Course: CS550 - Machine Learning and Business Intelligence

Faculty: Prof. Henry Chang

Machine Learning: Overfitting to evaluate Linear Regression Model and Non-linear Regression

Name: Haripriya A

ID: 19579

Table of Contents

- 1. <u>Introduction</u>
- 2. About Regression
- 3. <u>Input Data</u>
- 4. Model 1: Linear Regression
 - 4.1. <u>Intercept and slope calculation</u>
 - 4.2. <u>Linear Regression Formula</u>
 - 4.3. <u>Linear Regression Training Phase 'y'</u>
 - 4.4. <u>Linear Regression Validation Phase 'y'</u>
- 5. <u>Model 2: Non-Linear Regression</u>
 - 5.1. <u>Non-linear Regression Training Phase 'y' and Validation Phase 'y'</u>
- 6. <u>Comparison Overfitting to compare Models</u>
- 7. <u>Conclusion</u>
- 8. <u>References</u>

Introduction

- Machine learning is a method of data analysis investigation that automates logical model structure. Machine learning algorithms are largely used to predict, classify, or cluster.
- Machine Learning
 - * Supervised Learning
 - Regression : Linear Regression Algorithm
 - Classification : KNN Algorithm
 - * Unsupervised Learning
 - Clustering : K-Mean Algorithm

About Regression

- A regression is a statistical analysis assessing the association between two variables. It is used to find the relationship between two variables.
- We compare the following two Regression Models to see which one has more serious overfitting issue in the coming slides
 - Linear Regression Model 1
 - Non-Linear Regression Model 2

Input Data

• Training phase: 50%, Validation phase: 25%, Test phase: 25%

	Traini	ng Phase			Validat	Test Phase			
Real Data Set 1 50% of the collected data		Model 1: Linear Regression	Model 2: Non- Linear Regression		ata Set 2 collected data	Model 1: Linear Regression	Model 2: Non- Linear Regression	Real Data Set 3 25% of the collected data	The better model selected from Model 1 and Model 2 depending on the analysis of overfitting
Х	Y	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x²	X Y		ŷ=a1 + b1 * x	ŷ=a2 + b2 * x2	x	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$
1	1.8			1.5	1.7			1.4	
2	2.4			2.9	2.7			2.5	
3.3	2.3			3.7	2.5			3.6	
4.3	3.8			4.7	2.8			4.5	
5.3	5.3			5.1	5.5			5.4	
1.4	1.5			X	X	x	X	X	X
2.5	2.2			X	X	x	x	x	X
2.8	3.8			x	X	x	X	X	X
4.1	4.0			x	X	x	X	X	X
5.1	5.4			x	x	x	x	x	x

Model 1: Linear Regression

To find regression equation, we will first find slope, intercept and use it to form regression equation.

- \circ Step 1:Count the number of values. N = 10
- \circ Step 2:Find X * Y, X² See the below table

X Value	Y Value	X*Y	X*X
1	1.8	1*1.8=1.8	1*1=1
2	2.4	2*2.4=4.8	2*2=4
3.3	2.3	3.3*2.3=7.59	3.3*3.3=10.89
4.3	3.8	4.3*3.8=16.34	4.3*4.3=18.49
5.3	5.3	5.3*5.3=28.09	5.3*5.3=28.09
1.4	1.5	1.4*1.5=2.1	1.4*1.4=1.96
2.5	2.2	2.5*2.2=5.5	2.5*2.5=6.25
2.8	3.8	2.8*3.8=10.64	2.8*2.8=7.84
4.1	4.0	4.1*4.0=16.4	4.1*4.1=16.81
5.1	5.4	5.1*5.4=27.54	5.1*5.1=26.01

Step 3:

Find ΣX , ΣY , ΣXY , ΣX^2 .

$$\Sigma X = 31.8$$

$$\Sigma Y = 32.5$$

$$\Sigma XY = 120.8$$

$$\Sigma X^2 = 121.34$$

Step 4:

Substitute in the above slope formula given.

```
Slope(b1) = (N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)
= ((10*120.8)-(31.8*32.5) / ((10*121.34)-(31.8)^2)
= 0.86
```

Step 5:

Now, again substitute in the above intercept formula given.

Intercept(a1) =
$$(\Sigma Y - b(\Sigma X)) / N$$

= $(32.5 - (0.86*31.8))/10$
= $(32.5-27.348)/10$
= 0.51

Step 6:

Then substitute Intercept(a) and Slope(b) in regression equation formula

Regression Equation(y) = a + bx= 0.51+0.86x

Step 7:

Suppose if we want to know the approximate y value for the variable x = 64. Then we can substitute the value in the above equation.

Regression Equation(y) = a + bx

- = 0.51 + 0.86x
- = 0.51 + 0.86(1)
- = 1.37

• Training phase Model 1 'y' Calculation in the table below

		Training Phase		Validati	on Phase	Test Phase				
Real Data Set 1 50% of the collected data		Model 1: Linear Regression	Model 2: Non- Linear Regressio n	Real Data Set 2 25% of the collected data		Model 1: Model 2: Linear Non-Linea Regression Regression		Real Data Set 3 25% of the collected data	The better model selected from Model 1 and Model 2 depending on the analysis of overfitting	
X	Y	ŷ=a1 + b1 * x	$\hat{y}=a2+b2$ * x^2	X	Y	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x2	x	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$	
1	1.8	0.51+0.86(1)=1.37		1.5	1.7			1.4		
2	2.4	0.51+0.86(2)=2.74		2.9	2.7			2.5		
3.3	2.3	0.51+0.86(3.3)=3.348		3.7	2.5			3.6		
4.3	3.8	0.51+0.86(4.3)=4.208		4.7	2.8			4.5		
5.3	5.3	0.51+0.86(5.3)=5.068		5.1	5.5			5.4		
1.4	1.5	0.51+0.86(1.4)=1.714		X	X	X	x	x	x	
2.5	2.2	0.51+0.86(2.5)=2.66		x	X	x	X	x	x	
2.8	3.8	0.51+0.86(2.8)=2.918		x	X	x	X	X	x	
4.1	4.0	0.51+0.86(4.1)=4.036		x	x	x	X	X	х	
5.1	5.4	0.51+0.86(5.1)=4.896		X	x	X	X	x	X	

• Validation phase Model 1 'y' Calculation in the table below

Training Phase						Validation Phase	Test Phase			
Real Data Set 1 50% of the collected data		Model 1: Linear Regression	Model 2: Non- Linear Regressio n	Real Data Set 2 25% of the collected data		Model 1: Linear Regression	Model 2: Non- Linear Regression	Real Data Set 3 25% of the collected data	The better model selected from Model 1 and Model 2 depending on the analysis of overfitting	
X Y		ŷ=a1 + b1 * x	ŷ=a2 + b2 * x ²	X Y		ŷ=a1 + b1 * x	ŷ=a2 + b2 * x2	X	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$	
1	1.8	0.51+0.86(1)=1.37		1.5	1.7	0.51+0.86(1.5)=1.8		1.4		
2	2.4	0.51+0.86(2)=2.74		2.9	2.7	0.51+0.86(2.9)=3.004		2.5		
3.3	2.3	0.51+0.86(3.3)=3.348		3.7	2.5	0.51+0.86(3.7)=3.692		3.6		
4.3	3.8	0.51+0.86(4.3)=4.208		4.7	2.8	0.51+0.86(4.7)=4.552		4.5		
5.3	5.3	0.51+0.86(5.3)=5.068		5.1	5.5	0.51+0.86(5.1)=4.896		5.4		
1.4	1.5	0.51+0.86(1.4)=1.714		X	X	X	x	X	x	
2.5	2.2	0.51+0.86(2.5)=2.66		X	X	X	x	X	x	
2.8	3.8	0.51+0.86(2.8)=2.918		X	X	x	x	X	x	
4.1	4.0	0.51+0.86(4.1)=4.036		X	x	X	x	X	x	
5.1	5.4	0.51+0.86(5.1)=4.896		X	X	X	х	X	X	

Non-linear Regression Model 2

Non-linear Regression Formula:

```
Slope(b) = (N\Sigma \underline{P}Y - (\Sigma \underline{P})(\Sigma Y)) / (N\Sigma \underline{P}^2 - (\Sigma \underline{P})^2)
Intercept(a) = (\Sigma Y - b(\Sigma P)) / N
                                                                           Where P = X * X
Slope(b) = (N\Sigma \underline{X}^2 Y - (\Sigma \underline{X}^2)(\Sigma Y)) / (N\Sigma \underline{X}^4 - (\Sigma \underline{X}^2)^2)
Intercept(a) = (\Sigma Y - b(\Sigma X^2)) / N
          Step 1:Count the number of values. N = 10
          Step 2:Find X * Y, X^{2}
           See the below table
Slope(b2) = (N\Sigma \underline{X}^2 Y - (\Sigma \underline{X}^2)(\Sigma Y)) / (N\Sigma \underline{X}^4 - (\Sigma \underline{X}^2)^2)
        =(10(509.762)-(121.34)(32.5))/(10(2329.9862)-(121.34*121.34))
        =(5097.62-3943.55)/(23299.862-14723.3956)
        =1154.07/8576.4664, 10211340
        =0.13
Intercept(a2) = (\Sigma Y - b(\Sigma X^2)) / N
            =(32.5-0.13(121.34))/10
         =1.67
```

Non-linear Regression Model 2

• Training phase, Validation Model 2 'y' Calculation in the table below

		Training Phase				Test Phase			
Real Data Set 1 50% of the collected data		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 2 25% of the collected data		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 3 25% of the collected data	The better model selected from Model 1 and Model 2 depending on the analysis of overfitting
x	Y	ŷ=a1 + b1 * x	$\hat{y}=a2+b2*x^2$	x	Y	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x2	х	ŷ=a1 + b1 * x or ŷ=a2 + b2 * x²
2	2.4	0.51+0.86(2)=2.74	1.67+0.13(2)2=2.1	2.9	2.7	0.51+0.86(2.9)=3.004	1.67+0.13(2.9) ² =2.76 33	2.5	
3.3	2.3	0.51+0.86(3.3)=3.348	1.67+0.13(3.3) ² =3 .0857	3.7	2.5	0.51+0.86(3.7)=3.692	1.67+0.13(3.7) ² =3.44 97	3.6	
4.3	3.8	0.51+0.86(4.3)=4.208	1.67+0.13(4.3) ² =4 .0737	4.7	2.8	0.51+0.86(4.7)=4.552	1.67+0.13(4.7) ² =4.54 17	4.5	
5.3	5.3	0.51+0.86(5.3)=5.068	1.67+0.13(5.3) ² =5 .3217	5.1	5.5	0.51+0.86(5.1)=4.896	1.67+0.13(5.1) ² =5.05	5.4	
1.4	1.5	0.51+0.86(1.4)=1.714	1.67+0.13(1.4) ² =1 .9248	х	Х	X	х	X	х
2.5	2.2	0.51+0.86(2.5)=2.66	1.67+0.13(2.5) ² =2 .4825	Х	Х	X	х	X	x
2.8	3.8	0.51+0.86(2.8)=2.918	1.67+0.13(2.8) ² =2 .6892	х	Х	X	х	Х	X
4.1	4.0	0.51+0.86(4.1)=4.036	1.67+0.13(4.1) ² =3 .8553	х	Х	X	х	Х	X
5.1	5.4	0.51+0.86(5.1)=4.896	1.67+0.13(5.1) ² =5 .0513	х	х	x	x	Х	x

Overfitting to compare Models

Training Set:

Model 1

```
= (((1.8-1.37)^2 + (2.4-2.23)^2 + (2.3-3.348)^2 + (3.8-4.208)^2 + (5.3-5.068)^2 + (1.5-1.714)^2 + (2.2-2.66)^2 + (3.8-2.918)^2 + (4-4.036)^2 + (5.4-4.896)^2)/10)
= 2.823024/10
```

=0.2823024

Model 2

```
=(((1.8-1.8)^2+(2.4-2.19)^2+(2.3-3.0857)^2+(3.8-4.0737)^2+(5.3-5.3217)^2+(1.5-1.9248)^2+(2.2-2.4825)^2+(3.8-2.6892)^2+(4-3.8553)^2\\+(5.4-5.0513)^2)/10)\\=2.37347478/10
```

=0.237347478

Overfitting to compare Models

Validation Set:

Model 1

```
(((1.7-1.8)^2+(2.7-3.004)^2+(2.5-3.692)^2+(2.8-4.552)^2+(5.5-4.896)^2)/5)
=4.9576/5
=0.99
```

Model 2

```
 (((1.7-1.9625)^2+(2.7-2.7633)^2+(2.5-3.4497)^2+(2.8-4.5417)^2+(5.5-5.0513)^2)/5) = 4.20969381/5   = 0.84193876
```

Overfitting to compare Models

max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

- Compare Model 1 and Model 2
- o Model 1

$$0.99 / 0.2823024 = 3.50687773$$

o Model 2

$$0.84193876 / 0.237347478 = 3.547283$$

- Conclusion
 - o Model 1 is a better model

Test Phase Calculation

Training Phase						Validation Phase	Test Phase		
Real Data Set 1 50% of the collected data		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 2 25% of the collected data		Model 1: Linear Regression	Model 2: Non-Linear Regression	Real Data Set 3 25% of the collected data	The better model selected from Model 1 and Model 2 depending on the analysis of overfitting
X	Y	ŷ=a1 + b1 * x	$\hat{y}=a2+b2*x^2$	X	Y	ŷ=a1 + b1 * x	$\hat{y}=a2+b2*x2$	X	$\hat{y}=a1 + b1 * x/$ $\hat{y}=a2 + b2 * x^2$
1	1.8	0.51+0.86(1)=1.37	1.67+0.13(1)2=1.8	1.5	1.7	0.51+0.86(1.5)=1.8	1.67+0.13(1.5) ² =1.96 25	1.4	0.51+0.86(1.4)=1.714
2	2.4	0.51+0.86(2)=2.74	1.67+0.13(2)2=2.19	2.9	2.7	0.51+0.86(2.9)=3.004	1.67+0.13(2.9) ² =2.76	2.5	0.51+0.86(2.5)=2.66
3.3	2.3	0.51+0.86(3.3)=3.348	1.67+0.13(3.3)2=3.0857	3.7	2.5	0.51+0.86(3.7)=3.692	1.67+0.13(3.7) ² =3.44 97	3.6	0.51+0.86(3.6)=3.606
4.3	3.8	0.51+0.86(4.3)=4.208	1.67+0.13(4.3)2=4.0737	4.7	2.8	0.51+0.86(4.7)=4.552	1.67+0.13(4.7) ² =4.54	4.5	0.51+0.86(4.5)=4.38
5.3	5.3	0.51+0.86(5.3)=5.068	1.67+0.13(5.3)2=5.3217	5.1	5.5	0.51+0.86(5.1)=4.896	1.67+0.13(5.1) ² =5.05	5.4	0.51+0.86(5.4)=5.154
1.4	1.5	0.51+0.86(1.4)=1.714	1.67+0.13(1.4)2=1.9248	X	X	Х	Х	X	X
2.5	2.2	0.51+0.86(2.5)=2.66	1.67+0.13(2.5)2=2.4825	X	X	х	х	X	х
2.8	3.8	0.51+0.86(2.8)=2.918	1.67+0.13(2.8)2=2.6892	X	х	х	х	х	х
4.1	4.0	0.51+0.86(4.1)=4.036	1.67+0.13(4.1)2=3.8553	X	х	х	Х	Х	х
5.1	5.4	0.51+0.86(5.1)=4.896	1.67+0.13(5.1)2=5.0513	X	х	Х	х	X	х

Conclusion

- Conclusion
 - Model 1 is a better model and the Test values are calculated using Model 1 which is Linear regression.

References

- https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/non_linear _regression_example.html
- https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/non_linear _regression_example.html#nl
- https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/overfit.htm

Google slides URL:

https://docs.google.com/presentation/d/1D-MQA2TPTqSJ58bevw2EzOi-o6yeQWBp1TNz60yYz18/edit?usp=sharing

