

Revista Ilha Digital

Endereço eletrônico: http://ilhadigital.florianopolis.ifsc.edu.br/

DOMÓTICA

GIOVANNA LIZ SOUZA

Resumo: Tendo em vista este momento atípico no qual estamos vivendo, a quarentena, famílias inteiras estão dentro de casa a maior parte do tempo, mãe, pai, crianças e avós. Avaliando a necessidade de maior segurança em relação a perda de gás, um sensor de gás inflamável é colocado em pontos estratégicos para captar com maior facilidade o vazamento de gás natural, metano, propano, butano, GLP e/ou hidrogênio. A partir disso o microcontrolador que estiver ligado ao módulo será notificado e poderá tomar uma ação que o usuário determinar.

Além da segurança, as pessoas hoje em dia procuram e investem em conforto e praticidade para a sua casa, coisas que poderiam ser feitas sozinhas sem quaisquer esforços, como por exemplo o sensor de presença, que ao detectar movimento de objetos que exalam calor e que estejam dentro do seu raio de detecção fará com que a saída do mesmo seja ativada.

São coisas simples que fazem toda a diferença no nosso dia a dia.

Palavras-chave: Automação Residencial. Tecnologia. Domótica.

1 Introducão

Domótica é uma tecnologia recente, responsável pela gestão de todos os recursos habitacionais. Derivada do termo em francês Domotique, é uma fusão da palavra "Domus", que significa casa, com a palavra "Robótica", e está ligada ao ato de automatizar, isto é, realizar ações de forma automática. O termo surgiu na França em meados do século passado, a domótica, para além de introduzir conforto e melhoria de vida aos seus utilizadores, introduz ainda novos conceitos, tais como a comunicação e segurança.

Surgiu a partir da necessidade do homem de querer realizar o mínimo de esforço durante atividades corriqueiras. O início da implantação e utilização da domótica se deu nos anos 80, durante a construção dos primeiros edifícios, e da necessidade de controlar e interligar as funções de climatização, segurança e iluminação.

Depois de alguns anos, a domótica se difundiu e atualmente pode ser aplicada nos lares. Ela permite ao usuário que opere todas as funções da casa através de um software.

Fomos do homem que a princípio habitava uma caverna sem qualquer conforto para o homem que hoje habita em um centro de tecnologia que realiza diversas atividades para ele, sem que o mesmo se esforce. Sem falar que o mercado para esse tipo de tecnologia vem aumentando consideravelmente, apesar de ser inacessível ainda à grande parte da sociedade.

Para aplicar e implantar este sistema se faz necessário a elaboração de um projeto de automação, o qual identifica todos os pontos eletrônicos do espaço, como por exemplo, som, internet, telefone, televisão, luzes, cortinas, portas e janelas. Outra nomenclatura utilizada para domótica é a Casa Inteligente, o que sugere uma habitação totalmente adaptada ao sistema e programada para auxiliar os moradores nas funções diárias.

É esperado que nos próximos anos isso seja cada vez mais comum, as casas vão se tornar cada vez mais automatizadas, a sociedade vai optar pela praticidade, modernidade, conforto, segurança, além de ser uma forma mais sustentável e também econômica a longo prazo, por ter um maior controle dos recursos na palma de sua mão.

2 DESIGN

Design feito com o Fritzing para mostrar a protoboard com as suas devidas ligações.

3 Implementação

3.1.1 Arduino Uno

O Arduino Uno é uma placa de microcontrolador de código aberto baseada no microcontrolador Microchip ATmega328P e desenvolvida pela Arduino.cc. A placa está equipada com conjuntos de pinos de entrada / saída digitais e analógicos que podem ser conectados a várias placas de expansão e outros circuitos. As entradas e saídas digitais estão localizadas desde o pino 0 até o pino 13. Note que, estes pinos devem ser configurados previamente para que atuem como entradas ou saídas.

3.1.2 Sensor de Gás MQ-2

Tem a função de verificar a presença de gás inflamável e/ou fumaça no local onde estiver instalado, alertando o sistema microcontrolador do ocorrido. é capaz de detectar diversos tipos de gases, entre eles: gás de petróleo liquefeito, butano, propano, metano, hidrogênio, álcool, gás natural, entre outros, ou mesmo fumaça.

3.1.3 Módulo Buzzer 5V Passivo

As formas de onda dos sons são enviadas diretamente para o pino de I/O, resultando em um som mais limpo.

3.1.4 Sensor de Movimento e Presença PIR HC-SR501

É capaz de detectar movimento de objetos que exalam calor e que estejam dentro do seu raio de detecção que alcança até 7 metros. Com o sensor atuando, qualquer objeto que se movimentar dentro do seu campo de detecção, fará com que a saída do mesmo seja ativada.

3.1.5 Sensor de Água

Utilizado para detectar o nível ou profundidade de um recipiente com água. Caso não seja detectado água na superfície da placa, a saída analógica do sensor se mantém zerada e quando o sensor detectar a presença de água sobre a superfície, a saída analógica irá variar sua leitura sempre acima de zero.

3.1.6 Display LCD 16X2

É um display que possui 16 colunas e 2 linhas para escrita, e este modelo tem como principal característica seu fundo azul e sua escrita branca. O Display LCD 16x2 é um modelo de display vastamente utilizado em projetos onde se necessita uma interface homem-máquina.

3.1.7 Led

Foram usados dois leds difusos de 5mm nas cores vermelha e verde.

3.1.8 Resistores

Foram usados dois resistores de 4600Ω .

3.1.9 Potenciômetro

Ele cria uma limitação para o fluxo de corrente elétrica que passa por ele, e essa limitação pode ser ajustada manualmente, podendo ser aumentada ou diminuída.

3.2 Programação - Código

```
#include <LiquidCrystal.h>
#include <dht.h>
#include "dht.h" //INCLUSÃO DE BIBLIOTECA
```

//SENSOR GÁS

```
int Pinbuzzer = 13; //PINO UTILIZADO PELO BUZZER int PinA0 = A0;//PINO UTILIZADO PELO SENSOR DE GÁS int leitura sensor = 300;//DEFININDO UM VALOR LIMITE
```

//SENSOR PIR

```
const int pinoPIR = 2; //PINO DIGITAL UTILIZADO PELO SENSOR DE PRESENÇA const int pinoLED = 7; //PINO DIGITAL UTILIZADO PELO LED
```

//SENSOR AGUA

```
const int pinoSensor = A1; //PINO ANALÓGICO UTILIZADO PELO SENSOR const int pinoLEDD = 12; //PINO DIGITAL UTILIZADO PELO LED
```

//SENSOR DHT11

```
dht DHT; //VARIÁVEL DO TIPO DHT const int pinoDHT11 = A2; //PINO ANALÓGICO UTILIZADO PELO DHT11 const int rs = 11, rw = 0, e = 10, d4 = 5, d5 = 4, d6 = 3, d7 = 8; // PINOS UTILIZADOS PELO LCD LiquidCrystal lcd(rs, rw, e, d4, d5, d6, d7);
```

```
B00001100,
        B00000000,
        B00000000,
        B00000000,
        B00000000,};
void setup(){
//SENSOR GAS
pinMode(PinA0, INPUT); //DEFINE O PINO COMO ENTRADA
pinMode(Pinbuzzer, OUTPUT); //DEFINE O PINO COMO SAÍDA
Serial.begin(9600);//INICIALIZA A SERIAL
//SENSOR PIR
pinMode(pinoLED, OUTPUT); //DEFINE O PINO COMO SAÍDA
pinMode(pinoPIR, INPUT); //DEFINE O PINO COMO ENTRADA
//SENSOR AGUA
pinMode(pinoSensor, INPUT); //DEFINE O PINO COMO ENTRADA
pinMode(pinoLEDD, OUTPUT); //DEFINE O PINO COMO SAÍDA
//SENSOR DHT11
Serial.begin(9600); //Inicializa a serial
lcd.begin(16,2); //Inicializa LCD
//CRIA O CARACTERE PARA O SIMBOLO DO GRAU
lcd.createChar(0, grau);
void loop(){
//SENSOR GAS
int valor analogico = analogRead(PinA0); //VARIÁVEL RECEBE O VALOR LIDO NO PINO
ANALÓGICO
Serial.print("Leitura: "); //EXIBE O TEXTO NO MONITOR SERIAL
Serial.println(valor analogico);// MOSTRA NO MONITOR SERIAL O VALOR LIDO DO PINO
ANALÓGICO
if (valor analogico > leitura sensor) {//SE VALOR LIDO NO PINO ANALÓGICO FOR MAIOR QUE O
VALOR LIMITE, FAZ
digitalWrite(Pinbuzzer, HIGH); //ATIVA O BUZZER E O MESMO EMITE O SINAL SONORO
}else{ //SENÃO, FAZ
digitalWrite(Pinbuzzer, LOW);//BUZZER DESLIGADO
delay(100); //INTERVALO DE 100 MILISSEGUNDOS
//SENSOR PIR
if(digitalRead(pinoPIR) == HIGH){ //SE A LEITURA DO PINO FOR IGUAL A HIGH, FAZ
  digitalWrite(pinoLED, HIGH); //ACENDE O LED
}else{ //SENÃO, FAZ
digitalWrite(pinoLED, LOW); //APAGA O LED
```

```
//SENSOR AGUA
if(analogRead(pinoSensor) > 690) { //SE A LEITURA DO PINO FOR MAIOR QUE 690 BITS, FAZ
   digitalWrite(pinoLEDD, HIGH); //ACENDE O LED
 }else{ //SENÃO, FAZ
  digitalWrite(pinoLEDD, LOW); //APAGA O LED
//SENSOR DHT11
DHT.read11(pinoDHT11); //LÊ AS INFORMAÇÕES DO SENSOR
 Serial.print("Umidade: "); //IMPRIME O TEXTO NA SERIAL
 Serial.print(DHT.humidity); //IMPRIME NA SERIAL O VALOR DE UMIDADE MEDIDO
 Serial.print("%"); //ESCREVE O TEXTO EM SEGUIDA
 Serial.print(" / Temperatura: "); //IMPRIME O TEXTO NA SERIAL
 Serial.print(DHT.temperature, 0); //IMPRIME NA SERIAL O VALOR DE UMIDADE MEDIDO E
REMOVE A PARTE DECIMAL
 Serial.println("*C"); //IMPRIME O TEXTO NA SERIAL
 delay(2000); //INTERVALO DE 2 SEGUNDOS
//LCD
float h = DHT.humidity; //Le o valor da umidade
float t = DHT.temperature; //Le o valor da temperatura
 //FUNÇAO TEMPERATURA NO LCD
 lcd.setCursor(0,0);
 lcd.print("Temp: ");
 lcd.setCursor(5,0);
 lcd.print(t,1);
 lcd.setCursor(9,0);
 lcd.write((byte)0); //Mostra o simbolo do grau formado pelo array
 //FUNÇAO UMIDADE NO LCD
 lcd.setCursor(0,1);
 lcd.print("Umid: ");
 lcd.setCursor(5,1);
 lcd.print(h,1);
 lcd.setCursor(9,1);
 lcd.print("%");
delay(2000);
```

4 Operação

Andamento do projeto

Projeto Final

5 Considerações Finais

Com o projeto finalizado pode-se notar que a ideia inicial do projeto era em alguns pontos bem diferente do que foi apresentado no final. Inicialmente foi planejado usar o módulo bluetooth junto com o arduino e o aplicativo BLYNK para fazer a comunicação externa, porém o hc-05 está limitado apenas para android, o que impossibilitou a continuidade do que havia sido planejado. Com isso, usei como alternativa o Display LCD, que me daria uma comunicação externa melhor. Outra alternativa seria um módulo WI-FI, porém como estamos em tempos difíceis, de quarentena e EaD, não consegui adquirir o mesmo.

Para melhorias futuras, teria em vista a troca do Display por um módulo wifi, usando tecnologias mais avançadas para que possa abranger não apenas Android mas também IOS. E para finalizar, um design de produto mais otimizado.

Agradecimentos

Primeiramente à Deus por ter me dado saúde e sabedoria para poder concluir essa U.C., aos meus pais e amigos pelo apoio em todo momento e aos meus Professores por toda dedicação que tiveram e por transmitir conhecimento de uma forma não habitual, o ensino à distância.

REFERÊNCIAS

- https://www.infoescola.com/tecnologia/domotica/ Acesso em: 12 de novembro 2020
- https://www.mundodaeletrica.com.br/domotica-o-que-e-quais-as-vantagens/ Acesso em: 12 de novembro 2020
- https://mundoeducacao.uol.com.br/informatica/domotica.htm Acesso em: 12 de novembro 2020
- https://blog.getninjas.com.br/o-que-e-domotica/ Acesso em: 12 de novembro 2020
- http://www.sislite.pt/domus.htm#:~:text=Dom%C3%B3tica%20%C3%A9%20uma%20tecnologia%20rece nte,realizar%20a%C3%A7%C3%B5es%20de%20forma%20autom%C3%A1tica.> Acesso em: 12 de novembro 2020