< 행렬의 역행렬 >

정방행렬의 곱셈에 대한 역원인 역행렬이 존재할 때 역행렬을 구하는 방법에 대해 알아보자.

정의 1

항등행렬 I_n 에 한 번의 기본행연산을 하여 얻어진 행렬을 **기본행렬**(elementary matrix)이라 한다.

예를 들어 2×2 항등행렬 I_2 에서 얻어진 기본행렬은 다음과 같은 형태이다.

$$E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} \quad \text{£} \vdash \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \quad (r \neq 0), E_3 = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \quad \text{£} \vdash \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \quad (s \neq 0)$$

기본행렬을 행렬 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 에 곱하면

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$
$$\begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ra & rb \\ c & d \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ rc & rd \end{bmatrix}$$
$$\begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a + scb + sd \\ c & d \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c + sad + sb \end{bmatrix}$$

이 연산을 살펴보면 기본행렬과 같은 기본행연산을 주어진 행렬 A에 적용한 것과 같다.

(예제 1)
$$A = \begin{bmatrix} 2 & 1-1 \\ -1 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1-1 \\ 0 & 3 & 0 \\ -1 & 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1-1 \\ -1 & 6 & 1 \\ 0 & 3 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix}$ 이라 하자. 다

음을 만족하는 기본행렬 *E*를 구하여라.

(1)
$$EA = B$$

(2)
$$EA = C$$

(3)
$$EA = D$$

(예제 2) 1.2절의 예제 6에서 행렬 $A=\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}$ 를 기약 행사다리꼴 행렬 $B=\begin{bmatrix}1&0&-1\\0&1&2\\0&0&0\end{bmatrix}$ 로 바꾸었다. $E_n\cdots E_2E_1A=B$ 를 만족하는 기본행렬 E_1,E_2,\cdots,E_n 을 구하여라.

(예제 3) $A=\begin{bmatrix}1&1&-2\\-1&1&0\\0&-1&-1\end{bmatrix}$ 를 기약 행사다리꼴 행렬 B로 바꾸고 $E_n\cdots E_2E_1A=B$ 를 만족하는 기본행렬 E_1,E_2,\cdots,E_n 을 구하여라.

정의 2

정방행렬 $A \in M_n$ 에 대하여 $AB = BA = I_n$ 를 만족하는 정방행렬 $B \in M_n$ 이 존재하면 행렬 A를 **가역행렬**(invertible matrix or non-singular matrix)이라 하고 행렬 B를 A의 **역행렬**(inverse matrix)이라 한다. 이때 $B = A^{-1}$ 로 나타낸다.

항등행렬 I은 II=I이므로 $I^{-1}=I$ 이다. 모든 정방행렬이 역행렬을 가지지는 않는다. 예를 들면 행렬 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ 의 역행렬은 존재하지 않는다.

정리 3

역행렬이 존재하면 그 역행렬은 유일하게 한 개 존재한다.

(예제 4) 만인 $ad-bc \neq 0$ 이면 행렬 $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 은 가역이며

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d - b \\ -c & a \end{bmatrix}$$

임을 보여라. 만일 ad-bc=0이면 A의 역행렬은 존재하지 않음을 보여라.

위의 정리로부터 크기가 2×2 인 행렬 $A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$ 가 가역행렬이기 위한 필요충분조건은 $ad-bc\neq 0$ 임을 알 수 있다.

(예제 5) 다음 행렬이 가역이면 역행렬을 구하여라

$$(1) \ A = \begin{bmatrix} 1 \ 2 \\ 3 \ 4 \end{bmatrix}$$

$$(2) B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

정리 4

A가 가역행렬이면 임의의 $\pmb{b} \in \mathbb{R}^n$ 에 대히여 연립방정식 $A\pmb{x} = \pmb{b}$ 의 해는 $\pmb{x} = A^{-1}\pmb{b}$ 이고 유일하다.

(예제 6)

 $A = \begin{bmatrix} -12 \\ -23 \end{bmatrix}$ 가 가역임을 보이고 연립방정식 $A \mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 의 해를 구하여라.

가역행렬은 다음 성질을 만족한다.

정리 5

정방행렬 A , B와 C에 대하여 BA=I , AC=I이면 B=C이고 A는 가역행렬이며 $A^{-1}=B=C$ 이다.

또한 가역행렬에 대하여 다음 정리가 성립한다.

<u>정리 6</u>

A가 정방행렬이라 하자.

- (a) A가 가역행렬이면, A^{-1} 도 가역행렬이고 $(A^{-1})^{-1} = A$ 이다.
- (b) A가 가역행렬이고 c가 0이 아닌 상수이면, cA도 가역행렬이고 $(cA)^{-1} = \frac{1}{c}A^{-1}$ 이다.

- (c) A 와 B가 같은 크기의 가역행렬이면, AB도 가역행렬이고 $(AB)^{-1} = B^{-1}A^{-1}$ 이다.
- (d) A가 가역행렬이면, A^T 도 가역행렬이고 $(A^T)^{-1} = (A^{-1})^T$ 이다.
- (e) A 가 가역행렬이면, 음이 아닌 모든 정수 n에 대하여 A^n 도 가역행렬이고 $(A^n)^{-1}=(A^{-1})^n$ 이다.

정리 6의 (e)는 유한개의 가역행렬의 곱에 대한 일반화이다. 즉, A_1,A_2,\cdots,A_n 이 같은 크기의 가역행렬이면, $A_1A_2\cdots A_n$ 은 가역행렬이고 역행렬은

$$(A_1 A_2 \cdots A_n)^{-1} = A_n^{-1} \cdots A_2^{-1} A_1^{-1}$$

이다.

가역행렬의 역행렬을 구하는 방법에 대해 알아보자.

정방행렬을 기약 행사다리꼴 행렬로 바꾸었을 때, 기약 행사다리꼴 행렬이 항등행렬인 경우와 항등행렬이 아닌 경우가 있다. 기약 행사다리꼴 행렬이 항등행렬인 경우 주어진 행렬은 가역 행렬이다.

정리 7

기본행렬이 가역일 때, 기본행렬에 행연산을 적용한 후 얻어진 기본행렬의 역행렬은 다음과 같다.

기본행렬 E	역행렬 E^{-1}
i 행에 $c \neq 0$ 을 곱한다.	i 행에 $\dfrac{1}{c}$ 을 곱한다.
i 행에 c 을 곱한 것을 j 행에 더한다.	i행에 $-c$ 을 곱한 것을 j 행에 더한다.
i행과 j 행을 바꾼다.	i 행과 j 행을 바꾼다.

(예제 7) 다음 기본행렬의 역행렬을 구하여라.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \ E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

정의 2에서는 정방행렬 A가 가역이 되려면 AB=BA=I를 만족하는 정방행렬 B가 존재 하여야 하지만 다음 정리에 의하여 AB=I 또는 BA=I 중 하나만 만족하는 정방행렬 B가 존재하면 A가 가역임을 알 수 있다.

<u>정리 8</u>

A가 정방행렬이라 하자. AB=I 또는 BA=I를 만족하는 정방행렬 B가 존재하면, A는 가역행렬이고 $B=A^{-1}$ 이다.

정방행렬 A가 가역행렬이면 $E_k \cdots E_2 E_1 A = I_n$ 를 만족하는 기본행렬 E_1, E_2, \cdots, E_k 가 존재한다. A의 역행렬 A^{-1} 은 다음과 같다.

$$A^{-1} = E_k \cdots E_2 E_1 = E_k \cdots E_2 E_1 I$$

이는 A 를 기약 행사다리꼴 행렬로 만드는 기본행연산을 항등행렬 I에 동시에 똑같이 적용하는 것과 같다.

(예제 8) 다음 행렬의 역행렬이 존재하면 역행렬을 구하여라. 이때 행렬 A를 기본행렬의 곱으로 표현하여라.

$$A = \begin{bmatrix} 1 & -12 \\ -1 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

좀 더 간편한 방법으로 역행렬을 구하는 방법에 대해 알아보자.

(예제 9) 가역행렬 $\begin{bmatrix} 1 & 0 & 2 \\ 2 - 1 & 4 \\ 0 & 2 & 1 \end{bmatrix}$ 의 역행렬을 구하여라.