

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji

Dokumentacja projektowa

Skaner pola magnetycznego

Autorzy: Dominik Jaworski, Paweł Frączkiewicz, Łukasz Piasecki

Kierunek studiów: Elektronika i Telekomunikacja

Przedmiot: Sensory w aplikacjach wbudowanych

Spis treści

1. Wprowadzenie	3
2. Opis technologii	3
2.1. Drukarka 3D	3
2.1.1. Wykonane modyfikacje drukarki	6
2.2. OctoPrint	8
2.3. Wtyczka Magnetic Field Scanner	9
2.4. Sensor pola magnetycznego	11
2.5. Analizator widma	12
2.6. Podłączenie sensora oraz ustawienia analizatora widma.	13
2.7. Połączenie z drukarką 3D	16
2.8. Instalacja oraz konfiguracja wtyczki	16
3. Obsługa skanera	20
3.1. Generacja G-code	20
3.2. Rozpoczęcie skanowania	21
3.3. Wizualizacja danych	23
3.4. Eksport, import oraz usuwanie danych	23
4. Testy	24
4.1. Symulacja w programie CST Studio	25
4.2. Pomiar tła	27
4.3. Pomiar pola magnetycznego cewki	28
4.4. Wnioski	30
4.5. Eksport danych, wizualizacja w Matlab	30
5. Podsumowanie	31
Podział odpowiedzialności zespołu Ribliografia	32
7. Bibliografia	32

1. Wprowadzenie

Niniejszy dokument zawiera komplet informacji na temat skanera pola magnetycznego. Skaner został skonstruowany jako projekt zaliczeniowy przedmiotu sensory w aplikacjach wbudowanych. Dokument zawiera szczegółowy opis skanera, w tym zasady jego działania, instrukcje dotyczące obsługi, konfiguracji oraz wizualizacji danych uzyskanych z pomiarów.

Skaner pola magnetycznego wykorzystuje zaawansowany sprzęt pomiarowy w tym sondę pola H, która wykrywa emitowane linie pola magnetycznego. Dzięki wykorzystaniu systemu drukarki 3D możliwy jest pomiar pola w przestrzeni trójwymiarowej.

Skanery pola magnetycznego znajdują zastosowanie w wielu dziedzinach. Mogą być wykorzystywane do analizy pola magnetycznego generowanego przez różne urządzenia elektroniczne, badania magnetycznych właściwości materiałów, diagnostyki w medycynie, analizy pola magnetycznego w środowiskach przemysłowych, kontroli jakości w produkcji i wielu innych.

2. Opis technologii

Częściami składowymi skanera są drukarka 3D wraz ze specjalnie przygotowaną wtyczką oprogramowania, sensor pola magnetycznego oraz analizator widmowy.

2.1. Drukarka 3D

Drukarka 3D jest kluczowym elementem skanera pola magnetycznego. Układ mechaniczny oraz dedykowane oprogramowanie odpowiada za poruszanie głowicą skanera zawierającą sensor pola magnetycznego. W projekcie została użyta drukarka zbudowana na bazie płyty głównej Bigtreetech SKR v1.4 Turbo 32-bit[1] wraz oprogramowaniem OctoPrint.

Zdj 1. Drukarka 3D wykorzystana podczas projektu

Zdj 2. Płyta główna drukarki 3D - Bigtreetech SKR v1.4 Turbo 32-bit

2.1.1. Wykonane modyfikacje drukarki

W celu dostosowania drukarki do potrzeb projektu niezbędna była modyfikacja wielu części składowych. Poniżej znajduje się lista dokonanych modyfikacji.

Usunięcie czujnika autopoziomowania BLTouch. W zamian zamontowano czujnik krańcowy na osi Z

Usunięcie extrudera odpowiedzialnego za dystrybucję filamentu wraz hotend'em służącym do jego podgrzewania oraz zaprojektowanie i wydrukowanie elementu mocowania sondy w miejscu hotend'u

Zdj.3 Mocowanie sondy zaprojektowane w środowisku Shapr 3D

Zdj.4 Mocowanie sondy po wydruku

Wymiana stołu grzewczego na drewnianą powierzchnię w celu wyeliminowania metalowego podłoża pod badanym obiektom który zaburza generowane pole i tym samym same pomiary. Dodatkowo zwiększono dystans między badanym układem a podłożem poprzez dodanie plastikowego materiału aby oddalić badany układ od

Zdj. 5. Podstawa skanera z widocznymi zmianami

Z powodu usunięcia ekstrudera oraz stołu grzewczego wraz z ich sondami temperaturowymi niezbędne było zmapowanie pomiaru temperatury poprzez rezystory 100k powodując tym samym stały odczyt temperatury w okolicy 22°C

Wymiana sterownika silnika krokowego osi Z na TMC2208[2]

Wykonano formatowanie płytki Raspberry PI oraz zainstalowano oprogramowanie Octoprint

Wykonano zmianę software'u na płycie głównej na nowszą wersję oprogramowania Klipper[3]

2.2. OctoPrint

OctoPrint[4] jest oprogramowaniem open source, służącym do zarządzania i monitorowania drukarki 3D. Umożliwia on na sterowanie i podgląd wydruku z poziomu przeglądarki internetowej.

Można go zainstalować na komputerze jednopłytkowym, takim jak Raspberry Pi, który jest podłączony do drukarki 3D. Oprogramowanie to pozwala na monitorowanie postępu drukowania, zarządzanie plikami drukowalnymi, kontrolę nad ruchem drukarki, regulację parametrów druku.

Dodatkowo można rozwijać jego funkcjonalność jak np. wizualizacje krzywizny stołu, nagrywanie kamerą procesu drukowania. Dzięki temu, że OctoPrint jest oprogramowaniem open software istnieje ogromna baza wtyczek mogących zmodyfikować każdy element programu. Pozwala to prostą personalizację środowiska, według własnych potrzeb.

Dzięki możliwości sterowania zdalnego poprzez sieć lokalną lub Internet możliwa jest kontrola drukarki i monitorowanie postępów skanowania z dowolnego miejsca, korzystając z urządzenia z przeglądarką internetową, takiego jak komputer, tablet czy smartfon.

2.3. Wtyczka Magnetic Field Scanner

Specjalnie przygotowana wtyczka (plugin) oprogramowania zapewnia integrację drukarki 3D z resztą skanera. Odpowiada za sterowanie procesem skanowania, akwizycji danych oraz wizualizacją pomiarów.

W skład wtyczki wchodzi szereg skryptów napisanych zarówno w języku Python jak i JavaScript. Poniżej lista najważniejszych skryptów wraz z krótkim opisem.

Nazwa	Opis
initpy	Kod definiujący wtyczkę do OctoPrint. Kod udostępnia interfejs oraz nadzoruje wszystkie inne procesy związane ze skanowaniem pola. Zawiera również funkcje przechwytujące komendy G-code wysyłane do drukarki przed ich wykonaniem w celu usunięcia konfliktowych rekordów tj. np. temperatura.
scanner.py	Skrypt definiuje klasę Scanner, która służy do komunikacji z urządzeniem pomiarowym za pomocą biblioteki PyVisa. Klasa posiada metody do połączenia z urządzeniem, rozłączenia, oraz pomiaru wartości z urządzenia. W trakcie pomiaru ustawiane są odpowiednie parametry na urządzeniu, a następnie pobierane są wartości pomiarowe (częstotliwość i wartość) za pomocą komend wywoływanych na instrumencie.
chart.js	Plik zawiera funkcje odpowiedzialne za wizualizację oraz odświeżenie wykresu.
magneticfieldscanner.js	Skrypt odpowiedzialny jest za zarządzanie interakcjami użytkownika i danymi dla wtyczki do skanowania pola magnetycznego. Zdefiniowano również elementy interfejsu użytkownika, takie jak przyciski, pola tekstowe i wykresy, oraz obsługuje interakcje z nimi np. przesyłanie plików, aktualizowanie danych i wysyłanie poleceń do serwera OctoPrint. Reaguje na wiadomości otrzymane od serwera OctoPrint i aktualizuje stan interfejsu użytkownika na podstawie tych wiadomości.

Wtyczka została napisane zgodnie z wytycznymi ze strony OctoPrint, dzięki czemu jest łatwa w instalacji, przejrzysta oraz kompatybilna z innymi urządzeniami, które posiadają zainstalowane środowisko OctoPrint.

2.4. Sensor pola magnetycznego

Sensor wykorzystany w skanerze pola magnetycznego to XF-B 3-1[5], sonda pola H(sonda stosowana do pomiaru emisji pola magnetycznego) o zakresie częstotliwości od 30 MHz do 6 GHz.

XF-B 3-1 to pasywna sonda bliskiego pola, specjalnie zaprojektowana do wykrywania linii pola magnetycznego emitowanych przez obiekt mierzony pod kątem 90°. Sonda posiada cewkę pomiarową, która jest umieszczona pod kątem 90° względem badanej powierzchni. Tym samym linie pola magnetycznego, które wchodzą do sondy w osi wertykalnej, nie są wykrywane.

Dzięki swojej konstrukcji umożliwia precyzyjny pomiar pola magnetycznego w bliskiej odległości od mierzonego obiektu. Jest ona również izolowana elektrycznie, co oznacza, że jest izolowana od reszty obwodu. Kolejną cechą jest fakt, że jest to sonda pola bliskiego, co sprawia, że została zaprojektowana do pomiaru pola w odległości mniejszej niż długość fali sygnału. Dzięki temu często stosowana jest do pomiarów w ciężko dostępnych miejscach układów elektronicznych.

W celu użycia należy podłączyć bezpośrednio do analizatora z wejściem 50Ω . Poniżej znajduje się wykres pasma przenoszenia sondy.

2.5. Analizator widma

Wykorzystany analizator to Rohde & Schwarz ESRP[6]. Jest to wszechstronne narzędzie do analizy i pomiaru sygnałów elektrycznych oraz posiada możliwość analizy widma sygnału.

Precyzyjny analizator widma, umożliwia wyświetlanie widma sygnału w czasie rzeczywistym oraz wykrywanie i identyfikację różnych składników spektralnych.

2.6. Podłączenie sensora oraz ustawienia analizatora widma.

Na początku należy umieścić sondę pola magnetycznego w uchwycie drukarki, a następnie połączyć ją do analizatora widma podłączonego do zasilania oraz sieci lokalnej lub internetu.

Zdj.11 Drukarka z zamontowaną sondą pola magnetycznego

Reszta koniecznych ustawień zostanie dokonana w oknie OctoPrint i przesłana do pluginu połączonego z analizatorem przez protokół Visa. Poniżej lista najważniejszych metod.

Metody connect() oraz disconnect() mają za zadanie odpowiednio nawiązywać oraz zakończyć połączenie z analizatorem. Dodatkowo w metodzie connect() następuje konfiguracja urządzenia oraz inicjalizacja parametrów pomiarowych, takie jak częstotliwość, szerokość pasma RBW (Resolution Bandwidth) oraz poziom odniesienia.

Metoda measure() jest odpowiedzialna za ustawienie parametrów w celu dokonania pomiarów na analizatorze. Metoda konfiguruje urządzenie, znajduje maksymalną wartość na śladzie pomiarowym i zwraca odczytane wartości częstotliwości i amplitudy. Pobieranie danych z analizatora odbywa się w trybie Max Hold dzięki czemu analizator będzie śledził i rejestrował maksymalną wartość do momentu zresetowania.

Zdj. 12.Metoda nawiązuje połączenie z analizatorem i inicjuje parametry ustawione w oknie wtyczki w sekcji ustawienia.

```
def disconnect(self):
```

```
try:
    self.rm.close()
except Exception as err:
    logging.error(f"Error while closing PyVisa connection: {err}")
self.connected = False

    Zdj. 13. Metoda ta ma na celu rozłączenie połączenia z analizatorem

def measure(self):
    # Clear the trace and enable auto-scaling for the Y-axis
    self.instr.write("CALC:TRAC1:CLE")
    self.instr.write("DISP:WIND1:TRAC1:Y:AUTO ON")

# Find and mark the maximum value on the trace
    self.instr.write("CALC:MARK1:MAX")

# Set max hold mode
    self.instr.write("DISP:TRAC:MODE MAXH")

# Enable averaging
    self.instr.write("SENSE:AVERAGE ON")

time.sleep(0.1)

# Query the Y-value (measurement value) of the marked maximum
    value = self.instr.query_ascii_values("CALC:MARK1:Y?")[0]

# Query the X-value (frequency) of the marked maximum
    freq = self.instr.query_ascii_values("CALC:MARK1:X?")[0]

repurp freq. value
```

Zdj. 14 Metoda odpowiadająca za konfigurację analizatora przed każdym pomiarem

2.7. Połączenie z drukarką 3D

Kolejnym krokiem jest połączenie drukarki 3D oraz urządzenia za pomocą którego będziemy się łączyć, to tej samej sieci lokalnej lub do sieci z dostępem do Internetu. Następnie należy połączyć się z serwerem OctoPrint wpisując w przeglądarkę adres zdefiniowany na Raspberry http://192.168.1.181/, a następnie zalogować się na swoje konto.

2.8. Instalacja oraz konfiguracja wtyczki

W celu instalacji wtyczki należy kliknąć na ikonę "Ustawienia" w prawym górnym rogu ekranu.

Następnie przechodzimy się do sekcji zarządzania wtyczkami, w której można przeglądać dostępne wtyczki wybierając "Plugin Manager"

Jeśli na liście zainstalowanych wtyczek nie znajduje się wtyczka "Magnetic Field Scanner" należy wybrać oraz "Get More"

a sekcji "... from an uploaded file" wybrać plik .zip z wtyczką, a następnie kliknąć instaluj. Po udanej instalacji należy zrestartować OctoPrint.

in the world. OctoEverywhere gives you unlimr and can empower your favorite OctoPrint Andr	oid and iOS apps to work everywhere. Meet
Gadget, your new free and unlimited Al-powers continuously watches your prints for errors, so	
AGPLv3 \(\frac{\mathbb{H}}{2} \) 2020-11-07 \(\frac{\mathbb{H}}{2} \) 42.13k \(\frac{\pi}{\pi} \) 78 \(\frac{\mathbb{C}}{2} \)	2023-06-18 🏶 2.6.1 (2023-06-17)
Bed Level Visualizer	Install
i Details 🛠 Homepage 🚨 jneilliii	
Displays 3D mesh of bed topography report. MIT License 2018-04-14 14 41,27k 32	4 C 2023 05 22 1 1 1 1 (2022 01 01)
OctoPrint-PrintTimeGenius	
i Details & Homepage & Eyal	Install
Use a gcode pre-analysis to provide better prir	t time estimation
≯AGPLv3 <u>₩</u> 2018-07-12 ■ 39.97k ★ 177 €	
Octolanse	landall .
from URL	289 / 377 plugins displaye
Enter URL	Install
from an uploaded file	
Irom an apioadea me	
Browse	Install

Po udanej instalacji powinna pojawić się nowa sekcja w oknie drukarki.

W kolejnym kroku konieczne jest dostosowanie parametrów analizatora z wykorzystaniem pyVisa. W pierwszej kolejności niezbędne jest dobranie parametrów analizy.

Poniżej znajduje się lista parametrów wraz z komentarzem.

Parametr	Komentarz
IP Address	Unikalny adres przypisany do urządzenia w sieci komputerowej
Center frequency [Mhz]	Częstotliwość centralna określająca punkt wokół którego analizator dokonuje pomiarów widma.
Frequency window [Mhz]	Zakres (okno) wokół centralnej częstotliwości w jakim analizator przeprowadza pomiary.
Ref level offset [dB]	Przesunięcie poziomu referencyjnego, które można zastosować w celu dostosowania skali pomiarowej analizatora.
RBW [Hz]	(Resolution Bandwidth) określa szerokość pasma rozdzielczego w jakim analizator może rozróżnić dwa sygnały o różnych częstotliwościach.

3. Obsługa skanera

3.1. Generacja G-code

Niezbędnym krokiem jest wyznaczenie obszaru skanowania. W tym celu w dowolnym programie umożliwiającym przygotowanie modeli 3D do druku np. Ultimaker Cura[8] należy wygenerować plik G-code zawierający instrukcje ruchu dla drukarki.

Przed wygenerowaniem pliku możliwe jest ustawienie szerokości, długości i wysokości skanowania. Aby w prosty sposób otrzymać wymagany obszar należy wygenerować samo wypełnienie bryły, obszar ścian oraz górnej i dolnej warstwy ustawiamy na 0. Określając ilość wypełnienia określamy tym samym gęstość wypełnienia próbkami.

Program Ulti Maker służy do generowania plików do wydruku 3D, dlatego konieczne może być ustawienie wartości wielu parametrów, które nie są ważna dla procesu skanowania np. parametr temperatury, ruch wiatraka, dlatego nie ma konieczności przejmowania się wartościami tych parametrów. Z racji, że nie odbywa się fizyczne drukowanie wtyczka ignoruje te parametry.

Usuniete zostana parametry:

E-: Wszystkie makra dotyczące ekstrudera w drukarce 3D.

M104: Ustawianie temperatury ekstrudera w trybie bez oczekiwania.

M109: Ustawianie temperatury ekstrudera w trybie z oczekiwaniem.

M140: Ustawianie temperatury stołu roboczego w trybie bez oczekiwania.

M190: Ustawianie temperatury stołu roboczego w trybie z oczekiwaniem.

G92: Ustawianie współrzędnych zerowych (zerowanie pozycji).

Eliminacją tych parametrów zajmuje się kod zawarty w skrypcie __init_.py

```
words = return_cmd.split()
# Remove words based on specified conditions
words = [word for word in words if not word.startswith(("E", "M104", "M109",
"M140", "M190", "G92"))]
return_cmd = " ".join(words)
```

Zdj. 20. Fragment kodu eliminując zbędne prefiksy wprowadzające błędy w działaniu skanera

Dużym problemem wydaje się konieczność generowania dużej ilości punktów pomiarowych, które należałoby wykonać w programie CAD. Działanie to byłoby długie i żmudne, dlatego w celu uproszczenia tego procesu należy wybrać wypełnienie gyroid, dzięki czemu skanowanie obszaru przebiegnie bezproblemowo.

3.2. Rozpoczęcie skanowania

Po przygotowaniu obiektu,który zostanie poddany pomiarom można rozpocząć skanowanie pola magnetycznego. W interfejsie OctoPrint, należy połączyć się z zdalnie za pomocą biblioteki pyVisa[9] z analizatorem. W tym celu należy kliknąć przycisk "Connect.

Następnie należy wybrać plik G-code zawierający serię instrukcji za pomocą których odbywa się ruch głowicy drukarki. W momencie rozpoczęcia "wydruku" parametr "Measured points" powinien się zwiększać.

Uwagę zwraca również podpis skali kolorów. W przypadku wartości ujemnych wyświetlane zostają błędne symbole. Jest to błąd związany z biblioteką plotly, który jest obecnie dobrze znany w środowisku programistów i powinien zostać usunięty z kolejną wersją biblioteki plotly.

Po rozpoczęciu skanowania drukarka automatycznie porusza głowicą z sondą "rysując" kształt sześcianu, a dane odczytywane z analizatora zostają zapisane w pamięci.

3.3. Wizualizacja danych

W celu zaktualizowania wykresu wizualizujące obecnie dokonane pomiary należy nacisnąć przycisk "Update chart". Dzięki temu zostaną wrysowane wszystkie obecnie zebrane dane.

Wizualizację zapewnia skrypt napisany w języku JavaScript wykorzystujący bibliotekę plotly[10].

3.4. Eksport, import oraz usuwanie danych

W oknie wtyczki można również znaleźć przyciski umożliwiające eksportowanie danych do pliku. Dane zapisywane zostają w pliku w formacie .csv. Pozwala to na analizę pomiarów w zewnętrznym programie np. Python, Matlab.

Dzięki funkcji importowania wtyczka działa również jako viewer, co pozwala nam na przeglądanie starszych zapisanych danych albo kontynuowanie zapisu danych po imporcie. Format który jest obsługiwany to .csv.

Usuwanie danych odbywa się po naciśnięciu przycisku "Delete data"

4. Testy

W celu przetestowania funkcjonalności skanera wykorzystano cewkę, zasilaną z generatora R&S SMCV100B[11]. Wartość tłumienia przewodów, doprowadzających sygnał do cewki, zmierzona przed przystąpieniem do testów równa jest 3dB.

Badanym obiektem jest płytka z wytrawioną cewką.

Uproszczony schemat połączenia znajduje się poniżej.

4.2. Symulacja w programie CST Studio

CST Studio[12] to środowisko symulacyjne do analiz elektromagnetycznych. Dzięki niemu jesteśmy w stanie zasymulować oraz analizować wiele aspektów zachowania się pól magnetycznych, takich jak dystrybucja pola, charakterystyki promieniowania, tłumienie, rezonanse, impedancje, propagacja fali, interakcje z materiałami.

W celu potwierdzenia poprawności pomiarów postanowiono wykonać symulacje w tym środowisku.

Niestety nie udało się dokończyć symulacji. Ograniczeniem okazał się dostęp do licencji, z powodu korzystania przez większą ilość osób. W obecnej formie jesteśmy w stanie wywnioskować jak wygląda potencjalny rozkład pola magnetycznego na pierwszej warstwie symulacji emitowany przez cewkę

4.3. Pomiar tła

W pierwszej kolejności wykonano skanowanie tła, bez wymuszania zakłóceń. Przed przystąpieniem do pomiarów ustawiono parametry analizatora.

Center frequency [Mhz]	3000
Frequency window [Mhz]	0.1
Ref level offset [dB]	40
RBW [Hz]	500

Po zakończonym procesie skanowania otrzymujemy wykres zmierzonego pola. Średnia moc szumów równa -78dBm będzie odniesieniem do kolejnych pomiarów.

4.4. Pomiar pola magnetycznego cewki

Przed przystąpieniem do pomiarów zapisano ustawienia do analizatora.

Center frequency [Mhz]	3000
Frequency window [Mhz]	0.1
Ref level offset [dB]	40
RBW [Hz]	500

Cewka jest zasilana sygnałem z generatora o mocy 25 dBm i częstotliwości 3 GHz.

W pierwszym pomiarze w celu dokładniejszej obserwacji pola wokół cewki zdecydowano się ustalić obszar skanowanie równy 20cm x 20cm x 0.2cm oraz 25 000 próbek na warstwę. Dzięki temu jesteśmy w stanie obserwować z dużą rozdzielczością wykres pola do kilku mm nad obiektem.

W drugim pomiarze w celu przyspieszenia czasu skanowania ustawiono 5000 próbek na warstwę, a skanowanie przeprowadzono w na obszarze o wymiarach 18cm x 18cm x 2cm

Widzimy, że pole magnetyczne jest mierzone, a w centralnym miejscu wizualizacji można zaobserwować kształt anteny.

4.5. Wnioski

Skanowanie pola magnetycznego przebiegło bez zakłóceń. Zebrane dane pozwoliły wygenerować trójwymiarową wizualizację. Analizując pierwszą "warstwę" danych jesteśmy w stanie zauważyć wyraźny zarys badanej cewki oraz określić maksymalną moc zmierzoną 1mm nad cewką która, wynosi 0dBm. Wiemy, że moc podawana z generatora równa jest 25dBm. Zmierzone straty na kablach sygnałowych w przybliżeniu równe są 3dB. Zatem sygnał maksymalny odbierany w najniższym, zmierzonym punkcie jest o ok 22dB mniejszy niż sygnał nadawany.

Widzimy również pole magnetyczne emitowane przez przewód doprowadzający sygnał z generatora.

4.6. Eksport danych, wizualizacja w Matlab

Dzięki funkcji eksportu danych istnieje możliwość analizy danych w zewnętrznym programie np. Matlab.

Przedstawiony przykładowy kod wizualizacji danych w programie Matlab również znajduje się w plikach projektu pod nazwą viewer.m.

5. Podsumowanie

Celem projektu było skonstruowanie skanera pola magnetycznego w przestrzeni trójwymiarowej. Skaner umożliwia precyzyjny i trójwymiarowy pomiar pola magnetycznego w czasie rzeczywistym. Umożliwia analizę pola emitowanego przez badane obiekty co pozwala na identyfikację zakłóceń elektromagnetycznych oraz optymalizacji projektów elektronicznych.

Dzięki części składowych tj. analizator, sonda pola magnetycznego drukarka 3D powstał w pełni działający skaner, który z powodzeniem może konkurować z produktami komercyjnymi.

Dużą zaletą skanera są prosta obsługa urządzenia, intuicyjny interfejs oraz elastyczność względem danych wejściowych. Samo oprogramowanie OctoPrint posiada rozbudowaną bazę wiedzy, co jeszcze bardziej ułatwia dostosowanie skanera do własnych potrzeb.

6. Podział odpowiedzialności zespołu

Dominik Jaworski - przygotowanie frontend'u, framework'u do OctoPrint, obsługa klippera,

Paweł Frączkiewicz - obsługa drukarki, dostosowanie G-codu, testy

Łukasz Piasecki - wizualizacja, dokumentacja

7. Bibliografia

[1]https://github.com/bigtreetech/BIGTREETECH-SKR-

V1.3/tree/master/BTT%20SKR%20V1.4

[2]https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC220x_TMC222

4_datasheet_Rev1.09.pdf

[3]https://www.klipper3d.org/Overview.html

[4]https://docs.octoprint.org/en/master/

[5]https://www.langer-emv.de/en/product/xf-passive-30-mhz-up-to-6-ghz/34/xf-b-3-1-h-field-probe-30-mhz-up-to-6-ghz/23

[6]https://scdn.rohde-

schwarz.com/ur/pws/dl downloads/dl common library/dl manuals/gb 1/e/esrp 2/ESRP Us erManual en 09.pdf

[7] https://www.rohde-schwarz.com/us/products/test-and-measurement/emi-test-receivers/rs-esrp-emi-test-receiver_63493-35077.html

[8]https://ultimaker.com/software/ultimaker-cura/

[9]https://pyvisa.readthedocs.io/en/latest/

[10]https://plotly.com/javascript/

[11]https://www.rohde-

schwarz.com/webhelp/SMCVB_HTML_UserManual_en/Content/welcome.htm

[12]https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

[13]https://www.mathworks.com/help/matlab/ref/scatter3.html