Практическая работа 1. Анализ одномерной случайной величины.

Цель работы. Произвести анализ одномерной случайной величины на основе ее N независимых измеренных значений.

Теоретические сведения. Первичная обработка полученных в результате случайного эксперимента данных включает в себя:

- построение статистического ряда распределения;
- построение эмпирической функции распределения;
- получение точечных статистических оценок;
- предварительное предположение о характере распределения случайной величины X.

При статистической обработке экспериментальных данных распределение случайной величины X заменяется так называемым выборочным распределением, т.е. выборкой $x_1, x_2, \dots x_N$ с вероятностями $P\{X = x_i\} = \frac{1}{N}$.

Если выборка небольшого объема, то статистический ряд распределения представляет собой дискретный ряд распределения (ряд распределения выборочной случайной величины X^*). Если выборка большого объема, то строится интервальный (группированный) статистический ряд.

Для построения интервального ряда распределения необходимо:

1. Упорядочить выборку, т.е. составить вариационный ряд

$$x_1^* \le x_2^* \le x_3^* \dots \le x_{N-1}^* \le x_N^*,$$
 (1)

в котором упорядоченные значения $x_1^*, x_2^*, x_3^* \dots, x_N^*$ называют порядковыми статистиками.

2. Найти диапазон выборки $[x_1^*; x_N^*]$ и размах выборки R_B по формуле

$$R_B = x_N^* - x_1^*. (2)$$

3. Для заданного объема выборки N найти оптимальное число интервалов l, на которые разбивается диапазон выборки. Рекомендуется выбирать

$$l = \log_2 N + 1, \quad 5 \le l \le 25,$$
 (3)

4. Найти длину каждого интервала h по формуле

$$h = \frac{R_B}{l}. (4)$$

5. После этого записать полуоткрытые интервалы $I_1 = [a_0, a_1), ..., I_i = [a_{l-1}, a_l), ..., I_l = [a_{l-1}, a_l],$ на которые разбит весь диапазон выборки $[x_1^*; x_N^*]$ и границы которых определяются формулами

$$a_1 = x_1^*, a_i = a_0 + i \cdot h, i = 1, \dots l.$$
 (5)

Замечание. Интервалы выбирают полуоткрытыми, чтобы исключить случай, когда какое-то выборочное значение попадает на границу интервала, и приходится решать, к какому интервалу его отнести. В последнем интервале $I_l = [a_{l-1}, a_l]$ должно быть $a_l = a_0 + l \cdot h \ge x_N^*$. Поэтому его длина может оказаться больше, чем h.

- 6. Для каждого интервала I_i , i=1,...l с помощью вариационного ряда (1) вычислить числа N_i количество выборочных значений, попавших в этот интервал. Очевидно, что $\sum_{i=1}^l N_i = N$.
- 7. Все выборочные значения, попавшие в интервал l_i , i=1,...l, принимаются равными его середине, а середины интервалов \tilde{x}_i группированного ряда вычисляются по формуле

$$\tilde{x}_i = \frac{a_{i-1} + a_i}{2}, i = 1, \dots l.$$
 (6)

8. Вычислить частоты p_i^* по формулам

$$p_i^* = \frac{N_i}{N},\tag{7}$$

где N_i - число выборочных значений, попавших в интервал I_i . Очевидно, что $\sum_{i=1}^l p_i^* = 1$.

9. После этого записать интервальный ряд (табл.1), в котором указаны интервалы, середины интервалов, количество выборочных значений в каждом интервале и частоты вычисленные по формуле (7).

Табл.1

I_i	I_1	I_2	•••	I_l	Σ
\widetilde{x}_i	\widetilde{x}_1	\widetilde{x}_2	• • •	\widetilde{x}_l	-
N_i	N_1	N_2	• • •	N_l	N
p_i^*	p_1^*	p_2^*	• • •	\overline{p}_l^*	1

Построение эмпирической функции распределения. Для этого наряду с интервальным строится дискретный статистический ряд (табл.2), а также накопленные частоты z_i , которые вычисляются по формулам

$$z_1 = p_1^*, z_2 = p_1^* + p_2^*, ..., z_i = \sum_{k=1}^i p_k^*.$$

\widetilde{x}_i	$ ilde{x}_1$	\widetilde{x}_2	$ ilde{\chi}_3$	•••	$ ilde{x}_l$	Σ
p_i^*	p_1^*	p_2^*	p_3^*	• • •	p_l^*	1
Z_i	Z_1	Z_2	Z_3	•••	1	

Построенный дискретный статистический ряд представляет собой приближенное выборочное распределение, а частоты p_i^* являются статистическими оценками вероятностей того, что выборочное значение равно \tilde{x}_i .

В качестве приближения функции распределения F(x) генеральной совокупности в статистике рассматривают эмпирическую функцию распределения, которая определяется формулой

$$F_N^*(x) = \sum_{i:\tilde{x}_i < x} p_i^*. \tag{8}$$

Аналитическое выражение $F_N^*(x)$ через накопленные частоты z_i имеет вид

Эмпирическая функция распределения $F_N^*(x)$ ставит в соответствие каждому значению x частоту события X < x и представляет собой кусочнопостоянную функцию со скачками в серединах интервалов \tilde{x}_i , i=1,...l.

Если X — непрерывная случайная величина, то в качестве статистического аналога функции распределения генеральной совокупности используют *кумуляту*. Кумуляту строят как непрерывную ломаную линию, состоящую из отрезков, соединяющих точки

 $(a_0,0)$ и (a_1,z_1) , (a_1,z_1) и (a_2,z_2) , (a_2,z_2) и (a_3,z_3) , ..., (a_{l-1},z_{l-1}) и (a_l,z_l) , а также двух полупрямых: y=0 при $x\leq a_0$ и y=1 при $x>a_l$.

Построение гистограммы и полигона частот.

Гистограмма является статистическим аналогом плотности распределения непрерывной генеральной совокупности X. Это кусочно-постоянная функция f_N^* , значения которой на каждом интервале $I_i = (a_{i-1}, a_i)$ определяются формулой

$$f_i^*(x) = \frac{p_i^*}{h},\tag{10}$$

где частота p_i^* выбирается из таблицы 2; h - длина интервала.

Соединив точки гистограммы с абсциссами $\tilde{x}_i = \frac{a_{i-1} + a_i}{2}$, i = 1, 2, ... l, на этом же рисунке можно построить полигон частот.

По виду полигона выдвигается основная гипотеза о характере распределения генеральной совокупности X: нормальное (гауссовское) распределение, равномерное распределение и т.д.

Получение точечных статистических оценок:

- выборочное среднее

$$\bar{x} = \hat{\mu}_x = \frac{1}{N} \sum_{i=1}^{N} x_i,$$
 (11)

$$\bar{x} = \sum_{i=1}^{l} \tilde{x}_i p_i^*; \tag{12}$$

- несмещенную (исправленную) выборочную дисперсию

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2};$$
 (13)

$$s^2 = \sum_{i=1}^l \tilde{\chi}_i^2 p_i^* - \bar{\chi}^2; \tag{14}$$

- несмещенное среднеквадратическое отклонение

$$S_r = +\sqrt{S^2}. (15)$$

Описание работы. Имеется набор (выборка) экспериментальных данных x_1 , x_2 , ... x_N . Требуется произвести обработку этих данных для получения эмпирических характеристик одномерной случайной величины.

Этапы выполнения работы:

- 1. Составить интервальный ряд распределения;
- 2. Построить эмпирическую функцию распределения, ее график и кумуляту;
- 3. Построить гистограмму и полигон, выдвинуть гипотезу о законе распределения;
- 4. Получить точечные статистические оценки параметров распределения.