Problemas

Capítulo 4 Movimento a 3D

- 1. Uma bola de futebol é chutada com velocidade de 100 km/h, a fazer um ângulo de 10° com o campo (horizontal).
- a) Encontre a lei do movimento usando métodos analíticos, se só considerar o peso da bola. Faça um gráfico da altura em função da distância percorrida na horizontal.
- b) Nas condições da alínea a), qual a altura máxima atingida pela bola e em que instante?
- c) Nas condições da alínea a), qual o alcance (distância entre a posição onde foi chutada e o ponto onde alcançou no campo) da trajetória da bola e quanto tempo demorou?
- d) Desenvolva um programa que obtenha a lei do movimento e a lei da velocidade em função do tempo, usando o método de Euler. Tem confiança que o seu programa está correto?
- e) Considere agora a resistência do ar. A força de resistência do ar ao movimento da bola é:

$$\begin{cases} F_x^{(res)} = -m \ D |\vec{v}| v_x \\ F_y^{(res)} = -m \ D |\vec{v}| v_y \end{cases}$$

em que $D=g/v_T^2$, e a velocidade terminal é $v_T=100\,$ km/h. Atualize o seu programa de modo a considerar a força de resistência do ar. Faça o gráfico da altura em função da distância percorrida na horizontal.

- f) Nas condições da alínea e), determine qual a altura máxima atingida pela bola e em que instante? Tem confiança no seu resultado?
- g) Nas condições da alínea e), qual o alcance (distância entre a posição onde foi chutada e o ponto onde alcançou no campo) da trajetória da bola e quanto tempo demorou? Tem confiança no seu resultado?

- **2.** Um volante de badmington é batido à altura de 3 m (a partir do chão), com velocidade 200 km/h e a fazer um ângulo de 10° com a horizontal. Considerando que a velocidade terminal é 6.80 m/s,
- a) Faça o gráfico da trajetória (altura em função da distância percorrida na horizontal).
- b) Em ponto cai no chão e quanto demorou?
- 3. Um jogador de futebol executa um canto e chuta a bola de modo a ela entrar na baliza. Para conseguir uma trajetória que possibilite à bola entrar na baliza, pontapeia a bola com uma rotação lateral sobre si própria, o que resulta no aparecimento da força de Magnus, $\vec{F}_{Magnus} = \frac{1}{2} A \, \rho_{ar} \, r \, \vec{\omega} \times \vec{v}$, em que $A = \pi r^2$ é a área da secção de corte da bola, r o raio da bola e $\rho_{ar} = 1.225 \, \text{kg/m}^3$ a massa volúmica do ar. O raio da bola de futebol é 11 cm. Esta força de resulta de o escoamento do ar ser diferente nos dois lados opostos da bola. Se a bola for chutada com a rotação descrita pelo vetor $\vec{\omega} = (0,400,0)$ rad/s e a velocidade inicial for $\vec{v} = (25,5,-50)$ m/s, e a posição inicial for o canto (0,0,23.8) m/s, a bola entra na baliza? A massa da bola de futebol é 0,45 kg. O sistema de eixos considerado é: OX de baliza a baliza, OY o eixo vertical e OZ o eixo deste o poste da baliza e passa pela marca de canto. É golo quando: x < 0 e 0 < z < 7.3 m e 0 < y < 2.4 m. A velocidade terminal é $v_T = 100 \, \text{km/h}$.
- **4.** Numa partida de ténis, muitas vezes a bola é batida de modo a adquirir rotação, num eixo horizontal e perpendicular à velocidade. Calcule a trajetória da bola, quando parte da posição inicial (-10,1,0) com a velocidade 130 km/h, a fazer um ângulo de 10° com a horizontal e no sentido positivo dum eixo horizontal OX, sendo OY eixo vertical. A bola de ténis tem a massa 57 g, o diâmetro 67 mm e no ar tem a velocidade terminal 100 km/h. Calcule a altura máxima e o alcance (quando bate em y = 0) da trajetória da bola, quando
- a) A rotação é nula.
- a) A rotação é descrita por $\vec{\omega} = (0, 0, +100)$ rad/s
- b) A rotação é descrita por $\vec{\omega} = (0, 0, -100)$ rad/s
- **5**. Simule a órbita da Terra á volta do sol, usando o método de Euler sabendo que a força de atração da Terra exercida pelo Sol é

$$\vec{F}_{grav} = -G \frac{m M}{|\vec{r}|^2} \,\hat{r}$$

em que $\hat{r} = \frac{\vec{r}}{|\vec{r}|} e \vec{r}$ o vetor da posição da Terra relativamente ao Sol.

Como as quantidades envolvidas são enormes, trabalhe no sistema astronómico de unidades (ver apêndice) Considere a posição inicial da Terra (1,0) AU, e a velocidade inicial $(0,2\pi)$ AU/ano e o Sol como fixo na origem do sistema de eixos.

- a) A órbita da Terra à volta do sol é fechada? Consegue obter elipses?
- b) Implemente o método de Euler-Cromer. Este método a 1D integra as equações diferenciais

$$a_x(t) = \frac{dv_x}{dt}$$
 e $v_x(t) = \frac{dx}{dt}$

ao fazer as aproximações

$$v_x(t + \delta t) = v_x(t) + a_x(t) \times \delta t$$
$$x(t + \delta t) = x(t) + v_x(t + \delta t) \times \delta t$$

Consegue órbitas fechadas? São elipses? Concordam com as leis de Kepler?

- c) Encontre o erro de truncatura deste método de Euler-Cromer.
- **6.** Uma mola exerce uma força $F_x = -k x(t)$, em que k é a constante elástica da mola, num corpo de massa m. Considere k = 1 N/m e m = 1 kg.
- a) Mostre que a lei do $x(t) = A\cos(\omega t + \phi)$, com $\omega = \sqrt{k/m}$, é solução da equação dinâmica de Newton do sistema mola-corpo. Qual a lei de velocidade do corpo ligado à mola, Qual a lei de velocidade do corpo ligado à mola, em que $A \in \phi$ são constantes?
- b) Calcule numericamente a lei da velocidade e compare com o resultado analítico. Qual o método numérico que escolhe? Considere nula a velocidade inicial e a posição inicial 4 m.
- c) Calcule numericamente a lei do movimento nas condições da alínea anterior e compare com o resultado analítico.

Apêndice

Sistema Astronómico de Unidades (AU)

Convém não lidar explicitamente no computador com potências de dez, como no caso do sistema Sol-Terra, em que a massa dos astros, o tempo das órbitas e as distâncias entre os astros são números enormes. Uma maneira de evitar com números muito grandes é construir um sistema de unidades adequado ao problema em estudo. Neste caso, vamos considerar a distância média da terra ao sol, R, a massa do sol, M, e o período de uma órbita da terra à volta do sol, T, as novas unidades de distância, massa e tempo.

Tabela 4A.1 Sistema Astronómico de unidades

Grandeza	Símbolo	Definição	Valor no SI	Conversão do SI
Massa	M	Massa do Sol	1,989 x 10 ³⁰ kg	$1 \text{ kg} = 5.028 \times 10^{-31} \text{ M}$
Distância	AU	Distância média da Terra ao Sol	1,498 x 10 ¹¹ m	$1 \text{ m} = 6,676 \times 10^{-12} \text{ AU}$
Tempo	ano	Período da Terra em volta do Sol	$3,15\times10^7$ s	$1 \text{ s} = 3,17 \times 10^{-8} \text{ ano}$

Neste sistema, a constante de gravitação é

$$G = 6.67 \times 10^{11} \frac{(6.676 \times 10^{-12} \text{ AU})^3}{(5.028 \times 10^{-31} M)(3.17 \times 10^{-8} \text{ ano})^2} = 4\pi^2 \text{ AU}^3/\text{M} \text{ ano}^2$$

e a unidade de energia é $5.50 \times 10^{38} \, \mathrm{J}.$

Tabela 4A.2. Dados experimentais do sistema solar.

	Massa	Período sideral	Distância m	édia	Excentricidade	Inclinação
	(kg)	(1 ano=365,24 dias)	ao Sol			eclíptica
						(grau)
			(10 ¹¹ m)	(AU)		
Mercúrio	3,301 ×10 ²³	0,2408	0,5791	0,3871	0,2056	7,004
Vénus	4,669 ×10 ²⁴	0,6151	1,082	0,723	0,0068	3,394
Terra	5,978 ×10 ²⁴	1	1,496	1	0,0167	0
Marte	6,420 ×10 ²³	1,881	2,279	1,523	0,0934	1,850
Júpiter	1,899 ×10 ²⁷	11,86	7,783	5,203	0,0481	1,306
Saturno	5,685 ×10 ²⁶	29,46	14,27	9,54	0,0533	2,489
Urano	8,686×10 ²⁵	84,02	28,69	19,18	0,0507	0,773
Neptuno	1,025 ×10 ²⁶	164,8	44,98	30,07	0,0040	1,773
Plutão	5 ×10 ²³	248	59,00	39,44	0,2533	17,142
Sol	$1,989 \times 10^{30}$					
Lua	7,353 ×10 ²²		384 400		0,055	5,144
			km à Terra			

Soluções Problemas Cap. 4

1. a)
$$\begin{cases} v_x(t) = v_{0x} \\ v_y(t) = v_{0y} - gt \end{cases}$$

$$\begin{cases} x(t) = x_0 + v_{0x} t \\ y(t) = y_0 + v_{0y} t - \frac{1}{2} g t^2 \end{cases}$$

b)
$$y_m=1.19~\mathrm{m}$$
 e $t_m=0.49~\mathrm{s}$; c) $x_{solo}=26.9~\mathrm{m}$ e $t_{solo}=0.98~\mathrm{s}$;

d) Um teste ao seu programa para ter confiança é reproduzir os resultados exatos obtidos nas alíneas anteriores.

δt (s)	Altura máxima (m)	Alcance (m)
0.1	1.440506	29.6646007221
0.01	1.2113	27.202581
0.001	1.18949136	26.95637
0.0001	1.18731954	26.931759207
0.00001	1.187102	26.9292971

A altura máxima é 1.187 m e o alcance é 26.9 m, o que reproduz os valores determinados pelo método exato.

e)

f) e g)

δt (s)	Altura máxima (m)	Alcance (m)
0.1	1.3050	24.1821
0.01	1.09232639	22.311966
0.001	1.072268232	22.1245316
0.0001	1.0702742	22.1057830
0.00001	1.07007500	22.103908

A altura máxima é 1.070 m e o alcance é 22.10 m.

b) 13.2 m e 1.46 s

3. Entra

4. a)

δt (s)	Altura máxima (m)	Alcance (m)
0.1	2.9868	29.16701087
0.01	2.7282197721	27.4047699
0.001	2.70360028	27.22868
0.0001	2.701150538	27.211076
0.00001	2.700905686	27.2093157962

altura máxima =2.70 m; alcance 27.21 m;

b)

δt (s)	Altura máxima (m)	Alcance (m)
0.1	3.9019528	40.96493035
0.01	3.646755	39.4620245
0.001	3.622064	39.310731
0.0001	3.61960309	39.2955928
0.00001	3.61935707370	39.294078914

3.62 m; 39.29 m

c)

δt (s)	Altura máxima (m)	Alcance (m)
0.1	2.53547	21.74859
0.01	2.26736381	19.8336427
0.001	2.24225	19.6436191
0.0001	2.23976238	19.6246321
0.00001	2.239513193	19.6227335

2.24 m; 19.62 m;

5. a) Não; b) Sim.; são; Concordam com as leis de Kepler; c) erro linearmente proporcional a δt

6. a) $v_x(t) = -A \omega \sin(\omega t + \phi)$;

