Homework #2

Question 8

bwot

	Proposition 1	Reason
(1)	-1 (B ^ L)	Premise iv
3 [¬]	AVD	premise is steps (1) and (2) and modes tollers premise isi Steps (3) and (4) and the Rule of
_	(B \ D)	Disjunctive Syllogism step (5) and the Rule of Disjunctive Amplification
7 (BVO) -> E	premise ii
8	E	step (3) and Modus Ponens

Let: S(x) be the predicate "x is a student"

F(x) be the predicate "x is a faculty member"

A(x,y) be the predicate "x has asked y a question"

where the domain consists of all people associated with the school

- a) Lois has asked Professor Michaels a grestion.

 A (Lois, Professor Michaels)
- b) Every student has asked professor Gross a question.

 So For every person at school x, if person x is a student, then x has asked professor Gross a question.

Ax (SCX) -> A(x, Protessor Enss)]

Some student has not asked any faculty member a grestion

∃, [S(x) A by (F(y) → ¬A(x,y))]

d) There is a faculty member who has never been asked a question, by a student.

 $\exists y \left[F(y) \land \forall_{x} \left(S(x) \rightarrow \neg A(x,y) \right) \right]$

- e) some student has asked every faculty member a question $\exists_{x} \left[S(x) \wedge \forall y \left(F(y) 7 A(y,y) \right) \right]$
- f) Some Student has never been asked a grestion by a faculty member.

∃x [scx) A Vy (Fcy) → ¬A(y,x))]

- a) $\forall_x \exists_y (x^2 = y)$ True
- b) $\forall_x \exists_y (x=y^2)$ False
- c) $\exists_x \forall_y (xy=0)$ Tive
- d) $\forall_x (x \neq 0 \rightarrow \exists_y (xy = 1))$ True
- e)], by (y to -> xy=1) Face
- f)]x]y (x+2g=2 1 2x+4y=5) False