Introduction to Aerial Robotics Lecture 10

Shaojie Shen
Assistant Professor
Dept. of ECE, HKUST

17 November 2015

Outline

• The Basics

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

2D Pose Graph SLAM

 Monocular Visual-Inertial SLAM

This is Science Fiction...

This is Real...

Shen, et al, 2013

The SLAM Problem

A robot is exploring an unknown, static environment.

Given:

Measurements from sensor(s)

Estimate:

- The map
- Path/trajectory of the robot

SLAM Applications

Representations

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Landmark-based

Courtesy Sebastian Thrun,

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...Wolfram Burgard and Dieter Fox

Why is SLAM a hard problem?

SLAM: robot path and map are both **unknown**

Robot path error correlates errors in the map

Courtesy Sebastian Thrun, Wolfram Burgard and Dieter Fox

Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Graphical Model of SLAM

$$(\hat{x}_{1:t}, \hat{m}) = \underset{x_{1:t} \quad m}{\operatorname{arg max}} p(x_{1:t}, m \mid z_{1:N})$$

Probabilistic Robotics

Key idea: Explicit representation of uncertainty using the calculus of probability theory

Bayes' Theorem

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$\Rightarrow$$

$$P(x \mid y) = \frac{P(y \mid x) \ P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

$$P(x | y, z) = \frac{P(y | x, z) P(x | z)}{P(y | z)}$$

Courtesy Sebastian Thrun,
Wolfram Burgard and Dieter Fox

Conditional Independence

$$P(x, y | z) = P(x | z)P(y | z)$$

equivalent to

$$P(x|z)=P(x|z,y)$$

and

$$P(y|z)=P(y|z,x)$$

SLAM as Maximum A Posteriori Estimation

The Gaussian Case

The multivariate Gaussian distribution

$$\mathbf{x} \sim \mathcal{N}_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

$$f_{\mathbf{x}}(x_1, \dots, x_k) = \frac{1}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2} \underbrace{(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}\right),$$
Measurement

• The Gaussian case:

Residual

m

SLAM as Nonlinear Least Square

Measurement

Jacobians

Nonlinear least square

$$\min_{x_{1:t}} \sum_{m} r_{z_i}^T \Sigma_{z_i}^{-1} r_{z_i} + r_{xm}^T \Sigma_{xm}^{-1} r_{xm}$$

Linearization

$$r_{z_i} \approx r_{z_i,\hat{X}} + \frac{\partial r_{z_i,\hat{X}}}{\partial X}|_{\hat{X}} \delta X = r_{z_i,\hat{X}} + J_{z_i,\hat{X}} \delta X$$

Gauss-Newton Method

$$J^{T}\Sigma^{-1}J\delta X = -J^{T}\Sigma^{-1}r$$

$$\hat{X}^{(k+1)} = \hat{X}^{(k)} + \delta X$$

Information matrix

Stacked Jacobian, covariance, and residual

SLAM as Nonlinear Least Square

- Linear system the information matrix
 - Efficient solution via sparse linear equation solver

Outline

• The Basics

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

2D Pose Graph SLAM

 Monocular Visual-Inertial SLAM

- The only type of measurement is 2D rigid body transformations between 2D robot poses
- No Map

Incremental pose transformation from scan matching

Global consistency enforced by loop closure

Loop Closure

- Question: Have I been to this place before?
 - Appearance-based: FABMAP (M. Cummins and P. Newman, 2008)

Scan matching (E. Olson, 2009)

Example

$$\hat{\mathbf{x}}_{1:t} = \underset{\mathbf{x}_{1:t}}{\operatorname{arg max}} p(\mathbf{x}_{1:t} \mid \mathbf{z}_{1:N})$$

$$= \underset{\mathbf{x}_{1:t}}{\operatorname{arg max}} \prod_{i,j} p(\mathbf{z}_{ij} \mid \mathbf{x}_{1:t}) \cdot p(\mathbf{x}_{1})$$

$$= \underset{\mathbf{x}_{1:t}}{\operatorname{arg min}} \sum_{i,j} \mathbf{r}_{z_{ij}}^{T} \Sigma_{z_{ij}}^{-1} \mathbf{r}_{z_{ij}} + \mathbf{r}_{x_{1}}^{T} \Sigma_{x_{1}}^{-1} \mathbf{r}_{x_{1}}$$
Measurement Residual

Same measurement

model for incremental

pose transformation

$$\mathbf{r}_{z_{ij}} \sim N(0, \Sigma_{z_{ij}})$$

SLAM as Nonlinear Least Square

Nonlinear least square

$$\hat{\mathbf{x}}_{1:t} = \underset{\mathbf{x}_{1:t}}{\operatorname{arg\,min}} \sum_{i,j} \mathbf{r}_{z_{ij}}^T \Sigma_{z_{ij}}^{-1} \mathbf{r}_{z_{ij}} + \mathbf{r}_{x_1}^T \Sigma_{x_1}^{-1} \mathbf{r}_{x_1}$$

Linearization

$$\mathbf{r}_{z_{ij}} \approx \mathbf{r}_{z_{ij},\hat{X}} + \frac{\partial \mathbf{r}_{z_{ij},\hat{X}}}{\partial X}|_{\hat{X}} \delta X = \mathbf{r}_{z_{ij},\hat{X}} + \mathbf{J}_{z_{ij},\hat{X}} \delta X \qquad X = [\mathbf{x}_{1:t}]$$

$$\mathbf{J}_{z_{ij},\hat{X}} = \begin{bmatrix} 0 & \cdots & \begin{bmatrix} \hat{\mathbf{R}}_{\theta_i}^{-1} & \begin{pmatrix} \sin \hat{\theta}_i & -\cos \hat{\theta}_i \\ \cos \hat{\theta}_i & \sin \hat{\theta}_i \end{pmatrix} \begin{pmatrix} \hat{x}_j - \hat{x}_i \\ \hat{y}_j - \hat{y}_i \end{pmatrix} \end{bmatrix} \cdots \begin{bmatrix} -\hat{\mathbf{R}}_{\theta_i}^{-1} & 0 \\ 0 & 1 \end{bmatrix} \cdots \end{bmatrix}$$

$$\mathbf{j}$$

29

SLAM as Nonlinear Least Square

Nonlinear least square

$$\hat{\mathbf{x}}_{1:t} = \underset{\mathbf{x}_{1:t}}{\operatorname{arg\,min}} \sum_{i,j} \mathbf{r}_{z_{ij}}^T \Sigma_{z_{ij}}^{-1} \mathbf{r}_{z_{ij}} + \mathbf{r}_{x_1}^T \Sigma_{x_1}^{-1} \mathbf{r}_{x_1}$$

Linearization

$$\mathbf{r}_{z_{ij}} \approx \mathbf{r}_{z_{ij},\hat{X}} + \frac{\partial \mathbf{r}_{z_{ij},\hat{X}}}{\partial X}|_{\hat{X}} \delta X = \mathbf{r}_{z_{ij},\hat{X}} + \mathbf{J}_{z_{ij},\hat{X}} \delta X$$

$$\sum_{i,j} \mathbf{J}_{z_{ij},\hat{X}}^{T} \Sigma_{z_{ij}}^{-1} \mathbf{J}_{z_{ij},\hat{X}} \cdot \delta X = -\sum_{i,j} \mathbf{J}_{z_{ij},\hat{X}}^{T} \Sigma_{z_{ij}}^{-1} \mathbf{r}_{z_{ij},\hat{X}}$$

$$\hat{X}^{(k+1)} = \hat{X}^{(k)} + \delta X$$

More Example

Outline

• The Basics

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

2D Pose Graph SLAM

 Monocular Visual-Inertial SLAM

Visual-Inertial SLAM Pipeline

Camera Setup

- Monocular
 - Depth Unknown

- Stereo
 - Able to compute depth
 - Depth accuracy affect by baseline, resolution, and calibration
- Multi-Camera
 - Overlapping / Nonoverlapping field-of-view

Pin-hole Camera Model

Problem Formulation

Matrix

Fly with 1 Camera + 1 IMU

Challenges

Scale ambiguity

 Up-to-scale motion estimation and 3D reconstruction (Structure from Motion)

Challenges

- Inertial Measurement Unit (IMU)
 - 3D linear acceleration
 - 3D angular velocity
 - Widely used in aviation singe decades ago
 - Low-cost but inaccurate MEMS
 IMUs in our phones and consumer
 UAVs

Challenges

- With IMU, scale is observable (via double integration)
- But...
 - High-rate IMU data hard to construct a graph
 - Requires initial velocity and attitude (gravity)
 - Highly nonlinear system requires initial values to converge

Can we operate without initialization?

Linear Monocular Visual-Inertial Estimator

- Estimates position, velocity, gravity, and feature depth
- Depth-based representation of features
- Linear formulation enables recovery of initial condition

IMU Model

- IMU integration in global frame
 - IMU has higher rate than camera
 - Nonlinearity from global rotation
 - Requires global rotation at the time of integration

IMU Pre-Integration

- IMU integration in the body frame of the first pose
 - Nonlinearity from relative rotation only
 - Relative rotation from gyroscope
 - Linear update equations for position, velocity, and gravity

Linear Camera Model

- Linear in position and feature depth
- Nonlinear in feature observation

$$\mathbf{0} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{R}_{B_0}^{B_j} \left(\mathbf{p}_{B_l}^{B_j} - \mathbf{p}_{B_l}^{B_0} + \lambda_l \mathbf{R}_{B_i}^{B_0} \begin{bmatrix} u_l^{B_i} \\ v_l^{B_i} \\ 1 \end{bmatrix} \right) = \mathbf{H}_l^{B_j} \mathcal{X}$$

Unknown scaling factor in observation covariance

Linear Monocular Visual-Inertial Estimator

- Linear system
 - Prior is not needed
 - Initial condition recoverable
 - Recoverable from failure

$$(\mathbf{A}_{r} + \mathbf{A}_{imu} + \mathbf{A}_{cam}) \mathcal{X} = (\mathbf{b}_{r} + \mathbf{b}_{imu} + \mathbf{b}_{cam})$$

Tightly-Coupled Nonlinear Optimization

- Nonlinear optimization based on linear initialization
 - Optimize position, velocity, rotation, and feature depth simultaneously:

$$\mathcal{X} = \begin{bmatrix} \mathbf{x}_0^0, \, \mathbf{x}_1^0, \, \cdots \, \mathbf{x}_N^0, \, \lambda_0, \, \lambda_1, \, \cdots \, \lambda_M \end{bmatrix}$$
$$\mathbf{x}_k^0 = \begin{bmatrix} \mathbf{p}_k^0, \, \mathbf{v}_k^k, \, \mathbf{q}_k^0 \end{bmatrix} \text{ for } k = 1, ..., N$$

Tightly-Coupled Nonlinear Optimization

Nonlinear optimization based on linear initialization

Tightly-Coupled Nonlinear Optimization

- Nonlinear optimization based on linear initialization
 - Optimize position, velocity, rotation, and feature depth simultaneously:

SO(3) -> so(3)
$$\mathcal{X} = \begin{bmatrix} \mathbf{x}_0^0, \, \mathbf{x}_1^0, \, \cdots \, \mathbf{x}_N^0, \, \lambda_0, \, \lambda_1, \, \cdots \, \lambda_M \end{bmatrix}$$
$$\mathbf{x}_k^0 = \begin{bmatrix} \mathbf{p}_k^0, \, \mathbf{v}_k^k, \, \mathbf{q}_k^0 \end{bmatrix} \text{ for } k = 1, ..., N$$

 Error state formulation by modelling the rotation error on the tangent space of the rotation manifold:

$$\delta \mathcal{X} = \begin{bmatrix} \delta \mathbf{x}_{n}^{0}, \, \delta \mathbf{x}_{n+1}^{0}, \, \cdots \, \delta \mathbf{x}_{n+N}^{0}, \, \delta \lambda_{m}, \, \delta \lambda_{m+1}, \, \cdots \, \delta \lambda_{m+M} \end{bmatrix} \qquad \mathbf{v} = \hat{\mathbf{v}} + \delta \mathbf{v}$$

$$\delta \mathbf{x}_{k}^{0} = \begin{bmatrix} \delta \mathbf{p}_{k}^{0}, \, \delta \mathbf{v}_{k}^{k}, \, \delta \boldsymbol{\theta} \end{bmatrix} \qquad \mathbf{so(3) -> SO(3)} \qquad \lambda = \hat{\lambda} + \delta \lambda$$

Solve via Guass-Newton method:

$$(\mathbf{\Lambda}_p + \mathbf{\Lambda}_{\mathcal{D}} + \mathbf{\Lambda}_{\mathcal{C}}) \, \delta \mathcal{X} = (\mathbf{b}_p + \mathbf{b}_{\mathcal{D}} + \mathbf{b}_{\mathcal{C}})$$

$$\hat{\mathcal{X}} = \hat{\mathcal{X}} \oplus \delta \mathcal{X}$$

IMU Pre-Integration on Manifold

- IMU integration in the body frame of the first pose
 - Take rotation uncertainty into account
 - Uncertainty propagation on manifold

IMU Pre-Integration on Manifold

- IMU integration in the body frame of the first pose
 - Take rotation uncertainty into account
 - Uncertainty propagation on manifold

$$\begin{bmatrix} \delta \dot{\alpha} \\ \delta \dot{\beta} \\ \delta \dot{\theta} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbb{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\hat{\mathbf{R}}_t^k [\hat{\mathbf{a}}_t^b \times] \\ \mathbf{0} & \mathbf{0} & -[\hat{\omega}_t^b \times] \end{bmatrix} \begin{bmatrix} \delta \alpha_t^k \\ \delta \beta_t^k \\ \delta \theta_t^k \end{bmatrix}$$

$$+ \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ -\hat{\mathbf{R}}_t^k & \mathbf{0} \\ \mathbf{0} & -\mathbb{I} \end{bmatrix} \begin{bmatrix} {}^a \mathbf{n}_t \\ {}^\omega \mathbf{n}_t \end{bmatrix} = \mathbf{F}_t \delta \mathbf{z}_t^k + \mathbf{G}_t \mathbf{n}_t$$

$$\mathbf{P}_{t+\delta t}^k = (\mathbb{I} + \mathbf{F}_t \delta t) \cdot \mathbf{P}_t^k \cdot (\mathbb{I} + \mathbf{F}_t \delta t)^\mathsf{T} + (\mathbf{G}_t \delta t) \cdot \mathbf{Q}_t \cdot (\mathbf{G}_t \delta t)^\mathsf{T}$$

Projective Camera Model

- Camera residual the reprojection error
 - Measurement and residual defined as:

Marginalization

- Remove old poses to bound computation complexity
 - Convert removed measurements into prior
- General motion:
 - Linear acceleration is required for scale observability
- Degenerate motion hover
 - No baseline
 - No acceleration
 - Scale unobserv
- Degenerate m n const velocity
 - Has baseline
 - No ace leration
 - Scale unobservable

Marginalization

- Two-way marginalization
 - Preserve acceleration and baseline within the sliding window
 - Marginalize either recent or old pose based on parallax heuristic
 - Scale observable for hover

Initialization and State Estimation

Shen, et al, 2014 55

TETA DEPARTMENT OF ELECTRONIC & COMPUTER ENGINEERING OF ELECTRONIC & COMPUTER ENGINE Calibration

電子及計算機工程學系 DEPARTMENT OF

Monocular Visual-Inertial Fusion with Self-Calibration

Monocular Visual-Inertial Fusion with Online Initialization and Camera-IMU Calibration

Zhenfei Yang and Shaojie Shen

Summary

The Basics

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

2D Graph-Based SLAM

 Monocular Visual-Inertial SLAM

Todo...

Dynamic environments

Better convergence property

Real-time Dense mapping

Multi-robot SLAM

That's all about this course...

Week	Lecture Date	Торіс	Lab	Assignment
1	1/9	Introduction Rigid Body Transformation <u>slides</u>	No Lab	
2	8/9	Rigid Body Transformation Quadrotor Modeling slides	No Lab	
*	15/9	*	No Lab	
3	22/9	Control Basics Quadrotor Control slides 1 slides 2 L3 pid setpoint	No Lab	Project 1: Phase 1 Out code
4	29/9	Time & Motion Trajectory Generation <u>slides</u>	No Lab	Project 1: Phase 1 Due Project 1: Phase 2 Out code
5	6/10	Camera Modeling & Calibration Feature Detection & Matching slides	ROS Tutorial 1	Project 1: Phase 2 Due Project 1: Phase 3 Out assignment code
6	13/10	Optical Flow Dense Stereo <u>slides</u>	Project 1 Phase 3	
7	20/10	Multi-View Geometry 2D-2D, 3D-2D, 3D-3D <u>slides</u>	Public Holiday	
8	27/10	Midterm Exam	Cancelled	
9	3/11	Probability Basics Bayesian Inferencing Maximum Likelihood Estimation slides	Project 1: Phase 3	Project1: Phase 3 Due Project2: Phase 1 Out assignment code
10	10/11	Kalman Filter Sensor Fusion <u>slides</u>	No Lab	Project 2: Phase 1 Due Project 2: Phase 2 Out
11	17/11	SLAM	No Lab	Project 2: Phase 2 Due Project 3 Out
12	24/11	No Lecture	Project 3	
13	1/12	No Lecture	Project 3 (Optional)	Project 3 Due

Logistics

- No lab this week
- Project 2, Phase 2 due next Wednesday (25 Nov.)
- Project 3 (lab) starting from next week
 - May take 1-2 weeks depending on your progress
- This is the last lecture
- Please do the course evaluation survey

Thank You!!!