67. A fluorinated silsesquioxane polymer comprised of monomer units having the structure (I)

wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected from the group consisting of substituents having a terminal $-CR^7R^8R^9$ group;

R⁷ is hydrogen, alkyl, or fluoroalkyl;

R⁸ is fluoroalkyl; and

R⁹ is OH, COOH or an acid-cleavable moiety.

68. The polymer of claim 67, wherein R¹, R², R³ and R⁴ are independently selected from the group consisting of substituents having the structure of formula (II)

(II)
$$-(Q)_n - CR^7 R^8 R^9$$

wherein n is zero or 1.

- 69. The polymer of claim 68, wherein Q is selected from the group consisting of substituted and unsubstituted arylene, substituted and unsubstituted cycloalkylene, and C₁-C₄ alkylene optionally substituted with at least one nonhydrogen substituent selected from alkyl and fluoroalkyl.
 - 70. The polymer of claim 69, wherein Q is fluorinated.

IBM Ref. No. YOR920000693US2 Atty Dkt 5075-0029.20 Serial No. 10/079,289

- 71. The polymer of claim 69, wherein Q is selected from the group consisting of arylene, fluorinated arylene, cycloalkylene, fluorinated cycloalkylene, and C₁-C₄ alkylene optionally substituted with 1-8 nonhydrogen substituents selected from alkyl and fluoroalkyl.
- 72. The polymer of claim 71, wherein Q is selected from the group consisting of arylene, fluorinated arylene, cycloalkylene, and fluorinated cycloalkylene.
 - 73. The polymer of claim 72, wherein Q is arylene or fluorinated arylene.
 - 74. The polymer of claim 73, wherein Q is bicyclic.
 - 75. The polymer of claim 73, wherein Q is arylene.
 - 76. The polymer of claim 73, wherein Q is fluorinated arylene.
 - 77. The polymer of claim 72, wherein Q is cycloalkylene.
 - 78. The polymer of claim 72, wherein Q is fluorinated cycloalkylene.
- 79. The polymer of claim 71, wherein Q is C₁-C₄ alkylene optionally substituted with 1-8 nonhydrogen substituents selected from alkyl and fluoroalkyl.
- 80. The polymer of claim 79, wherein Q is C_1 - C_4 alkylene optionally substituted with 1-8 nonhydrogen substituents selected from C_1 - C_6 alkyl and C_1 - C_6 fluoroalkyl.
- 81. The polymer of claim 79, wherein Q is C_1 - C_4 alkylene optionally substituted with 1-8 nonhydrogen substituents selected from C_1 - C_6 alkyl, trifluoromethyl, and trifluoromethyl-substituted C_1 - C_6 alkyl.
 - 82. The polymer of claim 67, wherein R^7 is hydrogen, C_1 - C_6 alkyl, or C_1 - C_6 fluoroalkyl.

- 84. The polymer of claim 67, wherein R^8 is C_1 - C_6 fluoroalkyl.
- 85. The polymer of claim 83, wherein R⁸ is trifluoromethyl-substituted C₁-C₆ alkyl.
- 86. The polymer of claim 67, wherein R⁹ is OH.
- 87. The polymer of claim 67, wherein R⁹ is COOH.
- 88. The polymer of claim 67, wherein R⁹ is an acid-cleavable moiety.
- 89. The polymer of claim 88, wherein the acid-cleavable moiety is an acid-cleavable ester, ether or carbonate.
 - 90. The polymer of claim 89, wherein R⁹ is an acid-cleavable ester.
- 91. The polymer of claim 90, wherein R^9 has the formula -(L)_v-(CO)-OR¹⁴ wherein v is zero or 1, L is a linking group, and R^{14} is selected from the group consisting of tertiary alkyl moieties, cyclic or alicyclic substituents with a tertiary attachment point, and 2-trialkylsilylethyl moieties.
 - 92. The polymer of claim 91, wherein v is zero and R¹⁴ is tertiary alkyl.
 - 93. The polymer of claim 92, wherein R^{14} is *t*-butyl.
- 94. The polymer of claim 91, wherein v is zero and R¹⁴ is a cyclic or alicyclic substituent with a tertiary attachment point.

95. The polymer of claim 94, wherein R¹⁴ is selected from the group consisting of adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-butyl-2-adamantyl, 2-propyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl, 1-methylcyclopentyl, 1-methylcyclohexyl, 2-trimethylsilylethyl, and 2-triethylsilylethyl.

- 96. The polymer of claim 91, wherein v is zero and R¹⁴ is 2-trialkylsilylethyl.
- 97. The polymer of claim 96, wherein R¹⁴ is 2-trimethylsilylethyl.

98. The polymer of claim 96, further comprising additional monomer units having the structure of formula (IV)

(IV)

wherein R¹⁰, R¹¹, R¹² and R¹³ are independently hydrogen, alkyl, fluoroalkyl, fluorocarbinol or an acid-cleavable moiety, with the proviso that at least one of R¹⁰, R¹¹, R¹² and R¹³ is an acid-cleavable moiety.

- 99. The polymer of claim 98, wherein at least one of R¹⁰, R¹¹, R¹² and R¹³ is selected from the group consisting of acid-cleavable esters, ethers, and carbonates.
- 100. The polymer of claim 99, wherein at least one of R¹⁰, R¹¹, R¹² and R¹³ is an acid-cleavable ester.

- 101. A lithographic photoresist composition comprising the fluorinated silsesquioxane polymer of claim 67 and a radiation-sensitive acid generator.
- 102. A lithographic photoresist composition comprising the fluorinated silsesquioxane polymer of claim 98 and a radiation-sensitive acid generator.
- 103. The lithographic photoresist composition of claim 101, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable dissolution inhibitor.
- 104. The lithographic photoresist composition of claim 102, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable dissolution inhibitor.
- 105. The lithographic photoresist composition of claim 101, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.
- 106. The lithographic photoresist composition of claim 102, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.
- 107. The lithographic photoresist composition of claim 105, wherein the crosslinking agent is a glycoluril compound.
- 108. The lithographic photoresist composition of claim 107, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril, methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.
- 109. The lithographic photoresist composition of claim 106, wherein the crosslinking agent is a glycoluril compound.

IBM Ref. No. YOR920000693US2 Atty Dkt 5075-0029.20 Serial No. 10/079,289

110. The lithographic photoresist composition of claim 109, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril, methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.

- 111. A process for generating a resist image on a substrate, comprising the steps of:
- (a) coating a substrate with a film of the photoresist composition of claim 101;
- (b) exposing the film selectively to a predetermined pattern of deep ultraviolet radiation so as to form a latent, patterned image in the film; and
 - (c) developing the latent image with a developer.
- 112. The process of claim 111, wherein the deep ultraviolet radiation has a wavelength of less than 250 nm.
- 113. The process of claim 112, wherein the deep ultraviolet radiation has a wavelength of 157 nm.
- 114. The process of claim 111, wherein the substrate is a bilayer substrate comprising a base layer covered by an underlayer and the photoresist composition covers the underlayer.
 - 115. A process for generating a resist image on a substrate, comprising the steps of:
 - (a) coating a substrate with a film of the photoresist composition of claim 102;
- (b) exposing the film selectively to a predetermined pattern of deep ultraviolet radiation so as to form a latent, patterned image in the film; and
 - (c) developing the latent image with a developer.
- 116. The process of claim 115, wherein the deep ultraviolet radiation has a wavelength of less than 250 nm.

- 117. The process of claim 116, wherein the deep ultraviolet radiation has a wavelength of 157 nm.
- 118. The process of claim 115, wherein the substrate is a bilayer substrate comprising a base layer covered by an underlayer and the photoresist composition covers the underlayer.
 - 119. A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 103 to the substrate;
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the exposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a resist structure pattern; and
- (e) transferring the resist structure pattern to the substrate by etching into the substrate through spaces in the resist structure pattern.
 - 120. The process of claim 119, wherein the radiation is deep ultraviolet radiation.
 - 121. A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 104 to the substrate;
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the exposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a resist structure pattern; and

- (e) transferring the resist structure pattern to the substrate by etching into the substrate through spaces in the resist structure pattern.
 - 122. The process of claim 119, wherein the radiation is deep ultraviolet radiation.
 - 123. A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 105 to the substrate
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer thereby inducing crosslinking;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the unexposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a negative resist structure pattern; and
- (e) transferring the negative resist structure pattern to the substrate by etching into the substrate through spaces in the negative resist structure pattern.
 - 124. A method of forming a patterned material structure on a substrate, comprising:
- (a) providing a substrate comprised of a material selected from the group consisting of semiconductors, ceramics and metals;
 - (b) applying a layer of the photoresist composition of claim 106 to the substrate
- (c) patternwise exposing the substrate to radiation whereby acid is generated by the radiation-sensitive acid generator in exposed regions of the photoresist layer thereby inducing crosslinking;
- (d) contacting the substrate with an aqueous alkaline developer solution, whereby the unexposed regions of the photoresist layer are selectively dissolved by the developer solution to reveal a negative resist structure pattern; and
- (e) transferring the negative resist structure pattern to the substrate by etching into the substrate through spaces in the negative resist structure pattern.