Logistic regrettion (1) = 6 (w 7 z (i) + 6), where

 $\varepsilon(z^{(i)}) = 1$ $t e^{-zui}$ $z^{(i)} = w^{T}z^{(i)} + b$ $z^{(i)}$ $z^{(i)}$ $z^{(i)}$ $z^{(i)}$ $z^{(i)}$ $z^{(i)}$ $z^{(i)}$

Giren $\{(x^{(l)},y^{(l)}), ---$ want $\hat{\mathcal{J}}$ (ii) $\approx y^{(i)}$ want $\hat{\mathcal{J}}$ (ii) $\approx y^{(i)}$

Loss error functo

L(j,y) = - (gloggg + (17) + (1-y) log (1-y))

* 計步了一: 工程。) 2 (g,y) = - (logg) Inondon to get 2(g, y) as ismall as possible, logy must be lange. But j has limits [0,1] so j must be as close to 1 as possible. j 21. * if 7=0 2 (9,4) = - (07 (1-9)

for 2(g,y) to be small,
tog (1-g) must

Cost furctor (on entire training og) J(w,b)= = = = [=1 L(g'u),g'u) n = no, of features m - no- of training examples = J(w,b) = - = = [Ju) 10g ga) + (1-ya))10g [1-ya)] Gradient diteent! what's loss function: Calculating the 1045 for one training example what's cost frenchion - Calculating the and loss live and of loss afancts ? for one value of w & b. (const. value ot w e b). We need to mindmide the jost out function in order to jet near perfect output. How can me do this?

I magine wo and be are \$3] dimentional. (though to can be me tidimentional, since training dataset has many features)

AD(w,b) paraboloid (3d Shaped
parabolo) Navadom (vandom value)

point (of w. 2 b) We want to reach the minimum of J(w,b) to get min- lots]. How can ne do this? We can do this by Corradient Descent If we plot graph reglecting b, we'll get

PAGE NO.:

DATE: / /

we'll coloniate the Stope at that random print & well nuage in the mirr direction of graph where well get min. Je This is known as bradient Descent We'll repeatedly do this until we've reached min. of J. Repeat (learning rate w = w = d J (w) of detarries the step which me'll have to take to calculate Slope at that point. J Steps gdt

Congratu's fons! Take pride. You are using a Navneet ecobuddy product.

"=" update sign 1 update w No we'll do this for be as nell Repeat { w== w- + 8J(w,6) b:= b - x SJ (00, b) Since, J depends, on meltiple variables, we'll use partial derivative rather than normal derivative

FAGENO.:

and Tatio pide. You are using a Navneet ecobuddy in product.

$$da = SL(a,y)$$

$$Sq$$

$$= -\frac{y}{a} + \frac{1-y}{1-a}$$

$$dz = \frac{SL(a,y)}{Sz}$$

$$V fing z chain rule, we can write
$$= \frac{SL}{Sq} \times \frac{Sq}{Sz}$$

$$Sq \times \frac{Sq}{Sz}$$

$$S(z) = \frac{d}{dz} = \frac{d}{dz} (c(z))$$

$$d(z) = \frac{1}{1+e^{-z}} = \frac{(i+e^{-z})^{-1}}{(i+e^{-z})^{-2}}$$

$$da = -i (i+e^{-z})^{-2} [o+(i)e^{-z}]$$

$$= \frac{e^{-z}}{(i+e^{-z})^{2}}$$$$

We know,

$$a = \frac{1}{1 + e^{-2}}$$
 $1 - a = \frac{1}{1 + e^{-2}}$
 $1 + e^{-2}$
 $1 + e^{-$

$$dz = \left(\frac{-y}{a} + \frac{1-y}{1-a}\right) \cdot a(1-a)$$

$$= -y(1-a) + (1-y) \cdot a$$

2 d= a-y

Vectorizing across multiph examples no. of test costs / examples = m We know we have to perform EA[2] [i] - layer number or activation (a,)_ function layer nunter E (i) - activation function number in that layor E = WX +b - One layma a= 6(2) will calc. this Here to is also input & pais "a" to from previous layer, input the next layer

Joe, ne have to portorm 2 = WA CO3 + 6 [9] A[1] = 6(2[1]) 2 [2] = WA [1] + b [1] 4 (5 (5 (5)) The A =27 will result in finel output since, its a 2-layer NN. We can sterate for each example ! training image / test case as it'll caute a lot of time to train the model. As in previous logistic regrestion. ne have rectorization, met re'll perform same here. In previous example thous me had only 1 layer and only 1 activation function a no hidden layer n_2 qBut her, re har an extra layer, aka hidden layer & if has mon than a activation furctions. How

can me do metorizacetion of the NN.

Say re have m training examples & each example has na features. A FOT or X malt should be a matrix of (nn,m). We am do this by stacking m examples column nite In first NN , we have similar mouthix X but home me! (call it as Alos as explained before Me'll multiplying matrix w with at a activation Rinetions. Therefor, dimensions of Warna X Arm est no of

and of WEPJ and No. of A 503 chould match. et rome We can achieve thethe dimension of WCIZ by Stacking up na nows

row training examples and we can add b We don't need to specify its dimensions as python well) perform broad casting for it. A [1] = 6 (8[]) = W[] [A[] +6 After catculating & [1] ne can
colculate A [1] Its dimensions wi

Connected thems till Take pride. You are using a Navnect ecobaddy™ product

Teacher's Sancting

be 4 xm (of Wyxnn x Anz xm) Now, we need to addulate A [2] A[2] = 6(+[2]) = W[2]A[1]+6[2] Wheat should be the dimensions for WEZ?. A [17 has 4 xm dimentions Go W [27 must have 4 What about yours? As A [2] is directly responsible for the output iter y, it must be an unidimensional rector. A [2] Ales In and To get that, W [2] must have only 1 : Dimensions of W [2] = (1X4) 1 [2] will be a real number. 7 AM = W A + 6 2) · A [2] = 6 (2) = W [2] A [1] + 6 [2]

WVIV	v.n.ivn	agl. Di	
PAGE N),. :		
DATE:			

Nearal Network representation learning

[0]

[1] = W [1] x + b [1] 4x1 (413) (3,1) (4,1) C13 a = 6 (8 [1])
(4,1)
(4,1) = [2] = W[2] a [1] + b [2] (1,1) (1,4) (a,1) + (1,1) a[2] = 6(2[2]) (1,1)

This is for 1 training example

Congratulations! Take pride. Yes are using a Navnaet ecobuildy!** product.

and for 1 example: Forward propagato for multilage NN (aka deep network) 2 [1] = W [1] A [0] + 6 [1] 2 [4] = W [4] A [3] + 6 [4] A [4] = 9 = 6 (Z [4])

examply

beneral repredentation Z [l] = N [l] A[b-1] + b[l] an [4] = g [4] (2[4]) Vectorise it over I layers. tor L=1; L = 5; 1++ ! ZEN3 = WEN3 A CO) A[1] = 3[1] (8[2])

A[1] = 3[1] (8[2]) Dimensions ef 2, W, b, dw, db throughout Now for diff. layors. for fig (1), we have 3 input features 2[1] = W[1] - x +6[1] X has dimensions (3,1) training 2 [1] has dim. = (4,1) - since Example it has 4 nodes 5 [1] = M [1] . X + P [1] (3,1) (3,1) (4,1) (4,3) WIT must have dim. (43)

We can say, will has dimensiony [n [1], n [0]), m [M] in no. of nodes in layer 1. more generally, me can say, m [1] = (0 1/1 1) 3 EN = (n [12]) F(1) = (n(1))i dim. of A [d] dim. of dw & db same as w & b resp.

· W