Bu Rapor, _ //2013 tarihinde aşağıda üye adları yazılı jüri tarafından kabul edilmiştir.					
Ünvan	Adı Soyadı	İmza			

ÖZ

ÇOK AMAÇLI ELEKTRONİK METRE

Dağcılık, yürüyüş, koşu gibi sporları yapan insanlar sıcaklık, nem, açık hava basıncı gibi parametrelere ihtiyaç duyar. Bu projede ihtiyaçlara cevap verecek tüm fonksiyonları bir arada bulunan elektronik metre tasarımı çalışılmıştır.

Elektronik metre geliştirilme aşamasında Arduino platform, DHT22 sıcaklık ve nem sensörü, BMP085 basınç sensörü ve DS1307 gerçek zaman entegresinden kullanılmak suretiyle tasarım yapılmıştır. Arduino platformun seçilme nedeni uygun fiyatı ve yazılım kolaylığıdır. Çalışma aşamasında sıcaklık, nem ve basınç sensörleri incelenmiş ve en uygun olanları seçilmiştir.

Arduino platform programlamada IDE teknolojisi adı verilen bir yazılım kullanılmaktadır. Bu yöntem ile az sayıda ve basit komutlarla, hızlı ve esnek bir programlama kabiliyeti sağlanır.

Volkan Erkan

Başkent Üniversitesi Mühendislik Fakültesi Elektrik – Elektronik Mühendisliği 2013

Danışman: Dr. Murat Üçüncü

Bu doküman 37 sayfadan ibarettir.

ABSTRACT

MULTI-PURPOSE ELECTRONIC METER

People who does sports like mountain climbing, hiking, running needs to know parameters like time, temperature, humidity, air pressure. In this project we tried to design an electronic meters including a combination of all of the functions.

The stages of development of electronic meter above design included using Arduino platform, DHT22 temperature and humidity sensor, BMP085 pressure sensor and DS1307 real time clock integrated circuit. The reason for choosing the Arduino platform is its affordability, and ease of software planning. Temperature, humidity and pressure sensors were examined and the most appropriate ones where selected in the design.

IDE programming technology is used for programming the Arduino platforms. With this method, fast and flexible programming capability is provided with simple and small number of commands.

Volkan Erkan

Baskent University Faculty of Engineering Electrical – Electronics Engineering 2013

Advisor: Dr. Murat Üçüncü

This document consists of 37 pages.

İÇİNDEKİLER

ÖZ		ii
	RACT	iii
İÇİND	EKİLER	İ۷
ŞEKİL	LER DİZİNİ	٧
	GELER DİZİNİ	νi
SIMG	ELER DİZİNİ	vii
1.	GIRIŞ	1
1.1	Projenin Amacı	1
1.2	Projenin Kapsamı	1
1.3	Projenin Tasarımı	2
1.3.1	Proje Tasarımında Kullanılacak Temel Birimler	2
1.4	Proje Maliyeti	3
1.5	Proje Uygulama Takvimi	3
1.6	Proje Şeması	5
2.	ARDUÍNO	6
2.1	Arduino Özellikleri	6
2.1.1	Arduino Temel Kavramları	7
2.1.2	Arduino Çeşitleri	8
2.2	Arduino UNO	10
2.2.1	Arduino UNO Özellikleri	12
2.3	Arduino Programlama Dili	16
3.	SICAKLIK ve NEM ÖLÇÜMLERİ	18
3.1	Sıcaklık Ölçümü	18
3.1.1	Ölçüm Metotları	18
3.2	Nem Ölçümü	19
3.2.1	Ölçüm Metotları	19
3.3	DHT22 Sıcaklık Ve Nem Sensörü	20
3.3.1	Sensör Özellikleri	20
3.3.2	İşlem Özellikleri	21
3.3.3	Árduino UNO & DHT22	22
4.	Basınç	24
4.1	Ölçüm Metotları	24
4.2	BMP085 Basınç Sensörü	24
4.2.1	Sensör Özellikleri	25
4.2.2	BMP085 & Arduino UNO	26
5.	GERÇEK ZAMANLI SAAT TÜMLEŞİK DEVRESİ	28
5.1	DS1307	28
5.2	Donanım Özellikleri	28
5.3	DS1307 & Arduino UNO	30
6.	LCD	31
6.1	LCD & Arduino	31
7.	KAYNAKÇA	32
EK – ′	1: KOD	33

ŞEKİLLER DİZİNİ

Şekil 1.1	Projede Kullanılacak Temel Birimler	2
Şekil 1.2	Proje Akış Şeması	5
Şekil 2.1	Arduino Mega – Uno – Nano – Mini – LilyPad	9
Şekil 2.2	ATmega328w Pin Diyagramı	10
Şekil 2.3	ATmega328w Blok Diyagramı	11
Şekil 2.4	Arduino Uno Pinler ve Birimler	12
Şekil 2.5	ATmega328w Bellek Organizaasyonu	14
Şekil 2.6	Arduino UNO Pin Diagramı	15
Şekil 2.7	Arduino Yazılım Programı (IDE)	17
Şekil 3.1	Nem Ölçüm Tipleri	19
Şekil 3.2	DHT22 Sıcaklık ve Nem Modülü	20
Şekil 3.3	Küçük Boyut DHT22 Modülü	21
Şekil 3.4	Arduino UNO & DHT22 Bağlantısı	23
Şekil 4.1	BMP085 Basınç Sensörü	25
Şekil 4.2	BMP085 Pin Tanımlamaları	26
Şekil 4.3	BMP085 & Arduino	27
Şekil 5.1	DS1307	28
Şekil 5.2	DS1307 Blok Diyagram	29
Şekil 5.3	DS1307 & Arduino UNO	30
Şekil 6.1	LCD & Arduino	31

ÇİZELGELER DİZİNİ

Çizelge 1.1	Proje Maliyet Tablosu	3
Çizelge 1.2	Proje Uygulama Takvimi	3
Çizelge 2.1	Arduino UNO özellikleri	3
Çizelge 3.1	DHT22 Özellikleri	19
Çizelge 3.2	DHT22 Pinler	21
Çizelge 3.3	DHT22 & Arduino UNO Bağlantıları	22
Çizelge 4.1	BMP085 Basınç sensörü Özellikleri	25
Çizelge 4.2	BMP085 & Arduino	27
Çizelge 5.1	DS1307 Özellikleri	28
Çizelge 5.2	DS1307 & Arduino UNO	30
Çizelge 6.1	Arduino & LCD	31

SIMGELER DIZINI

C_{I/O} Pin Kapasite (SDA, SCL)

f_{SCL} Çalışma Frekansı/SCL Saat Frekansı

I_{LI} SCL Giriş Sızıntısı I_{LO} SDA, SQW I/O Sızıntısı

IPEAK Peak akımı
P Ölçülen Basınç

Po Deniz Seviyesi Açık hava Basıncı

T_A Çalışma Sıcaklığı V_{BAT} Batarya Voltajı V_{DD}/V_{CC} Besleme Gerilimi