LECTURE 11 LINEAR PROGRAMMING

Instructor: Lu Wang

College of Business

Shanghai University of Finance and Economics

WHAT IS LINEAR PROGRAMMING (LP)?

- A process of transforming a real world problem into a mathematical model
- The most widely used modeling technique designed to help managers in planning and making decisions (IBM, Excel, Gurobi, etc.)
- A deterministic modeling technique
- Linear programming helps in resource allocation decisions (e.g., product mix, labour scheduling)

HISTORY OF LINEAR PROGRAMMING

- First developed by Leonid Kantorovich in 1939.
- Was kept a secret for 8 years during WWII until George B. Dantzig
 (1947) published the simplex method and John von Neumann
 developed the theory of duality as a linear optimization solution,
 and applied it in the field of game theory.
- Many industries use it in their daily planning (airlines, oil companies, farming, auto industry,...)

STEPS IN DEVELOPING A LP MODEL

- Problem Formulation
- Solution Techniques
- Interpretation of Results

STEP 1: PROBLEM FORMULATION

There are three components to a LP:

- 1. Decision variables
- 2. Objective Function
 - Profit or Cost Parameters
 - Maximization/Minimization
- 3. Constraints
 - Constraint Parameters
 - Right-Hand-Side Constants

STEP 1: PROBLEM FORMULATION

The objective function and constraints are linear functions of the decision variables

Objective function:

Maximize or **Minimize**

Constraints: "≥" or "≤" or "="

EXAMPLE LP FORMULATION FLAIR FURNITURE

- Two products: chairs and tables
- Decision: How many units of each product to produce each month?
- Objective: Maximize profit
- Constraints: Limited resources (e.g., labour hours available), management or market restrictions

FLAIR FURNITURE CO. DATA

	Tables	Chairs	
	(per table)	(per chair)	Hours
Unit Profit	\$7	\$5	Available
Carpentry	3 hrs	4 hrs	2400
Painting	2 hrs	1 hr	1000

Other Management/Market Limitations:

- Make no more than 450 chairs
- Make at least 100 tables

EXAMPLE LP FORMULATION: FLAIR FURNITURE

Decision Variables:

T = Number of tables to make each month

C = Number of chairs to make each month

Objective Function (OF): Maximize total profit

Objective: Maximize Z = 7T + 5C (profit)

Subject to: $3T + 4C \le 2400$ (carpentry hrs.)

 $2T + 1C \le 1000$ (painting hrs.)

 $C \leq 450$ (max no. of chairs)

 $T \ge 100$ (min no. of tables)

 $T \ge 0, C \ge 0$ (non-negativity)

STEP 2: SOLUTION TECHNIQUES

There are many different ways to solve a linear program:

- Graphical Solutions
- Microsoft Excel (Solver)
- Simplex Method
- Karamarkar's Algorithm
- IBM CPLEX
- Gurobi
- MATLAB
- Mathematica

Carpentry

Constraint Line:

$$3T + 4C = 2400$$

(i.e., $3T + 4C \le 2400$)

Intercepts:

$$(T = 0, C = 600)$$

$$(T = 800, C = 0)$$

Painting

Constraint Line:

$$2T + 1C = 1000$$

(i.e., $2T + 1C \le 1000$)

Intercepts:

$$(T = 0, C = 1000)$$

$$(T = 500, C = 0)$$

Max Chair Line:

$$C = 450$$

(i.e., $C \le 450$)

Min Table Line:

$$T = 100$$

(i.e., $T \ge 100$)

MAIN INSIGHTS AND DEFINITIONS

- Feasible solution: A point that satisfies all the constraints in the problem.
- The set of all feasible solutions is called the feasible set or feasible region. It is always polygonal.
- Corner Point Property: An optimal solution to the LP must lie at one or more corner points.
- Optimal point (region): The corner point or region with the best objective function value
 - (i.e., the largest for a maximization problem; the smallest for a minimization problem)

MAIN INSIGHTS AND DEFINITIONS

A constraint is said to be binding or active if it is satisfied with equality at the optimal solution.

 Geometrically, an active constraint is one that passes through the optimal solution.

A constraint is said to be inactive or nonbinding if it is satisfied with strict inequality at the optimal solution.

 Geometrically, an inactive constraint is one that does not pass through the optimal solution.

EXAMPLE EXCEL SOLUTION: FLAIR FURNITURE

	Α	В	С	D	Е	F
1	Flair Furniture					
2						
3		T	С			
4		Tables	Chairs			
5	Number of Units			Total Profit =		
6	Profit	7	5	=SUMPRODUCT(B6:C6,B\$5:C\$5)		
7	Constraints					
8	Carpentry hours	3	4	=SUMPRODUCT(B8:C8,B\$5:C\$5)	<=	2400
9	Painting hours	2	1	=SUMPRODUCT(B9:C9,B\$5:C\$5)	<=	1000
10	Maximum chairs		1	=SUMPRODUCT(B10:C10,B\$5:C\$5)	<=	450
11	Minimum tables	1		=SUMPRODUCT(B11:C11,B\$5:C\$5)	>=	100
12				LHS	Sign	RHS

EXAMPLE EXCEL SOLUTION: FLAIR FURNITURE

EXAMPLE EXCEL SOLUTION: FLAIR FURNITURE

	А	В	С	D	Ε	F
1	Flair Furn	iture				
2						
3		Т	С			
4		Tables	Chairs			
5	Number of Units	Number of Units 320		Total Profit =		
6	Profit	7	5	4040		
7	Constraints					
8	Carpentry hours	3	4	2400	<=	2400
9	Painting hours	2	1	1000	<=	1000
10	Maximum chairs		1	360	<=	450
11	Minimum tables	1		320	>=	100
12				LHS	Sign	RHS

STEP 3: INTERPRETATION OF RESULTS

What is the model telling you to do?

What actions should you take to:

- Minimize your costs? Maximize your profits?
- Read and interpret the MS Excel Answer Report

Why does this make sense?

Sensitivity and economic analysis

- How is the optimal solution affected by changes and estimation errors in the problem data?
- Read and interpret the MS Excel Sensitivity Report

ANSWER AND SENSITIVITY REPORTS

Flair Furniture: Answer Report

Objective Cell (Max)

Cell		Name	Original Value	Final Value
\$D\$6	Profit		0	4040

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$5	Number of Units Tables	0	320	Contin
\$C\$5	Number of Units Chairs	0	360	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$D\$11	. Minimum tables	320	\$D\$11>=\$F\$11	. Not Binding	220
\$D\$8	Carpentry hours	2400	\$D\$8<=\$F\$8	Binding	0
\$D\$9	Painting hours	1000	\$D\$9<=\$F\$9	Binding	0
\$D\$10	Maximum chairs	360	\$D\$10<=\$F\$10	Not Binding	90

SHADOW PRICES

Each constraint has an associated shadow price

The shadow price is the change in the optimal objective value per unit increase in the right-hand side of the constraint, given that all other data remain the same

Flair Furniture: Sensitivity Report

Microsoft Excel 15.0 Sensitivity Report

Worksheet: [Solver Example - Flair Furniture.xlsx]Sheet1

Report Created: 3/22/2015 5:05:37 PM

Range Information

Shadow Price Information

Va	ria	b	le	Cel	ls
• •		\sim	_	\sim	

		Fina	Reduced	Objective	Allowable		Allowable
Cell	Name	Value	Cost	Coefficient	Increase		Decrease
\$B\$5	Number of Units Tables	320	0	7		3	3.25
\$C\$5	Number of Units Chairs	360	0	5	4.33333333	33	1.5

Constraints

		Final S	h <mark>adow (</mark>	Constraint	Allowable `	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$11	Minimum tables	320	0	100	220	0 1E+30
\$D\$8	Carpentry hours	2400	0.6	2400	225	5 900
\$D\$9	Painting hours	1000	2.6	1000	600	150
\$D\$10	Maximum chairs	360	0	450	1E+30	90

SENSITIVITY ANALYSIS QUESTIONS

- Flair Furniture is offered 100 more painting hours at a cost of \$250.
 Should they take the deal?
- Flair Furniture is offered 100 more carpentry hours at a cost of \$250. Should they take the deal?
- What would be the impact of decreasing the minimum number of tables in 50 units?
- What would be the impact of increasing the maximum number of chairs in 50 units?

GENERAL PRINCIPLES ON SHADOW PRICES

 The unit of the shadow price is the unit of the objective function divided by the unit of the constraint

Shadow Price = $\frac{\Delta \text{ (optimal objective function value)}}{\Delta \text{(RHS value)}}$

- In terms of microeconomic theory, the shadow price of a given constraint is the marginal value of the resource whose units are expressed in the constraint
- Shadow prices values are valid in a range. Outside of that range it is necessary to resolve the LP
- The shadow price for any non-binding constraint will be zero

MEDIA SELECTION PROBLEM (MSP)

Kitchener Electronics:

Four advertising media:

TV spots, newspaper ads, and two types of radio advertisements

Budget: \$8,000 per week for advertising

Decision: How many ads of each type?

Objective: Maximize audience exposure

		Advertis	ing Options	
	TV Spot	Newspaper	Radio (prime time)	Radio (afternoon)
Audience Reached (per ad)	5000	8500	2400	2800
Cost (per ad)	\$800	\$925	\$290	\$380
Max Ads (per week)	12	5	25	20

STEP 1: LP FORMULATION OF MSP DECISION VARIABLES

Other Restrictions

Have at least 5 radio spots / week

Spend no more than \$1800 on radio ads / week

Decision Variables

T = number of TV spots per week

N = number of newspaper ads per week

P = number of prime time radio spots per week

A = number of afternoon radio spots per week

STEP 1: LP FORMULATION OF MSP OBJECTIVE &CONSTRAINTS

Objective Function (audience reached):

Max Z = 5000T + 8500N + 2400P + 2800A

Subject to the constraints:

```
800T + 925N + 290P + 380A < 8000 (Budget)
```

P + A > 5 (minimum radio spots per week)

290P + $380A \le 1800$ (Maximum \$ on radio)

 $T \le 12$ $P \le 25$

 $N \le 5$ $A \le 20$ (maximum number of ads per week for each type)

T, N, P, $A \ge 0$ (non-negativity)

STEP 2: SOLUTION TECHNIQUE

	Α	В	С	D	Е	F	G	Н
1	Kitchener electronic							
2								
3		Т	N	P	A			
4		TV	Newspaper	Radio (Prime)	Radio (Afternoon)			
5	Number of ads per week					Total Exposure =		
6	Exposure	5000	8500	2400	2800	=SUMPRODUCT(B6:E6,B\$5:E\$5)		
7	Constraints:							
8	Budget	800	925	290	380	=SUMPRODUCT(B8:E8,B\$5:E\$5)	<=	8000
9	Min radio spots			1	1	=SUMPRODUCT(B9:E9,B\$5:E\$5)	>=	5
10	Max \$ on radio			290	380	=SUMPRODUCT(B10:E10,B\$5:E\$5)	<=	1800
11	TV max ads per week	1				=SUMPRODUCT(B11:E11,B\$5:E\$5)	<=	12
12	N max ads per week		1			=SUMPRODUCT(B12:E12,B\$5:E\$5)	<=	5
13	RP max ads per week			1		=SUMPRODUCT(B13:E13,B\$5:E\$5)	<=	25
14	RA max ads per week				1	=SUMPRODUCT(B14:E14,B\$5:E\$5)	<=	20
15						LHS	Sign	RHS

STEP 2: SOLUTION TECHNIQUE

	Α	В	С	D	Е	F	G	Н
1	Kitchener electronic							
2								
3		T	N	P	Α			
4		TV	Newspaper	Radio (Prime)	Radio (Afternoon)			
5	Number of ads per week	1.96875	5	6.206896552	0	Total Exposure =		
6	Exposure	5000	8500	2400	2800	67240.30172		
7	Constraints:							
8	Budget	800	925	290	380	8000	<=	8000
9			Solver P	arameters		х	>=	5
9 10 11			301761 1	didiffecers			<=	1800
11							<=	12
12	Se <u>t</u> Objective:	\$F\$6				E	<=	5
13	To: Max	O 15-	O 1/-1	- 05	0		<=	25
14	To:	○ Mi <u>n</u>	∪ <u>v</u> alt	ie Of:	0		<=	20
15	By Changing Variable Cells	5:					Sign	RHS
13 14 15 16 17	\$B\$5:\$E\$5					5		
17								
18	Subject to the Constraints:							
19	\$F\$10:\$F\$14 <= \$H\$10:\$H \$F\$8 <= \$H\$8	ł\$14			^ _	<u>\</u> dd		
20	\$F\$9 >= \$H\$9							
					Ch	ange	1	

STEP 2: SOLUTION TECHNIQUE

	Α	В	С	D	Е	F	G	Н
1	Kitchener electronic							
2								
3		T	N	P	Α			
4		TV	Newspaper	Radio (Prime)	Radio (Afternoon)			
5	Number of ads per week	1.96875	5	6.206896552	0	Total Exposure =		
6	Exposure	5000	8500	2400	2800	67240.30172		
7	Constraints:							
8	Budget	800	925	290	380	8000	<=	8000
9			Solver P	arameters		х	>=	5
9 10 11			<=	1800				
11							<=	12
12	Se <u>t</u> Objective:	\$F\$6				E	<=	5
13	To: Max	O 15-	O 1/-1	- 05	0		<=	25
14	To:	○ Mi <u>n</u>	∪ <u>v</u> alt	ie Of:	0		<=	20
15	By Changing Variable Cells	5:					Sign	RHS
16	\$B\$5:\$E\$5					5		
13 14 15 16 17								
18	Subject to the Constraints:							
19	\$F\$10:\$F\$14 <= \$H\$10:\$H \$F\$8 <= \$H\$8	ł\$14			^ _	<u>\</u> dd		
20	\$F\$9 >= \$H\$9							
					Ch	ange	1	

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$F\$6	Exposure	0	67240.30172

Variable Cells Call

Cell	Name	Original value	Final value	integer
\$B\$5	Number of ads per week TV	0	1.96875	Contin
\$C\$5	Number of ads per week Newspaper	0	5	Contin
\$D\$5	Number of ads per week Radio (Prime)	0	6.206896552	Contin
\$E\$5	Number of ads per week Radio (Afternoon)	0	C	Contin

Min radio spots

.					
Constraints Cell	Name	Cell Value	Formula	Status	Slack
\$F\$10 Max \$ or	n radio	1800	\$F\$10<=\$H\$1	0 Binding	
\$F\$11 TV max a	ads per week	1.96875	\$F\$11<=\$H\$1	1 Not Binding	10.0312
\$F\$12 N max a	ds per week	5:	\$F\$12<=\$H\$1	2 Binding	
\$F\$13 RP max a	ads per week	6.206896552	\$F\$13<=\$H\$1	3 Not Binding	18.7931034
\$F\$14 RA max a	ads per week	0:	\$F\$14<=\$H\$1	4 Not Binding	2
\$F\$8 Budget		8000	\$F\$8<=\$H\$8	Binding	

6.206896552\$F\$9>=\$H\$9

Not Binding 1.20689655

Shadow Price Information

Range Information

		F <mark>i</mark> nal		Reduced		Objective	Allowab	е	Allowable
Cell	Name	Va lue		Cost		Coefficient	Increase		Decrease
\$B\$5	Number of ads per week TV	1.968	75		0	5000	1620.6896	55	5000
\$C\$5	Number of ads per week Newspaper		5		0	8500	1E+	30	2718.75
\$D\$5	Number of ads per week Radio (Prime)	6.2068965	52		0	2400	1E+	30	263.1578947
\$E\$5	Number of ads per week Radio (Afternoon)		0 -	344.827586	52	2800	344.82758	€2	1E+30

Constraints

Variable Cells

		Final	shadow Cor	nstraint A	llowable 💆	Allowable
Cell	Name	Value	Price R.I	H. Side I	ncrease	Decrease
\$F\$10	Max \$ on radio	1800	2.025862069	1800	1575	350
\$F\$11	TV max ads per week	1.96875	0	12	1E+30	10.03125
\$F\$12	N max ads per week	5	2718.75	5 1.7	02702703	5
\$F\$13	RP max ads per week	6.206896552	0	25	1E+30 1	18.79310345
\$F\$14	RA max ads per week	0	0	20	1E+30	20
\$F\$8	Budget	8000	6.25	8000	8025	1575
\$F\$9	Min radio spots	6.206896552	0	5 1.2	06896552	1E+30
		·		·		

SENSITIVITY ANALYSIS QUESTIONS

- How would the audience exposure change if the maximum number of Newspaper ads was increased by one?
- Would you rather have \$320 of extra budget, or have the same budget but increase the expense limit on radio ads per week to \$2800?

EXTENSIONS TO LINEAR PROGRAMMING

(Mixed) Integer Programming

(Some of) the decision variables must be an integer

Non-Linear Programming

- Convex programming
 - Objective function is a convex function
 - Constraints define a convex set
- Nonconvex optimization
 - Global optimization, approximate methods

Dynamic Programming

SUMMARY: LINEAR PROGRAMMING

- Define the decision variables
- Formulate LP using the decision variables
 - Write the objective function equation
 - Write each of the constraints
- Implement the model (e.g., in Excel)
- Solve (e.g., graphically or Excel's Solver)
- Interpret your results and do sensitivity analysis