MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Gaussian distribution

Next: ASV 4.1

Week 6:

Homework 4 due Friday, February 17

Variance

Definition The variance of a random variable X is

$$Var(X) = E((X-E(X))^2)$$

Proposition. Let X be a random variable. Then $Var(X) = E(X^2) - (E(X))^2$

The square root of the variance is called standard deviation $G(x) = \sqrt{Var(x)}$

Variance Variance is a measure of how "spread out from the mean" the distribution is. Proposition Let X be a random variable with finite expectation E(X)= u. Then Proof (=) Exercise (⇒) (Assume X is discrete). 0 = Var (X) = => For all t, , so if For all t, either 00 therefore,

Expectation and variance of aX+b

Let X be a random variable, and let a, b ∈ R. Then

$$(i) E(\alpha X + b) =$$

(ii) Var (ax+b) = if E(x) and Var (x) exist

(ii) \(\(\(\) \\ \) =

$$E(X_5) = \sum_{\infty} K_5 b(X = K) = \sum_{\infty} K_5 b(1-b)_{K-1} =$$

 \equiv

Ξ

abla

Random variables. S	ummary
Discrete	Continuous
Finite/countable set of possible	Uncountable set of possible
values, $\sum_{t} P(X=t)=1$	values, $Y \in \mathbb{R}$ $P(X=t)=0$
$PMF: P_X(t) = P(X=t)$	$PDF: f_{X}: \mathbb{R} \to \mathbb{R}$
$P(X \in B) = \sum_{t \in B} P_X(t)$	$P(X \in B) = \int_{B} f_{X}(t) dt$
CDF Fx is a step function	CDF Fx is a continuous function
Expectation: $E(X) = \sum_{t} t P(X=t)$	Expectation: $E(X) = \int_{\mathbb{R}} t f_X(t) dt$
$E(g(X)) = \sum_{t} g(t) P(X=t)$	$E(g(X)) = \int_{\mathbb{R}} g(t) f_X(t) dt$
Relation between CDF and PMF:	Relation between CDF and PDF:
magnitude of jump of Fx at t is	$f_{x}(t) = F_{x}(t)$ on the intervals where
P(X=t)	Fx is differentiable

Random variables. Summary

(iii)
$$\lim_{t\to-\infty} F_x(t) = 0$$
, $\lim_{t\to+\infty} F_x(t) = 1$

Variance:
$$Var(X) = E((X-E(X))^2) = E(X^2) - (E(X))^2$$

$$E(aX+b) = aE(X)+b$$
, $Var(aX+b) = a^2 Var(X)$

Gaussian (normal) distribution

Def Random variable Z has the standard normal (Gaussian)

distribution if the PDF of Z is given by

Notation: Z~ N(O,1)

Is
$$\Psi(t)$$
 indeed a PDF?

c = (+) 20

CDF of N(O11)

Suppose X-N(011). What is P/IX1=1)?

$$P(-1 \le X \le 1)$$

Cannot use the polar coordinate trick.

$$0.35$$
 0.3
 0.25
 0.15
 0.15
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05

no simple explicit formula

 $\Phi(x) :=$

· table of values of P(x) (for x 20)

Normal table of values (Appendix E in textbook)

	Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
-1	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
1	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
-	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

Fact:

Normal table of values

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

Find
$$x_0 \in \mathbb{R}$$
 such that $P(|Z| > x_0) \approx 0.704$

$$(\alpha_{\circ}) \approx$$

$$E(X) = \int_{-\infty}^{+\infty} t f_{x}(t) dt =$$

$$Var(X) = E(X^2) = \frac{1}{12\pi} \int_{-\infty}^{+\infty} t^2 e^{-\frac{t^2}{2}} dt$$

General normal distribution N(µ,6°) Def Let MER and 6>0. Random variable X has normal (Gaussian) distribution with mean u and variance 62 if the PDF of X is given by $f_{X}(x) =$ We write Using the density we can compute E(X) = |Var(X)| ="Gaussian distribution" = family of distributions

Relation between X~N(µ,6) and Z~N(0,1) Proposition Let X~N(µ,62), a≠0, b∈ R. Then Using this proposition any Gaussian random variable can be written as a shifted and rescaled standart normal. E.g., if 6>0, µ ∈ R and Z~N(0,1), then If X~ N(µ,62), then E(X) = ; Var (X) = If X~N(4,62), then

Example

Let X~N(-3,4)