

IPC-2152

Standard for Determining Current Carrying Capacity in Printed Board Design

Developed by the Current Carrying Capacity Task Group (1-10b) of the Printed Board Design Committee (1-10) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 309S Bannockburn, Illinois 60015-1249 Tel 847 615.7100 Fax 847 615.7105

Table of Contents

1 S	COPE 1	A.3.3	Parallel Conductors	20
1.1	Purpose	A.3.4	Vias	26
1.2	Presentation	A.3.4.1	Conductor to Via to Plane	26
1.3	Interpretation	A.3.4.2	Microvia	26
1.4	Definition of Terms	1	UDDI FAIFNITAL MATERIAL	27
1.4.1	Ambient	L	UPPLEMENTAL MATERIAL	
1.4.2	Base Material		Flex Circuits	
1.4.3	Circuitry Layer		PB Thickness	
1.4.4	Conductive Pattern		Copper Weight	
1.4.5	Conductor Spacing		Board Material	29
1.4.6	Conductor Thickness	11.1.0	Environments	29
1.4.7	Conductor Width	A.4.0	Copper Planes	29
1.4.8	Convection	A.4.0.1	Single Plane	29
1.4.9	Copper Weight	A.4.6.2	Conductor Distance from Plane	30
1.4.10	Current-Carrying Capacity		DDITIONAL TODICO	2.1
1.4.11	Heat Sink Plane		DDITIONAL TOPICS	
1.4.12	Thermal Projectivity		Heat Transfer from a Conductor	
1.4.13	Thermal Resistance		Conductor Power Dissipation	
2 AI	PPLICABLE DOCUMENTS	A.5.2.1	Conductor Electrical Resistance	31
2.1	IPC		Odd Shaped Geometries and Swiss- Cheese Effect	32
3 C	ONDUCTOR SIZING INTRODUCTION	A.5.3.1	Voltage Drop Analysis	32
4 C	ONDUCTOR SIZING DESIGN GUIDELINES		Voltage Sources	
5 C	ONDUCTOR SIZING CHARTS		Current Source (or Sink)	
5.1	Conductor Sizing Charts for Still Air Environments	ń	Electrical Conductivity	
5.1.1	Still Air Environment Charts in Imperial (Inch) Units	A.5.4 A.5.5	HDI	
5.1.2	Still Air Environment Charts in SI (Metric) Units	A.6 C	ONDUCTOR SIZING CHARTS	33
5.2	Conductor Sizing Charts for Vacuum/Space Environments	A.6.1	Conductor Sizing Charts for Still Air Environments	33
5.2.1	Vacuum/Space Environment Charts in Imperial (Inch) Units		Still Air Environment Charts in Imperial (Inch) Units	34
5.2.2	Vacuum/Space Environment Charts in SI (Metric) Units	A.6.1.2	Still Air Environment Charts in SI (Metric) Units	50
APPENDIX A		A.6.2	Conductor Sizing Charts for Vacuum/Space Environments	68
A.1 I	NTRODUCTION 18	A.6.2.1	Vacuum/Space Environment Charts in Imperial (Inch) Units	68
A.2 [DERATING 18	A.6.2.2	Vacuum/Space Environment Charts in SI	
A.3 S	SELECTING A CHART 18		(Metric) Units	76
A.3.1	Conductor Temperature Rise) A.7 R	EFERENCES	85
A.3.2	How to Use the Charts		The Origin of the First Conductor	00
A.3.2.	1 Chart Basics: Known Current 20		Sizing Chart	85

IPC-2152 August 2009

	Figures		Figure A-10	Two 2.03 mm [0.080 in] Conductors	
Figure 5-1	Internal and External Conductors (All Environments)	5		(25.4 mm [1.0 in] spacing) No amperage adjustment	
Figure 5-2	Internal and External Conductors (Still Air)		Figure A-11	Via Cross-sectional Area	
r igaio o L	(5-700 Sq-mils)	6	Figure A-12	Via Temperature Gradient	. 27
Figure 5-3	Internal and External Conductors (Still Air)		Figure A-13	Distance from Conductor to Copper Plane	. 30
	(5-700 Sq-mils)	7	Figure A-14	Single Conductor in a PB	. 31
Figure 5-4	Internal and External Conductors (Still Air) (5-100 Sq-mils)	7	Figure A-15	3 oz. External Conductors (Still Air) Log (5 - 700 Sq-mils)	. 34
Figure 5-5	Internal and External Conductors (Still Air) (5 - 50 Sq-mils)		Figure A-16	3 oz. External Conductors (Still Air) (5 - 700 Sq-mils)	. 35
Figure 5-6	Internal and External Conductors (Still Air)		Figure A-17	3 oz. External Conductors (Still Air) (5 - 100 Sq-mils)	. 35
Figure 5-7	(0.001 - 0.5 Sq-mm)		Figure A-18	3 oz. External Conductors (Still Air) (5 - 50 Sq-mils)	36
Figure 5-8	(0.001 - 0.5 Sq-mm)		Figure A-19	3 oz. Internal Conductors (Still Air) Log (5 - 700 Sq-mils)	37
Figure 5-9	(0.001 - 0.1 Sq-mm)		Figure A-20	3 oz. Internal Conductors (Still Air) (5 - 700 Sq-mils)	38
Figure 5-10	(0.001 - 0.03 Sq-mm) Internal and External Conductors (Vacuum)		Figure A-21	3 oz. Internal Conductors (Still Air) (5 - 100 Sq-mils)	38
Figure 5-11	(5 - 700 Sq-mils) Internal and External Conductors (Vacuum)		Figure A-22	3 oz. Internal Conductors (Still Air) (5 - 50 Sq-mils)	39
Figure 5-12	(5 - 700 Sq-mils) Internal and External Conductors (Vacuum)	13	Figure A-23	2 oz. External Conductors (Still Air) Log (5 - 700 Sq-mils)	40
Figure 5-13	(5 - 100 Sq-mils) Internal and External Conductors (Vacuum)	13	Figure A-24	2 oz. External Conductors (Still Air) (5 - 700 Sq-mils)	41
Figure 5-14	(5 - 50 Sq-mils) Internal and External Conductors (Vacuum)	14	Figure A-25	2 oz. External Conductors (Still Air) (5 - 100 Sq-mils)	41
Figure 5-15	(0.001 - 0.5 Sq-mm)	15	Figure A-26	2 oz. External Conductors (Still Air) (5 - 50 Sq-mils)	. 42
Figure 5-16	(0.001 - 0.5 Sq-mm)	16	Figure A-27	2 oz. Internal Conductors (Still Air) Log (5 - 700 Sq-mils)	. 43
Figure 5-17	(0.001 - 0.1 Sq-mm)	16	Figure A-28	2 oz. Internal Conductors (Still Air) (5 - 700 Sq-mils)	. 44
Figure A-1	(0.001 - 0.03 Sq-mm) External and Internal Conductors	17	Figure A-29	2 oz. Internal Conductors (Still Air) (5 - 100 Sq-mils)	. 44
	(This figure is a duplicate of Figure 5-1 in IPC-2152)	19	Figure A-30	2 oz. Internal Conductors (Still Air) (5 - 50 Sq-mils)	. 45
Figure A-2	External and Internal Conductor Sizing Chart	21	Figure A-31	1 oz. Internal Conductors (Still Air) Log (5 - 700 Sq-mils)	. 46
Figure A-3	Parallel Conductors	22	Figure A-32	1 oz. Internal Conductors (Still Air) (5 - 700 Sq-mils)	46
Figure A-4	[0.010 in] wide (1-oz.) Conductor at 10 °C Temperature Gradient		Figure A-33	1 oz. Internal Conductors (Still Air) (5 - 100 Sq-mils)	47
Figure A-5	4.06 mm [0.160 in] Single Conductor	23	Figure A-34	1 oz. Internal Conductors (Still Air)	
Figure A-6	Two 2.03 mm [0.080 in] conductors (2.54 mm [0.100 in] spacing) amperage adjusted for parallel conductor	24	Figure A-35	(5 - 50 Sq-mils)	. 47
Figure A-7	Two 2.03 mm [0.080 in] Conductors	24	J	Log (5 - 700 Sq-mils)	. 48
riguic A 7	(2.54 mm [0.100 in] spacing) No amperage adjustment	24	Figure A-36	1/2 oz. Internal Conductors (Still Air) (5 - 700 Sq-mils)	. 48
Figure A-8	Two 2.03 mm [0.080 in] Conductors (12.7 mm [0.50 in] spacing) Amperage		Figure A-37	1/2 oz. Internal Conductors (Still Air) (5 - 100 Sq-mils)	. 49
Figure A-9	adjusted for Parallel Conductor	25	Figure A-38	1/2 oz. Internal Conductors (Still Air) (5 - 50 Sq-mils)	. 49
<u> </u>	(25.4 mm [1.0 in] spacing) Amperage adjusted for Parallel Conductor	25	Figure A-39	3 oz. External Conductors (Still Air) Log (0.001 - 0.5 Sq-mm)	. 50

Figure A-40	3 oz. External Conductors (Still Air) (0 - 0.5 Sq-mm)	. 51	Figure A-68	2 oz. Conductors (Vacuum) (5 - 700 Sq-mils)	72
Figure A-41	3 oz. External Conductors (Still Air) (0 - 0.1 Sq-mm)	. 51	Figure A-69	2 oz. Conductors (Vacuum) (5 - 100 Sq-mils)	72
Figure A-42	3 oz. External Conductors (Still Air) (0 - 0.03 Sq-mm)	. 52	Figure A-70	2 oz. Conductors (Vacuum) (5 - 50 Sq-mils)	73
Figure A-43	3 oz. Internal Conductors (Still Air) Log (0 - 700 Sq-mm)	. 53	Figure A-71	1/2 oz. Conductors (Vacuum) Log (5 - 700 Sq-mils)	74
Figure A-44	3 oz. Internal Conductors (Still Air) (0 - 0.5 Sq-mm)	. 54	Figure A-72	1/2 oz. Conductors (Vacuum) (5 - 700 Sq-mils)	74
Figure A-45	3 oz. Internal Conductors (Still Air) (0 - 0.1 Sq-mm)	. 54	Figure A-73	1/2 oz. Conductors (Vacuum) (5 - 100 Sq-mils)	75
Figure A-46	3 oz. Internal Conductors (Still Air) (0 - 0.03 Sq-mm)	. 55	Figure A-74	1/2 oz. Conductors (5 - 50 Sq-mils)	75
Figure A-47	2 oz. External Conductors (Still Air) Log (0.001 - 0.5 Sq-mm)	. 56	Figure A-75	3 oz. Conductors (Vacuum) Log (0.001 - 0.5 Sq-mm)	76
Figure A-48	2 oz. External Conductors (Still Air) (0.001 - 0.5 Sq-mm)	. 57	Figure A-76	3 oz. Conductors (Vacuum) (0 - 0.5 Sq-mm)7	77
Figure A-49	2 oz. External Conductors (Still Air) (0 - 0.1 Sq-mm)	. 57	Figure A-77	3 oz. Conductors (Vacuum) (0 - 0.1 Sq-mm)	77
Figure A-50	2 oz. External Conductors (Still Air) (0 - 0.03 Sq-mm)	. 58	Figure A-78	3 oz. Conductors (Vacuum) (0 - 0.03 Sq-mm)	78
Figure A-51	2 oz. Internal Conductors (Still Air) Log (0 - 0.5 Sq-mm)	. 59	Figure A-79	2 oz. Conductors (Vacuum) Log (0 - 0.5 Sq-mm)7	79
Figure A-52	2 oz. Internal Conductors (Still Air) (0 - 0.5 Sq-mm)	. 60	Figure A-80	2 oz. Conductors (Vacuum) (0 - 0.5 Sq-mm)	30
Figure A-53	2 oz. Internal Conductors (Still Air) (0 - 0.1 Sq-mm)	. 60	Figure A-81	2 oz. Conductors (Vacuum) (0 - 0.1 Sq-mm)	30
Figure A-54	2 oz. Internal Conductors (Still Air) (0 - 0.03 Sq-mm)	. 61	Figure A-82	2 oz. Conductors (Vacuum) (0 - 0.03 Sq-mm)	31
Figure A-55	1 oz. Internal Conductors (Still Air) Log (0 - 0.1 Sq-mm)	. 62	Figure A-83	1/2 oz. Conductors (Vacuum) Log (0 - 0.5 Sq-mm)8	32
Figure A-56	1 oz. Internal Conductors (Still Air) (0 - 0.5 Sq-mm)	. 62	Figure A-84	1/2 oz. Conductors (Vacuum) (0 - 0.5 Sq-mm)	32
Figure A-57	1 oz. Internal Conductors (Still Air) (0 - 0.1 Sq-mm)	. 63	Figure A-85	1/2 oz. Conductors (Vacuum) (0 - 0.1 Sq-mm)	33
Figure A-58	1 oz. Internal Conductors (Still Air) (0 - 0.03 Sq-mm)	. 64	Figure A-86	1/2 oz. Conductors (Vacuum) (0 - 0.03 Sq-mm)	33
Figure A-59	1/2 oz. Internal Conductors (Still Air) Log (0 - 0.5 Sq-mm)	. 65	Figure A-87	Log width chart	
Figure A-60	1/2 oz. Internal Conductors (Still Air)		Figure A-88 Figure A-89	• ,	
Figure A C1	(0 - 0.5 Sq-mm)	. 65	Figure A-90	· ·	
Figure A-61	1/2 oz. Internal Conductors (Still Air) (0 - 0.1 Sq-mm)	. 66	Figure A-91	Historical IPC Charts 8	38
Figure A-62	1/2 oz. Internal Conductors (Still Air) (0 - 0.03 Sq-mm)	. 67	Tables		
Figure A-63	3 oz. Conductors (Vacuum) Log (5 - 700 Sq-mils)	. 68	Table A-1	Minimum Internal Copper Foil Thickness (For Reference Only)	28
Figure A-64	3 oz. Conductors (Vacuum) (0 - 700 Sq-mils)	. 69	Table A-2	Minimum External Conductor Thickness (For Reference Only)	28
Figure A-65	3 oz. Conductors (Vacuum) (0 - 100 Sq-mils)		Table A-3	Material Thermal Conductivity	
Figure A-66	3 oz. Conductors (Vacuum)		Table A-4 Table A-5	Skin Depth Parameters	
Figuro A 67	(5 - 50 Sq-mils)	. 10	Table A-6	NBS Data Reference Table (Cont'd)	
Figure A-67	(5 - 700 Sq-mils)	. 71	Table A-7	NBS Data Reference Table (Cont'd)	

August 2009 IPC-2152

Standard for Determining Current Carrying Capacity in Printed Board Design

1 SCOPE

This document is intended as a general guide to understanding the relationship between current, conductor size, and temperature, and can be used more specifically in the design and evaluation of copper conductors in printed boards (PBs).

- **1.1 Purpose** The purpose of this document is to provide guidance on determining the appropriate conductor sizes on the finished PB as a function of the current carrying capacity required and the acceptable conductor temperature rise.
- **1.2 Presentation** All dimensions and tolerances in this standard are expressed in hard SI (metric) units and parenthetical soft imperial (inch) units. Users of this standard are expected to use metric dimensions.
- **1.3 Interpretation** "Shall," the imperative form of the verb, is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a "shall" requirement may be considered if sufficient data is supplied to justify the exception.

The words "should" and "may" are used whenever it is necessary to express non-mandatory provisions.

"Will" is used to express a declaration of purpose.

To assist the reader, the word "shall" is presented in bold characters.

- **1.4 Definition of Terms** The definition of all terms used herein **shall** be in accordance with IPC-T-50 and as defined in 1.4.1 through 1.4.13.
- **1.4.1 Ambient** The surrounding environment coming into contact with the system or component in question.
- **1.4.2 Base Material** The insulating material upon which a conductive pattern may be formed (The base material may be rigid or flexible or both. It may be a dielectric or insulated metal sheet).
- **1.4.3 Circuitry Layer** A layer of PB containing conductors, including ground and voltage planes.
- **1.4.4 Conductive Pattern** The configuration or design of the conductive material on a base material. (This includes conductors, lands, vias, planes, and passive components when these are an integral part of the PB manufacturing process.)
- **1.4.5 Conductor Spacing** The observable distance between adjacent edges (not center-to-center spacing) of isolated conductive patterns in a conductor layer.
- **1.4.6 Conductor Thickness** Thickness of a conductor including additional metallic coatings but excluding non-conductive coatings.
- **1.4.7 Conductor Width** The observable width of a conductor at any point chosen at random on a PB as viewed from directly above unless otherwise specified.
- **1.4.8 Convection** Heat transfer that occurs at the interface of a solid and a fluid or gas that is due to their differences in temperature.
- **1.4.9 Copper Weight** The mass of copper per unit area for a foil, typically expressed in ounces per square foot or grams per square centimeter (these units are not equivalent).
- **1.4.10 Current-Carrying Capacity** The maximum electrical current that can be carried continuously by a conductor, without causing an objectionable degradation of electrical or mechanical properties of the product.