Biológiai készítmények és génterápia (alapkoncepciók)

- fehérjék
 - "engineered" fehérjék
 - antitestek
- nukleinsavak
- sejtek

előállítás nem kémiai szintézissel!

- biológiai terápia
 - in vitro előállítás → in vivo alkalmazás
- génterápia
 - élő szomatikus sejtek "átprogramozása"
 - in vivo vagy ex vivo

"Biopharmaceuticals"

(Biológiai készítmények)

- nagy komplex molekulák → farmakokinetika!
 - fehérjék
 - "engineered"/rekombináns fehérjék
 - pl. antitestek / fehérje hormonok
 - vakcinák
 - vér, vérkészítmények
 - allergének
 - nukleinsavak
 - antiszensz oligonukleotidok
 - "siRNA"
 - génterápia
- sejtek, szövetek
 - szomatikus

"Biopharmaceuticals"

(Biológiai készítmények)

• Előállítás?

- a kémiai szintézissel ellentétben, ahol
 - jól definiált a kémiai szerkezet
 - nagyfokú a tisztaság
 - nincs mikrobiális kontamináció
- itt: izolálás / biotechnológia / sejtek általi megtermeltetés
 - nem pontosan meghatározott kémiai szerkezet
 - keverékek
 - mikrobiális szennyeződésre fogékony
- in vitro előállítás ↔ in vivo felhasználás

Fehérjék

- pl. inzulin / növekedési hormon
 - kezdetben
 - forrás: állat / ember
 - problémák: kis mennyiség / immunreakciók / infekciók
 - jelenleg
 - forrás: transzfektált expressziós rendszer (sejtek)
 - előny: elegendő mennyiség
 - problémák: endotoxin / glycosylatio / költség

Fehérjék

- endogén fehérjék másolatai (első gen.)
- módosított fehérjék (második gen.)
 - kedvezőbb farmakokinetika
 - "pegylálás" / inzulin
 - fúziós fehérjék új funkció
 - etanercept / immunotoxinok
 - csökkent immunogenitás (humanizálás)
- megtervezett fehérjék (harmadik gen.)
 - a jövő

Néhány biológiai készítmény

- hormonok
 - inzulin
 - növekedési hormon
 - pegvisomant
 - GH receptor antagonista acromegalia kezelésére, mutáns GH polyethylen glycol (PEG) származéka
- növekedési faktorok / citokinek
 - erythropoietin (pl. epoetin alfa / darbepoetin)
 - granulocyte colony stimulating factor (G-CSF, (peg)filgrastim)
 - interferonok (IF- α , IF- β , IF- γ)
 - interleukinok (pl. IL-2)
- antitestek

Insulin preparations

- rapid acting
 - lispro B28 Pro ↔ B29 Lys
 - aspart B28 Pro → Asp
 - glulisine B3 Asn \rightarrow Lys + B29 Lys \rightarrow Glu
- long-acting
 - detemir terminal Thr ↔ myristic acid
 - glargine add 2 Arg to B carboxy + A21 Asn → Gly
 - degludec similar to detemir (Thr ↔ hexadecanedioic acid)

Pegvisomant

- PEG derivative of a mutant GH
- used/effective in acromegaly
- increases circulating GH conc.

Antitestek

- poliklonális antitestek
- monoklonális antitestek hybridoma
 - egér
 - kiméra
 - humanizált
 - humán

Humanized antibodies

human amino-acid sequences:

chimeric: F_c part

humanized: F_{ab} part also, with the exception of the *complementarity determining region* (CDR)

human: completely human

Mouse Antibody

Human Antibody

Framework

ximab Chimeric Antibody

zumab

Humanized Antibody

Human framework regions

	CURRENT MONOCLONAL ANTIBODY NOMENCLATURE								
	UNIQUE PREFIX	TARGET TISSUE		SOURCE ORGANISM		CONSERVED SUFFIX			
		-o(s)-	bone	-u-	human				
		-vi(r)-	viral	-0-	mouse				
		-ba(c)-	bacterial	-a-	rat				
		-li(m)-	immune	-е-	hamster				
		-le(s)-	infectious lesions	- <i>j</i> -	primate				
		-ci(r)-	cardiovascular	-xi-	chimeric				
		-mu(I)-	musculoskeletal	-zu-	humanized				
		-ki(n)-	interleukin	-axo-	rat/murine hybrid				
	variable	-co(I)-	colonic tumor			-mab			
		-me(I)-	melanoma						
		-ma(r)-	mammary tumor						
		-go(t)-	testicular tumor	÷					
		-go(v)-	ovarian tumor						
		-pr(o)-	prostate tumor						
		-tu(m)-	miscellaneous tumor						
		-neu(r)-	nervous system						
		-tox(a)-	toxin as target						
ples:	Beva	ci		zu		mab			
	Ri	tu		xi		mab			
	Ala	ci		zu		mab			
	Glemba	tum		u		mab			

Nomenclature of monoclonal antibodies

			prefix	substem A and B		suffix: monoclonal	
		name	unique name, distinct syllable	target class, (therapeutic use)	biological origin murine, human	antibodies and fragments mab	
immune	murine	muromonab-CD3		pefore the acceptance of the present rules of nomenclature			
	chimeric	infliximab	inf	lim	хi	mab	
		basiliximab	basi	li <mark>m</mark>	хi	mab	
	humanized	daclizumab	dacli	lim	zu	mab	
		omalizumab	oma	lim	zu	mab	
		efalizumab	efa	lim	zu	mab	
		natalizumab	nata	lim	zu	mab	
	fully human	adalimumab	ada	lim	u	mab	
						mab	

A humanizált antitestek előnyei

- hosszabb felezési idő
- csökkent immunogenitás
- a human effektor mechanizmusok hatékonyabb aktiválása
 - ADCC (Antibody Dependent Cellular Cytotoxicity)
 - komplement aktiváció

Immunotoxin

- brentuximab vedotin (target: CD30)
 - anti-CD30 chimeric IgG1 + MMAE
 - binding → internalization → release of MMAE → blockade of tubulin polymerisation
 - indication (but only after failure of other therapies)
 - anaplastic large cell lymphoma
 - Hodgkin's disease
 - risk of progressive multifocal leukoencephalopathy (PML)

Biologic therapy for hyperlipidemia

PCSK9 inhibitors

(proprotein convertase subtilisin/kexin type 9)

PCSK9 protease \rightarrow binds to LDL rec. \rightarrow \uparrow degradation \rightarrow \uparrow LDL

Expensive – 14100 USD/year (2015)

"On October 26, 2018 Amgen announced a 60% cut in price (5850 USD/year)"

Biologic therapy for hyperlipidemia

PCSK9 inhibitors

(**p**roprotein **c**onvertase **s**ubtilisin/**k**exin type **9**)

- PCSK9
 - protease → binds to LDL rec. → \uparrow degradation → \uparrow LDL
- alirocumab / evolocumab
 - fully human monoclonal antibodies against PCSK9
- SC. biweekly \rightarrow up to 70% LDL \downarrow + triglycerides, apo B-100 and Lp(a) \downarrow
- adjunctive to diet and maximally tolerated statin and/or ezetimibe
- indications
 - familial hypercholesterolemia
 - est. atherosclerotic cardiovascular disease requiring additional LDL lowering
- adverse effects
 - inj. site reactions
 - ↑ infection risk (upper resp. / urinary)
 - hypersensitivity (rare)
 - neurocognitive effects ?
 - no ↑ risk of myopathy

Biologikumok fejlesztése

- gyártás
 - minőségbiztosítás
 - aszeptikus technológia
- preklinikai / klinikai fejlesztés
 - "biosimilarity" = biohasonlóság (nem generikus)
 - a gyártási folyamat változásaira fokozottan érzékeny
 - biztonság
 - jelentős specificitás lásd TGN1412

Biosimilars

Biosimilars: More Treatment Options Are on the Way

- Zarxio: First US FDA approved biosimilar
 - -06.03.2015
 - EU approval: 06.02.2009
- Neupogen (filgrastim) → Zarxio

Biological therapy ≠ targeted therapy

- anticancer molecularly targeted therapy
 - non-biologicals
 - tyrosine kinase inhibitors
 - e.g. imatinib, dasatinib, nilotinib (BCR-ABL kinase, CML)
 - epidermal growth factor receptor inhibitors
 - e.g. lapatinib (HER2+ breast cancer)
 - e.g. erlotinib (metastatic non–small cell lung cancer)
 - biologicals
 - epidermal growth factor receptor inhibitors
 - e.g. trastuzumab (HER2+ breast cancer)
 - e.g. cetuximab (EGFR+ metastatic colorectal cancer)
- DMARDs
 - non-biologicals
 - e.g. methotrexate, hydroxychloroquine, leflunomide
 - biologicals
 - e.g. infliximab, adalimumab, etanercept

Génterápia

- szomatikus sejtek genetikai módosítása
 - rekombináns nukleinsavak bejuttatása a célsejtekbe
 - in vivo \leftrightarrow ex vivo
- cél
 - megelőzés
 - csillapítás
 - gyógyítás
- potenciális alkalmazás
 - monogénes betegségek gyógyítása
 - pl. cisztás fibrosis, hemoglobinopathiak
 - genetikai hátterű (+nem genetikai is) betegségek enyhítése
 - pl. malignus, neurodegenerativ
- nehézségek
 - célbajuttatás (kapacitás-hatékonyság-szelektivitás PK)
 - biztonság
 - perzisztencia
 - klinikai hatékonyság

Requirements of gene delivery systems

- capacity of the system
 - how much DNA it can carry
- transfection efficiency
 - ability to enter and become utilised by cells
- lifetime of the transfected material
 - determined by the lifetime of the targeted cells
- safety
 - especially in the case of viral delivery systems

Gene delivery

in vivo

- vector is injected into the patient
- iv. (targeting) or directly into the target tissue

ex vivo

- remove cells from the patient
- treat them with the vector
- inject the genetically altered cells back

ideal vector: safe, efficient, selective, results in persistent expression

Gene delivery

- viral vectors (modified 'replication defective')
 - retroviruses
 - incorporated randomly into host DNA
 - only infect dividing cells
 - persistence (if into stem/progenitor cells)
 - little specificity (ex vivo use)

adenovirus

- high transgene expression
- not inserted into the host genome > do not replicate > only temporary effect
- low dose inefficient while high dose elicit immune response

other viruses

adeno associated virus / herpesvirus / disabled HIV

Gene delivery

- non-viral vectors
 - liposomes
 - positively charged lipids ('lipoplexes')
 - improved delivery into the cell nucleus
 - much less efficient than viruses
 - microspheres
 - made from polyanhydride co-polymers of fumaric and sebacic acids
 - loaded with plasmid DNA
 - possibility of oral gene therapy
 - plasmid DNA
 - much less efficient / cannot be targeted
 - no risk of viral replication and is not usually immunogenic

Gene expression control

- control the activity of gene
 - e.g. hemoglobinopathies appropriate balance of normal α and β -globin chain synthesis
- inducible expression system
 - e.g. doxycycline-inducible promoter

Safety

- general
 - related to the nature of vectors
- specific
 - e.g. polycythaemia from overexpression of erythropoietin
- viral vectors
 - acquire virulence
 - immunogenic viral proteins
 - elicit inflammatory response
 - damage host genome and interfere with the cell cycle > provoke malignancy

Example for problem of persistence

cystic fibrosis

- autosomal recessive
- airway epithelium malfunction
- missing membrane Cl⁻ transporter
 - cystic fibrosis transport regulator (CFTR)
- continuous replacement of epithelial cells
 - periodic need for treatment
 - unless the gene is inserted into progenitor/stem cells

Gene therapy in Parkinson's disease

- three completed Phase 1 trials in the US
 - vector: adeno associated virus type 2
 - genes
 - glutamic acid decarboxylase GABA synthesis ↑ into subthalamic nucleus
 - aromatic acid decarboxylase (AADC) levodopa → dopamine ↑ in putamen
 - neurturin neurotrophic factor, may ↑ survival of dopaminergic neurons
 - results: safe and possibly effective
 - Phase 2 trials are under way

Suicide gene therapy for GvHD

- background
 - in high-risk hematological diseases
 - allo-SCT from HLA-matched donor is potentially curative
 - antileukemic efficacy is determined by
 - conditioning regimen + alloreactivity
- problem
 - alloreactivity → graft-versus-host-disease (GvHD)
- solution
 - suicide gene → donor T cells ex vivo
 - thymidine kinase gene / caspase-9
 - later posttreatment to eliminate T cells
 - ganciclovir / AP1903 (dimerizing drug)
- result
 - promise for control GvHD

