OPERATING SYSTEM

NAME - SUNDAR LAL BISWAS

REGISTRATION NO - 201300100110043

ROLL NO - 13000120082

DOB - 15/10/2002

PHONE NUMBER - 9609822823

PROBLEM 1:-

Consider a uniprocessor system, where three processes (Process ID 1, 2, 3 respectively) are there. Arrival time of the three processes are last 3 digits of your registration number (i.e. if your registration number is 201300100110019, arrival time of P1=0, P2=1, P3=9). Burst time of process 1 is the addition of date (dd, i.e. if 21/07/2003is Date of Birth, then it is 2+1 = 3), process 2 is addition of month (mm, if July then 0+7, i.e. 7), and process 3 is addition of last two digit of the year (yy, if 2003 then 0+3, i.e. 3, if it is 2000 then take first 2 digit). Assume that CPU is using Shortest remaining time first algorithm.

- i. Calculate Waiting time of each of the process.
- ii. Calculate turnaround time of each of the process.
- iii. Calculate the percentage of time CPU remains idle.

PROBLEM STATEMENT:-

Process (ID)	Arrival Time (AT)	Burst Time (BT)
P1	0	6
P2	4	1
Р3	3	2

GANTT CHART:-

P1	Р3	Р3	P2	P1
	3	4 :	5	6 9

TABLE OF SRTF PROBLEM:-

Process (ID)	Arrival Time (AT)	Burst Time (BT)	Completion Time (CT)	Turn Around Time(TAT) = (CT-AT)	Waiting Time (WT)= (TAT - BT)	Remaining Time (RT)
P1	0	6	9	9	3	0
P2	4	1	6	2	1	1
Р3	3	2	5	2	0	0

i. Waiting Time of Each Process (WT)

ii. Turn Around Time of Each Process (TAT)

P1 WT= 3	P1 TAT= 9
P2 WT= 1	P2 TAT= 2
P3 WT= 0	P3 TAT= 2

iii. Percentage of time CPU remains idle.

=> CPU Remains Time 0% because 0 to 9 CPU is Working .

PROBLEM 2:-

Consider a uniprocessor system, where there exist three processes (Process ID 1, 2, 3 respectively). CPU assigns priority of the processes based on highest waiting time of the processes present at that time after every 2-unit time. In any process terminates before the interval time then the default situation will be FCFS scheduling. Each of the process will arrive based on the last 3 digits of your university roll number. (If Roll No. is 13000118137, arrival time of P0=1, P1=3, P2=7). CPU Burst time will be first three digits of your mobile number (i.e. if your mobile number is 8756540439, CPU burst time of P1=8, P2=7, P3=5, if any number is 0, then take next non zero value from your mobile number like 7000312867, CPU burst time of P1=7, P2=3, P3=1).

- i. Calculate Average Waiting Time.
- ii. Calculate Average Turnaround Time.
- iii. Calculate the percentage of time CPU remains idle.

PROBLEM STATEMENT

Process (ID)	Arrival Time (AT)	Burst Time (BT)
P1	0	9
P2	8	6
Р3	2	9

GANTT CHART:

	P1	P1	Р3	P1	Р3	P1	Р3	P1	Р3	P2	Р3	P2	P2
0	2	2 4	1 6	8	1	0 1	2 14	1 1 <i>5</i>	5 1	<i>7</i> 1	9 20	0 2	2 24

PROCESS OF FCFS

At Time	TO	P1(AT)=0	P1
At Time	T2	P1(WT)=0, P3(WT)=0, {Follow FCFS}	P1,P1
At Time	T4	P1(WT)=0, P3(WT)=2, {Follow Waiting time}	P1,P1,P3
At Time	T6	$P1(WT)=2$, $P3(WT)=2$, {Follow FCFS}	P1,P1,P3,P1
At Time	T8	$P1(WT)=2$, $P3(WT)=4$, $P2(WT)=0$ {Follow Waiting time}	P1,P1,P3,P1,P3
At Time	T10	$P1(WT)=4$, $P2(WT)=2$, $P3(WT)=4$ {Follow FCFS}	P1,P1,P3,P1,P3,P1
At Time	T12	$P1(WT)=4$, $P2(WT)=4$, $P3(WT)=6$ {Follow Waiting time}	P1,P1,P3,P1,P3,P1,P3
At Time	T14	P1(WT)=6, P2(WT)=6, P3(WT)=6 {Follow FCFS}	P1,P1,P3,P1,P3,P1
At Time	T15	P2(WT)=7, P3(WT)=7 {Follow FCFS}	P1,P1,P3,P1,P3,P1,P3
At Time	T17	P2(WT)=9, P3(WT)=7 {Follow Waiting time}	P1,P1,P3,P1,P3,P1,P3,P2
At Time	T19	P3(WT)=9, P2(WT)=9 {Follow FCFS}	P1,P1,P3,P1,P3,P1,P3,P2,P3
At Time	T20	P2(WT)=10 {Follow Waiting time}	P1,P1,P3,P1,P3,P1,P3,P2,P3,P2
At Time	T24	P2 Execute	P1,P1,P3,P1,P3,P1,P3,P1,P3,P2,P3,P2,P2

TABLE OF FCFS PROBLEM:-

Process (ID)	Arrival Time (AT)	Burst Time (BT)	Completion Time (CT)	Turn Around Time (TAT) = (CT-AT)	Waiting Time (WT) = (TAT - BT)	Remaining Time (RT)
P1	0	9	15	15	6	0
P2	8	6	24	16	10	9
Р3	2	9	20	18	9	2

i. Average Waiting Time

$$(P1+P2+P3)/3$$

=8.33

ii. Average Turn Around Time

$$(P1+P2+P3)/3$$

=16.33

iii. Percentage of time CPU remains idle.

Percentage of time CPU Remains idle is 0% Because 0 to 24 CPU is Working

THANK YOU