Latent Dirichlet Allocation (LDA)

A Bayesian Unsupervised Learning Model

$$Z_{d,n}|\theta_d \sim Multinomial(\theta_d)$$
 $W_{d,n} \mid Z_{d,n}, \beta \sim Multinomial(\beta_{Z_{d,n}})$
 $\beta_k|\eta \sim Dirichlet(\eta)$
 $\theta_d|\alpha \sim Dirichlet(\alpha)$

Agenda Items

LDA – introduction & some notations (graphical models)

LDA – theory and intuition

LDA – application

LDA – extensions

References

LDA – Introduction & some notations (graphical models)

What is Latent Dirichlet Allocation (LDA)?

- Latent Dirichlet Allocation (LDA) is a topic model, which was first proposed by Blei et al. in 2003.
- **Topic models** are "[probabilistic] latent variable models of documents that exploit the correlations among the words and latent semantic themes" (Blei and Lafferty, 2007)
- The name "topics" signifies the hidden, to be estimated, variable relations (=distributions) that link words in a vocabulary and their occurrence in documents.
- Simple intuition: A document is seen as a mixture of topics.

So, what is LDA?

- It's a way of automatically discovering topics that documents contain.
- LDA represents documents as mixtures of topics that spit out words with certain probabilities.

■ LDA – First example

Suppose you have the following set of sentences (or documents):

- 1. I like to drink coffee.
- 2. Colombian coffee beans are better than Ethiopian.
- 3. Machine learning algorithms and reporting are data scientist's common tasks.
- 4. A member of DS team created a report for the daily consumption of coffee in Profusion.

For example, given these sentences and asked for 2 topics, LDA might produce something like:

- Topic A: 50% coffee, 15% bean, 10% Colombian, 10% Ethiopian, ... (at which point, you could interpret topic A to be about coffee lovers)
- **Topic B**: 20% machine, 20% learning, 20% reporting, 15% data, ... (at which point, you could interpret topic B to be about **data science**)
- Sentences 1 and 2: 100% Topic A
- Sentences 3: 100% Topic B
- Sentence 4: 60% Topic A, 40% Topic B

Graphical Model

Introduction

Nodes are random variables

Edges denote possible dependence

Observed variables are shaded

Plates denote replicated structure

Graphical models

Structure of the graph defines the pattern of conditional dependence between the ensemble of random variables E.g., this graph corresponds to

$$p(y, x_1, ..., x_N) = p(y) \prod_{n=1}^N p(x_n | y)$$

■ LDA – theory and intuition

LDA – From scratch

How are words in a document generated?

One possibility:

Each word comes from different topics (bag of words: ignore order)

LDA - Just a mixture model

Words

LDA - Just a mixture model

So we really want to know

- 1) Z (cluster for the word for each topic)
- 2) θ (document composition)
- 3) β (key words)

Graphical representation

1 word from 1 document generative process

$$Z \mid \theta \sim Multinomial(\theta)$$
 $W \mid Z, \beta \sim Multinomial(\beta_Z)$

More general

K: number of topics

N_d: number of words

D: number of documents

$$Z_{d,n}|\theta_d \sim Multinomial(\theta_d)$$

 $W_{d,n} \mid Z_{d,n}, \beta \sim Multinomial(\beta_{Z_{d,n}})$

Thinking Bayesian

Bayesian: But what about the distribution for θ_d and β_k ??

K: number of topics

N_d: number of words

D: number of documents

$$Z_{d,n}|\theta_d \sim Multinomial(\theta_d)$$
 $W_{d,n} \mid Z_{d,n}, \beta \sim Multinomial(\beta_{Z_{d,n}})$
 $\beta_k|\eta \sim Dirichlet(\eta)$
 $\theta_d|\alpha \sim Dirichlet(\alpha)$

LDA as hierarchical Bayesian model

$$Z_{d,n}|\theta_d \sim Multinomial(\theta_d)$$
 $W_{d,n} \mid Z_{d,n}, \beta \sim Multinomial(\beta_{Z_{d,n}})$
 $\beta_k|\eta \sim Dirichlet(\eta)$
 $\theta_d|\alpha \sim Dirichlet(\alpha)$

lpha and η control the "sparsity" of the weights for the multinomial. Implications: a priori we assume

- Topics have few key words
- Documents only have a small subset of topics

Di

Dirichlet Distribution with Different Sparsity Parameters

Calculate the posterior

How do we fit this model?

$$Z_{d,n}|\theta_d \sim Multinomial(\theta_d)$$
 $W_{d,n} \mid Z_{d,n}, \beta \sim Multinomial(\beta_{Z_{d,n}})$
 $\beta_k|\eta \sim Dirichlet(\eta)$
 $\theta_d|\alpha \sim Dirichlet(\alpha)$

Want the posterior:

$$P(\theta_{1,...D}, \beta_{1,...,K}, Z_{1,...,D;1,...N} \mid W_{1,...,D;1,...N})$$

Worst part of Bayesian Analysis.....personally speaking

Computing the posterior

$$P(\theta_{1,...D}, \beta_{1,...,K}, Z_{1,...,D;1,...N} \mid W_{1,...,D;1,...N})$$

- Mean field variational methods (Blei et al., 2001,2003)
- Expectation propagation (Minka and Lafferty, 2002)
- Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)
- Collapsed variational inference (The et al., 2006)

Application

LDA in the R Environment

R packages for LDA

- 1. tm
- 2. topicmodels
- 3. Ida

- 1. Introductions and examples to **topicmodels** are available from:
- the package reference documentation which can be viewed via the R help system, or as a single PDF file (topicmodels.pdf at http://cran.r-project.org/package=topicmodels), or
- the authors' paper in the Journal of Statistical Software (Grun and Hornik, 2011).

For data input the topicmodels package depends on the package tm (text mining)

- 2. The current functionality of **tm** is documented in detail in the package's online help and in its reference manual (tm.pdf at http://cran.r-project.org/package=tm). tm is handling text mining tasks. It enables the user to import data from various formats and offers standard tools for preprocessing and further transformation and filtering of texts and text collections. (removal of punctuation, numbers, whitespace and stop words, conversion to lower case, stemming and so on.)
- 3. **Ida** package implements latent Dirichlet allocation (Lda) and related models. This includes (but is not limited to) sLda [(supervised Lda, see Blei and McAuliffe (2007))], [related topic models (Rtm, see Chang and Blei (2009))], and the mixed-membership stochastic blockmodel [(Mmsb, see Airoldi et al. (2008))].

Application - Profusion blogs

59 blogs (15 June 2014 – 31 March 2016)

Title	Timestamp	Title	Timestamp
Out-smarting the ad fraudsters	Posted on March 31, 2016	Embracing data science in Dubai	Posted on September 10, 2015
The smart future of marketing	Posted on March 24, 2016	Wearables herald a brave new world for marketers	Posted on September 3, 2015
My quantified self	Posted on March 17, 2016	An emotional response to a technical device – my wearables experience!	Posted on August 27, 2015
Building better construction through data science	Posted on March 10, 2016	Making data science work for you	Posted on August 20, 2015
Does data science exist?	Posted on March 3, 2016	Smart Cities mean smarter marketing	Posted on August 13, 2015
Intelligent infrastructure in a smart city	Posted on February 25, 2016	Does the nothing box exist?	Posted on August 6, 2015
Wearables for Charities and NGOs	Posted on February 18, 2016	What I think about data protection – a respectful rebuttal to Hasan Akyol	Posted on July 10, 2015
Wearables taking flight	Posted on February 11, 2016	Wearable wobbles	Posted on June 30, 2015
Swapping Safe Harbour for a Shield	Posted on February 4, 2016	Should individuals be solely responsible for protecting their privacy and security online?	Posted on June 18, 2015
Smart local authorities – Data, Austerity, Resources and Devolution	Posted on January 28, 2016	What's in store for wearables data and marketing?	Posted on June 7, 2015
It pays to be different in Data Science	Posted on January 21, 2016	Here comes the data science bit…	Posted on April 23, 2015
How data will shape finance in 2016	Posted on January 14, 2016	You have to WEAR them	Posted on March 27, 2015
Lighting up with the IoT	Posted on January 7, 2016	5 questions everybody should ask about their email marketing campaign	Posted on March 23, 2015
How much is a Christmas advert worth?	Posted on December 31, 2015	How big data can improve your commute	Posted on February 27, 2015
Santa is a data scientist	Posted on December 24, 2015	Everything you need to know about clustering and how it can help your business	Posted on January 20, 2015
Bayesian statistics and … the sunrise!	Posted on December 17, 2015	Profusion has Landed: a digital dé butante in Dubai	Posted on October 27, 2014
Data science can prove PR's worth	Posted on December 10, 2015	Testing: will you be star baker?	Posted on October 10, 2014
Smarter testing in email marketing	Posted on December 3, 2015	Make it personal – personalisation in the digital age	Posted on September 10, 2014
Healthy use of data in occupational health	Posted on November 26, 2015	Lily pads: Markov chains and the customer journey	Posted on September 9, 2014
Uncovering your customers' true desires	Posted on November 20, 2015	The survivor's guide to digital marketing internships	Posted on September 4, 2014
Life without internet	Posted on November 18, 2015	Seeing is believing	Posted on August 27, 2014
A statistics walk-through	Posted on November 12, 2015	The new gmail unsubscribe button – a chance for marketers to prove themselves	
Data science can make banking more personal	Posted on November 5, 2015	-	Posted on August 5, 2014
Thor, wearables and construction	Posted on October 29, 2015	A handy guide to buzzwords in digital marketing – part 1	Posted on August 5, 2014
Smart city thinking today	Posted on October 22, 2015	Not just a pretty face? Amazon and the art of secret signals	Posted on July 14, 2014
What can you actually do with wearable data?	Posted on October 15, 2015	How we use trees* to predict customer behaviour: random forests in action (*not real ones)	Posted on July 8, 2014
Keeping your data personal in the â€~smart' era	Posted on October 8, 2015	Don't fall at the last hurdle – the essential rules of copy	Posted on June 26, 2014
Seeing the forest and the trees	Posted on October 1, 2015	Are there such things as digital buying signals?	Posted on June 18, 2014
What data science means to me	Posted on September 24, 2015	Pioneering principles still apply in the world of personalisation	Posted on June 16, 2014
KTPs to plug the skills gap	Posted on September 17, 2015	A stock take – where have we been and where are we going?	Posted on June 15, 2014

What words do they commonly use?

Relationships Between Terms

Data

- ✓ science: 0.68
- ✓ consequently: 0.64
- ✓ team: 0.64
- √ business:0.61
- ✓ scientists:0.61

Science

- ✓ data: 0.68
- ✓ business:0.64
- ✓ capability: 0.64
- ✓ encouraging: 0.64
- ✓ promises: 0.64

will

- ✓ benefits: 0.61
- ✓ technology: 0.61

people

- ✓ perform: 0.72
- ✓ highest: 0.71
- ✓ technique: 0.69
- √ rarely: 0.68
- ✓ sale:0.66
- ✓ engaged: 0.65
- ✓ encourage: 0.64
- ✓ purchasing: 0.62

Word Cloud

Clustering

K-means clustering

Hierarchal Clustering

Topic modelling

Optimal number of topics

Rule of thumb:

- The correct number is the number you want, just like with k-means.
- Try out different values of k, select the one has largest likelihood.

Custom: 0.0193

Data: 0.0160

• Can: 0.0137

• Email: 0.0106

• Use: 0.0096

Data: 0.0263

• Wearable: 0.0146

Can: 0.0128

• Inform: 0.0122

• Will: 0.0102

Data: 0.0358

Can: 0.0182

Science: 0.0164

• Business: 0.0147

• Use: 0.0108

Data: 0.0336

Will: 0.0177

• Can: 0.0111

• Smart: 0.0093

• Construct: 0.0085

DS & email

DS & wearables

DS & business

DS & smart cities

LDA extensions

There are numerous extensions to the standard LDA model:

- hierarchical Dirichlet processes (Hdp, Teh et al., 2006b)
- dynamic topic models (Dtm, Blei and Lafferty, 2006)
- correlated topic models (Ctm, Blei and Lafferty, 2007)
- etc.

References

- D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022, 2003.
- D. M. Blei. Topic models. Video lecture, 2009. URL http://videolectures.net/mlss09uk_blei_tm/.
- D. M. Blei. Introduction to probabilistic topic models, 2011. URL http://www.cs.princeton.edu/~blei/papers/Blei2011.pdf.
- D. M. Blei and J. D. Lafferty. A correlated topic model of Science. Annals of Applied Statistics, 1(1): 17–35, 2007.
- H.-A. Chang and C.-H. Yu. Latent Dirichlet allocation. Seminar paper, 2007. URL http://cassava.fudan.edu.cn/seminars/ppt/lecture-lda.pdf.
- Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006b
- Y. Wang, P. Sabzmeydani, and G. Mori. Semi-latent Dirichlet allocation: A hierarchical model for human action recognition. Lecture Notes in Computer Science, 4814:240–254, 2007

Questions?

Thanks !!!!