Rozdział I

Anna Szymańska, Szymon Wojtulewicz

Algorytmy Probabilistyczne i Aproksymacyjne 2024/25

$$A_{xy} = \begin{cases} 1 & \text{jeśli istnieje krawędź } (x, y) \\ 0 & \text{wpp} \end{cases}$$

$$\mathsf{M}_{\mathsf{xe}} = egin{cases} 1 & \mathsf{jeśli} \ \mathsf{x} \ \mathsf{jest} \ \mathsf{końcem} \ e \ 0 & \mathsf{wpp} \end{cases}$$

$$\mathsf{N}_{\mathsf{xe}} = egin{cases} -1 & \mathsf{jeśli} \ x \ \mathsf{jest} \ \mathsf{początkiem} \ e \ 1 & \mathsf{jeśli} \ x \ \mathsf{jest} \ \mathsf{końcem} \ e \ 0 & \mathsf{wpp} \end{cases}$$

$$\mathsf{L}_{xy} = egin{cases} -A_{xy} & \mathsf{jeśli} \ x
eq y \\ \mathsf{deg}(x) & \mathsf{jeśli} \ x = y \end{cases}$$

$$L = D - A = NN^T$$

$$Q_{xy} = \begin{cases} A_{xy} & \text{if } x \neq y \\ \deg(x) & \text{if } x = y \end{cases}$$

$$Q = D + A = MM^T$$

$$D_{xx} = deg(x)$$

Własności

- L, Q są dodatnio półokreślone
- ▶ dla dowolnego wektora *u*

$$u^T L u = \sum_{x \sim y} (u_x - u_y)^2$$

$$u^T Q u = \sum_{x \sim y} (u_x + u_y)^2$$

$$I = D - A = NN^T$$

$$Q = D + A = MM^T$$

$$x^{\mathsf{T}}\mathsf{L}x = x^{\mathsf{T}}(\mathsf{D} - \mathsf{A})x = \sum_{i} deg(i) \cdot x_{i}^{2} - \sum_{i \sim j} a_{ij} \cdot x_{i}x_{j} = \sum_{i \sim j} (x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}) = \sum_{i \sim j} (x_{i} - x_{j})^{2}$$

Wartości własne i widmo macierzy

Wektor własny \mathbf{v} i wartość własna $\boldsymbol{\theta}$

$$A\mathbf{v} = \mathbf{\theta}\mathbf{v}$$

Wielomian charakterystyczny

$$p_A(\theta) = \det(A - \theta I)$$

Widmo macierzy

$$\sigma(A) = \{ \boldsymbol{\theta} \in \mathbb{C} : p_A(\boldsymbol{\theta}) = 0 \}$$

$$\sigma(A) = \{(\boldsymbol{\theta}, k_{\boldsymbol{\theta}}) \in \mathbb{C} \times \mathbb{N}^+ : p_A(\boldsymbol{\theta}) = 0\}$$

Widmo grafu skończonego Γ

- ▶ (Zwykłe) widmo $\sigma(A)$
- ightharpoonup Widmo Laplace'a $\sigma(L)$

- $ightharpoonup \Gamma$ graf skierowany na *n* wierzchołkach
- C regularny podgraf skierowany stopnia 1
- ► c(C) liczba cylki grafu C

Wtedy

$$p_A(t) = \det(tI - A) = \sum_{i=0}^n c_i t^{n-i}$$
 gdzie $c_i = \sum_{C \in \Gamma} (-1)^{c(C)}$

bo

$$\det M = \sum_{\sigma} \operatorname{sgn}(\sigma) M_{1\sigma(1)} \cdots M_{n\sigma(n)}$$

Krotność wartości własnych

- algebraiczna krotność pierwiastka wielomianu charakterystycznego
- geometryczna wymiar przestrzeni liniowej rozpiętej na odpowiadających wektorach własnych

	Macierz A	Macierz L
k-regularny	A1 = k1	L = kI - A
	$k=\theta_1\geqslant\cdots\geqslant\theta_n$	$\mu_i = k - \theta_i$
dopełnienie	$\bar{A} = J - I - A$	$ar{L} = n I - J - L$
		0, $n-\mu_{n},\ldots,n-\mu_{2}$
dopełnienie grafu	$\bar{A} = J - I - A$	
k-regularnego	$\mid n-k-1, \ -1-\theta_n, \ldots, -1-\theta_2 \mid$	
dwudzielny	$A = \begin{bmatrix} 0 & B \\ B^{T} & 0 \end{bmatrix}$	widmo L i Q są równe
	$ heta_i = - heta_n$	

Dla nieskierowanego grafu Γ wszystkie wartości własne są zerowe wtw $E(\Gamma) = \emptyset$.

Spacery

Dla naturalnego h, mamy A_{xy}^h równe liczbie spacerów o długości h z x do y.

$$\blacktriangleright (A^2)_{xx} = \deg(x)$$

$$tr(A^2) = 2|E(\Gamma)|$$

►
$$tr(A^2) = 2|E(\Gamma)|$$

► $tr(A^3) = 6 \cdot (liczba\ trójkątów)$

Ograniczenie średnicy

Niech Γ to spójny graf o średnicy d. Wówczas macierze A, L i Q dla Γ mają co najmniej d+1 różnych wartości własnych każda.

```
\mathsf{M} \in \mathbb{R}^{V \times V} symetryczna dodatnia, t.że \mathsf{M}_{xy} > 0 wtw x \sim y \theta_1, \ \dots, \ \theta_t - różne wartości własne M  (\mathsf{M} - \theta_1 \mathbf{I}) \cdot \dots \cdot (\mathsf{M} - \theta_t \mathbf{I}) = 0, \text{ więc } \mathsf{M}^t \text{ jest kombinacją liniową } 1, \ \mathsf{M}, \ \dots, \ \mathsf{M}^{t-i}  Jeśli d(x, y) = t, to \mathsf{M}^i_{xy} = 0 dla 0 \leqslant i < t \text{ oraz } \mathsf{M}^t_{xy} > 0 \quad \not
```

Widmo grafu nieskierowanego

Niech Γ będzie nieskierowanym (multi)grafem, t.że $V(\Gamma) \neq \emptyset$ oraz macierz L ma wartości własne $0 = \mu_1 \leqslant \mu_2 \leqslant \cdots \leqslant \mu_n$. Niech ℓ_{xy} będzie (x,y)-minorem macierzy L. Wówczas liczba N drzew rozpinających Γ jest równa:

$$N=\ell_{\mathsf{x}\mathsf{y}}=\det\left(L+rac{1}{n^2}J
ight)=rac{1}{n}\mu_2\cdots\mu_n$$
 dla dowolnych $x,y\in V(\Gamma).$

Niech L^S , $S \subset V(\Gamma)$ to macierz L z usuniętymi rzędami i kolumnami indeksowanymi S. Wtedy $\ell_{xx} = \det(L^{\{x\}})$.

Dowód przez indukcję dla $N = \ell_{xx}$ po n > 1 i deg(x).

Liczba N drzew rozpinających Γ jest równa:

$$N=\ell_{\mathsf{x}\mathsf{y}}=\det\left(L+rac{1}{n^2}J
ight)=rac{1}{n}\mu_2\cdots\mu_n$$
 dla dowolnych $x,y\in V(\Gamma).$

Niech L^S , $S \subset V(\Gamma)$ to macierz L z usuniętymi rzędami i kolumnami indeksowanymi S. Wtedy $\ell_{xx} = \det(L^{\{x\}})$.

- ▶ Jeśli n = 1, to $\ell_{xx} = 1$. Jeśli deg(x) = 0, to $\ell_{xx} = 0$.
- ▶ Jeśli xy krawędź, to usunięcie jej z Γ zmniejsza ℓ_{xx} o det($L^{\{x, y\}}$). Z indukcji $\det(L^{\{x,y\}})$ to liczba drzew rozpinających, które zawierają krawędź xv.

Twierdzenie Cauchy'ego-Bineta

Niech A i B będą macierzami rozmiaru m×n. Wówczas

$$\det(AB^{\top}) = \sum_{S} \det A_{S} \det B_{S},$$

gdzie S to m-podzbiory kolumn, a A_S (B_S) to podmacierz z A (B) indeksowana S.

Twierdzenie Cauchy'ego-Bineta: $\det(AB^{\top}) = \sum_{S} \det A_{S} \det B_{S}$

Teza: Liczba drzew rozpinających $N=\ell_{xy}=\det\left(L+rac{1}{n^2}J\right)=rac{1}{n}\mu_2\cdots\mu_n$

Szkic:

Niech N_x będzie skierowaną macierzą incydencji grafu Γ , bez wiersza x. Wtedy $\ell_{xx} = \det N_x N_x^{\mathsf{T}}$. Z twierdzenia C-B, wyznaczamy ℓ_{xx} jako sumę kwadratów wyznaczników o rozmiarze n-1. Wyznaczniki zerują się, chyba że zbiór S kolumn jest zbiorem krawędzi drzewa rozpinającego, wtedy wyznacznik wynosi ± 1 .

Widmo grafu nieskierowanego

Spójne składowe

Niech Γ będzie grafem o s spójnych składowych Γ_i .

- ightharpoonup Widmo Γ jest sumą widm Γ_i (z krotnościami).
- ► Wartość własna 0 macierzy L ma krotność s.
- Jeśli Γ jest k-regularny, to k jest największą wartością własną Γ i ma krotność s.

Spójne składowe

Krotność wartości własnej 0 dla macierzy L jest równa liczbie spójnych składowych.

Wystarczy pokazać, że spójny graf Γ ma 0 z krotnością 1 w spektrum L. $L=NN^T, \text{ więc } Lu=0 \text{ wtw } N^Tu=0,$ czyli dla każdej krawędzi u przyjmuje taką samą wartość na obu jej końcach. Jeśli Γ jest spójny, to u jest stały.

Spójne składowe

Krotność wartości własnej 0 dla macierzy Q jest równa liczbie dwudzielnych spójnych składowych.

$$Q = MM^T$$
, więc jeśli $MM^Tu = 0$, to $M^Tu = 0$

Zatem
$$u_x = -u_y$$
 dla $x \sim y$.

Liczba niezerowych wartości u to liczba spójnych dwudzielnych składowych.

Graf Γ jest dwudzielny wtw widmo L i Q jest takie same.

 \implies Macierz Q można przedstawić jako Q=DLD $^{-1}$, gdzie D to macierz diagonalna z ± 1 na przekątnej. Zatem L i Q mają takie samo widmo.

 \iff Skoro L i Q mają takie samo widmo, to liczba spójnych składowych Γ jest równa liczbie spójnych dwudzielnych składowych.

Widma poszczególnych grafów

Klika K_n

- A = J I
- Widmo $(n-1)^1, (-1)^{n-1}$
- ► Macierz Laplace'a
- Widmo Laplace'a 0^1 . n^{n-1}

Pełny graf dwudzielny $K_{m,n}$

- Widmo $\pm \sqrt{mn}, 0^{m+n-2}$
- Widmo Laplace'a $0^1, m^{n-1}, n^{m-1}, (m+n)^1$

Widma poszczególnych grafów

Cykl skierowany D_n

- Wektory własne $(1,\zeta,\zeta^2,\ldots,\zeta^{n-1})^{ op}$, gdzie $\zeta=e^{2\pi i/n}$
- Widmo $e^{2\pi i j/n} \text{ dla } j = 0, \ldots, n-1$

Cykl nieskierowany Cn

- ightharpoonup Macierz sąsiedztwa $A = B + B^T$
- Wektory własne $(1, \zeta, \zeta^2, \dots, \zeta^{n-1})^{\top}$, gdzie $\zeta = e^{2\pi i/n}$
- Midmo $2\cos\left(\frac{2\pi j}{n}\right)$ dla $j=0,\ldots,n-1$
- $lackbox{ Widmo Laplace'a} \ 2-2\cos\left(rac{2\pi j}{n}
 ight)$ dla $j=0,\ldots,n-1$

Ścieżka P_n

Widmo

$$2\cos\left(\frac{\pi j}{n+1}\right)$$
 for $j=1,\ldots,n$

Wektory własne:

$$u(\zeta) = (1, \zeta, \zeta^2, \dots, \zeta^n)^{\top}$$

- Widmo Laplace'a $2-2\cos\left(\frac{\pi j}{n}\right)$ for $j=0,\ldots,n-1$
- ► Wektory własne:

$$1+\zeta^{2n-1},\ldots,\zeta^{n-1}+\zeta^n$$

Grafy liniowe $L(\Gamma)$

- Graf liniowy L(Γ) ma zbiór krawędzi Γ
 jako zbiór wierzchołków
- Wierzchołki sąsiadują, jeśli odpowiadające im krawędzie mają wspólny koniec

Macierz sąsiedztwa
 N^TN – 2I, gdzie N to macierz
 incydencji Γ

Lemat

Niech Γ ma m krawędzi oraz niech $\rho_1 \geqslant \cdots \geqslant \rho_r$ będą dodatnimi wartościami własnymi Laplace'a grafu Γ . Wówczas wartości własne grafu liniowego $L(\Gamma)$ wynoszą $\theta_i = \rho_i - 2$ dla $i = 1, \ldots, r$, oraz $\theta_i = -2$ dla $r < i \leqslant m$.

Macierz Laplace'a
$$Q$$
 oraz macierz sąsiedztwa B dla $L(\Gamma)$ spełniają $Q = NN^{\top}$ oraz $B + 2I = N^{\top}N$. Wartości własne są takie same.

Wniosek

Jeśli Γ jest grafem k-regularnym ($k \ge 2$) o n wierzchołkach i liczbie krawędzi e = kn/2, oraz wartościach własnych θ_i (i = 1, ..., n), to $L(\Gamma)$ jest (2k - 2)-regularny z wartościami własnymi $\theta_i + k - 2$ (i = 1, ..., n) oraz e - n razy -2.

of graphs

Iloczvn karteziański Γ□Δ

- \triangleright $(v, w) \sim (v', w')$ gdy $(v = v' i w \sim w')$ lub $(w = w' i v \sim v')$
- Macierz sąsiedztwa $A_{\Gamma \cap \Lambda} = A_{\Gamma} \otimes I + I \otimes A_{\Lambda}$

- Wartości własne $\theta + \eta$ (zwykłe lub Laplace'a), gdzie θ i η sa odpowiednio wartościami własnymi Γ i Δ
- Wektory własne $w_{(x,y)} = u_x v_y$, gdzie u_x i v_y to wektory własne Γ i Δ

lloczyn Kroneckera $\Gamma \otimes \Delta$

- $(v, w) \sim (v', w') \text{ gdy}$ $(v \sim v' \text{ i } w \sim w')$
- Macierz sąsiedztwa $A_{\Gamma \otimes \Delta}$ jest iloczynem Kroneckera macierzy sąsiedztwa Γ i Δ

- Wartości własne $\theta \eta$, gdzie θ i η są odpowiednio wartościami własnymi Γ i Δ
- Wektory własne $w = u \otimes v \ (z \ w_{(x,y)} = u_x v_y),$ gdzie $u \ i \ v \ sq$ wektorami własnymi $\Gamma \ i \ \Delta$

Silny iloczyn $\Gamma \boxtimes \Delta$

- $(v, w) \sim (v', w') \text{ gdy}$ $(v = v' \text{ i } w \sim w') \text{ lub}$ $(w = w' \text{ i } v \sim v') \text{ lub}$ $(v \sim v' \text{ i } w \sim w')$
- Macierz sąsiedztwa $((A_{\Gamma} + \mathbf{I}) \otimes (A_{\Delta} + \mathbf{I})) \mathbf{I}$

Martości własne $(\theta+1)(\eta+1)-1$, gdzie θ i η są odpowiednio wartościami własnymi Γ i Δ

Czy można rozłożyć K_{10} na grafy Petersena?

A₁, A₂, A₃ - macierze sąsiedztwa kopii GP w K₁₀

A₁, A₂ mają wspólny wektor własny u dla wartości 1.

Mamy u $\perp 1$, bo 1 jest wektorem dla wartości 3 w GP.

$$Au = (J - I)u = 0 - u = (-1)u$$

$$A_3u = Au - A_1u - A_2u = -3u$$

Zatem -3 jest wartościa własna A₃. 4

 3^1 , 1^5 , $(-2)^4$

Twierdzenie Witsenhausena

Niech Γ będzie grafem o macierzy sąsiedztwa A, który ma dekompozycję krawędziową na r pełnych grafów dwudzielnych. Wówczas $r \geqslant n_+(A)$ oraz $r \geqslant n_-(A)$, gdzie n_+ i n_- oznaczają odpowiednio liczbę dodatnich i ujemnych wartości własnych.

 u_i , v_i - wektory charakterystyczne stron podziału i-tego grafu dwudzielnego

$$A = \sum_{i} A_{i}$$
, gdzie $A_{i} = u_{i}v_{i}^{T} + v_{i}u_{i}^{T}$

w - wektor ortogonalny do u_i , $w^T A w = 0$

Wektor w nie może być wybrany z przestrzeni rozpiętej przez wektory własne macierzy A odpowiadające dodatnim (ujemnym) wartościom własnym.

Czy można rozłożyć K_n na grafy dwudzielne?

Twierdzenie Grahama-Pollaka

Dla dowolnego rozkładu krawędziowego K_n na pełne grafy dwudzielne mamy co najmniej n-1 składowych.

Graf K_n ma wartość własną -1 o krotności n-1.

Automorfizmy grafu Γ

- Automorfizm grafu Γ to permutacja π zbioru wierzchołków X, taka że $x \sim y$ wtedy i tylko wtedy, gdy $\pi(x) \sim \pi(y)$
- ► Transformacja liniowa $P_{\pi}(u)_{x} = u_{\pi(x)}$ dla $u \in V$ oraz $x \in X$

- $\triangleright AP_{\pi} = P_{\pi}A$
- $ho P_{\pi}$ zachowuje przestrzeń własną $V_{ heta}$ dla każdej wartości własnej heta macierzy A
- $ightharpoonup m(\theta) = \dim V_{\theta}$

Jeśli wszystkie wartości własne są proste, to grupa automorfizmów Γ jest elementarną 2-grupą abelową.

Twierdzenie

Niech grupa automorfizmów Γ będzie przechodnia na X. Wówczas Γ jest regularny stopnia k.

- (i) Jeśli $m(\theta)=1$ dla pewnej wartości własnej $\theta \neq k$, wtedy v=|X| jest parzyste i $\theta \equiv k \pmod 2$. Jeśli Γ jest dodatkowo przechodnia krawędziowo, to Γ jest dwudzielny i $\theta=-k$.
- (ii) Jeśli $m(\theta) = 1$ dla dwóch różnych wartości własnych $\theta \neq k$, to $v \equiv 0 \pmod{4}$.
- (iii) Jeśli $m(\theta)=1$ dla wszystkich wartości własnych θ , to Γ ma co najwyżej dwa wierzchołki.

Niech Γ będzie grafem z co najmniej dwoma wierzchołkami i widmem Laplace'a $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$. Wtedy $\mu_2(\Gamma)$ jest nazywana algebraiczną spójnością Γ .

Monotoniczność

Niech Γ i Δ będą grafami rozłącznymi krawędziowo na tym samym zbiorze wierzchołków, a $\Gamma \cup \Delta$ ich sumą. Mamy $\mu_2(\Gamma \cup \Delta) \geqslant \mu_2(\Gamma) + \mu_2(\Delta) \geqslant \mu_2(\Gamma)$.

$$\text{Korzystamy z tego, } \dot{\text{ze}} \ \mu_2(\Gamma) = \min_{\textbf{u}} \ \{\textbf{u}^\perp \textbf{L} \textbf{u} \mid \langle \textbf{u}, \ \textbf{u} \rangle = 1, \ \langle \textbf{u}, \mathbb{1} \rangle = 0\}.$$

Ograniczenie spójności wierzchołkowej

Niech Γ będzie grafem o zbiorze wierzchołków X. Przypuśćmy, że $D \subset X$ jest takim zbiorem wierzchołków, że podgraf indukowany przez Γ na zbiorze $X \setminus D$ jest niespójny. Wówczas $|D| \geqslant \mu_2(\Gamma)$.

Zakładamy, że Γ zawiera wszystkie krawędzie pomiędzy D i $X \setminus D$. Wybieramy niezerowy wektor u, który przyjmuje 0 na D i stałą wartość na każdej składowej z $X \setminus D$. Dodatkowo spełnia $\langle u, 1 \rangle = 0$. Wtedy u jest wektorem własnym L dla wartości własnej |D|.

Dwa współwidmowe i nie-izomorficzne grafy regularne

Kostka 4-wymiarowa (tesseract) i jej widmowa siostra

Macierz sąsiedztwa Seidela

$$S_{uv} = egin{cases} 0 & ext{jeśli } u = v \ -1 & ext{jeśli } u \sim v \ 1 & ext{jeśli } u
otphi v \end{cases}$$

- ► S = J I 2A
- Widmo Seidela: widmo macierzy sąsiedztwa Seidela
- ▶ Dla grafu regularnego o *n* wierzchołkach i walencji *k*: n-1-2k $-1-2\theta$

Niech Γ ma zbiór wierzchołków X, a $Y \subset X$. Macierz diagonalna D z indeksem X ma $D_{xx} = -1$ dla $x \in Y$ oraz $D_{xx} = 1$ w przeciwnym przypadku. Wówczas DSD ma takie samo widmo jak S. Nowy graf, który otrzymujemy przez Seidel switching względem Y, jest Seidel-izospetralny z Γ .

Klasy równoważności grafów na 4 wierzchołkach

Bardzo małe grafy

		А	L	Q	S
1.1	•	0	0	0	0
2.1	•••	1,-1	0,2	2,0	-1,1
2.2	• •	0,0	0,0	0,0	-1,1
3.1	\triangle	2,-1,-1	0,3,3	4,1,1	-2,1,1
3.2		$\sqrt{2},0,-\sqrt{2}$	0,1,3	3,1,0	-1,-1,2
3.3	••	1,0,-1	0,0,2	2,0,0	-2,1,1
3.4	• •	0,0,0	0,0,0	0,0,0	-1,-1,2