

Požemių žaidimas

Robertas kuria naują kompiuterinį žaidimą. Žaidime yra vienas herojus, n priešininkų bei n+1 požemių. Priešininkai sunumeruoti nuo 0 iki n-1, o požemiai nuo 0 iki n. i-asis priešininkas ($0 \le i \le n-1$) yra i-ajame požemyje ir yra stiprumo s[i]. n-ajame požemyje priešininkų nėra.

Herojus pradeda x-ajame požemyje ir jo pradinis stiprumas yra z. Kiekvieną kartą, kai herojus įeina į i-ajį požemį ($0 \le i \le n-1$), jis susikauna su i-uoju priešininku:

- Jei herojaus stiprumas yra didesnis arba lygus priešininko stiprumui s[i], tai herojus laimi. Herojaus stiprumas **padidėja** s[i] vienetų ($s[i] \geq 1$), o herojus patenka į požemį w[i] (w[i] > i).
- Kitu atveju herojus pralaimi. Herojaus stiprumas **padidėja** p[i] ($p[i] \ge 1$) vienetų, o herojus patenka į požemį l[i].

Atkreipkite dėmesį, kad p[i] gali būti mažesnis, lygus arba didesnis nei s[i]. Taip pat l[i] gali būti mažesnis, lygus arba didesnis nei i. Nepriklausomai nuo kovos rezultato, priešininkas pasilieka požemyje i ir jo stiprumas išlieka s[i].

Žaidimas baigiasi, kai herojus patenka į n-ąjį požemį. Galima įrodyti, kad žaidimas visada pasibaigs po baigtinio skaičiaus kovų nepriklausomai nuo herojaus pradinio požemio ir stiprumo.

Robertas jūsų prašo ištestuoti jo žaidimą įvykdant q simuliacijų. Kiekvienai simuliacijai Robertas parenka pradinį požemį x bei pradinį stiprumą z. Kiekvienai simuliacijai apskaičiuokite koks bus herojaus stiprumas žaidimo gale.

Realizacija

Parašykite šias procedūas:

```
void init(int n, int[] s, int[] p, int[] w, int[] l)
```

- n: priešininkų skaičius.
- s, p, w, l: n ilgio masyvai. Kiekvienam $0 \le i \le n-1$:
 - $\circ s[i]$ yra i-ojo priešininko stiprumas. Tai taip pat stiprumas, kurį įgauna herojus, nukovęs i-ąjį priešininką.
 - p[i] yra herojaus įgaunamas stiprumas, šiam pralaimėjus prieš i-ąjį priešininką.
 - w[i] yra požemis, į kurį herojus patenka nukovęs i-ąjį priešininką.
 - l[i] yra požemis, į kurį herojus patenka pralaimėjęs prieš i-ąjį priešininką.
- Ši procedūra kviečiama lygiai vieną kartą prieš bet kokį procedūros simulate iškvietimą (žiūrėti žemiau).

- x: požemis, kuriame herojus pradeda žaidimą.
- z: pradinis herojaus stiprumas.
- Ši procedūra turėtų grąžinti herojaus stiprumą žaidimui pasibaigus, jeigu herojus pradeda žaidimą požemyje x būdamas stiprumo z.
- Procedūra iškviečiama lygiai q kartų.

Pavyzdys

Panagrinėkime tokį iškvietimą:

Šis iškvietimas pavaizduotas diagramoje. Kiekvienas kvadratas žymi požemį. 0-iniam, 1-ajam bei 2-ajam požemiams reikšmės s[i] ir p[i] nurodytos kvadratų viduje. Violetinės spalvos rodyklės nurodo herojaus ėjimus, kai herojus laimi kovą, o juodos rodyklės nurodo, kur herojus juda pralaimėjęs.

Tarkime, kad vertinimo programa iškviečia simulate (0, 1).

Tu žaidimas atrodo taip:

Požemis	Herojaus stiprumas prieš kovą	Rezultatas
0	1	Pralaimėjimas
1	4	Pralaimėjimas
0	5	Pergalė
2	7	Pralaimėjimas
1	9	Pergalė
2	15	Pergalė
3	24	Žaidimo pabaiga

Taigi procedūra turi grąžinti 24.

Tarkime, kad vertinimo programa iškviečia simulate (2, 3).

Tada žaidimas atrodo taip:

Požemis	Herojaus stiprumas prieš kovą	Rezultatas
2	3	Pralaimėjimas
1	5	Pralaimėjimas
0	6	Pergalė
2	8	Pralaimėjimas
1	10	Pergalė
2	16	Pergalė
3	25	Žaidimo pabaiga

Taigi procedūra turi grąžinti 25.

Ribojimai

- $1 \le n \le 400\ 000$
- $1 \le q \le 50\ 000$
- $1 \le s[i], p[i] \le 10^7$ (visiems $0 \le i \le n-1$)
- $0 \le l[i], w[i] \le n$ (visiems $0 \le i \le n-1$)
- w[i] > i (visiems $0 \le i \le n-1$)
- $0 \le x \le n-1$
- $1 \le z \le 10^7$

Dalinės užduotys

- 1. (11 taškų) $n \leq 50~000$, $q \leq 100$, $s[i], p[i] \leq 10~000$ (visiems $0 \leq i \leq n-1$)
- 2. (26 taškai) s[i] = p[i] (visiems $0 \le i \le n-1$)
- 3. (13 taškų) $n \leq 50~000$, visų priešininkų stiprumai vienodi. Kitaip tariant, s[i] = s[j] visiems $0 \leq i,j \leq n-1$.
- 4. (12 taškų) $n \leq 50~000$, yra daugiausiai $\,5\,$ skirtingos $\,s[i]$ reikšmės.
- 5. (27 taškai) $n \leq 50~000$
- 6. (11 taškų) Jokių papildomų ribojimų.

Pavyzdinė vertinimo programa

Pavyzdinė vertinimo programa įvestį skaito šiuo formatu:

- 1-oji eilutė: $n \ q$
- 2-oji eilutė: s[0] s[1] \dots s[n-1]
- 3-oji eilutė: p[0] p[1] ... p[n-1]

- 4-oji eilutė: w[0] w[1] \dots w[n-1]
- 5-oji eilutė: l[0] l[1] \dots l[n-1]
- (6+i)-oji eilutė ($0 \le i \le q-1$): x z procedūros simulate i-ajam iškvietimui.

Pavyzdinė vertinimo programa atsakymą išveda šiuo formatu:

- (1+i)-oji eilutė ($0 \leq i \leq q-1$): i-ojo ${
m simulate}$ iškvietimo grąžinta reikšmė.