Generation of high quality graphics for publication with R and ggplot2

Lars Roed Ingerslev

December 3, 2015

Before we start

Required Skills

- Some understanding of R
- How to import data into R
- How to install libraries

Getting the examples

Download from git:

git clone https://github.com/LarsRI/gg2.git

Useful links

cookbook-r.com/Graphs/index.html docs.ggplot2.org/current stackoverflow.com/tags/ggplot2/info

What is ggplot2?

- gg is short for grammar of graphics
- Developed by Hadley Wickham
- Figures are built in layers

qplot

qplot

qplot

```
p + geom_line() +
    xlab("X-label") +
    ylab("Y-label") +
    theme_bw()
```


Wide format

	Sample1	Sample2	Sample3
Gene1	1	2	3
Gene2	4	5	6
Gene3	7	8	9

Long format

Gene	variable	value	
Gene1	Sample1	1	
Gene2	Sample1	2	
Gene3	Sample1	3	
Gene1	Sample2	4	
Gene2	Sample3	8	
Gene3	Sample3	9	

reshape2

The diamonds dataset

carat	cut	color	clarity	depth	table	price
0.23	Ideal	Е	SI2	61.5	55	326
0.21	Premium	E	SI1	59.8	61	326
0.23	Good	Е	VS1	56.9	65	327
0.29	Premium	I	VS2	62.4	58	334
0.31	Good	J	SI2	63.3	58	335
0.24	Very Good	J	VVS2	62.8	57	336

The ggplot function

code

ggplot() contains things common to all layers

The ggplot function

```
p + geom_point()
```


aes() defines x, y, colours, shapes etc.

x X-axis

y Y-axis

colour Colour of lines and points

fill Fill of object

group Group data by

linetype Select linetype by

shape Select point shape by

size Set size of lines and points by

alpha Set alpha by

Setting colour

```
code

p %+%

aes(colour = color) + 0 1000 - 0 1 2 3 4 5
```

carat

Setting colour

```
code

p %+%

aes(colour = price) + 8 10000-
geom_point()

price
15000
5000
```

carat

condition	treatment	score
Healthy	Untreated	10.50
Healthy	Treated	11.00
Diseased	$\sf Untreated$	6.40
Diseased	Treated	10.00

geom_line()

```
code
                                    11 -
                                    10 -
p <- ggplot(dat_gl,</pre>
                                   score
                                     9 -
          aes(
             x = treatment,
                                     8 -
             y = score,
                                     7 -
             group =
                                                    Treated
                                         Untreated
                condition
                                              treatment
p + geom_line()
```

geom_line()

```
code
```

```
p %+% aes(
  linetype = condition)
    geom_line()
```


geom_boxplot()

geom_boxplot()

cut

geom_boxplot()

```
code
```

```
p + geom_boxplot(
        aes(fill = cut)
)
```

```
Cut Fair Good Very Good Permium Ideal
```

cut

geom_jitter()

geom_jitter()

```
p + geom_jitter(
          alpha = 0.1
)
```

```
1 - (tale of the control of the cont
```

combined

```
code
```

```
p + geom_jitter(
    alpha = 0.1
) +
    geom_boxplot(
    aes(fill = cut)
    width = 0.5
)
```



```
p + geom_density(
         fill = "grey"
)
```

```
density
   2e-04
   1e-04
   0e+00
                  5000
                          10000
                                   15000
                          price
```

```
+ geom_histogram(
    aes(y =
       ..density..),
  binwidth = 50) +
  geom_density(
    fill = "grey",
    alpha = 0.5
    + xlim(c(300, 5000))
```


geom_bar()

Good/ery GoldemiumIdeal cut

```
code
```

```
p <- ggplot(dat_gl,</pre>
  aes(x = condition,
         = score,
      group = treatment
p + geom_bar(
      stat = "identity"
```

```
20 -
  15 -
5 -
           Healthy
                         Diseased
                 condition
```

```
position refines the position of objects, is a
function position_*
  identity Do nothing
    stack Stack objects
       fill Stack objects, and force equal height
    jitter Randomly move object a little
   dodge Move overlapping objects side by side
jitterdodge Move overlapping objects side by side
           and then randomly move object a little
```

```
p + geom_bar(
    stat = "identity",
    position = "dodge",
    width = 0.5
)
```

```
Healthy
                Diseased
      condition
```

```
p <- p + geom_bar(
   stat = "identity",
   position =
      position_dodge(0.8)
   width = 0.5)
p</pre>
```



```
p + geom_errorbar(
  aes(ymin = score - 1,
      ymax = score + 1)
  position =
    position_dodge(0.8)
  width = 0.25)
```


Pie chart

```
code
```

p

Pie chart

```
p + coord_polar(
          theta = 'y'
)
```


geom_bar()

geom_bar()

```
code
```


The mtcars dataset

	mpg	cyl	disp	hp
Mazda RX4	21.00	6.00	160.00	110.00
Mazda RX4 Wag	21.00	6.00	160.00	110.00
Datsun 710	22.80	4.00	108.00	93.00
Hornet 4 Drive	21.40	6.00	258.00	110.00
Hornet Sportabout	18.70	8.00	360.00	175.00
Valiant	18.10	6.00	225.00	105.00

```
code
p <- ggplot(</pre>
```

```
p <- ggplot(mtcars,
  aes(mpg,
          hp,
          colour =
                factor(cyl)))
  geom_point()</pre>
```


code

p


```
code
p +
scale_colour_gradientn(
   colours = rainbow(7)
)
```



```
colScale <-
scale_colour_gradientn(
 rescaler = function(x, ...)x.
 oob = identity,
  colours=c("red", "red", "green",
            "blue", "orange", "orange"),
 values=c(0, 2000, 5000, 10000,
            15000, 20000),
  breaks = c(0, 5000, 9000, 20000),
 limits = c(0, 20000)
```

```
p +
colScale
```



```
code
                                     300 -
p <- ggplot(mtcars,</pre>
                                                            factor(cyl)
                                   و 200 -
   aes(mpg,
        hp,
         colour =
                                     100 -
              factor(cyl)))
                                       10
                                           15
                                               20
                                                  25
                                                      30
                                                          35
      geom_point()
                                                mpg
```

p

```
colScale <-
    scale colour manual(
        values = c('4' = "#7fc97f",
        '8' = "#beaed4".
        '6' = "#fdc086").
        labels = c('4') = "Four", '6' = "Six",
                    '8' = "Eight"),
        breaks = c('6', '8', '4'),
        name = "Cylinders"
```

code

p + colScale


```
175 - 150 - 125 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -
```

mpg


```
colScale <-
    scale colour manual(
        values = c('4' = "#7fc97f",
        '8' = "#beaed4".
        '6' = "#fdc086").
        labels = c('4') = "Four", '6' = "Six",
                    '8' = "Eight"),
        breaks = c('6', '8', '4'),
        name = "Cylinders",
        drop = FALSE)
```

Manual fill scales

```
scale_fill_gradient()
scale_fill_gradient2()
scale_fill_gradientn()
scale_fill_manual()
```

Axis scales

```
p <- ggplot(diamonds, 15000-

aes(x = cut)) + \frac{15}{8}10000-

geom_bar()

p
```


scale_x_discrete()

Axis scales

Points and lines

```
p <- ggplot(dat_gl,</pre>
 aes(x = treatment,
  y = score,
  shape = condition,
  linetype = condition,
  group = condition)) +
 geom_point() +
 geom_line()
```


Points and lines

scale_linetype_discrete()

scale_linetype_discrete()

```
lineScale2 <- scale_linetype_manual(
    values = c("Healthy" = 1, "Diseased" = 2)
)</pre>
```

scale_shape_discrete()

```
shapeScale <- scale_shape_manual(
    values = c("Healthy" = 1, "Diseased" = 2)
)</pre>
```

scale_alpha_*

```
scale_alpha_continuous()
scale_alpha_manual()
```

Removing guides

code

p

Removing guides

```
code
```

```
p + guides(
   shape = FALSE
)
```


Removing guides

```
code
```

```
p + guides(
   shape = FALSE,
   linetype = FALSE
)
```


Themes

Different elements

element_text() Texts: axes, legend names, titles, etc.

element_line() Lines: one the plot, ticks, edges, etc. element_blank() Removes this element.

theme()

theme() arguments are hierarchical, see documentation for all arguments.

text Affects all text on the plot axis.text Affects only the text on the axes axis.text.x Affects only the text on the x-axis

```
code
p + theme(axis.text.x =
 element_text(
  family =
    "Comic Sans MS".
  colour = "red".
  angle = 90,
  face = "bold.italic",
  vjust = 0.5, hjust = 1
```



```
code
 + theme_classic(
    base_size = 20,
    base_family =
      "Arial") +
    theme(
      axis.title.x =
        element_blank()
```


Gene	Participant	Score	Condition	Significant
Gene1	p1	-0.63	baseline	FALSE
Gene2	p1	0.18	baseline	FALSE
Gene3	p1	-0.84	baseline	FALSE
Gene4	p1	1.60	baseline	FALSE
Gene5	p1	0.33	baseline	FALSE
Gene6	p1	-0.82	baseline	FALSE


```
myTheme <- theme(
   axis.text.y = element_blank(),
   axis.title = element_blank(),
   axis.ticks.y = element_blank()
)</pre>
```

code

p + myTheme


```
p + myTheme +
    xScale
```



```
fillScale <-
  scale_fill_gradientn(colours=
    c("#d7191c", "#d7191c", "#fdae61",
    "#ffffbf", "#a6d96a", "#1a9641",
    "#1a9641"
    ), rescaler = function(x, ...)x,
    oob = identity,
    values=c(-5, -2.5, -1.25, 0, 1.25, 2.5, 5)
    breaks = c(-2.5, -1.25, 0, 1.25, 2.5),
    limits = c(-3, 3)
```

```
p + myTheme +
    xScale +
    fillScale
```



```
labelConversion <- list(
    "baseline" = "Baseline",
    "treated" = "Treated"
    )
c_labeller <- function(variable,value){
    return(labelConversion[value])
}</pre>
```

code

p

```
p <- p + myTheme +
  xScale +
  fillScale +
  facet_grid(~Condition,
  labeller=c_labeller
)</pre>
```

```
| Score | 2.50 | 1.25 | 0.00 | -1.25 | -2.50 | |
```

```
p %+% aes(
  colour = Significant
)
```

```
Baseline
Treated
Score
2.50
1.25
0.00
-1.25
-2.50
Significant
FALSE
TRUE
```

```
colScale <- scale_colour_manual(
  name = element_blank(),
  values = c("TRUE" = "black", "FALSE" = NA),
  labels = c("TRUE" = "Significant"),
  limits = "TRUE")</pre>
```

```
code

p %+%
  aes(
    colour = Significan
    ) +
  colScale +
  geom_tile(size = 0.5)
```



```
alphaScale <- scale_alpha_manual(
  name = element_blank(),
  values = c("TRUE" = 1, "FALSE" = 0),
  guide = FALSE)</pre>
```

```
p + geom_tile(
  aes(
  colour = Significant,
  alpha = Significant),
  size = 0.5) +
  colScale +
  alphaScale
```


What's next?

grid + gridExtra Packages for arranging multiple plots
annotate Function for arbitrary annotations
other geoms I only covered some of them
stat_* I only briefly touched on them
Download from git:

git clone https://github.com/LarsRI/gg2.git