Les questions suivantes sont indépendantes.

Donner l'exemple d'une suite de fonctions f_n définie sur [0,1] telle que f_n converge simplement vers 0 mais $\int_0^1 f_n(t) dt$ ne tend pas vers 0.

Soit $(a_n)_{n\in\mathbb{N}}$. En utilisant uniquement les définitions du rayon de convergence, montrer que $\sum_n a_n z^n$ et $\sum_n n a_n z^n$ ont même rayon de convergence. Que dire du rayon convergence de $\sum_n \frac{a_n}{n} z^n$?

Soit f_n une suite de fonctions continues qui converge uniformément sur \mathbb{R} . Justifier que e^{f_n} converge vers e^f simplement. La convergence est-elle uniforme?

Donner le rayon de convergence de $\sum_n a_n z^n$, si ...

$$a_n = e^{\frac{1}{n}} - 1$$

$$a_n = \frac{n!}{2^{2n}\sqrt{(2n)!}}$$

 $a_n = \begin{cases} \alpha^{\frac{n}{2}} & \text{si } n \text{ est pair,} \\ \beta^{\frac{n-1}{2}} & \text{si } n \text{ est impair,} \end{cases} \text{ avec } \alpha \text{ et } \beta \text{ strictement positifs.}$

Soit α un réel. Pour tout entier $n>0$ et tout réel $x\geq 0$, on pose
$u_n(x) = \frac{n^{\alpha} x e^{-nx}}{n^2 + 1}.$
On note I le domaine de définition de $S: x \mapsto \sum_{n=0}^{\infty} u_n(x)$.
Montrer que $\sum_{n=0}^{\infty} u_n$ converge simplement sur \mathbb{R}^+ . Déterminer alors I .
Montrer que S est continue sur \mathbb{R}_+^* pour toute valeur de α .
Dannon una condition nécessaire et sufficente sun e noun que in convengence name le sun D
Donner une condition nécessaire et suffisante sur α pour avoir convergence normale sur \mathbb{R}_+ .
On suppose $\alpha \geq 2$. Montrer que la suite $v_n := \sum_{k=n+1}^{\infty} u_k \left(\frac{1}{n}\right)$ ne tend pas vers 0 quand n tend vers $+\infty$. La convergence de la série de fonctions $\sum u_n$ est-elle uniforme sur I ?
La fonction S est-elle continue en 0 ?

