

EXPRESS MAIL NO.: EL 477 034 015 US
PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of: Roland Meier and
Peter Zolliker

Group Art Unit: To be assigned

Application No.: To Be Assigned

Examiner: To be assigned

Filed: Concurrently

Attorney Docket No.: 10063-0007

For: COLOR MODELING OF A
PHOTOGRAPHIC IMAGE

New York, NY

January 22, 2002

PRELIMINARY AMENDMENT

Hon. Commissioner for Patents
Washington, D.C. 20231

Sir:

Prior to the examination of the subject application, please enter the following amendments and remarks:

In The Claims:

Cancel claims 1 to 21 without prejudice and add new claims as follows:

--22. (New) A process for modeling photographic images produced by light modulators that modulate an intensity of incident light with respect to the spectrum according to light modulation data, wherein an image reproduction system model determines the light modulation data of the light modulators in response to image control data, the process comprising the steps of:

(a) calculating light modulation values (C_i) of the light modulators used for the image reproduction based on the input image control data by modeling the response of the image reproducing system model to the input image control data; and

(b) calculating, on the basis of the calculated light modulation values, modulation color values which describe the color values of the image which

is represented by the light modulators and is generated upon light falling onto the light modulators.--

--23. (New) The process according to claim 22, wherein multiple types of light modulators are present, each type of light modulator having given spectral modulation properties; and

the process comprises the further step of determining the modulation strength, which is achieved in image portions by light modulators of one specific type, by way of the image reproducing system model, whereby the modulation strength depends on the image control data, which dependency is taken into consideration for the modeling of the answer of the image reproducing system model to the input image data.--

--24. (New) The process according to claim 23, wherein the light modulation values describe the modulation strength of the light modulators in the image regions; and

the process further comprises the step of relating the light modulation values (C_i) to the modulation color values (Lab) by way of the spectral modulation properties.

--25. (New) The process according to claim 22, wherein the step of modeling the answer of the image reproduction system model comprises the step of describing the adaptation of the dynamic range of the color densities reproducible in the image control data color space to the dynamic range of the color densities reproducible by the light modulators.--

--26. (New) The process according to claim 22, wherein the step of modeling the answer of the image reproduction system model comprises the step of describing an over expression at the light modulators, the over expression causing an overlapping of the spectral properties of the light modulators.--

--27. (New) The process according to claim 22, wherein the step of modeling the answer of the image reproduction system model comprises the step of describing an adaptation of the color tone range reproducible in the color space of the image control data to the color tone range reproducible by the light modulators.--

--28. (New) The process according to claim 22, wherein the light modulators are pigments and the light modulation values determine at least one factor selected from the group of the concentration, the amount and the spacial distribution of pigments for a given set of pigments used for the image reproduction...

--29. (New) The process according to claim 22, further comprising the step of relating the light modulation values with the modulation color values by considering the light incidence, based on at least one factor selected from the group of the absorption, transmission and reflection spectra of the light modulators, the emission properties of the illumination light source, and the modeled light modulation properties of a medium, which is part of the image reproduction system model and on or in which the light modulators are positioned.--

--30. (New) A software which, when running on a computer or loaded in a computer, initiates the computer to carry out the process according to claim 22.--

--31. (New) A storage medium for a computer program comprising the software according to claim 30.--

--32. (New) A printer or scanner, comprising a control device for carrying out the process according to claim 22.--

--33. (New) A photolab, comprising a control device for carrying out the process according to claim 22.--

--34. (New) A photolab, comprising a printer or scanner according to claim 32.--

--35. (New) The photolab according to claim 33, wherein the photolab is minilab or a large scale lab.--

--36. (New) The photolab according to claim 17, wherein the photolab is minilab or a large scale lab.--

--37. (New) The photolab according to claim 35, wherein the control device is a computer.--

--38. (New) The photolab according to claim 36, wherein the control device is a computer.--

-39. (New) A use of a model for an image reproducing system for the generation of photographic images in a process, an apparatus, a program, or a business model, wherein the photographic images are reproduced by light modulators which modulate the intensity and/or spectrum of the incident light and the light modulation values of which describe the light modulation by the light modulators and whereby the image reproducing system model determines the light modulation values of the light modulators in response to image control data, the model comprising the steps of:

generating a relationship between light modulation values (C_i) and the input image control data by modeling of the answer of the image reproducing system model to the input image control data; and

generating a relationship between the modulation color values of an image and the light modulation values (C_i) based on a modeled light incidence onto the light modulators.--

--40. (New) The use according to claim 20, wherein the model uses process steps according to claim 22.--

--41. (New) A process for modeling photographic image data which control the production of a given image by way of an image reproduction system model, wherein the image reproduction system model reproduces the image by way of light modulators which modulate the intensity and/or spectrum of the incident light according to light modulation values, wherein the image reproduction system model determines the light modulation values of the light modulators in response to image control data, the process comprising the steps of:

(a) calculating light modulation values (C_i) based on modulation color values which describe the color values of the image reproduced by the light modulators upon light falling onto the image; and

(b) based on the calculated light modulation values, calculating image control data corresponding to the image which lead to the production of the image by way of light modulators when they are input into the image reproducing system model, in that the modeled answer of the image reproducing system model to incoming image data is inverted.--

--42. (New) The process according to claim 41, wherein multiple types of light modulators are present, each type of light modulator having given spectral modulation properties; and

the process comprises the further step of determining the modulation strength, which is achieved in image portions by light modulators of one specific type, by way of the image reproducing system model, whereby the modulation strength depends on the image control data, which dependency is taken into consideration for the modeling of the answer of the image reproducing system model to the input image data.--

--43. (New) The process according to claim 42, wherein the light modulation values describe the modulation strength of the light modulators in the image regions; and

the process further comprises the step of relating the light modulation values (C_i) to the modulation color values (Lab) by way of the spectral modulation properties.

--44. (New) The process according to claim 41, wherein the step of modeling the answer of the image reproduction system model comprises the step of describing the adaptation of the dynamic range of the color densities reproducible in the image control data color space to the dynamic range of the color densities reproducible by the light modulators.--

--45. (New) The process according to claim 41, wherein the step of modeling the answer of the image reproduction system model comprises the step of describing an over expression at the light modulators, the over expression causing an overlapping of the spectral properties of the light modulators.--

--46. (New) The process according to claim 41, wherein the step of modeling the answer of the image reproduction system model comprises the step of describing an adaptation of the color tone range reproducible in the color space of the image control data to the color tone range reproducible by the light modulators.--

--47. (New) The process according to claim 41, wherein the light modulators are pigments and the light modulation values determine at least one factor selected from the group of the concentration, the amount and the spacial distribution of pigments for a given set of pigments used for the image reproduction.--

--48. (New) The process according to claim 41, further comprising the step of relating the light modulation values with the modulation color values by considering the light incidence, based on at least one factor selected from the group of the absorption, transmission and reflection spectra of the light modulators, the emission properties of the illumination light source, and the modeled light modulation properties of a medium, which is part of the image reproduction system model and on or in which the light modulators are positioned.--

--49. (New) The process for the modeling of photographic images comprising the steps of first carrying out the process according to claim 22 and then,

based on the modulation color values obtained, carrying out the process according to claim 41.--

--50. (New) The process according to claim 49, whereby an ideal image reproducing system model is used as the basis for the determination of the modulation color values with the process of claim 22, and another, real image reproducing system model is used as the basis for the calculation of the image data with the process of claim 41, wherein an ideal image reproducing system model the difference between the color values produced by the image control data of claim 22, and the modulation color values is smaller than in a real image reproducing system model, and the image control data of claim 41, are input into a real image reproducing system corresponding to the real image reproducing system model.--

--51. (New) A software which, when running on a computer or loaded in a computer, initiates the computer to carry out the process according to claim 41.--

--52. (New) A storage medium for a computer program comprising the software according to claim 51.--

--53. (New) A printer or scanner, comprising a control device for carrying out the process according to claim 41.--

--54. (New) The printer according to claim 32, whereby image control data calculated by use of the process according to claim 41, are input into the control device of the printer and the image reproducing system model mirrors the properties of the printer and the medium used by the printer.--

--55. (New) The printer according to claim 53, whereby image control data calculated by use of the process according to claim 41, are input into the control device of the printer and the image reproducing system model mirrors the properties of the printer and the medium used by the printer.--

--56. (New) A photolab, comprising a control device for carrying out the process according to claim 41.--

--57. (New) A photolab, comprising a printer or scanner according to claim 53.--

--58. (New) The photolab according to claim 56, wherein the photolab is minilab or a large scale lab.--

--59. (New) The photolab according to claim 58, wherein the control device is a computer.--

--60. (New) The use according to claim 39, wherein the model uses process steps according to claim 41.--

REMARKS

Claims 22 to 60 are in the case. Claims 1 to 21 were canceled and new claims 22 to 60 were added to remove multiple dependency in the claims. The claim amendments do not narrow the scope of any element. Favorable consideration of the application in view of the above amendments is hereby respectfully requested.

No fee is believed to be due for this amendment. Should any fee be required, please charge such fee to Deposit Account No. 16-1150.

Respectfully submitted,

Date: January 22, 2002

Charles E. Miller

24,576
(Reg. No.)

PENNIE & EDMONDS LLP
1155 Avenue of the Americas
New York, New York 10036-2711

(212) 790-9090