K-Means Clustering and Gaussian Mixture Model

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the clustering task and the K-means algorithm
 - Know what the unsupervised learning is
 - Understand the K-means iterative process
 - Know the limitation of the K-means algorithm
- Understand the Gaussian mixture model
 - Know the multinomial distribution and the multivariate Gaussian distribution
 - Know why mixture models are useful
 - Understand how the parameter updates are derived from the Gaussian mixture model
- Understand the EM algorithm
 - Know the fundamentals of the EM algorithm
 - Know how to derive the EM updates of a model

Expectation of GMM

- Similar problem of K-means algorithm
 - Two interacting parameters
 - As before, we apply the expectation and the maximization algorithm
 - Expectation: the assignment between the clusters and the data points
 - Maximization: the update of the parameters
- Expectation step
 - Assign a data point to a nearest cluster → the assignment probability
 - Given the parameters and the data point, calculate the likelihood

•
$$\gamma(z_{nk}) \equiv p(z_k = 1 | x_n) = \frac{P(z_k = 1)P(x | z_k = 1)}{\sum_{j=1}^K P(z_j = 1)P(x | z_j = 1)} = \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x | \mu_j, \Sigma_j)}$$

- Here, x, π , μ , Σ are given, calculate $\gamma(z_{nk})$
- $\gamma(z_{nk})$ are used to calculate π, μ, Σ
- The new $\gamma(z_{nk})$ motivates the update of the old parameters

Maximization of GMM

- Maximization step
 - Update the parameters given $\gamma(z_{nk})$
 - Parameters to update: π , μ , Σ
 - $\ln P(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)\}$
 - Typical methods
 - Derivative → set the equation to zero when the function is smooth
 - Lagrange method when there is a constraint. Which parameter has the constraint?

•
$$\frac{d}{d\Sigma_k} \ln P(X|\pi,\mu,\Sigma) = 0$$

$$\rightarrow \Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (x_n - \widehat{\mu_k}) (x_n - \widehat{\mu_k})^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

 $N(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}))$

Properties of GMM

- Pros and cons of Gaussian mixture model
 - Pros
 - More information
 - Soft clustering
 - Not a simple and discrete assignment
 - Information loss
 - More and more information
 - Learn the latent distribution
 - Distance is not always the answer of the distribution
 - Cons
 - Long computation time
 - Why?
 - Falling into local maximum
 - Deciding K
- Anyways to mitigate the disadvantage?
 - Fast K-means and slow GMM

