18.303 Problem Set 3

Due Wednesday, 29 September 2010.

Problem 1: Diffusion equation

For this problem, you will be solving the diffusion equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ for $x \in [0, L]$ with Neumann boundary conditions u'(0) = u'(L) = 0 and an initial condition u(x, 0) = f(x). Physically, u(x, t) could represent, for example, the concentration (mass per unit volume) of salt dissolved in water along a straw of length L (neglecting diffusion \bot to the straw), with f(x) being the initial concentration. For simplicity, take L = 1.

Recall that, in pset 1, you found that the eigenfunctions of d^2/dx^2 with these boundary conditions are $\cos(n\pi x/L)$ for $n=0,1,2,\ldots$ with eigenvalues $\lambda_n=-(n\pi/L)^2$. Hence, it is natural to write f(x) as a cosine series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x/L),$$

where $a_n = \frac{2}{L} \int_0^L f(x) \cos(n\pi x/L) dx$ due to orthogonality. The Matlab file cosines.m, posted on the web page, provides a function cosines(x, L, a) to do this summation for a given vector a of the coefficients a_n .

- (a) Suppose f(x) has Fourier coefficients $a_n = \cos(n\pi/2)$ for n = 0, 1, 2, ..., N. Plot this function for N = 10, 100, and 1000 versus x. You can use the commands: L=1; x=linspace(0,L,10000); plot(x, cosines(x, L, cos([0:N]*pi/2)) to do the plot for each N (setting N=10 etcetera first).
- (b) You should be able to answer the following questions with pen and paper: How does the total initial solute mass $\int_0^L f(x)dx$ depend on N? What is f(L/2) as a function of N? What does the answer to the previous two questions tell you about the width of the peak shape that you observed in the previous part, as a function of N?
- (c) From class, u(x,t) is given by the same series as f(x), except that a_n is multiplied by $e^{\lambda_n t}$. In Matlab, you use the commands: L=1; x=linspace(0,L,10000); plot(x, cosines(x, L, cos([0:N]*pi/2) .* exp(-([0:N]*pi/L).^2 * t))) to plot u(x,t) for a given t. Do this plot for t = 0.0001, t = 0.001, t = 0.01, t = 0.1, and t = 1. (You can type hold on between plots in order to superimpose multiple plots, which might be useful for the last 3 plots where the scales are similar.) Describe physically what is happening.
- (d) Check that mass is conserved: compute $\int_0^L u(x,t)dx$ approximately for a few values of t via a summation: sum(cosines(x, L, cos([0:N]*pi/2) .* exp(-([0:N]*pi/L).^2 * t))) * x(2). The result should equal your answer for $\int f(x)dx$ from above.

Problem 2: Finite differences and boundary conditions

In class, we considered d^2/dx^2 for $x \in [0, L]$ and Dirichlet boundary conditions u(0) = u(L) = 0. We approximated u(x) by its values $u_m \approx u(m\Delta x)$ on a grid of M points, with $\Delta x = L/(M+1)$ and $u_0 = u_{M+1} = 0$. We then approximated d^2/dx^2 in two center-difference steps: first, we approximated d/dx by $u'_{m+1/2} \approx (u_{m+1} - u_m)/\Delta x$; then, we approximated d^2/dx^2 by $u''_m \approx (u'_{m+1/2} - u'_{m-1/2})/\Delta x$. This gave us the wonderful discrete Laplacian matrix A (with 1, -2, 1 on the diagonals), which we could also write as $A = -D^T D/\Delta x^2$ for the D matrix given in class (and computed by the diff1.m file from pset 2). Now, in this problem we will do the same thing for the Neumann boundary conditions u'(0) = u'(L) = 0.

- (a) Find the Neumann discrete Laplacian matrix \tilde{A} . Use the same center-difference steps that we used to find A in class, except now impose the boundary condition $u'_{1/2} = u'_{M+1/2} = 0$ to approximate the Neumann condition.
- (b) Show that $\tilde{A} = -\tilde{D}^T \tilde{D}/\Delta x^2$ for a matrix \tilde{D} that can be obtained from D just by deleting rows and/or columns. Modify the diff1.m file to compute \tilde{D} instead of D, making a new file diff1n.m. [For example, given a matrix M, in Matlab you can make a submatrix of rows 3 to 5 and columns 8 to 17 by M(3:5, 8:17), or columns 8 to 17 and all the rows by M(:, 8:17).]
- (c) One of the nice theorems from 18.06 was that, for matrices of the form $\tilde{A} = \alpha \tilde{D}^T \tilde{D}$ for $\alpha \neq 0$, $\operatorname{rank}(\tilde{A}) = \operatorname{rank}(\tilde{D}) = \operatorname{rank}(\tilde{D}^T)$. By inspection of either \tilde{D} or \tilde{D}^T , say what the rank of \tilde{A} is and the dimension of the nullspace $N(\tilde{A})$. Give a basis for the nullspace of \tilde{A} . (This should be all possible by inspection, little computation required!) Compare to the nullspace of d^2/dx^2 with these boundary conditions, from pset 1.
- (d) Using Matlab code similar to problem 3 of pset 2, compute the eigenvalues and eigenvectors of \tilde{A} , and compare the solutions with the smallest three $|\lambda|$ to the corresponding exact eigensolutions for d^2/dx^2 with these boundary conditions. Roughly how fast does the error in $\lambda_1 \approx -(\pi/L)^2$ decrease with Δx ? This is because $u'_{1/2}$ is a ______ difference approximation for u'(0) and $u'_{M+1/2}$ is a ______ difference approximation for u'(L).
- (e) The distance from the $u'_{1/2}$ to $u'_{M+1/2}$ grid points is $L \Delta x$, not L. Fix this by changing Δx to $\Delta x = L/M$. With this new Δx , roughly how fast does the error in $\lambda_1 = -(\pi/L)^2$ decrease with Δx ?

Problem 3: Bessel, Bessel, toil and mess...el

In class, we solved for the eigenfunctions of ∇^2 in two dimensions, in a cylindrical region $r \in [0, R]$, $\theta \in [0, 2\pi]$ using separation of variables, and obtained Bessel's equation and Bessel-function solutions. Although Bessel's equation has two solutions $J_m(kr)$ and $Y_m(kr)$ (the Bessel functions), the second solution (Y_m) blows up as $r \to 0$ and so for that problem we could only have $J_m(kr)$ solutions (although we still needed to solve a transcendental equation to obtain k).

In this problem, you will solve for the 2d eigenfunctions of ∇^2 in an annular region Ω that does not contain the origin, as depicted schematically in Fig. 1, between radii R_1 and R_2 , so that you will need both the J_m and Y_m solutions. We will impose Dirichlet boundary conditions $u|_{d\Omega}=0$; i.e. for a function $u(r,\theta)$ in cylindrical coordinates, $u(R_1,\theta)=u(R_2,\theta)=0$. Exactly as in class, the separation of variables ansatz $u(r,\theta)=\rho(r)\tau(\theta)$ leads to functions $\tau(\theta)$ spanned by $\sin(m\theta)$ and $\cos(m\theta)$ for integers m, and functions $\rho(r)$ that satisfy Bessel's equation. Thus, the eigenfunctions are of the form:

$$u(r,\theta) = \left[\alpha J_m(kr) + \beta Y_m(kr)\right] \times \left[A\cos(m\theta) + B\sin(m\theta)\right]$$

for arbitrary constants A and B, for integers m = 0, 1, 2, ..., and for constants α , β , and k to be determined.

(a) Using the boundary conditions, write down two equations for α , β and k, of the form $E\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = 0$ for some 2×2 matrix E. This only has a solution when $\det E = 0$, and from this fact obtain a single equation for k of the form $f_m(k) = 0$ for some function f_m that depends on m. This is a transcendental equation; you can't solve it by hand for k. In terms of k (which is still unknown), write down a possible expression for α and β , i.e. a basis for N(E).

Figure 1: Schematic of the domain Ω for problem 3: an annular region in two dimensions, with radii $r \in [R_1, R_2]$ and angles $\theta \in [0, 2\pi]$.

- (b) Assuming $R_1 = 1$, $R_2 = 2$, plot your function $f_m(k)$ versus $k \in [0, 20]$ for m = 0, 1, 2. Note that Matlab provides the Bessel functions built-in: $J_m(x)$ is besselj(m,x) and $Y_m(x)$ is bessely(m,x). You can plot a function with the fplot command. For example, to plot $J_m(k) \cdot Y_m(3k)$ as a blue line, you would do fplot(@(k) besselj(m, k) .* bessely(m, 3*k), [0,20], 'b'), assuming you have assigned m to a value. [@(k) ____ defines a function of k.] It might be helpful to use hold on between plots so that you can plot f_0 , f_1 , and f_2 on the same plot (labelled, of course).
- (c) For m=0, find the first three (smallest k>0) solutions k_1 , k_2 , and k_3 to $f_0(k)=0$. Get a rough estimate first from your graph (zooming if necessary), and then get an accurate answer by calling the fzero function (Matlab's nonlinear root-finding function). For example, to find a root of $\cos(x)-x$ near x=1, you would call fzero($\mathfrak{Q}(x)$ cos($\mathfrak{x})$ \mathfrak{x} , 1) in Matlab. Plot the corresponding functions $\alpha J_0(kr)+\beta Y_0(kr)$.
- (d) Because ∇^2 is real-symmetric, we know that the eigenfunctions must be orthogonal. From class, this implies that the radial parts must also be orthogonal when integrated via $\int r \, dr$. Check that your Bessel solutions for k_1 and k_2 are indeed orthogonal, by numerically integrating them via the quad1 function in Matlab. In particular, if you have assigned your α, β, k solutions to variables a1,b1,k1 and a2,b2,k2 in Matlab, then the integral for $r \in [1,2]$ is given to at least six digits of accuracy by quad1(@(r) (a1*besselj(0,k1*r) + b1*bessely(0,k1*r)) .* (a2*besselj(0,k2*r) + b2*bessely(0,k2*r)) .* r, 1,2, 1e-6) in Matlab.