Chapter 2 _B: Basic Statistical Concept

Random Variable, Probability Mass Function and Probability Density Function, Mathematical Expectation

Samir K Mahajan, Ph.D., UGC NET

A. Random Variable or Random Quantity/ or Stochastic Variable or Aleatory Variable

- ☐ Described informally as a variable whose values depends on outcome of a random phenomena.
- ☐ Formal mathematical treatment of random variables is a topic in probability theory.

A. Random Variable contd.

- □A random variable X is a real-valued function whose domain is a set of possible outcomes of a random experiment, and range is a sub-set of the set of real numbers and has the following properties:
- i) Each particular value of the random variable can be assigned some probability i.e.

$$0 \le p(X=x) \le 1$$

ii) Uniting all the probabilities associated with all the different values of the random variable gives the value 1(unity).

$$\sum p(X=x)=1$$

_			D : 1	
Δ	Random	Variable •	Discrete and	Continuous
~ .	Nandoni	variable.	Discitte alla	Continuous

- ☐ A discrete random variable takes finite or countable number of distinct value and takes integer/ whole number such as 0, 1, 2, 3,.....
- ☐ Continuous variables are numeric variables that have an infinite number of possible values between any two values. It takes integer as well as fractional.
 - Hence, continuous random variable is not defined at specific values.

The probability of observing any single value is equal to zero

A.2 Random Variable and Probability Distribution

- □ PROBABILITY MASS FUNCTION i.e. Distribution of Discrete random variable
- □ PROBABILITY DENSITY FUNCTION i.e. Distribution of Continues Random Variable

A.2.1 PROBABILITY MASS FUNCTION (pmf)

Let X be a r.v. which takes the values $x_1, x_2, ...$ and let $P[X = x_i] = p(x_i)$. This function $p(x_i)$, i = 1, 2, ... defined for the values $x_1, x_2, ...$ assumed by X is called probability mass function of X satisfying $p(x_i) \ge 0$ and $\sum_i p(x_i) = 1$.

The set $\{(x_1, p(x_1)), (x_2, p(x_2)), ...\}$ specifies the probability distribution of a discrete r.v. X. Probability distribution of r.v. X can also be exhibited in the following manner:

X	x ₁ —	x	ECX3PLE'S
p(x)	p(x ₁)	$p(x_2)$	p(x ₃)

A.2.1 PROBABILITY MASS FUNCTION: Example

Example: Let X represent the sum of two dice.

Then the probability distribution of X is as follows:

X	2	3	4	5	6	7	8	9	10	11	12
P(X)	$\frac{1}{2}$	$\frac{2}{2}$	3	4	5	6	5	4	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{1}{2}$
	.30	30	30	.30	30	30	30	30	30	.30	30

To graph the probability distribution of a discrete random variable, construct a **probability histogram**.

Probability Distribution of X

A.2.1 PROBABILITY Density FUNCTION (pdf)

To determine the distribution of a discrete random variable we can either provide its PMF or CDF. For continuous random variables, the CDF is well-defined so we can provide the CDF. However, the PMF does not work for continuous random variables, because for a continuous random variable P(X=x)=0 for all $x\in\mathbb{R}$. Instead, we can usually define the **probability density function (PDF)**. The PDF is the **density** of probability rather than the probability mass.

A.2.1.2 PROBABILITY Density FUNCTION (pdf) ctd.

Probability Density Function

Let f(x) be a continuous function of x. Suppose the shaded region ABCD shown in the following figure represents the area bounded by y = f(x), x-axis and the ordinates at the points x and $x + \delta x$, where δx is the length of the interval $(x, x + \delta x)$.

Fig. 5.1

Now, if δx is very-very small, then the curve AB will act as a line and hence the shaded region will be a rectangle whose area will be AD × DC i.e. $f(x)\delta x$ [: AD = the value of y at x i.e. f(x), DC = length δx of the interval $(x, x+\delta x)$]

Also, this area = probability that X lies in the interval $(x, x + \delta x)$

$$= P[x \le X \le x + \delta x]$$

A.2.1.2 PROBABILITY Density FUNCTION (pdf) ctd.

Hence,

$$P[x \le X \le x + \delta x] = f(x)\delta x$$

$$\Rightarrow \frac{P[x \le X \le x + \delta x]}{\delta x} = f(x), \text{ where } \delta x \text{ is very-very small}$$

$$\Rightarrow \lim_{\delta x \to 0} \frac{P[x \le X \le x + \delta x]}{\delta x} = f(x).$$

f(x), so defined, is called probability density function.

Probability density function has the same properties as that of probability mass function. So, $f(x) \ge 0$ and sum of the probabilities of all possible values that the random variable can take, has to be 1. But, here, as X is a continuous random variable, the summation is made possible through 'integration' and hence

$$\int_{\mathbb{R}} f(x) dx = 1,$$

where integral has been taken over the entire range R of values of X.

A.2.1.2 PROBABILITY Density FUNCTION (pdf) ctd.

probability that it takes a value in specified intervals is non-zero and is calculable as a definite integral of the probability density function of the random variable and hence the probability that a continuous r.v. X will lie between two values a and b is given by

$$P[a < X < b] = \int_{a}^{b} f(x) dx.$$

B. Characteristics of Distribution of Random Variables : Mathematical Expectation

Two widely used characteristics of Probability Distribution are

- Mean /Expected Value of Random Variable
- Variance of a Random Variable
- Covariance of Random Variables
- ☐ Correlation

B. 1. Expected Values/ Mean of Random Variables

☐ For Discrete Random Variables

The expected value of a discrete rv X, denoted by E(X), is defined as follows:

$$E(X) = \sum_{x} x f(x)$$

where \sum_{x} means the sum over all values of X and where f(x) is the (discrete) PDF of X.

☐ For Continuous Random Variables

The expected value of a continuous rv is defined as

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

The only difference between this case and the expected value of a discrete rv is that we replace the summation symbol by the integral symbol.

B. 1.1. Properties of Expected Values

- **1.** The expected value of a constant is the constant itself. Thus, if b is a constant, E(b) = b.
 - **2.** If a and b are constants,

$$E(aX + b) = aE(X) + b$$

This can be generalized. If $X_1, X_2, ..., X_N$ are N random variables and $a_1, a_2, ..., a_N$ and b are constants, then

$$E(a_1X_1 + a_2X_2 + \dots + a_NX_N + b) = a_1E(X_1) + a_2E(X_2) + \dots + a_NE(X_N) + b$$

B. 1.2. Properties of Expected Values contd.

3. If *X* and *Y* are *independent* random variables, then

$$E(XY) = E(X)E(Y)$$

That is, the expectation of the product *XY* is the product of the (individual) expectations of *X* and *Y*.

B. 2. Variance of Random Variables

Let *X* be a random variable and let $E(X) = \mu$. The distribution, or spread, of the *X* values around the expected value can be measured by the variance, which is defined as

$$var(X) = \sigma_X^2 = E(X - \mu)^2$$

The positive square root of σ_X^2 , σ_X , is defined as the **standard deviation** of

For computational convenience, the variance formula given above can also be expressed as

$$var(X) = \sigma_x^2 = E(X - \mu)^2$$

= $E(X^2) - \mu^2$
= $E(X^2) - [E(X)]^2$

B. 2.1. Properties of Variance

- **1.** $E(X \mu)^2 = E(X^2) \mu^2$, as noted before.
- **2.** The variance of a constant is zero.
- **3.** If *a* and *b* are constants, then

$$var(aX + b) = a^2 var(X)$$

4. If *X* and *Y* are *independent* random variables, then

$$var(X + Y) = var(X) + var(Y)$$

$$var(X - Y) = var(X) + var(Y)$$

This can be generalized to more than two independent variables.

5. If *X* and *Y* are *independent* rv's and *a* and *b* are constants, then

$$var(aX + bY) = a^{2} var(X) + b^{2} var(Y)$$

B. 3. Covariance of random variables

Let *X* and *Y* be two rv's with means μ_x and μ_y , respectively. Then the **covariance** between the two variables is defined as

$$cov(X, Y) = E\{(X - \mu_x)(Y - \mu_y)\} = E(XY) - \mu_x \mu_y$$

It can be readily seen that the variance of a variable is the covariance of that variable with itself.

B. 3.1 Properties of Covariance of Random Variables

Properties of Covariance

1. If *X* and *Y* are independent, their covariance is zero, for

$$cov(X, Y) = E(XY) - \mu_x \mu_y$$

= $\mu_x \mu_y - \mu_x \mu_y$ since $E(XY) = E(X)E(Y) = \mu_x \mu_y$
= 0 when X and Y are independent

2.

$$cov(a + bX, c + dY) = bd cov(X, Y)$$

where *a*, *b*, *c*, and *d* are constants.

B.4 Correlation

Correlation Coefficient

The (population) correlation coefficient ρ (rho) is defined as

$$\rho = \frac{\operatorname{cov}(X, Y)}{\sqrt{\left\{\operatorname{var}(X)\operatorname{var}(Y)\right\}}} = \frac{\operatorname{cov}(X, Y)}{\sigma_x \sigma_y}$$

Thus defined, ρ is a measure of *linear* association between two variables and lies between -1 and +1, -1 indicating perfect negative association and +1 indicating perfect positive association.

From the preceding formula, it can be seen that

$$cov(X, Y) = \rho \sigma_x \sigma_y$$

B.4 Correlation cotd.

Variances of Correlated Variables. Let *X* and *Y* be two rv's. Then

$$var(X + Y) = var(X) + var(Y) + 2 cov(X, Y)$$

$$= var(X) + var(Y) + 2\rho\sigma_x\sigma_y$$

$$var(X - Y) = var(X) + var(Y) - 2 cov(X, Y)$$

$$= var(X) + var(Y) - 2\rho\sigma_x\sigma_y$$

If, however, X and Y are independent, cov(X, Y) is zero, in which case the var(X + Y) and var(X - Y) are both equal to var(X) + var(Y), as noted previously.

B.5 Conditional Expectation

Conditional Expectation. Note that E(X | Y) is a random variable because it is a function of the conditioning variable Y. However, E(X | Y = y), where y is a specific value of Y, is a constant.

Conditional Variance. The conditional variance of X given Y = y is defined as

$$var(X | Y = y) = E\{[X - E(X | Y = y)]^2 | Y = y\}$$

Reference:

https://www.investopedia.com/terms/p/population.asp

IGNOU Books

Inputs in these slides are exclusively collected from above sources.