Universidad Autónoma Metropolitana

UNIDAD CUAJIMALPA

Resolución del Problema de Rutas Vehiculares con Ventanas de Tiempo mediante un Algoritmo Híbrido entre Colonia de Hormigas y Recocido Simulado

Proyecto Terminal

QUE PRESENTA: ALEJANDRO MARTÍNEZ GUZMÁN

Licenciatura en Ingeniería en Computación

Departamento de Matemáticas Aplicadas e Ingeniería

División de Ciencias Naturales e Ingeniería

Asesor: EDWIN MONTES OROZCO

Junio 2025

Declaración

Yo, ALEJANDRO MARTÍNEZ GUZMÁN, declaro que este trabajo titulado «Resolución del Problema de Rutas Vehiculares con Ventanas de Tiempo mediante un Algoritmo Híbrido entre Colonia de Hormigas y Recocido Simulado» es de mi autoría. Asimismo, confirmo que:

- Este trabajo fue realizado en su totalidad para la obtención de grado en esta Universidad.
- Ninguna parte de esta tesis ha sido previamente sometida a un examen de grado o titulación en esta u otra institución.
- Todas las citas han sido debidamente referenciadas y atribuidas a sus autores.

Firma:			
Fecha:			

Resumen

Aquí va el resumen en español. Este apartado debe sintetizar brevemente el objetivo del trabajo, la metodología empleada y los resultados más relevantes.

Abstract

Here goes the abstract in English. Briefly describe the goal of your project, methodology, and key results.

Dedicatoria

A mis padres y profesores, por su apoyo incondicional.

Agradecimientos

Aquí van los agradecimientos a las personas e instituciones que contribuyeron al desarrollo de este proyecto.

Índice general

Re	esumen	III
Αl	bstract	v
De	edicatoria	VII
Aį	gradecimientos	IX
1.	Introducción	1
2.	Marco Teórico / Estado del Arte 2.1. Antencedentes	3 3 3 4
3.	Materiales y Métodos	5
4.	Resultados	7
5 .	Conclusiones	9
Αı	péndices	13

Índice de figuras

Índice de tablas

Introducción

Marco Teórico / Estado del Arte

2.1. Antencedentes

2.2. Conceptos Clave

2.2.1. El Problema en Optimización

La optimización es una rama de las matemáticas aplicadas que se ocupa de **determinar** el valor máximo o mínimo de una función que depende de una o más variables [2].

Formalmente, un problema de optimización se define como la búsqueda de un vector x en un conjunto factible $S \subseteq \mathbb{R}^n$ que minimice o maximice una función objetivo $f: S \to \mathbb{R}$, también denominada función costo o beneficio [1].

Esta disciplina se clasifica principalmente en dos tipos: la *optimización continua*, que trabaja con variables que pueden tomar valores dentro de un rango continuo, y la *optimización discreta*, que se enfoca en problemas donde las variables sólo pueden asumir valores discretos o enteros [1].

Optimización Continua

La optimización continua se refiere a la búsqueda de soluciones óptimas en un conjunto factible $S \subseteq \mathbb{R}^n$, donde las variables pueden tomar valores dentro de un intervalo continuo. En este contexto, el objetivo es encontrar un vector $x_{opt} \in S$ que minimice o maximice una función objetivo $f: S \to \mathbb{R}$.

Formalmente, para problemas de minimización, la solución óptima global x_{opt} satisface:

$$f(x_{opt}) \le f(x), \quad \forall x \in S,$$

mientras que para maximización, se cumple que:

$$f(x_{opt}) \ge f(x), \quad \forall x \in S.$$

El valor $f(x_{opt})$ representa el costo o beneficio óptimo, y el conjunto de todas las soluciones óptimas se denota como S_{opt} [1].

Optimización Discreta o Combinatoria

Un problema de optimización combinatoria se formaliza mediante una pareja (S, f), donde S es un conjunto finito de soluciones posibles y $f: S \to \mathbb{R}$ es la función objetivo o función costo que asigna un valor real a cada solución [1].

El objetivo es encontrar una solución óptima global $i_{opt} \in S$ que cumpla:

$$f(i_{opt}) \le f(i), \quad \forall i \in S,$$

para problemas de minimización, o bien:

$$f(i_{opt}) \ge f(i), \quad \forall i \in S,$$

en el caso de maximización.

2.3. Referencias Relevantes

Materiales y Métodos

Resultados

Conclusiones

Bibliografía

- [1] Sergio Gerardo de los Cobos Silva, John Goddard Close, Miguel Ángel Gutiérrez Andrade, and Alma Edith Martínez Licona. *Búsqueda y exploración estocástica*. Libros CBI, Universidad Autónoma Metropolitana Iztapalapa, México, 2010. Disponible en línea.
- [2] Unidad Azcapotzalco Universidad Autónoma Metropolitana. Optimización. Material de curso en línea, 2008. Disponible en: http://canek.uam.mx/calculo1/teoria/optimizacion/ftoptimizacion.pdf, consultado el 22 de mayo de 2008.

Apéndices