```
Modular Euponentiation
```

Repeated square-and-multiply alg for exponentiation in Zn

Input: $a \in \mathbb{Z}_n$, $0 < k < n \longrightarrow binary Representation <math>k = \sum_{k=2}^{\infty} k_k 2^k$ output: ak mod n

 $[\dot{e}=4]$ $A=(A^8)^2=A^{16} \pmod{n}$

5. return A^{26} (mod n) A^{26} (mod n)

4. For
$$e=1 \sim T$$

4.1 $A \leftarrow A^2 \pmod{n}$

4.2 if $k = 1$ then $b \leftarrow A \cdot b \pmod{n}$

$$7 = 2 \times 3 + 1$$
 $3 = 2 \times 1 + 1$
 $1 = 2 \times 0 + 1$
 $k^{2} \times k \times 0$

3. if
$$k=1 \rightarrow b=a$$

4.
$$\dot{e} = 1 \sim 2$$

$$\begin{array}{c}
\overline{i=1} \\
A = A^{2} \pmod{n} \\
if k=1 \longrightarrow b = A^{2}. \quad \alpha = A^{3} \pmod{n} \\
\overline{i=2} \\
A = (A^{2})^{2} = A^{4} \pmod{n} \\
if k=1 \longrightarrow b = A^{4}. \quad A^{3} = A^{7} \pmod{n} \\
if k=1 \longrightarrow b = A^{4}. \quad A^{3} = A^{7} \pmod{n}
\end{array}$$

5. return (AF (modn))

Fermat primality test alg.

Input: an odd integer n>3 8 security parameter t>1
Output: answer n is prine or composite

1. For e=1 ~ t do

previous and # of your loop try

1.2 Compute
$$r = a^{n-1} \pmod{n}$$
 using $\frac{8-8-M}{n}$ algorithm

Fermat: The
$$a^{p-1} \equiv 1 \pmod{p}$$

t=3 2 \le a=9 \le 23 Compute $r = 9^{24} \pmod{25} = 11$ t=3 n=25 $2 \leqslant \alpha = 7 \leqslant 23$ compute r= 7 (mod 25) = 1 êf r≠1 X 2 \ a=4 \ \ 23 Conjute r= 4 (mod 25) = 6 et r 1 return composite t= 2 n=25 Here, we set t=2 8 after 2 iterations, the algorithm returns "prime" which is NOT correct 2 <a=7 < 23 because 25 is not $r = 7^{24} \pmod{25} = 1$ prime. That is why if r i X not true it doesn't work 2 ≤ 0=18 ≤23 properly all the time $r=18 \pmod{25}=1$ 8 it depends on your ef r+1 X not true security parameter. return (uprime)

```
Miller_Rabin probabilistic primality test
    Input: an odd integer n>3 and t71 (security parameter)
Output: Is \underline{n} prime?"

1. write n-1=2 * V

even even odd

n=25
n=25
n-1=24=2 \times 3
1=24
1=24=2 \times 3
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24
1=24

2. For i=1 at do

2.1 Choose a random integer a, 2 \le a \le n-2

2.2 Compate y = a^{r} \pmod{n} using 3-8-n ago

2.3 If g \ne 1 and y \ne n-1 do

i=1
```

J=1

(while
$$j \le 3-1$$
 and $y \ne n-1$ do

Gampate $y \leftarrow y^2 \pmod{n}$

eif $y=1$ then return "Compasit"

 $j \leftarrow j+1$

If $y \ne n-1$ then return "Compasite"

3. Return "prime".