HW3

Sam Olson

1.

Suppose X_1, \dots, X_n are iid Bernoulli(p), 0 .

a)

Find the information number $I_n(p)$ and make a rough sketch of $I_n(p)$ as a function of $p \in (0,1)$.

b)

Find the value of $p \in (0,1)$ for which $I_n(p)$ is minimal. (This value of p corresponds to the "hardest" case for estimating p. That is, when data are generated under this value of p from the model, the variance of an UE of p is potentially largest.)

c)

Show that $\hat{X}_n = \sum_{i=1}^n X_i/n$ is the UMVUE of p.

Suppose that the random variables Y_1, \dots, Y_n satisfy

$$Y_i = \beta x_i + \varepsilon_i, \quad i = 1, \dots, n$$

where x_1, \ldots, x_n are fixed constants and $\varepsilon_1, \ldots, \varepsilon_n$ are iid $N(0, \sigma^2)$; here we assume $\sigma^2 > 0$ is known.

a)

Find the MLE of β .

b)

Find the distribution of the MLE.

c)

Find the CRLB for estimating β . (Hint: you'll have to work with the joint distribution $f(y_1, \dots, y_n | \beta)$ directly, since Y_1, \dots, Y_n are not iid.)

d)

Show the MLE is the UMVUE of β .

Suppose X_1, \ldots, X_n are iid normal N(0,1), where $\theta \in \mathbb{R}$. It turns out that $T = (\bar{X}_n)^2 - n^{-1}$ is the UMVUE of $\gamma(\theta) = \theta^2$. (We can show this later in the course; our goal here is to show that the UMVUE can exist without obtaining the CRLB.)

a)

Show T is an UE of $\gamma(\theta)=\theta^2$ and find the variance $\operatorname{Var}_{\theta}(T)$ of T. (Note $Z=\sqrt{n}(\bar{X}_n-\theta)\sim N(0,1)$ and one can write $T=(Z^2/n)+(2\theta Z/\sqrt{n})+\theta^2-n^{-1}$, where $Z^2\sim\chi_1^2$, $E_{\theta}Z^2=1$, $\operatorname{Var}_{\theta}(Z^2)=2$.)

b)

Find the CRLB for an UE of $\gamma(\theta) = \theta^2$.

c)

Show that $Var_{\theta}(T) > CRLB$ for all values of $\theta \in \mathbb{R}$.

Casella & Berger 7.58

("better" here refers to MSE as a criterion.)

Let X be an observation from the pdf

$$f(x|\theta) = \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|}, \quad x = -1, 0, 1; \quad 0 \le \theta \le 1.$$

 \mathbf{a}

Find the MLE of θ .

b)

Define the estimator T(X) by

$$T(X) = \begin{cases} 2 & \text{if } x = 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that T(X) is an unbiased estimator of θ .

 $\mathbf{c})$

Find a better estimator than T(X) and prove that it is better.

Let X_1, \ldots, X_n be iid Bernoulli $(\theta), \theta \in (0,1)$. Find the Bayes estimator of θ with respect to the uniform(0,1) prior under the loss function

$$L(t,\theta) = \frac{(t-\theta)^2}{\theta(1-\theta)}.$$