

Sur l'extension de l'ordre partiel.

Par

Edward Szpilrajn (Varsovie).

1. Je fais usage dans cette Note de la notion de la paire ordonnée, définie d'une façon très commode par M. Kuratowski¹). La classe ((a, b), (a)) s'appelle — selon M. Kuratowski — une paire ordonnée dont a est le premier élément et b le second. On désigne cette paire tout court par [a, b].

Un ensemble arbitraire ϱ de paires ordonnées s'appelle une relation et on écrit $a \varrho b$ au lieu de: $[a, b] \in \varrho$. On dit, en accord avec cette définition, qu'une relation π contient une autre relation π' , qu'une relation est somme d'une classe de relations, etc.

On dit ensuite que la relation ϱ établit un ordre dans l'ensemble E, lorsqu'elle satisfait aux conditions suivantes:

- I. Si $a \in E$, $b \in E$, $c \in E$, $a \varrho b$ et $b \varrho c$, on a: $a \varrho c$ (la relation ϱ est transitive dans E).
- II. On n'a jamais a ϱ a pour a ε E (la relation ϱ est non-reflexive dans E).
- III. Si $a \in E$, $b \in E$, l'un des trois cas se présente: $a \varrho b$, $b \varrho a$, a = b.

On dit, d'après M. Haus dorff 2), que la relation ϱ établit un ordre partiel dans E lorsqu'elle satisfait aux conditions I et II

- 2 Je me propose de donner dans cette Note une simple démonstration du théorème suivant:
- 1) Sur la notion de l'ordre dans la Théorie des Ensembles, Fund. Math. t. II, p. 171.
 - 2) Grundzüge der Mengenlehre, Leipzig 1914, p. 139.

Théorème. Pour chaque relation π établissant un ordre partiel dans un ensemble E il existe une relation ϱ contenant π et établissant un ordre (complet) dans E.

Ce théorème est connu¹), mais les démonstrations, dues aux MM. Banach, Kuratowski et Tarski, ne sont pas encore publiées:

Ma démonstration est basée sur un simple lemme et sur un théorème connu concernant les ensembles saturés par rapport à une certaine classe d'ensembles.

Je ne fais pas usage des nombres transfinis. Dans la démonstration du théorème sur les ensembles saturés — sur lequel je m'appuie — ces nombres ont été éliminés par M. Kuratowski²), cependant le théorème du bon ordre resp. l'axiome du choix sont essentiels pour cette démonstration, donc aussi (seulement à ce point) dans la mienne.

3. Lemme. Pour chaque relation π qui établit un ordre partiel dans un ensemble E et telle que pour deux éléments distincts p et q de E on n'a ni $p\pi q$, ni $q\pi p$ — il existe une relation π' 1) établissant de même un ordre partiel dans E, 2) contenant π et 3) telle que $p\pi'q$.

Démonstration. Définissons pour chaque relation ϱ une autre relation $\overline{\varrho}$, en posant $a\overline{\varrho}b$ si $a\varrho b$ ou bien a=b et $a\varepsilon E$. Il est clair que si la relation ϱ est transitive dans E, la relation $\overline{\varrho}$ l'est aussi.

Définissons maintenant la relation cherchée π' comme suit : posons $a\pi'b$ lorsque :

$$(a)$$
 $a \pi b$

ou bien

$$(\beta) \qquad \qquad a \, \overline{\pi} \, p \quad \text{et} \quad q \, \overline{\pi} \, b.$$

Il est évident que la relation π' satisfait aux conditions 2) et 3). Il reste donc à démontrer qu'elle satisfait à la condition 1), c'est-à-dire aux conditions I et II (pour $\varrho = \pi'$).

¹⁾ Cf. W. Sierpiński: Zarys teorji mnogości (en polonais), IIIe edition, Varsovie 1928, p. 158.

²⁾ Une méthode d'élimination des nombres transfinis... Fund. Math., t. III, p. 89.

Pour démontrer la transitivité, supposons que $x \in E$, $y \in E$, $z \in E$, $x \pi' y$ et $y \pi' z$. On a donc

$$x \pi y$$

ou bien

$$(1) x \,\overline{n} \, p \quad \text{et} \quad q \,\overline{n} \, y;$$

et en même temps

$$(2) y \pi z$$

ou bien

$$(2') y \,\overline{\pi} \, p \quad \text{et} \quad q \,\overline{n} \, z.$$

Si l'on a (1) et (2), alors comme π satisfait à la condition I — on a aussi $x \pi z$, donc $x \pi' z$ (selon (α)).

Si l'on a (1) et (2'), alors $x \pi y$ et $y \overline{\pi} p$ entraînent $x \overline{\pi} p$. On a en même temps $q \overline{\pi} z$, ce qui donne $x \pi' z$ (selon (β)).

Si l'on a (1') et (2), alors $q \overline{\pi} y$ et $y \pi z$ entraînent $q \overline{\pi} z$. On a, en même temps, $x \overline{\pi} p$, ce qui donne $x \pi' z$ (selon (β)).

Les conditions (1') et (2') sont incompatibles, car il résulte de $q \overline{\pi} y$ et $y \overline{\pi} p$ que $q \overline{\pi} p$ — ce qui donne une contradiction avec nos prémisses.

La condition I est donc satisfaite.

Il faut démontrer que π' satisfait à la condition II. A cet effet supposons qu'il n'en est pas ainsi, donc qu'il existe un élément x de E, tel que $x \pi' x$. On aurait donc ou bien $x \pi x$ — ce qui est impossible car π satisfait au condition II; ou bien $x \overline{\pi} p$ et $q \overline{\pi} x$, ce qui donne $q \overline{\pi} p$. Ce cas serait aussi impossible d'après nos prémisses.

Notre lemme se trouve ainsi démontré.

Remarque. I. Observons qu'il résulte de notre lemme que si une relation π établit un ordre partiel dans E et si on n'a ni $p\pi q$, ni $q\pi p$ (où p et q sont deux éléments disticts de E), alors il existe de ux relations distinctes π' et π'' qui établissent l'ordre partiel dans E, contenant π et telles que $p\pi'q$ et $q\pi''p$.

4. Démonstration du théorème. Soit E un ensemble quelconque et π une relation qui établit un ordre partiel dans E. Soit ensuite ε l'ensemble de toutes les paires ordonnées formées

d'éléments de E. Sans nuire à la généralité, nous pouvons supposer que la relation π est contenue dans ε^{1}).

Nous appliquerons le théorème suivant concernant les ensembles saturés 2):

Si une classe K de sous-ensembles d'un ensemble Z satisfait à la condition suivante:

(c) la somme de toute classe bien ordonnée d'ensembles croissants appartenants à K — appartient à K,

alors pour tout ensemble $A \in K$ il existe un ensemble B contenant A et saturé par rapport à K^3).

Dans l'énoncé du théorème précédent posons ε à la place de Z, la classe Φ de toutes les relations qui établissent un ordre partiel dans E et contenues dans E — à la place de K, et π à la place de A. On voit sans peine que la classe Φ satisfait à la condition (c). Il existe donc une relation ϱ contenant π et saturée par rapport à Φ .

Je dis que ϱ établit un ordre dans E. Comme la relation ϱ appartient à Φ , elle satisfait, par suite de la définition de Φ , aux conditions I et II. Supposons donc qu'elle ne satisfait pas à la condition III, autrement dit, qu'il existe une paire (p,q) d'éléments distincts de E, telle qu'on n'a ni $p \varrho q$, ni $q \varrho p$. D'après notre lemme il existerait une relation ϱ' , établissant un ordre partiel dans E, contenant ϱ et telle que $p \varrho' q$. Mais ceci est évidemment impossible, car ϱ est saturée par rapport à Φ .

Remarque II. Il résulte immédiatement de notre théorème et de la remarque I que si une relation π établit un ordre partiel dans E et si elle n'établit pas un ordre (complet) dans E — alors il existe au moins deux relations, ϱ' et ϱ'' qui contiennent ϱ , qui établissent un ordre dans E, et telles que $\varrho's = \varrho''s$.

¹⁾ Supposons, en effet, que notre théorème est vrai pour toutes les relations contenues dans e. Soit γ une relation établissant un ordre partiel dans E. Il est évident que la rélation γe (c'est-à-dire la classe de toutes les paires ordonnées [a,b] telles que $a\gamma b$, aeE et beE) établit de même un ordre partiel dans E. Il existe donc une relation δ contenant γe et établissant un ordre dans E. La relation $\gamma + \delta$ contient donc la rélation γ et — comme on voit sans peine — elle établit un ordre dans E.

²) Un ensemble est dit saturé par rapport à une classe K d'ensembles lorsqu'il appartient à K et lorsqu'il n'est un vrai sous-ensemble d'aucun ensemble appartenant à K.

^{*)} Cf. le Mémoire de M. Kuratowski, cité plus haut (p. 387 ²)). Voir aussi F. Hausdorff: *Mengenlehre*, Berlin-Leipzig 1927, p. 173.