Keystroke Analysis Project for the Data Base and Data Mining course

Paulin Loïs, Badin de Montjoye Xavier, Gaziello Yannis, Menet Hugo

11/05/2017

Outline

- 1 Introduction
- 2 State of the art
- 3 Our work
 - First Observations
 - Experimental Protocol
 - Our implementation
 - Results

Keystrokes analysis for biometrics recognition. Why?

Keyboard.

- Keyboard.
- Fast.

- Keyboard.
- Fast.
- Relatively simple.

- Keyboard.
- Fast.
- Relatively simple.
- Reliable.

What is the scope of keystroke analysis?

Fixed text.

What is the scope of keystroke analysis?

- Fixed text.
- Free Text.

What is the scope of keystroke analysis?

- Fixed text.
- Free Text.
- Different languages.

What is the scope of keystroke analysis?

- Fixed text.
- Free Text.
- Different languages.
- Long time between learning and testing.

State of the Art

- Compute distances between two typing sessions
- Consider time sequences of keystroke as patterns
- Not applicable for small free texts (Curse of dimensionality)

First Observations

Outline

- 1 Introduction
- 2 State of the art
- 3 Our work
 - First Observations
 - Experimental Protocol
 - Our implementation
 - Results

First Observations

Measures

What can we measure in typing?

- Delay between pair of letters.
- Time on a key.
- Mean.
- Standard deviation.

First Observations

Observations

There is a difference in the means (with or without quartile) between the texts typed by two different users.

Example

 X_l : learning, X_t : test

- Distance $(A_I, B_t) = 459$
- Distance $(B_l, B_t) = 240$
- Distance $(A_I, A_t) = 43$
- Distance $(B_I, A_t) = 153$

Experimental Protocol

Outline

- 1 Introduction
- 2 State of the art
- 3 Our work
 - First Observations
 - Experimental Protocol
 - Our implementation
 - Results

Experimental Protocol

Data Set Constructed

Data Set

7 persons.

Sample

- 6 entry of a same fixed phrase.
- 2 free text of around 60 words.

Example

Je certifie que cette soumission est le fruit de mon propre travail effectu en accord avec la Charte Anti-Plagiat.

Our work

Experimental Protocol

Protocols

Protocol 1: Fixed Phrases

Training on 3 fixed phrases. Test on the 3 remaining.

Experimental Protocol

Protocols

Protocol 1: Fixed Phrases

Training on 3 fixed phrases. Test on the 3 remaining.

Protocol 2: Free Text

Training on 1 free text. Test on 1 free text.

Our implementation

Outline

- 3 Our work
 - First Observations
 - Experimental Protocol
 - Our implementation
 - Results


```
for all apparition of a pair of letter in the test text do
    for all profiles p do
        \mu training mean for this pair and profile;
        \sigma training standard deviation for this pair and profile;
        d time for this apparition of this pair in the test text;
        \delta parameter of the algorithm, 1.5 here;
        if d = \mu \pm \delta \sigma then
           S_p = S_p + 1 for this profile;
        end
    end
end
```

Return profile with highest score

Algorithm 1: Closest profile

Results

Outline

- 3 Our work
 - First Observations
 - Experimental Protocol
 - Our implementation
 - Results

Results: protocol 1

A correct and an incorrect result			
Name	lois:	Yannis :	
lois	28	22	
Yannis	16	23	
Xavier	15	19	
Angele	13	19	
hugo	20	24	
Emile	23	23	
red	21	24	

Our work

0000

Our work

0000

Results

Results: protocol 1

Variation with delta for protocol 1 delta correct/21 1 12 1.4 15 2 16 2.2 13

0000

Results

Results: protocol 2

Few but encouraging results

lois: lois

■ hugo: hugo

■ Emile: Emile

red: Emile

Conclusion

Encouraging results, need more testing and narrowing our approach

Conclusion

- Encouraging results, need more testing and narrowing our approach
- Outlook
 - If two score are close, we could rerun with a different δ (in front of the standard deviation).

Bibliography I

Gunetti, Daniele and Picardi, Claudia Keystroke Analysis of Free Text ACM Trans. Inf. Syst. Secur., 8(3):312–347, 2005.

Maas, Andrew and Heather, Chris and Do, Chuong (Tom) and Brandman, Relly and Koller, Daphne and Ng, Andrew Offering Verified Credentials in Massive Open Online Courses: MOOCs and Technology to Advance Learning and Learning Research

Ubiquity, 2:1–2:11, 2014.