Theorem (Lawler, Schramm, Werner). $\xi(1,1) = \frac{5}{4}$, $\xi(2,0) = \frac{2}{3}$.

1 Conformal maps

We consider a domain $U \subseteq \mathbb{C}$ (i.e an open and connected subset of the complex plane). We say U is *simply connected* if $\mathbb{C} \setminus U$ is connected.

We say $f: U \to \mathbb{C}$ is holomorphic if it is complex differentiable. If f is holomorphic and injective we say it is univalent. If $f: U \to V$ is holomorphic and bijective we say f is a conformal map.

Remark. If $f: U \to V$ is conformal then

$$f(w) = f(z) + f'(z)(w - z) + o(|w - z|)$$

and $f'(z) \neq 0$. Hence f locally looks like a translation combined with a scaling and rotation.

We will work in 2d throughout this course. This gives a richness to the conformal maps, as shown by the following theorem.

Theorem (Riemann mapping theorem). If $U \subsetneq \mathbb{C}$ is a simply connected domain and $z \in U$ then there exists a unique conformal map $f : \mathbb{D} \to U$ with f(0) = z and $\arg f'(0) = 0$.

Where we have taken $\mathbb{D} = \{z : |z| < 1\}$ to be the open unit disc. We will also take $\mathbb{H} = \{z : \Im z > 0\}$ to be the open upper half-plane.

Examples.

- Let $f(z) = \frac{z-i}{z+i}$. Then $f: \mathbb{H} \to \mathbb{D}$ is a conformal map.
- $f: \mathbb{D} \to \mathbb{D}$ is conformal if and only if $f(w) = \lambda \frac{w-z}{\bar{z}w-1}$ for some $\lambda, z \in \mathbb{C}$ with $|\lambda| = 1, z \in \mathbb{D}$.
- $f: \mathbb{H} \to \mathbb{H}$ is conformal if and only if $f(z) = \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ and ad-bc=1.
- Given a simply connected domain D and disjioint subarcs $A, B \subseteq \partial D$, there is a unique conformal map from U to the rectangle such that A, B are mapped to parallel sides with length 1. The length L of the other sides is called the extremal length $\mathrm{EL}_D(A,B)$ and is unique.

Recall that if f = u + iv (with u, v denoting the real/imaginary parts of f respectively) then f is holomorphic iff it satisfies the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

It follows from this that if f is holomorphic,

$$\Delta u = \left(\frac{\partial}{\partial x}\right)^2 u + \left(\frac{\partial}{\partial y}\right)^2 u = \frac{\partial^2}{\partial x \partial y} v - \frac{\partial^2}{\partial x \partial y} v = 0$$

and similarly $\Delta v = 0$.

Conversely, if $u:U\to\mathbb{R}$ (for U a simply connected domain) is harmonic there exists $v:U\to\mathbb{R}$ such that u+iv is holomorphic.

A consequence of this is that if u is harmonic on a bounded domain D and continuous on \overline{D} , for $z \in D$ and B a Brownian motion starting from z and $\tau := \inf\{t : B_t \notin D\}$, we have $u(z) = \mathbb{E}_z[u(B_\tau)]$ (see Part III Advanced Probability).

Conformal invariance of 2d Brownian motion

Let $f: D \to \tilde{D}$ be a conformal map and B be a Brownian motion starting at $z \in \mathbb{C}$. Define $\tau = \inf\{t: B_t \notin D\}$ and let $\sigma(t) = \inf\{s: \int_0^s |f'(B_r)|^2 dr = t\}$. Then $f(B_{\sigma(t)})$ has the law of a Brownian motion starting from f(z) until exiting \tilde{D}

Proof. See Part III Stochastic Calculus.

We have seen that for u harmonic on D and continuous on \overline{D} we have $u(z) = \mathbb{E}_z[u(B_{\tau_D})]$. We get the following corollary by taking a Brownian motion until it hits $\partial B(z,r)$.

Corollary (Mean value property). For $B(z,r) \subseteq D$

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{i\theta}) d\theta.$$

Proposition (Strong maximum principle). Let u be harmonic in D, D a domain. If u attains a global maximum in D then u is constant.

Proof. Follows fom mean value property and compactness of paths connecting points. \Box

Proposition (Maximum modulus principle). Let $f: D \to \mathbb{C}$ holomorphic, D a domain. Then if |f| attains a global maximum in D, f is constant.

Proof. Let $K \subseteq D$ be compact. By considering f + M for M > 0 large enough we may assume |f| > 0 on K. Thus $\log |f|$ is harmonic. So we can apply the strong maximum principle to see $\log |f|$ is constant on K, i.e f takes values on a circle. But this is impossible unless f' = 0 on K.

Proposition (Schwarz lemma). Let $f: \mathbb{D} \to \mathbb{D}$ be holomorphic, f(0) = 0. Then $|f(z)| \leq |z|$ for all $z \in \mathbb{D}$. Furthermore if |f(z)| = |z| for some $z \neq 0$ then $f(w) = we^{i\theta}$ for some $\theta \in \mathbb{R}$.

Proof. Define the holomorphic function $g: \mathbb{C} \to \mathbb{C}$ by

$$g(z) = \begin{cases} \frac{f(z)}{z} & \text{for } z \neq 0\\ f'(0) & \text{for } z = 0 \end{cases}.$$

Then |z|=1 on $\partial \mathbb{D}$, implying $|g|\leq 1$ on $\partial \mathbb{D}$. Thus $|g|\leq 1$ on \mathbb{D} by the maximum modulus principle.

If |g(z)| = 1 for some $z \in \mathbb{D}$ then g is constant since this is a maximum.

Distortion theorems for conformal maps

Let $S = \{f : \mathbb{D} \to \mathbb{C} \text{ univalent} : f(0) = 0, f'(0) = 1\}.$

Remark. We can write such f as $f(z) = z + a_2 z^2 + a_3 z^2 + \dots$

Goal: for $f \in \mathcal{S}$

- Koebe 1/4-theorem: $f(\mathbb{D}) \supseteq B(0, 1/4)$;
- Koebe distortion theorem: $\frac{1-|z|}{(1+|z|)^3} \le |f'(z)| \le \frac{1+|z|}{(1-|z|)^3}$.

Corollary. If $f:D\to \tilde{D}$ is conformal then

$$\frac{\operatorname{dist}(f(z),\partial \tilde{D})}{4\operatorname{dist}(z,\partial D)} \leq |f'(z)| \leq \frac{4\operatorname{dist}(f(z),\partial \tilde{D})}{\operatorname{dist}(z,\partial D)}.$$

Corollary. If f univalent in D, $B(z,R) \subseteq D$ then for r < 1 we have $|f'(u)| \le c(r)|f'(v)|$ for all $u, v \in B(z, rR)$.

Define

$$\Sigma = \{g : \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} : g \text{ univalent}, \ g(\infty) = \infty, \ g'(\infty) = 1\}.$$

Theorem (Area theorem). Let $g: \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C}$ be univalent with $g(z) \to \infty$ as $z \to \infty$ and $g'(z) \to 1$ as $z \to \infty$. Write $g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z} + \dots$ for g near ∞ . Then

$$\sum_{n>1} n|b_n|^2 \le 1$$

 $and\ moreover$

$$\operatorname{area}(\mathbb{C}\setminus g(\mathbb{C}\setminus\overline{\mathbb{D}}))=\pi\left(1-\sum_{n\geq 1}n|b_n|^2\right).$$

Proof. Let r > 1 and define $C_r = g(\partial D(0, r))$. Let E_r be the inner component of $\mathbb{C} \setminus C_r$. By Green's theorem

$$\begin{split} \frac{1}{2i} \int_{C_r} \overline{w} \mathrm{d}w &= \frac{1}{2i} \int_{C_r} (x - iy) (\mathrm{d}x + i \mathrm{d}y) \\ &= \frac{1}{2i} \int_{C_r} ((x - iy) \mathrm{d}x + (ix + y) \mathrm{d}y) \\ &= \frac{1}{2i} \int_{E_r} 2i \mathrm{d}xy \qquad \qquad \text{(Green's thm)} \\ &= \text{area}(E_r). \end{split}$$

while we also have

$$\begin{split} \frac{1}{2i} \int_{C_r} \overline{w} \mathrm{d}w &= \frac{1}{2i} \int_{\partial B(0,r)} \overline{g(z)} g'(z) \mathrm{d}z \\ &= \frac{1}{2} \int_0^{2\pi} \left(r e^{-i\theta} + \sum_{n \geq 1} \overline{b_n} r^{-n} e^{in\theta} \right) \left(1 - \sum_{n \geq 1} b_n r^{-n-1} e^{i(n+1)\theta} \right) r e^{i\theta} \mathrm{d}\theta \\ &= \pi \left(r^2 - \sum_{n \geq 1} n |b_n|^2 r^{-2n} \right). \end{split}$$

Now take $r \downarrow 1$.

Theorem. Let $f: \mathbb{D} \to \mathbb{C} \in \mathcal{S}$ write $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$ Then $|a_2| \leq 2$.

Proof. We claim there exists $g \in \mathcal{S}$ with $g(z)^2 = f(z^2)$ (we call g the "square-root transform" of f). Note

$$f(z^2) = z^2 (\underbrace{1 + a_2 z^2 + a_3 z^4 + \dots}_{:=h(z)})$$

and since $h \neq 0$ (by f(0) = 0 and injectivity of f), we can define $g(z) = z\sqrt{h(z)}$. Also g(0) = 0 and g'(0) = 1. To show g is univalent, suppose $g(z_1) = g(z_2)$ for some $z_1, z_2 \in \mathbb{D}$. Then $f(z_1^2) = f(z_2^2)$ so $z_1^2 = z_2^2$, i.e $z_1 = \pm z_2$. But g is an odd function and only zero at z = 0 so we have $z_1 = z_2$.

To conclude take $z \mapsto \frac{1}{q(1/z)} \in \Sigma$. This map is the same as

$$z \mapsto \frac{1}{\sqrt{f(1/z^2)}} = z - \frac{a_2}{2} \frac{1}{z} + \dots$$

so by the area theorem, $|a_2/2| \leq 1$.

Theorem (Koebe 1/4-theorem). Let $f \in \mathcal{S}$. Then $f(\mathbb{D}) \supseteq B(0, 1/4)$.

Proof. Let $w \notin f(\mathbb{D})$. Then

$$z \mapsto \frac{wf(z)}{w - f(z)} = z + \left(a_2 + \frac{1}{w}\right)z^2 + \dots$$

is in S so by the above $\left|a_2 + \frac{1}{w}\right| \leq 2$. Since $|a_2| \leq 2$ we must have $|1/w| \leq 4$. \square

If we define

$$F(w) = \frac{f\left(\frac{w+z}{1+\overline{z}w}\right) - f(z)}{(1-|z|^2)f'(z)} = w + \frac{1}{2}\left((1-|z|^2)\frac{f''(z)}{f'(z)} - 2\overline{z}\right)w^2 + \dots$$

we see

$$\left| (1 - |z|^2) \frac{f''(z)}{f'(z)} - 2\overline{z} \right| \le 4.$$

Note

$$z\frac{f''(z)}{f'(z)} = z\partial_z \log f'(z) = r\partial_r \log f'(z)$$
$$= r\partial_r \log |f'(z)| + ir\partial_r \arg(f'(z))$$

and

$$\left| \frac{zf''(z)}{f'(z)} - \frac{2r^2}{1 - r^2} \right| \le \frac{4r}{1 - r^2}$$

which implies

$$\frac{2r^2}{1-r^2} - \frac{4r}{1-r^2} \le \Re\left(z\frac{f''(z)}{f'(z)}\right) \le \frac{2r^2}{1-r^2} + \frac{4r}{1-r^2}.$$

Integrating from r = 0 to R.

$$\log \frac{1 - R}{(1 + R)^3} \le \log |f'(Re^{i\theta})| \le \log \frac{1 + R}{(1 - R)^3}.$$

So we get

Theorem (Kobe's distortion theorem). For $f \in \mathcal{S}$,

$$\frac{1-|z|}{(1+|z|)^3} \le |f'(z)| \le \frac{1+|z|}{(1-|z|)^3}.$$

Definition. $A \subseteq \mathbb{H}$ is a compact \mathbb{H} -hull if $A = \mathbb{H} \cap \overline{A}$ and $\mathbb{H} \setminus A$ is simply connected. We write $A \in \mathcal{Q}$ for such a set.

For $A \in \mathcal{Q}$, pick $g : \mathbb{H} \setminus A \to \mathbb{H}$ conformal (possible by Riemann mapping theorem) with $g(\infty) = \infty$.

Question: when does a holomorphic function extend analytically to the boundary?

Theorem (Schwarz reflection principle). Let $U \subseteq \mathbb{C}$ be a domain such that $U = \{\overline{z} : z \in U\}$. Let $U^+ = U \cap \mathbb{H}$. Let $f : U^+ \to \mathbb{C}$ be holomorphic with $\lim_{\Im z \downarrow 0} \Im f(z) = 0$. Then f extends to a holomorphic function on U with $f(\overline{z}) = \overline{f(z)}$ for all $z \in U$.

Proof. On $U^- := U \cap \{z : \Im(z) < 0\}$ set $f(z) := \overline{f(\overline{z})}$. To extend f to $U \cap \mathbb{R}$, write f = u + iv for u, v harmonic and note $\lim_{\Im z \downarrow 0} v(z) = 0$. So we have extended v via

$$v(z) = \begin{cases} -v(\overline{z}) & \Im z < 0\\ 0 & \Im z = 0 \end{cases}.$$

Then v is still harmonic as it satisfies the mean value property.

For $z \in U \cap \mathbb{R}$ pick $\varepsilon > 0$ so that $B(z, \varepsilon) \subseteq U$. Let \tilde{u} be the harmonic conjugate of v on $B(z, \varepsilon)$ (unique up to an additive constant). Then $f = u + iv = \tilde{u} + iv + \text{const}$ so f extends to $B(z, \varepsilon)$. Furthermore this matches with $f(z) = \overline{f(\overline{z})}$ on U^- . For different z these extensions match so by the identity principle we are done. \square

Now for $A \in \mathcal{Q}$, $g : \mathbb{H} \setminus A \to \mathbb{H}$ conformal with $g(\infty) = \infty$, we can Schwarz reflect. g has a simple pole at ∞ so

$$g(z) = b_{-1}z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \dots$$

Also $g(z) = \overline{g(\overline{z})} = \overline{g(z)}$ for $z \in \mathbb{R}$ which implies $b_n \in \mathbb{R}$ for all $n \ge -1$. So we can scale and then translate g so that $b_{-1} = 1$ and $b_0 = 0$.

Definition. For $A \in \mathcal{Q}$, let $g_A : \mathbb{H} \setminus A \to \mathbb{H}$ the conformal map with $g_A(z) = z + \frac{b_1}{z} + \frac{b_2}{z^2} + \dots$

Define the half-plane capacity hcap(A) to be equal to $b_1 \in \mathbb{R}$ as above.

For example we have $g_{[0,i]}(z) = \sqrt{z^2 + 1}$ and so $\text{hcap}([0,i]) = \frac{1}{2}$ (we can see this by looking at what happens to $\mathbb{H} \setminus [0,i]$ under $z \mapsto z^2 \mapsto z^2 + 1 \mapsto \sqrt{z^2 + 1}$).

If A is instead a $\overline{\mathbb{D}} \cap \mathbb{H}$ with radius 1 centred at 0, we have $g_A(z) = z + \frac{1}{z}$ so $\text{hcap}(\overline{\mathbb{D}} \cap \mathbb{H}) = 1$.

It is straighforward to see $g_{rA}(z) = rg_A(z/r)$ for any r > 0 and so $\mathrm{hcap}(rA) = r^2 \mathrm{hcap}(A)$. Can also see that $\mathrm{hcap}(A+x) = \mathrm{hcap}(A)$ for any $x \in \mathbb{R}$.

For $A \subseteq \tilde{A}$ can also see that

$$g_{\tilde{A}} = g_{g_A(\tilde{A} \backslash A)} \circ g_A = z + \frac{\operatorname{hcap}(A)}{z} + \frac{\operatorname{hcap}(g_A(\tilde{A} \backslash A))}{z} + \dots$$

so $\operatorname{hcap}(\tilde{A}) = \operatorname{hcap}(A) + \operatorname{hcap}(g_A(\tilde{A} \setminus A))$. Thus $\operatorname{hcap}(A) \leq \operatorname{hcap}(\tilde{A})$ (after seeing later that hcap is non-negative). Also $\operatorname{hcap}(A) \leq \operatorname{hcap}(\operatorname{rad}(A) \cdot \overline{\mathbb{D}} \cap \mathbb{H}) \leq \operatorname{rad}(A)^2$ where $\operatorname{rad}(A) = \sup\{|z| : z \in A\}$.

Proposition. Let $A \in \mathcal{Q}$, B be a 2D Brownian motion and $\tau = \inf\{t : B_t \notin \mathbb{H} \setminus A\}$. Then

- (i) For all $z \in \mathbb{H} \setminus A$, $\Im(z g_A(z)) = \mathbb{E}_z[\Im(B_\tau)]$;
- (ii) We have $hcap(A) = \lim_{y \to \infty} y \mathbb{E}_{iy}[\Im(B_{\tau})].$

Remark. (ii) shows that $hcap(A) \ge 0$.

Proof.

(i) Note $z \mapsto \Im(z - g_A(z))$ is harmonic and bounded. Hence

$$\Im(z - g_A(z)) = \mathbb{E}_z[\Im(B_\tau - g_A(B_\tau))] = \mathbb{E}_z[\Im(B_\tau)].$$

(ii) We have

$$\begin{aligned} \text{hcap}(A) &= \lim_{z \to \infty} z(g_A(z) - z) = \lim_{y \to \infty} iy(g_A(iy) - iy) \\ &= \lim_{y \to \infty} \Re(iy(g_A(iy) - iy)) \qquad (\text{hcap}(A) \in \mathbb{R}) \\ &= \lim_{y \to \infty} y \Im(iy - g_A(iy)) \\ &= \lim_{y \to \infty} y \mathbb{E}_{iy}[\Im(B_\tau)]. \end{aligned} \tag{by (i)}$$

The law of B_{τ} for $\tau = \inf\{t : B_t \notin D\}$ is often called the harmonic measure for z relative to D. For $z \in D$, $\omega(z, \cdot, D)$ is a probability measure on ∂D . For $A \in \mathcal{B}(\partial D)$, $\omega(\cdot, A, D)$ is harmonic (strong Markov property so satisfies mean value property).

Example.

- $\omega(0,\cdot,\mathbb{D})$ is the uniform distribution on $\partial\mathbb{D}$;
- $\omega(z,\cdot,\mathbb{D})$ may be computed using conformal invariance of Brownian motion (Example Sheet);
- $\omega(z,\cdot,\mathbb{H})$ may also be computed using conformal invariance (Example Sheet). If z=x+iy it has density on \mathbb{R} given by

$$u \mapsto \frac{1}{\pi} \frac{y}{(x-u)^2 + y^2}.$$

•

Proposition. There exists c>0 such that for any $A\in\mathcal{Q}$ and $|z|\geq 2\operatorname{rad}(A)$ we have

$$\left| g_A(z) - z - \frac{\operatorname{hcap}(A)}{z} \right| \le c \frac{\operatorname{rad}(A) \operatorname{hcap}(A)}{|z|^2}.$$

Proof. By scaling we may assume $rad(A) \leq 1$. We have

$$\Im(z - g_A(z)) = \mathbb{E}_z[\Im(B_\tau)] = \int_0^\pi \mathbb{E}_{e^{i\theta}}[\Im(B_\tau)]p(z, e^{i\theta})d\theta$$

where $p(z, e^{i\theta})$ is the density of $w(z, \theta, \mathbb{H} \setminus \overline{\mathbb{D}})$. On the Example Sheet it will be shown that

$$p(z, e^{i\theta}) = \frac{2}{\pi} \frac{\Im(z)}{|z|^2} \sin(\theta) (1 + \mathcal{O}(|z|^{-1})) \text{ as } z \to \infty.$$

Hence

$$\Im(z - g_A(z)) = \frac{2}{\pi} \frac{\Im(z)}{|z|^2} \int_0^{\pi} \mathbb{E}_{i\theta} [\Im(B_\tau)] \sin(\theta) d\theta (1 + \mathcal{O}(|z|^{-1}))$$
$$:= a \frac{\Im(z)}{|z|^2} (1 + \mathcal{O}(|z|^{-1}))$$

and so $\Im(z-g_A(z)-\frac{a}{2})=\mathcal{O}(a\frac{\Im z}{|z|^3})$. Define $h(z):=z-g_A(z)-\frac{a}{2}$. Then $\Im(h(z))$ is harmonic. Also $|\partial_x\Im(h(z))|, |\partial_y\Im(h(z))| \leq \tilde{c}\frac{a}{|z|^3}$. Then the Cauchy-Riemann equations imply similar inequalities for the real parts of h(z) so $|h'(z)| \leq \tilde{c}\frac{a}{|z|^3}$. We have $h(\infty)=0$ so $|h(re^{i\theta})| \leq \int_r^\infty |h'(se^{i\theta})| \mathrm{d}s \lesssim \frac{a}{r^2}$.

Loewner differential equation

Definition. Let $(A_t)_{t\geq 0}$ be a family of compact \mathbb{H} -hulls. We say $(A_t)_{t\geq 0}$

- (i) is strictly increasing if $A_s \subsetneq A_t$ whenever s < t;
- (ii) satisfies the local growth property if for all $T, \varepsilon > 0$ there exists $\delta > 0$ such that whenever $0 \le s \le t \le s + \delta \le T$ we have $\operatorname{diam}(g_s(A_t \setminus A_s)) \le \varepsilon$.

If (i) and (ii) are satisfied then $t \mapsto \text{hcap}(A_t)$ is continuous and increasing. In this case we say $(A_t)_{t\geq 0}$

(iii) is parameterised by half-plane capacity if $hcap(A_t) = 2t$ for all t.

We let \mathcal{A} be the set of all such families satisfying (i)-(iii). We let \mathcal{A}_T be the set of all such families satisfying (i)-(iii) but on time interval [0, T].

Theorem ("Chordal Loewner differential equation"). Let $(A_t)_{t\geq 0} \in \mathcal{A}$, let $g_t := g_{A_t}$ be the mapping-out function. Then there exists $U : [0, \infty) \to \mathbb{R}$ continuous such that

$$\partial_t g_t(z) = \frac{z}{g_t(z) - U_t}, \ g_0(z) = z.$$
 (*)

Proof. We have that $\bigcap_{s>0} \overline{g_t(A_s \setminus A_t)}$ is a single point by the local growth property. Let U_t be this point. The local growth property and the proposition from last time, U is continuous.

Define $\tilde{g} = g_{q_t(A_{t+\delta} \setminus A_t) - U_t}$. Then

$$\tilde{g}(z) = z + \frac{\operatorname{hcap}(g_t(A_{t+\delta} \setminus A_t) - U_t)}{2} + \mathcal{O}\left(\frac{\operatorname{hcap}(g_t(A_{t+\delta} \setminus A_t))\operatorname{rad}(g_t(A_{t+\delta} \setminus A_t))}{|z|^2}\right).$$

Defining $g_{t,t+\delta} = g_{t+\delta}^{-1} \circ g_t$ we have

$$g_{t,t+\delta}(z) = z + \frac{2\delta}{z - U_t} + 2\delta \operatorname{diam}(g_t(A_{t+\delta} \setminus A_t)) \mathcal{O}\left(\frac{1}{|z - U_t|^2}\right)$$

uniformly in $t \in [0, T]$. Hence

$$g_{t+\delta}(z) - g_t(z) = \frac{2\delta}{g_t(z) - U_t} + 2\delta \operatorname{diam}(g_t(A_{t+\delta} \setminus A_t)) \mathcal{O}\left(\frac{1}{|g_t(z) - U_t|^2}\right).$$

Now dividing through by δ and noting $\operatorname{diam}(g_t(A_{t+\delta} \setminus A_t)) \to 0$ we get the result.

Conversely, given U continuous and real valued, then (*) has a unique solution for $t < \tau_z := \sup\{s : |g_s(z) - U_s| > 0\}$.

We use the notation

$$A_t := \{ z \in \mathbb{H} : \tau_z \le t \}$$

$$H_t := \mathbb{H} \setminus A_t.$$

Then $g_t: H_t \to \mathbb{H}$ is conformal and $(A_t) \in \mathcal{A}$ and $g_{A_t} = g_t$ (see Example Sheet). We call (U_t) the "driving function" or "Loewner transform" of (g_t) or (A_t) .

Schramm-Loewner Evolution (SLE)

Suppose $(A_t) \in \mathcal{A}$ is random with driving function U such that

- (i) (rA_{t/r^2}) has the same law as (A_t) (scale invariance);
- (ii) Conditional on $\mathcal{F}_t = \sigma(U_s : s \leq t)$, the conditional law of $(g_t(A_{t+s} \setminus A_t) U_t)_{s>0}$ is the same as that of $(A_s)_{s>0}$.

These are called the conformal Markov properties.

Theorem. There exists $\kappa \geq 0$ such that $U_t = \sqrt{\kappa} B_t$ for some Brownian motion B.

Proof. U is continuous and by (ii) of the conformal Markov properties, we have that $(U_{t+s}-U_t)_{s\geq 0}$ has the same law as $(U_s)_{s\geq 0}$ conditional on \mathcal{F}_t . Therefore U has independent and stationary increments so $U_t=at+\sqrt{\kappa}B_t$ for some a,κ .

(i) of the conformal Markov properties implies $U_t = \sqrt{\kappa}B_t$.

Definition. The random Loewner chain with $U_t = \sqrt{\kappa}B_t$ for a Brownian motion B is denoted SLE_{κ} .

Remarks. • SLE_{κ} is generated by a curve, i.e there exists a continuous path γ in $\overline{\mathbb{H}}$ such that $H_t = \mathbb{H} \setminus A_t$ is the unbounded component of $\mathbb{H} \setminus \gamma([0,t])$.

- If $\kappa \leq 4$ then SLE_{κ} is a simple curve, i.e $\gamma(t) \in \mathbb{H}$ for t > 0 and $\gamma(t) \neq \gamma(s)$ for $s \neq t$
- If $\kappa \in (4,8)$ then SLE_{κ} is self-intersecting and boundary-intersecting and disconnects points from ∞
- If $\kappa \geq 8$ then SLE_{κ} is space-filling.
- For all κ , $\gamma(t) \to \infty$ as $t \to \infty$.

Definition. If $D \subsetneq \mathbb{C}$ is a simply-connected domain, $x, y \in \partial D$ (suppose ∂D is a curve). Define SLE_{κ} in (D, x, y) as the pushforward SLE_{κ} in $(\mathbb{H}, 0, \infty)$ under a conformal transformation $\varphi : \mathbb{H} \to D$ with $\varphi(0) = x$, $\varphi(\infty) = y$ (well-defined due to scaling invariance in \mathbb{H}).

Definition. We say that a Loewner chain (g_t) (or equivalently (A_t)) is generated by a curve if there exists $\gamma:[0,\infty)\to\overline{\mathbb{H}}$ continuous such that for all $t, H_t:=\mathbb{H}\setminus A_t$ is the unbounded component of $\mathbb{H}\setminus\gamma([0,t])$.

Lemma. Suppose $\gamma(t) = \lim_{y\downarrow 0} g_t^{-1}(U_t + iy)$ exists for all t and is continuous then (g_t) is generated by γ .

Remark. The converse is also true.

We will need some facts:

- (i) Let A be a compact \mathbb{H} -hull. If α is a continuous path and $\alpha(s) \in \mathbb{H} \setminus A$ for s > 0, $\alpha(0) \in \partial A$. Then $\lim_{s \downarrow 0} g_A(\alpha(s)) \in \mathbb{R}$ exists. [See Q3 Example Sheet 1]
- (ii) If $\alpha, \tilde{\alpha}$ are two paths in $\mathbb{H} \setminus A$ and $\lim_{s\downarrow 0} g_A(\alpha(s)) = \lim_{s\downarrow 0} g_A(\tilde{\alpha}(s))$ then $\alpha(0) = \tilde{\alpha}(0)$. [Q3 Example Sheet 1 again applied to g_A^{-1}]

Proof of Lemma. Clearly $\gamma(t) \not\in H_t$ so $H_t \subseteq \mathbb{H} \setminus \text{fill}(\gamma([0,t]))$. Now we show $\partial A_t \cap \mathbb{H} \subseteq \gamma([0,t])$. Let $z \in \partial A_t \cap \mathbb{H}$. Since γ is continuous it's enough to show $z \in \overline{\gamma([0,t])}$. Pick $w_n \to z$, $w_n \in H_t$. Let α be the line segment from w_n towads z until it hits the first point $z_n \in \partial A_t$.

So now we show $z_n \in \gamma([0,t])$. Since $z_n \in A_t$ we have $s := \tau_{z_n} \le t$. We claim $\lim_{r \downarrow 0} g_s(\alpha(r)) = U_s$. Once we have this, by fact (ii) above since $\lim_{y \downarrow 0} g_t^{-1}(U_s + y) = \gamma(s)$ we just have $\alpha(0) = \gamma(s)$.

Indeed if not, $\operatorname{dist}(g_s(\alpha), U_s) > 0$. But since $z_n \in A_s \setminus A_{s-\delta}$ for all $\delta > 0$, combined with the local growth property, we have $\lim_{\delta \downarrow 0} g_{s-\delta}(z_n) = U_s$ and so $\operatorname{dist}(g_{s-\delta}(\alpha), U_{s-\delta}) \to 0$ as $\delta \to 0$, giving a contradiction.

As we will throughout the course, we assume (U_t) is continuous and real-valued. So we can solve the Loewner differential equation $\partial_t g_t(z) = \frac{z}{g_t(z) - U_t}$, $g_0(z) = z$, $t < \tau_z := \sup\{s : |g_s(z) - U_s| > 0\}$. Then since $U_t \in \mathbb{R}$ we have $\partial_t \overline{g_t(\overline{z})} = \frac{z}{g_t(\overline{z}) - U_t}$, so $g_t(\overline{z}) = g_t(z)$ and $\tau_z = \tau_{\overline{z}}$ by uniqueness. On $\{\overline{z} : z \in H_t\}$, this agrees with the Schwarz reflection of $g_t : H_t \to \mathbb{H}$.

Lemma. For $z \in \mathbb{R}$, $\tau_z \leq t$ if and only if $z \in \overline{A_t \cap \mathbb{H}}$, i.e the domain $\{z \in \mathbb{C} : \tau_z > t\}$ agrees exactly with the reflection of H_t across \mathbb{R} .

Proof. If $\tau_z > t$ then $\tau_w > t$ in a neighbourhood of z by continuity. Conversely, suppose $z \in \mathbb{R} \setminus \{U_0\}$, WLOG $z > U_0$. By the local growth property, $z \notin \overline{A_{t+\delta} \cap \mathbb{H}}$ for some $\delta > 0$.

Let $\varepsilon > 0$ be such that $B(z,\varepsilon) \cap \mathbb{H} \subseteq H_{t+\delta}$. The Schwarz reflection g_s^* of g_s is defined and univalent on $B(z,\tau)$ for all $s \leq t$. Hence $g_s^*(z) \neq U_s$, otherwise there would be some $w \in A_{s+\delta} \setminus A_s$ with $w \in B(z,\varepsilon) \cap \mathbb{H}$. Also $g_s(w_n) \to g_s^*(z)$ as $w_n \to z$, $w_n \in \mathbb{H}$.

Taking limits in the Loewner differential equation for w_n implies $s\mapsto g_s^*(z)$ satisfies the Loewner differential equation on [0,t] and $\tau_z>t$.

Page 14

Bessel processes

Itô's formula says that if X^1, \ldots, X^d are semi-martingales and $F \in C^2$ then $F(X^1, \ldots, X^d)$ is a semi-martingale and

$$F(X_t^1, \dots, X_t^d) = F(X_0^1, \dots, X_0^d) + \sum_{i=1}^d \int \partial_i F(X_t^1, \dots, X_t^d) dX_t^i$$
$$+ \frac{1}{2} \sum_{i,j=1}^d \partial_i \partial_j F(X_t^1, \dots, X_t^d) d\langle X^i, X^j \rangle_t.$$

So

$$dF(X_t^1, \dots, X_t^d) = \sum_{i=1}^d \partial_i F(X_t^1, \dots, X_t^d) dX_t^i + \frac{1}{2} \sum_{i, i=1}^d \partial_i \partial_j F(X_t^1, \dots, X_t^d) d\langle X^i, X_j \rangle_t.$$

Let (B^1, \ldots, B^d) be a Brownian motion in \mathbb{R}^d so $Z_t := ||B||^2 = (B^1)^2 + \ldots + (B^d)^2$. Then

$$d||B_t||^2 = \sum_{i=1}^d 2B_t^i dB_t^i + ddt$$
$$= 2Z_t^{1/2} dY_t + ddt$$

where $dY_t = \sum_{i=1}^d \frac{1}{Z_t^{1/2}} B_t^i dB_t^i$. In Part III Stochastic Calculus it is shown that Y has the law of a Brownian motion since

$$d[Y]_t = \sum_{i=1}^d \frac{1}{Z_t} (B_t)^2 dt = dt.$$

By defining $X_t := Z_t^{1/2}$ we have

$$dX_{t} = \frac{1}{2}Z_{t}^{-1/2}dZ_{t} + \frac{1}{2}\left(-\frac{1}{2}Z_{t}^{-3/2}\right)d[Z]_{t}$$
$$= \underbrace{dY_{t}}_{\text{B.m}} + \frac{d-1}{2}\frac{1}{X_{t}}dt.$$

This process is defined for all $d \in \mathbb{R}$ and is called a Bessel process of dimension d, denoted BES^d.

Proposition. Let $d \in \mathbb{R}$, $X \sim \text{BES}^d$. If d < 2 then X_t hits 0 almost-surely. If $d \ge 2$ then X_t does not hit 0 almost-surely.

Idea: let a < b and define $\tau_x = \inf\{t \ge 0 : X_t = x\}$. Then if $x \in (a, b)$ let $F(x) := \mathbb{P}_x(\tau_a < \tau_b)$. Then

$$F(x) = \mathbb{E}_x[\mathbb{P}(\tau_a < \tau_b | \mathcal{F}_t)] = \mathbb{E}_x[F(X_t)]$$
 (MG property)

which implies $F(X_t)$ should be a martingale. Suppose $F \in C^2$. Then Itô's formula gives

$$dF(X_t) = F'(X_t)dX_t + \frac{1}{2}F''(X_t)d[X]_t$$

$$= \left(\frac{d-1}{2}\frac{F'(X_t)}{X_t} + \frac{1}{2}F''(X_t)\right)dt + \text{local martingale}$$

and so if

$$\frac{d-1}{2}\frac{F'(u)}{u} + \frac{1}{2}F''(u) = 0 \text{ on } (a,b)$$

we will get a local martingale, giving

$$F'(u) = cu^{1-d} \implies F(u) = \begin{cases} c_1 u^{2-d} & d \neq 2\\ c_1 \log u + c_2 & d = 2 \end{cases}.$$

Proof. Suppose first that $d \neq 2$. Define $f(u) = u^{2-d}$. Then by Itô's formula as above, $(f(X_t))$ is a local martingale. This gives $\mathbb{P}(\tau_u < \tau_b) = \frac{b^{2-d} - X_0^{2-d}}{b^{2-d} - a^{2-d}}$ by the Gamblers ruin formula for local martingales.

If d < 2 then sending $a \to 0$ and then $b \to \infty$ we have $\mathbb{P}(\tau_0 < \infty) = 1$.

If $d \geq 2$ then applying the same argument shows $\mathbb{P}(\tau_0 < \infty) = 0$.

Proposition. If $\kappa \leq 4$ then $\gamma(t) \in \mathbb{H}$ for all t almost-surely. If $\kappa > 4$ then $\gamma(t) \in \mathbb{R}$ for some t > 0 almost-surely.

Proof. Note γ intersects \mathbb{R} at x > 0 iff for all $y \in [0, x]$, $y \in A_t$. We have $y \in A_t$ iff $\tau_y \leq t$ where $\tau_y = \sup\{s : |g_s(y) - U_s| > 0\}$. Letting $g_s(y) - U_s := X_s(y)$ we have

$$dX_{s}(y) = \partial_{t}g_{s}(y)dt - dU_{s}$$

$$\implies dX_{s}(y) = \frac{2}{X_{s}(y)}ds - \underbrace{dU_{s}}_{\sqrt{\kappa}dB_{s}}$$

$$\iff d\frac{X_{s}(y)}{\sqrt{\kappa}} = \frac{\frac{2}{\kappa}}{\frac{X_{s}(y)}{\sqrt{\kappa}}} - dB_{s}$$
(chordal eqn)

a "Bessel process of dimension $1 + \frac{4}{\kappa}$ ".

Proposition. If $\kappa \leq 4$ then SLE_{κ} corresponds to a simple curve almost-surely. If $\kappa > 4$ then SLE_{κ} has self-intersections almost-surely.

Proof. For $\kappa \leq 4$ note $s \mapsto g_t(\gamma(s+t)) - g_t(\gamma(t))$ is a SLE_{κ} curve and so a.s does not intersect \mathbb{R} . But intersections between $\gamma|_{[0,t]}$ and $\gamma|_{[t,\infty)}$ correspond to such curves hitting \mathbb{R} .

For $\kappa > 4$, by scale-invariance we have that for all $\varepsilon > 0$, $\tilde{\gamma}$ almost-surely intersects $(0, \varepsilon]$. So find t > 0 such that $g_t^{-1}[-\varepsilon, \varepsilon] \subseteq \mathbb{H}$, $\gamma(t+s) = g_t^{-1}(\tilde{\gamma}(s))$. \square

Useful computations:

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t} = 2 \frac{(\Re g_t(z) - \sqrt{\kappa}B_t) - \Im g_t(z)}{|\underbrace{g_t(z) - \sqrt{\kappa}B_t}_{X_t(z) + iY_t(z)}|^2}$$

$$dX_t = \frac{2X_t}{X_t^2 + Y_t^2} dt - \sqrt{\kappa} dB_t$$

$$dY_t = -\frac{2Y_t}{X_t^2 + Y_t^2} dt$$

$$\partial_t g_t'(z) = -\frac{-2g_t'(z)}{(g_t(z) - \sqrt{\kappa}B_t)^2}$$

$$\partial_t \log |g_t'(z)| = -2\frac{X_t^2 - Y_t^2}{(X_t^2 + Y_t^2)^2}.$$

Theorem. For $\kappa \geq 0$, $\kappa \neq 8$, SLE_{κ} is generated by a curve.

Remark. Also true for $\kappa = 8$ but we will not prove this.

Proof. It suffices to show $\gamma(t) = \lim_{y \downarrow 0} g_t^{-1}(\sqrt{\kappa}B_t + iy)$ exists and is continuous in t. We will show that for $\kappa \neq 8$ there exists $\alpha = \alpha(\kappa) > 0$ such that

$$\sup_{t \in [0,T]} |(g_t^{-1})'(\sqrt{\kappa}B_t + iy)| \le Cy^{-1+\alpha} \tag{*}$$

for some random almost-surely finite C. This will imply $t \mapsto g_t^{-1}(\sqrt{\kappa}B_t + iy)$ converges uniformly on [0,T] as $y \downarrow 0$. By Koebe's distortion theorem it suffices to show (*) for $y = 2^{-n}$, $n \in \mathbb{N}$.

We can restrict to the event $\{\|\sqrt{\kappa}B\|_{[0,T],\infty} \leq M\}$ i.e $A_T \subseteq B(0,M+2\sqrt{T})$ for M sufficiently large.

Suppose that $|(g_t^{-1})'(\sqrt{\kappa}B_t + iy)| \ge u$ for some $t \in [0, T]$. Then by Koebe's 1/4 theorem we have $g_t^{-1}(B(\sqrt{\kappa}B_t + iy, y/2))$ contains a ball of radius uy/8. Then Koebe's distortion estimate says $|g_t'(w)| \simeq |g_t'(g_t^{-1}(\sqrt{\kappa}B_t + iy))| \le 1/u$ for all $w \in B(g_t'(\sqrt{\kappa}B_t + iy), uy/16)$. So can pick $w \in \frac{uy}{16}\mathbb{Z}$ and $|w| \lesssim M + 2\sqrt{T}$ due to $A_T \subseteq B(0, M + 2\sqrt{T})$.

Note $g_t(w) \in B(\sqrt{\kappa}B_t + iy, y/2)$, i.e $\frac{X_t(w)}{Y_t(w)} \in [-1, 1]$ and $Y_t(w) \in [y/2, 3y/2]$.

We try to compute $\mathbb{E}|g'_{\sigma}(w)|^{\lambda}$, $\sigma \in \inf\{s: Y_s(w) = y\}$. Let $\tilde{F}(a,b) = \mathbb{E}|g'_{\sigma}(a+ib)|^{\lambda}$ so

$$\tilde{F}(a,b) = \mathbb{E}[|g'_t(a+ib)|^{\lambda} \mathbb{E}[|g'_{\sigma}(g_t(a+bi))||\mathcal{F}_t]]$$
$$= \mathbb{E}[|g'_t(a+bi)|^{\lambda} \tilde{F}(X_t + iY_t)]$$

which implies $|g'_t|^{\lambda} \tilde{F}(X_t, Y_t) := \tilde{M}_t$ is a martingale. Then Ito's formula gives $d\tilde{M}_t$ as the sum of a local martingale and a term of the form $(\tilde{F}, \partial \tilde{F}, \ldots) dt$. We won't be able to solve this exactly but we can find an approximation (see lemma following this proof).

To conclude, define

$$\tilde{\sigma} = \inf\{s : \frac{X_s}{Y_s} \in [-1, 1], Y_s \in [y/2, 3y/2], |g_s'(w)| \le \tilde{c}/u\}$$

then if $\lambda \leq 0$

$$\begin{split} \mathbb{P}(\tilde{\sigma} < \infty) &\lesssim u^{\lambda} y^{-\xi} \mathbb{E}[M_{\tilde{\sigma}} \mathbb{1}_{\tilde{\sigma} < \infty}] \\ &\leq u^{\lambda} y^{-\xi} M_0 \\ &= u^{\lambda} y^{-\xi} (\Im w)^{\xi} \left(1 + \left(\frac{\Re(w)}{\Im(w)} \right)^2 \right)^{r/2}. \end{split}$$

To summarise, we have

$$\mathbb{P}\left(|(g_t^{-1})'(\sqrt{\kappa}B_t + iy)| \ge y^{-1+\alpha} \text{ for some } t \in [0,T], \|\sqrt{\kappa}B_t\|_{[0,T],\infty} \le M\right)$$

$$\leq \sum_{\substack{w \in y^{\alpha} \mathbb{Z}^2 \cap \mathbb{H} \\ |w| \lesssim M + 2\sqrt{T}}} \mathbb{P}(\tilde{\sigma}_w < \infty) \lesssim y^{(-1+\alpha)\lambda - \xi} \underbrace{\sum_{w} (\Im(w))^{\xi} \left(1 + \left(\frac{\Re(w)}{\Im(w)}\right)^2\right)^{r/2}}_{\leq y^{-2\alpha} \text{ for small } \xi, r}.$$

Sum over all $y = 2^{-n}$, $n \in \mathbb{N}$ to get $\sum_{n} 2^{-n(-\lambda - \xi - \alpha(-\lambda + 2))}$.

For $\kappa \neq 8$ we have $\min_r \left(2r - \frac{r\kappa}{4} + \frac{r^2\kappa}{4}\right) < 0$. So we can choose λ, ξ, r such that (**) below holds, $\lambda \leq 0$ and $\lambda + \xi < 0$. Hence we can take $\alpha > 0$ small so that $\sum_n 2^{-n(-\lambda - \xi - \alpha(-\lambda + 2))} < \infty$ so we are done by Borel Cantelli.

Lemma. Let $\lambda, g, r \in \mathbb{R}$ be such that $\lambda + \xi \geq 2r - \frac{r\kappa}{4} + \frac{r^2\kappa}{4}$ and $\lambda - \xi \leq -\frac{r\kappa}{4}$ (call these conditions (**)). Then

$$M_t = |g_t'(w)|^{\lambda} Y_t(w)^{\xi} \left(1 + \frac{X_t^2}{Y_t^2}\right)^{r/2}$$

is a local supermartingale. If (**) hold with equality then (M_t) is a local martingale.

Proof. By computation above.

Conformality of SLE₆

Let $D \subseteq \mathbb{H}$ contain a neighbourhood of 0 and be simply connected. Let $\psi: D \to \mathbb{H}$ be a conformal map with $\psi(0) = 0$. Define $\tilde{A}_t = \psi(A_t)$ and let $\tilde{g}_t = g_{\tilde{A}_t}$. Define $\tilde{U}_t = \psi_t(U_t)$ where $\psi_y = \tilde{g}_t \circ \psi \circ g_t^{-1}$.

Remark. (\tilde{A}_t) is not in general parameterised by half plane capacity anymore.

We have

$$\operatorname{hcap}(\tilde{g}_t(\tilde{A}_{t+s} \setminus \tilde{A}_t)) = (\psi_t'(U_t))^2 \operatorname{hcap}(g_t(A_{t+s} \setminus A_t)) + o(s) = (\psi_t'(U_t))^2 \cdot 2s + o(s).$$

Hence define

$$\tilde{a}(t) = \operatorname{hcap}(\tilde{A}_t) = \int_0^t 2\psi_s'(U_s)^2 ds$$

so by the chain rule

$$\partial_t \tilde{g}_t(z) = \frac{\partial_t \tilde{a}(t)}{\tilde{g}_t(z) - \tilde{U}_t} = \frac{2\psi_t'(U_t)^2}{\tilde{g}_t(z) - U_t}$$

and Itô's formula applied to $(t, U_t) \mapsto \psi_t(U_t)$ gives

$$d \underbrace{\psi_t(U_t)}_{\tilde{U}_t} = \partial_t \psi_t(U_t) + \psi_t'(U_t) dU_t + \frac{1}{2} \psi_t''(U_t) d[U]_t.$$

We can compute

$$\begin{split} \partial_t \psi_t(z) &= \partial_t \tilde{g}_t(\psi(g_t^{-1}(z))) + \tilde{g}_t'(\psi(g_t^{-1}(z))) \psi'(g_t^{-1}(z)) \partial_t g_t^{-1}(z) \\ &= 2 \left(\frac{\psi_t'(U_t)^2}{\psi_t(z) - \psi_t(U_t)} - \frac{\psi_t'(z)}{z - U_t} \right) \\ &= -3 \psi_t''(U_t) + \mathcal{O}(|z - U_t|) \end{split}$$

which means

$$d\tilde{U}_t = \partial_t \psi_t(U_t) + \psi_t'(U_t) \underbrace{dU_t}_{\sqrt{\kappa} dB_t} + \frac{1}{2} \psi_t''(U_t) \underbrace{d[U]_t}_{\kappa dt}$$
$$= \frac{\kappa - 6}{2} \psi_t''(U_t) dt + \sqrt{\kappa} \psi_t'(U_t) dB_t$$

reparameterising by half-plane capacity, i.e setting $\sigma(s)=\inf\{t: \text{hcap}(A_t)=2\int_0^t \psi_t'(U_r)^2 \mathrm{d}r=2s\}$ we have

$$d\sigma(s) = \frac{ds}{\psi'_{\sigma(s)}(U_{\sigma(s)})^2}$$

Conor Rajan

and therefore

$$\partial_s \tilde{g}_{\sigma(s)}(z) = \frac{2}{\tilde{g}_{\sigma(s)}(z) - \tilde{U}_{\sigma(s)}}, \qquad \tilde{g}_{\sigma(0)}(z) = z.$$

Then

$$d\tilde{U}_{\sigma(s)} = \frac{\kappa - 6}{2} \frac{\psi_{\sigma(s)}''(U_{\sigma(s)})}{\psi_{\sigma(s)}'(U_{\sigma(s)})^2} ds + \sqrt{\kappa} d\tilde{B}_s$$

where $\tilde{B}_s = \int_0^{\sigma(s)} \psi_r'(U_r) dB_r$ has the law of a Brownian motion [indeed $[\tilde{B}]_s = \int_0^{\sigma(s)} \psi_r'(U_r)^2 dr = s$].

Theorem. In the setup above, if $\kappa = 6$ the law of $\psi(\gamma)$ up to hitting $\pi(\partial D \cap H)$ is an SLE_6 .

Some further topics:

- variants of chordal SLE, such as the radial SLE;
- natural length;
- reversibility;
- duality;
- \bullet and more...

The Gaussian Free Field

Given a domain $D \subseteq \mathbb{C}$ the (zero boundary) Green's function on D is $G_D(x,y) = \log \frac{1}{|x-y|} \cdot \tilde{G}_x(y)$ where \tilde{G}_x is a harmonic extension of $\partial D \ni y \mapsto \frac{1}{|x-y|}$.

Then we have $\Delta_y G_D(x,y) = -2\pi \delta_x(y)$ in a distributional sense.

Definition (Zero-boundary GFF on D). A mean 0 Gaussian process $(\langle h, \rho \rangle)_{\rho \in C_c^{\infty}(D)}$ is called a (zero-boundary) Gaussian free field on D if it has covariance

$$\mathbb{E}[\langle h, \rho_1 \rangle \langle h, \rho_2 \rangle] = \int_{D^2} G(x, y) \rho_1(x) \rho_2(y) dx dy$$

where $\langle h, \rho_1 \rangle$ denotes $\int_{\mathbb{R}} h(x) \rho_1(x) dx$, i.e the L^2 -inner product.

Write

$$\langle f, g \rangle_{\nabla} = \frac{1}{2\pi} \nabla f(x) \cdot \nabla g(x) dx$$

and let $H_0^1(D)$ be the Hilbert space completion of $C_c^\infty(D)$ with respect to $\langle \cdot, \cdot \rangle_{\nabla}$ (assuming diam $(\partial D) > 0$).

Proposition. For $\varphi: D \to \tilde{D}$ conformally invariant

- $\langle f,g\rangle_{\nabla}=(f\circ\varphi^{-1},g\circ\varphi^{-1})_{\nabla}$ for $f,g\in C_c^{\infty}(D)$. Hence φ induces an isometry $H_0^1(D)\to H_0^1(\bar{D})$;
- $G_D(x,y) = G_{\tilde{D}}(\varphi(x),\varphi(y)).$

Proof. The first statement is on the example sheet, the second follows from $\log |\varphi(x) - \varphi(y)| - \log |x - y| = \log \left| \frac{\varphi(x) - \varphi(y)}{x - y} \right|$ and the RHS is harmonic in D, so follows by uniqueness of harmonic extension.

Formally the GFF s a "standard normal in $H^1_0(D)$ ", i.e if $(f_n)_{n\geq 1}$ is an orthonormal basis of $H^1_0(D)$ and $(\alpha)_{n\geq 1}$ are iid $\mathcal{N}(0,1)$ then $\sum_{n\geq 1}\alpha_nf_n$ is a standard normal in $H^1_0(D)$. Indeed then $\langle h,f\rangle_{\nabla}=\sum_{n\geq 1}\alpha_n\langle f_n,f\rangle_{\nabla}$ will have the required mean and variance.

Definition. $(\langle h, f \rangle_{\nabla})_{f \in H_0^1(D)}$ is defined as a mean 0 Gaussian process and

$$\langle h, f \rangle_{\nabla} = \sum_{n \ge 1} \alpha_n \langle f_n, f \rangle_{\nabla}$$

so $\mathbb{E}[\langle h, f \rangle_{\nabla} \langle h, g \rangle_{\nabla}] = \langle f, g \rangle_{\nabla}.$

If $(\tilde{f}_n)_{n\geq 1}$ is another orthonormal basis we can project $\tilde{\alpha}_n = \langle h, \tilde{f}_n \rangle_{\nabla}$ so $\mathbb{E}[\tilde{\alpha}_n, \tilde{\alpha}_m] = \langle \tilde{f}_n, \tilde{f}_m \rangle = \delta_{n,m}$ and $h = \sum_{n\geq 1} \tilde{\alpha}_n \tilde{f}_n$.

For $U \subseteq D$ we have a continuous embedding $C_c^{\infty}(U) \subseteq C_c^{\infty}(D)$ and so a continuous embedding $H_0^1(U) \subseteq H_0^1(D)$. We claim that $H_0^1(D) = H_0^1(U) \oplus H_{\text{harm}}(U)$,

where $H_{\text{harm}}(U)$ denotes the elements f of $H_0^1(D)$ that are harmonic in the weak sense $\langle f, \Delta \rho \rangle = 0$ for all $\rho \in C_c^{\infty}(U)$.

Now we prove the claim. If $f \in H_0^1(U)$, $g \in H_{harm}(U)$ then

$$\langle f, g \rangle_{\nabla} = \frac{1}{2\pi} \int_{U} \nabla f \cdot \nabla g dx = -\frac{1}{2\pi} \int_{U} f \Delta g dx = 0.$$

Hence $H_{\text{harm}}(U)$ is a subset of the orthogonal complement of $H_0^1(U)$. To show that it is in fact the whole of $H_0^1(U)^{\perp}$, suppose $g \in H_0^1(U)^{\perp}$. Then for all $\rho \in C_c^{\infty}(U)$ we have

$$0 = \langle \rho, g \rangle_{\nabla} = -\frac{1}{2\pi} \int_{U} (\Delta \rho) g \mathrm{d}x$$

i.e $g \in H_{\text{harm}}(U)$.

Proposition. f being harmonic in the weak sense is equivalent to saying f can be represented by a function with $\Delta f = 0$ in U.

Proof. Example Sheet. \Box

Proposition. Let h be a GFF in D, $U \subseteq D$. Then there exists $h_{D \setminus U}, h_U^{D \setminus U}$ independent with $h = h_{D \setminus U} + h_U^{D \setminus U}$ such that $h_U^{D \setminus U}$ is a GFF in U and $h_{D \setminus U}$ is a GFF in $D \setminus U$ and harmonic in U.

This is called the domain Markov property.

Proof. Let (f_n^1) be an orthonormal basis of $H_0^1(U)$ and let (f_n^2) be an orthonormal basis of $H_{\text{harm}}(U)$. Then

$$h = \underbrace{\sum_{n \geq 1} \alpha_n^1 f_n^1}_{h_U^{D \backslash U}} + \underbrace{\sum_{n \geq 1} \alpha_n^2 f_n^2}_{h_{D \backslash U}}.$$

Note that we have conformal invariance: if $\varphi: D \to \tilde{D}$ is conformal then $\langle h \circ \varphi^{-1}, f \rangle_{\nabla} = \langle h, f \circ \varphi \rangle_{\nabla}$ and $\langle h \circ \varphi^{-1}, \rho \rangle = \langle h, (\rho \circ \varphi) | \varphi' |^2 \rangle$ so $h \circ \varphi^{-1}$ is a GFF in \tilde{D} .

Local sets of the Gaussian Free Field

For $A_1 \subseteq A_2 \subseteq U$ take $h = h_{A_1} + h_{D \setminus A_1}^{A_1}$. Since $D \setminus A_1 \supseteq D \setminus A_2$ we can then take

$$h_{D\backslash A_1}^{A_1} = (h_{D\backslash A_1}^{A_1})_{A_2} + (h_{D\backslash A_1}^{A_1})_{D\backslash A_2}^{A_2}.$$

It turns out that $A_2 \supseteq A_1$ can depend randomly on h_{A_1} , as well as additional randomness which is independent of $h_{D\backslash A_1}^{A_1}$. Therefore we have a GFF (h,A_2) (with A_2 random) where

$$h = h_{A_2} + h_{D \setminus A_2}^{A_2}$$

and h_{A_2} is harmonic in $D \setminus A_2$, $h_{D \setminus A_2}^{A_2}$ a GFF in $D \setminus A_2$ (conditional on (h_{A_2}, A_2)).

Consider the space of relatively closed $A \subseteq D$. We can identify A with \overline{A} , so the Hausdorff metric makes this a Polish space.

Definition. Let h be a GFF in D, $A \subseteq D$ a random relatively closed subset. We say (h,A) is local if for all open $U \subseteq D$ the conditional probability $\mathbb{P}(A \cup U = \emptyset | h)$ is almost-surely measurable with respect to $h_{D \setminus U}$, i.e $\mathbb{P}(A \cup U = \emptyset | h) = \mathbb{P}(A \cup U = \emptyset | h_{D \setminus U})$ almost-surely.

Let
$$\mathcal{D}_n := \{([j2^{-n}, (j+1)2^{-n}] \times [k2^{-n}, (k+1)2^{-n}]) \cap D : j, k \in \mathbb{Z}\}.$$

- Suppose A is almost-surely a union of squares in \mathcal{D}_n and suppose B is a deterministic union of squares, so by the domain Markov property, $h = h_B + h_{D \setminus B}^B$. If (h, A) is local then the conditional law of $h_{D \setminus B}^B$ given h_B and $\{A \subseteq B\}$ is still a GFF in $D \setminus B$. For $B' \subseteq B$, $\sigma(h_{B'}) \subseteq \sigma(h_B)$. Hence conditional on $\{A = B\}$ we have $h = h_B + h_{D \setminus B}^B$, so $h = h_A + h_{D \setminus A}^A$ where h_A is harmonic in $D \setminus A$ and the conditional law of $h_{D \setminus A}^A$ given (A, h_A) is a GFF in $D \setminus A$.
- Conversely suppose we have $h = h_A + h_{D \setminus A}^A$ with these properties. We claim (h,A) is local. Let $U \subseteq D$ be open, $h = h_{D \setminus U} + h_U^{D \setminus U}$. Then conditional on $\{A \cap U = \emptyset\}$ and h_A , $h_{D \setminus A}^A = h_{D \setminus A \setminus U}^A + (h^A)_U^{D \setminus U}$. Projecting onto $H_{\text{harm}}(U)$, $H_0^1(U)$ respectively implies $h_{D \setminus U} = h_A + h_{D \setminus A \setminus U}^A$ and $h_U^{D \setminus U} = (h^A)_U^{D \setminus U}$ almost-surely. Hence the conditional law of $h_U^{D \setminus U} = (h^A)_U^{D \setminus U}$ given $h_{D \setminus U} = h_A + h_{D \setminus A \setminus U}^A$ and $\{A \cap U = \emptyset\}$ is a GFF in U, i.e the same as the conditional law given just $h_{D \setminus U}$. Therefore conditionally on $h_{D \setminus U}$, the event $\{A \cap U = \emptyset\}$ is independent of $h_U^{D \setminus U}$, hence $\mathbb{P}(A \cap U = \emptyset | h_{D \setminus U})$.

Proposition. (h, A) is local if and only if there exist $h_A, h_{D\setminus A}^A$ where h_A is harmonic in $D\setminus A$, the conditional law of $h_{D\setminus A}^A$ given (A, h_A) is a GFF in $D\setminus A$, and $h = h_A + h_{D\setminus A}^A$ almost-surely.

Proof. We have shown the backward direction.

For the forward direction, let $A_n := \bigcup \{Q \in \mathcal{D}_n : A \cap Q \neq \emptyset\}$. We claim (h, A_n) is local. Let $U \subseteq D$. Then $A_n \cap U \neq \emptyset$ iff $A \cap U_n \neq \emptyset$ where $U_n = \bigcup \{Q \in \mathcal{D}_n : U \cap Q \neq \emptyset\}$, which happens iff $\bigcap_{\delta > 0} \{A \cap U_n^\delta\} \neq \emptyset$, where U_n^δ is a δ -neighbourhood of U_n . By locality of (h, A), $\mathbb{P}(A \cap U_n^\delta \neq \emptyset|h)$ is measurable with respect to $\sigma(h_{D \setminus U_n^\delta}) \subseteq \sigma(h_{D \setminus U})$, so taking $\delta \downarrow 0$, $\mathbb{P}(A \cap U_n \neq \emptyset|h)$ is $\sigma(h_{D \setminus U})$ -measurable.

By the proposition for the dyadic square case, there exists a decomposition $h_{A_n}, h_{D\backslash A_n}^{A_n}$ for (h, A_n) . Let $\mathcal{G}_n = \sigma(A, h_{A_n}) = \sigma(h_{A_n}, A_n, A_{n+1}, \ldots)$ which is decreasing in n. Then $8\mathbb{E}[\langle h, \rho \rangle | \mathcal{G}_n] = \langle h_{A_n}, \rho \rangle$ for all $\rho \in C_c^{\infty}$. Backward martingale convergence implies $\langle h_{A_n}, \rho \rangle$ converges to some C_ρ . Consider a countable dense set of such ρ , so we can construct h_A such that it is harmonic in $D \setminus A$ and $(h_A, \rho) = C_\rho$ for all ρ .

We have

$$\mathbb{E}[\exp(i\theta\langle h, \rho \rangle)|\mathcal{G}_n] = \exp(i\theta\langle h_A, \rho \rangle) \exp\left(-\frac{\theta^2}{2} \iint G_{D \setminus A_n}(x, y) \rho(x) \rho(y)\right)$$

$$\xrightarrow{n \to \infty} \exp(i\theta\langle h_A, \rho \rangle) \exp\left(-\frac{\theta^2}{2} \iint G_{D \setminus A}(x, y) \rho(x) \rho(y)\right)$$

and so

$$\mathbb{E}[\exp(i\theta\langle h - h_A, \rho\rangle)|h_A, A] = \exp\left(-\frac{\theta^2}{2} \iint G_{D\backslash A}(x, y)\rho(x)\rho(y)\right).$$