SIMULATION IN SIMULINK

Bruce A. Desmarais

Odum Institute for Research in Social Science

February 14, 2009

Who am I?

Who am I?

Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

What will we cover?

■ Basic System design and Simulation in Simulink

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

- Basic System design and Simulation in Simulink
- Manipulation of Simulink Model files

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

- Basic System design and Simulation in Simulink
- Manipulation of Simulink Model files
- Simulink Interface with Matlab

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

- Basic System design and Simulation in Simulink
- Manipulation of Simulink Model files
- Simulink Interface with Matlab
- Examples

What is Simulink?

 Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
- Integrated with MATLAB

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
- Integrated with MATLAB
- Combines intuitive graphical-user interface with excellent speed and storage capabilities

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
- Integrated with MATLAB
- Combines intuitive graphical-user interface with excellent speed and storage capabilities
- Is free to you!! (or included in tuition; however you want to look at it)

Open Matlab

- Open Matlab
- Type simulink

- Open Matlab
- Type simulink
- Simulink library browser pops up

- Open Matlab
- Type simulink
- Simulink library browser pops up
- Start a new model file Crt1 + N

- Open Matlab
- Type simulink
- Simulink library browser pops up
- Start a new model file Crt1 + N
- The blank file is where model will be built..save it

- Open Matlab
- Type simulink
- Simulink library browser pops up
- Start a new model file Crt1 + N
- The blank file is where model will be built..save it
- Libraries contain building blocks

Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

Sources: Used to generate signals

- Sources: Used to generate signals
- Sinks: Used to output

- Sources: Used to generate signals
- Sinks: Used to output
- Discrete: Linear, discrete-time system elements (transfer-functions)

- Sources: Used to generate signals
- Sinks: Used to output
- Discrete: Linear, discrete-time system elements (transfer-functions)
- Nonlinear: Arbitrary nonlinear operators

- Sources: Used to generate signals
- Sinks: Used to output
- Discrete: Linear, discrete-time system elements (transfer-functions)
- Nonlinear: Arbitrary nonlinear operators
- Connections: Multiplex, Demultiplex

- Sources: Used to generate signals
- Sinks: Used to output
- Discrete: Linear, discrete-time system elements (transfer-functions)
- Nonlinear: Arbitrary nonlinear operators
- Connections: Multiplex, Demultiplex

Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- Sources: Used to generate signals
- Sinks: Used to output
- Discrete: Linear, discrete-time system elements (transfer-functions)
- Nonlinear: Arbitrary nonlinear operators
- Connections: Multiplex, Demultiplex

Blocks have input and output terminals indicated by wedges pointing towards and away from the block respectively. Lines transmit signals from input to output.

■ Click on Source

- Click on Source
- Drag the radnom box into the left of the model

- Click on Source
- Drag the radnom box into the left of the model
- Produces a gaussian signal with set parameters.

- Click on Source
- Drag the radnom box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined

- Click on Source
- Drag the radnom box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined
- Drag the Matlab Fcn into the model

- Click on Source
- Drag the radnom box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined
- Drag the Matlab Fcn into the model
- Return to library main, click on Sinks

- Click on Source
- Drag the radnom box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined
- Drag the Matlab Fcn into the model
- Return to library main, click on Sinks
- Drag Scope into the model, connect all

■ Blocks have many sorts of parameters

- Blocks have many sorts of parameters
- To set a block's parameters, right-click on a block and select the parameters option

- Blocks have many sorts of parameters
- To set a block's parameters, right-click on a block and select the parameters option
- Our gaussian signal has mean and variance and seed parameters.
 Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng's

- Blocks have many sorts of parameters
- To set a block's parameters, right-click on a block and select the parameters option
- Our gaussian signal has mean and variance and seed parameters. Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng's
- The Matlab Function takes a function as a parameter with vector-valued argument u. Lets set it to sin(u) + 1.

- Blocks have many sorts of parameters
- To set a block's parameters, right-click on a block and select the parameters option
- Our gaussian signal has mean and variance and seed parameters.
 Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng's
- The Matlab Function takes a function as a parameter with vector-valued argument u. Lets set it to sin(u) + 1.
- Time arguments tell blocks 'when' to act during a simulation

- Blocks have many sorts of parameters
- To set a block's parameters, right-click on a block and select the parameters option
- Our gaussian signal has mean and variance and seed parameters.
 Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng's
- The Matlab Function takes a function as a parameter with vector-valued argument u. Lets set it to sin(u) + 1.
- Time arguments tell blocks 'when' to act during a simulation
- The scope box

1 Open a useful monitor of the simulation by double clicking on the scope box

- Open a useful monitor of the simulation by double clicking on the scope box
- 2 Now lets run the simulation...

- Open a useful monitor of the simulation by double clicking on the scope box
- Now lets run the simulation...
- 3 First set the simulation parameters typing Ctrl + E

- Open a useful monitor of the simulation by double clicking on the scope box
- 2 Now lets run the simulation...
- 3 First set the simulation parameters typing Ctrl + E
- Many options; lets set the time from 0 to 25

- Open a useful monitor of the simulation by double clicking on the scope box
- 2 Now lets run the simulation...
- 3 First set the simulation parameters typing Ctrl + E
- Many options; lets set the time from 0 to 25
- 5 Now click on Simulation, Start

1 We often want the simulation data in Matlab

- 1 We often want the simulation data in Matlab
- 2 Go to the library main, click on sinks

- We often want the simulation data in Matlab
- 2 Go to the library main, click on sinks
- 3 Drag simout into the model and connect before scope

- 1 We often want the simulation data in Matlab
- 2 Go to the library main, click on sinks
- 3 Drag simout into the model and connect before scope
- 4 Right click and call the object output

- We often want the simulation data in Matlab
- 2 Go to the library main, click on sinks
- 3 Drag simout into the model and connect before scope
- 4 Right click and call the object output
- 5 Returns a matlab structure...run the sim and lets take a look

■ Suppose we want to get the signal at different points in the simulation

- Suppose we want to get the signal at different points in the simulation
- 2 Drag another simout onto the screen

- Suppose we want to get the signal at different points in the simulation
- 2 Drag another simout onto the screen
- 3 Lets grab the original gaussian signal

- Suppose we want to get the signal at different points in the simulation
- 2 Drag another simout onto the screen
- 3 Lets grab the original gaussian signal
- Mame the second simout output

- Suppose we want to get the signal at different points in the simulation
- 2 Drag another simout onto the screen
- Lets grab the original gaussian signal
- Mame the second simout output
- **Solution** Connect to the line between the signal and the function..run the simulation

■ The best way to assure your simulated data is not lost is to save it immediately

- The best way to assure your simulated data is not lost is to save it immediately
- 2 Go into sinks again and select a untitled.mat file.

- The best way to assure your simulated data is not lost is to save it immediately
- 2 Go into sinks again and select a untitled.mat file.
- Right click to set file extension...will write to working directory if no extension is provided

- The best way to assure your simulated data is not lost is to save it immediately
- 2 Go into sinks again and select a untitled.mat file.
- Right click to set file extension...will write to working directory if no extension is provided
- The signal can be saved in different times along the model path

- The best way to assure your simulated data is not lost is to save it immediately
- 2 Go into sinks again and select a untitled.mat file.
- Right click to set file extension...will write to working directory if no extension is provided
- The signal can be saved in different times along the model path
- Somewhat inconvenient, every time you want a new position on the path, you need a new file.

USING DATA FROM MATLAB WORKSPACE I

USING DATA FROM MATLAB WORKSPACE I

There are many reasons we could want to use data from the matlab workspace

■ We may want to use data in memory rather than generate it

USING DATA FROM MATLAB WORKSPACE I

- We may want to use data in memory rather than generate it
- 2 It may be useful to use real-world data in the model.

Using Data From Matlab Workspace I

- I We may want to use data in memory rather than generate it
- 2 It may be useful to use real-world data in the model.
- It may be difficult to use specific generators/rng streams in the simulation

Using Data From Matlab Workspace I

- We may want to use data in memory rather than generate it
- 2 It may be useful to use real-world data in the model.
- It may be difficult to use specific generators/rng streams in the simulation
- We could use the inputs/outputs of previous simulations as inputs to the current simulation

USING DATA FROM MATLAB WORKSPACE II

All of the objects in the workspace are available

USING DATA FROM MATLAB WORKSPACE II

All of the objects in the workspace are available

First, lets put something in the workspace, issue the command x = [1:100; rand(1,100)],

USING DATA FROM MATLAB WORKSPACE II

- First, lets put something in the workspace, issue the command x = [1:100; rand(1,100)]'
- Creates a 100x2 matrix with the first column indicating the time stamp

- First, lets put something in the workspace, issue the command x = [1:100; rand(1,100)]'
- Creates a 100x2 matrix with the first column indicating the time stamp
- 3 Right Click and delete the random generator

- First, lets put something in the workspace, issue the command
 x = [1:100; rand(1,100)]'
- Creates a 100x2 matrix with the first column indicating the time stamp
- 3 Right Click and delete the random generator
- Mow go to Sources and drag simin

- First, lets put something in the workspace, issue the command
 x = [1:100; rand(1,100)]'
- Creates a 100x2 matrix with the first column indicating the time stamp
- 3 Right Click and delete the random generator
- 4 Now go to Sources and drag simin
- 5 Right click on simin and tell it to use x

- First, lets put something in the workspace, issue the command x = [1:100; rand(1,100)]'
- Creates a 100x2 matrix with the first column indicating the time stamp
- 3 Right Click and delete the random generator
- 4 Now go to Sources and drag simin
- 5 Right click on simin and tell it to use x
- 6 Now lets set the simulation time to 0-250 and run it

- First, lets put something in the workspace, issue the command x = [1:100; rand(1,100)]'
- Creates a 100x2 matrix with the first column indicating the time stamp
- 3 Right Click and delete the random generator
- 4 Now go to Sources and drag simin
- 5 Right click on simin and tell it to use x
- 6 Now lets set the simulation time to 0-250 and run it
- 7 Notice anything odd?...extrapolation

It is easy to visualize how things move together

Go to search, enter mux

- Go to search, enter mux
- 2 This block concatenates multiple signals into larger vector-valued signals

- Go to search, enter mux
- 2 This block concatenates multiple signals into larger vector-valued signals
- 3 Drag to the graphic

- Go to search, enter mux
- This block concatenates multiple signals into larger vector-valued signals
- 3 Drag to the graphic
- Connect the input and output to the two mux input wedges

- Go to search, enter mux
- This block concatenates multiple signals into larger vector-valued signals
- 3 Drag to the graphic
- Connect the input and output to the two mux input wedges
- 5 Run the simulation and observe

- Go to search, enter mux
- This block concatenates multiple signals into larger vector-valued signals
- 3 Drag to the graphic
- Connect the input and output to the two mux input wedges
- 5 Run the simulation and observe
- 6 Look at the Scope

- Go to search, enter mux
- This block concatenates multiple signals into larger vector-valued signals
- 3 Drag to the graphic
- Connect the input and output to the two mux input wedges
- Run the simulation and observe
- 6 Look at the Scope
- 7 Which is which? We need a legend.

AN ALTERNATIVE MULTIPLE CHARACTERISTIC PLOT

It is easy to visualize how things move together..again

■ Right click in model area and choose Signal & Scope manager

- Right click in model area and choose Signal & Scope manager
- 2 Under viewers expand Simulink

- Right click in model area and choose Signal & Scope manager
- Under viewers expand Simulink
- 3 Double Click Scope

- Right click in model area and choose Signal & Scope manager
- Under viewers expand Simulink
- 3 Double Click Scope
- Right click on the scope and choose Edit Signal Connections

- Right click in model area and choose Signal & Scope manager
- 2 Under viewers expand Simulink
- 3 Double Click Scope
- Right click on the scope and choose Edit Signal Connections
- **5** Select the inputs and outputs then close.

- Right click in model area and choose Signal & Scope manager
- Under viewers expand Simulink
- 3 Double Click Scope
- Right click on the scope and choose Edit Signal Connections
- **5** Select the inputs and outputs then close.
- 6 Run the simulation and double click on the glasses

AN ALTERNATIVE MULTIPLE CHARACTERISTIC PLOT

- Right click in model area and choose Signal & Scope manager
- Under viewers expand Simulink
- 3 Double Click Scope
- Right click on the scope and choose Edit Signal Connections
- 5 Select the inputs and outputs then close.
- 6 Run the simulation and double click on the glasses
- Now right click on the plot space and select legend to get a legend