Loss(x,y,w) de la manière suivante :

$$w \longleftarrow w - \eta \nabla_w \operatorname{Loss}(x, y, w)$$

- ☐ Mises à jour stochastiques L'algorithme du gradient stochastique (en anglais stochastic gradient descent ou SGD) met à jour les paramètres du modèle en parcourant les exemples $(\phi(x),y) \in \mathcal{D}_{\text{train}}$ de l'ensemble d'entraînement un à un. Cette méthode engendre des mises à jour rapides à calculer mais qui manquent parfois de robustesse.
- \square Mises à jour par lot L'algorithme du gradient par lot (en anglais batch gradient descent ou BGD) met à jour les paramètre du modèle en utilisant des lots entiers d'exemples (e.g. la totalité de l'ensemble d'entraînement) à la fois. Cette méthode calcule des directions de mise à jour des coefficients plus stable au prix d'un plus grand nombre de calculs.

1.5 Peaufinage de modèle

 \Box Classe d'hypothèses – Une classe d'hypothèses $\mathcal F$ est l'ensemble des prédicteurs candidats ayant un $\phi(x)$ fixé et dont le paramètre w peut varier :

$$\mathcal{F} = \left\{ f_w : w \in \mathbb{R}^d \right\}$$

 $\hfill \Box$ Fonction logistique – La fonction logistique σ , aussi appelée en anglais sigmoid function, est définie par :

$$\forall z \in]-\infty, +\infty[, \quad \sigma(z) = \frac{1}{1+e^{-z}}$$

Remarque : la dérivée de cette fonction s'écrit $\sigma'(z) = \sigma(z)(1 - \sigma(z))$.

□ Rétropropagation du gradient (en anglais backpropagation) – La propagation avant (en anglais forward pass) est effectuée via f_i , valeur correspondant à l'expression appliquée à l'étape i. La propagation de l'erreur vers l'arrière (en anglais backward pass) se fait via $g_i = \frac{\partial \text{out}}{\partial f_i}$ et décrit la manière dont f_i agit sur la sortie du réseau.

 \square Erreur d'approximation et d'estimation – L'erreur d'approximation $\epsilon_{\mathrm{approx}}$ représente la distance entre la classe d'hypothèses $\mathcal F$ et le prédicteur optimal g^* . De son côté, l'erreur