	#Import the Libraries in Python import numpy as np import seaborn as sns import random import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.layers.core import Dense, Dropout, Activation # Types of Layers to be used in our model from keras.utils import np_utils # NumPy related tools
In [3]:	Data Loading gen = ImageDataGenerator(rescale = 1./255, rotation_range=8, width_shift_range=0.08, shear_range=0.3,
	<pre>class_mode = 'categorical',subset='training') test_gen = gen.flow_from_directory(r'C:\Users\kerby\Desktop\NTUC Learning Hub\Data Analytics Course\17. Capstone Project 4\natural_images',</pre>
Out[4]: In [5]: Out[5]:	<pre>np.array(train_gen[0][0]).shape (32, 150, 150, 3) np.array(train_gen[0][0][0]).shape (150, 150, 3)</pre>
Out[6]: In [8]:	<pre>np.array(train_gen[0][1][0]).shape (8,) train_gen[0][0][0] array([[[0.7192682 , 0.6604447 , 0.58440125],</pre>
	[0.151797 , 0.1583215, 0.15034016, [0.1503406], [0.150757 , 0.1568013, 0.1507597], [0.1508013, 0.1507597], [0.1568013, 0.1507597], [0.1568013, 0.1507597], [0.1568013, 0.1507597], [0.1568013, 0.1507597], [0.1508013, 0.1507597], [0.1508013, 0.1508023, 0.1508013, 0.1508013, 0.1508013, 0.1508013, 0.1508013, 0.1508023, 0.1508013, 0.1
	[[0.5921569 , 0.5568628 , 0.5294118], [0.5921569 , 0.5568628 , 0.5294118], [0.5921569 , 0.5568628 , 0.5294118],, [0.6708599 , 0.64225453, 0.5429419], [0.677251766 , 0.64837414 , 0.54724026], [0.67492235 , 0.6549012 , 0.5547979]]], dtype=float32)
	plt.imshow(train_gen[0][0]]) <matplotlib.image.axesimage 0x1315e4b04f0="" at=""> 20-40-60-80-100-120-120-120-120-120-120-120-120-12</matplotlib.image.axesimage>
In [7]:	<pre>Building a "Deep" Convolutional Neural Network from tensorflow.keras import Input, Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dropout, Dense from tensorflow.keras.callbacks import EarlyStopping model = Sequential() # Convolution Layer 1</pre>
	model_add(Carvi(2)2, (3, 3), input_shape(150,150,3)) # 32 different 3x3 kernels so 32 feature maps model_add(Carvi(xyeri)
	model.summary() Model: "sequential" Layer (type)
	activation (Attivation) (Mome, 148, 148, 32) 8 cure 2d, 1 (Conv.2D) (Mome, 146, 146, 32) 9248 batch, pormalization (Statch (Mome, 146, 146, 32) 128 activation, 1 (Activation) (Mome, 148, 146, 22) 0 max_pooling2d (Masseoling2D) (Mome, 73, 73, 32) 0 convad_2 (Conv2D) (Mome, 71, 71, 64) 38496 butch, normalization 2 (Statch (Mome, 71, 71, 64) 256 activation 2 (Activation) (Mome, 90, 90, 94) 39028 batch, pormalization 3 (Statch (Mome, 90, 90, 94) 256 activation_3 (Activation) (Mome, 69, 90, 64) 8 max_pooling2d_1 (MassPooling2 (Mome, 34, 34, 64) 8 Flatten (Flatten) (Mome, 73984) 8 flatten (Flatten) (Mome, 73984) 8 dense (Drese) (Mome, 128) 917889 batch_normalization_4 (Statch (Mome, 128) 812 activation_4 (Activation) (Mome, 128) 8
	dense_1 (Dense) (None, 8) 1032 activation_5 (Activation) (None, 8) 0
	model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # We can now train our model which is fed data by our batch Loader # Steps per epoch should always be total size of the set divided by the batch size # SIGNIFICANT MEMORY SAVINGS (important for larger, deeper networks) history = model.fit_generator(train_gen,
	Fpoch 3/15 172/172 [====================================
In [11]:	172/172 [====================================
	<pre>plt.plot(epoch_range, history.history['loss']) plt.plot(epoch_range, history.history['val_loss']) plt.title("Model losses per epoch") plt.xticks(epoch_range) plt.legend(['Training', 'Validation']) plt.subplot(1,2,2) plt.plot(epoch_range, history.history['accuracy']) plt.plot(epoch_range, history.history['val_accuracy']) plt.title("Model accuracies per epoch") plt.xticks(epoch_range) plt.legend(['Training', 'Validation'])</pre>
Out[11]:	Model losses per epoch Model losses per epoch Model accuracies per epoch 09 08 08 07 06 15 06 05 06 07 08 08 08 07 08 08 08 09 08 08 08 08 08 09 08 08 08 09 08 08 08 08 09 08 08 08 08 09 08 08 08 08 09 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 08 08 08 09 08 08 09 08 08 08 09 08 08 09 08 08 09 08 08 09 09 08 09 09 08 09 <p< th=""></p<>
In [12]:	Test Accuracy score = model.evaluate(test_gen) print('Test score:', score[0]) print('Test accuracy:', score[1]) 44/44 [=================================
In [13]:	<pre>classes = ['airplane','car','dog','flower','fruit','motorbike','person'] x_test = [] y_test = [] for i in range(len(test_gen)): x_test += list(test_gen[i][0]) y_test += list(test_gen[i][1])</pre>
Out[15]: In [16]:	<pre>x_test = np.array(x_test) x_test.shape (1377, 150, 150, 3) y_test = np.array(y_test) y_test.shape (1377, 8)</pre>
In [17]:	<pre>y_pred = model.predict(x_test) y_pred_idx = np.argmax(y_pred, axis=-1) y_test_idx = np.argmax(y_test, axis=1) from sklearn.metrics import classification_report, confusion_matrix print(classification_report(y_test_idx, y_pred_idx))</pre>
	0 0.99 0.80 0.89 145 1 0.99 0.93 0.96 193 2 0.79 0.86 0.82 177 3 0.72 0.79 0.75 140 4 0.96 0.93 0.95 168 5 0.96 1.00 0.98 200 6 0.97 0.98 0.98 157 7 0.98 0.99 0.98 197
In [19]:	accuracy
In [20]:	<pre>[1 0 5 4 157 0 0 1] [0 0 0 200 0 0] [0 0 0 2 0 1 154 0] [0 0 0 0 0 1 0 196]] # Plot the confusion matrix using Seaborn library plt.figure(figsize=(9,7)) _ = sns.heatmap(confusion_matrix(y_test_idx, y_pred_idx),</pre>
	### ##################################
In [21]: In [22]:	<pre>classes = ['airplane', 'car', 'dog', 'flower', 'fruit', 'motorbike', 'person'] # Plot a random sample of test images, their predicted labels and ground truth figure = plt.figure(figsize=(20, 8)) for i, index in enumerate(np.random.choice(x_test.shape[0], size=15, replace=False)): ax = figure.add_subplot(3, 5, 1 + 1, xticks=[])</pre>
	fruit (fruit) person (person) cat (cat) person (person) fruit (fruit) fruit (fruit) fruit (fruit) motorbike (motorbike) fruit (fruit) motorbike (motorbike) fruit (fruit) motorbike (motorbike)
In [3]:	Test using Google Image from PIL import Image from numpy import assarray def predict_pic(picture): """ takes in a jpg file> 'pic.jpg' """ image = Image.open(picture) #Load the image image_resize = np.array(image.resize((150,150))) #Resize the image plt.imshow(image_resize) image_pred = model.predict(image_resize, 0) image_pred = model.predict(image_resize_expand) #Calling out model. image_pred idx = int(np.argmax(image_pred, axis=-1)) print('Predicted image is:', classes[image_pred_idx])
In [39]:	predict_pic('apple.jpg') NameError (ipython-input-5-2e033c56d903> in <module>> 1 predict_pic('apple.jpg') (ipython-input-4-b2b635668leb> in predict_pic(picture) 3 4 image = Image.open(picture) #Load the image> 5 image_resize = pp.array(image.resize) 6 plt.imshow(image_resize) 7 image_resize_expand = np.expand_dims(image_resize) NameError: name 'np' is not defined predict_pic('grape.jpg') Predicted image is: fruit</module>
In [27]:	predict_pic('sunflower.jpg') Predicted image is: flower
In [29]:	Description of the state of the
Out[29].	image_pred = model.predict(np.expand_dims(test_gen[2][0][12],0)) image_pred_idx = int(np.argnax(image_pred_axis=-1)) print('Predicted image_ist'; classes[image_pred_idx)]