Présentation d'activités

Matthew Pressland

Université de Glasgow

Résumé

Carrière

- PhD : 2015, Université de Bath, Royaume-Uni, dir. A. King
- 8 ans d'expérience postdoctorale : MPIM Bonn, Stuttgart, Leeds, Glasgow
- Bourse EPSRC de 3 ans (375,000 £ ≈ 435,000 €)
- ▶ 10 articles acceptés, 4 prépublications (toutes de 2023–24)

Intérêts / philosophie

- Théorie amassée, géométrie algébrique et combinatoire, théorie des représentations (des carquois et des algèbres)
- Expliquer des phénomènes combin. et géométriques via algèbre
- Utiliser ces développements pour résoudre des problèmes géométriques / combinatoires / amas-théoriques

Enseignement

- Cours (Glasgow)
 - ightharpoonup « Metric Spaces and Basic Topology » (\times 2)
 - ► En ligne (2022), en présence (2024)
 - Prix « Jon Nimmo » (2022)
- Cours et tutorats (Stuttgart)
 - Mathématiques pour l'informatique, l'ingénierie, la physique
 - ▶ Très grands cours : 1500–2000 inscrits
 - Enseignement en allemand
- Supervision (Glasgow)
 - Projet d'été : motifs de frise (2022)
 - Projet de master : correspondance de McKay (2023)

Responsabilités collectives

FDLIST

- Liste de diffusion / site d'informations en algèbre
- ➤ ≈ 400 membres enregistrés

Événements scientifiques

- Conférence internationale pour 100 personnes (Oxford, 2023) ≈ 25 000 € de financement externe
- Conférence hybride (Leeds, 2022)

Réseau de recherche

- CLAN : interactions entre cinq universités britanniques
- Financé par la Société Mathématique de Londres

Diffusion auprès du grand publique

Cours de la Société Royale, programme STEP

Domaine de recherche

- Contexte : théorie amassée (Fomin–Zelevinsky '00)
 - Méthode générale pour comprendre la positivité en géométrie : résoudre des équations en nombres réels positifs

$$\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$$

Applications en théorie de Teichmüller (supérieure), systèmes dynamiques, programme de modèles minimaux, géométrie tropicale, ...

Catégorification

- La combinatoire amassée est riche, mais complexe : la catégorification permet des arguments conceptuels et structurels
- ► Technique puissante pour prouver des théorèmes amas-théoriques
- Elle a motivé de nouvelles découvertes importantes en algèbre : théorie du τ -basculement, théorie Auslander–Reiten supérieure, ...

Résultats principaux de recherche (I)

Catégorification

Première méthode générale pour la catégorification amassée additive dans des contextes géométriques (avec variables gelées)

Math. Z. (2015)

Applications géométriques

 Première preuve d'une conjecture en géométrie combinatoire, avec des méthodes homologiques (Prépublication 2023, soumise)

Theorem (P '23, conj. Muller-Speyer '16)

Les deux structures amassées naturelles sur une variété positroïde dans la grassmannienne quasi-coïncident.

- → une relation précise entre les amas dans les deux structures
- → ces structures définissent la même partie positive de la variété

E.g., sur une variété positroïde avec
$$\Delta_{567}=0$$
 : $\Delta_{357}\frac{\Delta_{167}}{\Delta_{367}}=\Delta_{157}$

Résultats principaux de recherche (II)

Applications géométriques (cont.)

Pour catégorifier des positroïdes : généralisation des résultats en géométrie (torique et non commutative) aux modèles dimère

Forum Math. Sigma (2022)

Catégorification de la combinatoire et la géométrie de positroïdes : correspondances parfaites, automorphisme « twist », fonctions de partition

Adv. Math. (2024), avec İ. Çanakçı et A. King

Divers

- réduction, Grassmanniennes de carquois, motifs de frise, catégories extriangulées, ...
- plusieurs collaborations internationales (Faber, Gorsky, Grabowski, Kalck, Marsh, Palu, Plamondon, ...)

Objectifs de recherche (I)

Liens avec la topologie symplectique

- Seconde preuve de la conjecture de Muller-Speyer par Casals-Le-Sherman-Bennett-Weng
- Inspirée par la topologie et la géométrie symplectique : nœuds Legendriens et remplissages Lagrangiens (cf. variétés de tresse)
- La théorie amassée résout des problèmes symplectiques : amas → remplissage Lagrangien (pas attendu!)

Objectifs / premiers pas

- ► La catégorification ajout de la structure → outils totalement nouveaux
- Question clé : chaque remplissage Lagrangien vient-il d'un amas?
- Implications pour la conjecture de « nearby Lagrangians »
- ▶ BIRS Workshop mars 2025 : minicours par Casals et moi-même

Objectifs de recherche (II)

Quasi-équivalence et théorie basculante

► Étendre les techniques de ma preuve de la conjecture de Muller–Speyer d'autres structures amassées géométriques

Actions de groupe / invariants

Chekhov–Shapiro ferment les structures amassées sous quotients de groupe (algèbres amassées généralisées) : catégorification?

Recherche d'un caractère amassée quantique

Problème ouvert majeur : liens avec les algèbres de Hall, diagrammes de diffusion, catégorification multiplicative, ...

Projet d'intégration

- ► Théorie amassée : S. Launois, B. Leclerc
- Tresses : P. Bellingeri, E. Godelle, J. Guaschi, V. Lebed, A. Soulié, ...
- ► Théorie Auslander-Reiten (S. Zelikson), géométrie non-commutative (E. Germain, E. Ricard, L. Vainerman, R. Vergnioux), ...

Développement

- Financement d'ANR : JCJC
 - Développement d'un groupe de recherche
 - Supervision postgraduée, opportunités postdoctorales (aussi programme Actions de Marie Skłodowska-Curie, CNRS, ...)
- Financement d'ERC (« Consolidator Grant »)
 - Éligible jusqu'à 2027
 - Ambitieux : mais expériences pertinentes (bourse EPSRC) et opportunité significative (liens avec la topologie symplectique)
- Interactions
 - Successeur du réseau ANR CHARMS
 - ► Réseau thématique ALGÈBRE : colloque tournant

Merci beaucoup!