CHƯƠNG 2. CHUYỂN TIẾP P-N DIODE BÁN DẪN

Giảng viên: Phan T. Thanh Huyền Khoa Điện tử - Viễn thông

NỘI DUNG

- SƠ LƯỢC CẦU TRÚC CỦA NGUYÊN TỬ
- * CÂU TRÚC VÙNG NĂNG LƯỢNG
- ❖ CHẤT BÁN DẪN
- ❖ CHUYỂN TIẾP P N
- ❖ DIODE BÁN DẪN

CHUYỂN TIẾP P-N

SỰ HÌNH THÀNH CHUYỂN TIẾP P-N

ĐẶC TUYẾN VOLT - AMPERE

ĐÁNH THỦNG CHUYỂN TIẾP P-N

p-type semiconductor region

The combining of electrons and holes depletes the holes in the p-region and the electrons in the n-region near the junction.

Chuyển tiếp P-N được hình thành khi cho bán dẫn N tiếp xúc công nghệ với bán dẫn P.

Sự hình thành:

Chênh lệch nồng độ hạt tải điện đa số trong bán dẫn p và n

Sự hình thành:

Hiện tượng khuếch tán hạt tải điện đa số

Sự hình thành:

Hình thành vùng nghèo

Hình thành điện trường tiếp xúc trên vùng nghèo.

- ❖ Sự hình thành chuyển tiếp p-n (trạng thái cân bằng của chuyển tiếp p-n):
- Do chênh lệch nồng độ hạt tải điện đa số trong bán dẫn p và n, dẫn đến hiện tượng khuếch tán:
 - Diện tử khuếch tán từ miền n sang miền p
 - ✓Lỗ trống khuếch tán từ miền p sang miền n
- Kết quả của quá trình khuếch tán hạt đa số:
 - \checkmark Hình thành dòng điện khuếch tán I_{kt} có chiều hướng từ bán dẫn p sang bán dẫn n.
 - ✓ Hình thành vùng nghèo (depletion region)/vùng điện tích không gian (space charge region).

- * Sự hình thành chuyển tiếp p-n:
- Do có vùng nghèo nên hình thành điện trường tiếp xúc, hướng từ bán dẫn n sang bán dẫn p.
- Điện trường tiếp xúc cản trở chuyển động của hạt tải đa số nên làm giảm dòng khuếch tán, đồng thời gây ra hiện tượng trôi/cuốn hạt tải điện thiểu số qua lớp tiếp xúc → dòng cuốn I_c, hướng từ bán dẫn n sang bán dẫn p:
 - √Điện trường cuốn điện tử từ miền p sang miền n
 - √Điện trường cuốn lỗ trống từ miền n sang miền p

- Sự hình thành chuyển tiếp p-n:
- Khi dòng khuếch tán cân bằng với dòng cuốn p-n thì chuyển tiếp p-n đạt trạng thái cân bằng động.
- Ở trạng thái cân bằng động, tiếp giáp p-n có bề dày xác định (10⁻⁶m), điện trường tiếp xúc và hàng rào thế năng cũng có các giá trị xác định.
- Hiệu điện thế tiếp xúc (*Hàng rào thế năng barrier* potential): $V_{bi} = E.d$
- Năng lượng của hàng rào thế là qV_{bi}

❖ Giản đồ năng lượng:

Giản đồ năng lượng:

Phân cực:

* Phân cực:

- Cung cấp điện áp ngoài U_n cho chuyển tiếp p-n \rightarrow chuyển tiếp p-n được phân cực.
- \rightarrow có thêm điện trường ngoài E_n tác động lên chuyển tiếp.
- 2 trạng thái phân cực:
 - **✓** Thuận (forward bias)
 - ✓ Ngược (reverse bias).

- Điện áp 1 chiều có cực dương nối vào bán dẫn p và cực âm nối vào bán dẫn n.
- Điện trường ngoài ngược hướng với điện trường tiếp xúc, nên điện trường tổng cộng tác dụng trên lớp chuyển tiếp giảm.
- Điện trường tổng hướng từ p sang n → có hiện tượng "phun" hạt tải đa số vào miền nghèo, đồng thời cản trở chuyển động của hạt tải điện thiểu số qua lớp chuyển tiếp.

- Điện trường ngoài làm tăng dòng khuếch tán và giảm dòng cuốn.
- Điện trường ngoài làm giảm độ rộng vùng nghèo → giảm điện trường tiếp xúc và giảm hàng rào thế năng.
- Khi tiếp giáp p-n được phân cực thuận, có dòng điện cường độ lớn, hướng từ bán dẫn p sang bán dẫn n, gọi là dòng điện thuận I_{th} .

- Điện áp 1 chiều có cực dương nối vào bán dẫn n và cực âm nối vào bán dẫn p.
- Điện trường ngoài cùng hướng với điện trường tiếp xúc, nên điện trường tổng cộng tác dụng trên lớp chuyển tiếp tăng.
 - Điện trường tổng hướng từ p sang $n \rightarrow$ cản trở chuyển động của hạt tải điện đa số \rightarrow *miền nghèo mở rộng,* điện trở của vùng nghèo tăng lên.

- Điện trường ngoài làm giảm dòng khuếch tán và tăng dòng cuốn (rất nhỏ so với dòng khuếch tán).
- Khi tiếp giáp p-n được phân cực thuận, có dòng điện rất nhỏ, hướng từ bán dẫn n sang bán dẫn p, gọi là dòng điện ngược I_{ng} (có xu hướng đạt bão hòa).
- Kết luận: Chuyển tiếp p-n có tính dẫn điện một chiều (Tính chỉnh lưu, tính chất van).

ĐẶC TUYẾN VOLT-AMPERE

ĐẶC TUYỂN VOLT-AMPERE

 $I_{R}(\mu A)$

ĐẶC TUYẾN VOLT-AMPERE

- \Rightarrow Đặc tuyến V-A: I = f(V)
- ❖ Gồm 3 vùng:
- Vùng phân cực thuận (V > 0): Khi $V > V_K$ thì dòng điện thuận tăng nhanh.
- **Vựng phân cực ngược (V < 0):** Khi $V_{BR} < V < 0$ thì dòng ngược bão hòa rất nhỏ (vài chục nA đến vài μA).
- Vùng đánh thủng: Dòng điện ngược tăng nhanh khi điện áp phân cực ngược đạt đến điện áp đánh thủng V_{BR} .

ĐẶC TUYỂN VOLT-AMPERE

Phương trình:

$$I = I_0 \left[\exp\left(\frac{V}{V_T}\right) - 1 \right]$$

- I₀ là dòng ngược bão hòa
- V là điện áp phân cực
- V_T là điện thế nhiệt

$$V_T = \frac{1,38.10^{-23}.T}{1,6.10^{-19}}$$

ĐẶC TUYỂN VOLT-AMPERE

Phương trình:

$$I = I_0 \left[\exp\left(\frac{V}{V_T}\right) - 1 \right]$$

- Dòng điện qua chuyển tiếp p-n phụ thuộc vào nhiệt độ thông qua V_T và phụ thuộc vào dòng bão hòa ngược I_0 .
 - Dòng bão hòa ngược phụ thuộc mạnh vào nhiệt độ với mức xấp xỉ tăng *gấp đôi* khi nhiệt độ tăng 10°C; hay -
 - 2,1mV/°C (Si); -2,3mV/°C (Ge).

ĐÁNH THỦNG CHUYỂN TIẾP P-N

Hiện tượng đánh thủng: Khi điện áp phân cực ngược đặt lên chuyển tiếp vượt quá giá trị điện áp giới hạn V_{BR}

→ dòng ngược tăng đột biến.

- 2 hiệu ứng đánh thủng:
- Hiệu ứng Zener
- Hiệu ứng thác lũ

Avalanche Breakdown

* Cơ chế phát sinh điện tử:

ĐÁNH THỦNG CHUYỂN TIẾP P-N

S.No.	Avalanche breakdown	Zener breakdown
1.	The doping in the formation of P-N Junction is low	The doping in the formation of P-N junction is high
2.	The covalent bonds break as a result of collision of electrons and holes with the valence electrons	In this the covalent bonds break spontaneously.
3.	Higher reverse potential is required for breakdown.	Low reverse potential is required for breakdown
4.	In this the thermally generated electrons due to electric field ionize other atoms and release electrons.	In this the covalent bonds near the junction break due to high reverse potential ~20 V and consequently electrons become free.