Correction

d'après Mines de Sup 1997.

- a. Δ est clairement linéaire et puisque la dérivée d'une fonction de classe loi de composition interne et aussi un e fonction de classe \mathcal{C}^{∞} , l'application Δ est définie de F vers F. C'est donc un endomorphisme de F. Ce n'est pas un automorphisme puisque cette application n'est pas injective, en effet son noyau est formée des fonctions constantes.
- b. Par définition, une fonction solution de l'équation $y^{(4)} + 2y^{(2)} + y = 0$ est au moins 4 fois dérivable. Or $y^{(4)} = -(2y^{(2)} + y)$ est au moins deux fois dérivable et donc y est 6 fois dérivable et donc $y^{(4)}$ est 4 fois dérivable,... Par récurrence, on montre que y est 2n fois dérivable pour tout $n \in \mathbb{N}^*$ et on conclut.
- 1. De par sa définition : $E = \operatorname{Vect}(f_1, f_2, f_3, f_4)$, cela assure que E est un sous-espace vectoriel et que $\mathcal B$ en est une famille génératrice. Supposons $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 + \lambda_4 f_4 = 0$. En évaluant en 0 on obtient $\lambda_3 = 0$. En évaluant ensuite en π , on obtient $\lambda_4 = 0$. En évaluant en $\pi/2$ et en $-\pi/2$: $\lambda_1 + \frac{\pi}{2}\lambda_2 = 0$ et

 $-\lambda_1 + \frac{\pi}{2}\lambda_2 = 0$ donc $\lambda_1 = \lambda_2 = 0$. Finalement la famille $\mathcal B$ est libre c'est bien une base de E.

- 2.a $D(f_1)=f_3$, $D(f_2)=f_1+f_4$, $D(f_3)=-f_1$ et $D(f_4)=-f_2+f_3$ donc $D(af_1+bf_2+cf_3+df_4)=(b-c)f_1-df_2+(a+d)f_3+bf_4\in E \text{ . Ainsi }D:E\to E \text{ , de plus }D \text{ est clairement linéaire par restriction d'une application linéaire donc }D \text{ est un endomorphisme de }E \text{ .}$
- $2.b \qquad D(af_1+bf_2+cf_3+df_4)=0 \quad \text{conduit au système} \begin{cases} b-c=0\\ -d=0\\ a+d=0 \end{cases} \text{ de seule solution } a=b=c=d=0 \text{ . Ainsi } b=0$

 $\ker D = \{0\}$ et D est un endomorphisme injectif. Or $\dim E = 4 < +\infty$ donc D est bijectif.

- 3.a $D^{2}(af_{1}+bf_{2}+cf_{3}+df_{4})=D((b-c)f_{1}-df_{2}+(a+d)f_{3}+bf_{4})$ $\operatorname{donc}\ D^{2}(af_{1}+bf_{2}+cf_{3}+df_{4})=-(a+2d)f_{1}-bf_{2}+(2b-c)f_{3}-df_{4}\,.$ $\operatorname{puis}\ (D^{2}+\operatorname{Id})(af_{1}+bf_{2}+cf_{3}+df_{4})=-2df_{1}+2bf_{3}\,.$ $(D^{2}+\operatorname{Id})(af_{1}+bf_{2}+cf_{3}+df_{4})=0\Leftrightarrow b=d=0\ \operatorname{donc}\ \ker(D^{2}+\operatorname{Id})=\operatorname{Vect}(f_{1},f_{3})\,.$ $\operatorname{La}\ \operatorname{famille}\ (f_{1},f_{3})\ \operatorname{\acute{e}tant}\ \operatorname{libre},\ c'\operatorname{est}\ \operatorname{une}\ \operatorname{base}\ \operatorname{de}\ \ker(D^{2}+\operatorname{Id})\,.$ $(D^{2}+\operatorname{Id})(af_{1}+bf_{2}+cf_{3}+df_{4})=-2df_{1}+2bf_{3}\in\operatorname{Vect}(f_{1},f_{3})\ \operatorname{donc}\ \operatorname{Im}(D^{2}+\operatorname{Id})\subset\operatorname{Vect}(f_{1},f_{3})\,.$ $\operatorname{Par}\ \operatorname{le}\ \operatorname{th\acute{e}or\grave{e}me}\ \operatorname{du}\ \operatorname{rang}:\ \operatorname{dim}\operatorname{Im}(D^{2}+\operatorname{Id})=4-\operatorname{dim}\ker(D^{2}+\operatorname{Id})=2\ \operatorname{donc}\ \operatorname{Im}(D^{2}+\operatorname{Id})=\operatorname{Vect}(f_{1},f_{3})\ \operatorname{et}\ (f_{1},f_{3})\ \operatorname{est}\ \operatorname{une}\ \operatorname{base}\ \operatorname{de}\ \operatorname{Im}(D^{2}+\operatorname{Id})\,.$
- 3.b $D^4 + 2D^2 + Id = (D^2 + Id) \circ (D^2 + Id)$ et $Im(D^2 + Id) \subset ker(D^2 + Id)$ donc $D^4 + 2D^2 + Id = 0$.
- 3.c $D \circ (-D^3 2D) = I$ et dim $E < +\infty$ donc D est un automorphisme de E et $D^{-1} = -D^3 2D$.
- 4.a Par définition V = Vect(Id, D). Supposons $\alpha \text{Id}_E + \beta D^2 = 0$. En évaluant cette relation en f_2 , on obtient $\alpha f_2 + \beta (-f_2 + 2f_3) = 0$ qui donne $\alpha = \beta = 0$. La famille (Id_E, D^2) est libre, c'est donc une base de V.
- $\begin{aligned} \text{4.b} & \forall \varphi, \psi \in V \text{ , on peut \'ecrire } \varphi = \alpha \operatorname{Id}_E + \beta D^2 \text{ et } \psi = \gamma \operatorname{Id}_E + \delta D^2 \text{ . On a alors} \\ & \varphi \circ \psi = \alpha \gamma \operatorname{Id}_E + (\alpha \delta + \beta \gamma) D^2 + \beta \delta D^4 = (\alpha \gamma \beta \delta) \operatorname{Id}_E + (\alpha \delta + \beta \gamma 2\beta \delta) D^2 \in V \text{ car } D^4 = -\operatorname{Id}_E 2D^2 \text{ .} \end{aligned}$
- 4.c On reprend les notations ci-dessus $M(\lambda\varphi+\mu\psi)=M((\lambda\alpha+\mu\gamma)\operatorname{Id}_E+(\lambda\beta+\mu\delta)D^2)=(\lambda\alpha+\mu\gamma)-(\lambda\beta+\mu\delta)\ \, \text{donc}$ $M(\lambda\varphi+\mu\psi)=\lambda(\alpha-\beta)+\mu(\gamma-\delta)=\lambda M(\varphi)+\mu M(\psi)\ \, . \text{ De plus }M:V\to\mathbb{R}\ \, \text{donc }M\ \, \text{est une forme linéaire sur }V\ \, .$ $M(\varphi\circ\psi)=(\alpha\gamma-\beta\delta)-(\alpha\delta+\beta\gamma-2\beta\delta)=\alpha\gamma-\alpha\delta-\beta\gamma+\beta\delta=(\alpha-\beta)(\gamma-\delta)=M(\varphi)M(\psi)\ \, .$
- 5.a C'est une équation différentielle linéaire d'ordre 2 à coefficients constants d'équation caractéristique $r^2+1=0$ de racines i et -i. Les solutions de cette équation différentielle sont donc les $x\mapsto \lambda\cos x + \mu\sin x$.

- 5.b Déterminer le noyau de $\Delta^2 + \operatorname{Id}_F$ équivaut à la résolution ci-dessus. On obtient donc $\ker(\Delta^2 + \operatorname{Id}_F) = \operatorname{Vect}(f_1, f_3)$.
- 5.c Par l'étude qui précède on peut déjà affirmer $E = \ker(D^2 + \operatorname{Id}_E)^2 \subset \ker(\Delta^2 + \operatorname{Id}_F)^2$. Inversement si $y \in \ker(\Delta^2 + \operatorname{Id}_F)^2$ alors $(\Delta^2 + \operatorname{Id}_F)(y) \in \ker(\Delta^2 + \operatorname{Id}_F)$ donc $y'' + y \in \operatorname{Vect}(f_1, f_3)$. $y'' + y = f_1 \text{ a pour solution particulière } -\frac{1}{2}f_4 \,.$ $y'' + y = f_3 \text{ a pour solution particulière } \frac{1}{2}f_2$

 $\mathrm{donc}\ y''+y=\lambda f_{\mathrm{l}}+\mu f_{\mathrm{3}}\ \mathrm{a}\ \mathrm{pour}\ \mathrm{solution}\ \mathrm{g\acute{e}n\acute{e}rale}:\ \alpha f_{\mathrm{l}}+\frac{\mu}{2}f_{\mathrm{2}}+\beta f_{\mathrm{3}}-\frac{\lambda}{2}f_{\mathrm{4}}\,.$

Ainsi, si $y\in \ker(\Delta^2+\operatorname{Id}_{\scriptscriptstyle F})^2$ alors $y\in E$. Par double inclusion l'égalité.

Bien entendu la détermination de $\ker(\Delta^2+\operatorname{Id}_F)^2$ équivaut à la résolution de l'équation $y^{(4)}+2y^{(2)}+y=0$.