X-ENS Maths A 2022 (MP)

Pandou & Faf

26 avril 2022

1 Partie I : Déterminant de Gram

1. (a) L'ensemble $\{(a, a') \in V \times V', ||a|| = ||a'|| = 1\}$ est une partie compacte de $V \times V'$ comme produit de deux compacts de V et de V'¹.

La fonction $(x,y) \in E^2 \longmapsto \langle x,y \rangle$ est une forme bilinéaire et E est de dimension finie, donc continue. Ainsi, cette fonction atteint son maximum sur le compact précédent :

$$\langle u_1, u_1' \rangle = \max \{ \langle a, a' \rangle, (a, a') \in V \times V', ||a|| = ||a'|| = 1 \}$$

- (b) On construit cette famille par récurrence.
 - k = 1, on prend deux vecteurs u_1, u'_1 donnés par 1.a.
 - Supposons les familles $(u_1,...,u_{k-1})$ et $(u'_1,...,u'_{k-1})$ construites. L'ensemble

$$\{(a, a') \in V \times V', ||a|| = ||a'|| = 1, \forall i \leq k - 1, \langle a, u_i \rangle = \langle a, u_i' \rangle = 0\}$$

est une partie fermée de $\{(a, a') \in V \times V', ||a|| = ||a'|| = 1\}$, car $\langle u_i, \cdot \rangle$ est une application continue (donc son noyau est fermé), donc est encore compact.

L'application $(x,y) \in E^2 \longmapsto \langle x,y \rangle$ est toujours continue, ainsi cette fonction atteint son maximum sur le compact $\{(a,a') \in V \times V', \|a\| = \|a'\| = 1, \forall i \leq k-1, \langle a,u_i \rangle = \langle a,u_i' \rangle = 0\}$. D'où le résultat.

- 2. Remarquons qu'on a immédiatement par l'inégalité de Cauchy-Schwarz, $\forall (a, a') \in V \times V'$, ||a|| = ||a'|| = 1, $-1 \leq \langle a, a' \rangle \leq 1$.
 - Pour k=1, on prend $\widetilde{u} \in V \cap V'$ de norme 1 de sorte que $\langle u_1, u_1' \rangle = \langle \widetilde{u}, \widetilde{u} \rangle = 1$. Ainsi, on est dans le cas d'égalité de l'inégalité de Cauchy-Schwarz et donc u_1 et u_1' sont positivement colinéaires et de même norme, donc égaux.
 - Ceci déclenche bien sûr une récurrence. Soit $k \in [1, \dim(V \cap V')]$, on suppose que $u_{\ell} = u'_{\ell}$ pour tout $1 \leq \ell \leq k$. Comme $\operatorname{rg}(u_1, ..., u_{k-1}) \leq k-1 < \dim(V \cap V')$, on en déduit qu'on peut trouver $\widetilde{u} \in V \cap V' \cap \operatorname{Vect}(u_1, ..., u_{k-1})^{\perp}$ que l'on peut supposer unitaire quitte à renormaliser. Encore une fois, on a le cas d'égalité dans l'inégalité de Cauchy-Schwarz

$$\langle u_k, u_k' \rangle = \langle \widetilde{u}, \widetilde{u} \rangle = 1$$

Donc, comme précédemment, $u_k = u'_k$.

- 3. (a) La famille u est déjà normée et de bon cardinal. On montre qu'elle est orthogonale. Mais par définition, on a $u_k \in V$ (car le sup est un max) et $\forall \ell \in [\![1,k-1]\!], \langle u_k,u_\ell \rangle = 0$.
 - (b) Comme u est une base, on en déduit en particulier que $\forall t, u_k + tu_\ell \neq 0$. En particulier, la fonction u_k est bien définie sur \mathbb{R} . Elle est de plus \mathcal{C}^1 comme quotient défini de fonctions \mathcal{C}^1 . De plus, comme (u_k, u_ℓ) est orthonormée, on a $||u_k + tu_\ell|| = \sqrt{1 + t^2}$.

On remarque que $\forall t \in \mathbb{R}, ||u_k(t)|| = 1$ et de plus si $r \leq k - 1$, alors $\langle u_r, u_k(t) \rangle = 0$. Ainsi, comme $u_k(0) = u_k$, on a que $t \longmapsto \langle u_k(t), u_k' \rangle$ qui a un maximum en t = 0. Ainsi, on a

$$\frac{\mathrm{d}}{\mathrm{d}t}_{|t=0} \langle u_k(t), u_k' \rangle = \left\langle \frac{\mathrm{d}u_k}{\mathrm{d}t}(0), u_k' \right\rangle = \langle u_\ell, u_k' \rangle = 0$$

(On est préservés du calcul complet de la dérivée ... Comme $u_k(t) = \frac{1}{\sqrt{1+t^2}} (u_k + tu_\ell) = u_k + tu_\ell + o(t)$).

^{1.} La topologie n'étant pas au programme, il faut peut-être détailler un peu plus en considérant sur $V \times V'$ la norme $\|(a,a')\| = \max(\|a\|,\|a'\|)$.

- (c) On rappelle que pour deux sous-espaces V et W, on a $(V+W)^{\perp}=V^{\perp}\cap W^{\perp}$. Ainsi, la question 3a. montre que $u_{k+1}\in \operatorname{Vect}(u_1,...,u_k)^{\perp}$ et la question 3b. montre que $u_{k+1}\in \operatorname{Vect}(u_1',...,u_k')^{\perp}$.
- (d) Soit $k > \ell$. Par la question précédente, u_k est orthogonal à tous les u_ℓ et tous les u'_ℓ pour $\ell \leqslant k-1$. De même, u'_k est orthogonal à tous les u'_ℓ et tous les u_ℓ pour $\ell \leqslant k-1$. On en déduit que W_k et W'_k sont orthogonaux.
- 4. (a) On a déjà montré que $0 \leqslant \langle u_k, u_k \rangle \leqslant 1$ par l'inégalité de Cauchy-Schwarz. En effet, rappelons que $\langle u_k, u_k' \rangle \geqslant 0$ (car si $\langle a, a' \rangle \leqslant 0$, alors $\langle -a, a' \rangle \geqslant 0$). Donc, il existe $\theta_k \in \left[0, \frac{\pi}{2}\right]$ tel que

$$\langle u_k, u_k' \rangle = \cos(\theta_k)$$

(b) Comme $u_k \perp u'_{\ell}$, la matrice de Gram Gram(u, u') est une matrice diagonale et on a

$$\det \left(\operatorname{Gram}(u, u') \right) = \prod_{k=1}^{p} \langle u_k, u'_k \rangle = \prod_{k=1}^{p} \cos(\theta_k)$$

(c) Comme $\cos \leq 1$, on a bien

$$\det (\operatorname{Gram}(u, u')) \leq 1$$

On a égalité si, et seulement si, $\forall k, \theta_k = 0$, autrement dit $u_k = u'_k$. Ainsi, on a V = V'.

2 Partie II: Formes volumes

5. (a) On vérifie que le déterminant est bien alterné ... Si $\sigma \in \mathfrak{S}_n$:

$$[x_{\sigma(1)}, ..., x_{\sigma(p)}] = \sum_{\sigma' \in \mathfrak{S}_p} \varepsilon(\sigma') \prod_{i=1}^n x_{\sigma' \circ \sigma(i), i}$$

$$= \prod_{\sigma'' = \sigma' \circ \sigma} \varepsilon(\sigma) \varepsilon(\sigma'') \prod_{i=1}^n x_{\sigma''(i), i}$$

$$= \varepsilon(\sigma) [x_1, ..., x_p]$$

(b) g est clairement p-linéaire par la linéarité de f. De plus, si $\sigma \in \mathfrak{S}_n$, on a

$$g(u \cdot \sigma) = [f(u_{\sigma(1)}), ..., f(u_{\sigma(p)})]$$
$$= \varepsilon(\sigma)[f(u_1), ..., f(u_p)]$$
$$= \varepsilon(\sigma)q(u)$$

6. (a) Soit $e \in E^p$. Alors, on remarque que

$$\Omega_p(e)(u) = \left[f(u_1),...,f(u_p)\right] \qquad \text{avec} \qquad f: (u_1,...,u_p) \in E \longmapsto \left(\langle e_1,u_1\rangle,...,\langle e_p,u_p\rangle\right) \in \mathbb{R}^p$$

Et donc, par la question précédente, on a bien $\Omega_p(e) \in \mathcal{A}_p(E,\mathbb{R})$.

(b) La matrice de Gram est une matrice symétrique par symétrie du produit scalaire. Ainsi, on a

$$\Omega(e)(u) = \det (\operatorname{Gram}(e, u))
= \det (\operatorname{Gram}(u, e))
= \Omega(u)(e)$$

(c) Si $\sigma \in \mathfrak{S}_n$, on a

$$\begin{array}{lll} \Omega(e\cdot\sigma)(u) & = & \Omega_p(u)(e\cdot\sigma) & \quad \text{par la question précédente} \\ & = & \varepsilon(\sigma)\Omega_p(u)(e) & \quad \text{car } \Omega_p(u) \text{ est altern\'e} \\ & = & \varepsilon(\sigma)\Omega_p(e)(u) & \quad \text{encore par la question préc\'edente} \end{array}$$

Ceci étant valable pour tout u, on a

$$\Omega(e \cdot \sigma) = \varepsilon(\sigma)\Omega_p(e)$$

Et comme $e \mapsto \Omega_p(e)$ est multilinéaire (car $\Omega_p(e)(u) = \Omega_p(u)(e)$). On en déduit que

$$\Omega_p \in \mathcal{A}(E, \mathcal{A}_p(E, \mathbb{R}))$$

7. (a) C'est un résultat de multilinéarité alterné ...

$$\Omega_p(e') = \sum_{1 \leq j_1, ..., j_p \leq p} \prod_{i=1}^p M_{i, j_i} \Omega_p(e_{j_1}, ..., e_{j_p})$$

Si on a $j_k = j_\ell$, alors par le caractère alterné de Ω_p , on a $\Omega_p(e_{j_1},...,e_{j_p}) = 0$. La somme est donc indexée sur $(j_1,...,j_k)$ tous différents qui réalise donc une permutation de [1,p], on en déduit que

$$\Omega_{p}(e') = \sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{p} M_{i,\sigma(i)} \Omega_{p}(e \cdot \sigma)
= \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \Omega_{p}(e) \prod_{i=1}^{p} M_{i,\sigma(i)}
= \det(M) \Omega_{p}(e)$$

(b) Si e est une famille liée, alors on peut écrire disons $e_1 = \sum_{i=2}^p \lambda_i e_i$, alors par linéarité :

$$\Omega_p(e) = \sum_{i=2}^p \lambda_i \Omega_p(e_i, e_2, ..., e_p) = 0$$

 e_i vaut l'un des $e_2, ..., e_p$.

Si e est libre, alors e est la base de l'espace qu'il engendre, notons V cet espace. On considère e' une base orthonormée de V (par exemple obtenue par orthonormalisation de Schmidt, mais ce n'est pas obligatoire!). On en déduit qu'on a une matrice $M \in GL_p(\mathbb{R})$ tel que

$$\Omega_p(e') = \det(M)\Omega_p(e)$$

Mais comme e' est orthonormée, la matrice de Gram est l'identité et donc $\Omega_p(e')(e') = 1$, en particulier, $\Omega_p(e') \neq 0$. Donc,

$$\Omega_p(e) \neq 0$$

(c) Si e est liée, c'est immédiat.

Sinon, e est la base de l'espace V qu'il engendre et on reprend e' une base orthonormée de V de sorte qu'on ait de nouveau $M \in GL_p(\mathbb{R})$ tel que

$$\begin{array}{rcl} \Omega_p(e)(e) & = & \det(M)\Omega_p(b)(e) \\ & = & \det(M)\Omega_p(e)(b) \\ & = & \det(M)^2\Omega_p(b)(b) \\ & = & \det(M)^2 > 0 \end{array}$$

- 8. (a) Si b est orthonormée, sa matrice de Gram est l'identité et donc $\operatorname{vol}_p(b) = 1$.
 - (b) On écrit $e_1 = \operatorname{pr}(e_1) + \widetilde{e}_1$ tel que $\widetilde{e}_1 \in \operatorname{Vect}(e_2^p)$. Ainsi, on a

$$\Omega_p(e) = \Omega_p(\operatorname{pr}(e_1), e_2^p) + \underbrace{\Omega_p(\widetilde{e}_1, e_2^p)}_{=0}$$

Comme $\operatorname{pr}(e_1) \in \operatorname{Vect}(e_2^p)^{\perp}$, ainsi, la matrice de Gram de $(\operatorname{pr}(e_1), e_2^p)$ est diagonale par blocs :

$$\operatorname{Gram}(\operatorname{pr}(e_1), e_2^p) = \begin{pmatrix} \|\operatorname{pr}(e_1)\|^2 & 0\\ 0 & \operatorname{Gram}(e_2^p, e_2^p) \end{pmatrix}$$

Ainsi, on en déduit que

$$vol_p(e) = ||pr(e_1)||vol_{p-1}(e_2^p)|$$

(c) Par la question précédente, si on note pr_k la projection orthogonale sur $\operatorname{Vect}(e_{k+1},...,e_p)$. Ainsi, par récurrence, on a

$$\operatorname{vol}_{p}(e) = \prod_{i=1}^{p} \|\operatorname{pr}_{i}(e_{i})\| \leqslant \prod_{i=1}^{p} \|e_{i}\|$$

car $\|\operatorname{pr}_i(e_i)\| \leq \|e_i\|$ et on a égalité si, et seulement si, $\forall i, \operatorname{pr}_i(e_i) = e_i$. Ce qui se produit si, et seulement si, $(e_1, ..., e_p)$ sont deux à deux orthogonaux.

9. (a) On a d'après 7a.,

$$\Omega_p(e)(e) = \det(P_b^e)^2 \Omega_p(b)(b) = \det(P_b^e)^2$$

car $\Omega_p(b)(b) = 1$ (car la matrice de Gram est l'identité). On en déduit alors que

$$\operatorname{vol}_p(e) = \sqrt{\Omega_p(e)(e)} = |\det(P_b^e)|$$

(b) Soit $b \in E^p$ une base orthonormée, si e et e' sont libres, alors on a par 7a. et la question précédente

$$\begin{aligned} \left| \Omega_p(e)(e') \right| &= \left| \det(P_b^e) \right| \left| P_b^{e'} \right| \\ &= \operatorname{vol}_p(e) \operatorname{vol}_p(e') \end{aligned}$$

Si l'une des famille e ou e' est liée, alors on a $\Omega_p(e)(e') = \Omega_p(e')(e) = 0$. D'où dans tous les cas

$$|\Omega_p(e)(e')| \leq \operatorname{vol}_p(e)\operatorname{vol}_p(e')$$

3 Partie III : Structure euclidienne sur $\mathcal{A}_p(E,\mathbb{R})$

10. (a) Soit $u=(u_1,...,u_p)\in E^p$, on écrit u=Ae avec $A\in M_{p,d}(\mathbb{R})$, on a alors

$$\omega(u) = \sum_{1 \leq j_1, ..., j_p \leq d} \prod_{i=1}^p A_{i, j_i} \omega(e_{j_1}, ..., e_{j_p})$$

Si on a $j_k=j_\ell$, alors comme ω est alterné, on a $\omega(e_{j_1},...,e_{j_p})=0$. On en déduit que

$$\omega(u) = \sum_{\alpha \in \mathcal{I}_p} \sum_{\sigma \in \mathfrak{S}_p} \omega(e_{\alpha} \cdot \sigma) \prod_{i=1}^p A_{i,\alpha_{\sigma(i)}}$$
$$= \sum_{\alpha \in \mathcal{I}_p} \omega(e_{\alpha}) \sum_{\sigma \in \mathfrak{S}_p} \varepsilon(\sigma) \prod_{i=1}^p A_{i,\alpha_{\sigma(i)}}$$

On fixe $\beta \in \mathcal{I}_p$ et on fait $\omega = \Omega_p(e_\beta)$ de sorte que $\Omega_p(e_\beta)(e_\alpha) = \delta_{\alpha,\beta}$ car si $\alpha \neq \beta$ alors la matrice de Gram associée a une colonne nulle (par orthogonalité). On en déduit donc que

$$\Omega_p(e_\beta)(u) = \sum_{\sigma \in \mathfrak{S}_p} \varepsilon(\sigma) \prod_{i=1}^p A_{i,\beta_{\sigma(i)}}$$

Et donc, on en déduit que

$$\omega = \sum_{\alpha \in \mathcal{I}_p} \omega(e_\alpha) \Omega_p(e_\alpha)$$

(b) Il est clair que $(\omega, \omega') \longmapsto \langle \omega, \omega' \rangle$ est symétrique bilinéaire. De plus, on a

$$\langle \omega, \omega \rangle = \sum_{\alpha \in \mathcal{I}_p} \omega(e_\alpha)^2 \geqslant 0$$

qui est nul si, et seulement si, $\forall \alpha \in \mathcal{I}_p, \omega(e_\alpha) = 0$ et donc $\omega = 0$ d'après la question précédente. Donc, $(\omega, \omega') \longmapsto \langle \omega, \omega' \rangle$ est un produit scalaire sur $\mathcal{A}_p(E, \mathbb{R})$.

Soit $\alpha, \beta \in \mathcal{I}_p$, alors

$$\begin{aligned}
\langle \Omega_p(e_\alpha), \Omega_p(e_\beta) \rangle &= \sum_{\gamma \in \mathcal{I}_p} \Omega_p(e_\alpha)(e_\gamma) \Omega_p(e_\beta)(e_\gamma) \\
&= \sum_{\gamma \in \mathcal{I}_p} \delta_{\alpha, \gamma} \delta_{\beta, \gamma} \\
&= \delta_{\alpha, \beta}
\end{aligned}$$

Donc, $(\Omega_p(e_\alpha))_{\alpha\in\mathcal{I}_p}$ est libre (car orthonormée) et génératrice d'après 10.a. Ainsi, on a

$$\dim (\mathcal{A}_p(E, \mathbb{R})) = \operatorname{Card}(\mathcal{I}_p) = \begin{pmatrix} p \\ d \end{pmatrix}$$

- (c) Soit $\alpha \in \mathcal{I}_{d-1}$, on note $\widehat{\alpha} = [1, d] \setminus \{\alpha_1, ..., \alpha_{d-1}\}$. On considère l'application linéaire φ qui envoie $\Omega_{d-1}(e_{\alpha})$ sur $e_{\widehat{\alpha}}$ de sorte que φ est bien une isométrie entre $\mathcal{A}_{d-1}(E, \mathbb{R})$ et E, car φ envoie une base orthonormée sur une base orthonormée.
- 11. On calcule grâce à 10.a.:

$$\begin{split} \Omega_p(u)(v) &= \sum_{\alpha \in \mathcal{I}_p} \Omega_p(u)(e_\alpha) \Omega_p(e_\alpha)(v) \\ &= \sum_{\alpha \in \mathcal{I}_p} \Omega_p(u)(e_\alpha) \Omega_p(v)(e_\alpha) \\ &= \left\langle \Omega_p(u), \Omega_p(v) \right\rangle \end{split}$$

12. Soit e une base orthonormée, on a

$$\langle \Omega_p(e_\alpha), \Omega_p(e_\beta) \rangle = \Omega_p(e_\alpha)(e_\beta) = \delta_{\alpha,\beta}$$

On en déduit que

$$\omega(e_{\alpha}) = \langle \Omega_p(e_{\alpha}), \omega \rangle$$

Et donc, on a

$$\langle \omega, \omega' \rangle = \sum_{\alpha \in \mathcal{I}_p} \langle \omega, \Omega_p(e_\alpha) \rangle \langle \omega', \Omega_p(e_\alpha) \rangle = \sum_{\alpha \in \mathcal{I}_p} \omega(e_\alpha) \omega'(e_\alpha)$$

Si e' est une autre base orthonormée de E, alors la matrice de passage de e à e' est une matrice orthogonale (pour le produit scalaire de E). En particulier, cette matrice est de déterminant 1 et donc on a $\omega(e'_{\alpha}) = \omega(e_{\alpha})$. Idem pour ω' .

Ainsi, $\langle \omega, \omega' \rangle$ ne dépend pas de la base orthonormée.

4 Partie IV : Grassmaniennes orientées

13. (a) On note V = Vect(e) et V' = Vect(e'). Si V = V', alors on a

$$\Omega_p(e') = \det(P_e^{e'})\Omega_p(e)$$

Et donc, $\Omega_p(e)$ et $\Omega_p(e')$ sont colinéaires.

Réciproquement, si $\Omega_p(e) = \lambda \Omega_p(e')$. Soit u et u' les familles de la question 1b. qui sont des bases orthonormées de V et V'. On a

$$\Omega_p(u)(u') = \det(P_e^u)\Omega_p(e)(u')$$

= $\lambda \det(P_e^u) \det(P_{u'}^{e'})$

Et,

$$\Omega_{p}(u')(u) = \det(P_{e'}^{u'})\Omega_{p}(e')(u)
= \frac{1}{\lambda}\det(P_{e'}^{u'})\Omega_{p}(e, u)
= \frac{1}{\lambda}\det(P_{e'}^{u'})\Omega_{p}(u, e)
= (\lambda\det(P_{u'}^{e'})\det(P_{e}^{u}))^{-1}
= \Omega_{p}(u')(u)^{-1}
= \Omega_{p}(u)(u')^{-1}$$

Donc,

$$\Omega_p(u)(u') = \pm 1$$

Donc, par 4c., on a V = V'.

(b) Soit (V, C) un sous-espace orienté. Soit $e \in C$, alors l'orthonormalisation de Schmidt donne une base orthonormée directe b de V (ie avec la même orientation que e). En effet, la matrice de passage de e à la base orthonormalisée est triangulaire supérieure, dont la diagonale est positive. On a

$$\operatorname{vol}_p(e) = \det(P_b^e)$$

Donc,

$$\Omega_p(e) = \det(P_b^e)\Omega_p(b) = \operatorname{vol}_p(e) \underbrace{\Omega_p(b)}_{:=\Psi(V,C)\in\mathcal{A}_p(E,\mathbb{R})}$$

En prenant e = b, on trouve $\Omega_p(b) = \Psi(V, C)$ nécessairement dans l'égalité précédente.

14. (a) Soit b une base orthonormée directe tel que $\Psi(V,C) = \Omega_p(b)$. On complète b en une base orthonormée e de E. On rappelle que la famille $(\Omega_p(b_\alpha))_{\alpha \in \mathcal{I}_p}$ est orthonormée, en particulier, $\Omega_p(b)$ est unitaire dans $\mathcal{A}_p(E,\mathbb{R})$.

On suppose que $\Psi(V,C)=\Psi(V',C')$. On considère des bases e et e' de V et V'. De sorte que

$$\Omega_p(e) = \operatorname{vol}_p(e)\Psi(V, C) = \operatorname{vol}_p(e)\operatorname{vol}_p(e')^{-1}\Omega_p(e')$$

Ainsi, $\Omega_p(e)$ et $\Omega_p(e')$ sont colinéaires et par 13a., on a V = V'. On considère $e \in C$ et $e' \in C'$ orthonormées. On a alors

$$\Psi(V, C) = \Omega_p(e) = \Psi(V, C') = \Omega_p(e') = \det(P_e^{e'})\Omega_p(e')$$

Et comme $\Omega_p(e') \neq 0$, on en déduit que $\det(P_e^{e'}) = 1 > 0$, donc C = C'.

(b) On montre que $\Psi(\widetilde{\operatorname{Gr}}(p,E))$ est fermée (car $\mathcal{A}_p(E,\mathbb{R})$ est de dimension finie). On considère une suite (V_n,C_n) de sous-espaces orientés tels que $\Psi(V_n,C_n)=\omega_n\longrightarrow\omega$ dans $\mathcal{A}_p(E,\mathbb{R})$. Si $e^{(n)}$ une base orthonormée directe de (V_n,C_n) , alors $\omega_n=\Omega_p(e^{(n)})$. On écrit $e^{(n)}=(e_1^{(n)},...,e_p^{(n)})$ où chaque $e_i^{(n)}$ est unitaire. Quitte à extraire, on suppose que $(e_i^{(n)})_{1\leqslant i\leqslant p}$ converge vers $(e_i)_{1\leqslant i\leqslant p}$ dans E^p . Par continuité du produit scalaire, $(e_1,...,e_p)$ est toujours orthonormée et on considère $V=\operatorname{Vect}(e_1,...,e_p)$ et C l'orientation de $(e_1,...,e_p)$ et on a

$$\Omega_p(e) = \Psi(V, C)$$

Comme $\Omega_p: E^p \longmapsto \mathcal{A}_p(E,\mathbb{R})$ est continu, on en déduit que

$$\Psi(V_n, C_n) = \Omega_p(e^n) \longrightarrow \Omega_p(e) = \Psi(V, C)$$

Donc, $\Psi(\widetilde{\mathrm{Gr}}(p,E))$ est un fermé de $\mathcal{A}_p(E,\mathbb{R})$.

15. On suppose que $p \leqslant d-1$. Soit V,V' deux sous -espaces de dimension p. Soit u et u' les deux familles associées à V et V' de 1b. On rappelle alors que $W_k = \operatorname{Vect}(u_k,u_k')$ sont deux à deux orthogonaux. On note $e_k(t) = tu_k' + (1-t)u_k \in W_k \setminus \{0\}$. On pose $f_k(t) = \frac{e_k(t)}{\|e_k(t)\|}$ puis, $V_t = \operatorname{Vect}(f_1(t),...,f_p(t))$ et C_t l'orientation associée. La famille $(f_k(t))$ est une base orthonormée directe de (V_t,C_t) de sorte que

$$\Psi(V_t, C_t) = \Omega_n(f(t))$$

Alors $t \mapsto \Psi(V_t, C_t) = \Omega_p(f(t))$ est un chemin qui relie $\Psi(V, C)$ à $\Psi(V', C')$. On a relié V à V' sans tenir compte de l'orientation.

Maintenant qu'on a relié $\Psi(V',C')$ à $\Psi(V,C)$. On fixe V un sous-espace de dimension p et C et C' deux orientations de V, on montre qu'on peut relier $\Psi(V,C)$ à $\Psi(V,C')$.

Comme $p \leqslant d-1$, on va pouvoir "tourner en dehors de V" (ce qui ne se verra pas sous l'action de Ψ). Soit $f \in V^{\perp}$ normé (qui existe car $p \leqslant d-1$. On note $e(t) = \left(te_1 + (1-t)f, e_2, ..., e_n\right)$ est continue et ne s'annule

pas. On a donc une fonction continue $\gamma(t) = \frac{e(t)}{\|\gamma(t)\|}$ unitaire. On a donc un chemin entre $\Psi(V, C)$ et $\Psi(V', c)$ avec $V' = \text{Vect}(f, e_2, ..., e_n)$ et c l'orientation de $(f, e_2, ..., e_n)$.

De même, on a un chemin entre $\Psi(V,C')$ et $\Psi(V',c)$. On en déduit donc un chemin entre $\Psi(V,C')$ et $\Psi(V,C')$.

Réciproquement, si p=d. Alors, on a deux orientations C et C' de E et alors $\Psi(\widetilde{\operatorname{Gr}}(d,E))=\{\omega=\Psi(E,C),\omega'=\Psi(E,C')\}$ qui n'est pas connexe par arcs (Il suffit d'adapter une preuve du théorème des valeurs intermédiaires si on en n'est pas convaincu).