Redes de Computadores

Introduction

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

Introduction to the Course

RCOM – Professors, Information, Language

Prof. Manuel Ricardo

- mricardo@fe.up.pt
- http://www.fe.up.pt/~mricardo
- Tel.: 22 209 4200
- Room at INESC Porto (3rd floor)
- Information about RCOM available at moodle (links through SIFEUP)
- Language
 - » Slides and books in English
 - » Lectures in Portuguese
 - » Suitable for English-speaking students

Bibliografia

Main book

Andrew Tanenbaum, David Wetherall, Computer Networks, 5/E Prentice Hall 2011

- Slides presented in classes
 - » Follow the main book
 - » Complemented with information from other sources
 - » Oriented to the fundaments; the details are in the book

Bibliografia – Other books

- Dimitri Bertsekas, Robert Gallager, Data Networks, 2nd Edition, 1992, Prentice Hall
 - » Oriented to the fundamental aspects of data networks with formal (math) descriptions
 - » Available also in http://web.mit.edu/dimitrib/www/datanets.html
 - » Examples on outdated networks
- Alberto Leon-Garcia, Indra Widjaja, Communications Networks Fudamental Concepts and Key Architectures, 2nd Edition, 2004, McGRAW-HILL
 - » Excellent book
 - » Could be the main book of RCOM ...
- Larry L. Peterson, Bruce S. Davie, Computer Networks A Systems Approach, 4th Edition, 2007, Morgan Kaufmann
 - » Less generic than Tanenbaum and Leon-Garcia; oriented to TCP/IP and implementation aspects
 - » 3^a edition can be used
- ◆ James F. Kurose, Keith W. Ross, Computer Networking a Top-Down Approach, 2010, 5th Edition, Pearson Similar to Tanenbaum; uses top-down approach; more focused on applications than in physical layer
- W. Richard Stevens, TCP/IP Illustrated: The Protocols (Vol. 1), 1994, Addison-Wesley.
 - » The book of TCP/IP stack
- William Stallings, Data & Computer Communications, 8th Edition, 2007, Prentice Hall
 - » Generic and good book; addresses also telecom networks

Tipos de Aulas

- Aulas teóricas (2ª feira)
 - » Oriented to the fundamental aspects of Computer Networks
 - » Additional reading required at home
 - » Weekly homeworks questions to be answered before next lecture through moodle

• Aulas laboratoriais

- 2 laboratory projects
- » 1st lab: protocol development, Linux, C programming, file transfer
- » 2nd lab: configuration computer network (switches, routers, computers)

Avaliação de RCOM

Notas de 0 a 20 valores

- E nota do exame escrito
- L1 nota do 1º trabalho laboratorial
- L2 nota do 2º trabalho laboratorial
- H nota dos trabalhos de casa
- FQ NOTA DE FREQUÊNCIA
- CF CLASSIFICAÇÃO FINAL

$$FQ = 0.4*L1 + 0.4*L2 + 0.2*H$$

 $CF = 0.4*FQ + 0.6*E$

se (
$$FQ < 8.0$$
) $FQ =$ "Sem Frequência" se ($E < 8.0$) $CF = E$

Learning objectives

- Fundaments of network design and analysis
 - » Communication channels and data link control
 - » Delay and loss models in data networks
 - » Multi-access communications
 - » Routing in computer networks
 - » Flow and congestion control
- Technologies in use
 - » Ethernet, WLAN, Internet, TCP/IP communications stack
- Implementation
 - » Protocol development in UNIX
 - » Computer network configuration
 - » Planning of a simple network

Introduction to Computer Networks

- » What are the main uses of computer networks?
- » What are the common architectures of network applications?
- » What are the main types of networks?
- *» What is a protocol? What is a service?*
- » What is a protocol stack?
- » What are the communication layers of the Internet reference model?
- » What are the communication layers of the OSI reference model?
- » What are the differences between circuit switching and packet switching?
- » What is the propagation delay, T_{prop} ?
- » What is the packet transmission delay, T_{pac} ?

Uses of Computer Networks

To think

• What do computer networks transport?

Some Applications Using the Networks

- E-mail
- Web
- Instant messaging
- Remote login
- P2P file sharing
- Multi-user network games
- Video clips retrieval

- Voice over IP
- Video streaming
- Real-time video conferencing
- Grid computing

Application Architectures

Client-server

• Peer-to-peer (P2P)

• Hybrid client-server / P2P

Client-server Architecture

Server

- » always-on host
- » permanent IP address

Clients

- » communicate with server
- » may be intermittently connected
- » do not communicate directly with other clients

Client-server Example – The Web

Client/server model

- Client: browser
 requests, receives, and
 "displays" Web objects
- Server: Web server
 sends objects in response to
 requests

P2P Architecture

- No always-on server
- Arbitrary end systems directly communicate
- Peers are intermittently connected and may change IP addresses

P2P Example - BitTorrent

P2P file distribution

To Think

How does Skype work?

Hybrid of Client-server and P2P - Example

Skype

- » voice-over-IP P2P application
- » centralized server finding address of remote party
- » client-client connection direct (not through server)

Topology of Networks

Classification of Networks

By transmission technology

» Point-to-point links

- ♦ By scale (distance between processors)
 - » PAN Personal Area Network
 - » LAN Local Area Network
 - » MAN Metropolitan Area Network
 - » WAN Wide Area Networks
 - » Internet

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country]]
1000 km	Continent	├ ├ Wide area network
10,000 km	Planet	The Internet

Personal Area Networks

Bluetooth network

Local Area Networks

Common Local Area Networks

Metropolitan Area Networks

A metropolitan area network based on cable TV

Internet – Interconnecting networks

- Network edge
 - » Hosts
 - » Applications
- Access networks
 - » LANs, MANs
 - » Home, Institutional
 - » Mobile
 - » Wired and wireless links
- Network core
 - » Interconnected routers
 - » Network of networks
 - » Internet Service Providers

server

wireless laptop

cellular handheld

access

wired links

Network Software

To Think

• How do you proceed to develop a complex program?

Software Organized in Black Boxes

Figure 1.7 Peer processes within a black box communication system. The peer processes communicate through a lower-layer black box communication system that itself contains lower-layer peer processes.

Protocol Hierarchies

Layers, protocols, and interfaces

Services to Protocols Relationship

The relationship between a service and a protocol

Transference of Information

Information flow supporting virtual communication in layer 5

Internet (TCP/IP) Reference Model

- Application layer
 - » supporting network applications
 - » FTP, SMTP, HTTP, ...
- Transport layer
 - » process-process (end-to-end) data transfer
 - » TCP, UDP
- Network layer
 - » routing of data packets from source to destination
 - » IP, routing protocols
- Link layer
 - » data transfer between neighboring network elements
 - » PPP, Ethernet, WLAN
- Physical layer
 - » bits sent "on the wire"

application

transport

network

link

physical

TCP/IP – Interworking and Encapsulation

7 Layer OSI Reference Model

- Presentation layer
 - allow applications to interpret meaning of data
 - (e.g., encryption, compression, machine-specific conventions)
- Session layer

synchronization, checkpointing, recovery of data exchange

• Internet stack "missing" these layers!

if needed, must be implemented in the Application Layer

Application

Presentation

Session

Transport

Network

Link

Physical

7 Layer OSI Reference Model

Reference Model Adopted in RCOM

5	Application layer	
4	Transport layer	
3	Network layer	
2	Data link layer	
1	Physical layer	

Transferring Data Through a Network

Information and Data

Data

- » term used to represent *information*
- » e.g. text, voice, video, image, graphics
- Information represented as a sequence of bits
 - » 0110110001010....
 - \Rightarrow 1 Byte = 1 octet = 8 bits
 - 1 kbit = 10^3 bit; 1 Mbit = 10^6 bit; 1 Gbit= 10^9 bit
- Computer Networks
 - » aimed to transport information, from source(s) to destination(s)
 - » Information flow, capacity of a link → Byte/s; bit/s
- How to transfer data through the network?

Circuit Switching vs Packet Switching

Switching: Circuits, Virtual Circuits, Packets

Circuit Switching – Numerical Example

Host A needs to send a file of length L=640 kbit to Host B through a circuit offering a bitrate of R= 64 kbit/s. Assuming a delay for establishing the circuit T_{est}=500 ms, how long does it take to transmit the file?

Answer:

- $> T_{msg} = L/R = 640/64 = 10s$
- $T_{tot} = T_{est} + T_{prop} + T_{msg} = 0.5 + 0 + 10 = 10.5 \text{ s}$

Packet Switching – Numerical Example

Host A sends a packet of length **L=10 kbit** to Host B through routers R1 and R2. Not considering the propagation delay through the 3 links nor the queuing delays at the network elements (A, R1 and R2), how long does it take for the packet to arrive to Host B?

Packet Switching – Numerical Example

Answer:

- \rightarrow $T_{pac1}=T_{pac3}=L/R1=0.1$ ms
- $> T_{pac2} = L/R2 = 1 ms$
- \rightarrow $T_{tot} = T_{pac1} + T_{prop1} + T_{pac2} + T_{prop2} + T_{pac3} + T_{prop3} = 1.2 \text{ ms}$

To Play

• How many routers are there from my computer to:

```
» www.up.pt →

» www.bbc.com (UK) →

traceroute www.up.pt (Unix) or tracert www.up.pt (Windows)
```

• How long does it take for a packet to go and come back (Round Trip Time) from my computer to:

```
» www.up.pt →

» www.bbc.com →

ping www.up.pt
```

Homework

1. Review slides

- 2. Read from Tanenbaum
 - » Chapter 1 Introduction
 - » Section 2.6.5 Switching
- 3. Answer questions at moodle