PD - 95046A

International Rectifier

IRF640NPbF IRF640NSPbF IRF640NLPbF

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements

Lead-Free Description

Fifth Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF640NL) is available for low-profile application.

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C Continuous Drain Current, V _{GS} @ 10V		18	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	13	Α
I _{DM}	Pulsed Drain Current ①	72	
P _D @T _C = 25°C	Power Dissipation	150	W
	Linear Derating Factor	1.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ^②	247	mJ
I _{AR}	Avalanche Current①	18	A
E _{AR}	Repetitive Avalanche Energy①	15	mJ
dv/dt	Peak Diode Recovery dv/dt ©	8.1	V/ns
TJ	Operating Junction and	-55 to +175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew⊕	10 lbf•in (1.1N•m)	

www.irf.com 1 07/23/10

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.25		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.15	Ω	V _{GS} = 10V, I _D = 11A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	6.8			S	V _{DS} = 50V, I _D = 11A ③
lana	Drain-to-Source Leakage Current			25	μA	V _{DS} = 200V, V _{GS} = 0V
I _{DSS}	Brain to Godice Leakage Guiterit			250	μΑ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA I	V _{GS} = -20V
Qg	Total Gate Charge			67		I _D = 11A
Q _{gs}	Gate-to-Source Charge			11	nC	V _{DS} = 160V
Q_{gd}	Gate-to-Drain ("Miller") Charge			33		V_{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		10			V _{DD} = 100V
t _r	Rise Time		19			$I_D = 11A$
t _{d(off)}	Turn-Off Delay Time		23		ns	$R_G = 2.5\Omega$
t _f	Fall Time		5.5			$R_D = 9.0\Omega$, See Fig. 10 ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5 —			from package and center of die contact
C _{iss}	Input Capacitance		1160			$V_{GS} = 0V$
C _{oss}	Output Capacitance		185			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		53		pF	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			18		MOSFET symbol		
	(Body Diode)				Α	showing the		
I _{SM}	Pulsed Source Current			70				integral reverse
	(Body Diode)①			72		p-n junction diode.		
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 11A$, $V_{GS} = 0V$ ③		
t _{rr}	Reverse Recovery Time		167	251	ns	$T_J = 25^{\circ}C, I_F = 11A$		
Q _{rr}	Reverse Recovery Charge		929	1394	nC	di/dt = 100A/µs ③		
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)						

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.0	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface 4	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient⊕		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		40	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRF640N/S/LPbF

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs

IRF640N/S/LPbF

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES

1. DENSIONE AND TREENANCE AS FER ASH: 114.5 M- 1994.

2. DENSIONS HER SHOWN IN NOVES [MILLIMETERS]

3. LED DENSIONS HER SHOWN IN NOVES [MILLIMETERS]

4. LED DENSIONS HER DENSI HADDENBELLED BLI.

4. DENSIONS IN D. A. & ED NOT HOUSE MAD FLASH SHALL NOT DECED LOSD (10.27) PER SEC. HES DIRENSONS ARE SHALL NOT DECED LOSD (10.27) PER SEC. HES DIRENSONS ARE MILLIMED AS THE DENSIONS HER DENSIO

AND SINGULATION IMPEGULABILES ARE ALLONGUD.

9.— OUTUNE CONFORMS TO JEDEC TO—220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTUNE.

	DIMENSIONS						
SYMBOL	MILLIM	ETERS	INC	INCHES			
	Min.	WAX.	MIN.	WAX.	NOTES		
A	3.56	4.83	.140	.190			
A1	0.51	1.40	.020	.065			
A2	2.03	2.92	.080	,115			
b	0.38	1,01	.015	.040			
ь1	0.38	0.97	.015	.038	5		
b2	1.14	1.78	.045	.070			
b3	1.14	1.73	.045	.068	5		
c	0.36	0,61	,014	.024			
c1	0.36	0.56	.014	.022	5		
D	14.22	16.51	.560	.650	4		
D1	8.38	9.02	.330	.355			
D2	11,68	12,88	.460	,507	7		
Ε	9.65	10.67	.380	.420	4,7		
E1	6.86	8.89	.270	.350	7		
E2	-	0.76	-	.030	8		
e	2.54	BSC	.100	BSC BSC	1		
e1	5.08	2.54 BSC 5.08 BSC		BSC	ļ		
H1	5.84	6.86	.230	.270	7,8		
L	12.70	14,73	.500	.580	l		
L1	3,56	4.06	.140	.160	3		
øP	3.54	4.08	.139	.161	l		
Q	2.54	3.42	.100	.135	l		

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application

Notes:

- $\textbf{1. For an Automotive Qualified version of this part please } see \underline{\textbf{http://www.irf.com/product-info/auto/}}$
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

S Y M		N			
B	MILLIMETERS		INC	NOTEN	
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
ь	0.51	0.99	.020	.039	
ь1	0.51	0,89	.020	.035	5
b2	1.14	1,78	.045	.070	
b3	1.14	1,73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	-	1.78	-	.070	
L3	0.25	BSC	.010	BSC	
L4	4.78	5.28	.188	.208	

- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- ADMENSION D & E DO NOT INCLUDE WOLD FLASH, WOLD FLASH SHALL NOT EXCEED 0.127 [.005] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- ATHERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- S DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.

 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

D²Pak (TO-263AB) Part Marking Information

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

IRF640N/S/LPbF

International

TOR Rectifier

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

5 Y M	DIMENSIONS					
B O	MILLIM	ETERS	INC	HES	NOT ES	
L	MIN.	MAX.	MIN.	MAX.	S	
Α	4.06	4.83	.160	.190		
A1	2.03	2.92	.080	.115		
ь	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	4	
b2	1,14	1.40	.045	.055		
С	0.38	0.63	.015	.025	4	
c1	1,14	1.40	.045	.055		
c2	0.43	.063	.017	.029		
D	8.51	9.65	.335	.380	3	
D1	5.33		.210			
E	9.65	10.67	.380	.420	3	
E1	6.22		.245			
e	2.54	BSC	.100	BSC		
L	13,46	14,09	.530	.555		
L1	3.56	3,71	.140	.146		
L2		1.65		.065		

LEAD ASSIGNMENTS

<u>HEXFET</u>	<u>IGBT</u>
1 GATE	1 - GATE
2 DRAIN	2 - COLLECTOR
3 SOURCE 4 - DRAIN	3 - EMITTER

TO-262 Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 4.2mH $R_G = 25\Omega$, $I_{AS} = 11$ A.
- This is only applied to TO-220AB package
- ⑤ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

International

Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/2010

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.