables

Nicholas Tierney Instructor

The problem of visualizing missing data in two dimensions

```
Warning message:
Removed 42 rows containing
missing values (geom_point).
```


Introduction to geom_miss_point()

Aside: How geom_miss_point() works

Ozone	Ozone_shift	Ozone_NA
41	41.00000	!NA
36	36.00000	!NA
12	12.00000	!NA
18	18.00000	!NA
NA	-19.72321	NA
28	28.00000	!NA

Exploring missingness using facets

Exploring missingness using facets

Let's practice!