考试范围 (以下章节不考)

- 1. 第三章
- 2. 第4.3节
- 3. 第5.6节
- 4. 第7.3.3节
- 5. 第7.4节
- 6. 第9.5节
- 7. 第10.5节
- 8. 第11章与第12章

$$egin{aligned}
u-1 &\leq arepsilon \leq rac{
u(
u-1)}{2} \ n_{\mathbb{H}^+} &\geq \Delta(T) \
u-arepsilon+\phi &= 2 \ deg(f) &\geq 3 \
2arepsilon &= \sum deg(f) &\geq 3\phi \ 3
u-6 &\geq arepsilon \ \delta &\leq 2arepsilon &\leq 6
u-12 \ \delta &\leq 5 \end{aligned}$$

二分图无奇圈, $deg(f) \geq 4$, $\varepsilon \leq 2\nu - 4$

通过最小覆盖证明最大匹配 $eta(G) = \min\{|X| - |S| + |N(S)|\}$

- 对于G的某个覆盖C,不妨设 $S=X-C\cap X$, $T=C\cap Y$
- 则 $\forall uv \in E(G)$ 且 $u \in S$, $v \in Y$, 都有 $v \in T$
- $\mathbb{P}N(S) \subseteq T$
- 故

$$\beta(G) = \min_{S \subseteq X, N(S) \subseteq T, T \subseteq Y} \left\{ |X| - |S| + |T| \right\} = \min_{S \subseteq X} \left\{ |X| - |S| + |N(S)| \right\} = |X| - \max_{S \subseteq X} \left\{ |S| - |N(S)| \right\}$$

• 即 $\alpha(G) = |X| - \max_{S \subseteq X} \left\{ |S| - |N(S)| \right\}$

证明
$$c(G)=K_{
u}$$

假设
$$c(G)
eq K_
u$$
,则 $\exists uv
ot\in E(c(G))$,不妨记 $u'v'$ 为其中 $deg_{c(G)}(u') + deg_{c(G)}(v')$ 最大的点对

$$V_0 := \{v | v \in V(G), vv' \not\in E(c(G))\}, \ V_1 := \{v | v \in v(G), vv' \in E(c(G))\}$$

则
$$|V_0| =
u - 1 - deg_{c(G)}(v')$$
, $V_1 = deg_{c(G)}(v')$

有
$$deg_{c(G)}(v) + deg_{c(G)}(v') \leq deg_{c(G)}(u') + deg_{c(G)}(v')$$
,即 $deg_{c(G)}(v) \leq deg_{c(G)}(u')$

则 $|\{v|deg_{c(G)}(v) \leq deg_{c(G)}(u')\}| = \nu - 1 - deg_{c(G)}(v')$ 由 $deg_{c(G)}(u') + deg_{c(G)}(v') \leq \nu - 1$ 得 $|\{v|deg_{c(G)}(v) \leq deg_{c(G)}(u')\}| \geq deg_{c(G)}(u')$

定理 7.3 若 G 是二分图, 则 $\chi'(G) = \Delta(G)$.

证明 显然 $\chi'(G) \geqslant \Delta(G)$. 下证二分图 G 可 $\Delta(G)$ -边着色. 反证, 假设 $\chi'(G) > \Delta(G)$, 且设 \mathcal{C} 是 G 的一个最佳 $\Delta(G)$ -边着色. 由于 \mathcal{C} 不是最佳着色, 所以存在顶点 v, 使得 $c(v) < \deg(v) \leqslant \Delta(G)$. 因而在顶点 v 关联的边中, 有一种颜色没有出现, 且有两条边着相同的颜色. 由引理 7.2 知, G 中含有奇圈, 与 G 是二分图矛盾. 故对每个顶点都有 $c(v) = \deg(v)$, 所以 \mathcal{C} 是 G 的正常 $\Delta(G)$ -边着色, 故 $\chi'(G) \leqslant \Delta(G)$. 综上, $\chi'(G) = \Delta(G)$. 证毕.

证明 $\chi' \leq \Delta + 1$,反证 $\chi' > \Delta + 1$,对于最佳 $\Delta + 1$ —边着色,存在 $c(u) < deg(u) < \Delta + 1$

则存在两种颜色 i_0, i_1 ,满足 i_0 不出现在u的邻边中,而 i_1 至少出现了两次

不妨记边 uv_1 为 i_1 色,有 $deg(v) < \Delta + 1$

故v邻边中缺少颜色 i_2 ,且 i_2 一定出现在u的邻边中,否则可将边 uv_1 换为 i_2 ,为更优的着色方案

18.若G中任二奇圈皆有公共顶点,则 $\chi(G) \leq 5$.

①.若 $\chi(G) \geq 6$, 设G的 χ 顶正常着色为 $(V_1, V_2, ..., V_{\gamma})$.

②. $G' = G[V_1 \cup V_2 \cup V_3]$ 为G的导出子图, $\chi(G') = 3 \rightarrow G'$ 不是二分图 $\rightarrow G'$ 存在奇圈 C_1 .

③同理.令 $G'' = G[V_4 \cup V_5 \cup ... \cup V_{\chi}]$,有 $\chi(G'') \geq 3 \rightarrow G'$ 不是二分图 $\rightarrow G'$ 存在奇圈 C_2 .

④则G中存在两个奇圈 C_1, C_2 且 C_1, C_2 无公共顶点,与已知矛盾.

故假设①不成立.原命题成立.

给出求二分图正常△边着色的算法。

设G(X,Y,E)为二分图,且 $|X|\geq |Y|$,该二分图正常 Δ 边着色算法如下:

- 1. 加顶点扩充Y,使得|X|=|Y|,添加边使G,变成 Δ 次正则二分图,记为 G^* 。
- 2. 利用匈牙利算法主次求其完备匹配,直至求出 G^* 的 Δ 个边不重的完备匹配,每个完备匹配着上一个颜色。
- 3. 去掉扩充的顶点及边。

证明:若二分图的顶点的最小次数为 $\delta > 0$,则对边进行 δ 着色时,能使每个顶点所关联的边中皆出现 δ 种颜色。

考虑 $\mathbb{C}=(E_1,E_2,\cdots,E_\delta)$ 是二分图G的一个最佳 δ —边着色,如果存在一个顶点 v_0 和和两种颜色i与j,使得i色不在 v_0 关联的边种出现,但j色在 v_0 关联的边中至少出现两次,则边导出子图 $G[E_i\bigcup E_j]$ 种含 v_0 的联通篇是一个奇圈,与二分图G不含奇圈矛盾。故所有 δ 种颜色在每个顶点关联的边中出现。

图的基本概念

图的定义: $G = (V(G), E(G), \psi_G)$

- 顶点集合 $V(G) \neq \emptyset$
- 边集合E(G)
- 关联函数 $\psi_G: E(G) \rightarrow \{(u,v)|u,v \in V(G)\}$
- 阶 $\nu(G) = |V(G)|$: 无限图、有限图
- $\varepsilon(G) = |E(G)|$
- 环: 自环,边e的两个端点重合
- 简单图: 无自环无重边
- 完全图 K_n : 简单图,任意两顶点相邻
- 二分图:顶点集合拆分为两部分X和Y,使得两集合内部均无连边 完全二分图 $K_{|X|,|Y|}$:X与Y两两相邻
- 星图: $K_{1,n-1}$ 或 $K_{n-1,1}$
- 零图: ε = 0
- 度数: 顶点度数deg(v), 图最小度数 $\delta(G)$, 最大度数 $\Delta(G)$
- 子图: G = (V(G), E(G))和H(V(H), E(H))满足 $V(H) \subset V(G)$ 和 $E(H) \subset E(G)$
 - \circ 真子图: $H \subset G$
 - \circ 生成子图: $H \subseteq G$ 且V(H) = V(G)
 - \circ 顶点导出子图: G[V']=(V',E'), $V'\subseteq V(G)$, $E'=\{uv|uv\in E(G),u,v\in V'\}$
 - 。 边导出子图: G[E']=(V',E'), $E'\subseteq E(G)$, $V'=\{v|$ 存在边 $uv\in E'\}$
- ・ 补图: $G^c=(V(G^c),E(G^c)),\ V(G^c)=V(G),\ E(G^c)=\{uv|u,v\in V(G^c)=V(G)$ 且uv
 otin E(G)
- 边图: L(G)=(V(L(G)),E(L(G))),V(L(G))=E(G), $E(L(G))=\{e_1e_2|e_1,e_2\in E(G)$ 且 e_1,e_2 在G中相邻 $\}$,顶点和边互换关系
- # $G \cup H$
- $otin G \cap H$
- 积G imes H=(V',E'), $V'=V(G) imes V(H)=\{(u,v)|u\in V(G),v\in V(H)\}$, $E'=\{(u_1,v_1)(u_2,v_2)|u_1=u_2$ 且 $v_1v_2\in E(H)$;或 $v_1=v_2$ 且 $u_1u_2\in E(G)$;或 $u_1u_2\in E(G)$ 且 $v_1v_2\in E(H)$;
- 路径: $W = v_0 e_1 v_1 e_2 \cdots e_k v_k$
- 行迹: 边不重复的路径
- 轨道: 顶点不重复的路径, 一定是行迹和路径
- 回路: 起点和终点相同的路径
- 圈:除了起点和终点外,没有相同顶点的回路
- 距离 $\mathrm{dist}(u,v)$: 最短距离 不连通时 $\mathrm{dist}(u,v)=\infty$
- 连通片: $G[V_i], 1 \leq i \leq \omega$ $G = \sum G[V_i]$ 连通片个数 $\omega(G)$
- 图同构:

- 。 对于图 $G=(V(G),E(G),\psi_G)$, $H=(V(H),E(H),\psi_H)$,若存在——映射 $egin{cases} \theta:V(G) o V(H) \ \varphi:E(G) o E(H) \end{cases}$ 使得 $orall e\in E(G)$,当且仅当 $\psi_G(e)=uv$ 时,有 $\psi_H(\varphi(e))=\theta(u)\theta(v)$,记作 $G\cong H$
- *Ulam*猜想: 共同砍去一个点或边后仍同构
 - ullet 若|V(G)|=|V(H)|,且存在一一映射heta:V(G) o V(H),使得 $orall v\in V(G)$,有 $G-v\cong H- heta(v)$,则 $G\cong H$
 - ullet 若|E(G)|=|E(H)|,且存在一一映射arphi:E(G) o E(H),使得 $orall e\in E(G)$,有 $E(G)-e\cong H(G)-arphi(e)$, $G\cong H$
- 有向图: $D = (V(D), E(D), \psi_D)$
 - 端点:起点(尾),终点(头)
 - \circ 入度 $deg^+(u)$, 出度 $deg^-(u)$, $deg(u) = deg^+(u) + deg^-(u)$
 - $\sum deg^+(u) = \sum deg^-(u) = |E(D)| = \varepsilon(D)$

树

- 连通无圈图
- 树叶/分支点、树枝、森林(连通片),平凡树(孤立点)
- 连通图 $\varepsilon(G) \geq \nu(G) 1$
- 离心率: $l(v) = \max\{dist(u, v)\}$
- 半径: $r(G) = \min\{l(v) | v \in V\}$
- 中心点: l(v) = r(G)
- 中心: $\{v|l(v)=r(G)\}$
- 生成树/生成森林: T是树或森林且 $T\subseteq G$
 - 弦: 非生成树边
 - \circ 余树: T_C^c
- 连通图的充要条件是有生成树
- 生成树计数(Gayley): $e \in E(G)$ 且不是环, $au(G) = au(G-e) + au(G \cdot e)$
 - \circ $G \cdot e$ 表示将e的端点缩为一点后的图
 - $\circ \ au(K_n) = n^{n-2}$
- 最小生成树
 - $\circ \ Kruskal$
 - \circ Prim
 - 破圈法: 删除最大圈内边

有根树:

- 根: $deg^+ = 0$
- 树叶: $deg^+ = 1$, $deg^- = 0$

$$\circ \ n_1 = \sum_{i=3}^{\kappa} (i-2)n_i + 2 \geq (\Delta(T)-2) \cdot 1 + 2 = \Delta(T)$$

- 内点: $deg^+ = 1$, $deg^- \neq 0$
- 分支点: 内点和根
- 深度: L(v), L(根) = 0
- 树高: h(T), 最大深度

- 有序树: 所有分支点的孩子都从左到右规定了次序
- r叉树:
 - \circ r叉正则树:每个分支点都恰好有r个儿子
 - r叉完全正则树: 所有树叶深度等于树高
 - \circ r叉有序树
- Huffman树:
 - 。 加权路径长度: $WPL(T) = \sum_{orall r} w_i L(v_i)$
 - 最优二叉树:加权路径长度最小
 - 前缀码

平面图

- 可嵌入平面
 - \circ 可嵌入曲面S,S嵌入
 - 可嵌入平面⇔可嵌入球面,多面体图皆为平面图
- 平面图划分平面为若干连通闭区域「面」,面集合F(G),数量 $\phi(G)$
 - 恰存在一个无界面:外部面
- 分割: 若e为桥,则只有一个面与e关联,否则有两个面和e关联。
- 面度数deg(f)为关联边数,即b(f)中边数,桥计算两次

$$\circ \sum_{f \in F(G)} deg(f) = 2arepsilon$$

- Euler公式:
 - \circ 平面图中, $\nu-\varepsilon+\phi=2$
 - 。 多面体: $\nu \geq 4$, $\phi \geq 4$
 - Recall Reca
 - 。 $u \geq 3$ 的连通简单平面图中有 $arepsilon \leq 3
 u 6$

$$lack deg(f) \geq 3 \Rightarrow 2arepsilon = \sum_{f \in F(G)} deg(f) \geq 3\phi$$

- \circ 连通简单平面图中有 $\delta < 5$
 - $\delta \nu \leq 2\varepsilon \leq 2(3\nu 6)$
- \circ K_5 是非平面图: $\varepsilon > 3\nu 6$
- K_{3.3}是非平面图:
 - 二分图,不含奇圈,故无长度小于4的圈, $\min deg(f) \geq 4$
- 极大平面图: $\nu > 3$ 的平面图,任加一条边后均不再是平面图
 - 。 极大平面图的充要条件
 - 平面嵌入的每个面都是三角形
 - $\varepsilon = 3\nu 6$
 - \circ u > 4的极大平面图中 $\delta < 3$
- $\nu \varepsilon + \phi = \omega + 1$

匹配理论

匹配

- G的一个边子集M,满足M内任意两条边在G中都不相邻,称M为G的一个匹配
- M中相邻的点称为在M中相配
- M中边的端点称为被M许配
- 完备匹配: G中所有端点都被M许配
- 最大匹配: 边数最多的匹配,匹配数lpha(G)=|M|
- 交错轨道(圈):G中的轨道(圈)P的边在M与E(G)-M中交替出现
- 可增广轨道: $P=v_0e_1v_1e_2\cdots e_{2k+1}v_{2k+1}$,其中 $e_1,e_3,\cdots,e_{2k+1}
 ot\in M$, $e_2,\cdots,e_{2k}\in M$,且 v_0 和 v_{2k+1} 没有被M许配
 - \circ 交换P中所有边所属的边集,可使|M|增加1
- ullet 最大匹配当且仅当G中没有关于M的可增广轨道

二分图匹配

- Hall定理:设二分图点集划分为X和Y,则G中存在将X中顶点都许配的匹配,当且仅当任给 $S\subseteq X$ 都有 $|N(S)|\geq |S|$ (N(S)为邻顶集合)
- k次正则二分图G有完备匹配
 - \circ EN(S)表示与S中某点相邻的边集
 - $\circ EN(S) \subseteq EN(N(S))$
 - \circ 则 $k imes |S| = |EN(S)| \le |EN(N(S))| = k imes |N(S)|$
- 覆盖: 点子集C满足G中任意一条边均与C相连
 - 极小覆盖,覆盖数 $\beta(G)$
- 恒有 $|C| \geq |M|$,且|C| = |M|时C是最小覆盖,M是最大匹配
 - 。 E(M)中任意一条边 e_i 均有一个端点属于C
- $K\ddot{o}nig Egerv\acute{a}ry$: 二分图中 $\alpha(G) = \beta(G)$

任意图的完备匹配:

- 奇/偶片:连通片G'点数 $\nu(G')$ 为奇/偶数
 - \circ o(G)表示G中奇片个数
- Tutte定理:有完备匹配当且仅当任给 $S \subseteq V(G)$,都有 $o(G-S) \le |S|$
- Petersen定理: 无桥的三次正则图有完备匹配

最大匹配算法:

- 交错树算法:
 - \circ 设u为G中没有被M许配的顶点,若包含u的子图T为树且 $orall v \in V(T)$,T中从u到v的轨道均为交错轨道,则称T是G中关于M的u—交错树
 - \circ 若除u外,T中所有顶点均被M许配,则称T为被M许配的u—交错树,否则T中从u到v的轨道为可增广轨道

Euler S 5 Hamilton S

Euler

• Euler迹: 经过图G每条边的形迹

● Euler回路: 闭Euler迹

• Euler图,连通图中的等价命题

1. G的每个顶点的度数都是偶数

2. G可以表示成无公共边的圈之并

• 平面Euler图至多是u(G)-2个无公共边的圈的并

• Euler迹存在当且仅当最多有两个度数为奇数的点

• 有向图D连通,有以下等价命题:

 \circ D是Euler图

 $\circ \ \forall v \in V(D)$, $\deg^+(v) = \deg^-(v)$

 \circ D可以表示成无公共边的有向圈之并

• Fleury算法:

○ 每次尽量选择剩余边图的非桥边

 \circ 时间复杂度: $O(\varepsilon^2 \nu)$

• 逐步插入回路法:

 $\circ O(\varepsilon + \nu^2)$

中国邮递员问题

• 最优投递线路,回路权和最小

• *Edmonds – Johnson*算法:

 $\circ O(\nu^4)$

 \circ 对所有奇度顶点构造最短距离作为边权的加权完全图,求加权完全图总权最小的完备匹配($O(
u^4)$),即为需要额外重复走的边,增加后求Euler回路

• Hamilton轨道: 经过图G每个顶点的轨道

• Hamilton圏

• Hamilton图: 含有Hamilton圈的图

○ 正十二面体、平凡图、完全图……

• 点数为奇数的二分图不可能是Hamilton图

• Hamilton图中,对V(G)的每个非空真子集S,均有 $\omega(G-S) \leq |S|$ (连通片个数)

。 假设H为Hamilton圈,则 $\omega(G-S)\leq \omega(H-S)\leq |S|$

• Petersen图不是Hamilton图

• Dirac定理: 若简单图满足 $u(G) \geq 3$, $\delta(G) \geq rac{
u(G)}{2}$,则G是Hamilton图

。 若对于某对不相邻顶点有 $deg(u)+deg(v)\geq
u(G)$,则G是Hamilton图当且仅当G+uv是Hamilton图

 \circ 简单图G是Hamilton图,当且仅当它的闭包c(G)是Hamilton图

- 闭包c(G): 反复连接G中度数之和不小于u(G)的不相邻点对,直至无法连接为止
 - 闭包唯一确定
- 若 $\nu(G)\geq 3$,对G的任意一对顶点u,v,若 $deg(u)+deg(v)\geq \nu(G)-1$,则G有Hamilton轨道;若 $deg(u)+deg(v)\geq \nu(G)$,则G是Hamilton图

旅行商问题

- 最小 Hamilton 圏
- 针对完全图
- 最近邻法
 - 每次挑选一个最近的未遍历点
 - 。 对于满足三角不等式的完全加权图, $\dfrac{d}{d_0} \leq \dfrac{1}{2}(\lceil \log_2 n \rceil + 1)$
- 最小生成树法:
 - \circ 求得最小生成树T,为树上每一条边添加一条与原边同权的平行边,求树上的Euler回路
 - 。 在补充后的图上,沿回路顺序遍历,若遍历至已遍历过的点,则直接跳过并走原图的边
 - \circ 对于满足三角不等式的完全正加权图, $\dfrac{d}{d_0} < 2$
- 最小权匹配法:
 - \circ 在最小生成树上的奇度顶点求总权最小的完备匹配,增加相应的边,求Euler回路

$$\circ \ O(
u^3), \ rac{d}{d_0} < rac{3}{2}$$

图的着色

点着色

- k-顶点着色
 - \circ 正常k-顶点着色:相邻顶点颜色不同
- 顶点色数 $\chi(G)$: 最少颜色数
 - \circ $\chi(G)=1$ 时为零图
 - \circ $\chi(G) = \nu$ 时为完全图
 - $\circ \chi(G) = 2$ 时为有边二分图

。
$$\chi(C_v) = \begin{cases} 2, \nu$$
为偶数 $3, \nu$ 为奇数

- 子图 $\chi(H) \leq \chi(G)$
- $\chi(G) \leq \Delta(G) + 1$
 - 完全图和奇圈中等号成立
- Brooks定理: $u \geq 3$ 阶非完全图、非奇圈的连通图, $\chi(G) \leq \Delta(G)$
- 存在奇圏时 $\chi(G) \geq 3$

边着色

- k-边着色
- 边色数 $\chi'(G)$

- $\Delta(G) \leq \chi'(G) \leq \varepsilon(G)$
- 若G不是奇圈,则存在一种2一边着色使得所用的两种颜色在每个度数不小于2的顶点处都出现
- c(v): v点关联的边的颜色数
- 最佳k-边着色:
 - 。 $\sum c(v)$ 最大
 - \circ 正常k—边着色—定有deg(v) = c(v)
- 对于最佳k-着色 $\mathcal{C}=(E_1,E_2,\cdots,E_k)$,若存在一个顶点 v_0 和两种颜色i与j使得i色不在 v_0 关联的边中出现,且j色至少出现了两次,则边导出子图 $G[E_i\cup E_j]$ 中含 v_0 的连通片是一个奇圈
- Vizing: 最大重边数 $\mu(G)$,有 $\Delta \leq \chi' \leq \Delta + \mu$
- 一般图中有 $\chi'(G)=\Delta(G)$ 或 $\chi'(G)=\Delta(G)+1$
 - \circ 第一类图 $\chi'(G) = \Delta(G)$
 - 二分图
 - 。 第二类图 $\chi'(G) = \Delta(G) + 1$
 - Petersen图
- 对于两个无公共边的匹配M和N,且|M|>|N|,则存在无公共边的匹配M'和N'使得|M'|=|M|-1, |N'|=|N|+1, $M'\cup N'=M\cup N$
- 若 $\Delta \leq p$,则存在p个不相交匹配 $M_1, M_2, \cdots M_p$ 使得 $E(G) = igcup_{i=1}^p M_i$ 且 $orall i \in [1,p]$ 有 $\left| rac{arepsilon}{p}
 ight| \leq |M_i| \leq \left\lceil rac{arepsilon}{p}
 ight|$
 - \circ 任意两个匹配的边数最多相差1

平面图着色

- 正常面着色:
 - \circ 相邻两面颜色不同,k—面着色
- 面色数 $\chi_*(G) = k$
- 对偶图G*
 - 同构图的对偶图不一定同构
 - \circ G'中的环对应 G^* 中的桥,G'中的桥对应 G^* 中的环
 - 顶点数 n^* ,边数 m^* ,面数 ϕ^*

•
$$n^* = \phi$$
, $m^* = m$, $\phi^* = n$

- $\circ \deg_{G^*}(f^*) = \deg_G(f)$
- 可k—面着色等价于对偶图可k—顶点着色
- 四色定理 $\Longrightarrow \chi($ 平面图 $) \leq 4$
- 任何平面都是可5-顶点着色的
 - \circ 平面图中 $\delta(G) < 5$

有向图

有向图

^{定向}
• 底图→定向图

- 有向边(u, v)
 - \circ v是u的外邻顶点,u是v的内邻顶点
 - \circ 内邻集 $N_D^+(u)=\{v|(u,v)\in E(D)\}$
 - \circ 外邻集 $N_D^-(u)=\{v|(v,u)\in E(D)\}$

连通性

- u可达v
- 强连通: $\forall u, v \in V(D)$, u可达v且v可达u
 - 等价于存在有向生成回路
 - 连通无向图可定向为强连通有向图当且仅当无向图中无桥
- 单向连通: $\forall u,v \in V(D)$, u可达v或v可达u
 - 。 $orall S\subseteq V(D)$, $S
 eq\emptyset$,都 $\exists v\in S$ 满足v可达S中所有顶点
 - 等价于存在有向生成路径
- 弱连通: 底图连通

竞赛图

- 竞赛图:完全图的定向图,有 2^{ε} 种
- 有向图D中含有长度为 $\chi(G)-1$ 的有向轨道
- 竞赛图中含有长度为 $\chi(K_
 u)-1=
 u-1$ 的有向轨道,即Hamilton轨道

网络流理论

网络与流函数

- 网络N = (D, s, t, c)
 - \circ 源s,汇t,容量函数 $c(e) \geq 0$
- 流函数f(e)
 - \circ $c(e) \ge f(e) \ge 0$

$$\circ \ \ orall v \in V(D) - \{s,t\}, \ \sum_{e \in lpha(v)} f(e) - \sum_{e \in eta(v)} f(e) = 0$$

。 流量
$$\mathrm{Val}(f) = \sum_{e \in \alpha(t)} f(e) - \sum_{e \in \beta(t)} f(e) = \sum_{e \in \beta(s)} f(e) - \sum_{e \in \alpha(s)} f(e)$$

- 。 最大流 $\operatorname{Val}(f^*) = \max \operatorname{Val}(f)$
- 截 $(S, \overline{S}) = \{e = (u, v) | e \in E(D), u \in S, v \in \overline{S}\}$
 - 。 其中 $S\subset V(D)$ 且 $s\in S$, $t\in ar{S}$
 - 。 截量 $C(S,ar{S}) = \sum_{e \in (S,ar{S})} c(e)$
 - 最小截

$$\circ \ \operatorname{Val}(f) = \sum_{e \in (S, \overline{S})} f(e) - \sum_{e \in (\overline{S}, S)} f(e) \leq C(S, \overline{S})$$

■ 等号成立时分别为最大流和最小截

Ford-Fulkerson 算法

- 未满载边: e是P(s,u)的正向边且f(e) < c(e)
- 满载边: $e \in P(s, u)$ 的正向边且f(e) = c(e)
- 零载边: $e \in P(s, u)$ 的反向边且f(e) = 0
- 正载边: e是P(s,u)的正向边且f(e)=0
- 可增载量 $l(e) = egin{cases} c(e) f(e), & e$ 是正向边f(e), & e是反向边
 - 。 轨道可增载量 $l(P) = \min_{e \in E(P)} l(e)$
- 未满载轨道: l(P) > 0
- 满载轨道: l(P) = 0
- 可增载轨道: l(P) > 0且v = t, 即P(s,t)

•
$$\bar{f}(e) = egin{cases} f(e) + l(P), & e$$
是正向边 $f(e) - l(P), & e$ 是反向边, $\mathrm{Val}(\bar{f}) = \mathrm{Val}(f) + l(P) \\ f(e), & \mathrm{otherwise} \end{cases}$

容量有上下界的网络最大流

- N = (D, s, t, c, b)
- $c(e) \ge f(e) \ge b(e)$
- 伴随网络:

$$0 N' = (D', s', t', c')$$

$$\circ \ V(D') = V(D) \cup \{s',t'\}$$

$$\circ \ E(D') = E(D) \cup \{(s',v),(v,t')|v \in V(D)\} \cup \{(s,t),(t,s)\}$$

$$c'(e) = egin{cases} c(e) - b(e), & e \in E(D) \ \sum_{e \in lpha(v)} b(e), & e = (s',v), v \in V(D) \ \sum_{e \in eta(v)} b(e), & e = (v,t'), v \in V(D) \ +\infty, & e = (s,t)
otin (t,s) \end{cases}$$

• 存在可行流要求伴随网络最大流使得所有边(s',v)、(v,t')满载

有供需需求的网络流

•
$$N = (D, X, Y, \sigma, \rho, c)$$

。 源集合
$$X$$
,产量 σ , $\sum_{e\ineta(x_i)}f(e)-\sum_{e\inlpha(x_i)}f(e)\leq\sigma(x_i)$

$$\circ$$
 源集合 X ,产量 σ , $\sum_{e\in eta(x_i)}f(e)-\sum_{e\in lpha(x_i)}f(e)\leq \sigma(x_i)$ \circ 汇集合 Y ,需求量 ho , $\sum_{e\in lpha(y_j)}f(e)-\sum_{e\in eta(y_j)}f(e)\geq
ho(y_j)$

- 存在可行流要求 $orall S\subseteq V(D)$,满足 $C((S,ar{S}))\geq
 ho(Y\capar{S})-\sigma(X\cupar{S})$
- 附加网络

$$\circ N' = (D', x_0, y_0, c')$$

$$\circ \ V(D') = V(D) \cup \{x_0,y_0\}$$

$$\circ \ E(D') = E(D) \cup \{(x_0,x_i) | x_i \in X\} \cup \{(y,y_j) | y_j \in Y\}$$

$$egin{aligned} \circ \ c'(e) = egin{cases} c(e), & e \in E(D) \ \sigma(x_i), & e = (x_0, x_i), x_i \in X \
ho(y_i), & e = (y_i, y_0), y_i \in Y \end{cases} \end{aligned}$$

图矩阵与图空间

线性空间

- 要求:
 - 向量加法:
 - 1. $orallec{lpha},ec{eta}\in V$,都满足 $ec{lpha}+ec{eta}=ec{eta}+ec{lpha}$
 - 2. $orallec{lpha},ec{eta},ec{\gamma}\in V$,都满足 $(ec{lpha}+ec{eta})+ec{\gamma}=ec{lpha}+(ec{eta}+ec{\gamma})$
 - 3. $\exists \vec{0}$,使得 $orall ec{lpha} \in V$,都满足 $ec{lpha} + ec{0} = ec{0} + ec{lpha} = ec{lpha}$
 - 4. $orall ec{lpha} \in V$, $\exists ec{eta} \in V$ 使 $ec{lpha} + ec{eta} = ec{eta} + ec{lpha} = ec{0}$, $ec{eta}$ 称为 $ec{lpha}$ 的逆元,记为 $-ec{lpha}$
 - 数乘:
 - 1. $orallec{lpha}\in V$,满足 $1ec{lpha}=ec{lpha}$
 - 2. $\forall k, l \in F$, $orall ec{lpha} \in V$,都满足 $(kl) ec{lpha} = k(l ec{lpha})$
 - 3. $orall k, l \in F$, $orall ec{lpha} \in V$,都满足 $(k+l)ec{lpha} = kec{lpha} + lec{lpha}$
 - 4. $\forall k \in F$, $orall ec{lpha}, ec{eta} \in V$,都满足 $k(ec{lpha} + ec{eta}) = kec{lpha} + kec{eta}$
- \$ $F_2 = \{0,1\}$:

0

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

图的空间

- 边空间: $\mathcal{E}(G) = \{E'$ 对应的向量 $|E' \subseteq E\}$
 - 。 边子集对称差: $\{e_1,e_2\} \oplus \{e_1,e_3\} = \{e_2,e_3\}$
- 圈空间: $\mathcal{C}(G) = \{ \mathbb{B} C$ 对应的向量 $|C \subseteq E \}$
 - 。 基本圈组:连通图G的生成树T,设 $e_1,e_2,\cdots,e_{arepsilonu+1}\in E(G)-E(T)$,记 $T+e_1,T+e_2,\cdots,T+e_{arepsilonu+1}$ 上所含的圈分别为 $C_1,C_2,\cdots,C_{arepsilonu+1}$
 - 基本圏组为 $\mathcal{C}(G)$ 的一组基,即 $\mathcal{C}(G)$ 维数为 $\varepsilon \nu + 1$
- 断集空间: $\mathcal{S}(G) = \{ \text{断集}(V', \overline{V'})$ 对应的向量 $|V' \subset V \perp V' \neq \emptyset \}$
 - 。 $\mathcal{S}(G)$ 是 $\mathcal{E}(G)$ 的线性子空间
- 割集: G-E'不连通,且 $\forall E''\subset E'$ 满足G-E''连通
 - \circ G-E'恰有两个连通片
 - 。 割集一定是断集
- 基本割集组:给定连通图G的生成树T,则G的任一割集必含树T上的恰好一条边。记 $E(T)=\{e_1,e_2,\cdots,e_{\nu-1}\}$,含有边 e_i 的割集为 S_i ,则其为断集空间S(G)的一组基,维数为 $\nu-1$