PERCEPTION AND INFORMATION PROCESSING

PRESENTATION AND VISUALIZATION – MIREIA RIBERA

FOUNDATIONS OF DATA SCIENCE MASTER DEGREE

INFORMATION PROCESSING

OUR INFORMATION PROCESSING CAPABILITIES

Source: Allan-Hermann Pool (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons http://usablealgebra.landmark.edu/instructor-training/working-memory-attention-executive-function/

THE VISUAL SYSTEM

WHAT DO YOU READ HERE?

THE CHT

TWO THEORIES OF PERCEPTION PROCESSING

BOTTOM-UP APPROACH

TOP-DOWN APPROACH

SENSATION

RETINA, RODS AND CONES

Normal

COLOUR DEFICIENCY

- 10% men
- 1% women

Dichromacy

Colour blindness: Protanopia (lack of L cones), Deuteranopia (lack of M cones)

CLASS ACTIVITY

The Hue-test challenge

http://www.xrite.com/hue-test/ try to pass the test with maximum qualification

Silktide disability simulator

Install the extension. Visit a colourful web you use to go. Try colour deficiency options of the extension

AGE, COLOUR BLINDNESS AND CONTRAST

- Colour perception decreases with age
- Sight decrease affects both rods and cones
- As we have many more rods, elders perceive much better luminance differences than hue differences.
- It is therefore important to keep contrast differences in every colour system.

CONTRAST: SOME TOOLS

LINUX: https://contrast-ratio.com

Carbon IBM's Design System: Accessible colour palettes for information visualization

EYES SENSITIVITY

VISUAL ANGLE AND USEFUL FIELD OF VIEW (UFOV)

Visual angle

Source: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/eye/eye.html

DESIGN PRINCIPLE

• G5. I 'To minimize the cost of visual searches, make visualization displays as compact as possible, compatible with visual clarity. For efficiency, information nodes should be arranged so that the average saccade is 5 degrees or less'

Source (of this and posterior G principles): Colin Ware, Perception for design

PERCEPTION

RETINAL GANGLION CELLS

Retinal ganglion cells respond to edges

Center-surround receptive fields: emphasize edges.

Source: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/ganglion/ganglion.html

BIASED SIGNALS SENT TO NEURONS

PERCEPTION IS RELATIVE

THE OPPONENT-PROCESS THEORY

PERCEPTION THEORIES

AFFORDANCES

Source: http://paaralan.blogspot.com.es/2010/09/affordance-and-educational-games.html; https://www.slideshare.net/Tzec/affordances-constraints-and-feedback-in-user-experience-design

HOW MANY 5s?

HOW MANY 5s?

PREATTENTIVE PROPERTIES

- Certain visual properties are detected immediately by low-level visual system
 - Immediately is <200-250 ms
- They "pop-out" without requiring serial search
- Not affected by distractors

TEST YOUR ABILITIES: WHERE IS THE RED CIRCLE?

TEST YOUR ABILITIES (II): WHERE IS THE RED CIRCLE?

PREATTENTIVE PROCESSING AND PROCESSING CHANNELS

TEST YOUR ABILITIES (III)

Perception in visualization / Christopher G. Healey
 https://www.csc2.ncsu.edu/faculty/healey/PP/index.html

DESIGN PRINCIPLES

- G5.2 "Use different visual channels to display aspects of data so that they are visually distinct"
- G5-7 "For maximum popout a symbol should be the only object in a display that is distinctive on a particular feature channel; for example, it might be the only item that is colored in a display where everything else is black and white."

DESIGN PRINCIPLES

- G5-8 "Use positively asymmetric preattentive cues for highlighting"
- G5-9 "For highlighting, use whatever feature dimension is used least in other parts of the design"
- G5-10 "When colour and shape channels are already fully utilized, consider using motion or blink highlighting. Make the motion or blinking as subtle as possible, consistent with rapid visual search"

COMBINATION OF DIMENSIONS: INTEGRAL AND SEPARABLE

Integral dimensions are seen together

Separable dimensions are seen separately

DESIGN PRINCIPLES

- G5.14 "If it is important for people to respond holistically to a combination of two variables in a set of glyphs, map the variables to integral glyphs properties"
- G5.15 "If it is important for people to respond analytically to a combination of variables, making separate judgments on the basis of one variable or the other, map the variables to separable glyph properties"

TEST YOUR ABILITIES (IV): WHERE IS THE RED CIRCLE?

DESIGN PRINCIPLES

- G5.11 "To make symbols in a set maximally distinctive, use redundant coding wherever possible; for example, make symbols differ in both shape and colour"
- When the visual query implies a conjunction query (searching for two attributes at the same time) G5.13 "consider coding one using motion or special grouping and the other using a property such as colour or shape"

GESTALT LAWS: SIMPLEST FORMS

FIGURE AND GROUND

DESIGN PRINCIPLE

• G5.3 "To make symbols easy to find, make them distinct from their background and from other symbols".

PROXIMITY

DESIGN PRINCIPLE

• G6. I "Place symbols and glyphs representing related information close together"

SIMILARITY

DESIGN PRINCIPLE

 G6.2 "When designing a grid layout of a data set, consider coding rows and/or columns using low-level visual channel properties, such as colour and texture"

CONNECTEDNESS

Source: Computermacgyver (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

DESIGN PRINCIPLE

• G6.3 "To show relationships between entities, consider linking graphical representations of data objects using lines or ribbons of colour"

CONTINUITY: HOW WILL YOU SEPARATE THESE LINES?

COMMON FATE (SYNCHRONY)

Source: https://emeeks.github.io/gestaltdataviz/section3.html

SYMMETRY

DESIGN PRINCIPLE

• G6.4 Consider using symmetry to make pattern comparisons easier but be sure that the patterns to be compared are small in terms of visual angle (<1 degree horizontally and <2 degrees vertically).

Symmetrical relations should be arranged on horizontal or vertical axes unless some framing pattern is used.

CLOSURE AND COMMON REGION

DESIGN PRINCIPLE

- G6.5 "Consider putting related information inside a closed contour. A line is adequate for regions having a simple shape. Colour or texture can be used to define regions that have more complex shapes".
- G6.6 "To define multiple overlapping regions, consider using a combination of line contour, colour, texture, and sweet contours"

FOCAL POINT

Source: https://www.slideshare.net/Lobelia I 0/gestalt-principles-of-form-perception

PARALLELISM

DESIGN PRINCIPLE

• Combining preattentive processing properties and Gestalt laws we can derive best practices to represent quantity, intensity or to provide visual salience

COMBINING PREATTENTIVE PROPERTIES + GESTALT TO REPRESENT QUANTITY

- size:
 - length or height,
 - area (radius),
 - never volume
- lightness, darker = bigger
- hue saturation, saturated = bigger
- vertical position, higher = bigger

COMBINING PREATTENTIVE PROPERTIES + GESTALT TO REPRESENT INTENSITY

- Darker or more saturated,
- Bigger,
- Thicker

COMBINING PREATTENTIVE PROPERTIES + GESTALT TO REPRESENT VISUAL SALIENCE

- Distinct from the norm: in hue, orientation,
- Enclosure: by line or background colour,
- Added marks

厂

MENTAL MODELS

Presentation and Visualization

COGNITIVE PROCESSING

MEMORY

Source: Cañas

TRY TO REMEMBER

72410358291064351290

724 103 582 910 643 512 90

AUTOMATIC TELLER MACHINE (ATM)

• What do you have to take first: money or card?

WHY?

DESIGN PRINCIPLES

- Design based on recognition, not recall
- 7 ± 2
- Long tasks in small steps
- Avoid interferences within a channel, enrich with different channels

ATTENTION

- Focused attention
 - All our attention in one event
- Divided attention
 - Our attention shifts between two or more events
 - Be careful with balance and interferences

DESIGN PRINCIPLES

- Important information should receive focused attention, it shall appear in preeminent locations and have visual salience
- Secondary information may be on secondary locations or hidden, only visible on demand

SELECTIVE ATTENTION

Source: https://www.nngroup.com/articles/banner-blindness-old-and-new-findings/

Presentation and Visualization

COLOUR

COLOURS AFFECT OUR MOODS

- Colours affect us in numerous ways, both mentally and physically
- We can divide colours into warm and cool
 - Warm colours are energetic, and tend to advance in space.
 - Cool colours give calm, and tend to work better as background.

COLOUR MEANING IS A CULTURAL ISSUE

SPECIFICATION OF A COLOUR: SCREENS AND PRINTING

ADDITIVE MODEL

SUBTRACTIVE MODEL

SPECIFICATION OF A COLOUR: PERCEPTUAL DIMENSIONS

HSL: Hue Saturation Lightness

- Luminance / Lightness / Value : (it is relative) how much light appears to reflect an object in relation to the White on the scene
- Hue: what we associate to colour names
- Saturation (Chroma): Purity of the colour (vividness)

HSV or HSB (Value / Brightness)

http://hslpicker.com/

http://colorizer.org/

COLOUR SPACES AND PERCEPTUAL UNIFORMITY

RGB

CIE LUV 1975

MUNSELL COLOUR SPACE

COLOUR GAMUT

http://www.phonearena.com/phones/benchmarks

COLOURS FOR CHARTS

- Assign colour according to function:
 - Use contrast to highlight
 - Analogous colours to group
 - Use greys for context and axis when labelling with colour

• G4.7 If using colour saturation to encode numerical quantity, use greater saturation to represent greater numerical quantities. Avoid using a saturation sequence to encode more than three values.

• G4.16 Use low-saturation colours to colour code large areas. Generally, light colours will be best because there is more room in colour space in the high-lightness region than in the low-lightness region.

• G4.17 When colour coding large background areas overlaid with small coloured symbols, consider using all low-saturation, high-value (pastel) colours for the background, together with high-saturation symbols on the foreground.

• G4.18 When highlighting text by changing the colour of the font, it is important to maintain luminance contrast with the background.

COLOURS FOR LABELLING. QUALITATIVE

- Small set: based on opponent theory, red, green, yellow, blue
- 12 cross-cultural safe colours: Red, Green, Yellow, Blue, Black, White, Pink, Cyan, Grey, Orange, Brown, Purple

Different hues have no order

COLOURS FOR LABELLING. QUANTITATIVE SCALES

Sequential: each step differs in saturation or in saturation and

+ Saturation => Higher quantity

• Diverging: two hues, a neutral hue in the middle

COLOUR MAPPING: ENCODING VALUES WITH COLOUR

COLOURS FOR MAPS

- Big areas: low saturation; Small areas: highly saturated
- Ensure hue and luminance contrast with the background (use a border if needed)
- For colour-blindness assure yellow-blue distinction
- See Cynthia Brewer ColorBrewer tool

OPTIONAL AFTER CLASS ACTIVITY (REQUIRES A GOOGLE DEVELOPER ACCOUNT)

Customize Google maps style

Submit a styled map of Barcelona at the campus task.