Class 12: RNA-Seq Analysis

AUTHOR

Hyeseung (Frankie) Son PID: A16025601

Quarto

Here we will be using DESeq package for RNA seq analysis. The data for today's class comes from a study of airway smooth muscle cells in a published RNA-seq experiment where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects (Himes et al. 2014).

Import Data 🔗

We need two things for today's analysis:

- countData (counts for every transcript/gene in each experiment)
- colData (metadata that describes the environmental setup)

```
countData <- read.csv("airway_scaledcounts.csv", row.names = 1)
head(countData)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG00000000003	723	486	904	445	1170
ENSG00000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG00000000003	SRR1039517 1097	SRR1039520 806	SRR1039521 604		
ENSG000000000003 ENSG0000000000005					
	1097	806	604		
ENSG000000000005	1097	806 0	604		
ENSG00000000005 ENSG000000000419	1097 0 781	806 0 417	604 0 509		
ENSG00000000005 ENSG00000000419 ENSG000000000457	1097 0 781 447	806 0 417 330	604 0 509 324		

```
metadata <- read.csv("airway_metadata.csv")
head(metadata)</pre>
```

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
```

localhost:7934 1/12

```
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

Q1. How many genes are in this dataset?

```
nrow(countData)
```

[1] 38694

There are 38,694 genes in this data set.

Q2. How many 'control' cell lines do we have?

```
table (metadata$dex)
```

control treated

4 4

another way:

```
sum (metadata$dex == "control")
```

[1] 4

There are 4 control cell lines in this data set.

- Q3. How would you make the above code in either approach more robust?
- Step 1. Calculate the mean of control samples (i.e. columns in countData) Calculate the mean of treated samples.
- a. We need to find which columns in countData are "control" samples.
- look in the metadata (a.k.a. colData), \$dex column

```
control.inds <- metadata$dex == "control"</pre>
```

b. Extract all the control columns from countData and call it control.counts

```
control.counts <- countData[ , control.inds]</pre>
```

c. Calculate the mean value across the rows of control.counts i.e. calculate the mean count values for each gene in the control samples.

localhost:7934 2/12

```
control.means <- rowMeans(control.counts)
head(control.means)</pre>
```

```
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG000000000457 ENSG000000000460
900.75 0.00 520.50 339.75 97.25
ENSG00000000938
0.75
```

Q4. Follow the same procedure for the treated samples (i.e. calculate the mean per gene across drug treated samples and assign to a labeled vector called treated.mean)

• Step 2. Calculate the mean of the treated samples ...

```
# We need to find which columns in countData are "treated" samples.
treated.inds <- metadata$dex == "treated"

# Extract all the control columns from `countData` and call it `treated.counts`.
treated.counts <- countData[ , treated.inds]

# Calculate the mean value across the rows of `treated.counts`.
treated.means <- rowMeans(treated.counts)
head(treated.means)</pre>
```

```
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG000000000457 ENSG000000000460
658.00 0.00 546.00 316.50 78.75
ENSG00000000938 0.00
```

We now have control and treated mean count values. For ease of book-keeping I will combine these vectors into a new data.frame called mean counts

```
meancounts <- data.frame(control.means, treated.means)
head(meancounts)</pre>
```

	control.means	treated.means
ENSG00000000003	900.75	658.00
ENSG00000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Q5 (a). Create a scatter plot showing the mean of the treated samples against the mean of the control samples.

localhost:7934 3/12

plot(meancounts)

Q5 (b). You could also use the ggplot2 package to make this figure producing the plot below. What geom_?() function would you use for this plot?

If using ggplot2, we would use the `geom_point() layer.

```
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 4.2.3

```
ggplot(meancounts) +
aes(control.means, treated.means) +
geom_point()
```

localhost:7934 4/12

Q6. Try plotting both axes on a log scale. What is the argument to plot() that allows you to do this?

The plot argument log = xy allows us to plot both axes on a log 10 scale.

```
plot(meancounts, log = "xy")
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

localhost:7934 5/12


```
zero.vals <- which(meancounts[,1:2]==0, arr.ind=TRUE)

to.rm <- unique(zero.vals[,1])
mycounts <- meancounts[-to.rm,]
head(mycounts)</pre>
```

	control.means	treated.means
ENSG00000000003	900.75	658.00
ENSG00000000419	520.50	546.00
ENSG000000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000971	5219.00	6687.50
ENSG00000001036	2327.00	1785.75

Q7. What is the purpose of the arr.ind argument in the which() function call above? Why would we then take the first column of the output and need to call the unique() function?

The arr.ind=TRUE argument will lead which() to return both the row and column indices, where there are TRUE values. Here, this will tell us which rows and columns have zero counts, and ignore them. Calling unique() ensures we don't count any row twice if it has zero entries in both samples.

localhost:7934 6/12

Let's transform our data into something more useful. We use log transforms for skewed data such as this because we really care most about relative changes in magnitude.

We most often use log2 as our transform as the math is easier to interpret than log10 or others.

If we have no change - i.e. same values in control and treated, we will have a log2 value of 0.

```
log2(20/20)
```

[1] 0

If I have double the amount, I will have a log2 fold change of +1.

```
log2(20/10)
```

[1] 1

If I have half the amount, I will have a log2 fold change of -1.

```
log2(10/20)
```

[1] -1

```
meancounts$log2fc <- log2(meancounts$treated.means / meancounts$control.means)
head(meancounts)</pre>
```

log2fc	treated.means	control.means	
-0.45303916	658.00	900.75	ENSG00000000003
NaN	0.00	0.00	ENSG000000000005
0.06900279	546.00	520.50	ENSG00000000419
-0.10226805	316.50	339.75	ENSG00000000457
-0.30441833	78.75	97.25	ENSG00000000460
-Inf	0.00	0.75	ENSG00000000938

Q8. How many genes are upregulated at the common threshold of +2 logFC values?

```
sum (meancounts$log2fc >= 2, na.rm = TRUE)
```

[1] 1910

Q9. Can you determine how many down regulated genes we have at the greater than 2 fc level?

```
# for genes downregulated beyond the -2 threshold
sum (meancounts$log2fc < -2, na.rm = TRUE)</pre>
```

[1] 2212

localhost:7934 7/12

```
# for genes down regulated at & beyond the -2 threshold
sum (meancounts$log2fc <= -2, na.rm = TRUE)</pre>
```

[1] 2330

Hold on, what about the stats! Yes these are big changes but are they significant changes?

```
Q10. Do you trust these results? Why or why not?
```

We have yet to run a statistical analysis to determine if the differences between the treated and control groups are statistically significant. To do this properly, we will turn to the DESeq2 package.

DESeq2 Analysis

```
library(DESeq2)
Warning: package 'DESeq2' was built under R version 4.2.2
Warning: package 'S4Vectors' was built under R version 4.2.2
```

Warning: package 'GenomeInfoDb' was built under R version 4.2.2

Warning: package 'GenomicRanges' was built under R version 4.2.2

Warning: package 'matrixStats' was built under R version 4.2.3

To use our DESeq we need our input countData and colData in a specific format that DESeq wants:

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

To run the analysis, I can now use the main DESeq2 function called DESeq() with dds as input.

```
dds <- DESeq(dds)
estimating size factors
```

estimating dispersions

gene-wise dispersion estimates

localhost:7934 8/12

```
mean-dispersion relationship
```

final dispersion estimates

fitting model and testing

To get the results out of this dds object we can use the results() function from the package.

```
res <- results(dds)
head(res)</pre>
```

```
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns
                  baseMean log2FoldChange
                                              1fcSE
                                                                  pvalue
                                                          stat
                                <numeric> <numeric> <numeric> <numeric>
                 <numeric>
ENSG00000000003 747.194195
                               -0.3507030
                                           0.168246 -2.084470 0.0371175
ENSG00000000005
                  0.000000
                                       NA
                                                 NA
                                                            NA
                                                                      NA
ENSG00000000419 520.134160
                                0.2061078
                                           0.101059 2.039475 0.0414026
ENSG00000000457 322.664844
                                0.0245269
                                           0.145145 0.168982 0.8658106
ENSG00000000460 87.682625
                               -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938
                  0.319167
                               -1.7322890 3.493601 -0.495846 0.6200029
                     padj
                <numeric>
ENSG00000000003
                 0.163035
ENSG00000000005
                       NA
ENSG00000000419
                 0.176032
ENSG00000000457
                 0.961694
ENSG00000000460
                 0.815849
ENSG00000000938
                       NA
```

Let's make a final (for today) plot of log2 fold-change vs the adjusted p-value.

```
plot(res$log2FoldChange, res$padj)
```

localhost:7934 9/12

It is the low P-values that we care about and these are lost in the skewed plot above.

```
plot(res$log2FoldChange, -log(res$padj))
abline(v=c(+2, -2), col = "blue")
abline(h=-log(0.05), col = "blue")
```

localhost:7934

Finally we can make a color vector to use in the plot to better highlight the genes we care about.

```
mycols <- rep("gray", nrow(res))
mycols[abs(res$log2FoldChange) >= 2] <- "red"
mycols[res$padj > 0.05] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=c(+2, -2), col = "blue")
abline(h=-log(0.05), col = "blue")</pre>
```

localhost:7934 11/12

We're done for the day :).

localhost:7934