Physics-L2 Electromagnetism Approximative program

Chap 1: Electrostatics

Chap 2: Magnetostatics

Chap 3: Time-dependent regime-Induction phenomena

Chap 4: Maxwell equations

Chap 5: Dielectric media and applications

Chap 6: Conducting media and applications

Chap 7: Magnetic media and applications

week	Magistral lectures		
1	Electrostatics		
2	Electrostatics		
3	Electrostatics		
4	Electrostatics		
5	Magnetostatics		
6	Magnetostatics		
7	Induction		
8	Induction		
9	Maxwell equations		
10	Maxwell equations		
11	Dielectric media		
12	Dielectric / Metallic media		
13	Metallic Media		
14	Magnetic media		

Classical Light-matter interaction in a dielectric medium-Spectroscopy-L2

1) Macroscopic description

- a. Bound charges Dielectric Volumic Polarization
- b. Maxwell equations and wave equation
- c. Resolution: dispersion –absorbtion –optical index

2) Microscopic description: The Drude-Lorentz model

- a. Electron elastically bound to the nucleus: driven oscillator
- b. Expression of the volumic Polarization dielectric succeptibility
- c. Frequency dependence of the dielectric functions

3) Applications in Spectroscopy

- a. The different order-size dipoles and total dispersion/absorption spectrum
- b. Beer-Lambert law
- c. Dispersion and Cauchy law
- d. Limit of model; quantum description

4) Propagation of E-M wave in an optical fiber or a waveguide (if time Tutorial)

Niels Bohr and Max Planck in 1930

Institut de Physique et Ingénierie

Institut de Physique et Ingénierie

Institut de Physique et Ingénierie

Institut de Physique et Ingénierie

Physics-L2 Electromagnetism Approximative program

Chap 1: Electrostatics

Chap 2: Magnetostatics

Chap 3: Time-dependent regime-Induction phenomena

Chap 4: Maxwell equations

Chap 5: Dielectric media and applications

Chap 6: Conducting media and applications

Chap 7: Magnetic media and applications

week	Magistral lectures			
1	Electrostatics			
2	Electrostatics			
3	Electrostatics			
4	Electrostatics			
5	Magnetostatics			
6	Magnetostatics			
7	Induction			
8	Induction			
9	Maxwell equations			
10	Maxwell equations			
11	Dielectric media			
12	Dielectric / Metallic media			
13	Metallic Media			
14	Magnetic media			

Classical Light-matter interaction in a metallic medium-Conductivity-L2

1) Electric conductivity

- a) Resistance- Conductance-Ohm Law
- b) Conductivity Theory with static electric field: The Drude Model
- c) Effects of a Time-dependent electric field

2) Propagation of an electromagnetic field in a metallic medium

- a) Maxwell equations
- b) General Wave equation and dispersion relation

3) Reflection and transmission at the interface of a metallic medium

- a) Fresnel coefficients
- b) Influence of the frequency-Limit cases
 - b1) Low frequency and skin effect
 - b2) High frequency- Plasma domain
 - b3) General overview

