Higgs boson production at the Large Hadron Collider: accurate theoretical predictions at higher orders in QCD

Jesús Urtasun Elizari

PhD presentation - Milan, February 25th, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Outline

- Introduction to QCD
 - A historical approach
 - Asymptotic freedom and pQCD
- QCD and collider physics
 - QCD Factorization
 - Partonic cross section and perturbative QCD
- All order perturbative resummation
 - Higher order radiative corrections
 - Resummation of large logarithmic corrections
 - Resummed, asymptotic and fixed-order
- Precise and fast predictions for Higgs boson physics
 - Higgs production at the LHC
 - HTurbo numerical code
 - Preliminary results & Conclusions

Part I QCD and collider physics

Introduction

QCD and the strong interactions

- QCD is the theory of the strong interactions
- Sector of the Standard describing fundamental interactions at the TeV scale
- Fundamental objects described as homogeneous field with quantum mechanical behavior $U(1)\times SU(2)\times SU(3)$

Introduction

QCD and the strong interactions

How to explore proton's inner structure?

?

- At different scales, hadrons show different behavior
- From point-like to complex internal dynamics
- Scattering experiments (DIS) and hadronic physics (LHC)

"A way of describing high energy collisions is to consider any hadron as a composite object of point-like constituents \longrightarrow partons" R.Feynman, 1969

Asymptotic freedom and pQCD

- Parton model as LO approximation to QCD
- Real QCD coupling strength changes with energy
- At high energies the hadron involves extremely complex internal dynamics

QCD is strongly coupled at large scales / low energies \longrightarrow confinement

Non-perturbative physics

Asymptotic freedom and pQCD

Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_s(\mu)}{d\mu} = \beta(\alpha_s(\mu)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_s}{\pi}\right)^{n+1}$$

- ullet Coupling $lpha_s$ evolves with scale μ as given by RGE o LO behavior driven by eta_0
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent
- $\beta_0^{\rm QCD} > 0 \implies$ weakly coupled at large energies, IR divergent

Asymptotic freedom and pQCD

 Running coupling given by Renormalization Group Equation (RGE)

$$lpha_s(\mu) = rac{1}{eta_0 \log \left(rac{\mu^2}{\Lambda_{ ext{QCD}}^2}
ight)}$$

- β_0 LO of the β function, is > 0
- $\Lambda_{\rm QCD},$ parameter that defines value of the coupling at large scales

QCD is weakly coupled for $\mu >> \Lambda_{\rm QCD} \longrightarrow$ asymptotically free

Perturbative Quantum Chromodynamics (pQCD)

Hadronic processes and factorization

- LHC physic rely on hadronic collisions → pQCD
- ullet Compute cross section \longrightarrow probability for a given process

Hadronic processes and factorization

Compute hadronic cross sections is a hard problem --> QCD Factorization

$$\sigma^{F}(p_{1}, p_{2}) = \int_{0}^{1} dx_{1} dx_{2} f_{\alpha}(x_{1}, \mu_{F}^{2}) * f_{\beta}(x_{2}, \mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1}, x_{2}p_{2}, \alpha_{s}(\mu_{R}^{2}), \mu_{F}^{2})$$

Hadronic processes and factorization

- Parton densities (PDFs) $f_{\alpha}(x_i, \mu_F^2)$: non perturbative but universal
- Partonic cross section $\hat{\sigma}_{\alpha\beta}^{\rm F}$: process dependent but computable as perturbative series in α_s

Parton densities

Parton Distribution Functions: probability distribution of finding a particular parton (u, d, ..., g) carrying a fraction x of the proton's momentum

- Each parton has a different PDF $\longrightarrow u(x), d(x), ..., g(x)$
- PDFs can not predicted and yet can not measured → extracted from data (MSTW, CTEQ, NNPDF collaborations)
- The N3PDF project: Machine Learning for PDFs determination [Urtasun-Elizari et al.] ref. at 1910.07049

Partonic cross section and pQCD

- Born cross section is the leading-order (LO) term of the perturbative series
- $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}$ are the NLO, NNLO, N³LO corrections

$$\hat{\sigma} = \sigma^{\mathtt{Born}} \Big(1 + \alpha_{\mathtt{s}} \sigma^{(1)} + \alpha_{\mathtt{s}}^2 \sigma^{(2)} + \alpha_{\mathtt{s}}^3 \sigma^{(3)} + \ldots \Big)$$

Lower order predictions strongly depend on the auxiliary / unphysical scales Need higher order corrections to increase theoretical accuracy!

LHC phenomenology

LHC phenomenology

Main processes studied in hadronic physics

- Deep Inelastic Scattering (DIS)
- Drell-Yan lepton pair production
- Higgs boson production

Focus on Higgs production through gluon fusion

Part II All order resummation

Higher order corrections - need for resummation

- Calculation of higher order corrections is not an easy task due to infrared (IR) soft and collinear singularities
- ② Final state singularities cancel by combining real and virtual contributions → KLN theorem
- Initial state collinear singularities factorized inside the PDFs

Cancellation only works in completely inclusive final states!

 q_{\perp} resummation

- Describing exclusive final states
- Study the differential q_{\perp} distribution $h_1(p_1) + h_2(p_2) \longrightarrow F(M, q_{\perp}) + X$

$$\int_0^{Q_\perp^2} \ dq_\perp^2 \frac{d\hat{\sigma}}{dq_\perp^2} \sim c_0 + \alpha_s (c_{12}L^2 + c_{11}L + c_{10}) + ..., \quad \text{where} \quad L = \ln(M^2/q_\perp^2)$$

$\alpha_{S}L^{2}$	$\alpha_{\mathcal{S}}L$	 $\mathcal{O}(\alpha_{\mathcal{S}})$
$\alpha_S^2 L^4$	$\alpha_S^2 L^3$	 $\mathcal{O}(\alpha_S^2)$
$\alpha_S^n L^{2n}$	$\alpha_S^n L^{2n-1}$	 $\mathcal{O}(\alpha_S^n)$
dominant logs		

Truncated fixed-order predictions \rightarrow enhanced $\alpha_s^n \ln^m(M^2/q_\perp^2)$ appear

 q_{\perp} resummation

Separate partonic q_{\perp} distribution as follows

$$\frac{d\hat{\sigma}_{ab}}{dq_{\perp}^{2}} = \left[\frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^{2}}\right]_{\mathrm{l.a.}} + \left[\frac{d\hat{\sigma}_{ab}^{(\mathrm{fin.})}}{dq_{\perp}^{2}}\right]_{\mathrm{f.o.}} , \quad \text{such that}$$

$$\int_{0}^{q_{\perp}^{2}} dq_{\perp}^{2} \frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^{2}} \sim \sum \alpha_{s}^{n} \log^{m} \left(\frac{M^{2}}{q_{\perp}^{2}}\right) \quad \text{for} \quad q_{\perp} \to 0$$

$$\lim_{n \to \infty} \int_{0}^{q_{\perp}^{2}} dq_{\perp}^{2} \frac{d\hat{\sigma}_{ab}^{(\mathrm{fin.})}}{dq_{\perp}^{2}} = 0$$

Resummed and finite components can be matched (LL+LO, NLL+NLO, NNLO+NNLL, ...) to have uniform accuracy in a wide range of q_{\perp}

Resummed component

Resummation holds in impact parameter space b

$$\frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^{2}} = \frac{\mathit{M}^{2}}{\hat{s}} \int db \; \frac{b}{2} \; J_{0}(bq_{\perp}) \; \mathcal{W}_{ab}(b, M)$$

with \mathcal{W}_{ab} also expressed in Mellin space (with respect to $z=M^2/\hat{s})$

$$W_N(b, M) = \mathcal{H}_N(\alpha_s) \times \exp\{\mathcal{G}_N(\alpha_s, L)\}$$
 being $L \equiv \log(M^2 b^2)$

- Large logarithms exponentiated in the universal Sudakov form factor $\mathcal{G}_N(\alpha_s, L)$
- Constant (b-independent) terms factorized in the process dependent hard factor $\mathcal{H}_N(\alpha_s)$

Resummed component

Sudakov factor \mathcal{G}_N and hard coefficient \mathcal{H}_N can be expanded as perturbative series in $lpha_s$

$$\mathcal{G}_{N}(\alpha_{s}, L) = L g^{(1)}(\alpha_{s}L) + g^{(2)}(\alpha_{s}L) + \frac{\alpha_{s}}{\pi} g^{(3)}(\alpha_{s}L) + \dots$$
$$\mathcal{H}_{N}(\alpha_{s}) = 1 + \alpha_{s}\mathcal{H}^{(1)} + \alpha_{s}^{2}\mathcal{H}^{(2)} + \dots$$

For each new order implement a factor of \mathcal{G}_N and Hard \mathcal{H}_N

LL(
$$\sim \alpha_s^n L^{n+1}$$
): $g^{(1)}$, $\hat{\sigma}^{(0)}$
NLL($\sim \alpha_s^n L^n$): $g^{(2)}$, $\mathcal{H}^{(1)}$
NNLL($\sim \alpha_s^n L^{n-1}$): $g^{(3)}$, $\mathcal{H}^{(2)}$

Each term $g^{(i)}$ and $\mathcal{H}^{(i)}$ in the series becomes increasingly complicated

Current codes able to produce only up to NNLL predictions!

Finite component

Finite component by fixed-order truncation of the resummed cross section

$$\frac{d\hat{\sigma}_{ab}^{(\mathrm{fin.})}}{dq_{\perp}^{2}} = \left[\frac{d\hat{\sigma}_{ab}}{dq_{\perp}^{2}}\right]_{\mathrm{f.o.}} + \left[\frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^{2}}\right]_{\mathrm{f.o.}}$$

the truncation of the resummed cross section is written in terms of the Σ coefficients

$$\mathcal{W}_{a,b}(b,M) = \sigma^{(0)} \times \mathcal{H}_N(\alpha_s) \times \alpha_s^n \Sigma^n(z,L)$$
 being $L \equiv \log(M^2 b^2)$

Part III HTurbo numerical implementation

HqT and HRes

Resummation for Higgs differential distribution

- Meaningful description of exclusive final states requires resummed predictions
- Resummation is combined with the finite component

$$d\sigma_{\rm (N)NLL+(n)LO}^{\rm H} = d\sigma_{\rm (N)NLL}^{\rm (res.)} - d\sigma_{\rm (N)LO}^{\rm (asy.)} + d\sigma_{\rm (N)LO}^{\rm (f.o.)} \; , \label{eq:dsign}$$

$$\begin{split} d\sigma_{(\mathrm{N})\mathrm{NLL}}^{(\mathrm{res.})} &= \hat{\sigma}_{\mathrm{LO}}^{\mathrm{H}} \times \mathcal{H}_{(\mathrm{N})\mathrm{LO}} \times \exp \mathcal{G}_{(\mathrm{N})\mathrm{NLL}} \;, \\ d\sigma_{(\mathrm{N})\mathrm{LO}}^{(\mathrm{asy.})} &= \hat{\sigma}_{\mathrm{LO}}^{\mathrm{H}} \times \Sigma_{(\mathrm{N})\mathrm{LO}} \;, \end{split}$$

NNLL predictions can take up to 24h \longrightarrow need for fast numerical implementations

HqT and HRes

Predictions for Higgs q_{\perp} distribution

- q_⊥ resummation implemented in numerical codes HqT and HRes [Catani, de Florian, Ferrera, Grazzini, Tommasini]
- Higher order accuracy require high computation times
- Codes producing fast and accurate predictions are needed for precision era of the LHC

HTurbo

Starting point DYTurbo

Numerical code **DYTurbo** [Camarda et al.] ref. at 1910.07049, fast and precise q_{\perp} resummation and several improvements for Drell-Yan $(h_1h_2 \rightarrow V + X \rightarrow l^+l^- + X)$ First goal: set up a numerical code for Higgs boson production starting from **DYTurbo**

- Set LO amplitude $gg \rightarrow H$
- Set Sudakov and Hard coefficients for Higgs production
- Compare with HRes and HqT

Final goal: extend theoretical accuracy up to N³LL+N³LO

HTurbo

Starting point DYTurbo

Sudakov factor \mathcal{G}_{N} and hard coefficient \mathcal{H}_{N} can be expanded as perturbative series in $lpha_{\mathit{s}}$

$$\mathcal{G}_{N}(\alpha_{s}, L) = L g^{(1)}(\alpha_{s}L) + g^{(2)}(\alpha_{s}L) + \frac{\alpha_{s}}{\pi} g^{(3)}(\alpha_{s}L) + \dots$$
$$\mathcal{H}_{N}(\alpha_{s}) = 1 + \alpha_{s}\mathcal{H}^{(1)} + \alpha_{s}^{2}\mathcal{H}^{(2)} + \dots$$

For each new order implement a factor of \mathcal{G}_N and Hard \mathcal{H}_N

LL(
$$\sim \alpha_s^n L^{n+1}$$
): $g^{(1)}$, $\hat{\sigma}^{(0)}$
NLL($\sim \alpha_s^n L^n$): $g^{(2)}$, $\mathcal{H}^{(1)}$
NNLL($\sim \alpha_s^n L^{n-1}$): $g^{(3)}$, $\mathcal{H}^{(2)}$

Start by building predictions up to NNLO+NNLL, then add N^3LO+N^3LL

HTurbo

Code optimization

Reimplementation of HqT and HRes for q_T -resummation

- ullet C++ structure with **Fortran** interfaces o Multi-threading
- Optimization in the integration routines / integral transforms
 - Factorize boson and decay kinematics
 - Gauss-Legendre quadrature rules (1-dim.)
 - Vegas/Cuhre through **Cuba** (multi-dim.)

Comparison HRes and HTurbo - speed performance

Predictions	HRes	HTurbo
resummed NNLL	10h	10'
combined NNLO+NNLL	20h	1h

Comparison HTurbo and HRes - NLL resummed

 \bullet Cross section for fully inclusive (LHS) and fiducial (RHS) phase space \checkmark

Comparison HTurbo and HRes - NNLL resummed

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy sqrt(s) = 13 GeV and PDF set NNPDF31_nnlo_as_0118 PDF set

Comparison HTurbo and HRes - LO asymptotic

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy sqrt(s) = 13 GeV and PDF set NNPDF31_nlo_as_0118 PDF set

Comparison HTurbo and HRes - NLO asymptotic

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy sqrt(s) = 13 GeV and PDF set NNPDF31_nnlo_as_0118 PDF set

Comparison HTurbo and HRes - LO fixed-order

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy sqrt(s) = 13 GeV and PDF set NNPDF31_nlo_as_0118 PDF set

Comparison HTurbo and HRes - NLO fixed-order

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy sqrt(s) = 13 GeV and PDF set NNPDF31_nnlo_as_0118 PDF set

Summary & Conclusions

- Fast and accurate predictions are needed towards the precision era of the LHC
- ② Developing a novel numerical code, **HTurbo**, which implements q_{\perp} resummation for Higgs boson production
- 4 HTurbo is faster than any of the existing codes
- Outlook of thesis work:
 - Add N³LO+N³LL prediction
 - Perform phenomenological studies comparing with LHC data

Discussion & next steps

- Fast and accurate predictions are needed towards the precision era of the LHC
- ② Developing a novel numerical code, **HTurbo**, which implements q_{\perp} resummation for Higgs boson production
- 4 HTurbo is faster than any of the existing codes
- Outlook of thesis work:
 - Add N³LO+N³LL prediction
 - Perform phenomenological studies comparing with LHC data

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Back up

Back up

Back up