PLSC 308: Introduction to Political Research

Christopher Zorn

February 18, 2016

Observational Research: Themes

- Sample Size
- Qualitative vs. Quantitative
- Longitudinal vs. Cross-Sectional
- Types of Designs

Experimental vs. Observational Designs

	Experimental	VS.	Observational
Mode	Deductive		Inductive <i>or</i>
			Deductive
Internal Validity	High		Low
External Validity	Low		High(er)
Relative Cost	High		Low / varies
Relative Power	High		Lower / varies

A "Map" of Observational Designs

Typical Sample Sizes & Methods

Study Type	Typical $N =$	Methods
Single Case Study	1	Qualitative
Comparative Case Study	3-4	Qualitative
(Experimental study)	(20-30)	(Quantitative)
Aggregate Analysis	50-100	Mixed / Quantitative
Panel Study	300-400	Quantitative
Survey	1500	Quantitative
Other Observational Study	???	Quantitative

Longitudinal vs. Cross-Sectional Studies

Cross-Sectional:

- "Snapshot"
- Relies on theory to assess causality
- Strong momentary validity
- Can't capture change

Longitudinal:

- Repeated measures on one or more units over time
- Can establish order/sequence (→ causality)
- Can leverage "within-subject" variation
- Introduces more potential problems (history, etc.)

Single Case Studies

Types:

- Exploratory
 - · When little is known about the phenomenon
 - · Largely illustrative

Descriptive

- · Extends exploratory
- · Useful for theory development

Critical

- A crucial test of a theory
- · Useful for falsification

Example: Allison's Essence of Decision

- Case study: Cuban Missile Crisis
- Three "models" of decision:
 - · Rational Actor
 - · Organizational Process
 - · Governmental Process
- Each model explained different aspects of the crisis

Comparative Case Studies

Different approaches:

- "Most Similar Systems" / "Method of Difference"
 - Choose cases that are as similar as possible except with regard to the phenomenon the effects of which we are interested in assessing
 - · Creates a (loosely) "all else equal" setting.
 - · E.g. Putnam's Making Democracy Work.
- "Most Different Systems" / "Method of Similarity"
 - Choose cases that are as different as possible with regard to possible explanatory variables.
 - Differences cannot explain similarities; goal is to confirm one particular finding within a wide variety of systems.
 - · E.g. Skocpol's States and Social Revolutions

Comparative Case Studies

"The policing environment can be characterized by terms the U.S. military uses for all military forces: their intentions and capabilities. <u>Intentions</u> refer to whether or not they want to provide an effective professional police force; <u>capabilities</u> refer to whether or not they could provide an effective professional policing if they so desire.

 From "Non-Kinetic Capabilities for Irregular Warfare: Four Case Studies," IDA research paper P-4436 (March 2009, p. 162)

Comparative Case Studies

an effective professional force?

Figure A-1. Policing Environment 2x2 Matrix

"Aggregate Analyses"

- E.g., country-level studies...
- Blend small- and large-N case selection strategies
- Often combine qualitative and quantitative approaches
- E.g. Janoski & Hicks' *The Comparative* Political Economy of the Welfare State (1994)

"Big Data" Observational Studies

- Real-time / streaming data
- N = 100K, or 1m, or 1b...
- Longitudinal or cross-sectional
- Often nonparametric / nonstatistical
- Often highly inductive

