

Geographical Information System

STAGES IN DATA COLLECTION PROJECTS

DATA CAPTURE METHODS

is a technique in which the information on various map attributes, facilities, assets, and organizational data are digitized and organized on a target GIS system in appropriate layers.

Two broad types of collection

- Data capture (direct collection)
- 2 Data transfer

Two broad capture methods

- Primary (direct measurement)
- Secondary (indirect derivation)

DATA COLLECTION TECHNIQUES

	Raster	Vector
	Digital Remote Sensing images	GPS measurements
Primary	Digital aerial photographs	Survey measurements
	Scanners	Topographic surveys
Secondary	DEMs from maps	Digitizing

DATA COLLECTION TECHNIQUES

RASTER DATA: REMOTE SENSING

Technique used to derive information about the <u>physical</u>, <u>chemical</u>, & <u>biological</u> properties of objects without direct physical contact

Information is derived from measurements of the amount of electromagnetic radiation reflected, emitted, or scattered from objects.

Resolution is a key physical characteristic of remote sensing systems

RASTER DATA: REMOTE SENSING

RASTER DATA: AERIAL PHOTOGRAPHY

RASTER DATA: AERIAL PHOTOGRAPHY

RASTER DATA: AERIAL PHOTOGRAPHY

VECTOR DATA: SURVEYING

Based on the principle: 3-D location of any point can be determined by measuring angles and distances from other known points

Ground survey is a very time-consuming and expensive activity

Data

Used for capturing buildings, land and property boundaries & other objects that need to be located accurately

Surveying

Also done to obtain reference marks for use in other data capture projects

Model

VECTOR DATA: GPS

VECTOR DATA: GPS

RASTER DATA: SCANNERS

scanned to reduce wear and tear, improve access, provide integrated database storage, and to index them geographically

images are scanned and georeferenced so that they provide geographic context for other data

Maps, aerial photographs and images are scanned prior to vectorization

Most scanning systems provide software to convert raster data to vector format

VECTOR DATA: DIGITIZING

Both the tablet and cursor are connected to computer that controls their functions.

While digitizing; you may input separate features into map layers or attach an attribute to identify the feature.

Digitizing workstation with digitizing tablet & cursor is used to trace digitize.

Most digitizing tables come in standard sizes that relate to engineering drawing(A-E & larger)

VECTOR DATA: DIGITIZING

DATA PREPARATION AND INTEGRATION

GEOCODING

MEDIA CONVERSION

FORMAT CONVERSION

月 **Vector to Raster Vector to Vector** Raster to Vector Raster to Raster

FORMAT CONVERSION

Orthogonal Line

Diagonal Line

(more problemmatic)

FORMAT CONVERSION

Raster to Vector Conversion (Skeletonizing)

DATA REDUCTION

DATA REDUCTION

2	5	8	7
4	1	9	4
1	3	5	3
2	2	6	2

16 bytes

4 bytes

1 byte

ERROR DETECTION AND REMOVAL

ERROR DETECTION AND REMOVAL

ERROR DETECTION AND REMOVAL

RECTIFICATION AND REGISTRATION

RECTIFICATION

Rearrangement of location of objects to correspond to specific reference system

TWO METHODS

Homogeneous Transformation

Differential Transformation

REGISTRATION

Rearrangement of location of objects of one set so they correspond with those of another, without reference to a specific reference system

HT: used for map projection and similar conversions

DT: used to correctly position distorted images or scanned maps

EDGE MATCHING

PROCESS

Required for Topo Map.

consistency even if features line-up visually

ISSUES

acceptable tolerance before 'further investigation' of mismatch

'how far back' to go on sheet(s) with adjustments for mismatch

CAUSES OF MISMATCH

paper map shrinkage/expansion

errors from digitizing/scanning

EDGE MATCHING

INTERPOLATION

INTERPOLATION

create new master coverage from the best spatial <u>and</u> attribute qualities of two or more source coverages

Depending on the situation, can require application of a variety of processing tools and can be labor intensive

create new master coverage from quality spatial data in one source and quality attribute data in another

ArcToolbox>Analysis Tools>Overlay>*Update*

MAP PROJECTION

This is the method by which we transform the earth's spheroid (real world) to a flat surface (abstraction), either on paper or digitally.

MAP PROJECTION

Every dataset has a coordinate system, which is used to integrate it with other geographic data layers within a common coordinate framework such as a map.

A map projection is defined by:

01 Name of Projection

03 Description

O2 Type of Projection

04 Ellipsoid / Datum Parameters

MAP PROJECTION

is a mathematical formula for representing the curved surface of the earth on a flat map.

Every projection has its own set of advantages & disadvantages.

There is no "best" projection.

Mapmakers and mathematicians have devised almost limitle ways to project the image of the globe onto a flat surface (paper).

MAP PROJECTION

Selection of a model for the shape of the Earth

usually choosing between a *sphere*, *ellipsoid*, *geoid*.

Because the Earth's actual shape is irregular, information is lost in this step.

Transformation of geographic coordinates

(long/lat) to Cartesian (x, y) or polar plane coordinates.

Cartesian coordinates normally have a simple relation to eastings & northings defined on a grid superimposed on the projection.

Reduce the scale

in manual cartography this step came second, in digital cartography it comes last

MAP PROJECTION: TYPES

<u>Planisphere</u>

whole earth is "unwrapped" onto a plane one way or another

<u>Azimutal</u>

part of earth's surface is projected onto a plane

<u>Conical</u>

part of earth's surface is projected onto a conical shape and then flattened

Cylindrical

same thing with a cylindrical shape

Map Projections Parameters

- Standard Line line of tangency where the projection surface meets the globe
 - ✓ No distortion at this point increase distortion moving away
 - ✓ Standard Parallel
 - ✓ Standard Meridian
 - ✓ More than one standard line possible
- Central Line
 - ✓ Defines the center of the map projection
 - ✓ Central parallel latitude of origin
 - ✓ Central meridian
 - ✓ Can be different from standard line
- False Easting x- coordinate value
- False Northing y- coordinate value

Spatial Reference

- Every spatial feature needs to be referenced to a location for GIS use.
- Spatial reference systems provide a framework to define positions on the Earth's surface.
- We are used to working with coordinate systems, but due to the Earth's irregular, spherical shape this can become intricate.

Spatial Reference Systems

- Clear definition scheme required for geodata exchange and interoperability
- This description needs to be coupled to geodata by sets of metadata
 - √ to permit flexible georeferenced visualization
 - √ to permit correct measurements
 - √ to permit operations between datasets based on different reference systems

Local vs global referencing

- Local coordinate systems used to be sufficient for some maps and plans:
 - ✓ local origin with no given global reference
 - ✓ mostly cartesian systems, no projection info
- Universal interoperability is only feasible within globally unequivocal reference systems
- DO NOT USE LOCAL SYSTEMS!

Coordinate systems

 Rules for identifying the position of each point in space by an ordered set of numbers:

• Systems:

- ✓ Cartesian: coordinate values locate a point in relation to mutually perpendicular axes
- ✓ Polar: coordinates locate a point by angular direction(s) and distance from center.
- ✓ Spherical: point on surface located by angular measurements from center (latitude, longitude)

Coordinate system

- Coordinate systems are defined by:
 - ✓ number of dimensions (1, 2 or 3)
 - ✓ sequence/name of coordinate values (x, y, z)
 - ✓ unit scaling factor and system (meters)
 - ✓ origin of axes
 - ✓ direction of axes
- Coordinate systems can be based on a geodetic reference (datum) and a map projection

Direct vs. Indirect Positioning

 Two methods to position points relative to the surface of the Earth:

- direct position:
 - ✓ position based on coordinates
- <u>indirect position</u>:
 - ✓ position not using coordinates (e.g. street address)

2D vs. 3D systems

- Most GIS are 2D or 2.5D
- Many GIS operations are not defined in 3d space
- Increasingly, we need to handle 3D data, even if we don't fully use them
- Visualisation of 3D data sets is currently more important than analysis

Geographic vs. Projected Coordinate System

• GCS:

- Location measured from curved surface of the earth
- Measurement units: Lat/Lon
 - Degrees-minutes-seconds (DMS)
 - Decimal degrees (DD) or radians (rad)

• PCS:

- Flat surface
- Units can be in meters/feet/inches
- Distortions will occur, except for very fine scale maps

Geographic Coordinate System

- Parallels: east to west 0° at the Equator (0 °-90 °)
- Meridians: north to south 0° at the Prime Meridian (0°-180°)
- Latitude and longitude are angular measurements made from the center of the earth to a point on the surface of the earth

Globe

- Spherical Earth's surface
 - ✓ Radius 6371 km
- Meridians (lines of longitude)
 - ✓ Passing through Greenwich, England as prime meridian or 0º longitude.
- Parallels (lines of latitude)
 - ✓ Using equator as 0º latitude.
 - ✓ Degrees-minutes-seconds (DMS),
 - ✓ Decimal degrees (DD)

True direction, shape, distance, and area

Earth Surface: Ellipsoid, Geoid, Topo

- The reference ellipsoid surface (a map of average sea level).
- The *reference geoid* surface (a mean sea level surface).
- The real surface of the Earth (the ground) also called the topographic surface.

