# West Nile Virus Prediction

Project 4: Predict West Nile virus in mosquitoes across the city of Chicago

Group Members: Joe, Mild, Gear

### **Table of Contents**

01

#### **EDA & Cleaning Data**

Understanding the data and the West Nile Virus

03

#### Result

Our recommendation for best course of action for the CDC

02

#### **Evaluation Model**

Exploring different estimators and features

04

#### **Conclusion**

Additional information for future investigation

#### The Virus



Most commonly spread to humans through infected mosquitos, symptoms ranging from a persistent fever, to serious neurological illnesses and death

It is believed that hot and dry conditions are more favorable for West Nile virus than cold and wet.

### The Situation

The West Nile Virus have infected over 4,200 people and killed 177 people in 2006.

The CDC wants us to explore weather, location, testing, and spraying data, to predict when and where different species of mosquitoes will test positive for West Nile virus.

Thus, allowing them to effectively allocate resources towards preventing transmission







## **The Data**

#### **Train Dataset**

12 columns with features: location, no of mosquitos, and virus positive/negative

#### **Test Dataset**

11 columns of data like train dataset with no virus present result





#### **The Weather**

22 columns with features: temperature, humidity, and station location



### **Spray Data**

4 columns with spray location, date and time

#### **The Weather Station**

Station 1

Chicago O'hare Intl Airport

- Lat: 41.995 Lon: -87.933
- Elev: 662 ft. above sea level

**Station 2** 

Chicago Midway Intl Airport

- Lat: 41.786 Lon: -87.752
- Elev: 612 ft. above sea level

# Aug

#### **Peaked Positive**

Number of patients tested positive for West Nile Virus



# 3 Species

There are 3 species that have a West Nile virus



>72 f

## **High Temp**

Positive correlation between temperature and positive virus result



# >50 %RH

# **%RH** (Relative Humidity)

Virus spread widely in Hot and Humid condition

Data distribution in terms of %RH and Average Temperature (F)



#### Weather Types:

- BR Mist
- DZ Drizzle
- HZ Haze
- RA Rain
- TSRA Thunder Storm + Rain
- FG Fog
- TS Thunder Storm



# x2 Correlation

# By adding 10 days lagged

Stronger positive correlation of 10 days lagged weather data



#### From the Data



# **Dropped Columns**

Dropped columns such as traps address, rain depth, water volumes due to lack of data



# Distance Calculations

Converted the latitude and longitude data into km to calculate distance to weather station



# Station Mapping

Matching meteorological data from the nearest station to each trap



# 0402

Features Engineering & Modeling

# **Preparing the Data**



# **EDA**

Clean, cluster and one hot encoded the data

# **SMOTE**

Fixing the imbalance data by increasing minority class

# **PCA**

Reduce the dimensionality of large data sets by grouping them

# **Models**

Test models to predict when the virus will present

# **Features Engineering**



#### %RH

Relative Humidity calculated from average temperature minus dew point



# Date-Time Clustering

Group the dates data into months and weekly clustering for each year



# Location Clustering

Used KMeans to cluster the lat and long data to group location data

# **Modeling and Predictions**

From the features an optimized model is created:

- SVM
- Logistic Regression
- Decision Tree
- Random Forest
- XGBoost







#### **Best Features**

# 10Days lagged Weather

High temperature in previous 10 days leads to WNv spread

#### **Present Weather**

High temp/ moderate wind favor the virus spread

#### Location

Northwestern part of Chicago is the most severe



WNv is widely spread during August

### **Species**

"CULEX PIPIENS"
The trouble maker

#### Mosquito life cycle

7 days with no rain = High chance of hatching





### **Model's Confusion Matrix**



From the best random forest estimator:

 Approximately 60% (66/110) of the WNv positive test result were correctly identified

### The Cost

It can approximately cost 701,790 USD per month to spray the whole Chicago. [source]

There are 2.7 million people in Chicago at risk of the infection

- For serve cases it will cost 33,000 USD to treat the Wnv patient
- For non serve cases it can cost up to 7,500 USD to treat the Wnv patient

This mean it can approximately cost up to 89,486,000,000 USD if the whole of Chicago was infected.

The spray cost outweigh the cost of the Wnv treatment, meaning the spray would need to prevent at least 21 cases per month to make it worth the investment. So it is better to implement the spray and prevent a mass outbreak.

# The Probability

Each cluster represent districts in Chicago:

- 0 West Englewood
- 1 East Garfield Park
- 2 New City
- 3 South Side
- 4 Near West Side
- 5 Central Chicago

The highest probability that Wnv is positive is located in cluster 4

The second highest probability that Wnv is positive is located in cluster 1



# **Monthly Data**

Each month showed different positive Wnv probability in the Chicago District

- June Highest in cluster 0 and 3
- July Highest in cluster 1 and 5
- August Highest in cluster 3 and 4
- September Highest in cluster 2 and 3
- October Highest in cluster 3 and 4





# **Cost and Benefit Analysis**

In Chicago's spraying program, the city sprays areas when CDPH mosquito traps test positive for WNV two weeks in a row. [Source]

However, from our model we can predict with 60% certainty which location and month will be positive without having to wait for two consecutive positive result, this allows the city to:

- Spray with more location and time precision
- Increase the effectiveness of the spray radius
- Reduce number of positive inpatients
- Reduce spraying cost

The ability to predict in advance, and its low implementation cost, will allow our model to be feasible if it could reduce the positive case by only 1 patient

### **Our Recommendation**

#### **The Target**

High density area and high Wnv positivity prob cluster\*

\*varies from month to month



# MOS

### **Most Important**

Cluster 4 and 1 are most important target\*



Might not be able to target other low positive Wnv area



### **Least Important**

Cluster 2 and 0 are the least affected by Wnv\*





### Conclusion

The best model used was Random Forest estimators with features like weather patterns, location and mosquitoes life cycle lag.

For the cost and benefit the government and CDC can:

- Target specific location to distribute the Wnv spray
- Consider the cost of the spray and the treatment cost

From the cost and predicted location benefit analysis, the cost of spray are likely to remain the same or decrease since we are able to target more precise location rather than the whole of Chicago which could cost more, while making the spray more effective from the precise location resource allocation.

### **Additional Data**



### Mosquitos Numbers

Predicting the mosquitos numbers to use as a feature



# **Spray Radius**

How far does the spray travel and how effective it is



# Spray Effectiveness

How effective is the spray in killing mosquitoes

# Thank you!

