Rajalakshmi Engineering College

Name: Sankara Gomathi R

Email: 240701470@rajalakshmi.edu.in

Roll no: 240701470 Phone: 7530026101

Branch: REC

Department: I CSE FE

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
 Input: 3
 5 10 15
 Output: 15 10 5
 The minimum value in the BST is: 5
 Answer
 #include <stdio.h>
 #include <stdlib.h>
 struct Node {
   int data:
   struct Node* left;
   struct Node* right;
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
 }
 typedef struct Node Node;
 struct Node* insert(struct Node* root, int data) {
   Node*newn=(Node*)malloc(sizeof(Node));
   if(root==NULL){
     newn->data=data;
     newn->left=NULL:
     newn->right=NULL;
     root=newn;
```

```
else if(data<root->data){
root->left=insert/**
         root->left=insert(root->left,data);
       else if(data>root->data){
         root->right=insert(root->right,data);
       return root;
    void displayTreePostOrder(struct Node* root) {
       if(root!=NULL){
         displayTreePostOrder(root->left);
         displayTreePostOrder(root->right);
         printf("%d",root->data);
    int findMinValue(struct Node* root) {
       if(root==NULL){
         return 0;
       else if(root->left==NULL){
         return root->data;
       }
       else{
        return findMinValue(root->left);
    int main() {
       struct Node* root = NULL;
       int n, data;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         scanf("%d", &data);
         root = insert(root, data);
       }
       displayTreePostOrder(root);
printf("\n");
```

int minValue = fi printf("The minii return 0; }	ndMinValue(root); num value in the BST	is: %d", minValue);	240701470
Status : Correct			Marks : 10/10
240701470	240701470	240707470	240701470

2,40701470