Glossary

A

- **adjugate** (or **classical adjoint**): The matrix adj A formed from a square matrix A by replacing the (i, j)-entry of A by the (i, j)-cofactor, for all i and j, and then transposing the resulting matrix.
- **affine combination:** A linear combination of vectors (points in \mathbb{R}^n) in which the sum of the weights involved is 1.
- **affine dependence relation**: An equation of the form $c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p = \mathbf{0}$, where the weights c_1, \ldots, c_p are not all zero, and $c_1 + \cdots + c_p = 0$.
- **affine hull** (or **affine span**) of a set S: The set of all affine combinations of points in S, denoted by aff S.
- **affinely dependent set:** A set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n such that there are real numbers c_1, \dots, c_p , not all zero, such that $c_1 + \dots + c_p = 0$ and $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$
- **affinely independent set**: A set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n that is not affinely dependent.
- **affine set** (or **affine subset**): A set *S* of points such that if **p** and **q** are in *S*, then $(1-t)\mathbf{p} + t\mathbf{q} \in S$ for each real number *t*.
- **affine transformation:** A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ of the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^m .
- **algebraic multiplicity**: The multiplicity of an eigenvalue as a root of the characteristic equation.
- **angle** (between nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 or \mathbb{R}^3): The angle ϑ between the two directed line segments from the origin to the points \mathbf{u} and \mathbf{v} . Related to the scalar product by

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \, \|\mathbf{v}\| \cos \vartheta$$

- **associative law of multiplication**: A(BC) = (AB)C, for all A, B, C.
- **attractor** (of a dynamical system in \mathbb{R}^2): The origin when all trajectories tend toward $\mathbf{0}$.
- augmented matrix: A matrix made up of a coefficient matrix for a linear system and one or more columns to the right. Each extra column contains the constants from the right side of a system with the given coefficient matrix.
- **auxiliary equation**: A polynomial equation in a variable r, created from the coefficients of a homogeneous difference equation.

В

back-substitution (with matrix notation): The backward phase of row reduction of an augmented matrix that transforms an echelon matrix into a reduced echelon matrix; used to find the solution(s) of a system of linear equations.

- backward phase (of row reduction): The last part of the algorithm that reduces a matrix in echelon form to a reduced echelon form.
- **band matrix**: A matrix whose nonzero entries lie within a band along the main diagonal.
- **barycentric coordinates** (of a point **p** with respect to an affinely independent set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$): The (unique) set of weights c_1, \dots, c_k such that $\mathbf{p} = c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k$ and $c_1 + \dots + c_k = 1$. (Sometimes also called the **affine coordinates** of **p** with respect to S.)
- **basic variable**: A variable in a linear system that corresponds to a pivot column in the coefficient matrix.
- **basis** (for a nontrivial subspace H of a vector space V): An indexed set $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in V such that: (i) \mathcal{B} is a linearly independent set and (ii) the subspace spanned by \mathcal{B} coincides with H, that is, $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.
- **\mathcal{B}-coordinates of x**: See coordinates of **x** relative to the basis \mathcal{B} .
- **best approximation**: The closest point in a given subspace to a given vector.
- bidiagonal matrix: A matrix whose nonzero entries lie on the main diagonal and on one diagonal adjacent to the main diagonal.
- **block diagonal** (matrix): A partitioned matrix $A = [A_{ij}]$ such that each block A_{ij} is a zero matrix for $i \neq j$.
- block matrix: See partitioned matrix.
- **block matrix multiplication**: The row-column multiplication of partitioned matrices as if the block entries were scalars.
- **block upper triangular** (matrix): A partitioned matrix $A = [A_{ij}]$ such that each block A_{ij} is a zero matrix for i > j.
- **boundary point** of a set S in \mathbb{R}^n : A point \mathbf{p} such that every open ball in \mathbb{R}^n centered at \mathbf{p} intersects both S and the complement of S.
- **bounded set** in \mathbb{R}^n : A set that is contained in an open ball $B(\mathbf{0}, \delta)$ for some $\delta > 0$.
- **B-matrix** (for T): A matrix $[T]_{\mathcal{B}}$ for a linear transformation $T: V \to V$ relative to a basis \mathcal{B} for V, with the property that $[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ for all \mathbf{x} in V.

C

Cauchy–Schwarz inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||u|| \cdot ||v||$ for all \mathbf{u}, \mathbf{v} . change of basis: See change-of-coordinates matrix.

- **change-of-coordinates matrix** (from a basis \mathcal{B} to a basis \mathcal{C}): A matrix ${}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ that transforms \mathcal{B} -coordinate vectors into \mathcal{C} -coordinate vectors: $[\mathbf{x}]_{\mathcal{C}} = {}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$. If \mathcal{C} is the standard basis for \mathbb{R}^n , then ${}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ is sometimes written as $P_{\mathcal{B}}$.
- **characteristic equation** (of A): $det(A \lambda I) = 0$.
- **characteristic polynomial** (of *A*): $det(A \lambda I)$ or, in some texts, $det(\lambda I A)$.
- **Cholesky factorization**: A factorization $A = R^T R$, where R is an invertible upper triangular matrix whose diagonal entries are all positive.
- **closed ball** (in \mathbb{R}^n): A set $\{\mathbf{x} : \|\mathbf{x} \mathbf{p}\| < \delta\}$ in \mathbb{R}^n , where \mathbf{p} is in \mathbb{R}^n and $\delta > 0$.
- **closed set** (in \mathbb{R}^n): A set that contains all of its boundary points. **codomain** (of a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$): The set \mathbb{R}^m that contains the range of T. In general, if T maps a vector space V into a vector space W, then W is called the codomain of T.
- **coefficient matrix**: A matrix whose entries are the coefficients of a system of linear equations.
- **cofactor**: A number $C_{ij} = (-1)^{i+j} \det A_{ij}$, called the (i, j)-cofactor of A, where A_{ij} is the submatrix formed by deleting the ith row and the jth column of A.
- **cofactor expansion:** A formula for det *A* using cofactors associated with one row or one column, such as for row 1:

$$\det A = a_{11}C_{11} + \dots + a_{1n}C_{1n}$$

- **column-row expansion**: The expression of a product AB as a sum of outer products: $\operatorname{col}_1(A)\operatorname{row}_1(B)+\cdots+\operatorname{col}_n(A)\operatorname{row}_n(B)$, where n is the number of columns of A.
- **column space** (of an $m \times n$ matrix A): The set $\operatorname{Col} A$ of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$, then $\operatorname{Col} A = \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Equivalently,

Col
$$A = \{ \mathbf{y} : \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n \}$$

- **column sum**: The sum of the entries in a column of a matrix.
- column vector: A matrix with only one column, or a single column of a matrix that has several columns.
- **commuting matrices**: Two matrices A and B such that AB = BA.
- **compact set** (in \mathbb{R}^n): A set in \mathbb{R}^n that is both closed and bounded.
- **companion matrix**: A special form of matrix whose characteristic polynomial is $(-1)^n p(\lambda)$ when $p(\lambda)$ is a specified polynomial whose leading term is λ^n .
- **complex eigenvalue**: A nonreal root of the characteristic equation of an $n \times n$ matrix.
- **complex eigenvector**: A nonzero vector \mathbf{x} in \mathbb{C}^n such that $A\mathbf{x} = \lambda \mathbf{x}$, where A is an $n \times n$ matrix and λ is a complex eigenvalue.
- component of y orthogonal to u (for $u\neq 0$): The vector $y-\frac{y\cdot u}{u\cdot u}u.$

- composition of linear transformations: A mapping produced by applying two or more linear transformations in succession. If the transformations are matrix transformations, say left-multiplication by B followed by left-multiplication by A, then the composition is the mapping $\mathbf{x} \mapsto A(B\mathbf{x})$.
- **condition number** (of A): The quotient σ_1/σ_n , where σ_1 is the largest singular value of A and σ_n is the smallest singular value. The condition number is $+\infty$ when σ_n is zero.
- **conformable for block multiplication**: Two partitioned matrices A and B such that the block product AB is defined: The column partition of A must match the row partition of B.
- consistent linear system: A linear system with at least one solution.
- **constrained optimization:** The problem of maximizing a quantity such as $\mathbf{x}^T A \mathbf{x}$ or $||A \mathbf{x}||$ when \mathbf{x} is subject to one or more constraints, such as $\mathbf{x}^T \mathbf{x} = 1$ or $\mathbf{x}^T \mathbf{v} = 0$.
- **consumption matrix**: A matrix in the Leontief input–output model whose columns are the unit consumption vectors for the various sectors of an economy.
- **contraction**: A mapping $\mathbf{x} \mapsto r\mathbf{x}$ for some scalar r, with $0 \le r \le 1$.
- **controllable** (pair of matrices): A matrix pair (A, B) where A is $n \times n$, B has n rows, and

$$rank [B \quad AB \quad A^2B \quad \cdots \quad A^{n-1}B] = n$$

- Related to a state-space model of a control system and the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k$ (k = 0, 1, ...).
- **convergent** (sequence of vectors): A sequence $\{\mathbf{x}_k\}$ such that the entries in \mathbf{x}_k can be made as close as desired to the entries in some fixed vector for all k sufficiently large.
- **convex combination** (of points $\mathbf{v}_1, \dots, \mathbf{v}_k$ in \mathbb{R}^n): A linear combination of vectors (points) in which the weights in the combination are nonnegative and the sum of the weights is 1.
- **convex hull** (of a set S): The set of all convex combinations of points in S, denoted by: conv S.
- **convex set**: A set S with the property that for each \mathbf{p} and \mathbf{q} in S, the line segment $\overline{\mathbf{pq}}$ is contained in S.
- **coordinate mapping** (determined by an ordered basis \mathcal{B} in a vector space V): A mapping that associates to each \mathbf{x} in V its coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.
- coordinates of x relative to the basis $\mathcal{B} = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$: The weights c_1, \dots, c_n in the equation $\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}$.
- **coordinate vector of x relative to \mathcal{B}:** The vector $[x]_{\mathcal{B}}$ whose entries are the coordinates of x relative to the basis \mathcal{B} .
- **covariance** (of variables x_i and x_j , for $i \neq j$): The entry s_{ij} in the covariance matrix S for a matrix of observations, where x_i and x_j vary over the ith and jth coordinates, respectively, of the observation vectors.
- **covariance matrix** (or **sample covariance matrix**): The $p \times p$ matrix S defined by $S = (N-1)^{-1}BB^T$, where B is a $p \times N$ matrix of observations in mean-deviation form.

- **Cramer's rule**: A formula for each entry in the solution \mathbf{x} of the equation $A\mathbf{x} = \mathbf{b}$ when A is an invertible matrix.
- **cross-product term**: A term cx_ix_j in a quadratic form, with $i \neq j$.
- **cube**: A three-dimensional solid object bounded by six square faces, with three faces metting at each vertex.

D

- **decoupled system**: A difference equation $\mathbf{y}_{k+1} = A\mathbf{y}_k$, or a differential equation $\mathbf{y}'(t) = A\mathbf{y}(t)$, in which A is a diagonal matrix. The discrete evolution of each entry in \mathbf{y}_k (as a function of k), or the continuous evolution of each entry in the vector-valued function $\mathbf{y}(t)$, is unaffected by what happens to the other entries as $k \to \infty$ or $t \to \infty$.
- **design matrix**: The matrix X in the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where the columns of X are determined in some way by the observed values of some independent variables.
- **determinant** (of a square matrix A): The number det A defined inductively by a cofactor expansion along the first row of A. Also, $(-1)^r$ times the product of the diagonal entries in any echelon form U obtained from A by row replacements and r row interchanges (but no scaling operations).
- diagonal entries (in a matrix): Entries having equal row and column indices.
- **diagonalizable** (matrix): A matrix that can be written in factored form as PDP^{-1} , where D is a diagonal matrix and P is an invertible matrix.
- **diagonal matrix**: A square matrix whose entries *not* on the main diagonal are all zero.
- **difference equation** (or **linear recurrence relation**): An equation of the form $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (k = 0, 1, 2, ...) whose solution is a sequence of vectors, $\mathbf{x}_0, \mathbf{x}_1, ...$
- **dilation**: A mapping $\mathbf{x} \mapsto r\mathbf{x}$ for some scalar r, with 1 < r. **dimension**:
 - of a flat S: The dimension of the corresponding parallel subspace.
 - of a set S: The dimension of the smallest flat containing S. of a subspace S: The number of vectors in a basis for S, written as dim S.
 - of a vector space V: The number of vectors in a basis for V, written as dim V. The dimension of the zero space is 0.
- **discrete linear dynamical system:** A difference equation of the form $\mathbf{x}_{k+1} = A\mathbf{x}_k$ that describes the changes in a system (usually a physical system) as time passes. The physical system is measured at discrete times, when $k = 0, 1, 2, \ldots$, and the **state** of the system at time k is a vector \mathbf{x}_k whose entries provide certain facts of interest about the system.
- distance between u and v: The length of the vector u-v, denoted by dist (u,v).
- **distance to a subspace**: The distance from a given point (vector) **v** to the nearest point in the subspace.
- **distributive laws**: (left) A(B+C) = AB + AC, and (right) (B+C)A = BA + CA, for all A, B, C.

- **domain** (of a transformation T): The set of all vectors \mathbf{x} for which $T(\mathbf{x})$ is defined.
- dot product: See inner product.
- **dynamical system**: See discrete linear dynamical system.

E

- **echelon form** (or **row echelon form**, of a matrix): An echelon matrix that is row equivalent to the given matrix.
- echelon matrix (or row echelon matrix): A rectangular matrix that has three properties: (1) All nonzero rows are above any row of all zeros. (2) Each leading entry of a row is in a column to the right of the leading entry of the row above it. (3) All entries in a column below a leading entry are zero.
- **eigenfunctions** (of a differential equation $\mathbf{x}'(t) = A\mathbf{x}(t)$): A function $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$, where \mathbf{v} is an eigenvector of A and λ is the corresponding eigenvalue.
- eigenspace (of A corresponding to λ): The set of *all* solutions of $A\mathbf{x} = \lambda \mathbf{x}$, where λ is an eigenvalue of A. Consists of the zero vector and all eigenvectors corresponding to λ .
- eigenvalue (of A): A scalar λ such that the equation $A\mathbf{x} = \lambda \mathbf{x}$ has a solution for some nonzero vector \mathbf{x} .
- **eigenvector** (of *A*): A *nonzero* vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .
- **eigenvector basis:** A basis consisting entirely of eigenvectors of a given matrix.
- **eigenvector decomposition** (of \mathbf{x}): An equation, $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$, expressing \mathbf{x} as a linear combination of eigenvectors of a matrix.
- **elementary matrix**: An invertible matrix that results by performing one elementary row operation on an identity matrix.
- **elementary row operations**: (1) (Replacement) Replace one row by the sum of itself and a multiple of another row. (2) Interchange two rows. (3) (Scaling) Multiply all entries in a row by a nonzero constant.
- **equal vectors:** Vectors in \mathbb{R}^n whose corresponding entries are the same.
- **equilibrium prices**: A set of prices for the total output of the various sectors in an economy, such that the income of each sector exactly balances its expenses.
- equilibrium vector: See steady-state vector.
- **equivalent (linear) systems**: Linear systems with the same solution set.
- exchange model: See Leontief exchange model.
- **existence question:** Asks, "Does a solution to the system exist?" That is, "Is the system consistent?" Also, "Does a solution of A**x** = **b** exist for *all* possible **b**?"
- expansion by cofactors: See cofactor expansion.
- **explicit description** (of a subspace W of \mathbb{R}^n): A parametric representation of W as the set of all linear combinations of a set of specified vectors.
- **extreme point** (of a convex set S): A point **p** in S such that **p** is not in the interior of any line segment that lies in S. (That is,

if \mathbf{x} , \mathbf{y} are in S and \mathbf{p} is on the line segment $\overline{\mathbf{x}}\overline{\mathbf{y}}$, then $\mathbf{p} = \mathbf{x}$ or $\mathbf{p} = \mathbf{y}$.)

F

factorization (of *A*): An equation that expresses *A* as a product of two or more matrices.

final demand vector (or bill of final demands): The vector d in the Leontief input—output model that lists the dollar values of the goods and services demanded from the various sectors by the nonproductive part of the economy. The vector d can represent consumer demand, government consumption, surplus production, exports, or other external demand.

finite-dimensional (vector space): A vector space that is spanned by a finite set of vectors.

flat (in \mathbb{R}^n): A translate of a subspace of \mathbb{R}^n .

flexibility matrix: A matrix whose jth column gives the deflections of an elastic beam at specified points when a unit force is applied at the jth point on the beam.

floating point arithmetic: Arithmetic with numbers represented as decimals $\pm .d_1 \cdots d_p \times 10^r$, where r is an integer and the number p of digits to the right of the decimal point is usually between 8 and 16.

flop: One arithmetic operation (+, -, *, /) on two real floating point numbers.

forward phase (of row reduction): The first part of the algorithm that reduces a matrix to echelon form.

Fourier approximation (of order n): The closest point in the subspace of nth-order trigonometric polynomials to a given function in $C[0, 2\pi]$.

Fourier coefficients: The weights used to make a trigonometric polynomial as a Fourier approximation to a function.

Fourier series: An infinite series that converges to a function in the inner product space $C[0, 2\pi]$, with the inner product given by a definite integral.

free variable: Any variable in a linear system that is not a basic variable.

full rank (matrix): An $m \times n$ matrix whose rank is the smaller of m and n.

fundamental set of solutions: A basis for the set of all solutions of a homogeneous linear difference or differential equation.

fundamental subspaces (determined by A): The null space and column space of A, and the null space and column space of A^T , with Col A^T commonly called the row space of A.

G

Gaussian elimination: See row reduction algorithm.

general least-squares problem: Given an $m \times n$ matrix A and a vector \mathbf{b} in \mathbb{R}^m , find $\hat{\mathbf{x}}$ in \mathbb{R}^n such that $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n .

general solution (of a linear system): A parametric description of a solution set that expresses the basic variables in terms of

the free variables (the parameters), if any. After Section 1.5, the parametric description is written in vector form.

Givens rotation: A linear transformation from \mathbb{R}^n to \mathbb{R}^n used in computer programs to create zero entries in a vector (usually a column of a matrix).

Gram matrix (of A): The matrix A^TA .

Gram–Schmidt process: An algorithm for producing an orthogonal or orthonormal basis for a subspace that is spanned by a given set of vectors.

Н

homogeneous coordinates: In \mathbb{R}^3 , the representation of (x, y, z) as (X, Y, Z, H) for any $H \neq 0$, where x = X/H, y = Y/H, and z = Z/H. In \mathbb{R}^2 , H is usually taken as 1, and the homogeneous coordinates of (x, y) are written as (x, y, 1).

homogeneous equation: An equation of the form $A\mathbf{x} = \mathbf{0}$, possibly written as a vector equation or as a system of linear equations.

homogeneous form of (a vector) \mathbf{v} in \mathbb{R}^n : The point $\tilde{\mathbf{v}} = \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}$ in \mathbb{R}^{n+1} .

Householder reflection: A transformation $\mathbf{x} \mapsto Q\mathbf{x}$, where $Q = I - 2\mathbf{u}\mathbf{u}^T$ and \mathbf{u} is a unit vector $(\mathbf{u}^T\mathbf{u} = 1)$.

hyperplane (in \mathbb{R}^n): A flat in \mathbb{R}^n of dimension n-1. Also: a translate of a subspace of dimension n-1.

ī

identity matrix (denoted by I or I_n): A square matrix with ones on the diagonal and zeros elsewhere.

ill-conditioned matrix: A square matrix with a large (or possibly infinite) condition number; a matrix that is singular or can become singular if some of its entries are changed ever so slightly.

image (of a vector \mathbf{x} under a transformation T): The vector $T(\mathbf{x})$ assigned to \mathbf{x} by T.

implicit description (of a subspace W of \mathbb{R}^n): A set of one or more homogeneous equations that characterize the points of W.

Im \mathbf{x} : The vector in \mathbb{R}^n formed from the imaginary parts of the entries of a vector \mathbf{x} in \mathbb{C}^n .

inconsistent linear system: A linear system with no solution.

indefinite matrix: A symmetric matrix A such that $\mathbf{x}^T A \mathbf{x}$ assumes both positive and negative values.

indefinite quadratic form: A quadratic form Q such that $Q(\mathbf{x})$ assumes both positive and negative values.

infinite-dimensional (vector space): A nonzero vector space V that has no finite basis.

inner product: The scalar $\mathbf{u}^T \mathbf{v}$, usually written as $\mathbf{u} \cdot \mathbf{v}$, where \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n viewed as $n \times 1$ matrices. Also called the **dot product** of \mathbf{u} and \mathbf{v} . In general, a function on

- a vector space that assigns to each pair of vectors \mathbf{u} and \mathbf{v} a number $\langle \mathbf{u}, \mathbf{v} \rangle$, subject to certain axioms. See Section 6.7.
- inner product space: A vector space on which is defined an inner product.
- input-output matrix: See consumption matrix.
- input-output model: See Leontief input-output model.
- **interior point** (of a set S in \mathbb{R}^n): A point \mathbf{p} in S such that for some $\delta > 0$, the open ball $\mathbf{B}(\mathbf{p}, \delta)$ centered at \mathbf{p} is contained in S.
- **intermediate demands**: Demands for goods or services that will be consumed in the process of producing other goods and services for consumers. If **x** is the production level and *C* is the consumption matrix, then *C* **x** lists the intermediate demands.
- **interpolating polynomial**: A polynomial whose graph passes through every point in a set of data points in \mathbb{R}^2 .
- **invariant subspace** (for A): A subspace H such that $A\mathbf{x}$ is in H whenever \mathbf{x} is in H.
- **inverse** (of an $n \times n$ matrix A): An $n \times n$ matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$.
- **inverse power method:** An algorithm for estimating an eigenvalue λ of a square matrix, when a good initial estimate of λ is available.
- **invertible linear transformation**: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ such that there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ satisfying both $T(S(\mathbf{x})) = \mathbf{x}$ and $S(T(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .
- **invertible matrix**: A square matrix that possesses an inverse.
- **isomorphic vector spaces**: Two vector spaces V and W for which there is a one-to-one linear transformation T that maps V onto W.
- **isomorphism**: A one-to-one linear mapping from one vector space onto another.

K

- **kernel** (of a linear transformation $T: V \to W$): The set of \mathbf{x} in V such that $T(\mathbf{x}) = \mathbf{0}$.
- **Kirchhoff's laws**: (1) (**voltage law**) The algebraic sum of the *RI* voltage drops in one direction around a loop equals the algebraic sum of the voltage sources in the same direction around the loop. (2) (**current law**) The current in a branch is the algebraic sum of the loop currents flowing through that branch.

L

- **ladder network**: An electrical network assembled by connecting in series two or more electrical circuits.
- **leading entry**: The leftmost nonzero entry in a row of a matrix.
- **least-squares error**: The distance $\|\mathbf{b} A\hat{\mathbf{x}}\|$ from \mathbf{b} to $A\hat{\mathbf{x}}$, when $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$.
- **least-squares line:** The line $y = \hat{\beta}_0 + \hat{\beta}_1 x$ that minimizes the least-squares error in the equation $\mathbf{y} = X \boldsymbol{\beta} + \boldsymbol{\epsilon}$.

- **least-squares solution** (of $A\mathbf{x} = \mathbf{b}$): A vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b} A\hat{\mathbf{x}}\| \le \|\mathbf{b} A\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n .
- **left inverse** (of A): Any rectangular matrix C such that CA = I.
- **left-multiplication** (by A): Multiplication of a vector or matrix on the left by A.
- **left singular vectors** (of A): The columns of U in the singular value decomposition $A = U \Sigma V^T$.
- **length** (or **norm**, of **v**): The scalar $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- **Leontief exchange** (or **closed**) **model**: A model of an economy where inputs and outputs are fixed, and where a set of prices for the outputs of the sectors is sought such that the income of each sector equals its expenditures. This "equilibrium" condition is expressed as a system of linear equations, with the prices as the unknowns.
- **Leontief input–output model** (or **Leontief production equation**): The equation $\mathbf{x} = C\mathbf{x} + \mathbf{d}$, where \mathbf{x} is production, \mathbf{d} is final demand, and C is the consumption (or input–output) matrix. The jth column of C lists the inputs that sector j consumes per unit of output.
- **level set** (or **gradient**) of a linear functional f on \mathbb{R}^n : A set $[f:d] = \{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = d\}$
- **linear combination**: A sum of scalar multiples of vectors. The scalars are called the *weights*.
- **linear dependence relation:** A homogeneous vector equation where the weights are all specified and at least one weight is nonzero.
- **linear equation** (in the variables x_1, \ldots, x_n): An equation that can be written in the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$, where b and the coefficients a_1, \ldots, a_n are real or complex numbers.
- **linear filter:** A linear difference equation used to transform discrete-time signals.
- **linear functional** (on \mathbb{R}^n): A linear transformation f from \mathbb{R}^n into \mathbb{R} .
- **linearly dependent** (vectors): An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ with the property that there exist weights c_1, \dots, c_p , not all zero, such that $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$. That is, the vector equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ has a *nontrivial* solution.
- **linearly independent** (vectors): An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ with the property that the vector equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ has *only* the trivial solution, $c_1 = \dots = c_p = 0$.
- **linear model** (in statistics): Any equation of the form $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where X and \mathbf{y} are known and $\boldsymbol{\beta}$ is to be chosen to minimize the length of the **residual vector**, $\boldsymbol{\epsilon}$.
- **linear system:** A collection of one or more linear equations involving the same variables, say, x_1, \ldots, x_n .
- **linear transformation** T (from a vector space V into a vector space W): A rule T that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in V, and (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all scalars c. Notation:

 $T: V \to W$; also, $\mathbf{x} \mapsto A\mathbf{x}$ when $T: \mathbb{R}^n \to \mathbb{R}^m$ and A is the standard matrix for T.

line through p parallel to v: The set $\{p + tv : t \text{ in } \mathbb{R}\}.$

loop current: The amount of electric current flowing through a loop that makes the algebraic sum of the *RI* voltage drops around the loop equal to the algebraic sum of the voltage sources in the loop.

lower triangular matrix: A matrix with zeros above the main diagonal.

lower triangular part (of A): A lower triangular matrix whose entries on the main diagonal and below agree with those in A.

LU factorization: The representation of a matrix A in the form A = LU where L is a square lower triangular matrix with ones on the diagonal (a unit lower triangular matrix) and U is an echelon form of A.

M

magnitude (of a vector): See norm.

main diagonal (of a matrix): The entries with equal row and column indices.

mapping: See transformation.

Markov chain: A sequence of probability vectors \mathbf{x}_0 , \mathbf{x}_1 , \mathbf{x}_2 ,..., together with a stochastic matrix P such that $\mathbf{x}_{k+1} = P\mathbf{x}_k$ for k = 0, 1, 2, ...

matrix: A rectangular array of numbers.

matrix equation: An equation that involves at least one matrix; for instance, $A\mathbf{x} = \mathbf{b}$.

matrix for T **relative to bases** \mathcal{B} **and** \mathcal{C} **:** A matrix M for a linear transformation $T: V \to W$ with the property that $[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$ for all \mathbf{x} in V, where \mathcal{B} is a basis for V and \mathcal{C} is a basis for W. When W = V and $\mathcal{C} = \mathcal{B}$, the matrix M is called the \mathcal{B} -matrix for T and is denoted by $[T]_{\mathcal{B}}$.

matrix of observations: A $p \times N$ matrix whose columns are observation vectors, each column listing p measurements made on an individual or object in a specified population or set.

matrix transformation: A mapping $\mathbf{x} \mapsto A\mathbf{x}$, where A is an $m \times n$ matrix and \mathbf{x} represents any vector in \mathbb{R}^n .

maximal linearly independent set (in V): A linearly independent set \mathcal{B} in V such that if a vector \mathbf{v} in V but not in \mathcal{B} is added to \mathcal{B} , then the new set is linearly dependent.

mean-deviation form (of a matrix of observations): A matrix whose row vectors are in mean-deviation form. For each row, the entries sum to zero.

mean-deviation form (of a vector): A vector whose entries sum to zero.

mean square error: The error of an approximation in an inner product space, where the inner product is defined by a definite integral.

migration matrix: A matrix that gives the percentage movement between different locations, from one period to the next.

minimal spanning set (for a subspace H): A set \mathcal{B} that spans H and has the property that if one of the elements of \mathcal{B} is removed from \mathcal{B} , then the new set does not span H.

 $m \times n$ matrix: A matrix with m rows and n columns.

Moore–Penrose inverse: *See* pseudoinverse.

multiple regression: A linear model involving several independent variables and one dependent variable.

N

nearly singular matrix: An ill-conditioned matrix.

negative definite matrix: A symmetric matrix A such that $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$.

negative definite quadratic form: A quadratic form Q such that $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$.

negative semidefinite matrix: A symmetric matrix A such that $\mathbf{x}^T A \mathbf{x} \leq 0$ for all \mathbf{x} .

negative semidefinite quadratic form: A quadratic form Q such that $Q(\mathbf{x}) \leq 0$ for all \mathbf{x} .

nonhomogeneous equation: An equation of the form $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} \neq \mathbf{0}$, possibly written as a vector equation or as a system of linear equations.

nonsingular (matrix): An invertible matrix.

nontrivial solution: A nonzero solution of a homogeneous equation or system of homogeneous equations.

nonzero (matrix or vector): A matrix (with possibly only one row or column) that contains at least one nonzero entry.

norm (or **length**, of **v**): The scalar $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

normal equations: The system of equations represented by $A^T A \mathbf{x} = A^T \mathbf{b}$, whose solution yields all least-squares solutions of $A \mathbf{x} = \mathbf{b}$. In statistics, a common notation is $X^T X \boldsymbol{\beta} = X^T \mathbf{v}$.

normalizing (a nonzero vector \mathbf{v}): The process of creating a unit vector \mathbf{u} that is a positive multiple of \mathbf{v} .

normal vector (to a subspace V of \mathbb{R}^n): A vector \mathbf{n} in \mathbb{R}^n such that $\mathbf{n} \cdot \mathbf{x} = 0$ for all \mathbf{x} in V.

null space (of an $m \times n$ matrix A): The set Nul A of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. Nul $A = \{\mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0}\}$.

0

observation vector: The vector \mathbf{y} in the linear model $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where the entries in \mathbf{y} are the observed values of a dependent variable.

one-to-one (mapping): A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that each **b** in \mathbb{R}^m is the image of *at most* one **x** in \mathbb{R}^n .

onto (mapping): A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that each **b** in \mathbb{R}^m is the image of *at least* one **x** in \mathbb{R}^n .

- **open ball B**(\mathbf{p} , δ) in \mathbb{R}^n : The set { $\mathbf{x} : ||\mathbf{x} \mathbf{p}|| < \delta$ } in \mathbb{R}^n , where $\delta > 0$.
- **open set** S in \mathbb{R}^n : A set that contains none of its boundary points. (Equivalently, S is open if every point of S is an interior point.)
- origin: The zero vector.
- orthogonal basis: A basis that is also an orthogonal set.
- **orthogonal complement** (of W): The set W^{\perp} of all vectors orthogonal to W.
- **orthogonal decomposition**: The representation of a vector \mathbf{y} as the sum of two vectors, one in a specified subspace W and the other in W^{\perp} . In general, a decomposition $\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$, where $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal basis for a subspace that contains \mathbf{v} .
- **orthogonally diagonalizable** (matrix): A matrix A that admits a factorization, $A = PDP^{-1}$, with P an orthogonal matrix $(P^{-1} = P^T)$ and D diagonal.
- orthogonal matrix: A square invertible matrix U such that $U^{-1} = U^T$.
- orthogonal projection of y onto u (or onto the line through u and the origin, for $u \neq 0$): The vector \hat{y} defined by $\hat{y} = \frac{y \cdot u}{u \cdot u} u$.
- orthogonal projection of y onto W: The unique vector $\hat{\mathbf{y}}$ in W such that $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to W. Notation: $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$.
- **orthogonal set**: A set S of vectors such that $\mathbf{u} \cdot \mathbf{v} = 0$ for each distinct pair \mathbf{u} , \mathbf{v} in S.
- **orthogonal to W**: Orthogonal to every vector in W.
- **orthonormal basis**: A basis that is an orthogonal set of unit vectors.
- orthonormal set: An orthogonal set of unit vectors.
- **outer product:** A matrix product $\mathbf{u}\mathbf{v}^T$ where \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n viewed as $n \times 1$ matrices. (The transpose symbol is on the "outside" of the symbols \mathbf{u} and \mathbf{v} .)
- **overdetermined system**: A system of equations with more equations than unknowns.

P

- parallel flats: Two or more flats such that each flat is a translate of the other flats.
- parallelogram rule for addition: A geometric interpretation of the sum of two vectors \mathbf{u} , \mathbf{v} as the diagonal of the parallelogram determined by \mathbf{u} , \mathbf{v} , and $\mathbf{0}$.
- **parameter vector:** The unknown vector $\boldsymbol{\beta}$ in the linear model $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$.
- **parametric equation of a line**: An equation of the form $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ (t in \mathbb{R}).
- **parametric equation of a plane**: An equation of the form $\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$ (s, t in \mathbb{R}), with \mathbf{u} and \mathbf{v} linearly independent.
- partitioned matrix (or block matrix): A matrix whose entries
 are themselves matrices of appropriate sizes.

- **permuted lower triangular matrix**: A matrix such that a permutation of its rows will form a lower triangular matrix.
- **permuted LU factorization:** The representation of a matrix A in the form A = LU where L is a square matrix such that a permutation of its rows will form a unit lower triangular matrix, and U is an echelon form of A.
- **pivot**: A nonzero number that either is used in a pivot position to create zeros through row operations or is changed into a leading 1, which in turn is used to create zeros.
- pivot column: A column that contains a pivot position.
- **pivot position:** A position in a matrix A that corresponds to a leading entry in an echelon form of A.
- **plane through u, v, and the origin**: A set whose parametric equation is $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$ (s, t in \mathbb{R}), with \mathbf{u} and \mathbf{v} linearly independent.
- **polar decomposition** (of A): A factorization A = PQ, where P is an $n \times n$ positive semidefinite matrix with the same rank as A, and Q is an $n \times n$ orthogonal matrix.
- **polygon**: A polytope in \mathbb{R}^2 .
- **polyhedron**: A polytope in \mathbb{R}^3 .
- **polytope**: The convex hull of a finite set of points in \mathbb{R}^n (a special type of compact convex set).
- **positive combination** (of points $\mathbf{v}_1, \dots, \mathbf{v}_m$ in \mathbb{R}^n): A linear combination $c_1\mathbf{v}_1 + \dots + c_m\mathbf{v}_m$, where all $c_i \geq 0$.
- **positive definite matrix**: A symmetric matrix *A* such that $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- **positive definite quadratic form:** A quadratic form Q such that $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- **positive hull** (of a set S): The set of all positive combinations of points in S, denoted by pos S.
- **positive semidefinite matrix**: A symmetric matrix A such that $\mathbf{x}^T A \mathbf{x} \ge 0$ for all \mathbf{x} .
- **positive semidefinite quadratic form:** A quadratic form Q such that $Q(\mathbf{x}) \ge 0$ for all \mathbf{x} .
- **power method:** An algorithm for estimating a strictly dominant eigenvalue of a square matrix.
- **principal axes** (of a quadratic form $\mathbf{x}^T A \mathbf{x}$): The orthonormal columns of an orthogonal matrix P such that $P^{-1} A P$ is diagonal. (These columns are unit eigenvectors of A.) Usually the columns of P are ordered in such a way that the corresponding eigenvalues of A are arranged in decreasing order of magnitude.
- **principal components** (of the data in a matrix B of observations): The unit eigenvectors of a sample covariance matrix S for B, with the eigenvectors arranged so that the corresponding eigenvalues of S decrease in magnitude. If B is in mean-deviation form, then the principal components are the right singular vectors in a singular value decomposition of B^T .
- **probability vector**: A vector in \mathbb{R}^n whose entries are nonnegative and sum to one.

- **product** Ax: The linear combination of the columns of A using the corresponding entries in x as weights.
- **production vector:** The vector in the Leontief input-output model that lists the amounts that are to be produced by the various sectors of an economy.
- **profile** (of a set S in \mathbb{R}^n): The set of extreme points of S.
- **projection matrix** (or **orthogonal projection matrix**): A symmetric matrix B such that $B^2 = B$. A simple example is $B = \mathbf{v}\mathbf{v}^T$, where \mathbf{v} is a unit vector.
- **proper subset of a set** S: A subset of S that does not equal S itself
- **proper subspace**: Any subspace of a vector space V other than V itself.
- **pseudoinverse** (of A): The matrix $VD^{-1}U^T$, when UDV^T is a reduced singular value decomposition of A.

0

- **QR factorization**: A factorization of an $m \times n$ matrix A with linearly independent columns, A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col A, and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.
- **quadratice Bézier curve**: A curve whose description may be written in the form $\mathbf{g}(t) = (1-t)\mathbf{f}_0(t) + t\mathbf{f}_1(t)$ for $0 \le t \le 1$, where $\mathbf{f}_0(t) = (1-t)\mathbf{p}_0 + t\mathbf{p}_1$ and $\mathbf{f}_1(t) = (1-t)\mathbf{p}_1 + t\mathbf{p}_2$. The points \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 are called the *control points* for the curve.
- **quadratic form**: A function Q defined for \mathbf{x} in \mathbb{R}^n by $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is an $n \times n$ symmetric matrix (called the **matrix of the quadratic form**).

R

- **range** (of a linear transformation T): The set of all vectors of the form $T(\mathbf{x})$ for some \mathbf{x} in the domain of T.
- rank (of a matrix A): The dimension of the column space of A, denoted by rank A.
- **Rayleigh quotient**: $R(\mathbf{x}) = (\mathbf{x}^T A \mathbf{x})/(\mathbf{x}^T \mathbf{x})$. An estimate of an eigenvalue of A (usually a symmetric matrix).
- recurrence relation: See difference equation.
- reduced echelon form (or reduced row echelon form): A reduced echelon matrix that is row equivalent to a given matrix
- **reduced echelon matrix**: A rectangular matrix in echelon form that has these additional properties: The leading entry in each nonzero row is 1, and each leading 1 is the only nonzero entry in its column.
- **reduced singular value decomposition**: A factorization $A = UDV^T$, for an $m \times n$ matrix A of rank r, where U is $m \times r$ with orthonormal columns, D is an $r \times r$ diagonal matrix with the r nonzero singular values of A on its diagonal, and V is $n \times r$ with orthonormal columns.

- **regression coefficients:** The coefficients β_0 and β_1 in the least-squares line $y = \beta_0 + \beta_1 x$.
- **regular solid**: One of the five possible regular polyhedrons in \mathbb{R}^3 : the tetrahedron (4 equal triangular faces), the cube (6 square faces), the octahedron (8 equal triangular faces), the dodecahedron (12 equal pentagonal faces), and the icosahedron (20 equal triangular faces).
- **regular stochastic matrix**: A stochastic matrix P such that some matrix power P^k contains only strictly positive entries.
- relative change or relative error (in **b**): The quantity $\|\Delta \mathbf{b}\|/\|\mathbf{b}\|$ when **b** is changed to $\mathbf{b} + \Delta \mathbf{b}$.
- **repellor** (of a dynamical system in \mathbb{R}^2): The origin when all trajectories except the constant zero sequence or function tend away from $\mathbf{0}$.
- **residual vector**: The quantity ϵ that appears in the general linear model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon$; that is, $\epsilon = \mathbf{y} X\boldsymbol{\beta}$, the difference between the observed values and the predicted values (of γ).
- **Re x**: The vector in \mathbb{R}^n formed from the real parts of the entries of a vector **x** in \mathbb{C}^n .
- **right inverse** (of A): Any rectangular matrix C such that AC = I.
- **right-multiplication** (by A): Multiplication of a matrix on the right by A.
- **right singular vectors** (of A): The columns of V in the singular value decomposition $A = U \Sigma V^T$.
- **roundoff error:** Error in floating point arithmetic caused when the result of a calculation is rounded (or truncated) to the number of floating point digits stored. Also, the error that results when the decimal representation of a number such as 1/3 is approximated by a floating point number with a finite number of digits.
- **row–column rule**: The rule for computing a product AB in which the (i, j)-entry of AB is the sum of the products of corresponding entries from row i of A and column j of B.
- row equivalent (matrices): Two matrices for which there exists a (finite) sequence of row operations that transforms one matrix into the other.
- **row reduction algorithm:** A systematic method using elementary row operations that reduces a matrix to echelon form or reduced echelon form.
- row replacement: An elementary row operation that replaces one row of a matrix by the sum of the row and a multiple of another row.
- **row space** (of a matrix A): The set Row A of all linear combinations of the vectors formed from the rows of A; also denoted by Col A^T .
- **row sum**: The sum of the entries in a row of a matrix.
- row vector: A matrix with only one row, or a single row of a matrix that has several rows.
- **row-vector rule for computing Ax:** The rule for computing a product Ax in which the ith entry of Ax is the sum of the

products of corresponding entries from row i of A and from the vector \mathbf{x} .

S

- **saddle point** (of a dynamical system in \mathbb{R}^2): The origin when some trajectories are attracted to $\mathbf{0}$ and other trajectories are repelled from $\mathbf{0}$.
- **same direction** (as a vector \mathbf{v}): A vector that is a positive multiple of \mathbf{v} .
- **sample mean**: The average M of a set of vectors, $\mathbf{X}_1, \dots, \mathbf{X}_N$, given by $M = (1/N)(\mathbf{X}_1 + \dots + \mathbf{X}_N)$.
- scalar: A (real) number used to multiply either a vector or a matrix.
- **scalar multiple of u by c**: The vector c **u** obtained by multiplying each entry in **u** by c.
- scale (a vector): Multiply a vector (or a row or column of a matrix) by a nonzero scalar.
- **Schur complement:** A certain matrix formed from the blocks of a 2×2 partitioned matrix $A = [A_{ij}]$. If A_{11} is invertible, its Schur complement is given by $A_{22} A_{21}A_{11}^{-1}A_{12}$. If A_{22} is invertible, its Schur complement is given by $A_{11} A_{12}A_{22}^{-1}A_{21}$.
- **Schur factorization** (of A, for real scalars): A factorization $A = URU^T$ of an $n \times n$ matrix A having n real eigenvalues, where U is an $n \times n$ orthogonal matrix and R is an upper triangular matrix.
- set spanned by $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$: The set Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.
- **signal** (or **discrete-time signal**): A doubly infinite sequence of numbers, $\{y_k\}$; a function defined on the integers; belongs to the vector space \mathbb{S} .
- **similar** (matrices): Matrices A and B such that $P^{-1}AP = B$, or equivalently, $A = PBP^{-1}$, for some invertible matrix P.
- **similarity transformation:** A transformation that changes A into $P^{-1}AP$.
- **simplex**: The convex hull of an affinely independent finite set of vectors in \mathbb{R}^n .
- singular (matrix): A square matrix that has no inverse.
- singular value decomposition (of an $m \times n$ matrix A): $A = U \Sigma V^T$, where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ matrix with nonnegative entries on the main diagonal (arranged in decreasing order of magnitude) and zeros elsewhere. If rank A = r, then Σ has exactly r positive entries (the nonzero singular values of A) on the diagonal.
- **singular values** (of A): The (positive) square roots of the eigenvalues of $A^{T}A$, arranged in decreasing order of magnitude.
- **size** (of a matrix): Two numbers, written in the form $m \times n$, that specify the number of rows (m) and columns (n) in the matrix.
- **solution** (of a linear system involving variables x_1, \ldots, x_n): A list (s_1, s_2, \ldots, s_n) of numbers that makes each equation in

- the system a true statement when the values s_1, \ldots, s_n are substituted for x_1, \ldots, x_n , respectively.
- **solution set**: The set of all possible solutions of a linear system.

 The solution set is empty when the linear system is inconsistent.
- **Span** $\{v_1, \ldots, v_p\}$: The set of all linear combinations of v_1, \ldots, v_p . Also, the *subspace spanned* (or *generated*) by v_1, \ldots, v_p .
- **spanning set** (for a subspace H): Any set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in H such that $H = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.
- **spectral decomposition** (of A): A representation

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

- where $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of eigenvectors of A, and $\lambda_1, \dots, \lambda_n$ are the corresponding eigenvalues of A.
- **spiral point** (of a dynamical system in \mathbb{R}^2): The origin when the trajectories spiral about **0**.
- **stage-matrix model**: A difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$ where \mathbf{x}_k lists the number of females in a population at time k, with the females classified by various stages of development (such as juvenile, subadult, and adult).
- **standard basis**: The basis $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ for \mathbb{R}^n consisting of the columns of the $n \times n$ identity matrix, or the basis $\{1, t, \dots, t^n\}$ for \mathbb{P}_n .
- **standard matrix** (for a linear transformation T): The matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in the domain of T.
- **standard position**: The position of the graph of an equation $\mathbf{x}^T A \mathbf{x} = c$, when A is a diagonal matrix.
- **state vector**: A probability vector. In general, a vector that describes the "state" of a physical system, often in connection with a difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$.
- **steady-state vector** (for a stochastic matrix P): A probability vector \mathbf{q} such that $P\mathbf{q} = \mathbf{q}$.
- **stiffness matrix**: The inverse of a flexibility matrix. The *j*th column of a stiffness matrix gives the loads that must be applied at specified points on an elastic beam in order to produce a unit deflection at the *j*th point on the beam.
- **stochastic matrix**: A square matrix whose columns are probability vectors.
- **strictly dominant eigenvalue**: An eigenvalue λ_1 of a matrix A with the property that $|\lambda_1| > |\lambda_k|$ for all other eigenvalues λ_k of A.
- **submatrix** (of *A*): Any matrix obtained by deleting some rows and/or columns of *A*; also, *A* itself.
- **subspace**: A subset H of some vector space V such that H has these properties: (1) the zero vector of V is in H; (2) H is closed under vector addition; and (3) H is closed under multiplication by scalars.
- **supporting hyperplane** (to a compact convex set S in \mathbb{R}^n): A hyperplane H = [f:d] such that $H \cap S \neq \emptyset$ and either $f(x) \leq d$ for all x in S or $f(x) \geq d$ for all x in S.
- **symmetric matrix**: A matrix A such that $A^T = A$.

system of linear equations (or a linear system): A collection of one or more linear equations involving the same set of variables, say, x_1, \ldots, x_n .

Т

- **tetrahedron**: A three-dimensional solid object bounded by four equal triangular faces, with three faces meeting at each vertex.
- **total variance:** The trace of the covariance matrix *S* of a matrix of observations.
- **trace** (of a square matrix A): The sum of the diagonal entries in A, denoted by tr A.
- **trajectory**: The graph of a solution $\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots\}$ of a dynamical system $\mathbf{x}_{k+1} = A\mathbf{x}_k$, often connected by a thin curve to make the trajectory easier to see. Also, the graph of $\mathbf{x}(t)$ for $t \geq 0$, when $\mathbf{x}(t)$ is a solution of a differential equation $\mathbf{x}'(t) = A\mathbf{x}(t)$.
- **transfer matrix**: A matrix *A* associated with an electrical circuit having input and output terminals, such that the output vector is *A* times the input vector.
- **transformation** (or **function**, or **mapping**) T from \mathbb{R}^n to \mathbb{R}^m : A rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a unique vector $T(\mathbf{x})$ in \mathbb{R}^m . Notation: $T: \mathbb{R}^n \to \mathbb{R}^m$. Also, $T: V \to W$ denotes a rule that assigns to each \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W.
- **translation** (by a vector \mathbf{p}): The operation of adding \mathbf{p} to a vector or to each vector in a given set.
- **transpose** (of A): An $n \times m$ matrix A^T whose columns are the corresponding rows of the $m \times n$ matrix A.
- **trend analysis**: The use of orthogonal polynomials to fit data, with the inner product given by evaluation at a finite set of points.
- triangle inequality: $\|u + v\| \le \|u\| + \|v\|$ for all u, v.
- **triangular matrix**: A matrix A with either zeros above or zeros below the diagonal entries.
- **trigonometric polynomial**: A linear combination of the constant function 1 and sine and cosine functions such as $\cos nt$ and $\sin nt$.
- trivial solution: The solution $\mathbf{x} = \mathbf{0}$ of a homogeneous equation $A\mathbf{x} = \mathbf{0}$.

U

- **uncorrelated variables**: Any two variables x_i and x_j (with $i \neq j$) that range over the *i*th and *j*th coordinates of the observation vectors in an observation matrix, such that the covariance s_{ij} is zero.
- **underdetermined system**: A system of equations with fewer equations than unknowns.
- **uniqueness question**: Asks, "If a solution of a system exists, is it unique—that is, is it the only one?"

- unit consumption vector: A column vector in the Leontief input—output model that lists the inputs a sector needs for each unit of its output; a column of the consumption matrix.
- unit lower triangular matrix: A square lower triangular matrix with ones on the main diagonal.
- unit vector: A vector v such that $\|\mathbf{v}\| = 1$.
- **upper triangular matrix**: A matrix U (not necessarily square) with zeros below the diagonal entries u_{11}, u_{22}, \ldots

V

Vandermonde matrix: An $n \times n$ matrix V or its transpose, when V has the form

$$V = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}$$

- **variance** (of a variable x_j): The diagonal entry s_{jj} in the covariance matrix S for a matrix of observations, where x_j varies over the jth coordinates of the observation vectors.
- **vector**: A list of numbers; a matrix with only one column. In general, any element of a vector space.
- vector addition: Adding vectors by adding corresponding entries.
- **vector equation**: An equation involving a linear combination of vectors with undetermined weights.
- vector space: A set of objects, called vectors, on which two operations are defined, called addition and multiplication by scalars. Ten axioms must be satisfied. See the first definition in Section 4.1.
- **vector subtraction:** Computing $\mathbf{u} + (-1)\mathbf{v}$ and writing the result as $\mathbf{u} \mathbf{v}$.

W

weighted least squares: Least-squares problems with a weighted inner product such as

$$\langle \mathbf{x}, \mathbf{y} \rangle = w_1^2 x_1 y_1 + \dots + w_n^2 x_n y_n.$$

weights: The scalars used in a linear combination.

7

- **zero subspace**: The subspace $\{0\}$ consisting of only the zero vector.
- **zero vector**: The unique vector, denoted by $\mathbf{0}$, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all \mathbf{u} . In \mathbb{R}^n , $\mathbf{0}$ is the vector whose entries are all zeros.