TOPOLOGY HOMEWORK 6

- 1. Denote by I(a, b) the closed interval in the Euclidean plane \mathbb{R}^2 joining points a and b. Which of the subsets of the Euclidean plane \mathbb{R}^2 given below are compact?
 - (a) $X = \bigcup_{n=1}^{\infty} I(a_0, a_n) \cup \bigcup_{n=1}^{\infty} I(b_0, b_n)$, where $a_0 = (0, 1), a_n = (\frac{1}{n}, 0), b_0 = (0, -1), b_n = (-\frac{1}{n}, 0)$.
 - (b) $Y = X \cup (\{0\} \times \mathbb{R})$
 - (c) $Z = X \cup (\{0\} \times [-1, 1])$
- 2. For $A \subseteq (0, +\infty)$, let X(A) be the union of closed intervals in the Euclidean plane \mathbb{R}^2 joining the point (-1,0) with points $(a,\frac{1}{a})$, $a \in A$. Show that X(A) is closed iff A is compact iff X(A) is compact.
- 3. Let (X,d) be a compact metric space. Prove that if a continuous map $f: X \to X$ preserves distance between points (i.e. $\forall x, y \in X \ d(x,y) = d(f(x),f(y))$) then f is onto. Hint: Assume there is $a \notin f(X)$ and consider the sequence $a, f(a), f(f(a)), \ldots$
- 4. Let (X,d) be a metric space. Define the distance between disjoint sets $A,B\subseteq X$ by $dist(A,B)=\inf\{d(a,b):a\in A,b\in B\}$
 - (a) Show that if A is closed in X and B is compact and does not intersect A then dist(A, B) > 0.
 - (b) Find two disjoint closed subsets A, B of the Euclidean plane \mathbb{R}^2 with dist(A, B) = 0.
- 5. Let X be a Hausdorff space. Suppose A and B are compact disjoint subsets of X. Show that there are disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$.
- 6. Prove that a compact Hausdorff space is normal.
- 7. Let $(X,d), \ (Y,\rho)$ be metric spaces. A map $f:X\to Y$ is uniformly continuous if for any $\varepsilon>0$ there is $\delta>0$ such that for any $x,y\in X$ if $d(x,y)<\delta$ then $\rho(f(x),f(y))<\varepsilon$. Prove that if X is compact, then any continuous map $f:X\to Y$ is uniformly continuous. Hint: Lebesgue number may help.