┿

Dynamic Memory Allocation

+Dynamic Memory Allocators

- Programmers use dynamic memory allocators to acquire virtual memory at run time.
 - For data structures whose size is only known at runtime.
- Dynamic memory allocators manage an area of process virtual memory known as the heap.

Application

Dynamic Memory Allocator

OS

+Types of Dynamic Memory Allocators

- Allocator maintains heap as collection of variable sized blocks, which are either allocated or free
- Types of allocators
 - Explicit allocator: application allocates and frees space
 - E.g., malloc and free in C
 - Implicit allocator: application allocates, but does not free space
 - E.g. garbage collection in Java, ML, and Lisp
- Will discuss simple explicit memory allocation today

+The malloc Package (review)

- #include <stdlib.h>
- void* malloc(int size)
 - Successful:
 - Returns a pointer to a memory block of at least size bytes
 - If size == 0, returns NULL
 - Unsuccessful: returns NULL (0)

void free(void* p)

- Releases the block pointed at by p to pool of available memory
- p must come from a previous call to malloc or calloc

Other functions

- calloc: Version of malloc that initializes allocated block to zero.
- realloc: Changes the size of a previously allocated block.
- sbrk: Used internally by allocators to grow or shrink the heap

+Assumptions Made in This Lecture

- Memory is word addressed.
- Words are int-sized.

+ Allocation Example

(Arguments to malloc are in words for simplification, i.e. malloc(4) allocates 4 words.)

+Constraints

Applications

- Can issue arbitrary sequence of malloc and free requests
- free request must be to a malloc'd block

Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc requests (can't reorder or buffer requests)
- Must allocate blocks from free memory
- Can manipulate and modify only free memory
- Can't move the allocated blocks once they are malloc'd

+Performance Goal: Throughput

- Given some sequence of malloc and free requests:
 - \blacksquare R₀, R₁, ..., R_k, ..., R_{n-1}
- Goals: maximize throughput and peak memory utilization
 - These goals are often conflicting
- Throughput:
 - Number of completed requests per unit time
 - Example:
 - 5,000 malloc calls and 5,000 free calls in 10 seconds
 - Throughput is 1,000 operations/second

+ Performance Goal: Peak Memory Utilization

- Given some sequence of malloc and free requests:
 - \blacksquare R₀, R₁, ..., R_k, ..., R_{n-1}
- Definition: Aggregate payload Pk
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the aggregate payload P_k is the sum of currently allocated payloads
- Definition: Current heap size H_k
 - Assume H_k is monotonically nondecreasing
 - i.e., heap grows when allocator uses sbrk
- Definition: *Peak memory utilization* (after k requests)
 - $U_k = P_k / H_k$

+Fragmentation

- Poor memory utilization caused by fragmentation
 - internal fragmentation
 - external fragmentation

+Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than block size

- Caused by
 - Metadata for maintaining heap data structure
 - Padding for alignment purposes
 - Explicit policy decisions
 (e.g., to return a big block to satisfy a small request)

+External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough

- Depends on the pattern of future requests
 - Thus, harder to counteract or measure

+Implementation Issues

- Open Questions
 - How do we know how much memory to free given just a pointer?
 - How do we keep track of the free blocks?
 - What do we do with the extra space when allocating a structure that is smaller than the free block it is placed in?
 - How do we pick a block to use for allocation -- many might fit?
 - How do we deallocate a freed block?
- Answers to some of these depend on allocator implementation.

*Knowing How Much to Free

Standard method

- Keep the length of a block in the word preceding the block.
 - This word is often called the *header field* or *header*
- Requires an extra word for every allocated block

*Keeping Track of Free Blocks

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes

+

Implicit Free Lists

+Method 1: Implicit List

- For each block we need both size and allocation status
 - Could store this information in two words: wasteful!
- Standard trick
 - If blocks are word-aligned, some low-order address bits are always 0
 - Instead of storing an always-0 bit, use it as a allocated/free flag
 - When reading size word, must mask out this bit

Format of allocated and free blocks

a = 1: Allocated block

a = 0: Free block

Size: block size

Payload: application data (allocated blocks only)

+Detailed Implicit Free List Example

Double-word aligned

Allocated blocks: shaded

Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

+Implicit List: Finding a Free Block

• First fit:

- Search list from beginning, choose first free block that fits
- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

• Next fit:

- Like first fit, but search list starting where previous search finished
- Should often be faster than first fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

Best fit:

- Search the list, choose the best free block: i.e. fewest bytes left over
- Keeps fragments small—usually improves memory utilization
- Will typically run slower than first fit

+Implicit List: Allocating in Free Block

- Allocating in a free block: splitting
 - Allocated space might be smaller than free space....

Perhaps split block

Reduces internal fragmentation

+Implicit List: Freeing a Block

- Simplest implementation:
 - Need only clear the "allocated" flag
 - But can lead to "false fragmentation"

malloc(5)

Oops! There is enough free space, but the allocator won't be able to find it

+Implicit List: Coalescing

- Join (coalesce) with next/previous blocks, if they are free
 - Coalescing with next block

• But how do we coalesce with previous block?

+Implicit List: Boundary Tags (footers)

- Boundary tags [Knuth '73] https://en.wikipedia.org/wiki/Donald_Knuth
 - Replicate size/allocated word at "bottom" (end) of free blocks
 - Allows us to traverse the "list" backwards, but requires extra space

a = 1: Allocated block

a = 0: Free block

Size: Total block size

Payload: Application data (allocated blocks only)

+Constant Time Coalescing

+Constant Time Coalescing (Case 1)

+Constant Time Coalescing (Case 2)

+Constant Time Coalescing (Case 3)

+Constant Time Coalescing (Case 4)

+Disadvantages of Boundary Tags

- Internal fragmentation
 - Again we are trading space for time, utilization for throughput
- Can it be optimized?
 - Which blocks need the footer tag?
 - Only free blocks!
- So how do we know if the last word in the previous block is a boundary tag or not, after all its just bits back there!
 - We can use one of those low order bits in the header to indicate the allocation status of the previous block.

+Implicit Lists: Summary

- Implementation: very simple
- Allocate cost:
 - linear time
- Free cost:
 - constant time (even with coalescing)
- Memory usage:
 - Will depend on placement policy
 - First-fit, next-fit or best-fit
- Not used in practice for malloc/free because of linear-time allocation
- Concepts of splitting and boundary tag coalescing are general to all allocators