

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

CI2N 15/00, A61K 48/00

(11) International Publication Number:

WO 98/26061

A2

(43) International Publication Date:

18 June 1998 (18.06.98)

(21) International Application Number:

PCT/US97/22740

(22) International Filing Date:

8 December 1997 (08.12.97)

(30) Priority Data: 60 032,145

9 December 1996 (09.12.96)

US

OS 982,272

1 December 1997 (01.12.97)

(71) Applicant: UNIVERSITY OF CALIFORNIA [US/US]; Technology Transfer Office, Mail Code: 0093, 9500 Gilman Drive La Jolla, CA 92093-0093 (US).

(72) Inventors: KIPPS, Thomas, J.; 661 South Nardo Road #10. Soluna Beach, CA 92075 (US). SHARMA, Sanjai; 8520-K Via Mallorca, La Jolla, CA 92037 (US). CANTWELL, Mark; 3775 H Miramar Street, La Jolla, CA 92037 (US).

(74) Agents: GUISIL Jeffrey, W et al.; Lyon & Lyon LLP, Suite 47(0), 633 West Fifth Street, Los Angeles, CA 90071-2066 (US).

(81) Designated States: AT, AU, BR, CA, CH, CN, DE, DK, ES, FI, GB, IL, JP, KR, LU, MX, NO, NZ, PT, RU, SE, SG, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NOVIL EXPRESSION VECTORS CONTAINING ACCESSORY MOLECULE LIGAND GENES AND THEIR USE FOR IMMUNOMODULATION AND TREATMENT OF MALIGNANCIES AND AUTOIMMUNE DISEASE

(57) Abstract

This invention relates to genes which encode accessory molecule ligands and their use for immunomodulation, vaccination and treatments of various human diseases, including malignancies and autoimmune diseases. This invention also describes the use of accessory molecule ligands which are made up of various domains and subdomain portions of molecules derived from the tumor necrosis factor family. The chimeric molecules of this invention contain unique properties which lead to the stabilization of their activities and thus greater usefulness in the treatment of diseases. Vectors for expressing genes which encode the molecules of this invention are also discussed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan .
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	(E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brozil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	15	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
Ci	Câte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugat		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

DESCRIPTION

Novel Expression Vectors Containing Accessory Molecule
Ligand Genes And Their Use For Immunomodulation And
Treatment Of Malignancies And Autoimmune Disease

Related Application

This application claims priority to Kipps et al., NOVEL EXPRESSION VECTORS CONTAINING ACCESSORY MOLECULE LIGAND GENES AND THEIR USE FOR IMMUNOMODULATION AND TREATMENT OF MALIGNANCIES, United States Provisional Application No. 60/132145, filed December 9, 1996, which is incorporated herein by reference including drawings.

Technical Field of the Invention

The present invention relates to novel expression

vectors containing genes which encode an accessory

molecule ligand and the use of those vectors for

immunomodulation, improved vaccination protocols and the

treatment of malignancies and autoimmune diseases. More

particularly, this invention provides expression vectors

and methods for treating various neoplastic or malignant

cells, and expression vectors and methods for treating

autoimmune Disease. This invention also contemplates

the production and expression of accessory molecule

ligands with greater stability and enhanced function.

20 Background of the Invention

Leukemias, lymphomas, carcinomas and other malignancies are well known and described in, e.g., Harrison's Principles of Internal Medicine, Wilson et al., eds., McGraw-Hill, New York, pp. 1599-1612. These malignancies appear to have somehow escaped the immune system surveillance mechanisms that eliminate rapidly and continuously proliferating cells. The exact mechanism by which these malignancies escape the immune system surveillance is not known.

2

Some of these malignant immune system cells are malignant antigen presenting cells which do not function properly within the immune cascade. For example, neoplastic B cells cannot induce even weak allogeneic or 5 autologous mixed lymphocyte reactions in vitro. evidence that malignancies survive due to the failure of the immune surveillance mechanism includes the increased frequency of such malignancies in immunocompromised individuals, such as allograft recipients and those 10 receiving long-term immunosuppressant therapy. Further, the frequency of these malignancies is increased in patients having Acquired Immune Deficiency Syndrome (AIDS) and patients with primary immune deficiency syndromes, such as X-linked lymphoproliferative syndrome 15 or Wiscott-Aldrich Syndrome (Thomas et al., Adv. Cancer Res. 57:329, 1991).

The immune system normally functions to eliminate malignant cells by recognizing the malignant cells as foreign cells and clearing those cells from the body. 20 Ar. immune reaction depends on both the immune system's antibody response and on the cellular immune response within a patient. More specifically, the cellular immune response which acts to recognize the malignant cells as foreign requires a number of different cells of 25 the immune system and the interaction between those An immune reaction begins with a T lymphocyte (T cell; which has on its cell surface the T cell receptor. The T cell also has the ability to express on its surface various accessory molecules which interact with 30 accessory molecules on the B lymphocyte (B cell). the T cell receptor of the T cell specifically binds to a foreign antigen, such as a malignant cell, it becomes activated and expresses the accessory molecule ligand, CD40 ligand on its cell surface. The accessory cell 35 molecule ligand is only present on the activated T cells for a short period of time and is rapidly removed from the cell surface. After the accessory cells molecule

3

ligand is removed from the surface of the activated T cell, its ability to bind to B cells via the accessory molecule ligand is destroyed.

When present on the surface of an activated T cell,

the accessory cell ligand can specifically bind to the
accessory cell molecule present on the B cell. This
specific T-B cell interaction causes the B and T cell to
express costimulatory surface accessory molecule and
cytokines which result in an immune activation which

lead to cytolytic T cells which specifically kill and
remove the malignant cell from the body.

The interaction with an activated T cell is not solely limited to B cells but rather can be carried out by any cell which is able to present antigen to the T 15 cell (an antigen presenting cell). These cells include B lymphocyte, macrophages, dendritic cells, monocytes, Langerhans cells, interdigitating cells, follicular dendritic cells or Kupffer cells. These cells all are known to have various accessory molecules on the cell 20 surface which allow them to interact with other cells of the immune system. For example, these antigen presenting cells all have the accessory molecule CD40 on their cell surface. The presence of these accessory molecules allows these antigen presenting cells to 25 specifically bind to complimentary accessory molecule ligand and thus directly interact with other immune cells.

A large number of accessory molecule ligands are members of the tumor necrosis factor superfamily.

30 (Fanslow et al., Sem. Immun., 6:267-268 (1994). The genes for a number of these accessory molecule ligands have been cloned and identified. These accessory molecule ligand genes encode accessory molecules which all have the configuration of Type II membrane proteins and exhibit varying degrees of homology with other accessory molecule ligand genes. For example, the accessory molecule ligand genes encoding both murine

4

CD40 ligand and human CD40 ligand have been isolated. See, Armitage et al., Nature, 357:80-82 (1992) and Hollenbaugh et al., EMBO J., 11:4313-4321 (1992).

CD40 and its ligand, CD40 ligand are critical 5 components of a normal immune response. CD40 mediated signals induce immune lymphocytes to proliferate and differentiate and become potent antigen presenting Malignant or neoplastic B cells are poor antigen cells. presenter cells and are unable to stimulate a vigorous allogeneic mixed lymphocyte reaction. Successful cross linking of CD40 molecules on immune cells results in a strong allogeneic mixed lymphocyte reaction suggesting a strong immune reaction. Various soluble CD40 liqands or antibodies specific for CD40 have been used to 15 potentially cross link CD40. These soluble CD40 ligands and CD40-specific antibodies are not optimal for cross linking the CD40 molecules on antigen presenting cells and do not work as effectively as CD40 ligand expressed on a cell membrane to produce strong stimulation of 20 antigen presenting cells. These methods are also difficult to implement because large amounts of CD40 ligand constructs or antibodies must be isolated which is difficult and time-consuming work. Other strategies to utilize CD40 ligand in solution or as a membrane 25 bound molecule including transformation of fibroblasts with CD40 ligand to produce cultured cells which are then used to present antigen are not amenable to in vivo human clinical protocols.

CD95 (Fas) interaction with its ligand (Fas-ligand, or FasL) functions to limit the duration of the immune response and/or life-span of activated lymphocytes. Apoptosis induced by Fas-FasL binding serves to clear activated self-reactive lymphocytes. Problems caused by altering this pathway have been demonstrated in animals with defects in Fas<->Fas-ligand interactions. Mice having mutations, which inactivate CD95 or FasL, develop numerous disorders including autoimmune pathology

resembling that seen in patients with rheumatoid arthritis (RA) or systemic lupus. Zhang, et al., in <u>J. Clin. Invest.</u> 100:1951-1957 (1997) show that injection of FasL-expressing virus, into the joints of mice with collagen-induced-arthritis, results in apoptosis of synovial cells and relief of arthritis symptoms. Expression of Fas ligand allows clearance of activated cells which play a role in the pathogenesis of autoimmune disease. Therefore, a gene therapy strategy for introducing FasL into the joints of rheumatoid arthritis patients could function to improve disease pathology by leading to destruction of the infiltrating mononuclear cells.

Administration of soluble accessory molecules and accessory molecule ligands has been shown to trigger or to be associated with adverse physiological effects. For example, treatment of mice, having wild-type CD40-receptor expression, with soluble CD40L-CD8 fusion protein resulted in a pulmonary inflammatory response.

20 This was not observed in mice in which the gene for the CD40 receptor had been knocked out. These experiments, described in Wiley, J.A. et al., Journal of Immunology 158:2932-2938 (1997), support in vitro data which suggest that CD40 ligation can result in inflammatory responses.

Direct administration of purified recombinant soluble Tumor Necrosis Factor (either α or β) results in shock and tissue injury, as described in Tracey, K. J., and A. Cerami, Annu. Rev. Med. 45:491-503 (1994).

30 Within minutes after acute intravenous or intra-arterial administration of TNF, a syndrome of shock, tissue injury, capillary leakage syndrome, hypoxia, pulmonary edema, and multiple organ failure associated with a high mortality ensues. Chronic low dose of TNF causes

35 anorexia, weight loss, dehydration and depletion of whole-body protein and lipid.

Soluble Fas ligand and receptor have also been shown to be associated with tissue damage and other adverse effects. CD95, the Fas receptor, is a mediator of apoptosis. Fas ligand induces apoptosis by binding to Fas receptor. As shown in Galle, P.R., et al., J. Exp. Med. 182:1223-1230 (1995) administering an agonistic anti-Fas antibody resulted in liver damage to mice. Mice injected intraperitoneally with the agonistic antibody died within several hours, and analyses revealed that severe liver damage by apoptosis was the most likely cause of death.

The role of soluble Fas ligand (FasL), in the pathogenesis of systemic tissue injury in aggressive lymphoma is described in Sato, K. et al., <u>British</u>

15 <u>Journal of Haematology</u>, 94:379-382 (1996). The findings presented in this report indicate that soluble FasL is directly associated with the pathogenesis of liver injury and pancytopenia.

CD27, the receptor for the accessory molecule ligand, CD70, was shown, in a report written by van Oers, et al., in <u>Blood</u> 82:3430-3436 (1993), to be associated with B cell malignancies.

The above findings all contraindicate the administration of soluble accessory molecule ligands, highlighting the need for therapies that increase the levels of these molecules without resulting in an elevation of their soluble forms.

Despite the wealth of information regarding accessory molecule ligand genes and their expression on the surface of various immune cells, the exact mechanism by which the accessory molecule ligand genes are regulated on antigen presenting cells is not yet known. Without specific knowledge of the regulation of expression of accessory molecule ligand genes on these antigen presenting cells, altering the immune response by varying expression of an accessory molecule ligand gene has to date not been possible. Without any

specific knowledge as to how to regulate the expression of an accessory molecule ligand gene on an antigen presenting cell, it is not possible to alter the immune response towards malignant cells. Thus, there was a need for a method of increasing the expression of an accessory molecule ligand gene on normal and malignant cells including antigen presenting cells.

Further, without the ability to regulate the expression of accessory molecule ligands, it is not possible to alter the immune clearance of these cells.

Summary of the Invention

The present invention fills these needs by providing novel expression vectors containing accessory molecule ligand genes and methods for introducing those 15 genes into normal and malignant antigen presenting cells thereby allowing the alteration of an immune response. the treatment of autoimmune diseases and the treatment of various neoplasias. This invention provides vectors, including gene therapy vectors which contain accessory 20 molecule ligand genes. These vectors also contain the additional genetic elements, such as promoters, enhancers, polyadenylation signals (3' ends), which allow that vector to be successfully placed within the cell and to direct the expression of the accessory 25 molecule ligand gene in a cell. Such gene therapy vectors are capable of transforming animal cells directly and thereby introducing the accessory molecule ligand gene into the cells of that animal in a form which can be utilized to produce accessory molecule 30 ligands within that cell.

In other aspects of the present invention, the function of an accessory molecule ligand is modified by altering the half life of the molecule on the cell surface or by changing the level of expression of that molecule on the cell surface. In preferred embodiments, the present invention provides accessory molecule

ligands which are modified to improve the stability of such accessory molecule ligands on the cell surface. Such increased stability may be accomplished using any of the disclosed methods of molecules described in this application, including chimeric molecules and molecules into which mutations have been introduced at least one location. The present invention also contemplates increasing the expression of such a molecule.

The present invention also provides gene therapy 10 vectors containing the accessory molecule ligand genes which are chimeric in that portions of the gene are derived from two separate accessory molecule ligands which may or may not be from different species. accessory molecule ligand genes of the present invention 15 include genes which encode molecules of the tumor necrosis factor (TNF) family. The molecules which make up the TNF family include TNF, TNF, CD40 ligand, Fas ligand, CD70, CD30 ligand, 41BB ligand (4-1BBL), nerve growth factor and TNF-related apoptosis inducing ligand In some embodiments of the present invention, 20 (TRAIL). the chimeric accessory molecule ligand genes of the present invention contain at least a portion of a murine accessory molecule ligand gene together with portions of accessory molecule ligand genes derived from either mouse, humans or other species. Some preferred embodiments of the present invention utilize murine CD40 ligand genes and chimeric CD40 ligand genes containing at least a segment of the murine CD40 ligand gene together with at least a segment of the human CD40 ligand gene. The present invention contemplates chimeric accessory molecule ligand genes wherein segments from the accessory molecule ligand gene of one species have been interchanged with segments from a second accessory molecule ligand gene which may 35 optionally be from a different species. For example, in one preferred embodiment, the murine CD40 ligand gene

transmembrane and cytoplasmic domains have been attached to the extracellular domains of human CD40 ligand gene.

The present invention contemplates gene therapy vectors which are capable of directly infecting the 5 human, mammal, insect, or other cell. The use of such gene therapy vectors greatly simplifies inserting an accessory molecule ligand gene into those cells. The contemplated gene therapy vectors may be used in vivo or in vitro to infect the desired cell and are particularly useful for infecting malignant cells to effect sustained high-level expression of a physiologic ligand.

The present invention also contemplates animal, mammal, and human cells containing a gene therapy vector which includes an accessory molecule ligand gene and sufficient genetic information to express that accessory molecule ligand within that cell. In preferred embodiments, the present invention also contemplates human neoplastic antigen presenting cells which contain the gene therapy vectors of the present invention or contain an accessory molecule ligand gene together with a promoter and 3' end region.

The present invention also contemplates human cells and human neoplastic cells containing a gene therapy vector which includes a chimeric accessory molecule

25 ligand gene. The present invention also contemplates bacterial cells or animal cells containing accessory molecule ligand genes, chimeric accessory molecule ligand genes, murine accessory molecule ligand genes, human accessory molecule ligand genes, the gene therapy vectors of the present invention, the vectors of the present invention, and a chimeric accessory molecule ligand gene together with a heterologous promoter, enhancer or polyadenylation sequence.

The present invention also contemplates methods of altering immune response within a human patient or the immunoreactivity of human cells <u>in vivo</u> by introducing a gene which encodes an accessory molecule ligand gene

10

into the human cells so that that accessory molecule ligand is expressed on the surface of those human cells. This method includes the introduction of the accessory molecule ligand gene as part of a gene therapy vector or in association with a heterologous or native promoter, enhancer or polyadenylation signal. Some preferred embodiments of the present invention utilize introduction of Fas ligand genes and chimeric Fas ligand genes, constructed as contemplated above for CD40, into human cells to alter their immunoreactivity. The present invention also includes methods in which such accessory molecule ligand genes are inserted into cells which have the accessory molecule to which the accessory molecule ligand gene.

The present methods of altering immunoreactivity are applicable to all types of human, animal, and murine cells including human neoplastic cells such as human lymphomas, leukemias and other malignancies. 20 preferred embodiments, this method is used to introduce the gene encoding the accessory molecule ligand into potential antigen presenting cells of a human patient or cell which can stimulate bystanding antigen presenting Such antigen presenting cells include monocytes, 25 macrophages, B cells, Langerhans cells, interdigitating cells, follicular dendritic cells, Kupffer cells, and The various antigen presenting cells may be present as part of a known malignancy in a human patient such as leukemias, lymphomas, acute monocytic leukemia (AML), chronic lymphocytic leukemia (CLL), acute 30 myelomonocytic leukemia (AMML), chronic myelogenous or chronic myelomonocytic leukemia (CMML) and thus would include all tumors of any cell capable of presenting antigen to the human or animal immune system or are 35 capable of stimulating bystanding antigen presenting The present invention also contemplates modulating the immune system by introducing genes

11

encoding an accessory molecule ligand gene of the present invention into any number of different cells found in a patient, including muscle cells, skin cells, stromal cells, connective tissue cells, fibroblasts and the like.

The present invention also contemplates methods of treating neoplasias in either a human patient or an animal patient. In one preferred embodiment, the method comprises isolating the neoplastic cells from the human or animal patient and inserting into those isolated cells the gene which encodes the chimeric accessory molecule ligand or the accessory molecule ligand so that that malecule is expressed on the cell surface of those reoplastic cells or other somatic cells. The neoplastic cells are then infused back into the human or animal patient and may then participate in an enhanced immune response.

The present invention also contemplates the coinfection or co-introduction of the accessory molecule
ligand gene together with a gene which encodes a tumor
or carcinoma specific antigen. This combination of
molecules are then expressed on the surface of the
neoplastic cells and when those cells are introduced
into the patient lead to the rapid immune response
resulting in the destruction of those cells.

The present methods also include directly introducing the gene therapy vector or other vector carrying the accessory molecule ligand gene directly into the tumor or tumor bed of a patient. Upon entering the tumor bed of the patient, the gene therapy vector or other vector enter the cells present in the tumor or tumor bed and then express the accessory molecule ligand gene on the surface of those cells. These cells then are able to participate fully in the human immune or animal immune response.

The present invention also contemplates methods of augmenting an immune response to a vaccine. The present

PCT/US97/22740 WO 98/26061

12

method of vaccinating an animal against a predetermined organism or antigen by administering to that animal a vaccine which has a genetic vector containing an accessory molecule ligand gene. Other embodiments of 5 the present invention include vaccinating an animal by administering two separate genetic vectors, one containing the antigens from the organism to which immunity is desired by isolating the cells of the target animal and contacting with those cells a vector encoding 10 at least one antigen from a predetermined organism so that the antigen is expressed by the cells and also contacting those cells with a different vector which expresses the accessory molecule ligand gene on the surface of the animal's antigen presenting cells.

15 Together these two separate vectors produce a vaccination which is much stronger and of longer duration than is vaccination with antigen alone.

The present methods of vaccination are applicable to vaccinations designed to produce immunity against a 20 virus, a cell, a bacteria, any protein or a fungus. present methods are also applicable to immunization against various carcinomas and neoplasias. embodiments, the tumor antigen against which immunity is desired is introduced into the animal together with the 25 genetic vector containing the accessory molecule ligand gene.

The present invention also contemplates methods of treating arthritis utilizing a gene therapy vector encoding an accessory molecule ligand. Of particular interest for use with arthritis is the Fas ligand molecule in which the expression of Fas ligand activity has been increased in the joint and/or the stability of the Fas ligand activity on cells within the joint enhanced. In other embodiments, the present invention 35 contemplated methods of treating arthritis utilizing chimeric accessory molecule ligands and chimeric accessory molecule ligand genes. The present invention

30

also contemplates both <u>ex vivo</u> therapy and <u>in vivo</u> therapy of arthritis utilizing the expression vectors of the present invention together with the Fas ligand and modified versions of that molecule including chimeric molecules.

Brief Description of the Drawings

10

<u>Figure 1</u>. Figure 1 is a diagram showing a number of accessory molecule ligand genes and Domains I-IV of those genes as deduced from sequence data.

<u>Figure 2</u>. Figure 2 is a diagram showing example chimeric accessory molecule ligand genes. The domains derived from the murine accessory module are shown shaded.

Figure 3. Figure 3 shows the amount of either

mouse or human CD40 ligand found on the surface of Hela
or CLL cells infected with gene therapy vectors
containing the genes encoding these molecules. Figure
3A shows uninfected Hela cells (shaded) and Hela cells
infected with a gene therapy vector encoding murine CD40
ligand. Figure 3B shows uninfected Hela cells (shaded)
and Hela cells infected with a gene therapy vector
encoding human CD40 ligand. Figure 3C shows uninfected
CLL cells (shaded) and CLL cells infected with a gene
therapy vector encoding murine CD40 ligand. Figure 3D
shows uninfected CLL cells (shaded) and CLL cells
infected with a gene therapy vector encoding human CD40
ligand.

Figure 4. Figure 4 shows histograms of the increased expression of CD54 (Figure 4B) and CD80

(Figure 4D) on CLL cells into which a gene therapy vector containing the accessory molecule ligand gene (murine CD40 ligand gene) has been introduced. The shaded graph indicates control stain in FACS analysis and the open graph indicates staining with monoclonal antibodies immunospecific for either CD54 (Figures 4A and 4B) or CD80 (Figures 4C and 4D).

Figure 5. Figure 5 shows the cell proliferation as measured by 3H-TdR incorporation of allogeneic T cells in response to various stimulation regimes. The CLL cells containing a gene therapy vector expressing an accessory 5 molecule ligand gene (the murine CD40 ligand gene) were introduced, stimulating allogeneic T cells to proliferate.

Figure 6. Figure 6 shows the production of gamma interferon (IFNg) by allogeneic T cells stimulated with 10 CLL cells containing an accessory molecule ligand gene.

Figure 7. Figure 7 shows the treatment of a neoplasia in an animal using a gene therapy vector containing an accessory molecule ligand gene of the present invention. The open squares show mice immunized 15 with neoplastic cell <u>not</u> expressing an accessory molecule ligand of the present invention. Mice immunized with neoplastic cells expressing an accessory molecule ligand of the present invention are shown as the horizontal line at the top of the Figure and show no 20 morbidity.

Figure 8. Figure 8 shows the production levels and stabilities of CD40 ligand and CD40 ligand transcript in CLL (upper graph) and normal blood mononuclear cells (lower graph).

Figure 9 shows the time course of 25 transgene expression in CLL B cells infected with the accessory molecule ligand (CD40 ligand). The MFIR (mean fluorescence intensity ratio), comparing the fluorescence intensity of CD19' CLL cells stained with 30 PE-labeled CD40 ligand versus the same stained with a PE-labeled isotype control mAb at each time point, are represented by the closed circles connected by solid lines according to the scale provided on the left-hand ordinate.

35 Figure 10. Figure 10 shows changes in surface antigen phenotype of CLL B cells infected with a gene therapy vector containing an accessory molecule ligand,

CD40 ligand. Shaded histograms represent staining of uninfected CLL cells (thin lines) stained with nonspecific control antibody, open histograms drawn with thin lines represent uninfected CLL cells stained with FITC-conjugated specific mAb, and open histograms drawn with thick lines (labeled CD154-CLL) represent CLL cells infected with the accessory molecule ligand gene therapy vector and stained with FITC-conjugated specific mAb.

Figure 11 Shows levels of CD27 produced in CLL cells infected with a gene therapy vector containing an accessory molecule ligand. Figure 11A shows that CD40L-infected CLL (CD154-CLL) cells express reduced levels of surface CD27. Open histograms represent staining of non-infected CLL cells (thin lines) or infected CLL (thick lines) with FITC-conjugated aCD27 mAb, respectively. Figure 11B shows production of soluble form of CD27 by CLL B cells.

Figure 12. Figure 12 shows allogeneic T cell responses induced by CLL cells infected with a gene therapy vector containing an accessory molecule ligand (CD40 ligand, also called CD154). Figure 12A indicates the concentration of IFNg in the supernatants after stimulation of allogeneic T cells with CLL cells containing the accessory molecule ligand. Figure 12B shows cell proliferation, as assessed by incorporation of 'H-thymidine. Figures 12C and 12D show secondary allogeneic T cell responses induced by CLL containing the accessory molecule ligand.

Figure 13. Figure 13 depicts autologous T cell
responses induced by CLL B cells containing the
accessory molecule ligand, CD40 ligand or CD154, and
controls. Figure 13A shows incorporation of 'H-thymidine
by autologous T cells co-cultured with the CLL cells.
Figure 13B shows the levels of human IFNg produced by
autologous T cells co-cultured with the CLL cells. In
Figure 13C, the CTL activities of autologous T cells

induced by CLL B cells containing the accessory molecule ligand are graphed.

Figure 14. Figure 14 shows specificity of CTL for autologous CLL B cells. IFNg concentration was assessed in the supernatants after 48 h of culture (Figure 14A), and cytolytic activity was assessed at 3 h of culture (Figure 14B). In Figure 14C, mAb were added to the autologous leukemia target cells prior to the CTL assay.

Figure 15. Figure 15 shows that intercellular 10 stimulation plays a role in production of the phenotypic changes observed in CLL cells expressing the accessory molecule ligand. In Figure 15A, the effect of culture density on the induced expression of CD54 and CD80 following infection with a gene therapy vector 15 containing the accessory molecule ligand (CD40 ligand, CD154) is shown. Shaded histograms represent staining of leukemia B cells with a FITC-conjugated isotype control mAb. Open histograms represent CD154-CLL B cells, cultured at high or low density (indicated by 20 arrows), and stained with a FITC-conjugated mAb specific for CD54 or CD80. Figure 15B shows inhibition of CD154-CLL cell activation by anti-CD154 mAb. Figures 15C and 15D depict expression of immune accessory molecules on bystander non-infected CLL B cells induced by CLL cells 25 expressing the accessory molecule ligand. histograms represent staining with PE-conjugated isotype control mAb.

Figure 16. Figure 16 shows that the vector encoding an accessory molecule ligand enhances

30 immunization against β-gal in mice. Figure 16A shows that mice that received intramuscular injections of the pCD40L vector produced significantly more antibodies to β-gal than did mice injected with either the non-modified pcDNA3 vector or pCD40L. Figure 16B, ELISA

35 analyses of serial dilutions of sera collected at d28, shows that mice co-injected with placZ and pCD40L had an

eight-fold higher mean titer of anti- β -gal antibodies at d28 than mice treated with placZ + pcDNA3.

Figure 17. Figure 17 shows analysis of the IgG₁ and IgG_{2a} immune responses to intramuscular plasmid DNA immunizations with and without a vector, pCD40L, encoding an accessory molecule ligand. IgG_{2a} anti- β -gal antibodies predominated over IgG₁ subclass antibodies in the sera of mice injected with either placZ and pcDNA3 or placZ and pCD40L. In contrast, BALB/c mice injected with β -gal protein developed predominantly IgG₁ anti- β -gal antibodies, and no detectable IgG_{2a} anti- β -gal antibodies.

Figure 18. Figure 18 shows the comparison between injection of mice with a vector, pCD40L, encoding an accessory molecule ligand, at the same and different sites as placZ. Adjuvant effect of pCD40L requires coinjection with placZ at the same site.

Figure 19 shows that co-injection into dermis of a vector encoding an accessory molecule
 ligand, pCD40L, with placZ enhances the IgG anti-β-gal response in BALB/c mice.

Figure 20. Figure 20 shows that a vector encoding an accessory molecule ligand, pCD40L, enhances the ability of placZ to induce CTL specific for syngeneic b-gal-expressing target cells. Splenocyte effector cells, taken from mice which had received injections of placZ and pCD40L, specifically lysed significantly more cells than did splenocytes from mice that received control injections.

Figure 21. Figure 21 shows downmodulation of human CD40L, but not murine CD40L, in lung tumor cell lines that express CD40.

Figure 22. Figure 22A shows that CD40 binding induces enhanced expression of the tumor cell surface markers CD95 (Fas), CD54 (ICAM-1), and MHC-I, in lung tumor cell lines. Figure 22B shows downmodulation of human CD40L by CD40-positive tumor cells.

PCT/US97/22740 WO 98/26061

18

Figure 23. Figure 23 shows the inhibition of Fas ligand expression by lymphocytes in the presence of RA synovial fluid.

Figure 24. Figure 24 shows an outline for a 5 clinical trial of an accessory molecule ligand (CD40L) gene therapy treatment for B cell CLL.

Figure 25. Figure 25 shows a sequence line-up of human Fas ligand with human Fas ligand in which Domain III is replaced by Domain III of murine Fas ligand. 10 top protein sequence is native human Fas ligand. III is underlined with the dotted line. The double underline indicates a putative MMP cleavage site. bottom protein sequence is that of chimeric human-mouse Fas ligand. Domain III of the mouse Fas ligand (underlined with dotted line) is substituted for Domain III of human Fas ligand. The numbers correspond to the amino acid sequence number using 1 for the start of the polypeptide sequence. The number of the first nucleotide base for the codon encoding the amino acid is 20 $1+3\times(n-1)$, where n is the amino acid sequence number.

15

Figure 26. Figure 26 shows a sequence line-up of human Fas ligand with human Fas ligand in which Domain III has been replaced with Domain III of human CD70. The top protein sequence is native human Fas ligand, and 25 the bottom sequence is that of chimeric Fas ligand, in which Domain III of human CD70 has been substituted for Fas Domain III. Other markings are used similarly as in Figure 25.

Figure 27 shows a sequence line-up of Figure 27. human Fas ligand with human Fas ligand in which Domain I has been replaced with Domain III of human CD70. top protein is native human Fas ligand, and the bottom protein sequence is that of chimeric Fas ligand, in which Domain III has been replaced with Domain I of 35 human CD70. Other markings are used similarly as in Figure 25.

Figure 28. Figure 28 shows the amino acids around and at known matrix metalloproteinase (MMP) cleavage sites, as described in Smith, M.M. et al., Journal of Biol. Chem. 270:6440-6449 (95) and Nagase, H., and G.B. 5 Fields, Biopolymers (Peptide Science) 40:399-416 (96). The cleavage site is indicated with an arrow.

Detailed Description of the Invention

All references cited herein are hereby incorporated in their entirety by reference.

10 I. <u>Definitions</u>

25

An "accessory molecule ligand gene" is a gene which encodes all or part of an accessory molecule ligand. The gene comprises at least the nucleotide sequence required to encode the functional portion of an 15 accessory molecule ligand. The gene may optionally include such genetic elements as promoters, enhancers and 3' ends. The accessory molecule ligand gene is derived from a ligand which is a member of the tumor necrosis factor (TNF) family, including CD40 ligand, Fas 20 ligand, CD70, TNF_{α} , TNF_{θ} , CD30 ligand, 4-1BB ligand (4-1BBL), nerve growth factor and TNF-related apoptosis inducing ligand (TRAIL). As used herein, the term "accessory molecule ligand gene" includes chimeric accessory molecule ligand genes as defined below.

As used herein, the term "malignant cells or neoplastic cells," is defined to mean malignant or cancerous cells which are found in a human patient or an animal. Preferred types of malignant or neoplastic cells include any malignant antigen-presenting cell. In 30 some preferred embodiments, these malignant antigen presenting cells have at least low levels of CD40 present on the cell surface.

As used herein, the term "neoplastic human cells" is defined to mean human cells which are neoplastic 35 including but not limited to antigen presenting cells,

any neoplastic cell which may function as an antigen presenting cell or function to facilitate antigen presentation, neoplastic monocytes, neoplastic macrophages, neoplastic B cells, neoplastic dendritic 5 cells, neoplastic Langerhans cells, neoplastic interdigitating cells, neoplastic follicular dendritic cells, or neoplastic Kupffer cells and the like. definition of neoplastic human cells includes those cells which are associated with neoplastic cells in the 10 tumor bed of human patients. Typically, the neoplastic human cells are either leukemias, lymphomas, AML, ALL, AMML, CML, CMML, CLL other tumors of antigen presenting cells or breast, ovarian or lung neoplastic cells. is also contemplated that the accessory molecule ligand 15 genes or chimeric accessory molecule ligand genes of the present invention may be inserted into somatic cells. These somatic cells can be created by a genetic engineering process which has introduced into those cells genes which encode molecules which render those 20 cells capable of presenting antigen to the immune system.

As used herein, the term "chimeric gene" is defined to mean a gene in which part of the gene is derived from a second different gene and combined with the first gene 25 so that at least a portion of each gene is present in the resulting chimeric gene. A gene may be chimeric if any portion of the sequence which encodes the resulting protein is derived from a second and different gene. Typical chimeric genes include genes in which specific 30 functional domains from one gene have been transferred to a second gene and replace the analogous domains of that second gene. For example, the resulting chimeric gene may have one domain derived from a murine gene and several domains derived from a human gene. 35 domains may range in size from 5 amino acids to several hundred amino acids. Other examples of chimeric accessory molecule ligand genes include genes which

Wong, Semin. Oncol., 23:159 (1996); Glorioso, J. C., N. A. DeLuca, and D. J. Fink, Annu. Rev. Microbiol., 49:675 (1995); Flotte, T. R. and B. J. Carter, Gene Ther., 2:357 (1995); Randrianarison-Jewtoukoff, V. and M. 5 Perricaudet, <u>Biologicals.</u>, 23:145 (1995); Kohn, D. B., Curr. Opin. Pediatr., 7:56 (1995); Vile, R. G. and S. J. Russell, Br. Med. Bull., 51:12 (1995); Russell, S. J., Semin. Cancer Biol., 5:437 (1994); and Ali, M., N. R. Lemoine, and C. J. Ring, Gene Ther., 1:367 (1994). All 10 references cited herein are hereby incorporated by reference.

II. Genetic Vectors and Constructs Containing an Accessory Molecule Ligand Gene

Accessory Molecule Ligand Genes

15 In one embodiment of the present invention, preferred gene therapy vectors contain an accessory molecule ligand gene. This accessory molecule ligand gene may be derived from any source and may include molecules which are man-made and do not appear in 20 nature. The present invention contemplates accessory molecule ligand genes which are derived from the genes encoding molecules within the tumor necrosis family (TNF) which includes the genes encoding: murine CD40 ligand, human CD40 ligand, Fas ligand, TNF_{α} , TNF_{θ} , CD30 25 ligand, 4-1BB ligand, nerve growth factor, CD70, TNFrelated apoptosis inducing ligand (TRAIL) and chimeric accessory molecule ligands. The nucleotide sequence of one accessory molecule ligand, the sequence of at least one form of the murine CD40 ligand gene, has been 30 determined and is listed as SEQ ID NO: 1. The present invention contemplates the use of any accessory molecule ligand gene which is homologous to the sequence present in SEQ ID NO: 1, and thus hybridizes to this sequence at low stringency hybridization conditions. One of skill 35 in the art will understand that accessory molecule ligand genes, including murine CD40 ligand gene, useful

21

contain nucleotides encoding amino acids not found in any naturally occurring accessory molecule ligand gene. Examples of chimeric genes and potential various combinations of domains are numerous and one of skill in the art will understand that no limit is placed on the amount of one gene that must be present in a second gene to render it chimeric.

As used herein, the term "murine CD40 ligand gene" is defined to mean an accessory molecule ligand gene

10 which is derived from a murine CD40 ligand gene.

Examples of such murine CD40 ligand genes include the gene isolated by Armitage et al., Nature, 357:80-82 (1992) and other genes derived from murine origin which hybridize to the gene described by Armitage et al. under low stringency hybridization conditions.

As used herein, the term "vector or genetic vector" is defined to mean a nucleic acid which is capable of replicating itself within an organism such as a bacterium or animal cell. Typical genetic vectors

20 include the plasmids commonly used in recombinant DNA technology and various viruses capable of replicating within bacterial or animal cells. Preferred types of genetic vectors includes plasmids, phages, viruses, retroviruses, and the like.

As used herein, the term "gene therapy vector" is defined to mean a genetic vector which is capable of directly infecting cells within an animal, such as a human patient. A number of gene therapy vectors have been described in the literature, and include, the gene therapy vector described in Cantwell et al., Blood, In Press (1996) entitled "Adenovirus Vector Infection of Chronic Lymphocytic Leukemia B Cells." Such vectors have been described for example by Woll, P. J. and I. R. Hart, Ann. Oncol., 6 Suppl 1:73 (1995); Smith, K. T., A. J. Shepherd, J. E. Boyd, and G. M. Lees, Gene Ther., 3:190 (1996); Cooper, M. J., Semin. Oncol., 23:172 (1996); Shaughnessy, E., D. Lu, S. Chatterjee, and K. K.

in the present invention may be isolated from various different murine strains.

The nucleotide sequence of a human CD40 ligand gene has been determined and is shown as SEQ ID NO: 2. present invention contemplates the use of any accessory molecule ligand gene which is homologous to SEQ ID NO: 2, and thus hybridizes to this sequence at low stringency conditions. One of ordinary skill in the art will understand that the accessory molecule ligand 10 genes, including the human CD40 ligand genes, useful in the present invention, may vary depending on the individual from which the gene is isolated and such variations may prove useful in producing unique accessory molecule ligand genes. The present invention 15 contemplates the use of the domains, sub-domains, amino acid or nucleotide sequence of the human CD40 ligand and/or human CD40 ligand gene as part of a chimeric accessory molecule ligand or chimeric accessory molecule ligand gene.

The nucleotide sequence of a bovine CD40 ligand gene has been determined and is shown as SEQ ID NO: 8. The present invention contemplates the use of any accessory molecule ligand gene which is homologous to SEQ ID NO: 8, and thus hybridizes to the sequence at low 25 stringency conditions. One of ordinary skill in the art will understand that the accessory molecule ligand genes, including the bovine CD40 ligand genes, may vary depending on the individual animal from which the gene is isolated and that such variations may prove useful in 30 producing unique accessory molecule ligand genes.

20

The nucleotide sequence of human TNF, and human TNF, have been determined and are shown as SEQ ID NOS: 9 and 10, respectively. The present invention contemplates the use of any accessory molecule ligand gene which is 35 homologous to either human TNF_{α} or human TNF_{β} (SEQ ID NOS: 9 and 10, respectively), and thus hybridizes to these sequences at low stringency conditions.

accessory molecule ligand genes useful in the present invention, including the human TNF, and TNF, genes, may vary depending on the particular individual from which the gene has been isolated and these variations may 5 prove useful in producing unique accessory molecule genes.

The nucleotide sequence of porcine TNF, and TNF, have been determined and are shown as SEQ ID NO: 11. The present invention contemplates the use of any 10 accessory molecule ligand gene which is homologous to either SEQ ID NO: 11, and thus would hybridize to these sequences at low stringency conditions. One of ordinary skill in the art will understand that the accessory molecule ligand genes, including the porcine TNF, and 15 TNF, genes, may vary depending on the particular animal from which the gene is isolated and that such variation may prove useful in producing unique accessory molecule genes.

The nucleotide sequence of a murine TNF, gene has 20 been determined and is shown as SEO ID NO: 12. present invention contemplates the use of any accessory molecule ligand gene which is homologous to SEQ ID NO: 12, and thus hybridizes to the sequence at low stringency conditions. One of ordinary skill in the art 25 will understand that the accessory molecule ligand genes, including the murine TNF_{α} gene may vary depending on the individual from which the gene is isolated and that these variations may prove useful in producing unique accessory molecule genes.

The nucleotide sequence of human Fas ligand and murine (C57BL/6) Fas ligand have been determined and are shown as SEQ ID NOS: 13 and 14, respectively. nucleotide sequence of murine Balb/c Fas ligand is shown as SEQ ID NO: 31. The present invention contemplates 35 the use of any accessory molecule ligand gene which is homologous to any of SEQ ID NOS: 13, 14, and 31, and thus hybridizes to the sequences at low stringency

30

25

conditions. One of ordinary skill in the art will understand that the accessory molecule ligand genes, including the human Fas ligand or murine Fas ligand genes may vary depending on the particular individual or animal from which the gene is isolated and that such variations may prove useful in producing any accessory molecule genes.

The nucleotide sequence of a human CD70 gene has been determined and is shown as SEQ ID NO: 15. The murine CD70 gene sequence has also been determined, and is shown as SEQ ID NO: 36 and was described by Tesselaar et al, J. Immunol. 159:4959-65(1997). The present invention contemplates the use of any accessory molecule ligand gene which is homologous to SEQ ID NO: 15 or 36, and thus hybridizes to this sequence at low stringency conditions. One of ordinary skill in the art will understand that the accessory molecule ligand genes, including the human CD70 gene may vary depending on the individual from which the gene is isolated and that these variations may prove useful in producing unique accessory molecule ligand genes.

The nucleotide sequence of human CD30 ligand gene has been determined and is shown as SEQ ID NO: 16. The present invention contemplates the use of any accessory molecule ligand gene which is homologous to SEQ ID NO: 16, and thus hybridizes to this sequence at low stringency conditions. One of ordinary skill in the art will understand that the accessory molecule ligand genes, including the human CD30 ligand gene, may vary depending on the individual from which the gene is isolated and that such variations may prove useful in producing unique accessory molecule ligand genes.

The present invention also contemplates variations and variants of the nucleotide sequences of the

35 accessory molecule ligand genes provided herein which are caused by alternative splicing of the messenger RNA. This alternative splicing of the messenger RNA inserts

26

additional nucleotide sequences which may encode one or more optional amino acid segments which in turn allows the accessory molecule ligand encoded to have additional properties or functions.

The nucleotide sequence of a human and mouse 4-1BBL have been determined and are shown as SEQ ID NOS: 17 and 18, respectively. The present invention contemplates the use of any accessory molecule ligand gene which is homologous to either SEQ ID NOS: 17 or 18, and thus hybridizes to these sequences at low stringency conditions. One of ordinary skill in the art will understand that accessory molecule ligand genes, including the human 4-1BBL gene may vary depending on the individual from which it is isolated and that such variations may prove useful in producing unique accessory molecule ligand genes.

The present invention also contemplates chimeric accessory molecules containing any domain, sub-domain portion, or amino acid sequence encoded by the following 20 gcnes: bovine TNF- α (SEQ ID NO: 21), murine CD40 ligand (SEQ ID NO: 22), human nerve growth factor- β (SEQ ID NO: 23), murine nerve growth factor (SEQ ID NO: 24), rat Fas ligand (SEQ ID NO: 25), human TNF-related apoptosis inducing ligand (TRAIL) (SEQ ID NO: 41, Genbank 25 accession number U37518), murine TNF-related apoptosis inducing ligand (TRAIL) (SEQ ID NO: 42, Genbank accession number U37522), murine CD30-Ligand (SEQ ID NO: 43), human 4-1BBL (SEQ ID NO: 17), and murine 4-1BBL (SEQ ID NOS: 44 and 18). The present invention also 30 contemplates chimeric accessory molecules which utilize genes encoding amino acid sequences homologous to these sequences.

The present invention contemplates chimeric accessory molecule ligand genes which are comprised of a nucleotide segment derived from one accessory molecule ligand gene operatively linked to a nucleotide sequence

derived from a different accessory molecule ligand gene or other gene.

For example, chimeric accessory molecule ligand genes are contemplated which are comprised of a segment 5 of the murine CD40 ligand gene which has been operatively linked to at least one other additional gene segment derived from a different accessory molecule ligand gene. The size of the particular segment derived from the different accessory molecule ligand gene may 10 vary from a nucleotide sequence encoding a few amino acids, a sub-domain of the accessory molecule ligand, a domain of the accessory molecule ligand or more than a domain of an accessory molecule ligand. Other chimeric accessory molecules of the present invention are 15 comprised of an accessory molecule ligand gene into which nucleotides encoding an amino acid segment which is not found as part of a naturally occurring accessory molecule ligand have been inserted. This amino acid segment may be artificially created or derived from a 20 protein found in nature. The chimeric accessory molecule ligand gene encodes a chimeric amino acid sequence and thus a chimeric accessory molecule ligand encoded may possess unique properties in addition to the properties found on the individual segments derived from 25 the different accessory molecule ligand genes. chimeric accessory molecule ligand gene may encode an accessory molecule ligand which has properties derived from the accessory molecule ligand used to construct the chimeric gene.

Each of the accessory molecule ligand genes which are a member of the tumor necrosis factor family have a similar secondary structure consisting of a number of domains. This domain structure includes a first domain which is encoded by the 5' region of the accessory 35 molecule ligand gene. The second domain (Domain II) is the domain which contains the amino acids which span the cell membrane and is thus called the transmembrane

30

28

The third domain (Domain III) is the proximal extracellular domain and these amino acids are the amino acids which are found proximal to the cellular membrane. The fourth domain (Domain IV), is encoded by the 3' end 5 of the accessory molecule ligand gene and has been called the distal extracellular domain. The distal extracellular domain (Domain IV) generally makes up the soluble form of the tumor necrosis factor family molecule. Based on the x-ray crystal structure of human 10 TNF, the predicted secondary structure of the accessory molecule, CD40 ligand has been deduced together with the domain structure of these molecules by M. Peitsch and C. Jongeneel, International Immunology, 5:233-238 (1993). The secondary structures of the other members of the 15 tumor necrosis factor family were deduced using computer analysis together with comparison to the human TNF and CD40 ligand domain structure. In Table I, the domain boundaries of a number of accessory molecule ligand genes is shown. A diagram of these domains for a number 20 of these accessory cell molecule ligands is shown in Figure 1. The assignments of the domain boundaries are approximate and one of ordinary skill in the art will understand that these boundaries may vary and yet still provide useful identification of domains.

29

TABLE I DOMAIN STRUCTURE OF TUMOR NECROSIS FACTOR FAMILY MOLECULES*

		Domain I (Cytoplasmic)	Domain II (Transmembrane)	Domain III (Proximal Extracellular)	Domain IV (Distal Extracellular)
5	Human CD40 Ligand	1-42	43-135	136-330	331-786
	Murine CD40 Ligand	1-42	43-135	136-327	328-783
	Bovine CD40 Ligand	1-42	43-135	136-330	331-786
10	Human TNF-a	1-87	88-168	169-228	229-699
	Murine TNF-a	1-87	88-168	169-237	238-705
	Porcine TNF-a	1-87	88-168	169-228	229-696
	Human TNF-β	1-39	40-129	130-153	154-615
	Porcine TNF-β	1-39	40-126	127-150	151-612
15	Human Fas Ligand	1-237	238-315	316-390	391-843
	Murine Fas Ligand	1-237	238-309	310-384	385-837
	Human CD70	1-61	62-117	118-132	·· ·133-579
20	Murine CD70	1-73	74-123	124-138	139-585
	Human CD30 Ligand	1-117	118-186	187-240	241-702
	Murine CD30 Ligand	1-135	136-201	202-255	256-717
25	Human 4-1BBL	1-69	70-174	175-210	211-762
	Murine 4-1BBL	1-237	238-333	334-369	370-927
	Human TRAIL	1-39	40-117	118-375	376-843
	Murine TRAIL	1-51	52-111	112-387	388-873

^{*} The Domains above are identified by the nucleotide 30 boundaries of each domain using the first nucleotide of the initial methionine of the cDNA as nucleotide number 1.

PCT/US97/22740 WO 98/26061

30

One of ordinary skill in the art will understand that typical chimeric accessory molecule genes would include genes produced by exchanging domains or subdomain segments between, for example, a mouse CD40 5 ligand gene and a human CD40 ligand gene. For example, chimeric accessory molecule gene may be constructed by operatively linking Domain I of the human CD40 ligand gene to Domains II-IV of the murine CD40 ligand gene. One of ordinary skill in the art will understand the 10 variety of chimeric accessory molecule ligand genes. which may be produced using the accessory molecules identified in Table I. The present invention also contemplates chimeric accessory molecules which are not shown in Table I but which are shown to have a similar 15 domain structure. Other chimeric genes are also contemplated in which smaller segments (sub-domain segments) are exchanged between, for example, a murine CD40 ligand gene and a human CD40 ligand gene or a second murine CD40 ligand gene. One of skill in the art 20 will understand that genes encoding accessory molecules will have at least gene segments which correspond to various functional segments of an accessory molecule ligand such as the murine CD40 ligand encoded by the murine CD40 ligand gene (SEQ ID NO: 1). It will also be 25 apparent to one of skill in the art that the nucleotide boundaries identified in Table I may vary considerably from those identified for the murine CD40 ligand gene (SEQ ID NO: 1) and still define domains which are useful in the present invention.

In one preferred embodiment, the chimeric accessory molecule ligand gene is comprised of the nucleotides encoding extracellular domains (Domains III and IV) of human CD40 ligand operatively linked to the nucleotides encoding transmembrane (Domain II) and the nucleotides 35 encoding cytoplasmic domain (Domain I) of the murine CD40 ligand gene. Examples of such preferred chimeric accessory molecules are shown in Figure 2. An exemplary

30

nucleotide sequence for such a gene is SEQ ID NO: 7. other chimeric accessory molecule ligand genes of the present invention, the nucleotides encoding the extracellular domains (Domains III and IV) of the murine CD40 5 ligand gene may be operatively linked to nucleotides encoding the transmembrane (Domain II) and cytoplasmic domain (Domain I) of the human CD40 ligand gene. exemplary nucleotide sequence for such a gene is SEO ID NO: 3. In other preferred chimeric accessory molecule 10 ligand genes of the present invention, the nucleotides encoding the extracellular domains (Domains III and IV) and transmembrane domain (Domain II) of human CD40 ligand are coupled to the nucleotides encoding cytoplasmic domain (Domain I) of murine CD40 ligand gene. 15 An exemplary nucleotide sequence for such a gene is SEO ID NO: 6. Other chimeric accessory molecule genes contemplated by the present invention comprise the nucleotides encoding the extracellular domains (Domains III and IV) and transmembrane domain (Domain I) of the 20 murine CD40 ligand gene operatively linked to the nucleotides encoding cytoplasmic domain of the human CD40 ligand gene. An exemplary nucleotide sequence for such a gene is SEQ ID NO: 5. Other chimeric accessory molecule ligand genes are contemplated by the present invention in which the human CD40 ligand gene 25 extracellular domains (Domain III and IV) is operatively linked to the murine CD40 ligand gene transmembrane domain (Domain I) which is operatively linked to the human CD40 ligand gene cytoplasmic domain (Domain I). An exemplary nucleotide sequence for such a gene is SEQ 30 ID NO: 4.

One of ordinary skill in the art will understand that many more combinations which utilize domains or other selected segments of any of the accessory molecule 35 ligand genes including the human CD40 ligand genes and the mouse CD40 ligand genes are possible. additional chimeric accessory molecule genes would

include the following genes: chimeric accessory molecule genes in which the nucleotides encoding Domain I are selected from a particular accessory molecule ligand gene and operatively linked, either directly or 5 by an additional nucleotide sequence to the nucleotides encoding Domain II from a particular accessory molecule ligand gene. These domains then would be operatively linked either directly or by an additional nucleotide sequence to the nucleotides encoding Domain III from a 10 particular accessory molecule ligand gene. molecule would then be operatively linked either directly or by an additional nucleotide sequence to the nucleotides encoding Domain IV of a particular accessory molecule ligand gene. The chimeric accessory molecule 15 ligand gene constructed in this manner may have additional nucleotides on either end or between domains which are useful to provide different amino acids in these positions. One of ordinary skill in the art will understand that these particular combinations are merely 20 illustrations and that numerous other combinations could be contemplated in which gene segments comprising nucleotides encoding less than the entire domain of an accessory molecule are exchanged between different accessory molecules.

25 The present invention also contemplates chimeric accessory molecule ligand genes which are comprised of gene segments of mouse or human CD40 ligand in combination with gene segments derived from Fas ligand, TNF_a, TNF_a, CD70, CD30L, 4-1BBL, nerve growth factor or 30 TNF-related apoptosis inducing ligand (TRAIL). Particularly useful chimeric accessory molecule liqand genes comprise at least one gene segment which is derived from a murine CD40 ligand gene together with gene segments or a gene segments derived from a 35 different accessory molecule ligand gene.

The present invention also contemplates chimeric accessory molecule ligand genes in which the accessory

33

molecules produced have been modified to remove amino acids within the chimeric accessory molecule that are used by post-translational mechanisms to regulate the level of expression of the accessory molecule or 5 accessory molecule protein on a particular cell. sites removed from the chimeric accessory molecules or chimeric molecule may include amino acids or sites which make up protease cleavage sites including metallothionine proteases, serine proteases and other 10 proteases that recognize an amino acid sequence either specifically or nonspecifically. In particular preferred embodiments, amino acids in Domain III which make up potential or actual recognition site(s) used by post-translational regulatory mechanisms have been modified or removed. 15

The present invention also contemplates chimeric accessory molecule ligand genes in which the domains, subdomain fragments or other amino acid residues have been taken from one accessory molecule ligand gene and 20 moved into a second accessory molecule ligand gene from the same species. For example, in this particular embodiment, the human Domain I, and the human Domain II from the CD40 ligand molecule may be operatively linked to the nucleotides encoding the human Domain III from, 25 for example, the CD70 molecule which is in turn operatively linked to human Domain IV for the CD40 ligand molecule. This chimeric accessory molecule therefore contains human CD40L Domains I, II and IV and human CD70 Domain III. An exemplary nucleotide sequence 30 for such a gene is SEQ ID NO: 19. One of ordinary skill in the art will understand that a number of such combinations using domains from the same species from different accessory molecule ligand genes may create a number of chimeric accessory molecule genes which may 35 all have specific activities and properties.

The present invention contemplates chimeric accessory molecule ligand genes in which the Domain III

34

of a particular accessory molecule ligand gene has been replaced with a Domain III from a different accessory molecule ligand gene. In one particularly preferred embodiment, the mouse Domain III has been used to replace the human Domain III in the CD40 ligand molecule. This chimeric accessory molecule therefore contains the human CD40L Domain I, the human CD40L Domain II, mouse CD40L Domain III, and human CD40L Domain IV. An exemplary nucleotide sequence for such a gene is SEQ ID NO: 20.

The present invention also contemplates the use of chimeric accessory molecules that contain man-made amino acid sequences inserted into or in place of a portion of a domain or other amino acid sequence of an accessory 15 molecule gene. These man-made amino acid segments may be created by selecting any amino acid sequence that may be used to give the accessory molecule a particular function or to remove another undesired function. These man-made amino acid segments are produced by inserting 20 into the accessory molecule ligand gene or chimeric accessory molecule ligand gene the nucleotide sequences required to encode those particular man-made amino acid segments in the desired positions. Further, the chimeric accessory molecule ligand genes may contain 25 nucleotide segments which comprise sub-domain segments of other molecules or small segments in which amino acids have been changed for a desired purpose. of sub-domain nucleotide segments allows the introduction of short amino acid sequences derived from 30 other molecules into chimeric accessory molecules of the present invention. The incorporation of such short subdomain segments or amino acid changes into the accessory molecule ligand allows the introduction of desired or the removal of undesired features of that molecule.

The identification of domain structures within accessory cell molecules is well known in the art and generally requires the identification of cysteine

35

residues within the accessory molecules and the subsequent mapping of disulfide bonds between various cysteine residues. The mapping of various sub-domain segments of an accessory molecule is well known in the 5 art and involves analysis of the amino acid sequence of the accessory molecules and generally involves a comparison of the crystal structure of tissue necrosis factor with the use of predictive algorithms thereby producing a predicted structure of a chimeric accessory 10 molecule or an accessory molecule. This predicted structure of these molecules can then be used to select various sub-domain portions of the molecule to be used to construct further chimeric accessory molecules. Examples of such mapping studies include the studies by 15 M. Pitsch and C. V. Jongeneel, International Immunology, 5:233-238 (1993) and the analysis shown in Figure 1.

The present invention also contemplates accessory molecule ligand genes and chimeric accessory molecule ligand genes which are truncated and encode less than 20 the full length of the amino acid sequence found in the native accessory molecule ligand. These truncations may alter the properties of the accessory molecule ligand gene but some identified activity is maintained. truncations may be made by removing a gene segment or 25 gene segments from the accessory molecule gene and typically would be performed by removing nucleotides encoding domains which are not directly involved in the binding of the accessory molecule ligand with its accessory molecule. These truncated accessory molecule 30 ligand genes or chimeric truncated accessory molecule ligand genes may contain further gene segments which encode amino acid segments or domains which replace the domains removed from that truncated accessory molecule gene. However, such replacement of the portions of the 35 accessory molecule removed by truncation is not necessary.

The chimeric accessory molecule genes of the present invention may be constructed using standard genetic engineering methods to operatively link a particular nucleotide sequence from one accessory 5 molecule ligand gene to a different nucleotide sequence derived from the same or different accessory molecule ligand gene. In addition, standard genetic engineering methods may be used to insert man-made nucleotide sequences or sub-domain nucleotide sequences into the 10 chimeric accessory molecule ligand gene. One of ordinary skill in the art will understand that various methods may be utilized to produce such chimeric accessory molecule genes. For example, a gene conversion method known as "SOEN" may be used to produce 15 a chimeric accessory molecule gene which contains nucleotide segments derived from different chimeric accessory molecules. The methods for using this gene conversion method are well known in the art and have been described for example in Horton, R. M., Mol. 20 Biotechnol., 3:93 (1995); Ali, S. A. and A. Steinkasserer, Biotechniques, 18:746 (1995); Vilardaga, J. P., E. Di Paolo, and A. Bollen, Biotechniques, 18:604 (1995); Majumder, K., F. A. Fattah, A. Selvapandiyan, and R. K. Bhatnagar, PCR. Methods Appl., 4:212 (1995); 25 Boles, E. and T. Miosga, Curr. Genet. 28:197 (1995); Vallejo, A. N., R. J. Pogulis, and L. R. Pease, PCR. Methods Appl., 4:S123 (1994); Henkel, T. and P. A. Baeuerle, Anal. Biochem., 214:351 (1993); Tessier, D. C. and D. Y. Thomas, Biotechniques, 15:498 (1993); 30 Morrison, H. G. and R. C. Desrosiers, Biotechniques, 14:454 (1993); Cadwell, R. C. and G. F. Joyce, PCR. Methods Appl., 2:28 (1992); and, Stappert, J., J. Wirsching, and R. Kemler, Nucleic Acids Res., 20:624 (1992). Alternatively, one of ordinary skill in the art will understand that site-directed mutagenesis may be 35 used to introduce changes into a particular nucleotide sequence to directly produce or indirectly be used to

produce a chimeric accessory molecule gene of the present invention. For example, the mutagen kit provided by BioRad Laboratories may be used together with the methods and protocols described within that kit 5 to produce the desired changes in the nucleotide sequence. These methods were originally described by Funkel, Proc. Natl. Acad. Sci. USA, 82:488-492 (1985) and Kunkel et al., Meth. Enzol. Mol., 154:367-382 (1987). By using the site directed mutagenesis protocols 10 described herein and known within the art, a skilled investigator may induce individual nucleotide changes which result in an altered amino acid sequence or which preserve an amino acid sequence but introduce a desired restriction enzyme recognition sequence into the gene. 15 This new restriction endonuclease recognition site may then be used to cut the gene at that particular point and use it to a gene or segment of another accessory molecule ligand gene. In addition to these methods, one of ordinary skill in the art will understand that an 20 entire chimeric accessory molecule ligand gene may be synthesized using synthetic methods known in the art. This methodology only requires that the skilled artesian generating nucleotide sequence of a chimeric accessory molecule ligand gene and provide that sequence to a 25 company which is capable of synthesizing such a gene.

B. <u>Genetic Constructs</u>

The present invention contemplates the use of accessory molecule ligand genes or chimeric accessory molecule ligand genes which are present in various types of genetic vectors. A genetic vector refers to a DNA molecule capable of autonomous replication in a cell into which another DNA segment can be inserted to cause the additional DNA segments to replicate. Vectors capable of expressing genes contained in that vector are referred to as "expression vectors." Thus, the genetic vectors and expression vectors of the present invention

38

are recombinant DNA molecules which comprise at least two nucleotide sequences not normally found together in nature.

The genetic vectors useful in the present invention

5 contain an accessory molecule ligand gene which encodes
an accessory molecule ligand which is optionally
operatively linked to a suitable transcriptional or
translational regulatory nucleotide sequence, such as
one derived from a mammalian, microbial, viral, or

10 insect gene. Such regulatory sequences include
sequences having a regulatory role in gene expression,
such as a transcriptional promoter or enhancer, an
operator sequence to control transcription, a sequence
encoding a ribosomal binding site within the messenger

15 RNA and appropriate sequences which control
transcription, translation initiation or transcription
termination.

Particularly useful regulatory sequences include the promoter regions from various mammalian, viral, 20 microbial, and insect genes. The promoter region directs an initiation of transcription of the gene and causes transcription of DNA through and including the accessory molecule ligand gene. Useful promoter regions include the promoter found in the Rous Sarcoma Virus 25 (RSV) - long terminal repeat (LTR), human cytomegalovirus (HCMV) enhancer/promoter region lac promoters, and promoters isolated from adenovirus, and any other promoter known by one of ordinary skill in the art would understand to be useful for gene expression in 30 eukaryotes, prokaryotes, viruses, or microbial cells. Other promoters that are particularly useful for expressing genes and proteins within eukaryotic cells include mammalian cell promoter sequences and enhancer sequences such as those derived from polyoma virus, 35 adenovirus, simian virus 40 (SV40), and the human cytomegalovirus. Particularly useful are the viral early and late promoters which are typically found

adjacent to the viral origin of replication in viruses such as the SV40. Examples of various promoters which have been used in expression vectors have been described by Okiama and Berg (Mol. Cell. Biol. 3:280, 1983), the 5 pMLSVN SV40 described by Kossman et al., Nature 312:768 (1984). One of ordinary skill in the art will understand that the selection of a particular useful promoter depends on the exact cell lines and the other various parameters of the genetic construct to be used 10 to express the accessory molecule ligand gene or the chimeric accessory molecule ligand gene within a In addition, one of ordinary particular cell line. skill in the art will select a promoter which is known to express genes in the target cell at a sufficiently 15 high level to be useful in the present invention.

The genetic vectors and expression vectors of the present invention optionally contain various additional regulatory sequences including ribosome binding sites which allow the efficient translation of the messenger 20 RNA produced from an expression vector into proteins, the DNA sequence encoding various signals peptides which may be operatively linked to the accessory molecule ligand gene or the chimeric accessory molecule ligand gene. The signal peptide, if present, is expressed as a 25 precursor amino acid which enables improved extracellular secretion of translation fusion polypeptide.

The genetic constructs contemplated by the present invention therefore include various forms of accessory molecule ligand genes described above which are

30 operatively linked to either a promoter sequence or a promoter and enhancer sequence and also operatively linked to a polyadenylation sequence which directs the termination and polyadenylation of messenger RNA. It is also contemplated that the genetic constructs of the

35 present invention will contain other genetic sequences which allow for the efficient replication and expression of that construct within the desired cells. Such

40

sequence may include introns which are derived from native accessory molecule ligand genes or, for example, from a virus gene.

The present invention also contemplates gene

5 therapy vectors which are able to directly infect
mammalian cells so as to introduce the desired accessory
molecule ligand gene or chimeric accessory molecule
ligand gene into that cell. These gene therapy vectors
are useful for directly infecting cells which have been

10 isolated from an animal or patient, or can be directly
introduced into an animal or patient and thereby
directly infect the desired cell within that animal or
patient.

Many types of gene therapy vectors which are able 15 to successfully transfer genes and cause the expression of desired foreign DNA sequences have been developed and described in the literature. For example, the article entitled "Gene Transfer Vectors for Mammalian Cells" in Current Comm. Mol. Biol., Cold Springs Harbor 20 Laboratory, New York (1987). Further, naked DNA can be physically introduced into eukaryotic cells including human cells by transvection using any number of techniques including calcium phosphase transfection (Berman et al., Proc. Natl. Acad. Sci. USA, 81:7176 25 (1984)), DEAE-Dextran Transfection, protoplast fusion (Deans et al., Proc. Natl. Acad. Sci. USA, 81:1292 (1984)), electroporation, liposome fusion, polybrene transfection and direct gene transfer by laser micropuncture of the cell membrane. In addition, one of 30 ordinary skill in the art will understand that any technique which is able to successfully introduce the DNA into a cell in such a manner as to allow it to integrate into the genome of a cell and allow the expression of the desired gene would be useful in the

Specifically, gene therapy vectors which utilize recombinant infectious virus particles for gene delivery

35 present invention.

have been widely described. See, for example, Brody, S. L. and R. G. Crystal, Ann. N. Y. Acad. Sci., 716:90 (1994); Srivastava, A., <u>Blood. Cells</u>, 20:531 (1994); Jolly, D., Cancer Gene Ther., 1:51 (1994); Russell, S. 5 J., Eur. J. Cancer, 30A:1165 (1994); Yee, J. K., T. Friedmann, and J. C. Burns, Methods Cell Biol., 43 Pt A:99 (1994); Boris-Lawrie, K. A. and H. M. Temin, Curr. Opin. Genet. Dev., 3:102 (1993); Tolstoshev, P., Annu. Rev. Pharmacol. Toxicol., 33:573 (1993); and, Carter, B. 10 J., Curr. Opin. Biotechnol., 3:533 (1992). The present invention contemplates the use of gene therapy vectors to carry out the desired methodology of the present invention by introducing a gene encoding an accessory molecule ligand gene or a chimeric accessory molecule 15 ligand gene into the cell. Many viral vectors have been defined and used as gene therapy vectors and include virus vectors derived from simian virus 40 (SV40), adenoviruses, adeno-associated viruses, and retroviruses. One of ordinary skill in the art will 20 understand that useful gene therapy vectors are vectors which are able to directly introduce into the target cells the DNA which encodes the accessory molecule ligand and allow that DNA to persist in the cell so as to express the accessory molecule ligand in the desired 25 manner within the cell.

The gene therapy vectors of the present invention are useful for introducing accessory molecule ligand genes into a variety of mammalian cells including human cells. The particular cells infected by the gene 30 therapy vector will depend on the various specifics of the vector and such vectors can be used to introduce the accessory molecule ligand genes of the present invention into hematopoietic or lymphoid stem cells, antigen presenting cells, embryonic stem cells, and other cells 35 which are capable of presenting antigen within the immune system including cells which have CD40 on their surface. Further, such gene therapy vectors are able to

introduce a gene encoding an accessory molecule ligand gene into a human neoplastic cell such as a lymphoma, leukemia, AML, CLL, CML, AMML, CMML, breast cancer, lung cancer, ovarian cancer or any tumor capable of acting as antigen presenting cells or cells which can stimulate bystander antigen presenting cells. Further, the contemplated gene therapy vectors may be used to introduce the accessory molecule ligand genes of the present invention into cells which have been engineered to make those cells capable of presenting antigen to the immune system.

III. <u>Cells Containing Genetic Constructs Encoding an</u> <u>Accessory Molecule Ligand or Chimeric Accessory</u> Molecule Ligand

10

The present invention also contemplates various 15 cells which contain the genetic constructs of the present invention. These cells contain the constructs which encode the accessory molecule ligand gene and thus contain the various genetic elements described in 20 Section II.B. above. These cells may be microbial cells, eukaryotic cells, insect cells, and various mammalian cells including human cells. In preferred embodiments of the present invention, these cells include various neoplastic cells including human 25 neoplastic cells. These neoplastic cells may be of any cell type and include cells of the immune system, and other blood cells. Particularly preferred are any neoplastic cells which may function as an antigen presenting cells within the immune system or which may stimulate bystander antigen presenting cells by 30 expression of a transgenic accessory cell molecule of the present invention. Typically these neoplastic which are able to function to present antigen to the immune system have or have had an accessory molecule, such as 35 the CD40 molecule, on the cell surface. Generally, these cells are naturally capable of presenting antigen to the immune system, but the present invention also

contemplates the introduction of accessory molecule ligand genes into a cell which is not naturally able to present antigen to the immune system but which has been genetically engineered to make that cell capable of 5 presenting antigen to the immune system. these cells include various known cell types such as monocytes, macrophages, B cells, Langerhans cells, interdigitating cells, follicular dendritic cells or Kupffer cells and the like which have become neoplastic. 10 In addition, the present invention also contemplates cells from various carcinomas, breast, ovarian and lung cancers which contain the genetic constructs described In other preferred embodiments, an accessory herein. molecule ligand gene of the present invention is placed 15 into cells which may be injected into a treatment site such as a tumor bed or joint. For example, the accessory molecule ligand gene of the present invention may be inserted into a fibroblast cell and the accessory molecule ligand expressed on the surface of that cell. 20 The fibroblasts are then injected into the treatment site and cause the desired immuno effect due to the presence of the accessory molecule ligand on the surface of those cells. These cells stimulate other immune cells present in that treatment site (bystander cells). 25 This process then results in the desired effect on the

IV. <u>Methods Utilizing Genetic Vectors and Constructs</u> <u>Containing an Accessory Molecule Ligand Gene</u>

immune system.

The present invention contemplates methods of

altering the immunoreactivity of human cells using a

method which includes introducing a gene encoding an

accessory molecule ligand gene into the human cells so

that the accessory molecule ligand encoded by that gene
is expressed on the surface of those cells. The present

invention is useful for any human cells which

participate in an immune reaction either as a target for

the immune system or as part of the immune system which responds to the foreign target. A large variety of methods are contemplated in which the final result is that the accessory molecule ligand gene is introduced into the desired cells. These methods include ex vivo methods, in vivo methods and various other methods which involve injection of DNA, genetic vectors or gene therapy vectors into the animal or human, including injection directly into the tumor bed present in any animal or human.

10

Ex vivo methods are contemplated wherein the cells into which the accessory molecule ligand gene is to be introduced are isolated from the animal or patient and then the gene is introduced into those isolated cells 15 using suitable methods. Examples of useful ex vivo methods have been described for example by Raper, S. E., M. Grossman, D. J. Rader, J. G. Thoene, B. J. Clark, D. M. Kolansky, D. W. Muller, and J. M. Wilson, Ann. Surq., 223:116 (1996); Lu, L., R. N. Shen, and H. E. Broxmeyer, 20 <u>Crit. Rev. Oncol. Hematol.</u>, 22:61 (1996); Koc, O. N., J. A. Allay, K. Lee, B. M. Davis, J. S. Reese, and S. L. Gerson, Semin. Oncol., 23:46 (1996); Fisher, L. J. and J. Ray, Curr. Opin. Neurobiol., 4:735 (1994); and, Goldspiel, B. R., L. Green, and K. A. Calis, Clin. 25 Pharm., 12:488 (1993). D. Dilloo et al., in Blood 90:1927-1933 (1997), describe a method, using CD40Lactivated cells, for treating B-acute lymphoblastic leukemia (ALL). They cocultured leukemia cells with fibroblasts infected with a retroviral vector encoding 30 CD40L, then injected the cell mix into mice. approach, if taken in humans, would differ from that contemplated here in that the therapeutic cells are stimulated in vitro, by another cell line expressing the accessory molecule ligand. Schultze, J.L. et al., in Blood 89: 3806-3816 (1997), describe a method for stimulating T-TILs (tumor-infiltrating T cells) cytotoxic for follicular lymphoma (FL) cells by exposing

45

them, <u>in vitro</u>, to FL B cells which were previously cultured with CD40L-expressing fibroblasts. They propose an adoptive immunotherapy in which T-TILS stimulated in this manner are transfused into patients.

5 This method also requires <u>in vitro</u> stimulation, of the cells to be transfused, with another cell line expressing an accessory molecule.

Following the introduction of the gene, including any optional steps to assure that the accessory molecule ligand gene has been successfully introduced into those 10 isolated cells, the isolated cells are introduced into the patient either at a specific site or directly into the circulation of the patient. In preferred embodiments of the present invention, cell surface markers, including molecules such tumor markers or 15 antigens identify the cells are used to specifically isolate these molecules from the patient. One of ordinary skill in the art will understand that such isolation methods are well known and include such methodologies as fluorescence activated cell sorting (FACS), immunoselection involving a variety of formats including panning, columns and other similar methods.

The present invention also contemplates introducing the accessory molecule ligand gene into the desired cells within the body of an animal or human patient without first removing those cells from the patient. Methods for introducing genes into specific cells in vivo, or within the patient's body are well known and include use of gene therapy vectors and direct injection of various genetic constructs into the animal or patient. Examples of useful methods have been described by Danko, I. and J. A. Wolff, Vaccine, 12:1499 (1994); Raz, E., A. Watanabe, S. M. Baird, R. A. Eisenberg, T. B. Parr, M. Lotz, T. J. Kipps, and D. A. Carson, Proc. Natl. Acad. Sci. U. S. A., 90:4523 (1993); Davis, H. L., R. G. Whalen, and B. A. Demeneix, Hum. Gene Ther., 4:151 (1993); Sugaya, S., K. Fujita, A. Kikuchi, H. Ueda, K.

46

Takakuwa, S. Kodama, and K. Tanaka, Hum. Gene Ther., 7:223 (1996); Prentice, H., R. A. Kloner, Y. Li, L. Newman, and L. Kedes, J. Mol. Cell Cardiol., 28:133 (1996); Soubrane, C., R. Mouawad, O. Rixe, V. Calvez, A. 5 Ghoumari, O. Verola, M. Weil, and D. Khayat, Eur. J. Cancer, 32A:691 (1996); Kass-Eisler, A., K. Li, and L. A. Leinwand, Ann. N. Y. Acad. Sci., 772:232 (1995); DeMatteo, R. P., S. E. Raper, M. Ahn, K. J. Fisher, C. Burke, A. Radu, G. Widera, B. R. Claytor, C. F. Barker, 10 and J. F. Markmann, Ann. Surg., 222:229 (1995); Addison, C. L., T. Braciak, R. Ralston, W. J. Muller, J. Gauldie, and F. L. Graham, Proc. Natl. Acad. Sci. U. S. A., 92:8522 (1995); Hengge, U. R., P. S. Walker, and J. C. Vogel, J. Clin. Invest., 97:2911 (1996); Felgner, P. L., Y. J. Tsai, L. Sukhu, C. J. Wheeler, M. Manthorpe, J. Marshall, and S. H. Cheng, Ann. N. Y. Acad. Sci., 772:126 (1995); and, Furth, P. A., A. Shamay, and L. Hennighausen, Hybridoma, 14:149 (1995). In a typical application, a gene therapy vector containing an 20 accessory molecule ligand gene is introduced into the circulation or at a localized site of the patient to allow the gene therapy vector to specifically infect the desired cells. In other preferred embodiments the gene therapy vector is injected directly into the tumor bed 25 present in an animal which contains at least some of the cells into which the accessory molecule ligand gene is to be introduced.

The present invention also contemplates the direct injection of DNA from a genetic construct which has a promoter and accessory molecule ligand gene followed by a polyadenylation sequence into a patient or animal. Examples of such useful methods have been described by Vile, R. G. and I. R. Hart, Ann. Oncol., 5 Suppl 4:59 (1994). The genetic construct DNA is directly injected 35 into the muscle or other sites of the animal or patient or directly into the tumor bed of the animal or patient. Alternatively, DNA from a genetic construct containing

47

at least an accessory molecule ligand gene is used and directly injected into the animal.

In preferred embodiments of the present invention, the immune reaction or response of a human patient or 5 animal is altered by introducing the accessory molecule ligand gene into cells, including human cells which have an accessory molecule present on the cell surface. cells include human cells, human antigen presenting cells and optionally these cells may be neoplastic 10 antigen presenting cells which have the capacity to express the accessory molecule on the surface of the cell or cells which are capable of stimulating. embodiments, the amount of accessory molecule present on the surface of the cells into which the accessory 15 molecule ligand gene is to be introduced is very small and such small amounts of the accessory molecule may result from down-regulation of that accessory molecule on the surface of such cells. In some embodiments, the cells into which the accessory molecule ligand gene is 20 introduced have at least low levels of the CD40 molecule present on the cell surface or are derived from cells which did express the CD40 ligand molecule on the cell surface but have reduced or eliminated that expression.

reactivity of a particular cell are applicable to
mammalian cells including human cells. These human
cells may include neoplastic human cells such as human
lymphomas, leukemias, and other malignancies including
breast, lung and ovarian cancers. In some preferred
embodiments the cells are normal antigen presenting
cells of a human patient such as monocytes, macrophages,
B cells, Langerhans cells, interdigitating cells,
follicular dendritic cells, Kupffer cells, and other
similar cells. In preferred embodiments, the cells are
lymphocytes which acquire altered immunoreactivity when
the accessory molecules of the present invention are
introduced into those cells. In other preferred

embodiments, the cells may be neoplastic or normal cells which are capable of stimulating bystander antigen presenting cells when the accessory molecule ligand genes of the present invention are introduced into these The present invention also contemplates that cells which are not naturally capable of presenting antigen to the immune system may be genetically engineered to introduce the genes encoding the molecules required for antigen presentation, including genes 10 encoding an accessory molecule, and thus allow these cells to act as artificial antigen presenting cells. The accessory molecule ligand gene may then be introduced into these artificial antigen presenting cells. Various tests are well known in the literature 15 to determine whether a particular cell is able to function as an antigen presenting cell, such as cell proliferation or the production of lymphokines and therefore this aspect of the present invention may be easily determined.

20 In addition to the above normal human cells, the present invention also contemplates introducing the accessory molecule ligand gene into various neoplastic or malignant cells which optionally are antiqen presenting cells. Such human neoplastic cells which are 25 contemplated include leukemias, lymphomas, AML, AMML, or CMML, CML, CLL and any neoplastic cell which is capable of stimulating bystander antigen presenting cells when an accessory molecule ligand is introduced into that cell. Also contemplated are neoplastic cells such as a 30 breast, ovarian or lung cancer cell which is capable of or is engineered to act as an antigen presenting cell. However, the present immunomodulation also applicable to other malignancies not specifically identified and thus would include any tumor of any cell capable of 35 presenting antigen within the animal or human immune system or any cell which is capable of acting as an antigen presenting cell or capable of stimulating

bystanding antigen presenting cells after an accessory molecule ligand gene has been introduced into those cells. Generally these antigen presenting cells have accessory molecules on the surface of the cells.

The present methods of altering the 5 immunoreactivity of a human or animal cell contemplate the introduction of an accessory molecule ligand gene into the cells for which altered immunoreactivity is desired. The genes useful in the present invention include the wide range of accessory molecule ligand 10 genes and chimeric accessory molecule ligand genes identified above and in preferred embodiments include at least a portion of the murine CD40 ligand gene. particularly preferred embodiments, the accessory 15 molecule ligand gene introduced into the cells using the methods of the present invention is selected to correspond to the accessory molecule present on the surface of the cells for which altered immunoreactivity is desired. In one particular application of the 20 present invention, the immunoreactivity of a cell which expresses the CD40 molecule on the cell surface would be accomplished by introducing the gene which encodes the CD40 ligand molecule and more preferably the murine CD40 ligand molecule.

The present invention also contemplates altering the immunoreactivity of human or animal cells by introducing an accessory molecule ligand gene which is a chimeric accessory molecule ligand gene into the cell. The various useful chimeric accessory molecule ligand 30 genes were identified above and could include a wide variety of molecules and allow the unique properties of those chimeric accessory molecule ligand genes to be utilized to alter the immunoreactivity of the target cells. In preferred embodiments, useful chimeric 35 accessory molecule ligand genes are genes which encode at least a portion of the accessory molecule ligand which is capable of binding the accessory molecule

25

50

present on the surface of the cells for which altered immunoreactivity is desired.

The methods of the present invention for altering the immunoreactivity contemplate the use of genetic

5 vectors and genetic constructs including gene therapy vectors which encode an accessory molecule ligand and therefore contain an accessory molecule ligand gene.

Typically, the genetic vectors and genetic constructs including the gene therapy vectors of the present

10 invention have a promoter which is operatively linked to the accessory molecule ligand gene followed by a polyadenylation sequence. In other embodiments, the only requirement is that the genetic vectors, genetic constructs, and gene therapy vectors of the present

15 invention contain the accessory molecule ligand gene or the chimeric accessory molecule ligand gene.

V. Methods of Treating Neoplasia

The present invention also contemplates methods of treating human neoplasia comprising inserting into a 20 human neoplastic cell a gene which encodes an accessory molecule ligand so that the accessory molecule ligand is expressed on the surface of the neoplastic cells. present invention contemplates treating human neoplasia both in vivo, ex vivo and by directly injecting various 25 DNA molecules containing a gene which encodes an accessory molecule ligand into the patient. However, at a minimum, the present methods for treating human neoplasia involve inserting the gene encoding the accessory molecule ligand into the neoplastic cells in such a way as to allow those neoplastic cells to express the accessory molecule ligand on the cell surface. expression of the accessory molecule ligand gene in these neoplastic cells modulates the immune system to cause the neoplasia to be reduced or eliminated.

In a preferred method of treating human neoplasia, the method further comprises the steps of first

51

obtaining the human neoplastic cells from a human patient and then inserting into the isolated human neoplastic cells a gene which encodes an accessory molecule ligand so that the accessory molecule ligand is expressed on the surface of the neoplastic cells. The human neoplastic cells having the accessory molecule ligand on the surface of that cell are then infused back into the human patient. One of ordinary skill in the art will understand that numerous methods are applicable for infusing the altered human neoplastic cells containing the gene encoding the accessory molecule ligand back into the patient and that these methods are well known in the art.

The contemplated methods of treating human

15 neoplasia are applicable to a wide variety of human

16 neoplasias including lymphomas, leukemias, and other

17 malignancies. In preferred embodiments the human

18 neoplasia is a neoplasia which involves the antigen

19 presenting cells of the human immune system and includes

20 monocytes, macrophages, B cells, Langerhans cells,

21 interdigitating cells, follicular dendritic cells,

22 Kupffer cells, and the like. In other preferred

23 embodiments, the human neoplasia is a leukemia, a

24 lymphoma, AML, AMML, CMML, CML or CLL, lung cancer,

25 breast cancer, ovarian cancer and other similar

26 neoplasias.

The genetic vectors, genetic constructs and gene therapy vectors useful in the methods of treating human neoplasia of the present invention have been disclosed above and include constructs in which a promoter is operatively linked to the accessory molecule ligand gene or the chimeric accessory molecule ligand gene which is in turn operatively linked to a polyadenylation sequence. The methods of treating human neoplasia contemplate the use of genetic constructs, genetic vectors and gene therapy vectors as described in this specification. In addition, the present invention

52

contemplates the use of DNA which contains at least a gene encoding an accessory molecule ligand gene. This gene may or may not contain a promoter and other regulatory sequences.

In preferred embodiments of the present invention, 5 the cells comprising the human neoplasia are located in at least one defined site termed a tumor bed within the human patient. This tumor bed typically contains the tumor or neoplastic cell together with a number of other 10 cells which are associated with the tumor or neoplastic The present invention contemplates methods of treating such human neoplasia present in a tumor bed by injecting into the tumor bed of the patient, a gene which encodes an accessory molecule ligand so that the 15 accessory molecule ligand is expressed on the surface of the tumor cells thereby causing the cells to participate in an immune reaction. The gene which encodes the accessory molecule ligand may be present as part of a gene therapy vector, genetic construct or genetic 20 vector.

In preferred embodiments, the accessory molecule ligand gene is a chimeric accessory molecule ligand gene which has at least a portion of the murine CD40 ligand gene is used. In other preferred embodiments, the accessory molecule ligand encoded is capable of binding an accessory molecule present on the human neoplasia to be treated.

The various gene therapy vectors used in the treatment methods of the present invention include

vectors which are capable of directly infecting human cells. Such vectors have been described in the literature and are readily adaptable to the methods described in the present invention.

The present invention contemplates the use of any type of gene therapy including the methods of Raper, S.E. et al., <u>Ann. Surg.</u>, 223:116 (1996); Lu, L. et al., <u>Crit. Rev. Oncol. Hematol.</u>, 22:61 (1996); Koc, O. N. et

al., <u>Semin. Oncol.</u>, 23:46 (1996); Fisher, L. J. et al., Curr. Opin. Neurobiol., 4:735 (1994); Goldspiel, B. R. et al., Clin. Pharm., 12:488 (1993); Danko, I. et al., Vaccine, 12:1499 (1994); Raz, E. et al., Proc. Natl. 5 Acad. Sci. U.S.A., 90:4523 (1993); Davis, H. L. et al., Hum. Gene Ther., 4:151 (1993); Sugaya, S. et al., Hum. Gene Ther., 7:223 (1996); Prentice, H. et al., J. Mol. Cell Cardiol., 28:133 (1996); Soubrane, C. et al., Eur. J. Cancer, 32A:691 (1996); Kass-Eisler, A. et al., ann. 10 N. Y. Acad. Sci., 772:232 (1995); DeMatteo, R. P. et al., Ann. Surg., 222:229 (1995); Addison, C. L. et al., Proc. Natl. Acad. Sci. U.S.A., 92:8522 (1995); Hengge, U. R. et al., <u>J. Clin. Invest.</u>, 97:2911 (1996); Felgner, P. L. et al., Ann. N. Y. Acad. Sci., 772:126 (1995); 15 Furth, P.A., <u>Hybridoma</u>, 14:149 (1995); Yovandich, J. et al., <u>Hum. Gene Ther.</u>, 6:603 (1995); Evans, C.H. et al., Hum. Gene Ther., 7:1261.

Methods of Vaccination VI.

The present invention contemplates methods of 20 vaccinating an animal against a predetermined organism comprising administering to that animal a vaccine containing immunogenic animal antigens capable of causing an immune response in that animal against the desired organism together with a vector containing a gene encoding an accessory molecule ligand. 25 invention also contemplates methods of vaccinating an animal which include administering the genes which encode the immunogenic antigen capable of causing a desired immune response or altering the immune response to a particular antigen together with a vector 30 containing a gene including the accessory molecule ligand gene. In this particular embodiment, the vector or vectors introduced encode the immunogenic antigens desired and the desired accessory molecule ligand. 35 present invention also contemplates that the gene or genes encoding the immunogenic peptide or peptides may

be present on the same vector as is the gene or genes encoding the accessory molecule ligand.

The vaccination methods of the present invention are general in that they may be used to produce a vaccination against any predetermined organism, such as a virus, a bacteria, a fungus or other organism. In addition, the present vaccination methods may be used to produce an immune response against a neoplastic cell.

In other preferred embodiments, the vaccination

10 methods of the present invention utilize a genetic
vector, a genetic construct or a gene therapy vector
which contains an accessory molecule ligand gene which
is a chimeric accessory molecule ligand gene. That
chimeric accessory molecule ligand gene preferably

15 contains at least a portion of the murine CD40 ligand
gene. In other preferred embodiments, the vaccination
method utilizes a DNA molecule which encodes at the
minimum the accessory molecule ligand gene or a chimeric
accessory molecule ligand gene. This particular DNA may

20 or may not include a promoter sequence which directs the
expression of the accessory molecule ligand gene.

The present invention also contemplates that the vaccination method may utilize a genetic vector which is capable of expressing an accessory molecule ligand

25 within a particular cell or organism together with a vector which is capable of expressing at least a single polypeptide from an andovirus. This andovirus polypeptide may be expressed from the same or different vector which expresses the accessory molecule ligand in that cell. In this particular embodiment, the andovirus polypeptide is also expressed in at least one cell type within the organism and serves to modulate the immune response found in response to this vaccination protocol.

The present invention also contemplates the
introduction of an accessory molecule ligand gene into
cells which are present in the joints of patients with
rheumatoid arthritis. In preferred embodiments, the

accessory molecule ligand gene introduced comprises at least a portion of the Fas ligand gene and upon expression the accessory ligand induces the cell death of cells expressing Fas on the cell surface. This process leads to the reduction of the destructive inflammatory process.

The following examples are provided to illustrate various aspects of the present invention and do not limit the scope of that invention.

10 VII. Methods of Treating Arthritis

The present invention also contemplates methods of treating arthritis comprising inserting into a joint, cells which have been transformed with an accessory molecule, such as the Fas ligand. In preferred 15 embodiments, the expression of that accessory molecule ligand or the stability of that molecule on the surface of the cells has been altered. In these preferred embodiments, the accessory molecule ligand functions in an enhanced manner to aid in the treatment of arthritis 20 within the joint. The present invention contemplates treating human arthritis both in vivo, ex vivo, and by directly injecting various DNA molecules containing genes which encode the useful accessory molecule ligand into the patients. Various useful protocols may be 25 designed to rheumatoid arthritis including those described in the example section below.

The present invention contemplates the treatment of arthritis utilizing accessory molecule ligand genes which may be chimeric accessory molecule ligand genes comprised of portions of that gene being derived from two different accessory molecule ligand genes. In other embodiments, the chimeric accessory molecule ligands may be produced by utilizing domains from the same accessory molecule ligand gene. The resulting chimeric accessory molecule ligands have an altered stability on the surface of cells upon which they are expressed. This

56

altered stability modulates the function of the immune system in the local environment around the cells in which these chimeric accessory molecule ligands are expressed. For example, in certain preferred

5 embodiments, Fas ligand stability is altered on the surface of cells within a joint of a patient suffering from arthritis. This altered stability modulates the immune system and causes the cells to be targeted for apoptosis and thus reducing the immune response within the inflamed joint. In other embodiments, the accessory molecule ligand genes described within are altered such that the resulting accessory molecule ligand has an altered stability and causes an immunomodulatory effect which can be useful in the treatment of arthritis.

15 The present invention contemplates in preferred embodiments that chimeric accessory molecule ligands genes be utilized in the treatment of arthritis. chimeric accessory molecule ligand genes preferably contain at least a portion of the Fas ligand gene Domain 20 IV, which carries the effect or function for Fas ligand. In preferred embodiments, at least in the portion of that domain, is present which allows Fas ligand to have its biologic effects. In other preferred chimeric accessory molecule ligands, those ligands contain 25 domains from other accessory molecule ligand genes of the present invention or from a different domain of the same accessory molecule ligand. Particularly preferred are Fas chimeric accessory molecule ligand genes made up on Domain IV of the human Fas ligand operatively linked 30 with Domain III of the mouse Fas ligand. particular combination results in more stable Fas ligand and thus, by replacing Domain III of human Fas ligand with Domain III of the mouse ligand, the activity of the human Fas ligand gene is altered.

Alternatively, in other preferred embodiments, the murine Fas ligand gene is used to encode the murine Fas ligand on the surface of cells in place of the human Fas

ligand. The murine Fas ligand is more stable than the human Fas ligand and thus, alters the Fas ligand activity in the joint. The resulting alter Fas ligand activity is useful in the treatment of rheumatoid 5 arthritis.

Further preferred embodiments include embodiments in which the effect or function present on Domain IV of the humand Fas ligand is combined with other domains from other accessory molecule ligands. For example, 10 CD70 Domain III is more stable than Domain III of the human Fas ligand and thus the chimeric accessory molecule ligand made up of Domain III from the human CD70 and Domain IV of the Fas ligand together with other supporting domains would be more stable. The increased 15 stability leads to increase Fas ligand activity. other preferred embodiments, Domain III of the Fas ligand is replacd with multiple copies of a domain or domains. Such multiple copies of domains include domains made up of two or more copies of other domains 20 such as Domains III or I of the CD70 molecule.

In other preferred embodiments, the present invention contemplates accessory molecule ligand genes, such as Fas ligand genes, in which a cleavage site for matrix-metalloproteinase (MMP), have been removed from 25 the accessory molecule ligand. MMP cleavage and recognition sites, charted in Figure 28, are discussed in Smith, M.M. et al., Journal of Biol. Chem. 270:6440-6449 (95) and Nagase, H., and G.B. Fields, Biopolymers (Peptide Science) 40:399-416 (96). In preferred 30 embodiments, at least one MMP site has been removed from at least Domain III of the Fas ligand gene. of the MMP site from the Fas ligand gene makes the Fas ligand more stable and thus, more effective in the treatment of arthritis.

35 In other preferred embodiments, chimeric accessory molecule ligand genes are comprised of portions of the human Fas ligand gene with other domains from other

58

human accessory molecule ligands or domains from accessory molecules derived from other species. For example, the present invention contemplates the use of domains from CD40 ligand, CD70 ligand, CD30 ligand, TNF-related apoptosis inducing ligand (TRAIL), TNF-α as well as mutants of human Fas ligand and murine Fas ligand. Production of such chimeric accessory molecule ligands is easily accomplished by manipulating and producing accessory molecule ligand genes which are chimeric and thus has portions derived from at least two different accessory molecule ligand genes.

59

EXAMPLES

- 1. Expression of Human and Mouse Accessory Molecule
 Liquid in Human CLL Cells
 - a. <u>Construction of a Genetic Construct and Gene</u>

 Therapy Vector Containing a Human and Mouse

 Accessory Molecule Ligand Gene

Either the human accessory molecule ligand gene (human CD40 ligand) or the murine accessory molecule ligand gene (murine CD40 ligand) was constructed utilizing the respective human and murine genes. Each of these genes was cloned in the following manner.

i. Murine CD40-L cloning

5

Total RNA was isolated using the RNA STAT-60 kit (Tel-Test "B" Inc., Friendswood, TX) from 1 x 10' B6 15 mouse splenocytes that were previously activated for 8 hours with immobilized CD3-specific mAb. cDNA was then synthesized with the Superscript cDNA synthesis kit (Gibco BRL, Grand Island, NY) using oligo-dT primers. The murine CD40 ligand (mCD40-L) gene was then amplified 20 from the cDNA by PCR using the following mCD40-L specific primers. 5'-GTTAAGCTTTTCAGTCAGCATGATAGAA (SEQ ID NO: 26), 5'-GTTTCTAGATCAGAGTTTGAGTAAGCC (SEQ ID NO: The amplified mCD40-L PCR product was subcloned into the HindIII and Xbal sites of the eukaryotic 25 expression vector pcDNA3 (Invitrogen, San Diego, CA). A DNA fragment encompassing the CMV promoter, mCD40-L gene, and polyadenylation signal was released from this plasmid construct after restriction digestion with Bg1II and XhoI enzymes. This DNA fragment was then subcloned 30 into the shuttle plasmid MCS(SK)pXCX2 (Spessot R, 1989, Virology 168:378) that was designated mCD40-L pXCX2. This plasmid was used for adenovirus production as described below.

ii. Human CD40-L Cloning

A plasmid containing the gene for human CD40-L was used to produce the human CD40-L gene used herein. The

sequence of this gene is available and thus this source of the gene was used merely for convenience. See GenBank accession no. X67878. This plasmid was used for PCR amplification of the human CD40-L gene using the specific primers, sense primer 5' CCAAGACTAGTTAACACAGCATGATCGAAA 3' (SEQ ID NO: 28) and antisense primer 5' CCAATGCGGCCGCACTCAGAATTCAACCTG 3' (SEQ ID NO: 29).

These primers contain flanking restriction enzyme

10 sites for subcloning into the eukaryotic expression
plasmid pRc/CMV (Invitrogen). The PCR amplified CD40-L
fragment was subcloned into the SpeI and NotI sites of
pRc/CMV and designated hCD40-L pRc/CMV. A BglII and
XhoI fragment encompassing the CMV promoter, hCD40-L

15 gene, and polyadenylation signal was then released from
this plasmid and subcloned into the shuttle plasmid
MCS(SK)pXCX2 as described above. This plasmid was
designated hCD40-L pXCX2. This plasmid was used for
adenovirus production as described below.

20 iii. Adenovirus Synthesis

Either mCD40-L pXCX2 or hCD40-L pXCX2 plasmids were co-transfected with pJM17 (Graham and Prevec, 1991, Methods in Molecular Biology, Vol 7) into 293 cells (American Type Culture Collection, Rockville, MD) using 25 the calcium phosphate method (Sambrook, Fritsch, and Maniatis, 1989, Molecular Cloning, A Laboratory Manual, 2nd edition, chapter 16:33-34). Isolated adenovirus plaques were picked and expanded by again infecting 293 cells. High titer adenovirus preparations were obtained as described (Graham and Prevec, 1991, Methods in 30 Molecular Biology, Vol 7), except for the following modifications. The cesium chloride gradient used for concentrating viral particles was a step gradient, with densities of 1.45 g/cm³ and 1.2 g/cm³. The samples were 35 spun in a SW41 rotor (Beckman, Brea, CA) at 25,000 rpm at 4°C. The viral band was desalted using a Sephadex

G25 DNA grade column (Pharmacia, Piscataway, NJ). The isolated virus was stored at 70°C in phosphate buffered saline with 10% glycerol. The virus titer was determined by infecting 293 cells with serial dilutions of the purified adenovirus and counting the number of plaques formed. Viral titers typically ranged from 10¹º to 10¹² plaque forming units/ml (PFU/ml).

b. <u>Introduction of a Murine and Human Accessory</u> <u>Molecule Ligand Gene into CLL Cells and HeLa</u> <u>Cells</u>

For adenovirus infection, 10° freshly thawed and washed CLL cells or HeLa cells were suspended in 0.5 to 1 mL of culture medium for culture at 37°C in a 5% CO₂-in-air incubator. Adenovirus was added to the cells at varying multiplicity of infection (MOI), and the infected cells were cultured for 48 hours, unless otherwise stated, before being analyzed for transgene expression.

10

20

c. Expression of an Accessory Molecule Ligand Gene in CLL Cells and HeLa Cells

The CLL and HeLa cells which were infected with the adenovirus vector containing either mouse or human CD40 ligand genes prepared in Example 1b. were then stained with commercially available monoclonal antibodies

25 immunospecific for either human or mouse CD40 ligand (Pharmingen, San Diego, CA) using the manufacturer's directions. The CLL and HeLa cells were washed in staining media (SM) consisting of RPMI-1640, 3% fetal calf serum and 0.05% sodium azide and containing

30 propidium iodide and then analyzed on a FACScan (Becton Dickinson, San Jose, CA). Dead cells and debris were excluded from analysis by characteristic forward and side light scatter profiles and propidium iodide staining. Surface antigen expression was measured as the mean fluorescence intensity ratio (MFIR). MFIR

PCT/US97/22740 WO 98/26061

62

equals the mean fluorescence intensity (MFI) of cells stained with a specific FITC-conjugated MoAb, divided by the MFI of cells stained with a control IgG-FITC. method controls for the nonspecific increases in auto-5 fluorescence seen in larger, more activated cells.

The histograms, generated for the CLL cells and HeLa cells containing either a genetic vector containing the human CD40 ligand gene or the murine CD40 ligand gene and the appropriate controls, are shown in Figure 10 3A-3D. The expression of both the murine and human accessory molecule ligand gene (CD40 ligand) in HeLa cells is shown in Figures 3A and 3B, respectively. expression of the murine and human accessory molecule ligand in CLL cells is shown in Figures 3C and 3D. 15 expression of an accessory molecule liquand gene in CLL cells and the expression of murine CD40 liqand on the surface of the CLL cells is shown in Figure 3C. failure of the human accessory molecule ligand to be expressed on the surface of the CLL cells is shown in 20 Figure 3D.

Figure 8 shows data from an experiment done to examine whether the CD4 T cells of CLL patients could be induced to express the accessory molecule ligand mRNA after CD3 ligation. An ELISA-based quantitative 25 competitive RT-PCR was used to measure CD40 ligand transcript levels. In this experiment, CD40 ligand and RNA transcribed from the CD40 ligand gene in CLL cells are compared with levels of CD40 ligand and RNA made in normal donor cells, after induction by CD3 ligation. 30 For CD3 activation, plate coats of CD3 mAb were made and incubated with plated CLL or normal donor mononuclear cells for the indicated amount of time, after which cells were analyzed for expression of surface antiqens or CD154 RNA message levels. CLL or normal donor serum 35 was added to the cells at the beginning of the activation assay for examination of modulation of CD40

ligand surface expression.

6.3

For quantitative CD154 RT-PCR ELISA, total RNA was extracted and competitor RNA was generated from the insert containing CD40 ligand (CD154) cDNA. Varying amounts of competitor RNA were added to separate wells 5 of isolated total RNA that subsequently were converted into cDNA. CD3 activation, ELISAs and PCR reactions were performed as described in Cantwell, M. et al., Nature Medicine 3:984-989 (1997). Biotinylated PCR products were captured onto microtiter plates (Becton 10 Dickinson, Oxnard, CA) coated with streptavidin (Sigma), and incubated. The plate was treated with NaOH to remove the sense strands and subsequently washed. DNA was then hybridized with either wild-type genespecific or competitor-specific oligonucleotides. Using 15 terminal transferase, each probe was labeled with a molecule of digoxigenin-11-dideoxyUTP (Boehringer Mannheim). The plate was incubated and washed with HYBE buffer and blocking buffer, then peroxidase-conjugated anti-digoxigenin antibody (150 U/ml; Boehringer 20 Mannheim) in blocking buffer was added. (tetramethylbenzidine) and peroxidase (Kirkegaard and Perry Laboratories, Gaithersburg, MD) were added for color development, and optical densities were measured at 450 nm and Deltasoft II (Biometallics, Princeton, NJ) 25 was used for data analysis.

Standard curves plotting the moles of RNA product versus the optical density were made for the standard cDNA reactions. The equations describing these standard curves were then used to calculate the moles of wild-30 type or competitor DNA present in the unknown PCR reactions based on the optical densities obtained in the ELISA readings. The ratio of the quantity of wild-type DNA to the amount of competitor DNA was then plotted against the known quantity of competitor RNA added in 35 the initial samples. The ratio of 1 was taken for the extrapolation of the amount of unknown moles of target RNA in the sample (a ratio of 1 means the amount of

target RNA versus competitor RNA are equal). The molecules of target RNA per CD4 cell was then calculated based on the following formula: [(moles target CD154 RNA) \times (6 X 10²³ molecules/mole) \times (dilution factor of test RNA)]/(% of CD4 T cells in total cell population).

The upper graph in Figure 8 shows that T cells of patients with CLL do not express detectable CD40 ligand after CD3 ligation. CD40 ligand RNA is produced, but it is not stable. Although both CD40 ligand and CD40 ligand RNA are expressed in normal donor T cells (lower graph), the levels of neither the protein or RNA are stably maintained.

Figure 9 shows a time course for surface expression of CD40 ligand. Expression reached a peak level at 48 hours after infection and persisted at high levels for at least 6 days thereafter. In this experiment, CLL B cells were infected with a gene therapy vector containing an accessory molecule ligand, at a MOI of 1000 at time zero, and then assessed by flow cytometry at various times thereafter. At each time point listed on the abscissa, the proportions of viable CLL B cells that expressed detectable CD154 are indicated by the vertical bars corresponding to the percentage scale depicted on the right-hand ordinate.

25 d. <u>Function of the Human and Murine Accessory</u> <u>Molecule Ligands</u>

- i. <u>Induction of CD80 and CD54 on Cells</u>

 <u>Containing a Gene Therapy Vector Encoding</u>

 <u>an Accessory Molecule</u>
- The CLL cells infected with the murine accessory molecule ligand gene prepared in Example 1b. were then cultured in tissue culture plates. The CLL cells were then analyzed using multiparameter FACS analysis to detect induction of CD80 and CD54 expression using fluroescein isothiocyanate-conjugated monoclonal antibodies immunospecific for each of these respective

surface antigens. Non-infected CLL cells were used as a control. The cells were subjected to the appropriate FACS analysis and histograms were generated. CD80 mAb was obtained from Dr. Edward Clark and CD54 mAb was 5 purchased from CALTAG Inc. The CD80 was conjugated using standard methods which have been described in Kipps et al., Laboratory Immunology II, 12:237-275 (1992).

The results of this analysis are shown in Figure 10 4A-4D. Figures 4A-4B compare the amount of CD54 expression in CLL cells which have not been transfected (Figure 4A) or CLL cells into which a gene therapy vector containing the murine CD40 ligand gene was introduced (Figure 4B). The shaded graph indicates the 15 isotype control for FACS staining and the open graph indicates the cells stained with the anti-CD54 antibody. These results show that the level of expression of CD54 is increased in CLL cells into which the gene therapy vector containing the murine CD40 ligand was introduced.

20

Figures 4C and 4D compare the amount of CD80 expression in CLL cells which have not been transfected (Figure 4C) or CLL cells into which a gene therapy vector containing the murine CD40 ligand gene was introduced (Figure 4D). The shaded graph indicates the 25 isotype control for FACS staining and the open graph indicates the cells stained with the anti-CD80 antibody. These results show that the level of expression of CD80 is increased in the CLL cells into which the gene therapy vector containing the murine CD40 ligand was 30 introduced.

In an additional experiment, CLL cells infected with a gene therapy vector containing the murine accessory molecule ligand gene were evaluated by flow cytometry for induced expression of not only CD54 and 35 CD80, but also CD86, CD58, CD70 and CD95. Fluoresceinconjugated mAb specific for human CD54 and CD70 were purchased from CALTAG. Fluorescein-conjugated mAb

specific for human CD27, CD58, CD80, CD86, or CD95, and phycoerythrin-conjugated mAb specific for human or mouse CD40 ligand, were obtained from PharMingen. histograms represent staining of CLL B cells with FITC-5 conjugated isotype nonspecific mAb. In contrast to uninfected CLL cells (Figure 10, thin-lined histograms), or Ad-lacZ-infected CLL cells (data similar to that obtained with uninfected cells, but not shown), CLL cells infected with the adenovirus vector encoding the 10 CD40 ligand (CD154) expressed high levels of CD54 (Figure 10, top left), CD80 (Figure 10, top middle), CD86 (Figure 10, top right), CD58 (Figure 10, bottom left), CD70 (Figure 10, bottom middle), and CD95 (Figure 10, bottom right). On the other hand, CD40 ligand-CLL (CD154 CLL) expressed significantly lower levels of both surface membrane CD27 (Figure 11A, thick-lined histogram) and soluble CD27 (Figure 11B) than uninfected (Figure 11A, thin-lined histogram) (P < 0.01, Bonferroni t-test) or Ad-lacZ-infected CLL cells (data similar to 20 that obtained with uninfected cells, but not shown). the experiment shown in Figure 11A, the CLL B cells were examined for expression of CD27 via flow cytometry, three days after infection. Shaded histograms represent staining of CLL B cells with FITC-conjugated isotype 25 control mAb. In Figure 11B, cell-free supernatants were collected, after the infection or stimulation of CLL B cells, for 72 hours and tested for the concentration of human CD27 by ELISA. The reduced expression of CD27 (Figure 11B) is similar to that noted for leukemia B 30 cells stimulated via CD40 cross-linking with mAb G28-5 presented by CD32-expressing L cells, as described in Rassenti, L.Z. and T.J. Kipps, J. Exp. Med. 185:1435-1445.

67

ii. Alloqeneic T Cell Responses to CLL Cells Into Which a Genetic Therapy Vector Containing a Murine CD40 Ligand Gene Has Been Introduced

The ability of CLL cells which have been infected with a gene therapy vector containing the murine CD40 ligand gene to stimulate allogeneic T cells (i.e., from another individual) was analyzed using cell proliferation assays. Briefly, the test cells were co-cultured 10 with the genetic therapy vector containing the lac-Z gene or the murine CD40 ligand gene at a multiplicity of infection of 1,000 in the presence of IL-4 at a concentration of 10 ng/ml. In other samples, the CLL cells were stimulated with MOPC21 (a control IgG) or G28-5 (an 15 anti-CD40 monoclonal antibody) or were preincubated on CD32-L cells and at the same time treated with IL-4. The preincubation with the CD32-L cells together with IL-4 treatment have been shown to be an efficient form of cross-linking the CD40 molecule other than direct 20 gene transfection.

After three days of culture at 37°C, these cells were treated with mitomycin C to prevent their proliferation and then used to stimulate allogeneic T cells. Prior to this co-culture, the different aliquots of CLL cells had either been treated with the anti-CD40 monoclonal antibody or had been infected with the gene therapy vector containing either the lac-Z or murine CD40 ligand gene at a stimulator ratio of 1:10. After two days of culture at 37°C, interferon gamma (IFNg) production was measured by ELISA assay. After five days of co-culture at 37°C, the incorporation of 3H-thymidine into replicating cells was measured after an eight hour pulse label. The results of this assay are shown in Table II below and in Figure 5.

In another experiment, CLL B cells infected with the gene therapy vector containing the CD40 ligand gene were evaluated for their ability to act as stimulator

cells in an allogeneic mixed lymphocyte T cell reaction In parallel, the stimulatory capacity of control lac-Z-vector-infected CLL cells and CLL B cells that had been cultured with CD32-L cells and an anti-5 CD40 mAb (G28-5) or an isotype control Ig, was also examined as described in Ranheim, E.A. and T.J. Kipps, J. Exp. Med., 177:925-935 (1993), Clark, E.A. and J.A. Ledbetter, Proc. Natl. Acad. Sci. USA, 83:4494-4498 (1986), and Banchereau, J. et al., Science 251:70-72 (1991). Effector T cells from a non-related donor were 10 co-cultured with the CLL stimulator cells at an effector to target ratio of 4:1. After 18 h culture at 37°C, over 30% of the allogeneic CD3' cells were found to express the activation-associated antigen CD69 when 15 cultured with CD154-CLL cells (data not shown). contrast, less than 4% of the T cells expressed CD69 when co-cultured with uninfected or Ad-lacZ-infected CLL cells (data not shown).

Two days after the initiation of the MLTR, the 20 concentrations of IFNg in the culture supernatants were assayed by ELISA. The supernatants of the MLTR stimulated with CLL cells infected with the accessory molecule ligand CD40L (Figure 12A, CD154-CLL) contained significantly higher levels of IFNg (306 ± 5 ng/ml, m ± 25 SE, n = 3) than that of MLTR cultures stimulated with the anti-CD40 mAb (Figure 12A, aCD40-CLL) (23 \pm 3 ng/ml) (P < 0.05, Bonferroni t-test). The latter was not significantly different from that of MLTR cultures stimulated with control Ad-lacZ-infected CLL cells (Figure 12A, lacZ-CLL) (43 \pm 10 ng/ml) (P > 0.1, 30 Bonferroni t-test). The supernatants of effector cells alone, or of MLTR cultures stimulated with uninfected CLL cells (Figure 12A, CLL) or control Iq treated CLL cells (Figure 12A, MOPC-CLL), did not contain detectable 35 amounts of IFNg(<2 ng/ml). Similarly, none of the leukemia B cell populations produced detectable amounts

of IFNg when cultured alone, without added effector T cells (data not shown).

After 5 days, cell proliferation was assessed by incorporation of 'H-thymidine. Cultures with isotype 5 control IgG-treated (Figure 12B, MOPC-CLL) or uninfected (Figure 12B, CLL) stimulator cells did not incorporate more 'H-thymidine than cultures without added leukemiastimulator cells (Figure 12B, None). Ad-lacZ-infected CLL B cells (Figure 12B, lacZ-CLL) also were unable to 10 stimulate allogeneic T cells to incorporate amounts of 'H-thymidine that were much greater than that of control cultures. In contrast, anti-CD40-stimulated leukemia cells or CD154-CLL cells each induced significant effector cell proliferation (Figure 12B, aCD40-CLL or 15 CD154-CLL) (P < 0.05, Bonferroni t-test). Moreover, the amount of 'H-thymidine incorporated by cultures stimulated with CD154-CLL cells (41,004 \pm 761 cpm (m \pm SE), n = 3) was significantly greater than that of cultures stimulated with equal numbers of aCD40-CLL cells 20 (22,935 \pm 1,892 cpm, n = 3) (P < 0.05, Bonferroni t test). However, neither of these mitomycin-C-treated leukemia cell populations incorporated 'H-thymidine when cultured without effector T cells (data not shown). Also, as described for the MLTR between allogeneic T 25 cells and CD40-stimulated CLL cells {6549, 7167, 7168}, allogeneic T cell proliferation in response to CD154-CLL could be inhibited by CTLA-4-Ig or CD11a mAb when added at the initiation of the MLTR, indicating that respective interactions between CD80/CD86 and CD28, or 30 CD54 and CD11a/CD18, contribute to the noted allogeneic T cell reaction (data not shown).

Table II

Allogeneic T cell responses to CLL cells
infected with mCD40-L adenovirus

70

% positive cells	Allogeneic response		
	(mean+SEM)		
	IFNy		

	Stimulators	mCD40-L	Human CD80	3H-TdR uptake (cpm)	production (ng/ml)
5	None (t cells only)	-	-	3577 ± 821	n.d.*
	CLL with:				
	No activation	0	1.4	4577 ± 1097	n.d
	MOPC21	0	1.0	5259 ± 1788	n.d.
	G28-5	0	26.7	22935 ± 1892	22.3 ± 1.6
10	lac-Z adeno	0	4.8	9037 ± 1781	43.2 ± 10.5
	mCD40-L adeno	17.5	19.7	41004 ± 761	305.7 ± 4.5

^{*} n.d - not detectable

15

iii. Stimulation of Gamma Interferon by CLL Cells Containing an Accessory Molecule Ligand Gene

The function of CLL cells containing an accessory molecule ligand gene (mouse CD40 ligand) was analyzed by determining the ability of those cells to activate T lymphocytes. The procedure was performed as follows:

20 allogeneic T lymphocytes from a healthy donor (greater than 90% CD3*) were purified using magnetic beads and monoclonal antibodies specific for the CD14 and CD19 antigen. These allogeneic T lymphocytes then were cultured together with MMC-treated CLL cells which were infected with the accessory molecule ligand gene (murine CD40 ligand) or the lac-Z gene. This co-culture was performed in RPMI-1640 medium containing 10% fetal calf

WO 98/26061

71

PCT/US97/22740

serum. After culture for 24 hours, the cells were collected and analyzed to determine the expression of the antigen CD69 on the T lymphocytes using a standard FACS sorting protocol. The cell culture supernatants were collected after two days in culture and tested to determine the concentration of human interferon gamma using an ELISA assay. A portion of the CLL cells containing an accessory molecule ligand gene (murine CD40 ligand) and a portion of the cells containing the adenovirus expressing the lac-Z were cultured in the presence of human interleukin 4 IL-4 (5 ng/mL). The production of interferon gamma by allogeneic T lymphocytes in the presence of this amount of human interleukin 4 was also analyzed. The results from these analyses are shown in Figure 6.

As can be seen, the human CLL cells containing the accessory molecule ligand gene (murine CD40) produced substantially higher concentrations of interferon gamma in the cell culture supernatant when compared to CLL cells which contained the lac-Z gene. The increased production of interferon gamma (IFNg) by T lymphocytes exposed to CLL cells containing the accessory molecule ligand gene indicates that these CLL cells containing the accessory molecule ligand genes were effective in producing an enhanced immune response.

iv. Stimulation of Allogeneic T Cells Pre-Exposed to Non-Modified CLL B Cells Containing an Accessory Molecule Ligand Gene

Prior studies indicated that antigen presentation to T cells, in the absence of the signals derived from costimulatory molecules such as CD28, can lead to specific T cell clonal anergy. For this reason, allogeneic T cells that had previously been cultured, with non-modified CLL B cells lacking expression of CD80 and other immune accessory molecules, were tested for

72

their ability to respond to CLL cells containing the CD40 ligand gene. Allogeneic effector cells did not incorporate more 3H-thymidine in response to non-modified CLL cells (Figure 12C, CLL), or control CLL cells 5 infected with Ad-lacZ (Figure 12C, lacZ-CLL), than when they were cultured alone (Figure 12C, None). contrast, even after prior co-culture with non-modified CLL B cells, allogeneic effector cells could still be induced to proliferate (Figure 12C, CD154-CLL) or to 10 produce IFNg (Figure 12D, CD154 CLL) in response to cells expressing an accessory molecule ligand. Although modest amounts of IFNg were detected in the supernatants of such secondary cultures when Ad-lacZ-infected leukemia cells were used as stimulator cells (Figure 15 12D, lacZ-CLL), this level was significantly lower than that noted for secondary cultures with Ad-CD40-ligandinfected CLL cells (Figure 12D, CD154-CLL) (P < 0.05, Bonferroni t-test). Similarly, the supernatants of the leukemia cells alone (data not shown), and the effector 20 cells alone (Figure 12D, None), of the MLTR cultures stimulated with uninfected CLL cells (Figure 12D, CLL), contained negligible amounts of IFNg(<2 ng/ml). results indicate that allogeneic effector cells cultured with nonmodified CLL B cells are not precluded from 25 responding to CLL B cells infected with a gene therapy vector containing the accessory molecule ligand gene.

v. Autologous T Cell Responses to CLL Cells
Into Which a Gene Therapy Vector Encoding
a Murine Accessory Molecule Ligand Gene
Has Been Introduced

T cells isolated from the blood of CLL patients were examined for their ability to respond in vitro to autologous CLL B cells containing a gene therapy vector which encodes the murine accessory molecule, CD40 ligand. T cells were isolated to >95% purity, and then co-cultured with mitomycin-C-treated autologous leukemia

30

35

cells in serum-free AIM-V medium supplemented with exogenous interleukin-2 at 25 U/ml. Modest 3H-thymidine incorporation (≤10,000 cpm) was detected in cultures without added stimulator cells, secondary in part to the 5 exogenous IL-2 (Figure 13A, and data not shown). level of T cell proliferation, however, did not increase in response to uninfected CLL cells (Figure 13A, CLL) or Ad-lacZ-infected CLL cells (Figure 13A, lacZ-CLL). contrast, CLL cells infected with a gene therapy vector 10 containing the accessory molecule ligand (Figure 13A, CD154-CLL) induced autologous T cells to incorporate significantly more ^{3}H -thymidine (17, 368 \pm 1,093 cpm, n=3) than any of the control cultures (P < 0.05, Bonferroni t-test). Furthermore, the MLTR stimulated 15 with CLL cells infected with a vector encoding an accessory molecule ligand (CD40L) also generated significantly more IFNg (165 \pm 3 ng/ml, n=3) than any of the other cultures (Figure 13B) (P < 0.05, Bonferroni ttest).

20 The T cells were harvested after 5 days from the autologous MLTR and assessed for CTL activity against autologous CLL B cells. T cells co-cultured with autologous CD40-ligand-CLL cells developed CTL activity for non-modified CLL B cells, effecting 40.1% lysis (± 25 2.3%) at an E:T ratio of 2:1 (Figure 13C, CD154). However, such T cells did not develop detectable CTL activity for the same target cells in the control reactions, when co-cultured with uninfected or Ad-lacZinfected CLL cells (Figure 13C).

vi. Specificity of CTL Stimulated by Autologous CD40-Ligand-CLL B Cells for Allogeneic CLL B Cells

Effector cells stimulated with autologous CD40ligand-CLL were evaluated for their ability to secrete IFNg or manifest CTL activity against allogeneic CLL B cells (Figure 14). After 5 days of autologous MLTR with

30

74

CD154-CLL or lacZ-CLL, T cells were isolated by Ficoll density gradient centrifugation, washed extensively, and then cultured in media for 24 h. Washed T cells were mixed with autologous ("Auto CLL", solid bar) or 5 allogeneic ("Allo-1 CLL" or "Allo-2 CLL", shaded or hatched bars) target CLL B cells. T cells stimulated in the autologous MLTR with CD40-ligand-CLL cells, but not with lacZ-CLL cells, produced significantly more IFNg in response to secondary culture with non-modified 10 autologous CLL B cells than with allogeneic CLL B cells (Figure 14A) (P < 0.05, Bonferroni t-test). Furthermore, T cells stimulated with CD40-ligand-CLL cells, but not with lacZ-CLL cells, were cytotoxic for autologous CLL cells, but not allogeneic CLL cells (Figure 14B). 15 Similar results were obtained with the autologous MLTRactivated T cells of the allogeneic donor, again demonstrating specific cytotoxicity for autologous CLL B cells (data not shown). Finally, W6/32, a mAb to class I major histocompatibility complex (MHC I) antigens 20 could significantly inhibit the cytotoxicity of T cells stimulated with CD40-ligand-CLL cells for autologous CLL B cells (Figure 14C, α HLA-class I)) (P < 0.05, Bonferroni t-test). Such inhibition was not observed with mAb specific for MHC class II antigen (Figure 14C, 25 αHLA-DP), mAb specific for the Fas-ligand (Figure 14C, αFasL), or an isotype control mAb of irrelevant specificity (Figure 14C, MOPC-21). Collectively, these studies indicate that Ad-CD40-ligand-infected CLL cells can induce an autologous anti-leukemia cellular immune 30 response in vitro, leading to the generation of MHCclass I-restricted CTL specific for autologous non-

e. <u>Transactivation of Non-Infected Bystander</u> <u>Leukemia B Cells by Ad-CD40L CLL Cells</u>

To address whether the changes in tumor marker expression (described in section 1di.) resulted from

modified leukemia B cells.

intracellular versus intercellular stimulation, the effect of culture density on the induced expression of CD54 and CD80 following infection with adenovirus gene therapy vector encoding the accessory molecule ligand 5 (CD40L, or CD154) was examined. After infection, CLL cells were cultured at standard high density (e.g. 1 x 10° cells/ml) or low density (e.g. 2 x 10° cells/ml) for 3 days at 37 °C. Cells plated at high density contained homotypic aggregates, whereas cells plated at low 10 density remained evenly dispersed and without substantial cell-cell contact (data not shown). Despite expressing similar levels of heterologous CD154, CD154-CLL B cells cultured at high density were induced to express higher levels of CD54 and CD80 than CD154-CLL 15 cells cultured at low density (Figure 15A). stimulation achieved at high density could be inhibited by culturing the cells with a hamster anti-mouse CD154 mAb capable of blocking CD40<->CD154 interactions (Figure 15B, aCD154 Ab). Collectively, these studies 20 indicate that CD154-CLL cells can activate each other in trans and that surface expression of CD154 is necessary for optimal leukemia cell stimulation.

In addition, Ad-CD154-infected, uninfected, AdlacZ-infected, or G28-5-stimulated CLL cells were 25 labeled with a green-fluorescence dye to examine whether CD154-CLL could stimulate non-infected bystander leukemia cells. Dye-labeled cells were used as stimulator cells for equal numbers of non-labeled syngeneic CLL B cells. After 2 days' culture, 30 stimulator cells cultured by themselves retained the green-fluorescence dye, allowing such cells to be distinguished from non-labeled CLL cells by flow cytometry. Bystander (green-fluorescence-negative) CD19* CLL B cells were induced to express CD54 (Figure 15C, 35 right histogram) or CD86 (Figure 15D, right histogram) when co-cultured with Ad-CD154-infected leukemia B cells, but not with mock infected CLL cells (Figures 15C

76

and 15D, left histograms), G28-5-stimulated CLL cells, or Ad-lacZ-infected CLL cells (data not shown). As expected, these bystander (green-fluorescence-negative) CLL cells also were negative for heterologous CD154.

f. Treatment of Leukemia with Gene Therapy

Vectors Encoding an Accessory Molecule Ligand

Figure 24 shows an outline for a clinical trial for testing treatment of B cell CLL with adenovirus gene therapy vectors encoding modified CD40 ligand. Leukemia cells harvested by pheresis are infected with replication-defective vectors that encode the modified CD40 ligand. Following expression of this protein, the cells will be administered back to the patient for the purpose of stimulating a host anti-leukemia-cell immune response. This strategy is far superior to one that uses gene therapy to affect expression of only one immune stimulatory molecule on the leukemia cell surface. Indded, this strategy results in the leukemia cells expressing an array of immune-stimulatory accessory molecules and cytokines, as well as a molecule that can affect the same changes in leukemia cells of

2. <u>Expression of Chimeric Accessory Molecule Ligand</u> <u>Genes</u>

The chimeric accessory molecule ligand genes described below are prepared using standard techniques as described herein.

the patient that were never harvested.

30

35

a. <u>Preparation of Chimeric Accessory Molecule</u>

<u>Ligand Genes Utilizing Domains from Two</u>

<u>Different Accessory Molecule Genes</u>

The human CD40 ligand gene was isolated from RNA prepared from T cells which had been activated by an anti-CD3 monoclonal antibody using 5' and 3' primers together with well known PCR methods. Chimeric accessory molecule genes of human CD40 ligand and murine

WO 98/26061

77

CD40 ligand are constructed from the newly cloned human CD40 ligand gene and mouse CD40 ligand gene described herein as SEQ ID NO: 2. The transmembrane and cytoplasmic domains of human CD40 ligand genes are 5 exchanged with those of the murine CD40 ligand gene and designated H(Ex)-M(Tm-Cy) CD40 ligand. These chimeric accessory molecule ligand genes are produced using the gene conversion technique described as SOEN which has been previously described by Horton, Mol. Biotechnol., 10 3:93 (1995). A diagram depicting the chimeric accessory molecule ligand genes which are produced is shown in Figure 4. The nucleotide sequences of each of these respective chimeric accessory molecule ligand genes is designated SEQ ID NOS: 3-7 as indicated in the Table 15 below.

Table III

Chimeric Accessory Molecule Ligand Gene SEQ ID NO:

	HuIC/HuTM/MuEX	CD40-Ligand	SEQ	ID	NO:	3
	HuIC/MuTM/HuEX	CD40-Ligand	SEQ	ID	NO:	4
20	HuIC/MuTM/MuEX	CD40-Ligand	SEQ	ID	NO:	5
	MuIC/HuTM/HuEX	CD40-Ligand	SEQ	ID	NO:	6
	MuIC/MuTM/HuEX	CD40-Ligand	SEO	ID	NO:	7

Adenovirus vectors encoding each of the chimeric accessory molecules shown in Figure 2 are constructed 25 using the methods described in Example 1. Each of these constructs are then transfected into either HeLa cells or CLL cells according to the methods of Example 1.

Expression of Chimeric Accessory Molecule b. Ligands on CLL and HeLa Cells

30 The expression of each of the chimeric accessory molecule ligand genes constructed above is analyzed by using FACS analysis as specified in Example 1. appropriate monoclonal antibody immunospecific for the external domain of either human or mouse CD40 ligand is 35 selected and used to determine the level of expression

78

of the chimeric accessory molecules on the surface of these cells. After appropriate analysis and preparation of appropriate histograms, the expression of chimeric accessory molecules containing at least a portion of the murine CD40 ligand gene is confirmed.

c. <u>Function of Chimeric Accessory Molecule</u> Ligands

CLL cells are infected with various MOI of the mCD40L adenovirus and then cultured in 48 or 24 well

10 tissue culture plates for various times after infection (48, 72, and 96 hours). The CD19 B cells are then analyzed by multiparameter FACS analysis for induction of CD80 and CD54 expression using fluroescein isothiocyanate-conjugated mAb specific for each

15 respective surface antigen as described in Examplé 1. Increased amounts of CD54 and CD80 are found on cells which have the chimeric accessory molecules containing the domain or domains derived from the mouse CD40 ligand gene.

Further analysis of the cells containing the chimeric accessory molecule genes is carried out according to Example 1(d). The cells containing the chimeric accessory molecule genes which contain the domains derived from the murine CD40 ligand gene are able to stimulate the production of gamma interferon and T cell proliferation.

d. Expression of Chimeric Accessory Molecule Genes Which Contain Proximal Extracellular Domains from Two Different Accessory Molecules from the Same Species

A chimeric accessory molecule ligand gene is prepared which contains the proximal extracellular domain from the human CD70 gene (Domain III) with the remainder of the domains derived from the human CD40 ligand gene. This gene is prepared using standard

30

35

15

79

biologic techniques as previously described herein. This chimeric accessory molecule ligand gene has the DNA sequence shown as SEQ ID NO: 19. A different chimeric accessory molecule ligand gene is prepared which 5 contains the proximal extracellular domain from the murine CD40 ligand gene with the remainder of the domains derived from the human CD40 ligand gene. gene is prepared using standard techniques as previously described herein. This chimeric accessory molecule ligand gene has the DNA sequence shown as SEQ ID NO: 20.

The chimeric accessory molecule genes shown as SEO ID NOS: 19 and 20 are inserted into the appropriate vectors as described in Example 1 and introduced into human neoplastic cells. The expression of that chimeric accessory molecule gene in the cells is determined as was described in Example 1.

The chimeric accessory molecule encoded by each of these chimeric accessory molecule genes is found on the surface of the human neoplastic cells using the FACS 20 analysis described in Example 1. Increased amounts of CD54 and CD80 are found on the cells containing the chimeric accessory molecule genes using the techniques described in Example 1. The cells containing the chimeric accessory molecule gene are able to stimulate the production of gamma interferon and T cell 25 proliferation as described and assayed according to Example 1.

3. Augmentation of Vaccination Using Vectors Encoding Accessory Molecules

30 The following procedures were used to demonstrate the augmentation of a vaccination protocol using a gene therapy vector encoding an accessory molecule.

PCT/US97/22740 WO 98/26061

80

Augmentation of the Antibody Response in Mice Coa. Injected with an Accessory Molecule Gene Therapy Vector and placZ

Three different gene therapy constructs were 5 prepared using standard techniques including those techniques described herein. The first was a control gene therapy vector, pcDNA3, which did not contain any gene. The second, placZ, contained the Lac-Z gene which encoded β -galactosidase (β -gal). The third, p-mCD40L, 10 contained the murine CD40 ligand gene described in Example 1.

Prior to any immunizations, serum was isolated from 6-8 week old BALB/c-mice to determine the amount of any initial antibodies to β -galactosidase. Each animal was 15 injected i.m. with 100 micrograms of plasmid DNA per injection. Four separate injections were given at one week intervals.

Prior to the third injection, the animals were bled to monitor the early antibody response to β -gal. One 20 week after the final injection of plasmid DNA, the animals were bled to monitor the late antibody response to beta-galactosidase. To test the sensitivity of the assay, known amounts of anti- β -gal antibodies isolated from an anti- β -gal antiserum were tested in parallel.

25

Serum dilutions of 1:40, 1:200, or 1:1000 were tested in an ELISA for anti- β -gal antibodies. For this, polystyrene microtiter ELISA plates were coated with β gal at 10 microgram/ml in phosphate buffered saline. The plates were washed thrice with blocking buffer 30 containing 1% bovine serum albumin (BSA), 0.2% Tween 20 in borate buffered saline (BBS) (0.1M borate, 0.2M NaCl, pH 8.2). 50 microliters of diluted serum were added to separate wells. After at least 1 hour at room temperature, the plates were washed thrice with blocking 35 buffer and then allowed to react with alkaline phosphatase-conjugated goat anti-mouse IgG antibody. One hour later, the plates again were washed four times

81

with blocking buffer and incubated with 25 ml of TMB peroxidase substrate (Kirkegaard & Perry, Gaithersburg, MD). The absorbance at 405 nm of each well was measured using a microplate reader (Molecular devices, Menlo Park, CA). The higher the O.D. reading, the greater the amount of specific antibody in the sample.

The data for each of two experiments are provided in Tables IV and V which follow on separate sheets. The results are summarized in Tables VI and VII collating the data from the two experiments is provided as well. On the summary page n stands for the number of animals in each of the four groups. S.D. stands for standard deviation and Avg. is the average O.D. reading for all the animals in a particular group.

The results of Group 4 demonstrate that the use of a gene therapy vector encoding an accessory molecule ligand (CD40L) enhances the immunization against β -gal encoded by a genetic or gene therapy vector. The average O.D. reading of the 1:40 dilution of the sera from animals of this group is significantly higher than that of groups 1, 2, and 3 (P < 0.05, Bonferroni t tests, see Table VII).

Data from an additional experiment further reinforce the finding that the gene therapy vector encoding an accessory molecule ligand enhances immunization against β-gal (Figure 16). Here, pCD40L and placZ were co-injected into skeletal muscle, to test for enhancement of the immune response to placZ, a pcDNA3-based vector encoding E. coli β-galactosidase.

30 The relative anti-β-gal Ab activities were determined via ELISA. As expected, mice injected with either the non-modified pcDNA3 vector or pCD40L alone did not produce detectable antibodies to b-gal (Figure 16A). Mice were injected with either 100 μg pcDNA3 (checkered bar), 50 μg pcDNA3 + 50 μg pCD40L (lined bar), 50 μg pcDNA3 + 50 μg placZ (striped bar), or 50 μg pCD40L + 50 μg placZ (solid bar). On the other hand, mice that

82

received placZ and pcDNA3 developed detectable anti-b-gal antibodies one week after the fourth and final injection, at d28. Mice that received placZ and pCD40L developed higher titers of anti-β-gal antibodies than mice injected with placZ and pcDNA3. Figure 16B, ELISA analyses of serial dilutions of sera collected at d28, shows that mice co-injected with placZ and pCD40L had an eight-fold higher mean titer of anti-β-gal antibodies at d28 than mice treated with placZ + pcDNA3.

10

i. <u>Immunoglobulin Subclass Production</u> <u>Stimulated by Accessory Molecule Vector</u> <u>Co-Injection</u>

Despite enhancing the titer of the anti-β-gal antibody response, the subclass of anti-β-gal IgG

induced by injection of placZ was not altered by the coinjection of pCD40L. IgG_{2a} anti-β-gal antibodies
predominated over IgG₁ subclass antibodies in the sera of
mice injected with either placZ and pcDNA3 or placZ and
pCD40L (Figure 17). Also depicted are the ELISA O.D.

measurements of anti-β-gal IgG₁ and anti-β-gal IgG_{2a}
present in the pre-immune sera (striped bar) or postimmune sera (solid bar), collected at d28) of each group
of mice, injected as indicated on the abscissa. In
contrast, BALB/c mice injected with β-gal protein
developed predominantly IgG₁ anti-β-gal antibodies, and
no detectable IgG_{2a} anti-β-gal antibodies.

ii. Augmentation of Vaccination by Accessory Molecule Vector Requires Co-Injection with placZ at the Same Site

The adjuvant effect of the pCD40L plasmid on the anti-β-gal antibody response was noted only when it was injected into the same site as placZ (Figure 18).

Groups of BALB/c mice (n=4) received intramuscular injections of placZ and pCD40L together at the same

35 site, or as simultaneous separate injections at distal

sites (right and left hind leg quadriceps). A control group received intramuscular injections of placZ and pcDNA3 at the same site. Animals were bled at d28 and the sera tested for anti- β -gal Ab at different 5 dilutions, as indicated on the abscissa. The graph illustrates a representative experiment depicting the mean O.D. at 405 nm of replicate wells of each of the serum samples for each group, at a 1:40, 1:200, or 1:1000 dilution. Animals injected simultaneously with 10 placZ and pCD40L, but at different sites, did not develop detectable anti- β -gal antibodies until d28. Moreover, the anti- β -gal antibody titers of the sera from such animals at d28 were similar to that of mice that received placZ and pcDNA3, and significantly less 15 than that of animals that received placZ and pCD40L together at the same site.

iii. Augmentation of Vaccination When Accessory Molecule Vector and placZ are Co-Injected into Dermis

20 The pCD40L plasmid also enhanced the anti-b-gal antibody response to placZ when injected into the In the experiment shown in Figure 19, mice received intradermal injections, near the base of the tail, with either 50 μ g pcDNA3 (checkered bar), 25 μ g 25 pcDNA3 + 25 μ g pCD40L (lined bar), 25 μ g pcDNA3 + 25 μ g placZ (striped bar), or 25 μg pCD40L + 25 μg placZ (solid Injections, bleeds and ELISA analyses were performed as in Figure 16A. The checkered bar and lined bar groups each consisted of 8 mice while the striped 30 bar and solid bar groups each consisted of 12 mice. The height of each bar represents the mean O.D. of sera at a 1:40 dilution of each group ± S.E. A statistical analysis of the data indicated that the striped bar and solid bar groups are independent (P < .05). As observed 35 with intramuscular injection, mice co-injected with placZ and pCD40L developed detectable serum anti-β-gal

84

antibodies one week following the second injection (d14), and two weeks earlier than mice injected with placZ and pcDNA3. Moreover, these animals also had an eight-fold higher mean titer of anti- β -gal antibodies than mice of the placZ-injected group at d28. Mice injected with either the non-modified pcDNA3 vector or pCD40L alone did not produce detectable antibodies to β -gal.

b. Augmentation of the CTL Response in Mice Co-Injected with an Accessory Molecule Gene Therapy Vector and placZ

10

The ability of pCD40L to enhance induction, by placZ, of CTL specific for syngeneic b-gal-expressing target cells was tested. BALB/c mice co-injected with 15 pCD40L and placZ into skeletal muscle (Figure 20A) or dermis (Figure 20B) generated greater numbers of CTL specific for P13.2, a placZ transfected P815 cell line, than mice co-injected with placZ and pcDNA3. At a 5:1 effector:target ratio, the splenocyte effector cells 20 from mice that received intramuscular injections of placZ and pCD40L achieved greater than 20% specific lysis of P13.2. In contrast, when splenocytes of mice that received the control injection with placZ and pcDNA3 were used, a 9-fold greater ratio of effector to 25 target cells was required to achieve this level of specific lysis. Similarly, the splenocyte effector cells from mice that received intradermal injections of placZ and pCD40L killed more than 50% of the P13.2 cells at effector:target ratios of 4:1. To achieve comparable 30 levels of specific lysis required eight-fold higher effector:target ratios using splenocytes from mice that received intradermal injections of placZ and pcDNA3. Nevertheless, the splenocytes of mice co-injected with pCD40L and placZ did not have greater non-specific CTL 35 activity for P815 cells than that of mice that received placZ along with pcDNA3 (Figure 20). As expected, the

85

splenocytes from mice that received injections of pcDNA3 alone, or pcDNA3 and pCD40L, did not mediate specific lysis of P13.2 or P815 cells.

Table IV

Injections of plasmid DNA i.m.: 4/3/96; 4/10/96; 4/17/96; 4/24/96

Experiment #1

ELISA for anti-beta galactosidase					1					
antibodies:		Dilution	Dilution of Pre-Bleed (4/3)	eed (4/3)	Dilutic	Dilution of Bleed (4/17)	(4/17)	Dilutic	Dilution of Bleed (5/1)	1 (5/1)
Group	Animal	11/140	1/200	1/1000	1/140	1/200	1/1000	1/40	1/200	1/1000
pcDNA3 (p-control, 100 mcg)	_	0.03	0.11	0.09	90:0	90.0	0.06	0.11	11.0	11.0
(Control vector)	2	0.11	0.09	0.09	0.07	0.07	0.07	0.10	0.09	0.08
	5	0.12	0.11	0.10	0.0	0.09	0.10	0.12	0.08	0.08
	4	0.11	0.10	0.10	0.08	0.11	0.07	0.11	0.07	0.08
	Avg.	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
	S.D.	0.01	0.01	0.01	0.01	0.05	0.02	0.01	0.04	0.01
		_								
p-lacZ (50 mcg)	5	0.13	0.10	0.10	0.07	0.11	90.0	0.15	0.10	0.08
+	В	0.10	0.11	0.10	0.07	90.0	90.0	0.22	0.15	0.14
p-Control (50 mcg)	_	0.19	0.10	0.18	0.07	0.07	90.0	0.78	0.29	0.12
	80	0.10	0.09	0.10	0.08	0.07	0.07	3.04	1.84	0.77
	Avg.	0.13	0.10	0.12	20.0	0:08	90.0	1.05	0.60	0.28
	S.D.	0.04	0.01	0.04	0.01	0.05	0.00	1.36	0.84	0.33
p-jacz (50 mca)	- 27	0.06	0.06	0.06	0.13	0.11	0.08	2.30	1.68	0.72
+	18	90.0	0.06	0.06	0.27	0.13	0.10	2.35	0.09	0.28
PRECMV-mCD40L (p-mCD40L,	19	90.0	0.06	90.0	0.23	0.19	0.11	2.06	1.09	0.39
	22	0.06	0.06	90.0	0.23	0.19	0.11	2.06	1.09	0.39
	Avg.	90.0	90.0	0.06	0.74	0.47	0.21	2.25	1.00	0.47
	S.D.	0.00	0.00	0.00	1.06	99.0	0.24	0.13	0.67	0.19
		_								

Table V

xperiment #2 Injections of plasmid DNA I.m.: 6/5/96; 6/12/96; 6/19/96, 6/26/96 Dilutions of sera for anti-beta galactosidase antibodies: Dilution of Pre-Bleed (6/5) Dilution of Bleed (7/19)

	galactosidase antibodies:		Dilution	Dilution of Pre-Bleed (6/5)	ed (6/5)	Dilot	Dilution of Bleed (7/19)	d (7/19)	Oilo	Dilution of Bleed (8/3)	ed (8/3)	
S	Group		11/140	1/200	1/1000	1/140	1/200	1/1000	1/40	1/200	1/1000	
	p-Control (50 mcg)	о	0.02	0.02	0.06	0.04	0.01	0.01	0.04	0.03	0.05	ı
	+	Þ	90.0	0.05	0.10	0.02	0.05	0.00	0.08	0.03	0.05	
	p-mCD40L (50 mcg)	F	0.05	0.05	0.07	0.03	0.01	0.00	0.02	0.05	0.05	
		12	90.0	0.03	0.05	0.18	0.04	0.01	0.11	0.04	0.05	
		Avg.	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	ı
		S.D.	0.02	0.01	0.02	0.02	0.01	0.01	0.04	0.03	0.00	
			,									
,	p-lac/ (50 mcg)	ς C	0.05	0.03	0.05	90.0	0.04	0.04	0.39	0.11	0.03	
0		9	0.03	0.05	0.03	0.14	0.03	0.04	2.85	1.58	0.41	
	p-Control (50 mcg)	-	0.56	0.13	90.0	0.29	90.0	0.02	0.22	0.07	0.03	
		8	0.01	0.05	0.05	0.06	0.05	0.02	0.11	0.04	0.05	
		Avg.	0.15	0.05	0.04	0.13	0.04	0.03	0.89	0.45	0.13	ı
		S.D.	0.27	0.05	0.05	0.11	0.02	0.01	1.31	0.75	0.19	
	P-1357 (51) mca	13.	0 23	9	90.0	ć	6	ć				
	de la constante de la constant	2	0.40	5	0.0	07.70	0.0	0.02	2.3/	0.73	0.18	
	+	14	0.05	0.05	0.03	0.04	0.02	0.01	3.05	2.23	0.59	
	p-mCD40L (50 mcg)	13	0.05	0.05	0.02	0.89	0.21	0.05	2.46	0.96	0.21	
		16	0.05	9.	0.02	0.11	0.04	0.04	2.75	1.39	0.34	
		Avg.	0.08	0.04	0.03	0.33	90.0	0.03	2.66	1.33	0.33	,
		S.D.	0.10	0.05	0.02	0.39	0.09	0.02	0.31	0.67	0.19	
											,	

rable VI

Summary

		Pre-	mmune	Pre-Immune @ bela-gal	gai		Early @ beta-gal	eta-gal		Late @ beta-gal	beta-gal	ı
		1/140	1/200	0 1/1000	000	1/140	1/200	1/1000	1/40	1/200	1/1000	
1) p-Control (n = 4)	Avg	0.1		0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	1
	S.D.	0.01		0.01	0.01	0.01	0.05	0.05	0.01	0.04	0.01	
2) p-mCD40L + p-Control (n = 4)	- Avg.	0.04		0.04	0.04	0.04	0.04	0.04	0.04	0.04		
	.as			0.01	0.02	0.07	0.01	0.01	0.04	0.03	0.00	
3) p-lac2 + p-Control (n = 8)	Avg.	0.11		0.04	0.04	0.11	0.03	0.03	0.61	0.31		
	S.D.			0.04	0.01	0.09	0.02	0.05	1.11	0.62	0.16	
4) p-lacZ + p-mCD40L (n = 8)	Avg.	- 0.11		0.04	0.03	0.25	0.06	0.03	2.06	1.04		88
	S.D.			7.02	0.01	0.32	0.07	0.05	0.97	0.69	0.18	
Antl-beta-gatactosidase standard:	67 ng	22ng	7.4ng	2.5ng	.82ng	.27ng						
O.D.	3.01	2.98	2.05	1.10	0.52	0.26						
	3.14	3.14	2.25	1.20	0.56	0.26						

Table VII

BONFERRONI t-TESTS

Comparison		Difference of r	neans	t	P< 05
4 vs 2:	2.06 -	0.04 =	2 02	3.782	Yes
4 vs 1:	2.06 -	0.11 =	1 95	3.651	Yes
4 vs 3:	2.06 -	0.61 =	1.45	3.325	Yes
3 vs 2:	0.61 -	0.04 =	0.57	1.067	No
3 vs 1:	0.61 -	0.11 =	0.50	Do not test	
1 vs 2:	0.11 -	0 04 =	0.07	Do not test	1

10 Degrees of freedom: 20

ONE WAY ANALYSIS OF VARIANCE

Γ	Group	N	Mean	Std Dev	SEM
ľ	1	4	0.11	0.01	0.00
ļ	2	4	0.04	0.04	0.02
15	3	8	0.61	1.11	0.39
ŀ	4	8	2.06	0.97	0 34
 	5	4	1.51	0.77	0.38
<u> </u>	6	4	1.14	0.53	0.26
ļ	7	4	0.83	0.43	0.22
L				<u> </u>	

20 ONE WAY ANALYSIS OF VARIANCE

Source of Variation	SS	DF	Variance Est (MS)
Between Groups	18.29	6	3.05
Within Groups	18.39	29	0.63
Total	36 69	35	:

4. <u>Treatment of Neoplasia Using a Gene Therapy Vector</u>

<u>Containing an Accessory Molecule Gene or Chimeric</u>

Accessory Molecule Gene

a. Treatment of Neoplasia in Mice

5 The treatment of a neoplasia in a mouse model system has been demonstrated using the genes encoding accessory molecule ligands of the present invention. Gene therapy vectors containing an accessory molecule ligand gene (murine CD40 ligand) were prepared as has 10 been previously described in the above examples. gene therapy vectors were used to introduce that accessory molecule ligand gene into neoplastic cells, Line1 cells, from a tumor which originated in BALB/c mice. The accessory molecules were introduced into the neoplastic cells according to the above examples. expression of the accessory molecule ligand on the surface of these neoplastic cells was confirmed using flow cytometry as has been described in the above examples.

The effectiveness of the accessory molecule ligand genes for treating neoplasia was shown as follows.

Female BALB/c mice (6-8 weeks old) were injected i.p. with 1.0 X 10⁵ irradiated Linel neoplastic cells. The neoplastic Linel cells are derived from a spontaneous lung adenocarcinoma in a BALB/c mouse. This neoplastic cell has been described by Blieden et al., Int. J. Cancer Supp., 6:82 (1991). Other female BALB/c mice were injected i.p. with 1.0 X 10⁵ irradiated Linel tumor cells that had previously been transduced with the gene therapy vector encoding the accessory molecule ligand gene (murine CD40) as described above.

Each group of mice was allowed to generate an immune response for 10 days. After 10 days each mouse was challenged with 1.0 X 10⁴ live, non-irradiated Linel neoplastic cells. These mice were then monitored for the formation of tumors and then sacrificed when the tumors grew to 2.0 cm because of morbidity. The results

of this monitoring are shown in Figure 7. As can be seen by Figure 7, the mice immunized with the neoplastic cell expressing the accessory molecule ligands of the present invention on the cell surface remained free of tumor throughout the experiment. Mice immunized with the neoplastic cells not having the accessory molecule ligand genes of the present invention succumbed to tumor 50 days after challenge with the neoplastic cells.

Figure 21 demonstrates downmodulation of human 10 CD40L, but not murine CD40L, in lung tumor cell lines that express CD40. Human cell lines HeLa (CD40-negative cervical carcinoma, Figure 21A), A427 (CD40-negative lung carcinoma, Figure 21B), NCI 460 (weakly CD40positive lung large cell carcinoma, Figure 21C), and SK-15 Mes-1 (strongly CD40-positive lung squamous cell tumor, Figure 21D) were infected with adenovirus encoding lac-Z (Ad-LacZ), murine CD40L (Ad-mCD40L), and human CD40L (Ad-hCD40L) at an MOI of 0 (Blank), 1, and 10. after infection, murine CD40L and human CD40L surface 20 expression was determined. The percentage of cells that express ligand are plotted on the Y-axis. Human and mouse CD40L are expressed at equal levels in CD40negative cell lines. However, only murine CD40L expression is stable on cell lines that express CD40. 25 In contrast to mCD40L, human CD40L is downmodulated on CD40-positive tumors.

The data graphed in Figure 22A show that CD40 binding induces expression of tumor surface markers. Treating CD40-expressing lung cancer cell lines with αCD40 mAb resulted in enhanced expression of the tumor cell surface markers CD95 (Fas), CD54 (ICAM-1) and class I major histocompatability antigens (MHC I). NCI 460, a weakly CD40-positive lung large cell carcinoma, was incubated with a CD40-specific monoclonal antibody (thick line), or MOPC21, an isotype control mAb (thin line), on CD32-expressing mouse fibroblasts for 48 hours. Following the 48 hr incubation, the lung tumor

92

cells were analyzed for CD95, CD54, and MHC-I expression by FACS.

Figure 22B again shows downmodulation of human CD40L by CD40-positive tumor cells. HeLa (CD405 negative), CLL (CD40-positive), and SK-MES-1 (CD40positive) tumor cells were cocultured for 24 hours with CD3-activated normal donor T cells at a tumor cell:T cell ration of 2.5:1. Following coculture, CD2expressing T cells were analyzed for CD40L surface
10 expression by FACS. Thin lines represent T cells stained with FITC-labeled isotype control antibody (MOPC21) and thick lines represent activated T cells stained with FITC-labeled αCD40L antibody (αCD154 antibody). The CD40-positive tumor cell lines, SK-MES1, and CLL, do not express CD40 ligand on their surfaces.

- 5. Expression of the Human and Mouse Accessory

 Molecule Ligand, Fas Ligand, in Human Blood
 Lymphocytes
- 20 a. <u>Construction of a Genetic Construct and Gene</u>

 Therapy Vector Containing the Human and Mouse
 Fas Ligand Gene

Either the human accessory molecule ligand gene (human Fas ligand) or the murine accessory molecule
25 ligand gene (murine Fas ligand) was constructed utilizing the respective human and murine genes.

An altered accessory cell molecule, in which a putative MMP-cleavage site was removed, was made and designated ΔFasL-pcDNA3. The nucleotide sequence of ΔFasL-pcDNA3
30 is listed as SEQ ID NO: 40. Human Fas ligand nucleotides 325 to 342, encoding six amino acids, are missing from ΔFasL. The design of ΔFasL was based on reasoning that Domain III contains sites most accessible to MMPs, and could thus be the target on the molecule
35 for cleavage from the surface of the cell. Sequences of

the human Fas ligand gene have been determined and are

listed as SEQ ID NOS: 13 and 30 (Genbank accession U11821). Sequences of mouse Fas ligand genes have been determined and are listed as SEQ ID NOS: 14 (C57BL/6, Genbank accession U10984) and 31 (Balb/c, Genbank 5 accession U58995). The sequence of the rat Fas ligand gene has been determined and is listed as SEQ ID NO: 25 (Genbank accession U03470). Chimeric constructs are made, as described in Example 2 for CD40 ligand chimeric constructs, in which Domain III of human Fas ligand is 10 replaced with Domains of other proteins, particularly proteins of the TNF family. Chimeric constructs include, but are not limited to, human Fas ligand with Domain III replaced by Domain III of murine Fas ligand (chimeric sequence listed as SEQ ID NO: 37, sequence line-up shown in Figure 37), or replaced by Domain III 15 of human CD70 (chimeric sequence listed as SEQ ID NO: 38, sequence line-up shown in Figure 38), or replaced with Domain I of human CD70 (chimeric sequence listed as SEO ID NO: 39, sequence line-up shown in Figure 39). 20 Chimeric constructs in which multiple domains, for example, two copies of human CD70 Domain III, are inserted into human Fas ligand in place of Domain III, are also made using methods described in Example I. Chimeric constructs in which synthetic sequences are 25 used to replace Domain III of human Fas ligand are also made.

Human Fas Ligand Cloning i.

The cDNA encoding human Fas-ligand was subcloned in the eukaryotic expression vector pcDNA3. Normal donor 30 blood lymphocytes were activated for 4 hours with 1 ng/ml PMA plus 0.5 uM ionomycin. Total RNA was isolated with the Qiagen Rneasy kit. cDNA was then synthesized from poly-A RNA with oligo-dT primers using the Gibco-BRL Superscript cDNA synthesis kit. The gene encoding 35 human Fas-ligand was then PCR amplified with the Fasligand-specific primers (sense primer, SEQ ID NO: 32,

94

antisense primer, SEQ ID NO: 33). The Fas-ligand PCR product was then subcloned into pcDNA3 using standard molecular biology techniques. RT-PCR products, subcloned into pcDNA3, are designated hFasL-pcDNA3.

ii. <u>Murine Fas Ligand Cloning</u>

5

15

The murine Fas-ligand geneS from Balb/c and C57/BL6 strains of mice were also amplified following activation of mouse splenocytes with PMA plus ionomycin as described above, and amplified from poly-A synthesized cDNA as described above (sense primer, SEQ ID NO: 34, antisense primer, SEQ ID NO: 35). These genes were subcloned in the pTARGET expression vector (Promega, Madison, WI). RT-PCR products, subcloned into pcDNA3, are designated mFasL-pcDNA3.

iii. Adenovirus Vector Construction

For construction of adenovirus vectors encoding human Fas-ligand, murine Fas-ligand or AFas-ligand, the cloned cDNA insert is subcloned into the plasmid pRc/RSV (Invitrogen, San Diego, CA) at the HindIII-Xbal site. A 20 BglII-Xhol fragment with the RSV promoter-enhancer and the bovine growth hormone poly-A signal sequence was subcloned into the BamHI-Xhol site of plasmid MCS(SK) pXCX2. The plasmid MCS(SK)pXCX2 is a modification of the plasmid pXCX2, in which the pBluescript polylinker sequence was cloned into the E1 region. The resulting plasmid then is co-transfected along with pJM17 into 293 cells using the calcium phosphate method. plaques of adenovirus vectors are picked and expanded by infecting 293 cells. High titer adenovirus preparations 30 are obtained, as described above which uses a cesium chloride gradient for concentrating virus particles via a step gradient, with the densities of 1.45g/cm3 and 1.20g/cm³, in which samples are centrifuged for 2 hours in an SW41 rotor (Beckman, Brea, CA) at 25,000 rpm at 4° 35 C. The virus band is desalted using a Sephadex G-25 DNA

95

grade column (Pharmacia, Piscataway, NJ), and the isolated virus is stored at -70° C in phosphate-buffered saline with 10% glycerol. The titer of the virus is determined by infecting permissive 293 cells at various dilutions and counting the number of plaques. Titers typically range from 10¹⁰ to 10¹² plaque forming units/ml. The adenovirus constructs are designated Ad-hFasL, Ad-mFasL and Ad-ΔFasL.

b. <u>Introduction of the Murine and Human Fas Ligand</u> <u>Genes into Human Cells</u>

The constructs hFasL-pcDNA3, mFasL-pcDNA3 and \(\Delta FasL-\)
pcDNA3 are transfected into 293 via electroporation. The
transfected cells are selected in medium containing G418.
Fas-ligand transfectants are screened for expression of
the transgene using anti-Fas-ligand antibody and flow
cytometry. The methods used are similar to those
described for transfection of CD40L into CLL cells.

For FasL-adenovirus infection, 10⁶ freshly thawed and washed CLL cells or HeLa cells are suspended in 0.5
20 to 1 mL of culture medium for culture at 37°C in a 5% CO₂-in-air incubator. Adenovirus are added to the cells at varying multiplicity of infection (MOI), and the infected cells are cultured for 48 hours, unless otherwise stated, before being analyzed for transgene expression.

c. <u>Expression of the Fas Ligand Genes in Human</u> Cells

Mice with the lymphoproliferative or generalized lymphoproliferative disorder are unable to delete activated self-reactive cells outside of the thymus. This is related to the fact that, in these mice, interactions between the Fas receptor and an accessory molecule ligand, Fas ligand, are defective. These animals develop numerous disorders including lymphadenopathy, splenomegaly, nephritis, and systemic

96

autoimmune pathology which resembles that seen in patients with systemic lupus erythematosus or rheumatoid arthritis (RA). It is conceivable that the normal interactions between the Fas receptor and the accessory molecule ligand that are responsible for clearance of activated lymphocytes from joints may be impaired in RA patients.

RA synovial lymphocytes express the Fas receptor at a higher proportion than that of matched RA blood

lymphocytes to matched normal donor blood lymphocytes.

On the other hand, RA synovial lymphocytes express little or no accessory molecule ligand. Since the RA synovial lymphocytes are sensitive to Fas-induced apoptosis, it is feasible that local expression of Fas ligand in the RA

joint could serve to eliminate the synovial mononuclear cells that potentially mediate RA autoimmune pathology.

Figure 23 shows that Fas-ligand expression in lymphocytes is inhibited by exposure to RA synovial fluid. Normal donor blood T cells were activated for 5 20 hours with 1 ng/ml PMA plus 0.5 μM ionomycin. Cells were incubated in the presence of rheumatoid arthritis blood plasma (circles), RA synovial fluid (diamonds), or neither (squares). In addition, cells were incubated with increasing concentrations of the MMP inhibitor BB94. Following activation, cells were analyzed for Fas-ligand surface expression by FACS. The percentage of cells expressing Fas ligand are plotted in Figure 23. This experiment demonstrates that there is a factor(s) present in RA synovial fluid and serum that prevents surface expression of Fas-ligand.

d. <u>Function of Human, Murine and Chimeric</u> <u>Accessory Molecule Ligand, Fas Ligand</u>

To determine the capacity of the AFasL constructs, the above-mentioned transfected cells are mixed with the Fas-ligand sensitive human T cell line, JURKAT.

Following 4 hours coculture, the nonadherant JURKAT cells

are collected and evaluated for apoptosis. The fluorescent compound 3,3' dihexyloxacarbocyanine iodide (DiOC₆) is used to evaluate for apoptosis using a modification of a previously described protocol. For 5 this, the cells are washed once at room temperature in phosphate buffered saline (PBS, pH 7.2). Cells are placed into separate wells of a 96 well U-bottom plastic microtiter plate at 10⁵ - 5 x 10⁵ cells/well in 50 ml total volume. If indicated, saturating amounts of PE-10 conjugated antibodies are added followed by addition of $DiOC_6$ and propidium iodide (PI). $DiOC_6$ and PI are used at 40 nM and 10 ng/ml final concentrations, respectively. The cells are then incubated 15 minutes in a 37°C, 5% CO₂ tissue culture incubator. The stained cells are then 15 washed twice in ice cold PBS and ultimately suspended in 200 ml SM and analyzed by FACS. Dead cells and debris with characteristic forward and light scatter profiles and PI staining are excluded from analysis.

The ability of cells expressing AFasL-pcDNA3 to

20 direct Fas-mediated apoptosis of cells expressing CD95 is
compared with that of cells expressing FasL-pcDNA3.

Relative stability of the protein products encoded by
AFasL-pcDNA3 or FasL-pcDNA3 pre- and post- culture with
RA synovial fluid, and with or without the metallo
25 proteinase inhibitors, are assessed via flow cytometry of
cells expressing either ligand.

6. Treatment of Arthritis with Gene Therapy Vectors

Encoding an Accessory Molecule Ligand, Fas Ligand

The heterologous Fas-ligand constructs, made as

30 described above, that show the highest stability of expression in combination with the greatest ability to mediate Fas-induced apoptosis, are used in gene therapy for RA. Potential therapeutic constructs are tested in well-characterized mouse models of arthritis to assess

35 efficacy and function in vivo.

a. Gene Therapy Treatment of Arthritis in Mice

i. Mouse Models for Arthritis

One mouse arthritis model is collagen-induced arthritis. It is known that injecting DBA/1 mice with 5 type II collagen in complete Freund's adjuvant (CFA) induces an arthritis with synovitis and erosions that histologically resemble RA. For our studies, male DBA/I mice are immunized with bovine type II collagen in complete Freund's adjuvant on day 0 and boosted 10 itraperitoneally (i.p.) on day 21. On day 28, animals are given an additional i.p. injection with lipopolysaccharide (LPS) and/or the same type collagen, or an injection of acetic acid alone. Swelling and/or redness of a fore or hind paw in animals immunized with 15 collagen typically is detected the third or fourth week following the second injection. The vertebrae are only rarely affected, and then only weeks after the initial peripheral joint swelling. Affected joints display initial histologic changes of synovial edema, followed by 20 synovial hyperplasia.

Another animal model, recently described by
Kouskoff, V. et al., in Cell 87:811-822 (1997) was
generated fortuitously, by crossing a T cell receptor
(TCR) transgenic mouse line with the non-obese-diabetic
25 (NOD) strain to produce the KRN x NOD mouse model of RA.
The offspring of such a mating universally develop a
joint disease that is highly similar to that of patients
with RA. Moreover, the disease in these animals has an
early and reproducible time of onset and a highly
30 reproducible course. The arthritis apparently is induced
by chance recognition of an NOD-derived major
histocompatibility complex (MHC) class II molecule by the
transgenic TCR, leading to breakdown in the general
mechanisms of self-tolerance and systemic self35 reactivity.

99

ii. Relief of Arthritis Symptoms in Mice Treated with a Gene Therapy Vector Encoding an Accessory Molecule Ligand

We have adapted and modified a protocol originally 5 described by Sawchuk and colleagues for micro-injecting adenovirus vectors into mouse joints. Using this procedure we can reproducibly inject a 5 μ l volume into the articular space of the mouse knee. procedure, the mice are anesthetized with metofane. A 10 small incision of approximately 2-3 mm is made with a #11 scalpel blade in the skin over the lateral aspect of the knee to visualize the patello-tibial ligament. We can inject up to 5 μ l of fluid using a micro-100 μ l-Hamilton syringe and a 30-gauge needle. After the injection, the 15 knee incision is closed with Nexabond (Veterinary Products Laboratory). Our adenovirus titers typically exceed 1010 plaque forming units (pfu) per ml, making it possible to deliver at least 5 x 10⁸ pfu of virus in 5 ml into the knee joints, as outlined above. Control animals 20 are injected with control Ad-lacZ vector, a replicationdefective adenovirus vector lacking a transgene, or with the buffer used to suspend the virus (10 mM Tris, 1 mM MgCl₂, 10% glycerol).

In another method, splenocytes will be harvested

from mice that are syngeneic to the host animal intended
for adoptive transfer of transduced cells. Cell
proliferation will be induced with exogenous IL-12 (100
units/ml) for 48 h. Cells are counted and then re-plated
at densities of 5 x 10⁵ or 1 x 10⁶ cells per ml in a 12
well dish with 1 ml complete culture medium per well.
Virus and ConA are added together at the time of replating in the presence of polybrene (8 µg/ml). The
medium is changed 24 hours after infection with complete
medium containing 100 units of recombinant IL-2 per ml.

Aliquots of the transduced cells are examined, for Fasligand expression, at 48 hours after infection via flow
cytometry.

PCT/US97/22740 WO 98/26061

100

Animals will receive standardized numbers of cytokine-producing cells or control mock-transfected cells intraperitoneally. Concentrated cell suspensions are injected directly into the mouse synovium, as 5 described in section 4A above. In parallel, aliquots of the transferred cell populations are maintained in tissue culture supplemented with exogenous IL-2.

Mice are monitored in a blinded fashion for signs of arthritis. The date of disease onset is recorded and 10 clinical severity of each joint or group of joints (toes, tarsus, ankle, wrist, knee) are graded as follows: 0 (normal), 1 (erythema), 2 (swelling), 3 (deformity), 4 (necrosis). The scores are summed to yield the arthritic score. The severity of arthritis is expressed both as 15 the mean score observed on a given day, and as the mean of the maximal arthritic score reached by each mouse during the clinical course of the disease. At the time of death, hind paws are dissected free and processed for histologic examination or for RT-PCR. The histologic 20 severity of the arthritis is scored on a scale of 0-3 for synovial proliferation and inflammatory cell infiltration, where a score of 0 = normal and 3 = severe.

For mice receiving intra-synovial injection of control of test adenovirus vector, the level of arthritis 25 observed between contralateral sites is compared. addition, the overall joint score minus that of the injected joint for the entire animal is compared with that observed in the joint injected with the control or test adenovirus vector.

Local administration of Fas-ligand adenovirus expression vectors will result in clearance of activated cells, as assessed by measuring the relative levels of CD80 mRNA by quantitative RT-PCR. This treatment also will lead to an enhanced level. Also, whether such level 35 of apoptosis identified in affected mouse synovial tissue is assessed by the TUNEL assay ("Terminal deoxynucleotidyl transferase (TdT)-mediated duTP Nick End

30

Labeling"). TUNEL is performed by immersing the sections in TdT buffer (30 mM Tris-HCl, pH 7.2, 140 nM sodium cacodylate, 1 mM cobalt chloride), and then adding TdT (GIBCO BRL, Grand Island, NY) and biotinylated dUTP 5 (Boehringer Mannheim, Indianapolis, IN). The reaction is terminated by immersing the sections in TB buffer (300 mM sodium chloride, 30 mM sodium citrate). Subsequently, the samples are treated with peroxidase-labeled streptavidin and then visualized using the VECTASTAIN ABC 10 kit (Vector Laboratories Inc., Burlingame, CA). immunohistochemistry, the sections are blocked with 4% skim milk for 30 minutes at room temperature, then incubated with biotinylated mAbs specific for mouse CD3, B220, CD80, or CD95 (Fas). These antibodies are 15 available from Pharmingen (San Diego, CA).

Treatment of Rheumatoid Arthritis Patients with Ď. a Gene Therapy Vector Encoding an Accessory Molecule Ligand, Fas Ligand

Candidate Fas-ligand constructs identified as having 20 potential therapeutic benefit are used in human protocols to treat RA. Human protocols encompass either in vivo or ex vivo methods to deliver the Fas-ligand constructs. Furthermore, the Fas-ligand constructs are potentially delivered by either viral or non-viral methods. Outlines 25 of therapeutic strategies are described below.

An ex vivo therapy is similar to a protocol described for intra-articular transplantation of autologous synoviocytes retrovirally transduced to synthesize interleukin-1 receptor antagonist (Evan, 30 Christopher et. al., Clinical Trial to Assess the Safety, Feasibility, and Efficacy of Transferring a Potentially Anti-Arthritic Cytokine Gene to Human Joints with Rheumatoid arhtritis, Human Gene Therapy, Vol. 7, 1261-1280). In this procedure, after clinical diagnosis of 35 RA, the synovium is harvested during total joint replacement. The synoviocytes re-isolated and expanded,

102

then transduced or transfected with heterologous Fasligand into synoviocytes (via retrovirus, adenovirus, naked DNA, etc.). The gene-modified synoviocytes are then reinjected into the patient, who is monitored and tested for amelioration of RA-associated symptoms, and for expression and function of the Fas-ligand in modified synoviocytes.

In another <u>ex vivo</u> protocol, an allogeneic immortalized cell line that stably expresses the heterologous Fas-ligand is administered to the RA patient. In this protocol, a stable immortalized cell line expressing Fas-ligand (introduced by transfection of the gene into the cell by nonviral methods, such as electroporation), or by viral transduction of the gene into the cell) is constructed. The modified cell line is injected into the patient, who is monitored and tested for amelioration of RA associated symptoms, and for expression and function of the hFas-ligand in modified synoviocytes.

20 An <u>in vivo</u> based therapy will is similar in concept to the amelioration of collagen-induced-arthritis using a murine Fas-ligand adenovirus gene therapy vector, described in Zhang, et al., <u>J. Clin. Invest.</u> 100:1951-1957 (1997). In our use of such an approach, delivery of the hFas-ligand construct or chimeric ΔfasL directly to the joints of RA patients is performed using either viral or non-viral methods. In this procedure, the Fas-ligand construct (e.g. hFas-ligand adenovirus) is directly injected into the synovium. Patients are monitored and tested for amelioration of RA-associated symptoms as well as biological testing for expression and function of the hFas-ligand in modified synoviocytes.

SEQUENCE LISTING

GENERAL INFORMATION: (1)

> APPLICANTS: (i)

Kipps, Thomas J. Sharma, Sanjai Cantwell, Mark

(ii) TITLE OF INVENTION:

NOVEL EXPRESSION VECTORS

CONTAINING ACCESSORY

MOLECULE LIGAND GENES AND THEIR USE FOR IMMUNOMODULA-

TION AND TREATMENT OF

MALIGNANCIES AND AUTOIMMUNE

DISEASE

NUMBER OF SEQUENCES: (iii)

35

(iv) CORRESPONDENCE ADDRESS:

> ADDRESSEE: (A)

Lyon & Lyon

(B) STREET: 633 West Fifth Street

Suite 4700

(C) CITY: Los Angeles California

(D) STATE:

U.S.A.

COUNTRY: (E) ZIP: (F)

90071-2066

COMPUTER READABLE FORM: (v)

> MEDIUM TYPE: (A)

3.5" Diskette,

1.44 Mb storage

COMPUTER: (B)

IBM Compatible

OPERATING SYSTEM: IBM P.C. DOS 5.0 (C)

(D) SOFTWARE: FastSeq Version 2.0

CURRENT APPLICATION DATA: (vi)

> APPLICATION NUMBER: To Be Assigned (A)

FILING DATE: (B)

(C) CLASSIFICATION:

PRIOR APPLICATION DATA: (vii)

> APPLICATION NUMBER: (A)

60/132145

(B) FILING DATE:

12/9/96

104

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Guise, Jeffrey W.

(B) REGISTRATION NUMBER: 34,613

(C) REFERENCE/DOCKET NUMBER: 231/003

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (213) 489-1600

(B) TELEFAX: (213) 955-0440

(C) TELEX: 67-3510

(2) INFORMATION FOR SEQ ID NO: 1

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 786 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATGATCGAAA CATACAACCA AACTTCTCCC CGATCTGCGG CCACIGGACT GCCCATCAGC ATGAAAATTT TTATGTATTT ACTTACTGTT TTTCTTATCA CCCAGATGAT TGGGTCAGCA 120 CTTITTGCTG TGTATCTTCA TAGAAGGTTG GACAAGATAG AAGATGAAAG GAATCITCAT 180 GAAGATTTTG TATTCATGAA AACGATACAG AGATGCAACA CAGGAGAAAG ATCCTTATCC 240 TTACTGAACI GTGAGGAGAT TAAAAGCCAG TTTGAAGGCT TTGTGAAGGA TATAATGTTA AACAAAGAGG AGACGAAGAA AGAAAACAGC TTTGAAATGC AAAAAGGTGA TCAGAATCCT 300 360 CAAATTGCGG CACATGTCAT AAGTGAGGCC AGCAGTAAAA CAACATCTGT GTTACAGTGG GCTGAAAAAG GATACTACAC CATGAGCAAC AACTTGGTAA CCCTGGAAAA TGGGAAACAG 420 480 CTGACCGTTA AAAGACAAGG ACTCTATTAT ATCTATGCCC AAGTCACCTT CTGTTCCAAT CGGGAAGCTT CGAGTCAAGC TCCATTTATA GCCAGCCTCT GCCTAAAGTC CCCCGGTAGA TTCGAGAGAA TCTTACTCAG AGCTGCAAAT ACCCACAGTT CCGCCAAACC TTGCGGGCAA CAATCCATTC ACTTGGGAGG AGTATTTGAA TTGCAACCAG GTGCTTCGGT GTTTGTCAAT GTGACTGATC CAAGCCAAGT GAGCCATGGC ACTGGCTTCA CGTCCTTTGG CTTACTCAAA 540 600 660 720 780 **CTCTGA** 786

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 783 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATGATAGAAA CATA	ACAGCCA ACCTTCCCCC	AGATCCGTGG	CAACTGGACT	TCCAGCGAGC	60
ATGAAGATTT TTAT	IGTATTT ACTTACTGTT	TTCCTTATCA	CCCAAATGAT	TGGATCTGTG	120
CTTTTTGCTG TGTA	ATCTTCA TAGAAGATTG	GATAAGGTCG	AAGAGGAAGT	AAACCTTCAT	180
GAAGATTTTG TATT	ICATAAA AAAGCTAAAG	AGATGCAACA	AAGGAGAAGG	ATCTTTATCC	240
TTGCTGAACT GTGA	AGGAGAT GAGAAGGCAA	TTTGAAGACC	TTGTCAAGGA	TATAACGTTA	300
	AAAAAGA AAACAGCTTT				360
ATTGCAGCAC ACGT	ITGTAAG CGAAGCCAAC	AGTAATGCAG	CATCCGTTCT	ACAGTGGGCC	420
AAGAAAGGAT ATTA	ATACCAT GAAAAGCAAC	TTGGTAATGC	TTGAAAATGG	GAAACAGCTG	480
ACGGTTAAAA GAGA	AAGGACT CTATTATGTC	TACACTCAAG	TCACCTTCTG	CTCTAATCGG	540
GAGCCTTCGA GTC	AACGCCC ATTCATCGTC	GGCCTCTGGC	TGAAGCCCAG	CATTGGATCT	600

PCT/US97/22740 WO 98/26061

105
GAGAGAATCT TACTCAAGGC GGCAAATACC CACAGTTCCT CCCAGCTTTG CGAGCAGCAG TCTGTTCACT TGGGCGGAGT GTTTGAATTA CAAGCTGGTG CTTCTGTGT TGTCAACGTG ACTGAAGCAA GCCAAGTGAI CCACAGAGTT GGCTTCTCAT CITTTGGCTT ACTCAAACTC TGA 783
(2) INFORMATION FOR SEQ ID NO: 3:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 783 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
ATGATCGAAA CATACAACCA AACTTCTCCC CGATCTGCGG CCACTGGACT GCCCATCAGC ATGAAAATTI TTATGTATTT ACTTACTGTT TTTCTTATCA CCCAGATGAT TGGGTCAGCA CTTTTTGCTG TGTATCTTCA TAGAAGATIG GATAAGGTCG AAGAGGAAGG ATCTTTATCC GAAGATITTG TATTCATAAA AAAGCTAAAG AGATGCAACA AAGGAGAAGG ATCTTTATCC TTGCTGAACT GTGAGGAGAT GAGAAGAGCAA TTTGAAAGACC TTGTCAAAGGA TATAACGTTA 360 AACAAAGGAG ACGTTGTAAG CGAAGCCAAC AGTAATGCAAG GAGGTGATGA GGATCCTCAA 360 AAGAAAGGAI ATTATACCAT GAAAAGCAAC TTGGTAATGC CATCCGTTCT ACAGTGGGCC AAGAAAAGGAI ATTATACCAT GAAAAGCAAC TTGGTAATGC TTGAAAATGG GAAACAGCTG 480 ACGGTTAAAA GAGAAGGACT CTATTATGTC TACACTCAAG TCACCTTCTG CTCTAATCGG 540 GAGGCCTTCGA GTCAACGCCC ATTCATCGTC GGCCTCTGCC TGAAGCCCAG CATTGGATCT 600 GAGAGAATCT TACTCAAGGC GGCAAATACC CACAGTICCT CCCAGCTTTG CGAGCAGCAG 660 TCTGTTCACT TGGGCGGAGT GTTTGAATTA CAAGCTGGTG CTTCTGTTT TGTCAACGTG 720 ACTGAAGCAA GCCAAGTGAT CCACAGAGTT GGCTTCTAT ACTCAAACTC 781 TGA
(2) INFORMATION FOR SEQ ID NO: 4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 786 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
ATGATCGAAA CATACAACCA AACTTCTCCC CGATCTGCGG CCACTGGACT GCCCATCAGC ATGAAAATTT TATGTATTT ACTTACTGTT TTCCTTATCA CCCAAATGAT TGGATCTGTG 12 CTTTTTGCTG TGTATCTTCA TAGAAGGTTG GACAAGATAG AAGATGAAAG GAATCTTCAT 18 GAAGATTTTG TATTCATGAA AACGATACAG AGATGCAACA CAGGAGAAAG ATCCTTATCC 24 ITACTGAACT GTGAGGAGAT TAAAAGCCAG TTTGAAAGGC AAAAAGGTGA TATAATGTTA 30 AACAAAGAGG AGCGAAGAA AGGAAAACAGC TTTGAAAAGC AAAAAGGTGA TCAGAATCCT 36 GCTGAAAAAG GATACTACAC CATGAGCAC AACTTGGTAAA CAACATCTGT GTTACAGTGG 42 CTGACCGTTA AAAGACAAG ACTCTATTAT ATCTATGCC AAGTCACCTT CTGCTCCAAT CGGGAAGCTT CGAGTCAAG TCCATTTATA GCCAGCCTCT GCCTAAAGC CCCCGGTAGA 66 CCATGACAGAA ACTTGGGAG AGCTCCAAAC ACCCACAGTT CCGCCAAACC TTGCGGGCAA 66 CCAATCCATTC ACTTGGGAG AGCTCTAGAA ACCCACAGTT CCGCCAAACC TTGCGGGCAA 66 CCATGACCAAC CAAGCCCAAGT GAGCCATCAG GTGCTTCGGT GTTTGTCAAT 72 GTGACTGATC CAAGCCAAGT GAGCCATGGC ACTGGCTTCAA 78 CTCTGA

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 783 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGATCGAAA	CATACAACCA	AACTTCTCCC	CGATCTGCGG	CCACTGGACT	GCCCATCAGC	60
ATGAAAATTT	TTATGTATTT	ACTTACTGTT	TTCCTTATCA	CCCAAATGAT	TGGATCTGTG	120
CTTTTTGCTG	TGTATCTTCA	TAGAAGATTG	GATAAGGTCG	AAGAGGAAGT	AAACCTTCAT	180
GAAGATTTTG	TATTCATAAA	AAAGCTAAAG	AGATGCAACA	AAGGAGAAGG	ATCTTTATCC	240
TTGCTGAACI	GTGAGGAGAT	GAGAAGGCAA	TTTGAAGACC	TTGTCAAGGA	TATAACGTTA	300
			GAAATGCAAA			360
ATTGCAGCAC	ACGTTGTAAG	CGAAGCCAAC	AGTAATGCAG	CATCCGTTCT	ACAGTGGGCC	420
AAGAAAGGAT	ATTATACCAT	GAAAAGCAAC	TTGGTAATGC	TTGAAAATGG	GAAACAGCTG	480
ACGGTTAAAA	GAGAAGGACT	CTATTATGTC	TACACTCAAG	TCACCTTCTG	CTCTAATCGG	540
GAGCCTTCGA	GTCAACGCCC	ATTCATCGTC	GGCCTCTGGC	TGAAGCCCAG	CATTGGATCT	600
GAGAGAATCT	TACTCAAGGC	GGCAAATACC	CACAGTTCCT	CCCAGCTTTG	CGAGCAGCAG	660
		GTTTGAATTA		CTTCTGTGTT	TGTCAACGTG	720
ACTGAAGCAA	GCCAAGTGAT	CCACAGAGTT	GGCTTCTCAT	CTTTTGGCTT	ACTCAAACTC	780
TGA						783

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 786 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

ATGATAGAAA	CATACAGCCA	ACCTTCCCCC	AGATCCGTGG	CAACTGGACT	TCCAGCGAGC	60
ATGAAGATTT	TTATGTATTT	ACTTACTGTT	TTTCTTATCA	CCCAGATGAT	TGGGTCAGCA	120
CTTTTTGCTG	TGTATCTTCA	TAGAAGGTTG	GACAAGATAG	AAGATGAAAG	GAATCTTCAT	180
GAAGATTTTG	TATTCATGAA	AACGATACAG	AGATGCAACA	CAGGAGAAAG	ATCCTTATCC	240
TTACTGAACT	GTGAGGAGAT	TAAAAGCCAG	TTTGAAGGCT	TTGTGAAGGA	TATAATGTTA	300
AACAAAGAGG	AGACGAAGAA	AGAAAACAGC	TTTGAAATGC	AAAAAGGTGA	TCAGAATCCT	360
CAAATTGCGG	CACATGTCAT	AAGTGAGGCC	AGCAGTAAAA	CAACATCTGT	GTTACAGTGG	420
GCTGAAAAAG	GATACTACAC	CATGAGCAAC	AACTTGGTAA	CCCTGGAAAA	TGGGAAACAG	480
CTGACCGTTA	AAAGACAAGG	ACTCTATTAT	ATCTATGCCC	AAGTCACCTT	CTGTTCCAAT	540
CGGGAAGCTT	CGAGTCAAGC	TCCATTTATA	GCCAGCCTCT	GCCTAAAGTC	CCCCGGTAGA	600
TTCGAGAGAA	TCTTACTCAG	AGCTGCAAAT	ACCCACAGTT	CCGCCAAACC	TTGCGGGCAA	660
CAATCCATTC	ACTTGGGAGG	AGTATTTGAA	TTGCAACCAG	GTGCTTCGGT	GTTTGTCAAT	720
GTGACTGATC	CAAGCCAAGT	GAGCCATGGC	ACTGGCTTCA	CGTCCTTTGG	CTTACTCAAA	780
CTCTGA						786

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 786 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

WO 98/26061

107

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATGATAGAAA	CATACAGCCA	ACCTTCCCCC	AGATCCGTGG	CAACTGGACT	TCCAGCGAGC	60
		ACTTACTGTT				120
CTTTTTGCTG	TGTATCTTCA	TAGAAGGTTG	GACAAGATAG	AAGATGAAAG	GAATCTTCAT	180
		AACGATACAG				240
		TAAAAGCCAG				300
		AGAAAACAGC				360
		AAGTGAGGCC				420
		CATGAGCAAC				480
		ACTCTATTAT				540
		TCCATTTATA				600
		AGCTGCAAAT				660
		AGTATTTGAA				720
GTGACTGATC	CAAGCCAAGT	GAGCCATGGC	ACTGGCTTCA	CGTCCTTTGG	CTTACTCAAA	780
CTCTGA						786

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 864 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

AACTCTAACG CAGCATGATC GAAACATACA GTCAACCTTC TCCCCGCTCC GTGGCCACTG	60
	120
TGATTGGGTC AGCGCTTTTT GCTGTGTATC TTCACAGACG ATTGGACAAG ATAGAAGACG	180
	240
	300
AGGAINIMI COMPACIDA CITICALDICII IICADICIDE	360
GIGHICHOOK OCCICHORIN OCCCURATIO I WILL WILL OF THE FIRST THE FIRS	420
CIGIICICA GIOGOCCCC INNICONNICON MANAGEMENTO CONTROL C	480
WWW.COCON VCVOCTOOCC CICIED INCOMINATION CONTRACTOR	540
CCITCIGITE CUMICOCOURT HEALTH HEALTH HEALTH HEALTH HEALTH HEALTH	600
WOICCCOWNO IGOUICHOUS MOISTEGETTIE TOTAL TOTAL TOTAL TOTAL	660
WACCHIGGO GCVCCUNICC WITCHGITTE GUGGUETET LOLD CONTROL	720
CGGTGTTTGT CAATGTGACT GATCCAAGTC AAGTGAGCCA CGGGACGGGC TTCACATCAT	780
LIGGCLING: CARCICION MODERATION DESCRIPTION DESCRIPTION	840
GGTCTTCACA ATCCAGGAAA GCAG	864

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3634 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GAATTCCGGG	TGATTTCACT	CCCGGCTGTC	CAGGCTTGTC	CTGCTACCCC	ACCCAGCCTT	60
TCCTGAGGCC	TCAAGCCTGC	CACCAAGCCC	CCAGCTCCTT	CTCCCCGCAG	GACCCAAACA	120
CAGGCCTCAG	GACTCAACAC	AGCTTTTCCC	TCCAACCCGT	TTTCTCTCCC	TCAACGGACT	180
CAGCTTTCTG	AAGCCCCTCC	CAGTTCTAGT	TCTATCTTTT	TCCTGCATCC	TGTCTGGAAG	240
TTAGAAGGAA	ACAGACCACA	GACCTGGTCC	CCAAAAGAAA	TGGAGGCAAT	AGGTTTTGAG	300
GGGCATGGGG	ACGGGGTTCA	GCCTCCAGGG	TCCTACACAC	AAATCAGTCA	GTGGCCCAGA	360
AGACCCCCCT	CGGAATCGGA	GCAGGGAGGA	TGGGGAGTGT	GAGGGGTATC	CTTGATGCTT	420
GTGTGTCCCC	AACTTTCCAA	ATCCCCGCCC	CCGCGATGGA	GAAGAAACCG	AGACAGAAGG	480
TGCAGGGCCC	ACTACCGCTT	CCTCCAGATG	AGCTCATGGG	TTTCTCCACC	AAGGAAGTTT	540

PCT/US97/22740 WO 98/26061

108

TCCGCTGGTT	GAATGATTCT	TTCCCCGCCC	TCCTCTCGCC	CCAGGGACAT	ATAAAGGCAG	600
TTGTTGGCAC	ACCCAGCCAG	CAGACGCTCC	CTCAGCAAGG	ACAGCAGAGG	ACCAGCTAAG	660
AGGGAGAGAA	GCAACTACAG	ACCCCCCTG	AAAACAACCC	TCAGACGCCA	CATCCCCTGA	720
CAAGCTGCCA	GGCAGGTTCT	CTTCCTCTCA	CATACTGACC	CACGGCTTCA	CCCTCTCTCC	780
CCTGGAAAGG	ACACCATGAG	CACTGAAAGC	ATGATCCGGG	ACGTGGAGCT	GGCCGAGGAG	840
GCGCTCCCCA	AGAAGACAGG	GGGGCCCCAG	GGCTCCAGGC	GGTGCTTGTT	CCTCAGCCTC	900
TTCTCCTTCC	TGATCGTGGC	AGGCGCCACC	ACGCTCTTCT	GCCTGCTGCA	CTTTGGAGTG	960
	AGAGGGAAGA		TGGCCAGCCT		TCCCACCCAA	1020
	GAGACGCAAG					1080
	GAGAGAGAAA					1140
	GAAGAGAGAG					1200
	GTGTGTATGG					1260
	GGAGACAGAT					1320
	ATGGTGAGAC					1380
	AGAGAAGAAG		TGGCACACAG			1440
	TGGAAGGTGA					1500
	CAGGCCAGAC					1560
	TCTCCTTCTC			CTCTCTCTAA		1620
	GTCAGTAAGT					
	GTACCGGTAT				TCTTGGGGGA	1680 1740
	AGGTGAAAGT CTCCTCTTCA					1800
						1860
	TAAGAGCTCT		CTTGGAACTT			1920
	GCTGATGGTA				TCGCTGAGCT	1980
	GTGGAGGAAC		TTAGTGGGAT		TCATGGCCAG	2040
	GGATGACAGA				GCAGAGCTCG	2100
	TGTGGAGAGT					2160
	CAAACCCTCA					2220
	CCAATGGCGT					2280
	TCTACTCCCA					2340
	ACACCATCAG					2400
	AGAGCCCCTG					2460
	TCTATCTGGG					2520
	GGCCCGACTA					2580
	GAGGAGGACG					2640
TTTATTACCC		ACACCCTCAA				2700
	GAACCCAAGC					2760
	TGTGTGGCCT					2820
	ACTCACTGGG					2880
AGGGAGCCTT	TGGTTCTGGC					2940
GACACAAGTG		CTTCCTCTCT			TTGAGACACG	3000
GAGCCCAGCC	CTCCCCATGG	AGCCAGCTCC	CTCTATTTAT	GTTTGCACTT	GTGATTATTT	3060
ATTATTTATT		TTATTTACAG		TTATTTGGGA	GACCGGGGTA	3120
TCCTGGGGGA	CCCAATGTAG	GAGCTGCCTT	GGCTCAGACA	TGTTTTCCGT	GAAAACGGAG	3180
CTGAACAATA	GGCTGTTCCC	ATGTAGCCCC	CTGGCCTCTG	TGCCTTCTTT	TGATTATGTT	3240
TTTTAAAATA		TAAGTTGTCT			CCAACTGTCA	3300
CTCATTGCTG	AGCCTCTGCT	CCCCAGGGGA	GTTGTGTCTG	TAATCGCCCT	ACTATTCAGT	3360
		TAGAAAAGAA		CTTCTTGGAA		3420
	TCTTGTGGGT	GGGAAGAAGC	TCCCTAAGTC	CTCTCTCCAC	AGGCTTTAAG	3480
ATCCCTCGGA	CCCAGTCCCA	TCCTTAGACT	CCTAGGGCCC	TGGAGACCCT	ACATAAACAA	3540
AGCCCAACAG	AATATTCCCC	ATCCCCCAGG	AAACAAGAGC	CTGAACCTAA	TTACCTCTCC	3600
	GGGAATTTCC					3634

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

1997 base pairs nucleic acid (A) LENGTH: (B) TYPE:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCCCCAGGCT	GGAATACAGT	GGTGCGATCT	TGACTCACTG	60
CAAATAATTC	TCCAGCCTCA	GCCTCCCGAG	TAGCTGGGAC	120
CCTGGCTAAT	TTTTGTATTT	ATTATAGAGA	TGGGGTTTCA	180
CAAACTCCTG	ACCTCAAGTA	ATCCGCCCAC	CTCAGACTCC	240
TGTGAGCCAC	TGCACCAGGC	CTGGAACAAT	TTTAAAATAA	300
	CAAATAATTC CCTGGCTAAT CAAACTCCTG	CAAATAATTC TCCAGCCTCA CCTGGCTAAT TTTTGTATTT CAAACTCCTG ACCTCAAGTA	CAAATAATTC TCCAGCCTCA GCCTCCCGAG CCTGGCTAAT TTTTGTATTT ATTATAGAGA CAAACTCCTG ACCTCAAGTA ATCCGCCCAC	CCCCCAGGCT GGAATACAGT GGTGCGATCT TGACTCACTG CAAATAATTC TCCAGCCTCA GCCTCCCGAG TAGCTGGGAC CCTGGCTAAT TTTTGTATTT ATTATAGAGA TGGGGTTTCA CAAACTCCTG ACCTCAAGTA ATCCGCCCAC CTCAGACTCC TGTGAGCCAC TGCACCAGGC CTGGAACAAT TTTAAAATAA

WO 98/26061

109

TGTATTGGCT	CTGCAAATGC	AGCTTCAGAA	CAAGTCCCTT	AGCTGTCCCC	ACCCCACCCT	360
AAGTCACCAC	CCTTAAGCCT	CACCCATGTG	GAATTCTGAA	ACTICCTTTG	TAGAAAACTT	420
TGGAAGGTGT	CTGCCACATT	GATCCTGGAA	TGTGTGTTTA	TTTGGGGTTA	TATAAATCTG	480
TTCTGTGGAA	GCCACCTGAA	GTCAGGAAGA	GATGGAGGGC	ATCCTTCAGG	AGTGAGATGA	540
GACCTCATCA	TACTTGACTG	TCCAGCATCA	TCTCTGAGTA	AGGGGACCAA	AAAATTTATC	600
TTCCAAACTA	GGACACTTTC	AAGAGTGGAA	GGGGGATCCA	TTAATATTT	CACCTGGACA	660
AGAGGCAAAC	ACCAGAATGT	CCCCGATGAA	GGGGATATAT	AATGGACCTT	CTTGATGTGA	720
AACCTGCCAG	ATGGGCTGGA	AAGTCCGTAT	ACTGGGACAA	GTATGATTTG	AGTTGTTTGG	780
GACAAGGACA	GGGGTACAAG	AGAAGGAAAT	GGGCAAAGAG	AGAAGCCTGT	ACTCAGCCAA	B40
GGGTGCAGAG	ATGTTATATA	TGATTGCTCT	TCAGGGAACC	GGGCCTCCAG	CTCACACCCC	900
AGCTGCTCAA	CCACCTCCTC	TCTGAATTGA	CTGTCCCTTC	TTTGGAACTC	TAGGCCTGAC	960
CCCACTCCCT	GGCCCTCCCA	GCCCACGATT	CCCCTGACCC	GACTCCCTTT	CCCAGAACTC	1020
AGTCGCCTGA	ACCCCCAGCC	TGTGGTTCTC	TCCTAGGCCT	CAGCCTTTCC	TGCCTTTGAC	1080
TGAAACAGCA	GTATCTTCTA	AGCCCTGGGG	GCTTCCCCGG	GCCCCAGCCC	CGACCTAGAA	1140
CCCGCCCGCT	GCCTGCCACG	CTGCCACTGC	CGCTTCCTCT	ATAAAGGGAC	CTGAGCGTCC	1200
GGGCCCAGGG	GCTCCGCACA	GCAGGTGAGG	CTCTCCTGCC	CCATCTCCTT	GGGCTGCCCG	1260
TGCTTCGTGC	TTTGGACTAC	CGCCCAGCAG	TGTCCTGCCC	TCTGCCTGGG	CCTCGGTCCC	1320
TCCTGCACCT	GCTGCCTGGA	TCCCCGGCCT	GCCTGGGCCT	GGGCTTGGTG	GGTTTGGTTT	1380
TGGTTTCCTT	CTCTGTCTCT	GACTCTCCAT	CTGTCAGTCT	CATTGTCTCT	GTCACACATT	1440
CTCIGTTTCT	GCCATGATTC	CTCTCTGTTC	CCTTCCTGTC	TCTCTCTGTC	TCCCTCTGCT	1500
CACCTTGGGG	TTTCTCTGAC	TGCATCTTGT	CCCCTTCTCT	GTCGATCTCT	CTCTCGGGGG	1560
TCGGGGGGTG	CTCTCTCCCA	GGGCGGGAGG	TCTGTCTTCC	GCCGCGTGCC	CCGCCCCGCT	1620
CACTGTCTCT	CTCTCTCTCT	CTCTTTCTCT	GCAGGTTCTC	CCCATGACAC	CACCTGAACG	1680
TCTCTTCCTC	CCAAGGGTGT	GTGGCACCAC	CCTACACCTC	CTCCTTCTGG	GGCTGCTGCT	1740
GGTTCTGCTG	CCTGGGGCCC	AGGTGAGGCA	GCAGGAGAAT	GGGGGCTGCT	GGGGTGGCTC	1800
AGCCAAACCT	TGAGCCCTAG	AGCCCCCCTC	AACTCTGTTC	TCCCCTAGGG	GCTCCCTGGT	1860
GTTGGCCTCA	CACCTTCAGC	TGCCCAGACT	GCCCGTCAGC	ACCCCAAGAT	GCATCTTGCC	1920
CACAGCACCC	TCAAACCTGC	TGCTCACCTC	ATTGGTAAAC	ATCCACCTGA	CCTCCCAGAC	1980
ATGTCCCCAC	CAGCTCT					1997

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10240 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GAATTCCCCG	GATCAAAGTC	AGCATTAAAT	CCCAGTTTAG	GTTTTGAGGC	TAAGTTCAAG	60
TTTGAGTCTA	ATGTCATTTC	AGCCTTGTTT	GGAGGACTCA	GAGATTTCAC	TAGTTTCTCC	120
GCAGAGACCA	CTGTAGAAAC	TGCATTTCCC	TGAGTTTTGG	GCACAAGACT	CCAGTCATCA	180
CCCCTCCCAC	ACAGGGAAAG	CCCCAAACCA	ACTGCTGGCC	TCCTCAAGAA	AGAAACCGAA	240
TTTCACACAA	CCTCCGAAAC	TAAGATTGAA	ACCAAGATTG	GCCCATCTCA	AGGCGCGTCC	300
TCCAGCACAT	TGAGAATGTC	GCTGATGGAG	CCTCGGCCCA	GCTCTCGAGC	TTCCTTCCTT	360
TCTGTCTCTC	ATGTCTTCTC	ATCACTCCTT	CTCACCTTCC	CGTTTTTGTC	CTGCAATGCC	420
CCCTTCTTCC	TCTCTTCCTG	GGGTTTTTCC	CTTTATTTCT	CACTGTACCA	TTTTATATTT	480
TAATAAAGCC	GAGGTCTCCT	AGTCCATCAG	CTCCTACTGT	TGGAGAGGAG	GCAGAAAGAA	540
ACAGCAGGAC	GGCAAAGGGA	CTCCAGAGAA	AGAGACTCAG	AGGAAAGGCA	AGAAACAGGG	600
ACCAAGAGAG	AGGCCAACAG	TGACACAAGA	CACAGTGAGG	TTAAAAGAAA	TAAGATGAGG	660
CCAAGATAGA	GACCAAGCTA	TTTAAAAGAG	CCATCTGTGG	CTACCCTTCT	TCCGCCATCG	720
CATCTGGTCA	GCCACCAAGA	TTTTGCCTAG	AAACGTTCCT	CCTCTCCATT	CTCCTGCTGC	780
TGCTGCTGCT	GCTGCTGCTG	CTGCTGCTGC	TGCTGCTGCT	GCTGCTGCTG	CTGCCTTAAT	840
ACGAATGCAG	GCTCTTGTCA	TCTCCTTGCT	GGGTTGTTGC	AAAATCCTCC	TAACTGGTCT	900
CCACACTTCT	CATTTCCCCT	CCAGCCCCCC	ATCTTCCATA	CTTCCATTTA	TTTATTTTGG	960
CCATGCCCAT	GGCATGTGGC	AGTTCCAGGG	GCCAGGGATC	AAACCTGTGC	CAATGCAGTG	1020
ACCGTGTCAG	ATCCTTAACC	CACTGCACAC	AAGGCAACGC	CCCTCGAGTC	ATTCTCATTT	1080
TTTAAATATA	CCAATTTGAG	GGGGTCCCTC	TTTCACTTAA	AAATTTTGGC	AGCTCCCTAT	1140
CATGATGAGA	AGGAATTCCA	AACCATTTTT	CTTGTGTGCA	AACCCTTCAG	CATGTGTCCT	1200
CAGCTTACTT	CCCAAGCCTC	ATCCCTGCTC	CTTCTACGTG	TACCCATGTG	TACATCTCCA	1260
CACACCATAT	ACTCTTTTTT	ACCTCCCATC	TTTGCACCTT	CTGTTCCCTC	TCTCTGCCCC	1320
TCACCATCTT	TTTTGCTTTG	ATACTTAATG	CCTCTCCCTC	AGGCCAGGTT	CAATGGCTTT	1380
TCTGTGGGCT	GCTTTAAGCC	CACTGTCATG	GAACTTATCA	CATTTTATTT	TATTTGACTT	1440
TCTTTTTAGG	GCCGCACCCA	GCATATGGAG	ATTCCCAGGC	TAGGGATCTA	ATCGGAGCTG	1500
TATCTGCCAG	CCTGCGCTGG	AGCCACAGCA	ACGTGGGATC	CGAGCCTGAG	GGGTTTTGAT	1560
GTCCTGTGGC	ACAGAAGTTA	CATTCAGGCT	GTGCATGAAC	TATTTCTCCT	GTTCTCCTCC	1620
CCCTGCTTGA	GGCCCTGCAG	CTTTGCCTCT	CATGCCTTGC	TGCTCTGACC	TATGACTTCT	1680

TTITGTTTGC ATTCCATCTC TTTAGTTTTC TCTCTGTTCC ACAAACATTT ACTGAGCATC TACATGAGGC ATTGAGGATA CGGATGGGAA AGACAGTCCC CTGACCTCTG GGACCTCAAA GACCAATTGT GGAAGACTGG TTGGTTATCA GATAATTACA ATGAAGTGTG GGAGTCCCTG TCATGGGTCA GCAGGTAATG AACCCAGTAA ACGATCCATG AGGATGCAGA TTCAATCCCT GGCCTTGCTC AGCGGGTTAA GGATCCAGCG TTCCCACAAG CTGTGGTGTA GGTCGCAGAT GCGACTCAGA TCTTGCATTG CTGTGGCTGT GGTGTAGGCT GGTGGCTACC CCTAGCCTGG GAACCTCCAT ATGCCTCAGG TGCGGCCCTA AAAGACAAAA AAAAAAAAGA GAGAAACTTT TCTTTTTCTT AATGTGTAAC CTACAAGCTA AGTGAAAACT GGCTCCTATT CCATAACGTT TGTATCATTT TTCATACTAG CCAAATACTA GAAACAGGGA GTTCCCGTCG TGGTGCAGCA GAAACAAATT CGACTAGGAA CCATGAGGTT GCGGGTTCGA TCCCTGGCCT TGCTCAGTGG GTTAAGGATC CGGCGTTGCC GTGAGCTGTG GTGTAGGTCG CAGATGTGGC TCGGATCTAG TGTTGCTGTG GCTCTGGTGT AGGCCGGCAG CAACAGCTCT GATTAGACTC CTAGCCTGAG TGTTGCTGTG GCTCTGGTGT AGGCCGGAG CAACAGCTCT GATTAGACTC CTAGCCTGAG
AACCTCCATA AGCTGTGGCT GCGGCCCTAT AAAGACAAA AAAAAAAAA GGCCAAATAC
TAGAAACAAA CCAAATGCCC ATCAACAGAA GAATAGATAA GTTAATTGGG GTATATGCAC
ACAATAGCAT CACACAATAA CATGCACACA ATAACATCAC AATGAAATAA AAATTACTAC
TGACAGACAC AACCATATAG ATGAATTTCA CAAACACAAC AGCGAGAATA AAAGCCAAGC
ACAGATGAGT TGTCTGTGTG GATTCATTTC TATGAAGTTC AAGCGCAGGA AGAACTTAAT
CTATAGTGAC AGAGGTCAGA GAGCAGTTGG TTGTCTTTTGG CAGGTATGAA CTGGGAGTGG GCATGAGAGA ACTITCTGGA GACCTAAAAA TATATTGGAC TGGATGGTGG CAACATGGCT ACAAGAAGAT GGAAAAGTTC CTCAGGCTGT CCACTTGGGA GACGGGCTTC TCACGGGACC CCCACCCAAG GTTGGGACAT GGTGGGGGGC GGCCTTCTGC AGTGAGATGA AACCTCATTG TAGGTGATTT CGTGGCCTCA TCCCTGAGTC AGATCTTCCA AATGAGGACA CTTTGGAGAG CAAAAGGGGG CTCCCTGAAG ATTTCCTCCA GGACAGCAGG AACAAACCAG GATGTCCCAG CAAAAGGGGG CTCCCTGAAG ATTTCCTCCA GGACAGCAGG AACAAACCAG GATGTCCCAG
GCAGGAGGGT ATAGAAGGGA ACTTGTTGAT ATGAAATCAG CCAGATGACC TGAAAATAC
ACAGACTGGG ACAAGTGTGA CTTGAGCCTC TTGGGCCCAG GACAGGGTA CAGAGGAGGA
AACGTGCACA GAGGAAGCC CGTAATCAGC CAAGGCTGCA GAGGTGTTAT ACATAATCGC
TCTTCACCGA ACCGGCAAG CAGCCCACGC CCCAGCTGCA CTCCATCTC TCCTCTGAAC
TCACCGTCCC TTCTCTGGAA CTCCTAAGCC TGACCCCGCT CCCTGGCCCT CCCAGCCCAC
GGTTCCCCTG ACCCCACTCC CTTTCCCAGA ACTCAGTCAT CTGAGCCCCC
CTCTCCCTAGG CCTCAGCCTT TCCTGCCTTC GCGTGAAACA GCAGCATCTT CTAGCCCTG GGCTTCCCCA GGCCCCAGCC CCGGCCTAGA ACCCGCCCAG CCGACCTGCC CACGCTGCCA CTGCCGGCTT CCTCTATAAA GGGACCCAGG GCGCCCAGAA AGGGGCCCAC AGGGGTCCCG CACAGCAGGT GAGACTCTCC CACCCCATCT CCTAGGGCTG TCCGGGTGCT GGACTCCCCC CTCACTTCGG TCCCTCCGCC CGCTCCCTGG CCTTCCTGCC CCTCCTGCAT CTTCACCCCG GCCTGGGCCT TGGTGGGTTT GGTTTTGGTT TGTTCTCTCT GATTCTTTAT CTGTCAGGCT CTTTCTAGCT CTCACACACT CTGATCCCTC TCTGTTCCCT TCCCATCTCT GTTTCTCTCT GGGTCTCCCC CTGCTCACCT CGGGATTTCC CTGAGGCCT CTGGTCCCCT TCTCTGTCTG GCGCCCGTC TCTTGTCTCT CGGGGTGGCT GTCTCCGAGG GCAGGAGGCC TTCTTCCGCA GCGCCCCGC CCCGCTCACT GTCTCTCTCC CCCCACAGGT TTTCCCCATG ACACCACCTG GACGCCTCTA CCTCCGGAGG GTGTGCAGCA CCCCCATCCT CCTCCTCTG GGGCTGCTGC TGGCCCTGCC GCCCGAGGCC CAGGTGAGGC AGCAGGAGAG CGGGCCGTGG GGGCAGCCTT CGCCAACCTT GGGCCTCAGA GCCTCTCTGA CGCTCTTCTC CCCTAGGGGC TCCCTGGCGT CGGCCTCCCA CCCTCAGCTG CACAGCCTGC CCATCAGCAC CCCCCAAAGC ACTTGGCCAG AGGCACCCTC AAACCTGCCG CTCACCTCGT TGGTAAACAT CCACCTGGCC TCCCAGACCT GTAGCCCCA GTCCTCCTCC TATGCCCCTG CTTCAGGGAC TGAAGCATCC CTCCCCCCA TCTCCCCCCA CCCCTAAAT GGAGGCATCC CACTCCCGAC TCCCTCCCAA CCATCCCCCA GGAACTCAGT CCAGCACCTG CTTCCTCAGG GATTGAGACC TCCGACCCC AGGTCCTTGA CTCCCACCCC CTCTGGCTCT TCCTAGGAGA CCCCAGCACC CCGGACTCAC TGCGCTGGAG AGCGAACACG GATCGTGCCT TCCTCCGCCA TGGCTTCTTG CTGAGCAACA ACTCCCTGCT GGTCCCCACC AGTGGCCTCT ACTTTGTCTA CTCCCAGGTC GTCTTCTCCG GGGAAGGCTG CTTCCCCAAG GCCACCCCCA CCCCTCTCTA CCTGGCCCAC GAGGTCCAGC TCTTCTCCTC CCAGTACCCC TTCCACGTGC CGCTCCTCAG CGCTCAGAAG TCCGTGTGCC CCGGGCCACA GGGACCTTGG GTGCGCTCTG TGTACCAGGG GGCTGTGTTC CTGCTCACCC AGGGAGATCA GCTGTCCACA CACACAGACG GCACCCCCCA CCTGCTCCTC AGCCCCAGTA GCGTCTTCTT AACAGTCTCA TCTTCCCCCA CGCTCAGCAC CTGGAGCTTC TGTAGAAGGA ATTCTAGGCA CCTCGGGGGA ACTGGAACCA CCCCGGATGC TCTGCTGAGG ATCTGAATGC CCGCCTGGAG CCCTTCCCCT GTCCTGCCCG TCTAGGGGCC CTCGTCCAGG ACGTGGAAGG GAAGCTGACC CATGAGGGAC TTTGAACGGA TGACCGGAGC GGTGTGGGGG GGTTATTTAT GAAGGGGAAA ATTAAATTAT TTATTTATGG AGGATGGAGA GAAGGGAATC ACAGAGGGAT GTCAGAAGAG TGTGACACAT GTGCCCAAGA GATAAAGTGA CAGAAGGCAT GGGCTCCAGA TGACCCGGCC AGAGAGGCA AAGTGGCTCA GGAAGGGGCT GCTTGACTGG AGGCTCATGA GGAGACGGCT GACCCTCGAT GAAACCCAAT AAAGCTCTTT TCTCTGAAAT GCTGTCTGCT CGTATCTGTC ACTCGGGAGG GGAGAATTCT CCAGATGTCT CTAAGGAGTG GAGGGAGGAC AGGAATCAGA GGGGACGGGA GCTGTGGGTG TGTGATGAGG CCTAAGGGGC TCAGGTGAGA GATGGCGGCC TCAGGGTGAG GGCAGCCAGA CCCCTGCAGG AGAAGCAGAT GGTTCCTCTG AGAAGACAAA GGAAGAGATG CAGGGCCAAG GTCTTGAGAA CCGAGGTCGG GGGTCGCCTG GCAGATATGG CCACAGGTAG AGGGACAGAG GAATAGGGGT GACAGGAGGC TTCCCGGGAG AAGGGAACAC ACTGAGGGGT GTTCGGGATT CTGAGGGAGG AGCACGGGGA CGCCCTGGGA GACATGCCGT

CCAGGGCCAT	GAGGAGTGGG	AGAGCCTCTG	AGGCTAGCGG	CTGGAGATAC	AGGGACATTT	6180
CACCACACACAC	GGTCATGGCC	AGGAGCCGCG	AGGGCCTGGA	CAGTCTCTAG	GAATCTCGAA	6240
CARCONCON	TTCTTTCAGG	ATACGTGGCC	ACACAAAGGG	AGGCTGAGGT	GTGGGGACTT	6300
CANGCAGGAA	TCACCCCCTC	ACATTCCCTT	CCAACCCCAC	ACTGAAACCA	GCAGCAGAGT	6360
CA:GCAGAAG	ICAGGGCCIC	GTGAAAGGAG	AAGGCCCGCC	ATGGTGGGTT	TGTGAATTCC	6420
TIGGIGAGI	TCCTGTCAGA	CIGGGGCTGT	CCCACCCCCC	TTCCTGCCGT	CCTCCCCCAG	6480
CAGCCTGGCT	TCCTCTCCCT	CIGGGGCIGI	CCCAGGCCIG	TICCIGCCGI	ACA CCA A A CA	
CCCGTGTAGG	GCCTCCAGCT	GCCCTTCTCC	CAGCTCCTCT	TCCCTCCAGG	AGACGAAACA	6540
TGGGTCTCAG	CACCCAGCGC	GGTGTCGTCT	AAGTTTTCTC	TCCATTAAGA	ACTCAGCTTT	6600
CTGAAGCTCC	TCCCATTCCT	AGTTCTACCC	CTACCTGAGC	CCTGTTCGGA	AATCAGAGAG	6660
NATAGAAGT	CATCCCCCAA	AGAAAAGGAA	TTTGTCCCCC	AAAGAAACAG	AACTTGTCCC	6720
CCAAAGAAAT	GGAAACAATG	GGAAATGGGA	GGCAGGGGGG	ACCTGGGGTC	CAGCCTCCAG	6780
COTOCTACAC	ACAGAGCAGT	AACTGGCCCA	GCAAGCCCAC	CTCAGGATCC	GGGCAGGGAG	6840
COTAGGAAGT	ATCCCTGATG	CCTGGGTGTC	CCCAACTTTC	CAAACCGCCG	CCCCCGCTAT	6900
AAAAAAAAA	CTAAGACAGA	AGGTGCAGGG	CCCGCTACCG	CTTCCTCCAG	ATGAGCTCAT	6960
ממומאון הדרור	ACCAAGGAAG	TTTTCCGCTG	GTTGAAAGAG	AGCCTCTCCC	CGCCCTCTTC	7020
TC1CCCCACAG	CCTATAAATG	CAGCTGTTTG	CACACCCAGC	CAGCAGAAGC	TCCCAGAGTG	7080
.CACCCAGAG	COLVICATIO	AGGAGAGA	CAAGCCATCT	CCAGGACCCC	CTAGAAATAA	7140
ALMINIACIONO	CACACACCC	CGAACAGGCA	CCCCCACCAC	TOTOTOTO	TCACACGCTG	7200
CCTTTCAGAA	GACACACCCC	CCAGCTGGAC	CTCACCCCCT	CTCDDDDDDCD	CACCATGAGC	7260
CCCCGGGGCG	CCACCATUTO	CCAGCIGGAC	CIGAGCCCCI	CIGHAMAGA	CACCAIGAGC	7320
ACTGAGAGCA	TGATCCGAGA	CGTGGAGCTG	GCGGAGGAGG	COCICOCCAA	COMOCHOCO	
COCCUCCYCC	CCTCCAGGAG	GTGCCTGTGC	CTCAGCCTCT	TOTOCTTOCT	CCTGGTCGCA	7380
ADDADICACCA	CCCTCTTCTG	CCTACTGCAC	TTCGAGGTTA	TCGGCCCCCA	GAAGGAAGAG	7440
GTGAGCGCCT	GGCCAGCCTT	GGCTCATTCT	CCCACCCGGA	GAGAAATGGG	GAAGAAAGAG	7500
GUCCAGAGAC	GACCTGGGGG	AAAGAAGTGT	GCTGATGGGG	AGTGTGGGGA	GGAAATCATG	7560
GAGAAAGATG	GGGAGGCAGA	AGGAGACGTG	GAGAGAGATG	GGGGGAGAGA	GAGAAGGATG	7620
OTALIBATO	CGGTGGCCCG	GCCCTTGGAA	ATGCTCTCTA	AATATTTGTT	GCACGAATGA	7680
CONTRACTA	AGGGACACCG	ATATAAAGAG	AGATGAGTAG	ACAGACAAGG	GGTGTGGTAG	7740
ANAGATAGGG	ARARARCARG	TGATCTGGAT	AAAGATAGTG	AGACAGGAAG	AGGTAGAGGA	7800
CATACCATAC	AGAGATAAGG	AGAGAAGAAG	GAAGCGTGGG	TGTCTGGCAC	GTGGAAGGCA	7860
CTC: STCS SG	CACTTCTTCA	ATGGATGGGT	GGATGAGAAA	ATGGATGAGT	GGAGAGAAAA	7920
* * CT * CT T	CACCCCAGAG	AGTACAAGCT	AGAGAAGCAG	GTGGCTGTTT	TCCCTTCAGA	7980
WICH VONCA	TCARATCENA	TTAATCCTTC	TTOTOTTOTO	CAACAGTTTC	CAGCTGGCCC	8040
GOGGACITAT	LOWATCIAA	CCCAAGGACT	CACTABOTAT	CTCTAAAACC	TGTCTCTCAG	8100
CTTGAGCATC	AACCCTCTGG	CCCAAGGACI	CAGIAAGIAI	ACCHACAACC	CANATTTACC	8160
TTCTGAGCTT	GGACAGGGGT	GGGGTTAGTG	CIGGGGIGGA	AGGMAGMAGG	CCARGEORCA	
	GGCGGGGGGA	ATGCAGGTCA	AAGTAGTGAG	ATATTTTCIG	COMMOTOTION	8220
GGGTCTCATC	TTTTTCTTTC	CTCTTTCCTC	CTCAGGATCA	TCGTCTCAAA	CCTCAGATAA	8280
GCCCGTCGCC	CACGTTGTAG	GTAAGAGTTC	TGAGGATGTG	TCTGGGGGAT	GAAGAAATAG	8340
GCASSACAGA	GAGGGATAGG	ATTTGGGGGC	TGAAGCCAGG	CTGAGGGTAG	CCAGAGCTTG	8400
TATOATAGAA	CAGGAGGACT	CGCTGAGCTC	CAGGGGAGGA	TGGGGGATAC	TCAGAACTTG	8460
DATABOATOR	TOGGARCOTO	ATGGACAGAT	GGGATGTGGG	AAGACAGACC	GAGGGGACAG ·	8520
CARCCCCATC	TOCGGGGGGGG	GCAGAACTCG	AGGGCCAGGA	TGTGGAGAGT	GGAACTGACA	8580
CCCTCACACT	GACTCACCCC	TCCCTCTTTG	TCTCCTCCCT	CCAGCCAATG	TCAAAGCCGA	8640
CCCACACCTC	CAATGGCAGA	GTGGGTATGC	CAATGCCCTC	CTGGCCAACG	GCGTGAAGCT	8700
CALLCACACAC	CAGCTGGTGG	TGCCGACAGA	TGGGCTGTAC	CTCATCTACT	CCCAGGTCCT	8760
CANCES CCCC	CANCECTECE	CTTCCACCAA	CGTTTTCCTC	ACTCACACCA	TCAGCCGCAT	8820
CITCAGGGGC	TACCACACCA	AGGTCAACCT	CCTCTCTGCC	ATCAAGAGCC	CTTGCCAGAG	8880
COCCOTCICC	CACCAGACCA	AGGCCAAGCC	CTCCTACCAA	CCCATCTACC	TGGGAGGGGT	8940
GGAGACCCCC	GAGGGGGCCG	ATCGACTCAG	TCCCCACATC	AACCTGCCCG	ACTATCTGGA	9000
CTTCCAGCTG	GAGAAGGATG	ATCGACTCAG	CARCAGRIC	COCCO CCCC	CCACCACATC	9060
CTTTGCTGAA	TCIGGGCAGG	TCTATTTTGG	GAICATIGCC	CIGIGAGGGG	CACCACCATC	9120
CCTTCCCTCC	CCTGTCCATC	CCTTTATTAT	TTTACTCCTT	CAGACCCCCI	CACGICCIIC	
TGGTTTAGAA	AGAGAATGAG	GGGCTGGGGA	CTGGGCTCCA	AGCTTAAAAC	TTTAAACAAC	9180
AACAGCAACA	CTTAGAAATC	AGGGATTCAG	GGATGTGTGG	CCTGGACAAC	CAGGCACTGA	9240
CCACCACCAA	GAATTGGAAC	TGGGGCTTCC	AGACTCGCTG	GGGTCCTTGG	GTTTGGATTC	9300
CTCCCTCCAA	CCTCCCACAT	CTGGAATGTG	GCTGCCAGGG	AAGCTTGGGT	TCCAATCGGA	9360
ATACTTCAGA	ል C A TTCCTTG	AGAAGATTTC	ACCTCAATCT	TGATGACTTT	TTAGGCTTCC	9420
CTTTCTTCCA	ATTTTCCAGA	CTTCCCTGGG	ATGGGGAGCC	CAGCCCCAAA	CCCCACAGGC	9480
CACCACCCAC	TATATTATAT	ጥጥርር እር ሞጥርር	CATTATTATT	TATTTATTTA	TTTATTATTT	9540
POTTECTACE	CABTGTATTT	ATTCAGGAGG	GCGAGGTGTC	CTGGGAGACC	CAGCATAAGG	9600
COTCCCTTCC	TTCACATGTG	THURTCHCHEA	AAACGGAGCT	GAACTGTAGG	TTGCTCCCAC	9660
GC 1GCC 11GG	ACCCTCTCTC	CCTCCTTTTC	CTTATGTTT	TAAAAACAAA	TATTTATCTG	9720
CIGGCCICCI	VOCCICIOIO	COLCULATION	CACTAACTTC	TCGCTACATC	GCTGAACCTC	9780
ATCGAGTTGT	CTAAATAATG	CIGWIIIOGI	CCCMYCACIO	ראַקדנתרתאַת	AAATAAAAGC	9840
TGCTCCCCAG	GGGAGTTGTG	TCIGIAACCG	CCCIMCIOGI		CALCGGGGGG	9900
GTGCTTAGAA	AAGAAATCTG	GCCTCTTTCT	GCGACTGAAT	TOTOCHICIC	CTTGGGGGGG	
TGAGGCTGCT	CCCCAAAATT	CTTTCTCCAC	CGGGCTTAGG	ATTUCUTGG	CTTCACTCCT	9960
GAGCTTGGAC	TGCCTGGCTC	AGGAGCCTCT	GCAAGAAACA	AAGCCCAGCC	AAACAGGTCC	10020
CTCCCCTAAG	AAAGGAACCT	GAAGGTAATT	ACCTCTCCCT	CAGGGTGTGG	GAATTTCCAA	10080
CTCTCCCAAT	TCCTATCCAG	CTGGGGAAGT	CTGCAGTGCA	GGTGAGACTT	CCGGCTGAAA	10140
GAGCCAGGGA	GCGGCCAGAT	GCTCAGGTAC	CTGAACCAGA	GCCAAGGGAC	TTCCAGACAG	10200
TGAGGCAACT	GGGCTCCAAA	TAACCTGATC	CGGGGAATTC			10240

112

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1644 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

CCTCAGCGAG GACAGCAAGG GACTAGCCAG GAGGGAGAAC AGAAACTCCA GAACATCCTG
GAAATAGCTC CCAGAAAAGC AAGCAGCCAA CCAGGCAGGT TCTGTCCCTT TCACTCACTG 120 GCCCAAGGCG CCACATCTCC CTCCAGAAAA GACACCATGA GCACAGAAAG CATGATCCGC 180 GACGTGGAAC TGGCAGAAGA GGCACTCCCC CAAAAGATGG GGGGCTTCCA GAACTCCAGG CGGTGCCTAT GTCTCAGCCT CTTCTCATTC CTGCTTGTGG CAGGGGCCAC CACGCTCTTC 240 300 TGTCTACTGA ACTTCGGGGT GATCGGTCCC CAAAGGGATG AGAAGTTCCC AAATGGCCTC
CCTCTCATCA GTTCTATGGC CCAGACCCTC ACACTCAGAT CATCTTCTCA AAATTCGAGT
GACAAGCCTG TAGCCCACGT CGTAGCAAAC CACCAAGTGG AGGAGCAGCT GGAGTGGCTG 360 420 480 AGCCAGCGC CCAACGCCCT CCTGGCCAAC GGCATGGATC TCAAAGACAA CCAACTAGTG GTGCCAGCCG ATGGGTTGTA CCTTGTCTAC TCCCAGGTTC TCTTCAAGGG ACAAGGCTGC 540 600 CCCGACTACG TGCTCCTCAC CCACACCGTC AGCCGATTTG CTATCTCATA CCAGGAGAAA GTCAACCTCC TCTCTGCCGT CAAGAGCCCC TGCCCCAAGG ACACCCCTGA GGGGGCTGAG 660 720 CTCAAACCCT GGTATGAGCC CATATACCTG GGAGGAGTCT TCCAGCTGGA GAAGGGGGAC CAACTCAGCG CTGAGGTCAA TCTGCCCAAG TACTTAGACT TTGCGGAGTC CGGGCAGGTC 780 840 TACTTTGGAG TCATTGCTCT GTGAAGGGAA TGGGTGTTCA TCCATTCTCT ACCCAGCCCC CACTCTGACC CCTTTACTCT GACCCCTTTA TTGTCTACTC CTCAGAGCCC CCAGTCTGTG TCCTTCTAAC TTAGAAAGGG GATTATGGCT CAGAGTCCAA CTCTGTGCTC AGAGCTTTCA 900 960 1020 TCCTCTCAGA
TTAGAAAGGG GATTATGGGT CACAGTCCAA CTCTGTGGT CAGAGTTCTCAGACTACTAC AGAACACAA GATGCTGGGA CAGTGACCAG GACTGTGGG CTCTCATGCA CACCATCAA GGACTCAAAT GGGCTTTCCG AATTCACTG AGCCTCGAAT GTCCATTCCT GAGTTCTGCA AAGGGAGAGT GGTCAGGTTG CCTCTGTCTC AGAATGAGGC TGGATAAGAT CTCAGGCCTT CCTACCTTCA GACCTTTCCA GACTCTTCCC TGAGGTGCAA TGCACAGCCT TCCTCACAGA GCCAGCCCC CTCTATTTAT ATTTGCACTT ATTTATTTAT ATTTATTTAT 1080 1140 1200 1260 1320 TATTTATTTA TTTGCTTATG AATGTATTTA TTTGGAAGGC CGGGGTGTCC TGGAGGACCC AGTGTGGGAA GCTGTCTCA GACAGACATG TTTTCTGTGA AAACGGAGCT GAGCTGTCCC 1380 1440 CACCTGGCCT CTCTACCTTG TTGCCTCCTC TTTTGCTTAT GTTTAAAACA AAATATTTAT CTAACCCAAT TGTCTTAATA ACGCTGATTT GGTGACCAGG CTGTCGCTAC ATCACTGAAC 1500 1560 CTCTGCTCCC CACGGGAGCC GTGACTGTAA TTGCCCTACA GTCAATTGAG AGAAATAAAG 1620 ATCGCTTAAA ATAAAAAACC CCCC 1644

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1890 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

AAACAGAGAG	AGATAGAGAA	AGAGAAAGAC	AGAGGTGTTT	CCCTTAGCTA	TGGAAACTCT	60
		CTCCTCTTGA				120
CCTCAGCCTC	TACAGGACTG	AGAAGAAGTA	AAACCGTTTG	CTGGGGCTGG	CCTGACTCAC	180
CAGCTGCCAT	GCAGCAGCCC	TTCAATTACC	CATATCCCCA	GATCTACTGG	GTGGACAGCA	240
GTGCCAGCTC	TCCCTGGGCC	CCTCCAGGCA	CAGTTCTTCC	CTGTCCAACC	TCTGTGCCCA	300
GAAGGCCTGG	TCAAAGGAGG	CCACCACCAC	CACCGCCACC	GCCACCACTA	CCACCTCCGC	360
CGCCGCCGCC	ACCACTGCCT	CCACTACCGC	TGCCACCCCT	GAAGAAGAGA	GGGAACCACA	420
GCACAGGCCT	GTGTCTCCTT	GTGATGTTTT	TCATGGTTCT	GGTTGCCTTG	GTAGGATTGG	480
GCCTGGGGAT	GTTTCAGCTC	TTCCACCTAC	AGAAGGAGCT	GGCAGAACTC	CGAGAGTCTA	540
CCAGCCAGAT	GCACACAGCA	TCATCTTTGG	AGAAGCAAAT	AGGCCACCCC	AGTCCACCCC	600
CTGAAAAAAA	GGAGCTGAGG	AAAGTGGCCC			TCAAGGTCCA	660
TGCCTCTGGA	ATGGGAAGAC	ACCTATGGAA	TTGTCCTGCT		AAGTATAAGA	720
AGGGTGGCCT	TGTGATCAAT				GTATACTTCC	780
GGGGTCAATC	TTGCAACAAC	CTGCCCCTGA	GCCACAAGGT	CTACATGAGG	AACTCTAAGT	840

113

TGTGGGCCCG ATGTCAACGT ATGTCAACGT ACCGAGAATG CATGAACCAA CTAATGTTTA GCCATGTGAA GCCTTGCTAC GGGATGGAAAA GCCCCACTGG GATAAGCAAG AGTGCCAATT TGTAGATATT	CAGCAGCTAC ATCTGAGCTC CTAAGAGAAG FTGTATTCAG GTGGACCATG GAGCCAGAC GAGGGAGAAG CTCAAGGGG GTATTTAGGC CTCAAGGGG GGAAGACTAG CAGCATCTTC AGAGATGTTT GTAGGGGTGT GTGAAGTACA	ATGGAGGGA CTGGGGCAG TCTCTGGTCA CACTTTGGGA TGAGGTCTT AGACCACAGG AAATGGAGGA CATGAAAAA ACTGTCTTTC AGGCTTGCAT ACTTCTAAAT TGGGGACTCA GTGTGTGTGT TATTAGGAAA	TGTTCAATCT ATTTTGAGGA TTCTTTCCAT CTTACATGCA GITCAAAATG ATATGACGGA CAGCTACCCA GGACACCTTT AGATACATGG AATAAGCTAA GCATATCCTG TTTCATTCCT GTGTGTGTGT ATATGGGTTG	CTACTGCACT TACCAGTGCT ATCTCAGACG TATGATTCTT TTTGAGGTCA TCTGTAGCTC AGAACATAGA GGTGTTCTAC TAACTCACCT TTGTGACCTG AGAGGCTGAA AGCCATCGGT AACACAGCAT GTGTATGACT CATTTGGTCA	ACTCATCTTA CTCAAGGTGG AGGATTTAAG AGAGGCCAAT GAAACTAACA GTGTATTTCC AAAGAGAGAA AGATTTTGAA	900 960 1020 1080 1140 1200 1320 1380 1440 1500 1620 1680 1740
TGTAGATATT (TGCTTCCTGA (TGTTTTCCTA						1740

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGGTGTCTCA	CAGAGAAGCA	AAGAGAAGAG	AACAGGAGAA	ATGGTGTTTC	CCTTGACTGC	60
GGAAACTTTA	TAAAGAAAAC	TTAGCTTCTC	TGGAGCAGTC	AGCGTCAGAG	TTCTGTCCTT	120
GACACCTGAG	TCTCCTCCAC	AAGGCTGTGA	GAAGGAAACC	CTTTCCTGGG	GCTGGGTGCC	180
ATGCAGCAGC	CCATGAATTA	CCCATGTCCC	CAGATCTTCT	GGGTAGACAG	CAGTGCCACT	240
TCATCTTGGG	CTCCTCCAGG	GTCAGTTTTT	CCCTGTCCAT	CTTGTGGGCC	TAGAGGGCCG	300
GACCAAAGGA	GACCGCCACC	TCCACCACCA	CCTGTGTCAC	CACTACCACC	GCCATCACAA	360
CCACTCCCAC	TGCCGCCACT	GACCCCTCTA	AAGAAGAAGG	ACCACAACAC	AAATCTGTGG	420
CTACCGGTGG	TATTTTTCAT	GGTTCTGGTG	GCTCTGGTTG	GAATGGGATT	AGGAATGTAT	480
CAGCTCTTCC	ACCTGCAGAA	GGAACTGGCA	GAACTCCGTG	AGTTCACCAA	CCAAAGCCTT	540
AAAGTATCAT	CTTTTGAAAA	GCAAATAGCC	AACCCCAGTA	CACCCTCTGA	AAAAAAAGAG	600
CCGAGGAGTG	TGGCCCATTT	AACAGGGAAC	CCCCACTCAA	GGTCCATCCC	TCTGGAATGG	660
GAAGACACAT	ATGGAACCGC	TCTGATCTCT	GGAGTGAAGT	ATAAGAAAGG	TGGCCTTGTG	720
ATCAACGAAA	CTGGGTTGTA	CTTCGTGTAT	TCCAAAGTAT	ACTTCCGGGG	TCAGTCTTGC	780
AACAACCAGC	CCCTAAACCA	CAAGGTCTAT	ATGAGGAACT	CTAAGTATCC	TGAGGATCTG	840
GTGCTAATGG	AGGAGAAGAG	GTTGAACTAC	TGCACTACTG	GCCAGATATG	GGCCCACAGC	900
AGCTACCTGG	GGGCAGTATT	CAATCTTACC	AGTGCTGACC	ATTTATATGT	CAACATATCT	960
CAACTCTCTC	TGATCAATTT	TGAGGAATCT	AAGACCTTTT	TCGGCTTGTA	TAAGCTTTAA	1020
AAGAAAAAGC	ATTTTAAAAT	GATCTACTAT	TCTTTATCAT	GGGCACCAGG	AATATTGTCT	1080
TGAATGAGAG	TCTTCTTAAG	ACCTATTGAG	ATTAATTAAG	ACTACATGAG	CCACAAAGAC	1140
CTCATGACCG	CAAGGTCCAA	CAGGTCAGCT	ATCCTTCATT	TTCTCGAGGT	CCATGGAGTG	1200
GTCCTTAATG	CCTGCATCAT	GAGCCAGATG	GAAGGAGGTC	TGTGACTGAG	GGACATAAAG	1260
CTTTGGGCTG	CTGTGTAGCA	ATGCAGAGGC	ACAGAGAAAG	AACTGTCTGA	TGTTAAATGG	1320
CCAAGAGAAT	TTTAACCATT	GAAGAAGACA	CCTTTACACT	CACTTCCAGG	GTGGGTCTAC	1380
TTACTACCTC	ACAGAGGCCG	TTTTTGAGAC	ATAGTTGTGG	TATGAATATA	CAAGGGTGAG	1440
AAAGGAGGCT	CATTTGACTG	ATAAGCTAGA	GACTGAAAAA	AAGACAGTGT	CTCATTGGCA	1500
CCATCTTTAC			GCCGACCTTT	G		1541

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 888 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

114

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

GGCTGGTCCC CTGACAG	GTT GAAGCAAGTA	GACGCCCAGG	AGCCCCGGGA	GGGGGCTGCA	60
GITTCCITCC TTCCTTC		GCGCCCCCAT	CGCCCCTCCT	GCGCTAGCGG	120
AGGTGATCGC CGCGGCG	ATG CCGGAGGAGG	GTTCGGGCTG	CTCGGTGCGG	CGCAGGCCCT	180
ATCGCTGCGT CCTGCGG	GCT GCTTTGGTCC	CATTGGTCGC		ATCTGCCTCG	240
TOOTGTGCAT CCAGCGC	TTC GCACAGGCTC	AGCAGCAGCT	GCCGCTCGAG	TCACTTGGGT	300
SCGACGTAGC TGAGCTG	CAG CTGAATCACA	CAGGACCTCA	GCAGGACCCC	AGGCTATACT	360
GCCAGGGGG CCCAGCA	CTG GGCCGCTCCT	TCCTGCATGG	ACCAGAGCTG	GACAAGGGGC	420
ACCTACGTAT CCATCGT	GAT GGCATCTACA	TGGTACACAT	CCAGGTGACG	CTGGCCATCT	480
GCTCCTCCAC GACGGCC	TCC AGGCACCACC	CCACCACCCT	GGCCGTGGGA	ATCTGCTCTC	540
CCGCCTCCCG TAGCATC	AGC CTGCTGCGTC	TCAGCTTCCA	CCAAGGTTGT	ACCATTGCCT	600
CCCAGCGCCT GACGCCC		ACACACTCTG	CACCAACCTC	ACTGGGACAC	660
TITTGCCTTC CCGAAAC	ACT GATGAGACCT	TCTTTGGAGT	GCAGTGGGTG	CGCCCCTGAC	720
CACTGCTGCT GATTAGG		TATTTTATTT	TATTTAAGTT	CAAGAGAAAA	780
ASTGTACACA CAGGGGC	CAC CCGGGGTTGG	GGTGGGAGTG	TGGTGGGGG	TAGTGGTGGC	840
ACGACAAGAG AAGGCAT		TCATTTTCCT	AAAAATTA		888

(2) INFORMATION FOR SEQ ID NO: 16:

SEQUENCE CHARACTERISTICS: (i)

1906 base pairs LENGTH: (A) nucleic acid (B) TYPE:

STRANDEDNESS: single (C) linear TOPOLOGY: (D)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

COS ACTOR CA	TCATTCAGGA	TTCAGGGGGA	GAATCCTTCT	TGGAACAGAG	ATGGGCCCAG	60
	GATGAAGAGA		GATGTGGGGA	AGACTATATA	AAGAATGGAC	120
	AGCAAGCACT		GCCCCTCCTG	GAGACACAGC	CATGCATGTG	180
CCGGCGGGCT	CCGTGGCCAG		ACCACGAGCC	GCAGCTATTT	CTATTTGACC	240
ACAGCCACTC		CCTTGTCTTC	ACGGTGGCCA	CTATTATGGT	GTTGGTCGTT	300
CAGAGGACGG		CAACTCACCT	GACAACGTCC	CCCTCAAAGG	AGGAAATTGC	360
TCAGAAGACC		CCTGAAAAGA	GCTCCATTCA	AGAAGTCATG	GGCCTACCTC	420
	AGCATCTAAA	CAAAACCAAG	TTGTCTTGGA	ACAAAGATGG	CATTCTCCAT	480
GGAGTCAGAT		GAATCTGGTG	ATCCAATTCC	CTGGTTTGTA		540
TGCCAACTGC		ACAATGCCCA	AATAATTCTG	TCGATCTGAA		600
CTCATCAACA		AAAACAGGCC		TGTGTGAGTC	TGGAATGCAA	660
ACGAAACACG	TATACCAGAA	TCTCTCTCAA	TTCTTGCTGG	ATTACCTGCA		720
ACCATATCAG	TCAATGTGGA	TACATTCCAG	TACATAGATA		TCCTCTTGAG	780
AATGTGTTGT	CCATCTTCTT	ATACAGTAAT	TCAGACTGAA		TGGCCTTCAG	840
GAAGAAAGCG	CCTCTCTACC	ATACAGTATT		AAACACTTGG	GCAAAAAGAA	900
AACTTTAGAC	CAAGACAAAC	TACACAGGGT		ATACTTCTCC	TTCTGTCTCT	960
TGGAAAGATA	CAGCTCCAGG	GTTAAAAAGA		TGAAGTATCT	TTCAGATAGC	1020
AGGCAGGGAA	GCAATGTAGT	GTGGTGGGCA		CAGAATCAGA	AGGGATGAAT	1080
GGATGTCCCA	GCCCAACCAC	TAATTCACTG		ATCTATTTCT	TCTGTTTTGA	1140
GAGCCTCCAG	TTAAAATGGG	GCTTCAGTAC		AGCAACTCTG	CCCTAATGGG	1200
AAATGAAGGG	GAGCTGGGTG	TGAGTGTTTA		TTCACGGGAT	ACTTCTTTTA	1260
TCTGCAGATG	GCCTAATGCT			AAGGACTCTC	TCACACAGGA	1320
AACTTCCCTA	TACTGGCAGA			GCCCAGTTTA		1380
ACTGTCACTC	TGGCACTAGG	AGGCTGATCT		ATGACCCCAC	CCCTAGGAAC	1440
CCCCAGGGAA	AACCAGGCTC	GGACAGCCCC		GATGGAAAGC		1500
TACACCACCA	CAATGGAAAA					1560
GCCATAATGA	GTCTGAAGGG	CAGTCCTCCT	TCTCCAGGTT			1620
GTCAGACAGA	GACAGCAAGA			GAAATAGGGT	GTGGTCACTC	1680
TCAATTCACT	GGCAAATGCC			AGCAACAGAG		1740
TCCAGTCTGC	TAGGCAGGAA	AGATGCCTCT	AAGTTCTTGT		AGGTGTGGTA	1800
TAGAACCAGA	AACCCATATC	AAGGGTGACT	AAGCCCGGCT		GAAATTAAAC	1860
TIGTATACAA	AATGGTTGCC	AAGGCAACAT	AAAATTATAA	GAATTC		1906

WO 98/26061

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1619 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GTCATGGAAT ACGCCTCTGA CGCTTCACTG GACCCCGAAG CCCCGTGGCC TCCCGCGCCC CGCGCTCGCG CCTGCCGCGT ACTGCCTTGG GCCCTGGTCG CGGGGCTGCT GCTGCTGCTG CTGCTCGCTG CCGCCTGCGC CGTCTTCCTC GCCTGCCCCT GGGCCGTGTC CGGGGCTCGC GCCTCGCCCG GCTCCGCGGC CAGCCCGAGA CTCCGCGAGG GTCCCGAGCT TTCGCCCGAC GATCCCGCCG GCCTCTTGGA CCTGCGGCAG GGCATGTTTG CGCAGCTGGT GGCCCAAAAT GTTCTGCTGA TCGATGGGCC CCTGAGCTGG TACAGTGACC CAGGCCTGGC AGGCGTGTCC GTTCTGCTGA TCGATGGGCC CCTGAGCTGG TACAGTGACC CAGGCCTGGC AGGCGTGTCC
CTGACGGGGG GCCTGAGCTA CAAAGAGGAC ACGAAGGAGC TGGTGGTGGC CAAGGCTGA
GTCTACTATG TCTTCTTTCA ACTAGAGCTG CGGCGCTGG TGGCCGGCGA GGGCTCAGGC
TCGGTTTGACCG TGGACCTGC ACCCGCCCCC TCCGAGGCT GGAACTCGGC CTTCGGTTTC
CAGGGCCGCT TGCTGCACCT GAGTGCCGC CAGCGCCTGG GCGTCCATCI TCACACTGAG
GCCAGGGCAC GCCATGCCTG GCAGCTCCC TCACCGAGGCC CAGTCTTGGG ACTCTTCCGG
GTGACCCCC AAATCCCAGC CGGACTCCCT TCACCGAGGT CGGAATAACG CCCAGCCTGG
GTGAGCCCCA CCTGGACAGA GTCCGAATCC TACTCCATCC TCATGGAGA CCCCTGGTGC
TGGGTCCCTG CTGCTTCTC TACCCCAAGC GGGTCCCTG TGCTGACCTC
CCCTTGAGGA CCCTCCTCAC CCCACTCCTT CCCAAGTTG ACCTTGATAT TTATTCTGAG
CCTGAGCTCA GATAATATAT TATATATATT ATATATATAT ATATATTCT ATTTAAAGAG GAGCATCTGT AATGTGCCAG CATTGTGCCC AGGCTAGGGG GCTATAGAAA CATCTAGAAA TAGACTGAAA GAAAATCTGA GTTATGGTAA TACGTGAGGA ATTTAAAGAC TCATCCCCAG CCTCCACCTC CTGTGTGATA CTTATGGTAR TACGTGAGGA ATTATAGACA TCATCCCAGG CCTCCACCTC CTGTGTGATA CTTGGGGGCT AGCTTTTTC TTTCTTTCTT TITTTTGAGA TGGTCTTGTT CTGTCAACCA GGCTAGAATG CAGCGGTGCA ATCATGAGGC AATGAGGCCT CAGCCTCGA CCTCCCGAGG CTCAGGTGAT CCTCCCATCT CAGCCTCTC AGTAGCTGGG ACCACAGTTG TGTGCCACCA CACTTGGCTA ACTTTTTAAT TTTTTTGCGG AGACGGTATT GCTATGTTGC CAAGGTTGTT TACATGCCAG TACAAITTAT AATAAACACT CATTTTTCC

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1239 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

```
AGCCTATAAA GCACGGGCAC TGGCGGGAGA CGTGCACTGA CCGACCGTGG TAATGGACCA
                                               120
                                               180
                                               240
                                               300
                                               360
                                               420
                                               480
                                               540
                                               600
                                               660
                                               720
                                               780
                                               840
                                               900
```

116

ATACAGAGAC	TGGGAGCTGT	CTTATCCCAA	CACCACCAGC	TTTGGACTCT	TTCTTGTGAA	960
ACCCGACAAC	CCATGGGAAT	GAGAACTATC	CTTCTTGTGA	CTCCTAGTTG	CTAAGTCCTC	1020
AAGCTGCTAT	GTTTTATGGG	GTCTGAGCAG	GGGTCCCTTC	CATGACTTTC	TCTTGTCTTT	1080
AACTGGACTT	GGTATTTATT	CTGAGCATAG	CTCAGACAAG	ACTTTATATA	ATTCACTAGA	1140
TACCATTACT	AAACTGCTGG	GCAGCTGCTA	GATAAAAAAA	AATTTCTAAA	TCAAAGTTTA	1200
TATTTATATT	AATATATAA	AATAAATGTG	TTIGTAAAT			1239

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 606 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

ATJATOGAAA	CATACAACCA	AACTTCTCCC	CGATCTGCGG	CCACTGGACT	GCCCATCAGC	60
		ACTTACTGTT				120
THITTGETG	TGTATCGCTT	CGCACAGGCT	TTTGAAATGC	AAAAAGGTGA	TCAGAATCCT	180
CANATTGCGG	CACATGTCAT	AAGTGAGGCC	AGCAGTAAAA	CAACATCTGT	GTTACAGTGG	240
GTTSANAAAG	GATACTACAC	CATGAGCAAC	AACTTGGTAA	CCCTGGAAAA	TGGGAAACAG	300
		ACTCTATTAT				360
		TCCATTTATA				420
		AGCTGCAAAT				480
		AGTATTTGAA				540
GTGACTGATC	CAAGCCAAGT	GAGCCATGGC	ACTGGCTTCA	CGTCCTTTGG	CTTACTCAAA	600
CTCTGA						606

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 783 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

ATGATCGAAA	CATACAACCA	AACTTCTCCC	CGATCTGCGG	CCACTGGACT	GCCCATCAGC	60
ATGAAAATTT	TTATGTATTT	ACTTACTGTT	TTTCTTATCA	CCCAGATGAT	TGGGTCAGCA	120
CITTITGCTG	TGTATCTTCA	TAGAAGATTG	GATAAGGTCG	AAGAGGAAGT	AAACCTTCAT	180
		AAAGCTAAAG				240
TTGCTGAACT	GTGAGGAGAT	GAGAAGGCAA	TTTGAAGACC	TTGTCAAGGA	TATAACGTTA	300
AACAAAGAAG	AGAAAAAAGA	AAACAGCTTT	GAAATGCAAA	AAGGTGATCA	GAATCCTCAA	360
		TGAGGCCAGC				420
		GAGCAACAAC				480
		CTATTATATC				540
		ATTTATAGCC				600
		TGCAAATACC				660
		ATTTGAATTG				720
ACTGATCCAA	GCCAAGTGAG	CCATGGCACT	GGCTTCACGT	CCTTTGGCTT	ACTCAAACTC	780
TGA						783

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 558 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

WO 98/26061

117

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

CTGCTGCACT TCGGGGTAAT	CGGCCCCCAG	AGGGAAGAGC	AGTCCCCAGG	TGGCCCCTCC	60
ATCAACAGCC CTCTGGTTCA	AACACTCAGG	TCCTCTTCTC	AAGCCTCAAG	TAACAAGCCG	120
GTAGCCCACG TTGTAGCCGA	CATCAACTCT	CCGGGGCAGC	TCCGGTGGTG	GGACTCGTAT	180
GCCAATGCCC TCATGGCCAA	CGGTGTGAAG	CTGGAAGACA	ACCAGCTGGT	GGTGCCTGCT	240
GACGGGCTTT ACCTCATCTA	CTCACAGGTC	CTCTTCAGGG	GCCAAGGCTG	CCCTTCCACC	300
CCCTTGTTCC TCACCCACAC	CATCAGCCGC	ATTGCAGTCT	CCTACCAGAC	CAAGGTCAAC	360
ATCCTGTCTG CCATCAAGAG	CCCTTGCCAC	AGGGAGACCC	CAGAGTGGGC	TGAGGCCAAG	420
CCCTGGTACG AACCCATCTA	CCAGGGAGGA	GTCTTCCAGC	TGGAGAAGGG	AGATCGCCTC	480
AGTGCTGAGA TCAACCTGCC	GGACTACCTG	GACTATGCCG	AGTCCGGGCA	GGTCTACTTT	540
GGGATCATTG CCCTGTGA					558

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	1783 base pairs
(B)	TYPE:	nucleic acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY:	linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

CAAGTCACAT GATC	CAGGAT GCAGGGGAAA	ATCCTTCTTG	GAACAGAGCT	GGGTACAGAA	60
CCGAATCAGA TGAGG	GAGAGA TAAGGTGTGA	TGTGGGACAG	ACTATATAAA	GCATGGAGCC	120
AGGGCTGCAA CAAGG	CAGGCA GCTGTGGGGC			TGCAGGTGCA	180
GCCCGGCTCG GTAG	CCAGCC CCTGGAGAAG	CACGAGGCCC	TGGAGAAGCA	CAAGTCGCAG	240
CTACTTCTAC CTCAC	GCACCA CCGCACTGGT	GTGCCTTGTT	GTGGCAGTGG	CGATCATTCT	300
GGTACTGGTA GTCC	AGAAAA AGGACTCCAC			CCCCCCTTAA	360
AGGAGGAAAT TGCT	CAGAGG ATCTCTTCTG		AGTACTCCAT	CCAAGAAGTC	420
ATGGGCCTAC CTCC	AAGTGT CAAAGCATCT		AAACTGTCAT	GGAACGAAGA	480
TGGCACCATC CACG	GACTCA TATACCAGGA	CGGGAACCTG	ATAGTCCAAT	TCCCTGGCTT	540
GTACTTCATC GTTT	GCCAAC TGCAGTTCCT	CGTGCAGTGC	TCAAATCATT	CTGTGGACCT	600
GACATTGCAG CTCC	TCATCA ATTCCAAGAT	CAAAAAGCAG	ACGTTGGTAA	CAGTGTGTGA	660
GTCTGGAGTT CAGA	GTAAGA ACATCTACCA	GAATCTCTCT	CAGTTTTTGC	TGCATTACTT	720
ACAGGTCAAC TCTA	CCATAT CAGTCAGGGT	GGATAATTTC	CAGTATGTGG	ATACAAACAC	780
TTTCCCTCTT GATA	ATGTGC TATCCGTCTT	CTTATATAGT	AGCTCAGACT	GAATAGTTGT	840
TCTTAACCTT TATG	AAAATG CTGTCTACCA	TACAGTACTT	CATCTGTCCA		900
	GACAAC TCAAACTAAG	CATGTGAGTT	AGTGCACTTC	TCTTTCTGTC	960
CTTTGGAAAA ATAC	AAACCC AGGATTTAGA	AAGTGGAGTC	TCCTTCAGAT	GCACAAACAG	1020
	TGTGCA CAGAGACCTA		AGAAGGGGTG	TGAGTTGTCC	1080
CAGTATAACC ACTA	ATTCAC TGACCTTGAG	CCATTTTTCC	TTCCCCCTGG	AACTTGGGGT	1140
	GTAGGA GATGAGATTT	ACATTTCCCC	AATATTTTCT	TCAACTCAGA	1200
	AGCTGA GCTCCCTACA		CCTCCCATGG	CATGAGGAAA	1260
ATGATGGTAC CAGT	AATGTC TGTCTGACTG	TCATCTCAGC	AAGTCCTAAG	GACTTCCATG	1320
CTGCCTTGTT GAAA	GATACT CTAACCTCTT	GTAATGGGCA	AAGTGATCCT	GTCTCTCACT	1380
	CTGCCA TCTCCTGAGA	CATACATGGA	GACATTTTCT	GCCCAAATTC	1440
CATTCTGTGT GCAG	TTTTTA AGTATTCCCC	CAAAAGTTCT	TGACAATGAG	AACTTTGAAT	1500
	TGGACA GCAAACATTA	ACAGCTTCTC	CTGACCAGAG	AGACCATGCA	1560
01000.0.00.0	CCCATC AAGCTTGAGG	TTTCTACATT	GTGGGAGACA	GACTTTTGAC	1620
	GATGTC TGGGCCCCTG	GGAGTTCTCC	TTCAGTAAGG	AGAGCAAGCC	1680
Approc		AATAGACACT	TTTCTGAAGG	AAAGGAGAAC	1740
	AGGCTA GAAAATGTTT	AAAAAGAAAA	AAA		1783

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	1047 base pairs
(B)	TYPE:	nucleic acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY:	linear

118

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

AGAGAGCGCT AGGGGCTGGA TACCAAGGGA	GGGAGCCGGA TGGCATGCTG GCAGCTTTCT	GGGGAGCGCA GACCCAAGCT ATCCTGGCCA		GCCAGTGGTC TCCGGACCCA CATAGCGTAA	GTGCAGTCCA ATAACAGTTT TGTCCATGTT	60 120 180
GTTCTACACT	CTGATCACAG	CTTTTCTGAT	CGGCATACAG	GCGGAACCAC		240 300
TGACACTGCC	GCAGGACACA CTTCGCAGAG	CCCGCAGCGC	AGTCCACTGG CCCGGCAGCG	ACTAAACTTC GCGATAGCTG	AGCATTCCCT CACGCGTGGC	360
GGGGCAGACC		CTGTGGACCC		AAAAAGCGGC	GACTCCGTTC	420
ACCCCGTGTG CTTCGAGGTC	CTGTTTAGCA GGTGGTGCTG		CCGTGAAGCT		AGGATCTGGA GGTCATCATC	480 540
CCATCCCATC	TTCCACAGGG	GCGAATTCTC			TGTGGGTTGG	600
GGATAAGACC	ACCGCCACAG AGTGTATTCA	ACATCAAGGG		ATGGTGTTGG AAGTGCCGGG	GAGAGGTGAA ACCCAAATCC	660 720
	GGGTGCCGGG			AACTCATATT	GTACCACGAC	780
TCACACCTTT GATAGATACG	GTCAAGGCGC GCCTGTGTGT	TGACCATGGA GTGTGCTCAG	TGGCAAGCAG CAGGAAGGCT	GCTGCCTGGC GTGAGAAGAG	GGTTTATCCG	840 900
CGACACGCTC	CCTCCCCCTG	CCCCTTCTAC		GCCCCTCCCT	ACCTCAACCT	960
GTAAATTATT ATCATTATTT	TTAAATTATA ATTAAATTT	AGGACTGCAT TGGAAGC	GGTAATTTAT	AGTTTATACA	GTTTTAAAGA	1020 1047

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	1176 base pairs
(B)	TYPE:	nucleic acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY:	linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

GAGCGCCTGG	AGCCGGAGGG	GAGCGCATCG	AGTGACTTTG	GAGCTGGCCT	TATATTTGGA	60
TCTCCCGGGC	AGCTTTTTGG	AAACTCCTAG	TGAACATGCT	GTGCCTCAAG	CCAGTGAAAT	120
TAGGCTCCCT	GGAGGTGGGA	CACGGGCAGC	ATGGTGGAGT	TTTGGCCTGT	GGTCGTGCAG	180
TCCAGGGGGC	TGGATGGCAT	GCTGGACCCA	AGCTCACCTC	AGTGTCTGGG	CCCAATAAAG	240
GTTTTGCCAA	GGACGCAGCT	TTCTATACTG	GCCGCAGTGA	GGTGCATAGC	GTAATGTCCA	300
TGTTGTTCTA	CACTCTGATC	ACTGCGTTTT	TGATCGGCGT	ACAGGCAGAA	CCGTACACAG	360
ATAGCAATGT	CCCAGAAGGA	GACTCTGTCC	CTGAAGCCCA	CTGGACTAAA	CTTCAGCATT	420
CCCTTGACAC	AGCCCTCCGC	AGAGCCCGCA	GTGCCCCTAC	TGCACCAATA	GCTGCCCGAG	480
TGACAGGGCA	GACCCGCAAC	ATCACTGTAG	ACCCCAGACT	GTTTAAGAAA	CGGAGACTCC	540
ACTCACCCCG	TGTGCTGTTC	AGCACCCAGC	CTCCACCCAC	CTCTTCAGAC	ACTCTGGATC	600
TAGACTTCCA	GGCCCATGGT	ACAATCCCTT	TCAACAGGAC	TCACCGGAGC	AAGCGCTCAT	660
CCACCCACCC	AGTCTTCCAC	ATGGGGGAGT	TCTCAGTGTG	TGACAGTGTC	AGTGTGTGGG	720
TTGGAGATAA	GACCACAGCC	ACAGACATCA	AGGGCAAGGA	GGTGACAGTG	CTGGCCGAGG	780
TGAACATTAA	CAACAGTGTA	TTCAGACAGT	ACTTTTTTGA	GACCAAGTGC	CGAGCCTCCA	840
ATCCTGTTGA	GAGTGGGTGC	CGGGGCATCG	ACTCCAAACA	CTGGAACTCA	TACTGCACCA	900
CGACTCACAC	CTTCGTCAAG	GCGTTGACAA	CAGATGAGAA	GCAGGCTGCC	TGGAGGTTCA	960
TCCGGATAGA	CACAGCCTGT	GTGTGTGTGC	TCAGCAGGAA	GGCTACAAGA	AGAGGCTGAC	1020
TTGCCTGCAG	CCCCCTTCCC	CACCTGCCCC	CTCCACACTC	TCTTGGGCCC	CTCCCTACCT	1080
CAGCCTGTAA	ATTATTTAA	ATTATAAGGA	CTGCATGATA	ATTTATCGTT	TATACAATTT	1140
TAAAGACATT	ATTTATTAAA	TTTTCAAAGC	ATCCTG			1176

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	1623 base pairs
(B)	TYPE:	nucleic acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY:	linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

119

TCAGAGTCCT	GTCCTTGACA	CTTCAGTCTC	CACAAGACTG	AGAGGAGGAA	ACCCITTCCT	60
GGGGCTGGGT	GCCATGCAGC	AGCCCGTGAA	TTACCCATGT	CCCCAGATCT	ACTGGGTAGA	120
CAGCAGTGCC	ACTTCTCCTT	GGGCTCCTCC	AGGGTCAGTT	TTTTCTTGTC	CATCCTCTGG	180
GCCTAGAGGG	CCAGGACAAA	GGAGACCACC	GCCTCCACCA	CCACCTCCAT	CACCACTACC	240
ACCGCCTTCC	CAACCACCCC	CGCTGCCTCC	ACTAAGCCCT	CTAAAGAAGA	AGGACAACAT	300
AGAGCTGTGG	CTACCGGTGA	TATTTTTCAT	GGTGCTGGTG	GCTCTGGTTG	GAATGGGGTT	360
AGGAATGTAT	CAACTCTTTC	ATCTACAGAA	GGAACTGGCA	GAACTCCGTG	AGTTCACCAA	420
CCACAGCCTT	AGAGTATCAT	CTTTTGAAAA	GCAAATAGCC	AACCCCAGCA	CACCCTCTGA	480
AACCAAAAAG	CCAAGGAGTG	TGGCCCACTT	AACAGGGAAC	CCCCGCTCAA	GGTCCATCCC	540
TCTGGAATGG	GAAGACACAT	ATGGAACTGC	TTTGATCTCT	GGAGTGAAGT	ATAAGAAAGG	600
CGGCCTTGTG	ATCAATGAGG	CTGGGTTGTA	CTTCGTATAT	TCCAAAGTAT	ACTTCCGGGG	660
TCAGTCTTGC	AACAGCCAGC			ATGAGGAACT	TTAAGTATCC	720
TGGGGATCTG	GTGCTAATGG	AGGAGAAGAA	GTTGAATTAC	TGCACTACTG	GCCAGATATG	780
GGCCCACAGC	AGCTACCTAG	GGGCAGTATT	TAATCTTACC	GTTGCTGACC	ATTTATATGT	840
CAACATATCT	CAACTCTCTC	TGATCAATTT	TGAGGAATCT	AAGACCTTTT	TTGGCTTATA	900
TAAGCTTTAA	AGGAAAAAGC	ATTTTAGAAT	GATCTATTAT	TCTTTATCAT	GGATGCCAGG	960
AATATTGTCT	TCAATGAGAG	TCTTCTTAAG	ACCAATTGAG	CCACAAAGAC	CACAAGGTCC	1020
AACAGGTCAG	CTACCCTTCA	TTTTCTAGAG	GTCCATGGAG	TGGTCCTTAA	TGCCTGCATC	1080
ATGAGCCAGA	TGGGAAGAAG	ACTGTTCCTG	AGGAACATAA	AGTTTTGGGC	TGCTGTGTGG	1140
CAATGCAGAG	GCAAAGAGAA	GGAACTGTCT	GATGTTAAAT	GGCCAAGAGC	ATTTTAGCCA	1200
TTGAAGAAAA	AAAAAACCTT	TAAACTCACC	TTCCAGGGTG	GGTCTACTTG	CTACCTCACA	1260
GGAGGCCGTC	TTTTAGACAC	ATGGTTGTGG	TATGACTATA	CAAGGGTGAG	AAAGGATGCT	1320
AGGTTTCATG	GATAAGCTAG	AGACTGAAAA	AAGCCAGTGT	CCCATTGGCA	TCATCTTTAT	1380
TTTTAACTGA	TGTTTTCTGA	GCCCACCTTT	GATGCTAACA	GAGAAATAAG	AGGGGTGTTT	1440
GAGGCACAAG	TCATTCTCTA	CATAGCATGT	GTACCTCCAG	TGCAATGATG	TCTGTGTGTG	1500
TTTTTATGTA	TGAGAGTAGA	••••		GAGTACAACG	CGTACATTAC	1560
GGAGTACATA	TTAGAAACGT	ATGTGTTACA	TTTGATGCTA	GAATATCTGA	ATGTTTCTTG	1620
CTA						1623

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 28 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GTTAAGCTTT TCAGTCAGCA TGATAGAA 28

- (2) INFORMATION FOR SEQ ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

(XI) BEGERRE BEGERITITION. BEG ID NOT BY

(2) INFORMATION FOR SEQ ID NO: 28:

GTTTCTAGAT CAGAGTTTGA GTAAGCC

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs

	(B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	nucleic acid single linear
(xi)	SEQUENCE DESCRIPTION: SEQ	Q ID NO: 28:
CCAAGACTAG TI	PAACACAGC ATGATCGAAA	30
(2) INFOR	RMATION FOR SEQ ID NO: 29	9:
(i)	SEQUENCE CHARACTERISTICS	:
	(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	30 base pairs nucleic acid single linear
(xi)	SEQUENCE DESCRIPTION: SEQ	Q ID NO: 29:
CCAATGCGGC CG	GCACTCAGA ATICAACCTG	30
(2) INFOR	RMATION FOR SEQ ID NO: 30	0:
(i)	SEQUENCE CHARACTERISTICS	:
	(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	nucleic acid
(xi)	SEQUENCE DESCRIPTION: SEC	Q ID NO: 30:
TGCCATGCAG CACAGGATCTTCCC TGCCGCACCA CTACAGATGTT CACAGATGCAC ACAAAAAAAGGAG CTACAGATCTTGC AACAAAAATCTTGC AACAAAAATCTTGC AACAAAAATCTTGC AACAAAAATCTTGC AACAAAAATCTTGC AACAAAAATCTTGC AACAAAAAATCTTGC AACAACGTATCT GAACGCAACGTATCT GAACGTATCT GAACAACAACAACAACAACAACAACAACAACAACAACAAC	GACTGAGAA GAAGTAAAAC CGTTTGCTGG GAGCCCTTCA ATTACCCATA TCCCCAGATC TGGGCCCCTC CAGGCACAGT TCTTCCCTGT CAGGCCCACC CACCACCACC GCCACCGCCA CACCACCACC ACCCTGAAG ACCCTTGAG AGCTCTTCC ACCTTACAGAA GGAGCTGCCA CACCACAGAA GGAGCTGCCA CACCACAGAA GGAGCTGCCA CACCACAGAA GCAAATAGGC CAGCATCAT CTTTGGAGAA GCAAATAGGC CAGCATCAT ATGGAATTGT CCTGGTTTCT GAGACACCTAC ATGGAATTGT CTTTGTATAT ACAACCTGC CCCTGAGCCA CAAGGTCTAC AGCTCTAC GGGCAAGAT GATGAGCTAC AGCTCTAC AGGACCACT TGGGATTCT TGAGGAATCT CAATCTTACC AGAAGCACT TTGGGATTCT TTCCATTATG A	PACTEGGTEG ACAGCAGTEC CCAACCTCTG TGCCCAGAAG 180 CCACTACCAC CTCCGCCGCC 240 AAGAGAGGGA ACCACAGCAC 300 GCCTTGGTAG GATTGGGCCT GAACCTCAGA AGTCTACCAG CACCCCAGTC CACCCCCTGA 480 PCCAACTCAA GGTCCATGCC GGAGTGAAGT ATAAGAAGGG FCCAAAGTAT ACTTCCGGGG ATGAGGAACT CTAAGTATCC 720 RGCACTACTG GGCAGATGTG AGGTCTGATC AGGTCTGATC AGGTCTGATC 440 AGGTCTATATATGT 840 AGGTCTGATC 220 AGGACGTTTT 230 AGGACGTTATA 900

- (2) INFORMATION FOR SEQ ID NO: 31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 885 base pairs

	121		
	(B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	nucleic acid single linear	
(xi)	SEQUENCE DESCRIPTION: SEC	Q ID NO: 31:	
TCATCTTGGG CT GACCAAAGGA GA CCACTCCCAC TG CAGCTCTTCC AC AAAGTATCAT CT CCGAGGAGTG TG GAAGACACAA AT ATCAACGAAG CT AACAACCAGC CC GTGCTAATGG AC AGCTACTGC GC CAACTCTCTC TG AAGAAAAAAGC AT	CATGAATTA CCCATGTCCC CAGATCTTCT GCCTCCAGG GTCAGTTTTT CCCTGTCAT CCCCGCACC TCCACCACCA CCTGTGTCAC CCGCCACCT GACCCCTCTA AAGAAGAAGA ATTTTTCAT GGTTCTGGTG GCTCTGGTG GCTCTGCAGA GGAACTGGCA GACCCCAGTA CACCCAGTA CACCCAGTA CTGGAACCGC TCTGATCTCT GGAGTGAAGT ACGGAACCGC CTCGATCTCT GGAGTGAAGT ACCTAAACCA CAAGGTCTAT TCCAAAGTAT ACGGAACCA CAAGGTCTAT ATGAGGAACT CAATCTTACC AGTGCTGAC AGTGCAATT TGAGGAATCT AAGACCTTTT TGTTTAAAAT GATCTACTAT GTTTTAAAAT GATCTACTAT GTTTTATCAT G	TTGTGGGCC TAGAGGGCCG ACTACCAC GCCATCACAA CCACAACAC AAATCTGTGG AATGGGATT AGGAATGTAT GTTCACCAA CCAAAGCCTT ACCCTCTGA AAAAAAAGAG GTCCATCCC TCTGGAATGG TTAGAAAGG TGGCCTTGTG CTTCCGGGG TCAGTCTTGC TAAGTATCC TGGGGATCTG ACAGATATC TGGGGATCTG ACAGATATC TGGGGATCTG ACAGATATCT CCGCTTGTA TAAGCTTTAA	240 300 360 420 480 540 660 720
(2) INFOR	RMATION FOR SEQ ID NO: 3	2:	
(i)	SEQUENCE CHARACTERISTICS	:	
	(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	nucleic acid	
(xi)	SEQUENCE DESCRIPTION: SE	Q ID NO: 32:	
CTTAAGCTTC T	ACAGGACTG AGAAGAAGT		29
(2) INFO	RMATION FOR SEQ ID NO: 3	3:	
(i)	SEQUENCE CHARACTERISTICS	:	
	(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	30 base pairs nucleic acid single linear	
(xi)	SEQUENCE DESCRIPTION: SE	Q ID NO: 33:	
CTTGAATTCC	AACATTCTCG GTGCCTGTAA		2
(2) INFO	RMATION FOR SEQ ID NO: 3	4:	
(i)	SEQUENCE CHARACTERISTICS	:	
	(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	27 base pairs nucleic acid single linear	
(xi)	SEQUENCE DESCRIPTION: SE	Q ID NO: 34:	

122	
(2) INFORMATION FOR SEQ ID NO: 35:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
CTTGTCTAGA CCTGGTGCC CATGATA	27
(2) INFORMATION FOR SEQ ID NO: 36:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 680 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
ATGCCGGAGG AAGGTCGCC TTGCCCCTGG GTTCGCTGGA GCGGGACCGC GTTCCAGCGC CAATGGCCAT GGCTGCTGTT ATTACTGTGT TTTGCTGTTG GTTTCATTGT AGCGGACTAC TCAGTAAGCA GCAACAGAGG CTGCTGGAGC ACCCTGAGCC GCACACAGCT GAATCTCAC AGTTCCTCG AAGGACCCA CACTGCGCTG GGGAGCAGGC CATCAAGATG GCCTCTACAG GCTGCATATC CAGGAGCACC TGCAGCACAG GCCACCCTG GCTGCGAAC TGGCCAACACGGA GCCACCCTG GCTGTGGCA TCTGCTCCCA ACATACCTGG TCCACGAGAG TGTCCTCGT ACAGACCTA CAGGACCTA ACAGCCCTG GCCAACCCTG ACATACCTGG TCCACGGAGA TGTCCTCTGT ACAGCCTC ACAGACCTCA CCCTGCCTCT GCTGCCCTC GCTAGACCTTA ATGAGACCTT TTTCTTTCA AGTTCTACCT ATTATAAAA AAAAAAAAAA	60 120 180 240 360 420 480 540 660 660
(2) INFORMATION FOR SEQ ID NO: 37:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 846 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
ATGCAGCAGC CCTTCAATTA CCCATATCCC CAGATCTACT GGGTGGACAG CAGTGCCAGC TCTCCCTGGG CCCCTCCAGG CACAGTTCTT CCCTGTCCAA CCTCTGTGCC CAGAAGGCCT GGTCAAAGGA GGCCACCAC ACCACCGCCA CCGCCACCAC TACCACCTCC GCCGCCGCG CCACCACTGC CTCCACTACC GCTGCCACCC CTGAAGAAGA GAGGGAACCA CAGCACAGGC CTGTGTCTCC TTGTGATGTT TTTCATGGTT CTGGTTGCCT TGGTAGGAT GGCCTGGGG ATGTTCACC TCTCCACCT GAGAAGGAA CTGGCAGAAC TCCGTGAGTT ACCAACCAA AGCCTTAAAG TATCATCTTT TGAAAAGCAA ATAGGCCAC CCAGTCCACC CCCTGAAAAA AAGGAGCTGA GGAAAGTGGC CCATTTAACA GGCAAGTCCA ACTCAAGGTC CATGCCTCTG GAATGGGAAC ACCCTATGG AATTGTCCTG CTTTCTGGAG TGAAGTATAA GAAGGGTGGC CTTGTGAACA ACCTGCCCCT GAGCCACACAG GTCTACATGA GGAACTCTAA GTATCCCCAG GATCTGGGTA TGATGGAGGG GAAGATGATG ACCTGCCCC CTGAGATGA CTACTGGCA CTACTGGCC CAGCCACACCAA ACCCAGCACAA ACCCTGCGCC CTGAACAAA ACCTGCCCCT GAGCCACACAA GTCTACATGA GGAACTCTAA GTATCCCCAG GATCTGGGGC ACCTGGGGCC ACCTGGGGCC CTGACAGTC CTACTGGCA GATGTGGGCC CGCAGCAGCT ACCTGGGGGC AGTGTTCAAT CTTACCAGTG CTGATCATTT ATATGTCAAC	240 300 360 420 480 540 600 660

123

 -	
GTATCTGAGC TCTCTCTGGT CAATTTTGAG GAATCTCAGA CGTTTTTCGG CTTATCTCTAA	PATAAG 840 846
(2) INFORMATION FOR SEQ ID NO: 38:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 786 base p (B) TYPE: nucleic ac (C) STRANDEDNESS: single (D) TOPOLOGY: linear	airs
(B) TYPE: nucleic ac	id
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38	:
ATGCAGCAGC CCTTCAATTA CCCATATCCC CAGATCTACT GGGTGGACAG CAGTCTCCCTGGG CCCCTCAGG CACAGTTCTT CCCTGTCCAA CCTCTGTGCC CAGAGGGCAAGGGCAAGGGCAACCACC CCGCCACCAC TACCACCTCC GCGCCCCCCCCCC	CCAGC 60
TCTCCCTGGG CCCCTCCAGG CACAGTTCTT CCCTGTCCAA CCTCTGTGCC CAGAAA	CGCCG 180
CCACCACTGC CTCCACTACC GCTGCCACCC CTGAAGAAGA GAGGGAACCA CAGCA	CAGGC 240
CTGTGTCTCC TIGTGATGTT TTTCATGGTT CTGGTTGCCT TGGTAGGATT GGGCC	TGGGG 300 BAAAA 360
AAGGAGCTGA GGAAAGTGGC CCATTTAACA GGCAAGTCCA ACTCAAGGTC CATG	CTCTG 420
GAATGGGAAG ACACCTATGG AATTGTCCTG CTTTCTGGAG TGAAGTATAA GAAGC	IGTCAA 540
TCTTGCAACA ACCTGCCCCT GAGCCACAAG GTCTACATGA GGAACTCTAA GTATC	CCCAG 600
GAICTGGIGA TGATGGAGGG GAAGATGATG AGCTACTGCA CTACIGGGCA GATGI	TCAAC 720
GTATCTGAGC TCTCTCTGGT CAATTTTGAG GAATCTCAGA CGTTTTTCGG CTTAT	CATAAG 780
CTCTAA	786
(2) INFORMATION FOR SEQ ID NO: 39:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 864 base particles of the second	pairs
(B) TYPE: nucleic ac	id
(C) STRANDEDNESS: SINGLE	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39):
ATGCAGCAGC CCTTCAATTA CCCATATCCC CAGATCTACT GGGTGGACAG CAGTTCTCCCTGGG CCCCTCCAGG CACAGTTCTT CCCTGTCCAA CCTCTGTGCC CAGAGGCACACAACCACCACCACCACCACCACCACCACCA	GCCAGC 60
TCTCCCTGGG CCCCTCCAGG CACAGTTCTT CCCTGTCCAA CCTCTGTGCC CAGA	AGGCCT 120 CCGCCG 180
CTGTGTCTCC TTGTGATGTT TTTCATGGTT CTGGTTGCCT TGGTAGGATT GGGC	CTGGGG 300
ATGTTTCAGC TCTTCCAATC CTCCATCCTC CCCTATGCCG GAGGAGGGTT CGGGGGGTGCGGCGC AGGCCCTATG GGTGCGTCCT GCGGCCATCC TCAATCCTAT AGGC	CACCCC 420
DETCOLOCO CTGDDDDDD GGAGCTGAGG AAAGTGGCCC ATTTAACAGG CAAG	CCCAAC 480
TCAAGGTCCA TGCCTCTGGA ATGGGAAGAC ACCTATGGAA TTGTCCTGCT TTCTCAAGTATAAGA AGGTTGCCT TGTGATCAAT GAAACTGGGC TGTACTTTGT ATAT	CCAAA 600
CTATACTTCC CCCCTCAATC TTGCAACAAC CTGCCCCTGA GCCACAAGGT CTAC	ATGAGG 660
AACTCTAAGT ATCCCCAGGA TCTGGTGATG ATGGAGGGGA AGATGATGAG CTAC ACTGGGCAGA TGTGGGCCCG CAGCAGCTAC CTGGGGGCAG TGTTCAATCT TACC	AGTGCT 780
GATCATTTAT ATGTCAACGT ATCTGAGCTC TCTCTGGTCA ATTTTGAGGA ATCT	CAGACG 840
TTTTTCGGCT TATATAAGCT CTAA	
864	

- (2) INFORMATION FOR SEQ ID NO: 40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH:

828 base pairs

60 120

PCT/US97/22740 WO 98/26061

124

	(B) 7	TYPE:		nucl	eic acid	
	(C) S	STRANDEDNE	SS:			
	(D) 7	OPOLOGY:		line	ar	
(xi)	SEQUE	NCE DESCRI	PTION: S	EQ ID N	O: 40:	
ATGCAGCAGC TCTCCCTGGG	CCCTCAATT	A CCCATATCCC G CACAGTTCTI	CAGATCTACT	GGGTGGAC	AG CAGTGCCAGC CC CAGAAGGCCT CC GCCGCCGCCG CA CAGCACAGGC CT GGGCCTGGGG AC AGCATCATCT CT GAGGAAAGTG GA AGACACCTAT AT CAATGAAACT AT CAATGAAACT ACAACCTGCCC GT GATGATGGAG AG CTACCTGGGG GA GCTCTCTCTG	60 120
CCACCACTGC	CTCCACTAC	C GCTGCCACCC	CTGAAGAAGA	GAGGGAAC	CA CAGCACAGGC	24
ATGTTTCAGC	TCTTCCACC	r ACAGCGAGAG	TCTACCAGCC	TGGTAGGA AGATGCAC	AC AGCATCATCT	36
TTGGAGAAGC	AAATAGGCC	A CCCCAGTCCA	CCCCCTGAAA	AAAAGGAG	CT GAGGAAAGTG	420
GGAATTGTCC	TGCTTTCTG	G AGTGAAGTAT	AAGAAGGGTG	GCCTTGTG	AT CAATGAAACT	54
GGGCTGTACT	TTGTATATT	C CAAAGTATAC	TTCCGGGGTC	AATCTTGC	AA CAACCTGCCC	60
GGGAAGATGA	TGAGCTACT	G CACTACTGGG	CAGATGTGGG	CCCGCAGC	AG CTACCTGGGG	72
GCAGTGTTCA GTCAATTTTG	AGGAATCTC	G TGCTGATCAT A GACGTTTTTC	TTATATGTCA GGCTTATATA	ACGTATCT AGCTCTAA	GA GCTCTCTCTG	780 828
0100111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					020
(2) INF	ORMATION	FOR SEQ	ID NO:	41:		
(i)		ICE CHARAC				
	(A) I	LENGTH:		846	base pairs eic acid	
	(B) 7	TYPE:		nucl	eic acid	
		TRANDEDNE	SS:	sing	le	
	(D) 7	ropology:		line	ar	
-	· -	ICE DESCRI				
ATGGCTATGA	TGGAGGTCC	A GGGGGGACCC	AGCCTGGGAC	AGACCTGC	GT GCTGATCGTG TA CTTTACCAAC TT CTTAAAGAA TG CTGGCAAGTC GA GGAAACCATT AG AGGTCCTCAAC TC AAGGAGTGGG CA TGAAAAAGGG AA AGAAAACACA CC TGACCTATA TA TGGACTCTAT TT TGTTTCTGTA	6
ATCTTCACAG	TGCTCCTGC	A GTCTCTCTGT A CAAGTACTCC	GTGGCTGTAA AAAAGTGGCA	CTTACGTG TTGCTTGT	TA CTTTACCAAC TT CTTAAAAGAA	120 180
GATGACAGTT	ATTGGGACC	CAATGACGAA	GAGAGTATGA	ACAGCCCC	TG CTGGCAAGTC	24
AAGTGGCAAC TCTACAGTTC	TCCGTCAGC'	r CGTTAGAAAG A ACAAAATATT	ATGATTTTGA TCTCCCCTAG	GAACCTCT	GA GGAAACCATT AG AGGTCCTCAG	300 360
AGAGTAGCAG	CTCACATAA	C TGGGACCAGA	GGAAGAAGCA	ACACATTG	TC TTCTCCAAAC	42
CATTCATTCC	TGAGCAACT	r gggccgcaaa r gcacttgagg	ATAAACTCCT	GGGAATCA TGGTCATC	TC AAGGAGTGGG CA TGAAAAAGGG	486 546
TTTTACTACA	TCTATTCCC	A AACATACTTT	CGATTTCAGG	AGGAAATA	AA AGAAAACACA	60
TTGTTGATGA	AACAAATGG	G AAATAGTTGT	TGGTCTAAAG	ATGCAGAA	TA TGGACTCTATA	66) 72)
TCCATCTATC	AAGGGGGAA'	T ATTTGAGCTT	AAGGAAAATG	ACAGAATT	IT TGTTTCTGTA	78
ACAAATGAGC GGCTAA	ACTTGATAG	A CATGGACCAT	GAAGCCAGTT	TTTTCGGG	GC CTTTTTAGTT	84 <i>6</i>
(2) INF	ODMNTTON	FOR SEQ	TD NO.	12.		
(2) INF	OKMATIO	V FOR SEQ	ID NO:	42:		
(i)	SEQUE	ICE CHARAC	TERISTIC	S:		
		LENGTH:			base pairs	
	(B) 7				eic acid	
		STRANDEDNE	SS:	sing		
	(D) 7	COPOLOGY:		line	ar	
(xi)	SEQUE	ICE DESCRI	PTION: S	EQ ID N	O: 42:	

ATGCCTTCCT CAGGGGCCCT GAAGGACCTC AGCTTCAGTC AGCACTTCAG GATGATGGTG ATTTGCATAG TGCTCCTGCA GGTGCTCCTG CAGGCTGTGT CTGTGGCTGT GACTTACATG

125

TACTTCACCA	ACGAGATGAA	GCAGCTGCAG	GACAATTACT	CCAAAATTGG	ACTAGCTTGC	180
TTCTCAAAGA	CGGATGAGGA	TITCTGGGAC	TCCACTGATG	GAGAGATCTT	GAACAGACCC	240
TOOTTOOLOG	TTDAGAGGCA	ACTGTATCAG	CTCATTGAAG	AGGTGACTTT	GAGAACCTTT	300
CACCACACA	TTTCTACAGT	TCCAGAAAAG	CAGCTAAGTA	CTCCTCCCTT	GCCCAGAGGT	360
CAGGACACCA	ACDARCTECC	AGCTCACATT	ACTGGGATCA	CTCGGAGAAG	CAACTCAGCT	420
TTANTMCCAN	TOTOCO	TECANAGACE	TTAGGCCAGA	AGATTGAATC	CTGGGAGTCC	480
TIAATICCAA	CCCAMMOA	TOURDANCE	GTGCTCTTTA	GGAATGGAGA	GCTGGTCATC	540
TCTCGGAAAG	CCCTCTATTA	CATCTATTCC	CADACATACT	TCCGATTTCA	GGAAGCTGAA	600
GAGCAGGAGG	GCCIGIATIA	ANACCACAAC	CTCACAACCA	AACAGCTGGT	GCAGTACATC	660
GACGCTTCCA	AGATGGTCTC	AAAGGACAAG	GIGAGAACCA	MARKECECCDE	AAACAGCTGT	720
TACAAGTACA	CCAGCTATCC	GGATCCCATA	GIGCICAIGA	AGAGCGCCAG	AMACAGCIGI	780
TGGTCCAGAG	ATGCCGAGTA	CGGACTGTAC	TCCATCTATC	AGGGAGGATI	GTTCGAGCTA	
AAAAAAAATG	ACAGGATTTT	TGTTTCTGTG	ACAAATGAAC	ATTTGATGGA	CCTGGATCAA	840
		CTTTTTAATT				876
0.2.00						
		000 TD NO.	43.			

(2) INFORMATION FOR SEQ ID NO: 43:

WO 98/26061

(i) SEQUENCE CHARACTERISTICS:

LENGTH:	720 base pairs
TYPE:	nucleic acid
STRANDEDNESS:	single
TOPOLOGY:	linear
	TYPE: STRANDEDNESS:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

ATGGAGCCAG	GGCTGCAACA	AGCAGGCAGC	TGTGGGGCTC	CTTCCCCTGA	CCCAGCCATG	60
CAGGTGCAGC	CCGGCTCGGT	AGCCAGCCCC	TGGAGAAGCA	CGAGGCCCTG	GAGAAGCACA	120
AGTCGCAGCT	ACTTCTACCT	CAGCACCACC	GCACTGGTGT	GCCTTGTTGT	GGCAGTGGCG	180
ATCATTCTGG	TACTGGTAGT	CCAGAAAAAG	GACTCCACTC	CAAATACAAC	TGAGAAGGCC	240
CCCCTTAAAG	GAGGAAATTG	CTCAGAGGAT	CTCTTCTGTA	CCCTGAAAAG	TACTCCATCC	300
AAGAAGTCAT	GGGCCTACCT	CCAAGTGTCA	AAGCATCTCA	ACAATACCAA	ACTGTCATGG	360
AACGAAGATG	GCACCATCCA	CGGACTCATA	TACCAGGACG	GGAACCTGAT	AGTCCAATTC	420
CCTGGCTTGT	ACTTCATCGT	TTGCCAACTG	CAGITCCTCG	TGCAGTGCTC	AAATCATTCT	480
GTGGACCTGA	CATTGCAGCT	CCTCATCAAT	TCCAAGATCA	AAAAGCAGAC	GTTGGTAACA	540
GTGTGTGAGT	CTGGAGTTCA	GAGTAAGAAC	ATCTACCAGA	ATCTCTCTCA	GTTTTTGCTG	600
CATTACTTAC	AGGTCAACTC	TACCATATCA	GTCAGGGTGG	ATAATTTCCA	GTATGTGGAT	660
ACAAACACTT	TCCCTCTTGA	TAATGTGCTA	TCCGTCTTCT	TATATAGTAG	CTCAGACTGA	720

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	930 base pairs
(B)	TYPE:	nucleic acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY:	linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

ATGGACCAGC	ACACACTTGA	TGTGGAGGAT	ACCGCGGATG	CCAGACATCC	AGCAGGTACT	60
				TCCTCGCGGA		120
CTCTCAGATA		CACAAATGCC	GCGCTCCCCA	CGGATGCTGC	CTACCCTGCG	180
			CCGCCTGCAC	TGAACTTCTG	TTCCCGCCAC	240
	ATGGCCTAGT	CGCTTTGGTT	TTGCTGCTTC	TGATCGCCGC	CTGTGTTCCT	300
	GCACCGAGCC	TCGGCCAGCG	CTCACAATCA	CCACCTCGCC	CAACCTGGGT	360
	ATAATGCAGA		CCTGTTTCCC	ACATTGGCTG	CCCCAACACT	420
ACACAACAGG	GCTCTCCTGT	GTTCGCCAAG			ATCGTTGTGC	480
AATACAACTC	TGAACTGGCA	CAGCCAAGAT	GGAGCTGGGA	GCTCATACCT	ATCTCAAGGT	540
CTGAGGTACG	AAGAAGACAA	AAAGGAGTTG	GTGGTAGACA	GTCCCGGGCT	CTACTACGTA	600
TTTTTGGAAC		TCCAACATTC	ACAAACACAG	GCCACAAGGT	GCAGGGCTGG	660
	TTTTGCAAGC	AAAGCCTCAG	GTAGATGACT		GGCCCTGACA	720
GTGGAACTGT	TCCCTTGCTC	CATGGAGAAC	AAGTTAGTGG		GAGTCAACTG	780
TTGCTCCTGA	AGGCTGGCCA	CCGCCTCAGT	GTGGGTCTGA		GCATGGAGCC	840
CAGGATGCAT	ACAGAGACTG	GGAGCTGTCT	TATCCCAACA	CCACCAGCTT	TGGACTCTTT	900
CTTGTGAAAC	CCGACAACCC	ATGGGAATGA				930

126

Claims

 A method of altering the immunoreactivity of human cells, which method comprising introducing a gene
 encoding an accessory molecule ligand into said cells so that said accessory molecule ligand is expressed on the surface of said cells.

- 2. The method of claim 1 wherein the accessory

 no molecule to which the accessory molecule ligand
 specifically binds is also present on the surface of said
 human cells.
- 3. The method of claim 1 wherein said human cells are neoplastic human cells.
 - 4. The method of claim 1 wherein said accessory molecule ligand gene is a chimeric gene.
- 5. The method in claim 1 wherein said accessory molecule ligand gene is present in a vector capable of transducing human cells.
- 6. The method of claim 1 wherein said accessory molecule ligand gene is present as part of a genetic vector.
- 7. The method of claim 1 wherein said accessory molecule ligand gene is operatively linked to a promoter region and a polyadenylation signal.
 - 8. The method of claim 1 wherein said gene is a CD40 ligand gene.
- 9. The method of claim 7 wherein said CD40 ligand gene is a murine CD40 ligand gene.

127

- 10. The method of claim 4 wherein said gene is a chimeric gene which comprises at least a portion of a murine CD40 ligand gene.
- comprising inserting into said human neoplastic cells a gene which encodes an accessory molecule ligand into said human neoplastic cells so that said accessory molecule ligand is expressed on the surface of said neoplastic cells.
 - 12. The method of claim 11 further comprising:
 - a) obtaining said human neoplastic cells from a human patient;
- b) infusing said human neoplastic cells after having inscrted said accessory molecule ligand on the surface of said cells back into said patient.
- 13. The method of claim 11 wherein the accessory molecule to which the said accessory molecule ligand specifically binds is present on the surface of said human neoplastic cells.
- 14. The method of claim 11 wherein said accessory molecule ligand gene is a chimeric gene.
 - 15. The method of claim 11 wherein said accessory molecule ligand gene is a chimeric gene which contains at least a portion of the murine CD40 ligand gene.
 - 16. The method of claim 11 wherein said accessory molecule ligand gene is present as part of a genetic vector.

30

35 17. The method of claim 11 wherein said accessory molecule ligand gene is operatively linked to a promoter region and a 3' end region.

128

18. The method of claim 11 wherein said accessory molecule ligand gene is a CD40 ligand gene.

- 19. The method of claim 11 wherein the said CD40 s ligand gene is a murine CD40 ligand gene.
 - 20. The method of claim 11 wherein said accessory molecule ligand gene is a Fas-ligand gene or a CD27 ligand gene.

21. The method of claim 11 wherein said accessory molecule ligand gene is present in a gene therapy vector.

10

20

22. A method of treating a neoplasia in a patient comprising injecting into the tumor bed of said patient a gene which encodes an accessory molecule ligand so that said accessory molecule ligand is expressed on the surface of said tumor cells thereby causing said cells to participate in an immune reaction.

23. A gene therapy vector containing an accessory molecule ligand gene.

- 24. The gene therapy vector of claim 23 wherein said accessory molecule gene is a CD40 ligand gene.
 - 25. The gene therapy vector of claim 23 wherein said CD40 ligand gene is a murine CD40 ligand gene.
- 26. The gene therapy vector of claim 23 wherein said CD40 ligand gene is a chimeric gene.
- 27. The gene therapy vector of claim 23 wherein said chimeric gene contains at least a portion of the murine CD40 ligand gene.

129

- 28. The gene therapy vector of claim 23 wherein at least a portion of said vector is derived from adenovirus DNA.
- 29. The gene therapy vector of claim 23 wherein said vector contains at least a promoter region and a 3' end region.
- 30. The gene therapy vector of claim 23 wherein said promoter region and said 3' end region are not derived from the same species from which the CD40 ligand gene is derived.
- 31. The gene therapy vector of claim 23 wherein said portion of said vector is derived from viral DNA.
 - 32. The gene therapy vector of claim 23 wherein at least a portion of said vector is derived from a retrovirus.

- 33. The gene therapy vector of claim 23 wherein said vector is capable of transducing human cells.
- 34. The gene therapy vector of claim 23 wherein said vector is capable of transducing animal cells.
 - 35. The gene therapy vector of claim 23 wherein said human cells are human neoplastic cells.
- 36. The gene therapy vector of claim 23 wherein said human cells are human antigen presenting cells.
- 37. A genetic construct containing a promoter operatively linked to an accessory molecule ligand gene which is also operatively linked to a polyadenylation signal.

130

- 38. A genetic construct in which a promoter is operatively linked to a chimeric accessory molecule ligand gene and a polyadenylation signal.
- 39. A gene therapy vector containing a chimeric accessory molecule ligand gene.
- 40. The gene therapy vector of claim 39 wherein said chimeric accessory molecule ligand gene contains at least one gene segment derived from a murine CD40 ligand gene and other gene segments derived from other accessory molecule genes.
- 41. The gene therapy vector of claim 39 wherein said other accessory molecule ligand genes are human accessory molecule ligand genes.
- 42. The gene therapy vector of claim 39 wherein said human accessory molecule ligand genes are human CD40 ligand genes.
 - 43. A human cell containing the gene therapy vector of claims 23-36 or 39-42 or the genetic construct of claims 37-38.
 - 44. The human cell of claim 43 wherein said cell is an antigen presenting cell.
- 45. The human cell of claim 43 wherein said human cell is a neoplastic cell.

- 46. The human cell of claim 43 wherein said cell is an accessory cell.
- 47. An animal cell containing the gene therapy vector or genetic construct of claims 23-43.

WO 98/26061

131

- 48. An insect cell containing the gene therapy vector or genetic construct of claims 23-43.
- 49. A bacterial cell containing the gene therapy vector or genetic construct of claims 23-43.
- 50. A method of vaccinating an animal against a predetermined organism comprising: administering into an animal to be immunized against a predetermined organism, a vaccine comprising immunogenic antigens capable of causing an immune response to said predetermined organism together with a vector containing a gene including an accessory molecule ligand.
- 15 51. The method of claim 50 wherein said immunogenic antigens are encoded by genes present on a genetic vector.
- 52. The method of claim 50 wherein said gene is a chimeric gene.
 - 53. The method of claim 50 wherein said chimeric gene contains at least a portion of a murine CD40 ligand gene.

25

54. The method of claim 50 wherein said chimeric gene contains at least a segment of a murine CD40 ligand gene and at least a segment of a different accessory molecule gene.

- 55. The method of claim 50 wherein said predetermined organism is a virus, a bacteria, a fungus or a neoplastic cell.
- 35 56. A method of producing an immune response directed to a predetermined antigen comprising: administering to said animal a genetic vector containing

132

a gene encoding the antigen to which said immune response is desired together with a genetic vector containing a gene encoding an accessory molecule ligand gene.

5 57. A chimeric accessory molecule ligand gene comprising at least one domain or sub-domain gene segment derived from a first accessory molecule ligand gene operatively linked to the domain or sub-domain gene segment of a second accessory molecule ligand gene.

58. The chimeric accessory molecule ligand gene of claim 57 in which said first and second accessory molecule ligand genes are selected from the group consisting of the genes from any species encoding a member of the tumor necrosis family, CD40-ligand, Fasligand, CD70, TNF_{α} , TNF_{β} , CD30 ligand, 4-1BB ligand (4-1BBL), TNF-related apoptosis inducing ligand (TRAIL) and nerve growth factor.

- 59. The chimeric accessory molecule ligand gene of claim 57 in which at least one of said domain or subdomain gene segments is an artificial gene segment.
- 60. The chimeric accessory molecule encoded by the genes of claims 57-59.
- 61. A chimeric accessory molecule ligand gene comprising at least a portion of the gene encoding Domains I and II derived from an accessory molecule ligand operatively linked to at least a portion of the gene encoding a Domain of an accessory molecule ligand which in turn is operatively linked to at least a portion of the gene encoding Domain IV of an accessory molecule ligand.

133

- 62. The chimeric accessory molecule ligand gene of claim 61 wherein said Domains I and II are derived from the human CD40 ligand gene.
- 5 63. The chimeric accessory molecule ligand gene of claim 61 wherein said Domain IV is the human Fas-ligand Domain IV.
- 64. The chimeric accessory molecule ligand gene of claim 61 wherein said Domain is Domain III of another accessory molecule ligand.
- 65. The chimeric accessory molecule ligand gene of claim 61 wherein said Domain is a domain from the same accessory molecule ligand.
 - 66. The chimeric accessory molecule ligand gene of claim 61 wherein said Domain is an artificial domain.
- 20 67. The method of claim 4 wherein said chimeric gene is a gene of claims 57-60.
- 68. The method of claim 11 wherein said accessory molecule ligand gene is a chimeric accessory molecule ligand gene of claims 57-60.
 - 69. The gene therapy vector of claim 23 wherein said chimeric gene is a chimeric accessory molecule ligand gene of claims 57-60.

30

70. A method of treating rheumatoid arthritis in a joint comprising inserting into the joint a vector containing a gene which encodes an accessory molecule ligand so that said accessory molecule ligand is expressed on the surface of cells within the joint.

134

71. The method of claim 70 wherein said accessory molecule ligand gene is a chimeric accessory molecule ligand gene which is comprised of at least a portion of a human Fas-ligand gene.

5

72. The method of claim 70 wherein said accessory molecule ligand gene is a chimeric accessory molecule ligand gene which contains at least a portion of the murine Fas-ligand gene.

- 73. The method of claim 70 wherein said accessory molecule ligand gene is a murine Fas-ligand gene.
- 74. The method of claim 70 wherein said accessory molecule ligand gene is the murine Fas-ligand gene.
- 75. The method of claim 70 wherein said accessory molecule ligand gene is a chimeric accessory molecule gene comprised of at least a portion of domain III from the murine Fas-ligand gene and a portion of domain IV from the human Fas-ligand gene.
 - 76. The method of claim 70 wherein said accessory molecule ligand gene is a chimeric accessory molecule ligand gene comprised of a portion of domain III of the human CD70 gene and at least a portion of domain IV of the human Fas-ligand gene.
- 77. A method of treating rheumatoid arthritis in a joint comprising inserting into the joint cells which have been transformed with a gene which encodes on accessory molecule ligand which is expressed on the surface of said cells.
- 78. A chimeric accessory molecule ligand comprised of at least a portion of the fourth domain of human Fasligand.

- 79. A chimeric accessory molecule ligand derived from a Fas-ligand in which at least one matrix metalloproteinase cleavage site has been removed.
- 80. A chimeric accessory molecule ligand comprised of domain III of the Murine Fas-ligand or the human CD70 gene, and domain IV of the human Fas-ligand.
- 81. A gene therapy vector containing a gene encoding chimeric accessory molecule of claims 78-80.
 - 82. A cell containing a gene therapy vector of claim 81.
- 15 83. A method of altering the immunoreactivity of human cells, which method comprising introducing a gene encoding an accessory molecule ligand which has a stabilized activity into said cells so that said accessory molecule ligand is expressed on the surface of said cells.

<u>DOMAINS</u>: I - Cytoplasmic Domain; II - Transmembrane Domain; III - Proximal Extracellular Domain; IV - Distal Extracellular Domain (putative soluble form)

Figure 1

Figure 2

Figure 3

4/30

Figure 4

Allogenic T cell response to CLL cells transfected with adeno-mCD40L

Figure 5

Production of IFNy by allogenic T lymphocytes stimulated with CLL B cells

Figure 6

7/30

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 15

Figure 16

Figure 17

WO 98/26061 PCT/US97/22740

Figure 18

WO 98/26061

PCT/US97/22740

Figure 19

Figure 20

A427 Lung CA (CD40-)

 $\mathbf{\omega}$

OT IOM

VALCOAOL

Admico40L

IOM SOLDA 0 f

HON

YOP CO FOR

I IOW

VAMCD40

AGLACZ MOH

And B

CD40L Expression

igure 21

A

В

Figure 22

RA SYNOVIAL FLUID AND PLASMA INHIBITION OF FAS-LIGAND

Figure 23

Figure 24

1	MOOPFNYPYPOIYWVDSSASSPWAPPGTVLPCPTSVPRRPGQRRPPPPPPP	50
1	MOOPFNYPYPOLYWVDSSASSPWAPPGTVLPCPT6VPRRPGQRRPPPPPPP	50
٠.		
21	PPPLPPPPPPPPPLPLPLPPLKKRGNHSTGLCLLVMPFMVLVALVGLGLG	100
51	PPPLPPPPPPPLPPLPPLEXKRGNSTGLCLLVMFFMVLVALVGLGLG	
J1	ELLINESEELEPENEENEENEENEENEENEENEENEENEENEENEENEEN	100
101	MFQLFHLOKELAELRESTSCMPTASSLERQIGHPSPPPEXXELRXVAHLT	1 = 1
•		130
101	MFOLFHLOKELAELREFTNOSLKVSSFEROIGHPSPPPEKKELRKVAHLT	100
	The state of the s	130
151	GKSNSRSMPLEWEDTYGIVLLSGVKYKRGGLVINETGLYFVYSKVYFRGQ	200
	- 1 1 1 1 7 1 1 1 1 1	
151	GKSNSRSMPLEWEDTYGIVLLSGVKYKRGGLVINETGLYFVYSKVYFRGQ	200
Z01	SCHNLPLSHKYYMRNSKYPODLVIMEGKAMSYCTTGOMWARSSYLGAVFN	250
201		
201	SCHNLPLSHKVYMRNSKYPODLVMMEGKMSYCTTGQMHARSSYLGAVFN	250
251	LTSADHLYVNVSELSLVNFBESQTFFGLYKL 281	
251	LTSADHLYVNVSELSLVNFEESQTPFGLYRL 281	

1	MOOPFNYPYPOIYWVDSASSPWAPPOIVLPCPTSVPRRPGQRRPPPPPPP	50
	MOOPFNYPYPOIYWVDSSASSPWAPPGTVLPCPTSVFRRPGQRRPPPPPP	50
1	MOODENADADOLAMADARARRAMANAGAADACALRAMAGAAGACALLALA	30
51	PPPLPPPPPPPPPPLPPLPPLKKRCNHSTGLCLLVMFFMVLVALVGLGLG	100
51	PPPLPPPPPPPPPLPLPPLPLKKRGNISTGLCLLVMFFMVLVALVGLGLG	100
	MFQLFHLQKELABLRESTSQMHTASSLEXQIGHPSPPPEKKELRKVAHLA	150
FOT		
	MFQLFR FAQAIGHPSPPPEKKELRKVAHLT	130
151	GKSNSRSMPLEWEDTYGIVLLSGVKYKKGGLVINETGLYFVYSKVYFRGQ	200
		200
131	GKSNSRSHPLEWEDTYGIVLLSGVKYKKGGLVINETGLYFVYSKVYFRGQ	100
201	SCHULPLSHKVYMRNSKYPODLVMMEGKMMSYCTTGOMMARSSYLGAVFN	250
181	SCHNLPLSHKVYMRNSKYPQDLVMYEGKMSYCTTGQFFARSSYLGAVFN	230
161	LTSADHLYVNVSELSLVNFEBSOTFFGLYKL 281	
421		
231	LISADHLYVNVSBLSLVNFEESQTPFGLYKL 261	

1	HOOPFNYPYPOIYWVDSSASSPWAPPGTVLPCPTSVPRRPGORRPPPPPPP	50
1	MOQPFNYPYPOIYWVDSSASSPWAPPGTVLPCPTSVFRRPGQRRPPPPPPP	50
51	PPPLPPPPPPPPPPLPLPLPRRCHSTGLCLLVMFFMVLVALVGLGLG	100
	PPPLPPPPPPPPLPPLPLPPLKKRINESTGLCLLWAFFWILVALVGLGLG	
101	MFOLFHLOKELAELRESTSOMHTASSLEKOOLGHPSPPPEKKELRKVAHL	150
101	MFOLP. MPEEGSCCSVRRRPYGCYLRIGHPSPPPERKELRKVAHLT	145
151	GRSNSRSMFLEWEDTYGIVLLSGVKYKKGGLVINETGLYFVYSKVYFRGO	200
146	CKSNSRSMPLEWEDTYGIVILSGVKYKKGGLVINETGLYFVYSKVYFRGQ	195
201	SCHNLPLSHKVYMRNSKYPODLVMÆGKØMSYCTTGGMÄRSSYLGAVFN	250
196	SCHULPLSHKVYMRNSKYPQDLVMÆGKMSYCTTGQMWARSSYLGAVFN	245
	LITSADHLYVNVSELSLVNFEESOTFTGLYKL 281	
246	LITEADHLYVNVSELSLYNFEESQIFFGLYKL 276	

Matrix Metalloproteinase Cleavage Sites

		č	•				-
		Cieavage •					
۵,	o.	a.	مـ	à	, <u>,</u>	à	ā.
Collagen	ases						
MMP-1 Inter	ᅑ	itial Collagenase					
₫*	ລັ	~ "	a T	à	P.	è	à
Ala	P 0	Leu	S G	Met	Arg	Met/Ala	. Ag
Gly/Leu	Leu	Met/Tyr	His	Leu	Leu	G.	Evs Lvs
Met	Ala	Val/Gly	Olu	lle	Phe	Val	S. S
Glu	Asp	₽	Tyr	g	π	Ser	Ie.
Pro	Ser	Gln/Arg	Ala	Pro	Olc	ng O	<u>}</u>
7 .	Gľu	Asp	Phe	Phe	Ala	Phe	Ser
<u> </u>	Gly	Olu Glu	G	Ala	Val/Gly	Ard	<u> </u>
Thr	Arg	Ala	Asn	Tyr/Val	Ser	Pro	
Arg				[not K,E,W]	Asn	!	28/30
MMP-8	Neutrophil	Neutrophil Collagenase					
₫.	۵,	a ²	ፈ	ġ.	P,	ğ	ā.
Ala	٩ 9	ren	공	ž	Ala	<u>چ</u> د	γων
Gly/Leu	Leu	Gin	Gly/His	<u>=</u>	Leu	Met	<u> </u>
Wet			Ma	Leu	Тър	Ala	
P G				- Ag			
Tyr/lle/Thr//	Tyr/lle/Thr/Arg (otherwise same as MMP-1)	2. 1)	Ala	<u>=</u>			
		-					

Figure 28A

WO 98/26061			PCT/US97/22740
P.' Gln Arg His Pro	29. 点 声	/30 2 ≟ & &	Ala
P', Gly/Ala Leu Ser Pro	P's Ala Leu Ser Gly	P's Ala Arg/Met Gly Val/ile	Ser/Asn Glu/Thr Leu
P., Ala/Leu Phe/Trp Gly Arg/Gln His	P' ₂ Glu Ala/Leu/Phe Trp/Gly	P', Arg Leu/Phe Trp Val	Gln His/Met Glu∕Ser/∏hr
P' ₁ Leu Ile/Phe Val/Met Ala Glu Glu/Asn Ser	P' ₁ Leu Ile/Phe Val/Met Ala	P*, Leu Phe Trp/Tyr Ile	Val Met Glu
P, Asn Ala His Leu Tyr	T Q	P., Glu Ala Gln/Phe Asn	His Gly Leu/Pro Lys/Tyr/Arg
P. Arg Chn Ala Lys His	P Arg Arg Gin	P ₂ Phe Leu/Met Tyr Pro/Gly/Glu	lle Ala Ser

Stromelysins

MMP-3 Stromelysin 1

P₄

P₃

Pro
Ala

Gelatinase A P₃ Pro Ala Arg

Gelatinases

MMP-2 Gela
P4 P
Giy P1
Ile A7
Pro A
Arg

Gelatinase B P₃ Pro

MMP-9 P. Gln/Arg

Figure 28B

Ser/Gly

Arg Ser/Lys/Phe Pro/Met S Ala/Phe/Gin

Thr Phe Arg

<u>F</u> <u>a</u>

P4 Asp Gly Gln/Arg Leu Ile Glu/Val Leu Lys

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ______

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.