Mathematical Methods for Computer Science 2 Spring 2018

Series 13

Sylvain Julmy

1

a)

 $L = \{a^i b^j c^k | i < j < k\}$ is not context-free :

Assume L is context-free, then the Pumping Lemma hold, then for all $\omega \in L$, we have $\omega = uvwxy$ such that $vx \neq \epsilon$, $|vwx| \leq p$ and $i \geq 0$, uv^iwx^iy .

We pick z as $a^{m+2}b^{m+1}c^m$, where m is the pumping length. z is clearly in L and $|z| \ge m$. We know that $|vwx| \le m$ and |vx| > 0, then we know that vwx must consist of:

- 1. only a's $\Longrightarrow vx = a^s$ since the lemma tell us |vx| > 0. Now we take i = 0, then we have $z' = uv^0wx^0y \in L$ but z' is $a^{m+2-s}b^{m+1}c^m$ and since s > 0, the pumping lemma don't hold.
- 2. some a's and some b's $\implies vx = a^sb^t$ such that s+t>0, we take i=0 then z' is in the form $a^{m+2-s}b^{m+1-t}c^m$. If t is positive, then |b|>|c| and its not in the language. If t=0, then its case 1.
- 3. only b's take i=0, then z' is in the form $a^{m+2}b^{m+1-s}c^m$ and s is positive, which violates the condition that |b|>|c|. So $z'\not\in L$.
- 4. some b's and some c's: take i=2 then $z'=a^{m+2}b^{m+1+s}c^{m+t}$, if $s\neq 0$ then |a|>|b| don't hold. If $s\neq 0$ then $t\neq 0$ then |b|>|c| don't hold, so $z'\not\in L$.
- 5. only c's: take i=2, then $z'=a^{m+2}b^{m+1}c^{m+s}$, since s is positive, then |b|>|c| don't hold.

Since all five cases fail to pump, the Pumping Lemma tells us that this language is not context-free.

b)

 $\{a^i|i \text{ is a prime}\}\$ is not context-free :

Let $v = x^q$ and $y = x^t$, note that the Pumping Lemma requires q + t > 0. Let r = |uxz| = pqt. Then |uvrxyrz| = r + rq + rt = r(1 + q + t) is divisible by both r and 1 + q + t > 1 and thus is not prime as long as r > 1.

Then there are two unsettled cases: if r = 0, |uv2xy2z| = |v2y2| = 2p is not prime. Finally, if r = 1, |uvp + 1xyp + 1pz| = 1 + (p+1)q + (p+1)t = 1 + (p+1)(q+t) = 1 + (p+1)(p1) = p2 isn't prime.

2

The language $L = \{0^i 1^j 0^{i+j}\}$ is not regular :

Assume L is regular, let $\omega=0^s1^t0^{t+s}$. Thus $|\omega|=2(s+t)$, by the pumping lemma, let $\omega=xyz$, where $|xy|\leq n$. Let $x=0^p$, $y=0^q$ and $z=0^r1^t0^{p+q+r+t}$ where p+q+r=s, $p\neq 0$, $q\neq 0$, $r\neq 0$. Thus $|y|\neq 0$. Let k=2, then $xy^2z=0^p0^{2q}0^r1^t0^{p+2q+r+t}$. Then the number of a is 2(p+2q+r)=2(n+q). Hence $xy^2z=0^p0^{2q}0^r1^t0^{n+q+t}$, since $q\neq 0$ xy^2z is not of the form $0^i1^j0^{i+j}$, thus $xy^2z\not\in L$, hence L is not regular.

The language $L = \{0^i 1^j 0^{i+j}\}$ is context-free since the following grammar generate it:

$$A \rightarrow 0AB0 \mid \epsilon$$
$$B \rightarrow 1B0 \mid \epsilon$$

3

4

If L is context-free, then there is a PDA P accepting it. If M is regular, then there is a DFA F accepting it. The intersection of L and M is the language that accept word that are in L and in M. Any word that are in the intersection are accepted by D but not all the word that are accepted by D, only those accepted by P.

The cross product proof consists of constructing an automaton $P \otimes F$ which contains the mechanics of both P and F, and which accepts only words for which both sides accept. The cross-product automaton is a PDA (and therefore the recognized language is context-free) — intuitively, because the cross product with an n-state DFA consists of taking n copies of P and adding (q, a, [q]) arrows between matching states in P where the DFA has a arrows. The result is not a finite automaton in general (not even a non-deterministic one) because the P part relies on the stack and this reliance does not go away in $P \otimes F$ in general.

5

a)

The language generated is finite because there are no cycle in the following graph of possible generation :

b)

The language generated is infinite because we have a cycle between C and S:

The following familly of word is in L:

$$S \rightarrow AB \rightarrow BCB \rightarrow BABB \rightarrow BACCB \rightarrow BAABCB \rightarrow BAACCCB \rightarrow BAAABCCCB \rightarrow BAAAACCCCCB \rightarrow BAAAAACCCCCB \rightarrow \cdots$$

all the words of the form $ba^nbb^nb=ba^nb^{n+2}$