

Concours d'accès à la formation 3e cycle Filière : Mathématiques. Spécialité : Processus aléatoire et Statistique Année universitaire 2022-2023

Épreuve : Processus stochastique et équations différentielles

Le 07 février 2023. Durée 02h00.

Exercice 1. (06 pts)

Soient $B = (B_t)_t$ un mouvement brownien sur $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ et N une variable aléatoire distribuée suivant une loi gaussienne $\mathcal{N}(m,\rho^2)$ indépendante de $(B_t)_t$. Soit

$$Y_t = \eta t + \tau B_t$$
 et $\mathcal{G}_t = \sigma(Y_s, s \le t)$.

- 1. Calculer $Cov(\eta, Y_s)$ et $Cov(Y_s, Y_t)$.
- 2. Montrer que $(Y_t)_t$ est un processus gaussien.
- 3. Montrer que, $\forall t \geq 0$, il existe λ (dépend de t) tel que $\eta = \lambda Y_t + Z$, avec Z indépendant $de \mathcal{G}_t$.
- 4. Calculer $\mathbb{E}[\eta|\mathcal{G}_t]$ et la variance de $\eta \mathbb{E}[\eta|\mathcal{G}_t]$, montrer que

$$\lim_{t \to +\infty} \mathbb{E}[\eta | \mathcal{G}_t] = \eta \quad p.s.$$

Exercice 2. (07 pts)

Soient I = [0, T] et $(\phi_n)_n$ une base hilbertienne orthonormale de l'espace de Hilbert $L^2(I)$ des fonctions $\varphi: I \longrightarrow \mathbb{R}$ de carré intégrable pour la mesure de Lebesgue sur I.

On note $\langle \varphi, \psi \rangle = \int_0^T \varphi(t)\psi(t)dt$ le produit scalaire des fonctions $\varphi, \psi \in L^2(I)$.

Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoires i.i.d de loi N(0,1) définie sur un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$.

Pour tout $t \in I$, on pose

$$B_t = \sum_{n \in \mathbb{N}} \langle 1_{[0,t]}, \phi_n \rangle X_n$$

- 1. Montrer que la série $\sum_{n\in\mathbb{N}} |\langle 1_{[0,t]}, \phi_n \rangle|^2$ est convergente.
- 2. Montrer que le processus $B = (B_t)_{t \in I}$ est bien défini.
- 3. Montrer que $B = (B_t)_{t \in I}$ est un mouvement brownien naturel sur $(\Omega, \mathcal{F}, \mathbb{P})$.
- 4. Montrer que $B=(B_t)_{t\in I}$ admet une modification dont les trajectoires sont localement α -höldériennes pour tout $0 < \alpha < \frac{1}{2}$.

Exercice 3. (07 pts)

Soient $b>0,\ y_0\in\mathbb{R}$ et $f:[0,b]\times\mathbb{R}\to\mathbb{R}$ une fonction lipschitzienne de rapport k>0. Soit l'équation

 $y(t) = y_0 + \int_0^t f(s, y(s)) ds$ (1)

1. Soit l'application

$$\|\cdot\|_{k,b}: x \in C([0,b],\mathbb{R}) \longmapsto \|x\|_{k,b}:= \sup_{t \in [0,b]} e^{-kt}|x(t)|.$$

- a) Montrer que $\|\cdot\|_{k,b}$ est une norme sur $C([0,b],\mathbb{R})$.
- b) Montrer que les normes $\|\cdot\|_{\infty,b}$ et $\|\cdot\|_{k,b}$ sont fortement équivalentes.
- c) En déduire que l'espace vectoriel normé $C([0,b],\mathbb{R}), \|\cdot\|_{k,T})$ est complet.
- 2. Soit N l'application de $C([0,T],\mathbb{R})$ dans lui-même telle que

$$N(y) = y_0 + \int_0^t f(s, y(s)) ds$$

pour tout $y \in C([0, b], \mathbb{R})$

- a) Montrer que l'application N est contractante pour la norme $\|\cdot\|_{k,b}$.
- b) En déduire que l'équation (1) admet une unique solution dans $C([0,b],\mathbb{R})$.