

Renewable Energy Heat

WiSe 2023-2024

Dr. Herena Torio

Agenda

- Learning outcomes
- Timeplan
- Seminar Structure
- The course content and tools
- o The exam

Learning outcomes for RE Heat

- Understand the operation principles of **main components** (solar cooling, solar thermal and heat pump technologies) of thermal systems and **physical principles** governing it
- Understand the main **parameters** used for characterizing thermal systems behaviour: their strenghts and weaknesses
- Understand and infer the interplay in the performance of different components to build up a heat supply system
- Understand some typical control strategies and hydraulic configurations
- Infer the behaviour of a given thermal system with changing system parameters (storage size, hydraulic connection,...)
- Sketch appropriate system designs for a given supply purpose

Course structure

Theory

Solar collectors

Collector field and energy demands

Thermal storage

Heat pumps and TDCs

Thermodynamic modelling

Hydraulic scheemes (scheemes of principle)

Application

- Small exercises
- Programming tasks
- Parametric study

Timeline

Date	Topic - The lecture
19.10	Introduction to Course + The heat transition: Low temperature energy demands and heat supply systems
26.10	Solar thermal collectors (STC)
2.11	Heat energy demands and heat sources (Solar collector fields and others)
9.11	Storage
16.11	Heat pumps (and TDC chillers) I+ II – thermodynamic processes
23.11	Heat pumps (and TDC chillers) I+ II – thermodynamic processes
30.11	Intro to thermodynamic modelling: self-made system – basic HP network, cool prop diagramm

Timeline

Date	Topic - The lecture
07.12	Key performance indicators Methods for performance assessment of the systems
14.12	Thermodynamic modelling a la carte I: tespy - cornerstones and flexibilities in the software
21.12	Thermodynamic modelling a la carte II: tespy - cornerstones and flexibilities in the software
11.01	Parametric study, min HP+STC, evt. enhancing the sytsem with storage
18.01	Hydraulic scheemes – blessings and pitfalls Systems at work: control and interdependencies
25.01	Systems at work: control and interdependencies Final presentations
01.02	Final presentations and feedback

Course structure

Theory

Solar collectors

Collector field and energy demands

Thermal storage

Heat pumps and TDCs

Thermodynamic modelling

Hydraulic scheemes (scheemes of principle)

Dr. Herena Torio PPRE/UOL

Francesco Witte DLR-VE

Course structure

Theory

Solar collectors

Collector field and energy demands

Thermal storage

Heat pumps and TDCs

Thermodynamic modelling

Hydraulic scheemes (scheemes of principle)

Delivery mode and materials

- Presentations
- Coursware
- Videos...

Weekly deals

- Live sessions with different activities
- Tasks and materials communicated weekly

Agenda

- Learning outcomes
- o Timeplan
- Seminar Structure
- The course content and tools
- o The exam

The Coursware

The Coursware

The Coursware

The Exam: e-portfolio

E- Portfolio: in groups of 2, 33% each of the items!

 Code for parametric study of a system performance

Deadline: 1 March 2024

Poster with your calculation results
 more info on next slide
 OR
 Short presentation (5-10 minutes)
 at the POSTER SESSION
 You can present the poster or your slide-set

Deadline: 01. Feb. 2024

- Expose: Summary of your analysis max. 2 pages explaining main points in the poster / short presentation in more detail

Deadline: 1 March 2024

The Exam: e-portfolio

Parametric study:

Define your system

- Choose ONE thermal energy demand
- Choose ONE location for that energy demand
- **Define** a meaningful system for supplying the chosen demand
- Draw a system sketch (scheeme of principle) for the system

Calculate ist performance

- **The PARAMETRIC STUDY**: Analyze the performance under different conditions

Analyse your results

- **Analyse** the results about the performance
- Derive **YOUR conclussions** based on the above points
 - Think about limits of your calculations: how representative are they? What are missing points and system dynamics? How important are they?