

BAKALÁŘSKÁ PRÁCE

Daniel Rod

Interakce testovacích částic s impulzními gravitačními vlnami

Ústav teoretické fyziky

Vedoucí bakalářské práce: RNDr. Robert Švarc, Ph.D.

Studijní program: studijní program

Studijní obor: studijní obor

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Tato práce nebyla využita k získání jiného nebo stejného titulu.
Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.
V dne
Podpis autora

Poděkování.

Název práce: Interakce testovacích částic s impulzními gravitačními vlnami

Autor: Daniel Rod

Ústav: Ústav teoretické fyziky

Vedoucí bakalářské práce: RNDr. Robert Švarc, Ph.D., Ústav teoretické fyziky

Abstrakt: Abstrakt.

Klíčová slova: klíčová slova

Title: Interaction of test particles with impulsive gravitational waves

Author: Daniel Rod

Institute: Institute of Theorethical Physics

Supervisor: RNDr. Robert Švarc, Ph.D., Institute of Theorethical Physics

Abstract: Abstract.

Keywords: key words

Obsah

Ú٧	vod			2
1	Prostoročasy konstantní křivosti			
	1.1 1.2		eho prostoročas	3 4
	1.2		itterův prostoročas	6
	1.5	And-de Si	tteruv prostorocas	U
2	Nee		cí impulsní gravitační vlny	8
	2.1	Konstrukc		8
			ut and paste" metoda konstrukce	8
			ojitý tvar metriky	9
			stribuční tvar metriky	10
	2.2		s testovacími částicemi	11
			ofil impulsní gravitační vlny	11
			-matching a refrakční rovnice	12
			zualizace geodetik prostoročasů s neexpandující impulsní	
			юш	13
			pulsní gravitační vlna generovaná světelnou částicí s mulólovou strukturou s $\Lambda=0$	13
3	Neexpandující gravitační vlny s gyratonovými členy			
	3.1	Zobecnění	impulsních vln na prostoročasy s gyratonovými členy .	17
		3.1.1 Zo	becnění spojitého tvaru metriky	17
	3.2	Interakce	s testovacími čísticemi v prostoročasech s gyratony	18
		3.2.1 Re	frakční rovnice	18
4	Spir	norový po	pis expandujících gravitačních vln	19
	4.1	Spinorový	formalismus	19
		4.1.1 Kr	átký úvod do 2-spinorů	19
	4.2	Expandují	ící gravitační vlny	22
		4.2.1 Re	frakční rovnice	22
Zá	ivěr			23
Se	Seznam použité literatury			

$\mathbf{\acute{U}vod}$

Obecná teorie relativity

Roku 1915 publikoval Albert Einstein Obecnou teorii relativity, nejmodernější a doposud nejúspěšnější teorii gravitace. Za více jak 100 let od její formulace byly v nesčetném množství experimentů úspěšně ověřeny její předpovědi, včetně první detekce gravitačních vln v roce 2015 na interferometrech LIGO v Livingstonu a Hanfordu, která byla následována desítkami dalších detekcí k nimž nyní přispívá i evropský projekt VIRGO. Další zajímavé experimentální ověření?.

Obecná teorie relativity je geometrická teorie popisující chování hmoty a energie v prostoročasu, který reprezentuje jako diferenciální varietu vybavenou metrickým tenzorem $g_{\mu\nu}$. Tvar metrického tenzoru, resp. jeho složek (metrických funkcí) je s fyzikální realitou gravitačního pole spojen Einsteinovými rovnicemi, které mají v geometrizovaných jednotkách tvar

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}.$$
 (1)

Jedná se o 10 nelineárních parciálních diferenciálních rovnic druhého řádu, jejichž levá strana představuje geometrii na diferenciální varietě reprezentující prostoročas, $R_{\mu\nu}$ je Ricciho tenzor křivosti, R je Ricciho skalární křivost a Λ představuje tzv. kosmologickou konstantu. Tenzor energie a hybnosti $T_{\mu\nu}$ na pravé straně pak dává spojení geometrických objektů s fyzikálním modelem, představuje rozložení hmoty, energie a jejich toky a hybnosti. 10 nezávislých složek Ricciho tenzoru lze v Newman Penroseově formalismu odkaz na příslušnou kapitolu (spinory nebo appendix, ještě uvidím) popsat pomocí šesti obecně komplexních skalárních funkcí, které závisí na tzv. lokální tetrádě. Tyto funkce značíme Φ_{ij} , kde indexy i, j = 0,1,2. mám zde uvést i definici?

Kromě metrického tenzoru je na prostoročasové varietě definovaná lineární konexe

1. Prostoročasy konstantní křivosti

V této kapitole představíme prostoročasy, které budou sloužit jako pozadí pro propagaci impulslních gravitačních vln. Jde o maximálně symetrická řešení Einsteinových polních rovnic (1) s nulovou pravou stranou a s konstantní skalární křivostí R na celém prostoročase. Celkem rozlišujeme 3 třídy řešení lišící se znaménkem skalární křivosti. Nulová skalární křivost odpovídá řešení s nulovou kosmologickou konstantou, kterému se říká Minkowského prostoročas, kladná křivost odpovídá tzv. de Sitterovu prostoročasu s kladnou kosmologickou konstantou a záporná odpovídá anti-de Sitterovu prostoročasu se zápornou kosmologickou konstantou. Vztah mezi kosmologickou konstantou a skalární křivostí ve vakuových řešeních (tedy s nulovým tenzorem energie a hybnosti) dostaneme kontrakcí polních rovnic (1) jako

$$R = 4\Lambda. \tag{1.1}$$

Všechna tato řešení vykazují deset generátorů symetrie, které se však pro jednotlivá znaménka kosmologické konstanty liší.

I přes svou jednoduchost jsou zmíněné prostoročasy na poli teoretické fyziky velmi podstatné, čtyřdimenzionální Minkowského prostoročas je arénou speciální teorie relativity, vícedimenzionální Minkowského prostoročas pak běžně slouží jako vhodný prostor pro vnoření složitějších prostoročasů. De-Sitterův prostoročas je pro moderní fyziku důležitý při popisu vesmíru, experimentální data ukazují, že v aproximaci do prvního řádu jej lze právě na velkých škálách (a také v inflační epoše) popsat právě jako de Sitterův prostoročas. Anti-de Sitterův prostoročas... [1] zde zajímavosti o jednotlivých řešeních stručně (Minkowski - STR, AdS - CFT korespondence atp...)

1.1 Minkowskeho prostoročas

Minkowského prostoročas $\mathbb{E}^{1,3}$ je nejjednodušší řešení Einsteinových polních rovnic s nulovou pravou stranou. Jde o řešení s nulovou křivostí v celém prostoročase. Grupou symetrií Minkowského prostoročasu je Poincarého grupa, která je tvořena všemi translacemi a Lorentzovou grupou představující rotace a boosty.

Metrika Minkowského prostoročasu má v nejpřirozenějším vyjádření, v kartézských souřadnicích, tvar

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}.$$
 (1.2)

Souřadnicovými transformacemi

$$\mathcal{U} = \frac{1}{\sqrt{2}}(t-z), \qquad \mathcal{V} = \frac{1}{\sqrt{2}}(t+z) \tag{1.3}$$

$$\eta = \frac{1}{\sqrt{2}}(x+iy), \qquad \bar{\eta} = \frac{1}{\sqrt{2}}(x-iy)$$
(1.4)

převedeme metriku do symetrického tvaru

$$ds^2 = -2 d\mathcal{U} d\mathcal{V} + 2 d\eta d\bar{\eta}. \tag{1.5}$$

Souřadnicím zavedeným transformací (1.3) se říká retardovaná a advancovaná souřadnice, metrika (1.5) je pak v tzv. světelných (nulových) souřadnicích. Pokud zkoumáme axiálně symetrickou situaci na pozadí Minkowského prostoročasu, je vhodné zavést cylindrické souřadnice parametrizací

$$x = \rho \cos(\varphi), \qquad y = \rho \sin(\varphi),$$
 (1.6)

kde $\rho \in [0, \infty)$ a $\varphi \in [0, 2\pi)$. Metrika pak nabývá tvaru

$$ds^{2} = -dt^{2} + d\rho^{2} + \rho^{2}d\varphi^{2} + dz^{2}.$$
 (1.7)

V Minkowského prostoročase jsou složky afinní konexe v kartézských souřadnicích, kterým odpovídá metrika 1.2, identicky nulové. Řešení rovnice geodetiky pak nabývá tvaru přímek

$$t(\lambda) = t_0 + \lambda \dot{t}_0$$

$$x(\lambda) = x_0 + \lambda \dot{x}_0$$

$$y(\lambda) = y_0 + \lambda \dot{y}_0$$

$$z(\lambda) = z_0 + \lambda \dot{z}_0,$$

$$(1.8)$$

kde veličiny s dolním indexem 0 představují počáteční podmínky.

1.2 de Sitterův prostoročas

De Sitterův prostoročas dS_4 je maximálně symetrické vakuové řešení Einsteinových rovnic s kladnou kosmologickou konstantou Λ . Isometrie čtyřrozměrného de Sitterova prostoročasu tvoří grupu SO(1,4). De Sitterův prostoročas topologicky odpovídá $\mathbb{R}^1 \times \mathbb{S}^3$ a lze jej přirozeně reprezentovat jako vnoření hyperboloidu

$$-Z_0^2 + Z_1^2 + Z_2^2 + Z_3^2 + Z_4^2 = a^2 (1.9)$$

do pětidimenzionálního Minkowského prostoru $\mathbb{E}^{1,4}$ s metrikou

$$ds^{2} = -dZ_{0}^{2} + dZ_{1}^{2} + dZ_{2}^{2} + dZ_{3}^{2} + dZ_{4}^{2}.$$
(1.10)

Konstanta a je daná kosmologickou konstantou jako $a = \sqrt{3/\Lambda}$.

Přirozenou parametrizací celého de-Sitterova prostoročasu jsou souřadnice (t, χ, θ, ϕ)

$$Z_{0} = a \sinh \frac{t}{a}$$

$$Z_{1} = a \cosh \frac{t}{a} \cos \chi$$

$$Z_{2} = a \cosh \frac{t}{a} \sin \chi \cos \theta$$

$$Z_{3} = a \cosh \frac{t}{a} \sin \chi \sin \theta \cos \phi$$

$$Z_{4} = a \cosh \frac{t}{a} \sin \chi \sin \theta \sin \phi,$$

$$(1.11)$$

kde $t\in(-\infty,+\infty)$, $\chi\in[0,\pi]$, $\theta\in[0,\pi]$ a $\phi\in[0,2\pi]$. Souřadnicové singularity v $\chi=0,\pi$ a $\theta=0,\pi$ odpovídají pólům ve sférických souřadnicích. V souřadnicích

 (t, χ, θ, ϕ) má metrika de Sitterova prostoročasu formu FLRW metriky s křivostí prostorových řezů k=1,

$$ds^{2} = -dt^{2} + a^{2} \cosh^{2} \frac{t}{a} \left(d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right). \tag{1.12}$$

Obrázek 1.1: Vnoření dS prostoročasu do $\mathbb{E}^{1,4}$. Plocha hyperboloidu je vykreslena pro $\theta = \phi = \frac{\pi}{2}$, tedy $Z_2 = Z_3 = 0$. Souřadnicové čáry odpovídají konstantním t a χ .

Hyperboloid představující de Sitterův prostoročas lze dále parametrizovat souřadnicemi $(\mathcal{U},\mathcal{V},\eta,\bar{\eta})$

$$Z_{0} = \frac{1}{\sqrt{2}} \left(\mathcal{U} + \mathcal{V} \right) \left[1 - \frac{1}{6} \Lambda \left(\mathcal{U} \mathcal{V} - \eta \bar{\eta} \right) \right]^{-1},$$

$$Z_{1} = \frac{1}{\sqrt{2}} \left(\mathcal{V} - \mathcal{U} \right) \left[1 - \frac{1}{6} \Lambda \left(\mathcal{U} \mathcal{V} - \eta \bar{\eta} \right) \right]^{-1},$$

$$Z_{2} = \frac{1}{\sqrt{2}} \left(\eta + \bar{\eta} \right) \left[1 - \frac{1}{6} \Lambda \left(\mathcal{U} \mathcal{V} - \eta \bar{\eta} \right) \right]^{-1},$$

$$Z_{3} = \frac{-i}{\sqrt{2}} \left(\eta - \bar{\eta} \right) \left[1 - \frac{1}{6} \Lambda \left(\mathcal{U} \mathcal{V} - \eta \bar{\eta} \right) \right]^{-1},$$

$$Z_{4} = a \left[1 + \frac{1}{6} \Lambda \left(\mathcal{U} \mathcal{V} - \eta \bar{\eta} \right) \right] \left[1 - \frac{1}{6} \Lambda \left(\mathcal{U} \mathcal{V} - \eta \bar{\eta} \right) \right]^{-1},$$

$$(1.13)$$

které pro $\mathcal{U},\mathcal{V}\in(-\infty,+\infty)$ a komplexní η pokrývají de Sitterův hyperboloid až

na singularity v $\mathcal{U}, \mathcal{V} = \infty$. Inverzní transformační vztahy jsou

$$\mathcal{U} = \sqrt{2}a \frac{Z_0 - Z_1}{Z_4 + a},$$

$$\mathcal{V} = \sqrt{2}a \frac{Z_0 + Z_1}{Z_4 + a},$$

$$\eta = \sqrt{2}a \frac{Z_2 + iZ_3}{Z_4 + a}.$$
(1.14)

Tato parametrizace indukuje metriku

$$ds^{2} = \frac{-2 d\mathcal{U} d\mathcal{V} + 2 d\eta d\bar{\eta}}{\left[1 - \frac{1}{6}\Lambda (\mathcal{U}\mathcal{V} - \eta\bar{\eta})\right]^{2}}.$$
 (1.15)

Tato metrika je v takzvaném konformně plochém tvaru, tedy ve tvaru

$$\mathrm{d}s^2 = \frac{\mathrm{d}s_0^2}{\Omega^2},\tag{1.16}$$

kde d s_0^2 je metrika na $\mathbb{E}^{1,3}$ a Ω je hladkou funkcí souřadnic. Jak uvidíme dále, metrika (1.15) je ve tvaru, který unifikuje všechny prostoročasy konstantní křivosti. Pro $\Lambda=0$ se redukuje na (1.5) a pro $\Lambda<0$ představuje metriku na anti-de Sitterově prostoročase.

Souřadnicové čáry $\mathcal{U}=$ konst. a $\mathcal{V}=$ konst. tvoří na de Sitterově hyperboloidu nulové přímky, resp. nadplochy.

řešení rovnice geodetiky?

1.3 Anti-de Sitterův prostoročas

Anti-de Sitterův prostoročas AdS_4 je maximálně symetrické vakuové řešení Einsteinových rovnic se zápornou kosmologickou konstantou Λ . Isometrie tvoří grupu SO(2,3) a topologie AdS_4 odpovídá $\mathbb{S}^1 \times \mathbb{R}^3$. Vnořením AdS_4 do $\mathbb{E}^{2,3}$, tedy do prostoru s metrikou

$$ds^{2} = -dZ_{0}^{2} + dZ_{1}^{2} + dZ_{2}^{2} + dZ_{3}^{2} - dZ_{4}^{2},$$
(1.17)

vzniká hyperboloid

$$-Z_0^2 + Z_1^2 + Z_2^2 + Z_3^2 - Z_4^2 = a^2, (1.18)$$

kde $a = \sqrt{3/|\Lambda|}$.

Celý hyperboloid je pokrytý souřadnicemi (T, r, θ, ϕ)

$$Z_{0} = a \cosh r \sin \frac{T}{a},$$

$$Z_{1} = a \sinh r \cos \theta,$$

$$Z_{2} = a \sinh r \sin \theta \cos \phi,$$

$$Z_{3} = a \sinh r \sin \theta \sin \phi,$$

$$Z_{4} = a \cosh r \cos \frac{T}{a}.$$

$$(1.19)$$

Metrika anti-de Sitterova prostoročasu v těchto souřadnicích nabývá tvaru

$$ds^{2} = -\cosh^{2} r \ dT^{2} + a^{2} \left(dr^{2} + \sinh^{2} r \left(d\theta^{2} + \sin^{2} \theta \ d\phi^{2} \right) \right)$$
 (1.20)

a vidíme, že každý řez T=konst. odpovídá pro $r\in [0,\infty]$, $\theta\in [0,\pi]$, $\phi\in [0,2\pi]$ prostoru konstantní negativní křivosti (hyperbolickému prostoru H^3). Singularity v r=0 a $\theta=0,\pi$ jsou pouze souřadnicové.

T představuje časovou souřadnici, která je $2\pi a$ -periodická, což odpovídá již zmíněné topologii $\mathbb{S}^1 \times \mathbb{R}^3$. Obvykle se ale uvažuje $T \in (-\infty, +\infty)$, dochází tedy k rozvinutí \mathbb{S}^1 na celé \mathbb{R}^1 , a dostáváme prostor s topologií \mathbb{R}^4 , jehož univerzálním nakrytím je AdS prostoročas.

Obrázek 1.2: Vnoření AdS prostoročasu do $\mathbb{E}^{2,3}$. Plocha hyperboloidu je vykreslena pro $\theta = \phi = \frac{\pi}{2}$, tedy $Z_2 = Z_3 = 0$. Souřadnicové čáry odpovídají konstantním T a r.

Parametrizací (1.13) obdržíme totožný konformě plochý tvar metriky (1.15) jako v případě de Sitterova prosotočasu

$$ds^{2} = \frac{-2 d\mathcal{U} d\mathcal{V} + 2 d\eta d\bar{\eta}}{\left[1 - \frac{1}{6}\Lambda (\mathcal{U}\mathcal{V} - \eta\bar{\eta})\right]^{2}},$$

liší se pouze znaménkem kosmologické konstanty ($\Lambda < 0$). řešení rovnice geodetiky?

2. Neexpandující impulsní gravitační vlny

V této kapitole se budeme věnovat neexpandujícím impulsním gravitačním vlnám propagujícím se na pozadí Minkowského a (anti-)de Sitterova prostoročasu. Popíšeme matematickou konstrukci prostoročasů která vede k tzv. refrakčním rovnícím pro geodetiky, které využijeme k vizualizaci různých řešení impulsních vln a k interpretaci působení vln na různé testovací částice.

2.1 Konstrukce

Nejprve popíšeme konstrukci prostoročasů s neexpandujícíme impulsními gravitačními vlnami pomocí Penroseovy geometrické metody [2] "cut and paste", zavedeme souřadnice ve kterých je metrika spojitá a dále se budeme věnovat distribučnímu popisu prostoročasů s impulsními gravitačními vlnami.

2.1.1 "Cut and paste" metoda konstrukce

Geometrická metoda konstrukce "cut and paste" impulsních gravitačních vln v Minkowského prostoročase (1.2) se zakládá na rozdělení celého prostoročasu podél rovinné světelné nadplochy \mathcal{N} , kde je implulzní vlna lokalizována na dvě části \mathcal{M}^+ a \mathcal{M}^- . Opětovným spojením těchto částí a ztotožněním bodů na hranici řezu \mathcal{N} se specifickým posunutím dostaneme prostoročas s impulsní gravitační vlnou.

Obrázek 2.1: Geometrická konstrukce neexpandující impulsní gravitační vlny pomocí metody "cut and paste", podél nadplochy $\mathcal N$ dojde k rozdělení prostoročasu na dvě části $\mathcal M^+$ a $\mathcal M^-$ a opětovnému ztotožnění bodů na hranici obou částí se specifickým posunem.

Pro světelnou nadplochu \mathcal{N} danou podmínkou $\mathcal{U}=0$ pak tato konstrukce odpovídá Penroseově spojovacím podmínkám

$$[\eta, \bar{\eta}, \mathcal{V}, \mathcal{U} = 0_{-}]_{\mathcal{M}^{-}} \equiv [\eta, \bar{\eta}, \mathcal{V} - H(\eta, \bar{\eta}), \mathcal{U} = 0_{+}]_{\mathcal{M}^{+}}, \tag{2.1}$$

kde $H(\eta, \bar{\eta})$ je holomorfní. Penrose [2] ukázal, že impulsní gravitační vlny jsou v tenzoru křivosti reprezentovány členy proporciálními Diracově delta distribuci $\delta(\mathcal{U})$. V Minkowského pozadí je nadplocha $\mathcal{U}=0$ rovina a řešení spadá do rodiny impulsních pp-vln, tedy rovnoběžně se propagujících rovinných vln. Obecně na

pozadích konstantní křivosti platí stejné napojovací podmínky (2.1) a nadplocha $\mathcal{U}=0$ představuje plochu konstantní Gaussovské křivosti $K=\frac{1}{3}\Lambda$ která je popsána metrikou $d\sigma^2=2(1+\frac{1}{6}\Lambda\eta\bar{\eta})^{-2}d\eta\ d\bar{\eta}$. V případě $\Lambda\neq 0$ se tedy jedná buďto o sféru ($\Lambda>0$) nebo o hyperbolickou plochu ($\Lambda<0$). Popis těchto nadploch konstatní křivostsi v (A)dS prostoročasech a jejich geometrické vlastnosti jsou shrnuty v [3], kde je také ukázáno, že se jedná o neexpandující nadplochy.

Obrázek 2.2: Nulové geodetiky procházející impulsem nacházejícím se v $\mathcal{U}=0$ (černá čára) v AdS prostoročase jsou podle cut and paste konstrukce posunuty v souřadnici \mathcal{V} a dochází k refrakci. Geodetiky jsou opět nulovými generátory AdS na $\mathcal{U}>0$, neleží už ale v $\eta=0$ a proto neleží na ploše vykresleného hyperboloidu.

2.1.2 Spojitý tvar metriky

Metoda "cut and paste" nám dává identifikaci bodů prostoročasu na obou stranách impulsní vlny a tedy napojovací podmínky pro geodetiky, nic ale neříká o podobě metriky kompletního prostoročasu s impulsní vlnou. Potřebujeme tedy najít vhodný souřadnicový systém, ve kterém bude metrika spojitá funkce \mathcal{U} . Toho dosáhneme postupem použitým např. v [4], kde z metriky prostoročasu pozadí (1.15), respektive

$$ds_0^2 = \frac{2 d\eta d\bar{\eta} - 2 d\mathcal{U} d\mathcal{V}}{\left[1 - \frac{1}{6}\Lambda (\eta \bar{\eta} - \mathcal{U}\mathcal{V})\right]^2},$$
(2.2)

souřadnicovou transformací

$$\mathcal{U} = U, \quad \mathcal{V} = V + H + UH_{Z}H_{\bar{Z}}, \quad \eta = Z + UH_{\bar{Z}}, \tag{2.3}$$

kde uvažujeme libovolnou reálnou funkci $H(Z, \bar{Z})$, obdržíme metriku

$$ds^{2} = \frac{2 \left| dZ - U \left(H_{,Z\bar{Z}} dZ + H_{,\bar{Z}\bar{Z}} d\bar{Z} \right) \right|^{2} - 2 dU dV}{\left[1 - \frac{1}{6} \Lambda (Z\bar{Z} - UV - UG) \right]^{2}}$$
(2.4)

kde $G(Z,\bar{Z})\equiv H-ZH_{,Z}-\bar{Z}H_{,\bar{Z}}$. Metriku (2.4) pak uvažujeme pouze pro U>0, zatímco na U<0 provedeme ztotožnení souřadnic

$$\mathcal{U} = U$$

$$\mathcal{V} = V$$

$$\eta = Z$$
(2.5)

a uvažujeme metriku vzniklou právě touto transformací. Definováním tzv. kink funkce jako

$$U_{+} \equiv U_{+}(U) = \begin{cases} 0 & \text{pro } U \leq 0 \\ U & \text{pro } U \geq 0 \end{cases}$$
 (2.6)

můžeme výslednou metriku zapsat jako

$$ds^{2} = \frac{2 \left| dZ + U_{-} \left(H_{,Z\bar{Z}} dZ + H_{,\bar{Z}\bar{Z}} d\bar{Z} \right) \right|^{2} - 2 dU dV}{\left[1 - \frac{1}{6} \Lambda (Z\bar{Z} - UV - U_{+}G) \right]^{2}}.$$
 (2.7)

Transformace (2.3) a (2.5) spojující separátně pro $\mathcal{U} > 0$ a $\mathcal{U} < 0$ metriku (2.2) s metrikou (2.7) lze pomocí Heavisideovy theta funkce $\Theta(U)$ přepsat do tvaru

$$U = U, \quad V = V + \Theta(U)H + U_{+}H_{,Z}H_{,\bar{Z}}, \quad \eta = Z + U_{+}H_{,\bar{Z}}.$$
 (2.8)

Stále je ale nutné provádět transformaci separátně pro $\mathcal{U} > 0$ a $\mathcal{U} < 0$, Heavisideova funkce má při transformaci metriky (2.2) za následek vznik členů proporcionálních delta funkci. Je také nutné podotknout, že toto vyjádření je pak ve smyslu distribucí. Ukazuje se, že tato transformace spojuje tzv. distribuční vyjádření metriky (2.12), které bude zavedeno dále, se spojitým tvarem metriky (2.7). Transformace (2.8) zároveň obsahuje Penroseovy spojovací podmínky (2.1) v U=0, kde vzniká nespojitost v souřadnici \mathcal{V} . Tato metoda konstrukce, ve smyslu distribucí, tedy představuje explicitní "cut and paste" konstrukci.

2.1.3 Distribuční tvar metriky

Dalším způsobem konstrukce impulsní gravitační vlny je přechod od příslušných rodin tzv. "sandwichových" gravtiačních vln s hladkým profilem vlnoplochy k limitnímu distribučnímu vyjádření impulsní vlny. Pro případ neexpandujícíh vln, propagujících se na $\mathbb{E}^{1,3}$, byl tento limitní přechod uvažován např. v [5], [6], [7]. Výsledná metrika nabývá tvaru

$$ds^{2} = 2 d\xi d\bar{\xi} - 2dudv + H(\xi, \bar{\xi})\delta(u) du^{2}$$
(2.9)

Distribuční tvar metriky také dostaneme dosazením invezní transformace k (2.8) do spojité metriky (2.7). Vzhledem k nespojitosti v transformaci toto dosazení nemůže být provedeno v rámci klasické teorie distribucí, kde nelze konzistentně definovat násobení dvou distribucí. S využitím regularizačních metod

teorie nelineárních zobecněných funkcí zde citace, které zakládají na Colombeaových algebrách, lze ale odvodit pravidla pro násobení jisté třídy distribucí, která dostačují pro toto odvození. Konkrétně potřebujeme násobit distribuce

$$\Theta^2 = \Theta, \quad \Theta U_+ = U_+. \tag{2.10}$$

Kromě pravidel pro násobení ještě využijeme identity z klasické teorie distribucí

$$\Theta' = \delta, \quad U'_{+} = \Theta \tag{2.11}$$

a dostáváme pro libovolnou hodnotu Λ metriku ve tvaru

$$ds^{2} = \frac{2d\eta \ d\bar{\eta} - 2d\mathcal{U} \ d\mathcal{V} + 2H(\eta, \bar{\eta})\delta(\mathcal{U}) \ d\mathcal{U}^{2}}{\left[1 - \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})\right]^{2}}.$$
 (2.12)

V případě nenulové kosmologické konstanty můžeme také využít vnoření do $\mathbb{E}^{1,4}$, případně $\mathbb{E}^{2,4}$ (podle znaménka kosmologické konstanty, jak je popsáno v kapitole 1) s dodatečným neexpandujícím impulsem

$$ds^{2} = dZ_{2}^{2} + dZ_{3}^{2} + \epsilon dZ_{4}^{2} - 2d\tilde{U}d\tilde{V} + \mathcal{H}(Z_{2}, Z_{3}, Z_{4})\delta(\tilde{U})d\tilde{U}^{2},$$
(2.13)

kde $\epsilon = \text{sign}(\Lambda)$, $\tilde{U} = \frac{1}{\sqrt{2}}(Z_0 - Z_1)$, $\tilde{V} = \frac{1}{\sqrt{2}}(Z_0 + Z_1)$. S podmínkou analogickou k (1.9) a (1.18),

$$Z_2^2 + Z_3^2 + \epsilon Z_4^2 - 2\tilde{U}\tilde{V} = \epsilon a^2, \tag{2.14}$$

dostáváme reprezentaci impulsních vln propagujících se na (A)dS prostoročasu s impulsem na $\tilde{U}=0$. Funkce H a \mathcal{H} v metrikách (2.12) a (2.13) jsou svázány vztahem

$$\mathcal{H} = \frac{2H}{1 - \frac{1}{6}\Lambda\eta\bar{\eta}} \tag{2.15}$$

2.2 Interakce s testovacími částicemi

2.2.1 Profil impulsní gravitační vlny

Toto bych raději přejmenoval jinak Pro distribuční metriku (2.12) se Einsteinovy rovnice (1) pro nulovou pravou stranu redukují na

$$\left(\Delta + \frac{2}{3}\Lambda\right)\mathcal{H} = 0, \tag{2.16}$$

pro případ nulové kosmologické konstanty dostáváme

$$\Delta H = 2H_{.n\bar{n}} = 0. \tag{2.17}$$

Konkrétní tvar $H=-\mu\log(2\eta\bar{\eta})$ pro prostoročas s $\Lambda=0$ odvodili Aichelburg a Sexl [8] pomocí limitního boostu $(v\to 1)$ Schwrazschildova řešení, při $m\to 0$, aby byla hodnota $\mu=m\sqrt{1-v^2}$ konstantní. Zobecnění na (anti-)de Sitterův prostoročas provedli Hotta a Tanaka [9] boostem Schwarzschildova- (anti-)de Sitterova prostoročasu. Aichelburg-Sexlovo řešení představuje gravitační vlnu generovanou nulovou částicí v $\eta=0$, Hottovo-Tanakovo řešení pak v de Sitterově prostoročasu odpovídá dvěma, opačným směrem letícím, nulovým částicím, které

generují neexpandující sférickou gravitační vlnu, v anti-de Sitterově prostoročasu (ve kterém existují uzavřené časupodobné křivky) impulsní vlnu generovanou nulovou částicí která v nekonečném cyklu prolétává z jedné strany vesmíru na druhou.

Griffiths a Podolský v článcích [10] a [11] využili (2.17), resp. (2.16) ke zkonstruování obecnějšího tvaru funkce H, resp. \mathcal{H} , kde je neexpandující gravitační vlna generována nulovými částicemi s libovolnou multipólovou strukturou.

2.2.2 C^1 -matching a refrakční rovnice

Dále budeme explicitně modelovat geodetiky na prostoročasech s neexpandujícími impulsními vlnami v souřadnicích (2.12). V těchto souřadnicích není řešení rovnice geodetiky dobře definované v klasické teorii distribucí, pro neexpandující impulsní vlny na Minkowského prostoročasu byla rovnice geodetiky a její řešení zkoumána v rámci teorie zobecněných funkcí ve smyslu Colombeaových algeber a v článích [12] a [13] byla ukázána existence a jednoznačnost řešení v prostoru těchto funkcí a bylo ověřeno, že geodetiky na \mathcal{M}^- a \mathcal{M}^+ odpovídají geodetikám na Minkowského pozadí se skokem v souřadnici $\mathcal V$ při přechodu přes nadplochu $\mathcal{U}=0$. V prostoročasech s nenulovou kosmologickou konstantou lze využít přístup vnoření do pětidimenzionálního Minkowského prostoru, kde se v rovnici geodetiky nenachází výrazy nedefinované v klasické teorii distribucí, Chápu to tak správně? řešení rovnice geodetiky pro (anti-)de Sitterův prostoročas s impulsními neexpandujícími vlnami byly tímto způsobem odvozeny v [14]. V článku [4] byla odvozena rovnice geodetiky v souřadnicích (2.7). Odvozený tvar je v tomto případě ve smyslu Filippových řešení (diferenciálních inkluzí) [15], což je zobecnění teorie obyčejných diferenciálních rovnic. V článku je ukázána existence a jednoznačnost takových řešení, dále autoři využívají metodou \mathcal{C}^1 -matchingu, kde při splnění určitých předpokladů na metriku, lze řešení ve smyslu Filippova přiřadit řešením rovnice geodetiky na jednotlivých částech prostoročasu ("před a za impulsem"), bez nutné znalosti detailů teorie za Filippovými řešeními.

Výsledkem \mathcal{C}^1 -matchingu je sada refrakčních rovnic, které udávají jak skok v souřadnici \mathcal{V} , tak i změnu v rychlostech před a za impulsem. Geodetiku procházející impulsní plochou ve spojitých souřadnicích tedy ztotožníme transformací (2.8) (a její derivací), v oblastech U>0 a U<0 separátně, s geodetikami v souřadnicích prostoročasu na pozadí. Pro polohy dostáváme limitou $U\to 0^+$ a $U\to 0^-$ rovnice

$$\mathcal{U}_{i}^{+} = \mathcal{U}_{i}^{-} = 0,$$

 $\mathcal{V}_{i}^{+} = \mathcal{V}_{i}^{-} + H_{i},$
 $\eta_{i}^{+} = \eta_{i}^{-},$ (2.18)

což odpovídá Penroseovým spojovacím podmínkám - geodetika je spojitá v $\mathcal U$ a η a dochází ke skoku ve $\mathcal V$. Pro rychlosti obdržíme stejnou limitou rovnice

$$\dot{\mathcal{U}}_{i}^{+} = \dot{\mathcal{U}}_{i}^{-}
\dot{\mathcal{V}}_{i}^{+} = \dot{\mathcal{V}}_{i}^{-} + H_{i,Z}\dot{\eta}_{i}^{-} + H_{i,\bar{Z}}\dot{\overline{\eta}}_{i}^{-} + H_{i,Z}H_{i,\bar{Z}}\dot{\mathcal{U}}_{i}^{-}
\dot{\eta}_{i}^{+} = \dot{\eta}_{i}^{-} + H_{i,\bar{Z}}\dot{\mathcal{U}}_{i}^{-}.$$
(2.19)

Index i znamená hodnotu na impulsní nadploše $\mathcal{U} = 0$, složky označené znakem + jsou za impulsem ($\mathcal{U} > 0$), složky označené znakem - jsou před impulsem ($\mathcal{U} < 0$).

Bližším pohledem na refrakční rovnice také vidíme, že zachovávají kauzální charakter geodetik. Složka rychlosti $\dot{\mathcal{U}}$ se nemění, ve složkách $\dot{\mathcal{V}}$ a $\dot{\eta}$ dojde k refrakci tak, že se po "vložení" do metrického tenzoru zachová velikost i znaménko. přeformulovat lépe?

Díky tomu, že odvození proběhlo v konformně plochých souřadnicích, nezávisí na hodnotě Λ a máme jednotné rovnice pro refrakci způsobenou impulsními vlnami, propagujícími se v Minkowského i (anti-)de Sitterově prostoročase.

V (anti-)de Sitterově prostoročasech můžeme opět využít pětidimenzionálního vnoření do (2.13) a odvodit refrakční rovnice i v tomto formalismu. Konformní faktor je při cut and paste konstrukci daný jako $\Omega_{\rm i}^{\pm}=1+\frac{1}{6}\Lambda\eta^{\pm}\bar{\eta}^{\pm}$, ze spojitosti $\eta,\bar{\eta}$ při přechodu přes $\mathcal{U}=0$ však plyne, že pro konformní faktor stačí psát $\Omega_{\rm i}$, jelikož při přechodu přes impulsní nadplochu nedochází k jeho změně.

Použitím rovnic pro polohy (2.18) dostáváme

$$\tilde{U}_{i}^{+} = 0 = \tilde{U}_{i}^{-}, \quad \tilde{V}_{i}^{+} = \tilde{V}_{i}^{-} + \frac{H_{i}}{\Omega_{i}}, \quad Z_{2i}^{+} = Z_{2i}^{-}, \quad Z_{3i}^{+} = Z_{3i}^{-}, \quad Z_{4i}^{+} = Z_{4i}^{-}.$$
 (2.20)

5dim formalismus!

2.2.3 Vizualizace geodetik prostoročasů s neexpandující impulsní vlnou

Refrakční rovnice jsou vhodným nástrojem k vizualizaci geodetik v souřadnicích prostoročasů na pozadí impulsní vlny. Pro vybrané funkce H, resp. \mathcal{H} v prostoročasech s $\Lambda \neq 0$, byly zvolené geodetiky před impulsem ztotožněny s geodetikami za impulsem. Integrací rovnice geodetiky na oblastech před a za impulsem zvlášť pak obdržíme celé geodetiky v prostoročasu s impulsní vlnou. Pro účel vizualizace geodetik v těchto prostoročasech autor této práce vytvořil balíček GRImpulsiveWaves pro jazyk Python, tento open-source balíček je volně dostupný na platformě GitHub. přidat na pip! V následujících podsekcích představíme vizualizace pro jednotlivá řešení (tedy funkce H), parametry a počáteční podmínky geodetik.

2.2.4 Impulsní gravitační vlna generovaná světelnou částicí s multipólovou strukturou s $\Lambda=0$

Řešení impulsní vlny, generované nulovou částicí s multipólovou strukturou, propagující se na Minkowského prostoročase odvodili Griffiths a Podolský v [10]. Toto řešení má v cylindrických prostorových souřadnicích tvar

$$H = -b_0 \log(\rho) + \sum_{m=1}^{\infty} b_m \rho^{-m} \cos[m(\phi - \phi_m)], \qquad (2.21)$$

kde b_m , ϕ_m jsou konstanty.

Aichelburg-Sexlovo řešení je pak speciálním případem, který odpovídá monopólové nulové částici, tedy všechna b_m pro $m \ge 1$ jsou nulová.

Na obrázku 2.4 vidíme skok v souřadnici \mathcal{V} a refrakci, kde se s rostoucí absolutní hodnotou parametru b_0 dochází k větší změně ve složze rychlosti $\dot{\mathcal{V}}$. Tato změna je podle být doprovázena příslušnou změnou ve složce $\dot{\eta}$, pro kterou opět

Obrázek 2.3: Funkce H v případě Aichelburg-Sexlova řešní. Funkce je singulární v počátku souřadného systému, kde se nachází částice generující impulsní vlnu. přidat ještě dipól

Obrázek 2.4: Nulové geodetiky ($\dot{\mathcal{U}}^- = 1$, $\dot{\mathcal{V}}^- = 0$, $\dot{\eta}^- = 0$) procházející impulsem Aichelburg-Sexlova řešení v $\rho = 2$ pro různé parametry b_0 .

platí, že se spolu s rostoucí absolutní hodnotou b_0 dochází k větší změně, jak znázorňuje 2.4 a 2.5.

Záporné hodnoty parametru b_0 , použté na obrázcích 2.4 a 2.5, byly vhodné pro přehlednější vizualizaci efektu impulsní vlny, nemají ale v originální konstrukci pomocí ultraboostu [8] fyzikální význam. Parametr b_0 totiž v této konstrukci představuje při ultraboostové limitě $v \to 1, m \to 0$ konstantu, která splňuje $8m = b_0\sqrt{1-v^2}$, pro fyzikální systémy konstruované touto metodou tedy nabývá kladných hodnot. Příklady nulových geodetiky pro tyto hodnoty jsou na obrázku 2.6, vidíme, že geodetiky jsou refraktovány směrem k $\rho = 0$ Šlo by tohle interpretovat jako stržení polem nulové částice generující vlnu (ve smyslu aproximace pole generovaného takovou částicí), tedy jako "přitažlivý efekt"?

Jak moc vadí, že ty geodetiky jdou vlastně pozpátku v souřadnicovém čase??

Testovací částice na časupodobných geodetikách se chovají stejným způsobem, na obrázku 2.7 vidíme časupodobné geodetiky, po kterých se testovací částice šíří paralelně s osou z. Při průchodu $\mathcal{U}=0$ dojde k refrakci a částice po průchodu letí směrem k ose z.

Závislost efektu refrakce je klesající se vzdáleností od částice generující impuls. Na obrázku 2.8 jsou znázorněny už refraktované časupodobné geodetiky pro různé vzdálenosti od osy symetrie. Před refrakcí se jedná o pohyb testovacích částic ve

Obrázek 2.5: Nulové geodetiky ($\dot{\mathcal{U}}^-=1,\,\dot{\mathcal{V}}^-=0,\,\dot{\eta}^-=0$) procházející impulsní vlnou Aichelburg-Sexlova řešení. Prstenec testovacích částic je před průchodem impulsem v $\rho=2.$

Obrázek 2.6: Nulové geodetiky ($\dot{\mathcal{U}}^-=1,\,\dot{\mathcal{V}}^-=0,\,\dot{\eta}^-=0$) procházející impulsem v $\rho=2$ pro kladné hodnoty parametru b_0 .

směru osy z. Efekt refrakce se vzdáleností od $\rho=0$ snižuje.

Obrázek 2.7: PŘEPLOTIT!!! Časupodobné geodetiky ($\dot{\mathcal{U}}^- = \frac{1}{2}$, $\dot{\mathcal{V}}^- = 1$, $\dot{\eta}^- = 0$) procházející impulsní vlnou Aichelburg-Sexlova řešení. Prstenec testovacích částic je před průchodem impulsem v $\rho = \frac{1}{2}$.

Obrázek 2.8: Refraktované časupodobné geodetiky po průchodu impulsem v různých vzdálenostech ρ pro $b_0=\frac{1}{2}$. Červená barva odpovídá částici refraktované nejblíže $(\rho=\frac{1}{2})$, modrá nejdále $(\rho=2)$. Černá přímka odpovídá ose x=0.

3. Neexpandující gravitační vlny s gyratonovými členy

Distribuční vyjádření metriky impulsní vlny (2.12) není nejobecnější metrikou popisující impulsní vlny. Už Brinkmann (nezapomenout Brinkmanna v úvodu BP!) uvažoval i tzv. mimodiagonální členy, se kterými pak (i v případě nenulové kosmologické konstanty) metrika nabývá tvaru

$$ds^{2} = \frac{2d\eta \ d\bar{\eta} - 2d\mathcal{U} \ d\mathcal{V} + 2H(\eta, \bar{\eta})\delta(\mathcal{U}) \ d\mathcal{U}^{2}}{\left[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})\right]^{2}} + \frac{2J(\eta, \bar{\eta}, \mathcal{U}) \ d\eta \ d\mathcal{U} + 2\overline{J}(\eta, \bar{\eta}, \mathcal{U}) \ d\bar{\eta} \ d\mathcal{U}}{\left[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})\right]^{2}}.$$
(3.1)

Obvyklým postupem je odstranění členů s funkcí J vhodnou souřadnicovou transformací, to ale vede k odstranění možného rotačního charakteru zdroje gravitační vlny, taková transformace pak není globální, dochází k zanedbání topologických vlastností celého prostoročasu.

3.1 Zobecnění impulsních vln na prostoročasy s gyratonovými členy

Konstrukce neexpandujících gracitačních vln s gyratonovými členy je obdobná případu bez gyratonových členů. Opět můžeme využít Penroseovu "cut and paste" metodu, v případě gyratonických prostoročasů ale bude konstrukce totožná s konstrukcí popsanou v (2.1.1) a jak je ukázáno v článku [16], Penroseovy lepící podmínky v přítomnosti gyratonů nabývají tvaru (2.1). (přeformulovat něják lépe...),

3.1.1 Zobecnění spojitého tvaru metriky

Tvar spojité metriky pro gyratonové neexpandující impulsní vlny obdržíme zobecněním transformace (2.8), do tvaru který nalezli Podolský, Švarc, Säman a Steinbauer v [16]

$$\mathcal{U} = U$$

$$\mathcal{V} = V + \Theta H + U_{+}H_{,Z}H_{,\bar{Z}} + W$$

$$\eta = \left(Z + U_{+}H_{,\bar{Z}}\right) \exp\left(iF\right),$$
(3.2)

kde opět $H=H(Z,\bar{Z}),$ zároveň funkce $W=W(Z,\bar{Z},U)$ a $F=F(Z,\bar{Z},U)$ jsou reálné a splňují

$$F_{,U} = \frac{i\bar{J}}{Z + U_{+}H_{,\bar{Z}}} \exp\left(-iF\right),$$

$$W_{,U} = -J\bar{J}.$$
(3.3)

Zavedením

$$\zeta \equiv Z + U_{+}H_{,\bar{Z}}.\tag{3.4}$$

Uvědomíme-li si, že distribuční metrika lze získat dosazením inverzní transformace s distribučními členy do spojité metriky, a tedy že zde můžeme postupovat opačným způsobem (tohle mi zní trochu divně, přepsat trochu lépe), z distribuční metriky (3.1) dosazením transformace (3.2) dostáváme po přímočarých úpravách s využitím (3.3) metriku ve tvaru

$$ds^2 = (3.5)$$

3.2 Interakce s testovacími čísticemi v prostoročasech s gyratony

3.2.1 Refrakční rovnice

Stejná struktura jako předchozí kapitola, stačí přepsat a trochu okomentovat (např. "delty"ve skocích v čtyřrychlosti - započítat metrické členy s J)

4. Spinorový popis expandujících gravitačních vln

V této kapitole zavedeme spinorový formalismus na Minkowského prostoročase, následně jej použijeme k popisu expandujících impulsních gravitačních vln. S běžným popisem expandujících gravitačních vln se lze seznámit např. v [17], [18], další.... Spinorový formalismus vybudujeme na základě geometrického přístupu i přes široce uznávaný názor, že nejpřirozenější popis spinorů je v řeči teorie reprezentací (např. [19]). Geometrická konstrukce spinorů je ale pro použití v relativitě jakožto geometrické teorii, příhodnější a tohoto přístupu pak využívají právě práce zabývající se čistě relativistickým využitím spinorů, například [20], [21].

4.1 Spinorový formalismus

4.1.1 Krátký úvod do 2-spinorů

Definujme zde Minkowského prostor M jako čtyřdimenzionální vektorový prostor nad \mathbb{R} s Lorentzovskou metrikou $\eta_{\mu\nu} = diag(1, -1, -1, -1)$. V každém bodě prostoru \mathbb{R}^4 existuje množina bázových vektorů z M kterou nazýváme tetrádou. Vezměme světelný kužel v M, tedy úplný podprostor, kde pro každý vektor platí

$$\eta_{\mu\nu}x^{\mu}x^{\nu} = 0. \tag{4.1}$$

Každému časupodobnému nebo světelnému vektoru v prostoročasu přiřazujeme orientaci vůči počátku světelného kužele, může mířit do minulosti nebo do budoucnosti, světelný kužel tak rozdělíme na budoucí a minulý. Průnikem svetelného kuželu s plochou konstantního času dostaneme sféru v \mathbb{R}^3 . Pokud leží nadplocha konstantního času v souřadnici $x^0=t=1$, představuje vzniklá sféra tzv. Riemannovu sféru Σ pro kterou platí rovnice

$$x^2 + y^2 + z^2 = 1 (4.2)$$

Stereografickou projekcí pak můžeme ztotožnit sféru Σ s rozšířenou komplexní rovinou \mathbb{C} (tedy $\mathbb{C} \cup \{\infty\}$) a body x, y a z na sféře můžeme popsat jednou komplexní souřadnicí, které se obvykle říká stereografická souřadnice,

$$\xi = \frac{x + iy}{1 - z},\tag{4.3}$$

případně v polárních souřadnicích (θ, ϕ)

$$\xi = e^{i\phi} \cos \frac{\theta}{2}.\tag{4.4}$$

Inverzní vztahy jsou pak

$$x = \frac{\xi + \bar{\xi}}{\xi \bar{\xi} + 1}, \quad y = \frac{\bar{\xi} - \xi}{\xi \bar{\xi} + 1}, \quad z = \frac{\xi \bar{\xi} - 1}{\xi \bar{\xi} + 1}. \tag{4.5}$$

Dále zavedeme složky spinoru ξ^A , $\xi^A = (\zeta, \eta)$, jako

$$\xi = \frac{\zeta}{\eta},\tag{4.6}$$

vyhneme se tak nekonečné hodnotě stereografické souřadnice pro horní (severní) pól Riemannovy sféry. Nyní potřebujeme udělat jistou formalizaci indexové notace. Pokud je horní (a později i dolní) index tučný, jedná se o tzv. abstraktní index, který není svázaný se spinorovou bází, kterou zavedeme dále, ale pouze naznačuje strukturu objektu. Pokud index není tučný, jedná se přímo o souřadnicový index, který nabývá hodnot 1,2 a je svázaný s bází. Je zřejmé, že spinor ξ^A a stereografická souřadnice ξ jsou i přes použití podobného značení dva odlišné objekty. Pomocí komponent spinoru lze popsat libovolný bod (t,x,y,z) na světelném kuželu jako

$$t = \frac{1}{\sqrt{2}} \left(\zeta \bar{\zeta} + \eta \bar{\eta} \right)$$

$$x = \frac{1}{\sqrt{2}} \left(\zeta \bar{\eta} + \eta \bar{\zeta} \right)$$

$$y = \frac{1}{\sqrt{2}} \left(\bar{\zeta} \eta - \eta \bar{\zeta} \right)$$

$$z = \frac{1}{\sqrt{2}} \left(\zeta \bar{\zeta} - \eta \bar{\eta} \right).$$
(4.7)

Na prostoru spinorů se dále zavádí 2-forma $[\cdot,\cdot]$, která je

- (1) antisymetrická,
- (2) bilineární a
- (3) nedegenerovaná.

Všimněme si, že kombinací prvních dvou podmínek dostaneme pro dva lineárně závislé spinory (tedy pro dvojici (ξ^A, κ^A) takové, že $\kappa^A = \lambda \xi^A$, $\lambda \in \mathbb{C}$)

$$[\boldsymbol{\xi}^{\boldsymbol{A}}, \kappa^{\boldsymbol{A}}] = 0. \tag{4.8}$$

Z třetí podmínky ale máme

$$[\xi^{\mathbf{A}}, \eta^{\mathbf{A}}] \neq 0 \tag{4.9}$$

pro všechny ξ^{A} , η^{A} z prostoru spinorů.

Tuto 2-formu obvykle zapisujeme symbolem ϵ_{AB} , jedná se o tzv. Levi-Civitův spinor a na prostoru spinorů zavádí skalární součin

$$\epsilon_{AB}\xi^A \eta^B = \xi_B \eta^B = -\xi^A \eta_A \tag{4.10}$$

a zastává tedy funkci obdobnou metrickému tenzoru. Zápis (4.10) lze také vyjádřit jako

$$\xi^{A} = \epsilon^{AB} \xi_{B}, \quad \xi_{A} = \epsilon_{BA} \xi^{B}, \tag{4.11}$$

kde platí

$$\epsilon^{AC}\epsilon_{BC} = \delta^{A}_{B}. \tag{4.12}$$

Dále se zavádí spin-báze (o^A, ι^A) tak, aby platilo

$$[o^{\mathbf{A}}, \iota^{\mathbf{A}}] = -[\iota^{\mathbf{A}}, o^{\mathbf{A}}] = 1.$$
 (4.13)

Tak formálně propojíme souřadnicový zápis ξ^A se samotným spinorem ξ^A

$$\xi^{\mathbf{A}} = \xi^0 o^{\mathbf{A}} + \xi^1 \iota^{\mathbf{A}} \tag{4.14}$$

Z prvků báze lze pomocí dyadického součinu sestrojit Levi-Civitův spinor. S využitím normalizačních podmínek (4.13) a vlastnosti (4.11) dostaneme vztah

$$\epsilon_{AB} = o_A \iota_B - o_B \iota_A. \tag{4.15}$$

V transformaci spinorových složek na reálné souřadnice (4.7) máme komplexně sdružené složky spinorů, operace komplexního sdružení ale není uzavřená na prostor spinorů, což lze jednoduše ukázat když sečteme složky spinoru se složkami komplexně sdruženého - výsledný objekt má reálné složky. Operace komplexního sdružení tedy zobrazuje spinory na prostor komplexně sdružených spinorů a píšeme

$$\overline{\xi^A} = \overline{\xi}^{A'}. \tag{4.16}$$

Komplexním sdružením spinorové báze dostáváme bázi prostoru komplexně sdružených spinorů

$$\overline{o^A} = \overline{o}^{A'} = o^{A'}, \quad \overline{\iota^A} = \overline{\iota}^{A'} = \iota^{A'}.$$
 (4.17)

U Levi-Civitova spinoru je stejně jako u složek spin-báze konvence psát $\overline{\epsilon_{AB}} = \epsilon_{A'B'}$ a ne $\overline{\epsilon}_{A'B'}$ jak bychom mohli očekávat.

Nejobecnějším typem spinoru je pak spinor s tzv. valencí (p,q;r,s) který zapisujeme jako

$$\chi^{A\dots C} \stackrel{S'\dots U'}{D\dots F} \stackrel{W'\dots Y'}{W}, \tag{4.18}$$

který má p kontravariantních nečárkovaných indexů, q kontravariantních čárkovaných indexů, r kovariantních nečárkovaných indexů a s kovariantních čarkovaných indexů. Obecně platí

$$\chi^{AB'}_{CD'} = \chi^{B'A}_{D'C} = \chi^{A}_{C}_{D'}^{B'}, \tag{4.19}$$

tedy čárkované indexy můžeme libovolně prohazovat s něčárkovanými, musí ale zůstat pozice čárkovaných mezi sebou a nečárkovaných mezi sebou.

Nyní jsme kompletně vybaveni k přepsání vztahů (4.7) do zápisu čistě pomocí spinorů. Využijeme k tomu Infield-van der Waerdenovy symboly $\sigma_{\mu}^{AA'}$. Ty můžeme v Minkowského prostoru reprezentovat čtyřmi hermitovskými maticemi

$$\sigma_0^{AA'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1^{AA'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\sigma_2^{AA'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3^{AA'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(4.20)

Tyto symboly nám dávají propojení mezi world-tensory (překlad) a spinory. Komponenty (4.7) vektoru ležícího na světelném kuželu pomocí spinoru se složkami $\xi^A = (\zeta, \eta)$ zapíšeme jako

$$x^{\mu} = \bar{\xi}^{A'} \sigma^{\mu}_{AA'} \xi^A. \tag{4.21}$$

Dále zavedeme spinorovou formu vektoru x^{μ}

$$x^{AA'} = \sigma_{\mu}^{AA'} x^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} t + z & x - iy \\ x + iy & t - z \end{pmatrix}. \tag{4.22}$$

Je tohle správně? Je to jen speciální případ na Minkowského PČ - spinová struktura na varietě $\mathcal M$ je ekvivariantní lift frame bandlu - rozmyslet jak ten funguje Z Levi-Civitových spinorů a Infield-van der Waerdenových symbolů můžeme zkonstruovat metriku

$$g_{\mu\nu} = \epsilon_{AB}\epsilon_{A'B'}\sigma_{\mu}^{AA'}\sigma_{\nu}^{BB'}. \tag{4.23}$$

Obecně můžeme s pomocí těchto symbolů vyjádřit spinory libovolné valence jako tenzory a naopak.

Ve výpočtech se obvykle Infield-van der Waerdenovy symboly vynechávají a rovnou se píše

$$g_{\mu\nu} = \epsilon_{AB}\epsilon_{A'B'}.\tag{4.24}$$

Z tvaru Infield-van der Waerdenových symbolů je vidět korespondence mezi tenzorovými a spinorovými indexy, každému tenzorovému indexu odpovídají dva spinorové.

Pomocí spinorové báze můžeme zavést světelnou (nulovou) tetrádu vztahy

$$l^{a} = o^{A}o^{A'},$$

$$n^{a} = \iota^{A}\iota^{A'},$$

$$m^{a} = o^{A}\iota^{A'},$$

$$\bar{m}^{a} = \iota^{A}o^{A'}$$

$$(4.25)$$

kde l^a, n^a, m^a a \bar{m}^a jsou normalizované světelné vektory tvořící bázi.

4.2 Expandující gravitační vlny

4.2.1 Refrakční rovnice

Závěr

Seznam použité literatury

- [1] Jiří Bičák. Selected solutions of Einstein's field equations: Their role in general relativity and astrophysics. *Lect. Notes Phys.*, 540:1–126, 2000.
- [2] Roger Penrose. The geometry of impulsive gravitational waves, pages 101–115. 1972.
- [3] Jiří Podolský and Jerry B. Griffiths. Impulsive gravitational waves generated by null particles in de Sitter and anti-de Sitter backgrounds. *Phys. Rev. D*, 56:4756–4767, 1997.
- [4] Jiří Podolský, Clemens Sämann, Roland Steinbauer, and Robert Švarc. The global existence, uniqueness and C¹-regularity of geodesics in nonexpanding impulsive gravitational waves. Class. Quant. Grav., 32(2):025003, 2015.
- [5] Penrose Roger. Twistor quantisation and curved space-time. *Int J Theor Phys*, 1:61–99, 1968.
- [6] Jiří Podolský and Karel Veselý. New examples of sandwich gravitational waves and their impulsive limit. Czechoslovak Journal of Physics, 48(8):871– 878, 1998.
- [7] Jiří Podolský. Non-expanding impulsive gravitational waves. Classical and Quantum Gravity, 15(10):3229–3239, oct 1998.
- [8] Peter C. Aichelburg and Roman U. Sexl. On the gravitational field of a massless particle. *General Relativity and Gravitation*, 2(4):303–312, 1971.
- [9] M Hotta and M Tanaka. Shock-wave geometry with nonvanishing cosmological constant. Classical and Quantum Gravity, 10(2):307–314, feb 1993.
- [10] Jerry B. Griffiths and Jiří Podolský. Null multipole particles as sources of pp-waves. *Physics Letters A*, 236(1-2):8–10, dec 1997.
- [11] Jiří Podolský and Jerry B. Griffiths. Impulsive waves in de sitter and antide sitter space-times generated by null particles with an arbitrary multipole structure.
- [12] Ronald Steinbauer. Geodesics and geodesic deviation for impulsive gravitational waves. *Journal of Mathematical Physics*, 39(4):2201–2212, apr 1998.
- [13] Michael Kunzinger and Ronald Steinbauer. A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves. Journal of Mathematical Physics, 40(3):1479–1489, mar 1999.
- [14] Jiří Podolský and Marcello Ortaggio. Symmetries and geodesics in (anti-)de sitter spacetimes with non-expanding impulsive waves. *Classical and Quantum Gravity*, 18(14):2689–2706, jun 2001.
- [15] Alexej. F. Filippov. Differential equations with discontinuous righthand sides. Kluwer Academic Publishers, Dordrecht Netherlands Boston, 1988.

- [16] Jiří Podolský, Robert Švarc, Ronald Steinbauer, and Clemens Sämann. Penrose junction conditions extended: Impulsive waves with gyratons. *Physical Review D*, 96(6), 2017.
- [17] Jiří Podolský and Jerry B. Griffiths. Expanding impulsive gravitational waves. Classical and Quantum Gravity, 16(9):2937–2946, aug 1999.
- [18] Jiří Podolský, Clemens Sämann, Roland Steinbauer, and Robert Švarc. The global uniqueness and C¹-regularity of geodesics in expanding impulsive gravitational waves. Class. Quant. Grav., 33(19):195010, 2016.
- [19] Marián Fecko. Differential Geometry and Lie Groups for Physicists. Cambridge University Press, 2006.
- [20] Roger Penrose and Wolfgang Rindler. Spinors and Space-Time, volume 1 of Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1984.
- [21] Peter O'Donnell. Introduction to 2-Spinors in General Relativity. WORLD SCIENTIFIC, 2003.