Scenario

- Kundur 4 machine system packaged with PST
- Constant Z load model
- System has governors, exciters, and PSS.
- +50 MW (0.5 PU) step of load on bus 4 at t=1
- VTS mixed method: huens switches to ode23t when t=10
- AGC and VTS available in pstSETO only

Summary

- 1. AGC works in variable time step simulation.
- 2. VTS takes larger steps, which often means fewer network and dynamic solutions. This leads to a noticeable speed up.
- 3. AGC action was accounted for without VTS requiring a 'time block break'.
- 4. Variable step network and dynamic values seem to match fixed results well.

Method	Step Size [seconds]			Solutions Per Step					
	Max.	Min.	Ave.	Total Steps	Ave.	Max.	Total Slns.	Sim. time	Speed Up
Huen's	0.016	0.004	0.014	8,749	2	2	17,498	57.45	1
ode23t	1.060	1.97E-5	0.142	846	2	109	2,030	9.31	6.17
Mixed	1.030	0.004	0.048	2,483	2	106	4,780	15.86	3.62

Observations of Note

- 5. Mixed solutions may be more efficient if fixed steps are used for initialization and all faulting condition switches then switching to a variable step method.
- 6. Solution tolerances of ODE solver were: 'RelTol',1e-3,'AbsTol',1e-6,
- 7. mtg_sig must set tg_sig to zero (or other desired modulated value). i.e. mtg_sig cannot just be empty.

ode23t Results

Mixed Results (Huen's and ode23t)

Both/Either Method (visually undifferentiatable)

