# Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*



# Katzova središčnost in Googlov PageRank

Kratko poročilo, Projekt pri predmetu Finančni praktikum

# Kazalo

| 1 | Opis projekta          | 3 |
|---|------------------------|---|
| 2 | Katzova središčnost    | 3 |
|   | 2.1 Matematično ozadje | 3 |
|   | 2.2 Psevdokoda         | 3 |

## 1 Opis projekta

Kompleksna omrežja lahko analiziramo z uporabo različnih kvantitetnih merjenj, imenujemo jih tudi mere središčnosti, ki intuitivno zajamejo pomembnost določenih vozlišč. V projektu bova implementirali Googlov PageRank in Katzovo središčnost z uporabo potenčne metode. Na različnih grafih (tudi socialnih omrežjih) bova analizirali in primerjali, kako merjenji razvrstita vozlišča po pomembnosti.

### 2 Katzova središčnost

#### 2.1 Matematično ozadje

Katzova središčnost izmeri vpliv igralca v omrežju tako, da upošteva direktne sosede igralca in vse druge igralce, ki so posredno povezani s tem igralcem preko njegovih direktnih sosedov.

Naj bo naše omrežje graf z n vozlišči oziroma igralci. Vsaka povezava v grafu dobi utež  $\alpha$  in z  $\alpha^d$  izračunamo težo povezave vozlišča z drugim vozliščem, pri čemer je d število povezav med njima. Naš graf predstavimo z matriko sosednosti A, torej element matrike  $a_{ij}$  ima vrednost 1, če je vozlišče i povezano z vozliščem j, in 0, če nista povezana. Potence matrike A nam povejo, če je vozlišče povezano s drugimi indirektnimi vozlišči preko sosedov. Na primer, če je v matriki  $A^3$  element  $a_{2,5}=1$ , pomeni, da sta vozlišče 2 in vozlišče 5 povezana s tremi povezavami preko sosedov prve stopnje in sosedov druge stopnje.

Označimo s $C_{Katz}(i)$  Katzovo središčnost vozlišča i. Potem lahko izračunamo središčnost na sledeči način:

$$C_{Katz}(i) = \sum_{k=1}^{\infty} \sum_{j=1}^{n} \alpha^{k} (A^{k})_{ij}.$$

Pri izbiri  $\alpha$  moramo upoštevati zgornjo omejitev

$$\alpha < \frac{1}{|\lambda_{max}|}.$$

#### 2.2 Psevdokoda