Лекция 15 от 23.01.2017 Сжимающие отображения и неравенство КБШ

Сжимающие отображения

Пусть $R = (M, \rho)$ — метрическое пространство.

Определение 1. Отображение A метрического пространства R в себя называется сжимающим отображением или сжатием, если существует такое положительное действительное число q < 1, что для любых двух точек $x,y \in R$ имеет место неравенство:

$$\rho(Ax, Ay) \leqslant q\rho(x, y).$$

Определение 2. Точка x называется неподвижной точкой отображения f, если имеет место равенство

$$f(x) = x$$

Теорема 1 (О сжимающем отображении). Всякое сжимающее отображение f, заданное на полном метрическом пространстве M, имеет одну и только одну неподвижную точку.

Доказательство. Пусть x_0 — произвольная точка пространства R. Положим $x_1 = f(x_0), x_2 = f(x_1) = f(f(x_0)), \dots x_{n+1} = f(x_n)...$

Докажем, что последовательность $\{x_n\}$ является фундаментальной. Пусть $r:=\rho(x_0,x_1)$. Тогда, по определению сжимающего отображения мы можем сказать, что $\rho(x_1,x_2)\leqslant qr$. Аналогично, $\rho(x_2,x_3)\leqslant q\rho(x_1,x_2)\leqslant q^2r$, $\rho(x_3,x_4)\leqslant q^3r$, ... $\rho(x_n,x_{n+1})\leqslant q^nr$.

Зафиксируем произвольное $\varepsilon > 0$. Так как q < 1, $\exists N \ \forall n > N : \frac{rq^n}{1-q} < \varepsilon$.

Возьмём произвольные n,m>N без ограничения общности n>m. Многократно пользуясь неравенством треугольника и один раз — формулой суммы геометрической прогрессии получим:

$$\rho(x_n, x_m) \leqslant \rho(x_n, x_{m+1}) + \rho(x_{m+1}, x_m) \leqslant
\leqslant \rho(x_n, x_{m+2}) + \rho(x_{m+2}, x_{m+1}) + \rho(x_{m+1}, x_m) \leqslant
\leqslant \dots \leqslant rq^m + rq^{m+1} + \dots + rq^{n-1} < \frac{rq^n}{1 - q} < \varepsilon$$

Таким образом, фундаментальность последовательности $\{x_n\}$ доказана.

Поскольку наше метрическое пространство полное, то последовательность $\{x_n\}$ будет иметь предел в этом пространстве: $x := \lim_{n \to \infty} x_n$. Значит $\rho(x_n, x) \xrightarrow[x \to \infty]{} 0$. Зная что $0 \le \rho(f(x_n), f(x)) \le q\rho(x_n, x)$ делаем вывод что $\rho(f(x_n), f(x)) \xrightarrow[x \to \infty]{} 0$ и следовательно $\lim_{n \to \infty} f(x_n) = f(x)$.

Получаем, что $\lim_{n\to\infty} x_n = x$, и одновременно $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} x_n = f(x)$. Откуда, в силу единственности предела последовательности, получили что f(x) = x. Существование неподвижной точки доказано.

Осталось доказать единственность. Пусть есть хоть бы две различных неподвижных точки x и \tilde{x} . Тогда $\rho(f(x), f(\tilde{x})) \leqslant q\rho(x, \tilde{x})$ по определению сжимающего отображения. Однако также $\rho(f(x), f(\tilde{x})) = \rho(x, \tilde{x})$ так как рассматриваемые точки — неподвижные. С учётом того, что q < 1, из этого с неизбежностью следует что $\rho(x, \tilde{x}) = 0$, и, соответственно $x = \tilde{x}$.

Сжимающие отображения оказываются полезны при решении задач самого разного рода. Например, они используются при доказательстве существования и единственности решиния задачи Коши в курсе дифференциальных уравнений.

Теорема Коши-Буняковского-Шварца

Теорема 2 (Коши-Буняковского-Шварца (КБШ)). Пусть H — линейное пространство со скалярным произведением (x, y), $u \|x\|$ — норма, порождённая этим скалярным произведением. Тогда для любых $x, y \in L$ имеем: $|(x, y)| \le \|x\| \cdot \|y\|$, причём равенство достигается тогда и только тогда, когда векторы x и y линейно зависимы.

Доказательство. Если $y = \vec{0}$, то утверждение тривиально верно, так как

$$|(x, \vec{0})| = |(x, \vec{0} + \vec{0})| = |(x, \vec{0})| + |(x, \vec{0})|,$$

откуда следует что $|(x, \vec{0})| = 0$.

Теперь будем считать, что $y \neq \vec{0}$. Введем функцию $f: \mathbb{R} \Rightarrow \mathbb{R}, f(t) := (x+ty, x+ty)$. Пользуясь свойствами скалярного произведения можно понять что

$$f(t) = (x + ty, x + ty) = (x, x) + 2t(x, y) + t^{2}(y, y),$$

то есть f — обычная квадратичная функция от t. Заметим, что $\forall t \in \mathbb{R}: f(t) \geqslant 0$, причём f(t) = 0 возможно только если x и y линейно зависимы. Таким образом заключаем, что дискриминант многочлена $(x,x)+2t(x,y)+t^2(y,y)$ — неположительный, и равен нулю только при линейной заивимости x и y. То есть

$$D = 4(x,y)^2 - 4(x,x)(y,y) \le 0$$
$$(x,y)^2 \le (x,x)(y,y)$$
$$(x,y) \le \sqrt{(x,x)} \cdot \sqrt{(y,y)},$$

что нам и тредовалось доказать. Напоследок снова заметим, что равенство достигается при равенстве дискриминанта нулю, то есть при линейной зависимости x и y.

Упражнение 1 ((Бонусная задача)). Если норма задана скалярным произведением, то $2\|x\|^2 + 2\|y\|^2 = \|x + y\|^2 + \|x - y\|^2$. Это равенство часто называют тождеством параллелограмма, и оно несложно проверяется. А верно ли обратное, что если выполнено равенство, то норма задана скалярным произведением?