# Criptografia

## Terminologia

## Criptografia

- Arte ou ciência de escrever de forma escondida/confidencial
  - do Gr. kryptós, oculto + graph, r. de graphein, escrever
- Inicialmente para garantir a privacidade da informação
- Esteganografia
  - do Gr. steganós, oculto + graph, r. de graphein, escrever

## Criptanálise

 Arte ou ciência de quebrar sistemas criptográficos ou informação criptografada

## Criptologia

Criptografia + criptanálise

## Terminologia

- Cifra
  - Técnica concreta de criptografia
- Operação de uma cifra
  - Cifra: texto em claro -> criptograma
  - Decifra: criptograma -> texto em claro

- Algoritmo: modo de transformação de dados
- Chave: parâmetro do algoritmo
  - Influencia a operação do algoritmo

# Operações de uma cifra



# Operações de uma cifra



# Casos de uso (Cifras Simétricas)

- Proteção própria com chave K
  - Alice cifra texto P com chave K

-> Alice: 
$$C = \{P\}_k$$

Alice decifra C com chave K

P' deverá ser igual a P (deve ser verificado)

- Comunicações seguras com chave K
  - Alice cifra texto P com chave K

-> Alice: 
$$C = \{P\}_k$$

Bob decifra C com chave K

-> Bob: 
$$P' = \{C\}_k$$

P' deve ser igual a P (deve ser verificado)

## Criptanálise: Objetivos

- Obtenção do texto original
  - Relativo a um criptograma
- Obtenção de uma chave de cifra
  - Ou de uma equivalente
- Obtenção do algoritmo de cifra
  - Ou de um equivalente
  - Normalmente os algoritmos não são secretos, mas existem exceções:
    - Lorenz, A5 (GSM), RC4, Crypto-1 (Mifare)
    - Algoritmos para DRM (Digital Rights Management)
  - Por engenharia reversa

## Ataques por Criptanálise



## Ataques por Criptanálise

### Força Bruta (ataque genérico)

- Pesquisa exaustiva sobre todo o espaço de chaves, até se encontrar uma chave adequada
- Não é prática para espaços de dimensão grande
  - ex. chaves de 128 bits possuem um espaço de 2<sup>128</sup> bits.
- É importante que exista aleatoriedade na chave.

### Ataques mais inteligentes

- Reduzir o espaço de pesquisa para uma dimensão menor:: palavras, números, conjunto reduzido, alfabeto
- Identificar padrões em algumas operações, etc..

# Evolução das Cifras

• Manuais: Algoritmos de substituição ou transposição





Fonte: Wikimedia Commons e CryptoMuseum

## Evolução das Cifras

#### Mecânicas

- A partir do Séc. XIX
  - Máquina Enigma
  - M-209 Converter
- Algoritmos de substituição ou transposição
  - Elementos críticos para a 2ª Grande Guerra





## Evolução das Cifras

#### Cifras Informáticas

- Surgem com o uso dos computadores
- Algoritmos de substituição mais complexos
- Algoritmos matemáticos de grandes números ou problemas complexos
- Utilizados de forma comum (e transparente) no dia a dia







## Cifras: Tipos Básicos

Transposição: O texto original é "baralhado"



Resultado: ooibh tonaa erard xilao tgel

## Cifras: Tipos Básicos

• Transposição: Permutações intra-blocos

```
P E R M U
T A C O E
S I N T R
A B L O C
O S
```

- Resultado:
  - (13524) -> pruem tceao snrit alcbo os
  - (25413) -> eumpr aeotc irtsn bcoal so

## Cifras: Tipos Básicos

### Substituição

- Cada símbolo original é substituído por outros
- Considera símbolos como letras, dígitos e pontuação
- Na realidade são blocos de bits

### Estratégias de substituição

- Mono alfabética (um para um)
- Poli-alfabética (muitos para um)
- Homofónica (um para muitos)

#### Usam apenas um alfabeto de substituição

Com um número de elementos #A

#### Exemplos

- Aditivas (ou de translação)
  - cripto letra = (letra + chave) mod #A
  - letra = (cripto letra chave) mod #A
  - Número de chaves efetivas = #A
  - Cifra de César (ROT-x)
- Com frase-chave
  - ABCDEFGHIJKLMNOPQRSTUVWXYZ
  - QTUWXYZCOMFRASEHVBDGIJKLNP
  - Número de chaves efetivas = #alfabeto! -> 26! ≈ 288

#### Problemas

- Reproduzem padrões do texto original
- Letras, digramas, trigramas, etc.
- A análise estatística facilita a criptanálise
- "The Gold Bug", Edgar Alan Poe

a good glass in the bishop's hostel in the devil's seat fifty-one degrees and thirteen minutes northeast and by north main branch seventh limb east side shoot from the left eye of the death's-head a bee line from the tree through the shot forty feet out

```
53‡‡†305))6*;4826)4‡.)
4‡);806*;48†860))85;1‡
(;:‡*8†83(88)5*†;46(;8
8*96*?;8)*‡(;485);5*†2
:*‡(;4956*2(5*—4)88*;4
069285);)6†8)4‡‡;1(‡9;
48081;8:8‡1;48†85;4)48
5†528806*81(‡9;48;(88;
4(‡?34;48)4‡;161;:188;
‡?;
```

53‡‡†305))6\*;4826)4‡.)4‡);80 agoodglassinthebishopshostel

6\*;48†8¶60))85;1‡(;:‡\*8†83(88) inthedevilsseatfortyonedegrees

5\*†;46(;88\*96\*?;8)\*‡(;485);5\*†
andthirteenminutesnortheastand

2:\*‡(;4956\*2(5\*-4)8¶8\*;40692 bynorthmainbranchseventhlimb

85);)6†8)4‡‡;1(‡9;48081;8:8‡1 eastsideshootfromthelefteyeof

;48†85;4)485†528806\*81(‡9;48 thedeathsheadabeelinefromthe

;(88;4(‡?34;48)4‡;161;:188;‡?; treethroughtheshotfiftyfeetout



a 5 (12) b 2 (5) c - (1) d † (8) e 8 (33) f 1 (8)

- Frequência de Pares
  - AO, NO, AS, OS, SO, UM, IA, NA...

- Frequência de Triplos
  - QUE, NAO, EST, ENT, ÇÃO, TRA...

- Probabilidades condicionais
  - P(A | B) diferente de P(Z | B)

## Cifras: Poli-alfabéticas

- Usam N alfabetos de substituição
  - Têm período N
- Exemplo: Cifra de Vigenère
- Problemas
  - Conhecido o período, podem ser analisadas como N mono alfabéticas
    - O período pode ser descoberto usando estatística
  - Método de Kasiski
    - Fatorização de distâncias entre blocos iguais do criptograma
  - Índice de coincidência
    - Fatorização de deslocamentos relativos que produzem mais coincidências na sobreposição do criptograma

# Cifra de Vigenère



Exemplo de se cifrar a letra M com a chave S, resultando no criptograma E

Criada por Blaise Vigenère (final séc XVI) (le chiffre indéchiffrable!)

Quebrada no séc XIX por Charles Babbage e Friedrich Kasiski

## Cifra de Vigenère

#### Texto:

Eles não sabem que o sonho é uma constante da vida tão concreta e definida como outra coisa qualquer, como esta pedra cinzenta em que me sento e descanso, como este ribeiro manso, em serenos sobressaltos como estes pinheiros altos

## Cifra com o quadrado de Vigenère e chave "poema"

## Criptanálise de um criptograma Vigenère

### Teste de Kasiski

- Localizar padrões comuns no criptograma
- Calcular afastamento entre padrões
- O maior divisor comum sugere a dimensão da chave (gcd)

tzienpcwmbtaugedgszhdsyyarcretpbxqdpjmpaiosoocqvqtpshqfxbmpa

$$\begin{array}{|c|c|c|c|}\hline mpa & 20 = 2 \times 2 \times 5 \\ tp & 20 = 2 \times 2 \times 5 \end{array}$$

- Com o texto indicado:
- Com o poema completo:

$$175 = 5 \times 5 \times 7$$
 $105 = 3 \times 5 \times 7$ 
 $35 = 5 \times 7$ 
 $20 = 2 \times 2 \times 5$ 

## Criptanálise de um criptograma Vigenère

- Índice de coincidência (c/ poema completo)
  - Sobreposição de uma cópia, com afastamento
  - Contagem dos carateres que se repetem

| D        | I   | P (%)       |     | D        | I        | P (%)      |     | D        | I      | P (%)      | D          | I  | P (%)      |     | D          | I | P (%)      | D          | I | P (%) |
|----------|-----|-------------|-----|----------|----------|------------|-----|----------|--------|------------|------------|----|------------|-----|------------|---|------------|------------|---|-------|
| 1        | 6   | 3.2         | Г   | 31       | 9        | 5.7        |     | 61       | 1      | 0.8        | 91         | 4  | 4.1        |     | 121        | 4 | 5.9        | 151        | 1 | 2.6   |
| 2        | 6   | 3.2         | - 1 | 32       | 7        | 4.5        |     | 62       | 5      | 3.9        | 92         | 0  | 0,0        |     | 122        | 3 | 4.5        | 152        | 2 | 5.4   |
| 3        | 5   | 2.7         | - 1 | 33       | 6        | 3.8        |     | 63       | 6      | 4.8        | 93         | 3  | 3.1        |     | 123        | 0 | 0.0        | 153        | 0 | 0.0   |
| 4        | 7   | 3.8         | - 1 | 34       | 5        | 3.2        |     | 64       | 6      | 4.8        | 94         | 2  | 2.1        |     | 124        | 3 | 4.6        | 154        | 0 | 0.0   |
| 5        | 15  | 8.2         | - 1 | 35       | 17       | 11.0       | )   | 65       | 11     | 8.9        | 95         | 3  | 3,2        | )   | 125        | 7 | 10.9       | 155        | 5 | 14.7  |
| 6        | 3   | 1.6         |     | 36       | 5        | 3.3        |     | 66       | 7      | 5.7        | 96         | 2  | 2.2        |     | 126        | 1 | 1.6        | 156        | 0 | 0.0   |
| 7        | 6   | 3.3         |     | 37       | 4        | 2.6        |     | 67       | 6      | 4.9        | 97         | 2  | 2.2        |     | 127        | 1 | 1.6        | 157        | 1 | 3.1   |
| 8        | 5   | 2.8         |     | 38       | 4        | 2.6        |     | 68       | 6      | 5.0        | 98         | 2  | 2.2        |     | 128        | 2 | 3.3        | 158        | 0 | 0.0   |
| 9        | 10  | 5.6         |     | 39       | 7        | 4.7        |     | 69       | 5      | 4.2        | 99         | 4  | 4.4        |     | 129        | 2 | 3.3        | 159        | 1 | 3.3   |
| 10       | 6   | 3.4         |     | 40       | 14       | 9.4        | )   | 70       | 14     | 11.8       | 100        | 2  | 2.2        |     | 130        | 6 | 10.2       | 160        | 3 | 10.3  |
| 11       | 8   | 4.5         |     | 41       | 5        | 3.4        |     | 71       | 5      | 4.2        | 101        | 0  | 0,0        |     | 131        | 1 | 1.7        | 161        | 0 | 0.0   |
| 12       | 6   | 3.4         |     | 42       | 6        | 4.1        |     | 72       | 6      | 5.1        | 102        | 6  | 6,9        |     | 132        | 4 | 7.0        | 162        | 0 | 0.0   |
| 13       | 6   | 3.4         |     | 43       | 5        | 3.4        |     | 73       | 7      | 6.0        | 103        | 2  | 2,3        |     | 133        | 2 | 3.6        | 163        | 0 | 0.0   |
| 14       | 7   | 4.0         |     | 44       | 6        | 4.1        |     | 74       | 7      | 6.1        | 104        | 6  | 7.1        |     | 134        | 1 | 1.8        | 164        | 1 | 4.0   |
| 15       | 11  | 6.3         |     | 45       | 5        | 3.5        | )   | 75       | 4      | 3.5        | 105        | 10 | 11.9       |     | 135        | 4 | 7.4        | 165        | 0 | 0.0   |
| 16       | 10  | 5.8         |     | 46       | 3        | 2.1        |     | 76       | 3      | 2.7        | 106        | 4  | 4.8        |     | 136        | 3 | 5.7        | 166        | 1 | 4.3   |
| 17       | 6   | 3.5         |     | 47       | 7        | 4.9        |     | 77       | 1      | 0.9        | 107        | 3  | 3.7        |     | 137        | 0 | 0.0        | 167        | 2 | 9.1   |
| 18       | 2   | 1.2         |     | 48       | 2        | 1.4        |     | 78       | 9      | 8.1        | 108        | 3  | 3.7        |     | 138        | 2 | 3.9        | 168        | 0 | 0.0   |
| 19       | 8   | 4.7         |     | 49       | 10       | 7.1        |     | 79       | 8      | 7.3        | 109        | 2  | 2.5        |     | 139        | 4 | 8.0        | 169        | 1 | 5.0   |
| 20       | 23  | 13.6<br>2.4 |     | 50<br>51 | 10<br>10 | 7.2<br>7.2 | '   | 80<br>81 | 7<br>5 | 6.4        | 110<br>111 | 9  | 11.4       |     | 140        | 2 | 4.1        | 170<br>171 | 2 | 10.5  |
| 21<br>22 | 4   | 1.8         |     | 52       | 4        | 2.9        |     | 82       | 6      | 4.6<br>5.6 | 1112       | 4  | 2,6<br>5,2 |     | 141<br>142 | 1 | 6.2<br>2.1 | 172        | 0 | 0.0   |
| 23       | 7   | 4.2         |     | 53       | 3        | 2.9        |     | 83       | 3      | 2.8        | 113        | 3  | 3.9        |     | 143        | 3 | 6.5        | 173        | 0 | 0.0   |
| 24       | 9   | 5.5         |     | 54       | 6        | 4.4        |     | 84       | 2      | 1.9        | 114        | 5  | 6.7        |     | 144        | 4 | 8.9        | 174        | 0 | 0.0   |
| 25       | 12  | 7.3         |     | 55       | 16       | 11.9       | ,   | 85       | 8      | 7.7        | 115        | 8  | 10.8       | ,   | 145        | 7 | 15.9       | 175        | 3 | 21.4  |
| 26       | 6   | 3.7         |     | 56       | 3        | 2.3        |     | 86       | 6      | 5.8        | 116        | 4  | 5.5        |     | 146        | 2 | 4.7        | 176        | 0 | 0.0   |
| 27       | 6   | 3.7         |     | 57       | 2        | 1.5        |     | 87       | 4      | 3.9        | 117        | 3  | 4.2        |     | 147        | 1 | 2.4        | 177        | 1 | 8.3   |
| 28       | 6   | 3.7         |     | 58       | 2        | 1.5        |     | 88       | 2      | 2.0        | 118        | 2  | 2.8        |     | 148        | ô | 0.0        | 178        | ô | 0.0   |
| 29       | 7   | 4.4         |     | 59       | 5        | 3.8        |     | 89       | 5      | 5.0        | 119        | 3  | 4.3        |     | 149        | 0 | 0.0        | 179        | 0 | 0.0   |
| 30       | g g | 5.7         |     | 60       | 7        | 5.4        | ,   | 90       | 9      | 9.1        | 120        | 3  | 4.3        |     | 150        | 1 | 2.6        | 180        | 2 | 22.2  |
| 55       |     | 54,         |     | 50       | ,        | 2,2        | ١ ١ | 70       |        |            | 120        |    | 400        | i 1 | 100        | _ | 2,13       | 100        | _ |       |

## Criptanálise de um criptograma Vigenère

- Índice de coincidência (c/ poema completo)
  - Sobreposição de uma cópia, com afastamento
  - Contagem dos carateres que se repetem

| [   | D | I  | P (%) |     | D  | I  | P (%) | D  | I  | P (%) | D  | I | P (%) |   | D   | I | P (%) | D   | I | P (%) |  |
|-----|---|----|-------|-----|----|----|-------|----|----|-------|----|---|-------|---|-----|---|-------|-----|---|-------|--|
| Γ   | 1 | 6  | 3.2   | ' I | 31 | 9  | 5.7   | 61 | 1  | 0.8   | 91 | 4 | 4.1   |   | 121 | 4 | 5.9   | 151 | 1 | 2.6   |  |
| - 1 | 2 | 6  | 3.2   |     | 32 | 7  | 4.5   | 62 | 5  | 3.9   | 92 | 0 | 0.0   |   | 122 | 3 | 4.5   | 152 | 2 | 5.4   |  |
| - 1 | 3 | 5  | 2.7   |     | 33 | 6  | 3.8   | 63 | 6  | 4.8   | 93 | 3 | 3.1   |   | 123 | 0 | 0.0   | 153 | 0 | 0.0   |  |
| - 1 | 4 | 7  | 3.8   |     | 34 | 5  | 3.2   | 64 | 6  | 4.8   | 94 | 2 | 2.1   |   | 124 | 3 | 4.6   | 154 | 0 | 0.0   |  |
| - 1 | 5 | 15 | 8.2   |     | 35 | 17 | 11.0  | 65 | 11 | 8.9   | 95 | 3 | 3,2   | ) | 125 | 7 | 10.9  | 155 | 5 | 14.7  |  |
| - 1 | 6 | 3  | 1.6   |     | 36 | 5  | 3.3   | 66 | 7  | 5.7   | 96 | 2 | 2.2   |   | 126 | 1 | 1.6   | 156 | 0 | 0.0   |  |
| - 1 | 7 | 6  | 3,3   |     | 37 | 4  | 2.6   | 67 | 6  | 4.9   | 97 | 2 | 2.2   |   | 127 | 1 | 1.6   | 157 | 1 | 3.1   |  |
| - 1 | 8 | 5  | 2.8   |     | 38 | 4  | 2.6   | 68 | 6  | 5.0   | 98 | 2 | 2.2   |   | 128 | 2 | 3.3   | 158 | 0 | 0.0   |  |
| - 1 | 9 | 10 | 5.6   |     | 39 | 7  | 4.7   | 69 | 5  | 4.2   | 99 | 4 | 4.4   |   | 129 | 2 | 3.3   | 159 | 1 | 3.3   |  |



# Máquinas de Rotores



## Máquinas de Rotores

- As máquinas de rotores concretizam cifras poli-alfabéticas complexas
  - Cada rotor efetua uma permutação do alfabeto
    - Que consiste num conjunto de substituições
  - A posição do rotor concretiza um alfabeto de substituição
  - A rotação de um rotor concretiza uma cifra poli-alfabética
  - Acumulando vários rotores em sequência e rodando-os de forma diferenciada consegue-se uma cifra poli-alfabética complexa
- A chave de cifra é:
  - O conjunto de rotores usado
  - A ordem relativa dos rotores
  - A posição de avanço do rotor seguinte
  - A posição original dos rotores
- Rotores simétricos (bidirecionais) permitem decifras usando cifras duplas
  - Usando um disco refletor (meio-rotor)



Sarah Witherby, www.flickr.com

## Máquinas de Rotores

#### Operação recíproca com um refletor

- O operador emissor carrega em "A" (o texto em claro) e obtém "Z" como criptograma, o qual é transmitido
- O operador recetor carrega em "Z" (o criptograma) e obtém "A" como texto em claro
- Uma letra nunca pode ser cifrada para si própria!





RECIPROCAL OPERATION OF THE ENIGMA

# Enigma

- Máquina de rotores alemã da 2ª GG
- Originalmente apresentada em 1919
  - Enigma I, com 3 rotores
- Foram usadas diversas variantes
  - Com diferentes números de rotores
  - · Com cablagem para permutar alfabetos
- Seleções de chaves distribuídas em livros de códigos
- https://observablehq.com/@tmcw/enigma-machine









- Espaço de texto
  - Número de combinações de texto diferentes (M)
- Espaço do criptograma
  - Número de combinações de criptograma diferentes (C)
- Espaço das chaves
  - Número de chaves diferentes para um algoritmo de cifra (K)
- Cifra perfeita
  - Dado  $c_i \in C$ ,  $H(M \mid C) = H(M)$ 
    - H (M | C) é a entropia condicional de M dado C
    - H (M) é a entropia de M
  - #K ≥ #C ≥ #M
- Cifra de Vernam: One-time pad



### Teoricamente seguras vs. seguras na prática

- Uso teórico != exploração prática
- Práticas incorretas podem comprometer boas cifras
- Exemplo: reutilização de one-time-pads

### Cifras seguras na prática

- A segurança é assegurada pela dificuldade computacional de realizar a criptanálise
  - Usando força bruta
- Têm uma segurança baseada em limites razoáveis:
  - Custo de uma solução técnica de criptanálise
  - Infraestrutura reservada para a criptanálise
  - Tempo útil de criptanálise

#### 5 critérios de Shannon

- 1. A quantidade de secretismo oferecida
  - e.g o comprimento da chave
- 2. A complexidade na escolha das chaves
  - e.g. geração da chave, deteção de chaves fracas
- 3. A simplicidade da realização
- 4. A propagação de erros
  - Relevante em ambientes com erros (canais de comunicação ruidosos)
- 5. A dimensão do criptograma
  - Relativamente aos respetivos textos originais

- Confusão: Complexidade na relação entre o texto, a chave e o criptograma
  - Os bits resultantes (criptograma) devem depender dos bits de entrada (texto e chave) de um forma complexa

- Difusão: Alteração de grandes porções do criptograma em função de uma pequena alteração do texto
  - Se um bit de texto se alterar, então o criptograma deverá mudar substancialmente, de uma forma imprevisível e pseudoaleatória
  - Efeito de avalanche

## Assumir sempre o pior caso

- O criptanalista conhece o algoritmo
  - A segurança está na chave
- O criptanalista possui grande número de criptogramas gerados com um algoritmo e chave
  - Os criptogramas não são secretos
- Os criptanalista conhecem parte dos textos originais
  - É normal haver alguma noção do texto original
  - Ataques com texto conhecido
  - Ataques com texto escolhido

## Robustez criptográfica

- A robustez dos algoritmos e a sua resistência a ataques
  - Ninguém consegue avaliar a robustez de forma precisa
    - Podem especular ou demonstrar usando outras suposições
  - São robustos até que alguém os quebre
  - Existem orientações públicas sobre o que deve/não deve ser usado
    - Antecipar problemas futuros
- Algoritmos públicos, sem ataques conhecidos, supostamente são mais robustos
  - Mais investigadores à procura de fraquezas
- Algoritmos com chaves maiores são tendencialmente mais robustos
  - Mas frequentemente também são mais lentos.



# Robustez criptográfica: AES

- 1997: NIST lançou desafio para o próximo Advanced Encryption Protocol
  - de conhecimento e utilização públicos, simétrico, chaves de 128, 192 e 256 bits
- 1998: 15 candidatos apresentados por investigadores
  - CAST-256, Crypton, DEAL, DFC, Frog, HPC, LOKI97, Magenta, MARS, RC6, Rijndael, Safer+, Serpent, Twofish
  - Comunidade tentou encontrar problemas nos candidatos
- 1999: 5 propostas demonstraram ser seguras
  - MARS, RC6, Rijndael, Twofish
  - Novamente a comunidade tentou encontrar problemas e avaliar a performance
- 2001: Rijndael selecionado como o vencedor
  - Versões reduzidas do MARS foram quebradas, RC6 e Twofish são seguros
- 2002: Publicado como FIPS PUB 197 e é largamente utilizado

## Cifras Contínuas (Stream)

- Mistura de uma chave contínua (keystream) com o texto ou criptograma
  - Chave contínua aleatória (cifra de Vernam, one-time pad)
  - Chave contínua pseudoaleatória (produzida por gerador)
- Função de mistura invertível
  - e.g. XOR bit a bit (⊕)

$$C = P \oplus ks P = C \oplus ks$$

- Cifra poli-alfabética
  - Cada símbolo da chave contínua define um alfabeto

## Cifras Contínuas (Stream)



### Cifras Contínuas (Stream)

- Keystream pode ser infinita, mas possui um período
  - Período depende do gerador
- Questões práticas de segurança
  - Cada keystream só pode ser usada uma vez!
  - Caso contrário, a soma dos criptogramas fornece a soma dos textos

```
C1 = P1 \oplus Ks, C2 = P2 \oplus Ks \rightarrow C1 \oplus C2 = P1 \oplus P2
```

- Dimensão do texto tem de ser menor que o período
  - Exposição da keystream é total com textos escolhidos/conhecidos
  - Período permitem analistas conhecer partes do texto
- Controlo de integridade <u>é mandatório</u>
  - Não existe difusão, apenas confusão
  - Criptogramas podem ser <u>manipulados livremente</u>

## Lorenz (Tunny)





#### Cifra contínua com 12 rotores

- Usada pelos alemães durante a 2 G. Guerra
- Cada caratere de 5 bits é misturado com 5 keystreams

#### Operação

- 5 rotores movendo-se regularmente ( $\chi$ )
- 5 rotores movendo-se irregularmente  $(\psi)$
- 2 rotores motorizados
  - para acionar os rotores (ψ)
- Número de espaços é sempre primo entre si



- A estrutura interna não era conhecida
  - Apenas foi conhecida depois do final da guerra
  - Sabiam que a máquina existia porque intercetavam mensagens cifradas com 5 bits
    - Usando Códigos Baudot de 32 símbolos (e não Morse)



De interesse: 2014, The Imitation Game





#### O erro (30 de agosto de 1941)

- Um operador alemão tinha uma grande mensagem para enviar (~4,000 carateres)
  - Configurou a sua Lorenz e enviou um indicador de 12 letras (posição inicial dos rotores) para o recetor
  - Depois de ter escrito ~4,000 caracteres, manualmente, recebeu do recetor "envie outra vez" (em texto)
- O operador emissor recolocou a sua Lorenz na mesma posição inicial
  - Mesma chave contínua! Completamente proibido!
- O emissor recomeçou o envio da mensagem, manualmente
  - Mas escreveu algo ligeiramente diferente! (abreviaturas)



```
C0 = Texto0 \oplus Ks
```

T1 = C0 ⊕ C1 ⊕ T0 -> Variações do Texto

Se parte to texto inicial (Texto0) for conhecido, as variações podem ser encontradas



- A mensagem começava com um texto padrão: SPRUCHNUMMER — número de mensagem
  - Na primeira vez o operador escreveu: S P R U C H N U M M E R
  - Na segunda vez escreveu: SPRUCHNR
  - Assim, imediatamente após o N os dois criptogramas eram diferentes!
- As mensagens foram completamente decifradas por John Tiltman, em Bletchley Park, usando combinações aditivas dos criptogramas (chamados Depths)
  - A segunda mensagem era cerca de 500 caracteres mais curta que a primeira
- Assim se conseguiu obter, pela 1ª vez, um exemplar longo de uma chave contínua Lorenz
  - Tiltman ainda não sabia como a Lorenz operava, apenas sabia que o que tinha era o resultado da sua operação!

### Tunny

- A estrutura da cifra foi deduzida da chave contínua capturada
  - Mas a decifra dependia do conhecimento da posição inicial dos rotores



- Os alemães começaram a usar números para definir o estado inicial dos rotores
  - Bill Tutte desenvolveu um método para o encontrar
  - A máquina Colossus foi desenvolvida para o aplicar

#### Colossus

- Conceção começou em março de 1943
- O Colossus Mark 1 (1500 válvulas) operacional em jan. de 1944
- Reduziu o tempo de criptanálise de semanas para horas

### Cifras Modernas: Tipos

- Quanto à operação
  - Por blocos (mono-alfabéticas)
  - Contínuas (poli-alfabéticas)

#### Quanto ao tipo de chave

- Simétricas (chave secreta ou segredo partilhado)
  - Potencialmente sujeitas a caução (escrowing)
- Assimétricas (chave pública)

#### Combinatória

|                     | Cifras Por Blocos | Cifras Contínuas |
|---------------------|-------------------|------------------|
| Cifras Simétricas   |                   |                  |
| Cifras Assimétricas |                   | NÃO EXISTEM      |

### Cifras Simétricas

#### Chave secreta única, partilhada por 2 ou mais interlocutores

#### Permitem

- Confidencialidade para todos os conhecedores da chave
- Autenticação de mensagens (cifra por blocos)
  - Quando se usam cifras por blocos

#### Vantagens

Desempenho (normalmente muito eficientes)

#### Desvantagens

• N interlocutores, 2 a 2 secretamente -> N x (N-1)/2 chaves

#### Problemas

Distribuição de chaves

### Cifras Simétricas Contínuas

#### Aproximações usadas

- Desenho de geradores pseudo-aleatórios seguros
  - Baseados em LFSRs
  - Baseados em cifras por blocos
  - Outras aproximações (famílias de funções, etc.)
- Normalmente são síncronas
  - <u>Não possuem sincronização inerente</u>, mas obrigam a que emissor/recetor <u>estejam sincronizados</u>.
- Normalmente sem possibilidade de acesso aleatório rápido

#### Algoritmos mais comuns

- A5/1 (US, Europe), A5/2 (GSM)
- RC4 (802.11 WEP/TKIP, etc.)
- E0 (Bluetooth BR/EDR)
- SEAL (c/ acesso aleatório uniforme)
- Chacha20
- Salsa20

## Linear Feedback Shift Register (LFSR)



- 2<sup>n</sup>-1 sequências não nulas
  - Se uma delas possuir um período 2<sup>n</sup>-1 então todas o têm
- Funções de realimentação primitivas (polinomiais primitivos)
  - Todas as sequências não nulas têm comprimento 2<sup>n</sup> 1

### Geradores com composições de LFSR: A5/1 (GSM)



## Cifras Simétricas por Blocos

#### Aproximações usadas

Blocos de grande dimensão, >128bits.

#### • Difusão, confusão

- Permutação, substituição, expansão, compressão
- Redes de Feistel com múltiplas iterações

• 
$$L_i = R_{i-1}$$
  $R_i = L_{i-1}$   $f(R_{i-1} \oplus K_i)$ 

• Ou redes de substituição-permutação

#### Algoritmos mais usados

- DES (Data Enc. Stand.), D=64; K=56
- IDEA (Int. Data Enc. Alg.), D=64; K=128
- AES (Adv. Enc. Stand., aka Rijndael), D=128, K=128, 192, 256
- Outros (Blowfish, CAST, RC5, etc.)

### Redes de Feistel

$$L_i=R_{i-1}$$
  $R_i=L_{i-1}$   $f(R_{i-1}\oplus,K_i)$ 



## Redes de Substituição-Permutação

- S-Box: (Substituição) baseado num bit da entrada, troca bits da saída
  - substituição não é direta (1 para 1)
  - ideal: alteração de um bit provoca a alteração de todos os bits
  - prática: a alteração de um bit provoca a alteração de pelo menos metade dos bits
- P-Box: (Permutação) permuta a posição de bits entre entrada e saída
  - ideal: permuta a posição de todos os bits

Operação de ambas depende da chave

## Redes de Substituição-Permutação



## **DES: Data Encryption Standard**



### **DES:** robustez

#### Escolha de chaves

- A maioria dos valores de 56 bits são adequados
- Mas... existem 4 chaves fracas, 12 semi-fracas e 48 quasi-fracas
  - Produzem K<sub>s</sub> semelhantes (1 K<sub>s</sub>, 2 K<sub>s</sub> ou 4 K<sub>s</sub>)
- Fáceis de identificar e de evitar

#### Ataques conhecidos

Pesquisa exaustiva (possível na prática com chaves de 56 bits)

#### Dimensão das chaves: 56 bits são atualmente insuficientes

A pesquisa exaustiva é técnica e economicamente viável

#### Solução: cifra múltipla

- Cifra dupla não é completamente segura (teoricamente ...)
- Cifra tripla: 3DES (Triple-DES)
  - Com duas ou três chaves
  - Chaves equivalentes de 112 ou 168 bits
  - Usando a mesma chave, o algoritmo é compatível com o DES

### Utilização de cifras por blocos: Modos

- Processam texto em blocos de bits
  - Texto tem de ser múltiplo do tamanho do bloco
  - Na prática: size(cryptogram) >= size(plaintext)
- Podem aplicar mecanismos de difusão e confusão
  - Dentro de cada bloco
  - Mas podem ser usadas como cifras contínuas
- Método de cifra mais comum
  - Especialmente para objetos discretos (ficheiros, documentos)

Cifra mais popular: AES

### Utilização de cifras por blocos: Modos

- Propostos inicialmente para o DES
  - ECB (Electronic Code Block)
  - CBC (Cipher Block Chaining)
  - OFB (Output Feedback Mode)
  - CFG (Cipher Feedback Mode)
- Modos podem ser usados com outras cifras (em teoria)
- Podem existir outros modos:
  - CTR (Counter Mode)
  - GCM (Galois/Counter Mode)
  - Tweaks...

### Modos: Electronic Code Block

- Cifra direta de cada bloco: C<sub>i</sub> = E<sub>k</sub>(T<sub>i</sub>)
- Decifra direta de cada bloco: T<sub>i</sub> = D<sub>k</sub>(C<sub>i</sub>)
- Blocos são independentes
  - Sem feedback
- Problema:

se 
$$T_1 = T_2$$
 então  $C_1 = C_2$ 



## Modos: Cipher Block Chaining (CBC)

- Cifra de cada bloco T<sub>i</sub> com feedback de C<sub>i-1</sub>
  - $C_i = E_K(T_i \oplus C_{i-1})$
- Decifra de cada bloco C<sub>i</sub> com feedback de C<sub>i-1</sub>

• 
$$T_i = D_K(C_i) \oplus C_{i-1}$$

- Bloco inicial usa IV
  - Initialization Vector
  - Valor aleatório único
  - Pode estar em claro



## ECB vs CBC: Propagação de Padrões



CBC





- Modos ECB/CBC necessitam de textos com dimensão múltipla da dimensão do bloco
  - Cifra é aplicada por blocos de texto

- Blocos incompletos (o último) necessitam de tratamento diferenciado
  - na cifra e na decifra

- Resultado é um bloco
  - Criptograma pode ser maior do que o texto em claro

- Alternativa: Excipiente (Padding)
- PKCS #7
  - X = B (M mod B)
  - X bytes extra, com valor X
  - Se M mod B = 0, adicionar um bloco inteiro com valor B
- PKCS #5: igual a PKCS#7 mas só para B=8





- Cifrar o último bloco de forma diferenciada
  - usar um processo semelhante a uma cifra contínua



#### Ciphertext Stealing

- Troca ordem de cifra/decifra dos dois últimos blocos
  - a) Usa parte do criptograma do penúltimo para preencher último
  - b) Usa excipiente fixo e cifra contínua antes de cifra por blocos





## Modos: n-bit OFB (Output Feedback)

$$C_i = T_i \oplus E_K(S_i)$$
  
 $T_i = C_i \oplus E_K(S_i)$ 

$$S_{i} = f(S_{i-1}, E_{K}(S_{i-1}))$$

$$S_0 = IV$$





## Modos: n-bit OFB (Output Feedback)



### Modos: n-bit CFB (Ciphertext Feedback)

$$C_i = T_i \oplus E_K(S_i)$$

$$T_i = C_i \oplus E_K(S_i)$$

$$S_i = f(S_{i-1}, C_i)$$

$$S_0 = IV$$





## Modos: n-bit CTR (Counter)

$$C_{i} = T_{i} \oplus E_{K}(S_{i})$$

$$T_{i} = C_{i} \oplus E_{K}(S_{i})$$

$$S_{i} = S_{i-1} + 1$$

$$S_{0} = IV$$

$$T_{1} \oplus T_{n}$$

$$T_{1} \oplus T_{n}$$

$$T_{2} \oplus T_{3} \oplus T_{n}$$

$$T_{3} \oplus T_{4} \oplus T_{n}$$

$$T_{4} \oplus T_{5} \oplus T_{6} \oplus T_{6}$$

$$T_{6} \oplus T_{7} \oplus T_{7} \oplus T_{7}$$

$$T_{7} \oplus T_{7} \oplus T_{7} \oplus T_{7}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{1} \oplus T_{2} \oplus T_{3} \oplus T_{4}$$

$$T_{2} \oplus T_{3} \oplus T_{4} \oplus T_{4}$$

$$T_{3} \oplus T_{4} \oplus T_{4} \oplus T_{4}$$

$$T_{4} \oplus T_{5} \oplus T_{6} \oplus T_{6}$$

$$T_{5} \oplus T_{6} \oplus T_{6} \oplus T_{6}$$

$$T_{7} \oplus T_{7} \oplus T_{7} \oplus T_{7}$$

$$T_{8} \oplus T_{7} \oplus T_{7} \oplus T_{7}$$

$$T_{8} \oplus T_{8} \oplus T_{7} \oplus T_{7}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8} \oplus T_{8}$$

$$T_{8} \oplus T_{8} \oplus T_{$$



### Modos: Galois w/ Counter Mode (GCM)



# Modos: Comparação

|                                       | Bloco                 |                       | Contínua (Stream) |                                 |                     |                     |
|---------------------------------------|-----------------------|-----------------------|-------------------|---------------------------------|---------------------|---------------------|
|                                       | ECB                   | СВС                   | OFB               | CFB                             | CTR                 | GCM                 |
| Ocultação de padrões no texto         |                       | ✓                     | ✓                 | ✓                               | ✓                   | ✓                   |
| Confusão na entrada da cifra          |                       | ✓                     |                   | <b>√</b>                        | Contador<br>Secreto | Contador<br>Secreto |
| Mesma chava para mensagens diferentes | ✓                     | <b>✓</b>              | Outro IV          | Outro IV                        | Outro IV            | Outro IV            |
| Dificuldade de alteração              | ✓                     | <b>√</b> ()           |                   |                                 |                     | ✓                   |
| Pré-processamento                     |                       |                       | ✓                 |                                 | ✓                   | ✓                   |
| Paralelização                         | ✓                     | decifra               | com pré.<br>proc. | decifra                         | <b>✓</b>            | <b>✓</b>            |
| Acesso aleatório uniforme             |                       |                       |                   |                                 |                     |                     |
| Propagação de erros                   |                       | próximo<br>bloco      |                   | alguns bits seguintes           |                     | detetado            |
| Capacidade de re-sincronização        | perda<br>de<br>blocos | perda<br>de<br>blocos |                   | perda de<br>múltiplos<br>n-bits |                     | detetado            |

## Modos: Reforço da Segurança

#### Cifra Múltipla

#### Cifra dupla

- Violável por intromissão em 2<sup>n+1</sup> tentativas
  - Com 2 ou mais blocos de texto conhecido
  - Usando 2<sup>n</sup> blocos de memória ...
- Não é (teoricamente) muito mais segura ...

- Cifra tripla (EDE):  $C_i = E_{K1}(D_{K2}(E_{K3}(T_i)))$
- $P_{i} = D_{K3}(E_{K2}(D_{K1}(C_{i})))$

- Normalmente usa-se K<sub>1</sub>=K<sub>3</sub>
- Se K<sub>1</sub>=K<sub>2</sub>=K<sub>3</sub> transforma-se numa cifra simples

### Modos: Reforço da Segurança (Cifra dupla)

### **Ataque Meet in The Middle**

- Cifra dupla com duas chaves K<sub>a</sub> e K<sub>b</sub>
  - $C = E_b(k_b, E_a(k_a, T))$
  - $T = D_a(k_a, D_b(k_b, C))$
  - Logo:  $D_b(k_b, C) = E_a(k_a, T)$
- Se <u>C e T forem conhecidos</u>, podem-se calcular:
  - Todos os valores D<sub>b</sub>(k<sub>b</sub>, C), variando K<sub>b</sub>
  - Todos os valores E<sub>a</sub>(k<sub>a</sub>, T), variando K<sub>a</sub>
- Chaves encontradas quando se verificar a igualdade
  - Complexidade esperada: 2<sup>len(ka) + len(kb)</sup>
  - Complexidade real: 2<sup>len(ka)</sup> + 2<sup>len(kb)</sup>
  - Exemplo para chaves de 56 bits:  $2^{56+56} = 2^{112}$  vs  $2^{56} + 2^{56} = 2^{57}$ 
    - Consumindo 2<sup>56</sup> bits de armazenamento (8 PiB)

# Modos: Reforço da Segurança

### Branqueamento/whitening

Técnica simples e eficiente de introdução de confusão

- $C_i = E_K(K_1 \oplus T_i) \oplus K_2$
- $T_i = K_1 \oplus D_K(K_2 \oplus C_i)$



# Modos: Reforço da Segurança

### **XOR-Encrypt-XOR (XEX)**

**XTS = XEX + Ciphertext Stealing** 



# Cifras Assimétricas por Blocos

### Par de chaves

- Uma privada, pessoal e intransmissível
- Uma pública, disponível para todos

#### Permitem

- Confidencialidade sem troca de segredos
- Autenticação de conteúdos (integridade) e de autoria (assinaturas digitais)

# Cifras Assimétricas por Blocos

### Desvantagens

Desempenho (normalmente pouco eficientes)

### Vantagens

- Interação com N interlocutores requer apenas N pares de chaves
  - Cifra por blocos simétrica iria requerer N<sup>2</sup>

#### Problemas

- Distribuição de chaves públicas (têm de ser distribuídas à priori)
- Tempo de vida dos pares de chaves (têm de expirar)

# Cifras Assimétricas por Blocos

### Aproximações: complexidade matemática

- Cálculo de logaritmos discretos
- Fatorização de grandes números
- Problema da mochila (knapsack)

### Algoritmos mais usados

- RSA
- FlGamal
- Curvas elípticas (Elliptic Curve Cryptography, ECC)

### Outras técnicas com chave pública

Diffie-Hellman (negociação de chaves)

# Confidencialidade c/ Cif. Assimétricas



#### Menos chaves

- $C = E(K, P) P = D(K^{-1}, C)$
- Para ter confidencialidade basta Y conhecer a chave pública de R (K<sub>R</sub>)

#### Não há autenticação de origem

- R não sabe quem produziu o criptograma
- Se K<sub>R</sub> for efetivamente pública, qualquer um o pode fazer

# Autenticidade c/ Cif. Assimétricas



- O criptograma não pode ser alterado
  - $C = E(K^{-1}, P) P = D(K, C);$
  - Só S conhece a chave K<sub>s</sub>-1 com que o criptograma foi gerado
- Não há confidencialidade
  - Quem conhecer K<sub>c</sub> decifra o criptograma
  - Se K<sub>s</sub> for verdadeiramente pública, qualquer um o pode fazer

# RSA (Rivest, Shamir, Adelman) 1978

#### Complexidade matemática

- Dificuldade de Fatorização de grandes números
- Dificuldade de cálculo de logaritmos discretos

#### Operações e chaves

```
• K = (e, n) K^{-1} = (d, n)
```

•  $C = P^e \mod n$   $P = C^d \mod n$ 

•  $C = P^d \mod n$   $P = C^e \mod n$ 

#### Escolha dos valores das chaves

- n de grande dimensão (centenas ou milhares de bits)
- $n = p \times q$  p e q primos, de grande dimensão
- Escolher e coprimo de (p-1)×(q-1)
- Procurar um d tal que  $e \times d \equiv 1 \mod (p-1) \times (q-1)$
- Não se consegue deduzir d a partir de e ou de n



# RSA (Rivest, Shamir, Adelman) 1978

- p = 5q = 11 (pequenos números primos)
  - $n = p \times q = 55$
  - (p-1)(q-1) = 40
- e = 3
  - Coprimo de 40
- d = 27
  - $e \times d \equiv 1 \mod 40$

• P = 26

- (note que P, C∈[0, n-1])
- $C = P^e \mod n = 26^3 \mod 55 = 31$
- $P = C^d \mod n = 31^{27} \mod 55 = 26$

### Diffie-Hellman

alice



q (primo de elevada dimensão) α (raiz primitiva mod q) bob



a = random

$$Y_a = \alpha^a \mod q$$



Y<sub>a</sub>



**b** = random

$$Y_b = \alpha^b \mod q$$

$$K_{ab} = Y_a^b \mod q$$

# Diffie-Hellman - Ataque por MitM

alice



a = random

$$Y_a = \alpha^a \mod q$$

 $K_{ca} = Y_{c}^{a} \mod q$ 

mallory



c = random



 $K_{ac} = Y_a^c \mod q$ 

Y<sub>c</sub>

$$K_{cb} = Y_b^c \mod q$$

bob



**b** = random



$$K_{cb} = Y_c^b \mod q$$

### Randomização de cifras com chave pública

- O resultado de uma cifra com chave pública não deverá ser determinístico (previsível)
  - N cifras do mesmo valor, coma mesma chave, devem produzir N resultados diferentes
  - Objetivo: impedir a descoberta de valores cifrados por tentativa e erro

#### Técnicas

- Concatenação do valor a cifrar com dois valores
  - Um fixo (para controlo de erros)
  - Um aleatório (para randomização)

# Randomização de cifras com chave pública: OEAP Optimal Asymmetric Encryption Padding

IHash: Digest sobre Label

seed: Valor aleatório

PS: zeros

M: Texto

MGF: Mask Generation Function



### Aumento de performance: Cifra Híbrida

### Combinação de Cifra Assimétrica com Simétrica

- Usar o melhor de dois mundos, evitando os problemas
- Cifra Assimétrica: utilização de chaves públicas (mas lenta)
- Cifra Simétrica: Rápida (mas com fraca troca de chaves)

### Aproximação:

- 1. Obter K<sub>pub</sub> do destinatário
- 2. Gerar K<sub>s</sub> de forma aleatória
- 3. Calcular  $C_1 = E_{sym}(K_s, T)$
- 4. Calcular  $C_2 = E_{asym}(K_{pub}, K_s)$
- 5. Enviar  $C_1 + C_2$ 
  - C1 = Texto cifrado com chave simétrica
  - C2 = Chave simétrica cifrado com chave pública do destinatário
    - Também pode conter o IV

# Funções de Síntese (digest)

- Resultado de dimensão constante com entradas de dimensão variável
  - Uma espécie de "impressão digital" dos textos
- Resultados muito diferentes para entradas similares
  - Funções de dispersão criptográficas unidirecionais
- Propriedades relevantes:
  - Resistência à descoberta de um texto
    - Dada uma síntese, é difícil encontrar um texto que o produza
  - Resistência à descoberta de um 2º texto
    - Dado um texto, é difícil encontrar um segundo texto com a mesma síntese
  - Resistência à colisão
    - É difícil encontrar dois textos com a mesma síntese
    - Paradoxo do aniversário



### Funções de Síntese: Dimensão dos Textos

- Considerando o textos semelhantes, mas diferentes:
  - T1: "Hello User\_A!", T2: "Hello User\_B!", T3: "Hello User\_XY!"
- Diferentes algoritmos produzem valores de dimensão diferente, mas independente da dimensão do texto
  - MD5:
    - T1: 70df836fdaf02e0dfc990f9139762541
    - T3: a08313b553d8bf53ca7457601a361bea
  - SHA-1:
    - T1: f591aa1eabcc97fb39c5f422b370ddf8cb880fde
    - T3: c28b0520311e471200b397eaa55f1689c8866f25
  - SHA-256:
    - T1: 9649d8c0d25515a239ec8ec94b293c8868e931ad318df4ccd0dffd67aff89905
    - T3: 8fc49cde23d15f8b9b1195962e9ba517116f45661916a0f199fcf21cb686d852



### Funções de Síntese: Diferença entre Textos

- Considerando o textos semelhantes, mas diferentes:
  - T1: "Hello User\_A!", T2: "Hello User\_B!", T3: "Hello User\_XY!"
- Uma pequena alteração no texto (1 bit) produz uma alteração drástica no resultado
  - MD5:
    - T1: 70df836fdaf02e0dfc990f9139762541
    - T2: c32e0f62a7c9c815063d373acac80c37
  - SHA-1:
    - T1: f591aa1eabcc97fb39c5f422b370ddf8cb880fde
    - T2: bab31eb62f961266758524071a7ad8221bc8700b
  - SHA-256:
    - T1: 9649d8c0d25515a239ec8ec94b293c8868e931ad318df4ccd0dffd67aff89905
    - T2: e663a01d3bec4f35a470aba4baccece79bf484b5d0bffa88b59a9bb08707758a

# Funções de Síntese (digest)

### Aproximações

- Difusão e confusão em funções de compressão
- Construção Merkle-Damgård
  - Compressão iterativa
  - Padding com o comprimento

### Algoritmos mais comuns

- MD5 (128 bits)
  - Já não é seguro! É fácil descobrir colisões!
- SHA-1 (Secure Hash Algorithm, 160 bits)
  - Já não é seguro! É fácil descobrir colisões! (em 2017)
- SHA-2, aka SHA-256/SHA-512, SHA-3, etc.

# Funções de Síntese



# Message Integrity Code (MIC)

- Fornecem capacidade de detetar alterações por máquinas
  - Erros de comunicação/armazenamento
  - De caráter aleatório ou não controlado
- Envio: Calcular MIC e enviar T + MIC
  - com T=texto e MIC=síntese(T)
- Receção: Receber dados (T') e verificar se S(T') = MIC
  - Calcular S'=síntese(T')
  - Validar se S(T') == MIC
- Não protege contra alterações deliberadas
  - Atacante pode manipular T em T' e calcular novo MIC

### Message Authentication Code (MAC)

- Síntese/digest/hash gerada com recurso a uma chave
  - Só os conhecedores da chave conseguem gerar/validar o MAC
- Utilizada para garantir autenticidade/integridade





# MAC: Cifras com Autenticação (GCM)



### MAC: Aproximações

- Cifrando uma síntese normal
  - Por exemplo, com uma cifra simétrica por blocos
- Usando uma função chaveada, realimentação e propagação de erros
  - ANSI X9.9 (ou DES-MAC) com DES CBC (64 bits)
- Usando uma chave nos parâmetros da função
  - Keyed-MD5 (128 bits): MD5(K, keyfill, texto, K, MD5fill)
- Construção HMAC: H(K, opad, H(K, ipad, texto))
  - ipad = 0x36 B vezes, opad = 0x5C B vezes
  - HMAC-MD5, HMAC-SHA, etc.

# Cifra e Autenticação

- Encrypt-then-MAC: MAC calculado do criptograma
  - Permite verificar a integridade antes da decifra

- Encrypt-and-MAC: MAC é calculado do texto
  - MAC não é cifrado
  - Fornece informação acerca do texto original (se igual a outro)
- MAC-then-Encrypt: MAC é calculado do texto
  - MAC é cifrado
  - Obriga a decifra completa antes da validação do MAC
    - Erros só são detetados após a decifra e validação

### **Assinaturas Digitais**

- Autenticam o conteúdo de documentos
  - Garantem a sua integridade
- Autenticam o autor
  - Garantem a identidade do autor/criador
- Previnem repudiação do conteúdo
  - Autor não pode negar a sua criação
    - só ele tem acesso à chave privada
    - Nota: autor é quem cria o conteúdo, não quem o envia

# Assinaturas Digitais (aproximações)

- Cifra Assimétrica sobre Síntese
  - Síntese usada por questões de desempenho
  - Cifra assimétrica para garantir autenticidade

Assinar:  $A_x(doc) = info + E(K_x^{-1}, digest(doc + info))$ 

info associada com K<sub>x</sub>

**Verificar:** 

 $D(K_x, A_x(doc)) \equiv digest(doc + info)$ 



#### Verification



If the hashes are equal, the signature is valid.

# Assinatura digital num email

```
From - Fri Oct 02 15:37:14 2009
[...]
Date: Fri, 02 Oct 2009 15:35:55 +0100
From: User From <user.from@ua.pt>
Organization: UA
MIME-Version: 1.0
To: User To <user.to@ua.pt>
Subject: Teste
Content-Type: multipart/signed; protocol="application/x-pkcs7-signature"; micalg=sha1; boundary="------ms050405070101010502050101"
This is a cryptographically signed message in MIME format.
-----ms050405070101010502050101
Content-Type: multipart/mixed;
boundary="-----060802050708070409030504"
This is a multi-part message in MIME format.
-----060802050708070409030504
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
Corpo do mail
-----060802050708070409030504-
-----ms050405070101010502050101
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"
Content-Description: S/MIME Cryptographic Signature
MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIamTCC
BUkwggSyoAMCAQICBAcnIaEwDQYJKoZIhvcNAQEFBQAwdTELMAkGA1UEBhMCVVMxGDAWBgNV
[...]
KoZIhvcNAQEBBQAEgYCofks852BV77NVuww53vSxO1XtI2JhC1CDlu+tcTPoMD1wq5dc5v40
Tgsaw0N8dqgVLk8aC/CdGMbRBu+J1LKrcVZa+khnjjtB66HhDRLrjmEGDNttrEjbqvpd2Q02
vxB3iPT1U+vCGXo47e6GyRydqTpbq0r49Zqmx+IJ6Z7iigAAAAAAAA==
-----ms050405070101010502050101--
```

### Assinaturas cegas

- Assinaturas pode ser efetuadas de forma cega
  - Assinante não consegue observar os conteúdos assinados
  - Semelhante a assinar um envelope com um documento e um papel químico
- Servem para garantir o anonimato e a não alteração da informação assinada
  - O assinante X sabe quem lhe pede a assinatura (Y)
  - X assina T<sub>1</sub>, mas Y depois recupera a assinatura sobre T<sub>2</sub>
    - T<sub>2</sub> não é qualquer, está relacionado com T<sub>1</sub>
  - O requerente pode apresentar T<sub>2</sub> assinado por X
    - Mas não pode alterar T<sub>2</sub>
    - X não consegue associar T<sub>2</sub> ao T<sub>1</sub> que viu e assinou

### Derivação de Chaves

- Algoritmos requerem chaves de dimensão fixa
  - 56, 128, 256... bits
- Necessário derivar chaves de várias fontes
  - Segredos partilhados
  - Passwords geradas por humanos
  - Códigos PINs e segredos pequenos...
- Fonte original pode ter baixa entropia
  - Reduz dificuldade de um ataque de força bruta
  - Necessário existir uma transformação complexa entre fonte e chave
- Necessário poder-se chegar a múltiplas chaves para a mesma password
  - Evitar deduzir a password a partir da chave gerada

### Derivação de Chaves

- Reforço das chaves: Aumento da segurança de uma password
  - Tipicamente definida por humanos
  - Tornar os ataques por dicionário impraticáveis

- Expansão das chaves: Aumento da dimensão de uma password
  - Expansão até ao pretendido para o algoritmo
  - Eventualmente também a geração de outros valores como chaves para MACs

### Derivação de Chaves

- Derivação de chaves impõe a existência de:
  - um Sal que torna a geração única
  - um problema custoso
  - um grau de complexidade parametrizável

- Dificuldades computacionais: Transformação requer recursos computacionais relevantes para ser realizada
- Dificuldades de armazenamento: Transformação ocupa recursos de armazenamento relevantes (memória)

### Derivação de Chaves: PBKDF2

### **Password Based Key Derivation Function 2**

- Produz uma chave com um custo computacional prédefinido
- K = PBKDF2(PRF, Sal, Iterações, Password, dim)
  - PRF: Pseudo-Random-Function: Uma síntese
  - Sal: Um valor aleatório
  - Iterações: O custo (um valor nas centenas de milhares)
  - Password: Um segredo
  - Dim: a dimensão do resultado pretendido
- Operação: Realiza N x dim operações do PRF, com base no SAL e password
  - Quanto maior o valor de N, maior o custo

# Derivação de Chaves: PBKDF2



# Derivação de Chaves: scrypt

- Produz uma chave com um custo de armazenamento pré-definido
- K = scrypt(Password, Sal, N, p, dim, r, hLen, MFlen)
  - Password: um segredo a expandir
  - Sal: Um valor aleatório
  - N: parâmetro de custo
  - p: Parâmetro de paralelização. p ≤ (2<sup>32</sup>– 1) \* hLen / MFLen
  - dim: a dimensão da chave a produzir
  - r: o tamanho dos blocos a usar (tipicamente 8)
  - hLen: dimensão da função de síntese (32 para SHA256)
  - MFlen: bytes na mistura interna (tipicamente 8 x r)

# Derivação de Chaves: scrypt

