Predict Students' Dropout and Academic Success

Introduction

Higher education institutions record a significant amount of data about their students, representing a considerable potential to generate information, knowledge, and monitoring. Both school dropout and educational failure in higher education are an obstacle to economic growth, employment, competitiveness, and productivity, directly impacting the lives of students and their families, higher education institutions, and society as a whole.

Purpose

By using machine learning techniques to identify students at risk at an early stage of their academic path, so that strategies to support them can be put into place.

The Dataset

- This dataset is supported by program SATDAP Capacitação da Administração Pública under grant
 POCI-05-5762-FSE-000191, Portugal; founded in UC Irvine
 Machine Learning Repository
- The dataset includes information known at the time of student enrollment (academic path, demographics, and social-economic factors) and the students' academic performance at the end of the first and second semesters.
- The data is used to build classification models to predict students' dropout and academic success. The problem is formulated as a three category classification task, in which there is a strong imbalance towards one of the classes.

Dataset Characteristics	Tabular
Associated Tasks	Classification
# Instances	4424
# Attributes	36

Data Description

Macroeconomic

GDP

Numeric/ Continuous

Inflation rate

Unemployment rate

Demographic

Marital status

Nationality

Gender
Numeric/ Binary

Age at enrollment

Displaced
Numeric/ Binary

International

Socioeconomic

Mother's qualification

Father's qualification

Mother's occupation

Father's occupation

Educational special needs

Debtor
Numeric/ Binary

Tuition fees up to date

Scholarship holder

Academic path

Application mode

Application order

Admission grade

Course
Numeric/ Discrete

Daytime/evening attendance
Numeric/ Binary

Previous qualification

Previous qualification (grade)
Numeric/ Continuous

Academic performance

Curricular units 1st sem (credited)

Curricular units 1st sem (enrolled)

Curricular units 1st sem (evaluations)

Curricular units 1st sem (approved)

Curricular units 1st sem (grade)
Numeric/ Discrete

Curricular units 1st sem (without evaluations)
Numeric/ Discrete

Curricular units 2nd sem (credited)

Curricular units 2nd sem (enrolled)

Curricular units 2nd sem (evaluations)

Methodology Roadmap

Target

- The problem is formulated as a three category classification task, in which there is a strong imbalance towards one of the classes.
- This might result in a high prediction accuracy driven by the majority class at the expense of a poor performance of the minority class.
- At the data-level approach, a sampling technique can be applied.
- At the algorithm-level approach, a machine learning algorithm that already incorporates balancing steps must be used.

Analysis

- Collinearity (or multi-collinearity) may be an issue that must be considered in some types of problems.
- The analysis of the heatmap using the Pearson correlation coefficient, shows that there are some pairs of features having high correlation coefficients, which increases multi-collinearity in the dataset.
- The collinearity is strongest within the same group of features, but we can also find higher values of correlation between groups.

Analysis

- Analysis student success possibility for each feature attribute:
 - shows that the most successful students are female students with 37.55% graduating while only 12.39% of male students successfully graduate
 - The most successful age range for graduating is 17-20 years old at 60.29%
 - Total of 1,556 male students and 2,868 female students in the data set

Target1
Dropout
Enrolled

Graduate

Success by Age

Analysis

 The students with the highest rate of graduation at 66.7% had a previous qualification of a master's degree (2nd Cycle)

Previous Qualification

Target1
Dropout
Enrolled
Graduate

 $\% \ of \ Total \ Count \ of \ Target1 \ for each \ Previous \ qualification. \ Color \ shows \ details \ about \ Target1.$

Analysis

- Analysis student success possibility for each feature attribute:
 - Student's success rates vary a lot by courses;
 - Nursing and Social Service has the top 2 graduation rates, which are over 70%;
 - Biofuel Production Tech and Informatics
 Engineering are looking at very low graduation rates.

Target1

Dropout

Enrolled

Graduate

Feature Attributes

- Histogram of feature attribute values to see central tendency:
 - Demographic most of the instance are at younger age, from the same country, and a reasonable distribution between genders.
 - Socioeconomic looking at similar level of financial level while wide range of parents' education background

Data Normalization

One-Hot Encoding

 Enabled the algorithms to process categorical data, and prevented misinterpretation of the categorical features relationships.

• Scaling Features

 Helped to ensure that features with different scales did not skew the algorithm's performance, allowing it to make accurate predictions.

Tuition fees up to date_yes	Gender_female	Gender_male	Scholarship holder_no	Scholarship holder_yes	International_no	International_yes	Target_Dropout	Target_Enrolled	Target_Gr
1	0	1	1	0	1	0	1	0	
0	0	1	1	0	1	0	0	0	
0	0	1	1	0	1	0	1	0	
1	1	0	1	0	1	0	0	0	
1	1	0	1	0	1	0	0	0	
1	0	1	1	0	1	0	0	0	
0	1	0	1	0	0	1	1	0	
1	1	0	0	1	1	0	1	0	
1	1	0	0	1	1	0	0	0	

	Application order	Previous qualification (grade)	Admission grade	Age at enrollment	Curricular units 1st sem (credited)	Curricular units 1st sem (enrolled)	Curricular units 1st sem (evaluations)	Curricular units 1st sem (approved)	Curricular units 1st sem (grade)	Curricular units 1st sem (without evaluations)	Curricular units 2nd sem (credited)	Curricu units 2 s (enrolle
0	2.490896	-0.804841	0.022229	-0.430363	-0.300813	-2.528560	-1.986068	-1.521257	-2.197102	-0.199273	-0.282442	-2.8383
1	-0.554068	2.076819	1.071926	-0.562168	-0.300813	-0.109105	-0.550192	0.418050	0.693599	-0.199273	-0.282442	-0.1057
2	2.490896	-0.804841	-0.150419	-0.562168	-0.300813	-0.109105	-1.986068	-1.521257	-2.197102	-0.199273	-0.282442	-0.1057
3	0.207173	-0.804841	-0.509526	-0.430363	-0.300813	-0.109105	-0.071567	0.418050	0.575611	-0.199273	-0.282442	-0.1057
4	-0.554068	-2.473171	1.002867	2.864765	-0.300813	-0.109105	0.167746	0.094832	0.349468	-0.199273	-0.282442	-0.1057

Data Normalization Pt. 2

• Split into Training/Test Set

- Splitting data into training and testing sets was crucial to evaluate the model's performance. The training set is used for model learning, while the testing set assesses how well the model is performing, ensuring its reliability and effectiveness.

IN MACHINE LEARNING, WE OFTEN HAVE TRAINING DATA AND TEST DATA

Logistic Regression - Initial Model

- This was our first attempt to create a model
 - Includes all raw data to predict a target of either "Graduate" or "Dropout"
 - Some specifics from the model: random_state=9, max_iter=1000, solver='saga'

Classification report

	precision	recall	f1-score	support
Dropout	0.94	0.84	0.89	1129
Graduate	0.90	0.96	0.93	1775
accuracy			0.92	2904
macro avg	0.92	0.90	0.91	2904
weighted avg	0.92	0.92	0.91	2904

Machine Learning Model 1 - Neural Network

- 2 hidden layers
 - hidden nodes layer1 = 8
 - hidden nodes layer2 = 5
- Output layer

Loss: 0.3132462203502655

Accuracy: 0.8564566373825073

28/28 [=====	precision	recall	===] - 0s f1-score	1ms/step support
0	0.47	0.27	0.35	161
1	0.85	0.93	0.89	724
				225
accuracy			0.81	885
macro avg	0.66	0.60	0.62	885
weighted avg	0.78	0.81	0.79	885

Machine Learning Model 2 - Random Forest

Accuracy Score

Con	E	 10-2	

	Predicted 0	Predicted 1	
Actual 0	315	62	
Actual 1	17	514	

Accuracy Score : 0.9129955947136564

Classification Report

	precision	recall	fl-score	support
0	0.95	0.84	0.89	377
1	0.89	0.97	0.93	531
accuracy			0.91	908
macro avg	0.92	0.90	0.91	908
weighted avg	0.92	0.91	0.91	908

Confusion Matrix

ML Logistic Regression - (Normalized Variables)

Used 7 variables that looked to be normally distributed.

Variables Used:

- Admission grade
- Previous Qualification (grade)
- Unemployment Rate
- GDP
- Inflation Rate
- Fathers Qualifications
- Mothers Qualifications

Confusion Matrix:					
		Actı	Actual		
		0	1		
Predicted	0	42	316		
	1	25	525		

Accuracy Score	F	recision	recall	f1-score	support
	0	0.63	0.12	0.20	358
	1	0.62	0.95	0.75	550
	accuracy			0.62	908
	macro avg	0.63	0.54		908
	weighted avg	0.63	0.62		908
	0				

Logistic Regression (One-Hot Encoding & Standard Scaler)

Optimizing all of the columns:

One-Hot Encoding:

 Converting categorical data into a binary format

Standard Scaler:

Scaling numerical data

Confusion Matrix

	precision	recall	f1-score	support
0	0.91	0.79	0.84	358
1	0.87	0.95	0.91	550
accuracy			0.89	908
macro avg	0.89	0.87	0.88	908
weighted avg	0.89	0.89	0.88	908

	pre	cision	recall	f1-score	support
	0	0.94	0.36	0.52	301
	1	0.69	0.98	0.81	442
accurac	y			0.73	743
macro av	g	0.82	0.67	0.66	743
weighted av	g	0.79	0.73	0.69	743

Optimization:

 Leveraged the top 10 featured importance variables from the Random Forest Model.

Variables Used:

- Course
- Previous qualification (grade)
- Admission grade
- Tuition fees up to date
- Age at enrollment
- Curricular units 1st sem (approved)
- Curricular units 1st sem (grade)
- Curricular units 2nd sem (evaluations)
- Curricular units 2nd sem (approved)
- Curricular units 2nd sem (grade)

Confusion Matrix:						
		Acti	Actual			
		0	1			
Predicted	0	282	76			
	1	28	522			

Accuracy So	core	precision	recall	f1-score	support
	0	0.91	0.79	0.84	358
	1	0.87	0.95	0.91	550
	20011201			0.00	000
	accuracy			0.89	908
	macro avg	0.89	0.87	0.88	908
	weighted avg	0.89	0.89	0.88	908

Application : Prediction

Use the best performance Machine Learning model to predict those students - whose original target status are "Enroll" - their possibility to graduate, in order to offer opportunities to students and thus avoid dropping out.

The Code:

	Marital sta	Applicatio	Application	Course	Daytime/e	Previous o	Previous o
16	single	3rd phase	1	Social Sen	daytime	Secondary	137
19	single	1st phase	1	Basic Educ	daytime	Secondary	140
21	single	3rd phase	4	Oral Hygie	daytime	Secondary	127
25	single	1st phase	1	Social Sen	daytime	Secondary	151
27	single	1st phase	1	Veterinan	daytime	Secondary	138
29	single	2nd phase	2	Nursing	daytime	Secondary	127
30	single	Technolog	1	Agronomy	daytime	Technolog	150
32	single	1st phase	1	Managem	daytime	Secondary	143
45	single	2nd phase	1	Managem	evening	Secondary	154
51	single	1st phase	1	Nursing	daytime	Secondary	139
52	single	1st phase	1	Journalism	daytime	Secondary	127
59	single	1st phase	3	Animation	daytime	Secondary	125
62	single	2nd phase	3	Animation	daytime	Secondary	133
63	single	2nd phase	1	Communi	daytime	Secondary	127
64	single	Change of	1	Communi	daytime	Secondary	116
69	single	Over 23 ye	1	Tourism	daytime	Secondary	160
70	single	2nd phase	1	Managem	daytime	Secondary	148
83	single	2nd phase	1	Tourism	daytime	Secondary	120
88	single	1st phase	6	Managem	daytime	Secondary	143

Predictio	Target	GDP	Inflation r	Unemploy	Curricular	Curricular
d Graduate	Enrolled	1	1	10	0	11
d Graduate	Enrolled	0	0	16	0	13
d Graduate	Enrolled	-1	3	12	0	11
d Graduate	Enrolled	0	2	7	0	11
d Graduate	Enrolled	-3	0	9	0	13
d Graduate	Enrolled	0	0	16	0	13
d Graduate	Enrolled	0	0	16	0	10
d Graduate	Enrolled	3	1	8	0	13
d Graduate	Enrolled	0	2	7	1	14
d Graduate	Enrolled	-3	0	9	0	11
d Graduate	Enrolled	-3	0	9	0	11
d Graduate	Enrolled	0	2	7	0	0
d Graduate	Enrolled	1	1	10	0	0
d Graduate	Enrolled	1	1	10	0	10
Dropout	Enrolled	-1	3	12	0	0
d Graduate	Enrolled	-1	3	12	0	10
Dropout	Enrolled	0	2	7	0	0
d Graduate	Enrolled	-1	3	12	0	11
Graduate	Enrolled	2	0	11	0	13

Breakdown of the Predicted Instance:

Distribution

Prediction	
Dropout	16
Graduate	778

Course	Gender	Daytime/ev	Debtor	
Advertising and Marketin	male	daytime	no	1
Agronomy	male	daytime	no	2
			yes	1
Animation and Multimedi	male	daytime	no	1
Communication Design	male	daytime	no	1
Informatics Engineering	male	daytime	no	1
			yes	3
Management	male	daytime	no	2
			yes	1
Management (evening att	male	evening	no	1
Nursing	female	daytime	no	1
Veterinary Nursing	male	daytime	yes	1

Questions?

Thank you!