Chapter 6

Pushdown Automata

Figure 6.1: A pushdown automaton is essentially a finite automaton with a stack data structure

- PDA is an extension of nondeterministic finite automaton with a stack (of infinite size).
- DPDA -- deterministic version of PDA is not enough to recognize CFLs.

6.1.2 The Formal Definition of Pushdown Automata

Our formal notation for a pushdown automaton (PDA) involves seven components. We write the specification of a PDA P as follows:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

The components have the following meanings:

Q: A finite set of *states*, like the states of a finite automaton.

 Σ : A finite set of *input symbols*, also analogous to the corresponding component of a finite automaton.

 Γ : A finite *stack alphabet*. This component, which has no finite-automaton analog, is the set of symbols that we are allowed to push onto the stack.

 δ : The transition function.

 q_0 : The start state. The PDA is in this state before making any transitions.

 Z_0 : The *start symbol*. Initially, the PDA's stack consists of one instance of this symbol, and nothing else.

F: The set of accepting states, or final states.

- δ: The transition function. As for a finite automaton, δ governs the behavior of the automaton. Formally, δ takes as argument a triple δ(q, a, X), where:
 - 1. q is a state in Q.
 - 2. a is either an input symbol in Σ or $a = \epsilon$, the empty string, which is assumed not to be an input symbol.
 - 3. X is a stack symbol, that is, a member of Γ .

The output of δ is a finite set of pairs (p, γ) , where p is the new state, and γ is the string of stack symbols that replaces X at the top of the stack. For instance, if $\gamma = \epsilon$, then the stack is popped, if $\gamma = X$, then the stack is unchanged, and if $\gamma = YZ$, then X is replaced by Z, and Y is pushed onto the stack.

- $\delta(q, a, X) = \{(p_1, \gamma_1), (p_2, \gamma_2), ...\}$ where $\gamma_i \in \Gamma^*$.
 - Note, it is possible that $\gamma_i = \epsilon$.
 - $-p_i \in Q$.
- $a \in \Sigma \cup \{\epsilon\}$.
- $X \in \Gamma$
 - X can never be ϵ . PDA must read a symbol from stack.

$$(p, \overline{\gamma})$$

If $\gamma = YZ$, then Y will be on the top of the stack.

If $\gamma = \epsilon$, then do not push anything on to the stack.

L_{wwr}

Figure 6.2: Representing a PDA as a generalized transition diagram

$$P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$$

Figure 6.2: Representing a PDA as a generalized transition diagram

- 1. $\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$ and $\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$. One of these rules applies initially, when we are in state q_0 and we see the start symbol Z_0 at the top of the stack. We read the first input, and push it onto the stack, leaving Z_0 below to mark the bottom.
- 2. $\delta(q_0, 0, 0) = \{(q_0, 00)\}, \delta(q_0, 0, 1) = \{(q_0, 01)\}, \delta(q_0, 1, 0) = \{(q_0, 10)\},$ and $\delta(q_0, 1, 1) = \{(q_0, 11)\}.$ These four, similar rules allow us to stay in state q_0 and read inputs, pushing each onto the top of the stack and leaving the previous top stack symbol alone.
- 3. $\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}, \ \delta(q_0, \epsilon, 0) = \{(q_1, 0)\}, \ \text{and} \ \delta(q_0, \epsilon, 1) = \{(q_1, 1)\}.$ These three rules allow P to go from state q_0 to state q_1 spontaneously (on ϵ input), leaving intact whatever symbol is at the top of the stack.
- 4. $\delta(q_1,0,0) = \{(q_1,\epsilon)\}$, and $\delta(q_1,1,1) = \{(q_1,\epsilon)\}$. Now, in state q_1 we can match input symbols against the top symbols on the stack, and pop when the symbols match.
- 5. $\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$. Finally, if we expose the bottom-of-stack marker Z_0 and we are in state q_1 , then we have found an input of the form ww^R . We go to state q_2 and accept.

6.1.4 Instantaneous Descriptions of a PDA

we shall represent the configuration of a PDA by a triple (q, w, γ) , where

- 1. q is the state,
- 2. w is the remaining input, and
- 3. γ is the stack contents.

One step, and several steps

Suppose $\delta(q, a, X)$ contains (p, α) .

Then for all strings w in Σ^* and β in Γ^* : $(q, aw, X\beta) \vdash (p, w, \alpha\beta)$

 $\stackrel{*}{\vdash}$ is reflexive and transitive closure of \vdash

6.2.1 Acceptance by Final State

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then L(P), the language accepted by P by final state, is

$$\{w \mid (q_0, w, Z_0) \stackrel{*}{\underset{P}{\vdash}} (q, \epsilon, \alpha)\}$$

for some state q in F and any stack string α .

6.2.1 Acceptance by Final State

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then L(P), the language accepted by P by final state, is

$$\{w \mid (q_0, w, Z_0) \stackrel{*}{\underset{P}{\vdash}} (q, \epsilon, \alpha)\}$$

for some state q in F and any stack string α .

That is, starting in the initial

ID with w waiting on the input, P consumes w from the input and enters an accepting state. The contents of the stack at that time is irrelevant.

6.2.1 Acceptance by Final State

Do we have some other acceptance criterion?!

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then L(P), the language accepted by P by final state, is

$$\{w \mid (q_0, w, Z_0) \stackrel{*}{\underset{P}{\vdash}} (q, \epsilon, \alpha)\}$$

for some state q in F and any stack string α .

That is, starting in the initial

ID with w waiting on the input, P consumes w from the input and enters an accepting state. The contents of the stack at that time is irrelevant.

Figure 6.3: ID's of the PDA of Example 6.2 on input 1111

Representing a PDA as a generalized transition diagram

$$(q_0, 1111, Z_0) \vdash (q_0, 111, 1Z_0) \vdash (q_0, 11, 11Z_0) \vdash (q_1, 11, 11Z_0) \vdash (q_1, 1, 1Z_0) \vdash (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0).$$

$$(q_0, 1111, Z_0) \vdash (q_0, 111, 1Z_0) \vdash (q_0, 11, 11Z_0) \vdash (q_1, 11, 11Z_0) \vdash (q_1, 1, 1Z_0) \vdash (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0).$$

This is same as

$$(q_0, 1111, Z_0) \stackrel{*}{\vdash} (q_2, \epsilon, Z_0).$$

• So, 1111 is in the language.

6.2.1 Acceptance by Final State

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then L(P), the language accepted by P by final state, is

$$\{w \mid (q_0, w, Z_0) \stackrel{*}{\vdash}_{P} (q, \epsilon, \alpha)\}$$

for some state q in F and any stack string α .

6.2.2 Acceptance by Empty Stack

For each PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, we also define

$$N(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \epsilon) \}$$

for any state q. That is, N(P) is the set of inputs w that P can consume and at the same time empty its stack.²

L(P) Vs. N(P)

 For the same PDA P there are now two languages !!

$$\begin{array}{c} 0\,,\,Z_{\,0}\,/0\,Z_{\,0} \\ 1\,,\,Z_{\,0}\,/1\,Z_{\,0} \\ 0\,,\,0\,/0\,0 \\ 0\,,\,1\,/0\,1 \\ 1\,,\,0\,/1\,0 \\ 1\,,\,1\,/1\,1 \\ \end{array} \begin{array}{c} 0\,,\,0\,/\,\,\epsilon \\ 1\,,\,1\,/1\,1 \\ \end{array}$$

Figure 6.2: Representing a PDA as a generalized transition diagram

•
$$L(P) = \{ww^R | w \in (0+1)^*\} = L_{wwr}$$

•
$$N(P) = ?$$

$$\begin{array}{c} 0 \; , \; Z_0 \; / 0 \; Z_0 \\ 1 \; , \; Z_0 \; / 1 \; Z_0 \\ 0 \; , \; 0 \; / 0 \; 0 \\ 0 \; , \; 1 \; / 0 \; 1 \\ 1 \; , \; 0 \; / 1 \; 0 \\ 1 \; , \; 1 \; / 1 \; 1 \\ \end{array}$$

$$\begin{array}{c} 0 \; , \; 0 \; / \; 0 \\ 1 \; , \; 1 \; / \; 1 \\ \end{array}$$

$$\begin{array}{c} \varepsilon \; , \; Z_0 \; / Z_0 \\ \varepsilon \; , \; 0 \; / \; 0 \\ \varepsilon \; , \; 1 \; / \; 1 \end{array}$$

Figure 6.2: Representing a PDA as a generalized transition diagram

•
$$L(P) = \{ww^R | w \in (0+1)^*\} = L_{wwr}$$

- $N(P) = \phi$
 - Stack never becomes empty
 - But, a small change can make N(P) = L(P).
 - What is that?

Figure 6.2: Representing a PDA as a generalized transition diagram $\,$

Acceptance by empty stack

Since the set of accepting states is irrelevant, we shall sometimes leave off the last (seventh) component from the specification of a PDA P.

Acceptance by empty stack

Since the set of accepting states is irrelevant, we shall sometimes leave off the last (seventh) component from the specification of a PDA P.

Thus, P can be written as a six-tuple $(Q, \Sigma, \Gamma, \delta, q_0, Z_0)$.

Do we have two types of PDAs?

One with final states, other with empty stack
 ...

Do we have two types of PDAs?

One with final states, other with empty stack
 ...

• NO.

Do we have two types of PDAs?

- One with final states, other with empty stack
 ...
- NO.
- But, for any PDA there are two languages (both are CFLs) associated with that PDA.
 - These two (languages) may or may not be same.

Crucial thing is...

- Set of languages accepted by final state is equal to the set of languages accepted by empty stack.
 - Proof of this one is by construction.
- So, power of PDA is same whether recognition happens either by final state or by empty stack.

6.2.3 From Empty Stack to Final State

Theorem 6.9: If $L = N(P_N)$ for some PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, then there is a PDA P_F such that $L = L(P_F)$.

6.2.3 From Empty Stack to Final State

Theorem 6.9: If $L = N(P_N)$ for some PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, then there is a PDA P_F such that $L = L(P_F)$.

PROOF: The idea behind the proof is in Fig. 6.4. We use a new symbol X_0 , which must not be a symbol of Γ ; X_0 is both the start symbol of P_F and a marker on the bottom of the stack that lets us know when P_N has reached an empty stack.

6.2.3 From Empty Stack to Final State

Theorem 6.9: If $L = N(P_N)$ for some PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, then there is a PDA P_F such that $L = L(P_F)$.

PROOF: The idea behind the proof is in Fig. 6.4. We use a new symbol X_0 , which must not be a symbol of Γ ; X_0 is both the start symbol of P_F and a marker on the bottom of the stack that lets us know when P_N has reached an empty stack.

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

- 1. $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$. In its start state, P_F makes a spontaneous transition to the start state of P_N , pushing its start symbol Z_0 onto the stack.
- 2. For all states q in Q, inputs a in Σ or $a = \epsilon$, and stack symbols Y in Γ , $\delta_F(q, a, Y)$ contains all the pairs in $\delta_N(q, a, Y)$.
- 3. In addition to rule (2), $\delta_F(q, \epsilon, X_0)$ contains (p_f, ϵ) for every state q in Q.

Theorem 6.11: Let L be $L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then there is a PDA P_N such that $L = N(P_N)$.

Theorem 6.11: Let L be $L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then there is a PDA P_N such that $L = N(P_N)$.

Figure 6.7: P_N simulates P_F and empties its stack when and only when P_N enters an accepting state

Theorem 6.11: Let L be $L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then there is a PDA P_N such that $L = N(P_N)$.

Figure 6.7: P_N simulates P_F and empties its stack when and only when P_N enters an accepting state

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

Theorem 6.11: Let L be $L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then there is a PDA P_N such that $L = N(P_N)$.

Figure 6.7: P_N simulates P_F and empties its stack when and only when P_N enters an accepting state

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

To avoid simulating a situation where P_F accidentally empties its stack without accepting, P_N must also use a marker X_0 on the bottom of its stack.

Figure 6.7: P_N simulates P_F and empties its stack when and only when P_N enters an accepting state

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

- 1. $\delta_N(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$. We start by pushing the start symbol of P_F onto the stack and going to the start state of P_F .
- 2. For all states q in Q, input symbols a in Σ or $a = \epsilon$, and Y in Γ , $\delta_N(q, a, Y)$ contains every pair that is in $\delta_F(q, a, Y)$. That is, P_N simulates P_F .
- 3. For all accepting states q in F and stack symbols Y in Γ or $Y = X_0$, $\delta_N(q, \epsilon, Y)$ contains (p, ϵ) . By this rule, whenever P_F accepts, P_N can start emptying its stack without consuming any more input.
- 4. For all stack symbols Y in Γ or $Y = X_0$, $\delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$. Once in state p, which only occurs when P_F has accepted, P_N pops every symbol on its stack, until the stack is empty. No further input is consumed.

One point ..

• In P_F if stack becomes empty (in between) then P_F gets stuck. (That PDA gets killed).

One point ..

- In P_F if stack becomes empty (in between) then P_F gets stuck. (That PDA gets killed).
- Now, in this situation P_N has X_0 in the stack, so will this be a problem?

One point ..

- In P_F if stack becomes empty (in between) then P_F gets stuck. (That PDA gets killed).
- Now, in this situation P_N has X_0 in the stack, so will this be a problem?
- If the state is a final state no problem.
- Otherwise, if the state is a non-final one, do we need to do something?

One point ..

- In P_F if stack becomes empty (in between) then P_F gets stuck. (That PDA gets killed).
- Now, in this situation P_N has X_0 in the stack, so will this be a problem?
- If the state is a final state no problem.
- Otherwise, if the state is a non-final one, do we need to do something? NO.
- Since there is no transition (on X_0 being stack top) that PDA gets killed.

Next ...

Equivalence of PDA's and CFG's

Next ...

Equivalence of PDA's and CFG's

Figure 6.8: Organization of constructions showing equivalence of three ways of defining the CFL's

CFG to PDA

Let G = (V, T, Q, S) be a CFG.

CFG to PDA

Let G = (V, T, Q, S) be a CFG.

Construct the PDA P that accepts L(G) by empty stack as follows:

$$P = (\{q\}, T, V \cup T, \delta, q, S)$$

CFG to PDA

Let G = (V, T, Q, S) be a CFG.

Construct the PDA P that accepts L(G) by empty stack as follows:

$$P = (\{q\}, T, V \cup T, \delta, q, S)$$

where transition function δ is defined by:

1. For each variable A,

$$\delta(q, \epsilon, A) = \{(q, \beta) \mid A \to \beta \text{ is a production of } G\}$$

2. For each terminal a, $\delta(q, a, a) = \{(q, \epsilon)\}.$

Example 6.12: Let us convert the expression grammar of Fig. 5.2 to a PDA. Recall this grammar is:

$$E \rightarrow I \mid E * E \mid E + E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Can you identify (V,T,Q,S) of this CFG?

Example 6.12: Let us convert the expression grammar of Fig. 5.2 to a PDA. Recall this grammar is:

$$E \rightarrow I \mid E * E \mid E + E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- Can you identify (V,T,Q,S) of this CFG?
- $V = \{E, I\}$
- $T = \{a, b, 0, 1, +, *, (,)\}$
- S = E

$$E \rightarrow I \mid E * E \mid E + E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- For the PDA stack alphabet is $\Gamma = \{E, I, a, b, 0, 1, +, *, (,)\}$
- Start symbol of the stack is *E*.
- We will have only one state, call it q.

$$E \rightarrow I \mid E * E \mid E + E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- For the PDA stack alphabet is $\Gamma = \{E, I, a, b, 0, 1, +, *, (,)\}$
- Start symbol of the stack is E.
- We will have only one state, call it q.

$$\delta(q, \epsilon, E) = \{(q, I), \ (q, E + E), \ (q, E * E), \ (q, (E))\}.$$

$$\delta(q, \epsilon, I) = \{(q, a), \ (q, b), \ (q, Ia), \ (q, Ib), \ (q, I0), \ (q, I1)\}.$$

$$E \rightarrow I \mid E * E \mid E + E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- For the PDA stack alphabet is $\Gamma = \{E, I, a, b, 0, 1, +, *, (,)\}$
- Start symbol of the stack is E.
- We will have only one state, call it q.

$$\begin{split} &\delta(q,\epsilon,E) = \{(q,I),\ (q,E+E),\ (q,E*E),\ (q,(E))\}. \\ &\delta(q,\epsilon,I) = \{(q,a),\ (q,b),\ (q,Ia),\ (q,Ib),\ (q,I0),\ (q,I1)\}. \\ &\delta(q,a,a) = \{(q,\epsilon)\};\ \delta(q,b,b) = \{(q,\epsilon)\};\ \delta(q,0,0) = \{(q,\epsilon)\};\ \delta(q,1,1) = \{(q,\epsilon)\};\ \delta(q,(0,0)) = \{(q,\epsilon)\};\ \delta(q,0,0) = \{(q,\epsilon)\};\ \delta(q,0,0)$$

Have you noted?

 The PDA we constructed simulates, which derivation?

Have you noted?

- The PDA we constructed simulates, which derivation?
- It is "left-most derivation"

Have you noted?

- The PDA we constructed simulates, which derivation?
- It is "left-most derivation"
- In compilers, these are top-down parsers
 - LL parsers;
 - but non-determinism is a problem.
 - Backtracking (to try the other choice)
 - Parse table (to find feasible choices; at that time)

Compilers

- We have parsers which are bottom-up
- Which will simulate right-most derivation
- These are called LR parsers.

- One notable drawback is all these parsers have their own limitations, and works only for subclasses of CFLs;
 - Some superior, some inferior ...

PDA to CFG

• We skip this in this basic course.

Deterministic PDA

- DPDA
- Can recognize a proper subset of CFLs
- Parsers (used in compilers), mostly are DPDAs.
 - Most of our programming languages are in the subclass which can be recognized by DPDAs.

DPDA

• Remove choice.

DPDA

• Atmost one choice. But ϵ moves (should we remove them?).

DPDA

- Atmost one choice. But ϵ moves (should we remove them? No).
- For any $q \in Q$, $a \in \Sigma$, or $a = \epsilon$, and $X \in \Gamma$, we have
 - 1) $|\delta(q, a, X)| \leq 1$, and
 - 2) For any a except ϵ , $|\delta(q, a, X)| = 1 \Rightarrow |\delta(q, \epsilon, X)| = 0$.

Figure 6.11: A deterministic PDA accepting L_{wcwr}

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

- Proof is simple.
 - DFA is there for the regular language.
 - What about stack??

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

- Proof is simple.
 - DFA is there for the regular language.
 - What about stack??
 - Ignore the stack.

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

- Proof is simple.
 - DFA is there for the regular language.
 - What about stack??
 - Ignore the stack.

• Just see, the theorem is saying about L(P) only.

Formally,

let $A=(Q,\Sigma,\delta_A,q_0,F)$ be a DFA. Construct DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

Formally,

let $A=(Q,\Sigma,\delta_A,q_0,F)$ be a DFA. Construct DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

If $\delta_A(q,a) = p$ then $\delta_P(q,a,Z_0) = \{(p,Z_0)\}$ for all states p and q in Q,

Formally,

let $A = (Q, \Sigma, \delta_A, q_0, F)$ be a DFA. Construct DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

If $\delta_A(q,a) = p$ then $\delta_P(q,a,Z_0) = \{(p,Z_0)\}$ for all states p and q in Q,

We claim that $(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, Z_0)$ if and only if $\hat{\delta}_A(q_0, w) = p$.

DPDA and N(P) ??

 For some regular languages, there can no DPDA by empty stack that recognizes the language.

DPDA and N(P) ??

- For some regular languages, there can no DPDA by empty stack that recognizes the language.
- But, for a proper subset of regular languages, it is possible to build a DPDA by empty stack.
 - These are characterized by "prefix property".

Prefix property

A language L has the prefix property, if there
are no two distinct strings x and y in L such
that x is a prefix of y.

Prefix property

- A language L has the prefix property, if there
 are no two distinct strings x and y in L such
 that x is a prefix of y.
- L_{wcwr} has this property.

Prefix property

- A language L has the prefix property, if there
 are no two distinct strings x and y in L such
 that x is a prefix of y.
- L_{wcwr} has this property.
- 0* violates this property. See this is regular.

Theorem 6.19: A language L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P') for some DPDA P'. \square

Theorem 6.19: A language L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P') for some DPDA P'. \square

See even for 0^* (a regular language) we cannot build a DPDA by empty-stack !!

DPDA s.t. $N(P) = L_{wcwr}$

```
\begin{array}{c} 0\,,\,Z_{\,0}\,/0\,Z_{\,0} \\ 1\,,\,Z_{\,0}\,/1\,Z_{\,0} \\ 0\,,\,0\,/0\,0 \\ 0\,,\,1\,/0\,1 \\ 1\,,\,0\,/1\,0 \\ 1\,,\,1\,/1\,1 \\ \end{array}
\begin{array}{c} 0\,,\,0\,/\,\epsilon \\ 1\,,\,1\,/1\,1 \\ \end{array}
\begin{array}{c} c\,,\,Z_{\,0}\,/Z_{\,0} \\ c\,,\,0\,/\,0 \\ \end{array}
\begin{array}{c} c\,,\,Z_{\,0}\,/Z_{\,0} \\ \end{array}
```

DPDA s.t. $N(P) = L_{wcwr}$

$$\begin{array}{c} 0\,,\,Z_{\,0}\,/0\,Z_{\,0}\\ 1\,,\,Z_{\,0}\,/1\,Z_{\,0}\\ 0\,,\,0\,/0\,0\\ 0\,,\,1\,/0\,1\\ 1\,,\,0\,/1\,0\\ 1\,,\,1\,/1\,1\\ \end{array}$$

This is not a regular language.

- There is no DPDA to recognize the CFL L_{wwr}
- Proof is complex. But we can see the idea behind..

Some points to note,

Theorem 6.20: If L = N(P) for some DPDA P, then L has an unambiguous context-free grammar.

Theorem 6.21: If L = L(P) for some DPDA P, then L has an unambiguous CFG.

 We cannot make converse of these statements.