Flow Control and Error Control

EP1100 Data Communications and Computer Networks Illustrations in this material are collected from

Behrouz A Forouzan, *Data Communications* and *Networking*, 3rd edition, McGraw-Hill.

Outline

- Introduction
- Flow control
- Stop and wait
- Sliding window
- Error detection
 - Parity
 - Checksums
 - Cyclic redundancy check (CRC)
- Error handling
 - Error correction
 - Retransmission (Automatic Repeat Request ARQ)
 - Stop and wait
 - o Go-back-N
 - Selective reject (selective repeat)

3

Data Link Layer: Background

- Physical layer provides means to transfer frames over a link
- · Remaining problems to be solved
 - Adapt sender to receiver rate
 - Errors in frames and loss of frames should be detected and managed
 - ...

Why Flow Control?

- Problem: Sender can overload receiver
 - Frames arrive too fast
 - In many cases, the receiver is more complicated than the sender
 - o Error detection, frame/packet analysis, address lookup
 - Frames are stored in a buffer before they are processed
 - Receiver buffers can overflow and frames be lost
 - Prevent loss of frames
- Control mechanisms
 - Stop and wait
 - Sliding window
- · We don't worry about frame errors and loss for now
 - Will discuss that shortly...

5

How Large Window?

- $N = 1 \Rightarrow$ stop-and-wait
- Small $a \Rightarrow$ small N
 - Local area network: $N = 8 \Rightarrow 3$ bits
- Large $a \Rightarrow \text{large } N$
 - TCP uses 32-bit sequence number
 - o Byte number
 - o Propagation times for global distances

14

Acknowledgments

- Types of acknowledgments
 - Positive
 - ACK (acknowledgment)
 - HDLC: RR (receiver ready)
 - Negative
 - NACK (negative acknowledgment)
 HDLC: RNR (receiver not ready)
- · Indicates sequence number of next expected frame Cumulative acknowledgment of all frames with lower sequence number
 - When and how is the acknowledgment sent?

 - As a separate frame
 - . Together with data from the receiver to the sender
 - "Piggybacking"

15

Error control

Automatic Repeat Request (ARQ)

- · Error control—when frames or acknowledgments are lost
 - Based on flow control
- · Stop-and-wait flow control
 - Stop-and-wait ARQ
 - "Alternating Bit Protocol"
 - Two sequence numbers—0 and 1
- Sliding window flow control
 - Go-back-N ARQ
 - Selective-reject ARQ

Continuous ARQ

- Stop-and-wait ARQ is simple but inefficient
 - same reason as for stop-and-wait flow control
- Continuous ARQ
 - Sequence numbers with sliding window
 - ACK and NACK
 - Time out

20

Go-back-N ARQ

- · Based on sliding window flow control
- Sender
 - May send N frames without acknowledgment
 - o Copies of all unacknowledged frames kept in a buffer
 - Time out
 - $_{\rm o}$ retransmits $\it all$ unacknowledged frames
- Receiver
 - Discards frames with unexpected sequence numbers

21

Window Size Versus Sequence Numbers

- With k-bit sequence numbers, window size can be at most 2k-1
- Otherwise frames can be duplicated at receiver
- For example:
 - Sequence numbers 0-3 (k = 2)
 - Window size 2^k = 4 (incorrectly)

Selective Repeat ARQ

- Sometimes also called Selective Reject ARQ (SREJ)
- · Only retransmit frames that are lost
 - Negative acknowledgment NAK (SREJ)
 - Time out
- · Receiver has a receiver window
 - Only frames with sequence number within receive window are accepted
 - Sorts accepted frame into correct order

Transmission Errors

- Lost frame
 - Framing error
- Corrupted frame (bit errors)
 - Single bit error
 - Burst errors
 - o Whole sequences of bits are corrupted
 - o External noise, for example power surges

27

Error Detection—Basic Idea

Data f(Data)

- · Add extra (redundant) information for detecting errors
 - Parity check
 - Checksum
 - Cyclic redundancy check (CRC)
- Sender computes function over data, and appends result
- Receiver computes same function, and compares the results
- If the results differ, there was an error

28

Parity Check

- Simple parity check
 - Extra bit (parity bit) is added to the data unit
 - Numbers of 1s should be even ("even parity") or odd ("odd parity")
 - Receiver checks the number of 1s
- Advantages
 - Simple: $P = 1 \oplus 0 \oplus 0 \oplus 1 \oplus ... \oplus 1 \oplus 0$ for even parity
 - Inexpensive: only one extra bit per data unit
- Disadvantage
 - Only detects single bit errors, and burst errors with odd number of bit errors

 29

Cyclic Redundancy Check (CRC)

- The data M is treated as a sequence of bits
- Predefined binary word P (generator) of length n+1
- Sender generates M by adding n CRC bits to M
 - Such that M is evenly divided by P
 - M is sent
- Receiver receives M'
 - If remainder of M'' divided by P is zero then M'' = M''
 - Otherwise: bit error detected, discard the data

CRC Calculation Using Binary Division Append '00' to M P = 10110110 · Binary subtraction (xor) 101 1001100 of 3 bits M = 10011<u>101</u> If first bit is '1' M' = 1001110011 o subtract P 000 o (Put '1' in quotient) o Copy down next bit <u>101</u> If first bit is '0' 100 o subtract '000' o (Put '0' in quotient) o Copy down next bit Append remainder to data as checksum 31

Generator Polynomials

- Binary numbers can be represented as polynomials
 - Bit value is coefficient of a term
 - · Exponent indicates the bit position, starting at 0
 - Example: 100111 ⇒

$$P(X) = 1 \times X^{5} + 0 \times X^{4} + 0 \times X^{3} + 1 \times X^{2} + 1 \times X + 1 \times X^{0}$$

$$P(X) = X^{5} + X^{2} + X + 1$$

Standard polynomials

ITU-16:
$$X^{16}$$
 + X^{12} + X^{5} + 1
ITU-32: X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1

33

CRC

- Effective error detection
 - All burst errors that affect an odd number of bits
 - All burst errors of length less than or equal to degree of polynomial
 - With high probability longer errors
- Simple implementation in hardware
 - Shift register circuit
 - CRC often appended to the data (trailer)

34

Checksum

- Treat the data as a sequence of integer numbers in binary format
- Compute the sum of the integer numbers
 - (In ones complement arithmetic)
 - Use the result for error detection

35

Checksum

- · Less effective than CRC
 - Easier to implement in software
- Detects
 - all errors involving an odd number of bits
 - Most errors involving an even number of bits
 - Two opposite bit inversions may balance out each other
- · Used in IP, TCP and UDP

Correction of Errors

- Forward Error Correction (FEC)
 - Error-correcting codes
 - Replace CRC, checksum etc with a code that can automatically correct the error
 - Needs more redundancy bits
- Retransmission (ARQ)
 - Can be used both for bit errors and frame loss
 - A frame with bit errors is dropped (lost)

37

Data Link Example: HDLC

- High-level Data Link Control
 - ISO standard
- Data encapsulation method on synchronous serial links
- Point-to-point and multipoint links

38

Pata may contain flag pattern 01111110 Sender: insert ("stuff") an extra 0 after five 1s Receiver: remove 0 after five 1s Data sent Data sent Suffed Frame sent Flag Address Control 000111110100111001000 FCS Flag Flag Address Control 0001111100111101000 Data received Data received Data received

Point-to-point Protocol Control and management of data transfer over physical (point-to-point) links Dedicated link with two stations Traditional modem, DSL, etc Based on HDLC frame format Flag Address Control Protocol Data and padding FCS Flag 1 byte 1 byte 1 byte 1 or 2 bytes Variable 2 or 4 bytes 1 byte

PPP Protocol Family • Link Control Protocol (LCP) • Establish, disconnect link • Negotiate options—maximum receive unit, authentication, compression • Authentication • Password Authentication Protocol (PAP) • Challenge Handshake Authentication Protocol (CHAP) • Network Control Protocol (NCP) • Internetwork Protocol Control Protocol (IPCP)

