Exercise

For this exercise, you will be working with the <u>House Price Dataset</u> (https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/code).

Please grab the train.csv file from Kaggle and explore this dataset. You need to perform explroatory data analysis and see if there is any correlation between the variables and analyze the distribution of the dataset. The question is open-ended and basically you're asked to perform EDA.

- 1- Write a summary of your findings in one page (e.g., summary statistics, plots) and submit the pdf file. Therefore, for part 3 of your assignment, you need to submit at least one jupyter notebook file and one pdf file.
- 2- Push your code and project to github and provide the link to your code here. Ensure that your github project is organized to at least couple of main folders, ensure that you have the README file as well:
 - Src
 - Data
 - Docs
 - Results

Read this link for further info: https://gist.github.com/ericmjl/27e50331f24db3e8f957d1fe7bbbe510 (https://gist.github.com/ericmjl/27e50331f24db3e8f957d1fe7bbbe510)

In [15]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

```
In [16]:
```

```
df = pd.read_csv("train.csv")
df
```

Out[16]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
0	1	60	RL	65.0	8450	Pave	NaN	Reg	l
1	2	20	RL	80.0	9600	Pave	NaN	Reg	l
2	3	60	RL	68.0	11250	Pave	NaN	IR1	l
3	4	70	RL	60.0	9550	Pave	NaN	IR1	l
4	5	60	RL	84.0	14260	Pave	NaN	IR1	l
1455	1456	60	RL	62.0	7917	Pave	NaN	Reg	l
1456	1457	20	RL	85.0	13175	Pave	NaN	Reg	l
1457	1458	70	RL	66.0	9042	Pave	NaN	Reg	l
1458	1459	20	RL	68.0	9717	Pave	NaN	Reg	l
1459	1460	20	RL	75.0	9937	Pave	NaN	Reg	l

1460 rows × 81 columns

Exploratory Data Analysis

We can see that the dataset consists of 38 numerical columns of 81 all. Morover, some columns contain missing data.

In [27]:

```
print(df.shape)
```

(1460, 81)

In [28]:

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64

51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
56	Fireplaces	1460 non-null	int64
57	FireplaceQu	770 non-null	object
58	GarageType	1379 non-null	object
59	GarageYrBlt	1379 non-null	float64
60	GarageFinish	1379 non-null	object
61	GarageCars	1460 non-null	int64
62	GarageArea	1460 non-null	int64
63	GarageQual	1379 non-null	object
64	GarageCond	1379 non-null	object
65	PavedDrive	1460 non-null	object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch	1460 non-null	int64
69	3SsnPorch	1460 non-null	int64
70	ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null	int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76	MoSold	1460 non-null	int64
77	YrSold	1460 non-null	int64
78	SaleType	1460 non-null	object
79	SaleCondition	1460 non-null	object
80	SalePrice_Log	1460 non-null	float64
dtype	es: float64(4),	int64(34), object	ct(43)

memory usage: 924.0+ KB

None

In [29]:

df.head()

Out[29]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	,
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	,
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	,
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	,

5 rows × 81 columns

←

In [17]:

```
# Basic summary:
df['SalePrice'].describe()
```

Out[17]:

```
1460.000000
count
         180921.195890
mean
         79442.502883
std
min
          34900.000000
25%
         129975.000000
50%
         163000.000000
75%
         214000.000000
         755000.000000
max
```

Name: SalePrice, dtype: float64

In [18]:

```
sns.boxplot(df['SalePrice'])
```

C:\Users\Aarushi\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other argu ments without an explicit keyword will result in an error or misinterpretati on.

warnings.warn(

Out[18]:

<AxesSubplot:xlabel='SalePrice'>

There are two outliers with prices more than 700000.

The target variable : Distribution of SalePrice

In [19]:

```
sns.displot(df['SalePrice']);
#skewness and kurtosis
print("Skewness: %f" % df['SalePrice'].skew())
print("Kurtosis: %f" % df['SalePrice'].kurt())
```

Skewness: 1.882876 Kurtosis: 6.536282

As we see, the target variable SalePrice is not normally distributed.

This can reduce the performance of the ML regression models because some assume normal distribution,

see sklearn info on preprocessing

Therfore we make a log transformation, the resulting distribution looks much better.

In [20]:

```
df['SalePrice_Log'] = np.log(df['SalePrice'])
sns.displot(df['SalePrice_Log']);
# skewness and kurtosis
print("Skewness: %f" % df['SalePrice_Log'].skew())
print("Kurtosis: %f" % df['SalePrice_Log'].kurt())
# dropping old column
df.drop('SalePrice', axis= 1, inplace=True)
```

Skewness: 0.121335 Kurtosis: 0.809532

In [8]:

```
# The Density Plot of SalePrice
sns.displot(df['SalePrice'])
```

Out[8]:

<seaborn.axisgrid.FacetGrid at 0x21011665520>

it is right-skewed distribution with the pick around 160k and quite long tail with maximum about 800k.

```
In [9]:
```

```
# Positive Skeweness:
df['SalePrice'].skew()
```

Out[9]:

1.8828757597682129

In [63]:

```
y_train = df["SalePrice"]
```

Check Missing Data

Columns with Nan values

At first, I am checking the fraction of Nan values in each column.

In [67]:

```
total = df.isnull().sum().sort_values(ascending=False)
percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)*100
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
missing_data.head(20)
```

Out[67]:

	Total	Percent
PoolQC	1453	99.520548
MiscFeature	1406	96.301370
Alley	1369	93.767123
Fence	1179	80.753425
FireplaceQu	690	47.260274
LotFrontage	259	17.739726
GarageYrBlt	81	5.547945
GarageCond	81	5.547945
GarageType	81	5.547945
GarageFinish	81	5.547945
GarageQual	81	5.547945
BsmtFinType2	38	2.602740
BsmtExposure	38	2.602740
BsmtQual	37	2.534247
BsmtCond	37	2.534247
BsmtFinType1	37	2.534247
MasVnrArea	8	0.547945
MasVnrType	8	0.547945
Electrical	1	0.068493
ld	0	0.000000

Further narrowing down, we will look for numerical type features with missing values in each of the train data and test data. First, we will search from the train data.

Visualize with a heatmap

Let's visualize the correlation of feature quantities with a heatmap and confirm.

In [69]:

```
#correlation matrix
df=df.drop(['Id'],axis=1).copy()
corrmat = df.corr()
f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True);
```


We can see that 'OverallQual', 'GrLivArea', 'GarageCars',' GarageArea ',' TotalBsmtSF etc are strongly correlated with 'SalePrice'.

Analyze, identify patterns, and explore the data.

Analyze by pivoting features We will explore the relationship with 'SalePrice' about the feature quantity of the object type which does not include the missing value. From the name of feature quantity we pick up what seems to be strongly related to 'SalePrice' and analyze the mutual relationship with pivot.

Creating new feature extracting from existing

We can convert the categorical titles to ordinal.

In [70]:

```
df[['HouseStyle', 'SalePrice']].groupby(['HouseStyle'], as_index=False).mean().sort_values(
```

Out[70]:

	HouseStyle	SalePrice
3	2.5Fin	2.579223
5	2Story	2.578496
7	SLvI	2.564995
2	1Story	2.563969
4	2.5Unf	2.557606
0	1.5Fin	2.550170
6	SFoyer	2.548212
1	1.5Unf	2.533208

'SalePrice' correlation matrix (zoomed heatmap style)

Select 10 features including 'SalePrice' which has strong correlation with 'SalePrice' and display it with a heat map.

In [71]:

```
#saleprice correlation matrix
k = 10  #number of variables for heatmap
corrmat = df.corr()
cols = corrmat.nlargest(k, 'SalePrice')['SalePrice'].index
cm = np.corrcoef(df[cols].values.T)
sns.set(font_scale=1.25)
f,ax=plt.subplots(figsize=(12,9))
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 12},
plt.show()
```


In [74]:

```
#scatter plots
sns.set()
sns.pairplot(df[cols], height = 3)
plt.show();
```


Bivariate analysis

When checking the correlation between 'SalePrice' and 'GrLivArea' with a scatter plots, outlier 2 is found at the lower right. Let's delete this.

Let's check the result of the operation with the scatter plot of 'SalePrice' and 'GrLivArea'.

In [82]:

```
# bivariate analysis saleprice/grlivarea
var = 'GrLivArea'
data1 = pd.concat([df['SalePrice'], df[var]], axis=1)
sns.scatterplot(data = data1, x=var, y='SalePrice')
```

Out[82]:

<AxesSubplot:xlabel='GrLivArea', ylabel='SalePrice'>

In this way the outliers have been properly deleted.

We will look at the heatmap of 'SalePrice' and feature amount best ten 10 again. The correlation coefficient also rises somewhat, which shows that the ranking has changed.

As we see, the target variable SalePrice is not normally distributed. This can reduce the performance of the ML regression models because some assume normal distribution, see sklearn info on preprocessing Therfore we make a log transformation, the resulting distribution looks much better.