一. 填空题

1. 已知
$$X$$
的分布列 $\begin{pmatrix} -1 & 1 & 2 \\ 0.2 & 0.2 & 0.6 \end{pmatrix}$ 则 $P(X < 2|X \ge 0) = ($)。

- 2. X 服从[0, 3]上的均匀分布,则对 X 独立观察 3 次恰有 1 次大于 2 的概率为()。
- 3. 设X服从 $N(\mu,3^2)$, $X_1,X_2,...,X_n$ 是取自总体X的简单随机样本,

则检验问题 $H_0: \mu \leq 1$; $H_1: \mu > 1$ 通常所用的统计量()。

- 4. 随机变量 $X \times Y$ 的方差分别为 4 和 9,相关系数为 -0.5,则随机变量 X - Y 的方差为(
- 5. 设 $X_1, X_2, \cdots, X_n (n > 1)$ 为来自总体X的简单随机样本,且 $D(X) = \sigma^2$ 则 $Cov(2X_1, \overline{X}) = ($)。

6.设(X, Y)服从正态分布 N(2,0;1,1;0),则 $P\{XY - 2Y < 0\} = ($).

单项选择题

1. 设 $f_1(x)$ 为[1,3]上均匀分布的概率密度, $f_2(x)$ 为 $N(2,\sigma^2)$ 的概率密度

若
$$f(x) = \begin{cases} af_1(x), & x \leq 2 \\ bf_2(x), & x > 2 \end{cases}$$
 为概率密度,则 a, b 应取 ()。

(A)
$$a = -1, b = 3$$
; (B) $a = 1, b = 1$; (C) $a = 1, b = 2$; (D) $a = 2, b = 1$

则
$$P\{X_1^2 + X_2^2 = 1\} = ($$
)。
(A)0; (B)0.5; (C)1; (D)0.25。

- 3. 随机变量 X 服从标准正态分布。则 $E[(X^2e^X] = ($)。
 - (A) \sqrt{e} ; (B) $2\sqrt{e}$; (C) 1 ; (D) 2 .

4. 设总体 X 服从参数为 2 的泊松分布, $X_1, X_2,, X_n$ 是来自总体 X 的简	4.	设总体 X	服从参数为	2的泊松分布,	X_1, X_2	,,X	,是来自总体	X 的简	单
---	----	-------	-------	---------	------------	-----	--------	-------------	---

随机样本, 则当
$$n \to \infty$$
时, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于 ()。

- (A) 常数 12; (B) 常数 3; (C) 常数 9; (D) 常数 6。
- 5. 设 X_1, X_2, \cdots, X_n 是来自标准正态总体的简单随机样本, \overline{X} 和 S^2 为样本均值 和样本方差,则()
 - (A) \overline{X} 服从标准正态分布 ; (B) $D(\sum_{i=1}^{n} X_i^2) = n$
- (C) $n(\overline{X})^2$ 服从 γ^2 分布: (D) $D(S^2) = 2(n-1)$
- 6. $X \cap Y$ 的相关系数为 0. 2, U = -4X + 1, V = 1 Y则U和V的相关系数为()
 - (A) 0.2; (B) -0.8; (C) -0.2; (D) -0.4.

三. 计算题

- (一) (12 分) 设 X 的分布列为 $P\{X = 1\} = P\{X = 0\} = 0.5$, Y 服从标准正态分布,
 - X、Y相互独立; 试求 $Z = X^3 + Y$ 的分布密度函数 $f_{s}(z)$ 。
- (二)(16分)设二维随机变量(X,Y)的密度函数为

$$f(x, y) = \begin{cases} c, & 0 < x < 1, & 2x < y < 2. \\ 0, & \sharp \dot{\Sigma}_{\circ} \end{cases}$$

- 1.求常数c 2. 求出X、Y的边际分布密度
- 3. 说明 $X \times Y$ 是否独立,为什么? 4.求 $P\{X + Y < 1\}$
- (三)(10分)总体 X 服从[λ ,2]上的均匀分布(参数 λ < 2))

 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。

求参数 λ 的矩估计。 2. 求参数 λ 的极大似然估计。

(四)(8分)随机变量 X 的密度函数为 $f(x) = \begin{cases} 2e^{-2x} & x > 0 \\ 0, & x \leq 0 \end{cases}$

F(x)为X的分布函数 试求Y = F(X)的概率密度函数和数学期望。

四. (6分)总体 X 服从 $N(0,2^2)$, X_1,X_2,\cdots,X_{15} 为来自总体 X 的简单随机样本

记
$$Y = \frac{2(X_1 + X_2 + \dots + X_5)^2}{(X_6^2 + X_7^2 + \dots + X_{15}^2)}$$
。证明: Y 服从 $F(1, 10)$

讲习题答案

一. 填空题

1.
$$\frac{1}{4}$$
; 2. $\frac{4}{9}$; 3. $\frac{(\overline{X}-1)}{3}\sqrt{n}$; 4. 19; 5. $\frac{2}{n}\sigma^2$; 6. $\frac{1}{2}$

二. 单选题

 \equiv .

(一) (12 分) 解:记Z 得分布函数为 $F_z(z)$

$$\mathbb{P}_{Z}(z) = P\{X^{3} + Y \leq z\} = \sum_{i=0}^{1} P\{X = i, X^{3} + Y \leq z\}$$

$$= \sum_{i=0}^{1} P\{X = i\}P\{Y \leq -i^{3} + z\} = \frac{1}{2} P\{Y \leq z\} + \frac{1}{2} P\{Y \leq z - 1\}$$

$$= \frac{1}{2} \Phi(z) + \frac{1}{2} \Phi(z - 1)$$

$$f_{Z}(z) = \frac{1}{2} [\phi(x) + \phi(z - 1)]$$

(二)解

(1)
$$: \int_{-\infty-\infty}^{+\infty+\infty} p(x, y) dx dy = 1$$
$$: c = 1$$

(2)
$$X$$
 的边际分布密度 $p_1(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \begin{cases} 2 - 2x & 1 > x > 0 \\ 0 & 其它 \end{cases}$

Y的边际分布密度

$$p_2(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \frac{y}{2} & 2 > y > 0 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

(3) : $p(x,y) \neq p_1(x)p_2(y)$ 所以 $X \setminus Y$ 不独立,

(4)
$$P{X + Y < 1} = \iint_{x+y<1} dxdy = \frac{1}{6}$$

 (Ξ)

解: 1. X 服从[λ ,2]上的均匀分布

计算得
$$E(X) = \frac{\lambda + 2}{2}$$
,令 $\frac{\lambda + 2}{2} = \overline{X}$

所以 λ 的 矩估计 $\hat{\lambda}_1 = 2\overline{X} - 2$

.似然函数
$$L(\lambda) = \prod_{i=1}^n f(x_i, \theta) = \begin{cases} (\frac{1}{2-\lambda})^n & \lambda \leq \min\{x_1, x_2, \dots, x_n\} \end{cases}$$
 其它

$$\hat{\lambda} = \min\{x_1, x_2, \cdots, x_n\}$$
 时 $L(\lambda)$ 达到最大值

所以
$$\hat{\lambda}_2 = \min\{X_1, X_2, \dots, X_n\}$$
为 λ 的最大似然估计

它们都是λ的相合估计。

(四)解:(过程略)
$$X$$
的分布函数 $F(x) = \begin{cases} 1 - e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$

$$Y = F(X)$$
的概率密度函数
$$p(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$$

$$EY = \frac{1}{2}$$

四.证明: 略