

Data Science Project Tools:

- Python
- · Pandas, NumPy
- · Seaborn & Matplotlib
- · Scikit-learn
- Jupyter Notebook

By: Komal Digwal

Project Overview

The objective of this project is to **predict the IMDb rating of Indian movies** using features such as **genre**, **director**, **and actors**. Using historical data, we aim to analyze what influences movie ratings and build a machine learning model to estimate them.

The project involves:

- Loading and cleaning the dataset
- Handling missing values and transforming categorical data
- Performing feature encoding
- Training a regression model (Linear Regression)
- Evaluating performance using metrics like MSE and R² Score

This project helped explore key concepts in:

- Data Preprocessing
- Feature Engineering
- Exploratory Data Analysis (EDA)
- Machine Learning (Regression Modeling)

Dataset Description

The dataset used in this project was sourced from **Kaggle** via **KaggleHub** and contains detailed information about Indian movies.

Below is an overview of the key columns used for rating prediction:

Column Name	Description
Genre	The movie genre(s), e.g., Action, Drama, Comedy, etc. (multiple values separated by commas)
Director	The name of the movie's director
Actor 1	Lead actor/actress in the movie
Actor 2	Second lead/supporting actor
Actor 3	Third lead/supporting actor
Rating	IMDb rating given to the movie (target variable)

Dataset Stats:

- Total Records : Varies (1,000+ rows)
- Missing Values :
 - Rating: Some rows had missing values (dropped)
 - Other fields: Missing values were filled with "Unknown"
- Data Types:
 - Categorical: Genre, Director, Actor columns
 - Numeric: Rating (float)

□Codes

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
from collections import Counter
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import kagglehub

Movie dataset from KaggleHub

path = kagglehub.dataset_download("adrianmcmahon/imdb-india-movies")print(" Dataset downloaded at:", path)print(os.listdir(path))

Output

Dataset downloaded at: C:\Users\Admin\.cache\kagglehub\datasets\adrianmcmahon\imdb-india-movies\versions\1['IMDb Movies India.csv']

Load the dataset

```
file_path = os.path.join(path, "IMDb Movies India.csv")
df = pd.read_csv(file_path, encoding='latin1')
df.head()
```

Output

	Name	Year	Duration	Genre	Rating	Votes	Director	Actor 1	Actor 2	Actor 3
0		NaN	NaN	Drama	NaN	NaN	J.S. Randhawa	Manmauji	Birbal	Rajendra Bhatia
1	#Gadhvi (He thought he was Gandhi)	(2019)	109 min	Drama	7.0	8	Gaurav Bakshi	Rasika Dugal	Vivek Ghamande	Arvind Jangid
2	#Homecoming	(2021)	90 min	Drama, Musical	NaN	NaN	Soumyajit Majumdar	Sayani Gupta	Plabita Borthakur	Roy Angana
3	#Yaaram	(2019)	110 min	Comedy, Romance	4.4	35	Ovais Khan	Prateik	Ishita Raj	Siddhant Kapoor
4	And Once Again	(2010)	105 min	Drama	NaN	NaN	Amol Palekar	Rajat Kapoor	Rituparna Sengupta	Antara Mali

Structure of dataset

df.info() df.describe()

Output

Data	a columns (total 10 columns):					
#		Non-Null Count				
0	Name	15509 non-null	object			
1	Year	14981 non-null	object			
2	Duration	7240 non-null	object			
3	Genre	13632 non-null	object			
4	Rating	7919 non-null	float64			
5	Votes	7920 non-null	object			
6	Director	14984 non-null	object			
7	Actor 1	13892 non-null	object			
8	Actor 2	13125 non-null	object			
9	Actor 3	12365 non-null	object			

	Rating
count	7919.000000
mean	5.841621
std	1.381777
min	1.100000
25%	4.900000
50%	6.000000
75%	6.800000
max	10.000000

Count missing values

df.isnull().sum()

Output

```
Name
               0
             528
Year
Duration
            8269
Genre
            1877
Rating
            7590
Votes
            7589
Director
             525
            1617
Actor 1
Actor 2
            2384
Actor 3
            3144
dtype: int64
```

Missing Values

```
df.dropna(subset=['Rating'], inplace=True)
df.fillna("Unknown", inplace=True)
```

Rename columns for simplicity

```
df = df [ 'Genre', 'Director', 'Actor 1', 'Actor 2', 'Actor 3', 'Rating'] df.columns = [ 'Genre', 'Director', 'Star1', 'Star2', 'Star3', 'Rating'] df.head()
```

Output

	Genre	Director	Star1	Star2	Star3	Rating
1	Drama	Gaurav Bakshi	Rasika Dugal	Vivek Ghamande	Arvind Jangid	7.0
3	Comedy, Romance	Ovais Khan	Prateik	Ishita Raj	Siddhant Kapoor	4.4
5	Comedy, Drama, Musical	Rahul Rawail	Bobby Deol	Aishwarya Rai Bachchan	Shammi Kapoor	4.7
6	Drama, Romance, War	Shoojit Sircar	Jimmy Sheirgill	Minissha Lamba	Yashpal Sharma	7.4
8	Horror, Mystery, Thriller	Allyson Patel	Yash Dave	Muntazir Ahmad	Kiran Bhatia	5.6

Histogram of IMDb Ratings

```
sns.histplot(data=df, x='Rating', kde=True, bins=30, color='pink')
plt.title("Distribution of IMDb Ratings")
plt.xlabel("Rating")
plt.ylabel("Count")
plt.show()
```

Output

Visual Summary of IMDb Indian Movies

```
sns.set(style="whitegrid")
fig, axs = plt.subplots(2, 2, figsize=(16, 12))
fig.suptitle("IMDb Indian Movies Dataset Insights", fontsize=16)
```

Chart 1: Top 10 Most Common Genres genre_list = df['Genre'].dropna().apply(lambda x: x.split(', ')) all_genres = [g for sublist in genre_list for g in sublist] genre_counts = Counter(all_genres) genre_df = pd.DataFrame(genre_counts.items(), columns=['Genre', 'Count']).sort_values(by='Count', ascending=False) sns.barplot(data=genre_df.head(10), x='Count', y='Genre', palette='magma', ax=axs[0, 0]) axs[0, 0].set_title("Top 10 Most Common Genres") Chart 2: Average IMDb Rating by Genre

```
df_genre = df.copy()
df_genre['Genre'] = df_genre['Genre'].str.split(', ')
df_genre = df_genre.explode('Genre')
avg_rating = df_genre.groupby('Genre')['Rating'].mean().sort_values(ascending=False).reset_index()
sns.barplot(data=avg_rating.head(10), x='Rating', y='Genre', palette='coolwarm', ax=axs[0, 1])
axs[0, 1].set_title("Top Genres by Avg IMDb Rating")
```

Chart 3: Top 10 Lead Actors

```
actors = df['Star1'].value_counts().nlargest(10)
axs[1, 0].hlines(y=actors.index, xmin=0, xmax=actors.values, color='skyblue')
axs[1, 0].plot(actors.values, actors.index, "o", color='blue')
axs[1, 0].set_title("Top 10 Lead Actors")
axs[1, 0].set_xlabel("No. of Movies")
```

Chart 4: Top Directors by Average Rating

```
top_dirs = df['Director'].value_counts().nlargest(10).index
dir_rating = df['df['Director'].isin(top_dirs)].groupby('Director')['Rating'].mean().sort_values(ascending=False)
axs[1, 1].scatter(dir_rating.values, dir_rating.index, color='green', s=100)
axs[1, 1].set_title("Top Directors by Avg Rating")
axs[1, 1].set_xlabel("Average IMDb Rating")
```

layout

```
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()
```

Output

Encode categorical features

```
cat_df = df[['Genre', 'Director', 'Star1', 'Star2', 'Star3']]
encoded = pd.get_dummies(cat_df, drop_first=True)
final_df = pd.concat([encoded, df['Rating']], axis=1)
```

Encode categorical features

```
X = final_df.drop('Rating', axis=1)
y = final_df['Rating']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
```

Output

Predictions & Evaluate

```
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(" Mean Squared Error:", mse)
print(" R2 Score:", r2)
```

Output

Mean Squared Error: 8.138837571444517

R² Score: -3.3777311375655517

Actual vs Predicted IMDb Ratings (Linear Regression Model)

```
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test, y=y_pred, color='darkgreen')
plt.xlabel("Actual Ratings")
plt.ylabel("Predicted Ratings")
plt.title("Actual vs Predicted Movie Ratings")
plt.grid(True)plt.show()
```

Output

