

Изучение свойств электродов

Шамарина Екатерина, Б06-903 Хомутов Андрей, Б06-903 $\Phi {\rm BM}\Phi,\,2021$

Цели работы

- 1. Знакомство с понятием лимитирующей стадии электрохимической реакции и двумя принципиально разными причинами изменения потенциала электрода в условиях протекания тока –при быстрой и медленной электрохимической стадии
- 2. Получение хлорсеребряного электрода и изучение его свойств
- 3. Исследование свойств платинового электрода в условиях его поляризуемости и обратимости. Оценка ключевых параметров диффузионной и кинетической стадий электрохимических реакций.

1 Практическая часть

1.1 Получение и проверка работы хлорсеребряных электродов

В ячейке 0.1М HCl. Используется трёхэлектродная схема:

Рабочий электрод(+): Ag/AgCl

Противоэлектрод(-): Pt

Электрод сравнения(-): Ag/AgCl (в 3.5M KCl)

Серебряная проволока предварительно очищается от старого слоя AgCl с помощью катодной поляризации: например, в режиме линейной развертки потенциала от 0 до -1500 мB со скоростью 10 мB/с. Рез-ты на Puc.1

Рис. 1: ВАХ очистки ХС электрода

Реакции на электродах:

 $WE(K): AgCl + e^- \rightarrow Ag + Cl^-$

 $CE(A): 2H_2O - 4e^- \to 4H^+ + O_2 \uparrow$

При втором проходе (электрод уже очищен, представляет собой серебряную проволочку) на участке нулевого тока электрод работает как поляризуемый. Далее (после -500мВ) ВАХ становится линейной из-за прохождения на электроде другой реакции: $H^+ + e^- \to \frac{1}{2} H_2 \uparrow$. Что можно наблюдать по выделению пузырьков на серебрянном электроде. (Линейность из-за того, что фарадеевское сопротивление мало => лимитирующая стадия - дифузионная, а эквив. схема - резистор.) При первом проходе участок "ямы" соответствует восстановлению серебра на катоде.

Для создания слоя AgCl использовалась анодная поляризация серебряной проволоки в потенциостатическом режиме около 200 мВ относительно хлорсеребряного электрода сравнения (в 3,5 M растворе KCl). Во время процесса серебряная проволока потемнела до бурого цвета.

Реакции на электродах:

WE(A): $Ag + Cl^- - e^- \rightarrow AgCl$ CE(K): $H_2O + e^- \rightarrow OH^- + \frac{1}{2}H_2 \uparrow$

1.2 Поляризуемые и неполяризуемые электроды

В ячейке 60 мл 1М КСІ. Используется трёхэлектродная схема:

Рабочий электрод(+): Ag/AgCl (получен в Части 1)

Противоэлектрод(-): Pt (с большой площадью)

Электрод сравнения(-) : Ag/AgCl (в 3.5M KCl)

С помощью потенциостата проведено измерение циклической ВАХ для двух рабочих электродов:

1) Ag/AgCl электрода (от -150 до 150 мВ относительно хлорсеребряного электрода сравнения) в растворе 1 М КСl; 2) Pt электрода (в диапазоне потенциалов от -900 до 1150 мВ относительно хлорсеребряного электрода сравнения) в растворе 1 М КСl.

(Потенциостатический режим работы, циклическая развертку потенциала по времени, скорость развертки – около $100~{\rm mB/c}$, скорость регистрации – $13~{\rm точек}$ в секунду, $5~{\rm циклов.}$)

Результаты на Рис.2-4

1.2.1 Хлорсеребряный электрод

Реакция на рабочем электроде:

При катодном токе: $AgCl + e^- \rightarrow Ag + Cl^-$

При андоном токе: $Ag + Cl^- - e^- \rightarrow AgCl$

ЦВАХ соответствует неполяризуемому электроду.

1.2.2 Платиновый электрод

Реакция на рабочем электроде:

При катодном токе: $H_2O + e^- \rightarrow OH^- + \frac{1}{2}H_2 \uparrow$

При андоном токе: $2H_2O-4e^- \rightarrow 4H^+ + O_2 \uparrow$

ЦВАХ соответсвует поляризуемому электроду. (ИПЭ при потнециале -500..1000мВ отн.ХС.)

Рис. 2: ЦВАХ обоих электродов

Рис. 3: ЦВАХ ХС электрода

Рис. 4: ЦВАХ платинового э-да

1.3 ОВР электрод

В качестве рабочего электрода использовался платиновый электрод с малой площадью поверхности ($\sim \pi$ мм²). В электрохимическую ячейку было добавлено 60мл 1М раствора КСl и по 1мл 0.1М растворов $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$ (в дальнейшем $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$). Диапазон измерения катодной и анодной поляризационных кривых от -400 до 0 и от 0 до 400

мВ относительно ПРЦ соответственно при постоянной скорости перемешивания. Используемый режим - линейная развертка потенциала, скорость - 5мВ/с, диапазон тока - 200мкА.

Повторные измерения были проведены 5 раз при добавлении по 2мл $K_4[Fe(CN)_6]$. Кривые представлены на рис. 5. Также было рассмотрено влияние скорости перемешивания (см. рис. 6). Легко видеть что интенсивность колебаний при достижении предельного тока и сама величина этого тока прямо коррелируют со скоростью перемешивания.

Рис. 5: Кривые поляризации для различных количеств добавленного K₄[Fe(CN)₆]

Запишем процессы происходящие на рабочем электроде при его катодной и анодной поляризациях соответственно:

- 1. $[Fe(CN)_6]^{3-} + e \rightarrow [Fe(CN)_6]^{4-}$
- 2. $[Fe(CN)_6]^{4-} e \rightarrow [Fe(CN)_6]^{3-}$

Построим график зависимости предельного диффузионного тока от концентрации $K_4[Fe(CN)_6]$ и проведем ее линеаризацию (рис. 7, табл. 1). Отметим, что значение предельного катодного тока остается практически неизменным (-7 мкA), так как его величина определяется концентрацией $K_3[Fe(CN)_6]$.

Линейность этой зависимости следует из следующего выражения для предельного диффузионного тока:

$$i_d = -nFD\frac{c_R^b}{\delta},$$

где c_R^b - концентрация восстановленной формы (для анодного тока) в объеме.

Таким образом, зная коэффициент наклона зависимости $i_d(c_R^b)$, можно определить толщину диффузионного слоя¹:

$$\delta = \frac{FDS}{k} = 54,7 \text{MKM}.$$

 $^{^{1}}$ D(K4) = $0.739 \cdot 10^{-5}$ см 2 /с. Ньюмен Дж. Электрохимические системы, с. 260.

Рис. 6: Кривые поляризации при изменении скорости перемешивания для конечного раствора

Рис. 7: Зависимость предельного диффузионного тока от концентрации $K_4[Fe(CN)_6]$

Из уравения Нернста:

$$E_{\rm p} = E^0 - \frac{RT}{nF} \ln \left(\frac{C \left(K_4 \left[Fe(CN)_6 \right] \right)}{C \left(K_3 \left[Fe(CN)_6 \right] \right)} \right)$$

Таким образом, построив зависимость стационарного потенциала от логарифма отношения

концентраций $K_4[Fe(CN)_6]$ и $K_3[Fe(CN)_6]$, можно по углу наклона определить n:

$$n = \frac{RT}{kF} = 0.93 \simeq 1$$

Рис. 8: Зависимость $E_p(\ln(\mathrm{C}(\mathrm{K}_4[\mathrm{Fe}(\mathrm{CN})_6])/\mathrm{C}(\mathrm{K}_3[\mathrm{Fe}(\mathrm{CN})_6])))$

Оценим, максимальное количество $K_3[Fe(CN)_6]$ образовавшегося из $K_4[Fe(CN)_6]$ при регистрации поляризационной кривой.

$$u_{max} = rac{I_d^{(11)}t}{F} = rac{63.8 \cdot 10^{-6} \cdot 80}{96385} \simeq 53 \; ext{нмоль}$$

Таблица 1: Предельные диффузионныме токи и равновесные потенциалы в зависимости от концентрации реагентов

$C(K_4[Fe(CN)_6]), MM$	$C(K_3[Fe(CN)_6]), мМ$	id, мкА	Ер, мВ
1,61	1,61	8,6	269,34
4,69	1,56	22,8	240,57
7,58	1,52	35,6	229,57
10,29	1,47	47,1	219,28
12,86	1,43	57,0	211,6
15,28	1,39	63,8	207,2

1.4 Диффузионный потенциал

В режиме вольтметра была снята зависимость разности потенциалов между двумя хлорсеребряными электродами, помеещенными в 1М и 0.1М растворы HCl, соединенные фильтровальной бумажкой, смоченной 1М раствором HCl. Установившееся значение ΔE через час наблюдения составило 103.5 мВ.

Расчитаем теоретическое значение разности потенциалов. С учетом того, что после разбавления растворов в 100 раз (200 мкл, доведенные до 20 мл дистиллированной водой) электропроводности при 25 С получились равными 836 мкСм/см и 7190 мкСм/см, можно сделать вывод что отношение концентраций $\alpha=8.6$.

$$\Delta E = \Delta E_{Nernst} + \Delta \varphi_{diff} = \frac{RT}{nF} \cdot \ln \frac{c_2}{c_1} \cdot (1 + \frac{D_+ - D_-}{D_+ + D_-}) = 90.6 \text{ MB}.$$

2 Выводы

- 1. Получен хлорсеребряный электрод, и изучены его свойства.
- 2. С помощью потенциостата измерены ЦВАХ хлорсеребряного и платинового электродов. На их основании сделаны выводы о характере электродов: XC - неполяризуемый, Pt - поляризуемый.
- 3. Для платинового OBP электрода были сняты поляризационные кривые для различных концентраций восстановленной формы.
- 4. По предельным значениям диффузионного тока была оценена толщина диффузионного слоя
- 5. По стационарным значниям потенциала было подтверждено что количесто электронов, передаваемое в электрохимической реакции, равно 1.
- 6. Было установлено что скорость перемешивания влияет как на величину колебаний тока около его предельного значения, так и на саму величину этого тока.
- 7. Была измерена равновесная разность потенциалов между двумя хлорсеребряными электродами в растворах HCl различной концентрации, и расчитана теоретически через выражение для диффузионного потенциала.