Sales Dashboard

Contact Center Reporting Dashboard

Using the same template, we can replicate productivity tracking to monitor utilization and key performance indicators (KPIs). Additionally, we can extend this approach to Quality Assessment (QA) and Training Need Analysis for a QA & Training Dashboard.

Why Use a Hierarchy?

Drill-down capability, Reduces clutter, Saves space on reports, Improves user experience

New Group

Visual Level Filters:

Page Level Filter:

Page Level Filters:

YTD Sales Analysis

Change Source upon UAT

Transform Data > Advanced Editor > Copy & paste the code of the New source

Remove Page Level Filtration on Specific Visuals Using Quisk Measure

Quick Measures - Comparison:

State	Sum of Sales	Difference from California	% Difference California
Alabama	20,633.45	-5,22,633.81	-96%
Arizona	44,247.87	-4,99,019.39	-92%
Arkansas	13,685.02	-5,29,582.24	-97%
California	5,43,267.26	0.00	0%
Colorado	34,755.73	-5,08,511.53	-94%
Connecticut	14,057.93	-5,29,209.33	-97%
Delaware	29,375.99	-5,13,891.27	-95%
District of Columbia	2,865.02	-5,40,402.24	-99%
Florida	1,04,381.46	-4,38,885.80	-81%
Georgia	49,461.49	-4,93,805.77	-91%
Idaho	4,438.48	-5,38,828.78	-99%
Illinois	96,781.72	-4,46,485.54	-82%
Indiana	55,235.90	-4,88,031.36	-90%
Iowa	5,093.84	-5,38,173.42	-99%
Kansas	2,914.31	-5,40,352.95	-99%
Kentucky	48,324.13	-4,94,943.13	-91%
Louisiana	12,807.27	-5,30,459.99	-98%
Maine	1,887.65	-5,41,379.61	-100%
Maryland	26,099.66	-5,17,167.60	-95%
Total	27,17,336.29	21,74,069.04	400%

2.72M

Sub_Category East & West	Sum of Profit ▼
Copiers	36,350.08
Binders	32,646.83
Accessories	29,893.95
Phones	27,557.31
Paper	23,722.23
Storage	18,762.16
Appliances	18,204.51
Chairs	15,296.52
Furnishings	15.042.62

2,05,301.70

Total

Dimension Filtering Using New Parameter Fields

Measure Field Filtering

Sales:

Profit:

Discount:

Create a new Table: With Measure Fileds Column1 Metrics - Sales, Profit, Discount

Column2 Measures_Selection =

```
switch(True(),

DISTINCT(Measure_Selection[Measure_Fields]) = "Sales", sum(OrdersSQL[Sales]),

DISTINCT(Measure_Selection[Measure_Fields]) = "Profit", sum(OrdersSQL[Profit]),

DISTINCT(Measure_Selection[Measure_Fields]) = "Discount", sum(OrdersSQL[Discount]))
```

To update the Title based on selection use below format title option:

```
Selected_Value = "Total " & SELECTEDVALUE(Measure_Selection[Metrics]) & "By State"
```

DAX: Use Of Variable to Optimise Performance

Validate:

```
with cte as (select SUM(Sales) as YTD_Sale
from Orders where Datediff(Year, OrderDate, GETDATE()) = 0),
cte2 as (select SUM(Sales) as LYTD_Sale
from Orders where Datediff(Year, OrderDate, GETDATE()) = 1)
select a.YTD_Sale, b.LYTD_Sale, a.YTD_Sale-b.LYTD_Sale as Difference from cte a
cross join cte2 b;
```

YTD_Sale	LYTD_Sale	Difference	
11963.9370319843	97313.9936767817	-85350.0566447973	

IF:

ProfitStatus = IF(SUM(Orders[Profit]) > 0, "Positive", "Negative")

State	Sum of Profit	ProfitStatus
Alabama	6,115.71	Positive
Arizona	-3,251.62	Negative
Arkansas	4,922.06	Positive
California	89,333.61	Positive
Colorado	-7,092.49	Negative
Connecticut	3,710.85	Positive
Delaware	10,571.48	Positive
District of Columbia	1,059.59	Positive
Florida	-6,957.63	Negative
Coorgia	16 260 70	Docitivo
Total	2,98,404.93	Positive

```
ProfitKPI = IF(SUM(Orders[Sales]) > 300000, "Very Good Performance",

IF(SUM(Orders[Sales]) > 250000, "Good Performance",

IF(SUM(Orders[Sales]) > 190000, "Above Average Performance",

IF(SUM(Orders[Sales]) > 160000, "Average Performance",

IF(SUM(Orders[Sales]) > 125000, "Average", "Bad Performance")

))))
```

State	Sum of Sales	ProfitKPI
Alabama	20,633.45	Below Average Performance
Arizona	44,247.87	Below Average Performance
Arkansas	13,685.02	Below Average Performance
California	5,43,267.26	Very Good Performance
Colorado	34,755.73	Below Average Performance
Connecticut	14,057.93	Below Average Performance
Delaware	29,375.99	Below Average Performance
District of Columbia	2,865.02	Below Average Performance
Florida	1,04,381.46	Below Average Performance
Georgia	49,461.49	Below Average Performance
Idaho	4,438.48	Below Average Performance
Illinois	96,781.72	Below Average Performance
Indiana	55,235.90	Below Average Performance
Iowa	5,093.84	Below Average Performance
Kansas	2,914.31	Below Average Performance
Kentucky	48,324.13	Below Average Performance
Louisiana	12,807.27	Below Average Performance
Maine	1,887.65	Below Average Performance
Total	27,17,336.30	Very Good Performance

We can achieve the same using SWITCH

```
ProfitKPISwitch = SWITCH(True(),
```

State	Sum of Sales	ProfitKPISwitch
Alabama	20,633.45	Below Average Performance
Arizona	44,247.87	Below Average Performance
Arkansas	13,685.02	Below Average Performance
California	5,43,267.26	Very Good Performance
Colorado	34,755.73	Below Average Performance
Connecticut	14,057.93	Below Average Performance
Delaware	29,375.99	Below Average Performance
District of Columbia	2,865.02	Below Average Performance
Florida	1,04,381.46	Below Average Performance
Georgia	49,461.49	Below Average Performance
Idaho	4,438.48	Below Average Performance
Illinois	96,781.72	Below Average Performance
Indiana	55,235.90	Below Average Performance
lowa	5,093.84	Below Average Performance
Kansas	2,914.31	Below Average Performance
Kentucky	48,324.13	Below Average Performance
Louisiana	12,807.27	Below Average Performance
Maine	1,887.65	Below Average Performance
Total	27,17,336.30	Very Good Performance

Calculate: If you want to filter and control what Expression has to count or aggregate then we can use Calculate which allows you to use more than one condition within a expression

FurnitureProfit = CALCULATE(SUM(Orders[Profit]), Orders[Category] = "Furniture")

Category	Sum of Profit
Furniture	6,032.42
Office Supplies	1,42,820.26
Technology	1,49,552.25
Total	2,98,404.93

Why CALCULATE Is Important

- Allows dynamic filtering within measures.
- Works well for time intelligence calculations.
- Can combine multiple criteria efficiently.

Further_Filtration

FurnitureProfit = CALCULATE(SUM(Orders[Profit]), Orders[Category] = "Furniture" &&
Orders[Region] = "South")

Region	Category	Sum of Profit
Central	Furniture	-5,074.61
Central	Office Supplies	13,007.67
Central	Technology	37,078.52
East	Furniture	-9,174.86
East	Office Supplies	46,153.60
East	Technology	42,690.19
South	Furniture	4,223.68
South	Office Supplies	22,719.62
South	Technology	21,148.36
West	Furniture	16,058.22
West	Office Supplies	60,939.37
West	Technology	48,635.19
Total		2,98,404.93

Time Intelligence Functions:

Combine below functions

PARALLELPERIOD(Orders[OrderDate].[Date], -1, year) LYTD

Compare Year Over Year Change:

```
Previous Year - Last 1 Year
YOY Comparsion = SUM(Orders[Sales])-CALCULATE(Sum(Orders[Sales]),
PREVIOUSYEAR(Orders[OrderDate].[Date]))
       ParallelPeriod - previous to last 2 or more
YOY Comparsion = SUM(Orders[Sales])-CALCULATE(Sum(Orders[Sales]),
PARALLELPERIOD(Orders[OrderDate].[Date], -1, year))
Compare Same Month Last year
       Same Month Last Year = SUM(Orders[Sales])-CALCULATE(SUM(Orders[Sales]),
       PARALLELPERIOD(Orders[OrderDate].[Date], -12,MONTH))
QOQ Change:
       QOQ Change = SUM(Orders[Sales])-CALCULATE(SUM(Orders[Sales]),
       PARALLELPERIOD(Orders[OrderDate].[Date], -1, QUARTER))
MOM Change:
       MOM Change = SUM(Orders[Sales])-CALCULATE(SUM(Orders[Sales]),
       PARALLELPERIOD(Orders[OrderDate].[Date], -1, MONTH))
YTD Sale:
       YTD_Sale = TOTALYTD(SUM(Orders[Sales]), Orders[OrderDate])
LYTD_Sale:
       LYTD_Sale = TOTALYTD(SUM(Orders[Sales]),
       PARALLELPERIOD(Orders[OrderDate].[Date], -1, Year))
Difference YTD & LYT:
       Difference YTD_LYTD =
       var YTD Sales = TOTALYTD(SUM(Orders[Sales]), Orders[OrderDate])
       var LYTD_Sales = TOTALYTD(SUM(Orders[Sales]),
       PARALLELPERIOD(Orders[OrderDate].[Date], -1, year))
       Return
       YTD_Sales - LYTD_Sales
```

Same_Period_LastYear:

```
SamePeriodLastYear = TOTALYTD(SUM(Orders[Sales]), Orders[OrderDate])-
CALCULATE(SUM(Orders[Sales]),
DATESYTD(SAMEPERIODLASTYEAR(Orders[OrderDate])))
```

Year	Month	Sum of Sales	Month_Last Year
2025	January	10,996.71	4,437.48
2025	February	967.23	-13,006.97
2025	March		-4,915.20
2025	April		-8,290.91
2025	May		-12,119.76
2025	June		-8,060.17
2025	July		-8,809.08
2025	August		-8,111.63
2025	September		-8,740.06
2025	October		-8,940.80
2025	November		-4,266.84
2025	December		-4,526.13
2024	January	6,559.22	699.70
2024	February	13,974.20	5,489.46
2024	March	4,915.20	-3,196.43
2024	April	8,290.91	3,291.92
2024	May	12,119.76	9,666.29
2024	June	8,060.17	4,041.54
2024	July	8,809.08	-8,324.27
2024	August	8,111.63	1,985.57
2024	September	8,740.06	-1,092.19
2024	October	8,940.80	3,584.37
2024	November	4,266.84	229.80
2024	December	4,526.13	292.70
Total		27,17,336.30	11,963.94

Year ▼	Month	Sum of Sales	MOM Change
2025	January	10,996.71	6,470.58
2025	February	967.23	-10,029.47
2025	March		-967.23
2024	January	6,559.22	2,325.80
2024	February	13,974.20	7,414.98
2024	March	4,915.20	-9,059.00
2024	April	8,290.91	3,375.72
2024	May	12,119.76	3,828.85
2024	June	8,060.17	-4,059.60
Total		27,17,336.30	0.00
			_

Year ▼	Quarter	Sum of Sales	QOQ Change
2025	Qtr 1	11,963.94	-4,526.13
2024	Qtr 1	25,448.62	681.77
2024	Qtr 2	28,470.84	3,144.97
2024	Qtr 3	25,660.77	679.90
2024	Qtr 4	17,733.76	-4,213.94
2023	Qtr 1	22,455.89	3,711.94
2023	Qtr 2	11,471.09	-4,093.00
2023	Qtr 3	33,091.66	5,813.62
2023	Qtr 4	13,626.89	-5,598.83
2022	Qtr 1	21,752.47	3,314.35
2022	Qtr 2	11,186.59	-8,135.66
2022	Qtr 3	26,661.22	5,655.67
2022	Otr 4	25 551 67	-4 050 12
Total		27,17,336.30	0.00

Year ▼	Sum of Sales	YOY Comparsion
2025	11,963.94	-85,350.06
2024	97,313.99	16,668.47
2023	80,645.53	-4,506.42
2022	85,151.95	3,455.88
2021	81,696.07	-7,14,883.14
2020	7,96,579.21	1,87,373.61
2019	6,09,205.60	1,38,673.09
2018	4,70,532.51	-13,714.99
2017	4,84,247.50	4,84,247.50
Total	27.17.336.30	27.17.336.30

11.96K -8.57K

YTD_Sale SamePeriodLastYear

97.31K -85.35K Difference YTD_LYTD

Moving Average:

```
Moving Average =
var Latest_Date = MAX(Orders[OrderDate])
var Start_Date = EDATE(Latest_Date, -6)

var Sales6Month = CALCULATE(SUM(Orders[Sales]),
FILTER(ALL(Orders[OrderDate]), Orders[OrderDate] > Start_Date &&
Orders[OrderDate] < Latest_Date))

VAR Number_Months = 6

RETURN

ROUND(DIVIDE(Sales6Month, Number_Months),2)</pre>
```

7.48K

Create a calculated column with WeekDay and also Weekday Number:

```
Daynum = WEEKDAY(Orders[OrderDate])
Note: Summarisation: Don't Summarise

Day = FORMAT(Orders[OrderDate], "dddd") Extract Week_Day
```

Day	Sum of Sales
Friday	4,35,674.65
Monday	3,96,156.65
Saturday	2,84,306.15
Sunday	2,60,055.93
Thursday	4,42,028.71
Tuesday	4,64,305.75
Wednesday	4,34,808.46
Total	27,17,336.30

In order to Sort the values as per Weekday:

Select Day Column from the Data:

Sort By Column > Select DayNum Column that we have created

Day	Sum of Sales
Sunday	2,60,055.93
Monday	3,96,156.65
Tuesday	4,64,305.75
Wednesday	4,34,808.46
Thursday	4,42,028.71
Friday	4,35,674.65
Saturday	2,84,306.15
Total	27,17,336.30

Month:

```
MonthName = FORMAT(Orders[OrderDate], "MMMM")
```

MonNum = MONTH(Orders[OrderDate])

MonthName Sum of Sales

Total	27,17,336.30
December	3,52,675.81
November	3,95,545.31
October	2,39,900.73
September	3,47,500.33
August	1,95,687.37
July	1,98,280.43
June	1,81,675.06
May	1,82,449.61
April	1,66,101.57
March	2,34,969.63
February	92,126.32
January	1,30,424.15

Generate dates:

```
Date_Calendar = CALENDAR("2025-01-01", "2025-12-31")
```

Date

20-12-2025 00:00:00 21-12-2025 00:00:00 22-12-2025 00:00:00 23-12-2025 00:00:00 24-12-2025 00:00:00 25-12-2025 00:00:00 26-12-2025 00:00:00 27-12-2025 00:00:00 28-12-2025 00:00:00 29-12-2025 00:00:00 30-12-2025 00:00:00

Datesbetween:

Need Date field from our data as reference, this will create dates as per our data which are within the given range

DATESBETWEEN(Orders[OrderDate], "2025-01-01", "2025-12-31")

OrderDate

27-01-2025 00:00:00
28-01-2025 00:00:00
29-01-2025 00:00:00
30-01-2025 00:00:00
31-01-2025 00:00:00
01-02-2025 00:00:00
02-02-2025 00:00:00
04-02-2025 00:00:00
05-02-2025 00:00:00
06-02-2025 00:00:00

Moving Average Sales =

```
var Latest_Date = MAX(Orders[OrderDate])
var Start_Date = EDATE(Latest_Date, -6)
var Sales6Month = CALCULATE(SUM(Orders[Sales]), DATESINPERIOD(Orders[OrderDate],
Latest_Date, -6, MONTH))

VAR Number_Months = 6

RETURN

ROUND(DIVIDE(Sales6Month, Number_Months),2)
```

Moving Average Profit:

```
Rolling_Average_Profit_6Months =

var Latest_Date = LASTDATE(Orders[OrderDate])

var sixmonthProfit = CALCULATE(sum(Orders[Profit]),
DATESINPERIOD(Orders[OrderDate], Latest_Date, -6, MONTH))

return

ROUND(DIVIDE(sixmonthProfit, 6),2)
```

ALL():

which help fetch all the values from the selected columns, helpful to avoid page level or report level filtration within the visuals:

```
Total_Sale = CALCULATE(sum(Orders[Sales]), ALL(Orders[Region], Orders[OrderDate]))
```

ALLExcept(): To Optimize performance when we are filtering many columns

Considers filtering on selected columns and ignores filtering on any filed that is not selected

```
Total_Sale = CALCULATE(sum(Orders[Sales]), ALLEXCEPT(Orders, Orders[Ship Mode]))
```

Ensure we have relation created and utilize below functions to enhance performance

Related(): Cardinality - Many to 1

```
Related(Prod[Cost])
Using related we can utilize columns of a different table which has relation ship
Example:
ONE TO MANY Relationship
Dimnessions to Fact Table
```

Related Table(): One to Many Relation Fact to Dimensions

```
Input parameter as measure Field
(TableName, Measurefield)
SUMX(prod_Sales, prod_Sales[Price])
SUMX COUNTX MAXX MINX AVGX (Row-Level operations)
RelatedTable(Prod_Sales, prod_Sales[Price])
```

CrossFilter(Table1, Table2, Direction):

```
TotalSales_ForceFilter =
CALCULATE(SUM(Orders[Sales]), CROSSFILTER(Orders[CustomerID],
Customers[CustomerID], BOTH))
```

Dashborad with Selection control on Measure Fields: Sales, Profit, Discount

Future Scope: Custom Tooltip with visuals, Bookmarks