Chapter 8

Discrete Probability

Discrete Structures for Computing

TÀI LIÊU SƯU TẬP

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le Faculty of Computer Science and Engineering University of Technology - VNUHCM {htnguyen;trtanh}@hcmut.edu.vn

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Contents

1 Introduction
Randomness

2 Probability

3 Probability Rules

4 Random variables

5 Probability ModelsGeometric Model
Binomial Model

LIỆU SƯU TẬP

BACHKHOACNCP.COM

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Geometric Model

Course outcomes

	Course learning outcomes \(\Delta\)		
	140,4C		
L.O.1	Understanding of logic and discrete structures		
	L.O.1.1 – Describe definition of propositional and predicate logic		
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs		
	V		
L.O.2	Represent and model practical problems with discrete structures		
	L.O.2.1 – Logically describe some problems arising in Computing		
	L.O.2.2 – Use proving methods: direct, contrapositive, induction		
	L.O.2.3 – Explain problem modeling using discrete structures		
L.O.3	Understanding of basic probability and random variables		
	L.O.3.1 – Define basic probability theory		
	L.O.3.2 – Explain discrete random variables		
	TALLIFIL SITULTAP		
L.O.4	Compute quantities of discrete structures and probabilities		
	L.O.4.1 – Operate (compute/ optimize) on discrete structures		
	L.O.4.2 – Compute probabilities of various events, conditional		
	ones, Bayes theorem		

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules Random variables

andom variables

Motivations

Gambling

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Introduction

Randomness

Probability

Probability Rules

Random variables

Probability Models

bability Models

 Computer Science: cryptology – deals with encrypting codes or the design of error correcting codes

Randomness

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Randomness

Probability

Probability Rules

....

Random variables

Probability Models Geometric Model

Geometric Model Binomial Model

Which of these are random phenomena?

- The number you receive when rolling a fair dice
- The sequence for lottery special prize (by law!)
- Your blood type (No!)
- You met the red light on the way to school
 - The traffic light is not random. It has timer.
 - The pattern of your riding is random.

So what is special about randomness?

In the **long run**, they are predictable and have relative frequency (fraction of times that the event occurs over and over and over).

Terminology

- Experiment (thí nghiệm): a procedure that yields one of a given set of possible outcomes.
 - Tossing a coin to see the face
- Sample space (không gian mẫu): set of possible outcomes
 - {Head, Tail}
- Event (sự kiện): a subset of sample space.
 - You see Head after an experiment. {Head} is an event.

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Example

Example (1)

Experiment: Rolling a die. What is the sample space?

Answer: {1, 2, 3, 4, 5, 6}

Example (2)

Experiment: Rolling two dice. What is the sample space?

Answer: It depends on what we're going to ask!

The total number?

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

• The number of each die?

 $\{(1,1), (1,2), (1,3), \dots, (6,6)\}$

Which is better?

The latter one, because they are equally likely outcomes

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

The Law of Large Numbers

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models
Geometric Model
Rinomial Model

KHOACNC

Definition

The Law of Large Numbers (*Luật số lón*) states that the **long-run** relative frequency of repeated independent events gets closer and closer to the true relative frequency as the number of trials increases.

Example

Do you believe that the true relative frequency of Head when you toss a coin is 50%?

Let's try!

BŐI HCMUT-CNCP

Be Careful!

Don't misunderstand the Law of Large Numbers (LLN). It can lead to money lost and poor business decisions.

Example

I had 8 children, all of them are girls. Thanks to LLN (!?), there are high possibility that the next one will be a boy. (Overpopulation!!!)

Example

I'm playing Bầu cua tôm cá, the fish has not appeared in recent 5 games, it will be more likely to be fish next game. Thus, I bet all my money in fish. (Sorry, you lose!) MIIT-CNCP

Discrete Probability

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability

Definition

The **probability** $(x\acute{a}c\ su\acute{a}t)$ of an event E of a finite nonempty sample space of equally likely outcomes S is:

$$p(E) = \frac{|E|}{|S|}.$$

- Note that $E \subseteq S$ so $0 \le |E| \le |S|$
- $0 \le p(E) \le 1$
 - 0 indicates impossibility
 - 1 indicates certainty

BỞI HCMUT-CNCP

People often say: "It has a 20% probability"

BACHKHOACNCP.COM

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

What is the probability of getting a Head when tossing a coin?

ВК тр.нсм

Answer:

- There are |S| = 2 possible outcomes
- Getting a Head is |E|=1 outcome, so p(E)=1/2=0.5=50%

Example (2)

What is the probability of getting a 7 by rolling two dice?

Answer:

- Product rule: There are a total of 36 equally likely possible outcomes
- There are six successful outcomes: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Thus, |E| = 6, |S| = 36, p(E) = 6/36 = 1/6

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Examples

Discrete Probability

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Geometric Model Binomial Model

Example (3)

We toss a coin 6 times. What is probability of H in 6th toss, if all the previous 5 are T?

Answer:

Don't be silly! Still 1/2.

Example (4)

Which is more likely:

• Rolling an 8 when 2 dice are rolled?

• Rolling an 8 when 3 dice are rolled?

Answer:

Two dice: $5/36 \approx 0.139$

Three dice: $21/216 \approx 0.097$

Formal Probability

Rule 1

A probability is a number between 0 and 1.

$$0 \le p(E) \le 1$$

Rule 2: Something has to happen rule

The probability of the set of all possible outcomes of a trial must be 1.

$$p(S) = 1$$

Rule 3: Compliment Rule LIEU SU'U TAF

The probability of an event occurring is 1 minus the probability that it doesn't occur.

$$p(E) = 1 + p(\overline{E}) + CP \cdot COM$$

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Examples

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Randomness Probability

Probability Rules

Random variables

Probability Models

Geometric Model

KHOACNC

Example

What is the probability of NOT drawing a heart card from 52 deck cards?

Answer:

Let E be the event of $\operatorname{\underline{\mathbf{getting}}}$ a heart from 52 deck cards. We have:

$$p(E) = 13/52 = 1/4$$

By the compliment rule, the probability of NOT getting a heart card is:

$$p(\overline{E}) = 1 - p(E) = 3/4$$

BỞI HCMUT-CNCP

Formal Probability

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

General Addition Rule

$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$$

- If $E_1 \cap E_2 = \emptyset$: They are disjoint, which means they can't occur together
- then, $p(E_1 \cup E_2) = p(E_1) + p(E_2)$

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Example

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Example (1)

If you choose a number between 1 and 100, what is the probability that it is divisible by either 2 or 5?

Short Answer:

$$\frac{50}{100} + \frac{20}{100} - \frac{10}{100} = \frac{3}{5}$$

Example (2)

There are a survey that about 45% of VN population has Type O blood, 40% type A, 11% type B and the rest type AB. What is the probability that a blood donor has Type A or Type B?

Short Answer:

$$40\% + 11\% = 51\%$$

BổI HCMUT-CNCP

BACHKHOACNCP.COM

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Conditional Probability (Xác suất có điều kiện)

BACHKHOACNCP.COM

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Conditional Probability

Discrete Probability

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models
Geometric Model
Binomial Model

KHOACNC

Definition

 $p(E \mid F) = \text{Probability of event } E \text{ given that event } F \text{ has occurred}.$

General Multiplication Rule

$$p(E \cap F) = p(E) \times p(F \mid E)$$

$$= p(F) \times p(E \mid F)$$

BŐI HCMUT-CNCP

HOACN

Example

What is the probability of drawing a red card and then another red card without replacement (không hoàn lại)?

Solution

E: the event of drawing the first red card

F: the event of drawing the second red card

$$p(E) = 26/52 = 1/2$$

$$p(F \mid E) = 25/51$$

So the event of drawing a red card and then another red card is $p(E\cap F)=p(E)\times p(F\,|\,E)=1/2\times 25/51=25/102$

Independence

Definition

Events E and F are independent $(d\hat{\rho}c l\hat{\rho}p)$ whenever

$$p(E \mid F) = p(E)$$

- The outcome of one event does not influence the probability of the other.
- Example: p("Head"|"It's raining outside") = p("Head")
- ullet If E and F are independent

$$p(E \cap F) = p(E) \times p(F)$$

Disjoint \neq **Independence** BOI HCMUT-CNCP

Disjoint events cannot be independent. They have no outcomes in common, so knowing that one occurred means the other did not.

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Bayes's Theorem

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Randomness

Probability

Probability Rules

Random variables

Probability Models

Geometric Model Binomial Model

HOACNC

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Theorem (Bayes's Theorem)

$$p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})}$$

Expected Value: Center

An insurance company charges \$50 a year. Can company make a profit? Assuming that it made a research on 1000 people and have following table:

Outcome	Payroll	Probability
ζ,	x	p(X = x)
Death	10,000	$\frac{1}{1000}$
Disability	5000	$\frac{2}{1000}$
Neither	0	997 1000

ullet X is a discrete random variable (biến ngẫu nhiên rời rạc)

The company **expects** that they have to pay each customer:

$$E(X) = \$10,000(\frac{1}{1000}) + \$5000(\frac{2}{1000}) + \$0(\frac{997}{1000}) = \$20$$

Expected value (giá trị kỳ vọng)

$$E(X) = \sum_{x} x \cdot p(X = x)$$

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Variance: The Spread

- Of course, the expected value \$20 will not happen in reality
- There will be variability. Let's calculate!
- Variance (phương sai)

$$V(X) = \sum_{x \in X} (x - E(X))^2 \cdot p(X = x)$$

- $V(X) = 9980^2(\frac{1}{1000}) + 4980^2(\frac{2}{1000}) + (-20)^2(\frac{997}{1000})$ 149,600
- Standard deviation (độ lệch chuẩn)

$$SD(X) = \sqrt{V(X)}$$

• $SD(X) = \sqrt{149,600} \approx 386.78

Comment

The company expects to pay out \$20, and make \$30. However, the standard deviation of \$386.78 indicates that it's no sure thing. That's pretty big spread (and risk) for an average profit of \$20.

TÀI LIÊU SƯU TÂ

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

maom variables

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Geometric Model

Example ACA

Some people madly drink Coca-Cola, hoping to find a ticket to see Big Bang. Let's call tearing a bottle's label trial (phép thử):

- There are only possible outcomes (congrats or good luck)
- The probability of success, p, is the same on every trial, say 0.06
- The trials are independent. Finding a ticket in the first bottle does not change what might happen in the second one.

• Bernoulli Trials LIỆU SƯU TẬP

 Another examples: tossing a coin many times, results of testing TB on many patients, ...

Geometric Model (Mô hình hình học)

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Discrete Probability

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Geometric Model

Rinomial Model

Question: How long it will take us to achieve a success, given p, the probability of success?

Definition (Geometric probability model: Geom(p))

p = probability of success (q = 1 - p = probability of failure)X = number of trials until the first success occurs

$$p(X = x) = q^{x-1}p$$

Expected value: $\mu = \frac{1}{p}$ Standard deviation: $\sigma = \sqrt{\frac{q}{p^2}}$ BÓLHCMUT-CNCP

Geometric Model: Example

Example

If the probability of finding a Sound Fest ticket is p=0.06, how many bottles do you expect to open before you find a ticket? What is the probability that the first ticket is in one of the first four bottles?

Solution

Let X= number of trials until a ticket is found We can model X with Geom(0.06). $E(X)=\frac{1}{0.06}\approx 16.7$

$$P(X \le 4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$$

$$= (0.06) + (0.94)(0.06) + (0.94)^{2}(0.06)$$

$$+ (0.94)^{3}(0.06) + CMUT - CNCP$$

$$\approx 0.2193$$

Conclusion: We expect to open 16.7 bottles to find a ticket. About 22% of time we'll find one within the first 4 bottles.

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables

Probability Models

Binomial Model (Mô hình nhị thức)

Previous Question: How long it will take us to achieve a success, given p, the probability of success?

New Question: You buy 5 Coca-Cola. What's the probability you get exactly 2 Sound Fest tickets?

Definition (Binomial probability model: Binom(n, p))

n = number of trials

p = probability of success (q = 1 - p = probability of failure)

X = number of successes in n trials

BÓI HCMUT-CNCP Expected value: $\mu = np$

Standard deviation: $\sigma = \sqrt{npq}$

Discrete Probability

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules Random variables

Probability Models

Binomial Model: Example

Example

Suppose you buy 20 Coca-Cola bottles. What are the mean and standard deviation of the number of winning bottles among them? What is the probability that there are 2 or 3 tickets?

Solution

Let X = number of tickets among n = 20 bottles

We can model X with Binom(20, 0.06).

$$E(X) = np = 20(0.06) = 1.2$$

$$SD(X) = \sqrt{npq} = \sqrt{20(0.06)(0.94)} \approx 1.96$$

$$P(X = 2 \text{ or } 3) = P(X = 2) + P(X = 3)$$

$$= {20 \choose 2} (0.06)^2 (0.94)^{18} + {20 \choose 3} (0.06)^3 (0.94)^{17}$$

$$\approx 0.2246 + 0.0860 = 0.3106$$

Conclusion: In 20 bottles, we expect to find an average of 1.2 tickets, with a sd of 1.06. About 31% of the time we'll find 2 or 3 tickets among 20 bottles.

Discrete Probability

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction Randomness

Probability

Probability Rules

Random variables