Прогнозирование временных рядов

K.B. Воронцов vokov@forecsys.ru A.A. Романенко alexromsput@gmail.com

30 Октября 2015

Содержание

- 🚺 Задачи прогнозирования
 - Понятие временного ряда
 - Обзор методов прогнозирования
 - Напоминание с прошлого семестра
- Адаптивные методы краткосрочного прогнозирования
 - Модели типа ЭСС
 - Модели с трендом и сезонностью
 - Композиции адаптивных алгоритмов прогнозирования
- Волее сложные модели прогнозирования
 - Регрессионные модели
 - Эконометрические модели типа ARIMA
 - Альтернативные методы прогнозирования

Более сложные модели прогнозирования

Временной ряд

$$y_0,y_1,\ldots,y_t,\ldots$$
 — временной ряд, $y_i\in\mathbb{R}$ $\hat{y}_{t+d}(w)=f_t(y_1,\ldots,y_t;w)$ — модель временного ряда, где $d=1,\ldots,D,\ D$ — горизонт (отсрочка, delay), w — вектор параметров модели

Особенности задачи:

- ullet количество временных рядов 10^6-10^8 :
- пропуски в данных;
- нестационарность (непостоянство модели);
- несимметричная, кусочно гладкая функция потерь.

Эконометрика — основной источник задач прогнозирования

Примеры эконометрических временных рядов:

- объёмы продаж в торговых сетях
- объёмы грузовых и пассажирских перевозок
- рыночные цены
- дорожный трафик (прогнозирование пробок)
- объёмы потребления и цены электроэнергии

Основные явления в эконометрических временных рядах:

- тренды
- сезонности
- разладки (смены модели ряда)

Марно Вербик. Путеводитель по современной эконометрике, 2008.

Пример. Задача прогнозирования объёмов продаж

Ежедневные объёмы продаж товара

Особенности задачи: целочисленные продажи, продажи зависят от типа товара, тренды, сезонность, пропуски, праздники, промо-акции, скачки, плохо работают сложные

Беглый обзор методов прогнозирования

- Методы прогнозирования типа ЭСС
- Адаптивная авторегрессия
- Авторегрессионные модели
- ARMA, ARIMA, GARCH,...
- Гусеница [Голяндина, 2003]
- Адаптивная селекция моделей
- Адаптивная композиция моделей
- Нейросетевые модели
- Прогнозирование разреженных временных рядов
- Прогнозирование при несимметричном функционале
- Прогнозирование плотности распределения

Простое экспоненциальное скользящее среднее

Линейная авторегрессионная модель данных:

$$y_{t+1} := \sum_{i=0}^t w_i y_i + \varepsilon_{t+1}$$

Прогнозная модель: $\hat{y}_{t+1} := \sum_{i=0}^t w_i y_i$

 $arepsilon_{t+1}$ — непрогнозируемый шум, присутствующий в данных;

 $e_{t+1} = y_{t+1} - \hat{y}_{t+1}$ — ошибка прогноза \hat{y}_{t+1} , сделанного на шаге t

Среднее арифметическое:

$$\hat{y}_{t+1} := \frac{1}{t+1} \sum_{i=0}^{t} y_i = \hat{y}_t + \frac{1}{t+1} (y_t - \hat{y}_t) = \hat{y}_t + \frac{1}{t+1} e_t$$

Скользящее среднее (СС):

$$\hat{y}_{t+1} := \alpha_t y_t + (1 - \alpha_t) \hat{y}_t = \hat{y}_t + \alpha_t (y_t - \hat{y}_t) = \hat{y}_t + \alpha_t \cdot \mathbf{e}_t$$

При $\alpha_t = 1 - \frac{1}{t+1}$ имеем среднее арифметическое При $\alpha_t = \mathrm{const} \in (0,1)$) имеем экспоненциальное СС

Адаптивная авторегрессионная модель

Линейная модель авторегрессии (линейный фильтр):

$$\hat{y}_{t+1}(\mathbf{w}) := \sum_{j=1}^n w_j y_{t-j+1}, \ \mathbf{w} \in \mathbb{R}$$

Метод наименьших квадратов: $e_t^2
ightarrow \min_w$.

Один шаг градиентного спуска в каждый момент t:

$$w_j := w_j + h_t e_t y_{t-j+1}.$$

Градиентный шаг в методе скорейшего спуска:

$$h_t = \frac{\alpha}{\sum_{j=1}^n y_{t-j+1}^2},$$

где lpha — аналог параметра сглаживания.

Подбор параметра сглаживания

Чем меньше lpha, тем больше вес последних точек, при lpha o 0 тривиальный прогноз $\hat{y}_{t+1} = y_t$.

Чем больше lpha, тем сильнее сглаживание, при lpha o 1 тривиальный прогноз $\hat{y}_{t+1} = ar{y}$ (или скользящее среднее).

Оптимальное $lpha^*$ находим по скользящему контролю:

$$Q(\alpha) = \sum_{t=T_0}^{T_1} (\hat{y}_t(\alpha) - y_t)^2 \to \min_{\alpha}$$

Эмпирические правила:

если $\alpha^*\in(0.7,1)$, то ряд стационарен, ЭС работает; если $\alpha^*\in(0,0.7)$, то ряд нестационарен, нужна модель тренда.

Следящий контрольный сигнал

 $e_t=y_t-\hat{y}_t$ — ошибка прогноза \hat{y}_t , сделанного на шаге t-1 Следящий контрольный сигнал (tracking signal [Trigg, 1964])

$$\mathcal{K}_t = rac{\hat{e}_t}{ ilde{e}_t} \hspace{1cm} egin{aligned} \hat{e}_{t+1} &:= \gamma e_t + (1-\gamma) \hat{e}_t; \ ilde{e}_{t+1} &:= \gamma |e_t| + (1-\gamma) ilde{e}_t. \end{aligned}$$

Рекомендация: $\gamma = 0.05 \dots 0.1$

Статистический тест адекватности (при $\gamma\geqslant 0.1,\ t\to\infty$): гипотеза H_0 : Е $arepsilon_t=0$, Е $arepsilon_tarepsilon_t=0$ принимается на уровне значимости δ , если

$$|K_t| \leqslant 1.2\Phi_{1-\delta/2}\sqrt{1-\gamma/(1+\gamma)},$$

 $\Phi_{1-\delta/2}$ — квантиль нормального распределения, $\Phi_{1-\delta/2}=\Phi_{0.975}=1.96$ при $\delta=0.05$

Модель Тригга-Лича [Trigg, Leach, 1967]

Проблема: адаптивные модели плохо приспосабливаются к резким структурным изменениям

Решение: $\alpha = |K_t|$

Недостатки:

- 1) плохо реагирует на одиночные выбросы; $(\alpha_t = |K_{t-1}|)$
- 2) требует подбора γ , при рекомендации $\gamma=0.05\dots0.1$.

Примеры трендов и сезонностей

Пример: сочетание тренда и сезонности (модельные данные)

- Ряд 1 сезонность без тренда
- Ряд 2 линейный тренд, аддитивная сезонность
- Ряд 3 линейный тренд, мультипликативная сезонность
- Ряд 4 экспоненциальный тренд, мультипликативная сезонность

Модель Хольта = линейный тренд

Линейный тренд без сезонных эффектов:

$$\hat{y}_{t+d} = a_t + b_t d,$$

где a_t , b_t — адаптивные коэффициенты линейного тренда

Рекуррентная формула:

$$a_t := \alpha_1 y_t + (1 - \alpha_1)(a_{t-1} + b_{t-1}) = \hat{y}_t + \alpha_1 e_t;$$

$$b_t := \alpha_2(a_t - a_{t-1}) + (1 - \alpha_2)b_{t-1} = b_{t-1} + \alpha_1 \alpha_2 e_t.$$

Частный случай — модель линейного роста Брауна:

$$\alpha_1 = 1 - \beta$$
, $\alpha_2 = 1 - \beta$ (или $1 + \beta$).

Модель Уинтерса = мультипликативная сезонность

Мультипликативная сезонность периода s:

$$\hat{y}_{t+d} = a_t \cdot \theta_{t-s+(d \bmod s)},$$

 $heta_0,\dots, heta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$a_t := \alpha_1(y_t/\theta_{t-s}) + (1 - \alpha_1)a_{t-1} = a_{t-1} + \alpha_1 e_t/\theta_{t-s};$$

$$\theta_t := \alpha_2(y_t/a_t) + (1 - \alpha_2)\theta_{t-s} = \theta_{t-s} + \alpha_2(1 - \alpha_1)e_t/a_t.$$

Доказательство последнего равенства:

$$\theta_{t} := \theta_{t-s} + \alpha_{2} \left(y_{t} / a_{t} - \theta_{t-s} \right) = \theta_{t-s} + \alpha_{2} \left(y_{t} - \theta_{t-s} a_{t} \right) / a_{t} = \theta_{t-s} + \alpha_{2} \left(y_{t} - \theta_{t-s} a_{t} \right) / a_{t} = \theta_{t-s} + \alpha_{2} \left(y_{t} - \theta_{t-s} a_{t-1} + \alpha_{1} e_{t} / \theta_{t-s} \right) / a_{t} = \theta_{t-s} + \alpha_{2} \left(\underbrace{y_{t} - \theta_{t-s} a_{t-1}}_{e_{t}} - \alpha_{1} e_{t} \right) / a_{t}$$

Модель Тейла-Вейджа

Линейный тренд с аддитивной сезонностью периода s:

$$\hat{y}_{t+d} = (a_t + b_t d) + \theta_{t+(d \bmod s)-s}.$$

 $a_t+b_t d$ — тренд, очищенный от сезонных колебаний, $heta_0,\dots, heta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$\begin{aligned} a_t &:= \alpha_1 (y_t - \theta_{t-s}) + (1 - \alpha_1) (a_{t-1} + b_{t-1}) = a_{t-1} + b_{t-1} + \alpha_1 e_t; \\ b_t &:= \alpha_2 (a_t - a_{t-1}) + (1 - \alpha_2) b_{t-1} = b_{t-1} + \alpha_1 \alpha_2 e_t; \\ \theta_t &:= \alpha_3 (y_t - a_t) + (1 - \alpha_3) \theta_{t-s} = \theta_{t-s} + \alpha_3 (1 - \alpha_1) e_t. \end{aligned}$$

Модель Уинтерса с линейным трендом

Мультипликативная сезонность периода s с линейным трендом:

$$\hat{y}_{t+d} = (a_t + b_t d) \cdot \theta_{t+(d \bmod s)-s},$$

 $a_t+b_t d$ — тренд, очищенный от сезонных колебаний, $heta_0,\dots, heta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$\begin{aligned} a_t &:= \alpha_1 (y_t/\theta_{t-s}) + (1 - \alpha_1)(a_{t-1} + b_{t-1}) = a_{t-1} + b_{t-1} + \alpha e_t/\theta_{t-s}; \\ b_t &:= \alpha_2 (a_t - a_{t-1}) + (1 - \alpha_2)b_{t-1} = b_{t-1} + \alpha_1 \alpha_2 e_t/\theta_{t-s}; \\ \theta_t &:= \alpha_3 (y_t/a_t) + (1 - \alpha_3)\theta_{t-s} = \theta_{t-s} + \alpha_3 (1 - \alpha_1)e_t/a_t. \end{aligned}$$

Модель Уинтерса с экспоненциальным трендом

Мультипликативная сезонность с экспоненциальным трендом:

$$\hat{y}_{t+d} = a_t(r_t)^d \cdot \theta_{t+(d \bmod s)-s},$$

 $a_t(r_t)^d$ — экспоненциальный тренд, очищенный от сезонности, $\theta_0,\dots,\theta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$a_{t} := \alpha_{1}(y_{t}/\theta_{t-s}) + (1 - \alpha_{1})a_{t-1}r_{t-1} = a_{t-1}r_{t-1} + \alpha_{1}e_{t}/\theta_{t-1};$$

$$r_{t} := \alpha_{2}(a_{t}/a_{t-1}) + (1 - \alpha_{2})r_{t-1} = r_{t-1} + \alpha_{1}\alpha_{2}e_{t}/\theta_{t} - 1;$$

$$\theta_{t} := \alpha_{3}(y_{t}/a_{t}) + (1 - \alpha_{3})\theta_{t-s} = \theta_{t-s} + \alpha_{3}(1 - \alpha_{1})e_{t}/a_{t}.$$

Пример

Динамика средних ошибок прогнозов для 6 моделей

AFTER [Yang Y., 2004]

ЛАВР, [Воронцов К.В., 2006]

Адаптивная селекция, [Лукашин, 2003; Timmermann, 2006]

Адаптивная композиция,

Агрегирующие алгоритмы [Вовк В., 1998].

Адаптивная селективная модель

Пусть имеется N моделей прогнозирования, $\hat{y}_{j,t+d}$ — прогноз j-й модели на момент t+d, $e_{jt}=y_t-\hat{y}_{jt}$ — ошибка прогноза в момент t, $\tilde{e}_{jt}:=\gamma|e_{jt}|+(1-\gamma)\tilde{e}_{j(t-1)}$ — сглаженная ошибка.

Неотличимо лучшие модели в момент времени t для порога качества $e^*\geqslant 0$:

$$\Omega_t^* = \left\{ j \mid e_{jt} - rg \min_{j=1,...,N} ilde{e}_{jt} < e^*
ight\}.$$

Адаптивная селективная модель:

$$\hat{y}_{j,t+d} := \frac{1}{\Omega_t^*} \sum_{j \in \Omega_t^*} \hat{y}_{j_t^*,t+d}$$

Требуется подбор γ , рекомендация: $\gamma = 0.01...0.1$.

Адаптивная композиция моделей

Пусть имеется N моделей прогнозирования, $\hat{y}_{j,t+d}$ — прогноз j-й модели на момент t+d, $e_{jt}=y_t-\hat{y}_{jt}$ — ошибка прогноза в момент t, $\tilde{e}_{it}:=\gamma|e_{it}|+(1-\gamma)\tilde{e}_{it}$ — экспоненциально сглаженная ошибка.

Линейная (выпуклая) комбинация моделей:

$$\hat{y}_{t+d} = \sum_{j=1}^{N} w_{jt} \hat{y}_{j,t+d}, \qquad \sum_{j=1}^{N} w_{jt} = 1, \ \ \forall t.$$

Адаптивный подбор весов [Лукашин, 2003]:

$$w_{jt} = \frac{(\tilde{e}_{jt})^{-1}}{\sum_{s=1}^{N} (\tilde{e}_{st})^{-1}}.$$

Требуется подбор γ , рекомендация: $\gamma = 0.01...0.1$.

Смешивание алгоритмов прогнозирования

Пусть имеется N моделей прогнозирования $\lambda(y_t,\hat{y}_{j,t})$ — потери алгоритма j при прогнозе элемента y_t $\mathcal{L}_j(T) = \sum_{t=1}^T \lambda(y_t,\hat{y}_{j,t})$ — суммарные потери алгоритма j к моменту времени T \mathfrak{M} — искомая композиция Найти \mathfrak{M} такую, что $\forall y_1,\dots,y_T,$

$$\mathcal{L}_{\mathfrak{M}}(T) \leqslant \arg\min_{j=\overline{1,N}} f\left(\mathcal{L}_{j}(T)\right),$$

где f(x) — мало отличается от x. Удаётся строить композиции с теоретическими гарантиями

$$\mathcal{L}_{\mathfrak{M}}(T) \leqslant \mathbf{c} \cdot \arg\min_{i=\overline{1.N}} \mathcal{L}_{j}(T) + \mathbf{a} \ln(N).$$

вида:

Агрегирующий алгоритм В. Вовка

Прогнозы композиций AA_1 и AA_2

Инициализация: веса базовых алгоритмов $ho_{j,0}=1/N$

Для
$$t = 0, ..., T - 1$$

- **①** получить предсказания экспертов $\hat{y}_{j,t+1}, \forall j = \overline{1,N};$
- 2 построить функцию смешивания:

$$g(x) = \log_{\beta} \left(\sum_{j=1}^{N} p_{j,t} \cdot \beta^{\lambda(y,\hat{y}_{j,t+1})} \right)$$

$$\hat{y}_{AA_1,t+1} = \frac{Y_2\sqrt{g(Y_1)} + Y_1\sqrt{g(Y_2)}}{\sqrt{g(Y_1)} + \sqrt{g(Y_2)}};$$

$$\hat{y}_{AA_2,t+1} = \frac{g(Y_1) - g(Y_2)}{2(Y_2 - Y_1)} + \frac{Y_1 + Y_2}{2};$$

- **1** получить исход y_{t+1} ; вычислить ошибку $\lambda(y_{t+1}, \hat{y}_{t+1})$;
- lacksquare пересчитать веса экспертов $p_{i,t+1}=eta^{\lambda(y_{t+1},\hat{y}_j,t+1)}\cdot p_{i,t}$.

Сравнение с базовыми алгоритмами

Эксперимент на реальных данных (1 из 1000 временных рядов)

$$\mathsf{MSE} = \frac{1}{T} \sum_{t=1}^{T} e_t^2$$

Сравнение композиций

Таблица: Сравнение различных композиций, MSE

M	AFTER	AK	ЛАВР	AC	AA_1	AA_2
10	6,57	6,66	6,74	6,75	6,43	6,37
25	6,50	6,62	6,92	6,71	6,39	6,31
40	6,55	6,57	6,90	6,66	6,35	6,37
	100%	100%	105%	103%	95%	97%

Сравнение с базовыми алгоритмами (ВЕ - лучший из базовых алгоритмов, ТВ - теоретическая оценка ошибки):

	_	2	•			
AA_1	21.69	32.24	57.33	94.17	110.4	139.9
BE	22.05	32.63	58.24	95.23	111.5	140.6
ТВ	25.16	38.2	71.80	99.44	141.1	179.7

Авторегрессионная модель

Почасовые цены электроэнергии на бирже NordPool, 2000г.

Особенности задачи: три вложенные сезонности, скачки

Линейная модель авторегрессии

В роли признаков — п предыдущих наблюдений ряда:

$$\hat{y}_{t+1}(w) = \sum_{i=1}^n w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

В роли объектов $\ell=t-n+1$ моментов в истории ряда:

$$F_{\ell \times n} = \begin{pmatrix} y_t & y_{t-1} & y_{t-2} & \cdots & y_{t-n+1} \\ y_{t-1} & y_{t-2} & y_{t-3} & \cdots & y_{t-n} \\ y_{t-2} & y_{t-3} & y_{t-4} & \cdots & y_{t-n-1} \\ \vdots & \vdots & \ddots & \vdots \\ y_n & y_{n-1} & y_{n-2} & \cdots & y_1 \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_{t+1} \\ y_t \\ y_{t-1} \\ \vdots \\ y_{n+1} \end{pmatrix}$$

Функционал квадрата ошибки:

$$Q_t(w, X^{\ell}) = \sum_{i=n+1}^{t+1} (\hat{y}_i(w) - y_i)^2 = \|Fw - y\|^2 \to \min_{w}$$

Модель ARMA

$$ARMA(p,q): y_1, \ldots, y_t$$

•
$$y_t = c + \sum_{i=1}^{p} \alpha_i y_{t-i} + \sum_{j=1}^{q} \beta_j \varepsilon_{t-j} + \varepsilon_t;$$

ullet $L: Ly_t = y_{t-1}$ — лаговый оператор;

$$L^{i}: L^{i}y_{t} = L^{i-1}(Ly_{t}) = y_{t-i};$$

•
$$(1 - \sum_{i=1}^{p} \alpha_i L^i) y_t = c + (1 + \sum_{j=1}^{q} \beta_j L^j) \varepsilon_t$$
;

$$y_t = \mu + rac{F(L)}{H(L)} arepsilon_t$$
 — каноническая запись ARMA

$$F(L) = (1 + \sum_{j=1}^{q} eta_{j} L^{j})$$
 — оператор скользящего среднего;

$$H(L)=(1-\sum_{i=1}^p lpha_i L^i)$$
 — оператор авторегрессии;

$$arepsilon_t$$
 — случайная компонента, $Earepsilon_t=0, Earepsilon_iarepsilon_i=0$

Ряд y_t является стационарным, если корни H(z) = 0 лежат вне единичного круга комплексной плоскости.

Модель ARIMA

 $y_t - \mathsf{HE}$ стационарный, т.е. H(z) — имеет d единичных корней;

•
$$H(L) = (1 - \sum_{i=1}^{p} \alpha_i L^i) = (1 - \sum_{i=1}^{\tilde{p}} \alpha_i L^i)(1 - L)^d$$

•
$$(1 - \sum_{i=1}^{\tilde{p}} \alpha_i L^i)(1 - L)^d y_t = c + (1 + \sum_{j=1}^{q} \beta_j L^j) \varepsilon_t$$
;

$$z_t = (1-L)^{ extstyle d} y_t = \mu + rac{F(L)}{H(L)} arepsilon_t$$
 — каноническая запись ARIMA(p,q,d)

Можно также выписывать аналог для сезонных временных рядов $ARIMA(p,q,d) \times (P,Q,D)_s$:

$$(1-L)^{d}(1-L^{s})^{D}y_{t} = \mu + \frac{F(L)}{H(L)} \frac{(1+\sum_{j=1}^{Q} \gamma_{j}L^{s\cdot j})}{(1-\sum_{i=1}^{P} \delta_{i}L^{s\cdot i})} \varepsilon_{t}$$

Модель ARIMAX

 y_t — НЕстационарный, X_t — вектор регрессоров из \mathbb{R}^N , известный до начала момента прогнозирования; ARIMAX(p,q,d):

$$z_{t} = \mu + \sum_{n=1}^{N} \frac{v_{n}(L)}{u_{n}(L)} X_{n,t} + \frac{F(L)}{H(L)} \varepsilon_{t}$$

Pro&Cons ARIMA

Заключение по ARIMA-моделям

- ullet обобщают модели а-ля ЭСС (ЭСС = ARIMA(0,1,1) при $\mu=0$)
- позволяют учитывать внешние факторы (акции, скачки цен, температуру и т.д.)
- не работает при наличии пропусков в данных;
- тяжело обучить (на практике используют перебор $p,q,d=\overline{0,3};$
- ullet методы обучения опираются на нормальность $arepsilon_t$
 - не для всех временных рядов удаётся найти соответствующую модель;
 - плохо работает на разреженных и коротких временных рядах;

Box, G. E. P. – Jenkins, G. M. – Reinsel, G. C.: Time Series Analysis: Forecasting and Control. John Wiley & Sons Inc., New York, 2008

Зачем нужно что-то ещё более сложное?

Прогнозирование объёмов электроэнергии

Резюме в конце лекции

- Адаптивные методы хорошо работают, когда рядов много, и прогнозировать их надо быстро
- Простота адаптивных методов компенсируется селективными и композиционными моделями
- При этом различные особенности рядов моделируются в базовых алгоритмах
- Для временных рядов со сложной структурой можно использовать более сложные алгоритмы

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. Финансы и статистика, 2003.