

Universidade Federal do Rio de Janeiro

Inteligência Computacional

Relatório Preliminar

Nomes: Aramys Almeida Matos Luís Gustavo Oliveira Silva

Professor: Alexandre Evsukoff

1 Introdução

Este trabalho será desenvolvido sobre o dataset Breast Cancer Wisconsin (Diagnostic). Este dataset possui como variáveis características computadas a partir de imagens digitalizadas de exames de mama por punção aspirativa por agulha fina. Os dados descrevem características do núcleo das células presentes na imagem.

2 Caracterização

2.1 Dados

O dataset possui os seguintes dados.

- ID do paciente.
- Diagnóstico (Maligno ou benigno codificados como -1 e 1 respectivamente)

Atributos das células:

- 1. Raio (média das distâncias do centro para pontos no perímetro)
- 2. Textura
- 3. Perímetro
- 4. Área
- 5. Suavidade
- 6. Compacidade
- 7. Concavidade
- 8. Pontos côncavos
- 9. Simetria
- 10. Dimensão Fractal

Para esses 10 atributos é calculado média, desvio(erro) padrão e o pior valor, resultando em 30 variáveis de entrada.

O dataset apresenta 357 amostras benignas e 212 amostras malignas.

2.2 Estatísticas Básicas e Histogramas

• Radius

Figura 1: Mean

Figura 2: Standard Error

Figura 3: Worst

Tabela 1: Radius

	$radius_mean$	$radius_se$	$radius_worst$
Máximo	28.11	2.873	36.04
Mínimo	6.981	0.1115	7.93
Média	14.12729	0.405172	16.26919
Desvio padrão	3.524049	0.277313	4.833242
Percentil 25	11.7	0.2324	13.01
Percentil 50	13.37	0.3242	14.97
Percentil 75	15.78	0.4789	18.79

Análise: Para a variável Radius mean, vemos que a maioria de seus valores se concentram mais proximos da média que é 14,13. Para Radius Standard Error, também têm um coportamento semelhante a uma função de cauda longa, porém não temos a pre-

sença de valores no intervalo entre 1,6 e 2,4. Já para a variável Radius Worst, tem um comportamento semelhante à variável Radius mean.

• Texture

Figura 4: Mean

Figura 5: Standard Error

Figura 6: Worst

Tabela 2: Texture

	$texture_mean$	$texture_se$	$texture_worst$
Máximo	39.28	4.885	49.54
Mínimo	9.71	0.3602	12.02
Média	19.28964851	1.216853427	25.67722
Desvio padrão	4.301035768	0.551648393	6.146258
Percentil 25	16.17	0.8339	21.08
Percentil 50	18.84	1.108	25.41
Percentil 75	21.8	1.474	29.72

Análise: Podemos perceber que a variável Texture Mean, tem um comportamento que lembra a uma função Gaussiana, que de certa forma é espelhada em realação a média, com a exceção dos outliers. Em Texture Standart Error, a média é 1,22 e seus valores

estão localizados proóximos á média, porém temos uma certa quantidade de valores distantes, mesmo considerando o desvio parão, e um valor máximo muito alto. Em Texture Worst, vemos que seu comportamento se assemelha a Texture Mean.

• Perimeter

Figura 7: Mean

Figura 8: Standard Error

Figura 9: Worst

Tabela 3: Perimeter

	$perimeter_mean$	$perimeter_se$	$perimeter_worst$
Máximo	188.5	21.98	251.2
Mínimo	43.79	0.757	50.41
Média	91.96903339	2.866059227	107.2612
Desvio padrão	24.29898104	2.021854554	33.60254
Percentil 25	75.17	1.606	84.11
Percentil 50	86.24	2.287	97.66
Percentil 75	104.1	3.357	125.4

Análise: Em Perimeter Standard Error, vemos a presença de outliers, como por exemplo o valor máximo que é 21,98, enquanto sua média é 2.87. E em Perimeter Worst, vemos

que possui um desvio padrão alto e seus valores estão distribuídos de forma distante da média.

• Area

Figura 10: Mean

Figura 11: Standard Error

Figura 12: Worst

Tabela 4: Area

	area_mean	area_se	area_worst
Máximo	2501	542.2	4254
Mínimo	143.5	6.802	185.2
Média	654.8891037	40.33707909	880.5831283
Desvio padrão	351.9141292	45.49100552	569.3569927
Percentil 25	420.3	17.85	515.3
Percentil 50	551.1	24.53	686.5
Percentil 75	782.7	45.19	1084

Análise: Na variável Area Mean, vemos que ela possui um desvio padrão grande, sendo maior que a metade da média, assim como em Area Worst. Em Area Standard Error, vemos que a variável tem um compartamento semelhante a uma função de cauda longa e temos uma valor bem distante que é o valor máximo (2501,00).

• Smoothness

Figura 13: Mean

Figura 14: Standard Error

Figura 15: Worst

Tabela 5: Smoothness

	$smoothness_mean$	$smoothness_se$	$smoothness_worst$
Máximo	0.1634	0.03113	0.2226
Mínimo	0.05263	0.001713	0.07117
Média	0.096360281	0.007040979	0.132368594
Desvio padrão	0.014064128	0.003002518	0.022832429
Percentil 25	0.08637	0.005169	0.1166
Percentil 50	0.09587	0.00638	0.1313
Percentil 75	0.1053	0.008146	0.146

Análise: Podemos ver que tanto Smoothness Mean quanto em Worst, elas tem uma aparência semelhante a uma função Gaussiana e possuem um desvio padrão pequeno, já em Smoothness Standard Error, vemos que ela possui um desvio padrão alto e existe a presença de outliers como o seu valor máximo (0,16340).

• Compactness

Figura 16: Mean

Figura 17: Standard Error

Figura 18: Worst

Tabela 6: Compactness

_	compactness_mean	$compactness_se$	$compactness_worst$
Máximo	0.3454	0.1354	1.058
Mínimo	0.01938	0.002252	0.02729
Média	0.104340984	0.025478139	0.254265
Desvio padrão	0.052812758	0.017908179	0.157336
Percentil 25	0.06492	0.01308	0.1472
Percentil 50	0.09263	0.02045	0.2119
Percentil 75	0.1304	0.03245	0.3391

Análise: Aqui percebemos que as 3 variáveis possuem um desvio padrão alto e seus valores máximos se destoam bantante.

• Concavity

Figura 19: Mean

Figura 20: Standard Error

Figura 21: Worst

Tabela 7: Concavity

	concavity_mean	$concavity_se$	$\operatorname{concavity} _\operatorname{worst}$
Máximo	0.4268	0.396	1.252
Mínimo	0	0	0
Média	0.088799316	0.031893716	0.272188483
Desvio padrão	0.079719809	0.03018606	0.208624281
Percentil 25	0.02956	0.01509	0.1145
Percentil 50	0.06154	0.02589	0.2267
Percentil 75	0.1307	0.04205	0.3829

Análise: Nas 3 variáveis percebemos que o seus valores se concentram mais proximos de 0 e a ocorrência desses valores vão decaindo conforme se afastam de 0.

• Concave points

Figura 22: Mean

Figura 23: Standard Error

Figura 24: Worst

Tabela 8: Concave points

	concave points_mean	concave points_se	concave points_worst
Máximo	0.2012	0.05279	0.291
Mínimo	0	0	0
Média	0.048919146	0.011796	0.114606
Desvio padrão	0.038802845	0.00617	0.065732
Percentil 25	0.02031	0.007638	0.06493
Percentil 50	0.0335	0.01093	0.09993
Percentil 75	0.074	0.01471	0.1614

Análise: Aqui vemos que a variável Cancave points mean, tem um comportamento semelhante à uma função de cauda longa e que a variável Cancave Points Standard Error possui alguns outliers, como o valor máximo por exemplo.

• Symmetry

Figura 25: Mean

Figura 26: Standard Error

Figura 27: Worst

Tabela 9: Symmetry

	symmetry_mean	symmetry_se	symmetry_worst
Máximo	0.304	0.07895	0.6638
Mínimo	0.106	0.007882	0.1565
Média	0.181162	0.020542	0.290076
Desvio padrão	0.027414	0.008266	0.061867
Percentil 25	0.1619	0.01516	0.2504
Percentil 50	0.1792	0.01873	0.2822
Percentil 75	0.1957	0.02348	0.3179

Análise - A variável Symmetry mean possui um comportamento semelhante a uma função Gaussiana e tanto Symmetry Standard Error, quanto Wosrt possuem valores máximos distantes da média.

• Fractal Dimension

Figura 28: Mean

Figura 29: Standard Error

Figura 30: Worst

Tabela 10: Fractal dimension

	fractal_dimension_mean	$fractal_dimension_se$	$fractal_dimension_worst$
Máximo	0.09744	0.02984	0.2075
Mínimo	0.04996	0.000895	0.05504
Média	0.06279761	0.003795	0.083945817
Desvio padrão	0.007060363	0.002646	0.018061267
Percentil 25	0.0577	0.002248	0.07146
Percentil 50	0.06154	0.003187	0.08004
Percentil 75	0.06612	0.004558	0.09208

Análise: Podemos ver que apartir da média, a ocorrência dos valores das váreiaveis vão diminuindo conforme se distanciam da média.

A partir dos histogramas podemos avaliar que em geral não revelou características indesejáveis como distribuições multimodais. Conforme comentado algumas apresentaram assimetria.

2.3 Matriz de Correlação

Figura 31: Matriz de Correlação

A partir da matriz podemos concluir que as seguintes variáveis estão fortemente correlacionadas (apresentam coeficiente de correlação acima de 0.9):

- Radius Mean, Perimeter Mean
- Radius Mean, Area Mean
- Radius Mean, Radius Worst
- Radius Mean, Perimeter Worst
- Radius Mean, Area Worst
- Texture Mean, Texture Worst
- Perimeter Mean, Area Mean
- Perimeter Mean, Radius Worst
- Perimeter Mean, Perimeter Worst

- Perimeter Mean, Area Worst
- Area Mean, Radius Worst
- Area Mean, Perimeter Worst
- Area Mean, Area Worst
- Concavity Mean, Concave Points Mean
- Concave Points Mean, Concave Points Worst
- Radius SE, Perimeter SE
- Radius SE, Area SE
- Perimeter SE, Area SE
- Radius Worst, Perimeter Worst
- Radius Worst, Area Worst
- Perimeter Worst, Area Worst

As seguintes variáveis apresentaram correlação negativa:

Variável A	Variável B
${\tt compactness_mean}$	${ m perimeter_mean}$
${ m radius_se}$	${ m radius_mean}$
${ m radius_se}$	${ m texture_mean}$
${ m radius_se}$	${ m perimeter_mean}$
${ m radius_se}$	${ m area_mean}$
${ m radius_se}$	${ m smoothness_mean}$
${ m perimeter_se}$	${ m radius_mean}$
${ m perimeter_se}$	$texture_mean$
${ m perimeter_se}$	${\it area_mean}$
${ m perimeter_se}$	${ m smoothness_mean}$
compactness se	$_{ m radius_mean}^{ m -}$
compactness se	$\frac{-}{ ext{texture}}$ mean
compactness se	perimeter mean
compactness se	${ m area_mean}$
compactness se	${ m smoothness_mean}$
fractal dimension se	$_{ m radius\ mean}^{-}$
fractal dimension se	$\overset{-}{ ext{texture_mean}}$
fractal dimension se	_ perimeter_mean
fractal dimension se	area mean
fractal dimension se	$\frac{-}{\mathrm{smoothness}}$ mean
radius worst	$_{ m radius}$ $_{ m mean}$
$_{ m radius_worst}^{-}$	$\stackrel{-}{ ext{texture_mean}}$
$_{ m radius_worst}^{-}$	$rac{-}{ ext{perimeter_mean}}$
$_{ m radius_worst}^{-}$	area mean
radius_worst	$\frac{-}{\mathrm{smoothness_mean}}$
$\frac{-}{ ext{texture}_ ext{worst}}$	$\stackrel{-}{\operatorname{radius}}$ se
texture worst	$\frac{-}{\mathrm{perimeter}}$ se
texture worst	$\frac{1}{\text{compactness}}$ se
$\frac{-}{ ext{texture}_ ext{worst}}$	fractal_dimension_se
perimeter worst	- radius se
perimeter worst	$\frac{-}{\mathrm{compactness}}$ se
perimeter_worst	fractal_dimension_se
area_worst	radius se
area worst	$\operatorname{compactness_se}$
area worst	perimeter se
area worst	fractal_dimension_se
${ m smoothness_worst}$	radius se
${ m smoothness worst}$	$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ \end{array}$
${ m smoothness \ worst}$	perimeter se
$_{ m smoothness}^{-}$ worst	fractal_dimension_se
$-$ compactness_worst	fractal dimension se
compactness worst	$\frac{-}{\mathrm{perimeter}}$ se
concavity worst	$\frac{1}{\text{perimeter se}}$
$concavity_worst$	$\frac{1}{\text{compactness}}$ se
concave points_worst	$\frac{1}{\text{perimeter se}}$
concave points_worst	${ m compactness_se}$
symmetry worst	perimeter se
symmetry_worst 14	$\begin{array}{ccc} & \text{compactness} & \text{se} \\ \end{array}$
symmetry_worst	fractal dimension se
fractal dimension worst	perimeter_se
fractal dimension worst	$\frac{1}{1}$ compactness se
	· · —

2.4 Matriz de Distâncias

Figura 32: Matriz de distâncias

A matriz de distâncias para o conjunto de registros original pode ser observada na figura 32a. Foi realizado o processo de retirada de outliers baseado na distância média $m_i = \frac{1}{N} \sum_{j=1}^{N} d_{ij}$. Foram removidos os $P_{out} = 10\%$ registros correspondentes aos maiores valores. A matriz de distâncias do conjunto de dados resultante pode ser vista na figura 32b.

Figura 33: Matriz de distâncias com z-score

Como o conjunto de dados contém variáveis em unidades e escalas diferentes, o que dificulta a avaliação da matriz de distâncias pois os outliers de algumas variáveis acabam dominando. Assim, foi feita uma padronização das variáveis por meio da estimativa z-score e a matriz de distâncias resultante pode ser vista na figura 33.

3 Formulação do Problema

Consiste em um problema de classificação. Deseja-se desenvolver um classificador capaz de predizer a classe do registro (maligno ou benigno).

Para solução deste problema serão aplicados os modelos de classificação a seguir e avaliados os resultados.

- 3.1 Classificador Bayesiano Simples
- 3.2 Classificador Bayesiano Quadrático
- 3.3 Mínimos Quadrados
- 3.4 Regressão Logística

4 Apresentação da Tecnologia

Para a implementação e execução dos algoritmos serão usadas as seguintes ferramentas, conforme se mostrarem mais adequadas para a tarefa em questão.

4.1 Python

A linguagem Python apresenta diversas bibliotecas úteis como:

- SciPy: Ecossistema de softwares para matemática, ciência e engenharia. Contém os pacotes:
 - -NumPy
 - matplotlib
 - pandas: Python Data Analysis Library
- scikit-learn: Machine Learning in Python

4.2 Matlab

Possui o seguinte Toolbox

• Statistics and Machine Learning Toolbox