Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$) E
$\tau_{1}^{\#1}{}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_1^{\#1}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \tau^{\beta\alpha}$	
$\sigma_{1}^{\#2}\alpha\beta==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	3
$\sigma_{2^{-}}^{\#1}\alpha\beta\chi=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\alpha \sigma^{\delta \epsilon}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$3~\eta^{lpha\chi}~\partial_\phi\partial^\phi\partial_\epsilon\partial_\delta\sigma^{eta\delta\epsilon}+$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta\epsilon}_{~~\delta}+$	
	$3~\eta^{eta\chi}~\partial_\phi\partial^\phi\partial_\epsilon\partial_\delta\sigma^{lpha\delta\epsilon}+$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{eta\delta}{}_{\delta}$	
$\tau_2^{\#_1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	
Total constraints/gauge generators:	uge generators:	24

-		" K O, f " -	$\omega_{'}^{\;\theta}{}_{\;\theta}\partial'\omega^{lphaeta}{}_{\;lpha}$ -								$^{\alpha'\theta}\partial_{\kappa}\omega_{'}^{\ \ \ \ \ \ \ }+$		x dit	#
		$S == \iiint (\frac{1}{6} \left(-4t_3 \omega^{\alpha\prime}_{\alpha} \omega^{ \kappa}_{l \kappa} + 6f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 8t_3 \omega^{ \kappa}_{\alpha \kappa} \partial_l f^{\alpha\prime} - 10 \omega^{ \kappa}_{\alpha\beta\gamma} + 10$	$8t_3\;\omega_{'\kappa}^{\kappa}\partial'f^{\alpha}_{\;\alpha} + 4t_3\partial_if^{\kappa}_{\;\kappa}\partial'f^{\alpha}_{\;\alpha} - 3r_3\partial_\beta\omega_{'\theta}^{\;\theta}\partial'\omega^{\alpha\beta}_{\;\alpha} -$	$3r_3\partial_i\omega_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$6r_3\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega^{\theta}_{\beta'}$ - $3r_3\partial_{\alpha}\omega^{\alpha\beta'}\partial_{\theta}\omega^{\theta}_{\beta}$ +	$6r_3\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega'^{\theta}_{\beta} + 8r_2\partial_{\beta}\omega_{\alpha\beta}\partial^{\theta}\omega^{\alpha\beta}$	$4r_2\partial_\beta\omega_{\alpha\theta_l}\partial^\theta\omega^{\alpha\beta_l}+4r_2\partial_\beta\omega_{_l\theta\alpha}\partial^\theta\omega^{\alpha\beta_l}-$	$24 r_3 \partial_\beta \omega_{\prime \theta \alpha} \partial^\theta \omega^{\alpha \beta \prime} - 2 r_2 \partial_\gamma \omega_{\alpha \beta \theta} \partial^\theta \omega^{\alpha \beta \prime} +$	$2r_2\partial_\theta\omega_{\alpha\beta_l}\partial^\theta\omega^{\alpha\beta_l} - 4r_2\partial_\theta\omega_{\alpha_l\beta}\partial^\theta\omega^{\alpha\beta_l} +$	$6r_5\partial_i\omega_{\theta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$4t_3\partial_{\scriptscriptstyle \scriptscriptstyle I} f^{\alpha\prime}\partial_{\scriptscriptstyle \scriptscriptstyle K} f_{\alpha}^{ \kappa} - 8t_3\partial^{\prime} f_{\alpha}^{ \alpha}\partial_{\scriptscriptstyle K} f_{\scriptscriptstyle \scriptscriptstyle I}^{ \kappa} - 6r_5\partial_{\alpha}\omega^{\alpha\prime\theta}\partial_{\kappa}\omega_{\scriptscriptstyle \scriptscriptstyle I}^{ \kappa}{}_{\theta} +$	$12 r_5 \partial^{\theta} \omega^{\alpha\prime}_{\alpha} \partial_{\kappa} \omega^{ \kappa}_{ } + 6 r_5 \partial_{\alpha} \omega^{\alpha\prime\theta} \partial_{\kappa} \omega^{ \kappa}_{ } , -$	$12 r_5 \partial^{\theta} \omega^{\alpha'}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{\theta'}))[t, \kappa, y, z] dz dy dx dt$	¢
		$6 f^{\alpha\beta} \tau_{\alpha\beta} + 6$	$\int_{r}^{\kappa} \partial^{\prime} f^{\alpha} + 4t$	$\omega_{\beta}^{\ \theta}\partial'\omega^{\alpha\beta}_{\ \alpha}$ - Ξ	$\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega_{\beta}^{\ \ \ \ \ }$	$\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega_{,\beta}^{\theta}+$	$\omega_{\alpha\theta'}\partial^{\theta}\omega^{\alpha\beta'}+$	$\partial_{\beta}\omega_{,\theta\alpha}\partial^{\theta}\omega^{\alpha\beta'}$	$\omega_{\alpha\beta'}\partial^{\theta}\omega^{\alpha\beta'}$ - $\omega_{\alpha\beta'}$	$\omega_{\theta}^{\ \kappa} \partial^{\theta} \omega^{\alpha \prime} - \epsilon$	$f^{\alpha\prime}\partial_{\kappa}f_{\alpha}^{\ \ \kappa}-8t_3$	$\partial^{\theta}\omega^{\alpha\prime}_{\ \ \alpha}\partial_{\kappa}\omega_{\prime}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\partial^{\theta}\omega^{lpha\prime}_{lpha}\partial_{\kappa}\omega_{\prime}^{\prime})$	#
)	_	ω, ^κ +	$8t_3 \omega$	$3 r_3 \partial_1$	6 r ₃ ∂'	6 r ₃ ∂'	$4 r_2 \partial_{\beta}$	24 r ₃ ($2r_2\partial_{\theta}$	$6 r_5 \partial_1$	$4t_3\partial_{\mu}$	12 r ₅ (12 r ₅ (#
)	e) actio	$t_3 \; \omega^{lpha\prime}_{\;\;lpha}$												
	Quadratic (free) action	$S == \iiint \int \left(\frac{1}{6} \left(-4\right)\right)$												#

 $\sigma_{1}^{\#_1} +^{\alpha}$

 $\tau_{1}^{\#1} +^{\alpha}$

 $\sigma_{1}^{\#2} +^{lpha}$

 $k^2 (2 r_3)$

 $\omega_1^{\#1}$

 $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $f_{1}^{#1} + \alpha \beta$

 $\frac{1}{3}\,\tilde{l}\,\sqrt{2}\,\,k\,t_3$

 $\begin{array}{c|c}
0\\
-\frac{\sqrt{2}t_3}{3}\\
0\\
-\frac{1}{3}\vec{l}\sqrt{2}
\end{array}$

 $f_{1}^{\#2} \dagger^{\alpha}$

 $\omega_{1}^{#1} \dagger^{lpha}$ $\omega_{1}^{#2} \dagger^{lpha}$

2 i k t 3

+ 12)+

 $-i\sqrt{2} kt_3$

 $f_{0}^{#1} \dagger i \sqrt{2} kt_3 2k^2t_3$

0 0

 $0 \quad k^2 r_2$

Massive and massless spectra

(No massive particles)

Unitarity conditions

ra	۲-
$ r_3 < 0 \&\& (r_5 < -\frac{7}{3} r_5 >$	$-2r_3$) $r_3 > 0$ && $-2r_3 < r_5 < -\frac{r_3}{2}$
2 11 3	2, 11 2