IT essentials

Deel III: Netwerken

Overzicht

- Basisconcepten
- Data encapsulation
- Netwerk kabels
- Netwerk adressen
- Network devices
- TCP en UDP
- Application layer protocols

Basisconcepten

- LAN: Local Area Network
 - Geografisch beperkt in afstand (ongeveer 1 vierkante kilometer)
 - Relatief hoge snelheden
 - Goedkoop
- WAN: Wide Area Network
 - Verbinding tussen LAN's: grotere afstanden
 - Internetverbinding
 - Duur
- NIC: Network Interface Card: netwerkkaart

Basisconcepten

- ISP: Internet Service Provider
 - Bijvoorbeeld Proximus of Telenet
- Bandwidth:
 - de theoretisch maximale snelheid die op een bepaald medium kan behaald worden
 - Bijvoorbeeld: de geadverteerde downloadsnelheid van de ISP: 80 Mb/s
- Throughput:
 - de reële maximale snelheid die op een bepaald medium kan behaald worden
 - Bijvoorbeeld: de reëel behaalde downloadsnelheid: 62 Mb/s
- Bandwidth is altijd hoger dan throughput!

Data encapsulation

- Het versturen van data verloopt volgens een gelaagd model.
- Elke laag heeft zijn eigen verantwoordelijkheid, uitgevoerd door een protocol actief in die laag.
 - Protocol: geheel van afspraken en regels in de communicatie tussen verzender en ontvanger
- Het geheel van protocols over de verschillende lagen heet een protocol stack
 - Bijvoorbeeld TCP/IP: de meest gebruikte protocol stack
- Lagen bieden vaak keuze tussen verschillende protocols, die elk op hun eigen manier de taken van de laag gaan uitvoeren.

Data encapsulation: OSI versus TCP/IP

Data encapsulation

- Protocols voeren hun taken uit door extra informatie toe te voegen voor de data (header) of na de data (footer) bij het verzenden.
- Aan ontvangende zijde zal deze extra data door hetzelfde protocol gelezen en er terug afgehaald worden.
 - = DATA ENCAPSULATION

Data encapsulation: extra informatie per laag

Netwerk kabels

- Verschillende devices die met elkaar verbonden zijn over een netwerk, zullen dit via kabels doen, of wireless.
- 2 soorten netwerk kabels:

	Koper	Fiber optic
Prijs	Goedkoop	Duur
Gevoelig aan interferentie	Hoog	Laag
Afstanden	Kort	Lang
Snelheid	Laag	Hoog
Installatie	Makkelijk te leggen	Moeilijk te leggen
Gebruik	LAN, computer naar netwerk device	Snelle verbindingen in LAN, WAN verbindingen

Netwerk kabels: koper

- UTP: Unshielded Twisted Pair
- Connector: RJ45
- Verschillende categorieën:
 - CAT5: tot 100 Mb/s
 - CAT5e: tot 1 Gb/s (1000 Mb/s)
 - CAT6: tot 10 Gb/s met 55m lengte
 - CAT6a: tot 10 Gb/s met 100 lengte
- Wordt vooral gebruikt om computers te verbinden met network devices, of network devices onderling (aan lagere snelheden) op een lokaal netwerk.

Netwerk kabels: fiber optic

- Signaal is licht: niet gevoelig aan electromagnetische interferentie.
- Ideaal voor langere afstanden en hogere snelheden.
- Duur en moeilijk om te leggen.
- Wordt vooral gebruikt voor het verbinden van devices die hogere netwerksnelheden nodig hebben (servers, network devices onderling) of langere afstanden zoals internetverbindingen.

Netwerk adressen

- Om verschillende apparaten met elkaar te laten communiceren over een netwerk, heeft elk apparaat een uniek adres nodig: een netwerkadres.
- Vergelijkbaar met een postadres.
- Communicatie gebeurt met verschillende tussenstappen: hops.
- Tussenstations zijn vaak switches en routers.
- 2 soorten adressen: MAC adres (hardware adres) en IP adres.

Netwerk adressen: MAC adres

- Ingebakken in elke NIC
- In theorie niet wijzigbaar
- Actief in de 2 de laag
- Wordt gebruikt voor het communiceren voor 1 tussenstap: 1 hop
 - MAC adres geeft het adres weer van de volgende tussenstap
- Wordt weergegeven in hexadecimaal:
 - Bijvoorbeeld: 00-07-E9-42-AC-29
- Te vinden via het commando:
 - Windows: ipconfig /all
 - Linux: ifconfig

Netwerk adressen: IP adres

- Zelf vrij te kiezen binnen de regels van een netwerk.
- Wordt meestal automatisch toegekend door een DHCP-server, maar kan ook manueel (fixed) ingesteld worden.
- Actief in de 3de laag.
- Wordt gebruikt voor het communiceren van begin- tot eindpunt.
- Behoort steeds tot een netwerkstuk: subnet mask.
- Maakt gebruik van een Default Gateway (DG):
 - Het IP-adres van het device langs waar men buiten het eigen netwerk geraakt
 - Meestal het IP-adres van de machine die de weg naar het internet voorziet
- 2 soorten: IPv4 en IPv6

Netwerk adressen: IPv4 adres

- 4 x 8 bits lang (32 bits in totaal), met telkens een punt ertussen
- weergegeven in decimal
 - Bijvoorbeeld: 192.168.0.15
- 8 bits: maximale waarde is 255, dus in een IPv4-adres nooit een getal hoger dan 255
- Adressen voor privégebruik:
 - Beginnen met 10.
 - Beginnen met 172.16 tot 172.31
 - Beginnen met 192.168
 - Beginnen met 168.254 (APIPA: indien DHCP-server niet antwoordt)

Netwerk adressen: IPv6 adres

- Alle IPv4 adressen zijn op. Meer bits nodig voor meer mogelijke adressen.
- IPv6 adres: 128 bits lang.
- Wordt weergegeven in hexadecimaal.
- Vaak afgekort.

Netwerk devices

- Machines die verbonden zijn op een netwerk heten hosts.
 - Op het eind van de ketting: endpoints
 - Bijvoorbeeld computers, smartphones, servers
 - Tussenin: intermediary devices
 - Bijvoorbeeld routers, switches
- Elk van deze intermediary devices heft eigen karakteristieken, en dus ook een toepassingsgebied.

Network devices: switch

- Is actief in de 2de laag
 - LAN
 - Gebruikt MAC-adressen
 - Stuurt het pakketje 1 hop door

- Verbindt deze dan door met een volgend netwerk, waaronder ook de default gateway.
- Kan ook gebruikt worden om grotere onderdelen van een LAN met elkaar te verbinden, zoals meerdere switches.
- Vaak ook onderdeel van andere network devices, zoals je thuis router.
 - de vier poorten achterin

Network devices: WAP

- Wireless Access Point
- Is actief in de 2de laag
 - LAN
 - Gebruikt MAC-adressen
 - Stuurt het pakketje 1 hop door
- Verbindt endpoint devices met elkaar zonder kabels (wireless).
- Verbindt deze dan door met een bekabeld netwerk, waaronder ook de default gateway.
- Vaak ook onderdeel van andere network devices, zoals je thuis router
 - De ingebouwde wirelessfunctionaliteit

Network devices: WAP

• Maakt gebruik van verschillende standaarden: IEEE 802.11

Old Name	<u>New Name</u>	Introduced	Max.Speed	<u>Bands</u>
802.11b	"Wi-Fi 1" (unofficial)	1999	l l Mbps	2.4GHz
802.11a	"Wi-Fi 2" (unofficial)	1999	54Mbps	5GHz
802.11g	"Wi-Fi 3" (unofficial)	2003	54Mbps	2.4GHz
802.11n	Wi-Fi 4	2009	600Mbps	2.4GHz and 5GHz
802.11ac	Wi-Fi 5	2013	3.46Gbps	5GHz
802.11ax	Wi-Fi 6	2018/2019	10.53Gbps	2.4GHz and 5GHz

Network devices: router

- Is actief in de 3de laag
 - WAN of onderverdelen van LAN's
 - Gebruikt IP-adressen
 - Stuurt het pakketje 1 hop door, maar zoekt er steeds de beste route voor op basis van de eindbestemming
- Verbindt intermediary devices, als tussenknooppunt in het hele traject.
- Is zelf vaak ook de default gateway, en vormt als dusdanig ook vaak de toegangspoort tot van en naar het internet.
- Vaak ook onderdeel van andere network devices, zoals je thuis router
 - De ene poort die toegang geeft tot het internet
 - Opmerking: de 'router' die je thuis gebruikt, is inderdaad ook een router, maar is tegelijkertijd ook veel meer. Deze 'router' noemen is dus te beperkt van naam.

Network devices: firewall

- Beheert de netwerktoegang tot een computer of een netwerk
 - Computer: Endpoint firewall: software geïnstalleerd in je computer
 - Netwerk: device tussen het internet en het LAN
 - Vaak ook corporate firewall genoemd
- Zal ongewenste netwerktrafiek filteren
 - In 2 richtingen
 - Volgens verschillende eigenschappen van het netwerkpakket
 - Poort
 - IP- en/of MAC-adres
 - Protocol
 - ...

Transport protocols

- TCP
 - Transmission control protocol
 - Ingebouwde error recovery en opnieuw verzenden
 - Je kan TCP connectie zien als een telefoon connectie of een aangetekende postverzending
 - Bij een telefoonverbinding moet **u eerst de verbinding instellen** door het nummer te kiezen. Zodra de beller antwoordt, hebt u **een bidirectioneel communicatiekanaal**.
 - U gaat dan door met spreken en zodra u klaar bent, hangt u de verbinding op.

Transport protocols

- UDP
 - User datagram protocol
 - Niets van error correction / opnieuw verzenden => stuurt data gewoon door
 - Je kan UDP vergelijken met e-mail of de normale post
 - Met e-mail of een geschreven bericht verzendt u uw bericht, maar hebt u geen idee of dat bericht is ontvangen.

UDP Transmission Illustration

Transport protocols

• Use cases

ТСР	UDP
Websites (https)	VPN
SSH, FTP	Netflix, youtube (video streaming)
SMTP (verzenden van emails)	Gaming
IMAP (ontvangen van emails)	VoIP
	DNS

- Application layer protocols
 - Laag 7 (hoogste laag)
 - de applicatielaag biedt services voor een applicatieprogramma om ervoor te zorgen dat effectieve communicatie met een ander applicatieprogramma op een netwerk mogelijk is.
 - Protocols zeer sterk afhankelijk van de applicatie, bijvoorbeeld email, websites, DNS,...

Poorten

- De link tussen de applicatie en transportlaag protocollen is gebaseerd op de poorten. Poorten zijn de identificators van applicatielaagprotocols.
 - Voorbeeld http: poort 80, SSH poort 22, FTP poort 21.

• DNS

- Domain name system
- Is het equivalent van een telefoonboek op internet.
- Houdt een map met domeinnamen bij en vertaalt deze naar IP-adressen (Internet Protocol). Dit is nodig omdat, hoewel domeinnamen voor mensen gemakkelijk te onthouden zijn, computers of machines toegang hebben tot websites op basis van IP-adressen, wat voor mensen dan weer veel moeilijker is om te onthouden.
- Voorbeeld: de DNS-naam www.ehb.be wordt vertaald naar 35.195.203.124
- Gebruikte tool voor het troubleshooten: nslookup (Windows)
- Poort:
 - Werkt op poort 53

- HTTP(S)
 - HyperText Transfer Protocol (Secure)
 - Dit is het primaire protocol dat wordt gebruikt om gegevens tussen een webbrowser en een website te verzenden.
 - HTTPS is gecodeerde versie van HTTP om de gegevensoverdracht te beveiligen. (tussen webbrowser en de website)
 - Poorten:
 - HTTP: 80
 - HTTPS: 443

• DHCP

- Dynamic Host Configuration Protocol
- het biedt snel, automatisch en centraal beheer voor de distributie van IPadressen binnen een netwerk. Daarnaast wordt DHCP ook gebruikt om het subnet mask, de standaardgateway en de DNS-serverinformatie op het apparaat te configureren.

- FTP
 - File transfer protocol
 - Is een client-serverprotocol dat kan worden gebruikt om bestanden over te zetten tussen computers op internet. De client vraagt om de bestanden en de server levert ze. (of omgekeerd)

- Poort:
 - 21 en 22

