Covalent radius

The **covalent radius**, r_{cov} , is a measure of the size of an <u>atom</u> that forms part of one <u>covalent bond</u>. It is usually measured either in <u>picometres</u> (pm) or angstroms (Å), with 1 Å = 100 pm.

In principle, the sum of the two co equal the covalent <u>bond length</u> between two atoms, R(AB) = r(A) + r(B). Moreover, different radii can be introduced for single, double and triple bonds (r_1 , r_2 and r_3 below), in a purely operational sense. These relationships are certainly not exact because the size of an atom is not constant but depends on its chemical environment. For <u>heteroatomic</u> A—B bonds, ionic terms may enter. Often the <u>polar covalent bonds</u> are shorter than would be expected on the basis of the sum of covalent radii. Tabulated values of covalent radii are either average or idealized values, which nevertheless show a certain transferability between different situations, which makes them useful.

The bond lengths R(AB) are measured by X-ray diffraction (more rarely, neutron diffraction on molecular crystals). Rotational spectroscopy can also give extremely accurate values of bond lengths. For homonuclear A-A bonds, Linus Pauling took the covalent radius to be half the single-bond length in the element, e.g. R(H-H), in H_2 = 74.14 pm so $r_{cov}(H)$ = 37.07 pm: in practice, it is usual to obtain an average value from a variety of covalent compounds, although the difference is usually small. Sanderson has published a recent set of non-polar covalent radii for the main-group elements, [1] but the availability of large collections of bond lengths, which are more transferable, from the Cambridge Crystallographic Database [2][3] has rendered covalent radii obsolete in many situations.

Contents

Average radii Radii for multiple bonds See also References

Average radii

The values in the table below are based on a statistical analysis of more than 228,000 experimental bond lengths from the Cambridge Structural Database.^[4] For carbon, values are given for the different hybridisations of the orbitals.

Covalent radii in pm from analysis of the Cambridge Structural Database, which contains about 1,030,000 crystal structures ^[4]																
Н																
1																
31(5)	.(5)															
Li	Be			В	С	Ν	Ο	F								
3	4		5	6	7	8	9									
128(7)	96(3)											84(3)	sp ³ 76(1)	71(1)	66(2)	57(
													sp ² 73(2)			
												Al	sp 69(1)	_	_	
Na	Mg												Si 14	P	S	Cl
11		12												15	16	17
166(9)	141(7)	_			_		_	_		_	_	121(4)	111(2)	107(3)	105(3)	102(
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
203(12)	176(10)	170(7)	160(8)	153(8)		l.s. 139(5) h.s. 161(8)	l.s. 132(3) h.s. 152(6)	l.s. 126(3) h.s. 150(7)	124(4)	132(4)	122(4)	122(3)	120(4)	119(4)	120(4)	120(
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
220(9)	195(10)	190(7)	(7) 175(7) 164(6) 154(5) 147(7) 146(7) 142(7) 139							145(5)	144(9)	142(5)	139(4)	139(5)	138(4)	139(
Cs	Ba	La Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
55	56	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
244(11)	215(11)	187(8)	170(8)	162(7)	151(7)	144(4)	141(6)	136(5)	136(6)	132(5)	145(7)	146(5)	148(4)	140(4)	150	150
Fr	Ra	Ac														
87	88															
260	221(2)															
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yţ
			57	58	59	60	61	62	63	64	65	66	67	68	69	7C
		207(8) 204(9) 203(7) 201(6)				199	198(8) 198(6) 196(6) 194(5) 1					192(7)		190(10)		
		Ac Th Pa U Np Pu Am Cm								_5 .(5)	===(.)	(·)	_55(5)	_30(_0)		
			89	90	91	92	93	94	95	96						
			215	206(6)	200	196(7)	190(1)	187(1)	180(6)							
				_00(0)					_55(5)	_55(5)						

Radii for multiple bonds

A different approach is to make a self-consistent fit for all elements in a smaller set of molecules. This was done separately for single, [6] double, [6] and triple bonds [7] up to superheavy elements. Both experimental and computational data were used. The single-bond results are often similar to those of Cordero et al. [4] When they are different, the <u>coordination numbers</u> used can be different. This is notably the case for most (d and f) transition metals. Normally one expects that $r_1 > r_2 > r_3$. Deviations may occur for weak multiple bonds, if the differences of the ligand are larger than the differences of R in the data used.

Note that elements up to <u>atomic number</u> 118 (<u>oganesson</u>) have now been experimentally produced and that there are chemical studies on an increasing number of them. The same, self-consistent approach was used to fit tetrahedral covalent radii for 30 elements in 48 crystals with subpicometer accuracy.^[8]

Single-,^[5] double-,^[6] and triple-bond^[7] covalent radii, determined using typically 400 experimental or calculated primary distances, *R*, per set.

H																
1 32																
-																
Li	Ве											В	С	N	0	F
3 133	4 102					Radius /						5 85	6 75	7 71	8 63	9 64
124	90	double-bond	single-bond double-bond									78 73	67	60	57	59
-	85	triple-bond											60	54	53	53
No	Ma	inplo sonia										A. I.	C:	Б		CI
Na 11	Mg 12											Al 13	Si 14	P 15	S 16	CI 17
155	139											126	116	111	103	99
160	132 127											113 111	107 102	102 94	94 95	95 93
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	94 As	Se	93 Br
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
196	171	148	136	134	122	119	116	111	110	112	118	124	121	121	116	114
193 -	147 133	116 114	117 108	112 106	111 103	105 103	109 102	103 96	101 101	115 120	120	117 121	111 114	114 106	107 107	10! 11(
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
210 202	185 157	163 130	154 127	147 125	138 121	128 120	125 114	125 110	120 117	128 139	136 144	142 136	140 130	140 133	136 128	13: 12!
-	139	124	121	116	113	110	103	106	112	137	-	146	132	127	121	12!
Cs	Ва	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At
55	56		72	73	74	75 101	76	77	78	79	80	81	82	83	84	85
232 209	196 161		152 128	146 126	137 120	131 119	129 116	122 115	123 112	124 121	133 142	144 142	144 135	151 141	145 135	14 13
-	149		122	119	115	110	109	107	110	123	-	150	137	135	129	138
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts
87 223	88 201		104 157	105 149	106 143	107 141	108 134	109 129	110 128	111 121	112 122	113 136	114 143	115 162	116 175	11 16!
218	173		140	136	128	128	125	125	116	116	137	-	-	-	-	-
-	159		131	126	121	119	118	113	112	118	130	-	-	-	-	-
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
			57	58	59	60	61	62	63	64	65	66	67	68	69	70
			180 139 139	163 137 131	176 138 128	174 137	173 135	172 134	168 134	169 135 132	168 135	167 133	166 133	165 133	164 131	17(12!
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	Nc
			89	90	91	92	93	94	95	96	97	98	99	100	101	10:
			186 153 140	175 143 136	169 138 129	170 134 118	171 136 116	172 135	166 135	166 136	168 139	168 140	165 140	167	173 139	17(

See also

Atomic radii of the elements (data page)

References

- Sanderson, R. T. (1983). "Electronegativity and Bond Energy". Journal of the American Chemical Society. 105 (8): 2259–2261. doi:10.1021/ja00346a026 (https://doi.org/10.1021%2Fja00346a026).
- 2. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. (1987). "Table of Bond Lengths Determined by X-Ray and Neutron Diffraction". J. Chem. Soc., Perkin Trans. 2 (12): S1–S19. doi:10.1039/P298700000S1 (https://doi.org/10.1039%2FP298700000S1).
- 3. Orpen, A. Guy; Brammer, Lee; Allen, Frank H.; Kennard, Olga; Watson, David G.; Taylor, Robin (1989). "Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals". *Journal of the Chemical Society, Dalton Transactions* (12): S1. doi:10.1039/DT98900000S1 (https://doi.org/10.1039%2FDT98900000S1).

- Beatriz Cordero; Verónica Gómez; Ana E. Platero-Prats; Marc Revés; Jorge Echeverría; Eduard Cremades; Flavia Barragán; Santiago Alvarez (2008). "Covalent radii revisited" (https://semanticscholar.org/paper/d6f017d09905ba8f00ad66c2fab7cccd9d95a68f). Dalton Trans. (21): 2832–2838. doi:10.1039/b801115j (https://doi.org/10.1039%2Fb801115j). PMID 18478144 (https://pubmed.ncbi.nlm.nih.gov/18478144).
- P. Pyykkö; M. Atsumi (2009). "Molecular Single-Bond Covalent Radii for Elements 1-118". Chemistry: A European Journal. 15 (1): 186–197. doi:10.1002/chem.200800987 (https://doi.org/10.1002%2Fchem.200800987). PMID 19058281 (https://pubmed.ncbi.nlm.nih.gov/19058281).
- P. Pyykkö; M. Atsumi (2009). "Molecular Double-Bond Covalent Radii for Elements Li–E112". Chemistry: A European Journal. 15 (46): 12770–12779. doi:10.1002/chem.200901472 (https://doi.org/10.1002%2Fchem.200901472). PMID 19856342 (https://pubmed.ncbi.nlm.nih.gov/19856342). Figure 3 of this paper contains all radii of refs. [5-7]. The mean-square deviation of each set is 3 pm.
- P. Pyykkö; S. Riedel; M. Patzschke (2005). "Triple-Bond Covalent Radii". Chemistry: A European Journal. 11 (12): 3511–3520. doi:10.1002/chem.200401299 (https://doi.org/10.1002%2Fchem.200401299). PMID 15832398 (https://pubmed.ncbi.nlm.nih.gov/15832398).
- 8. P. Pyykkö (2012). "Refitted tetrahedral covalent radii for solids". *Physical Review B*. **85** (2): 024115, 7 p. <u>Bibcode:2012PhRvB..85b4115P</u> (htt ps://ui.adsabs.harvard.edu/abs/2012PhRvB..85b4115P). doi:10.1103/PhysRevB.85.024115 (https://doi.org/10.1103%2FPhysRevB.85.024115).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Covalent_radius&oldid=937516469"

This page was last edited on 25 January 2020, at 14:40 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.