Metodi Matematici per l'Informatica (secondo canale) — 11 Gennaio 2024 Soluzioni di Andrea Princic. Cartella delle soluzioni.

$\Box_V \Box$ $\Box_V \Box$ $\Box_V \Box$	Sia $A = \{2, \{2, 7, 5\}, 4, (1, 2, 3), 3\}$. Allora: $F \in A$. $5 \in A$ $F \in B$. $\{2, 5, 7\} \in A$ $F \in C$. $\{2, 3\} \subseteq A$
	F D. $\exists x, y, z \in A$ tali che $\{x, y\} \subseteq z$ Siano R e S due relazioni di equivalenza sullo stesso insieme A . Allora $R \cup S$, $R \cap S$ e $R - S$ sono relazioni di equivalenza su A ?
	Rispondere qui
$\Box_V \Box$ $\Box_V \Box$	 Vero o Falso? F A. Se esiste una funzione f: X → Y suriettiva, allora esiste una funzione g: Y → X iniettiva F B. Se esiste una funzione f: X → Y iniettiva, allora esiste una funzione g: Y → X suriettiva F C. Per ogni f: X → Y esiste un insieme Z tale che esistano una funzione h: Z → Y iniettiva e una funzione g: X → Z suriettiva per cui f = h ∘ g Definiamo numerabile un insieme in corrispondenza biunivoca con i naturali, e S-numerabile un insieme in corrispondenza biunivoca con un sottoinsieme dei numeri naturali. Le due definizioni coincidono?
	Rispondere qui
Es 5.	Dimostrare per induzione che, per ogni $n \ge 1$, se X e Y sono insiemi di n elementi, il numero di funzioni biiettive tra X e Y è $n!$.
	Rispondere qui

$\square_V \square_F \ \mathbf{A.} \ (\exists x P(x) \to \exists x Q(x)) \to \exists x (P(x) \to Q(x))$		
$\Box_V \Box_F \mathbf{B.} \exists y \exists z \forall x ((F(x) \to G(y)) \land (G(z) \to F(x)))$		
Es	7.	Definire (se possibile) un'interpretazione che verifichi ed una che falsifichi la formula
		$\forall y(\neg \exists x A(x) \to \exists x A(y))$
		Rispondere qui
Es		Un giocatore di strada vi propone la seguente variante del gioco delle tre carte: vi mostra tre carte
		coperte ciascuna con una scritta. La prima e la seconda dicono "L'asso non è qui". La terza dice: "L'asso è la carta due". Sapete che solo una delle carte è un asso e che solo una delle scritte è vera.
		Formalizzare in logica proposizionale e decidere quale carta è l'asso.
		Rispondere qui

 $\mathbf{Es} \;\; \mathbf{6.} \;\; \mathbf{I}$ seguenti enunciati sono verità logiche. Vero o Falso?