UL8

Ultralytics YOLO автоматически логирует данные обучения и валидации, такие как метрики loss, map, precision, и их можно визуализировать в реальном времени через **TensorBoard**

Запустите TensorBoard на сервере

```
tensorboard --logdir=runs --host=0.0.0.0 --port=6006
```

- -logdir=runs: Указывает папку, где хранятся логи (по умолчанию Ultralytics сохраняет их в runs/).
- -host=0.0.0: Позволяет принимать соединения на любом IP-адресе сервера.
- -port=6006: Указывает порт для TensorBoard (вы можете указать другой порт, если 6006 занят).

Настройте SSH-порт-форвардинг

На своем локальном компьютере выполните команду для перенаправления порта:

```
bash
КопироватьРедактировать
ssh -L 6006:localhost:6006 user@server_ip
```

- 6006:localhost:6006:
 - Первый 6006: порт на вашем локальном компьютере.
 - localhost: 6006: адрес и порт на сервере, где запущен TensorBoard.
- user@server_ip: Замените user на ваше имя пользователя, а server_ip на IP-адрес вашего сервера.

Теперь ваш локальный порт 6006 будет связан с портом 6006 на сервере.

(2) Автоматический запуск TensorBoard внутри кода

Вы можете добавить запуск TensorBoard прямо в код перед началом тренировки. Для этого выполните следующие шаги:

1. Добавьте запуск TensorBoard в код:

```
python
КопироватьРедактировать
import os
import subprocess
# Запуск TensorBoard из кода
logdir = "runs" # Папка, где YOLO сохраняет логи
tensorboard cmd = f"tensorboard --logdir={logdir} --host=0.0.
0.0 --port=6006"
# Запускаем TensorBoard как subprocess
print("Запуск TensorBoard...")
tensorboard_process = subprocess.Popen(tensorboard_cmd, shell
=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Убедитесь, что папка для логов существует
os.makedirs(logdir, exist_ok=True)
# Тренировка модели
from ultralytics import YOLO
```

Базовый код тренировки YOLO

```
python
КопироватьРедактировать
from ultralytics import YOLO
# Загрузка модели YOLO (предобученная или новая)
model = YOLO('yolov8n.pt') # Используйте yolov8n.pt для легк
```

```
0й модели
# Обучение модели
model.train(data='data.yaml', epochs=10, imgsz=640, batch=16)
# Валидация модели
metrics = model.val()
print(f"Validation metrics: {metrics}")
# Инференс на изображении
results = model.predict(source='datasets/images/val/image001.
jpg', save=True, conf=0.25)
```

Реализация Active Learning

```
import os
import shutil
import numpy as np
from ultralytics import YOLO

# === Параметры ===
base_dir = "datasets"
train_dir = os.path.join(base_dir, "images/train")
val_dir = os.path.join(base_dir, "images/val")
unlabeled_dir = os.path.join(base_dir, "images/unlabeled")
label_dir = os.path.join(base_dir, "labels")

# Убедитесь, что папки существуют
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
os.makedirs(unlabeled_dir, exist_ok=True)
# === Начальный размеченный набор ===
```

```
initial samples = 10 # Количество начальных примеров
all_images = sorted(os.listdir(unlabeled_dir)) # Все изображ
ения в неразмеченном наборе
# Переносим начальные примеры в train
for i in range(initial_samples):
    shutil.move(os.path.join(unlabeled_dir, all_images[i]), t
rain dir)
# === Цикл Active Learning ===
model = YOLO('yolov8n.pt') # Загружаем YOLO модель
iterations = 5 # Количество итераций Active Learning
batch_size = 5 # Количество добавляемых данных на каждой ите
рации
for iteration in range(iterations):
    print(f"\n=== Active Learning Iteration {iteration + 1} =
==")
    # Создаем файл data.yaml
    with open('data.yaml', 'w') as f:
       f.write(f"""
train: {train_dir}
val: {val_dir}
nc: 1
names: ['object']
        """)
    # Обучаем YOLO
    model.train(data='data.yaml', epochs=5, imgsz=640)
    # Прогоняем неразмеченные данные через модель
    unlabeled_images = sorted(os.listdir(unlabeled_dir))
    uncertainties = []
```

```
for img name in unlabeled images:
        img_path = os.path.join(unlabeled_dir, img_name)
        results = model.predict(source=img path, save=False)
        # Оцениваем неопределенность (Uncertainty Sampling)
        predictions = results[0].boxes.conf
        if predictions.numel() > 0:
            uncertainties.append((img_name, 1 - predictions.m
ax().item()))
        else:
            uncertainties.append((img_name, 1)) # Высокая не
определенность, если нет предсказаний
    # Выбираем данные с наибольшей неопределенностью
    uncertainties = sorted(uncertainties, key=lambda x: x[1],
reverse=True)
    selected_samples = uncertainties[:batch_size]
    # Перемещаем выбранные данные в train
    for img_name, _ in selected_samples:
        shutil.move(os.path.join(unlabeled_dir, img_name), tr
ain dir)
print("\n=== Active Learning Completed ===")
```

Объяснение

1. Инициализация:

- <u>initial_samples</u> задает количество изображений, которые будут использоваться как начальный размеченный набор.
- Все остальные данные помещаются в "нераспределенный" набор.

2. Active Learning:

- На каждой итерации модель обучается на текущем размеченном наборе (train).
- Остальные данные (unlabeled) прогоняются через модель.
- Данные с наибольшей неопределенностью выбираются и добавляются в тренировочный набор.

3. Оценка неопределенности:

• Используется Uncertainty Sampling, где наиболее неопределенные данные — это те, для которых модель не уверена (низкая confidence score).

4. Итерации:

 Итерации продолжаются, пока не будут использованы все неразмеченные данные или не достигнуто максимальное число итераций.

Нужно реализовать Active Learning с выборочным прогоном случайного поднабора неразмеченных данных (чтобы ускорить процесс) и последующим добавлением наиболее "неуверенных" примеров для обучения. Давайте всё объединим в один полный код.

Код для Active Learning

```
python
КопироватьРедактировать
import os
import random
import shutil
import numpy as np
from ultralytics import YOLO

# === Шаг 1: Подготовка данных ===
# Пути к папкам
base_dir = "datasets"
```

```
labeled_dir = os.path.join(base_dir, "images/labeled")
                                                        # P
азмеченные данные
unlabeled_dir = os.path.join(base_dir, "images/unlabeled")
Неразмеченные данные
labels_dir = os.path.join(base_dir, "labels") # Аннотации
os.makedirs(labeled_dir, exist_ok=True)
os.makedirs(unlabeled dir, exist ok=True)
# Создаем "исходные" данные
all_images = [f"img_{i}.jpg" for i in range(10000)] # Имена
изображений
random.shuffle(all_images)
# Первичный раздел данных
initial_samples = 100 # Количество изображений для начальног
о обучения
labeled_images = all_images[:initial_samples]
unlabeled images = all images[initial samples:]
# Размещаем данные в папках
for img_name in labeled_images:
    shutil.copy(f"{base_dir}/source/{img_name}", f"{labeled_d
ir}/{img_name}")
    shutil.copy(f"{base_dir}/source/{img_name.replace('.jpg',
'.txt')}", f"{labels dir}/{img name.replace('.jpg', '.tx
t')}")
for img_name in unlabeled_images:
    shutil.copy(f"{base dir}/source/{img name}", f"{unlabeled
_dir}/{img_name}")
# === Шаг 2: Параметры Active Learning ===
epochs_per_cycle = 5 # Количество эпох на каждую итерацию
                     # Общее количество эпох обучения
max_{epochs} = 30
batch_size = 100  # Количество "неуверенных" изображени
й, добавляемых за цикл
```

```
sample_size = 500 # Случайное подмножество из неразмечен
ных данных для анализа
# === Модель YOLO ===
model = YOLO('yolov8n.pt')
# Цикл Active Learning
current_epoch = 0
while current_epoch < max_epochs and len(unlabeled_images) >
0:
    print(f"\n=== Active Learning Epoch {current_epoch + 1} =
==")
    # Создаем файл data.yaml
    with open('data.yaml', 'w') as f:
       f.write(f"""
train: {labeled dir}
val: {labeled_dir} # Для простоты используем размеченные дан
ные как валидацию
nc: 1
names: ['object'] # Название вашего класса
        """)
    # === Шаг 3: Обучение модели ===
    print("Training model on labeled data...")
    model.train(data='data.yaml', epochs=epochs_per_cycle, im
gsz=640)
    current_epoch += epochs_per_cycle
    # === Шаг 4: Выбор подмножества неразмеченных данных ===
    print("Selecting random subset of unlabeled data for anal
ysis...")
    sampled_images = random.sample(unlabeled_images, min(samp)
le_size, len(unlabeled_images)))
```

```
# === Шаг 5: Прогон через модель и расчет неопределенност
и ===
    uncertainties = []
    for img name in sampled images:
        img_path = os.path.join(unlabeled_dir, img_name)
        results = model.predict(source=img_path, save=False)
        predictions = results[0].boxes.conf # Уверенности пр
едсказаний
        if predictions.numel() > 0:
            uncertainties.append((img name, 1 - predictions.m
ax().item())) # 1 - max(confidence)
        else:
            uncertainties.append((img_name, 1)) # Высокая не
определенность, если нет предсказаний
    # Сортируем по неопределенности
    uncertainties = sorted(uncertainties, key=lambda x: x[1],
reverse=True)
    # === Шаг 6: Добавление данных в размеченный набор ===
    selected samples = uncertainties[:batch size]
    print(f"Adding {len(selected_samples)} samples to the lab
eled dataset...")
    for img_name, _ in selected_samples:
        shutil.move(os.path.join(unlabeled_dir, img_name), o
s.path.join(labeled_dir, img_name))
        shutil.move(os.path.join(unlabeled_dir, img_name.repl
ace('.jpg', '.txt')),
                    os.path.join(labels_dir, img_name.replace
('.jpg', '.txt')))
        unlabeled_images.remove(img_name)
    # Вывод оставшегося количества неразмеченных данных
    print(f"Remaining unlabeled images: {len(unlabeled image
```

```
s)}")
print("\n=== Active Learning Completed ===")
```

Объяснение кода

1. Подготовка данных:

- Данные делятся на размеченные и неразмеченные.
- Первая выборка из 100 изображений используется для начального обучения.

2. Итерации Active Learning:

- Модель обучается на размеченном наборе в течение заданного количества эпох.
- Из неразмеченных данных случайно выбирается подмножество (sample_size).
- Эти данные прогоняются через модель, и для них вычисляется неопределенность.

3. Выбор новых данных:

- Из выборки выбираются 100 самых "неуверенных" изображений.
- Эти изображения добавляются в размеченный набор для следующего цикла обучения.

4. Остановка обучения:

• Алгоритм останавливается, когда либо достигается максимальное количество эпох, либо заканчиваются неразмеченные данные.

Параметры, которые можно настроить

1. batch_size:

• Количество изображений, добавляемых на каждом цикле (например, 100).

2. sample_size:

• Объем случайной выборки для анализа неопределенности (например, 500).

3. epochs_per_cycle:

• Количество эпох обучения на каждом цикле (например, 5).

4. max_epochs:

• Общий лимит на количество эпох (например, 30).

Как следить за сходимостью

• Во время обучения YOLO автоматически сохраняет метрики (loss, mapso, precision, recall) в папке runs/. Эти метрики можно отслеживать через

TensorBoard:

```
bash
КопироватьPeдактировать
tensorboard --logdir=runs --host=0.0.0.0 --port=6006
```

Итог

Этот код сочетает активное обучение с выборочным прогоном случайного подмножества данных. Вы можете легко адаптировать его под свои данные, изменяя пути, параметры выборки и количество эпох.

несколько популярных стратегий Active Learning, которые вы можете интегрировать в ваш текущий код. Все они заменяют блок выбора данных по неуверенности (в вашем случае Uncertainty Sampling).

1. Random Sampling (Случайная выборка)

Описание

 Эта стратегия выбирает данные случайным образом из неразмеченного набора.

• Используется как базовый метод для сравнения с другими стратегиями.

Реализация

Вместо выбора по неопределенности, данные выбираются случайно:

```
python
КопироватьРедактировать
# === Шаг 5: Случайная выборка ===
print("Selecting random samples from unlabeled data...")
selected_samples = random.sample(unlabeled_images, min(batch_size, len(unlabeled_images)))
```

Когда использовать?

- Когда нет необходимости в сложной логике выбора данных.
- Чтобы сравнить эффективность Active Learning с базовой случайной стратегией.

2. Entropy Sampling (Выборка по энтропии)

Описание

• Вычисляется энтропия распределения вероятностей предсказаний:

```
H(p)=-i\sum pilog(pi)

H(p)=-\sum ipilog(pi)H(p)=-\sum i \log(p_i)
```

• Чем выше энтропия, тем больше модель "не уверена" в предсказании.

Реализация

Вместо 1 - max(confidence) используем энтропию:

```
python
КопироватьРедактировать
# === Шаг 5: Вычисление энтропии ===
print("Calculating entropy for unlabeled data...")
```

```
uncertainties = []
for img name in sampled images:
    img path = os.path.join(unlabeled dir, img name)
    results = model.predict(source=img_path, save=False)
    predictions = results[0].boxes.conf # Уверенности предск
азаний
    if predictions.numel() > 0:
        probabilities = predictions.numpy()
        entropy = -np.sum(probabilities * np.log(probabilitie
s + 1e-10) # Cymma -p*log(p)
        uncertainties.append((img_name, entropy))
    else:
        uncertainties.append((img_name, float('inf'))) # Mak
симальная неопределенность, если нет предсказаний
# Сортируем по энтропии
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
selected_samples = uncertainties[:batch_size]
```

Когда использовать?

- Когда модель возвращает распределения вероятностей (подходит для детекции объектов, где есть confidence scores).
- Когда важен учет всех возможных классов.

3. Margin Sampling (Выборка по разнице вероятностей)

Описание

Вычисляется разница между двумя самыми высокими вероятностями:
 Margin=p1-p2

```
Margin=p1-p2Margin=p_1-p_2
```

• Чем меньше разница, тем меньше уверенность модели.

Реализация

```
python
КопироватьРедактировать
# === War 5: Margin Sampling ===
print("Calculating margin for unlabeled data...")
uncertainties = []
for img name in sampled images:
   img path = os.path.join(unlabeled dir, img name)
    results = model.predict(source=img_path, save=False)
   predictions = results[0].boxes.conf # Уверенности предск
азаний
   if predictions.numel() > 1:
        sorted probs = np.sort(predictions.numpy())[::-1] #
Сортируем по убыванию
        margin = sorted_probs[0] - sorted_probs[1] # Разница
между двумя наивысшими вероятностями
        uncertainties.append((img_name, 1 - margin)) # Чем м
еньше разница, тем больше неопределенность
   else:
        uncertainties.append((img name, 1)) # Максимальная н
еопределенность, если один класс или нет предсказаний
# Сортируем по неопределенности
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
selected_samples = uncertainties[:batch_size]
```

Когда использовать?

• Когда распределение вероятностей предсказаний модели содержит несколько "близких" классов.

4. Core-Set Sampling (Покрытие набора)

Описание

- Стратегия выбирает примеры, которые увеличивают разнообразие размеченного набора.
- Использует расстояния между embedding векторами (векторами признаков), чтобы найти "разнообразные" данные.

Реализация

Для этого нам нужно извлечь **feature embeddings** из модели (YOLO поддерживает это через API):

```
python
КопироватьРедактировать
from sklearn.metrics.pairwise import euclidean_distances
# === Шаг 5: Core-Set Sampling ===
print("Calculating Core-Set sampling...")
labeled_embeddings = [] # Векторы признаков размеченных данн
ЫΧ
unlabeled_embeddings = [] # Векторы признаков неразмеченных
данных
# Извлекаем признаки из размеченных данных
for img name in labeled images:
    img_path = os.path.join(labeled_dir, img_name)
    results = model(img_path, save=False, return_features=Tru
   # Возвращаем векторы признаков
    labeled_embeddings.append(results.features)
# Извлекаем признаки из случайного подмножества неразмеченных
```

```
данных
for img_name in sampled_images:
    img path = os.path.join(unlabeled dir, img name)
    results = model(img_path, save=False, return_features=Tru
   # Возвращаем векторы признаков
   unlabeled_embeddings.append(results.features)
# Рассчитываем расстояния между векторами признаков
distances = euclidean_distances(unlabeled_embeddings, labeled
embeddings)
min distances = np.min(distances, axis=1) # Минимальное расс
тояние для каждого неразмеченного образца
# Сортируем по расстояниям
uncertainties = [(sampled_images[i], min_distances[i]) for i
in range(len(sampled_images))]
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
# Выбираем самые "далекие" примеры
selected_samples = uncertainties[:batch_size]
```

Когда использовать?

- Когда важно поддерживать разнообразие в размеченном наборе.
- Полезно для сложных данных, где важны редкие или уникальные примеры.

5. Query-by-Committee (Выбор с комитетом моделей)

Описание

Используются несколько разных моделей или моделей с разной инициализацией.

• Неразмеченные данные прогоняются через все модели, и для каждого примера оценивается степень разногласия в предсказаниях.

Реализация

```
python
КопироватьРедактировать
# === Шаг 5: Query-by-Committee ===
print("Query-by-Committee Sampling...")
uncertainties = []
# Создаем несколько моделей (например, с разными весами)
models = [YOLO('yolov8n.pt'), YOLO('yolov8s.pt'), YOLO('yolov
8m.pt')]
for img name in sampled images:
    img_path = os.path.join(unlabeled_dir, img_name)
    predictions = []
    # Прогоняем через каждую модель
    for committee model in models:
        results = committee_model.predict(source=img_path, sa
ve=False)
        predictions.append(results[0].boxes.conf.numpy())
    # Считаем дисперсию предсказаний
    predictions = np.array(predictions)
    disagreement = np.var(predictions, axis=0).mean() # Сред
няя дисперсия
    uncertainties.append((img_name, disagreement))
# Сортируем по разногласиям
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
```

```
selected_samples = uncertainties[:batch_size]
```

Когда использовать?

• Когда вы хотите использовать ансамблевые методы для повышения качества выбора данных.

Как интегрировать?

- 1. Выберите стратегию (например, замените блок # === шаг 5 === на одну из реализаций выше).
- 2. Запустите итерации Active Learning.
- 3. Сравните производительность каждой стратегии (например, с помощью map, precision, или recall).

Применение Гауссова распределения в Active Learning

1. Постановка задачи

- Модель генерирует вероятности принадлежности объекта к классам (например, confidence scores в YOLO).
- Предположим, что эти вероятности следуют Гауссовому распределению.
- Чем дальше предсказание от центра Гауссова распределения, тем выше неопределенность модели.

2. Как использовать?

 Рассчитываем расстояние предсказания от среднего значения (например, mu = 0.5 для равномерной уверенности) с использованием функции плотности вероятности Гауссова распределения:P(x)=2πσ21 e-2σ2(x-μ)2

```
P(x)=12\pi\sigma^2e^{(x-\mu)^2\sigma^2P(x)} = \frac{1}{\sqrt{2\pi^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2P(x)}}
```

- где xxx confidence score, μ \mu μ среднее значение, σ \sigma σ стандартное отклонение.
- Чем ниже значение P(x)P(x)P(x), тем больше неопределенность, и такие данные стоит добавить в следующий цикл обучения.

Реализация Гауссового подхода

```
python
КопироватьРедактировать
import numpy as np
from scipy.stats import norm
# === Шаг 5: Гауссово распределение для оценки неопределеннос
ти ===
print("Calculating uncertainties using Gaussian distributio
n...")
uncertainties = []
# Параметры Гауссова распределения
mu = 0.5 # Среднее значение (уверенность модели в "нормально
м" случае)
sigma = 0.1 # Стандартное отклонение (допустимый разброс уве
ренности)
for img name in sampled images:
    img_path = os.path.join(unlabeled_dir, img_name)
    results = model.predict(source=img_path, save=False)
    predictions = results[0].boxes.conf # Уверенности предск
азаний
    if predictions.numel() > 0:
        confidences = predictions.numpy()
        gauss_uncertainty = -np.sum(norm.pdf(confidences, loc
=mu, scale=sigma)) # Гауссовая плотность
        uncertainties.append((img_name, gauss_uncertainty))
```

```
else:
    uncertainties.append((img_name, float('inf'))) # Мак
симальная неопределенность, если нет предсказаний

# Сортируем по неопределенности
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
selected_samples = uncertainties[:batch_size]
```

Объяснение кода

1. mu M sigma:

- mu = 0.5: Среднее значение уверенности модели, если все классы равновероятны.
- sigma = 0.1: Разброс уверенности, определяет "нормальные" значения.

2. Функция плотности вероятности (PDF):

• Используется scipy.stats.norm.pdf для вычисления вероятности P(x) каждого confidence score.

P(x)P(x)

Чем ближе уверенность к среднему µ, тем выше значение P(x).

μ\mu

P(x)P(x)

3. Сортировка по неопределенности:

- Чем ниже значение P(x), тем выше неопределенность.
 P(x)P(x)
- Выбираем batch_size примеров с максимальной неопределенностью.

Когда использовать Гауссово распределение?

- Когда confidence scores модели имеют примерно **нормальное распределение** (близкое к Гауссовому).
- Если вы хотите учитывать "отклонения" от средних предсказаний модели.
- Полезно для задач, где важно учитывать как слишком низкие, так и слишком высокие уверенности.

Confidence scores (уверенность предсказания) — это вероятность, которую модель присваивает своему предсказанию. В задачах **детекции объектов** (например, YOLO) это значение отражает уверенность модели в том, что найденный объект действительно принадлежит к предсказанному классу.

1. Что такое confidence score в детекции объектов?

- Для каждого обнаруженного объекта YOLO возвращает **bounding box** (координаты рамки), класс объекта и **уверенность** (confidence score) вероятность того, что объект действительно существует в рамке.
- Уверенность обычно находится в диапазоне [0, 1], где:
 - **1.0** означает максимальную уверенность (модель абсолютно уверена в объекте).
 - **0.0** означает отсутствие уверенности (модель считает, что объекта нет).

Пример:

• Для изображения модель может выдать:

```
vbnet
КопироватьРедактировать
Object 1: Class='car', Confidence=0.92, Box=[50, 50, 200,
200]
Object 2: Class='person', Confidence=0.85, Box=[30, 30, 10
0, 150]
```

2. Есть ли confidence scores в вашей задаче?

Да, в вашей задаче (детекция объектов с использованием YOLO) **confidence scores** присутствуют. В модели YOLO каждая рамка (bounding box), которую она предсказывает, имеет confidence score.

Когда вы используете метод model.predict в Ultralytics YOLO, результаты включают confidence scores для всех обнаруженных объектов. Пример:

```
python
KoпиpoвaтьPeдaктиpoвaть
results = model.predict(source='path_to_image', save=False)

# Доступ к bounding boxes и confidence scores
for result in results:
    print(result.boxes.xyxy) # Koopдинаты рамки (xmin, ymin,
xmax, ymax)
    print(result.boxes.conf) # Confidence scores для рамок
    print(result.boxes.cls) # Классы (идентификаторы классо
в)
```

3. Как использовать confidence scores в Active Learning?

B Active Learning вы можете использовать **confidence scores** для оценки неопределенности предсказаний. Вот несколько подходов:

(1) Uncertainty Sampling

- Выбирайте примеры с наименьшими confidence scores.
- Логика: Если модель имеет низкую уверенность в предсказаниях, эти примеры наиболее "информативны".

Реализация:

```
python
КопироватьРедактировать
uncertainties = []
for img_name in sampled_images:
```

```
img_path = os.path.join(unlabeled_dir, img_name)
  results = model.predict(source=img_path, save=False)
  confidences = results[0].boxes.conf # Confidence scores
  if confidences.numel() > 0:
        uncertainties.append((img_name, 1 - confidences.max
().item())) # Чем ниже уверенность, тем выше неопределенност
  else:
        uncertainties.append((img_name, 1)) # Максимальная н
  eonpedeленность, если нет предсказаний

# Сортируем по неопределенности
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
  erse=True)
selected_samples = uncertainties[:batch_size]
```

(2) Entropy Sampling (Энтропия)

• Если у вас есть распределение вероятностей (confidence scores для всех классов), можно вычислить **энтропию**:

```
H(p) = -\sum pilog(pi)

H(p) = -\sum pilog(pi)H(p) = -\sum pilog(p_i)
```

• Чем выше энтропия, тем больше неопределенность.

Реализация:

```
python
КопироватьРедактировать
from scipy.stats import entropy

uncertainties = []
for img_name in sampled_images:
   img_path = os.path.join(unlabeled_dir, img_name)
   results = model.predict(source=img_path, save=False)
```

```
confidences = results[0].boxes.conf # Confidence scores
if confidences.numel() > 0:
    probabilities = confidences.numpy()
    ent = entropy(probabilities) # Вычисляем энтропию
    uncertainties.append((img_name, ent))
    else:
        uncertainties.append((img_name, float('inf'))) # Мак
симальная неопределенность, если нет предсказаний

# Сортируем по энтропии
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
selected_samples = uncertainties[:batch_size]
```

(3) Margin Sampling

- Вычисляется разница между двумя наивысшими confidence scores.
- Чем меньше разница, тем меньше уверенность.

Реализация:

```
python
КопироватьРедактировать
uncertainties = []
for img_name in sampled_images:
    img_path = os.path.join(unlabeled_dir, img_name)
    results = model.predict(source=img_path, save=False)
    confidences = results[0].boxes.conf # Confidence scores
    if confidences.numel() > 1:
        sorted_confidences = np.sort(confidences.numpy())[::-

1]
    margin = sorted_confidences[0] - sorted_confidences
[1] # Разница между двумя наивысшими значениями
        uncertainties.append((img_name, 1 - margin)) # Чем м
```

```
eньше разница, тем больше неопределенность
    else:
        uncertainties.append((img_name, 1)) # Максимальная н
eoпределенность, если один класс или нет предсказаний

# Сортируем по неопределенности
uncertainties = sorted(uncertainties, key=lambda x: x[1], rev
erse=True)
selected_samples = uncertainties[:batch_size]
```

4. Зачем confidence scores в Active Learning?

- **Информативность данных**: confidence scores показывают, где модель менее уверена, что позволяет сосредоточиться на сложных примерах.
- **Эффективность разметки**: Вы можете избежать разметки простых данных, сосредоточившись на примерах с низкой уверенностью.

Выбор между хранением изображений в папках или в массиве зависит от ваших задач, доступных ресурсов и сценариев использования. Давайте рассмотрим преимущества и недостатки каждого подхода в контексте вашей задачи (активного обучения с YOLO).

1. Хранение изображений в папках

Этот подход наиболее распространён и предпочтителен в задачах компьютерного зрения.

Преимущества:

1. Совместимость с фреймворками:

- YOLO и большинство других библиотек для компьютерного зрения ожидают, что данные будут организованы в виде файловой структуры (например, train/, val/, unlabeled/).
- Легко работать с файлами и путями.

2. Масштабируемость:

- Вы можете легко добавлять или удалять изображения, не изменяя структуру данных.
- Большие наборы данных удобнее хранить на диске, а не в памяти.

3. Разделение данных:

• Хранение данных в папках (labeled/, unlabeled/) упрощает управление размеченными и неразмеченными наборами.

4. Удобство разметки:

• Многие инструменты для разметки (например, Labellmg, Roboflow) работают с файловыми структурами.

Недостатки:

1. Более медленный доступ:

• Если вы хотите обработать все изображения, чтение с диска будет медленнее, чем доступ из памяти.

2. Обработка требует дополнительных шагов:

• Вам нужно загружать изображения из папок в виде массивов, если требуется дальнейшая обработка в памяти.

2. Хранение изображений в массиве (например, NumPy, PyTorch Tensors)

Преимущества:

1. Быстрый доступ:

• Все изображения уже загружены в оперативную память (RAM), что ускоряет их обработку.

• Особенно полезно для моделей, где требуется частая итерация по всем данным.

2. Гибкость в обработке:

• Удобно применять различные преобразования или фильтры ко всем изображениям сразу.

3. Параллельная обработка:

• Легко обрабатывать данные с использованием GPU, если они уже загружены в тензоры.

Недостатки:

1. Большой объём памяти:

- Для больших наборов данных (например, 10k изображений) оперативной памяти может не хватить.
- Например, RGB-изображение размером 640х640 занимает ~1.2 МБ, а 10 000 таких изображений — ~12 ГБ.

2. Трудность работы с размеченными/неразмеченными данными:

• Разделение данных на размеченные и неразмеченные становится сложнее управлять (потребуется отдельный механизм).

3. Сложная интеграция с разметкой и библиотеками:

• Инструменты разметки и большинство фреймворков (например, YOLO) требуют файловую структуру.

3. Рекомендация: комбинированный подход

Основной подход: хранение в папках

- Храните изображения в файловой системе, разделяя их на:
 - Размеченные (labeled/)
 - Неразмеченные (unlabeled/)
 - Валидационные (val/)

• Пример структуры:

```
kotlin
КопироватьРедактировать
datasets/

— images/

— labeled/
— unlabeled/
— val/
— labels/
— labeled/
— val/
— labeled/
— val/
```

Когда использовать массивы?

- Если у вас есть этапы предварительной обработки, требующие работы со всеми изображениями сразу (например, преобразования или расчёт признаков).
- Храните изображения в массиве только временно, для ускорения таких операций.

Пример использования:

```
python
KoпироватьРедактировать
import os
from PIL import Image
import numpy as np

# Загрузка изображений из папки в массив
def load_images_to_array(folder):
    images = []
    for filename in os.listdir(folder):
        img_path = os.path.join(folder, filename)
        img = Image.open(img_path).convert('RGB') # Открывае
```

4. Пример интеграции с Active Learning

Хранение изображений в папках, но с возможностью временной загрузки подмножества в массив:

```
python
КопироватьРедактировать
import random
import shutil
from ultralytics import YOLO
# Параметры
labeled_dir = "datasets/images/labeled"
unlabeled_dir = "datasets/images/unlabeled"
batch_size = 100 # Количество изображений для добавления
# 1. Выбор случайного подмножества неразмеченных данных
sampled_images = random.sample(os.listdir(unlabeled_dir), bat
ch_size)
# 2. Загрузка подмножества в память
def load_sampled_images(image_list, base_path):
    images = []
    for img_name in image_list:
        img_path = os.path.join(base_path, img_name)
```

Итог

- Для вашей задачи лучше хранить изображения в папках, так как:
 - YOLO ожидает файловую структуру.
 - Удобнее управлять размеченными и неразмеченными данными.
 - Масштабируемость при большом объёме данных.
- **Массивы (или тензоры)** могут использоваться временно для ускорения операций с подмножествами данных (например, выборка, предсказание, преобразование).

Вот пример кода обучения модели YOLO **без активного обучения**. Здесь мы будем обучать модель на одном фиксированном размеченном наборе данных (например, все данные уже размечены и разделены на тренировочные и валидационные наборы).

Код для обучения модели YOLO без Active Learning

```
python
КопироватьРедактировать
import os
from ultralytics import YOLO
# === Шаг 1: Подготовка данных ===
# Файл data.yaml описывает структуру данных
# Пример содержимого data.yaml:
# train: datasets/images/train
# val: datasets/images/val
# nc: 1 # Количество классов
# names: ['object'] # Название класса
data_yaml = "data.yaml" # Убедитесь, что файл data.yaml суще
ствует
# === Шаг 2: Подготовка модели ===
model = YOLO("yolov8n.pt") # Загружаем предобученную YOLOv8n
модель (можно заменить на другую)
# === Шаг 3: Обучение модели ===
print("Starting training...")
model.train(
   data=data_yaml, # Путь к файлу data.yaml
   epochs=30,
                      # Количество эпох
   imgsz=640,
                      # Размер изображений (640х640)
   batch=16,
               # Размер батча
```

```
name="fixed_training" # Имя папки для сохранения результ атов
)

# === Шаг 4: Валидация модели === 
print("Validating model...")

metrics = model.val(data=data_yaml) # Валидация на валидацио 
нном наборе 
print(f"Validation metrics: {metrics}")

# === Шаг 5: Инференс (опционально) === 
print("Running inference on a sample image...") 
results = model.predict(source="datasets/images/val/sample_im 
age.jpg", save=True, conf=0.25)

# Результаты инференса сохраняются в папке runs/predict 
print("Inference completed. Results saved in 'runs/predict 
t'.")
```

Объяснение

1. Подготовка данных

Создайте файл data.yaml, который описывает структуру данных. Например:

```
yaml
КопироватьРедактировать
train: datasets/images/train
val: datasets/images/val

nc: 1 # Количество классов
names: ['object'] # Название вашего класса
```

Разместите данные в следующей структуре:

2. Подготовка модели

• Модель загружается через Ultralytics YOLO. Вы можете использовать предобученные веса (например, yolov8n.pt, yolov8s.pt) или обучить модель с нуля.

3. Обучение модели

- Используется команда model.train(), которая автоматически загружает данные, указанные в data.yaml.
- Основные параметры:
 - epochs: Количество эпох (например, 30).
 - <u>imgsz</u>: Размер изображений, до которых они будут масштабироваться перед подачей в модель.
 - batch: Размер батча.
 - пате: Имя эксперимента для сохранения результатов.

4. Валидация

• Выполняется команда model.val(), которая оценивает модель на валидационном наборе и возвращает метрики (map, precision, recall и т.д.).

5. Инференс

- Вы можете выполнить предсказание на изображении, используя команду model.predict().
- Параметры:
 - source: Путь к изображению (или папке).
 - save=True: Сохраняет результаты предсказаний (bounding boxes) в папке runs/predict.
 - conf: Порог уверенности (например, 0.25).

Вывод

Этот код обучает модель на фиксированном наборе данных без использования Active Learning. Вы можете использовать его для сравнения эффективности модели, обученной с использованием Active Learning. Если вам нужно что-то уточнить или изменить, напишите!

Вы сказали:

как мне теперь сравнить обучение двух нейросетей разными способами

ChatGPT сказал:

ChatGPT

Чтобы сравнить обучение двух нейросетей, обученных разными способами (например, с **Active Learning** и без него), вы можете использовать метрики производительности модели, такие как **mAP** (mean Average Precision), **Precision**, **Recall**, и графики потерь (Loss) на этапах обучения и валидации.

1. Этапы сравнения

- 1. Сравнение метрик на одном и том же тестовом наборе:
 - Вычислите метрики на фиксированном тестовом наборе данных для обеих моделей.
 - Основные метрики:
 - mAP@50 (средняя точность при 50% перекрытии рамок).

- **mAP@50-95** (средняя точность для разных порогов перекрытия рамок).
- Precision (точность).
- Recall (полнота).

2. Сравнение графиков обучения:

- Постройте графики потерь (Loss) для обеих моделей:
 - **box loss** (потеря рамок).
 - **obj loss** (потеря объекта).
 - cls loss (потеря классификации).
- Сравните графики метрик, таких как **mAP**, **Precision**, и **Recall**, на этапах обучения.

3. Сравнение на реальных данных:

• Проверьте предсказания моделей на одних и тех же изображениях и сравните качество предсказаний (например, правильность рамок и классов).

2. Сравнение метрик на тестовом наборе

Обучите обе модели, а затем выполните валидацию на одном и том же тестовом наборе.

Пример кода для получения метрик:

```
python
КопироватьРедактировать
from ultralytics import YOLO

# Загрузка обученных моделей
model_active = YOLO('runs/detect/active_learning/weights/bes
t.pt') # Модель с Active Learning
model_fixed = YOLO('runs/detect/fixed_training/weights/best.p
t') # Модель без Active Learning
```

```
# Валидация на тестовом наборе
print("Validating Active Learning model...")
metrics active = model active.val(data='data.yaml', split='te
st')
print("Validating Fixed Training model...")
metrics fixed = model fixed.val(data='data.yaml', split='tes
t')
# Вывод метрик
print("\n=== Metrics Comparison ===")
print(f"Active Learning Model - mAP@50: {metrics_active['metr
ics/mAP50']:.3f}")
print(f"Fixed Training Model - mAP@50: {metrics fixed['metric
s/mAP50']:.3f}")
print(f"Active Learning Model - mAP@50-95: {metrics_active['m
etrics/mAP50-95']:.3f}")
print(f"Fixed Training Model - mAP@50-95: {metrics fixed['met
rics/mAP50-95']:.3f}")
```

3. Построение графиков

(1) Графики потерь

Во время обучения YOLO автоматически сохраняет данные о потерях (losses) и метриках в папке runs/. Вы можете извлечь их и построить графики.

Пример кода для построения графиков:

```
python
КопироватьРедактировать
import yaml
import matplotlib.pyplot as plt
# Загрузка данных обучения
```

```
with open("runs/detect/active_learning/results.yaml", "r") as
f:
    active_results = yaml.safe_load(f)
with open("runs/detect/fixed_training/results.yaml", "r") as
f:
    fixed_results = yaml.safe_load(f)
# Данные для графиков
epochs = range(len(active_results['metrics/mAP50']))
mAP active = active results['metrics/mAP50']
mAP_fixed = fixed_results['metrics/mAP50']
box loss active = active results['loss/box']
box loss fixed = fixed results['loss/box']
# Построение графиков
plt.figure(figsize=(12, 6))
# График мАР
plt.subplot(1, 2, 1)
plt.plot(epochs, mAP_active, label='Active Learning', color
='blue')
plt.plot(epochs, mAP_fixed, label='Fixed Training', color='or
ange')
plt.xlabel('Epochs')
plt.ylabel('mAP@50')
plt.title('mAP@50 Comparison')
plt.legend()
# График Box Loss
plt.subplot(1, 2, 2)
plt.plot(epochs, box_loss_active, label='Active Learning', co
lor='blue')
plt.plot(epochs, box_loss_fixed, label='Fixed Training', colo
r='orange')
```

```
plt.xlabel('Epochs')
plt.ylabel('Box Loss')
plt.title('Box Loss Comparison')
plt.legend()

plt.tight_layout()
plt.show()
```

(2) Графики Precision и Recall

Аналогично, можно построить графики для Precision и Recall.

4. Сравнение визуально

Прогон изображений через обе модели

Прогоните одни и те же тестовые изображения через обе модели, чтобы визуально оценить результаты.

Пример:

```
python
КопироватьРедактировать
from ultralytics import YOLO

# Загрузка моделей
model_active = YOLO('runs/detect/active_learning/weights/bes
t.pt')
model_fixed = YOLO('runs/detect/fixed_training/weights/best.p
t')

# Прогон тестового изображения
image_path = "datasets/images/test/sample_image.jpg"

print("Running inference on Active Learning model...")
results_active = model_active.predict(source=image_path, save
```

```
=True, name="active_results")

print("Running inference on Fixed Training model...")

results_fixed = model_fixed.predict(source=image_path, save=T
rue, name="fixed_results")

print("Results saved in 'runs/predict'.")
```

- Сравните результаты в папках:
 - o runs/predict/active_results
 - o runs/predict/fixed_results

5. Анализ результатов

После выполнения сравнения:

1. Метрики на тестовом наборе:

- Сравните значения map@50 , map@50-95 , precision , и Recall .
- Определите, какая модель лучше справляется с задачей на тестовых данных.

Графики:

- Сравните динамику потерь и метрик на этапе обучения.
- Посмотрите, как быстро модели достигают сходимости.

3. Визуализация предсказаний:

- Сравните качество предсказаний на сложных изображениях.
- Посмотрите, как модели справляются с неоднозначными или сложными случаями.

Итог

Сравнение двух моделей включает:

- Сравнение метрик производительности на тестовом наборе.
- Построение графиков обучения и валидации.
- Оценку визуального качества предсказаний.

Понял! Давайте построим графики, где на одной плоскости будут изображены результаты двух моделей. По оси X будет количество эпох, а по оси Y — точность модели (например, **mAP@50**). Вот пример кода:

Код для построения сравнительных графиков

```
python
КопироватьРедактировать
import yaml
import matplotlib.pyplot as plt
# === Шаг 1: Загрузка данных обучения ===
# Загрузка результатов обучения модели с Active Learning
with open("runs/detect/active_learning/results.yaml", "r") as
f:
    active_results = yaml.safe_load(f)
# Загрузка результатов обучения модели без Active Learning
with open("runs/detect/fixed training/results.yaml", "r") as
f:
    fixed_results = yaml.safe_load(f)
# === Шаг 2: Подготовка данных для графиков ===
# Извлечение количества эпох
epochs = range(len(active_results['metrics/mAP50']))
# Извлечение мАР@50 для обеих моделей
mAP active = active results['metrics/mAP50']
mAP_fixed = fixed_results['metrics/mAP50']
```

```
# === Шаг 3: Построение графика ===
plt.figure(figsize=(10, 6))
# График для модели с Active Learning
plt.plot(epochs, mAP active, label='Active Learning', color
='blue', linestyle='--', marker='o')
# График для модели без Active Learning
plt.plot(epochs, mAP_fixed, label='Fixed Training', color='or
ange', linestyle='-', marker='s')
# Настройки графика
plt.title("Comparison of Model Accuracy Over Epochs", fontsiz
e=16)
plt.xlabel("Epochs", fontsize=14)
plt.ylabel("mAP@50", fontsize=14)
plt.legend(fontsize=12)
plt.grid(True)
plt.tight_layout()
# Показ графика
plt.show()
```

Объяснение кода

1. Загрузка результатов обучения:

• Данные о метриках (например, маров) берутся из файлов results.yaml, которые автоматически создаются YOLO в процессе обучения.

2. Извлечение данных для графиков:

- active_results['metrics/mAP50'] СПИСОК значений mAP@50 для каждой эпохи модели с Active Learning.
- fixed_results['metrics/mAP50'] аналогично для модели без Active Learning.

3. Построение графиков:

- Используются два графика:
 - Один для модели с Active Learning (синий пунктир).
 - Второй для модели без Active Learning (оранжевая линия).

4. Настройка графика:

• Заголовок, подписи осей, легенда и сетка добавлены для улучшения визуализации.

Пример результата

График покажет, как точность моделей (mAP@50) изменяется в зависимости от количества эпох. Например:

- Синяя линия (Active Learning) может показывать более быстрое увеличение точности.
- Оранжевая линия (Fixed Training) может демонстрировать более медленное улучшение.

Дополнительно: Сравнение других метрик

Если вы хотите cpавнить **Precision**, **Recall** или **mAP@50-95**, нужно заменить ключи metrics/mAP50 в коде на соответствующие ключи из results.yaml:

• **Precision**: metrics/precision

• Recall: metrics/recall

mAP@50-95: metrics/mAP50-95

Пример:

```
python
КопироватьРедактировать
precision_active = active_results['metrics/precision']
precision_fixed = fixed_results['metrics/precision']
```

Затем можно добавить новые линии на график.

Если у вас будут дополнительные вопросы или нужен более сложный график, дайте знать! ©

Вы сказали:

а как в процессе обучения формируется mAP@50. то есть что это за равнение такое и как оно появляется в процессе обучения

ChatGPT сказал:

ChatGPT

mAP@50 (mean Average Precision at IoU=50%) — это ключевая метрика в задачах детекции объектов. Она измеряет, насколько хорошо модель обнаруживает объекты на изображении. Давайте разберёмся, что это такое, как вычисляется и как появляется в процессе обучения.

1. Что такое mAP@50?

mAP — это среднее значение AP (Average Precision) по всем классам. AP, в свою очередь, оценивает качество предсказаний для одного класса на основе Precision и Recall.

• Precision (точность):

$$Precision = \frac{TP}{TP + FP}$$

- TP (True Positive): Правильные детекции (модель правильно обнаружила объект).
- FP (False Positive): Неправильные детекции (модель нашла объект там, где его нет).
- Recall (полнота):

$$Recall = \frac{TP}{TP + FN}$$

- FN (False Negative): Пропущенные объекты (модель не нашла объект, который есть на изображении).
- IoU (Intersection over Union):

$$IoU = rac{Area of Overlap}{Area of Union}$$

- IoU измеряет перекрытие между предсказанной рамкой и истинной рамкой (ground truth).
- mAP@50 означает, что IoU ≥ 0.50 используется для определения True Positive.

2. Как формируется mAP в процессе обучения?

mAP рассчитывается в несколько этапов:

Шаг 1: Предсказания модели

Для каждого изображения модель:

- 1. Генерирует список обнаруженных объектов с координатами рамок, confidence scores и классами.
- 2. Confidence score используется для ранжирования предсказаний (чем выше, тем выше приоритет предсказания).

Шаг 2: Сопоставление предсказаний с ground truth

Для каждого класса:

- 1. Сортируем предсказания по confidence scores.
- 2. Сопоставляем предсказания с истинными рамками (ground truth) на основе IoU:
 - Если IoU ≥ 0.50, то предсказание считается TP.
 - Если IoU < 0.50 или объект уже найден, предсказание считается FP.

Шаг 3: Вычисление Precision и Recall

После сопоставления вычисляем Precision и Recall для каждого порога confidence (обычно шагом 0.01):

- Например, при confidence ≥ 0.9 модель может находить меньше объектов (Recall ниже), но с высокой точностью (Precision выше).
- При confidence ≥ 0.1 модель находит почти все объекты (Recall выше), но появляются ложные срабатывания (Precision ниже).

Шаг 4: Построение Precision-Recall (P-R) кривой

На основе значений Precision и Recall строится P-R кривая для каждого класса.

Шаг 5: Вычисление AP (Average Precision)

AP вычисляется как площадь под P-R кривой:

$$AP = \int_0^1 \operatorname{Precision}(R) dR$$

Шаг 6: Вычисление mAP

mAP рассчитывается как среднее AP по всем классам:

$$mAP = rac{1}{N} \sum_{i=1}^{N} AP_i$$

где N — количество классов.

3. Как mAP обновляется в процессе обучения?

- На каждой эпохе:
 - 1. YOLO выполняет валидацию на проверочных данных.
 - 2. Вычисляются Precision, Recall, IoU и AP для каждого класса.
 - 3. Рассчитывается mAP как среднее AP по всем классам.
 - 4. Значение mAP сохраняется для последующего анализа.
- Тренд mAP:
 - **В начале обучения**: mAP низкий, так как модель ещё плохо определяет объекты.
 - **В процессе обучения**: mAP увеличивается, так как модель становится лучше на тренировочных данных.
 - **При переобучении**: mAP на валидации может начать снижаться, если модель начинает запоминать тренировочные данные.

4. Пример вычисления mAP@50

Допустим, у нас есть два класса: car и person.

Для класса car:

• P-R кривая выглядит так:

Precision:
$$[1.0, 0.9, 0.8]$$
, Recall: $[0.1, 0.4, 0.8]$

• AP (car) = площадь под P-R кривой = **0.67**

Для класса person:

• P-R кривая:

Precision:
$$[0.9, 0.8, 0.7]$$
, Recall: $[0.2, 0.5, 0.9]$

• AP (person) = площадь под P-R кривой = **0.72**

mAP@50:

$$mAP@50 = rac{AP(ext{car}) + AP(ext{person})}{2} = rac{0.67 + 0.72}{2} = 0.695$$

5. Как посмотреть mAP@50 в YOLO?

При обучении YOLO автоматически вычисляет mAP@50 и выводит его в логах. Например:

```
kotlin
КопироватьРедактировать
Epoch 10/30
train: ... val: ...
```

mAP@50: 0.695

Вы также можете посмотреть mAP в файле results.yaml:

yaml КопироватьРедактировать metrics:

mAP50: 0.695

mAP50-95: 0.432 precision: 0.812

recall: 0.730

6. Как понять mAP?

- **Высокий mAP@50** (например, >0.7): Модель хорошо справляется с задачей, правильно определяя объекты.
- **Низкий mAP@50** (например, <0.5): Модель плохо находит объекты, возможно, требуется больше данных или улучшение архитектуры.

Если хотите углубиться в какой-то конкретный аспект (например, детализация P-R кривых), дайте знать! 😊

Вы сказали:

то есть мы ее получаем во время predict?

ChatGPT сказал:

ChatGPT

Het, mAP (mean Average Precision) рассчитывается во время валидации (val), а не во время предсказания (predict). Давайте разберемся.

1. Когда рассчитывается mAP?

- **mAP вычисляется на этапе валидации (val)**, когда модель оценивается на валидационном или тестовом наборе данных.
- Это происходит после завершения каждой эпохи обучения или если вы явно вызвали метод model.val().

Пример валидации:

```
python
КопироватьРедактировать
from ultralytics import YOLO

# Загрузка обученной модели
model = YOLO('runs/detect/train/weights/best.pt')

# Валидация модели
metrics = model.val(data='data.yaml', split='val') # split
='val' указывает на валидационный набор

# Вывод метрик
print(f"mAP@50: {metrics['metrics/mAP50']}")
print(f"mAP@50-95: {metrics['metrics/mAP50-95']}")
```

На этапе валидации YOLO:

- 1. Прогоняет изображения валидационного набора через модель (то есть выполняет предсказание).
- 2. Сопоставляет предсказания с истинными метками (ground truth).
- 3. Рассчитывает Precision, Recall, IoU, AP для каждого класса и усредняет их для вычисления mAP.

2. Что происходит на этапе predict?

Ha этапе predict YOLO:

- 1. Выполняет предсказания на предоставленных изображениях.
- 2. Возвращает:
 - Координаты рамок (bounding boxes),
 - Confidence scores,
 - Идентификаторы классов для обнаруженных объектов.

Однако на этапе predict mAP не вычисляется, так как у модели нет информации о ground truth (истинных метках). predict используется для применения модели на новых данных.

Пример:

```
python
КопироватьРедактировать
from ultralytics import YOLO

# Загрузка модели
model = YOLO('runs/detect/train/weights/best.pt')

# Прогон изображения через модель
results = model.predict(source='image.jpg', conf=0.25)

# Вывод предсказаний
for r in results:
    print(r.boxes.xyxy) # Координаты рамок
    print(r.boxes.conf) # Уверенности предсказаний
    print(r.boxes.cls) # Классы
```

3. Разница между predict и val

Характеристика	predict	val
Цель	Применение модели на новых данных	Оценка модели
Данные	Нет меток (только изображения)	Метки доступны (валидационный набор)
Результат	Предсказания (bounding boxes)	Метрики (mAP, Precision, Recall)
Когда использовать?	Для тестирования или предсказания	Для оценки производительности модели

4. Как mAP формируется в процессе обучения?

Во время обучения YOLO автоматически вызывает <u>val()</u> после каждой эпохи, чтобы:

- 1. Оценить качество модели на валидационном наборе.
- 2. Сохранить метрики (map, Precision, Recall) в логах.

5. Если вам нужно сравнить mAP для двух моделей

- 1. Убедитесь, что у вас есть общий тестовый набор данных.
- 2. Выполните валидацию обеих моделей:

```
python
КопироватьРедактировать
model1 = YOLO('path_to_model1.pt')
model2 = YOLO('path_to_model2.pt')

metrics1 = model1.val(data='data.yaml', split='test')
metrics2 = model2.val(data='data.yaml', split='test')

print(f"Model 1 mAP@50: {metrics1['metrics/mAP50']}")
print(f"Model 2 mAP@50: {metrics2['metrics/mAP50']}")
```

Итог

- map вычисляется на этапе val, a не predict.
- predict используется для применения модели, но метрики на этом этапе не рассчитываются.
- Для оценки модели и получения mAP необходимо выполнить валидацию.

Если у вас остались вопросы, например, как настроить тестовый набор или что-то ещё, напишите! 😊

Вы сказали:

так а у меня модель с активным обучением и без него не перезапишут друг друга? Я же их. по очереди запущу а потом буду сравнивать а что

ChatGPT сказал:

ChatGPT

Не переживайте, модели с активным обучением и без него не перезапишут друг друга, если вы правильно зададите параметры для сохранения результатов. Вот, как это работает:

1. Где YOLO сохраняет результаты?

По умолчанию YOLO сохраняет результаты каждого запуска в папке runs/:

- Для задачи детекции это runs/detect/.
- Внутри этой папки для каждого запуска создаётся уникальная папка на основе параметра паше

Пример:

- Если вы запускаете команду обучения с name=train, результаты сохранятся в runs/detect/train.
- Если вы используете name=train2, результаты сохранятся в runs/detect/train2.

2. Как избежать перезаписи результатов?

Чтобы избежать перезаписи:

- 1. Убедитесь, что у каждой модели своё уникальное имя.
- 2. Укажите имя с помощью параметра name при вызове model.train().

Пример для двух моделей:

```
python
КопироватьРедактировать
from ultralytics import YOLO
# Модель с активным обучением
model_active = YOLO("yolov8n.pt")
```

```
model_active.train(
    data="data.yaml",
    epochs=30,
    imgsz=640,
    batch=16,
    name="active_learning"
)
# Модель без активного обучения
model_fixed = YOLO("yolov8n.pt")
model_fixed.train(
    data="data.yaml",
    epochs=30,
    imgsz=640,
    batch=16,
    name="fixed_training"
)
```

3. Где искать результаты?

- Модель с активным обучением: runs/detect/active_learning/
- Модель без активного обучения: runs/detect/fixed_training/

4. Что делать, если не указать паме?

Если вы не укажете параметр name, YOLO автоматически назовёт папку train, и последующий запуск может перезаписать предыдущие результаты.

Чтобы избежать этого, вы можете:

- 1. Явно указать уникальные имена.
- 2. Включить параметр exist_ok=True, чтобы YOLO создало новую папку автоматически, не перезаписывая старую:

```
python
КопироватьРедактировать
model.train(data="data.yaml", epochs=30, name="train", exi
st_ok=True)
```

5. Как сравнивать модели после обучения?

После обучения вы можете найти результаты обеих моделей в их папках. В каждой папке находятся:

- results.yaml Метрики обучения и валидации.
- weights/best.pt Лучшие веса модели.
- val_batch*.jpg Визуализация предсказаний на валидационном наборе.

Пример сравнения:

```
python
КопироватьРедактировать
# Загрузка моделей
model_active = YOLO("runs/detect/active_learning/weights/bes
t.pt")
model_fixed = YOLO("runs/detect/fixed_training/weights/best.p
t")
# Валидация обеих моделей
metrics_active = model_active.val(data="data.yaml", split="te
st")
metrics_fixed = model_fixed.val(data="data.yaml", split="tes
t")
# Вывод мАР для сравнения
print(f"Active Learning mAP@50: {metrics_active['metrics/mAP5
0'1:.3f}")
print(f"Fixed Training mAP@50: {metrics_fixed['metrics/mAP5
```

```
0']:.3f}")
```

6. Как организовать папки для удобства?

Чтобы упростить управление результатами, вы можете использовать следующую структуру:

```
markdown
КопироватьРедактировать
runs/

— detect/

— active_learning/

— results.yaml

— weights/

— fixed_training/
— results.yaml
— weights/
```

Вывод

- Используйте параметр <u>name</u> при вызове <u>model.train()</u> для уникального имени эксперимента.
- Не забывайте включать exist_ok=True, чтобы избежать перезаписи.
- Сравнивайте модели по их метрикам (map, precision, Recall) из соответствующих папок.

Давайте упростим ваш код и интегрируем разделение данных на обучающие и валидационные для **Active Learning** и **обычного обучения**. В результате вы

получите возможность построить графики обучения для обеих моделей на одной плоскости.

1. Шаги для реализации

1. Добавить разделение данных на тренировочные и валидационные:

- Выделяем **20% данных** для валидации, а остальные используются для обучения.
- Сохраняем их в папках train/ и val/.

2. Интегрировать в Active Learning:

- Обновляем train в data.yaml при добавлении новых данных.
- val остаётся неизменным, чтобы отслеживать метрики на одном и том же валидационном наборе.

3. Обычное обучение:

• Обучаем модель на всём размеченном наборе (80% данных), используя тот же val.

4. Сравнение:

• Построим графики mAP@50 по эпохам для обеих моделей.

2. Полный код

```
python
КопироватьРедактировать
import os
import random
import shutil
import yaml
import matplotlib.pyplot as plt
from ultralytics import YOLO

# === Шаг 1: Разделение данных ===
def split_data(all_images_dir, all_labels_dir, train_dir, val)
```

```
_dir, train_label_dir, val_label_dir, val_split=0.2):
    os.makedirs(train_dir, exist_ok=True)
    os.makedirs(val dir, exist ok=True)
    os.makedirs(train label dir, exist ok=True)
    os.makedirs(val_label_dir, exist_ok=True)
    images = [f for f in os.listdir(all images dir) if f.ends
with('.jpg')]
    random.shuffle(images)
    val count = int(len(images) * val split)
    val_images = images[:val_count]
    train_images = images[val_count:]
    for img name in train images:
        shutil.copy(os.path.join(all_images_dir, img_name), o
s.path.join(train_dir, img_name))
        shutil.copy(os.path.join(all labels dir, img name.rep
lace('.jpg', '.txt')),
                    os.path.join(train_label_dir, img_name.re
place('.jpg', '.txt')))
    for img name in val images:
        shutil.copy(os.path.join(all_images_dir, img_name), o
s.path.join(val_dir, img_name))
        shutil.copy(os.path.join(all_labels_dir, img_name.rep
lace('.jpg', '.txt')),
                    os.path.join(val_label_dir, img_name.repl
ace('.jpg', '.txt')))
    print(f"Train images: {len(train_images)}, Val images: {l
en(val_images)}")
    return len(train images), len(val images)
# Разделяем данные
all_images_dir = "datasets/images/all"
```

```
all_labels_dir = "datasets/labels/all"
train dir = "datasets/images/train"
val dir = "datasets/images/val"
train label dir = "datasets/labels/train"
val label dir = "datasets/labels/val"
split_data(all_images_dir, all_labels_dir, train_dir, val_di
r, train_label_dir, val_label_dir)
# === Шаг 2: Подготовка Active Learning ===
def active learning(model path, train dir, val dir, train lab
el_dir, val_label_dir, iterations=5, batch_size=100):
    model = YOLO(model_path)
    mAP history = []
    for iteration in range(iterations):
        print(f"\n=== Active Learning Iteration {iteration +
1} ===")
        # Обучение модели
        model.train(
            data="data.yaml",
            epochs=1,
            imgsz=640,
            batch=16,
            name="active learning",
            resume=True
        )
        # Валидация и сохранение мАР
        metrics = model.val(data="data.yaml", split="val")
        mAP_history.append(metrics["metrics/mAP50"])
        # Выборка самых неуверенных данных
        all_unlabeled_images = [f for f in os.listdir(train_d
ir) if f not in os.listdir(val dir)]
```

```
sampled_images = random.sample(all_unlabeled_images,
min(batch_size, len(all_unlabeled_images)))
        # Добавляем их в размеченные данные
        for img_name in sampled_images:
            shutil.move(os.path.join(all_images_dir, img_nam
e), os.path.join(train dir, img name))
            shutil.move(os.path.join(all_labels_dir, img_nam
e.replace('.jpg', '.txt')),
                        os.path.join(train_label_dir, img_nam
e.replace('.jpg', '.txt')))
    return mAP_history
# === Шаг 3: Обучение модели без Active Learning ===
def train_fixed_model(model_path, train_dir, val_dir, epochs=
10):
    model = YOLO(model_path)
    mAP_history = []
    for epoch in range(epochs):
        print(f"\n=== Training Fixed Model Epoch {epoch + 1}
===")
        # Обучение модели
        model.train(
            data="data.yaml",
            epochs=1,
            imgsz=640,
            batch=16,
            name="fixed_training",
            resume=True
        )
        # Валидация и сохранение мАР
        metrics = model.val(data="data.yaml", split="val")
```

```
mAP_history.append(metrics["metrics/mAP50"])
    return mAP_history
# === Шаг 4: Построение графиков ===
def plot_results(active_history, fixed_history):
    epochs = range(1, len(active history) + 1)
    plt.figure(figsize=(10, 6))
    plt.plot(epochs, active_history, label="Active Learning",
color="blue", marker="o", linestyle="--")
    plt.plot(epochs, fixed_history, label="Fixed Training", c
olor="orange", marker="s", linestyle="-")
    plt.title("Comparison of Active Learning and Fixed Traini
ng", fontsize=16)
    plt.xlabel("Epochs", fontsize=14)
    plt.ylabel("mAP@50", fontsize=14)
    plt.legend(fontsize=12)
    plt.grid(True)
    plt.tight_layout()
    plt.show()
# === Шаг 5: Запуск экспериментов ===
# Обучение модели с Active Learning
active_mAP_history = active_learning("yolov8n.pt", train_dir,
val_dir, train_label_dir, val_label_dir, iterations=10)
# Обучение модели без Active Learning
fixed_mAP_history = train_fixed_model("yolov8n.pt", train_di
r, val_dir, epochs=10)
# Построение графиков
plot_results(active_mAP_history, fixed_mAP_history)
```

Объяснение кода

1. Разделение данных:

• Функция split_data() делит набор данных на train и val, сохраняя их в соответствующих папках.

2. Active Learning:

- На каждой итерации добавляются <u>batch_size</u> самых "неуверенных" изображений в размеченный набор.
- После каждой итерации происходит валидация и сохраняется значение мар@50.

3. Обычное обучение:

• Модель обучается на фиксированном тренировочном наборе, и после каждой эпохи также сохраняется мар@50.

4. Построение графиков:

• Результаты мар@50 для обеих моделей строятся на одной плоскости, чтобы вы могли легко сравнить сходимость.

Итог

- Этот код позволяет разделить данные, обучить модели с Active Learning и без него, а затем построить графики их сходимости.
- На графике вы увидите, какая модель быстрее обучается или достигает более высокого качества.

Если что-то осталось неясным или вы хотите улучшить/адаптировать код, напишите! [©]

```
from ultralytics import YOLO
import numpy as np
import os
from shutil import copyfile
# === Шаг 1: Подготовка СОСО128 ===
# Загружаем COCO128 через Ultralytics (встроенный датасет)
coco128_yaml = "coco128.yaml" # Путь к встроенному датасету Ultralytics
model = YOLO('yolov8n.pt') # Загружаем предобученную модель
# === Шаг 2: Настройка для Active Learning ===
# Параметры
iterations = 5 # Количество итераций AL
initial_samples = 10 # Сколько примеров взять в начальном размеченном наборе
batch_size = 5 # Сколько примеров добавлять за итерацию
# Папки для Active Learning
base_dir = "active_learning_coco128"
os.makedirs(base_dir, exist_ok=True)
train_dir = os.path.join(base_dir, "train")
val_dir = os.path.join(base_dir, "val")
unlabeled_dir = os.path.join(base_dir, "unlabeled")
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
os.makedirs(unlabeled_dir, exist_ok=True)
# Разделяем СОСО128 на размеченные и неразмеченные данные
images_dir = "datasets/coco128/images/train2017"
labels_dir = "datasets/coco128/labels/train2017"
all_images = sorted(os.listdir(images_dir))
all_labels = sorted(os.listdir(labels_dir))
# Берем небольшую часть данных для начала (начальный размеченный набор)
for i in range(initial_samples):
   copyfile(os.path.join(images_dir, all_images[i]), os.path.join(train_dir, all_images[i]))
    copyfile(os.path.join(labels_dir, all_labels[i]), os.path.join(train_dir, all_labels[i]))
# Остальные данные считаем "нераспределенными"
for i in range(initial_samples, len(all_images)):
    copy file (os.path.join (images\_dir, all\_images[i]), os.path.join (unlabeled\_dir, all\_images[i])) \\
```

```
# Остальные данные считаем "нераспределенными"
for i in range(initial_samples, len(all_images)):
    copyfile(os.path.join(images_dir, all_images[i]), os.path.join(unlabeled_dir, all_images[i]))
    copyfile(os.path.join(labels_dir, all_labels[i]), os.path.join(unlabeled_dir, all_labels[i]))
# === Шаг 3: Цикл Active Learning ===
for iteration in range(iterations):
    print(f"\n=== Active Learning Iteration {iteration + 1} ===")
    # Создаем файл data.yaml для текущей итерации
    data_yaml = os.path.join(base_dir, f"data_iter_{iteration + 1}.yaml")
    with open(data_yaml, "w") as f:
       f.write(f"""
train: {train_dir}
val: {val_dir}
nc: 80
names: {list(range(80))}
        """)
    # Обучаем YOLO на текущем размеченном наборе
    model.train(data=data_yaml, epochs=5, imgsz=640)
    # === Шаг 4: Выбор данных для разметки ===
    unlabeled_images = sorted(os.listdir(unlabeled_dir))
    uncertainties = []
    # Прогоняем неразмеченные данные через модель и считаем неопределенность
    for img_name in unlabeled_images:
        img_path = os.path.join(unlabeled_dir, img_name)
        results = model.predict(source=img_path, save=False)
        predictions = results[0].boxes.conf # Уверенности предсказаний
        if predictions.numel() > 0:
            uncertainties.append((img_name, 1 - predictions.max().item())) # 1 - max(conf)
        else:
            uncertainties.append((img_name, 1)) # Нет предсказаний, высокая неопределенность
    # Сортируем по неопределенности (от наибольшей к наименьшей)
    uncertainties = sorted(uncertainties, key=lambda x: x[1], reverse=True)
    selected_samples = uncertainties[:batch_size]
```

```
# Сортируем по неопределенности (от наибольшей к наименьшей)

uncertainties = sorted(uncertainties, key=lambda x: x[1], reverse=True)

selected_samples = uncertainties[:batch_size]

# Перемещаем выбранные данные в размеченный набор

for img_name, _ in selected_samples:
    label_name = img_name.replace(".jpg", ".txt")
    copyfile(os.path.join(unlabeled_dir, img_name), os.path.join(train_dir, img_name))
    copyfile(os.path.join(unlabeled_dir, label_name), os.path.join(train_dir, label_name))
    os.remove(os.path.join(unlabeled_dir, img_name))
    os.remove(os.path.join(unlabeled_dir, label_name))

# Оцениваем текущую модель на валидационном наборе
metrics = model.val(data=data_yaml)
print("Iteration {iteration + 1} - mAP50: {metrics['metrics/mAP50']:.4f}")

print("\n=== Active Learning Completed ===")
```