Based on the program developed in the lecture, implement a nonlinear Kernel analysis based on SVM for (a) polynomial kernels (poly) of at least 2 different degrees of your choice, and (b) for radial base functions (rbf). Apply the analysis to the breast cancer database, or a database of your choice. Study the classification performance in terms of suitable measures of your choice (e.g., accuracy, precision, recall, f1, k-folds) as a function of the hyperparameters γ (gamma) and degree (for polynomials), and gamma and penalty C for rbf kernels. It is on you if you want to use GridSearch, RandomSearch, hyperopt, or just to try a few combinations of the hyperparameters. Hint: Hyperopt may require you to install or update some libraries outside the Jupyter notebook. The program must end with the output "Hyper, hyper!".

0. Imports, global variables/constants, and datasets

```
In [1]: from sklearn import svm
        import pandas as pd
        from sklearn.metrics import precision_recall_fscore_support
        import numpy as np
        # Load datasets
        from sklearn import datasets
        cancer = datasets.load_breast_cancer()
        print("Features: ", cancer.feature_names)
        print("Labels: ", cancer.target names)
        print(cancer.data.shape)
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(
            cancer.data,
            cancer.target,
            test_size=0.3,
            random state=77
        import warnings
        warnings.filterwarnings("ignore")
```

```
Features: ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
 'mean smoothness' 'mean compactness' 'mean concavity'
 'mean concave points' 'mean symmetry' 'mean fractal dimension'
 'radius error' 'texture error' 'perimeter error' 'area error'
 'smoothness error' 'compactness error' 'concavity error'
 'concave points error' 'symmetry error' 'fractal dimension error'
 'worst radius' 'worst texture' 'worst perimeter' 'worst area'
 'worst smoothness' 'worst compactness' 'worst concavity'
 'worst concave points' 'worst symmetry' 'worst fractal dimension']
Labels: ['malignant' 'benign']
(569, 30)
```

1. (a) Nonlinear Kernel analysis based on SVM for polynomial kernels, 2 degrees

```
In [2]: | clf_poly = svm.SVC(
             kernel='poly',
             degree=2,
             gamma='auto'
```

2. (b) Nonlinear Kernel analysis based on SVM for radial base functions

```
In [3]: | clf rbf = svm.SVC(kernel='rbf')
```

3. Apply analysis to the breast cancer database (or another database)

```
In [4]: clf poly.fit(X train, y train)
        clf_rbf.fit(X_train, y_train)
Out[4]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
            decision function shape='ovr', degree=3, gamma='auto deprecated',
            kernel='rbf', max iter=-1, probability=False, random state=None,
            shrinking=True, tol=0.001, verbose=False)
```

4. Study classification performance (accuracy, precision, recall, f1, k-folds) as a function of the hyperparameters γ and degree (for polynomials), and γ and penalty C for rbf kernels.

I decided to try different parameters and plot the test scores.

```
def get_accuracy_precision_recall_f_score(clf_instance, X_train, y_tr
ain, X_test, y_test):
    clf instance.fit(
        X train,
        y train
    )
    y_pred = clf_instance.predict(X_test)
    accuracy = clf_instance.score(X_test, y_test)
    precision, recall, f_score, _ = precision_recall_fscore_support(y
_test, y_pred)
    return accuracy, precision, recall, f score
def analyze_svm(hyperparameters, X_train, y_train, X_test, y_test, po
lynomials=True):
    df results = pd.DataFrame.from dict(
             'accuracy': [],
             'precision': [],
            'recall': [],
            'f_score': [],
            'gamma': [],
            'degree': [],
            'penalty c': []
        }
    )
    if polynomials:
        for gamma in hyperparameters['gamma']:
            for degree in hyperparameters['degree']:
                clf_poly = svm.SVC(
                     kernel='poly',
                     degree=degree,
                     gamma=gamma
                 )
                accuracy, precision, recall, f_score = get_accuracy_p
recision recall f score(
                     clf_poly,
                    X train,
                     y train,
                    X test,
                     y_test
                df_intermediate = pd.DataFrame.from dict(
                     {
                         'accuracy': accuracy,
                         'precision': precision,
                         'recall': precision,
                         'f score': f score,
                         'gamma': gamma,
```

```
'degree': degree,
                         'penalty_c': None
                     }
                df results = df results.append(
                     df_intermediate,
                     ignore_index=True
                 )
    else:
        for gamma in hyperparameters['gamma']:
            for penalty_c in hyperparameters['penalty_c']:
                clf rbf = svm.SVC(
                     kernel='rbf',
                     gamma=gamma,
                     C=penalty c
                 )
                accuracy, precision, recall, f_score = get_accuracy_p
recision_recall_f_score(
                     clf rbf,
                    X train,
                     y_train,
                    X_{\text{test}},
                    y_test
                 )
                df intermediate = pd.DataFrame.from dict(
                     {
                         'accuracy': accuracy,
                         'precision': precision,
                         'recall': precision,
                         'f_score': f_score,
                         'gamma': gamma,
                         'degree': None,
                         'penalty_c': penalty_c
                     }
                df_results = df_results.append(
                    df intermediate,
                     ignore_index=True
    return df_results
list gamma = ['scale', 'auto', 'auto_deprecated']
#list_gamma = [0.1, 1]#, 'auto', 'auto_deprecated']
hyperparameters = {
    'gamma': list gamma,
    'degree': [0, 1, 2]#, 3]
df_results = analyze_svm(hyperparameters, X_train, y_train, X_test, y
_test, polynomials=True)
print('***POLY***')
print('Sorted by accuracy')
```

```
print(df results.sort values(by='accuracy', ascending=False))
print('\nSorted by precision')
print(df results.sort values(by='precision', ascending=False))
print('\nSorted by recall')
print(df results.sort values(by='recall', ascending=False))
print('\nSorted by f-score')
print(df results.sort values(by='f score', ascending=False))
hyperparameters = {
    'gamma': list gamma,
    'penalty c': [0.1, 1, 10]#, 100]
df results = analyze svm(hyperparameters, X train, y train, X test, y
test, polynomials=False)
print('\n\n\n')
print('***RBF***')
print('Sorted by accuracy')
print(df_results.sort_values(by='accuracy', ascending=False))
print('\nSorted by precision')
print(df results.sort values(by='precision', ascending=False))
print('\nSorted by recall')
print(df results.sort values(by='recall', ascending=False))
print('\nSorted by f-score')
print(df results.sort values(by='f score', ascending=False))
```

P0LY							
Sor	ted by acc			-			
non	accuracy	precision	recall	f_score	gamma	degree	
17	alty_c 0.970760 None	0.964286	0.964286	0.977376	auto_deprecated	2.0	
16	0.970760 None	0.983051	0.983051	0.958678	auto_deprecated	2.0	
11	0.970760 None	0.964286	0.964286	0.977376	auto	2.0	
10	0.970760 None	0.983051	0.983051	0.958678	auto	2.0	
8	0.964912 None	0.966667	0.966667	0.950820	auto	1.0	
15	0.964912 None	0.963964	0.963964	0.972727	auto_deprecated	1.0	
14	0.964912 None	0.966667	0.966667	0.950820	auto_deprecated	1.0	
9	0.964912 None	0.963964	0.963964	0.972727	auto	1.0	
5	0.906433 None	0.878049	0.878049	0.931034	scale	2.0	
4	0.906433 None	0.979167	0.979167	0.854545	scale	2.0	
3	0.900585 None	0.870968	0.870968	0.927039	scale	1.0	
2	0.900585 None	0.978723	0.978723	0.844037	scale	1.0	
7	0.637427 None	0.637427	0.637427	0.778571	auto	0.0	
1	0.637427 None	0.637427	0.637427	0.778571	scale	0.0	
6	0.637427 None	0.000000	0.000000	0.000000	auto	0.0	
12	0.637427 None	0.000000	0.000000	0.000000	auto_deprecated	0.0	
13	0.637427 None	0.637427	0.637427	0.778571		0.0	
0	0.637427 None	0.000000	0.000000	0.000000	scale	0.0	
Sor	ted by pre	ecision					
	accuracy	precision	recall	f_score	gamma	degree	
pen 10	alty_c 0.970760	0.983051	0.983051	0.958678	auto	2.0	
16	None 0.970760	0.983051	0.983051	0.958678	auto_deprecated	2.0	
4	None 0.906433	0.979167	0.979167	0.854545	scale	2.0	
2	None 0.900585 None	0.978723	0.978723	0.844037	scale	1.0	
14	0.964912 None	0.966667	0.966667	0.950820	auto_deprecated	1.0	
8	0.964912 None	0.966667	0.966667	0.950820	auto	1.0	
17	0.970760	0.964286	0.964286	0.977376	auto_deprecated	2.0	

			J,		7	
11	None 0.970760	0.964286	0.964286	0.977376	auto	2.0
15	None 0.964912	0.963964	0.963964	0.972727	auto_deprecated	1.0
9	None 0.964912	0.963964	0.963964	0.972727	auto	1.0
5	None 0.906433 None	0.878049	0.878049	0.931034	scale	2.0
3	0.900585 None	0.870968	0.870968	0.927039	scale	1.0
1	0.637427 None	0.637427	0.637427	0.778571	scale	0.0
7	0.637427 None	0.637427	0.637427	0.778571	auto	0.0
13	0.637427 None	0.637427	0.637427	0.778571	auto_deprecated	0.0
12	0.637427 None	0.000000	0.000000	0.000000	auto_deprecated	0.0
6	0.637427 None	0.000000	0.000000	0.000000	auto	0.0
0	0.637427 None	0.000000	0.000000	0.000000	scale	0.0
•						
Sor	ted by rec accuracy	precision	recall	f_score	gamma	degree
•	alty_c	•		_	-	•
10	0.970760 None	0.983051	0.983051	0.958678	auto	2.0
16	0.970760 None	0.983051	0.983051	0.958678	auto_deprecated	2.0
4	0.906433 None	0.979167	0.979167	0.854545	scale	2.0
2	0.900585	0.978723	0.978723	0.844037	scale	1.0
14	None 0.964912 None	0.966667	0.966667	0.950820	auto_deprecated	1.0
8	0.964912 None	0.966667	0.966667	0.950820	auto	1.0
17	0.970760 None	0.964286	0.964286	0.977376	auto_deprecated	2.0
11	0.970760 None	0.964286	0.964286	0.977376	auto	2.0
15	0.964912 None	0.963964	0.963964	0.972727	auto_deprecated	1.0
9	0.964912	0.963964	0.963964	0.972727	auto	1.0
5	None 0.906433	0.878049	0.878049	0.931034	scale	2.0
3	None 0.900585 None	0.870968	0.870968	0.927039	scale	1.0
1	0.637427	0.637427	0.637427	0.778571	scale	0.0
7	None 0.637427	0.637427	0.637427	0.778571	auto	0.0
13	None 0.637427 None	0.637427	0.637427	0.778571	auto_deprecated	0.0

12	0.637427 None	0.000000	0.000000	0.000000	auto_deprecated	0.0
6	0.637427 None	0.000000	0.000000	0.000000	auto	0.0
0	0.637427 None	0.000000	0.000000	0.000000	scale	0.0
Sor	ted by f-s	score				
	accuracy	precision	recall	f_score	gamma	degree
pena 17	alty_c 0.970760 None	0.964286	0.964286	0.977376	auto_deprecated	2.0
11	0.970760 None	0.964286	0.964286	0.977376	auto	2.0
15	0.964912 None	0.963964	0.963964	0.972727	auto_deprecated	1.0
9	0.964912 None	0.963964	0.963964	0.972727	auto	1.0
10	0.970760 None	0.983051	0.983051	0.958678	auto	2.0
16	0.970760 None	0.983051	0.983051	0.958678	auto_deprecated	2.0
8	0.964912 None	0.966667	0.966667	0.950820	auto	1.0
14	0.964912 None	0.966667	0.966667	0.950820	auto_deprecated	1.0
5	0.906433 None	0.878049	0.878049	0.931034	scale	2.0
3	0.900585 None	0.870968	0.870968	0.927039	scale	1.0
4	0.906433 None	0.979167	0.979167	0.854545	scale	2.0
2	0.900585 None	0.978723	0.978723	0.844037	scale	1.0
7	0.637427 None	0.637427	0.637427	0.778571	auto	0.0
1	0.637427 None	0.637427	0.637427	0.778571	scale	0.0
13	0.637427 None	0.637427	0.637427	0.778571	auto_deprecated	0.0
6	0.637427 None	0.000000	0.000000	0.000000	auto	0.0
12	0.637427 None	0.000000	0.000000	0.000000	auto_deprecated	0.0
0	0.637427 None	0.000000	0.000000	0.000000	scale	0.0

Sol	rted by acc	uracy				
	accuracy	precision	recall	f_score	gamma	degree
per	nalty_c			_		
4	$0.9\overline{41520}$	0.964286	0.964286	0.915254	scale	None
	10.0					
5	0.941520	0.930435	0.930435	0.955357	scale	None

10.0

2	0.912281	0.979592	0.979592	0.864865	scale	None
2	1.0	0.979392	0.979392	0.004003	scate	None
3	0.912281	0.885246	0.885246	0.935065	scale	None
0	0.894737	0.978261	0.978261	0.833333	scale	None
1	0.1 0.894737 0.1	0.864000	0.864000	0.923077	scale	None
12	0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
16	0.637427 10.0	0.000000	0.000000	0.000000	auto_deprecated	None
15	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
14	0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
13	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
9	0.637427	0.637427	0.637427	0.778571	auto	None
11	0.637427 10.0	0.637427	0.637427	0.778571	auto	None
10	0.637427 10.0	0.000000	0.000000	0.000000	auto	None
8	0.637427	0.000000	0.000000	0.000000	auto	None
7	0.637427	0.637427	0.637427	0.778571	auto	None
6	0.637427	0.000000	0.000000	0.000000	auto	None
17	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
Sor	ted by pre	ocision				
	accuracy	precision	recall	f_score	gamma	degree
pena 2	alty_c 0.912281	0.979592	0.979592	0.864865	scale	None
0		0.978261	0.978261	0.833333	scale	None
4	0.1 0.941520	0.964286	0.964286	0.915254	scale	None
5	10.0	0.930435	0.930435	0.955357	scale	None
3	10.0 0.912281 1.0	0.885246	0.885246	0.935065	scale	None
1	0.894737	0.864000	0.864000	0.923077	scale	None
15	0.1 0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
13	1.0 0.637427 0.1	0.637427	0.637427	0.778571	auto_deprecated	None
11	0.637427	0.637427	0.637427	0.778571	auto	None
9	10.0 0.637427 1.0	0.637427	0.637427	0.778571	auto	None

		Assignment_s	Jan_spoerer_iv	ionimear_kerner	_Allalysis_3vivi	
7	0.637427 0.1	0.637427	0.637427	0.778571	auto	None
17	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
10	0.637427	0.000000	0.000000	0.000000	auto	None
8	10.0 0.637427	0.000000	0.000000	0.000000	auto	None
12	1.0 0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
14	0.1 0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
6	1.0 0.637427	0.000000	0.000000	0.000000	auto	None
16	0.1 0.637427 10.0	0.000000	0.000000	0.000000	auto_deprecated	None
Sor	ted by rec	all				
nen	accuracy alty_c	precision	recall	f_score	gamma	degree
2	0.912281 1.0	0.979592	0.979592	0.864865	scale	None
0	0.894737	0.978261	0.978261	0.833333	scale	None
4	0.941520	0.964286	0.964286	0.915254	scale	None
5	0.941520 10.0	0.930435	0.930435	0.955357	scale	None
3	0.912281	0.885246	0.885246	0.935065	scale	None
1	0.894737	0.864000	0.864000	0.923077	scale	None
15	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
13	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
11	0.637427 10.0	0.637427	0.637427	0.778571	auto	None
9	0.637427	0.637427	0.637427	0.778571	auto	None
7	0.637427	0.637427	0.637427	0.778571	auto	None
17	0.637427 10.0	0.637427	0.637427	0.778571	auto_deprecated	None
10	0.637427	0.000000	0.000000	0.000000	auto	None
8	10.0	0.000000	0.000000	0.000000	auto	None
12	1.0	0.000000	0.000000	0.000000	auto_deprecated	None
14	0.1 0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
6	1.0	0.000000	0.000000	0.000000	auto	None
16	0.1 0.637427 10.0	0.000000	0.000000	0.000000	auto_deprecated	None

Sorted by f-score						
	accuracy	precision	recall	f_score	gamma	degree
•	alty_c	0 020425	0 020425	0 055257	1 -	Mana
5	0.941520 10.0	0.930435	0.930435	0.955357	scale	None
3	0.912281	0.885246	0.885246	0.935065	scale	None
	1.0	0.000=.0	0.000=.0		5 53. 10	
1	0.894737	0.864000	0.864000	0.923077	scale	None
4	0.1	0.064206	0.064206	0.015254	1 -	Mana
4	0.941520 10.0	0.964286	0.964286	0.915254	scale	None
2	0.912281	0.979592	0.979592	0.864865	scale	None
_	1.0	0.07.000	0.07.000		5 53. 10	
0	0.894737	0.978261	0.978261	0.833333	scale	None
1.5	0.1	0 627427	0 627427	0 770571		Mana
15	0.637427 1.0	0.637427	0.637427	0.778571	auto_deprecated	None
13	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
	0.1					
11	0.637427	0.637427	0.637427	0.778571	auto	None
0	10.0	0 627427	0 627427	0 770571		Mana
9	0.637427 1.0	0.637427	0.637427	0.778571	auto	None
7	0.637427	0.637427	0.637427	0.778571	auto	None
	0.1					
17	0.637427	0.637427	0.637427	0.778571	auto_deprecated	None
10	10.0	0.000000	0 000000	0 000000		Mana
10	0.637427 10.0	0.000000	0.000000	0.000000	auto	None
8	0.637427	0.000000	0.000000	0.000000	auto	None
	1.0					
12	0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
1.4	0.1	0.000000	0 000000	0 000000		Mana
14	0.637427 1.0	0.000000	0.000000	0.000000	auto_deprecated	None
6	0.637427	0.000000	0.000000	0.000000	auto	None
	0.1					
16	0.637427	0.000000	0.000000	0.000000	auto_deprecated	None
	10.0					

5. Hyper, hyper!

```
In [6]: print('Hyper, hyper!')
```

Hyper, hyper!