FFT PRÁCTICAS

Mario Antonio López Ruiz

Alejandro Cruz Caraballo

PRÁCTICA 1. MANEJO DEL POLÍMETRO. MEDIDAS EN CONTINUA

A) CUESTIONES TEÓRICAS

Fuente de tensión

Calcular la resistencia mínima que se puede colocar en los extremos de la fuente de tensión, para que la corriente I que circula por el circuito sea menor que 1A (para Vi=5V) o menor que 0.5A (para Vi=15V).¿Por qué no se debe utilizar una resistencia menor que la calculada?

Para
$$I=1A; Vi=5V; R=5V/1000mA=0.005k\Omega=5\Omega$$

Para
$$I=0.5A=500mA, Vi=15V; R=15/500=0.03k\Omega=30\Omega$$

Si utilizamos una resistencia menor, la intensidad (al poseer una relación inversamente proporcional con R) aumentaría por encima de los límites de la fuente.

Medida de tensiones

¿Cómo debe ser la resistencia R que presenta el voltímetro, para que el circuito no sea modificado por el mismo?

La resistencia que posee el voltímetro tendrá un valor muy elevado, con el fin de que no produzca un consumo apreciable y no afecte al circuito.

Medida de intensidad

¿Cómo debe ser la resistencia r, para que el circuito se modificque lo menos posible?

La resistencia interna debe ser muy pequeña, para que su presencia no modifique el circuito.

Si el fabricante advierte que el amperímetro no puede soportar corrientes mayores que 0.2A

• ¿Qué ocurre si se desea medir la corriente que circula por el circuito anterior, y por error se hace como en la figura?

Probablemente el fusible del amperímetro se romperá.

• ¿Qué corriente circularía por el amperímetro?

5V=Ir*0.05kΩ; Ir=5/0.05=100mA, corriente que circula por el amperímetro.

Medida de resistencias

¿Por qué se debe desconectar la agrupación de resistencias que formen parte de un circuito?

Al estar conectado el circuito, la corriente afectará al valor de la resistencia, el cual no cocrresponderá con la realidad. Además. podemos dañar el polímetro.

B) RESISTENCIAS Y MEDIDAS EN CONTINUA

Valor nominal y valor medido

Coger 6 resistencias y crear una tabla con los valores medidos. Comparar con valor nominal dado por el código de colores y comprobar que los alores medidos están dentro de la tolerancia especificada por el fabricante.

	Colores	Valor nominal	Tolerancia	Valor medido	¿Cumple condición fabricante?
R1	azul-gris-marrón-oro	680 Ω	5%	679.2 Ω	Si
R2	marrón-verde-rojo-oro	1500 Ω	5%	1486 Ω	Si
R3	marrón-marrón-negro- rojo-violeta	11k Ω	0.1%	10.998k Ω	Si
R4	naranja-blanco-naranja- oro	39k Ω	5%	38.44k Ω	Si
R5	amarillo-violeta-amarillo- oro	470k Ω	5%	467.6k Ω	Si
R6	verde-negro-naranja-oro	51k Ω	5%	50.13k Ω	Si

 $R1:680\Omega \pm 34\Omega \ 646\Omega < R1 < 714\Omega$

 $R2: 1500Ω \pm 75Ω$ 1425Ω < R 2< 1575Ω\$

 $R3:11000\Omega \pm 11\Omega \ 10989\Omega < R3 < 11011\Omega$

 $R4:39000\Omega \pm 1950\Omega\ 37050\Omega < R4 < 40950\Omega$

 $R5:470000\Omega \pm 23500\Omega \ 446500\Omega < R5 < 493500\Omega$

 $R6:51000\Omega \pm 2550\Omega \ 48450\Omega < R6 < 493500\Omega$

Agrupación de resistencias. Medidas en un circuito

1. Cálculo teórico (Con valores medidos de las resistencias) del valor de la agrupación

 $R1 = 676.2\Omega$

 $R2 = 1486\Omega$

 $R3 = 10.998k\Omega$

 $R4 = 38.44k\Omega$

 $R5 = 467.6k\Omega$

 $R6 = 50.13k\Omega$

R1 y R2 están en serie: $RA = R1 + R2 = 679.2 + 1486 = 2165.2\Omega$

R3 y RA están en paralelo:

$$RB = (R3 * RA)/(R3 + RA) = (10998 * 2165.2)/(10998 + 2165.2) = 1809.04\Omega$$

R4 y RB están en serie: $RC = R4 + RB = 38440 + 1809.04 = 40249.04\Omega$

R5 y RC están en paralelo:

$$RD = (RC * R5)/(RC + R5) = (40249.04 * 467600)/(40249.04 + 468600) = 37059.14\Omega$$

R6 y RD están en serie: $RE=R6+RD=50130+37059.15=87189.15\Omega$

Por lo tanto, la resistencia equivalente será: $Req = 87189.15\Omega = 87.189k\Omega$

2. Valor de la agrupación medida con el óhmetro

$Rmedida = 87.35k\Omega$

3. Medir la intensidad que entra a la agrupación de resistencias

$$Ventrada=31.83V; Imedida=0.3649mA; Req=31.83V/0.3649mA=87.22k\Omega$$
 Medidas: $V21=0.190V; VR2=0.418V; VR3=0.609V; VR5=13.539V;$

Cálculo teórico de VR1, VR3 y VR5:

$$VR1 = VR3 * (R1/R1 + R2) = 0.1913V$$

$$VR3 = VR5 * (RB/R4 + RB) = 0.6100V$$

$$VR5 = Vi * (RD/R6 + RD) = 13.4992V$$

Cálculo del coeficiente de variación de resistencia con la temperatura(a)

$$R(T) = R(To)[1 + \alpha(T - To)]$$

$$To = 22^{\circ}\,C = 295.15K$$

Resistencia medida: $R(To) = 3.55\Omega$

Vmedida = 12.075V

Iconsumida = 0.28A

$$R(T) = 12.075V/0.28A = 43.125\Omega$$

Pconsumida = Iconsumida * Vmedida = 3.381W

 $Pconsumida \simeq Pradiada = e * \sigma * A * T^4$

$$3.381W = 1 * 5.6704 * 10^{-8} w/(m^2 * k^4) * 2.6 * 10^{-6} * T^4$$

T = 2188.64K

Ahora sólo queda despejar:

$$R(T) = R(To)[1 + \alpha * (T - To)]; R(T)/R(To) - 1 = \alpha(T - To)$$

$$(43.125/3.55) - 1 = \alpha(2188.64 - 295.15); \alpha = 5.88 * 10^{-3}$$

Cálculo de λ max (aplicando la ley del desplazamiento de Wien): $\lambda max * T = 2897768.5nm * K$

$$\lambda max = (2897768.5nm*k)/2188.24K = 1324.18nm
ightarrow$$
 Infrarrojo lejano

La mayoría de la energía de esta bombilla se disipa en forma de calor. La parte de >700nm se disipa en forma de calor(infrarrojos).

PRÁCTICA 2. ALTERNA. AMPLIFICADOR OPERACIONAL. DIAGRAMA DE BODE

A) Medidas en alterna

		FUENTE SEÑAL	SEÑAL Amplitud Periodo Frecuencia	ONDA TRIANGULAR 5vpp 250µs 4kHz	ONDA CUADRADA 7Vpp 200µs 5Khz
	OSCIFOSCOPIO	DIVISIONES	Amplitud Periodo Frecuencia	4,95*1V/div=4,95Vpp 5div*50µs/div=250µs 4kHz	7div*1V=7Vpp 4div*50µs/div=200µs 5Khz
		CURSORES	Amplitud Periodo Frecuencia	4,969Vpp 250μs 4kHz	6,969V 201µs 4,9751kHz
		AUTOMÁTICO	Amplitud Periodo Frecuencia	4,949Vpp 250μs 4kHz	6,969V 200µs 5kHz

Diagrama de bode

Calculamos nuestra frecuencia de corte (fc) sabiendo que:

$$L = 9.96mH = 9.96*10^{-}3H$$

$$C = 3.8nF = 3.8*10^-9F$$

$$fc = (1/2\pi) * (1/2 sqrt(LC)) = 25870.13 Hz$$

$$k=1+(R2/R1)\simeq 2$$

$$h = (Vo/Vi)max/k = 27.5/2 = 13.75$$

$$\delta = sqrt((1 - sqrt(1 - 1/h^2))/2) = 0.036$$

$$Rs = 2\delta sqrt(L/C) = 116.56$$

Formamos la tabla con 30 medidas

Frecuencia	Vi	Vo	Vo/Vi	20*log10(Vo/Vi)
2.6KHz	2.007V	3.961V	1.973	5.905
4.16KHz	2.016V	4.035V	2.001	6.027
5.72KHz	2.016V	4.094V	2.030	6.153
7.28KHz	2.016V	4.25V	2.108	6.477
8.84KHz	2.016V	4.396V	2.180	6.771
10.4KHz	2.016V	4.617V	2.290	7.197
11.96KHz	2.016V	4.861V	2.411	7.644
13.52KHz	2.016V	5.219V	2.588	8.261
15.08KHz	2.016V	5.721V	2.837	9.059
16.64KHz	1.53V	7.449V	3.123	9.892
18.2KHz	1.527V	5.5V	3.601	11.130
19.76KHz	1.527V	6.52V	4.269	12.608
21.32KHz	1.527V	8.12V	5.342	14.554
22.88KHz	1.51V	10.87V	7.198	17.145
24.44KHz	0.595V	6.72V	11.294	21.057
26KHz	0.318V	8.75V	27.515	28.791
42.7KHz	4.015V	5.21V	1.2976	2.263
59.4KHz	4.18V	2.027V	0.484	-6.286
76.1KHz	5V	1.409V	0.281	-11.001
92.8KHz	6V	1.08V	0.18	-14.894
109.5KHz	6V	0.76V	0.126	-17.946
126.2KHz	6V	0.56V	0.03	-20.599
142.9KHz	8V	0.57V	0.071	-22.944
159.6KHz	8V	0.453V	0.056	-24.939
176.3KHz	8V	0.367V	0.045	-26.76
193KHz	8V	0.3V	0.037	-28.519
209.7KHz	8V	0.25V	0.031	-30.102

Frecuencia	Vi	Vo	Vo/Vi	20*log10(Vo/Vi)
226.4KHz	10V	0.26V	0.026	-31.700
243.1KHz	10V	0.225V	0.022	-32.956
260KHz	10V	0.2V	0.02	-33.979

Diagrama de Bode

PRÁCTICA 3. DIODO. UNION PN

A) Polarización directa. Tensión umbral (V_g) y resistencia dinámica(rd)

DIODO:	V x (V) (polímetro)	V y(V) (osciloscopio)	Vd-max (V)	Id- max(mA)	rd(Ω)
Amarillo	1.714V	1.7V	2.18V	16.2mA	30 Ω
Infrarrojo	1.173V	1.175V	1.41V	21mA	11 Ω
Shockley	0.18V	0.175V	0.383V	27.4mA	7 Ω
Silicio	0.564V	0.575V	0.807V	24.7mA	9 Ω

B) Diodo sin polarización, funcionando como célula fotovoltaica

Utilizando el flash de un teléfono, consiguemos capturar el máximo V:

Teniendo este valor, calculo la potencia consumida en la resistencia ($R=1M\Omega$)

$$P=Vo^2/R=1.616^2/1000k\Omega=0.026W$$

¿Cuántos LED serían necesarios para hacer funcionar una bombilla de 40W?

Sabemos que $P=I*Vo = Vo^2/R$, en nuestro problema, además sabemos que $R=1M\Omega=1000K\Omega$

Por lo tanto, solo tenemos que despejar Vo, quedando:

$$Vo=sqrt(P*R) = sqrt(40*1000) = 200V$$

Necesitaríamos 200V para hacer funcionar una bombilla de 40W, utilizando el LED verde del laboratorio, sabiendo que un LED usa aproximadamente 1.616V:

$$200/1.616 = 123.7 = 124 LEDS$$

PRÁCTICA 4. TRANSISTOR BIPOLAR DE UNIÓN

Valor de β medido con el polímetro: βf =382hFE

Rb=215kΩ; Rc=2.72kΩ

Ganancia máxima = 1.3V

Entra en saturación = 1.75V

Vdc	Vi(V)	Vo(V)	Vo/Vi	Comentario
0.8V	200mV	0.737V	3.685	Inicio de ZAD
0.866V	200mV	0.76V	3.8	
0.932V	200mV	0.773V	3.865	
0.998V	200mV	0.78V	3.9	
1.064V	200mV	0.784V	3.92	
1.13V	200mV	0.786V	3.93	
1.196V	200mV	0.788V	3.94	
1.262V	200mV	0.788V	3.94	
1.328V	200mV	0.790V	3.95	Ganancia máxima
1.394V	200mV	0.784V	3.92	
1.46V	200mV	0.781V	3.905	
1.526V	200mV	0.776V	3.88	
1.592V	200mV	0.772V	3.86	
1.658V	200mV	0.761V	3.805	
1.75V	200mV	0.646V	3.23	Entra en saturación

PRÁCTICA 5. FAMILIAS LÓGICAS: CMOS

A) Puerta NOT CMOS

1. Construir la puerta NOT. Comprobar que los niveles de tensión de la tabla de verdad son correctos.

La señal se invierte, cuando tenemos un 1 en la entrada, obtenemos un 0 en la salida. Cuando tenemos un 0 en la entrada, obtenemos un 1 en la salida.

2. Apuntar la máxima frecuencia de trabajo admisible

No hay máxima frecuencia de trabajo, depende del uso al cual estemos destinando la puerta. Dependiendo del error que podamos permitirnos tendremos una máxima frecuencia admisible u otra. Hay que tener en cuenta el tiempo que no funciona, y verlo sobre el total, calculando el % de error y observando si podríamos usarlo o no. Aquí varios ejemplos con distintas frecuencias:

3. Con una señal triangular (~1kHz), medir la tensión umbral (Vt)

Vt = 2.93V

De Vt hacia arriba serán tensiones altas y salidas bajas.

De Vt hacia abajo serán tensiones bajas y salidas altas.

Vt es la tensión umbral, y se calcula poniendo los cursores en la subida y en la bajada.

4. Con la señal anterior, poner el modo XY del osciloscopio. Dibujar la función de transferencia. Añadir una resistencia de bajo valor entre b y tierra. Dibujar la gráfica de consumo de la puerta CMOS A entradas bajas, menor es Vt. La función de transferencia Vt es 2.9V.

El consumo es muy pequeño. En 8V de entrada, el consumo es x20 veces el consumo si pusiese 4V de entrada. Por ello son mucho más caros los circuitos que tienen V de entrada pequeos, ya que el consumo se reduce considerablemente

En las dos últimas, se aprecia correctamente que el consumo disminuye considerablemente.

B) Memoria CMOS

En esta práctica tuvimos problemas, junto con nuestros compañeros para poder montar el circuito, ya que no nos funcionaba a ninguno, pero casi al final de la clase, conseguimos montarlo y que funcionase entre todos.

Para A=S=0, S'=1. Desconectamos A y obtenemos: S'=1 y S=0 (Se mantienen ambas)

Para A=S=1, S'=0. Desconectamos A y obtenemos: S'= 0 y S=1 (Se mantienen ambas)

PRÁCTICA 6. CONVERSOR ANALÓGICO DIGITAL

Palabra 1

Va = 0.1083V

$$Num(Va) = Min[E((Va + LSB/2)/LSB), 1023] = 22.49 = 22$$

Palabra en binario= 00 0001 0111 = 23

Palabra 2

Va = 0.0546V

$$Num(Va) = Min[E((Va + LSB/2)/LSB), 1023] = 11$$

Palabra en binario = 00 0000 1100 = 12

Palabra 3

Va = 1.9413V

$$Num(Va) = Min[E((Va + LSB/2)/LSB), 1023] = 395$$

Palabra en binario= 01 1000 1011 = 395

Palabra 4

Va = 1.8964V

Num(Va) = Min[E((Va + LSB/2)/LSB), 1023] = 385

