

Updated 4/9/24

Probability Models

Basics

CDFs, Survival Functions, and Hazard Functions

$$F(x) = \Pr(X \le x) = \int_{-\infty}^{x} f(t) dt$$

$$S(x) = \Pr(X > x) = \int_{x}^{\infty} f(t) dt$$

$$h(x) = \frac{f(x)}{S(x)}$$

$$H(x) = \int_{-\infty}^{x} h(t) dt = -\ln S(x)$$

$$S(x) = e^{-H(x)}$$

Percentiles

 $100q^{\text{th}}$ percentile is π_q where $F(\pi_q) = q$.

Mode

Mode is x that maximizes f(x).

Moments

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$
$$= \int_{0}^{\infty} g'(x) \cdot S(x) dx$$

$$Var[g(X)] = E[g(X)^2] - E[g(X)]^2$$

$$\mu'_k = E[X^k]$$

$$\mu = \mu_1' = E[X]$$

$$\mu_k = \mathbb{E}[(X - \mu)^k]$$

$$\sigma^2 = \mu_2 = \text{Var}[X]$$

$$Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$$

$$Cov[X, X] = Var[X]$$

Coefficient of variation,
$$CV = \frac{\sigma}{U}$$

Skewness =
$$\frac{\mu_3}{\sigma_3^3}$$

Kurtosis =
$$\frac{\mu_4}{\sigma^4}$$

Moment Generating Function (MGF)

$$M_X(z) = E[e^{zX}]$$

$$M_X^{(n)}(0) = \mathbb{E}[X^n]$$

where $M_X^{(n)}$ is the n^{th} derivative

Probability Generating Function (PGF)

$$P_X(z) = E[z^X]$$

$$P_X^{(n)}(1) = \mathbb{E}[X(X-1)...(X-n+1)]$$

where $P_X^{(n)}$ is the n^{th} derivative

Conditional Distribution

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(B \mid A) Pr(A)}{Pr(B)}$$

$$f_{X|j < X < k}(x) = \frac{f_X(x)}{\Pr(j < X < k)}$$

where j < x < k

Law of Total Probability

$$Pr(X = x) = E_Y[Pr(X = x \mid Y)]$$

Law of Total Expectation

$$E_X[X] = E_Y[E_X[X \mid Y]]$$

Law of Total Variance

$$Var_X[X] = E_Y[Var_X[X | Y]] + Var_Y[E_X[X | Y]]$$

<u>Independence</u>

 $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

For independent X and Y:

- $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$
- $E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$

Claim Severity Distributions

Common Distributions

S-P Pareto(α , θ) ~ Pareto(α , θ) + θ

Beta $(a = 1, b = 1, \theta) \sim \text{Uniform}(0, \theta)$

Weibull(θ , $\tau = 1$) ~ Exponential(θ)

 $Gamma(\alpha = 1, \theta) \sim Exponential(\theta)$

Gamma CDF Shortcut

$$F_X(x) = 1 - \Pr(N < \alpha)$$

- α is a positive integer
- $X \sim \text{Gamma}(\alpha, \theta)$
- $N \sim \text{Poisson}(x/\theta)$

Properties of Exponential Distribution

 $X_i \sim \text{Exponential}(\theta_i)$

$$E[X] = \theta$$

$$h(x) = 1/\theta = \lambda$$

$$Pr(X > t + s | X > t) = Pr(X > s)$$

$$\Pr(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

$$\min(X_1, X_2, \dots, X_n) \sim \text{Exponential}\left(\frac{1}{\sum_{i=1}^n \lambda_i}\right)$$

$$\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \theta) \text{ where } \theta_{i} = \theta$$

Greedy Algorithms

$Algorithm\, A$

For
$$i = 1, 2, ..., n$$
:

- 1. Choose the assignment with the lowest cost, i.e., $\min_{j} C_{i,j}$, among all n i + 1 possible assignments.
- 2. Assign that job to that employee.
- 3. Remove that employee and that job from their respective sets.

Algorithm B

For
$$k = n^2$$
, $(n - 1)^2$, ..., 1^2 :

- 1. Choose the assignment with the lowest cost, i.e., $\min_{i,j} C_{i,j}$, among
- all k possible assignments.
- 2. Assign that job to that employee.
- 3. Remove that employee and that job from their respective sets.

$$E[Total Cost] = \theta \sum_{i=1}^{n} \frac{1}{i}$$

where $C_{i,i} \sim \text{Exponential}(\theta)$

Transformations

- Scaling
 - θ is a scale parameter for all continuous distributions on the exam table, except lognormal, inverse Gaussian, and \log -t.
- CDF Method
- · PDF Method
- MGF Method

Mixtures

Discrete Mixture

$$\begin{split} f_Y(y) &= \sum_{i=1}^n w_i \cdot f_{X_i}(y) \text{, where } \sum_{i=1}^n w_i = 1 \\ F_Y(y) &= \sum_{i=1}^n w_i \cdot F_{X_i}(y) \\ S_Y(y) &= \sum_{i=1}^n w_i \cdot S_{X_i}(y) \\ \mathbb{E}[Y^k] &= \sum_{i=1}^n w_i \cdot \mathbb{E}[X_i^k] \end{split}$$

Continuous Mixture

• Poisson-Gamma Mixture

 $X|\Lambda \sim \text{Poisson}(\Lambda)$

 $\Lambda \sim \text{Gamma}(\alpha, \theta)$

 $X \sim \text{Negative Binomial}(r = \alpha, \beta = \theta)$

• Exponential-Gamma Mixture

 $X|\Lambda \sim \text{Exponential}(\Lambda)$

 $\Lambda \sim \text{Inverse Gamma}(\alpha, \theta)$

 $X \sim \text{Pareto}(\alpha, \theta)$

Splices

$$f_Y(y) = \begin{cases} c_1 \cdot f_{X_1}(y), & a_0 < y < a_1 \\ c_2 \cdot f_{X_2}(y), & a_1 < y < a_2 \\ \vdots & \vdots \\ c_n \cdot f_{X_n}(y), & a_{n-1} < y < a_n \end{cases}$$

where $\sum_{i=1}^{n} c_i$ does not need to equal 1.

Bernoulli Shortcut

$$Var[X] = (a - b)^2 q (1 - q)$$
where $X = \begin{cases} a, & Pr(X = a) = q \\ b, & Pr(X = b) = 1 - q \end{cases}$

Insurance Applications

 Y^L : payment per loss

Policy Limits, u

$$Y^{L} = X \wedge u = \min(X, u) = \begin{cases} X, & X < u \\ u, & X \ge u \end{cases}$$
$$E[(Y^{L})^{k}] = E[(X \wedge u)^{k}]$$
$$= \int_{0}^{u} x^{k} f(x) dx + u^{k} \cdot S(u)$$
$$= \int_{0}^{u} kx^{k-1} S(x) dx$$

Deductibles. d

Ordinary deductible:

$$\begin{split} Y^L &= (X - d)_+ = \begin{cases} 0, & X < d \\ X - d, & X \ge d \end{cases} \\ & E[Y^L] = E[(X - d)_+] = E[X] - E[X \landd] \\ & E[(Y^L)^k] = E[(X - d)_+^k] \\ & = \int_{a}^{\infty} (x - d)^k f(x) \, \mathrm{d}x \\ & = \int_{d}^{\infty} k(x - d)^{k-1} S(x) \, \mathrm{d}x \end{split}$$

Loss elimination ratio:

$$LER = \frac{E[X \land d]}{E[X]}$$

Franchise deductible:

$$Y^{L} = \begin{cases} 0, & X < d \\ X, & X \ge d \end{cases}$$

$$E[Y^{L}] = E[(X - d)_{+}] + d \cdot S(d)$$

Payment per Payment

 Y^P : payment per payment

$$E[Y^{P}] = e(d) = E[X - d \mid X > d]$$

$$= \frac{E[Y^{L}]}{S(d)} = \frac{E[(X - d)_{+}]}{S(d)}$$

Special Cases for e(d)

Loss	Excess Loss
Exponential(θ)	Exponential (θ)
Uniform (a, b)	Uniform $(0, b - d)$
Pareto (α, θ)	Pareto $(\alpha, \theta + d)$
S-P Pareto (α, θ)	Pareto (α, d)
Beta $(1, b, \theta)$	Beta $(1, b, \theta - d)$

Impact of Deductibles on Claim Frequency For v = Pr(X > d), the # of payments N':

	N	N'
Poisson	λ	υλ
Binomial	m,q	m, vq
Neg. Binomial	r, β	$r, v\beta$

The Ultimate Formula for Insurance

$$\begin{aligned} \mathbf{E}[Y^L] &= \alpha (1+r) \left(\mathbf{E} \left[X \wedge \frac{m}{1+r} \right] \right. \\ &\left. - \mathbf{E} \left[X \wedge \frac{d}{1+r} \right] \right) \end{aligned}$$

where

d: deductible (set to 0 if not applicable) *u*: policy limit (set to ∞ if not applicable) α : coinsurance (set to 1 if not applicable) *r*: inflation rate (set to 0 if not applicable) *m*: maximum covered loss = $\frac{u}{\alpha} + d$

Tail Properties of Distributions *a* quantile

$$\pi_q = F_X^{-1}(q)$$

Conditional Tail Expectation (CTE)

1-q: tolerance probability

$$\begin{aligned} \mathsf{CTE}_q(X) &= \mathsf{E}\big[X \mid X > \pi_q\big] \\ &= \pi_q + \frac{\mathsf{E}[X] - \mathsf{E}\big[X \land \pi_q\big]}{1 - q} \end{aligned}$$

	$\mathrm{CTE}_q(X)$
Normal	$\mu + \sigma \left[\frac{\phi(z_q)}{1 - q} \right]$
Lognormal	$\mathrm{E}[X] \cdot \left[\frac{\Phi(\sigma - z_q)}{1 - q} \right]$

Tail Weight

- The fewer positive raw moments that exist, the greater the tail weight.
- If the ratio of the survival functions or the density functions approaches infinity as x increases, the numerator has a heavier tail.
- If the hazard rate function decreases with *x*, the distribution has a heavy tail.
- The larger a given CTE or quantile is, the greater the tail weight.

Poisson Processes

Counting process where non-overlapping Poisson increments are independent

$$N(t+h) - N(t) \sim \text{Poisson}(\lambda)$$

where $\lambda = \int_{t}^{t+h} \lambda(u) du$

- Homogeneous if $\lambda(t)$ is constant
- Non-homogeneous if $\lambda(t)$ varies with t

Time between Events

 T_k : Time until the k^{th} event occurs $V_k = T_k - T_{k-1}$

Homogeneous Poisson process:

- $V_k \sim \text{Exponential}(\theta = 1/\lambda)$
- $T_k \sim \text{Gamma}(\alpha = k, \theta = 1/\lambda)$

Conditional Distribution of Arrival Times

- Given that N(t) = n, past events T_1, T_2, \dots, T_n are order statistics of i.i.d. Uniform(0, t).
- Given that $T_n = t$, past events T_1, T_2, \dots, T_{n-1} are order statistics of i.i.d. Uniform(0, t).

Other Properties

- · Subprocesses are Poisson processes with proportional rates.
- Sum of Poisson processes:

$$\sum_{i=1}^{n} N_i \sim \text{Poisson}\left(\sum_{i=1}^{n} \lambda_i\right)$$

• Probability of observing n events from N_1 before m events from N_2 is:

$$\sum_{i=n}^{n+m-1} \binom{n+m-1}{i} q^{i} (1-q)^{n+m-1-i}$$

$$\sum_{j=0}^{m-1} \binom{n-1+j}{n-1} q^{n} (1-q)^{j}$$
where $q = \frac{\lambda_{1}}{\lambda_{2} + \lambda_{2}}$

Compound Poisson Processes

$$S(t) = \sum_{i=1}^{N(t)} X_i$$
$$E[S(t)] = \lambda t \cdot E[X]$$

 $Var[S(t)] = \lambda t \cdot E[X^2]$

- Use normal approximation to calculate probabilities of events in S(t).
- · Continuity correction is needed if S(t) is discrete.

Reliability Theory*

- · A parallel system functions as long as one of the components functions.
- · A series system functions only when all components function.
- A k-out-of-n system functions only when at least k out of n components function.
- A minimal path set, A_i , is a minimal set of components whose functioning guarantees the functioning of the system.
- A minimal cut set, C_i , is a minimal set of components whose failure guarantees the failure of the system.

Combining Systems

	Placement of Systems	Action
# of Minimal	Parallel	Sum
Path Sets	Series	Product
# of Minimal	Parallel	Product
Cut Sets	Series	Sum

Reliability of Systems

$$r(\mathbf{p}) = \Pr[\phi(\mathbf{X}) = 1] = \mathbb{E}[\phi(\mathbf{X})]$$

Bounds on Reliability Function

Method of Inclusion and Exclusion: First two bounds using minimal path sets:

$$r(\mathbf{p}) \le \sum_{j=1}^{s} \left(\prod_{i \in A_j} p_i \right)$$
$$r(\mathbf{p}) \ge \sum_{j=1}^{s} \left(\prod_{i \in A_j} p_i \right) - \sum_{j=1}^{s} \sum_{k>j} \left(\prod_{i \in A_j \cup A_k} p_i \right)$$

First two bounds using minimal cut sets:

$$1 - r(\mathbf{p}) \le \sum_{j=1}^{m} \left(\prod_{i \in C_j} (1 - p_i) \right)$$
$$1 - r(\mathbf{p}) \ge \sum_{j=1}^{m} \left(\prod_{i \in C_j} (1 - p_i) \right)$$
$$- \sum_{j=1}^{m} \sum_{k > j} \left(\prod_{i \in C_j \cup C_k} (1 - p_i) \right)$$

Method of Intersection:

$$r(\mathbf{p}) \le 1 - \prod_{j=1}^{s} \left[1 - \prod_{i \in A_j} p_i \right]$$
$$r(\mathbf{p}) \ge \prod_{j=1}^{m} \left[1 - \prod_{i \in C_j} (1 - p_i) \right]$$

Random Graphs

- n^{n-2} minimal path sets
- $2^{n-1} 1$ minimal cut sets
- $P_{i,j}$ is the probability nodes i and jare connected.
- P_n is the probability that a random graph is connected, where all $P_{i,j} = p$.

$$\begin{split} P_n = \begin{cases} & 1, & n=1 \\ & p, & n=2 \end{cases} \\ 1 - \sum_{k=1}^{n-1} \binom{n-1}{k-1} q^{k(n-k)} P_k \,, & n>2 \\ 1 - P_n \leq (n+1) q^{n-1} \\ 1 - P_n \geq n q^{n-1} - \binom{n}{2} q^{2n-3} \end{split}$$

Lifetime of Systems

 $P_n \approx 1 - nq^{n-1}$

$$Pr(T > t) = r[\mathbf{S}(t)]$$
$$E[T] = \int_0^\infty r[\mathbf{S}(t)] dt$$

For *k*-out-of-*n* systems whose components are $r_i \sim \text{Exponential}(\theta)$:

$$E[T] = E[X_{(n-k+1)}] = \theta \sum_{i=k}^{n} \frac{1}{i}$$

Increasing Failure Rate (IFR) Distribution h(x) is an increasing function of x.

Decreasing Failure Rate (DFR) Distribution h(x) is a decreasing function of x.

Increasing Failure on the Average (IFRA)

H(x)/x is an increasing function of x.

- An IFR distribution is also IFRA.
- A monotone system's lifetime distribution is IFRA if the lifetimes of all components are IFRA.

*Key information on Reliability Theory is on page 5.

Discrete Markov Chains

Multiple-Step Transition Probabilities

• Chapman-Kolmogorov Probabilities

$$P_{i,j}^{n+m} = \sum_{k=1}^{\infty} P_{i,k}^n \, P_{k,j}^m$$

· Unconditional probability of being in state *j* at time *n*:

$$\Pr(X_n = j) = \sum_{i=1}^{\infty} \alpha_i P_{i,j}^n$$

where α_i is the probability of being in state *i* at time 0.

• The probability of entering state *j* at time m, starting at state i without entering any state in set A:

State i	State j	Desired Probability
$i \notin \mathcal{A}$	$j \notin A$	$Q_{i,j}^m$
i ∉ A	$j \in \mathcal{A}$	$\sum_{r \notin \mathcal{A}} Q_{i,r}^{m-1} P_{r,j}$
$i \in \mathcal{A}$	j ∉ A	$\sum_{r \notin \mathcal{A}} P_{i,r} Q_{r,j}^{m-1}$
$i \in \mathcal{A}$	$j \in \mathcal{A}$	$\sum_{r \notin \mathcal{A}} \sum_{k \notin \mathcal{A}} P_{i,r} Q_{r,k}^{m-2} P_{k,j}$

where:

$$\begin{aligned} Q_{i,j} &= P_{i,j}, & \text{if } i \notin \mathcal{A}, j \notin \mathcal{A} \\ Q_{i,A} &= \sum_{j \in \mathcal{A}} P_{i,j} & \text{if } i \notin \mathcal{A} \\ Q_{A,i} &= 0 & \text{if } i \notin \mathcal{A} \\ Q_{A,A} &= 1 & \end{aligned}$$

Classification of States

- Absorbing: State that cannot be left once it is entered
- Accessible: State that can be entered from another state
- Communicating: Two states are accessible to each other
- Class: A set of communicating states
- Irreducible: A chain with only one class
- Recurrent: Probability of re-entering state is 1, $f_i = 1$
- Transient: Probability of re-entering state is less than 1, $f_i < 1$
 - Given that a process starts in a transient state i, the number of times the process re-enters state $i, n \ge 0$, has a geometric distribution with $\beta = \frac{f_i}{1-f_i}$
- Positive recurrent: Finite expected # of transitions for a chain to return to state j given it started in that state
- *Null recurrent*: Infinite expected # of transitions for a chain to return to state *j* given it started in that state
- Aperiodic: A chain that has limiting probabilities
- Periodic: A chain that does not have limiting probabilities
- Ergodic: A chain that is irreducible, positive recurrent, and aperiodic

Long-Run Proportions (Stationary Probabilities)

$$\pi_j = \sum_{i=1}^n \pi_i P_{i,j}$$
 , $\sum_{j=1}^n \pi_j = 1$

- The reciprocal of π_i is the expected time spent to return to state j.
- For aperiodic chains, long-run proportions equal limiting probabilities.

Time Spent in Transient States

$$\begin{split} \mathbf{S} &= (\mathbf{I} - \mathbf{P}_T)^{-1} \\ f_{i,j} &= \frac{s_{i,j} - \delta_{i,j}}{s_{j,j}} \\ \delta_{i,j} &= \begin{cases} 1, & i = j \\ 0, & \text{otherwise} \end{cases} \end{split}$$

- $s_{i,j}$ is the expected time spent in state jgiven it starts in state i.
- $f_{i,j}$ is the probability of ever transitioning to state *j* from state *i*.

Time Reversibility

$$R_{i,j} = \frac{\pi_j P_{j,i}}{\pi_i}$$

A Markov chain is time reversible if $R_{i,j} = P_{i,j}$ for every i and j.

Random Walk

All random walk models are transient except for one-dimensional and twodimensional symmetric random walks.

Gambler's Ruin Problem

Probability of reaching *j* starting with *i* is:

$$P_{i} = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)^{j}}, & p \neq \frac{1}{2} \\ \frac{i}{j}, & p = \frac{1}{2} \end{cases}$$

Branching Processes

$$\mu = \sum_{j=0}^{\infty} j \cdot P_j$$

$$\sigma^2 = \sum_{j=0}^{\infty} (j - \mu)^2 \cdot P_j$$

For
$$X_0 = 1$$
:

$$\begin{split} \mathbf{E}[X_n] &= \mu^n \\ \mathbf{Var}[X_n] &= \begin{cases} \sigma^2 \mu^{n-1} \left(\frac{1-\mu^n}{1-\mu}\right), & \mu \neq 1 \\ n\sigma^2, & \mu = 1 \end{cases} \\ \pi_0 &= \begin{cases} 1, & \mu \leq 1 \\ \sum_{i=0}^{\infty} \pi_0^i P_j, & \mu > 1 \end{cases} \end{split}$$

Life Contingencies

Number of Deaths

$$d_x = l_x - l_{x+1}$$

Probability of Survival

$$_{t}p_{x} = \frac{l_{x+t}}{l_{x}}$$

Probability of Death

$$_{t}q_{x}=\frac{l_{x}-l_{x+t}}{l_{x}}$$

Curtate Life Expectancy

$$e_x = \sum_{k=1}^{\infty} {}_k p_x$$
$$= p_x (1 + e_{x+1})$$

Complete Expectation of Life

$$0.5 + \sum_{k=1}^{\infty} {}_k p_x$$

Whole Life Insurance

$$A_x = \sum_{k=0}^{\infty} v^{k+1} \cdot {}_k p_x \cdot q_{x+k}$$
$$= vq_x + vp_x A_{x+1}$$

- The APV of whole life insurance is the sum of the APV of term life and deferred whole life.
- The APV of endowment insurance is the sum of the APV of term life and pure endowment.

Whole Life Annuity

$$\begin{split} \ddot{a}_x &= \sum_{k=0}^{\infty} v^k \cdot \ _k p_x \\ &= 1 + v p_x \cdot \ddot{a}_{x+1} \\ &= \frac{1 - A_x}{d} \end{split}$$

Mortality Discount Factor

$$_tE_x = v^t _tp_x$$

Joint Lives

$$\ddot{a}_x + \ddot{a}_y = \ddot{a}_{xy} + \ddot{a}_{\overline{x}\overline{y}}$$

Equivalence Principle

 $APV_{Premium} = APV_{Benefit}$

Simulation

 $U \sim \text{Uniform}(0, 1)$

Uniform Number Generation

$$X_{n+1} = (aX_n + c) \mod m, \qquad n \ge 0$$

$$U = \frac{X_{n+1}}{m}$$

Inversion Method

$$X = F_X^{-1}(U)$$

Acceptance-Rejection Method

1. Find constant *c* that satisfies:

$$\frac{f(x)}{g(x)} \le c$$
, for all x

- 2. Simulate U and a random number Y with density function g.
- 3. Accept the value *Y* if

$$U \leq \frac{f(Y)}{cg(Y)}$$

Otherwise, reject and return to step 2.

Key Information for Reliability Theory

	$\phi(\mathbf{x})$	# of Minimal Path Sets	# of Minimal Cut Sets	$r(\mathbf{p})$
Parallel	$\max(x_i) = 1 - \prod_{i=1}^{n} (1 - x_i)$	n	1	$1-\prod_{i=1}^n(1-p_i)$
Series	$\min(x_i) = \prod_{i=1}^n x_i$	1	n	$\prod_{i=1}^n p_i$
k-out-of-n	-	$\binom{n}{k}$	$\binom{n}{n-k+1}$	$\sum_{i=k}^{n} \binom{n}{i} p^{i} (1-p)^{n-i}$ where $p_{i} = p$ for all i
Minimal Path Sets	$\max_{j} \prod_{i \in A_j} x_i$	-	-	-
Minimal Cut Sets	$\prod_{j=1}^{m} \max_{i \in C_j} x_i$	-	-	-

Statistics

Parameter and Density Estimation

Method of Moments

To fit an r-parameter distribution, set:

$$E[X^k] = \frac{\sum_{i=1}^n x_i^k}{n}, \qquad k = 1, 2, ..., r$$

Percentile Matching

• Estimate parameters by setting the theoretical percentiles equal to the sample percentiles

Smoothed Empirical Percentile - Unique

 $\hat{\pi}_q = [q(n+1)]^{\text{th}}$ smallest observed value

• If q(n+1) is a non-integer, calculate $\hat{\pi}_q$ by interpolating between the order statistics before and after.

Maximum Likelihood Estimation

$$L(\theta) = \prod_{i=1}^{n} f(x_i)$$

- ullet Estimate heta as the value that maximizes $L(\theta)$ or $l(\theta) = \ln L(\theta)$
- Invariance property

Incomplete Data

Case	Likelihood
Right-censored at m	$\Pr(X \ge m)$
Left-truncated at d	$\frac{f(x)}{\Pr(X > d)}$
Grouped data on interval (a, b]	$\Pr(a < X \le b)$

Special Cases - Complete Data

Distribution	Shortcut
Gamma, fixed α	$\hat{\theta} = \frac{\bar{x}}{\alpha}$
Normal	$\hat{\sigma}^2 = \frac{\bar{x}}{n}$ $\hat{\sigma}^2 = \frac{\sum_{i=1}^n x_i^2}{n} - \hat{\mu}^2$
Lognormal	$\hat{\mu} = \frac{\sum_{i=1}^{n} \ln x_i}{n}$ $\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (\ln x_i)^2}{n} - \hat{\mu}^2$
Poisson	$\hat{\lambda} = \bar{x}$
Binomial, fixed <i>m</i>	$\hat{q} = \frac{\bar{x}}{m}$
Negative Binomial, fixed r	$\hat{\beta} = \frac{\bar{x}}{r}$
Uniform $[0, \theta]$	$\hat{\theta} = \max(x_1, \dots, x_n)$

Special Cases - Incomplete Data

Pareto, fixed $ heta$
$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n+c} [\ln(x_i + \theta) - \ln(d_i + \theta)]}$
S-P Pareto, fixed $ heta$
$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n+c} \{\ln x_i - \ln[\max(\theta, d_i)]\}}$
Exponential
$\hat{\theta} = \frac{\sum_{i=1}^{n+c} (x_i - d_i)}{n}$
Weibull, fixed $ au$
$\hat{\theta} = \left(\frac{\sum_{i=1}^{n+c} x_i^{\tau} - \sum_{i=1}^{n+c} d_i^{\tau}}{n}\right)^{1/\tau}$

where:

- n: # of uncensored data points
- c: # of censored data points
- x_i : ith observed value, or the censoring point for censored data points
- d_i : truncation point for the ith observation

Kernel Density Estimation

$$\tilde{f}(x) = \frac{1}{n} \sum_{i=1}^{n} k_i(x)$$

- b: Bandwidth
- x_i : ith observed value
- $k_i(x)$: Kernel density function for x_i , evaluated at x
- $\tilde{f}(x)$: PDF of the kernel-smoothed distribution

Rectangular Kernels

$$k_i(x) = \begin{cases} \frac{1}{2b}, & x_i - b \le x \le x_i + b \\ 0, & \text{otherwise} \end{cases}$$

Triangular Kernels

$$k_i(x) = \begin{cases} \frac{b - |x - x_i|}{b^2}, & x_i - b \le x \le x_i + b\\ 0, & \text{otherwise} \end{cases}$$

Gaussian Kernels

 $k_i(x)$

$$= \frac{1}{b\sqrt{2\pi}} \exp\left[-\frac{(x - x_i)^2}{2b^2}\right], \quad -\infty < x < \infty$$

Estimator Quality

Statistics and Estimators

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}$$

For a random sample:

- $E[\bar{X}] = E[X]$
- $Var[\bar{X}] = \frac{Var[X]}{n}$

Bias

$$Bias[\hat{\theta}] = E[\hat{\theta}] - \theta$$

• If $\lim_{\theta \to 0} \text{Bias}[\hat{\theta}] = 0$, then $\hat{\theta}$ is asymptotically unbiased.

Variance

$$Var[\hat{\theta}] = E[(\hat{\theta} - E[\hat{\theta}])^2]$$

Mean Squared Error

$$MSE[\hat{\theta}] = E[(\hat{\theta} - \theta)^{2}]$$
$$= Var[\hat{\theta}] + (Bias[\hat{\theta}])^{2}$$

Consistency

$$\lim_{n\to\infty} \Pr(|\hat{\theta} - \theta| > \varepsilon) = 0 \text{ for all } \varepsilon > 0$$

• If $\lim_{n\to\infty} \operatorname{Bias}[\hat{\theta}] = 0$ and $\lim_{n\to\infty} \operatorname{Var}[\hat{\theta}] = 0$, then $\hat{\theta}$ is consistent.

Efficiency

$$\mathrm{Eff}[\hat{\theta}] = \frac{[I(\theta)]^{-1}}{\mathrm{Var}[\hat{\theta}]}$$

• If $Eff[\hat{\theta}] = 1$, then $\hat{\theta}$ is efficient.

Fisher Information

$$I(\theta) = -E \left[\frac{d^2}{d\theta^2} l(\theta) \right]$$
$$= -n \cdot E \left[\frac{d^2}{d\theta^2} \ln f(X) \right]$$

- $[I(\theta)]^{-1}$ is the Rao-Cramér lower bound.
- $I(\theta) \cdot g'(\theta)^{-2}$ is the Fisher information for $g(\theta)$.

Minimum Variance Unbiased Estimator

- The MVUE is an unbiased estimator with the smallest variance among all unbiased estimators.
- If *Y* is a complete sufficient statistic for θ and $\varphi(Y)$ is an unbiased estimator of θ , then the MVUE of θ is $\varphi(Y)$.

Sufficiency

- *Y* is a sufficient statistic for θ if and only if $f(x_1,...,x_n|y) = h(x_1,...,x_n)$ where $h(x_1, ..., x_n)$ does not depend on θ .
- By factorization theorem, Y is sufficient if and only if $f(x_1, ..., x_n) = h_1(y, \theta)$. $h_2(x_1,...,x_n)$ for non-negative functions h_1 and h_2 where $h_2(x_1, ..., x_n)$ does not depend on θ .
- g(Y) is a sufficient statistic for θ if $g(\cdot)$ is a one-to-one function of sufficient Y.
- By Rao-Blackwell theorem, the variance of the unbiased estimator $E_{7}[Z|Y]$ is at most the variance of any unbiased estimator Z for sufficient Y. The MVUE $\varphi(Y)$ is $E_Z[Z|Y]$.

Exponential Class of Distributions

 $f(x) = \exp[a(x) \cdot b(\theta) + c(\theta) + d(x)]$

• $\sum_{i=1}^{n} a(X_i)$ is a complete sufficient statistic for θ .

Maximum Likelihood Estimators

Under specific circumstances, the MLE of θ :

- Consistent estimator
- · Asymptotically follows a normal distribution with mean θ and variance $[I(\theta)]^{-1}$; its exact variance may equal the asymptotic variance
- Function of sufficient statistic Y

Key Results for Distributions in the Exponential Class

Distribution	Parameter of Interest	$\sum_{i=1}^{n} a(X_i)$	MVUE
Binomial	q	$\sum_{i=1}^{n} X_i$	$\frac{1}{m}\bar{X}$
Normal	μ	$\sum_{i=1}^{n} X_i$	\bar{X}
Normal	σ^2	$\sum_{i=1}^n (X_i - \mu)^2$	$\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2$
Poisson	λ	$\sum_{i=1}^{n} X_i$	$ar{X}$
Gamma	θ	$\sum_{i=1}^{n} X_i$	$\frac{1}{\alpha}\bar{X}$
Inverse Gaussian	μ	$\sum_{i=1}^{n} X_i$	$ar{X}$
Negative Binomial	β	$\sum_{i=1}^{n} X_i$	$\frac{1}{r}\bar{X}$

Hypothesis Testing

Terminology

- Test statistic: A value calculated from data that assumes H_0 is true
- *Critical region*: The range of test statistic values where H_0 is rejected
- Critical value: A value that borders the critical region
- Two-tailed test: A test that includes both tails in its critical region
- Right-tailed test: A test that only includes the right tail in its critical region
- Left-tailed test: A test that only includes the left tail in its critical region
- *Significance level,* α : The probability of rejecting H_0 , assuming it is true
- *Power*: The probability of rejecting *H*₀, assuming it is false
- *p-value*: The probability of observing the test statistic or a more extreme value, assuming H_0 is true

	H_0 is true	H_0 is false
Reject H_0	Type I Error	Correct Decision
Fail to reject H_0	Correct Decision	Type II Error

• For all hypothesis tests, reject H_0 if p-value $\leq \alpha$.

Tests for Means

- When variance is known, we apply the Central Limit Theorem.
- When variance is unknown, the random sample must be drawn from a normal distribution.

Critical Regions - Known Variance

Test Type	Critical Region
Left-tailed	$t.s. \le -z_{1-\alpha}$
Two-tailed	$ t.s. \ge z_{1-\alpha/2}$
Right-tailed	$t.s. \ge z_{1-\alpha}$

Critical Regions - Unknown Variance

Test Type	Critical Region
Left-tailed	$t.s. \le -t_{2\alpha,\mathrm{df}}$
Two-tailed	$ t.s. \ge t_{\alpha,\mathrm{df}}$
Right-tailed	$t.s. \ge t_{2\alpha,\mathrm{df}}$

One Sample

• df = n - 1

Two Samples

$$s_{\rm p}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

- $df = n_1 + n_2 2$

Two Samples - Paired

- Samples are not independent; observations form pairs.
- Identical to one sample of observed differences
- $n_* = n_1 = n_2$
- $df = n_* 1$

Tests for Proportions

 $\hat{q} = \frac{\text{\# of successes from } n \text{ trials}}{n}$

• Critical regions are the same as those for testing means with known variance.

Tests for Variances - One Sample

Test Type	Critical Region
Left-tailed	$t. s. \le \chi^2_{\alpha, n-1}$
Two-tailed	$\begin{bmatrix} t. s. \leq \chi^2_{\alpha/2, n-1} \end{bmatrix}$ $\cup \left[t. s. \geq \chi^2_{1-\alpha/2, n-1} \right]$
Right-tailed	$t.s. \ge \chi^2_{1-\alpha,n-1}$

<u>Tests for Variances - Two Samples</u>

Test Type	Critical Region	
Left-tailed	$t. s. \le F_{1-\alpha, n_1-1, n_2-1}$	
Two-tailed	$ \left[t. s. \le \left(F_{\alpha/2, n_2 - 1, n_1 - 1} \right)^{-1} \right] $ $ \cup \left[t. s. \ge F_{\alpha/2, n_1 - 1, n_2 - 1} \right] $	
Right-tailed	$t.s. \ge F_{\alpha,n_1-1,n_2-1}$	

• A left-tailed test can be performed by writing H_0 in terms of σ_2^2/σ_1^2 instead and doing a right-tailed test.

•
$$F_{q,v_2,v_1} = (F_{1-q,v_1,v_2})^{-1}$$

Summary for Hypothesis Testing

Parameter	# of Samples	H_0	Variance	t.s.
	One	$\mu = h$	Known	$\frac{\bar{x} - h}{\sigma / \sqrt{n}}$
			Unknown	$\frac{\bar{x} - h}{s / \sqrt{n}}$
Means	Two	$\mu_1 - \mu_2 = h$	Known	$\frac{\bar{x}_1 - \bar{x}_2 - h}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
			Unknown	$\frac{\bar{x}_1 - \bar{x}_2 - h}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$
	Two, Paired $\mu_1 - \mu_2 = h$	h	Known	$rac{ar{d}-h}{\sigma_D/\sqrt{n_*}}$
		Unknown	$\frac{\bar{d}-h}{s_D/\sqrt{n_*}}$	
D .:	One	q = h	-	$\frac{\widehat{q}-h}{\sqrt{\frac{h(1-h)}{n}}}$
Proportions	Two	$q_1 - q_2 = h$	-	$\frac{\hat{q}_1 - \hat{q}_2 - h}{\sqrt{\frac{\hat{q}_1(1 - \hat{q}_1)}{n_1} + \frac{\hat{q}_2(1 - \hat{q}_2)}{n_2}}}$
Variances	One	$\sigma^2 = h$	-	$\frac{(n-1)s^2}{h}$
variances	Two	$\frac{\sigma_1^2}{\sigma_2^2} = h$	-	$\frac{s_1^2}{s_2^2} \cdot \frac{1}{h}$

Intervals for Means

Parameter	Scenario	Туре	100k% Confidence Interval
		Two-sided	$\bar{x} \pm z_{(1+k)/2} \cdot \frac{\sigma}{\sqrt{n}}$
	Known Variance	Left-sided	$\left(-\infty, \bar{x} + z_k \cdot \frac{\sigma}{\sqrt{n}}\right)$
μ		Right-sided	$\left(\bar{x}-z_k\cdot\frac{\sigma}{\sqrt{n}},\infty\right)$
μ		Two-sided	$\bar{x} \pm t_{1-k,n-1} \cdot \frac{s}{\sqrt{n}}$
	Unknown Variance	Left-sided	$\left(-\infty, \bar{x} + t_{2(1-k), n-1} \cdot \frac{s}{\sqrt{n}}\right)$
		Right-sided	$\left(\bar{x} - t_{2(1-k),n-1} \cdot \frac{s}{\sqrt{n}}, \infty\right)$
	Known Variances	Two-sided	$\bar{x}_1 - \bar{x}_2 \pm z_{(1+k)/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
		Left-sided	$\left(-\infty, \bar{x}_{1} - \bar{x}_{2} + z_{k} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}\right)$
		Right-sided	$\left(\bar{x}_1 - \bar{x}_2 - z_k \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \infty\right)$
$\mu_1 - \mu_2$ Two-sided $ar{x}_1 - ar{x}$	$\bar{x}_1 - \bar{x}_2 \pm t_{1-k,n_1+n_2-2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$		
	Unknown Variances	Left-sided	$\left(-\infty, \bar{x}_1 - \bar{x}_2 + t_{2(1-k), n_1 + n_2 - 2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$
		Right-sided	$\left(\bar{x}_1 - \bar{x}_2 - t_{2(1-k),n_1+n_2-2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \infty\right)$
	Paired	All	Identical to the one-sample case

Intervals for Proportions

Parameter	Туре	100k% Confidence Interval	
	Two-sided	$\hat{q} \pm z_{(1+k)/2} \sqrt{\frac{\hat{q}(1-\hat{q})}{n}}$	
q	Left-sided	$\left(-\infty, \hat{q} + z_k \sqrt{\frac{\hat{q}(1-\hat{q})}{n}}\right)$	
	Right-sided	$\left(\widehat{q}-z_k\sqrt{\frac{\widehat{q}(1-\widehat{q})}{n}},\infty\right)$	
	Two-sided	$\hat{q}_1 - \hat{q}_2 \pm z_{(1+k)/2} \sqrt{\frac{\hat{q}_1(1-\hat{q}_1)}{n_1} + \frac{\hat{q}_2(1-\hat{q}_2)}{n_2}}$	
$q_1 - q_2$	Left-sided	$\left(-\infty, \hat{q}_1 - \hat{q}_2 + z_k \sqrt{\frac{\hat{q}_1(1-\hat{q}_1)}{n_1} + \frac{\hat{q}_2(1-\hat{q}_2)}{n_2}}\right)$	
	Right-sided	$\left(\hat{q}_{1}-\hat{q}_{2}-z_{k}\sqrt{\frac{\hat{q}_{1}(1-\hat{q}_{1})}{n_{1}}+\frac{\hat{q}_{2}(1-\hat{q}_{2})}{n_{2}}},\infty\right)$	

Intervals for Variances

Parameter	Туре	100k% Confidence Interval	
	Two-sided	$\left(\frac{(n-1)s^2}{\chi^2_{(1+k)/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{(1-k)/2,n-1}}\right)$	
σ^2	Left-sided	$\left(0, \frac{(n-1)s^2}{\chi^2_{1-k,n-1}}\right)$	
	Right-sided	$\left(\frac{(n-1)s^2}{\chi_{k,n-1}^2},\infty\right)$	
	Two-sided	$\left(\frac{s_1^2}{s_2^2} \cdot \left(F_{(1-k)/2, n_1 - 1, n_2 - 1}\right)^{-1}, \frac{s_1^2}{s_2^2} \cdot F_{(1-k)/2, n_2 - 1, n_1 - 1}\right)$	
$\frac{\sigma_1^2}{\sigma_2^2}$	Left-sided	$\left(0, \frac{s_1^2}{s_2^2} \cdot F_{1-k, n_2-1, n_1-1}\right)$	
	Right-sided	$\left(\frac{S_1^2}{S_2^2} \cdot \left(F_{1-k,n_1-1,n_2-1}\right)^{-1}, \infty\right)$	

Most Powerful Tests

Terminology

- *Simple*: Fully specifies the distribution(s)
- Composite: Does not fully specify the distribution(s)

Most Powerful Test

When H_0 and H_1 are both simple, the most powerful test of size α has the largest power among all tests with the same α .

Neyman-Pearson Theorem

The best critical region is embedded in

$$\frac{L(h_0)}{L(h_1)} \le k$$

where H_0 and H_1 are both simple.

Uniformly Most Powerful (UMP) Tests

- For a simple H_0 and composite H_1 , a test is UMP when the best critical region is the same for testing H_0 against each simple hypothesis in H_1 .
- For composite hypotheses H₀: θ ≤ h and H₁: θ > h, a test is UMP if there is a monotone likelihood ratio in a statistic y.

Goodness of Fit Tests

Kolmogorov-Smirnov Test

t.s. = D = maximum absolute differencebetween $F^*(x)$ and $\hat{F}(x)$

- Reject H_0 if $t.s. \ge$ critical value
- $F^*(x)$: CDF of the proposed distribution
- $\hat{F}(x)$: Empirical distribution function $\hat{F}(x) = \frac{\text{# of observations} \le x}{n}$

Left-Truncated at d

$$F^{*}(x) = \frac{F(x) - F(d)}{1 - F(d)}$$

Right-Censored at m

 $\hat{F}(m)$ is undefined.

Chi-Square Goodness-of-Fit Test

$$t.s. = \sum_{j=1}^{k} \frac{\left(n_j - nq_j\right)^2}{nq_j}$$

- Reject H_0 if $t.s. \ge \chi^2_{1-\alpha,k-1-r}$
- *k*: # of mutually exclusive intervals
- q_i : probability of being in interval j
- n_i : # of observed values in interval j
- *r*: # of free parameters

Chi-Square Test of Independence

$$t. s. = \frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{\left(n_{ij}n - n_{i\bullet}n_{\bullet j}\right)^{2}}{n_{i\bullet}n_{\bullet j}}$$

- Reject H_0 if $t.s. \ge \chi^2_{1-\alpha,(\alpha-1)(b-1)}$
- *a*: # of categories for first variable
- *b*: # of categories for second variable
- n_{ij}: # of observations in first variable's category i and second variable's category j
- n_{i*}: subtotal # of observations in category
 i, across all categories of the second
 variable
- n_{•j}: subtotal # of observations in category
 j, across all categories of the first variable

Likelihood Ratio Test

$$t.s. = -2 \ln \left(\frac{L_0}{L_1} \right) = 2(l_1 - l_0)$$

- Reject H_0 if $t.s. \ge \chi^2_{1-\alpha,r_1-r_0}$
- r_0 : # of free parameters in distribution under H_0
- r_1 : # of free parameters in distribution under H_1
- L₀: Maximized likelihood under H₀
- L_1 : Maximized likelihood under H_1
- $l_0 = \ln L_0$
- $l_1 = \ln L_1$

Confidence Intervals

- For means and proportions, the twosided general form is estimate ± (percentile)(standard error)
- H_0 will fail to be rejected at α if h is within the $100(1-\alpha)\%$ confidence interval.

Order Statistics

 $X_{(k)} = k^{\text{th}}$ order statistic

$$X_{(1)} = \min(X_1, \dots, X_n)$$

$$X_{(n)} = \max(X_1, \dots, X_n)$$

First Principles

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)! (n-k)!} \cdot [F_X(x)]^{k-1} \cdot f_X(x) \cdot [S_X(x)]^{n-k}$$

Special Cases

Uniform (a, b)

$$E[X_{(k)}] = a + \frac{k(b-a)}{n+1}$$

Uniform $(0, \theta)$

$$X_{(k)} \sim \text{Beta}(k, n-k+1, \theta)$$

Exponential (θ)

$$E[X_{(k)}] = \theta \sum_{i=n-k+1}^{n} \frac{1}{i}$$

Extended Linear Models

Introduction to Statistical Learning

Types of Variables

- Response: A variable of primary interest
- Explanatory: A variable used to study the response variable
- Count: A quantitative variable valid on non-negative integers
- Continuous: A quantitative variable valid on real numbers
- Nominal: A qualitative variable having categories without a meaningful or logical order
- Ordinal: A qualitative variable having categories with a meaningful or logical order

Contrasting Statistical Learning Elements

Model Accuracy

$$Y = f(x_1, ..., x_p) + \varepsilon$$
, $E[\varepsilon] = 0$

Test MSE =
$$E\left[\left(Y - \hat{Y}\right)^2\right]$$
 can be estimated using $\frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{n}$

For fixed inputs $x_1, ..., x_p$, the test MSE is

$$\underbrace{\mathrm{Var}\big[\hat{f}\big(x_1,\dots,x_p\big)\big] + \big(\mathrm{Bias}\big[\hat{f}\big(x_1,\dots,x_p\big)\big]\big)^2}_{\text{reducible error}} + \underbrace{\underbrace{\mathrm{Var}\big[\varepsilon\big]}_{\text{irreducible error}}}$$

- If training data y_i 's are used, training MSE is computed instead.
- As flexibility increases, the training MSE decreases, but the test MSE follows a u-shaped pattern.
- Low flexibility leads to a method with low variance and high bias; high flexibility leads to a method with high variance and low bias.

Numerical Summaries

$$\begin{split} \bar{x} &= \frac{\sum_{i=1}^{n} x_{i}}{n}, \qquad s_{x}^{2} &= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1} \\ cov_{x,y} &= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{n - 1} \\ r_{x,y} &= \frac{cov_{x,y}}{s_{x} \cdot s_{y}}, \qquad -1 \leq r_{x,y} \leq 1 \end{split}$$

Graphical Summaries

- A scatterplot plots values of two variables to investigate their relationship.
- A box plot captures a variable's distribution using its median, 1st and 3rd quartiles, and distribution tails.
- A QQ plot plots sample percentiles against theoretical percentiles to determine whether the sample and theoretical distributions have similar shapes.

Simple Linear Regression (SLR)

Special case of MLR where p = 1

Estimation

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Standard Errors

$$se(\hat{\beta}_0) = \sqrt{\text{MSE}\left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

$$se(\hat{\beta}_1) = \sqrt{\frac{\text{MSE}}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

$$se(\hat{y}) = \sqrt{\text{MSE}\left(\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

$$se(\hat{y}_{n+1}) = \sqrt{\text{MSE}\left(1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

Other Numerical Results

$$R^2 = r_{x,y}^2$$

Multiple Linear Regression (MLR)

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Assumptions

- 1. $Y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \varepsilon_i$
- 2. $x_{i,i}$'s are non-random
- 3. $E[\varepsilon_i] = 0$
- 4. $Var[\varepsilon_i] = \sigma^2$
- 5. ε_i 's are independent
- 6. ε_i 's are normally distributed
- 7. The predictor x_i is not a linear combination of the other *p* predictors, for j = 0, 1, ..., p

Estimation - Ordinary Least Squares (OLS)

$$\begin{bmatrix} \hat{\beta}_0 \\ \vdots \\ \hat{\beta}_p \end{bmatrix} = \hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{y} = \hat{\boldsymbol{\beta}}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

$$\mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

$$\hat{\mathbf{y}} = \mathbf{H} \mathbf{y}$$

$$\mathbf{MSE} = \frac{\mathbf{SSE}}{n-p-1}$$

$$\mathbf{residual standard error} = \sqrt{\mathbf{MSE}}$$

Other Numerical Results

$$e = y - \hat{y}$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = SSR + SSE$$

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

$$R_{adj.}^2 = 1 - \frac{MSE}{s_y^2}$$

$$= 1 - (1 - R^2) \left(\frac{n-1}{n-p-1}\right)$$

Other Key Ideas

- R² is a poor measure for model comparison because it will increase simply by adding more predictors to a model.
- Polynomials do not change consistently by unit increases of its variable, i.e., no constant slope.
- Only w 1 dummy variables are needed to represent w classes of a categorical predictor; one of them acts as the baseline class.
- In effect, dummy variables define a distinct intercept for each class. Without the interaction between a dummy variable and a predictor, the dummy variable cannot additionally affect that predictor's regression coefficient.

Standard Errors

$$\begin{split} \widehat{\mathrm{Var}}[\widehat{\boldsymbol{\beta}}] &= \mathrm{MSE}(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \begin{bmatrix} \widehat{\mathrm{Var}}[\widehat{\beta}_0] & \cdots & \widehat{\mathrm{Cov}}[\widehat{\beta}_0, \widehat{\beta}_p] \\ \vdots & \ddots & \vdots \\ \widehat{\mathrm{Cov}}[\widehat{\beta}_0, \widehat{\beta}_p] & \cdots & \widehat{\mathrm{Var}}[\widehat{\beta}_p] \end{bmatrix} \\ se(\widehat{\beta}_j) &= \sqrt{\widehat{\mathrm{Var}}[\widehat{\beta}_j]} \end{split}$$

Confidence Intervals

$$\hat{\beta}_{j} \pm t_{1-k,n-p-1} \cdot se(\hat{\beta}_{j})$$

$$\hat{y} \pm t_{1-k,n-p-1} \cdot se(\hat{y})$$

Prediction Intervals

$$\hat{y}_{n+1} \pm t_{1-k,n-p-1} \cdot se(\hat{y}_{n+1})$$

$$t.s. = \frac{\text{estimate} - \text{hypothesized value}}{\text{standard error}}$$

Test Type	Critical Region
Left-tailed	$t.s. \le -t_{2\alpha,n-p-1}$
Two-tailed	$ t.s. \ge t_{\alpha,n-p-1}$
Right-tailed	$t. s. \ge t_{2\alpha, n-p-1}$

$$t. s. = \frac{MSR}{MSE} = \frac{SSR \div p}{SSE \div (n - p - 1)}$$

- Reject H_0 if $t.s. \ge F_{\alpha, \text{ndf,ddf}}$
- ndf = p
- ddf = n p 1
- If p = 1, t. s. is the squared test statistic of the t test with the same H_0 .

Source	SS	df	MS
Regression	SSR	p	MSR
Error	SSE	n - p - 1	MSE
Total	SST	n-1	s_y^2

Partial F Tests

	reduction in variability	additional df spent
t.s.=	$(SSE_r - SSE_f)$	$\div (p_f - p_r)$
ι. s. –	$SSE_f \div (n -$	p_f-1
_	$\left(R_f^2 - R_r^2\right) \div \left(R_r^2 - R_r^2\right)$	$p_f - p_r$
_	$\overline{\left(1-R_f^2\right)\div\left(n-R_f^2\right)}$	$-p_{f}-1)$

- Reject H_0 if $t.s. \ge F_{\alpha \text{ ndf ddf}}$
- $ndf = p_f p_r$
- $ddf = n p_f 1$

Source	SS	df
Reduced Regression	SSR_r	p_r
Difference	$SSE_r - SSE_f$ or $SSR_f - SSR_r$	$p_f - p_r$
Full Error	SSE_f	$n-p_f-1$
Total	SST	n-1

Bootstrapping

The bootstrapped $se(\hat{\beta}_i)$ is the unbiased sample standard deviation of the β_i bootstrap estimates.

(2)

Analysis of Variance (ANOVA)

One-Way ANOVA

$$Y_{i,j} = \mu + \alpha_j + \varepsilon_{i,j}$$

- $i = 1, \ldots, n_i$
- Factor has w levels, j = 1, ..., w

$$\bar{y}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} y_{i,j}$$

$$SSR = \sum_{j=1}^{w} \sum_{i=1}^{n_{j}} (\bar{y}_{j} - \bar{y})^{2} = \sum_{j=1}^{w} n_{j} (\bar{y}_{j} - \bar{y})^{2}$$

$$SSE = \sum_{i=1}^{w} \sum_{j=1}^{n_{j}} (y_{i,j} - \bar{y}_{j})^{2}$$

$$SST = \sum_{i=1}^{w} \sum_{i=1}^{n_j} (y_{i,j} - \bar{y})^2$$

Source	SS	df
Factor	SSR	<i>w</i> − 1
Error	SSE	n-w
Total	SST	n-1

Testing the Significance of Factor

$$t. s. = \frac{SSR \div (w - 1)}{SSE \div (n - w)}$$

- Reject H_0 if $t.s. \ge F_{\alpha.ndf.ddf}$
- ndf = w 1
- ddf = n w

Two-Way ANOVA – Additive Model

$$Y_{i,j,k} = \mu + \alpha_i + \beta_k + \varepsilon_{i,j,k}$$

- Factor A has w levels, $i = 1, ..., n_*$
- Factor B has v levels, j = 1, ..., w
- k = 1, ..., v

$$SSR_{B} = SSE_{A} - SSE_{add}$$
$$= SSR_{add} - SSR_{A}$$

Source	SS	df
Factor A	SSR _A	<i>w</i> − 1
Factor B	SSR _B	v-1
Error	SSE _{add}	n-w-v+1
Total	SST	n-1

Testing the Significance of Factor A

$$t.s. = \frac{SSR_A \div (w-1)}{SSE_{add} \div (n-w-v+1)}$$

- Reject H_0 if $t.s. \ge F_{\alpha, \text{ndf,ddf}}$
- ndf = w 1
- ddf = n w v + 1

Testing the Significance of Factor B

$$t.s. = \frac{SSR_B \div (v-1)}{SSE_{add} \div (n-w-v+1)}$$

- Reject H_0 if $t.s. \ge F_{\alpha.ndf.ddf}$
- ndf = v 1
- ddf = n w v + 1

<u>Two-Way ANOVA – Additive Model without</u> <u>Replication</u>

$$Y_{j,k} = \mu + \alpha_j + \beta_k + \varepsilon_{j,k}$$

- $n_* = 1$
- j = 1, ..., w
- k = 1, ..., v

$$\bar{y}_{j\bullet} = \frac{1}{v} \sum_{k=1}^{v} y_{j,k}, \qquad \bar{y}_{\bullet k} = \frac{1}{w} \sum_{j=1}^{w} y_{j,k}$$

$$SSR_{A} = \sum_{k=1}^{v} \sum_{j=1}^{w} (\bar{y}_{j\bullet} - \bar{y})^{2} = \sum_{j=1}^{w} v(\bar{y}_{j\bullet} - \bar{y})^{2}$$

$$SSR_{B} = \sum_{k=1}^{v} \sum_{i=1}^{w} (\bar{y}_{\bullet k} - \bar{y})^{2} = \sum_{k=1}^{v} w(\bar{y}_{\bullet k} - \bar{y})^{2}$$

$$SSE_{add} = \sum_{k=1}^{v} \sum_{j=1}^{w} (y_{j,k} - \bar{y}_{j \cdot k} - \bar{y}_{\cdot k} + \bar{y})^{2}$$

$$SST = \sum_{k=1}^{v} \sum_{j=1}^{w} (y_{j,k} - \bar{y})^{2}$$

Two-Way ANOVA - Model with Interactions

$$Y_{i,j,k} = \mu + \alpha_j + \beta_k + \gamma_{j,k} + \varepsilon_{i,j,k}$$

- $i=1,\ldots,n_*$
- $j = 1, \dots, w$
- k = 1, ..., v

$$SS_{diff} = SSE_{add} - SSE_{int}$$
$$= SSR_{int} - SSR_{add}$$

Source	SS	df
Factor A	SSR_A	<i>w</i> − 1
Factor B	SSR _B	v-1
Interaction	SS _{diff}	(w-1)(v-1)
Error	SSE _{int}	n-wv
Total	SST	n-1

Testing the Significance of Interactions

$$t.s. = \frac{SS_{diff} \div [(w-1)(v-1)]}{SSE_{int} \div (n-wv)}$$

- Reject H_0 if $t. s. \ge F_{\alpha, \text{ndf}, \text{ddf}}$
- ndf = (w 1)(v 1)
- ddf = n wv

Testing the Significance of Factor A

$$t. s. = \frac{SSR_A \div (w - 1)}{SSE_{int} \div (n - wv)}$$

- Reject H_0 if $t.s. \ge F_{\alpha.ndf.ddf}$
- ndf = w 1
- ddf = n wv

Testing the Significance of Factor B

$$t. s. = \frac{SSR_B \div (v - 1)}{SSE_{int} \div (n - wv)}$$

- Reject H_0 if $t.s. \ge F_{\alpha, \text{ndf,ddf}}$
- ndf = v 1
- ddf = n wv

Other Key Ideas

- In testing whether a source is significant, the test statistic is the mean square of that source divided by the MSE of the model that has the most predictors.
- ANCOVA models have both quantitative and qualitative predictors.
- The uncorrected total sum of squares is $\sum_{i=1}^{n} y_i^2$. The sources of an ANOVA/ANCOVA table may sum to the uncorrected table rather than the corrected total.

Linear Model Assumptions

Leverage

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{u=1}^n (x_u - \bar{x})^2}$$
 for SLR

- h_i is the i^{th} diagonal entry of **H**.
- $\sum_{i=1}^{n} h_i = p+1$

Standardized Residuals

$$e_{\text{sta},i} = \frac{e_i}{\sqrt{\text{MSE}(1 - h_i)}}$$

DFITS

$$DFITS_i = e_{sta,i} \sqrt{\frac{h_i}{1 - h_i}}$$

Cook's Distance

$$\begin{split} d_i &= \frac{\text{DFITS}_i^2}{p+1} = \frac{e_{\text{sta},i}^2 h_i}{(p+1)(1-h_i)} \\ &= \frac{e_i^2 h_i}{\text{MSE}(p+1)(1-h_i)^2} \end{split}$$

Plots of Residuals

- e versus \hat{y}
 - Residuals are well-behaved if
 - Points appear to be randomly scattered
 - o Residuals seem to average to 0
 - o Spread of residuals does not change
- *e* versus *i*Detects dependence of error terms
- QQ plot of e

Variance Inflation Factor

$$VIF_j = \frac{1}{1 - R_i^2}$$

 $VIF_i > 5$ indicates multicollinearity.

Curse of Dimensionality

Having many predictors in a model increases the risk of including noise predictors that are not associated with the response.

Model Selection

- *g*: Total # of predictors in consideration
- p: # of predictors for a specific model
- MSE_g: MSE of the model that uses all g predictors
- M_p : The "best" model with p predictors

Best Subset Selection

- 1. For $p=0,1,\ldots,g$, fit all $\binom{g}{p}$ models with p predictors. The model with the largest R^2 is M_p .
- 2. Choose the best model among $M_0, ..., M_g$ using a selection criterion of choice.

Forward Stepwise Selection

- 1. Fit all g simple linear regression models. The model with the largest R^2 is M_1 .
- 2. For p=2,...,g, fit the models that add one of the remaining predictors to \mathbf{M}_{p-1} . The model with the largest R^2 is \mathbf{M}_p .
- 3. Choose the best model among $M_0, ..., M_g$ using a selection criterion of choice.

Backward Stepwise Selection

- 1. Fit the model with all g predictors, M_q .
- 2. For p = g 1, ..., 1, fit the models that drop one of the predictors from M_{p+1} . The model with the largest R^2 is M_p .
- 3. Choose the best model among $M_0, ..., M_g$ using a selection criterion of choice.

Selection Criteria

- Adjusted R²
- Mallows' C_n

$$C_p = \frac{1}{n} \left(SSE + 2p \cdot MSE_g \right)$$

• Akaike information criterion

$$AIC = \frac{1}{n} \left(SSE + 2p \cdot MSE_g \right)$$

• Bayesian information criterion

$$BIC = \frac{1}{n} (SSE + \ln n \cdot p \cdot MSE_g)$$

• Cross-validation error

Validation Set

- Randomly splits all available observations into two groups: the training set and the validation set.
- Only the observations in the training set are used to attain the fitted model, and those in validation set are used to estimate the test MSE.

k-fold Cross-Validation

- 1. Randomly divide all available observations into k folds.
- 2. For v=1,...,k, obtain the v^{th} fit by training with all observations except those in the v^{th} fold.
- 3. For v = 1, ..., k, use \hat{y} from the v^{th} fit to calculate a test MSE estimate with observations in the v^{th} fold.
- 4. To calculate CV error, average the *k* test MSE estimates in the previous step.

Leave-One-Out Cross-Validation (LOOCV)

 Calculate LOOCV error as a special case of k-fold cross-validation where k = n.

LOOCV Error =
$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$
 for MLR

Key Ideas on Cross-Validation

- The validation set approach has unstable results and will tend to overestimate the test MSE. The two other approaches mitigate these issues.
- With respect to bias, LOOCV < k-fold CV < Validation Set.
- With respect to variance, LOOCV > k-fold
 CV > Validation Set.

Other Linear Regression Approaches

Standardizing Variables

- A centered variable is the result of subtracting the sample mean from a variable.
- · A scaled variable is the result of dividing a variable by its standard deviation.
- · A standardized variable is the result of first centering a variable, then scaling it.

Shrinkage Methods

	Ridge	Lasso
Minimize	SSE $+\lambda \sum_{j=1}^{p} \hat{\beta}_{j}^{2}$	SSE $+\lambda \sum_{j=1}^{p} \hat{\beta}_{j} $
	SSE subject to $\sum_{j=1}^{p} \hat{\beta}_{j}^{2} \leq a$	SSE subject to $\sum_{j=1}^{p} \hat{\beta}_j \le a$
ℓ norm	$\left\ \widehat{\boldsymbol{\beta}}\right\ _2 = \sqrt{\sum_{j=1}^p \hat{\beta}_j^2}$	$\ \widehat{\boldsymbol{\beta}}\ _{1} = \sum_{j=1}^{p} \widehat{\beta}_{j} $

- λ: Tuning parameter
- a: Budget parameter
- $x_1, ..., x_p$ are scaled predictors.
- λ is inversely related to flexibility.
- With a finite λ , none of the ridge estimates will equal 0, but the lasso estimates could equal 0.

Principal Components

$$z_m = \sum_{j=1}^p \phi_{j,m} x_j$$
$$\sum_{j=1}^p \phi_{j,m}^2 = 1$$

$$\sum_{j=1}^p \phi_{j,m}^2 = 1$$

$$\sum_{j=1}^{p} \phi_{j,m} \cdot \phi_{j,u} = 0, \qquad m \neq u$$

- Unsupervised technique that performs dimension reduction on p variables
- · The variability explained by each subsequent principal component is always less than the variability explained by its previous principal component.
- Principal components form the lower dimension surface that is closest to the observations in p-dimensional space.
- Standardized variables affect the loadings by becoming resistant to varying scales among the original variables.

Principal Components Regression

- Uses the first *k* principal components that are orthogonal as predictors in an MLR.
- k is a measure of flexibility.
- When k = p, PCR is equivalent to performing MLR with the *p* original variables as predictors.

Partial Least Squares

- Supervised technique that performs dimension reduction on p variables
- Uses the first k PLS directions that are orthogonal as predictors in an MLR.
- k is a measure of flexibility.
- When k = p, PLS is equivalent to performing MLR with the p original variables as predictors.
- The first PLS direction is a linear combination of the p standardized predictors, with coefficients that are based on the response y.
- Every subsequent PLS direction is calculated iteratively as a linear combination of "updated predictors" which are the residuals of fits with the "previous predictors" explained by the previous direction.

Generalized Linear Models

Exponential Family*

$$f(y) = \exp[a(y) \cdot b(\theta) + c(\theta) + d(y)]$$

$$E[a(Y)] = -\frac{c'(\theta)}{b'(\theta)}$$

$$Var[a(Y)] = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$

Canonical Form

- a(y) = y
- $b(\theta)$ is the natural parameter
- $\mu = E[Y]$ is a function of θ
- Var[Y] is a function of μ

*Key results on Exponential Family is on page 21.

Model Framework

$$g(\mu) = \mathbf{x}^T \boldsymbol{\beta} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Function Name	$g(\mu)$
Identity	μ
Logit	$\ln\left(\frac{\mu}{1-\mu}\right)$
Logarithmic	$\ln \mu$
Inverse	$\frac{1}{\mu}$
Power	μ^d

Distribution	Canonical Link
Normal	Identity
Binomial	Logit
Poisson	Logarithmic
Gamma	Inverse
Inverse Gaussian	Inverse squared

Parameter Estimation

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} [y_i \cdot b(\theta_i) + c(\theta_i) + d(y_i)]$$

$$\hat{\mu} = g^{-1} (\mathbf{x}^T \widehat{\boldsymbol{\beta}})$$

$$u_j = \sum_{i=1}^{n} \frac{(y_i - \mu_i) x_{i,j}}{\text{Var}[Y_i] \cdot g'(\mu_i)}$$

$$\mathbf{I} = \sum_{i=1}^{n} \frac{\mathbf{x}_i \mathbf{x}_i^T}{\text{Var}[Y_i] \cdot g'(\mu_i)^2}$$

Parameter Estimation - Method of Scoring

$$\widehat{\boldsymbol{\beta}}^{(m)} = \widehat{\boldsymbol{\beta}}^{(m-1)} + \left[\mathbf{I}^{(m-1)}\right]^{-1} \mathbf{u}^{(m-1)}$$

$$= \left(\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}$$

$$w_i = \frac{1}{\text{Var}[Y_i] \cdot g'(\mu_i)^2}$$

$$z_i = g(\mu_i) + (y_i - \mu_i) g'(\mu_i)$$

Numerical Results

$$D = 2[l_{\text{sat}} - l(\widehat{\boldsymbol{\beta}})]$$

$$R_{\rm pse.}^2 = 1 - \frac{l(\widehat{\beta})}{l_{\rm null}}$$

$$AIC = -2 \cdot l(\widehat{\beta}) + 2k$$

$$BIC = -2 \cdot l(\widehat{\beta}) + k \ln n$$

where k is the # of estimated parameters

Residuals

Raw Residual

$$e_i = y_i - \hat{\mu}_i$$

Pearson Residual

$$e_i^P = \frac{e_i}{\sqrt{\widehat{\text{Var}}[Y_i]}}$$

$$e_{\mathrm{sta},i}^{P} = \frac{e_{i}^{P}}{\sqrt{1 - h_{i}}}$$

• Pearson chi-square statistic is $\sum_{i=1}^{n} (e_i^P)^2$.

Deviance Residual

$$e_i^D = \pm \sqrt{D_i}$$

whose sign follows the i^{th} raw residual

$$e_{\mathrm{sta},i}^D = \frac{e_i^D}{\sqrt{1 - h_i}}$$

• Deviance is $\sum_{i=1}^{n} (e_i^D)^2$.

<u>Inference</u>

- Score statistics **U** asymptotically follow a multivariate normal distribution with mean 0 and asymptotic variancecovariance matrix **I**. Thus, $\mathbf{U}^T \mathbf{I}^{-1} \mathbf{U}$ follows an approximate chi-square distribution with p + 1 degrees of freedom.
- Maximum likelihood estimators $\hat{\mathbf{B}}$ asymptotically follow a multivariate normal distribution with mean β and asymptotic variance-covariance matrix I^{-1} .
- Overdispersion can be addressed by quasi-likelihood method, which changes the variance to:

 $Var[Y_i] = \phi \cdot original variance$

Likelihood Ratio Test

$$t. s. = 2[l(\widehat{\beta}_f) - l(\widehat{\beta}_r)]$$

= $D_r - D_f$

• Reject H_0 if $t.s. \ge \chi^2_{1-\alpha,p_f-p_r}$

Wald Test

$$t.s. = \left[\frac{\hat{\beta}_j - h}{se(\hat{\beta}_i)}\right]^2$$

- Reject H_0 if $t.s. \ge \chi^2_{1-\alpha,1}$
- $(\widehat{\boldsymbol{\beta}} \boldsymbol{\beta})^T \mathbf{I}(\widehat{\boldsymbol{\beta}} \boldsymbol{\beta})$ follows an approximate chi-square distribution with p + 1 degrees of freedom.

Tweedie Distributions

$$Var[Y] = a \cdot E[Y]^d$$

Distribution	d
Normal	0
Poisson	1
Compound Poisson-Gamma	(1,2)
Gamma	2
Inverse Gaussian	3

Connection with MLR

- · A GLM with a normally distributed response, identity link, and homoscedasticity is the same as MLR.
- MLE estimates = OLS estimates
- $\sigma^2 D = SSE$

Binomial and Categorical Response Regression

Binomial Response Variable

 The odds of an event are the ratio of the probability that the event will occur to the probability that the event will not occur, i.e.,

$$odds = \frac{q}{1 - q}$$

 The odds ratio is the ratio of the odds of an event with the presence of a characteristic to the odds of the same event without the presence of that characteristic.

Function Name	g(q)
Logit	$\ln\left(\frac{q}{1-q}\right)$
Probit	$\Phi^{-1}(q)$
Complementary log-log	$\ln[-\ln(1-q)]$

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i \ln \left(\frac{q_i}{1 - q_i} \right) + m_i \ln (1 - q_i) + \ln \left(\frac{m_i}{y_i} \right) \right]$$

$$D = 2 \sum_{i=1}^{n} \left[y_i \ln \left(\frac{y_i}{\hat{\mu}_i} \right) + (m_i - y_i) \ln \left(\frac{m_i - y_i}{m_i - \hat{\mu}_i} \right) \right]$$

$$e_i^P = \frac{y_i - m_i \hat{q}_i}{\sqrt{m_i \hat{q}_i (1 - \hat{q}_i)}}$$

Pearson chi-square stat. =
$$\sum_{i=1}^{n} \frac{(y_i - m_i \hat{q}_i)^2}{m_i \hat{q}_i (1 - \hat{q}_i)}$$

Logistic Regression

$$q_i = \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta})}{1 + \exp(\mathbf{x}_i^T \boldsymbol{\beta})}$$

$$u_j = \sum_{i=1}^n (y_i - \mu_i) x_{i,j}$$

$$\mathbf{I} = \sum_{i=1}^n m_i q_i (1 - q_i) \mathbf{x}_i \mathbf{x}_i^T$$

Nominal Response

Let $\pi_{i,c}$ be the probability that the i^{th} observation is classified as category c. k is the reference category.

$$\ln\left(\frac{\pi_{i,t}}{\pi_{i,k}}\right) = \mathbf{x}_i^T \boldsymbol{\beta}_t$$

$$\pi_{i,c} = \begin{cases} \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta}_c)}{1 + \sum_{\text{all } t} \exp(\mathbf{x}_i^T \boldsymbol{\beta}_t)}, & c \neq k \\ \frac{1}{1 + \sum_{\text{all } t} \exp(\mathbf{x}_i^T \boldsymbol{\beta}_t)}, & c = k \end{cases}$$

<u>Ordinal Response – Proportional</u> Odds Cumulative

$$\ln\left(\frac{\Pi_{i,c}}{1 - \Pi_{i,c}}\right) = \beta_{0,c} + \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\Pi_c = \pi_1 + \dots + \pi_c$$

$$\mathbf{x}_i = \begin{bmatrix} x_{i,1} \\ \vdots \\ x_{i,p} \end{bmatrix}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

A ratio of cumulative odds is not a function of the predictor values, e.g.,

$$\frac{\widehat{\Pi}_1 \div \left(1 - \widehat{\Pi}_1\right)}{\widehat{\Pi}_2 \div \left(1 - \widehat{\Pi}_2\right)} = \exp(\widehat{\beta}_{0,1} - \widehat{\beta}_{0,2})$$

Poisson Response Regression

$$\mu_i = a_i \cdot \exp(\mathbf{x}_i^T \boldsymbol{\beta})$$

where a_i is the exposure amount

$$\begin{split} l(\boldsymbol{\beta}) &= \sum_{i=1}^{n} [y_i \ln \mu_i - \mu_i - \ln(y_i!)] \\ u_j &= \sum_{i=1}^{n} (y_i - \mu_i) \, x_{i,j} \\ \mathbf{I} &= \sum_{i=1}^{n} \mu_i \mathbf{x}_i \mathbf{x}_i^T \\ D &= 2 \sum_{i=1}^{n} \left[y_i \ln \left(\frac{y_i}{\mu_i} \right) - (y_i - \mu_i) \right] \\ &= 2 \sum_{i=1}^{n} y_i \ln \left(\frac{y_i}{\mu_i} \right) \\ e_i^P &= \frac{y_i - \mu_i}{\sqrt{\mu_i}} \end{split}$$

Pearson chi-square stat. = $\sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$

Log-Linear Models

- Assess whether there is an association or dependence between two factors.
- The response is the count in each cell of the contingency table created by the two factors.
- Key results of the multinomial model and the product multinomial model are shared with the Poisson model.
- In testing the interaction effects with a likelihood ratio test, the reduced model does not have the interaction terms as predictors, while the full model has the interaction terms.

1¢

Generalized Additive Models

The # of degrees of freedom used is the # of regression coefficients, i.e., p + 1.

Basis Functions

$$Y = \beta_0 + \beta_1 b_1(x) + \dots + \beta_p b_p(x) + \varepsilon$$

Step Functions

$$b_j(x) = \begin{cases} I\left(\xi_j \leq x < \xi_{j+1}\right), & j = 1, \dots, k-1 \\ I(x \geq \xi_k), & j = k \end{cases}$$

Piecewise Polynomial Regression

The basis functions are:

- x, x^2, \dots, x^d
- k step functions
- dk interaction terms

Regression Splines

- A degree-d spline is a continuous piecewise degree-d polynomial with continuity in derivatives up to degree d-1 at each knot.
- The basis functions of a cubic spline can be $x, x^2, x^3, (x - \xi_1)^3_+, ..., (x - \xi_k)^3_+$.
- A natural spline is a regression spline that is linear instead of a polynomial in the boundary regions.

Smoothing Splines

Minimize
$$\sum_{i=1}^{n} [y_i - g(x_i)]^2 + \lambda \int_{-\infty}^{\infty} g''(t)^2 dt$$

- Smoothing parameter λ is inversely related to flexibility.
- g(x) has the same form as the fitted natural cubic spline with knots at the n
- Effective degrees of freedom measures flexibility as the sum of the diagonal entries of S_{λ} , where $\hat{y}_{\lambda} = S_{\lambda}y$.

Local Regression

- Calculates the fitted value for a specific input by mimicking weighted least squares, i.e., minimize $\sum_{i=1}^{n} w_i (y_i - \hat{y}_i)^2$.
- · Weights are determined by the span and the weighting function, such that observations nearer to the input are given larger weights.
- Span is inversely related to flexibility.
- Does not perform well in high dimension.

Generalized Additive Models

- Each explanatory variable contributes to the mean response independently of the other explanatory variables; no interactions are considered.
- The effect of each explanatory variable on the response can be investigated individually, assuming the other variables are held constant.
- Backfitting can be used for fitting if ordinary least squares cannot.

Key Results for Distributions in the Exponential Family

Distribution	θ	Natural Parameter, $b(\theta)$	$c(\theta)$
Binomial, fixed <i>m</i>	q	$\ln\left(\frac{q}{1-q}\right)$	$m \ln(1-q)$
Normal, fixed σ^2	μ	$\frac{\mu}{\sigma^2}$	$-\frac{\mu^2}{2\sigma^2}$
Poisson	λ	ln λ	$-\lambda$
Gamma, fixed $lpha$	θ	$-\frac{1}{\theta}$	$-\alpha \ln \theta$
Inverse Gaussian, fixed $ heta$	μ	$-\frac{\theta}{2\mu^2}$	$\frac{\theta}{\mu}$
Negative Binomial, fixed <i>r</i>	β	$\ln\left(\frac{\beta}{1+\beta}\right)$	$-r\ln(1+\beta)$

Number of Predictors for GAMs with a d^{th} degree polynomial and k knots

Model	# of Predictors, p
Polynomial	d
Piecewise constant	k
Piecewise polynomial	d + k + dk
Continuous piecewise polynomial	d + dk
Cubic spline	3 + k
Natural cubic spline	k – 1

Notation

 $X \sim \text{Name}(\text{parameters}) \text{ represents } X \text{ follows a "Name" distribution}$ with "parameters" following the parametrization on the exam table.

Probability Models

Symbol	Description
\mathbf{A}^T	Transpose of matrix A
\mathbf{A}^{-1}	Inverse of matrix A

Statistics

Symbol	Description
H_0	Null hypothesis
H_1	Alternative hypothesis
α	Significance level
t.s.	Test statistic
h	Hypothesized value
df	Degrees of freedom
ndf	Numerator degrees of freedom
ddf	Denominator degrees of freedom
$t_{2(1-q),\mathrm{df}}$	$100q^{ m th}$ percentile of a t -distribution
$F_{1-q, \text{ndf,ddf}}$	$100q^{ m th}$ percentile of an F -distribution
$\chi^2_{q,\mathrm{df}}$	$100q^{ m th}$ percentile of a chi-square distribution
se	Estimated standard error

Extended Linear Models

Symbol	Description
n	# of observation
p	# of predictors
SST	Total sum of squares
SSR	Regression sum of squares
SSE/RSS	Error sum of squares
SS	Sum of squares
MS	Mean square
Ε[Υ], μ	Mean response
$g(\mu)$	Link function
$l(\widehat{oldsymbol{eta}})$	Maximized log-likelihood
$l_{ m null}$	Maximized log-likelihood for null model
l_{sat}	Maximized log-likelihood for saturated model
I	Information matrix
D	Deviance statistic