Physique

Semestre d'automne 2018

Simon Bossoney Guido Burmeister

moodle.epfl.ch

Exercice 1

Série 9

Une masse m et une seconde masse, inconnue, sont attachées à un fil passant sur un cylindre fixe de rayon R. On laisse évoluer les masses à partir de la situation où la masse m se trouve au repos à la hauteur du centre du cylindre, m commençant par monter. Lorsque m passe au sommet, elle décolle du cylindre.

Les frottements sont négligeables.

- (a) Calculer la vitesse de m au sommet.
- (b) Déterminer la valeur de la seconde masse.

Exercice 2

Un ressort $(k = 800 \,\mathrm{N\,m^{-1}})$ comprimé de $d_0 = 12 \,\mathrm{cm}$ est placé au bas d'un plan incliné de 20° . Ce ressort projette une masse $m = 20 \,\mathrm{g}$ vers le haut du plan incliné. Calculer la dénivellation maximale atteinte par m

- (a) en absence de frottement
- (b) pour un frottement égal à 60% du soutien exercé par le plan incliné.

Exercice 3

Un ressort de constante k est posé verticalement sur le sol. Alors qu'il n'est pas déformé, on place sur lui une masse M et la lâche.

(a) Calculer la compression maximale du ressort.

Dans une nouvelle expérience, on place la masse M sur le ressort et on la soutient durant la compression pour ne la lâcher que lorsqu'elle restera immobile.

- (b) Calculer alors la compression du ressort
- (c) Pourquoi les compressions sous (a) et (b) sont-elles différentes?

Exercice 4

Quelle énergie électrique faut-il fournir pour qu'une ampoule électrique de 100 Watts soit allumée pendant une heure? Si le kilowatt-heure est facturé 40 centimes, quel est le prix de cette utilisation?

Exercice 5

La hauteur de chute d'un barrage est de 30 mètres. La canalisation qui alimente une centrale hydroélectrique au pied du barrage débite 100 m³ par seconde.

- (a) Quelle est la puissance théorique que la centrale peut produire?
- (b) Si la puissance fournie par la centrale n'est que de 23.56 MW, quel est son rendement?

Exercice 6

A quel endroit entre la Terre et la Lune un cosmonaute ne ressent-il aucune force?

Application numérique :

Masse de la Terre : $m_{\rm T}=5.97\cdot 10^{24}\,\rm kg$, masse de la Lune : $m_{\rm L}=7.35\cdot 10^{22}\,\rm kg$, distance Terre-Lune : $d_{\rm TL}=3.844\cdot 10^8\,\rm m$.

Exercice 7

Une masse est lâchée à vitesse nulle à une hauteur h au-dessus de la surface d'une planète de rayon R et de masse m_p . Calculer sa vitesse au moment de l'impact. Préciser le référentiel.

Exercice 8

Un objet est lancé depuis la terre à une vitesse \vec{v}_0 . Il décrit une trajectoire elliptique dessinée ci-contre. Son apogée se trouve à une altitude h au-dessus de la terre. Calculer la norme de sa vitesse à son apogée et à son retour sur la terre. Préciser le référentiel. (Monard, ex. 4 p. 223)

Exercice 9

On cherche à déterminer la vitesse de libération d'un objet (par exemple un satellite) dans le cas de la Terre.

Application numérique:

 $G \cong 6.6732 \cdot 10^{-11} \,\mathrm{Nm^2 kg^{-2}}, \, M_{\mathrm{T}} \cong 5.9742 \cdot 10^{24} \,\mathrm{kg} \,\,\mathrm{et} \,\,R_{\mathrm{T}} \cong 6.3710 \cdot 10^6 \,\mathrm{m}.$

Réponses

Ex. 1 (a)
$$\sqrt{Rg}$$
 (b) $\frac{3}{\pi-1}m$.

Ex. 3 (a)
$$\frac{2Mg}{k}$$
 (b) $\frac{Mg}{k}$.

Ex. 5 (a)
$$29.43 \,\mathrm{MW}$$
 (b) 80% .

Ex. 6
$$3.46 \cdot 10^8 \,\mathrm{m}$$
.

Ex. 7
$$\sqrt{2Gm_p\left(\frac{1}{R}-\frac{1}{R+h}\right)}$$
.

Ex. 8
$$\sqrt{v_0^2 - 2G\frac{m_{\rm T}h}{R(R+h)}}$$
.

Ex. 9
$$11 \,\mathrm{km \, s}^{-1}$$
.