HW1CSDS343

Collaborators

Compared Turing Machines in Q3 with Carson Whitehouse

1

Let L_1 and L_2 be decidable languages over the same alphabet Σ . Consider language $L=L_1\oplus L_2$ Prove that L is decidable.

Ans Assume L_1, L_2 are decidable languages $\exists A_1$ that decides L_1 $\exists A_2$ that decides L_2 Create A_3 A_3 runs on x: • Run A_1 on x If A₁ accepts: • Run A_2 on x• If A_2 accepts: Output "no" Else: Output "yes" Else: $\bullet \ \ \mathsf{Run} \ A_2 \ \mathsf{on} \ x$ If A₂ accepts: Output "yes: Else: Output "no" Proof Show A_3 decides L $L = L_1 \oplus L_2$ If $x \in L$ then $(x \in L_1 \land x \not\in L_2) \lor (x \not\in L_1 \land x \in L_2)$

- If $x \in L_1 \land x \notin L_2$
 - A_3 will run A_1 which accepts, then it will run A_2 which rejects. So A_3 accepts.
- If $x \notin L_1 \land x \in L_2$
 - A_3 will run A_1 which rejects, then it will run A_2 which accepts. So A_3 accepts.

If $x \notin L$ then $(x \in L_1 \land x \in L_2) \lor (x \notin L_1 \land x \notin L_2)$

- ullet If $x\in L_1\wedge x\in L_2$
 - A_3 will run A_1 which accepts, then it will run A_2 which accepts. So A_3 rejects.
- If $x \notin L_1 \land x \notin L_2$
 - A_3 will run A_1 which rejects, then it will run A_2 which rejects. So A_3 rejects.

2

Let L be a language over alphabet Σ . Prove that if both L and \bar{L} (the complement of L) are recognizable, then L is decidable.

Ans

Assume L_1, L_2 are recognizable languages

 $\exists A_1$ that recognizes L_1

 $\exists A_2$ that recognizes L_2

Create A_3

 A_3 runs on x:

- For $i=0,1,2,\ldots$:
 - Run A_1 on x
 - If A₁ accepts:
 - Ouput "yes"
 - Else:
 - Run A_2 on x
 - If A_2 accepts:
 - Ouput "no"

Proof

Show A_3 decides L

If $x \in L$ then A_3 runs A_1 which accepts in a finite number of steps. So A_3 will output "yes" in a finite number of steps.

If $x \notin L$ then $x \in \overline{L}$ so A_3 runs A_2 which accepts in a finite number of steps. So A_3 will output "no" in a finite number of steps.

3

Let L be the set of all strings over the alphabet $\Sigma=\{a,b,c,d\}$ defined as $L=\{a^nb^mc^{\max\{n-m,0\}}d^{\max\{m-n,0\}}\}$ for n,m non-negative integers. For example, aaabbc and aabbbd are both strings of the language. (This is basically doing the subtraction n-m). Write a Turing machine that will accept all strings that are in L and reject all other strings. Explicitly give your machine's alphabet, set of states, and transition function.

Create a TM for L

$$egin{aligned} L &= \{a^n b^m c^{\max\{n-m,0\}} d^{\max\{m-n,0\}} \} \ \Sigma &= \{a,b,c,d \} \ \Gamma &= \{a,b,c,d,_,a',b',c',d' \} \ Q &= \{q_0,q_{reject},q_{accept},q_1,q_2,q_3,q_4,q_5,q_6,q_7,q_8,q_9,q_b,q_c \} \ \delta : Q imes \Gamma
ightarrow Q imes \Gamma imes \{L,R \} \end{aligned}$$

q_0 -- init

$$\begin{split} &\delta(q_0,a)=(q_1,a',R)\\ &\delta(q_0,b)=(q_7,b',R) \text{ -- More b's than a's}\\ &\delta(q_0,c)=(q_{reject},_,R)\\ &\delta(q_0,d)=(q_{reject},_,R)\\ &\delta(q_0,_)=(q_{accept},_,R)\\ &\delta(q_0,_)=(q_{reject},_,R) \text{ * This should not happen}\\ &\delta(q_0,b')=(q_{reject},_,R) \text{ * This should not happen}\\ &\delta(q_0,c')=(q_{reject},_,R) \text{ * This should not happen}\\ &\delta(q_0,c')=(q_{reject},_,R) \text{ * This should not happen}\\ &\delta(q_0,d')=(q_{reject},_,R) \text{ * This should not happen}\\ \end{split}$$

q_1 -- Match b's to a's (R)

$$\delta(q_1,a)=(q_1,a,R)$$

$$\delta(q_1,b)=(q_2,b',R)$$

$$\delta(q_1,c)=(q_4,c',L)$$
 -- More a's than b's

$$\delta(q_1, d) = (q_{reject}, _, R)$$

$$\delta(q_1,_) = (q_{reject},_,R)$$

$$\delta(q_1,a') = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_1,b')=(q_1,b',R)$$

$$\delta(q_1,c')=(q_{reject},_,R)$$
 * This should not happen

$$\delta(q_1,d')=(q_{reject,-},R)$$
 * This should not happen

q_2 -- Find next a (a vs b) (L)

$$\delta(q_2,a)=(q_2,a,L)$$

$$\delta(q_2,b) = (q_{reject}, _, R)$$
 * This should not happen

$$\delta(q_2,c)=(q_{reject},_,R)$$
 * This should not happen

$$\delta(q_2,d) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_2,_) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_2, a') = (q_3, a', R)$$

$$\delta(q_2,b')=(q_2,b',L)$$

$$\delta(q_2,c')=(q_{reject},_,R)$$
 * This should not happen

$$\delta(q_2,d')=(q_{reject},_,R)$$
 * This should not happen

q_3 -- Mark the found a (a vs b) (R)

$$\delta(q_3,a)=(q_1,a',R)$$

$$\delta(q_3,b) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_3,c)=(q_{reject},_,R)$$
 * This should not happen

$$\delta(q_3,d) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_3,_) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_3,a') = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_3,b')=(q_b,b',R)$$
 -- No more a's, check if b's are greater or equal

$$\delta(q_3,c')=(q_{reject,\,_},R)$$
 * This should not happen

$$\delta(q_3,d') = (q_{reject},_,R)$$
 * This should not happen

q_4 -- Find next a (a vs c) (L)

$$\delta(q_4,a)=(q_4,a,L)$$

$$\delta(q_4,b) = (q_{reject}, _, R)$$
 * This should not happen

$$\delta(q_4,c) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_4,d) = (q_{reject}, _, R)$$
 * This should not happen

$$\delta(q_4,_) = (q_{reject},_,R)$$
 * This should not happen

$$\delta(q_4, a') = (q_5, a', R)$$

$$\delta(q_4,b')=(q_4,b',L)$$

$$\delta(q_4,c')=(q_4,c',L) \ \delta(q_4,d')=(q_{reject,\,-},R)$$
 * This should not happen

q_5 -- Mark the found a (a vs c) (R)

$$\begin{split} &\delta(q_5,a)=(q_6,a',R)\\ &\delta(q_5,b)=(q_{reject,-},R) \text{ * This should not happen}\\ &\delta(q_5,c)=(q_{reject,-},R) \text{ * This should not happen}\\ &\delta(q_5,c)=(q_{reject,-},R) \text{ * This should not happen}\\ &\delta(q_5,d)=(q_{reject,-},R) \text{ * This should not happen}\\ &\delta(q_5,-)=(q_{reject,-},R) \text{ * This should not happen}\\ &\delta(q_5,a')=(q_{reject,-},R) \text{ * This should not happen}\\ &\delta(q_5,b')=(q_c,b',R) \text{ -- No more a's, check no more c's}\\ &\delta(q_5,c')=(q_c,c',R) \text{ -- No more a's, check no more c's}\\ &\delta(q_5,d')=(q_{reject,-},R) \text{ * This should not happen} \end{split}$$

q_6 -- Match c's to a's (R)

$$\delta(q_6,a)=(q_6,a,R)$$
 $\delta(q_6,b)=(q_{reject,-},R)$ * This should not happen $\delta(q_6,c)=(q_4,c',L)$ $\delta(q_6,d)=(q_{reject,-},R)$ -- More a's than c's $\delta(q_6,a')=(q_{reject,-},R)$ * This should not happen $\delta(q_6,b')=(q_6,b',R)$ $\delta(q_6,c')=(q_6,c',R)$ $\delta(q_6,d')=(q_{reject,-},R)$ * This should not happen $\delta(q_6,b')=(q_6,c',R)$

q_7 -- Match d's to b's (b vs d) (R)

$$\begin{split} &\delta(q_7,a)=(q_{reject},{}_-,R)\\ &\delta(q_7,b)=(q_7,b',R)\\ &\delta(q_7,c)=(q_{reject},{}_-,R)\\ &\delta(q_7,d)=(q_8,d',L)\\ &\delta(q_7,{}_-)=(q_{reject},{}_-,R) \text{ -- More b's than d's}\\ &\delta(q_7,a')=(q_{reject},{}_-,R) \text{ * This should not happen}\\ &\delta(q_7,b')=(q_{reject},{}_-,R) \text{ * This should not happen}\\ &\delta(q_7,c')=(q_{reject},{}_-,R) \text{ * This should not happen}\\ &\delta(q_7,c')=(q_{reject},{}_-,R) \text{ * This should not happen}\\ &\delta(q_7,d')=(q_7,d',R) \end{split}$$

q_8 -- Find next b (b vs d) (L)

$$\begin{split} &\delta(q_8,a)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,b)=(q_8,b,L) \\ &\delta(q_8,c)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,d)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,_)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,_)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,a')=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,b')=(q_9,b',R) \\ &\delta(q_8,c')=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_8,d')=(q_8,d',L) \end{split}$$

q_9 -- Mark the found b (b vs d) (R)

$$\begin{split} &\delta(q_9,a)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_9,b)=(q_7,b',R) \\ &\delta(q_9,c)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_9,d)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_9,d)=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_9,d')=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_9,b')=(q_{reject},_,R) \text{ * This should not happen} \\ &\delta(q_9,b')=(q_{re$$

q_b -- More b's than a's, find next b (OR A==B so check no c's or d's)

$$\begin{split} &\delta(q_b,a) = (q_{reject},_,R) \\ &\delta(q_b,b) = (q_7,b'R) \\ &\delta(q_b,c) = (q_{reject},_,R) \\ &\delta(q_b,d) = (q_{reject},_,R) \\ &\delta(q_b,d) = (q_{accept},_,R) \\ &\delta(q_b,a') = (q_{reject},_,R)^* \text{ This should not happen} \\ &\delta(q_b,b') = (q_b,b',R) \\ &\delta(q_b,c') = (q_{reject},_,R)^* \text{ This should not happen} \\ &\delta(q_b,d') = (q_{reject},_,R)^* \text{ This should not happen} \\ &\delta(q_b,d') = (q_{reject},_,R)^* \text{ This should not happen} \end{split}$$

q_c -- Check if we have went through the whole string (R)

$$\delta(q_c, a) = (q_{reject}, _, R)$$
 $\delta(q_c, b) = (q_{reject}, _, R)$
 $\delta(q_c, c) = (q_{reject}, _, R)$
 $\delta(q_c, d) = (q_{reject}, _, R)$
 $\delta(q_c, d) = (q_{accept}, _, R)$
 $\delta(q_c, a') = (q_c, a', R)$
 $\delta(q_c, b') = (q_c, b', R)$

$$\delta(q_c,c')=(q_c,c',R) \ \delta(q_c,d')=(q_c,d',R)$$