Problem (2.14)

Lad (X, \mathcal{E}, μ) være et målrum. Vis da, at konvergens μ -n.o. er et fuldstændigt konvergensbegreb. Mere præcist: Vis, at hvis (f_n) er en følge fra $\mathcal{M}(\mathcal{E})$, som er en Cauchy-følge μ -n.o., da findes en funktion f fra $\mathcal{M}(\mathcal{E})$, således at $f_n \to f\mu$ -n.o.

Solution

Antag, at (f_n) er en følge fra $\mathcal{M}(\mathcal{E})$, som er en Cauchy-følge μ -n.o. Så findes der en μ -nulmængde $N \in \mathcal{E}$, således at $(f_n(x))$ er en Cauchy-følge for alle $x \in N^c$. For hvert $x \in N^c$ må der derfor gælde, at $\lim_{n\to\infty} f_n(x)$ eksisterer i \mathbb{R} . Lad nu $C = \{\lim_{n\to\infty} f_n \text{ eksisterer i } \mathbb{R}\}$, og betragt funktionen $f: X \to \mathbb{R}$ givet ved

$$f(x) = \begin{cases} \lim_{n \to \infty} f_n(x) & \text{hvis } x \in C \\ 0 & \text{hvis } x \in C^c \end{cases}$$

Vi bemærker, at $f_n \to f\mu$ -n.o. Desuden giver Korollar 4.3.11 i [M&I], at $f \in \mathcal{M}(\mathcal{E})$.

Problem (2.15(c))

Lad (X, \mathcal{E}, μ) være et målrum, og lad f, f_1, f_2, \ldots være funktioner fra $\mathcal{M}(\mathcal{E})$.

(c) Vis at der gælder folgende implikation: $f_n \to f$ i μ -mål \Longrightarrow (f_n) er en Cauchy-følge i μ -mål.

Solution

Antag, at $f_n \to f$ i μ -mål. Vi skal nu vise, at

$$\forall \epsilon > 0 : \lim_{n,m \to \infty} \mu\left(\left\{\left|f_n - f_m\right| > \epsilon\right\}\right) = 0$$

Lad derfor $\epsilon > 0$ være givet. For $m, n \in \mathbb{N}$ gælder der, at

$$|f_n - f_m| = |f_n - f + f - f_m| \le |f_n - f| + |f - f_m|$$

Derfor gælder der, at

$$\mu(\{|f_n - f_m| > \epsilon\}) \le \mu(\{|f_n - f| + |f - f_m| > \epsilon\})$$

$$\le \mu(\{|f_n - f| > \epsilon/2\} \cup \{|f - f_m| > \epsilon/2\})$$

$$\le \mu(\{|f_n - f| > \epsilon/2\}) + \{|f - f_m| > \epsilon/2\}$$

for alle $m,n\in\mathbb{N}$. Idet højresiden gå mod
0 for $n,m\to\infty$, har vi det ønskede.

Problem (3.1)

Lad (X, \mathcal{E}, μ) være et endeligt målrum, og lad f være en funktion fra $\mathcal{M}(\mathcal{E})$. Vis da bi-implikationen:

$$f \in \mathcal{L}^1(\mu) \iff \forall \epsilon > 0 \exists K > 0 : \int_{\{|f| > K\}} |f| d\mu \le \epsilon$$

Gælder nogen af implikationerne, hvis μ ikke er et endeligt mål?

Solution

Antag først, at $f \in \mathcal{L}^1(\mu)$. Vi bemærker, at $1_{\{|f|>K\}}|f| \to 0$ for $K \to \infty$. Med |f| som majorant, fär vi vha. domineret konvergens, at

$$\int_{\{|f|>K\}} |f| \mathrm{d}\mu \to 0$$

for $K \to \infty$. For ethvert $\epsilon > 0$ kan vi derfor vælge K > 0 med

$$\int_{\{|f|>K\}} |f| \mathrm{d}\mu \le \epsilon.$$

Antag omvendt, at

$$\forall \epsilon > 0 \exists K > 0 : \int_{\{|f| > K\}} |f| \mathrm{d}\mu \le \epsilon.$$

Vi kan specielt valge K > 0 saledes, at

$$\int_{\{|f|>K\}} |f| \mathrm{d}\mu \le 1$$

Idet $\mu(X) < \infty$ gælder der, at

$$\int_X |f| \mathrm{d}\mu = \int_{\{|f| \le K\}} |f| \mathrm{d}\mu + \int_{\{|f| > K\}} |f| \mathrm{d}\mu \le K\mu(X) + 1 < \infty,$$

hvilket netop viser, at $f \in \mathcal{L}^1(\mathbb{P})$. Vi ser, at implikationen fra venstre mod højre ogsa holder, hvis μ ikke er et endeligt mål. Argumentet for den modsatte implikation benyttede derimod, at $\mu(X) < \infty$. Vi kan let give et modeksempel, som viser, at implikationen ikke gælder generelt, hvis $\mu(X) = \infty$. Betragt $(X, \mathcal{E}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ og $f \equiv 1$. Da er f ikke et element i $\mathcal{L}^1(\lambda)$. For et givet $\epsilon > 0$, vælger vi K = 1. Da gælder der, at

$$\int_{\{|f|>1\}} |f| d\lambda = \int_{\emptyset} 1 d\lambda = 0 \le \epsilon$$

Altså har vi her et modeksempel, der viser, at implikationen fra højre mod venstre ikke gælder generelt, hvis $\mu(X) = \infty$.

Problem (3.4)

Lad (X, \mathcal{E}, μ) være et endeligt målrum, og lad (f_n) være en følge af funktioner fra $\mathcal{M}(\mathcal{E})$. Antag endvidere, at der findes funktioner $f \in \mathcal{M}(\mathcal{E})$ og $g \in \mathcal{M}(\mathcal{E})^+$, således at

$$f_n \to f$$
 i μ -màl for $n \to \infty$

og

$$|f_n| \le g\mu$$
-n.o. for alle n , og $\int_Y g \ d\mu < \infty$

- (a) Vis, at $\int_X f_n d\mu \to \int_X f d\mu$.
- (b) Gør rede for, at resultatet i (a) er en generalisering af Lebesgues sætning om domineret konvergens for endelige målrum.
- (c) Giv et eksempel på et endeligt målrum (X, \mathcal{E}, μ) og en følge af funktioner (f_n) fra $\mathcal{M}(\mathcal{E})$, således at $f_n \to 0\mu$ -n.o., og (f_n) er uniformt integrabel, men også sådan at der ikke findes en majorant g fra $\mathcal{M}(\mathcal{E})^+$, således at

$$|f_n| \le g\mu$$
-n.o. for alle n , og $\int_X g \, d\mu < \infty$

Vis, at der i denne situation alligevel gælder, at $\int_X f_n d\mu \to 0$ for $n \to \infty$.

Solution

(a) Idet $g \in \mathcal{L}^1(\mu)^+$, følger det fra Lemma 3.1.3 (ii), at $\{f_n \mid n \in \mathbb{N}\}$ er uniformt integrabel. Da vi samtidig har, at $f_n \to f$ i μ -mål, giver Sætning 3.2.1, at $f \in \mathcal{L}^1(\mu)$, $f_n \in \mathcal{L}^1(\mu)$ for alle $n, \log f_n \to f$ i μ -middel. Vi ser nu, at

$$\left| \int_X f_n \, d\mu - \int_X f \, d\mu \right| = \left| \int_X f_n - f \, d\mu \right| \le \int_X |f_n - f| \, d\mu \to 0$$

Dette viser, at $\int_X f_n d\mu \to \int_X f d\mu$.

(b) Lebesgues sætning om domineret konvergens for endelige målrum kan formuleres således:

Theorem 1. Lad (X, \mathcal{E}, μ) vare et endeligt mälrum, og lad f_1, f_1, f_2, \ldots vare funktioner fra $\mathcal{M}(\mathcal{E})$, således at $f_n \to f\mu$ -n.o. Antag endvidere, at der findes $g \in \mathcal{L}^1(\mu)^+$, salledes at $|f_n| \leq g\mu$ -n.o. for alle n. Da galder der, at

$$\int_X f_n \, \mathrm{d}\mu \to \int_X f \, \mathrm{d}\mu$$

Opgaven er nu at vise denne sætning vha. delopgave (a). Idet målrummet er endeligt, og $f_n \to f\mu$ -n.o., giver Sætning 2.1 .5 (ii), at $f_n \to f$ i μ -mål. Vi ser nu, at antagelserne i (a) er opfyldt, så det følger, at $\int_X f_n d\mu \to \int_X f d\mu$ som ønsket.

(c) Lad $(X, \mathcal{E}, \mu) = ([0, 1], \mathcal{B}([0, 1]), \lambda_{[0,1]})$, og lad $f_n(x) = x^{-1} 1_{[1/(n+1), 1/n]}(x)$ for $x \in [0, 1]$ og $n \in \mathbb{N}$. Bemærk, at $f_n \to 0\mu$ -n.o. For ethvert $n \in \mathbb{N}$ gælder der, at

$$\int_X f_n^2 \, \mathrm{d}\mu = \int_{1/(n+1)}^{1/n} x^{-2} \lambda(\, \, \mathrm{d}x) \le (n+1)^2 (1/n - 1/(n+1)) = \frac{(n+1)^2}{n(n+1)} \le 2$$

Da har vi, at

$$\sup_{n\in\mathbb{N}}\int_X f_n^2 \,\mathrm{d}\mu \le 2 < \infty$$

Eksempel 3.1.7 med p=2 giver så, at $\{f_n \mid n \in \mathbb{N}\}$ er uniformt integrabel. Hvis vi nu betragter en funktion $g \in \mathcal{M}(\mathcal{E})^+$, som opfylder, at $g \geq |f_n| \mu$ -n.o. for alle n, så må der gælde, at $g(x) \geq x^{-1}$ for μ -n.a. $x \in (0,1]$. Det følger, at $g \notin \mathcal{L}^1(\mu)$. Lad nu (X,\mathcal{E},μ) være et endeligt målrum, og lad f, f_1, f_2, \ldots være funktioner fra $\mathcal{M}(\mathcal{E})$. Antag, at $\{f_n \mid n \in \mathbb{N}\}$ er uniformt integrabel, og at $f_n \to 0\mu$ -n.o. Sætning 2.1.5 (ii) giver, at $f_n \to 0$ i μ -mål. På samme måde som i delopgave (a) får vi, vha. Sætning 3.2.1, at $\int_X f_n d\mu \to \int_X 0 d\mu = 0$.