ΕΡΓΑΣΙΑ 1

ΣΦΑΛΜΑΤΑ ΚΑΤΑ ΤΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ

Στο παρακάτω πρόβλημα χρησιμοποιήστε αριθμητική κινητής υποδιαστολής διπλής ακρίβειας.

i. Οι αριθμοί Fibonacci ορίζονται ως:

$$a_0 = a_1 = 1, a_{n+1} = a_k + a_{k-1}, k = 1, 2, ...$$
 (1)

Μία μικρή διαταραχή αυτών, οι αριθμοί p_k ορίζονται ως:

$$p_0 = p_1 = 1, p_{k+1} = c \cdot p_k + p_{k-1}, k = 1, 2, ...$$
 (2)

όπου
$$c = 1 + \frac{\sqrt{3}}{100}$$
.

- a. Να κάνετε μία SEMILOGY γραφική παράσταση των αριθμών a_n και p_n ως συνάρτηση του n. Στο γράφημα, μαρκάρετε το $1/e_{mach}$ για την απλή και διπλή ακρίβεια. Αυτό μπορεί να σας είναι χρήσιμο για να απαντήσετε τις παρακάτω ερωτήσεις.
- b. Για διάφορες τιμές του n, υπολογίστε τους αριθμούς a_k , $k=2,3,\ldots$, η χρησιμοποιώντας την (1). Ακολούθως ξαναγράψτε την (1) ώστε να εκφράζει το a_{k-1} συναρτήσει των a_k και a_{k+1} . Χρησιμοποιήστε τα a_n και a_{n-1} που υπολογίσατε, ώστε να υπολογίσετε εκ νέου τα a_k για $k=n-2,n-3,\ldots$,0. Να κάνετε ένα γράφημα για τη διαφορά μεταξύ των αρχικών $a_0=1$ και των επανα-υπολογισμένων a_0 ως συνάρτηση του n. Ποιες τιμές του η οδηγούν σε μη ακριβή επανα-υπολογισμό του a_0 ;
- c. Επαναλάβετε το ερώτημα (b) για τους αριθμούς p_i . Σχολιάστε την εντυπωσιακή διαφορά στον τρόπο με τον οποίο χάνεται η ακρίβεια στις δύο περιπτώσεις. Ποια είναι πιο τυπική; Προβλέψτε την τάξη του μεγέθους του σφάλματος στον επανα-υπολογισμό του p_0 κάνοντας χρήση του ό,τι γνωρίζετε σχετικά με τους επαναληπτικούς τύπους και με ό,τι γνωρίζετε σχετικά με την αριθμητική κινητής υποδιαστολής.)
- ii. Οι διωνυμικοί συντελεστές $a_{n,k}$, οι οποίοι εμφανίζονται σε πολλά προβλήματα συνδυαστικής και πιθανοτήτων, ορίζονται ως:

$$a_{n,k} = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$
 (3)

Υπολογίστε τα $a_{n,k}$ για δοσμένο n, ξεκινώντας με $a_{n,0}=1$ και στη συνέχεια χρησιμοποιήστε την επαναληπτική σχέση $a_{n,k+1}=\frac{n-k}{k+1}a_{n,k}$.

a. Για σταθερό η υπολογίστε τα $a_{n,k}$ με αυτό τον τρόπο, σημειώνοντας το μέγιστο $a_{n,k}$ και την ακρίβεια με την οποία υπολογίζεται το $a_{n,n}=1$. Αυτό να υλοποιηθεί με απλή

και με διπλή ακρίβεια. Γιατί τα σφάλματα στρογγύλευσης δεν είναι πρόβλημα εδώ όπως στο πρόβλημα (i);

b. Χρησιμοποιήστε τον αλγόριθμο του ερωτήματος (a) για τον υπολογισμό του:

$$E(n) = \frac{1}{2^n} \sum_{k=0}^{n} k \, a_{n,k} = \frac{n}{2}$$
 (4)

θεωρώντας το k ως τυχαία μεταβλητή, το πλήθος των "κεφαλών" σε n ρίψεις ενός δίκαιου νομίσματος και E(n) ως την αναμενόμενη τιμή της k.

Γράψτε ένα πρόγραμμα χωρίς ελέγχους για υπερχείλιση ή για διαιρέσεις με 0 (αυτή τη φορά). Δείξτε ότι και στην απλή και στη διπλή ακρίβεια, η υπολογιζόμενη απάντηση έχει υψηλή ακρίβεια όσο τα ενδιάμεσα αποτελέσματα βρίσκονται στο εύρος των αριθμών κινητής υποδιαστολής. Όπως και στο ερώτημα (a) εξηγήστε πώς ο υπολογιστής δίνει μια ακριβή, μικρή, απάντηση όταν οι ενδιάμεσοι αριθμοί έχουν ένα τέτοιο ευρύ εύρος τιμών. Γιατί η καταστροφική διαγραφή σημαντικών ψηφίων δεν είναι πρόβλημα; Παρατηρήστε το πλεονέκτημα ενός ευρύτερου εύρους τιμών: μπορούμε να υπολογίσουμε το E(n) για αρκετά μεγαλύτερα η σε αριθμητική διπλής ακρίβειας. Τυπώστε τα E(n) που υπολογίσατε μέσω της E(n)0 και τα E(n)1 και το άλλο NaN. Γιατί;

- c. Για (σχετικά μεγάλο) n=40, να κάνετε το γράφημα των $a_{n,k}$ ως συνάρτηση του $k=1,2,\ldots,n$, για να εξηγήσετε την ενδιαφέρουσα με σχήμα "καμπάνας" συμπεριφορά των $a_{n,k}$ κοντά στο μέγιστο.
- d. *Βρείτε ένα τρόπο να υπολογίσετε το

$$S(k) = \sum_{k=0}^{n} (-1)^k \sin(2\pi \sin(k/n)) a_{n,k}$$

με καλή σχετικά ακρίβεια για μεγάλα n.)