Chapter 6

下推自动机

6.1 下推自动机

下推自动机是可以看作带有堆栈的 ε -NFA. 工作方式类似 ε -NFA, 有一个有穷控制器, 并能够以非确定的方式进行状态转移, 并读入输入字符; 增加的堆栈, 用来存储无限的信息, 但只能以后进先出的方式使用.

$$\varepsilon$$
-NFA + 桟 = PDA

 ε -NFA: 有限状态, 非确定, ε 转移

栈:后进先出,只用栈顶,长度无限

• pop: 仅弹出栈顶的一个符号

• push: 可压入一串符号

6.1.1 形式定义

定义. 下推自动机 (PDA, Pushdown Automata) P 为七元组

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- 1. Q, 有穷状态集;
- $2. \Sigma$, 有穷输入符号集 (即字母表);
- $3. \Gamma$,有穷栈符号集 (或栈字母表);
- 4. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$, 状态转移函数;

- $5. q_0 \in Q$, 初始状态;
- 6. $Z_0 \in \Gamma \Sigma$, 栈底符号, PDA 开始时, 栈中包含这个符号的一个实例, 用来表示栈底, 最初的栈底符号之下无任何内容;
- 7. $F \subseteq Q$, 接收状态集或终态集.

PDA 的动作和状态转移图

如果 $q, p_i \in Q$ $(1 \le i \le m), a \in \Sigma, Z \in \Gamma, \beta_i \in \Gamma^*,$ 可以有动作:

如果 q 和 p_i 是状态 $(1 \le i \le m)$, 输入符号 $a \in \Sigma$, 栈符号 $Z \in \Gamma$, 栈符号串 $\beta_i \in \Gamma^*$, 那么

$$\delta(q, a, Z) = \{(p_1, \beta_1), (p_2, \beta_2), \cdots, (p_m, \beta_m)\}\$$

的意思是: 输入符号是 a, 栈顶符号 Z 的情况下, 处于状态 q 的 PDA 能够进入状态 p_i , 且用符号串 β_i 替换栈顶的符号 Z, 这里的 i 是任意的, 然后输入头前进一个符号. (约定 β_i 的最左符号在栈最上.) 但是若 $i \neq j$, 不能同时选择 p_i 和 β_i . 而

$$\delta(q,\varepsilon,Z) = \{(p_1,\beta_1), (p_2,\beta_2), \cdots, (p_m,\beta_m)\}\$$

的意思是:与扫描的输入符号无关,只要 Z 是栈符号,处于状态 q 的 PDA,就可以进行上面的动作,输入头不移动.

例 1. 设计识别 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA.

$$0,0/00$$

$$0,Z_0/0Z_0 \qquad 1,0/\varepsilon$$

$$0,0/0Z_0 \qquad 1,0/\varepsilon \qquad Q_1 \qquad (Q_1) \qquad (Q_2)$$
start $Q_0 \qquad Q_1 \qquad Q_2 \qquad Q_2 \qquad Q_2 \qquad Q_2 \qquad Q_3 \qquad Q_4 \qquad Q_5 \qquad$

例 2. 设计识别 $L_{wwr} = \{ww^R \mid w \in (0+1)^*\}$ 的 PDA.

$$0,0/00 \qquad 0,1/01$$

$$1,0/10 \qquad 1,1/11 \qquad 0,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,Z_0/1Z_0 \qquad 1,1/\varepsilon$$

$$\text{start} \xrightarrow{Q_0} \xrightarrow{\varepsilon,Z_0/Z_0} \xrightarrow{\varphi_1} \xrightarrow{\varepsilon,Z_0/Z_0} \xrightarrow{\varphi_2}$$

$$\varepsilon,1/1$$

- 1. 初始状态 q_0 , 栈顶 Z_0 , 无论输入 0 或 1 都直接压栈;
- 2. 继续压栈状态 q_0 ,则对不同输入 (0/1) 和不同栈顶 (0/1),都直接压栈;
- 3. 非确定的转到弹栈状态 q_1 , 不论栈顶是 Z_0 , 0, 或 1, 开始匹配后半部分;
- 4. 保持弹栈状态 q_1 , 弹出的栈顶符号必须和输入一致;
- 5. 扫描到串结尾且只有看到栈底符号了, 才允许转移到接受状态 q_2 .

6.1.2 瞬时描述和转移符号

定义. 为形式描述 PDA 在一个给定瞬间的格局 (Configuration), 定义 $Q \times \Sigma^* \times \Gamma^*$ 中三元组

$$(q, w, \gamma)$$

为瞬时描述 (ID, Instantaneous Description), 表示此时 PDA 处于状态 q, 输入带上剩余输入 串 w, 栈中的符号串为 γ .

定义. 在 PDA P 中如果 $(p,\beta) \in \delta(q,a,Z)$, 由 $(q,aw,Z\alpha)$ 到 $(p,w,\beta\alpha)$ 的变化, 称为 ID 的转移 \vdash_P , 记为

$$(q, aw, Z\alpha) \vdash_{\mathbb{P}} (p, w, \beta\alpha)$$

其中 $w \in \Sigma^*$, $\alpha \in \Gamma^*$.

若有 IDI, J 和 K, 递归定义 * 为:

- 1. $I \vdash_{P}^{*} I$;
- 2. 若 I ト J, J ト K, 则 I ト K.

若 P 已知, 可省略, 记为 \vdash 和 \vdash *.

续例 1. 语言 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA, 识别 0011 时的 ID 序列.

$$0,0/00$$

$$0,Z_0/0Z_0 \qquad 1,0/\varepsilon$$
start $q_0 \qquad q_1 \qquad q_1 \qquad q_2$

定理 23. 对 $\forall w \in \Sigma^*, \forall \gamma \in \Gamma^*,$ 如果

$$(q, x, \alpha) \vdash_{P}^{*} (p, y, \beta),$$

那么

$$(q, xw, \alpha\gamma) \vdash_{\mathbb{P}}^{*} (p, yw, \beta\gamma).$$

定理 24. 对 $\forall w \in \Sigma^*$, 如果

$$(q, xw, \alpha) \vdash_{P}^{*} (p, yw, \beta),$$

那么

$$(q, x, \alpha) \vdash_{\!\scriptscriptstyle P}^* (p, y, \beta).$$

6.2 下推自动机接受的语言

定义. PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, 以两种方式接受语言:

• P 以终态方式接受的语言, 记为L(P), 定义为

$$\mathbf{L}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \gamma), \ p \in F \}.$$

• P 以空栈方式接受的语言, 记为N(P), 定义为

$$\mathbf{N}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon) \}.$$

续例 2. 识别 L_{wwr} 的 PDA P, 从终态方式接受, 改为空栈方式接受.

用
$$\delta(q_1, \varepsilon, Z_0) = \{(q_1, \varepsilon)\}$$
 代替 $\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$ 即可.

$$0,0/00 \qquad 0,1/01 \qquad 0,0/\varepsilon$$

$$1,0/10 \qquad 1,1/11 \qquad 1,1/\varepsilon$$

$$0,Z_0/0Z_0 \quad 1,Z_0/1Z_0 \qquad \varepsilon,Z_0/\varepsilon$$

$$\cot \xrightarrow{Q_0} \begin{array}{c} \varepsilon,Z_0/Z_0 \\ \varepsilon,0/0 \\ \varepsilon,1/1 \end{array} \xrightarrow{Q_1} \begin{array}{c} 0,0/\varepsilon \\ 1,1/\varepsilon \\ \varepsilon,Z_0/\varepsilon \end{array}$$

6.2.1 从终态方式到空栈方式

定理 25. 如果 PDA P_F 以终态方式接受语言 L, 那么一定存在 PDA P_N 以空栈方式接受 L.

证明: 设 $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, 构造 PDA P_N ,

$$P_N = (Q \cup \{p_0, p\}, \ \Sigma, \ \Gamma \cup \{X_0\}, \ \delta_N, \ p_0, \ X_0, \ \varnothing).$$

其中 δ_N 定义如下:

1. P_N 首先将 P_F 的栈底符号压栈, 开始模拟 P_F :

$$\delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\};$$

2. P_N 模拟 P_F 的动作: $\forall q \in Q, \forall a \in \Sigma \cup \{\varepsilon\}, \forall Y \in \Gamma$:

$$\delta_N(q,a,Y)$$
 包含 $\delta_F(q,a,Y)$ 的全部元素;

3. 从 $q_f \in F$ 开始弹出栈中符号, 即 $\forall q_f \in F, \forall Y \in \Gamma \cup \{X_0\}$:

$$\delta_N(q_f,\varepsilon,Y)$$
 包含 (p,ε) ;

4. 在状态 p 时, 弹出全部栈中符号, 即 $\forall Y \in \Gamma \cup \{X_0\}$:

$$\delta_N(p,\varepsilon,Y) = \{(p,\varepsilon)\}.$$

 $対 \forall w \in \Sigma^*$ 有

$$w \in \mathbf{L}(P_{F}) \Rightarrow (q_{0}, w, Z_{0}) \stackrel{*}{\vdash}_{P_{F}} (q_{f}, \varepsilon, \gamma)$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\vdash}_{P_{F}} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\vdash}_{P_{F}} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\vdash}_{P_{N}} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{N}} (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\vdash}_{P_{N}} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \stackrel{*}{\vdash}_{P_{N}} (q_{f}, \varepsilon, \gamma X_{0}) \stackrel{*}{\vdash}_{P_{N}} (p, \varepsilon, \varepsilon)$$

$$\Rightarrow w \in \mathbf{N}(P_{N})$$

$$\varepsilon 23$$

$$P_{N} \notin \mathbb{N}P_{F}$$

$$\delta_{N} \notin \mathbb{N}P_{F}$$

$$\delta_{N} \notin \mathbb{N}P_{F}$$

$$\delta_{N} \notin \mathbb{N}P_{F}$$

即 $\mathbf{L}(P_F) \subseteq \mathbf{N}(P_N)$.

对 $\forall w \in \Sigma^*$ 有

即 $\mathbf{N}(P_N) \subseteq \mathbf{L}(P_F)$.

所以
$$\mathbf{N}(P_N) = \mathbf{L}(P_F)$$
.

6.2.2 从空栈方式到终态方式

定理 26. 如果 PDA P_N 以空栈方式接受语言 L, 那么一定存在 PDA P_F 以终态方式接受 L.

证明: 设
$$P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, \varnothing)$$
. 构造 PDA P_F ,
$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

其中 δ_F 定义如下:

1. P_F 开始时, 将 P_N 栈底符号压入栈, 并开始模拟 P_N ,

$$\delta_F(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\};$$

2. P_F 模拟 P_N , $\forall q \in Q$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall Y \in \Gamma$:

$$\delta_F(q, a, Y) = \delta_N(q, a, Y);$$

3. 在 $\forall q \in Q$ 时, 看到 P_F 的栈底 X_0 , 则转移到新终态 p_f :

$$\delta_F(q,\varepsilon,X_0) = \{(p_f,\varepsilon)\}.$$

对 $\forall w \in \Sigma^*$ 有

$$w \in \mathbf{N}(P_{N}) \Rightarrow (q_{0}, w, Z_{0}) \vdash_{P_{N}}^{*} (q, \varepsilon, \varepsilon)$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \vdash_{P_{N}}^{*} (q, \varepsilon, X_{0})$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}} (q_{0}, w, Z_{0}X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0}) \vdash_{P_{F}} (p_{f}, \varepsilon, \varepsilon)$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0}) \vdash_{P_{F}} (p_{f}, \varepsilon, \varepsilon)$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}}^{*} (p_{f}, \varepsilon, \varepsilon)$$

$$\Rightarrow w \in \mathbf{L}(P_{F})$$

$$\varepsilon \mathbb{E}^{23}$$

$$\delta_{F} \not = 0$$

$$\delta_{F} \not= 0$$

$$\delta_{F} \not= 0$$

$$\delta_{F} \not= 0$$

即 $\mathbf{N}(P_N)$ ⊆ $\mathbf{L}(P_F)$.

 $対 \forall w \in \Sigma^*$ 有

即 $\mathbf{N}(P_F)$ ⊆ $\mathbf{L}(P_N)$.

所以
$$\mathbf{L}(P_F) = \mathbf{N}(P_N)$$
.

例 3. 接受 $L = \{w \in \{0,1\}^* \mid w \text{ 中字符 } 0 \text{ 和 } 1 \text{ 的数量相同} \}$ 的 PDA.

$$0, Z_0/0Z_0$$
 $1, 0/10$ $0, 0/00$
 $1, Z_0/1Z_0$ $1, 1/11$ $0, 1/01$
 $\varepsilon, Z_0/\varepsilon$ $1, 0/\varepsilon$ $0, 1/\varepsilon$
start \longrightarrow

例 4. 接受 $L = \{0^n 1^m \mid 0 \le n \le m \le 2n\}$ 的 PDA.

- 例. Design PDA for $L = \{a^i b^j c^k \mid i, j, k \ge 0, i = j \text{ or } j = k\}.$
- 例. Design PDA for the set of strings of 0's and 1's such that no prefix has more 1's than 0's.

6.3 下推自动机与文法的等价性

6.3.1 由 CFG 到 PDA

例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 PDA.

$$0, Z_0/Z_0$$

$$0, Z_0/Z_0 1$$

$$0, Z_0/0Z_0 \quad \varepsilon, 0/\varepsilon$$

$$0, 0/00 \quad 1, 0/\varepsilon$$

$$0, 0/00 \quad 1, 0/\varepsilon$$

$$0, 0/00 \quad 1, 0/\varepsilon$$

$$0, 0/00 \quad 0, 0/00$$

$$0, 0/00 \quad 0, 0/0$$

CFG G:

$$S \rightarrow AB$$

$$A \rightarrow 0A \mid \varepsilon$$

$$B \rightarrow 0B1 \mid 01$$

字符串 00011 的最左派生:

$$S \underset{\overline{\mathrm{lm}}}{\Rightarrow} AB \underset{\overline{\mathrm{lm}}}{\Rightarrow} 0AB \underset{\overline{\mathrm{lm}}}{\Rightarrow} 0B \underset{\overline{\mathrm{lm}}}{\Rightarrow} 00B1 \underset{\overline{\mathrm{lm}}}{\Rightarrow} 00011$$

用 PDA 栈顶符号的替换, 模拟文法的最左派生:

PDA				CFG	
PDA 的 ID 转移			PDA 的动作	产生式	最左派生
q_0	00011,	S)			S
$\vdash (q_0,$	00011,	AB)	$\varepsilon, S/AB$	$S \to AB$	$\Rightarrow AB$
$\vdash (q_0,$	00011,	0AB)	$\varepsilon, A/0A$	$A \to 0A$	$\Rightarrow 0AB$
$\vdash (q_0,$	0011,	AB)	$0,0/\varepsilon$		
$\vdash (q_0,$	0011,	B)	$\varepsilon, A/\varepsilon$	$A \to \varepsilon$	$\Rightarrow 0B$
$\vdash (q_0,$	0011,	0B1)	$\varepsilon, B/0B1$	$B \to 0B1$	$\Rightarrow 00B1$
$\vdash (q_0,$	011,	B1)	$0,0/\varepsilon$		
$\vdash (q_0,$	011,	011)	$\varepsilon, B/01$	$B \to 01$	$\Rightarrow 00011$
$\vdash (q_0,$	11,	11)	$0,0/\varepsilon$		
$\vdash (q_0,$	1,	1)	$1,1/\varepsilon$		
$\vdash (q_0,$	$\varepsilon,$	$\varepsilon)$	$1,1/\varepsilon$		

想要证明 CFG 和 PDA 的等价性, 需要思考如何使用 PDA 模拟文法的推导. 对任意属于某 CFL 的串 w, 其文法的推导过程, 就是使用产生式去匹配 (产生) w, 如果 w 放在某 PDA 的输入带上, 我们的目的就是通过文法构造动作, 让 PDA 能从左到右的扫描输入串, 利用栈来模拟文法的最左派生过程即可.

定理 27. 任何 CFL L, 一定存在 PDA P, 使 L = N(P).

构造与文法等价的 PDA

如果 CFG G = (V, T, P', S), 构造 PDA

$$P = (\{q\}, T, V \cup T, \delta, q, S, \varnothing),$$

其中 δ 为:

1. $\forall A \in V$:

$$\delta(q, \varepsilon, A) = \{ (q, \beta) \mid A \to \beta \in P' \}$$

2. $\forall a \in T$:

$$\delta(q, a, a) = \{(q, \varepsilon)\}\$$

那么 L(G) = N(P).

例 6. 为文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 构造 PDA.

$$\varepsilon, S/aAA \quad \varepsilon, A/aS \quad a, a/\varepsilon$$

$$\varepsilon, A/a \qquad \varepsilon, A/bS \quad b, b/\varepsilon$$

$$\text{start} \longrightarrow \bigcirc$$

证明:

PDF P 可以模拟 CFG G 的最左派生,每个动作只根据栈顶的符号确定:如果是终结符则与输入串匹配,如果是非终结符用产生式来替换.为了完成定理,只需往证

$$S \stackrel{*}{\Rightarrow} w \iff (q, w, S) \vdash_{\mathbb{R}}^{*} (q, \varepsilon, \varepsilon).$$

[充分性] 往证

$$S \stackrel{*}{\Longrightarrow} w \implies (q, w, S) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon).$$

设 $S \stackrel{*}{\Longrightarrow} w$ 中第 i 个左句型为 $x_iA_i\alpha_i$, 其中 $x_i \in \Sigma^*, A_i \in V, \alpha_i \in (V \cup T)^*$. 并将 S 看作第 0 个左句型 $x_0A_0\alpha_0 = S$, 那么

$$x_0 = \varepsilon, A_0 = S, \alpha_0 = \varepsilon.$$

将 w 看作为第 n 个左句型 $x_n A_n \alpha_n = w$, 那么

$$x_n = w, A_n = \varepsilon, \alpha_n = \varepsilon.$$

再对派生步骤 i 归纳, 往证

$$S \stackrel{i}{\Longrightarrow} x_i A_i \alpha_i \wedge w = x_i y_i \Longrightarrow (q, w, S) \vdash^* (q, y_i, A_i \alpha_i).$$

归纳基础: 当最左派生要 0 步时, 显然成立

$$(q, w, S) \vdash^* (q, y_0, A_0 \alpha_0) = (q, w, S).$$

归纳递推: 假设 i 步时上式成立. 当第 i+1 步时, 一定是 $A_i \rightarrow \beta$ 应用到 $x_i A_i \alpha_i$

$$S \stackrel{i}{\underset{\text{lm}}{\longrightarrow}} x_i A_i \alpha_i \underset{\text{lm}}{\Longrightarrow} x_i \beta \alpha_i = x_{i+1} A_{i+1} \alpha_{i+1}.$$

变元 A_{i+1} 一定在 $\beta\alpha_i$ 中. 设 A_{i+1} 之前的终结符为 x', 则有

$$\beta \alpha_i = x' A_{i+1} \alpha_{i+1}.$$

又因为 $w = x_i y_i = x_i x' y_{i+1} = x_{i+1} y_{i+1}$, 所以有

$$y_i = x' y_{i+1}.$$

那么, 在 PDA 中从 ID $(q, y_i, A_i\alpha_i)$ 模拟最左派生, 用产生式 $A_i \rightarrow \beta$ 替换栈顶 A_i 后, 有

$$(q, w, S) \vdash (q, y_i, A_i \alpha_i)$$
 归纳假设
$$\vdash (q, y_i, \beta \alpha_i) \qquad A_i \to \beta$$

$$= (q, x' y_{i+1}, x' A_{i+1} \alpha_{i+1}) \qquad y_i = x' y_{i+1}$$

$$\vdash (q, y_{i+1}, A_{i+1} \alpha_{i+1}) \qquad \text{弹出终结符}$$

因此 $S \xrightarrow{n} w \Longrightarrow (q, w, S) \stackrel{*}{\vdash} (q, y_n, A_n \alpha_n) = (q, \varepsilon, \varepsilon)$, 即充分性得证.

[必要性] $(q, w, S) \vdash^* (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Rightarrow} w$, 往证更一般的:

$$(q, x, A) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow A \stackrel{*}{\Rightarrow} x.$$

可以看作"从输入带中消耗掉x"与"从栈中弹出A"两种作用相互抵消.对 ID 转移 $(q,x,A) \vdash (q,\varepsilon,\varepsilon)$ 的次数i 归纳证明.

归纳基础: 当 i=1 次时, 只能是 $x=\varepsilon$ 且 $A\to\varepsilon$ 为产生式, 所以 $A\Rightarrow\varepsilon$. 因为即使 x=a 和产生式 $A\to a$, 也需要 2 步才能清空栈: 先替换栈顶 A 为 a, 再弹出 a.

归纳递推: 假设 $i \le n \ (n \ge 0)$ 时上式成立. 当 i = n+1 时, 因为 A 是变元, 其第 1 步转移一定是

$$(q, x, A) \vdash (q, x, Y_1 Y_2 \cdots Y_m)$$

且 $A \rightarrow Y_1 Y_2 \cdots Y_m$ 是产生式, 其中 Y_i 是变元或终结符. 而其余的 n 步转移

$$(q, x, Y_1Y_2\cdots Y_m) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon)$$

中每个 Y_i 从栈中被完全弹出时,将消耗掉的那部分 x 记为 x_i ,那么显然有

$$x = x_1 x_2 \cdots x_m$$
.

而每个 Y_i 从栈中被完全弹出时,都不超过 n 步,所以由归纳假设,

$$(q, x_i, Y_i) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow Y_i \stackrel{*}{\Longrightarrow} x_i.$$

再由 A 的产生式 $A \rightarrow Y_1Y_2 \cdots Y_m$, 有

$$A \Rightarrow Y_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots x_m = x.$$

因此 $(q, x, A) \vdash (q, \varepsilon, \varepsilon) \Longrightarrow A \stackrel{*}{\Rightarrow} x$ 成立, 因此 $(q, w, S) \vdash (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Rightarrow} w$ 成立, 即必要性得证.

所以, 任何 CFL 都可由 PDA 识别.

构造与 GNF 格式文法等价的 PDA

如果 GNF 格式的 CFG G = (V, T, P', S), 那么构造 PDA

$$P = (\{q\}, T, V, \delta, q, S, \varnothing),$$

为每个产生式, 定义 δ 为:

$$\delta(q, a, A) = \{(q, \beta) \mid A \to a\beta \in P'\}.$$

续例 6. 文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 为 GNF 格式, 构造等价的 PDA.

start
$$\longrightarrow$$
 $a, S/AA$

$$a, A/S$$

$$b, A/S$$

$$a, A/\varepsilon$$

6.3.2 由 PDA 到 CFG

定理 28. 如果 PDA P, 有 L = N(P), 那么 L 是上下文无关语言.

构造与 PDA 等价的 CFG

如果 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$, 那么构造 CFG $G = (V, \Sigma, P', S)$, 其中 V 和 P' 为

- 1. $V = \{ [qXp] \mid p,q \in Q, X \in \Gamma \} \cup \{S\};$
- 2. 对 $\forall p \in Q$, 构造产生式 $S \rightarrow [q_0 Z_0 p]$;
- 3. 对 $\forall (p, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$, 构造 $|Q|^n$ 个产生式

$$[qXr_n] \to a[pY_1r_1][r_1Y_2r_2]\cdots [r_{n-1}Y_nr_n]$$

其中 $a \in \Sigma \cup \{\varepsilon\}$, $X, Y_i \in \Gamma$, 而 $r_i \in Q$ 是 n 次 |Q| 种状态的组合; 若 i = 0, 为 $[qXp] \to a$.

例 7. 将 PDA $P = (\{p,q\}, (0,1), \{X,Z\}, \delta, q, Z)$ 转为 CFG, 其中 δ 如下:

(1)
$$\delta(q, 1, Z) = \{(q, XZ)\}$$

(2)
$$\delta(q, 1, X) = \{(q, XX)\}$$

(3)
$$\delta(q, 0, X) = \{(p, X)\}$$

(4)
$$\delta(q, \varepsilon, Z) = \{(q, \varepsilon)\}$$

(5)
$$\delta(p, 1, X) = \{(p, \varepsilon)\}$$

(6)
$$\delta(p, 0, Z) = \{(q, Z)\}$$

δ	产生式
$\overline{(0)}$	$S \to [qZq]$
	$S \to [qZp]$
(1)	$[qZq] \rightarrow 1[qXq][qZq]$
	$[qZq] \rightarrow 1[qXp][pZq]$
	$[qZp] \rightarrow 1[qXq][qZp]$
	$[qZp] \rightarrow 1[qXp][pZp]$
(2)	$[qXq] \rightarrow 1[qXq][qXq]$
	$[qXq] \rightarrow 1[qXp][pXq]$
	$[qXp] \rightarrow 1[qXq][qXp]$
	$[qXp] \rightarrow 1[qXp][pXp]$
(3)	$[qXq] \to 0[pXq]$
	$[qXp] \to 0[pXp]$
(4)	$[qZq] o \varepsilon$
(5)	$[pXp] \to 1$
(6)	$[pZp] \to 0[qZp]$
	$[pZq] \to 0[qZq]$

消除无用符号	重命名 (可选)
$S \to [qZq]$	$S \to A$
$[qZq] \rightarrow 1[qXp][pZq]$	$A \rightarrow 1BC$
$[qXp] \to 1[qXp][pXp]$	$B \rightarrow 1BD$
$[qXp] \to 0[pXp]$	$B \to 0D$
$[qZq] o \varepsilon$	$A \to \varepsilon$
$[pXp] \to 1$	$D \rightarrow 1$
$[pZq] \to 0[qZq]$	$C \to 0A$

6.4 确定型下推自动机

定义. 如果 $PDA P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ 满足

- 1. $\forall a \in \Sigma \cup \{\varepsilon\}$, $\delta(q, a, X)$ 至多有一个动作;
- $2. \ \forall a \in \Sigma, \ 如果 \ \delta(q, a, X) \neq \emptyset, \ 那么 \ \delta(q, \varepsilon, X) = \emptyset.$

称 P 为确定型下推自动机 (DPDA).

DPDAP 以终态方式接受的语言 L(P) 称为 DCFL.

- DPDA 中 $\forall (q, a, Z) \in Q \times \Sigma \times \Gamma$ 満足 $|\delta(q, a, Z)| + |\delta(q, \varepsilon, Z)| \leq 1$
- DPDA 与 PDA 不等价

例 8. 任何 DPDA 都无法接受 L_{wwr} , 但是可以接受

$$L_{wcwr} = \{wcw^R \mid w \in (0+1)^*\}.$$

$$0, Z_{0}/0Z_{0} \quad 1, 0/10$$

$$1, Z_{0}/1Z_{0} \quad 0, 1/01 \quad 0, 0/\varepsilon$$

$$0, 0/00 \quad 1, 1/11 \quad 1, 1/\varepsilon$$

$$\cot \frac{Q_{0}}{c, 0/0} \xrightarrow{c, Z_{0}/Z_{0}} \xrightarrow{Q_{1}} \underbrace{\varepsilon, Z_{0}/Z_{0}}_{c, 1/1} \xrightarrow{Q_{2}}$$

DCFL 的重要应用

- 非固有歧义语言的真子集
- 程序设计语言的语法分析器
- LR(k) 文法, Yacc 的基础, 解析时间复杂度为 O(n)

在任何情况下都不需要去选择可能的移动就是 DPDA, 以终态方式接受的语言也称为 DCFL. 虽然与 PDA 不等价, 但也有意义, 例如语法分析器通常都是 DPDA, DPDA 接受的语言是非固有歧义语言的真子集, Knuth 提出 LR(k) 文法的语言也恰好是 DPDA 接受语言的一个子集, 解析的时间复杂度为 O(n), LR(k) 文法也是 YACC 的基础.

6.4.1 正则语言与 DPDA

定理 29. 如果 L 是正则语言, 那么存在 DPDA P 以终态方式接受 L, 即 $L = \mathbf{L}(P)$.

证明: 显然. DPDA P 可以不用栈而模拟任何 DFA.

- L_{wcwr} 显然是 CFL, 所以 DCFL 语言类真包含正则语言
- DPDA 无法识别 Lwwr. 所以 DCFL 语言类真包含于 CFL

定义. 如果语言 L 中不存在字符串 x 和 y, 使 x 是 y 的前缀, 称语言 L 满足前缀性质.

定理 30. DPDA P 且 $L = \mathbf{N}(P)$, 当且仅当 L 有前缀性质, 且存在 DPDA P' 使 $L = \mathbf{L}(P')$.

- DPDA *P* 的 **N**(*P*) 更有限, 即使正则语言 **0*** 也无法接受
- 但却可以被某个 DPDA 以终态方式接受

DPDA P 若以空栈方式接受, 能够接受的语言更有限, 仅能接受具有前级性质的语言. 前缀性质是指, 这个语言中不存在不同的串 x 和 y 使 x 是 y 的前缀. 即使正则语言 $\mathbf{0}^*$ 也无法接受, 因为其任何两个串中都有一个是前缀. 但以空栈方式接受的语言, 却可以被另一个 DPDA 以终态方式接受.

6.4.2 DPDA 与歧义文法

定理 31. DPDA P, 语言 $L = \mathbf{L}(P)$, 那么 L 有无歧义的 CFG.

定理 32. DPDA P, 语言 L = N(P), 那么 L 有无歧义的 CFG.

- 因此 DPDA 在语法分析中占重要地位
- 但是并非所有非固有歧义 CFL 都会被 DPDA 识别 如 L_{wwr} 有无歧义文法 $S \rightarrow 0S0 \mid 1S1 \mid \varepsilon$

语言间的关系

