

Digital Integrated Circuits A Design Perspective (2'nd edition - 2003)

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Prentice Hall

Transistor Revolution

- Transistor –Bardeen (Bell Labs) in 1947
- Bipolar transistor Schockley in 1949
- First bipolar digital logic gate Harris in 1956
- First monolithic IC Jack Kilby in 1959
- First commercial IC logic gates Fairchild 1960
- TTL 1962 into the 1990's
- ECL 1974 into the 1980's

MOSFET Technology

- MOSFET transistor Lilienfeld (Canada) in 1925 and Heil (England) in 1935
- CMOS 1960's, but plagued with manufacturing problems
- PMOS in 1960's (calculators)
- NMOS in 1970's (4004, 8080) for speed
- CMOS in 1980's preferred MOSFET technology because of power benefits
- BiCMOS, Gallium-Arsenide, Silicon-Germanium
- SOI, Copper-Low K, ...

Introduction

- Why is designing digital ICs different today than it was before?
- Will it change in future?

The First Computer

The Babbage Difference Engine (1832)

25,000 parts

cost: £17,470

ENIAC - The first electronic computer (1946)

The Transistor Revolution

First transistor Bell Labs, 1948

The First Integrated Circuits

Bipolar logic 1960's

ECL 3-input Gate Motorola 1966

Intel 4004 Micro-Processor

19711000 transistors1 MHz operation

Intel Pentium (IV) microprocessor

2001

42 million transistors

2 GHz operation

 0.13μ process

55 million transistors

2.4GHz clock

145mm²

Moore's Law

- In 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 to 14 months (i.e., grow exponentially with time).
- Amazingly visionary million transistor/chip barrier was crossed in the 1980's.
 - 2300 transistors, 1 MHz clock (Intel 4004) 1971
 - 16 Million transistors (Ultra Sparc III)
 - 42 Million, 2 GHz clock (Intel P4) 2001
 - 140 Million transistor (HP PA-8500)

State-of-the Art: Lead Microprocessors

Processor	Alpha 21264B	AMD Athlon	HP PA-8600	IBM Power3-II	Intel Pentium III	Intel Pentium 4	MIPS R12000	Sun Ultra-II	Sun Ultra-III
Clock Rate	833MHz	1.33GHz	552MHz	450MHz	1.0GHz	1.7GHz	400MHz	480MHz	900MHz
Cache (I/D/L2)	64K/64K	64K/64K/256K	512K/1M	32K/64K	16K/16K/256K	12K/8K/256K	32K/32K	16K/16K	32K/64K
Issue Rate	4 issue	3 x86 instr	4 issue	4 issue	3 x86 instr	3 ROPs	4 issue	4 issue	4 issue
Pipeline Stages	7/9 stages	9/11 stages	7/9 stages	7/8 stages	12/14 stages	22/24 stages	6 stages	6/9 stages	14/15 stages
Out of Order	80 instr	72ROPs	56 instr	32 instr	40 ROPs	126 ROPs	48 instr	None	None
Rename regs	48/41	36/36	56 total	16 int/24 fp	40 total	128 total	32/32	None	None
BHT Entries	4K x 9 bits	4K x 2 bits	2K x 2 bits	2K x 2 bits	≥ 512	4K x 2 bits	2K x 2 bits	512 x 2 bits	16K x 2 bits
TLB Entries	128/128	280/288	120 unified	128/128	32I/64D	128I/64D	64 unified	64I/64D	128I/512D
Memory B/W	2.66GB/s	2.1GB/s	1.54GB/s	1.6GB/s	1.06GB/s	3.2GB/s	539 MB/s	1.9GB/s	4.8GB/s
Package	CPGA-588	PGA-462	LGA-544	SCC-1088	PGA-370	PGA-423	CPGA-527	CLGA-787	1368 FC-LGA
IC Process	0.18µ 6M	0.18μ 6M	0.25μ 2Μ	0.22µ 6M	0.18µ 6М	0.18µ 6M	0.25μ 4Μ	0.29µ 6M	0.18μ 7Μ
Die Size	115mm ²	117mm²	477mm ²	163mm ²	106mm ²	217mm ²	204mm ²	126mm²	210mm ²
Transistors	15.4 million	37 million	130 million	23 million	24 million	42 million	7.2 million	3.8 million	29 million
Est mfg cost	\$160	\$62	\$330	\$110	\$ 39	\$100	\$125	\$70	\$145
Power (max)	75W*	76W	60W*	36W*	30W	64W(TDP)	25W*	20W*	65W
Availability	1Q01	1Q01	3Q00	4Q00	2Q00	2Q01	2Q00	3Q0	4Q00

Moore's Law in Microprocessors

Transistors on lead microprocessors double every 2 years

Evolution in DRAM Chip Capacity

Die Size Growth

Clock Frequency

Lead Microprocessors frequency doubles every 2 years

Power Dissipation

Lead Microprocessors power continues to increase

Power will be a major problem

Power delivery and dissipation will be prohibitive

Power Density

Power density too high to keep junctions at low temp

Not Only Microprocessors

Cell Phone

Digital Cellular Market (Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M

Small Signal RF **Power Analog Digital Baseband**

(data from Texas Instruments)

As a result of the continuously increasing integration density and decreasing unit costs, the semiconductor industry has been one of the fastest growing sectors in the worldwide economy.

Industry Trends

Large Centralized Expensive

Small / Portable Distributed Inexpensive

Industry Trends

High performance Low power dissipation Wireless capability etc...

More portable, wearable, and more powerful devices for ubiquitous and pervasive computing...

Design Productivity Trends

Complexity outpaces design productivity

Technology Directions: SIA Roadmap

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Mtrans/cm ²	7	14-26	47	115	284	701
Chip size (mm ²)	170	170-214	235	269	308	354
Signal pins/chip	768	1024	1024	1280	1408	1472
Clock rate (MHz)	600	800	1100	1400	1800	2200
Wiring levels	6-7	7-8	8-9	9	9-10	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.6
High-perf power (W)	90	130	160	170	174	183
Battery power (W)	1.4	2.0	2.4	2.0	2.2	2.4

For Cost-Performance MPU (L1 on-chip SRAM cache; 32KB/1999 doubling every two years)

http://www.itrs.net/ntrs/publntrs.nsf

Increasing Function Density

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Why Scaling?

- Technology shrinks by ~0.7 per generation
- With every generation can integrate 2x more functions on a chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Design Abstraction Levels

The Y-Chart

Notice: There is a need for structured design methodologies to handle the high level of complexity!

Major Design Challenges

- Microscopic issues
 - ultra-high speeds
 - power dissipation and supply rail drop
 - growing importance of interconnect
 - noise, crosstalk
 - reliability, manufacturability
 - clock distribution

- Macroscopic issues
 - time-to-market
 - design complexity (millions of gates)
 - high levels of abstractions
 - reuse and IP, portability
 - systems on a chip (SoC)
 - tool interoperability

Year	Tech.	Complexity	Frequency	3 Yr. Design	Staff Costs
				Staff Size	
1997	0.35	13 M Tr.	400 MHz	210	\$90 M
1998	0.25	20 M Tr.	500 MHz	270	\$120 M
1999	0.18	32 M Tr.	600 MHz	360	\$160 M
2002	0.13	130 M Tr.	800 MHz	800	\$360 M

TASARIMDA YARATICILIK

TASARIMDA YARATICILIK

