CSCI 5521 – Introduction to Machine Learning

Homework – 4 Mourya Karan Reddy Baddam – 5564234 Email – badda004@umn.edu

1) We have
$$z^{t} = Wx^{t} - 0$$

When $x^{t} \in \mathbb{R}^{0}$
 $z^{t} \in \mathbb{R}^{d}$

We know w is exthenound makin with exthenound xows.

Hence $w \cdot w^{T} = I_{d} \cdot d \cdot w^{T} \cdot w \neq I_{D}$

Or $v^{t} = w^{T}z^{t} - 2$
 $= w^{T}wx^{t}$

and since $w^{T}w \neq I_{D}$.

 $v^{t} = w^{T}wx^{t} \neq x^{t}$.

Professor Highborstigh's claim is wrong.

$$\sum_{t=1}^{N} \{(x^{t})^{T} - (v^{t})^{T}\}(x^{t} - v^{t})\} \quad \text{(since } |hall_{1}^{2} = a^{T}a\}$$
 $= \sum_{t=1}^{N} \{(x^{t})^{T}x^{t} - (x^{t})^{T}v^{t} - (v^{t})^{T}x^{t}\}$
 $= \sum_{t=1}^{N} \{(x^{t})^{T}x^{t} + (v^{t})^{T}v^{t} - (x^{t})^{T}v^{t} - (v^{t})^{T}x^{t}\}$

Using $(x^{t}) = \sum_{t=1}^{N} \{(x^{t})^{T}x^{t} + (v^{t})^{T}v^{t} - (x^{t})^{T}v^{t} - (w^{t})^{T}x^{t}\}$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - \left(w^{T} x^{t} \right)^{T} x^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - \left(z^{t} \right)^{T} z^{t} - \left(z^{t} \right)^{T} w_{x} t \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - 2 \left(z^{t} \right)^{T} z^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - 2 \left(z^{t} \right)^{T} w_{x} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - 2 \left(z^{t} \right)^{T} w_{x} w^{T} z^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - 2 \left(w^{T} z^{t} \right)^{T} w^{T} z^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - 2 \left(w^{T} z^{t} \right)^{T} w^{T} z^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left(v^{t} \right)^{T} v^{t} - 2 \left(v^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(v^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(v^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(v^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(v^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} - \left(x^{t} \right)^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left[x^{t} \right]^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left[x^{t} \right]^{T} v^{t} \right\}$$

$$=\sum_{t=1}^{N} \left\{ \left[x^{t} \right]^{T} x^{t} + \left[x^{t} \right]^{T} x^{t} + \left[$$

2) Given
$$z_{h}^{i} = g(a_{h}^{i})$$
 $a_{h}^{i} = \sum_{j=1}^{N} k_{h}^{i} x_{h}^{j} + W_{h,0}^{i}$
 $y_{i}^{t} = g(a_{i}^{t})$
 $a_{i}^{t} = \sum_{h=1}^{N} k_{h}^{t} x_{h}^{t} + k_{h,0}^{t}$

Loss purction $\Rightarrow E(w, v|z) = \sum_{t=1}^{N} \sum_{i=1}^{K} L(x_{i}^{t}, y_{i}^{t})$

a) In S6D, we take I goid in each iteration. Hence of iteration t_{h}^{t} have $v_{h}^{t} + v_{h}^{t} - \eta \underbrace{\partial E(w_{h}^{t} v/z)}_{\partial v_{h}^{t}} - 0$

where $\eta \Rightarrow b_{h}^{t} = v_{h}^{t} - \eta \underbrace{\partial E(w_{h}^{t} v/z)}_{\partial v_{h}^{t}} \times \underbrace{\partial a_{i}^{t}}_{\partial v_{h}^{t}} \times \underbrace{\partial$

b) We have
$$W_{h,j}^{t+1} = W_{h,j}^{t} - \eta \underbrace{\partial E(W_{i}v/Z)}_{\partial W_{h,j}^{t}} - 2$$

$$\underbrace{\partial E(W_{i}v/Z)}_{\partial W_{h,j}^{t}} = \underbrace{\partial E(W_{i}v/Z)}_{\partial Y_{i}^{t}} \times \underbrace{\partial Y_{i}^{t}}_{\partial \alpha_{i}^{t}} \times \underbrace{\partial A_{i}^{t}}_{\partial A_{i}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial \alpha_{h}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial W_{h,j}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial W_{h,j}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial \alpha_{i}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial \alpha_{i}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial A_{h}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial W_{h,j}^{t}} \times \underbrace{\partial A_{h}^{t}}_{\partial W_{h,j}$$

$$\frac{\partial L(x_i^t, y_i^t)}{\partial y_i^t} = \frac{\partial (x_i^t - y_i^t)^2}{\partial y_i^t} = -2(x_i^t - y_i^t)$$
Update in \mathfrak{D} :

$$\triangle V_{i,h} = P \triangle_{i}^{t} Z_{h}^{t}$$
, where $Z_{h}^{t} = g(\alpha_{h}^{t}) = \begin{cases} 0 & ; & \alpha_{h}^{t} \leq 0 \\ \alpha_{h}^{t} & ; & \alpha_{h}^{t} \geq 0 \end{cases}$

$$\Delta_{i}^{t} = g'(\alpha_{i}^{t}) \left(-\frac{\partial L(\alpha_{i}^{t}, y_{i}^{t})}{\partial y_{i}^{t}}\right)$$

=>
$$\triangle_{i}^{+} = \frac{g(a_{i}^{+})}{a_{i}^{+}} \cdot 2 \cdot (a_{i}^{+} - y_{i}^{+})$$
 where $g(a_{i}^{+}) = \begin{cases} 0 & i & \alpha_{i}^{+} \leq 0 \\ a_{i}^{+} & i & \alpha_{i}^{+} \geq 0 \end{cases}$

$$= \sum_{i=1}^{t} A_{i}^{t} = \begin{cases} 0 & \text{if } a_{i}^{t} \leq 0 \\ 2(\lambda_{i}^{t} - \gamma_{i}^{t}) & \text{if } a_{i}^{t} \geq 0 \end{cases}$$

$$g'(a) = \begin{cases} 1 & ; & a > 0 \\ \alpha & ; & a \leq 0 \end{cases}$$
 or $g'(a) = \frac{g(a)}{a}$.

c) If
$$x = 1$$
, the two layer peraptions will be a linear model. => $g(a) = a$

Let
$$W_h^t = (w_{h,0}^t, w_{h,1}^t, \dots, w_{h,d}^t)$$
; $x^t = [x_0^t, x_1^t, \dots, x_d^t]^T$ where $x_0^t = 1$

$$V_1^t = [v_{i,0}^t, v_{i,1}^t, \dots, v_{i,H}^t]$$
; $z^t = [z_0^t, z_1^t, \dots, z_d^t]^T$ where $z_0^t = 1$

Let
$$W^{\dagger} = \begin{bmatrix} -N_0 \\ -N_1 \end{bmatrix}$$
 $W^{\dagger} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $W^{\dagger} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $W^{\dagger} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $W^{\dagger} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $W^{\dagger} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $W^{\dagger} = \begin{bmatrix} 1 \\$

Hence &=1, the two layer pucylion is linear.

Q3: Summary of Error Rates:

Summary: MySVM2 with m = 40 for Boston50

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
17.65%	18.81%	20.79%	17.82%	22.77%	19.57%	1.95%

Summary: MySVM2 with m = 200 for Boston 50

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
17.65%	19.8%	14.85%	18.81%	24.75%	19.17%	3.25%

Summary: MySVM2 with m = n for Boston50

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
23.53%	16.83%	13.86%	16.83%	22.77%	18.77%	3.75%

Summary: LogisticRegression with Boston50

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
15.69%	11.88%	12.87%	12.87%	17.82%	14.23%	2.2%

Summary: MySVM2 with m = 40 for Boston75

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
20.59%	18.81%	17.82%	24.75%	21.78%	20.75%	2.43%

Summary: MySVM2 with m = 200 for Boston75

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
22.55%	19.8%	16.83%	20.79%	19.8%	19.96%	1.86%

Summary: MySVM2 with m = n for Boston75

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
22.55%	20.79%	17.82%	18.81%	20.79%	20.15%	1.66%

Summary: LogisticRegression with Boston75

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
5.88%	9.9%	9.9%	12.87%	6.93%	9.1%	2.47%