Two Approaches to Interprocedural Data Flow Analysis

Micha Sharir Amir Pnueli

Part one: The Functional Approach

Intraprocedural analysis

Interprocedural challenges

Recursion

Infeasible paths

Function variables & Virtual functions

- Infinite paths
- Efficiency vs.
 Precision
- Filter invalid paths
- Precision and Efficiency
- No static call graph

Outline

Notation and Review

Functional Approach

Interprocedural MOP

Pragmatic Considerations

Notations

Control Flow Graphs

Data Flow Frameworks

■ (*L*, *F*) is a data flow framework:

L is a meet–semilattice

- ∧ = greatest lower bound
- T = smallest element (no information)
- ⊥ = largest element ("undefined")
- bounded No infinite descending chain

Data Flow Frameworks

- (L, F) is a data flow framework:
 - F is a monotone space of transfer functions
 - 1. Closed under composition and meet $(f \land g)(x) = f(x) \land g(x)$
 - 2. Contains $id_L(x) = x$ and $f_{\perp}(x) = \bot$
 - F is distributive iff $\forall f, x, y : f(x) \land f(y) = f(x \land y)$
- Restrict F to graph G = (N, E):
 - Smallest $S \subseteq F$ such that $\{f_{(m,n)} | (m,n) \in E\} \subseteq S$ and 1. and
 - 2. hold

Intraprocedural example

 Available expression framework for the single expression a * b:

$$L = \{ \mathsf{T}, 1, \bot \}$$
 $F = \{ f_{\mathsf{T}}, f_{1}, id_{L}, f_{\bot} \}$

T: a * b not available

1: a * b available

$$f_{\mathsf{T}}(x) = \mathsf{T}, \ f_{1}(x) = 1$$

Intraprocedural example

Intraprocedural equations

The data flow equations

$$x_r = T$$

$$x_n = \bigwedge_{(m,n)\in E} f_{(m,n)}(x_m) \qquad n \in N - \{r\}$$

approximate the meet-over-all paths (MOP) solution

$$y_n = \bigwedge \{ f_p(\top) | p \in path_G(r, n) \} \qquad n \in N$$

where
$$f_{p=(n_1,...,n_k)} = f_{(n_{k-1},n_k)} \circ \cdots \circ f_{(n_1,n_2)}$$

Intraprocedural solutions

F is distributive \Longrightarrow

The maximum fixed point solution $x_n^* = y_n$

F is monotone
$$\Rightarrow x_n^* \leq y_n$$

Outline

Notation and Review

Functional Approach

Interprocedural MOP

Pragmatic Considerations

Interprocedural Graphs

Two representations:

G

Interprocedurally Valid paths

$$IVP_0(r_p, n)$$

Interprocedurally Valid paths

Path notations

- $p_1, p_2 \in path_{G^*}(r_q, n)$
- $p_1|_{E^1} \coloneqq$ Sequence of call & return edges in p_1
- $p = p_1 \parallel p_2 \coloneqq \mathsf{Concatenation} \ \mathsf{of} \ p_1, p_2$

Interprocedurally Valid paths

• $p \in path_{G^*}(r_q, n)$ is in $IVP_0(r_q, n) \Leftrightarrow$

 $p|_{E^1}$ is complete

defined as:

- 1. $p|_{E^1} = \varepsilon$
- 2. $p|_{E^1} = p_1 \parallel p_2$ and p_1, p_2 are complete
- 3. $p|_{E^1} = (m, r_{q'}) \parallel p_1 \parallel (e_{q'}, m')$ and p_1 is complete

Interprocedurally Valid paths

• $q \in IVP(r_{main}, n) : \Leftrightarrow$

$$q = q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j$$

$$\forall i < j: q_i \in IVP_0(r_{p_i}, c_i) \text{ and } q_j \in IVP_0(r_{p_j}, n)$$

Also called Path Decomposition

$$G^*$$
 $(c_{main}, r_p), (c_p, r_p), (c_p, r_p), (e_p, n), (e_p, n)$

Functional approach

Information x at r_p is transformed to $\phi_{r_p,n}(x)$ at n

Functional Approach equations

$$\phi_{r_p,r_p} = id_L$$

$$\phi_{r_p,n} = \bigwedge_{(m,n) \in E_n} \left(h_{(m,n)} \circ \phi_{r_p,m} \right) \qquad n \in N_p - \{r_p\}$$

$$h_{(m,n)} = \begin{cases} f_{(m,n)} & (m,n) \in E_p^0 \\ \phi_{r_q,e_q} & (m,n) \in E_p^1, m \text{ calls } q \end{cases}$$

Initialize the equations with

Recursion implicitly encoded in equations

$$\phi_{r_p,r_p} = id_L$$

$$\phi_{r_p,n} = f_\perp \qquad n \in N_p - \{r_p\}$$

Compute the maximal fixed point

$$\begin{aligned} \phi_{r_m,r_m} &= id_L & \phi_{r_m,e_m} &= f_1 \circ \phi_{r_m,n_m} & \phi_{r_p,c_p} &= f_{\top} \circ \phi_{r_p,n_p} \\ \phi_{r_m,c_m} &= f_1 \circ \phi_{r_m,r_m} & \phi_{r_p,r_p} &= id_L & \phi_{r_p,m_p} &= \phi_{r_p,e_p} \circ \phi_{r_p,c_p} \\ \phi_{r_m,n_m} &= \phi_{r_p,e_p} \circ \phi_{r_m,c_m} & \phi_{r_p,n_p} &= id_L \circ \phi_{r_p,r_p} & \phi_{r_p,e_p} &= \left(id_L \circ \phi_{r_p,r_p}\right) \wedge \left(f_1 \circ \phi_{r_p,m_p}\right) \end{aligned}$$

Function	Initial value	Iteration 1	2	3
ϕ_{r_m,r_m}	id_L	id_L	id_L	id_L
ϕ_{r_m,c_m}	f_{\perp}	f_1	f_1	f_1
ϕ_{r_m,n_m}	f_{\perp}	f_{\perp}	f_1	f_1
ϕ_{r_m,e_m}	f_{\perp}	f_1	f_1	f_1
ϕ_{r_p,r_p}	id_L	id_L	id_L	id_L
ϕ_{r_p,n_p}	f_{\perp}	id_L	id_L	id_L
ϕ_{r_p,c_p}	f_{\perp}	f_{T}	f_{T}	f_{T}
ϕ_{r_p,m_p}	f_{\perp}	f_{\perp}	f_{T}	f_{T}
ϕ_{r_p,e_p}	f_{\perp}	id_L	id_L	id_L

Solution

$$x_{r_{main}} = \top$$

$$x_{r_{p}} = \bigwedge \left\{ \phi_{r_{q},c} \left(x_{r_{q}} \right) \mid c \text{ calls } p \text{ in } q \right\}$$

Compute the maximal fixed point iteratively

$$x_n = \phi_{r_p,n} \left(x_{r_p} \right)$$

Computes the solution for all other nodes

Example (continued)

 $\phi_{r_p,n_p}=id_L$

 $\phi_{r_p,c_p} = f_{\mathsf{T}}$

 $\phi_{r_p,m_p} = f_{\mathsf{T}}$

 $\phi_{r_p,e_p} = id_L$

Outline

Notation and Review

Functional Approach

Interprocedural MOP

Pragmatic Considerations

Interprocedural MOP solution

$$\psi_n = \bigwedge \{ f_q | q \in IVP(r_{main}, n) \}$$

$$y_n = \psi_n(T)$$

IVP₀ Lemma

*IVP*₀ Lemma: Proof

- By induction on $\phi^i_{r_p,n}$, the i-th approximation

For i = 0:

- If $n = r_p$ then $\phi^0_{r_p,n} = id_L = f_{\varepsilon} \ge \Lambda \{f_q | q \in IVP_0(r_p, r_p)\}$
- If $n \neq r_p$ then $\phi^0_{r_p,n} = f_{\perp} \geq f \in F$

IH: $\phi_{r_p,n}^i \ge \Lambda \{f_q | q \in IVP_0(r_p,n)\}$

For i + 1: see blackboard

*IVP*₀ Lemma: Proof

- Show: $\forall q \in IVP_0(r_p, n)$: $f_q \geq \phi_{r_p, n}$ by induction over the length k of q

For k = 0:

• Then $f_q = \phi_{r_p,r_p} = id_L$

IH: $\forall q \in IVP_0(r_p, n), |q| \le k$: $f_q \ge \phi_{r_p, n}$

For k + 1: see blackboard

MOP Rewritten

- $\psi_n = \Lambda \{ f_q | q \in IVP(r_{main}, n) \}$
- $\chi_n =$

- Then $\psi_n = \chi_n$ with IVP_0 Lemma and Path decomposition
- Thus $y_n = \psi_n(\top) = \chi_n(\top)$

Equivalence to MOP

- F distributive $\implies y_n = x_n$
- Proof: Show that $x_{r_p} = y_{r_p}$ then with

$$x_n = \phi_{r_p,n}\left(x_{r_p}\right) = \phi_{r_p,n}\left(y_{r_p}\right)$$
 , $y_n = \chi_n(\top) =$

$$\left(\phi_{r_p,n}\circ\chi_{r_p}\right)(\top)=\phi_{r_p,n}\left(y_{r_p}\right)$$

it follows that $x_n = y_n \ \forall n \in N^*$

New "Intraprocedural" Data Flow Problem:

$$g_{(m,n)} = \begin{cases} \phi_{m,n}, (m,n) \in E_c^0 \\ id_L, (m,n) \in E_c^1 \end{cases}$$

$$g_{(m,n)} = \begin{cases} \phi_{m,n}, (m,n) \in E_c^0 \\ id_L, (m,n) \in E_c^1 \end{cases}$$

interprocedural

$x_{r_{main}} = T$ $x_{r_p} = \bigwedge \left\{ \phi_{r_q,c} \left(x_{r_q} \right) \mid c \text{ calls } p \text{ in } q \right\} \quad \middle| \quad x_n = \bigwedge \quad g_{(m,n)}(x_m)$ $x_n = \phi_{r_n,n}\left(x_{r_n}\right)$

intraprocedural

$$x_r = T$$

$$x_n = \bigwedge_{(m,n)\in E} g_{(m,n)}(x_m)$$

interprocedural	intraprocedural
$x_{r_{main}} = T$	$x_{r_{main}} = T$
$x_{r_p} = \bigwedge \left\{ \phi_{r_q,c} \left(x_{r_q} \right) \mid c \text{ calls } p \text{ in } q \right\}$	$x_{r_p} = \bigwedge_{(m,r_p) \in E_c^1} id_L(x_m)$
$x_n = \phi_{r_p,n}\left(x_{r_p}\right)$	$= \bigwedge_{(m,r_p)\in E_c^1} x_m$
	$= \bigwedge \left\{ \phi_{r_q,c} \left(x_{r_q} \right) \mid c \text{ calls } p \text{ in } q \right\}$
	$x_c = \bigwedge_{(m,c) \in E_c^0} \phi_{m,c}(x_m)$ $= \phi_{r_p,c}(x_{r_p})$

$$g_{(m,n)} = \begin{cases} \phi_{m,n}, (m,n) \in E_c^0 \\ id_L, (m,n) \in E_c^1 \end{cases}$$

interprocedural	intraprocedural
$y_n = \bigwedge \big\{ f_q \ q \in IVP(r_{main}, n) \big\} (\top)$	$y_n = \bigwedge \{ f_p(\top) p \in path_G(r, n) \}$

• Follows from $y_n = \Lambda \left\{ \phi_{r_{p_j},n} \circ \cdots \circ \phi_{r_{main},c_1} | c_i \ calls \ p_{i+1} \right\} (\top)$ and by construction of G_c

F is distributive \Rightarrow

The maximum fixed point solution x_n^* of the functional approach = the interprocedural MOP solution y_n

F is $monotone \implies x_n^* \le y_n$

Outline

Notation and Review

Functional Approach

Interprocedural MOP

Pragmatic Considerations

Pragmatic problems

- Representation of ϕ :
 - Symbolic not always possible
 - Explicit representation maybe not finite if L infinite:

main:	p:	$\phi_{r_p,e_p}(\{(A,0)\})$
A := 0 call P print A	<pre>if cond then A := A + 1 call P A := A - 1</pre>	$\phi_{r_p,e_p}(\{(A,1)\})$ $\phi_{r_p,e_p}(\{(A,2)\})$
	endif	•••
	return	

Pragmatic problems

 Approach with symbolic representation may not converge when L infinite and F unbounded:

 $\forall k \geq 0$: Need k iterations to show $\phi_{r_p,e_p}(\{(A,-k)\}) = \emptyset$

Practical result

• If (L,F) distributive and L finite then the

iterative solution of $\phi_{r_p,r_p} = id_L$

$$\phi_{r_p,r_p} - \iota u_L$$

$$\phi_{r_p,n} = \bigwedge_{(m,n) \in E_n} \left(h_{(m,n)} \circ \phi_{r_p,m} \right)$$

converges and

$$\begin{aligned} x_{r_{main}} &= \top \\ x_{r_p} &= \bigwedge \left\{ \phi_{r_q,c} \left(x_{r_q} \right) \mid c \ calls \ p \ in \ q \right\} \\ x_n &= \phi_{r_p,n} \left(x_{r_p} \right) \end{aligned}$$

results in the interprocedural MOP solution

Algorithm

- Assume L finite and no symbolic representation available
- Compute $\phi_{r_p,n}$ only for necessary values

```
W \coloneqq \{(r_{main}, \mathsf{T})\}; \ PHI(r_{main}, \mathsf{T}) = \mathsf{T}
while \ W \neq \emptyset
remove \ some \ (n, x) \ from \ W
update \ PHIs \ and \ W
x_n = \Lambda_{a \in L} \ PHI(n, a)
```

```
propagate(x, z, m):
PHI(m, x) \coloneqq PHI(m, x) \land z;
if \ PHI \ changed: \ W \coloneqq W \cup \{(m, x)\}
```

Case 1

if z undefined: $propagate(y, y, r_p)$ else:propagate(x, z, m)

Case 2

for each call c_p to q and $u \in L$ with $x = PHI(c_p, u)$: $propagate(u, y, m_p)$

Case 3

for each $(n,m) \in E_q^0$: $propagate(x, f_{(n,m)}(y), m)$

Example

. . .

Summary: Define valid paths

Summary: Functional Approach

Information x at r_p

is transformed to $\phi_{r_p,n}(x)$ at n

Summary: Functional Result

F is distributive \Rightarrow

The maximum fixed point solution x_n^* of the functional approach = the interprocedural MOP solution y_n

Summary: Practical Aspects

- Represent $\phi_{r_p,n}$ symbolically or by explicit relation
- Explicit approach may require much space
- $Linfinite \implies Explicit approach may diverge$
- Linfinite, Funbounded ⇒ Symbolic
 approach may diverge