Całka Riemanna

Niech dana będzie funkcja ograniczona $f:[a,b] \to \mathbb{R}$. Suma częsciowa (Riemanna) nazywa się liczbą

$$R_{f,P(q_1,...,q_n)} = \sum_{i=1}^{n} f(q_i) \cdot \Delta p_i.$$

Funkcję f nazywa się całkowalnq w sensie Riemanna lub krótko R-całkowalnq, jeśli dla dowolnego ciągu normalnego (P^k) podziałów przedziału [a,b], istnieje (niezależna od wyboru punktów pośrednich) granica

$$R_f = \lim_{k \to \infty} R_{f, P^k(q_1^k, \dots, q_n^k)}$$

nazywana wtedy **całką Riemanna** tej funkcji. Równoważnie: jeżeli istnieje taka liczba R_f , że dla dowolnej liczby rzeczywistej $\varepsilon>0$ istnieje taka liczba rzeczywista $\delta>0$, że dla dowolnego podziału $P(q_1,\ldots,q_n)$ o średnicy $diam\ P(q_1,\ldots,q_n)<\delta$ bądź też w języku rozdrobnień: że dla dowolnej liczby rzeczywistej $\varepsilon>0$ istnieje taki podział $S(t_1,\ldots,t_m)$ przedziału [a,b], że dla każdego podziału $P(q_1,\ldots,q_n)$ rozdrabniającego $S(t_1,\ldots,t_m)$ zachodzi

$$\left| R_{f,P(q_1,\ldots,q_n)} - R_f \right| < \varepsilon.$$

Funkcję f nazywa się wtedy całkowalną w sensie Riemanna (R-całkowalną), a liczbę R_f jej całką Riemanna.

Rysunek 1: obraz