

Modélisation du comportement du moteur de coupe

Objectif

Modéliser la chaîne d'asservissement en vitesse du moteur afin de déterminer les paramètres du correcteur permettant de respecter l'exigence 1.2.2.1 (figure 1).

Question 1 Compléter le schéma-blocs fonctionnel en indiquant dans les blocs le nom des composants (moteur, adaptateur, correcteur-variateur, capteur-conditionneur) et les paramètres qui transitent entre les blocs.

Question 2 On note K_a le gain de l'adaptateur et K_c le gain du capteur. Quelle doit être la relation entre K_a et K_c pour que l'écart soit nul lorsque la vitesse du moteur est égale à la vitesse de consigne?

Correction

On a $\varepsilon(t) = K_a \omega_{\rm cons}(t) - K_c \omega_m(t)$. Pour que $\varepsilon(t)$ soit nul lorsque $\omega_{\rm cons}(t) = \omega_m(t)$, il faut que $K_a = K_c$.

Question 3 Transformer les quatre équations dans le domaine de Laplace en supposant les conditions initiales nulles.

Correction

On a $U_m(p) = RI(p) + LpI(p) + E(p)$, $Jp\Omega_m(p) = C_m(p) + C_r(p)$, $C_m(p) = k_cI(p)$, $E(p) = k_e\Omega_m(p)$.

Question 4 En supposant le couple résistant nul, $c_r(t) = 0$, donner la forme canonique

Concours CCINP MP 2018.

B2-07

FIGURE 1 – Exigence 1.2.2.1

de la fonction de transfert sous la forme $H_m(p) = \frac{K}{1 + \frac{2\xi}{G(p)}p + \frac{p^2}{G^2}}$. On exprimera les

constantes en fonction de R, L, k_e , k_c et J.

Correction

On a
$$U_m(p)=RI(p)+LpI(p)+E(p)=\frac{C_m(p)}{k_c}\left(R+Lp\right)+k_e\Omega_m(p)=Jp\frac{\Omega_m(p)}{k_c}\left(R+Lp\right)+k_e\Omega_m(p)$$
.

On a donc $U_m(p)=\Omega_m(p)\left(\frac{Jp}{k_c}\left(R+Lp\right)+k_e\right)$ et $H_m(p)=\frac{1}{\frac{JL}{k_c}p^2+\frac{JR}{k_c}p+k_e}=\frac{1}{\frac{JL}{k_ck_e}p^2+\frac{JR}{k_ck_e}p+1}$.

Par identification, on a donc $K=\frac{1}{k_e}$, $\omega_0=\sqrt{\frac{k_ck_e}{JL}}$ et $\frac{2\xi}{\omega_0}=\frac{JR}{k_ck_e}$ soit $\xi=\frac{JR}{2k_ck_e}\sqrt{\frac{k_ck_e}{JL}}=\frac{R\sqrt{J}}{2\sqrt{J_ck_ck_e}}$.

FIGURE 2 – Évolutions simulées de $\omega_m(t)$.

Optimisation des performances de l'asservissement en vitesse du moteur

Objectif

Analyser les performances de l'asservissement en vitesse du moteur afin de concevoir un correcteur permettant de vérifier l'exigence 1.2.2.1.

Question 5 Pour les courbes 1 et 2 de la figure 2, préciser, en le justifiant, la simulation qui est associée à la plus grande valeur de K_p . On pourra exprimer le coefficient d'amortissement de la FTBF ou exprimer l'écart statique.

Correction

Méthode 1 – Coefficient d'amortissement
On note
$$H_{\mathrm{BF}}(p) = \frac{\omega_m(t)}{\omega_{\mathrm{cons}}(t)}$$
.

$$K_{p} \frac{K}{1 + \frac{2\xi}{\omega_{0}}p + \frac{p^{2}}{\omega_{0}^{2}}}$$
On a alors, $H_{BF}(p) = K_{c} \frac{K}{1 + K_{p} \frac{K}{1 + \frac{2\xi}{\omega_{0}}p + \frac{p^{2}}{\omega_{0}^{2}}}} = \frac{K_{c}K_{p}K}{1 + \frac{2\xi}{\omega_{0}}p + \frac{p^{2}}{\omega_{0}^{2}} + K_{p}K_{c}}.$

On a donc
$$\frac{2\xi_{\mathrm{BF}}}{\omega_{\mathrm{BF}}} = \frac{2\xi}{\omega_0 \left(1 + K_p K_c\right)} \text{ et } \omega_{\mathrm{BF}}^2 = \omega_0^2 \left(1 + K_p K_c\right).$$

Soit
$$\xi_{\mathrm{BF}} = \frac{\xi \omega_{\mathrm{BF}}}{\omega_0 \left(1 + K_p K_c \right)} = \frac{\xi \omega_0 \sqrt{1 + K_p K_c}}{\omega_0 \left(1 + K_p K_c \right)} = \frac{\xi}{\omega_0 \sqrt{1 + K_p K_c}}.$$

En conclusion, plus K_p augmente, plus le coefficient d'amortissement diminue et donc plus les pseudo oscillations deviennent grandes. La courbe 2 a donc la plus grande valeur de K_p . Méthode 2 - Calcul de l'écart statique

On montre que
$$\varepsilon(p) = \omega_{\text{cons}}(p)K_a \frac{1}{1 + FTBO(p)} = \frac{\omega_{\text{cons}}(p)K_a}{1 + K_pK_c \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega_0^2}}}$$
.

Pour une entrée échelon et en utilisant le théorème de la valeur finale, on a $\varepsilon_S = \lim_{t \to +\infty} \frac{1}{t}$

$$\varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) \lim_{p \to 0} \frac{K_a}{1 + K_p K_c \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}} = \frac{K_a}{1 + K_p K_c K}.$$
Lorsque K_p augmente, ε_S diminue. La courbe 2 a donc la plus grande valeur de K_p .

Question 6 Pour chaque courbe de la figure 2, préciser, en le justifiant, si la valeur de K_i est nulle ou non.

Correction

Correction
$$\text{On montre que } \varepsilon(p) = \omega_{\text{cons}}(p)K_a \frac{1}{1 + FTBO(p)} = \frac{\omega_{\text{cons}}(p)K_a}{1 + \left(K_p + \frac{K_i}{p}\right)K_c \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega_0^2}} }.$$

Pour une entrée échelon et en utilisant le théorème de la valeur finale, on a ε_S = $\varepsilon(t)=\lim_{p\to 0}p\,\varepsilon(p)=0.$ Ainsi, si K_i non nul, $\varepsilon_S=0$ (courbe 3 uniquement).

Question 7 Déterminer les valeurs associées aux quatre critères de performances de l'exigence 1.2.2.1. Conclure sur le correcteur à adopter.

Correction				
	Stabilité	1er Dépassement	Erreur statique	T _{5%}
Exigences	Absolue	< 20 %	Nulle	0,5 s
Courbe 1	Stable OK	$D_1 = 45 \% \text{ Pas OK}$	2450 tr/min Pas OK	$T_{5\%} = 0.015 \mathrm{s}$ OK
Courbe 2	Stable OK	$D_1 = 59 \% \text{ Pas OK}$	900 tr/min Pas OK	$T_{5\%} = 0.018 \mathrm{s}$ OK
Courbe 3	Stable OK	$D_1 = 15 \% \text{ OK}$	0 tr/min OK	$T_{5\%} = 0.048 \mathrm{s}$ OK

