sondage

Jeros vigan

14/03/2020

##Importation des données sur R

```
library(readx1)
library(knitr)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
donnees=read_xls("F:/sondage/ST-2020.xls")
str(donnees)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                24000 obs. of 5 variables:
  $ PAYS: chr "FR" "FR" "FR" "FR" ...
                "AA" "AA" "AA" "AA" ...
## $ ZONE: chr
## $ VAR1: num 80 0 650 1980 0 0 1400 3100 68 0 ...
## $ VAR2: num 77 520 800 2219 535 ...
  $ VAR3: num 157 520 1450 4199 535 ...
summary(donnees)
##
        PAYS
                           ZONE
                                               VAR1
                                                                 VAR2
                                                            Min.
##
   Length: 24000
                       Length: 24000
                                          Min.
                                                      0.0
                                                                         0.0
   Class :character
                       Class :character
                                          1st Qu.:
                                                            1st Qu.:
                                                                       47.0
##
                                                      0.0
   Mode :character
##
                       Mode :character
                                          Median :
                                                            Median :
                                                                      167.0
                                                      0.0
##
                                          Mean
                                                 :
                                                    288.6
                                                            Mean
                                                                      562.1
##
                                          3rd Qu.:
                                                      0.0
                                                            3rd Qu.:
                                                                      664.0
##
                                          Max.
                                                 :34700.0
                                                            Max.
                                                                   :20839.0
##
         VAR3
##
  Min.
                0.0
##
   1st Qu.:
               80.0
## Median :
             275.0
## Mean
         : 850.7
##
    3rd Qu.: 1010.0
          :34700.0
## Max.
table(donnees$ZONE)
##
##
     AA
          BB
               CC
                    DD
## 4247 7092 7921 4740
```

```
zoneFactor=as.factor(donnees$ZONE); levels(zoneFactor)
## [1] "AA" "BB" "CC" "DD"
##Étude de l'univers
#Parametre de la population
N=length(donnees$PAYS)
sommes=c(sum(donnees$VAR1),sum(donnees$VAR2),sum(donnees$VAR3))
moyenne=c(mean(donnees$VAR1),mean(donnees$VAR2),mean(donnees$VAR3)); sommes/N
## [1] 288.6003 562.1131 850.7134
ecart=c(sd(donnees$VAR1),sd(donnees$VAR2),sd(donnees$VAR3))
ecart1=c(sd(donnees$VAR1)*sqrt((N-1)/N),sd(donnees$VAR2)*sqrt((N-
1)/N),sd(donnees$VAR3)*sqrt((N-1)/N))
cv=ecart/moyenne
cv1=ecart1/moyenne
univers=data.frame("effectifs"=N,"sommes des valeurs"=sommes,"moyenne des
valeurs"=moyenne,"ecart type"=ecart,"ecart type1"=ecart1,"coefficent de
variation"=cv, "coefficent de variation1"=cv1)
row.names(univers)=c("var1","var2","var3")
kable(univers)
```

	effec	sommes.des.	moyenne.des	ecart.	ecart.t	coefficent.de.	coefficent.de.v
	tifs	valeurs	.valeurs	type	ype1	variation	ariation1
va	240	6926406	288.6003	1040.	1040.7	3.606166	3.606091
r1	00			740	19		
va	240	13490715	562.1131	1053.	1053.0	1.873471	1.873432
r2	00			103	81		
va	240	20417121	850.7134	1519.	1519.3	1.786035	1.785998
r3	00			404	72		

##mise en œuvre d'un plan de sondage stratifié

```
zoneUnique=unique(donnees$ZONE);zoneUnique

## [1] "AA" "DD" "BB" "CC"

#Par zone pour Ls variables
ZoneAA=subset(donnees,donnees$ZONE=="AA")
ZoneBB=subset(donnees,donnees$ZONE=="BB")
ZoneCC=subset(donnees,donnees$ZONE=="CC")
ZoneDD=subset(donnees,donnees$ZONE=="DD")

#effectifs des valeurs
```

```
Nh1=length(ZoneAA$PAYS)
Nh2=length(ZoneBB$PAYS)
Nh3=length(ZoneCC$PAYS)
Nh4=length(ZoneDD$PAYS)
#sommes par zone
SomAA=c(tapply(ZoneAA$VAR1,ZoneAA$ZONE,
sum),tapply(ZoneAA$VAR2,ZoneAA$ZONE,sum),tapply(ZoneAA$VAR3,ZoneAA$ZONE,sum))
SomBB=c(tapply(ZoneBB$VAR1,ZoneBB$ZONE,
sum), tapply(ZoneBB$VAR2, ZoneBB$ZONE, sum), tapply(ZoneBB$VAR3, ZoneBB$ZONE, sum))
SomCC=c(tapply(ZoneCC$VAR1,ZoneCC$ZONE,
sum),tapply(ZoneCC$VAR2,ZoneCC$ZONE,sum),tapply(ZoneCC$VAR3,ZoneCC$ZONE,sum))
SomDD=c(tapply(ZoneDD$VAR1,ZoneDD$ZONE,
sum),tapply(ZoneDD$VAR2,ZoneDD$ZONE,sum),tapply(ZoneDD$VAR3,ZoneDD$ZONE,sum))
#la moyenne
MovAA=c(tapply(ZoneAA$VAR1,ZoneAA$ZONE,
mean), tapply(ZoneAA$VAR2, ZoneAA$ZONE, mean), tapply(ZoneAA$VAR3, ZoneAA$ZONE, mea
MoyBB=c(tapply(ZoneBB$VAR1,ZoneBB$ZONE,
mean),tapply(ZoneBB$VAR2,ZoneBB$ZONE,mean),tapply(ZoneBB$VAR3,ZoneBB$ZONE,mea
n))
MoyCC=c(tapply(ZoneCC$VAR1,ZoneCC$ZONE,
mean), tapply(ZoneCC$VAR2, ZoneCC$ZONE, mean), tapply(ZoneCC$VAR3, ZoneCC$ZONE, mea
n))
MoyDD=c(tapply(ZoneDD$VAR1,ZoneDD$ZONE,
mean),tapply(ZoneDD$VAR2,ZoneDD$ZONE,mean),tapply(ZoneDD$VAR3,ZoneDD$ZONE,mea
n))
#l'écart - type corrigé
EcAA=c(tapply(ZoneAA$VAR1,ZoneAA$ZONE,
sd),tapply(ZoneAA$VAR2,ZoneAA$ZONE,sd),tapply(ZoneAA$VAR3,ZoneAA$ZONE,sd))
EcBB=c(tapply(ZoneBB$VAR1,ZoneBB$ZONE,
sd),tapply(ZoneBB$VAR2,ZoneBB$ZONE,sd),tapply(ZoneBB$VAR3,ZoneBB$ZONE,sd))
EcCC=c(tapply(ZoneCC$VAR1,ZoneCC$ZONE,
sd),tapply(ZoneCC$VAR2,ZoneCC$ZONE,sd),tapply(ZoneCC$VAR3,ZoneCC$ZONE,sd))
EcDD=c(tapply(ZoneDD$VAR1,ZoneDD$ZONE,
sd),tapply(ZoneDD$VAR2,ZoneDD$ZONE,sd),tapply(ZoneDD$VAR3,ZoneDD$ZONE,sd))
#l'ecart type
EcAA1=EcAA*sqrt((Nh1-1)/Nh1)
EcBB1=EcBB*sqrt((Nh2-1)/Nh2)
EcCC1=EcCC*sqrt((Nh3-1)/Nh3)
EcDD1=EcDD*sqrt((Nh4-1)/Nh4)
#coefficient de variation par zone
CvAA=EcAA/MoyAA
CvBB=EcBB/MoyBB
```

```
CvCC=EcCC/MoyCC
CvDD=EcDD/MoyDD
```

#cofficient de variation par zone

CvAA1=EcAA1/MoyAA CvBB1=EcBB1/MoyBB

CvCC1=EcCC1/MoyCC

CvDD1=EcDD1/MoyDD

ZoneAA=data.frame("Nh"=Nh1,"Somme"=SomAA,"Moyenne"=MoyAA,"ecart
type"=EcAA,"ecart type1"=EcAA1,"Coefficient de Variation"=CvAA,"Coefficient
de Variation"=CvAA1); row.names(ZoneAA)=c("Var1","Var2","Var3")
kable(ZoneAA)

		Somm	Moyenn	ecart.ty	ecart.ty	Coefficient.de.Var	Coefficient.de.Vari
	Nh	e	e	pe	pe1	iation	ation.1
Var	424	28881	680.033	1542.3	1542.19	2.268081	2.267814
1	7	03	7	72			
Var	424	23195	546.169	1111.9	1111.83	2.035928	2.035689
2	7	80	1	61			
Var	424	52076	1226.20	1992.8	1992.60	1.625208	1.625016
3	7	83	27	34			

ZoneBB=data.frame("Nh"=Nh2,"Somme"=SomBB,"Moyenne"=MoyBB,"ecart
type"=EcBB,"ecart type1"=EcBB1,"Coefficient de Variation"=CvBB,"Coefficient
de Variation"=CvBB1);row.names(ZoneBB)=c("Var1","Var2","Var3")

kable(ZoneBB)

		Somm	Moyen	ecart.ty	ecart.ty	Coefficient.de.Var	Coefficient.de.Vari
	Nh	e	ne	pe	pe1	iation	ation.1
Var	709	13230	186.55	808.466	808.409	4.333577	4.333272
1	2	74	87	4	4		
Var	709	38546	543.52	969.811	969.742	1.784313	1.784187
2	2	50	09	1	8		
Var	709	51777	730.07	1287.51	1287.41	1.763520	1.763396
3	2	24	95	00	92		

ZoneCC=data.frame("Nh"=Nh3,"Somme"=SomCC,"Moyenne"=MoyCC,"ecart
type"=EcCC,"ecart type1"=EcCC1,"Coefficient de Variation"=CvCC,"Coefficient
de Variation"=CvCC1);row.names(ZoneCC)=c("Var1","Var2","Var3")

kable(ZoneCC)

	Somm	Moyen	ecart.ty	ecart.ty	Coefficient.de.Var	Coefficient.de.Vari
Nh	e	ne	pe	pe1	iation	ation.1

```
Var 792 94375 119.14 550.220 550.186
                                                   4.618046
                                                                     4.617754
1
       1
              4
                      58
                               8
Var
    792 47388
                  598.26
                         1100.12
                                  1100.05
                                                   1.838849
                                                                     1.838733
       1
             65
                      60
                              07
                                        13
    792
          56826
                  717.41
                         1323.71
                                   1323.62
Var
                                                   1.845120
                                                                     1.845004
             19
                      18
                              12
ZoneDD=data.frame("Nh"=Nh4, "Somme"=SomDD, "Moyenne"=MoyDD, "ecart
type"=EcDD, "ecart type1"=EcDD1, "Coefficient de Variation"=CvDD, "Coefficient
de Variation"=CvDD1);row.names(ZoneDD)=c("Var1","Var2","Var3")
kable(ZoneDD)
```

		Somm	Moyen	ecart.ty	ecart.ty	Coefficient.de.Var	Coefficient.de.Varia
	Nh	e	ne	pe	pe1	iation	tion.1
Var	474	17714	373.72	1289.0	1288.91	3.449153	3.448789
1	0	75	89	48	2		
Var	474	25776	543.80	1036.9	1036.81	1.906800	1.906599
2	0	20	17	21	2		
Var	474	43490	917.53	1594.2	1594.11	1.737577	1.737394
3	0	95	06	80	2		

#Question 2 – mise en œuvre d'un plan de sondage stratifié

```
N=length(donnees$PAYS)
n=600
#Strate1
strate1AA=subset(donnees[,-c(3,4)],donnees$ZONE=="AA" & donnees$VAR3<100)</pre>
strate1BB=subset(donnees[,-c(3,4)],donnees$ZONE=="BB" & donnees$VAR3<100)</pre>
strate1CC=subset(donnees[,-c(3,4)],donnees$ZONE=="CC" & donnees$VAR3<100)</pre>
strate1DD=subset(donnees[,-c(3,4)],donnees$ZONE=="DD" & donnees$VAR3<100)</pre>
#Strate2
strate2AA=subset(donnees[,-c(3,4)],donnees$ZONE=="AA" & donnees$VAR3>=100 &
donnees$VAR3<500)
strate2BB=subset(donnees[,-c(3,4)],donnees$ZONE=="BB" & donnees$VAR3>=100 &
donnees$VAR3<500)
strate2CC=subset(donnees[,-c(3,4)],donnees$ZONE=="CC" & donnees$VAR3>=100 &
donnees$VAR3<500)
strate2DD=subset(donnees[,-c(3,4)],donnees$ZONE=="DD" & donnees$VAR3>=100 &
donnees$VAR3<500)
#strate3
strate3AA=subset(donnees[,-c(3,4)],donnees$ZONE=="AA" & donnees$VAR3>=500 &
donnees$VAR3<1000)
strate3BB=subset(donnees[,-c(3,4)],donnees$ZONE=="BB" & donnees$VAR3>=500 &
donnees$VAR3<1000)
strate3CC=subset(donnees[,-c(3,4)],donnees$ZONE=="CC" & donnees$VAR3>=500 &
```

```
donnees$VAR3<1000)
strate3DD=subset(donnees[,-c(3,4)],donnees$ZONE=="DD" & donnees$VAR3>=500 &
donnees$VAR3<1000)
#strate4
strate4AA=subset(donnees[,-c(3,4)],donnees$ZONE=="AA" & donnees$VAR3>=1000 &
donnees$VAR3<2000)
strate4BB=subset(donnees[,-c(3,4)],donnees$ZONE=="BB" & donnees$VAR3>=1000 &
donnees$VAR3<2000)
strate4CC=subset(donnees[,-c(3,4)],donnees$ZONE=="CC" & donnees$VAR3>=1000 &
donnees$VAR3<2000)
strate4DD=subset(donnees[,-c(3,4)],donnees$ZONE=="DD" & donnees$VAR3>=1000 &
donnees$VAR3<2000)
#strate5
strate5AA=subset(donnees[,-c(3,4)],donnees$ZONE=="AA" & donnees$VAR3>=2000 &
donnees$VAR3<10000)
strate5BB=subset(donnees[,-c(3,4)],donnees$ZONE=="BB" & donnees$VAR3>=2000 &
donnees$VAR3<10000)
strate5CC=subset(donnees[,-c(3,4)],donnees$ZONE=="CC" & donnees$VAR3>=2000 &
donnees$VAR3<10000)
strate5DD=subset(donnees[,-c(3,4)],donnees$ZONE=="DD" & donnees$VAR3>=2000 &
donnees$VAR3<10000)
#strate6
strate6AA=subset(donnees[,-c(3,4)],donnees$ZONE=="AA" & donnees$VAR3>=10000)
strate6BB=subset(donnees[,-c(3,4)],donnees$ZONE=="BB" & donnees$VAR3>=10000)
strate6CC=subset(donnees[,-c(3,4)],donnees$ZONE=="CC" & donnees$VAR3>=10000)
strate6DD=subset(donnees[,-c(3,4)],donnees$ZONE=="DD" & donnees$VAR3>=10000)
#TZoneAA
#fonction
shh=function(x){ nn=length(x)-1;yhn=mean(x);eca=((x-yhn)^2);return
(sqrt((1/nn)*sum(eca)))}
#zone AA
strate=c("AA1","AA2","AA3","AA4","AA5","AA6")
Nh1=c(length(strate1AA$VAR3),length(strate2AA$VAR3),length(strate3AA$VAR3),le
ngth(strate4AA$VAR3),length(strate5AA$VAR3),length(strate6AA$VAR3))
moy=c(mean(strate1AA$VAR3),mean(strate2AA$VAR3),mean(strate3AA$VAR3),mean(str
ate4AA$VAR3),mean(strate5AA$VAR3),mean(strate6AA$VAR3))
Somme=c(sum(strate1AA$VAR3),sum(strate2AA$VAR3),sum(strate3AA$VAR3),sum(strat
e4AA$VAR3), sum(strate5AA$VAR3), sum(strate6AA$VAR3))
Sh=c(shh(strate1AA$VAR3),shh(strate2AA$VAR3),shh(strate3AA$VAR3),shh(strate4A
A$VAR3), shh(strate5AA$VAR3), shh(strate6AA$VAR3))
```

```
nhAp=Nh1*n/N;nhAp=round(nhAp,0)
TzoneAA=data.frame("strate"=strate, "Nh"=Nh1, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
#TzoneBB
strate=c("BB1","BB2","BB3","BB4","BB5","BB6")
Nh2=c(length(strate1BB$VAR3),length(strate2BB$VAR3),length(strate3BB$VAR3),le
ngth(strate4BB$VAR3),length(strate5BB$VAR3),length(strate6BB$VAR3))
moy=c(mean(strate1BB$VAR3),mean(strate2BB$VAR3),mean(strate3BB$VAR3),mean(str
ate4BB$VAR3), mean(strate5BB$VAR3), mean(strate6BB$VAR3))
Somme=c(sum(strate1BB$VAR3),sum(strate2BB$VAR3),sum(strate3BB$VAR3),sum(strat
e4BB$VAR3), sum(strate5BB$VAR3), sum(strate6BB$VAR3))
Sh=c(shh(strate1BB$VAR3),shh(strate2BB$VAR3),shh(strate3BB$VAR3),shh(strate4B
B$VAR3), shh(strate5BB$VAR3), shh(strate6BB$VAR3))
nhAp=Nh2*(n/N);nhAp=round(nhAp,0)
TzoneBB=data.frame("strate"=strate, "Nh"=Nh2, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp )
#TzoneCC
strate=c("CC1","CC2","CC3","CC4","CC5","CC6")
Nh3=c(length(strate1CC$VAR3),length(strate2CC$VAR3),length(strate3CC$VAR3),le
ngth(strate4CC$VAR3),length(strate5CC$VAR3),length(strate6CC$VAR3))
Somme=c(sum(strate1CC$VAR3),sum(strate2CC$VAR3),sum(strate3CC$VAR3),sum(strat
e4CC$VAR3), sum(strate5CC$VAR3), sum(strate6CC$VAR3))
moy=c(mean(strate1CC$VAR3),mean(strate2CC$VAR3),mean(strate3CC$VAR3),mean(strate3CC$VAR3)
ate4CC$VAR3), mean(strate5CC$VAR3), mean(strate6CC$VAR3))
Sh=c(shh(strate1CC$VAR3),shh(strate2CC$VAR3),shh(strate3CC$VAR3),shh(strate4C
C$VAR3), shh(strate5CC$VAR3), shh(strate6CC$VAR3))
nhAp=Nh3*(n/N);nhAp=round(nhAp,0)
```

```
TzoneCC=data.frame("strate"=strate,"Nh"=Nh3,"Total"=Somme,"Moyenne"=moy,"Sh"=
Sh, "nhAp"=nhAp)
#TzoneDD
strate=c("DD1","DD2","DD3","DD4","DD5","DD6")
Nh4=c(length(strate1DD$VAR3),length(strate2DD$VAR3),length(strate3DD$VAR3),le
ngth(strate4DD$VAR3),length(strate5DD$VAR3),length(strate6DD$VAR3))
Somme=c(sum(strate1DD$VAR3),sum(strate2DD$VAR3),sum(strate3DD$VAR3),sum(strate3DD$VAR3)
e4DD$VAR3), sum(strate5DD$VAR3), sum(strate6DD$VAR3))
moy=c(mean(strate1DD$VAR3),mean(strate2DD$VAR3),mean(strate3DD$VAR3),mean(str
ate4DD$VAR3),mean(strate5DD$VAR3),mean(strate6DD$VAR3))
Sh=c(shh(strate1DD$VAR3),shh(strate2DD$VAR3),shh(strate3DD$VAR3),shh(strate4D
D$VAR3), shh(strate5DD$VAR3), shh(strate6DD$VAR3))
nhAp=Nh4*(n/N);nhAp=round(nhAp,0)
TzoneDD=data.frame("strate"=strate, "Nh"=Nh4, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
#fusion des tableaux
tb=rbind(TzoneAA, TzoneBB, TzoneCC, TzoneDD)
  sum(tb[,2])
## [1] 24000
NhSh=c(tb[,2]*tb[,5]);nhNey=(NhSh*n)/sum(NhSh);sum(nhNey);nhNey=round(nhNey,0
); sum(nhNey)
## [1] 600
## [1] 600
  nhAp1=(tb[,2]*n)/N; sum(nhAp1);sum(nhAp1)
## [1] 600
## [1] 600
```

```
tb=cbind(rbind(TzoneAA, TzoneBB, TzoneCC, TzoneDD), data.frame(nhAp1, NhSh, nhNey))
```

#Totaux

 $\label{total} Total=c(length(tb[,1]),sum(tb[,2]),sum(tb[,3]),sum(tb[,4]),sum(tb[,6]),sum(tb[,7]),sum(tb[,9]))$

tb11=cbind(tb,data.frame(nhAp1))

kable(tb)

strat					nhA			nhNe
e	Nh	Total	Moyenne	Sh	p	nhAp1	NhSh	у
AA1	113 9	42687	37.47761	29.33289	28	28.47 5	33410.16	3
AA2	105 6	261081	247.23580	113.79350	26	26.40 0	120165.94	10
AA3	574	414591	722.28397	146.97068	14	14.35 0	84361.17	7
AA4	643	937863	1458.57387	289.99918	16	16.07 5	186469.47	15
AA5	806	313549 3	3890.18983	1778.1892 5	20	20.15 0	1433220.5 4	116
AA6	29	415968	14343.7241 4	5085.2278 4	1	0.725	147471.61	12
BB1	208 3	98688	47.37782	27.46534	52	52.07 5	57210.30	5
BB2	233 9	558996	238.98931	111.39838	58	58.47 5	260560.82	21
BB3	104 7	763267	729.00382	147.57801	26	26.17 5	154514.18	13
BB4	100 8	141832 5	1407.06845	278.04061	25	25.20 0	280264.93	23
BB5	588	199470 4	3392.35374	1493.5707 1	15	14.70 0	878219.58	71
BB6	27	343744	12731.2592 6	3166.5180 4	1	0.675	85495.99	7
CC1	244 8	109545	44.74877	28.19051	61	61.20 0	69010.36	6

CC2	263 0	623705	237.15019	109.70829	66	65.75 0	288532.80	23
CC3	115 0	831723	723.23739	144.24295	29	28.75 0	165879.39	13
CC4	101 9	142114 7	1394.64868	277.86066	25	25.47 5	283140.01	23
CC5	655	242743 5	3706.00763	1739.0756 4	16	16.37 5	1139094.5 4	92
CC6	19	269064	14161.2631 6	4065.6370 5	0	0.475	77247.10	6
DD1	132 3	62001	46.86395	27.59864	33	33.07 5	36513.00	3
DD2	145 2	341527	235.21143	108.92908	36	36.30 0	158165.03	13
DD3	676	487829	721.64053	143.85679	17	16.90 0	97247.19	8
DD4	655	934106	1426.11603	278.28128	16	16.37 5	182274.24	15
DD5	617	228795 7	3708.19611	1733.2826 9	15	15.42 5	1069435.4 2	87
DD6	17	235675	13863.2352 9	6038.3275 2	0	0.425	102651.57	8
kable	(tb[<mark>1:6</mark>	,])						
strat					nhA			nhNe
e	Nh	Total	Moyenne	Sh	p	nhAp1	NhSh	у
AA1	113 9	42687	37.47761	29.33289	28	28.47 5	33410.16	3
AA2	105 6	261081	247.23580	113.79350	26	26.40 0	120165.94	10
AA3	574	414591	722.28397	146.97068	14	14.35 0	84361.17	7
AA4	643	937863	1458.57387	289.99918	16	16.07 5	186469.47	15
AA5	806	313549 3	3890.18983	1778.1892 5	20	20.15 0	1433220.5 4	116
AA6	29	415968	14343.7241 4	5085.2278 4	1	0.725	147471.61	12
kable	(tb[<mark>7:1</mark>	2,])						
		NII. T	r-1 3 <i>4</i>		1		NI CI	•
st	rat	Nh To	tal Moyenr	ne S	h nh	A nhAբ	nhSh	nhNe

	e					p	1		у
7	BB1	208	98688	47.37782	27.46534	52	52.07 5	57210.30	5
8	BB2	233 9	558996	238.98931	111.39838	58	58.47 5	260560.8 2	21
9	BB3	104 7	763267	729.00382	147.57801	26	26.17 5	154514.1 8	13
1 0	BB4	100 8	141832 5	1407.06845	278.04061	25	25.20 0	280264.9 3	23
1 1	BB5	588	199470 4	3392.35374	1493.5707 1	15	14.70 0	878219.5 8	71
1 2	BB6	27	343744	12731.2592 6	3166.5180 4	1	0.675	85495.99	7
kab	le (tb[1	3:18,])						
	strat e	Nh	Total	Moyenne	Sh	nhA p	nhAp 1	NhSh	nhNe y
1	CC1	244 8	109545	44.74877	28.19051	61	61.20 0	69010.36	6
1 4	CC2	263 0	623705	237.15019	109.70829	66	65.75 0	288532.80	23
1 5	CC3	115 0	831723	723.23739	144.24295	29	28.75 0	165879.39	13
1 6	CC4	101 9	142114 7	1394.64868	277.86066	25	25.47 5	283140.01	23
1 7	CC5	655	242743 5	3706.00763	1739.0756 4	16	16.37 5	1139094.5 4	92
1 8	CC6	19		14161.2631 6	4065.6370 5	0	0.475	77247.10	6
kab	le (tb[19	9:24,])						
	strat e	Nh	n Total	Moyenne	Sh	nhA p	nhAp 1	NhSh	nhNe y
19	DD1	132	2 62001			33	33.07 5	36513.00	3
20	DD2	145 2		235.21143	108.9290 8	36	36.30 0	158165.0 3	13
21	DD3	676	487829	721.64053	143.8567 9	17	16.90 0	97247.19	8
22	DD4	655	934106	1426.1160 3	_	16	16.37 5	182274.2 4	15

```
23
      DD5
             617 228795
                                                                             87
                            3708.1961
                                        1733.282
                                                    15
                                                        15.42
                                                                1069435.
                                              69
                                                                      42
24
      DD6
                  235675
                            13863.235
                                        6038.327
                                                        0.425
                                                                102651.5
                                                                              8
              17
                                                     0
                                   29
                                              52
                  allocati
                                              lle
#pre
      icion
             ativ
                                    n
      rel
S
              е,
                           porportion
                                   ne
#Precision relative de l'ensemble de zones
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb[,3])/N;MoySt
## [1] 850.7134
mean(donnees$VAR3)
## [1] 850.7134
T=sum(tb[,3])
#Estimateur de variance de la moyenne
varianceStratifie=function(nhpetit,grandNh,Sh,N){
  cmp1=(grandNh*grandNh)/(N*N)
  cmp2=1-(nhpetit/grandNh)
  cmp3=(Sh * Sh)/nhpetit
  cmp=cmp1*cmp2*cmp3
  return(sum(cmp))
}
varianceT=function(nhpetit,grandNh,Sh){
  cmp1=(grandNh*grandNh * Sh *Sh)/(nhpetit)
  cmp2=(Sh * Sh * grandNh)
  cmp=cmp1- cmp2
  return(sum(cmp))
}
varianceStr=varianceStratifie(tb[,7],tb[,2],tb[,5],N);varianceStr
## [1] 682.5666
varianceTot=varianceT(tb[,7],tb[,2],tb[,5]);varianceTot
## [1] 393158360599
#precision relative
precisionRelative1=(sqrt(varianceStr)/MoySt)*100;precisionRelative1
## [1] 3.071067
```

```
precisionRelative2=(sqrt(varianceTot)/T)*100;precisionRelative2
## [1] 3.071067
TabloPrecisionAP=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative"=precisionRelative1)
kable(TabloPrecisionAP)
moyenneStrate VarianceMoyenneStratifié Precision.Relative
    850.7134
                             682.5666
                                               3.071067
#precision relative, allocation optimale
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb[,3])/N;MoySt
## [1] 850.7134
mean(donnees$VAR3)
## [1] 850.7134
#variance
varianceStr=varianceStratifie(tb[,9],tb[,2],tb[,5],N)
#precision relative
precisionRelative1=(sqrt(varianceStr)/MoySt)*100;precisionRelative1
## [1] 1.393772
TabloPrecisionOP=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative"=precisionRelative1)
kable(TabloPrecisionOP)
moyenneStrate VarianceMoyenneStratifié Precision.Relative
    850.7134
                             140.5886
                                               1.393772
#Precision par zoneAA
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb[1:6,3])/sum(Nh1);MoySt
## [1] 1226.203
```

```
#variance et Precision relative et precision relative allocation
proportionnelle
varianceStr=varianceStratifie(tb[1:6,7],tb[1:6,2],tb[1:6,5],sum(Nh1));varianc
## [1] 7307.427
precisionRelative1=(sqrt(varianceStr)/(sum(tb[1:6,4])/6))*100;precisionRelati
ve1
## [1] 2.477844
##Estimation et precision relative de l'echantion par allocation Optimale
varianceStr=varianceStratifie(tb[1:6,9],tb[1:6,2],tb[1:6,5],sum(Nh1))
precisionRelative11=(sqrt(varianceStr)/MoySt)*100;precisionRelative11
## [1] 2.801937
TPrecisionZoneAA=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative AP"=precisionRelative1, "Precision Relative
OP"=precisionRelative11)
kable(TPrecisionZoneAA)
moyenneStrate VarianceMoyenneStratifié Precision.Relative.AP Precision.Relative.OP
     1226.203
                             1180.433
                                                  2.477844
                                                                      2.801937
                                   BB
#Precision pour
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt = sum(tb[7:12,3])/sum(tb[7:12,2]);MoySt
## [1] 730.0795
#variance et Precision relative et precision relative allocation
proportionnelle
varianceStr=varianceStratifie(tb[7:12,7],tb[7:12,2],tb[7:12,5],sum(tb[7:12,2]
));varianceStr
## [1] 1328.833
precisionRelative1=(sqrt(varianceStr)/(sum(tb[7:12,4])/6))*100;precisionRelat
ive1
## [1] 1.179329
##Estimation et precision relative de l'echantion par allocation Optimale
varianceStr=varianceStratifie(tb[7:12,9],tb[7:12,2],tb[7:12,5],sum(tb[7:12,2]
precisionRelative11=(sqrt(varianceStr)/MoySt)*100;precisionRelative11
## [1] 2.685387
```

```
TPrecisionZoneBB=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative AP"=precisionRelative1, "Precision Relative
OP"=precisionRelative11)
kable(TPrecisionZoneBB)
moyenneStrate VarianceMoyenneStratifié Precision.Relative.AP Precision.Relative.OP
     730.0795
                               384.374
                                                  1.179329
                                                                       2.685387
#Precision zone
                                    CC
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb[13:18,3])/sum(tb[13:18,2]);MoySt
## [1] 717.4118
#variance et Precision relative et precision relative allocation
proportionnelle
varianceStr=varianceStratifie(tb[13:18,7],tb[13:18,2],tb[13:18,5],sum(tb[13:1
8,2])); varianceStr
## [1] 1511.231
precisionRelative1=(sqrt(varianceStr)/(sum(tb[13:18,4])/6))*100;precisionRela
tive1
## [1] 1.150869
##Estimation et precision relative de l'echantion par allocation Optimale
varianceStr=varianceStratifie(tb[13:18,9],tb[13:18,2],tb[13:18,5],sum(tb[13:1
8,2]))
precisionRelative11=(sqrt(varianceStr)/MoySt)*100;precisionRelative11
## [1] 2.650311
TPrecisionZoneCC=data.frame("moyenneStrate"=MoySt,"VarianceMoyenneStratifié"=
varianceStr, "Precision Relative AP"=precisionRelative1, "Precision Relative
OP"=precisionRelative11)
kable(TPrecisionZoneCC)
 moyenneStrate VarianceMoyenneStratifié Precision.Relative.AP Precision.Relative.OP
      717.4118
                              361.5186
                                                  1.150869
                                                                       2.650311
    #Precision
                                     D
        ZoneD
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb[19:24,3])/sum(tb[19:24,2]);MoySt
```

[1] 917.5306

```
#variance et Precision relative et precision relative allocation
proportionnelle
varianceStr=varianceStratifie(tb[19:24,7],tb[19:24,2],tb[19:24,5],sum(tb[19:2
4,2])); varianceStr
## [1] 4437.531
precisionRelative1=(sqrt(varianceStr)/(sum(tb[19:24,4])/6))*100;precisionRela
tive1
## [1] 1.998318
##Estimation et precision relative de l'echantion par allocation Optimale
varianceStr=varianceStratifie(tb[19:24,9],tb[19:24,2],tb[19:24,5],sum(tb[19:2
4,2]))
precisionRelative11=(sqrt(varianceStr)/MoySt)*100;precisionRelative11
## [1] 3.056672
TPrecisionZoneDD=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative AP"=precisionRelative1, "Precision Relative
OP"=precisionRelative11)
kable(TPrecisionZoneDD)
```

moyenneStrate	VarianceMoyenneStratifié	Precision.Relative.AP	Precision.Relative.OP
917.5306	786.5727	1.998318	3.056672

#Fusion des tableaux

tbPr=rbind(TPrecisionZoneAA, TPrecisionZoneBB, TPrecisionZoneCC, TPrecisionZoneDD)

row.names(tbPr)=c("ZoneAAPrecision","ZoneBBPrecision","ZoneCCPrecision","Zone
DDPrecision")

kable(tbPr)

	moyenneStr ate	VarianceMoyenneStr atifié	Precision.Relativ e.AP	Precision.Relativ e.OP
ZoneAAPrecis ion	1226.2027	1180.4330	2.477844	2.801937
ZoneBBPrecis ion	730.0795	384.3740	1.179329	2.685387
ZoneCCPrecis ion	717.4118	361.5186	1.150869	2.650311
ZoneDDPrecis ion	917.5306	786.5727	1.998318	3.056672

#graphiques

```
X11()
par(mfrow=c(1,3))
#Les donnees quantitatives
hist(donnees$VAR1, col = c("orange"),main = paste("Histogramme pour la
variable Var1"),ylab = "Effectifs",xlab = "Zones (AA, BB, CC DD) de FRANCE ")
hist(donnees$VAR2, col = c("blue"),main = paste("Histogramme pour la variable
Var2"),ylab = "Effectifs",xlab = "Zones (AA, BB, CC DD) de FRANCE ")
hist(donnees$VAR3, col = c("green"),main = paste("Histogramme pour la
variable Var3"),ylab = "Effectifs",xlab = "Zones (AA, BB, CC DD) de FRANCE ")
```

togramme pour la variabitogramme pour la variabitogramme pour la variabi

Zones (AA, BB, CC DD) de FRA! Zones (AA, BB, CC DD) de FRA! Zones (AA, BB, CC DD) de FRA!

```
boxplot(donnees[,c("VAR1","VAR2","VAR3")],col = c("yellow","blue","green"),
main = paste("Diagramme en boîte des variables quantitatives"), ylab =
"Quantiles")
```

Diagramme en boîte des variables quantitatives


```
#Zone AA

X11()
par(mfrow=c(1,3))

AA=donnees[donnees[,2]=="AA",]

boxplot(AA[,c("VAR1","VAR2","VAR3")],col = c("yellow","blue","green","light blue"), main = paste("Boite de moustaches des variables quantitatives / Zone AA"), ylab = "Quantiles")

#Zone BB

X11()
par(mfrow=c(1,3))

BB=donnees[donnees[,2]=="BB",]

boxplot(BB[,c("VAR1","VAR2","VAR3")],col = c("yellow","blue","green","light blue"), main = paste("Boite de moustaches des variables quantitatives / Zone BB"), ylab = "Quantiles")

#Zone CC
```

```
X11()
par(mfrow=c(1,3))
CC=donnees[donnees[,2]=="CC",]
boxplot(CC[,c("VAR1","VAR2","VAR3")],col = c("yellow","blue","green","light
blue"), main = paste("Boite de moustaches des variables quantitatives / Zone
CC"), ylab = "Quantiles")
#Zone DD
X11()
par(mfrow=c(1,3))
DD=donnees[donnees[,2]=="CC",]
boxplot(DD[,c("VAR1","VAR2","VAR3")],col = c("yellow","blue","green","light
blue"), main = paste("Boite de moustaches des variables quantitatives / Zone
DD"), ylab = "Quantiles")
#zone
barplot(table(as.factor(donnees$ZONE)), main="Répartition des populations par
Zones",xlab="Zones",col="orange")
X11()
par(mfrow=c(1,3))
 ggplot(donnees, aes(x=ZONE, y=VAR1, colour=ZONE, fill=ZONE))+
        geom_point(position=position_jitterdodge(dodge.width=0.7), size=2) +
        geom_boxplot(alpha=0.5, position = position dodge(width=0.8).
fatten=NULL)+
        theme classic()
## Warning: Removed 1 rows containing missing values (geom segment).
## Warning: Removed 1 rows containing missing values (geom_segment).
## Warning: Removed 1 rows containing missing values (geom_segment).
## Warning: Removed 1 rows containing missing values (geom_segment).
```


#allocation proportionnelle

MoySt=sum(tb[,3])/N;MoySt
[1] 850.7134

mean(donnees\$VAR3)
[1] 850.7134

T=sum(tb[,3])

#allocation proportionnelle nAP

calnAP=function(k,grandNh,Sh,N,MoyenneX){
 cmp1= N * sum((grandNh*Sh*Sh))
 cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
 cmp3=sum(Sh * Sh * grandNh)
 cmp=cmp1/(cmp2 + cmp3)
 return(cmp)
}

nAP=calnAP(2/100,tb[,2],tb[,5],N,MoySt);nAP; sum(nAP)

```
## [1] 1368.27
## [1] 1368.27
#allocation de Neymar
calnNey=function(k,grandNh,Sh,N,MoyenneX){
 cmp1= sum(grandNh*Sh) * sum(grandNh*Sh)
 cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
 cmp3=sum(Sh * Sh * grandNh)
 cmp = cmp1/(cmp2 + cmp3)
 return(cmp)
}
nNey=calnNey(2/100,tb[,2],tb[,5],N,MoySt);nNey; sum(nNey)
## [1] 308.8956
## [1] 308.8956
calN=data.frame("nombre de strate"=24,"K"=2/100,"nAP"=nAP,"nAP
arrondi"=round(nAP,0),"nNey"=nNey,"nNey arrondi"=round(nNey,0))
kable(calN)
nombre.de.strate
                  K
                         nAP
                              nAP.arrondi
                                              nNey
                                                    nNey.arrondi
            24 0.02 1368.27
                                    1368 308.8956
                                                            309
#par strate
## allocation proportionnelle
calNhStAP=function(k,grandNh,Sh,T){
 cmp1=(grandNh*grandNh * Sh *Sh)
 cmp2=(Sh * Sh * grandNh)
 cmp3=(k*T)*(k*T)
 cmp = cmp1/(cmp2 + cmp3)
 return(cmp)
}
nhAP=calNhStAP(2/100,tb[,2],tb[,5],T);nhAP
##
  [1] 0.006694307 0.086592078 0.042677987
                                                0.208461411 12.133593278
## [6] 0.129843130 0.019628870 0.407093001 0.143162176 0.470853297
## [11] 4.589382297 0.043766107 0.028561076
                                                0.499182030 0.164996050
## [16] 0.480561125 7.690266399 0.035718910
                                                0.007995460
                                                             0.150012367
        0.056711180 0.199190898 6.783578511 0.062960874
## [21]
## allocation optimale
calNhStNey=function(grandNh,Sh,nNey){
```

```
cmp1=(grandNh*Sh)
  cmp2=sum(grandNh*Sh)
  cmp3=cmp1/ cmp2
  cmp= cmp3*nNey
  return(cmp)
}

nhNeySt=calNhStNey(tb[,2],tb[,5],nNey);nhNeySt

## [1] 1.396411 5.022454 3.525959 7.793676 59.902869 6.163722 2.391161

## [8] 10.890397 6.458073 11.713950 36.706055 3.573389 2.884356 12.059513

## [15] 6.933093 11.834117 47.609582 3.228619 1.526097 6.610664 4.064542

## [22] 7.618332 44.698110 4.290424

calNh=data.frame( "Strate"=tb[,1],"K"=2/100,"nAP par Strate"=nhAP,"nAP
arrondi/Strate"=round(nhAP,0) ,"nNey par Strate"=nhNeySt,"nNey arrondi
/Strate"=round(nhNeySt,0))

kable(calNh)
```

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey.arrondiStrate
AA1	0.02	0.0066943	0	1.396411	1
AA2	0.02	0.0865921	0	5.022454	5
AA3	0.02	0.0426780	0	3.525959	4
AA4	0.02	0.2084614	0	7.793676	8
AA5	0.02	12.1335933	12	59.902869	60
AA6	0.02	0.1298431	0	6.163722	6
BB1	0.02	0.0196289	0	2.391161	2
BB2	0.02	0.4070930	0	10.890397	11
BB3	0.02	0.1431622	0	6.458073	6
BB4	0.02	0.4708533	0	11.713950	12
BB5	0.02	4.5893823	5	36.706055	37
BB6	0.02	0.0437661	0	3.573389	4
CC1	0.02	0.0285611	0	2.884356	3
CC2	0.02	0.4991820	0	12.059513	12
CC3	0.02	0.1649961	0	6.933093	7
CC4	0.02	0.4805611	0	11.834117	12
CC5	0.02	7.6902664	8	47.609582	48
CC6	0.02	0.0357189	0	3.228619	3
DD1	0.02	0.0079955	0	1.526097	2
DD2	0.02	0.1500124	0	6.610664	7
DD3	0.02	0.0567112	0	4.064542	4

DD4	0.02	0.1991909	0	7.618332	8
DD5	0.02	6.7835785	7	44.698110	45
DD6	0.02	0.0629609	0	4.290424	4

Precision et allocation VAR1

```
##VAR1
N=length(donnees$PAYS)
n=600
#Strate1
strate1AA=subset(donnees[,-c(4,5)],donnees$ZONE=="AA" & donnees$VAR1<100)</pre>
strate1BB=subset(donnees[,-c(4,5)],donnees$ZONE=="BB" & donnees$VAR1<100)</pre>
strate1CC=subset(donnees[,-c(4,5)],donnees$ZONE=="CC" & donnees$VAR1<100)
strate1DD=subset(donnees[,-c(4,5)],donnees$ZONE=="DD" & donnees$VAR1<100)
#Strate2
strate2AA=subset(donnees[,-c(4,5)],donnees$ZONE=="AA" & donnees$VAR1>=100 &
donnees$VAR1<500)
strate2BB=subset(donnees[,-c(4,5)],donnees$ZONE=="BB" & donnees$VAR1>=100 &
donnees$VAR1<500)
strate2CC=subset(donnees[,-c(4,5)],donnees$ZONE=="CC" & donnees$VAR1>=100 &
donnees$VAR1<500)
strate2DD=subset(donnees[,-c(4,5)],donnees$ZONE=="DD" & donnees$VAR1>=100 &
donnees$VAR1<500)
#strate3
strate3AA=subset(donnees[,-c(4,5)],donnees$ZONE=="AA" & donnees$VAR1>=500 &
donnees$VAR1<1000)
strate3BB=subset(donnees[,-c(4,5)],donnees$ZONE=="BB" & donnees$VAR1>=500 &
donnees$VAR1<1000)
strate3CC=subset(donnees[,-c(4,5)],donnees$ZONE=="CC" & donnees$VAR1>=500 &
donnees$VAR1<1000)
strate3DD=subset(donnees[,-c(4,5)],donnees$ZONE=="DD" & donnees$VAR1>=500 &
donnees$VAR1<1000)
#strate4
strate4AA=subset(donnees[,-c(4,5)],donnees$ZONE=="AA" & donnees$VAR1>=1000 &
donnees$VAR1<2000)
strate4BB=subset(donnees[,-c(4,5)],donnees$ZONE=="BB" & donnees$VAR1>=1000 &
donnees$VAR1<2000)
strate4CC=subset(donnees[,-c(4,5)],donnees$ZONE=="CC" & donnees$VAR1>=1000 &
donnees$VAR1<2000)
strate4DD=subset(donnees[,-c(4,5)],donnees$ZONE=="DD" & donnees$VAR1>=1000 &
donnees$VAR1<2000)
#strate5
strate5AA=subset(donnees[,-c(4,5)],donnees$ZONE=="AA" & donnees$VAR1>=2000 &
donnees$VAR1<10000)
```

```
strate5BB=subset(donnees[,-c(4,5)],donnees$ZONE=="BB" & donnees$VAR1>=2000 &
donnees$VAR1<10000)
strate5CC=subset(donnees[,-c(4,5)],donnees$ZONE=="CC" & donnees$VAR1>=2000 &
donnees$VAR1<10000)
strate5DD=subset(donnees[,-c(4,5)],donnees$ZONE=="DD" & donnees$VAR1>=2000 &
donnees$VAR1<10000)
#strate6
strate6AA=subset(donnees[,-c(4,5)],donnees$ZONE=="AA" & donnees$VAR1>=10000)
strate6BB=subset(donnees[,-c(4,5)],donnees$ZONE=="BB" & donnees$VAR1>=10000)
strate6CC=subset(donnees[,-c(4,5)],donnees$ZONE=="CC" & donnees$VAR1>=10000)
strate6DD=subset(donnees[,-c(4,5)],donnees$ZONE=="DD" & donnees$VAR1>=10000)
shh=function(x){ nn=length(x)-1;yhn=mean(x);eca=((x-yhn)^2);return
(sqrt((1/nn)*sum(eca)))}
#zone AA
strate=c("AA1","AA2","AA3","AA4","AA5","AA6")
Nh1=c(length(strate1AA$VAR1),length(strate2AA$VAR1),length(strate3AA$VAR1),le
ngth(strate4AA$VAR1),length(strate5AA$VAR1),length(strate6AA$VAR1))
moy=c(mean(strate1AA$VAR1), mean(strate2AA$VAR1), mean(strate3AA$VAR1), mean(str
ate4AA$VAR1), mean(strate5AA$VAR1), mean(strate6AA$VAR1))
Somme=c(sum(strate1AA$VAR1),sum(strate2AA$VAR1),sum(strate3AA$VAR1),sum(strate
e4AA$VAR1), sum(strate5AA$VAR1), sum(strate6AA$VAR1))
Sh=c(shh(strate1AA$VAR1),shh(strate2AA$VAR1),shh(strate3AA$VAR1),shh(strate4A
A$VAR1), shh(strate5AA$VAR1), shh(strate6AA$VAR1))
nhAp=Nh1*n/N;nhAp=round(nhAp,0)
TzoneAA=data.frame("strate"=strate, "Nh"=Nh1, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
strate=c("BB1","BB2","BB3","BB4","BB5","BB6")
Nh2=c(length(strate1BB$VAR1),length(strate2BB$VAR1),length(strate3BB$VAR1),le
ngth(strate4BB$VAR1),length(strate5BB$VAR1),length(strate6BB$VAR1))
moy=c(mean(strate1BB$VAR1), mean(strate2BB$VAR1), mean(strate3BB$VAR1), mean(str
ate4BB$VAR1),mean(strate5BB$VAR1),mean(strate6BB$VAR1))
```

```
Somme=c(sum(strate1BB$VAR1),sum(strate2BB$VAR1),sum(strate3BB$VAR1),sum(strat
e4BB$VAR1), sum(strate5BB$VAR1), sum(strate6BB$VAR1))
Sh=c(shh(strate1BB$VAR1),shh(strate2BB$VAR1),shh(strate3BB$VAR1),shh(strate4B
B$VAR1), shh(strate5BB$VAR1), shh(strate6BB$VAR1))
nhAp=Nh2*(n/N);nhAp=round(nhAp,0)
TzoneBB=data.frame("strate"=strate, "Nh"=Nh2, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp )
strate=c("CC1","CC2","CC3","CC4","CC5","CC6")
Nh3=c(length(strate1CC$VAR1),length(strate2CC$VAR1),length(strate3CC$VAR1),le
ngth(strate4CC$VAR1),length(strate5CC$VAR1),length(strate6CC$VAR1))
Somme=c(sum(strate1CC$VAR1),sum(strate2CC$VAR1),sum(strate3CC$VAR1),sum(strate
e4CC$VAR1), sum(strate5CC$VAR1), sum(strate6CC$VAR1))
moy=c(mean(strate1CC$VAR1),mean(strate2CC$VAR1),mean(strate3CC$VAR1),mean(str
ate4CC$VAR1),mean(strate5CC$VAR1),0)
Sh=c(shh(strate1CC$VAR1),shh(strate2CC$VAR1),shh(strate3CC$VAR1),shh(strate4C
C$VAR1), shh(strate5CC$VAR1), shh(strate6CC$VAR1))
nhAp=Nh3*(n/N);nhAp=round(nhAp,0)
TzoneCC=data.frame("strate"=strate, "Nh"=Nh3, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
strate=c("DD1","DD2","DD3","DD4","DD5","DD6")
Nh4=c(length(strate1DD$VAR1),length(strate2DD$VAR1),length(strate3DD$VAR1),le
ngth(strate4DD$VAR1),length(strate5DD$VAR1),length(strate6DD$VAR1))
Somme=c(sum(strate1DD$VAR1),sum(strate2DD$VAR1),sum(strate3DD$VAR1),sum(strate3DD$VAR1)
e4DD$VAR1), sum(strate5DD$VAR1), sum(strate6DD$VAR1))
mov=c(mean(strate1DD$VAR1),mean(strate2DD$VAR1),mean(strate3DD$VAR1),mean(str
ate4DD$VAR1), mean(strate5DD$VAR1), mean(strate6DD$VAR1))
```

```
Sh=c(shh(strate1DD$VAR1),shh(strate2DD$VAR1),shh(strate3DD$VAR1),shh(strate4D
D$VAR1), shh(strate5DD$VAR1), shh(strate6DD$VAR1))
nhAp=Nh4*(n/N);nhAp=round(nhAp,0)
TzoneDD=data.frame("strate"=strate, "Nh"=Nh4, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
tb1=rbind(TzoneAA, TzoneBB, TzoneCC, TzoneDD)
  sum(tb1[,2])
## [1] 24000
NhSh=c(tb1[,2]*tb1[,5]);nhNey=(NhSh*n)/sum(NhSh);sum(nhNey);nhNey=round(nhNey)
,0);sum(nhNey)
## [1] 600
## [1] 600
  nhAp1=(tb1[,2]*n)/N; sum(nhAp1);sum(nhAp1)
## [1] 600
## [1] 600
tb1=cbind(rbind(TzoneAA, TzoneBB, TzoneCC, TzoneDD), data.frame(nhAp1, NhSh, nhNey)
  #Totaux
Total=c(length(tb1[,1]),sum(tb1[,2]),sum(tb1[,3]),sum(tb1[,4]),sum(tb1[,6]),s
um(tb1[,7]),sum(tb1[,9]))
tb11=cbind(tb1,data.frame(nhAp1))
kable(tb1)
                                                  nhA
                                                                           nhNe
strat
        Nh
               Total
                          Moyenne
                                             Sh
                                                                    NhSh
e
                                                    p
                                                        nhAp1
                                                                               У
```

AA1

243

15277

6.266202

18.855651

61

60.950

45970.08

10

		0							
	4.40	8	165405	250 042422	445.040454	1.0	16.025	5 4200 22	1.0
	AA2	641	165405	258.042122	115.913154	16	16.025	74300.33	16
	AA3	336	237157	705.824405	141.101600	8	8.400	47410.14	10
	AA4	331	481413	1454.419940	286.543056	8	8.275	94845.75	20
	AA5	491	182951 8	3726.105906	1650.67887 7	12	12.275	810483.3	169
	A A C	10		15022 20000	6835.23820	0	0.250		1.4
	AA6	10	159333	15933.30000 0	0835.23820	0	0.250	68352.38	14
	BB1	612	12212	1.992820	11.028441	153	153.20	67582.29	14
	DDI	8	12212	1.552020	11.020111	100	0	07002.29	11
	BB2	383	92437	241.349870	111.470926	10	9.575	42693.36	9
	BB3	198	141700	715.656566	147.724064	5	4.950	29249.36	6
	BB4	163	234673	1439.711656	296.796845	4	4.075	48377.89	10
	BB5	212	744066	3509.745283	1613.37544	5	5.300	342035.5	71
					1			9	
	BB6	8	97986	12248.25000	2239.32354	0	0.200	17914.59	4
				0	3				
	CC1	686	18260	2.661420	12.661830	172	171.52	86872.81	18
		1					5		
	CC2	602	141614	235.239203	111.722853	15	15.050	67257.16	14
	CC3	202	137149	678.955445	136.927962	5	5.050	27659.45	6
	CC4	122	164639	1349.500000	270.164757	3	3.050	32960.10	7
	CC5	134	482092	3597.701492	1746.92734	3	3.350	234088.2	49
	224	•	•		4	•		6	
	CC6	0	0	0.000000	0.000000	0	0.000	0.00	0
	DD1	390 5	3985	1.020487	7.811305	98	97.625	30503.15	6
	DD2	U	45467	265 000000	110 (42222	4	4 275	20458.84	4
		171	45467	265.888889	119.642332	4	4.275		4
	DD3	138	98408	713.101449	146.289149	3	3.450	20187.90	4
	DD4	194	278438	1435.247423	284.115919	5	4.850	55118.49	12
	DD5	321	118965 3	3706.084112	1647.39802 1	8	8.025	528814.7 6	110
	DD6	11	155524	14138.54545	7464.68937	0	0.275	82111.58	17
	טטט	11	133324	4	6	U	0.273	02111.50	17
	kable((tb1[<mark>1:</mark>	6 ,])						
	otro-					nh 1			nhMa
	strat e	Nh	Total	Moyenne	Sh	nhA p	nhAp1	NhSh	nhNe y
=	AA1	243	15277	6.266202	18.85565	61	60.95	45970.08	10
	1111	473	13411	0.200202	10.00000	01	00.75	13770.00	10

	8	3					0		
AA2	641	16	55405	258.042122	115.91315	16	16.02 5	74300.33	16
AA3	336	5 23	37157	705.824405	141.10160	8	8.400	47410.14	10
AA4	331	48	31413	1454.419940	286.54306	8	8.275	94845.75	20
AA5	491	18	32951 8	3726.105906	1650.6788 8	12	12.27 5	810483.3	169
AA6	10) 15	59333	15933.30000 0	6835.2382 1	0	0.250	68352.38	14
kabl	e(tb1[]	7:12,])						
5	strat					nhA			nhNe
•	e	Nh	Total	Moyenne	Sh	p	nhAp1	NhSh	у
7 I	BB1	612 8	12212	1.99282	11.02844	153	153.20 0	67582.29	14
8 I	BB2	383	92437	241.34987	111.47093	10	9.575	42693.36	9
9 I	BB3	198	14170 0	715.65657	147.72406	5	4.950	29249.36	6
1 I 0	BB4	163	23467 3	1439.71166	296.79684	4	4.075	48377.89	10
1 I 1	BB5	212	74406 6	3509.74528	1613.3754 4	5	5.300	342035.5 9	71
1 I 2	BB6	8	97986	12248.2500 0	2239.3235 4	0	0.200	17914.59	4
kabl	e(tb1[:	13:18	,])						
5	strat					nhA			nhNe
(e	Nh	Total	Moyenne	Sh	p	nhAp1	NhSh	у
1 (3	CC1	686 1	18260	2.66142	12.66183	172	171.52 5	86872.81	18
1 (4	CC2	602	14161 4		111.72285	15	15.050	67257.16	14
1 (5	CC3	202	13714 9		136.92796	5	5.050	27659.45	6
1 (6	CC4	122	16463 9		270.16476	3	3.050	32960.10	7
1 (CC5	134	48209 2		1746.9273 4	3	3.350	234088.2 6	49
7			2	-					

```
nhNe
   strat
                                                   nhA
                                                          nhAp
                                               Sh
                                                                    NhSh
           Nh
                  Total
                            Moyenne
   e
                                                             1
                                                      p
                                                                               У
1
   DD1
           390
                  3985
                            1.020487
                                         7.811305
                                                     98
                                                         97.62
                                                                30503.15
                                                                               6
9
             5
2
   DD2
           171
                 45467
                          265.888889
                                       119.64233
                                                         4.275
                                                                20458.84
                                                                               4
0
2
   DD3
           138
                 98408
                          713.101449
                                       146.28914
                                                      3
                                                         3.450
                                                                20187.90
                                                                               4
1
2
   DD4
           194
                278438
                          1435.24742
                                       284.11591
                                                      5
                                                         4.850
                                                                55118.49
                                                                              12
2
                                                9
2
   DD5
                118965
                                       1647.3980
           321
                          3706.08411
                                                      8
                                                         8.025
                                                                528814.7
                                                                            110
3
                      3
                                               21
                                                                        6
2
                                       7464.6893
   DD6
                155524
                          14138.5454
                                                      0
                                                         0.275
                                                                82111.58
                                                                              17
            11
                                  54
                                               76
4
#Precision relative de l'ensemble de zones
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb1[,3])/N;MoySt
## [1] 288.6003
mean(donnees$VAR1)
## [1] 288.6003
T=sum(tb1[,3]);T
## [1] 6926406
#Estimateur de variance de la moyenne
varianceStratifie=function(nhpetit,grandNh,Sh,N){
  cmp1=(grandNh*grandNh)/(N*N)
  cmp2=1-(nhpetit/grandNh)
  cmp3=(Sh * Sh)/nhpetit
  cmp=cmp1*cmp2*cmp3
  return(sum(cmp))
}
varianceT=function(nhpetit,grandNh,Sh){
  cmp1=(grandNh*grandNh * Sh *Sh)/(nhpetit)
  cmp2=(Sh * Sh * grandNh)
  cmp=cmp1- cmp2
  return(sum(cmp))
}
cp1=(tb1[-18,2]*tb1[-18,2]*tb1[-18,5]*tb1[-18,5])/tb1[-18,7]
```

```
cp2=(tb1[-18,5]*tb1[-18,5]* tb1[-18,2])
cp=cp1- cp2;cp
## [1]
           33805035
                      335883043
                                  260896206 1059918271 52176060739
18220987724
## [7]
           29067765
                      185603687
                                  168512567
                                              559977749 21521441236
1564545818
          42898783
                      293052300
                                  147706723
                                              347281642 15948472379
## [13]
9292506
                      115177573
                                  610741559 33975567482 23904561026
## [19]
           95461984
varianceStr=varianceStratifie(tb1[-18,7],tb1[-18,2],tb1[-18,5],N);varianceStr
## [1] 297.9287
varianceTot=varianceT(tb1[-18,7],tb1[-18,2],tb1[-18,5]);varianceTot
## [1] 171606913795
#precision relative
precisionRelative1=(sqrt(varianceStr)/MoySt)*100;precisionRelative1
## [1] 5.980802
precisionRelative2=(sqrt(varianceTot)/T)*100;precisionRelative2
## [1] 5.980802
TabloPrecisionAP=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative"=precisionRelative1)
kable(TabloPrecisionAP)
moyenneStrate VarianceMoyenneStratifié Precision.Relative
     288.6003
                             297.9287
                                              5.980802
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb1[-18,3])/N;MoySt
## [1] 288.6003
mean(donnees$VAR1)
## [1] 288.6003
#variance
varianceStr=varianceStratifie(tb1[-18,9],tb1[-18,2],tb1[-18,5],N)
#precision relative
precisionRelative1=(sqrt(varianceStr)/MoySt)*100;precisionRelative1
```

```
## [1] 1.398404

TabloPrecisionOP=data.frame("moyenneStrate"=MoySt,"VarianceMoyenneStratifié"=
varianceStr,"Precision Relative"=precisionRelative1)

kable(TabloPrecisionOP)
```

moyenneStrate VarianceMoyenneStratifié Precision.Relative

```
288.6003
                             16.28766
                                               1.398404
#allocation proportionnelle
MoySt=sum(tb1[-18,3])/N;MoySt
## [1] 288.6003
mean(donnees$VAR3)
## [1] 850.7134
T=sum(tb1[-18,3])
#allocation proportionnelle nAP
calnAP=function(k,grandNh,Sh,N,MoyenneX){
  cmp1= N * sum((grandNh*Sh*Sh))
  cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
  cmp3=sum(Sh * Sh * grandNh)
  cmp = cmp1/(cmp2 + cmp3)
  return(cmp)
}
nAP=calnAP(2/100,tb1[-18,2],tb1[-18,5],N,MoySt);nAP; sum(nAP)
## [1] 4476.612
## [1] 4476.612
#allocation de Neymar
calnNey=function(k,grandNh,Sh,N,MoyenneX){
  cmp1= sum(grandNh*Sh) * sum(grandNh*Sh)
  cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
  cmp3=sum(Sh * Sh * grandNh)
  cmp = cmp1/(cmp2 + cmp3)
  return(cmp)
```

```
nNey=calnNey(2/100,tb1[,2],tb1[-18,5],N,MoySt);nNey; sum(nNey)
## Warning in grandNh * Sh: la taille d'un objet plus long n'est pas multiple
de la
## taille d'un objet plus court
## Warning in grandNh * Sh: la taille d'un objet plus long n'est pas multiple
de la
## taille d'un objet plus court
## Warning in Sh * Sh * grandNh: la taille d'un objet plus long n'est pas
multiple
## de la taille d'un objet plus court
## [1] 714.9129
## [1] 714.9129
calN=data.frame("nombre de strate"=24,"K"=2/100,"nAP"=nAP,"nAP
arrondi"=round(nAP,0),"nNey"=nNey,"nNey arrondi"=round(nNey,0))
kable(calN)
nombre.de.strate
                  K
                          nAP nAP.arrondi
                                               nNey nNey.arrondi
            24 0.02 4476.612
                                     4477
                                                             715
                                           714.9129
#par strate
## allocation proportionnelle
calNhStAP=function(k,grandNh,Sh,T){
 cmp1=(grandNh*grandNh * Sh *Sh)
 cmp2=(Sh * Sh * grandNh)
 cmp3=(k*T)*(k*T)
 cmp = cmp1/(cmp2 + cmp3)
 return(cmp)
}
nhAP=calNhStAP(2/100,tb1[-18,2],tb1[-18,5],T);nhAP
## [1] 0.11011716 0.28754827 0.11708875 0.46810714 31.99955273
0.23767563
## [7] 0.23799786 0.09495923 0.04457170 0.12186895 5.92589943
0.01668902
## [13] 0.39324844 0.23563029 0.03985891 0.05658479 2.79592758
0.04848507
## [19] 0.02180875 0.02123439 0.15818469 13.93959175 0.34046961
```

allocation optimale

```
calNhStNey=function(grandNh,Sh,nNey){
 cmp1=(grandNh*Sh)
 cmp2=sum(grandNh*Sh)
 cmp3=cmp1/ cmp2
 cmp= cmp3*nNey
 return(cmp)
}
nhNeySt=calNhStNey(tb1[-18,2],tb1[-18,5],nNey);nhNeySt
##
  [1] 11.430181 18.474327 11.788243 23.582821 201.521766 16.995405
## [7] 16.803926 10.615446 7.272677 12.028868 85.045077 4.454354
## [13] 21.600399 16.723084 6.877354
                                         8.195329 58.204628
                                                              7.584422
## [19]
         5.086966
                    5.019600 13.704878 131.486585 20.416547
calNh=data.frame( "Strate"=tb1[-18,1],"K"=2/100,"nAP par Strate"=nhAP,"nAP
arrondi/Strate"=round(nhAP,0) ,"nNey par Strate"=nhNeySt,"nNey arrondi
/Strate"=round(nhNeySt,0))
kable(calNh)
```

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey.arrondiStrate
AA1	0.02	0.1101172	0	11.430181	11
AA2	0.02	0.2875483	0	18.474327	18
AA3	0.02	0.1170888	0	11.788243	12
AA4	0.02	0.4681071	0	23.582821	24
AA5	0.02	31.9995527	32	201.521766	202
AA6	0.02	0.2376756	0	16.995405	17
BB1	0.02	0.2379979	0	16.803926	17
BB2	0.02	0.0949592	0	10.615446	11
BB3	0.02	0.0445717	0	7.272677	7
BB4	0.02	0.1218689	0	12.028868	12
BB5	0.02	5.9258994	6	85.045077	85
BB6	0.02	0.0166890	0	4.454354	4
CC1	0.02	0.3932484	0	21.600399	22
CC2	0.02	0.2356303	0	16.723084	17
CC3	0.02	0.0398589	0	6.877354	7
CC4	0.02	0.0565848	0	8.195329	8
CC5	0.02	2.7959276	3	58.204628	58
DD1	0.02	0.0484851	0	7.584422	8
DD2	0.02	0.0218087	0	5.086966	5
DD3	0.02	0.0212344	0	5.019600	5

DD4	0.02	0.1581847	0	13.704878	14
DD5	0.02	13.9395917	14	131.486585	131
DD6	0.02	0.3404696	0	20.416547	20

Precision et allocation VAR2

```
##VAR2
N=length(donnees$PAYS)
n=600
#Strate1
strate1AA=subset(donnees[,-c(3,5)],donnees$ZONE=="AA" & donnees$VAR2<100)</pre>
strate1BB=subset(donnees[,-c(3,5)],donnees$ZONE=="BB" & donnees$VAR2<100)</pre>
strate1CC=subset(donnees[,-c(3,5)],donnees$ZONE=="CC" & donnees$VAR2<100)</pre>
strate1DD=subset(donnees[,-c(3,5)],donnees$ZONE=="DD" & donnees$VAR2<100)
#Strate2
strate2AA=subset(donnees[,-c(3,5)],donnees$ZONE=="AA" & donnees$VAR2>=100 &
donnees$VAR2<500)
strate2BB=subset(donnees[,-c(3,5)],donnees$ZONE=="BB" & donnees$VAR2>=100 &
donnees$VAR2<500)
strate2CC=subset(donnees[,-c(3,5)],donnees$ZONE=="CC" & donnees$VAR2>=100 &
donnees$VAR2<500)
strate2DD=subset(donnees[,-c(3,5)],donnees$ZONE=="DD" & donnees$VAR2>=100 &
donnees$VAR2<500)
#strate3
strate3AA=subset(donnees[,-c(3,5)],donnees$ZONE=="AA" & donnees$VAR2>=500 &
donnees$VAR2<1000)
strate3BB=subset(donnees[,-c(3,5)],donnees$ZONE=="BB" & donnees$VAR2>=500 &
donnees$VAR2<1000)
strate3CC=subset(donnees[,-c(3,5)],donnees$ZONE=="CC" & donnees$VAR2>=500 &
donnees$VAR2<1000)
strate3DD=subset(donnees[,-c(3,5)],donnees$ZONE=="DD" & donnees$VAR2>=500 &
donnees$VAR2<1000)
#strate4
strate4AA=subset(donnees[,-c(3,5)],donnees$ZONE=="AA" & donnees$VAR2>=1000 &
donnees$VAR2<2000)
strate4BB=subset(donnees[,-c(3,5)],donnees$ZONE=="BB" & donnees$VAR2>=1000 &
donnees$VAR2<2000)
strate4CC=subset(donnees[,-c(3,5)],donnees$ZONE=="CC" & donnees$VAR2>=1000 &
donnees$VAR2<2000)
strate4DD=subset(donnees[,-c(3,5)],donnees$ZONE=="DD" & donnees$VAR2>=1000 &
donnees$VAR2<2000)
#strate5
strate5AA=subset(donnees[,-c(3,5)],donnees$ZONE=="AA" & donnees$VAR2>=2000 &
donnees$VAR2<10000)
```

```
strate5BB=subset(donnees[,-c(3,5)],donnees$ZONE=="BB" & donnees$VAR2>=2000 &
donnees$VAR2<10000)
strate5CC=subset(donnees[,-c(3,5)],donnees$ZONE=="CC" & donnees$VAR2>=2000 &
donnees$VAR2<10000)
strate5DD=subset(donnees[,-c(3,5)],donnees$ZONE=="DD" & donnees$VAR2>=2000 &
donnees$VAR2<10000)
#strate6
strate6AA=subset(donnees[,-c(3,5)],donnees$ZONE=="AA" & donnees$VAR2>=10000)
strate6BB=subset(donnees[,-c(3,5)],donnees$ZONE=="BB" & donnees$VAR2>=10000)
strate6CC=subset(donnees[,-c(3,5)],donnees$ZONE=="CC" & donnees$VAR2>=10000)
strate6DD=subset(donnees[,-c(3,5)],donnees$ZONE=="DD" & donnees$VAR2>=10000)
shh=function(x){ nn=length(x)-1;yhn=mean(x);eca=((x-yhn)^2);return
(sqrt((1/nn)*sum(eca)))}
#zone AA
strate=c("AA1","AA2","AA3","AA4","AA5","AA6")
Nh1=c(length(strate1AA$VAR2),length(strate2AA$VAR2),length(strate3AA$VAR2),le
ngth(strate4AA$VAR2),length(strate5AA$VAR2),length(strate6AA$VAR2))
moy=c(mean(strate1AA$VAR2), mean(strate2AA$VAR2), mean(strate3AA$VAR2), mean(str
ate4AA$VAR2), mean(strate5AA$VAR2), mean(strate6AA$VAR2))
Somme=c(sum(strate1AA$VAR2),sum(strate2AA$VAR2),sum(strate3AA$VAR2),sum(strate
e4AA$VAR2),sum(strate5AA$VAR2),sum(strate6AA$VAR2))
Sh=c(shh(strate1AA$VAR2),shh(strate2AA$VAR2),shh(strate3AA$VAR2),shh(strate4A
A$VAR2), shh(strate5AA$VAR2), shh(strate6AA$VAR2))
nhAp=Nh1*n/N;nhAp=round(nhAp,0)
TzoneAA=data.frame("strate"=strate, "Nh"=Nh1, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
strate=c("BB1","BB2","BB3","BB4","BB5","BB6")
Nh2=c(length(strate1BB$VAR2),length(strate2BB$VAR2),length(strate3BB$VAR2),le
ngth(strate4BB$VAR2),length(strate5BB$VAR2),length(strate6BB$VAR2))
moy=c(mean(strate1BB$VAR2), mean(strate2BB$VAR2), mean(strate3BB$VAR2), mean(str
ate4BB$VAR2),mean(strate5BB$VAR2),mean(strate6BB$VAR2))
```

```
Somme=c(sum(strate1BB$VAR2),sum(strate2BB$VAR2),sum(strate3BB$VAR2),sum(strat
e4BB$VAR2), sum(strate5BB$VAR2), sum(strate6BB$VAR2))
Sh=c(shh(strate1BB$VAR2),shh(strate2BB$VAR2),shh(strate3BB$VAR2),shh(strate4B
B$VAR2), shh(strate5BB$VAR2), shh(strate6BB$VAR2))
nhAp=Nh2*(n/N);nhAp=round(nhAp,0)
TzoneBB=data.frame("strate"=strate, "Nh"=Nh2, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp )
strate=c("CC1","CC2","CC3","CC4","CC5","CC6")
Nh3=c(length(strate1CC$VAR2),length(strate2CC$VAR2),length(strate3CC$VAR2),le
ngth(strate4CC$VAR2),length(strate5CC$VAR2),length(strate6CC$VAR2))
Somme=c(sum(strate1CC$VAR2),sum(strate2CC$VAR2),sum(strate3CC$VAR2),sum(strate
e4CC$VAR2), sum(strate5CC$VAR2), sum(strate6CC$VAR2))
moy=c(mean(strate1CC$VAR2),mean(strate2CC$VAR2),mean(strate3CC$VAR2),mean(str
ate4CC$VAR2),mean(strate5CC$VAR2),mean(strate6CC$VAR2))
Sh=c(shh(strate1CC$VAR2),shh(strate2CC$VAR2),shh(strate3CC$VAR2),shh(strate4C
C$VAR2), shh(strate5CC$VAR2), shh(strate6CC$VAR2))
nhAp=Nh3*(n/N);nhAp=round(nhAp,0)
TzoneCC=data.frame("strate"=strate, "Nh"=Nh3, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
strate=c("DD1","DD2","DD3","DD4","DD5","DD6")
Nh4=c(length(strate1DD$VAR2),length(strate2DD$VAR2),length(strate3DD$VAR2),le
ngth(strate4DD$VAR2),length(strate5DD$VAR2),length(strate6DD$VAR2))
Somme=c(sum(strate1DD$VAR2),sum(strate2DD$VAR2),sum(strate3DD$VAR2),sum(strate3DD$VAR2)
e4DD$VAR2), sum(strate5DD$VAR2), sum(strate6DD$VAR2))
mov=c(mean(strate1DD$VAR2),mean(strate2DD$VAR2),mean(strate3DD$VAR2),mean(str
ate4DD$VAR2), mean(strate5DD$VAR2), mean(strate6DD$VAR2))
```

```
Sh=c(shh(strate1DD$VAR2),shh(strate2DD$VAR2),shh(strate3DD$VAR2),shh(strate4D
D$VAR2), shh(strate5DD$VAR2), shh(strate6DD$VAR2))
nhAp=Nh4*(n/N);nhAp=round(nhAp,0)
TzoneDD=data.frame("strate"=strate, "Nh"=Nh4, "Total"=Somme, "Moyenne"=moy, "Sh"=
Sh, "nhAp"=nhAp)
tb2=rbind(TzoneAA, TzoneBB, TzoneCC, TzoneDD)
  sum(tb2[,2])
## [1] 24000
NhSh=c(tb2[,2]*tb2[,5]);nhNey=(NhSh*n)/sum(NhSh);sum(nhNey);nhNey=round(nhNey)
,0);sum(nhNey)
## [1] 600
## [1] 599
  nhAp1=(tb2[,2]*n)/N; sum(nhAp1);sum(nhAp1)
## [1] 600
## [1] 600
tb2=cbind(rbind(TzoneAA,TzoneBB,TzoneCC,TzoneDD),data.frame(nhAp1,NhSh,nhNey)
)
  #Totaux
Total=c(length(tb2[,1]),sum(tb2[,2]),sum(tb2[,3]),sum(tb2[,4]),sum(tb2[,6]),s
um(tb2[,7]),sum(tb2[,9]))
tb21=cbind(tb2,data.frame(nhAp1))
kable(tb2)
                                                                           nhNe
                                                 nhA
strat
        Nh
                Total
                          Moyenne
                                            Sh
                                                      nhAp1
                                                                    NhSh
e
                                                   p
                                                                              У
```

AA1

209

51182

24.47728

28.88378

52

52.27

60395.978

8

	1					5		
AA2	949	233716	246.27608	115.55179	24	23.72	109658.65 2	14
AA3	501	356920	712.41517	143.57774	13	12.52 5	71932.448	9
AA4	409	571813	1398.07579	283.14146	10	10.22 5	115804.85 6	15
AA5	290	102742 2	3542.83448	1688.6403 3	7	7.250	489705.69 6	63
AA6	7	78527	11218.1428 6	568.70772	0	0.175	3980.954	1
BB1	261 8	104926	40.07869	30.11369	65	65.45 0	78837.646	10
BB2	228 6	543241	237.63823	111.80389	57	57.15 0	255583.69 6	33
BB3	939	681405	725.67093	147.75503	23	23.47 5	138741.97 5	18
BB4	874	121492 0	1390.06865	272.09564	22	21.85 0	237811.59 2	31
BB5	364	117005 3	3214.43132	1386.9788 5	9	9.100	504860.30 0	65
BB6	11	140105	12736.8181 8	2964.9191 2	0	0.275	32614.110	4
CC1	275 4	112173	40.73094	29.53432	69	68.85 0	81337.511	10
CC2	262 9	619983	235.82465	109.46480	66	65.72 5	287782.97 1	37
CC3	110 7	800571	723.18970	145.20024	28	27.67 5	160736.66 9	21
CC4	911	126965 1	1393.68935	277.89384	23	22.77 5	253161.29 1	33
CC5	509	178488 6	3506.65226	1606.2050 1	13	12.72 5	817558.34 9	105
CC6	11	151601	13781.9090 9	3671.0974 0	0	0.275	40382.071	5
DD1	193 8	72343	37.32869	30.07983	48	48.45 0	58294.701	8
DD2	145 5	336486	231.26186	107.97364	36	36.37 5	157101.64 1	20
DD3	567	409475	722.17813	142.95178	14	14.17	81053.657	10

						a				5		
DD4	48	6 6	90885	14	21.57407	274.	07490	12	12	2.15 0	133200.40 4	17
DD5	5 29	0 10	01365 3	34	95.35517	1632	2.8457 9	7	7.	250	473525.27 9	61
DD6	5	4 !	54778	13	694.5000 0	1660	0.6064 2	0	0.	100	6642.426	1
kab:	le (tb2[1:6,])									
stra	t							nhA				nhNe
e	N	h	Total		Moyenne		Sh	p	nh	Ap1	NhSh	у
AA1		9 ! 1	51182		24.47728	28.	88378	52	52	2.27 5	60395.978	8
AA2	2 94	9 2:	33716	2	46.27608	115.	55179	24	23	3.72 5	109658.65 2	14
AA3	3 50	1 3	56920	7	12.41517	143.	57774	13	12	2.52 5	71932.448	9
AA4	40	9 5'	71813	13	98.07579	283.	14146	10	10).22 5	115804.85 6	15
AA5	5 29	0 10	02742 2	35	42.83448	1688	3.6403 3	7	7.	250	489705.69 6	63
AA6	· •	7	78527	11	218.1428	568.	70772	0	0.	175	3980.954	1
kab:	le (tb2[7:12,])									
	strat							nh	A	nhAp		nhNe
	e	Nh	Tot	al	Moyenn	e	Sh		p	1	NhSh	У
7	BB1	261 8	10492	26	40.0786	9 3	30.11369	6	5	65.45 0		10
8	BB2	228 6	54324	11	237.6382	3 11	11.80389	5	7	57.15 0		33
9	BB3	939	68140)5	725.6709	3 14	17.75503	2	3	23.47 5		18
1 0	BB4	874	12149	92 0	1390.0686	5 27	72.09564	2	2	21.85 0		31
1 1	BB5	364	11700)5 3	3214.4313	2 13	386.9788 5		9	9.100	504860.3 0	65
1	BB6	11	14010)5	12736.818	1 29	964.9191		0	0.275	32614.11	4

	strat					nhA	nhAp		nhNe
	e	Nh	Total	Moyenne	Sh	p	1	NhSh	у
1	CC1	275	112173	40.73094	29.53432	69	68.85	81337.51	10
3		4					0		
1	CC2	262	619983	235.82465	109.46480	66	65.72	287782.9	37
4		9					5	7	
1	CC3	110	800571	723.18970	145.20024	28	27.67	160736.6	21
5		7					5	7	
1	CC4	911	126965	1393.68935	277.89384	23	22.77	253161.2	33
6			1				5	9	
1	CC5	509	178488	3506.65226	1606.2050	13	12.72	817558.3	105
7			6		1		5	5	
1	CC6	11	151601	13781.9090	3671.0974	0	0.275	40382.07	5
8				9	0				
kat	ole(tb2	[19:24	,])						

	strat					nhA	nhAp		nhNe
	e	Nh	Total	Moyenne	Sh	p	1	NhSh	У
1	DD1	193	72343	37.32869	30.07983	48	48.45	58294.701	8
9		8					0		
2	DD2	145	336486	231.26186	107.97364	36	36.37	157101.64	20
0		5					5	1	
2	DD3	567	409475	722.17813	142.95178	14	14.17	81053.657	10
1							5		
2	DD4	486	690885	1421.57407	274.07490	12	12.15	133200.40	17
2							0	4	
2	DD5	290	101365	3495.35517	1632.8457	7	7.250	473525.27	61
3			3		9			9	
2	DD6	4	54778	13694.5000	1660.6064	0	0.100	6642.426	1
4				0	2				

#Precision relative de l'ensemble de zones
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle

MoySt=sum(tb2[,3])/N;MoySt

[1] 562.1131

mean(donnees\$VAR2)

[1] 562.1131

T=**sum**(tb2[,3])

#Estimateur de variance de la moyenne

```
varianceStratifie=function(nhpetit,grandNh,Sh,N){
  cmp1=(grandNh*grandNh)/(N*N)
  cmp2=1-(nhpetit/grandNh)
  cmp3=(Sh * Sh)/nhpetit
  cmp=cmp1*cmp2*cmp3
  return(sum(cmp))
}
varianceT=function(nhpetit,grandNh,Sh){
  cmp1=(grandNh*grandNh * Sh *Sh)/(nhpetit)
  cmp2=(Sh * Sh * grandNh)
  cmp=cmp1- cmp2
  return(sum(cmp))
}
varianceStr=varianceStratifie(tb2[,7],tb2[,2],tb2[,5],N);varianceStr
## [1] 287.0739
varianceTot=varianceT(tb2[,7],tb2[,2],tb2[,5]);varianceTot
## [1] 165354591977
#precision relative
precisionRelative1=(sqrt(varianceStr)/MoySt)*100;precisionRelative1
## [1] 3.014208
precisionRelative2=(sqrt(varianceTot)/T)*100;precisionRelative2
## [1] 3.014208
TabloPrecisionAP=data.frame("moyenneStrate"=MoySt,"VarianceMoyenneStratifié"=
varianceStr, "Precision Relative"=precisionRelative1)
kable(TabloPrecisionAP)
moyenneStrate VarianceMoyenneStratifié Precision.Relative
                             287.0739
     562.1131
                                              3.014208
##Estimation de la moyenne et total au sein de l'echantion par allocation
porportionnelle
MoySt=sum(tb2[,3])/N;MoySt
## [1] 562.1131
mean(donnees$VAR2)
## [1] 562.1131
#variance
varianceStr=varianceStratifie(tb2[,9],tb2[,2],tb2[,5],N)
```

```
#precision relative
precisionRelative1=(sqrt(varianceStr)/MoySt)*100;precisionRelative1
## [1] 1.32375
TabloPrecisionOP=data.frame("moyenneStrate"=MoySt, "VarianceMoyenneStratifié"=
varianceStr, "Precision Relative"=precisionRelative1)
kable(TabloPrecisionOP)
moyenneStrate VarianceMoyenneStratifié Precision.Relative
     562.1131
                              55.3681
                                                1.32375
#allocation proportionnelle
MoySt=sum(tb2[,3])/N;MoySt
## [1] 562.1131
mean(donnees$VAR3)
## [1] 850.7134
T=sum(tb2[,3])
#allocation proportionnelle nAP
calnAP=function(k,grandNh,Sh,N,MoyenneX){
  cmp1= N * sum((grandNh*Sh*Sh))
  cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
  cmp3=sum(Sh * Sh * grandNh)
  cmp = cmp1/(cmp2 + cmp3)
  return(cmp)
}
nAP=calnAP(2/100,tb2[,2],tb2[,5],N,MoySt);nAP; sum(nAP)
## [1] 1320.836
## [1] 1320.836
#allocation de Neymar
```

calnNey=function(k,grandNh,Sh,N,MoyenneX){
 cmp1= sum(grandNh*Sh) * sum(grandNh*Sh)

cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)

```
cmp3=sum(Sh * Sh * grandNh)
  cmp=cmp1/(cmp2 + cmp3)
  return(cmp)
}
nNey=calnNey(2/100,tb2[,2],tb2[,5],N,MoySt);nNey; sum(nNey)
## [1] 280.7524
## [1] 280.7524
calN=data.frame("nombre de strate"=24,"K"=2/100, "nAP"=nAP, "nAP
arrondi"=round(nAP,0), "nNey"=nNey, "nNey arrondi"=round(nNey,0))
kable(calN)
nombre.de.strate
                   K
                           nAP
                                nAP.arrondi
                                                      nNey.arrondi
                                                nNev
                0.02
                     1320.836
                                      1321
                                            280.7524
                                                               281
#par strate
## allocation proportionnelle
calNhStAP=function(k,grandNh,Sh,T){
  cmp1=(grandNh*grandNh * Sh *Sh)
  cmp2=(Sh * Sh * grandNh)
  cmp3=(k*T)*(k*T)
  cmp = cmp1/(cmp2 + cmp3)
  return(cmp)
}
nhAP=calNhStAP(2/100,tb2[,2],tb2[,5],T);nhAP
## [1] 0.0501043805 0.1651506523 0.0710653895 0.1841314838 3.2571294255
## [6] 0.0002176862 0.0853735247 0.8969452458 0.2643403982 0.7761582271
## [11] 3.4678090871 0.0145916587 0.0908735514 1.1371358965 0.3547813568
## [16] 0.8795189226 9.0186924031 0.0223544391 0.0466785948 0.3389458622
## [21] 0.0902290085 0.2435922258 3.0476715834 0.0006059791
## allocation optimale
calNhStNey=function(grandNh,Sh,nNey){
```

cmp1=(grandNh*Sh)
cmp2=sum(grandNh*Sh)
cmp3=cmp1/ cmp2
cmp= cmp3*nNey
return(cmp)

nhNeySt=calNhStNey(tb2[,2],tb2[,5],nNey);nhNeySt

}

```
## [1] 3.6459665 6.6198411 4.3423967 6.9908733 29.5624087 0.2403211
## [7] 4.7592477 15.4290010 8.3755345 14.3561399 30.4772574 1.9688390
## [13] 4.9101588 17.3727973 9.7033037 15.2827660 49.3541207 2.4377729
## [19] 3.5191173 9.4838654 4.8930232 8.0410026 28.5856341 0.4009880

calNh=data.frame( "Strate"=tb2[,1],"K"=2/100,"nAP par Strate"=nhAP,"nAP
arrondi/Strate"=round(nhAP,0) ,"nNey par Strate"=nhNeySt,"nNey arrondi
/Strate"=round(nhNeySt,0))
kable(calNh)
```

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey.arrondiStrate
AA1	0.02	0.0501044	0	3.6459665	4
AA2	0.02	0.1651507	0	6.6198411	7
AA3	0.02	0.0710654	0	4.3423967	4
AA4	0.02	0.1841315	0	6.9908733	7
AA5	0.02	3.2571294	3	29.5624087	30
AA6	0.02	0.0002177	0	0.2403211	0
BB1	0.02	0.0853735	0	4.7592477	5
BB2	0.02	0.8969452	1	15.4290010	15
BB3	0.02	0.2643404	0	8.3755345	8
BB4	0.02	0.7761582	1	14.3561399	14
BB5	0.02	3.4678091	3	30.4772574	30
BB6	0.02	0.0145917	0	1.9688390	2
CC1	0.02	0.0908736	0	4.9101588	5
CC2	0.02	1.1371359	1	17.3727973	17
CC3	0.02	0.3547814	0	9.7033037	10
CC4	0.02	0.8795189	1	15.2827660	15
CC5	0.02	9.0186924	9	49.3541207	49
CC6	0.02	0.0223544	0	2.4377729	2
DD1	0.02	0.0466786	0	3.5191173	4
DD2	0.02	0.3389459	0	9.4838654	9
DD3	0.02	0.0902290	0	4.8930232	5
DD4	0.02	0.2435922	0	8.0410026	8
DD5	0.02	3.0476716	3	28.5856341	29
DD6	0.02	0.0006060	0	0.4009880	0