Sumário

1. Introdução	.2
2. Projeto de Monopolo Planar com Patch Circular com Plano de Terra Comple	eto
e Truncado	3
2.1. Projeto de Monopolo Planar com Patch Circular com Plano de Ter	ra
Completo	.6
2.2. Projeto de Monopolo Planar com Patch Circular com Plano de Ter	ra
Truncado	.6
3. Simulação do Projeto de Monopolo Planar com Patch Circular com Plano o	de
Terra Completo e Truncado	7
3.1.Resultado da simulação da antena com plano de terra completo	7
3.2.Resultado da simulação da antena com plano de terra truncado	9
4. Fabricação do Protótipo	11
5. Conclusão1	12
Referências Bibliográficas	13

1. Introdução

Dispositivos de comunicação sem fio são onipresentes hoje em dia e seu uso está aumentando constantemente. Esses dispositivos incluem rádios AM e FM, telefones celulares, tablets, laptops, telefones e receptores via satélite, dispositivos de sistema de posicionamento global (GPS), sistemas de identificação por radiofrequência (RFID), para citar alguns. A antena, sendo parte integrante desses dispositivos, desempenha um papel importante na definição do desempenho desses dispositivos. Portanto, o projeto de uma antena para qualquer dispositivo sem fio deve ser executado com cuidado para garantir um bom desempenho no nível do sistema [1,2].

No contexto atual de comunicações digitais sem fio a altas taxas de transmissão de dados, uma das técnicas mais promissoras é a que se baseia no uso de pulsos de banda ultra larga (UWB - *Ultra Wide Band*) para transporte da informação. A pesquisa associada a esta técnica foi bastante intensa ao longo da última década, abrangeu aspectos diversos da Engenharia Elétrica/Telecomunicação, tais como processamento de sinais, caracterização do canal de propagação e, especialmente antenas [2].

As antenas de microfita com patches circulares fornecem diagramas simétricos, podem ser usadas no desenvolvimento de antenas UWB (*ultra wideband*), como monopolos planares, e podem ser projetadas para operação com polarização circular, dentre outras aplicações [3].

O objetivo deste laboratório é efetuar a simulação através de ANSOFT HFSS e MICROSTRIP CALCULATOR o projeto de projeto de monopolo planar de microfita com patch circular (Antena UWB) (Antena de Microfita com Plano de Terra Truncado), para a frequência de 2,5 GHz.

Projeto de Monopolo Planar com Patch Circular com Plano de Terra Completo e Truncado.

A primeira etapa do projeto é realizar a simulação dos parâmetros do patch retangular em MICROSTRIP PATCH ANTENNA CALCULATOR [4], que vão ser utilizados na aproximação do patch circular. Essa etapa é necessária porque, na calculadora não há opção para calcular diretamente as dimensões do patch circular. Feito a simulação e encontramos o valor ideal de comprimento (L) do patch igual a 28,25 mm e a largura (W) do patch igual a 36,51 mm para a frequência de 2,5 GHz.

patch dielectric (ε_r) ground 1 @ emtalk.com Substrate Parameters Dielectric Constant (ε_r): 4.4 mm 🗸 Dielectric Height (h): **Physical Parameters** Resonant Frequency Synthesize Length (L): 28.253098479803 mm ✓ f_r: 2.5 GHz Width (W): 36.514837167011 mm ~ Analyze Input Impedance (Edge): 243 Ohm

Microstrip Patch Antenna Calculator

Figura 1. Simulação do Comprimento (L) e da Largura (W) do patch retangular. Fonte:[4].

Feito a simulação do comprimento e a largura do patch, o próximo passo é calcular o comprimento e a largura do transformador $\lambda/4$. Seguindo a equação (1) e feito a simulação no MICROSTRIP LINE CALCULATOR [5] temos:

$$Z_0 = \sqrt{Z_{in} \times Z_l} = \sqrt{50 \times 173,29} = 93,08 \Omega \qquad equação (1)$$

Microstrip Line Calculator

Figura 2. Simulação do comprimento (L) e da largura (W) do transformador $\lambda/4$. Fonte: [5]

Feito a simulação do comprimento e a largura do transformador, o próximo passo é calcular o comprimento e a largura da linha de 50 Ω . Feito a simulação no MICROSTRIP LINE CALCULATOR [5] temos:

Microstrip Line Calculator

Figura 3. Simulação do comprimento (L) e da largura (W) da linha de 50 Ω . Fonte: [5].

2.1. Projeto de Monopolo Planar com Patch Circular com Plano de Terra Completo.

A segunda etapa do projeto é realizar a conversão dos parâmetros do patch retangular encontrado no item anterior para o patch circular. Seguindo a equação (2) temos:

$$A_{retangular} = A_{circular} \div C \times L = \pi r^2$$
 equação (2)
$$r = \sqrt{\frac{28.25 \times 36.51}{\pi}} = 18,12 \text{ mm}$$

2.2. Projeto de Monopolo Planar com Patch Circular e com Plano de Terra Truncado.

A terceira etapa do projeto é realizar o truncamento do plano da terra. A estrutura a ser truncado é mostrado na figura 4.

Figura 4. Antena Monopolo Circular. Fonte: [6].

Para fazer a simulação em HFSS, considerando que $g=1\ mm$, e sabendo que $a=60\ mm$ e $b=40\ mm$. Para determinar a altura h, feito a diferença entre h_{linha} e g. Portanto, temos $h=h_{linha}-g=17,17mm-1mm=16,17mm$

- 3. Simulação do Projeto de Monopolo Planar com Patch Circular com Plano de Terra Completo e Truncado Através do Software Profissional.
- 3.1. Resultado da simulação da antena com plano de terra completo.

Figura 5. Antena Monopolo Planar com Patch Circular e Plano da Terra Completo. Fonte: Autor.

Figura 6. Perda de Retorno da Antena Monopolo Planar com Patch Circular e Plano da Terra Completo. Fonte: Autor.

Figura 7. Diagrama de Radiação (2D) da Antena Monopolo Planar com Patch Circular e Plano da Terra Completo. Fonte: Autor.

Figura 8. Diagrama de Radiação (3D) da Antena Monopolo Planar com Patch Circular e Plano da Terra Completo. Fonte: Autor.

Na figura 6, é possível observar que, a frequência de operação obtida para antena monopolo planar com patch circular e plano de terra completo é de 2,3 GHz com a perda de retorno igual a -12,18 dB que está abaixo de -10 dB.

Na figura 7 e 8, é possível observar que, o diagrama de radiação (2D,3D) está de acordo com a teoria, que é omnidirecional, com a diretividade máxima de 4,46 dB.

3.2. Resultado da simulação com plano da terra truncado.

Figura 9. Antena Monopolo Planar com Patch Circular e Plano da Terra Truncado. Fonte: Autor.

Figura 10. Perda de Retorno da Antena Monopolo Planar com Patch Circular e com Plano da Terra Truncado. Fonte: Autor.

Figura 11. Diagrama de Radiação (2D) da Antena Monopolo Planar com Patch Circular e com Plano da Terra Truncado. Fonte: Autor.

Figura 12. Diagrama de Radiação (3D) da Antena Monopolo Planar com Patch Circular e com Plano da Terra Truncado. Fonte: Autor.

Na figura 10, é possível observar que, a frequência de operação obtida para antena monopolo planar com patch circular com plano de terra truncado é de 4,7 GHz. Portanto podemos dizer que, a frequência nova obtida está dentro da faixa de UWB. A perda de retorno obtida é igual a -15,69 dB que está abaixo de -10 dB.

Na figura 11 e 10, é possível observar que, o diagrama de radiação (2D,3D) está mantido, que é omnidirecional, com a diretividade máxima de 2,09 dB.

Resultado de comparação da antena com plano da terra truncado e plano de terra completo.

Antena com Plano de Terra Completo			Antena com Plano de Terra Truncado		
Frequência	Perda de	Diretividade	Frequência	Perda de	Diretividade
•	Retorno		·	Retorno	
2,3 GHz	-12,18 dB	4,46 dB	4,7 GHz	-15,69 dB	2,08 dB

Tabela 1. comparação da antena com plano da terra truncado e plano de terra completo.

Pela tabela 1, é possível observar que, houve um aumento na frequência de operação de 2,3 GHz para 4,47 GHz. Portanto, isso indica que com o truncamento do plano de terra (aumento de g) é possível aumentar a frequência que consequentemente aumenta a banda, que é neste caso para a faixa de UWB.

Em outro lado é possível observar que, a perda de retorno diminui com o aumento da frequência.

Também é possível observar, a diminuição da diretividade de 4,46 dB para 2,08 dB. Isto é esperado porque a antena é omnidirecional.

4. Fabricação do Protótipo

Com todos os parâmetros (comprimento, largura, impedâncias) da antena e da linha definida e simulada, o próximo passo neste projeto é desenhar a estrutura (layout) da antena. O desenho é enviado para a gráfica para preparação do adesivo, colocação do adesivo na face superior de um laminado de fibra de vidro cobreado nas duas faces (copper clad board), com as dimensões apropriadas, e remoção da parte indesejada no adesivo. Proteger o plano da terra. A realização da corrosão é através de percloreto de ferro. A finalização do protótipo com a colocação do conector na porta da entrada da antena.

5. Conclusão

Neste projeto foi desenvolvido e simulado um projeto de monopolo planar de microfita com patch circular (Antena UWB) (Antena de Microfita com Plano de Terra Truncado). O monopolo planar de microfita com patch circular projetada é para irradiar a onda eletromagnética na faixa de UWB. As frequências de operações foram analisadas e o resultado está dentro da faixa UWB quando o plano da terra da antena é truncado. Os outros resultados obtidos (perda de retorno, diagrama de radiação (2D,3D) e diretividade) são analisados e caracterizados e concluímos que está de acordo com o que era esperado em teoria.

Referências Bibliográficas

- [1]. Muhammad Umar Khan, Mohammad Said Sharawi, Raj mittra. Microstrip Patch Antenna Miniaturisation Techniques: A Review. Disponível em: https://digital-library.theiet.org/. Data de acesso: 24/04/2021.
- [2]. Cláudio Augusto Barreto Saunders Filho, Maurício Henrique Costa Dias e José Carlos Araujo dos Santos. Projeto de Monopolo Banda-Larga com Uso de Anéis Parasitas Cilíndricos. Disponível em: https://biblioteca.sbrt.org.br. Data de acesso: 24/042021.
- [2]. BALANIS, C. A. (2009). *Teoria de Antenas; Análise e Síntese. 3 ed.* Rio de Janeiro: LTC.
- [3]. Adaildo Gomes D'Assunção. Notas de Aula Laboratório de Antenas.
- [4]. Talk, Em. Microstrip Patch Antenna Calculator. Disponível em: https://www.emtalk.com/mpacalc.php. Data de acesso: 24/04/2021.
- [5]. Talk, Em. Microstrip Line Calculator. Disponível em: https://www.emtalk.com/mscalc.php. Data de acesso: 24/04/2021.
- [6]. Davi B. Brito, Xavier Begaud, Adaildo G. D'Assunção, Humberto C. C. Fernandes. Ultra Wideband Monopole Antenna with Split Ring Resonator for Notching Frequencies. Data de acesso: 24/04/2021.