INF281 Exercise 06

1. SP score

The SP (sum-of-pairs) score is used to evaluate multiple sequence alignments.

$$S(A) = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} S(\bar{s}^i, \bar{s}^j)$$

Use the simple scoring scheme and the alignment \mathcal{A} to answer the following questions.

Alignment A:

Scoring scheme:

$$R_{ab} = 1$$
 for $a = b$
 $R_{ab} = 0$ for $a \neq b$

$$g = 1$$

Seq2: GCG Seq3: G-T

N.B. The score of a column with two blanks in a pairwise alignment should be 0.

- (a) Calculate the pairwise score $S(\bar{s}^1, \bar{s}^2)$.
- (b) Calculate the pairwise score $S(\bar{s}^1, \bar{s}^3)$.
- (c) Calculate the pairwise score $S(\bar{s}^2, \bar{s}^3)$.
- (d) Calculate the SP score S(A).

2. Tree topology

A rooted phylogenetic tree can have three topologically different trees when m is 3.

(a) Fill the labels A, B, or C to satisfy three topologically distinct trees.

3. UPGMA

UPGMA is an unweighted version of PGMA (pair-group method using arithmetic mean) for reconstructing a phylogenetic tree. Pairwise sequence alignments are used to calculate the distances among four sequences A, B, C, and D.

	A	В	С	D
A	0	2	7	7
В		0	5	9
\mathbf{C}			0	8
D				0

Below are two examples of the distance calculation that can be used for UPGMA.

$$d_{(\alpha\beta),\gamma} = \frac{d_{\alpha,\gamma} + d_{\beta,\gamma}}{2}, \quad d_{(\alpha\beta\gamma),\delta} = \frac{d_{\alpha,\delta} + d_{\beta,\gamma} + d_{\delta,\gamma}}{3}$$

(a) Identify the first internal node and update the distance matrix accordingly.

(b) Identify the second internal node and update the distance matrix accordingly.

(c) Reconstrut a rooted tree from the calcualted distances.

(d) Fill the distances of the reconstructed tree.

	Α	В	\mathbf{C}	D
A B	0			
В		0		
\mathbf{C}			0	
D				0