Ultragrafos com Relações

20 de julho de 2025

1 Introdução

Estive pensando nessa ideia há algum tempo. Comecei com "Hipergrafos com Dependências", mas logo percebi que havia relações mais interessantes e mais generalizáveis, como implicação e implicação com negação. Quis criar condições mais interessantes que dependessem do caminho escolhido, inventei a ideia de Ultra-Vértices (que é um conjunto de vértices). A ideia foi se expandindo e se tornou algo extremamente generalizável.

2 Definições

Um Ultragrafo com Relações é definido por $U = (V, H, E_V, R_V, M)$, onde:

- ullet V é um conjunto finito de elementos chamados vértices (ou nós).
- \bullet H é um conjunto finito de conjuntos disjuntos de vértices, chamados de Ultra-vértices.
- E_V é um conjunto de Ultra-arestas direcionadas. Cada Ultra-aresta $e \in E_V$ é um par ordenado $e = (A_e, B_e)$, com $A_e, B_e \subseteq V$, $A_e \neq \emptyset$ e $B_e \neq \emptyset$.
- R_V , chamada de ultra-arestas de relação, é um conjunto de ultra-arestas direcionadas. Cada ultra-aresta de relação $d \in R_V$ é um triplo ordenado $d = (A_d, B_d, R_d)$, com $A_d, B_d \subseteq V$, $A_d \neq \emptyset$ e $B_d \neq \emptyset$, e $R_d \in \{\Longrightarrow, \not\Longrightarrow\}$.
- $M:V\to\mathbb{N}\cup\{\infty\}$, onde M(v) é o número máximo de visitas permitidas ao vértice v em um caminho.

Um Ultra-caminho P_H de um Ultra-vértice u para um Ultra-vértice v em U é uma sequência de Ultra-vértices em H:

$$P_H = (w_0, w_1, \dots, w_k)$$

onde:

- $w_0 = u \in w_k = v \pmod{k \ge 1} \in w_i \in H$,
- $\forall i \in \{1, ..., k\}, \exists e \in E_V \text{ tal que } e = (A_e, B_e) \land A_e \subseteq w_{i-1} \land B_e \subseteq w_i.$

O conjunto de ultra-vértices no ultra-caminho P_H é $UVert(P_H) = \{w_0, w_1, \dots, w_k\}$. Um Caminho P_V induzido por P_H é:

$$P_V = (v_0, \dots, v_k)$$

onde:

- $v_i \in w_i$ para todo i,
- $\forall i = 1, \dots, k : \exists (A_e, B_e) \in E_V \text{ tal que } v_{i-1} \in A_e \subseteq w_{i-1}, v_i \in B_e \subseteq w_i.$

O conjunto de vértices no caminho P_V é $Vert(P_V) = \{v_0, v_1, \dots, v_k\}$.

Um ultra-caminho $P_H = (w_0, \ldots, w_k)$ é válido em Ultragrafo com Relações se, além de satisfazer as condições de ultra-arestas em E_V , todos os seus prefixos consecutivos $P'_H = (w_0, \ldots, w_j)$ (para cada $1 \le j \le k$) satisfazem, definindo $P''_H = (w_0, \ldots, w_{j-1})$ se $j \ge 2$ (e P''_H vazio se j = 1, com $\bigcup_{w \in UVert(P''_H)} w = \emptyset$):

- $\forall (A_d, B_d, \implies) \in R_V : (B_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset) \rightarrow (A_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset), \text{ e se } (B_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset) \wedge (B_d \cap \bigcup_{w \in UVert(P''_H)} w = \emptyset), \text{ então } (A_d \cap \bigcup_{w \in UVert(P''_H)} w \neq \emptyset).$
- $\forall (A_d, B_d, \not\Longrightarrow) \in R_V : (A_d \cap \bigcup_{w \in UVert(P'_H)} w \neq \emptyset) \rightarrow (B_d \cap \bigcup_{w \in UVert(P'_H)} w = \emptyset).$
- $\forall v \in V : |\{w \in UVert(P'_H) \mid v \in w\}| \leq M(v).$

Um caminho $P_V = (v_0, \ldots, v_k)$ é válido se todos os seus prefixos consecutivos $P'_V = (v_0, \ldots, v_j)$ (para cada $1 \leq j \leq k$) satisfazem, definindo $P''_V = (v_0, \ldots, v_{j-1})$ se $j \geq 2$ (e P''_V vazio se j = 1, com $\{v_i \mid i \in \emptyset\} = \emptyset$):

- $\forall (A_d, B_d, \Longrightarrow) \in R_V : (B_d \cap \{v_0, \dots, v_j\} \neq \emptyset) \rightarrow (A_d \cap \{v_0, \dots, v_j\} \neq \emptyset)$, e se $(B_d \cap \{v_0, \dots, v_j\} \neq \emptyset) \land (B_d \cap \{v_0, \dots, v_{j-1}\} = \emptyset)$, então $(A_d \cap \{v_0, \dots, v_{j-1}\} \neq \emptyset)$.
- $\forall (A_d, B_d, \not\Longrightarrow) \in R_V : (A_d \cap \{v_0, \dots, v_j\} \neq \emptyset) \rightarrow (B_d \cap \{v_0, \dots, v_j\} = \emptyset).$
- $\forall v \in V : |\{i \mid 0 \le i \le j, v_i = v\}| \le M(v).$

3 Teoremas

Teorema 1 (Contradição por Implicação Cíclica). Seja $S_R = \bigcup_{(A_d, B_d, \implies) \in R_V} \{A_d, B_d\}$. Seja $G_+ = (S_R, E_R)$ o grafo dirigido com $E_R = \{(A_d, B_d) \mid (A_d, B_d, \implies) \in R_V\}$.

Se G_+ contém um ciclo dirigido, então não existe P_H válido nem P_V válido em U que comece de um ultra-vértice u ou vértice v_0 tal que os vértices ativados no início não pertençam aos conjuntos do ciclo (i.e., $u \cap (\bigcup_{S_i \in C} S_i) = \emptyset$ para P_H , ou $v_0 \notin \bigcup_{S_i \in C} S_i$ para P_V , onde C é o ciclo).

Demonstração. Por absurdo. Foco em P_H (análoga para P_V).

Suponha $P_H = (w_0, \dots, w_k)$ válido com $w_0 \cap (\bigcup_{S_i \in C} S_i) = \emptyset$, e suponha que o caminho ativa algum $S_l \in C$ em algum $t_{S_l} > 0$.

Como o caminho entra no ciclo de fora, seja S_l o primeiro conjunto do ciclo ativado, com $t_{S_l} = \min\{t_S \mid S \in C\}$.

Pela estrutura do ciclo, existe $S_m \to S_l$ (pois todo vértice em ciclo tem dependência), então pela condição estrita para $(S_m, S_l, \Longrightarrow)$, em $j = t_{S_l}$, $S_m \cap \bigcup_{l=0}^{j-1} w_l \neq \emptyset$.

Mas $t_{S_m} < t_{S_l}$, contradizendo a minimalidade de t_{S_l} (pois $S_m \in C$).

Propagando para trás no ciclo, a entrada de fora requer uma ativação prévia dentro do ciclo, impossível sem violar a minimalidade ou a estrita precedência.

Assim, nenhum caminho de fora pode entrar no ciclo sem contradição, implicando ausência de tais P_H válidos.

Teorema 2 (Troca de Relações Inversas em Caminhos Paralelos). Seja $U = (V, H, E_V, R, M)$ um ultragrafo com relações, onde:

- Existem vértices iniciais $i \in V$, finais $f \in V$, $e v_r \in V$ tal que caminhos de i para v_r passam obrigatoriamente por f.
- Existem dois caminhos paralelos de i para f: um via $v_1 \in V$ (i.e., arestas conectando $i \to v_1 \to f$), outro via $v_2 \in V$ (i.e., $i \to v_2 \to f$), sem arestas cruzadas ou alternativas.
- $R = \{(A_1, A_r, \Longrightarrow)\}$, onde $A_1 \subseteq V$ contém v_1 mas não v_2 , e $A_r \subseteq V$ contém v_r .
- M(v) = 1 para todo $v \in V$ (proibindo repetições).
- Arestas adicionais $f \to v_r$.

Seja $U' = (V, H, E_V, R', M)$, com $R' = \{(A_2, A_r, \not\Longrightarrow)\}$, onde $A_2 \subseteq V$ contém v_2 mas não v_1 . Os conjuntos de ultra-caminhos válidos P_H e caminhos válidos P_V de ultra-vértices contendo i para ultra-vértices contendo v_r em U coincidem com os de U'. Demonstração. Os possíveis ultra-caminhos candidatos de $\{i\}$ para $\{v_r\}$ são sequências passando por $\{v_1\}$ ou $\{v_2\}$, depois $\{f\}$, e $\{v_r\}$ (outros violam E_V ou M).

Em U: Para caminhos via v_1 , prefixos ativando A_r (i.e., v_r) já ativam A_1 (via v_1), satisfazendo \Longrightarrow . Para via v_2 , ativa A_r sem A_1 , violando \Longrightarrow .

Em U': Para via v_1 , A_2 não ativado, satisfazendo \Longrightarrow (premissa falsa). Para via v_2 , ativa A_2 e A_r , violando \Longrightarrow .

Logo, apenas caminhos via v_1 são válidos em ambos. Análogo para P_V .

Teorema 3 (Ultragrafos com Relações Isomórficos a Ultragrafos sem Relações).

Um ultragrafo com relações $U=(V,H,E_V,R,M)$ é tal que cada ultra-vértice em H contém apenas um elemento (singleton), correspondente ao seu vértice respectivo em V (i.e., $H=\{\{v\}\mid v\in V\}$), simulando um grafo direcionado padrão com relações lógicas sobre ativações de vértices.

Suponha que exista uma relação $(A_i, A_j, \Longrightarrow) \in R$, com $A_i = \{v_i\}$, $A_j = \{v_j\}$, tal que v_i é necessária para qualquer caminho válido que contenha v_j ou ative vértices além de v_j em subgrafos dependentes.

Suponha também que existam caminhos paralelos de um vértice inicial $s \in V$ para um vértice convergente $t \in V$ (fechamento de caminhos): um ramo passando por v_i (permitindo v_j e além), outro por $v_2 \in V$ (sem v_i , e portanto incapaz de ativar v_j ou além devido à relação).

Os caminhos podem ser separados em com v_i (válidos para além de v_j) e sem v_i (limitados, não alcançando além de v_j).

Construa um ultragrafo $U' = (V', H', E'_V, \emptyset, M')$ sem relações, onde:

- $V' = V \cup V_d$, com V_d duplicata de vértices a partir do ponto de convergência t e subgrafos além (incluindo duplicatas de v_i^d , t^d).
- $H' = \{\{v\} \mid v \in V'\}$ (mantendo singletons para consistência com U).
- E'_V inclui ultra-arestas (que são arestas simples, pois singletons):
 - Arestas originais de E_V até a ramificação.
 - Para ramo com v_i : arestas para v_i , t, e subgrafo além.
 - Para ramo sem v_i (via v_2): arestas para duplicatas V_d , mas com corte abrupto (sem arestas além do correspondente a v_j^d , representando proibição estrutural; hiper-arestas não necessárias, pois singletons, mas conexões pares preservadas via duplicatas).
- M'(v) = M(v) para $v \in V$, $M'(v^d) = M(v)$ para $v^d \in V_d$.

Existe tal ultragrafo U' sem relações cujo conjunto de caminhos válidos P_H e P_V coincide com o de U (módulo mapeamento de duplicatas para originais em caminhos válidos, preservando singletons).

4 Esboço da Prova

A construção duplica o subgrafo pós-convergência para o ramo sem v_i , cortando continuidade além de v_i^d via E_V' , simulando a dependência \implies sem R.

Caminhos em U ativando v_j ou além requerem v_i pela relação em prefixos; em U', ramos sem v_i param abruptamente (sem ativação de subgrafos dependentes), enquanto com v_i continuam. Valididade em U' depende só de E'_V e M', replicando restrições.

O mapeamento bijetivo colapsa duplicatas para originais em caminhos com v_i , preservando conjuntos. etc... etc... preciso formalizar.

TODO: Eu ainda tenho que verificar se todas as provas estão corretas e os teoremas e definições.