



The Bruce Peel Special Collections Library



Digitized by the Internet Archive in 2025 with funding from University of Alberta Library





**University of Alberta** 

### Library Release Form

Name of Author: Matthew Spratlin

Title of Thesis: Influence of Design Decisions on Concrete Bridge Deck Deterioration

Degree: Master of Science

Year This Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatever without the author's prior written permission.



### **University of Alberta**

#### INFLUENCE OF DESIGN DECISIONS ON CONCRETE BRIDGE DECK DETERIORATION

by

Matthew Spratlin



A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science

in

Structural Engineering

Department of Civil and Environmental Engineering

Edmonton, Alberta

Fall, 2001



### **University of Alberta**

### Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled Influence of Design Decisions on Concrete Bridge Deck Deterioration submitted by Matthew Spratlin in partial fulfillment of the requirements for the degree of Master of Science in Structural Engineering.



### **ABSTRACT**

The effects of bridge design parameters on the deterioration of concrete bridge decks in Alberta are investigated. Deterioration is quantified with copper-sulphate electrode (CSE) test results for 460 bridges. Decks are rehabilitated after approximately 20 to 30 years for steel and concrete girders respectively. Decks on simple span bridges have significantly lower corrosion levels than decks on continuous spans. There is poor correlation between concrete cover thickness and CSE readings in bridge decks 20 to 35 years old when decks are cracked. Most bridge decks are cracked. In such situations, one may conclude that, if increasing the depth of cover has little influence on corrosion, improving the quality of the concrete cover will have little influence on CSE readings. The use of waterproof membranes and crack control measures is recommended. Other factors showing a lesser influence on deterioration include maintenance and rehabilitation, transverse span-to-depth ratio, longitudinal bar spacing, and girder stiffness.



# **ACKNOWLEDGEMENT**

As the author, I would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Earth Tech Canada for their generous financial support of this project. I would like to express my sincere appreciation towards Alberta Transportation, whose hard work and dedication over the past 14 years made this project possible.

I would also like to thank Dr. D.M. Rogowsky, Dr. S.D.B. Alexander, Dr. A.E. Peterson, Paul Carter, Gary Kriviak, Dilip Dasmohapatra, Peter Onyshko, Kara Hurtig, Julia Blackburn, Mark D'Andrea, Neil Robson, and Oliver Youzwishen, as well as Jennifer, my parents, and the rest of my friends and family for their help, inspiration, knowledge, support, and motivation.



# TABLE OF CONTENTS

| Libra                         | ry Releas | se Form                                     |    |
|-------------------------------|-----------|---------------------------------------------|----|
| Title I                       | Page      |                                             |    |
| Exam                          | nining Co | ommittee Signature Page                     |    |
| Abstr                         | ract      |                                             |    |
| Ackn                          | owledge   | ment                                        |    |
| Table                         | of Cont   | ents                                        |    |
| List c                        | of Tables |                                             |    |
| List                          | of Figure | s                                           |    |
| CHA                           | PTER 1 –  | INTRODUCTION                                | 1  |
| 1.1                           | Proble    | em Statement                                | 1  |
| 1.2                           | Resea     | rch Objectives                              | 2  |
| 1.3                           | Outlin    | e of Problem Solution                       | 3  |
| CHAPTER 2 – LITERATURE REVIEW |           |                                             | 5  |
| 2.1                           | Previo    | ous Studies                                 | 5  |
|                               | 2.1.1     | Dunker and Rabbat                           | 5  |
|                               | 2.1.2     | Ramey and Wright                            | 6  |
| 2.2                           | Repor     | rted Effects of Design Parameters           | 8  |
|                               | 2.2.1     | Steel v. Concrete Superstructure            | 8  |
|                               | 2.2.2     | Continuous (Jointless) v. Simple Spans      | 9  |
|                               | 2.2.3     | Effects of Skew                             | 10 |
|                               | 2.2.4     | Coated v. Black Reinforcing Steel           | 12 |
|                               |           | 2.2.4.1 Epoxy Coated Reinforcement (E.C.R.) | 12 |
|                               |           | 2.2.4.2 Alkyd Paint Coatings                | 13 |
|                               |           | 2.2.4.3 Galvanized Reinforcing Bars         | 13 |
|                               |           | 2 2 4 4 Stainless Steel Reinforcement       | 14 |



|       | 2.2.5                                   | Effects of Cover Depth            | 14 |
|-------|-----------------------------------------|-----------------------------------|----|
|       | 2.2.6                                   | High-Performance Concrete         | 16 |
| 2.3   | Summ                                    | ary                               | 16 |
| CHAPT | APTER 3 – METHODOLOGY                   |                                   |    |
| 3.1   | General                                 |                                   |    |
| 3.2   | Copper-Sulphate Electrode (CSE) Testing |                                   |    |
|       | 3.2.1                                   | Background                        | 20 |
|       | 3.2.2                                   | Apparatus                         | 21 |
|       | 3.2.3                                   | Procedure                         | 22 |
| 3.3   | Databa                                  | ase Construction                  | 25 |
| 3.4   | Primar                                  | y Investigation                   | 29 |
| 3.5   | Statist                                 | ical Analysis                     | 33 |
|       | 3.5.1                                   | Regression Analysis               | 33 |
|       | 3.5.2                                   | Coefficient of Determination      | 33 |
|       | 3.5.3                                   | Analysis of Variance              | 34 |
|       | 3.5.4                                   | Significance Testing              | 35 |
| 3.6   | Summ                                    | ary Flowchart                     | 35 |
| CHAPT | ΓER 4 –                                 | RESULTS AND ANALYSIS              | 37 |
| 4.1   | Steel \                                 | /ersus Concrete Superstructure    | 37 |
| 4.2   | Contin                                  | nuity                             | 44 |
| 4.3   | Girder Stiffness                        |                                   | 48 |
| 4.4   | Deck 1                                  | ransverse Span-to-Depth Ratio     | 50 |
| 4.5   | Cover                                   | Depth                             | 55 |
| 4.6   | Reinfo                                  | rcing Ratio and Bar Configuration | 57 |
|       | 4.6.1                                   | Reinforcing Ratio                 | 60 |
|       | 4.6.2                                   | Bar Size                          | 65 |
|       | 4.6.3                                   | Bar Spacing                       | 68 |



|                         | 4.6.4    | Size of Steel Footprint           | 68  |
|-------------------------|----------|-----------------------------------|-----|
|                         | 4.6.5    | Surface Area of Reinforcing Steel | 71  |
| 4.7                     | Skew     |                                   | 78  |
| 4.8                     | Interm   | ediate Diaphragms                 | 82  |
| 4.9                     | Mainte   | nance and Rehabilitation          | 85  |
| 4.10                    | Summ     | ary                               | 89  |
| CHAPTER 5 – CONCLUSIONS |          | CONCLUSIONS                       | 90  |
| 5.1                     | Summ     | ary of Research                   | 90  |
| 5.2                     | Conclu   | usions                            | 91  |
| 5.3                     | Design   | n Recommendations                 | 92  |
| 5.4                     | Resea    | rch Recommendations               | 93  |
| REFERENCES              |          |                                   | 95  |
| APPE                    | NDIX A - | - STATISTICAL ANALYSES            | 100 |
| APPENDIX B – DATABASE   |          | 131                               |     |



# LIST OF TABLES

| Table 2.1 | Structural Deficiencies by Superstructure Type (Dunker and Rabbat, 1990b) | 7  |
|-----------|---------------------------------------------------------------------------|----|
| Table 3.1 | Summary of Tables and Fields Contained within the Access Database         | 28 |
| Table 3.2 | Summary of Criteria Used to Identify Errant Entries                       | 29 |
| Table 4.1 | Differences Between Steel and Concrete Girder Bridges                     | 43 |



# LIST OF FIGURES

| Figure 2.1 | Average Percent Structural Deficiency by State for Four Bridge<br>Types Built Between 1950 and 1988 (Dunker and Rabbat, 1990b) | 7  |
|------------|--------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.2 | Rotational Behaviour of Skewed Semi-Integral Bridges (Van Lund and Brecto, 1999)                                               | 11 |
| Figure 3.1 | CSE Test Setup                                                                                                                 | 23 |
| Figure 3.2 | CSE Test Probe                                                                                                                 | 24 |
| Figure 3.3 | Example of CSE Contour Plot                                                                                                    | 26 |
| Figure 3.4 | Example of Frequency Plot of Historical CSE Data                                                                               | 27 |
| Figure 3.5 | Percentage of CSE Readings More Negative Than -300 mV v. Deck Age                                                              | 31 |
| Figure 3.6 | Average Percentage of CSE Reading More Negative Than –300 mV v. Deck Age                                                       | 32 |
| Figure 3.7 | Summary Flowchart                                                                                                              | 36 |
| Figure 4.1 | Average CSE Readings v. Deck Age for Steel and Concrete Superstructures                                                        | 39 |
| Figure 4.2 | Average % CSE Readings More Negative Than -300 mV v. Deck<br>Age for Steel and Concrete Girder Bridges                         | 40 |
| Figure 4.3 | %CSE Readings More Negative Than -300 mV v. Deck Age for Non-Rehabilitated Decks Supported on Steel and Concrete Girders       | 42 |
| Figure 4.4 | Average CSE Readings for Simple and Continuous Spans                                                                           | 45 |
| Figure 4.5 | Average %CSE Readings More Negative Than -300 mV v. Deck age for Non-Rehabilitated Simple and Continuous Spans                 | 46 |
| Figure 4.6 | Average % CSE Readings More Negative Than -300 mV v. Deck Age                                                                  | 47 |
| Figure 4.7 | % CSE Readings More Negative Than –300 mV v. Maximum Longitudinal Curvature.                                                   | 49 |
| Figure 4.8 | Average % CSE Readings More Negative Than –300 mV v. Grouped Curvatures for Simply Supported Decks 20 – 35 Years Old           | 51 |
| Figure 4.9 | % CSE Readings More Negative Than –300 mV v. Curvature of Simple Span Decks 20 to 35 Years Old                                 | 52 |



| Figure 4.10 | Grouped Curvatures for Continuous Decks 20 – 35 Years Old                                                                                | 53 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.11 | Average % CSE Readings More Negative Than -300 mV v. Several Ranges of Transverse Span to Depth Ratios for 20 - 30 Year Old Bridge Decks | 54 |
| Figure 4.12 | % CSE Readings More Negative Than –300 mV v. Cover Depth for Non-Rehabilitated Decks 20 – 35 Years Old                                   | 56 |
| Figure 4.13 | Average CSE Reading v. Deck Age for Various Reinforcement Cover Depths                                                                   | 58 |
| Figure 4.14 | Average CSE Reading v. Deck Age for Two Cover Depths                                                                                     | 59 |
| Figure 4.15 | Scatter Plot of % CSE Readings More Negative Than -300 mV v. Longitudinal Reinforcing Ratio for Decks 20 - 35 Years Old                  | 61 |
| Figure 4.16 | Scatter Plot of % CSE Readings More Negative Than -300 mV v. Transverse Reinforcing Ratio for Decks 20 - 35 Years Old                    | 62 |
| Figure 4.17 | Average % CSE Readings More Negative Than –300 mV v.<br>Grouped Longitudinal Reinforcing Ratios For Bridges 20 – 35<br>Years Old         | 63 |
| Figure 4.18 | Average % CSE More Negative Than -300 mV v. Grouped Transverse Reinforcing Ratio Data for Bridges 20 - 35 Years Old                      | 64 |
| Figure 4.19 | Average % CSE Readings More Negative Than –300 mV v.<br>Longitudinal Bar Size for Non-Rehabilitated Decks 20 – 35 Years<br>Old           | 66 |
| Figure 4.20 | Average % CSE Readings More Negative Than -300 mV v. Transverse Bar Size for Non-Rehabilitated Decks 20 – 35 Years Old                   | 67 |
| Figure 4.21 | Average CSE Readings More Negative Than –300 mV v.<br>Transverse Bar Spacing for Non-Rehabilitated Bridges 20 – 35<br>Years Old          | 69 |
| Figure 4.22 | Average CSE Readings More Negative Than –300 mV v.<br>Longitudinal Bar Spacing for Non-Rehabilitated Bridges 20 – 35<br>Years Old        | 70 |
| Figure 4.23 | Average CSE Readings v. Deck Age for Two Different Ranges of Reinforcing Steel Footprint                                                 | 72 |
| Figure 4.24 | Percent of CSE Readings More Negative Than –300 mV v. Deck<br>Age for Two Different Ranges of Reinforcing Steel Footprint                | 73 |
| Figure 4.25 | % CSE Readings More Negative Than -300 mV v. % Area of Steel in Plan for Bridge Decks 20 - 35 Years Old                                  | 74 |
| Figure 4.26 | % CSE Readings More Negative Than -300 mV v. Surface Area of                                                                             | 75 |



# Reinforcing Steel for All Decks 20 – 35 Years Old

| Figure 4.27 | % CSE Readings More Negative Than –300 mV v. Surface Area of Reinforcing Steel for Non-Rehabilitated Decks 20 – 35 years Old          | 76 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.28 | Average % CSE Readings More Negative Than -300 mV v. Ranges of Surface Area of Reinforcing Steel for All Decks Aged 20 - 35 Years Old | 77 |
| Figure 4.29 | Average CSE for Straight v. Skewed Crossings                                                                                          | 79 |
| Figure 4.30 | % CSE Readings More Negative Than –300 mV v. Deck Age for Skewed and Straight Crossings                                               | 80 |
| Figure 4.31 | Average % CSE Readings More Negative Than -300 mV v. Deck<br>Age for Straight and Skewed Non-Rehabilitated Decks                      | 81 |
| Figure 4.32 | %CSE Readings More Negative Than –300 mV v. Deck Age for Bridges With and Without Intermediate Diaphragms                             | 83 |
| Figure 4.33 | %CSE Readings More Negative Than −300 mV v. Deck Age for Bridges With and Without Intermediate Diaphragms (Concrete Girders Only)     | 84 |
| Figure 4.34 | Effect of Bridge Maintenance on Corrosion of Bridge Deck Steel                                                                        | 86 |
| Figure 4.35 | % CSE Readings More Negative Than –300 mV v. Deck Age for Original and Rehabilitated Decks                                            | 87 |
| Figure 4.36 | Average Percentage of All CSE Readings More Negative Than – 300 mV v. Deck Age for All Decks and Non-Rehabilitated Decks              | 88 |



# CHAPTER 1 INTRODUCTION

#### 1.1 Problem Statement

The deterioration of bridges built over the last 30 to 40 years has led to increased maintenance costs (Somerville, 1998). Design choices for the majority of bridges in North America have traditionally been based on economics. Initially, design choices were based on lowest initial cost. This led to the construction of many bridges with poor durability. More recently, designs have been based on lowest life cycle cost analyses that take into account the initial cost of construction as well as the cost of future rehabilitation and maintenance. While the initial cost of construction can be influenced by a number of factors, rehabilitation and maintenance costs are influenced primarily by the deterioration of the bridge deck. In addition to traffic and deicing salts, the deterioration of the bridge deck is closely related to deck cracking, which is most heavily influenced by design choices made prior to the construction of the bridge (Ramey et. al., 1997a). The actual influence of these choices is not well understood or appreciated. A better understanding of how choices made during the design phase of a bridge project affect the future deterioration of the bridge deck will allow engineers and project managers to make more informed decisions concerning the future durability of a structure (Jacobs, 1986). This better understanding will also provide for more accurate life cycle cost analyses, and more efficient management of infrastructure inventories.

The four main types of deterioration associated with bridge decks are scaling, cracking, spalling, and delamination (Sotiropoulous and GangaRao, 1993). The later three types of deterioration are generally of greatest concern from a structural point of view, and are the ones that structural designers can play the biggest role in preventing. Scaling is the deterioration of cement paste at the surface of concrete members. It gives the concrete a pockmarked appearance and is generally caused by poor material quality, improper finishing, chemical attack, and abrasion. Scaling of bridge decks is generally not a major concern as the small loss of cross section rarely presents a structural hazard. Delamination, cracking, and spalling, can lead to problems that are more serious. In many cases the cause of delamination, cracking, and spalling can be traced to a single source: corrosion of the top mat of reinforcing steel. Other factors such as tensile stresses, impact forces, and freeze thaw can also cause delamination, cracking, and spalling. By limiting these other factors, the rate of deterioration of the bridge deck can be more effectively controlled.

The durability of exposed concrete depends largely on its ability to resist the penetration of water and other aggressive solutions (Ozyildirim, 1998). The highly alkaline environment within concrete passivates steel and prevents it from corroding (Gene, 1995; Yoemans, 1994).



Substances such as salt, carbon dioxide, and acid rain lower the pH of concrete (Carter, 1989), eliminating its passivating effects and providing an environment favorable to corrosion. On bridge decks, salts from de-icing chemicals reduce the pH of concrete causing corrosion of the reinforcing steel embedded within it. In uncracked concrete, several years may pass before corrosion of the steel is initiated as salt solutions slowly migrate through the concrete cover. Following its initiation, corrosion proceeds slowly as other necessary elements (oxygen and moisture) are in short supply. As the steel corrodes it expands by as much as a factor of eight (Gene, 1995), cracking the surrounding concrete. These cracks eventually migrate to the surface of the concrete, providing a direct path to the steel for salt solutions and oxygen. At this point the rate of corrosion accelerates dramatically, as does the rate at which the deck deteriorates. Cracking of the concrete due to live load and environmental stresses puts an end to the slow progression of the earlier stages of deterioration and immediately initiates the accelerated, post-cracking rate of deterioration.

Traditionally, the prevention of deck cracking has not been a high priority for designers. Although technological advances have allowed engineers to become more aggressive with girder designs, the continued use of traditional standard deck designs may have contributed to the increased levels of cracking in some populations of bridges. In order to reduce the occurrence of cracking and slow the rate of deterioration, those elements of design that lend themselves to bridge deck cracking need to be identified and understood. With a continually increasing number of bridges to be managed, and a large percentage of older bridges reaching the end of their service lives, it will not be acceptable nor feasible for the next generation of bridges to suffer the same rate of bridge deck deterioration as the bridges of today.

### 1.2 Research Objectives

The objective of this research is to identify the choices a bridge designer can make to extend the life of a concrete bridge deck. This report will focus on structural design choices because this is where designers have the greatest control over variables that may affect deterioration (Ramey and Wright, 1997a). Factors such as superstructure type, continuity, girder stiffness, deck thickness, span to depth ratios, cover, skew, reinforcing steel, and diaphragms, will be studied. The effect of traffic volumes, salt application, climate, and other uncontrollable variables will not be studied. The effects of maintenance will be looked at in order to help explain visible trends in data. Since older bridges will invariably be rehabilitated, trends in older bridge decks are likely to demonstrate different behaviour than new bridge decks.

The bulk of the research was carried out on data obtained from the Province of Alberta, thus the results are most relevant within the context of Alberta bridges. Dunker and Rabbat (1990b) have shown that operating and maintenance policies significantly affect bridge performance. Alberta



Transportation (the provincial transportation authority for the Province of Alberta) employs a proactive maintenance strategy to manage their bridge inventory. Favoring rehabilitation over replacement, large-scale preventative maintenance is often undertaken before any visual damage presents itself. Deterioration trends are hence noticeably different from those in regions employing different maintenance strategies. The climate in Alberta is also unique in that infrastructure is exposed to large temperature variations, a modest number of freeze-thaw cycles, a wide range of deicing salt applications, and relatively low humidity and precipitation levels. In other climates, deterioration mechanisms may differ from those in Alberta where corrosion of the top mat of reinforcing steel predominates.

#### 1.3 Outline of Problem Solution

It will be demonstrated that there are several choices a bridge designer can make to extend the life of a bridge deck. Several steps are undertaken in this project to determine the relative influence of each design parameter on the deterioration of concrete bridge decks. The complete project methodology is described in Chapter 3.

A literature review was conducted to determine the current state of knowledge on the deterioration of concrete bridge decks, and to help establish an appropriate scope for this project. Two broad-based studies on bridge deterioration were reviewed. Dunker and Rabbat investigated deterioration on a national level, while Ramey and Wright conducted their research on a regional population of bridges. A large number of independent studies were also reviewed to assess the influence of design on a factor-by-factor basis. The literature review is presented in Chapter 2, and a list of the cited literature can be found at the end of the thesis.

Copper sulphate electrode (CSE) test results are used as an objective measurement of concrete bridge deck deterioration due to corrosion. CSE testing is a non-invasive test which measures the potential between a probe, consisting of a copper – copper-sulphate half cell, placed on the surface of the bridge deck and the reinforcing bars embedded within the bridge deck, with which the probe is electrically continuous. The potential readings are then correlated to corrosion levels within the steel. The Province of Alberta has had a CSE testing program in place since the mid 1970's, and has collected and tabulated corrosion data on approximately 1000 bridges. Many bridges have had CSE testing carried out on five or more occasions over a period spanning in excess of twenty years. The CSE test procedure is further outlined in § 3.2.

In order to efficiently manage the vast quantities of data involved in this project, a relational database was constructed in Microsoft Access. Inventory and test data was separated into several tables, all of which were related to one another through a common field. Once



completed, queries were used to create several subpopulations of bridges based on individual design characteristics. A complete description of the Access database can be found in § 3.3.

Scatter plots are used to investigate correlations between design choices and CSE readings. CSE test results for mutually exclusive populations of bridges are plotted together against the age of the deck in order to determine differences between the deterioration trends of the two groups. Where quantifiable measurements of the physical characteristics of the bridge exist, CSE is plotted against the design trait to determine whether deterioration varies within a specific design family. A further description of the investigation for correlation can be found in § 3.4.

A statistical investigation is undertaken in situations showing stronger correlations. In addition to the regression analysis and calculation of the coefficient of determination, an analysis of variance (ANOVA) and/or significance testing is performed. A complete outline of the statistical investigation is located in § 3.5. The investigation into correlation between design choices and bridge deck deterioration, including the statistical analysis, can be found in Chapter 4.

Conclusions on the influence that design choices have on the corrosion related deterioration of concrete bridge decks are drawn based on all sections of the project. Recommendations on choices that designers can make to extend the life of bridge decks are presented.

Recommendations for further research are also made. Conclusions and recommendations can be found in Chapter 5.



## CHAPTER 2 LITERATURE REVIEW

In order to establish the scope of this project, a review of literature was undertaken. Several projects have examined the correlation between design factors and concrete bridge deck deterioration. None has been successful in developing a quantitative relationship or a true understanding of the many mechanisms associated with concrete bridge deck deterioration.

There have been several American studies attempting to relate bridge design to deck deterioration, but no published record of any similar Canadian study was found. Broad overview studies are presented to establish the general nature of the problems. These are followed by a review of previous results on a factor-by-factor basis. Not all of the design factors discussed in this chapter will be studied further in this project, nor have all of the factors that will be studied been included in the literature review. Several design factors have been studied extensively, and their effects on deterioration are well understood. Others have not been considered with respect to deterioration, and no published studies could be found. The literature review presented here is not exhaustive. It has, however, been based on a sample of published research literature broad enough to satisfactorily achieve the goals of this project.

#### 2.1 Broad Overview Studies

#### 2.1.1 Dunker and Rabbat

Kenneth F. Dunker and Basile G. Rabbat have published several papers together describing their investigations of bridge deterioration. By comparing visual inspection ratings for highway bridges included in the U.S. Federal Highway Administration's (FHWA) National Bridge Inventory (NBI), the two researchers were able to make several conclusions regarding construction trends and performance patterns of various bridge populations.

The structural performance of highway bridges in the NBI is based on rating five major items on a scale of 0 (closed) to 9 (excellent). A bridge is described as structurally deficient when the condition rating of the deck, superstructure, or substructure is 4 or less, or the structural condition or the waterway adequacy receives an appraisal rating of 2 or less. Dunker and Rabbat limited their investigation to those structures categorized as highway bridges built since 1950, the year prestressed concrete was introduced to U.S. highway bridge construction (Dunker and Rabbat, 1990b). The total sample size for their study was 303 400 bridges.

The first trend noticed by Dunker and Rabbat was the significant change in the materials used to build bridges during the period between 1950 and 1987. The biggest change was the



proliferation of the use of prestressed concrete. Prestressed concrete currently accounts for approximately half of all new bridges constructed in the U.S., up significantly from the negligible number of prestressed structures built in the 1950's (Dunker and Rabbat, 1990b). During the same period, the use of structural steel and timber has decreased steadily. The use of reinforced concrete remains relatively constant.

Nationally, the percentage of structurally deficient bridges was found to be 23.5%. When grouped by material type, the percentage of structurally deficient bridges almost doubles with each change from concrete to steel to timber. Table 2.1 shows the percentage of each category of bridge found structurally deficient by Dunker and Rabbat.

By investigating differences in deficiency patterns between states, Dunker and Rabbat were able to show how maintenance policies affect the deterioration of bridges. Figure 2.1 shows deterioration rates for each of the lower 48 states. It is interesting to note the differences in deterioration rates for adjacent states. The patchwork appearance of the maps in Figure 2.1 indicates that state policy regarding management and maintenance is overriding the effects of climate and traffic (Dunker and Rabbat, 1990b).

#### 2.1.2 Ramey and Wright

George E. Ramey and Randall L. Wright reviewed literature, studied historical bridge records, visited bridge sites, and surveyed bridge maintenance engineers, all within the Alabama Department of Transportation (ALDOT). Their goal was to determine which bridge design traits lend themselves to deterioration. Like Dunker and Rabbat, Ramey and Wright found that the most structurally deficient major component of the bridge was the deck (Ramey and Wright, 1997c). It was found that deck deterioration and durability in Alabama are closely related to deck cracking, emphasizing the importance of minimizing cracking in the deck (Ramey et. al., 1997b). Major causes of deck cracking were found to be tensile stresses in negative moment regions, increased flexibility of structural steel spans, and fatigue in older decks (Ramey et. al., 1997b). The most dramatic improvements in deck performance, in both the transverse and longitudinal directions, were caused by increasing the deck thickness and by specifying 2.5 in. of cover (Ramey et. al., 1997b).

Ramey and Wright reviewed literature from several state transportation authorities (Ramey and Wright, 1997a). In all cases, the deck was found to be the major component with the highest rates of deterioration. Although the variables studied by the various bridge authorities were predominantly the same, the differences in their level of influence highlighted the effect that maintenance and management policies have on bridge deterioration. Several studies found that statistical analyses were ineffective or inappropriate when applied to deterioration studies.



Table 2.1. Structural Deficiencies by Superstructure Type (Duker and Rabbat, 1990b)

| Superstructure Type  | Percentage Found to be Structurally Deficient |
|----------------------|-----------------------------------------------|
| Prestressed Concrete | <5%                                           |
| Reinforced Concrete  | 7%                                            |
| Structural Steel     | 20%                                           |
| Timber               | 45%                                           |



Figure 2.1. Average Percent Structural Deficiency by State for Four Bridge Types Built Between 1950 and 1988 (Dunker and Rabbat, 1990b)



## 2.2 Reported Effects of Design Parameters

## 2.2.1 Steel v. Concrete Superstructure

Economic trends, personal biases, and capitalistic tendencies have prompted countless studies into the relative benefits of steel and concrete as building materials for bridge superstructures. More recently, the increased popularity of whole-life cycle cost analysis has prompted researchers to examine the effects of choosing one building material over the other.

Overall trends obtained from the American FHWA bridge inspection database show that concrete decks fare better on concrete superstructures than on steel superstructures. Bridges with a steel superstructure have a higher percentage of deck deficiencies than bridges with a prestressed or reinforced concrete superstructure. Almost twice as many steel bridges are rated structurally deficient as compared to concrete bridges in the United States (Dunker and Rabbat, 1990a; Dunker and Rabbat, 1990b). Independent studies carried out by the NCHRP (McDonald et. al., 1995a), the State of Idaho (Pline and Miller, 1982), and the State of Virginia (Ramey and Wright, 1997a) support these findings, as do the results of a statewide survey of Alabama bridge maintenance engineers (Ramey and Wright, 1997b). In Idaho, it was found that the average life expectancy of a concrete deck supported by steel girders is 4/5 of one supported by concrete girders (Pline and Miller, 1982). A 1997 study of Alabama Department of Transportation visual bridge inspection records found that steel bridges performed slightly better than concrete bridges (Ramey and Wright, 1997c).

Studies carried out by Dunker and Rabbat on the FHWA database convincingly demonstrated that the percentage of steel bridges that are structurally deficient is considerably larger than the percentage of concrete bridges that are structurally deficient. These differences were explained not by the differences in the materials themselves, but in the construction practices and expertise used to build each of the two types of bridges. The deficiency percentages for steel bridges are said to represent a tendency of local authorities, which fund the majority of bridges built in the United States, to use reclaimed or readily available steel and their own crews versus specialty concrete contractors and high quality concrete materials (Dunker and Rabbat, 1995). In the United States, bridges funded by local authorities are not required to meet strict federal standards, and many steel structures are thus constructed in a structurally deficient state, or are classified as structurally deficient within 10 years of their construction (Dunker and Rabbat, 1990a). On the other hand, virtually no reinforced or prestressed concrete structures, which are generally constructed by third party specialty contractors, are built in a structurally deficient state (Dunker and Rabbat, 1995).

Although Dunker and Rabbat concluded that the differences in bridge deck performance between steel and concrete bridges were due mainly to the tendency of transportation authorities to



construct higher quality structures out of concrete, other researchers have concluded that the cause of these differences lies in the behavior of the materials themselves. McDonald (et. al., 1995a) noted the significantly increased occurrence of transverse cracking in bridges constructed with wide flanged steel beams and steel plate girders. This difference is likely due to the increased flexibility and the continuity of these systems. Sotiropoulous and GangaRao (1993) indicate that the variations in performance are due to differences in the coefficients of thermal expansion between steel and concrete. Although temperature differentials between the top and bottom surfaces of concrete structures are often more severe (due to concrete's poor heat conductivity), the variation in thermal coefficients between concrete and steel lead to the buildup of thermal stresses within the deck and strain incompatibility at the concrete/steel interface. These in turn lead to cracking and deck growth (Sotiropoulous and GangaRao, 1993). A statewide survey of bridge maintenance engineers in Alabama (Ramey and Wright, 1997b) noted that fatigue failures at steel diaphragm to girder connections are a major problem with steel bridges. Failure of intermediate diaphragms could lead to increased differential settlements across the width of a bridge, causing longitudinal cracking and associated problems.

## 2.2.2 Continuous (Jointless) v. Simple Spans

Jointless bridge construction has gained favor in recent years, and is currently the preferred option for short to medium length spans with a skew angle less than 30 degrees (VanLund and Brecto, 1999). Since joints are generally the first element on a bridge to fail, maintenance personnel prefer the reduced maintenance requirements of continuous span bridges (VanLund and Brecto, 1999).

Organized studies appear to validate the preferences of maintenance personnel as well. Dunker and Rabbat (1990a) noted that the difference in deficiency percentages between simple span and continuous span structures confirms the improved performance of jointless bridges. Additional studies in Washington State and New York State indicate that continuous structures outperform simple spans (VanLund and Brecto, 1999; Ramey and Wright, 1997a). Studies of historical data in the State of Alabama, however, show that simple spans perform better there than continuous spans (Ramey and Wright, 1997c). This trend may be due to the minimal use of snowplows and deicers in Alabama, or could possibly be due to an increased knowledge on the part of Alabama State transportation officials regarding the construction and maintenance of simple span bridges. Trends suggest that there is a long-term performance advantage in specializing in one bridge type rather than having a diverse bridge population (Dunker and Rabbat, 1990a).

Aside from increased maintenance involved with repairing and replacing bridge joints, there are many other problems associated with simple span construction. Leaky joints allow water and other corrosive materials access to girder ends and piers (Ramey and Wright, 1997c), causing



deterioration that may lead to severe structural problems. Deck joints also have a tendency to become clogged with debris, restricting deck expansion and causing large compressive forces to build up in girder ends, abutments, and approach slabs. For bridges on a skew, these compressive forces can lead to horizontal misalignment and other associated damage (Ramey and Wright, 1997b).

The elimination of deck joints, along with their associated problems, introduces a whole new set of concerns. Because separate spans are not allowed to expand and contract individually, additional thermal stresses need to be accounted for in their design (Sotiropoulous and GangaRao, 1993). High thermal stresses increase the continuous bridge's susceptibility to transverse cracking and, in the case of integral bridges, abutment rotations (VanLund and Brecto, 1999; Ramey et. al., 1997b). Most temperature related problems are observed in continuous spans (Sotiropoulous and GangaRao, 1993). Specifying the use of approach slabs and limiting the overall length of continuous bridges can minimize these problems. The State of Washington, for example, limits the lengths of continuous bridges to 91.4 m for steel spans and 106.7 m for concrete spans (VanLund and Brecto, 1999). The different limitations for steel and concrete are due to the increased stresses in decks on steel spans created by strain incompatibility at the steel/concrete interface.

#### 2.2.3 Effects of Skew

It has long been known by maintenance engineers that skew bridges deteriorate faster and require more maintenance than right angle crossings. In design, the effects of skew are generally ignored for skew angles less than 20 degrees (Bakht and Agarwal, 1993), and do not typically affect the performance of a bridge until the skew angle exceeds 30 degrees (McDonald et. al., 1995a; VanLund and Brecto, 1999). The Ontario Highway Bridge Design Code specifies that the effects of skew can be ignored for skew angles less than 20 degrees. Decks with higher skew angles appear to fare the worst, suffering from a host of problems ranging from reduced punching load strengths (Ebeido and Kennedy, 1996) to an increased susceptibility to transverse cracking (McDonald et. al., 1995a).

The most severe problems related to increased skew angles are horizontal misalignment and deck growth. Stresses caused by clogged or seized expansion joints cause individual spans to rotate, creating horizontal misalignments at bridge joints (Ramey and Wright, 1997b). The stresses in the misaligned joints can cause damage to the adjoining deck and girder ends or abutments. The misaligned deck will also be damaged by impact from traffic and snowplows, deteriorating faster than it would were it straight. Continuous structures, especially integral bridges, are particularly prone to deck growth, which causes transverse cracking. As demonstrated in Figure 2.2, when the jointless skewed deck expands it too will tend to rotate





Figure 2.2. Rotational Behavior of Skewed Semi-Integral Bridges (Van Lund and Brecto, 1999)



towards the acute angle because the resultant soil pressures acting on the abutments are not collinear. As the bridge cools and contracts, frictional resistance from the soil wedges adjacent to the abutments prevents the deck from returning to its original position. Incremental expansion will continue to occur over time, leading to transverse cracking and misalignment (VanLund and Brecto, 1999). Rotation towards the acute corners of the bridge, causing the increased soil pressures in these areas, makes skewed structures significantly more susceptible to transverse cracking near the corners (McDonald et. al., 1995a).

## 2.2.4 Coated v. Uncoated Reinforcing Steel

One of the main causes of bridge deck deterioration is the corrosion of the top mat of reinforcing steel (Babei and Hawkins, 1988). Corrosion is usually initiated when the level of chloride ions in the concrete at the location of the steel mat become elevated enough to overcome the passivating characteristics of the surrounding concrete. In uncracked, high quality concrete, adequate cover is generally acceptable to ensure that chloride ions, generally applied as road salts, take a sufficiently long time to build up at the level of the steel. When the concrete cracks, the corrosive solutions have a direct and instantaneous path to the steel. The only way to protect against corrosion in the vicinity of cracks is to coat the reinforcing bars with a protective, non-corroding barrier (Gene, 1995).

There are currently several varieties of corrosion resistant barriers in use including epoxy and alkyd coatings, hot-dip zinc galvanizing, and stainless steel claddings. All types of barrier systems have received only limited use internationally, although epoxy coating is by far the most common form of coated reinforcing bar protection in use today (Yoemans, 1994).

#### 2.2.4.1 Epoxy Coated Reinforcement (E.C.R.)

Epoxy coatings act as a physical barrier, preventing moisture and chlorides from reaching the surface of the reinforcing bars and reacting with the steel. It also acts as an electrical insulator, minimizing the flow of corrosive current within the concrete (Smith and Virmani, 1996). Although epoxy coating has generally performed quite well, its long-term durability remains a concern (Yoemans, 1994; Maldonado et. al., 1992; Rasheeduzzafar et. al., 1992; Babei and Hawkins, 1988). The presence of holidays and the susceptibility of the coating to damage during handling and transportation limit the effectiveness of epoxy coatings. Reports of severe corrosion of epoxy-coated bars in several bridges in the Florida Keys have raised questions concerning the effectiveness of E.C.R. in aggressive environments (Smith and Virmani, 1996; Yoemans, 1994; Maldonado et. al., 1992; Babei and Hawkins, 1988). Results of tests by Callaghan (1993) and Rasheeduzzafar (et. al., 1992) support these concerns, showing that E.C.R. showed no signs of corrosion in mild to moderate chloride exposures (0.6 and 1.2 percent by weight of cement), but showed significant corrosion and cracking of surrounding concrete in specimens exposed to high



chloride levels (4.8 percent by weight of cement). Once initiated, corrosion has been shown to progress along the bar, beneath the coating, causing a systematic breakdown of the epoxy and the surrounding concrete (Yoemans, 1994; Callaghan, 1993; Rasheeduzzafar et. al., 1992). These findings indicate that epoxy barriers may have a finite tolerance limit for chlorides (Rasheeduzzafar et. al., 1992).

The smoother surface of the epoxy, when compared to black (uncoated) steel, causes a reduction in the bond strength between the epoxy coated bars and the surrounding concrete (Babei and Hawkins, 1988). Bond strength reductions as high as 27%, when compared to black steel, have been reported (Maldonado et. al., 1992), although no mention of increased rates of delamination or impaired performance due to the this reduction could be found. Tests show a linear relationship between the thickness of the epoxy coating and the reduction in bond strength (Maldonado et. al., 1992).

The strength of the bond between the steel and the epoxy coating has also been questioned. Although an Ontario study found that adhesion of epoxy to steel decreases with time (Smith and Virmani, 1996), Smith and Virmani (1996) found only minimal evidence of disbondment, or a physical separation of the epoxy and steel, in their own field tests. These results indicate that disbondment is more likely to be caused by corrosion propagating along the surface of the bar beneath the coating, than by poor adhesion.

#### 2.2.4.2 Alkyd Paint Coatings

Alkyd coatings are generally used as a low cost replacement for epoxy or galvanized coatings. Major applications of alkyd-coated reinforcing steel are common in Mexico, but have not been reported in Canada or the United States. No reports on its performance in Mexico could be found. Relative bond losses for alkyd-coated bars are also a linear function of the coating thickness, with average losses in the range of 34 % (Maldonado et. al., 1992).

## 2.2.4.3 Galvanized Reinforcing Bars

Hot-dip galvanizing produces a strong, metallurgically alloyed coating which is resistant to mechanical damage and can provide sacrificial protection to steel bars (Yoemans, 1994). During the galvanizing process, zinc diffuses into the steel substrate creating not only a pure metallic zinc coating, but also an intermediate Zn-Fe alloy layer. The alloy layer provides continued sacrificial protection to the steel, even in the event that the metallic zinc outer coating is lost. The high reactivity of zinc, when compared to iron, will ensure that it undergoes selective dissolution well in advance of any corrosion of the steel bars (Subramanian, 1996).



Reports on the performance of galvanized steel are conflicting (Subramanian, 1996; Rasheeduzzafar et. al., 1992). A 1975 study (Stark and Perenchio) on the effectiveness of galvanized reinforcing showed that in instances where bridge decks reinforced with untreated steel showed evidence of corrosion and associated concrete distress, decks reinforced with galvanized steel and subjected to similar environments showed no evidence of corrosion at all. Destructive tests carried out as part of the same research project showed that the zinc coating had reacted only superficially in most cases, and that even in the worst cases an estimated 60 – 75 % of the coating remained after 20 years of service.

More recent tests by Rasheeduzzafar (et. al., 1992) have shown that concrete specimens reinforced with galvanized steel bars demonstrated a delay in the onset of cracking, a reduction in the mass of steel lost to corrosion, and an improvement in the rate and severity of spalling and delamintations. Although galvanized reinforcement is capable of withstanding a chloride concentration 2.5 times higher than that that initiates corrosion in black steel, it is generally agreed that galvanizing will not prevent corrosion, but merely delay it (Subramanian, 1996; Yoemans, 1994; Rasheeduzzafar, 1992). The FHWA estimates that the delay in the onset of corrosion is approximately five years (Subramanian, 1996).

#### 2.2.4.4 Stainless Steel Reinforcement

Solid stainless steel and stainless clad bars have been used in Europe for many years (Flint and Cox, 1988). Although the cost of solid stainless steel reinforcing bars and stainless clad steel reinforcing bars generally inhibits its wide spread use in North American bridge construction, research into the performance of concrete reinforced with stainless steel reinforcement has been promising. Stainless steel has a corrosion threshold seven to ten times higher than black steel (Sornesen et. al., 1990; Zoob et. al., 1985). In comparative tests with other types of coated reinforcement, stainless steel consistently outperformed them all, showing little or no sign of corrosion or concrete distress at any level of chloride exposure (Callaghan, 1993; Rasheeduzzafar, 1992; Treadaway et. al., 1989; Flint and Cox, 1988). Austenitic stainless steels were shown to perform the best in extreme exposure conditions (Treadaway et. al., 1989). Callaghan (1993) noted that stainless steel reinforcing is susceptible to corrosion when not all hot-roll scale is removed prior to being used.

## 2.2.5 Effects of Cover Depth

The durability of reinforced concrete exposed to an aggressive environment is largely dependent on its ability to prevent moisture and harmful chemicals from reaching the steel (Ozyilderim, 1998). The highly alkaline environment within concrete passivates steel and prevents it from corroding (Yoemans, 1994). When this ideal environment is disrupted by the presence of chloride ions, the passivating effects of the concrete are lost and the steel corrodes (Gene, 1995).



The most effective and efficient means of preventing corrosion of steel within concrete is to provide an adequate cover of dense, impermeable concrete (Subramanian, 1996; Yoemans, 1994). The question of what constitutes adequate cover of course arises, as well as inquiries in to when extra cover becomes excessive cover.

Studies have shown that cracking decreases drastically with increased cover, especially in the 25 to 50 mm range (Ramey et. al., 1997b; Leslie, 1980). Field studies in New York State show that decks with a 50 mm design cover performed far better than decks with a 38 mm design cover. In addition, the same studies also indicated that an increase in cover caused a reduction in the rate at which decks deteriorated, and the extent to which they deteriorated (Leslie, 1980). Most reports seem to agree that optimal cover depth lies in the range of 38 – 75 mm (Ramey et. al., 1997b; McDonald et. al., 1995a; Leslie, 1980). Decks with less than 38 mm of cover have been shown to be more susceptible to settlement cracking (McDonald et. al., 1995a).

The ACI Building Code recommends that 50 mm or more cover be used in extreme exposure conditions (i.e. bridge decks exposed to deicing salts). CSA A23.3 specifies a minimum 60 mm cover in aggressive environments, while the Ontario Highway Bridge Design Code recommends using at least 70 mm. The previous version of the Canadian Bridge Design Code (CSA S6-88) specifies the use of at least 50 mm of concrete cover for members exposed to deicing salts. The new version of the bridge code (CSA S6-00) specifies that 70 ± 20 mm of cover be used in aggressive environments. The CPCI Design Manual recommends that 50 mm or more cover be used for prestressed members exposed to corrosive environments (Rogowsky, 1996). The goal of minimum cover requirements is to increase the time it takes for chlorides to migrate to the level of the steel. However, increasing the cover depth hampers the steel's effectiveness in reducing surface cracking (Babei and Hawkins, 1988). In order to minimize the deck's susceptibility to transverse cracking, cover should be limited to a maximum of 75 mm (Osterle, 1997; Ramey et. al., 1997b; McDonald et. al., 1995a).

Although the over-design of the deck can significantly improve the performance of a bridge (Dunker and Rabbat, 1990b), it is far from the only factor playing a major role in deck deterioration. Even though studies have shown that bridges generally deteriorate in areas of low cover, attempts to correlate the occurrences of areas of low cover to the deterioration of a population of bridges have been unsuccessful (Leslie and Chamberlin, 1980). This is likely due to the fact that the effect of cover depth is not constant. It greatly influences the time to the onset of deterioration in the first four to five years of a bridge's life, but the influence diminishes rapidly as the bridge ages and other factors become more influential (Chamberlin, 1985).



#### 2.2.6 High-Performance Concrete

ACI defines high-performance concrete as "concrete meeting special combinations of performance and uniformity requirements that cannot always be achieved routinely using conventional constituents and normal mixing, placing, and curing practices" (Russell, 1999). High-performance concrete mixes are generally made of the same materials as conventional concrete, but have been specially proportioned to provide improved durability and strength, while maintaining constructability (Moore, 1999; Russell, 1999).

In the case of bridge decks, low permeability concrete performs better than conventional mixes (Ozyildirim, 1998) as they reduce the rate at which chloride solutions penetrate the concrete. Chloride ion penetration can be reduced by the use of latex, pozzolan (Class F fly ash or silica fume), or slag (Ozyildirim, 1998).

There are currently no cast-in-place bridge decks in Alberta constructed of high performance concrete. HPC is used for low permeability bridge deck overlays, generally as a rehabilitation measure. Sponsored by the Strategic Highway Research Program (SHRP), monitored field applications of the use of HPC in selected bridge decks in the United States were begun in 1995 – 1997 (Ozyildirim, 1999). As these decks age, long-term performance data should become available and provide information on high performance concrete bridge decks.

## 2.3 Summary

Several studies (see section 2.2.1) have shown that bridge decks supported on concrete superstructures outperform those supported on steel superstructures. Dunker and Rabbat (1995) believe that these differences are due to construction practices and that the materials themselves have little effect on bridge deck performance. Other researchers disagree with this explanation. They claim that the performance differential is due to damage arising from strain incompatibilities at the steel-concrete interface. Although the effects, in relation to bridge deck durability, of choosing between a steel and concrete superstructure are generally agreed upon, the specific cause of these effects is not.

In terms of the amount of maintenance resources expended, continuous bridges outperform simply supported bridges. However, continuity in the bridge deck introduces factors that may contribute to bridge deck deterioration. Most thermal problems are observed in continuous bridge decks due to the increased lengths of restrained deck. Continuity also causes tension over supports in the top of the deck due to vertical loads, a condition that simply supported structures don't experience. Although visual inspections indicate that continuous bridges outperform simple spans, the effects of continuity on the deck itself are still unknown.



Skewed bridges are subject to axial and torsional stresses which increase their susceptibility to transverse cracking. These stresses are caused by clogged joints, soil pressure, and end friction. Vehicle loads on misaligned spans also add to the unique host of stresses experienced by skewed crossings. The increase in transverse cracking amongst skewed bridges accelerates the deterioration of their decks. The degree to which skew influences deck deterioration has not been determined.

Coated reinforcing bars were initially believed to be the solution to many of the corrosion-related problems that bridge decks face. Unfortunately, the corrosion of epoxy-coated bars in extreme environments limits their use. It is generally agreed that epoxy-coated bars will outperform black steel bars under low to moderate exposure conditions. E.C.R.'s performance under extreme exposure conditions, such as heavily salted bridge decks, is still questionable. Galvanized reinforcing bars are expected to delay the onset of corrosion by about five years, while stainless steel reinforcing bars, whose cost limits their wide spread use, were found to prevent corrosion even under extreme exposure conditions. The use of coated reinforcing steel has been heavily researched in many studies, the results of which can be readily found in the literature.

It is generally agreed that the optimal range for cover depth is 35 to 75 mm. Cover depths below 35 mm provide insufficient protection for the reinforcing steel against the aggressive bridge deck environment. Cover depths in excess of 75 mm impair the ability of the top mat of reinforcing bars to prevent surface cracking. Cover depth has the greatest influence on the deterioration of young bridge decks, with its level of influence trailing off after five to ten years. Whether or not cover depth within this optimal range has any influence on deck deterioration is not reported.

It is believed that the use of high performance concrete in bridge decks will greatly improve their durability. Based on theory and laboratory tests, it is believed that mixes designed specifically for durability under extreme exposure conditions can be made. Due to the cutting edge status of these concepts there is insufficient real life data to assess the long-term performance of high performance concrete in the field.

The literature shows that the amount of research into bridge deterioration has increased recently, especially within the last decade. By studying the performance of individual bridges within a population, researchers have been able to identify several factors that influence bridge durability and deck deterioration. Performance data has, for the most part, been acquired through visual inspection. Large scale, "real world" studies have used visual inspection ratings that are subjective in nature, and which may not be consistently applied from one region to another. Like any data obtained from real world applications, visual inspection data is subject to relatively high variances. Controlled laboratory tests are generally carried out to assess the effects of varying a single parameter. They rarely reproduce the actual conditions under which a bridge must exist,



nor do they capture the interactive effects of the many other parameters not considered in the test. The limitations of the data used in previous studies raises two questions: Are there other objective forms of real world data, free from regional inconsistencies and subjectivity, which could be used to describe bridge deck deterioration? When using objective criteria, what is the influence of various design decisions on bridge deck deterioration?



# CHAPTER 3 METHODOLOGY

This chapter will outline the process used to determine which design choices can be made to extend the life of concrete bridge decks. Copper sulphate electrode (CSE) test results are used to objectively quantify corrosion induced bridge deck deterioration. An outline of the CSE testing procedure is found in § 3.2. A relational database was constructed to store and manage the test results, which were provided by Alberta Transportation (AT). A description of the database is provided in § 3.3. Scatter plots are used to establish correlations between design parameters and general populations of bridges. The bridges are then further divided into sub-populations to improve correlations, and focus the research. These scatter plots form the central part of this investigation, which is outlined in § 3.4. Simple statistical analyses are carried out on those sub-populations showing strong correlations. A description of the statistical analyses can be found in § 3.5. A flowchart graphically summarizing how conclusions were arrived at can be found in § 3.6 at the end of this chapter.

#### 3.1 General

There are essentially two approaches to obtaining data that can be used to improve the design and management of bridge inventories (Somerville, 1998):

- 1. A broad-brush statistical analysis of costs associated with bridge construction and maintenance over time.
- 2. An analysis of the causes of deterioration based on observed effects.

This project will use a variation on the second approach by trying to determine correlations between bridge design (the causes) and deck deterioration as measured by copper-sulphate electrode test readings (the effect).

Previous research projects carried out by Alberta Transportation and other institutions have demonstrated how CSE readings are associated with bridge deck deterioration. Carter (1989) has shown a strong correlation between the onset of active CSE readings (more negative than - 350 mV) and associated deterioration of the bridge deck. Visible damage such as the development of spalls and potholes generally lag the onset of active CSE readings by about ten years, with the onset of structural damage such as delamination and related cracking preceding the onset of visible damage. The approximate lag time between the onset of active CSE readings and associated structural damage is not specifically known, but can be assumed to occur within five years of the onset of corrosion of the top mat of reinforcing steel. These values are generally



only valid for uncracked concrete decks. The rate at which steel corrodes is based on the alkalinity and oxygen content of the surrounding environment, amongst other factors. Cracked concrete allows oxygen and corrosive salt solutions direct access to the steel, creating an ideal environment for corrosion that accelerates the expansion of the steel and reduces the lag time between the onset of corrosion and associated structural and visible damage.

Differences in funding, design, construction, inspection, de-icing amounts, and maintenance policies strongly affect the performance of bridges (Dunker and Rabbat, 1990a). By studying test results from a single transportation authority differences in funding and maintenance policies are eliminated. By using results of a standardized test procedure, subjectivity and regional variations are removed from the data. The use of average test values from populations of bridges, as opposed to test results from individual bridges, deals with the variation in the use of de-icing chemicals by comparing test results corresponding to the average rate of chloride application, which is assumed not to vary between populations. It is impossible to eliminate variations in construction quality when analyzing large amounts of historical data without eliminating a majority of the available data. To eliminate construction quality as a source of variation, assessments of each individual bridge in the study would have to be made, requiring site visits and additional destructive testing. Since it would only be possible to visit a small percentage of the bridge sites within the province and carry out these assessments, a considerable amount of data would be lost in an attempt to eliminate a final remaining source of variation. For this study, it was assumed that variation due to construction quality is constant across the entire population of bridges within the Province of Alberta. This leaves the design of the bridge as the only controllable factor causing variation within the test results. The correlation between various design factors and the durability of concrete bridge decks is studied in this report.

#### 3.2 Copper-Sulphate Electrode (CSE) Testing

To become intimately familiar with copper-sulphate electrode testing, the author spent two weeks working on a bridge testing crew contracted to collect CSE data for Alberta Transportation. Several weeks were also spent working with engineers analyzing CSE data and making maintenance recommendations based on it. The information in this section is based in part on these experiences.

#### 3.2.1 Background

CSE testing is used to estimate the electrical half-cell potential of uncoated reinforcing steel as a means of determining its corrosion activity. The test method is applicable to all exposed reinforced concrete members reinforced with black steel regardless of their age or size, or the depth of concrete cover over the reinforcing steel (ASTM C 876 – 91). Half-cell measurements are dependant on the presence of an electrical circuit, and may be affected by the conductivity of



the concrete. The contact resistance between the probe and surface dry concrete can be so great as to cause an erroneously low potential measurement (Stratfull, 1973), necessitating the application of an electrical contact solution to the concrete surface immediately prior to testing.

The numeric magnitude of the measured potential is used as an indication of the presence or absence of corrosion of steel embedded in the concrete. According to ASTM C 876 – 91 potentials more positive than –200 mV indicate a greater than 90 % probability that no corrosion of the reinforcing steel is occurring in the test area at the time of measurement. Measured potentials in the range of –200 mV to –350 mV indicate that corrosion activity in the test area is uncertain. Potentials more negative than –350 mV indicate that the probability that corrosion is occurring is greater than 90 %. An active potential does not correlate with a specific rate of corrosion, although the numerical value of the potential has been shown to increase with an increasing amount of corrosion (Stratfull,1973).

The half-cell potential does not measure the physical or structural condition of the concrete, and can only be empirically related on a statistical basis to concrete cracking under specific conditions. Concrete cracking due to steel corrosion is related to concrete strength, absorption, moisture content, stresses, and cover thickness, and cannot be solely related to the potential measurement (Stratfull, 1973). This being said, in the vast majority of cases corrosion-caused concrete cracking was not associated with a potential less negative than –310 mV (Stratfull, 1973).

As a means of guiding their proactive maintenance program, Alberta Transportation monitors the percentage of potential readings that are more negative than –300 mV on their bridge decks. When the percentage of readings on a single bridge deck becomes elevated, rehabilitation is carried out. The –300 mV threshold ensures that maintenance or rehabilitation is carried out before the corrosion of the reinforcing steel reaches a point where deck replacement becomes necessary.

#### 3.2.2 Apparatus

The apparatus used to collect CSE data consists of a probe, a cane, a voltmeter, and several metres of wiring. The probe is attached to the end of the cane, allowing the inspector to place it on the bridge deck while standing erect. As shown in Figure 3.1, the probe is connected to a voltmeter and a data recorder, which are electrically connected to the top mat of reinforcing steel.

As shown in Figure 3.2, the probe is a copper – copper sulphate half-cell. The half-cell consists of a rigid tube composed of a dielectric material that is nonreactive with copper or copper-sulphate, a porous wooden or plastic plug that remains wet by capillary action, and a copper rod that is immersed within the tube in a saturated copper-sulphate solution. The potential of the



saturated copper – copper sulphate half-cell as referenced to the hydrogen electrode is –316 mV at 22.2 °C (72 °F). The temperature coefficient of the cell is about 0.5 mV more negative per °F for the temperature range of 0 to 49 °C (32 to 120 °F), and is accounted for when the data is analyzed.

ASTM specifies that the battery powered voltmeter have an end-of-scale accuracy of  $\pm 3$  %, and an input impedance of no less than 10 M $\Omega$  when operated at a full scale of 100 mV. Inspection crews currently use digital voltmeters set to an accuracy of 1 mV. An automated battery powered data recorder is connected to the voltmeter, enabling quick and accurate recording of the readings. ASTM C876 – 91 also states that lead wires are to be dimensioned such that their electrical resistance for the length used will not disturb the electrical circuit by more than 0.1 mV. This is accomplished by using no more than 150 m of at least AWG No. 24 wire. The wire is suitably coated and insulated.

## 3.2.3 Procedure

The procedure used by Alberta Transportation to collect CSE test data is very similar to that specified in ASTM C 876 – 91. Upon arriving on site and setting up appropriate safety measures, a 1.2 m (4 ft) grid is laid out on the bridge deck. 1.2 m spacing has been found to satisfactorily represent the corrosion condition of a bridge deck. Larger spacing will increase the likelihood that localized corrosion areas will not be detected.

Generally, while the grid is being laid out, a separate member of the crew will set up the electrical connection with the top mat of reinforcing steel. Ideally, the connection should be made directly to an exposed piece of the top mat of reinforcing steel. In most cases, exposing the top mat of reinforcement can only be accomplished by removing some of the deck concrete, a time consuming and counterproductive activity. Fortunately, in cases where it can be documented that an exposed steel element is electrically continuous with the top mat of reinforcing, the electrical connection can be made to the exposed steel element. Electrical continuity of steel components with the reinforcing steel can be determined by measuring the resistance between widely separated, and otherwise electrically isolated, steel components on the deck. Alberta Transportation specifies that a resistance of  $0.0~\Omega$  must be measured between widely separated steel elements to be deemed electrically continuous with the top mat of reinforcing steel. Typically, the connection is made to a deck joint plate or a bridge rail anchor bolt.





Figure 3.1. CSE Test Setup (ASTM C 876 – 91)





Figure 3.2. CSE Test Probe (ASTM C 876 - 91)



Prior to actually taking any readings, the bridge deck is flooded with an electrical contact solution in order to standardize the potential drop through the concrete portion of the circuit, and minimize any contact resistance between the concrete and the probe. The electrical contact solution is generally made by mixing household detergent and potable water at an approximate ratio of 1:200 by weight. Readings are taken at every grid point and recorded to the nearest mV in the data recorder.

Upon returning from the field, the data is downloaded from the data recorder, corrected for temperature, and then graphically displayed in two different manners, an equipotential contour map and a cumulative frequency plot. Examples of these plots can be found in Figure 3.3 and Figure 3.4. The plots, combined with other statistical information and expert opinion are then used to guide maintenance and rehabilitation activities.

#### 3.3 Database Construction

A robust dynamic database is fundamental to the development of whole-life analysis as a design tool (Somerivlle, 1998). The same holds true when analyzing large amounts of historical data to establish the merits of a given design choice. Without a simple and efficient means of sorting, searching, retrieving and manipulating data, such a project would not be possible. To this end, a simple relational database was set up in Microsoft Access to store inventory information as well as historical test results. Data was received from Alberta Transportation in a single two-dimensional text file. The text file contained all necessary inspection data along with associated inventory data. Each line of the text file represented an individual bridge inspection, causing inventory data to be repeated every time the same bridge was tested more than once. A relational database solves this problem by separating the inventory data from the test data and relating them to one another through a common field. The data file from AT was separated into several tables, each containing unique entries, and each being related to one another through the bridge file number, a field common to each table. Each table contains between 600 and 2200 entries and between 11 and 23 fields.

As the project progressed, it quickly became apparent that the original data set supplied by Alberta Transportation would not be adequate to properly assess all the design parameters. Because current AT databases do not contain information on girder geometry and layout, intermediate diaphragms, and rehabilitation activities, this data had to be obtained elsewhere. To assess the influence of longitudinal girder stiffness, transverse deck stiffness, and intermediate diaphragms, a unique subset of data was created by collecting this information from design drawings. To maximize project efficiency, "value added" data was collected for bridges that had been tested on five or more occasions. Complete sets of data were recorded for





Figure 3.3. Example of CSE Contour Plot (Courtesy of Earth Tech Canada)



Percentage of Deck Area vs. C.S.E. Readings (Volts) Bridge File: #### 



Figure 3.4. Example of Frequency Plot of Historical CSE Data (Courtesy of Earth Tech Canada)



190 bridges, providing results from over 1 000 separate inspections. Section properties and stiffness parameters were calculated from the data on the drawings, and all information was entered into a separate table labeled Value Added Data in the Access Database.

Maintenance and rehabilitation data was obtained from a third party currently contracted to construct such a database for Alberta Transportation. The data included the year the work was done as well as details on the type of maintenance or rehabilitation that was carried out. Two tables were created from this data. The first table contained all of the rehabilitation data, while the second table contained only the year of the first major deck rehabilitation. The second table was used extensively in the research to separate tests that were carried out on rehabilitated decks from those that were carried out on original, non-rehabilitated decks. The fields contained within each of the tables are summarized in Table 3.1.

Table 3.1: Summary of Tables and Fields Contained within the Access Database

| TABLE                                    | FIELDS                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bridge<br>Information                    | File Number, Category, Usage, Span Type, Simple/Continuous, Construction Years, Wearing Surface Type, Subdeck Type, Number of Spans, Span Lengths, Nominal Bridge Length, Skew, Width, Design Load, AADT                                                                                                                                                           |
| Deck<br>Information                      | File Number, Protection System Type, Deck Thickness, Longitudinal Bar Size, Transverse Bar Size, Longitudinal Bar Spacing, Transverse Bar Spacing, Cover Depth, Bar Strength, Bar Coating                                                                                                                                                                          |
| CSE Test Data                            | File Number, Inspection Date, Wearing Surface at Time of Test, Overlay at Time of Test, Membrane at Time of Test, Number of Readings Taken During Test, Average CSE Reading, Standard Deviation of the Readings, Standard Error of the Readings, Coefficient of Variation of the Readings, Deck Age at Time of Test                                                |
| Percent More<br>Negative Than<br>-300 mV | File Number, Inspection Date, Percent of Readings < -300 mV, Average CSE Reading                                                                                                                                                                                                                                                                                   |
| Visual Deck<br>Inspection<br>Data        | File Number, Inspection Date, Wearing Surface at Time of Inspection, Overlay at Time of Inspection, Membrane at Time of Inspection, Longitudinal Crack Rating, Transverse Crack Rating, Random Crack Rating, Underside Longitudinal Crack Rating, Underside Transverse Crack Rating, Underside Random Crack Rating, Overall Condition Rating, Inspector's Comments |
| Value Added<br>Data                      | File Number, Simple/Continuous, Intermediate Diaphragms Present, Diaphragm Spacing, Girder Spacing, Girder Depth, Deck Thickness, Relative Girder Deflection (Δ/L), Girder Stiffness (El/L).                                                                                                                                                                       |
| Rehab Data                               | Bridge File, Rehab Year, Description                                                                                                                                                                                                                                                                                                                               |
| Year of First<br>Rehab                   | Bridge File, Rehab Year                                                                                                                                                                                                                                                                                                                                            |



Debugging of the database included the elimination of duplicate entries and the identification and elimination of data that was obviously entered in error. Due to the two-dimensional format of the original data file received from AI, there were a large number of duplicate entries in the original version of the database. Duplicate entries were easily located and removed using a built-in query within Access. Errant entries were removed as they were encountered. An initial sweep of the data was done in an attempt to eliminate as many errant entries as possible. Additional mistakes were identified and removed as they were encountered during the research. An entry was deemed to have been made in error if it satisfied one of the following criteria: the value represents a non-existent object, the value falls outside the acceptable range of values, the value is incomplete or unusable, or the value is impossible. These criteria, along with examples, are summarized in Table 3.2.

Table 3.2: Summary of Criteria Used to Identify Errant Entries

| Criteria                              | Example                                                         |
|---------------------------------------|-----------------------------------------------------------------|
| Non-Existent Object                   | Non-existent bridge file, Code for non-existent bridge girder   |
| Outside Acceptable<br>Range of Values | Average CSE reading of zero, Percentages greater than 100       |
| Incomplete or Unusable                | Incomplete date, Date where month and day are indistinguishable |
| Impossible Value                      | A date that has not yet occurred                                |

Once the database was constructed and debugged, it was ready for use. The use of queries and embedded functions to filter and sort data greatly improved the efficiency of the research.

Printouts of all the tables contained in the database can be found in Appendix B.

# 3.4 Primary Investigation

The primary investigation of the data was carried out to determine which design parameters are likely to influence CSE test results, and to become comfortable with the trends that could be expected within the data. In most cases, the bridge population was divided into several subpopulations, based on design characteristics, which were then plotted against the age of the deck. Differences in rates and amounts of deterioration were noted and analyzed in order to determine the relative influence that each design trait has on the durability of the bridge deck. In instances where a quantifiable measurement of the physical characteristics of the bridge exist,



deterioration may have been plotted against the design trait to establish whether variations within a specific design family affect the durability of the bridge deck. By using the average of all tests carried out on a deck of a given age, instead of individual test results, a large amount of data could be included on a single graph in a way that produced distinctive trends with comparably less scatter. By reducing all the individual data points for a given year to a single data point representing the average for that age of deck, the "shotgun blast" appearance of Figure 3.5 is eliminated and trends are more easily observed without any further analysis, as shown in Figure 3.6. Since it was desired that numerical or statistical analysis be kept to a minimum, the use of average values became a very favorable option.

The first step in the investigation was to identify all of the design factors that could possibly influence the CSE readings of a concrete bridge deck. The following list contains the design factors that were studied.

- Steel v. Concrete Superstructure
- Continuous v. Simple Spans
- Cover Depth
- Skew Angle
- Relative Amount and Layout of Steel in the Top Mat of Reinforcing Bars
- Presence of Intermediate Diaphragms
- Stiffness of Girders in Longitudinal Direction
- Stiffness of Deck in Transverse Direction

It should be noted that not all of the above information is contained within AT databases, requiring the retrieval of data for the last three items on the above list from design drawings. Data for these items was collected from drawings for bridges that have had CSE testing carried out on five or more occasions.

Following the selection of the design parameters for study, the data within the database is filtered accordingly and imported into a spreadsheet. The test readings are then grouped by deck age, or other quantifiable variable, and an average value for each group is determined. The average values are then plotted against the deck age, or other variable, and trends are observed and compared.





Figure 3.5. Percentage of CSE Readings More Negative Than -300 mV v. Deck Age





Figure 3.6. Average Percentage of CSE Reading More Negative Than -300 mV v. Deck Age



#### 3.5 Statistical Analysis

CSE data is divided into various populations based on design traits. A simple statistical analysis of selected groups of data is used to assess the strength of relationships between variables, determine the validity of observed trends, and/or check the significance of differences between test results from two different populations. A regression analysis is used to establish a correlation between two variables. A coefficient of determination is calculated to determine the strength of the correlation between two variables. An analysis of variance (ANOVA) is used to assess the confidence level of the regression analysis. Significance testing is used to check whether observed differences between two populations are real, or simply a result of random scatter. A broader explanation of each method of analysis is presented in the following subsections. Further explanation on statistical analysis can be found in Mendenhall and Sincich (1995), Rowntree (1981), and "HP Calculator Manual". The following súbsections were derived from these three sources.

#### 3.5.1 Regression Analysis

Regression analyses are used to fit curves to the scatter plots. The least squares method is used to fit first or third order polynomials to the CSE data. A first order polynomial produces a linear regression model, and is generally fitted to data taken from non-rehabilitated bridges. Third order polynomials are non-linear, and are generally found to provide the best fit when rehabilitated bridges were included in the data population. The decision on the type of curve fitted to each scatter plot was left to the discretion of the researcher.

#### 3.5.2 Coefficient of Determination.

The coefficient of determination is used as a measure of the contribution of one variable (x) in predicting a second (y). The coefficient of determination computes the reduction in the sum of squares of deviations that can be attributed to x as a proportion of the sum of squares of deviations of the sample mean. The sum of squares of deviations of the sample mean can be expressed as

$$SS_{yy} = \sum (y_i - \overline{y})^2$$

and is a measure of the accumulated error between the individual data points and the sample mean. The sum of squares of deviations for the model created by fitting a least squares line to the data is

$$SSE = \sum (y_i - \hat{y}_i)^2$$



where  $y_i$  is the value of the individual point,  $\overline{y}$  is the sample mean, and  $\hat{y}_i$  is the least squares prediction of  $y_i$ . The coefficient of determination can then be calculated as

$$r^2 = \frac{SS_{yy} - SSE}{SS_{yy}}.$$

For simple linear regression, it can be shown that this quantity is the square of the Pearson correlation coefficient (r). Values for the coefficient of determination range from 0 to 1, with higher values indicating a stronger correlation between the two variables.

A strong correlation between two variables does not imply causality. It would be incorrect to conclude, based on a high value of the coefficient of determination, that changes in one variable are caused by variation in another. The only valid conclusion, prior to further examination, is that within the range of the data, given x, one can predict y. A further examination of the relationship between the two variables is needed to determine causality.

The correlation between two variables is not only a measure of the scatter in the data around a fitted model, but also of the slope of the trend line. If the trend line has a very flat slope, the coefficient of determination will be very low regardless of scatter. This is because the values of  $SS_{yy}$  and SSE are very close when the trend is very flat.

#### 3.5.3 Analysis of Variance

The built-in regression function in MS Excel's Data Analysis Tool Pack is used to assess the validity of trend lines fitted to the sample data. The regression analysis is divided into several groups including regression statistics, analysis of variance (ANOVA), parameter estimates, residuals, and plots. Of interest to this study are the ANOVA and the parameter estimates.

The ANOVA tests the null hypothesis that the slope of the regression line is zero. The final column in the ANOVA table, labeled *Significance F*, shows the probability that the slope of the regression line is zero, and that the null hypothesis is true. As an example, at the 95 % confidence level, the null hypothesis can be rejected if the value in this column is less than 0.05.

The parameter estimates show the slope and intercept of the regression line, as well as the upper and lower bounds of each of these parameters. The range between the upper and lower parameter bounds is calculated so that the true value of the parameter will fall within these bounds 19 times out of 20. If the signs of the upper and lower bound of the slope parameter are



opposite, a great deal of doubt is cast upon the validity of the trend line. If this is the case, it is likely that the null hypothesis could not be rejected based on the ANOVA.

# 3.5.4 Significance Testing

The goal of significance testing is to determine whether the difference between two populations is significant or could be due to random chance. As with the ANOVA and parameter estimates, significance testing is carried out at the 95 % confidence level. A two-sample t-test assuming equal variances is used in this project to determine whether differences between populations are significant at the 95 % confidence level.

Significance testing is carried out when two populations of bridges show considerable differences in corrosion levels over time. When the primary investigation indicates that one sub-population of bridges has higher corrosion levels than another, a one-way significance test is carried out on data groups for all deck ages. This helps to determine the percentage of test groups showing significant differences, and at what age these differences are most severe. If differences are found to be significant at a majority of deck ages, the difference is deemed real.

## 3.6 Summary Flowchart

The flowchart presented in Figure 3.7 outlines the steps that were undertaken in this project. The ovals represent the beginning and end of the project. The rectangles represent activities that were carried out during the course of the project. Diamonds represent decisions that must be made prior to the start of the next activity.





Figure 3.7: Summary Flowchart



# CHAPTER 4 RESULTS AND ANALYSIS

As indicated in Chapter 1 and Chapter 3, the goal of this project is to determine design-based causes of bridge deck deterioration by comparing trends in CSE test data. This chapter presents the CSE data obtained from Alberta Transportation, and analyses of the causes of the observed trends.

A significant difference is found between the deterioration trends of steel and concrete girder bridges. Decks on steel girder bridges are found to deteriorate at a higher rate than decks on concrete girder bridges. The deterioration trends of steel and concrete girder bridges will be characterized in § 4.1 of this chapter. Differences in the characteristics of the two populations will also be reviewed. § 4.2 examines the effects of continuity on the deterioration of bridge decks. Analysis of the figures in § 4.2 will demonstrate that decks on continuous spans deteriorate faster than decks on simple spans. § 4.3 investigates the effects of girder stiffness by examining maximum curvature of the girders. § 4.4 examines the effects of girder spacing by looking at the transverse span-to-depth ratio of the bridge deck. Beginning with § 4.5, the investigation shifts away from factors influencing the difference between steel and concrete girder bridges, and towards design choices made independent of superstructure type. In § 4.5, cover depth is found to have very little influence on the corrosion of the top mat of reinforcing steel. The effect of the quantity and layout of steel in the top mat of reinforcing is extensively investigated in § 4.6. In the final three sections, the effects of skew, intermediate diaphragms, and maintenance and rehabilitation are examined. A summary of all results is provided at the end of the chapter.

## 4.1 Steel Versus Concrete Superstructure

Observations on the relative effects of steel and concrete superstructures were the first to be made. All bridges within the CSE testing program were included and were divided into two populations based on principal span type (steel and concrete). No further filtering of the data was done. The choice of span type is such a fundamental part of the design process that it is likely to influence other design choices, and limiting the data involved in the test by restricting other design variables within the population would likely introduce a bias in the study. The CSE test results were then grouped by the age of the deck from which they were acquired. An average test value was calculated for groups that had an adequate quantity of independent test results. Only groups with at least three independent test results were considered large enough to produce a reliable average test value. Average test results for the two populations were then plotted against deck age on the same plot, allowing comparisons and observations to be made.



Figure 4.1 shows average CSE readings for steel and concrete structures plotted against deck age. The flat slopes of the trend lines and the noticeably low R<sup>2</sup> values show that there is not a strong relation between the age of the deck and the average CSE reading. The relatively small amount of scatter in the data provides a high level of confidence in other conclusions derived from it. The most obvious conclusion that can be drawn from Figure 4.1 is that bridge decks supported by steel girders have higher average CSE readings than decks supported by concrete girders. Unlike many other plots in this report, the difference between steel and concrete populations is distinct. There is very little overlap in the scatter of the two groups of data points, with significant separation in the period prior to rehab.

A statistical analysis of the data in Figure 4.1, which can be found in Appendix A, shows that there is merit to the conclusions reached by observation. Of the 35 individual deck ages for which data for both concrete and steel bridges exist, 18 show a significant difference in deck corrosion levels at the 95 % confidence level. For the period following corrosion initiation and prior to rehabilitation (9 to 25 years), a significant difference between the two populations exists at more than three quarters of the deck ages. Since bridges are generally rehabilitated to similar standards, corrosion levels following rehabilitation are more consistent across the entire population of bridges. Prior to rehabilitation, steel girder bridges show significantly higher corrosion levels than concrete girder bridges.

A far greater dependence on deck age is revealed by the percentage of CSE readings in the active corrosion range. Figure 4.2 shows how corrosion levels of steel bridges rise much quicker than corrosion levels of concrete bridges. Approximately five percent of CSE test readings on ten-year-old concrete bridges are in the active corrosion range. For steel bridges of the same age, the number of test readings in the active range rises to nearly 25 %. Prior to rehabilitation, more than a third of test readings on steel bridges are actively corroding, compared to less than 20 % on concrete bridges.

Figure 4.2 also suggests that steel bridges are undergoing rehabilitation about ten years earlier than concrete bridges. Decks supported on steel girders are rehabilitated at approximately 20 years of age. Decks supported by concrete girders are rehabilitated after approximately 30 years. Steel bridges appear to respond better to rehabilitation than concrete bridges, as their corrosion levels fall much further in later years than corrosion levels of concrete bridges.

Because concrete bridges are in better condition prior to rehabilitation, the work done on them is probably not as aggressive as the work done to rehabilitate steel bridges. The end goal of the rehabilitation of both structures is likely the same, causing the difference in corrosion levels between the two populations to decrease in older decks.





Figure 4.1. Average CSE Readings for Steel and Concrete Superstructures v. Deck Age





Figure 4.2. Average % CSE Readings More Negative Than -300 mV v. Deck Age For Steel and Concrete Girder Bridges



In Figure 4.3, rehabilitated bridge decks have been removed from the sample populations. Steel structures again show a rapid increase in active deck corrosion starting at about five years of age. Corrosion levels in both populations increase at approximately the same rate from an age of 12 years on. The increased scatter of the steel data for older bridge decks is because of the relatively small number of non-rehabilitated steel bridges older than 25 years.

Having established that steel bridges do show higher average CSE readings and a greater percentage of CSE readings in the corrosive range, the question arises as to why concrete decks supported by steel girders in Alberta deteriorate faster than those supported by concrete girders. Is the difference due to construction quality as Dunker and Rabbat believe, or is it a result of strain incompatibilities between the two materials as Sotiropoulous and GangaRao have indicated, or are different design traits unique to each type of structure responsible for the poor performance of steel girder bridges? In this type of study, it is difficult to gauge the construction quality of the different structures. In studies by Dunker and Rabbat, the structures were constructed by many different transportation authorities using several sources of funding. The standard to which American structures are designed often depends on which agency is funding their construction. In this study, all structures were funded and managed by a single transportation authority, making the likelihood of systematic differences in construction quality very low. Without experimental data, it is difficult to assess whether strain incompatibilities between steel and concrete play a significant role in promoting concrete deterioration. The difference between the thermal coefficients of steel and concrete is small (15 %), with the coefficient of steel being slightly higher. The fact that the concrete deck, exposed to direct sunlight, heats up quicker than the steel should help to reduce thermal stresses even further. Whether or not significant differences in the design of steel and concrete bridges exist needs to be investigated further in order to determine their effects.

Table 4.1 shows some of the quantifiable design differences between steel and concrete bridges. The largest difference between the two populations is the percentage of continuous bridges in each. These ratios are also shown in the pie charts on Figure 4.1. The proportion of steel bridges that are continuous is almost three times that of concrete bridges. Longitudinal tension in the majority of decks on steel girder bridges is likely increasing their rate of transverse cracking, increasing the amount of premature corrosion. The stiffness coefficient (EI/L) of the individual girders is, on average, approximately the same. The average girder spacing for steel bridges is, however, almost 50 % higher than for concrete bridges. Higher girder spacing means that there are fewer girder rows on the bridge, and that more load is being taken by each girder. The result of this higher load is, on average, a 200 % higher relative deflection ( $\Delta$ /L), and more stress in the deck. The wider girder spacing also leads to a 20 % increase in the average transverse span to depth ratio of the deck, causing it to work harder and become more susceptible to longitudinal





Figure 4.3. % CSE Readings More Negative Than -300 mV v. Deck Age for Non-Rehabilitated Decks



Table 4.1. Differences Between Steel and Concrete Girder Bridges

| Superstructure<br>Type | Average<br>Span<br>Length | Average<br>Girder<br>Spacing | Average<br>EI/L | Average<br>△/L | %<br>Continuous | Average<br>Transverse Span<br>to Depth Ratio |
|------------------------|---------------------------|------------------------------|-----------------|----------------|-----------------|----------------------------------------------|
| Steel Girder           | 34.7 m                    | 2.68 m                       | 8.37E+10        | 0.033          | 83              | 15.05                                        |
| Concrete Girder        | 31.5 m                    | 1.81 m                       | 8.57E+10        | 0.011          | 27              | 12.59                                        |
|                        |                           |                              |                 |                |                 |                                              |



cracking over the girders. These common design traits are, in part, responsible for the poor deck durability of steel girder bridges when compared to concrete girder bridges. The following three sections will examine these design traits more closely.

# 4.2 Continuity

The use of continuous or jointless bridge decks has increased steadily over the past few decades. Problems associated with deck joints have led designers to eliminate them from many bridges. Many of the biggest problems associated with deck joints are either associated with the girders and substructure, or with the joints themselves. Significant damage to the deck is rarely a result of deck joints. Damage attributed to the joints is generally limited to localized delamintations and spalling in the immediate vicinity of the joint.

Continuity changes the set of forces to which the deck is subjected. Tensile stresses in negative bending moment regions promote transverse cracking of the deck and initiating corrosion of the top mat of reinforcing. Figure 4.4 and Figure 4.5 show how the tensile forces within continuous decks promote corrosion. Figure 4.4 shows average CSE readings versus time for continuous and simple structures. The difference between the two populations is most evident in younger decks, and becomes less pronounced as the decks age and are maintained and rehabilitated to similar standards. Significance testing carried out at each year for which data is available for both populations shows that a significant difference exists at 39 % of the deck ages. For the period following corrosion initiation and prior to rehabilitation (9 to 25 years), the percentage of deck ages at which a significant difference in corrosion levels exists rises to 65 %. A spreadsheet printout of the significance tests can be found in Appendix A.

Figure 4.5 shows the same plot as Figure 4.4, but with rehabilitated decks removed. The data shows that corrosion levels increase much quicker during early years of continuous bridge decks than for simple spans. Corrosion levels continue to increase at similar rates after approximately 10 years. After 10 years, the negative moment regions of the decks have likely reached a fully cracked state. Following this, the rate at which corrosion levels in continuous spans increase is driven by the same factors as in simple spans, resulting in the near parallel trend lines.

Figure 4.6 addresses the role that continuity plays in causing the differences in deterioration trends between steel and concrete girder bridges. Average percentages of CSE values in the corrosive range for four span types, simple steel, continuous steel, simple concrete, and continuous concrete are presented. The small amount of data for simple span steel bridge was deemed insufficient to draw any conclusions. As seen in the previous section, steel bridges show significantly higher corrosion levels than concrete bridges. Figure 4.6 shows that,





Figure 4.4. Average CSE Readings for Simple and Continuous Spans





Figure 4.5. Average % CSE Readings More Negative Than -300 mV v. Deck Age for Non-Rehabilitated Simple and Continuous Spans





Figure 4.6. Average % CSE Readings More Negative Than -300 mV v. Deck Age



for concrete bridges, continuity increases corrosion levels but only slightly affects the time to rehabilitation. Continuous steel bridges are typically rehabilitated approximately ten years before both continuous and simple span concrete girder bridges. Continuous concrete girder bridges are typically rehabilitated approximately one or two years before simple span concrete bridges. As in previous figures, steel bridges are rehabilitated when their decks are approximately 20 years old, while concrete bridges are rehabilitated when their decks are approximately 30 years old.

Where deck joints are involved, the deterioration of the deck is not the main concern. Maintaining a watertight seal in the joint to prevent water from leaking on to girder ends and substructure elements is where resources are expended. Maintaining a watertight seal requires regular inspection and frequent maintenance. Water and salt solution leaking through joints can cause accelerated deterioration of prestressed girder ends and concrete pier caps. Girders and substructure elements are often difficult to access and inspect. Lack of access to these elements increases the chance of structural failure and makes maintenance and rehabilitation more expensive. Although continuous bridge decks deteriorate more quickly than do those with joints, the benefits of continuity to the remainder of the structure make it the desirable option. To deal with the accelerated deterioration of continuous decks, designers need to incorporate details to minimize transverse cracking in negative moment regions.

#### 4.3 Girder Stiffness

The longitudinal stiffness of a deck on girder system controls the vertical deflection and longitudinal curvature of the deck. Girders with higher flexibility deflect further when loaded, putting higher stresses on the deck and encouraging its propensity to crack. Whether the range of stiffness in the Alberta bridge inventory is large enough to affect the durability of the decks is unknown. If it is, corrosion levels should increase with the flexibility of the system.

To compare the stiffness of girders from different structures, a relative idea of how much live load each girder receives is needed. Assuming all bridges are loaded in a similar manner, the amount of load carried by each girder is a function of girder spacing and span length. Girders spaced further apart will carry more load and deflect further than those spaced closer together. For equal deflections, deck stresses will be higher for shorter spans than for longer spans due to increased curvatures in the shorter spans. Therefore, by comparing curvatures of different bridges under the same loading condition, the influence of superstructure stiffness on bridge deck durability can be assessed.

Figure 4.7 shows all test results plotted against maximum calculated curvature. Curvature values were obtained by applying a uniformly distributed load of 12 kN/m<sup>2</sup> to all bridge decks. Maximum





Figure 4.7. % CSE Readings More Negative Than -300 mV v. Maximum Longitudinal Curvature



curvature of simple spans occurs at the location of maximum positive moment, while maximum curvature of continuous spans occurs at the location of maximum negative moment. Although no trends are immediately apparent, the majority of the data points are grouped in two distinct curvature ranges. Those points grouped around a curvature value of  $3.0 \times 10^{-7}$  mm<sup>-1</sup> represent tests of continuous bridges, while those grouped around a curvature value of  $1.8 \times 10^{-6}$  mm<sup>-1</sup> represent tests of simple span bridges. Since the stresses present in the decks of these two populations are different, they were separated from one another for further investigation.

Figure 4.8 shows the average percentage of CSE readings indicating active corrosion for ranges of curvature values grouped at intervals of  $1.0 \times 10^{-6}$  mm<sup>-1</sup> for simply supported structures. As an example, the first point is the average of all test results for bridges showing curvatures in the range of  $0.5 \times 10^{-6}$  mm<sup>-1</sup> to  $1.5 \times 10^{-6}$  mm<sup>-1</sup>. The point is plotted at the middle of the range. Using average values helps to eliminate the scatter obvious in Figure 4.7. The trend line in Figure 4.8 shows that there is no relation between the flexibility of simply supported girders and corrosion of the top mat of reinforcing steel. Since positive curvature puts the deck in compression, it does not promote transverse cracking and provides no means to initiate premature accelerated corrosion.

Figures 4.9 and 4.10 show the same thing as Figures 4.7 and 4.8, but for continuous structures. Average corrosion levels increase slightly as the girders become more flexible, but the trend line, created from the full set of data points suggests that there is no relation between deterioration and girder flexibility. Since the maximum curvature of continuous structures occurs in negative moment regions, the deck is placed in tension. The amount of tension in the deck increases as the system becomes more flexible, theoretically increasing the amount of transverse cracking and allowing the steel to be exposed to higher levels of corrosive elements. A regression analysis shows that the trend line in Figure 4.10 does not represent any significant relationship. A spreadsheet printout of the regression analysis can be found in Appendix A.

### 4.4 Deck Transverse Span-to-Depth Ratio

The transverse span-to-depth ratio of a bridge deck is calculated by dividing the girder spacing by the thickness of the deck. The flexibility of the bridge deck increases with the span-to-depth ratio, increasing its susceptibility to longitudinal cracking over girder lines. Bridge decks in Alberta are designed with a span-to-depth ratio of between 5 and 20, with the majority lying between 10 and 15.

Figure 4.11 shows the average percentage of CSE readings plotted against ranges of span-to-depth ratios. Each point represents the average CSE reading for all bridge decks with span-to-depth ratios within 0.5 of either side of the data point. As expected, the trend in the data is





Figure 4.8. Average % CSE Readings More Negative Than -300 mV v. Grouped Curvatures for Simply Supported Decks 20 - 35 Years Old



Figure 4.9. % CSE Readings More Negative Than -300 mV v. Curvature of Simple Span Decks 20 to 35 Years Old



Figure 4.10. Average % CSE Readings More Negative Than -300 mV v. Grouped Curvatures for Continuous Decks 20 - 35 Years Old



Figure 4.11. Average % CSE Readings More Negative Than -300 mV v. Several Ranges of Transverse Span to Depth Ratios for 20 - 30 Year Old Decks



positive, indicating an increase in deck corrosion with an increase in span-to-depth ratio. However, the low correlation coefficient, due to the high scatter and low slope, places doubt on the validity of the trend line. A statistical analysis of the trend line based on the entire data set shows that the slope of the actual trend line could lie anywhere between –3.2 and 33.2 at the 95 % confidence level. The ANOVA does not rule out the possibility that no significant relationship exists between the two variables. Although the statistical analysis does not support a linear relationship at the 95 % confidence level, there is a weak trend suggesting that span-to-depth ratio effects deck corrosion. The regression analysis can be found in Appendix A.

### 4.5 Cover Depth

For this project, cover depth indicates the design cover over the reinforcing bars. The design cover is the thickness of the concrete from the top of the deck surface to the top mat of reinforcing steel. In uncracked concrete, cover depth dictates the time it takes for corrosive elements to reach the top mat of steel reinforcing. Large cover depths increase the time it takes chloride solutions to migrate through to the steel and initiate corrosion. Corrosion levels depend on the availability of corrosive elements. Higher cover depths slow the build up of corrosive elements, reducing corrosion levels early on in the life of a bridge deck and extending its life. Cracking of the concrete eliminates any benefit provided by cover.

To assess the effects of cover depth, uncracked decks must be isolated from cracked decks. The condition of concrete bridge decks has been assumed based on structure type. Uncracked decks are defined as those that are part of simple span concrete girder bridges. All continuous (jointless) decks are presumed cracked, as are all decks supported by steel girders. Longitudinal negative bending moments in continuous structures cause transverse cracking in bridge decks. Maintenance experts indicate that steel girder bridges are significantly more likely to exhibit deck cracking, which is why even simple span steel bridges were assumed to have cracked decks.

Figure 4.12 shows the benefits that can be achieved by maintaining concrete in an uncracked condition. Non-rehabilitated, uncracked bridge decks show a definite decrease in corrosive activity with an increase in cover depth. Corrosion levels of cracked decks, on the other hand, show almost no relation to the thickness of concrete cover, especially for cover depths greater than 40 mm.

The correlation between average grouped cover depth and average corrosion levels in Figure 4.12 is very high, with a coefficient of determination of 0.89. A model constructed with all the data points, as opposed to just the average data points, is represented by the dashed line. The coefficient of determination for this model is significantly lower. Regression analyses show that





Figure 4.12. % CSE Readings More Negative Than -300 mV v. Cover Depth for Non-Rehabilitated Decks 20 - 35 Years Old



both relationships are significant at a greater than 92 % confidence level. With a coefficient of determination as high as 0.89 it is difficult to dismiss the probability that cover depth plays a significant role in preventing deterioration in uncracked concrete. It is likely that, had data existed for a wider range of cover depths, the relationship would have been proven even more significant. The low correlation shown in the model constructed from all the data is due to the high amount of scatter typical of real-world test results. A spreadsheet printout of the regression analyses can be found in Appendix A.

The ability to preserve concrete decks in an uncracked condition is brought into question by Figure 4.13. Figure 4.13 shows average CSE readings plotted against deck age for decks with less and more than 50 mm of cover. There is very little difference between the trends of the two populations, indicating that the depth of cover is having little effect on corrosion levels. Trend lines show that the difference between the two populations is most pronounced for younger decks.

Figure 4.14 shows a plot similar to that of the previous figure, but with distinct cover depths instead of ranges of cover depths. If decks are predominantly uncracked, Figure 4.12 indicates that the difference in the percentage of CSE readings in the corrosive range between the two cover depths should average 13 % between 20 and 35 years of age. Figure 4.14 shows that there is virtually no difference in corrosion levels between the two cover depths at any age, indicating again that cover depth is having little influence on deck corrosion due to cracking.

Although it is likely that cover depth can play a significant role in reducing deck corrosion, the inability to maintain the majority of bridge decks in an uncracked condition appears to be limiting its effectiveness. The push towards longer spans and jointless bridge decks is increasing the crack-causing stresses that a bridge deck must endure. A greater emphasis needs to be put on the use of flexible waterproofing membranes and advanced crack control practices, and not on increased cover, in order to improve the durability of bridge decks. As long as decks are cracked, cover depth will have little effect on their durability.

## 4.6 Reinforcing Ratio and Bar Configuration

Several different ways of quantifying the amount and position of reinforcing steel were investigated. It was suspected that reinforcing ratio, bar size, bar spacing, footprint size, and surface area of the steel might affect CSE readings. Each was examined individually.





Figure 4.13. Average CSE Reading v. Deck Age For Various Reinforcement Cover Depths





Figure 4.14. Average CSE Reading v. Deck Age for 2 Cover Depths



# 4.6.1 Reinforcing Ratio

The reinforcing ratio is a commonly used concept in strength design of reinforced concrete. In terms of a concrete bridge deck, the reinforcing ratio indicates the percentage of the deck cross-section occupied by steel. It does not describe the bar size or layout.

The reinforcing ratios in the longitudinal and transverse directions are considered separately. In both instances, standard deck designs cause very little variation in the reinforcing ratio. Figure 4.15 and Figure 4.16 show scatter plots of all CSE test results plotted against longitudinal and transverse reinforcing ratios respectively. The effect of standard designs is especially evident in the longitudinal reinforcing ratio where the vast majority of reinforcing ratios lie between 0.05 % and 0.2 %. Even transverse reinforcing ratios, which are generally dictated by girder spacing, lie between 0.3 % and 1.0 %. The lack of variation within the population makes assessing the affects of reinforcing ratio on deck deterioration difficult.

These difficulties become apparent in plots of grouped average data shown in Figure 4.17 and Figure 4.18. Both plots appear to show relatively strong trends, but a closer look reveals that the trends within the ranges containing the majority of data points are opposite to the overall trends. The overall trend for longitudinal reinforcing ratio, as shown in Figure 4.17, is negative. For reinforcing ratios between 0.0 % and 0.2 %, the range over which 81 % of all decks in the sample lie, the trend is strongly positive. Similarly, the trend in Figure 4.18 for the range of 0.4 % to 0.8 % is opposite from the overall trend of the plot. The discrepancy is due to the difference in sample size between groups of data lying within these ranges, and groups that lie outside of them. The small amount of data available for reinforcing ratios outside of the most common ranges makes it difficult to put any faith in their accuracy. The small size of the ranges for which a significant amount of data is available makes it difficult to see whether a significant change in the reinforcing ratio causes a significant change in the corrosion levels of the deck.

Regression analyses of the data in Figure 4.17 and Figure 4.18 also demonstrate the insignificance of the relationship between reinforcing ratio and deck corrosion. In both cases the trends created from the entire data set are flatter than those created from the average grouped data. Although the observed trends are significant at the 95 % confidence level, their flat slopes indicate that there is little if any dependence between the two variables. The signs on the upper and lower bounds of the slope coefficient are also opposite, casting doubt over the observed trends. A spreadsheet printout of the regression analysis can be found in Appendix A.

Since it is generally associated with strength and not durability, it would be fair to assume that reinforcing ratio would not affect deck deterioration in any significant way. The evidence from this study is inconclusive.





Figure 4.15. Scatter Plot of % CSE Readings More Negative Than -300 mV v. Longitudinal Reinforcing Ratio for Decks 20 - 35 Years Old





Figure 4.16. Scatter Plot of % CSE Readings More Negative Than -300 mV v. Transverse Reinforcing Ratio for Decks 20 - 35 Years Old



Figure 4.17. Average % CSE Readings More Negative Than -300 mV v. Grouped Longitudinal Reinforcing Ratios For Bridges 20 - 35 Years Old





Figure 4.18. Average % CSE More Negative Than -300 mV v. Grouped Transverse Reinforcing Ratio Data for Bridges 20 - 35 Years Old



Because most decks have essentially the same reinforcing ratio, it is likely that the configuration of the reinforcing steel will prove to be far more influential than simply the amount of steel in the deck.

#### 4.6.2 Bar Size

Investigating the effect of bar size on deck deterioration is difficult as the vast majority of decks in Alberta use similar bar configurations. 10M bars in the longitudinal direction and 15M bars in the transverse direction are typical. This creates a situation where one bar size is vastly over-represented, while the average CSE reading for all other bar sizes is considerably less accurate because of the small samples from which they are derived. In spit of this, CSE data was plotted against bar size to determine whether any influence exists. The pie charts in the corner of Figure 4.19 and Figure 4.20 indicate the relative number of CSE readings from which the average value was calculated for each bar size.

Longitudinal and transverse bars are treated separately in this study. Figure 4.19 shows the percentage of CSE readings more negative than -300 mV plotted against longitudinal bar size. The plot shows a sharp decline in average CSE readings with an increase in bar size. Since reinforcing ratios of longitudinal steel are consistently around 0.1% (see Figure 4.11), increased bar size would result in fewer bars with larger diameters. Fewer bars with larger diameters leads to a smaller total surface area of steel susceptible to corrosion. This reduced surface area could be the reason for the reduction in average CSE readings. The apparent trend in CSE readings could also be the result of random scatter. The number of individual test results that make up the average reading displayed on the graph is very small for bar sizes other than 10M. The small sample size increases the uncertainty in the average, and can cause the appearance of a trend when no trend exists. If the trend visible in Figure 4.19 were legitimate, we would expect to see the same trend in plots of transverse bar sizes, since the size and spacing of transverse bars should have a similar effect on longitudinal cracking.

Figure 4.20 shows the percentage of CSE readings more negative than -300 mV plotted against transverse bar size. As with longitudinal bars, more than three quarters of all bridge decks in the sample were constructed with the same bar size. No obvious trend is apparent in the data for transverse bars. Large transverse bars may be acting as crack initiators, negating the trends of Figure 4.19. If only the last three data points are considered, there is virtually no relation between the two variables. Figure 4.20 suggests that transverse bar size has little effect on deterioration.

Since the strong trend visible in Figure 4.19 was not duplicated in Figure 4.20, the hypothesis that the increased surface area of smaller bars is responsible for increased levels of corrosion is not supported. Although no conclusions regarding the effects of bar size on CSE readings can be





Figure 4.19. Average % CSE Readings More Negative Than -300 mV v. Long. Bar Size for Non-Rehabilitated Decks 20 - 35 Years Old



Figure 4.20. Average % CSE Readings More Negative Than -300 mV v. Transverse Bar Size for Non-Rehabilitated Decks 20 - 35 Years Old



made from the available data, it is more likely that the trend in Figure 4.19 is not legitimate, and is due to random chance. Any negative trend in Figure 4.20 would have given some credibility to the apparent relationship in Figure 4.19. Instead, the near lack of any trend in Figure 4.20 seems to suggest that the trend in Figure 4.19 is due to the error typical of small sample inferences.

### 4.6.3 Bar Spacing

The spacing between transverse bars and longitudinal bars was examined separately. Figure 4.21 and Figure 4.22 show the percentage of CSE readings more negative than -300 mV plotted against bar spacing for non-rehabilitated decks in the same age range.

Figure 4.21 shows the effect of transverse bar spacing on deck corrosion. The high amount of scatter in the data is the first indication that CSE readings have very little dependence on transverse bar spacing. The slope of the trend line is very flat, indicating no relation between the two variables. Based on the CSE data, there is likely no relation between corrosion and transverse bar spacing.

The longitudinal bar spacing, on the other hand, does show some relation to corrosion levels. Figure 4.22 shows that CSE readings tend to increase with longitudinal bar spacing. Although there is a high amount of scatter in the data, and a statistical analysis shows the regression model to be insignificant, lower CSE readings are more likely to be associated with lower longitudinal bar spacing. It must be noted that more than half of the decks in this test sample have a longitudinal bar spacing of 450 mm, with many of the data points for other bar spacings being calculated from very few individual readings, decreasing their accuracy. Even with this discrepancy, it is likely that longitudinal bar spacing does have an effect on bridge deck corrosion. A spreadsheet printout of the regression analysis can be found in Appendix A.

The fact that longitudinal bar spacing appears to play a role in corrosion levels when transverse spacing does not is likely an indication of one of the mechanisms of premature deck cracking. Because bridge decks span predominantly in the transverse direction, the role of longitudinal bars is predominantly crack control. Longitudinal bars bridge transverse cracks. The closer the bars are to one another, the sooner they will be able to intercept transverse cracks and stop them from propagating. Transverse cracking is the main form of premature deck cracking responsible for early corrosion of the top mat of reinforcing steel. Closely spaced longitudinal bars help control transverse cracking and reduce premature corrosion.

## 4.6.4 Size of Steel Footprint

The footprint size of the steel is the two-dimensional area that the top mat of reinforcing steel occupies when observed in plan. For this project the footprint was calculated by multiplying the





Figure 4.21. Average % CSE Readings More Negative Than -300 mV v. Trans. Bar Spacing for Non-Rehab'd Decks 15 - 30 Years Old





Figure 4.22. Average % CSE Readings More Negative Than -300 mV v. Long. Bar Spacing for Non-Rehab'd Bridges 15 - 30 Years Old



bar size by the bar length and then multiplying again by the total number of bars. The plan area of steel was then non-dimensionalized by dividing by the total deck area. For a deck area of one square metre, the footprint equation becomes

$$\frac{D_t}{S_t} + \frac{D_l}{S_t}$$

where D and S are the bar diameter and bar spacing respectively, and the subscripts t and l indicate bars in the transverse and longitudinal directions.

Trends in historical CSE data show very little dependence on the size of the steel footprint. In Figure 4.23 and Figure 4.24, two populations of CSE readings based on the relative size of the steel footprint are compared. The behaviour of the two populations over time is very similar. The scatter in both plots is very high, which eliminates any visual trends. Trend lines in Figure 4.24 show that, on average, both populations have identical peak values and share a similar response to maintenance and rehabilitation. In Figure 4.23, the lack of average CSE data for young bridge decks with less than 10% plan area of steel makes any interpretation difficult. For periods over which data for both populations is available, the points seem to plot along similar paths. Although the scatter plot in Figure 4.25 shows that the amount of the deck footprint occupied by steel varies over quite a large range of values, very little variation in the average CSE readings over time, as indicated by the trend line, can be noticed. These results show that CSE readings are not affected by the plan area of steel exposed to the testing probe.

## 4.6.5 Surface Area of Reinforcing Steel

The surface area of reinforcing steel is the total outside area of the bars exposed to corrosive elements. It is calculated by multiplying the circumference of all the bars by their respective lengths and summing them. The concept is similar to the footprint size discussed in § 4.6.4, except the surface area gives a more accurate representation of the amount of steel available for corrosion. If a relation between the total surface area of the steel and corrosion exists, it is expected that corrosion levels would increase with an increase in surface area. This hypothetical increase is a result of more steel being exposed to elements necessary for corrosion. The plots in Figure 4.26 through Figure 4.28 show the percent of CSE readings more negative than -300 mV versus the total surface area of steel per square metre of bridge deck.

Similar to the results of the investigation of the size of the steel footprint, no relation between the total surface area of steel and corrosion levels in the bridge deck could be found. Figure 4.26 and Figure 4.27 are scatter plots of all bridges, with rehabilitated decks removed from Figure 4.27. Figure 4.28 shows the average of groups of CSE readings in ranges of 100 000 mm<sup>2</sup>.



Figure 4.23. Average CSE Reading v. Deck Age For Various Amounts of Deck Steel





Figure 4.24. Percent of CSE Readings More Negative Than -300 mV v. Deck Age for Various Amounts of Deck Steel





Figure 4.25. % CSE Readings More Negative Than -300 mV v. % Area of Steel in Plan for Bridge Decks 20 - 35 Years Old





Figure 4.26. % CSE Readings More Negative Than -300 mV v. Surface Area of Reinforcing Steel for All Decks 20 - 35 Years Old





5 Figure 4.27. % CSE Readings More Negative Than -300 mV v. Surface Area of Reinforcing Steel for Non-Rehabilitated Decks 20 - 35 Years Old





Figure 4.28. Average % CSE Readings More Negative Than -300 mV v. Ranges of Surface Area of Reinforcing Steel for All Decks Aged 20 - 35 Years Old



Nearly identical trends are shown on each plot, indicating virtually no relation between the surface area of reinforcing steel and corrosion levels within the deck. The final two points in Figure 4.28 were derived from a small number of readings, all of which were collected from three or four bridges. Due to the poor sampling, these two points are considered outliers. If these two points were removed, the trend line would be even flatter than it is.

The total lack of dependency of CSE readings on the total area of steel available to corrosion was unexpected. With more steel exposed to corrosive elements, higher rates of corrosion were expected. Two possible explanations exist to explain why this isn't so.

- Increased surface area is generally created by using a larger number of smaller diameter bars, as opposed to fewer larger diameter bars. The smaller bars are spaced closer together, creating improved crack control and limiting the amount of corrosive elements that come in contact with the steel. The reduced availability of the elements necessary for corrosion balances out the increased area of exposed steel, and eliminates any relation between the two.
- 2. Only a very small percentage of bridge decks show 100 % of CSE readings in the corrosive range, indicating that, in most cases, corrosion is not occurring on all steel surfaces within the deck. In situations where only a fraction of the steel surfaces are corroding, increasing the surface area of the reinforcing bars would only serve to increase the amount of exposed steel that is not corroding. In order for there to be an increase in corrosion with an increase in steel surface area, a surplus of corrosive elements is required. This does not appear to be the case in the vast majority of situations.

The previous investigation of bar size has shown that it has little effect on corrosion levels. If the first explanation were valid, then the bar size would play a more significant role in the corrosion of the steel mat. This leaves the second explanation as to why the surface area of steel does not affect corrosion levels. From a corrosive point of view, there simply isn't a demand for increased surface area.

#### 4.7 Skew

To evaluate the effects of skew angle on the deterioration of bridge decks, average CSE readings and percentage of CSE readings more negative than -300 mV for all bridges with skew angles greater than 30° were plotted against the age of the deck. Similar plots were made for bridges with skew angles less than 30°, and the two were compared. The results are shown in Figures 4.29 through 4.31.





Figure 4.29. Average CSE For Straight v. Skewed Crossings



Figure 4.30. % CSE Readings More Negative Than -300 mV v. Deck Age for Skew and Straight Crossings





Figure 4.31. Average % CSE Readings More Negative Than -300 mV v. Deck Age for Straight and Skew Non-Rehabilitated Decks



In all of the plots, skewed bridges have, on average (as indicated by the fitted line), higher CSE readings and a higher percentage of CSE readings in the corrosive range than straight crossings. However, the plotted points for straight crossings generally fall within the range of scatter of the points for skewed crossings. The high scatter in the data for skewed bridges is due to the relatively small number of skewed bridges (16%) in the test sample compared to the number of straight crossings. Although it is difficult to make any conclusions based on these plots, it is interesting to note that in Figures 4.29 and 4.31, the majority of the data points for skewed bridges with decks older than 20 years fall well above those for straight crossings, indicating that the gap in performance increases in older decks. CSE readings on skewed bridges increase at a higher rate than those of straight crossings. This is likely due to the accelerated rate at which skewed bridges accumulate damage, and the increased difficulty in maintaining and rehabilitating skewed bridges. In Figure 4.29, the average CSE readings for skewed structures do not seem to respond to maintenance and rehabilitation, although the plot showing the percentage of CSE readings more negative than -300 mV does appear to show skewed decks responding to rehabilitation in a similar manner to straight decks. Although the makeup of the data sample makes it difficult to proclaim any firm conclusions regarding the effect of skew angle on deck deterioration, the trends do support the conclusions of previous research, indicating that skewed bridges deteriorate faster than straight crossings.

## 4.8 Intermediate Diaphragms

Intermediate diaphragms improve the lateral stability of bridge girders. They also promote load sharing between girders and reduce differential deflections. It is suspected that intermediate diaphragms create a stiffer deck system and reduce longitudinal cracking. A reduction in longitudinal cracking would reduce the number of direct paths to the steel leading to lower corrosion levels.

Figure 4.32, a plot of the percentage of CSE readings more negative than -300 mV versus deck age for bridges with and without intermediate diaphragms, seems to show the opposite of what would be expected. The plot shows that decks with intermediate diaphragms have higher corrosion levels than decks without intermediate diaphragms. This may be explained by the makeup of each of the populations of bridges. As shown in the pie charts of Figure 4.32 the population of bridges without diaphragms is almost exclusively made up of concrete girder bridges. The population of bridges with diaphragms contains a slight majority of steel bridges. Figure 4.32 does not indicate whether the elevated corrosion levels are due to the presence of intermediate diaphragms or a significantly higher proportion of steel bridges.

In Figure 4.33, steel girder bridges have been removed from both populations. The difference in corrosion levels between bridges with and without intermediate diaphragms becomes insignificant





Figure 4.32. % CSE Readings More Negative Than -300 mV v. Deck Age for Bridges With and Without Intermediate Diaphragms





Figure 4.33. %CSE Readings More Negative Than -300 mV v. Deck Age for Bridges With and Without Intermediate Diaphragms (Concrete Girders Only)



when only concrete bridges are concerned. Considerable overlap in the scatter of the two populations suggests that there is no real difference between the two. It is impossible to check if the same would hold true for an exclusively steel population, as almost all steel bridges in the sample have intermediate diaphragms. The differences observed in Figure 4.32 were most probably due to differences between steel and concrete girder bridges, and not the presence or absence of intermediate diaphragms.

## 4.9 Maintenance and Rehabilitation

It is impossible to draw conclusions on the deterioration of bridge decks without examining the effects of maintenance and rehabilitation. The goal of rehabilitation is to alter the rate of deterioration of the bridge deck and reduce corrosion levels within the steel. These effects must be understood so as not to be confused with the effects of the design elements being studied.

Figure 4.34 shows typical results of rehabilitation on three bridges. Corrosion levels continue to rise for a period of five to ten years following rehabilitation and then drop off dramatically to levels of little or no active corrosion. Following the drop, corrosion levels begin to increase again as the rehabilitated elements begin to deteriorate.

In order to identify reductions in CSE readings due to rehabilitation it is necessary to know when rehabilitation is likely to occur, and how it is likely to affect average corrosion levels within the population of bridge decks. Figure 4.35 shows three different plots. The solid line shows the average percentage of CSE readings more negative than -300 mV for decks that have never been rehabilitated plotted against the age of the deck. The line with equal dashes shows the same information for bridge decks that have been rehabilitated plotted against their age since the time of original construction. The line with unequal dashes shows corrosion levels for rehabilitated decks plotted against their age since the time of the rehabilitation. Both dashed lines have nearly identical slopes and similar initial corrosion levels. These similarities suggest that the majority of bridge decks are being rehabilitated after approximately 20 – 30 years of service. If this were not the case, the two lines would have different slopes. Figure 4.36 also suggests that rehabilitation is occurring 20 to 30 years after construction. Both lines on the plot follow each other closely prior to 20 years, at which time they begin to diverge.

Rehabilitation slows the rate of deterioration of bridge decks by eliminating access to the reinforcing steel. In the absence of corrosive elements, corrosion of the reinforcing steel stops or slows dramatically. The reduction in corrosion levels of rehabilitated bridge decks cause average corrosion levels within the population to fall off as well, causing the CSE trend to become non-linear. Changes caused by rehabilitation generally occur 20 to 30 years after the bridge deck is originally cast.





86





Figure 4.35. % CSE Readings More Negative Than -300 mV v. Deck Age for Original and Rehabilitated Decks





Figure 4.36. Average Percentage of All CSE Readings More Negative Than -300 mV v. Deck Age For All Decks and Non-Rehabilitated Decks



### 4.10 Summary

It is shown that decks on steel girders deteriorate at a higher rate than decks on concrete girders. The percentage of CSE readings more negative than –300 mV is 15 % higher for steel girder bridges than it is for concrete girder bridges at any given age. Higher corrosion levels are necessitating the rehabilitation of decks on steel girders approximately 10 years prior to the rehabilitation of decks on concrete girders. This difference in deterioration levels is due primarily to design differences between the two types of bridges. Steel girders are far more likely to be continuous over their supports than concrete girders. Steel girder bridges also tend to have longer span lengths and higher girder spacings. All these factors lead to increased negative curvatures in the bridge decks, causing surface cracking and allowing corrosive elements direct access to the top mat of reinforcing. Concrete decks on continuous steel girder bridges are found to typically require rehabilitation after about 20 years. Decks on continuous concrete girder bridges are typically rehabilitated after about 28 years, and those on simple span concrete bridges are generally rehabilitated after about 30 years of service.

Cover depth is found to have very little effect on the corrosion rates of decks steel. Increased cover is only beneficial if it does not crack. The data in this study indicates that the majority of bridge decks in Alberta are cracked and are unresponsive to changes in cover depth. Based on these findings, it can be inferred that, since bridge decks are generally cracked, corrosion levels will also be unresponsive to improvements in the quality of concrete. The use of flexible waterproofing membranes and advanced crack control measures would be expanded to prevent corrosive solutions from reaching the top mat of reinforcing steel.

The quantity and layout of reinforcing steel is found to have little effect on corrosion. Smaller, more closely spaced longitudinal bars are correlated with lower corrosion levels. Longitudinal bars control transverse cracking, and more bars spaced more closely together are better at preventing the growth of transverse cracks. The configuration of transverse bars has no effect on corrosion levels.

Other factors are found to have less significant influences on deterioration of the deck. Rates of deterioration are found to increase with skew angle, especially in older bridge decks. Skewed bridges tend to accumulate damage at a higher rate than straight crossings. Intermediate diaphragms have no effect on the durability of concrete bridge decks.



# CHAPTER 5 CONCLUSIONS

## 5.1 Summary of Research

Several steps have been completed to demonstrate the choices a designer can make to extend the life of concrete bridge decks.

A literature review was conducted to determine the current state of knowledge on the deterioration of concrete bridge decks, and to help establish an appropriate scope for this project. Two broad-based studies on bridge deterioration were reviewed. Dunker and Rabbat investigated bridge deck deterioration by studying historical visual inspection ratings contained in the FHWA database. They found that structurally deficient steel girder bridges vastly outnumbered structurally deficient concrete girder bridges. Based on the random nature of regional variations in performance, Dunker and Rabbat concluded that maintenance policies strongly influence the durability performance of bridges. Ramey and Wright conducted their research on a regional population of bridges. By reviewing experiences within the Alabama Department of Transportation, they concluded that the most structurally deficient major bridge component was the deck. Ramey and Wright concluded that deck deterioration and durability is closely related to cracking. A large number of independent studies were also reviewed to assess the influence of design on a factor-by-factor basis.

Copper sulphate electrode (CSE) test results are used as an objective measurement of concrete bridge deck deterioration. CSE testing is a non-invasive test which measures the potential between a probe, consisting of a copper – copper-sulphate half cell, placed on the surface of the bridge deck, and the reinforcing bars embedded within the bridge deck, with which the probe is electrically continuous. The potential readings are then correlated to corrosion levels within the steel. The Province of Alberta has had a CSE testing program in place since the 1977, and has collected and tabulated corrosion data on approximately 1000 bridges. Many bridges have had CSE testing carried out on five or more occasions over a period spanning in excess of twenty years. To better understand the nuances associated with CSE testing, the author of this thesis spent two weeks working with bridge testing crews gathering CSE data. Several more weeks were spent working with engineers analyzing and applying the data that had been collected in the field.

A relational database is set up in MS Access to store and manage the CSE data. Inventory and test data is separated into several tables, all of which are related to one another through a common field. The fields in the database are based on those found in Alberta Transportation



databases. General inventory data is stored in one large table. More specific inventory data and test data are separated into several smaller tables. Once completed, queries are used to create several subpopulations of bridges based on individual design characteristics.

Scatter plots are used to investigate correlations between design choices and CSE readings. CSE test results for mutually exclusive populations of bridges are plotted together against the age of the deck in order to determine differences between the deterioration trends of the two groups. In cases where it can be determined that differences in corrosion levels between the two populations is significant at the majority of deck ages, it is concluded that the two populations have different deterioration characteristics. Where quantifiable measurements of the physical characteristics of the bridge exist, CSE is plotted against the design trait to determine whether deterioration varies within a specific design family. Statistical methods are used to assess the strength of the correlation between specific design traits and deck corrosion.

A statistical investigation is undertaken in situations showing stronger correlations. Regression analyses are performed to provide a visual model of the trends in the data. The coefficient of determination is calculated to assess the level of dependence of one variable on another.

Analysis of variance (ANOVA) is performed to determine the validity of the regression analysis. Significance testing is used to determine whether the difference in deterioration levels of mutually exclusive populations of bridge decks is significant.

### 5.2 Conclusions

Based on observation and analysis of historical CSE test results in the province of Alberta, the following conclusions can be made.

- 1. Bridge decks supported on steel girders deteriorate faster than decks supported on concrete girders. Decks on steel girders last approximately 20 years, while decks on concrete girders last approximately 30 years before requiring rehabilitation. The percentage of actively corroding steel in a population of steel bridges is 15 % higher than in a population of concrete girder bridges of similar age.
- 2. Decks on continuous bridges show significantly higher levels of deterioration than decks on simple span bridges. At a given age, the relative amount of the top mat of reinforcing showing active corrosion in continuous bridge decks is 11 % higher than it is for simply supported bridges. Corrosion levels in decks on simple spans lag those of decks on continuous spans by approximately 13 years. Differences in deck corrosion levels are most prominent prior to rehabilitation. Cracking in negative moment regions of continuous decks leads to increased levels of deterioration.



- 3. Changes in cover depth only affect the deterioration of uncracked bridge decks. Study results suggest that the majority of bridge decks in Alberta are cracked and are unaffected by increases in the depth of cover. In such situations, it is reasonable to conclude that if the amount of concrete cover has little influence, improvements in the quality of the concrete cover will have little influence. It can be inferred that low permeability concrete will have little effect on the deterioration of cracked decks.
- 4. Longitudinal bars control transverse cracks, and there is an advantage to using smaller bars spaced more closely together, instead of larger bars with larger spacings. Each 100 mm reduction in bar spacing corresponds to a 4 % reduction in the percentage of CSE readings more negative than 300 mV. Transverse bar size or spacing does not affect deck deterioration. The quantity of steel in the top mat has no effect on corrosion levels.
- 5. The percentage of CSE readings indicating active corrosion appears to increase with the transverse span-to-depth ratio of the deck. The percentage of CSE readings showing active corrosion in bridge decks with a transverse span-to-depth ratio of 20 is approximately 9 % higher than for bridge decks with a transverse span-to-depth ratio of 10. The positive correlation is likely due to increased longitudinal deck cracking over the girder lines.
- Changes in girder stiffness have a negligible effect on the deterioration levels of continuous bridge decks. The deterioration of simply supported decks, which remain in compression when loaded, is also unaffected by changes in the flexibility of bridge girders.
- 7. Rehabilitation of bridge decks supported on steel girders occurs approximately 20 years after their original construction. Rehabilitation of decks on concrete girders occurs approximately 30 years after their original construction. Continuous concrete girder bridges are rehabilitated approximately 2 years before simple span concrete girder bridges. Bridges tend to be rehabilitated to similar standards, causing significant differences in corrosion levels prior to rehabilitation to be reduced or eliminated after approximately 30 years.

### 5.3 Design Recommendations

Based on the above conclusions, the following design recommendations are made.

1. When performing life cycle cost analyses, the design life for decks on steel girders should be estimated at 20 years, while the design life for decks on concrete girders should be



- estimated at 30 years. Every effort should be made to prevent early-age deck cracking in steel girder bridges.
- 2. Reducing the intensity of the negative moment over the supports of continuous structures will help extend the life of the deck. Moment reductions can be achieved by allowing the center support of a continuous two-span structure to settle a specified amount after the deck has been cast. Promoting upward camber of precast, prestressed concrete girders made continuous through the deck will also help reduce the intensity of the negative moment over supports.
- 3. The use of flexible membranes and sealants should be specified to prevent corrosive elements from contacting the top mat of reinforcing steel. Less emphasis should be placed on increasing cover depths and improving the quality of concrete cover. Where membranes and sealants are not specified, improving crack control will provide a greater benefit than either increased cover depths or reduced concrete permeability. Measures that can be taken to control cracking include proper curing, the use of fibre reinforcement, and self-healing concrete.
- 4. To help control transverse cracking, use smaller, closely spaced bars in the longitudinal direction. This strategy will increase the probability that a crack will be intercepted by reinforcement before growing beyond an insignificant size improving the effectiveness of membranes and sealants.
- An increase in girder spacing should be accompanied by an increase in deck thickness.
   Extreme fibre stresses in the deck should be kept well below the modulus of rupture over the girder lines to prevent longitudinal cracking.
- 6. Where possible, girder stiffness should be increased over supports to reduce negative curvature in continuous structures. This is most easily accomplished by using a tapered profile for cast-in-place girders, or increasing flange plate thicknesses over the supports for welded steel girders.

## 5.4 Research Recommendations

There are several projects that would further the initiatives of this research. A better understanding of the interaction between the steel girders and the concrete deck may provide insight into why decks on steel girders show higher rates of deterioration. An examination of the strain incompatibilities experienced by actual steel girder bridges would likely yield some interesting results. The influence of steel girders and other large steel masses on CSE test readings should also be investigated. Although expert opinion is that corrosion of the steel



girders would have little to no effect on test results, a formal investigation could eliminate any lingering doubt.



## REFERENCES

ASTM C 876 – 91. Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. *2000 Annual Book of ASTM Standards*, **04**(02), 446 – 451.

Babei, K., Hawkins, N.M. (1988). Evaluation of Bridge Deck Protective Strategies. *Concrete International*, **10**(12), 56 – 66.

Bakht, B., and Agarwal, A.C. (1993). Deck Slabs of Skew Girder Bridges. *Proceedings, Canadian Society of Civil Engineering Annual Conference, Montreal*, **2**, 55 – 66.

Beal, D.B., and Chamberlin, W.P. (1982). Effects of Concrete Deterioration on Bridge Response. *Transportation Research Record*, **853**, 43 – 48.

Bettigole, N.H. (1990). Designing Bridge Decks to Match Bridge Life Expectancy. *Extending the Life of Bridges*, ASTM, 70 – 80.

Cady, P.D., Weyers, R.E. (1984). Deterioration Rates of Concrete Bridge Decks. *Journal of Transportation Engineering, ASCE*, **110**(1), 34 – 44.

Callaghan, B.G. (1993). Performance of a 12% Chromium Steel in Concrete in Severe Marine Environments. *Corrosion Science*, **35**(5-8), 1535 – 1541.

CAN/CSA-S6-88. *Design of Highway Bridges*. Canadian Standards Association, Toronto, June, 1988.

CAN/CSA-S6-00. Canadian Highway Bridge Design Code. CSA International, Toronto, December, 2000.

Cao, L., and Shing, P.B. (1996). Behavior of RC Bridge Decks With Flexible Girders. *Journal of Structural Engineering*, **122**(1), 11 – 19.

Carter, P.D. (1989). Preventive Maintenance of Concrete Bridge Decks. *Concrete International, ACI,* **11**(11), 33 – 36.

Chamberlin, W.P. (1985). Long-Term Evaluation of Unprotected Concrete Bridge Decks.

Research Report, Engineering Research and Development Bureau, New York State Department of Transportation, 128, 45 pp.

Dunker, K.F., and Rabbat, B.G. (1990a). Highway Bridge Type and Performance Patterns. *Journal of Performance of Constructed Facilities*, **4**(3), 161 – 173.



Dunker, K.F., and Rabbat, B.G. (1990b). Performance of Highway Bridges. *Concrete International*, **12**(8), 40 – 42.

Dunker, K.F., and Rabbat, B.G. (1995). Assessing Infrastructure Deficiencies: The Case of Highway Bridges. *Journal of Infrastructure Systems*, **1**(2), 100 – 119.

Ebeido, T., and Kenedy, J.B. (1996). Punching Strength of Deck Slabs in Skew Composite Bridges. *Journal of Bridge Engineering*, **1**(2), 59 – 66.

Fagundo, F.E. (2000). Peace River Bridge – Causes of Deck Deterioration. *Forensic Engineering, Proceedings of the Congress*, 408 – 410.

Flint, G.N., and Cox, R.N. (1988). The Resistance of Stainless Steel Partly Embedded in Concrete to Corrosion by Seawater. *Magazine of Concrete Research*, **40**(142), 13 – 27.

Gene, C.W. (1995). Designing Corrosion Resistance into Reinforced Concrete. *Materials Performance*, **34**(9), 54 – 58.

Jacobs, T.L. (1986). Optimal Long-Term Scheduling of Bridge Deck Replacement and Rehabilitation. *Journal of Transportation Engineering, ASCE*, **118**(2), 312 – 322.

Krstulovic, O.N., Haghayeghi, A.R., Haidar, M., and Krauss, P.D. (1995). Use of Conventional and High-Performance Steel-Fiber Reinforced Concrete for Bridge Deck Overlays. *ACI Materials Journal*, **96**(6), 669 – 677.

Leslie, W.G. (1980). Bridge Deck Deterioration: A Review of New York's Experience. Research Report, Engineering Research and Development Bureau, New York State Department of Transportation, 78, 20 pp.

Leslie, W.G., and Chamberlin, W.P. (1980). Effects of Concrete Cover Depth and Absorption On Bridge Deck Deterioration. *Research Report, Engineering Research and Development Bureau, New York State Department of Transportation*, **75**, 29 pp.

Maldonado, L.A., Castro, P., Marrufo, J.H., Gonzalez, W., and Zapata, A. (1992). Bond Loss Between Epoxy and Alkyd Coated Reinforcement Rebars and Concrete. *Corrosion Forms and Control for Infrastructure*, ASTM, 372 – 385.

McDonald, D.B., Krauss, P.D., and Rogalla, E.A. (1995a). Early-Age Transverse Deck Cracking. *Concrete International*, **17**(5), 49 – 51.



McDonald, D.B., Sherman, M.R., Pfeifer, D.W., and Virmani, Y.P. (1995b). Stainless Steel Reinforcement as Corrosion Protection. *Concrete International*, **17**(5), 65 – 70.

Mendenhall, W., and Sincich, T. (1995). Statistics for Engineering and the Sciences, Fourth Edition. Prentice Hall, Inglewood Cliffs, NJ.

Moore, J.A. (1999). High-Performance Concrete for Bridge Decks. *Concrete International*, **21**(2), 58.

Osterle, R.G. (1997). The Role of Concrete Cover in Crack Control Criteria and Corrosion Protection. *PCA R & D Serial*, **2054**, Portland Cement Association.

Ozyildirim, C. (1998). Permeability Specifications for High-Performance Concrete Decks. *Transportation Research Record*, **1610**, 1 – 5.

Pline, J.L. (1982). Bridge Deck Deterioration in Idaho. *Proceedings of the 33<sup>rd</sup> Annual Road Builder's Clinic, Pullman, WA*, 165 – 176.

Ramey, G.E., and Wright, R.L. (1997a). Bridge Deterioration Rates and Durability/Longevity Performance. *Practice Periodical on Structural Design and Construction*, **2**(3), 98 – 104.

Ramey, G.E., and Wright, R.L. (1997b). Results of Bridge Durability/Longevity Survey. *Practice Periodical on Structural Design and Construction*, **2**(3), 105 – 117.

Ramey, G.E., and Wright, R.L. (1997c). Durability Performance of Alabama Bridge Components and Subcomponents. *Practice Periodical on Structural Design and Construction*, **2**(3), 139 – 149.

Ramey, G.E., Wolff, A.R., and Wright, R.L. (1997a). Structural Design Actions to Mitigate Bridge Deck Cracking. *Practice Periodical on Structural Design and Construction*, **2**(3), 118 – 124.

Ramey, G.E., Wolff, A.R., and Wright, R.L. (1997b). DOT Management Actions to Enhance Bridge Durability/Longevity. *Practice Periodical on Structural Design and Construction*, **2**(3), 125 – 130.

Rasheeduzzafar, Dakhil, F.H., Bader, M.A., and Kahn, M.M. (1992). Performance of Corrosion Resisting Steels in Chloride-Bearing Concrete. *ACI Materials Journal*, **89**(5), 439 – 448.

Rogowsky, D. (ed.). (1996). *CPCI Design Manual Precast and Prestressed Concrete*. Canadian Prestressed Concrete Institute, Ottawa, ON.

Rowntree, D. (1981). Statistics Without Tears. Penguin, Toronton, ON.



Russell, H.G. (1999). ACI Defines High-Performance Concrete. *Concrete International*, **21**(2), 56 – 57.

Schupack, M. (1994). Durability Study of a 35-Year-Old Post-Tensioned Bridge. *Concrete International*, **16**(2), 54 – 58.

Sen, M.K. (1998). Influence of Skew Abutments on Steel Plate Girders and R.C. Deck Composite Bridges. *Journal of Constructional Steel Research*, **46**(1-3), 81 – 82.

Smith, J.L., and Virmani, Y.P. (1996). Performance of Epoxy-Coated Rebars in Bridge Decks. *Public Roads*, **60**(2), 6 – 12.

Somerville, G. (1998). The Impact of Whole-Life Costing on the Durability Design of Concrete Bridges. *Proceedings of the Institution of Civil Engineers, Transport*, **129**(3), 134 – 141.

Sorensen, B., Jensen, P.B., and Maahn, E. (1990). The Corrosion Properties of Stainless Steel Reinforcement. *Corrosion of Reinforcement in Concrete*, Elsevier Applied Science, New York, NY.

Sotiropoulous, S.N., GangaRao, H.V.S. (1993). Design Anomolies in Concrete Deck – Steel Stringer Bridges. *Transportation Research Record*, **1393**, 31 – 38.

Stark, D., and Perenchio, W. (1975). The Performance of Galvanized Reinforcement in Concrete Bridge Decks. *Construction Technology Laboratories (A Division of the PCA) Final Report*, **2E-206**, 80 pp.

Stratfull, R.F. (1973). Half-Cell Potentials and the Corrosion of steel in Concrete. *Highway Research Record*, **433**, 12 – 21.

Subramanian, V.R. (1996). Corrosion Protection With Hot-Dip Galvanising. *Indian Concrete Journal*, July, 383 – 385.

Treadaway, K.W.J., Cox, R.N., and Brown, B.L. (1989). Durability of Corrosion Resisting Steels in Concrete. *Proceedings of the Institute of Civil Engineers*, **86**, 305 – 331.

Van Lund, J.A., and Brecto, B.B. (1999). Jointless Bridges and Bridge Deck Joints in Washington State. *Transportation Research Record*, **1688**, 116 – 123.

Yoemans, S.R. (1994). Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride Contaminated Concrete. *Corrosion*, **50**(1), 72 – 81.



Zoob, A.B., LeClaire, P.J., and Pfeifer, D.W. (1985). Corrosion Protection Tests on Reinforced Concrete With Solid Stainless Steel Reinforcing Bars for Joslyn Stainless Steels. *Wiss, Janney, Elstner Associates, Inc. Report.* 



## APPENDIX A STATISTICAL ANALYSES

This appendix presents the details of the statistical analyses which support Figures 4.1, 4.4, 4.10, 4.11, 4.12, 4.17, 4.18, and 4.22. The table titles identify what figure the data supports and the type of test performed.



Figure 4.1 - t-Tests - Concrete and Steel

| 5 Years                      | Stool        | Canavata    |
|------------------------------|--------------|-------------|
| 5 rears                      | Steel        | Concrete    |
| Mean                         | 0.1566       | 0.165090909 |
| Variance                     | 0.0076948    | 0.005747491 |
| Observations                 | 5            | 11          |
| Pooled Variance              | 0.006303865  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 14           |             |
| t Stat                       | -0.198276888 |             |
| P(T<=t) one-tail             | 0.422839387  |             |
| t Critical one-tail          | 1.76130925   |             |
| P(T<=t) two-tail             | 0.845678774  |             |
| t Critical two-tail          | 2.144788596  |             |

| 6 Years                      | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.1835      | 0.169125    |
| Variance                     | 0.0038319   | 0.005253268 |
| Observations                 | 6           | 8           |
| Pooled Variance              | 0.004661031 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 12          |             |
| t Stat                       | 0.389873258 |             |
| P(T<=t) one-tail             | 0.351730842 |             |
| t Critical one-tail          | 1.782286745 |             |
| P(T<=t) two-tail             | 0.703461683 |             |
| t Critical two-tail          | 2.178812792 |             |

| 8 Years                      | Steel       | Concrete  |
|------------------------------|-------------|-----------|
| Mean                         | 0.166       | 0.1395    |
| Variance                     | 0.023931    | 0.0042605 |
| Observations                 | 3           | 10        |
| Pooled Variance              | 0.007836955 |           |
| Hypothesized Mean Difference | 0           |           |
| df                           | 11          |           |
| t Stat                       | 0.45473791  |           |
| P(T<=t) one-tail             | 0.329070443 |           |
| t Critical one-tail          | 1.795883691 |           |
| P(T<=t) two-tail             | 0.658140887 |           |
| t Critical two-tail          | 2.200986273 |           |

| 9 Years                      | Steel       | Concrete   |
|------------------------------|-------------|------------|
| Mean                         | 0.271333333 | 0.16575    |
| Variance                     | 0.002799067 | 0.00383689 |
| Observations                 | 6           | 44         |
| Pooled Variance              | 0.003728783 |            |
| Hypothesized Mean Difference | 0           |            |
| df                           | 48          |            |
| t Stat                       | 3.973093412 |            |
| P(T<=t) one-tail             | 0.000118678 |            |
| t Critical one-tail          | 1.677224191 |            |
| P(T<=t) two-tail             | 0.000237356 |            |
| t Critical two-tail          | 2.01063358  |            |



| 10 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.215333333 | 0.15712     |
| Variance                     | 0.01068375  | 0.003322193 |
| Observations                 | 9           | 25          |
| Pooled Variance              | 0.005162583 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 32          |             |
| t Stat                       | 2.084206596 |             |
| P(T<=t) one-tail             | 0.022604253 |             |
| t Critical one-tail          | 1.693888407 |             |
| P(T<=t) two-tail             | 0.045208506 |             |
| t Critical two-tail          | 2.036931619 |             |

| 11 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.2199      | 0.1585      |
| Variance                     | 0.009817433 | 0.001959045 |
| Observations                 | 10          | 34          |
| Pooled Variance              | 0.003642986 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 42          |             |
| t Stat                       | 2.827826483 |             |
| P(T<=t) one-tail             | 0.003575517 |             |
| t Critical one-tail          | 1.681951289 |             |
| P(T<=t) two-tail             | 0.007151034 |             |
| t Critical two-tail          | 2.018082341 |             |

| 12 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.253818182 | 0.152807692 |
| Variance                     | 0.005951364 | 0.003343282 |
| Observations                 | 11          | 26          |
| Pooled Variance              | 0.004088448 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 35          |             |
| t Stat                       | 4.392071474 |             |
| P(T<=t) one-tail             | 4.95177E-05 |             |
| t Critical one-tail          | 1.689572855 |             |
| P(T<=t) two-tail             | 9.90353E-05 |             |
| t Critical two-tail          | 2.030110409 |             |

| 13 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.247666667 | 0.1625      |
| Variance                     | 0.006657333 | 0.003800348 |
| Observations                 | 12          | 24          |
| Pooled Variance              | 0.004724667 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 34          |             |
| t Stat                       | 3.504524144 |             |
| P(T<=t) one-tail             | 0.00065229  |             |
| t Critical one-tail          | 1.690923455 |             |
| P(T<=t) two-tail             | 0.001304581 |             |
| t Critical two-tail          | 2.032243174 |             |



| 14 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.244636364 | 0.179108108 |
| Variance                     | 0.016904255 | 0.002862155 |
| Observations                 | 11          | 37          |
| Pooled Variance              | 0.005914785 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 46          |             |
| t Stat                       | 2.481051097 |             |
| P(T<=t) one-tail             | 0.008408525 |             |
| t Critical one-tail          | 1.678658919 |             |
| P(T<=t) two-tail             | 0.01681705  |             |
| t Critical two-tail          | 2.012893674 |             |

| 15 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.23725     | 0.170939394 |
| Variance                     | 0.0132166   | 0.005806809 |
| Observations                 | 16          | 33          |
| Pooled Variance              | 0.008171636 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 47          |             |
| t Stat                       | 2.407949749 |             |
| P(T<=t) one-tail             | 0.010009612 |             |
| t Critical one-tail          | 1.677926775 |             |
| P(T<=t) two-tail             | 0.020019224 |             |
| t Critical two-tail          | 2.011738616 |             |

| 16 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.233736842 | 0.166083333 |
| Variance                     | 0.01026576  | 0.006725558 |
| Observations                 | 19          | 24          |
| Pooled Variance              | 0.008279793 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 41          |             |
| t Stat                       | 2.421189471 |             |
| P(T<=t) one-tail             | 0.009990737 |             |
| t Critical one-tail          | 1.682878974 |             |
| P(T<=t) two-tail             | 0.019981473 |             |
| t Critical two-tail          | 2.01954208  |             |

| 17 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.206809524 | 0.177780488 |
| Variance                     | 0.018735762 | 0.004660776 |
| Observations                 | 21          | 41          |
| Pooled Variance              | 0.009352438 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 60          |             |
| t Stat                       | 1.118602879 |             |
| P(T<=t) one-tail             | 0.133884074 |             |
| t Critical one-tail          | 1.670648544 |             |
| P(T<=t) two-tail             | 0.267768148 |             |
| t Critical two-tail          | 2.000297172 |             |



| 18 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.216933333 | 0.165333333 |
| Variance                     | 0.012077857 | 0.005425657 |
| Observations                 | 30          | 36          |
| Pooled Variance              | 0.008439935 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 64          |             |
| t Stat                       | 2.272061329 |             |
| P(T<=t) one-tail             | 0.013225875 |             |
| t Critical one-tail          | 1.669013727 |             |
| P(T<=t) two-tail             | 0.026451751 |             |
| t Critical two-tail          | 1.99772785  |             |

| 19 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.249       | 0.196166667 |
| Variance                     | 0.0092549   | 0.007559362 |
| Observations                 | 21          | 42          |
| Pooled Variance              | 0.008115276 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 61          |             |
| t Stat                       | 2.194423187 |             |
| P(T<=t) one-tail             | 0.016011432 |             |
| t Critical one-tail          | 1.670218808 |             |
| P(T<=t) two-tail             | 0.032022864 |             |
| t Critical two-tail          | 1.999624146 |             |

| 20 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.278736842 | 0.163047619 |
| Variance                     | 0.006863649 | 0.004469168 |
| Observations                 | 19          | 42          |
| Pooled Variance              | 0.005199688 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 59          |             |
| t Stat                       | 5.802842621 |             |
| P(T<=t) one-tail             | 1.37021E-07 |             |
| t Critical one-tail          | 1.671091923 |             |
| P(T<=t) two-tail             | 2.74042E-07 |             |
| t Critical two-tail          | 2.000997483 |             |

| 21 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.230636364 | 0.184631579 |
| Variance                     | 0.011706055 | 0.007387536 |
| Observations                 | 11          | 38          |
| Pooled Variance              | 0.00830637  |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 47          |             |
| t Stat                       | 1.474305441 |             |
| P(T<=t) one-tail             | 0.073533272 |             |
| t Critical one-tail          | 1.677926775 |             |
| P(T<=t) two-tail             | 0.147066545 |             |
| t Critical two-tail          | 2.011738616 |             |



| 22 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.29555556  | 0.17284375  |
| Variance                     | 0.00388485  | 0.008732394 |
| Observations                 | . 18        | 32          |
| Pooled Variance              | 0.007015555 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 48          |             |
| t Stat                       | 4.972577425 |             |
| P(T<=t) one-tail             | 4.42518E-06 |             |
| t Critical one-tail          | 1.677224191 |             |
| P(T<=t) two-tail             | 8.85037E-06 |             |
| t Critical two-tail          | 2.01063358  |             |

| 23 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.231525    | 0.220159091 |
| Variance                     | 0.007519025 | 0.007456974 |
| Observations                 | 40          | 44          |
| Pooled Variance              | 0.007486486 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 82          |             |
| t Stat                       | 0.601287059 |             |
| P(T<=t) one-tail             | 0.274653736 |             |
| t Critical one-tail          | 1.663647708 |             |
| P(T<=t) two-tail             | 0.549307473 |             |
| t Critical two-tail          | 1.989319571 |             |

| 24 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.229411765 | 0.171085714 |
| Variance                     | 0.00949425  | 0.005568316 |
| Observations                 | 34          | 35          |
| Pooled Variance              | 0.007501985 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 67          |             |
| t Stat                       | 2.796555327 |             |
| P(T<=t) one-tail             | 0.003367221 |             |
| t Critical one-tail          | 1.667915512 |             |
| P(T<=t) two-tail             | 0.006734442 |             |
| t Critical two-tail          | 1.996008905 |             |

| 25 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.2491875   | 0.214083333 |
| Variance                     | 0.023355896 | 0.006726364 |
| Observations                 | 16          | 36          |
| Pooled Variance              | 0.011715224 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 50          |             |
| t Stat                       | 1.079426172 |             |
| P(T<=t) one-tail             | 0.142788717 |             |
| t Critical one-tail          | 1.675905423 |             |
| P(T<=t) two-tail             | 0.285577433 |             |
| t Critical two-tail          | 2.008559932 |             |



| 26 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.2453      | 0.204392857 |
| Variance                     | 0.010766011 | 0.008855507 |
| Observations                 | 20          | 28          |
| Pooled Variance              | 0.009644628 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 46          |             |
| t Stat                       | 1.42275397  |             |
| P(T<=t) one-tail             | 0.080777029 |             |
| t Critical one-tail          | 1.678658919 |             |
| P(T<=t) two-tail             | 0.161554058 |             |
| t Critical two-tail          | 2.012893674 |             |

| 27 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.228111111 | 0.214404762 |
| Variance                     | 0.007787281 | 0.007937222 |
| Observations                 | 18          | 42          |
| Pooled Variance              | 0.007893274 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 58          |             |
| t Stat                       | 0.547618956 |             |
| P(T<=t) one-tail             | 0.293027434 |             |
| t Critical one-tail          | 1.671553491 |             |
| P(T<=t) two-tail             | 0.586054868 |             |
| t Critical two-tail          | 2.001715984 |             |

| 28 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.244763158 | 0.193241379 |
| Variance                     | 0.005556294 | 0.01009219  |
| Observations                 | 38          | 29          |
| Pooled Variance              | 0.007510218 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 65          |             |
| t Stat                       | 2.411115235 |             |
| P(T<=t) one-tail             | 0.009369687 |             |
| t Critical one-tail          | 1.668636287 |             |
| P(T<=t) two-tail             | 0.018739375 |             |
| t Critical two-tail          | 1.997136678 |             |

| 29 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.245777778 | 0.159862069 |
| Variance                     | 0.014127595 | 0.005785123 |
| Observations                 | 18          | 29          |
| Pooled Variance              | 0.008936724 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 45          |             |
| t Stat                       | 3.028794014 |             |
| P(T<=t) one-tail             | 0.002028542 |             |
| t Critical one-tail          | 1.679427442 |             |
| P(T<=t) two-tail             | 0.004057084 |             |
| t Critical two-tail          | 2.014103302 |             |



| 30 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.238       | 0.18668     |
| Variance                     | 0.011791333 | 0.00823356  |
| Observations                 | 25          | 25          |
| Pooled Variance              | 0.010012447 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 48          |             |
| t Stat                       | 1.81330787  |             |
| P(T<=t) one-tail             | 0.038019671 |             |
| t Critical one-tail          | 1.677224191 |             |
| P(T<=t) two-tail             | 0.076039342 |             |
| t Critical two-tail          | 2.01063358  |             |
| 31 Years                     | Steel       | Concrete    |
| Mean                         | 0.234409091 | 0.210541667 |
| Variance                     | 0.009459587 | 0.005624085 |
| Observations                 | 22          | 24          |
| Pooled Variance              | 0.007454665 | 29          |
| Hypothesized Mean Difference | 0.007434003 |             |
| df                           | 44          |             |
| t Stat                       | 0.93654688  |             |
| P(T<=t) one-tail             | 0.177051968 |             |
| t Critical one-tail          | 1.680230071 |             |
| P(T<=t) two-tail             | 0.354103936 |             |
| t Critical two-tail          | 2.0153675   |             |
|                              | 210100010   |             |
| 32 Years                     | Steel       | Concrete    |
| Mean                         | 0.282148148 | 0.186666667 |
| Variance                     | 0.004274746 | 0.007836667 |
| Observations                 | 27          | 33          |
| Pooled Variance              | 0.006239944 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 58          |             |
| t Stat                       | 4.657920119 |             |
| P(T<=t) one-tail             | 9.549E-06   |             |
| t Critical one-tail          | 1.671553491 |             |
| P(T<=t) two-tail             | 1.9098E-05  |             |
| t Critical two-tail          | 2.001715984 |             |
| 33 Years                     | Steel       | Conoroto    |
| 00 16013                     | 31661       | Concrete    |

| 33 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.207727273 | 0.185533333 |
| Variance                     | 0.011746208 | 0.006448051 |
| Observations                 | 22          | 30          |
| Pooled Variance              | 0.008673277 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 50          |             |
| t Stat                       | 0.849010562 |             |
| P(T<=t) one-tail             | 0.199961055 |             |
| t Critical one-tail          | 1.675905423 |             |
| P(T<=t) two-tail             | 0.399922111 |             |
| t Critical two-tail          | 2.008559932 |             |



| 34 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.229882353 | 0.186692308 |
| Variance                     | 0.009393735 | 0.010132897 |
| Observations                 | 17          | 13          |
| Pooled Variance              | 0.009710519 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 28          |             |
| t Stat                       | 1.189591756 |             |
| P(T<=t) one-tail             | 0.122098407 |             |
| t Critical one-tail          | 1.701130259 |             |
| P(T<=t) two-tail             | 0.244196813 |             |
| t Critical two-tail          | 2.048409442 |             |

| 35 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.235652174 | 0.2         |
| Variance                     | 0.006879146 | 0.012762273 |
| Observations                 | 23          | 23          |
| Pooled Variance              | 0.009820709 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 44          |             |
| t Stat                       | 1.22001032  |             |
| P(T<=t) one-tail             | 0.114479931 |             |
| t Critical one-tail          | 1.680230071 |             |
| P(T<=t) two-tail             | 0.228959862 |             |
| t Critical two-tail          | 2.0153675   |             |

| 36 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.235388889 | 0.219941176 |
| Variance                     | 0.008683075 | 0.007432434 |
| Observations                 | 18          | 17          |
| Pooled Variance              | 0.008076704 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 33          |             |
| t Stat                       | 0.508245795 |             |
| P(T<=t) one-tail             | 0.307330934 |             |
| t Critical one-tail          | 1.692360456 |             |
| P(T<=t) two-tail             | 0.614661867 |             |
| t Critical two-tail          | 2.03451691  |             |

| 37 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.256727273 | 0.187952381 |
| Variance                     | 0.001035218 | 0.004687248 |
| Observations                 | 11          | 21          |
| Pooled Variance              | 0.003469904 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 30          |             |
| t Stat                       | 3.13691071  |             |
| P(T<=t) one-tail             | 0.00190409  |             |
| t Critical one-tail          | 1.697260359 |             |
| P(T<=t) two-tail             | 0.003808181 |             |
| t Critical two-tail          | 2.042270353 |             |



| 38 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.218       | 0.182363636 |
| Variance                     | 0.0139242   | 0.005882055 |
| Observations                 | 11          | 11          |
| Pooled Variance              | 0.009903127 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 20          |             |
| t Stat                       | 0.839824512 |             |
| P(T<=t) one-tail             | 0.205467036 |             |
| t Critical one-tail          | 1.724718004 |             |
| P(T<=t) two-tail             | 0.410934072 |             |
| t Critical two-tail          | 2.085962478 |             |

| 39 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.2338      | 0.2296      |
| Variance                     | 0.0024746   | 0.015433822 |
| Observations                 | 15          | 10          |
| Pooled Variance              | 0.0075456   |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 23          |             |
| t Stat                       | 0.118434444 |             |
| P(T<=t) one-tail             | 0.453375866 |             |
| t Critical one-tail          | 1.713870006 |             |
| P(T<=t) two-tail             | 0.906751732 |             |
| t Critical two-tail          | 2.068654794 |             |

| 40 Years                     | Steel       | Concrete    |
|------------------------------|-------------|-------------|
| Mean                         | 0.225454545 | 0.192666667 |
| Variance                     | 0.018987473 | 0.004723152 |
| Observations                 | 11          | 12          |
| Pooled Variance              | 0.011515685 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 21          |             |
| t Stat                       | 0.73196695  |             |
| P(T<=t) one-tail             | 0.236139608 |             |
| t Critical one-tail          | 1.720743512 |             |
| P(T<=t) two-tail             | 0.472279217 |             |
| t Critical two-tail          | 2.079614205 |             |



Figure 4.4 - t-Tests - Simple and Continuous

| 5 Years                         | Simple       | Continuous  |
|---------------------------------|--------------|-------------|
| Mean                            | 0.165111111  | 0.159       |
| Variance                        | 0.007709861  | 0.004446    |
| Observations                    | 9            | 7           |
| Pooled Variance                 | 0.006311063  |             |
| Hypothesized Mean Difference    | 0            |             |
| df                              | 14           |             |
| t Stat                          | 0.152643807  |             |
| P(T<=t) one-tail                | 0.440428647  |             |
| t Critical one-tail             | 1.76130925   |             |
| P(T<=t) two-tail                | 0.880857293  |             |
| t Critical two-tail             | 2.144788596  |             |
| 0.24                            |              |             |
| 6 Years                         | Simple       | Continuous  |
| Mean                            | 0.177111111  | 0.1895      |
| Variance                        | 0.005170611  | 0.003022333 |
| Observations                    | 9            | 4           |
| Pooled Variance                 | 0.004584717  |             |
| Hypothesized Mean Difference    | 0            |             |
| df                              | 11           |             |
| t Stat                          | -0.304477817 |             |
| P(T<=t) one-tail                | 0.383223415  |             |
| t Critical one-tail             | 1.795883691  |             |
| P(T<=t) two-tail                | 0.766446831  |             |
| t Critical two-tail             | 2.200986273  |             |
| 7 Years                         | 0: '         |             |
| Mean                            | Simple       | Continuous  |
| Variance                        | 0.160384615  | 0.169       |
| Observations                    | 0.005184923  | 0.003718667 |
| Pooled Variance                 | 13           | 4           |
|                                 | 0.004891672  |             |
| Hypothesized Mean Difference df | 0            |             |
|                                 | 15           |             |
| t Stat                          | -0.215438455 |             |
| P(T<=t) one-tail                | 0.416163724  |             |
| t Critical one-tail             | 1.753051038  |             |
| P(T<=t) two-tail                | 0.832327449  |             |
| t Critical two-tail             | 2.131450856  |             |
| 9 Voore                         | 0: 1         |             |
| 8 Years<br>Mean                 | Simple       | Continuous  |
| Variance                        | 0.168        | 0.1325      |
| variance                        | 0.002805     | 0.020443    |

| 8 Years                      | Simple      | Continuous |
|------------------------------|-------------|------------|
| Mean                         | 0.168       | 0.1325     |
| Variance                     | 0.002805    | 0.020443   |
| Observations                 | 7           | 4          |
| Pooled Variance              | 0.008684333 |            |
| Hypothesized Mean Difference | 0           |            |
| df                           | 9           |            |
| t Stat                       | 0.607774933 |            |
| P(T<=t) one-tail             | 0.279179521 |            |
| t Critical one-tail          | 1.833113856 |            |
| P(T<=t) two-tail             | 0.558359041 |            |
| t Critical two-tail          | 2.262158887 |            |



| 9 Years                      | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.171333333  | 0.2485      |
| Variance                     | 0.003625228  | 0.004391429 |
| Observations                 | 39           | . 8         |
| Pooled Variance              | 0.003744415  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 45           |             |
| t Stat                       | -3.249122841 |             |
| P(T<=t) one-tail             | 0.001096515  |             |
| t Critical one-tail          | 1.679427442  |             |
| P(T<=t) two-tail             | 0.00219303   |             |
| t Critical two-tail          | 2.014103302  |             |

| 10.1/                        | 2: 1         | 0 11        |
|------------------------------|--------------|-------------|
| 10 Years                     | Simple       | Continuous  |
| Mean                         | 0.1648       | 0.215333333 |
| Variance                     | 0.003583747  | 0.01068375  |
| Observations                 | 20           | 9           |
| Pooled Variance              | 0.005687452  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 27           |             |
| t Stat                       | -1.669384334 |             |
| P(T<=t) one-tail             | 0.053298584  |             |
| t Critical one-tail          | 1.703288035  |             |
| P(T<=t) two-tail             | 0.106597168  |             |
| t Critical two-tail          | 2.051829142  |             |

| 11 Years                     | Simple       | Continuous |
|------------------------------|--------------|------------|
| Mean                         | 0.166444444  | 0.2044     |
| Variance                     | 0.003516641  | 0.0081344  |
| Observations                 | 27           | 15         |
| Pooled Variance              | 0.005132857  |            |
| Hypothesized Mean Difference | 0            |            |
| df                           | 40           |            |
| t Stat                       | -1.645124047 |            |
| P(T<=t) one-tail             | 0.053890659  |            |
| t Critical one-tail          | 1.683852133  |            |
| P(T<=t) two-tail             | 0.107781318  |            |
| t Critical two-tail          | 2.021074579  |            |

| 12 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.173294118  | 0.237       |
| Variance                     | 0.005868346  | 0.008804545 |
| Observations                 | 17           | 12          |
| Pooled Variance              | 0.007064575  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 27           |             |
| t Stat                       | -2.010261684 |             |
| P(T<=t) one-tail             | 0.027245296  |             |
| t Critical one-tail          | 1.703288035  |             |
| P(T<=t) two-tail             | 0.054490592  |             |
| t Critical two-tail          | 2.051829142  |             |



| 13 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.197235294  | 0.2308      |
| Variance                     | 0.009066566  | 0.005736029 |
| Observations                 | 17           | 15          |
| Pooled Variance              | 0.007512315  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 30           |             |
| t Stat                       | -1.093178404 |             |
| P(T<=t) one-tail             | 0.141508101  |             |
| t Critical one-tail          | 1.697260359  |             |
| P(T<=t) two-tail             | 0.283016201  |             |
| t Critical two-tail          | 2.042270353  |             |

| 14 Years                     | Simple      | Continuous  |
|------------------------------|-------------|-------------|
| Mean                         | 0.186925926 | 0.240933333 |
| Variance                     | 0.003209533 | 0.012240495 |
| Observations                 | 27          | 15          |
| Pooled Variance              | 0.00637037  |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 40          |             |
| t Stat                       | -2.10123139 |             |
| P(T<=t) one-tail             | 0.020983868 |             |
| t Critical one-tail          | 1.683852133 |             |
| P(T<=t) two-tail             | 0.041967736 |             |
| t Critical two-tail          | 2.021074579 |             |

| 15 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.171037037  | 0.21185     |
| Variance                     | 0.00551396   | 0.011420239 |
| Observations                 | 27           | 20          |
| Pooled Variance              | 0.008007723  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 45           |             |
| t Stat                       | -1.545936206 |             |
| P(T<=t) one-tail             | 0.064562204  |             |
| t Critical one-tail          | 1.679427442  |             |
| P(T<=t) two-tail             | 0.129124409  |             |
| t Critical two-tail          | 2.014103302  |             |

| 16 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.17         | 0.22328     |
| Variance                     | 0.006757867  | 0.009981627 |
| Observations                 | 16           | 25          |
| Pooled Variance              | 0.008741719  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 39           |             |
| t Stat                       | -1.779933853 |             |
| P(T<=t) one-tail             | 0.041439819  |             |
| t Critical one-tail          | 1.684875315  |             |
| P(T<=t) two-tail             | 0.082879638  |             |
| t Critical two-tail          | 2.022688932  |             |



| 17 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.1829375    | 0.199666667 |
| Variance                     | 0.004116835  | 0.01766258  |
| Observations                 | 32           | 24          |
| Pooled Variance              | 0.009886319  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 54           |             |
| t Stat                       | -0.623079699 |             |
| P(T<=t) one-tail             | 0.267927472  |             |
| t Critical one-tail          | 1.673565748  |             |
| P(T<=t) two-tail             | 0.535854945  |             |
| t Critical two-tail          | 2.004881026  |             |

| 18 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.151774194  | 0.208941176 |
| Variance                     | 0.005340047  | 0.011210966 |
| Observations                 | 31           | 34          |
| Pooled Variance              | 0.008415291  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 63           |             |
| t Stat                       | -2.509425709 |             |
| P(T<=t) one-tail             | 0.007338029  |             |
| t Critical one-tail          | 1.669402536  |             |
| P(T<=t) two-tail             | 0.014676059  |             |
| t Critical two-tail          | 1.998341759  |             |

| 19 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.204666667  | 0.244210526 |
| Variance                     | 0.007270228  | 0.006848287 |
| Observations                 | 39           | 19          |
| Pooled Variance              | 0.007134604  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 56           |             |
| t Stat                       | -1.673359395 |             |
| P(T<=t) one-tail             | 0.049917184  |             |
| t Critical one-tail          | 1.672522103  |             |
| P(T<=t) two-tail             | 0.099834367  |             |
| t Critical two-tail          | 2.003239388  |             |

| 20 Years                     | Simple       | Continuous |
|------------------------------|--------------|------------|
| Mean                         | 0.152066667  | 0.248      |
| Variance                     | 0.005053444  | 0.009296   |
| Observations                 | 30           | 26         |
| Pooled Variance              | 0.00701759   |            |
| Hypothesized Mean Difference | 0            |            |
| df                           | 54           |            |
| t Stat                       | -4.273943959 |            |
| P(T<=t) one-tail             | 3.92738E-05  |            |
| t Critical one-tail          | 1.673565748  |            |
| P(T<=t) two-tail             | 7.85475E-05  |            |
| t Critical two-tail          | 2.004881026  |            |



| 21 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.188289474  | 0.23        |
| Variance                     | 0.009041563  | 0.010518842 |
| Observations                 | 38           | 20          |
| Pooled Variance              | 0.009542782  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 56           |             |
| t Stat                       | -1.545613699 |             |
| P(T<=t) one-tail             | 0.063915436  |             |
| t Critical one-tail          | 1.672522103  |             |
| P(T<=t) two-tail             | 0.127830872  |             |
| t Critical two-tail          | 2.003239388  |             |

| 22 years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.171678571  | 0.252666667 |
| Variance                     | 0.009875782  | 0.00642623  |
| Observations                 | 28           | 30          |
| Pooled Variance              | 0.008089407  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 56           |             |
| t Stat                       | -3.426797936 |             |
| P(T<=t) one-tail             | 0.000575499  |             |
| t Critical one-tail          | 1.672522103  |             |
| P(T<=t) two-tail             | 0.001150997  |             |
| t Critical two-tail          | 2.003239388  |             |

| 23 Years                     | Simple      | Continuous  |
|------------------------------|-------------|-------------|
| Mean                         | 0.238475    | 0.234585366 |
| Variance                     | 0.008036974 | 0.007082549 |
| Observations                 | 40          | 41          |
| Pooled Variance              | 0.007553721 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 79          |             |
| t Stat                       | 0.201376    |             |
| P(T<=t) one-tail             | 0.420461093 |             |
| t Critical one-tail          | 1.664370757 |             |
| P(T<=t) two-tail             | 0.840922187 |             |
| t Critical two-tail          | 1.990451892 |             |

| 24 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.180846154  | 0.236272727 |
| Variance                     | 0.005457818  | 0.01075133  |
| Observations                 | 39           | 33          |
| Pooled Variance              | 0.007877709  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 70           |             |
| t Stat                       | -2.640225928 |             |
| P(T<=t) one-tail             | 0.005103991  |             |
| t Critical one-tail          | 1.666915068  |             |
| P(T<=t) two-tail             | 0.010207982  |             |
| t Critical two-tail          | 1.994435479  |             |



| 25 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.214926829  | 0.242631579 |
| Variance                     | 0.00770382   | 0.01658469  |
| Observations                 | 41           | 19          |
| Pooled Variance              | 0.010459952  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 58           |             |
| t Stat                       | -0.976073436 |             |
| P(T<=t) one-tail             | 0.166540848  |             |
| t Critical one-tail          | 1.671553491  |             |
| P(T<=t) two-tail             | 0.333081695  |             |
| t Critical two-tail          | 2.001715984  |             |

| 26 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.186074074  | 0.255903226 |
| Variance                     | 0.009603687  | 0.006054957 |
| Observations                 | 27           | 31          |
| Pooled Variance              | 0.007702581  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 56           |             |
| t Stat                       | -3.022507232 |             |
| P(T<=t) one-tail             | 0.001888132  |             |
| t Critical one-tail          | 1.672522103  |             |
| P(T<=t) two-tail             | 0.003776264  |             |
| t Critical two-tail          | 2.003239388  |             |

| 27 Years                     | Simple      | Continuous  |
|------------------------------|-------------|-------------|
| Mean                         | 0.225870968 | 0.207964286 |
| Variance                     | 0.007953249 | 0.006269221 |
| Observations                 | 31          | 28          |
| Pooled Variance              | 0.007155552 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 57          |             |
| t Stat                       | 0.811946504 |             |
| P(T<=t) one-tail             | 0.210100146 |             |
| t Critical one-tail          | 1.672028702 |             |
| P(T<=t) two-tail             | 0.420200291 |             |
| t Critical two-tail          | 2.002466317 |             |

| 28 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.187826087  | 0.24344186  |
| Variance                     | 0.008927423  |             |
|                              |              | 0.006795491 |
| Observations                 | 23           | 43          |
| Pooled Variance              | 0.007528342  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 64           |             |
| t Stat                       | -2.481272603 |             |
| P(T<=t) one-tail             | 0.007864555  |             |
| t Critical one-tail          | 1.669013727  |             |
| P(T<=t) two-tail             | 0.01572911   |             |
| t Critical two-tail          | 1.99772785   |             |



| 29 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.189818182  | 0.242555556 |
| Variance                     | 0.009803591  | 0.009581791 |
| Observations                 | 33           | 18          |
| Pooled Variance              | 0.00972664   |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 49           |             |
| t Stat                       | -1.824925816 |             |
| P(T<=t) one-tail             | 0.037055662  |             |
| t Critical one-tail          | 1.676551165  |             |
| P(T<=t) two-tail             | 0.074111324  |             |
| t Critical two-tail          | 2.009574018  |             |
|                              |              |             |

| 30 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.200892857  | 0.243074074 |
| Variance                     | 0.010613284  | 0.010179533 |
| Observations                 | 28           | 27          |
| Pooled Variance              | 0.010400501  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 53           |             |
| t Stat                       | -1.533456769 |             |
| P(T<=t) one-tail             | 0.065555775  |             |
| t Critical one-tail          | 1.674115993  |             |
| P(T<=t) two-tail             | 0.13111155   |             |
| t Critical two-tail          | 2.005745046  |             |

| 31 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.20085      | 0.250333333 |
| Variance                     | 0.011476766  | 0.006092928 |
| Observations                 |              |             |
|                              | 20           | 24          |
| Pooled Variance              | 0.008528473  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 42           |             |
| t Stat                       | -1.769773051 |             |
| P(T<=t) one-tail             | 0.042012367  |             |
| t Critical one-tail          | 1.681951289  |             |
| P(T<=t) two-tail             | 0.084024734  |             |
| t Critical two-tail          | 2.018082341  |             |

| 32 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.202074074  | 0.241266667 |
| Variance                     | 0.012021533  | 0.005394133 |
| Observations                 | 27           | 30          |
| Pooled Variance              | 0.008527086  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 55           |             |
| t Stat                       | -1.599958649 |             |
| P(T<=t) one-tail             | 0.057668496  |             |
| t Critical one-tail          | 1.673033694  |             |
| P(T<=t) two-tail             | 0.115336991  |             |
| t Critical two-tail          | 2.004044291  |             |



| Simple      | Continuous                                                                             |
|-------------|----------------------------------------------------------------------------------------|
|             | 0.1948                                                                                 |
| 0.009217358 | 0.0088615                                                                              |
| 28          | 25                                                                                     |
|             |                                                                                        |
|             |                                                                                        |
| · ·         |                                                                                        |
| •           |                                                                                        |
|             |                                                                                        |
|             |                                                                                        |
|             |                                                                                        |
| 2.007582225 |                                                                                        |
|             | 28<br>0.009049896<br>0<br>51<br>0.06903698<br>0.47261508<br>1.675284693<br>0.945230161 |

| 34 Years                     | Simple      | Continuous  |
|------------------------------|-------------|-------------|
| Mean                         | 0.22985     | 0.2244      |
| Variance                     | 0.009214555 | 0.007567516 |
| Observations                 | 20          | 20          |
| Pooled Variance              | 0.008391036 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 38          |             |
| t Stat                       | 0.188143285 |             |
| P(T<=t) one-tail             | 0.425882733 |             |
| t Critical one-tail          | 1.685953066 |             |
| P(T<=t) two-tail             | 0.851765466 |             |
| t Critical two-tail          | 2.024394234 |             |

| 35 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.2106       | 0.222423077 |
| Variance                     | 0.012784253  | 0.004768174 |
| Observations                 | 20           | 26          |
| Pooled Variance              | 0.008229662  | 20          |
| Hypothesized Mean Difference | 0            |             |
| df                           | 44           |             |
| t Stat                       | -0.438189797 |             |
| P(T<=t) one-tail             | 0.331696278  |             |
| t Critical one-tail          | 1.680230071  |             |
| P(T<=t) two-tail             | 0.663392557  |             |
| t Critical two-tail          | 2.0153675    |             |

| 36 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.206888889  | 0.218526316 |
| Variance                     | 0.010065987  | 0.008096819 |
| Observations                 | 18           | 19          |
| Pooled Variance              | 0.009053272  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 35           |             |
| t Stat                       | -0.371848793 |             |
| P(T<=t) one-tail             | 0.356123656  |             |
| t Critical one-tail          | 1.689572855  |             |
| P(T<=t) two-tail             | 0.712247313  |             |
| t Critical two-tail          | 2.030110409  |             |



| 37 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.212857143  | 0.220647059 |
| Variance                     | 0.006865929  | 0.002487493 |
| Observations                 | 21           | 17          |
| Pooled Variance              | 0.004919957  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 36           |             |
| t Stat                       | -0.340403821 |             |
| P(T<=t) one-tail             | 0.367765439  |             |
| t Critical one-tail          | 1.688297289  |             |
| P(T<=t) two-tail             | 0.735530879  |             |
| t Critical two-tail          | 2.02809133   |             |
|                              |              |             |

| 38 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.191        | 0.220625    |
| Variance                     | 0.006991579  | 0.010501696 |
| Observations                 | 20           | 8           |
| Pooled Variance              | 0.007936611  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 26           |             |
| t Stat                       | -0.794917026 |             |
| P(T<=t) one-tail             | 0.216929329  |             |
| t Critical one-tail          | 1.705616341  |             |
| P(T<=t) two-tail             | 0.433858657  |             |
| t Critical two-tail          | 2.055530786  |             |

| 39 Years                     | Simple      | Continuous  |  |
|------------------------------|-------------|-------------|--|
| Mean                         | 0.242588235 | 0.235444444 |  |
| Variance                     | 0.011261757 | 0.004053908 |  |
| Observations                 | 17          | 18          |  |
| Pooled Variance              | 0.007548623 |             |  |
| Hypothesized Mean Difference | 0           |             |  |
| df                           | 33          |             |  |
| t Stat                       | 0.243120484 |             |  |
| P(T<=t) one-tail             | 0.404708488 |             |  |
| t Critical one-tail          | 1.692360456 |             |  |
| P(T<=t) two-tail             | 0.809416977 |             |  |
| t Critical two-tail          | 2.03451691  |             |  |

| 40 Years                     | Simple      | Continuous  |
|------------------------------|-------------|-------------|
| Mean                         | 0.204333333 | 0.178666667 |
| Variance                     | 0.008898381 | 0.006692667 |
| Observations                 | 15          | 15          |
| Pooled Variance              | 0.007795524 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 28          |             |
| t Stat                       | 0.796118014 |             |
| P(T<=t) one-tail             | 0.216330867 |             |
| t Critical one-tail          | 1.701130259 |             |
| P(T<=t) two-tail             | 0.432661733 |             |
| t Critical two-tail          | 2.048409442 |             |



| 41 Years                     | Simple      | Continuous |
|------------------------------|-------------|------------|
| Mean                         | 0.211941176 | 0.2086     |
| Variance                     | 0.003546684 | 0.0017473  |
| Observations                 | 17          | 5          |
| Pooled Variance              | 0.003186807 |            |
| Hypothesized Mean Difference | 0           |            |
| df                           | 20          |            |
| t Stat                       | 0.11633748  |            |
| P(T<=t) one-tail             | 0.454272671 |            |
| t Critical one-tail          | 1.724718004 |            |
| P(T<=t) two-tail             | 0.908545341 |            |
| t Critical two-tail          | 2.085962478 |            |

| 42 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.1965       | 0.218428571 |
| Variance                     | 0.013537714  | 0.006678286 |
| Observations                 | 8            | 7           |
| Pooled Variance              | 0.010371824  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 13           |             |
| t Stat                       | -0.416036229 |             |
| P(T<=t) one-tail             | 0.342084846  |             |
| t Critical one-tail          | 1.770931704  |             |
| P(T<=t) two-tail             | 0.684169693  |             |
| t Critical two-tail          | 2.16036824   |             |

| 43 Years                     | Simple      | Continuous  |
|------------------------------|-------------|-------------|
| Mean                         | 0.312       | 0.255571429 |
| Variance                     | 0.017401    | 0.003992952 |
| Observations                 | 3           | 7           |
| Pooled Variance              | 0.007344964 |             |
| Hypothesized Mean Difference | 0           |             |
| df                           | 8           |             |
| t Stat                       | 0.954143857 |             |
| P(T<=t) one-tail             | 0.183973996 |             |
| t Critical one-tail          | 1.85954832  |             |
| P(T<=t) two-tail             | 0.367947992 |             |
| t Critical two-tail          | 2.306005626 |             |

| 44 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.219666667  | 0.25025     |
| Variance                     | 0.007600333  | 0.003121583 |
| Observations                 | 3            | 4           |
| Pooled Variance              | 0.004913083  |             |
| Hypothesized Mean Difference | 0            |             |
| df                           | 5            |             |
| t Stat                       | -0.571280442 |             |
| P(T<=t) one-tail             | 0.296264519  |             |
| t Critical one-tail          | 2.015049176  |             |
| P(T<=t) two-tail             | 0.592529037  |             |
| t Critical two-tail          | 2.570577635  |             |



| 46 Years                     | Simple       | Continuous  |
|------------------------------|--------------|-------------|
| Mean                         | 0.14525      | 0.234333333 |
| Variance                     | 0.001764917  | 0.002161333 |
| Observations                 | 4            | 3           |
| Pooled Variance              | 0.001923483  |             |
| Hypothesized Mean Difference | 0            |             |
| df /                         | 5            |             |
| t Stat                       | -2.659462362 |             |
| P(T<=t) one-tail             | 0.02245645   |             |
| t Critical one-tail          | 2.015049176  |             |
| P(T<=t) two-tail             | 0.0449129    |             |
| t Critical two-tail          | 2.570577635  |             |



# Figure 4.10 (All Data) - Linear Regression of Longitudinal Curvature (x) and Percentage of CSE Readings in Corrosive Range (y)

# **Regression Statistics**

| Multiple R        | 0.00628927 |
|-------------------|------------|
| R Square          | 3.9555E-05 |
| Adjusted R Square | -0.0046996 |
| Standard Error    | 29.3607572 |
| Observations      | 213        |

### ANOVA

|            | df  | SS          | MS    | F      | Significance F |
|------------|-----|-------------|-------|--------|----------------|
| Regression | 1   | 7.195073524 | 7.195 | 0.0083 | 0.927294174    |
| Residual   | 211 | 181893.4078 | 862.1 |        |                |
| Total      | 212 | 181900.6029 |       |        |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95%  |
|--------------|--------------|----------------|--------|---------|--------------|------------|
| Intercept    | 33.1411206   | 6.935517856    | 4.778  | 3E-06   | 19.46933786  | 46.8129034 |
| X Variable 1 | -2024080.7   | 22155290.57    | -0.091 | 0.9273  | -45698154.68 | 41649993.4 |



# Figure 4.11 (All Data) - Linear Regression of Span to Depth Ratio (x) and Average Percentage of CSE Readings in Corrosive Range (y)

# **Regression Statistics**

| Multiple R        | 0.11398495 |
|-------------------|------------|
| R Square          | 0.01299257 |
| Adjusted R Square | 0.01043555 |
| Standard Error    | 26.8296964 |
| Observations      | 388        |

### ANOVA

| 71110171   | 16  | 0.0         | 140   |        | Significance F |
|------------|-----|-------------|-------|--------|----------------|
|            | df  | SS          | MS    |        |                |
| Regression | 1   | 3657.576357 | 3658  | 5.0811 | 0.024747501    |
| Residual   | 386 | 277855.3878 | 719.8 |        |                |
| Total      | 387 | 281512.9641 |       |        |                |

| A MIMILION MONTH |              |                |        |         |             |           |
|------------------|--------------|----------------|--------|---------|-------------|-----------|
|                  | Coefficients | Standard Error | t Stat | P-value | Lower 95%   | Upper 95% |
| Intercept        | 12.3838933   | 6.01832589     | 2.058  | 0.0403  | 0.551097501 | 24.216689 |
| X Variable 1     | 1.01539085   | 0.450455925    | 2.254  | 0.0247  | 0.129737088 | 1.9010446 |



# Figure 4.12 (Average Grouped Data) - Linear Regression of Cover Depth (x) and Percentage of CSE Readings in Corrosive Range (y)

### **Regression Statistics**

| Multiple R        | 0.9417974  |
|-------------------|------------|
| R Square          | 0.88698235 |
| Adjusted R Square | 0.83047352 |
| Standard Error    | 3.24934461 |
| Observations      | 4          |

#### **ANOVA**

| 71110 171  |    |             |       |        |                |
|------------|----|-------------|-------|--------|----------------|
|            | df | SS          | MS    | F      | Significance F |
| Regression | 1  | 165.7258397 | 165.7 | 15.696 | 0.058202598    |
| Residual   | 2  | 21.11648077 | 10.56 |        |                |
| Total      | 3  | 186.8423205 |       |        |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95% |
|--------------|--------------|----------------|--------|---------|--------------|-----------|
| Intercept    | 35.7993125   | 4.540754405    | 7.884  | 0.0157  | 16.2620096   | 55.336615 |
| X Variable 1 | -0.353661    | 0.089266362    | -3.96  | 0.0582  | -0.737743425 | 0.0304214 |



# Figure 4.12 (All Data) - Linear Regression of Cover Depth (x) and Percentage of CSE Readings in Corrosive Range (y)

# **Regression Statistics**

| Multiple R        | 0.1914922  |
|-------------------|------------|
| R Square          | 0.03666926 |
| Adjusted R Square | 0.02492133 |
| Standard Error    | 27.6713417 |
| Observations      | 84         |

### **ANOVA**

|            | df | SS          | MS    | F      | Significance F |
|------------|----|-------------|-------|--------|----------------|
| Regression | 1  | 2390.017382 | 2390  | 3.1213 | 0.080994502    |
| Residual   | 82 | 62787.65821 | 765.7 |        |                |
| Total      | 83 | 65177.6756  |       |        |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95% |
|--------------|--------------|----------------|--------|---------|--------------|-----------|
| Intercept    | 41.2156188   | 11.32595991    | 3.639  | 0.0005  | 18.68466506  | 63.746573 |
| X Variable 1 | -0.4684824   | 0.265169105    | -1.77  | 0.081   | -0.995988444 | 0.0590237 |



# Figure 4.17 (Average Grouped Data) - Linear Regression of Reinforcing Ratio (x) and Percentage of CSE Reading in Corrosive Range (y)

# Regression Statistics

| Multiple R        | 0.7472763 |
|-------------------|-----------|
| R Square          | 0.5584218 |
| Adjusted R Square | 0.4701062 |
| Standard Error    | 9.5175514 |
| Observations      | 7         |

#### ANOVA

| 71110171   |    |             |       |       |                |
|------------|----|-------------|-------|-------|----------------|
|            | df | SS          | MS    | F     | Significance F |
| Regression | 1  | 572.7633408 | 572.8 | 6.323 | 0.053528854    |
| Residual   | 5  | 452.9189188 | 90.58 |       |                |
| Total      | 6  | 1025.68226  |       |       |                |
|            |    |             |       |       |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95% |
|--------------|--------------|----------------|--------|---------|--------------|-----------|
| Intercept    | 36.633205    | 5.983674269    | 6.122  | 0.0017  | 21.25170559  | 52.014704 |
| X Variable 1 | -35.438161   | 14.09317341    | -2.51  | 0.0535  | -71.66575714 | 0.7894356 |



# Figure 4.17 (All Data) - Linear Regression of Reinforcing Ratio (x) and Percentage of CSE Reading in Corrosive Range (y)

# **Regression Statistics**

| Multiple R        | 0.08557514 |
|-------------------|------------|
| R Square          | 0.00732311 |
| Adjusted R Square | 0.00541043 |
| Standard Error    | 27.3074338 |
| Observations      | 521        |

### **ANOVA**

|            | df  | SS          | MS    | F      | Significance F |
|------------|-----|-------------|-------|--------|----------------|
| Regression | 1   | 2855.068251 | 2855  | 3.8287 | 0.050916871    |
| Residual   | 519 | 387016.1937 | 745.7 |        |                |
| Total      | 520 | 389871.262  |       |        |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95% |
|--------------|--------------|----------------|--------|---------|--------------|-----------|
| Intercept    | 30.4534773   | 1.759997221    | 17.3   | 3E-53   | 26.99588369  | 33.911071 |
| X Variable 1 | -16.182241   | 8.270110309    | -1.957 | 0.0509  | -32.42924414 | 0.0647625 |



# Figure 4.18 (Average Grouped Data) - Linear Regression of Reinforcing Ratio (x) and Percentage of CSE Reading in Corrosive Range (y)

# Regression Statistics

| Multiple R        | 0.59686644 |
|-------------------|------------|
| R Square          | 0.35624954 |
| Adjusted R Square | 0.28472172 |
| Standard Error    | 8.48069324 |
| Observations      | 11         |

### ANOVA

| ANOVA      | df | SS          | MS    | F      | Significance F |
|------------|----|-------------|-------|--------|----------------|
| Regression | 1  |             | 358.2 | 4.9806 | 0.052549037    |
| Residual   | 9  | 647.29942   | 71.92 |        |                |
| Total      | 10 | 1005.512951 |       |        |                |

| Parameter Estimat      |              |                |        |         | . 0.50/     | 11 OF0/   |
|------------------------|--------------|----------------|--------|---------|-------------|-----------|
|                        | Coefficients | Standard Error | t Stat | P-value |             | Upper 95% |
| Intercept X Variable 1 | 18.8684203   | 4.890081216    | 3.859  | 0.0039  | 7.806279598 |           |



# Figure 4.18 (All Data) - Linear Regression of Reinforcing Ratio (x) and Percentage of CSE Reading in Corrosive Range (y)

# **Regression Statistics**

| Multiple R        | 0.1198626 |
|-------------------|-----------|
| R Square          | 0.014367  |
| Adjusted R Square | 0.0124679 |
| Standard Error    | 27.249834 |
| Observations      | 521       |

### **ANOVA**

|            | df  | SS          | MS    | F      | Significance F |
|------------|-----|-------------|-------|--------|----------------|
| Regression | 1   | 5617.552775 | 5618  | 7.5652 | 0.006158424    |
| Residual   | 519 | 385385.2452 | 742.6 |        |                |
| Total      | 520 | 391002.798  |       |        |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%   | Upper 95% |
|--------------|--------------|----------------|--------|---------|-------------|-----------|
| Intercept    | 18.561051    | 3.532271831    | 5.255  | 2E-07   | 11.62174439 | 25.500358 |
| X Variable 1 | 14.505882    | 5.273930593    | 2.75   | 0.0062  | 4.145007947 | 24.866755 |



# Figure 4.22 (Average Grouped Data) - Linear Regression of Longitudinal Bar Spacing (x) and Percentage of CSE Reading in Corrosive Range (y)

# Regression Statistics

| Multiple R        | 0.38593574 |
|-------------------|------------|
| R Square          | 0.1489464  |
| Adjusted R Square | 0.10842004 |
| Standard Error    | 13.975747  |
| Observations      | 23         |

#### ANOVA

|            | df | SS          | MS    | F      | Significance F |
|------------|----|-------------|-------|--------|----------------|
| Regression | 1  | 717.8644475 | 717.9 | 3.6753 | 0.068930449    |
| Residual   | 21 | 4101.751589 | 195.3 |        |                |
| Total      | 22 | 4819.616037 |       |        |                |

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95% |
|--------------|--------------|----------------|--------|---------|--------------|-----------|
| Intercept    | 8.55156251   | 7.190684843    | 1.189  | 0.2476  | -6.402287832 | 23.505413 |
| X Variable 1 | 0.03471349   | 0.018107235    | 1.917  | 0.0689  | -0.002942569 | 0.0723696 |



## Figure 4.22 (All Data) - Linear Regression of Longitudinal Bar Spacing (x) and Percentage of CSE Reading in Corrosive Range (y)

### **Regression Statistics**

| Multiple R        | 0.15043306 |
|-------------------|------------|
| R Square          | 0.02263011 |
| Adjusted R Square | 0.01864084 |
| Standard Error    | 28.9293987 |
| Observations      | 247        |

#### **ANOVA**

|            | df  | SS          | MS   | F      | Significance F |
|------------|-----|-------------|------|--------|----------------|
| Regression | 1   | 4747.582728 | 4748 | 5.6728 | 0.017994726    |
| Residual   | 245 | 205042.9762 | 837  |        |                |
| Total      | 246 | 209790.5589 |      |        |                |

#### **Parameter Estimates**

|              | Coefficients | Standard Error | t Stat | P-value | Lower 95%    | Upper 95% |
|--------------|--------------|----------------|--------|---------|--------------|-----------|
| Intercept    | 8.4673217    | 7.49575532     | 1.13   | 0.2597  | -6.297012656 | 23.231656 |
| X Variable 1 | 0.04259677   | 0.017884626    | 2.38   | 0.018   | 0.007369559  | 0.077824  |



# APPENDIX B DATABASE

This appendix presents a hard copy of the database that was used during this project.



#### BRIDGE INFORMATION DATA

| FileNumber | Category | Use | SpanType1 | SpanType2 | Simp/Cont | YearPrime | YearLast | Wear1 | Wear2 | SubDk1   | SubDk2 | Spans | SpanLn1     | SpanLn2 | SpanLn3 | SpanLn4 | SpanLn5 | Length | Skew | ClWidth | DesLoad       | AADT                |
|------------|----------|-----|-----------|-----------|-----------|-----------|----------|-------|-------|----------|--------|-------|-------------|---------|---------|---------|---------|--------|------|---------|---------------|---------------------|
| 00493W     | M        | RV  | CF        |           | С         | 52        | 64       | Α     |       | С        |        | 1     | 13.7        | 0       | 0       | 0       | 0       | 13.7   |      | 13.4    | HS20          | A 450196            |
| 00756N     | М        | RV  | FC        |           | S         | 70        | 70       | E     |       | P        |        | 4     | 33.5        | 33.5    | 33.5    | 33.5    | 0       | 134    |      | 12.2    | HS20          | A 578099            |
| 00756S     | М        | RV  | DBC       |           | С         | 93        | 94       | A     |       | P        | 1      | 4     | 31          | 36      | 36      | 31      | 0       | 134    |      | 12.5    | CS750         | A 578099            |
| 01059E     | М        | RV  | SCC       |           | С         | 93        | 93       | A     |       | Р        |        | 3     | 12          | 10      | 12      | 0       | 0       | 34     |      | 13.2    | CS750         | A 520099            |
| 01059W     | S        | RV  | VS        |           | S         | 77        | 77       | A     |       | P        |        | 3     | 10.7        | 10.7    | 10.7    | 0       | 0       | 32.1   |      | 13.7    | HS25          | A 520099            |
| 06780E     | S        | IC  | HC        |           | S         | 63        | 63       | A     |       | P        |        | 6     | 6.1         | 6.1     | 6.1     | 6.1     | 6.1     | 36.6   |      | 13.7    | HS20          | A 890099            |
| 06985E     | М        | RV  | DBT       |           | S         | 85        | 86       | R     |       | Р        |        | 1     | 42          | 0       | 0       | 0       | 0       | 42     | -20  | 13.1    | MS300         | A 619099            |
| 06985W     | M        | RV  | СТ        |           | С         | 55        | 55       | R     |       | С        |        | 3     | 12.2        | 18.3    | 12.2    | 0       | 0       | 42.7   | -20  | 14      | HS20          | A 619099            |
| 08435E     | М        | RV  | CT        |           | С         | 56        | 56       | А     |       | С        |        | 3     | 12.8        | 18.3    | 12.8    | 0       | 0       | 43.9   |      | 13.4    | HS20          | A 458099            |
| 08435W     | М        | RV  | DBT       |           | S         | 84        | 85       | Н     |       | Р        |        | 1     | 42          | 0       | 0       | 0       | 0       | 42     |      | 13.1    | MS300         | A 458099            |
| 09219E     | М        | RV  | PMO       |           |           | 67        | 67       | 1     |       | Р        |        | 3     | 10.7        | 13.7    | 10.7    | 0       | 0       | 35.1   |      | 13.7    | HS20          | A 822099            |
| 09219W     | М        | RV  | DBT       |           | S         | 82        | 83       | Н     |       | Р        |        | 1     | 30          | 0       | 0       | 0       | 0       | 30     |      | 13.1    | MS300         | A 822099            |
| 09467E     | M        | GS  | HC        |           |           | 63        | 65       | Α     |       | Р        |        | 3     | 6.1         | 11.6    | 6.1     | 0       | 0       | 23.8   |      | 14.6    | HS20          | A 1708096           |
| 09467W     | М        | GS  | HC        |           |           | 63        | 65       | А     |       | Р        |        | 3     | 6.1         | 11.6    | 6.1     | 0       | 0       | 23.8   |      | 14.6    | HS20          | A 1708096           |
| 09469N     | M        | RV  | СТ        |           | С         | 60        | 60       | E     |       | С        |        | 3     | 12.2        | 16.5    | 12.2    | 0       | 0       | 40.9   |      | 11.6    | HS20          | A 702099            |
| 09469S     | M        | RV  | CT        |           | С         | 60        | 60       | E     |       | С        |        | 3     | 12.2        | 16.5    | 12.2    | 0       | 0       | 40.9   |      | 11.6    | HS20          | A 702099            |
| 09899W     | М        | RV  | RB        |           | С         | 55        | 72       | Α     |       | C        |        | 3     | 21.9        | 27.4    | 21.9    | 0       | 0       | 71.2   |      | 13.4    | HS20          | A 459099            |
| 101        | S        | RV  | HC        |           | S         | 62        | 62       | J     |       | Р        |        | 3     | 8.5         | 8.5     | 8.5     | 0       | 0       | 25.5   |      | 10.1    | HS20          | A 217099            |
| 102        | M        | RV  | PM        | PE        | S         | 66        | 66       | А     | Α     | Р        | Р      | 3     | 10.7        | 16.8    | 10.7    | 0       | 0       | 38.2   | 45   | 8.2     | HS20          | A 34099             |
| 1031       | M        | RV  | SMC       |           | С         | 89        | 89       | Α     |       | Р        |        | 4     | 11          | 11      | 11      | 11      | 0       | 44     | 30   | 13.3    | MS300         | A 71099             |
| 1049       | S        | IC  | VSO       |           | Р         | 76        | 76       | R     |       | Р        |        | 4     | 8.5         | 8.5     | 8.5     | 8.5     | 0       | 34     | -    | 13.7    | HS25          | A 672099            |
| 1053       | М        | RV  | CS        |           | С         | 58        | 58       | - 1   |       | C        |        | 3     | 9.1         | 12.2    | 9.1     | 0       | 0       | 30.4   | -    | 8.5     | HS20          | A 48099             |
| 1062       | М        | RV  | PO        |           | S         | 60        | 60       | J     |       | С        |        | 3     | 20.7        | 26.2    | 26.2    | 0       | 0       | 73.1   | -    | 7.9     | HS20          | A 81099             |
| 1085       | M        | RV  | PO        |           | С         | 6         | 73       | F     | ļ     | С        | -      | 5     | 21.3        | 41.5    | 41.5    | 41.5    | 21.3    | 167.1  | -    | 8.5     | HS20          | A 98099             |
| 1092       | S        | RV  | HC        |           | S         | 67        | 67       | Α     | ļ     | Р        |        | 3     | 8.5         | 8.5     | 8.5     | 0       | 0       | 25.5   | 30   | 9.1     | HS20          | A 31099             |
| 1122       | М        | RV  | CT        |           | С         | 54        | 54       | Н     |       | С        | -      | 3     | 19.5        | 24.4    | 19.5    | 0       | 0       | 63.4   | 10   | 8.5     | HS20          | A 729099<br>E 10088 |
| 1126       | M        | RV  | DBT       |           | S         | 84        | 85       | N     |       | Р        |        | 2     | 30          | 30      | 0       | 0       | 0       | 60     | 10   | 7.5     | MS300<br>HS20 | A 88099             |
| 1137       | M        | RV  | PO        |           | S         | 58        | 58       | Α     |       | P        | -      | 2     | 19.8        | 19.8    | 0       | 0       | 0       | 39.6   |      | 10.7    | MS230         |                     |
| 1140       | M        | RV  | FM        |           | S         | 80        | 81       | R     |       | P        |        | 3     | 16          | 36      | 16      | 29      | 0       | 116    |      | 9.1     | HS20          | A 1281099           |
| 1145       | M        | RV  | FC        |           | S         | 69        | 69       | J     | -     | P        |        | 4     | 29          | 29      | 29      | 26.8    | 0       | 105.5  | +    | 7.9     | HS20          | A 171099            |
| 1153       | M        | RV  | PO        |           | S         | 59        | 59       | E     |       | C        |        | 4     | 20.7        | 18.6    | 15.4    | 0       | 0       | 49.4   | -    | 13      | MS300         |                     |
| 1158       | M        | RV  | RB        |           | S         | 54        | 89       | . A   | -     | C        |        | 3     | 15.4<br>8.5 | 8.5     | 8.5     | 0       | 0       | 25.5   | +    | 7.3     | HS20          | E 9599              |
| 1193       | S        | RV  | PGO       |           | S         | 60        | 60       | F     |       | -        | -      |       | +           | 10.1    | 10.1    | 0       | 0       | 30.3   |      | 13.7    | HS20          | A 639099            |
| 1219       | S        | RV  | HC        |           | S         | 68        | 68       | Y     | -     | P        | -      | 2     | 35.1        | 35.1    | 0       | 0       | 0       | 70.2   |      | 7.9     | HS20          | A 96099             |
| 1227       | M        | RV  | PT        |           | S         | 64        | 64       | E     | -     | C        | -      | 3     | 21.3        | 22.9    | 21.3    | 0       | 0       | 65.5   | _    | 9.1     | HS20          | A 61099             |
| 1241       | M        | RV  | FC        |           | S         | 68        | 68       | A     | -     | P        |        | 1     | 40          | 0       | 0       | 0       | 0       | 40     | -15  |         | MS300         |                     |
| 1242       | М        | RV  | DBT       |           | S         | 85        | 86       | N     | -     | C        |        | 4     | 26.8        | 33.5    | 33.5    | 26.8    | 0       | 120.6  | +    | 8.5     | HS20          |                     |
| 1245       | М        | RV  | RB        |           | С         | 52        | 52       | E     | -     | P        | -      | 3     | 12          | 12      | 12      | 0       | 0       | 36     | 30   |         | CS750         |                     |
| 1252       | М        | RV  | SCC       |           | С         | 93        | 93       | 1     |       | P        |        | 3     | 6.1         | 9.1     | 6.1     | 0       | 0       | 21.3   |      | 11.3    | HS25          |                     |
| 1279       | S        | RV  | VS        |           |           | 77        | 77       | N     |       | <u> </u> |        | 5     | 10.1        | 13.4    | 13.4    | 13.4    | 10.1    | 60.4   | _    |         | HS20          |                     |
| 1303       | M        | RV  | CS        |           | S         | 53        | 53       | H     | -     | C        |        | 1     | 8.5         | 0       | 0       | 0       | 0       | 8.5    | 1 00 | 11      | HS20          |                     |
| 13067      | S        | RV  | НС        |           | S         | 73        | 73       | A     | -     |          | P      | 3     | 15.2        | 15.2    | 15.2    | 0       | 0       | 45.6   |      | 10.7    | HS20          |                     |
| 13073      | М        | RV  | РМ        | RD        | S         | 66        | 66       | A     | C     | P        | P      | 1     | 18.3        | 0       | 0       | 0       | 0       | 18.3   | _    | 8.2     | HS25          |                     |
| 13096      | М        | RV  | RD        |           | S         | 78        | 78       | A     |       | P        |        |       | 10.5        |         |         |         | 0       | 10.0   |      | 0.2     |               |                     |



| 13114 | T 0 | T DV | 011 |    |   |    |    |   |   |    |   |   |      |      |      |      |      |       |     |      |       |          |
|-------|-----|------|-----|----|---|----|----|---|---|----|---|---|------|------|------|------|------|-------|-----|------|-------|----------|
| 13117 | S   | RV   | SM  | -  | S | 61 | 61 | С |   | Р  |   | 3 | 6.1  | 8.5  | 6.1  | 0    | 0    | 20.7  |     | 10.1 |       | E 100098 |
|       | M   | RV   | RB  |    | С | 55 | 55 | R |   | С  |   | 3 | 21.9 | 27.4 | 21.9 | 0    | 0    | 71.2  | 20  | 8.5  |       | A 274099 |
| 13149 | M   | RV   | CT  |    | С | 57 | 57 | F |   | С  |   | 3 | 12.8 | 18.3 | 12.8 | 0    | 0    | 43.9  |     | 9.1  |       | A 305099 |
| 13151 | S   | RV   | HC  |    | S | 63 | 63 | С |   | Р  |   | 1 | 11.6 | 0    | 0    | 0    | 0    | 11.6  |     | 9.1  |       | A 55099  |
| 13166 | M   | RV   | TH  | RD | S | 35 | 77 | С | С | С  | С | 3 | 16.8 | 76.2 | 18.3 | 0    | 0    | 111.3 |     | 7.3  |       | A 29099  |
| 13181 | М   | RV   | PO  |    |   | 59 | 59 | J |   | Р  |   | 3 | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6  | -20 | 9.1  |       | A 171099 |
| 13270 | M   | RV   | SCC |    | S | 96 | 96 | С |   | Р  |   | 1 | 12   | 0    | 0    | 0    | 0    | 12    |     | 16   | CS750 |          |
| 13271 | S   | RV   | VS  |    |   | 77 | 77 | Α |   | Р  |   | 1 | 10.7 | 0    | 0    | 0    | 0    | 10.7  |     | 12.5 |       | A 122099 |
| 13360 | S   | RV   | SM  |    |   | 79 | 79 | A |   | Р  |   | 1 | 11   | 0    | 0    | 0    | 0    | 11    |     | 11.3 |       | A 107099 |
| 13370 | M   | RV   | CT  |    | С | 58 | 58 | Н |   | С  |   | 8 | 25.3 | 35.1 | 35.1 | 35.1 | 25.3 | 260.9 |     | 9.1  |       | A 178099 |
| 13371 | M   | RV   | WG  |    | С | 61 | 83 | С |   | С  |   | 3 | 42   | 46.7 | 34   | 0    | 0    | 122.7 |     | 9    | MS230 | E 13594  |
| 13384 | S   | RV   | SC  |    | S | 94 | 94 | Α |   | P_ |   | 3 | 8.5  | 10.1 | 8.5  | 0    | 0    | 27.1  |     | 12.8 |       | A 236099 |
| 1340  | M   | RV   | PM  |    | S | 72 | 72 | N |   | Р  |   | 3 | 18.3 | 18.3 | 18.3 | 0    | 0    | 54.9  |     | 8.2  | HS20  | E 20089  |
| 13445 | S   | RV   | SC  |    | S | 93 | 93 | Α |   | Р  |   | 3 | 11.6 | 11.6 | 11.6 | 0    | 0    | 34.8  |     | 9.2  |       | A 103099 |
| 13473 | M   | RV   | WG  |    | С | 87 | 88 | Α |   | С  |   | 3 | 30   | 38   | 30   | 0    | 0    | 98    | 20  | 9    | MS300 | A 41099  |
| 13486 | M   | RV   | FC  |    | S | 70 | 70 | F |   | P  |   | 3 | 10.7 | 24.4 | 13.7 | 0    | 0    | 48.8  |     | 9.1  | HS20  | A 84099  |
| 135   | M   | RV   | FC  |    |   | 67 | 67 | A |   | Р  |   | 3 | 25.9 | 25.9 | 25.9 | 0    | 0    | 77.7  |     | 10.7 | HS20  | A 145099 |
| 13545 | M   | RV   | WG  |    | С | 87 | 88 | R |   | Р  |   | 2 | 40   | 40   | 0    | 0    | 0    | 80    | 30  | 13   | MS300 | A 440099 |
| 13587 | М   | RV   | PO  |    |   | 65 | 65 | A |   | Р  |   | 3 | 25.9 | 25.9 | 25.9 | 0    | 0    | 77.7  | 20  | 9.1  | HS20  | A 110099 |
| 13625 | M   | RV   | FC  |    | S | 68 | 68 | С |   | Р  |   | 3 | 12.2 | 16.8 | 12.2 | 0    | 0    | 41.2  |     | 9.1  | HS20  | A 64099  |
| 13692 | M   | RV   | WG  |    | С | 88 | 89 | Α |   | С  |   | 3 | 19   | 23   | 19   | 0    | 0    | 61    | -20 | 9    | MS300 | E 10098  |
| 13694 | S   | RV   | VS  |    |   | 75 | 75 | Α |   | Р  |   | 3 | 6.1  | 7.6  | 6.1  | 0    | 0    | 19.8  | -30 | 13.7 | HS25  | A 168099 |
| 13700 | M   | RV   | WG  |    | С | 88 | 89 | Α |   | С  |   | 3 | 12   | 14   | 12   | 0    | 0    | 38    |     | 9    | MS300 | A 44099  |
| 13705 | S   | RV   | VS  |    | S | 77 | 77 | Α |   | Р  |   | 3 | 10.7 | 10.7 | 10.7 | 0    | 0    | 32.1  |     | 10.1 | HS25  | A 74099  |
| 13742 | M   | RV   | WG  |    | С | 63 | 63 | Α |   | С  |   | 5 | 49.7 | 62.5 | 62.5 | 62.5 | 49.7 | 286.9 |     | 8.5  | HS20  | A 140099 |
| 13821 | M   | RV   | PM  |    | S | 72 | 72 | F |   | Р  |   | 3 | 16.8 | 16.8 | 16.8 | 0    | 0    | 50.4  | 10  | 13.5 | HS20  | A 348099 |
| 13824 | M   | RV   | RB  |    | С | 61 | 82 | E |   | С  |   | 3 | 14.6 | 18.3 | 14.6 | 0    | 0    | 47.5  |     | 11   | HS20  | A 215099 |
| 13832 | M   | RV   | RB  | PG | S | 61 | 61 | E | H | С  | С | 3 | 8.5  | 24.4 | 8.5  | 0    | 0    | 41.4  |     | 9.1  | HS20  | A 71099  |
| 13838 | M   | RV   | VF  |    | S | 75 | 76 | R |   | Р  |   | 3 | 12.2 | 36.6 | 12.2 | 0    | 0    | 61    |     | 11   | HS25  | A 236099 |
| 13852 | M   | RV   | RB  | HC | S | 66 | 66 | E | Α | С  | Р | 3 | 8.5  | 23.8 | 8.5  | 0    | 0    | 40.8  | -   | 8.2  | HS20  | A 18099  |
| 13901 | M   | RV   | SCC |    | С | 95 | 95 | С |   | Р  |   | 2 | 14   | 14   | 0    | 0    | 0    | 28    |     | 11.9 | CS750 | A 255099 |
| 13977 | S   | RV   | PGO |    | S | 53 | 53 | F |   | Р  |   | 3 | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  | -   | 11   | HS20  | A 128099 |
| 1402  | M   | RV   | RB  |    | S | 57 | 57 | Α |   | С  |   | 2 | 24.4 | 24.4 | 0    | 0    | 0    | 48.8  | -   | 7.3  | HS20  | A 70099  |
| 1409  | M   | RV   | PO  |    | S | 57 | 57 | R |   | С  |   | 2 | 25.9 | 25.9 | 0    | 0    | 0    | 51.8  | ļ   | 11   | HS20  | A 209099 |
| 1420  | M   | RV   | WG  |    | С | 90 | 91 | Α |   | С  |   | 3 | 13   | 16   | 13   | 0    | 0    | 42    | -   | 9    | CS750 | E 14595  |
| 1426  | M   | RV   | PO  |    | S | 58 | 58 | Α |   | Р  |   | 3 | 21.3 | 21.3 | 21.3 | 0    | 0    | 63.9  | -   | 13.4 | HS20  | A 235099 |
| 1427  | M   | RV   | PO  |    | S | 57 | 57 | Α |   | Р  |   | 4 | 24.4 | 24.7 | 24.7 | 24.4 | 0    | 98.2  |     | 8.5  | HS20  | A 105099 |
| 1432  | М   | RV   | RB  |    | С | 63 | 63 | Р |   | С  |   | 3 | 18.3 | 22.9 | 18.3 | 0    | 0    | 59.5  | -   | 7.9  | HS20  | E 9088   |
| 149   | M   | RV   | FC  |    | S | 70 | 70 | Α |   | P  |   | 2 | 27.4 | 27.4 | 0    | 0    | 0    | 54.8  | -25 | 8.5  | HS20  | A 58099  |
| 1491  | M   | RV   | CBC |    | С | 91 | 92 | Α |   | P  |   | 3 | 26   | 32   | 20   | 0    | 0    | 78    |     | 9.2  | CS750 | A 27099  |
| 1493  | М   | RV   | PO  |    | S | 61 | 61 | E |   | P  |   | 3 | 16.8 | 21.3 | 16.8 | 0    | 0    | 54.9  | 30  | 7.9  | HS20  | A 102099 |
| 1504  | S   | RV   | HC  |    | S | 60 | 60 | Α |   | P  |   | 1 | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 13.7 | HS20  | A 188099 |
| 1517  | M   | RV   | PO  |    | S | 59 | 59 | Α |   | Р  |   | 3 | 20.7 | 23.8 | 20.7 | 0    | 0    | 65.2  |     | 9.1  | HS20  | A 182099 |
| 1536  | M   | RV   | SCC |    | С | 95 | 95 | Α |   | P  |   | 2 | 14   | 14   | 0    | 0    | 0    | 28    |     | 8.5  | CS750 | E 25096  |
| 1569  | М   | RV   | SCC |    | С | 91 | 91 | Α |   | Р  |   | 3 | 10   | 12   | 10   | 0    | 0    | 32    | 15  | 11.9 | CS750 | A 173099 |
| 1588  | M   | RV   | PM  |    | S | 64 | 64 | N |   | Р  |   | 3 | 15.2 | 16.8 | 15.2 | 0    | 0    | 47.2  |     | 9.1  | HS20  |          |
| 1606  | M   | RV   | PO  |    | С | 65 | 65 | Α |   | С  |   | 3 | 30.5 | 30.5 | 30.5 | 0    | 0    | 91.5  |     | 9.1  | HS20  | A 145099 |



| 1014 | B.4 | Tov | DDT | T   |   |    |    | ,      |   |   |   |     |      |                                                    |      |      |     |       |     |      |               |                     |
|------|-----|-----|-----|-----|---|----|----|--------|---|---|---|-----|------|----------------------------------------------------|------|------|-----|-------|-----|------|---------------|---------------------|
| 1614 | M   | RV  | DBT |     | S | 83 | 84 | N      |   | Р |   | _ 1 | 40   | 0                                                  | 0    | 0    | 0   | 40    | 15  | 8.3  | MS300         | E 13091             |
| 1632 | M   | RV  | RB  |     | C | 76 | 76 | A      |   | C |   | 3   | 21.3 | 25.6                                               | 21.3 | 0    | 0   | 68.2  |     | 8.5  | HS25          | A 26099             |
| 1642 | S   | RV  | VS  | -   | S | 77 | 77 | J      |   | Р |   | 3   | 9.1  | 10.7                                               | 9.1  | 0    | 0   | 28.9  | 15  | 10.1 | HS25          | A 81099             |
| 1658 | M   | RV  | WG  | -   | С | 90 | 91 | A      |   | С |   | 3   | 13   | 16                                                 | 13   | 0    | 0   | 42    |     | 9    | CS750         | E 28395             |
| 1664 | M   | RV  | FC  |     | S | 69 | 69 | J      |   | Р |   | 3   | 25.9 | 25.9                                               | 25.9 | 0    | 0   | 77.7  |     | 8.5  | HS20          | A 91099             |
| 1669 | M   | RV  | FC  |     | S | 66 | 66 | А      |   | Р |   | 3   | 18.3 | 18.3                                               | 18.3 | 0    | 0   | 54.9  |     | 8.5  | HS20          | A 27099             |
| 167  | M   | RV  | RB  | -   | С | 65 | 65 | E      |   | С |   | _ 3 | 22.3 | 28                                                 | 22.3 | 0    | 0   | 72.6  |     | 7.3  | HS20          | A 38099             |
| 168  | S   | RV  | HH  |     | S | 61 | 61 | C      |   | Р |   | 3   | 8.5  | 8.5                                                | 8.5  | 0    | 0   | 25.5  | -30 | 7.3  | HS20          | E 5089              |
| 1694 | M   | RV  | PM  | -   | S | 68 | 68 | С      |   | Р |   | 3   | 13.7 | 16.8                                               | 13.7 | 0    | 0   | 44.2  |     | 8.2  | HS20          | E 100089            |
| 1741 | M   | RV  | PO  | CS  | S | 61 | 61 | R      | E | Р | С | 5   | 26.8 | 26.8                                               | 22.3 | 20.1 | 9.1 | 105.1 |     | 7.9  | HS20          | A 190099            |
| 1750 | M   | RV  | PEF |     | S | 61 | 61 | N      |   | Р |   | 3   | 10.7 | 12.2                                               | 10.7 | 0    | 0   | 33.6  |     | 8.2  | HS20          | A 28099             |
| 1766 | M   | RV  | FC  | SM  | S | 67 | 67 | Α      | A | Р | Р | 3   | 10.1 | 25.9                                               | 10.1 | 0    | 0   | 46.1  |     | 9.1  | HS20          | A 163099            |
| 1767 | M   | RV  | RB  |     | Н | 61 | 61 | Α      |   | С |   | 3   | 17.1 | 21.3                                               | 13.4 | 0    | 0   | 51.8  |     | 11   | HS20          | E 5094              |
| 1797 | M   | RV  | RB  |     | C | 64 | 64 | Α      |   | С |   | 3   | 20.4 | 25.6                                               | 20.4 | 0    | 0   | 66.4  |     | 11   | HS20          | A 92099             |
| 181  | M   | RV  | WG  |     | С | 84 | 85 | A      |   | С |   | 3   | 14   | 18                                                 | 14   | 0    | 0   | 46    |     | 9    |               | A 301099            |
| 1810 | М   | RV  | RB  |     | S | 55 | 55 | Α      |   | С |   | 1   | 18.3 | 0                                                  | 0    | 0    | 0   | 18.3  |     | 11   | HS20          | A 646099            |
| 1843 | M   | RV  | PO  |     | S | 64 | 64 | A      |   | Р |   | 3   | 19.8 | 19.8                                               | 19.8 | 0    | 0   | 59.4  |     | 7.9  | HS20          | E 10091             |
| 1877 | S   | RV  | SM  |     | S | 88 | 88 | A      |   | Р |   | 1   | 6    | 0                                                  | 0    | 0    | 0   | 6     |     | 8.2  | MS225         | A 147099            |
| 1886 | M   | RV  | RM  |     | С | 81 | 82 | H      |   | Р |   | 3   | 12   | 14                                                 | 12   | 0    | 0   | 38    | -10 | 12.2 | MS230         | A 64085             |
| 189  | М   | RV  | WG  |     | С | 29 | 74 | R      |   | С |   | 4   | 21.3 | 91.4                                               | 61.6 | 21.3 | 0   | 195.6 |     | 8.5  | HS25          | A 146099            |
| 1894 | M   | RV  | PO  |     | S | 62 | 62 | A      |   | С |   | 3   | 18.3 | 24.4                                               | 18.3 | 0    | 0   | 61    |     | 7.9  | HS20          | A 85099             |
| 1916 | М   | RV  | CT  |     | С | 57 | 57 | J      |   | С |   | 3   | 12.8 | 18.3                                               | 12.8 | 0    | 0   | 43.9  |     | 8.2  | HS20          | A 99099             |
| 1938 | М   | RV  | PM  |     | S | 71 | 71 | A      |   | P |   | 3   | 16.8 | 16.8                                               | 16.8 | 0    | 0   | 50.4  |     | 10.1 | HS20          | A 160099            |
| 1949 | S   | RV  | SM  |     | S | 87 | 87 | N      |   | P |   | 3   | 8.5  | 8.5                                                | 8.5  | 0    | 0   | 25.5  | 15  | 10.1 | MS230         | A 630099            |
| 1980 | M   | RV  | PO  |     | S | 62 | 62 | R      | ļ | Р |   | 4   | 30.5 | 30.5                                               | 30.5 | 30.5 | 0   | 122   |     | 9.1  | HS20          | A 470099            |
| 2008 | M   | RV  | PO  |     | S | 59 | 59 | J      | - | C |   | 2   | 19.8 | 19.8                                               | 0    | 0    | 0   | 39.6  | 20  | 7.9  | HS20          | E 50089             |
| 2010 | M   | RV  | RB  | -   | С | 56 | 56 |        |   | C |   | 3   | 16.8 | 22.9                                               | 16.8 | 0    | 0   | 56.5  |     | 11   | HS20          | E 150000            |
| 2027 | M   | RV  | SCC | 100 | C | 96 | 96 |        | - | P |   | 3   | 12.6 | 12.6                                               | 12.6 | 0    | 0   | 37.8  |     | 13.4 | CS750         | A 167099            |
| 2029 | M   | RV  | RD  | VS  | S | 75 | 76 | A      | A | P | С | 3   | 10.7 | 13.7                                               | 10.7 | 0    | 0   | 35.1  |     | 8.5  | HS25          | A 9099              |
| 2047 | M   | RV  | PM  | PE  | S | 66 | 66 | J      | J | P | Р | 3   | 12.8 | 15.2                                               | 12.8 | 0    | 0   | 40.8  |     | 12.8 | HS20          | A 440099            |
| 2102 | M   | RV  | PO  |     | S | 65 | 65 | A      |   | C |   | 3   | 18.3 | 22.9                                               | 18.3 | 0    | 0   | 59.5  |     | 7.9  | HS20          | A 24099             |
| 2108 | M   | RV  | WG  |     | C | 87 | 88 | C      |   | C |   | 3   | 16   | 20                                                 | 16   | 0    | 0   | 52    |     | 9    | MS300         | E 20089             |
| 211  | M   | RV  | DBT |     | S | 82 | 82 | C      |   | P |   | 3   | 22   | 22                                                 | 11   | 0    | 0   | 44    |     | 9.1  | MS230         | A 27099             |
| 2119 | S   | RV  | SM  |     | S | 89 | 89 | C<br>F | - | P |   | 3   | 8.5  | 8.5                                                | 8.5  | 0    | 0   | 25.5  |     | 8.8  | MS230<br>HS20 | E 5097<br>A 27099   |
| 2140 | S   | RV  | PGO |     |   | 59 | 59 |        | - | P |   | 3   | 27.4 | 27.4                                               | 27.4 | 0    | 0   | 82.2  | 15  |      | 1             |                     |
| 2143 | M   | RV  | FC  |     | S | 70 | 70 | J<br>A | - | C |   | 3   | 15   | 22                                                 | 15   | 0    | 0   | 52    | -35 | 10.7 | HS20          | A 790099<br>E 30088 |
| 2144 | M   | RV  | WG  |     | С | 90 | 91 | A      |   | P |   | 3   | 6.1  | 6.1                                                | 6.1  | 0    | 0   | 18.3  | -55 | 11   | HS20          | A 217099            |
| 2150 | S   | RV  | HC  |     |   | 64 | 64 |        | - | P |   | 1   | 32   | 0.1                                                | 0.1  | 0    | 0   | 32    |     |      | MS23          |                     |
| 2155 | М   | RV  | FM  |     | S | 81 | 81 | N      |   | C |   | 2   | 21.3 | 21.3                                               | 0    | 0    | 0   | 42.6  |     | 7.9  |               | E 6895              |
| 2212 | M   | RV  | PO  |     | S | 58 | 58 | A      |   |   |   | 3   | 34.1 | 34.1                                               | 34.1 | 0    | 0   | 102.3 |     | 7.9  | HS20          | E 21095<br>A 77099  |
| 223  | M   | RV  | PO  |     | С | 63 | 63 | A      |   | C |   | 3   | 20.1 | 27.4                                               | 20.1 | 0    | 0   | 67.6  |     |      | _             |                     |
| 2233 | M   | RV  | CT  |     | С | 55 | 55 | Е      |   | C |   | 3   | 18.3 | 18.3                                               |      | 0    | 0   |       |     | 8.5  | HS20          |                     |
| 2235 | M   | RV  | PO  |     | S | 57 | 57 | Н      |   |   |   | 3   |      | <del>,                                      </del> | 18.3 | -    |     | 54.9  |     | 7.9  | HS20          | A 106099            |
| 2236 | M   | RV  | RB  |     | Н | 55 | 55 | C      |   | C |   | 1   | 12.2 | 18.3                                               | 12.2 | 0    | 0   | 42.7  | -   | 7.3  | HS20          | A 98099             |
| 2240 | M   | RV  | DBT |     | S | 87 | 87 | A      |   | P |   | 2   | 3    | 3                                                  | 0    | 0    | 0   | 36    |     | 11.6 | MS300         |                     |
| 2268 | С   | RV  | MPB |     |   | 91 | 91 | ^      |   | P |   | 3   | 10   | 11                                                 | 10   | 0    | 0   | 31    |     | 9.1  | Mean          | A 53099             |
| 228  | S   | RV  | SM  |     | S | 78 | 78 | Α      |   |   |   |     | 10   |                                                    | 10   |      |     | 1 31  |     | 10.1 | MS23          | A 217099            |



| 2282 | S   | RV |      |     |   | 63 | 63 | Α |   | P |   | 1   | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 13.7 |       | A 345099 |
|------|-----|----|------|-----|---|----|----|---|---|---|---|-----|------|------|------|------|------|-------|-----|------|-------|----------|
| 229  | S   | RV |      |     | S | 73 | 73 | С |   | P |   | 3   | 10.1 | 10.1 | 10.1 | 0    | 0    | 30.3  | 15  | 21   | HS20  | A 338099 |
| 2291 | S   | RV |      |     | S | 87 | 87 | С |   | Р |   | 1   | 11   | 0    | 0    | 0    | 0    | 11    |     | 10   | MS23  | A 46099  |
| 2301 | M   | RV | FC   |     | S | 63 | 63 | Α |   | Р |   | 3   | 17.7 | 17.7 | 17.7 | 0    | 0    | 53.1  | -25 | 7.9  |       | A 275099 |
| 2302 | M   | RV |      |     | С | 80 | 81 | С |   | С |   | 3   | 10   | 20   | 10   | 0    | 0    | 40    |     | 9.8  |       | A 86099  |
| 233  | M   | RV |      |     | S | 60 | 60 | E |   | С |   | _ 3 | 19.5 | 24.4 | 19.5 | 0    | 0    | 63.4  |     | 8.5  | HS20  | A 186099 |
| 2337 | M   | RV |      |     | S | 57 | 57 | N |   | С |   | 2   | 21.3 | 21.3 | 0    | 0    | 0    | 42.6  |     | 7.9  |       | E 15097  |
| 2359 | M   | RV |      |     | С | 56 | 56 | Н |   | С |   | 3   | 6.4  | 22.9 | 6.4  | 0    | 0    | 35.7  | -25 | 10.7 | HS20  | E 100097 |
| 2370 | С   | RV |      | MPB |   | 96 | 96 | Α |   | Р |   | 3   | 5    | 3    | 3    | 0    | 0    | 15.9  |     | 13.7 |       | A 168099 |
| 2378 | S   | RV |      |     | S | 71 | 71 | С |   | Р |   | 3   | 8.5  | 11.6 | 8.5  | 0    | 0    | 28.6  |     | 8.2  |       | E 15095  |
| 2401 | M   | RV |      |     | S | 59 | 59 | J |   | С |   | 2   | 23.8 | 23.8 | 0    | 0    | 0    | 47.6  |     | 7.9  | HS20  | A 23099  |
| 2408 | S   | RV | PG   |     | S | 59 | 59 | F |   | Р |   | 3   | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  | -15 | 8.2  |       | E 15099  |
| 2430 | M   | RV | PO   |     | S | 63 | 63 | E |   | С |   | 3   | 24.1 | 24.4 | 24.1 | 0    | 0    | 72.6  | 30  | 9.1  |       | A 273099 |
| 2431 | M   | RV | VF   | RD  | S | 8  | 76 | A | Α | Р | Р | 5   | 10.7 | 38.7 | 38.7 | 38.7 | 10.7 | 137.5 |     | 8.5  |       | A 105099 |
| 248  | S   | RV | VS   |     |   | 75 | 75 | Α |   | Р |   | 1   | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 13.7 |       | A 168099 |
| 2487 | M   | RV | CX   |     | С | 62 | 62 | R |   | С |   | 3   | 16.8 | 21.3 | 16.8 | 0    | 0    | 54.9  |     | 11   | HS20  | A 305099 |
| 261  | M   | RV | FM   |     | S | 79 | 79 | N |   | Р |   | 1   | 38   | 0    | 0    | 0    | 0    | 38    | 30  | 7.3  | MS23  | E 10089  |
| 272  | M   | RV | VF   |     | S | 74 | 74 | J |   | P |   | 4   | 36.6 | 36.6 | 36.6 | 36.6 | 0    | 146.4 |     | 8.5  |       | A 273099 |
| 274  | M   | RV | FC   |     |   | 73 | 73 | A |   | Р |   | 1   | 35.1 | 0    | 0    | 0    | 0    | 35.1  |     | 8.5  | HS20  | E 2495   |
| 277  | M   | RV | RD   |     | S | 75 | 75 | Α |   | Р |   | 3   | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6  |     | 9.8  | HS25  | A 34099  |
| 278  | M   | RV | RB   |     | С | 48 | 61 | Е |   | С |   | 3   | 12.2 | 15.2 | 12.2 | 0    | 0    | 39.6  | -25 | 13.4 |       | A 430099 |
| 286  | M   | RV | PO   |     | С | 65 | 65 | Α |   | С |   | 3   | 29   | 29   | 29   | 0    | 0    | 87    |     | 7.9  | HS20  | A 30099  |
| 288  | M   | RV | WG   |     | С | 85 | 86 | Α |   | С |   | 3   | 19   | 22   | 19   | 0    | 0    | 60    |     | 9    | MS300 | A 45099  |
| 290  | M   | RV | CBC  |     | С | 91 | 92 | A | ļ | Р |   | 3   | 27   | 32   | 27   | 0    | 0    | 86    | 15  | 9.2  |       | E 100089 |
| 300  | S   | RV | HC _ |     |   | 65 | 65 | С |   | Р |   | 3   | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  | -15 | 7.3  | HS20  |          |
| 303  | S   | RV | PGO  |     | S | 56 | 56 | Y |   | Р |   | 1   | 8.5  | 0    | 0    | 0    | 0    | 8.5   |     | 8.2  | HS20  | E 41899  |
| 304  | M : | RV | FC   | HC  | S | 66 | 66 | A | A | Р | Р | 3   | 10.1 | 21.3 | 10.1 | 0    | 0    | 41.5  | -   | 8.5  | HS20  | E 10088  |
| 309  | M   | RV | RG   | SM  | S | 54 | 81 | С | N | С | Р | 5   | 8    | 8    | 24.7 | 8    | 8    | 56.7  |     | 7.6  | MS230 | E 20089  |
| 310  | M   | RV | PJ   |     | H | 55 | 55 | A |   | С |   | 3   | 13.4 | 18.9 | 13.4 | 0    | 0    | 45.7  | 30  | 8.5  |       | A 470099 |
| 313  | M   | RV | CBC  |     | С | 90 | 90 | A | ļ | Р |   | 5   | 38   | 46   | 46   | 46   | 38   | 214   |     | 9    | CS750 | A 18099  |
| 315  | M   | RV | PO   | FM  | S | 61 | 61 | С | H | P | Р | 3   | 30.5 | 30.5 | 30.5 | 0    | 0    | 91.5  |     | 13.4 | HS20  | A 218099 |
| 334  | M   | RV | WG   |     | С | 89 | 89 | N |   | С |   | 3   | 17   | 22   | 17   | 0    | 0    | 56    | 35  | 9    | MS300 | E 6895   |
| 340  | M   | RV | PO   |     | S | 62 | 62 | N |   | C |   | 3   | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6  | -   | 7.9  | HS20  | A 18099  |
| 358  | М   | RV | PO   |     | S | 58 | 58 | N |   | Р |   | 2   | 19.8 | 19.8 | 0    | 0    | 0    | 39.6  | -   | 7.9  | HS20  | A 18099  |
| 370  | М   | RV | SCC  |     | С | 93 | 93 | С |   | P |   | 3   | 9    | 12   | 9    | 0    | 0    | 30    | -   | 9.2  | CS750 | A 494099 |
| 383  | S   | RV | PGO  |     | S | 58 | 58 | С |   | Р |   | 3   | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  |     | 9.1  | HS20  | A 46099  |
| 395  | М   | RV | CT   |     | С | 55 | 82 | E | - | C |   | 3   | 6.4  | 22.9 | 6.4  | 0    | 0    | 35.7  | -   | 12   | MS230 | A 646099 |
| 429  | С   | RV | RPB  |     |   | 93 | 93 | С |   | P |   | 1   | 5    | 0    | 0    | 0    | 0    | 25.6  | 30  | 11   |       | A 440099 |
| 436  | М   | RV | RB   | PE  | S | 62 | 62 | Α | Y | С | Р | 3   | 12.8 | 18.3 | 12.8 | 0    | 0    | 43.9  | -   | 8.2  | HS20  | A 304099 |
| 437  | М   | RV | PM   |     |   | 70 | 70 | N |   | Р |   | 3   | 19.2 | 19.2 | 19.2 | 0    | 0    | 57.6  | -   | 5.5  | HS20  | E 3096   |
| 444  | S   | RV | SM   |     | S | 79 | 79 | F |   | Р |   | 3   | 11   | 11   | 11   | 0    | 0    | 33    | -30 |      |       | A 96099  |
| 457  | М   | RO | CT   |     | С | 59 | 59 | Α |   | C |   | 3   | 17.1 | 23.8 | 17.1 | 0    | 0    | 58    | 31  | 11.6 | HS20  | A 209099 |
| 477  | М   | RV | WG   |     | С | 87 | 88 | Α |   | С |   | 3   | 16   | 20   | 16   | 0    | 0    | 52    | 25  | 9    |       | E 50089  |
| 493W | M   | RV | CF   |     | С | 52 | 64 | Α |   | С |   | 1   | 137  |      |      |      | -    | 137   |     | 134  | HS20  | A 450196 |
| 506  | М   | RV | TH   |     |   | 13 | 13 | Α |   | С |   | 1   | 27.4 | 0    | 0    | 0    | 0    | 27.4  |     | 5.8  |       |          |
| 521  | М   | RV | SM   |     | S | 87 | 87 | N |   | Р |   | 1   | 11   | 0    | 0    | 0    | 0    | 11    | 35  | 10   |       | A 823099 |
| 527  | S   | RV | VS   |     | S | 75 | 75 | Α |   | P |   | 3   | 6.1  | 6.1  | 6.1  | 0    | 0    | 18.3  |     | 13.7 | HS25  | A 512099 |
| 021  |     |    |      |     |   |    |    |   |   |   |   |     |      |      |      |      |      |       |     |      |       |          |



| 563    | M | RV | SCC  |    | С | 97 | 61 | 1 |   | Р |   | 3  | 10.4 | 12   | 10.4 | 0    | 0    | 33.6  |      | 11   | CS750 | A 129099  |
|--------|---|----|------|----|---|----|----|---|---|---|---|----|------|------|------|------|------|-------|------|------|-------|-----------|
| 570    | M | RV | WG   |    | С | 81 | 81 | С |   | Р |   | 3  | 17   | 21   | 17   | 0    | 0    | 55    | 40   | 12.5 | MS230 | A 559099  |
| 589    | M | RV | RB   |    | С | 64 | 64 | R |   | С |   | 2  | 26.5 | 26.5 | 0    | 0    | 0    | 53    |      | 8.5  | HS20  | A 630099  |
| 605    | S | RV | SM   |    | S | 89 | 89 | N |   | Р |   | 4  | 10   | 10   | 11   | 8    | 0    | 39    | 10   | 7.6  | MS226 | A 27099   |
| 611    | M | RV | - TH | RM | S | 63 | 63 | E | Е | С | Р | 3  | 12.5 | 76.2 | 12.5 | 0    | 0    | 101.2 |      | 7.3  | CS750 | E 20095   |
| 622    | S | RV | VS   |    | S | 75 | 75 | Α |   | Р |   | 3  | 10.7 | 10.7 | 10.7 | 0    | 0    | 32.1  |      | 13.7 | HS25  | A 512099  |
| 626    | S | RV | VS   |    | S | 75 | 75 | С |   | Р |   | 3  | 7.6  | 7.6  | 7.6  | 0    | 0    | 22.8  | 15   | 18.6 | HS25  | A 512099  |
| 6513   | M | RV | SCC  |    | С | 95 | 95 |   |   | Р |   | 3  | 12   | 12   | 12   | 0    | 0    | 36    |      | 9.5  | CS750 | A 46099   |
| 653    | С | RV | SP   |    |   | 85 | 85 |   |   |   |   | 1  | 43   | 12   | 12   |      |      | 43    | 5    | 113  | H20   | A 738098  |
| 6548   | М | RV | RB   |    | S | 56 | 56 | С |   | С |   | 1  | 21.3 | 0    | 0    | 0    | 0    | 21.3  |      | 7.3  | HS20  | E 15088   |
| 6565   | M | RV | PO   |    | S | 58 | 58 | Н |   | C |   | 3  | 27.4 | 27.4 | 27.4 | 0    | 0    | 82.2  |      | 11.6 | HS20  | A 209099  |
| 6581   | М | RV | CBT  |    | S | 86 | 86 | R |   | P |   | 3  | 14.2 | 15.9 | 14.2 | 0    | 0    | 44.3  | 10   | 9    | MS300 | A 62099   |
| 6607   | М | RV | CBC  |    | S | 95 | 95 |   |   | P |   | 3  | 20   | 26   | 20   | 0    | 0    | 66    | 25   | 9    | CS750 |           |
| 6615   | М | RV | RB   |    | C | 60 | 60 | A |   | C |   | 5  | 27.4 | 34.4 | 34.4 | 34.4 | 27.4 | 158   |      | 11   | HS20  | A 319099  |
| 6639   | M | RV | DBT  |    | S | 90 | 90 | N |   | P |   | 1  | 42   | 0    | 0    | 0    | 0    | 42    | -20  | 8.3  | MS300 | E 10089   |
| 6651   | S | RV | SM   |    | S | 83 | 83 | A |   | P |   | 1  | 8    | 0    | 0    | 0    | 0    | 8     |      | 12.5 | MS23  | A 318099  |
| 6733   | M | RV | PO   |    | S | 56 | 56 | N |   | c |   | 4  | 24.4 | 24.4 | 24.4 | 24.4 | 0    | 97.6  | -20  | 7.3  | HS20  | E 4097    |
| 6738   | М | RV | RB   |    | S | 52 | 82 | C |   | C |   | 2  | 21.6 | 21.6 | 0    | 0    | 0    | 43.2  | 15   | 8    | MS230 | E 15095   |
| 6777   | S | IC | PGO  |    | S | 57 | 57 | A |   | P |   | 3  | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  | -45  | 8.2  | HS20  | A 18099   |
| 6809   | M | RV | FC   |    | S | 72 | 72 | A |   | P |   | 1  | 32   | 0.5  | 0.5  | 0    | 0    | 32    | 10   | 9.1  | HS20  | A 40099   |
| 690    | S | RV | VS   | -  | S | 76 | 76 | A | - | P |   | 4  | 10.7 | 10.7 | 10.7 | 10.7 | 0    | 42.8  | -30  | 10   | HS25  | A 217099  |
| 698    | M | RV | PO   | -  | S | 65 | 65 | A |   | C |   | 2  | 28.7 | 28.7 | 0    | 0    | 0    | 57.4  | 40   | 11   | HS20  | A 175099  |
| 6985E  | M | RV | DBT  |    | S | 85 | 86 | R |   | P |   | 1  | 420  | 20.7 |      | -    |      | 420   | -20  | 131  | MS300 | A 592098  |
| 6985W  | M | RV | CT   |    | C | 55 | 55 | R | - | С |   | 3  | 122  | 183  | 122  |      |      | 427   | -20  | 140  | HS20  | A 592098  |
| 6990   | M | RV | CBT  |    | C | 86 | 86 | C |   | P |   | 3  | 16   | 32   | 23   | 0    | 0    | 71    | 20   | 9.4  | MS300 | E 50097   |
| 70009  | M | RV | CA   |    | C | 53 | 53 | Н |   | C |   | 1  | 73.8 | 0    | 0    | 0    | 0    | 73.8  |      | 8.5  | HS20  | A 18099   |
|        | M | RV | FC   |    | S | 73 | 73 | E |   | P |   | 2  | 24.4 | 24.4 | 0    | 0    | 0    | 48.8  |      | 13.2 | HS20  | A 187099  |
| 70022  |   | _  | PGO  |    | S | 54 | 54 | C | - | P |   | 2  | 6.1  | 6.1  | 0    | 0    | 0    | 12.2  |      | 9.1  | HS20  | A 55099   |
| 70034  | S | RV |      |    | S | 36 | 81 | A |   | C |   | 1  | 18.3 | 0.1  | 0    | 0    | 0    | 18.3  |      | 16.8 | MS230 | A 4206099 |
| 70063N | M | RV | CF   |    | S | 70 | 70 | A | - | P |   | 3  | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  |      | 10.0 | HS20  | A 91099   |
| 70116  | S | RV | HC   |    | H |    | 55 | N |   | C |   | 3  | 16.5 | 21.9 | 16.5 | 0    | 0    | 54.9  | 30   | 7.3  | HS20  | A 48099   |
| 70156  | M | RV | RB   |    |   | 55 | 55 | R |   | C |   | 6  | 45.7 | 61   | 61   | 61   | 45.7 | 335.3 | 1 30 | 7.3  | 11020 | A 122099  |
| 70241  | M | RV | TH   | 55 |   | 50 | 54 | Z | A | C | С | 5  | 18.3 | 50.3 | 70.4 | 50.3 | 18.3 | 207.6 |      | 8.1  | HS20  | E 20096   |
| 70247  | M | RV | DT   | RB | С | 54 |    |   | A | C |   | 3  | 9.1  | 12.2 | 9.1  | 0    | 0    | 30.4  |      | 11   | CS750 | A 255099  |
| 70252  | M | RV | SC   |    | S | 93 | 93 | A |   | P |   | 3  | 11   | 11   | 11   | 0    | 0    | 33    | 30   | 12.4 | CS750 | A 255099  |
| 70257  | S | RV | SMO  |    | Р | 93 | 93 |   |   | P |   | 4  | 13.7 | 32   | 32   | 32   | 0    | 109.7 | -24  | 8.8  | HS20  | A 223099  |
| 70277  | M | RV | FC   |    | S | 22 | 73 | F |   | P |   | 3  | 6    | 8    | 6    | 0    | 0    | 20    | -24  | 11.3 |       |           |
| 70316  | S | RV | SM   |    | S | 79 | 79 | A |   |   |   | 5  |      | 75   | 75   | 75   |      | -     | 10   |      | MS23  | A 109099  |
| 70318  | M | RV | WG   |    | С | 83 | 85 | E |   | C |   |    | 61   |      |      | +    | 61   | 347   | -10  | 11   | MS300 | A 133099  |
| 70341  | S | RV | SC_  |    | S | 92 | 92 | N |   | P |   | 3  | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  | +    | 9.2  | CS750 | A 93099   |
| 70495  | S | RV | SM   |    |   | 80 | 80 | A |   | P |   | 1  | 11   | 0    | 0    | 0    | 0    | 11    | -    | 13.7 | MS23  | A 122099  |
| 70509  | M | RV | PO   |    | S | 59 | 76 | A |   | Р |   | 3  | 38.7 | 41.8 | 38.7 | 0    | 0    | 119.2 |      | 9.8  |       | E 9095    |
| 7055   | S | RV | НС   |    | S | 71 | 71 | F |   | Р |   | 6  | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 60.6  | -15  | 11   | HS20  | A 170099  |
| 70566  | M | RV | PO   |    | S | 59 | 59 | A |   | Р |   | 2  | 25.9 | 25.9 | 0    | 0    | 0    | 51.8  | -    | 9.1  | HS20  | A 341099  |
| 70577  | M | RV | FM   |    | S | 79 | 80 | N |   | Р |   | 1  | 38   | 0    | 0    | 0    | 0    | 38    |      | 9.1  | MS23  | E 12494   |
| 70580  | М | RV | DT   | HC |   | 13 | 69 | J | F | Р | Р | 11 | 8.5  | 8.5  | 38.1 | 38.1 | 8.5  | 195.1 |      | 8.2  | HS20  | A 185099  |
| 70594  | M | RV | RB   |    | С | 54 | 54 | Е |   | С |   | 3  | 26.8 | 33.5 | 26.8 | 0    | 0    | 87.1  |      | 11   | HS20  | A 137099  |
| 70613  | S | RV | SM   |    | S | 81 | 81 | Α |   | Р |   | 1  | 11   | 0    | 0    | 0    | 0    | 11    |      | 12.5 | MS230 | A 137099  |
| 70010  |   |    |      |    |   |    |    |   |   |   |   |    |      |      |      |      |      |       |      |      |       |           |



| 70626  | M | RO | PM        |    |   |      | 05 |   |              |   |   |    | 100  | 100  | 100  | 100  | 45.0 | 00.4  |     | 11         | HS20  | A 156099 |
|--------|---|----|-----------|----|---|------|----|---|--------------|---|---|----|------|------|------|------|------|-------|-----|------------|-------|----------|
| 7064   | M | RV | DBT       |    | S | 65   | 65 | J |              | P |   | 5  | 16.8 | 16.8 | 16.8 | 16.8 | 15.2 | 82.4  |     | 9.1        |       | A 31099  |
| 70770  | S | RV | VS        |    | S | 82   | 82 | N |              | Р |   | 3  | 12   | 20   | 12   | 0    | 0    | 44    |     | 10.1       | HS25  | A 33099  |
| 70789  | M | RV | WG        |    |   | 78   | 78 | A |              | Р |   | 1  | 10.7 | 0    | 0    | 0    | 0    | 10.7  |     | 9          |       | A 265099 |
| 7086   | M | RV | LF        |    | C | 85   | 86 | A |              | С |   | 6  | 49   | 63   | 84   | 84   | 70   | 434   |     | 7.3        | HS25  | E 4096   |
| 70922  | S | RV | SM        |    | S | 77   | 77 | N |              | Р |   | 1  | 38.1 | 0    | 0    | 0    | 0    | 38.1  |     | 11.3       |       | A 109099 |
| 70935  | M | RV | RB        |    | S | 79   | 79 | A |              | P |   | 3  | 10   | 10   | 10   | 0    | 0    | 30    |     | 9.7        |       | A 137099 |
| 70997  | S | RV | PGO       |    | С | 55   | 63 | R |              | С |   | 3  | 17.1 | 21.3 | 17.1 | 0    | 0    | 55.5  | -15 | 9.1        | HS20  | A 48099  |
| 710    | M | RV |           | -  | S | 59   | 59 | C |              | Р |   | 3  | 6.1  | 6.1  | 6.1  | 0    | 0    | 18.3  |     | 9.1        |       | A 103099 |
|        | M | RV | PO<br>CBT |    | S | 63   | 63 | N |              | C |   | 2  | 27.4 | 27.4 | 0    | 0    | 0    | 54.8  | -30 | 9          | MS300 | E 40091  |
| 71004  | S |    |           |    | С | 89   | 90 | A |              | Р |   | 3  | 18   | 24   | 18   | 0    | 0    | 60    | 10  | 10.1       | HS20  | A 149099 |
| 71006  |   | RV | HC        |    | S | 68   | 68 | A |              | P |   | 3  | 6.1  | 8.5  | 6.1  | 0    | 0    | 20.7  |     | 8.5        | HS25  | A 30099  |
| 7101   | M | RV | RD        |    | S | 75   | 75 | A |              | Р |   | 3  | 19.8 | 19.8 | 19.8 | 0    | 0    | 59.4  |     | 7.9        | HS20  | A 81099  |
| 71019  | M | RV | RB        |    | S | 57   | 57 | E |              | С |   | 3  | 15.2 | 18.3 | 21.3 | 0    | 0    | 54.8  |     | 8.8        | MS23  | A 142099 |
| 71048  | S | RV | SM        |    | S | 87   | 87 | N |              | Р |   | 1  | 8    | 0    | 0    | 0    | 0    | 8     |     | 7.3        | HS20  | A 124099 |
| 71054  | М | RV | PO        |    | S | 59   | 59 | N |              | Р |   | 1  | 30.5 | 0    | 0    | 0    | 0    | 30.5  |     | 9.5        | MS300 | E 20000  |
| 71069  | M | RV | DBT       |    | S | 86   | 86 | N |              | Р |   | 1  | 40   | 0    | 0    | 0    | 0    | 40    |     |            | HS20  | A 78099  |
| 7107   | S | RV | PGO       |    | S | 60   | 60 | С |              | Р |   | 3  | 6.1  | 8.5  | 6.1  | 0    | 0    | 20.7  |     | 9.1        | CS750 | E 2595   |
| 7108   | М | RV | SC        |    | S | 95   | 95 | N |              | P |   | 3  | 12.8 | 12.8 | 12.8 | 0    | 0    | 38.4  |     |            | HS25  | A 30099  |
| 71081  | М | RV | FC        |    | S | 75   | 75 | N |              | Р |   | 2  | 26.2 | 26.2 | 0    | 0    | 0    | 52.4  |     | 7.3        | HS20  | E 15096  |
| 7109   | М | RV | RB        | PG | S | 55   | 79 | J | С            | С | Р | 5  | 6.1  | 8.5  | 18.3 | 8.5  | 6.1  | 47.5  |     | 11         | HS20  | A 179099 |
| 71106  | M | RV | RG        | VS | S | , 61 | 78 | A | A            | C | Р | 5  | 9.1  | 9.1  | 24.4 | 9.1  | 9.1  | 60.8  |     | 9.8        | HS25  | A 108099 |
| 71116  | M | RV | WG        |    | С | 30   | 78 | E |              | С |   | 5  | 76.5 | 77.1 | 77.1 | 76.5 | 12.2 | 319.4 |     | 7.3        | H323  | A 99099  |
| 71145  | М | RV | TH        |    | S | 57   | 57 | J |              | С |   | 5  | 61   | 61   | 61   | 61   | 61   | 305   |     | 8.2        | HS20  | A 52099  |
| 71246  | М | RV | PM        |    |   | 72   | 72 | Α |              | Р |   | 3  | 16.8 | 16.8 | 16.8 | 0    | 0    | 50.4  |     |            |       | A 171099 |
| 71265  | М | RV | PM        |    | ļ | 72   | 72 | Α |              | Р |   | 3  | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6  |     | 10.1       | HS20  | A 55099  |
| 71291  | M | RV | WG        |    | C | 72   | 72 | J |              | С |   | 5  | 48.8 | 61   | 61   | 61   | 48.8 | 280.6 |     | 8.5        | HS20  | A 128099 |
| 713    | M | RV | FC        | HC | S | 68   | 68 | A | A            | Р | Р | 3  | 6.1  | 25.9 | 6.1  | 0    | 0    | 38.1  | 10  | 9.1<br>7.9 | HS20  | A 72099  |
| 71313  | M | RV | PO        |    | S | 60   | 60 | E | <del> </del> | C |   | 5  | 22.9 | 30.5 | 30.5 | 30.5 | 29   | 143.4 | 10  | 7.3        | H320  | A 137099 |
| 71315  | M | RV | TH        |    | S | 56   | 56 | E |              | C |   | 4  | 76.2 | 61   | 61   | 61   | 0    | 259.2 |     |            | MS230 | A 72099  |
| 71316  | M | RV | RB        |    | С | 62   | 84 | E |              | C |   | 3  | 26.2 | 32.9 | 26.2 | 0    | 0    | 85.3  | EA  | 13         | MS300 | A 520099 |
| 71340E | M | RO | WG        |    | С | 82   | 83 | С |              | C |   | 3  | 24   | 28   | 24   | 0    | 0    | 76    | -54 | 12.5       |       |          |
| 71340W | M | RO | WG        |    | С | 83   | 84 | С |              | С |   | 3  | 24   | 28   | 24   | 0    | 0    | 76    | -54 | 12.5       | MS300 | A 520099 |
| 71344E | M | RV | SMC       |    | С | 84   | 84 | С |              | Р |   | 3  | 11   | 11   | 11   | 0    | 0    | 33    | -   | 13.3       | MS300 | A 520099 |
| 71344W | М | RV | SCC       |    | C | 93   | 93 | A |              | P |   | 3  | 12   | 10   | 12   | 0    | 0    | 34    | 12  | 13.2       | CS750 | A 520099 |
| 71352  | M | RO | WG        |    | S | 86   | 87 | A |              | C |   | 1  | 22   | 0    | 0    | 0    | 0    | 22    | -13 | 14.7       | MS300 | A 91099  |
| 71429  | М | RV | RM        |    | S | 81   | 82 | E | -            | P |   | 3  | 25   | 25   | 25   | 0    | 0    | 75    | -20 | 10.9       | MS230 |          |
| 7146   | M | RV | SMC       |    | S | 85   | 85 | Α |              | Р |   | 3  | 6    | 10   | 6    | 0    | 0    | 22    | -   | 13.3       | MS300 |          |
| 7150   | M | RV | PJ        |    | S | 55   | 55 | A |              | Р |   | 25 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | 457.2 | -   | 9.1        | HS20  | A 78099  |
| 71504  | M | RV | PO        |    | S | 58   | 58 | N |              | C |   | 2  | 18.3 | 18.3 | 0    | 0    | 0    | 36.6  | -   | 7.9        | HS20  | A 81099  |
| 71593  | S | RV | SC        |    | S | 68   | 68 | N |              | P |   | 1  | 10   | 0    | 0    | 0    | 0    | 10    | -   | 10.4       | CS750 |          |
| 71613  | S | RV | VS        |    | S | 78   | 78 | С |              | Р |   | 3  | 6.1  | 7.9  | 6.1  | 0    | 0    | 20.1  | -   | 10.2       | HS25  | A 229099 |
| 7168   | М | RV | PO        |    | S | 57   | 57 | N |              | P |   | 2  | 21.3 | 21.3 | 0    | 0    | 0    | 42.6  |     | 8          | HS20  | A 10099  |
| 71683  | S | RV | SM        |    |   | 79   | 79 | Α |              | Р |   | 3  | 11   | 11   | 11   | 0    | 0    | 33    | 15  | 12.5       | MS23  | A 223099 |
| 71690  | M | RV | SCC       |    | С | 95   | 95 | 1 |              | Р |   | 3  | 12   | 12   | 12   | 0    | 0    | 36    | -   | 12         | CS750 |          |
| 71697  | M | RV | DBT       |    | S | 86   | 86 | N |              | Р |   | 1  | 38   | 0    | 0    | 0    | 0    | 38    | 15  | 11.6       | MS300 |          |
| 71734  | C | RV | RPB       |    |   | 89   | 89 | С |              | Р |   | 1  | 7.5  | 0    | 0    | 0    | 0    | 14    | 1   | 11.8       | -     | A 180099 |
| 11107  | M | RV | SCC       |    | С | 91   | 91 | А |              | P |   | 3  | 11   | 11   | 11   | 0    | 0    | 33    | -15 | 12         | CS750 | A 142099 |



| 71901           | -      | Lov | 014 |                                       |   |    |    |   |   |   |   |   |      |      |      |      |      |       |     |      |       |           |
|-----------------|--------|-----|-----|---------------------------------------|---|----|----|---|---|---|---|---|------|------|------|------|------|-------|-----|------|-------|-----------|
| 71801           | S      | RV  |     |                                       | S | 84 | 84 | A |   | Р |   | 3 | 10   | 10   | 10   | 0    | 0    | 30    |     | 11.3 | MS23  | A 109099  |
| 71821           | M      | RV  | CBT |                                       | C | 89 | 90 | A |   | Р |   | 3 | 23   | 26   | 23   | 0    | 0    | 72    |     | 9    | CS750 | A 32099   |
|                 | N      | RC  |     |                                       | - | 16 | 92 |   |   |   |   |   |      |      |      |      |      |       |     |      |       |           |
| 71961<br>72007E | M      | RV  | -   |                                       | S | 77 | 77 | C |   | Р |   | 1 | 38.1 | 0    | 0    | 0    | 0    | 38.1  | 20  | 7.3  | HS25  | E 3086    |
| 72007E          | M      | RV  | DBT |                                       | S | 89 | 90 | A |   | Р |   | 1 | 40   | 0    | 0    | 0    | 0    | 40    |     | 13.2 | CS750 | A 537099  |
| 72007           | M      | RV  | WG  |                                       | C | 54 | 81 | E |   | С |   | 3 | 12.2 | 18.6 | 12.2 | 0    | 0    | 43    |     | 12.5 | MS230 | A 537099  |
| 72094           |        | RV  | SM  |                                       | S | 80 | 80 | A | ļ | Р |   | 1 | 6    | 0    | 0    | 0    | 0    | 6     |     | 13.7 | MS23  | A 72099   |
| 72100           | M<br>C | IC  | RG  |                                       | Н | 59 | 60 | R |   | С |   | 3 | 42.7 | 39.6 | 39.6 | 0    | 0    | 121.9 |     | 9.1  | HS20  | A 137099  |
| 72103           | M      | RV  | MPX |                                       | - | 94 | 97 | A | - | P |   | 3 | 2.4  | 2.4  | 2.4  | 0    | 0    | 125.6 | 45  | 28.9 |       | A 417099  |
| 72123W          | S      | _   | WG  |                                       | C | 88 | 89 | A |   | C |   | 3 | 35   | 45   | 35   | 0    | 0    | 115   |     | 11   | MS400 | E 30096   |
| 72124           | S      | RV  | PGO |                                       | S | 60 | 60 | F |   | Р |   | 1 | 8.5  | 0    | 0    | 0    | 0    | 8.5   |     | 14.6 | HS20  | A 618099  |
| 72128           | M      | RV  | PG  |                                       | S | 55 | 55 | A | - | Р |   | 1 | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 16   | HS20  | A 458099  |
| 72168           | M      | RV  | SCC |                                       | С | 96 | 96 | 1 |   | Р |   | 3 | 8    | 12   | 8    | 0    | 0    | 28    | -15 | 11.9 | CS750 | A 221099  |
| 72186           |        | -   | RD  |                                       | S | 74 | 74 | A | - | Р |   | 4 | 16.8 | 16.8 | 16.8 | 16.8 | 0    | 67.2  |     | 9.1  | HS25  | A 22099   |
| 72100           | M      | RV  | PM  |                                       |   | 65 | 65 | A |   | Р |   | 3 | 13.7 | 15.2 | 13.7 | 0    | 0    | 42.6  | -20 | 11   | HS20  | A 196099  |
| 72279           |        | RV  | HCO | · · · · · · · · · · · · · · · · · · · | - | 71 | 71 | F |   | Р |   | 3 | 10.1 | 10.1 | 10.1 | 0    | 0    | 30.3  | -15 | 13.7 | HS20  | A 113099  |
|                 | M      | RV  | RD  |                                       | S | 77 | 77 | R |   | Р | - | 3 | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6  |     | 9.8  | HS25  | A 104099  |
| 72325           | S      | RV  | SM  |                                       | S | 82 | 82 | A |   | Р |   | 1 | 8    | 0    | 0    | 0    | 0    | 8     |     | 10   | MS23  | A 56099   |
| 72343           | S      | RV  | SM  |                                       | S | 90 | 90 | N |   | Р |   | 1 | 11   | 0    | 0    | 0    | 0    | 11    |     | 10   | MS230 | A 33099   |
| 72345           | M      | RV  | RD  |                                       | S | 75 | 75 | A | - | Р |   | 4 | 21.3 | 21.3 | 21.3 | 21.3 | 0    | 85.2  |     | 9.8  | HS25  | E 5094    |
| 72400           | S      | RV  | SM  | -                                     | S | 85 | 85 | A |   | Р | - | 3 | 11   | 11   | 11   | 0    | 0    | 33_   | -15 | 10   | MS23  | A 56099   |
| 7244            | S      | RV  | HC  |                                       | S | 69 | 69 | J |   | Р |   | 3 | 10.1 | 10.1 | 10.1 | 0    | 0    | 30.3  |     | 11   | HS20  | A 96099   |
| 72467           | M      | RV  | PO  |                                       | C | 63 | 63 |   |   | C | 1 | 5 | 34.7 | 38.1 | 38.1 | 38.1 | 34.7 | 183.7 | 15  | 7.9  | HS20  | A 41099   |
| 72517           | S      | RV  | SM  |                                       | S | 79 | 79 | A |   | P |   | 1 | 11   | 0    | 0    | 0    | 0    | 11    |     | 12.4 | MS23  | A 217099  |
| 72533N          | M      | RV  | CBC |                                       | C | 91 | 92 | A |   | Р | - | 3 | 18   | 30   | 24   | 0    | 0    | 72    | 10  | 12.4 | CS750 | A 578099  |
| 72533S          | M      | RV  | CT  | -                                     | C | 64 | 64 | A | - | C |   | 3 | 24.4 | 33.5 | 24.4 | 0    | 0    | 82.3  |     | 13.4 | HS20  | A 578099  |
| 72535N          | M      | IC  | CBC |                                       | С | 91 | 92 | A |   | Р |   | 2 | 23   | 23   | 0    | 0    | 0    | 46    | -42 | 12.4 | CS750 | A 578099  |
| 72535S          | M      | IC  | PJ  |                                       |   | 58 | 58 | A |   | C | - | 2 | 18.3 | 18.3 | 0    | 0    | 0    | 36.6  | -45 | 13.4 | HS20  | A 578099  |
| 72545           | M      | RV  | SMC |                                       | C | 90 | 90 | A |   | Р |   | 3 | 11   | 11   | 11   | 0    | 0    | 33    | 1   | 13.3 | CS750 | A 622099  |
| 72548           | M      | RV  | SMC | -                                     | С | 90 | 90 | A |   | Р |   | 3 | 10   | 11   | 10   | 0    | 0    | 31    | -15 | 13.2 | CS750 | A 622099  |
| 72551N          | M      | RV  | PO  | -                                     | - | 59 | 59 | E |   | С |   | 1 | 26.5 | 0    | 0    | 0    | 0    | 26.5  | -   | 11.6 | HS20  | A 702099  |
| 72551S          | M      | RV  | PO  |                                       |   | 59 | 59 | E |   | С |   | 1 | 26.5 | 0    | 0    | 0    | 0    | 26.5  | -   | 11.6 | HS20  | A 702099  |
| 7256            | M      | RV  | PO  |                                       | S | 68 | 68 | С |   | Р |   | 7 | 37.2 | 40.2 | 40.2 | 40.2 | 37.2 | 275.5 |     | 7.4  | HS20  | A 23099   |
| 72631           | М      | RV  | FC  |                                       |   | 70 | 70 | C |   | Р |   | 3 | 22.9 | 24.4 | 22.9 | 0    | 0    | 70.2  | 10  | 8.5  | HS20  | A 76099   |
| 72640           | M      | RV  | FC  |                                       |   | 71 | 71 | J |   | Р |   | 1 | 35.1 | 0    | 0    | 0    | 0    | 35.1  |     | 8.5  | HS20  | A 15099   |
| 72705           | M      | GS  | WG  |                                       | C | 72 | 72 |   | - | C |   | 3 | 30.5 | 51.8 | 30.5 | 0    | 0    | 112.8 |     | 16.5 | HS20  |           |
| 72810E          | M      | RV  | RM  |                                       | S | 80 | 81 | E |   | P |   | 1 | 28   | 0    | 0    | 0    | 0    | 28    | -30 | 12.5 | MS230 | A 772099  |
| 72810W          | M      | RV  | RM  |                                       | S | 80 | 81 | E |   | Р |   | 1 | 28   | 0    | 0    | 0    | 0    | 28    | -30 | 12.5 | MS230 | A 772099  |
| 72816           | S      | RV  | PGO |                                       | S | 59 | 59 | C |   | Р |   | 3 | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  |     | 13.7 | HS20  | A 230099  |
| 72819           | M      | RO  | RD  |                                       | S | 77 | 77 | H |   | P |   | 3 | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6  | -12 | 13.4 | HS25  | A 424099  |
| 7294            | S      | RV  | HC  |                                       | S | 63 | 63 | Н |   | Р |   | 3 | 6.1  | 8.5  | 6.1  | 0    | 0    | 20.7  |     | 10.1 | HS20  | A 25099   |
| 7295            | M      | RV  | PQ  | HC                                    | S | 63 | 63 | Α | N | Р | Р | 3 | 8.5  | 21.3 | 8.5  | 0    | 0    | 38.3  | -   | 7.9  | HS20  | A 23099   |
| 7300            | S      | RV  | HC  |                                       |   | 66 | 66 | Α |   | Р |   | 1 | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 13.7 | HS20  | A 238099  |
| 73049           | S      | RV  | HC  |                                       |   | 62 | 62 | A |   | Р |   | 3 | 6.1  | 6.1  | 6.1  | 0    | 0    | 18.3  | -30 | 11   | HS20  | A 30099   |
| 73052W          | S      | IC  | VS  |                                       | S | 77 | 77 | A |   | Р |   | 1 | 10.7 | 0    | 0    | 0    | 0    | 10.7  | 15  | 13.7 | HS25  | A 1145099 |
| 73069           | M      | RV  | DBT |                                       | С | 81 | 82 | Н |   | Р |   | 2 | 26   | 14   | 0    | 0    | 0    | 40    | 15  | 9.5  | MS350 |           |
| 73077           | M      | RV  | WG  |                                       | С | 82 | 83 | С |   | С |   | 3 | 52   | 66   | 52   | 0    | 0    | 170   | -20 | 10   | MS230 | A 142099  |



| 73086  | - C | I DV | 110       | 1 |              |    |    |                |          |          |   |   |              |      |      |      |      | 0.4   |     | 44   | 11630 | A 137099 |
|--------|-----|------|-----------|---|--------------|----|----|----------------|----------|----------|---|---|--------------|------|------|------|------|-------|-----|------|-------|----------|
| 73087  | S   | RV   | HC        |   | S            | 66 | 66 | Α              |          | Р        |   | 1 | 6.1          | 0    | 0    | 0    | 0    | 6.1   |     | 11   | HS20  | E 2597   |
|        | S   | RV   | PG        |   | S            | 55 | 55 | N              |          | Р        |   | 1 | 6.1          | 0    | 0    | 0    | 0    | 6.1   |     | 6.4  |       | A 72099  |
| 73136  | M   | RV   | WG        |   | С            | 42 | 82 | С              |          | С        |   | 4 | 20           | 25   | 25   | 20   | 0    | 90    | 07  | 11   |       | A 72099  |
| 73137  | M   | RO   | SCC       |   | С            | 95 | 95 | J              |          | Р        |   | 6 | 9.1          | 10.3 | 10.3 | 11.8 | 10.5 | 62.3  | 37  | 11   |       | A 15099  |
| 73184  | M   | RV   | FM        |   | S            | 78 | 79 | Н              |          | Р        |   | 1 | 34           | 0    | 0    | 0    | 0    | 34    | 30  | 12.2 |       | A 318099 |
| 7324   | S   | RV   | VS        |   | S            | 77 | 77 | A              |          | Р        |   | 1 | 6.1          | 0    | 0    | 0    | 0    | 6.1   | -05 | 16.2 |       | A 72099  |
| 73274  | M   | RV   | FM        | - | S            | 78 | 79 | Н              |          | Р        |   | 1 | 34           | 0    | 0    | 0    | 0    | 34    | 25  | 10.7 |       | A 363099 |
| 73275  | M   | RV   | WG        |   | C            | 50 | 79 | R              |          | С        |   | 5 | 28.2         | 61.6 | 76.8 | 61.6 | 28.2 | 256.4 | 20  | 12.2 |       | A 142099 |
| 73277  | М   | RV   | VF        | - | S            | 75 | 75 | J              |          | Р        |   | 5 | 33.5         | 33.5 | 33.5 | 33.5 | 33.5 | 167.5 | 20  | 8.5  | CS750 | A 142099 |
| 7329   | M   | RV   | WG        |   | С            | 95 | 95 |                |          | С        |   | 5 | 18           | 39   | 39.6 | 39   | 18   | 153.6 | 4.5 | 9.5  |       | A 89099  |
| 73310  | М   | RV   | SCC       | - | С            | 95 | 95 |                |          | Р        |   | 3 | 8            | 12   | 8    | 0    | 0    | 28    | 15  | 10.1 | HS20  | A 72099  |
| 73319  | M   | RV   | PM        | - |              | 71 | 71 | A              |          | Р        |   | 2 | 15.2         | 9.1  | 0    | 0    | 0    | 24.3  | -15 | 10.1 | HS20  | A 72099  |
| 73328  | S   | RV   | HC        | - | S            | 73 | 73 | Y              |          | Р        |   | 2 | 10.1         | 10.1 | 0    | 0    | 0    | 32    | -13 | 10.1 |       | A 190099 |
| 73389  | M   | RV   | DBT       |   | S            | 84 | 85 | H              |          | P        |   | 1 | 32           | 0    | 0    | 0    | 0    | 139.6 |     | 9.1  | HS20  | A 38099  |
| 73407  | M   | RV   | RG        |   | Н            | 60 | 60 | E              | -        | С        |   | 3 | 45.1         | 49.4 | 45.1 | 0    | 0    | 59.1  |     | 11   | HS20  | A 22099  |
| 73410  | M   | RV   | RB        |   | С            | 61 | 61 | E              |          | С        |   | 3 | 18.6         | 21.9 | 18.6 | 0    | 0    | 29    | 15  | 8.8  | HS20  | A 14099  |
| 73420  | M   | RV   | FC        |   | S            | 72 | 72 | J              |          | P        |   | 1 | 29           | 0    | 0    | 0    | 0    | 39.6  | 15  | 11   | HS20  | A 95099  |
| 73425  | M   | RV   | RB        |   | S            | 59 | 59 | E              |          | C        |   | 2 | 19.8<br>30.5 | 19.8 | 0    | 0    | 0    | 30.5  |     | 11   | HS20  | A 81099  |
| 73426  | M   | RV   | RB        | - | 11           | 59 | 59 | E              |          | C        |   | 3 | 34.7         | 51.8 | 27.7 | 0    | 0    | 114.2 |     | 9.1  | HS20  | A 75099  |
| 73429  | M   | RV   | WG        |   | Н            | 67 | 67 | E              |          | P        |   | 3 | 8            | 11   | 8    | 0    | 0    | 27    |     | 12.1 | MS300 | A 155099 |
| 73442  | M   | RV   | SMC       |   | C            | 86 | 86 | R              |          | P        |   | 5 | 10.1         | 10.1 | 10.1 | 10.1 | 10.1 | 50.5  | 15  | 13.7 | HS20  | A 86099  |
| 73485  | S   | RV   | HC        |   | S            | 72 | 94 |                |          | P        |   | 3 | 10.1         | 10.1 | 10.1 | 10.1 | 10.1 | 00.0  |     |      |       | A 749098 |
| 73496N | P   | RV   | DDC       | - | S            | 94 | 92 | A              |          | P        |   | 1 | 42           | 0    | 0    | 0    | 0    | 42    | 5   | 13.2 | CS750 | A 797099 |
| 73496S | M   | RV   | DBC       |   | 3            | 81 | 81 | A              |          | P        |   | 3 | 11           | 11   | 11   | 0    | 0    | 33    | -23 | 10.1 | MS23  | A 99099  |
| 73523  | S   | RV   | SM        |   | C            | 98 | 98 | 1-7            | A        | C        | С | 3 | 14           | 14.3 | 14   | 0    | 0    | 42.3  | 25  | 13.4 | HS20  | A 797099 |
| 73527  | M   | RO   | SCC       |   |              | 56 | 97 | <del>  '</del> | <u> </u> | P        |   | 1 | 4            | 0    | 0    | 0    | 0    | 16.5  |     | 13.7 | HS20  | A 283099 |
| 73561  | С   | RV   | RPB<br>AP |   | <del> </del> | 83 | 83 |                |          | <u> </u> |   | 1 | 81           |      |      |      |      | 650   |     | 130  | MS300 | A 275098 |
| 73595  | C   | IC   | PM        |   | -            | 65 | 65 | A              |          | P        |   | 3 | 12.2         | 13.7 | 12.2 | 0    | 0    | 38.1  | -6  | 13.7 | HS20  | A 230099 |
| 73621  | M   | RO   | RB        |   | S            | 60 | 60 | C              |          | C        |   | 3 | 10.7         | 13.7 | 10.7 | 0    | 0    | 35.1  |     | 11.6 | HS20  | A 112099 |
| 73636  | M   |      | DBT       |   | S            | 87 | 88 | A              |          | Р        |   | 1 | 42           | 0    | 0    | 0    | 0    | 42    | -25 | 13.1 | MS300 | A 226099 |
| 73637  | M   | RV   | CS        |   |              | 51 | 66 | R              |          | С        |   | 5 | 7.9          | 7.9  | 7.9  | 7.9  | 7.9  | 39.5  | 45  | 13.4 | HS20  | A 230099 |
| 73640  | M   |      | HC        |   |              | 67 | 67 | A              |          | Р        |   | 3 | 8.5          | 10.1 | 8.5  | 0    | 0    | 27.1  |     | 12.8 | HS20  | A 46099  |
| 73657  | S   | RV   | ННО       |   | S            | 61 | 61 | C              |          | Р        |   | 2 | 6.1          | 6.1  | 0    | 0    | 0    | 12.2  |     | 11   | HS20  | A 443099 |
| 73665  | S   | _    | WG        |   | C            | 86 | 88 | A              |          | С        |   | 4 | 70           | 90   | 90   | 70   | 0    | 320   |     | 10.5 | MS300 | A 835099 |
| 73694N | M   | RV   | WG        |   | C            | 86 | 88 | A              |          | C        |   | 4 | 70           | 90   | 90   | 70   | 0    | 320   |     | 11.7 | MS300 | A 835099 |
| 73694S | M   | RV   | FC        |   | S            | 65 | 65 | A              |          | Р        |   | 3 | 10.7         | 21.3 | 10.7 | 0    | 0    | 42.7  |     | 8.5  | HS20  | E 8088   |
| 7373   | M   | -    | FM        |   | S            | 81 | 81 | A              |          | Р        |   | 3 | 27           | 33.5 | 27   | 0    | 0    | 87.5  |     | 7.5  | MS230 | E 4096   |
| 73757  | M   | RV   | FC        |   | S            | 72 | 72 | A              |          | Р        |   | 1 | 24.4         | 0    | 0    | 0    | 0    | 24.4  |     | 9.1  | HS20  | E 30096  |
| 7377   | M   | RV   | HH        |   | S            | 62 | 62 | N              |          | Р        |   | 3 | 8.5          | 8.5  | 8.5  | 0    | 0    | 25.5  |     | 9.1  | HS20  | A 162099 |
| 73772  | S   | RV   |           |   | S            | 95 | 95 | N              |          | Р        |   | 1 | 8.5          | 0    | 0    | 0    | 0    | 8.5   |     | 12.7 | CS750 | A 348099 |
| 73777  | S   | RV   | SC        |   | S            | 75 | 75 | J              |          | Р        |   | 4 | 15.2         | 30.5 | 30.5 | 15.2 | 0    | 91.4  |     | 11   | HS25  | A 348099 |
| 73779  | M   | RV   | VF        |   | C            | 81 | 82 | C              |          | С        |   | 4 | 23           | 28   | 28   | 20   | 0    | 99    | -45 | 12.2 | MS23  | A 558396 |
| 73803E | M   | RO   | WG        |   | C            | 81 | 82 | C              |          | С        |   | 4 | 23           | 28   | 28   | 20   | 0    | 99    | -45 | 12.2 | MS23  | A 558396 |
| 73803W | M   | RO   | WG        |   | C            | 86 | 87 | A              |          | С        |   | 4 | 44           | 54   | 54   | 44   | 0    | 196   |     | 12.5 | MS350 | A 658099 |
| 73809E | M   | RV   | WG        |   | S            | 73 | 74 | E              |          | Р        |   | 6 | 24.4         | 38.3 | 38.3 | 30.8 | 30.8 | 187   |     | 12.2 | HS25  | A 460099 |
| 73810W | M   | RV   | VF        |   | S            | 87 | 87 | N              |          | Р        |   | 2 | 11           | 11   | 0    | 0    | 0    | 22    | 30  | 7.7  | MS23  | E 3198   |
| 73817  | S   | RV   | SM        |   | 3            | 01 |    |                |          |          | - |   |              |      |      |      |      |       |     |      |       |          |



| 78819   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   | ,           |     |    |   |    |    |             |   |                                       |   |          |      |       |       |       |      |       |     |      |       |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|-------------|-----|----|---|----|----|-------------|---|---------------------------------------|---|----------|------|-------|-------|-------|------|-------|-----|------|-------|-----------|
| 7882   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73819  | M | GS          | CF  |    | С | 51 | 80 | A           |   | С                                     |   | 1        | 9.1  | 0     | 0     | 0     | 0    | 9.1   |     | 11.3 | HS25  | A 646099  |
| 73825E   S   IC   VS   S   77   77   E   P   4   7.6   10.7   10.7   7.6   0   36.6   30   13.7   1823   A 0.09099   73825W   M   IC   SMC   C   83   84   E   P   3   9.1   10.7   11   10   0   0   31   10   11   12   18530   A 500999   73825W   M   RV   RB   C   54   73   E   C   3   26.6   30.5   26.8   0   0   87.1   29   12.8   1820   A 500999   73825W   M   RV   VF   S   7.6   7.7   R   P   2   2   36.6   36.6   0   0   0   77.2   20   13.4   1872   A 360009   73825W   M   RV   VF   S   S   76   77   R   P   2   2   36.6   36.6   0   0   0   77.2   20   13.4   1872   A 360009   73825W   M   RV   VF   S   S   76   77   R   P   2   2   36.6   36.6   0   0   0   77.2   20   13.4   1872   A 360009   73825W   M   RV   RB   S   S   55   56   E   C   C   6   12.2   36.6   36.6   0   0   0   77.2   20   13.4   1872   A 360009   73925W   M   RV   RB   S   S   55   56   E   C   C   6   12.2   26   31.1   31.1   25   31.6   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8.5   8. | 7382   | S | RV          | PG  |    | S | 54 | 54 | F           |   | Р                                     |   | 1        |      |       |       |       |      |       | -45 | 7.3  | HS20  | E 10098   |
| Table   Tabl | 73823E | S | IC          | VS  |    |   | 77 | 77 | Е           |   | Р                                     |   | 4        |      |       |       |       | 0    | 36.6  | -30 | 13.7 | HS25  | A 605099  |
| 73896   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73825E | S | IC          | VS  |    | S | 78 | 78 | E           |   | Р                                     |   | 3        |      | -     |       |       | 0    | 28.9  | 30  | 13.7 | HS25  | A 560099  |
| 73837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73825W | M |             | SMC |    | С | 83 | 84 | E           |   | Р                                     |   | 3        | 10   | 11    | 10    | 0     | 0    | 31    | 10  | 13.2 | MS300 | A 560099  |
| 73877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73836  | M | _           | RB  |    | С | 54 | 73 | Е           |   | С                                     |   | 3        | 26.8 | 33.5  | 26.8  | 0     | 0    | 87.1  | 29  | 12.8 | HS20  | A 390099  |
| 73890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73837  | M | +           | VF  |    | S | 76 | 77 | R           |   | Р                                     |   | 2        | 36.6 | 36.6  | 0     | 0     | 0    | 73.2  | 20  | 13.4 | HS25  | A 390099  |
| Taylor   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |             |     |    | С | 91 | 92 | А           |   | Р                                     |   | 2        | 70   | 70    | 0     | 0     | 0    | 140   | -10 | 11.8 | CS750 | A 106099  |
| Taggory   M   RV   RD   S   76   76   C   P   3   19.8   21.3   19.5   0   0   60.6   35   13.4   15.25   A 300099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73880  |   | _           |     |    |   | 51 | 51 |             |   |                                       |   |          |      |       |       |       |      |       |     |      | HS20  |           |
| 73921 M RV M RV DT WG S 62 62 A A P S 73 12 12 12 0 0 0 56 30 131 MS20 A 380099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |             |     |    |   | 55 | 55 | E           |   | С                                     |   | 6        | 12.2 | 25    | 31.1  | 31.1  | 25   | 136.6 |     | 8.5  |       |           |
| Table   Tabl |        |   | -           |     |    |   | 76 | 76 | С           |   | Р                                     |   | 3        | 19.8 | 21.3  | 19.5  | 0     | 0    | 60.6  | 35  |      |       |           |
| 73923E M IC SCC C 94 94 1 P P 3 14 14 14 0 0 0 42 30 12.4 C5750 A 890999 73924S M IC SCC C G 96 96 I P P 3 14 10 10 10 10 0 40 13.3 MS80 A 417089 73949 M IC SKC S 87 87 A P A P 4 10 10 10 10 10 0 40 13.3 MS80 A 417089 73949 M RV SS RB H 60 60 R E C C 11 23.8 21.9 137.2 274.3 137.2 723.6 8.2 H52.0 A 234099 7398 M RV SS RB H 60 60 R E C C 11 23.8 21.9 137.2 274.3 137.2 723.6 8.2 H52.0 A 234099 7398 M RV WG C 7.9 80 H P P 4 50 65 65 50 0 230 10 9.1 MS23 A 18909 7400 M RV CT C G 63 63 A C 3 16.2 2.2 6 16.2 0 0 55 7.9 H52.0 E15699 7401 M RV CT C G 63 63 A C 3 16.2 22.6 16.2 0 0 55 7.9 H52.0 E15699 7401 M RV WG C 88 88 A A C 4 32 38 38 32 0 140 30 12.4 E1589 74015 M RV WG C 88 88 A A C 4 32 38 38 32 0 140 30 12.5 MS30 A 187099 74015 M RV WG C 88 88 A A C 4 4 32 38 38 32 0 140 30 12.5 MS30 A 187099 74015 M RV WG C 88 18 2 H P P 2 2 4.5 4.5 0 0 0 5 0 10 15 91 MS23 A 187099 74015 M RV WG C 87 87 A C 4 274 966 36.8 27.4 0 128 25 16.5 MS30 A 175199 74106 C IC RPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   | +           | 1   |    |   |    | 80 | A           |   | Р                                     |   | 3        | 12   | 12    | 12_   | 0     | 0    | 36    | -30 |      |       |           |
| T3923W   M   C   SCC   C   96   96   1   P   3   14   14   14   10   0   42   30   124   C\$750   A 890999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |             |     | WG |   |    | 1  | A           | Α |                                       | С |          | 30.5 |       |       | 48.8  | 30.5 |       |     |      |       |           |
| Table   Tabl |        |   |             |     |    |   |    |    |             |   |                                       |   |          |      |       |       |       |      |       |     |      |       |           |
| 739490         M         RV         SS         RB         H         60         60         R         E         C         C         11         23.8         21.9         137.2         274.3         137.2         723.6         8.2         HS20         A 234099           7398         M         RV         WG         C         79         80         H         P         4         50         65         65         50         0         230         10         9.1         MS23         A 189999           740         M         RV         CT         C         63         63         A         C         3         16.2         22.6         16.2         0         0         55         7.9         HS20         E 15089           74031N         M         RV         WG         C         85         86         A         C         4         32         38         38         32         0         140         30         12.5         MS300         A1751099           74035         M         RV         WG         C         87         87         A         C         4         32         38         38         32         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   | -           |     |    |   |    |    | <del></del> |   | <u>'</u>                              |   |          |      |       |       |       |      |       | 30  |      |       |           |
| Taylor   T |        |   | -           |     |    |   |    |    | -           |   |                                       |   |          |      |       |       |       |      |       |     |      |       |           |
| 7398   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |   | -           | 1   | KR |   |    |    |             | E |                                       | С |          |      |       |       |       |      |       |     |      |       |           |
| T400   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |   | _           |     |    |   |    |    |             |   | · · · · · · · · · · · · · · · · · · · |   |          |      |       |       |       |      |       |     |      |       |           |
| Table   Tabl |        |   |             |     |    |   |    |    |             |   |                                       |   |          |      |       |       |       |      |       | 10  |      |       |           |
| T4031N   M   RV   WG   C   85   86   A   C   4   32   38   38   32   0   140   30   12.5   MS300   A1751099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |   |             |     |    |   |    | -  |             |   |                                       |   |          |      |       |       |       |      |       |     |      |       |           |
| 74031S         M         RV         WG         C         87         87         A         C         4         27.4         36.6         36.6         27.4         0         128         26         16.5         MS300         A1751099           74035         M         RV         DBT         C         81         82         H         P         2         28         22         0         0         0         50         -10         13.1         MS230         A 470099           74116         M         RV         CT         S         54         54         A         C         1         27.4         0         0         0         27.4         11         H\$20         E 25096           74137         M         IC         CS         58         54         54         A         C         1         27.4         0         0         0         27.4         11         H\$20         E 25096         74         11         H\$20         E 25096         74         11         H\$20         E 25096         74         11         4         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>'</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |   | -           |     |    |   |    |    |             |   | '                                     |   |          |      |       |       |       |      |       | 30  |      |       |           |
| 74035         M         RV         DBT         C         81         82         H         P         2         28         22         0         0         50         -10         13.1         MS230         A 470099           74106         C         IC         RPB         94         94         A         P         2         4.5         4.5         0         0         0         29.3         -10         8.3         A 205099           74137         M         IC         CS         54         54         A         C         1         2.4.5         4.5         0         0         0         27.4         1         1         11         HS20         E 2096         74137         M         IC         CS         58         75         J         C         4         8.5         8.5         8.5         8.5         0         34         13.7         HS20         A 218099           74138         M         RV         DBT         S         82         83         A         P         1         40         0         0         0         40         9.5         MS300         E 20089           74194         S         RV </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   | _           |     |    |   |    |    |             |   |                                       |   | <u> </u> |      |       |       |       |      |       |     |      |       |           |
| 74106         C         IC         RPB         94         94         A         P         2         4.5         4.5         0         0         0         29.3         -10         8.3         A 205099           74116         M         RV         CT         S         54         54         A         C         1         27.4         0         0         0         27.4         11.1         HS20         E 25096           74137         M         IC         CS         5         54         54         A         C         1         27.4         0         0         0         27.4         11.1         HS20         A 218099           74137         M         IC         CS         5         58         75         J         C         4         8.5         8.5         8.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   | -           |     |    |   |    |    |             |   |                                       |   |          |      |       |       |       |      |       | _   |      |       |           |
| 74116         M         RV         CT         S         54         54         A         C         1         27.4         0         0         0         27.4         11         HS20         E 25096           74137         M         IC         CS         58         75         J         C         4         8.5         8.5         8.5         0         34         13.7         HS20         A 218099           74138         M         RV         DBT         S         82         83         A         P         1         40         0         0         0         0         40         9.5         MS300         E 20089           74194         S         RV         SM         S         80         80         A         P         3         10         11         10         0         0         31         10.1         MS23         A 133099           74195         M         RO         RB         S         56         56         A         C         5         18.6         18.6         21.7         18.6         15.5         93         45         9.1         HS20         A 163099           74217         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |   |             |     |    |   |    |    | -           |   |                                       |   |          |      |       |       | -     |      |       |     |      | WOLOG |           |
| 74137         M         IC         CS         58         75         J         C         4         8.5         8.5         8.5         0         34         13.7         HS20         A 218099           74138         M         RV         DBT         S         82         83         A         P         1         40         0         0         0         40         9.5         MS300         E 20089           74194         S         RV         SM         S         80         80         A         P         3         10         11         10         0         0         31         10.1         MS23         A130099           74195         M         RO         RB         S         56         56         A         C         5         18.6         12.7         18.6         15.5         93         45         9.1         HS20         E 30996           74217         M         RO         CS         C         54         54         E         C         5         9.4         12.5         12.5         9.4         56.3         45         9.1         HS20         A 163099           74227         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   | _           |     |    | S |    |    | _           |   | -                                     |   |          |      | -     |       |       |      |       |     |      | HS20  |           |
| 74138         M         RV         DBT         S         82         83         A         P         1         40         0         0         0         40         9.5         MS300         E 20089           74194         S         RV         SM         S         80         80         A         P         3         10         11         10         0         0         31         10.1         MS23         A 133099           74195         M         RO         RB         S         56         56         A         C         5         18.6         18.6         15.5         93         45         9.1         HS20         B 3099           74217         M         RO         CS         C         54         54         E         C         5         9.4         16.5         9.3         45         9.1         HS20         B 3099           74227         M         RV         RB         C         55         55         R         C         3         19.5         24.4         19.5         0         0         63.4         8.5         HS20         A 163099           74227         M         RV         WG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |   | _           |     |    |   |    |    |             |   |                                       |   |          |      |       |       |       |      |       |     |      |       |           |
| 74194         S         RV         SM         S         80         80         A         P         3         10         11         10         0         0         31         10.1         MS23         A 133099           74195         M         RO         RB         S         56         56         A         C         5         18.6         18.6         15.5         93         45         9.1         HS20         E 3096           74217         M         RO         CS         C         54         54         E         C         5         9.4         12.5         12.5         12.5         9.4         56.3         45         9.1         HS20         A 163099           74222         M         RV         RB         C         55         55         R         C         3         19.5         24.4         19.5         0         0         63.4         45         9.1         HS20         A 163099           74227         M         RV         WG         C         72         72         E         C         5         89.9         111.3         111.3         111.3         111.3         111.3         111.3         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |   | -           |     |    | S |    |    |             |   |                                       |   | 1        |      |       |       |       |      |       |     |      |       |           |
| 74195         M         RO         RB         S         56         56         A         C         5         18.6         18.6         21.7         18.6         15.5         93         45         9.1         HS20         E 3096           74217         M         RO         CS         C         54         54         E         C         5         9.4         12.5         12.5         12.5         9.4         56.3         45         9.1         HS20         A 163099           74222         M         RV         RB         C         55         55         R         C         3         19.5         24.4         19.5         0         0         63.4         8.5         HS20         A 153099           74227         M         RV         WG         C         74         74         H         C         5         33.5         24.8         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   | _           |     |    |   |    |    |             |   | Р                                     |   | 3        |      | 11    | 10    | 0     | 0    | 31    |     | 10.1 | MS23  |           |
| 74217         M         RO         CS         C         54         54         E         C         5         9.4         12.5         12.5         12.5         9.4         56.3         45         9.1         HS20         A 163099           74222         M         RV         RB         C         55         55         R         C         3         19.5         24.4         19.5         0         0         63.4         8.5         HS20         A 153099           74227         M         RV         WG         C         74         74         H         C         5         89.9         111.3         111.3         111.3         89.9         513.7         8.5         HS20         A 692999           74228         M         RV         WG         C         72         72         E         C         5         33.5         48.8         61         48.8         51         85.5         HS20         A 692999           74229         M         RV         WG         C         76         77         H         C         5         45.7         56.4         56.4         45.7         260.6         9.8         HS55         A 56099<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |             |     |    |   |    |    | А           |   | С                                     |   | 5        | 18.6 | 18.6  | 21.7  | 18.6  | 15.5 | 93    | 45  | 9.1  | HS20  | E 3096    |
| 74222         M         RV         RB         C         55         55         R         C         3         19.5         24.4         19.5         0         0         63.4         8.5         HS20         A 153099           74227         M         RV         WG         C         74         74         H         C         5         89.9         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3         111.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   | <del></del> |     |    |   | 54 | 54 | E           |   | С                                     |   | 5        | 9.4  | 12.5  | 12.5  | 12.5  | 9.4  | 56.3  | 45  | 9.1  | HS20  | A 163099  |
| 74227         M         RV         WG         C         74         74         H         C         5         89.9         111.3         111.3         111.3         89.9         513.7         8.5         HS20         A 69099           74228         M         RV         WG         C         72         72         E         C         5         33.5         48.8         61         48.8         33.5         225.6         -20         9.8         HS20         A 225099           74229         M         RV         WG         C         76         77         H         C         5         45.7         56.4         56.4         45.7         260.6         9.8         HS20         A 225099           74231         M         RV         WG         C         81         83         H         C         3         74         92         74         0         0         240         23         9         MS230         A 48099           74232         M         RV         WG         C         66         66         J         C         5         43.3         57.3         57.3         57.3         43.3         258.5         8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |   |             |     |    | С | 55 | 55 | R           |   | С                                     |   | 3        | 19.5 | 24.4  | 19.5  | 0     | 0    | 63.4  |     | 8.5  | HS20  | A 153099  |
| 74228         M         RV         WG         C         72         72         E         C         5         33.5         48.8         61         48.8         33.5         225.6         -20         9.8         HS20         A 225099           74229         M         RV         WG         C         76         77         H         C         5         45.7         56.4         56.4         45.7         260.6         9.8         HS55         A 56099           74231         M         RV         WG         C         81         83         H         C         3         74         92         74         0         0         240         23         9         MS230         A 48099           74232         M         RV         WG         C         66         66         J         C         5         43.3         57.3         57.3         43.3         258.5         8.5         HS20         A 112099           74233         M         RV         WG         C         67         67         E         C         5         49.7         62.5         62.5         49.7         286.9         8.5         HS20         A 163099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |   |             |     |    | С | 74 | 74 | Н           |   | С                                     |   | 5        | 89.9 | 111.3 | 111.3 | 111.3 | 89.9 | 513.7 |     | 8.5  | HS20  | A 69099   |
| 74229         M         RV         WG         C         76         77         H         C         5         45.7         56.4         56.4         45.7         260.6         9.8         HS55         A 56099           74231         M         RV         WG         C         81         83         H         C         3         74         92         74         0         0         240         23         9         MS230         A 48099           74232         M         RV         WG         C         66         66         J         C         5         43.3         57.3         57.3         43.3         258.5         8.5         HS20         A 112099           74233         M         RV         WG         C         67         67         E         C         5         49.7         62.5         62.5         49.7         286.9         8.5         HS20         A 163099           74236         M         RV         WG         C         70         70         J         C         5         59.4         73.2         73.2         59.4         38.4         7.9         HS20         A 94099           7428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | M |             | WG  |    | С | 72 | 72 | E           |   | С                                     |   | 5        | 33.5 | 48.8  | 61    | 48.8  | 33.5 | 225.6 | -20 | 9.8  | HS20  | A 225099  |
| 74232         M         RV         WG         C         66         66         J         C         5         43.3         57.3         57.3         43.3         258.5         8.5         HS20         A 112099           74233         M         RV         WG         C         67         E         C         5         49.7         62.5         62.5         49.7         286.9         8.5         HS20         A 163099           74236         M         RV         WG         C         70         70         J         C         5         59.4         73.2         73.2         59.4         338.4         7.9         HS20         A 94099           7425         M         RV         DBT         C         83         84         H         P         2         30         30         0         0         0         60         10.1         MS300         E 120088           74282W         M         RV         SCC         C         94         94         I         P         3         12         14         12         0         0         38         -20         13.4         CS750         A 658099           74307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74229  | М |             | WG  |    | С | 76 | 77 | Н           |   | С                                     |   | 5        | 45.7 | 56.4  | 56.4  | .56.4 | 45.7 | 260.6 |     | 9.8  | HS55  | A 56099   |
| 74233         M         RV         WG         C         67         67         E         C         5         49.7         62.5         62.5         49.7         286.9         8.5         HS20         A 163099           74236         M         RV         WG         C         70         70         J         C         5         59.4         73.2         73.2         59.4         338.4         7.9         HS20         A 94099           7425         M         RV         DBT         C         83         84         H         P         2         30         30         0         0         0         60         10.1         MS300         E 120088           74282W         M         RV         SCC         C         94         94         I         P         3         12         14         12         0         0         38         -20         13.4         CS750         A 658099           74307         M         RV         SMC         C         84         84         A         P         3         11         11         11         0         0         38         -20         13.4         CS750         A 4127099 <td>74231</td> <td>M</td> <td>RV</td> <td>WG</td> <td></td> <td>С</td> <td>81</td> <td>83</td> <td>Н</td> <td></td> <td>С</td> <td></td> <td>3</td> <td>74</td> <td>92</td> <td>74</td> <td>0</td> <td>0</td> <td></td> <td>23</td> <td>9</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74231  | M | RV          | WG  |    | С | 81 | 83 | Н           |   | С                                     |   | 3        | 74   | 92    | 74    | 0     | 0    |       | 23  | 9    |       |           |
| 74233         M         RV         WG         C         67         E         C         5         49.7         62.5         62.5         49.7         286.9         8.5         HS20         A 163099           74236         M         RV         WG         C         70         70         J         C         5         59.4         73.2         73.2         59.4         338.4         7.9         HS20         A 94099           7425         M         RV         DBT         C         83         84         H         P         2         30         30         0         0         0         60         10.1         MS300         E 120088           74282W         M         RV         SCC         C         94         94         I         P         3         12         14         12         0         0         38         -20         13.4         CS750         A 658099           74307         M         RV         SMC         C         84         84         A         P         3         11         11         1         0         0         33         13.3         MS300         A 415099           74352E <td>74232</td> <td>М</td> <td>_</td> <td>WG</td> <td></td> <td>С</td> <td>66</td> <td>66</td> <td>J</td> <td></td> <td>С</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74232  | М | _           | WG  |    | С | 66 | 66 | J           |   | С                                     |   |          |      |       |       |       | 1    |       | -   |      |       |           |
| 74250         M         RV         DBT         C         83         84         H         P         2         30         30         0         0         0         60         10.1         MS300         E 120088           74282W         M         RV         SCC         C         94         94         I         P         3         12         14         12         0         0         38         -20         13.4         CS750         A 658099           74307         M         RV         SMC         C         84         84         A         P         3         11         11         1         0         0         33         13.3         MS300         A 415099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         106.1         -20         15.2         HS20         A 1427099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | M | RV          | WG  |    | С | 67 | 67 | E           |   |                                       |   |          |      |       |       |       |      |       | -   |      |       |           |
| 7425         M         RV         DBT         C         83         84         H         P         2         30         30         0         0         0         60         10.1         MS300         E 120088           74282W         M         RV         SCC         C         94         94         I         P         3         12         14         12         0         0         38         -20         13.4         CS750         A 658099           74307         M         RV         SMC         C         84         84         A         P         3         11         11         1         0         0         33         13.3         MS300         A 415099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         17.7         106.1         -20         15.5         HS20         A 1427099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         17.7         106.1         -20         15.5         HS20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74236  | М | RV          | WG  |    | С | 70 | 70 |             |   |                                       |   |          |      |       |       |       |      | _     |     |      | -     |           |
| 74307         M         RV         SMC         C         84         84         A         P         3         11         11         11         0         0         33         13.3         MS300         A 415099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         106.1         -20         15.5         HS20         A 1427099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         106.1         -20         15.5         HS20         A 1427099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | М | RV          | DBT |    |   |    |    |             |   |                                       |   |          |      |       |       |       | _    |       |     |      |       |           |
| 74307         M         RV         SMC         C         84         84         A         P         3         11         11         11         0         0         33         13.3         MS300         A 415099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         17.7         106.1         -20         15.5         HS20         A 1427099           74352E         M         RO         PM         S         68         68         R         P         6         17.7         17.7         17.7         106.1         -20         15.5         HS20         A 1427099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74282W | M | RV          | SCC |    | С | 94 | 94 |             |   |                                       |   |          |      |       |       |       |      |       | -20 |      |       |           |
| 74002L W RO TW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | M | RV          | SMC |    | С |    | 84 |             |   |                                       |   |          |      |       |       |       |      |       | 1   |      |       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74352E | М |             | PM  |    | S | 68 |    |             |   |                                       |   |          |      |       |       |       |      |       | _   |      |       |           |
| 74352VV   M   RO   C3   C   C3   C   C3   C   C3   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74352W | M | RO          | CS  |    | S | 56 | 57 | R           |   | С                                     |   | 9        | 10.1 | 13.1  | 10.1  | 13.1  | 10.1 | 105.9 |     | 15.2 |       |           |
| 74353E M RV CT C 70 70 R C 4 29.3 39.6 29.3 0 137.8 -30 15.2 HS20 A 1427099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |   |             | CT  |    | С | 70 |    |             |   |                                       |   |          |      |       | +     |       |      |       |     |      |       |           |
| 74353W M RV CT C 58 58 R C 4 29.3 39.6 29.3 0 137.8 -30 15.2 HS20 A 1427099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |   |             | CT  |    | С |    |    |             |   |                                       |   |          |      |       |       |       |      |       |     |      |       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74354E | М | RV          | FC  |    | С | 70 | 70 | Α           |   | Р                                     |   | 3        | 22.9 | 36.6  | 22.9  | 0     | 0    | 82.4  |     | 15.2 | HS20  | A 1557099 |



| 74254\/          | М | RV | C 0      | T  | T 0 |          |          |        |    |   |   |   |             |             |      |      |      |       |     |      |       |           |
|------------------|---|----|----------|----|-----|----------|----------|--------|----|---|---|---|-------------|-------------|------|------|------|-------|-----|------|-------|-----------|
| 74354W<br>74355E | M | RV |          |    | C   | 57       | 57       | E      |    | С |   | 7 | 6           | 6           | 36.6 | 6    | 6    | 72.6  |     | 15.2 | H20   | A 1557099 |
|                  | M | RV |          | -  | C   | 66       | 66       | R      |    | P |   | 3 | 29.3        | 31.1        | 29.3 | 0    | 0    | 89.7  |     | 15.2 | HS20  | A 1594099 |
| 74355W           |   | -  |          |    | С   | 57       | 57       | R      |    | С |   | 4 | 17.7        | 25          | 25   | 17.7 | 0    | 85.4  | 35  | 15.2 | HS20  | A 1594099 |
| 74358            | M | RV |          |    | С   | 55       | 55       | С      |    | С |   | 3 | 30.5        | 40.2        | 30.5 | 0    | 0    | 101.2 |     | 8.5  | HS20  | A 38099   |
| 74381            | M | RV |          | RB | S   | 57       | 64       | R      | E  | С | С | 8 | 21.3        | 48.8        | 61   | 48.8 | 21.3 | 320   |     | 8.5  | HS20  | A 391099  |
| 74397            | S | RV |          | -  | S   | 79       | 79       | A      |    | Р |   | 3 | 6           | 10          | 6    | 0    | 0    | 22    |     | 13.8 | MS23  | A 240099  |
| 74426            | M | RV | -        |    | С   | 56       | 56       | R      |    | С |   | 3 | 16.2        | 22.6        | 16.2 | 0    | 0    | 55    |     | 8.5  | HS20  | A 83099   |
| 74440            | M | RV |          | RG | S   | 58       | 76       | R      | E  | С | С | 6 | 21.3        | 33.5        | 61   | 61   | 33.5 | 271.3 |     | 8.5  | HS20  | A 144099  |
| 74447            | M | IC | CBT      |    | S   | 84       | 85       | Н      |    | Р |   | 2 | 15.1        | 15.1        | 0    | 0    | 0    | 30.2  |     | 11.8 | MS300 | A 238099  |
| 74448            | M | IC | SCC      |    | С   | 93       | 94       | 1      |    | Р |   | 3 | 13          | 14.3        | 13   | 0    | 0    | 40.3  | -20 | 9.5  | CS750 | A 61099   |
| 74452            | M | RV | DT       | RB | S   | 57       | 91       | Н      | Н  | С | С | 8 | 18.3        | 48.8        | 61   | 48.8 | 18.3 | 353.6 |     | 9.8  | HS20  | A 970099  |
| 74455            | M | RV | RB       |    | S   | 56       | 56       | J      |    | С |   | 3 | 15.2        | 18.3        | 24.4 | 0    | 0    | 57.9  |     | 13.4 | HS20  | A 188099  |
| 74458S           | M | RV | CT       | -  | С   | 57       | 57       | Н      |    | С |   | 4 | 17.7        | 25          | 25   | 17.7 | 0    | 85.4  |     | 15.2 | HS20  | A 1751099 |
| 74462            | S | RV |          | -  | S   | 95       | 95       | N      |    | Р |   | 1 | 12          | 0           | 0    | 0    | 0    | 12    |     | 12   | CS750 | A 29099   |
| 74540            | M | GS |          |    |     | 57       | 57       | С      |    | С |   | 3 | 18.3        | 24.4        | 18.3 | 0    | 0    | 61    |     | 4.9  | HS20  |           |
| 74546            | M | RV | DBT      |    | S   | 83       | 84       | N      |    | Р |   | 3 | 16          | 16          | 16   | 0    | 0    | 48    |     | 8.6  | MS300 | A 18099   |
| 74563            | S | RV | НСО      | -  | S   | 56       | 91       | С      |    | P |   | 3 | 8.5         | 8.5         | 8.5  | 0    | 0    | 25.5  |     | 11   | HS20  | A 160099  |
| 74596            | M | GS | FR       |    | C   | 66       | 66       | J      |    | С |   | 3 | 29.6        | 11          | 29.6 | 0    | 0    | 70.2  | -9  | 9.1  | H\$20 | E 10088   |
| 74599E           | M | GS |          | -  | -   | 65       | 65       | R      |    | Р |   | 3 | 10          | 10.1        | 10   | 0    | 0    | 30.1  |     | 12.8 | HS20  | A 1594099 |
| 74599W           | M | GS | HC       |    | S   | 56       | 56       | R      |    | Р |   | 3 | 10          | 10.1        | 10   | 0    | 0    | 30.1  |     | 12.8 | HS20  | A 1594099 |
| 746              | M | RV | DBT      | -  | S   | 88       | 88       | N      |    | P |   | 1 | 40          | 0           | 0    | 0    | 0    | 40    |     | 7.6  | MS300 | E 2096    |
| 74600E           | S | GS | SM       | -  | S   | 57       | 83       | R      |    | Р |   | 3 | 8.5         | 8.5         | 8.5  | 0    | 0    | 25.5  | -30 | 13.7 | MS23  | A 1557099 |
| 74600W           | M | GS | PM       | -  |     | 71       | 71       | R      |    | P |   | 3 | 9.1         | 13.7        | 10.7 | 0    | 0    | 33.5  | -30 | 12.8 | HS20  | A 1557099 |
| 74602E           | M | GS | PM       | -  |     | 70       | 70       | A      |    | Р |   | 3 | 10.7        | 12.2        | 10.7 | 0    | 0    | 33.6  | -30 | 12.8 | HS20  | A 1557099 |
| 7461             | M | RV | PO       |    | S   | 60       | 60       | J      |    | C |   | 5 | 44.5        | 44.5        | 45.1 | 45.1 | 45.1 | 224.3 |     | 9.1  | HS20  | A 131099  |
| 74653            | M | RV | CT       | -  | Н   | 61       | 0        | N      |    | P |   | 3 | 6.1         | 9.1         | 6.1  | 0    | 0    | 21.3  |     | 7.3  | HS20  | E 1596    |
|                  |   | RV | CT       |    | С   | 57       | 57       | Н      |    |   |   | 8 | 25.3        | 35.1        | 35.1 | 35.1 | 25.3 | 260.9 | 40  | 9.1  | HS20  | A 256099  |
| 74678            | M | _  |          |    |     | 58       | 58       | E      |    | C |   | 3 | 19.5        | 24.4        | 19.5 | 0    | 0    | 63.4  | 16  | 11   | HS20  | A 255099  |
| 74679            | M | RV | PO       | DE | S   | 58       | 60       | E      | N1 | C |   | 2 | 23.3        | 23.3        | 0    | 0    | 0    | 46.6  |     | 10.4 | HS20  | A 255099  |
| 747              | M | RV | PM       | PE | S   | 64       | 64       | N      | N  | P |   | 3 | 12.8        | 15.2        | 12.8 | 0    | 0    | 40.8  |     | 9.1  | HS20  | A 46099   |
| 74710            | M | RV | FC       |    | S   | 70       | 70       | J      |    | P |   | 2 | 22.9        | 22.9        | 0    | 0    | 0    | 45.8  | 45  | 10.4 | HS20  | A 61099   |
| 74739            | S | RO | HC       |    | S   | 64       | 64       | A      |    | C |   | 6 | 6.1         | 8.5         | 11.6 | 8.5  | 8.5  | 51.8  | -45 | 9.4  | HS20  | A 61099   |
| 7475             | M | RV | RB<br>V6 |    | S   | 57<br>78 | 65       |        |    | P |   | 3 | 15.2<br>9.1 | 15.2<br>9.1 | 9.1  | 0    | 0    | 30.4  | 45  | 11   | HS20  | A 175099  |
| 74832            | S | IC | VS       |    | S   | 61       | 78<br>61 | C      |    | P |   | 3 | 9.1         | 10.7        | 9.1  | 0    | 0    | 27.3  | 15  | 11.7 | HS25  | A 256099  |
| 7484             | M | RV | PJ       | 20 | S   | 56       | 77       | Н      | Н  | P | P | 4 | 16.8        | 30.8        | 30.8 | 10.7 | 0    | 28.9  |     | 8.2  | HS20  | A 62099   |
| 7487             | M | RV | VF       | RD |     |          | 72       |        | 17 | P |   | 3 | 33.5        | 33.5        | 33.5 |      |      | 89.1  | 4.5 | 9.1  | HS25  | A 108099  |
| 7492             | M | RV | FC       | DE | S   | 72<br>65 | 65       | J      | N  | P | P | 3 | 9.1         | 16.8        | 9.1  | 0    | 0    | 100.5 | -15 | 8.8  | HS20  | A 173099  |
| 7493             | M | RV | PM       | PE |     |          |          |        | 14 | P | F | 2 | 10          |             | -    |      |      | 35    | -30 | 7.3  | HS20  | A 14099   |
| 74953            | M | RV | SMC      |    | C   | 88       | 88       | A<br>E |    | C |   | 2 | 18.9        | 18.9        | 0    | 0    | 0    | 20    | 30  | 13.3 | MS300 |           |
| 74954            | M | RV | PO       |    |     | 59       | 59       |        |    | P |   | 1 |             |             |      |      |      | 37.8  | -   | 11   | HS20  | A 235099  |
| 74955            | S | RV | SM       |    | S   | 58       | 84       | A      |    | C |   | 3 | 24.1        | 20.0        | 24.1 | 0    | 0    | 70.1  | -   | 13.7 |       |           |
| 74969            | M | RV | PO       |    | S   | 60       | 60       | J      |    | C |   |   |             | 29.9        | 24.1 |      | 0    | 78.1  | 40  | 7.9  | HS20  | A 91099   |
| 74978E           | M | GS | PO       |    | S   | 60       | 60       | A      |    | P |   | 3 | 16.2        | 16.2        | 21.3 | 19.2 | 0    | 72.9  | 19  | 13.4 | HS20  | A 822099  |
| 74978W           | M | GS | VF       |    | S   | 75       | 75       | A      |    |   |   |   | 32          | 21.3        | 19.8 | 0    | 0    | 73.1  | 20  | 12.2 | HS25  | A 822099  |
| 75014            | M | RV | DT       | WG | Н   | 64       | 88       | E      | E  | С | С | 6 | 24.4        | 37.2        | 87.2 | 63.4 | 76.8 | 343.8 | -   | 17.1 | HS20  | A 822099  |
| 75016            | М | RV | PO       | FM | S   | 58       | 81       | E      | Е  | С | С | 2 | 33.8        | 33.8        | 10.0 | 0    | 0    | 67.6  | -   | 12.8 | HS20  | A 234099  |
| 75021            | M | RO | PO       |    |     | 60       | 60       | Н      |    | С |   | 3 | 19.8        | 19.8        | 19.8 | 0    | 0    | 59.4  |     | 11   | HS20  | A 178099  |



| 75050            | Is | RV | SC  |       | T s      | 0.4      | 1 04 | 1 1 | 1 | T =   |                                                  | 1 |      |      |      |      |      |              |      |      |         |                        |
|------------------|----|----|-----|-------|----------|----------|------|-----|---|-------|--------------------------------------------------|---|------|------|------|------|------|--------------|------|------|---------|------------------------|
| 75051N           | M  | RO |     |       | 3        | 94       | 94   | N   | - | Р     |                                                  | 3 | 6.1  | 8.5  | 6.1  | 0    | 0    | 20.7         |      | 10.1 | CS750   | A 61099                |
| 75051S           | M  | RO |     |       |          | 60       | 60   | E   | - | С     |                                                  | 3 | 18.6 | 23.2 | 18.6 | 0    | 0    | 60.4         | -45  | 11.6 | HS20    | A 702099               |
| 75054            | M  | GS |     |       | S        | 60       | 60   | E   | - | C     |                                                  | 3 | 18.6 | 23.2 | 18.6 | 0    | 0    | 60.4         | -45  | 11.6 | HS20    | A 702099               |
| 75055N           | M  | GS |     |       | C        | 67       | 67   | J   | - | Р     |                                                  | 3 | 29   | 16.2 | 29   | 0    | 0    | 74.2         |      | 23.5 | HS20    | A 167099               |
| 75055S           | M  | GS | RB  |       | C        | 60       | 60   | H   | - | C     | -                                                | 3 | 13.7 | 15.8 | 13.7 | 0    | 0    | 43.2         |      | 11.6 | HS20    | A 4206099              |
| 75058N           | M  | RO | CT  |       | C        | 60       | 60   | E   |   | С     | -                                                | 3 | 13.7 | 15.8 | 13.7 | 0    | 0    | 43.2         |      | 11.6 | HS20    | A 4206099              |
| 75058S           | M  | RO | CT  |       | C        | 61       | 61   | E   | - | С     |                                                  | 4 | 14.6 | 20.1 | 20.1 | 14.6 | 0    | 69.4         |      | 11.6 | HS20    | A 1860099              |
| 75059            | M  | RV | RB  |       | C        | 61       | 61   | E   | - | C     | -                                                | 4 | 14.6 | 20.1 | 20.1 | 14.6 | 0    | 69.4         |      | 11.6 | HS20    | A 1860099              |
| 75062            | S  | IC | VH  |       | S        | 60       | 60   | A   |   | C     | -                                                | 4 | 21.3 | 29.3 | 21.3 | 12.2 | 0    | 84.1         |      | 7.9  | HS20    | A 58099                |
| 75066            | M  | GS | PB  |       | C        |          | 74   | A   | - | Р     |                                                  | 2 | 6.1  | 6.1  | 0    | 0    | 0    | 12.2         |      | 13.7 | HS25    | A 297099               |
| 75070            | M  | RV | CT  |       | C        | 80       | 81   | H   |   | P     | -                                                | 4 | 45.1 | 45.1 | 45.1 | 45.1 | 0    | 180.4        |      | 18.9 | MS230   | E 100096               |
| 75075            | M  | RV | SMC |       | C        | 60<br>86 | 60   | E   | - | C     |                                                  | 3 | 12.8 | 18.3 | 12.8 | 0    | 0    | 43.9         | 00   | 11   | HS20    | A 131099               |
| 75111            | M  | RV | PO  |       | S        | 61       | 86   | A   |   | P     | -                                                | 3 | 8    | 10   | 8    | 0    | 0    | 26           | 20   | 12.1 | MS300   | A 85099                |
| 75112            | M  | RO | PO  |       | C        | 61       | 61   | R   | - | C     | -                                                | 4 | 30.5 | 30.5 | 30.5 | 30.5 | 0    | 122          |      | 9.1  | HS20    | A 118099               |
| 75118            | M  | GS | CS  |       |          | 59       | 61   | R   |   | C     |                                                  | 3 | 18.3 | 18.3 | 18.3 | 0    | 0    | 54.9         | 00   | 11   | HS20    | A 118099               |
| 7513             | M  | RV | PO  |       | S        | 59       | 59   | A   |   | C     | -                                                | 3 | 11   | 11   | 11   | 0    | 0    | 33           | -29  | 9.1  | HS20    | A 182099               |
| 75186            | M  | RV | PO  |       | S        | 60       | 59   | E   | - | · · · |                                                  | 3 | 21.3 | 24.4 | 21.3 | 0    | 0    | 67           | -25  | 7.9  | HS20    | E 100095               |
| 75187            | M  | RV | TH  | -     | S        | 61       | 60   |     | - | C     |                                                  | 4 | 30.5 | 30.5 | 30.5 | 30.5 | 0    | 122          | 20   | 7.9  | HS20    | A 341099               |
| 75193E           | M  | RO | PO  |       | - 3      | 61       | 61   | J   |   | C     | -                                                | 4 | 76.2 | 76.2 | 76.2 | 76.2 | 0    | 304.8        | 29   | 9.1  | 11000   | A 68099                |
| 75193W           | M  | RO | PO  | -     |          | 61       | 61   | E   |   | C     | -                                                | 3 | 19.5 | 19.5 | 19.5 | 0    | 0    | 58.5         | -45  | 11.6 | HS20    | A 2460099<br>A 2460099 |
| 75194            | M  | RV | CBT | -     | C        | 88       | 88   | C   | - | P     |                                                  | 3 | 19.5 | 19.5 | 19.5 | 0    | 0    | 58.5         | -45  | 11.6 |         | A 12099                |
| 75195E           | M  | GS | RB  |       | C        | 61       | 61   | E   |   | C     |                                                  | 3 | 36   | 42   | 42   | 36   | 0    | 156          | 20   | 12.2 | MS300   |                        |
| 75195W           | M  | GS | RB  |       | C        | 61       | 61   | E   |   | C     |                                                  | 3 | 14   | 24.4 | 17.1 | 0    | 0    | 55.5<br>55.5 | 38   | 12.2 | HS20    | A 1787099              |
| 75197            | M  | RV | PO  |       | -        | 61       | 61   | R   | - | C     |                                                  | 3 | 18.9 | 26.5 | 26.2 | 0    | 0    | 71.6         | 30   | 9.1  | HS20    | A 255099               |
| 75217S           | M  | RV | TH  | RG    | С        | 65       | 65   | 1   | C | C     | C                                                | 9 | 30.5 | 45.7 | 61   | 76.2 | 61   | 472.4        |      | 8.2  | HS20    | A 344098               |
| 7524             | C  | RV | AP  | 110   |          | 80       | 80   |     | - |       | 1                                                | 1 | 72   | 45.7 | 01   | 70.2 | 01   | 675          | 40   | 100  | 11320   | A 260098               |
| 75305            | M  | RV | RB  | SMC   | S        | 61       | 61   | E   | E | С     | C                                                | 3 | 10.7 | 18.3 | 10.7 | 0    | 0    | 39.7         | 40   | 9.2  | HS20    | A 109099               |
| 75315            | M  | RV | WG  | OIVIO | Н        | 61       | 61   | P   | _ | C     | 1                                                | 5 | 72.2 | 79.2 | 85.3 | 79.2 | 72.2 | 388.1        |      | 8.5  | HS20    | A 45039                |
| 75331S           | M  | GS | CV  |       | C        | 62       | 62   | 1   |   | C     |                                                  | 3 | 14.3 | 16.5 | 12.8 | 0    | 0    | 43.6         | -29  | 12.2 | HS20    | A 43033                |
| 753310<br>75332N | M  | GS | RB  |       | S        | 62       | 62   | A   |   | C     |                                                  | 4 | 14   | 14.2 | 14.2 | 14   | 0    | 56.4         | 20   | 12.2 | HS20    | A 2283099              |
| 75332S           | M  | GS | RB  |       | S        | 62       | 62   | 1   |   | C     |                                                  | 4 | 14.8 | 14.9 | 14.9 | 14.8 | 0    | 59.4         | 20   | 12.2 | HS20    | A 2283099              |
| 75334            | M  | GS | CBT |       | S        | 82       | 83   | C   |   | Р     |                                                  | 2 | 36   | 36   | 0    | 0    | 0    | 72           | 6    | 18   | MS300   | A 2200099              |
| 75335N           | M  | RV | WG  |       | C        | 62       | 62   | R   |   | С     |                                                  | 4 | 39.6 | 50   | 50   | 39.6 | 0    | 179.2        | 10   | 12.2 | HS20    | A 2283099              |
| 75335S           | M  | RV | WG  |       | C        | 62       | 62   | R   |   | C     |                                                  | 4 | 39.6 | 50   | 50   | 39.6 | 0    | 179.2        | 10   | 12.2 | HS20    | A 2283099              |
| 75336            | M  | GS | RB  |       | C        | 61       | 61   | A   |   | C     |                                                  | 4 | 13.7 | 26.5 | 26.5 | 13.7 | 0    | 80.4         | 1    | 21.3 | HS20    | A 467099               |
| 75337N           | M  | RO | RB  |       | C        | 62       | 62   | A   |   | C     |                                                  | 3 | 17.7 | 22.6 | 17.7 | 0    | 0    | 58           | 41   | 12.2 | HS20    | A 1911099              |
| 75337N<br>75337S | M  | RO | RB  |       | C        | 62       | 62   | A   |   | C     |                                                  | 3 | 17.7 | 22.6 | 17.7 | 0    | 0    | 58           | 41   | 12.2 | HS20    | A 1911099              |
| 75337S           | M  | RV | PO  |       |          | 62       | 62   | J   |   | P     |                                                  | 4 | 18   | 20.1 | 27.4 | 22.9 | 0    | 88.4         | 15   | 12.2 | HS20    | A 1911099              |
|                  | M  | RV | PO  |       |          | 62       | 62   | J   |   | C     |                                                  | 4 | 18.3 | 23.8 | 27.4 | 26.5 | 0    | 96           | 15   | 12.2 | HS20    | A 1911099              |
| 75338S           |    |    |     |       | С        | 62       | 62   | A   |   | C     |                                                  | 3 | 14.9 | 18.9 | 14.9 | 0    | 0    | 48.7         | 32   | 12.2 |         |                        |
| 75339N           | M  | RO | RB  |       | C        | 62       | 62   | A   |   | C     |                                                  | 3 | 14.9 | 18.9 | 14.9 | 0    | 0    | 48.7         | 32   | 12.2 | HS20    |                        |
| 75339S           |    | RO | RB  |       |          | 62       | 62   | 1   |   | C     |                                                  | 3 | 15.2 | 29   | 15.2 | 0    | 0    | 59.4         | 31   | 15.8 | HS20    |                        |
| 75340N           | M  | GS | PO  |       |          | 62       | 62   | C   |   | C     |                                                  | 3 | 15.2 | 29   | 15.2 | 0    | 0    | 59.4         | 31   | 15.8 | HS20    |                        |
| 75340S           | M  | GS | PO  |       | S        | 63       | 63   | E   |   | P     |                                                  | 4 | 14   | 28.7 | 28.7 | 19.2 | 0    | 90.6         | 35   | 9.2  | HS20    |                        |
| 75341            |    | GS | PO  |       | 3        | 61       | 61   | N   |   | P     |                                                  | 1 | 6.1  | 0    | 0    | 0    | 0    | 6.1          | 30   | 7.3  | HS20    |                        |
| 75355            |    | RV | HH  |       | <u> </u> | 90       | 90   | A   |   | C     | <del>                                     </del> | 3 | 16   | 22   | 16   | 0    | 0    | 54           | 15   |      |         | E 1989                 |
| 75371            | M  | RV | WG  |       | С        | 90       | 90   |     |   |       |                                                  |   | 10   |      |      | 1    |      | 1 54         | 1 10 | 10   | 1 03/30 | TA 87099               |



| 75000         | B. 4 | RO |     |    |   |      |    |   |   |    |   |   |      |      |      |      |      |       |     | 44.5 | 11000 | A 209099  |
|---------------|------|----|-----|----|---|------|----|---|---|----|---|---|------|------|------|------|------|-------|-----|------|-------|-----------|
| 75383         | M    |    | PO  | -  |   | 63   | 63 | J |   | С  |   | 3 | 17.4 | 17.7 | 16.8 | 0    | 0    | 51.9  |     | 11.5 |       |           |
| 75386         | M    | IC | SCC | -  | C | 96   | 96 | 1 |   | P  |   | 3 | 12   | 14   | 12   | 0    | 0    | 38    |     | 11.1 |       | A 48099   |
| 75420W        | M    | GS | FR  | -  | С | 63   | 63 | Н |   | С  |   | 5 | 13.4 | 24.4 | 7.6  | 24.4 | 13.4 | 83.2  | -20 | 14   |       | A 729099  |
| 75487         | S    | RV | SC  | -  | S | 94   | 94 | N |   | Р  |   | 1 | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 12.8 |       | A 179099  |
| 75491         | M    | RV | RB  | -  | C | 62   | 62 | N |   | С  |   | 3 | 19.5 | 24.4 | 19.5 | 0    | 0    | 63.4  | -15 | 7.9  | HS20  | 140000    |
| 75498         | M    | GS | FC  |    |   | 70   | 70 | А |   | Р  |   | 2 | 35.1 | 35.1 | 0    | 0    | 0    | 70.2  | -15 | 15.2 |       | A 118099  |
| 75500         | M    | RV | WG  | CS | С | 62   | 62 | F | Α | С  | Р | 6 | 6.1  | 44.8 | 55.8 | 55.8 | 44.8 | 213.4 |     | 7.9  | HS20  | E 15097   |
| 75522         | M    | GS | RB  |    | С | 63   | 63 | Н |   | С  |   | 4 | 12.5 | 21.3 | 21.3 | 12.5 | 0    | 67.6  |     | 14.6 |       | A 622099  |
| 75529         | M    | RV | PO  |    | P | 66   | 66 | Α |   | С  |   | 4 | 36.6 | 38.1 | 38.1 | 36.6 | 0    | 149.4 |     | 13.4 | HS20  | A 358099  |
| 7553          | M    | RV | PO  |    | S | 60   | 60 | E |   | С  |   | 3 | 18.3 | 18.3 | 18.3 | 0    | 0    | 54.9  |     | 11   | HS20  | A 80099   |
| 75535N        | M    | RV | PQ  |    |   | 64   | 64 | 1 |   | С  |   | 3 | 15.8 | 16.8 | 15.8 | 0    | 0    | 48.4  |     | 12.2 |       | A 1911099 |
| 75535S        | М    | RV | PQ  |    |   | 64   | 64 | 1 |   | С  |   | 3 | 15.8 | 16.8 | 15.8 | 0    | 0    | 48.4  |     | 12.2 |       | A 1911099 |
| <b>75</b> 538 | M    | RV | FC  |    | S | 70   | 94 | J |   | Р  |   | 4 | 32   | 32   | 32   | 32   | 0    | 128   | -20 | 7.3  | HS20  | A 18099   |
| <b>75</b> 539 | M    | RV | RB  |    | С | 63   | 63 | R |   | С  |   | 3 | 20.4 | 25.6 | 20.4 | 0    | 0    | 66.4  | -20 | 7.9  |       | A 133099  |
| 75543E        | M    | GS | FC  |    | S | 65   | 65 | J |   | Р  |   | 4 | 12.2 | 19.8 | 19.8 | 12.2 | 0    | 64    | 16  | 15.8 |       | A 3040099 |
| 75543W        | M    | GS | FC  |    | S | 65   | 65 | J |   | Р  |   | 4 | 12.2 | 19.8 | 19.8 | 12.2 | 0    | 64    | 16  | 15.8 | HS20  | A 3040099 |
| 75555         | M    | GS | FR  |    | С | 63   | 63 | Е |   | С  |   | 5 | 12.8 | 22.9 | 7.6  | 22.9 | 12.8 | 79    | 6   | 21.3 | HS20  | A 275099  |
| 75623N        | М    | RV | HC  |    |   | 63   | 63 | E |   | Р  |   | 3 | 10.1 | 11.6 | 10.1 | 0    | 0    | 31.8  |     | 12.8 | HS20  | A 1911099 |
| 75623S        | M    | RV | HC  |    |   | 63   | 63 | F |   | Р  |   | 3 | 10.1 | 11.6 | 10.1 | 0    | 0    | 31.8  |     | 12.8 |       | A 1911099 |
| 75644         | M    | GS | RB  |    | С | 64   | 64 | R |   | С  |   | 4 | 18.6 | 31.1 | 31.1 | 18.6 | 0    | 99.4  | -42 | 14   | HS20  | A 430099  |
| 75651N        | M    | GS | RB  |    | С | 64   | 64 | С |   | С  |   | 3 | 13.1 | 26.5 | 13.1 | 0    | 0    | 52.7  | 15  | 15.8 |       | A 1747099 |
| 75651S        | М    | GS | RB  |    | С | 64   | 64 | С |   | С  |   | 3 | 13.1 | 26.5 | 13.1 | 0    | 0    | 52.7  | 15  | 15.8 | HS20  | A 1747099 |
| 75661N        | M    | GS | PE  |    |   | 63   | 63 | F |   | Р  |   | 3 | 12.8 | 10.7 | 12.8 | 0    | 0    | 36.3  |     | 12.8 | HS20  | A 1911099 |
| 75661S        | М    | GS | PE  |    |   | 63   | 63 | F |   | Р  |   | 3 | 12.8 | 10.7 | 10.7 | 0    | 0    | 34.2  |     | 12.8 | HS20  | A 1911099 |
| 75663         | M    | RV | DBT |    | S | 82   | 83 | Н |   | Р  |   | 2 | 22   | 14   | 0    | 0    | 0    | 36    | -20 | 11   | MS300 |           |
| 75667         | M    | GS | FC  |    | С | 63   | 63 | Α |   | Р  |   | 4 | 13.7 | 22.9 | 22.9 | 13.7 | 0    | 73.2  |     | 9.1  | HS20  | A 137099  |
| 75672         | M    | RV | PE  |    | S | 64   | 64 | A |   | P  |   | 3 | 12.8 | 12.8 | 12.8 | 0    | 0    | 38.4  |     | 11   | HS20  | A 155099  |
| 75677         | М    | GS | RB  |    | С | 64   | 64 | E |   | С  |   | 4 | 13.1 | 30   | 30.8 | 13.1 | 0    | 87    | -8  | 10.4 | HS20  | E 50096   |
| 75678         | М    | GS | RB  |    | С | 64   | 64 | Α |   | С  |   | 4 | 12.2 | 23.2 | 23.2 | 12.2 | 0    | 70.8  |     | 8.5  | HS20  | E 2596    |
| 75694         | М    | RV | VF  | VS | S | 75   | 75 | J | A | Р  | Р | 3 | 9.1  | 32   | 9.1  | 0    | 0    | 50.2  |     | 8.5  | HS25  | A 19099   |
| 75698         | S    | RV | SC  |    | S | 95   | 95 | А |   | Р  |   | 1 | 10.1 | 0    | 0    | 0    | 0    | 10.1  | ļ   | 11   | CS750 | A 86099   |
| 756N          | M    | RV | FC  |    | S | 70   | 70 | Е |   | HP |   | 4 | 335  | 335  | 335  | 335  |      | 1340  |     | 122  | HS20  | A 481098  |
| 75701         | М    | RV | WG  |    | С | 68   | 68 | J |   | С  |   | 4 | 48.8 | 61   | 61_  | 48.8 | 0    | 219.6 |     | 8.5  | HS20  | A 57099   |
| 75707S        | М    | GS | RB  |    | С | 66   | 66 | Α |   | С  |   | 4 | 12.5 | 20.4 | 20.4 | 14.9 | 0    | 68.2  | -28 | 9.1  | HS20  | A 734099  |
| 75722         | М    | GS | FC  |    |   | 64   | 64 | Α |   | С  |   | 4 | 15.2 | 25.6 | 25.6 | 15.2 | 0    | 81.6  | -26 | 9.1  | HS20  | E 10094   |
| 75723         | М    | GS | RB  |    | С | 66   | 66 | С |   | С  |   | 4 | 12.2 | 23.2 | 23.2 | 12.2 | 0    | 70.8  |     | 8.5  | HS20  | E 10094   |
| 75724         | M    | GS | FC  | CF | С | 65   | 65 | А | Α | С  | С | 3 | 25.6 | 17.7 | 25.6 | 0    | 0    | 68.9  | -   | 9.1  | HS20  | A 49099   |
| 75725         | M    | GS | FC  |    |   | 64   | 64 | A |   | С  |   | 4 | 13.7 | 28   | 28   | 13.7 | 0    | 83.4  | 4   | 10.4 | HS20  | E 10095   |
| 75726         | M    | GS | FR  |    | С | 65   | 65 | А |   | С  |   | 3 | 30.5 | 9.1  | 30.5 | 0    | 0    | 70.1  | -   | 9.1  | HS20  | E 10094   |
| 75731         | M    | RV | CBC |    | С | 64   | 94 |   |   | Р  |   | 3 | 18   | 16   | 18   | 0    | 0    | 52    | 40  | 13.4 | CS750 | A 164099  |
| 75742         | S    | IC | HC  |    | S | 63   | 63 | А |   | Р  |   | 1 | 8.5  | 0    | 0    | 0    | 0    | 8.5   |     | 8.2  | HS20  | A 45099   |
| 75744         | M    | RO | RB  |    | Н | 65   | 65 | Α |   | С  |   | 3 | 7    | 18.3 | 7    | 0    | 0    | 32.3  | -25 | 13.4 | HS20  | A 646099  |
|               |      | RV | SMC |    | C | 86   | 86 | А |   | Р  |   | 3 | 10   | 11   | 10   | 0    | 0    | 31_   |     | 12.1 | MS300 | A 255099  |
| 75752         | M    | GS | PO  |    |   | 64   | 64 | J |   | С  |   | 4 | 13.4 | 27.1 | 27.1 | 13.4 | 0    | 81    | -11 | 10.4 | HS20  | E 5094    |
| 75754         | M    | _  |     |    |   | 67   | 67 | J |   | Р  |   | 3 | 29   | 16.2 | 29   | 0    | 0    | 74.2  | 2   | 23.7 | HS20  | A 1081099 |
| 75760         | M    | GS | FC  |    | С | 89   | 89 | A |   | С  |   | 3 | 17.9 | 21.4 | 19.5 | 0    | 0    | 58.8  |     | 13   | MS300 | A 164099  |
| 75774         | M    | RV | WG  |    | - | 63   | 63 | A |   | Р  |   | 1 | 9.1  | 0    | 0    | 0    | 0    | 9.1   |     | 12.8 | HS20  | A 1911099 |
| 75812N        | S    | GS | HC  |    |   | - 00 |    |   |   |    |   |   |      |      |      |      |      |       |     |      |       |           |



| 750120 | T | 100 | 110 | 1   |   | -  |    | T . |   |   |   |    |      |      |       |       |      |       |     | т т      |       | 1.1011000 |
|--------|---|-----|-----|-----|---|----|----|-----|---|---|---|----|------|------|-------|-------|------|-------|-----|----------|-------|-----------|
| 75812S | S | GS  | HC  |     | - | 63 | 63 | A   |   | Р |   | 1  | 9.1  | 0    | 0     | 0     | 0    | 9.1   |     | 12.8     |       | A 1911099 |
| 75816  | M | RO  | RD  |     | S | 76 | 76 | 1   |   | Р |   | 3  | 13.7 | 19.8 | 13.7  | 0     | 0    | 47.2  |     | 9.8      | HS25  | A 93099   |
| 75817  | M | RV  | HC  |     |   | 63 | 63 | A   |   | Р |   | 3  | 8.5  | 11.6 | 8.5   | 0     | 0    | 28.6  |     | 9.1      | HS20  | A 86099   |
| 75820  | S | IC  | HC  |     | S | 64 | 64 | N   |   | Р |   | 3  | 8.5  | 8.5  | 8.5   | 0     | 0    | 25.5  | -30 | 8.2      |       | A 113099  |
| 75853  | S | IC  | HC  |     | - | 64 | 64 | N   |   | Р |   | 3  | 8.5  | 8.5  | 8.5   | 0     | 0    | 25.5  | -15 | 9.3      | HS20  | A 98099   |
| 75855  | M | IC  | SMC | -   | С | 88 | 89 | А   |   | Р |   | 4  | 10   | 11   | 11    | 10    | 0    | 42    | 25  | 10.8     | MS300 |           |
| 75857  | S | IC  | SM  |     | S | 86 | 86 | С   |   | Р |   | 4  | 11   | 11   | 11    | 11    | 0    | 44    | -20 | 8.8      | MS230 |           |
| 75876  | M | IC  | FC  |     | S | 65 | 65 | Α   |   | Р |   | 3  | 18.3 | 21.3 | 18.3  | 0     | 0    | 57.9  |     | 9.1      | HS20  | A 61099   |
| 75904  | M | RV  | DBC |     | S | 94 | 94 | Α   |   | Р |   | 1  | 34   | 0    | 0     | 0     | 0    | 34    |     | 11.9     | CS750 | A 64099   |
| 75919S | M | RO  | RB  |     | С | 67 | 67 | Α   |   | С |   | 3  | 16.5 | 20.4 | 16.5  | 0     | 0    | 53.4  | 45  | 13.4     | HS20  | A 578099  |
| 75929  | M | IC  | CS  |     | S | 63 | 63 | Α   |   | С |   | 3  | 8.5  | 11   | 8.5   | 0     | 0    | 28    |     | 9.1      | HS20  | A 61099   |
| 75931  | M | GS  | RB  |     | Н | 66 | 66 | F   |   | С |   | 4  | 12.2 | 23.2 | 31.1  | 12.2  | 0    | 78.7  |     | 9.1      | HS20  | E 40088   |
| 75932  | M | GS  | RB  |     | С | 66 | 66 | R   |   | С |   | 4  | 13.4 | 26.8 | 26.8  | 13.4  | 0    | 80.4  |     | 9.1      | HS20  | A 494099  |
| 75933  | M | GS  | RB  |     | С | 65 | 65 | С   |   | С |   | 4  | 12.5 | 22.9 | 22.9  | 12.5  | 0    | 70.8  |     | 9.1      | HS20  | A 234099  |
| 75935S | M | GS  | RB  |     | С | 68 | 68 | Α   |   | С |   | 4  | 13.1 | 28.7 | 24.7  | 13.1  | 0    | 79.6  | 22  | 7.3      | HS20  | E 400099  |
| 75945  | M | GS  | FC  |     |   | 66 | 66 | J   |   | Р |   | 4  | 12.2 | 16.8 | 21.3  | 12.2  | 0    | 62.5  | -10 | 14       | HS20  | A 273099  |
| 75946  | M | RV  | SS  | RB  | S | 68 | 68 | R   | Е | С | С | 8  | 29   | 92.4 | 124.7 | 124.7 | 29   | 573   |     | 8.5      | HS20  | A 490099  |
| 75955  | S | IC  | PG  |     |   | 66 | 66 | Α   |   | Р |   | 1  | 6.1  | 0    | 0     | 0     | 0    | 6.1   |     | 9.1      | HS20  | A 61099   |
| 75957E | M | GS  | PM  | PE  |   | 64 | 64 | A   | Α | Р | Р | 3  | 10.7 | 16.8 | 10.7  | 0     | 0    | 38.2  | -9  | 13.7     | HS20  | A 822099  |
| 75957W | M | GS  | DBT |     | С | 81 | 82 |     |   | Р |   | 3  | 10   | 20   | 10    | 0     | 0    | 40    | -9  | 13.1     | MS230 | A 822099  |
| 75959  | S | RV  | VS  | -   | S | 76 | 76 | R   |   | Р |   | 11 | 6.1  | 0    | 0     | 0     | 0    | 6.1   |     | 10.1     | HS25  | A 64099   |
| 75980  | S | IC  | SM  |     | S | 83 | 83 | A   |   | Р |   | 4  | 10   | 10   | 10    | 10    | 0    | 40    |     | 10       | MS23  | A 32099   |
| 75994  | M | RO  | PM  | -   |   | 65 | 65 | Α   |   | Р |   | 3  | 15.2 | 16.8 | 15.2  | 0     | 0    | 47.2  | 10  | 9.1      | HS20  | E 200096  |
| 76005  | M | RV  | SMC |     | С | 87 | 87 | A   |   | Р |   | 3  | 10   | 10   | 10    | 0     | 0    | 30    |     | 12       | MS300 | A 255099  |
| 76007  | M | RV  | CBT |     | С | 87 | 88 | С   |   | Р |   | 3  | 20   | 26   | 20    | 0     | 0    | 66    | 15  | 9        | MS300 | A 7099    |
| 76021  | S | RV  | SM  |     | S | 87 | 87 | Α   |   | Р |   | 1  | 6    | 0    | 0     | 0     | 0    | 6     |     | 14.9     | MS225 | A 133099  |
| 76034  | M | RV  | DT  | RB_ |   | 66 | 66 | Е   | E | C | С | 7  | 16.8 | 61   | 61    | 61    | 16.8 | 338.3 |     | 8.5      | HS20  | A 215099  |
| 76044  | M | RV  | FC  |     |   | 70 | 70 | A   |   | Р |   | 7  | 27.4 | 27.4 | 27.4  | 27.4  | 27.4 | 192   |     | 4.9      | HS20  | E 10096   |
| 76054S | M | RO  | DBT |     | С | 85 | 86 | Н   |   | Р | ļ | 3  | 11.1 | 13   | 11.1  | 0     | 0    | 35.2  | -10 | 16.2     | MS300 | A 639099  |
| 76056  | М | GS  | PM  |     | _ | 68 | 68 | R   |   | Р |   | 3  | 16.8 | 16.8 | 16.8  | 0     | 0    | 50.4  | -8  | 15.5     | HS20  | A 274099  |
| 76057  | M | GS  | RB  |     | С | 68 | 68 | R   |   | С |   | 3  | 12.2 | 24.4 | 12.2  | 0     | 0    | 48.8  |     | 20.7     | HS20  | A 274099  |
| 76059  | M | GS  | PM_ |     |   | 68 | 68 | R   |   | Р |   | 4  | 15.2 | 15.2 | 12.2  | 12.2  | 0    | 54.8  | 44  | 13.4     | HS20  | A 274099  |
| 76060  | M | RO  | FM  |     | S | 81 | 82 | R   |   | C | - | 1  | 38   | 0    | 0     | 0     | 0    | 38    |     | 19.3     | MS230 | A 490099  |
| 76061  | M | RO  | WG  |     | С | 81 | 86 | E   |   | C |   | 7  | 14   | 16.5 | 16.5  | 16.5  | 12   | 108.5 | _   | 20.8     | MS230 | A 490099  |
| 76063  | M | RO  | PM  |     |   | 69 | 69 | A   |   | P |   | 5  | 12.2 | 12.2 | 15.2  | 13.7  | 12.2 | 65.5  | 49  | 9.3      | HS20  | A 117099  |
| 76081S | M | RV  | RB  |     | С | 65 | 65 | С   |   | С |   | 3  | 10.4 | 30.5 | 10.4  | 0     | 0    | 51.3  | -   | 11       | HS20  | A 214098  |
| 76087  | S | RV  | HC  |     |   | 65 | 65 | A   |   | Р |   | 1  | 6.1  | 0    | 0     | 0     | 0    | 6.1   | -   | 13.7     | HS20  | A 38099   |
| 76088  | S | RV  | HC  |     |   | 65 | 65 | A   |   | Р |   | 1  | 6.1  | 0    | 0     | 0     | 0    | 6.1   |     | 13.7     | HS20  | A 38099   |
| 76089  | S | RV  | PE  |     |   | 65 | 65 | A   |   | Р |   | 1  | 12.8 | 0    | 0     | 0     | 0    | 12.8  | -   | 13.7     | HS20  | A 38099   |
| 76091  | M | RV  | RM  |     | S | 81 | 82 | A   |   | P |   | 3  | 14   | 16   | 16    | 0     | 0    | 46    | -10 | 8.6      | MS350 | A 55099   |
| 76092  |   | GS  | FR  |     | С | 68 | 68 | 1   |   | С |   | 3  | 31.1 | 11   | 31.1  | 0     | 0    | 73.2  | -15 | نصنصصت ا | -     | E 100096  |
| 76093E | M | RO  | PM  |     | S | 68 | 68 | Н   |   | Р | - | 3  | 13.7 | 19.2 | 16.8  | 0     | 0    | 49.7  |     | 12.5     |       | A 3040099 |
| 76093W | M | RO  | PM  |     | S | 68 | 68 | Н   |   | P | - | 3  | 13.7 | 19.2 | 16.8  | 0     | 0    | 49.7  | -   | 12.5     | HS20  | A 3040099 |
| 76094  | М | GS  | FC  |     |   | 68 | 68 | Α   |   | Р | ļ | 3  | 27.4 | 16.2 | 27.4  | 0     | 0    | 71    | 3   | 13.7     | HS20  | E 1000096 |
| 76097E | M | GS  | FC  |     |   | 68 | 68 | Α   |   | Р |   | 4  | 22.9 | 30.5 | 24.4  | 19.8  | 0    | 97.6  | +   | 10.4     | HS20  | A 3525097 |
| 76102N | М | GS  | PM  |     |   | 66 | 66 | 1   |   | Р |   | 3  | 12.2 | 16.8 | 12.2  | 0     | 0    | 41.2  |     | 13.7     | HS20  | A 639099  |
| 76102S | М | GS  | DBT |     | С | 85 | 86 | Н   |   | Р | L | 3_ | 10   | 20   | 10    | 0     | 0    | 40    |     | 13.1     | MS300 | A 639099  |



|               |   | 1  |     |     |   |    |    | ,  |   |   |   |   |      |      |      |      |      |        |     |      |       |           |
|---------------|---|----|-----|-----|---|----|----|----|---|---|---|---|------|------|------|------|------|--------|-----|------|-------|-----------|
| 76109         | M | RO |     |     | S | 66 | 66 | Α  |   | Р |   | 3 | 10.7 | 15.2 | 13.7 | 0    | 0    | 39.6   | 15  | 11   | HS20  | A 215099  |
| 76117         | M | RV | -   | SMC | S | 65 | 65 | Е  | E | С | С | 3 | 5.9  | 36.6 | 5.9  | 0    | 0    | 48.4   |     | 11   | HS20  | A 215099  |
| 76118         | M | RV | +   | SMC | S | 66 | 66 | Е  | E | С | Р | 3 | 5.9  | 39.6 | 5.9  | 0    | 0    | 51.4   |     | 11   | HS20  | A 215099  |
| 76128         | M | RO | PM  |     |   | 68 | 68 |    |   | Р |   | 3 | 13.7 | 15.2 | 13.7 | 0    | 0    | 42.6   | -8  | 11   | HS20  | A 169099  |
| 76133         | С | IC | MP  |     |   | 95 | 95 |    |   |   |   | 1 | 24   |      |      |      |      | 24     |     | 90   |       | A 64098   |
| 76158         | M | GS | FR  |     | С | 66 | 66 | С  |   | С |   | 3 | 28.3 | 4.3  | 28.3 | 0    | 0    | 60.9   | -10 | 16.5 | HS20  | A 129099  |
| 76159         | M | GS | FC  |     | Н | 67 | 67 | E  |   | Р |   | 3 | 29   | 16.2 | 29   | 0    | 0    | 74.2   |     | 10.2 | HS20  | A 124099  |
| 761 <b>61</b> | M | RO | PJ  |     |   | 65 | 65 | R  |   | С |   | 3 | 16.5 | 17.8 | 17.8 | 0    | 0    | 52.1   | -36 | 13.4 | HS20  | A 490099  |
| 76177         | M | GS | FC  |     | S | 67 | 67 | А  |   | P |   | 4 | 13.1 | 25.9 | 25.9 | 13.1 | 0    | 78     | -22 | 15.2 | HS20  | A 216099  |
| 76181E        | M | RO | RB  |     | С | 67 | 67 | С  |   | С |   | 4 | 18.9 | 23.8 | 23.8 | 18.9 | 0    | 85.4   | 49  | 12.2 | HS20  | A 900099  |
| 76181W        | M | RO | RB  |     | С | 67 | 67 | С  |   | С |   | 4 | 18.9 | 23.8 | 23.8 | 18.9 | 0    | 85.4   | 49  | 12.2 | HS20  | A 900099  |
| 76185         | M | RV | PM  |     | S | 67 | 67 | Α  |   | Р |   | 3 | 18.3 | 18.3 | 18.3 | 0    | 0    | 54.9   | 30  | 11   | HS20  | A 196099  |
| 76186         | M | RV | FC  |     |   | 67 | 67 | R  |   | Р |   | 4 | 16.8 | 21.3 | 16.8 | 12.2 | 0    | 67.1   |     | 10.7 | HS20  | A 196099  |
| 76190         | M | RV | TH  |     | S | 67 | 67 | A  |   | Р |   | 1 | 61   | 0    | 0    | 0    | 0    | 61     |     | 7.3  |       | A 7099    |
| 76212         | М | RV | FC  |     |   | 68 | 68 | F  |   | Р |   | 3 | 27.4 | 27.4 | 27.4 | 0    | 0    | 82.2   |     | 9.1  | HS20  | A 36099   |
| 76223         | M | RV | FC  |     |   | 66 | 66 | J  |   | Р |   | 3 | 12.2 | 25.9 | 12.2 | 0    | 0    | 50.3   |     | 9.1  | HS20  | A 87099   |
| 76226         | М | RO | PM  |     |   | 67 | 67 | А  |   | Р |   | 3 | 18.3 | 18.3 | 18.3 | 0    | 0    | 54.9   | -45 | 13.7 | HS20  | A 358099  |
| 76301         | M | RV | LF  |     | S | 77 | 77 | Н  |   | Р |   | 1 | 32   | 0    | 0    | 0    | 0    | 32     |     | 13.6 | HS25  | A 396099  |
| 76330         | M | RO | PM  |     |   | 67 | 67 | R  |   | Р |   | 3 | 16.8 | 16.8 | 16.8 | 0    | 0    | 50.4   | -38 | 13.7 | HS20  | A 230099  |
| 76339E        | М | RO | FC  |     |   | 69 | 69 | J  |   | Р |   | 5 | 21.3 | 25.9 | 15.2 | 25.9 | 21.3 | 109.6  | -52 | 12.2 | HS20  | A 3029099 |
| 76339W        | M | RO | FC  |     |   | 69 | 69 | J  |   | Р |   | 5 | 21.3 | 25.9 | 15.2 | 25.9 | 21.3 | 109.6  | -52 | 12.2 | HS20  | A 3029099 |
| 76349         | S | IC | SM  |     | S | 89 | 89 | N  |   | Р |   | 5 | 10   | 10   | 10   | 10   | 10   | 50     | 45  | 8.8  | MS230 | A 14091   |
| 76364         | M | RV | PO  |     | С | 67 | 67 | А  |   | С |   | 2 | 27.4 | 27.4 | 0    | 0    | 0    | 54.8   |     | 13.4 | HS20  | A 358099  |
| 76378         | M | RO | RB  |     | С | 71 | 71 | J  |   | С |   | 3 | 21.3 | 27.4 | 21.3 | 0    | 0    | 70     | -56 | 11   | HS20  | A 185099  |
| 76381         | М | GS | FR  |     | C | 67 | 67 | F  |   | С |   | 3 | 33.2 | 11   | 33.2 | 0    | 0    | 77.4   | -23 | 12.8 | HS20  | A 268293  |
| 76382N        | M | GS | RB  |     | C | 67 | 67 | С  |   | С |   | 4 | 15.2 | 30.5 | 30.5 | 15.2 | 0    | 91.4   | 40  | 7.3  | HS20  | E 10088   |
| 76392         | M | GS | VF  |     | S | 74 | 74 | J  |   | С |   | 2 | 38.1 | 38.1 | 0    | 0    | 0    | 76.2   | -11 | 14.9 | HS25  | A 1281099 |
| 76406         | M | GS | CF  |     | С | 75 | 75 | А  |   | С |   | 1 | 69.2 | 0    | 0    | 0    | 0    | 69.2   |     | 14.6 | HS25  | A 1960099 |
| 76407         | М | RO | RD  |     | S | 74 | 74 | Α  |   | Р |   | 3 | 15.2 | 16.8 | 15.2 | 0    | 0    | 47.2   | 21  | 9.1  | HS25  | A 85099   |
| 76410         | М | IC | SMC |     | С | 86 | 86 | Α  |   | Р |   | 4 | 11   | 11   | 11   | 11   | 0    | 44     | -32 | 12.1 | MS300 | A 78099   |
| 76415         | S | RV | SC  |     | S | 93 | 93 | Α  |   | Р |   | 1 | 6.1  | 0    | 0    | 0    | 0    | 6.1    | -30 | 11   | CS750 | A 348099  |
| 76458         | S | IC | SM  |     | S | 87 | 87 | Α  |   | Р |   | 3 | 11   | 11   | 11   | 0    | 0    | 33     | -22 | 8.8  | MS230 | A 55099   |
| 76474A        | M | RV | FC  |     | S | 51 | 73 | F  |   | С |   | 1 | 0    | 0    | 16.8 | 0    | 0    | 16.8   | 10  | 7.6  | HS20  | A 63099   |
| 76478         | M | RV | PM  |     | S | 66 | 66 | Α  |   | Р |   | 3 | 10.7 | 13.7 | 10.7 | 0    | 0    | 35.1   | -15 | 11   | HS20  | A 348099  |
| 76511         | M | IC | DBT |     | S | 83 | 84 | N  |   | Р |   | 1 | 38   | 0    | 0    | 0    | 0    | 38     | 26  | 9.5  | MS300 | A 44099   |
| 76521         | M | RV | FM  |     | S | 82 | 82 | С  |   | Р |   | 2 | 24.6 | 24.4 | 0    | 0    | 0    | 49     |     | 8.5  | MS230 |           |
| 76528         | M | RV | PM  |     |   | 68 | 69 | F  |   | Р |   | 3 | 12.2 | 15.2 | 12.2 | 0    | 0    | 39.6   |     | 8.2  | HS20  | A 72099   |
| 7653          | S | RV | PE  |     | S | 62 | 62 | С  |   | Р |   | 3 | 12.8 | 12.8 | 12.8 | 0    | 0    | 38.4   |     | 10.1 | HS20  | A 50099   |
| 76540         | M | RO | PM  |     | S | 68 | 68 | Α  |   | Р |   | 3 | 15.2 | 15.2 | 15.2 | 0    | 0    | 45.6   | 7   | 15.8 | HS20  | A 134099  |
| 76558         | M | RV | FC  |     | S | 70 | 70 | I  |   | Р |   | 3 | 21.3 | 21.3 | 21.3 | 0    | 0    | 63.9   | -25 | 9.1  | HS20  | A 185099  |
|               |   | GS | DBT |     | C | 84 | 85 | Н  |   | Р |   | 2 | 40   | 40   | 0    | 0    | 0    |        | -11 |      |       | A 158099  |
| 76565         | M |    | FC  |     | S | 70 | 70 | F  |   | Р |   | 2 | 36.6 | 36.6 | 0    | 0    | 0    | 73.2   | 26  | 9.1  | HS20  | E 10088   |
| 76566         | M | GS | PO  |     | S | 60 | 60 | C  |   | С |   | 3 | 23.8 | 24.4 | 23.8 | 0    | 0    | 72     | -30 | 7.9  | HS20  | A 17293   |
| 766           | M | RV |     | HC  | C | 70 | 70 | R  | F | С | Р | 6 | 6.1  | 33.5 | 42.7 | 33.5 | 6.1  | 164.6  | _   | 9.1  | HS20  | A 494099  |
| <b>76</b> 609 | M | RV | WG  | пС  | S | 69 | 69 | A  |   | P |   | 2 | 35.1 | 35.1 | 0    | 0    | 0    | 70.2   | -8  | 9.1  | HS20  | E 12088   |
| 76615         | M | GS | FC  |     |   | 74 | 74 | A  |   | P |   | 4 | 12.2 | 38.1 | 38.1 | 15.2 | 0    | 103.6  | _   | 13.4 | HS25  | A 393099  |
| 76625         | M | GS | VF  |     | S |    | 68 | N  |   | P |   | 3 | 10.7 | 12.2 | 10.7 | 0    | 0    | 33.6   | 71  | 10.1 | HS20  | A 39099   |
| 76633         | M | RV | PM  |     | S | 68 | 00 | 14 |   |   |   |   | 10.1 | 1    | 10.7 |      |      | 1 00.0 |     | 10.1 | 11020 | TV 29099  |



| 76634         | M | RV | PM   | 1  |   | 1 00 | 7  | 1 |   |   | , | ,   |      |      |      |      |      |       |     |      |       |           |
|---------------|---|----|------|----|---|------|----|---|---|---|---|-----|------|------|------|------|------|-------|-----|------|-------|-----------|
|               |   | RV |      | -  | + | 68   | 68 | N | - | Р |   | 3   | 12.2 | 12.2 | 12.2 | 0    | 0    | 36.6  | 15  | 10.1 | HS20  | A 39099   |
| 76639         | M | _  | FC   |    | S | 72   | 72 | - | - | Р |   | 1   | 27.4 | 0    | 0    | 0    | 0    | 27.4  |     | 8.8  | HS20  | A 64099   |
| 76646E        | M | GS |      | -  | P | 68   | 68 |   | - | Р |   | 3   | 10.7 | 16.8 | 10.7 | 0    | 0    | 38.2  |     | 17.1 | HS20  | A 3029099 |
| 76646W        | M | GS | PM   | -  | P | 68   | 68 |   |   | Р |   | 3   | 10.7 | 16.8 | 10.7 | 0    | 0    | 38.2  |     | 17.1 | HS20  | A 3029099 |
| 76648         | M | GS | WG   | -  | C | 69   | 69 | H | ļ | С |   | 2   | 45.7 | 39.6 | 0    | 0    | 0    | 85.3  |     | 11.6 | HS20  |           |
| 76649W        | M | GS | FR   |    | С | 69   | 69 | J |   | С |   | 3   | 15.5 | 29   | 15.5 | 0    | 0    | 60    | 51  | 7.3  | HS20  | A 3029099 |
| 76650N        | M | RO | FC   | -  | S | 74   | 74 | J |   | Р |   | 4   | 24.4 | 32   | 32   | 18.3 | 0    | 106.7 | 48  | 12.2 | HS20  | A 2409099 |
| 76650S        | M | RO | FC   |    | S | 74   | 74 | J |   | Р |   | 4   | 16.8 | 28   | 25.9 | 15.2 | 0    | 85.9  |     | 17.1 | HS20  | A 2409099 |
| 76652         | M | GS | WG   |    | C | 71   | 71 | E |   | С |   | 2   | 35.1 | 35.1 | 0    | 0    | 0    | 70.2  |     | 14.5 | HS20  | A 2409099 |
| 76653         | M | GS | RB   |    | С | 73   | 73 | A |   | С |   | 3   | 18.3 | 32   | 16.8 | 0    | 0    | 67.1  | 40  | 15.2 | HS20  |           |
| 76658         | M | GS | FC   | -  | S | 70   | 71 | J |   | Р |   | 2   | 33.5 | 33.5 | 0    | 0    | 0    | 67    | 9   | 8.5  | HS20  | E 100088  |
| 76659         | M | GS | FC   |    | S | 70   | 70 | A |   | Р |   | 2   | 33.5 | 33.5 | 0    | 0    | 0    | 67    |     | 8.5  | HS20  | E 20088   |
| 76660         | M | GS | FC   | -  | S | 70   | 70 | A |   | Р |   | 2   | 33.5 | 33.5 | 0    | 0    | 0    | 67    | 9   | 8.5  | HS20  | A 178099  |
| 76661         | S | RV | SC   |    | S | 94   | 94 | N |   | Р |   | 3   | 6.1  | 8.5  | 6.1  | 0    | 0    | 20.7  |     | 10.1 | CS750 | A 61099   |
| 76669         | M | RO | PM   |    | S | 68   | 68 | F |   | Р |   | 3   | 16.8 | 13.7 | 13.7 | 0    | 0    | 44.2  | -45 | 9.1  | HS20  | A 72099   |
| 76686         | S | RV | SC   |    | S | 93   | 93 | A |   | Р |   | 3   | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5  |     | 12.8 | CS750 | A 236099  |
| 76707         | M | RV | RB   | HC | C | 56   | 56 | C | С | С | С | - 8 | 6.1  | 25.9 | 36.5 | 25.9 | 6.1  | 118.8 |     | 4    | HS20  |           |
| 76719         | M | RO | RD   | -  | S | 80   | 81 | E |   | Р |   | 3   | 19.8 | 21.3 | 19.8 | 0    | 0    | 60.9  | 35  | 13.4 | HS25  | A 396099  |
| 76720         | М | RO | RD   |    | S | 77   | 78 | R |   | Р |   | 3   | 15.2 | 18.3 | 18.3 | 0    | 0    | 51.8  | -33 | 13.4 | HS25  | A 396099  |
| 76726         | S | IC | SM   |    | S | 86   | 86 | N |   | Р |   | 4   | 11   | 11   | 11   | 11   | 0    | 44    | 30  | 7.6  | MS230 | A 8694    |
| 768           | M | RV | CS   |    | S | 25   | 25 | С |   | С |   | 1   | 8.5  | 0    | 0    | 0    | 0    | 8.5   |     | 5.2  | H20   | E 1090    |
| 76805E        | M | RO | PM   |    | S | 71   | 71 | А |   | Р |   | 3   | 16.8 | 16.8 | 16.8 | 0    | 0    | 50.4  | -32 | 12.8 | HS20  | A 970099  |
| 76805W        | M | RO | PM   | -  | S | 71   | 71 | A |   | Р |   | 3   | 16.8 | 16.8 | 16.8 | 0    | 0    | 50.4  | -32 | 12.8 | HS20  | A 970099  |
| 76845         | M | GS | WG   |    | C | 78   | 81 | Н |   | С |   | 4   | 45.3 | 45   | 45   | 45.3 | 0    | 180.6 |     | 18.9 | MS23  | A 748099  |
| 76848         | M | GS | WG   |    | С | 69   | 69 | E |   | С |   | 2   | 39.6 | 45.7 | 0    | 0    | 0    | 85.3  |     | 11.6 | HS20  | A 321099  |
| 76849         | М | GS | CA   |    | S | 69   | 69 | A |   | С |   | 1   | 16.2 | 0    | 0    | 0    | 0    | 16.2  |     | 35.3 | HS20  | A 2929099 |
| 76850         | M | GS | FC   |    | S | 70   | 70 | J |   | C |   | 2   | 36.6 | 36.6 | 0    | 0    | 0    | 73.2  |     | 9.1  | HS20  | A 235099  |
| 76856         | M | RV | FC   | PM | S | 66   | 66 | N | С | Р | Р | 5   | 16.8 | 24.4 | 24.4 | 24.4 | 16.8 | 106.8 |     | 7.6  | HS20  | E 20091   |
| 76886         | M | RO | PM   |    | S | 70   | 70 | A |   | Р |   | 3   | 10.7 | 16.8 | 15.2 | 0    | 0    | 42.7  | -24 | 11   | HS20  | A 96099   |
| 76913         | M | RO | PJ   |    | Р | 73   | 74 | 1 |   | Р |   | 3   | 15.2 | 20.1 | 16.8 | 0    | 0    | 52.1  | -25 | 10.1 | HS20  | A 112099  |
| 76925         | M | RV | SCC  |    | S | 95   | 95 |   |   | Р |   | 3   | 8    | 10   | 8    | 0    | 0    | 26    |     | 10.8 | CS750 | A 42099   |
| 76927         | M | RV | FC   |    | S | 70   | 70 | J |   | Р |   | 1   | 35.1 | 0    | 0    | 0    | 0    | 35.1  | 20  | 8.5  | HS20  | A 35099   |
| <b>76</b> 950 | M | IC | DBT  |    | S | 82   | 82 | N |   | Р |   | 1   | 40   | 0    | 0    | 0    | 0    | 40    |     | 8.1  | MS230 | E 3092    |
| 76986         | M | RV | WG   |    | С | 70   | 70 | С |   | С |   | 3   | 52.4 | 65.8 | 52.4 | 0    | 0    | 170.6 |     | 8.5  | HS20  | A 73099   |
| 77006         | M | GS | CF   |    | S | 70   | 70 | A |   | С |   | 1   | 8.7  | 0    | 0    | 0    | 0    | 8.7   |     | 24.4 | HS20  | A 1557099 |
| 77015         | S | RV | HC   |    | S | 69   | 69 | Α |   | Р |   | 1   | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 9.1  | HS20  | A 185099  |
| 77054E        | M | GS | FC   |    | S | 73   | 73 | Α |   | P |   | 2   | 31.4 | 31.4 | 0    | 0    | 0    | 62.8  | -10 | 13.4 | HS20  | A 458099  |
| 77054W        | M | GS | DBT  |    | С | 86   | 87 | Α |   | Р |   | 2   | 34   | 34   | 0    | 0    | 0    | 68    | -9  | 10.3 | MS300 | A 458099  |
| 77073         | М | RV | WG   |    | С | 88   | 89 | J |   | С |   | 3   | 20   | 24   | 20   | 0    | 0    | 64    | 45  | 11   | MS300 | E 10096   |
| 77083         | M | IC | SMC  |    | С | 88   | 88 | Α |   | Р |   | 4   | 8    | 11   | 11   | 8    | 0    | 38    | 11  | 10.8 | MS300 | A 129099  |
| 77088         | M | RO | LF   |    | S | 78   | 79 | R |   | P |   | 3   | 21.3 | 27.4 | 24.4 | 0    | 0    | 73.1  | 58  | 13.7 | HS25  | A 646099  |
| 77090E        | M | RO | PM   |    | S | 73   | 73 | Α |   | C |   | 3   | 18.3 | 20.1 | 18.3 | 0    | 0    | 56.7  | -45 | 12.8 | HS20  | A 1287099 |
| 77090W        | М | RO | PM   |    | S | 73   | 73 | Α |   | Р |   | 3   | 18.3 | 20.1 | 18.3 | 0    | 0    | 56.7  | -45 | 12.8 | HS20  | A 1287099 |
| 77091E        | M | GS | FC   |    | S | 70   | 70 | J |   | Р |   | 2   | 24.4 | 24.4 | 0    | 0    | 0    | 48.8  |     | 12.2 | HS20  | A 1287099 |
| 77091W        | M | GS | FC   |    | S | 70   | 70 | J |   | P |   | 2   | 24.4 | 24.4 | 0    | 0    | 0    | 48.8  |     | 12.2 | HS20  | A 1287099 |
|               |   |    | FC   |    |   | 70   | 70 | J |   | Р |   | 2   | 24.4 | 24.4 | 0    | 0    | 0    | 48.8  |     | 7.2  | HS20  | A 1287099 |
| 77091WC       | M | GS | FC 1 |    |   | 10   |    |   |   |   |   |     |      |      | -    |      |      | 1010  |     | 1.4  | 11020 | 111201000 |



| 77126  | M | GS | FC  | T    | S | 72 | 72 | 1        |              | - | 1 | 0  | 00.0       | 00.0         |              |      |      | 70.0          |     | 20.4 | ЦС20         | A 598099  |
|--------|---|----|-----|------|---|----|----|----------|--------------|---|---|----|------------|--------------|--------------|------|------|---------------|-----|------|--------------|-----------|
| 77129  | M | GS | VF  |      | S | 74 | 72 | F        | -            | Р |   | 2  | 36.6       | 36.6         | 0            | 0    | 0    | 73.2          |     | 20.1 | HS20<br>HS25 | A 46099   |
| 7717   | S | RV | HC  | -    | S |    |    | <u> </u> | -            | P |   | 2  | 36.6       | 36.6         | 0            | 0    | 0    | 73.2          | 20  | 8.5  |              | E 7090    |
| 77173  | M | GS | WG  |      | C | 63 | 63 | N        | -            | P |   | 1  | 8.5        | 0            | 0            | 0    | 0    | 8.5           | 30  | 9.1  | HS20         | E 7090    |
| 77173E | M | GS | WG  |      | C | 71 | 71 | A        | -            | C |   | 2  | 579        | 579          |              |      |      | 1158          | -44 | 85   | HS20         |           |
| 77175  | M | RV | FC  |      | S | -  | 71 | A        |              | C |   | 2  | 57.9       | 57.9         | 0            | 0    | 0    | 115.8         | -44 |      | HS20         | A 61099   |
| 77177  | M | RV | FC  | -    | S | 70 | 70 | J        |              | P |   | 1  | 24.4       | 0            | 0            | 0    | 0    | 24.4          |     | 10.4 | HS20         | A 424099  |
| 77206  | M | RV | PM  | -    | S | 71 | 71 | J        |              | Р |   | 5  | 33.5       | 33.5         | 33.5         | 33.5 | 33.5 | 167.5<br>36.6 |     | 11   |              | A 152099  |
| 77212  | M | RV | PM  | +    | S | 70 | 71 | A        |              | P |   | 3  | 12.2       | 12.2         | 12.2         | 0    | 0    |               |     | 9.1  | HS20         | A 53099   |
| 77237  | M | RV | VF  | -    | S | 75 | 75 | A<br>N   | -            | P |   | 3  | 16.8       | 16.8         | 16.8         | 0    | 0    | 50.4          |     | 7.6  | HS25         | A 23087   |
| 77254  | M | GS | VF  |      | S | 74 | 75 | _        |              | P |   | 3  | 12.2       | 29.3<br>35.1 | 12.2<br>35.1 | 13.7 | 0    | 97.6          |     | 15.5 | HS25         | A 352099  |
| 77284  | S | IC | HC  |      | S | 72 | 72 | F        |              | P |   | 3  | 13.7       |              |              | 0    | 0    | 34.8          | -15 | 8.4  | HS20         | A 95099   |
| 77288  | M | RO | RM  | -    | C | 79 | 80 | C        | -            | P |   | 3  | 11.6<br>28 | 11.6         | 11.6         | 0    | 0    | 67.9          | -10 | 29.3 |              | A 1992093 |
| 77289  | M | RO | RM  |      | S | 79 | 80 | Н        |              | P |   | 3  | 18         | 20.1         | 18           | 0    | 0    | 56.1          | -34 | 29.3 |              | A 1992093 |
| 77295  | M | RV | WG  |      | C | 72 | 72 | C        | <del> </del> | C |   | 4  | 36.6       | 48.8         | 48.8         | 36.6 | 0    | 170.8         | 15  | 4.3  | HS20         | 7. 100200 |
| 77303E | M | RO | RM  |      | C | 80 | 81 | Н        |              | P |   | 4  | 14         | 18           | 18           | 14   | 0    | 64            | -5  | 13.4 | MS230        | A 772099  |
| 77303W | M | RO | RM  |      | C | 80 | 81 | Н        |              | P |   | 4  | 14         | 18           | 18           | 14   | 0    | 64            | -5  | 13.4 | MS230        | A 772099  |
| 77315  | M | RO | RD  |      | S | 75 | 75 | J        |              | P |   | 3  | 20.1       | 20.1         | 20.1         | 0    | 0    | 60.3          | -26 | 16.5 | HS25         | A 618099  |
| 77317  | S | RV | VH  |      | S | 74 | 74 | C        | -            | P |   | 4  | 10.1       | 10.1         | 10.1         | 10.1 | 0    | 40.4          | 15  | 10.1 | HS25         | A 56099   |
| 77320  | M | RV | PM  |      | S | 72 | 72 | C        |              | P |   | 3  | 18.3       | 18.3         | 18.3         | 0    | 0    | 54.9          |     | 9.1  | HS20         | A 16099   |
| 77321  | M | RV | PM  |      | S | 71 | 71 | N        |              | P |   | 3  | 17.7       | 17.7         | 17.7         | 0    | 0    | 53.1          | -15 | 9.1  | HS20         | A 29099   |
| 7733   | M | RV | SCC |      | C | 96 | 96 | 1        |              | P |   | 3  | 12.6       | 12.6         | 12.6         | 0    | 0    | 37.8          | 35  | 11.1 | CS750        | A 154099  |
| 77335  | М | RV | PM  |      | S | 71 | 71 | A        |              | P |   | 3  | 12.2       | 12.2         | 12.2         | 0    | 0    | 36.6          |     | 12.8 | HS20         | E 42694   |
| 7734   | S | RV | SM  |      | S | 82 | 82 | A        |              | P |   | 3  | 8          | 10           | 8            | 0    | 0    | 26            | -30 | 8.8  | MS23         | A 28099   |
| 77341  | M | RV | SCC |      | C | 92 | 93 |          |              | Р |   | 3  | 12         | 12           | 12           | 0    | 0    | 36            |     | 11.9 | CS750        | A 152099  |
| 77349  | М | GS | FM  |      | S | 78 | 78 | E        |              | Р |   | 4  | 22         | 26           | 26           | 26   | 0    | 100           |     | 14   | MS23         | A 137099  |
| 77389E | М | GS | RD  |      | S | 74 | 75 | A        |              | Р |   | 3  | 9.1        | 18.3         | 9.1          | 0    | 0    | 36.5          |     | 12.2 | HS25         | A 822099  |
| 77389W | М | GS | RD  |      | S | 74 | 75 | A        |              | Р |   | 3  | 9.1        | 18.3         | 9.1          | 0    | 0    | 36.5          |     | 12.2 | HS25         | A 822099  |
| 77419  | M | RV | WG  |      | С | 80 | 81 | С        |              | Р |   | 3  | 65         | 81           | 65           | 0    | 0    | 211           | -25 | 9.1  | MS23         | A 14099   |
| 77426  | M | GS | VF  |      | S | 75 | 75 | J        |              | Р |   | 2  | 36.6       | 36.6         | 0            | 0    | 0    | 73.2          |     | 10.1 | HS25         | A 86099   |
| 77460  | M | RV | VH  |      | S | 73 | 73 | Е        |              | Р |   | 3  | 11.6       | 11.6         | 11.6         | 0    | 0    | 34.8          | -30 | 13.7 | HS25         | A 86099   |
| 77466  | М | RO | PM  |      | S | 72 | 73 | F        |              | Р |   | 3  | 15.2       | 16.8         | 16.8         | 0    | 0    | 48.8          | -19 | 11   | HS20         | A 494099  |
| 77471  | M | RV | RD  | VS   | S | 75 | 75 | А        | A            | Р | Р | 3  | 9.1        | 24.4         | 9.1_         | 0    | 0    | 42.6          |     | 11   | HS25         | A 152099  |
| 77485  | S | RV | VS  |      |   | 74 | 74 | Α        |              | Р |   | 1  | 6.1        | 0            | 0            | 0    | 0    | 6.1           |     | 11.3 | HS25         | A 178099  |
| 77486  | M | RV | VF  |      | S | 74 | 75 | J        |              | Р |   | 1  | 29         | 0            | 0            | 0    | 0    | 29            | -15 | 11   | HS25         | A 178099  |
| 77487  | S | RV | VSO |      | Р | 74 | 74 | J        |              | Р |   | 3  | 6.1        | 9.1          | 6.1          | 0    | 0    | 21.3          | 30  | 11.3 | CS750        | A 178099  |
| 77493  | М | RV | FC  |      | S | 61 | 74 | N        |              | Р |   | 1  | 30.4       | 0            | 0            | 0    | 0    | 30.4          |     | 7.3  | HS20         | E 1091    |
| 77498  | M | RV | DBT |      | С | 86 | 87 | Α        |              | Р |   | 3_ | 18.1       | 23.9         | 18.1         | 0    | 0    | 60.1          | -10 | 12.5 | MS300        | A 11587   |
| 77501  | М | RV | FC  |      | S | 50 | 74 | С        |              | Р |   | 1  | 30.5       | 0            | 0            | 0    | 0    | 30.5          |     | 7.3  | HS20         | A 11587   |
| 77502  | M | RV | VM  |      | S | 74 | 74 | N        |              | Р |   | 3  | 18.3       | 18.3         | 18.3         | 0    | 0    | 54.9          | -40 | 11.2 | HS25         | A 11587   |
| 77503  | M | RV | FC  |      | S | 73 | 73 | F        |              | Р |   | 3  | 15.2       | 24.4         | 15.2         | 0    | 0    | 54.8          |     | 8.8  | HS20         | A 11387   |
| 77504  | M | RV | VM  |      | S | 74 | 74 | N        |              | Р |   | 3  | 15.2       | 15.2         | 15.2         | 0    | 0    | 45.6          | -20 | 11.1 | HS25         | A 11387   |
| 77505  | M | RV | VM  |      | S | 74 | 74 | N        |              | Р |   | 3  | 18.3       | 18.3         | 18.3         | 0    | 0    | 54.9          | 35  | 11   | HS25         | A 11387   |
| 77506  | M | RV | PM  |      | S | 72 | 72 | N        |              | Р |   | 1  | 15.2       | 0            | 0            | 0    | 0    | 15.2          |     | 7.3  | HS20         | A 11387   |
| 77507  |   | RV | FC  |      | S | 50 | 74 | С        |              | Р |   | 1  | 22.6       | 0            | 0            | 0    | 0    | 22.6          |     | 7.2  | HS20         | A 11387   |
| 77514  |   | RV | PT  | HC   | S | 69 | 78 | N        | С            | Р | N | 3  | 10.1       | 35.1         | 10.1         | 0    | 0    | 55.3          |     | 7.3  | HS20         | E 50089   |
| 77521  |   | GS | VF  | 1,10 | S | 75 | 75 | J        |              | Р |   | 4  | 24.4       | 32           | 27.4         | 24.4 | 0    | 108.2         |     | 16.8 | HS25         | A 714099  |



| 77528E          | B.A | RV | T DDT    | T  | T |          |          |   |   |   |   |   |             |      |      |      |      |              |     |      |       |                   |
|-----------------|-----|----|----------|----|---|----------|----------|---|---|---|---|---|-------------|------|------|------|------|--------------|-----|------|-------|-------------------|
| 77528W          | M   |    | DBT      | -  | C | 87       | 88       | A |   | Р |   | 2 | 36          | 36   | 0    | 0    | 0    | 72           | 15  | 12.5 | MS300 | A 618099          |
|                 | +   | RV | VF       | -  | S | 74       | 75       | J |   | Р |   | 2 | 36.6        | 36.6 | 0    | 0    | 0    | 73.2         | -10 | 12.5 | HS25  | A 618099          |
| 77530           | M   | GS | FC       | -  | S | 74       | 74       | A |   | Р |   | 1 | 32          | 0    | 0    | 0    | 0    | 32           | 1   | 7.9  | HS20  |                   |
| 77531<br>77532E | M   | RV | PJ       | -  | - | 73       | 73       | С |   | С |   | 2 | 30.5        | 30.5 | 0    | 0    | 0    | 61           |     | 4.3  | HS20  |                   |
| 77534           | M   | RV | PM       | -  | S | 73       | 73       | F |   | Р |   | 2 | 18.9        | 18.9 | 0    | 0    | 0    | 37.8         | 19  | 8.5  | HS20  | A 762890          |
| 77540           | M   | GS | VF       | -  | S | 75       | 75       | A |   | P |   | 2 | 38.1        | 38.1 | 0    | 0    | 0    | 76.2         | 10  | 10.4 | HS25  | E 30000           |
| 77541           | M   | RV | DBT      | -  | S | 83       | 83       | Н |   | Р | - | 1 | 36          | 0    | 0    | 0    | 0    | 36           |     | 11   | MS300 | E 70097           |
| 77545           | M   | RV | CV       | -  | C | 83       | 83       | Н |   | Р |   | 3 | 21          | 25   | 21   | 0    | 0    | 67           | -45 | 15.3 | MS300 | A 646099          |
| 77546           | M   | GS | DBT      | -  | C | 82       | 83       | Н | - | P |   | 3 | 16          | 18   | 16   | 0    | 0    | 50           | 20  | 17.7 | MS300 | A 775099          |
| 77547           | M   | RV | WG<br>VF | -  | C | 82       | 83       | E |   | С |   | 4 | 32          | 34   | 34   | 32   | 0    | 132          | 21  | 16.8 | MS300 | A 775099          |
| 77548           | M   | RO | RM       | -  | S | 74       | 75       | A | - | P |   | 6 | 36.6        | 36.6 | 36.6 | 36.6 | 30.5 | 207.3        |     | 12.2 | HS25  | A 243099          |
| 77556E          | M   | GS | VF       |    | C | 81<br>75 | 82       | E |   | P |   | 3 | 23          | 24   | 23   | 0    | 0    | 70           | 51  | 12.4 | MS230 | A 243099          |
| 77556W          | M   | GS | VF       |    | S | 75       | 75<br>75 | E |   | P |   | 2 | 38.1        | 38.1 | 0    | 0    | 0    | 76.2         | -6  | 13.7 | HS25  | A 1992093         |
| 77563E          | M   | RO | RD       | -  | S | 75       | 75       | A |   | P |   | 2 | 38.1        | 38.1 | 0    | 0    | 0    | 76.2         | -6  | 13.7 | HS25  | A 1992093         |
| 77563W          | M   | RO | RD       | -  | S | 75       | 75       | A |   | P |   | 3 | 10.7        | 12.2 | 10.7 | 0    | 0    | 33.6         |     | 12.2 | HS25  | A 1145099         |
| 77595           | S   | RV | PEF      |    | S | 71       | 71       | C |   | P |   | 3 | 10.7        | 12.2 | 10.7 | 0    | 0    | 33.6         | 15  | 12.2 | HS25  | A 1145099         |
| 77596           | M   | RV | PM       | PG | S | 71       | 87       | F | F | P | P | 3 | 12.8<br>8.5 | 12.8 | 12.8 | 12.8 | 0    | 51.2<br>35.3 | -15 | 7.3  | HS20  | A 6099<br>A 29099 |
| 77716           | S   | RV | HC       | 1  | 1 | 66       | 66       | A |   | P |   | 1 | 8.5         | 18.3 | 8.5  | 0    | 0    | 8.5          | 30  | 10.1 | HS20  | A 29099           |
| 7773            | M   | RV | PO       |    |   | 57       | 57       | C |   | C |   | 2 | 24.4        | 24.4 | 0    | 0    | 0    | 48.8         | 30  | 7.9  | HS20  |                   |
| 77750W          | M   | GS | PB       |    | С | 83       | 84       | Н |   | P |   | 4 | 23.4        | 50   | 50   | 23.4 | 0    | 146.8        | -59 | 12.5 | MS300 | A 1402099         |
| 77753E          | M   | RV | WG       |    | С | 87       | 88       | A |   | C |   | 5 | 35          | 44   | 44   | 44   | 35   | 202          | 20  | 12.5 | MS300 | A 618099          |
| 77753W          | M   | RV | VF       |    | S | 74       | 75       | A |   | P |   | 5 | 38.1        | 38.1 | 38.1 | 38.1 | 38.1 | 190.5        | 20  | 12.2 | HS25  | A 618099          |
| 77782           | M   | RV | RD       |    | S | 77       | 78       | Н |   | P |   | 3 | 15.2        | 24.4 | 15.2 | 0    | 0    | 54.8         | 20  | 13.4 | HS25  | A 646099          |
| 77816           | М   | RV | RD       |    | S | 75       | 75       | A |   | Р |   | 3 | 16.8        | 16.8 | 16.8 | 0    | 0    | 50.4         | 20  | 8.7  | HS25  | A 35099           |
| 77817           | М   | RV | VF       |    | S | 75       | 75       | A |   | Р |   | 1 | 33.5        | 0    | 0    | 0    | 0    | 33.5         |     | 8.8  | HS25  | A 35099           |
| 77846           | M   | GS | FM       |    | S | 79       | 79       | Н |   | Р |   | 4 | 12          | 36   | 38   | 36   | 0    | 122          | -40 | 15.3 | MS23  | A 146099          |
| 77847           | M   | RO | RD       |    | S | 75       | 76       | J |   | Р |   | 3 | 12.2        | 12.2 | 12.2 | 0    | 0    | 36.6         | 19  | 13.4 | HS25  | A 297099          |
| 77859W          | M   | RV | RD       |    | S | 75       | 76       | Α |   | Р |   | 3 | 12.2        | 15.2 | 12.2 | 0    | 0    | 39.6         |     | 12.2 | HS25  | A 537099          |
| 77872N          | M   | RV | VF       |    | S | 75       | 76       | 1 |   | Р |   | 3 | 18.3        | 18.3 | 18.3 | 0    | 0    | 54.9         |     | 13.4 | HS25  | A 435099          |
| <b>77</b> 873   | S   | RV | VS       |    |   | 74       | 74       | Α |   | Р |   | 2 | 6.1         | 6.1  | 0    | 0    | 0    | 12.2         | -30 | 8.8  | HS25  | A 31099           |
| 77878           | M   | RV | VF       |    | S | 74       | 75       | J |   | Р |   | 2 | 36.6        | 36.6 | 0    | 0    | 0    | 73.2         | 20  | 8.8  | HS25  | A 58099           |
| 77910           | М   | GS | CBT      |    | S | 84       | 85       | С |   | Р |   | 2 | 34          | 34   | 0    | 0    | 0    | 68           |     | 9.8  | MS300 | E 72095           |
| 77919           | M   | GS | LF       |    | S | 77       | 77       | E |   | Р |   | 2 | 38.1        | 38.1 | 0    | 0    | 0    | 76.2         |     | 12.2 | HS25  | A 154099          |
| 77994S          | М   | GS | WG       |    | С | 77       | 78       | Н |   | С |   | 3 | 57.9        | 64   | 42.7 | 0    | 0    | 164.6        | 40  | 7.6  | HS25  | E 75096           |
| 7802            | M   | RV | PO       |    | S | 55       | 55       | E |   | Р |   | 3 | 12.2        | 18.3 | 12.2 | 0    | 0    | 42.7         |     | 11   | HS20  | A 393099          |
| 78020           | M   | GS | PB       |    | С | 86       | 87       | Α |   | Р |   | 3 | 38          | 38   | 38   | 0    | 0    | 114          | -42 | 17   | MS300 | A 391099          |
| 78031           | M   | RV | WG       |    | С | 79       | 81       | С |   | Р |   | 5 | 78          | 98   | 98   | 98   | 78   | 450          |     | 10   | MS23  | A 21099           |
| 78041N          | M   | RV | WG       |    | S | 74       | 76       | Α |   | С |   | 7 | 61          | 76.2 | 61   | 61   | 76.2 | 472.4        |     | 8.5  | HS25  | A 344098          |
| 78055           | M   | RV | WG       |    | С | 85       | 86       | N |   | С |   | 3 | 50          | 62   | 50   | 0    | 0    | 162          |     | 9    | MS300 |                   |
| 7806            | М   | RV | WG       |    | С | 84       | 85       | С |   | Р |   | 3 | 14          | 18   | 14   | 0    | 0    | 46           |     | 9    | MS300 | A 46099           |
| 78101           | S   | IC | SM       |    | S | 87       | 87       | N |   | Р |   | 3 | 10          | 10   | 10   | 0    | 0    | 30           | -1  | 7.7  | MS230 |                   |
| 78104           | M   | RV | VF       |    | S | 76       | 76       | J |   | Р |   | 4 | 33.5        | 33.5 | 33.5 | 33.5 | 0    | 134          |     | 10.4 | HS25  | A 93099           |
| 78112           | M   | GS | VSO      |    | С | 75       | 91       | С |   | Р |   | 3 | 7.6         | 9.1  | 7.6  | 0    | 0    | 24.3         |     | 11.3 | CS750 |                   |
| 78123           | M   | GS | WG       |    | С | 79       | 80       | R |   | Р |   | 2 | 39          | 39   | 0    | 0    | 0    | 78           | 15  | 9.1  | MS23  | E 25095           |
| 7815            | M   | RV | RB       |    | С | 64       | 64       | С |   | С |   | 3 | 20.1        | 25.3 | 20.1 | 0    | 0    | 65.5         | 20  | 7.9  | HS20  | A 20099           |
| 78151           | М   | GS | FM       |    | S | 81       | 82       | Н |   | Р |   | 2 | 28          | 26   | 0    | 0    | 0    | 54           | -5  | 23.2 | MS230 |                   |



| 78152N | М | RV | LF  | T | S | 77 | 77 | 1   |          |   |   |   |      |      |      |      |      |      | , , |      |       |           |
|--------|---|----|-----|---|---|----|----|-----|----------|---|---|---|------|------|------|------|------|------|-----|------|-------|-----------|
| 78156  | M | RV | FC  |   | 3 | 77 | 77 | H   |          | Р |   | 3 | 13.7 | 22.9 | 13.7 | 0    | 0    | 50.3 |     | 9.1  | HS25  | A 214098  |
| 78170  | M | RV | RD  |   |   | 73 | 73 | С   |          | Р |   | 2 | 27.4 | 27.4 | 0    | 0    | 0    | 54.8 |     | 4.3  | SP300 |           |
| 78187  | M | RV | DBT |   | S | 77 | 77 | Н   | -        | Р |   | 3 | 10.7 | 24.4 | 10.7 | 0    | 0    | 45.8 | 10  | 10.8 | HS25  | A 27099   |
| 78189  | M | RV | DBT | - | С | 81 | 82 | N   |          | Р |   | 3 | 14   | 18   | 14   | 0    | 0    | 46   | 15  | 9.5  | MS350 | E 4294    |
|        |   | RV |     |   | C | 81 | 82 | N   |          | P |   | 2 | 26   | 14   | 0    | 0    | 0    | 40   |     | 9.5  | MS350 | E 1294    |
| 78191  | M |    | RM  |   | S | 83 | 83 | A   | <u> </u> | Р |   | 1 | 26   | 0    | 0    | 0    | 0    | 26   |     | 9.7  | MS230 | E 5091    |
| 78194  | M | RV | RM  |   | С | 81 | 81 | N   |          | P |   | 3 | 17   | 24   | 17   | 0    | 0    | 58_  |     | 10.1 | MS230 | A 69099   |
| 78197  | M | RV | RM  |   | S | 81 | 81 | A   |          | Р |   | 1 | 24   | 0    | 0    | 0    | 0    | 24   |     | 11   | MS230 | A 64099   |
| 78199  | M | RV | RD  |   | S | 78 | 78 | E   |          | Р |   | 1 | 21.3 | 0    | 0    | 0    | 0    | 21.3 |     | 8.8  | HS25  | E 20095   |
| 78204  | M | RV | LF  |   | S | 78 | 78 | Н   |          | Р |   | 1 | 38.1 | 0    | 0    | 0    | 0    | 38.1 |     | 9.1  | HS25  | A 55099   |
| 78215  | M | RV | RD  |   | S | 78 | 78 | E   |          | Р |   | 1 | 21.3 | 0    | 0    | 0    | 0    | 21.3 |     | 10.1 | HS25  |           |
| 78220  | M | RV | PM  |   | S | 73 | 73 | F   |          | Р |   | 2 | 18.3 | 18.3 | 0    | 0    | 0    | 36.6 |     | 5.5  | HS20  | E 30095   |
| 78227  | M | RV | DBT |   | S | 83 | 84 | N   |          | Р |   | 3 | 20   | 20   | 20   | 0    | 0    | 60   | 20  | 11.1 | MS300 | E 20096   |
| 7824   | M | RV | RM  |   | S | 80 | 80 | С   |          | Р |   | 3 | 21.3 | 21.3 | 21.3 | 0    | 0    | 63.9 | 25  | 7.9  | MS230 | E 2595    |
| 78260  | M | RV | PM  |   | S | 71 | 71 | С   |          | Р |   | 1 | 12.8 | 0    | 0    | 0    | 0    | 12.8 |     | 6.4  | HS20  | E 10087   |
| 78313  | M | RV | FM  |   | S | 80 | 80 | C   |          | Р |   | 3 | 19.2 | 27   | 26.7 | 0    | 0    | 72.9 |     | 9.1  | SP112 |           |
| 78314  | M | RV | FM  |   | S | 80 | 80 | С   |          | Р |   | 3 | 23.2 | 23.5 | 23.2 | 0    | 0    | 69.9 |     | 9.1  | SP112 |           |
| 7836   | M | RV | PO  |   | S | 60 | 60 | J   |          | P |   | 2 | 19.8 | 19.8 | 0    | 0    | 0    | 39.6 |     | 9.1  | HS20  | A 145099  |
| 78360  | M | GS | CBT |   | С | 89 | 90 | А   |          | Р |   | 2 | 40   | 40   | 0    | 0    | 0    | 80   |     | 17   | CS750 | E 300000  |
| 78373  | S | IC | SC  |   | S | 92 | 92 | N   |          | Р |   | 3 | 12   | 12   | 12   | 0    | 0    | 36   | -15 | 8    | CS750 | E 2591    |
| 78387  | S | IC | SC  |   | S | 92 | 92 | N   |          | P |   | 4 | 12   | 12   | 12   | 12   | 0    | 48   | -45 | 8    | CS750 | E 13591   |
| 78412  | M | IC | CS  |   | S | 65 | 65 | С   |          | С |   | 1 | 8.2  | 0    | 0    | 0    | 0    | 8.2  |     | 7.3  |       | E 1693    |
| 78413  | M | IC | CS  |   | S | 65 | 65 | С   |          | С |   | 1 | 8.2  | 0    | 0    | 0    | 0    | 8.2  | 1   | 7.3  |       | E 1693    |
| 78419  | S | IC | SM  |   | S | 87 | 87 | N   |          | Р |   | 3 | 11   | 11   | 11   | 0    | 0    | 33   | 30  | 7.7  | MS230 | E 1899    |
| 78420  | S | IC | SM  |   | S | 84 | 84 | N   |          | Р |   | 3 | 10   | 10   | 10   | 0    | 0    | 30   |     | 7.6  | MS230 | E 2099    |
| 78422  | S | IC | SM  |   | S | 87 | 87 | N   |          | Р |   | 3 | 8    | 11   | 8    | 0    | 0    | 27   |     | 9    | MS230 | E 2089    |
| 78423  | S | IC | SM  |   | S | 87 | 87 | N   |          | Р |   | 3 | 10   | 8    | 10   | 0    | 0    | 28   | -25 | 7.7  | MS230 | E 1689    |
| 78424  | S | IC | SM  |   | S | 84 | 84 | N   |          | Р |   | 3 | 8    | 11   | 8    | 0    | 0    | 27   |     | 7.6  | MS230 | E 2099    |
| 78425  | S | IC | SM  |   | S | 86 | 86 | N   |          | Р |   | 3 | 10   | 10   | 10   | 0    | 0    | 30   |     | 7.7  | MS230 | E 2099    |
| 78426  | S | IC | SM  |   | S | 88 | 88 | N   |          | Р |   | 3 | 10   | 10   | 10   | 0    | 0    | 30   | -22 | 7.8  | MS230 | E 2099    |
| 78462  | S | IC | SM  |   | S | 82 | 82 | N   |          | Р |   | 1 | 8    | 0    | 0    | 0    | 0    | 8    |     | 7.6  | MS23  | E 2099    |
| 78466  | S | RV | SM  |   | S | 81 | 81 | Α   |          | Р |   | 1 | 10   | 0    | 0    | 0    | 0    | 10   |     | 8.8  | MS23  | A 61099   |
| 7848   | S | RV | SM  |   | S | 79 | 79 | Α   |          | Р |   | 3 | 11   | 11   | 11   | 0    | 0    | 33   |     | 10.1 | MS23  | A 217099  |
| 78518  | M | RV | DBT |   | S | 82 | 82 | Н   |          | Р |   | 1 | 38   | 0    | 0    | 0    | 0    | 38   |     | 10.7 | MS230 | A 192099  |
| 78527  | M | RV | DBT |   | S | 84 | 85 | Н   |          | Р |   | 1 | 42   | 0    | 0    | 0    | 0    | 42   |     | 9.5  | MS300 | A 190099  |
| 7855   | S | RV | HC  |   | S | 67 | 67 | R   |          | Р |   | 3 | 8.5  | 8.5  | 8.5  | 0    | 0    | 25.5 | 30  | 10.1 | HS20  | A 98099   |
| 78585  | M | RO | WG  |   | C | 82 | 83 | С   |          | С |   | 4 | 21   | 32   | 32   | 21   | 0    | 106  | -45 | 14.5 | MS230 | A 270099  |
| 78595  | M | RO | FM  |   | S | 79 | 80 | Н   |          | Р |   | 1 | 38   | 0    | 0    | 0    | 0    | 38   |     | 29.3 | MS23  | A 1992093 |
| 786    | M | RV | FM  |   | S | 80 | 81 | Н   |          | С |   | 1 | 34   | 0    | 0    | 0    | 0    | 34   |     | 12.2 | MS230 | A 748099  |
| 78692  | S | IC | SM  |   | S | 84 | 84 | N   |          | Р |   | 3 | 11   | 11   | 11   | 0    | 0    | 33   | -30 | 7.6  | MS230 |           |
|        |   |    | LF  |   | S | 76 | 77 | E   |          | P |   | 5 | 38.1 | 38.1 | 38.1 | 38.1 | 38.1 |      | -10 | 9.8  |       | A 205099  |
| 7870   | M | RV |     |   | S | 81 | 82 | Н Н |          | P |   | 3 | 18   | 25   | 18   | 0    | 0    | 61   | 1   | 10.9 | MS230 |           |
| 78709  | M | RV | RM  |   | S | 58 | 58 | N   |          | P |   | 1 | 25.9 | 0    | 0    | 0    | 0    | 25.9 |     | 7.9  | HS20  |           |
| 7871   | M | RV | PO  |   |   | 81 | 83 | C   |          | C |   | 3 | 41.5 | 52   | 41.5 | 0    | 0    | 135  | -60 | 13   |       | A 1521896 |
| 78728E | M | RO | WG  |   | C |    |    | С   |          | C | - | 3 | 41.5 | 52   | 41.5 | 0    | 0    | 135  | -60 | 13   |       |           |
| 78728W | М | RO | WG  |   | С | 81 | 83 |     |          | P |   | 2 | 22   | 22   | 0    | 0    | 0    | 44   | -00 |      |       |           |
| 78730  | M | RV | WG  |   | С | 80 | 80 | C   |          | P |   | 1 | 29   | 0    | 0    | 0    | 0    |      |     | 11   | MS230 | A 61099   |
| 78763  | M | RV | FC  |   | S | 70 | 70 | С   |          |   |   |   | 29   | 1 0  |      | U    |      | 29   |     | 7.3  | HS20  | 1         |



|        | 1 14   | I Bu |          |       |   |    |    |        |   |   |   |   |      |            |      |      |   |         |           |      |                |                   |
|--------|--------|------|----------|-------|---|----|----|--------|---|---|---|---|------|------------|------|------|---|---------|-----------|------|----------------|-------------------|
| 78765  | M      | RV   | FM       |       | S | 79 | 79 | Н      |   | Р |   | 1 | 38   | 0          | 0    | 0    | 0 | 38      | -25       | 10.7 | MS23           | A 72099           |
| 78796  | S      | IC   | SM       |       | S | 88 | 88 | N      |   | Р |   | 3 | 10   | 10         | 10   | 0    | 0 | 30      |           | 7.6  | MS230          | E 4092            |
| 78798  | S      | IC   | SM       |       | S | 85 | 85 | N      |   | Р |   | 5 | 8    | 11         | 11   | 11   | 8 | 49      | 30        | 7.6  | MS230          | E 3092            |
| 78799  | S      | IC   | SM       | -     | S | 85 | 85 | N      |   | Р |   | 4 | 8    | 10         | 10   | 8    | 0 | 36      |           | 7.6  | MS230          | E 3092            |
| 78802N | M      | GS   | WG       |       | С | 95 | 96 | Α      |   | С |   | 3 | 34   | 34         | 28   | 0    | 0 | 96      |           | 7.7  | CS750          | A 714099          |
| 78802S | M      | GS   |          |       | С | 95 | 96 | Α      |   | С |   | 3 | 34   | 34         | 28   | 0    | 0 | 96      |           | 10.4 | CS750          | A 714099          |
| 78808  | M      | RO   | RD       | -     | S | 78 | 79 | Н      |   | Р |   | 3 | 22.9 | 24.4       | 21.3 | 0    | 0 | 68.6    | 50        | 14.6 | HS25           | A 72099           |
| 73832  | M      | RV   | FM       | -     | S | 80 | 81 | С      |   | Р |   | 3 | 10   | 38         | 10   | 0    | 0 | 58      | 25        | 9.1  | MS230          | E 3495            |
| 78896  | M      | RV   | FC       |       | S | 68 | 68 | J      |   | Р |   | 3 | 21.3 | 24.4       | 21.3 | 0    | 0 | 67      |           | 15.8 | HS20           | A 134099          |
| 78898  | M      | RV   | TH       | DBT   | S | 50 | 87 | T      | N | T | Р | 3 | 23   | 76.2       | 24   | 0    | 0 | 123.2   |           | 6.7  | MS300          | A 34099           |
| 78996  | S      | RV   | SM       |       | S | 89 | 89 | N      |   | Р |   | 3 | 10   | 10         | 10   | 0    | 0 | 30      | 30        | 7.6  | MS230          | E 5099            |
| 79044  | S      | RV   | SMO      |       | Р | 79 | 79 | F      |   | Р |   | 3 | 6    | 11         | 11   | 0    | 0 | 28      | -15       | 11.3 | CS750          | A 20099           |
| 79128  | S      | RV   | SM       |       | S | 79 | 79 | Α      |   | Р |   | 3 | 6    | 8          | 6    | 0    | 0 | 20      |           | 10.1 | MS23           | A 81099           |
| 79201N | M      | RV   | RM       |       | S | 81 | 81 | C      |   | Р |   | 3 | 14.7 | 25         | 14.7 | 0    | 0 | 54.4    | -7        | 8    | MS230          |                   |
| 79201S | M      | RV   | RM       |       | S | 81 | 81 | С      |   | Р |   | 3 | 14.7 | 25         | 14.7 | 0    | 0 | 54.4    | -7        | 8    | MS230          |                   |
| 7922   | M      | RV   | DBT      |       | S | 83 | 83 | N      |   | Р |   | 1 | 42   | 0          | 0    | 0    | 0 | 42      |           | 8.3  | MS300          | A 160099          |
| 79230  | M      | RO   | WG       |       | С | 82 | 83 | С      |   | С |   | 4 | 20   | 28         | 28   | 20   | 0 | 96      | 34        | 9    | MS230          | E 10097           |
| 79262  | M      | RV   | WG .     | -     | C | 85 | 86 | A      |   | С |   | 3 | 19   | 22         | 19   | 0    | 0 | 60      |           | 11   | MS300          | A 192099          |
| 7931   | M      | RV   | PM       |       | S | 70 | 70 | A      |   | Р | - | 4 | 16.8 | 16.8       | 16.8 | 16.8 | 0 | 67.2    | 15        | 8.2  | HS20           | A 19099           |
| 79324  | M      | GS   | FM       |       | S | 82 | 82 | H      |   | Р |   | 1 | 35.2 | 0          | 0    | 0    | 0 | 35.2    | 20        | 12.1 | MS250          | A 93099           |
| 79325  | M<br>S | RV   | WG       |       | C | 83 | 84 | E      |   | С |   | 3 | 13   | 18         | 13   | 0    | 0 | 44      | -3        | 11   | MS300          | A 232099          |
| 79351  | M      | RV   | SM<br>LF | 1     | S | 84 | 84 | A      |   | Р |   | 1 | 11   | 0          | 0    | 0    | 0 | 11      | 30        | 13.7 | MS23           | A 729099          |
| 79373  | M      | RV   | FM       | -     | S | 81 | 81 | A      |   | P |   | 1 | 38.1 | 0          | 0    | 0    | 0 | 38.1    | 40        | 7.3  | HS25           | E 3495            |
| 79432  | M      | RV   | FM       |       | S | 78 | 79 | H      |   | P |   | 3 | 10   | 38         | 10   | 0    | 0 | 58      | -10       | 10.7 | MS23           | A 32099           |
| 79432  | M      | RO   | WG       | -     | C | 81 | 81 | H<br>C |   | C |   | 3 | 34   | 0          | 0    | 0    | 0 | 34      | 20        | 11.4 | MS230          | E 60091           |
| 79439  | M      | GS   | FM       | VM    | S | 81 | 81 | C      | С | P | P | 3 | 8    | 16<br>29.6 | 8    | 0    | 0 | 44 45.6 | 20        | 4.3  | MS300<br>SP164 | A 78099<br>E 1494 |
| 79441N | M      | RO   | WG       | V 1V1 | C | 82 | 83 | E      |   | C |   | 3 | 25   | 31         | 25   | 0    | 0 | 81      | -20<br>52 | 11.5 | MS300          | A 1081099         |
| 79441S | M      | RO   | WG       |       | C | 83 | 84 | E      |   | C |   | 3 | 25   | 31         | 25   | 0    | 0 | 81      | 52        | 11.5 | MS300          | A 1081099         |
| 79443  | M      | RV   | LF       |       | S | 78 | 79 | Н      |   | P |   | 1 | 38.1 | 0          | 0    | 0    | 0 | 38.1    | 52        | 13.7 | HS25           | A 646099          |
| 79464  | M      | GS   | WG       |       | C | 84 | 85 | Н      |   | C |   | 2 | 38.5 | 38.5       | 0    | 0    | 0 | 77      | -12       | 17   | MS300          | A 447099          |
| 79472  | M      | RV   | WG       |       | C | 81 | 83 | С      |   | C |   | 3 | 37.7 | 47         | 37.7 | 0    | 0 | 122.4   | 12        | 11   | MS400          | A 43099           |
| 79473  | M      | RV   | WG       |       | C | 84 | 85 | С      |   | C |   | 2 | 44   | 44         | 0    | 0    | 0 | 88      |           | 13   | MS400          | A 89099           |
| 79476  | S      | ic   | SM       |       | S | 84 | 84 | N      |   | P |   | 3 | 11   | 11         | 11   | 0    | 0 | 33      |           | 8.8  | MS230          | E 7093            |
| 79477  |        | GS   | RM       |       | S | 83 | 83 | Н      |   | P |   | 1 | 22   | 0          | 0    | 0    | 0 | 22      | -29       | 13.7 | MS300          | A 225099          |
| 79481  | M      | GS   | WG       |       | C | 95 | 95 | А      |   | С |   | 3 | 27   | 30         | 37   | 0    | 0 | 94      |           | 16   | CS750          | A 1862193         |
| 79535E | S      | IC   | SM       |       | S | 81 | 81 | A      |   | P |   | 1 | 11   | 0          | 0    | 0    | 0 | 11      | 15        | 13.7 | MS23           | A 1145099         |
| 79553  |        | RV   | DBT      |       | S | 83 | 83 | N      |   | Р |   | 1 | 42   | 0          | 0    | 0    | 0 | 42      |           | 7.7  | MS300          | E 2099            |
| 79564  | M      | GS   | CBT      |       | C | 82 | 96 | Н      |   | Р |   | 2 | 41   | 42         | 0    | 0    | 0 | 83      |           | 21.2 | CS750          | E 12088           |
| 79565  | S      | IC   | SM       |       | S | 88 | 88 | С      |   | Р |   | 3 | 11   | 11         | 11   | 0    | 0 | 33      | 21        | 7.5  | MS230          | E 2592            |
| 79566  | S      | IC   | SM       |       | S | 88 | 88 | N      |   | Р |   | 4 | 11   | 11         | 11   | 11   | 0 | 44      | -45       | 8.8  | MS230          |                   |
| 79567  | S      | IC   | SM       |       | S | 88 | 88 | С      |   | Р |   | 3 | 11   | 11         | 11   | 0    | 0 | 33      | -15       | 7.6  | MS230          |                   |
| 79568  | M      | ic   | DBT      |       | S | 83 | 83 | N      |   | Р |   | 1 | 34   | 0          | 0    | 0    | 0 | 34      |           | 8.1  | MS230          |                   |
| 79569  | S      | IC   | SM       |       | S | 84 | 84 | N      |   | Р |   | 4 | 10   | 10         | 10   | 10   | 0 | 40      |           | 8.8  | MS230          |                   |
| 79570  | S      | IC   | SM       |       | S | 84 | 84 | N      |   | Р |   | 3 | 11   | 11         | 11   | 0    | 0 | 33      |           | 8.8  | MS230          |                   |
| 79570  | S      | IC   | SM       |       | S | 85 | 85 | N      |   | Р |   | 4 | 10   | 10         | 10   | 10   | 0 | 40      | 30        | 7.6  | MS230          |                   |
|        | S      | -    | SM       |       | S | 86 | 86 | N      |   | Р |   | 3 | 11   | 10         | 11   | 0    | 0 | 32      | -23       | 8.8  | MS230          |                   |
| 79575  | 3      | IC   | SIVI     |       |   |    |    |        |   |   |   |   |      |            | -    |      | 1 |         |           |      | 15250          |                   |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70570 | - | Lio           |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|---------------|----|----|---|----|----|---|---|---------------------------------------|---|-----|----|------|------|----|---|----|-----|-----|---------|--------|
| 1998    S   10   SM   S   154   64   N   P   4   6   6   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79576 | S | IC            | SM |    | S | 86 | 86 | N |   | Р                                     |   | 3   | 10 | 11   | 10   | 0  | 0 | 31 |     | 7.6 | MS230   | E 1093 |
| 1998   1998   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999      |       |   |               |    |    |   | 89 | 89 | N |   | Р                                     |   | 4   | 10 | 10   | 10   | 10 | 0 | 40 |     |     |         |        |
| 1986   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |   | -             |    |    |   | 84 | 84 | N |   | Р                                     |   | 4   | 8  | 10   | 10   | 8  | 0 | 36 |     | 8.8 |         |        |
| 1986   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |   | _             |    |    |   | 84 | 84 | С |   | Р                                     |   | 4   | 11 | 11   | 11   | 11 | 0 | 44 | -30 |     |         |        |
| 1997.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |   | -             |    |    |   | 84 | 84 | Ε |   | Р                                     |   | 3_  | 10 | 10   | 10   | 0  | 0 | 30 | 15  |     |         |        |
| 79710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   | +             |    |    |   | 84 | 84 | Α |   | Р                                     |   | 1   | 11 | 0    | 0    | 0  | 0 | 11 |     |     |         |        |
| 1974    S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |   | _             |    | VM | 1 | 81 | 81 | С | С | P                                     | Р | 3   | 8  | 29.6 | 8    | 0  | 0 |    |     |     |         |        |
| 1976    M   GS   WG   S   255   85   A   C   C   1   394   O   O   O   0   394   17   11   M5300   A 720999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |   | +             |    |    |   |    |    |   |   |                                       |   | 2   | 22 | 35   | 0    | 0  |   |    |     |     |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |   | +             |    | -  |   |    | -  | С |   |                                       |   | 1   | 11 | 0    | 0    | 0  |   |    |     |     |         |        |
| Part      |       |   |               |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 7978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   | -             |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    | -4  |     |         |        |
| 79761   S   C   SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |   | _             |    | CV |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 79785   S   IC   SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |   | _             |    | -  |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 70766   S   IC   SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |   |               |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    | 20  |     |         |        |
| 79787 S IC SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |   | -             |    |    |   |    |    | _ |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |               |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 80121 M IC PJ S 0 0 0 C P 1 152 0 0 0 0 152 64 E 15091 80122 M IC PJ S 0 0 0 C P 1 19 0 0 0 0 152 64 E 15091 80134 M IC PJ C 0 0 0 C C P 1 157 0 0 0 0 157 64 E 17391 80135 M IC PJ S 0 0 0 C C C 1 1 157 0 0 0 0 157 64 E 17391 80135 M IC PJ S 0 0 0 C C C 1 1 157 0 0 0 0 157 64 E 20086 80150 M IC PJ C 0 0 0 C C C 1 1 158 0 0 0 0 157 64 E 20086 80153 M IC PJ S 0 0 0 C C C 1 1 158 0 0 0 0 158 64 E 2592 80153 M IC PJ S 0 0 0 C C C 1 1 158 0 0 0 0 0 158 64 E 2592 80153 M IC PJ S 0 0 0 C C C 1 1 158 0 0 0 0 0 158 64 E 2592 80207 S IC SM S 84 84 N P 4 10 10 10 10 10 0 0 40 68 8 MS230 80208 S IC SM S 88 88 88 N P 5 5 11 11 11 11 11 11 15 5 50 7.6 MS230 E 4093 80210 S IC SM S 84 84 N P 4 10 10 10 10 0 0 40 65 7.6 MS230 E 4093 80210 S IC SM S 84 84 N P 4 11 11 11 11 11 11 11 0 44 15 7.6 MS230 80211 S IC SM S 84 84 N P 4 11 11 11 11 11 11 0 44 15 7.6 MS230 80212 S IC SM S 88 88 84 N P 7 4 11 11 11 11 11 11 0 44 15 7.6 MS230 80213 S IC SM S 88 88 88 N P 7 4 110 10 10 10 0 0 40 65 7.6 MS230 E 4093 80214 S IC SM S 88 88 88 N P 7 4 11 11 11 11 11 11 0 44 15 7.6 MS230 80215 S IC SM S 88 88 88 N P 7 4 11 11 11 11 11 11 0 44 15 7.6 MS230 80216 S IC SM S 8 84 84 N P 9 4 110 10 10 10 0 0 40 65 7.6 MS230 E 4093 80217 S IC SM S 88 88 88 N P 9 4 11 11 11 11 11 0 44 3.0 7.6 MS230 80218 S IC SM S 85 85 85 N P 9 3 11 11 11 11 0 0 44 3.0 7.6 MS230 E 7093 80221 S IC SM S 85 85 85 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80221 S IC SM S 85 85 85 N P 9 4 10 10 10 10 0 0 40 .90 7.6 MS230 E 7093 80222 S IC SM S 88 88 88 N P 9 4 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80224 S IC SM S 88 88 88 N P 9 4 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80225 S IC SM S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80226 S IC SM S 88 88 88 N P 9 4 11 11 11 0 0 0 0 33 7.6 MS230 E 7093 80226 S IC SM S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80227 S IC SM S 88 88 88 N P 9 3 11 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80226 S IC SM S 88 88 88 N P 9 4 11 11 11 11 0 0 0 0 33 7.6 MS230 E 7093 80273 S IC SM S 88 88 88 N P 9 4 11 11 11 11 0 0 0 0  |       |   | _             |    | -  |   |    | -  |   |   |                                       |   |     |    |      |      |    |   |    | 21  |     |         |        |
| 80122   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |   | _             |    | -  |   |    |    | - |   |                                       |   |     |    |      |      |    |   | -  | -21 |     | 1013230 |        |
| 80135 M IC PJ S 0 0 0 C C C 1 155.7 0 0 0 0 15.7 6.4 E 13991 80135 M IC PJ S 0 0 0 C C C 1 155.7 0 0 0 0 15.7 6.4 E 23992 80152 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 15.8 6.4 E 2592 80153 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 0 15.8 6.4 E 2592 80153 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 0 15.8 6.4 E 2592 80153 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 0 0 15.8 6.4 E 2592 80153 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 0 0 15.8 6.4 E 2592 80153 M IC PJ S 0 0 0 C C C I 15.8 0 0 0 0 0 0 15.8 6.4 E 2592 80207 S IC SM S 84 84 N P 4 10 10 10 10 0 0 40 8.8 MS230 80209 S IC SM S 88 88 88 N P 5 5 11 11 11 11 11 11 11 55 5.5 7.6 MS230 E 4093 80210 S IC SM S 84 84 N P 4 11 11 11 11 11 11 0 44 5.7 6.8 MS230 80211 S IC SM S 84 84 N P 4 11 11 11 11 11 11 0 44 5.7 6.8 MS230 80211 S IC SM S 84 84 N P 4 11 11 11 11 11 0 0 4 4 5.7 6.8 MS230 80212 S IC SM S 84 84 N P 4 11 11 11 11 11 11 0 0 4 4 5.7 6.8 MS230 80213 S IC SM S 85 85 N P 4 11 11 11 11 11 11 0 0 40 8.8 MS230 E 7093 80220 S IC SM S 85 85 N P 4 11 11 11 11 11 0 0 4 0 40 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P 4 11 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80220 S IC SM S 85 85 N P 4 11 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80220 S IC SM S 85 85 85 N P 4 4 10 10 10 10 0 0 40 7.6 MS230 E 7093 80221 S IC SM S 85 85 85 N P 4 4 10 10 10 10 0 0 0 33 7.6 MS230 E 7093 80222 S IC SM S 85 85 85 N P 4 4 10 10 10 10 0 0 0 33 7.6 MS230 E 7093 80223 S IC SM S 85 85 85 N P 4 4 10 10 10 10 0 0 0 33 7.6 MS230 E 7093 80224 S IC SM S 88 88 8 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80225 S IC SM S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 7093 80226 S IC SM S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 8093 80227 S IC SM S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 8093 80228 S IC SM S S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 8093 80228 S IC SM S S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 8093 80229 S IC SM S S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 8093 80221 S IC SM S S 88 88 88 N P 9 3 11 11 11 11 0 0 0 33 7.6 MS230 E 8093 80226 S IC SM S S 86 |       |   | -             |    | -  |   | -  |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 80135 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 15.7 6.4 E 3098. 80152 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 15.8 6.4 E 2892. 80153 M IC PJ S 0 0 0 C C C 1 15.8 0 0 0 0 15.8 6.4 E 2892. 80207 S IC SM S 84 84 N P A 10 10 10 10 10 10 0 40 8.8 MS230 E 2582. 80208 S IC SM S 88 88 N P P 5 11 11 11 11 11 11 11 55 5.5 7.6 MS230 E 4093. 80209 S IC SM S 84 84 N P A 10 10 10 10 10 10 0 40 5.7 6. MS230 E 4093. 80210 S IC SM S 84 84 N P A 10 10 10 10 10 10 0 80 40 5.7 6. MS230 E 4093. 80211 S IC SM S 84 84 N P P 4 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |   | 1             |    |    |   |    |    |   |   | · · · · · · · · · · · · · · · · · · · |   |     |    |      |      |    |   |    |     |     |         |        |
| 80152 M IC PJ S O O C C C 1 1 15.8 O O O O 15.8   6.4   E 2592   80153 M IC PJ S O O C C C 1 1 15.8 O O O O 15.8   6.4   E 2592   80163 M IC PJ S O O C C C 1 1 15.8 O O O O O 15.8   6.4   E 2592   80207 S IC SM S 84 84 N P 4 10 10 10 10 10 0 40 8.8 MS230   E 4093   80208 S IC SM S 84 84 N P 5 5 11 11 11 11 11 55 50 7.6 MS230   E 4093   80209 S IC SM S 84 84 N P 4 10 10 10 10 10 0 40 5.7 6 MS230   E 4093   80210 S IC SM S 84 84 N P 4 11 11 11 11 11 11 0 0 44 50 7.6 MS230   E 8093   80211 S IC SM S 84 84 N P 4 10 10 10 10 0 0 40 8.8 MS230   E 8093   80212 S IC SM S 84 84 N P 4 11 11 11 11 11 11 11 11 11 0 0 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |   | _             |    | -  |   |    | -  |   |   |                                       |   | · · |    |      |      |    |   | 1  |     |     |         |        |
| 80153 M IC PJ S 0 0 0 C C C 1 1 15.8 0 0 0 0 0 15.8 M E 3.8 M E 2007 S IC SM S 16 SM S 84 84 N P P 4 10 10 10 10 10 10 0 40 48 8 MS230 E 4093 80209 S IC SM S 88 88 88 N P P 5 11 11 11 11 11 11 15 5 5.50 7.6 MS230 E 4093 80209 S IC SM S 84 84 N P P 4 10 10 10 10 10 10 0 40 5 7.6 MS230 E 4093 80209 S IC SM S 84 84 N P P 4 11 11 11 11 11 11 10 0 44 -15 7.6 MS230 E 4093 80210 S IC SM S 84 84 N P P 4 10 10 10 10 10 0 40 5 7.6 MS230 E 4093 80210 S IC SM S 84 84 N P P 4 11 11 11 11 11 10 0 44 -30 7.6 MS230 E 7093 80212 S IC SM S 84 84 N P P 4 10 10 10 10 10 0 0 40 8.8 MS230 E 7093 80220 S IC SM S 85 85 N P P 3 111 11 11 11 0 0 44 -30 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P P 4 10 10 10 10 10 0 0 33 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P P 4 10 10 10 10 10 0 0 33 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P P 4 10 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P P 4 10 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P P 4 10 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80221 S IC SM S 85 85 N P P 4 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80226 S IC SM S 85 85 N P P 4 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80226 S IC SM S 8 85 85 N P P 4 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80226 S IC SM S 8 85 85 N P P 4 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80226 S IC SM S 8 85 85 N P P 4 10 10 10 10 0 0 33 C 7.6 MS230 E 7093 80226 S IC SM S 8 88 88 N P P 3 111 111 11 11 0 0 0 33 C 7.6 MS230 E 7093 80226 S IC SM S 8 88 88 N P P 3 111 111 11 0 0 0 33 C 7.6 MS230 E 8091 80226 S IC SM S 8 88 88 N P P 3 111 111 11 0 0 0 33 C 7.6 MS230 E 8091 80226 S IC SM S 8 88 88 N P P 3 111 111 11 10 0 0 33 C 7.6 MS230 E 8091 80226 S IC SM S 8 88 88 N P P 3 111 111 11 10 0 0 33 C 7.6 MS230 E 8091 80226 S IC SM S 8 88 88 N P P 3 111 111 11 10 0 0 33 C 7.6 MS230 E 8091 80226 S IC SM S S 8 88 88 N P P 3 111 111 11 11 10 0 0 33 C 7.6 MS230 E 8091 80226 S IC SM S S 8 88 88 N P P 3 111 111 11 11 10 0 0 3 30 C 7.6 MS230 E 8091 80227 S IC SM S S 8 8 88 88 N P P 3 111 111 111 11 10 0 0 0 30 3 C 7.6 MS230 E 8091 80227 S IC SM S S 8 8 8 8 |       |   | _             |    | -  |   |    | -  |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 80207   S   IC   SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |   | _             |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 80209 S IC SM S 88 88 N P P 5 11 11 11 11 11 15 5 5 5 7.6 MS230 E 4093 80209 S IC SM S 84 84 N P P 4 10 10 10 10 10 0 40 5 7.6 MS230 E 4093 80210 S IC SM S 84 84 N P P 4 110 11 11 11 11 11 0 44 -15 7.6 MS230 R 80211 S IC SM S 84 84 N P P 4 110 11 11 11 11 10 4 4 -15 7.6 MS230 R 80211 S IC SM S 84 84 N P P 4 111 11 11 11 10 0 44 -15 7.6 MS230 R 80212 S IC SM S 85 85 N P P 4 111 11 11 11 10 0 0 44 -30 7.6 MS230 R 80212 S IC SM S 85 85 N P P 3 111 11 11 11 0 0 0 33 7.6 MS230 E 7093 R 80220 S IC SM S 85 85 N P P 3 111 11 11 10 0 0 33 7.6 MS230 E 7093 R 80221 S IC SM S 85 85 N P P 4 100 10 10 10 0 0 0 0 33 7.6 MS230 E 7093 R 80223 S IC SM S 85 85 N P P 4 100 10 10 10 0 0 0 0 0 33 R 7.6 MS230 E 7093 R 80224 S IC SM S 85 85 N P P 4 100 10 10 10 0 0 0 0 33 R 7.6 MS230 E 7093 R 80224 S IC SM S 85 85 N P P 4 100 10 10 10 0 0 0 33 R 7.6 MS230 E 7093 R 80225 S IC SM S 85 85 N P P 4 100 10 10 0 0 0 33 R 7.6 MS230 E 7093 R 80225 S IC SM S 85 85 N P P 4 100 10 10 0 0 0 0 33 R 7.6 MS230 E 7093 R 80224 S IC SM S 85 85 N P P 4 100 10 10 10 0 0 0 33 R 7.6 MS230 E 7093 R 80225 S IC SM S 85 85 N P P 4 100 10 10 10 0 0 0 33 R 10 MS230 E 7093 R 80225 S IC SM S 85 85 N P P 3 111 11 11 11 10 0 0 33 R 80 S 85 R 85 N P P 3 111 11 11 10 0 0 33 R 80 S 85 R 85 N P P 3 111 11 11 10 0 0 33 R 80 MS230 E 7093 R 80226 S IC SM S 88 88 N P P 3 111 11 11 10 0 0 33 R 7.6 MS230 E 7093 R 80227 S IC SM S 88 88 N P P 3 111 11 11 10 0 0 33 R 7.6 MS230 E 7093 R 80228 S IC SM S 88 88 N P P 3 111 11 11 10 0 0 33 R 7.6 MS230 E 2093 R 80228 S IC SM S 88 88 N P P 3 111 11 11 10 0 0 33 R 7.6 MS230 E 2093 R 80228 S IC SM S 88 88 N P P 3 111 11 11 10 0 0 33 R 7.6 MS230 E 2093 R 80227 S IC SM S 88 88 N P P 3 111 11 11 10 0 0 33 R 7.6 MS230 E 2093 R 80227 S IC SM S S 86 86 N P P 3 111 11 11 10 0 0 30 R 80 R 80230 E 2093 R 80227 S IC SM S S 86 R 86 N P P 3 111 11 11 10 0 0 R 80 R 80230 E 2093 R 80227 S IC SM S S 86 R 86 N P P 3 111 11 11 10 0 0 R 80 R 80230 E 2093 R 80227 S IC SM S S 86 R 86 N P P 4 110 10 10 10 10 0 0 R 80 R 80230 E 2093 R 80227 S IC SM S S 86 R 86 |       |   | -             |    |    |   |    |    |   |   |                                       |   | -   | -  |      |      |    |   | -  |     |     | MS230   |        |
| 80210 S IC SM S 84 84 N P P 4 10 10 10 10 10 0 40 -5 7.6 MS230 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   | -             |    |    |   |    |    |   |   |                                       |   |     |    |      |      |    |   |    | -50 |     |         | E 4093 |
| 80210         S         IC         SM         S         84         84         N         P         4         111         11         11         0         44         -15         7.6         MS230           80211         S         IC         SM         S         84         84         N         P         4         10         10         10         0         40         8.8         MS230           80212         S         IC         SM         S         84         84         N         P         4         11         11         11         0         0         40         8.8         MS230         -           80219         S         IC         SM         S         85         85         N         P         4         11         11         11         0         0         33         7.6         MS230         E         7093           80220         S         IC         SM         S         85         85         N         P         4         10         10         10         0         40         -30         7.6         MS230         E         7093           80221         S <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.6</td><td>MS230</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   | _             |    |    |   |    |    |   |   | P                                     |   |     |    |      |      |    |   |    |     | 7.6 | MS230   |        |
| 80211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   | 1             |    |    |   |    |    |   |   | Р                                     |   | 4   |    | 11   | 11   | 11 | 0 | 44 | -15 | 7.6 | MS230   |        |
| 80212         S         IC         SM         S         84         84         N         P         4         11         11         11         0         44         -30         7.6         MS230         E 7093           80219         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E 7093           80220         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E 7093           80221         S         IC         SM         S         85         85         N         P         4         10         10         10         0         40         -30         7.6         MS230         E 7093           80223         S         IC         SM         S         85         85         N         P         4         10         10         10         0         40         -7.6         MS230         E 7093           80224 <td< td=""><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Р</td><td></td><td>4</td><td>10</td><td>10</td><td>10</td><td>10</td><td>0</td><td>40</td><td></td><td>8.8</td><td>MS230</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |   | +             |    |    |   |    |    |   |   | Р                                     |   | 4   | 10 | 10   | 10   | 10 | 0 | 40 |     | 8.8 | MS230   |        |
| 80219         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E 7093           80220         S         IC         SM         S         85         85         N         P         3         11         11         10         0         0         33         7.6         MS230         E 7093           80221         S         IC         SM         S         85         85         N         P         4         10         10         10         0         33         7.6         MS230         E 7093           80223         S         IC         SM         S         85         85         N         P         4         8         10         10         0         30         7.6         MS230         E 7093           80223         S         IC         SM         S         85         85         N         P         4         8         10         10         0         33         10         MS230         E 7093           80225         S         IC         SM <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td></td> <td>Р</td> <td></td> <td>4</td> <td>11</td> <td>11</td> <td>11</td> <td>11</td> <td>0</td> <td>44</td> <td>-30</td> <td>7.6</td> <td>MS230</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |   | +             |    |    |   |    |    | N |   | Р                                     |   | 4   | 11 | 11   | 11   | 11 | 0 | 44 | -30 | 7.6 | MS230   |        |
| 80220         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E 7093           80221         S         IC         SM         S         85         85         N         P         4         10         10         10         0         40         -30         7.6         MS230         E 7093           80223         S         IC         SM         S         85         85         N         P         4         8         10         10         0         40         -30         7.6         MS230         E 7093           80224         S         IC         SM         S         85         85         N         P         3         11         11         0         0         33         10         MS230         E 7093           80225         S         IC         SM         S         85         85         N         P         4         10         10         0         0         33         8.8         MS230         E 7093           80226         S         IC </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td></td> <td>Р</td> <td></td> <td>3</td> <td>11</td> <td>11</td> <td>11</td> <td>0</td> <td>0</td> <td>33</td> <td></td> <td>7.6</td> <td>MS230</td> <td>E 7093</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |   | -             |    |    |   |    |    | N |   | Р                                     |   | 3   | 11 | 11   | 11   | 0  | 0 | 33 |     | 7.6 | MS230   | E 7093 |
| 80221         S         IC         SM         S         85         85         N         P         4         10         10         10         10         0         40         -30         7.6         MS230         E 7093           80223         S         IC         SM         S         85         85         N         P         4         8         10         10         8         0         36         -21         7.6         MS230         E 4093           80224         S         IC         SM         S         85         85         C         P         3         111         11         0         0         33         10         MS230         E 4093           80225         S         IC         SM         S         85         85         N         P         3         111         11         11         0         0         33         8.8         MS230         E 7093           80226         S         IC         SM         S         88         88         N         P         4         10         10         10         0         40         7.6         MS230         E 2591           8022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |   | _             |    |    |   |    | 85 | N |   | Р                                     |   | 3   | 11 | 11   | 11   | 0  | 0 | 33 |     | 7.6 | MS230   | E 7093 |
| 80223 S IC SM S 85 85 N P 4 4 8 10 10 8 0 36 -21 7.6 MS230 E 4093 80224 S IC SM S 85 85 S C P 3 11 11 11 0 0 0 33 10 MS230 A 31093 80225 S IC SM S 85 85 N P 3 11 11 11 0 0 0 33 8.8 MS230 E 7093 80226 S IC SM S 88 88 N P 4 10 10 10 10 0 40 7.6 MS230 E 2591 80227 S IC SM S 88 88 N P 3 3 11 11 11 11 0 0 0 33 7.6 MS230 E 6091 80228 S IC SM S 88 88 N P 3 3 11 11 11 11 0 0 0 33 7.6 MS230 E 3091 80228 S IC SM S 88 88 N P 3 3 11 11 11 11 0 0 0 33 7.6 MS230 E 3091 80232 S IC SM S 88 88 N P 3 3 11 11 11 11 0 0 0 33 7.6 MS230 E 3091 80234 S IC SM S 88 88 N P 3 1 1 11 11 11 0 0 0 33 7.6 MS230 E 3091 80236 S IC SM S 88 88 N P 1 1 11 11 11 0 0 0 33 7.6 MS230 E 3091 80237 S IC SM S 88 88 N P 1 1 11 11 11 0 0 0 33 7.6 MS230 E 3091 80238 S IC SM S 88 88 N P 1 1 11 11 11 0 0 0 33 7.6 MS230 E 3091 80239 S IC SM S 88 88 N P 1 1 11 11 11 0 0 0 33 7.6 MS230 E 3091 80230 S IC SM S 89 89 N P 1 3 11 11 11 11 0 0 0 33 7.6 MS230 E 3091 80231 S IC SM S 88 88 N P 1 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |   | 1             |    |    |   | 85 | 85 | N |   | Р                                     |   | 4   | 10 | 10   | 10   | 10 | 0 | 40 | -30 | 7.6 | MS230   | E 7093 |
| 80224         S         IC         SM         S         85         85         C         P         3         11         11         11         0         0         33         10         MS230         A 31099           80225         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         8.8         MS230         E 7093           80226         S         IC         SM         S         88         88         N         P         4         10         10         10         0         40         7.6         MS230         E 2591           80227         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         7.6         MS230         E 2691           80227         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         7.6         MS230         E 3091           80232         S <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>85</td> <td>85</td> <td>N</td> <td></td> <td>Р</td> <td></td> <td>4</td> <td>8</td> <td>10</td> <td>10</td> <td>8</td> <td>0</td> <td>36</td> <td>-21</td> <td>7.6</td> <td>MS230</td> <td>E 4093</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |   | -             |    |    |   | 85 | 85 | N |   | Р                                     |   | 4   | 8  | 10   | 10   | 8  | 0 | 36 | -21 | 7.6 | MS230   | E 4093 |
| 80225         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         8.8         MS230         E 7093           80226         S         IC         SM         S         88         88         N         P         4         10         10         10         0         40         7.6         MS230         E 2591           80227         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         7.6         MS230         E 2591           80227         S         IC         SM         S         88         88         N         P         3         11         11         0         0         33         7.6         MS230         E 2591           80228         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         7.6         MS230         E 2093           80234         S         IC <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>85</td> <td>85</td> <td>С</td> <td></td> <td>Р</td> <td></td> <td>3</td> <td>11</td> <td>11</td> <td>11</td> <td>0</td> <td>0</td> <td>-</td> <td></td> <td>10</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |   | -             |    |    |   | 85 | 85 | С |   | Р                                     |   | 3   | 11 | 11   | 11   | 0  | 0 | -  |     | 10  |         |        |
| 80226         S         IC         SM         S         88         88         N         P         4         10         10         10         0         40         7.6         MS230         E 2591           80227         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         7.6         MS230         E 6091           80228         S         IC         SM         S         88         88         N         P         3         11         11         0         0         33         -9         7.6         MS230         E 3091           80232         S         IC         SM         S         85         85         N         P         3         11         11         0         0         33         7.6         MS230         E 2093           80234         S         IC         SM         S         89         89         N         P         3         11         11         11         0         0         33         7.6         MS230         E 2093           80269         S         IC <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>85</td> <td>85</td> <td>N</td> <td></td> <td>Р</td> <td></td> <td>3</td> <td>11</td> <td>11</td> <td>11</td> <td>0</td> <td>0</td> <td>33</td> <td></td> <td>8.8</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |   | _             |    |    |   | 85 | 85 | N |   | Р                                     |   | 3   | 11 | 11   | 11   | 0  | 0 | 33 |     | 8.8 |         |        |
| 80227         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         7.6         MS230         E 6091           80228         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         -9         7.6         MS230         E 3091           80232         S         IC         SM         S         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E 2093           80234         S         IC         SM         S         89         89         N         P         3         11         11         11         0         0         33         7.6         MS230         E 2093           80269         S         IC         SM         S         88         88         N         P         4         8         11         11         8         0         38         30         8.8         MS230         E 4091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |   |               |    |    | S | 88 | 88 | N |   | Р                                     |   | 4   | 10 | 10   | 10   | 10 | 0 | 40 |     | 7.6 |         |        |
| 80228         S         IC         SM         S         88         88         N         P         3         11         11         11         0         0         33         -9         7.6         MS230         E         3091           80232         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E         2093           80234         S         IC         SM         S         89         89         N         P         3         11         11         10         0         0         33         7.6         MS230         E         2093           80234         S         IC         SM         S         89         89         N         P         4         8         11         11         0         0         33         7.6         MS230         E         3693           80270         S         IC         SM         S         89         89         N         P         4         8         11         11         11         11         11         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   | -             |    |    | S | 88 | 88 | N |   | Р                                     |   |     | 11 | 11   |      |    |   |    |     |     |         |        |
| 80232         S         IC         SM         S         85         85         N         P         3         11         11         11         0         0         33         7.6         MS230         E         2093           80234         S         IC         SM         S         89         89         N         P         3         11         11         11         0         0         33         7.6         MS230         E         3693           80269         S         IC         SM         S         88         88         N         P         4         8         11         11         8         0         38         30         8.8         MS230         E         4091           80270         S         IC         SM         S         89         89         N         P         3         11         11         11         0         0         33         7.6         MS230         E         4091           80270         S         IC         SM         S         89         89         N         P         3         10.1         10.1         10.1         0         0         30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |   | _             |    |    | S | 88 | 88 | N |   | P                                     |   |     |    |      |      | -  | - |    | -9  |     |         |        |
| 80234         S         IC         SM         S         89         89         N         P         3         11         11         11         0         0         33         7.6         MS230         E         3693           80269         S         IC         SM         S         88         88         N         P         4         8         11         11         8         0         38         30         8.8         MS230         E         4091           80270         S         IC         SM         S         89         89         N         P         3         11         11         11         0         0         33         7.6         MS230         E         4091           80270         S         IC         SM         S         89         N         P         3         10.1         10.1         0         0         33.3         7.6         MS230         E         4093           80271         S         IC         SM         S         86         86         N         P         4         11         11         11         0         44         -30         8.8         MS230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   | $\rightarrow$ |    |    | S | 85 | 85 |   |   |                                       |   |     |    |      |      |    |   |    |     |     |         |        |
| 80269     S     IC     SM     S     88     88     N     P     4     8     11     11     8     0     38     30     8.8     MS230     E     4091       80270     S     IC     SM     S     89     89     N     P     3     11     11     11     0     0     33     7.6     MS230     E     4093       80271     S     IC     HC     S     69     89     N     P     3     10.1     10.1     10.1     0     0     30.3     11     8.2     HS20     E     4093       80272     S     IC     SM     S     86     86     N     P     4     11     11     11     11     0     44     -30     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     4     10     10     10     10     0     40     -10     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     4     10     10     10     0     40     -10     8.8     MS23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -     |   | -             |    |    | S | 89 | 89 | N |   |                                       |   |     |    |      |      | 1  |   |    |     |     |         |        |
| 80270     S     IC     SM     S     89     89     N     P     3     11     11     11     0     0     33     7.6     MS230     E     4093       80271     S     IC     HC     S     69     89     N     P     3     10.1     10.1     10.1     0     0     30.3     11     8.2     HS20     E     4093       80272     S     IC     SM     S     86     86     N     P     4     11     11     11     11     0     44     -30     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     4     10     10     10     10     0     40     -10     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     4     10     10     10     10     0     40     -10     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     3     11     11     11     0     0     33     15     8.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |   |               |    |    | S | 88 | 88 | N |   |                                       |   |     |    |      |      |    |   |    | 30  |     |         |        |
| 80271     S     IC     HC     S     69     89     N     P     3     10.1     10.1     10.1     0     0     30.3     11     8.2     HS20     E     4093       80272     S     IC     SM     S     86     86     N     P     4     11     11     11     11     0     44     -30     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     4     10     10     10     10     0     40     -10     8.8     MS230     E     7093       80273     S     IC     SM     S     86     86     N     P     3     11     11     11     0     0     33     15     8     MS230     E     8995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |   |               |    |    | S | 89 | 89 | N |   |                                       |   |     |    |      |      | +  |   | _  | -   |     |         |        |
| 80272 S IC SM S 86 86 N P 4 11 11 11 11 0 44 -30 8.8 MS230 E 7093<br>80273 S IC SM S 86 86 N P 4 10 10 10 10 0 40 -10 8.8 MS230 E 7093<br>80273 S IC SM S 86 86 N P 3 11 11 11 0 0 0 33 15 88 MS230 E 8995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |   | -             |    |    | S | 69 | 89 | N |   |                                       |   | _   |    |      |      |    |   |    |     |     |         |        |
| 80273 S IC SM S 86 86 N P 4 10 10 10 10 0 40 -10 8.8 MS230 E 7093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |   |               |    |    | S | 86 | 86 | N |   |                                       |   |     |    | -    | -    |    |   |    | _   |     |         |        |
| 0 07 N P 3 11 11 11 0 0 33 15 88 MS230 F 8995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |   |               |    |    | S | 86 | 86 | N |   |                                       |   |     | -  |      | -    |    |   |    | _   |     |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80275 | S | IC            | SM |    | S | 87 | 87 | N |   | P                                     |   | 3   | 11 | 11   | 1 11 | 0  | 0 | 33 | 15  | 8.8 | MS230   | E 8995 |



| 80277          | S | IC       | CNA      | T |        |          |          |   |   |   |   |      |      |      |      |      |             |     |             |       |          |
|----------------|---|----------|----------|---|--------|----------|----------|---|---|---|---|------|------|------|------|------|-------------|-----|-------------|-------|----------|
| 80278          | S | IC       | SM       | - | S      | 89       | 89       | N |   | Р | 5 | 10   | 10   | 10   | 10   | 10   | 50          |     | 7.6         | MS230 | E 8195   |
|                | M | _        | SM       |   | S      | 89       | 89       | N |   | Р | 5 | 10   | 10   | 10   | 10   | 10   | 50          | 30  | 7.6         | MS230 | E 6795   |
| 8028           | S | RV       |          |   | С      | 61       | 61       | Н |   | С | 3 | 15.8 | 19.5 | 15.8 | 0    | 0    | 51.1        | -15 | 13.4        | HS20  | A 385099 |
| 80288          | 1 | IC       | SM       |   | S      | 82       | 89       | N |   | Р | 4 | 6    | 8    | 8    | 6    | 0    | 28          |     | 7.7         | MS230 | E 1689   |
| 80289          | S | IC       | SM       |   | S      | 86       | 86       | R |   | Р | 3 | 11   | 10   | 11   | 0    | 0    | 32          | 30  | 8.9         | MS230 | E 15096  |
| 80290          | S | IC       | SM       | - | S      | 87       | 87       | С |   | Р | 2 | 11   | 11   | 0    | 0    | 0    | 22          | -30 | 5.6         | MS230 | E 2089   |
| 80291          | S | IC       | SM       | - | S      | 87       | 87       | С |   | Р | 2 | 11   | 11   | 0    | 0    | 0    | 22          | 1   | 6.5         | MS230 | E 2089   |
| 80292          | S | IC       | SM       |   | S      | 87       | 87       | N |   | Р | 3 | 11   | 10   | 11   | 0    | 0    | 32          |     | 8.9         | MS230 | E 4699   |
| 80296          | S | IC       | SM       |   | S      | 87       | 87       | N |   | Р | 3 | 8    | 11   | 8    | 0    | 0    | 27          |     | 7.8         | MS230 | E 2099   |
| 80299          | S | IC       | SM       |   | S      | 86       | 86       | N |   | Р | 3 | 11   | 10   | 11   | 0    | 0    | 32          |     | 8.9         | MS230 | E 6999   |
| 80301          | S | IC       | SM       |   | S      | 86       | 86       | С |   | Р | 3 | 8    | 11   | 8    | 0    | 0    | 27          | -30 | 5.4         | MS230 | E 3889   |
| 80325          | S | IC       | SM       | - | S      | 85       | 85       | N |   | Р | 3 | 8    | 11   | 8    | 0    | 0    | 27          |     | 7.6         | MS230 | E 2593   |
| 80326          | S | IC       | SM       |   | S      | 86       | 86       | N |   | Р | 3 | 11   | 11   | 11   | 0    | 0    | 33          |     | 7.6         | MS230 | E 1593   |
| 80327          | S | IC       | SM       |   | S      | 86       | 86       | N |   | Р | 3 | 11   | 11   | 11   | 0    | 0    | 33          | 30  | 8.8         | MS230 | E 4088   |
| 80328          | S | IC       | SM       |   | S      | 89       | 89       | N |   | Р | 4 | 8    | 11   | 11   | 11   | 0    | 41          | -12 | 7.6         | MS230 | E 2592   |
| 80329          | S | IC       | SM       |   | S      | 86       | 86       | N |   | Р | 3 | 10   | 11   | 10   | 0    | 0    | 31          |     | 7.6         | MS230 | E 293    |
| 80334          | S | IC       | SM       |   | S      | 89       | 89       | N |   | Р | 4 | 10   | 11   | 11   | 10   | 0    | 42          | -17 | 7.6         | MS230 | E 2592   |
| 80335          | S | IC       | SM       |   | S      | 84       | 84       | N |   | Р | 4 | 10   | 10   | 10   | 10   | 0    | 40          |     | 8.8         | MS230 |          |
| 80336          | S | IC       | SM       |   | S      | 84       | 84       | N | - | Р | 4 | 10   | 10   | 10   | 10   | 0    | 40          | 4   | 7.6         | MS230 |          |
| 80337          | S | IC       | SM       |   | S      | 84       | 84       | N |   | Р | 4 | 10   | 10   | 10   | 10   | 0    | 40          |     | 7.6         | MS230 |          |
| 80338          | S | IC       | SM       |   | S      | 84       | 84       | N |   | Р | 4 | 10   | 10   | 10   | 10   | 0    | 40          |     | 7.6         | MS230 |          |
| 80339          | S | IC       | SM       |   | S      | 84       | 84       | С |   | Р | 4 | 10   | 10   | 10   | 10   | 0    | 40          |     | 8.8         | MS230 |          |
| 80340          | S | IC       | SM       |   | S      | 85       | 85       | N |   | P | 4 | 10   | 10   | 10   | 10   | 0    | 40          |     | 7.6         | MS230 |          |
| 80341          | S | IC       | SM       |   | S      | 85       | 85       | N |   | Р | 4 | 10   | 10   | 10   | 10   | 0    | 40          |     | 7.6         | MS230 |          |
| 80342          | S | IC       | SM       |   | S      | 85       | 85       | N |   | P | 4 | 11   | 11   | 11   | 11   | 0    | 44          | -21 | 7.6         | MS230 |          |
| 80352          | S | IC IC    | SM       |   | S      | 90       | 90       | N |   | Р | 3 | 8    | 8    | 8    | 0    | 0    | 24          | 35  | 7.6         | MS230 | E 0589   |
| 80354          | S | IC IC    | SM       |   | S      | 90       | 90       | N | - | P | 2 | 11   | 11   | 0    | 0    | 0    | 22          | 30  | 8.8         | MS230 | E 3389   |
| 80355          | S | IC       | SM       |   | S      | 90       | 90       | N |   | P | 3 | 10   | 8    | 10   | 0    | 0    | 28          |     | 7.6         | MS230 | E 2589   |
| 80356          | S | IC       | SM<br>SM |   | S      | 90       | 90       | N |   | P | 2 | 8    | 10   | 0    | 0    | 0    | 18          | 00  | 7.6         | MS230 | E 2089   |
| 80357          | S | IC<br>RV | RB       |   | C      | 90       | 90       | H |   | C | 3 | 8    | 11   | 8    | 0    | 0    | 27          | 30  | 7.6         | MS230 | E 3589   |
| 8036           | M |          | SM       |   | S      | 59<br>84 | 59       |   |   | P | 3 | 19.5 | 24.4 | 19.5 | 0    | 0    | 63.4        | 00  | 7.3         | HS20  | A 30098  |
| 80403          | S | IC       |          |   | S      | 86       | 84<br>86 | C |   | P | 3 | 11   | 11   | 11   | 0    | 0    | 33          | -30 | 10          | MS230 | A 42099  |
| 80418          | S | IC       | SM<br>SM |   | S      | 89       | 89       | C |   | P | 4 | 11   | 11   | 10   | 0    | 0    | 30          | 20  | 5.4         | MS230 | -        |
| 80445<br>80454 |   | IC       | SM       |   | S      | 89       | 89       | N |   | P | 4 | 8    | 10   | 10   | 8    | 0    | 44          | -30 | 7.6         | MS230 | 10000    |
|                | S | IC       | SC       |   | S      | 92       | 92       | N |   | P | 3 | 12   | 10   | 12   | 0    | 0    | 36          |     | 8.8         | MS230 | A 10099  |
| 8062           |   | IC GS    | WG       |   | C      | 86       | 88       | A |   | C | 2 | 60   | 52   | 0    | 0    | 0    | 112         | 42  | 8           | CS750 | E 3091   |
| 80643          | M | _        | DBC      |   | S      | 92       | 92       | A |   | P | 1 | 40   | 0    | 0    | 0    | 0    | 40          | 42  | 7.6<br>12.5 | MS300 | A 338099 |
| 80644E         | M | RV       |          |   | S      | 86       | 87       | A |   | P | 1 | 40   | 0    | 0    | 0    | 0    |             | 20  |             | CS750 | A 550099 |
| 80644W         | M | RV       | DBT      |   | C      | 69       | 69       | C |   | C | 7 | 25   | 25   | 25   | 43.3 | 18.3 | 40<br>186.6 | 20  | 13.2        | MS300 | A 550099 |
| 80657          | M | RO       | WG       |   |        |          |          | A |   |   | 2 | 40   | 30   | 0    |      | -    |             | 42  |             | SP069 | E 15094  |
| 80757          | M | GS       | WG       |   | C<br>S | 85<br>75 | 86<br>75 | A |   | P | 3 | 24.4 | 24.4 | 24.4 | 0    | 0    | 70<br>73.2  | 42  | 11.8        | MS300 | A 40000  |
| 8077           | M | RV       | RD       |   |        | 84       | 84       | N |   | P | 2 | 11   | 11   | 0    | 0    | 0    | 22          |     | 8.5         | HS25  | A 10099  |
| 80838          | S | IC       | SM       |   | S<br>C | 87       | 87       | A |   | P | 2 | 26   | 26   | 0    | 0    | 0    | 52          |     | 5.5         | MS230 |          |
| 80845          | M | RV       | DBT      |   | C      | 87       | 88       | A |   | C | 3 | 34   | 42   | 34   | 0    | 0    | 110         | -25 | 11          | MS400 |          |
| 80846          | M | RV       | WG       |   |        | 89       | 89       | C |   | P | 3 | 10   | 10   | 10   | 0    | 0    | 30          | 20  | 7.6         | MS400 |          |
| 80878          |   | RV       | SM       |   | S      | 86       | 86       | C |   | P | 2 | 10   | 10   | 0    | 0    | 0    | 20          | -15 | 5.4         | MS230 |          |
| 80915          | S | IC       | SM       |   | 3      | 00       |          |   |   |   | - | 10   | 10   |      |      |      | 2.0         | -15 | 3.4         | MS230 | E 0289   |



| 80919  | S | IC | SM       |   |   | 0.0 | 0.0 |   |   |     |   |    |            |          |      |      |    |          |      | 5.4  | 140000 T      |                      |
|--------|---|----|----------|---|---|-----|-----|---|---|-----|---|----|------------|----------|------|------|----|----------|------|------|---------------|----------------------|
|        | S | IC | SM       |   | S | 86  | 86  | C |   | P   |   | 3  | 11         | 11       | 11   | 0    | 0  | 33       |      | 5.4  | MS230         | F 4700               |
| 80920  | M | GS |          |   | S | 87  | 87  | N |   | Р   |   | 3  | 11         | 11       | 11   | 0    | 0  | 33       | - 10 | 8.8  | MS230         | E 1799               |
| 80946  | S | IC | WG       |   | C | 87  | 88  | A | - | С   |   | 2  | 42         | 42       | 0    | 0    | 0  | 84       | -19  | 7.6  |               | A 338099<br>E 591    |
| 80947  | S | IC | SM       | - | S | 89  | 89  | N |   | P   |   | 3  | 11         | 11       | 11   | 0    | 0  | 33       |      | 6.6  | MS230         |                      |
| 80961  | M | GS | SM<br>WG | - | S | 86  | 86  | C |   | P   |   | 2  | 10         | 10       | 0    | 0    | 0  | 20       | 24   | 5.4  | MS230 CS750   | E 0589<br>A 241099   |
| 80965  | M | RO | DBT      |   | C | 92  | 93  | A | - | С   |   | 2  | 42         | 42       | 0    | 0    | 0  | 84       | -21  | 19.4 | MS300         | E 25000              |
| 81102  | M | RV | WG       | - | C | 86  | 87  | C | - | P   |   | 3  | 20         | 28       | 20   | 0    | 0  | 68       | 27   | 10.1 | MS350         | E 5099               |
| 81103  | M | RV | WG       |   | S | 87  | 88  | C |   | C   |   | 3  | 20         | 36       | 20   | 0    | 0  | 76<br>42 | 10   | 9    | MS350         | E 9399               |
| 81129  | M | RV | WG       | - | C | 91  | 93  | A |   | C   |   | 1  | 42         | 0        | 78   | 63   | 0  | 282      | 10   | 11   | CS999         | E 20095              |
| 81131  | M | RV | WG       | - | C | 87  | 88  | A | - | C   |   | 3  | 63<br>43   | 78<br>54 | 43   | 0    | 0  | 140      | -20  | 9    | MS300         | A 58099              |
| 81204  | S | IC | SM       |   | S | 88  | 88  | N | - | P   |   | 5  | 11         | 11       | 11   | 11   | 11 | 55       | 40   | 9.9  | MS230         | A 17099              |
| 81237  | M | RV | CBC      |   | C | 89  | 91  | A | - | P   |   | 2  | 40         | 40       | 0    | 0    | 0  | 80       | 40   | 9.5  | CS750         | A 50099              |
| 81239  | М | RV | WG       |   | C | 89  | 92  | A |   | C   |   | 7  | 82         | 112      | 112  | 112  | 92 | 734      | -25  | 11   | CS999         | A 67099              |
| 81241  | M | RV | WG       |   | C | 89  | 90  | A |   | C   |   | 3  | 18         | 22       | 18   | 0    | 0  | 58       |      | 9    | CS750         | E 25091              |
| 81282E | М | RO | CBT      |   | S | 89  | 89  | A |   | P   |   | 1  | 20         | 0        | 0    | 0    | 0  | 20       | -32  | 10.8 | MS300         | A 67099              |
| 81282W | М | RO | CBT      |   | S | 89  | 89  | A |   | P   |   | 1  | 20         | 0        | 0    | 0    | 0  | 20       | -29  | 11   | MS300         | A 67099              |
| 81284  | M | RV | CBC      |   | C | 90  | 91  | C |   | P   |   | 3  | 21         | 26       | 21   | 0    | 0  | 68       |      | 11   | CS750         | E 10000              |
| 81287  | M | RV | WG       |   | С | 89  | 90  | C |   | C   |   | 2  | 34         | 26       | 0    | 0    | 0  | 60       |      | 9    | CS750         | E 7099               |
| 8132   | M | RV | WG       |   | С | 50  | 83  | С |   | Р   |   | 4  | 53.9       | 53.9     | 53.9 | 53.9 | 0  | 215.6    |      | 7.5  | MS230         | A 22099              |
| 81351  | М | GS | CBC      |   | С | 90  | 91  | А |   | Р   |   | 2  | 22         | 22       | 0    | 0    | 0  | 44       |      | 10   | CS750         | A 152587             |
| 81464  | М | RO | CBT      |   | S | 89  | 89  | А |   | Р   |   | 1  | 18.6       | 0        | 0    | 0    | 0  | 18.6     | 6    | 24.6 | MS300         | E 50099              |
| 81532  | M | RV | SCC      |   | С | 93  | 93  | l |   | Р   |   | 3  | 12         | 12       | 12   | 0    | 0  | 36       |      | 11.9 | CS750         | E 9094               |
| 81533  | М | RV | SCC      |   | С | 92  | 92  | J |   | Р   |   | 4  | 12         | 12       | 12   | 10   | 0  | 46       |      | 13.4 | CS750         | E 25095              |
| 81555E | M | RV | WG       |   | С | 96  | 97  | А |   | С   |   | 3  | 52         | 66       | 52   | 0    | 0  | 170      | 15   | 12.4 | CS750         | A 900099             |
| 81555W | М | RV | WG       |   | С | 96  | 97  | А |   | С   |   | 3  | 52         | 66       | 52   | 0    | 0  | 170      | 15   | 12.4 | CS750         | A 900099             |
| 81556W | M | GS | WG       |   |   | 96  | 97  |   |   | С   |   | 3  | 35         | 60       | 40   | 0    | 0  | 135      | 65   | 12.4 | CS750         | A 900099             |
| 81584  | M | RV | SMC      |   | С | 89  | 90  | Α |   | Р   |   | 15 | 10         | 12.6     | 12.6 | 12.6 | 10 | 182.5    |      | 9.6  | MS300         | A 93099              |
| 81588E | M | GS | WG       |   | С | 93  | 94  | Α |   | С   |   | 2  | 34         | 34       | 0    | 0    | 0  | 68       |      | 16.1 | CS750         | A 900099             |
| 81588W | M | GS | WG       |   | С | 93  | 94  | A |   | С   |   | 2  | 34         | 34       | 0    | 0    | 0  | 68       |      | 12.4 | CS750         | A 900099             |
| 8170   | S | RV | PG       |   |   | 55  | 55  | С |   | Р   |   | 1  | 6.1        | 0        | 0    | 0    | 0  | 6.1      |      | 6.4  | HS20          | E 10087              |
| 81798  | M | RV | SCC      |   | С | 92  | 92  |   |   | Р   |   | 2  | 12         | 12       | 0    | 0    | 0  | 24       | -    | 11.9 | CS750         | E 25095              |
| 81894E | M | GS | CBC      |   |   | 96  | 97  |   |   | Р   |   | 1  | 33.5       | 0        | 0    | 0    | 0  | 33.5     | 5    | 12.4 | CS750         | A 900099             |
| 81894W | M | GS | CBC      |   |   | 96  | 97  |   |   | P   |   | 1  | 33.5       | 0        | 0    | 0    | 0  | 33.5     | 2    | 12.4 | CS750         | A 900099             |
| 81897  | M | RV | WG       |   | С | 92  | 93  |   |   | C   |   | 4  | 42         | 52       | 52   | 42   | 0  | 188      | 1 20 | 9    | CS750         | A 19099              |
| 8196   | M | RV | WG       |   | С | 58  | 87  | A | - | C   |   | 4  | 34         | 24.8     | 24.9 | 28   | 0  | 111.7    | 30   | 13   | MS300         | A 133099             |
| 820    | M | RV | DBC      |   | С | 97  | 97  |   |   | C   |   | 3  | 20         | 26       | 0    | 0    | 0  | 26.8     | -30  | 11.8 | CS750<br>HS20 | A 146099             |
| 8244   | C | RV | RPA      |   | S | 97  | 97  | A |   | P   |   | 3  | 5.2<br>6.1 | 6.1      | 6.1  | 0    | 0  | 18.3     |      | 11.0 | HS20          | A 107099<br>A 204099 |
| 8246   | S | RV | HC       |   | S | 64  | 64  | F |   | P   |   | 1  | 8.5        | 0.1      | 0.1  | 0    | 0  | 8.5      |      | 15.6 | HS20          | A 204099             |
| 826    | S | RV | PGO      |   | S | 60  | 60  | C |   |     |   | 3  | 21         | 24       | 21   | 0    | 0  | 66       | 50   | 8.5  |               | E 50089              |
| 8261   | M | RV | WG       |   | С | 85  | 85  | С |   | С   |   | 3  | 18.3       | 18.3     | 18.3 | 0    | 0  | 54.9     | 30   | 9.1  |               |                      |
| 8303   | M | RV | PO       |   | S | 60  | 60  | J |   | C   |   | 3  | 8          | 11       | 8    | 0    | 0  | 27       | 15   | 9.1  | MS300         |                      |
| 8340   | M | RV | SMC      |   | С | 85  | 85  | C |   | P   |   | 3  | 15.2       | 15.2     | 15.2 | 0    | 0  | 45.6     | -20  | 9.0  | HS25          | E 20088              |
| 835    | M | RV | RD       |   | S | 75  | 75  | A |   | P P |   | 3  | 8          | 8        | 8    | 0    | 0  | 24       | -20  | 12.5 |               |                      |
| 8353   | S | RV | SMO      |   | P | 83  | 83  | C |   | P   |   | 2  | 6          | 6        | 0    | 0    | 0  | 12       |      | 11.9 | MS225         |                      |
| 8414   | S | RV | SM       |   | S | 88  | 88  | N |   | C   |   | 3  | 128        | 183      | 128  | +    | 1  | 439      |      | 134  | HS20          | A 445098             |
| 8435E  | M | RV | CT       |   | С | 56  | 56  | A |   |     | L | 3  | 120        | 100      | 120  |      |    | 1 409    |      | 134  | 111020        | T 443098             |



| 8459  | M | RV | WG  |     | С   | 0.7 | 1 00 |   |    |   | 1        |   |              |              |              |      |      |       |     | 0        | 140000       | A 55000              |
|-------|---|----|-----|-----|-----|-----|------|---|----|---|----------|---|--------------|--------------|--------------|------|------|-------|-----|----------|--------------|----------------------|
| 847   | M | RV | SCC |     | C   | 87  | 88   | N |    | С |          | 3 | 17           | 22           | 17           | 0    | 0    | 56_   |     | 9        |              | A 55099<br>A 88099   |
| 8487  | M | RV | FM  |     | S   | 95  | 95   | 1 |    | Р |          | 3 | 12           | 12           | 12           | 0    | 0    | 36    |     | 10       | CS750        | A 88099<br>E 4097    |
| 8495  | M | RV | RB  |     | S   | 81  | 81   | N | -  | P |          | 2 | 32           | 32           | 0            | 0    | 0    | 64    |     | 9        | MS230        | A 110099             |
| 851   | M | RV | PM  |     | S   | 58  | 58   | E |    | С |          | 3 | 15.2         | 15.2         | 15.2         | 0    | 0    | 45.6  |     | 7.9      | HS20<br>HS20 | E 10091              |
| 8558  | S | RV | VS  | -   |     | 72  | 72   | C |    | Р |          | 3 | 15.2         | 18.3         | 15.2         | 0    | 0    | 48.7  |     | 8.2      |              |                      |
| 8641  | M | RV | FC  |     | S   | 74  | 74   | A |    | P |          | 3 | 9.1          | 9.1          | 9.1          | 0    | 0    | 27.3  |     | 11.3     | HS25<br>HS20 | A 109099<br>A 168099 |
| 8707  | M | RV | WG  |     | C   | 67  | 67   | J | -  | С |          | 3 | 12.2         | 25.9         | 12.2         | 0    | 0    | 50.3  | 45  | 9.1      | MS230        | A 22099              |
| 8708  | M | RV | PM  |     | -   | 80  | 81   | C |    | С |          | 3 | 16           | 26           | 16           | 0    | 0    | 58    | -15 | 9<br>8.6 | HS20         | E 10097              |
| 8719  | M | RV | RB  |     | S   | 51  | 71   | A |    | P |          | 1 | 9.1          | 0            | 0            | 0    | 0    | 9.1   | 45  | 8.5      |              | A 142099             |
| 873   | M | IC | SMC | -   | S   | 86  | 54   | E |    | C |          | 3 | 15.2         | 18.3         | 15.2         | 0    | 0    | 48.7  | -32 | 12.1     |              | A 473099             |
| 875   | M | RV | DBT |     | S   | 87  | 86   | A |    | P | -        | 4 | 11           | 11           | 11           | 11   | 0    | 42    | -52 | 13.2     | MS350        | A 166099             |
| 876   | M | RV | PM  | -   | S   | 69  | 69   | A |    | P |          | 3 | 42           | 0            | 0            | 0    | 0    | 45.6  |     | 11       | HS20         | A 447099             |
| 8779  | M | RV | WG  |     | C   | 88  | 88   | A | -  | C |          | 3 | 15.2<br>24.3 | 15.2<br>30.5 | 15.2<br>24.3 | 0    | 0    | 79.1  |     | 15.5     |              | A 443099             |
| 878   | M | RV | PM  |     | S   | 63  | 63   | C | -  | P |          | 3 | 12.2         | 16.8         | 12.2         | 0    | 0    | 41.2  |     | 9.1      | HS20         | E 16095              |
| 8781  | M | RV | PM  | PE  | - 3 | 64  | 64   | N | N  | P | P        | 3 | 12.2         | 16.8         | 12.2         | 0    | 0    | 41.2  |     | 8.2      | HS20         | A 35099              |
| 8792  | M | RV | CF  | 1 6 | S   | 65  | 65   | A | 14 | C |          | 1 | 12.2         | 0            | 0            | 0    | 0    | 12.2  |     | 13.4     | HS20         | A 646099             |
| 8800  | M | RV | PO  |     | S   | 62  | 62   | A |    | C |          | 4 | 34.1         | 34.1         | 34.1         | 34.1 | 0    | 136.4 |     | 7.9      | HS20         | A 85099              |
| 8822  | S | RV | SM  |     | S   | 86  | 86   | N |    | P |          | 3 | 8            | 10           | 8            | 0    | 0    | 26    | -10 | 8.8      | MS230        | E 10089              |
| 8839  | M | RV | DBT |     | S   | 85  | 85   | N |    | P |          | 1 | 34           | 0            | 0            | 0    | 0    | 34    | -10 | 8.3      | MS300        | E 5096               |
| 8866  | S | RV | HC  |     | S   | 67  | 67   | A |    | P | -        | 3 | 10.1         | 10.1         | 10.1         | 0    | 0    | 30.3  |     | 10       | HS20         | A 40099              |
| 887   | M | RV | CT  |     | C   | 57  | 57   | H | -  | C |          | 5 | 27.4         | 37.8         | 37.8         | 37.8 | 27.4 | 168.2 |     | 9.1      | HS20         | A 205099             |
| 8987  | M | RV | RB  | HC  |     | 73  | 73   | C | N  | C | P        | 3 | 8.5          | 24.4         | 8.5          | 0    | 0    | 41.4  | 15  | 7.3      | HS20         | E 5087               |
| 9001  | S | RV | SC  | 1   | S   | 93  | 93   | N |    | P | <u> </u> | 3 | 10.7         | 12.2         | 10.7         | 0    | 0    | 33.6  |     | 8        | CS750        | A 80099              |
| 903   | M | RV | RB  | 1   | S   | 54  | 54   | Н |    | С |          | 5 | 18.3         | 24.4         | 24.4         | 24.4 | 21.3 | 112.8 |     | 9.1      | HS20         | A 112099             |
| 904   | M | RV | RB  |     | S   | 54  | 54   | Н |    | С |          | 3 | 15.2         | 24.4         | 15.2         | 0    | 0    | 54.8  |     | 9.1      | HS20         | A 112099             |
| 9096  | M | RV | PM  |     |     | 63  | 63   | А |    | Р |          | 3 | 15.2         | 15.2         | 15.2         | 0 .  | 0    | 45.6  | -30 | 9.1      | HS20         | A 30099              |
| 9099  | M | RV | PO  |     | S   | 59  | 59   | J |    | Р |          | 1 | 30.5         | 0            | 0            | 0    | 0    | 30.5  |     | 7.3      | HS20         | A 55099              |
| 9116  | M | RV | SCC |     | С   | 93  | 93   | С |    | Р |          | 3 | 12           | 12           | 12           | 0    | 0    | 36    |     | 11.9     | CS750        | A 159099             |
| 915   | M | RV | SCC |     | S   | 96  | 96   | 1 |    | Р |          | 1 | 14           | 0            | 0            | 0    | 0    | 14    |     | 13.4     | CS750        | A 167099             |
| 9199  | M | RV | SCC |     | S   | 93  | 93   | 1 |    | Р |          | 1 | 14           | 0            | 0            | 0    | 0    | 14    | -15 | 11.9     | CS750        | A 120099             |
| 9204  | M | RV | PQ  |     | S   | 56  | 56   | А |    | Р |          | 3 | 15.2         | 15.2         | 15.2         | 0    | 0    | 45.6  |     | 7.3      | HS20         | A 84099              |
| 9216  | S | RV | НС  |     |     | 69  | 69   | N |    | Р |          | 3 | 6.1          | 8.5          | 6.1          | 0    | 0    | 20.7  |     | 7.4      | HS20         | E 3897               |
| 9219W | M | RV | DBT |     | S   | 82  | 83   | Н |    | Р |          | 1 | 300          |              |              |      |      | 300   |     | 131      | MS300        | A 816098             |
| 9230  | M | RV | FC  | HC  | S   | 65  | 65   | N | N  | Р | Р        | 3 | 8.5          | 24.4         | 8.5          | 0    | 0    | 41.4  |     | 7.3      | HS20         |                      |
| 9259  | M | RV | VF  |     | S   | 76  | 76   | J |    | Р |          | 2 | 36.6         | 36.6         | 0            | 0    | 0    | 73.2  | 20  | 8.5      | HS25         | A 56099              |
| 9309  | M | RV | WG  |     | С   | 87  | 88   | Α |    | С |          | 3 | 16           | 19           | 16           | 0    | 0    | 51    | 30  | 9        | MS300        | A 49099              |
| 9333  | M | RV | FCO | CBC | S   | 69  | 98   | С | 1  | Р | Р        | 5 | 20           | 29           | 29           | 29   | 29   | 136   |     | 8.6      | CS615        | A 35099              |
| 9337  | М | RV | PE  |     |     | 64  | 64   | R |    | Р |          | 3 | 12.8         | 12.8         | 12.8         | 0    | 0    | 38.4  |     | 11       | HS20         | A 156099             |
| 934   | S | RV | HC  |     | S   | 63  | 63   | N |    | Р |          | 1 | 11.6         | 0            | 0            | 0    | 0    | 11.6  |     | 10.1     | HS20         | A 21099              |
| 9343  | М | RV | DBC |     | S   | 89  | 90   | N |    | Р |          | 3 | 18           | 18           | 18           | 0    | 0    | 54    |     | 9.1      | CS750        |                      |
| 9345  | М | RV | DBT |     | S   | 83  | 84   | Н |    | P |          | 2 | 34           | 42           | 0            | 0    | 0    | 76    | -30 | 10.7     |              | A 42099              |
| 9346  | М | RV | FM  |     | S   | 83  | 83   | Н |    | Р |          | 1 | 38           | 0            | 0            | 0    | 0    | 38    | -   | 11       | MS230        | A 42099              |
| 9399  | М | RV | FR  |     | С   | 95  | 95   | Α |    | С |          | 3 | 17           | 22           | 17           | 0    | 0    | 56    | -45 | 10       | CS750        | A 146099             |
| 945   | M | RV | DBT |     | S   | 82  | 83   | С |    | Р |          | 3 | 14           | 16           | 16           | 0    | 0    | 46    | -   | 8.6      | MS230        |                      |
| 9464  | M | RV | SCC |     | С   | 94  | 94   | С |    | Р |          | 3 | 13           | 14           | 13           | 0    | 0    | 40    |     | 9.5      | CS750        | A 18099              |
| 9474  | M | RV | PMO |     | S   | 71  | 71   | J |    | Р |          | 3 | 12.2         | 15.2         | 12.2         | 0    | 0    | 39.6  |     | 7.3      | HS20         | A 20099              |



| 9487 | М | RV | WG    |      | С        | 21 | 71 | A |    | <u> </u> | T | 1 4 | 50.0 | 50.0 |      | 500  |      | 0000  | 47  | 7.0  | 11000 | A 20000  |
|------|---|----|-------|------|----------|----|----|---|----|----------|---|-----|------|------|------|------|------|-------|-----|------|-------|----------|
| 9551 | M | RV | TH    | RB   |          | 59 | 59 | R | -  | 0        |   | 4   | 50.9 | 50.9 | 50.9 | 50.9 | 0    | 203.6 | -17 | 7.3  | HS20  | A 20099  |
| 9590 | M | RV | WG    | 110  | С        |    |    |   | A  | C        | C | 4   | 27.4 | 61   | 61   | 27.4 | 0    | 176.8 |     | 7.3  |       | A 160099 |
| 9591 | M | RV |       |      | <u> </u> | 58 | 79 | N |    | С        |   | 2   | 49   | 53   | 0    | 0    | 0    | 102   |     | 9    | MS23  | E 12494  |
|      |   |    | PM    |      |          | 72 | 72 | A |    | Р        |   | 3   | 12.2 | 13.7 | 10.7 | 0    | 0    | 36.6  | 15_ | 8.2  | HS20  | A 35099  |
| 9596 | М | RV | PM PM |      |          | 70 | 70 | A |    | Р        |   | 3   | 13.7 | 16.8 | 13.7 | 0    | 0    | 44.2  |     | 9.1  | HS20  | A 124099 |
| 962  | M | RV | RB    |      | С        | 62 | 62 | P |    | С        |   | 3   | 14.6 | 18.3 | 14.6 | 0    | 0    | 47.5  |     | 7.9  | HS20  | A 40099  |
| 9755 | С | RV | SP    |      |          | 99 | 99 | Α | А  |          | С | 1   | 8.5  | 0    | 0    | 0    | 0    | 64    | -11 | 8    |       | A 86099  |
| 977  | M | RV | WG    |      | С        | 77 | 78 | E |    | С        |   | 4   | 45.7 | 56.4 | 56.4 | 45.7 | 0    | 204.2 | 25  | 11   | HS25  | A 491099 |
| 983  | М | RV | PO    |      | S        | 59 | 59 | Α |    | Р        |   | 2   | 21,3 | 21.3 | 0    | 0    | 0    | 42.6  |     | 7.9  | HS20  | A 106099 |
| 9836 | S | RV | VH    |      |          | 74 | 74 | А |    | Р        |   | 1   | 6.1  | 0    | 0    | 0    | 0    | 6.1   |     | 13.7 | HS25  | A 318099 |
| 9847 | М | RV | TH    | SC   | S        | 44 | 44 | Е | C  | C        | C | 6   | 8.5  | 8.5  | 53.3 | 53.3 | 53.3 | 230.4 |     | 5.7  | 11020 | A 179099 |
| 9850 | М | RV | DBT   |      | S        | 85 | 85 | N |    | P        |   | 3   | 16   | 38.5 | 16   | 00.0 | 0    | 70.5  |     | 8.6  | MS300 | E 10094  |
| 988  | S | RV | SM    |      | S        | 87 | 87 | C |    | P        |   | 1   | 11   | 0.0  | 0    | 0    | 0    | 11    | 15  | 7.6  | MS23  | E 2089   |
| 9899 | М | RV | RB    |      | C        | 55 | 72 | - |    | <u> </u> |   | 2   |      | 074  | 240  | 0    | 0    |       | 13  |      |       | A 455098 |
| 9903 | М | RV | RB    | SM   | S        | 56 |    | A | Δ. | 0        |   | 3   | 219  | 274  | 219  |      |      | 712   | 40  | 134  | HS20  |          |
| 9910 | M | RV | RB    | SIVI |          |    | 56 |   | A  | C        | С | 3   | 11.3 | 27.4 | 27.4 | 0    | 0    | 66.1  | -43 | 10   | HS20  | E 10096  |
|      |   |    |       |      | С        | 58 | 58 | E |    | С        |   | 2   | 21.3 | 18.3 | 0    | 0    | 0    | 39.6  |     | 11   | HS20  | A 241099 |
| 992  | M | RV | RB    |      | С        | 55 | 55 | E |    | С        |   | 3   | 21.9 | 27.4 | 21.9 | 0    | 0    | 71.2  |     | 7.3  | HS20  | A 55099  |
| 9939 | S | RV | HC    |      | S        | 72 | 72 | F |    | Р        |   | 3   | 11.6 | 11.6 | 11.6 | 0    | 0    | 34.8  |     | 9.3  | HS20  | A 182099 |
| 9943 | M | RV | RB    |      | С        | 64 | 64 | Ε |    | С        |   | 5   | 21   | 25   | 21   | 16.8 | 16.8 | 100.6 |     | 8.2  | HS20  | A 15099  |
| 999  | M | RV | CT    |      | С        | 56 | 56 | Р |    | C        |   | 3   | 19.5 | 24.4 | 19.5 | 0    | 0    | 63.4  |     | 7.3  | HS20  | E 8097   |



## **AVERAGE CSE TEST RESULTS**

| FileNumber | TestDate | NoOfRdgs | AvgCSE | StDev          | StErr | CoeffVar |
|------------|----------|----------|--------|----------------|-------|----------|
| 00493W     | 1978     | 312      | 0.335  | 0.071          | 0.004 | 21       |
| 00756N     | 1977     | 828      | 0.085  | 0.051          | 0.002 | 60       |
| 00756N     | 1981     | 1232     | 0.147  | 0.065          | 0.002 | 44       |
| 00756N     | 1987     | 1221     | 0.166  | 0.003          | 0.002 | 47       |
| 00756N     | 1991     | 1221     | 0.226  | 0.044          | 0.002 | 19       |
| 00756N     | 1997     | 1221     | 0.151  | 0.077          | 0.002 | 51       |
| 06985E     | 1988     | 1221     | 0.131  | 0.077          | 0.002 | 0        |
| 06985E     | 1998     | 410      | 0.105  | 0.055          | 0.003 | 53       |
| 06985W     | 1977     | 328      | 0.175  | 0.108          | 0.003 | 62       |
| 06985W     | 1978     | 439      | 0.173  | 0.108          | 0.003 |          |
| 06985W     | 1978     | 471      | 0.241  | 0.07           | 0.003 | 26       |
| 06985W     | 1979     | 461      | 0.243  | 0.030          | 0.003 | 30       |
| 06985W     | 1980     | 475      | 0.292  | 0.074          | 0.003 | 645      |
| 06985W     | 1982     | 459      | 0.244  | 0.038          | 0.003 | 25       |
| 06985W     | 1988     | 400      | 0.194  | 0.06           | 0.003 | 0        |
| 06985W     | 1992     | 458      | 0.167  | 0.00           | 0.003 | 42       |
| 06985W     | 1996     | 463      | 0.107  | 0.081          | 0.003 | 41       |
| 08435E     | 1978     | 444      | 0.137  | 0.001          | 0.004 |          |
| 08435E     | 1983     | 444      | 0.213  | 0.073          | 0.003 | 34<br>29 |
| 08435E     | 1986     |          | 0.334  | 0.086          | 0.004 | 0        |
| 08435E     | 1987     |          | 0.38   | 0.084          | 0     | 0        |
| 08435E     | 1988     | 444      | 0.282  | 0.004          | 0.003 | 25       |
| 08435E     | 1992     | 444      | 0.202  | 0.072          | 0.003 |          |
| 08435E     | 1999     | 444      | 0.262  | 0.003          |       | 22       |
| 08435W     | 1988     | 777      | 0.202  | 0.078          | 0.004 | 30       |
| 08435W     | 1999     |          | 0      | 0              | 0     | 0        |
| 09219E     | 1977     |          | 0.161  | 0.073          | 0     | 0        |
| 09219E     | 1985     | 273      | 0.344  | 0.073          |       | 0        |
| 09219E     | 1990     | 213      | 0.344  | 0.102          | 0.006 | 30       |
| 09219W     | 1985     | 312      | 0.231  | 0.073          | 0     | 0        |
| 09219W     | 1989     | 312      | 0.231  | 0.073          | 0.004 | 31       |
| 09219W     | 1997     | 300      | 0.218  |                | 0.005 | 39       |
| 09469N     | 1979     | 385      | 0.172  | 0.069          | 0.004 | 40       |
| 09469N     | 1984     | 385      | 0.242  | 0.039          | 0.003 | 24       |
| 09469N     | 1986     | 385      | 0.337  |                | 0.002 | 14       |
| 09469N     | 1988     | 385      | 0.298  | 0.052<br>0.074 | 0.003 | 18       |
| 09469N     | 1992     | 385      | 0.211  | 0.074          | 0.004 | 35       |
| 09469N     | 1996     | 385      | 0.218  |                |       | 23       |
| 09469N     | 2000     | 385      | 0.218  | 0.088          | 0.004 | 40       |
| 09469S     | 1979     | 385      | 0.207  | 0.046          | 0.002 | 23       |
| 09469S     | 1984     | 385      | 0.241  | 0.056          | 0.003 | 27       |
| 09469S     | 1986     | 385      | 0.331  |                | 0.003 | 16       |
| 09469S     | 1988     | 385      | 0.331  | 0.058          | 0.003 | 17       |
| 09469S     | 1992     | 385      | 0.104  | 0.071          | 0.004 | 39       |
| 09469S     | 1992     | 385      | 0.191  |                | 0.003 | 31       |
| 09469S     | 2000     | 385      | 0.23   | 0.084          | 0.004 | 36       |
| 09899W     | 1979     | 720      | 0.239  | 0.059          | 0.003 | 25       |
| 09899W     | 1979     | 720      | 0.237  | 0.114          | 0.004 | 48       |
| 09899W     |          | 720      | 0.272  | 0.118          | 0.004 | 43       |
| 0303344    | 1986     | 120      | 0.545  | 0.073          | 0.003 | 21       |



| 09899W | 1990 | 720  | 0.215 | 0.119 | 0.004 | 55  |
|--------|------|------|-------|-------|-------|-----|
| 09899W | 1994 | 720  | 0.243 | 0.082 | 0.003 | 34  |
| 09899W | 1998 | 720  | 0.23  | 0.1   | 0.004 | 44  |
| 102    | 1998 |      | 0     | 0     | 0     | 0   |
| 1053   | 1978 | 216  | 0.255 | 0.128 | 0.009 | 50  |
| 1053   | 1983 | 208  | 0.118 | 0.131 | 0.009 | 99  |
| 1053   | 1987 |      | 0.124 | 0.145 | 0     | 0   |
| 1053   | 1991 | 208  | 0.104 | 0.134 | 0.009 | 129 |
| 1053   | 1995 | 208  | 0.153 | 0.131 | 0.009 | 86  |
| 1053   | 2000 | 208  | 0.168 | 0.073 | 0.005 | 43  |
| 1062   | 1979 | 496  | 0.071 | 0.05  | 0.002 | 70  |
| 1062   | 1985 | 488  | 0.086 | 0.056 | 0.003 | 65  |
| 1062   | 1990 | 488  | 0.107 | 0.057 | 0.003 | 53  |
| 1062   | 1995 | 488  | 0.153 | 0.076 | 0.003 | 50  |
| 1062   | 2000 | 488  | 0.167 | 0.041 | 0.002 | 25  |
| 1085   | 1980 | 1088 | 0.236 | 0.058 | 0.002 | 25  |
| 1085   | 1983 | 552  | 0.267 | 0.066 | 0.003 | 25  |
| 1085   | 1986 | 1104 | 0.287 | 0.073 | 0.002 | 25  |
| 1085   | 1990 | 1104 | 0.307 | 0.087 | 0.003 | 28  |
| 1085   | 1994 | 1104 | 0.237 | 0.085 | 0.003 | 36  |
| 1085   | 1998 | 1112 | 0.279 | 0.062 | 0.002 | 22  |
| 1122   | 1978 | 448  | 0.183 | 0.08  | 0.004 | 44  |
| 1122   | 1983 | 424  | 0.285 | 0.042 | 0.002 | 15  |
| 1122   | 1986 | 424  | 0.252 | 0.04  | 0.002 | 16  |
| 1122   | 1990 | 424  | 0.248 | 0.043 | 0.002 | 17  |
| 1122   | 1995 | 424  | 0.207 | 0.042 | 0.002 | 20  |
| 1137   | 1980 | 272  | 0.047 | 0.069 | 0.004 | 99  |
| 1137   | 1986 | 272  | 0.085 | 0.061 | 0.004 | 72  |
| 1137   | 1990 | 272  | 0.035 | 0.065 | 0.004 | 187 |
| 1137   | 1995 | 272  | 0.081 | 0.059 | 0.004 | 73  |
| 1137   | 1999 |      | 0     | 0     | 0     | 0   |
| 1140   | 1999 |      | 0     | 0     | 0     | 0   |
| 1145   | 1977 | 560  | 0.167 | 0.081 | 0.003 | 48  |
| 1145   | 1985 | 864  | 0.284 | 0.087 | 0.003 | 31  |
| 1145   | 1990 | 873  | 0.328 | 0.125 | 0.004 | 38  |
| 1145   | 1994 | 864  | 0.39  | 0.076 | 0.003 | 20  |
| 1145   | 1998 | 864  | 0.229 | 0.074 | 0.003 | 32  |
| 1153   | 1979 | 728  | 0.045 | 0.035 | 0.001 | 78  |
| 1153   | 1985 | 712  | 0.085 | 0.068 | 0.003 | 80  |
| 1153   | 1990 | 728  | 0.124 | 0.073 | 0.003 | 59  |
| 1153   | 1994 | 712  | 0.155 | 0.074 | 0.003 | 48  |
| 1153   | 1998 | 720  | 0.184 | 0.078 | 0.003 | 42  |
| 1158   | 1978 | 396  | 0.221 | 0.121 | 0.006 | 55  |
| 1158   | 1982 | 378  | 0.204 | 0.131 | 0.007 | 64  |
| 1158   | 1987 |      | 0.307 | 0.128 | 0     | 0   |
| 1158   | 1991 | 504  | 0.27  | 0.067 | 0.003 | 25  |
| 1158   | 1995 | 504  | 0.198 | 0.056 | 0.002 | 28  |
| 1158   | 1999 | 504  | 0.194 | 0.052 | 0.002 | 27  |
| 1227   | 1981 | 472  | 0.101 | 0.045 | 0.002 | 45  |
| 1227   | 1989 | 480  | 0.206 | 0.06  | 0.003 | 29  |
| 1227   | 1994 | 480  | 0.201 | 0.06  | 0.003 | 30  |
| 1227   | 1999 | 480  | 0.264 | 0.058 | 0.003 | 22  |
| 1221   | 1000 |      |       | 3.300 |       |     |



| 1241  | 1981 | 495  | 0.118 | 0.052 | 0.002 | 44 |
|-------|------|------|-------|-------|-------|----|
| 1241  | 1989 | 495  | 0.131 | 0.049 | 0.002 | 37 |
| 1241  | 1993 | 495  | 0.09  | 0.056 | 0.003 | 62 |
| 1241  | 1997 | 495  | 0.068 | 0.056 | 0.003 | 82 |
| 1245  | 1978 | 800  | 0.229 | 0.086 | 0.003 | 38 |
| 1245  | 1982 | 794  | 0.297 | 0.056 | 0.002 | 19 |
| 1245  | 1983 | 801  | 0.373 | 0.066 | 0.002 | 18 |
| 1245  | 1987 | 796  | 0.326 | 0.068 | 0.002 | 21 |
| 1245  | 1991 | 794  | 0.243 | 0.065 | 0.002 | 27 |
| 1245  | 1995 | 792  | 0.264 | 0.07  | 0.002 | 26 |
| 1245  | 1999 | 796  | 0.245 | 0.059 | 0.002 | 24 |
| 1303  | 1978 | 516  | 0.212 | 0.081 | 0.004 | 38 |
| 1303  | 1979 | 510  | 0.102 | 0.045 | 0.002 | 44 |
| 1303  | 1980 | 497  | 0.198 | 0.051 | 0.002 | 26 |
| 1303  | 1981 | 498  | 0.186 | 0.051 | 0.002 | 27 |
| 1303  | 1983 | 549  | 0.168 | 0.043 | 0.002 | 26 |
| 1303  | 1987 | 501  | 0.19  | 0.048 | 0.002 | 25 |
| 1303  | 1991 | 492  | 0.18  | 0.05  | 0.002 | 28 |
| 1303  | 1995 | 500  | 0.182 | 0.045 | 0.002 | 25 |
| 1303  | 1999 | 502  | 0.148 | 0.057 | 0.003 | 39 |
| 13117 | 1977 | 338  | 0.293 | 0.157 | 0     | 54 |
| 13117 | 1978 | 494  | 0.297 | 0.133 | 0     | 45 |
| 13117 | 1979 | 475  | 0.241 | 0.075 | 0     | 56 |
| 13117 | 1980 | 481  | 0.288 | 0.088 | 0     | 30 |
| 13117 | 1982 | 468  | 0.302 | 0.059 | 0     | 20 |
| 13117 | 1984 |      | 0     | 0     | 0     | 0  |
| 13117 | 1987 | 468  | 0.25  | 0.059 | 0.003 | 24 |
| 13117 | 1991 | 468  | 0.286 | 0.085 | 0.004 | 30 |
| 13117 | 1995 | 471  | 0.262 | 0.095 | 0.004 | 36 |
| 13117 | 1999 | 473  | 0.334 | 0.087 | 0.004 | 26 |
| 13149 | 1979 | 333  | 0.21  | 0.068 | 0     | 32 |
| 13149 | 1983 | 333  | 0.183 | 0.085 | 0     | 46 |
| 13149 | 1987 | 333  | 0.243 | 0.093 | 0.005 | 38 |
| 13149 | 1991 | 333  | 0.252 | 0.086 | 0.005 | 34 |
| 13166 | 1980 | 651  | 0.147 | 0.052 | 0     | 36 |
| 13166 | 1986 | 651  | 0.15  | 0.067 | 0.003 | 45 |
| 13166 | 1990 | 651  | 0.177 | 0.066 | 0.003 | 37 |
| 13166 | 1994 | 651  | 0.211 | 0.099 | 0.004 | 47 |
| 13166 | 1999 | 658  | 0.219 | 0.088 | 0.003 | 40 |
| 13181 | 1978 | 376  | 0.313 | 0.092 | 0     | 29 |
| 13181 | 1979 | 368  | 0.217 | 0.091 | 0     | 42 |
| 13181 | 1983 | 349  | 0.287 | 0.1   | 0     | 35 |
| 13181 | 1986 | 350  | 0.309 | 0.088 | 0.005 | 29 |
| 13181 | 1990 | 358  | 0.326 | 0.122 | 0.006 | 38 |
| 13181 | 1995 | 357  | 0.376 | 0.072 | 0.004 | 19 |
| 13181 | 1999 | 358  | 0.351 | 0.074 | 0.004 | 21 |
| 13370 | 1979 | 1944 | 0.121 | 0.063 | 0.004 | 52 |
| 13370 | 1983 | 1953 | 0.188 | 0.003 | 0     | 43 |
| 13370 | 1987 | 981  | 0.183 | 0.062 | 0.002 | 34 |
| 13370 | 1991 | 972  | 0.158 | 0.057 | 0.002 | 36 |
| 13370 | 1995 | 972  | 0.135 | 0.045 | 0.002 | 31 |
| 13370 | 1995 | 981  | 0.143 | 0.049 | 0.001 | 30 |
| 13370 | 1999 | 301  | 0.101 | 0.043 | 0.002 | 30 |



| 13742<br>13742                                                                                                                                                                         | 1982<br>1996<br>1981<br>1989<br>1993<br>1996<br>1981<br>1987<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987 | 368<br>368<br>366<br>362<br>362<br>363<br>660<br>650<br>650<br>650<br>587<br>577<br>578<br>578<br>315 | 0.077<br>0.034<br>0.178<br>0.196<br>0.171<br>0.222<br>0.135<br>0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296<br>0.201 | 0.045<br>0.035<br>0.051<br>0.066<br>0.073<br>0.076<br>0.098<br>0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069<br>0.072 | 0.002<br>0.002<br>0<br>0.003<br>0.004<br>0.004<br>0.004<br>0.001<br>0.002<br>0.002<br>0.003<br>0<br>0.003 | 58<br>103<br>29<br>33<br>43<br>34<br>73<br>25<br>45<br>26<br>52<br>26<br>30<br>21 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 13486<br>13486<br>13486<br>13486<br>135<br>135<br>135<br>135<br>135<br>135<br>135<br>135                                                                                               | 1981<br>1989<br>1993<br>1996<br>1981<br>1987<br>1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991 | 366<br>362<br>362<br>363<br>660<br>650<br>650<br>650<br>650<br>587<br>577<br>578<br>578<br>315        | 0.178<br>0.196<br>0.171<br>0.222<br>0.135<br>0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                            | 0.051<br>0.066<br>0.073<br>0.076<br>0.098<br>0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069                            | 0.002<br>0<br>0.003<br>0.004<br>0.004<br>0.004<br>0.001<br>0.002<br>0.002<br>0.003<br>0                   | 103<br>29<br>33<br>43<br>34<br>73<br>25<br>45<br>26<br>52<br>26<br>30             |
| 13486<br>13486<br>13486<br>135<br>135<br>135<br>135<br>135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742 | 1989<br>1993<br>1996<br>1981<br>1987<br>1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991         | 362<br>362<br>363<br>660<br>650<br>650<br>650<br>650<br>587<br>577<br>578<br>578                      | 0.196<br>0.171<br>0.222<br>0.135<br>0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                     | 0.066<br>0.073<br>0.076<br>0.098<br>0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079                                              | 0.003<br>0.004<br>0.004<br>0.001<br>0.002<br>0.002<br>0.003<br>0<br>0.003                                 | 33<br>43<br>34<br>73<br>25<br>45<br>26<br>52<br>26<br>30                          |
| 13486<br>13486<br>135<br>135<br>135<br>135<br>135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                   | 1993<br>1996<br>1981<br>1987<br>1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                 | 362<br>363<br>660<br>650<br>650<br>650<br>650<br>587<br>577<br>578<br>578                             | 0.171<br>0.222<br>0.135<br>0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                              | 0.073<br>0.076<br>0.098<br>0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069                                              | 0.004<br>0.004<br>0.004<br>0.001<br>0.002<br>0.002<br>0.003<br>0<br>0.003                                 | 33<br>43<br>34<br>73<br>25<br>45<br>26<br>52<br>26<br>30                          |
| 13486<br>135<br>135<br>135<br>135<br>135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                            | 1996<br>1981<br>1987<br>1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                         | 363<br>660<br>650<br>650<br>650<br>650<br>587<br>577<br>578<br>578                                    | 0.222<br>0.135<br>0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                                       | 0.076<br>0.098<br>0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069                                                       | 0.004<br>0.004<br>0.001<br>0.002<br>0.002<br>0.003<br>0<br>0.003<br>0.003                                 | 43<br>34<br>73<br>25<br>45<br>26<br>52<br>26<br>30                                |
| 135<br>135<br>135<br>135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                   | 1981<br>1987<br>1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                                 | 660<br>650<br>650<br>650<br>650<br>587<br>577<br>578<br>578                                           | 0.135<br>0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                                                | 0.098<br>0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069                                                                | 0.004<br>0.001<br>0.002<br>0.002<br>0.003<br>0<br>0.003                                                   | 73<br>25<br>45<br>26<br>52<br>26<br>30                                            |
| 135<br>135<br>135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                   | 1987<br>1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                                         | 650<br>650<br>650<br>650<br>587<br>577<br>578<br>578<br>315                                           | 0.152<br>0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                                                         | 0.038<br>0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069                                                                         | 0.001<br>0.002<br>0.002<br>0.003<br>0<br>0.003<br>0.003                                                   | 25<br>45<br>26<br>52<br>26<br>30                                                  |
| 135<br>135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                          | 1991<br>1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                                                 | 650<br>650<br>650<br>587<br>577<br>578<br>578<br>315                                                  | 0.136<br>0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                                                                  | 0.062<br>0.046<br>0.067<br>0.043<br>0.079<br>0.069                                                                                  | 0.002<br>0.002<br>0.003<br>0<br>0.003<br>0.003                                                            | 25<br>45<br>26<br>52<br>26<br>30                                                  |
| 135<br>135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                                 | 1995<br>2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                                                         | 650<br>650<br>587<br>577<br>578<br>578<br>315                                                         | 0.18<br>0.13<br>0.167<br>0.267<br>0.326<br>0.296                                                                                           | 0.046<br>0.067<br>0.043<br>0.079<br>0.069                                                                                           | 0.002<br>0.003<br>0<br>0.003<br>0.003                                                                     | 45<br>26<br>52<br>26<br>30                                                        |
| 135<br>13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742                                                                                 | 2000<br>1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                                                                 | 650<br>587<br>577<br>578<br>578<br>315                                                                | 0.13<br>0.167<br>0.267<br>0.326<br>0.296                                                                                                   | 0.067<br>0.043<br>0.079<br>0.069                                                                                                    | 0.003<br>0<br>0.003<br>0.003                                                                              | 52<br>26<br>30                                                                    |
| 13587<br>13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742                                                                                        | 1979<br>1985<br>1991<br>1999<br>1981<br>1987<br>1991                                                                         | 587<br>577<br>578<br>578<br>315                                                                       | 0.167<br>0.267<br>0.326<br>0.296                                                                                                           | 0.043<br>0.079<br>0.069                                                                                                             | 0<br>0.003<br>0.003                                                                                       | 52<br>26<br>30                                                                    |
| 13587<br>13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742                                                                                                 | 1985<br>1991<br>1999<br>1981<br>1987<br>1991                                                                                 | 577<br>578<br>578<br>315                                                                              | 0.267<br>0.326<br>0.296                                                                                                                    | 0.079<br>0.069                                                                                                                      | 0.003<br>0.003                                                                                            | 30                                                                                |
| 13587<br>13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                                                                          | 1991<br>1999<br>1981<br>1987<br>1991                                                                                         | 578<br>578<br>315                                                                                     | 0.326<br>0.296                                                                                                                             | 0.069                                                                                                                               | 0.003                                                                                                     |                                                                                   |
| 13587<br>13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                                                                                   | 1999<br>1981<br>1987<br>1991                                                                                                 | 578<br>315                                                                                            | 0.296                                                                                                                                      |                                                                                                                                     |                                                                                                           | 21                                                                                |
| 13625<br>13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                                                                                            | 1981<br>1987<br>1991                                                                                                         | 315                                                                                                   |                                                                                                                                            | 0.072                                                                                                                               | 0.000                                                                                                     |                                                                                   |
| 13625<br>13625<br>13625<br>13625<br>13742<br>13742                                                                                                                                     | 1987<br>1991                                                                                                                 |                                                                                                       | 0.201                                                                                                                                      |                                                                                                                                     | 0.003                                                                                                     | 24                                                                                |
| 13625<br>13625<br>13625<br>13742<br>13742                                                                                                                                              | 1991                                                                                                                         | 315                                                                                                   | 0.201                                                                                                                                      | 0.109                                                                                                                               | 0                                                                                                         | 54                                                                                |
| 13625<br>13625<br>13742<br>13742                                                                                                                                                       |                                                                                                                              | 010                                                                                                   | 0.249                                                                                                                                      | 0.102                                                                                                                               | 0.006                                                                                                     | 41                                                                                |
| 13625<br>13742<br>13742                                                                                                                                                                | 1005                                                                                                                         | 315                                                                                                   | 0.26                                                                                                                                       | 0.094                                                                                                                               | 0.005                                                                                                     | 36                                                                                |
| 13742<br>13742                                                                                                                                                                         | 1995                                                                                                                         | 315                                                                                                   | 0.268                                                                                                                                      | 0.112                                                                                                                               | 0.006                                                                                                     | 42                                                                                |
| 13742                                                                                                                                                                                  | 2000                                                                                                                         | 315                                                                                                   | 0.353                                                                                                                                      | 0.074                                                                                                                               | 0.004                                                                                                     | 21                                                                                |
|                                                                                                                                                                                        | 1977                                                                                                                         | 1372                                                                                                  | 0.131                                                                                                                                      | 0.041                                                                                                                               | 0                                                                                                         | 31                                                                                |
|                                                                                                                                                                                        | 1981                                                                                                                         | 1880                                                                                                  | 0.191                                                                                                                                      | 0.043                                                                                                                               | 0                                                                                                         | 23                                                                                |
| 13742                                                                                                                                                                                  | 1982                                                                                                                         | 1896                                                                                                  | 0.156                                                                                                                                      | 0.038                                                                                                                               | 0                                                                                                         | 24                                                                                |
| 13742                                                                                                                                                                                  | 1989                                                                                                                         |                                                                                                       | 0.347                                                                                                                                      | 0.079                                                                                                                               | 0                                                                                                         | 0                                                                                 |
| 13742                                                                                                                                                                                  | 1993                                                                                                                         | 944                                                                                                   | 0.226                                                                                                                                      | 0.099                                                                                                                               | 0.003                                                                                                     | 44                                                                                |
| 13742                                                                                                                                                                                  | 1998                                                                                                                         | 944                                                                                                   | 0.203                                                                                                                                      | 0.066                                                                                                                               | 0.002                                                                                                     | 33                                                                                |
| 13821                                                                                                                                                                                  | 1977                                                                                                                         | 375                                                                                                   | 0.121                                                                                                                                      | 0.079                                                                                                                               | 0                                                                                                         | 65                                                                                |
| 13821                                                                                                                                                                                  | 1985                                                                                                                         | 537                                                                                                   | 0.2                                                                                                                                        | 0.063                                                                                                                               | 0.003                                                                                                     | 31                                                                                |
| 13821                                                                                                                                                                                  | 1990                                                                                                                         | 539                                                                                                   | 0.225                                                                                                                                      | 0.077                                                                                                                               | 0.003                                                                                                     | 34                                                                                |
| 13821                                                                                                                                                                                  | 1999                                                                                                                         |                                                                                                       | 0                                                                                                                                          | 0                                                                                                                                   | 0                                                                                                         | 0                                                                                 |
| 13824                                                                                                                                                                                  | 1979                                                                                                                         | 410                                                                                                   | 0.425                                                                                                                                      | 0.086                                                                                                                               | 0                                                                                                         | 20                                                                                |
| 13824                                                                                                                                                                                  | 1987                                                                                                                         | 400                                                                                                   | 0.342                                                                                                                                      | 0.041                                                                                                                               | 0.002                                                                                                     | 12                                                                                |
|                                                                                                                                                                                        | 1988                                                                                                                         | 400                                                                                                   | 0.237                                                                                                                                      | 0.046                                                                                                                               | 0.002                                                                                                     | 19                                                                                |
| 13824                                                                                                                                                                                  | 1997                                                                                                                         | 400                                                                                                   | 0.262                                                                                                                                      | 0.051                                                                                                                               | 0.003                                                                                                     | 20                                                                                |
| 13832                                                                                                                                                                                  | 1980                                                                                                                         | 189                                                                                                   | 0.428                                                                                                                                      | 0.106                                                                                                                               | 0                                                                                                         | 25                                                                                |
|                                                                                                                                                                                        | 1983                                                                                                                         | 324                                                                                                   | 0.383                                                                                                                                      | 0.103                                                                                                                               | 0                                                                                                         | 27                                                                                |
|                                                                                                                                                                                        | 1986                                                                                                                         | 189                                                                                                   | 0.419                                                                                                                                      | 0.11                                                                                                                                | 0.008                                                                                                     | 26                                                                                |
|                                                                                                                                                                                        | 1990                                                                                                                         | 189                                                                                                   | 0.316                                                                                                                                      | 0.06                                                                                                                                | 0.004                                                                                                     | 19                                                                                |
|                                                                                                                                                                                        | 1994                                                                                                                         | 315                                                                                                   | 0.282                                                                                                                                      | 0.094                                                                                                                               | 0.005                                                                                                     | 33                                                                                |
|                                                                                                                                                                                        | 1999                                                                                                                         | 315                                                                                                   | 0.307                                                                                                                                      | 0.097                                                                                                                               | 0.005                                                                                                     | 32                                                                                |
|                                                                                                                                                                                        | 1984                                                                                                                         | 510                                                                                                   | 0.132                                                                                                                                      | 0.042                                                                                                                               | 0.002                                                                                                     | 32                                                                                |
|                                                                                                                                                                                        | 1989                                                                                                                         | 510                                                                                                   | 0.162                                                                                                                                      | 0.054                                                                                                                               | 0.002                                                                                                     | 33                                                                                |
|                                                                                                                                                                                        | 1993                                                                                                                         | 510                                                                                                   | 0.112                                                                                                                                      | 0.068                                                                                                                               | 0.003                                                                                                     | 61                                                                                |
|                                                                                                                                                                                        | 1999                                                                                                                         | 510                                                                                                   | 0.128                                                                                                                                      | 0.089                                                                                                                               | 0.004                                                                                                     | 70                                                                                |
|                                                                                                                                                                                        | 1981                                                                                                                         | 162                                                                                                   | 0.077                                                                                                                                      | 0.046                                                                                                                               | 0                                                                                                         | 60                                                                                |
|                                                                                                                                                                                        | 1989                                                                                                                         | 157                                                                                                   | 0.157                                                                                                                                      | 0.062                                                                                                                               | 0.005                                                                                                     | 40                                                                                |
|                                                                                                                                                                                        | 1993                                                                                                                         | 157                                                                                                   | 0.228                                                                                                                                      | 0.062                                                                                                                               | 0.005                                                                                                     | 27                                                                                |
|                                                                                                                                                                                        | 1997                                                                                                                         | 158                                                                                                   | 0.211                                                                                                                                      | 0.054                                                                                                                               | 0.004                                                                                                     | 26                                                                                |
|                                                                                                                                                                                        | 1980                                                                                                                         | 287                                                                                                   | 0.064                                                                                                                                      | 0.074                                                                                                                               | 0.004                                                                                                     | 99                                                                                |
|                                                                                                                                                                                        | 1986                                                                                                                         | 294                                                                                                   | 0.072                                                                                                                                      | 0.052                                                                                                                               | 0.003                                                                                                     | 72                                                                                |
|                                                                                                                                                                                        | 1995                                                                                                                         | 294                                                                                                   | 0.132                                                                                                                                      | 0.061                                                                                                                               | 0.004                                                                                                     | 46                                                                                |
|                                                                                                                                                                                        | 1978                                                                                                                         | 396                                                                                                   | 0.119                                                                                                                                      | 0.083                                                                                                                               | 0.004                                                                                                     | 70                                                                                |



| 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |     |       |       |       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|-------|-------|-------|----|
| 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1409 | 1983 | 380 | 0.146 | 0.107 | 0.005 | 73 |
| 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1409 | 1989 | 440 |       |       |       |    |
| 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1409 | 1993 | 440 |       |       |       |    |
| 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1409 | 1997 | 440 |       |       |       |    |
| 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1426 | 1978 |     |       |       |       |    |
| 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1426 |      |     |       |       |       |    |
| 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1426 |      |     |       |       |       |    |
| 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1426 |      |     |       |       |       |    |
| 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1426 | 1995 |     |       |       |       |    |
| 1427         1978         680         0.113         0.075         0.003         66           1427         1983         656         0.113         0.084         0.003         73           1427         1987         656         0.161         0.108         0.004         67           1427         1991         656         0.136         0.053         0.002         39           1427         1999         656         0.11         0.069         0.003         63           1432         1986         392         0.156         0.043         0.002         28           1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1989         363         0.126         0.051         0.003         41           149         1989         363         0.125         0.069         0.004                                                                            | 1426 | 2000 |     |       |       |       |    |
| 1427         1983         656         0.113         0.084         0.003         73           1427         1991         656         0.136         0.053         0.002         39           1427         1999         656         0.11         0.069         0.003         63           1432         1980         408         0.155         0.058         0.003         37           1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1981         368         0.109         0.043         0.002         39           149         1983         363         0.126         0.051         0.003         37           149         1993         363         0.126         0.051         0.003         47           1493         1997         364         0.086         0.058         0.003         67           1493         1990         366         0.304         0.079         0.004                                                                            | 1427 | 1978 |     |       |       |       |    |
| 1427         1987         656         0.161         0.108         0.004         67           1427         1991         656         0.136         0.053         0.002         39           1427         1999         656         0.11         0.089         0.003         37           1432         1986         392         0.156         0.043         0.002         28           1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1981         368         0.109         0.043         0.002         39           149         1983         362         0.133         0.049         0.003         37           149         1997         364         0.086         0.058         0.003         67           1493         1997         364         0.086         0.058         0.003         67           1493         1986         363         0.327         0.089         0.004                                                                            | 1427 | 1983 |     |       |       |       |    |
| 1427         1991         656         0.136         0.053         0.002         39           1427         1999         656         0.11         0.069         0.003         63           1432         1980         408         0.155         0.058         0.003         37           1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         41           149         1993         363         0.125         0.069         0.004         25           1493         1986         363         0.327         0.084         0.004         21           1493         1990         366         0.321         0.086         0.004                                                                             | 1427 | 1987 |     |       |       |       |    |
| 1427         1999         656         0.11         0.069         0.003         63           1432         1980         408         0.155         0.058         0.003         37           1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         47           149         1997         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         25           1493         1994         366         0.304         0.079         0.004         25           1493         1994         366         0.322         0.082         0.004                                                                            | 1427 | 1991 |     |       |       |       |    |
| 1432         1980         408         0.155         0.058         0.003         37           1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         41           149         1997         364         0.086         0.058         0.003         41           149         1997         364         0.086         0.058         0.003         41           1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         25           1517         1978         522         0.26         0.066         0.003                                                                             | 1427 |      |     |       |       |       |    |
| 1432         1986         392         0.156         0.043         0.002         28           1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         41           149         1997         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         21           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1986         504         0.38         0.09         0.004                                                                              | 1432 |      |     |       |       |       |    |
| 1432         1996         400         0.107         0.058         0.003         55           149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         67           1493         1997         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         25           1493         1990         366         0.304         0.079         0.004         21           1493         1990         366         0.304         0.079         0.004         21           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1986         504         0.322         0.082         0.004         25           1517         1996         504         0.38         0.09         0.004                                                                             |      |      |     |       |       |       |    |
| 149         1981         368         0.109         0.043         0.002         39           149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         67           1493         1990         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1998         504         0.416         0.068         0.003                                                                             |      |      |     |       |       |       |    |
| 149         1989         362         0.133         0.049         0.003         37           149         1993         363         0.126         0.051         0.003         41           149         1997         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1998         504         0.529         0.047         0.002                                                                             |      |      |     |       |       |       |    |
| 149         1993         363         0.126         0.051         0.003         41           149         1997         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002                                                                            |      |      |     |       |       |       |    |
| 149         1997         364         0.086         0.058         0.003         67           1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1996         504         0.416         0.068         0.003         16           1517         1998         504         0.468         0.007         0.002         9           1536         1982         168         0.323         0.115         0.002         9           1536         1982         168         0.323         0.115         0.009                                                                             |      |      |     |       |       |       |    |
| 1493         1980         363         0.125         0.069         0.004         55           1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001                                                                           |      |      |     |       |       |       |    |
| 1493         1986         363         0.397         0.084         0.004         21           1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.104         0.033         0.001                                                                           |      |      |     |       |       |       |    |
| 1493         1990         366         0.304         0.079         0.004         26           1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001                                                                           |      |      |     |       |       |       |    |
| 1493         1994         366         0.321         0.086         0.004         27           1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.002         9           1536         1982         168         0.323         0.115         0.002         9           1536         1982         168         0.323         0.115         0.002         9           1536         1984         684         0.123         0.024         0.001         20           1606         1989         684         0.117         0.034         0.001                                                                              |      |      |     |       |       |       |    |
| 1517         1978         522         0.26         0.066         0.003         25           1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         29           1606         1993         684         0.117         0.034         0.001         29           1606         1993         684         0.125         0.055         0.002                                                                           |      |      |     |       |       |       |    |
| 1517         1982         504         0.322         0.082         0.004         25           1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         29           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         24           1632         1984         456         0.157         0.038         0.002                                                                          |      |      |     |       |       |       |    |
| 1517         1986         504         0.38         0.09         0.004         24           1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         22           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1993         456         0.118         0.043         0.002                                                                          |      |      |     |       |       |       |    |
| 1517         1990         504         0.416         0.068         0.003         16           1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         24           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         24           1632         1993         456         0.118         0.057         0.003                                                                        |      |      |     |       |       |       |    |
| 1517         1994         504         0.468         0.074         0.003         16           1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         29           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002                                                                        |      |      |     |       |       |       |    |
| 1517         1998         504         0.529         0.047         0.002         9           1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         29           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         24           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002                                                                        |      |      |     |       |       |       |    |
| 1536         1982         168         0.323         0.115         0.009         36           1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         32           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         24           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002         43           1669         1982         368         0.062         0.074         0.004 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |      |      |     |       |       |       |    |
| 1606         1979         702         0.122         0.024         0.001         20           1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         32           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         37           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002         43           1664         1998         0         0         0         0         0           1669         1982         368         0.062         0.074         0.004         9                                                                            |      |      |     |       |       |       |    |
| 1606         1984         684         0.123         0.029         0.001         24           1606         1989         684         0.104         0.033         0.001         32           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         37           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002         43           1664         1998         0         0         0         0         0           1669         1982         368         0.062         0.074         0.004         99           1669         1996         368         0.075         0.049         0.003         6                                                                            |      |      |     |       |       |       |    |
| 1606         1989         684         0.104         0.033         0.001         32           1606         1993         684         0.117         0.034         0.001         29           1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         37           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002         43           1664         1998         0         0         0         0           1669         1982         368         0.062         0.074         0.004         99           1669         1996         368         0.075         0.049         0.003         66           167         1981         427         0.223         0.054         0.003         24                                                                                      |      |      |     |       |       |       |    |
| 1606       1993       684       0.117       0.034       0.001       29         1606       1997       684       0.125       0.055       0.002       44         1632       1984       456       0.157       0.038       0.002       24         1632       1989       456       0.118       0.043       0.002       37         1632       1993       456       0.172       0.041       0.002       24         1632       1997       456       0.184       0.057       0.003       31         1664       1982       520       0.113       0.049       0.002       43         1664       1998       0       0       0       0         1669       1982       368       0.062       0.074       0.004       99         1669       1992       368       0.075       0.049       0.003       66         1669       1996       368       0.071       0.068       0.004       96         167       1981       427       0.223       0.054       0.003       24         167       1989       427       0.336       0.083       0.004       25                                                                                                                                                                            |      |      |     |       |       |       |    |
| 1606         1997         684         0.125         0.055         0.002         44           1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         37           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002         43           1664         1998         0         0         0         0         0           1669         1982         368         0.062         0.074         0.004         99           1669         1992         368         0.075         0.049         0.003         66           1669         1996         368         0.071         0.068         0.004         96           167         1981         427         0.223         0.054         0.003         24           167         1993         427         0.284         0.055         0.003         19<                                                                            |      |      |     |       |       |       |    |
| 1632         1984         456         0.157         0.038         0.002         24           1632         1989         456         0.118         0.043         0.002         37           1632         1993         456         0.172         0.041         0.002         24           1632         1997         456         0.184         0.057         0.003         31           1664         1982         520         0.113         0.049         0.002         43           1664         1998         0         0         0         0           1669         1982         368         0.062         0.074         0.004         99           1669         1992         368         0.075         0.049         0.003         66           1669         1996         368         0.071         0.068         0.004         96           167         1981         427         0.223         0.054         0.003         24           167         1993         427         0.336         0.083         0.004         25           167         1993         427         0.284         0.055         0.003         18      <                                                                                 |      |      |     |       |       |       |    |
| 1632       1989       456       0.118       0.043       0.002       37         1632       1993       456       0.172       0.041       0.002       24         1632       1997       456       0.184       0.057       0.003       31         1664       1982       520       0.113       0.049       0.002       43         1664       1998       0       0       0       0       0         1669       1982       368       0.062       0.074       0.004       99         1669       1992       368       0.075       0.049       0.003       66         1669       1996       368       0.071       0.068       0.004       96         167       1981       427       0.223       0.054       0.003       24         167       1989       427       0.336       0.083       0.004       25         167       1993       427       0.284       0.055       0.003       19         167       1997       427       0.287       0.053       0.003       18                                                                                                                                                                                                                                                     |      |      |     |       |       |       |    |
| 1632       1993       456       0.172       0.041       0.002       24         1632       1997       456       0.184       0.057       0.003       31         1664       1982       520       0.113       0.049       0.002       43         1664       1998       0       0       0       0         1669       1982       368       0.062       0.074       0.004       99         1669       1992       368       0.075       0.049       0.003       66         1669       1996       368       0.071       0.068       0.004       96         167       1981       427       0.223       0.054       0.003       24         167       1989       427       0.336       0.083       0.004       25         167       1993       427       0.284       0.055       0.003       19         167       1997       427       0.287       0.053       0.003       18                                                                                                                                                                                                                                                                                                                                            |      |      |     |       |       |       |    |
| 1632       1997       456       0.184       0.057       0.003       31         1664       1982       520       0.113       0.049       0.002       43         1664       1998       0       0       0       0         1669       1982       368       0.062       0.074       0.004       99         1669       1992       368       0.075       0.049       0.003       66         1669       1996       368       0.071       0.068       0.004       96         167       1981       427       0.223       0.054       0.003       24         167       1989       427       0.336       0.083       0.004       25         167       1993       427       0.284       0.055       0.003       19         167       1997       427       0.287       0.053       0.003       18                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |     |       |       |       |    |
| 1664     1982     520     0.113     0.049     0.002     43       1664     1998     0     0     0     0       1669     1982     368     0.062     0.074     0.004     99       1669     1992     368     0.075     0.049     0.003     66       1669     1996     368     0.071     0.068     0.004     96       167     1981     427     0.223     0.054     0.003     24       167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |     |       |       |       |    |
| 1664     1998     0     0     0     0       1669     1982     368     0.062     0.074     0.004     99       1669     1992     368     0.075     0.049     0.003     66       1669     1996     368     0.071     0.068     0.004     96       167     1981     427     0.223     0.054     0.003     24       167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |     |       |       |       |    |
| 1669     1982     368     0.062     0.074     0.004     99       1669     1992     368     0.075     0.049     0.003     66       1669     1996     368     0.071     0.068     0.004     96       167     1981     427     0.223     0.054     0.003     24       167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      | 320 |       |       |       |    |
| 1669     1992     368     0.075     0.049     0.003     66       1669     1996     368     0.071     0.068     0.004     96       167     1981     427     0.223     0.054     0.003     24       167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      | 360 |       |       |       |    |
| 1669     1996     368     0.071     0.068     0.004     96       167     1981     427     0.223     0.054     0.003     24       167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |     |       |       |       |    |
| 167     1981     427     0.223     0.054     0.003     24       167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |     |       |       |       |    |
| 167     1989     427     0.336     0.083     0.004     25       167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |     |       |       |       |    |
| 167     1993     427     0.284     0.055     0.003     19       167     1997     427     0.287     0.053     0.003     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |     |       |       |       |    |
| 167 1997 427 0.287 0.053 0.003 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |     |       |       |       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |     |       |       |       |    |
| 1694   1984   296   0.114   0.029   0.002   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |      |     |       |       |       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1694 | 1984 | 296 | 0.114 | 0.029 | 0.002 | 25 |



| 1694 | 1996 | 304  | 0.258 | 0.07  | 0.004 | 27  |
|------|------|------|-------|-------|-------|-----|
| 1741 | 1980 | 640  | 0.044 | 0.042 | 0.002 | 95  |
| 1741 | 1985 | 712  | 0.145 | 0.052 | 0.002 | 36  |
| 1741 | 1990 | 712  | 0.105 | 0.094 | 0.004 | 90  |
| 1741 | 1994 | 712  | 0.17  | 0.09  | 0.003 | 53  |
| 1741 | 1998 | 712  | 0.246 | 0.097 | 0.004 | 39  |
| 1766 | 1981 | 207  | 0.288 | 0.059 | 0.004 | 20  |
| 1766 | 1986 | 207  | 0.319 | 0.076 | 0.005 | 24  |
| 1766 | 1990 | 351  | 0.356 | 0.099 | 0.005 | 28  |
| 1766 | 1994 | 351  | 0.33  | 0.074 | 0.004 | 22  |
| 1766 | 2000 | 351  | 0.22  | 0.075 | 0.004 | 34  |
| 1767 | 1980 | 430  | 0.238 | 0.222 | 0.004 | 32  |
| 1767 | 1981 | 450  | 0.242 | 0.086 | 0.004 | 36  |
| 1767 | 1991 | 440  | 0.195 | 0.078 | 0.004 | 40  |
| 1767 | 1996 | 440  | 0.182 | 0.081 | 0.004 | 45  |
| 1797 | 1979 | 570  | 0.182 | 0.081 | 0.003 | 44  |
| 1797 | 1985 | 560  | 0.117 | 0.066 | 0.003 | 57  |
| 1797 | 1990 | 560  | 0.137 | 0.064 | 0.003 | 46  |
| 1797 | 1995 | 560  | 0.136 | 0.044 | 0.002 | 32  |
| 1797 | 2000 | 560  | 0.051 | 0.058 | 0.002 | 113 |
| 1810 | 1978 | 187  | 0.135 | 0.146 | 0.011 | 99  |
| 1810 | 1983 | 170  | 0.138 | 0.17  | 0.013 | 99  |
| 1810 | 1989 |      | 0.189 | 0.116 | 0     | 0   |
| 1810 | 1993 | 160  | 0.195 | 0.116 | 0.009 | 59  |
| 1810 | 1996 | 160  | 0.166 | 0.127 | 0.01  | 77  |
| 1843 | 1981 | 400  | 0.073 | 0.087 | 0.004 | 99  |
| 1843 | 1996 | 400  | 0.065 | 0.066 | 0.003 | 102 |
| 189  | 1978 | 1368 | 0.193 | 0.038 | 0.001 | 20  |
| 189  | 1981 | 1304 | 0.223 | 0.067 | 0.002 | 30  |
| 189  | 1987 | 1304 | 0.182 | 0.099 | 0.003 | 55  |
| 189  | 1991 | 1304 | 0.272 | 0.085 | 0.002 | 31  |
| 189  | 1999 | 1304 | 0.266 | 0.113 | 0.003 | 42  |
| 1894 | 1980 | 416  | 0.122 | 0.055 | 0.003 | 45  |
| 1894 | 1986 | 408  | 0.13  | 0.056 | 0.003 | 44  |
| 1894 | 1990 | 408  | 0.144 | 0.058 | 0.003 | 40  |
| 1894 | 1995 | 408  | 0.141 | 0.084 | 0.004 | 59  |
| 1894 | 2000 | 408  | 0.171 | 0.064 | 0.003 | 37  |
| 1916 | 1978 | 296  | 0.051 | 0.055 | 0.003 | 99  |
| 1916 | 1982 | 296  | 0.077 | 0.063 | 0.004 | 82  |
| 1916 | 1989 | 296  | 0.102 | 0.078 | 0.005 | 76  |
| 1916 | 1993 | 296  | 0.111 | 0.098 | 0.006 | 88  |
| 1916 | 1997 | 296  | 0.133 | 0.055 | 0.003 | 41  |
| 1938 | 1981 | 430  | 0.209 | 0.057 | 0.003 | 27  |
| 1938 | 1998 |      | 0     | 0     | 0     | 0   |
| 1980 | 1979 | 909  | 0.298 | 0.08  | 0.003 | 27  |
| 1980 | 1983 | 909  | 0.29  | 0.083 | 0.003 | 27  |
| 1980 | 1986 |      | 0.266 | 0.094 | 0     | 0   |
| 1980 | 1990 | 909  | 0.249 | 0.091 | 0.003 | 36  |
| 1980 | 1995 | 909  | 0.291 | 0.093 | 0.003 | 32  |
| 1980 | 1999 | 918  | 0.253 | 0.103 | 0.003 | 41  |
| 2008 | 1980 | 274  | 0.091 | 0.046 | 0.003 | 51  |
| 2008 | 1986 | 259  | 0.3   | 0.12  | 0.003 | 40  |
| 2000 | 1300 | 200  | 0.0   | 0.12  | 0.007 | 40  |



| 2008 | 1996 | 263 | 0.249 | 0.092 | 0.006 | 37  |
|------|------|-----|-------|-------|-------|-----|
| 2010 | 1984 | 480 | 0.353 | 0.074 | 0.003 | 21  |
| 2010 | 1987 | 470 | 0.342 | 0.062 | 0.003 | 18  |
| 2010 | 1991 | 470 | 0.246 | 0.09  | 0.004 | 37  |
| 2010 | 1995 | 470 | 0.207 | 0.099 | 0.005 | 48  |
| 2029 | 1984 | 240 | 0.222 | 0.077 | 0.005 | 35  |
| 2047 | 1981 | 168 | 0.325 | 0.072 | 0.006 | 22  |
| 2102 | 1981 | 400 | 0.054 | 0.072 | 0.004 | 99  |
| 2102 | 1992 | 400 | 0.067 | 0.069 | 0.003 | 102 |
| 2102 | 1996 | 400 | 0.121 | 0.129 | 0.006 | 107 |
| 2102 | 2000 | 400 | 0.063 | 0.072 | 0.004 | 114 |
| 2143 | 1981 | 677 | 0.168 | 0.054 | 0.002 | 32  |
| 2143 | 1987 | 673 | 0.241 | 0.096 | 0.004 | 40  |
| 2143 | 1991 | 676 | 0.242 | 0.092 | 0.004 | 38  |
| 2143 | 1995 | 674 | 0.184 | 0.086 | 0.003 | 47  |
| 2143 | 2000 | 676 | 0.267 | 0.072 | 0.003 | 27  |
| 2155 | 1998 |     | 0     | 0     | 0     | 0   |
| 2212 | 1980 | 288 | 0.075 | 0.08  | 0.005 | 99  |
| 2212 | 1986 | 296 | 0.068 | 0.07  | 0.004 | 102 |
| 2212 | 1992 | 296 | 0.12  | 0.129 | 0.008 | 108 |
| 2212 | 1996 | 296 | 0.093 | 0.117 | 0.007 | 126 |
| 223  | 1980 | 688 | 0.06  | 0.034 | 0.001 | 57  |
| 223  | 1986 | 688 | 0.092 | 0.055 | 0.002 | 59  |
| 223  | 1990 | 680 | 0.111 | 0.049 | 0.002 | 44  |
| 223  | 1994 | 680 | 0.172 | 0.048 | 0.002 | 28  |
| 223  | 1996 | 680 | 0.164 | 0.1   | 0.004 | 61  |
| 223  | 2000 | 680 | 0.201 | 0.07  | 0.003 | 35  |
| 2233 | 1978 | 464 | 0.286 | 0.092 | 0.004 | 32  |
| 2233 | 1982 | 456 | 0.276 | 0.058 | 0.003 | 21  |
| 2233 | 1983 | 456 | 0.265 | 0.053 | 0.002 | 20  |
| 2233 | 1984 | 456 | 0.295 | 0.053 | 0.002 | 18  |
| 2233 | 1988 | 456 | 0.282 | 0.072 | 0.003 | 25  |
| 2233 | 1993 | 456 | 0.284 | 0.07  | 0.003 | 25  |
| 2233 | 1997 | 464 | 0.205 | 0.051 | 0.002 | 25  |
| 2235 | 1979 | 376 | 0.293 | 0.106 | 0.005 | 36  |
| 2235 | 1980 | 368 | 0.323 | 0.101 | 0.005 | 31  |
| 2235 | 1982 | 368 | 0.274 | 0.073 | 0.004 | 27  |
| 2235 | 1988 | 368 | 0.203 | 0.073 | 0.004 | 36  |
| 2235 | 1992 | 368 | 0.215 | 0.062 | 0.003 | 29  |
| 2235 | 1996 | 368 | 0.243 | 0.077 | 0.004 | 32  |
| 2235 | 2000 | 368 | 0.197 | 0.065 | 0.003 | 33  |
| 2236 | 1980 | 296 | 0.136 | 0.123 | 0.007 | 90  |
| 2236 | 1982 | 252 | 0.23  | 0.078 | 0.005 | 34  |
| 2268 | 1978 | 81  | 0.165 | 0.056 | 0.006 | 34  |
| 2301 | 1981 | 360 | 0.101 | 0.064 | 0.003 | 63  |
| 2301 | 1989 | 352 | 0.122 | 0.059 | 0.003 | 49  |
| 2301 | 1993 | 354 | 0.131 | 0.048 | 0.003 | 37  |
| 2301 | 1997 | 353 | 0.108 | 0.058 | 0.003 | 54  |
| 2302 | 1980 | 105 | 0.065 | 0.056 | 0.005 | 86  |
| 2302 | 1998 | 306 | 0.192 | 0.065 | 0.004 | 34  |
| 233  | 1979 | 432 | 0.282 | 0.085 | 0.004 | 30  |
| 233  | 1980 | 440 | 0.334 | 0.082 | 0.004 | 25  |
| 233  | 1900 | 770 | 0.007 | 0.002 | 0,007 | 23  |



| 222  |      |     |          |       |       |     |
|------|------|-----|----------|-------|-------|-----|
| 233  | 1983 | 424 | 0.338    | 0.051 | 0.002 | 15  |
| 233  | 1984 | 424 | 0.265    | 0.056 | 0.003 | 21  |
| 233  | 1988 | 424 | 0.289    | 0.047 | 0.002 | 16  |
| 233  | 1993 | 424 | 0.217    | 0.096 | 0.005 | 45  |
| 233  | 1997 | 424 | 0.263    | 0.065 | 0.003 | 25  |
| 2337 | 1979 | 288 | 0.039    | 0.058 | 0.003 | 99  |
| 2337 | 1986 | 288 | 0.051    | 0.042 | 0.002 | 83  |
| 2337 | 1992 | 288 | 0.016    | 0.044 | 0.003 | 275 |
| 2337 | 1996 | 288 | 0.05     | 0.059 | 0.003 | 119 |
| 2359 | 1978 | 343 | 0.153    | 0.103 | 0.006 | 67  |
| 2359 | 1983 | 297 | 0.219    | 0.131 | 0.008 | 60  |
| 2359 | 1985 | 295 | 0.194    | 0.055 | 0.003 | 29  |
| 2359 | 1989 | 293 | 0.135    | 0.056 | 0.003 | 41  |
| 2359 | 1993 | 290 | 0.162    | 0.073 | 0.004 | 45  |
| 2359 | 1996 | 292 | 0.118    | 0.078 | 0.005 | 66  |
| 2401 | 1979 | 336 | 0.137    | 0.064 | 0.003 | 47  |
| 2401 | 1986 | 328 | 0.203    | 0.089 | 0.005 | 44  |
| 2401 | 1990 | 328 | 0.223    | 0.089 | 0.005 | 40  |
| 2401 | 1993 | 328 | 0.304    | 0.126 | 0.007 | 41  |
| 2401 | 1994 | 328 | 0.207    | 0.088 | 0.005 | 43  |
| 2401 | 1995 | 328 | 0.251    | 0.095 | 0.005 | 38  |
| 2401 | 1996 | 328 | 0.201    | 0.121 | 0.007 | 60  |
| 2401 | 1997 | 328 | 0.257    | 0.079 | 0.004 | 31  |
| 2430 | 1979 | 522 | 0.225    | 0.088 | 0.004 | 39  |
| 2430 | 1986 | 544 | 0.276    | 0.049 | 0.002 | 18  |
| 2430 | 1990 | 544 | 0.253    | 0.066 | 0.003 | 26  |
| 2430 | 1994 | 542 | 0.12     | 0.072 | 0.003 | 60  |
| 2430 | 1998 | 544 | 0.158    | 0.056 | 0.002 | 36  |
| 2431 | 1984 | 912 | 0.139    | 0.039 | 0.001 | 28  |
| 2431 | 1989 | 912 | 0.143    | 0.057 | 0.002 | 40  |
| 2431 | 1993 | 912 | 0.121    | 0.048 | 0.002 | 39  |
| 2431 | 1997 | 912 | 0.112    | 0.053 | 0.002 | 47  |
| 248  | 1997 | 424 | 0.263    | 0.065 | 0.003 | 25  |
| 2487 | 1979 | 470 | 0.27     | 0.076 | 0.004 | 28  |
| 2487 | 1983 | 460 | 0.267    | 0.062 | 0.003 | 23  |
| 2487 | 1986 | 460 | 0.293    | 0.063 | 0.003 | 22  |
| 2487 | 1990 | 460 | 0.285    | 0.067 | 0.003 | 24  |
| 2487 | 1992 | 460 | 0.273    | 0.083 | 0.004 | 31  |
| 2487 | 1996 | 460 | 0.175    | 0.068 | 0.003 | 39  |
| 261  | 1999 |     | 0        | 0     | 0     | 0   |
| 272  | 1983 | 488 | 0.287    | 0.127 | 0.006 | 44  |
| 272  | 1986 | 968 | 0.276    | 0.131 | 0.004 | 47  |
| 272  | 1990 | 968 | 0.227    | 0.077 | 0.002 | 34  |
| 272  | 1995 | 968 | 0.147    | 0.056 | 0.002 | 38  |
| 274  | 1982 | 240 | 0.056    | 0.056 | 0.004 | 99  |
| 274  | 1992 | 240 | 0.132    | 0.066 | 0.004 | 50  |
| 274  | 1996 | 240 | 0.129    | 0.064 | 0.004 | 50  |
| 277  | 1984 | 351 | 0.13     | 0.059 | 0.003 | 45  |
| 277  | 1995 | 351 | 0.091    | 0.04  | 0.002 | 44  |
| 277  | 1999 | 351 | 0.099    | 0.06  | 0.003 | 60  |
| 278  | 1979 | 402 | 0.259    | 0.1   | 0.005 | 39  |
| 278  | 1982 | 398 | 0.244    | 0.101 | 0.005 | 41  |
| 210  | 1302 | 300 | U.M. 1 T | 0.101 | 0.000 | 71  |



| 278         1987         391         0.227         0.059         0.003         26           278         1991         391         0.377         0.142         0.007         38           278         1995         394         0.173         0.047         0.002         27           286         1981         576         0.037         0.03         0.001         81           286         1989         584         0.061         0.031         0.001         51           286         1997         584         0.061         0.036         0.001         50           286         1997         584         0.071         0.036         0.001         50           304         1981         152         0.122         0.079         0.006         65           304         1996         152         0.061         0.043         0.003         70           309         1985         384         0.107         0.065         0.003         61           309         1996         176         0.066         0.067         0.008         0.007         134           310         1983         312         0.193         0.091 <t< th=""><th>278</th><th>1004</th><th></th><th>T</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 278 | 1004 |     | T     |       |       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|-------|-------|-----|
| 278         1991         391         0.377         0.142         0.007         38           278         1995         394         0.173         0.047         0.002         27           286         1981         576         0.037         0.03         0.001         81           286         1989         584         0.061         0.031         0.001         51           286         1993         584         0.043         0.045         0.002         105           286         1997         584         0.071         0.036         0.001         50           304         1981         152         0.122         0.079         0.006         65           304         1981         152         0.061         0.043         0.003         66           309         1996         176         0.066         0.089         0.007         134           309         1992         176         0.066         0.067         0.089         0.007         134           310         1983         312         0.193         0.091         0.005         41           310         1983         312         0.193         0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 1984 | 394 | 0.257 | 0.059 | 0.003 | 23  |
| 278         1995         394         0.173         0.047         0.002         27           286         1981         576         0.037         0.03         0.001         81           286         1989         584         0.061         0.031         0.001         51           286         1993         584         0.043         0.045         0.002         105           286         1997         584         0.071         0.036         0.001         51           304         1981         152         0.061         0.043         0.003         70           304         1996         152         0.061         0.043         0.003         70           309         1985         384         0.107         0.065         0.003         66           309         1996         176         0.066         0.067         0.005         101           310         1978         320         0.217         0.077         0.004         35           310         1983         312         0.229         0.098         0.006         43           310         1983         312         0.193         0.091         0.005         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |     |       |       |       |     |
| 286         1981         576         0.037         0.03         0.001         81           286         1989         584         0.061         0.031         0.001         51           286         1993         584         0.043         0.045         0.002         105           286         1997         584         0.071         0.036         0.001         50           304         1981         152         0.122         0.079         0.006         65           304         1981         152         0.122         0.079         0.006         65           309         1985         384         0.107         0.065         0.003         70           309         1992         176         0.066         0.067         0.005         101           310         1978         320         0.217         0.077         0.004         35           310         1988         312         0.229         0.098         0.006         43           310         1983         312         0.233         0.102         0.006         44           310         1997         312         0.189         0.102         0.006         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |     |       |       |       |     |
| 286         1989         584         0.061         0.031         0.001         51           286         1993         584         0.043         0.045         0.002         105           286         1997         584         0.0471         0.036         0.001         50           304         1981         152         0.122         0.079         0.006         65           304         1996         152         0.061         0.043         0.003         70           309         1995         384         0.107         0.065         0.003         61           309         1992         176         0.067         0.089         0.007         134           309         1996         176         0.066         0.067         0.005         101           310         1983         312         0.193         0.091         0.005         47           310         1983         312         0.193         0.091         0.005         47           310         1993         312         0.189         0.102         0.006         44           310         1993         312         0.189         0.102         0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |     |       |       |       |     |
| 286         1993         584         0.043         0.045         0.002         105           286         1997         584         0.071         0.036         0.001         50           304         1996         152         0.061         0.043         0.003         70           309         1985         384         0.107         0.065         0.003         61           309         1996         176         0.066         0.067         0.089         0.007         134           309         1996         176         0.066         0.067         0.089         0.007         134           310         1978         320         0.217         0.077         0.004         35           310         1983         312         0.193         0.091         0.005         47           310         1988         312         0.229         0.098         0.006         43           310         1993         312         0.189         0.006         44           310         1993         312         0.189         0.002         64           313         1980         448         0.042         0.037         0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |     |       |       |       |     |
| 286         1997         584         0.071         0.036         0.001         50           304         1981         152         0.061         0.022         0.079         0.006         65           304         1996         152         0.061         0.043         0.003         70           309         1985         384         0.107         0.065         0.003         61           309         1992         176         0.066         0.067         0.089         0.007         134           309         1996         176         0.066         0.067         0.005         101           310         1978         320         0.217         0.077         0.004         35           310         1983         312         0.229         0.098         0.006         43           310         1983         312         0.233         0.102         0.006         43           310         1993         312         0.233         0.102         0.006         44           310         1997         312         0.189         0.102         0.006         54           313         1986         448         0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |     |       |       |       |     |
| 304   1981   152   0.122   0.079   0.006   65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |     |       |       | 0.002 |     |
| 1996   152   0.061   0.043   0.003   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |     |       |       | 0.001 |     |
| 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |     |       |       |       |     |
| 309   1992   176   0.067   0.089   0.007   134     309   1996   176   0.066   0.067   0.005   101     310   1978   320   0.217   0.077   0.004   35     310   1983   312   0.193   0.091   0.005   47     310   1983   312   0.229   0.098   0.006   43     310   1983   312   0.229   0.098   0.006   44     310   1993   312   0.189   0.102   0.006   44     311   1997   312   0.189   0.102   0.006   54     313   1980   448   0.042   0.037   0.002   88     313   1986   448   0.067   0.039   0.002   58     313   1998   1593   0.032   0.028   0.001   88     315   1979   693   0.096   0.058   0.002   30     315   1996   912   0.149   0.048   0.002   32     315   1990   912   0.167   0.064   0.002   39     315   1996   912   0.119   0.057   0.002   48     340   1980   304   0.064   0.049   0.003   77     340   1986   304   0.064   0.049   0.003   77     340   1986   304   0.066   0.023   0.001   369     340   1995   312   0.006   0.023   0.001   369     340   1995   312   0.006   0.023   0.001   369     340   1995   312   0.006   0.023   0.001   369     358   1990   272   0.051   0.052   0.003   75     358   1996   272   0.051   0.052   0.003   75     358   1996   272   0.051   0.052   0.003   249     358   1996   352   0.17   0.116   0.006   68     395   1978   352   0.17   0.116   0.006   68     395   1978   352   0.17   0.116   0.006   68     395   1986   136   0.147   0.071   0.006   48     436   1986   136   0.147   0.071   0.006   68     437   1998   537   0.16   0.096   0.004   60     437   1998   525   0.133   0.105   0.005   79     457   1981   537   0.16   0.096   0.004   60     457   1987   525   0.133   0.105   0.005   79     457   1984   91   0.474   0.063   0.007   13 |     |      |     |       | 0.043 | 0.003 | 70  |
| 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |     |       |       | 0.003 |     |
| 310         1978         320         0.217         0.077         0.004         35           310         1983         312         0.193         0.091         0.005         47           310         1988         312         0.229         0.098         0.006         44           310         1993         312         0.233         0.102         0.006         44           310         1997         312         0.189         0.102         0.006         54           313         1980         448         0.042         0.037         0.002         88           313         1986         448         0.067         0.039         0.002         88           313         1986         148         0.067         0.039         0.002         60           315         1979         693         0.096         0.058         0.002         60           315         1996         912         0.149         0.048         0.002         32           315         1990         912         0.167         0.064         0.002         38           315         1994         912         0.119         0.057         0.002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.007</td><td>134</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |     |       |       | 0.007 | 134 |
| 310         1983         312         0.193         0.091         0.005         47           310         1988         312         0.229         0.098         0.006         43           310         1993         312         0.233         0.102         0.006         44           310         1997         312         0.189         0.102         0.006         54           313         1980         448         0.042         0.037         0.002         38           313         1986         448         0.067         0.039         0.002         58           313         1986         448         0.067         0.039         0.002         58           315         1979         693         0.036         0.058         0.002         30           315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.167         0.064         0.002         32           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |     |       |       |       |     |
| 310         1988         312         0.229         0.098         0.006         43           310         1993         312         0.233         0.102         0.006         44           310         1997         312         0.189         0.102         0.006         54           313         1980         448         0.042         0.037         0.002         58           313         1986         448         0.067         0.039         0.002         58           313         1998         1593         0.032         0.028         0.001         88           315         1996         93         0.096         0.058         0.002         32           315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.16         0.062         0.002         39           315         1996         912         0.119         0.057         0.002         38           315         1996         912         0.119         0.057         0.002         38           315         1980         304         0.064         0.049         0.003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.004</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |     |       |       | 0.004 |     |
| 310         1993         312         0.233         0.102         0.006         44           310         1997         312         0.189         0.102         0.006         54           313         1980         448         0.042         0.037         0.002         58           313         1986         448         0.042         0.037         0.002         58           313         1998         1593         0.032         0.028         0.001         88           315         1979         693         0.096         0.058         0.002         60           315         1996         912         0.16         0.062         0.002         32           315         1990         912         0.16         0.062         0.002         32           315         1996         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1986         304         0.064         0.049         0.003         75           340         1995         312         0.065         0.027         0.002 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |     |       |       |       |     |
| 310         1997         312         0.189         0.102         0.006         54           313         1980         448         0.042         0.037         0.002         88           313         1998         448         0.067         0.039         0.002         58           313         1998         1593         0.032         0.028         0.001         88           315         1979         693         0.096         0.058         0.002         60           315         1986         912         0.149         0.048         0.002         32           315         1996         912         0.16         0.062         0.002         39           315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.001         369           340         1995         312         0.065         0.027         0.002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.006</td><td>43</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |     |       |       | 0.006 | 43  |
| 313         1980         448         0.042         0.037         0.002         88           313         1986         448         0.067         0.039         0.002         58           313         1998         1593         0.032         0.028         0.001         88           315         1979         693         0.096         0.058         0.002         60           315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.16         0.062         0.002         39           315         1996         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1996         312         0.066         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |     |       |       | 0.006 |     |
| 313         1986         448         0.067         0.039         0.002         58           313         1998         1593         0.032         0.028         0.001         88           315         1979         693         0.096         0.058         0.002         60           315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.167         0.064         0.002         39           315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         38           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         1990         312         0.072         0.041         0.002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.006</td><td>54</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |     |       |       | 0.006 | 54  |
| 313         1998         1593         0.032         0.028         0.001         88           315         1979         693         0.096         0.058         0.002         60           315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.16         0.062         0.002         39           315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>88</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |     |       |       |       | 88  |
| 315         1979         693         0.096         0.058         0.002         60           315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.16         0.062         0.002         39           315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.066         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1999         272         0.051         0.052         0.003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.002</td><td>58</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |     |       |       | 0.002 | 58  |
| 315         1986         912         0.149         0.048         0.002         32           315         1990         912         0.16         0.062         0.002         39           315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>88</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |     |       |       |       | 88  |
| 315         1990         912         0.16         0.062         0.002         39           315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.041         0.003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.002</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |     |       |       | 0.002 |     |
| 315         1994         912         0.167         0.064         0.002         38           315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.002</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |     |       |       | 0.002 |     |
| 315         1996         912         0.119         0.057         0.002         48           340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.002</td><td>39</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |     |       |       | 0.002 | 39  |
| 340         1980         304         0.064         0.049         0.003         77           340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |     |       |       |       | 38  |
| 340         1986         304         0.07         0.053         0.003         75           340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1994         272         0.064         0.048         0.003         249           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |     |       |       |       |     |
| 340         1990         312         0.006         0.023         0.001         369           340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |     |       |       |       |     |
| 340         1995         312         0.065         0.027         0.002         42           340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1985         136         0.154         0.112         0.01         73 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |     |       |       |       |     |
| 340         2000         312         0.072         0.041         0.002         58           358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1985         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>369</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |     |       |       |       | 369 |
| 358         1979         272         0.051         0.052         0.003         99           358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.002</td> <td>42</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |     |       |       | 0.002 | 42  |
| 358         1986         280         0.077         0.048         0.003         63           358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         1995         136         0.175         0.093         0.008         53           437         1998         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |     |       |       | 0.002 |     |
| 358         1990         272         0.017         0.042         0.003         249           358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         1985         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1981         537         0.16         0.096         0.004         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |     |       |       | 0.003 |     |
| 358         1994         272         0.051         0.041         0.002         81           358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         1985         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |     |       |       | 0.003 | 63  |
| 358         1999         272         0.064         0.048         0.003         75           395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |     |       |       | 0.003 | 249 |
| 395         1978         352         0.17         0.116         0.006         68           395         1985         0         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |     |       |       |       | 81  |
| 395         1985         0         0         0         0           436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |     |       | 0.048 | 0.003 | 75  |
| 436         1980         136         0.055         0.09         0.008         99           436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      | 352 |       | 0.116 | 0.006 | 68  |
| 436         1986         136         0.147         0.071         0.006         48           436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |     |       |       |       |     |
| 436         1990         136         0.154         0.112         0.01         73           436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |     |       | 0.09  | 0.008 | 99  |
| 436         1985         136         0.175         0.093         0.008         53           436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |     |       |       | 0.006 | 48  |
| 436         2000         136         0.152         0.091         0.008         60           437         1998         0         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |     |       |       |       | 73  |
| 437         1998         0         0         0         0           457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |     |       |       | 0.008 | 53  |
| 457         1977         351         0.083         0.071         0.004         86           457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      | 136 |       |       |       | 60  |
| 457         1981         537         0.16         0.096         0.004         60           457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |     |       |       |       | 0   |
| 457         1987         525         0.133         0.105         0.005         79           457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |     |       |       |       | 86  |
| 457         1991         530         0.221         0.07         0.003         32           457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |     |       |       |       |     |
| 457         1999         525         0.206         0.075         0.003         37           521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |     |       |       |       |     |
| 521         1978         99         0.35         0.069         0.007         20           521         1984         91         0.474         0.063         0.007         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |     |       |       |       |     |
| 521 1984 91 0.474 0.063 0.007 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |     |       |       |       | 37  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |     |       |       |       | 20  |
| 527   1996   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      | 91  |       |       | 0.007 | 13  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 527 | 1996 |     | 0     | 0     | 0     | 0   |



| 570   | 1985 | 551  | 0.228 | 0.04  | 0.002 | 17  |
|-------|------|------|-------|-------|-------|-----|
| 570   | 1990 | 504  | 0.256 | 0.044 | 0.002 | 17  |
| 570   | 1994 | 507  | 0.252 | 0.046 | 0.002 | 18  |
| 570   | 1998 | 509  | 0.22  | 0.04  | 0.002 | 18  |
| 589   | 1979 | 368  | 0.235 | 0.062 | 0.003 | 26  |
| 589   | 1983 | 360  | 0.277 | 0.058 | 0.003 | 21  |
| 589   | 1987 | 360  | 0.178 | 0.039 | 0.002 | 22  |
| 589   | 1991 | 360  | 0.193 | 0.061 | 0.003 | 32  |
| 589   | 1995 | 360  | 0.245 | 0.054 | 0.003 | 22  |
| 589   | 1999 | 360  | 0.229 | 0.054 | 0.003 | 24  |
| 611   | 1981 | 448  | 0.317 | 0.148 | 0.007 | 47  |
| 611   | 1982 | 448  | 0.304 | 0.148 | 0.007 | 49  |
| 611   | 1984 |      | 0     | 0     | 0     | 0   |
| 611   | 1988 | 595  | 0.319 | 0.169 | 0.007 | 53  |
| 611   | 1996 | 448  | 0.27  | 0.163 | 0.008 | 61  |
| 6548  | 1980 | 133  | 0.076 | 0.054 | 0.005 | 71  |
| 6548  | 1986 | 133  | 0.035 | 0.031 | 0.003 | 89  |
| 6548  | 1992 | 133  | 0.063 | 0.064 | 0.006 | 102 |
| 6548  | 1996 | 133  | 0.053 | 0.061 | 0.005 | 116 |
| 6565  | 1978 | 700  | 0.268 | 0.071 | 0.003 | 27  |
| 6565  | 1979 | 781  | 0.167 | 0.073 | 0.003 | 44  |
| 6565  | 1980 | 792  | 0.267 | 0.062 | 0.002 | 23  |
| 6565  | 1982 | 770  | 0.27  | 0.066 | 0.002 | 24  |
| 6565  | 1987 | 770  | 0.209 | 0.053 | 0.002 | 25  |
| 6565  | 1991 | 759  | 0.234 | 0.075 | 0.003 | 32  |
| 6565  | 1992 | 770  | 0.228 | 0.07  | 0.003 | 31  |
| 6565  | 1996 | 770  | 0.221 | 0.061 | 0.002 | 28  |
| 6565  | 2000 | 770  | 0.128 | 0.08  | 0.003 | 63  |
| 6615  | 1997 | 1320 | 0.215 | 0.058 | 0.002 | 27  |
| 6733  | 1980 | 539  | 0.108 | 0.055 | 0.002 | 51  |
| 6733  | 1986 | 558  | 0.047 | 0.033 | 0.001 | 71  |
| 6733  | 1992 | 561  | 0.083 | 0.053 | 0.002 | 64  |
| 6733  | 1996 | 574  | 0.101 | 0.066 | 0.003 | 66  |
| 6809  | 1981 | 252  | 0.106 | 0.046 | 0.003 | 43  |
| 6809  | 1989 | 252  | 0.112 | 0.06  | 0.004 | 53  |
| 6809  | 1993 | 252  | 0.114 | 0.058 | 0.004 | 51  |
| 6809  | 1997 | 252  | 0.214 | 0.131 | 0.008 | 61  |
| 698   | 1980 | 477  | 0.053 | 0.038 | 0.002 | 72  |
| 698   | 1985 | 476  | 0.11  | 0.035 | 0.002 | 32  |
| 698   | 1990 | 477  | 0.151 | 0.043 | 0.002 | 28  |
| 698   | 1995 | 478  | 0.125 | 0.049 | 0.002 | 39  |
| 698   | 1999 | 482  | 0.142 | 0.059 | 0.003 | 42  |
| 70009 | 1978 | 585  | 0.313 | 0.047 | 0     | 15  |
| 70009 | 1982 | 496  | 0.212 | 0.059 | 0     | 28  |
| 70009 | 1987 | 488  | 0.227 | 0.049 | 0.002 | 22  |
| 70009 | 1991 | 496  | 0.171 | 0.078 | 0.004 | 46  |
| 70009 | 1995 | 496  | 0.25  | 0.057 | 0.003 | 23  |
| 70009 | 1997 | 496  | 0.22  | 0.089 | 0.004 | 41  |
| 70022 | 1977 | 231  | 0.116 | 0.046 | 0     | 40  |
| 70022 | 1985 | 492  | 0.216 | 0.066 | 0.003 | 31  |
| 70022 | 1990 | 492  | 0.214 | 0.086 | 0.004 | 40  |
| 70022 | 1994 | 492  | 0.177 | 0.101 | 0.005 | 57  |
|       |      |      |       |       |       |     |



| 70000        | 1000         |      |       |       |       |     |
|--------------|--------------|------|-------|-------|-------|-----|
| 70022        | 1998         | 492  | 0.112 | 0.102 | 0.005 | 91  |
| 70156        | 1978         | 327  | 0.242 | 0.096 | 0     | 40  |
| 70156        | 1979         | 325  | 0.113 | 0.045 | 0     | 40  |
| 70156        | 1980         | 314  | 0.217 | 0.042 | 0     | 19  |
| 70156        | 1986         | 320  | 0.215 | 0.04  | 0.002 | 19  |
| 70156        | 1990         | 314  | 0.231 | 0.051 | 0.003 | 22  |
| 70156        | 1994         | 317  | 0.243 | 0.05  | 0.003 | 21  |
| 70156        | 1998         | 318  | 0.21  | 0.046 | 0.003 | 22  |
| 70247        | 1980         | 1116 | 0.312 | 0.046 | 0     | 15  |
| 70247        | 1986         | 1376 | 0.38  | 0.196 | 0.005 | 52  |
| 70247        | 1991         | 1376 | 0.31  | 0.186 | 0.005 | 60  |
| 70247        | 1996         | 1096 | 0.334 | 0.138 | 0.004 | 41  |
| 70277        | 1982         | 812  | 0.165 | 0.053 | 0     | 51  |
| 70277        | 1988         | 810  | 0.165 | 0.051 | 0.002 | 31  |
| 70277        | 1993         | 813  | 0.152 | 0.076 | 0.003 | 50  |
| 70277        | 1997         | 813  | 0.189 | 0.052 | 0.002 | 27  |
| 70509        | 1984         | 891  | 0.075 | 0.04  | 0.001 | 53  |
| 70509        | 1992         | 891  | 0.042 | 0.036 | 0.001 | 86  |
| 70509        | 1996         | 891  | 0.051 | 0.059 | 0.002 | 115 |
| 70566        | 1978         | 396  | 0.134 | 0.093 | 0     | 69  |
| 70566        | 1983         | 396  | 0.181 | 0.108 | 0     | 59  |
| 70566        | 1987         | 396  | 0.239 | 0.097 | 0.005 | 41  |
| 70566        | 1991         | 396  | 0.286 | 0.123 | 0.006 | 43  |
| 70566        | 1999         | 396  | 0.198 | 0.09  | 0.005 | 46  |
| 70577        | 1998         |      | 0     | 0     | 0.003 | 0   |
| 70580        | 1978         | 1176 | 0.397 | 0.104 | 0     | 26  |
| 70580        | 1983         | 672  | 0.299 | 0.183 | 0     | 61  |
| 70580        | 1984         | 656  | 0.3   | 0.18  | 0.007 | 60  |
| 70580        | 1987         | 656  | 0.375 | 0.059 | 0.007 | 16  |
| 70580        | 1991         | 492  | 0.373 | 0.033 | 0.002 | 24  |
| 70580        | 1995         | 492  | 0.421 | 0.091 | 0.004 | 22  |
| 70594        | 1978         | 760  | 0.421 | 0.055 | 0.004 |     |
| 70594        | 1982         | 730  | 0.323 | 0.035 | 0     | 17  |
| 70594        | 1986         | 730  | 0.323 | 0.075 | 0.003 | 23  |
| 70594        | 1990         | 730  | 0.281 | 0.076 |       | 27  |
| 70594        | 1994         | 730  | 0.363 | 0.093 | 0.004 | 25  |
| 70594        | 1998         | 730  | 0.216 | 0.093 | 0.003 | 43  |
| 70626        | 1980         | 710  |       |       | 0.003 | 36  |
| 70626        | 1999         | 7 10 | 0.124 | 0.115 | 0     | 93  |
|              |              | 221  |       | 0 040 | 0     | 0   |
| 7086<br>7086 | 1984<br>1992 | 231  | 0.056 | 0.049 | 0.003 | 87  |
| 70935        | 1992         | 539  |       | 0.058 | 0.004 | 50  |
|              |              | 470  | 0.193 | 0.077 | 0     | 40  |
| 70935        | 1983         | 470  | 0.303 | 0.063 | 0     | 21  |
| 70935        | 1985         |      | 0.343 | 0.088 | 0.004 | 26  |
| 70935        | 1990         | 470  | 0.251 | 0.076 | 0.003 | 30  |
| 70935        | 1994         | 470  | 0.246 | 0.082 | 0.004 | 33  |
| 70935        | 1998         | 470  | 0.25  | 0.066 | 0.003 | 26  |
| 710          | 1980         | 401  | 0.109 | 0.075 | 0.004 | 69  |
| 710          | 1985         | 404  | 0.125 | 0.076 | 0.004 | 61  |
| 710          | 1990         | 411  | 0.193 | 0.085 | 0.004 | 44  |
| 710          | 1992         | 401  | 0.203 | 0.081 | 0.004 | 40  |
| 710          | 1996         | 410  | 0.197 | 0.099 | 0.005 | 50  |



| 710   | 2000 | T 440 |       | 0.00- |       | T   |
|-------|------|-------|-------|-------|-------|-----|
| 71019 |      | 410   | 0.1   | 0.065 | 0.003 | 65  |
| 71019 | 1980 | 276   | 0.169 | 0.067 | 0     | 39  |
| 71019 | 1987 | 368   | 0.278 | 0.067 | 0.003 | 24  |
| 71019 | 1991 | 368   | 0.326 | 0.068 | 0.004 | 21  |
|       | 1995 | 368   | 0.368 | 0.074 | 0.004 | 20  |
| 71019 | 1999 | 376   | 0.385 | 0.084 | 0.004 | 22  |
| 71054 | 1979 | 182   | 0.064 | 0.065 | 0     | 99  |
| 71054 | 1986 | 189   | 0.15  | 0.072 | 0.005 | 48  |
| 71054 | 1990 | 182   | 0.187 | 0.062 | 0.005 | 33  |
| 71054 | 1994 | 182   | 0.21  | 0.068 | 0.005 | 33  |
| 71054 | 2000 | 189   | 0.196 | 0.073 | 0.005 | 37  |
| 7109  | 1980 | 287   | 0.081 | 0.058 | 0.003 | 72  |
| 7109  | 1988 | 112   | 0.03  | 0.025 | 0.002 | 85  |
| 7109  | 1986 | 112   | 0.03  | 0.025 | 0.002 | 85  |
| 7109  | 1996 | 112   | 0.173 | 0.061 | 0.006 | 35  |
| 71106 | 1979 | 231   | 0.295 | 0.093 | 0     | 32  |
| 71106 | 1980 | 210   | 0.276 | 0.109 | 0     | 39  |
| 71106 | 1986 | 210   | 0.321 | 0.071 | 0.005 | 22  |
| 71106 | 1990 | 210   | 0.304 | 0.121 | 0.008 | 40  |
| 71106 | 1994 | 210   | 0.308 | 0.107 | 0.007 | 35  |
| 71116 | 1984 | 2385  | 0.219 | 0.038 | 0     | 17  |
| 71116 | 1988 | 1188  | 0.228 | 0.056 | 0.002 | 25  |
| 71116 | 1992 | 1188  | 0.219 | 0.067 | 0.002 | 30  |
| 71116 | 1996 | 1188  | 0.184 | 0.076 | 0.002 | 41  |
| 71116 | 2000 | 1188  | 0.179 | 0.085 | 0.002 | 48  |
| 71145 | 1978 | 1799  | 0.064 | 0.053 | 0     | 83  |
| 71145 | 1982 | 1778  | 0.129 | 0.058 | 0     | 428 |
| 71145 | 1989 | 896   | 0.16  | 0.059 | 0.002 | 37  |
| 71145 | 1993 | 896   | 0.273 | 0.082 | 0.003 | 30  |
| 71145 | 1996 | 896   | 0.222 | 0.058 | 0.002 | 26  |
| 71145 | 1996 | 512   | 0.225 | 0.062 | 0.003 | 27  |
| 71145 | 1996 | 512   | 0.216 | 0.054 | 0.002 | 25  |
| 71145 | 1997 | 896   | 0.187 | 0.053 | 0.002 | 28  |
| 71145 | 1998 | 896   | 0.226 | 0.061 | 0.002 | 27  |
| 71145 | 1998 | 512   | 0.224 | 0.063 | 0.003 | 28  |
| 71145 | 1998 | 512   | 0.217 | 0.058 | 0.003 | 27  |
| 71291 | 1982 | 1848  | 0.184 | 0.046 | 0     | 25  |
| 71291 | 1988 | 928   | 0.247 | 0.059 | 0.002 | 24  |
| 71291 | 1992 | 928   | 0.287 | 0.064 | 0.002 | 22  |
| 71291 | 1995 | 928   | 0.195 | 0.103 | 0.003 | 53  |
| 71291 | 2000 | 928   | 0.218 | 0.061 | 0.002 | 28  |
| 713   | 1981 | 207   | 0.162 | 0.071 | 0.005 | 44  |
| 713   | 1998 |       | 0     | 0     | 0     | 0   |
| 71313 | 1979 | 944   | 0.195 | 0.061 | 0     | 31  |
| 71313 | 1986 | 949   | 0.361 | 0.097 | 0.003 | 27  |
| 71313 | 1988 | 943   | 0.292 | 0.067 | 0.002 | 23  |
| 71313 | 1992 | 943   | 0.288 | 0.095 | 0.003 | 33  |
| 71313 | 1996 | 948   | 0.317 | 0.114 | 0.004 | 36  |
| 71315 | 1979 | 1512  | 0.327 | 0.186 | 0     | 26  |
| 71315 | 1982 | 1728  | 0.379 | 0.109 | 0     | 25  |
| 71315 | 1986 |       | 0.413 | 0.094 | 0     | 0   |
| 71315 | 1990 |       | 0.334 | 0.127 | 0     | 0   |
|       |      |       |       |       |       |     |



| 71315   | 1995 | 756  | 0.42  | 0.129 | 0.005 | 31  |
|---------|------|------|-------|-------|-------|-----|
| 71315   | 1999 | 763  | 0.456 | 0.091 | 0.003 | 20  |
| 71316   | 1979 | 576  | 0.156 | 0.059 | 0     | 38  |
| 71316   | 1985 | 852  | 0.271 | 0.08  | 0.003 | 30  |
| 71316   | 1990 | 852  | 0.222 | 0.076 | 0.003 | 34  |
| 71316   | 1994 | 852  | 0.261 | 0.081 | 0.003 | 31  |
| 71316   | 1999 | 852  | 0.245 | 0.088 | 0.003 | 36  |
| 71504   | 1980 | 248  | 0.044 | 0.067 | 0     | 99  |
| 71504   | 1987 | 248  | 0.173 | 0.075 | 0.005 | 43  |
| 71504   | 1991 | 248  | 0.156 | 0.091 | 0.006 | 59  |
| 71504   | 1995 | 248  | 0.134 | 0.098 | 0.006 | 73  |
| 71504   | 1999 | 248  | 0.181 | 0.08  | 0.005 | 45  |
| 7168    | 1979 | 288  | 0.03  | 0.051 | 0.003 | 99  |
| 7168    | 1986 | 288  | 0.054 | 0.04  | 0.002 | 75  |
| 7168    | 1990 | 288  | 0.075 | 0.04  | 0.002 | 52  |
| 7168    | 1994 | 288  | 0.066 | 0.048 | 0.003 | 73  |
| 7168    | 1998 | 288  | 0.174 | 0.077 | 0.005 | 44  |
| 72007W  | 1987 |      | 0.299 | 0.065 | 0     | 0   |
| 72007W  | 2000 | 444  | 0.199 | 0.064 | 0.003 | 32  |
| 72094   | 1979 | 927  | 0.265 | 0.068 | 0     | 26  |
| 72094   | 1982 | 909  | 0.319 | 0.051 | 0     | 16  |
| 72094   | 1983 | 909  | 0.299 | 0.05  | 0     | 17  |
| 72094   | 1987 | 909  | 0.311 | 0.067 | 0.002 | 21  |
| 72094   | 1991 | 909  | 0.353 | 0.088 | 0.003 | 25  |
| 72094   | 1996 | 909  | 0.297 | 0.093 | 0.003 | 31  |
| 72094   | 2000 | 918  | 0.253 | 0.078 | 0.003 | 31  |
| 72168   | 1998 |      | 0     | 0     | 0     | 0   |
| 72186   | 1977 | 256  | 0.175 | 0.063 | 0     | 36  |
| 72279   | 1998 |      | 0     | 0     | 0     | 0   |
| 72345   | 1984 | 633  | 0.135 | 0.044 | 0.002 | 33  |
| 72345   | 1992 | 632  | 0.088 | 0.064 | 0.003 | 73  |
| 72345   | 1996 | 632  | 0.116 | 0.063 | 0.003 | 55  |
| 72467   | 1980 | 1212 | 0.067 | 0.057 | 0     | 86  |
| 72467   | 1986 | 1212 | 0.061 | 0.051 | 0.001 | 85  |
| 72467   | 1990 | 1208 | 0.086 | 0.087 | 0.002 | 101 |
| 72467   | 1994 | 1203 | 0.191 | 0.119 | 0.003 | 63  |
| 72467   | 1998 | 1208 | 0.174 | 0.066 | 0.002 | 38  |
| 72533S  | 1978 | 936  | 0.141 | 0.06  | 0     | 188 |
| 72533S  | 1983 | 828  | 0.16  | 0.068 | 0     | 42  |
| 72533S  | 1987 | 828  | 0.151 | 0.068 | 0.002 | 45  |
| 72533S  | 1991 | 828  | 0.155 | 0.077 | 0.003 | 50  |
| 72533S  | 1995 | 373  | 0.197 | 0.09  | 0.005 | 45  |
| 72533S  | 1999 | 828  | 0.174 | 0.084 | 0.003 | 48  |
| 72535S  | 1978 | 434  | 0.156 | 0.074 | 0     | 48  |
| 72535S  | 1983 | 362  | 0.164 | 0.115 | 0     | 70  |
| 72535S  | 1987 | 372  | 0.133 | 0.089 | 0.005 | 67  |
| 72535S  | 1991 | 364  | 0.13  | 0.061 | 0.003 | 47  |
| 72535S  | 1997 | 384  | 0.212 | 0.127 | 0.006 | 60  |
| 72545   | 1979 | 390  | 0.292 | 0.059 | 0.000 | 20  |
| 72545   | 1984 | 374  | 0.34  | 0.079 | 0.004 | 23  |
| 72545   | 1986 | 274  | 0.401 | 0.047 | 0.003 | 12  |
| 72551N  | 1979 | 253  | 0.2   | 0.086 | 0.003 | 43  |
| 7200114 | 1070 | 200  | 0.2   | 0.000 |       | 40  |



| 72551N | 1982 | 253  | 0.269 | 0.038 | 0     | 14  |
|--------|------|------|-------|-------|-------|-----|
| 72551N | 1983 | 253  | 0.228 | 0.05  | 0     | 22  |
| 72551N | 1987 | 253  | 0.231 | 0.047 | 0.003 | 20  |
| 72551N | 1991 | 253  | 0.292 | 0.057 | 0.004 | 20  |
| 72551N | 1992 | 253  | 0.266 | 0.054 | 0.003 | 20  |
| 72551N | 1996 | 253  | 0.163 | 0.138 | 0.009 | 85  |
| 72551S | 1979 | 253  | 0.217 | 0.079 | 0     | 36  |
| 72551S | 1982 | 253  | 0.271 | 0.043 | 0     | 16  |
| 72551S | 1983 | 253  | 0.254 | 0.053 | 0     | 21  |
| 72551S | 1987 | 253  | 0.257 | 0.059 | 0.004 | 23  |
| 72551S | 1991 | 253  | 0.308 | 0.063 | 0.004 | 21  |
| 72551S | 1992 | 253  | 0.284 | 0.061 | 0.004 | 21  |
| 72551S | 1996 | 253  | 0.208 | 0.131 | 0.008 | 63  |
| 7256   | 1981 | 1575 | 0.036 | 0.025 | 0.001 | 69  |
| 7256   | 1989 | 798  | 0.063 | 0.035 | 0.001 | 56  |
| 7256   | 1993 | 798  | 0.028 | 0.034 | 0.001 | 121 |
| 7256   | 1997 | 805  | 0.024 | 0.026 | 0.001 | 110 |
| 72631  | 1981 | 462  | 0.118 | 0.052 | 0     | 44  |
| 72631  | 2000 | 461  | 0.286 | 0.045 | 0.002 | 16  |
| 72640  | 1981 | 240  | 0.131 | 0.04  | 0     | 30  |
| 72640  | 1987 | 240  | 0.088 | 0.056 | 0.004 | 64  |
| 72640  | 1998 | 240  | 0.143 | 0.044 | 0.003 | 31  |
| 72705  | 1982 | 1410 | 0.374 | 0.074 | 0     | 20  |
| 72705  | 1986 | 1316 | 0.431 | 0.055 | 0.002 | 13  |
| 72705  | 1989 | 1410 | 0.427 | 0.073 | 0.002 | 17  |
| 72810E | 1985 | 274  | 0.193 | 0.039 | 0.002 | 20  |
| 72810E | 1989 | 278  | 0.242 | 0.088 | 0.005 | 36  |
| 72810E | 1994 | 276  | 0.17  | 0.035 | 0.002 | 21  |
| 72810W | 1985 | 274  | 0.163 | 0.042 | 0.003 | 26  |
| 72810W | 1989 | 279  | 0.147 | 0.059 | 0.004 | 40  |
| 72810W | 1994 | 278  | 0.113 | 0.04  | 0.002 | 35  |
| 72819  | 1998 |      | 0     | 0     | 0     | 0   |
| 7295   | 1981 | 152  | 0.032 | 0.023 | 0.002 | 72  |
| 7295   | 1989 | 152  | 0.067 | 0.025 | 0.002 | 37  |
| 7295   | 1995 | 152  | 0.082 | 0.034 | 0.003 | 41  |
| 73077  | 1999 |      | 0     | 0     | 0     | 0   |
| 73184  | 1985 | 339  | 0.077 | 0.054 | 0.003 | 70  |
| 73184  | 1989 | 305  | 0.08  | 0.082 | 0.005 | 102 |
| 73184  | 1993 | 308  | 0.056 | 0.073 | 0.004 | 131 |
| 73184  | 1998 | 305  | 0.08  | 0.062 | 0.004 | 78  |
| 73274  | 1985 | 280  | 0.055 | 0.043 | 0.003 | 78  |
| 73274  | 1989 | 274  | 0.117 | 0.053 | 0.003 | 45  |
| 73274  | 1993 | 281  | 0.154 | 0.06  | 0.004 | 39  |
| 73274  | 1996 | 279  | 0.127 | 0.066 | 0.004 | 52  |
| 73275  | 1985 | 1155 | 0.294 | 0.049 | 0.001 | 17  |
| 73275  | 1989 | 1166 | 0.307 | 0.058 | 0.002 | 19  |
| 73275  | 1993 | 1166 | 0.165 | 0.064 | 0.002 | 39  |
| 73275  | 1997 | 1166 | 0.211 | 0.073 | 0.002 | 35  |
| 73277  | 1984 | 1100 | 0.23  | 0.071 | 0.002 | 31  |
| 73277  | 1989 | 1103 | 0.21  | 0.087 | 0.003 | 41  |
| 73277  | 1993 | 1101 | 0.211 | 0.093 | 0.003 | 44  |
| 73277  | 2000 | 1105 | 0.225 | 0.059 | 0.002 | 26  |
|        |      |      |       |       |       |     |



| 73407 | 1979 | 1053 | 0.196 | 0.063 | 0     | 32       |
|-------|------|------|-------|-------|-------|----------|
| 73407 | 1983 | 1044 | 0.302 | 0.074 | 0     | 24       |
| 73407 | 1986 | 1044 | 0.36  | 0.072 | 0.002 | 20       |
| 73407 | 1990 | 1044 | 0.291 | 0.063 | 0.002 | 22       |
| 73407 | 1994 | 1044 | 0.305 | 0.062 | 0.002 | 20       |
| 73407 | 1998 | 1044 | 0.326 | 0:066 | 0.002 | 20       |
| 73410 | 1979 | 500  | 0.066 | 0.037 | 0     | 56       |
| 73410 | 1983 | 500  | 0.209 | 0.053 | 0     | 25       |
| 73410 | 1987 | 500  | 0.298 | 0.06  | 0.003 | 20       |
| 73410 | 1991 | 500  | 0.365 | 0.066 | 0.003 | 18       |
| 73410 | 1996 | 500  | 0.3   | 0.096 | 0.004 | 32       |
| 73410 | 1998 |      | 0     | 0     | 0     | 0        |
| 73420 | 1981 | 216  | 0.194 | 0.049 | 0     | 25       |
| 73420 | 1989 | 215  | 0.16  | 0.089 | 0.006 | 56       |
| 73420 | 1993 | 215  | 0.234 | 0.074 | 0.005 | 32       |
| 73420 | 1997 | 214  | 0.208 | 0.053 | 0.004 | 25       |
| 73425 | 1978 | 451  | 0.234 | 0.101 | 0     | 43       |
| 73425 | 1983 | 350  | 0.262 | 0.082 | 0     | 31       |
| 73425 | 1986 | 350  | 0.374 | 0.099 | 0.005 | 27       |
| 73425 | 1988 | 350  | 0.421 | 0.112 | 0.006 | 27       |
| 73425 | 1993 | 350  | 0.307 | 0.072 | 0.004 | 23       |
| 73425 | 1996 | 350  | 0.284 | 0.06  | 0.003 | 21       |
| 73425 | 2000 | 350  | 0.255 | 0.075 | 0.004 | 30       |
| 73426 | 1999 | 270  | 0.147 | 0.123 | 0.007 | 84       |
| 73429 | 1980 | 873  | 0.25  | 0.056 | 0     | 22       |
| 73429 | 1984 | 864  | 0.32  | 0.057 | 0.002 | 18       |
| 73429 | 1986 | 855  | 0.193 | 0.049 | 0.002 | 25       |
| 73429 | 1990 | 855  | 0.108 | 0.075 | 0.003 | 69       |
| 73429 | 1996 | 855  | 0.219 | 0.058 | 0.002 | 26       |
| 73429 | 2000 | 855  | 0.246 | 0.067 | 0.002 | 27       |
| 73527 | 1978 | 420  | 0.264 | 0.076 | 0     | 29       |
| 73527 | 1980 | 236  | 0.355 | 0.055 | 0     | 15       |
| 73527 | 1984 | 314  | 0.415 | 0.048 | 0.003 | 12       |
| 73621 | 1977 | 297  | 0.143 | 0.048 | 0.003 | 62       |
| 73621 | 1985 | 274  | 0.211 | 0.078 | 0.005 | 37       |
| 73621 | 1990 | 402  | 0.254 | 0.103 | 0.005 | 40       |
| 73621 | 1994 | 405  | 0.2   | 0.086 | 0.003 | 43       |
| 73621 | 1998 | 407  | 0.168 | 0.074 | 0.004 | 44       |
| 73636 | 1979 | 300  | 0.204 | 0.093 | 0.004 | 46       |
| 73636 | 1983 | 300  | 0.27  | 0.109 | 0     | 11       |
| 73636 | 1986 | 300  | 0.295 | 0.103 | 0.006 | 35       |
| 73636 | 1990 | 300  | 0.298 | 0.09  | 0.005 | 30       |
| 73636 | 1995 | 300  | 0.261 | 0.03  | 0.005 | 30       |
| 73636 | 1999 | 300  | 0.239 | 0.078 | 0.005 |          |
| 73637 | 1990 | 409  | 0.239 | 0.042 | 0.005 | 37<br>29 |
| 73637 | 1997 | 418  | 0.096 | 0.042 | 0.002 |          |
| 73640 | 1977 | 289  | 0.090 | 0.074 | 0.003 | 64       |
| 73640 | 1978 | 140  | 0.153 | 0.074 | 0     | 22       |
| 73640 | 1978 | 396  | 0.153 | 0.069 |       | 470      |
|       | 1979 | 396  | 0.101 | 0.045 | 0     | 28       |
| 73640 | 1979 | 396  | 0.226 | 0.059 | 0     | 26       |
| 73640 |      | 408  | 0.24  | 0.031 | 0     | 20       |
| 73640 | 1981 | 400  | 0.24  | 0.047 | 0     | 20       |



| 73640  | 1988 | 397  | 0.252 | 0.048 | 0.002 | 19 |
|--------|------|------|-------|-------|-------|----|
| 73640  | 1993 | 398  | 0.217 | 0.051 | 0.003 | 24 |
| 73640  | 1996 | 392  | 0.11  | 0.079 | 0.004 | 72 |
| 73694S | 1997 | 1166 | 0.211 | 0.073 | 0.002 | 35 |
| 7373   | 1981 | 324  | 0.076 | 0.053 | 0.003 | 70 |
| 7373   | 1996 | 324  | 0.042 | 0.041 | 0.002 | 98 |
| 73757  | 1985 | 511  | 0.048 | 0.032 | 0.001 | 68 |
| 73757  | 1992 | 511  | 0.174 | 0.068 | 0.003 | 39 |
| 73757  | 1999 | 511  | 0.141 | 0.095 | 0.004 | 68 |
| 7377   | 1981 | 189  | 0.128 | 0.079 | 0.006 | 62 |
| 7377   | 1992 | 189  | 0.187 | 0.113 | 0.008 | 61 |
| 7377   | 1996 | 198  | 0.179 | 0.136 | 0.01  | 76 |
| 7377   | 1998 |      | 0     | 0     | 0     | 0  |
| 73779  | 1984 | 760  | 0.198 | 0.042 | 0.002 | 21 |
| 73779  | 1989 | 390  | 0.157 | 0.055 | 0.003 | 35 |
| 73779  | 1994 | 760  | 0.134 | 0.05  | 0.002 | 37 |
| 73779  | 1999 | 760  | 0.223 | 0.05  | 0.002 | 22 |
| 73810W | 1984 | 1705 | 0.218 | 0.059 | 0.001 | 27 |
| 73810W | 1987 | 1705 | 0.286 | 0.057 | 0.001 | 20 |
| 73810W | 1991 | 1727 | 0.161 | 0.078 | 0.002 | 49 |
| 73810W | 1996 | 858  | 0.185 | 0.101 | 0.003 | 55 |
| 73810W | 2000 | 1705 | 0.173 | 0.093 | 0.002 | 54 |
| 73819  | 1978 | 100  | 0.182 | 0.103 | 0     | 57 |
| 73819  | 1978 | 242  | 0.261 | 0.074 | 0     | 28 |
| 73819  | 1983 | 231  | 0.244 | 0.048 | 0     | 20 |
| 73819  | 1987 | 231  | 0.204 | 0.048 | 0.003 | 24 |
| 73819  | 1991 | 231  | 0.205 | 0.034 | 0.002 | 17 |
| 73819  | 1997 | 99   | 0.217 | 0.041 | 0.004 | 19 |
| 73825E | 1985 |      | 0     | 0     | 0     | 0  |
| 73836  | 1979 | 876  | 0.18  | 0.063 | 0     | 35 |
| 73836  | 1982 | 866  | 0.209 | 0.068 | 0     | 33 |
| 73836  | 1985 | 861  | 0.29  | 0.073 | 0.002 | 25 |
| 73836  | 1988 | 861  | 0.313 | 0.066 | 0.002 | 21 |
| 73836  | 1992 | 861  | 0.378 | 0.083 | 0.003 | 22 |
| 73836  | 1996 | 866  | 0.273 | 0.062 | 0.002 | 23 |
| 73836  | 2000 | 867  | 0.287 | 0.074 | 0.003 | 26 |
| 73837  | 1984 | 723  | 0.242 | 0.053 | 0.002 | 22 |
| 73837  | 1987 |      | 0.247 | 0.054 | 0     | 0  |
| 73837  | 1991 | 721  | 0.243 | 0.063 | 0.002 | 26 |
| 73837  | 1995 | 719  | 0.231 | 0.052 | 0.002 | 23 |
| 73837  | 2000 | 723  | 0.218 | 0.056 | 0.002 | 26 |
| 73919E | 1978 | 928  | 0.307 | 0.066 | 0.002 | 21 |
| 73919E | 1982 | 912  | 0.331 | 0.07  | 0     | 21 |
| 73919E | 1987 | 912  | 0.406 | 0.045 | 0.001 | 11 |
| 73919E | 1991 | 912  | 0.373 | 0.053 | 0.002 | 14 |
| 73919E | 1995 | 912  | 0.297 | 0.082 | 0.002 | 28 |
| 73919E | 1999 | 904  | 0.315 | 0.002 | 0.003 | 25 |
| 73920W | 1984 | 604  | 0.313 | 0.075 | 0.003 | 19 |
| 73920W | 1989 | 647  | 0.213 | 0.069 | 0.003 | 32 |
| 73920W | 1993 | 648  | 0.251 | 0.003 | 0.003 | 34 |
| 73920W | 2000 | 604  | 0.277 | 0.08  | 0.003 |    |
| 73920  | 1980 | 1844 | 0.077 | 0.053 | 0.003 | 29 |
| 10022  | 1300 | 1044 | 0.077 | 0.000 | U     | 69 |



| 73922           | 1988 | 916  | 0.095 | 0.083 | 0.003 | 88 |
|-----------------|------|------|-------|-------|-------|----|
| 73922           | 1992 | 858  | 0.141 | 0.077 | 0.003 | 55 |
| 73922           | 1999 | 1144 | 0.266 | 0.077 | 0.002 | 29 |
| 73949           | 1978 | 3558 | 0.264 | 0.077 | 0     | 29 |
| 73949           | 1979 | 756  | 0.334 | 0.084 | 0     | 25 |
| 73949           | 1980 | 672  | 0.33  | 0.069 | 0     | 21 |
| 73949           | 1981 | 678  | 0.345 | 0.075 | 0     | 22 |
| 73949           | 1982 | 684  | 0.23  | 0.151 | 0     | 66 |
| 73949           | 1983 | 684  | 0.227 | 0.147 | 0     | 65 |
| 73949           | 1984 |      | 0     | 0     | 0     | 0  |
| 73949           | 1987 | 912  | 0.382 | 0.085 | 0.003 | 22 |
| 73949           | 1991 | 912  | 0.356 | 0.142 | 0.005 | 40 |
| 73949           | 1995 | 904  | 0.383 | 0.117 | 0.004 | 31 |
| 73949           | 1999 | 904  | 0.445 | 0.116 | 0.004 | 26 |
| 7398            | 1985 | 1700 | 0.117 | 0.044 | 0.001 | 38 |
| 7398            | 1989 |      | 0.12  | 0.041 | 0     | 0  |
| 7398            | 1993 | 1699 | 0.092 | 0.036 | 0.001 | 39 |
| 7398            | 1997 | 1700 | 0.058 | 0.038 | 0.001 | 65 |
| 740             | 1978 | 385  | 0.063 | 0.047 | 0.002 | 75 |
| 740             | 1983 | 362  | 0.05  | 0.038 | 0.002 | 76 |
| 740             | 1992 | 362  | 0.107 | 0.077 | 0.004 | 72 |
| 740             | 1996 | 365  | 0.124 | 0.063 | 0.003 | 51 |
| 7401            | 1999 |      | 0     | 0     | 0     | 0  |
| 74031N          | 2000 | 1386 | 0.11  | 0.045 | 0.001 | 41 |
| 74116           | 1978 | 297  | 0.145 | 0.088 | 0     | 61 |
| 74116           | 1984 | 250  | 0.192 | 0.064 | 0.004 | 33 |
| 74116           | 1992 | 250  | 0.203 | 0.069 | 0.004 | 34 |
| 74116           | 1996 | 250  | 0.196 | 0.074 | 0.005 | 38 |
| 74137           | 1978 | 348  | 0.249 | 0.068 | 0     | 27 |
| 74137           | 1983 | 348  | 0.269 | 0.109 | 0     | 41 |
| 74137           | 1984 | 377  | 0.239 | 0.091 | 0.005 | 38 |
| 74137           | 1989 | 377  | 0.196 | 0.101 | 0.005 | 52 |
| 74137           | 1993 | 377  | 0.169 | 0.108 | 0.006 | 64 |
| 74137           | 1996 | 377  | 0.268 | 0.115 | 0.006 | 43 |
| 74137           | 1997 | 348  | 0.26  | 0.085 | 0.005 | 33 |
| 74194           | 1996 |      | 0     | 0     | 0     | 0  |
| 74195           | 1980 | 707  | 0.19  | 0.103 | 0     | 54 |
| 74195           | 1985 | 686  | 0.212 | 0.112 | 0.004 | 53 |
| 74195           | 1990 | 693  | 0.272 | 0.116 | 0.004 | 43 |
| 74195           | 1996 | 693  | 0.287 | 0.142 | 0.005 | 50 |
| 74217           | 1977 | 280  | 0.293 | 0.088 | 0     | 30 |
| 74217           | 1979 | 367  | 0.331 | 0.085 | 0     | 26 |
| 74217           | 1980 | 423  | 0.3   | 0.064 | 0     | 21 |
| 74217           | 1982 | 414  | 0.366 | 0.069 | 0     | 19 |
| 74217           | 1983 | 416  | 0.376 | 0.066 | 0     | 18 |
| 74217           | 1984 |      | 0     | 0     | 0     | 0  |
| 74217           | 1988 | 416  | 0.286 | 0.066 | 0.003 | 23 |
| 74217           | 1993 | 416  | 0.265 | 0.074 | 0.003 | 28 |
| 74217           | 1997 | 425  | 0.241 | 0.075 | 0.004 | 31 |
| 74222           | 1979 | 432  | 0.114 | 0.079 | 0.004 | 69 |
| 74222           | 1983 | 424  | 0.138 | 0.074 | 0     | 54 |
| 74222           | 1988 | 424  | 0.123 | 0.082 | 0.004 | 67 |
| 1 1 4 6 6 6 6 7 | ,000 |      | 020   | 0.002 | 0.004 | 07 |



| 74222  | 1997 | 424  | 0.077 | 0.071 | 0.003 | 92 |
|--------|------|------|-------|-------|-------|----|
| 74227  | 1980 | 3496 | 0.183 | 0.047 | 0     | 26 |
| 74227  | 1985 | 1600 | 0.226 | 0.056 | 0.001 | 25 |
| 74227  | 1990 | 1600 | 0.255 | 0.069 | 0.002 | 27 |
| 74227  | 1994 | 1600 | 0.216 | 0.062 | 0.002 | 29 |
| 74227  | 1996 |      | 0     | 0     | 0     | 0  |
| 74227  | 2000 | 1592 | 0.248 | 0.057 | 0.001 | 23 |
| 74228  | 1980 | 1267 | 0.325 | 0.064 | 0.001 | 20 |
| 74228  | 1984 | 1672 | 0.303 | 0.068 | 0.002 | 22 |
| 74228  | 1986 | 1672 | 0.315 | 0.057 | 0.002 | 18 |
| 74228  | 1988 | 1668 | 0.234 | 0.05  | 0.001 | 22 |
| 74228  | 1992 | 1668 | 0.304 | 0.081 | 0.002 | 27 |
| 74228  | 1996 | 1670 | 0.293 | 0.073 | 0.002 | 25 |
| 74228  | 2000 | 1675 | 0.289 | 0.073 | 0.002 | 25 |
| 74229  | 1981 | 1935 | 0.203 | 0.071 |       |    |
| 74229  | 1987 | 972  | 0.307 | 0.041 | 0.002 | 35 |
| 74229  | 1991 | 972  | 0.233 | 0.052 |       | 17 |
| 74229  | 1994 | 972  | 0.233 | 0.057 | 0.002 | 25 |
| 74229  | 2000 | 972  | 0.248 |       | 0.002 | 26 |
| 74232  | 1981 | 1728 | 0.246 | 0.062 | 0.002 | 25 |
| 74232  | 1988 | 856  | 0.103 | 0.035 | 0     | 34 |
| 74232  | 1994 | 856  |       |       | 0.002 | 24 |
| 74232  | 1995 | 856  | 0.204 | 0.069 | 0.002 | 34 |
| 74232  | 1996 |      | 0.286 | 0.062 | 0.002 | 22 |
| 74232  |      | 856  | 0.284 | 0.059 | 0.002 | 21 |
| 74232  | 1997 | 856  | 0.306 | 0.056 | 0.002 | 18 |
| 74232  | 1998 | 856  | 0.273 | 0.066 | 0.002 | 24 |
| 74233  | 1979 | 1904 | 0.273 | 0.05  | 0     | 18 |
|        | 1982 | 1896 | 0.261 | 0.058 | 0     | 22 |
| 74233  | 1983 | 952  | 0.312 | 0.064 | 0     | 21 |
| 74233  | 1984 | 952  | 0.378 | 0.059 | 0.002 | 16 |
| 74233  | 1989 | 952  | 0.353 | 0.093 | 0.003 | 26 |
| 74233  | 1993 | 952  | 0.344 | 0.081 | 0.003 | 23 |
| 74233  | 1997 | 952  | 0.304 | 0.083 | 0.003 | 27 |
| 74236  | 1981 | 2232 | 0.121 | 0.051 | 0     | 42 |
| 74236  | 1988 | 1112 | 0.188 | 0.068 | 0.002 | 36 |
| 74236  | 1994 | 1112 | 0.202 | 0.053 | 0.002 | 26 |
| 74236  | 1999 | 1128 | 0.233 | 0.061 | 0.002 | 26 |
| 74282W | 1979 | 226  | 0.171 | 0.094 | 0     | 55 |
| 74282W | 1983 | 216  | 0.353 | 0.12  | 0     | 34 |
| 74282W | 1986 | 215  | 0.343 | 0.104 | 0.007 | 30 |
| 74282W | 1990 | 214  | 0.339 | 0.077 | 0.005 | 23 |
| 74352E | 1981 | 1228 | 0.205 | 0.034 | 0     | 16 |
| 74352E | 2000 | 1226 | 0.253 | 0.091 | 0.003 | 36 |
| 74352W | 1981 | 1228 | 0.262 | 0.078 | 0     | 30 |
| 74352W | 1985 | 1216 | 0.346 | 0.068 | 0.002 | 20 |
| 74352W | 1989 | 1219 | 0.269 | 0.143 | 0.004 | 53 |
| 74352W | 1993 | 1215 | 0.253 | 0.083 | 0.002 | 33 |
| 74352W | 1997 | 1218 | 0.269 | 0.089 | 0.003 | 33 |
| 74353E | 1977 | 1041 | 0.088 | 0.072 | 0     | 82 |
| 74353E | 1981 | 1592 | 0.277 | 0.092 | 0     | 33 |
| 74353E | 1984 | 1587 | 0.282 | 0.094 | 0.002 | 33 |
| 74353E | 1986 | 1587 | 0.268 | 0.075 | 0.002 | 28 |
| 000    |      |      |       | 0.070 | 0.002 | 20 |



| 74353E | 1988 | 1588 | 0.205 | 0.087 | 0.002 | 42  |
|--------|------|------|-------|-------|-------|-----|
| 74353E | 1992 | 1588 | 0.183 | 0.082 | 0.002 | 45  |
| 74353E | 1995 | 1588 | 0.186 | 0.081 | 0.002 | 43  |
| 74353E | 1996 | 1590 | 0.187 | 0.073 | 0.002 | 39  |
| 74353E | 1997 | 1599 | 0.194 | 0.059 | 0.001 | 31  |
| 74353E | 1998 | 1589 | 0.197 | 0.065 | 0.002 | 33  |
| 74353W | 1977 | 1136 | 0.111 | 0.096 | 0     | 86  |
| 74353W | 1981 | 1594 | 0.229 | 0.114 | 0     | 50  |
| 74353W | 1984 | 1585 | 0.307 | 0.07  | 0.002 | 23  |
| 74353W | 1986 | 1585 | 0.348 | 0.059 | 0.001 | 17  |
| 74353W | 1988 | 1590 | 0.285 | 0.061 | 0.002 | 21  |
| 74353W | 1992 | 1589 | 0.316 | 0.079 | 0.002 | 25  |
| 74353W | 1995 | 1588 | 0.252 | 0.073 | 0.002 | 29  |
| 74353W | 1996 | 1593 | 0.252 | 0.081 | 0.002 | 32  |
| 74353W | 1997 | 1594 | 0.241 | 0.061 | 0.002 | 25  |
| 74353W | 1998 | 1590 | 0.223 | 0.055 | 0.001 | 25  |
| 74354E | 1981 | 966  | 0.154 | 0.051 | 0     | 33  |
| 74354E | 1983 | 966  | 0.182 | 0.057 | 0     | 31  |
| 74354E | 1988 | 966  | 0.163 | 0.076 | 0.002 | 47  |
| 74354E | 1992 | 966  | 0.03  | 0.072 | 0.002 | 237 |
| 74354E | 1997 | 966  | 0.177 | 0.088 | 0.003 | 50  |
| 74354W | 1981 | 868  | 0.246 | 0.108 | 0     | 44  |
| 74354W | 1983 | 868  | 0.301 | 0.054 | 0     | 18  |
| 74354W | 1984 |      | 0     | 0     | 0     | 0   |
| 74354W | 1986 |      | 0.316 | 0.056 | 0     | 0   |
| 74354W | 1988 | 868  | 0.295 | 0.066 | 0.002 | 22  |
| 74354W | 1992 | 868  | 0.195 | 0.079 | 0.003 | 40  |
| 74354W | 1996 | 868  | 0.218 | 0.095 | 0.003 | 44  |
| 74355E | 1977 | 682  | 0.089 | 0.071 | 0     | 80  |
| 74355E | 1979 | 1036 | 0.172 | 0.06  | 0     | 35  |
| 74355E | 1980 | 1064 | 0.174 | 0.064 | 0     | 37  |
| 74355E | 1981 | 1050 | 0.195 | 0.065 | 0     | 33  |
| 74355E | 1982 | 1050 | 0.283 | 0.051 | 0     | 18  |
| 74355E | 1983 | 1050 | 0.213 | 0.062 | 0     | 29  |
| 74355E | 1987 | 1050 | 0.176 | 0.069 | 0.002 | 39  |
| 74355E | 1991 | 1050 | 0.219 | 0.077 | 0.002 | 35  |
| 74355E | 1992 | 1050 | 0.185 | 0.1   | 0.003 | 54  |
| 74355E | 1998 | 1050 | 0.211 | 0.086 | 0.003 | 40  |
| 74355W | 1977 | 649  | 0.364 | 0.115 | 0     | 32  |
| 74355W | 1979 | 1090 | 0.258 | 0.088 | 0     | 34  |
| 74355W | 1980 | 1003 | 0.274 | 0.067 | 0     | 24  |
| 74355W | 1981 | 1012 | 0.269 | 0.049 | 0     | 18  |
| 74355W | 1982 | 988  | 0.219 | 0.061 | 0     | 18  |
| 74355W | 1983 | 985  | 0.294 | 0.047 | 0     | 16  |
| 74355W | 1987 | 984  | 0.274 | 0.067 | 0.002 | 24  |
| 74355W | 1991 | 983  | 0.194 | 0.076 | 0.002 | 39  |
| 74355W | 1992 | 982  | 0.175 | 0.07  | 0.002 | 40  |
| 74355W | 1996 | 989  | 0.134 | 0.095 | 0.002 | 71  |
| 74355W | 1997 | 997  | 0.169 | 0.06  | 0.002 | 35  |
| 74358  | 1980 | 672  | 0.1   | 0.054 | 0.002 | 54  |
| 74358  | 1987 | 672  | 0.086 | 0.051 | 0.002 | 60  |
| 74358  | 1991 | 672  | 0.068 | 0.055 | 0.002 | 81  |
|        |      |      |       | 0.000 | 0.002 | 01  |



| 74358         1999         682         0.028         0.037         0.001         133           743581         1998         680         0.222         0.062         0.002         28           74381         1998         1608         0.383         0.07         0         18           74381         1980         972         0.392         0.077         0         20           74381         1983         780         0.284         0.173         0         61           74381         1983         780         0.284         0.173         0         61           74381         1991         1072         0.382         0.065         0.002         17           74381         1994         1040         0.282         0.116         0.004         41           74381         1994         1040         0.282         0.116         0.004         41           74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1983         368         0.151         0.060         0.003<                                                                                                   |        |      |      |       |       |       |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|-------|-------|-------|-----|
| 74358         1999         680         0.222         0.062         0.002         28           74381         1980         972         0.392         0.077         0         20           74381         1980         972         0.392         0.077         0         20           74381         1982         1602         0.289         0.177         0         61           74381         1983         780         0.284         0.173         0         61           74381         1987         1040         0.387         0.09         0.003         23           74381         1991         1072         0.382         0.065         0.002         17           74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.168         0.063         0         38           74426         1993         368         0.191         0.079         0.004                                                                                                                |        | 1995 | 672  | 0.028 | 0.037 | 0.001 | 133 |
| 74381         1980         972         0.392         0.077         0         20           74381         1982         1602         0.289         0.177         0         61           74381         1983         780         0.284         0.173         0         61           74381         1987         1040         0.387         0.09         0.003         23           74381         1994         1040         0.282         0.065         0.002         17           74381         1994         1040         0.282         0.016         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.151         0.06         0.003         38           74426         1987         368         0.151         0.06         0.003         39           74426         1991         376         0.229         0.087         0.004         48           74426         1994         376         0.144         0.057         0.003                                                                                                          | 74358  | 1999 | 680  | 0.222 | 0.062 | 0.002 |     |
| 74381         1982         1602         0.289         0.177         0         61           74381         1983         780         0.284         0.173         0         61           74381         1987         1040         0.387         0.09         0.003         23           74381         1991         1072         0.382         0.065         0.002         17           74381         1998         1072         0.382         0.016         0.004         41           74381         1998         1072         0.388         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.161         0.06         0.003         38           74426         1987         368         0.151         0.06         0.003         39           74426         1991         376         0.229         0.087         0.004         41           74426         1994         376         0.144         0.057         0.003         49           74426         1995         368         0.191         0.079         0.004 <td>74381</td> <td>1978</td> <td>1608</td> <td>0.383</td> <td>0.07</td> <td>0</td> <td>18</td>       | 74381  | 1978 | 1608 | 0.383 | 0.07  | 0     | 18  |
| 74381         1983         780         0.284         0.173         0         61           74381         1987         1040         0.387         0.09         0.003         23           74381         1991         1072         0.382         0.065         0.002         17           74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.168         0.063         0         38           74426         1987         368         0.151         0.06         0.003         39           74426         1993         368         0.191         0.079         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1996         376         0.203         0.045         0.002 <td>74381</td> <td>1980</td> <td>972</td> <td>0.392</td> <td>0.077</td> <td>0</td> <td>20</td>       | 74381  | 1980 | 972  | 0.392 | 0.077 | 0     | 20  |
| 74381         1987         1040         0.387         0.09         0.003         23           74381         1994         1072         0.382         0.065         0.002         17           74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.151         0.06         0.003         39           74426         1987         368         0.151         0.06         0.003         39           74426         1991         376         0.229         0.087         0.004         38           74426         1994         376         0.144         0.057         0.003         40           74426         1995         368         0.199         0.045         0.002         23           74426         1995         368         0.199         0.045         0.002         23           74426         1998         376         0.203         0.041         0                                                                                                   | 74381  | 1982 | 1602 | 0.289 | 0.177 | 0     | 61  |
| 74381         1987         1040         0.387         0.09         0.003         23           74381         1991         1072         0.382         0.065         0.002         17           74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1983         368         0.168         0.063         0         38           74426         1983         368         0.151         0.06         0.003         39           74426         1987         368         0.151         0.06         0.003         39           74426         1993         368         0.151         0.06         0.003         39           74426         1994         376         0.144         0.057         0.004         41           74426         1994         376         0.144         0.057         0.002         23           74426         1995         368         0.199         0.045         0.002         23           74426         1997         376         0.202         0.055         0                                                                                                   | 74381  | 1983 | 780  | 0.284 | 0.173 | 0     | 61  |
| 74381         1994         1072         0.382         0.065         0.002         17           74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.96         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1987         368         0.168         0.063         0         38           74426         1991         376         0.229         0.087         0.004         38           74426         1991         376         0.229         0.087         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.203         0.041         0.002         20           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.00                                                                                                   | 74381  | 1987 | 1040 | 0.387 | 0.09  | 0.003 |     |
| 74381         1994         1040         0.282         0.116         0.004         41           74381         1998         1072         0.348         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.168         0.063         0         38           74426         1997         368         0.151         0.06         0.003         39           74426         1991         376         0.229         0.087         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1996         376         0.203         0.041         0.002         23           74426         1996         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74426         1998         376         0.222         0.039         0.002                                                                                                   | 74381  | 1991 | 1072 | 0.382 | 0.065 |       |     |
| 74381         1998         1072         0.348         0.096         0.003         28           74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.168         0.063         0         38           74426         1987         368         0.151         0.06         0.003         39           74426         1991         376         0.229         0.087         0.004         38           74426         1994         376         0.229         0.087         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.203         0.041         0.002         20           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.055         0.003         27           74440         1978         1824         0.23         0.081         0                                                                                                        | 74381  | 1994 | 1040 | 0.282 | 0.116 | 0.004 | 41  |
| 74426         1978         376         0.13         0.084         0         62           74426         1983         368         0.168         0.063         0         38           74426         1987         368         0.151         0.06         0.003         39           74426         1991         376         0.229         0.087         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.203         0.041         0.002         20           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         21           74420         1978         1824         0.23         0.881         0         35           74440         1979         992         0.282         0.071         0                                                                                                             | 74381  | 1998 | 1072 | 0.348 | 0.096 | 0.003 |     |
| 74426         1983         368         0.168         0.063         0         38           74426         1991         376         0.229         0.087         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1994         376         0.144         0.057         0.003         40           74426         1996         376         0.203         0.041         0.002         23           74426         1996         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1978         1824         0.23         0.081         0         35           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0                                                                                                            | 74426  | 1978 | 376  | 0.13  | 0.084 | 0     |     |
| 74426         1991         376         0.229         0.087         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.203         0.041         0.002         20           74426         1997         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.039         0.002         17           74440         1979         992         0.282         0.071         0         25           74440         1981         840         0.28         0.08         0 </td <td>74426</td> <td>1983</td> <td>368</td> <td>0.168</td> <td>0.063</td> <td>0</td> <td>38</td> | 74426  | 1983 | 368  | 0.168 | 0.063 | 0     | 38  |
| 74426         1991         376         0.229         0.087         0.004         38           74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.203         0.041         0.002         20           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1978         1824         0.23         0.081         0         35           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1983         912         0.281         0.068         0         24           74440         1987         904         0.363         0.078         0.003                                                                                                            | 74426  | 1987 | 368  | 0.151 | 0.06  | 0.003 |     |
| 74426         1993         368         0.191         0.079         0.004         41           74426         1994         376         0.144         0.057         0.003         40           74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.202         0.055         0.003         27           74426         1998         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1978         1824         0.23         0.081         0         35           74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1983         912         0.281         0.068         0         24           74440         1984         0         0         0         0         0                                                                                                                    | 74426  | 1991 | 376  | 0.229 | 0.087 | 0.004 |     |
| 74426         1995         368         0.199         0.045         0.002         23           74426         1996         376         0.203         0.041         0.002         20           74426         1997         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1981         840         0.28         0.08         0         29           74440         1983         912         0.281         0.068         0         24           74440         1983         912         0.281         0.068         0         24           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.34         0.082         0.003         23                                                                                                            | 74426  | 1993 | 368  | 0.191 | 0.079 | 0.004 |     |
| 74426         1996         376         0.203         0.041         0.002         20           74426         1997         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1978         1824         0.23         0.081         0         35           74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0         0           74440         1997         904         0.363         0.078         0.003         21           74440         1998         912         0.34         0.082         0.003         <                                                                                                                 | 74426  | 1994 | 376  | 0.144 | 0.057 | 0.003 | 40  |
| 74426         1996         376         0.203         0.041         0.002         20           74426         1997         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1978         1824         0.23         0.081         0         35           74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0         0           74440         1997         912         0.332         0.078         0.003         23           74440         1998         912         0.375         0.064         0.002                                                                                                                          | 74426  | 1995 | 368  | 0.199 | 0.045 | 0.002 | 23  |
| 74426         1997         376         0.202         0.055         0.003         27           74426         1998         376         0.222         0.039         0.002         17           74440         1978         1824         0.23         0.081         0         35           74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.34         0.082         0.003         24           74440         1998         912         0.34         0.082         0.003 <t< td=""><td>74426</td><td>1996</td><td>376</td><td>0.203</td><td>0.041</td><td>0.002</td><td></td></t<>                  | 74426  | 1996 | 376  | 0.203 | 0.041 | 0.002 |     |
| 74440         1978         1824         0.23         0.081         0         35           74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         <                                                                                                                 | 74426  | 1997 | 376  | 0.202 | 0.055 | 0.003 |     |
| 74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.34         0.082         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74452         1978         1794         0.302         0.072         0         <                                                                                                                 | 74426  | 1998 | 376  | 0.222 | 0.039 | 0.002 | 17  |
| 74440         1979         992         0.282         0.071         0         25           74440         1980         1000         0.262         0.075         0         29           74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74452         1978         1794         0.302         0.072         0         24 <td>74440</td> <td>1978</td> <td>1824</td> <td>0.23</td> <td>0.081</td> <td>0</td> <td>35</td>                          | 74440  | 1978 | 1824 | 0.23  | 0.081 | 0     | 35  |
| 74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24                                                                                                                  | 74440  | 1979 | 992  | 0.282 | 0.071 | 0     |     |
| 74440         1981         840         0.28         0.08         0         29           74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1980         1208         0.385         0.046         0         17                                                                                                                     | 74440  | 1980 | 1000 | 0.262 | 0.075 | 0     | 29  |
| 74440         1982         912         0.281         0.068         0         24           74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1980         1208         0.385         0.045         0         17                                                                                                                  | 74440  | 1981 | 840  | 0.28  | 0.08  | 0     |     |
| 74440         1983         912         0.277         0.07         0         25           74440         1984         0         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1980         1208         0.385         0.045         0         17           74452         1981         1184         0.35         0.06         0         17                                                                                                                   | 74440  | 1982 | 912  | 0.281 | 0.068 | 0     |     |
| 74440         1984         0         0         0         0           74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17                                                                                                                           | 74440  | 1983 | 912  | 0.277 |       |       |     |
| 74440         1987         904         0.363         0.078         0.003         21           74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1983         1184         0.372         0.067         0                                                                                                                | 74440  | 1984 |      | 0     | 0     | 0     |     |
| 74440         1991         912         0.332         0.078         0.003         23           74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1980         1208         0.385         0.046         0         17           74452         1981         1184         0.35         0.06         0         17           74452         1983         1184         0.372         0.067         0 <t< td=""><td>74440</td><td>1987</td><td>904</td><td>0.363</td><td>0.078</td><td>0.003</td><td></td></t<>         | 74440  | 1987 | 904  | 0.363 | 0.078 | 0.003 |     |
| 74440         1995         912         0.34         0.082         0.003         24           74440         1998         912         0.375         0.064         0.002         17           74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1980         1208         0.385         0.045         0         17           74452         1981         1184         0.35         0.06         0         17           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0     <                                                                                                                 | 74440  | 1991 | 912  | 0.332 | 0.078 | 0.003 | 23  |
| 74447         1990         286         0.159         0.111         0.007         70           74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36                                                                                                                            | 74440  | 1995 | 912  | 0.34  | 0.082 | 0.003 | 24  |
| 74447         1997         286         0.149         0.092         0.005         62           74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29                                                                                                                                | 74440  | 1998 | 912  | 0.375 | 0.064 | 0.002 |     |
| 74452         1978         1794         0.302         0.072         0         24           74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1989         588         0.223         0.065         0         29                                                                                                                                | 74447  | 1990 | 286  | 0.159 | 0.111 | 0.007 | 70  |
| 74452         1979         1311         0.307         0.073         0         24           74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1989         588         0.223         0.065         0         29           74455         1995         588         0.179         0.06         0.002         33                                                                                                                              | 74447  | 1997 | 286  | 0.149 | 0.092 | 0.005 | 62  |
| 74452         1979         2392         0.275         0.046         0         17           74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458         1977         708         0.217         0.128         0         59                                                                                                                           | 74452  | 1978 | 1794 | 0.302 | 0.072 | 0     |     |
| 74452         1980         1208         0.385         0.045         0         12           74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458         1977         708         0.217         0.128         0         59  <                                                                                                                          | 74452  | 1979 | 1311 | 0.307 | 0.073 | 0     | 24  |
| 74452         1981         1184         0.35         0.06         0         17           74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                       | 74452  | 1979 | 2392 | 0.275 | 0.046 | 0     | 17  |
| 74452         1982         876         0.242         0.146         0         60           74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                | 74452  | 1980 | 1208 | 0.385 | 0.045 | 0     | 12  |
| 74452         1983         1184         0.372         0.067         0         18           74452         1984         0         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                          | 74452  | 1981 | 1184 | 0.35  | 0.06  | 0     | 17  |
| 74452         1984         0         0         0         0           74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74452  | 1982 | 876  | 0.242 | 0.146 | 0     | 60  |
| 74452         1988         888         0.388         0.063         0.002         16           74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74452  | 1983 | 1184 | 0.372 | 0.067 | 0     | 18  |
| 74455         1979         600         0.195         0.07         0         36           74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74452  | 1984 |      | 0     | 0     | 0     | 0   |
| 74455         1983         588         0.223         0.065         0         29           74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74452  | 1988 | 888  | 0.388 | 0.063 | 0.002 | 16  |
| 74455         1989         588         0.247         0.078         0.003         32           74455         1995         588         0.179         0.06         0.002         33           74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74455  | 1979 |      |       | 0.07  | 0     | 36  |
| 74455     1989     588     0.247     0.078     0.003     32       74455     1995     588     0.179     0.06     0.002     33       74455     2000     588     0.144     0.07     0.003     48       74458S     1977     708     0.217     0.128     0     59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74455  | 1983 | 588  | 0.223 | 0.065 | 0     | 29  |
| 74455         2000         588         0.144         0.07         0.003         48           74458S         1977         708         0.217         0.128         0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74455  | 1989 | 588  |       | 0.078 | 0.003 | 32  |
| 74458S 1977 708 0.217 0.128 0 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74455  | 1995 | 588  | 0.179 | 0.06  | 0.002 | 33  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74455  | 2000 | 588  | 0.144 | 0.07  | 0.003 | 48  |
| 74458S 1978 1008 0.284 0.085 0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74458S | 1977 | 708  | 0.217 | 0.128 | 0     | 59  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74458S | 1978 | 1008 | 0.284 | 0.085 | 0     | 30  |
| 74458S 1978 1008 0.18 0.042 0 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74458S | 1978 | 1008 | 0.18  | 0.042 | 0     |     |
| 74458S 1979 936 0.258 0.04 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74458S | 1979 | 936  | 0.258 | 0.04  | 0     | 16  |
| 74458S 1980 994 0.251 0.049 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74458S | 1980 | 994  | 0.251 | 0.049 | 0     | 20  |



| 74458S | 1981    | 994  | 0.255 | 0.052 | 0     | 20 |
|--------|---------|------|-------|-------|-------|----|
| 74458S | 1983    | 994  | 0.241 | 0.047 | 0     | 20 |
| 74458S | 1984    |      | 0     | 0     | 0     | 0  |
| 74458S | 1987    | 994  | 0.193 | 0.055 | 0.002 | 28 |
| 74458S | 1991    | 994  | 0.217 | 0.055 | 0.002 | 25 |
| 74458S | 1996    | 994  | 0.167 | 0:051 | 0.002 | 31 |
| 74540  | 1980    | 250  | 0.091 | 0.073 | 0     | 84 |
| 74540  | 1986    | 255  | 0.047 | 0.042 | 0.003 | 90 |
| 74540  | 1992    | 255  | 0.063 | 0.061 | 0.004 | 98 |
| 74596  | 1981    | 526  | 0.334 | 0.076 | 0     | 23 |
| 74596  | 1982    | 519  | 0.376 | 0.076 | 0     | 20 |
| 74596  | 1986    | 518  | 0.44  | 0.081 | 0.004 | 18 |
| 74596  | 1991    | 517  | 0.524 | 0.099 | 0.004 | 19 |
| 74596  | 1995    | 519  | 0.34  | 0.077 | 0.003 | 23 |
| 74596  | 1999    | 519  | 0.383 | 0.08  | 0.003 | 21 |
| 74600W | 1986    | 334  | 0.344 | 0.104 | 0.006 | 30 |
| 74600W | 1999    |      | 0     | 0     | 0     | 0  |
| 7461   | 1979    | 1665 | 0.182 | 0.072 | 0.002 | 40 |
| 7461   | 1983    | 1674 | 0.231 | 0.087 | 0.002 | 38 |
| 7461   | 1987    | 1674 | 0.259 | 0.101 | 0.002 | 39 |
| 7461   | 1992    | 1674 | 0.253 | 0.085 | 0.002 | 34 |
| 7461   | 1996    | 1674 | 0.3   | 0.056 | 0.001 | 19 |
| 7461   | 1997    | 1674 | 0.272 | 0.042 | 0.001 | 16 |
| 74653  | 1978    | 1521 | 0.11  | 0.083 | 0     | 72 |
| 74653  | 1979    | 1962 | 0.208 | 0.065 | 0     | 31 |
| 74653  | 1983    | 1935 | 0.193 | 0.073 | 0     | 38 |
| 74653  | 1987    | 972  | 0.165 | 0.046 | 0.001 | 28 |
| 74653  | 1991    | 972  | 0.133 | 0.034 | 0.001 | 26 |
| 74653  | 1995    | 972  | 0.137 | 0.037 | 0.001 | 27 |
| 74653  | 2000    | 972  | 0.096 | 0.037 | 0.001 | 38 |
| 74678  | 1977    | 354  | 0.269 | 0.113 | 0     | 42 |
| 74678  | 1978    | 346  | 0.398 | 0.073 | 0     | 18 |
| 74678  | 1978    | 527  | 0.176 | 0.061 | 0     | 35 |
| 74678  | 1979    | 524  | 0.253 | 0.055 | 0     | 22 |
| 74678  | 1980    | 522  | 0.268 | 0.07  | 0     | 26 |
| 74678  | 1981    | 561  | 0.255 | 0.055 | 0     | 22 |
| 74678  | 1983    | 522  | 0.246 | 0.043 | 0     | 17 |
| 74678  | 1987    | 529  | 0.195 | 0.052 | 0.002 | 27 |
| 74678  | 1991    | 507  | 0.215 | 0.063 | 0.003 | 29 |
| 74678  | 1995    | 525  | 0.197 | 0.048 | 0.002 | 25 |
| 74679  | #VALUE! | 330  | 0.198 | 0.154 | 0     | 78 |
| 74679  | 1978    | 256  | 0.165 | 0.088 | 0     | 53 |
| 74679  | 1978    | 390  | 0.171 | 0.057 | 0     | 33 |
| 74679  | 1979    | 400  | 0.233 | 0.047 | 0     | 20 |
| 74679  | 1980    | 390  | 0.295 | 0.046 | 0     | 16 |
| 74679  | 1981    | 420  | 0.307 | 0.063 | 0     | 17 |
| 74679  | 1982    | 400  | 0.261 | 0.059 | 0     | 23 |
| 74679  | 1987    | 390  | 0.256 | 0.093 | 0.005 | 37 |
| 74679  | 1991    | 390  | 0.219 | 0.082 | 0.003 | 37 |
| 74679  | 1995    | 390  | 0.241 | 0.141 | 0.004 | 59 |
| 74679  | 1999    | 400  | 0.237 | 0.123 | 0.007 | 52 |
| 747    | 1998    |      | 0     | 0     | 0.000 | 0  |
| 1-11   | 1000    |      |       |       |       | U  |



| 74710  | 1004 | 1 000 | 1 0 100 |       |       |    |
|--------|------|-------|---------|-------|-------|----|
| 74710  | 1981 | 382   | 0.162   | 0.04  | 0     | 25 |
| 74710  | 1987 | 376   | 0.232   | 0.068 | 0.003 | 29 |
| 74710  | 1991 | 358   | 0.244   | 0.077 | 0.004 | 31 |
|        | 1995 | 377   | 0.244   | 0.061 | 0.003 | 25 |
| 74710  | 1999 | 377   | 0.172   | 0.085 | 0.004 | 49 |
| 7475   | 1978 | 280   | 0.238   | 0.112 | 0.007 | 47 |
| 7475   | 1982 | 260   | 0.118   | 0.112 | 0.007 | 95 |
| 7475   | 1988 | 260   | 0.17    | 0.114 | 0.007 | 67 |
| 7475   | 1995 | 260   | 0.161   | 0.05  | 0.003 | 31 |
| 7487   | 1984 | 666   | 0.177   | 0.04  | 0.002 | 23 |
| 7487   | 1988 | 666   | 0.15    | 0.045 | 0.002 | 30 |
| 7487   | 1992 | 666   | 0.162   | 0.04  | 0.002 | 25 |
| 7487   | 1996 | 666   | 0.172   | 0.049 | 0.002 | 29 |
| 7492   | 1981 | 740   | 0.208   | 0.049 | 0.002 | 24 |
| 74954  | 1978 | 340   | 0.425   | 0.113 | 0     | 27 |
| 74954  | 1982 | 330   | 0.293   | 0.078 | 0     | 27 |
| 74954  | 1984 | 330   | 0.327   | 0.072 | 0.004 | 22 |
| 74954  | 1987 | 330   | 0.273   | 0.085 | 0.005 | 31 |
| 74954  | 1991 | 330   | 0.249   | 0.084 | 0.005 | 34 |
| 74954  | 1995 | 340   | 0.235   | 0.076 | 0.004 | 32 |
| 74954  | 2000 | 340   | 0.226   | 0.088 | 0.005 | 39 |
| 74969  | 1979 | 528   | 0.125   | 0.053 | 0     | 43 |
| 74969  | 1980 |       | 0.125   | 0.053 | 0     | 0  |
| 74969  | 1987 | 520   | 0.235   | 0.101 | 0.004 | 43 |
| 74969  | 1991 | 520   | 0.241   | 0.114 | 0.005 | 47 |
| 74969  | 1995 | 520   | 0.222   | 0.088 | 0.004 | 40 |
| 74969  | 1999 | 528   | 0.218   | 0.074 | 0.003 | 34 |
| 74978E | 1979 | 717   | 0.234   | 0.082 | 0     | 35 |
| 74978E | 1991 |       | 0.272   | 0.058 | 0     | 0  |
| 74978E | 1999 | 719   | 0.216   | 0.07  | 0.003 | 32 |
| 74978W | 1991 |       | 0.245   | 0.125 | 0     | 0  |
| 74978W | 1999 | 667   | 0.158   | 0.106 | 0.004 | 67 |
| 75014  | 1980 | 896   | 0.253   | 0.102 | 0     | 40 |
| 75014  | 1983 | 786   | 0.215   | 0.144 | 0     | 67 |
| 75014  | 1985 | 2754  | 0.29    | 0.173 | 0     | 60 |
| 75014  | 1988 |       | 0.323   | 0.071 | 0     | 0  |
| 75014  | 1992 | 1820  | 0.332   | 0.062 | 0     | 0  |
| 75014  | 1996 | 1834  | 0.328   | 0.073 | 0.002 | 22 |
| 75014  | 2000 | 1834  | 0.347   | 0.066 | 0.002 | 19 |
| 75016  | 1977 | 329   | 0.388   | 0.078 | 0     | 20 |
| 75021  | 1979 | 520   | 0.206   | 0.073 | 0     | 35 |
| 75021  | 1983 | 510   | 0.232   | 0.071 | 0     | 31 |
| 75021  | 1987 | 510   | 0.161   | 0.047 | 0.002 | 29 |
| 75021  | 1991 | 510   | 0.171   | 0.048 | 0.002 | 28 |
| 75021  | 1995 | 510   | 0.145   | 0.071 | 0.003 | 49 |
| 75051N | 1979 | 582   | 0.305   | 0.1   | 0     | 33 |
| 75051N | 1982 | 561   | 0.306   | 0.062 | 0     | 20 |
| 75051N | 1986 | 568   | 0.318   | 0.06  | 0.003 | 19 |
| 75051N | 1990 | 559   | 0.207   | 0.076 | 0.003 | 37 |
| 75051N | 1992 | 561   | 0.178   | 0.091 | 0.004 | 51 |
| 75051N | 1996 | 570   | 0.217   | 0.088 | 0.004 | 41 |
| 75051N | 2000 | 563   | 0.243   | 0.073 | 0.003 | 30 |
| 75051N | 2000 | 563   | 0.243   | 0.073 | 0.003 | 30 |



| 75051S 75051S 75051S 75051S 75051S 75051S 75051S 75051S 75054 75054 75054 75054 75055N 75055N 75055N 75055N 75055S | 1979<br>1982<br>1986<br>1990<br>1992<br>1996<br>2000<br>1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1998<br>1997<br>1977 | 582<br>561<br>570<br>560<br>561<br>562<br>561<br>1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>4 | 0.269 0.265 0.309 0.191 0.21 0.228 0.219 0.232 0.445 0.249 0.125 0.078 0.272 0.248 0.344 0.332 0.062 0.262 0.262 0.234 0.265 0.295 0.278                               | 0.092<br>0.062<br>0.065<br>0.062<br>0.063<br>0.081<br>0.08<br>0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076 | 0<br>0<br>0.003<br>0.003<br>0.003<br>0.003<br>0.004<br>0.002<br>0.002<br>0<br>0<br>0<br>0<br>0.003<br>0.003<br>0.003                       | 34<br>23<br>21<br>32<br>30<br>36<br>37<br>44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22<br>26 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 75051S 75051S 75051S 75051S 75051S 75051S 75051S 75054 75054 75054 75055N 75055N 75055N 75055N 75055S       | 1986<br>1990<br>1992<br>1996<br>2000<br>1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1988<br>2000<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997<br>1977                 | 570<br>560<br>561<br>562<br>561<br>1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>4               | 0.309<br>0.191<br>0.21<br>0.228<br>0.219<br>0.232<br>0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295 | 0.065<br>0.062<br>0.063<br>0.081<br>0.08<br>0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076                   | 0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.004<br>0.002<br>0.002<br>0<br>0<br>0<br>0<br>0<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003 | 21<br>32<br>30<br>36<br>37<br>44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                   |
| 75051S 75051S 75051S 75051S 75051S 75051S 75054 75054 75054 75055N 75055N 75055N 75055N 75055S              | 1990<br>1992<br>1996<br>2000<br>1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997<br>1977                                                         | 560<br>561<br>562<br>561<br>1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>4                      | 0.191<br>0.21<br>0.228<br>0.219<br>0.232<br>0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.262<br>0.234<br>0.265<br>0.295 | 0.062<br>0.063<br>0.081<br>0.08<br>0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076                            | 0.003<br>0.003<br>0.003<br>0.003<br>0<br>0.004<br>0.002<br>0<br>0<br>0<br>0<br>0<br>0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0     | 32<br>30<br>36<br>37<br>44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                         |
| 75051S 75051S 75051S 75051S 75054 75054 75054 75055N 75055N 75055N 75055N 75055S                            | 1992<br>1996<br>2000<br>1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997<br>1977                                                                 | 561<br>562<br>561<br>1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>4                             | 0.21<br>0.228<br>0.219<br>0.232<br>0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.262<br>0.234<br>0.265<br>0.295          | 0.063<br>0.081<br>0.08<br>0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                              | 0.003<br>0.003<br>0.003<br>0<br>0.004<br>0.002<br>0<br>0<br>0<br>0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0                              | 30<br>36<br>37<br>44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                               |
| 75051S 75051S 75051S 75054 75054 75054 75055N 75055N 75055N 75055N 75055S                                   | 1996<br>2000<br>1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1984<br>1988<br>1993<br>1997<br>1977                                                                 | 562<br>561<br>1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>4                                    | 0.228<br>0.219<br>0.232<br>0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                           | 0.081<br>0.08<br>0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                       | 0.003<br>0.003<br>0<br>0.004<br>0.002<br>0<br>0<br>0<br>0<br>0<br>0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | 36<br>37<br>44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24                                           |
| 75051S 75054 75054 75054 75054 75055N 75055N 75055N 75055N 75055S                                           | 2000<br>1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997<br>1977                                                                                 | 561<br>1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>4                             | 0.219<br>0.232<br>0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                    | 0.08<br>0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                                | 0.003<br>0<br>0.004<br>0.002<br>0.002<br>0<br>0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0                                                 | 37<br>44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24                                                 |
| 75054 75054 75054 75054 75054 75055N 75055N 75055N 75055N 75055S                                            | 1981<br>1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                 | 1302<br>1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>407<br>407                                         | 0.232<br>0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                             | 0.102<br>0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                                        | 0<br>0.004<br>0.002<br>0.002<br>0<br>0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0.003                                                      | 44<br>30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                                                 |
| 75054 75054 75054 75055N 75055N 75055N 75055N 75055N 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S                                                               | 1988<br>1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                         | 1302<br>1240<br>1302<br>270<br>407<br>407<br>407<br>279<br>407<br>407<br>407<br>407<br>407                                                 | 0.445<br>0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                      | 0.134<br>0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                                                 | 0.004<br>0.002<br>0.002<br>0<br>0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0.003                                                           | 30<br>34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                                                       |
| 75054 75055N 75055N 75055N 75055N 75055N 75055S                                                                    | 1992<br>1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                 | 1240<br>1302<br>270<br>407<br>407<br>407<br>279<br>407<br>407<br>407<br>407<br>407<br>407                                                  | 0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                               | 0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                                                          | 0.002<br>0.002<br>0<br>0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0.003                                                                    | 34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24                                                                   |
| 75054 75055N 75055N 75055N 75055N 75055N 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S                                                                           | 1999<br>1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                         | 1240<br>1302<br>270<br>407<br>407<br>407<br>279<br>407<br>407<br>407<br>407<br>407<br>407                                                  | 0.249<br>0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                               | 0.084<br>0.087<br>0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                                                          | 0.002<br>0.002<br>0<br>0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0.003                                                                    | 34<br>70<br>99<br>21<br>20<br>18<br>18<br>99<br>18<br>24                                                                   |
| 75055N 75055N 75055N 75055N 75055N 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S                                                                                 | 1977<br>1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                 | 270<br>407<br>407<br>407<br>407<br>279<br>407<br>407<br>407<br>407<br>407                                                                  | 0.125<br>0.078<br>0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                                        | 0.093<br>0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057                                                                                                            | 0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0.003<br>0.003                                                                                  | 99<br>21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                                                                         |
| 75055N<br>75055N<br>75055N<br>75055N<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S                                                    | 1982<br>1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                         | 407<br>407<br>407<br>407<br>279<br>407<br>407<br>407<br>407<br>407                                                                         | 0.272<br>0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                                                          | 0.058<br>0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076                                                                                                            | 0<br>0<br>0.003<br>0.003<br>0<br>0<br>0<br>0.003<br>0.004                                                                                  | 21<br>20<br>18<br>18<br>99<br>18<br>24<br>22                                                                               |
| 75055N<br>75055N<br>75055N<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S                                                              | 1983<br>1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                                 | 407<br>407<br>279<br>407<br>407<br>407<br>407<br>407<br>407                                                                                | 0.248<br>0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                                                                   | 0.049<br>0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076                                                                                                                     | 0<br>0.003<br>0.003<br>0<br>0<br>0<br>0<br>0.003                                                                                           | 20<br>18<br>18<br>99<br>18<br>24<br>22                                                                                     |
| 75055N<br>75055N<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S                                                                                  | 1988<br>2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                                         | 407<br>407<br>279<br>407<br>407<br>407<br>407<br>407<br>407                                                                                | 0.344<br>0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                                                                            | 0.064<br>0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076                                                                                                                              | 0.003<br>0.003<br>0<br>0<br>0<br>0<br>0.003                                                                                                | 18<br>18<br>99<br>18<br>24<br>22                                                                                           |
| 75055N 22<br>75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75055S 75058N 75058N 75058N                                                                           | 2000<br>1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                                                 | 407<br>279<br>407<br>407<br>407<br>407<br>407<br>407                                                                                       | 0.332<br>0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                                                                                     | 0.06<br>0.117<br>0.046<br>0.057<br>0.057<br>0.076                                                                                                                                       | 0.003<br>0<br>0<br>0<br>0<br>0.003<br>0.004                                                                                                | 18<br>99<br>18<br>24<br>22                                                                                                 |
| 75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75058N                                                                                            | 1977<br>1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                                                         | 279<br>407<br>407<br>407<br>407<br>407<br>407                                                                                              | 0.062<br>0.262<br>0.234<br>0.265<br>0.295                                                                                                                              | 0.117<br>0.046<br>0.057<br>0.057<br>0.076                                                                                                                                               | 0<br>0<br>0<br>0.003<br>0.004                                                                                                              | 99<br>18<br>24<br>22                                                                                                       |
| 75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75058N                                                                                                      | 1982<br>1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                                                                 | 407<br>407<br>407<br>407<br>407<br>407                                                                                                     | 0.262<br>0.234<br>0.265<br>0.295                                                                                                                                       | 0.046<br>0.057<br>0.057<br>0.076                                                                                                                                                        | 0<br>0<br>0.003<br>0.004                                                                                                                   | 18<br>24<br>22                                                                                                             |
| 75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75058N                                                                                                                | 1983<br>1984<br>1988<br>1993<br>1997                                                                                                                                                                                         | 407<br>407<br>407<br>407<br>407                                                                                                            | 0.234<br>0.265<br>0.295                                                                                                                                                | 0.057<br>0.057<br>0.076                                                                                                                                                                 | 0<br>0.003<br>0.004                                                                                                                        | 24<br>22                                                                                                                   |
| 75055S<br>75055S<br>75055S<br>75055S<br>75055S<br>75058N                                                                                                                          | 1984<br>1988<br>1993<br>1997                                                                                                                                                                                                 | 407<br>407<br>407<br>407                                                                                                                   | 0.265<br>0.295                                                                                                                                                         | 0.057<br>0.057<br>0.076                                                                                                                                                                 | 0.003<br>0.004                                                                                                                             | 22                                                                                                                         |
| 75055S<br>75055S<br>75055S<br>75058N<br>75058N                                                                                                                                    | 1988<br>1993<br>1997<br>1977                                                                                                                                                                                                 | 407<br>407<br>407                                                                                                                          | 0.265<br>0.295                                                                                                                                                         | 0.057<br>0.076                                                                                                                                                                          | 0.004                                                                                                                                      |                                                                                                                            |
| 75055S<br>75055S<br>75058N<br>75058N                                                                                                                                              | 1993<br>1997<br>1977                                                                                                                                                                                                         | 407<br>407                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                            | 26                                                                                                                         |
| 75055S 1<br>75058N 1<br>75058N 1                                                                                                                                                  | 1997<br>1977                                                                                                                                                                                                                 | 407                                                                                                                                        | 0.278                                                                                                                                                                  |                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                            |
| 75055S 1<br>75058N 1<br>75058N 1                                                                                                                                                  | 1997<br>1977                                                                                                                                                                                                                 | 407                                                                                                                                        |                                                                                                                                                                        | 0.08                                                                                                                                                                                    | 0.004                                                                                                                                      | 29                                                                                                                         |
| 75058N 1<br>75058N 1                                                                                                                                                              | 1977                                                                                                                                                                                                                         |                                                                                                                                            | 0.275                                                                                                                                                                  | 0.1                                                                                                                                                                                     | 0.005                                                                                                                                      | 36                                                                                                                         |
| 75058N 1                                                                                                                                                                          |                                                                                                                                                                                                                              | 441                                                                                                                                        | 0.173                                                                                                                                                                  | 0.107                                                                                                                                                                                   | 0                                                                                                                                          | 62                                                                                                                         |
|                                                                                                                                                                                   | 1982                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.36                                                                                                                                                                   | 0.054                                                                                                                                                                                   | 0                                                                                                                                          | 15                                                                                                                         |
|                                                                                                                                                                                   | 1983                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.332                                                                                                                                                                  | 0.063                                                                                                                                                                                   | 0                                                                                                                                          | 19                                                                                                                         |
|                                                                                                                                                                                   | 1987                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.326                                                                                                                                                                  | 0.105                                                                                                                                                                                   | 0.004                                                                                                                                      | 32                                                                                                                         |
|                                                                                                                                                                                   | 1991                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.311                                                                                                                                                                  | 0.066                                                                                                                                                                                   | 0.003                                                                                                                                      | 21                                                                                                                         |
|                                                                                                                                                                                   | 1994                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.32                                                                                                                                                                   | 0.081                                                                                                                                                                                   | 0.003                                                                                                                                      | 25                                                                                                                         |
|                                                                                                                                                                                   | 1995                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.293                                                                                                                                                                  | 0.071                                                                                                                                                                                   | 0.003                                                                                                                                      | 24                                                                                                                         |
|                                                                                                                                                                                   | 1996                                                                                                                                                                                                                         | 649                                                                                                                                        | 0.29                                                                                                                                                                   | 0.075                                                                                                                                                                                   | 0.003                                                                                                                                      | 26                                                                                                                         |
|                                                                                                                                                                                   | 2000                                                                                                                                                                                                                         | 649                                                                                                                                        | 0.362                                                                                                                                                                  | 0.076                                                                                                                                                                                   | 0.003                                                                                                                                      | 21                                                                                                                         |
|                                                                                                                                                                                   | 1977                                                                                                                                                                                                                         | 441                                                                                                                                        | 0.252                                                                                                                                                                  | 0.126                                                                                                                                                                                   | 0                                                                                                                                          | 50                                                                                                                         |
|                                                                                                                                                                                   | 1982                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.336                                                                                                                                                                  | 0.054                                                                                                                                                                                   | 0                                                                                                                                          | 16                                                                                                                         |
|                                                                                                                                                                                   | 1983                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.271                                                                                                                                                                  | 0.053                                                                                                                                                                                   | 0                                                                                                                                          | 20                                                                                                                         |
|                                                                                                                                                                                   | 1987                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.321                                                                                                                                                                  | 0.08                                                                                                                                                                                    | 0.003                                                                                                                                      | 25                                                                                                                         |
|                                                                                                                                                                                   | 1991                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.299                                                                                                                                                                  | 0.071                                                                                                                                                                                   | 0.003                                                                                                                                      | 24                                                                                                                         |
|                                                                                                                                                                                   | 1994                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.31                                                                                                                                                                   | 0.079                                                                                                                                                                                   | 0.003                                                                                                                                      | 25                                                                                                                         |
|                                                                                                                                                                                   | 1995                                                                                                                                                                                                                         | 638                                                                                                                                        | 0.284                                                                                                                                                                  | 0.064                                                                                                                                                                                   | 0.003                                                                                                                                      | 23                                                                                                                         |
|                                                                                                                                                                                   | 1996                                                                                                                                                                                                                         | 649                                                                                                                                        | 0.281                                                                                                                                                                  | 0.068                                                                                                                                                                                   | 0.003                                                                                                                                      | 24                                                                                                                         |
|                                                                                                                                                                                   | 2000                                                                                                                                                                                                                         | 649                                                                                                                                        | 0.331                                                                                                                                                                  | 0.087                                                                                                                                                                                   | 0.003                                                                                                                                      | 26                                                                                                                         |
|                                                                                                                                                                                   | 1980                                                                                                                                                                                                                         | 552                                                                                                                                        | 0.138                                                                                                                                                                  | 0.049                                                                                                                                                                                   | 0                                                                                                                                          | 35                                                                                                                         |
|                                                                                                                                                                                   | 1986                                                                                                                                                                                                                         | 568                                                                                                                                        | 0.107                                                                                                                                                                  | 0.047                                                                                                                                                                                   | 0.002                                                                                                                                      | 44                                                                                                                         |
|                                                                                                                                                                                   | 1990                                                                                                                                                                                                                         | 568                                                                                                                                        | 0.092                                                                                                                                                                  | 0.05                                                                                                                                                                                    | 0.002                                                                                                                                      | 54                                                                                                                         |
|                                                                                                                                                                                   | 1995                                                                                                                                                                                                                         | 560                                                                                                                                        | 0.118                                                                                                                                                                  | 0.043                                                                                                                                                                                   | 0.002                                                                                                                                      | 36                                                                                                                         |
|                                                                                                                                                                                   | 1999                                                                                                                                                                                                                         | 568                                                                                                                                        | 0.102                                                                                                                                                                  | 0.058                                                                                                                                                                                   | 0.002                                                                                                                                      | 56                                                                                                                         |
|                                                                                                                                                                                   | 1985                                                                                                                                                                                                                         | 2384                                                                                                                                       | 0.245                                                                                                                                                                  | 0.034                                                                                                                                                                                   | 0.002                                                                                                                                      | 14                                                                                                                         |
|                                                                                                                                                                                   | 1989                                                                                                                                                                                                                         | 2400                                                                                                                                       | 0.226                                                                                                                                                                  | 0.031                                                                                                                                                                                   | 0.001                                                                                                                                      | 14                                                                                                                         |
|                                                                                                                                                                                   | 2000                                                                                                                                                                                                                         | 2400                                                                                                                                       | 0.192                                                                                                                                                                  | 0.043                                                                                                                                                                                   | 0.001                                                                                                                                      | 23                                                                                                                         |
|                                                                                                                                                                                   | 2000                                                                                                                                                                                                                         | 2400                                                                                                                                       | 0.201                                                                                                                                                                  | 0.049                                                                                                                                                                                   | 0.001                                                                                                                                      | 24                                                                                                                         |
|                                                                                                                                                                                   | 1978                                                                                                                                                                                                                         | 390                                                                                                                                        | 0.161                                                                                                                                                                  | 0.043                                                                                                                                                                                   | 0.001                                                                                                                                      | 50                                                                                                                         |
|                                                                                                                                                                                   | 1979                                                                                                                                                                                                                         | 360                                                                                                                                        | 0.151                                                                                                                                                                  | 0.068                                                                                                                                                                                   | 0                                                                                                                                          | 45                                                                                                                         |



| 75070  | 1983 | 370  | 0.176 | 0.051 | 0     | 29 |
|--------|------|------|-------|-------|-------|----|
| 75070  | 1987 | 370  | 0.165 | 0.037 | 0.002 | 23 |
| 75070  | 1991 | 370  | 0.128 | 0.094 | 0.005 | 73 |
| 75070  | 1995 | 370  | 0.169 | 0.059 | 0.003 | 35 |
| 75111  | 1979 | 918  | 0.25  | 0.07  | 0     | 28 |
| 75111  | 1984 | 909  | 0.379 | 0.082 | 0.003 | 22 |
| 75111  | 1988 | 909  | 0.287 | 0.076 | 0.003 | 27 |
| 75111  | 1992 | 909  | 0.267 | 0.115 | 0.004 | 43 |
| 75111  | 1996 | 909  | 0.233 | 0.084 | 0.003 | 36 |
| 75111  | 2000 | 909  | 0.216 | 0.087 | 0.003 | 40 |
| 75112  | 1979 | 460  | 0.279 | 0.055 | 0     | 20 |
| 75112  | 1982 | 460  | 0.323 | 0.079 | 0     | 24 |
| 75112  | 1986 |      | 0.36  | 0.067 | 0     | 0  |
| 75112  | 1988 | 460  | 0.318 | 0.082 | 0.004 | 26 |
| 75112  | 1992 | 460  | 0.28  | 0.099 | 0.005 | 36 |
| 75112  | 1999 | 460  | 0.282 | 0.116 | 0.005 | 41 |
| 75118  | 1978 | 236  | 0.242 | 0.078 | 0.003 | 32 |
| 75118  | 1983 | 253  | 0.29  | 0.081 | 0     | 28 |
| 75118  | 1986 | 243  | 0.317 | 0.082 | 0.005 | 26 |
| 75118  | 1990 | 250  | 0.366 | 0.002 | 0.006 | 26 |
| 75118  | 1994 | 250  | 0.406 | 0.109 | 0.000 | 27 |
| 7513   | 1980 | 439  | 0.107 | 0.09  | 0.007 | 84 |
| 7513   | 1986 | 442  | 0.221 | 0.114 | 0.004 | 52 |
| 7513   | 1992 | 445  | 0.338 | 0.088 | 0.003 | 26 |
| 7513   | 1995 | 442  | 0.252 | 0.068 | 0.004 | 27 |
| 7513   | 1996 | 443  | 0.277 | 0.071 | 0.003 | 26 |
| 7513   | 2000 | 445  | 0.27  | 0.07  | 0.003 | 26 |
| 75186  | 1979 | 808  | 0.163 | 0.082 | 0.003 | 50 |
| 75186  | 1984 | 808  | 0.209 | 0.061 | 0.002 | 29 |
| 75186  | 1986 | 808  | 0.277 | 0.052 | 0.002 | 19 |
| 75186  | 1990 | 808  | 0.214 | 0.143 | 0.002 | 67 |
| 75186  | 1994 | 808  | 0.216 | 0.085 | 0.003 | 39 |
| 75186  | 1998 | 808  | 0.221 | 0.088 | 0.003 | 40 |
| 75187  | 1979 | 1809 | 0.194 | 0.051 | 0.003 | 26 |
| 75187  | 1985 | 1776 | 0.2   | 0.119 | 0     | 60 |
| 75187  | 1988 | 904  | 0.36  | 0.097 | 0.003 | 27 |
| 75187  | 1995 | 886  | 0.241 | 0.071 | 0.003 | 30 |
| 75187  | 1999 | 1165 | 0.295 | 0.082 | 0.002 | 28 |
| 75193E | 1977 | 360  | 0.161 | 0.166 | 0.002 | 99 |
| 75193E | 1981 | 538  | 0.257 | 0.104 | 0     | 40 |
| 75193E | 1987 | 530  | 0.325 | 0.069 | 0.003 | 21 |
| 75193E | 1988 | 537  | 0.336 | 0.069 | 0.003 | 20 |
| 75193E | 1993 | 537  | 0.264 | 0.11  | 0.005 | 42 |
| 75193E | 1994 | 539  | 0.237 | 0.096 | 0.003 |    |
| 75193E | 1998 | 537  | 0.198 | 0.104 | 0.004 | 41 |
| 75193W | 1977 | 360  | 0.154 | 0.095 | 0.004 | 52 |
| 75193W | 1981 | 539  | 0.209 | 0.093 | 0     | 62 |
| 75193W | 1987 | 532  | 0.361 | 0.065 | 0.003 | 45 |
| 75193W | 1988 | 539  | 0.337 | 0.069 |       | 18 |
| 75193W | 1993 | 538  | 0.264 | 0.009 | 0.003 | 20 |
| 75193W | 1994 | 537  | 0.221 | 0.109 | 0.005 | 41 |
| 75193W | 1998 | 541  | 0.199 | 0.129 | 0.006 | 58 |
|        | 1300 |      | 0.100 | 0.092 | 0.004 | 46 |



| 75195E           | 1979 | 516  | 0.286 | 0.084 | 0     | 29 |
|------------------|------|------|-------|-------|-------|----|
| 75195E           | 1983 | 501  | 0.351 | 0.058 | 0     | 17 |
| 75195E           | 1984 | 499  | 0.346 | 0.05  | 0     | 14 |
| 75195E           | 1988 | 503  | 0.238 | 0.08  | 0.004 | 34 |
| 75195E           | 1992 | 498  | 0.341 | 0.075 | 0.003 | 22 |
| 75195E           | 1995 | 497  | 0.279 | 0.064 | 0.003 | 23 |
| 75195E           | 1996 | 503  | 0.297 | 0.067 | 0.003 | 23 |
| 75195E           | 2000 | 505  | 0.272 | 0.076 | 0.003 | 28 |
| 75195W           | 1979 | 517  | 0.242 | 0.069 | 0     | 29 |
| 75195W           | 1983 | 505  | 0.295 | 0.044 | 0     | 15 |
| 75195W           | 1984 | 493  | 0.306 | 0.038 | 0     | 12 |
| 75195W           | 1988 | 504  | 0.173 | 0.078 | 0.003 | 45 |
| 75195W           | 1992 | 498  | 0.254 | 0.102 | 0.005 | 40 |
| 75195W           | 1995 | 504  | 0.253 | 0.073 | 0.003 | 29 |
| 75195W           | 1996 | 505  | 0.262 | 0.07  | 0.003 | 27 |
| 75195W           | 2000 | 506  | 0.258 | 0.076 | 0.003 | 30 |
| 75197            | 1979 | 549  | 0.208 | 0.072 | 0     | 35 |
| 75197            | 1985 | 540  | 0.215 | 0.08  | 0.003 | 37 |
| 75197            | 1991 | 540  | 0.238 | 0.079 | 0.003 | 33 |
| 75197            | 1998 | 549  | 0.203 | 0.07  | 0.003 | 34 |
| 75217S           | 1979 | 3096 | 0.274 | 0.065 | 0     | 24 |
| 75217S           | 1982 | 3112 | 0.34  | 0.072 | 0     | 21 |
| 75305            | 1987 | 144  | 0.301 | 0.055 | 0.005 | 18 |
| 75305            | 1991 | 135  | 0.33  | 0.07  | 0.006 | 21 |
| 75305            | 1995 | 144  | 0.246 | 0.088 | 0.007 | 36 |
| 75305            | 1999 | 144  | 0.269 | 0.075 | 0.006 | 28 |
| 75315            | 1980 | 2600 | 0.077 | 0.056 | 0     | 73 |
| 75315            | 1988 | 1288 | 0.064 | 0.05  | 0.001 | 79 |
| 75315            | 1992 | 1288 | 0.083 | 0.07  | 0.002 | 84 |
| 75315            | 1996 | 1288 | 0.177 | 0.072 | 0.002 | 41 |
| 75315            | 2000 | 1288 | 0.202 | 0.08  | 0.002 | 40 |
| 75331S           | 1977 | 276  | 0.098 | 0.081 | 0     | 83 |
| 75331S           | 1978 | 417  | 0.128 | 0.064 | 0     | 50 |
| 75331S           | 1983 | 397  | 0.161 | 0.067 | 0     | 41 |
| 75331S           | 1988 | 396  | 0.183 | 0.07  | 0.004 | 38 |
| 75331S           | 1995 | 399  | 0.263 | 0.087 | 0.004 | 33 |
| 75331S           | 2000 | 399  | 0.211 | 0.068 | 0.003 | 32 |
| 75332N           | 1979 | 512  | 0.238 | 0.091 | 0.000 | 38 |
| 75332N           | 1985 | 512  | 0.312 | 0.084 | 0.004 | 27 |
| 75332N           | 1990 | 511  | 0.287 | 0.076 | 0.003 | 26 |
| 75332N           | 1994 | 510  | 0.36  | 0.089 | 0.004 | 25 |
| 75332N           | 1998 |      | 0     | 0     | 0     | 0  |
| 75332N           | 1998 | 515  | 0.277 | 0.07  | 0.003 | 25 |
| 75332N           | 1979 | 545  | 0.175 | 0.077 | 0.003 | 44 |
| 75332S           | 1985 | 540  | 0.284 | 0.082 | 0.004 | 29 |
| 75332S           | 1990 | 545  | 0.173 | 0.122 | 0.005 | 70 |
| 75332S           | 1994 | 539  | 0.337 | 0.084 | 0.003 | 25 |
| 75332S           | 1998 |      | 0.007 | 0.004 | 0.004 | 0  |
| 75332S           | 1998 | 541  | 0.268 | 0.058 | 0.002 | 22 |
| 75335N           | 1980 | 1597 | 0.189 | 0.065 | 0.002 | 35 |
| 75335N<br>75335N | 1985 | 1611 | 0.109 | 0.048 | 0.001 | 20 |
| 75335N<br>75335N | 1990 | 1622 | 0.240 | 0.048 | 0.001 | 39 |
| 7555514          | 1990 | 1022 | 0.210 | 0.000 | 0.002 | 39 |



| 75335N | 1994 | 1620 | 0.298 | 0.083 | 0.002   | 28 |
|--------|------|------|-------|-------|---------|----|
| 75335N | 1998 |      | 0     | 0     | 0       | 0  |
| 75335N | 1998 | 1616 | 0.234 | 0.07  | 0.002   | 30 |
| 75335S | 1980 | 1598 | 0.139 | 0.053 | 0       | 38 |
| 75335S | 1985 | 1611 | 0.25  | 0.045 | 0.001   | 18 |
| 75335S | 1990 | 1621 | 0.233 | 0.069 | 0.002   | 30 |
| 75335S | 1994 | 1620 | 0.253 | 0.076 | 0.002   | 30 |
| 75335S | 1998 |      | 0     | 0     | 0       | 0  |
| 75335S | 1998 | 1616 | 0.204 | 0.052 | 0.001   | 25 |
| 75336  | 1980 | 1340 | 0.249 | 0.074 | 0       | 30 |
| 75336  | 1985 | 1340 | 0.332 | 0.057 | 0       | 17 |
| 75336  | 1990 |      | 0.277 | 0.117 | 0       | 0  |
| 75336  | 1997 | 670  | 0.285 | 0.09  | 0.003   | 32 |
| 75337N | 1980 | 523  | 0.216 | 0.056 | 0       | 26 |
| 75337N | 1985 | 520  | 0.288 | 0.06  | 0.003   | 21 |
| 75337N | 1990 | 526  | 0.314 | 0.115 | 0.005   | 37 |
| 75337N | 1994 | 528  | 0.251 | 0.069 | 0.003   | 28 |
| 75337N | 1998 | 529  | 0.233 | 0.061 | 0.003   | 26 |
| 75337S | 1980 | 522  | 0.205 | 0.066 | 0       | 32 |
| 75337S | 1985 | 523  | 0.334 | 0.067 | 0.003   | 20 |
| 75337S | 1990 | 525  | 0.176 | 0.114 | 0.005   | 65 |
| 75337S | 1994 | 525  | 0.295 | 0.07  | 0.003   | 24 |
| 75337S | 1998 | 529  | 0.233 | 0.061 | 0.003   | 26 |
| 75338N | 1979 | 808  | 0.113 | 0.049 | 0       | 43 |
| 75338N | 1985 | 806  | 0.13  | 0.067 | 0.002   | 52 |
| 75338N | 1990 | 807  | 0.166 | 0.073 | 0.003   | 44 |
| 75338N | 1994 | 806  | 0.212 | 0.061 | 0.002   | 29 |
| 75338N | 1998 | 808  | 0.22  | 0.054 | 0.002   | 25 |
| 75338S | 1979 | 808  | 0.141 | 0.059 | 0       | 42 |
| 75338S | 1985 | 873  | 0.234 | 0.069 | 0.002   | 29 |
| 75338S | 1990 | 872  | 0.239 | 0.078 | 0.003   | 33 |
| 75338S | 1994 | 870  | 0.234 | 0.069 | 0.002   | 30 |
| 75338S | 1998 | 808  | 0.22  | 0.054 | 0.002   | 25 |
| 75339N | 1980 | 445  | 0.224 | 0.079 | 0       | 35 |
| 75339N | 1985 | 442  | 0.292 | 0.069 | 0.003   | 24 |
| 75339N | 1990 | 440  | 0.295 | 0.053 | 0.003   | 18 |
| 75339N | 1999 | 442  | 0.261 | 0.069 | 0.003   | 27 |
| 75339S | 1980 | 428  | 0.172 | 0.061 | 0       | 35 |
| 75339S | 1985 | 441  | 0.243 | 0.065 | 0.003   | 27 |
| 75339S | 1990 | 441  | 0.291 | 0.053 | 0.003   | 18 |
| 75339S | 1999 | 443  | 0.248 | 0.076 | 0.004   | 31 |
| 75340N | 1980 | 688  | 0.212 | 0.086 | 0       | 41 |
| 75340N | 1985 | 698  | 0.287 | 0.098 | 0.004   | 34 |
| 75340N | 1993 | 692  | 0.248 | 0.116 | 0.004   | 47 |
| 75340S | 1980 | 688  | 0.195 | 0.086 | 0       | 44 |
| 75340S | 1985 | 697  | 0.253 | 0.102 | 0.004   | 40 |
| 75340S | 1993 | 689  | 0.243 | 0.108 | 0.004   | 44 |
| 75340S | 1997 | 699  | 0.247 | 0.073 | 0.003   | 30 |
| 75341  | 1980 | 1022 | 0.167 | 0.093 | 0       | 56 |
| 75341  | 1985 | 1044 | 0.24  | 0.084 | 0.003   | 35 |
| 75341  | 1990 | 978  | 0.319 | 0.077 | 0.002   | 24 |
| 75341  | 1995 | 980  | 0.16  | 0.088 | 0.003   | 55 |
|        |      |      |       |       | <u></u> |    |



| 75341                   | 0000         |            |               |       |         |          |
|-------------------------|--------------|------------|---------------|-------|---------|----------|
|                         | 2000         | 991        | 0.191         | 0.087 | 0.003   | 46       |
| 75383                   | 1979         | 433        | 0.108         | 0.055 | 0       | 51       |
| 75383                   | 1985         | 410        | 0.199         | 0.049 | 0.002   | 25       |
| 75383                   | 1994         | 435        | 0.184         | 0.09  | 0.004   | 49       |
| 75383                   | 1998         | 435        | 0.232         | 0.063 | 0.003   | 27       |
| 75420W                  | 1980         | 878        | 0.248         | 0.081 | 0       | 33       |
| 75420W                  | 1983         | 952        | 0.298         | 0.067 | 0       | 22       |
| 75420W                  | 1987         |            | 0.272         | 0.072 | 0       | 0        |
| 75420W                  | 1991         | 821        | 0.287         | 0.072 | 0.003   | 25       |
| 75420W                  | 1995         | 891        | 0.266         | 0.071 | 0.002   | 27       |
| 75420W                  | 1997         | 894        | 0.261         | 0.068 | 0.002   | 26       |
| 75491                   | 1980         | 433        | 0.119         | 0.047 | 0       | 40       |
| 75491                   | 1989         | 419        | 0.108         | 0.051 | 0.003   | 48       |
| 75491                   | 1996         | 420        | 0.049         | 0.039 | 0.002   | 80       |
| 75498                   | 1982         | 1032       | 0.212         | 0.052 | 0       | 25       |
| 75498                   | 1988         | 752        | 0.256         | 0.072 | 0.003   | 28       |
| 75498                   | 1992         | 747        | 0.247         | 0.075 | 0.003   | 30       |
| 75498                   | 1999         | 750        | 0.236         | 0.126 | 0.005   | 53       |
| 75500                   | 1980         | 1328       | 0.066         | 0.082 | 0       | 99       |
| 75500                   | 1986         | 1328       | 0.072         | 0.07  | 0.002   | 97       |
| 75500                   | 1992         | 1328       | 0.074         | 0.091 | 0.002   | 122      |
| 75500                   | 1996         | 1336       | 0.06          | 0.089 | 0.002   | 150      |
| 75522                   | 1979         | 870        | 0.302         | 0.077 | 0       | 25       |
| 75522                   | 1982         | 798        | 0.332         | 0.083 | 0       | 25       |
| 75522                   | 1986         |            | 0.42          | 0.083 | 0       | 0        |
| 75522                   | 1988         | 798        | 0.446         | 0.092 | 0.003   | 21       |
| 75522                   | 1995         | 798        | 0.358         | 0.08  | 0.003   | 22       |
| 75522                   | 2000         | 798        | 0.248         | 0.086 | 0.003   | 35       |
| 75529                   | 1979         | 1250       | 0.036         | 0.021 | 0       | 59       |
| 75529                   | 1985         | 1476       | 0.073         | 0.048 | 0.001   | 66       |
| 75529                   | 1990         | 1476       | 0.081         | 0.084 | 0.002   | 104      |
| 75529                   | 1994         | 1476       | 0.07          | 0.048 | 0.001   | 68       |
| 75529                   | 1996         | 1476       | 0.077         | 0.057 | 0.001   | 74       |
| 7553                    | 1980         | 329        | 0.112         | 0.073 | 0.004   | 65       |
| 7553                    | 1986         | 460        | 0.213         | 0.065 | 0.003   | 31       |
| 7553                    | 1990         | 460        | 0.265         | 0.083 | 0.004   | 31       |
| 7553                    | 1995         | 460        | 0.239         | 0.085 | 0.004   | 36       |
| 7553                    | 2000         | 460        | 0.179         | 0.074 | 0.003   | 41       |
| 75535N                  | 1979         | 451        | 0.068         | 0.061 | 0       | 89       |
| 75535N                  | 1985         | 451        | 0.147         | 0.095 | 0.004   | 65       |
| 75535N                  | 1990         | 451        | 0.192         | 0.121 | 0.006   | 63       |
| 75535N                  | 1994         | 451        | 0.184         | 0.101 | 0.005   | 55       |
| 75535N                  | 1998         | 451        | 0.115         | 0.054 | 0.003   | 47       |
| 75535S                  | 1979         | 451        | 0.047         | 0.065 | 0       | 99       |
| 75535S                  | 1985         | 451        | 0.135         | 0.08  | 0.004   | 60       |
| 75535S                  | 1990         | 451        | 0.158         | 0.103 | 0.005   | 65       |
| 75535S                  | 1994         | 451        | 0.158         | 0.095 | 0.004   | 60       |
| 75535S                  | 1998         | 451        | 0.115         | 0.054 | 0.003   | 47       |
|                         | 1982         | 737        | 0.103         | 0.044 | 0       | 42       |
| 75538                   | .002         |            |               |       |         |          |
| 75538<br>75538          | 1989         | 367        | 0.119         | 0.039 | 1 0.002 | 1 33     |
| 75538<br>75538<br>75538 | 1989<br>1993 | 367<br>738 | 0.119<br>0.25 | 0.039 | 0.002   | 33<br>34 |



| 75539 75539 75539 75539 75539 75539 75543E 75543E 75543W 75543W 75555 75555 75555 75555 75623N 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651S 75651S | 1979 1985 1990 1994 1998 1978 1995 1977 1995 1979 1982 1987 1991 1995 1977 1997 1997 1997 1980 1988 1992 1999                                                | 447<br>436<br>437<br>437<br>440<br>689<br>537<br>1236<br>1297<br>1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148<br>1067 | 0.094<br>0.173<br>0.195<br>0.227<br>0.138<br>0.2<br>0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284<br>0.165 | 0.046<br>0.056<br>0.057<br>0.072<br>0.062<br>0.075<br>0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0 | 0<br>0.003<br>0.003<br>0.003<br>0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0                              | 599 32 29 32 45 37 0 72 0 31 31 0 28 29 30 41 0 49 0 47                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 75539 75539 75539 75539 75543E 75543E 75543W 75543W 75555 75555 75555 75555 75623N 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651S 75651S             | 1990<br>1994<br>1998<br>1978<br>1995<br>1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1997<br>1997<br>1980<br>1988<br>1992 | 437<br>437<br>440<br>689<br>537<br>1236<br>1297<br>1136<br>1163<br>1170<br>230<br>230<br>1115<br>1148<br>1066<br>1148                              | 0.195<br>0.227<br>0.138<br>0.2<br>0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                            | 0.057<br>0.072<br>0.062<br>0.075<br>0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0                            | 0.003<br>0.003<br>0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0              | 29<br>32<br>45<br>37<br>0<br>72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49<br>0 |
| 75539 75539 75539 75543E 75543E 75543W 75543W 75555 75555 75555 75555 75555 75623N 75623N 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651S 75651S                   | 1994<br>1998<br>1978<br>1995<br>1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1997<br>1980<br>1985<br>1988<br>1992         | 437<br>440<br>689<br>537<br>1236<br>1297<br>1136<br>1163<br>1170<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                     | 0.227<br>0.138<br>0.2<br>0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                     | 0.072<br>0.062<br>0.075<br>0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0                            | 0.003<br>0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0<br>0 | 32<br>45<br>37<br>0<br>72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49<br>0       |
| 75539 75543E 75543E 75543W 75543W 75543W 75555 75555 75555 75555 75623N 75623N 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651S 75651S                              | 1998<br>1978<br>1978<br>1995<br>1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1997<br>1980<br>1985<br>1988<br>1992         | 440<br>689<br>537<br>1236<br>1297<br>1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                     | 0.138<br>0.2<br>0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                              | 0.062<br>0.075<br>0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0                                                   | 0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0               | 45<br>37<br>0<br>72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49<br>0             |
| 75543E 75543E 75543W 75543W 75543W 75555 75555 75555 75555 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651S 75651S                                     | 1978<br>1995<br>1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1997<br>1980<br>1985<br>1988<br>1992                         | 537  1236 1297  1136 1163 1170 230  230  1115 1148 1066 1148                                                                                       | 0.138<br>0.2<br>0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                              | 0.062<br>0.075<br>0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0                                                   | 0.003<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0               | 45<br>37<br>0<br>72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49<br>0             |
| 75543E 75543W 75543W 75555 75555 75555 75555 75555 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                             | 1995<br>1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1997<br>1980<br>1985<br>1988<br>1992                                 | 537  1236 1297  1136 1163 1170 230  230  1115 1148 1066 1148                                                                                       | 0.2<br>0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                       | 0.075<br>0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0                             | 37<br>0<br>72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49                        |
| 75543E 75543W 75543W 75555 75555 75555 75555 75555 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                             | 1995<br>1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1997<br>1980<br>1985<br>1988<br>1992                                 | 537  1236 1297  1136 1163 1170 230  230  1115 1148 1066 1148                                                                                       | 0<br>0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0                                                                                | 0<br>0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0                                       | 0<br>72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49                              |
| 75543W 75543W 75543W 75555 75555 75555 75555 75555 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                             | 1977<br>1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1977<br>1997<br>1980<br>1985<br>1988<br>1992                                 | 1236<br>1297<br>1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                          | 0.127<br>0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                   | 0.092<br>0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0                                                            | 0<br>0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0<br>0                                       | 72<br>0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49                                   |
| 75543W 75555 75555 75555 75555 75555 75555 75623N 75623N 75623S 75644 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                                     | 1995<br>1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1977<br>1997<br>1980<br>1985<br>1988<br>1992                                         | 1236<br>1297<br>1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                          | 0<br>0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0                                                                                              | 0<br>0.079<br>0.095<br>0.062<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0                                                                              | 0<br>0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0<br>0                                            | 0<br>31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49                                         |
| 75555 75555 75555 75555 75555 75555 75623N 75623N 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                                           | 1979<br>1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1977<br>1980<br>1985<br>1988<br>1992                                                         | 1297<br>1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                                  | 0.25<br>0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                 | 0.079<br>0.095<br>0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072                                                                               | 0<br>0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0<br>0                                                 | 31<br>31<br>0<br>28<br>29<br>30<br>41<br>0<br>49                                              |
| 75555 75555 75555 75555 75555 75555 75623N 75623N 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                                           | 1982<br>1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1977<br>1980<br>1985<br>1988<br>1992                                                                 | 1297<br>1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                                  | 0.306<br>0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                         | 0.095<br>0.062<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0<br>0.075                                                                                   | 0<br>0<br>0.002<br>0.002<br>0.003<br>0<br>0<br>0                                                      | 31<br>0<br>28<br>29<br>30<br>41<br>0<br>49                                                    |
| 75555 75555 75555 75555 75555 75623N 75623N 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S                                                                 | 1987<br>1991<br>1995<br>1999<br>1977<br>1997<br>1977<br>1980<br>1985<br>1988<br>1992                                                                         | 1136<br>1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                                          | 0.344<br>0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                                  | 0.062<br>0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0<br>0.075                                                                                   | 0<br>0.002<br>0.002<br>0.003<br>0<br>0<br>0                                                           | 0<br>28<br>29<br>30<br>41<br>0<br>49                                                          |
| 75555<br>75555<br>75555<br>75555<br>75623N<br>75623N<br>75623S<br>75623S<br>75623S<br>75644<br>75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S   | 1991<br>1995<br>1999<br>1977<br>1997<br>1977<br>1980<br>1985<br>1988<br>1992                                                                                 | 1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                                                  | 0.225<br>0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                                           | 0.064<br>0.064<br>0.093<br>0.093<br>0<br>0.072<br>0                                                                                                     | 0.002<br>0.002<br>0.003<br>0<br>0<br>0                                                                | 28<br>29<br>30<br>41<br>0<br>49                                                               |
| 75555 75555 75623N 75623N 75623S 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651S 75651S                                                                     | 1995<br>1999<br>1977<br>1997<br>1977<br>1997<br>1980<br>1985<br>1988<br>1992                                                                                 | 1163<br>1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                                                  | 0.216<br>0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                                                    | 0.064<br>0.093<br>0.093<br>0<br>0.072<br>0<br>0.075                                                                                                     | 0.002<br>0.003<br>0<br>0<br>0<br>0                                                                    | 29<br>30<br>41<br>0<br>49                                                                     |
| 75555 75623N 75623N 75623S 75623S 75623S 75644 75644 75644 75644 75651N 75651N 75651N 75651N 75651N 75651S                                                                           | 1999<br>1977<br>1997<br>1977<br>1997<br>1980<br>1985<br>1988<br>1992                                                                                         | 1170<br>230<br>230<br>230<br>1115<br>1148<br>1066<br>1148                                                                                          | 0.306<br>0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                                                             | 0.093<br>0.093<br>0<br>0.072<br>0<br>0.075                                                                                                              | 0.003<br>0<br>0<br>0<br>0                                                                             | 30<br>41<br>0<br>49                                                                           |
| 75623N<br>75623N<br>75623S<br>75623S<br>75623S<br>75644<br>75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                       | 1977<br>1997<br>1977<br>1997<br>1980<br>1985<br>1988<br>1992                                                                                                 | 230<br>230<br>1115<br>1148<br>1066<br>1148                                                                                                         | 0.228<br>0<br>0.146<br>0<br>0.158<br>0.284                                                                                                                                      | 0.093<br>0<br>0.072<br>0<br>0.075                                                                                                                       | 0<br>0<br>0<br>0                                                                                      | 41<br>0<br>49<br>0                                                                            |
| 75623N<br>75623S<br>75623S<br>75644<br>75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                           | 1997<br>1977<br>1997<br>1980<br>1985<br>1988<br>1992                                                                                                         | 230<br>1115<br>1148<br>1066<br>1148                                                                                                                | 0<br>0.146<br>0<br>0.158<br>0.284                                                                                                                                               | 0<br>0.072<br>0<br>0.075                                                                                                                                | 0<br>0<br>0<br>0                                                                                      | 0<br>49<br>0                                                                                  |
| 75623S<br>75623S<br>75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                              | 1977<br>1997<br>1980<br>1985<br>1988<br>1992                                                                                                                 | 1115<br>1148<br>1066<br>1148                                                                                                                       | 0.146<br>0<br>0.158<br>0.284                                                                                                                                                    | 0.072<br>0<br>0.075                                                                                                                                     | 0<br>0<br>0                                                                                           | 49                                                                                            |
| 75623S<br>75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                                        | 1997<br>1980<br>1985<br>1988<br>1992                                                                                                                         | 1115<br>1148<br>1066<br>1148                                                                                                                       | 0<br>0.158<br>0.284                                                                                                                                                             | 0<br>0.075                                                                                                                                              | 0                                                                                                     | 0                                                                                             |
| 75644<br>75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                                         | 1980<br>1985<br>1988<br>1992                                                                                                                                 | 1148<br>1066<br>1148                                                                                                                               | 0.158<br>0.284                                                                                                                                                                  | 0.075                                                                                                                                                   | 0                                                                                                     |                                                                                               |
| 75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                                                  | 1985<br>1988<br>1992                                                                                                                                         | 1148<br>1066<br>1148                                                                                                                               | 0.284                                                                                                                                                                           |                                                                                                                                                         |                                                                                                       |                                                                                               |
| 75644<br>75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                                                  | 1988<br>1992                                                                                                                                                 | 1066<br>1148                                                                                                                                       |                                                                                                                                                                                 | 0.070                                                                                                                                                   |                                                                                                       | 26                                                                                            |
| 75644<br>75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                                                           | 1992                                                                                                                                                         | 1148                                                                                                                                               |                                                                                                                                                                                 | 0.1                                                                                                                                                     | 0.003                                                                                                 | 61                                                                                            |
| 75644<br>75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S                                                                                                                    |                                                                                                                                                              |                                                                                                                                                    | 0.103                                                                                                                                                                           | 0.081                                                                                                                                                   | 0.003                                                                                                 | 0                                                                                             |
| 75651N<br>75651N<br>75651N<br>75651N<br>75651N<br>75651S<br>75651S                                                                                                                   | 1999                                                                                                                                                         |                                                                                                                                                    | 0.281                                                                                                                                                                           | 0.103                                                                                                                                                   | 0.003                                                                                                 | 37                                                                                            |
| 75651N<br>75651N<br>75651N<br>75651N<br>75651S<br>75651S                                                                                                                             | 1980                                                                                                                                                         | 604                                                                                                                                                | 0.281                                                                                                                                                                           | 0.103                                                                                                                                                   | 0.003                                                                                                 | 63                                                                                            |
| 75651N<br>75651N<br>75651N<br>75651S<br>75651S                                                                                                                                       | 1985                                                                                                                                                         | 606                                                                                                                                                | 0.099                                                                                                                                                                           | 0.003                                                                                                                                                   | 0.004                                                                                                 | 58                                                                                            |
| 75651N<br>75651N<br>75651S<br>75651S                                                                                                                                                 | 1900                                                                                                                                                         | 607                                                                                                                                                | 0.133                                                                                                                                                                           | 0.000                                                                                                                                                   | 0.004                                                                                                 | 51                                                                                            |
| 75651N<br>75651S<br>75651S                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                                                                         |                                                                                                       |                                                                                               |
| 75651S<br>75651S                                                                                                                                                                     | 1994<br>1998                                                                                                                                                 | 602<br>611                                                                                                                                         | 0.209<br>0.218                                                                                                                                                                  | 0.11                                                                                                                                                    | 0.004                                                                                                 | 53<br>37                                                                                      |
| 75651S                                                                                                                                                                               | 1980                                                                                                                                                         | 601                                                                                                                                                | 0.218                                                                                                                                                                           | 0.062                                                                                                                                                   | 0.003                                                                                                 | 78                                                                                            |
|                                                                                                                                                                                      |                                                                                                                                                              | 607                                                                                                                                                | 0.09                                                                                                                                                                            |                                                                                                                                                         |                                                                                                       |                                                                                               |
| 75651S                                                                                                                                                                               | 1985<br>1990                                                                                                                                                 | 604                                                                                                                                                | 0.134                                                                                                                                                                           | 0.08                                                                                                                                                    | 0.003                                                                                                 | 52<br>45                                                                                      |
|                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                                                                         |                                                                                                       |                                                                                               |
| 75651S                                                                                                                                                                               | 1994                                                                                                                                                         | 608                                                                                                                                                | 0.195                                                                                                                                                                           | 0.119                                                                                                                                                   | 0.005                                                                                                 | 61                                                                                            |
| 75651S                                                                                                                                                                               | 1998                                                                                                                                                         | 611                                                                                                                                                | 0.218                                                                                                                                                                           | 0.082                                                                                                                                                   | 0.003                                                                                                 | 37                                                                                            |
| 75667                                                                                                                                                                                | 1980                                                                                                                                                         | 558                                                                                                                                                | 0.19                                                                                                                                                                            | 0.064                                                                                                                                                   | 0                                                                                                     | 34                                                                                            |
| 75667                                                                                                                                                                                | 1986                                                                                                                                                         | 549                                                                                                                                                | 0.36                                                                                                                                                                            | 0.093                                                                                                                                                   | 0.004                                                                                                 | 26                                                                                            |
| 75667                                                                                                                                                                                | 1991                                                                                                                                                         | 549                                                                                                                                                | 0.378                                                                                                                                                                           | 0.082                                                                                                                                                   | 0.003                                                                                                 | 22                                                                                            |
| 75667                                                                                                                                                                                | 1995                                                                                                                                                         | 700                                                                                                                                                | 0 205                                                                                                                                                                           | 0                                                                                                                                                       | 0                                                                                                     | 0                                                                                             |
| 75677                                                                                                                                                                                | 1981                                                                                                                                                         | 722                                                                                                                                                | 0.305                                                                                                                                                                           | 0.08                                                                                                                                                    | 0                                                                                                     | 26                                                                                            |
| 75677                                                                                                                                                                                | 1982                                                                                                                                                         | 714                                                                                                                                                | 0.331                                                                                                                                                                           | 0.078                                                                                                                                                   | 0                                                                                                     | 24                                                                                            |
| 75677                                                                                                                                                                                | 1984                                                                                                                                                         | 714                                                                                                                                                | 0.366                                                                                                                                                                           | 0.083                                                                                                                                                   | 0.003                                                                                                 | 23                                                                                            |
| 75677                                                                                                                                                                                | 1986                                                                                                                                                         | 710                                                                                                                                                | 0.359                                                                                                                                                                           | 0.08                                                                                                                                                    | 0.003                                                                                                 | 22                                                                                            |
| 75677                                                                                                                                                                                | 1991                                                                                                                                                         | 715                                                                                                                                                | 0.319                                                                                                                                                                           | 0.064                                                                                                                                                   | 0.002                                                                                                 | 20                                                                                            |
| 75677                                                                                                                                                                                | 1995                                                                                                                                                         | 712                                                                                                                                                | 0.318                                                                                                                                                                           | 0.061                                                                                                                                                   | 0.002                                                                                                 | 19                                                                                            |
| 75677                                                                                                                                                                                | 1999                                                                                                                                                         | 715                                                                                                                                                | 0.326                                                                                                                                                                           | 0.072                                                                                                                                                   | 0.003                                                                                                 | 22                                                                                            |
| 75678                                                                                                                                                                                | 1981                                                                                                                                                         | 472                                                                                                                                                | 0.105                                                                                                                                                                           | 0.046                                                                                                                                                   | 0                                                                                                     | 44                                                                                            |
| 75678                                                                                                                                                                                | 1997                                                                                                                                                         | 472                                                                                                                                                | 0.084                                                                                                                                                                           | 0.031                                                                                                                                                   | 0.001                                                                                                 | 37                                                                                            |
| 75694                                                                                                                                                                                | 4004                                                                                                                                                         | 216                                                                                                                                                | 0.145                                                                                                                                                                           | 0.056                                                                                                                                                   | 0.004                                                                                                 | 39                                                                                            |
| 75694                                                                                                                                                                                | 1984                                                                                                                                                         | 224                                                                                                                                                | 0.155                                                                                                                                                                           | 0.043                                                                                                                                                   | 0.003                                                                                                 | 28                                                                                            |
| 75694                                                                                                                                                                                | 1990                                                                                                                                                         | 224                                                                                                                                                | 0.083                                                                                                                                                                           | 0.038                                                                                                                                                   | 0.003                                                                                                 | 46                                                                                            |
| 75701                                                                                                                                                                                | 1990<br>1994                                                                                                                                                 |                                                                                                                                                    | 0.13                                                                                                                                                                            | 0.038                                                                                                                                                   | 0                                                                                                     | 29                                                                                            |
| 75701                                                                                                                                                                                | 1990                                                                                                                                                         | 1488<br>1448                                                                                                                                       | 0.189                                                                                                                                                                           | 0.046                                                                                                                                                   | 0                                                                                                     | 24                                                                                            |



| 75701  | 1987         | 1448 | 0.211 | 0.048 | 0.001 | 23  |
|--------|--------------|------|-------|-------|-------|-----|
| 75701  | 1991         | 1472 | 0.265 | 0.09  | 0.002 | 34  |
| 75701  | 1995         | 1448 | 0.287 | 0.083 | 0.002 | 29  |
| 75701  | 2000         | 1456 | 0.209 | 0.057 | 0.002 | 27  |
| 75707S | 1979         | 522  | 0.248 | 0.055 | 0     | 22  |
| 75707S | 1985         | 501  | 0.329 | 0.071 | 0.003 | 21  |
| 75707S | 1990         | 503  | 0.455 | 0.086 | 0.004 | 19  |
| 75707S | 1998         | 508  | 0.346 | 0.078 | 0.003 | 22  |
| 75722  | 1980         | 619  | 0.155 | 0.084 | 0     | 55  |
| 75722  | 1986         | 601  | 0.285 | 0.089 | 0.004 | 31  |
| 75722  | 1991         | 602  | 0.321 | 0.1   | 0.004 | 31  |
| 75722  | 1997         | 614  | 0.277 | 0.111 | 0.004 | 40  |
| 75723  | 1981         | 472  | 0.051 | 0.039 | 0     | 77  |
| 75723  | 1992         | 472  | 0.05  | 0.025 | 0.001 | 51  |
| 75723  | 1996         | 472  | 0.05  | 0.031 | 0.001 | 62  |
| 75724  | 1980         | 522  | 0.185 | 0.073 | 0     | 40  |
| 75724  | 1988         | 522  | 0.277 | 0.083 | 0.004 | 30  |
| 75724  | 1992         | 522  | 0.292 | 0.069 | 0.003 | 24  |
| 75724  | 1999         | 522  | 0.321 | 0.082 | 0.004 | 26  |
| 75725  | 1981         | 682  | 0.254 | 0.079 | 0     | 31  |
| 75725  | 1991         | 682  | 0.3   | 0.084 | 0.003 | 28  |
| 75725  | 1999         | 693  | 0.31  | 0.072 | 0.003 | 23  |
| 75726  | 1981         | 531  | 0.093 | 0.041 | 0     | 44  |
| 75726  | 1995         | 531  | 0.102 | 0.04  | 0.002 | 40  |
| 75726  | 2000         | 531  | 0.072 | 0.039 | 0.002 | 54  |
| 75731  | 1977         | 230  | 0.214 | 0.066 | 0     | 31  |
| 75744  | 1979         | 314  | 0.07  | 0.047 | 0     | 68  |
| 75744  | 1986         | 321  | 0.091 | 0.066 | 0.004 | 72  |
| 75744  | 1990         | 318  | 0.195 | 0.097 | 0.005 | 50  |
| 75744  | 1994         | 322  | 0.226 | 0.096 | 0.005 | 42  |
| 75744  | 1998         | 319  | 0.174 | 0.077 | 0.004 | 44  |
| 75754  | 1981         | 674  | 0.188 | 0.084 | 0     | 45  |
| 75754  | 1992         | 666  | 0.337 | 0.101 | 0.004 | 30  |
| 75754  | 1996         | 672  | 0.237 | 0.074 | 0.003 | 31  |
| 75754  | 2000         | 672  | 0.282 | 0.079 | 0.003 | 28  |
| 75760  | 1977         | 867  | 0.164 | 0.113 | 0     | 69  |
| 75760  | 1985         | 360  | 0.266 | 0.08  | 0.004 | 30  |
| 75760  | 1991         | 1116 | 0.247 | 0.08  | 0.002 | 32  |
| 75760  | 1995         | 1116 | 0.283 | 0.09  | 0.003 | 32  |
| 75760  | 1999         | 1153 | 0.206 | 0.068 | 0.002 | 33  |
| 75876  | 1983         | 441  | 0.057 | 0.035 | 0     | 61  |
| 75876  | 1989         | 441  | 0.056 | 0.04  | 0.002 | 71  |
| 75876  | 1993         | 441  | 0.068 | 0.077 | 0.004 | 114 |
| 75876  | 1997         | 441  | 0.087 | 0.061 | 0.003 | 70  |
| 75919S | 1979         | 532  | 0.213 | 0.061 | 0     | 29  |
| 75919S | 1981         | 540  | 0.209 | 0.06  | 0     | 29  |
| 75919S | 1987         | 529  | 0.214 | 0.056 | 0.002 | 26  |
| 75919S | 1991         | 528  | 0.25  | 0.088 | 0.004 | 35  |
| 75919S |              | E24  | 0.26  | 0.08  | 0.003 | 31  |
| 139193 | 1995         | 531  |       |       |       |     |
| 75919S | 1995<br>2000 | 524  | 0.269 | 0.077 | 0.003 | 29  |
|        |              |      |       |       |       |     |



| 75929         1984         225         0.097         0.101         0.007         104           75929         1989         216         0.082         0.089         0.006         108           75929         1994         216         0.093         0.082         0.006         88           75929         1999         216         0.055         0.079         0.005         144           75931         1986         660         0.424         0.058         0.002         14           75931         1996         660         0.424         0.058         0.002         14           75931         1991         270         0.439         0.095         0.006         22           75931         1999         660         0.355         0.084         0.003         23           75931         1999         660         0.375         0.088         0.003         24           75932         1980         680         0.451         0.088         0.003         24           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                      |       |      |      |       |       |       |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|-------|-------|-------|-----|
| 75929         1994         216         0.093         0.082         0.006         88           75929         1999         216         0.055         0.079         0.005         144           75931         1996         660         0.424         0.058         0.002         14           75931         1991         270         0.439         0.095         0.006         22           75931         1995         660         0.365         0.084         0.003         23           75931         1999         660         0.355         0.088         0.003         24           75932         1979         726         0.358         0.066         0         18           75932         1980         680         0.451         0.088         0         20           75932         1984         816         0.351         0.064         0         18           75932         1984         816         0.317         0.052         0         16           75932         1984         816         0.317         0.052         0         16           75932         1985         630         0.369         0.05         0 <t< td=""><td></td><td>1984</td><td>225</td><td>0.097</td><td>0.101</td><td>0.007</td><td>104</td></t<>      |       | 1984 | 225  | 0.097 | 0.101 | 0.007 | 104 |
| 75929         1999         216         0.055         0.079         0.005         144           75931         1986         660         0.328         0.069         0         20           75931         1996         660         0.424         0.058         0.002         14           75931         1991         270         0.439         0.095         0.006         22           75931         1999         660         0.375         0.088         0.003         24           75932         1979         726         0.358         0.066         0         18           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.317         0.052         0         16           75932         1984         816         0.317         0.052         0         16           75932         1986         670         0.352         0.081         0.003         3                                                                                                       | 75929 | 1989 | 216  | 0.082 | 0.089 | 0.006 | 108 |
| 75931         1981         660         0.338         0.069         0         20           75931         1991         270         0.439         0.095         0.006         22           75931         1991         270         0.439         0.095         0.006         22           75931         1995         660         0.365         0.084         0.003         23           75932         1997         726         0.358         0.066         0         18           75932         1980         680         0.451         0.088         0         20           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.352         0.052         0         16           75932         1988         670         0.352         0.081         0.003         23           75932         1988         670         0.352         0.081         0.003         23           75932         1986         670         0.256         0.082         0.003 <t< td=""><td>75929</td><td>1994</td><td>216</td><td>0.093</td><td>0.082</td><td>0.006</td><td>88</td></t<>  | 75929 | 1994 | 216  | 0.093 | 0.082 | 0.006 | 88  |
| 75931         1986         660         0.424         0.058         0.002         14           75931         1995         660         0.365         0.084         0.003         23           75931         1999         660         0.375         0.088         0.003         24           75932         1980         680         0.451         0.088         0.02         18           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         16           75932         1984         816         0.317         0.052         0         16           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.352         0.081         0.003         23           75932         1998         670         0.228         0.082         0.003         36           75933         1981         590         0.255         0.082         0.003                                                                                                            | 75929 | 1999 | 216  | 0.055 | 0.079 | 0.005 | 144 |
| 75931         1991         270         0.439         0.096         0.006         22           75931         1999         660         0.375         0.084         0.003         23           75932         1979         726         0.358         0.066         0         18           75932         1980         680         0.451         0.088         0         20           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.352         0.052         0         16           75932         1985         630         0.352         0.052         0         16           75932         1988         670         0.352         0.081         0.003         23           75932         1998         670         0.226         0.082         0.003         36           75933         1981         590         0.353         0.069         0         20           75933         1985         590         0.425         0.065         0         15 <td>75931</td> <td>1981</td> <td>660</td> <td>0.338</td> <td>0.069</td> <td>0</td> <td>20</td>            | 75931 | 1981 | 660  | 0.338 | 0.069 | 0     | 20  |
| 75931         1995         660         0.365         0.084         0.003         23           75931         1999         660         0.375         0.088         0.003         24           75932         1979         726         0.358         0.066         0         18           75932         1980         680         0.451         0.088         0         20           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.317         0.052         0         16           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.328         0.082         0.003         36           75932         1988         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         31           75933         1981         590         0.425         0.065         0         15<                                                                                                       | 75931 | 1986 | 660  | 0.424 | 0.058 | 0.002 | 14  |
| 75931         1999         660         0.375         0.088         0.003         24           75932         1980         680         0.451         0.088         0         20           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.352         0.052         0         16           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.352         0.081         0.003         23           75932         1988         670         0.228         0.082         0.003         36           75932         1998         670         0.226         0.082         0.003         36           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1985         590         0.394         0.08         0.003         20 </td <td>75931</td> <td>1991</td> <td>270</td> <td>0.439</td> <td>0.095</td> <td>0.006</td> <td>22</td> | 75931 | 1991 | 270  | 0.439 | 0.095 | 0.006 | 22  |
| 75932         1979         726         0.358         0.066         0         18           75932         1984         816         0.361         0.088         0         20           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         15           75932         1985         630         0.369         0.052         0         14           75932         1988         670         0.252         0.081         0.003         23           75932         1988         670         0.228         0.082         0.003         36           75932         1994         670         0.228         0.082         0.003         36           75933         1981         590         0.353         0.069         0         20           75933         1982         590         0.425         0.065         0         15           75933         1986         590         0.475         0.059         0.002         13           75945         1977         430         0.188         0.102         0         54 <td>75931</td> <td>1995</td> <td>660</td> <td>0.365</td> <td>0.084</td> <td>0.003</td> <td>23</td>        | 75931 | 1995 | 660  | 0.365 | 0.084 | 0.003 | 23  |
| 75932         1980         680         0.451         0.088         0         20           75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         16           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.352         0.081         0.003         23           75932         1994         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         36           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.475         0.059         0.002         13           75933         1985         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0                                                                                                                | 75931 | 1999 | 660  | 0.375 | 0.088 | 0.003 | 24  |
| 75932         1984         816         0.361         0.064         0         18           75932         1984         816         0.352         0.052         0         15           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.352         0.081         0.003         23           75932         1998         670         0.228         0.082         0.003         36           75932         1998         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         36           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0                                                                                                                | 75932 | 1979 | 726  | 0.358 | 0.066 | 0     | 18  |
| 75932         1984         816         0.352         0.052         0         15           75932         1984         816         0.317         0.052         0         16           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         31           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40                                                                                                             | 75932 | 1980 | 680  | 0.451 | 0.088 | 0     | 20  |
| 75932         1984         816         0.317         0.052         0         16           75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.352         0.081         0.003         36           75932         1994         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         31           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         13           75933         1986         590         0.475         0.059         0.002         13           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         0         33           75945         1997         667         0.202         0.064         0.00                                                                                                       | 75932 | 1984 | 816  | 0.361 | 0.064 | 0     | 18  |
| 75932         1985         630         0.369         0.05         0         14           75932         1988         670         0.352         0.081         0.003         23           75932         1994         670         0.228         0.082         0.003         31           75932         1998         670         0.265         0.082         0.003         31           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1980         606         0.141         0.056         0         40           75945         1992         618         0.224         0.069         0.003         31           75945         1993         3311         0.351         0.082         0         23<                                                                                                       | 75932 | 1984 | 816  | 0.352 | 0.052 | 0     | 15  |
| 75932         1988         670         0.352         0.081         0.003         23           75932         1994         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         36           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1986         590         0.475         0.059         0.002         13           75945         1977         430         0.188         0.102         0         54           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1980         606         0.141         0.057         0.003         33           75945         1988         619         0.204         0.067         0.003         31           75945         1997         3311         0.351         0.069         0.003                                                                                                         | 75932 | 1984 | 816  | 0.317 | 0.052 | 0     | 16  |
| 75932         1994         670         0.228         0.082         0.003         36           75932         1998         670         0.265         0.082         0.003         31           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1986         590         0.475         0.059         0.002         13           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1982         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0                                                                                                          | 75932 | 1985 | 630  | 0.369 | 0.05  | 0     | 14  |
| 75932         1998         670         0.265         0.082         0.003         31           75933         1981         590         0.353         0.069         0         20           75933         1986         590         0.425         0.065         0         15           75933         1986         590         0.475         0.059         0.002         13           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1988         619         0.204         0.067         0.003         31           75945         1980         667         0.202         0.064         0.002         32           75946         1997         667         0.202         0.064         0.002         32           75946         1981         462         0.429         0.064         0                                                                                                           | 75932 | 1988 | 670  | 0.352 | 0.081 | 0.003 | 23  |
| 75933         1981         590         0.353         0.069         0         20           75933         1982         590         0.425         0.065         0         15           75933         1986         590         0.475         0.059         0.002         13           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15                                                                                                       | 75932 | 1994 | 670  | 0.228 | 0.082 | 0.003 | 36  |
| 75933         1982         590         0.425         0.065         0         15           75933         1986         590         0.475         0.059         0.002         13           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1987         1068         0.281         0.054         0.002         <                                                                                                   | 75932 | 1998 | 670  | 0.265 | 0.082 | 0.003 | 31  |
| 75933         1986         590         0.475         0.059         0.002         13           75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1987         1068         0.281         0.054         0.002         19           75946         1995         1074         0.291         0.065         0.002                                                                                                        | 75933 | 1981 | 590  | 0.353 | 0.069 | 0     | 20  |
| 75933         1995         590         0.394         0.08         0.003         20           75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1987         1068         0.281         0.054         0.002         19           75946         1987         1068         0.281         0.054         0.002         22           75946         1995         1074         0.291         0.065         0.002                                                                                                       | 75933 | 1982 | 590  | 0.425 | 0.065 | 0     | 15  |
| 75945         1977         430         0.188         0.102         0         54           75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002                                                                                                          | 75933 | 1986 | 590  | 0.475 | 0.059 | 0.002 | 13  |
| 75945         1980         606         0.141         0.056         0         40           75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         1991         1937         0.332         0.074         0                                                                                                         | 75933 | 1995 | 590  | 0.394 | 0.08  | 0.003 | 20  |
| 75945         1988         619         0.204         0.067         0.003         33           75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.281         0.054         0.002         19           75946         1995         1074         0.291         0.065         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         1995         1981         130         0.28         0.085                                                                                                   | 75945 | 1977 | 430  | 0.188 | 0.102 | 0     | 54  |
| 75945         1992         618         0.224         0.069         0.003         31           75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.054         0.002         19           75946         1995         1074         0.291         0.065         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         1991         130         0.28         0.085         0.002         22           75946         1991         137         0.332         0.074         0                                                                                                      | 75945 | 1980 | 606  | 0.141 | 0.056 | 0     | 40  |
| 75945         1997         667         0.202         0.064         0.002         32           75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         1995         1937         0.332         0.074         0         22           76034         1981         130         0.28         0.085         0                                                                                                        | 75945 | 1988 | 619  | 0.204 | 0.067 | 0.003 | 33  |
| 75946         1979         3311         0.351         0.082         0         23           75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         2900         1196         0.258         0.053         0.002         22           75946         2000         1196         0.258         0.053         0.002         22           75946         1991         130         0.28         0.085         0         30           76034         1981         130         0.28         0.085         0         30           76034         1991         846         0.175         0.082         0.003                                                                                                          | 75945 | 1992 | 618  | 0.224 | 0.069 | 0.003 | 31  |
| 75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         2000         1196         0.258         0.053         0.002         22           75946         2000         1196         0.258         0.053         0.002         22           75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1991         846         0.175         0.082         0.003                                                                                                    | 75945 | 1997 | 667  | 0.202 | 0.064 | 0.002 | 32  |
| 75946         1980         468         0.389         0.072         0         19           75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         2000         1196         0.258         0.053         0.002         22           75946         2000         1196         0.258         0.053         0.002         22           75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1991         846         0.175         0.082         0.003                                                                                                    | 75946 | 1979 | 3311 | 0.351 | 0.082 | 0     | 23  |
| 75946         1981         462         0.429         0.064         0         15           75946         1983         1218         0.228         0.14         0         61           75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         2000         1196         0.258         0.053         0.002         22           75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004 <td>75946</td> <td>1980</td> <td>468</td> <td>0.389</td> <td>0.072</td> <td>0</td> <td>19</td>  | 75946 | 1980 | 468  | 0.389 | 0.072 | 0     | 19  |
| 75946         1987         1068         0.281         0.054         0.002         19           75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         <                                                                                                   | 75946 | 1981 | 462  | 0.429 | 0.064 |       | 15  |
| 75946         1991         1074         0.345         0.076         0.002         22           75946         1995         1074         0.291         0.065         0.002         22           75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1984         738         0.352         0.075         0         21                                                                                                       | 75946 | 1983 | 1218 | 0.228 | 0.14  | 0     | 61  |
| 75946         1995         1074         0.291         0.065         0.002         22           75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1987         0.349         0.069         0         0                                                                                                                         | 75946 | 1987 | 1068 | 0.281 | 0.054 | 0.002 | 19  |
| 75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76044         1996         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1987         0.349         0.069         0         0           76057<                                                                                                                        | 75946 | 1991 | 1074 | 0.345 | 0.076 | 0.002 | 22  |
| 75946         2000         1196         0.258         0.053         0.002         20           75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1987         0.349         0.069         0         0         0           76057         1991         714         0.321         0.087         0.003         27                                                                                                                |       | 1995 |      |       |       |       |     |
| 75994         1981         130         0.28         0.085         0         30           76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29                                                                                                                           |       | 2000 | 1196 |       |       | 0.002 | 20  |
| 76034         1979         1937         0.332         0.074         0         22           76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         1995         656         0.294         0.074         0.003         25                                                                                                                      | 75994 | 1981 | 130  | 0.28  | 0.085 |       | 30  |
| 76034         1985         1128         0.252         0.157         0.005         62           76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                       |       |      |      |       |       |       |     |
| 76034         1991         846         0.175         0.082         0.003         47           76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76044         1996         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                       |       |      |      |       |       | 0.005 |     |
| 76034         1995         846         0.235         0.122         0.004         52           76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76044         1996         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                     |       |      |      |       |       |       |     |
| 76034         1999         852         0.27         0.105         0.004         39           76044         1983         0         0         0         0         0           76044         1996         0         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                   |       |      |      |       |       |       |     |
| 76044         1983         0         0         0         0           76044         1996         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |      |       |       |       |     |
| 76044         1996         0         0         0         0           76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |      |      |       |       |       |     |
| 76057         1979         756         0.354         0.065         0         18           76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |      |       |       | -     | _   |
| 76057         1980         738         0.336         0.096         0         29           76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1979 | 756  | 0.354 | 0.065 |       |     |
| 76057         1984         738         0.352         0.075         0         21           76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |       |       |       |     |
| 76057         1987         0.349         0.069         0         0           76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |       |       |       |     |
| 76057         1991         714         0.321         0.087         0.003         27           76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |      |      |       |       |       |     |
| 76057         1995         656         0.304         0.089         0.003         29           76057         2000         656         0.294         0.074         0.003         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      | 714  |       |       |       |     |
| 76057 2000 656 0.294 0.074 0.003 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      |      |       |       |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |      |      |       |       |       |     |
| , 5555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |       |       |       |     |
| 76081S 1979 440 0.321 0.091 0 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |       |       |       |     |



| 76081S<br>76092<br>76092<br>76092<br>76092<br>76102N<br>76102N | 1980<br>1983<br>1986<br>1996 | 544<br>543 | 0.329<br>0.352<br>0.37 | 0.092<br>0.079<br>0.087 | 0 0 0 0 0 0 0 | 28       |
|----------------------------------------------------------------|------------------------------|------------|------------------------|-------------------------|---------------|----------|
| 76092<br>76092<br>76092<br>76102N                              | 1986<br>1996                 | 543        |                        |                         | _             |          |
| 76092<br>76092<br>76102N                                       | 1996                         |            | 0.37                   | 0.087                   | 0.004         |          |
| 76092<br>76102N                                                |                              |            | 0.07                   | 0.007                   | 0.004         | 23       |
| 76102N                                                         | 2000                         | 544        | 0.42                   | 0.073                   | 0.003         | 17       |
| 76102N                                                         | 2000                         | 544        | 0.266                  | 0.067                   | 0.003         | 25       |
| 76102N                                                         | 1977                         | 280        | 0.183                  | 0.107                   | 0             | 58       |
|                                                                | 1995                         |            | 0                      | 0                       | 0             | 0        |
| 76128                                                          | 1980                         | 370        | 0.141                  | 0.074                   | 0             | 53       |
| 76158                                                          | 1979                         | 895        | 0.31                   | 0.075                   | 0             | 24       |
| 76158                                                          | 1980                         | 896        | 0.309                  | 0.063                   | 0             | 20       |
| 76158                                                          | 1983                         | 808        | 0.354                  | 0.063                   | 0             | 18       |
| 76158                                                          | 1986                         | 803        | 0.368                  | 0.056                   | 0.002         | 15       |
| 76158                                                          | 1988                         | 000        | 0.339                  | 0.056                   | 0             | 0        |
| 76159                                                          | 1977                         | 416        | 0.097                  | 0.104                   | 0             | 99       |
| 76159                                                          | 1978                         | 567        | 0.167                  | 0.053                   | 0             | 32       |
| 76159                                                          | 1979                         | 620        | 0.107                  | 0.045                   | 0             | 20       |
| 76159                                                          | 1980                         | 610        | 0.225                  | 0.044                   | 0             | 20       |
| 76159                                                          | 1988                         | 620        | 0.212                  | 0.044                   | 0.003         | 33       |
| 76159                                                          | 1992                         | 620        | 0.212                  | 0.066                   | 0.003         | 28       |
| 76161                                                          | 1979                         | 533        | 0.234                  | 0.000                   | 0.003         | 36       |
| 76161                                                          | 1983                         | 520        | 0.216                  | 0.079                   | 0             | 36       |
| 76161                                                          | 1987                         | 502        | 0.282                  | 0.082                   | 0.004         | 30       |
|                                                                |                              |            | 0.262                  | 0.083                   | 0.004         | 25       |
| 76161                                                          | 1991                         | 500        |                        |                         | 0.004         | 24       |
| 76161                                                          | 1995                         | 523        | 0.398                  | 0.094                   |               |          |
| 76161                                                          | 2000                         | 528        | 0.463                  | 0.082                   | 0.004         | 18<br>40 |
| 76177                                                          | 1981                         | 1018       | 0.159                  | 0.063                   | 0             | 35       |
| 76177                                                          | 1988                         | 1011       | 0.249                  | 0.087                   | 0.003         | 32       |
| 76177                                                          | 1992                         | 955        | 0.187                  | 0.06                    | 0.002         | 36       |
| 76177                                                          | 1999                         | 958        | 0.16                   | 0.057                   | 0.002         |          |
| 76181E                                                         | 1979                         | 804        | 0.114                  | 0.04                    |               | 35<br>48 |
| 76181E                                                         | 1985                         | 774        | 0.09                   | 0.043                   | 0.002         |          |
| 76181E                                                         | 1990                         | 773        | 0.108                  | 0.071                   | 0.003         | 65       |
| 76181E                                                         | 1995                         | 773        | 0.135                  | 0.065                   | 0.002         | 48       |
| 76181E                                                         | 2000                         | 775        | 0.114                  | 0.047                   | 0.002         | 41       |
| 76181W                                                         | 1979                         | 781        | 0.156                  | 0.045                   | 0             | 29       |
| 76181W                                                         | 1985                         | 775        | 0.144                  | 0.052                   | 0.002         | 36       |
| 76181W                                                         | 1990                         | 774        | 0.138                  | 0.064                   | 0.002         | 47       |
| 76181W                                                         | 1995                         | 774        | 0.172                  | 0.059                   | 0.002         | 34       |
| 76181W                                                         | 2000                         | 778        | 0.127                  | 0.052                   | 0.002         | 41       |
| 76185                                                          | 1977                         | 276        | 0.118                  | 0.057                   | 0             | 48       |
| 76185                                                          | 1985                         | 448        | 0.162                  | 0.077                   | 0             | 47       |
| 76185                                                          | 1990                         | 453        | 0.201                  | 0.066                   | 0.003         | 33       |
| 76185                                                          | 1994                         | 447        | 0.213                  | 0.076                   | 0.004         | 36       |
| 76185                                                          | 1996                         | 452        | 0.224                  | 0.091                   | 0.004         | 41       |
| 76185                                                          | 2000                         | 453        | 0.235                  | 0.095                   | 0.004         | 40       |
| 76186                                                          | 1977                         | 423        | 0.079                  | 0.076                   | 0             | 97       |
| 76186                                                          | 1985                         | 560        | 0.138                  | 0.049                   | 0.002         | 36       |
| 76186                                                          | 1990                         | 560        | 0.193                  | 0.058                   | 0.002         | 30       |
| 76186                                                          | 1994                         | 560        | 0.156                  | 0.047                   | 0.002         | 30       |
| 76186                                                          | 1998                         | 560        | 0.18                   | 0.058                   | 0.002         | 32       |
| 76212                                                          | 1981                         | 621        | 0.116                  | 0.065                   | 0             | 56       |
| 76212                                                          | 1987                         | 621        | 0.138                  | 0.072                   | 0.003         | 52       |



| 76212  | 1991 | 612 | 0.214 | 0.095 | 0.004 | 45  |
|--------|------|-----|-------|-------|-------|-----|
| 76212  | 1995 | 621 | 0.198 | 0.062 | 0.002 | 31  |
| 76212  | 1999 | 621 | 0.21  | 0.068 | 0.003 | 32  |
| 76223  | 1980 | 378 | 0.116 | 0.043 | 0     | 37  |
| 76223  | 1981 | 387 | 0.144 | 0.063 | 0     | 44  |
| 76223  | 1987 | 387 | 0.256 | 0.062 | 0.003 | 24  |
| 76223  | 1991 | 378 | 0.212 | 0.086 | 0.004 | 40  |
| 76223  | 1996 | 387 | 0.222 | 0.089 | 0.005 | 40  |
| 76226  | 1981 | 543 | 0.133 | 0.06  | 0     | 45  |
| 76226  | 1987 | 591 | 0.104 | 0.065 | 0.003 | 63  |
| 76301  | 1984 | 336 | 0.221 | 0.054 | 0.003 | 24  |
| 76301  | 1989 | 364 | 0.227 | 0.073 | 0.004 | 32  |
| 76301  | 1994 | 364 | 0.243 | 0.074 | 0.004 | 31  |
| 76301  | 1996 | 364 | 0.222 | 0.087 | 0.005 | 39  |
| 76330  | 1980 | 530 | 0.155 | 0.096 | 0     | 62  |
| 76339E | 1977 | 659 | 0.089 | 0.069 | 0     | 78  |
| 76339E | 1998 |     | 0     | 0     | 0     | 0   |
| 76339W | 1977 | 653 | 0.098 | 0.083 | 0     | 85  |
| 76339W | 1998 |     | 0     | 0     | 0     | 0   |
| 76364  | 1979 | 552 | 0.052 | 0.031 | 0     | 60  |
| 76364  | 1985 | 540 | 0.055 | 0.03  | 0.001 | 55  |
| 76364  | 1990 | 552 | 0.059 | 0.05  | 0.002 | 84  |
| 76364  | 1994 | 552 | 0.039 | 0.043 | 0.002 | 111 |
| 76378  | 1980 | 581 | 0.211 | 0.038 | 0     | 18  |
| 76378  | 1982 | 597 | 0.22  | 0.047 | 0     | 21  |
| 76378  | 1987 | 561 | 0.253 | 0.062 | 0.003 | 24  |
| 76378  | 1991 | 578 | 0.254 | 0.068 | 0.003 | 27  |
| 76378  | 1995 | 578 | 0.295 | 0.08  | 0.003 | 27  |
| 76378  | 2000 | 577 | 0.166 | 0.052 | 0.002 | 32  |
| 76381  | 1979 | 766 | 0.271 | 0.06  | 0     | 22  |
| 76381  | 1980 | 773 | 0.253 | 0.067 | 0     | 26  |
| 76381  | 1988 | 761 | 0.296 | 0.08  | 0.003 | 27  |
| 76381  | 1993 | 762 | 0.299 | 0.078 | 0.003 | 26  |
| 76381  | 1995 | 529 | 0.254 | 0.088 | 0.004 | 35  |
| 76381  | 1999 | 766 | 0.194 | 0.101 | 0.004 | 52  |
| 76382N | 1981 | 526 | 0.2   | 0.072 | 0     | 36  |
| 76382N | 1988 | 527 | 0.282 | 0.076 | 0.003 | 27  |
| 76382N | 1997 | 533 | 0.286 | 0.083 | 0.004 | 29  |
| 76392  | 1984 | 870 | 0.168 | 0.085 | 0.003 | 51  |
| 76392  | 1989 | 876 | 0.153 | 0.084 | 0.003 | 55  |
| 76392  | 1993 | 874 | 0.173 | 0.105 | 0.004 | 60  |
| 76392  | 1997 | 880 | 0.088 | 0.062 | 0.002 | 71  |
| 76478  | 1977 | 218 | 0.158 | 0.091 | 0     | 57  |
| 76478  | 1996 |     | 0     | 0     | 0     | 0   |
| 76528  | 1980 | 297 | 0.111 | 0.064 | 0     | 58  |
| 7653   | 1990 | 460 | 0.265 | 0.083 | 0.004 | 31  |
| 76540  | 1977 | 396 | 0.065 | 0.059 | 0     | 91  |
| 76540  | 1980 | 561 | 0.121 | 0.062 | 0     | 51  |
| 76540  | 1988 | 559 | 0.253 | 0.096 | 0.004 | 38  |
| 76540  | 1992 | 559 | 0.222 | 0.11  | 0.005 | 50  |
| 76540  | 2000 | 524 | 0.154 | 0.095 | 0.004 | 62  |
| 76558  | 1981 | 477 | 0.163 | 0.089 | 0     | 55  |
| 70000  | 1001 |     |       |       |       |     |



| 76558  | 1986 |      | 0.205 | 0.162 | 0     | 0   |
|--------|------|------|-------|-------|-------|-----|
| 76558  | 1990 |      | 0.205 | 0.102 | 0     | 0   |
| 76558  | 1994 | 473  | 0.13  | 0.074 | 0.003 | 57  |
| 76558  | 1999 | 474  | 0.171 | 0.074 | 0.003 | 42  |
| 766    | 1980 | 478  | 0.171 | 0.073 | 0.003 | 99  |
| 766    | 1986 | 473  | 0.041 | 0.048 | 0.002 | 64  |
| 766    | 1990 | 473  | 0.075 | 0.048 | 0.002 | 50  |
|        |      |      |       |       |       |     |
| 766    | 1994 | 477  | 0.007 | 0.025 | 0.001 | 367 |
| 766    | 1998 | 477  | 0.078 | 0.042 | 0.002 | 54  |
| 76609  | 1979 | 1094 | 0.37  | 0.056 | 0     | 15  |
| 76609  | 1980 | 1138 | 0.372 | 0.06  | 0     | 16  |
| 76609  | 1986 | 1127 | 0.407 | 0.076 | 0.002 | 19  |
| 76609  | 1988 | 1119 | 0.437 | 0.108 | 0.003 | 25  |
| 76609  | 1993 | 1129 | 0.338 | 0.088 | 0.003 | 26  |
| 76609  | 1999 | 1128 | 0.392 | 0.074 | 0.002 | 19  |
| 76609  | 2000 | 1123 | 0.397 | 0.082 | 0.002 | 21  |
| 76615  | 1981 | 531  | 0.205 | 0.058 | 0     | 28  |
| 76615  | 1992 | 518  | 0.311 | 0.096 | 0.004 | 31  |
| 76615  | 1998 | 522  | 0.256 | 0.083 | 0.004 | 33  |
| 76625  | 1995 |      | 0     | 0     | 0     | 0   |
| 76633  | 1980 | 290  | 0.117 | 0.059 | 0     | 50  |
| 76634  | 1980 | 300  | 0.127 | 0.039 | 0     | 31  |
| 76634  | 1996 |      | 0     | 0     | 0     | 0   |
| 76639  | 1982 | 216  | 0.087 | 0.073 | 0     | 84  |
| 76639  | 1987 | 192  | 0.215 | 0.076 | 0.005 | 35  |
| 76639  | 1991 | 192  | 0.223 | 0.076 | 0.005 | 34  |
| 76639  | 1998 | 192  | 0.12  | 0.08  | 0.006 | 66  |
| 76646E | 1977 | 351  | 0.095 | 0.069 | 0     | 72  |
| 76646E | 1985 | 495  | 0.208 | 0.076 | 0.003 | 37  |
| 76646E | 1995 | 590  | 0.232 | 0.09  | 0.004 | 39  |
| 76646W | 1977 | 308  | 0.1   | 0.08  | 0     | 79  |
| 76646W | 1985 | 495  | 0.203 | 0.074 | 0.003 | 37  |
| 76646W | 1988 |      | 0     | 0     | 0     | 0   |
| 76646W | 1995 | 582  | 0.277 | 0.115 | 0.005 | 42  |
| 76648  | 1981 | 840  | 0.257 | 0.065 | 0     | 25  |
| 76648  | 1991 | 792  | 0.37  | 0.07  | 0.002 | 19  |
| 76648  | 1995 | 781  | 0.301 | 0.085 | 0.003 | 28  |
| 76648  | 1999 | 792  | 0.269 | 0.089 | 0.003 | 33  |
| 76649W | 1979 | 359  | 0.258 | 0.058 | 0     | 23  |
| 76649W | 1982 | 348  | 0.274 | 0.062 | 0     | 23  |
| 76649W | 1988 | 347  | 0.313 | 0.065 | 0.004 | 21  |
| 76649W | 1991 | 334  | 0.318 | 0.074 | 0.004 | 23  |
| 76649W | 1995 | 354  | 0.324 | 0.074 | 0.004 | 23  |
| 76649W | 1999 | 351  | 0.282 | 0.08  | 0.004 | 28  |
| 76650N | 1983 | 1806 | 0.232 | 0.066 | 0     | 28  |
| 76650N | 1988 | 1045 | 0.202 | 0.081 | 0.003 | 40  |
| 76650N | 1999 | 970  | 0.2   | 0.061 | 0.002 | 31  |
| 76650S | 1983 | 0.0  | 0.232 | 0.066 | 0.002 | 0   |
| 76650S | 1988 | 962  | 0.227 | 0.083 | 0.003 | 37  |
| 76650S | 1999 | 1069 | 0.207 | 0.078 | 0.003 | 38  |
| 76652  | 1980 | 812  | 0.271 | 0.068 | 0.002 | 25  |
| 76652  | 1983 | 885  | 0.312 | 0.061 | 0     | 20  |
| 70002  | 1303 | 300  | 0.012 | 0.001 | 0     | 20  |



| 76652  | 1984 | 885   | 0.301 | 0.05  | 0     | 17  |
|--------|------|-------|-------|-------|-------|-----|
| 76652  | 1986 |       | 0.299 | 0.065 | 0     | 0   |
| 76652  | 1991 | 826   | 0.326 | 0.076 | 0.003 | 23  |
| 76652  | 1995 | 767   | 0.257 | 0.069 | 0.002 | 27  |
| 76652  | 1999 | 767   | 0.246 | 0.068 | 0.002 | 28  |
| 76653  | 1982 | 785   | 0.268 | 0.085 | 0     | 32  |
| 76653  | 1986 | 774   | 0.283 | 0.095 | 0.003 | 34  |
| 76658  | 1981 | 448   | 0.242 | 0.042 | 0     | 17  |
| 76658  | 1995 | 440   | 0.276 | 0.122 | 0.006 | 44  |
| 76658  | 2000 | 442   | 0.222 | 0.067 | 0.003 | 30  |
| 76659  | 1981 | 440   | 0.196 | 0.094 | 0     | 48  |
| 76659  | 1999 | 448   | 0.207 | 0.103 | 0.005 | 50  |
| 76660  | 1981 | 446   | 0.208 | 0.058 | 0     | 28  |
| 76660  | 1988 | 219   | 0.156 | 0.123 | 0.008 | 79  |
| 76660  | 1992 | 440   | 0.269 | 0.099 | 0.005 | 37  |
| 76660  | 1999 | 439   | 0.26  | 0.096 | 0.005 | 37  |
| 76669  | 1980 | 324   | 0.17  | 0.06  | 0     | 35  |
| 76707  | 1979 | 292   | 0.072 | 0.056 | 0     | 78  |
| 76707  | 1986 | 288   | 0.079 | 0.052 | 0.003 | 66  |
| 76719  | 1985 | 650   | 0.316 | 0.063 | 0.002 | 20  |
| 76719  | 1991 | 588   | 0.187 | 0.079 | 0.003 | 42  |
| 76719  | 1995 | 602   | 0.2   | 0.081 | 0.003 | 40  |
| 76719  | 2000 | 607   | 0.193 | 0.093 | 0.004 | 48  |
| 76720  | 1999 | 007   | 0.150 | 0.000 | 0     | 0   |
| 768    | 1981 | 48    | 0.021 | 0.01  | 0.001 | 48  |
| 768    | 1992 | 48    | 0.021 | 0.013 | 0.002 | 38  |
| 76805E | 1982 | 495   | 0.156 | 0.067 | 0.002 | 43  |
| 76805E | 1988 | 476   | 0.130 | 0.069 | 0.003 | 30  |
| 76805E | 1993 | 498   | 0.173 | 0.109 | 0.005 | 63  |
| 76805W | 1982 | 499   | 0.173 | 0.062 | 0.000 | 692 |
| 76805W | 1988 | 500   | 0.130 | 0.002 | 0.002 | 17  |
| 76805W | 1993 | 499   | 0.200 | 0.103 | 0.002 | 43  |
| 76845  | 1984 | 2400  | 0.243 | 0.103 | 0.003 | 20  |
| 76845  | 1987 | 2400  | 0.252 | 0.049 | 0     | 0   |
| 76845  | 1991 |       | 0.252 | 0.061 | 0     | 0   |
|        |      | 2384  | 0.205 | 0.061 | 0.001 | 25  |
| 76845  | 1996 |       | 0.243 | 0.055 | 0.001 | 23  |
| 76845  | 2000 | 2400  | 0.242 |       | 0.001 | 17  |
| 76848  | 1981 | 852   | 0.363 | 0.062 | 0     | 0   |
| 76848  | 1986 | 740   |       | 0.071 | -     |     |
| 76848  | 1991 | 710   | 0.294 | 0.122 | 0.005 | 41  |
| 76848  | 1995 | 710   | 0.172 | 0.081 | 0.003 | 47  |
| 76848  | 2000 | 720   | 0.191 | 0.082 | 0.003 | 43  |
| 76850  | 1980 | 531   | 0.215 | 0.061 | 0     | 28  |
| 76850  | 1986 | 549   | 0.281 | 0.067 | 0.003 | 24  |
| 76850  | 1990 | 549   | 0.08  | 0.109 | 0.005 | 136 |
| 76850  | 1995 | 549   | 0.241 | 0.093 | 0.004 | 38  |
| 76850  | 2000 | 549   | 0.222 | 0.054 | 0.002 | 24  |
| 76856  | 1982 | 488   | 0.166 | 0.072 | 0     | 44  |
| 76856  | 1999 | 0.5.5 | 0     | 0     | 0     | 0   |
| 76927  | 1981 | 229   | 0.07  | 0.045 | 0     | 65  |
| 76927  | 1987 | 232   | 0.09  | 0.069 | 0.005 | 77  |
| 76927  | 1991 | 228   | 0.134 | 0.057 | 0.004 | 43  |



| 76927         1997         226         0.122         0.057         0.004         47           76986         1981         1128         0.093         0.061         0         65           77054E         1982         622         0.099         0.058         0         65           77054E         1987         636         0.111         0.078         0.003         36           77054E         1999         569         0.167         0.083         0.003         49           77054W         1999         562         0.167         0.083         0.003         49           77073         1982         126         0.021         0.018         0         87           77073         1996         579         0.016         0.036         0.002         234           77088         1990         789         0.22         0.091         0.003         41           77088         1994         784         0.201         0.09         0.003         45           77088         1994         784         0.201         0.09         0.003         45           77081         1982         564         0.228         0.078         0                                                                                                  |         |      |      |       |       |       |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|-------|-------|-------|-----|
| 77054E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76927   | 1997 | 226  | 0.122 | 0.057 | 0.004 | 47  |
| 77054E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76986   | 1981 | 1128 | 0.093 | 0.061 | 0     | 65  |
| T7054E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77054E  | 1982 | 622  | 0.099 | 0.058 | 0     | 59  |
| 77054E         1999         569         0.167         0.083         0.003         49           77054W         1999         562         0.135         0.07         0.003         52           77073         1996         579         0.016         0.036         0.002         234           77088         1990         789         0.22         0.091         0.003         40           77088         1990         789         0.22         0.091         0.003         41           77088         1994         784         0.201         0.09         0.003         45           7708B         1994         784         0.201         0.09         0.003         45           7708B         1998         785         0.175         0.082         0.003         47           77090E         1982         564         0.228         0.078         0         0           77090E         1998         0         0         0         0         0         0           77091E         1998         0         0         0         0         0         0           77091E         1982         451         0.158         0.06                                                                                                                 | 77054E  | 1987 | 636  | 0.111 | 0.078 | 0.003 | 70  |
| 77054W         1999         562         0.135         0.07         0.003         52           77073         1996         579         0.016         0.036         0.002         234           77088         1985         779         0.23         0.091         0.003         40           77088         1985         779         0.23         0.091         0.003         40           77088         1994         784         0.201         0.09         0.003         45           77088         1994         784         0.201         0.09         0.003         45           77088         1998         785         0.175         0.082         0.003         47           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77091E         1982         451         0.158         0.06         0         38           77091E         1997         451         0.161         0.071                                                                                                               | 77054E  | 1991 | 571  | 0.196 | 0.071 | 0.003 | 36  |
| 77073         1982         126         0.021         0.018         0         87           77073         1996         579         0.016         0.036         0.002         234           77088         1985         779         0.23         0.091         0.003         40           77088         1990         789         0.22         0.091         0.003         41           77088         1994         784         0.201         0.09         0.003         45           77088         1998         785         0.175         0.082         0.003         47           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77091E         1982         451         0.158         0.06         0         38           77091E         1982         451         0.158         0.06         0         38           77091E         1991         451         0.247         0.101         0.003         44<                                                                                                      | 77054E  | 1999 | 569  | 0.167 | 0.083 | 0.003 | 49  |
| 77073         1996         579         0.016         0.036         0.002         234           77088         1985         779         0.23         0.091         0.003         40           77088         1990         789         0.22         0.091         0.003         41           77088         1994         784         0.201         0.09         0.003         45           77088         1998         785         0.175         0.082         0.003         47           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0         0           77091E         1982         451         0.158         0.06         0         38           77091E         1987         451         0.231         0.097         0.005         41           77091E         1999         451         0.231         0.097         0.004                                                                                                             | 77054W  | 1999 | 562  | 0.135 | 0.07  | 0.003 | 52  |
| 77088         1985         779         0.23         0.091         0.003         40           77088         1994         784         0.201         0.09         0.003         45           77088         1998         785         0.175         0.082         0.003         45           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0         0           77091E         1982         451         0.158         0.06         0         38           77091E         1987         451         0.161         0.071         0.003         44           77091E         1987         451         0.247         0.101         0.005         41           77091E         1991         451         0.231         0.097         0.005         42           77091W         1982         451         0.115         0.069         0                                                                                                               | 77073   | 1982 | 126  | 0.021 | 0.018 | 0     | 87  |
| 77088         1990         789         0.22         0.091         0.003         41           77088         1998         785         0.175         0.082         0.003         45           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0           77091E         1982         451         0.188         0.06         0         38           77091E         1982         451         0.188         0.06         0         38           77091E         1991         451         0.247         0.101         0.003         44           77091E         1995         451         0.231         0.097         0.005         42           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.181         0.089         0.004         31     <                                                                                                           | 77073   | 1996 | 579  | 0.016 | 0.036 | 0.002 | 234 |
| 77088         1994         784         0.201         0.09         0.003         45           77088         1998         785         0.175         0.082         0.003         47           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0         0           77091E         1982         451         0.188         0.06         0         38           77091E         1987         451         0.161         0.071         0.003         44           77091E         1995         451         0.231         0.097         0.005         41           77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1991         451         0.181         0.088         0.004                                                                                                              | 77088   | 1985 | 779  | 0.23  | 0.091 | 0.003 | 40  |
| 77088         1998         785         0.175         0.082         0.003         47           77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0           77091E         1982         451         0.158         0.06         0         38           77091E         1987         451         0.161         0.071         0.005         41           77091E         1991         451         0.247         0.101         0.005         41           77091E         1995         451         0.231         0.097         0.005         42           77091W         1982         451         0.108         0.09         0.004         43           77091W         1987         451         0.108         0.09         0.004         31           77091W         1991         451         0.181         0.088         0.004         48 </td <td>77088</td> <td>1990</td> <td>789</td> <td>0.22</td> <td>0.091</td> <td>0.003</td> <td>41</td> | 77088   | 1990 | 789  | 0.22  | 0.091 | 0.003 | 41  |
| 77090E         1982         564         0.228         0.078         0         34           77090E         1998         0         0         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0           77091E         1982         451         0.158         0.06         0         38           77091E         1991         451         0.161         0.071         0.003         44           77091E         1995         451         0.247         0.101         0.005         42           77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.151         0.088         0.004         38           77091W         1991         451         0.151         0.088         0.004         48           77091W         1993         451         0.125         0.079         0.004                                                                                                           | 77088   | 1994 | 784  | 0.201 | 0.09  | 0.003 | 45  |
| 77090E         1998         0         0         0         0           77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                               | 77088   | 1998 |      | 0.175 | 0.082 | 0.003 | 47  |
| 77090W         1997         287         0.215         0.051         0.003         24           77090W         1998         0         0         0         0         0           77091E         1982         451         0.158         0.06         0         38           77091E         1987         451         0.161         0.003         44           77091E         1991         451         0.247         0.101         0.005         41           77091E         1995         451         0.231         0.097         0.005         42           77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         48                                                                                                     | 77090E  | 1982 | 564  | 0.228 | 0.078 | 0     | 34  |
| 77090W         1998         0         0         0         0           77091E         1982         451         0.158         0.06         0         38           77091E         1987         451         0.161         0.071         0.003         44           77091E         1991         451         0.247         0.101         0.005         41           77091E         1995         451         0.231         0.097         0.005         42           77091W         1982         451         0.108         0.09         0.004         83           77091W         1987         451         0.115         0.069         0         60           77091W         1987         451         0.151         0.068         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1995         451         0.125         0.079         0.004         48           77091WC         1982         287         0.27         0.088         0.005         32 <td>77090E</td> <td>1998</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>             | 77090E  | 1998 |      | 0     | 0     | 0     | 0   |
| 77091E         1982         451         0.158         0.06         0         38           77091E         1987         451         0.161         0.071         0.003         44           77091E         1991         451         0.247         0.101         0.005         41           77091E         1995         451         0.231         0.097         0.005         42           77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1995         451         0.151         0.088         0.004         48           77091W         1995         451         0.125         0.079         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1997         287         0.241         0.104                                                                                                | 77090W  | 1997 | 287  | 0.215 | 0.051 | 0.003 |     |
| 77091E         1987         451         0.161         0.071         0.003         44           77091E         1991         451         0.247         0.101         0.005         41           77091E         1995         451         0.231         0.097         0.005         42           77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1997         287         0.241         0.104                                                                                              | 77090W  | 1998 |      | 0     | 0     | 0     |     |
| 77091E         1991         451         0.247         0.101         0.005         41           77091E         1995         451         0.231         0.097         0.005         42           77091W         1982         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051                                                                                             | 77091E  | 1982 | 451  | 0.158 | 0.06  | _     | 38  |
| 77091E         1995         451         0.231         0.097         0.005         42           77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055                                                                                             | 77091E  | 1987 |      |       |       | 0.003 |     |
| 77091E         1999         451         0.108         0.09         0.004         83           77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.236         0.112                                                                                                 | 77091E  | 1991 | 451  |       |       |       | -   |
| 77091W         1982         451         0.115         0.069         0         60           77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091WC         1982         287         0.034         0.082         0         99           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.236         0.112         0.003         34           77126         1995         1037         0.236         0.112         <                                                                                         | 77091E  | 1995 | 451  | 0.231 | 0.097 | 0.005 |     |
| 77091W         1987         451         0.246         0.078         0.004         31           77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.072                                                                                            | 77091E  | 1999 | 451  | 0.108 | 0.09  | 0.004 | 83  |
| 77091W         1991         451         0.151         0.088         0.004         58           77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77129         1984         488         0.226         0.076                                                                                             | 77091W  | 1982 | 451  | 0.115 | 0.069 | 0     |     |
| 77091W         1995         451         0.181         0.088         0.004         48           77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086                                                                                              | 77091W  | 1987 | 451  | 0.246 | 0.078 | 0.004 | 31  |
| 77091W         1999         451         0.125         0.079         0.004         63           77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77129         1984         488         0.291         0.059         0.002         20           77129         1989         488         0.244         0.086                                                                                              | 77091W  | 1991 | 451  | 0.151 | 0.088 | 0.004 | 58  |
| 77091WC         1982         287         0.034         0.082         0         99           77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77129         1984         488         0.291         0.059         0.002         20           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.195         0.053                                                                                               | 77091W  | 1995 | 451  | 0.181 | 0.088 | 0.004 |     |
| 77091WC         1987         287         0.27         0.088         0.005         32           77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         1995         1037         0.236         0.112         0.003         48           77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.195         0.053         0.002         27           77173E         1987         776         0.378         0.068                                                                                            | 77091W  | 1999 | 451  | 0.125 | 0.079 | 0.004 |     |
| 77091WC         1991         287         0.241         0.104         0.006         43           77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77175         1981         220         0.188         0.059                                                                                                  | 77091WC | 1982 | 287  | 0.034 | 0.082 | 0     |     |
| 77091WC         1997         287         0.215         0.051         0.003         24           77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77175         1981         220         0.188         0.059         0         31           77175         1991         210         0.264         0.072         0.                                                                                             | 77091WC | 1987 | 287  |       | 0.088 | 0.005 |     |
| 77126         1981         1220         0.187         0.055         0         29           77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1993         488         0.242         0.096         0.004         40           77129         1993         488         0.242         0.096         0.004         40           77129         1993         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77175         1981         220         0.188         0.059                                                                                                      | 77091WC | 1991 | 287  |       |       | 0.006 |     |
| 77126         1988         1037         0.202         0.072         0.002         36           77126         1995         1037         0.236         0.112         0.003         48           77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77175E         1986         776         0.467         0.078         0.003         17           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093                                                                                                  |         | 1997 |      |       |       |       |     |
| 77126         1995         1037         0.236         0.112         0.003         48           77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1997         210         0.264         0.072         0.005         27           77175         1997         210         0.264         0.072         0.005         27           77175         1995         210         0.211         0.068         0                                                                                             |         | 1981 | 1220 |       | 0.055 | 0     |     |
| 77126         2000         1098         0.291         0.059         0.002         20           77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.                                                                                             |         | 1988 | 1037 |       |       | 0.002 |     |
| 77129         1984         488         0.226         0.076         0.003         34           77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1980         1507         0.169         0.066         0<                                                                                             | 77126   | 1995 | 1037 |       | 0.112 | 0.003 | 48  |
| 77129         1989         488         0.244         0.086         0.004         35           77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1988         1529         0.185         0.091         0.002                                                                                             | 77126   | 2000 | 1098 |       |       | 0.002 | 20  |
| 77129         1993         488         0.242         0.096         0.004         40           77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002 <td></td> <td>1984</td> <td>488</td> <td></td> <td></td> <td></td> <td></td>                   |         | 1984 | 488  |       |       |       |     |
| 77129         1997         488         0.195         0.053         0.002         27           77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                    |         |      |      |       |       |       |     |
| 77173E         1982         776         0.378         0.068         0         18           77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001<                                                                                             | 77129   |      |      |       |       |       |     |
| 77173E         1986         776         0.467         0.078         0.003         17           77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                              |         |      |      |       |       |       |     |
| 77175         1981         220         0.188         0.059         0         31           77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                             |         |      |      |       |       |       |     |
| 77175         1987         210         0.264         0.072         0.005         27           77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                       |         |      |      |       |       |       |     |
| 77175         1991         210         0.294         0.093         0.006         32           77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |      |       |       | _     |     |
| 77175         1995         210         0.211         0.068         0.005         32           77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |      |       |       |       |     |
| 77175         1999         210         0.186         0.066         0.005         35           77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      |      |       |       |       |     |
| 77177         1977         1026         0.091         0.079         0         87           77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |      |       |       |       |     |
| 77177         1980         1507         0.169         0.066         0         39           77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |      |       |       |       |     |
| 77177         1988         1529         0.185         0.091         0.002         49           77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |      |       |       |       |     |
| 77177         1993         1529         0.139         0.055         0.001         40           77177         1995         1529         0.198         0.055         0.001         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |      |      |       |       |       |     |
| 77177 1995 1529 0.198 0.055 0.001 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |      |       |       |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |      |       |       |       |     |
| 77177   1996   1529   0.228   0.052   0.001   23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |      |      |       |       |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77177   | 1996 | 1529 | 0.228 | 0.052 | 0.001 | 23  |



| 77177  | 1997 | 1529         | 0.193 | 0.062          | 0.002 | 32  |
|--------|------|--------------|-------|----------------|-------|-----|
| 77212  | 1982 | 387          | 0.193 | 0.062          | 0.002 | 495 |
| 77254  | 1984 | 1134         | 0.225 | 0.075          | 0     | 33  |
| 77254  | 1989 | 1148         | 0.261 | 0.073          | 0.002 | 30  |
| 77254  | 1993 | 1148         | 0.212 | 0.076          | 0.002 | 36  |
| 77254  | 1995 | 1140         | 0.212 | 0.076          | 0.002 | 0   |
| 77254  | 2000 | 1110         | 0.248 | 0.084          | 0.002 | 34  |
| 77289  | 1985 | 1148<br>1294 | 0.246 | 0.084          | 0.002 | 18  |
| 77295  | 1983 |              | 0.159 |                | 0     | 38  |
| 77295  | 1903 | 707<br>707   | 0.159 | 0.061<br>0.047 | 0.002 | 28  |
| 77303E | 1992 | 638          | 0.194 | 0.047          | 0.002 | 15  |
| 77303E | 1987 | 641          | 0.194 | 0.035          | 0.001 | 19  |
| 77303E | 1991 | 638          | 0.188 | 0.033          | 0.001 | 37  |
| 77303E | 1995 | 640          | 0.173 | 0.007          | 0.003 | 23  |
| 77303E | 2000 | 643          | 0.173 | 0.04           | 0.002 | 52  |
| 77303W | 1985 | 638          | 0.123 | 0.004          |       | 16  |
| 77303W | 1987 | 642          | 0.163 | 0.026          | 0.001 | 22  |
| 77303W | 1991 | 638          | 0.167 | 0.037          |       | 28  |
|        |      |              |       |                | 0.002 | 27  |
| 77303W | 1995 | 641          | 0.142 | 0.038          | 0.002 |     |
| 77303W | 2000 | 641          | 0.107 | 0.053          | 0.002 | 50  |
| 77315  | 1984 | 744          | 0.199 | 0.051          | 0.002 | 26  |
| 77315  | 1989 | 743          | 0.226 | 0.064          | 0.002 | 28  |
| 77315  | 1993 | 743          | 0.225 | 0.077          | 0.003 | 34  |
| 77315  | 1997 | 746          | 0.226 | 0.05           | 0.002 | 22  |
| 77349  | 1984 | 1176         | 0.197 | 0.041          | 0     | 21  |
| 77349  | 1988 | 996          | 0.2   | 0.035          | 0.001 | 17  |
| 77349  | 1992 | 996          | 0.189 | 0.044          | 0.001 | 23  |
| 77349  | 1996 | 1079         | 0.21  | 0.061          | 0.002 | 29  |
| 77419  | 1985 | 1561         | 0.121 | 0.034          | 0.001 | 28  |
| 77419  | 1990 | 1561         | 0.174 | 0.052          | 0.001 | 30  |
| 77419  | 1996 | 1561         | 0.136 | 0.044          | 0.001 | 33  |
| 77419  | 2000 | 1563         | 0.188 | 0.047          | 0.001 | 25  |
| 77426  | 1984 | 610          | 0.21  | 0.064          | 0.003 | 30  |
| 77426  | 1989 | 610          | 0.183 | 0.089          | 0.004 | 49  |
| 77426  | 1993 | 610          | 0.156 | 0.094          | 0.004 | 60  |
| 77426  | 1996 | 610          | 0.135 | 0.089          | 0.004 | 66  |
| 77466  | 1982 | 442          | 0.293 | 0.059          | 0     | 20  |
| 77466  | 1986 | 443          | 0.273 | 0.068          | 0.003 | 25  |
| 77466  | 1990 | 402          | 0.263 | 0.09           | 0.004 | 34  |
| 77466  | 1997 |              | 0     | 0              | 0     | 0   |
| 77486  | 1998 |              | 0     | 0              | 0     | 0   |
| 77487  | 1998 | 400          | 0     | 0              | 0     | 0   |
| 77493  | 1982 | 182          | 0.04  | 0.024          | 0     | 60  |
| 77493  | 1990 | 189          | 0.028 | 0.032          | 0.002 | 115 |
| 77493  | 1996 | 189          | 0.027 | 0.027          | 0.002 | 97  |
| 77501  | 1983 | 2400         | 0.116 | 0.036          | 0     | 31  |
| 77501  | 1989 | 182          | 0.132 | 0.069          | 0.005 | 52  |
| 77501  | 1996 | 182          | 0.086 | 0.058          | 0.004 | 68  |
| 77503  | 1982 | 414          | 0.058 | 0.052          | 0     | 90  |
| 77507  | 1983 | 140          | 0.041 | 0.045          | 0     | 99  |
| 77521  | 1984 | 1350         | 0.19  | 0.076          | 0.002 | 40  |
| 77521  | 1989 | 1350         | 0.243 | 0.095          | 0.003 | 39  |



| 77521  | 1995 | 722  | 0.245 | 0.083 | 0.003 | 34  |
|--------|------|------|-------|-------|-------|-----|
| 77521  | 2000 | 1350 | 0.296 | 0.07  | 0.002 | 24  |
| 77528W | 1984 | 721  | 0.169 | 0.047 | 0.002 | 28  |
| 77528W | 1989 | 721  | 0.277 | 0.059 | 0.002 | 21  |
| 77530  | 1983 | 224  | 0.238 | 0.078 | 0     | 33  |
| 77534  | 1984 | 624  | 0.248 | 0.112 | 0.004 | 45  |
| 77534  | 1991 | 606  | 0.229 | 0.062 | 0.003 | 27  |
| 77534  | 1997 | 741  | 0.183 | 0.057 | 0.002 | 31  |
| 77534  | 1998 | 625  | 0.227 | 0.071 | 0.003 | 31  |
| 77547  | 1984 | 1881 | 0.214 | 0.064 | 0.001 | 30  |
| 77547  | 1989 | 1881 | 0.228 | 0.072 | 0.002 | 31  |
| 77556E | 1984 | 876  | 0.203 | 0.047 | 0     | 23  |
| 77556E | 1989 |      | 0.205 | 0.061 | 0     | 0   |
| 77556E | 1995 |      | 0     | 0     | 0     | 0   |
| 77556E | 1998 | 875  | 0.207 | 0.062 | 0.002 | 30  |
| 77556W | 1984 | 793  | 0.196 | 0.078 | 0     | 40  |
| 77556W | 1989 |      | 0.185 | 0.091 | 0     | 0   |
| 77556W | 1998 | 813  | 0.228 | 0.098 | 0.003 | 43  |
| 77753W | 1984 | 1716 | 0.183 | 0.068 | 0     | 37  |
| 77753W | 1989 | 1699 | 0.24  | 0.086 | 0.002 | 36  |
| 77753W | 1993 | 1720 | 0.31  | 0.109 | 0.003 | 35  |
| 77753W | 1999 | 1724 | 0.248 | 0.121 | 0.003 | 49  |
| 77782  | 1984 | 552  | 0.181 | 0.039 | 0.002 | 21  |
| 77782  | 1987 | 552  | 0.162 | 0.039 | 0.002 | 24  |
| 77782  | 1991 | 552  | 0.151 | 0.044 | 0.002 | 29  |
| 77782  | 1995 | 552  | 0.152 | 0.052 | 0.002 | 34  |
| 77782  | 1999 | 552  | 0.132 | 0.082 | 0.003 | 62  |
| 77816  | 1984 | 331  | 0.137 | 0.045 | 0.002 | 33  |
| 77816  | 1989 | 332  | 0.117 | 0.046 | 0.003 | 39  |
| 77816  | 1993 | 333  | 0.118 | 0.068 | 0.004 | 58  |
| 77816  | 1997 | 333  | 0.082 | 0.049 | 0.003 | 59  |
| 77817  | 1984 | 261  | 0.103 | 0.058 | 0.004 | 56  |
| 77817  | 1989 | 261  | 0.104 | 0.065 | 0.004 | 63  |
| 77817  | 1993 | 261  | 0.111 | 0.061 | 0.004 | 55  |
| 77817  | 1997 | 261  | 0.084 | 0.052 | 0.003 | 62  |
| 77846  | 1985 | 1403 | 0.146 | 0.028 | 0.001 | 19  |
| 77846  | 1989 | 7,00 | 0.127 | 0.043 | 0     | 0   |
| 77846  | 1996 | 1411 | 0.113 | 0.062 | 0.002 | 55  |
| 77847  | 1997 | 374  | 0.186 | 0.071 | 0.004 | 38  |
| 77847  | 1998 |      | 0     | 0     | 0     | 0   |
| 77859W | 1984 | 374  | 0.213 | 0.058 | 0.003 | 27  |
| 77859W | 1989 | 363  | 0.18  | 0.061 | 0.003 | 34  |
| 77859W | 1995 | 374  | 0.209 | 0.089 | 0.005 | 42  |
| 77859W | 1999 |      | 0     | 0     | 0     | 0   |
| 77872N | 1984 | 552  | 0.265 | 0.057 | 0.002 | 21  |
| 77872N | 1989 | 552  | 0.277 | 0.084 | 0.004 | 30  |
| 77872N | 1994 | 552  | 0.218 | 0.062 | 0.003 | 28  |
| 77872N | 1998 | 552  | 0.202 | 0.056 | 0.002 | 28  |
| 77878  | 1984 | 543  | 0.081 | 0.055 | 0.002 | 67  |
| 77878  | 1989 | 541  | 0.08  | 0.033 | 0.002 | 59  |
| 77878  | 1993 | 540  | 0.096 | 0.047 | 0.002 | 49  |
| 77878  | 1997 | 545  | 0.043 | 0.045 | 0.002 | 105 |
| 11010  | 1991 | 040  | 0.040 | 0.043 | 0.002 | 100 |



| 77040          | 4004 |      | 0.045 | 0.000 |       | 10  |
|----------------|------|------|-------|-------|-------|-----|
| 77919          | 1984 | 704  | 0.215 | 0.038 | 0.001 | 18  |
| 77919          | 2000 | 704  | 0.137 | 0.046 | 0.002 | 33  |
| 7802           | 1978 | 370  | 0.143 | 0.095 | 0.005 | 71  |
| 7802           | 1980 | 360  | 0.22  | 0.122 | 0.006 | 55  |
| 7802           | 1982 | 360  | 0.294 | 0.08  | 0.004 | 27  |
| 7802           | 1983 | 360  | 0.27  | 0.067 | 0.004 | 25  |
| 7802           | 1987 | 360  | 0.293 | 0.064 | 0.003 | 22  |
| 7802           | 1991 | 360  | 0.272 | 0.08  | 0.004 | 29  |
| 7802           | 1995 | 360  | 0.242 | 0.08  | 0.004 | 33  |
| 7802           | 1999 | 360  | 0.2   | 0.082 | 0.004 | 41  |
| 78031          | 1984 | 3720 | 0.22  | 0.041 | 0     | 19  |
| 78031          | 1989 | 1850 | 0.197 | 0.037 | 0.001 | 19  |
| 78031          | 1994 | 1850 | 0.236 | 0.093 | 0.002 | 40  |
| 78031          | 1998 | 1850 | 0.309 | 0.058 | 0.001 | 19  |
| 78031          | 1999 | 1850 | 0.299 | 0.058 | 0.001 | 19  |
| 78041N         | 1979 | 3136 | 0.272 | 0.072 | 0     | 26  |
| 78041N         | 1980 | 3176 | 0.241 | 0.086 | 0     | 36  |
| 78104          | 1984 | 1110 | 0.187 | 0.042 | 0.001 | 22  |
| 78104          | 1989 | 1110 | 0.203 | 0.064 | 0.002 | 32  |
| 78104          | 1993 | 1110 | 0.238 | 0.081 | 0.002 | 34  |
| 78104          | 1997 | 1110 | 0.229 | 0.054 | 0.002 | 24  |
| 78123          | 1985 | 578  | 0.211 | 0.044 | 0.002 | 21  |
| 78123          | 1989 | 578  | 0.189 | 0.05  | 0.002 | 27  |
| 78123          | 1993 | 581  | 0.162 | 0.061 | 0.003 | 38  |
| 78123          | 1998 | 584  | 0.143 | 0.066 | 0.003 | 46  |
| 7815           | 1981 | 427  | 0.025 | 0.03  | 0.001 | 99  |
| 7815           | 1989 | 432  | 0.041 | 0.043 | 0.002 | 106 |
| 7815           | 1993 | 429  | 0.038 | 0.035 | 0.002 | 90  |
| 7815           | 1997 | 433  | 0.029 | 0.025 | 0.001 | 87  |
| 78152N         | 1984 | 387  | 0.253 | 0.055 | 0.003 | 22  |
| 78156          | 1983 |      | 0     | 0     | 0     | 0   |
| 78170          | 1998 |      | 0     | 0     | 0     | 0   |
| 78194          | 1985 | 210  | 0.124 | 0.038 | 0.003 | 31  |
| 78194          | 1990 | 210  | 0.134 | 0.038 | 0.003 | 28  |
| 78194          | 1994 | 210  | 0.097 | 0.029 | 0.002 | 30  |
| 78194          | 1998 | 210  | 0.042 | 0.021 | 0.001 | 50  |
| 78197          | 1985 | 210  | 0.241 | 0.046 | 0.003 | 19  |
| 78197          | 1990 | 210  | 0.172 | 0.073 | 0.005 | 42  |
| 78197          | 1994 | 210  | 0.231 | 0.081 | 0.006 | 35  |
| 78197          | 1998 | 210  | 0.231 | 0.001 | 0.000 | 0   |
| 78197          | 1984 | 171  | 0.262 | 0.087 | 0.007 | 33  |
| 78199          | 1993 | 171  | 0.202 | 0.037 | 0.007 | 45  |
| 78199          | 1998 | 171  | 0.172 | 0.077 | 0.004 | 32  |
| 78204          | 1990 | 17.1 | 0.10  | 0.038 | 0.004 | 0   |
| 78215          | 1984 | 190  | 0.256 | 0.087 | 0.006 | 34  |
| 78215          | 1993 | 190  | 0.230 | 0.087 | 0.006 | 49  |
| 78215<br>78215 | 1993 | 190  | 0.177 | 0.087 | 0.006 | 49  |
|                |      | 424  | 0.15  | 0.072 | 0.005 |     |
| 7824           | 1985 | 424  |       |       |       | 49  |
| 7824           | 1992 |      | 0.095 | 0.056 | 0.003 | 59  |
| 7824           | 1996 | 425  | 0.107 | 0.069 | 0.003 | 64  |
| 78260          | 1982 | 84   | 0.111 | 0.066 | 0     | 60  |
| 78313          | 1985 | 549  | 0.067 | 0.041 | 0.002 | 62  |



| 78313 | 1989 | 558      | 0.093 | 0.051 | 0.002 | 55 |
|-------|------|----------|-------|-------|-------|----|
| 78314 | 1985 | 531      | 0.055 | 0.039 | 0.002 | 70 |
| 78314 | 1989 | 531      | 0.078 | 0.057 | 0.002 | 73 |
| 7836  | 1980 | 306      | 0.105 | 0.097 | 0.006 | 92 |
| 7836  | 1986 | 297      | 0.206 | 0.062 | 0.004 | 30 |
| 7836  | 1990 | 306      | 0.33  | 0:091 | 0.005 | 27 |
| 7836  | 1995 | 297      | 0.233 | 0.106 | 0.006 | 45 |
| 7836  | 1999 | 297      | 0.296 | 0.073 | 0.004 | 25 |
| 786   | 1985 | 319      | 0.185 | 0.063 | 0.004 | 34 |
| 786   | 1989 | 319      | 0.18  | 0.081 | 0.005 | 45 |
| 786   | 1993 | 319      | 0.137 | 0.078 | 0.004 | 57 |
| 786   | 1997 | 319      | 0.146 | 0.069 | 0.004 | 47 |
| 7870  | 1985 |          | 0     | 0     | 0     | 0  |
| 78709 | 2000 | 520      | 0.287 | 0.066 | 0.003 | 23 |
| 7871  | 1980 | 184      | 0.063 | 0.067 | 0.005 | 99 |
| 7871  | 1986 | 176      | 0.059 | 0.057 | 0.004 | 97 |
| 7871  | 1990 | 176      | 0.08  | 0.056 | 0.004 | 70 |
| 7871  | 1994 | 176      | 0.085 | 0.064 | 0.005 | 75 |
| 7871  | 1998 | 176      | 0.107 | 0.077 | 0.006 | 72 |
| 78730 | 1985 | 370      | 0.054 | 0.032 | 0.002 | 60 |
| 78730 | 1990 | 370      | 0.07  | 0.054 | 0.003 | 77 |
| 78765 | 1985 | 314      | 0.056 | 0.045 | 0.003 | 80 |
| 78765 | 1989 | 302      | 0.122 | 0.047 | 0.003 | 39 |
| 78765 | 1993 | 312      | 0.174 | 0.049 | 0.003 | 28 |
| 78765 | 1996 | 313      | 0.16  | 0.062 | 0.004 | 39 |
| 78808 | 1985 | 799      | 0.135 | 0.041 | 0     | 30 |
| 78808 | 1989 | 730      | 0.164 | 0.059 | 0.002 | 36 |
| 78808 | 1993 | 793      | 0.18  | 0.054 | 0.002 | 30 |
| 78808 | 1997 | 814      | 0.161 | 0.052 | 0.002 | 33 |
| 78832 | 1998 |          | 0     | 0     | 0     | 0  |
| 78896 | 1977 | 552      | 0.095 | 0.065 | 0     | 68 |
| 78896 | 1980 | 855      | 0.127 | 0.072 | 0     | 56 |
| 78896 | 1988 | 784      | 0.158 | 0.069 | 0.002 | 44 |
| 78896 | 1992 | 784      | 0.163 | 0.083 | 0.003 | 51 |
| 78896 | 1997 | 784      | 0.166 | 0.052 | 0.002 | 31 |
| 79375 | 1985 | 224      | 0.153 | 0.137 | 0.009 | 90 |
| 79375 | 1992 | 224      | 0.149 | 0.093 | 0.006 | 63 |
| 79375 | 1998 | 231      | 0.126 | 0.063 | 0.004 | 50 |
| 7938  | 1985 | 394      | 0.145 | 0.073 | 0.004 | 50 |
| 7938  | 1989 | 392      | 0.12  | 0.058 | 0.003 | 48 |
| 7938  | 1995 | 476      | 0.116 | 0.079 | 0.004 | 68 |
| 7938  | 1999 | 476      | 0.141 | 0.088 | 0.004 | 62 |
| 79432 | 1985 | 307      | 0.03  | 0.022 | 0.001 | 74 |
| 79432 | 1989 | 307      | 0.196 | 0.047 | 0.003 | 24 |
| 79432 | 1993 | 307      | 0.17  | 0.059 | 0.003 | 35 |
| 79432 | 1996 | 306      | 0.132 | 0.075 | 0.004 | 57 |
| 79432 | 2000 | 311      | 0.093 | 0.066 | 0.004 | 71 |
| 79439 | 1998 | <u> </u> | 0     | 0.000 | 0.004 | 0  |
| 79443 | 1985 | 429      | 0.214 | 0.069 | 0.003 | 32 |
| 79443 | 1989 | 429      | 0.212 | 0.075 | 0.003 | 35 |
| 79443 | 1993 | 429      | 0.217 | 0.081 | 0.004 | 37 |
|       | 1997 | 429      | 0.161 | 0.05  | 0.004 | 31 |
| 79443 | 1997 | 723      | 0.101 | 0.00  | 0.002 | JI |



| 79564 | 1999         |            | 0     |       |       |     |
|-------|--------------|------------|-------|-------|-------|-----|
| 79671 | 1998         |            | 0     | 0     | 0     | 0   |
| 79766 | 2000         | 750        | 0.177 | 0.091 | 0.003 | 51  |
| 7978  | 1980         | 540        | 0.338 | 0.091 | 0.003 |     |
| 7978  | 1982         | 474        | 0.336 |       |       | 26  |
| 7978  | 1988         | 474        | 0.377 | 0.076 | 0.003 | 24  |
| 7978  | 1996         | 477        |       | 0.086 | 0.004 | 23  |
| 80121 | 1984         | 98         | 0.435 | 0.089 | 0.004 | 21  |
| 80121 | 1992         |            | 0.025 | 0.016 | 0.002 | 67  |
| 80122 | 1983         | 84         | 0.05  | 0.024 | 0.003 | 47  |
| 80122 | 1992         | 128<br>102 | 0.064 | 0.028 | 0     | 44  |
| 80134 | 1983         |            | 0.047 | 0.021 | 0.002 | 43  |
| 80134 | 1992         | 98         | 0.037 | 0.024 | 0     | 65  |
| 80135 |              | 84         | 0.049 | 0.034 | 0.004 | 69  |
| 80135 | 1983<br>1992 | 84         | 0.047 | 0.012 | 0     | 26  |
|       |              | 84         | 0.034 | 0.017 | 0.002 | 50  |
| 80152 | 1983         | 84         | 0.038 | 0.014 | 0     | 37  |
| 80152 | 1992         | 84         | 0.033 | 0.013 | 0.001 | 41  |
| 80153 | 1983         | 98         | 0.063 | 0.021 | 0     | 33  |
| 80153 | 1992         | 84         | 0.045 | 0.022 | 0.002 | 48  |
| 8028  | 1979         | 506        | 0.193 | 0.071 | 0.003 | 37  |
| 8028  | 1983         | 506        | 0.211 | 0.074 | 0.003 | 35  |
| 8028  | 1988         | 507        | 0.246 | 0.044 | 0.002 | 18  |
| 8028  | 1992         | 506        | 0.212 | 0.045 | 0.002 | 21  |
| 8028  | 1996         | 504        | 0.179 | 0.071 | 0.003 | 40  |
| 8036  | 1979         | 378        | 0.203 | 0.044 | 0.002 | 22  |
| 8036  | 1982         | 317        | 0.256 | 0.045 | 0.003 | 18  |
| 8036  | 1983         | 371        | 0.245 | 0.041 | 0.002 | 17  |
| 8036  | 1987         | 371        | 0.221 | 0.045 | 0.002 | 20  |
| 8036  | 1992         | 371        | 0.258 | 0.066 | 0.003 | 25  |
| 8036  | 1996         | 371        | 0.191 | 0.065 | 0.003 | 34  |
| 8077  | 1984         | 488        | 0.088 | 0.041 | 0.002 | 47  |
| 8077  | 1989         | 488        | 0.109 | 0.059 | 0.003 | 55  |
| 8077  | 1993         | 488        | 0.104 | 0.056 | 0.003 | 54  |
| 8077  | 1997         | 488        | 0.075 | 0.078 | 0.004 | 104 |
| 820   | 1980         | 308        | 0.176 | 0.061 | 0.003 | 35  |
| 820   | 1986         | 303        | 0.145 | 0.077 | 0.004 | 53  |
| 820   | 1990         | 303        | 0.163 | 0.072 | 0.004 | 44  |
| 8303  | 1980         | 423        | 0.164 | 0.093 | 0.005 | 57  |
| 8303  | 1986         | 414        | 0.162 | 0.067 | 0.003 | 41  |
| 8303  | 1990         | 414        | 0.29  | 0.096 | 0.005 | 33  |
| 8303  | 1994         | 414        | 0.319 | 0.091 | 0.004 | 28  |
| 8303  | 1998         | 414        | 0.246 | 0.11  | 0.005 | 45  |
| 835   | 1998         |            | 0     | 0     | 0     | 0   |
| 8487  | 1985         | 486        | 0.089 | 0.062 | 0.003 | 70  |
| 8487  | 1992         | 486        | 0.081 | 0.092 | 0.004 | 112 |
| 8487  | 1996         | 486        | 0.046 | 0.061 | 0.003 | 133 |
| 8495  | 1979         | 312        | 0.263 | 0.075 | 0.004 | 29  |
| 8495  | 1982         | 312        | 0.261 | 0.073 | 0.004 | 28  |
| 8495  | 1989         | 304        | 0.372 | 0.072 | 0.004 | 19  |
| 8495  | 1993         | 304        | 0.283 | 0.054 | 0.003 | 19  |
| 8495  | 1997         | 312        | 0.302 | 0.059 | 0.003 | 20  |
| 851   | 1982         | 328        | 0.211 | 0.053 | 0.003 | 25  |



| 851  | 1000 | T    | 1 0   |       |       |     |
|------|------|------|-------|-------|-------|-----|
| 8641 | 1996 | 200  | 0     | 0     | 0     | 0   |
| 8641 | 1981 | 396  | 0.114 | 0.069 | 0.003 | 60  |
|      | 1989 | 378  | 0.14  | 0.079 | 0.004 | 57  |
| 8641 | 1993 | 378  | 0.117 | 0.072 | 0.004 | 61  |
| 8641 | 1997 | 387  | 0.098 | 0.068 | 0.003 | 69  |
| 8707 | 1998 | 431  | 0.079 | 0.054 | 0.003 | 68  |
| 8719 | 1978 | 303  | 0.228 | 0.108 | 0.006 | 48  |
| 8719 | 1982 | 341  | 0.341 | 0.061 | 0.003 | 18  |
| 8719 | 1986 | 321  | 0.316 | 0.051 | 0.003 | 16  |
| 8719 | 1988 | 329  | 0.34  | 0.063 | 0.003 | 19  |
| 8719 | 1993 | 328  | 0.237 | 0.136 | 0.007 | 57  |
| 8719 | 1997 | 329  | 0.283 | 0.084 | 0.005 | 30  |
| 875  | 1990 | 420  | 0.198 | 0.032 | 0.002 | 16  |
| 875  | 1997 | 432  | 0.113 | 0.052 | 0.003 | 46  |
| 876  | 1977 | 279  | 0.076 | 0.06  | 0.004 | 79  |
| 876  | 1986 | 390  | 0.183 | 0.071 | 0.004 | 39  |
| 8781 | 1999 |      | 0     | 0     | 0     | 0   |
| 8792 | 1978 | 169  | 0.356 | 0.064 | 0.005 | 18  |
| 8792 | 1983 | 144  | 0.157 | 0.07  | 0.006 | 44  |
| 8792 | 1987 | 144  | 0.13  | 0.067 | 0.006 | 51  |
| 8792 | 1991 | 144  | 0.145 | 0.066 | 0.005 | 45  |
| 8792 | 1995 | 144  | 0.201 | 0.027 | 0.002 | 13  |
| 8792 | 1999 | 144  | 0.19  | 0.042 | 0.004 | 22  |
| 8800 | 1980 | 928  | 0.058 | 0.048 | 0.002 | 83  |
| 8800 | 1986 | 912  | 0.108 | 0.066 | 0.002 | 61  |
| 8800 | 1991 | 912  | 0.129 | 0.069 | 0.002 | 53  |
| 8800 | 1995 | 912  | 0.114 | 0.066 | 0.002 | 58  |
| 8800 | 2000 | 920  | 0.132 | 0.075 | 0.002 | 57  |
| 887  | 1978 | 1314 | 0.143 | 0.07  | 0.002 | 49  |
| 887  | 1983 | 1251 | 0.195 | 0.088 | 0.002 | 45  |
| 887  | 1985 | 1251 | 0.248 | 0.058 | 0.002 | 23  |
| 887  | 1988 | 1251 | 0.245 | 0.05  | 0.001 | 20  |
| 887  | 1992 | 1251 | 0.248 | 0.065 | 0.002 | 26  |
| 887  | 1996 | 1251 | 0.216 | 0.09  | 0.003 | 42  |
| 8987 | 1979 | 144  | 0.102 | 0.065 | 0.005 | 64  |
| 8987 | 1986 | 144  | 0.06  | 0.043 | 0.004 | 72  |
| 8987 | 1992 | 144  | 0.04  | 0.054 | 0.005 | 135 |
| 8987 | 1996 | 143  | 0.045 | 0.041 | 0.003 | 92  |
| 903  | 1978 | 891  | 0.181 | 0.099 | 0.003 | 55  |
| 903  | 1984 | 846  | 0.275 | 0.061 | 0.002 | 22  |
| 903  | 1986 | 846  | 0.258 | 0.046 | 0.002 | 18  |
| 903  | 1990 | 846  | 0.231 | 0.061 | 0.002 | 26  |
| 903  | 1995 | 846  | 0.192 | 0.064 | 0.002 | 33  |
| 903  | 2000 | 855  | 0.164 | 0.082 | 0.003 | 50  |
| 904  | 1978 | 441  | 0.136 | 0.082 | 0.004 | 60  |
| 904  | 1983 | 423  | 0.21  | 0.061 | 0.003 | 29  |
| 904  | 1986 | 414  | 0.262 | 0.06  | 0.003 | 23  |
| 904  | 1990 | 423  | 0.223 | 0.067 | 0.003 | 30  |
| 904  | 1995 | 423  | 0.213 | 0.07  | 0.003 | 33  |
| 904  | 2000 | 423  | 0.183 | 0.073 | 0.004 | 40  |
| 9099 | 1979 | 182  | 0.053 | 0.05  | 0.004 | 94  |
|      |      | 182  | 0.075 | 0.043 | 0.003 | 58  |



| 9099 | 1990 | 182  | 0.198 | 0.08  | 0.006 | 41  |
|------|------|------|-------|-------|-------|-----|
| 9099 | 1994 | 182  | 0.248 | 0.098 | 0.007 | 39  |
| 9099 | 1999 | 189  | 0.204 | 0.089 | 0.006 | 44  |
| 9204 | 1980 | 266  | 0.062 | 0.054 | 0.003 | 88  |
| 9204 | 1996 |      | 0     | 0     | 0     | 0   |
| 9230 | 1981 | 147  | 0.042 | 0.025 | 0.002 | 60  |
| 9230 | 1992 | 147  | 0.085 | 0.03  | 0.002 | 35  |
| 9230 | 1997 | 147  | 0.085 | 0.056 | 0.005 | 67  |
| 9259 | 1984 | 482  | 0.128 | 0.048 | 0.002 | 37  |
| 9259 | 1989 | 233  | 0.295 | 0.069 | 0.005 | 23  |
| 9259 | 1993 | 480  | 0.285 | 0.076 | 0.003 | 27  |
| 9259 | 1997 | 482  | 0.11  | 0.063 | 0.003 | 57  |
| 9487 | 1982 | 1175 | 0.071 | 0.032 | 0.001 | 45  |
| 9487 | 1989 | 1178 | 0.083 | 0.045 | 0.001 | 54  |
| 9487 | 1996 | 1176 | 0.1   | 0.061 | 0.002 | 61  |
| 9487 | 2000 | 1178 | 0.128 | 0.088 | 0.003 | 69  |
| 9551 | 1979 | 1050 | 0.322 | 0.077 | 0.002 | 24  |
| 9551 | 1980 | 1057 | 0.28  | 0.089 | 0.003 | 32  |
| 9551 | 1983 | 518  | 0.326 | 0.068 | 0.003 | 21  |
| 9551 | 1986 | 525  | 0.177 | 0.127 | 0.006 | 72  |
| 9551 | 1988 | 836  | 0.259 | 0.082 | 0.003 | 32  |
| 9551 | 1993 | 1036 | 0.241 | 0.117 | 0.004 | 48  |
| 9551 | 1997 | 1036 | 0.337 | 0.097 | 0.003 | 29  |
| 9590 | 1985 | 765  | 0.054 | 0.034 | 0.001 | 63  |
| 9590 | 1992 | 765  | 0.028 | 0.046 | 0.002 | 166 |
| 9590 | 1996 | 765  | 0.043 | 0.038 | 0.001 | 88  |
| 9596 | 1982 | 328  | 0.191 | 0.055 | 0.003 | 29  |
| 962  | 1979 | 320  | 0.033 | 0.04  | 0.002 | 99  |
| 962  | 1986 | 320  | 0.041 | 0.034 | 0.002 | 84  |
| 962  | 1990 | 320  | 0.036 | 0.035 | 0.002 | 97  |
| 962  | 1995 | 320  | 0.089 | 0.057 | 0.003 | 63  |
| 9755 | 1980 | 320  | 0.189 | 0.072 | 0.004 | 38  |
| 9755 | 1986 | 320  | 0.28  | 0.082 | 0.005 | 29  |
| 9755 | 1990 | 320  | 0.237 | 0.079 | 0.004 | 33  |
| 9755 | 1995 | 152  | 0.353 | 0.085 | 0.007 | 24  |
| 9755 | 1999 | 320  | 0.29  | 0.106 | 0.006 | 36  |
| 977  | 1984 | 1674 | 0.234 | 0.065 | 0.002 | 28  |
| 977  | 1989 | 1677 | 0.194 | 0.051 | 0.001 | 26  |
| 977  | 1993 | 1678 | 0.207 | 0.086 | 0.002 | 42  |
| 977  | 2000 | 1682 | 0.182 | 0.076 | 0.002 | 42  |
| 983  | 1980 | 296  | 0.158 | 0.086 | 0.005 | 54  |
| 983  | 1986 | 288  | 0.15  | 0.09  | 0.005 | 60  |
| 983  | 1990 | 296  | 0.232 | 0.132 | 0.008 | 57  |
| 9847 | 1995 | 360  | 0.351 | 0.079 | 0.004 | 22  |
| 9903 | 1991 | 405  | 0.438 | 0.078 | 0.004 | 18  |
| 9903 | 1996 | 413  | 0.367 | 0.094 | 0.005 | 26  |
| 9903 | 1998 | 497  | 0.361 | 0.099 | 0.004 | 27  |
| 9910 | 1978 | 350  | 0.298 | 0.091 | 0.005 | 31  |
| 9910 | 1982 | 340  | 0.339 | 0.067 | 0.004 | 20  |
| 9910 | 1983 | 340  | 0.367 | 0.067 | 0.004 | 18  |
| 9910 | 1984 |      | 0     | 0     | 0.004 | 0   |
| 9910 | 1987 | 340  | 0.347 | 0.069 | 0.004 | 20  |
| 3310 | 1301 | 310  | 0.017 | 0.000 | 0.004 | 20  |



| 9910 | 1991 | 340 | 0.301 | 0.089 | 0.005 | 30 |
|------|------|-----|-------|-------|-------|----|
| 9910 | 1995 | 340 | 0.29  | 0.073 | 0.004 | 25 |
| 9910 | 1999 | 340 | 0.276 | 0.08  | 0.004 | 29 |
| 992  | 1979 | 420 | 0.028 | 0.025 | 0.001 | 90 |
| 992  | 1986 | 420 | 0.13  | 0.064 | 0.003 | 49 |
| 992  | 1990 | 420 | 0.111 | 0.07  | 0.003 | 64 |
| 992  | 1995 | 420 | 0.054 | 0.029 | 0.001 | 54 |
| 9943 | 1981 | 672 | 0.093 | 0.076 | 0.003 | 82 |
| 9943 | 1989 | 672 | 0.115 | 0.066 | 0.003 | 57 |
| 9943 | 1997 | 672 | 0.14  | 0.053 | 0.002 | 38 |
| 999  | 1980 | 378 | 0.081 | 0.051 | 0.003 | 63 |
| 999  | 1986 | 371 | 0.103 | 0.038 | 0.002 | 37 |
| 999  | 1992 | 371 | 0.048 | 0.025 | 0.001 | 52 |
| 999  | 1996 | 371 | 0.083 | 0.058 | 0.003 | 70 |



## PERCENT MORE NEGATIVE THAN -300 mV

| FileNumber       | InspectonDate | %>300m\/ |
|------------------|---------------|----------|
| Tilettamber      | 1978          | 68       |
| 09219E           | 1977          | 1.6      |
| 09219E           | 1985          | 74.3     |
| 09219E           |               |          |
| 09219E<br>09469N | 1990          | 37.3     |
|                  | 1979          | 13       |
| 09469N           | 1984          | 88       |
| 09469N<br>09469N | 1986          | 59       |
|                  | 1988          | 4        |
| 09469N           | 1992          | 2        |
| 09469N           | 1996          | 4.9      |
| 09469S           | 1988          | 3        |
| 09469S           | 1992          | 2        |
| 09469S           | 1996          | 8.7      |
| 09469S           | 1979          | 16       |
| 09469S           | 1984          | 92       |
| 09469S           | 1986          | 85       |
| 1053             | 1978          | 19.3     |
| 1053             | 1983          | 7.1      |
| 1053             | 1987          | 7.8      |
| 1053             | 1991          | 6.6      |
| 1053             | 1995          | 9.1      |
| 1053             | 2000          | 5.9      |
| 1062             | 1979          | 0.2      |
| 1062             | 1985          | 0.4      |
| 1062             | 1990          | 0.5      |
| 1062             | 1995          | 4.2      |
| 1062             | 2000          | 0.4      |
| 1085             | 1980          | 12.5     |
| 1085             | 1983          | 35       |
| 1085             | 1986          | 44.7     |
| 1085             | 1990          | 55.6     |
| 1085             | 1994          | 22.9     |
| 1085             | 1998          | 39.5     |
| 1122             | 1978          | 3.8      |
| 1122             | 1983          | 38.9     |
| 1122             | 1986          | 7.7      |
| 1122             | 1990          | 5.9      |
| 1122             | 1995          | 1.5      |
| 1137             | 1980          | 1.7      |
| 1137             | 1986          | 1        |
| 1137             | 1990          | 0.8      |
| 1137             | 1995          | 0.9      |
| 1145             | 1977          | 0.5      |
| 1145             | 1985          | 36.6     |
| 1145             | 1990          | 57       |
| 1145             | 1994          | 88.4     |
| 1145             | 1994          | 16.3     |
|                  | 1979          | 0        |
| 1153             | 1979          | 0.4      |
| 1153             | 1900          | 0.4      |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 74954      | 1991          | 22.9    |
| 74954      | 1995          | 14.6    |
| 74954      | 2000          | 11      |
| 74969      | 1979          | 0.7     |
| 74969      | 1980          | 26      |
| 74969      | 1987          | 26      |
| 74969      | 1991          | 29      |
| 74969      | 1995          | 19.4    |
| 74969      | 1999          | 9.8     |
| 74978E     | 1979          | 19.6    |
| 74978E     | 1991          | 31      |
| 74978E     | 1999          | 7.6     |
| 74978W     | 1991          | 23.8    |
| 74978W     | 1999          | 6.8     |
| 75014      | 1980          | 21      |
| 75014      | 1983          | 30      |
| 75014      | 1985          | 76      |
| 75014      | 1988          | 71      |
| 75014      | 1992          | 74      |
| 75014      | 1996          | 65.4    |
| 75014      | 2000          | 80.6    |
| 75016      | 1977          | 85      |
| 75021      | 1979          | 7.9     |
| 75021      | 1983          | 16      |
| 75021      | 1987          | 0.1     |
| 75021      | 1991          | 0.8     |
| 75021      | 1995          | 1.9     |
| 75051N     | 1979          | 51      |
| 75051N     | 1982          | 49      |
| 75051N     | 1986          | 63      |
| 75051N     | 1990          | 7       |
| 75051N     | 1992          | 5       |
| 75051N     | 1996          | 14.3    |
| 75051S     | 1979          | 35      |
| 75051S     | 1982          | 20      |
| 75051S     | 1986          | 52      |
| 75051S     | 1990          | 2       |
| 75051S     | 1992          | 5       |
| 75051S     | 1996          | 14.4    |
| 75054      | 1981          | 16.4    |
| 75054      | 1988          | 90.2    |
| 75054      | 1992          | 17.5    |
| 75054      | 1999          | 3.1     |
| 75055N     | 1977          | 1.5     |
| 75055N     | 1982          | 25.8    |
| 75055N     | 1983          | 11.1    |
| 75055N     | 1988          | 82.9    |
| 75055N     | 2000          | 80.1    |
| 75055S     | 1977          | 5.9     |
|            |               |         |



| FileNumber | InspectonDate | 0/ > 200m1/ |
|------------|---------------|-------------|
|            |               |             |
| 1153       | 1990          | 1.3         |
| 1153       | 1994          | 2.1         |
| 1153       | 1998          | 5.8         |
| 1158       | 1978          | 17.8        |
| 1158       | 1982          | 13.2        |
| 1158       | 1991          | 21          |
| 1158       | 1995          | 3.3         |
| 1158       | 1999          | 2.9         |
| 1227       | 1981          | 0           |
| 1227       | 1989          | 2.3         |
| 1227       | 1994          | 3.6         |
| 1227       | 1999          | 12.6        |
| 1241       | 1981          | 0           |
| 1241       | 1989          | 0           |
| 1241       | 1993          | 0           |
| 1241       | 1997          | 0           |
| 1245       | 1978          | 17.9        |
| 1245       | 1982          | 48.5        |
| 1245       | 1983          | 94.5        |
| 1245       | 1987          | 66.5        |
| 1245       | 1991          | 12          |
| 1245       | 1995          | 25          |
| 1245       | 1999          | 12.1        |
| 1303       | 1978          | 12.1        |
| 1303       | 1978          | 0           |
|            |               |             |
| 1303       | 1980          | 3.9         |
| 1303       | 1981          | 2.6         |
| 1303       | 1983          | 0.7         |
| 1303       | 1987          | 2.6         |
| 1303       | 1991          | 1           |
| 1303       | 1995          | 1.4         |
| 1303       | 1999          | 1           |
| 13117      | 1977          | 55.5        |
| 13117      | 1978          | 49.5        |
| 13117      | 1979          | 21.9        |
| 13117      | 1980          | 48.3        |
| 13117      | 1982          | 53.6        |
| 13117      | 1987          | 16.8        |
| 13117      | 1991          | 36          |
| 13117      | 1995          | 31.5        |
| 13117      | 1999          | 70          |
| 13149      | 1979          | 7           |
| 13149      | 1983          | 6           |
| 13149      | 1987          | 17.7        |
| 13149      | 1991          | 25          |
| 13149      | 1980          | 0           |
| 13166      | 1986          | 0.6         |
|            | 1990          | 3.3         |
| 13166      |               | 14.9        |
| 13166      | 1994          | 13.8        |
| 13166      | 1999          |             |
| 13181      | 1978          | 52.6        |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 75055S     | 1982          | 14.1    |
| 75055S     | 1983          | 9.7     |
| 75055S     | 1984          | 21      |
| 75055S     | 1988          | 54.5    |
| 75055S     | 1993          | 32.7    |
| 75055S     | 1997          | 25.1    |
| 75058N     | 1977          | 9       |
| 75058N     | 1982          | 85      |
| 75058N     | 1983          | 66      |
| 75058N     | 1987          | 63      |
| 75058N     | 1991          | 55      |
| 75058N     | 1994          | 59      |
| 75058N     | 1995          | 33      |
| 75058N     | 1996          | 27.7    |
| 75058N     | 2000          | 93.2    |
| 75058S     | 1977          | 33      |
| 75058S     | 1982          | 80      |
| 75058S     | 1983          | 21      |
| 75058S     | 1987          | 60      |
| 75058S     | 1991          | 45      |
| 75058S     | 1994          | 49      |
| 75058S     |               |         |
|            | 1995          | 32      |
| 75058S     | 1996          | 23.9    |
| 75058S     | 2000          | 62.8    |
| 75059      | 1980          | 0       |
| 75059      | 1986          | 0       |
| 75059      | 1990          | 1       |
| 75059      | 1995          | 0.2     |
| 75059      | 1999          | 0.5     |
| 75066      | 1985          | 3       |
| 75066      | 1989          | 2       |
| 75066      | 1996          | 0.5     |
| 75066      | 2000          | 2.1     |
| 75070      | 1978          | 1.9     |
| 75070      | 1979          | 0.6     |
| 75070      | 1983          | 1.7     |
| 75070      | 1987          | 0.4     |
| 75070      | 1991          | 3.6     |
| 75070      | 1995          | 1.8     |
| 75111      | 1979          | 19      |
| 75111      | 1984          | 83      |
| 75111      | 1988          | 36      |
| 75111      | 1992          | 25      |
| 75111      | 1996          | 14.8    |
| 75111      | 2000          | 12.4    |
| 75112      | 1979          | 24.1    |
| 75112      | 1982          | 56.9    |
| 75112      | 1986          | 86.4    |
| 75112      | 1988          | 52      |
| 75112      | 1992          | 36.1    |
| 75112      | 1999          | 39.9    |
|            |               |         |



| EilaNumban |               | 10/- 000 1/ |
|------------|---------------|-------------|
|            | InspectonDate |             |
| 13181      | 1979          | 16.4        |
| 13181      | 1983          | 43.1        |
| 13181      | 1986          | 52.1        |
| 13181      | 1990          | 59          |
| 13181      | 1995          | 83          |
| 13181      | 1999          | 73.2        |
| 13370      | 1979          | 0.9         |
| 13370      | 1983          | 61.1        |
| 13370      | 1987          | 2           |
| 13370      | 1991          | 1           |
| 13370      | 1995          | 1           |
| 13370      | 1999          | 0.9         |
| 1340       | 1982          | 0           |
| 1340       | 1996          | 0           |
| 13486      | 1981          | 1           |
| 13486      | 1989          | 4           |
| 13486      | 1993          | 2           |
| 13486      | 1996          | 12.8        |
| 135        | 1981          | 2.9         |
| 135        | 1987          | 0.4         |
| 135        | 1991          | 0           |
| 135        | 1995          | 1.6         |
| 135        | 2000          | 0.3         |
| 13587      | 1979          | 0.8         |
| 13587      | 1985          | 38.7        |
| 13587      | 1991          | 69.9        |
| 13587      | 1999          | 47.6        |
| 13625      | 1981          | 17.6        |
| 13625      | 1987          | 24.8        |
| 13625      | 1991          | 29.9        |
| 13625      | 1995          | 30.4        |
| 13625      | 2000          | 16          |
| 13742      | 1977          | 0           |
| 13742      | 1981          | 0.2         |
| 13742      | 1982          | 0.1         |
| 13742      | 1989          | 80.3        |
| 13742      | 1993          | 18          |
| 13742      | 1998          |             |
| 13821      | 1977          | 3<br>1.2    |
| 13821      | 1985          | 5.4         |
| 13821      | 1990          | 13.4        |
| 13824      | 1979          | 96          |
| 13824      | 1987          | 95          |
| 13824      | 1988          | 4           |
| 13824      | 1997          | 16.9        |
|            | 1977          | 0           |
| 13838      |               | 0.2         |
| 13838      | 1981          | 0.2         |
| 13838      | 1982          | 0.1         |
| 13838      | 1984          | 2.1         |
| 13838      | 1989          |             |
| 13838      | 1993          | 0.5         |

| FileNumber       | InspectonDate | %>300mV    |
|------------------|---------------|------------|
| 75118            | 1978          | 16         |
| 75118            | 1983          | 39.7       |
| 75118            | 1986          | 57.9       |
| 75118            | 1990          | 78.4       |
| 75118            | 1994          | 84.9       |
| 7513             | 1980          | 3          |
| 7513             | 1986          | 30         |
| 7513             | 1992          | 75         |
| 7513             | 1995          | 22         |
| 7513             | 1996          | 37.1       |
| 7513             | 2000          | 14.1       |
| 75186            | 1979          | 6.9        |
| 75186            | 1984          | 8          |
| 75186            | 1986          | 23.5       |
| 75186            | 1990          | 16.8       |
| 75186            | 1994          | 9.9        |
| 75186            | 1998          | 9.8        |
| 75187            | 1979          | 3.5        |
| 75187            | 1985          | 16.4       |
| 75187            | 1988          | 77         |
| 75187            | 1995          | 12         |
| 75187            | 1999          | 36.1       |
| 75193E           | 1977          | 15.1       |
| 75193E           | 1981          | 34.3       |
| 75193E           | 1987          | 72.4       |
| 75193E           | 1988          | 73.6       |
| 75193E           | 1993          | 24         |
| 75193E           | 1993          | 19.4       |
| 75193E           | 1998          | 10.1       |
| 75193L<br>75193W | 1977          | 4.2        |
| 75193W           | 1981          | 13.9       |
| 75193W           | 1987          | 89.6       |
| 75193W           | 1988          | 68.9       |
| 75193W           | 1993          | 25.5       |
| 75193W           | 1994          | 19         |
| 75193W           | 1998          | 8.1        |
| 75195V<br>75195E | 1979          | 42         |
| 75195E<br>75195E | 1983          | 84         |
| 75195E<br>75195E |               |            |
| 75195E<br>75195E | 1984          | 89         |
| 75195E<br>75195E | 1988          | 18         |
| 75195E<br>75195E | 1992          | 73         |
| 75195E<br>75195E | 1995<br>1996  | 30<br>41.9 |
| 75195E<br>75195E | 2000          |            |
| 75195E<br>75195W |               | 29.7       |
|                  | 1979          | 19         |
| 75195W           | 1983          | 45         |
| 75195W           | 1984          | 59         |
| 75195W           | 1988          | 4          |
| 75195W           | 1992          | 33         |
| 75195W           | 1995          | 24         |
| 75195W           | 1996          | 29.7       |



| FileNimoleon |               | I 01 - 0 - 1 - 1 |
|--------------|---------------|------------------|
| FileNumber   | InspectonDate |                  |
| 13838        | 1999          | 3.6              |
| 13852        | 1981          | 0                |
| 13852        | 1989          | 1.1              |
| 13852        | 1993          | 9.6              |
| 13852        | 1997          | 2.8              |
| 1402         | 1980          | 0.8              |
| 1402         | 1986          | 0.4              |
| 1402         | 1995          | 0.6              |
| 1409         | 1978          | 1                |
| 1409         | 1983          | 6                |
| 1409         | 1989          | 10               |
| 1409         | 1993          | 9                |
| 1409         | 1997          | 3.6              |
| 1426         | 1978          | 0.1              |
| 1426         | 1983          | 0.2              |
| 1426         | 1987          | 0.7              |
| 1426         | 1991          | 0                |
| 1426         | 1995          | 2.1              |
| 1426         | 2000          | 1.9              |
| 1427         | 1978          | 1.6              |
| 1427         | 1983          | 2.5              |
| 1427         | 1987          | 10.1             |
| 1427         | 1991          | 0.3              |
| 1427         | 1999          | 0.8              |
| 1432         | 1980          | 2                |
| 1432         | 1986          | 0                |
| 1432         | 1996          | 0.2              |
| 149          | 1981          | 0.2              |
| 149          | 1989          | 0                |
|              |               |                  |
| 149          | 1993          | 0                |
| 149          | 1997          | 0                |
| 1517         | 1978          | 17.7             |
| 1517         | 1982          | 66.3             |
| 1517         | 1986          | 85.2             |
| 1517         | 1990          | 96.5             |
| 1517         | 1994          | 99.4             |
| 1517         | 1998          | 100              |
| 1536         | 1982          | 36.6             |
| 1606         | 1979          | 0                |
| 1606         | 1984          | 0                |
| 1606         | 1989          | 0                |
| 1606         | 1993          | 0                |
| 1606         | 1997          | 0.1              |
| 1632         | 1984          | 0.4              |
| 1632         | 1989          | 0.5              |
| 1632         | 1993          | 0.7              |
| 1632         | 1997          | 0.7              |
| 1669         | 1982          | 0                |
| 1669         | 1992          | 0                |
| 1669         | 1996          | 0                |
| 167          | 1981          | 3.3              |
| 107          | , , , , ,     |                  |

| FileNumber       | InspectonDate | %>300mV   |
|------------------|---------------|-----------|
| 75195W           | 2000          | 24.7      |
| 75197            | 1979          | 8.3       |
| 75197            | 1985          | 12.1      |
| 75197            | 1991          | 19.9      |
| 75197            | 1998          | 5.3       |
| 7524             | 1978          | 95        |
| 75305            | 1987          | 51.4      |
| 75305            | 1991          | 59.2      |
| 75305            | 1995          | 17.4      |
| 75305            | 1999          | 22.4      |
| 75315            | 1980          | 0         |
| 75315            | 1988          | 0         |
| 75315            | 1992          | 0         |
| 75315            | 1996          | 4.1       |
| 75315            | 2000          | 7.1       |
| 75331S           | 1977          | 2.7       |
| 75331S           | 1978          | 2         |
| 75331S           | 1983          | 4.6       |
| 75331S           | 1988          | 6.7       |
| 75331S           | 1995          | 32.4      |
| 75331S           | 2000          | 5.8       |
| 753313<br>75332N | 1979          | 27.2      |
| 75332N<br>75332N | 1985          | 60        |
| 75332N<br>75332N | 1990          | 37        |
| 75332N<br>75332N | 1994          | 79        |
| 75332N<br>75332N | 1998          | 37.7      |
| 75332N<br>75332S | 1979          | 3.8       |
| 75332S<br>75332S | 1985          | 46.2      |
| 75332S<br>75332S | 1990          |           |
| 75332S           | 1994          | 9.2<br>57 |
| 75332S<br>75332S | 1998          | 28.8      |
| 75335N           | 1980          | 4.5       |
| 75335N<br>75335N | 1985          | 8.8       |
| 75335N<br>75335N | 1990          | 9.7       |
| 75335N<br>75335N | 1990          |           |
| 75335N<br>75335N |               | 47.3      |
| 75335N<br>75335S | 1998<br>1980  | 11.7      |
|                  |               | 0.3       |
| 75335S           | 1985          | 10.5      |
| 75335S           | 1990          | 12.6      |
| 75335S           | 1994          | 21.8      |
| 75335S           | 1998          | 1.6       |
| 75336            | 1980          | 31        |
| 75336            | 1985          | 74        |
| 75336            | 1990          | 48        |
| 75336            | 1997          | 36        |
| 75337N           | 1980          | 5.7       |
| 75337N           | 1985          | 39.5      |
| 75337N           | 1990          | 51.5      |
| 75337N           | 1994          | 20.4      |
| 75337N           | 1998          | 10.2      |
| 75337S           | 1980          | 5.1       |



| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 167        |               |         |
| 167        | 1989<br>1993  | 74.2    |
| 167        |               | 27.4    |
| 1694       | 1997          | 38.2    |
| 1694       | 1984          | 0       |
|            | 1996          | 28.2    |
| 1766       | 1981          | 46.6    |
| 1766       | 1986          | 62.3    |
| 1766       | 1990          | 68.2    |
| 1766       | 1994          | 59.9    |
| 1766       | 2000          | 8.1     |
| 1767       | 1980          | 21      |
| 1767       | 1981          | 27      |
| 1767       | 1991          | 11      |
| 1767       | 1996          | 5.8     |
| 1797       | 1979          | 6.6     |
| 1797       | 1985          | 0.8     |
| 1797       | 1990          | 1.3     |
| 1797       | 1995          | 0.1     |
| 1797       | 2000          | 0.3     |
| 1810       | 1978          | 9       |
| 1810       | 1983          | 13      |
| 1810       | 1989          | 14      |
| 1810       | 1993          | 13      |
| 1810       | 1996          | 8.6     |
| 1843       | 1981          | 5       |
| 1843       | 1996          | 1.4     |
| 189        | 1978          | 1.1     |
| 189        | 1981          | 7.1     |
| 189        | 1987          | 7.4     |
| 189        | 1991          | 26.9    |
| 189        | 1999          | 35.6    |
| 189        | 1980          | 0       |
| 189        | 1986          | 0       |
| 189        | 1990          | 0       |
| 189        | 1994          | 1       |
| 189        | 1996          | 1.3     |
| 189        | 2000          | 4.7     |
| 1894       | 1980          | 0.4     |
| 1894       | 1986          | 0.6     |
| 1894       | 1990          | 1.3     |
| 1894       | 1995          | 5       |
| 1894       | 2000          | 2.2     |
| 1916       | 1978          | 0       |
| 1916       | 1982          | 0.3     |
| 1916       | 1989          | 2.1     |
| 1916       | 1993          | 4       |
| 1916       | 1997          | 0.1     |
|            | 1981          | 53.5    |
| 1938       |               | 37.5    |
| 1980       | 1979          | 36.2    |
| 1980       | 1983          |         |
| 1980       | 1986          | 28.1    |

| FileNumber       | InspectonDate | %>300mV |
|------------------|---------------|---------|
| 75337S           | 1985          | 61.9    |
| 75337S           | 1990          | 7.3     |
| 75337S           | 1994          | 46.7    |
| 75337S           | 1998          | 23.6    |
| 75338N           | 1979          | 0       |
| 75338N           | 1985          | 1.3     |
| 75338N           | 1990          | 3       |
| 75338N           | 1994          | 5.7     |
| 75338N           | 1998          | 6.1     |
| 75338S           | 1979          | 1       |
| 75338S           | 1985          | 13      |
| 75338S           | 1990          | 14.8    |
| 75338S           | 1994          | 13.9    |
| 75338S           | 1998          | 4.8     |
| 75339N           | 1980          | 14.7    |
| 75339N           | 1985          | 50      |
| 75339N           | 1990          | 41.1    |
| 75339N           | 1999          | 30.1    |
| 75339S           | 1980          | 1.3     |
| 75339S           | 1985          | 15.7    |
| 75339S           | 1990          | 37.6    |
| 75339S           | 1999          | 23      |
| 753393<br>75340N | 1980          | 15.1    |
| 75340N           | 1985          | 47.7    |
| 75340N<br>75340N | 1993          | 30.4    |
| 75340N<br>75340S | 1980          | 15.1    |
| 75340S           | 1985          | 30.3    |
| 75340S           | 1993          | 27      |
| 75340S           | 1997          | 21.3    |
| 753403           | 1980          | 7       |
| 75341            | 1985          | 21.6    |
| 75341            | 1990          | 58.8    |
| 75341            | 1995          | 6       |
| 75341            | 2000          | 8.8     |
|                  |               | 0.0     |
| 75383            | 1979          | 1.2     |
| 75383<br>75383   | 1985<br>1990  |         |
|                  |               | 40.3    |
| 75383            | 1994          | 6.1     |
| 75383            | 1998          | 10.4    |
| 75420W           | 1980          | 29      |
| 75420W           | 1983          | 58      |
| 75420W           | 1987          | 0 .     |
| 75420W           | 1991          | 38      |
| 75420W           | 1995          | 28      |
| 75420W           | 1997          | 26.2    |
| 75491            | 1980          | 0       |
| 75491            | 1989          | 0       |
| 75491            | 1996          | 0       |
| 75498            | 1982          | 5.5     |
| 75498            | 1988          | 20.2    |
| 75498            | 1992          | 15.8    |



| Fill November | Transaction 5 | I        |
|---------------|---------------|----------|
|               | InspectonDate |          |
| 1980          | 1990          | 20.8     |
| 1980          | 1995          | 35       |
| 1980          | 1999          | 22.5     |
| 2008          | 1980          | 0        |
| 2008          | 1986          | 56       |
| 2008          | 1996          | 32.6     |
| 2029          | 1984          | 22.9     |
| 2047          | 1981          | 69       |
| 2102          | 1981          | 1        |
| 2102          | 1992          | 1.2      |
| 2102          | 1996          | 3.3      |
| 2102          | 2000          | 1.7      |
| 2143          | 1981          | 2        |
| 2143          | 1987          | 15.3     |
| 2143          | 1991          | 16.4     |
| 2143          | 1995          | 5.7      |
| 2143          | 2000          | 22.7     |
| 2212          | 1980          | 2        |
| 2212          | 1986          | 1        |
| 2212          | 1992          | 7        |
| 2212          | 1996          | 5.3      |
| 2233          | 1978          | 31.5     |
| 2233          | 1982          | 25       |
| 2233          | 1983          | 15.4     |
| 2233          | 1984          | 36.5     |
| 2233          | 1988          | 28       |
| 2233          | 1993          | 27.2     |
| 2233          | 1993          | 49.4     |
| 2235          | 1979          | 49.4     |
| 2235          | 1980          |          |
| 2235          | 1982          | 66<br>36 |
| 2235          |               |          |
|               | 1988          | 8<br>7   |
| 2235          | 1992          |          |
| 2235          | 1996          | 15.3     |
| 2235          | 2000          | 6        |
| 2236          | 1980          | 8.3      |
| 2236          | 1982          | 18.1     |
| 2268          | 1978          | 0        |
| 2301          | 1981          | 1        |
| 2301          | 1989          | 0        |
| 2301          | 1993          | 0        |
| 2301          | 1997          | 1        |
| 2302          | 1998          | 1.7      |
| 233           | 1979          | 45       |
| 233           | 1980          | 69       |
| 233           | 1983          | 83       |
| 233           | 1984          | 22       |
| 233           | 1988          | 32       |
| 233           | 1993          | 13       |
| 233           | 1997          | 17.8     |
| 2337          | 1979          | 1        |
|               |               |          |

| 75498         1999         25           75500         1980         1.1           75500         1986         0.3           75500         1992         1.1           75500         1996         0.1           75522         1979         51.1           75522         1982         68.3           75522         1988         97.5           75522         1988         97.5           75522         1995         83.4           75522         1995         83.4           75522         1995         83.4           75522         1995         83.4           75522         1995         83.4           75522         1995         83.4           75529         1996         0.1           75529         1990         5           75529         1994         0           75529         1996         0.1           7553         1986         8.1           7553         1986         8.1           7553         1996         13.6           7553         1995         14.3           7553         1995         14.3                                       | FileNumber | InspectonDate | %>300mV |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|---------|
| 75500         1980         1.1           75500         1986         0.3           75500         1992         1.1           75500         1996         0.1           75522         1979         51.1           75522         1982         68.3           75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         1995         83.4           75522         1995         83.4           75529         1979         0           75529         1995         0           75529         1990         5           75529         1994         0           75529         1996         0.1           7553         1996         0.1           7553         1996         0.1           7553         1996         0.1           7553         1996         0.1           7553         1990         13.6           7553         1990         13.6           75535N         1995         14.3           75535N         1998         0.7 <t< th=""><th></th><th></th><th></th></t<> |            |               |         |
| 75500         1986         0.3           75500         1992         1.1           75500         1996         0.1           75522         1979         51.1           75522         1982         68.3           75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         1995         83.4           75529         1979         0           75529         1979         0           75529         1990         5           75529         1990         5           75529         1996         0.1           7553         1980         1.6           7553         1980         1.6           7553         1980         1.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1995         14.3           7553         1990         1.6           75535N         1995         14.3                                              |            |               |         |
| 75500         1992         1.1           75500         1996         0.1           75522         1979         51.1           75522         1982         68.3           75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1985         0           75529         1990         5           75529         1994         0           75529         1996         0.1           7553         1980         1.6           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         1995         14.3           7553         1995         14.3           75535N         1995         3.5           75535N         1995         11.6           75535N         1996         0.7           75535N         1998         0 <t< td=""><td></td><td></td><td></td></t<> |            |               |         |
| 75500         1996         0.1           75522         1979         51.1           75522         1982         68.3           75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1985         0           75529         1990         5           75529         1994         0           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1986         8.1           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           75535         1995         14.3           75535         1995         14.3           75535N         1995         3.5           75535N         1994         6.9           75535N         1998         0 <t< td=""><td></td><td></td><td></td></t<> |            |               |         |
| 75522         1979         51.1           75522         1982         68.3           75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1990         5           75529         1990         5           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         14.3           7553         1990         11.6           75535N         1990         11.6           75535N         1998         0           75535S         1998         0 <t< td=""><td></td><td></td><td></td></t<> |            |               |         |
| 75522         1986         96.2           75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1990         5           75529         1990         5           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         1990         13.6           7553         1995         14.3           7553         1990         13.6           7553         1990         13.6           7553         1995         14.3           7553         1990         13.6           75535         1995         14.3           75535         1995         14.3           75535         1990         11.6           75535         1990         11.6           75535         1998         0      <                                    |            |               |         |
| 75522         1986         96.2           75522         1988         97.5           75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1990         5           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         14.3           7553         1990         11.6           75535N         1979         0.7           75535N         1999         11.6           75535N         1994         6.9           75535N         1998         0           75535N         1998         0           75535N         1998         0      <                                    |            |               |         |
| 75522         1988         97.5           75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1990         5           75529         1990         5           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         14.3           7553         1990         11.6           75535N         1999         0.7           75535N         1990         11.6           75535N         1998         0           75535N         1998         0           75535S         1998         0           75535S         1998         2                                                |            |               |         |
| 75522         1995         83.4           75522         2000         12.3           75529         1979         0           75529         1985         0           75529         1990         5           75529         1996         0.1           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         13.6           7553         1990         0.7           75535N         1999         0.7           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1998         2           75535S         1998         0                                                    |            |               |         |
| 75522         2000         12.3           75529         1979         0           75529         1985         0           75529         1990         5           75529         1996         0.1           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1994         6.9           75535N         1998         0           75535S         1998         2           75535S         1998         0           <                                            |            |               |         |
| 75529         1979         0           75529         1985         0           75529         1990         5           75529         1996         0.1           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1994         6.9           75535N         1998         0           75535S         1998         0           75535S         1998         2           75535S         1998         2           75538         1998         0                                                       |            |               |         |
| 75529         1985         0           75529         1990         5           75529         1996         0.1           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535N         1998         2           75535N         1998         2           75535S         1998         0                                                       |            |               |         |
| 75529         1994         0           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1998         0                                                       |            |               |         |
| 75529         1994         0           75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1994         6.9           75535N         1998         0                                                     |            |               |         |
| 75529         1996         0.1           7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1998         2           75535S         1998         2           75538         1998         0           75538         1997         1           <                                            |            |               |         |
| 7553         1980         1.6           7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1994         6.9           75535N         1998         0           75535N         1999         4.3           75535N         1990         4.3           75535N         1998         0           75535S         1998         2           75535S         1998         2           75538         1999         0           75538         1999         0                                                   |            |               |         |
| 7553         1986         8.1           7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1990         4.3           75535S         1990         4.3           75535S         1994         3.9           75535S         1994         3.9           75535S         1998         2           75538         1989         0           75538         1989         0           75538         1993         23.6           75539         1985         0.6           75539         1995         0.6           75539         1994         13.5           75539         1998         0.4           75543W         1977         1.9 <td></td> <td></td> <td></td>      |            |               |         |
| 7553         1990         13.6           7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1994         3.9           75538         1998         2           75538         1998         2           75538         1989         0           75538         1993         23.6           75539         1997         1           75539         1995         0.6           75539         1994         13.5           75539         1994         13.5           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53                                      |            |               |         |
| 7553         1995         14.3           7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1994         3.9           75538         1998         2           75538         1989         0           75538         1989         0           75538         1993         23.6           75539         1997         1           75539         1995         0.6           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3                                      |            |               |         |
| 7553         2000         6.5           75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1994         3.9           75538         1994         3.9           75538         1998         2           75538         1989         0           75538         1993         23.6           75539         1997         1           75539         1995         0.6           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1995         6                                      |            |               |         |
| 75535N         1979         0.7           75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1994         3.9           75535S         1998         2           75538         1998         2           75538         1989         0           75538         1993         23.6           75539         1997         1           75539         1995         0.6           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1995         6           75555         1999         51.1                                     |            |               |         |
| 75535N         1985         3.5           75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1998         2           75538         1989         0           75538         1993         23.6           75539         1993         23.6           75539         1979         0.3           75539         1985         0.6           75539         1994         13.5           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1995         6           75555         1999         51.1 <td></td> <td></td> <td></td>     |            |               |         |
| 75535N         1990         11.6           75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1998         2           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1995         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1995         6           75555         1999         51.1           75623N         1977         15                                        |            |               |         |
| 75535N         1994         6.9           75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15                                          |            |               |         |
| 75535N         1998         0           75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15                                          | 75535N     |               |         |
| 75535S         1979         0.8           75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                    |            |               |         |
| 75535S         1985         2.1           75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1997         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623S         1977         1                                                                                                                                                                       |            |               |         |
| 75535S         1990         4.3           75535S         1994         3.9           75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                        |            |               |         |
| 75535S         1994         3.9           75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                  |            |               |         |
| 75535S         1998         2           75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                            | 75535S     |               |         |
| 75538         1982         0.4           75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                    | 75535S     | 1998          |         |
| 75538         1989         0           75538         1993         23.6           75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                   | 75538      |               |         |
| 75538         1997         1           75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                    |            | 1989          |         |
| 75539         1979         0.3           75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                           | 75538      | 1993          | 23.6    |
| 75539         1985         0.6           75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75538      | 1997          | 1       |
| 75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75539      | 1979          | 0.3     |
| 75539         1990         2.3           75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75539      | 1985          | 0.6     |
| 75539         1994         13.5           75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75539      |               |         |
| 75539         1998         0.4           75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75539      |               |         |
| 75543E         1977         6.4           75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75539      |               |         |
| 75543W         1977         1.9           75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75543E     | 1977          | 6.4     |
| 75555         1979         25.7           75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75543W     | 1977          |         |
| 75555         1982         53           75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75555      | 1979          |         |
| 75555         1987         84.3           75555         1991         7           75555         1995         6           75555         1999         51.1           75623N         1977         15           75623S         1977         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75555      | 1982          |         |
| 75555     1991     7       75555     1995     6       75555     1999     51.1       75623N     1977     15       75623S     1977     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75555      |               |         |
| 75555     1995     6       75555     1999     51.1       75623N     1977     15       75623S     1977     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75555      |               | 7       |
| 75623N 1977 15<br>75623S 1977 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75555      | 1995          |         |
| 75623N 1977 15<br>75623S 1977 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               |         |
| 75623S 1977 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75623N     | 1977          |         |
| 75651N 1980 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75623S     | 1977          | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75651N     | 1980          | 0.6     |



| FileNumber | InspectonDate | 0/>2001/ |
|------------|---------------|----------|
|            |               |          |
| 2337       | 1986          | 0        |
| 2337       | 1995          | 0        |
| 2337       | 1996          | 0.1      |
| 2359       | 1978          | 5        |
| 2359       | 1983          | 29       |
| 2359       | 1985          | 4        |
| 2359       | 1989          | 2        |
| 2359       | 1993          | 5        |
| 2359       | 1996          | 4        |
| 2401       | 1979          | 1.6      |
| 2401       | 1986          | 17       |
| 2401       | 1990          | 21.1     |
| 2401       | 1993          | 55.7     |
| 2401       | 1994          | 22       |
| 2401       | 1995          | 30       |
| 2401       | 1996          | 16.3     |
| 2401       | 1997          | 28.4     |
| 2430       | 1979          | 16.6     |
| 2430       | 1986          | 22.9     |
| 2430       | 1990          | 14.6     |
| 2430       | 1994          | 0.8      |
| 2430       | 1998          | 0.6      |
| 2431       | 1984          | 0        |
| 2431       | 1989          | 1        |
| 2431       | 1993          | 0        |
| 2431       | 1997          | 0        |
| 248        | 1997          | 17.4     |
| 2487       | 1979          | 42       |
| 2487       | 1983          | 29       |
| 2487       | 1986          | 44       |
| 2487       | 1990          | 41       |
| 2487       | 1992          | 34       |
| 2487       | 1996          | 1.7      |
| 272        | 1983          | 33.5     |
| 272        | 1986          | 28.3     |
| 272        | 1990          | 12.4     |
| 272        | 1995          | 0.9      |
|            |               |          |
| 274        | 1982          | 0        |
| 274        | 1992          | 0        |
| 274        | 1996          |          |
| 277        | 1984          | 0.6      |
| 277        | 1995          | 0        |
| 277        | 1999          | 0        |
| 286        | 1981          | 0        |
| 286        | 1989          | 0        |
| 286        | 1993          | 0        |
| 286        | 1997          | 0        |
| 304        | 1981          | 0        |
| 304        | 1996          | 0        |
| 309        | 1985          | 0        |
| 309        | 1992          | 1        |

| FileNumber | InspectonDate | %>300mV     |
|------------|---------------|-------------|
| 75651N     | 1985          | 4.8         |
| 75651N     | 1990          | 17.5        |
| 75651N     | 1994          | 18          |
| 75651N     | 1998          | 15.6        |
| 75651S     | 1980          | 0.5         |
| 75651S     | 1985          | 4.5         |
| 75651S     | 1990          |             |
| 75651S     | 1990          | 18.9        |
| 75651S     | 1994          | 16.3        |
| 75667      | 1980          | 58.5<br>2.8 |
| 75667      | 1986          |             |
| 75667      | 1991          | 80.7        |
| 75677      | 1981          | 90.2        |
|            |               | 54.7        |
| 75677      | 1982          | 67.1        |
| 75677      | 1984          | 85.6        |
| 75677      | 1986          | 86.5        |
| 75677      | 1991          | 57.1        |
| 75677      | 1995          | 55.7        |
| 75677      | 1999          | 60.7        |
| 75678      | 1981          | 0           |
| 75678      | 1997          | 0           |
| 75694      | 1984          | 1.9         |
| 75694      | 1990          | 0.7         |
| 75694      | 1994          | 0           |
| 756N       | 1977          | 0           |
| 756N       | 1981          | 2           |
| 756N       | 1987          | 4           |
| 756N       | 1991          | 2           |
| 756N       | 1997          | 3           |
| 75701      | 1979          | 0           |
| 75701      | 1983          | 1.7         |
| 75701      | 1987          | 1.7         |
| 75701      | 1991          | 32          |
| 75701      | 1995          | 39.2        |
| 75701      | 2000          | 3.7         |
| 75707S     | 1979          | 14.9        |
| 75707S     | 1985          | 71.1        |
| 75707S     | 1990          | 97.2        |
| 75707S     | 1998          | 78.4        |
| 75722      | 1980          | 3.5         |
| 75722      | 1986          | 40.5        |
| 75722      | 1991          | 54.5        |
| 75722      | 1997          | 33.6        |
| 75723      | 1981          | 0           |
| 75723      | 1992          | 0           |
| 75723      | 1996          | 0           |
| 75724      | 1980          | 4           |
| 75724      | 1988          | 39.1        |
| 75724      | 1992          | 34.9        |
| 75724      | 1999          | 58.4        |
| 75725      | 1981          | 27.3        |
|            |               |             |



| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 309        | 1996          | 0.4     |
| 310        | 1978          | 10.9    |
| 310        | 1983          | 9.7     |
| 310        | 1988          |         |
| 310        | 1993          | 19.9    |
| 310        |               | 21.5    |
| 313        | 1997          | 8.2     |
| 315        | 1998          | 0       |
| 315        | 1979          | 0       |
|            | 1986          | 1.1     |
| 315        | 1990          | 1.9     |
| 315        | 1994          | 3.1     |
| 315        | 1996          | 0.6     |
| 340        | 1980          | 0       |
| 340        | 1986          | 0       |
| 340        | 1990          | 0       |
| 340        | 1995          | 0       |
| 340        | 2000          | 0       |
| 358        | 1979          | 0.5     |
| 358        | 1986          | 0.1     |
| 358        | 1990          | 0.1     |
| 358        | 1994          | 0       |
| 358        | 1999          | 0       |
| 395        | 1978          | 12      |
| 436        | 1980          | 3.3     |
| 436        | 1986          | 3.6     |
| 436        | 1990          | 6.6     |
| 436        | 1995          | 5.9     |
| 436        | 2000          | 4.4     |
| 457        | 1977          | 0.2     |
| 457        | 1981          | 5.4     |
| 457        | 1987          | 4.7     |
| 457        | 1991          | 8.6     |
| 457        | 1999          | 6.9     |
| 521        | 1978          | 69.6    |
| 521        | 1984          | 98.2    |
| 570        | 1985          | 4       |
| 570        | 1990          | 9       |
| 570        | 1994          | 6       |
| 570        | 1998          | 1.1     |
| 589        | 1979          | 8.9     |
| 589        | 1983          | 31.4    |
| 589        | 1987          | 0.1     |
| 589        | 1991          | 2.1     |
| 589        | 1995          | 12      |
| 589        | 1999          | 8.1     |
| 611        | 1981          | 37      |
| 611        | 1982          | 31      |
| 611        | 1988          | 45      |
|            | 1996          | 27.6    |
| 611        | 1978          | 31.4    |
| 653        | 1978          | 0       |
| 6548       | 1900          | U       |

| FileNumber | InspectonDate |      |
|------------|---------------|------|
| 75725      | 1991          | 58.8 |
| 75725      | 1999          | 79.7 |
| 75726      | 1981          | 0    |
| 75726      | 1995          | 0    |
| 75731      | 1977          | 4.6  |
| 75744      | 1979          | 0    |
| 75744      | 1986          | 0.1  |
| 75744      | 1990          | 16.5 |
| 75744      | 1994          | 22.1 |
| 75744      | 1998          | 4.5  |
| 75754      | 1981          | 9    |
| 75754      | 1992          | 69   |
| 75754      | 1996          | 16.3 |
| 75754      | 2000          | 39.1 |
| 75760      | 1977          | 9.1  |
| 75760      | 1985          | 29   |
| 75760      | 1991          | 14.4 |
| 75760      | 1995          | 22.3 |
| 75760      | 1999          | 5.8  |
| 75876      | 1983          | 0    |
| 75876      | 1989          | 0    |
| 75876      | 1993          | 1.3  |
| 75876      | 1997          | 0.2  |
| 75919S     | 1979          | 5.9  |
| 75919S     | 1981          | 4.2  |
| 75919S     | 1987          | 3    |
| 75919S     | 1991          | 30   |
| 75919S     | 1995          | 29   |
| 75919S     | 2000          | 3.7  |
| 75929      | 1978          | 5.5  |
| 75929      | 1983          | 3.3  |
| 75929      | 1984          | 4.2  |
| 75929      | 1989          | 3.6  |
| 75929      | 1994          | 2.9  |
| 75929      | 1999          | 1.6  |
| 75931      | 1981          | 87.8 |
| 75931      | 1986          | 99.5 |
| 75931      | 1991          | 95.8 |
| 75931      | 1995          | 80   |
| 75931      | 1999          | 83.8 |
| 75931      | 1979          | 86   |
| 75932      | 1980          | 96   |
| 75932      | 1984          | 89   |
| 75932      | 1984          | 65   |
| 75932      | 1984          | 89   |
| 75932      | 1985          | 95   |
| 75932      | 1985          | 72.2 |
|            | 1988          | 10.5 |
| 75932      |               |      |
| 75932      | 1998          | 22.8 |
| 75933      | 1981<br>1982  | 84.7 |
| 75933      | 1902          | 98.8 |



| FileNumber | InspectonDate | 0/2000 |
|------------|---------------|--------|
| 6548       |               |        |
|            | 1986          | 0      |
| 6548       | 1992          | 0      |
| 6548       | 1996          | 0.1    |
| 6565       | 1978          | 30     |
| 6565       | 1979          | 2      |
| 6565       | 1980          | 29     |
| 6565       | 1982          | 26     |
| 6565       | 1987          | 4      |
| 6565       | 1991          | 12     |
| 6565       | 1992          | 9      |
| 6565       | 1996          | 7.8    |
| 6565       | 2000          | 2.4    |
| 6615       | 4.8           | -215   |
| 6733       | 1980          | 0      |
| 6733       | 1986          | 0      |
| 6733       | 1992          | 0      |
| 6733       | 1996          | 0      |
| 6809       | 1981          | 0      |
| 6809       | 1989          | 0      |
| 6809       | 1993          | 0      |
| 6809       | 1997          | 31     |
| 698        | 1980          | 0      |
| 698        | 1985          | 0      |
| 698        | 1990          | 0      |
| 698        | 1995          | 0      |
| 698        | 1999          | 0.9    |
| 6985E      | 1998          | 1.6    |
| 6985W      | 1977          | 11     |
| 6985W      | 1978          | 24     |
| 6985W      | 1978          | 13     |
| 6985W      | 1979          | 18     |
| 6985W      | 1980          | 44     |
| 6985W      | 1982          | 14     |
| 6985W      | 1988          | 5      |
| 6985W      | 1992          | 3      |
| 6985W      | 1996          | 7.6    |
| 70009      | 1978          | 64     |
| 70009      | 1982          | 5.6    |
| 70009      | 1987          | 8.4    |
| 70009      | 1991          | 4      |
| 70009      | 1995          | 12.9   |
| 70009      | 1997          | 8.9    |
| 70022      | 1977          | 0      |
| 70022      | 1985          | 7.8    |
| 70022      | 1990          | 8.8    |
| 70022      | 1994          | 10.1   |
| 70022      | 1998          | 3.8    |
| 70156      | 1978          | 16.5   |
| 70156      | 1979          | 0      |
| 70156      | 1980          | 2.5    |
| 70156      | 1986          | 1.8    |
|            |               |        |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 75933      | 1986          | 100     |
| 75933      | 1995          | 92.3    |
| 75945      | 1977          | 8.6     |
| 75945      | 1980          | 0.5     |
| 75945      | 1988          | 6.5     |
| 75945      | 1992          | 12.5    |
| 75945      | 1997          | 3.8     |
| 75946      | 1979          | 80      |
| 75946      | 1980          | 92      |
| 75946      | 1981          | 99      |
| 75946      | 1983          | 39      |
| 75946      | 1987          | 32      |
| 75946      | 1991          | 80      |
| 75946      | 1995          | 45      |
| 75946      | 2000          | 11.2    |
| 75994      |               |         |
| 76034      | 1981          | 40.6    |
|            | 1979          | 63.9    |
| 76034      | 1985          | 53.3    |
| 76034      | 1991          | 3       |
| 76034      | 1995          | 23.1    |
| 76034      | 1999          | 35      |
| 76057      | 1979          | 82.7    |
| 76057      | 1980          | 70.3    |
| 76057      | 1984          | 82.5    |
| 76057      | 1987          | 86.3    |
| 76057      | 1991          | 51.6    |
| 76057      | 1995          | 42.7    |
| 76057      | 2000          | 35.2    |
| 76060      | 2000          | 15.8    |
| 76081S     | 1979          | 56.7    |
| 76081S     | 1980          | 61.7    |
| 76092      | 1983          | 80      |
| 76092      | 1986          | 85      |
| 76092      | 1996          | 97.2    |
| 76092      | 2000          | 26.4    |
| 76128      | 1980          | 3.8     |
| 76133      | 1981          | 0       |
| 76133      | 1990          | 0       |
| 76158      | 1979          | 51.1    |
| 76158      | 1980          | 53.9    |
| 76158      | 1983          | 85.4    |
| 76158      | 1986          | 94      |
| 76158      | 1988          | 78.4    |
| 76159      |               |         |
| 76159      | 1977          | 2.2     |
|            | 1978          | 1.8     |
| 76159      | 1979          | 5.8     |
| 76159      | 1980          | 4.7     |
| 76159      | 1988          | 5.5     |
| 76159      | 1992          | 10.1    |
| 76161      | 1979          | 13.6    |
| 76161      | 1983          | 17.3    |



| FiloNumber | Incheste Det  | 10/- 000 1/ |
|------------|---------------|-------------|
|            | InspectonDate |             |
| 70156      | 1990          | 7.8         |
| 70156      | 1994          | 9           |
| 70156      | 1998          | 2.6         |
| 70247      | 1980          | 68          |
| 70247      | 1986          | 85          |
| 70247      | 1991          | 67          |
| 70247      | 1996          | 51.2        |
| 70277      | 1982          | 0.9         |
| 70277      | 1988          | 0.7         |
| 70277      | 1993          | 3           |
| 70277      | 1997          | 1.1         |
| 70509      | 1984          | 0           |
| 70509      | 1993          | 0           |
| 70509      | 1996          | 0.1         |
| 70566      | 1978          | 6.2         |
| 70566      | 1983          | 9.8         |
| 70566      | 1987          | 18          |
| 70566      | 1991          | 25.2        |
| 70566      | 1999          | 9.1         |
| 70580      | 1978          | 83          |
| 70580      | 1983          | 72.4        |
| 70580      | 1984          | 75.3        |
| 70580      | 1987          | 91.9        |
| 70580      | 1991          | 85          |
| 70580      | 1995          | 95.3        |
| 70594      | 1978          | 65.8        |
| 70594      | 1982          | 60.1        |
| 70594      | 1986          | 34.6        |
| 70594      | 1990          | 79.4        |
| 70594      | 1994          | 10          |
| 70594      | 1998          | 12.4        |
| 70626      | 1980          | 4.5         |
| 7086       | 1984          | 0.2         |
| 7086       | 1992          | 0.4         |
| 70935      | 1978          | 5.3         |
| 70935      | 1983          | 57.1        |
| 70935      | 1985          | 66.7        |
| 70935      | 1990          | 15.6        |
| 70935      | 1994          | 14.2        |
| 70935      | 1998          | 13.8        |
| 710        | 1980          | 4           |
| 710        | 1985          | 4           |
| 710        | 1990          | 9           |
| 710        | 1992          | 10          |
| 710        | 1996          | 13.3        |
| 710        | 2000          | 0.1         |
| 71019      | 1980          | 1           |
| 71019      | 1987          | 36.8        |
| 71019      | 1991          | 77.3        |
| 71019      | 1995          | 86          |
| 71019      | 1999          | 85          |
| 71019      | 1999          | 00          |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
|            |               |         |
| 76161      | 1987          | 43.8    |
| 76161      | 1991          | 77.2    |
| 76161      | 1995          | 91.4    |
| 76161      | 2000          | 99.7    |
| 76177      | 1981          | 3.2     |
| 76177      | 1988          | 25.3    |
| 76177      | 1992          | 4       |
| 76177      | 1999          | 3.3     |
| 76181E     | 1979          | 0.1     |
| 76181E     | 1985          | 0       |
| 76181E     | 1990          | 1       |
| 76181E     | 1995          | 0.8     |
| 76181E     | 2000          | 0.1     |
| 76181W     | 1979          | 1.5     |
| 76181W     | 1985          | 0       |
| 76181W     | 1990          | 0       |
| 76181W     | 1995          | 1       |
| 76181W     | 2000          | 0       |
| 76185      | 1977          | 1       |
| 76185      | 1985          | 3       |
| 76185      | 1990          | 5       |
| 76185      | 1994          | 12      |
| 76185      | 1996          | 16.5    |
| 76185      | 2000          | 18.2    |
| 76186      | 1977          | 1.5     |
| 76186      | 1985          | 0.3     |
| 76186      | 1990          | 2.6     |
| 76186      | 1994          | 0.5     |
| 76186      | 1998          | 2.9     |
| 76212      | 1981          | 0.8     |
| 76212      | 1987          | 1.5     |
| 76212      | 1991          | 12      |
| 76212      | 1995          | 4.3     |
| 76212      | 1999          | 5.5     |
| 76223      | 1980          | 0.2     |
| 76223      | 1981          | 1.2     |
| 76223      | 1987          | 12      |
| 76223      | 1991          | 9.8     |
| 76223      | 1996          | 11.9    |
| 76226      | 1981          | 1.1     |
| 76226      | 1987          | 0.8     |
| 76301      | 1984          | 5       |
| 76301      | 1989          | 7       |
| 76301      | 1994          | 9       |
| 76301      | 1996          | 8.7     |
| 76330      | 1980          | 8.6     |
| 76339E     | 1977          | 0.7     |
| 76339W     | 1977          | 2.9     |
| 76364      | 1979          | 0.8     |
| 76364      | 1985          | 3.6     |
| 76364      | 1990          | 24.4    |
|            |               |         |



| - File Nove bear |               | 10/ 000 |
|------------------|---------------|---------|
|                  | InspectonDate |         |
| 71054            | 1979          | 0.7     |
| 71054            | 1986          | 1.5     |
| 71054            | 1990          | 3.9     |
| 71054            | 1994          | 4.3     |
| 71054            | 2000          | 7.9     |
| 7109             | 1980          | 0       |
| 7109             | 1986          | 0       |
| 7109             | 1996          | 0.8     |
| 71116            | 1984          | 3       |
| 71116            | 1988          | 7       |
| 71116            | 1992          | 11      |
| 71116            | 1996          | 6.4     |
| 71145            | 1978          | 0.1     |
| 71145            | 1982          | 0.3     |
| 71145            | 1989          | 1.2     |
| 71145            | 1993          | 31.1    |
| 71145            | 1996          | 7       |
| 71145            | 1997          | 2.2     |
| 71145            | 1998          | 8.4     |
| 71291            | 1982          | 1.6     |
| 71291            | 1988          | 13.1    |
| 71291            | 1992          | 40.9    |
| 71291            | 1995          | 9.3     |
| 713              | 1981          | 3       |
| 71313            | 1979          | 4       |
| 71313            | 1986          | 80      |
| 71313            | 1988          | 47      |
| 71313            | 1992          | 34      |
| 71313            | 1996          | 47.7    |
| 71316            | 1979          | 0.3     |
| 71316            | 1985          | 33.3    |
| 71316            | 1990          | 11.3    |
| 71316            |               |         |
| 71316            | 1994<br>1999  | 24.4    |
| 71316            |               |         |
|                  | 1980          | 0.6     |
| 71504            | 1987          | 2.7     |
| 71504            | 1991          | 3.1     |
| 71504            | 1995          | 3.8     |
| 71504            | 1999          | 6.3     |
| 7168             | 1979          | 0       |
| 7168             | 1986          | 0       |
| 7168             | 1990          | 0       |
| 7168             | 1994          | 0       |
| 7168             | 1998          | 5.1     |
| 71827            | 1978          | 1.1     |
| 71827            | 1986          | 14.6    |
| 72007W           | 1978          | 99      |
| 72007W           | 1980          | 65.6    |
| 72007W           | 1987          | 52.1    |
| 72007W           | 2000          | 3.4     |
| 72094            | 1979          | 22      |

| FileNumber | InspectonDate | %>300mV    |
|------------|---------------|------------|
| 76364      | 1994          | 21.7       |
| 76364      | 1994          | 52.9       |
| 76378      |               |            |
| 76378      | 1980          | 0.8        |
|            | 1982          | 3.6        |
| 76378      | 1987          | 24.4       |
| 76378      | 1991          | 22         |
| 76378      | 1995          | 52.9       |
| 76378      | 2000          | 0.4        |
| 76381      | 1979          | 32.2       |
| 76381      | 1980          | 24.7       |
| 76381      | 1988          | 46.1       |
| 76381      | 1993          | 47.5       |
| 76381      | 1995          | 27         |
| 76381      | 1999          | 10         |
| 76382N     | 1981          | 7.8        |
| 76382N     | 1988          | 43.2       |
| 76382N     | 1995          | 27         |
| 76382N     | 1997          | 45.3       |
| 76392      | 1984          | 7          |
| 76392      | 1989          | 4          |
| 76392      | 1993          | 9          |
| 76392      | 1997          | 0          |
| 76478      | 1977          | 14         |
| 76528      | 1980          | 0          |
| 7653       | 1990          | 19.2       |
| 76558      | 1981          | 3.1        |
| 76558      | 1986          | 45.1       |
| 76558      | 1990          | 15.9       |
| 76558      | 1994          | 0.7        |
| 76558      | 1999          | 5.7        |
| 766        | 1980          | 0          |
| 766        | 1986          | 0          |
| 766        | 1990          | 0          |
| 766        | 1994          | 0          |
| 766        | 1998          | 0          |
| 76609      | 1979          | 90         |
| 76609      | 1980          | 90.4       |
| 76609      | 1986          | 91.6       |
| 76609      | 1988          | 95.5       |
| 76609      | 1993          |            |
| 76609      | 1999          | 60<br>91.7 |
| 76615      | 1981          |            |
| 76615      | 1992          | 5.4        |
|            |               | 51.2       |
| 76615      | 1998          | 40.2       |
| 76633      | 1980          | 0          |
| 76634      | 1980          | 0          |
| 76639      | 1982          | 1          |
| 76639      | 1987          | 9.4        |
| 76639      | 1991          | 7.4        |
| 76639      | 1998          | 1.6        |
| 76646E     | 1977          | 0          |



| FileNumber | InspectonDate | %>300m\ |
|------------|---------------|---------|
| 72094      | 1982          | 66      |
| 72094      | 1983          | 45      |
| 72094      | 1987          | 43      |
| 72094      | 1991          | 68.1    |
| 72094      | 1996          | 31.5    |
| 72094      | 2000          | 22.1    |
| 72186      | 1977          | 3.4     |
| 72345      | 1984          | 0       |
| 72345      | 1992          | 0       |
| 72345      | 1996          | 1.3     |
| 72467      | 1980          | 0       |
| 72467      | 1986          | 0       |
| 72467      | 1990          | 0.5     |
| 72467      | 1994          | 13      |
| 72467      | 1998          | 3.4     |
| 72533S     | 1978          | 0.3     |
| 72533S     | 1983          | 2.1     |
| 72533S     | 1987          | 1.3     |
| 72533S     | 1991          | 3       |
| 72533S     | 1995          | 11      |
| 72533S     | 1999          | 5.7     |
| 72535S     | 1978          | 3.1     |
| 72535S     | 1983          | 12      |
| 72535S     | 1987          | 3.2     |
| 72535S     | 1991          | 11.3    |
| 72535S     | 1997          | 20.4    |
| 72545      | 1979          | 37.8    |
| 72545      | 1984          | 67.1    |
| 72545      | 1986          | 99.2    |
| 72551N     | 1979          | 7       |
| 72551N     | 1982          | 17      |
| 72551N     | 1983          | 5       |
| 72551N     | 1987          | 3       |
| 72551N     | 1991          | 51      |
| 72551N     | 1992          | 16      |
| 72551N     | 1996          | 12.2    |
| 72551S     | 1979          | 11      |
| 72551S     | 1982          | 16      |
| 72551S     | 1983          | 8       |
| 72551S     | 1987          | 12      |
| 72551S     | 1991          | 61      |
| 72551S     | 1992          | 26      |
| 72551S     | 1996          | 16.6    |
| 7256       | 1981          | 0       |
| 7256       | 1989          | 0       |
| 7256       | 1993          | 0       |
| 7256       | 1997          | 0       |
| 72631      | 1981          | 0       |
| 72640      | 1981          | 0       |
| 72640      | 1987          | 0       |
| 72640      | 1998          | 0       |

| FileNumber | InspectonDate | %>300m\ |
|------------|---------------|---------|
| 76646E     | 1985          | 8.6     |
| 76646E     | 1995          | 16.9    |
| 76646W     | 1977          | 0       |
| 76646W     | 1985          | 8.7     |
| 76646W     | 1995          | 39.5    |
| 76648      | 1981          | 23.8    |
| 76648      | 1991          | 88.7    |
| 76648      | 1995          | 47      |
| 76648      | 1999          | 33.2    |
| 76649W     | 1979          | 21.1    |
| 76649W     | 1982          | 34.2    |
| 76649W     | 1988          | 67.4    |
| 76649W     | 1991          | 70      |
| 76649W     | 1995          | 66      |
| 76649W     | 1999          | 38.3    |
| 76650N     | 1983          | 15.5    |
| 76650N     | 1988          | 16.5    |
| 76650N     | 1999          | 8       |
| 76650S     | 1988          | 13.3    |
| 76650S     | 1999          | 10.8    |
| 76652      | 1980          | 34.4    |
| 76652      | 1983          | 67.6    |
| 76652      | 1984          | 50.9    |
| 76652      | 1986          | 56.9    |
| 76652      | 1991          | 64      |
| 76652      | 1995          | 18.9    |
| 76652      | 1999          | 15.6    |
| 76653      | 1982          | 42.5    |
| 76653      | 1986          | 54.9    |
| 76658      | 1981          | 3.1     |
| 76658      | 1995          | 35.1    |
| 76658      | 2000          | 7       |
| 76659      | 1981          | 10      |
| 76659      | 1999          | 10      |
| 76660      | 1981          | 6.3     |
| 76660      | 1988          | 6.6     |
| 76660      | 1992          | 38      |
| 76660      | 1999          | 24.6    |
| 76669      |               |         |
| 76707      | 1980<br>1979  | 1.3     |
| 76707      | 1986          | 0.8     |
| 76719      | 1985          | 0.7     |
| 76719      |               | 52.2    |
|            | 1991          | 7.3     |
| 76719      | 1995          | 9.6     |
| 76719      | 2000          | 9.2     |
| 768        | 1981          | 0       |
| 768        | 1992          | 0       |
| 76805E     | 1982          | 1.4     |
| 76805E     | 1988          | 14      |
| 76805E     | 1993          | 7.9     |
| 76805W     | 1982          | 15      |



| FiloNumber | InonastauDit  | To/- 222 14 |
|------------|---------------|-------------|
|            | InspectonDate |             |
| 72705      | 1982          | 89.8        |
| 72705      | 1986          | 99.1        |
| 72705      | 1989          | 95.8        |
| 72810E     | 1985          | 0.5         |
| 72810E     | 1989          | 18.9        |
| 72810E     | 1994          | 0.1         |
| 72810W     | 1985          | 0.8         |
| 72810W     | 1989          | 0.6         |
| 72810W     | 1994          | 0           |
| 7295       | 1981          | 0           |
| 7295       | 1989          | 0           |
| 7295       | 1995          | 0           |
| 73184      | 1985          | 0.9         |
| 73184      | 1989          | 1.8         |
| 73184      | 1993          | 1.7         |
| 73184      | 1998          | 1.2         |
| 73274      | 1985          | 0           |
| 73274      | 1989          | 0           |
| 73274      | 1993          | 2           |
| 73274      | 1996          | 0.8         |
| 73275      | 1985          | 52.2        |
| 73275      | 1989          | 57          |
| 73275      | 1993          | 0.9         |
| 73275      | 1997          | 7           |
| 73277      | 1984          | 13.8        |
| 73277      | 1989          | 10.6        |
| 73277      | 1993          | 10.9        |
| 73277      | 2000          | 4.2         |
| 73407      | 1979          | 4.9         |
| 73407      | 1983          | 51.9        |
| 73407      | 1986          | 77.2        |
| 73407      | 1990          | 33.4        |
| 73407      | 1994          | 43.8        |
| 73407      | 1998          | 61.1        |
| 73410      | 1979          | 0           |
| 73410      | 1983          | 3           |
| 73410      | 1987          | 42          |
| 73410      | 1991          | 91          |
| 73410      | 1996          | 49.1        |
| 73420      | 1981          | 2           |
| 73420      | 1989          | 3           |
| 73420      | 1993          | 12          |
| 73420      | 1997          | 1           |
| 73425      | 1978          | 32          |
| 73425      | 1983          | 33          |
| 73425      | 1986          | 83          |
| 73425      | 1988          | 93          |
| 73425      | 1993          | 50          |
| 73425      | 1996          | 27.7        |
| 73425      | 2000          | 15.1        |
| 73425      | 1999          | 6.2         |
| 10720      | 1000          | 0.2         |

| FileNumber       | InspectonDate | %>300mV |
|------------------|---------------|---------|
| 76805W           | 1988          | 22.4    |
| 76805W           | 1993          | 19.2    |
| 76845            | 1984          | 11      |
| 76845            | 1987          | 0       |
| 76845            | 1991          | 0       |
| 76845            | 1996          | 13.2    |
| 76845            | 2000          | 4.4     |
| 76848            | 1981          | 87.7    |
| 76848            | 1986          | 91.1    |
| 76848            | 1991          | 35.8    |
| 76848            | 1995          | 2.9     |
| 76848            | 2000          | 5       |
| 76850            | 1980          | 4.7     |
| 76850            | 1986          | 34.2    |
| 76850            | 1990          | 1.7     |
| 76850            | 1995          | 16.9    |
| 76850            | 2000          | 5.2     |
| 76856            | 1982          | 2.3     |
| 76927            | 1981          | 0       |
| 76927            | 1987          | 0.6     |
| 76927            | 1991          | 1       |
| 76927            | 1997          | 0.9     |
| 76986            | 1981          |         |
| 77054E           |               | 0.3     |
|                  | 1982          | 0.3     |
| 77054E<br>77054E | 1987          | 1       |
|                  | 1991          | 6.7     |
| 77054E           | 1999          | 6.3     |
| 77054W           | 1999          | 3.3     |
| 77073            | 1982          | 0       |
| 77073            | 1996          | 0       |
| 77088            | 1985          | 23      |
| 77088            | 1990          | 20.2    |
| 77088            | 1994          | 18      |
| 77088            | 1998          | 11.2    |
| 77090E           | 1982          | 13.9    |
| 77090W           | 1997          | 3.1     |
| 77091E           | 1982          | 1.7     |
| 77091E           | 1987          | 17.5    |
| 77091E           | 1991          | 19.3    |
| 77091E           | 1995          | 15.7    |
| 77091E           | 1999          | 36.1    |
| 77091W           | 1982          | 1       |
| 77091W           | 1987          | 32      |
| 77091W           | 1991          | 23      |
| 77091W           | 1997          | 3.2     |
| 77091W           | 1999          | 2.6     |
| 77091WC          | 1982          | 1.3     |
| 77091WC          | 1987          | 32      |
| 77091WC          | 1991          | 22.8    |
| 77091WC          | 1997          | 3.1     |
| 77120            | 1997          | 2.3     |
|                  |               |         |



| FileNumber | InspectonDate | 0/>200m\/ |
|------------|---------------|-----------|
| 73429      | 1980          | 17        |
| 73429      | 1984          |           |
| 73429      |               | 70        |
|            | 1986          | 1         |
| 73429      | 1990          | 0         |
| 73429      | 1996          | 5.8       |
| 73429      | 2000          | 13.2      |
| 73496N     | 1978          | 20.1      |
| 73496N     | 1982          | 30.5      |
| 73496N     | 1986          | 53.7      |
| 73496N     | 1990          | 27.4      |
| 73527      | 1978          | 24.7      |
| 73527      | 1980          | 89.4      |
| 73527      | 1984          | 99.4      |
| 73595      | 1978          | 14.2      |
| 73621      | 1977          | 2         |
| 73621      | 1985          | 12.1      |
| 73621      | 1990          | 31.5      |
| 73621      | 1994          | 11.1      |
| 73621      | 1998          | 3.3       |
| 73636      | 1979          | 13.6      |
| 73636      | 1983          | 39.6      |
| 73636      | 1986          | 51        |
| 73636      | 1990          | 46        |
| 73636      | 1995          | 17.5      |
| 73636      | 1999          | 11.8      |
| 73637      | 1990          | 0         |
| 73637      | 1997          | 0.3       |
| 73640      | 1977          | 68        |
| 73640      | 1978          | 0         |
| 73640      | 1978          | 0         |
| 73640      | 1979          | 9         |
| 73640      | 1980          | 17        |
| 73640      | 1981          | 7         |
| 73640      | 1988          | 13        |
| 73640      | 1993          | 3         |
| 73640      | 1996          | 0.3       |
| 7373       | 1981          | 0         |
| 7373       | 1996          | 0         |
| 73757      | 1985          | 0         |
| 73757      | 1992          | 6         |
| 73757      | 1999          | 9.6       |
| 7377       | 1981          | 4         |
| 7377       | 1992          | 14        |
| 7377       | 1996          | 15.5      |
| 73779      | 1984          | 1         |
| 73779      | 1989          | 1         |
| 73779      | 1994          | 0         |
| 73779      | 1999          | 4.6       |
| 73810W     | 1984          | 6         |
| 73810W     | 1987          | 28        |
| 73810W     | 1991          | 5         |
| 1001011    |               |           |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 77126      | 1981          | 1.7     |
| 77126      | 1988          | 8.6     |
| 77126      | 1995          | 26.4    |
| 77126      | 2000          | 36      |
| 77129      | 1984          | 10.6    |
| 77129      | 1989          | 14.3    |
| 77129      | 1993          | 17      |
| 77129      | 1997          | 2.4     |
| 77173      | 1982          | 91.2    |
| 77173      | 1986          | 99.2    |
| 77177      | 1977          | 1       |
| 77177      | 1980          | 4       |
| 77177      | 1988          | 9       |
| 77177      | 1993          | 0       |
| 77177      | 1995          | 2       |
| 77177      | 1996          | 6       |
| 77177      | 1997          | 2       |
| 77212      | 1982          | 16      |
| 77254      | 1984          | 14.4    |
| 77254      | 1989          | 24.7    |
| 77254      | 1993          |         |
|            |               | 8.4     |
| 77254      | 2000          | 16      |
| 77289      | 1985          | 0.6     |
| 77295      | 1983          | 3.1     |
| 77295      | 1992          | 0.5     |
| 77303E     | 1985          | 0.3     |
| 77303E     | 1987          | 0.2     |
| 77303E     | 1991          | 1.3     |
| 77303E     | 1995          | 0.2     |
| 77303E     | 2000          | 0.4     |
| 77303W     | 1985          | 0       |
| 77303W     | 1987          | 0.2     |
| 77303W     | 1991          | 0.1     |
| 77303W     | 1995          | 0       |
| 77315      | 1984          | 6.1     |
| 77315      | 1989          | 10.9    |
| 77315      | 1993          | 13.9    |
| 77315      | 1997          | 5.8     |
| 77349      | 1984          | 0       |
| 77349      | 1988          | 0       |
| 77349      | 1992          | 0       |
| 77349      | 1996          | 3.7     |
| 77419      | 1985          | 0       |
| 77419      | 1990          | 0       |
| 77419      | 1996          | 0       |
| 77419      | 2000          | 0.1     |
| 77426      | 1984          | 6       |
| 77426      | 1989          | 8       |
| 77426      | 1996          | 2       |
| 77466      | 1982          | 50.3    |
| 77466      | 1986          | 35.8    |
|            |               |         |



| FileNumber | InonactanDut | 10/  |
|------------|--------------|------|
|            |              |      |
| 73810W     | 1996         | 9.3  |
| 73810W     | 2000         | 5.1  |
| 73819      | 1978         | 9    |
| 73819      | 1978         | 28   |
| 73819      | 1983         | 9    |
| 73819      | 1987         | 3    |
| 73819      | 1991         | 1    |
| 73819      | 1997         | 0    |
| 73836      | 1979         | 3    |
| 73836      | 1982         | 4    |
| 73836      | 1985         | 49   |
| 73836      | 1988         | 65   |
| 73836      | 1992         | 91   |
| 73836      | 1996         | 22.4 |
| 73836      | 2000         | 34.1 |
| 73837      | 1984         | 13.7 |
| 73837      | 1987         | 7.5  |
| 73837      | 1991         | 10.1 |
| 73837      | 1995         | 6.3  |
| 73837      | 2000         | 2.6  |
| 73880      | 1978         | 14   |
| 73919E     | 1978         | 46.9 |
| 73919E     | 1982         | 68.8 |
| 73919E     | 1987         | 99.8 |
| 73919E     | 1991         | 98   |
| 73919E     | 1995         | 30.9 |
| 73919E     | 1999         | 48.1 |
| 73920W     | 1984         | 0.1  |
| 73920W     | 1989         | 6.7  |
| 73920W     | 1993         | 19.4 |
| 73920W     | 2000         | 24.1 |
| 73922      | 1980         | 0    |
| 73922      | 1988         | 1.7  |
| 73922      | 1992         | 2.5  |
| 73922      | 1999         | 24.1 |
| 73949      | 1978         | 17.8 |
| 73949      | 1979         | 58.7 |
| 73949      | 1980         | 48   |
| 73949      | 1981         | 76.9 |
| 73949      | 1982         | 31.3 |
| 73949      | 1983         | 87.8 |
| 73949      | 1987         | 88   |
| 73949      | 1991         | 60   |
| 73949      | 1995         | 65   |
| 73949      | 1999         | 91   |
| 7398       | 1985         | 0    |
| 7398       | 1989         | 0    |
| 7398       | 1993         | 0    |
| 7398       | 1997         | 0.1  |
| 740        | 1978         | 0    |
| 740        | 1983         | 0    |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 77466      | 1990          | 35.4    |
| 77493      | 1982          | 0       |
| 77493      | 1990          | 0       |
| 77493      | 1996          | 0       |
| 77501      | 1983          | 0       |
| 77501      | 1989          | 1       |
| 77501      | 1996          | 0       |
| 77503      | 1982          | 0       |
| 77504      | 1982          | 0.3     |
| 77504      | 1987          | 1       |
| 77504      | 1991          | 6.7     |
| 77504      | 1999          | 5.6     |
| 77507      | 1983          | 0       |
| 77521      | 1984          | 7.8     |
| 77521      | 1989          | 22.2    |
| 77521      | 1995          | 13.6    |
| 77521      | 2000          | 45.5    |
| 77528W     | 1984          | 1       |
| 77528W     | 1989          | 19.8    |
| 77530      | 1983          | 12      |
| 77534      | 1984          | 22      |
| 77534      | 1991          | 8       |
| 77534      | 1998          | 13.1    |
| 77556E     | 1984          | 3       |
| 77556E     | 1989          | 4.3     |
| 77556E     | 1998          | 4.2     |
| 77556W     | 1984          | 6.7     |
| 77556W     | 1989          | 7.5     |
| 77556W     | 1998          | 15.8    |
| 77753W     | 1984          | 3.9     |
| 77753W     | 1989          | 16.2    |
| 77753W     | 1993          | 55      |
| 77753W     | 1999          | 25.2    |
| 77782      | 1984          | 0.6     |
| 77782      | 1987          | 0.3     |
| 77782      | 1991          | 0.4     |
| 77782      | 1995          | 0.2     |
| 77782      | 1999          | 1.8     |
| 77816      | 1984          | 0       |
| 77816      | 1989          | 0       |
| 77816      | 1993          | 0.1     |
| 77816      | 1997          | 0       |
| 77817      | 1984          | 0       |
| 77817      | 1989          | 0       |
| 77817      | 1993          | 0       |
| 77817      | 1997          | 0       |
| 77846      | 1985          | 0       |
| 77846      | 1989          | 0       |
| 77846      | 1996          | 0.1     |
| 77846      | 1997          | 7       |
| 77859W     | 1984          | 5       |
|            |               |         |



| EilaNumbar |               | [0/ 000 |
|------------|---------------|---------|
|            | InspectonDate |         |
| 740        | 1992          | 3       |
| 740        | 1996          | 2.7     |
| 74031N     | 2000          | 0.5     |
| 74116      | 1978          | 3       |
| 74116      | 1984          | 4       |
| 74116      | 1992          | 7       |
| 74116      | 1996          | 7.1     |
| 74137      | 1978          | 12.4    |
| 74137      | 1983          | 30.8    |
| 74137      | 1984          | 17.1    |
| 74137      | 1989          | 9.2     |
| 74137      | 1993          | 7.9     |
| 74137      | 1996          | 29.8    |
| 74137      | 1997          | 24      |
| 74137      | 1978          | 12.4    |
| 74137      | 1983          | 30.8    |
| 74137      | 1984          | 17.1    |
| 74137      | 1989          | 9.2     |
| 74137      | 1993          | 7.9     |
| 74137      | 1996          | 29.8    |
| 74137      | 1997          | 24      |
| 74195      | 1980          | 9       |
| 74195      | 1985          | 21      |
| 74195      | 1990          | 40      |
| 74195      | 1996          | 45      |
| 74217      | 1977          | 35      |
| 74217      | 1979          | 59      |
| 74217      | 1980          | 42      |
| 74217      | 1982          | 90      |
| 74217      | 1983          | 95      |
| 74217      | 1988          | 26      |
| 74217      | 1993          | 19      |
| 74217      | 1997          | 14.3    |
| 74217      | 1977          | 35      |
| 74217      | 1979          | 59      |
| 74217      | 1980          | 42      |
| 74217      | 1982          | 90      |
| 74217      | 1983          | 95      |
| 74217      | 1988          | 26      |
| 74217      | 1993          | 19      |
| 74217      | 1997          | 14.3    |
| 74222      | 1979          | 1.5     |
| 74222      | 1983          | 1.9     |
| 74222      | 1988          | 2.5     |
| 74222      | 1997          | 1.4     |
| 74227      | 1980          | 1       |
| 74227      | 1985          | 8       |
| 74227      | 1990          | 22      |
| 74227      | 1994          | 9       |
| 74227      | 1996          | 3.8     |
| 74227      | 2000          | 16.3    |
|            |               |         |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 77859W     | 1989          | 4       |
| 77859W     | 1995          | 12      |
| 77859W     | 1997          | 7.1     |
| 77872N     | 1984          | 23.9    |
| 77872N     | 1989          | 32.4    |
| 77872N     | 1994          | 5.5     |
| 77872N     | 1998          | 1.9     |
| 77878      | 1984          | 0.1     |
| 77878      | 1989          | 0.3     |
| 77878      | 1993          | 0.3     |
| 77878      | 1997          | 0.1     |
| 77919      | 1984          | 0.7     |
| 77919      | 2000          | 0.3     |
| 7802       | 1978          | 4.8     |
| 7802       | 1980          | 25.3    |
| 7802       | 1982          | 42.5    |
| 7802       | 1983          | 32      |
| 7802       | 1987          | 33.7    |
| 7802       | 1991          | 22.2    |
| 7802       | 1995          | 13.6    |
| 7802       | 1999          | 8.5     |
| 78031      | 1984          | 0.9     |
| 78031      | 1989          | 0.1     |
| 78031      | 1994          | 17.3    |
| 78031      | 1998          | 57.8    |
| 78031      | 1999          | 49      |
| 78104      | 1984          | 0.9     |
| 78104      | 1989          | 4.2     |
| 78104      | 1993          | 14.7    |
| 78104      | 1997          | 6.9     |
| 78123      | 1985          | 1.5     |
| 78123      | 1989          | 0.4     |
| 78123      | 1993          | 0.3     |
| 78123      | 1998          | 0.3     |
| 7815       | 1981          | 0       |
| 7815       | 1989          | 0.2     |
| 7815       | 1993          | 0       |
| 7815       | 1997          | 0       |
| 7815       | 1985          | 0       |
| 7815       | 1992          | 0       |
| 7815       | 1996          | 0.7     |
| 78194      | 1985          | 0       |
| 78194      | 1990          | 0       |
| 78194      | 1994          | 0       |
| 78194      | 1998          | 0       |
| 78197      | 1985          | 6.5     |
| 78197      | 1990          | 2       |
| 78197      | 1994          | 8.3     |
| 78199      | 1984          | 13.9    |
| 78199      | 1993          | 4.7     |
| 78199      | 1998          | 2.3     |
|            |               |         |



| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 74228      | 1980          |         |
| 74228      | 1984          | 66      |
| 74228      |               | 63      |
| 74228      | 1986          | 62      |
| 74228      | 1988          | 7       |
|            | 1992          | 47      |
| 74228      | 1996          | 41.1    |
| 74228      | 2000          | 39.2    |
| 74229      | 1981          | 0.1     |
| 74229      | 1987          | 53.6    |
| 74229      | 1991          | 8.1     |
| 74229      | 1994          | 22.8    |
| 74229      | 2000          | 14.4    |
| 74232      | 1981          | 0       |
| 74232      | 1988          | 14.2    |
| 74232      | 1994          | 5.6     |
| 74232      | 1995          | 34.2    |
| 74232      | 1996          | 31      |
| 74232      | 1997          | 50      |
| 74232      | 1998          | 24.3    |
| 74233      | 1979          | 24      |
| 74233      | 1982          | 24      |
| 74233      | 1983          | 67      |
| 74233      | 1984          | 95      |
| 74233      | 1989          | 69      |
| 74233      | 1993          | 71      |
| 74233      | 1997          | 39.8    |
| 74236      | 1981          | 0.1     |
| 74236      | 1988          |         |
|            |               | 2.1     |
| 74236      | 1994          | 1.6     |
| 74236      | 1999          | 8.5     |
| 74282W     | 1979          | 6.2     |
| 74282W     | 1983          | 73.6    |
| 74282W     | 1986          | 62.8    |
| 74282W     | 1990          | 68.2    |
| 74352E     | 1981          | 1       |
| 74352E     | 2000          | 27.7    |
| 74352W     | 1981          | 25      |
| 74352W     | 1985          | 74.9    |
| 74352W     | 1989          | 55.2    |
| 74352W     | 1993          | 19.4    |
| 74352W     | 1997          | 25.4    |
| 74353E     | 1977          | 0       |
| 74353E     | 1981          | 36      |
| 74353E     | 1984          | 43      |
| 74353E     | 1986          | 27      |
| 74353E     | 1988          | 10      |
| 74353E     | 1992          | 4       |
| 74353E     | 1995          | 5       |
| 74353E     | 1995          | 3       |
| 74353E     | 1997          | 2.4     |
|            |               | 3.9     |
| 74353E     | 1998          | 5.5     |

| FileNumber | InspectonDate | %>300mV    |
|------------|---------------|------------|
| 78215      | 1984          | 12.5       |
| 78215      | 1993          | 5          |
| 78215      | 1998          | 2.7        |
| 78260      | 1982          | 0.2        |
| 7836       | 1980          | 2.8        |
| 7836       | 1986          | 3.2        |
| 7836       | 1990          | 63.8       |
| 7836       | 1995          | 25.8       |
| 7836       | 1999          | 43.8       |
| 786        | 1985          |            |
| 786        | 1989          | 2.7<br>4.3 |
| 786        | 1989          | 4.3        |
| 786        | 1909          | 3.2        |
| 786        | 1993          | 2.9        |
| 78709      |               |            |
|            | 2000          | 36.7       |
| 7871       | 1980          | 0.6        |
| 7871       | 1986          | 0.1        |
| 7871       | 1990          | 0.5        |
| 7871       | 1994          | 0.2        |
| 7871       | 1998          | 1.8        |
| 78730      | 1985          | 0.1        |
| 78730      | 1990          | 0.2        |
| 78765      | 1985          | 0          |
| 78765      | 1989          | 0          |
| 78765      | 1993          | 2          |
| 78765      | 1996          | 1.6        |
| 78808      | 1985          | 0.2        |
| 78808      | 1989          | 0.7        |
| 78808      | 1993          | 1.8        |
| 78808      | 1997          | 0.5        |
| 78896      | 1977          | 0          |
| 78896      | 1980          | 0.6        |
| 78896      | 1988          | 1.7        |
| 78896      | 1992          | 5.3        |
| 78896      | 1997          | 0.9        |
| 79375      | 1985          | 9.6        |
| 79375      | 1992          | 3.8        |
| 79375      | 1998          | 1.3        |
| 7938       | 1985          | 2          |
| 7938       | 1989          | 2          |
| 7938       | 1995          | 4.5        |
| 7938       | 1999          | 5.6        |
| 79432      | 1985          | 0          |
| 79432      | 1989          | 1          |
| 79432      | 1993          | 2          |
| 79432      | 1996          | 3          |
| 79443      | 1985          | 4          |
| 79443      | 1989          | 6          |
| 79443      | 1993          | 8          |
| 79443      | 1997          | 0.5        |
| 79766      | 2000          | 8.9        |



| FileNumber        | InspectonDate | %>300mV |
|-------------------|---------------|---------|
| 74353W            | 1977          | 3       |
| 74353W            | 1981          | 21      |
| 74353W            | 1984          | 52      |
| 74353W            | 1986          |         |
| 74353W            | 1988          | 84      |
| 74353W            |               | 32      |
| 74353W            | 1992<br>1995  | 55      |
| 74353W            |               | 18      |
| 74353W            | 1996<br>1997  | 21      |
| 74353W            | 1997          | 10.6    |
| 74353VV<br>74354E |               | 5       |
| 74354E<br>74354E  | 1981          | 0.3     |
|                   | 1983          |         |
| 74354E            | 1988          | 3.7     |
| 74354E            | 1992          | 0.4     |
| 74354E            | 1997          | 7.7     |
| 74354W            | 1981          | 25      |
| 74354W            | 1983          | 47      |
| 74354W            | 1986          | 64      |
| 74354W            | 1988          | 37      |
| 74354W            | 1992          | 6       |
| 74354W            | 1996          | 11.2    |
| 74355E            | 1977          | 0.3     |
| 74355E            | 1979          | 1.8     |
| 74355E            | 1980          | 2.7     |
| 74355E            | 1981          | 4.5     |
| 74355E            | 1982          | 8.2     |
| 74355E            | 1983          | 7.6     |
| 74355E            | 1987          | 2.4     |
| 74355E            | 1991          | 9.4     |
| 74355E            | 1992          | 7.7     |
| 74355E            | 1998          | 10.2    |
| 74355W            | 1977          | 72.5    |
| 74355W            | 1978          | 79.5    |
| 74355W            | 1979          | 60.6    |
| 74355W            | 1980          | 60.7    |
| 74355W            | 1981          | 33.7    |
| 74355W            | 1982          | 31.4    |
| 74355W            | 1983          | 41      |
| 74355W            | 1987          | 28.8    |
| 74355W            | 1991          | 4.9     |
| 74355W            | 1992          | 2.4     |
| 74355W            | 1996          | 1.7     |
| 74355W            | 1997          | 1.3     |
| 74358             | 1980          | 0.6     |
| 74358             | 1987          | 0.1     |
| 74358             | 1991          | 0       |
| 74358             | 1995          | 0       |
| 74358             | 1999          | 5       |
| 74381             | 1978          | 89.8    |
| 74381             | 1980          | 94.7    |
| 74381             | 1982          | 68.1    |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 7978       | 1980          | 76      |
| 7978       | 1982          | 61      |
| 7978       | 1988          | 86      |
| 7978       | 1996          | 97.2    |
| 8028       | 1979          | 8       |
| 8028       | 1983          | 11      |
| 8028       | 1988          | 6       |
| 8028       | 1992          | 3       |
| 8028       | 1996          | 2.6     |
| 8028       | 1996          | 2.6     |
| 8036       | 1979          | 1       |
| 8036       | 1982          | 11      |
| 8036       | 1983          | 7       |
| 8036       | 1987          | 2       |
| 8036       | 1992          | 21      |
| 8036       | 1996          | 3.3     |
| 8077       | 1984          | 0.1     |
| 8077       | 1989          | 1.7     |
| 8077       | 1993          | 0.4     |
| 8077       | 1997          | 2.6     |
| 820        | 1980          | 2.6     |
| 820        | 1986          | 3.7     |
| 820        | 1990          | 4.5     |
| 8303       | 1980          | 5.3     |
|            |               | 3.5     |
| 8303       | 1986          |         |
| 8303       | 1990          | 36.3    |
| 8303       | 1994          | 51.7    |
| 8303       | 1998          | 23.3    |
| 8435E      | 1978          | 9.3     |
| 8435E      | 1983          | 24.4    |
| 8435E      | 1986          | 67.7    |
| 8435E      | 1987          | 93      |
| 8435E      | 1988          | 34.3    |
| 8435E      | 1992          | 22      |
| 8435E      | 1999          | 15.3    |
| 8487       | 1985          | 1       |
| 8487       | 1992          | 3       |
| 8487       | 1996          | 0.6     |
| 8495       | 1979          | 25.1    |
| 8495       | 1982          | 27.9    |
| 8495       | 1989          | 90.5    |
| 8495       | 1993          | 33.7    |
| 8495       | 1997          | 40.7    |
| 851        | 1982          | 4.3     |
| 8641       | 1981          | 1.3     |
| 8641       | 1989          | 2.4     |
| 8641       | 1993          | 2       |
| 8641       | 1997          | 1.8     |
| 8707       | 1998          | 0.3     |
| 8719       | 1978          | 25.9    |
| 8719       | 1982          | 78.5    |
|            |               |         |



| FileNumber | InspectonDate | %>200m\/ |
|------------|---------------|----------|
| 74381      |               |          |
|            | 1983          | 69.5     |
| 74381      | 1987          | 88.3     |
| 74381      | 1991          | 96       |
| 74381      | 1994          | 36       |
| 74381      | 1998          | 59.9     |
| 74426      | 1978          | 3        |
| 74426      | 1983          | 2        |
| 74426      | 1987          | 2        |
| 74426      | 1991          | 11       |
| 74426      | 1993          | 6        |
| 74426      | 1994          | 1        |
| 74426      | 1995          | 2        |
| 74426      | 1996          | 2.1      |
| 74426      | 1997          | 2.2      |
| 74426      | 1998          | 2.6      |
| 74440      | 1978          | 19.8     |
| 74440      | 1979          | 499.4    |
| 74440      | 1980          | 31.8     |
| 74440      | 1981          | 45.2     |
| 74440      | 1982          | 36.6     |
| 74440      | 1983          | 30.4     |
| 74440      | 1987          | 86.1     |
| 74440      | 1991          | 68       |
| 74440      | 1995          | 61       |
| 74440      | 1998          | 92.1     |
| 74440      | 1990          | 6        |
|            |               |          |
| 74447      | 1997          | 3.9      |
| 74452      | 1978          | 46.8     |
| 74452      | 1979          | 54.6     |
| 74452      | 1979          | 21       |
| 74452      | 1980          | 99.2     |
| 74452      | 1981          | 82.4     |
| 74452      | 1982          | 51.8     |
| 74452      | 1983          | 92.6     |
| 74452      | 1988          | 95.5     |
| 74455      | 1979          | 5.6      |
| 74455      | 1983          | 8.9      |
| 74455      | 1989          | 22       |
| 74455      | 1995          | 3.2      |
| 74455      | 2000          | 2.6      |
| 74458S     | 1977          | 26.3     |
| 74458S     | 1978          | 45.5     |
| 74458S     | 1978          | 99       |
| 74458S     | 1979          | 11.9     |
| 74458S     | 1980          | 11.6     |
| 74458S     | 1981          | 12.5     |
| 74458S     | 1983          | 5.6      |
| 74458S     | 1987          | 1.9      |
| 74458S     | 1991          | 3.7      |
| 74458S     | 1996          | 1.4      |
| 744565     | 1980          | 0        |
| 74340      | 1900          | U        |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 8719       |               |         |
| 8719       | 1986<br>1988  | 62.9    |
| 8719       |               | 79.9    |
| 8719       | 1993          | 23.8    |
|            | 1997          | 30      |
| 875        | 1990          | 0       |
| 875        | 1997          | 0.5     |
| 876        | 1977          | 0       |
| 876        | 1986          | 3.7     |
| 8792       | 1978          | 74.8    |
| 8792       | 1983          | 0       |
| 8792       | 1987          | 0       |
| 8792       | 1991          | 0.1     |
| 8792       | 1995          | 0       |
| 8792       | 1999          | 0.1     |
| 8800       | 1980          | 0.1     |
| 8800       | 1986          | 1       |
| 8800       | 1991          | 0.5     |
| 8800       | 1995          | 1.2     |
| 8800       | 2000          | 1.5     |
| 887        | 1978          | 2       |
| 887        | 1983          | 8       |
| 887        | 1985          | 9       |
| 887        | 1988          | 5       |
| 887        | 1992          | 8       |
| 887        | 1996          | 7.8     |
| 8987       | 1979          | 0       |
| 8987       | 1986          | 0       |
| 8987       | 1992          | 0       |
| 8987       | 1996          | 0       |
| 903        | 1978          | 10.4    |
| 903        | 1984          | 24.3    |
| 903        | 1986          | 13.3    |
| 903        | 1990          | 8.4     |
| 903        | 1995          | 4.3     |
| 903        | 2000          | 2.6     |
| 904        | 1978          | 0.9     |
| 904        | 1983          | 3.8     |
| 904        | 1986          | 12.3    |
| 904        | 1990          | 6.5     |
| 904        | 1995          | 4.2     |
| 904        | 2000          | 2.6     |
| 9099       | 1979          | 0.1     |
| 9099       | 1986          | 0       |
| 9099       | 1990          | 6       |
| 9099       | 1994          | 28.4    |
| 9099       | 1999          | 9.2     |
| 9204       | 1980          | 0       |
| 9219W      | 1985          | 7       |
| 9219W      | 1989          | 8       |
| 9219W      | 1997          | 2.9     |
| 9230       | 1981          | 0       |
| 0200       |               |         |



| FileNumber | InspectonDate | %>300mV    |
|------------|---------------|------------|
| 74540      | 1986          | 0          |
| 74540      | 1992          | 0.3        |
| 74596      | 1981          | 67.3       |
| 74596      | 1982          | 89.1       |
| 74596      | 1986          | 96.9       |
| 74596      | 1991          | 99.6       |
| 74596      | 1995          |            |
| 74596      |               | 67.7<br>90 |
|            | 1999          |            |
| 74600W     | 1986          | 64.2       |
| 7461       | 1979          | 4.1        |
| 7461       | 1983          | 21.5       |
| 7461       | 1987          | 31.7       |
| 7461       | 1992          | 25         |
| 7461       | 1996          | 46.7       |
| 7461       | 1997          | 20.4       |
| 74653      | 1978          | 4          |
| 74653      | 1979          | 4.3        |
| 74653      | 1983          | 10.6       |
| 74653      | 1987          | 0.4        |
| 74653      | 1991          | 0.2        |
| 74653      | 1995          | 0.5        |
| 74653      | 2000          | 0.1        |
| 74678      | 1977          | 49.8       |
| 74678      | 1978          | 97         |
| 74678      | 1978          | 1          |
| 74678      | 1979          | 16         |
| 74678      | 1980          | 27.4       |
| 74678      | 1981          | 15.4       |
| 74678      | 1983          | 7.1        |
| 74678      | 1987          | 0.9        |
| 74678      | 1991          | 5.2        |
| 74678      | 1995          | 1.3        |
| 74679      | 1977          | 23.4       |
| 74679      | 1978          | 3.3        |
| 74679      | 1978          | 1          |
| 74679      | 1979          | 4.4        |
| 74679      | 1980          | 36.5       |
| 74679      | 1981          | 48.3       |
| 74679      | 1982          | 14.1       |
| 74679      | 1987          | 17.1       |
| 74679      | 1991          | 8          |
| 74679      | 1995          | 17.7       |
|            | 1999          | 22.4       |
| 74679      | 1981          | 0.3        |
| 74710      |               | 11.4       |
| 74710      | 1987          | 13.4       |
| 74710      | 1991          | 11.3       |
| 74710      | 1995          | 5.1        |
| 74710      | 1999          | 5.1        |
| 7487       | 1984          | 1          |
| 7487       | 1988          |            |
| 7487       | 1992          | 0          |

| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 9230       | 1992          | 0       |
| 9230       | 1997          | 0       |
| 9259       | 1984          | 0       |
| 9259       | 1989          | 42      |
| 9259       | 1993          | 38      |
| 9259       | 1997          | 0       |
| 9487       | 1982          | 0       |
| 9487       | 1989          | 0       |
| 9487       | 1996          | 0       |
| 9487       | 2000          | 0.5     |
| 9551       | 1979          | 60.1    |
| 9551       | 1980          | 35.5    |
| 9551       | 1983          | 66.9    |
| 9551       | 1986          | 11.9    |
| 9551       | 1988          | 30.3    |
| 9551       | 1993          | 26.3    |
| 9551       | 1997          | 63.8    |
| 9590       | 1985          | 0       |
| 9590       | 1992          | 0       |
| 9590       | 1996          | 0       |
| 9596       | 1982          | 2.1     |
| 9755       | 1980          | 6.4     |
| 9755       | 1986          | 45.9    |
| 9755       | 1990          | 21.2    |
| 9755       | 1995          | 73.4    |
| 9755       | 1999          | 45.5    |
|            | 1984          | 13.1    |
| 977<br>977 | 1989          | 1.5     |
| 977        | 1993          | 11.1    |
| 977        | 2000          | 3.2     |
| 983        | 1980          | 6.5     |
| 983        | 1986          | 5.7     |
| 983        | 1990          | 17.7    |
| 9899       | 1979          | 29.5    |
|            | 1983          | 39.2    |
| 9899       |               | 80.5    |
| 9899       | 1986<br>1990  | 17      |
| 9899       | 1990          | 14      |
| 9899       |               | 18      |
| 9899       | 1998          |         |
| 9903       | 1991          | 98      |
| 9903       | 1996          | 79      |
| 9903       | 1998          | 75.2    |
| 9910       | 1978          | 36.4    |
| 9910       | 1982          | 70.5    |
| 9910       | 1983          | 83.3    |
| 9910       | 1987          | 87.1    |
| 9910       | 1991          | 33      |
| 9910       | 1995          | 27      |
| 9910       | 1999          | 24.3    |
| 9943       | 1981          | 0.6     |
| 9943       | 1989          | 0.9     |
|            |               |         |



| FileNumber | InspectonDate | %>300mV |
|------------|---------------|---------|
| 7487       | 1996          | 0.7     |
| 7492       | 1981          | 2.3     |
| 7492       | 1988          | 0       |
| 74954      | 1978          | 85.4    |
| 74954      | 1982          | 51.9    |
| 74954      | 1984          | 71      |
| 74954      | 1987          | 22.9    |

|   | FileNumber | InspectonDate | %>300mV |
|---|------------|---------------|---------|
|   | 9943       | 1993          | 0.9     |
|   | 9943       | 1997          | 1.4     |
|   | 999        | 1980          | 0       |
| ı | 999        | 1986          | 0       |
| ı | 999        | 1992          | 0       |
| ı | 999        | 1996          | 0       |



## **DECK INFORMATION DATA**

| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover   |
|------------|-----------|----------|----------|-------------|-------------|---------|
| 00493W     | 400       | 25       | 20       | 300         | 450         | 50      |
| 00756N     | 125       | 0        | 0        | 0           | 0           | 0       |
| 01059W     | 100       | 10       | 10       | 180         | 250         | 52      |
| 06985E     | 140       | 15       | 20       | 190         | 210         | 40      |
| 06985W     | 175       | 10       | 10       | 300         | 300         |         |
| 08435E     | 165       | 10       | 15       | 550         | 215         | 0<br>25 |
| 08435W     | 140       | 15       | 20       | 180         | 210         |         |
| 09219W     | 140       | 15       | 20       | 190         | 170         | 40      |
| 09467E     | 100       | 10       | 10       | 200         | 250         |         |
| 09467W     | 100       | 10       | 10       | 200         | 250         | 40      |
| 09899W     | 150       | 10       | 15       | 450         | 165         | 40      |
| 1031       | 125       | 15       | 15       | 310         | 300         | 40      |
| 1049       | 100       | 13       | 13       | 180         | 250         | 52      |
| 1062       | 175       | 10       | 15       | 450         | 175         | 50      |
| 1085       | 150       | 30       | 20       | 115         | 175         |         |
| 1122       | 190       | 0        | 15       | 0           | 175         | 40      |
| 1126       | 165       | 15       | 20       | 180         |             |         |
| 1137       | 175       | 10       | 15       |             | 140         | 65      |
| 1140       | 125       | 0        | 0        | 450         | 190         | 40      |
| 1145       | 125       | 0        | 0        | 0           | 0           | 85      |
| 1153       | 175       | 15       |          | 0           | 0           | 0       |
| 1158       |           |          | 15       | 450         | 165         | 50      |
|            | 190       | 10       | 15       | 450         | 650         | 0       |
| 1227       | 165       | 10       | 15       | 450         | 150         | 0       |
| 1241       | 125       | 0        | 0        | 0           | 0           | 0       |
| 1242       | 165       | 15       | 20       | 190         | 210         | 65      |
| 1245       | 200       | 10       | 15       | 500         | 165         | 65      |
| 1303       | 425       | 25       | 20       | 175         | 250         | 50      |
| 13096      | 125       | 0        | 0        | 0           | 0           | 0       |
| 13117      | 175       | 10       | 15       | 500         | 165         | 65      |
| 13149      | 190       | 10       | 15       | 525         | 215         | 50      |
| 13166      | 140       | 20       | 20       | 275         | 200         | 55      |
| 13181      | 150       | 10       | 20       | 425         | 215         | 50      |
| 13371      | 225       | 15       | 20       | 300         | 150         | 75      |
| 13445      | 100       | 10       | 10       | 150         | 150         | 40      |
| 13473      | 225       | 15       | 15       | 300         | 140         | 50      |
| 13486      | 125       | 0        | 0        | 0           | 0           | 0       |
| 135        | 125       | 0        | 0        | 0           | 0           | 0       |
| 13545      | 200       | 15       | 15       | 300         | 140         | 50      |
| 13587      | 150       | 10       | 10       | 450         | 125         | 40      |
| 13625      | 125       | 0        | 0        | 0           | 0           | 0       |
| 13692      | 220       | 15       | 25       | 200         | 175         | 50      |
| 13700      | 240       | 15       | 20       | 360         | 300         | 50      |
| 13742      | 265       | 10       | 25       | 450         | 200         | 40      |
| 13824      | 190       | 15       | 20       | 350         | 140         | 75      |
| 13832      | 190       | 10       | 15       | 225         | 190         | 50      |
| 13852      | 190       | 10       | 15       | 450         | 125         | 65      |
| 1402       | 175       | 10       | 15       | 450         | 225         | 50      |
| 1409       | 125       | 10       | 15       | 450         | 250         | 50      |
| 1420       | 225       | 15       | 15       | 300         | 300         | 50      |



| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------|-----------|----------|----------|-------------|-------------|-------|
| 1426       | 150       | 10       | 20       | 450         | 250         | 25    |
| 1427       | 150       | 10       | 15       | 450         | 225         | 25    |
| 1432       | 155       | 10       | 15       | 450         | 150         | 40    |
| 149        | 125       | 0        | 0        | 0           | 0           | 0     |
| 1491       | 160       | 15       | 20       | 200         | 200         | 75    |
| 1493       | 175       | 10       | 15       | 525         | 200         | 50    |
| 1569       | 100       | 10       | 10       | 190         | 250         | 40    |
| 1606       | 165       | 10       | 15       | 450         | 140         | 40    |
| 1614       | 165       | 15       | 20       | 190         | 210         | 65    |
| 1632       | 165       | 10       | 20       | 150         | 150         | 40    |
| 1642       | 100       | 13       | 13       | 180         | 250         | 52    |
| 1658       | 225       | 15       | 15       | 300         | 300         | 50    |
| 1669       | 125       | 0        | 0        | 0           | 0           | 0     |
| 1694       | 133       | 0        | 10       | 0           | 190         | 75    |
| 1741       | 175       | 10       | 15       | 450         | 175         | 50    |
| 1797       | 190       | 10       | 20       | 450         | 165         | 40    |
| 181        | 235       | 15       | 20       | 400         | 180         | 75    |
| 1810       | 175       | 10       | 15       | 600         | 175         | 25    |
| 1886       | 125       | 10       | 10       | 120         | 150         | 50    |
| 189        | 190       | 20       | 10       | 165         | 450         | 40    |
| 1980       | 150       | 10       | 15       | 450         | 225         | 50    |
| 2008       | 175       | 10       | 15       | 450         | 150         | 50    |
| 2010       | 190       | 10       | 15       | 450         | 150         | 40    |
| 2010       | 100       | 10       | 10       | 190         | 500         | 40    |
| 2027       | 100       | 13       | 13       | 254         | 190         | 51    |
|            | 165       | 10       | 15       | 450         | 150         | 25    |
| 2102       | 235       | 15       | 20       | 400         | 180         | 75    |
| 2108       |           | 15       | 20       | 200         | 180         | 65    |
| 211        | 165       | 10       | 10       | 180         | 250         | 52    |
| 2119       | 100       | 0        | 0        | 0           | 0           | 0     |
| 2143       | 125       | 20       | 15       | 300         | 300         | 50    |
| 2144       | 225       | 0        | 0        | 0           | 0           | 0     |
| 2155       | 150       |          | 15       | 150         | 125         | 40    |
| 223        | 150       | 30       | 15       | 0           | 165         | 40    |
| 2233       | 190       | 0        |          | 400         | 230         | 50    |
| 2235       | 215       | 13       | 15       | 180         | 210         | 40    |
| 2240       | 140       | 15       |          | 180         | 250         | 52    |
| 2291       | 100       | 10       | 10       | 0           | 0           | 0     |
| 2301       | 125       | 0        |          | 440         | 175         | 75    |
| 2302       | 215       | 10       | 20       | 450         | 225         | 25    |
| 233        | 150       | 10       | 20       | 450         | 250         | 25    |
| 2359       | 150       | 10       | 15       |             | 175         | 50    |
| 2401       | 175       | 10       | 15       | 450<br>450  | 175         | 40    |
| 2430       | 165       | 10       | 15       |             | 150         | 50    |
| 2487       | 175       | 10       | 15       | 225         | 0           | 0     |
| 261        | 150       | 0        | 0        | 0           |             | 0     |
| 272        | 125       | 0        | 0        | 0           | 0           |       |
| 274        | 125       | 0        | 0        | 0           | 0           | 0     |
| 277        | 125       | 0        | 0        | 0           | 0           | 0     |
| 278        | 175       | 15       | 15       | 450         | 200         | 25    |
| 286        | 165       | 10       | 15       | 450         | 130         |       |
| 288        | 210       | 20       | 20       | 300         | 200         | 50    |



| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------|-----------|----------|----------|-------------|-------------|-------|
| 290        | 150       | 20       | 20       | 400         | 200         | 75    |
| 310        | 180       | 15       | 20       | 275         | 200         | 75    |
| 313        | 200       | 10       | 10       | 400         | 350         | 50    |
| 315        | 150       | 10       | 15       | 450         | 215         | 40    |
| 334        | 225       | 20       | 20       | 250         | 100         | 75    |
| 340        | 175       | 10       | 15       | 450         | 175         | 50    |
| 358        | 215       | 10       | 15       | 450         | 250         | 65    |
| 395        | 150       | 10       | 15       | 450         | 250         | 75    |
| 457        | 175       | 10       | 20       | 450         | 225         | 50    |
| 477        | 215       | 15       | 20       | 350         | 150         | 50    |
| 521        | 300       | 15       | 25       | 450         | 0           | 50    |
| 563        | 100       | 10       | 10       | 150         | 250         | 40    |
| 589        | 165       | 10       | 15       | 525         | 125         | 65    |
| 605        | 100       | 10       | 10       | 180         | 250         | 52    |
| 611        | 140       | 10       | 15       | 450         | 165         | 40    |
| 6565       | 170       | 10       | 15       | 450         | 225         | 25    |
| 6581       | 137       | 20       | 20       | 200         | 200         | 50    |
| 6615       | 150       | 0        | 0        | 0           | 0           | 0     |
| 6639       | 140       | 15       | 20       | 210         | 290         | 40    |
| 6733       | 175       | 10       | 10       | 740         | 300         | 50    |
|            | 125       | 0        | 0        | 0           | 0           | 0     |
| 6809       |           | 10       | 15       | 450         | 150         | 40    |
| 698        | 165       |          |          | 320         | 200         | 75    |
| 6990       | 160       | 15       | 10       |             | 150         | 0     |
| 70247      | 175       | 15       | 15       | 300         |             | 0     |
| 70277      | 125       | 0        | 0        | 0           | 0           | 75    |
| 70318      | 230       | 15       | 20       | 300         | 125         |       |
| 70509      | 170       | 10       | 15       | 300         | 150         | 40    |
| 70566      | 150       | 10       | 15       | 350         | 225         | 0     |
| 70580      | 150       | 10       | 15       | 450         | 165         | 40    |
| 70594      | 175       | 10       | 15       | 0           | 140         | 40    |
| 7064       | 165       | 15       | 20       | 200         | 180         | 65    |
| 7086       | 150       | 0        | 0        | 0           | 0           | 0     |
| 70935      | 175       | 10       | 15       | 450         | 140         | 40    |
| 710        | 175       | 10       | 15       | 450         | 200         | 50    |
| 71004      | 180       | 20       | 20       | 230         | 150         | 65    |
| 7101       | 125       | 0        | 0        | 0           | 0           | 0     |
| 71019      | 190       | 10       | 15       | 400         | 175         | 65    |
| 71048      | 100       | 10       | 10       | 180         | 250         | 52    |
| 71054      | 190       | 10       | 15       | 375         | 200         | 50    |
| 71069      | 165       | 15       | 20       | 180         | 210         | 65    |
| 7109       | 165       | 10       | 15       | 325         | 175         | 40    |
| 71106      | 200       | 10       | 15       | 375         | 250         | 65    |
| 71145      | 175       | 10       | 15       | 350         | 215         | 55    |
| 71265      | 100       | 10       | 0        | 0           | 190         | 80    |
| 71291      | 175       | 10       | 20       | 450         | 200         | 40    |
| 71313      | 150       | 10       | 15       | 450         | 175         | 25    |
| 71340E     | 200       | 20       | 20       | 350         | 100         | 75    |
| 71340W     | 200       | 20       | 20       | 350         | 100         | 75    |
| 71344E     | 150       | 25       | 15       | 300         | 300         | 75    |
| 71352      | 210       | 15       | 15       | 300         | 120         | 65    |
|            | 127       | 15       | 10       | 150         | 250         | 75    |
| 71429      | 127       | 15       | 10       | 100         |             |       |



| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------|-----------|----------|----------|-------------|-------------|-------|
| 7146       | 150       | 25       | 15       | 180         | 300         | 75    |
| 7150       | 180       | 13       | 15       | 220         | 180         | 25    |
| 71504      | 175       | 10       | 15       | 450         | 200         | 50    |
| 71613      | 100       | 13       | 13       | 180         | 250         | 50    |
| 7168       | 175       | 10       | 15       | 450         | 200         | 50    |
| 71697      | 165       | 15       | 20       | 180         | 170         | 65    |
| 71734      | 100       | 10       | 10       | 190         | 250         | 40    |
| 71746      | 100       | 13       | 13       | 190         | 500         | 40    |
| 71821      | 170       | 25       | 20       | 300         | 150         | 50    |
| 71961      | 150       | 0        | 0        | 0           | 0           | 0     |
| 72007E     | 140       | 15       | 20       | 210         | 290         | 40    |
| 72007W     | 225       | 10       | 20       | 150         | 150         | 75    |
| 72094      | 150       | 10       | 15       | 450         | 150         | 25    |
| 72103      | 230       | 15       | 20       | 260         | 115         | 50    |
| 72168      | 125       | 0        | 0        | 0           | 0           | 0     |
| 72279      | 125       | 0        | 0        | 0           | 0           | 0     |
| 72345      | 125       | 0        | 0        | 0           | 0           | 0     |
| 72467      | 165       | 10       | 15       | 440         | 130         | 40    |
| 72533N     | 150       | 15       | 20       | 150         | 225         | 90    |
| 72533S     | 175       | 10       | 15       | 450         | 190         | 25    |
| 72535N     | 200       | 15       | 15       | 300         | 300         | 50    |
| 72545      | 150       | 15       | 15       | 0           | 145         | 25    |
| 72551N     | 150       | 10       | 15       | 450         | 190         | 25    |
| 72551S     | 150       | 10       | 15       | 450         | 190         | 25    |
| 7256       | 175       | 30       | 20       | 150         | 190         | 65    |
| 72631      | 125       | 0        | 0        | 0           | 0           | 0     |
| 72640      | 125       | 0        | 0        | 0           | 0           | 0     |
| 72705      | 165       | 10       | 20       | 450         | 150         | 40    |
| 72819      | 125       | 0        | 0        | 0           | 0           | 0     |
| 73077      | 225       | 15       | 20       | 285         | 140         | 75    |
| 73136      | 240       | 15       | 20       | 300         | 130         | 75    |
| 73184      | 150       | 0        | 0        | 0           | 0           | 0     |
| 73274      | 150       | 0        | 0        | 0           | 0           | 0     |
| 73389      | 140       | 15       | 20       | 180         | 170         | 40    |
| 73407      | 150       | 10       | 15       | 0           | 150         | 25    |
| 73410      | 175       | 10       | 15       | 400         | 175         | 50    |
| 73420      | 125       | 0        | 0        | 0           | 0           | 0     |
| 73425      | 175       | 10       | 15       | 450         | 175         | 50    |
| 73429      | 225       | 10       | 20       | 450         | 175         | 65    |
| 73442      | 125       | 25       | 15       | 315         | 300         | 50    |
| 73485      | 100       | 0        | 0        | 0           | 0           | 0     |
| 73527      | 375       | 25       | 10       | 150         | 350         | 45    |
| 73636      | 390       | 0        | 20       | 0           | 600         | 40    |
| 73637      | 140       | 15       | 20       | 190         | 210         | 40    |
| 73640      | 335       | 15       | 15       | 0           | 0           | 45    |
| 73694N     | 210       | 15       | 20       | 290         | 115         | 50    |
| 73694S     | 210       | 15       | 20       | 300         | 115         | 50    |
| 7373       | 125       | 0        | 0        | 0           | 0           | 0     |
| 73757      | 150       | 0        | 0        | 0           | 0           | 0     |
| 7377       | 125       | 0        | 0        | 0           | 0           | 0     |
|            | 215       | 15       | 20       | 200         | 175         | 75    |
| 73803E     | 215       | 15       | 20       | 200         |             |       |



| FileNumber       | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------------|-----------|----------|----------|-------------|-------------|-------|
| 73803W           | 215       | 15       | 20       | 200         | 175         | 75    |
| 73809E           | 210       | 15       | 20       | 260         | 125         | 50    |
| 73810W           | 125       | 0        | 0        | 0           | 0           | 0     |
| 73817            | 100       | 10       | 10       | 180         | 250         | 52    |
| 73819            | 150       | 15       | 15       | 300         | 300         | 75    |
| 73823E           | 100       | 13       | 13       | 180         | 250         | 52    |
| 73825W           | 150       | 25       | 15       | 300         | 300         | 75    |
| 73836            | 150       | 0        | 0        | 0           | 0           | 0     |
| 73877            | 225       | 15       | 15       | 300         | 300         | 50    |
| 73919E           | 200       | 10       | 15       | 525         | 165         | 65    |
| 73922            | 150       | 10       | 15       | 450         | 175         | 25    |
| 73924S           | 125       | 25       | 15       | 300         | 300         | 50    |
| 73949            | 175       | 15       | 20       | 400         | 120         | 25    |
| 73973            | 150       | 20       | 15       | 370         | 300         | 65    |
| 7398             | 200       | 15       | 20       | 150         | 150         | 50    |
| 740              | 175       | 30       | 15       | 225         | 150         | 50    |
| 7401             | 210       | 15       | 20       | 150         | 150         | 75    |
| 74031N           | 200       | 15       | 20       | 350         | 150         | 50    |
| 74031S           | 200       | 15       | 20       | 350         | 200         | 50    |
| 74116            | 150       | 0        | 15       | 0           | 450         | 25    |
| 74110            | 375       | 10       | 10       | 300         | 300         | 50    |
| 74195            | 190       | 10       | 15       | 600         | 300         | 30    |
| 74222            | 150       | 10       | 15       | 500         | 165         | 40    |
| 74227            | 165       | 10       | 15       | 0           | 100         | 40    |
| 74228            | 190       | 10       | 20       | 450         | 150         | 40    |
| 74229            | 215       | 10       | 20       | 300         | 150         | 50    |
| 74231            | 225       | 15       | 20       | 300         | 150         | 75    |
| 74232            | 265       | 10       | 25       | 225         | 200         | 40    |
| 74232            | 265       | 10       | 25       | 225         | 200         | 40    |
| 74236            | 190       | 30       | 15       | 115         | 125         | 40    |
| 7425             | 140       | 15       | 20       | 190         | 170         | 40    |
| 74353E           | 190       | 10       | 15       | 575         | 175         | 0     |
| 74353E<br>74353W | 190       | 10       | 15       | 575         | 175         | 0     |
|                  | 125       | 0        | 0        | 0           | 0           | 0     |
| 74354E           | 175       | 0        | 0        | 0           | 0           | 0     |
| 74355W           | 175       | 10       | 15       | 450         | 150         | 50    |
| 74358            | 150       | 10       | 15       | 375         | 215         | 25    |
| 74440            | 150       | 15       | 20       | 200         | 200         | 50    |
| 74447            |           | 10       | 15       | 450         | 215         | 25    |
| 74452            | 150       | 10       | 15       | 375         | 175         | 40    |
| 74455            | 165       | 10       | 15       | 750         | 190         | 25    |
| 74458S           | 175       | 10       | 10       | 400         | 240         | 40    |
| 74540            | 215       | 15       | 20       | 270         | 170         | 65    |
| 74546            | 165       | 10       | 15       | 450         | 125         | 40    |
| 74596            | 165       | 10       | 10       | 130         | 250         | 40    |
| 74599E           | 100       | 10       | 10       | 130         | 250         | 40    |
| 74599W           | 100       |          | 20       | 0           | 210         | 40    |
| 746              | 130       | 0        | 0        | 0           | 0           | 0     |
| 74600E           | 100       | 0 15     | 10       | 60          | 190         | 75    |
| 74600W           | 150       |          | 10       | 0           | 190         | 75    |
| 74602E           | 100       | 0        | 15       | 325         | 175         | 25    |
| 7461             | 165       | 10       | 15       | 020         | 1 110       |       |



| 10<br>10<br>10<br>0<br>10<br>13<br>0<br>15<br>10<br>10<br>10<br>10<br>10<br>10 | 15<br>15<br>15<br>0<br>10<br>13<br>0<br>25<br>15<br>15<br>15<br>15<br>10                           | 450<br>450<br>500<br>0<br>210<br>180<br>0<br>300<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TBarSpacing  165 150 250 0 250 250 0 300 175 175 200 190 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40<br>50<br>50<br>0<br>40<br>52<br>0<br>50<br>50<br>50<br>50<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10<br>0<br>10<br>13<br>0<br>15<br>10<br>10<br>10<br>10<br>10<br>10             | 15<br>0<br>10<br>13<br>0<br>25<br>15<br>15<br>15<br>15                                             | 500<br>0<br>210<br>180<br>0<br>300<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250<br>0<br>250<br>250<br>0<br>300<br>175<br>175<br>200<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50<br>0<br>40<br>52<br>0<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0<br>10<br>13<br>0<br>15<br>10<br>10<br>10<br>10<br>10<br>10                   | 0<br>10<br>13<br>0<br>25<br>15<br>15<br>15<br>15<br>10                                             | 500<br>0<br>210<br>180<br>0<br>300<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250<br>0<br>250<br>250<br>0<br>300<br>175<br>175<br>200<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>40<br>52<br>0<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10<br>13<br>0<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | 10<br>13<br>0<br>25<br>15<br>15<br>15<br>15<br>10                                                  | 210<br>180<br>0<br>300<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250<br>250<br>0<br>300<br>175<br>175<br>200<br>190<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40<br>52<br>0<br>50<br>50<br>50<br>50<br>50<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13<br>0<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | 13<br>0<br>25<br>15<br>15<br>15<br>15<br>10                                                        | 180<br>0<br>300<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250<br>0<br>300<br>175<br>175<br>200<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52<br>0<br>50<br>50<br>50<br>50<br>50<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>0<br>10                         | 0<br>25<br>15<br>15<br>15<br>15<br>15<br>10                                                        | 0<br>300<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>300<br>175<br>175<br>200<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>0                              | 25<br>15<br>15<br>15<br>15<br>15<br>10                                                             | 300<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300<br>175<br>175<br>200<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50<br>50<br>50<br>50<br>50<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10<br>10<br>10<br>10<br>10<br>10<br>10<br>0                                    | 15<br>15<br>15<br>15<br>10<br>10                                                                   | 450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175<br>175<br>200<br>190<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50<br>50<br>50<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10<br>10<br>10<br>10<br>10<br>10<br>0                                          | 15<br>15<br>15<br>10<br>10                                                                         | 450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 175<br>200<br>190<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50<br>50<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10<br>10<br>10<br>10<br>10<br>0                                                | 15<br>15<br>10<br>10                                                                               | 450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200<br>190<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>10<br>10<br>0<br>10                                                      | 15<br>10<br>10                                                                                     | 450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10<br>10<br>0<br>10                                                            | 10                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10<br>0<br>10                                                                  | 10                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 10                                                                           |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10                                                                             | 0                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                             | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13                                                                             | 15                                                                                                 | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                             | 15                                                                                                 | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                             | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 20                                                                                                 | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 15                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 15                                                                                                 | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 15                                                                                                 | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 20                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 25                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                    | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 20                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 15                                                                                                 | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                    | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                    | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                | 10<br>10<br>10<br>10<br>25<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20 | 10       15         10       20         10       15         25       15         10       15         10       15         10       15         10       15         10       15         10       15         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       15         15       15         15       15         15       15         15       15         10       15         15       15         10       15         10       15         10       15         15       15         10       15         15       15         15       15         15       15         15       15         15       15         15       15         15       15 | 6       10       15       450         10       20       215         10       15       200         25       15       315         10       15       460         10       15       450         30       10       15       450         30       10       15       450         30       20       20       200         30       10       15       450         30       20       20       500         30       20       20       300         30       13       15       460         30       13       15       460         30       13       15       175         30       15       15       175         30       15       15       175         30       15       15       450         30       15       450       15         30       15       450       15         30       15       450       15         30       10       15       450         30       10       15       450 | 6         10         15         450         150           10         20         215         110           10         15         200         190           25         15         315         300           10         15         460         215           10         15         450         190           30         10         15         450         215           30         10         15         450         215           30         10         15         450         215           30         10         15         450         215           30         10         15         450         215           30         10         15         450         200           30         10         15         450         200           30         20         20         200         300         300           30         13         15         460         380           31         15         460         380         300           30         13         15         15         200           30         15         15 |



| FileNumber      | Thickness  | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|-----------------|------------|----------|----------|-------------|-------------|-------|
| 75529           | 165        | 15       | 15       | 515         | 150         | 0     |
| 7553            | 165        | 15       | 20       | 350         | 178         | 0     |
| 75535N          | 125        | 20       | 10       | 0           | 125         | 40    |
| 75535S          | 125        | 20       | 10       | 0           | 125         | 40    |
| 75538           | 125        | 0        | 0        | 0           | 0           | 0     |
| 75543E          | 125        | 0        | 0        | 0           | 0           | 0     |
| 75543W          | 125        | 0        | 0        | 0           | 0           | 0     |
| 75555           | 175        | 15       | 15       | 450         | 125         | 40    |
| 75623N          | 102        | 10       | 10       | 203         | 254         | 38    |
| 75623S          | 102        | 10       | 10       | 203         | 254         | 38    |
| 75644           | 165        | 10       | 15       | 450         | 125         | 40    |
| 75651N          | 175        | 10       | 15       | 450         | 125         | 40    |
| 75651S          | 175        | 10       | 15       | 450         | 125         | 40    |
| 75661N          | 100        | 10       | 10       | 230         | 510         | 40    |
| 75661S          | 100        | 10       | 10       | 230         | 510         | 40    |
| 75667           | 100        | 20       | 10       | 0           | 450         | 40    |
| 75678           | 190        | 10       | 20       | 450         | 165         | 40    |
| 75701           | 175        | 10       | 20       | 450         | 400         | 40    |
| 75722           | 100        | 10       | 40       | 200         | 500         | 40    |
| 75723           | 190        | 10       | 20       | 450         | 175         | 65    |
| 75724           | 125        | 0        | 0        | 0           | 0           | 0     |
| 75725           | 100        | 0        | 10       | 0           | 175         | 40    |
| 75726           | 175        | 10       | 15       | 450         | 140         | 40    |
| 75744           | 175        | 10       | 15       | 300         | 125         | 40    |
| 75752           | 125        | 25       | 15       | 315         | 300         | 50    |
| 75754           | 165        | 10       | 15       | 500         | 125         | 40    |
| 75760           | 125        | 0        | 0        | 0           | 0           | 0     |
| 75774           | 125        | 0        | 15       | 0           | 254         | 38    |
| 75812N          | 100        | 10       | 10       | 200         | 250         | 40    |
| 75812S          | 100        | 10       | 10       | 200         | 250         | 40    |
| 75816           | 125        | 0        | 0        | 0           | 0           | 0     |
| 75817           | 100        | 10       | 10       | 150         | 150         | 40    |
| 75855           | 125        | 15       | 15       | 402         | 375         | 50    |
| 75857           | 100        | 10       | 10       | 180         | 250         | 52    |
| 75876           | 125        | 0        | 0        | 0           | 0           | 0     |
| 75919S          | 190        | 10       | 0        | 450         | 0           | 40    |
| 759193          | 190        | 0        | 20       | 0           | 450         | 40    |
| 75932           | 190        | 0        | 0        | 0           | 0           | 0     |
|                 | 125        | 0        | 0        | 0           | 0           | 0     |
| 75945<br>75946  | 175        | 10       | 15       | 450         | 125         | 40    |
| 75946<br>75957W | 140        | 15       | 20       | 210         | 220         | 40    |
|                 | 100        | 10       | 10       | 180         | 250         | 52    |
| 75980           | 125        | 25       | 15       | 315         | 300         | 50    |
| 76005           |            | 15       | 20       | 300         | 200         | 75    |
| 76007           | 160<br>150 | 10       | 15       | 450         | 150         | 65    |
| 76034           |            | 15       | 20       | 180         | 170         | 40    |
| 76054S          | 140        | 10       | 20       | 450         | 190         | 40    |
| 76057           | 175        | 0        | 0        | 0           | 0           | 0     |
| 76060           | 150        | 15       | 20       | 400         | 200         | 75    |
| 76061           | 205        | 0        | 15       | 0           | 125         | 65    |
| 76081S          | 215        | 10       | 15       | 450         | 140         | 40    |
| 76092           | 165        | 10       | 1 13     | 700         |             |       |



| FileNumber      | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|-----------------|-----------|----------|----------|-------------|-------------|-------|
| 76097E          | 125       | 0        | 0        | 0           | 0           | 0     |
| 76117           | 200       | 10       | 20       | 450         | 165         | 65    |
| 76118           | 175       | 10       | 15       | 450         | 120         | 65    |
| 76158           | 125       | 10       | 15       | 450         | 140         | 50    |
| 76159           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76177           | 100       | 0        | 10       | 0           | 190         | 65    |
| 76181E          | 175       | 10       | 15       | 450         | 125         | 40    |
| 76181W          | 175       | 10       | 15       | 450         | 125         | 40    |
| 76186           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76223           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76301           | 152       | 13       | 15       | 152         | 254         | 50    |
| 76339E          | 125       | 0        | 0        | 0           | 0           | 0     |
| 76339W          | 125       | 0        | 0        | 0           | 0           | 0     |
| 76349           | 100       | 10       | 10       | 180         | 250         | 52    |
| 76364           | 165       | 15       | 15       | 200         | 150         | 40    |
| 76378           | 190       | 10       | 15       | 0           | 125         | 40    |
| 76381           | 165       | 10       | 15       | 450         | 125         | 40    |
| 76382N          | 175       | 10       | 20       | 450         | 375         | 40    |
| 76406           | 750       | 20       | 15       | 300         | 450         | 0     |
| 76410           | 125       | 25       | 15       | 180         | 300         | 50    |
| 76458           | 100       | 10       | 10       | 180         | 250         | 52    |
| 76511           | 165       | 15       | 20       | 190         | 210         | 65    |
| 76558           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76565           | 140       | 15       | 20       | 190         | 210         | 40    |
| 76566           | 125       | 0        | 0        | 0           | 0           | 0     |
| 766             | 175       | 10       | 15       | 425         | 175         | 0     |
| 76609           | 190       | 10       | 20       | 0           | 300         | 40    |
| 76615           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76639           | 125       | 0        | 0        | 0           | 0           | 0     |
|                 | 165       | 10       | 20       | 450         | 300         | 0     |
| 76648<br>76649W | 175       | 10       | 15       | 450         | 265         | 50    |
|                 | 125       | 0        | 0        | 0           | 0           | 0     |
| 76650N          | 125       | 0        | 0        | 0           | 0           | 0     |
| 76650S<br>76652 | 150       | 10       | 15       | 450         | 250         | 50    |
|                 | 125       | 0        | 0        | 0           | 0           | 0     |
| 76658           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76659           | 125       | 0        | 0        | 0           | 0           | 0     |
| 76660           |           | 0        | 0        | 0           | 0           | 0     |
| 76719           | 125       | 20       | 0        | 150         | 0           | 0     |
| 76720           | 125       | 10       | 10       | 180         | 250         | 52    |
| 76726           | 100       | 13       | 20       | 460         | 150         | 40    |
| 76848           | 165       | 15       | 10       | 300         | 300         | 0     |
| 76849           | 260       |          | 0        | 0           | 0           | 0     |
| 76850           | 125       | 0        | 15       | 0           | 254         | 38    |
| 76856           | 127       |          | 15       | 200         | 254         | 38    |
| 76927           | 127       | 13       | 20       | 190         | 220         | 65    |
| 76950           | 165       | 15       |          | 0           | 325         | 65    |
| 76986           | 190       | 10       | 20       | 0           | 0           | 0     |
| 77054E          | 125       | 0        |          | 220         | 170         | 40    |
| 77054W          | 140       | 15       | 20       | 200         | 254         | 38    |
| 77073           | 127       | 13       | 15       | 402         | 375         | 50    |
| 77083           | 125       | 15       | 15       | 402         | 373         | 1 30  |



| FileNumber      | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|-----------------|-----------|----------|----------|-------------|-------------|-------|
| 77088           | 150       | 0        | 0        | 0           | 0           | 0     |
| 77091E          | 125       | 0        | 0        | 0           | 0           | 0     |
| 77091W          | 125       | 0        | 0        | 0           | 0           | 0     |
| 77091WC         | 125       | 0        | 0        | 0           | 0           | 0     |
| 77126           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77175           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77177           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77289           | 125       | 10       | 10       | 220         | 300         | 50    |
| 77315           | 127       | 13       | 13       | 281         | 203         | 45    |
| 77349           | 150       | 0        | 0        | 0           | 0           | 0     |
| 77419           | 225       | 15       | 20       | 150         | 150         | 75    |
| 77426           | 152       | 13       | 15       | 203         | 254         | 38    |
| 77460           | 150       | 10       | 10       | 210         | 300         | 40    |
| 77466           | 150       | 0        | 0        | 0           | 0           | 0     |
| 77493           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77498           | 140       | 15       | 20       | 125         | 170         | 40    |
| 77502           | 100       | 0        | 0        | 0           | 0           | 0     |
| 77504           | 100       | 0        | 0        | 0           | 0           | 0     |
| 77505           | 100       | 0        | 0        | 0           | 0           | 0     |
| 77528E          | 140       | 15       | 20       | 150         | 140         | 40    |
| 77530           | 127       | 0        | 0        | 0           | 0           | 0     |
| 77541           | 250       | 20       | 25       | 330         | 200         | 50    |
| 77545           | 140       | 15       | 20       | 210         | 170         | 40    |
| 77546           | 225       | 15       | 20       | 300         | 130         | 75    |
| 77548           | 125       | 10       | 10       | 140         | 150         | 50    |
| 77563E          | 125       | 0        | 0        | 0           | 0           | 0     |
| 77563W          | 125       | 0        | 0        | 0           | 0           | 0     |
| 7773            | 215       | 10       | 15       | 600         | 300         | 50    |
| 77750W          | 230       | 15       | 20       | 300         | 150         | 65    |
| 77753E          | 250       | 15       | 20       | 300         | 125         | 50    |
| 77782           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77816           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77846           | 150       | 0        | 0        | 0           | 0           | 0     |
| 77847           | 125       | 0        | 0        | 0           | 0           | 0     |
| 77859W          | 125       | 0        | 0        | 0           | 0           | 0     |
| 77872N          | 254       | 15       | 15       | 305         | 152         | 50    |
| 77873           | 100       | 13       | 13       | 180         | 250         | 52    |
| 77878           | 152       | 13       | 15       | 203         | 254         | 38    |
| 77919           | 152       | 0        | 15       | 0           | 254         | 50    |
| 77994S          | 200       | 10       | 15       | 445         | 11          | 50    |
| 7802            | 175       | 10       | 10       | 400         | 300         | 0     |
| 78020           | 225       | 15       | 20       | 200         | 175         | 50    |
| 78031           | 255       | 20       | 20       | 130         | 260         | 75    |
| 78055           | 225       | 15       | 20       | 400         | 150         | 75    |
| 7806            | 235       | 15       | 20       | 400         | 180         | 75    |
| 78101           | 100       | 10       | 10       | 180         | 250         | 52    |
| 78123           | 180       | 0        | 0        | 0           | 0           | 0     |
| 7815            | 200       | 10       | 15       | 450         | 140         | 65    |
|                 | 100       | 15       | 15       | 425         | 150         | 0     |
| 79150NI         |           |          |          |             |             |       |
| 78152N<br>78189 | 165       | 15       | 20       | 190         | 170         | 65    |



| FileNumber       | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------------|-----------|----------|----------|-------------|-------------|-------|
| 78199            | 125       | 0        | 0        | 0           | 0           | 0     |
| 78215            | 125       | 0        | 0        | 0           | 0           | 0     |
| 78227            | 165       | 15       | 20       | 190         | 140         | 65    |
| 7824             | 127       | 25       | 15       | 150         | 300         | 60    |
| 78313            | 127       | 10       | 15       | 240         | 150         | 51    |
| 78314            | 102       | 10       | 20       | 240         | 150         | 51    |
| 7836             | 175       | 10       | 15       | 425         | 190         | 50    |
| 78360            | 150       | 15       | 20       | 200         | 200         | 50    |
| 78373            | 140       | 10       | 10       | 200         | 250         | 50    |
| 78387            | 140       | 15       | 10       | 200         | 250         | 50    |
| 78412            | 350       | 10       | 15       | 300         | 300         | 0     |
| 78413            | 350       | 10       | 15       | 300         | 300         | 0     |
| 78419            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78420            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78422            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78423            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78424            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78425            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78426            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78527            | 140       | 15       | 20       | 190         | 210         | 40    |
| 78585            | 215       | 15       | 20       | 420         | 150         | 75    |
| 78595            | 150       | 0        | 0        | 0           | 0           | 0     |
| 786              | 150       | 0        | 0        | 0           | 0           | 0     |
| 78692            | 100       | 10       | 10       | 180         | 250         | 52    |
| 7870             | 150       | 0        | 0        | 0           | 0           | 0     |
| 78709            | 127       | 15       | 10       | 180         | 250         | 75    |
| 7871             | 175       | 10       | 15       | 450         | 325         | 50    |
| 78765            | 150       | 0        | 0        | 0           | 0           | 0     |
| 78796            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78798            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78799            | 100       | 10       | 10       | 180         | 250         | 52    |
| 78808            | 125       | 0        | 0        | 0           | 0           | 0     |
| 78832            | 150       | 0        | 0        | 0           | 0           | 0     |
| 78898            | 165       | 15       | 20       | 190         | 170         | 65    |
| 78996            | 100       | 10       | 10       | 180         | 250         | 52    |
| 7922             | 165       | 15       | 20       | 200         | 210         | 65    |
| 79230            | 200       | 15       | 20       | 350         | 150         | 75    |
| 79262            | 210       | 20       | 20       | 300         | 200         | 50    |
| 79324            | 150       | 0        | 0        | 0           | 0           | 0     |
| 79325            | 235       | 15       | 20       | 350         | 150         | 75    |
| 79351            | 100       | 10       | 10       | 180         | 250         | 52    |
| 79375            | 150       | 0        | 0        | 0           | 0           | 0     |
| 7938             | 150       | 0        | 0        | 0           | 0           | 0     |
| 79432            | 150       | 0        | 0        | 0           | 0           | 0     |
| 79436            | 225       | 15       | 20       | 350         | 150         | 75    |
| 79441N           | 200       | 15       | 20       | 300         | 150         | 75    |
| 79441N<br>79441S | 200       | 15       | 20       | 300         | 150         | 75    |
| 794413           | 150       | 0        | 0        | 0           | 0           | 0     |
| 79443            | 200       | 15       | 20       | 340         | 150         | 75    |
| 79404            | 255       | 15       | 20       | 275         | 150         | 75    |
| 79472            | 225       | 15       | 20       | 300         | 115         | 75    |
| 79473            | 223       |          |          |             |             | -     |



| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------|-----------|----------|----------|-------------|-------------|-------|
| 79476      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79553      | 165       | 15       | 20       | 200         | 210         | 65    |
| 79565      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79566      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79567      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79568      | 165       | 15       | 20       | 200         | 180         | 65    |
| 79569      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79570      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79573      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79575      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79576      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79580      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79581      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79582      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79710      | 200       | 15       | 20       | 300         | 140         | 50    |
| 79710      | 100       | 10       | 10       | 180         | 250         | 52    |
|            |           |          | 20       | 300         | 120         | 50    |
| 79760      | 205       | 15       | 1        | 375         | 150         | 75    |
| 79761      | 225       | 15       | 20       |             |             | 65    |
| 7978       | 190       | 10       | 15       | 575         | 215         | 52    |
| 79781      | 100       | 10       | 10       | 180         | 250         |       |
| 79785      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79786      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79787      | 100       | 10       | 10       | 180         | 250         | 52    |
| 79788      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80121      | 127       | 0        | 0        | 0           | 0           | 0     |
| 80207      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80208      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80209      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80210      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80211      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80212      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80219      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80220      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80221      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80223      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80224      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80225      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80226      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80227      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80228      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80232      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80234      | 100       | 10       | 10       | 180         | 250         | 52    |
|            | 100       | 10       | 10       | 180         | 250         | 52    |
| 80269      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80270      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80271      |           | 10       | 10       | 180         | 250         | 52    |
| 80272      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80273      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80275      | 100       |          | 10       | 180         | 250         | 52    |
| 80277      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80278      | 100       | 10       | 15       | 300         | 175         | 25    |
| 8028       | 150       | 10       | 13       | 300         |             |       |



| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------|-----------|----------|----------|-------------|-------------|-------|
| 80288      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80289      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80290      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80291      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80292      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80296      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80299      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80301      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80325      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80326      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80327      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80328      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80329      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80334      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80335      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80336      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80337      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80338      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80339      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80340      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80341      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80342      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80352      | 115       | 10       | 10       | 190         | 250         | 52    |
| 80354      | 115       | 10       | 10       | 190         | 250         | 52    |
| 80355      | 115       | 10       | 10       | 190         | 250         | 52    |
|            | 115       | 10       | 10       | 190         | 250         | 52    |
| 80356      |           | 10       | 10       | 190         | 250         | 52    |
| 80357      | 115       | 10       | 15       | 450         | 175         | 50    |
| 8036       | 175       | 10       | 10       | 180         | 250         | 52    |
| 80403      | 100       |          | 10       | 180         | 250         | 52    |
| 80418      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80445      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80454      | 100       | 10       | 20       | 300         | 155         | 50    |
| 80643      | 190       | 15       | 20       | 190         | 210         | 40    |
| 80644W     | 140       | 15       | 15       | 0           | 150         | 0     |
| 80657      | 250       | 0        | 0        | 0           | 0           | 0     |
| 8077       | 125       | 0        |          | 180         | 250         | 52    |
| 80838      | 100       | 10       | 10       | 140         | 170         | 65    |
| 80845      | 165       | 15       |          | 450         | 150         | 50    |
| 80846      | 215       | 15       | 20       | 180         | 250         | 52    |
| 80878      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80915      | 100       | 10       | 10       |             | 250         | 52    |
| 80919      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80920      | 100       | 10       | 10       | 180         | 150         | 50    |
| 80946      | 190       | 15       | 20       | 290         | 250         | 52    |
| 80947      | 100       | 10       | 10       | 180         | 250         | 52    |
| 80961      | 100       | 10       | 10       | 180         | 170         |       |
| 81034      | 140       | 15       | 20       | 180         | 180         | 75    |
| 81102      | 245       | 15       | 25       | 200         | 175         | 75    |
| 81103      | 250       | 15       | 20       | 250         |             |       |
| 81129      | 240       | 15       | 20       | 250         | 200         | 50    |
| 81131      | 200       | 15       | 20       | 300         | 150         | 30    |



| 81237         150         15         20         200         200         0           81241         210         15         20         200         300         50           81287         225         20         15         15         200         350         75           8132         215         20         20         300         125         75           81351         140         15         20         240         250         50           81533         150         25         15         300         300         75           81584         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8201         125         15         15         250         20         75           8303         150         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150                                                                                                   | FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|----------|-------------|-------------|-------|
| 81241         210         15         20         200         300         50           81284         200         15         15         200         350         75           81327         225         20         15         300         300         350         75           8132         215         20         20         300         125         75           81351         140         15         20         240         250         50           81533         150         25         15         300         300         75           81584         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8201         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8304         150 <td>81237</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>                    | 81237      |           |          |          |             |             | 0     |
| 81284         200         15         15         200         350         75           81287         225         20         15         300         300         75           8132         215         20         20         300         125         75           81351         140         15         20         240         250         50           81533         150         25         15         300         300         75           81584         150         25         15         160         250         50           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         300         300         75           8303         150         10         15         450         225         50           8340         150         15         15         200         300         175         25           8459         225         20         20         300         175         75           84487         150 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                          |            |           |          |          |             |             |       |
| 81287         225         20         15         300         300         75           8132         215         20         20         300         125         75           81351         140         15         20         240         250         50           81533         150         25         15         300         300         75           81584         150         25         15         160         250         50           8196         200         15         20         190         130         50           820         175         10         15         450         225         55           8201         175         10         15         450         225         55           8303         150         10         15         300         175         25           8303         150         10         15         300         175         25           8340         150         15         15         200         300         75           8459         225         20         20         300         175         75           8487         150         0                                                                                                    |            |           |          |          |             |             |       |
| 8132         215         20         20         300         125         75           81351         140         15         20         240         250         50           81533         150         25         15         300         300         75           81584         150         25         15         160         250         50           81798         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         250         200         300         75           835         125         0         0         0         0         0         0         0         0           8487         150         0         0         0         0         0         0                                                                                                    |            |           |          |          |             |             |       |
| 81351         140         15         20         240         250         50           81533         150         25         15         300         300         75           81584         150         25         15         160         250         50           81798         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         20         300         175         25           8459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                             |            |           |          |          |             |             |       |
| 81533         150         25         15         300         300         75           81584         150         25         15         160         250         50           81798         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         250         200         300         75           835         125         0         0         0         0         0         0           8459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641                                                                                                          |            |           |          |          |             |             |       |
| 81584         150         25         15         160         250         50           81798         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         200         300         175         25           8347         150         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                          |            |           |          |          |             |             |       |
| 81798         150         25         15         300         300         75           8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         200         300         75           835         125         0         0         0         0         0         0           8459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641         125         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                          |            |           |          |          |             |             |       |
| 8196         200         15         20         190         130         50           820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         200         300         775         25           835         125         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                 |            |           |          |          |             |             |       |
| 820         175         10         15         450         225         50           8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         200         300         75           835         125         0         0         0         0         0         0           84459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641         125         0         0         0         0         0         0           8707         200         15         20         200         175         75           8708         150         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                       |            |           |          |          |             |             |       |
| 8261         225         15         15         250         200         75           8303         150         10         15         300         175         25           8340         150         15         15         200         300         75           835         125         0         0         0         0         0         0           8487         150         0         0         0         0         0         0         0           8495         175         10         15         450         200         50         50           8641         125         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                |            |           |          |          |             |             |       |
| 8303         150         10         15         300         175         25           8340         150         15         15         200         300         75           835         125         0         0         0         0         0         0           8459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641         125         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                      |            |           |          |          |             |             |       |
| 8340         150         15         15         200         300         75           835         125         0         0         0         0         0         0           8459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641         125         0         0         0         0         0         0           8707         200         15         20         200         175         75           8708         150         0         0         0         0         0         0           8719         190         10         15         450         300         25           873         125         25         15         180         300         50           8779         190         20         20         400         175         50           8822         100         10         15         450         175         25           8839                                                                                                                   |            |           |          |          |             |             |       |
| 835         125         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>  |            |           |          |          |             |             |       |
| 8459         225         20         20         300         175         75           8487         150         0         0         0         0         0         0           8495         175         10         15         450         200         50           8641         125         0         0         0         0         0         0           8707         200         15         20         200         175         75           8708         150         0         0         0         0         0         0           8719         190         10         15         450         300         25           873         125         25         15         180         300         50           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           8987 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                      |            |           |          |          |             |             |       |
| 8487         150         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |            |           |          |          |             |             |       |
| 8495         175         10         15         450         200         50           8641         125         0         0         0         0         0         0           8707         200         15         20         200         175         75           8708         150         0         0         0         0         0         0           8719         190         10         15         450         300         25           873         125         25         15         180         300         50           875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         300         25           8987         150                                                                                                              |            |           |          |          |             |             |       |
| 8641         125         0         0         0         0         0           8707         200         15         20         200         175         75           8708         150         0         0         0         0         0         0           8719         190         10         15         450         300         25           873         125         25         15         180         300         50           875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10                                                                                                              |            |           |          |          |             |             | _     |
| 8707         200         15         20         200         175         75           8708         150         0         0         0         0         0         0           8719         190         10         15         450         300         25           873         125         25         15         180         300         50           875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                  |            |           |          |          |             |             |       |
| 8708         150         0         0         0         0         0           8719         190         10         15         450         300         25           873         125         25         15         180         300         50           875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           8987         150         10         20         240         150         40           904         190         10         15 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                            |            |           |          |          |             |             |       |
| 8719         190         10         15         450         300         25           873         125         25         15         180         300         50           875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           8987         150         10         20         240         150         40           904         190         10         15         450         300         0           9099         140         10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                             |            |           |          |          |             |             |       |
| 873         125         25         15         180         300         50           875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           8987         150         10         20         240         150         40           904         190         10         15         450         300         25           9309         140         10         15         150         200         50           9343         140         15         <                                                                                                 |            |           |          |          |             |             |       |
| 875         140         15         20         190         210         40           8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         450         300         0           9309         200         20         20         300         175         50           9343         140         15 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                            |            |           |          |          |             |             |       |
| 8779         190         20         20         400         175         50           8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         450         300         0           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           945         165         15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                             |            |           |          |          |             |             |       |
| 8800         150         10         15         450         175         25           8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           945         165         15         20         190         220         65                                                                                                                                                 |            |           |          |          |             |             |       |
| 8822         100         10         10         180         250         52           8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           945         165         15         20         190         220         65                                                                                                                                                                                                                                     | 8779       |           |          |          |             |             |       |
| 8839         165         15         20         190         210         40           887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                     | 8800       |           | L        |          |             |             |       |
| 887         175         10         15         450         200         25           8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                         | 8822       |           |          |          |             |             |       |
| 8987         150         10         20         240         150         40           903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                            | 8839       |           |          |          |             |             |       |
| 903         190         10         15         450         300         25           904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 887        | 175       |          |          |             |             |       |
| 904         190         10         15         450         300         0           9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8987       | 150       | 10       | 1        | 1           |             |       |
| 9099         140         10         15         150         200         50           9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 903        | 190       |          |          |             |             |       |
| 9309         200         20         20         300         175         50           9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 904        | 190       |          |          |             |             |       |
| 9343         140         15         20         210         290         40           9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9099       | 140       | 10       |          |             |             | 50    |
| 9345         140         15         20         225         210         40           9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9309       | 200       | 20       | 20       |             |             | 50    |
| 9346         150         15         15         220         250         50           945         165         15         20         190         220         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9343       | 140       | 15       | 20       |             |             | 40    |
| 945 165 15 20 190 220 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9345       | 140       | 15       |          |             |             | 40    |
| 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9346       | 150       |          |          |             |             | 50    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 945        | 165       | 15       | 20       | 190         | 220         | 65    |
| 9487 165 10 15 450 140 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 165       | 10       | 15       | 450         |             | 40    |
| 9551 150 10 15 600 215 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 150       | 10       | 15       |             |             | 0     |
| 9590 225 10 20 300 150 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           | 10       | 20       |             |             | 75    |
| 962 175 10 15 450 150 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           | 10       | 15       | 450         |             | 50    |
| 9755 150 10 10 190 250 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           | 10       | 10       | 190         |             | 40    |
| 977 215 10 20 450 125 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           | 10       | 20       |             |             | 50    |
| 983 175 10 15 450 175 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           | 10       | 15       | 450         |             | 50    |
| 9847 125 10 15 0 215 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           | 10       | 15       | 0           |             | 65    |
| 9850 165 15 20 180 170 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |          | 20       | 180         |             | 65    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |          | 10       | 180         | 250         | 52    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |          | 15       | 450         | 225         | 0     |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9910       | 190       | 10       | 15       | 450         | 190         | 50    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0010       | 175       | 10       | 15       | 500         | 125         | 65    |



| FileNumber | Thickness | LBarSize | TBarSize | LBarSpacing | TBarSpacing | Cover |
|------------|-----------|----------|----------|-------------|-------------|-------|
| 9943       | 190       | 10       | 15       | 450         | 150         | 65    |
| 999        | 165       | 10       | 15       | 450         | 150         | 25    |



## VALUE ADDED DATA

| FileNumber | Sim/Cont | Diaphragms | DiaSpacing | GirdSpacing | GirdDepth | DeckThickness |
|------------|----------|------------|------------|-------------|-----------|---------------|
| 1062       | S        | Y          | 8585.2     | 2438.4      | 1524      | 175           |
| 1085       | С        | Υ          | 8534.4     | 2336.8      | 1828.8    | 150           |
| 1122       | С        | N          | 0          | 2692.4      | 1397      | 190           |
| 1137       | S        | Υ          | 6477       | 2184.4      | 1117.6    | 175           |
| 1145       | S        | N          | 0          | 1631.95     | 1041.4    | 125           |
| 1153       | S        | Υ          | 10668      | 1828.8      | 1524      | 175           |
| 1158       | S        | Υ          | 6146.8     | 1828.8      | 923       | 190           |
| 1245       | С        | Υ          | 6705.6     | 2095.5      | 921       | 200           |
| 13117      | С        | Υ          | 5486.4     | 1981.2      | 927       | 175           |
| 13166      | S        | N          | 0          | 1219.2      | 762       | 140           |
| 13181      | S        | Υ          | 3073.4     | 2743.2      | 1117.6    | 150           |
| 13370      | С        | N          | 0          | 2844.8      | 2209.8    | 178           |
| 135        | S        | N          | 0          | 1638.3      | 1041.4    | 125           |
| 13625      | S        | N          | 0          | 1619        | 1041      | 125           |
| 13832      | S        | Υ          | 8229.6     | 2235.2      | 927       | 190           |
| 1409       | S        | Y          | 8483.6     | 1143        | 1117.6    | 125           |
| 1426       | S        | Y          | 6629.4     | 1854.2      | 1117.6    | 150           |
| 1427       | S        | Υ          | 8001       | 1333.5      | 1117.6    | 150           |
| 1517       | S        | Υ          | 7975.6     | 1955.8      | 1320      | 229           |
| 1606       | С        | Υ          | 10287      | 2133.6      | 1524      | 165           |
| 1741       | S        | Y          | 8991.6     | 1828.8      | 1524      | 175           |
| 1797       | С        | Y          | 6807.2     | 2590.8      | 911       | 190           |
| 189        | С        | Υ          | 6096       | 6400.8      | 1384.3    | 190           |
| 1894       | S        | Y          | 7975.6     | 1828.8      | 1222.375  | 178           |
| 1916       | С        | N          | 0          | 2387.6      | 914.4     | 178           |
| 1980       | S        | Y          | 10058.4    | 1676.4      | 1524      | 150           |
| 2143       | S        | N          | 0          | 1663.7      | 1041.4    | 125           |
| 223        | С        | Y          | 6705.6     | 2286        | 1752.6    | 150           |
| 2233       | С        | N          | 0          | 2692.4      | 1764.792  | 190           |
| 2235       | S        | Υ          | 5943.6     | 2133.6      | 1117.6    | 215           |
| 233        | S        | Y          | 6350       | 1905        | 1320.8    | 150           |
| 2401       | S        | Υ          | 8737.6     | 2438.4      | 1524      | 175           |
| 2430       | S        | Y          | 7975.6     | 2133.6      | 1320.8    | 165           |
| 278        | С        | Υ          | 6096       | 2819.4      | 762       | 175           |
| 310        | Н        | Y          | 6096       | 1828.8      | 990.6     | 180           |
| 315        | S        | Υ          | 3000       | 1536.7      | 1370      | 150           |
| 340        | S        | Υ          | 1828.8     | 2362.2      | 1117.6    | 175           |
| 358        | S        | Y          | 6172.2     | 1866.9      | 1117.6    | 215           |
| 436        | S        | Υ          | 6096       | 2540        | 903       | 178           |
| 457        | С        | N          | 0          | 2743.2      | 1143      | 175           |
| 611        | S        | Υ          | 6250       | 1206        | 610       | 140           |
| 6565       | S        | Y          | 8742.3625  | 1930.4      | 1524      | 170           |
| 698        | S        | Υ          | 7016.75    | 2019.3      | 1524      | 165           |
| 6985W      | С        | N          | 0          | 1828.8      | 1066.8    | 203           |
| 70022      | S        | N          | 0          | 1638.3      | 1041.4    | 200           |
| 70156      | Н        | Υ          | 8128       | 2235.2      | 919       | 203           |
| 70566      | S        | Y          | 8483.6     | 1625.6      | 1320.8    | 150           |
| 70935      | С        | Y          | 5689.6     | 2819.4      | 923       | 175           |
| 710        | S        | Y          | 6705.6     | 2133.6      | 1524      | 175           |



| FileNumber | Sim/Cont | Diaphragms | DiaSpacing | GirdSpacing | GirdDepth | DeckThickness |
|------------|----------|------------|------------|-------------|-----------|---------------|
| 71054      | S        | Υ          | 10160      | 1676.4      | 1524      | 190           |
| 71106      | S        | Υ          | 4876.8     | 1371.6      | 1066.8    | 200           |
| 71116      | С        | Y          | 7010.4     | 2844.8      | 2743.2    | 203           |
| 71291      | С        | Υ          | 6096       | 2540        | 2362.2    | 175           |
| 71313      | S        | Υ          | 9909.175   | 1676.4      | 1524      | 150           |
| 71316      | С        | Υ          | 6553.2     | 1828.8      | 903       | 178           |
| 71504      | S        | Υ          | 5867.4     | 1905        | 1117.6    | 175           |
| 7168       | S        | Υ          | 6743.7     | 1854.2      | 1117.6    | 175           |
| 72094      | Н        | Υ          | 7010.4     | 2743.2      | 2184.4    | 150           |
| 72467      | С        | Υ          | 6883.4     | 2260.6      | 1752.6    | 165           |
| 72533S     | С        | Υ          | 10133      | 1510        | 1500      | 175           |
| 72551N     | S        | Υ          | 8382       | 2184.4      | 1524      | 150           |
| 72551S     | S        | Υ          | 8382       | 2184.4      | 1524      | 150           |
| 73407      | Н        | Υ          | 7010.4     | 2743.2      | 2133.6    | 150           |
| 73410      | С        | Υ          | 6197.6     | 2057.4      | 846       | 175           |
| 73425      | S        | Υ          | 5003.8     | 2082.8      | 911       | 175           |
| 73429      | Н        | Υ          | 8229.6     | 2743.2      | 2133.6    | 225           |
| 73621      | S        | N          | 0          | 914.4       | 609.6     | 178           |
| 73810W     | S        | N          | 0          | 1638.3      | 1270      | 125           |
| 73836      | С        | Υ          | 5359.4     | 1676.4      | 943       | 150           |
| 73837      | S        | N          | 0          | 1651        | 1295.4    | 178           |
| 73919E     | S        | Y          | 6705.6     | 2095.5      | 921       | 200           |
| 74227      | С        | Υ          | 4622.8     | 5080        | 3581.4    | 165           |
| 74228      | С        | Υ          | 3200.4     | 3041.65     | 2362.2    | 190           |
| 74229      | С        | Υ          | 7048.5     | 2133.6      | 2438.4    | 215           |
| 74232      | С        | Υ          | 7213.6     | 5791.2      | 3048      | 265           |
| 74233      | С        | Y          | 7315.2     | 5791.2      | 3454.4    | 265           |
| 74353E     | С        | N          | 0          | 3429        | 2311.4    | 190           |
| 74353W     | С        | N          | 0          | 3429        | 2311.4    | 190           |
| 74354E     | С        | N          | 0          | 1638.3      | 1270      | 125           |
| 74355E     | С        | Υ          | 7315.2     | 2044.7      | 1524      | 191           |
| 74355W     | С        | Υ          | 7315.2     | 1282.7      | 1117.6    | 175           |
| 74358      | С        | Y          | 10058.4    | 2844.8      | 1536.7    | 175           |
| 74381      | S        | Υ          | 4572       | 1847.85     | 919       | 184           |
| 74440      | S        | Y          | 6502.4     | 2590.8      | 1841.5    | 150           |
| 74455      | S        | Y          | 8229.6     | 2235.2      | 927       | 165           |
| 74458S     | С        | N          | 0          | 2743.2      | 1473.2    | 175           |
| 74596      | С        | Y          | 7391.4     | 2133.6      | 927       | 165           |
| 7461       | S        | Y          | 7315.2     | 2743.2      | 2590.8    | 165           |
| 74653      | Н        | N          | 0          | 2844.8      | 2159      | 175           |
| 74678      | С        | N          | 0          | 3098.8      | 1727.2    | 190           |
| 74679      | S        | Y          | 7620       | 1498.6      | 1117.6    | 175           |
| 74710      | S        | N          | 0          | 1625.6      | 1041.4    | 125           |
| 74954      | S        | Υ          | 6426.2     | 2133.6      | 1118      | 175           |
| 74969      | S        | Y          | 8763       | 1828.8      | 1524      | 175           |
| 75014      | Н        | Υ          | 6096       | 3581.4      | 1914.525  | 165           |
| 75021      | S        | Y          | 6604       | 2082.8      | 1117.6    | 150           |
| 75051N     | S        | Y          | 5867.4     | 1428.75     | 1117.6    | 150           |
| 75051S     | S        | Y          | 5867.4     | 1428.75     | 1117.6    | 150           |
| 75055N     | C        | Y          | 6781.8     | 1879.6      | 688       | 200           |
| 75055S     | C        | Y          | 6781.8     | 1879.6      | 688       | 200           |
| 700000     |          |            |            |             |           |               |



| FileNumber | Sim/Cont | Diaphragms | DiaSpacing | GirdSpacing | GirdDepth | DeckThickness |
|------------|----------|------------|------------|-------------|-----------|---------------|
| 75058N     | С        | N          | 0          | 2667        | 1473.2    | 150           |
| 75058S     | С        | N          | 0          | 2667        | 1473.2    | 150           |
| 75059      | С        | Y          | 7315.2     | 1955.8      | 911       | 175           |
| 75070      | С        | N          | 0          | 2590.8      | 1143      | 165           |
| 75111      | S        | Υ          | 10058.4    | 1727.2      | 1524      | 150           |
| 75112      | С        | Υ          | 5943.6     | 2082.8      | 1117.6    | 150           |
| 7513       | S        | Υ          | 7975.6     | 1828.8      | 1320.8    | 175           |
| 75186      | S        | Υ          | 10058.4    | 1676.4      | 1524      | 150           |
| 75193E     | S        | Y          | 4521.2     | 1828.8      | 1118      | 152           |
| 75193W     | S        | Υ          | 4521.2     | 1828.8      | 1118      | 152           |
| 75195E     | С        | Y          | 6096       | 2311.4      | 835       | 152           |
| 75195W     | С        | Y          | 6096       | 2311.4      | 835       | 152           |
| 75315      | Н        | У          | 5918.2     | 5791.2      | 3810      | 275           |
| 75332N     | S        | Y          | 4495.8     | 1930.4      | 688       | 150           |
| 75332S     | S        | Y          | 4876.8     | 1930.4      | 688       | 150           |
| 75335N     | С        | Y          | 6248.4     | 5791.2      | 2336.8    | 140           |
| 75335S     | С        | Y          | 6248.4     | 5791.2      | 2336.8    | 140           |
| 75337N     | С        | Y          | 5892.8     | 1930.4      | 835       | 150           |
| 75337S     | С        | Υ          | 5892.8     | 1930.4      | 835       | 150           |
| 75338N     | S        | Y          | 6743.7     | 1930.4      | 1524      | 152           |
| 75338S     | S        | Y          | 6743.7     | 1930.4      | 1524      | 152           |
| 75341      | S        | Y          | 7048.5     | 2438.4      | 1320.8    | 150           |
| 75420W     | С        | Y          | 6705.6     | 2133.6      | 684       | 175           |
| 75522      | С        | Υ          | 7620       | 2235.2      | 835       | 180           |
| 75529      | S        | Υ          | 7620       | 2082.8      | 1829      | 165           |
| 7553       | S        | Y          | 7772.4     | 2235.2      | 1117.6    | 165           |
| 75535N     | S        | N          | 0          | 1219.2      | 812.8     | 125           |
| 75535S     | S        | N          | 0          | 1219.2      | 812.8     | 125           |
| 75539      | С        | Y          | 7696.2     | 2438.4      | 840       | 152           |
| 75555      | С        | Υ          | 7620       | 2438.4      | 914.4     | 175           |
| 75644      | С        | Y          | 6146.8     | 2133.6      | 911       | 165           |
| 75651N     | С        | Υ          | 6705.6     | 2489.2      | 903       | 175           |
| 75651S     | С        | Υ          | 6705.6     | 2489.2      | 903       | 175           |
| 75677      | С        | Y          | 6553.2     | 2438.4      | 911       | 178           |
| 756N       | S        | N          | 0          | 1625.6      | 1270      | 178           |
| 75701      | C        | Υ          | 6096       | 2540        | 2362.2    | 175           |
| 75744      | Н        | Υ          | 7315.2     | 2133.6      | 762       | 175           |
| 75760      | S        | N          | 0          | 1651        | 1041.4    | 125           |
| 75919S     | С        | Y          | 5486.4     | 2590.8      | 835       | 190           |
| 75931      | Н        | Y          | 6248.4     | 2590.8      | 943       | 190           |
| 75932      | С        | Υ          | 6705.6     | 2590.8      | 903       | 190           |
| 75945      | S        | N          | 0          | 1631.95     | 1041.4    | 125           |
| 76057      | С        | Y          | 6096       | 2235.2      | 903       | 175           |
| 76158      | С        | Υ          | 7620       | 2209.8      | 915       | 125           |
| 76159      | Н        | N          | 0          | 1625.6      | 1041.4    | 125           |
| 76161      | S        | Y          | 5791.2     | 1625.6      | 1016      | 200           |
| 76181E     | С        | Y          | 5943.6     | 2311.4      | 840       | 175           |
| 76181W     | С        | Y          | 5943.6     | 2311.4      | 840       | 175           |
| 76212      | S        | N          | 0          | 1631.95     | 1041.4    | 178           |
| 76223      | S        | N          | 0          | 1631.95     | 1041.4    | 125           |
| 76381      | С        | Υ          | 6705.6     | 2032        | 927       | 165           |



| FileNumber | Sim/Cont | Diaphragms | DiaSpacing | GirdSpacing | GirdDepth | DeckThickness |
|------------|----------|------------|------------|-------------|-----------|---------------|
| 76540      | S        | N          | 0          | 1210        | 760       | 178           |
| 76558      | S        | Ν          | 0          | 1631.95     | 1041.4    | 125           |
| 766        | S        | Υ          | 6096       | 2438.4      | 1524      | 175           |
| 76609      | С        | Υ          | 6908.8     | 2641.6      | 1727.2    | 190           |
| 76649W     | С        | Υ          | 7924.8     | 2235.2      | 903       | 175           |
| 76652      | С        | N          | 0          | 4267.2      | 1066.8    | 150           |
| 76845      | С        | Υ          | 8800       | 5100        | 1525      | 250           |
| 76848      | С        | N          | 0          | 3962.4      | 1524      | 165           |
| 76850      | S        | N          | 0          | 1631.95     | 1270      | 125           |
| 77091E     | S        | N          | 0          | 1631.95     | 1041.4    | 125           |
| 77091W     | S        | N          | 0          | 1631.95     | 1041.4    | 125           |
| 77175      | S        | N          | 0          | 1631.95     | 1041.4    | 125           |
| 77177      | S        | N          | 0          | 1631.95     | 1270      | 125           |
| 77254      | S        | Ν          | 0          | 1631.95     | 1270      | 178           |
| 77303E     | С        | N          | 0          | 1225        | 760       | 150           |
| 77303W     | С        | N          | 0          | 1225        | 760       | 150           |
| 77782      | S        | N          | 0          | 1231.9      | 914.4     | 125           |
| 7802       | S        | Υ          | 6076.95    | 1187.45     | 939.8     | 175           |
| 78031      | С        | Υ          | 3900       | 2880        | 3800      | 255           |
| 7836       | S        | Υ          | 6451.6     | 2133.6      | 1117.6    | 175           |
| 7871       | S        | Υ          | 8483.6     | 1143        | 1117.6    | 175           |
| 78896      | S        | N          | 0          | 1631.95     | 1041.4    | 178           |
| 79432      | S        | Ν          | 0          | 1625        | 1270      | 150           |
| 8028       | С        | Υ          | 6400.8     | 2133.6      | 762       | 150           |
| 8036       | С        | Υ          | 6502.4     | 2235.2      | 923       | 175           |
| 8303       | S        | Υ          | 5943.6     | 2095.5      | 1117.6    | 150           |
| 8435E      | С        | N          | 0          | 2438        | 939.8     | 165           |
| 8495       | S        | Υ          | 7518.4     | 1828.8      | 758       | 175           |
| 8719       | S        | Υ          | 6146.8     | 1828.8      | 927       | 190           |
| 8800       | S        | Υ          | 6781.8     | 2260.6      | 1752.6    | 150           |
| 887        | С        | N          | 0          | 2590.8      | 1981.2    | 175           |
| 903        | S        | Υ          | 8178.8     | 1473.2      | 927       | 190           |
| 904        | S        | Y          | 6705.6     | 1473.2      | 927       | 190           |
| 9099       | S        | Y          | 10160      | 1676.4      | 1524      | 140           |
| 9469N      | С        | N          | 0          | 2209.8      | 990.6     | 152           |
| 9469S      | С        | N          | 0          | 2209.8      | 990.6     | 152           |
| 9755       | С        | Υ          | 7620       | 1981.2      | 919       | 150           |
| 9899W      | С        | Y          | 5486.4     | 1981.2      | 927       |               |
| 9910       | С        | Y          | 7620       | 2235.2      | 919       | 190           |



## VISUAL INSPECTION DATA (NOT USED)

| Overall    | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 3      | 5      | 4      | 4      | 4      | 4      | က      | 4      | 4           | 3      | 4      | 3      | 4      | 4              |        | 4    | 4    | 4    | 4    | 4    | 4    |      | 4    |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|--------|--------|--------|--------|----------------|--------|------|------|------|------|------|------|------|------|
| RanCk(Und) | 5      | 5      | 5      | 5      | 5      | 3N     | 5      | 5      | 5      | 5      | A4     | 5      | 5      | 5      | 3N     | 3N     | 3N          | 5      | 3N     | 3N     | 4M     | V <sub>4</sub> |        | 5    | 5    | 5    | 5    | 5    | 5    |      | 3N   |
| TrCk(Und)  | 5      | 5      | 5      | 5      | 5      | 3N     | 3N     | 4M     | 3M     | 5      | 5      | 5      | 5      | 5      | 3N     | 5      | 3N          | 2M     | 5      | 3N     | 31     | 3M             |        | 5    | 5    | 5    | 5    | 5    | 5    |      | 2N   |
| LngCk(Und) | 5      | 5      | 5      | 5      | 4W     | 4M     | 5      | 5      | 3N     | 5      | 3N     | 5      | 5      | 5      | 3N     | 5      | 5           | 3M     | 5      | N4     | 5      | A 4            |        | 4M   | 4M   | 5    | 5    | 5    | 5    |      | 2N   |
| RanCk(W/S) | 5      | Z      | 5      | 5      | 3M     | A N    | 5      | 5      | 4M     | 5      | 4<br>N | 5      | 5      | 5      | 4M     | 5      | 5           | 4M     | 5      | N4     | 5      | 5              |        | 5    | 4M   | 5    | 5    | 3M   | 2W   |      | 5    |
| TrCk(W/S)  | 2M     | 3N     | 5      | 3M     | 5      | 3N     | 5      | 5      | 3M     | 5      | N4     | 5      | 5      | N4     | 3M     | 5      | 3N          | 3M     | 5      | 4M     | 5      | 5              |        | 3N   | 4M   | 5    | 5    | 2M   | 5    |      | 5    |
| LngCk(W/S) | 2M     | 3M     | 5      | N 4    | 5      | 4<br>N | 5      | 5      | 4M     | 5      | 3M     | 5      | 5      | 5      | 3M     | 5      | A<br>N<br>4 | 3M     | 5      | 5      | 5      | 5              |        | 3N   | 4M   | 5    | 5    | 3M   | 5    |      | 5    |
| Memb       |        |        | В      | В      |        |        |        | Д      | Ъ      |        |        |        |        |        |        |        |             |        |        |        |        |                |        |      |      |      |      |      |      |      |      |
| 0/1        |        | 7      |        |        | I      | I      |        |        |        | I      | I      |        |        | I      | I      | I      | Ι           | I      | I      | I      |        |                |        |      |      |      |      |      |      |      | I    |
| S/M        | Ø      | O      | A      | A      | O      | O      | A      | 4      | A      | O      | ၁      | A      | A      | O      | O      | Ш      | Ш           | O      | O      | U      | 4      | A              |        | 4    | A    | O    | ပ    | A    | A    |      | O    |
| InspDate   | 87     | 91     | 88     | 92     | 88     | 92     | 87     | 88     | 92     | 88     | 92     | 85     | 06     | 85     | 98     | 88     | 92          | 98     | 88     | 92     | 98     | 06             | 94     | 87   | 91   | 85   | 06   | 98   | 06   | 94   | 98   |
| FileNumber | 00756N | 00756N | 06985E | 06985E | W58690 | M58690 | 08435E | 08435E | 08435E | 08435W | 08435W | 09219E | 09219E | 09219W | 09469N | 09469N | 09469N      | 094698 | 094698 | 094698 | M66860 | M66860         | M66860 | 1053 | 1053 | 1062 | 1062 | 1085 | 1085 | 1085 | 1122 |



|                      |      |      |      |      |      | _    |      |      |      |      |      |      |      |      | _    |      |      |      |      |       |         |       |       |       | _     | _     |       |       |       | _      | _     | _   | _   |
|----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-----|-----|
| Overall              | 3    | 4    | 3    | 5    | 4    | 4    |      | 4    | 4    |      | 2    | 4    |      | 4    |      | 4    | က    | 4    | 3    | 4     | 3       | 4     | 4     | 4     | 4     |       | က     | 3     | 4     | 4      |       | 4   | 4   |
| TrCk(Und) RanCk(Und) | N4   | 5    | 5    | 5    | 5    | 5    |      | N4   | N4   |      | 3N   | 2N   |      | 5    |      | 5    | 3N   | 5    | 4N   | 5     | 2N      | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5      |       | 5   | 5   |
|                      | 3N   | 5    | 4N   | 2    | 5    | 4N   |      | 5    | 5    |      | 5    | 4N   |      | 5    |      | 3N   | 2N   | 4M   | 3N   | 5     | 5       | 5     | 4N    | 41    | 5     |       | 5     | 5     | 2N    | 4M     |       | 5   | 5   |
| LngCk(Und)           | 3N   | 5    | 3N   | 5    | 5    | 3N   |      | 5    | 5    |      | 5    | 5    |      | 5    |      | 9    | 5    | 9    | 4M   | 2     | 5       | 9     | 9     | 2     | 5     |       | 3N    | 3N    | 5     | 4<br>N |       | 5   | 5   |
| RanCk(W/S)           | 5    | 5    | 5    | 5    | 3N   | 5    |      | 3N   | 5    |      | 5    | 3N   |      | 2M   |      | 5    | 5    | 5    | 5    | 5     | 5       | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 3N     |       | 5   | 5   |
| TrCk(W/S)            | 5    | 5    | 4M   | 5    | 5    | 5    |      | 5    | 5    |      | 5    | 5    |      | 5    |      | 5    | 5    | 5    | 5    | 5     | AN<br>V | 5     | 5     | 3M    | 3M    |       | 5     | 5     | 2N    | 2M     |       | 4W  | 5   |
| LngCk(W/S)           | 5    | 5    | 4M   | 5    | 5    | 5    |      | 5    | 5    |      | 5    | 5    |      | 5    |      | 5    | 5    | 5    | 5    | 5     | 5       | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 4M     |       | 5   | 5   |
| Memb                 |      |      |      |      |      |      |      |      |      |      |      | Д    |      |      |      |      |      |      |      |       |         |       |       |       |       |       |       |       |       |        |       | ட   | L   |
| 0/1                  | エ    |      |      |      |      |      |      |      |      |      |      |      |      |      |      | I    | Ι    | I    | I    | I     | I       |       |       |       |       |       |       |       | I     | I      |       |     |     |
| M/S                  | S    | V    | A    | O    | A    | 4    |      | ပ    | Ш    |      | 4    | ⋖    |      | ⋖    | A    | O    | ш    | O    | O    | Ш     | Ш       | 4     | 4     | O     | ပ     |       | ⋖     | 4     | O     | O      | <     | A   | 4   |
| InspDate             | 06   | 98   | 06   | 85   | 85   | 06   | 94   | 85   | 06   | 94   | 87   | 91   | 94   | 89   | 93   | 87   | 91   | 87   | 91   | 87    | 91      | 87    | 91    | 98    | 90    | 94    | 98    | 06    | 87    | 91     | 93    | 87  | 91  |
| FileNumber InspDate  | 1122 | 1137 | 1137 | 1140 | 1145 | 1145 | 1145 | 1153 | 1153 | 1153 | 1158 | 1158 | 1227 | 1241 | 1241 | 1245 | 1245 | 1303 | 1303 | 13117 | 13117   | 13149 | 13149 | 13166 | 13166 | 13166 | 13181 | 13181 | 13370 | 13370  | 13486 | 135 | 135 |



| _                                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |      |      |      |      |      |      |      |     |      |      | _    |      |      |      |      |      |      |      |
|-----------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|
| Overall                                                   | 4     | 4     | 4     | 4     |       | 4     | 4     | 4     | 4     | 4     | 4     |       |       |       | 4    | 4    |      | 4    | 4    | 4    | 4    | 3    |     | 3    |      | 4    | 4    |      | 4    | 4    |      | 4    |      |
| RanCk(Und)                                                | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 2N    | 5     |       |       |       | 5    | 5    |      | 5    | 5    | 5    | 4M   | 5    |     | 3N   |      | 2N   | 5    |      | 5    | 5    |      | 5    |      |
| TrCk(Und)                                                 | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 3M    | 4N    |       |       |       | 4L   | 5    |      | 4N   | 5    | 5    | 4M   | 3N   |     | 3M   |      | 5    | 4N   |      | 5    | 5    |      | 5    |      |
| LngCk(Und)                                                | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 4N    | 5     |       |       |       | 5    | 5    |      | 5    | 5    | 5    | 4M   | 5    |     | 3N   |      | 5    | 9    |      | 5    | 5    |      | 5    |      |
| RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und)   Overal | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 3M    | 5     |       |       |       | 5    | 5    |      | 5    | 5    | 2M   | 5    | 3W   |     | 5    |      | 5    | 5    |      | 5    | 5    |      | 2W   |      |
| TrCk(W/S)                                                 | 5     | 5     | 5     | 5     |       | 5     | 2     | N4    | 5     | WE    | 5     |       |       |       | 2    | 5    |      | 5    | 5    | 5    | 5    | 2W   |     | 5    |      | 5    | 5    |      | 5    | 5    |      | 5    |      |
| LngCk(W/S)                                                | 5     | 5     | 5     | 4M    |       | 5     | 5     | 5     | 5     | 4M    | 5     |       |       |       | 5    | 5    |      | 5    | 5    | 5    | 5    | 3W   |     | 5    |      | 5    | 5    |      | 5    | 5    |      | 5    |      |
| Memb                                                      | Щ     | Д     |       |       | а.    |       |       |       |       |       |       |       | Д     |       |      |      |      |      |      |      | Д    |      |     |      |      |      |      |      |      | Ь    | Н    |      |      |
| O/L                                                       |       |       |       |       |       |       |       |       |       | I     | I     |       |       |       |      |      |      |      |      |      |      |      |     | Т    |      |      |      |      |      |      |      |      |      |
| W/S                                                       |       | A     | A     | A     | 4     | A     | ∢     | O     | Ш     | ပ     | Ш     |       | A     | Ш     | A    | O    | ပ    | 4    | A    | ∢    | 4    | Α    |     | Ш    |      | A    | ⋖    |      | А    | Α    | A    | Α    | A    |
| InspDate                                                  | 85    | 91    | 87    | 91    | 93    | 85    | 06    | 87    | 88    | 98    | 06    | 94    | 93    | 93    | 98   | 89   | 93   | 87   | 91   | 87   | 91   | 98   | 93  | 06   | 94   | 98   | 90   | 94   | 98   | 89   | 93   | 68   | 93   |
| FileNumber InspDat                                        | 13587 | 13587 | 13625 | 13625 | 13742 | 13821 | 13821 | 13824 | 13824 | 13832 | 13832 | 13832 | 13838 | 13852 | 1402 | 1409 | 1409 | 1426 | 1426 | 1427 | 1427 | 1432 | 149 | 1493 | 1493 | 1517 | 1517 | 1517 | 1536 | 1606 | 1606 | 1632 | 1632 |



| Overall                         | 4    | 4   |     | 4    | 4      |      | 3    | က    |      | 2    | 4    | 4    | 4    |      | 4   | 4   | 4    | 4    |      | က    | 2       | 4    | 4    | 4      | 4    | 4    | 4    | 5    | 4    | 4    | 4   | 4   | 4    |
|---------------------------------|------|-----|-----|------|--------|------|------|------|------|------|------|------|------|------|-----|-----|------|------|------|------|---------|------|------|--------|------|------|------|------|------|------|-----|-----|------|
| LngCk(Und) TrCk(Und) RanCk(Und) | 5    | 5   |     | 5    | A4     |      | 5    | 5    |      | 5    | N8   | 5    | 5    |      | 5   | 5   | 3N   | 5    |      | 5    | A N 4   | 2N   | 5    | 4N     | 5    | 5    | 5    | 4N   | 5    | 5    | 5   | ΛA  | 5    |
| TrCk(Und)                       | 5    | A 4 |     | 5    | A<br>N |      | 5    | 5    |      | 3M   | 5    | 5    | 5    |      | 5   | 5   | 5    | 5    |      | 5    | 5       | 5    | 5    | A<br>N | 5    | 5    | 5    | 5    | 5    | 5    | 5   | 3N  | 4M   |
| LngCk(Und)                      | 5    | 5   |     | 5    | 3N     |      | 5    | 5    |      | 5    | 5    | 5    | 5    |      | 5   | 5   | 3N   | 5    |      | 3N   | N4      | 5    | 5    | 5      | 5    | 5    | 5    | 5    | 5    | 5    | 5   | A N | 5    |
| RanCk(W/S)                      | 5    | 5   |     | 5    | 3M     |      | 5    | 5    |      | 5    | 2M   | 5    | 5    |      | 2M  | 5   | 5    | 5    |      |      | A<br>74 | 5    | 5    | 5      | 5    | 5    | 5    | 5    | 5    | 5    | 3W  | 5   | 5    |
| TrCk(W/S)                       | 5    | 2W  |     | 5    | 3M     |      | 5    | 5    |      | 4N   | 5    | 5    | 5    |      | 5   | 5   | 5    | 5    |      |      | N4      | 5    | 4M   | 5      | 4W   | 5    | 3M   | 5    | 5    | 4W   | 2W  | 5   | 5    |
| Memb   LngCk(W/S)   TrCk(W/S)   | 5    | 5   |     | 5    | 3M     |      | 5    | 5    |      | 4N   | 5    | 5    | 5    |      | 5   | 5   | 5    | 5    |      |      | N4      | 5    | 4M   | 5      | 5    | 5    | 4M   | 5    | 5    | 5    | 2W  | 5   | 5    |
| Memb                            |      |     |     |      |        |      |      |      |      |      |      |      |      |      |     | ۵   |      |      |      |      |         |      |      |        |      |      |      |      |      |      |     |     |      |
| 0/1                             |      |     |     |      |        |      |      |      |      |      |      |      |      |      |     |     |      |      |      |      |         |      | I    |        |      |      |      |      |      |      |     |     | I    |
| S/M                             | A    | ပ   |     | 0    | O      |      | C    | ပ    |      | O    | 4    | ⋖    | A    | A    | A   | <   | ⋖    | ⋖    | O    | ш    | ш       | O    | U    | ш      | A    | A    | ×    | U    | A    | K    | V   | ⋖   | Ш    |
| Ф                               | 92   | 89  | 93  | 85   | 06     | 94   | 98   | 06   | 94   | 91   | 85   | 06   | 89   | 93   | 87  | 91  | 98   | 06   | 93   | 98   | 06      | 98   | 87   | 91     | 92   | 87   | 91   | 85   | 98   | 92   | 98  | 06  | 88   |
| FileNumber InspDat              | 1669 | 167 | 167 | 1741 | 1741   | 1741 | 1766 | 1766 | 1766 | 1767 | 1797 | 1797 | 1810 | 1810 | 189 | 189 | 1894 | 1894 | 1916 | 1980 | 1980    | 2008 | 2010 | 2010   | 2102 | 2143 | 2143 | 2155 | 2212 | 2212 | 223 | 223 | 2233 |



| _                                                                                          |      |      |      |      |     |     |      |      |      |      |      |      |      |      |      |      |      |      |     |        |        |        |     |     |     |     |        | _      |     |     | _   | _   | _   |
|--------------------------------------------------------------------------------------------|------|------|------|------|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|-----|--------|--------|--------|-----|-----|-----|-----|--------|--------|-----|-----|-----|-----|-----|
| Overall                                                                                    |      | 4    | 4    |      | 4   |     | 4    | 4    | 4    |      | 4    | 4    |      |      | 4    | 4    |      |      |     | 4      | 4      | 4      | 4   | 4   | 4   | 4   | 4      | 4      | 4   |     | 5   | 4   | 4   |
| RanCk(Und)                                                                                 |      | 5    | 5    |      | 5   |     | 5    | N4   | 5    |      | N4   | 5    |      |      | 5    | N4   |      |      |     | V4     | 3N     | 4N     | 5   | 5   | 5   | 5   | 5      | 4N     | 5   |     | 5   | 5   | 5   |
| TrCk(Und)                                                                                  |      | 5    | 5    |      | 5   |     | 5    | A4   | 5    |      | 5    | 5    |      |      | 5    | 4N   |      |      |     | 2N     | 3M     | 3M     | 5   | 5   | 5   | 5   | A<br>N | 3M     | 5   |     | 5   | 5   | 3N  |
| LngCk(Und)                                                                                 |      | 5    | 5    |      | 5   |     | 5    | 5    | 5    |      | 5    | 5    |      |      | 4M   | N4   |      |      |     | 4<br>N | 3M     | A<br>N | 5   | 5   | 4N  | 5   | 5      | 4<br>N | 5   |     | 5   | 5   | 3N  |
| Memb   LngCk(W/S)   TrCk(W/S)   RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und)   Overall |      | 5    | 5    |      | 5   |     | 5    | 3N   | 3N   |      | 3M   | 5    |      |      | 5    | 5    |      |      |     | 4M     | 4<br>N | N4     | 5   | 5   | 5   | 3M  | 5      | 4      | 5   |     | 5   | 5   | 2W  |
| TrCk(W/S)                                                                                  |      | 5    | 5    |      | 3M  |     | 3W   | 3M   | 5    |      | 5    | 5    |      |      | 5    | 4N   |      |      |     | 2M     | 3N     | 3W     | 5   | 5   | 3M  | 5   | 5      | 4M     | 2   |     | 5   | 4N  | 5   |
| LngCk(W/S)                                                                                 |      | 5    | 5    |      | 5   |     | 5    | N4   | 5    |      | 5    | 5    |      |      | 5    | 5    |      |      |     | 3M     | 3N     | 3N     | 5   | 5   | 4M  | 5   | 4N     | 4W     | 5   |     | 5   | 5   | 5   |
| Memb                                                                                       |      |      |      |      |     |     |      |      |      |      |      |      |      |      |      |      |      |      |     |        |        |        |     | Σ   | Σ   |     |        |        | Ш   | L   |     |     |     |
| O/L                                                                                        | I    | I    | I    |      | I   | I   |      |      | I    | I    |      |      |      |      | I    | I    |      |      | I   | I      | I      | I      |     |     |     |     | I      | I      |     |     |     |     |     |
| S/M                                                                                        |      | O    | S    | A    | O   | Ш   | O    | O    | U    | O    | O    | O    | ပ    |      | O    | U    |      |      | Ш   | U      | O      | O      | U   | A   | A   | A   | U      | O      | A   | 4   | O   | U   | V   |
| InspDate                                                                                   | 93   | 88   | 92   | 93   | 88  | 93  | 98   | 92   | 85   | 93   | 98   | 06   | 93   | 94   | 98   | 06   | 94   | 93   | 93  | 98     | 06     | 92     | 85  | 98  | 06  | 92  | 87     | 91     | 89  | 93  | 85  | 92  | 88  |
| FileNumber InspDate                                                                        | 2233 | 2235 | 2235 | 2301 | 233 | 233 | 2337 | 2337 | 2359 | 2359 | 2401 | 2401 | 2401 | 2401 | 2430 | 2430 | 2430 | 2431 | 248 | 2487   | 2487   | 2487   | 261 | 272 | 272 | 274 | 278    | 278    | 286 | 286 | 309 | 309 | 310 |



| Overall                                                                          |     | က   | 4   | 4   | 4      | 4   | 4   | 4   | 4   | 4   | 4   | 4   | 4      | 2   | 4   | 5      |     | 4   | 4   | 4   | 4    | 4    | 4    | 4    | 3    | 4    | 4    |      | 4   | 4   | 4     | 4      | 4      |
|----------------------------------------------------------------------------------|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|--------|-----|-----|--------|-----|-----|-----|-----|------|------|------|------|------|------|------|------|-----|-----|-------|--------|--------|
| Memb   LngCk(W/S)   TrCk(W/S)   RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und) |     | 5   | 5   | 3N  | 5      | 5   | N4  | 5   | 5   | 5   | 5   | 5   | 5      | 2M  | 5   | 5      |     | 5   | 5   | 5   | 5    | 5    | 5    | 5    | 5    | 5    | 5    |      | 5   |     | 5     | 4N     | 5      |
| TrCk(Und)                                                                        |     | 5   | 5   | 5   | A<br>N | 3N  | 5   | 5   | 4N  | 5   | 5   | 5   | 4<br>N | 2M  | 5   | 5      |     | 3N  | 4N  | 5   | 5    | 4M   | 5    | 4    | 4N   | 5    | 5    |      | 5   |     | 2M    | 3W     | 5      |
| LngCk(Und)                                                                       |     | 5   | N4  | 5   | 5      | V4  | 5   | 5   | 5   | 5   | 5   | 9   | 3N     | 2W  | 5   | 2      |     | 5   | 2   | 3W  | 5    | 5    | 5    | 5    | 4N   | 5    | 5    |      | 5   |     | 5     | 3W     | 5      |
| RanCk(W/S)                                                                       |     | 5   | 5   | 5   | 3M     | 3M  | 4M  | 3M  | 5   | 3N  | 4N  | 5   | 5      | 3W  | 5   | 5      |     | 5   | 5   | 5   | 5    | 5    | 5    | 5    | 5    | 4M   | 2W   |      | 5   | 5   | 5     | 5      | 5      |
| TrCk(W/S)                                                                        |     | 1W  | 5   | 5   | 5      | 5   | 5   | 5   | 5   | 5   | 5   | 3N  | 4M     | 4W  | 4M  | A<br>V |     | 5   | 5   | 5   | 5    | 5    | 5    | 5    | 3N   | 5    | 2W   |      | 5   | 4M  | 2N    | 4M     | 5      |
| LngCk(W/S)                                                                       |     | 3W  | 5   | 5   | 5      | 5   | 2   | 5   | 5   | 3W  | 5   | 5   | 4M     | 2W  | 5   | 5      |     | 5   | 5   | 5   | 5    | 5    | 5    | 5    | 4N   | 3M   | 5    |      | 5   | 4M  | 5     | 4<br>N | 4<br>N |
| Memb                                                                             |     |     |     |     |        |     |     |     |     |     |     |     | ۵      |     |     |        |     |     |     |     |      |      |      |      |      |      |      |      | L   |     |       |        |        |
| O/L                                                                              |     |     | I   | I   |        |     |     |     |     |     | 7   |     |        |     |     |        |     |     |     |     |      |      | H    | I    | I    |      |      |      |     |     | 工     | I      | 工      |
| S/M                                                                              | Α   | ပ   | O   | O   | O      | ပ   | O   | ပ   | ပ   | A   | ပ   | 4   | ⋖      | ⋖   | S   | O      |     | Ш   | ш   | ш   | ပ    | O    | ပ    | O    | O    | O    | O    | Α    | A   | A   | O     | ပ      | O      |
| te                                                                               | 93  | 98  | 98  | 06  | 98     | 90  | 98  | 06  | 85  | 98  | 06  | 87  | 91     | 98  | 85  | 06     | 94  | 87  | 91  | 88  | 98   | 92   | 87   | 91   | 92   | 98   | 92   | 93   | 82  | 06  | 87    | 91     | 85     |
| FileNumber InspDa                                                                | 310 | 313 | 315 | 315 | 340    | 340 | 358 | 358 | 395 | 436 | 436 | 457 | 457    | 521 | 570 | 570    | 220 | 589 | 589 | 611 | 6548 | 6548 | 6565 | 6565 | 6565 | 6733 | 6733 | 6089 | 869 | 698 | 60002 | 60002  | 70022  |



|                      |       |       |       |       |       |       |       |       |       | _     |       |       |       |       |       |       |       |       |       |      |        |       |       |     |     |         | _     |        |       |       |       | _    | _     |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--------|-------|-------|-----|-----|---------|-------|--------|-------|-------|-------|------|-------|
| Overall              | 4     |       | 4     | 3     |       | 4     | 4     | 4     |       | 4     | 4     | 4     | 5     | 4     | 4     | 4     | 3     |       | 5     | 4    | . 4    | 4     |       | 4   | 0   | 4       | 3     | 4      | 4     | 4     |       | 3    | 4     |
| RanCk(Und) Overal    | 5     |       | 5     | 2M    |       | 5     | 4N    | 5     |       | 5     | 5     | 5     | 5     | 5     | 5     | 2     | 5     |       | 5     | 5    | 2      | 5     |       | 5   | 5   | 4N      | 5     | 5      | 5     | 5     |       | 5    | 5     |
| TrCk(Und)            | 5     |       | 2     | 9     |       | 5     | 4N    | 5     |       | 5     | 5     | 5     | 5     | 2     | 5     | M4    | 4N    |       | 5     | 3N   | 5      | 5     |       | 5   | 4N  | 74<br>N | 5     | 4<br>N | 5     | 5     |       | 5    | 4N    |
| LngCk(Und) TrCk(Und) | 2     |       | 2     | 9     |       | 4L    | 5     | 5     |       | 5     | 5     | 2     | 5     | 5     | 4W    | 5     | 5     |       | 5     | 5    | 5      | 5     |       | 5   | 5   | 5       | 5     | 5      | 2     | 5     |       | 5    | 5     |
| RanCk(W/S)           | 5     |       | 5     | 5     |       | 3W    | 5     | 5     |       | 3M    | 5     | 5     | 5     | 5     | 5     | 5     | 5     |       | 5     | 5    | 5      | 5     |       | 5   | 5   | 4M      | 5     | 5      | 4M    | 5     |       | 5    | 5     |
| TrCk(W/S)            | 5     |       | 2     | 5     |       | 3W    | 2     | 5     |       | 3M    | 5     | 2     | 2     | 5     | 5     | 5     | 5     |       | 5     | 5    | A 4    | 3M    |       | 5   | 5   | 5       | 4M    | 5      | 5     | 5     |       | 4N   | 5     |
| Memb   LngCk(W/S)    | 4W    |       | 5     | 5     |       | 3W    | 5     | 4M    |       | 3M    | 5     | 5     | 5     | 5     | 4M    | 5     | 5     |       | 5     | 5    | A<br>N | 5     |       | 5   | 5   | 5       | 5     | 5      | 5     | 5     |       | 5    | 4M    |
| Memb                 |       |       |       |       |       |       |       |       |       |       |       | Ь     |       |       |       |       |       |       | Щ     |      |        |       |       |     |     |         |       |        |       |       |       |      |       |
| O/L                  |       |       | I     | I     |       |       | Z     |       |       |       |       |       |       | ш     | ш     | I     | エ     |       |       |      | I      | I     |       |     |     |         |       |        |       |       |       |      |       |
| S/M                  | ၁     |       | S     | ပ     |       | A     | O     | A     | A     | Α     | A     | A     | O     | O     | O     | O     | ပ     |       | ⋖     | O    | O      | ပ     |       | Α   | ပ   | ပ       | ပ     | Ш      | ပ     | ပ     |       | O    | 4     |
| InspDate             | 06    | 94    | 98    | 90    | 94    | 98    | 91    | 88    | 93    | 92    | 87    | 91    | 85    | 87    | 91    | 86    | 06    | 94    | 85    | 92   | 85     | 90    | 94    | 85  | 06  | 92      | 87    | 91     | 98    | 06    | 94    | 98   | 98    |
| FileNumber InspDat   | 70022 | 70022 | 70156 | 70156 | 70156 | 70247 | 70247 | 70277 | 70277 | 70509 | 70566 | 70566 | 70577 | 70580 | 70580 | 70594 | 70594 | 70594 | 70626 | 7086 | 70935  | 70935 | 70935 | 710 | 710 | 710     | 71019 | 71019  | 71054 | 71054 | 71054 | 7109 | 71106 |



| Overall                                          | 4     |       | 4     | 4     |       | 4     | 4     | 4   | 4     | 4     | 4     | 4     | 4     | 4     | 4     |       | 4     | 4     | 4    | 4    |      | 5      | 3     | 3        | 4     | 4     | 4     | 4     |       | 4      | 4      | 4      | 4      |
|--------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------|--------|-------|----------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| RanCk(Und)                                       | 5     |       | 5     | 4N    |       | 5     | 4N    | 5   | 5     | 5     | 5     | 3L    | 4N    | 5     | 5     |       | 5     | N4    | 5    | 5    |      | 5      | 5     | SN<br>SN | 5     | 5     | 5     | 5     |       | 5      | V 4    | 5      | 5      |
| TrCk(Und)                                        | 4N    |       | 4N    | 4N    |       | 3N    | 3N    | 5   | 5     | 5     | 4N    | 2L    | 3N    | 4N    | 3N    |       | 5     | 4N    | 5    | 5    |      | 5      | 3M    | 2N       | 5     | 5     | 5     | 4     |       | 5      | A N    | 5      | 4N     |
| LngCk(Und)                                       | 4W    |       | 5     | 3N    |       | 5     | 4N    | 5   | 5     | 5     | 4N    | 5     | 3N    | 5     | 5     |       | 5     | 5     | 5    | 5    |      | 5      | 3M    | 5        | 5     | 5     | 5     | 5     |       | 5      | 4<br>N | 5      | 4N     |
| RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und) | 5     |       | 5     | 4M    |       | 2M    | 4M    | 5   | 4W    | 5     | 5     | 5     | 5     | 5     | 5     |       | 5     | 5     | 5    | 5    |      | 5      | 5     | 5        | 5     | 4M    | 5     | 4M    |       | 5      | 5      | 5      | 5      |
| _                                                | 5     |       | 5     | WE    |       | 5     | 2M    | 4W  | 4W    | 5     | 5     | 5     | 5     | 3N    | 5     |       | 5     | 5     | 5    | 5    |      | 4N     | 5     | 2N       | 5     | 3M    | 5     | 5     |       | 2M     | 5      | V4     | 5      |
| LngCk(W/S) TrCk(W/S)                             | 4W    |       | 5     | 4M    |       | 5     | 3M    | 5   | 4M    | 5     | 5     | 5     | 5     | 5     | 5     | :     | 5     | 5     | 5    | 5    |      | A<br>N | 5     | 4<br>N   | 5     | 3M    | 5     | 5     |       | 2M     | 5      | 5      | 5      |
| Memb                                             |       |       |       |       |       |       |       |     |       |       |       |       |       |       |       |       |       |       |      |      |      |        |       |          |       |       |       |       |       |        | Д      |        |        |
| O/L                                              |       |       | I     | I     |       |       |       |     |       |       |       |       |       |       |       |       |       |       |      |      |      | 工      | I     | I        |       |       |       |       |       |        |        |        |        |
| te W/S                                           | <     |       | U     | O     | U     | 4     | 4     | A   | O     | Ш     | Ш     | O     | ш     | O     | ш     |       | ပ     | O     | ပ    | U    |      | O      | ပ     | ပ        | ∢     | ⋖     | ⋖     | ⋖     |       | ⋖      | 4      | ⋖      | A      |
| InspDate                                         |       | 94    | 88    | 92    | 93    | 88    | 92    | 89  | 98    | 88    | 92    | 98    | 90    | 85    | 06    | 94    | 87    | 91    | 98   | 06   | 94   | 87     | 87    | 91       | 85    | 92    | 98    | 06    | 94    | 87     | 91     | 87     | 91     |
| FileNumber InspDa                                | 71106 | 71106 | 71116 | 71116 | 71145 | 71291 | 71291 | 713 | 71313 | 71313 | 71313 | 71315 | 71315 | 71316 | 71316 | 71316 | 71504 | 71504 | 7168 | 7168 | 7168 | 72007W | 72094 | 72094    | 72186 | 72345 | 72467 | 72467 | 72467 | 725338 | 725338 | 725358 | 725358 |



| Overall                         | 3     | 4      | 4      | 4      | 4      | 4      | 4      |      | 4     | 4     | 5      |        | 5      |        | 4     | 4     |       | 4     |       |       | 4     | 4     |       | 3     | 4     |       | 3     | 4     |       | 4     | 4     | 3     | 4     |
|---------------------------------|-------|--------|--------|--------|--------|--------|--------|------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| LngCk(Und) TrCk(Und) RanCk(Und) | 5     | 5      | 5      | 4N     | 5      | 5      | 3N     |      | 5     | 3M    | 5      |        | 5      |        | 5     | 5     |       | 5     |       |       | 5     | 5     |       | 3N    | 2N    |       | 5     | 5     |       | 5     | 5     | 5     | 5     |
| TrCk(Und)                       | 5     | 5      | 4M     | 3N     | 5      | 5      | 4N     |      | 2     | 2M    | 5      |        | 5      |        | 5     | 5     |       | 3N    |       |       | 4M    | 4M    |       | 5     | 5     |       | 5     | 5     |       | 4W    | 3M    | 3M    | 5     |
| LngCk(Und)                      | 5     | 5      | 5      | 5      | 5      | 5      | 5      |      | 5     | 4M    | 5      |        | 5      |        | 5     | 5     |       | 5     |       |       | 5     | 5     |       | 5     | 5     |       | 5     | 5     |       | 5     | 5     | 3M    | 5     |
| RanCk(W/S)                      | 3W    | 5      | 3M     | N4     | 5      | 3M     | 2N     |      | 3M    | 5     | 5      |        | 5      |        | 5     | 5     |       | 5     |       |       | 5     | 5     |       | 5     | 5     |       | 5     | 5     |       | 5     | 5     | 2W    | 3N    |
| TrCk(W/S)                       | 5     | 2M     | 5      | 3M     | 2N     | 5      | 3N     |      | 5     | 2M    | 5      |        | 5      |        | 5     | 5     |       | 3N    |       |       | 5     | 5     |       | 4N    | 4N    |       | 5     | 5     |       | 5     | 5     | 4W    | 5     |
| Memb   LngCk(W/S)               | 5     | 5      | 5      | 3N     | 2N     | 5      | 4N     |      | 5     | 3M    | 5      |        | 5      |        | 4M    | 4M    |       | 5     |       |       | 5     | 5     |       | 5     | 5     |       | 5     | 5     |       | 5     | 5     | 4W    | 5     |
|                                 |       |        |        |        |        |        |        |      |       |       |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0/1                             |       | I      | Ξ      | I      | I      | I      | I      |      |       |       | I      |        | I      |        | I     | I     | I     | I     | I     |       | I     | I     |       |       |       |       |       |       |       |       |       |       |       |
| M/S                             | A     | O      | O      | O      | O      | O      | ပ      | O    | <     | A     | O      |        | O      |        | O     | O     | O     | O     | Ш     | 4     | O     | Ш     |       | O     | O     | A     | O     | O     | Ш     | Ш     | Ш     | A     | A     |
| InspDate                        | 98    | 87     | 91     | 92     | 87     | 91     | 92     | 93   | 87    | 98    | 85     | 94     | 85     | 94     | 85    | 85    | 93    | 85    | 93    | 93    | 98    | 90    | 94    | 87    | 91    | 93    | 98    | 88    | 93    | 98    | 96    | 98    | 85    |
| FileNumber InspDate             | 72545 | 72551N | 72551N | 72551N | 72551S | 725518 | 72551S | 7256 | 72640 | 72705 | 72810E | 72810E | 72810W | 72810W | 73184 | 73274 | 73274 | 73275 | 73275 | 73277 | 73407 | 73407 | 73407 | 73410 | 73410 | 73420 | 73425 | 73425 | 73425 | 73429 | 73429 | 73527 | 73621 |



|                                 |       |       |       |        |       |       |       |       |       |        |       |        |        |       |       | _      |        | _      |        |       | _     |       | _        | _     | -      | _      |        | _     | _     |                | _      | _    | _    |
|---------------------------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|-------|--------|--------|-------|-------|--------|--------|--------|--------|-------|-------|-------|----------|-------|--------|--------|--------|-------|-------|----------------|--------|------|------|
| Overall                         | 4     |       | 3     | 3      | 5     | 4     |       | 5     | 4     | 3      |       | 4      | 4      | 4     | 4     | 4      | 3      | 4      | 4      | 4     | 4     | က     | 4        | 3     | 3      | 3      |        | 4     | 4     | 4              | 4      | m    |      |
| LngCk(Und) TrCk(Und) RanCk(Und) | 5     |       | 5     | A<br>N | 5     | 5     |       | 5     | 5     | 5      |       | 5      | 5      | 5     | 5     | 5      | 5      | 5      | 5      | 5     | 5     | 3M    | 5        | 5     | 5      | 4      |        | 5     | A N   | N <sub>c</sub> | 3M     | 5    |      |
| TrCk(Und)                       | 2     |       | 5     | 5      | 5     | 5     |       | 5     | 5     | 4<br>N |       | 5      | 5      | 5     | 4M    | 5      | 5      | 5      | 5      | 5     | 4M    | 3M    | 5        | 5     | 3N     | 3N     |        | 5     | 3N    | 2              | 4<br>N | 2    |      |
| LngCk(Und)                      | 5     |       | 5     | 5      | 5     | 4M    |       | 5     | 5     | 3N     |       | 5      | 5      | 5     | 5     | 2      | 5      | 5      | 5      | N4    | 5     | 4M    | 5        | 5     | 5      | A N    |        | 5     | 5     | 5              | 4<br>N | 5    |      |
| RanCk(W/S)                      | 5     |       | 2M    | 5      | 5     | 5     |       | 5     | 5     | 4N     |       | 5      | 5      | 5     | 5     | 5      | 5      | 5      | 4N     | 5     | 5     | 3M    | 9        | 2     | 5      | 5      |        | 5     | 2M    | 5              | 5      |      |      |
| TrCk(W/S)                       | 5     |       | 5     | 5      | 5     | 5     |       | 5     | 5     | 4M     |       | 5      | 5      | 4M    | 4W    | N4     | 5      | 4W     | S      | 5     | 4M    | 3W    | 5        | 4N    | 3M     | 3N     |        | 2W    | 3M    | 3M             | 3N     | 1M   |      |
| Memb   LngCk(W/S)   TrCk(W/S)   | 5     |       | 5     | 5      | 5     | 5     |       | 5     | 5     | 4M     |       | 3M     | 5      | 5     | 5     | A 4    | 2W     | 5      | 5      | 5     | M4    | 3W    | Ng<br>Ng | 3M    | 3N     | 4N     |        | 5     | 3M    | 5              | 4N     | 4N   |      |
| Memb                            | Д     |       |       |        | В     |       |       |       | Д     |        |       |        |        |       |       |        |        |        |        |       |       |       |          |       |        |        | Ш      |       | ۵     |                |        |      |      |
| 0/1                             |       |       |       |        |       | I     | Ι     |       |       |        |       | I      | I      |       |       | I      | I      | I      |        | I     | I     | I     | I        | I     | I      | I      |        |       |       | I              | I      | I    | エ    |
| S/M                             | 4     |       | A     | 4      | 4     | O     | ပ     | O     | ⋖     | 4      |       | O      | Ш      | A     | A     | ш      | O      | ш      | Ш      | O     | O     | O     | O        | O     | O      | O      | ⋖      | ⋖     | ⋖     | O              | Ш      | O    | O    |
|                                 | 96    | 94    | 98    | 06     | 06    | 88    | 93    | 85    | 92    | 92     | 94    | 87     | 91     | 87    | 91    | 92     | 85     | 92     | 92     | 85    | 88    | 92    | 87       | 91    | 87     | 91     | 93     | 88    | 92    | 87             | 91     | 85   | 93   |
| FileNumber InspDate             | 73621 | 73621 | 73636 | 73636  | 73637 | 73640 | 73640 | 73757 | 73757 | 7377   | 73779 | 73810W | 73810W | 73819 | 73819 | 73823E | 73825E | 73825E | 73825W | 73836 | 73836 | 73836 | 73837    | 73837 | 73919E | 73919E | 73920W | 73922 | 73922 | 73949          | 73949  | 7398 | 7398 |



| _                                                | _   |      | _     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |        |        |        |        |        |        |        | _      |
|--------------------------------------------------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Overall                                          | 4   | 2    | 4     |       | 3     | 4     | 4     |       | 4     | 4     | 4     |       | 4     | 4     | 4     | 4     | 4     |       | 4     |       |       | 0     |       | 3      | 2      | 4      |        | 4      |        | 4      | 4      | 4      | 0      |
| RanCk(Und)                                       | 5   | 5    | 5     |       | 5     | 4N    | 5     |       | 5     | 4     | 5     |       | 2N    | 5     | 5     | 5     | 5     |       | 5     |       |       | 5     |       | 3M     | 5      | 5      |        | 5      |        | 5      | 5      | 4N     | 5      |
| TrCk(Und)                                        | 2   | 5    | 4M    |       | 4W    | 3N    | 5     |       | 4N    | 4N    | 4N    |       | 3M    | 4N    | 4M    | 5     | 3N    |       | 3N    |       |       | 5     |       | 3M     | 3M     | 5      |        | 4N     |        | 3W     | 4M     | 3M     | 4W     |
| LngCk(Und)                                       | 5   | 5    | 5     |       | 5     | 3M    | 5     |       | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 5     |       | 5     |       |       | 55    |       | 4W     | 3M     | 5      |        | 3W     |        | 5      | 5      | 2      | 5      |
| RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und) | 5   | 3N   | 5     |       | 3M    | 4M    | 5     |       | 2M    | 3N    | 2M    |       | 5     | 5     | 5     | 5     | 5     |       | 5     |       |       | 5     |       | 4M     | 5      | 5      |        | 3N     |        | ZN     | SN     | 4N     | 3N     |
|                                                  | 5   | 5    | 3W    |       | 5     | 3M    | 5     |       | 5     | 5     | 5     |       | 4N    | 5     | 3N    | 5     | 5     |       | 2     |       |       | 5     |       | 5      | 4M     | 5      |        | 5      |        | 1M     | 3M     | 5      | 2M     |
| Memb   LngCk(W/S)   TrCk(W/S)                    | 5   | 5    | 5     |       | 5     | 3M    | 4W    |       | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 5     |       | 5     |       |       | 5     |       | 5      | 4M     | 5      |        | 3N     |        | Ψ      | 3M     | 5      | 2M     |
| Memb                                             |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | Щ     |       |       |       |       |        |        |        |        |        |        |        |        |        |        |
| O/L                                              |     | I    |       |       |       |       | I     | I     |       |       |       |       | I     | I     | I     | I     | I     |       |       |       | I     |       |       | 1      |        |        |        | I      |        | I      | I      | I      | I      |
| S/M                                              | <   | O    | ⋖     | 4     | <     | ∢     | Ш     | Ш     | 4     | ⋖     | 4     |       | O     | Ш     | Ш     | O     | O     |       | ⋖     |       | Ш     | ∢     |       | 4      | 4      | A      |        | O      |        | O      | O      | Ш      | O      |
| InspDate                                         | 92  | 85   | 92    | 93    | 85    | 06    | 88    | 93    | 88    | 85    | 06    | 94    | 98    | 88    | 92    | 87    | 91    | 94    | 88    | 94    | 93    | 88    | 94    | 98     | 06     | 85     | 93     | 85     | 93     | 98     | 88     | 92     | 98     |
| FileNumber InspDate                              | 740 | 7401 | 74116 | 74137 | 74195 | 74195 | 74217 | 74217 | 74222 | 74227 | 74227 | 74227 | 74228 | 74228 | 74228 | 74229 | 74229 | 74229 | 74232 | 74232 | 74233 | 74236 | 74236 | 74282W | 74282W | 74352E | 74352E | 74352W | 74352W | 74353E | 74353E | 74353E | 74353W |



| _                    |        |        |        |        |        | _      |        |        |        |        |        |        |        |       |       |       |       |       |        |       |       |       |        | _     |       | _     | _      | _      |        |       |       |       | _     |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|--------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|
| Overall              | 4      | က      | 4      | 4      | 3      | 4      | 3      | 4      | 4      | 4      | 4      | 4      | 4      | 4     | 3     | 3     | 3     |       | 4      | 2     |       |       | 4      | 3     | 5     | 3     | 4      | 4      | 3      | 4     | က     | 4     | 4     |
| RanCk(Und) Overall   | 5      | 5      | 5      | 4N     | 5      | 4M     | 3N     | 5      | 5      | 4N     | 5      | 5      | 3M     | 5     | 3N    | 4N    | 3M    |       | 5      | 3N    |       |       | 4N     | 4N    | 5     | N4    | 5      | 5      | 3M     | 5     | 4N    | 5     | 5     |
| TrCk(Und)            | 4<br>N | 3M     | 5      | 5      | 4W     | 5      | 3N     | 5      | 5      | 5      | 2N     | 3M     | 3M     | 3N    | 4N    | 3N    | 4N    |       | 4<br>N | 3N    |       |       | 4<br>N | 3N    | 5     | N3    | 2N     | 4M     | 3M     | 4M    | 3M    | 2N    | 4     |
| LngCk(Und) TrCk(Und) | 5      | A<br>N | 5      | 5      | 3W     | 4M     | WE.    | 9      | 2      | 9      | 5      | 5      | 4N     | 5     | 5     | 5     | 5     |       | 5      | 5     |       |       | 5      | 5     | 5     | 3     | 5      | 5      | N4     | 5     | 4N    | 3N    | 5     |
| RanCk(W/S)           | 2      | 5      | 2M     | 5      | 3M     | 2N     | 5      | 5      | 3W     | 4N     | 5      | 5      | 5      | 3M    | 5     | 5     | 5     |       | 5      | 5     |       |       | 5      | 5     | 5     | 4N    | 5      | 5      | 5      | 3M    | 3M    | 5     | 5     |
| TrCk(W/S)            | 5      | A A    | 3M     | 5      | 2M     | 3W     | 5      | 5      | 5      | 3M     | 5      | 5      | 3N     | 3M    | 3W    | 3M    | 2M    |       | 2      | 3M    |       |       | 4N     | 3N    | 5     | 3N    | 2N     | 4M     | 3M     | 5     | 2W    | 5     | 5     |
| Memb   LngCk(W/S)    | 5      | 5      | 5      | 5      | Z.     | 3W     | 5      | 5      | 5      | 4M     | 5      | 5      | 5      | 5     | 4M    | 5     | 4M    |       | 5      | 5     |       |       | 9      | N4    | 5     | 5     | 5      | 5      | N4     | 5     | 4M    | 5     | 5     |
| Memb                 |        |        |        |        |        |        |        | Д      | Д      | Д      |        |        |        |       |       |       |       |       |        |       |       |       |        |       |       |       |        |        |        |       |       | 止     | L     |
| 0/1                  | I      | I      |        |        | I      | Ι      | I      |        |        |        | I      | I      | I      |       |       | I     | I     |       |        |       |       |       | エ      | I     |       | I     | I      | I      | I      |       |       |       |       |
| S/M                  | Ш      | Ш      | V      | ⋖      | ပ      | O      | ш      | A      | A      | 4      | O      | Ш      | Ш      | O     | O     | O     | O     |       | 4      | O     | O     |       | S      | Ш     | ပ     | ပ     | ပ      | O      | O      | O     | ပ     | <     | 4     |
| InspDate             | 88     | 92     | 88     | 92     | 98     | 88     | 92     | 87     | 91     | 92     | 87     | 91     | 92     | 87    | 91    | 87    | 91    | 94    | 87     | 91    | 93    | 94    | 87     | 91    | 90    | 88    | 87     | 91     | 92     | 98    | 92    | 98    | 91    |
| FileNumber InspDat   | 74353W | 74353W | 74354E | 74354E | 74354W | 74354W | 74354W | 74355E | 74355E | 74355E | 74355W | 74355W | 74355W | 74358 | 74358 | 74381 | 74381 | 74381 | 74426  | 74426 | 74426 | 74426 | 74440  | 74440 | 74447 | 74452 | 74458S | 74458S | 74458S | 74540 | 74540 | 74596 | 74596 |



| Overal     | 4      | 4    | 4    | 4     | 4      | 4     | 4     | 4     | 4       | 4     | က     | 4    | 4    | 4    | 4    | 4     | 4     | 3     | 3     | 4      | 4      | 4      | 4     | 4     | 3     | 4     | 4     | 4      | 4      | 3      | 4      | 4      | 3      |
|------------|--------|------|------|-------|--------|-------|-------|-------|---------|-------|-------|------|------|------|------|-------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| RanCk(Und) | 5      | 5    | 5    | 5     | 5      | 5     | 5     | 5     | AN<br>A | 5     | 4M    | 5N   | 5    | 5    | 5    | 5     | 2N    | 5     | 4N    | 5      | 5      | 5      | 5     | 5     | 5     | 5     | 5     | 3N     | 2N     | 3N     | 3N     | 2N     | 3N     |
| TrCk(Und)  | 5      | 5    | 3N   | A A   | A 4    | 5     | N4    | 5     | N4      | 5     | A 4   | 3N   | 5    | 5    | 5    | 3N    | 3N    | 5     | 5     | 5      | 5      | 5      | 3N    | 4M    | 3M    | 5     | 5     | 3N     | 5      | 4N     | 3N     | 5      | 3M     |
| LngCk(Und) | 5      | 5    | A 4  | 5     | 4<br>N | 5     | A 4   | 5     | 5       | 5     | 5     | 5    | 5    | 5    | 5    | 5     | 5     | 5     | 5     | 5      | 4<br>N | 5      | A N   | 5     | 5     | 5     | 5     | 3N     | 5      | 3N     | 38     | 5      | 3M     |
| RanCk(W/S) | 4M     | 5    | 5    | 2N    | 3N     | 5     | 2N    | 3N    | N4      | 5     | 5     | 5    | 5    | 5    | 5    | 5     | 5     | 4M    | 5     | 5      | 5      | 3N     | 5     | 5     | 5     | 5     | 5     | 3M     | 5      | 5      | 3M     | 5      | 5      |
| TrCk(W/S)  | 4M     | 2N   | 5    | 5     | 2M     | 4M    | 3M    | 5     | A 4     | 5     | 3W    | 5    | 5    | 5    | 4W   | 5     | 5     | 5     | 4M.   | 5      | 4W     | 5      | 3N    | 2M    | 3M    | 3N    | 5     | 3M     | 5      | 5      | 3M     | 5      | 5      |
| LngCk(W/S) | 4M     | 5    | 5    | 5     | 4<br>N | 5     | 5     | 5     | N4      | 5     | 3W    | 5    | 5    | 5    | 5    | 5     | 5     | 2     | A4    | 5      | 4W     | 5      | 5     | 5     | 4M    | 5     | 5     | 3W     | 5      | 5      | 3W     | 5      | 5      |
| Memb       |        |      |      |       |        |       |       |       |         | Ш     | ш     |      |      |      |      |       |       |       |       |        | ۵      |        |       |       |       |       |       |        |        |        |        |        |        |
| O/L        | Г      |      | Ш    | I     | I      | I     | I     | I     | I       |       |       |      | Ξ    | I    |      | I     | I     |       |       |        |        |        | I     | I     | I     | I     | I     | I      | I      | I      | I      | I      | I      |
| S/M        | A      | <    | ပ    | O     | O      | O     | U     | O     | O       | A     | A     | A    | O    | O    | ⋖    | O     | O     | O     | O     | ⋖      | <      | <      | O     | O     | Ш     | O     | O     | O      | Ш      | Ш      | O      | O      | C      |
| InspDate   | 98     | 87   | 92   | 87    | 91     | 87    | 91    | 87    | 91      | 87    | 91    | 88   | 88   | 92   | 88   | 87    | 91    | 87    | 91    | 85     | 91     | 85     | 85    | 88    | 92    | 87    | 91    | 98     | 06     | 92     | 86     | 06     | 92     |
| FileNumber | 74600W | 7461 | 7461 | 74653 | 74653  | 74678 | 74678 | 74679 | 74679   | 74710 | 74710 | 7475 | 7487 | 7487 | 7492 | 74954 | 74954 | 74969 | 74969 | 74978E | 74978E | 74978W | 75014 | 75014 | 75014 | 75021 | 75021 | 75051N | 75051N | 75051N | 75051S | 75051S | 750518 |



|                                            |       |       |        |        |        |         |        |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |       |      |      |       | _      | _     |       | _     |        | _      | _      |
|--------------------------------------------|-------|-------|--------|--------|--------|---------|--------|--------|--------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|--------|-------|-------|-------|--------|--------|--------|
| Overall                                    | 4     | 4     | 4      | 4      |        | 4       |        | 4      | 4      |        | 4     | 4     | 4     | 4     | 4      | 3     | 4     | 4     | 4     | 4     | 3     | 3     |       | 4    | 4    | 4     | 4      |       | m     | 4     | 4      | 4      |        |
| RanCk(W/S) LngCk(Und) TrCk(Und) RanCk(Und) | 5     | 5     | 5      | 3M     |        | Z<br>Z  |        | 5      | 5      |        | 5     | 5     | 5     | 5     | 5      | 3N    | 5     | 5     | 5     | 5     | 2M    | 4W    |       | 5    | N4   | 3L    | 5      |       | 2     | 5     | 5      | 2      |        |
| TrCk(Und)                                  | 5     | 5     | 3M     | 3M     |        | AN<br>N |        | 4<br>M | 4N     |        | 5     | 5     | 2M    | 4N    | 4<br>N | 5     | 5     | 4M    | 5     | 5     | 3N    | 5     |       | 5    | 5    | 4L    | A<br>V |       | 2     | 5     | 5      | 2      |        |
| LngCk(Und)                                 | 5     | 5     | 4M     | 5      |        | 5       |        | 5      | 5      |        | 5     | 5     | 5     | 2     | 5      | 5     | 5     | 5     | 5     | 5     | 4N    | 4W    |       | 4M   | 5    | 4M    | 4<br>N |       | 2     | 5     | 4<br>N | 4M     |        |
| RanCk(W/S)                                 | 5     | 3W    | 5      | 5      |        | 5       |        | 5      | 5      |        | 5     | 5     | 5     | 5     | 5      | 2N    | 5     | 5     | 5     | 5     | 5     | 2M    |       | 5    | 4N   | 5     | 5      |       | 5     | 5     | 5      | 5      |        |
| TrCk(W/S)                                  | 5     | 5     | N4     | N4     |        | 5       |        | 5      | 5      |        | 5     | 5     | 5     | 2N    | 5      | 3M    | 5     | 5     | 5     | 5     | 5     | 5     |       | 5    | 4N   | 3F    | 5      |       | 5     | 3N    | 5      | 5      |        |
| LngCk(W/S)                                 | 5     | 4W    | 5      | 5      |        | 5       |        | 5      | 5      |        | 5     | 5     | 5     | 5     | 5      | 5     | 5     | 5     | 5     | 5     | 5     | 5     |       | 5    | 4M   | 4L    | 5      |       | 5     | 5     | 4M     | 3M     |        |
| Memb                                       | ۵     | ۵     |        |        |        |         |        |        |        |        |       |       |       |       |        |       |       |       | ۵     | Д     |       |       |       |      |      |       |        |       |       |       |        |        |        |
| 0/1                                        |       |       | I      | エ      | I      | I       |        | I      | エ      |        |       |       | 工     | I     | I      | I     | I     |       |       |       |       |       |       |      |      | I     | I      |       |       |       | I      | I      | I      |
| )   S/M                                    | ⋖     | A     | O      | O      | O      | Ш       |        | O      | Ш      |        | A     | 4     | O     | O     | Ш      | O     | Ш     | 4     | ⋖     | 4     | ⋖     | ⋖     |       | O    | O    | O     | Ш      |       | 4     | A     | O      | O      | O      |
| InspDate                                   | 88    | 92    | 88     | 88     | 93     | 91      | 94     | 87     | 91     | 94     | 98    | 06    | 85    | 87    | 91     | 88    | 92    | 98    | 88    | 92    | 86    | 06    | 94    | 98   | 92   | 98    | 06     | 94    | 85    | 88    | 87     | 88     | 93     |
| FileNumber                                 | 75054 | 75054 | 75055N | 750558 | 750558 | 75058N  | 75058N | 750588 | 75058S | 75058S | 75059 | 75059 | 75066 | 75070 | 75070  | 75111 | 75111 | 75112 | 75112 | 75112 | 75118 | 75118 | 75118 | 7513 | 7513 | 75186 | 75186  | 75186 | 75187 | 75187 | 75193E | 75193E | 75193E |



| _                                                         |        |        |        |        |        |        |        |        |        |       |       |       |       |       |       |        |        |        |        |        |        |        |        |        |        |        |        |       |       | _      |        |        |        |
|-----------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|
| Overall                                                   |        | 4      | 3      |        |        | 4      | 4      | 4      | 4      | 4     | 4     | 4     | 4     | 4     | 4     | 4      | 4      | 4      | 4      | 4      |        | 4      | 4      |        | 4      | 4      |        | 4     | 4     | 4      | 4      |        | 4      |
| RanCk(Und)                                                |        | 5      | 5      |        |        | 3N     | 3M     | 2N     | 3W     | 5     | 4N    | 5     | 5     | 5     | 3N    | 5      | 3M     | N4     | 2M     | 3N     |        | 5      | 5      |        | 5      | 5      |        | 4N    | 3N    | 4N     | 4<br>N |        | 5      |
| TrCk(Und)                                                 |        | 5      | 5      |        |        | 5      | 2M     | 5      | 3W     | 5     | 5     | 5     | 5     | 4M    | 3M    | A<br>N | 3M     | 38     | 5      | 3N     |        | 7<br>Z | 2N     |        | 4N     | 3N     |        | 3W    | 3M    | 2N     | 3M     |        | 5      |
| LngCk(Und)                                                |        | 4N     | 3M     |        |        | 5      | 3M     | 5      | 5      | 5     | 5     | 5     | 5     | 5     | 4N    | 5      | 3M     | 3N     | 5      | 2N     |        | 5      | 5      |        | 5      | 4N     |        | 2     | 3N    | 5      | 4M     |        | 5      |
| RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und)   Overal |        | 5      | 3M     |        |        | 5      | 5      | 5      | 5      | 4     | 5     | 5     | 5     | 5     | 3N    | 5      | 3W     | 5      | 3M     | 5      |        | 5      | 5      |        | 5      | 5      |        | 5     | 5     | 5      | 5      |        | 5      |
| TrCk(W/S)                                                 |        | 5      | 5      |        |        | 5      | 3M     | 5      | 3M     | 5     | 5     | 5     | 5     | 5     | 5     | 5      | 3M     | 5      | 3M     | 5      |        | 5      | 4M     |        | 5      | 4M     |        | 4M    | 5     | 5      | 5      |        | 5      |
| Memb LngCk(W/S)                                           |        | 4M     | 3M     |        |        | 5      | 4M     | 5      | 5      | 5     | 5     | A4    | 5     | 5     | 5     | 5      | 3M     | 5      | 3W     | 5      |        | 5      | 5      |        | 5      | 4M     |        | 5     | 5     | 5      | 5      |        | 5      |
| Memb                                                      |        |        |        |        |        |        |        |        |        |       | ۵.    |       |       |       |       |        |        |        |        |        |        |        |        |        |        |        |        |       |       |        | Ь      |        |        |
| O/L                                                       |        | I      | I      | I      |        | I      | I      | I      | I      |       |       |       |       |       |       |        |        |        |        |        |        |        |        |        |        |        |        |       |       |        |        |        |        |
| S/M                                                       |        | O      | O      | ပ      |        | Ш      | Ш      | Ш      | Ш      | 4     | ⋖     | _     | _     | ۵     | Ъ     | ⋖      | ⋖      | ⋖      | ⋖      | ⋖      |        | ⋖      | ⋖      |        | 4      | ⋖      |        | 4     | ⋖     | 4      | A      |        | A      |
| InspDate                                                  | 94     | 87     | 88     | 93     | 94     | 88     | 92     | 88     | 92     | 85    | 91    | 87    | 91    | 88    | 92    | 88     | 85     | 06     | 85     | 906    | 94     | 85     | 906    | 94     | 85     | 96     | 94     | 85    | 06    | 85     | 06     | 94     | 85     |
| FileNumber InspDate                                       | 75193E | 75193W | 75193W | 75193W | 75193W | 75195E | 75195E | 75195W | 75195W | 75197 | 75197 | 75305 | 75305 | 75315 | 75315 | 753318 | 75332N | 75332N | 75332S | 75332S | 75332S | 75335N | 75335N | 75335N | 753358 | 753358 | 753358 | 75336 | 75336 | 75337N | 75337N | 75337N | 753378 |



|                                 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |       |       |       |        | _      |       |       |       | _     |       |       | _     | _        | _     | _    | _    |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|----------|-------|------|------|
| Overall                         | 4      |        | 4      | 4      |        | 4      | 4      |        | 4      | 4      | 4      | 4      | 4      |        | 4      |        | 4     | 4     | 5     |       | 4      | 3      | 2     | 4     | 4     | 4     | 3     | 3     | 2     | 4        |       | 4    | 4    |
| RanCk(Und)                      | 3N     |        | 5      | 5      |        | 5      | 5      |        | 5      | A<br>Z | 5      | A N    | 5      |        | 5      |        | 5     | 3N    | 5     |       | 5      | 4<br>N | 5     | 5     | 5     | 5     | 5     | 5     | 5     | N4<br>N4 |       | 4M   | 2    |
| TrCk(Und)                       | 3M     |        | 5      | 4N     |        | 5      | 4N     |        | 3N     | 3N     | 3N     | 3M     | 5      |        | 5      |        | 5     | 5     | 5     |       | 3N     | NS.    | 5     | 5     | 5     | 5     | 2M    | 2M    | 5     | 5        |       | 5    | 38   |
| LngCk(Und)                      | 3N     |        | 5      | 5      |        | 5      | 5      |        | 5      | 4N     | 5      | 4N     | 3N     |        | 3N     |        | 5     | 5     | 5     |       | 5      | 4<br>N | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5        |       | 5    | 4N   |
| RanCk(W/S) LngCk(Und) TrCk(Und) | 5      |        | 2N     | 5      |        | 5      | 5      |        | 3N     | 5      | 3N     | 5      | 3N     |        | 3N     |        | 5     | 5     | 5     |       | 5      | 3N     | 3N    | 5     | 2W    | 2W    | 5     | 2M    | 4N    | N4       |       | 5    | 5    |
| TrCk(W/S)                       | 5      |        | 3N     | 5      |        | 5      | 5      |        | 5      | 5      | 5      | 4M     | 5      |        | 5      |        | 5     | 4N    | 5     |       | 3M     | 3N     | 3N    | 5     | 2W    | 3W    | 2W    | 5     | 5     | 5        |       | 5    | 5    |
| LngCk(W/S)                      | 5      |        | 3N     | 5      |        | 5      | 5      |        | 5      | 4M     | 5      | 4M     | 5      |        | 5      |        | 5     | 3N    | 5     |       | 3M     | N4     | 2     | 5     | 2W    | 3W    | 4W    | 5     | 5     | 5        |       | 4M   | V4   |
| Memb                            | ۵      |        |        |        |        |        |        |        |        | ۵      |        | Д      |        |        |        |        |       |       |       |       |        |        |       | Д     |       |       |       |       | L     | Ц        |       |      |      |
| 0/1                             | Г      |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | 工     | 工     |       |       | I      | I      |       |       |       |       |       |       |       | '        |       | I    | エ    |
| ) S/M                           | <      |        | A      | A      |        | A      | Ø      |        | 4      | <      | 4      | <      | <      | ∢      | ⋖      | 4      | O     | O     | 4     |       | O      | ပ      | A     | A     | ⋖     | 4     | A     | 4     | 4     | 4        |       | ပ    | O    |
| InspDate                        | 06     | 94     | 85     | 06     | 94     | 85     | 06     | 94     | 85     | 06     | 85     | 906    | 85     | 93     | 85     | 93     | 85    | 06    | 85    | 94    | 87     | 91     | 88    | 92    | 98    | 92    | 98    | 88    | 85    | 06       | 94    | 98   | 06   |
| FileNumber InspDate             | 753378 | 753378 | 75338N | 75338N | 75338N | 75338S | 75338S | 75338S | 75339N | 75339N | 753398 | 753398 | 75340N | 75340N | 75340S | 75340S | 75341 | 75341 | 75383 | 75383 | 75420W | 75420W | 75498 | 75498 | 75500 | 75500 | 75522 | 75522 | 75529 | 75529    | 75529 | 7553 | 7553 |



|                                 |        |        |        |        |        |        |       |       |       |       |        |        |       |       |       |       |       |        |        |        |        |        | _      |       | _     |       |       |       |       |        | _      |        | _     |
|---------------------------------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|
| Overall                         | 4      | 4      |        | 4      | 4      |        |       | 3     | 4     |       | 4      | 4      | 4     | 4     | 3     | 4     | 4     | 4      | 4      |        | 4      | 4      |        | 4     | 4     | 4     | 4     |       | 4     | 4      | 4      | 4      | 4     |
| LngCk(Und) TrCk(Und) RanCk(Und) | 5      | 5      |        | 5      | 5      |        |       | 5     | 5     |       | 5      | 5      | 5     | 5     | 3M    | 5     | 5     | 5      | 4<br>N |        | 5      | 3N     |        | 5     | 5     | 5     | 5     |       | 5     | 5      | 5      | 5      | 5     |
| TrCk(Und)                       | 2      | 5      |        | 5      | 5      |        |       | 5     | 5     |       | 5      | 5      | 2M    | 3N    | 3M    | 2M    | 2M    | 4M     | 3N     |        | 4M     | 3N     |        | 5     | A N   | 4M    | 5     |       | 2N    | 4<br>N | 4M     | 4<br>N | 2     |
| LngCk(Und)                      | 5      | 5      |        | 5      | 5      |        |       | 5     | 5     |       | 5      | 5      | 5     | 5     | 5     | 2     | 5     | 5      | 5      |        | 5      | 5      |        | 5     | 5     | 5     | 5     |       | 5     | 5      | 5      | 5      | 5     |
| RanCk(W/S)                      | 5      | 5      |        | 5      | 5      |        |       | 3N    | 5     |       | 5      | 5      | 9     | 9     | 5     | 5     | 5     | 5      | 5      |        | 5      | 5      |        | 3W    | 5     | 5     | 5     |       | 5     | 5      | 2W     | 5      | 4M    |
| TrCk(W/S)                       | 5      | 5      |        | 5      | 5      |        |       | 2N    | 5     |       | 5      | 5      | 5     | 5     | 5     | 5     | 3M    | 5      | 5      |        | 5      | 5      |        | 5     | 5     | 5     | 5     |       | 2N    | 5      | 5      | 5      | 5     |
| LngCk(W/S)                      | 5      | 4M     |        | 5      | 4M     |        |       | 5     | 5     |       | 5      | 5      | 5     | 5     | 5     | 5     | 3M    | 5      | 5      |        | 5      | 5      |        | 5     | 5     | 5     | 5     |       | 5     | N4     | 5      | 5      | 5     |
| Memb                            |        |        |        |        |        |        | ш     |       |       |       |        |        |       |       |       | ۵     | Д     |        |        |        |        |        |        |       | S     |       |       |       | L     | Щ      |        | Ь      |       |
| 0/1                             |        |        |        |        |        |        |       |       |       |       |        |        | I     | I     |       |       |       |        |        |        |        |        |        |       |       | I     |       |       |       |        |        |        |       |
| W/S C                           | ∢      | 4      |        | 4      | 4      |        | A     | O     | O     |       | 4      | A      | O     |       | 4     | 4     | 4     | 4      | ⋖      |        | A      | ⋖      |        | A     | ⋖     | Ш     | O     |       | A     | A      | A      | A      | A     |
| InspDate                        | 85     | 06     | 94     | 85     | 06     | 94     | 93    | 85    | 06    | 94    | 85     | 85     | 87    | 91    | 85    | 88    | 92    | 85     | 06     | 94     | 85     | 06     | 94     | 98    | 91    | 91    | 06    | 94    | 87    | 91     | 85     | 06     | 98    |
| FileNumber                      | 75535N | 75535N | 75535N | 75535S | 75535S | 755358 | 75538 | 75539 | 75539 | 75539 | 75543E | 75543W | 75555 | 75555 | 75644 | 75644 | 75644 | 75651N | 75651N | 75651N | 75651S | 75651S | 75651S | 75667 | 75667 | 75677 | 75694 | 75694 | 75701 | 75701  | 75707S | 75707S | 75722 |



|                      |       |       |       |       |       |       |       |       |       |       |       |       |       |        |          |       |       |       |       |       |       |       | _     |       | _     | _      |       |       |        | _     | _     | _     | _      |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|--------|-------|-------|-------|--------|
| Overall              | 3     | 4     | 4     | 4     | 4     | 4     | 4     | 4     |       | 4     | 4     | 3     |       | 4      | 4        |       | 4     | 3     | 4     | 4     |       | 3     | 4     | 4     | 4     | 4      | 3     | 4     | 4      | 4     | 4     | 4     | 4      |
| TrCk(Und) RanCk(Und) | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     |       | 5      | N4       |       | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | A<br>N | 5     | 2     | 4<br>N | 5     | 4M    | 5     | 2      |
|                      | 5     | 4M    | 5     | 5     | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     |       | 4<br>N | Ne<br>Ne |       | 3M    | 4M    | 3N    | 3N    |       | 2W    | 5     | 5     | 5     | 7<br>N | 5     | 3N    | 3N     | 4M    | 4M    | A N   | 2      |
| LngCk(Und)           | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     |       | 5      | 5        |       | 5     | 5     | 5     | 5     |       | 3M    | 5     | 5     | 5     | 5      | 5     | 5     | 5      | 5     | 5     | 5     | 5      |
| RanCk(W/S)           | 5     | 5     | 5     | 5     | 2     | 5     | 3M    | 5     |       | 5     | 5     | 5     |       | 5      | 5        |       | 5     | 5     | 2     | 5     |       | 5     | 5     | 5     | 5     | 5      | 2W    | 5     | 5      | 5     | 5     | 2M    | 5      |
| TrCk(W/S)            | 3N    | 4W    | 5     | 5     | 5     | 5     | 5     | 5     |       | 5     | 4W    | 4N    |       | 2M     | 4N       |       | 5     | 2     | 2     | 5     |       | 5     | 5     | 5     | 5     | 5      | 5     | 38    | 5      | 3M    | N4    | 5     | 5      |
| LngCk(W/S)           | 3N    | 5     | 5     | 5     | 5     | 5     | 5     | N4    |       | 5     | 4M    | 3N    |       | 2M     | 5        |       | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 5     | 5      | 5     | 5     | 5      | N4    | 5     | 5     | 5      |
| Memb                 |       |       | ۵     | 4     | ۵     |       |       | Ь     |       |       |       |       | U.    | Щ      | ш        |       | ш     | ш     |       |       |       | L     |       |       |       |        | ш     |       |        |       |       | L     | L      |
| 0/[                  | T     | T     |       |       |       |       |       |       |       |       |       |       |       |        |          |       |       |       | I     | I     |       |       |       |       | I     | I      |       |       |        | I     | I     |       |        |
| )   S/M              | 4     | O     | A     | A     | A     | <     | A     | 4     |       | A     | A     | A     | 4     | 4      | A        |       | ⋖     | 4     | O     | O     |       | A     | ⋖     | A     | Ш     | Ш      | A     | O     | Ш      | O     | Ш     | ⋖     | ⋖      |
| InspDate             | 91    | 92    | 88    | 92    | 91    | 85    | 86    | 06    | 94    | 92    | 85    | 91    | 93    | 87     | 91       | 94    | 98    | 91    | 85    | 88    | 94    | 98    | 88    | 92    | 87    | 91     | 88    | 85    | 91     | 87    | 91    | 98    | 85     |
| FileNumber           | 75722 | 75723 | 75724 | 75724 | 75725 | 75731 | 75744 | 75744 | 75744 | 75754 | 75760 | 75760 | 75876 | 75919S | 75919S   | 75929 | 75931 | 75931 | 75932 | 75932 | 75932 | 75933 | 75945 | 75945 | 75946 | 75946  | 75994 | 76034 | 76034  | 76057 | 76057 | 76092 | 76102N |



|                      |       |       |       | _     |       |       |       |       |       |       | _      |        |        |        |       |       |       | _     | _     |       | _     |       | _     | _     | _     | _     | _     | -      |        |       |       | _     | _      |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|--------|
| Overall              | 3     | 4     | 4     | 4     | 3     | 4     | 4     | 4     | 4     | 4     | 4      | 4      | 4      | 4      | 4     | 4     |       | 4     | 4     |       | 4     | 3     | 4     | 4     | 4     | ı     | 2     | 4      | 4      | 4     | 4     |       | 4      |
| RanCk(Und)           | 5     | 5     | 5     | 5     | 4N    | 5     | 5     | 5     | A N 4 | 5     | 5      | 5      | 5      | 5      | 5     | 5     |       | 5     | 5     |       | 5     | A N   | 5     | 5     | 5     |       | 5     | 5      | 5      | 5     | 5     |       | 2      |
| TrCk(Und)            | 5     | 5     | 4M    | 4M    | 5     | 4N    | 5     | 5     | 5     | 4M    | 4N     | 4<br>N | 4M     | A<br>N | 5     | 5     |       | 5     | 5     |       | 5     | 5     | 5     | 5     | 5     |       | 5     | 5      | 5      | 5     | 5     |       | A<br>N |
| LngCk(Und) TrCk(Und) | 4W    | 5     | 3N    | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5      | 5      | 5      | 5      | 5     | 5     |       | 5     | 5     |       | 5     | 5     | 5     | 5     | 5     |       | 5     | 5      | 5      | 5     | 5     |       | 5      |
| RanCk(W/S)           | 5     | 2     | 3M    | 2W    | 38    | 4N    | 3M    | 3N    | 3N    | 5     | 3W     | 5      | 3M     | 5      | 4N    | 5     |       | 3N    | 5     |       | 5     | 5     | 4M    | 5     | 5     |       | 5     | 4M     | 4M     | 2N    | 2N    |       | 5      |
| TrCk(W/S)            | 5     | 5     | 3M    | 5     | 5     | N4    | 5     | 5     | 5     | 2     | 5      | 5      | 5      | 5      | 4N    | 4W    |       | 5     | 4W    |       | 5     | 5     | 5     | 4N    | 4W    |       | 2     | 4M     | 4M     | 5     | 2     |       | 3N     |
| LngCk(W/S)           | 4W    | 5     | 3M    | 5     | 5     | N4    | 5     | 5     | 5     | 5     | 5      | V4     | 5      | 5      | 5     | 5     |       | 5     | 5     |       | 5     | 5     | 4M    | 5     | 5     |       | 5     | 3W     | 3W     | 5     | 5     |       | 5      |
| Memb                 |       |       |       |       |       |       |       |       | Д     | ۵     | LL     | ĬШ     | Ľ      | L      |       |       |       |       |       |       |       |       |       |       | Ц     |       | ட     |        |        | ч     | L     |       |        |
| O/L                  |       |       |       |       | I     | I     |       |       |       |       |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |        |
| ) S/M                | ပ     | A     | A     | A     | O     | O     | ⋖     | A     | 4     | A     | A      | A      | A      | ⋖      | A     | A     |       | 4     | <     |       | O     | O     | O     | 4     | ∢     |       | A     | ⋖      | ⋖      | A     | ⋖     |       | Α      |
| InspDate             | 06    | 85    | 86    | 88    | 88    | 92    | 87    | 91    | 88    | 92    | 85     | 06     | 85     | 06     | 85    | 06    | 94    | 85    | 06    | 94    | 87    | 91    | 87    | 91    | 87    | 94    | 85    | 85     | 85     | 85    | 06    | 94    | 87     |
| FileNumber           | 76117 | 76128 | 76158 | 76158 | 76159 | 76159 | 76161 | 76161 | 76177 | 76177 | 76181E | 76181E | 76181W | 76181W | 76185 | 76185 | 76185 | 76186 | 76186 | 76186 | 76212 | 76212 | 76223 | 76223 | 76226 | 76301 | 76330 | 76339E | 76339W | 76364 | 76364 | 76364 | 76378  |



| _                    |       | _      |       |        | _      |       |       |       |        |       |       |       |       |       |     |     |     |       |       |       |       |       |       |       |        |        |        |        |       |        |        |        |       |
|----------------------|-------|--------|-------|--------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|--------|--------|--------|-------|
| Overall              | 4     | 4      |       | 4      | 4      |       | 4     | 4     | 4      | 4     | 4     | 4     | 4     |       | 4   | 4   |     | 4     | 2     |       | 4     | 4     | 4     | 4     | 4      | 4      | 5      | 4      | 4     | 3      | 4      | 4      | 3     |
| RanCk(Und)           | 5     | 5      |       | 3N     | 3N     |       | 5     | 5     | 5      | 5     | 5     | 5     | 5     |       | 5   | 5   |     | 5     | 5     |       | 5     | 5     | 5     | 2     | 5      | 5      | 5      | 5      | 5     | 5      | 5      | 4N     | 5     |
| TrCk(Und)            | 3W    | N4     |       | 3N     | 3N     |       | 5     | 5     | 3N     | 5     | 5     | 4M    | 5     |       | A4  | 5   |     | 4W    | 3N    |       | 5     | 5     | 5     | 5     | A<br>V | 5      | 5      | 3N     | 5     | 4N     | 5      | 5      | 41    |
| LngCk(Und) TrCk(Und) | 5     | 4<br>N |       | 5      | 5      |       | 5     | 5     | N4     | 5     | 5     | 2N    | 5     |       | 5   | 5   |     | 5     | 5     |       | 5     | 5     | 5     | 5     | 5      | 5      | 5      | 5      | 5     | 5      | 5      | 5      | 5     |
| RanCk(W/S)           | 5     | 3N     |       | 5      | 5      |       | 3W    | 5     | 5      | 5     | 4M    | 5     | 5     |       | 4M  | 5   |     | 3W    | 5     |       | 5     | 5     | 5     | 5     | 3N     | N4     | 4N     | 5      | 5     | 3M     | 5      | 5      | 4M    |
| TrCk(W/S)            | 5     | A<br>N |       | 4M     | 4M     |       | 3W    | 5     | 5      | 5     | 5     | 5     | 4     |       | 5   | 5   |     | 3W    | 5     |       | 5     | 5     | 5     | 5     | 3N     | 5      | 5      | 5      | 4N    | 2M     | 5      | 5      | 2M    |
| LngCk(W/S)           | 5     | A 4    |       | 4M     | 4M     |       | 3W    | 5     | 4<br>N | 5     | 4M    | 5     | 5     |       | 5   | 5   |     | 3W    | 5     |       | 5     | 5     | 5     | 5     | 3N     | 5      | 5      | 5      | 4N    | 4M     | 4N     | 5      | 3M    |
| Memb                 |       |        |       |        |        |       |       |       |        | Д     | Ь     |       |       |       |     |     |     |       |       | Д     | ۵     |       |       |       |        |        |        |        |       |        | M      | Σ      |       |
| O/L                  |       |        |       |        |        |       |       |       | I      |       |       |       |       |       |     |     |     |       |       |       |       |       |       |       |        |        |        |        |       |        |        |        | I     |
| S/M                  | A     | ⋖      |       | A      | 4      |       | A     | A     | O      | A     | A     | Α     | <     |       | ပ   | O   |     | A     | А     | Α     | A     | S     | 0     | O     | Α      | A      | A      | A      | А     | A      | A      | А      | S     |
| InspDate             | 91    | 88     | 93    | 88     | 88     | 93    | 98    | 85    | 06     | 88    | 92    | 98    | 06    | 94    | 98  | 90  | 94  | 98    | 88    | 93    | 92    | 85    | 85    | 87    | 91     | 85     | 85     | 88     | 91    | 91     | 88     | 88     | 98    |
| FileNumber InspDat   | 76378 | 76381  | 76381 | 76382N | 76382N | 76392 | 76478 | 76528 | 7653   | 76540 | 76540 | 76558 | 76558 | 76558 | 992 | 992 | 992 | 60992 | 60992 | 60992 | 76615 | 76633 | 76634 | 76639 | 76639  | 76646E | 76646W | 76646W | 76648 | 76649W | 76650N | 766508 | 76652 |



|                                        |       |       |       | _     | _     |       |       | _   | _      | _      |        |        | _     |       | _     | _     |       |       | -     |       |        |        | _     |       | _     |        |        |        |        |         |         | _     | _     |
|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|--------|--------|--------|--------|---------|---------|-------|-------|
| Overal                                 | 3     | 4     | 4     | 4     | 4     | 4     | 4     | 4   | 4      |        | 4      |        | 4     | 4     | 4     | 5     | 4     | 4     | 4     | 4     | 4      | 4      | 5     | 4     |       | 4      | 4      | 4      | 4      | 4       | 4       | 4     |       |
| LngCk(Und) TrCk(Und) RanCk(Und) Overal | 5     | 2N    | 5     | 5     | 5     | 5     | 5     | 5   | 5      |        | 5      |        | 5     | 5     | 2N    | 5     | 5     | 4N    | 5     | 5     | 5      | 5      | 5     | 5     |       | 5      | 5      | 5      | 5      | 5       | 5       | 5     |       |
| TrCk(Und)                              | 5     | 5     | 5     | 4W    | 5     | 5     | 5     | 5   | 5      |        | 5      |        | 5     | 4M    | 5     | 5     | 5     | 5     | 5     | 4W    | 5      | 4N     | 5     | 5     |       | 5      | 5      | 5      | 5      | 5       | 5       | 5     |       |
| LngCk(Und)                             | 5     | 9     | 5     | 5     | 2     | 5     | 4N    | 5   | 2      |        | 5      |        | 5     | 5     | 2     | 5     | 5     | A 4   | 5     | 5     | 5      | 5      | 5     | 5     |       | 5      | 5      | 5      | 5      | 5       | 5       | 4N    |       |
| RanCk(W/S)                             | 5     | 5     | 3M    | 5     | 5     | 5     | 5     | 5   | 5      |        | 5      |        | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 2W    | 5      | 5      | 5     | 5     |       | 2      | 5      | 5      | 5      | 5       | 5       | 5     |       |
| TrCk(W/S)                              | 3M    | 2M    | 5     | 4W    | 5     | 5     | 5     | 5   | 5      |        | 5      |        | 5     | 5     | 2M    | 2     | 5     | 5     | 3M    | 2W    | 5      | N 4    | 5     | 5     |       | 5      | 5      | 5      | 4W     | 5       | 4W      | 5     |       |
| LngCk(W/S)                             | 3M    | 5     | 5     | 5     | 5     | 4M    | 5     | 5   | 5      |        | 5      |        | 5     | 5     | 5     | 5     | 5     | 5     | 3M    | 2W    | 5      | 5      | 5     | A N   |       | 5      | 4W     | 5      | 2      | 4M      | 5       | 4M    |       |
| Memb                                   |       |       |       |       |       |       |       |     | ш      | Ш      | Ш      | ш      |       |       |       |       |       |       |       |       |        | ۵      |       |       |       |        |        |        |        |         |         |       | Ш     |
| 0/1                                    | I     |       |       |       |       | I     | I     |     |        |        |        |        | I     | I     |       | ш     |       |       |       |       |        |        | I     | I     |       |        |        |        |        |         |         |       |       |
| M/S (                                  | O     | 4     | 4     | A     | 4     | O     | Ш     | O   | ⋖      | ⋖      | 4      | 4      | O     | O     | A     | Ш     | ⋖     | ⋖     | ⋖     | 4     | ⋖      | 4      | O     | O     |       | A      | A      | A      | 4      | A       | 4       | A     | Α     |
| 9                                      | 91    | 98    | 88    | 92    | 85    | 85    | 91    | 92  | 88     | 93     | 88     | 93     | 87    | 91    | 98    | 91    | 98    | 06    | 87    | 91    | 87     | 91     | 85    | 06    | 94    | 87     | 91     | 87     | 91     | 87      | 91      | 88    | 93    |
| FileNumber InspDat                     | 76652 | 76653 | 09992 | 76660 | 69992 | 76719 | 76719 | 768 | 76805E | 76805E | 76805W | 76805W | 76845 | 76845 | 76848 | 76848 | 76850 | 76850 | 76927 | 76927 | 77054E | 77054E | 77088 | 77088 | 77088 | 77091E | 77091E | 77091W | 77091W | 77091WC | 77091WC | 77126 | 77129 |



|                                                   | _           |       |        |       |       | _     |       |       | _     | _     |       |        |        |        |        |        |        |       |       | _     |       |       |       |       |       |       |        |        |       |       |       |       |       |
|---------------------------------------------------|-------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|
| Overal                                            | 4           | 4     | 4      | 4     |       |       | 4     | 4     | 4     | 4     | 4     | 4      | 4      | 4      | 5      | 4      | 4      |       | 4     | 4     | 5     | 4     |       | 4     | 4     | 4     | 4      |        | 4     | 4     |       |       | 4     |
| RanCk(Und)                                        | 5           | 5     | V 4    | 5     |       |       | 5     | 5     | 5     | 5     | 5     | 5      | 5      | 5      | 5      | 5      | 5      |       | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 4<br>N |        | 5     | 5     |       |       | 5     |
| TrCk(Und)                                         | N4          | 5     | 7<br>7 | 5     |       |       | 5     | 5     | 5     | 5     | 3N    | 5      | 5      | 5      | 5      | 5      | 5      |       | 5     | 5     | 5     | 5     |       | 5     | 5     | 5     | 4<br>N |        | 5     | 5     |       |       | 5     |
| LngCk(Und)                                        | A<br>N<br>A | 5     | 5      | 5     |       |       | 5     | 5     | 5     | 5     | 4M    | 5      | 5      | 5      | 5      | 5      | 5      |       | 5     | 5     | 5     | 5     |       | 5     | 5     | 4N    | 4N     |        | 5     | 5     |       |       | 5     |
| RanCk(W/S) LngCk(Und) TrCk(Und) RanCk(Und) Overal | 5           | 5     | 5      | 2M    |       |       | 5     | 5     | 5     | 5     | 5     | 5      | 5      | 5      | 5      | 5      | 5      |       | 5     | 5     | 5     | 5     |       | 5     | 3M    | 5     | 5      |        | 5     | 5     |       |       | 5     |
| TrCk(W/S)                                         | Г           | 5     | 5      | 5     |       |       | 5     | 5     | 5     | 5     | 3M    | 5      | 5      | 3N     | 5      | 5      | A N    |       | 5     | 5     | 4N    | 4M    |       | 3W    | 3M    | 5     | 3W     |        | 5     | 5     |       |       | 5     |
| Memb   LngCk(W/S)                                 | 4M          | 5     | 3W     | 5     |       |       | 5     | 5     | 5     | 5     | 5     | 5      | 5      | 5      | 5      | 5      | 5      |       | 5     | 4W    | N4    | 5     |       | ME    | 4M    | 4N    | 4M     |        | 3M    | 4M    |       |       | 5     |
| Memb                                              |             |       |        | ш     |       | Д     |       |       |       |       |       |        |        |        |        |        |        |       |       |       |       |       |       |       |       |       | Ь      | Ш      |       |       |       | Ш     |       |
| O/L                                               |             |       |        |       | 7     |       | I     | I     | I     | I     |       | I      | I      | I      | Н      | I      | I      |       | I     | I     | I     |       |       |       |       |       |        |        | I     | I     |       |       | ェ     |
| te W/S                                            | A           | 4     | Α      | A     | O     | A     | O     | S     | ပ     | O     | Ш     | ပ      | O      | S      | O      | O      | O      | A     | O     | O     | ပ     | S     | А     | А     | Α     | ပ     | A      | Α      | O     | S     |       | Α     | ပ     |
| InspDate                                          | 98          | 87    | 91     | 88    | 93    | 93    | 85    | 85    | 85    | 85    | 92    | 85     | 87     | 91     | 85     | 87     | 91     | 93    | 88    | 92    | 85    | 06    | 93    | 98    | 90    | 06    | 91     | 93     | 87    | 91    | 93    | 93    | 85    |
| FileNumber InspDat                                | 77173E      | 77175 | 77175  | 77177 | 77177 | 77254 | 77288 | 77288 | 77289 | 77289 | 77295 | 77303E | 77303E | 77303E | 77303W | 77303W | 77303W | 77315 | 77349 | 77349 | 77419 | 77419 | 77426 | 77466 | 77466 | 77493 | 77534  | 77753W | 77782 | 77782 | 77816 | 77817 | 77846 |



|                                                                                                 | _      |       |      |      |       |       |       |       |      |       |       |       |       |       |       |       |       |      |        | _      |        |      |      |       |       |     |     |      |      |      |      |         |       |
|-------------------------------------------------------------------------------------------------|--------|-------|------|------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|--------|--------|--------|------|------|-------|-------|-----|-----|------|------|------|------|---------|-------|
| Overall                                                                                         |        |       | 4    | 3    |       |       | 4     |       |      | 4     | 4     | 4     |       | 5     |       |       |       | 4    | 4      | 4      | 4      | 3    | 4    | 4     | 4     | 5   |     | 4    | 4    | 4    |      | 5       | 4     |
| RanCk(Und)                                                                                      |        |       | 2    | 5    |       |       | 5     |       |      | 5     | 5     | 5     |       | 5     |       |       |       | 5    | 5      | 5      | 5      | 3N   | 4N   | 5     | 5     | 5   |     | 5    | 5    | 5    |      | 5       | 5     |
| TrCk(Und)                                                                                       |        |       | 5    | 9    |       |       | 4M    |       |      | 5     | 5     | 5     |       | 5     |       |       |       | 5    | 5      | 5      | 5      | 4M   | 4N   | 5     | 5     | 5   |     | 5    | 5    | 5    |      | 5       | 2N    |
| LngCk(Und)                                                                                      |        |       | 5    | 5    |       |       | 5     |       |      | 5     | 5     | 5     |       | 5     |       |       |       | 3N   | 3N     | 5      | 5      | 5    | 4N   | 5     | 5     | 5   |     | 5    | 5    | 5    |      | 5       | 5     |
| O/L   Memb   LngCk(W/S)   TrCk(W/S)   RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und)   Overal |        |       | 5    | 5    |       |       | 5     |       |      | 5     | 5     | 5     |       | 5     |       |       |       | 5    | N4     | A<br>N | A<br>N | 3W   | 5    | 5     | 5     | 5   |     | 5    | 3M   | 5    |      | 5       | 5     |
| TrCk(W/S)                                                                                       |        |       | 5    | 5    |       |       | 5     |       |      | 5     | 5     | 5     |       | 5     |       |       |       | 2    | 5      | 5      | 5      | 3W   | 5    | 5     | 5     | 5   |     | 5    | 4M   | 5    |      | AN<br>V | 5     |
| LngCk(W/S)                                                                                      |        |       | 4N   | 3N   |       |       | 5     |       |      | 5     | 5     | 5     |       | 5     |       |       |       | 5    | 4<br>N | 5      | 5      | 4W   | 5    | 5     | 5     | 5   |     | 5    | 5    | 5    |      | 5       | 5     |
| Memb                                                                                            |        |       |      |      |       | Σ     |       |       |      |       |       |       |       |       |       |       |       |      |        |        |        |      |      |       |       |     |     |      |      |      |      |         |       |
| O/L                                                                                             |        |       | I    | ェ    |       |       | I     | I     |      |       |       |       |       |       |       |       |       |      |        | I      | I      |      |      | I     | I     | I   |     | I    |      |      |      | I       |       |
| te W/S                                                                                          |        | A     | ၁    | O    |       | 4     | O     | ပ     | U    | A     | ပ     | ပ     |       | ပ     |       |       |       | ပ    | O      | O      | O      | O    | ပ    | ပ     | ပ     | ပ   |     | ပ    | ပ    | O    |      | 0       | O     |
| InspDate                                                                                        | 94     | 93    | 87   | 91   | 94    | 93    | 85    | 93    | 93   | 90    | 85    | 06    | 94    | 85    | 94    | 93    | 93    | 85   | 92     | 85     | 85     | 98   | 90   | 85    | 85    | 85  | 93  | 85   | 98   | 06   | 94   | 85      | 06    |
| FileNumber InspDat                                                                              | 77872N | 77878 | 7802 | 7802 | 78031 | 78104 | 78123 | 78123 | 7815 | 78187 | 78194 | 78194 | 78194 | 78197 | 78197 | 78199 | 78215 | 7824 | 7824   | 78313  | 78314  | 7836 | 7836 | 78595 | 78595 | 786 | 786 | 7870 | 7871 | 7871 | 7871 | 78730   | 78730 |



| -                                                         | _     |       |       |       |       |       |       |        |        |       |       |      | _     |       |       |       |       |       |      |       |       |       |       |       |       |      |      |      |      |      |     |     |      |
|-----------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|-----|-----|------|
| Overal                                                    | 4     |       | 3     |       | 5     | 4     | 4     | 4      | 4      | 5     | 4     | 5    | 5     |       | 3     | 4     |       | 4     | 4    | 4     | 4     | 4     | 4     | 4     | 4     | 4    | 4    | 3    | 4    |      | 4   | 4   | 4    |
| RanCk(Und)                                                | 2     |       | 5     |       | 5     | 5     | 5     | 5      | 5      | 5     | 5     | 5    | 5     |       | 5     | 5     |       |       | 5    | 5     | 5     | 5     | 5     | 5     | 5     | 5    | 2N   | 5    | 5    |      | 3N  | 5   | 4M   |
| TrCk(Und)                                                 | 5     |       | 5     |       | 5     | 5     | 5     | 5      | 5      | 5     | 5     | 5    | 5     |       | 3N    | 5     |       | 3N    | N4   | 5     | 5     | 5     | 5     | 5     | 5     | 3N   | 4M   | 3M   | 4M   |      | 5   | 5   | 5    |
| LngCk(Und)                                                | 5     |       | 5     |       | 5     | 5     | 5     | 5      | 5      | 5     | 3N    | 5    | 5     |       | 5     | 5     |       | 5     | 5    | 5     | 5     | 5     | 5     | 5     | 5     | 3N   | 5    | 4N   | 5    |      | 3N  | 5   | 5    |
| RanCk(W/S)   LngCk(Und)   TrCk(Und)   RanCk(Und)   Overal | 5     |       | 5     |       | 5     | 2M    | 2W    | 5      | 5      | 5     | 5     | 5    | 5     |       | 5     | 5     |       | 5     | 5    | 5     | 5     | 5     | 5     | 5     | 5     | 5    | 5    | 5    | 5    |      | 5   | 5   | 3M   |
|                                                           | 9     |       | 5     |       | 5     | 5     | 9     | 5      | 5      | 5     | 5     | 5    | 5     |       | - 2   | 5     |       | 5     | 5    | 5     | 5     | 5     | 5     | 5     | 5     | 4M   | 3W   | 2M   | 3M   |      | 5   | 4W  | 5    |
| Memb   LngCk(W/S)   TrCk(W/S)                             | 3M    |       | 4M    |       | 5     | 5     | 5     | 5      | 5      | 5     | 4M    | 5    | V4    |       | 5     | 5     |       | 5     | 5    | 5     | 4W    | 4W    | 5     | 5     | 5     | 4M   | 5    | 4N   | 4M   |      | 5   | 5   | 5    |
| Memb                                                      |       |       |       |       |       |       |       |        |        |       |       |      |       |       |       |       |       |       |      |       |       |       |       |       |       |      |      |      |      |      |     |     |      |
| O/L                                                       | Τ     | I     | Η     | Н     |       |       |       |        |        | I     |       | エ    | I     |       |       | I     | I     |       |      |       |       |       |       |       |       | I    | エ    | エ    | I    |      |     |     |      |
| S/M                                                       |       | O     | O     | ၁     | ပ     | Α     | Α     | A      | Α      | O     | A     | O    | O     |       | O     | O     | O     | O     | Ш    | ပ     | O     | O     | S     | O     | O     | ပ    | O    | ပ    | S    | А    | А   | А   | O    |
| InspDate                                                  | 85    | 93    | 85    | 93    | 85    | 88    | 92    | 85     | 85     | 85    | 92    | 85   | 85    | 93    | 85    | 85    | 93    | 85    | 88   | 92    | 92    | 92    | 92    | 92    | 92    | 88   | 92   | 87   | 92   | 93   | 98  | 06  | 86   |
| FileNumber InspDate                                       | 78765 | 78765 | 78808 | 78808 | 78832 | 78896 | 78896 | 79201N | 792018 | 79375 | 79375 | 7938 | 79432 | 79432 | 79439 | 79443 | 79443 | 79671 | 7978 | 80121 | 80122 | 80134 | 80135 | 80152 | 80153 | 8028 | 8028 | 8036 | 8036 | 8077 | 820 | 820 | 8303 |



| _                                                 |      |      | _    |      | _    |      | _    |      |      |      |     |     |     |      |      |      |          |     |     |     |      |      |     |     |     |        |      |      |      |      |      |      |      |
|---------------------------------------------------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|------|------|------|----------|-----|-----|-----|------|------|-----|-----|-----|--------|------|------|------|------|------|------|------|
| Overall                                           | 2    |      | 5    | 4    |      |      | 4    | 4    | 4    |      | 4   | 4   | 4   | 5    | 4    | 4    | 4        | 4   | 4   | 4   | 4    | 4    | 3   | 3   | 3   | 3      | 4    | 4    |      | 4    |      |      | 4    |
| RanCk(Und)                                        | 5    |      | N4   | 5    |      |      | 5    | 3M   | 5    |      | 5   | 5   | 5   | 5    | 5    | 5    | 5        | 5   | 5   | 5   | 5    | 5    | 5   | 2N  | 5   | 3N     | 5    | 5    |      | 5    |      |      | 3N   |
| TrCk(Und)                                         | N4   |      | 5    | 5    |      |      | 5    | 5    | 5    |      | 5   | 5   | 5   | 5    | 5    | 5    | 5        | N4  | N4  | 3N  | 5    | 5    | 3N  | 2N  | 3N  | 3N     | 3M   | A 4  |      | 5    |      |      | 5    |
| LngCk(Und)                                        | N4   |      | 5    | 5    |      |      | 5    | 5    | 5    |      | 5   | 5   | 5   | 5    | 5    | 5    | 5        | 5   | 5   | 5   | 5    | 5    | 3N  | 2N  | 3N  | 3N     | 5    | 5    |      | 5    |      |      | 5    |
| RanCk(W/S) LngCk(Und) TrCk(Und) RanCk(Und) Overal | 5    |      | 5    | 5    |      |      | 5    | 5    | 5    |      | 5   | 3M  | 3N  | 5    | 5    | 4W   | NE<br>SN | 5   | N4  | 5   | 5    | 5    | N   | 5   | 5   | A<br>V | 3W   | 5    |      | 5    |      |      | 5    |
| TrCk(W/S)                                         | 5    |      | 5    | 5    |      |      | S    | 5    | 5    |      | 5   | 5   | 5   | 5    | 5    | 5    | 5        | 5   | 2M  | 2W  | 3M   | 4M   | 5   | V4  | 4M  | 4<br>N | 3W   | 5    |      | 5    |      |      | 4N   |
| Memb   LngCk(W/S)                                 | 5    |      | 5    | 5    |      |      | 5    | 5    | V4   |      | 4M  | 5   | 3N  | 4M   | 5    | 4W   | 5        | 5   | 2M  | 3W  | 5    | 2    | 5   | 4N  | 4M  | 4N     | 5    | 5    |      | 5    |      |      | 5    |
| Memb                                              |      |      |      |      |      | ட    |      |      |      |      | В   |     |     |      |      |      |          |     |     |     |      |      |     |     |     |        |      |      |      |      | Е    | Ш    |      |
| O/L                                               |      |      |      |      | I    |      | I    | Ξ    | I    | I    |     |     |     |      |      |      |          | I   | I   | I   |      |      | I   | I   | I   | I      |      |      |      |      |      |      | I    |
| S/M                                               | ၁    |      | S    | O    | ш    | 4    | O    | O    | O    | Ш    | А   | A   | 4   | A    | А    | A    | A        | O   | O   | O   | ပ    | S    | S   | ပ   | O   | O      | U    | ပ    |      | O    | A    | 4    | O    |
| 9                                                 | 06   | 94   | 85   | 92   | 93   | 93   | 85   | 98   | 88   | 93   | 06  | 98  | 06  | 87   | 91   | 98   | 91       | 85  | 88  | 92  | 98   | 92   | 98  | 06  | 98  | 06     | 98   | 06   | 94   | 92   | 93   | 93   | 98   |
| FileNumber InspDat                                | 8303 | 8303 | 8487 | 8487 | 8495 | 8641 | 8707 | 8719 | 8719 | 8719 | 875 | 928 | 876 | 8792 | 8792 | 8800 | 8800     | 887 | 887 | 887 | 8987 | 8987 | 903 | 903 | 904 | 904    | 6606 | 6606 | 6606 | 9230 | 9259 | 9259 | 9551 |



|                      | _    |      |      |      |       |     |      |      |     | _   |     |        |      |      |      |     |     |     |     |
|----------------------|------|------|------|------|-------|-----|------|------|-----|-----|-----|--------|------|------|------|-----|-----|-----|-----|
| Overall              | 4    |      | 5    | 4    | 4     | 4   | 3    | 3    | 4   |     | 4   | 4      | 3    | 3    | 3    | 2   | 2   | 4   | 4   |
| RanCk(Und) Overal    | 5    |      | 5    | 5    | 4N    | 5   | 2M   | N4   | 5   |     | 2M  | 5      | 5    | 2N   | 3N   | 5   | 3M  | 5   | 5   |
| TrCk(Und)            | 4M   |      | 5    | 5    | 5     | 4N  | 2M   | 3N   | 4N  |     | 5   | 5      | 5    | 5    | 5    | 3M  | 3M  | V4  | 3M  |
| LngCk(Und) TrCk(Und) | 5    |      | 5    | 5    | 5     | 5   | 2M   | 3N   | 5   |     | 3M  | A<br>N | 4N   | 5    | 3N   | 5   | 5   | 5   | 5   |
| RanCk(W/S)           | 5    |      | 5    | 5    | 3N    | 5   | 4M   | 4W   | 5   |     | 5   | 5      | Z    | 5    | 5    | 3N  | 3M  | 3M  | 5   |
| TrCk(W/S)            | 4M   |      | 5    | 3N   | A 4 N | 5   | 3M   | 4M   | 5   |     | 5   | 2      | 5    | 3M   | 5    | Z   | 1M  | 2W  | 2W  |
| LngCk(W/S)           | 5    |      | 5    | 5    | 5     | 5   | 3M   | 5    | 5   |     | 5   | 5      | 4M   | N4   | 5    | 3N  | 5   | 5   | 5   |
| Memb                 |      |      |      |      |       |     |      |      |     |     |     |        |      |      |      |     |     |     |     |
| O/L                  | I    | I    |      |      |       |     |      |      | I   | I   |     |        | 7    | I    | I    |     |     |     |     |
| S/M                  | O    | ပ    | ပ    | ပ    | ပ     | Ш   | 4    | 4    | O   | ပ   | 4   | 4      | O    | O    | Ш    | O   | ပ   | O   | ပ   |
| InspDate             | 88   | 93   | 85   | 92   | 98    | 96  | 98   | 90   | 88  | 93  | 98  | 06     | 91   | 87   | 06   | 98  | 06  | 98  | 92  |
| FileNumber InspDat   | 9551 | 9551 | 9590 | 9590 | 962   | 962 | 9755 | 9755 | 977 | 977 | 983 | 983    | 9903 | 9910 | 9910 | 992 | 992 | 666 | 666 |



## YEAR OF FIRST REHAB DATA

|            | YearOf     |              |
|------------|------------|--------------|
| FileNumber | FirstRehab | Description  |
| 149        | 1993       | FRSF O/L     |
| 167        | 1987       | sealed       |
| 189        | 1989       | membrane/ACP |
| 233        | 1982       | HD Conc O/L  |
| 272        | 1995       | FRSF O/L     |
| 274        | 1992       | membrane/ACP |
| 278        | 1992       | Epoxy O/L    |
| 310        | 1990       | membrane/ACP |
| 315        | 1979       | HD Conc O/L  |
| 370        | 1989       | membrane/ACP |
| 395        | 1985       | Epoxy O/L    |
| 436        | 1995       | SF Conc O/L  |
| 457        | 1988       | membrane/ACP |
| 589        | 1985       | Epoxy O/L    |
| 611        | 1966       | Epoxy O/L    |
| 710        | 1998       | FRSF O/L     |
| 740        | 1983       | membrane/ACP |
| 756N       | 1990       | Conc O/L     |
| 786        | 1981       | HD Conc O/L  |
| 887        | 1983       | HD Conc O/L  |
| 903        | 1982       | HD Conc O/L  |
| 904        | 1983       | HD Conc O/L  |
| 962        | 1988       | Epoxy O/L    |
| 977        | 1997       | Epoxy O/L    |
| 983        | 1989       | membrane/ACP |
| 992        | 1993       | Epoxy O/L    |
| 1053       | 1997       | SF Conc O/L  |
| 1062       | 1997       | FRSF O/L     |
| 1085       | 1993       | FRSF O/L     |
| 1145       | 1989       | membrane/ACP |
| 1153       | 1985       | Epoxy O/L    |
| 1158       | 1989       | membrane/ACP |
| 1227       | 1988       | Epoxy O/L    |
| 1245       | 1981       | HD Conc O/L  |
| 1303       | 1979       | HD Conc O/L  |
| 1409       | 1993       | Epoxy O/L    |
| 1427       | 1988       | membrane/ACP |
| 1493       | 1988       | Epoxy O/L    |
| 1517       | 1978       | membrane/ACP |
| 1664       | 1994       | FRSF O/L     |
| 1741       | 1992       | Epoxy O/L    |
| 1766       | 1995       | SF Conc O/L  |
| 1767       | 1991       | membrane/ACP |
| 1.01       |            |              |

| FileNumber | YearOf     | Description   |
|------------|------------|---------------|
|            | FirstRehab |               |
| 74602E     | 1989       | CP            |
| 74653      | 1985       | HD Conc O/L   |
| 74678      | 1978       | HD Conc O/L   |
| 74679      | 1978       | HD Conc O/L   |
| 74710      | 1995       | FRSF O/L      |
| 74954      | 1975       | HD Conc O/L   |
| 74969      | 1992       | FRSF O/L      |
| 74978W     | 1992       | CP            |
| 74978E     | 1988       | CP            |
| 75014      | 1983       | HD Conc O/L   |
| 75016      | 1981       | HD Conc O/L   |
| 75051N     | 1981       | HD Conc O/L   |
| 75051S     | 1981       | HD Conc O/L   |
| 75054      | 1987       | CP            |
| 75055N     | 1980       | HD Conc O/L   |
| 75055S     | 1980       | HD Conc O/L   |
| 75058N     | 1980       | HD Conc O/L   |
| 75058S     | 1980       | HD Conc O/L   |
| 75070      | 1987       | Epoxy O/L     |
| 75111      | 1986       | HD Conc O/L   |
| 75112      | 1987       | CP            |
| 75186      | 1986       | HD Conc O/L   |
| 75187      | 1993       | FRSF O/L      |
| 75193W     | 1985       | HD Conc O/L   |
| 75193E     | 1985       | HD Conc O/L   |
| 75195W     | 1982       | HD Conc O/L   |
| 75195E     | 1982       | HD Conc O/L   |
| 75197      | 1990       | СР            |
| 75217      | 1984       | latex overlay |
| 75305      | 1992       | Epoxy O/L     |
| 75331S     | 1975       | СР            |
| 75332N     | 1997       | SF Conc O/L   |
| 75332S     | 1991       | sealed        |
| 75335N     | 1996       | SF Conc O/L   |
| 75335S     | 1996       | SF Conc O/L   |
| 75336      | 1990       | СР            |
| 75337N     | 1989       | CP            |
| 75337S     | 1989       | CP            |
| 75338N     | 1993       | FRSF O/L      |
| 75338S     | 1993       | FRSF O/L      |
| 75339N     | 1988       | СР            |
| 75339S     | 1988       | СР            |
| 75340N     | 1995       | SF Conc O/L   |



|            | YearOf     |              |
|------------|------------|--------------|
| FileNumber | FirstRehab | Description  |
| 1797       | 2000       | FRSF O/L     |
| 1894       | 1995       | SF Conc O/L  |
| 1916       | 1994       | FRSF O/L     |
| 1980       | 1984       | Epoxy O/L    |
| 2008       | 1986       | FRSF O/L     |
| 2010       | 1990       | Epoxy O/L    |
| 2047       | 1995       | FRSF O/L     |
| 2143       | 1997       | FRSF O/L     |
| 2155       | 1988       | sealed       |
| 2212       | 1980       | membrane/ACP |
| 2233       | 1981       | HD Conc O/L  |
| 2235       | 1980       | HD Conc O/L  |
| 2359       | 1983       | HD Conc O/L  |
| 2401       | 1993       | FRSF O/L     |
| 2430       | 1981       | HD Conc O/L  |
| 2431       | 1988       | membrane/ACP |
| 2487       | 1982       | HD Conc O/L  |
| 6548       | 1980       | Concrete     |
| 6565       | 1979       | Concrete     |
| 6985W      | 1978       | HD Conc O/L  |
| 7109       | 1986       | FRSF O/L     |
| 7461       | 1987       | FRSF O/L     |
| 7475       | 1993       | Epoxy O/L    |
| 7513       | 1991       | Conc O/L     |
| 7553       | 1982       | HD Conc O/L  |
| 7802       | 1981       | HD Conc O/L  |
| 7815       | 1989       | sealed       |
| 7836       | 1992       | FRSF O/L     |
| 7870       | 1991       | Epoxy O/L    |
| 7978       | 1987       | Epoxy O/L    |
| 8028       | 1985       | HD Conc O/L  |
| 8036       | 1981       | HD Conc O/L  |
| 8174       | 1991       | Epoxy O/L    |
| 8303       | 1988       | sealed       |
| 8435E      | 1987       | membrane/ACP |
| 8495       | 1986       | HD Conc O/L  |
| 8641       | 1995       | FRSF O/L     |
| 8719       | 1985       | HD Conc O/L  |
| 9099       | 1992       | FRSF O/L     |
| 9204       | 1995       | membrane/ACP |
| 9219E      | 1993       | HD Conc O/L  |
| 9259       | 1996       | FRSF O/L     |
| 9337       | 1990       | membrane/ACP |
| 9469N      | 1979       | HD Conc O/L  |
| 9469S      | 1979       | HD Conc O/L  |

|            | YearOf     |             |
|------------|------------|-------------|
| FileNumber | FirstRehab | Description |
| 75341      | 1992       | Epoxy O/L   |
| 75383      | 1994       | FRSF O/L    |
| 75420W     | 1982       | HD Conc O/L |
| 75498      | 1989       | CP          |
| 75522      | 1990       | HD Conc O/L |
| 75535N     | 1996       | SF Conc O/L |
| 75535S     | 1996       | SF Conc O/L |
| 75538      | 1994       | FRSF O/L    |
| 75539      | 1998       | FRSF O/L    |
| 75543W     | 1995       | FRSF O/L    |
| 75543E     | 1995       | FRSF O/L    |
| 75555      | 1980       | HD Conc O/L |
| 75623N     | 1988       | Epoxy O/L   |
| 75623S     | 1995       | FRSF O/L    |
| 75644      | 1986       | CP          |
| 75651N     | 1991       | sealed      |
| 75651S     | 1991       | sealed      |
| 75661N     | 1998       | Epoxy O/L   |
| 75661S     | 1998       | Epoxy O/L   |
| 75667      | 1989       | CP          |
| 75677      | 1982       | HD Conc O/L |
| 75678      | 1988       | CP          |
| 75701      | 1995       | FRSF O/L    |
| 75707S     | 1989       | CP          |
| 75722      | 1992       | CP          |
| 75724      | 1987       | CP          |
| 75725      | 1989       | CP          |
| 75744      | 1987       | CP          |
| 75754      | 1994       | FRSF O/L    |
| 75760      | 1995       | FRSF O/L    |
| 75816      | 1997       | SF Conc O/L |
| 75919S     | 1991       | CP          |
| 75929      | 1987       | sealed      |
| 75931      | 1992       | FRSF O/L    |
| 75932      | 1984       | HD Conc O/L |
| 75945      | 1995       | FRSF O/L    |
| 75946      | 1982       | HD Conc O/L |
| 75994      | 1990       | СР          |
| 76034      | 1990       | Epoxy O/L   |
| 76054N     | 1986       | HD Conc O/L |
| 76056      | 1993       | FRSF O/L    |
| 76057      | 1988       | Epoxy O/L   |
| 76059      | 1993       | FRSF O/L    |
| 76060      | 1993       | Epoxy O/L   |
| 76061      | 1990       | Epoxy O/L   |
| 70001      | 1000       | LPONY OIL   |



|            | YearOf     |                |
|------------|------------|----------------|
| FileNumber | FirstRehab | Description    |
| 9487       | 1970       | membrane/ACP   |
| 9551       | 1982       | HD Conc O/L    |
| 9596       | 1982       | membrane/ACP   |
| 9847       | 1987       | Epoxy O/L      |
| 9899       | 1991       | membrane/ACP   |
| 9903       | 1991       | Conc O/L       |
| 9910       | 1981       | HD Conc O/L    |
| 9943       | 1989       | Sealed         |
| 13117      | 1979       | HD Conc O/L    |
| 13181      | 1994       | FRSF O/L       |
| 13370      | 1986       | HD Conc O/L    |
| 13384      | 1986       | Epoxy O/L      |
| 13486      | 1981       | membrane/ACP   |
| 13587      | 1990       | membrane/ACP   |
| 13625      | 1996       | FRSF O/L       |
| 13742      | 1991       | membrane/ACP   |
| 13821      | 1990       | FRSF O/L       |
| 13824      | 1988       | Concrete       |
| 13832      | 1989       | Epoxy O/L      |
| 13838      | 1988       | membrane/ACP   |
| 13852      | 1966       | Epoxy O/L      |
| 70009      | 1986       | HD Conc O/L    |
| 70022      | 1984       | HD Conc O/L    |
| 70156      | 1979       | HD Conc O/L    |
| 70241      | 1990       | Epoxy O/L      |
| 70247      | 1991       | Conc O/L       |
| 70277      | 1994       | FRSF O/L       |
| 70318      | 1989       | Epoxy O/L      |
| 70566      | 1989       | membrane/ACP   |
| 70580      | 1995       | FRSF O/L       |
| 70594      | 1981       | HD Conc O/L    |
| 70626      | 1992       | FRSF O/L       |
| 70935      | 1984       | HD Conc O/L    |
| 71019      | 1990       | Epoxy O/L      |
| 71054      | 1997       | FRSF O/L       |
| 71116      | 1978       | HD Conc O/L    |
| 71145      | 1978       | membrane/ACP   |
| 71291      | 1995       | FRSF O/L       |
| 71313      | 1987       | Epoxy O/L      |
| 71315      | 1988       | Epoxy O/L      |
| 71316      | 1988       | Epoxy O/L      |
| 71429      | 1998       | Epoxy O/L      |
| 71504      | 1990       | Deck Sealed    |
| 72007W     | 1981       | Superstructure |
| 72094      | 1981       | HD Conc O/L    |

| FileNumber | YearOf     | Description |
|------------|------------|-------------|
| 70000      | FirstRehab |             |
| 76063      | 1995       | FRSF O/L    |
| 76092      | 1998       | SF Conc O/L |
| 76093W     | 1995       | SF Conc O/L |
| 76093E     | 1995       | SF Conc O/L |
| 76094      | 1995       | FRSF O/L    |
| 76109      | 1987       | CP C#       |
| 76117      | 1994       | Epoxy O/L   |
| 76118      | 1994       | Epoxy O/L   |
| 76128      | 1996       | SF Conc O/L |
| 76159      | 1997       | MMA O/L     |
| 76177      | 1987       | СР          |
| 76181W     | 1995       | SF Conc O/L |
| 76181E     | 1995       | SF Conc O/L |
| 76185      | 1988       | Deck Sealed |
| 76186      | 1990       | sealed      |
| 76212      | 1992       | FRSF O/L    |
| 76223      | 1995       | FRSF O/L    |
| 76301      | 1997       | Epoxy O/L   |
| 76339W     | 1996       | FRSF O/L    |
| 76339E     | 1996       | FRSF O/L    |
| 76378      | 1997       | FRSF O/L    |
| 76381      | 1992       | FRSF O/L    |
| 76382N     | 1994       | FRSF O/L    |
| 76392      | 1995       | FRSF O/L    |
| 76410      | 1986       | CP          |
| 76528      | 1995       | FRSF O/L    |
| 76540      | 1987       | CP          |
| 76558      | 1994       | FRSF O/L    |
| 76566      | 1995       | FRSF O/L    |
| 76609      | 1989       | CP          |
| 76615      | 1987       | sealed      |
| 76625      | 1990       | CP          |
| 76639      | 1995       | FRSF O/L    |
| 76646W     | 1995       | SF Conc O/L |
| 76646E     | 1995       | SF Conc O/L |
| 76648      | 1993       | FRSF O/L    |
| 76649W     | 1992       | FRSF O/L    |
| 76650N     | 1994       | FRSF O/L    |
| 76650S     | 1992       | FRSF O/L    |
| 76652      | 1982       | HD Conc O/L |
| 76658      | 1995       | FRSF O/L    |
|            | 1989       | CP          |
| 76659      |            | CP          |
| 76660      | 1989       | FRSF O/L    |
| 76669      | 1993       |             |
| 76686      | 1986       | Epoxy O/L   |



| FileNumber        | YearOf<br>FirstRehab | Description               |
|-------------------|----------------------|---------------------------|
| 74217             | 1979                 | HD Conc O/L               |
| 72128             | 1979                 |                           |
| 72120             | 1995                 | Epoxy O/L<br>FRSF O/L     |
| 72533S            | 1993                 |                           |
| 72551N            | 1981                 | membrane/ACP              |
| 72551N<br>72551S  | 1981                 | HD Conc O/L HD Conc O/L   |
| 723313<br>72810W  | 1998                 |                           |
| 72810VV<br>72810E | 1998                 | Epoxy O/L<br>Epoxy O/L    |
| 72810             | 1996                 | Epoxy O/L                 |
| 73275             | 1979                 | HD Conc O/L               |
| 73275             | 1989                 | Epoxy O/L                 |
| 73277             | 1996                 | FRSF O/L                  |
| 73407             | 1985                 | HD Conc O/L               |
| 73407             | 1905                 | Epoxy O/L                 |
| 74137             | 1991                 | FRSF O/L                  |
| 73425             | 1990                 | Epoxy O/L                 |
|                   | 1981                 | HD Conc O/L               |
| 73426             | 1985                 |                           |
| 73429             |                      | Epoxy O/L                 |
| 73485             | 1987<br>1987         | Epoxy O/L<br>membrane/ACP |
| 73621             | 1986                 | membrane/ACP              |
| 73636             | 1988                 | membrane/ACP              |
| 73637             | 1978                 | HD Conc O/L               |
| 73640             |                      | membrane/ACP              |
| 73757             | 1986                 | FRSF O/L                  |
| 73779             | 1993                 | HD Conc O/L               |
| 73810W            | 1982                 |                           |
| 73819             | 1980                 | Deck Rehab                |
| 73823E            | 1991                 | Epoxy O/L<br>HD Conc O/L  |
| 73836             | 1984                 |                           |
| 73837             | 1999                 | SF Conc O/L               |
| 73919             | 1985                 | HD Conc O/L               |
| 73920W            | 1990                 | Sealed                    |
| 73922             | 1989                 | membrane/ACP              |
| 73924             | 1987                 | membrane/ACP              |
| 73949             | 1978                 | HD Conc O/L               |
| 74031N            | 1986                 | membrane/ACP              |
| 74217             | 1979                 | HD Conc O/L               |
| 74222             | 1989                 | membrane/ACP              |
| 74227             | 1992                 | FRSF O/L                  |
| 74228             | 1982                 | HD Conc O/L               |
| 74229             | 1977                 | HD Conc O/L               |
| 74232             | 1993                 | FRSF O/L                  |
| 74233             | 1981                 | HD Conc O/L               |
| 74236             | 1992                 | FRSF O/L                  |
| 74352W            | 1984                 | HD Conc O/L               |

| FileNumber | YearOf<br>FirstRehab | Description |
|------------|----------------------|-------------|
| 76719      | 1987                 | Epoxy O/L   |
| 76845      | 1980                 | HD Conc O/L |
| 76848      | 1989                 | Epoxy O/L   |
| 76850      | 1998                 | FRSF O/L    |
| 76927      | 1995                 | FRSF O/L    |
| 77054E     | 1988                 | CP          |
| 77083      | 1989                 | CP          |
| 77088      | 1987                 | sealed      |
| 77090W     | 1988                 | CP          |
| 77090E     | 1988                 | CP          |
| 77091W     | 1997                 | FRSF O/L    |
| 77091E     | 1997                 | FRSF O/L    |
| 77091WC    | 1997                 | FRSF O/L    |
| 77126      | 1991                 | FRSF O/L    |
| 77129      | 1995                 | FRSF O/L    |
| 77177      | 1993                 | FRSF O/L    |
| 77254      | 1987                 | CP          |
| 77303N     | 1981                 | HD Conc O/L |
| 77303S     | 1981                 | HD Conc O/L |
| 77315      | 1990                 | sealed      |
| 77349      | 1997                 | Epoxy O/L   |
| 77389W     | 1980                 | CP          |
| 77389E     | 1980                 | СР          |
| 77460      | 1991                 | Epoxy O/L   |
| 77466      | 1990                 | FRSF O/L    |
| 77471      | 1997                 | SF Conc O/L |
| 77486      | 1994                 | FRSF O/L    |
| 77487      | 1995                 | FRSF O/L    |
| 77504E     | 1988                 | CP          |
| 77521      | 1988                 | CP          |
| 77528W     | 1985                 | FRSF O/L    |
| 77530      | 1987                 | CP          |
| 77534      | 1988                 | CP          |
| 77541      | 1998                 | MMA O/L     |
| 77546      | 1988                 | Epoxy O/L   |
| 77548      | 1992                 | Epoxy O/L   |
| 77556W     | 1995                 | CP          |
| 77556E     | 1995                 | CP          |
| 77753W     | 1991                 | CP          |
| 77782      | 1987                 | sealed      |
| 77847      | 1997                 | FRSF O/L    |
| 77859W     | 1992                 | membrane/A  |
| 77872      | 1990                 | sealed      |
| 77878      | 1995                 | FRSF O/L    |
| 77919      | 1996                 | Epoxy O/L   |
| 77919      | 1990                 | L LPOXY O/L |



| FileNumber | YearOf<br>FirstRehab | Description  |
|------------|----------------------|--------------|
| 74352E     | 1988                 | membrane/ACP |
| 74353W     | 1983                 | HD Conc O/L  |
| 74353E     | 1984                 | HD Conc O/L  |
| 74354W     | 1982                 | HD Conc O/L  |
| 74354E     | 1987                 | sealed       |
| 74355W     | 1990                 | Epoxy O/L    |
| 74355E     | 1986                 | membrane/ACP |
| 74381      | 1980                 | HD Conc O/L  |
| 74426      | 1993                 | FRSF O/L     |
| 74440      | 1977                 | HD Conc O/L  |
| 74452      | 1979                 | HD Conc O/L  |
| 74458S     | 1978                 | HDF Conc O/L |
| 74540      | 1995                 | FRSF O/L     |
| 74596      | 1994                 | FRSF O/L     |
| 74600W     | 1988                 | FRSF O/L     |

| FileNumber | YearOf<br>FirstRehab | Description |
|------------|----------------------|-------------|
| 78031      | 1995                 | Deck Sealed |
| 78104      | 1995                 | FRSF O/L    |
| 78123      | 1982                 | HD Conc O/L |
| 78170      | 1982                 | HD Conc O/L |
| 78199      | 1993                 | Epoxy O/L   |
| 78204      | 1985                 | HD Conc O/L |
| 78215      | 1993                 | Epoxy O/L   |
| 78896      | 1995                 | FRSF O/L    |
| 79325      | 1998                 | Epoxy O/L   |
| 79441N     | 1998                 | Epoxy O/L   |
| 79441S     | 1998                 | Epoxy O/L   |
| 79564      | 1996                 | SF Conc O/L |
| 79657      | 1992                 | Epoxy O/L   |
| 81131      | 1988                 | CP          |



















B45568