SVM Documentation of Accuracy

- SVM (Support Vector Machine) is a type of machine learning model used for classification.
- Accuracy is a metric that measures the proportion of correctly classified instances.

Accuracy of model for first run using the training data: 86.45%

In the first training run, the SVM model achieved an accuracy of 86.45% on the training data. This indicates that the model correctly classified 86.45% of the instances in the training set.

Accuracy of model for first run using the validation data: 72.73%

The model was evaluated on a separate validation dataset, and it achieved an accuracy of 72.73%. The decrease in accuracy from the training to the validation data suggests a potential issue with overfitting. Overfitting occurs when the model performs well on the training data but fails to generalize to new, unseen data.

Accuracy of model for second run using the training data: 81.29%

In the second training run, the model achieved a lower accuracy of 81.29% on the training data. This may indicate changes in the data distribution or potential model sensitivity to parameter variations.

Accuracy of model for third run using the training data: 85.81%

The model's accuracy on the training data increased to 85.81% in the third run. Variations in accuracy between runs could be attributed to factors like data shuffling, model initialization, or random splitting.

Accuracy of model for second run using the validation data: 84.52%

The accuracy on the validation data in the second run was 84.52%. This indicates how well the model generalizes to new, unseen data in the context of the changes made in the second run.

Accuracy of model for fourth run using the training data: 85.16%

The model achieved an accuracy of 85.16% on the training data. The fluctuation in accuracy suggests sensitivity to training conditions or inherent variability in the data.

Accuracy of model for fifth run using the training data: 85.81%

Similar to earlier runs, variations in accuracy may be influenced by factors such as data characteristics or model parameters.

Accuracy of model for third run using the validation data: 86.36%

This provides insight into how well the model generalizes when considering changes made in the third run.

Accuracy of model for first run using the test data: 84.09%

The model's performance on a separate test dataset, not used during training or validation, was 84.09% in the first run. This reflects the model's ability to generalize to completely new data.

Accuracy Percentage VS. Run Number

