Chapter 5

which implies that the tension & should be in the range:

b) The area per junction vertex for a six-fold network is \$\frac{13}{2} \sigma^2\$ where s is the spring length, which under tension & obeys the relation:

for unstressed networks the Area is equal to $\sqrt{3}$ 5°, so the ratio of area per junction in stressed network to unstressed network is:

$$\frac{A_s}{A_o} = \frac{S_c^2}{S_o^2} = \frac{3 \, \text{Ksp}^2}{(1-\zeta)^2} \quad \text{for } \zeta \in (-\infty, -3) \cup (\frac{1}{5}, -1) \longrightarrow o(\frac{A_s}{A_o}) \longrightarrow o(\frac{A_s}{A_o})$$

c) The human red blood cell cyloskeleton is also a six fold structer, therefore the smallest τ needed for σ_p is $\tau = 1$, a tensive force slightly larger than $1 \le 1$ in magnitude.

at zero tension shear modulus of a six-fold network is $\mu = \frac{\sqrt{3}}{4} \times \frac{1}{5} \times \frac{50}{5} \times \frac{11.55}{5} \times \frac{10}{5}$

5.2) The temperature is found from figure 5.18 to be around

KBT 2012, and for the red blood cell cytoskeleton we have:

 $\rightarrow \frac{K_BT}{K_{Sp}S_s^2} = 0.06$ operating temprature of RCC $\rightarrow (\frac{K_BT}{K_{Sp}S_b^2}) \rightarrow (\frac{K_BT}{K_{Sp}S_b^2})$

