Pima Indian Diabetes

Group 1 | Prof Itauma | Northwood University

Problem

Can we build a predictive model to accurately predict whether or not the patients in the dataset have diabetes or not.

Hypothesis

Patient BMI, pregnancies, Glucose level,
DiabetesPedigreeFunction decide whether she is
diabetic or not

Exploratory Data Analysis

Pregnancies *	Glucose	*	BloodPressure *	SkinThickness *	Insulin	-	BMI	*	DiabetesPedigreeFunction *	Age -	Outcon	ne 🔻
8	76 ² 1527,000		64	0		0			0.672	0.000		1
5	1:	16	74	0		0	25	5.6	0.201	30		0
10	1:	15	0	0		0	35	5.3	0.134	29		0
8	12	25	96	0		0		0	0.232	54		1
4	1:	10	92	0		0	37	7.6	0.191	30		0
10	10	68	74	0		0		38	0.537	34		1
10	13	39	80	0		0	27	7.1	1.441	57		0
7	10	00	0	0		0		30	0.484	32		1
7	10	07	74	0		0	29	9.6	0.254	31		1
8	9	99	84	0		0	35	5.4	0.388	50		0
7	19	96	90	0		0	39	9.8	0.451	41		1
7	14	47	76	0		0	39	9.4	0.257	43		1
5	1:	17	92	0		0	34	4.1	0.337	38		0
6	9	92	92	0		0	19	9.9	0.188	28		0
11	1.	38	76	0		0	33	3.2	0.42	35		0
7	1.	33	84	0		0	40	0.2	0.696	37		0

Variables / Research

Independent variables

 Patient BMI, pregnancies, Glucose level, DiabetesPedigreeFunction Dependent variable

Outcome

Introduction

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage. It's the seventh leading cause of death.1 Healthy People 2030 focuses on reducing diabetes cases, complications, and deaths.

Model Building

Odds Ratios for Continuous Predictors

	Odds Ratio	95% CI		
Pregnancies	1.1525	(1.0929, 1.2154)		
Glucose	1.0344	(1.0276, 1.0412)		
BMI	1.0812	(1.0524, 1.1108)		
DiabetesPedigreeFunction	2.4628	(1.3904, 4.3623)		

Model Summary

Deviance	Deviance				Area Under
R-Sq	R-Sq(adj)	AIC	AICc	BIC	ROC Curve
27.00%	26.60%	735.20	735.28	758.42	0.8390

References

Analysis using different graphs

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus.