Congratulations! You passed!

Grade received 90% **Latest Submission** Grade 90%

To pass 80% or higher

Go to next item

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then th 10000 dimensional, so as to capture the full range of variation and meaning in t		0 / 1 point
	False		
	True		
	∠ Expand		
	⊗ Incorrect		
	No, the dimension of word vectors is usually smaller than the size of the v	ocabulary. Most common sizes	
	for word vectors range between 50 and 1000.		
2.	True/False: t-SNE is a linear transformation that allows us to solve analogies on	word vectors.	1/1 point
	False		
	True		
	∠ ⁿ Expand		
	Correct tr-SNE is a non-linear dimensionality reduction technique.		
3.	Suppose you download a pre-trained word embedding which has been trained use this word embedding to train an RNN for a language task of recognizing if so		1/1 point
	snippet of text, using a small training set.		
	x (input text)	y (happy?)	
	I'm feeling wonderful today!	1	
	I'm bummed that my cat is ill.	0	
	Really enjoying this!	1	
	$\label{thm:continuous} True/False: Then even if the word "upset" does not appear in your small training be expected to recognize "I'm upset" as deserving a label y = 0.$	g set, your RNN might reasonably	
	True		
	False		
	7		
	∠ Expand		
	⊘ Correct		
	Yes, word vectors empower your model with an incredible ability to genewould contain a negative/unhappy connotation which will probably make		
	sentence as a "0".	c your moder classify the	
4.	Which of these equations do you think should hold for a good word embedding	? (Check all that apply)	1 / 1 point

 $\boxed{ \qquad } e_{boy} - e_{brother} \approx e_{girl} - e_{sister}$ Yes! $ightharpoons e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$ ✓ Correct Yes! Typesetting math: 100% $e_{sister} - e_{girl}$

∠⁷ Expand

Great, you got all the right answers.	
Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the	1/1 point
embedding of word 1234, why don't we call $Est o_{1234}$ in Python?	
This doesn't handle unknown words (<unk>).</unk>	
None of the above: calling the Python snippet as described above is fine.	
It is computationally wasteful.	
\bigcirc The correct formula is E^T*o_{1234}	
∠ [∧] Expand	
⊘ Correct Yes, the element-wise multiplication will be extremely inefficient.	
When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1/1 point
Palse	
True	
§	
∠ ² Expand	
⊘ Correct	
In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. $ \qquad \qquad c \text{ is the sequence of all the words in the sentence before } t $	1/1 point
$\bigcirc \ c$ is a sequence of several words immediately before t	
and \$\$\$\$ are chosen to be nearby words.	
Processing math: 100% word that comes immediately before \$\$t\$\$	
∠ ⁷ Expand	
⊘ Correct	
Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:	
model uses the following solution.	1/1 point
	1/1 point
$P(t\mid c)=rac{e^{q^t_t r_c}}{\sum_{l=1}^{1000}e^{p^k_l r_c}}$ Which of these statements are correct? Check all that apply.	1/1 point
$P(t\mid c)=rac{e^{ec{q}^{T}_{ au_{c}}}}{\sum_{\ell=0}^{1000o}e^{ec{q}^{L}_{ au_{c}}}}$	1/1 point
$P(t \mid c) = rac{e^{q_c^2 \epsilon_c}}{\sum_{i=0}^{1000} e^{q_c^2 \epsilon_c}}$ Which of these statements are correct? Check all that apply. \square After training, we should expect $ heta_c$ to be very close to e_c when t and c are the same	1/1 point
$P(t\mid c) = \frac{e^{\theta_t^T t_c}}{\sum_{r=1}^{c_c} e^{\theta_r^T t_c}}$ Which of these statements are correct? Check all that apply.	1/1 point
$P(t\mid c) = \frac{e^{\theta_t^a t_c}}{\sum_{r=1}^{c_c} e^{\theta_r^a t_r}}$ Which of these statements are correct? Check all that apply.	1/1 point
$P(t\mid c) = \frac{e^{\theta_t^a t_c}}{\sum_{c=1}^{c} e^{\theta_t^a t_c}}$ Which of these statements are correct? Check all that apply.	1/1 point
$P(t \mid c) = \frac{e^{\theta_t^T \epsilon_c}}{\sum_{i=0}^{con} e^{\theta_t^T \epsilon_c}}$ Which of these statements are correct? Check all that apply. After training, we should expect θ_t to be very close to e_c when t and c are the same word. θ_t and e_c are both 500 dimensional vectors.	1/1 point
$P(t \mid c) = \frac{e^{\theta_t^2 r_c}}{\sum_{i=0}^{c} e^{\theta_t^2 r_c}}$ Which of these statements are correct? Check all that apply. After training, we should expect θ_t to be very close to e_c when t and c are the same word. θ_t and e_c are both 500 dimensional vectors. \checkmark Correct \checkmark S\$Stheta_1\$\$\$\$ and \$\$\$\$\$\$e_c\$\$\$ are both trained with an optimization algorithm such as Adam	1/1 point
$P(t\mid c) = \frac{e^{\theta_t^2 t_c}}{\sum_{i=1000}^{c} e^{\theta_t^2 t_c}}$ Which of these statements are correct? Check all that apply.	1/1 point

True/False: X_{ij} is the number of times word j appears in the context of word i.

 $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$

