LL(1) Parsing, Refactoring and Recursive Descent

CSCI 3136: Principles of Programming Languages

Agenda

- · Building an LL(1) Parser
- The PREDICT Table
- · Constructing FIRST, FOLLOW, and PREDICT
- · Is a Grammar LL(1)?
- Refactoring
- Recursive Descent

Building an LL(1) Parser

 Basic Challenge: Given current token, which production does the parser select if next item in sentential form is a nonterminal

E.g., if S is on the stack and input is +, then parser must select production $S \rightarrow +SS$

- · In general: for input **a** and sentential form A , either
 - A □ α □ X aβ
 - A \square α \square X ϵ and derivation of A is succeeded by **a**.
- · Intuitively, ${\boldsymbol a}$ is in the *predictor set* of $A \to \alpha$

if $A\beta \square \alpha\beta \square X$ ay, for β , $\gamma \in \Sigma X$

LL(1) Grammars

- Definition: A grammar is LL(1) if the predictor sets of all productions with the same LHS are disjoint.
- E.g. S-Grammars are LL(1)

Grammar

1.
$$S \rightarrow + SS$$

2.
$$S \rightarrow -SS$$

PREDICT Table

Production	Predictor Set
$S \rightarrow + S S$	{+}
$S \rightarrow -SS$	{-}
$S \rightarrow *SS$	{*}
$S \rightarrow /SS$	{/}
S → neg S	{neg}
S → integer	{integer}

Constructing PREDICT: The 3 Tables

• FIRST(\square): the set of leftmost terminals **a** that can be derived from \square E (\vee \vee Σ)X

 $\alpha \square X \mathbf{a} \beta$

 FOLLOW(X): the set of the first terminals a that immediately follow variable X in a derivation

 $S \square X \alpha X \mathbf{a} \beta$

• **PREDICT(A** \rightarrow α): the set of terminals that predict this production given **A**

The FIRST Table

- **Definition:** FIRST(σ), 1 σ E ($V \vee \Sigma$):
 - For a E Σ , a E FIRST(σ) if $\sigma \square X a \beta$
 - $\varepsilon \, \mathsf{EFIRST}(\sigma) \, \mathsf{if} \, \sigma \, \Box \, \mathsf{X} \, \varepsilon$
- **Idea:** For a sentential form σ , FIRST(σ) is the set of all terminals that could start any future sentential form derived from σ
- · Notes:
 - For a E Σ , FIRST(a) = {a}
 - Precompute FIRST(X) only for X E V
 - Generate FIRST(σ), $\sigma E(V \vee \Sigma)X$ as needed

The FIRST Table (Part 2)

To Compute FIRST (for a grammar)

- For a E Σ , FIRST(a) = {a}
- For X E V, FIRST(X) = A
- Repeat until no new additions to FIRST(X), X E V are possible:

```
1 X → α EP,

FIRST(X) = FIRST(X) ν FIRST(α)
```

Note, $FIRST(\alpha)$ (First for sentential forms)

- $\alpha = \alpha 1 \alpha 2 ... \alpha k$, $\alpha i \in (V \vee \Sigma)$
- FIRST(α) = A

The FIRST Table: Example

Grammar

•	Т		Δ	R
		\longrightarrow	$\overline{}$	ப

$$\cdot A \rightarrow PQ_{\overline{\lambda}}$$

$$\cdot A \rightarrow BC$$

$$\cdot P \rightarrow pP$$

$$\cdot P \rightarrow \epsilon$$

$$Q \rightarrow dQ$$

$$Q \rightarrow \epsilon$$

•	R		h	R
		\longrightarrow		ı

Symbo	Iter. 0	Iter. 1	Iter.2	FIRST
	{p}	{p}	{p}	{p}
р	{q}	{q}	{q}	{q}
q	{b}	{b}	{b}	{b}
b	{e}	{e}	{e}	{e}
е	{c}	{c}	{c}	{c}
C f	{ f }	{f}	{f}	{f}
- ' T	Α	Α	Α	{p,q,b,e}
A	Α	Α	{p,q,b,e,□}	{p,q,b,e,□}
Р	Α	{p,□}	{p,□}	{p,□}
Q	Α	{q,□}	{q,□}	{q,□}
В	Α	{b,e}	{b,e}	{b,e}
С	Α	{c,f}	{c,f}	{c,f}

The FOLLOW Table

- Definition: FOLLOW(X), I X E V:
 - For a E Σ , a E FOLLOW(X) if S \square X α Xa β
 - ϵ E FOLLOW(X) if S \square X α X
- Idea: The FOLLOW set of a variable is the set of all terminals that can occur after that variable (i.e., immediately to the right) in any sentential form
- To Compute FOLLOW
 - FOLLOW(S) = $\{\epsilon\}$
 - For XEV, FOLLOW(X) = A

The FOLLOW Table: Example

Grammar

- · T → AB
- $\cdot A \rightarrow PQ$
- $\cdot A \rightarrow BC$
- $\cdot P \rightarrow pP$

Symbo	Iter. 0	Iter. 1	FOLLO
	{□}	{□}	W
Т	А	{b,e}	{□}
Α			{b,e}
Р	A	{q}	{q,b,e}
Q	Α	Α	{b,e}
В	Α	{□,c,f}	{□,c,f}
С	Α	Α	{b,e}

FIRST		
р	{p}	
q	{q}	
b	{b}	
е	{e}	
С	{c}	
f	{f}	
Т	{p,q,b,e}	
Α	$\{p,q,b,e,\square\}$	
Р	{p,□}	
Q	{q,□}	
В	{b,e}	
С	{c,f}	

- $^{\bullet}$ 1X → αAβ EP,
- P \rightarrow E FOLLOW(A) = FOLLOW(A) ν (FIRST(β)-{ ϵ }) if ϵ E FIRST(β) then FOLLOW(A) = FOLLOW(A) ν FOLLOW(X)
- $Q \rightarrow Q$ To find the FOLLOW set for A, find productions with A on the right
- hand side:

 For each production $X \rightarrow \alpha A\beta$, put FIRST(β) {ε} in FOLLOW(A)
- $Q \rightarrow \epsilon$ If ϵ is in FIRST(β) then put FOLLOW(X) into FOLLOW(A)
 - For each production $X \rightarrow \alpha A$, put FOLLOW(X) into FOLLOW(A)
- B → bB

The PREDICT Table

- **Definition:** For a $E \Sigma v \{\epsilon\}$, a $E \cap PREDICT(A \rightarrow \alpha)$ if
 - a E FIRST(α)-{ ϵ } or
 - ϵ E FIRST(α) and a E FOLLOW(A)
- · **Idea:** The predict set of terminal symbols for a production is the FIRST set of the RHS plus the FOLLOW set of the production if ε is part of the FIRST set
- To Compute PREDICT
 - For each $(A \rightarrow \alpha)$ EP, PREDICT $(A \rightarrow \alpha) = A$
 - For each $(A \rightarrow \alpha) E P$

The PREDICT Table: Example

Symbo	FIRST	FOLLOW
	{p,q,b,e}	{□}
Т	{p,q,b,e,□}	{b,e}
Α	{p,□}	{q,b,e}
Р	{q,□}	{b,e}
Q	{b,e}	{□,c,f}
В	{c,f}	{b,e}
C		

For each $(A \rightarrow \alpha) \to P$ PREDICT $(A \rightarrow \alpha) = FIRST(\alpha) - \{\epsilon\}$ if $\epsilon \to FIRST(\alpha)$ then PREDICT $(A \rightarrow \alpha) = PREDICT(A \rightarrow \alpha) \lor$ FOLLOW(A)

Since the predictor sets overlap for A productions, this is not an LL(1) grammar

Production	Predictor Set
T → AB	{p,q,b,e}
$A \rightarrow PQ$	[9,d, <mark>p</mark> ,q}
A → BC	{b,e}
P → pP	{p}
P → □	{q,b,e}
$Q \rightarrow qQ$	{q}
$Q \rightarrow \square$	{b,e}
$B \rightarrow bB$	{b}
В → е	{e}
$C \rightarrow cC$	{c}
$C \rightarrow f$	{f}

How to Prove a Grammar is LL(1)

- Construct PREDICT Table
- This grammar is not LL(1) if and only If there are two productions with the same left hand side have non disjoint predictor sets.

- Note: It's actually possible to build the FIRST, FOLLOW, and PREDICT tables by simply looking at the grammar.
- · What happens if our grammar is not LL(1)?

Limitations and Problems with LL(1)

- There exist context free languages that do not have LL(1) grammars
- There is no known algorithm to determine whether a language is LL(1)
- There is an algorithm to decide whether a grammar is LL(1) (we just saw it)
- Most obvious grammars for most programming languages are usually not LL(1)
- In many cases a non-LL(1) grammar can be refactored into an LL(1) grammar

Refactoring Grammars

· Two common problems:

Which production do you use? (Both have α in FIRST)

- Left recursion
 - $A \rightarrow A\beta$
 - A → α
- Common Prefix
 - A $\rightarrow \alpha\beta$
 - A → αγ

Dealing with Left Recursion

 Idea: Replace Left Recursion with Right Recursion

 Note: As a side-effect the grammar may cease to capture some properties such as left-

Example of Eliminating Left Recursion

· Consider the grammar fragment:

```
Block \rightarrow '{' Statements '}'
Statements \rightarrow Statements Statement
Statements \rightarrow \epsilon
```

· Replace this with:

```
Block → '{' Statements '}'

Statements → Statement Statements

Statements → ε
```

Dealing with Common Prefix

- · Idea: Remove common prefix by left factoring
- · Note: This grammar generates $\alpha(\beta|\gamma)$

Example of Eliminating Common Prefix

Bad Grammar

Better grammar

Field → Type Identifier Field → Type Identifier Field → Type identifier "(" Args ")" ";"

FieldBody ';'

FieldBody → '(' Args

Type → Identifier

FieldBody → ε

Type → Identifier Array

Type → Identifier Array

Array → '[' ']' Array

Array → '[' ']' Array

Array $\rightarrow \epsilon$

Array $\rightarrow \epsilon$

LL(1) Parser Implementation

- Two efficient approaches:
 - Recursive Descent
 - Deterministic Pushdown Automata (DPDA)

 Recursive Descent is easier to understand and implement.

Recursive Descent

```
parse_X:
    t = peek_next_token()
```

```
select X
                                     based on
Idea: For each
variable X, write a
procedure: parse X()
                   for each i
                     if i == Y1
                                        V:
                       parse_Y1()
                     elseif i == Y2
                V:
                       parse_Y2()
```

•••

Example

```
parse_S:
  t = peek_at_token()
```

Grammar

· S → Add | Sub | Mul

· S → Div | Neg | Val

· Add \rightarrow + S S

· Sub \rightarrow - S S

· Mul → XSS

· Div → / S S

· Neg → neg S

select S based

on t

for each i

if i == Add

parse_Add()

elseif i ==Sub

V:

V:

parse_Sub()

elgeif i ==Val