Лабораторная работа № 9

Исследование оптического бесконтактного выключателя

Цель работы: изучение принципа действия и экспериментальное определение расстояния срабатывания на различные материалы оптического бесконтактного выключателя.

1. Теоретическая часть

Оптические датчики — электронные устройства, способные под воздействием излучения в видимом, инфракрасном и ультрафиолетовом диапазонах подавать единичный или совокупность сигналов на вход регистрирующей или управляющей системы. Оптические датчики реагируют на непрозрачные и полупрозрачные предметы, водяной пар, дым, аэрозоли.

Различают аналоговые дискретные оптические И датчики. аналоговых датчиков выходной сигнал изменяется пропорционально внешней освещенности. Датчики дискретного типа изменяют выходное состояние на противоположное при достижении заданного освещенности.

Классификация оптических датчиков:

Оптический датчик типа Т характеризуется тем, что излучатель и приемник размещены в отдельных корпусах. Прямой оптический луч идет от излучателя к приемнику и может быть перекрыт объектом воздействия. Излучатель и приемник могут получать напряжение питания от различных источников питания. Индикатор излучателя сигнализирует о подаче напряжения питания. Индикатор приемника сигнализирует о срабатывании приемника. Элемент коммутации расположен в приемнике.

Оптический датчик типа R имеет размещенный в одном корпусе излучатель и приемник. Приемник принимает луч излучателя, отраженный от специального отражателя.

Излучатель оптического датчика Приёмник оптического датчика Рис.1 – Конструкция оптического датчика

Оптический датчик типа D имеет размещенный в одном корпусе излучатель и приемник. Приемник принимает луч, рассеяно отраженный от объекта воздействия. Объект может перемещаться как вдоль относительной оси, так и под углом к ней.

Излучатель датчика состоит из: корпуса, излучателя, подстроечного элемента, генератора, индикатора.

Приёмник датчика состоит из: корпуса, фотодиода, подстроечного элемента, электронного ключа, триггера, демодулятора, индикатора.

Принцип работы оптического датчика: оптический датчик имеет размещенный в одном корпусе излучатель и приемник. Приемник принимает луч, рассеяно отраженный от объекта воздействия. Объект может перемещаться как вдоль относительной оси, так и под углом к ней.

Таблица 1 - Характеристики оптического датчика ВБ3С.18М.65.TR400.2П.1.К

Напряжение питания	1030 B
Пульсации напряжения питания	не более 15 %
Потребляемый ток	не боле 20 мА
Расстояние срабатывания	5400 мм
Максимальный ток нагрузки	300мА
Максимальная частота срабатывания	400Гц
Диапазон уровней посторонних засветок	05000 лк
Степень защиты	IP65

Рис.2 - Границы срабатывания датчика

2. Порядок выполнения работы

1. Подключить блок питания, выставить рабочее напряжение 24 В (рис. 3). При не правильном подключении напряжения с блока питания загорается красная лампочка на блоке индикации.

Рис. 3 - Схема подключения оптического датчика

- 2.Включить емкостной датчик нажав кнопку на блоке индикации, при этом загорится включиться подсветка выключателя.
 - 3. Закрепить образец материала в зажиме.
- 4. Отвести исследуемый образец на максимальное расстояние от датчика.
 - 5. Перемещать образец к датчику, пока он не сработает.
 - 6. Записать расстояние срабатывания датчика в мм в таблицу 1.
 - 7.Затем отводить образец пока датчик не выключится.
 - 8. Записать расстояние срабатывания датчика в мм в таблицу 1.
 - 9. Повторить 10 раз пункты 4 8.

!При не правильном подключении напряжения с блока питания загорается красная лампочка на блоке индикации.

Таблица 2 – Результаты измерений

No	Материал								
П/П	Металл		Текстолит		Медь		Картон		
	Вкл.	Выкл.	Вкл.	Выкл.	Вкл.	Выкл.	Вкл.	Выкл.	
1									
2									
•••	•••	•••	•••	•••	•••	•••	•••	•••	
10									

Расчетная часть.

1. Среднее арифметическое:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n},\tag{1}$$

где X_i - расстояние срабатывания ,мм;

- n количество измерений.
- 2.Вычислить среднеквадратическое отклонение:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}.$$
 (2)

3. Записать доверительный интервал:

$$\Delta = \sigma t = 2.23\sigma,\tag{3}$$

t = 2,23 - критерий Стьюдента для 10 измерений, при точности 0,95.

4. Записать полученные результаты в виде:

$$L_{cp} = \overline{X} \pm \Delta. \tag{4}$$

3. Содержание индивидуального отчета

- 1. Название, цель работы.
- 2. Схема лабораторной установки с описанием.
- 3. Таблица с результатами измерений.
- 4. Результаты расчетов.
- 5. Выводы.

4. Контрольные вопросы

- 1. Дайте определение оптического бесконтактного выключателя.
- 2. Опишите принцип действия оптического бесконтактного выключателя.
- 3. Опишите конструкцию индуктивного оптического выключателя.
- 4. Дайте характеристику схемы подключения оптического датчика BБ3C.18M.
- 5. Назовите достоинства и недостатки оптических датчиков.