Problem Set 1

Applied Stats II

Due: February 12, 2023

Instructions

- Please show your work! You may lose points by simply writing in the answer. If the problem requires you to execute commands in R, please include the code you used to get your answers. Please also include the .R file that contains your code. If you are not sure if work needs to be shown for a particular problem, please ask.
- Your homework should be submitted electronically on GitHub in .pdf form.
- This problem set is due before 23:59 on Sunday February 12, 2023. No late assignments will be accepted.

Question 1

The Kolmogorov-Smirnov test uses cumulative distribution statistics test the similarity of the empirical distribution of some observed data and a specified PDF, and serves as a goodness of fit test. The test statistic is created by:

$$D = \max_{i=1:n} \left\{ \frac{i}{n} - F_{(i)}, F_{(i)} - \frac{i-1}{n} \right\}$$

where F is the theoretical cumulative distribution of the distribution being tested and $F_{(i)}$ is the *i*th ordered value. Intuitively, the statistic takes the largest absolute difference between the two distribution functions across all x values. Large values indicate dissimilarity and the rejection of the hypothesis that the empirical distribution matches the queried theoretical distribution. The p-value is calculated from the Kolmogorov- Smirnoff CDF:

$$p(D \le x) \frac{\sqrt{2\pi}}{x} \sum_{k=1}^{\infty} e^{-(2k-1)^2 \pi^2/(8x^2)}$$

which generally requires approximation methods (see Marsaglia, Tsang, and Wang 2003). This so-called non-parametric test (this label comes from the fact that the distribution of the test statistic does not depend on the distribution of the data being tested) performs

poorly in small samples, but works well in a simulation environment. Write an R function that implements this test where the reference distribution is normal. Using R generate 1,000 Cauchy random variables (rcauchy(1000, location = 0, scale = 1)) and perform the test (remember, use the same seed, something like set.seed(123), whenever you're generating your own data).

As a hint, you can create the empirical distribution and theoretical CDF using this code:

```
# create empirical distribution of observed data
ECDF <- ecdf(data)
empiricalCDF <- ECDF(data)
# generate test statistic
D <- max(abs(empiricalCDF - pnorm(data)))</pre>
```

Function without p-value

```
# Data
    set . seed (123)
2
    data <- reauchy (1000, location = 0, scale = 1)
    # Kolmogorov - Smirnov Test Function without p-value
5
    kst \leftarrow function(x)
6
7
      ECDF \leftarrow ecdf(x)
       empiricalCDF <- ECDF(x)
8
       d \leftarrow (\max(abs(empiricalCDF - pnorm(x))))
9
       return (d)
10
    kst(data).
```

Second Attempt. Not sure this is correct

```
1 kst <- function (x) {
2    ECDF <- ecdf(x)
3    empiricalCDF <- ECDF(x)
4    d <- (max(abs(empiricalCDF - pnorm(x))))
5    s <- sqrt(length(data))
6    d.a <- 1.35810 / s
7    cat(d, d.a)
8 }
9 kst(data)</pre>
```

D is greater than than the .95 critical value (n > 50) divided by the sqrt of the sample size meaning we can conclude that data is not a good fit for normal distribution

Question 2

Estimate an OLS regression in R that uses the Newton-Raphson algorithm (specifically BFGS, which is a quasi-Newton method), and show that you get the equivalent results to using 1m. Use the code below to create your data. Linear regression intercept and beta coefficient are

0.1391874 and 2.7266985 respectively, matching the maximum likelihood estimate parameters

```
1 #Data
2 set . seed (123)
a data \leftarrow data.frame(x = runif(200, 1, 10))
\frac{data}{y} \leftarrow 0 + 2.75 * \frac{data}{x} + \frac{rnorm}{200}, 0, 1.5
6 # Likelihood function
7 	ext{ lf } \leftarrow 	ext{function} (	ext{theta}, y, X) 
     n \leftarrow nrow(X)
     k \leftarrow ncol(X)
     beta \leftarrow theta[1 : k]
     sigma_sqr \leftarrow theta[k + 1]^2
     e \leftarrow y - X\%*\%beta
     \log \text{lik} < -0.5*n*\log (2*pi) -0.5*n*\log (\text{sigma\_sqr}) - ((t(e) \%*\% e) / (2* \text{sigma\_sqr})
     return(-loglik)}
14
16 # Maximum likelihood parameters
17 MLE <- optim (fn=lf, par=c(1, 1, 1), hessian =TRUE, y =data$y, X= cbind
(1, \frac{\text{data}}{\text{method}}), \text{ method} = \text{"BFGS"})
19 # Linear Regression
lm < -lm(y ~x, data = data)
print (lm $ coefficients )
23 # Comparison
24 cat(print("Maximum Likilehood Estimate Paramenters"), MLE$par,
25 print ("and Linear Regression Coefficients"), lm $ coefficients)
```