Wydział	lmię i nazwisko		Rok	Grupa	Zespół
	1.				
	2.				
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA					
WFiIS AGH					
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 11: Moduł Younga

Cel ćwiczenia

Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego metalu obciążonego stałą siłą.

Zagadnienia kontrolne	Ocena i podpis
1. Sformułuj prawo Hooke'a. Co to są odkształcenia sprężyste?	
2. Pojęcie naprężenia. Rodzaje naprężeń	
2. Co to jest odkształcenie względne?	
4. Moduł Younga – podaj definicję i jednostkę.	
5. Co dzieje się z drutem po przekroczeniu granicy sprężystości?	
6. Dlaczego zmiany długości drutu są dwa razy mniejsze od zmian długości podawanych przez czujnik?	
7. Czym różni się wzór definicyjny modułu Younga od wzoru roboczego?	

1. Układ pomiarowy

- 1. Przyrząd do pomiaru wydłużenia drutu pod wpływem stałej siły (rys. w1), zaopatrzony w czujnik mikrometryczny do pomiaru wydłużenia drutu.
- 2. Zestaw odważników.
- 3. Śruba mikrometryczna
- 4. Przymiar milimetrowy

Rys. w1. Urządzenie do pomiaru modułu Younga metodą statyczną

2. Wykonanie ćwiczenia

- 1. Zmierz długość drutu, którego będziesz używał do wyznaczenia modułu Younga (możesz posłużyć się przymiarem który jest na stałe przymocowany do prawego ramienia statywu).
- 2. Zamocuj drut w statywie za pomocą nakrętek. Po obciążeniu szalki dwoma odważnikami kilogramowymi, zmierz za pomocą śruby mikrometrycznej średnicę drutu w trzech różnych miejscach rozłożonych na całej jego długości.
- 3. Opróżnij szalkę z odważników. Zwolnij blokadę belki pomiarowej. Przez dokręcanie (odkręcanie) górnej i dolnej nakrętki wyreguluj zamocowanie drutu tak, aby belka C dotykała końcówki czujnika mikrometrycznego. Wyzeruj wskazania czujnika mikrometryczny (przez obracanie pierścienia okalającego tarczę).
- 4. Przez naciśnięcie ręką na szalkę sprawdzić, czy czujnik mikrometryczny reaguje, i czy wraca (w przybliżeniu) w położenie zerowe.
- 5. Następnie obciążaj szalkę przez dokładanie kolejnych odważników notując w tabeli sumaryczną masę odważników i wynikające wydłużenie drutu. Uwaga: maksymalne obciążenie dla drutu stalowego 10 kg, dla drutu mosiężnego i miedzianego 6 kg.
- 6. Pomiary wykonać dla rosnących ↑ (przy dokładaniu ciężarków), następnie dla malejących ↓ wartości cieżaru (zdejmujac kolejne cieżarki).
- 7. Wykonać analogiczny pomiar dla drutu z innego metalu.

3. Wyniki pomiarów

Tabela 1: Drut pierwszy

Rodzaj materiału	
Długość drutu l	$u(l) = \dots$
Średnica drutu d (3 pomiary)	,
Średnica średnia d u(a	d) =

Masa odważników [kg]	Siła <i>F</i> [N]	Wskazanie czujnika ↑ [mm]	Wskazanie czujnika ↓ [mm]	Wydłużenie średnie Δ <i>l</i> [mm]

Tabela 2: Drut drugi

Rodzaj materiału	
Długość drutu l	$u(l) = \dots$
Średnica drutu d (3 pomiary)	,
Średnica średnia d	u(d) =

Masa odważników [kg]	Siła <i>F</i> [N]	Wskazanie czujnika ↑ [mm]	Wskazanie czujnika↓ [mm]	Wydłużenie średnie Δ <i>l</i> [mm]

4. Opracowanie wyników pomiarów

- 1. Oblicz wartość średnią średnicy drutu *d*. Niepewność tej wartości wyznaczyć nie metodą typu A lecz B, na podstawie działki elementarnej przyrządu. Zapisz wynik.
- 2. Na podstawie masy obciążników oblicz i wpisz do tabeli wartości siły rozciągającej.
- 3. Na podstawie wskazań czujników cz ↑ oraz cz ↓ (dla siły rosnącej oraz malejącej) oblicz średnią wartość wydłużenia jako $\Delta l = (\text{cz} \uparrow + \text{cz} \downarrow)/4$. (Przy obliczaniu średniej dzielimy przez 4 a nie przez 2 by uwzględnić też działanie dźwigni). Wyniki wpisz do tabeli.
- 4. Przedstaw na wykresie zależność średniego wydłużenia Δl w funkcji przyłożonej siły rozciągającej F.
- 5. Zaznacz na wykresie np. strzałkami punkty, które w twojej ocenie odbiegają od prostoliniowego przebiegu.
- 6. Do punktów pozostałych dopasuj prostą metodą najmniejszych kwadratów. Możesz posłużyć się programem komputerowym dostępnym w laboratorium. W wyniku otrzymasz wartość współczynnika nachylenia prostej a oraz jego niepewność u(a).
- 7. Wykorzystując wzór roboczy (3) oblicz wartość modułu Younga.
- 8. Oblicz niepewność wartości *E* wykorzystując prawo przenoszenia niepewności względnej.
- 9. Zmierzoną wartość modułu Younga porównaj z wartością tablicową dla danego materiału. Rozstrzygnij, czy otrzymany wynik zgadza się z wartością tablicową w granicach niepewności rozszerzonej.

Uwaga: zamiast wykresu $\Delta l(F)$ wykonać można wykres $\Delta l(m)$, czyli w funkcji masy odważników i dopasować prostą do takiego wykresu. Wzór roboczy (3) należy w tym przypadku zmodyfikować, uwzględniając w nim wartość przyspieszenia ziemskiego.