Lista 0.2

Igor Lacerda

May 8, 2023

Nota

Algumas notações que decidi adotar na lista: representar verdadeiro com 1 e falso com 0.

Revisão (1) + Exercícios

- 1. (a) Duas proposições compostas p e q são equivalentes se, e somente se, a bicondicional entre elas for uma tautologia. Em outras palavras, p é equivalente a q se para todos os valores que todas as suas propoposições atômicas podem assumir, p e q assumem o mesmo valor.
 - (b) Uma proposição composta é satisfázel se existe uma "entrada" que a torna verdadeira. Aqui, entrada deve ser entendido como um conjunto de valores que as proposições atômicas podem assumir. Ela é insatisfazível se toda "entrada" a torna falsa, ou seja, se é uma contradição.
- 2. (a) $p \lor (p \land q) \equiv p$

p	q	$p \wedge q$	$p \lor (p \land q)$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

(b)
$$p \wedge (p \vee q) \equiv p$$

p	q	$p \lor q$	$p \land (p \lor q)$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

3. (a)
$$\models \neg (p \oplus q) \equiv p \leftrightarrow q$$

Pela definição de ou exclusivo, temos:

$$\neg p \oplus q \equiv \neg((p \lor q) \land \neg(p \land q))$$

Pelo princípio de De Morgan:

$$\neg((p \lor q) \land \neg(p \land q)) \equiv (\neg(p \lor q)) \lor (\neg(\neg(p \land q)))$$

Aplicando de novo o mesmo princípio e usando a negação da negação:

$$(\neg(p \lor q)) \lor (\neg(\neg(p \land q))) \equiv (\neg p \land \neg q) \lor (p \land q)$$

Usando a comutatividade:

$$(\neg p \wedge \neg q) \vee (p \wedge q) \equiv (p \wedge q) \vee (\neg p \wedge \neg q)$$

Mas pelas aulas (minuto 17 de equivalências; penúltima fórmula da segunda tabela) sabemos que essa última proposição é equivalente a $p\leftrightarrow q$.

(b)
$$\models (p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Expandindo o condicional:

$$(p \to r) \lor (q \to r) \equiv (\neg p \lor r) \lor (\neg q \lor r)$$

Rearranjando os termos:

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv (\neg p \lor \neg q) \lor (r \lor r)$$

 $r \vee r$ é equivalente a r:

$$(\neg p \vee \neg q) \vee (r \vee r) \equiv (\neg p \vee \neg q) \vee r$$

Mais uma vez pelo Princípio de De Morgan:

$$(\neg p \lor \neg q) \lor r \equiv \neg (p \land q) \lor r$$

Agora "reduzimos" o condicional:

$$\neg(p \land q) \lor r \equiv (p \land q) \to r$$

$$4. \models (p \rightarrow q) \rightarrow r \not\equiv p \rightarrow (q \rightarrow r)$$

Tentei ser espertinho e evitar uma tabela verdade, mas acho que vou usar uma sim.

p	q	r	$p \rightarrow q$	$q \to r$	$(p \to q) \to r$	$p \to (q \to r)$
0	0	0	1	1	0	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Olha só. Nem era tão difícil de pensar num exemplo em que seus valores são diferentes. Têm vários. A primeira proposição não é equivalente à segunda porque se p,q e r são falsas, $p \to q$ é verdadeira e consequentemente $(p \to q) \to r$ é falsa. Por outro lado, como p é falsa, $p \to (q \to r)$ é verdadeira.

5.
$$\models ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r) \equiv T$$

Apesar de não explicitar aqui, a minha manipulação de conectivos lógicos não foi muito satisfatória. Usando uma tabela verdade (e mais, usando a tabela anterior como referência também):

p	q	r	$p \to q \land q \to r$	$p \rightarrow r$	$((p \to q) \land (q \to r)) \to (p \to r)$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	0	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	1	1	1

Como os valores da última coluna são compostos somente de 1s, a proposição correspondente é uma tautologia. Achei mais fácil assim mesmo, com a tabela.

6. Construindo a tabela do ou exclusivo.

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

Construindo as proposições por linha cuja saída é verdaeira, na ordem que aparecem):

- $\neg p \land q$
- $p \land \neg q$

Assim, chegamos na proposição $(\neg p \land q) \lor (p \land \neg q)$, que é verdadeira pra p falso e q verdadeiro e também verdadeira pra p verdadeiro e q falso (e somente desses modos).

7. Seja p uma proposição composta qualquer. Como p é composta, existem q_1, q_2, \ldots, q_n proposições atômicas que a compõe (n > 1), de modo que podemos criar uma tabela verdade e subsequentemente a sua **forma normal disjuntiva** (como a do exercício anterior) de p.

O exercício anterior afirma, (sem explicar), que a forma normal disjuntiva (FND) é equivalente à proposição a qual se originou. Além disso, a FND usa somente os conectivos $\land, \lor e \lnot$. Assim, qualquer proposição composta p é equivalente a uma proposição que usa apenas esses três conectvios e, portanto, essa coleção é funcionalmente completa. E mais: usando as Leis de De Morgan, podemos ainda provar que é possível remover um dos operadores (\land ou \lor) e ainda sim ter uma coleção funcionalmente completa.

- 8. (a) Essa proposição é satisfazível. Basta tomar p como verdadeiro e s como falso e q e r podem assumir qualquer valor. p verdadeiro só não garante o quarto "bloco" da disjunção como verdadeiro, e esse é justamente o papel de s ser falso.
 - (b) Essa proposição tamb'em é satisfazível. Basta tomar r como verdadeiro, q como verdadeiro e s como falso, p como verdadeiro. r=1 garante (i. e., torna verdaeiro) o primeiro bloco, q=1 garante o segundo bloco, p=1 garante os blocos 3, 5 e 6 e o bloco restante é garantido por s=0.
- 9. Se um algoritmo é usado para definir se uma proposição composta é satifazível, então ele possui a capacidade de avaliar se uma dada proposição é sempre falsa. Desse modo, se é desejado saber se uma proposição p é uma tautologia, pode se dar como entrada para esse algoritmo a negação de p. Se o algoritmo der saída de que $\neg p$ é uma contradição, então p é uma tautologia.