

Лекция 1

Аффинное пространство

Содержание лекции:

В настоящей лекции мы начинаем рассматривать геометрическую сцену и геометрические объекты. Сценой для нас будет служить аффинное пространство - множество точее, на котром действует линейное пространство. Здесь мы обсудим аксиомы аффинного пространства и их простейшие следствия.

Ключевые слова:

Аффинное пространство, аксиомы Вейля, векторизация, размерность, аффинная плоскость, точка, прямая, гиперплосоксть, аффинная оболочка, параллельность плокскостей, скрещивающиеся плоскости, пересечение аффицных пространств.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

1.1 Аксиомы Вейля

Аффинным пространством называется тройка $\mathcal{A}=(S,V,g)$, где S - множество (элементы которого мы будем называть "точками"), $V(\Bbbk)$ - векторное пространство и отображение g

$$g: S \times V \to S$$
,

сопоставляющее каждой паре $(P, \vec{v}) \in S \times V$ элемент $g(P, \vec{v})$ множества S.

 $Nota\ bene$ Композицию g принято обозначать аддитивно:

$$g(P, \vec{v}) = P + \vec{v}.$$

Nota bene Свойства композиции *g* (аксиомы Вейля):

1. для любой точки P имеет место

$$P + \vec{0} = P$$

2. для любой точки $P \in S$ и для любых $\vec{v}, \vec{w} \in V$ имеет место:

$$P + (\vec{v} + \vec{w}) = (P + \vec{v}) + \vec{w},$$

3. для любой упорядоченной пары (P,Q) точек из S существует единственный элемент из $\vec{v} \in V$:

$$Q = P + \vec{v}.$$

Nota bene Часто вводят следующее обозначение: если $P + \vec{v} = Q$, то будем обозначать элемент $\vec{v} \in V$ посредством $\vec{v} = \overrightarrow{PQ}$.

Лемма 1.1. Пусть $P,Q,R \in S$ - произвольные точки множества S, тогда

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

Введем обозначения $\vec{v} = \overrightarrow{PQ}$ и $\vec{w} = \overrightarrow{QR}$, тогда аксиома (1) дает

$$P + \left(\overrightarrow{PQ} + \overrightarrow{QR}\right) = \left(P + \overrightarrow{PQ}\right) + \overrightarrow{QR} = Q + \overrightarrow{QR} = R,$$

Затем из аксиомы (2) требуемое.

Лемма 1.2. Имеет место векторное равенство

$$\overrightarrow{QP} = -\overrightarrow{PQ}$$

В случае R=P будем иметь

$$P + \overrightarrow{PQ} + \overrightarrow{QP} = P \quad \Leftrightarrow \quad \overrightarrow{PQ} + \overrightarrow{QP} = \overrightarrow{0} \quad \Rightarrow \quad \overrightarrow{QP} = -\overrightarrow{PQ}$$

 $oldsymbol{Nota\ bene}$ Из предыдущей леммы, в частности, следует что $\overrightarrow{PP} = \vec{0}$

1.2 Векторизация аффинного пространства

Векторизацией аффинного пространства (S, V, g) относительно точки $O \in S$ называется отображение $\sigma_o : S \to V$, такое что

$$\sigma_o(P) = \overrightarrow{OP} = \overrightarrow{v}_P, \quad \forall P \in S.$$

и при этом $P = O + \overrightarrow{OP}$ и вектор \overrightarrow{OP} называется радиусом-вектором точки P относительно точки O.

Теорема 1.1. Для любой точки $O \in S$ векторизация σ_o является взаимнооднозначным соответствием (биекцией) между S и V.

Иньективность:

$$\overrightarrow{OP} = \overrightarrow{OQ} \quad \Rightarrow \quad P = Q.$$

Действительно:

$$P = O + \overrightarrow{OP} = O + \overrightarrow{OQ} = Q.$$

Сюрьективность:

$$\forall \vec{v} \in V \quad \exists P \in S: \quad P = O + \vec{v} \quad \Rightarrow \quad \vec{v} = \overrightarrow{OP}.$$

•

Размерностью аффинного пространства $\mathcal{A} = (S, V, g)$ называется размерность соответствующего векторного пространства V:

$$\dim \mathcal{A} = \dim_{\mathbb{k}} V.$$

1.3 Объекты аффинной геометрии

Плоскостью в аффинном пространстве \mathcal{A} называется подмножество вида:

$$\mathcal{P} = \{ P_0 + \vec{u} : P_0 \in S, \quad \vec{u} \in U \},$$

где $U \leq V$ - одномерное подпространство V. Оно называется **направляющим подпространством** плоскости \mathcal{P} .

Nota bene По определению \mathcal{P} - аффинное пространство и dim $\mathcal{P} = \dim_{\mathbb{R}} U$.

Точкой и **прямой** называются соответственно нульмерная и одномерная плоскости. **Гиперплоскостью** называется плоскость размерностью n-1, если dim $\mathcal{A}=n$.

Пример 1.1. Рассмотрим прямую \mathcal{L} в аффинном пространстве \mathcal{A} и положим $U(\mathbb{k}) = \langle \vec{a} \rangle_{\mathbb{k}}$. Пусть далее $\vec{r_0}$ - образ точки P_0 при векторизации σ_o . Тогда для образа \vec{r} произвольной точки $P \in \mathcal{L}$ будем иметь:

$$\vec{r} = \vec{r_0} + \alpha \vec{u}, \quad \alpha \in \mathbb{k}.$$

Аналогично, для плоскость вместе с $U(\Bbbk) = \left<\vec{a}, \vec{b}\right>_{\Bbbk}$, где $\vec{a}, \vec{b} \in W$ - два неколлинеарных вектора, в результате векториации получим:

$$\vec{r} = \vec{r}_0 + \vec{w} = \vec{r}_0 + \alpha \vec{a} + \beta \vec{b}, \quad \alpha, \beta \in \mathbb{k}$$

 ${\bf A} {f \varphi} {f \psi} {\bf u} {\bf H} {f o} {f o}$ оболочкой множества M называется плоскость

aff
$$M = P_0 + \left\langle \overrightarrow{P_0P} : P \in M \right\rangle, \quad M \subset S, \quad p_0 \in M.$$

Теорема 1.2. Через любые k+1 точек аффинного пространства \mathcal{A} проходит плоскость размерности $\leq k$; при этом, если эти точки не не содержатся в плоскости размерности < k, через них проходит единственная плоскость размерности k

Пусть $P_0, P_1, \ldots, P_k \in S$. Тогда

$$\mathcal{P} = P_0 + \left\langle \overrightarrow{P_0 P_1}, \overrightarrow{P_0 P_2}, \dots, \overrightarrow{P_0 P_k} \right\rangle$$

есть плоскость размерности $\leq k$, проходящие через точки $P_0, P_1, \dots P_k$. Если $\dim_{\mathbb{k}} \mathcal{P} = k$, то векторы $\left\{\overrightarrow{P_0P_j}\right\}_{j=1}^k$ линейнонезависимы и \mathcal{P} является единственной k-мерной плоскостью, проходящей через $P_0, P_1, \dots P_k$.

Теорема 1.3. Всякая плоскость есть множество решений некоторой системы линейных уравнений.

 \Rightarrow Пусть $\{\xi^1,\xi^2,\dots,\xi^n\}$ - решение некоторой системы уравнений, которое можно рассматривать как точку пространства S. Положим, что эта система совместна и $p_0 \in S$ - одно из ее решений. Тогда множество всех решений данной системы будет иметь вид $p_0 + U$, где $U \le V$ - подпространство решений соответствующей однородной системы, и, стало быть, является плоскостью пространства S.

 \Leftarrow Пусть $\mathcal{P}=p_0+U$ - некоторая плоскость. Пространство U может быть задано системой однородных уравнений. Заменив свободные члены этих уравнений значениями, принимаемыми левыми частями в точке p_0 , мы получим искомую систему уравнений.

_

АФФИННОЕ ПРОСТРАНСТВО

1.4 Взаимное расположение плоскостей

Лемма 1.3. Плоскости \mathcal{P}_1 и \mathcal{P}_2 пересекаются тогда и только тогда, когда

$$\overrightarrow{P_1P_2} \in U_1 + U_2.$$

Плоскости \mathcal{P}_1 и \mathcal{P}_2 пересекаются тогда и только тогда, когда существуют векторы $u_1 \in U_1, u_2 \in U_2$, что

$$P_1 + u_1 = P_2 + u_2.$$

Это равенство может быть переписано в виде

$$\overrightarrow{P_1P_2} = u_1 - u_2.$$

Существование таких векторов u_1, u_2 как раз означает, что $\overrightarrow{P_1P_2} \in U_1 + U_2$.

Плоскости \mathcal{P}_1 и \mathcal{P}_2 называются **параллельными**, если $U_1 \subset U_2$ или $U_2 \subset U_1$, и **скрещивающимися**, если $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$ и $U_1 \cap U_2 = 0$.

Пусть $\mathcal{A}_1 = (S_1, V_1, g)$ и $\mathcal{A}_2 = (S_2, V_2, g)$ - два аффинных подпространства аффинного пространства $\mathcal{A} = (S, V, g)$. Пересечение \mathcal{A}_1 и \mathcal{A}_2 называется тройка $\mathcal{A}_{\cap} = (S_{\cap}, V_{\cap}, g)$, так что

$$S_{\cap} = S_1 \cap S_2, \quad V_{\cap} = V_1 \cap V_2,$$

где первое пересечение является теоретико-множественным, а второе - пересечением линейных подпространств.

Теорема 1.4. Результат пересечения двух аффинных подпространств есть аффинное подпространство.

 $Nota\ bene$ Если пересечение аффинных подпространств \mathcal{A}_1 и \mathcal{A}_2 не пусто, тогда

$$\dim(\mathcal{A}_1 \cap \mathcal{A}_2) \ge \dim \mathcal{A}_1 + \dim \mathcal{A}_2 - \dim \mathcal{A}$$