```
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.api as sm
import matplotlib.pyplot as plt

df = pd.read_excel('ground_vehicles.xlsx')

columns = ['ID', 'Fiscal Year', 'Title', 'Awarded Amount', 'Vendor Name', 'Vendor Top Name', 'PSC Name']
cut_df = df[columns]
cut_df
```

| <del>_</del> |       | ID        | Fiscal<br>Year | Title                                                | Awarded<br>Amount | Vendor Name                                | Vendor Top<br>Name                                | PSC Name                                            |
|--------------|-------|-----------|----------------|------------------------------------------------------|-------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
|              | 0     | 261901205 | 2016           | BEARING,PLAIN,SPHER                                  | NaN               | Longhorn<br>Regional Service<br>Center LLC | Longhorn Regional<br>Service Center<br>LLC        | (31) BEARINGS                                       |
|              | 1     | 261915422 | 2016           | PREVENTATIVE<br>MAINTENANCE SERVICES ON<br>NEPTUNE U | 25990.00          | Stryker<br>Corporation                     | Stryker<br>Corporation                            | (J065) MAINT/REPAIR/REBUILD<br>OF EQUIPMENT- MEDI   |
|              | 2     | 261916094 | 2016           | IGF::CT::IGF STRYKER<br>SERVICE PLAN FOR VA FORT<br> | 13053.38          | Stryker<br>Corporation                     | Stryker<br>Corporation                            | (J065) MAINT/REPAIR/REBUILD<br>OF EQUIPMENT- MEDI   |
|              | 3     | 261919276 | 2016           | IGF::OT::IGF MAINTENANCE OF PATIENT BEDS OPTIO       | 16356.00          | Imaging Diagnostics, Inc.                  | Imaging Diagnostics, Inc.                         | (J065) MAINT/REPAIR/REBUILD<br>OF EQUIPMENT- MEDI   |
|              | 4     | 261919325 | 2016           | IGF::OT::IGF MAINTENANCE OF<br>STRYKER NAV II SYSTEM | 68023.62          | Stryker<br>Corporation                     | Stryker<br>Corporation                            | (J065) MAINT/REPAIR/REBUILD<br>OF EQUIPMENT- MEDI   |
|              |       |           |                |                                                      |                   |                                            |                                                   |                                                     |
|              | 54374 | 676404110 | 2021           | PROGRAM MANAGEMENT<br>SUPPORT- ALL ACTIVITIES<br>REQ | 0.00              | Dyncorp<br>International LLC               | Amentum<br>Government<br>Services Holdings<br>LLC | (M1GZ) OPERATION OF<br>OTHER WAREHOUSE<br>BUILDINGS |
|              | 54375 | 676404111 | 2021           | WAR RESERVE MATERIEL -<br>FUNDING ONLY ACTION (FU    | 2563626.87        | Dyncorp<br>International LLC               | Amentum<br>Government<br>Services Holdings<br>LLC | (M1GZ) OPERATION OF<br>OTHER WAREHOUSE<br>BUILDINGS |
|              | 54376 | 676404112 | 2021           | WAR RESERVE MATERIEL -<br>FUNDING ONLY ACTION (FU    | 0.00              | Dyncorp<br>International LLC               | Amentum<br>Government<br>Services Holdings<br>LLC | (M1GZ) OPERATION OF<br>OTHER WAREHOUSE<br>BUILDINGS |
|              | 54377 | 676547655 | 2021           | PROVIDE RENTAL OR LEASE OF ENDOSCOPIC VIDEO TO       | 226322.40         | Stryker Sales,<br>LLC                      | Stryker<br>Corporation                            | NaN                                                 |
|              | 54378 | 676554198 | 2021           | EBB LSV 5 PASSENGER                                  | 26000.00          | Stryker<br>-                               | Stryker                                           | (6515) MEDICAL AND<br>SURGICAL INSTRUMENTS.         |

<sup>[</sup>None 'abrams tank' 'm1a1' 'abrams tank, bradley fighting vehicle' 'm1130' 'bradley fighting vehicle' 'abrams tank, m1a1'

'stryker armored personnel carrier']

```
import pandas as pd
# Ensure all titles are treated as strings before categorization
def categorize_vehicle(title):
    title = str(title).lower().strip() if pd.notnull(title) else 'other'
    # Consistent categorization to match vehicle references
    if 'abrams tank' in title or 'm1a1' in title:
        return 'Abrams Tank (M1A1)'
    elif 'bradley fighting vehicle' in title or 'm2a1' in title:
        return 'Bradley Fighting Vehicle (M2A1)'
    elif 'stryker armored personnel carrier' in title or 'm1130' in title:
        return 'Stryker Armored Personnel Carrier (M1130)'
    else:
        return 'Other'
# Remove duplicate entries based on 'ID'
df = df.drop_duplicates(subset='ID')
# Apply the function to create the new column
df['Vehicle Type'] = df['Title'].apply(categorize_vehicle)
# Filter dataset to include only the specified vehicle types and fiscal years 2016-2020
filtered_df = df[(df['Vehicle Type'].isin([
    'Abrams Tank (M1A1)',
    'Bradley Fighting Vehicle (M2A1)',
    'Stryker Armored Personnel Carrier (M1130)'
])) & (df['Fiscal Year'].between(2016, 2020))]
# Count the number of records for each vehicle type
abrams_m1a1_count = filtered_df[filtered_df['Vehicle Type'] == 'Abrams Tank (M1A1)'].shape[0]
bradley_count = filtered_df[filtered_df['Vehicle Type'] == 'Bradley Fighting Vehicle (M2A1)'].shape[0]
stryker_count = filtered_df[filtered_df['Vehicle Type'] == 'Stryker Armored Personnel Carrier (M1130)'].shape[0]
# Display the combined counts
print(f"Abrams Tank (M1A1) Combined Raw Count (2016-2020): {abrams_m1a1_count}")
print(f"Bradley Fighting Vehicle (M2A1) Raw Count (2016-2020): {bradley_count}")
print(f"Stryker Armored Personnel Carrier (M1130) Raw Count (2016-2020): {stryker_count}")
→ Abrams Tank (M1A1) Combined Raw Count (2016–2020): 314
    Bradley Fighting Vehicle (M2A1) Raw Count (2016-2020): 105
    Stryker Armored Personnel Carrier (M1130) Raw Count (2016-2020): 6
# Ensure all titles are treated as strings before categorization
def categorize_vehicle(title):
    title = str(title).lower().strip() if pd.notnull(title) else 'other'
    if 'abrams tank' in title or 'm1a1' in title:
        return 'Abrams Tank (M1A1)'
    elif 'bradley fighting vehicle' in title or 'm2a1' in title:
        return 'Bradley Fighting Vehicle (M2A1)'
    elif 'stryker armored personnel carrier' in title or 'm1130' in title:
        return 'Stryker Armored Personnel Carrier (M1130)'
    else:
        return 'Other'
# Remove duplicate entries based on 'ID'
df = df.drop_duplicates(subset='ID')
# Apply the function to create the new column
df['Vehicle Type'] = df['Title'].apply(categorize_vehicle)
# Filter dataset to include only the specified vehicle types and fiscal years 2016-2020
filtered_df = df[(df['Vehicle Type'].isin([
    'Abrams Tank (M1A1)',
    'Bradley Fighting Vehicle (M2A1)',
    'Stryker Armored Personnel Carrier (M1130)'
])) & (df['Fiscal Year'].between(2016, 2020))]
# Sum the awarded amounts for each vehicle type
sums_per_vehicle = filtered_df.groupby('Vehicle Type')['Awarded Amount'].sum().reset_index()
sums_per_vehicle['Awarded Amount'] = sums_per_vehicle['Awarded Amount'].apply(lambda x: f"${x:,.2f}")
# **Define yearly_sums_per_vehicle before printing**
```

```
yearly_sums_per_vehicle = filtered_df.groupby(['Fiscal Year', 'Vehicle Type'])['Awarded Amount'].sum().reset_index()
yearly_sums_per_vehicle['Awarded Amount'] = yearly_sums_per_vehicle['Awarded Amount'].apply(lambda x: f"${x:,.2f}")
# Total count and awarded amount per vehicle type
summary_per_vehicle = filtered_df.groupby('Vehicle Type').agg({
    'ID': 'count',
    'Awarded Amount': 'sum'
}).reset_index()
summary_per_vehicle.rename(columns={'ID': 'Total Count'}, inplace=True)
summary_per_vehicle['Awarded Amount'] = summary_per_vehicle['Awarded Amount'].apply(lambda x: f"${x:,.2f}")
# Display results
print("Yearly Spending Per Vehicle Type (2016-2020):")
print(yearly_sums_per_vehicle)
print("\nTotal Counts and Awarded Amounts per Vehicle Type (2016-2020):")
print(summary_per_vehicle)
Yearly Spending Per Vehicle Type (2016-2020):
        Fiscal Year
                                                   Vehicle Type
                                                                    Awarded Amount
    0
                                             Abrams Tank (M1A1)
                                                                   $151,788,506.55
               2016
                                                                    $40,331,662.50
    1
               2016
                                Bradley Fighting Vehicle (M2A1)
    2
               2016 Stryker Armored Personnel Carrier (M1130)
                                                                        $93,795.80
    3
               2017
                                             Abrams Tank (M1A1)
                                                                    $99,325,682.09
    4
               2017
                                Bradley Fighting Vehicle (M2A1)
                                                                     $3,681,281.56
                                                                 $1,526,727,171.02
               2018
                                             Abrams Tank (M1A1)
    5
                                Bradley Fighting Vehicle (M2A1)
    6
               2018
                                                                    $55,731,234.33
    7
               2018 Stryker Armored Personnel Carrier (M1130)
                                                                             $0.00
                                             Abrams Tank (M1A1)
                                                                   $187,504,854.77
    8
               2019
                                Bradley Fighting Vehicle (M2A1)
    9
               2019
                                                                   $146,409,963.70
    10
               2020
                                                                    $71,578,475.35
                                             Abrams Tank (M1A1)
                                Bradley Fighting Vehicle (M2A1)
               2020
                                                                   $192,740,929.58
    11
    12
               2020 Stryker Armored Personnel Carrier (M1130)
                                                                         $50,000.00
    Total Counts and Awarded Amounts per Vehicle Type (2016-2020):
                                     Vehicle Type Total Count
                                                                   Awarded Amount
                                                                $2,036,924,689.78
                               Abrams Tank (M1A1)
                                                           314
                  Bradley Fighting Vehicle (M2A1)
                                                           105
                                                                  $438,895,071.67
      Stryker Armored Personnel Carrier (M1130)
                                                             6
                                                                      $143,795.80
import pandas as pd
import matplotlib.pyplot as plt
# Ensure all titles are treated as strings before categorization
def categorize_vehicle(title):
    title = str(title).lower().strip() if pd.notnull(title) else 'other'
    # Consistent categorization to match vehicle references
    if 'abrams tank' in title or 'm1a1' in title:
        return 'Abrams Tank (M1A1)'
    elif 'bradley fighting vehicle' in title or 'm2a1' in title:
        return 'Bradley Fighting Vehicle (M2A1)'
    elif 'stryker armored personnel carrier' in title or 'm1130' in title:
        return 'Stryker Armored Personnel Carrier (M1130)'
    else:
        return 'Other'
# Remove duplicate entries based on 'ID'
df = df.drop_duplicates(subset='ID')
# Apply the function to create the new column
df['Vehicle Type'] = df['Title'].apply(categorize_vehicle)
# Filter dataset to include only the specified vehicle types and fiscal years 2016-2020
filtered_df = df[(df['Vehicle Type'].isin([
    'Abrams Tank (M1A1)',
    'Bradley Fighting Vehicle (M2A1)',
    'Stryker Armored Personnel Carrier (M1130)'
])) & (df['Fiscal Year'].between(2016, 2020))]
# Group data by fiscal year and vehicle type, summing the awarded amounts
yearly_sums_per_vehicle = filtered_df.groupby(['Fiscal Year', 'Vehicle Type'])['Awarded Amount'].sum().reset_index()
# Total count and total awarded amount per vehicle type
summary_per_vehicle = filtered_df.groupby('Vehicle Type').agg(
    Total_Count=('Vehicle Type', 'count'),
    Awarded_Amount=('Awarded Amount', 'sum')
```

```
).reset_index()

# Plotting the yearly spending per vehicle type
plt.figure(figsize=(12, 6))
for vehicle in yearly_sums_per_vehicle['Vehicle Type'].unique():
    data = yearly_sums_per_vehicle[yearly_sums_per_vehicle['Vehicle Type'] == vehicle]
    plt.plot(data['Fiscal Year'], data['Awarded Amount'], marker='o', label=vehicle)

plt.title('Yearly Spending Per Vehicle Type (2016-2020)')
plt.xlabel('Fiscal Year')
plt.ylabel('Awarded Amount (USD)')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Create a pie chart to show total spending distribution from 2016-2020

# Extracting total awarded amounts per vehicle type
total_spending = filtered_df.groupby('Vehicle Type')['Awarded Amount'].sum()

# Plotting the pie chart
plt.figure(figsize=(8, 8))
plt.pie(total_spending, labels=total_spending.index, autopct='%1.1f%*', startangle=140, explode=(0.1, 0, 0))
plt.title('Total Spending Distribution on Abrams, Bradley, and Stryker (2016-2020)')
plt.show()
```



## Total Spending Distribution on Abrams, Bradley, and Stryker (2016-2020)

