STAT 403 Spring 2018 HW05

Nan Tang 1662478

May 4, 2019

$\mathbf{Q}\mathbf{1}$

Q1-a

```
bern_p <- function(x) {
   return(exp(1 + 2 * x) / (1 + exp(1 + 2 * x)))
}
n <- 500
x_value <- runif(n)
y_value <- rbinom(n, size=1, p=bern_p(x_value))
xy_logic = glm(y_value~x_value, family = "binomial")
beta0 <- summary(xy_logic)$coefficient[1,1]
beta1 <- summary(xy_logic)$coefficient[2,1]
> beta0
[1] 1.029713
> beta1
[1] 2.025165
```

In one time simulation under sample size 500, \widehat{beta}_1 and $\widehat{\beta}_0$ are respectively 2.0251 and 1.0297.

Q1-b

Histogram of Fitted Beta0

Histogram of Fitted Beta1

Q1-c

From previous histograms describing the distributions, we can perceive that $\widehat{\beta}_0$ and $\widehat{\beta}_1$ both follow normal distribution.

Q1-d

Histogram of Fitted Beta0

hist(beta1_sim, probability=T, main='Histogram of Fitted Beta1', breaks=20, xlab='Fitted Beta1', col='cornflowerblue', xlim=c(0.5, 4.0))

```
abline(v=2, lwd=3, col='coral1')
legend('topright', 'True Beta1', col='coral1', lwd=3, cex=0.75)
```

Histogram of Fitted Beta1

Both distributions concentrate more around true parameters, compare to sample size 500.

Q1-e

```
library(Metrics)
sample_sizes <- seq(from=100, to=2000, by=200)
beta1_mse <- rep(NA, length(sample_sizes))
N = 2000

for (ii in 1:length(sample_sizes)) {
    n <- sample_sizes[ii]
    beta1 <- rep(NA, N)
    for (jj in 1:N) {
        x_value <- runif(n)
        y_value <- rbinom(n, size=1, p=bern_p(x_value))
        xy_logic = glm(y_value~x_value, family = "binomial")
        beta1[jj] <- summary(xy_logic)$coefficient[2,1]</pre>
```

MSE of Estimated Beta1 VS Sample Size

This graph shows the MSE of $\widehat{\beta}_1$ converges to 0 when sample size increases.

 $\mathbf{Q2}$

Q2-a

the cdf of X is
$$F_X(x) = \frac{e^x}{1 + e^x}$$

the pdf of X $f_X(x) = \frac{dF_X}{dx}$
$$= \frac{e^x}{(1 + e^x)^2}$$

Mean of random variable is $\mathbb{E}(X)$

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} f_X(x) \cdot x \, dx$$
$$= -\frac{x}{1 + e^x} + x - \log(e^x + 1) \mid_{-\infty}^{\infty}$$
$$= 0 - 0 = 0$$

Median of random variable is the value of x where $F_X(x) = 0.5$

$$\frac{e^x}{1 + e^x} = 0.5$$
$$e^x = 1$$
$$x = \log(1) = 0$$

Now we get the pdf of random variable X is $\frac{e^x}{(1+e^x)^2}$, and both mean and median equal to 0.