COMP 532 Machine Learning and Bioinspired Optimisation

Lecture 3

Meng Fang
University of Liverpool

Overview

- Mathematical Preliminaries
- Python Basics

Overview

- Mathematical Preliminaries
- Python Basics

Probability basics

- A random variable X represents outcomes or states of the world
- We will write p(x) to mean Probability(X = x)
- Sample space: The space of all possible outcomes (may be discrete, continuous, or mixed)
- p(x) is the probability mass (density) function
 - Assigns a number to each point in sample space
 - Non-negative, sums (integrates) to 1
 - Intuitively: how often does x occur, how much do we believe in x

Probability basics

- Random Experiment Experiment that results in different outcomes despite being in similar conditions
 - Tossing of a coin, throwing of a dice, rainfall amount

- Sample Space: Set of all possible outcomes of a random experiment
 - Tossing of a coin once: S = {H, T} (head and tail)
 - Tossing coin twice: S = {HH, HT, TH, TT}

Probability basics

- Joint Probability
- Sum Rule
- Conditional Probability
- Product Rule
- Bayes' Rule

A Simple Example

- Two Baskets Red & Blue
- Each basket has some fruits oranges and apples (green)
- All fruits in a basket are equally available
- Red Basket 6 oranges, 2 apples
- Blue Basket 1 orange, 3 apples
- Let P(B=r) = 0.4 and P(B=b) = 0.6
- Random variables:
 - B: {b, r}; F:{o,a}

- What is the probability of picking an orange?
- What is the probability that I pick red basket given that the fruit I pick was an orange?

A Simple Example

- Assume N = 100 trials
- P(B=r) = 0.4 and P(B=b) = 0.6

	F = 0	F = a	
B = r	6/8 x 40 = 30	2/8 x 40 = 10	40
B = b	1/4 x 60 = 15	3/4 x 60 = 45	60
	45	55	

Joint Probability

- Assume N = 100 trials
- P(B=r) = 0.4 and P(B=b) = 0.6

	F = 0	F = a	
B = r	30	10	40
B = b	15	45	60
	45	55	

• Joint Probability: The probability (that X will take a value x_i and Y will take a

value
$$y_i$$
) $P(X = x_i, Y = y_i)$
 $P(B=r, F=o) = 30/100 = 0.3$

 y_j

	x_i	
	n_{ij}	
	<i>C</i> ;	

Generalize

• Let the number of trials that $X = x_i$ and $Y = y_i$ be n_{ij} .

Then, $P(X = x_i, Y = y_i) = \frac{n_{ij}}{N}$, where N is the total number of trials

• P(B=b, F=a) = ?

Sum Rule

- Assume N = 100 trials
- P(B=r) = 0.4 and P(B=b) = 0.6

	F = 0	F = a	
B = r	30	10	40
B = b	15	45	60
	45	55	

What is the probability that I pick oranges?

$$\circ$$
 P(F=o) = 45/100 = 0.45

 y_j

x_i				
		n_{ij}		

Generalize

- Then, $P(X = x_i) = \frac{c_i}{N}$ (marginal probability)
- However, $c_i = \sum_j n_{ij}$
- Then, $P(X = x_i) = \sum_j \frac{n_{ij}}{N}$

Sum Rule

- Assume N = 100 trials
- P(B=r) = 0.4 and P(B=b) = 0.6

	F = 0	F = a	
B = r	30	10	40
B = b	15	45	60
	45	55	

What is the probability that I pick oranges?

$$\circ$$
 P(F=o) = 45/100 = 0.45

x_i				
		n_{ij}		

Generalize

- Then, $P(X = x_i) = \frac{c_i}{N}$ (marginal probability)
- However, $c_i = \sum_j n_{ij}$
- Then, $P(X = x_i) = \sum_j \frac{n_{ij}}{N}$
- We have $P(X = x_i, Y = y_i) = \frac{n_{ij}}{N}$
- Then $P(X = x_i) = \sum_j P(X = x_i, Y = y_i)$ Sum rule of Probability

Conditional Probability

- Assume N = 100 trials
- P(B=r) = 0.4 and P(B=b) = 0.6

	F = 0	F = a	
B = r	30	10	40
B = b	15	45	60
	45	55	

• What is the probability that the basket I picked is red given that the fruit was orange: P(B = r|f=o) = 30/45 x_i

 y_j n_{ij} c_i

- What is the probability that Y will take the value y_j given that X will take the value x_i
- Then $P(Y = y_i | X = x_i) = \frac{n_{ij}}{c_i}$

Product Rule

- Assume N = 100 trials
- P(B=r) = 0.4 and P(B=b) = 0.6

	F = 0	F = a	
B = r	30	10	40
B = b	15	45	60
	45	55	

Conditional Probability

 $P(Y = y_i | X = x_i) = \frac{n_{ij}}{c}$

Joint Probability

$$P(X = x_i, Y = y_i) = \frac{n_{ij}}{N}$$

 y_i

Thus $P(X = x_i, Y = y_i) = P(Y = y_i | X = x_i) P(X = x_i)$

Rules Simplified

- Sum rule $P(X = x_i) = \sum_i P(X = x_i, Y = y_i)$
- Produce rule $P(X = x_i, Y = y_i) = P(Y = y_i | X = x_i)P(X = x_i)$

Simply,

- Sum rule $P(X) = \sum_{y} P(X, Y)$
- Produce rule P(X,Y) = P(Y|X)P(X)

Bayes' Rule

- Produce Rule P(A,B)=P(A|B)P(B)
- Similarly, P(B,A)=P(B|A)P(A)
- Since P(A,B)= P(A|B)P(B)
- Then we have P(A|B)P(B) = P(B|A)P(A)

$$P(A|B) = P(A) \frac{P(B|A)}{P(B)}$$
 Likelihood
Posterior Prior

Python Basics

- Python is an interpreted, high-level and general- purpose programming language.
 - Created by Guido van Rossum and first released in 1991
- Has a lot of : https://www.python.org
 - Image Processing
 - Computer Vision
 - Machine Learning
 - Deep Learning
 - Optimization
 - Signal Processing
 - ..

Why Python

- Open source
- Ease of coding, "Code as plain English" is Python's primary goal.
- Most commonly used, a bigger community. There are a lot of blog posts and online resources regarding Python + OpenCV
- Vast libraries for machine learning, computer vision
- ...

Python vs. C++ vs. Java vs. Matlab

Tools to use Python

Anaconda

Anaconda refers to an open source Python distribution, which includes more than 180 scientific packages and their dependencies, e.g., conda, Python, Jupyter Notebook.

VSCode/Pycharm

 An Integrated Development Environment (IDE) for Python. It has a set of tools that can help users improve their efficiency when developing in Python language.
 Such as debugging, syntax highlighting, project management, code jump, smart prompt, auto completion, etc.

Jupyter Notebook

- Jupyter Notebook is a web-based application for interactive computing. It can be applied to the whole process of development: code writing, running the code and displaying the results.
- Install the package directly in Jupyter Notebook, such as: pip install pytorch

Tools to use Python

Google Colab

- Colaboratory is a free Jupyter Notebook environment that requires no setup and runs on the Cloud (write, run and share code)
- No configuration required
- Free use of GPU, TPU
- Easy sharing
 Install the package directly in Jupyter Notebook, such as: pip install tensorfolw
- Online platform: https://colab.research.google.com/notebooks/intro.ipynb
 - Similar to Jupyter Notebook

Data structures in Python

- Basic
 - o int
 - o float
 - o bool

Ordered

- o list: [2, 3, 3]
- o array: np.array([2, 3, 3]) # using numpy
- o tuple: (1,3,6,10)
- string: 'hello'

Unordered

- set: set('abracadabra')
- o dict: {'jack': 4098, 'sape': 4139}

Useful tricks

- Array
 - Vector is stored as 1D array [1 2 3 4 5 6]
 - Matrix is 2D array [[1 2 3]
 [4 5 6]]
- The index is from 0
 - For example, let A = [1,2,3,4,5,6] then A[0] = 1
- Array in Numpy import numpy as np

$$a1 = np.array([3, 4, 5, 3])$$

Matrix in Numpy

import numpy as np

m1 = np.random.rand(2,2)

Function in Python

Creating a function: In Python a function is defined using the def keyword.

```
def my_function():
    print("Hello from a function")
```

Calling a function

```
def my_function():
    print("Hello from a function")
my_function()
```

Arguments

```
def my_function(fname):
    print(" My name is " + fname)
my_function("Shan")
```

Syntax in Python

• if...elif...else

```
a = 200
b = 33
if b > a:
   print("b is greater than a")
elif a == b:
   print("a and b are equal")
else:
   print("a is greater than b")
```

• for

```
fruits = ["apple", "banana", "cherry"]
for x in fruits:
   print(x)
```

while

```
i=1
while i < 6:
    print(i) i += 1</pre>
```

Debugging in Python

• Debugging with pdb: easy, powerful, no extra IDE needed

https://www.youtube.com/watch?v=bHx8A8tbj2c

Debugging with PyCharm: easy, but not free

More you can explore

Check out more in w3schools, and practice!

https://www.w3schools.com/python/

Summary

- Probability basics
- Introduction to Python