Tarea 1.

La fecha de entrega es el **24 de agosto de 2020**. Enviar **antes de la medianoche** al correo: jorge.delavegagongora@gmail.com (o se convierte en calabaza).

Lecturas

- Robert & Casella Capítulo 2 sección 2.1 y 2.2.
- Dagpunar Capítulo 2
- Good random number generators are (not so) easy to find
- Linear Congruential Generator in R

Problemas

- 1. Lanzar una moneda honesta 500 veces y hacer una gráfica de:
 - i r/n vs n, para $n=1,2,\ldots,500$, donde n es el número de lanzamientos y r es el número de soles para esos n lanzamientos; y
 - ii. (2r n) vs n, la diferencia entre el número de soles y águilas.

Comentar sobre el comportamiento de r/n y (2r-n)

- 2. Dar 5 ejemplos de procesos en los que se puede utilizar simulación.
- 3. Una canoa que contiene tres mujeres y tres hombres llega a una isla deshabitada. Discutan la información que requieren para modelar la sociedad de estos individuos y cómo el tamaño de la población crece con el tiempo.
- 4. Considerar cómo podrían simular el siguiente modelo de una sala de cirugía que opera bajo citas:
 - Los pacientes se programan para llegar en cada 5 horas.
 - Independientemente de los otros pacientes, cada paciente falla a su cita con probabilidad 0.1
 - Independientemente de los otros pacientes, cada paciente tiene tiempos de llegada con la siguiente distribución:

Tiempo	2 hrs antes	1 hra antes	a tiempo	l hra tarde	2 hrs tarde
probabilidad	1/10	1/5	2/5	1/5	1/10

Los tiempos de consulta tienen la siguiente distribución:

Tiempo en hrs	2	3	4	5	6	7	8	9
probabilidad	1/10	1/10	1/10	1/5	1/5	1/10	1/10	1/10

- Los pacientes se atienden en el orden en el que llegan.
- 5. Calcular el periodo del GLC $Z_i \equiv (5Z_{i-1} + 3) \mod 31$.
- 6. Mostrar que el promedio de las U_i 's tomadas de un ciclo completo de un GLC de periodo completo es $\frac{1}{2} \frac{1}{2m}$.
- 7. Dada una sucesión X_1, X_2, \ldots, X_n de $\mathcal{U}(0,1)$ números pseudoaleatorios, podemos hacer una gráfica de dispersión de puntos de (X_i, X_{i+1}) para $i=1,\ldots,n-1$ para verificar si hay independencia. Hacer esta gráfica para el GLC con parámetros m=1,024, a=401, c=101 y para el GLC $m=2^{32}, a=1,664,525, c=1,013,904,223$.
- 8. Probar que la parte fraccional de la suma de uniformes [0,1] $U_1 + U_2 + \cdots + U_k$ es también uniforme en el intervalo [0,1].
- 9. Un generador de Fibonacci obtiene el valor X_{n+1} a partir de X_n y X_{n-1} de la siguiente forma:

$$X_{i+1} \equiv (X_i + X_{i-1}) \mod m$$

donde X_0 y X_1 están especificados.

Supongan que m=5. Sólo dos ciclos son posibles. Encontrarlos, así como su respectivo periodo.

- 10. El método del cuadrado medio de John von Neumann es el siguiente: comenzando con $Z_0 \in \{0,1,\ldots,99\}$, definir Z_n para $n \in \mathbb{N}$ a ser los dos dígitos de enmedio del número de 4 dígitos Z_{n-1}^2 . Si Z_{n-1}^2 no tiene 4 dígitos, se le pegan a la izquierda con ceros. Por ejemplo, si $Z_0 = 64$, tenemos que $Z_0^2 = 4096$ y entonces $Z_1 = 09 = 9$. En el siguiente paso, encontramos que $Z_1^2 = 81 = 0081$, así que $Z_2 = 08 = 8$.
 - Escriban una función que calcule Z_n a partir de Z_{n-1} .
 - La salida del cuadrado medio tiene bucles. Por ejemplo, una vez que $Z_N = 0$, tendremos que $Z_n = 0$ para toda $n \ge N$. Escriban un programa que encuentre todos los ciclos del método del cuadrado medio y lístenlos.
 - Comenten sobre la calidad del método como generador de números aleatorios.
 - Hacer un diagrama como el mostrado en clase.
- 11. La siguiente página contiene el primer millón de dígitos de π . Considerando estos dígitos:
 - Realizar un histograma y verificar la hipótesis de que los dígitos corresponden a una distribución uniforme discreta.
 - Verificar independencia de los dígitos, considerando las pruebas de gaps, de poker y de rachas.

Una idea de ver los datos está en la Figura 11:

Figura 1: Cómo se ven los primeros 100,000 dígitos de π .

12. Si dos dados están cargados de tal manera que en un dado, el valor 1 aparecerá exactamente el doble de veces que los otros valores, y el otro dado está igualmente cargado hacia el 6, calculen la probabilidad p_s de que un total exactamente igual a s aparecerá en la suma de los dos dados, para $2 \le s \le 12$.