Introduction and Overview of Commercial Single-Cell Platforms

Susan Kloet
Leiden Genome Technology Center (LGTC)
MGC Course on Single-Cell Analysis
29 October 2024

Why single-cell?

Bulk sample analysis is just like putting a fruit salad into a blender - the taste is an average of all ingredients. Analyzing single cells is like tasting each individual piece of fruit to gain a much more nuanced understanding of the composition of the fruit salad

Tissues are heterogeneous

Exponential scaling of single-cell throughput

"The single-cell revolution is just starting."

Development cell by cell

Science, Vol. 360, p. 367, 27 April 2018

Single-cell multimodal omics 2019 Method of the Year

How do we handle all of this data?

Cao et al. A human cell atlas of fetal gene expression. Science, 2020 Nov 13;370(6518):eaba7721

4M rows of cells x 20k genes = 80B entries!

We will cover

- Description of single-cell and spatial assays/platforms/protocols
- Sample prep and experimental design concerns
- Gene and cell filtering
- Normalization
- Dimensionality reduction
- Clustering and cell annotation
- Data integration
- Differential expression
- Trajectory inference

Participation time!

- Who has (or will soon generate) single-cell RNA data?
- Who has (or will soon generate) single-cell <u>DNA</u> data?
- Who has (or will soon generate) single-cell <u>protein</u> data?
- Who has (or will soon generate) spatial data?
- Anybody working with all of the above?

In this lecture we will cover:

- Commercial methods for single-cell DNA-seq
- Commercial methods for single-cell RNA-seq
- How 10x Genomics technology works
- What 10x Genomics sequencing libraries look like

scDNA-seq

WG(B)S (whole genome (bisulfite) sequencing)
DIY methods – Miao's multiomics lecture
Commercial methods – BioScryb, Scale

Chromatin structure and accessibility

ATAC-seq, ChIP-seq, Hi-C, etc.

DIY methods – Miao's multiomics lecture

Commercial methods – 10x Genomics (end of this lecture)

DNA ANALYSIS

Copy number variation (CNV) and single nucleotide variation (SNV)

DIY methods – Miao's multiomics lecture

Commercial methods – Mission Bio

BioSkryb

No instrument required!

WGS with PTA (primary template-directed amplification)

Scale Biosciences

SCALE biosciences

NEW single-cell methylation kit Up to 18k cells / run Capture-compatible

CNV and SNV detection — Mission Bio

Tapestri platform

- Droplet-based amplification
- Up to 10k cells
- Panel-based PCR (up to 400 targets)
- Can call both CNVs and SNVs in target regions
- NEW multiomics application: Protein + DNA

Track clonal evolution (AML)

Reveal therapy resistance

scRNA-seq

MANY different assays

- Some commercial, some DIY
- Full transcriptome vs 3' vs 5'
- Automation varies
- Throughput varies
- Cost varies
- Microwell-based
- Plate-based
- Droplet-based

Ian Korf for Nature Methods 10, 1165-1166 (2013)

iCELL8 cx

- Available at ErasmusMC
- Uses 5184 nanowell chip, ~1800 cells loaded
- Compatible with immunofluorescence
- Protocols for single-cell
 - SMART-Seq full-length transcriptome analysis
 - Differential expression by 3' end counting
 - TCR profiling and 5' end differential expression
 - ATAC-seq

BD Rhapsody

- Works with targeted panels to reduce sequencing costs
 - Immune response human/mouse
 - T-cell
 - Oncology breast cancer
 - Custom panel add-ons
- Up to 400 amplicons / sample
- Includes UMIs to reduce PCR amplification bias
- Increased flexibility
 - Archiving up to 3 months
 - Sub-sampling

Honeycomb

The HIVE - portable, single-use microwell chip Store samples up to 9 months

Scale Biosciences

No instrument required!

Based on sci-RNA-seq

Fix and store up to 6 months

Parse Biosciences

No instrument required!

Based on SPLiT-seq

Fix and store up to 6 months

Evercode WT Mega 1 million Cells Evercode WT 100,000 Cells Evercode WT Mini 10,000 Cells million cells.

Unlock Single Cell at Scale

Perform scRNA-Seq on up to 1 million cells with a single kit accommodating up to 96 different biological samples or experimental conditions.

High Throughput scRNA-Seq Achieved

Start pursuing uncompromising science with up to a million cells.

Dolomite Bio

Nadia Instrument and Nadia Innovate Commercialized Drop-seq

scRNA-seq
Plant protoplast RNA-seq

snATAC-seq

Protocol development Agarose droplet formation

Fluent Biosciences

No instrument required!

Based on PIP-seq (particle-templated instant partition)

~5 min for encapsulation Thermocycler does the rest

1 tube library prep based on standard Illumina workflows

Scipio Bioscience

No instrument required!

Based on hydrogels for reaction compartmentalization

10x Genomics Chromium Controller

Commercial launch early 2016

Microfluidics system for reaction compartmentalization

High throughput, up to 80k cells/run High capture rate, ~50%

Single-use microfluidics chip

10x Genomics single-cell products

Chromium

Single Cell Gene Expression

3' gene expression profiling at scale with single cell resolution.

Single Cell Gene Expression Flex

Fixed RNA Profiling assay for comprehensive probe-based gene expression profiling with single cell resolution.

Single Cell ATAC

Chromatin accessibilility profiling at the single cell level.

Single Cell Immune Profiling

5' gene expression alongside V(D)J repertoire profiling and antigen specificity of T and B cells.

Single Cell Multiome ATAC + Gene Expression

Combined profiling of 3' gene expression and chromatin accessibility from the same cell.

Gel beads up close

4M Discrete Reagents in One Tube

10x Barcode (16bp): unique for each GemBead

+ UMI (12bp): correct for PCR duplicates

Gel bead in Emulsion (GEM) technology

GEMs up close

Assay scheme for 3' mRNA sequencing

Assay scheme for 3' mRNA sequencing

Final library structure

Chromium Single Cell 3' Gene Expression Library

Single cell 3' end-to-end workflow

Reagents and Consumables in 10X Kit

- 1 Cell preparation
- Partition and RT inside each GEM
- 3 Pool and cDNA amplification
- 4 Fragmentation
- 5 Adapter ligation and sample index PCR
- 6 Sequencing and analysis

Total Turn-around Time: ~12 Hrs

Total Hands-on Time: ~4 Hrs

Single cell 3' feature barcoding

DNA from cell surface protein Feature Barcode

Structure of T and B cell receptors

Figure 3.1 The Immune System, 3ed. (© Garland Science 2009)

General workflow 5' + V(D)J single cell sequencing

Gel bead oligos

Figure 1. Schematic of a Single Cell 5' Gel Bead oligo primer.

- i. Partial Illumina Read 1 Sequence (22 nucleotides (nt))
- ii. 16 nt 10x™ Barcode
- iii. 10 nt Unique Molecular Identifier (UMI)
- iv. 13 nt Switch Oligo

Assay scheme for 5' scRNA-seq

Assay scheme for 5' scRNA-seq

Assay scheme for 5' scRNA-seq

Assay scheme for 5' VDJ libraries

Final library structure

V(D)J Enriched Library Structure:

Single-cell ATAC-seq

Scale Biosciences

Pre-indexing kit compatible with 10x Genomics snATAC-seq

ScaleBio's bioinformatics pipeline resolves the combinatorial barcode, rescuing data from multiplets and maintaining a 3-5% effective doublet rate.

Throughput	
Nuclei loaded into Scale plate	1.2M
Recovery after tagmentation plate	~600K
Nuclei loaded into on-market system	600K
Recovery from sequencing	~300K

Single-cell multiome (ATAC and RNA)

Questions or concerns?

S.L.Kloet@lumc.nl

info@lgtc.nl