Time: 1.30 hrs

(Sections: A,B,C,D,E,F,G,I,J,K,L,M,N,O)

Maximum: 30 Marks

$PART - A (2 \times 5 = 10 Marks)$	AT.	786	
Q.1. Answer ALL questions		CO#	Blooms
a. Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$		CO1	Level K1
b. Prove that the diagonal elements of a skew-symmetric matrix are ze		001	77.1
c. Find the spectrum and spectral radius and section (1 1)	10	CO1	K1 K2
c. Find the spectrum and spectral radius of the matrix $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ d. Find the total derivative of $z = e^x \sin y$ e. Find $\frac{dy}{dx}$ where $x \sin(x - y) - (x + y) = 0$	•	CO2	K1 K2
$PART - B (10 \times 2 = 20 \text{ Marks})$			
Answer ALL Questions	Marks	CO#	Blooms Level
2.a. Solve the system of linear equations by Gauss Elimination method $3x + 7y + 8z = -13$,	5	COI	K2
2x + 9z = -5, -4x + y - 26z = 2		12	
b. Find the Diagonalization of matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ (OR)	5	COI	K2
c. Find the eigenvectors of the matrix $\begin{pmatrix} 16 & 0 & 0 \\ 48 & -8 & 0 \\ 84 & -24 & 4 \end{pmatrix}$	5	CO1	K2
d. Find out which type of conic section is represented by Quadratic function $41x_1^2 - 24x_1x_2 + 34x_2^2 = 0$	5	CO 1	K2
3.a. If $z = xyf(\frac{y}{x})$ show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2z$ and if z is constant then $\frac{f'(\frac{y}{x})}{f(\frac{y}{x})} = \frac{x(y + x\frac{dy}{dx})}{y(y - x\frac{dy}{dx})}$	5	CO2	K2
b. Expand $f(x, y) = \log(x + e^y)$ by Taylor's series in powers of $(x - 1)$ and y .	5	CO2	K2
(OR)			
c. If $x^x y^y z^z = c$, show that at $x = y = z \frac{\partial^2 z}{\partial x dy} = -(x \ln ex)^{-1}$	6	CO2	K2
d. Discuss the maxima and minima of $f(x,y) = \sin x + \sin y + \sin (x + y)$	4	CO2	K2