

Neural Turing Machines

陈彦骐

Graves A, Wayne G, Danihelka I. Neural turing machines[J]. arXiv preprint arXiv:1410.5401, 2014.

Outline

- Introduction to Turing Machines
- Neural Turing Machines

Definition

- A tape divided into cells
- A **head** that can read and write symbols on the tape and move the tape left and right one (and only one) cell at a time.
- A state register
- A finite table of instructions (finite-state machine, FSM)

Example 1 (Alan Turing 1937)

- Initial tape: Nothing (All cells are blank)
- State table:

Configuration		Behavior	
Current state	Scanned tape symbol	Tape operations	Final state
b	<blank></blank>	P0(Print symbol '0'), R(Move right)	С
С	<blank></blank>	R	е
е	<blank></blank>	P1, R	f
f	<blank></blank>	R	р

- Initial State: b, any position (tape)
- Result: 0 <blank> 1 <blank> 0 ······

Example 2 (Copy task)

- Initial tape: Series of 1s, 0 for other position
- Result: Double this series by writing a 0 between them
 - "111"—"1110111"
- Initial state: s₁, the beginning of series (the left most '1')
- State table:

Example 2

Configuration		Behavior	
Current state	Scanned tape symbol	Tape operations	Final state
s_1	0	-	Н
s_1	1	R	s_2
s_2	0	R	s_3
s ₂	1	P1, R	s_2
s_3	0	P1, L	S_4
s ₃	1	P1, R	s_3
s_4	0	L	S ₅
S ₄	1	P1, L	S_4
s_5	0	P1, R	s_1
S ₅	1	P1, L	S ₅
Н	-	-	-

Core issue

- Design of the state table: Programming
- Encode

Outline

- Introduction to Turing Machines
- Neural Turing Machines

Architecture

- von Neumann architecture
 - Distinguish input, output, memory
 - Random access memory
 - Controller: implicit state table
 - Larger word size

Controller

- RNN cell, usually LSTM
- Controller Input
 - Read content + Input

Controller

- Controller Output
 - Parameters for read or write

Addressing Scheme

- Read/Write weight
 - Weighted sum of $N \times M$ memory
- Read
 - Weighted sum

•
$$\mathbf{r}_t \leftarrow \sum_i w_t(i) \mathbf{M}_t(i)$$

- Write
 - Erase

•
$$\widetilde{\mathbf{M}}_t(i) \leftarrow \mathbf{M}_{t-1}(i)[\mathbf{1} - w_t(i)]\mathbf{e}_t$$

- Add (write)
 - $\mathbf{M}_t(i) \leftarrow \widetilde{\mathbf{M}}_t(i) + w_t(i)\mathbf{a}_t$

Weight generation

Weight generation

https://distill.pub/2016/augmented-rnns/

Experiments (Copy)

Experiments (Repeat Copy)

