Python: révisions

Construction de vecteurs

Exercice 1 (Suites explicites)

Proposer une fonction Python qui prend en entrée un entier n et :

- 1. Renvoie les n premiers termes de la suite définie par : $\forall k \in \mathbb{N}, \ u_k = \frac{k}{1+k^2}$
- 2. Renvoie les n premiers termes de la suite définie par : $\forall k \in \mathbb{N}^*, \ v_k = \frac{\ln(k)}{k}$

Exercice 2 (Suite à récurrence double)

Proposer une fonction qui prend en entrée un entier n et renvoie les n premiers termes de la suite définie par : $v_0=0,\ v_1=1$ et $\forall k\in\mathbb{N},\ v_{k+2}=\frac{k+1}{v_k+v_{k+1}}$

Exercice 3 (Paradoxe des anniversaires)

- 1. Dans une pièce, n personnes sont réunies. Montrer que la probabilité qu'au moins deux personnes aient la même date d'anniversaire est donnée par : $p_n = 1 \frac{365!}{(365 n)! \times 365^n}$.
- 2. Vérifier que pour tout $n \in [1, 364]$, $p_{n+1} = 1 (1 p_n) \left(1 \frac{n}{365}\right)$.
- 3. Proposer un script Python qui construit et affiche le vecteur P = $[p_1, p_2, \dots, p_{365}]$. Remarque : On a par exemple $p_{50}=97,04\%$

Sommes et produits

Exercice 4 (Somme basique)

- 1. Proposer au moins deux façons différentes de définir une fonction somme(n) qui calcule $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$
- 2. Proposer une fonction vecsomme(n) qui construit et renvoie le vecteur $V = [S_1, S_2, \dots, S_n]$ sans utiliser la fonction somme précédente.

Exercice 5 (Coefficients binomiaux)

- 1. (a) Lorsque $p \leq n$, rappeler la définition de $\binom{n}{p}$ avec des factorielles.
 - (b) En déduire une fonction Python binome(p,n) qui calcule $\binom{n}{p}$.
- 2. (a) Lorsque $p \leq n$, écrire $\binom{n}{p}$ comme un produit de seulement p termes.
 - (b) En déduire une fonction Python binome(p,n) qui calcule $\binom{n}{p}$.

Exercice 6 (Sommes exploitant une relation de récurrence)

- 1. Proposer une fonction somme(x,n) qui, à l'aide d'une boucle for, calcule la somme $\sum_{k=0}^{n} \frac{x^k}{k!}$ sans utiliser l'instruction ** ni les factorielles.
- 2. Même question avec la somme $\sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k}.$

Construction de matrices

Exercice 7 (Matrice en forme de N)

- 1. Définir en Python la matrice $N = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.
- 2. Plus généralement, proposer une fonction Python qui prend en entrée un entier n et renvoie la matrice carrée de taille $n \times n$ avec des 1 sur la diagonale, sur la première et dernière colonne, et des 0 partout ailleurs.

Exercice 8 (Matrice en forme de Z)

Même question avec une matrice "en forme de Z".

Résolution approchée d'équations

Exercice 9 (Approximation de π)

A l'aide de la méthode de dichotomie, proposer un script Python qui calcule et affiche une approximation de π à 10^{-5} près. On exploitera le fait que π est l'unique solution de l'équation $\cos(\frac{x}{2}) = 0$ sur le segment [0, 4].

Exercice 10 (Approximation de $\sqrt{2}$)

Dans tout cet exercice, on suppose qu'on ne dispose pas de l'instruction sqrt...

Première façon : méthode de Dichotomie

0. Proposer un script Python qui calcule et affiche une approximation à 10^{-5} près de la valeur de $\sqrt{2}$. (On rappelle qu'il s'agit bien-sûr de l'unique solution positive de l'équation $x^2 = 2$)

Deuxième façon : méthode du point fixe

On définit la fonction $g: x \mapsto \frac{2}{3}\left(x + \frac{1}{x}\right)$ ainsi qu'une suite $u: u_0 > \sqrt{2}$, et $\forall n \in \mathbb{N}, u_{n+1} = g(u_n)$.

- 1. (a) Déterminer l'unique point fixe de g sur \mathbb{R}_+^*
 - (b) Montrer que $\forall n \in \mathbb{N}, u_n > \sqrt{2}$.
 - (c) Montrer que la suite u est décroissante et en déduire qu'elle converge vers $\sqrt{2}$.
- 2. (a) En exploitant une identité remarquable, justifier que pour tout $n \in \mathbb{N}, 0 < u_n \sqrt{2} \leqslant \frac{1}{2}(u_n^2 2)$.
 - (b) Proposer un script Python qui, en exploitant la suite u, calcule et affiche une approximation de $\sqrt{2}$ à 10^{-5} près. On n'utilisera évidemment pas l'instruction sqrt et on mettra en jeu une boucle while.
- 3. (a) Déterminer un réel $M \in]0,1[$ tel que $\forall x>1,\ |g'(x)|\leqslant M.$
 - (b) En déduire que pour tout $n \in \mathbb{N}$, $u_{n+1} \sqrt{2} \leqslant M(u_n \sqrt{2})$ puis que $u_n \sqrt{2} \leqslant M^n(u_0 \sqrt{2})$.
 - (c) On propose de poser $u_0 = 2$, de sorte que $u_n \sqrt{2} \leqslant M^n$.

On donne la valeur : $\frac{5}{\ln(3) - \ln(2)} \simeq 12, 3.$

Pour quelle valeur de n au minimum est-on certain que u_n est une approximation de $\sqrt{2}$ à 10^{-5} près? Proposer ainsi un nouveau script Python qui calcule et affiche une approximation de $\sqrt{2}$ à 10^{-5} près, en utilisant cette fois une boucle for.