

Session 7

K-mers

-> Table of Contents <-

Extract K-mers of a sec	1
What is a k-mer	1
Extract a K-mer	1
Why So Popular in Bioinformatics	2
Applications of k-mer Counting	2
Find & Count a given K-me	3
Finding	3
Counting	3
Forces Affecting K-mer Freq	4
Most Popular K-mers	5
Most Popular K-mers with (X) Mismatches	5

▼Extract K-mers of a seq

◆What is a k-mer

• A *k-mer* is just a sequence of *k* characters in a string (or nucleotides in a DNA sequence). Now, it is important to remember that to get *all k-mers* from a sequence you need to get the first *k* characters, then move just a single character for the start of the next *k-mer* and so on. Effectively, this will create sequences that overlap in k-1 positions.

◆Extract a K-mer

 by way of example the next sequence the Seq("ATCGATCAC")
 One with 3-mer & the other with 4-mer

○ (k-mer of size 3) => ATCGATCAC

Sequence: ATCGATCAC

3-mer #0: ATC

3-mer #1: TCG

3-mer #2: CGA

3-mer #3: GAT

3-mer #4: ATC

3-mer #5: TCA

3-mer #6: CAC

o (k-mer of size 4) => ATCGATCAC

Sequence: ATCGATCAC

4-mer #0: ATCG

4-mer #1: TCGA

4-mer #2: CGAT

4-mer #3: GATC

4-mer #4: ATCA

4-mer #5: TCAC

♦Why So Popular in Bioinformatics

- Decomposing a sequence into its k-mers for analysis allows this set of fixed-size chunks to be analysed rather than the sequence, and this can be more efficient.
- K-mers are very useful in sequence matching (string matching with n-grams has a rich history), and set operations are faster, easier, and there are a lot of readily-available algorithms and techniques to work with them.
- A simple example: to check if a sequence S comes from organism A or from organism B, assuming the genomes of A and B are known and sufficiently different, we can check if S contains more k-mers present in A or in B. Yes, there are many tools that do just that.
- Basically, using k-mers simplifies bioinformatics to counting and comparing whether things are there or not.

Applications of k-mer Counting

• Genome assembly, Sequence alignment, Sequence clustering, Error correction of sequencing reads, Genome size estimation, Repeat identification.

▼Find & Count a given K-mer

Finding

- We Can Find the K-mers in the sequence as a movable imaginary box consisting of a constant number that the search is based on.
- For Ex. suppose we have a seq("ATTCGAACT") and (k-mer) of size (4). Then the K-mers will be: (ATTC), (TTCG), (TCGA), (CGAA), (GAAC), (AACT). Then there is a 6 k-mers of the sequence with the size 4.

◆Counting

- The *Total Count* is simply how many times each k-mer has appeared in the given sequence. Except for ACGA, which has appeared twice, the rest of the 4-mers have appeared only once.
- (k-mer of size 4) => ACGAGGTACGA

				Α	С	G	Α	G	G	Т	Α	С	G	Α
	Total	Distinct	Unique	Α	С	G	Α	ī						
ACGA	2	1	0	i - L	С	G	Α	G						
CGAG	1	1	1		C									
GAGG	1	1	1			G	A	G	G		l			
AGGT	1	1	1				Α	G	G	Т		ı		
GGTA	1	1	1					G	G	Т	Α		1	
GTAC	1	1	1						G	Т	Α	С		
TACG	1	1	1							T	Α	С	G	
											Α	С	G	Α

• The distinct k-mers are counted only once regardless of how many times they appear. For example, even though ACGA has appeared twice, we count it only once. The *Distinct Count* provides us the information of if a k-mer has appeared or not (not how many times it has appeared).

- The unique k-mers are those which appear only once. In the above example, since ACGA has appeared twice, its unique count is zero.
 The *Unique Count* reveals which k-mers have appeared only once.
- The next Ex. shows all the possible (6 & 4 K-mers) in a Sequence:

◆Forces Affecting K-mer Freq

- The frequency of *k*-mer usage is affected by numerous forces, working at multiple levels, which are often in conflict.
- It is important to note that *k*-mers for higher values of *k* are affected by the forces affecting lower values of *k* as well.
- For example, if the 1-mer A does not occur in a sequence, none of the
 2-mers containing A (AA, AT, AG, and AC) will occur either, thereby linking the effects of the different forces.

♦Most Popular K-mers

• We say that k-mer is popular or not depending on how often it is repeated in the Sequence.

Here we see that there are Popular K-mers: (CGG), (GCC), (GCA) Each of them repeated 2 times in the Sequence so they are the most Popular in the Sequence.

♦ Most Popular K-mers with (X) Mismatches

- Here Our Sequence is: "ATGTCGATCATTATG" and we have already a popular K-mer but with num of (x) Mismatches.
- That means if we Suppose there is a popular K-mer which is: "ATG" and we want to find if there is (1) Mismatches of this popular K-mer, It could be:

```
(TTG), (CTG), (GTG),
(AAG), (ACG), (AGG),
(ATA), (ATT), (ATC)
```

These are all the Possible tries to get all the ((1) Mismatches) of "ATG"

- Then we return to the Sequence and Compare all its K-mers with these Probabilities of mismatches.
- When we Compare Both of Them, we will find that the ((1) Mismatches) of "ATG" which is popular is: (ATC), (ATT). so we have 2 Mismatches.