a good diffractogram. In other minerals that are ispar (belonging to the race of concrete).

ntration were located for on purity. The reaction iffractometer, Geigerflex Kv, 20 mA. Additionally, in order to determine the

ered by alkali-aggregate oncentration of material e highly fissured. The th a mineral that was tical properties (low fractive indices, between tive clasts, are randomly perpendicularly to the the quartz clasts with N° 3).

rograph N° 4: an external d, and an internal zone,

e, by picking under the the ten available thin in a glass slide. Table I e quartz ones, those

tructural formula similar stem. The corresponding

: N° 5 and N° 6) where the .nic system, can be seen.

imits for zeolite by XRD, 5, 5 %, and 10 % of a ite was used in this case, N° II). The results with in Table N° II and figure

rege reflection (8.95 Å, 20 responds to quartz and lections, besides those of B3), zeolite is clearly ted under the microscope inoptilolite to a concrete taken into account.

PHOTOMICROGRAPH Nº 1

PHOTOMICROGRAPH Nº 2

PHOTOMICROGRAPH Nº 3

PHOTOMICROGRAPH Nº 4

PHOTOMICROGRAPH Nº 5

PHOTOMICROGRAPH Nº 6

Clinoptilolite JCPDS 39 - 1383			Zeolite concrete *		
d A	I/I.	hk1	A b	1/12	
8.95	100	020	9.03	29	
7.93	13	200	-	-	
6.78	9	201	6.78	9	
5.24	10	311	-	-	
	12	111	5.14	12	
5.12	19	131	4.66	13	
4.65	5	401	4.262	30 Q	
4.35	61	131	-	-	
3.976	63	400	3.959	19	
3.955	48	240	3.910	17	
3.905	9	312	3.570	16	
3.554	18	222	-	-	
3.424	12	402	3.343	100 Q	
3.392	16	422	_	-	
3.170	15	441	· · · · ·	-	
3.120	18	351	-	-	
2.998	47	151	2.976	15	
2.971	16	530	2.794	12	
2.795	16	530	-	-	
2.730 2.458	3	641	2.450	11 Q	
4.430	_	_	1.982	10 Q	
· •	1 - 1	- 1	1.820	12 Q	

* Isolated by picking under the microscope

q = Quartz

Conclusions

- The product of alkali-aggregate reaction of the studied concrete corresponds to a zeolite of the heulandite group: clinoptilolite.
- The XRD method allows a clear identification of the reaction products, provided a high degree of purity is achieved when isolated from concrete, although the use of the petrographic microscope furnishes excellent results.
- 3. Isolation by using thin sections is the safer concentration method, the material being contaminated only by the minerals of the maggregate. For the identification of the zeolite, 10 mg of sample proves to be enough.
- 4. The minimum opercentage detectable by NRD for the reaction products studied is approximately 5 %.

Q = Quar C1 = Cli

ied concrete

on products, om concrete, as excellent

method, the sate. For the ough.

tucts studied

Concrete with the addition of 1 % of zeolite		Concrete with the addition of 5 % of zeolite		Concrete with the addition of 10 % of zeolite			
d A	I/I ₁	d A	1/12	A b	I/I ₁	A b	I/I ₂
8.95 	11 - - - - - - - - 100 - - - - - - - - - - - - -	9.02 - - 4.67 4.2670 4.04 3.859 - 3.477 3.3500 3.323F 3.187F 3.127 3.067 - - 2.779 2.730	18 10 21 15 13 - 12 100 15 37 13 15 - 12 12 12	8.98 6.77 - 5.13 - 4.263Q 3.975 3.899 3.860 3.567 3.517 3.347Q 3.311F 3.189F 3.126 3.042 3.006 2.968 2.788 2.731	23 9 - 10 - 23 14 15 13 11 11 100 14 37 14 30 18 15 13 13	8.97 6.80 5.25 5.12 4.66 4.358 3.989 3.959 3.912 3.556 3.427 3.395 - 3.174 3.125 - 2.997 2.979 2.801 2.734	100 6 6 9 12 5 27 24 20 7 15 10 - 12 9 - 14 20 13 8
2.456	13	2.460 2.099	15 12	2.458	15	2.448	-

F = Feldspar

References

S. A. Marfil and P.J. Maiza. Mineralogía de los productos formados en hormigones deteriorados por la reacción álcali-agregado. Primer Congreso Uruguayo de Geología. Tomo I Pp. 149-153. Montevideo. Uruguay.

The role to those who ow provides excelle alkalinity and tl access of aggrecommon cause of

e

WW-0540/

CHLORI: IN TE

15

3 Dep

ABSTRACT