

ESSTER at the EYRE 2020 Entity Summarization Task

Qingxia Liu, Gong Cheng, and Yuzhong Qu

State Key Laboratory for Novel Software Technology, Nanjing University, China

Outline

- Introduction
- ESSTER
 - Structural Importance
 - Textual Readability
 - Information Redundancy
 - Combinatorial Optimization
- Evaluation
- Conclusion

Introduction

RDF Graph

Entity Summary

Paris Public School

type: Building

location: Paris, Idaho

built: "1918"

architect: Richard C. Watkins architectural style: Prairie School

Introduction

- Entity Description Desc(e)
 - Desc(e) = {<e, prop(t), val(t)>}
 - a set of triples in T, where e as subject or object

- Entity Summarization Summ(e)
 - Summ(e) \subseteq Desc(e), $|Summ(e)| \le k$
 - Provide key information & compact
 - For human users ⇒ Reading Experience

Paris Public School

MPS: Paris MRA locmapin: "ldaho"

NRHP Reference Number: "82000290"

coord format: "dms" latitude: "42.2284"

Paris Public School

type: Thing type: Place type: Building

label: "Paris Public School" name: "Paris Public School"

Paris Public School

type: Building

location: Paris, Idaho

built: "1918"

architect: Richard C. Watkins architectural style: Prairie School

ESSTER

Generating entity summaries of structural importance, high readability, and low redundancy.

Structural Importance

Structural Importance

•
$$W_{\text{struct}}(t) = \alpha \cdot \text{glb}(t) + (1 - \alpha) \cdot \text{loc}(t)$$

Global

- $glb(t) = ppop_{global}(t) \cdot (1 vpop(t))$
- generality of property
- characteristic of value

type: Thing

Local

- $loc(t) = (1 ppop_{local}(t)) \cdot vpop(t)$
- punishment on multi-valued properties
- avoiding too technical/specific values

subject: American architects

subject: NRHP architects

birth year: "1858" ✓

wiki page ID: "34981613"

Textual Readability

```
location ✓ NRHP Reference Number ?

birth date ✓ Coord format ?

country ✓ locmapin ?

architectural style ✓ MPS ?
```

Textual Readability

A property is familiar to users if it is often used in an open-domain corpus

Textual Readability

b(t): # documents where prop(t) appears
M: # documents have been read by the user
m: # documents have been read by the user
and prop(t) appears

B: # documents in the corpus

Familiarity

$$Q(t) = \sum_{m=0}^{\min(b(t),M)} \frac{\binom{b(t)}{m} \cdot \binom{B-b(t)}{M-m}}{\binom{B}{M}} \cdot \text{familarity}(m) = \frac{\log(m+1)}{\log(B+1)}.$$

Textual Readability

$$W_{\text{text}}(t) = \log(Q(t) + 1).$$

- Redundancy
 - $sim(t_i, t_i)$
- Logical Redundancy
- Numerical Redundancy
- Textual Redundancy

- Redundancy
 - $sim(t_i, t_j)$
- Logical Redundancy

$$sim(t_i, t_i) = 1 if$$

- $prop(t_i) = prop(t_j) = rdf$: type , $val(t_i)$ and $val(t_j)$ have rdfs: subClassOf relation
- $val(t_i) = val(t_j)$, $prop(t_i)$ and $prop(t_j)$ have rdfs: subPropertyOf relation

type: Thing type: Place type: Building

label: "Paris Public School" name: "Paris Public School"

- Redundancy
 - $sim(t_i, t_i)$
- Numerical Redundancy

$$sim(t_i, t_j) = max\{sim_p(t_i, t_j), sim_v(t_i, t_j), 0\}$$

- $val(t_i)$ and $val(t_i)$ are both numerical values
- $sim_p(t_i, t_j) = ISub(prop(t_i), prop(t_j))$
- $\sin_{v}(t_{i}, t_{j}) = \frac{1}{\text{bab}(\text{prop}(t_{i}), \text{prop}(t_{j}))}$ $\sin_{v}(t_{i}, t_{j}) = \begin{cases} -1, & \text{if } \text{val}(t_{i}) \cdot \text{val}(t_{j}) \leq 0 \\ \frac{\min\{\text{val}(t_{i}), \text{val}(t_{j})\}}{\max\{\text{val}(t_{i}), \text{val}(t_{j})\}}, & \text{otherwise} \end{cases}$

```
area land: "9.01e+06" | sim=0.9019 area total: "9.09e+06" | sim=0.0002
```

- Redundancy
 - $sim(t_i, t_j)$
- Textual Redundancy

$$sim(t_i, t_j) = max\{sim_p(t_i, t_j), sim_v(t_i, t_j), 0\}$$

- $sim_p(t_i, t_j) = ISub(prop(t_i), prop(t_j))$
- $sim_v(t_i, t_j) = ISub(val(t_i), val(t_j))$

```
given name: "Richard"

name: "Richard C. Watkins"

sim=0.78

gender: "male"
```

Combinatorial Optimization

- Goal: generate entity summary of
 - high structural importance $W_{\text{struct}}(t_i)$
- - high textual readability $W_{\text{text}}(t_i)$
- - low information redundancy
- $-\sin(t_i,t_i)$
 - and satisfy size constraint k

Combinatorial Optimization

- 0-1 Quadratic Knapsack Problem (QKP)
 - max profit, satisfy weight constraint
 - profit:
 - structural importance, textual readability
 - low information redundancy
 - weight: x_i
 - − 1 if $t_i \in \text{Summ}(e)$
 - 0 otherwise

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{|\mathsf{desc}(e)|} \sum_{j=i}^{|\mathsf{desc}(e)|} \mathsf{profit}_{i,j} \cdot x_i \cdot x_j \end{array}$$

subject to
$$\sum_{i=1}^{|\mathsf{desc}(e)|} x_i \le k$$

$$x_i \in \{0, 1\} \text{ for all } i = 1 \dots | \text{desc}(e) |$$
.

$$\text{profit}_{i,j} = \begin{cases} (1 - \delta) \cdot (W_{\text{struct}}(t_i) + W_{\text{text}}(t_i)) & i = j, \\ \delta \cdot (-\text{sim}(t_i, t_j)) & i \neq j, \end{cases}$$

Evaluation

- Data
 - ESBM v1.2
- Baselines
 - 9 unsupervised methods
- Results
 - top-2 on DBpedia under k=5
 - best in all the other three settings

F1 Scores

	DBpedia		LinkedMDB	
	<i>k</i> = 5	k = 10	<i>k</i> = 5	k = 10
RELIN	0.242	0.455	0.203	0.258
DIVERSUM	0.249	0.507	0.207	0.358
FACES	0.270	0.428	0.169	0.263
FACES-E	0.280	0.488	0.313	0.393
CD	0.283	0.513	0.217	0.331
LinkSUM	0.287	0.486	0.140	0.279
BAFREC	0.335	0.503	0.360	0.402
KAFCA	0.314	0.509	0.244	0.397
MPSUM	0.314	0.512	0.272	0.423
ESSTER	0.324	0.521	0.365	0.452

Conclusion

- ESSTER: generating entity summaries by integrating
 - structural importance,
 - textual readability,
 - and information redundancy
 - via combinatorial optimization
- ESSTER achieves SOTA among unsupervised entity summarizers on ESBM v1.2
- Future Work
 - more powerful measures of readability and redundancy
 - incorporate these features into a neural network model

Thank you!

Questions?