1 Algorithm

1.1 \mathcal{O} notation

与えられた関数 g(n) に対して、 $\mathcal{O}(g(n))$ によって関数の集合

 $\mathcal{O}(g(n))=\{f(n):$ ある正の定数 c,n_0 が存在して、すべての $n\geq n_0$ に対して $0\leq f(n)\leq cg(n)$ を満たす $\}$ を表現する。

入力が一定数以下はオーバーヘッドがあったりで、ノイズなので入力が一定数以上を表現するために n_0 を設けている。

2 統計

2.1 条件つき確率

2つの事象 A,B に対し、A が起こった状況のもとで B が起こる条件つき確率といい、以下のように表す

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

考え方としては、P(B|A) を given として与えられている事象 A の個数と事象 A かつ B の個数と捉えて以下のように導く

$$P(B|A) = \frac{n(A \cap B)}{n(A)}$$

$$= \frac{\frac{n(A \cap B)}{n(U)}}{\frac{n(A)}{n(U)}} \qquad (分子, 分母を n(U) で割る)$$

$$= \frac{P(A \cap B)}{P(A)}$$

条件付き確率を以下の形にしたものを乗法定理という。

$$P(A \cap B) = P(B|A) \cdot P(A)$$

2.2 ベイズの定理

$$P(X \cap Y) = \frac{n(X \cap Y)}{n(U)}$$

$$= \frac{n(X \cap Y)}{1} \cdot \frac{1}{n(U)}$$

$$= \frac{n(X \cap Y)}{n(X)} \cdot \frac{n(X)}{n(U)}$$

$$= P(Y|X) \cdot P(X)$$
同様に
$$P(X \cap Y) = \frac{n(X \cap Y)}{n(U)}$$

$$= \frac{n(X \cap Y)}{1} \cdot \frac{1}{n(U)}$$

$$= \frac{n(X \cap Y)}{n(Y)} \cdot \frac{n(Y)}{n(U)}$$

$$= P(X|Y) \cdot P(Y)$$
従って
$$P(Y|X)P(X) = P(X|Y)P(Y)$$

$$P(X|Y) = P(X) \cdot \frac{P(Y|X)}{P(Y)}$$

P(X|Y) を事後確率、P(X) を事前確率という。この式を事後確率 = 事前確率 * 修正項とみることができる