Instructions: Complete each of the following exercises for practice.

1. Find an equation of the tangent plane to the given surface at the given point.

(a)
$$z = 2x^2 + y^2 - 5y$$
; $P = (1, 2, -4)$

(d)
$$z = \frac{x}{v^2}$$
; $P = (-4, 2, -1)$

(b)
$$z = (x+2)^2 - 2(y-1)^2 - 5$$
; $P = (2,3,3)$

(e)
$$z = x \sin(x+y)$$
; $P = (-1, 1, 0)$

(c)
$$z = e^{x-y}$$
; $P = (2, 2, 1)$

(f)
$$z = \ln(x - 2y)$$
; $P = (3, 1, 0)$

2. Compute the linearization L(x, y) of f at P.

(a)
$$f(x,y) = 1 + x \ln(xy - 5)$$
; $P = (2,3)$

(d)
$$f(x,y) = \frac{1+y}{1+x}$$
; $P = (1,3)$

(b)
$$f(x,y) = \sqrt{xy}$$
; $P = (1,4)$

(e)
$$f(x,y) = 4\arctan(xy)$$
; $P = (1,1)$

(c)
$$f(x,y) = x^2 e^y$$
; $P = (1,0)$

(f)
$$f(x,y) = y + \sin(\frac{x}{y}); P = (0,3)$$

3. Compute the differential of the function.

(a)
$$z(x,y) = e^{-2x}\cos(2\pi y)$$

(c)
$$m(p,q) = p^5 q^3$$

(e)
$$R(\alpha, \beta, \gamma) = \alpha \beta^2 \cos(\gamma)$$

(b)
$$u(x,y) = \sqrt{x^2 + 3y^2}$$

(a)
$$z(x,y) = e^{-2x}\cos(2\pi y)$$

 (b) $u(x,y) = \sqrt{x^2 + 3y^2}$
 (c) $m(p,q) = p^5 q^3$
 (d) $T(u,v,w) = \frac{v}{1 + uvw}$

(f)
$$L(x, y, z) = xze^{-y^2 - z^2}$$

4. Suppose function f(x,y) is differentiable at (a,b). Prove f is continuous at (a,b).