Fachbericht

Wetterstation mit Solar Energie

Windisch, 26. November 2018

Hochschule Hochschule für Technik - FHNW

Studiengang Elektro- und Informationstechnik

Autor/-en Mischa Knupfer, Andres Minder

Betreuer Prof. Dr. Taoufik Nouri

Auftraggeber Prof. Dr. Taoufik Nouri

Version 1.0

Abstract

Inhaltsverzeichnis

T	Auftragsbeschreibung					
2	Ziele					
3	MCU					
4	RTC	6				
5	Sensoren	7				
	5.1 Messen der Lufttemperatur	7				
	5.2 Ermittlung der Niederschlagsmenge	7				
	5.3 Ermittlung der Windgeschwindigkeit	7				
	5.4 Zählung der Sonnenstunden	7				
6	Datenspeicherung	8				
	6.1 Breakoutboard	8				
	6.1.1 SPI (Serial Peripheral Interface)	8				
	6.1.2 Verdrahtung	8				
	6.2 μ SD-Karte	8				
7	7 Kommunikationsmodul					
8	Konzeptvalidierung	11				
9	Literatur					
\mathbf{A}	A Lastenheft					

Einleitung

1 Auftragsbeschreibung

Das Wetter spielt eine wichtige Rolle in der Agronomie. Regnet es nicht genug, müssen Pflanzen bewässert werden. Trifft auf ein Ort nur wenig Sonnenlicht, so sollten dort nicht die Pflanzen, welche viel Sonnenlicht brauchen, angebaut werden. Windet es zu stark, können Pflanzen beschädigt oder gar zerstört werden. Ist es Tagsüber heiss, so benötigen die Pflanzen mehr Wasser. Hiesige Bauern besitzen den Luxus von guten Wettervorhersagen dank dem Bundesamt für Meteorologie und Klimatologie (MeteoSchweiz). Dieser Luxus ist in anderen Ländern noch nicht gegeben. Prof. Dr. Nouri Taoufik ist aufgefallen, dass in tropischen Gegenden wie Südamerika oder teile Afrikas dieser Luxus ebenso fehlt.

Aus diesem Grund soll eine kostengünstige, erweiterbare und mobile Wetterstation entwickelt werden, welche diese Bauern unterstützt. Diese Wetterstation soll die Regenmenge, die Windstärke, die Lufttemperatur und die Sonnenstunden messen können. Ausserdem soll die Wetterstation mittels Photovoltaik unterstützt werden, und erhobene Daten via SMS abrufbar sein.

Im Nachfolgenden Dokument werden die Ziele dieses Projekts definiert, sowie das Gesamtkonzept näher erläutert.

2 Ziele

Die Ziele sind strikt aufgeteilt in die zwei Projekte 5 und 6. Darin enthalten sind die jeweiligen zu erreichenden Muss- und Wunschziele mit ihren quantifizierten Spezifikationen. Diese sind wichtig, da Ortsabhängig unterschiedliche Normwerte gelten und sich dieses Projekt grundsätzlich auf die Schweiz fokussiert.

Tabelle 2.1: Ziele P5

	Ziel	Messbereiche	Genauigkeiten	Einheiten			
Mussziele P5							
Sensoren	Lufttemperaturmessung	[-20;60]	± 1	°C			
	Windgeschwindigkeitsmessung	[10;25]	± 1	m/s			
	Niederschlagsmenge	Wasser	± 100	$\mathrm{ml/m^2}$			
Datenspeicherung	Datenabfrage via PuTTY	≥ 9600		$\mathrm{Bd/s}$			
RTC	Implementation	Echtzeit	± 1	s/Jahr			
Wunschziele P5							
Sensoren	Sonnenstunden Prototyp	Echtzeit		S			

Tabelle 2.1 zeigt diverse Ziele im P5, unterteilt in Muss- und Wunschziele. Zu den Musszielen gehören die Lufttemperaturmessung, die Windgeschwindigkeitsmessung, die Niederschlagsmessung, die Implementation des RTC und die mögliche Datenabfrage via Putty vom Datenspeicher. Die Lufttemperatur soll zwischen -20 bis 60 °C ermittelbar sein, mit einer Genauigkeit von ± 1 °C. Die Windgeschwindigkeitsmessung soll vor allem stärkere Windgeschwindigkeiten erfassen, um vor Sturm warnen zu können, weshalb niedrigere Windgeschwindigkeiten vernachlässigt werden können. Die Windgeschwindigkeit soll zwischen 10 und 25 m/s auf ± 1 m/s genau gemessen werden. Die Niederschlagsmenge soll nur für Regenwasser bestimmt werden mit einer Genauigkeit von ± 100 ml/m². Als Wunschziel soll eine Möglichkeit getestet werden um Sonnenstunden zu detektieren, welche dann im P6 umgesetzt wird.

Tabelle 2.2: Ziele P6

	Ziel	Messbereiche	Genauigkeiten	Einheiten			
Mussziele P6							
Speisung	Akkukapazität						
	Ladeschaltung Akku						
	Ladeschaltung Photovoltaik						
Kommunikationsmodul	GPS						
	Mobilfunk (SMS)						
Sensoren	Sonnenstunden						
Wunschziele P6							
Kommunikationsmodul	Mobilfunk (Website)						
Speisung	Akku austauschbar						

Tabelle 2.2 zeigt diverse Ziele im P6, unterteilt in Muss- und Wunschziele. Diese Tabelle ist unvollständig und wird im P6 nachgeführt. Generell kann gesagt werden, dass die Speisung, das Kommunikationsmodul mit GPS und Mobilfunk, sowie die Sonnenstunden-Sensorik implementiert werden sollen. Als Wunschziele sind ein austauschbarer Akku und eine Website zur Datensicherung und ggf. grafischen Darstellung aufgeführt.

3 MCU

6 4 RTC

4 RTC

5 Sensoren

5.1 Messen der Lufttemperatur

5.2 Ermittlung der Niederschlagsmenge

Dieses Unterkapitel befasst sich mit der Realisierung der Niederschlagsmessung. Diese soll nach einem Kipplöffelprinzip funktionieren und gemäss definierten Zielen eine Genauigkeit von ± 100 ml/ m^2 aufweisen. Ausserdem soll als alternative zusätzlich ein Messbecher an der Wetterstation installiert werden, damit der Bauer die Niederschlagsmenge anhand einer Skala ablesen kann. In einem ersten Schritt soll das Kipplöffelprinzip näher erläutert werden. Darauf folgend sollen die Realisierung dieses Kipplöffels und anschliessend die Implementation in der Software thematisiert werden. Zu guter Letzt soll die Validierung des Teilsystems folgen.

Das Kipplöffelprinzip

Das Prinzip des Kipplöffels wird in Abbildung GRAPHKIPP graphisch dargestellt.

GRAPHKIPP

GRAPHKIPP zeigt das Prinzip des Kipplöffels. Der Kipplöffel besteht im Grunde aus zwei Löffeln und ist in der Mitte mit dem Gehäuse befestigt. Regenwasser wird über eine Öffnung im Gehäusedeckel zum Kipplöffel befördert. Ist der Löffel mit Regenwasser gefüllt, so kippt dieser aufgrund des Gewichts und leert das Wasser über eine Öffnung im Gehäuseboden aus. Durch die Kippung wird der andere Löffel in die Ausgangsposition bewegt und kann sich nun mit Wasser füllen. Mit der Hilfe von Reedkontakten und Magneten wird die Anzahl der Kippbewegungen gezählt. Die Niederschlagsmenge ergibt sich aus der Anzahl Kippbewegungen, multipliziert mit dem Volumen des Kipplöffels.

Die Realisierung des Kipplöffels

Implentation in der Software

Validierung der Niederschlagsmessung

- 5.3 Ermittlung der Windgeschwindigkeit
- 5.4 Zählung der Sonnenstunden

6 Datenspeicherung

Als Speichermedium wird eine μ SD-Karte verwendet, welche direkt in ein Breakoutboard gesteckt wird.

6.1 Breakoutboard

Das Breakoutboard (siehe Abb. 6.1) kann wegen des intern implementierten $CD74HC4050\ highspeed\ logic\ level\ translators^1$ mit 5V betrieben werden. Das Arduino Mega Board und das Breakoutboard werden über SPI (siehe Kapitel 6.1.1) nach dem Master-Slave Kommunikationsprinzip miteinander verbunden.

Abbildung 6.1: 254 μ SD-Breakoutboard von Adafruit [1]

6.1.1 SPI (Serial Peripheral Interface)

6.1.2 Verdrahtung

SD-Karten erfordern viel Datenübertragung. Deshalb kann beste Leistung erbracht werden, wenn sie an die Hardware-SPI-Pins eines Mikrocontrollers angeschlossen werden. Dabei wird es wie folgt miteinander verbunden: [1]

- ullet ${f 5V}$ und ${f GND}$ Pins jeweils auf die ${f 5V}$ und ${f GND}$ Pins des Arduino Mega Boards
- CLK auf die Pinnummer 52
- DO auf die Pinnummer 50
- DI auf die Pinnummer 51
- CS auf die Pinnummer 53

6.2 μ **SD**-Karte

¹konvertiert eine high-level logik in eine low-level logik

 $6.2 \mu SD$ -Karte

Abbildung 6.2: 16 GB $\mu \text{SD-Karte}$

7 Kommunikationsmodul

8 Konzeptvalidierung

12 9 LITERATUR

9 Literatur

 $[1]\,$ Lady Ada, "Micro SD Card Breakout Board Tutorial," 2018.

A Lastenheft

Ausschreibung Studierendenprojekt P5/P6 Studiengang Elektro- und Informationstechnik

Titel:

Wetterstation mit Solar Energie

Betreuer:

Prof. Dr. Taoufik Nouri (Institut für Mobile und Verteilte Systeme)

Auftraggeber:

Prof. Dr. Taoufik Nouri (Institut für Mobile und Verteilte Systeme)

Aufgabenbeschreibung:

Ausgangslage:

Wetterstation sind viele verlangt besonders im Gebiete ohne Strom. Wir schlagen solche Möglichkeit zu realisieren.

Zielsetzung:

- 1. Diese Wetterstation misst Regen, Wind- Geschwindigkeit, -Richtung, Temperatur, Sonnenlicht, Feuchtigkeit, Zeit usw.
- 2. Sie ist dotiert mit verschiedener Kommunikation Module wie GPS, SIM Karte.
- 3. Sie ist fern abfragbar durch Handy
- 4. Sie speichert regelmässig die verschiedenen Parameter (Journal).
- 5. Sie ist komplett automatisiert z.B. Regenwasser wird automatisch ausgeleert.

Schlüsselwörter: Energie, Mikrokontroller, Programmierung, Elektronik

Version: 2018-06-09 Seite 1