Double Cursus Essec-Centrale

ÉQUATIONS DIFFÉRENTIELLES

1 Décembre 2020 (30 minutes)

0.1 Exercice 1

Résoudre l'équation différentielle E définie par :

$$E: \begin{cases} y' - xy = x \\ x \in R \end{cases}$$

où x est la variable (réelle) et y la fonction (de R vers R).

0.2 Exercice 2

Soit E l'équation différentielle définie par :

$$E: \left\{ \begin{array}{l} t^2 y''(t) + 4ty'(t) + 2y(t) = 1 \\ t \in R \end{array} \right.$$

où t est la variable (réelle) et y une fonction de classe C^2 sur R.

- $1. \ \,$ Expliquer pour quoi cette équation est dite linéaire d'ordre 2.
- 2. Donner l'équation homogène associée et soit E_H celle-ci.
- 3. Donner la structure et la dimension de l'ensemble des solutions sur R^{+*} de l'équation homogène.
- 4. Montrer que les fonctions y_1 et y_2 définies par $y_1(t) = \frac{1}{t}$ et $y_2(t) = \frac{1}{t}$ forment un système fondamental de solutions.
- 5. En déduire les solutions de E_H puis celle de E.

Mini Quizz1

A. Soit = l'équetion différentielle définiq par: E: { y'(\alpha) - ay(\alpha) = \alpha
\tag{\alpha} \text{ il}

On reconnact un eque o differentielle lineaire d'ude à dont l'équation lomogra est: Ex: { y'(n) - n y(n) = 0

D'apres le vous, l'ensemble des solutions de Exp sont: $S_{E_R} = \left\{ \begin{array}{cc} R & \rightarrow R \\ 2 & \rightarrow R \end{array} \right. \left. \begin{array}{ccc} R & R \end{array} \right\}$

On remarque que yo: 2 - 1 est une solution jartier lier de le dia: $S_E = \{R \rightarrow R\}$

2.a) Soit q e'application l'heave definie sur c² (\mathbb{R}^{+x} , \mathbb{R})

par: $Q: C^{2}(\mathbb{R}^{+x}, \mathbb{R}) \longrightarrow C^{2}(\mathbb{R}^{+x}, \mathbb{R}): Q \longrightarrow Q(Q)$ $Q(Q): A \longrightarrow L^{2}Q''(E) + 4 + Q'(E) + 2 Y(E)$

8 oit l: 18t* > R: 1 > 1

et y e S = <=> 4(8)= h

dai l' c Co (Rtx, IR) le est une a l' d'où l'equation (l'y) = h est effelée une equation lineaire.

b) L'equed homoger anouère an Epe: to 7"(1) 14 14 (1)+84(1)=0

c) Ex= Wer Q d'où Exp est eur sous. es pace rentroniel de C2 LIR+x, IR) et d'après le cours, i streen es pace rectroniel de dimension l.

dimension l.

d) Soit $y_1: t \rightarrow \frac{1}{2}$ et $y_2: t \rightarrow \frac{1}{2}$ on feed veeifier en y_1 et $y_2 \in S_{E_R}$ et ene y_1 et y_2 forment eure famille like donc eure box de S_{E_R} el

elle système fondemental de 30 lutions est une bare des tolutions de l'apration homogène d'où (41, 42) est tren un système fondemental

Double Cursus Essec-Centrale

5 Décembre 2020 (30 minutes)

0.1 Cours

Plan de émonstration du fait que les solutions d'un système différentiel linéaire homogène d'ordre 1 du type X'=AX (où A est une fonction continue à valeurs dans l'ensemble des matrice d'ordre n) est un espace vectoriel de dimension n.

0.2 Exercice

On considère le système différentiel noté E défini par :

$$E: \left\{ \begin{array}{l} x'(t) = \frac{1}{4}x(t) - \frac{\sqrt{3}}{4}y(t) - \frac{1}{4} + \frac{\sqrt{3}}{4}t \\ y'(t) = \frac{\sqrt{3}}{4}x(t) + \frac{1}{4}y(t) + 1 - \frac{\sqrt{3}}{4} - \frac{t}{4} \end{array} \right.$$

où t est la variable (réelle) et x et y sont des fonctions inconnues de classe \mathcal{C}^1 sur R.

On considère les matrices P et A définies par :

$$P = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix} et \quad A = \begin{pmatrix} \frac{1}{4} & -\frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}$$

- 1. Déterminer $P^{-1}AP$.
- 2. Écrire sous forme matricielle le système E.
- 3. Résoudre le système homogène associé.
- 4. Donner un système fondamental de solutions du système homogène.
- 5. Déterminer les solutions à valeurs dans R de système homogène.
- 6. Déterminer les solutions à valeurs dans C de E.
- 7. Déterminer les solutions à valeurs dans R de E.

Miniquizze

Question de Cours es Poren definir l'environne ment e) Enouver le resultat

Soit I un intervolle de R Enirone ment Soil A: I > C(R) workinge

Resultat: l'ausemble des solutions du système X'=AX est un espece verboniel de dimention n.

Demonstration Soit to GI et SE l'ensemble des solu tions

a) qust lineaire

b) D'apres le dleneure d Ch lineaire ... yest dijedif d'ai SE ~ You, L (IR)

e) Condusion: din SE = dim Gn, 2 (R) = N.

Exercice:

4. Soil
$$V_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
 $AV_2 = \begin{pmatrix} \frac{1}{4} + i \frac{\sqrt{2}}{4} \end{pmatrix} V_1$ $AV_2 = \begin{pmatrix} \frac{1}{4} + i \frac{\sqrt{2}}{4} \end{pmatrix} V_2$

On en deduit que A a deux op distinctes donc est diagono essa les V2 et 12 ront v. p 0200 vies à des vp + donc (V1, V2) est une fermelp like done use bese de $96_{2,1}$ (C) et $P = (V_1, V_2)$ est su receible. er $P^{-1}AP = \begin{pmatrix} \frac{1}{4} + i\frac{1}{4} & 0 \\ 0 & \frac{1}{4} - i\frac{1}{4} \end{pmatrix}$

(x,, x2) est eur système fondementel du système homogère enouir et SERE Verl(x1, x2) = {dx1+kx2, d, k & 4}

5 SERIR est aussi une espece rechoniel mel de dimension L. On feut remarquer que y₂x₁+x₂: ± > (2e^{ti} tos 13 t) est solution et le ve leurs dans 1R

que y₂·····(x₁-x₂): ± (2e^{ti} sin 13 t)

le th os 13 t) est so Ention à referers dans IR

de flus (Y1, Y2) est une famille like d'où

Double Cursus Essec-Centrale

TOPOLOGIE

11Décembre 2020 (30 minutes)

0.1 Cours

Traiter au choix l'une des deux questions de cours suivantes :

- 1. Exponentielle de matrice : définition et preuve de l'existence (on dégagera bien les propriétés utilisées)
- 2. Théorème du point fixe :énoncé et démonstration (on dégagera bien les propriétés utilisées)

0.2 Exercice

On se propose de démontrer que l'intersection d'une suite de compacts non vides est un compact non vide.

Soit (E,d) un espace métrique et (K_n) une suite de compacts non vides de E décroissante pour l'inclusion.

- 1. Montrer qu'il existe une suite de E, notée $(u_n)_{n\in N}$, telle que $\forall n\in N, u_n\in K$...
- 2. Justifier l'existence d'une suite extraite $(u_{\phi(n)})_{n\in N}$ convergente. On notera l la limite de cette suite.
- 3. En déduire que $\bigcap_{n\in N} K_n$ est non vide.
- 4. Comparer ce résultat avec la propriété de Bolzano-Weierstrass.

Quizz 4. Le 15 Decembre 2020.

Cours Desseunt types de Conragence et lien entre enp

Exacre Etn de de la fonction Zeta elterce

On louridue S le fonction de finire / α : $VASO, S(a) = \frac{\sum_{i=1}^{\infty} \frac{(-1)^{n_i}}{n^{n_i}}$

1 Pontres pue s'est définie me Mt*

2. Pontre pue Sest cosm IR+x

3. Déluminer le limite de Sentos

4. Exprimer pour sit sin) en fonction de sin).

 $|Re||el S(n) = \frac{5}{1} \frac{1}{n}n$