

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently amended) A contact charger comprising a charging brush having brush fibers for charging, and auxiliary charging particles having acicular forms wherein said auxiliary charging particles exhibit an average adhesion amount from 0.3 mg/cm³ to 20 mg/cm³ in a space filled with said brush fibers.
2. (Original) The contact charger according to claim 1, wherein an aspect ratio of said auxiliary charging particles is in a range from 2 to 10000.
3. (Original) The contact charger according to claim 1, wherein an aspect ratio of said auxiliary charging particles is in a range from 10 to 200.
4. (Original) The contact charger according to claim 1, wherein a length L (μm) of a long axis of said auxiliary charging particle and a thickness of T (deniers) of each of said fibers of said charging brush satisfy a relationship of $L^2/T \leq 200$.

5. (Original) The contact charger according to claim 4, wherein
the length L (μm) of the long axis of said auxiliary charging particle and the
thickness of T (deniers) of each of said fibers of said charging brush satisfy a
relationship of $L^2/T \leq 50$.

6. (Original) The contact charger according to claim 4, wherein
the length L (μm) of the long axis of said auxiliary charging particle and the
thickness of T (deniers) of each of said fibers of said charging brush satisfy a
relationship of $L^2/T \geq 0.001$.

7. (Original) The contact charger according to claim 1, wherein
a primary particle diameter of said auxiliary charging particles is in a range
from 0.05 μm to 10 μm .

8. (Original) The contact charger according to claim 1, wherein
a primary particle diameter of said auxiliary charging particles is in a range
from 0.1 μm to 5 μm .

9. (Cancelled)

10. (Original) The contact charger according claim 1, wherein
said auxiliary charging particles have a volume resistivity not exceeding $1 \times$
 $10^{10} \Omega\cdot\text{cm}$.

11. (Original) The contact charger according claim 10, wherein
said auxiliary charging particles have a volume resistivity from $1 \times 10^{-4} \Omega\text{-cm}$
to $1 \times 10^{10} \Omega\text{-cm}$.

12. (Original) The contact charger according to claim. 1, wherein
the brush fibers of said charging brush have a thickness from 1 denier to 10
deniers.

13. (Original) The contact charger according to claim 1, wherein
a filling density of brush fibers of said charging brush is in a range from 120
pcs/mm² to 10000 pcs/mm².

14. (Original) The contact charger according claim 1, wherein
the brush fibers of said charging brush have a volume resistivity from 1×10^1
 $\Omega\text{-cm}$ to $1 \times 10^8 \Omega\text{-cm}$.

15. (Original) The contact charger according to claim 1, wherein
said charging brush has a roller form, and the brush fibers of the brush roller
were subjected to a hair-inclining processing to incline the brush fibers toward
upstream in a rotating direction of the brush roller.

16. (Currently amended) An image forming apparatus for forming an image in
an electrophotographic manner, comprising:

a contact charger including a charging brush having brush fibers for charging, and auxiliary charging particles having acicular forms;

a photosensitive member to be charged by said contact charger;

an exposing device performing image exposure on said photosensitive member to form an electrostatic latent image; and

a developing device developing the electrostatic latent image on said photosensitive member;

wherein said auxiliary charging particles exhibit an average adhesion amount from 0.3 mg/cm³ to 20 mg/cm³ in a space filled with said brush fibers.

17. (Original) The image forming apparatus according to claim 16, wherein said charging brush has a roller form, and is arranged to be driven to rotate in such manner that a surface of the brush roller moves counter to a moving direction of a surface of the photosensitive member with an absolute value | Θ | of relative peripheral speed ratio of the brush roller with respect to the photosensitive member satisfying a relationship of ($1 \leq |\Theta| < 5$).

18. (Original) The image forming apparatus according to claim 16, wherein said charging brush has a roller form, and is arranged to be driven to rotate in such manner that a surface of the brush roller moves together with a surface of the photosensitive member with an absolute value | Θ | of relative peripheral speed ratio of the brush roller with respect to the photosensitive member satisfying a relationship of ($1.5 \leq |\Theta| < 5$).

19. (Original) The image forming apparatus according to claim 16, wherein
a push-in amount of the charging brush of said contact charger with respect to
the photosensitive member is in a range from 0.1 mm to 2.0 mm.

20. (Original) The image forming apparatus according to claim 16, wherein
said charging brush has a roller form, and the brush fibers of the brush roller
were subjected to a hair-inclining processing to incline the brush fibers toward
upstream in a rotating direction of the brush roller.