

Université Libre de Bruxelles

INFO-H-414 - SWARM INTELLIGENCE

Swarm Robotics Project : Diffusion

Author:
Jacopo De Stefani

Supervisor:
Prof. Marco Dorigo
Prof. Mauro Birattari

Contents

Report Outline	2
Basic idea	5
State machine	4
Conclusions	Ę

Jacopo De Stefani Page 1 of 5

Report Outline

A report of 4-6 pages structured as follows:

- Main idea of your approach [1 page]
- Structure of your solution (the state machine) [2 pages]
- Analysis of the results [1-3 pages]

Jacopo De Stefani Page 2 of 5

Basic idea

Jacopo De Stefani Page 3 of 5

State machine

Jacopo De Stefani Page 4 of 5

Conclusions

To summarize the results from the previous analysis:

- On this set of instances, the Simulated Annealing algorithm performs generally better than Ant Colony Optimization.
- Simulated Annealing is able to generate an higher percentage of feasible and high quality solutions.
- I believe that the strong limitation of computation times, with respect to VND, has a strong impact on the performance of the algorithms as the generally low probability of finding high quality solutions shows, for ACO in particular.
- Further improvement on the ACO algorithm could be made by implementing the original \mathcal{MAX} \mathcal{MIN} system and using an heuristic which could make a better use of the locally available information and guide the algorithm towards feasible solutions.
- While the performances of the ACO system are comparable, if not slightly worse than the best VND algorithm implemented in the previous implementation exercise, SA has considerably low run-times required to find high-quality solution and higher percentages of feasible solutions, thus outperforming both the aforementioned algorithms.
- The usage of average statistics as metrics to measure the quality of the algorithms is strongly biased by the presence of outliers (penalization, in this case).

References

Jacopo De Stefani Page 5 of 5