<학습내용>

- 0. 머신러닝 시험 운용
- 1. 전처리 2. 학습
- 3, 평가
- 4. 분류, 회귀, 군집 알고리즘

학습흐름;학습->예측->평가 => 반복

• 사이킷런 소개와 특징

- > 사이킷런(scikit-learn)은 파이썬에서 머신러닝 학습을 위한 라이브러리이다.
- > https://scikit-learn.org

```
import sklearn
scikit-learn
print(sklearn._version_) 머신러닝 필수 라이브러리
```

02

Out: 1.3.0

• 머신러닝 따라하기

- > 붓꽃 품종 분류하기
 - 꽃잎의 길이와 너비, 꽃받침의 길이와 너비 4개의 피쳐를 통해 붓꽃 품종을 분류한다.
 - 종속변수는 아래의 3가지 품종의 종류이다.

- 머신러닝 따라하기
 - 붓꽃 품종 분류하기
- > 라이브러리 호출

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier

의사결정나무 -분류알고리즘

from sklearn.model_selection import train_test_split 학습데이터와 테스트데이터 나누는 모듈

04

datasets은 사이킷런의 데이터 세트를 생성하는 모듈이다.

tree는 트리 기반 ML 알고리즘을 구현하는 모듈이다.

model_selectio은 학습 데이터와 검증 데이터, 예측 데이터로 데이터를 분리하는 다양한 모듈이다.

train_test_split 함수는 데이터를 학습, 테스트 데이터로 분리하는 함수이다.

• 머신러닝 따라하기

- 붓꽃 품종 분류하기
- > 데이터 살펴보기

```
import pandas as pd
iris = load_iris()
iris_data = iris.data
iris_label = iris.target
print('iris target弘:', iris_label)
print('iris target昭:', iris.target_names)
iris_df = pd.DataFrame(data=iris_data, columns = iris.feature_names)
iris_df['label'] = iris.target
iris_df.head(3)
```

• 머신러닝 따라하기

- 붓꽃 품종 분류하기
- > 데이터 살펴보기

Out:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0

- 머신러닝 따라하기
 - 붓꽃 품종 분류하기
- > <mark>학습, 테스트 데이터 나누기</mark> 데이터 전처리

```
X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_label,
test_size = 0.2, random_state = 11)
print(X_train[0])
```

07

Out: [5.1 3.5 1.4 0.2]

```
train_test_split(
 *arrays, 수량 제한 없음
 test_size=None, 보통 train과 8:2,7:3으로 나눔
 train_size=None,
 random_stat e=None,
 shuffle=True,
 stratify=None,
```

• 머신러닝 따라하기

■ 붓꽃 품종 분류하기

> **학습하기** # 학습흐름 ; 학습->예측->평가 => 반복 / 성능향상을 위한 작업3

80

```
# 학습 / 예측

dt_clf = DecisionTreeClassifier(random_state = 11)

dt_clf.fit(X_train, y_train)

pred = dt_clf.predict(X_test) 예측

# 평가

from sklearn.metrics import accuracy_score

acc = accuracy_score(y_test, pred) 정확도 측정

print('예측 정확도: {0:.4f}'.format(acc))
```

Out: 예측 정확도: 0.9333

• 사이킷런의 기반 프레임워크 익히기

- > Estimator 이해
 - 사이킷런은 일관성과 개발 편의성을 제공하기 위해 통일된 알고리즘의 클래스를 제공함.
 - 이를 Estimator라고 한다.
 - fit()과 predict() 또는 fit()과 transform()을 내장하고 있다.
 - 이러한 Estimator는 다양한 모듈에 들어가 있고, 통일된 사용법을 제공한다.

• 사이킷런의 기반 프레임워크 익히기

 분류	모듈명	설명 from sklearn.datasets import load_irish/ OneHotEncoder			
예제 데이터	datasets	예제로제공하는데이터세트 /t StandardScaler/ MinMaxScaler /			
	preprocessing	데이터 전처리에 필요한 기능 제공 from sklearn.preprocessing import LabelEncoder			
피처 처리	feature_selection	피처를 우선순위대로 셀렉션 작업을 수행하는 다양한 기능 제공			
변수처리 (target도포함	feature_extraction	텍스트 데이터나 이미지 데이터의 벡터화 기능 제공			
피처 처리 & 차원 축소	decomposition	차원 축소와 관련한 알고리즘			
데이터 분리, 검증 & 파라미터 튜닝	model_selection	학습에 도움이 되는 다양한 기능 제공 from sklearn.model_selection import train_test_split StratifiedKFold/ cross_val_score/ GridSearchCV			
평가	metrics	학습된 모데에 대한 성능 측정 방법 제공 from sklearn.metrics import accuracy_score			
	ensemble	앙상블 알고리즘 from sklearn.ensemble import RandomForestClassifier			
	linear_model	선형 회귀 알고리즘			
	naive_bayes	나이브 베이즈 알고리즘			
ML 알고리즘	neighbors	최근접 이웃 알고리즘			
	svm	서포트 벡터 머신 알고리즘			
	tree	의사 결정 트리 알고리즘 from sklearn.tree import DecisionTreeClassifier			
	cluster	비지도 학습 알고리즘			
유틸리티 pipeline		전처리, 학습, 예측 등 함께 묶어서 실행할 수 있는 유틸리티 제공			

• 사이킷런의 기반 프레임워크 익히기

```
011
> load_datasets
from sklearn.datasets import load_iris
iris_data = load_iris()
print(type(iris_data))
                                                                   train_test_split으로 나눔
Out: <class 'sklearn.utils.Bunch'>
keys = iris_data.keys()
print(keys)
                 독립변수
Out: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names',
'filename', 'data_module'])
```

독립변수의 이름

• 사이킷런의 기반 프레임워크 익히기

012

> train_test_split

Out: 학습 데이터의 수: 120

테스트 데이터의 수: 30

• 교차검증

데이터가 너무 적을때 결과를 일반화 검증할 때 사용

013

> 교차검증이란?

- 보통의 데이터는 학습, 테스트 데이터로 모델을 검증한다.
- 하지만 고정된 테스트 데이터로만 검증을 반복하면 테스트 데이터에만 최적화되어 실제 데이터에서 성능이 떨어지게 된다.
- 이를 해결하기 위해 학습 데이터에서 검증 데이터를 분리한 뒤, 검증 데이터를 통해 검증한다.

> 장점

- 모든 데이터셋을 훈련, 평가에 활용할 수 있다.
- 정확도를 향상시킬 수 있다.
- <mark>데이터 편중</mark>을 막을 수 있다.

> 단점

- 학습 횟수가 증가하기때문에 오랜 시간이 걸린다.
- 같은 데이터를 여러 번 학습하기에 <mark>과적합</mark>이 걸릴 수 있다.

• 교차검증

- > K겹 교차 검증
 - 보편적으로 많이 사용되는 교차 검증 기법
 - K번 만큼 데이터를 나누어 돌아가며 학습, 검증 데이터로 사용
 - 데이터가 <mark>독립적이고 동일한 분포</mark>를 가진 경우에 사용

• 교차검증

015

> K겹 교차 검증 절차

- 전체 데이터셋을 학습, 테스트 데이터로 나눈다.
- 학습 데이터를 K개의 폴드로 나눈다.
- 첫 번째 폴드를 검증 데이터로 사용하고 나머지 데이터는 학습 데이터로 사용한다.
- 모델을 학습한 뒤, 검증 데이터로 평가한다.
- 차례대로 다음 폴드를 사용하여 반복한다.
- 총 K개의 성능 결과가 나오며, 이 K개의 평균을 해당 학습 모델의 성능이라고 한다.

• 교차검증

> 교차검증 해보기

from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import KFold import numpy as np

```
iris = load_iris()
features = iris.data
label = iris.target
dt_clf = DecisionTreeClassifier(random_state = 156)
```

• 교차검증

> 교차검증 해보기

```
kfold = KFold(n_splits = 5)
cv_accuracy = []
n_iter = 0
for train_index, test_index in kfold.split(features):
   X_train, X_test = features[train_index], features[test_index]
   y_train, y_test = label[train_index], label[test_index]
   dt_clf.fit(X_train, y_train)
   pred = dt_clf.predict(X_test)
   n_{iter} += 1
```

• 교차검증

> 교차검증 해보기

```
# 이전 코드에 이어서 작성
  accuracy = np.round(accuracy_score(y_test, pred), 4)
  train_size = X_train.shape[0]
  test_size = X_test.shape[0]
  print('#',n_iter)
  print('교차 검증 정확도 :',accuracy)
  print('학습데이터 크기:',train_size)
  print('검증데이터 크기:',test_size)
  print('검증 인덱스 :',test_index)
  cv_accuracy.append(accuracy)
print('평균 검증 정확도 :', np.mean(cv_accuracy))
```

• 교차검증

> 교차검증 해보기

```
Out:
         교차 검증 정확도 : 1.0
         학습데이터 크기 : 120
        검증데이터 크기 : 30
         검증 인덱스 : [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         24 25 26 27 28 29]
        # 2
         교차 검증 정확도 : 0.9667
        학습데이터 크기 : 120
        검증데이터 크기 : 30
        검증 인덱스 : [30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
         54 55 56 57 58 591
        #3
         교차 검증 정확도 : 0.8667
        학습데이터 크기 : 120
        검증데이터 크기 : 30
        검증 인덱스 : [60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
         84 85 86 87 88 89]
```

019

평균 검증 정확도 : 0.9

• 교차검증

> 교차검증 해보기

import pandas as pd

iris = load_iris()

iris_df = pd.DataFrame(data = iris.data, columns = iris.feature_names)

iris_df['label'] = iris.target

iris_df.head(3)

Out:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0

• 교차검증

> 교차검증 해보기

```
kfold = KFold(n_splits = 3)
n_iter = 0
for train_index, test_index in kfold.split(iris_df):
   n_{iter} += 1
   label_train = iris_df['label'].iloc[train_index]
   label_test = iris_df['label'].iloc[test_index]
   print(f'#{n_iter} 교차검증')
   print('학습레이블 분포 :₩n', label_train.value_counts())
   print('검증레이블 분포 :\m', label_test.value_counts())
```

• 교차검증

> 교차검증 해보기

```
Out:
                                #3 교차검증
       #1 교차검증
                                학습레이블 분포 :
        학습레이블 분포 :
                                 0 50
            50
                                    50
            50
                                Name: label, dtype: int64
        Name: label, dtype: int64
                                검증레이블 분포 :
        검증레이블 분포 :
                                     50
        0 50
        Name: label, dtype: int64 Name: label, dtype: int64
        #2 교차검증
        학습레이블 분포 :
          50
            50
        Name: label, dtype: int64
        검증레이블 분포 :
            50
        Name: label, dtype: int64
```

• 교차검증

> Stratified K-Fold

```
from sklearn.model_selection import <a href="StratifiedKFold">StratifiedKFold</a>
skf = StratifiedKFold(n_splits = 3)
n_{iter} = 0
for train_index, tese_index in skf.split(iris_df, iris_df['label']):
   n iter += 1
   label_train = iris_df['label'].iloc[train_index]
   label_test = iris_df['label'].iloc[test_index]
   print(f'#{n_iter} 교차검증')
   print('학습레이블 분포 :₩n', label_train.value_counts())
   print('검증레이블 분포 :\m', label_test.value_counts())
```

• 교차검증

> Stratified K-Fold

Out:

```
#1 교차검증
학습레이블 분포 :
    34
    33
    33
Name: label, dtype: int64
검증레이블 분포 :
   17
    17
    16
Name: label, dtype: int64
#2 교차검증
학습레이블 분포 :
    34
    33
Name: label, dtype: int64
검증레이블 분포 :
    17
    17
    16
Name: label, dtype: int64
```

```
#3 교차검증
학습레이블 분포 :
   34
    33
    33
Name: label, dtype: int64
검증레이블 분포 :
1 17
    17
    16
Name: label, dtype: int64
```

• 교차검증

> Stratified K-Fold

from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import StratifiedKFold import numpy as np

```
iris = load_iris()
features = iris.data
label = iris.target
dt_clf = DecisionTreeClassifier(random_state = 156)
```

• 교차검증

> Stratified K-Fold

```
skf = StratifiedKFold(n_splits = 5)
cv_accuracy = []
n_iter = 0
for train_index, test_index in skf.split(features, label):
   X_train, X_test = features[train_index], features[test_index]
   y_train, y_test = label[train_index], label[test_index]
   dt_clf.fit(X_train, y_train)
   pred = dt_clf.predict(X_test)
   n_{iter} += 1
```

• 교차검증

027

> Stratified K-Fold

Type text here

```
# 이전 코드에 이어서 작성
  accuracy = np.round(accuracy_score(y_test, pred), 4)
  train_size = X_train.shape[0]
  test_size = X_test.shape[0]
  print('#',n_iter)
  print('교차 검증 정확도 :',accuracy)
  print('학습데이터 크기:',train_size)
  print('검증데이터 크기:',test_size)
  print('검증 인덱스 :',test_index)
  cv_accuracy.append(accuracy)
print('평균 검증 정확도 :', np.mean(cv_accuracy))
```

• 교차검증

> Stratified K-Fold

```
Out:
          교차 검증 정확도 : 0.9667
          학습데이터 크기 : 120
          검증데이터 크기 : 30
          검증 인덱스 : [ 0 1 2 3 4 5 6 7 8 9 50 51 52 53 54 55 56 57
           58 59 100 101 102 103 104 105 106 107 108 109]
          # 2
          교차 검증 정확도 : 0.9667
          학습데이터 크기 : 120
          검증데이터 크기 : 30
          검증 인덱스 : [ 10  11  12  13  14  15  16  17  18  19  60  61  62  63  64  65  66  67
           68 69 110 111 112 113 114 115 116 117 118 119]
          #3
          교차 검증 정확도 : 0.9
          학습데이터 크기 : 120
          검증데이터 크기 : 30
          검증 인덱스 : [ 20  21  22  23  24  25  26  27  28  29  70  71  72  73  74  75  76  77
           78 79 120 121 122 123 124 125 126 127 128 129]
```

028

평균 검증 정확도 : 0.960020000000001

• 교차검증

■ 교차 검증을 포다 간편하게 처리하기

029

> cross_val_score()

기본으로 stratified K-fold를 따른다.

from sklearn.model_selection import cross_val_score

iris_data = load_iris()

dt_clf = DecisionTreeClassifier(random_state = 156)

data = iris_data.data

label = iris_data.target

scores = cross_val_score(dt_clf, data, label, scoring = 'accuracy', cv = 5)

print('교차 검증별 정확도: ', np.round(scores, 4))

print('평균 검증 정확도: ', np.round(np.mean(scores), 4))

Out: 교차 검증별 정확도: [0.9667 0.9667 0.9 0.9667 1.]

평균 검증 정확도: 0.96

- 교차검증
 - 교차 검증을 포다 간편하게 처리하기

> cross_validate()

cross_validate(dt_clf, data, label, scoring = ['accuracy', 'roc_auc_ovo'], cv = 5)

> cross_val_predict() 예측결과 출력

 $cross_val_predict(dt_clf, data, label, cv = 5)$

• 하이퍼 파라미터 :모델의 중요한 매개변수들

031

> GridSearchCV

```
from sklearn.model_selection import GridSearchCV
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,
                                                test size=0.2, random state=121)
dtree = DecisionTreeClassifier()
parameters = {'max_depth':[1,2,3], 'min_samples_split':[2,3]}
grid_dtree = GridSearchCV(dtree, param_grid=parameters, cv=3, refit=True)
grid_dtree.fit(X_train, y_train)
```

• 하이퍼 파라미터

> GridSearchCV

import pandas as pd

Out:

params	mean_test_score	rank_test_score	split0_test_score	split1_test_score	split2_test_score
0 {'max_depth': 1, 'min_samples_split': 2}	0.700000	5	0.700	0.7	0.70
1 {'max_depth': 1, 'min_samples_split': 3}	0.700000	5	0.700	0.7	0.70
2 {'max_depth': 2, 'min_samples_split': 2}	0.958333	3	0.925	1.0	0.95
3 {'max_depth': 2, 'min_samples_split': 3}	0.958333	3	0.925	1.0	0.95
4 {'max_depth': 3, 'min_samples_split': 2}	0.975000	1	0.975	1.0	0.95
5 {'max_depth': 3, 'min_samples_split': 3}	0.975000	1	0.975	1.0	0.95

• 하이퍼 파라미터

> GridSearchCV

```
print('GridSearchCV 최적 파라미터:', grid_dtree<mark>.best_params_)</mark>
print(f'GridSearchCV 최고 정확도: {grid_dtree.best_score_:.4f}')
```

033

Out: GridSearchCV 최적 파라미터: {'max_depth': 3, 'min_samples_split': 2} GridSearchCV 최고 정확도: 0.9750

```
estimator = grid_dtree.best_estimator_
pred = estimator.predict(X_test)
print(f'테스트 데이터 세트 정확도:{accuracy_score(y_test,pred):.4f}')
```

Out: 테스트 데이터 세트 정확도: 0.9667

• 결정 트리 실습

> GridSearchCV

```
from sklearn.model_selection import GridSearchCV
params = {'max_depth' : [ 6, 8 ,10, 12, 16 ,20, 24]}
grid_cv = GridSearchCV(dt_clf, param_grid=params, scoring='accuracy', cv=5, verbose=1 )
grid_cv.fit(X_train , y_train)
print(f'GridSearchCV 최고 정확도 수치:{grid_cv.best_score_:.4f}')
print('GridSearchCV 최적 하이퍼 파라미터:', grid_cv.best_params_)
```

034

Out: Fitting 5 folds for each of 7 candidates, totalling 35 fits GridSearchCV 최고 정확도 수치:0.9500 GridSearchCV 최적 하이퍼 파라미터: {'max depth': 6}

• 결정 트리 실습

> GridSearchCV

st

cv_results_df = pd.DataFrame(grid_cv.cv_results_)

cv_results_df[['param_max_depth', 'mean_test_score']]

Out:

	param_max_depth	mean_test_score
0	6	0.95
1	8	0.95
2	10	0.95
3	12	0.95
4	16	0.95
5	20	0.95
6	24	0.95

• 결정 트리 실습

036

> 최적의 하이퍼 파라미터 튜닝

Out: max_depth = 6 정확도: 0.9667 max_depth = 8 정확도: 0.9667 max_depth = 10 정확도: 0.9667 max_depth = 12 정확도: 0.9667 max_depth = 16 정확도: 0.9667 max_depth = 20 정확도: 0.9667 max_depth = 24 정확도: 0.9667

• 결정 트리 실습

> 최적의 하이퍼 파라미터 튜닝

```
Out: Fitting 5 folds for each of 8 candidates, totalling 40 fits
GridSearchCV 최고 정확도 수치: 0.9667
GridSearchCV 최적 하이퍼 파라미터: {'max_depth': 8, 'min_samples_split': 16}
```

머신러닝 분류

• 결정 트리 실습

> 최적의 하이퍼 파라미터 튜닝

```
best_df_clf = grid_cv.best_estimator_
pred1 = best_df_clf.predict(X_test)
accuracy = accuracy_score(y_test , pred1)
print(f'결정 트리 예측 정확도:{accuracy:.4f}')
```

038

Out: 결정 트리 예측 정확도:0.9667

• 데이터 전처리

> 레이블 인코딩 from sklearn.preprocessing import LabelEncoder items = ['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기', '믹서', '냉장고'] encoder = LabelEncoder() encoder.fit(items) labels = encoder.transform(items) print('인코딩 변환값 :', labels)

039

Out: 인코딩 변환값: [0 1 4 5 3 3 2 1]

• 데이터 전처리

> 레이블 인코딩

print('인코딩 클래스 :', encoder.classes_)

Out : 인코딩 클래스 : ['TV' '냉장고' '믹서' '선풍기' '전자레인지' '컴퓨터']

print('디코딩:', encoder.inverse_transform([4, 5, 2, 1]))

Out: 디코딩: ['전자레인지' '컴퓨터' '믹서' '냉장고']

• 데이터 전처리

041

> 원-핫 인코딩

```
from sklearn.preprocessing import OneHotEncoder
import numpy as np
items = ['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기', '믹서', '냉장고']
items = np.array(items).reshape(-1, 1)
                                                     2차원에서 사용됨
oh_encoder = OneHotEncoder()
                                       oh encoder.categories_
oh_encoder.fit(items)
                                           .fit_transform()
oh_labels = oh_encode<mark>r.transform(ite</mark>ms)
```

• 데이터 전처리

> 원-핫 인코딩

str

```
print('원-핫 인코딩 데이터')
print(oh_labels.toarray())
print('원-핫 인코딩 데이터 크기')
print(oh_labels.shape)
```

Out:

```
원-핫 인코딩 데이터
[[1. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 1. 0. 0. 0.]
원-핫 인코딩 데이터 크기
(8, 6)
```

• 데이터 전처리

> 원-핫 인코딩

import pandas as pd

df = pd.DataFrame({'item':['TV', '냉장고', '전자레인지', '컴퓨터', 2차원 '선풍기', '선풍기', '믹서', '냉장고']}) 043

* A

pd.get_dummies(df) 원핫 인코딩/ 자동으로 해줌

Out:

	item_TV	item_냉장고	item_믹서	item_선풍기	item_전자레인지	item_컴퓨터
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	1	0
3	0	0	0	0	0	1
4	0	0	0	1	0	0
5	0	0	0	1	0	0
6	0	0	1	0	0	0
7	0	1	0	0	0	0

• 데이터 전처리

- > 피쳐 스케일링과 정규화
 - 서로 다른 변수의 값 범위를 일정한 수준으로 맞추는 작업
- > 표준화
- 평균이 0, 분산이 1인 <u>가우시안 정규 분포</u>를 가진 값으로 변환 0에 가까운 수로 변환 0에 가까운 값으로 변경

$$x_{i}_new = \frac{x_{i} - mean(x)}{stdev(x)}$$

- > 정규화
 - 값을 범위를 모두 0 ~ 1의 값으로 변환

$$x_i - \min{(x)}$$

$$x_i _new = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

• 데이터 전처리

> StandardScaler

■ 표준화

```
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
iris_data = iris.data
iris_df = pd.DataFrame(data = iris_data, columns = iris.feature_names)
print('feature 들의 평균 값 :', iris_df.mean())
print('feature 들의 분산 값 :', iris_df.var())
```

• 데이터 전처리

```
> StandardScaler
```

■ 표준화

```
Out: feature 들의 평균 값:
sepal length (cm) 5.843333
sepal width (cm) 3.057333
petal length (cm) 3.758000
petal width (cm) 1.199333
```

dtype: float64

feature 들의 분산 값

sepal length (cm) 0.685694

sepal width (cm) 0.189979

petal length (cm) 3.116278

petal width (cm) 0.581006

dtype: float64

• 데이터 전처리

- > StandardScaler
 - 표준화

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scale<mark>r.fit(i</mark>ris_df)
iris_scaled = scaler.transform(iris_df)
iris_df_scaled = pd.DataFrame(data = iris_scaled, columns = iris.feature_names)
print('feature 들의 평균 값 :₩n', iris_df_scaled.mean())
print('feature 들의 분산 값 :\m', iris_df_scaled.var())
```

• 데이터 전처리

> StandardScaler

```
■ 표준화
Out:
        feature 들의 평균 값 :
        sepal length (cm) -1.690315e-15
        sepal width (cm) -1.842970e-15
        petal length (cm) -1.698641e-15
        petal width (cm) -1.409243e-15
        dtype: float64
        feature 들의 분산 값 :
        sepal length (cm) 1.006711
        sepal width (cm) 1.006711
        petal length (cm) 1.006711
        petal width (cm) 1.006711
```

dtype: float64

• 데이터 전처리

- > MinMaxScaler
 - 정규화

from sklearn.preprocessing import MinMaxScaler

iris_scaled = scaler.transform(iris_df)

```
scaler = MinMaxScaler() 표준화와 모두 같고 MinMaxScaler() 여기만 다름 ** 무조건 0-1 사이 값임
```

049

iris_df_scaled = pd.DataFrame(data = iris_scaled, columns = iris.feature_names)

print('feature 들의 최소 값 :\mathbb{\pi}n', iris_df_scaled.min())
print('feature 들의 최대 값 :\mathbb{\pi}n', iris_df_scaled.max())

• 데이터 전처리

> StandardScaler

■ 표준화

Out:

```
feature 들의 최소 값 :
sepal length (cm) 0.0
sepal width (cm) 0.0
petal length (cm)
                 0.0
petal width (cm)
                   0.0
dtype: float64
feature 들의 최대 값 :
sepal length (cm)
                   1.0
sepal width (cm)
                   1.0
petal length (cm)
                   1.0
petal width (cm)
                   1.0
dtype: float64
```

• 타이타닉 생존자 예측

051

> 라이브러리 호출 및 데이터 불러오기

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

titanic_df = sns.load_dataset('titanic')
titanic_df.head(3)

Out:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S

• 타이타닉 생존자 예측

> 라이브러리 호출 및 데이터 불러오기

titanic_df.info()

Out:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype						
0	Passengerld	891 non-null	int64						
1	Survived	891 non-null	int64						
2	Pclass	891 non-null	int64						
3	Name	891 non-null	object						
4	Sex	891 non-null	object						
5	Age	714 non-null	float64						
6	SibSp	891 non-null	int64						
7	Parch	891 non-null	int64						
8	Ticket	891 non-null	object						
9	Fare	891 non-null	float64						
10	Cabin	204 non-null	object						
11	Embarked	889 non-null	object						
dtypes: float64(2), int64(5), object(5)									
00 7 1/0									

memory usage: 83.7+ KB

• 타이타닉 생존자 예측

> 누락값 처리

```
titanic_df['Age'].fillna(titanic_df['Age'].mean(), inplace=True)
titanic_df['Cabin'].fillna('N', inplace=True)
titanic_df['Embarked'].fillna('N', inplace=True)
print('데이터 세트 Null 값 개수 :', titanic_df.isnull().sum().sum())
```

053

Out: 데이터 세트 Null 값 개수: 0

• 타이타닉 생존자 예측

> 피쳐 살펴보기

```
print('성별 값 분포 :₩n', titanic_df['Sex'].value_counts())
print('선실 값 분포 :₩n', titanic_df['Cabin'].value_counts())
print(' 값 분포 :₩n', titanic_df['Embarked'].value_counts())
```

054

Out: 314 Name: Sex, dtype: int64 선실 값 분포 : 687 C23 C25 C27 B96 B98 C22 C26 C7 C54 E36 C148 Name: Cabin, Length: 148, dtype: int64 값 분포 644 168 Name: Embarked, dtype: int64

• 타이타닉 생존자 예측

```
> 피쳐 살펴보기
```

```
titanic_df['Cabin'] = titanic_df['Cabin'].str[:1]
print(titanic_df['Cabin'].head(3))
```

```
Out: 0 N
```

Name: Cabin, dtype: object

titanic_df.groupby(['Sex', 'Survived'])['Survived'].count()

```
Out: Sex Survived

female 0 81

1 233

male 0 468

1 109

Name: Survived, dtype: int64
```

• 타이타닉 생존자 예측

> 피쳐 살펴보기

sns.barplot(x = 'Sex', y = 'Survived', data = titanic_df)

• 타이타닉 생존자 예측

> 피쳐 살펴보기

 $sns.barplot(x = 'Pclass', y = 'Survived', hue = 'Sex', data = titanic_df)$

Out:

• 타이타닉 생존자 예측

> 피쳐 살펴보기

```
def get_category(age):
   cat = ''
   if age <= -1: cat = 'Unknown'
   elif age <= 5: cat = 'Baby'
   elif age <= 12: cat = 'Child'
   elif age <= 18: cat = 'Teenager'
   elif age <= 25: cat = 'Student'
   elif age <= 35: cat = 'Young Adult'
   elif age <= 60: cat = 'Adult'
   else : cat = 'Elderly'
   return cat
```

• 타이타닉 생존자 예측

> 피쳐 살펴보기

• 타이타닉 생존자 예측

> 피쳐 살펴보기

Out:

• 타이타닉 생존자 예측

> 데이터 전처리

```
from sklearn.preprocessing import LabelEncoder
def encode_features(dataDF):
   features = ['Cabin', 'Sex', 'Embarked']
   for feature in features:
      le = LabelEncoder()
      dataDF[feature] = le.fit_transform(dataDF[feature])
   return dataDF
titanic_df = encode_features(titanic_df)
titanic_df.head()
```

• 타이타닉 생존자 예측

> 데이터 전처리

Out:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Age_cat
0	1	0	3	Braund, Mr. Owen Harris		22.0	1	0	A/5 21171	7.2500	7	3	4
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	2	0	0
2	3	1	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.9250	7	3	6
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	2	3	6
4	5	0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	7	3	6

• 타이타닉 생존자 예측

> 불필요한 컬럼 제거 & 독립변수/종속변수 나누기

```
def drop_features(df):
   df.drop(['Passengerld', 'Name', 'Ticket'], axis = 1, inplace=True)
   return df
y_titanic_df = titanic_df['Survived']
X_titanic_df = titanic_df.drop('Survived', axis = 1)
X_titanic_df = drop_features(X_titanic_df)
X_titanic_df.head()
```

• 타이타닉 생존자 예측

> 학습, 테스트 데이터 분배

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_titanic_df, y_titanic_df, test_size = 0.2, random_state=11)

064

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

Out: (712, 9) (179, 9) (712,) (179,)

• 타이타닉 생존자 예측

> 다양한 머신러닝 알고리즘 임포트

from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score

dt_clf = DecisionTreeClassifier(random_state = 11)

rf_clf = RandomForestClassifier(random_state = 11)

lr_clf = LogisticRegression(solver='liblinear')

• 타이타닉 생존자 예측

> 학습/예측/평가

```
# DecisionTreeClassfier 학습/예측/평가
dt_clf.fit(X_train, y_train)
dt_pred = dt_clf.predict(X_test)
acc = accuracy_score(y_test, dt_pred)
print(f'DesitionTree 정확도 : {acc:.4f}' )
# RandomForestClassifier 학습/예측/평가
rf_clf.fit(X_train, y_train)
rf_pred = rf_clf.predict(X_test)
acc = accuracy_score(y_test, rf_pred)
print(f'RandomForest 정확도 : {acc:.4f}' )
```

• 타이타닉 생존자 예측

067

> 학습/예측/평가

```
# LogisticRegression 학습/예측/평가
lr_clf.fit(X_train, y_train)
lr_pred = lr_clf.predict(X_test)
acc = accuracy_score(y_test, lr_pred)
print(f'Logistic 정확도 : {acc:.4f}')
```

Out: DesitionTree 정확도: 0.8045 RandomForest 정확도: 0.8659 Logistic 정확도: 0.8659

• 타이타닉 생존자 예측

068

> 각 알고리즘에 cross_val_score() 검증 실시

```
from sklearn.model_selection import cross_val_score

def exec_cvs(clf, folds = 5):
    scores = cross_val_score(clf, X_titanic_df, y_titanic_df, cv = folds)
    for iter_count, accuracy in enumerate(scores):
        print(f"교차 검증 {iter_count} 정확도 : {accuracy:.4f}")
    print(f'평균 정확도 : {np.mean(scores):.4f}")
```

• 타이타닉 생존자 예측

> 각 알고리즘에 cross_val_score() 검증 실시

```
df_clf = DecisionTreeClassifier(random_state = 11)
exec_kfold(dt_clf)
rf_clf = RandomForestClassifier(random_state = 11)
exec_kfold(rf_clf)
lr_clf = LogisticRegression(solver='liblinear')
exec_kfold(lr_clf)
```

```
교차 검증 0 정확도 : 0.7821
Out: 교차 검증 0 정확도 : 0.7318
                                                     교차 검증 0 정확도 : 0.7877
                               교차 검증 1 정확도 : 0.8146
                                                    교차 검증 1 정확도 : 0.7921
      교차 검증 1 정확도 : 0.7697
                               교차 검증 2 정확도 : 0.8371
                                                    교차 검증 2 정확도 : 0.7697
      교차 검증 2 정확도 : 0.7921
                               교차 검증 3 정확도 : 0.7640
                                                     교차 검증 3 정확도 : 0.7528
      교차 검증 3 정확도 : 0.7697
                               교차 검증 4 정확도 : 0.8708
                                                     교차 검증 4 정확도 : 0.8427
      교차 검증 4 정확도 : 0.8146
                               평균 정확도 : 0.8137
                                                     평균 정확도 : 0.7890
      평균 정확도 : 0.7756
```

• 타이타닉 생존자 예측

> 각 알고리즘에 KFold 검증 실시

```
from sklearn.model_selection import KFold
# 교차검증 함수 생성
def exec_kfold(clf, X_train, y_train, folds = 5):
   kfold = KFold(n_splits = 5)
   scores = []
   for iter_count, (train_index, test_index) in enumerate(kfold.split(X_train)):
      X_train_f, X_val_f = X_train.iloc[train_index],X_train.iloc[test_index]
      y_train_f, y_val_f = y_train.iloc[train_index],y_train.iloc[test_index]
      clf.fit(X_train_f, y_train_f)
```

• 타이타닉 생존자 예측

071

> 각 알고리즘에 KFold 검증 실시

```
# 이전 코드에 이어서 작성

predictions = clf.predict(X_val_f)

accuracy = accuracy_score(y_val_f, predictions)

scores.append(accuracy)

print(f"교차 검증 {iter_count} 정확도 : {accuracy:.4f}")

mean_score = np.mean(scores)

print(f'평균 정확도 : {mean_score:.4f}')

return clf
```

• 타이타닉 생존자 예측

> 각 알고리즘에 KFold 검증 실시

```
df_clf = DecisionTreeClassifier(random_state = 11)
model = exec_kfold(dt_clf, X_train, y_train)
pred = model.predict(X_test)

from sklearn.metrics import accuracy_score
acc = accuracy_score(y_test, pred)
print('예측 정확도: {0:.4f}'.format(acc))
```

072

Out: 교차 검증 0 정확도 : 0.7203 교차 검증 1 정확도 : 0.7273 교차 검증 2 정확도 : 0.7465 교차 검증 3 정확도 : 0.8028 교차 검증 4 정확도 : 0.7746

평균 정확도 : 0.7543 예측 정확도: 0.7709

• 타이타닉 생존자 예측

> 각 알고리즘에 KFold 검증 실시

```
rf_clf = RandomForestClassifier(random_state = 11)
model = exec_kfold(rf_clf, X_train, y_train)
pred = model.predict(X_test)

acc = accuracy_score(y_test, pred)
print('예측 정확도: {0:.4f}'.format(acc))
```

073

Out: 교차 검증 0 정확도 : 0.7552

교차 검증 1 정확도 : 0.7902 교차 검증 2 정확도 : 0.7958 교차 검증 3 정확도 : 0.8380 교차 검증 4 정확도 : 0.7676

평균 정확도 : 0.7894 예측 정확도: 0.8659

• 타이타닉 생존자 예측

> 각 알고리즘에 KFold 검증 실시

```
Ir_clf = LogisticRegression(solver='liblinear')
model = exec_kfold(Ir_clf, X_train, y_train)
pred = model.predict(X_test)

acc = accuracy_score(y_test, pred)
print('예측 정확도: {0:.4f}'.format(acc))
```

074

Out: 교차 검증 0 정확도 : 0.7762

교차 검증 1 정확도 : 0.7902 교차 검증 2 정확도 : 0.7746 교차 검증 3 정확도 : 0.8099 교차 검증 4 정확도 : 0.7676

평균 정확도 : 0.7837 예측 정확도: 0.8603