Optimization Theory and Applications

Kun Zhu (zhukun@nuaa.edu.cn)

January 2, 2019

General Constrained Problems

- \bullet So far we have considered only problems with equality constraints: h(x)=0
- We now consider problems that have inequality constraints: $\mathbf{g}(\mathbf{x}) < \mathbf{0}$, where $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^p$
- As before, we give necessary conditions for problems with equality and inequality constraints

Consider the problem

minimize
$$f(x)$$

subject to $g(x) \le 0$,

where
$$g(x) = [g_1(x), ..., g_p(x)]^T$$

- As usual, we assume $f, \mathbf{g} \in \mathcal{C}^1$
- A point **x** is feasible if $g_1(\mathbf{x}) \leq 0, \dots, g_p(\mathbf{x}) \leq 0$

- **Definition**: We say that the *j*th constraint $g_j \le 0$ is *active* at \mathbf{x}^* if $g_j(\mathbf{x}^*) = 0$. It is *inactive* if $g_j(\mathbf{x}^*) < 0$
- Note that if a constraint is inactive at x*, then it is inactive at all
 points in some neighborhood of x*. Hence, locally around x*, the
 inactive constraints can be "ignored"
- Define $J(\mathbf{x}^*) = \{j : g_j(\mathbf{x}^*) = 0\}$, the set of indices of constraints that are active
- **Definition**: A feasible point \mathbf{x}^* is *regular* if the vectors $\nabla g_j(\mathbf{x}^*), j \in \mathcal{J}(\mathbf{x}^*)$, are linearly independent

- Let x* be a local minimizer of the original problem (with inequality constraint) and regular
- Consider the optimization problem

minimize
$$f(x)$$

subject to $g_j(x) = 0, j \in J(x^*)$

- Note that x* is also a local minimizer for the above problem
- Therefore, the Lagrange conditions hold at x* for the above problem

• Hence, by the Lagrange Theorem, there exists $\mu_j^*, j \in \mathcal{J}(\mathbf{x}^*),$ such that

$$Df(\mathbf{x}^*) + \sum_{j \in \mathcal{J}(\mathbf{x}^*)} \mu_j^* Dg_j(\mathbf{x}^*) = \mathbf{0}^T$$

- Let us define $\mu_i^* = 0$ for $j \notin \mathcal{J}(\mathbf{x}^*)$ (i.e., all inactive j)
- Then, we can write the above condition as

$$Df(\mathbf{x}^*) + \mu^{*T}D\mathbf{g}(\mathbf{x}^*) = \mathbf{0}^T$$

where
$$\mu^* = [\mu_1^*, \dots, \mu_p^*]^T$$

Note that

$$\mu^{*T}\mathbf{g}(\mathbf{x}^*) = 0$$

since for each j, either $g_i(\mathbf{x}^*) = 0$ (active j) or $\mu_i^* = 0$ (inactive j)

- In other words, for all $j \notin \mathcal{J}(\mathbf{x}^*)$ (inactive), we have $\mu_i^* = 0$
- It turns out that we can say more about μ^* : every component of it is >0
- To see this, we only need to concentrate on those $j \in \mathcal{J}(\mathbf{x}^*)$, since the other μ_i^* are 0

We can illustrate the above fact using a picture

Illustration of the KKT Theorem

An example with multiple inequality constraints

- The constraint $g_3(\mathbf{x}) \leq 0$ is inactive
- By the KKT theorem, we have

$$\nabla f(\mathbf{x}^*) + \mu_1^* \nabla g_1(\mathbf{x}^*) + \mu_2^* \nabla g_2(\mathbf{x}^*) = \mathbf{0}$$

Illustration of the KKT Theorem

- We can see from the figure that $\nabla f(\mathbf{x}^*)$ must be a linear combination of the vectors $-\nabla g_1(\mathbf{x}^*)$ and $-\nabla g_2(\mathbf{x}^*)$ with positive coefficients
- This corresponds to

$$\nabla f(\mathbf{x}^*) = -\sum_{i \in \mathcal{J}(\mathbf{x}^*)} \mu_i^* \nabla g_i(\mathbf{x}^*)$$

where $\mu_i^* \geq 0$

Summary of The Special Case: KKT Theorem

Consider the problem

minimize
$$f(x)$$

subject to $g(x) \le 0$,

- *Karush-Kuhn-Tucker (KKT) Theorem* (for the special case): Suppose \mathbf{x}^* is a local minimizer and is regular. Then, there exists $\mu^* \in \mathbb{R}^p$ such that
 - Dual feasibility

$$\mu^* \geq 0$$

Optimality condition

$$Df(\mathbf{x}^*) + \mu^{*T}D\mathbf{g}(\mathbf{x}^*) = \mathbf{0}^T$$

• Complementary slackness condition

$$\mu^{*T}\mathbf{g}(\mathbf{x}^*) = 0$$

Primal feasibility condition

$$\mathbf{g}(\mathbf{x}^*) \leq 0$$

Summary of Special Case: Only Inequality Constraints

- The conditions are called KKT conditions (note that we usually include the constraints as part of the KKT conditions)
- The vector μ^* is called the KKT multiplier vector
- Note that for feasible x* and μ*

$$\mu^{*T}\mathbf{g}(\mathbf{x}^*) = 0 \iff \mu_i^*g_i(\mathbf{x}^*) = 0 \text{ for all } i = 1, \dots, p$$

 Actually, there is a more general version of the theorem, where we have both equality and inequality constraints (see later)

Consider the problem

minimize
$$x_1^2 + x_2^2 + x_1x_2 - 3x_1$$

subject to $x_1, x_2 \ge 0$,

- $f(\mathbf{x}) = x_1^2 + x_2^2 + x_1 x_2 3x_1$
- $g_1(\mathbf{x}) = -x_1, g_2(\mathbf{x}) = -x_2$
- The KKT conditions for the problem are

1.
$$\mu = [\mu_1, \mu_2]^T \geq 0$$
;

2.
$$Df(x) - \mu^T = 0^T$$
;

3.
$$\mu^T x = 0$$
.

4.
$$x \ge 0$$
.

Try it

We have

$$Df(\mathbf{x}) = [2x_1 + x_2 - 3, x_1 + 2x_2]$$

This gives

$$\begin{array}{rcl} 2x_1 + x_2 - \mu_1 & = & 3 \\ x_1 + 2x_2 - \mu_2 & = & 0 \\ \mu_1 x_1 + \mu_2 x_2 & = & 0 \\ \mu_1, \mu_2, x_1, x_2 & \geq & 0. \end{array}$$

- We now have four variables, three equations, and the inequality constraints on each variable
- Try to solve it (hint: consider points making the constraints active)

- To find a solution for \mathbf{x}^* , μ^* , we first try $x_1^*=0$ and $x_2^*=0$, and notice that it is impossible. Why?
- Then we try $x_1^* = 0$
 - By the first equation, we must have $x_2^* > 0$. Thus, $\mu_2^* = 0$
 - · Solving the equations we obtain

$$x_2^* = 0, \quad \mu_1^* = -3$$

which is not valid

- Next, we try $x_2^* = 0$, which then implies $\mu_1^* = 0$
 - Solving the equations, we obtain

$$x_1^* = \frac{3}{2} \quad \mu_2^* = \frac{3}{2}$$

which is a valid solution to the KKT conditions

- What about the case $x_1^* > 0$ and $x_2^* > 0$?
- Note that, to solve conditions that have inequalities, we have to try solutions that are at the boundary (active constraints)

- We can easily modify the KKT conditions to problems with maximization or inequality constraints of the form $\mathbf{g}(\mathbf{x}) \geq 0$
- In the case of maximization, either we change the sign f, or we can change the sign of μ^*
- Similarly, in the case of constraints of the form $\mathbf{g}(\mathbf{x}) \geq 0$, either we change the sign \mathbf{g} , or we can change the sign of μ^*

Specifically, consider the problem

maximize
$$f(x)$$

subject to $g(x) \le 0$.

The KKT conditions for the above problem are

1.
$$\mu^* < 0$$

2.
$$Df(x^*) + \mu^{*T} Dg(x^*) = 0^T$$

3.
$$\mu^{*T}g(x^*) = 0$$

4.
$$g(x^*) \leq 0$$

• The only difference is the sign of μ^*

Similarly, for the problem

minimize
$$f(x)$$

subject to $g(x) \ge 0$,

The KKT conditions for the above problem are

1.
$$\mu^* < 0$$

2.
$$Df(x^*) + \mu^{*T} Dg(x^*) = 0^T$$

3.
$$\mu^{*T} g(x^*) = 0$$

4.
$$g(x^*) \geq 0$$

• Question: what if we have both maximization and $g(x) \ge 0$?

• If we have both maximization and $\mathbf{g}(\mathbf{x}) \geq 0$, then the KKT conditions are the same as the original (standard) case (except for the constraint).

• Example: In the following figure, the two points \mathbf{x}_1 and \mathbf{x}_2 are feasible points, that is $g(\mathbf{x}_1) \geq 0$ and $g(\mathbf{x}_2) \geq 0$, and they satisfy the KKT condition

 x_1 is a maximizer and x_2 is a minimizer

The point x₁ is a maximizer. The KKT condition for this point is

1.
$$\mu_1 \ge 0$$
.

2.
$$\nabla f(x_1) + \mu_1 \nabla g(x_1) = 0$$
.

3.
$$\mu_1 g(x_1) = 0$$
.

4.
$$g(x_1) \ge 0$$
.

• The point x_2 is a minimizer. The KKT condition for this point is

1.
$$\mu_2 \leq 0$$
.

2.
$$\nabla f(x_2) + \mu_2 \nabla g(x_2) = 0$$
.

3.
$$\mu_2 g(x_2) = 0$$
.

4.
$$g(x_2) \ge 0$$
.

Consider the optimization problem

minimize
$$f(x)$$

subject to $h(x) = 0$,
 $g(x) \le 0$,

where
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$, $m \leq n$, and $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^p$

Our goal is to derive necessary conditions for the above general problem

Definition: a feasible point x* is regular if the vectors

$$\nabla h_i(\mathbf{x}^*), i = 1, \dots, m, \nabla g_j(\mathbf{x}^*), j \in \mathcal{J}(\mathbf{x}^*)$$

are linearly independent

- By convention we consider every equality constraint $h_i = 0$ to be active
- Hence, regularity means the gradients of all active constraint functions are linearly independent

• **Theorem**: suppose \mathbf{x}^* is a local minimizer and is regular. Then, there exists $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that

1.
$$\mu^* \ge 0$$

2. $Df(x^*) + \lambda^{*T} Dh(x^*) + \mu^{*T} Da(x^*) = 0^T$

3.
$$\mu^{*T}g(x^*) = 0$$

4.
$$h(x^*) = 0$$

5.
$$g(x^*) \leq 0$$
.

• The difference between the above KKT conditions and the previous one (with no equality constraints) is that we need to incorporate the Lagrange multiplier vector λ^*

- The idea behind the proof of the general KKT theorem is the same as what we have seen for the special case with no equality constraints
- Basically, the proof involves applying the Lagrange theorem to the associated problem with only equality constraints involving active constraints at x*

minimize
$$f(x)$$

subject to $h(x) = 0$
 $g_j(x) = 0, j \in J(x^*),$

and, as before, we have $\mu^* \geq 0$ and $\mu^{*T} \mathbf{g}(\mathbf{x}^*) = 0$

- Bank interest paid monthly at rate r > 0
- We wish to deposit some money into the bank every month for n months, such that the total is D dollars
- Goal: maximize the total amount of money accumulated at the end of n months
- Let x_i be amount deposited in beginning of ith month
- Optimization problem:

maximize
$$(1+r)^n x_1 + (1+r)^{n-1} x_2 + \dots + (1+r) x_n$$
 subject to
$$x_1 + \dots + x_n = D$$

$$x_1, \dots, x_n \ge 0$$

Write

$$f(x) = -((1+r)^n x_1 + (1+r)^{n-1} x_2 + \dots + (1+r) x_n)$$

$$h(x) = x_1 + \dots + x_n - D$$

$$g(x) = -[x_1, \dots, x_n]^T = -x.$$

We have

$$Df(x) = -[(1+r)^n, (1+r)^{n-1}, \dots, (1+r)]$$

$$Dh(x) = [1, 1, \dots, 1]$$

$$Dg(x) = -I_n.$$

The KKT conditions are

$$\mu_{1}, \dots, \mu_{n} \geq 0$$

$$-(1+r)^{n-i+1} + \lambda - \mu_{i} = 0, i = 1, \dots, n$$

$$\mu_{1}x_{1} + \dots + \mu_{n}x_{n} = 0$$

$$x_{1} + \dots + x_{n} = D$$

$$x_{1}, \dots, x_{n} \geq 0.$$

• Suppose that $x_1^* > 0$. Then $\mu_1^* = 0$, and so we have

$$\begin{array}{lcl} \lambda^* & = & (1+r)^n, \\ \mu_i^* & = & (1+r)^n - (1+r)^{n-i+1} > 0, \ i=2,\ldots,n, \\ x_1^* & = & D, \ x_i^* = 0, \ i=2,\ldots,n. \end{array}$$

- The previous solution corresponds to depositing D dollars in the first month
- Are there any other solutions?
- Suppose $x_i^* > 0, i \neq 1$ (hence $\mu_i^* = 0$). We then conclude that

$$\lambda^* = (1+r)^{n-i+1},$$

 $\mu^*_{i-1} = (1+r)^{n-i+1} - (1+r)^{n-i+2} < 0,$

which is clearly not valid

· Hence, there are no other solutions

We consider the optimization problem

minimize
$$-\sum_{i=1}^{n} \log(\alpha_i + x_i)$$

subject to $x \succeq 0$, $\mathbf{1}^T x = 1$,

where $\alpha_i > 0$

- This problem arises in information theory, in allocating power to a set of n communication channels
- The variable x_i represents the transmit power allocated to the ith channel
- $\log(\alpha_i + x_i)$ gives the capacity or communication rate of the channel
- So the problem is to allocate a total power of one to the channels, in order to maximize the total communication rate

- Introducing Lagrange multipliers $\lambda^* \in \mathbb{R}^n$ for the inequality constraints $\mathbf{x}^* \geq 0$, and a multiplier $v^* \in \mathbb{R}$ for the equality constraint $\mathbf{1}^T \mathbf{x} = 1$
- We obtain the KKT conditions
 - Optimality condition

$$-\frac{1}{(\alpha_i + x_i^*)} - \lambda_i^* + v^* = 0, \quad i = 1, \dots, n$$

Primal feasibility conditions

$$\mathbf{x}^* \ge 0$$
$$\mathbf{1}^T \mathbf{x}^* = 1$$

Complementary slackness conditions

$$\lambda_i^* x_i^* = 0, i = 1, \dots, n$$
$$\lambda^* > 0$$

 We start by noting that λ* acts as a slack variable, the KKT conditions can be restated as

$$\mathbf{x}^* \ge 0$$
 $\mathbf{1}^T \mathbf{x}^* = 1$
 $x_i^* (v^* - \frac{1}{\alpha_i + x_i^*}) = 0, \quad i = 1, \dots, n$
 $v^* \ge \frac{1}{\alpha_i + x_i^*}, \quad i = 1, \dots, n$

• If $v^* < \frac{1}{\alpha_i}$, the last condition can only hold if $\mathbf{x}^* > 0$, which by the third condition implies that

$$v^* = \frac{1}{\alpha_i + x_i^*}$$

• Solving for x_i^* , we obtain that

$$x_i^* = \frac{1}{v^*} - \alpha_i$$

• If $v^* \geq \frac{1}{\alpha_i}$, then $x_i^* > 0$ is impossible, because it would imply

$$v^* \ge \frac{1}{\alpha_i} > \frac{1}{\alpha_i + x_i^*}$$

which violates the complementary slackness condition

• Therefore, $x_i^* = 0$ if $v^* \ge \frac{1}{\alpha_i}$. Thus we have

$$x_i^{\star} = \begin{cases} 1/\nu^{\star} - \alpha_i & \nu^{\star} < 1/\alpha_i \\ 0 & \nu^{\star} \ge 1/\alpha_i, \end{cases}$$

- More simply, $x_i^* = \max\{0, 1/v^* \alpha_i\} = [1/v^* \alpha_i]^+$
- This is the famous water-filling power allocation

- We think of α_i as the ground level above patch i, then flood the region with water to a depth 1/v
- The total amount of water used is then $\sum_{i=1}^{n} \max\{0, 1/v^* \alpha_i\}$
- We then increase the flood level until we have used a total amount of water equal to one
- The depth of water above patch i is the optimal value x_i

- Now the problem becomes finding the water level
- Substituting this expression for x_i^* into the condition $\mathbf{1}^T x^* = 1$, we obtain

$$\sum_{i=1}^{n} \max\{0, 1/\nu^{*} - \alpha_{i}\} = 1.$$

 A sample algorithm for obtaining the water level is described as follows

Algorithm 1 Algorithm for obtaining the water level

- Initially, for each player k, sets the indicators of all channels to be 1 which assumes all subchannels
 to be active. Then calculates the water level.
- 2. For all active subchannels, if there exists $1/\mu_k IN_k(n) < 0$, set the indicator of the channel with smallest $1/\mu_k IN_k(n)$ to be 0 (i.e., inactive).
- 3. Calculates the new water level.
- 4. The steps from 2 to 3 are repeated until $1/\mu_k IN_k(n) \ge 0$ for all active subchannels.