19 BUNDESREPUBLIK **DEUTSCHLAND**

Patentschrift

DEUTSCHES

PATENTAMT

(21) Aktenzeichen:

P 38 23 895.0-45

Anmeldetag:

14. 7.88

Offenlegungstag: Veröffentlichungstag

der Patenterteilung:

21. 12. 89

(51) Int. Cl. 4:

C04B35/10

C 04 B 38/00 C 04 B 35/64 // B01J 8/02, B28C 1/04, C07C 31/32

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Condea Chemie GmbH, 2212 Brunsbüttel, DE

(74) Vertreter:

Uexküll, Frhr. von, J., Dipl.-Chem. Dr.rer.nat.; Stolberg-Wernigerode, Graf zu, U., Dipl.-Chem. Dr.rer.nat.; Suchantke, J., Dipl.-Ing.; Huber, A., Dipl.-Ing.; Kameke, von, A., Dipl.-Chem. Dr.rer.nat.; Voelker, I., Dipl.-Biol.; Franck, P., Dipl.-Chem.ETH Dr.sc.techn., Pat.-Anwälte, 2000 Hamburg

(72) Erfinder:

Meyer, Arnold, 2200 St Michaelisdonn, DE; Noweck, Klaus, Dr., 2212 Brunsbüttel, DE; Reichenauer, Ansgar, 2222 Marne, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

(54) Verfahren zur Herstellung böhmitischer Tonerden

Die Erfindung betrifft ein Verfahren zur Herstellung böhmitischer Tonerden in einer Reinheit von mindestens 99,95% Al₂O₃ mit gezielt einstellbaren Porenradien in einem Bereich zwischen 3 bis 100 nm, bei denen man Tonerdesuspensionen aus der neutralen Aluminiumalkoholathydrolyse in einem Autoklaven

- a) bei einem Wasserdampfdruck von 1 bis 30 bar entsprechend einer Temperatur von 100 bis 235°C,
- b) in einem Zeitraum von 0,5 bis 20 Stunden und
- c) unter Rühren mit einer Umfangsgeschwindigkeit von 1,0 bis 6,0 n/s altert.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung böhmitischer Tonerden in einer Reinheit von mindestens 99,95% Al₂O₃ mit definierten Porenradien in einem Bereich zwischen 3 bis 100 nm durch salzfreie, wäßrige, neutrale Aluminiumalkoholathydrolyse.

Bei der neutralen Hydrolyse von Aluminiumalkoholaten entstehen z. B. gemäß DE-AS 12 58 854 Tonerden von Böhmitstruktur bzw. von α-Aluminiumoxidmonohydrat. Die hierbei erhaltenen Produkte haben maximal einen Porenradius von 2 bis 4 nm und können als Pigmente, Füllstoffe, Poliermittel und Katalysatorträger eingesetzt werden. Als Trägermaterial für Katalysatoren und zur Abtrennung von gasförmigen Bestandteilen ist es jedoch insbesondere erwünscht, derartige Tonerden mit einem Porenvolumen bzw. mit Porenradien in einem ganz bestimmten Bereich zu erhalten, und insbesondere das Porenvolumen dieser Tonerden zu steigern und den Porenradius in Richtung auf einen größeren Radius zu verschieben, und zwar unter Beibehaltung einer möglichst engen Porenradienverteilung.

Zur Erzielung eines Porenradienmaximums hat man beispielsweise gemäß DE-PS 25 56 804 durch Zusatz von Ammoniumhydrogencarbonat oder gemäß DE-PS 23 14 350 durch Behandlung mit C₁- bis C₄-Alkoholen oder gemäß DE-PS 29 32 648 durch einen wiederholten pH-Wert-Wechsel bei der Fällung eine Erhöhung von Porenradius bzw. Porenvolumen erreicht. Abgesehen davon, daß bei derartigen Verfahren Verunreinigungen eingeschleppt werden, lassen sich mit diesen keine definiert und gezielt eingestellten Porenradienverteilungen erreichen. Ferner ist es aus den GB-PS 11 69 096 und 12 26 012 bekannt, durch Alterung der gefällten Tonerde ein Kristallwachstum zu erzielen und damit eine Vergrößerung der Porenradien zu ermöglichen, jedoch wird auch bei diesen aus Natriumaluminat mit Salpetersäure gefällten Tonerden ein sehr breites Porenmaximum erreicht, und zwar erst nach längerer Voralterung von etwa 7 Tagen und anschließender Calcinierung bei 210 bis 220° im Verlaufe von 15 Stunden.

Ferner ist aus der US-PS 38 98 322 ein Verfahren bekannt, bei dem zur Herstellung von α-Aluminiumoxidmonohydrat mit bimodaler Porenverteilung ein sauer oder alkalisch eingestelltes Aluminiumalkoholat hydrolisiert wird; es soll jedoch hierbei nicht ein Produkt mit schmalen bzw. definiert einstellbaren Porenmaxima erhalten werden. Letztlich ist aus der US-PS 35 57 791 ein Verfahren zur Herstellung von im wesentlichen faserartigen Aluminiummonohydratteilchen bekannt, bei dem von salzhaltigen Verbindungen ausgegangen wird.

Die Erfindung hat sich die Aufgabe gestellt, Böhmit-Tonerden bzw. α-Aluminiumoxidmonohydrate in hoher Reinheit und mit gezielt einstellbarer Porenradienverteilung in großtechnischem Maßstab und vorzugsweise kontinuierlich herzustellen.

Zur Lösung dieser Aufgabe wird ein Verfahren gemäß Hauptanspruch vorgeschlagen, wobei besonders bevorzugte Ausführungsformen in den Unteransprüchen erwähnt sind.

Überraschenderweise hat sich gezeigt, daß man unter den angegebenen Verfahrensbedingungen der Nachbehandlung bei Tonerdesuspensionen aus der neutralen Aluminiumalkoholathydrolyse bei einer Alterung von 0,5 bis 20 Stunden und vorzugsweise 1 bis 4 Stunden und einem Wasserdampfdruck von 1 bis 30 bar entsprechend einer Temperatur von 100 bis 235°C und insbesondere bei 5 bis 20 bar entsprechend einer Temperatur von 150 bis 215°C bei Behandlung von vorzugsweise 5 bis 15 Gew.-% Al₂O₃ enthaltenden Suspensionen als Endprodukt böhmitische Tonerden der gewünschten Reinheit mit ganz spezifischen Porenradien erhält, wobei insbesondere überrascht, daß man durch das Ausmaß des Rührens, ausgedrückt in der Umfangsgeschwindigkeit von 1,0 bis 6,0 und vorzugsweise 1,15 bis 5,2 m/s, das gewünschte Porenradienmaximum erzielt.

Vorzugsweise wird das Rühren in einem Kaskadenreaktor mit 2 bis 10 und vorzugsweise 4 bis 10 Stufen durchgeführt, wobei zweckmäßig der Reaktor mit einem stufenlos einstellbaren Rührwerk ausgerüstet ist.

Im folgenden wird die Erfindung anhand von Beispielen näher erläutert:

Beispiel 1

Als Ausgangsprodukt wurde eine Tonerdeaufschlämmung aus der neutralen Aluminiumalkoholathydrolyse wie folgt hergestellt: Es wurde ein Aluminiumalkoholatgemisch, wie es bei der Synthese des Ziegler/Alfol-Prozesses als Zwischenprodukt anfällt, mit Wasser, welches mittels einer Vollentsalzungsanlage frei von Fremdionen aufbereitet wurde, bei 90°C in einem Rührkessel hydrolysiert. Dabei bildeten sich zwei nicht mischbare Phasen, nämlich eine obere Alkoholphase und eine untere Tonerde/Wasserphase. Die Tonerde/Wasserphase enthält Tonerdehydrat mit einem Al₂O₃-Gehalt von 10—11% Al₂O₃. Anstelle des Alkoholatgemisches kann auch ein reines Aluminiumalkoholat verwendet werden. Die Hydrolyse kann allgemein in einem Temperaturbereich von 30 bis 110°C und vorzugsweise bei 60 bis 100°C durchgeführt werden.

50 kg dieser 10 bis 11 Gew.-% Al₂O₃ enthaltenden Tonerdeaufschlämmung wurden bei absatzweisem Betrieb in einen Reaktor gegeben, und zwar bei einem Reaktordruck von 5 bar entsprechend 125°C; es wurde nach Einstellung der Reaktionsbedingungen 0,5 Stunden mit einem üblichen Rührwerk mit einer Umfangsgeschwindigkeit von 2,30 m/s entsprechend einer Rührerdrehzahl von 200 U/min gealtert. Die Porenradienverteilung wurde kumulativ nach einer Probenvorbereitung von 3 Stunden und 550°C auf übliche Weise mittels der Quecksilberporosimetrie gemessen. Zur Auswertung kam dabei folgende Gleichung zum Ansatz:

$$D = -\left(\frac{1}{p} \cdot 4\cos\theta\right)$$

c =

D = Porendurchmesser,

p = Druck,

Z

 Θ = Kontaktwinkel bedeuten.

Nach Sprühtrocknung auf Aufschlämmung wurden folgende Daten ermittelt:

Analysendaten der Tonerde

	Größe	Volumen	
Porenradienverteilung	— 4 nm	0,11 ml/g	
. or om actions or tenang	6 nm	0,18 ml/g	
	— 8 nm	0,32 ml/g	
	— 10 nm	0,64 ml/g	•
	15 nm	0,73 ml/g	
·	— 20 nm	0,75 ml/g	
	— 30 nm	0,75 ml/g	
	— 40 nm	0,76 ml/g	
	50 nm	0,77 ml/g	
	-100 nm	0,78 ml/g	
	—500 nm	0,82 ml/g	

Porenvolumenmaximum bei Porenradius: 9 nm

Al ₂ O ₃	77,5%
SiO ₂	ca. 0,01%
Fe ₂ O ₃	ca. 0,01%
TiO ₂	ca. 0,006%
Alkali- und Erdalkalielemente	ca. 0,005%
andere Elemente	ca. 0,01%
Schüttdichte	0,54 g/ml
Oberfläche*)	170 m ² /g
Kristallgröße (021 Reflex)	20 nm
*)3 h/550°C	

Beispiel 2

Es wurde analog Beispiel 1 gearbeitet, wobei jedoch jetzt die Verweilzeit verdoppelt, also auf 1 Stunde eingestellt wurde, und der Reaktordruck 15 bar entsprechend 198°C betrug.

Die Rührgeschwindigkeit, d. h. die Rührerdrehzahl von 200 U/min bzw. die Umfangsgeschwindigkeit des Rührwerkes betrug ebenfalls 2,30 m/s. Nach Sprühtrocknung der Aufschlämmung wurden folgende Analysedaten erhalten:

Analysedaten der Tonerde

	Größe	Volumen
Porenverteilung	— 4 nm	0,01 ml/g
	— 10 nm	0,03 ml/g
•	— 15 nm	0,11 ml/g
	– 20 nm	0,28 ml/g
	— 25 nm	0,55 ml/g
	— 30 nm	0,86 ml/g
	— 40 nm	0,74 ml/g
	- 50 nm	0,78 ml/g
•	—100 nm	0,90 ml/g
	-500 nm	1,19 ml/g

Porenvolumenmaximum bei Porenradius: 27 nm

5

25

30

35

40

Al_2O_3	78,6%
SiO ₂	ca. 0,01%
Fe ₂ O ₃	ca. 0,01%
TiO ₂	ca. 0,005%
Alkali- und Erdalkalielemente	ca. 0,005%
andere Elemente	ca. 0,01%
Schüttdichte	0,21 g/ml
Oberfläche	$105 \text{m}^2/\text{g}$
Kristallitgröße (021 Reflex)	28 nm
	·.

10

15

5

Beispiel 3

Es wurde analog Beispiel 1 bzw. Beispiel 2 gearbeitet, jedoch betrug jetzt die Verweilzeit 3 Stunden nach Einstellung der Reaktorbedingungen; der Reaktordruck betrug 23 bar entsprechend 220°C.

Es wurden folgende Analysedaten erhalten:

		Größe	Volumen
20	Porenverteilung	- 4 nm - 10 nm - 20 nm	0,02 ml/g 0,03 ml/g 0,10 ml/g
25		- 30 nm - 40 nm - 50 nm	0,39 ml/g 0,79 ml/g 0,86 ml/g
		—100 nm —500 nm	1,04 ml/g 1,52 ml/g
30	Porenvolumenmaximum bei Porenradius: 41 nm		
	Al ₂ O ₃ SiO ₂ Fe ₂ O ₃		80,5% ca. 0,01% ca. 0,01%
35	TiO ₂ Alkali- und Erdalkalielement andere Elemente Schüttdichte	e	ca. 0,005% ca. 0,005% ca. 0,01% 0,12 g/ml
	Oberfläche		$93 \mathrm{m}^2/\mathrm{g}$

Kristallitgröße (021 Reflex)

Die gemäß Beispiel 1 bis 3 erhaltenen Porenradien in Abhängigkeit von Druck und Verweilzeit sind in den beiliegenden Fig. 1 und 2 aufgeführt. Sie zeigen deutlich, daß man das Porenmaximum der Tonerde in Abhängig-keit von der Verweilzeit und dem Druck bei der Alterung bei gleichzeitigem Rühren genau einstellen kann.

Beispiel 4

40 nm

Es wurde eine Tonerdeaufschlämmung gemäß Beispiel 1 mit einer Konzentration von etwa 10 Gew.-% Al₂O₃ kontinuierlich in einen Reaktor gemäß Abbildung 3 eingespeist und gerührt.

Der in Fig. 3 gezeigte Reaktor hat fünf kaskadenartig angeordnete Rührstufen. Die Tonerdeaufschlämmung wird über eine Leitung 2 mittels einer Pumpe 4 von oben in den Reaktor 6 eingespeist, wobei gleichzeitig über eine Leitung 8 Wasserdampf unter Druck zugeführt wird. Der Rührautoklav wird von einem Motor 10 angetrieben und besitzt im vorliegenden Ausführungsbeispiel fünf kaskadenartig übereinander angeordnete Rührwerke 12a bis 12e mit zwischengeschalteten Böden, die einen geregelten Durchtritt von einer Kaskadenkammer in die darunter liegende Kammer ermöglichen. Durch einen Niveauregler 14 und mehrere Temperaturfühler 16 bzw. 16' wird die Einhaltung eines gleichmäßigen Reaktionsverlaufes gewährleistet, wobei Produkteintritt und Dampfzufuhr in Abhängigkeit vom Produktaustritt 18 entsprechend geregelt wird.

Im vorliegenden Beispiel betrug die Verweilzeit 1, 2 und 3 Stunden. Der Reaktordruck lag bei 20 bar entsprechend einer Temperatur von 212°C. Die Rührerdrehzahl und damit die Umfangsgeschwindigkeit des Rührers wurden entsprechend variiert, wobei nach der Sprühtrocknung die erhaltenen Tonerden die folgenden Eigenschaften gemäß der Tabelle 1 aufwiesen.

Beispiel 5

65

40

E wurde analog Beispiel 4 jedoch bei 15 bar und bei einer Verweilzeit von 2 Stunden gearbeitet. Die entsprechenden Werte sind in Tabelle 2 aufgeführt.

Den Reienielen 4 und 5 entenrechen die granhischen Darstellungen Fig. 4 und 5.

Tabelle 1

Tabelle 2

Druckalterung von Tonerdesuspensionen bei einem Reaktordruck von 25 bar und Verweilzeit von 2 h

Jm.	Rührer-	Al ₂ O ₃	Schütt-	Ober-	Kristal-	Disper-	Poren	olume	n ml/g	Porenvolumen ml/g bei Porenradius von:	renrad	us von										ă	oren-
angsge- ichwin- ligkeit	dreh- zahl·1		dichte	Ilache	lilgroße	gierbar- keit	nm 5	nm S	nm 10	nm 15	20 m	nm 1	30 mm	nm n 35 4	nm n	nm n 45 Si	nm mn 50 7.	nm nm 75 80		nm 100 30	nm nm 300 500		volumen max. bei Poren-
s/u	min	%	g/ml	m²/g	шu	%				·			Ì				-					2 4	snins W
2.07	180	81,1	0,37	132	25	6'96	0.01	90.0	0.20	0.53	19'0					0.77 0			0.80 0.	0.80	0.85 0.	0.93	14
2.53	220	81.6	0,34	103	35	95,6	0,01	0.05	60.0		0.32	09.0	0.72	0.75 (0.77 0		0.80	0.86 0.			0.98 1.		23
3.05	265	82.4	0,18	107	42	87,4	0.05	0.10	0.15	0.18	0.23					0.79 0	0.89	1.00 1.			1.23 1.		40
4.03	350	82.6	0,13	96	09	41,0	0.02	60'0	0.14	0.16							0.34 0	0.78 1.		1.12	1.43 1.		75

PS 38 23 895

Patentansprüche

- 1. Verfahren zur Herstellung böhmitischer Tonerden in einer Reinheit von mindestens 99,95% Al₂O₃ mit definierten Porenradien in einem Bereich zwischen 3 bis 100 nm durch salzfreie, wäßrige, neutrale Aluminiumalkoholathydrolyse, dadurch gekennzeichnet, daß man die aus der Aluminiumalkoholathydrolyse erhaltene Tonerdesuspension in einem Autoklaven
 - a) bei einem Wasserdampfdruck von 1 bis 30 bar entsprechend einer Temperatur von 100 bis 235°C,
 - b) in einem Zeitraum von 0,5 bis 20 Stunden und
 - c) unter Rühren mit einer Umfangsgeschwindigkeit von 1,0 bis 6,0 m/s altert.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man eine Tonerdesuspension mit 5 bis 10 15 Gew. % Al₂O₃ verwendet.
- 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man die Tonerdesuspension
 - a) bei einem Wasserdampfdruck von 5 bis 30 bar und

2

- b) unter Rühren in einem Zeitraum von 1 bis 4 Stunden altert.
- 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß man die Tonerdesuspension in einem Kaskadenreaktor mit 2- bis 10stufigem Rührwerk kontinuierlich altert.

Hierzu 5 Blatt Zeichnungen

20

25

30

35

40

45

50

55

Nummer: Int. Cl.4:

38 23 895 C 04 B 35/10

Veröffentlichungstag: 21. Dezember 1989

Nummer:

38 23 895 C 04 B 35/10

Int. Cl.4: Veröffentlichungstag: 21. Dezember 1989

30 bar

Nummer:

C 04 B 35/10

Int. Cl.4: C 04 B 35/10
Veröffentlichungstag: 21. Dezember 1989

38 23 895

FIG.3

Nummer:

38 23 895

Int. Cl.4:

C 04 B 35/10

Veröffentlichungstag: 21. Dezember 1989

Nummer: Int. Cl.4:

38 23 895 C 04 B 35/10

Veröffentlichungstag: 21. DezemJer 1989

