MAT361 — Introduction à l'analyse réelle

Contrôle du mardi 28 juin 2022 – Durée : 2 heures (corrections)

Exercice 1. Pour tous les entiers $n \ge 2$ et $k \ge 1$ vérifiant $1 \le k \le n$, on définit les fonctions $f_{n,k}: [0,1] \to \mathbf{R}$ par :

si
$$1 \le k \le n - 1$$
, $f_{n,k}(x) = \begin{cases} \sqrt{n} & \text{pour } \frac{k-1}{n} \le x < \frac{k}{n}, \\ 0 & \text{sinon }; \end{cases}$

$$f_{n,n}(x) = \begin{cases} \sqrt{n} & \text{pour } \frac{n-1}{n} \le x \le 1, \\ 0 & \text{sinon.} \end{cases}$$

On considère l'espace de Hilbert réel $H = L^2([0,1]; \mathbf{R})$, muni du produit scalaire

$$(f \mid g) = \int_0^1 fg$$

et de la norme associée à ce produit scalaire, notée $\|\cdot\|$ dans cet exercice.

- (a) Pour tous $1 \le k \le j \le n$, calculer $(f_{n,j} \mid f_{n,k})$. Pour $1 \le k < j \le n$, on a $f_{n,j}f_{n,k} = 0$ et donc $(f_{n,j} \mid f_{n,k}) = 0$. Pour $1 \le k \le n$, on a $(f_{n,k} \mid f_{n,k}) = 1$.
- (b) On note E_n le sous-espace vectoriel de H engendré par les fonctions $f_{n,k}$ pour $k = 1, \ldots, n$. Préciser la dimension de E_n , en donner une base et justifier qu'il s'agit d'un sous-espace vectoriel fermé de H.

La famille $\{f_{n,k}: 1 \leq k \leq n\}$ est une base (orthonormée) de E_n . Le sous-espace E_n est donc de dimension finie n; en particulier il est fermé (Lemme 3.1.2 du cours).

(c) Pour $n \geq 2$ et pour tout $g \in H$, on note $P_n g$ la projection orthogonale de g sur le sousespace fermé E_n . Justifier l'inégalité $\|P_n g\| \leq \|g\|$. Déterminer en fonction de g les coefficients réels $c_{n,k}$, pour $1 \leq k \leq n$, tels que

$$P_n g = \sum_{k=1}^n c_{n,k} f_{n,k}$$
.

On sait que $P_ng \in E_n$ et que $g - P_ng$ est orthogonal à toute fonction de E_n . Ainsi, par le théorème de Pythagore, la relation $g = P_ng + (g - P_ng)$ entraı̂ne l'identité $||g||^2 = ||P_ng||^2 + ||g - P_ng||^2 \ge ||P_ng||^2$. On peut aussi invoquer la majoration donnée par le Théorème 7.3.2 du polycopié.

On rappelle que $(f_{n,k} \mid f_{n,j}) = 0$ pour $j \neq k$ et $(f_{n,k} \mid f_{n,k}) = 1$. Avec la notation $P_n g = \sum_{j=1}^n c_{n,j} f_{n,j}$, la fonction $g - P_n g$ est orthogonale à chaque fonction $f_{n,k}$ si et seulement

$$0 = (f_{n,k} \mid g) - c_{n,k}(f_{n,k} \mid f_{n,k}) = \sqrt{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} g(x) dx - c_{n,k},$$

ainsi

$$c_{n,k} = \sqrt{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} g(x) dx.$$

(d) Montrer que si un entier m est un multiple de n, alors $E_n \subset E_m$ et $P_n(P_m g) = P_n g$. Si m est un multiple de n, alors chaque $f_{n,k}$ est une somme finie de fonctions $f_{m,j}$ de E_m . Ceci montre l'inclusion $E_n \subset E_m$.

Pour $g \in H$, on décompose $g = g - P_n(P_m g) + P_n(P_m g)$. En écrivant le vecteur $g - P_n(P_m g)$ comme la somme de $g - P_m g$ et $P_m g - P_n(P_m g)$, on justifie maintenant qu'il appartient à l'orthogonal de E_n . En effet, d'une part $g - P_m g$ appartient à l'orthogonal de E_m , inclus dans l'orthogonal de E_n par l'inclusion $E_n \subset E_m$. D'autre part, $P_m g - P_n(P_m g)$ est dans l'orthogonal de E_n par la définition de la projection sur E_n du vecteur $P_m g$.

Ceci étant montré, par la caractérisation de la projection (Corollaire 7.3.1 du polycopié), on obtient $g - P_n(P_m g) = g - P_n g$ et $P_n(P_m g) = P_n g$.

(e) Calculer explicitement les fonctions $P_2(f_{2,2})$ et $P_2(P_3(f_{2,2}))$.

Comme $f_{2,2} \in E_2$, on a $P_2(f_{2,2}) = f_{2,2}$.

On sait que la fonction $f_{2,2}$ est nulle sur l'intervalle $[0,\frac{1}{2}[$ et égale à $\sqrt{2}$ sur $[\frac{1}{2},1]$. On calcule $P_3(f_{2,2}) = 0 \times f_{3,1} + \frac{\sqrt{6}}{6} \times f_{3,2} + \frac{\sqrt{6}}{3} \times f_{3,3}$ et donc $P_3(f_{2,2}) = 0$ sur $[0,\frac{1}{3}[$, $P_3(f_{2,2}) = \frac{\sqrt{2}}{2}$ sur $[\frac{1}{3},\frac{2}{3}[$ et $P_3(f_{2,2}) = \sqrt{2}$ sur $[\frac{2}{3},1]$. Ensuite, on calcule $P_2(P_3(f_{2,2})) = \frac{1}{6} \times f_{2,1} + \frac{5}{6} \times f_{2,2}$, et donc $P_2(P_3(f_{2,2})) = \frac{\sqrt{2}}{6}$ sur $[0,\frac{1}{2}[$ et $P_2(P_3(f_{2,2})) = \frac{5}{6}\sqrt{2}$ sur $[\frac{1}{2},1]$. En particulier, les fonctions $P_2(f_{2,2})$ et $P_2(P_3(f_{2,2}))$ ne sont pas égales.

(f) Soit $h:[0,1]\to \mathbf{R}$ une fonction continue. Montrer que lorsque $n\to +\infty$ la suite de fonctions $(P_nh)_{n\geq 1}$ converge uniformément vers h sur l'intervalle [0,1].

D'après le Théorème de Heine (Théorème 2.1.6 du cours), la fonction h définie et continue sur le compact [0,1] est uniformément continue sur [0,1]. Soit $\varepsilon>0$. Il existe un entier N>0 tel que pour tous $x,y\in[0,1]$, si $|x-y|<\frac{1}{N}$, alors $|h(x)-h(y)|<\varepsilon$. Pour $k=1,\ldots,n-1$ et $x\in[\frac{k-1}{n},\frac{k}{n}[,P_nh(x)$ est égal à la moyenne de h sur cet intervalle, et donc

$$\min_{\left[\frac{k-1}{n},\frac{k}{n}\right[}h \le P_n h(x) \le \max_{\left[\frac{k-1}{n},\frac{k}{n}\right]}h.$$

De même, pour $x\in [\frac{n-1}{n},1],$ $P_nh(x)$ est égal à la moyenne de h sur cet intervalle. En particulier, pour $n\geq N,$ et pour tout $x\in [0,1],$

$$|P_n h(x) - h(x)| \le \varepsilon.$$

Ceci montre la convergence uniforme sur l'intervalle [0,1].

(g) En utilisant un argument de densité, montrer que pour tout $g \in H$, la suite $(P_n g)_{n \ge 1}$ converge vers g dans H, c'est-à-dire au sens de la norme $\|\cdot\|$.

Pour toutes fonctions $g, h \in H$, on a par l'inégalité triangulaire

$$||g - P_n g|| \le ||g - h|| + ||h - P_n h|| + ||P_n h - P_n g||.$$

Soit $g \in H$. Un nombre réel $\varepsilon > 0$ étant donné, on choisit une fonction h continue sur [0,1] telle que $\|g-h\| \le \varepsilon/3$ par un théorème de densité du cours (Théorème 7.5.2). D'après la question (c), on a aussi $\|P_nh - P_ng\| \le \|h - g\| \le \varepsilon/3$. Enfin, d'après la question précédente, il existe un entier N tel que $\|h - P_nh\| \le \varepsilon/3$ pour tout $n \ge N$. Ceci montre que $\|g - P_ng\| \le \varepsilon$ pour tout $n \ge N$, et la convergence en moyenne quadratique est démontrée.

Exercice 2. On considère une fonction $V: [0, +\infty[\to \mathbf{R} \text{ de classe } \mathcal{C}^1 \text{ et strictement positive.}]$ On s'intéresse à l'équation différentielle d'ordre 2 :

$$\ddot{x} + V(t)x = 0, \quad t > 0.$$

(a) Montrer que toutes les solutions maximales de (E) sont globales sur $[0, +\infty[$. On écrit l'équation différentielle (E) sous la forme d'un système linéaire d'ordre un

$$\dot{X} = \begin{pmatrix} 0 & 1 \\ -V(t) & 0 \end{pmatrix} X \text{ avec } X = \begin{pmatrix} x \\ \dot{x} \end{pmatrix},$$

et on observe que le Corollaire 4.2.1 (Théorème de Cauchy-Lipschitz \mathcal{C}^1), combiné avec le critère analytique d'existence globale (Proposition 4.5.1) montrent que les solutions maximales de (E) sont globales pour $t \geq 0$.

(b) Donner un exemple de fonction V satisfaisant les hypothèses ci-dessus et telle que toutes les solutions de (E) s'annulent un nombre infini de fois sur $[0, +\infty[$.

Il suffit de choisir V=1 sur $[0,+\infty[$. La solution générale de (E) s'écrit

$$x(t) = A\cos t + B\sin t,$$

pour $A, B \in \mathbf{R}$.

On appelle fonction non-oscillante une fonction à valeur réelle, définie et continue sur un intervalle de la forme $[a, +\infty[$ où $a \in \mathbf{R}$, et qui ne s'annule qu'un nombre fini de fois sur son domaine de définition. Le but de cet exercice est de montrer que s'il existe une solution x de l'équation différentielle (E) qui est une fonction non-oscillante, alors $V \in L^1(]0, +\infty[)$.

Pour la suite de l'exercice, on suppose donc qu'il existe une fonction x non-oscillante qui est solution de (E).

(c) Montrer que la fonction

$$y = \frac{\dot{x}}{x}$$

est bien définie et de classe \mathcal{C}^1 sur un intervalle de la forme $[b, +\infty[$, où $b \geq a$. Calculer \dot{y} et en déduire que y est elle-même une fonction non-oscillante.

Comme x ne s'annule qu'un nombre fini de fois sur $[0, +\infty[$, il existe b>0 tel que x<0 sur $[b, +\infty[$ ou x>0 sur $[b, +\infty[$. Ainsi, $\frac{1}{x}$ est définie et de classe \mathcal{C}^2 sur $[b, +\infty[$. Comme x est de classe \mathcal{C}^2 , la fonction y est bien définie et de classe \mathcal{C}^1 sur $[b, +\infty[$.

On calcule

$$\dot{y} = \frac{\ddot{x}}{x} - \frac{(\dot{x})^2}{x^2} = -V - \frac{(\dot{x})^2}{x^2} = -V - y^2 < 0.$$

Comme V > 0, la fonction y est strictement décroissante sur $[b, +\infty[$. Elle a donc au plus un zéro sur $[b, +\infty[$. Ainsi, la fonction y est bien non-oscillante.

(d) Montrer que la fonction

$$z = \frac{1}{y}$$

est bien définie et de classe \mathcal{C}^1 sur un intervalle de la forme $[c, +\infty[$, où $c \geq b$. Calculer \dot{z} et en déduire que $\lim_{t\to +\infty} z(t) = +\infty$.

On note $c \geq b$ un réel tel que y ne s'annule pas sur $[c, +\infty[$. Alors z est bien définie et de classe C^1 sur $[c, +\infty[$. De plus,

$$\dot{z} = -\frac{\dot{y}}{y^2} = \frac{V}{y^2} + 1 \ge 1.$$

Par intégration, pour tout $t \geq c$, on a

$$z(t) \ge z(c) + (x - c)$$

Ainsi, $\lim_{t\to+\infty} z(t) = +\infty$.

(e) Montrer que $V \in L^1(]0, +\infty[)$.

Par la relation $y=\frac{1}{z}$, on observe que $\lim_{t\to+\infty}y(t)=0$ et donc y>0 sur $[b,+\infty[$. Pour tout $t\geq c$, en intégrant la relation $V=-\dot{y}-y^2$ sur [c,t], on trouve

$$\int_{c}^{t} V(s)ds = y(c) - y(t) - \int_{c}^{t} y^{2}(s)ds \le y(c).$$

Cette majoration indépendante de t montre que $\lim_{t\to+\infty}\int_c^t V(s)ds$ est bien définie et comme V>0, on obtient $V\in L^1(]c,+\infty[)$. Comme la fonction V est continue sur [0,c], on a bien montré que $V\in L^1(]0,+\infty[)$.

Exercice 3. On étudie l'équation

(F)
$$\begin{cases} u' = K \star u, \\ u : \mathbf{R} \to \mathbf{C} \text{ est de classe } \mathcal{C}^1, u \text{ est intégrable sur } \mathbf{R}, \\ K : \mathbf{R} \to \mathbf{C} \text{ est intégrable sur } \mathbf{R}. \end{cases}$$

La notation \hat{u} désigne la transformée de Fourier de u.

Dans les questions (a), (b) et (c), on suppose que u et K sont solutions de (F).

(a) Justifier que $K \star u$ est une fonction intégrable sur **R**. Montrer que, pour tout $\xi \in \mathbf{R}$,

$$i\xi \hat{u}(\xi) = \hat{K}(\xi)\hat{u}(\xi).$$

Les fonctions K et u étant intégrables sur \mathbf{R} , le produit de convolution $K \star u$ est également une fonction intégrable par le Théorème 9.1.1 du polycopié. De plus, le Théorème 9.2.5 donne $\mathcal{F}(K \star u) = \hat{K}\hat{u}$.

Comme u est de classe \mathcal{C}^1 , intégrable, et comme la fonction $u' = K \star u$ est intégrable, le Théorème 9.2.4 du polycopié entraı̂ne $\mathcal{F}(u') = i\xi \hat{u}$. En prenant la transformée de Fourier de l'égalité $u' = K \star u$ on obtient donc l'égalité des deux fonctions continues (Théorème 9.2.1) $i\xi \hat{u} = \hat{K}\hat{u}$ sur \mathbf{R} .

(b) Montrer que si la fonction u est non nulle, alors l'ensemble $\{\xi \in \mathbf{R} : \hat{K}(\xi) = i\xi\}$ contient un intervalle ouvert non vide.

Le Théorème 9.2.1 affirme que la fonction \hat{u} est continue sur **R**.

Si la fonction continue \hat{u} n'est pas la fonction nulle, il existe un intervalle ouvert I non vide tel que $\hat{u}(\xi) \neq 0$, pour tout $\xi \in I$. Alors, l'égalité $i\xi \hat{u} = \hat{K}\hat{u}$ se traduit par le fait que l'ensemble $\{\xi \in \mathbf{R} : \hat{K}(\xi) = i\xi\}$ contient I.

Si la fonction continue \hat{u} est la fonction nulle, $\hat{u} \in L^1$ et par le théorème d'inversion de Fourier (Théorème 9.2.2 du polycopié), on obtient que u est également la fonction nulle, ce qui est contraire à l'hypothèse.

(c) Montrer que \hat{u} est à support compact sur \mathbf{R} . Autrement dit, montrer qu'il existe un réel R > 0 tel que $\hat{u}(\xi) = 0$ pour tout $\xi \in \mathbf{R}$ vérifiant $|\xi| \geq R$.

On raisonne par l'absurde. Si \hat{u} n'est pas une fonction à support compact, alors il existe une suite ξ_n telle que $\lim_{n\to+\infty} |\xi_n| = +\infty$ et $\hat{u}(\xi_n) \neq 0$. Ainsi, $\hat{K}(\xi_n) = i\xi_n$. Ceci est une contradiction avec le fait que $\lim_{|\xi|\to+\infty} |\hat{K}(\xi)| = 0$ obtenu par le Théorème 9.2.1 (la fonction K étant intégrable).

Les questions (d) et (e) servent à préparer la question (f).

(d) Soit $f \in L^1(\mathbf{R})$. Montrer que si \hat{f} est à support compact, alors f est de classe \mathcal{C}^1 .

Comme la fonction \hat{f} est continue (Théorème 9.2.1) et à support compact, elle est intégrable. Le Théorème d'inversion de Fourier (Théorème 9.2.2) dit alors que la fonction g définie par $g(x) = 2\pi f(-x)$ vérifie :

$$g = \mathcal{F}(\hat{f}).$$

Comme \hat{f} est continue et à support compact, on a $(1+|\xi|)\hat{f} \in L^1(\mathbf{R})$. Par le Théorème 9.2.3, on obtient que g est de classe \mathcal{C}^1 et

$$g' = -i\mathcal{F}(\xi \hat{f}).$$

Par la relation $g(x) = 2\pi f(-x)$, on obtient que f est de classe \mathcal{C}^1 . De plus, on a

$$f'(x) = -(2\pi)^{-1}g'(-x) = i(2\pi)^{-1}\mathcal{F}(\xi\hat{f})(-x).$$

(e) Montrer que si une fonction $\varphi : \mathbf{R} \to \mathbf{C}$ est de classe \mathcal{C}^2 et à support compact sur \mathbf{R} , alors il existe $\psi \in L^1(\mathbf{R})$, de classe \mathcal{C}^1 sur \mathbf{R} , et qui vérifie $\hat{\psi} = \varphi$.

D'après la question précédente, il est naturel de poser $\tilde{\varphi}(x) = (2\pi)^{-1}\varphi(-x)$. Comme les fonctions $\tilde{\varphi}$, $\tilde{\varphi}'$ et $\tilde{\varphi}''$ sont continues et à support compact, elles sont intégrables sur \mathbf{R} et leur transformée de Fourier respective est bornée (Théorème 9.2.1). On définit

$$\psi(x) = \mathcal{F}(\tilde{\varphi}),$$

et par le Théorème 9.2.4, on obtient

$$ix\psi(x) = \mathcal{F}(\tilde{\varphi}'), \quad -x^2\psi(x) = \mathcal{F}(\tilde{\varphi}'').$$

En particulier, il existe une constante C > 0 telle que pour tout $x \in \mathbf{R}$,

$$|\psi(x)| \le \frac{C}{1+x^2}.$$

Cette majoration montre que la fonction ψ est intégrable sur \mathbf{R} (critère de Riemann). La formule d'inversion dans L^1 (Théorème 9.2.2) donne l'égalité $\hat{\psi} = \varphi$. Par la question précédente, on obtient que ψ est de classe \mathcal{C}^1 .

(f) Construire un exemple de fonctions u et K non nulles vérifiant (F).

On considère une fonction v non nulle, de classe C^2 et à support compact dans \mathbf{R} . On considère également une fonction H de classe C^2 à support compact et telle que $H(\xi) = i\xi$ pour tout ξ sur le support de v. Ainsi, l'équation $vH = i\xi v$ est vérifiée sur \mathbf{R} . Par la

question (e), il existe deux fonctions u et K, intégrables sur \mathbf{R} et de classe \mathcal{C}^1 , telles que $v = \hat{u}$ et $K = \hat{H}$. On a aussi obtenu dans la question (d) la relation

$$u'(x) = i(2\pi)^{-1} \mathcal{F}(\xi \hat{u})(-x).$$

Comme dans la question (a), le produit de convolution $K \star u$ est une fonction intégrable et $\mathcal{F}(K \star u) = \hat{K}\hat{u} = Hv = i\xi v = i\xi\hat{u}$. Comme $\xi\hat{u}$ est également une fonction intégrable, ceci se réécrit par la formule d'inversion de Fourier (Théorème 9.2.3)

$$(K \star u)(x) = i(2\pi)^{-1} \mathcal{F}(\xi \hat{u})(-x).$$

On obtient donc $u' = K \star u$.