I Semestre del 2011 Total: 29 puntos Tiempo: 2 horas y 15 minutos.

TERCER EXAMEN PARCIAL

Instrucciones: Trabaje en forma ordenada y clara en su cuaderno de examen. Escriba todos los procedimientos que utilice para resolver los ejercicios propuestos. Se permite el uso de calculadora científica o de menor potencia. Apague el celular.

- 1. Sea $T: P_2 \longrightarrow IR^2$ una transformación lineal tal que $T(ax^2 + bx + c) = \begin{pmatrix} a b \\ c \end{pmatrix}.$
 - (a) Halle la matriz de la transformación. (3 puntos)
 - (b) Halle una base para el núcleo de la transformación. (2 puntos)
 - (c) De explícitamente dos elementos del núcleo de la transformación.

(2 puntos)

(d) Calcule la dimensión del subespacio de imágenes de la transformación.

(2 puntos)

2. Halle el criterio $T\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$T\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}-1\\0\end{pmatrix}, T\begin{pmatrix}-1\\1\\1\end{pmatrix} = \begin{pmatrix}-3\\-2\end{pmatrix}, T\begin{pmatrix}1\\1\\-1\end{pmatrix} = \begin{pmatrix}3\\0\end{pmatrix}$$

(5 puntos)

3. Considere la transformación $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, tal que

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ en donde } A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

- (a) Justifique si T es o no invectiva. (2 puntos)
- (b) Justifique si T es o no sobreyectiva. (2 puntos)
- 4. Suponga que el conjunto $\{v_1, ..., v_n\}$ es un conjunto de vectores linealmente independiente de un espacio vectorial V, además suponga que $T: V \longrightarrow W$ es una transformación lineal inyectiva. Entonces, demuestre que $\{T(v_1), ..., T(v_n)\}$ es un conjunto de vectores linealmente independiente de W. (4 puntos)
- 5. Halle todos los vectores y valores propios de la matriz

$$A = \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix} \tag{4 puntos}$$

6. Sea A una matriz invertible y λ un valor propio de A. Demuestre que λ^{-1} es un valor propio de A^{-1} . (3 puntos)