$\overline{}$	RD.txt] 10 1175						S/M	Hit Listin
SC.	AN: 10.02/89.998/0.02/1(sec), Cu, I(max)=23311, 11/2	24/20 10:57						
10	TE: Intensity = Counts, 2T(0)=0.0(deg), S/M: Sea Sea	arch						
	Column: [+] Common/Good Patterns, [?] Uncommon/N		t Patte	rns,[]Int	termedia	te Pattern	s, [D] [Deleted
	Column: C=Calculated, D=Diffractometer, F=Densitom							
‡	15 Hits Sorted on d/d(0)	FOM	1%	2T(0)	d/d(0)	PDF-#	J D	#d/I
1	✓ Al2O3 - Aluminum Oxide	0.7	85	0.000	, ,	75-1863		25
2	✓ Corundum - Al2O3	0.7	85	0.000		74-1081		25
3	✓ Al1.98Cr0.02O3 - Aluminum Chromium Oxide	0.7	85	0.000		73-0027		25
ļ	Corundum - (Al.948Cr.052)2O3	1.3	74	0.080		71-0958		25
5	Corundum (Cr-doped), syn - Al1.92Cr.08O3	3.9	74	0.100	1.000	87-0711	СС	25
i	Al1.54O3Cr.46 - Aluminum Chromium Oxide	24.5	18	-0.060	1.000	77-2188	СС	19
•	☐ NiZn3 - Nickel Zinc	33.0	61	0.000	1.000	47-1019	+ F	58
}	Cu5Zn8 - Copper Zinc	34.4	40	-0.020	1.000	25-1228	+ C	12
)	☐ TaN0.1 - Tantalum Nitride	35.1	23	0.080	1.000	25-1278	+ D	4
)	☐ Fe2C - Iron Carbide	37.3	15	-0.020	1.000	36-1249		5
1	Tungstite - WO3H2O	41.5	41	-0.080				88
2	Zr6CoGa2 - Zirconium Cobalt Gallium	42.2	44	0.080		73-0045		25
3	Na.5H2.5PO3 - Sodium Hydrogen Phosphate	42.3	20	0.000		74-1420		48
4	C12H10O6P2Zr - Zirconium phenylphosphonate	44.9	100	0.000	1.000			62
5	Fe7W6 - Iron Tungsten	48.3	36	0.000	1.000	42-1209	+ D	64
			1					
								, 1. 1