Spiegler (2016, QJE) Bayesian Networks and Boundedly Rational Expectations

Kyohei Okumura*

September 8, 2018

1 Motivation

- nonrational expectation
- nonrational expectations

2 Approach

- DAG(directed acyclic graph)Causality model
- objective probability distributions $p(x_1, ..., x_n)$ DAG Rfitsubjective belief $p_R(x_1, ..., x_n)$
- (i.e. $p_R(x) \equiv p(x)$)(personal equilibrium)

3 Contribution

- 1. Bayesian network factorization formula (bayesian network)
 - •
 - $Rp(x_{-1} | x_1)p_R(x_{-1} | x_1)$
- 2. Causal/Statistical reasoning
 - reverse causation (): DAG
 - removal of a link (): DAG
 - IllustrationsGeneral Analysis
- 3. General characterizations of choice behavior
 - rationalirrational
 - causality model Rcausality model R'(:)
- 4. Bayesian networks as a unifying framework
 - nonrational expectation

^{*}E-mail: kyohei.okumura@gmail.com

4 Model

- $X := X_1 \times \cdots \times X_N$: a finite set of states. $X_1 = A$
- $p \in \Delta(X_1, ..., X_n)$: objective probability distribution
- $X_i\widetilde{X}_i$ $(i \in [n])$
- causality model: DAG (N, R), (NRDAG)
 - the set of nodes $N := \{1, \ldots, n\} \ (i \in N\widetilde{X}_i)$
 - the set of edges $R := N \times N$.
 - (i, j) ∈ Nnode inode $ji \rightarrow j$
 - :ij
 - $R(i) := {j ∈ N | (j,i) ∈ R}: node i$
 - $-M\subseteq Nx_M:=(x_i)_{i\in M}.$

e.g. 4.1 (DAG). $N := \{1, 2, ..., 7\}$, $R := \{(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (4, 7), (5, 7), (6, 5), (6, 7)\}$ $R(5) = \{2, 6\}, x_{R(5)} = (x_2, x_6), Descendants(6) = \{5, 7\}, NonDescendants(6) = \{1, 2, 3, 4\}$

- $DMpR()p_R$
- $p = p_R$

$$p_R(x) := \prod_{i=1}^n p(x_i \mid x_{R(i)})$$

$$\max_{p(x_1)} \sum_{x_{-1}} p_R(x_{-1} \mid x_1) u(x)$$

e.g. 4.2 (p_R) . Fix $N := \{1,2,3\}$ and $p \in \Delta(X_1,X_2,X_3)$. Suppose that DM has his subjective DAG $R: 1 \to 2 \leftarrow 3$. Then, he constructs his subjective belief p_R as follows:

$$p_R(x_1, x_2, x_3) := p(x_1)p(x_3)p(x_2 \mid x_1, x_3)$$

Lem. 4.1 (p_R is a probability distribution). For any $p \in \Delta(X)$, the function $p_R : X \to [0,1]$ is also a probability distribution, i.e., $p_R \in \Delta(X)$.

Proof. Assume w.l.o.g. that (1, ..., n) are topologically sorted. ¹ Then,

$$\sum_{x} p_{R}(x) = \sum_{x_{1}} \cdots \sum_{x_{n}} \prod_{i=1}^{n} p(x_{i} \mid x_{R(i)})$$

$$= \sum_{x_{1}} \cdots \sum_{x_{n-1}} \prod_{i \leq n-1} p(x_{i} \mid x_{R(i)}) \underbrace{\sum_{x_{n}} p(x_{n} \mid x_{R(n)})}_{=1}$$

$$= \sum_{x_{1}} \cdots \sum_{x_{n-1}} \prod_{i \leq n-1} p(x_{i} \mid x_{R(i)})$$

$$= \cdots$$

$$= 1$$

Def. 4.1 (consistent). p is consistent with R(, or p factorizes over <math>R)

$$\stackrel{\Delta}{\Longleftrightarrow} p(x) = \prod_{i=1}^n p(x_i \mid x_{R(i)}) \Longleftrightarrow p = p_R$$

• objective probability distribution p is consistent with the true DAG R^* .

Ass. 4.1. node 1 is ancestral in both R and R^* , i.e., $R(1) = R^*(1) = \emptyset$.

Def. 4.2 (Conditional Independence). $V := \{V_1, \dots, V_n\}$: a set of random variables, $X, Y, Z \subseteq V$.

$$X \perp Y \mid Z \iff [p(Y = y, Z = z) > 0 \implies p(X = x \mid Y = y, Z = z) = p(X = x \mid Z = z)]$$

Lem. 4.2 (local independencies). *p factorizes over R iff the following holds:*

$$\widetilde{X}_{NonDescendants(i)} \perp \widetilde{X}_i \mid \widetilde{X}_{R(i)}$$

Cor. 4.1. *Let* R *be a DAG. Suppose that* $R' \supseteq R$ *and* R' *is also a DAG. If* p *is consistent with* R, *then* p *is also consistent with* R'.

Proof. Suppose that $R' \supseteq R$, and p is consistent with R. Assume w.l.o.g that (N, R) is topologically sorted. Since p is consistent with R, $p(x) = \prod_i p(x_i \mid x_{R(i)})$. Consider the term $p(x_i \mid x_{R(i)})$ for each i. Since R' is a DAG, $x_{R'(i)} = x_{R(i)}$, or $x_{R'(i)} = x_{R(i)} \sqcup x_{N'}$, where $N' \subseteq \text{NonDescendants}(i)$; otherwise, R' has a cycle. Then, by Lem.4.2, $p(x_i \mid x_{R'(i)}) = p(x_i \mid x_{R(i)})$. □

e.g. 4.3 (local independencies). *bayesian network structure R (i.e. DAG)pDifficulty: , Intelligence: , Grade: , SAT: SAT, Letter:*

 $R(Letter) = \{Grade\}$, NonDescendants(Letter) = $\{Difficulty, Intelligence, SAT\}$. p is consistent with R^2 p Difficulty \perp Letter \mid Grade

¹DAGnode $i \rightarrow j \implies i < j$ (i.e. $f : N \rightarrow N(i,j) \in R \implies f(i) < f(j))ij > ij ∉ R(i)$.

 $^{^{2}}p$ factorizes over (N, R)DAG((N, R), p) bayesian network

- historical database interpretation
 - DMDMs
 - true distribution p
 - DMcausal model $ip_R(x_i \mid x_{R(i)})$
 - $p_R(x)(p(a))_a p_R \equiv p()$
 - $p = p_R$ causality model Rdata(objective distrib.)

•

- $p_R(y \mid a)(p(a))_a p_R(y \mid a)$ given $(p(a))_a$
- "trembling": $ap_R(y \mid a)p(a) > 0$

Def. 4.3 (ε -perturbed personal equilibrium). *Fix R and* $\varepsilon > 0$. *A distribution* $p \in \Delta(X)$ *with full support on A is an* ε -perturbed personal equilibrium $\stackrel{\triangle}{\Longrightarrow}$

$$\forall a \in A; \ p(a) > \varepsilon \implies a \in \underset{a'}{\operatorname{argmax}} \sum_{y} p_R(y \mid a') u(a', y)$$

Def. 4.4 (personal eqm.). $p^* \in \Delta(X)$ is a personal eqm.

 $\stackrel{\Delta}{\Longleftrightarrow}$

 $\exists (\varepsilon_k)_k \ \exists (p_k)_k; \ \varepsilon_k \to 0, \ p_k : \varepsilon_k$ -perturbed personal equilibrium, $p_k \to p^*$

Prop. 4.1 (Proposition 2). *For any DAG R, there exists a personal equilibrium.*

Proof. We show the following statement:

$$\forall (p(y \mid a))_{y,a} \exists (p(a))_a; p \text{ is PE, where } p(a,y) := p(y \mid a)p(a)$$

Fix $(p(y \mid a))_{y,a}$. Define $Q^{\varepsilon} \subseteq \Delta(A)$ as follows:

$$Q^{\varepsilon} := \{ \pi \in \Delta(A) \subseteq R^{|A|} \mid \forall a \in A; \pi(a) \ge \varepsilon \}$$

For each $\pi \in Q^{\varepsilon}$, define p^{π} , $p_{R}^{\pi}(a, y)$ as

$$p^{\pi}(a,y) := \pi(a)p(y \mid a), \ p_{R}^{\pi}(a,y) := \prod_{i=1}^{n} p^{\pi}(x_{i} \mid x_{R(i)})$$

Next, define a correspondence BR : $Q^{\varepsilon} \rightrightarrows Q^{\varepsilon}$ as follows:

$$\mathrm{BR}(\pi) := \operatorname*{argmax}_{\rho \in \mathrm{Q}^\varepsilon} \underbrace{\sum_{a} \rho(a) \sum_{y} p_R^\pi(y \mid a) u(a,y)}_{=:h(\rho,\pi)}.$$

Lem. 4.3 (Kakutani's theorem). Suppose the following conditions:

- $F: X \Rightarrow X$ is convex-valued, nonempty-valued and has a closed graph.
- *X is convex, compact, nonempty.*

Then, there exists $x \in X$ such that $x \in F(x)$.

Lem. 4.4 (Berge's theorem). • $f: X \times \Theta \to \mathbb{R}$: continuous.

- $\Gamma: \Theta \Rightarrow X$: compact-valued, continuous.
- $v(\theta) := \max_{x \in \Gamma(\theta)} f(x, \theta)$
- $x^*(\theta) := \operatorname{argmax}_{x \in \Gamma(\theta)} f(x, \theta)$

Then, v is continuous, and x^* is u.s.c.

Lem. 4.5 (Sufficient condition for the closed graph). $F: X \Rightarrow X$ has a closed graph if F is closed-valued and F is u.s.c.

Step 1: BR has a fixed point. For sufficiently small $\varepsilon > 0$, Q^{ε} is convex, compact, and nonempty. $h(\rho) \equiv h(\rho, \pi)$ is linear in ρ ; hence, ρ is continuous and quasi-concave in ρ .

- Since *h* is continuous in ρ and Q^{ε} is compact, $BR(\pi) \neq \emptyset$ for all $\pi \in Q^{\varepsilon}$.
- Since *h* is continuous, $BR(\pi)$ is closed.
- Since h is quasi-concave, $BR(\pi)$ is convex.

Then, we need to show that $BR(\pi)$ has a closed graph. Since $BR(\pi)$ is closed-valued, it is sufficient to show that $BR(\pi)$ is u.s.c. Let $X \times \Theta := Q^{\varepsilon} \times Q^{\varepsilon}$ is the statement of Berge's theorem. Since $\Gamma(\theta) \equiv Q^{\varepsilon}$ (constant), Γ is continuous and compact. We can show that $h(\rho,\pi)$ is continuous not only in ρ but also in pi. ($\because p^{\pi}(a,y)$ is continuous in π , and then $p_R^{\pi}(a,y)$ and $p^{\pi}(y\mid a)$ are also continuous in π .) As h is a function defined on a finite dimensional Euclidean space, h is continuous in (ρ,π) . By Berge's theorem, $BR(\pi)$ is u.s.c. in π ; therefore, BR has a fixed point, i.e.,

$$\exists \pi \in Q^{\varepsilon}; \ \pi \in BR(\pi).$$

Step 2: p^{π} **is** ε **-PE.** Note that

$$\pi \in \underset{\rho \in Q^{\varepsilon}}{\operatorname{argmax}} \sum_{a} \rho(a) \sum_{y} p_{R}^{\pi}(y \mid a) u(a, y).$$

Consider the slightly modified version of the definition of ε -PE:

Def. 4.5 (\varepsilon-PE (*)).
$$p \in \Delta(X)$$
 s.t. $\forall a \in A$; $p(a) \ge \varepsilon$ is \varepsilon-PE (*)
$$\Leftrightarrow \Delta \Rightarrow \qquad \forall a \in A : p(a) > \varepsilon \implies a \in \operatorname{argmax} \sum p_B(u \mid a') u(a' \mid u)$$

$$\forall a \in A; \ p(a) \ge \varepsilon \implies a \in \underset{a'}{\operatorname{argmax}} \sum_{y} p_R(y \mid a') u(a', y)$$
 (1)

Lem. 4.6 (The set of PEs remains the same). Consider two sets of PEs: one is the set of PEs under the original definition of ε -PE, \mathcal{E} ; the other is the set of PEs under the original definition of ε -PE (\star), \mathcal{E}' . Then, $\mathcal{E} = \mathcal{E}'$.

 $\mathcal{E}' \subseteq \mathcal{E}$ clearly holds. Fix $p^* \in \mathcal{E}$ and a corresponding sequence $(\varepsilon_k, p_k)_k$. Let $\varepsilon_k' := \min\{\varepsilon_k, p_k(a)\}$. Then, $p_k' \to p^*$ and p_k' is ε_k' -PE. This completes the proof of Lem.4.6.

Here, we show that p^{π} is a ε -PE (\star). Note that π satisfies the condition that $\pi(a) \ge \varepsilon$ for all $a \in A$. Suppose toward contradiction that

$$\exists a \in A; \pi(a) > \varepsilon, \ a \notin \underset{a'}{\operatorname{argmax}} \underbrace{\sum_{y} p_{R}^{\pi}(y \mid a') u(a', y)}_{=:U(a')}$$

Pick some $a^* \in \operatorname{argmax}_{a'} U(a')$. (Since A is finite, we can pick such a^* .) Define $\widetilde{\pi} \in Q^{\varepsilon}$ as follows:

$$\widetilde{\pi}(a') = \begin{cases} \pi(a') + \frac{\pi(a) - \varepsilon}{2} & (a' = a^*) \\ \pi(a') - \frac{\pi(a) - \varepsilon}{2} & (a' = a) \\ \pi(a') & \text{o.w.} \end{cases}$$

Note that $\widetilde{\pi} \in Q^{\varepsilon}$ certainly holds. It suffices to check $\widetilde{\pi}(a) \geq \varepsilon$:

$$\widetilde{\pi}(a) = \frac{2\pi(a) - \pi(a) + \varepsilon}{2} = \frac{\pi(a) + \varepsilon}{2} \ge \varepsilon \quad (\because \pi \in Q^{\varepsilon})$$

Observe that $\sum_a \widetilde{\pi}(a)U(a) > \sum_a \pi(a)U(a)$. This contradicts $\pi \in BR(\pi)$. Therefore, p^{π} is a ε -PE (\star).

Step 3: At least one PE p^* exists. So far, we have shown that ε -PE exists (as long as ε is small enough.) Fix some sequence $(\varepsilon^k)_k \subseteq \mathbb{R}$ such that $\varepsilon^k \to 0$. Let p^k be a ε -PE for each k. Note that $(p^k)_k \subseteq \Delta(X) \subseteq \mathbb{R}^{|X|}$. Since $(p^k)_k$ is a sequence in a compact subset of a finite dimensional Euclidean space, $(p^k)_k$ has a convergent subsequence $(p^{k_m})_m$ such that $(p^{k_m})_m \to p^* \in \Delta(X)$. This p^* is PE. \square

5 Illustrations

• Reverse causation: Dieter's dilemma

• Coarseness I: Demand for Education

• Coarseness II: Public Policy

5.1 Reverse causation: Dieter's dilemma

• Three variables: *a*, *h*, *c*:

- DM's choice(diet or not), health outcome(good or bad), chemical level(high or low)

• DMc, h

5.1.1 Rational DM

• True DAG: $R^*: a \rightarrow c \leftarrow h$

$$-pp(a,h,c) = p(a)p(h)p(c \mid a,h)$$

- DMrational(i.e. causality)

$$\max_{a} \sum_{h} \sum_{c} p(h) p(c \mid a, h) u(a, h, c)$$

5.1.2 Irrational DM

• DMcausality model $R: a \rightarrow c \rightarrow h$

• ppersonal eqm.p(a') > 0a'

$$a' \in \underset{a}{\operatorname{argmax}} \sum_{h} \sum_{c} p(h \mid c) p(c \mid a) u(a, h, c)$$

5.1.3 Solving for the personal eqm.

• Rpersonal eqm.

•

-
$$a, c, h \in \{0, 1\}$$

- $u(a, h, c) = u(a, h) := h - \kappa a$
- $p(h = 1) = p(h = 0) = 1/2, h \perp a, c = (1 - h)(1 - a)$

• DMrational $p_{R^*}(h \mid a) = p(h)a^* := 0$

Prop. 5.1 (personal eqm. in Dieter's dillemma). *In this case, there is a unique personal eqm p:*

$$p(a=0) = \begin{cases} 0 & (\kappa \le 1/4) \\ 2 - \frac{1}{2\kappa} & (\kappa \in (1/4, 1/2)) \\ 1 & (\kappa \ge 1/2) \end{cases}$$

6

Proof. personal eqm. $p\beta := p(a = 0) \in [0, 1]p$ specification

$$p(c = 0 \mid a = 1) = 1, p(c = 0 \mid a = 0) = \frac{1}{2}, p(h = 1 \mid c = 1) = 0, p(h = 1 \mid c = 0) = \frac{1}{2 - \beta}$$

$$p_R(h=1 \mid a=0) = p(h=1 \mid c=0)p(c=0 \mid a=0) + p(h=1 \mid c=1)p(c=1 \mid a=0)$$
$$= \frac{1}{2-\beta} \frac{1}{2}$$

$$p_R(h = 1 \mid a = 1) = p(h = 1 \mid c = 0)p(c = 0 \mid a = 1) + p(h = 1 \mid c = 1)p(c = 1 \mid a = 1)$$
$$= \frac{1}{2 - \beta}$$

 $\sum_{h} p(h \mid a) u(a,h) a$

$$\sum_{h} p_{R}(h \mid a' = 0)u(a' = 0, h) = p_{R}(h = 1 \mid a' = 0) \cdot 1$$

$$= \frac{1}{2} \frac{1}{2 - \beta}$$

$$\sum_{h} p_{R}(h \mid a' = 1)u(a' = 1, h) = \frac{1}{2 - \beta} (1 - \kappa) + \left(1 - \frac{1}{2 - \beta}\right)$$

$$= \frac{1}{2 - \beta} - \kappa$$
(E1)

Case (i): $\beta \in (0,1)$ $\beta > \varepsilon$, $1 - \beta > \varepsilon \varepsilon > 0$ personal eqm.(E0) = (E1)

$$\beta = 2 - \frac{1}{2\kappa}$$

personal eqm. $\varepsilon_k \to 0$ $p_k := (\beta, 1 - \beta) k p_k \varepsilon_k$ -perturbed personal eqm. $p_k \to p$ ok

Case (ii): $\beta = 0$ $1 - \beta > \varepsilon$ $\varepsilon(E0) \le (E1)$ $(E0) \le (E1) \iff \kappa \le 1/4$. personal eqm. $\kappa \le 1/4\varepsilon_k \to 0$ $p_k := (0,1)kp_k\varepsilon_k$ -perturbed personal eqm $p_k \to p$ ok

Case (iii):
$$\beta = 1$$
 Case (ii)

Interpretation:

- dietirrational DMdiet
- DMa = 0DMc, hnegative correlation
- $a \rightarrow c \rightarrow ha \uparrow \rightarrow c \downarrow \rightarrow h \uparrow$
- p(a = 1) > 0
- $a = 1c, h(p(h = 1 \mid c = 0) = \frac{1}{2-\beta})$

5.2 Coarseness I: Demand for Education

- a, θ, s, w : parent's investment, child's innate ability, school performance, wage
- true DAG R*:

$$\max_{a} \sum_{\theta} p(\theta) \sum_{s} p(s \mid a, \theta) \sum_{w} p(w \mid \theta, s) u(a, w)$$

• DM's subjective DAG *R* :

$$\max_{a} \sum_{s} p(s \mid a) \sum_{w} p(w \mid s) u(a, w)$$

- θ
- $a \in [0,1], s, \theta, w \in \{1,0\}$
- $u(a, w) := w \kappa(a)$
- κ : twice-differentiable, increasing, weakly convex. (i.e. $\kappa' > 0$, $\kappa'' \le 0$), $\kappa'(0) = 0$, $\kappa'(1) \ge 1$.
- $p(s = 1 \mid a, \theta) = a\theta$, $p(w = 1 \mid s, \theta) = \theta\beta_s$ $(\beta_1 > \beta_0)$, $p(\theta = 1) = \delta > 0$.

5.2.1 rational DM's choice

$$\max_{a} \{ \delta[a\beta_1 + (1-a)\beta_0] - \kappa(a) \}$$

• $\kappa'(a^*) = \delta(\beta_1 - \beta_0)a^*$ optimal.

5.2.2 irrational DM's choice

Prop. 5.2. In this case, the parent assigns probability one to some action a^{**} such that

$$\kappa'(a^{**}) = \delta \left[\frac{\delta \beta_1 - \beta_0 \cdot \frac{\delta (1 - a^{**})}{\delta (1 - a^{**}) + 1 - \delta} \right]$$

If κ' is either weakly convex or weakly concave, then a^{**} is unique. Note that since $\kappa'(a^{**}) < \kappa'(a^{*})$, we have $a^{**} > a^{*}$: the parent overinvests in personal eqm.

Interpretation:

- The parent overinvests because he overly estimates the positive correlation b/w a and w:
 - DMswpure causal effect θ
 - $-\theta w()$

 \rightarrow

• the perceived marginal benefit of investment $\kappa'(a^{**})$ eqm. investment a^{**}

- DM $w \perp_R a \mid s$
- perceived causal effect of s on wa
- i.e. true DAGconsistent $pp(w \mid s, a) \neq p(w \mid s)$
- $s = 0a = 1\theta = 0$
- $\mathbb{E}[w\mid s=1]$ $\mathbb{E}[w\mid s=0]$ increases in long-run investment. (agiven s=0 = 0 = 0 = 0 = 0 | 0 =
- true distributionpersonal eqm.true DAG, subjective DAG

Proof of Prop.5.2.

$$\sum_{s} p(s \mid a) \sum_{w} p(w \mid s) u(a, w) = \sum_{s} p(s \mid a) p(w = 1 \mid s) - \kappa(a)$$

$$p(s = 1 \mid a) = \sum_{\theta} p(\theta) p(s = 1 \mid a, \theta) = \delta a$$

$$p(s = 1 \mid a) = \sum_{\theta} p(\theta) p(s = 1 \mid a, \theta) = \delta a$$

$$p(w = 1 \mid s = 1) = \delta \beta_{1}$$

$$p(w = 1 \mid s = 0) = \frac{p(w = 1, s = 0)}{p(s = 0)}$$

$$p(w = 1, s = 0) = \sum_{\theta} \sum_{a} p(w = 1, s = 0, a, \theta)$$

$$= \sum_{\theta} \int_{a} p(\theta) p(w = 1 \mid s = 0, \theta) p(s = 0 \mid \theta, a) d\mu(a)$$

$$= (1 - \delta) \int_{a} \underbrace{p(w = 1 \mid s = 0, \theta = 0)}_{0} p(s = 0 \mid \theta = 0, a) d\mu(a)$$

$$+ \delta \int_{a} \underbrace{p(w = 1 \mid s = 0, \theta = 1)}_{(\beta_{0})} \underbrace{p(s = 0 \mid \theta = 1, a)}_{(1-a)} d\mu(a)$$

$$= \delta \beta_{0} \int_{a} (1 - a) d\mu(a)$$

$$p(s=0) = \sum_{\theta} \sum_{a} p(a, s=0, \theta)$$

$$= \sum_{\theta} \sum_{a} p(\theta) p(a) p(s=0 \mid a, \theta)$$

$$= (1-\delta) \int_{a} \underbrace{p(s=0 \mid a, \theta=0)}_{1} d\mu(a) + \delta \int_{a} \underbrace{p(s=0 \mid a, \theta=1)}_{(1-a)} d\mu(a)$$

$$= (1-\delta) + \delta \int_{a} (1-a) d\mu(a)$$

Then,

$$p(w=1 \mid s=0) = \underbrace{\frac{\delta \int_{a} (1-a) d\mu(a)}{(1-\delta) + \delta \int_{a} (1-a) d\mu(a)}}_{=:\gamma} \beta_{0}$$

Note that $\gamma < \delta$. Hence,

$$\sum_{s} p(s \mid a) p(w = 1 \mid s) - \kappa(a) = \delta a \cdot \delta \beta_1 + (1 - \delta a) \gamma \beta_0 - \kappa(a)$$

FOC is
$$\kappa'(a) = \delta(\delta\beta_1 - \gamma\beta_0) \ (\in (0,1)).$$

5.3 Coarseness II: Public Policy

- a, y, e, z: policy, two macro variables, private sector's expectation of y.
- true DAG R^* :

• DM's DAG R:

е

6 General Analysis

6.1 Consequentialist Rationality

- personal equilibrium
- ()

6.1.1 Preliminaries

Def. 6.1 (skeleton). Fix a DAG $\mathcal{G} := (N, R)$. The skeleton of \mathcal{G} , $\widetilde{\mathcal{G}} := (N, \widetilde{R})$, is an indirected version of \mathcal{G} : formally, $\widetilde{R} := \{(i,j) \in N \times N \mid (i,j) \in R, \text{ or } (j,i) \in R\}$. $(i,j) \in \widetilde{R}$ is sometimes denoted by $i\widetilde{R}j$, or i-j. **e.g. 6.1** (skeleton). $R: i \to j \to k$, $\widetilde{R}: i-j-k$.

Def. 6.2 (clique, ancestral clique). *Fix a DAG* (N, R). $M \subseteq N$ *is a clique in* $R \Leftrightarrow \Delta$

$$\forall i, j \in M; i \neq j \implies i\widetilde{R}j.$$

A clique M in R is an ancestral clique when $\forall i \in M$; $R(i) \subseteq M$.

e.g. 6.2 (clique). • $M_1 := \{5, 6, 7\}$: clique, but not ancestral clique.

- $M_2 := \{2,4,5,7\}$: not clique.
- $M_3 := \{1,3\}$: ancestral clique.

Figure 1: DAG

Def. 6.3 (equivalent). *Fix N. Two DAGs R and Q are equivalent, denoted as R* \sim *Q,* $\stackrel{\triangle}{\Longrightarrow}$

$$\forall p \in \Delta(X); p_R(x) = p_O(x)$$

We sometimes denote the equivalence class of R as [R].

e.g. 6.3 (equivalent). $R: 1 \to 2$ and $Q: 2 \to 1$ are equivalent: For any $p \in \Delta(X)$,

$$p(x_1, x_2) = p(x_2 \mid x_1)p(x_1) = p(x_1 \mid x_2)p(x_2).$$

Def. 6.4 (v-structure). The v-structure of a DAG R, v(R), is defined as follows:

$$v(R) := \{(i, j, k) \mid i \to j, j \to k, i \nrightarrow j, j \nrightarrow i\}$$

e.g. 6.4 (v-structure). Consider the DAG R in Figure 1. (2,5,6) is a v-structure of R; (5,7,6) is not a v-structure in R.

Prop. 6.1 (Verma and Pearl, 1991). $R \sim Q \iff [\widetilde{R} = \widetilde{Q} \text{ and } v(R) = v(Q)].$

e.g. 6.5. $R: 1 \rightarrow 2 \rightarrow 3$ and $Q: 3 \rightarrow 2 \rightarrow 1$ are equivalent: $\widetilde{R} = \widetilde{Q} = 1 - 2 - 3$ and $v(R) = v(Q) = \emptyset$. However, $S: 1 \rightarrow 2 \leftarrow 3 \nsim R$ because $v(S) = \{(1,2,3)\} \neq \emptyset$.

6.1.2 Consequentialist Rationality

• $\Delta_R(X) := \{ p \in \Delta(X) \mid p \text{ is consistent with } R \}$

Def. 6.5 (Consequentialistically rational). *A DAG R is C-rational w.r.t. true DAG R** $\stackrel{\triangle}{\Longrightarrow}$

$$\forall p, q \in \Delta_{R^*}(X); [\forall x; p(x_{-1} \mid x_1) = q(x_{-1} \mid x_1) \implies \forall x; p_R(x_{-1} \mid x_1) = q_R(x_{-1} \mid x_1)]$$

- R: C-rationaltrue distrib. $pp(x_1)p(x_{-1} \mid x_1)p_R(x_{-1} \mid x_1)$
- $p(x_{-1} \mid x_1)$:given $p(x_1)p(x_{-1} \mid x_1)$

e.g. 6.6 (C-rationality in dieter's dilemma). $p_R(h=1 \mid a=0) = \frac{1}{2-\beta} \frac{1}{2} \text{dieter's dilemmaRC-rational:}$ $pp_R(h \mid a)p^*(a)p'(a,h,c) := p(h,c \mid a)p^*(a) \neq p(a,h,c)p'_R(h \mid a) \neq p_R(h \mid a)$

- *R** itself is C-rational w.r.t. *R**.
- ∴) Fix $p, q \in \Delta_{R^*}(X)$ s.t. $p(x_{-1} \mid x_1) = q(x_{-1} \mid x_1)$ for all x. Fix x. $p_{R^*}(x) = p(x_1)p(x_{-1} \mid x_1)$. $p_{R^*}(x_1) = p(x_1)\sum_{x_{-1}}p(x_{-1} \mid x_1) = p(x_1)$. Then, $p_{R^*}(x_{-1} \mid x_1) = p(x_{-1} \mid x_1)$. Similarly, $q_{R^*}(x_{-1} \mid x_1) = q(x_{-1} \mid x_1)$.
 - From now on, assume that $R \neq R^*$.

Prop. 6.2 (characterization of C-rationality (Proposition 6)). *R is C-rational w.r.t.* R^*

$$\forall i > 1; 1 \notin R(i) \implies x_i \perp_{R^*} x_1 \mid x_{R(i)}$$

e.g. 6.7 (Dieter's dilemma). • *True DAG:* $R^*: 1 \rightarrow 3 \leftarrow 2$

- Subjective DAG: $R: 1 \rightarrow 2 \rightarrow 3$
- $i := 31 \notin R(3), x_3 \not\perp_{R^*} x_1 \mid x_2.$
- *R is not C-rational w.r.t. R**.
- $R': 1 \rightarrow 3$ 2(fully coarsed/cursed)
- R' is C-rational w.r.t. R^* : $x_2 \perp_{R^*} x_1$.
- DAG
- d-separation

Proof of Prop.6.2.

$$p_{R}(x_{-1} \mid x_{1}) = \frac{p_{R}(x_{1}, x_{-1})}{p_{R}(x_{1})} = \frac{p(x_{1}) \prod_{i \geq 2} p(x_{i} \mid x_{R(i)})}{\sum_{x'_{-1}} p(x_{1}) \prod_{i \geq 2} p(x'_{i} \mid x_{R(i) \cap \{1\}}, x'_{R(i) - \{1\}})}$$

$$= \frac{\prod_{i \geq 2} p(x_{i} \mid x_{R(i)})}{\sum_{x'_{-1}} \prod_{i \geq 2} p\left(x'_{i} \mid x_{R(i) \cap \{1\}}, x'_{R(i) - \{1\}}\right)}$$
(2)

$$p(x_{-1} \mid x_1) \ p(x_1) p_R(x_{-1} \mid x_1)$$

 $\iff \forall i > 1; \ 1 \notin R(i) \implies x_i \perp_{R^*} x_1 \mid x_{R(i)}$

$$(2)p(x_1)i \ge 2$$

$$p\left(x_i' \mid x_{R(i)\cap\{1\}}, \ x_{R(i)-\{1\}}'\right) \tag{*}$$

 $1 \in R(i)$

$$(\star) = p\left(x_i' \mid x_1, x_{R(i)}'\right)$$

 $(\star)p(x_1)(???)$ $1 \notin R(i)x_i \perp_{R^*} x_1 \mid x_{R(i)}$

$$(\star) = p\left(x'_{i} \mid x'_{R(i)}\right) = \sum_{x''_{1}} p(x''_{1}) p(x'_{i} \mid x''_{1}, x'_{R(i)})$$

$$= \sum_{x''_{1}} p(x''_{1}) p(x'_{i} \mid x'_{R(i)})$$

$$= p(x'_{i} \mid x'_{R(i)})$$

 $(\star)p(x_1)p(x_1)p_R(x_{-1} \mid x_1)$

 \Rightarrow) $i > 1, 1 \notin R(i)i1 \notin R(i)$

$$(\star) = p\left(x_i' \mid x_{R(i)}'\right) = \sum_{x_1''} p(x_1'') p(x_i' \mid x_1'', x_{R(i)}')$$

$$x_i \not\perp_{R^*} x_1 \mid x_{R(i)} \ p(x_i' \mid x_1'', x_{R(i)}') \ x_1''(???) \ (\star) p(x_1'')(?) p_R(x_{-1} \mid x_1) p(x_1'')$$

6.2 Behavioral Rationality

- DAG RDMrational all payoff-relevant variables are causally linked and have no other causes.
- (link)behavioral rationalityviolate

6.2.1 Preliminaries

Def. 6.6 (fully connected). A directed graph (N, R) is fully connected if $i \to j$ or $j \to i$ holds for all $i, j \in N$. **Lem. 6.1** (fully connected DAG). A DAG (N, R) is fully connected \iff R is consistent for all $p \in \Delta(X)$. *Proof.* Assume w.l.o.g that $\{1, 2, ..., n\}$ are topologically sorted.

 \Rightarrow) Fix any x. Then,

$$p(x) = \prod_{i} p(x_i \mid x_1, \dots, x_{i-1}) = p_R(x)$$

 \Leftarrow) We show contraposition. Suppose that R is not fully connected. Then, since R does not have enough its degree of freedom, we can construct p that is not consistent with R. For example, consider $R: 1 \to 2 \to 3$. R is not fully connected because $1 \nrightarrow 3$. Then, we can construct p such that

$$p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \neq p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) = p_R(x)$$

Def. 6.7 (*d*-separation). Let R be a DAG, and $X, Y, X \subseteq N$.

A directed path P is d-separated by Z

- *P* contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ such that $m \in \mathbb{Z}$.
- P contains an inverted fork $i \to m \leftarrow j$ such that m and the descendants of m are not in Z.

Z d-separates X and $Y \stackrel{\Delta}{\Longleftrightarrow} Z$ d-separates every path from a node in X to a node in Y. This is denoted by $(X \perp Y \mid Z)_R$.

Prop. 6.3 (Probabilistic Implications of *d*-Separation). For any three disjoint subsets of nodes X, Y, Z in a DAG R, and for all probability distributions p,

- 1. If p is consistent with R, then $(X \perp Y \mid Z)_R \implies (X \perp Y \mid Z)_v$
- 2. $(X \not\perp Y \mid Z)_R \implies \exists p; (X \not\perp Y \mid Z)_p$.

6.2.2 Behavioral Rationality

- no restriction on $p \in \Delta(X)$, i.e., assume that true DAG R^* is fully connected.
- Impose some restriction on the set of possible utility functions.

Ass. 6.1 (Restriction on u). $\exists M \subsetneq N$; $1 \in M$, and u is purely a function of x_M .

Def. 6.8 (Behaviorally Rational). *A DAG R is B-rational if in every personal eqm. p,*

$$p(x_1) \implies x_1 \in \underset{x'_1}{\operatorname{argmax}} \sum_{x_{-1}} p(x_{-1} \mid x_1) u(x'_1, x_{-1})$$

³For a probability distribution p, $(X \perp Y \mid Z)_p$ denotes that X and Y are independent conditional on Z.

Prop. 6.4 (Spiegler(2017), Proposition 2). *Let* R *be a DAG and let* $C \subseteq N$.

 $[\forall p \in \Delta(X) \forall x; p_R(x_C) = p(x_C)] \iff [\exists Q \in [R]; C \text{ is an ancestral clique in } Q].$

[2018/07/16: \Leftarrow is correct; \Rightarrow is not sure.]

e.g. 6.8. $R: 1 \to 2 \leftarrow 3$. By Prop.6.1, we can see that $[R] = \{R\}$. Since $\{x_2\}$ is not an ancestral clique in R, by Prop.6.4, $\exists p \exists x_2; p_R(x_2) \neq p(x_2)$.

Proof of Prop.6.4. See Appendix.

Prop. 6.5. The DM is behaviorally rational $\iff \exists Q \in [R]$; M is an ancestral clique in Q.

Proof. [Prop.6.4 \Rightarrow]

Note that, by assumption, node 1 is an ancestral node in both R and R^* .

 \Leftarrow) Assume that there exists $Q \in [R]$ such that M is an ancestral clique in Q. By Prop.(6.4), $p_R(x_M) = p(x_M)$. Fix any personal eqm. p. We need to show that p satisfies the following:

$$\forall x_1; \ p(x_1) > 0 \implies x_1 \in \underset{x_1'}{\operatorname{argmax}} \sum_{x_{-1}} p(x_{-1} \mid x_1') u(x).$$

Fix x_1 such that $p(x_1) > 0$. Since u depends only on x_M ,

Since p is personal eqm., $x_1 \in \operatorname{argmax}_{x_1'} \sum_{x_{-1}} p_R(x_{-1} \mid x_1') u(x)$. Therefore, R is B-rational.

 \Rightarrow) Assume that *R* is B-rational. By Prop.(6.4), we have $p_R(x_1) = p(x_1)$. Then,

$$p_R(x_{M-\{1\}} \mid x_1) = \frac{p_R(x_M)}{p_R(x_1)} = \frac{p_R(x_M)}{p(x_1)}, \quad p(x_{M-\{1\}} \mid x_1) = \frac{p(x_M)}{p(x_1)}.$$

Hence, $p_R(x_{M-\{1\}} \mid x_1) = p(x_{M-\{1\}} \mid x_1)$ holds if and only if $p_R(x_M) = p(x_M)$ holds.

By Prop.(6.4)[], it is sufficient to show that $p(x_M) \equiv p_R(x_M)$; it suffices to show that $p_R(x_{M-\{1\}} \mid x_1) = p(x_{M-\{1\}} \mid x_1)$. Suppose toward contradiction that $p_R(x_{M-\{1\}} \mid x_1) \neq p(x_{M-\{1\}} \mid x_1)$. Then, we can construct the utility function u under which DM does not choose the optimal action w.r.t. p. (??)

Interpretation:

- (1) all payoff-relevant variables are causally linked, (2) they have no other causes DMrational
- ((1),(2)*pu*suboptimal[])
- operationbehavioral rationality

Prop. 6.6 (Proposition 9). *Suppose that R departs from* R^* , *which is fully connected, by omitting one link* $i \rightarrow j$. Then,

DM is B-rational.
$$\iff$$
 $j = n, i \neq 1$.

- **e.g. 6.9.** $R: 1 \rightarrow 3 \leftarrow 2$. $1 \rightarrow 2$ omitted from R^* . DM is not B-rational. double-counting.
 - $R: 1 \to 2 \to 3$. $1 \to 3$ omitted from R^* . DM is not B-rational. failed to perceive any effect of x_1
 - $R: 2 \leftarrow 1 \rightarrow 3$. $2 \rightarrow 3$ omitted from R^* . DM is B-rational. not distinguish direct and indirect effect.

6.3 Payoff ranking of DAGs

- ≈
- DAG No

• R: fully connected DAG, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$; u is purely a function of x_1 and x_4 . e.g. 6.10.

- $R': 2 \rightarrow 3$ removed from R
- By Prop.6.6, R' is not B-rational: R' is weakly dominated by R in terms of expected performance.
- R'': 2 \rightarrow 4 removed from R'.

$$R'': 1 \longrightarrow 2, \quad Q: 1 \longrightarrow 2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$3 \longrightarrow 4 \qquad \qquad 3 \longleftarrow 4$$

- $Q \sim R''$ (the same skeleton and v-structure). $\{1,4\}$ is an ancestral clique in Q.
- R'' is B-rational w.r.t. R^* ; R' is weakly dominated by R''.

Ass. 6.2 (For simplicity?). 1 is an isolated node in all relevant true and subjective DAGs.

Def. 6.9 (Ranking of DAGs). *R is more rational than R'* $\stackrel{\Delta}{\iff} \forall p, u, a, a';$

$$\sum_{y} p_R(y)u(a,y) > \sum_{y} p_R(y)u(a',y), \tag{3}$$

$$\sum_{y} p_{R'}(y) u(a', y) > \sum_{y} p_{R'}(y) u(a, y) \tag{4}$$

$$\sum_{y} p_{R'}(y)u(a',y) > \sum_{y} p_{R'}(y)u(a,y)$$

$$\Longrightarrow \sum_{y} p(y)u(a,y) > \sum_{y} p(y)u(a',y)$$
(5)

- 2DAG
- *R*: fully connected, *R'*: not fully connected

Prop. 6.7 (Proposition 10). Suppose both R and R' are not fully connected. Then, neither DAG is more rational than the other.

Proof. Assume that both R and R' are not fully connected. If $R \sim R'$, the claim holds. Assume $R \sim R'$. Suppose toward contradiction that R is more rational than R'. Fix any $p \in \Delta(X)$. Let q := $(p_R(y))_y$ and $r := (p_R(y))_y$. Note that q and r are k := |Y|-length probability vectors. Fix any u, a, a'. Let $z^y := u(a,y) - u(a',y)$, $z := (z^y)_y$, and D := [q -r -p]. Note that D is a $k \times 3$ matrix. Fix any $\varepsilon > 0$. Let $b := (\varepsilon, \varepsilon, \varepsilon)^{\top}$.

First, we show the following:

$$\nexists z \in \mathbb{R}^k; \ D^\top z > b \tag{6}$$

Suppose not. Then there exists $z \in \mathbb{R}^k$ such that

$$D^{\top}z = \begin{bmatrix} q^{\top}z \\ -r^{\top}z \\ -p^{\top}z \end{bmatrix} = \begin{bmatrix} \sum_{y} p_{R}(y)(u(a,y) - u(a',y)) \\ -\sum_{y} p_{R'}(y)(u(a,y) - u(a',y)) \\ -\sum_{y} p(y)(u(a,y) - u(a',y)) \end{bmatrix} > b$$

This implies

$$\sum_{y} p_{R}(y)u(a,y) > \sum_{y} p_{R}(y)u(a',y)$$
$$\sum_{y} p_{R'}(y)u(a',y) > \sum_{y} p_{R'}(y)u(a,y)$$
$$\sum_{y} p(y)u(a',y) > \sum_{y} p(y)u(a,y)$$

This contradicts the assumption that R is more rational than R'. Therefore, (6) must hold. Next, we apply Gale's theorem:

Lem. 6.2 (Gale's Theorem). Let $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^N$. The following two statements are equivalent:

- 1. $\exists x \in \mathbb{R}^M$; $A^{\top}x \leq b$
- 2. $\forall y \in \mathbb{R}^N$; $y \geq 0$, $Ay = 0 \implies b^\top y \geq 0$

By (6) and Gale's theorem, we have

$$\exists w \in \mathbb{R}^3; \ w > 0, Dw = 0, b^{\top}w < 0$$

[Spiegler(2016)w > 0]

Since $b^\top w < 0$, there exists $j \in \{1,2,3\}$ such that $w_j > 0$. Since Dw = 0, for all $i \in [k]$, $w_1q^i = w_2r^i + w_3p^i$, or

$$w_1 p_R(y) = w_2 p_{R'}(y) + w_3 p(y)$$

By summing up w.r.t. *i*, we have $w_1 = w_2 + w_3$. Hence,

$$w_1 > 0$$
, $(w_2 > 0 \text{ or } w_3 > 0)$

Since $w_1 > 0$, for all y,

$$p_R(y) = \frac{w_2}{w_1} p_{R'}(y) + \frac{w_3}{w_1} p(y)$$

Let $\alpha := w_2/w_1$ and $\beta := w_3/w_1$. Then, by summing up w.r.t. y, we have $\alpha + \beta = 1$. Therefore, we have the following:

$$\forall p \,\exists \alpha \in [0,1]; p_R = \alpha p + (1-\alpha)p_{R'} \tag{7}$$

In case α < 1, the proof is done: If p is consistent with R, or $p_R = p$, by (7), we have $p_R = p_{R'}$, and then $p = p_{R'}$; Similarly, if p is consistent with R', then p is also consistent with R: we have the following relationship:

$$p = p_R \iff p = p_{R'}$$

In addition, for any $p \in \Delta(X)$, p_R is consistent with R. Replace p with p_R and apply the procedure to p_R ; we have $p_R = \alpha p_R + (1 - \alpha) p_{R'}$, and then $p_R = p_{R'}$.

[α < 1 for all p, or, w > 0ok, fully-connected]

7 Variations and Relations to Other Concepts

7.1 Variations

- DAG(Partial cursedness)
- DAG(e.g. Dieters' dilemma)

7.2 Relations to Other Concepts

- Jehiel (2005) Analogy-based expectations
- Esponda (2008) Naive Behavioral Equilibrium
- Eyster and Rabin (2005) Partial cursedness
- Osborne and Rubinstein (1998) S(K) equilibrium

8 Concluding Remarks

8.1 Alternative interpretations of DAG

- Data limitations (cf: Spiegler (2017) Data Monkeys)
- Limited ability to ask the right questions

9 Appendix

Proof of Prop.6.4. [There is an error in the proof in Spiegler(2017).]

If *C* is empty, the proposition clearly holds; from now on, we assume $C \neq \emptyset$. First, note that for any DAG *R*, the following holds:

$$p_{R}(x_{C}) = \sum_{x'_{N-C}} p_{R}(x_{C}, x'_{N-C})$$

$$= \sum_{x_{N-C}} \prod_{i \in C} p(x_{i} \mid x_{R(i) \cap C}, x'_{R(i) - C}) \prod_{i \notin C} p(x'_{i} \mid x_{R(i) \cap C}, x'_{R(i) - C})$$
(8)

 \Leftarrow) Fix *C* such that *C* is an ancestral clique in some $Q \in [R]$. Note that $R(i) - C = \emptyset$ for all $i \in C$. Then,

$$\prod_{i \in C} p(x_i \mid x_{R(i) \cap C}, x'_{R(i) - C}) = \prod_{i \in C} p(x_i \mid x_{R(i) \cap C}) = p(x_C) \text{ ($:$ topological sort)}$$

Hence, by (8),

$$p_R(x_C) = p_Q(x_C) = p(x_C) \underbrace{\sum_{x_{N-C}} \prod_{i \notin C} p(x_i' \mid x_{R(i) \cap C}, x_{R(i) - C}')}_{1} = p(x_C).$$

e.g. 9.1. For example, consider the following DAG:

Let $C := \{1, 2\}$ *. Then,*

$$p_R(x_1, x_2) = \sum_{x_3', x_4'} p_R(x_1, x_2, x_3', x_4') = p(x_1, x_2) \sum_{x_3', x_4'} p(x_4') p(x_3' \mid x_2) = p(x_1, x_2)$$

⇒) [We need to make some fix in this direction.]

We show contrapositive: we show the following:

$$[\forall Q \in [R]; C \text{ is not an ancestral clique in } Q] \implies [\exists p \exists x; p_R(x_C) = p(x_C)]$$

Assume that *C* is not an ancestral clique in any $Q \in [R]$. Fix any $Q \in [R]$. We divide the proof into two cases:

Case (i): In case C is not a clique in Q. In this case, C is not a clique in any $R' \in [R]$. There must be two distinct nodes $i_0, i_1 \in C$ such that $(i_0, i_1) \notin Q$ and $(i_1, i_0) \notin Q$. Consider $p \in \Delta(X)$ such that for every $i \in C \setminus \{i_0, i_1\}$, x_i is independently distributed, whereas x_{i_0} and x_{i_1} are mutually correlated. Then,

$$\prod_{i \in C} p(x_i \mid x_{R(i) \cap C}, x'_{R(i) - C}) = \prod_{i \in C} p(x_i) \text{ (} \because \text{ there is no edge b/w } i_0 \text{ and } i_1 \text{)}$$

$$\prod_{i \notin C} p(x'_i \mid x_{R(i) \cap C}, x'_{R(i) - C}) = \prod_{i \notin C} p(x'_i)$$

$$p_R(x_C) = (8) = \prod_{i \in C} p(x_i) \sum_{i \notin C} \prod_{i \notin C} p(x'_i) = \prod_{i \in C} p(x_i)$$

However,

$$p(x_C) = p(x_{i_0})p(x_{i_1} \mid x_{i_0}) \prod_{i \in C \setminus \{i_0, i_1\}} p(x_i)$$

Therefore, for some p, $p_R(x_C) \neq p(x_C)$.

Case (ii): C **is a clique, but not an ancestral clique in** Q**.** For a DAG R, denote the set of the all v-structures in R as v(R), i.e.,

$$v(R) := \{(i, j, k) \mid i \to j, k \to j, i \nrightarrow k, k \nrightarrow i\}$$

In the original proof, there is a lemma like the following, but the lemma is wrong:

Lem. 9.1. *Let R be a DAG and C be a clique in R*. *Assume the following two:*

- 1. $\forall j \in C$; j has no unmarried parents in R.
- 2. $\forall i \notin C$; if there is a directed path from i to some node $j \in C$ in R, then i has no unmarried parents in R.

Transform R into another DAG R' by inverting every link along every such path; R and R' has the same v-structure.

e.g. 9.2 (Counter example for Lem.9.1). *Let R be the graph below:*

Let $C := \{c_j, c_k\}$. Note that for all $k \in N \setminus C$ such that k has a path to some $c \in C$, k has no unmarried parents. R' is as follows:

Though $v(R) = \emptyset$, we have $v(R') = \{(j_1, i, k_1), (j_1, i, c_j), (j_2, i, k_1)\}$. Therefore, Lem.9.1 does not hold.

We can consider the modified version of the above lemma:

Lem. 9.2. Let R be a DAG and C be a clique in R. Assume the following two:

- 1. $\forall j \in C$; j has no unmarried parents in R.
- 2. $\forall i, j \in N$; if there is a directed path from i to some node $c_i \in C$ and a path from j to some node $c_j \in C$ in R, then $i \to j$ or $j \to i$.

Transform R into another DAG R' by inverting every link along the every path $i \rightsquigarrow c$ *such that* $i \notin C$ *and* $c \in C$; *then, R and R' has the same v-structure.*

For the moment, let us admit Lem.9.2. (I prove it later.)

[I tried to modified the condition in assumption 2 from $\forall i, j \in N$ to $\forall i, j \notin C$, but this does not hold: Below, $(i, j, k) \in v(R)$, but $(i, j, k) \notin v(R')$]

The modified proof for Case (ii) By Lem.9.2, if the two assumptions in Lem.9.2 hold, there should exists $R' \in [R]$ such that C is an ancestral clique in R'; this contradicts the assumption we made at the beginning of the proof.

Hence, one of the following propositions holds:

$$\exists j \in C; j \text{ has an unmarried parents in } Q.$$
 (P1)

$$\exists i, j \in N \ \exists c_i, c_j \in C; \ i \leadsto_Q c_i, j \leadsto_Q c_j, i \nrightarrow_Q j, j \nrightarrow_Q i$$
 (P2)

In case of (P1), the original proof works. From now on, we assume (P1) does not hold and (P2) holds. First of all, $i \notin C$ or $j \notin C$; otherwise there is an edge between them because C is a clique. Assume w.l.o.g. that $i \notin C$; Q contains the structure as below:

$$i \leadsto c_i \in C$$

$$\downarrow$$

$$j \leadsto c_j \in C$$

Let $P_i \subseteq N$ and $P_j \subseteq N$ are the set of nodes contained in the directed paths from i to c_i and from j to c_j respectively.

Observations:

- $|P_i| \geq 2$. (: $i \notin C$.)
- $|P_i| \ge 1$. (*j* may be a member of *C*.)
- c_i and c_i may coincide.
- If $|P_i| = 1$, then $i \neq c_i$; otherwise, $i \rightarrow j$.

Consider $p \in \Delta(X)$ and a DAG R^* that satisfy

- *p* is consistent with *R**.
- $i \notin P_i \cup P_i \implies i$ is an isolated node in R^* .

Consider the subgraph of Q restricted on $P_i \cup P_j$. We name the subgraph Q'.

Case (ii-1): In case $Q'(j) = \emptyset$: Since C is a nonempty clique, $j \notin C$. Since $i \nleftrightarrow j$, for all $p \in \Delta(X)$, we have $i \not\perp_{p'_Q} j$. Consider $p \in \Delta(X)$ such that $i \perp_p j$. Then, we can apply the same logic in the original proof in this case; we can show the existence of p such that $p(x_C) \neq p_O(x_C)$ for some x_C .

Case (ii-2): In case $Q'(j) \neq \emptyset$: Fix $k \in Q'(j)$. Since Q' is a DAG, k is not a descendant of j in Q'. We also have $k \neq i$. Since all the nodes in Q' is either the descendant of node i or that of node k is a descendant of node k. Assume w.l.o.g that there is no node along the path from k to k such that the node is a parent of k. (If k is k is not a descendant of node k that is closest to k.)

 $(i \perp j \mid k)_{Q'}$ **holds:** \therefore) First, take any path $i \rightsquigarrow j$, by the construction of k, k is on that path. Next, we need to check that neither of the following structure is contained in Q':

1. $i \rightarrow k \leftarrow j$

However, since Q' is a DAG and $k \rightarrow_{Q'} j$, neither of them holds.

cont. Therefore, there exists $p' \in \Delta(X_{P_i \cup P_j})$ such that $(x_i \not\perp x_j \mid x_k)_{p'}$. Consider the following probability distribution p:

$$p(x) := p'(x_{P_i \cup P_j}) \prod_{l \notin P_i \cup P_i} p(x_l)$$

 p_R should satisfy $(x_i \perp x_i \mid x_k)_O$. This implies

$$\exists p \exists x_C; \ p(x_C) = p_{Q'}(x_C)$$

SpieglerLem.9.1

Lem. 9.3. Let R be a DAG and C be a non-ancestral clique in any $R' \in [R]$. Assume the following two:

- 1. $\forall j \in C$; j has no unmarried parents in R.
- 2. $\forall i \notin C$; if there is a directed path from i to some node $j \in C$ in R, then i has no unmarried parents in R.

Transform R into another DAG R' by inverting every link along every such path; R and R' has the same v-structure.

*Proof of Lem.*9.2. We show v(R) = v(R').

Step 1: $v(R) \subseteq v(R')$ Fix any v-structure $(i,j,k) \in v(R)$, $i \to j \leftarrow k$. By assumption 1 in Lem.9.2, we can assume that $j \notin C$. We can also assume that $i \notin C$ or $k \notin C$; otherwise there is an edge between i and k because C is a clique. Assume w.l.o.g that $i \notin C$.

It is sufficient to show that (i, j, k) remains as a v-structure after the inversion. Suppose toward contradiction that (i, j, k) is not a v-structure any more after the inversion. It is necessary that at least one of the edges $i \to j$ and $k \to j$ should be inverted.

Case (1-1): In case $k \notin C$: Assume w.l.o.g that $i \to j$ is inverted. Then, there exists some node $c \in C$ such that $i \sim_R c$; this implies that $i \sim_R c$, and $k \sim_R c$. The graph below summarizes the relationships:

However, by assumption 2 in Lem.9.2, there should be an edge between node i and node k; this contradicts the assumption that (i, j, k) is a v-structure in R.

Case (1-2) In case $k \in C$: In this case, $k \to j$ is not inverted; then, $i \to j$ should be inverted. Then, by the same logic as in Case (1-1), this leads to a contradiction.

Step 2: $v(R) \supseteq v(R')$ We show that the inversion does not create a new v-structure. Suppose toward contradiction that there exists a triple $(i, j, k) \in v(R) \setminus v(R')$. In this case, the structure as in the below graph should hold in R (c_i and c_k may be the same node.):

However, by assumption 2 in Lem.9.2, there should be an edge between node i and node k. A contradiction.

⁴ $i \sim_{R} j$ denotes that there is a directed path from node i to node j in a DAG R.