

1 WHAT IS CLAIMED IS:

2

1 1. A control system for processing sampled servo data in a disk drive, the control
2 system comprising:

3 a microprocessor for executing firmware code; and
4 an accelerator circuit for performing operations on the sampled servo data while
5 the microprocessor is executing the firmware code, the accelerator circuit comprising
6 a position error signal (PES) calculator circuit for calculating a PES value
7 based on the sampled servo data; and
8 a write unsafe (WUS) estimator responsive to the calculated PES value
9 and to a WUS limit parameter, the WUS estimator further for signaling the
10 microprocessor when the calculated PES value exceeds the WUS limit parameter.

1 2. A control system for processing sampled servo data as defined in claim 1, further
2 comprising a bus for transmitting the WUS limit parameter from the microprocessor to the
3 accelerator circuit.

1 3. A control system for processing sampled servo data as defined in claim 1, wherein
2 the accelerator circuit further comprises a WUS limit register for storing the WUS limit
3 parameter.

1 4. A control system for processing sampled servo data as defined in claim 1, wherein
2 the accelerator circuit further comprises a PES register for storing the calculated PES value.

1 5. A control system for processing sampled servo data as defined in claim 1, wherein
2 the PES value is further based on a parameter stored in a parameter register.

1 6. A control system for processing sampled servo data as defined in claim 1, wherein
2 the servo processing accelerator circuit has a plurality of multipliers that may simultaneously
3 perform parallel calculations.

1 7. A control system for processing data from sampled servo wedges for positioning a
2 transducer head in a disk drive, the control system comprising:
3 a microprocessor for executing firmware code; and
4 a servo processing accelerator circuit for executing servo processing functions
5 while the microprocessor is executing the firmware code, the servo processing accelerator circuit
6 comprising
7 a position error signal (PES) calculator circuit for calculating a stream of
8 PES values based on data read from the sampled servo wedges;
9 a servo-loop compensator for processing the stream of PES values and
10 generating a stream of control effort values for positioning the transducer head during a
11 track following operation.

1 8. A control system for processing data from sampled servo wedges as defined in
2 claim 7, wherein the PES values are further based on parameters stored in corresponding
3 parameter registers.

1 9. A control system for processing data from sampled servo wedges as defined in
2 claim 7, wherein the servo processing accelerator circuit has a plurality of multipliers that may
3 simultaneously perform parallel calculations.

1 10. A control system for processing data from sampled servo wedges for positioning a
2 transducer head in a disk drive, the control system comprising:
3 a microprocessor for executing firmware code; and
4 a servo processing accelerator circuit for executing servo processing functions
5 while the microprocessor is executing the firmware code, the servo processing accelerator circuit
6 including a servo-loop compensator for receiving a stream of PES values based on data read
7 from the sampled servo wedges and generating a stream of control effort values based on the
8 stream of PES values for positioning the transducer head during a track following operation.

1 11. A control system for processing data from sampled servo wedges as defined in
2 claim 10, wherein the PES values are further based on parameters stored in corresponding
3 parameter registers.

1 12. A control system for processing data from sampled servo wedges as defined in
2 claim 10, wherein the servo processing accelerator circuit has a plurality of multipliers that may
3 simultaneously perform parallel calculations.

1 13. A magnetic disk drive, comprising:
2 a head disk assembly (HDA) including
3 a rotating magnetic disk having distributed position information in a
4 plurality of uniformly spaced-apart servo wedges for defining data storage tracks,
5 an actuator for positioning a transducer head in response to a control effort
6 signal, the transducer head for periodically reading the distributed position information
7 from the servo wedges and reading data from the data storage tracks; and
8 a control system having
9 an accelerator circuit for implementing a first sampled servo controller for
10 periodically adjusting, only during a track-following operation under one or more of a
11 first set of predetermined conditions, the control effort signal based on the distributed
12 position information, and for indicating the occurrence of a predetermined condition
13 within a second set of predetermined conditions to the control system;
14 a second sampled servo controller, separate from the accelerator circuit, for
15 periodically adjusting the control effort signal based on the distributed position information
16 during a track-following operation under one or more of the second set of predetermined
17 conditions.

1 14. A magnetic disk drive as defined in claim 13, wherein
2 the control system further includes a disk controller for controlling disk
3 operations and a host interface for coupling the disk controller with a host system; and
4 the second sampled servo controller, the disk controller and the host interface are
5 implemented by a microprocessor that is separate from the accelerator circuit.

1 15. A magnetic disk drive as defined in claim 13, wherein the second sampled servo
2 controller is implemented by the microprocessor using firmware code.

1 16. A magnetic disk drive as defined in claim 13, wherein the accelerator circuit has a
2 plurality of multipliers that may simultaneously perform parallel calculations.

1 17. A magnetic disk drive as defined in claim 13 wherein the first set of
2 predetermined conditions includes track following within a write unsafe limit.

1 18. A magnetic disk drive as defined in claim 13 wherein the second set of
2 predetermined conditions includes track following outside of a write unsafe limit.

1 19. A magnetic disk drive as defined in claim 13, wherein, after receiving distributed
2 position information in a servo wedge, the first sampled servo controller can adjust the control
3 effort signal after a first processing delay and the second sampled servo controller can adjust the
4 control effort signal after a second processing delay, wherein the first processing delay is less
5 than the second processing delay.

1 20. A magnetic disk drive as defined in claim 19, wherein the first processing delay is
2 less than one-tenth of the second processing delay.

1 21. A magnetic disk drive as defined in claim 19, wherein the first processing delay is
2 less than one-fourth of the second processing delay.

1 22. A magnetic disk drive, comprising:
2 a head disk assembly (HDA) including
3 a rotating magnetic disk having distributed position information in a
4 plurality of uniformly spaced-apart servo wedges for defining data storage tracks,
5 an actuator for positioning a transducer head in response to a control effort
6 signal, the transducer head for periodically reading the distributed position information
7 from the servo wedges and reading data from the data storage tracks; and
8 a control system having
9 an accelerator circuit for implementing a first sampled servo controller for
10 periodically adjusting, only during a track-following operation under one or more of a
11 first set of predetermined conditions, the control effort signal based on the distributed
12 position information with a first processing delay;
13 a microprocessor, separate from the accelerator circuit, for implementing a
14 second sampled servo controller using firmware code for periodically adjusting the
15 control effort signal based on the distributed position information, with a second
16 processing delay that is substantially greater than the first processing delay, during an
17 operation under one or more of a second set of predetermined conditions;
18 wherein the control system selects the first sampled servo controller for adjusting
19 the control effort signal during a track-following operation under one or more of a first set of
20 predetermined conditions, and selects the second sampled servo controller for adjusting the
21 control effort signal during an operation under one or more of a second set of predetermined
22 conditions.

1 23. A magnetic disk drive as defined in claim 22, wherein the first processing delay is
2 less than one-tenth of the second processing delay.

1 24. A magnetic disk drive as defined in claim 22, wherein the first processing delay is
2 less than one-fourth of the second processing delay.

1 25. A magnetic disk drive as defined in claim 22, wherein
2 the control system further includes a disk controller for controlling disk
3 operations and a host interface for coupling the disk controller with a host system; and
4 the second sampled servo controller, the disk controller and the host interface are
5 implemented by a microprocessor that is separate from the accelerator circuit.

1 26. A magnetic disk drive as defined in claim 22, wherein the second sampled servo
2 controller is implemented by the microprocessor using firmware code.

1 27. A magnetic disk drive as defined in claim 22, wherein the accelerator circuit has a
2 plurality of multipliers that may simultaneously perform parallel calculations.

1 28. A magnetic disk drive as defined in claim 22 wherein the first set of
2 predetermined conditions includes track following within a write unsafe limit.

1 29. A magnetic disk drive as defined in claim 22 wherein the second set of
2 predetermined conditions includes track following outside of a write unsafe limit.