

<u>Home</u>

Maths

Roots of Polynomials

Roots of Polynomials

This question is about manipulation of the roots of two polynomials.

$$x^2 + kx + 2k = 0$$

has the roots α and β , while

$$x^3 + 4x + 3 = 0$$

has the roots α' , β' and γ' . Take $k \neq 0$.

Part A Roots of the quadratic

Find a quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

The following symbols may be useful: $k\,\text{,}\ \ x$

Part B Substitution

Starting from the cubic equation above, use the substitution $x=\sqrt{u}$ to obtain a cubic equation in u.

The following symbols may be useful: \boldsymbol{u}

Part C Roots of the cubic

Find an expression for ${\alpha'}^4 + {\beta'}^4 + {\gamma'}^4 + {\alpha'}{\beta'}{\gamma'}$.

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 8 and June 2015, Paper 4725, Question 10.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

<u>Home</u>

Maths

s Vectors

Vectors

The vector $\mathbf{u} = \frac{3}{13}\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is perpendicular to the vector $\mathbf{v} = 4\mathbf{i} + \mathbf{k}$ and to the vector $\mathbf{w} = 4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$.

Part A c

Find c as a single rational fraction.

The following symbols may be useful: c

Part B b

Find b in exact form.

The following symbols may be useful: b

Part C $|\mathbf{u}|$

Find $|\mathbf{u}|$.

Part D Angle between v and w

Calculate, to the nearest degree, the angle between ${\bf v}$ and ${\bf w}.$

Part E n

Find a unit vector $\mathbf n$ in the direction of the common perpendicular to the vectors $(3\mathbf i-2\mathbf j+2\mathbf k)$ and $(-\mathbf i+3\mathbf j-5\mathbf k)$. Take $\mathbf n$ to have positive x,y and z.

Find the x component of $\mathbf n$ as a single fraction.

The following symbols may be useful: x

Find the y component of \mathbf{n} as a single fraction.

The following symbols may be useful: y

Find the z component of ${\bf n}$ as a single fraction.

The following symbols may be useful: z

Part F Two lines

Determine whether the lines described by

$$\mathbf{r}_1 = (1+2\lambda)\mathbf{i} - \lambda\mathbf{j} + (3+5\lambda)\mathbf{k}$$

and

$$\mathbf{r}_2 = (\mu - 1)\mathbf{i} - (5 - \mu)\mathbf{j} + (2 - 5\mu)\mathbf{k}$$

are parallel, intersect or are skew.

Skew

Parallel

Intersect

Adapted with permission from UCLES, A Level, June 2009, Paper 4724, Question 7, UCLES, A Level, Jan 2012, Paper 4724, Question 3 and Sally Waugh.

<u>Home</u>

Maths

Sequences

Sequences

The sequence u_1 , u_2 , u_3 . . . is defined by $u_1=3$ and $u_{n+1}=3u_n-2$ for $n\geq 1$.

Part A u_2 and u_3

Find u_2 .

The following symbols may be useful: u_2

Find u_3 .

The following symbols may be useful: u_3

Part B $\frac{1}{2}(u_4-1)$

Find $\frac{1}{2}(u_4-1)$.

Part C u_n

Hence, find an expression for u_n and prove it with induction.

The following symbols may be useful: n, u_n

Part D Divisibility

Prove by induction that 5^n-2^n is divisible by 3 for all integers $n\geq 1$.

Adapted with permission from UCLES, A Level, June 2009, Paper 4725, Question 10.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.