

An International Journal

**computers
&
fluids**

**List of Contents and Author Index
Volume 21, 1992**

PERGAMON PRESS
OXFORD · NEW YORK · SEOUL · TOKYO

computers & fluids

An
International
Journal

Chief Editor: S. G. Rubin
Aerospace Engineering and
Engineering Mechanics
University of Cincinnati
Cincinnati, OH 45221-0343, U.S.A.

Co-editor: M. H. Bloom
Polytechnic Institute of
New York, Route 110
Farmingdale
NY 11735, U.S.A.

Regional Editors

K. Oshima
Japan Society of Computational
Fluid Dynamics
2-7-7 Sekimachi-Kita
Nerima-ku
Tokyo 177, Japan

R. Peyret
Département de Mathématiques
CNRS-U.A. No. 168
Université de Nice-Sophia-Antipolis
Parc Valrose
06034 Nice Cedex, France

V. V. Rusanov
Russian Academy of Sciences
Miusskaya Sq. 4
125047 Moscow
Russia

C. Taylor
University of Wales
Swansea SA2 1PP
Wales
U.K.

T. Taylor
Applied Physics Laboratory
The Johns Hopkins University
Johns Hopkins Road
Laurel, MD 20810, U.S.A.

J. Adamcyk
Computational Fluid Mechanics
Branch
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135, U.S.A.

B. Gustafsson
University of Uppsala
Sturegatan 4 B 2 tr
Uppsala, Sweden

M. Pandolfi
Politecnico di Torino
Torino, Italy

F. Walkden
University of Salford
Salford M5 4WT, England

T. Aki
National Aerospace Laboratory
Jindaiji-Higashi 7, Chofu
Tokyo 182, Japan

P. K. Khosla
Aerospace Engineering and
Engineering Mechanics
University of Cincinnati
Cincinnati, OH 45221, U.S.A.

V. C. Patel
Institute of Hydraulic Research
The University of Iowa
Iowa City, IA 52242, U.S.A.

D. Whitfield
Computational Engineering
Mississippi State University
P.O. Box 6176, MS 39762,
U.S.A.

P. Bradshaw
Mechanical Engineering
Stanford University
Stanford, CA 94395, U.S.A.

E. Krause
Aerodynamisches Institut
der Rheinisch-Westfälischen
Technischen Hochschule
Aachen, Germany

P. Roache
Eodynamics
P.O. Box 9229
Albuquerque, NM 87119, U.S.A.

G. Widhopf
Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 90009, U.S.A.

M. Crochet
Université Catholique de Louvain
Louvain-la-Neuve
Belgium

P. Kutter
Applied Computational Aerodynamic
Board
NASA Ames Research Center
Moffet Field, CA 94035, U.S.A.

B. Rozhdestvensky
Russian Academy of Sciences
Miusskaya Sq. 4
125047 Moscow, Russia

R. T. Williams
Meteorology
Naval Postgraduate School
Monterey, CA 93940, U.S.A.

H. Daiguchi
Faculty of Engineering
Tohoku University
Aoba, Sendai 980
Japan

G. Moretti
31 Casino St, Apt. 2K
Freight
NY 11520, U.S.A.

J. South
NASA Langley Research Center
Hampton, VA 23665, U.S.A.

M. Wolfson
Technion-Israel Institute
of Technology
Haifa, Israel

S. C. R. Dennis
University of Western Ontario
London, Ontario, Canada

M. Napolitano
Istituto d'Macchine ed Energetica
Politecnico di Bari
Via Re David 200
70125 Bari, Italy

J. C. Tannehill
Iowa State University
Ames, IA 50010, U.S.A.

R. W. Yeung
Naval Architecture and
Offshore Engineering
University of California
Berkeley, CA 94720, U.S.A.

C. Fletcher
Mechanical Engineering
University of Sydney
Sydney, New South Wales
Australia 2006

A. van de Vooren
Mathematical Institute
University of Groningen
P.O. Box 800
9700 AV Groningen
The Netherlands

You-lan Zhu
Computing Center
Academia Sinica
Beijing, China

Publishing Office

Pergamon Press Ltd, Pergamon House, Bampfylde Street, Exeter EX1 2AH, England [Tel. (0392) 51558; Fax 425370].

Subscription and Advertising Offices

North America: Pergamon Press Inc., 660 White Plains Road, Tarrytown, NY 10591-5153, U.S.A.
Rest of the World: Pergamon Press Ltd, Headington Hill Hall, Oxford OX3 0BW, England [Tel. (0865) 794141; Fax 60285].

Subscription Rates

Annual institutional subscription rate (1992), £365.00 (US\$660.00); two-year institutional rate (1992/93), £693.50 (US\$1254.00). Sterling prices are definitive. U.S. dollar prices are quoted for convenience only, and are subject to exchange rate fluctuation. Prices include postage and insurance and are subject to change without notice. Subscription rates for Japan are available on request.

Back Issues

Back issues of all previously published volumes, in both hard copy and on microform are available direct from Pergamon Press offices.

Published Quarterly in January, April, July and October

Copyright © 1992 Pergamon Press Ltd

LIST OF CONTENTS

NUMBER 1

- A. J. Basu, A. Prabhu
and R. Narasimha
- C. P. Mracek, M. J. Kim
and D. T. Mook
- J. A. Masad, A. H. Nayfeh
and A. A. Al-Maaitah
- H. J. Smolders,
E. M. J. Niessen and
M. E. H. van Dongen
- Yannis Kallinderis and
Judson R. Baron
- D. Roekaerts
- W. Schröder and
G. Hartman
- X. Wen and D. B. Ingham
- 1 Vortex sheet simulation of a plane "canonical" mixing layer
- 31 Three-dimensional potential flows by a vorticity-panel method
- 43 Effect of heat transfer on the stability of compressible boundary layers
- 63 The random choice method applied to non-linear wave propagation in gas-vapour-droplets mixtures
- 77 A new adaptive algorithm for turbulent flows

97 Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor

- 109 Implicit solutions of three-dimensional viscous hypersonic flows
- 133 Flow induced by a submerged source or sink in a three-layer fluid

I Software Survey Section

IV Announcements

NUMBER 2

- Norio Arai and
Masatomo Komatsu
- Takeo Kajishima
and Yutaka Miyake
- T. Ikehagi, B. R. Shin
and H. Daiguji
- Yoshihiro Mochimaru
- Yasuyoshi Horibata
- 145 Active control of the hydraulic forces of a body by a splitter plate
- 151 A discussion on eddy viscosity models on the basis of the large eddy simulation of turbulent flow in a square duct
- 163 Application of an implicit time-marching scheme to a three-dimensional incompressible flow problem in curvilinear coordinate systems
- 177 Numerical simulation of flow past a circular cylinder under a magnetic field
- 185 Numerical simulation of a low-Mach-number flow with a large temperature variation

Hiroki Honma, Hiroyuki Maekawa and Tomohiro Usui	201 Numerical analysis of the nonstationary oblique reflection of weak shock waves
Y. Hozumi and Y. Yoshizawa	211 Numerical analysis of dust particles motion inside gas bubbles for flue gas desulfurization in a jet bubbling reactor
K. Nanbu and S. Igarashi	221 Three-dimensional low-density flows in the spiral grooves of a turbo-molecular pump
H. Nomura, S. Aso and M. Nishida	229 Numerical simulation of opposing sonic jets
Takashi Yamane	235 Aeroelastic tailoring analysis for advanced turbo propellers with composite blades
David A. Kopriva	247 Spectral solution of inviscid supersonic flows over wedges and axisymmetric cones
Young-Cheol Ahn and Michael E. Ryan	267 Analysis of extrudate swell from an annular die
K. Srinivas	291 An explicit spatial marching algorithm for Navier-Stokes equations
<i>Technical Note</i> Tapan K. Sengupta	301 Solution of the Orr-Sommerfeld equation for high wave numbers

I Software Survey Section

NUMBER 3

D. B. Ingham, B. Yan and B. R. Morton	305 The fluid flow induced by large-amplitude oscillations of a cascade
V. P. Korobeinikov, S. B. Gusev, P. I. Chushkin and L. V. Shurshalov	323 Flight and fracture of the Tunguska cosmic body into the Earth's atmosphere
Koji Morinishi	331 A finite difference solution of the Euler equations on non-body-fitted Cartesian grids
V. A. Gushchin and V. N. Konshin	345 Computational aspects of the splitting method for incompressible flow with a free surface
T. S. Lee	355 Numerical computation of fluid convection with air enclosed between the annuli of eccentric heated horizontal rotating cylinders
Shigeru Aso and Masanori Hayashi	369 Numerical experiments on unsteady shock reflection processes using the thin-layer Navier-Stokes equations

A. A. Fursenko, D. M. Sharov, E. V. Timofeev and P. A. Voinovich	377 Numerical simulation of shock wave interactions with channel bends and gas nonuniformities
Marie-Hélène Lallemand, Hervé Steve and Alain Dervieux	397 Unstructured multigridding by volume agglomeration: current status
S.-W. Kim and T. J. Benson	435 Comparison of the SMAC, PISO and iterative time-advancing schemes for unsteady flows
F. Moukalled and S. Acharya	455 Application of an adaptive grid procedure for the calculation of turbulent separated flows
	I <i>Software Survey Section</i> GYDROTEM-PIPE; GIDROTEM-POR; GIDROTEM-OUT
	V <i>Announcements</i>

NUMBER 4

Qingping Shi and R. J. Ribando	475 Numerical simulations of viscous rotating flows using a new pressure-based method
Tuncer Cebeci, Hsun H. Chen and Kalle Kaups	491 Further consideration of the effect of curvature on the stability of three-dimensional flows
Stephen A. Jordan	503 An iterative scheme for numerical solution of steady incompressible viscous flows
D. Lee and J. J. Chiu	519 Computation of physiological bifurcation flows using a patched grid
Tsai-An Yu and Ta-Jo Liu	537 Numerical solution of a Newtonian jet emanating from a converging channel
G. Popov, S. Sankar, T. S. Sankar and G. H. Vatistas	551 Liquid sloshing in rectangular road containers
K. C. Chang and W. J. Wu	571 Numerical boundary conditions at the interface in a confined flow computation
Lisa J. Fauci	583 Peristaltic pumping of solid particles
J. Piquet and P. Queutey	599 Navier-Stokes computations past a prolate spheroid at incidence—I. Low incidence case
Björn Sjögren	627 Iterative methods for stationary solutions to the steady-state compressible Navier-Stokes equations

Tao Tang and
D. B. Ingham

- 647 Multigrid solutions of steady two-dimensional flow
past a cascade of sudden expansions

Technical Note

David H. Schultz,

Steven Schwengels and

Gunol Kocamustafaogullari

- 661 Influence of viscous dissipation in a fluid between
concentric rotating spheres

