高数表4

第一型积分 第二型积分

第一型积分

设 Ω 是可测的几何体,u=f(P) 是定义在 Ω 上的函数,将 Ω 任意分成可测的小块 $\Delta\Omega_i(i=1,2,3,\cdots,n)$, $\mu(\Delta\Omega_i)$ 表示 $\Delta\Omega_i$ 的测度。记 $\lambda=\max\{\mu(\Delta\Omega_i)\}$, 任取 $P_i\in\Delta\Omega_i$, 若和式 极限 $\lim_{\lambda\to 0}\sum_{i=1}^n f(P_i)\cdot\mu(\Delta\Omega_i)$ 存在且与 Ω 的分割方式、取 P_i 的方式无关,则称之为 u=f(P) 沿 Ω 的第一刑罚人,记为 $\int_{\mathbb{R}^n} f(P_i) du$

$$\Omega$$
 的第一型积分,记为 $\int_{\Omega} f(P) d\mu$

即
$$\int_{\Omega} f(P) \mathrm{d}\mu = \lim_{\lambda o 0} \sum_{i=1}^n f(P_i) \cdot \mu(\Delta\Omega_i)$$

其中, Ω 称为积分区域, f(P) 为被积函数, $\mathrm{d}\mu$ 为积分微元, $f(P)\mathrm{d}\mu$ 为被积表达式

- 1. 当 Ω 表示一维闭区间时, 测度为区间长度, $d\mu = dx$, 表示定积分
- 2. 当 Ω 表示二维闭区间时,测度为面积, $\mathrm{d}\mu=\mathrm{d}\sigma$,表示二重积分
- 3. 当 Ω 表示三维闭区间时,测度为体积, $\mathrm{d}\mu=\mathrm{d}V$,表示三重积分
- 4. 当 Ω 表示平面或空间曲线时, 测度为曲线长度, $\mathrm{d}\mu=\mathrm{d}s$, 表示第一型曲线积分
- 5. 当 Ω 表示有界空间曲面时,测度为曲面面积, $\mathrm{d}\mu=\mathrm{d}S$,表示第一型曲面积分

若
$$f(P)\equiv 1, P\in\Omega$$
 则 $\int_{\Omega}f(P)\mathrm{d}\mu=\int_{\Omega}\mathrm{d}\mu=\mu(\Omega)$

第一型积分的运算具有线性(数乘、加减)、区域可加性

第一型积分的单调性:

若在
$$\Omega$$
 上有 $f(P) \geq 0$,则 $\int_{\Omega} f(P) \mathrm{d} \mu \geq 0$

第一型积分的积分不等式性:

若在
$$\Omega$$
 上有 $f(P) \leq g(P)$,则有 $\int_{\Omega} f(P) \mathrm{d}\mu \leq \int_{\Omega} g(P) \mathrm{d}\mu$

第一型积分的绝对可积性:
$$|\int_{\Omega}f(P)\mathrm{d}\mu|\leq\int_{\Omega}|f(P)|\mathrm{d}\mu$$

第一型积分估值不等式:设在 Ω 上的 f(P) 最大值为 M ,最小值为 m 。则 $m\cdot \mu(\Omega) \leq \int_{\Omega} f(P) \mathrm{d}\mu \leq M\cdot \mu(\Omega)$

第一型积分的中值定理:设函数 f(P) 在闭区域 Ω 上连续,则在 Ω 上至少存在一点 P_0 使得 $\int_{\Omega} f(P) \mathrm{d}\mu = f(P_0) \cdot \mu(\Omega)$

向量值函数的积分

向量函数求极限等价于其各个分量求极限,若 $\vec{A}(P)=\{A_1(P),A_2(P),A_3(P),\cdots,A_m(P)\}=\sum_{i=1}^m A_i(P)\cdot \vec{e}_i$

则
$$\int_{\Omega} ec{A}(P) \mathrm{d}\mu = \int_{\Omega} (\sum_{i=1}^m A_i(P) \cdot ec{e}_i) \mathrm{d}\mu$$

利用第一型积分的线性性质,等价于 $\sum_{i=1}^m [\int_\Omega A_i(P) \mathrm{d}\mu] \cdot \vec{e}_i$

因此
$$\int_{\Omega} \vec{A}(P) = \{ \int_{\Omega} A_1(P) d\mu, \int_{\Omega} A_2(P) d\mu, \int_{\Omega} A_3(P) d\mu, \cdots, \int_{\Omega} A_m(P) d\mu \}$$

二重积分的计算

平面直角坐标系条件下 $d\sigma = dx \cdot dy$

极坐标系条件下 $d\sigma = \rho \cdot d\rho \cdot d\varphi$

1. 对于积分区域 D ,若为 x 型区域: $\begin{cases} a \leq x \leq b \\ \varphi_1(x) \leq y \leq \varphi_2(x) \end{cases}$,则 $\iint_D f(x,y) \mathrm{d}\sigma = \int_a^b \mathrm{d}x \cdot \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \mathrm{d}y$

2. 对于积分区域
$$D$$
 ,若为 y 型区域: $\begin{cases} c \leq y \leq d \\ \psi_1(y) \leq x \leq \psi_2(y) \end{cases}$,则 $\iint_D f(x,y) \mathrm{d}\sigma = \int_c^d \mathrm{d}y \cdot \int_{\psi_1(y)}^{\psi_2(y)} f(x,y) \mathrm{d}x$

- 3. 若积分区域 D 关于 x 轴对称且 $f(x,y)\in C(D)$,若有 f(x,-y)=-f(x,y) 则 I=0,若有 f(x,-y)=f(x,y) 则 $I=2\iint_{D_1}f(x,y)\mathrm{d}x\mathrm{d}y$,其中 D_1 为 D 位于 x 轴上侧部分。同理可 类比 y 轴。
- 4. 对于积分区域 D ,若 $O\in \mathrm{out}\ D$: $\begin{cases} lpha \leq arphi \leq eta \
 ho_1(arphi) \leq
 ho \leq
 ho_2(arphi) \end{cases}$,则 $\iint_D f(x,y) \mathrm{d}\sigma = \int_lpha^eta \, \mathrm{d}arphi \cdot \int_{
 ho_1(arphi)}^{
 ho_2(arphi)} f(
 ho\cosarphi,
 ho\sinarphi)
 ho \mathrm{d}
 ho$
- 5. 对于积分区域 D ,若 $O\in\partial D$: $\begin{cases} lpha \leq arphi \leq eta \ 0 \leq
 ho(arphi) \end{cases}$,则 $\iint_D f(x,y) \mathrm{d}\sigma = \int_lpha^eta \, \mathrm{d}arphi \cdot \int_0^{
 ho(arphi)} f(
 ho\cosarphi,
 ho\sinarphi)
 ho \mathrm{d}
 ho$
- 6. 对于积分区域 D ,若 $O\in \operatorname{int} D:$ $\begin{cases} 0\leq arphi\leq 2\pi \\ 0\leq
 ho\leq
 ho(arphi) \end{cases}$,则 $\iint_D f(x,y)\mathrm{d}\sigma=\int_0^{2\pi}\mathrm{d}arphi\cdot\int_0^{
 ho(arphi)}f(
 ho\cosarphi,
 ho\sinarphi)
 ho\mathrm{d}
 ho$
- 7. 对于积分区域 D ,若可分为若干个上述区域,则可利用区间可加性进行分解 $\iint_D f(x,y)\mathrm{d}\sigma = (\iint_{D_1} + \iint_{D_2} + \cdots + \iint_{D_m}) f(x,y)\mathrm{d}\sigma$

三重积分的计算

空间直角坐标系条件下 $\mathrm{d}V = \mathrm{d}x \cdot \mathrm{d}y \cdot \mathrm{d}z$

柱坐标系条件下 $\mathrm{d}V = \rho \cdot \mathrm{d}\rho \cdot \mathrm{d}\varphi \cdot \mathrm{d}z$

球坐标系条件下 $\mathrm{d}V = r^2 \sin \theta \cdot \mathrm{d}\theta \cdot \mathrm{d}r \cdot \mathrm{d}\varphi$

1. 坐标面投影法/先一后二法(以投影至 xOy 面为例)

设空间有界闭区域 Ω 在 xOy 面投影为 D_{xy} , Ω 的下、上曲面分别为 $\Sigma_1:z=z_1(x,y), \Sigma_2:z=z_2(x,y)$,且 $z_1(x,y),z_2(x,y)\in C(D_{xy})$,若 Ω 可表示为 $\Omega=\{(x,y,z)|z_1(x,y)\leq z\leq z_2(x,y),(x,y)\in D_{xy}\}$ 则称之为 xy 型空间区域

此时
$$\iiint_{\Omega}f(x,y,z)\mathrm{d}V=\iint_{D_{xy}}\mathrm{d}x\mathrm{d}y\int_{z_{1}(x,y)}^{z_{2}(x,y)}f(x,y,z)\mathrm{d}z$$

2. 坐标轴投影法/截面法/先二后一法 (以投影至 z 轴为例)

设空间有界闭区域 Ω 在 z 轴投影区间为 [p,q],用 D_z 表示过点 (0,0,z) 且平行于 xOy 面的平面截 Ω 所得的平面区域。若 Ω 可表示为 $\Omega=\{(x,y,z)|(x,y)\in D_z, p\leq z\leq q\}$ 则称之为 z 型空间区 域

此时
$$\iiint_{\Omega}f(x,y,z)\mathrm{d}V=\int_{p}^{q}\mathrm{d}z\cdot\iint_{D_{z}}f(x,y,z)\mathrm{d}x\mathrm{d}y$$

3. 对称性(以关于 xOy 面为例)

设空间有界闭区域 Ω 关于 xOy 面对称,若 f(x,y,-z)=-f(x,y,z) 则 I=0;若 f(x,y,-z)=f(x,y,z) 则 $I=\iiint_{\Omega_1}f(x,y,z)\mathrm{d}V$,其中 Ω_1 为 Ω 位于 xOy 面上侧部分

4. 使用三次积分(举例)

设空间有界闭区域
$$\Omega$$
 :
$$\begin{cases} a \leq x \leq b \\ y_1(x) \leq y \leq y_2(x) \end{cases} \quad \text{则} \quad \text{∭} \quad f(x,y,z) \mathrm{d}V = \int_a^b \mathrm{d}x \cdot \int_{y_1(x)}^{y_2(x)} \mathrm{d}y \cdot \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \mathrm{d}z \end{cases}$$

5. 使用柱面坐标

设空间有界闭区域
$$\Omega$$
 :
$$\begin{cases} \alpha \leq \varphi \leq \beta \\ \rho_1(\varphi) \leq \rho \leq \rho_2(\varphi) \\ z_1(\rho,\varphi) \leq z \leq z_2(\rho,\varphi) \end{cases} \text{ 则 } \iiint_{\Omega} f(x,y,z) \mathrm{d}V = \int_{\alpha}^{\beta} \mathrm{d}\varphi \cdot \int_{\rho_1(\varphi)}^{\rho_2(\varphi)} \rho \mathrm{d}\rho \cdot \int_{z_1(\rho,\varphi)}^{z_2(\rho,\varphi)} f(\rho\cos\varphi,\rho\sin\varphi,z) \mathrm{d}z \end{cases}$$

6. 使用球面坐标

设空间有界闭区域
$$\Omega: \begin{cases} lpha \leq arphi \leq eta \\ heta_1(arphi) \leq heta \leq heta_2(arphi) \end{cases}$$
 则 $\iint_{\Omega} f(x,y,z) \mathrm{d}V = \int_{lpha}^{eta} \mathrm{d} arphi \cdot \int_{ heta_1(arphi)}^{ heta_2(arphi)} \mathrm{d} heta \cdot \int_{r_1(arphi, heta)}^{r_2(arphi, heta)} r^2 \cdot \sin \theta \cdot \mathrm{d} heta$

第一型曲线积分的计算

封闭的曲线积分记为 $\oint_L f(P) \mathrm{d}s$

直角坐标系条件下 $\mathrm{d}s = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2 + (\mathrm{d}z)^2}$

直角坐标系下,参数方程 $\mathrm{d}s=\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2+(\frac{\mathrm{d}y}{\mathrm{d}t})^2+(\frac{\mathrm{d}z}{\mathrm{d}t})^2}\mathrm{d}t$

若曲线
$$L:$$

$$\begin{cases} a \leq t \leq b \\ x = x(t) \\ y = y(t) \end{cases} \iint_L f(P) \mathrm{d}s = \int_a^b f[x(t), y(t), z(t)] \cdot \sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2 + (\frac{\mathrm{d}y}{\mathrm{d}t})^2} \mathrm{d}t$$

特别的,当平面曲线 $y=y(x), a \leq x \leq b$ 时 $\int_L f(p) \mathrm{d}s = \int_a^b f[y(x),x] \sqrt{1+(rac{\mathrm{d}y}{\mathrm{d}x})^2} \mathrm{d}x$

极坐标条件下 $\mathrm{d}s = \sqrt{
ho^2(\varphi) +
ho'^2(\varphi)}\mathrm{d}\varphi$

若曲线
$$L: \ \begin{cases} lpha \leq arphi \leq eta \\
ho =
ho(arphi) \end{cases}$$
 则 $\int_L f(x,y) \mathrm{d} s = \int_lpha^eta f(
ho\cosarphi,
ho\sinarphi) \sqrt{
ho^2(arphi) +
ho'^2(arphi)} \mathrm{d} arphi$

对称性(以平面曲线关于 x 轴对称为例):设 $L=L_1+L_2$,且 L_1 与 L_2 关于 x 轴对称, L_1 在 x 轴上方

若
$$f(x,y)$$
 关于 y 为奇函数,则 $\int_L f(x,y) \mathrm{d}s = 0$

若
$$f(x,y)$$
 关于 y 为偶函数,则 $\int_L f(x,y) \mathrm{d}s = 2 \int_{L_1} f(x,y) \mathrm{d}s$

轮换对称性: 若满足
$$f(x,y,z)$$
 中自变量调换顺序,对函数解析式不影响,则 $\int_L f(x,y,z)\mathrm{d}s = \int_L f(x,z,y)\mathrm{d}s = \int_L f(y,x,z)\mathrm{d}s = \int_L f(y,x,z)\mathrm{d}s = \int_L f(z,x,y)\mathrm{d}s = \int_L f(z,y,z)\mathrm{d}s$

第一型曲面积分的计算

封闭的曲面积分记为
$$\iint_{\Sigma} f(x,y,z) \mathrm{d}S$$

以投影到 xOy 面为例

设光滑曲面 Σ 满足如下方程: $z=z(x,y), (x,y)\in D_{xy}$

若
$$f(x,y,z)\in C(\Sigma)$$
 则 $\iint_{\Sigma}f(x,y,z)\mathrm{d}S=\iint_{D_{xy}}f[x,y,z(x,y)]\cdot\sqrt{1+z_{x}^{2}+z_{y}^{2}}\mathrm{d}x\mathrm{d}y$

对称性(以曲面关于 xOy 面对称为例):设 $\Sigma=\Sigma_1+\Sigma_2$,其中 Σ_1 与 Σ_2 关于 xOy 面对称, Σ_1 在 xOy 面上方

若
$$f(x,y,z)$$
 为关于 z 的奇函数,则 $\iint_{\Sigma}f(x,y,z)\mathrm{d}S=0$

若
$$f(x,y,z)$$
 为关于 z 的偶函数,则 $\iint_\Sigma f(x,y,z)\mathrm{d}S=2\iint_{\Sigma_1} f(x,y,z)\mathrm{d}S$

轮换对称性: 若满足 f(x,y,z) 中自变量调换顺序,对函数解析式不影响,则 $\iint_\Sigma f(x,y,z)\mathrm{d}S=\iint_\Sigma f(x,z,y)\mathrm{d}S=\iint_\Sigma f(x,z,y)\mathrm{d}S=\iint_\Sigma f(z,y,x)\mathrm{d}S$

第一型积分的运用举例

测度
$$\mu(\Omega) = \int_{\Omega} d\mu$$

质量
$$m = \int_{\Omega} \rho(P) d\mu$$

质心
$$\vec{P} = \frac{1}{\int_{\Omega} f(P) d\mu} \{ \int_{\Omega} x \cdot f(P) d\mu, \int_{\Omega} y \cdot f(P) d\mu, \int_{\Omega} z \cdot f(P) d\mu \}$$

形心
$$ec{P} = rac{1}{\mu(\Omega)} (\int_{\Omega} x \mathrm{d}\mu, \int_{\Omega} y \mathrm{d}\mu, \int_{\Omega} z \mathrm{d}\mu)$$

绕轴转动惯量(以绕
$$z$$
 轴为例) $J_z = \int_\Omega (x^2 + y^2) \cdot f(x,y,z) \mathrm{d}\mu$

绕点转动惯量(以绕
$$O$$
 点为例) $J_O = \int_\Omega (x^2 + y^2 + z^2) \cdot f(x,y,z) \mathrm{d}\mu$

対原点的引力
$$ec F=G\{\int_\Omega rac{x}{r^3}\cdot f(P)\mathrm{d}\mu,\int_\Omega rac{y}{r^3}\cdot f(P)\mathrm{d}\mu,\int_\Omega rac{z}{r^3}\cdot f(P)\mathrm{d}\mu\}, r=\sqrt{x^2+y^2+z^2}$$

第二型曲线积分

带有确定走向,且曲线上每一点处都有切线,并且当切点在曲线上连续移动时,对应的切点连续地转动。该直线为定向光滑曲线

若某条定向光滑曲线为 L , 则 L^- 表示与之反向的曲线

定向光滑曲线的参数表达式:
$$\begin{cases} x=x(t)\\y=y(t)\\z=z(t)\\t:a\to b \end{cases},\quad \text{向量表达式 }\vec{r}=\vec{r}(t)=x(t)\vec{i}+y(t)\vec{j}+z(t)\vec{k},t:$$

 $a \rightarrow b$

规定与 L 走向相同的切向量为正切向量 $ec{ au}=x'(t)ec{i}+y'(t)ec{j}+z'(t)ec{k}$,与之反向的为负切向量 $-ec{ au}$

设 Γ 为空间中从 A 到 B 的一条定向光滑曲线, f(P) 为在 Γ 上有定义的一个有界函数,在 Γ 上顺其定向任意插入 n-1 个分点 $M_1,M_2\cdots M_{n-1}$,并设 $A=M_0,B=M_n$

因此 Γ 被分为 n 个弧段 $\overline{M_{i-1},M_i}$ $(1\leq i\leq n)$,记 $M_i(x_i,y_i,z_i,\cdots)$, $\Delta x_i=x_i-x_{i-1}$, $\Delta y_i=y_i-y_{i-1}$, $\Delta z_i=z_i-z_{i-1}$, $\Delta x_i=x_i-x_{i-1}$,小弧段长度最大值为 λ ,在 $\overline{M_{i-1},M_i}$ 上任取一点为 P_i

若对于 Γ 的任意分割与任意取点,极限 $\lim_{\lambda\to 0}\sum_{i=1}^n f(P_i)\Delta x_i$ 都存在,称函数 f(P) 在 Γ 上关于坐标 x 可积,并称其为 f(P) 在 Γ 上关于 x 的积分,记为 $\int_{\Gamma} f(P)\mathrm{d}x$

类似地,可定义其他坐标的积分。这些统称为第二型曲线积分

若三维空间中某向量场 $\vec{A}(x,y,z)=P(x,y,z)\vec{i}+Q(x,y,z)\vec{j}+R(x,y,z)\vec{k}$ 或简记为 $\vec{A}(P,Q,R)$,某定向光滑曲线 Γ

则沿
$$\Gamma$$
 的第二型曲线积分 $I=\int_{\Gamma} ec{A}\cdot \mathrm{d}ec{s}$,其中 $\mathrm{d}ec{s}=\mathrm{d}x\cdot ec{i}+\mathrm{d}y\cdot ec{j}+\mathrm{d}z\cdot ec{k}$

第二型曲线积分的性质与计算

第二型曲线积分具有线性性质与区间可加性

第二型曲线积分的反向奇性(以关于 x 坐标可积为例):若 f(x,y,z) 在定向光滑曲线 Γ 上关于 x 可积,则 f(x,y,z) 在定向光滑曲线 Γ^- 上关于 x 也可积,且 $\int_{\Gamma} f(P) \mathrm{d}x = -\int_{\Gamma^-} f(P) \mathrm{d}x$

设 f(x,y,z) 在定向光滑 Γ 上有定义且连续, $\Gamma: \vec{r}(t)=x(t)\vec{i}+y(t)\vec{j}+z(t)\vec{k}, t:a \to b$ 则曲线

积分存在,且有:
$$\begin{cases} \int_{\Gamma} f(x,y,z) \mathrm{d}x = \int_{a}^{b} f[x(t),y(t),z(t)]x'(t) \mathrm{d}t \\ \int_{\Gamma} f(x,y,z) \mathrm{d}y = \int_{a}^{b} f[x(t),y(t),z(t)]y'(t) \mathrm{d}t \\ \int_{\Gamma} f(x,y,z) \mathrm{d}z = \int_{a}^{b} f[x(t),y(t),z(t)]z'(t) \mathrm{d}t \end{cases}$$

特殊的,例如,若平面的定向曲线 $\Gamma: y = y(x), x: a \to b$

则
$$\int_{\Gamma}P\mathrm{d}x+Q\mathrm{d}y=\int_{a}^{b}\{P[x,y(x)]+Q[x,y(x)\cdot y'(x)]\}\mathrm{d}x$$

两类曲线积分的关系

设空间中的有向光滑曲线 L 以弧长为参数,方程为: $ec{r}(s)=x(s)ec{i}+y(s)ec{j}+z(s)ec{k}+\cdots$

由于
$$ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2 + \cdots}$$

因此,切向量的方向余弦为 $\cos \alpha = \frac{\mathrm{d} x}{\mathrm{d} s}, \cos \beta = \frac{\mathrm{d} y}{\mathrm{d} s}, \cos \gamma = \frac{\mathrm{d} z}{\mathrm{d} s}, \cdots$

$$\therefore \, \mathrm{d}\vec{s} = \mathrm{d}x \cdot \vec{i} + \mathrm{d}y \cdot \vec{j} + \mathrm{d}z \cdot \vec{k} + \dots = (\cos\alpha, \cos\beta, \cos\gamma, \dots) \cdot \mathrm{d}s$$

所以,在空间中的某定向光滑曲线 Γ 在向量场 $ec{A}=(P,Q,R,\cdots)$ 上的第二型积分为

$$\int_{\Gamma}ec{A}\mathrm{d}ec{s} = \int_{\Gamma}(P\coslpha + Q\coseta + R\cos\gamma + \cdots)\mathrm{d}s$$

区域连通性与正向边界曲线

设 D 为平面区域,若 D 内任一闭合曲线所围成的区域都属于 D ,则称 D 为平面单连通区域,否则称为复联通区域。

正向边界曲线: 当观察者沿着 ∂D 走的时候, 区域 D 总在它的左边。正向边界曲线记为 ∂D^+

格林公式

设 xOy 面上的有界闭区域 D 的边界曲线 ∂D 由有限条光滑或分段光滑的曲线所组成,函数 $P(x,y),Q(x,y)\in C^{(1)}(D)$ 则有:

$$\iint_D (rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}) \mathrm{d}x \mathrm{d}y = \oint_{\partial D^+} P \mathrm{d}x + Q \mathrm{d}y$$

当 D 内存在奇点时,可构造某 D 内不过奇点的封闭曲线 L 。而后,使得 $\oint_{\partial D^+} P \mathrm{d}x + Q \mathrm{d}y = (\oint_{\partial D^+ + L^-} + \oint_L) P \mathrm{d}x + Q \mathrm{d}y$

平面曲线积分与路径无关

若在单连通区域 G 上, $P(x,y),Q(x,y)\in C^{(1)}(G)$,则以下四个命题等价:

1. 对任意封闭曲线
$$C\subset G, \oint_C P\mathrm{d}x + Q\mathrm{d}y = 0$$

2.
$$\int_L P \mathrm{d}x + Q \mathrm{d}y$$
 在 G 内与路劲无关

3. 在
$$G$$
 内存在 $u(x,y)$ 使得 $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$

4.
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 在 G 内处处成立

二元函数全微分的求解

若存在 u 使得 $u=P\mathrm{d}x+Q\mathrm{d}y$ 则称 u 为 $P\mathrm{d}x+Q\mathrm{d}y$ 的原函数。若该式在 G 内存在原函数,则 $\int_L P\mathrm{d}x+Q\mathrm{d}y$ 在 G 内与路劲无关

该式的一个元函数为
$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P \mathrm{d}x + Q \mathrm{d}y$$

第二型曲面积分

在双侧曲面上选定某一侧,该种曲面称为定向曲面。 Σ 表示选定了该侧的定向曲面, Σ^- 表示选定了该侧相反侧的定向曲面

规定曲面的法向量总是指向曲面取定的一侧。例如当曲面方程满足 z=z(x,y) 时, Σ 取定上侧,则 $\vec{n}=(-z_x,-z_y,1)$; Σ 取定下侧,则 $\vec{n}=(z_x,z_y,-1)$

设 Σ 是一片光滑的定向曲面,向量值函数 $\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$ 在 Σ 上有界,在点 (x,y,z) 处的单位法向量 $\vec{e}_n = (\cos\alpha,\cos\beta,\cos\gamma)$,若积分 $\iint_{\Sigma} P\cos\alpha \mathrm{d}S, \iint_{\Sigma} Q\cos\beta \mathrm{d}S, \iint_{\Sigma} R\cos\gamma \mathrm{d}S \text{ 同时存在,则称积分 } \iint_{\Sigma} [P\cos\alpha + Q\cos\beta]$

$$JJ_{\Sigma}$$
 JJ_{Σ} JJ_{Σ} JJ_{Σ} JJ_{Σ} $Q\coseta+R\cos\gamma]\mathrm{d}S$ 为向量值函数 $ec{F}$ 在定向曲面 Σ 上的积分或第二型曲面积分,记为 $\iint_{\Sigma}ec{F}\mathrm{d}ec{S}$

其中, $\mathrm{d} \vec{S} = \vec{e}_n \mathrm{d} S = (\cos \alpha, \cos \beta, \cos \gamma) \mathrm{d} S = \mathrm{d} y \mathrm{d} z \cdot \vec{i} + \mathrm{d} z \mathrm{d} x \cdot \vec{j} + \mathrm{d} x \mathrm{d} y \cdot \vec{k}$

$$\therefore \iint_{\Sigma} ec{F} \mathrm{d} ec{S} = \iint_{\Sigma} P \mathrm{d} y \mathrm{d} z + Q \mathrm{d} z \mathrm{d} x + R \mathrm{d} x \mathrm{d} y$$

第二型曲面积分同样具有线件性质、区间可加性与反向奇性

两类曲面积分的联系

$$\iint_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \iint_{\Sigma} (P, Q, R) \cdot \vec{e}_n \mathrm{d}S = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \mathrm{d}S$$

第二型曲面积分的计算

1. 分面投影法

将
$$\iint_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y$$
 看成三个积分,分别计算后求和

以计算
$$\iint_{\Sigma} R dx dy$$
 为例:

设
$$\Sigma$$
 可写为 $z=z(x,y)\in C^{(1)}(D_{xy}), (x,y)\in D_{xy}$ 且被积函数 $R\in C(\Sigma)$

若
$$\Sigma$$
 为上侧,则 $\iint_{\Sigma}R\mathrm{d}x\mathrm{d}y=\iint_{D_{xy}}R[x,y,z(x,y)]\mathrm{d}x\mathrm{d}y$

若
$$\Sigma$$
 为下侧,则 $\iint_{\Sigma}R\mathrm{d}x\mathrm{d}y=-\iint_{D_{xy}}R[x,y,z(x,y)]\mathrm{d}x\mathrm{d}y$

2. 合一投影法 (以投影到 xOy 面为例)

当曲面 Σ 可写为 $z=z(x,y),(x,y)\in D_{xy}$ 时,法向量 $ec{n}=\pm(z_x,z_y,-1)$

$$egin{aligned} &\iint_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \ &\iint_{D_{xy}} \{P[x,y,z(x,y)], Q[x,y,z(x,y)], R[x,y,z(x,y)]\} \cdot ec{n} \cdot \mathrm{d}x \mathrm{d}y \end{aligned}$$

高斯公式

设 Ω 为空间有界闭区域,其边界曲面 $\partial\Omega$ 由有限块光滑或分片光滑的曲面围成,若函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在 Ω 上具有一阶连续的偏导数,则有 $\iint_{\partial\Omega^+} P\mathrm{d}y\mathrm{d}z + Q\mathrm{d}z\mathrm{d}x + R\mathrm{d}x\mathrm{d}y = \iiint_{\Omega} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z})\mathrm{d}V$

当
$$\Sigma$$
 不封闭时,可以添加曲面 Σ_1 使得曲面封闭,然后 $\iint_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = (\iint_{\Sigma+\Sigma_1} + \iint_{\Sigma_1^-}) P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y$

当
$$\Omega$$
 内存在奇点时,可以选择添加包含奇点的曲面 Σ_1 ,然后 $\iint_\Sigma P\mathrm{d}y\mathrm{d}z + Q\mathrm{d}z\mathrm{d}x + R\mathrm{d}x\mathrm{d}y = (\iint_{\Sigma+\Sigma_1^-} + \iint_{\Sigma_1})P\mathrm{d}y\mathrm{d}z + Q\mathrm{d}z\mathrm{d}x + R\mathrm{d}x\mathrm{d}y$

通量与散度

设 $ec{A}=Pec{i}+Qec{j}+Rec{k}\in C^{(1)}$ 的向量场,沿场中某曲面 Σ 的通量/流量为其第二类曲面积分 $\Phi=\iint_{\Sigma}ec{A}\mathrm{d}ec{S}$

在场内,做包围点 M 的闭曲面 Σ ,设 Σ 所围区域的为 V ,体积为 $\mu(V)$ 。若当 V 收缩成点 M

时,极限
$$\lim_{V o M}rac{\iint ec{A}\mathrm{d}ec{S}}{\mu(V)}$$
 存在,则称该极限值为 $ec{A}$ 在 M 的散度,记为 $\mathrm{div}\ ec{A}$

利用积分中值定理可证明,
$$\operatorname{div} \vec{A} = rac{\partial P}{\partial x} + rac{\partial Q}{\partial y} + rac{\partial R}{\partial z} =
abla \cdot \vec{A}$$

故高斯公式可简写为
$$\iint_{\partial\Omega^+} ec{A} \mathrm{d} ec{S} = \iiint_{\Omega}
abla \cdot ec{A} \mathrm{d} V$$

斯托克斯公式

定向曲面的正向边界曲线,即为绕该定向曲面边界线,且按照右手定则,方向指向曲面正向的方向。

设 Σ 是一张光滑或分片光滑的定向曲面, Σ 的正向边界 $\partial \Sigma^+$ 为光滑或分段光滑的闭曲线。若函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在 Σ 上具有一阶连续偏导数,则有 $\iint_{\Sigma} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) \mathrm{d}y \mathrm{d}z + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) \mathrm{d}z \mathrm{d}x + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \mathrm{d}x \mathrm{d}y = \oint_{\partial \Sigma^+} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$

可以见得, 格林公式为斯托克斯公式在平面上的特殊情况

斯托克斯公式的其他表示方法:

$$egin{aligned} \int \int_{\Sigma} \left| egin{array}{ccc} \mathrm{d}y \mathrm{d}z & \mathrm{d}z \mathrm{d}x & \mathrm{d}x \mathrm{d}y \ & & & rac{\partial}{\partial x} & & rac{\partial}{\partial y} & & rac{\partial}{\partial z} \ & P & Q & R \end{array}
ight| = \oint_{\partial \Sigma^+} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z \end{aligned}$$

或用第一类曲面积分表示:

$$\iint_{\Sigma} egin{array}{c|ccc} \cos lpha & \cos eta & \cos \gamma \ \hline rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \hline P & Q & R \ \hline \end{array}
ight.
ight. dS = \oint_{\partial \Sigma^+} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

又或者是用 ▽ 算符来表示:

若在场
$$\vec{A}=(P,Q,R)$$
 中

$$\iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \mathrm{d}S = \iint_{\Sigma} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \mathrm{d}\vec{S} = \iint_{\Sigma} \nabla \times \vec{A} \mathrm{d}\vec{S}$$
 故可表示为
$$\iint_{\Sigma} \nabla \times \vec{A} \mathrm{d}\vec{S} = \oint_{\partial \Sigma^{+}} \vec{A} \mathrm{d}\vec{s}$$

环流量与旋度

设 $C^{(1)}$ 的向量场 $\vec{A}(x,y,z)=P(x,y,z)\vec{i}+Q(x,y,z)\vec{j}+R(x,y,z)\vec{k}$ 则沿 \vec{A} 中某一封闭的定向曲线 Γ 上的曲线积分 $\int_{\Gamma}\vec{F}\mathrm{d}\vec{r}=\int_{\Gamma}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z$ 称为向量场 \vec{A} 沿曲线 Γ 所取方向的环流量

称向量
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$$
为 \vec{A} 在该点的旋度,记为 $\cot \vec{A} = \nabla \times \vec{A}$