## PH100: Mechanics and Thermodynamics

### **Lecture 3**



Ajay Nath

#### Polar and Cartesian coordinates:



If polar coordinates  $(r, \theta)$  of a point in the plane are given, the Cartesian coordinates (x, y) can be determined from the coordinate transformations

$$x = r \cos \theta$$
  $r = +(x^2 + y^2)^{1/2}$   
 $y = r \sin \theta$   $\theta = \tan^{-1}(y/x)$ 

Note:  $r \ge 0$  so take the positive square root only.

Since 
$$\tan \theta = \tan(\theta + \pi)$$
  
For  $0 \le \theta \le \pi/2$   $x \ge 0$  and  $y \ge 0$   
For  $(-x, -y)$  take  $\theta + \pi$ 

# **Unit Vectors in Polar coordinates**



The position vector  $\vec{r}$  in polar

coordinate is given by:

In Cartesian coordinate:  $\vec{r} = x\hat{i} + y\hat{j}$ 

Therefore:  $\vec{r} = r \cos \theta \hat{i} + r \sin \theta \hat{j}$ 

The unit vectors are defined as :  $\hat{r} = \frac{\partial \vec{r}/\partial r}{|\partial \vec{r}/\partial r|} = \cos\theta \hat{i} + \sin\theta \hat{j}$ 

$$\hat{i} = \cos\theta \, \hat{r} - \sin\theta \, \hat{\theta}$$

$$\hat{j} = \sin\theta \, \hat{r} + \cos\theta \, \hat{\theta}$$

$$\hat{\theta} = \frac{\partial \vec{r}/\partial\theta}{|\partial \vec{r}/\partial\theta|} = -\sin\theta \, \hat{i} + \cos\theta \, \hat{j}$$

#### **Unit Vectors in Polar coordinates**

Define at each point, a set of two unit vectors  $\hat{\mathbf{r}}$  and  $\hat{\theta}$  as shown in the figure.

$$\hat{\mathbf{r}} = \mathbf{i}\cos\theta + \mathbf{j}\sin\theta$$

$$\hat{\theta} = -\mathbf{i}\sin\theta + \mathbf{j}\cos\theta$$

#### Unit vectors only depend on $\theta$

unit vectors are functions of the polar coordinates



#### Velocity and acceleration in polar coordinates

## Velocity in polar coordinate:

The position vector  $\vec{r}$  in polar coordinate is given by :  $\vec{r}=r\hat{r}$ 

And the unit vectors are:  $\hat{r} = \cos\theta \hat{i} + \sin\theta \hat{j}$  &  $\hat{\theta} = -\sin\theta \hat{i} + \cos\theta \hat{j}$ 

Since the unit vectors are not constant and changes with time, they should have finite time derivatives:



$$\dot{\hat{r}} = \dot{\theta} \left( -\sin\theta \hat{i} + \cos\theta \hat{j} \right) = \dot{\theta} \hat{\theta} \quad \text{and} \quad \dot{\hat{\theta}} = \dot{\theta} \left( -\cos\theta \hat{i} - \sin\theta \hat{j} \right) = -\dot{\theta} \hat{r}$$

Therefore the velocity is given by: 
$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{r}\hat{r} + r\dot{\hat{r}} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

Radial velocity + tangential velocity

$$= \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j}$$

# Example-1: Uniform Circular Motion



Since  $\vec{v}$  is along  $\hat{\theta}$  it must be perpendicular to the radius vector  $\vec{r}$  and it can be shown easily

$$R^2 = \vec{\mathbf{r}} \cdot \vec{\mathbf{r}} \qquad \frac{d}{dt} R^2 = \frac{d}{dt} (\vec{\mathbf{r}} \cdot \vec{\mathbf{r}}) = 2 \vec{\mathbf{r}} \cdot \vec{\mathbf{v}} = 0, \qquad \vec{\mathbf{r}} \perp \vec{\mathbf{v}}$$

#### Why polar coordinates?

# Fxample-2: Velocity of a Bead on a Spoke



A bead moves along the spoke of a wheel at constant speed u meters per second. The wheel rotates with uniform angular velocity  $\dot{\theta} = \omega$  radians per second about an axis fixed in space. At t=0 the spoke is along the x axis, and the bead is at the origin. Find the velocity at time t

In polar coordinates : r = ut,  $\dot{r} = u$ ,  $\dot{\theta} = \omega$ . Hence

$$\mathbf{v} = \dot{r}\hat{\mathbf{r}} + r\theta\hat{\mathbf{0}} = u\hat{\mathbf{r}} + ut\omega\hat{\mathbf{0}}.$$

To specify the velocity completely, we need to know the direction of  $\hat{\mathbf{r}}$  and  $\hat{\mathbf{\theta}}$ . This is obtained from  $\mathbf{r}=(r,\theta)=(ut,\omega t)$ .

In cartesian coordinates:  $v_x = v_r \cos \theta - v_\theta \sin \theta$   $v_y = v_r \sin \theta + v_\theta \cos \theta$ .

Since  $v_r = u$ ,  $v_\theta = r\omega = ut\omega$ ,  $\theta = \omega t$ ,  $\mathbf{v} = (u\cos\omega t - ut\omega\sin\omega t)\mathbf{i} + (u\sin\omega t + ut\omega\cos\omega t)\mathbf{j}$ 

Note how much simpler the result is in plane polar coordinates.

Symmetry is important.

#### Acceleration in Polar coordinate:

$$\mathbf{a} = \frac{d}{dt}\mathbf{v}$$

$$= \frac{d}{dt}(\hat{r}\hat{\mathbf{r}} + r\theta\hat{\mathbf{o}})$$

$$= \hat{r}\hat{\mathbf{r}} + \hat{r}\frac{d}{dt}\hat{\mathbf{r}} + \dot{r}\theta\hat{\mathbf{o}} + r\theta\hat{\mathbf{o}} +$$

The term  $\hat{r}\hat{\mathbf{r}}$  is a linear acceleration in the radial direction due to change in radial speed. Similarly,  $r\hat{\theta}\hat{\mathbf{\theta}}$  is a linear acceleration in the tangential direction due to change in the magnitude of the angular velocity.

The term  $-r\dot{\theta}^2\hat{\mathbf{r}}$  is the centripetal acceleration Finally, the Coriolis acceleration  $2\dot{r}\dot{\theta}\hat{\theta}$ 

Usually, Coriolis force appears as a fictitious force in a rotating coordinate system. However, the Coriolis acceleration we are discussing here is a real acceleration and which is present when r and  $\theta$  both change with time.

# Example-1: Circular motion



$$\vec{a} = a_r \hat{r} + a_\theta \hat{\theta}$$

$$\begin{split} \vec{a} &= a_r \hat{r} + a_\theta \hat{\theta} \\ a_r &= \ddot{r} - r \dot{\theta}^2, \quad a_\theta = r \ddot{\theta} + 2 \dot{r} \dot{\theta} \end{split}$$

For a circular motion, r = R, the radius of the circle.

Hence, 
$$\dot{r} = \ddot{r} = 0$$

So, 
$$a_{\theta} = R\ddot{\theta}$$
 and  $a_{r} = -R\dot{\theta}^{2}$ 

For uniform circular motion,  $\dot{\theta} = \omega = \text{constant}$ . Hence,  $a_{\theta} = R \frac{d\omega}{dt} = 0$ 

For non-uniform circular motion,  $\omega$  is function of time. Hence,  $a_{\theta} = R \frac{d\omega}{dt} = R\alpha$ ,

where  $\alpha=\frac{d\omega}{dt}$  is the angular acceleration. However, the radial acceleration is always  $a_{r}=-R\dot{\theta}^{2}=-R\omega^{2}$ 

$$a_r = -R\dot{\theta}^2 = -R\omega^2$$

Therefore, an object traveling in a circular orbit with a constant speed is always accelerating towards the center. Though the magnitude of the velocity is a constant, the direction of it is constantly varying. Because the velocity changes direction, the object has a nonzero acceleration.

#### Example-2: Acceleration of a Bead on a Spoke

A bead moves outward with constant speed u along the spoke of a wheel. It starts from the center at t=0. The angular position of the spoke is given by  $\theta=\omega t$ , where  $\omega$  is a constant. Find the velocity and acceleration.

$$\mathbf{v} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\mathbf{\theta}}$$

We are given that  $\dot{r}=u$  and  $\dot{\theta}=\omega$ . The radial position is given by r=ut, and we have

$$\mathbf{v} = u\hat{\mathbf{r}} + ut\omega\hat{\mathbf{\theta}}.$$

The acceleration is

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\hat{\mathbf{r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\mathbf{\theta}}$$
$$= -ut\omega^2\hat{\mathbf{r}} + 2u\omega\hat{\mathbf{\theta}}.$$

Consider a particle moving on a spiral given by  $r=a\theta$  with a uniform angular speed  $\omega$ . Then  $\dot{r}=a\dot{\theta}=a\omega$ .





Though the magnitude of radial velocity is constant there is a radial acceleration.

# Motion: Kinematics in 1D

The motion of the particle is described specifying the position as a function of time, say,  $x\left(t\right)$ .

The instantaneous velocity is defined as

$$v\left(t\right) = \frac{dx}{dt}$$

and instantaneous acceleration, as

(2) 
$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Example

If 
$$x(t) = \sin(t)$$
, then  $v(t) = \cos(t)$  and  $a(t) = -\sin(t)$ .



Usually the x(t) is not known in advance!

But the acceleration a(t) is known and at some given time, say  $t_0$ , position  $x(t_0)$  and velocity  $v(t_0)$  are known.

The formal solution to this problem is

$$v(t) = v(t_0) + \int_{t_0}^t a(t') dt'$$

$$x(t) = x(t_0) + \int_{t_0}^t v(t') dt'$$

Let the acceleration of a particle be  $a_0$ , a constant at all times. If, at t=0 velocity of the particle is  $v_0$ , then

$$v(t) = v_0 + \int_0^t a_0 dt$$
$$= v_0 + a_0 t$$

And if the position at t = 0 is  $x_0$ ,

$$x(t) = x_0 + v_0 t + \frac{1}{2}a_0 t^2$$

More complex situations may arise, where an acceleration is specified as a function of position, velocity and time.  $a\left(x,\dot{x},t\right)$ . In this case, we need to solve a differential equation

#### Example

$$\frac{d^2x}{dt^2} = a\left(x, \dot{x}, t\right)$$

which may or may not be simple.

Suppose a ball is falling under gravity in air, resistance of which is proportional to the velocity of the ball.

$$a\left(\dot{y}\right) = -g - k\dot{y}$$

If the ball was just dropped, velocity of the ball after time then

$$v(t) = -\frac{g}{k} \left( 1 - e^{-kt} \right)$$



time

#### Kinematics in 2D

The instantaneous velocity vector is defined as

$$\mathbf{v}(t) = \frac{d}{dt}\mathbf{r}$$

$$= \lim_{dt \to 0} \frac{\mathbf{r}(t + dt) - \mathbf{r}(t)}{dt}$$

$$= \lim_{dt \to 0} \frac{x(t + dt) - x(t)}{dt} \mathbf{i} + \lim_{dt \to 0} \frac{y(t + dt) - y(t)}{dt} \mathbf{j}$$

$$= \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j}$$

The instantaneous acceleration is given by:

$$\mathbf{a}(t) = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j}$$

# **Kinematics in 2D**

In this case, we have to solve two differential equations

$$\frac{d^2x}{dt^2} = a_x$$

# $\frac{d^2y}{dt^2} = a_y$

#### **Example**

A ball is projected at an angle  $\theta$  with a speed u. The net acceleration is in downward direction. Then  $a_x=0$  and  $a_y=-g$ . The equations are

$$\frac{d^2x}{dt^2} = 0$$

$$\frac{d^2y}{dt^2} = -g$$

# Charge particle in a magnetic field

A particle has a velocity v in XY plane. Magnetic field is in z direction The acceleration is given by  $\frac{q}{m}\mathbf{v}\times\mathbf{B}$ 

$$\frac{d^2x}{dt^2} = \frac{qB}{m}v_y$$

$$\frac{d^2y}{dt^2} = -\frac{qB}{m}v_x$$

Solution is rather simple, that is circular motion in xy plane.

# Thank You