Mathématiques actuarielles IARD-1 ACT-2005 Notes de cours

Gabriel Crépeault-Cauchon Nicholas Langevin

16 septembre 2018

Table des matières

1	Rappel sur les notions de probabilité et statistiques	1
	1.1 Ouantités à savoir	1

Résumé

Ce document résume les notes de cours prises en classe dans le cours de Mathématiques actuarielles IARD-1, ainsi que des notions prises du livre *LOSS MODELS* - *From Data to Decisions*, 4th edition.

Chapitre 1

Rappel sur les notions de probabilité et statistiques

1.1 Quantités à savoir

Raw moments On représente le k^e moment par μ'_k , soit

$$\mu_k' = E\left[X^k\right] \tag{1.1}$$

Moments centraux Le k^e moment central est représenté par

$$\mu_k = E\left[(X - \mu)^k \right] \tag{1.2}$$

Exemple 1.1.1 Quelques exemples de moments centraux

C

La variance est le 2^e moment central :

$$Var(X) = \mu_2 = E\left[(X - \mu)^2\right]$$

Le 3^e moment centré, qui est utilisé pour calculer le coefficient d'asymétrie :

$$\mu_3 = E\left[(X - \mu)^3 \right]$$

Coefficient d'asymétrie Le coefficient d'asymétrie, aussi appelé *skewness*, est représentée par

 $S_k = \frac{\mu_3}{\sigma^2} \tag{1.3}$

Soit le $3^{\rm e}$ moment standarisé. Si $S_k=0$, alors la distribution tend vers une loi normale.

Coefficient d'applatissement Le coefficient d'applatissement, aussi appelé *Kurtosis*, se définit par

 $Kurtosis = \frac{\mu_4}{\sigma^4}$ (1.4)

Cette quantité permet de mesurer l'épaisseur de l'aile (tail) de la distribution. Si $E\left[z^4\right]=3$, alors la distribution tend vers une loi normale $N(\mu,\sigma^2)$.