

 Doc
 ESS-0123103 Rev 1

 Date
 2017-Dec-11

 Version
 1.0

State Final version

User manual of the ESS ISRC and LEBT

	Audience	Affiliation
Owner	Jean-François DENIS	CEA
Authors	Jean-François DENIS	CEA
Reviewers	Françoise Gougnaud	CEA
Approvers	Florence Ardelier	CEA

TABLE OF CONTENTS

1.	INT	ΓROE	UCT	TION	4
2.	Pre	esent	atio	n	4
	2.1	Sou	rce ([Isrc)	4
	2.2	LEB	T		4
3.	SYS	STEM	1 CO	NFIGURATION	5
	3.1	Har	dwa	re: ESS Control Box	5
	3.1	.1	Isro		5
	3.1	.2	LEE	8T	5
	3.2	Net	wor	k architecture	6
	3.3	IP a	ddre	ess of devices	7
	3.4	Soft	war	e: Linux	8
	3.4	.1	Ser	ver	8
	3.4	.2	Clie	nt	8
4.	EP	ICS C	ONT	ROL SOFTWARE	8
	4.1	Ove	rvie	w	8
	4.1	.1	Isro	modules	8
	4.1	.2	LEE	BT modules	9
	4.2	Data	abas	e	9
	4.2	.1	Isro		9
	4.2	.2	LEE	BT	11
	4.3	IOC			13
	4.3	.1	Stai	tup scripts	13
	4	4.3.1.	1	source-vme.cmd	13
	4	4.3.1.	2	ipc-source.cmd	16
	4	4.3.1.	3	ipc-lebt.cmd	16
	4.3	.2	Boo	ting configuration	17
	4.3	.3	Ser	vices starting	18
5.	Op	erato	r In	terface	18
	5.1	Mai	n Us	er interface: source.opi	18
	5.1	.1	Mai	n tab: source control	19
		5.1.1.	1	Magnetron	19
		5.1.1.	2	Automatic Tuning Unit (ATU)	20
		5.1.1.	3	Magnetic System	20
	5	5.1.1.	4	High Voltage Power supply	21
	[5.1.1.	5	Repeller Power supply	21

	5.1.1.	6 Sensors	22
	5.1.1.	7 Vacuum status	22
	5.1.2	Interlock tab	23
	5.1.3	Vaccum tab	23
5.	2 Dia	gnostic User interface: second-source.opi	24
	5.2.1	Faraday Cup	25
	5.2.2	IRIS	25
	5.2.3	Doppler	25
	5.2.4	EMU	26
6.	LIST OF	ABBREVIATIONS	27

1. INTRODUCTION

The European Spallation Source (ESS) ion source is based on ECR technology and it's currently develop at INFN-LNS in Catania. The beam will be extracted with an energy of 75 keV. The ion source will be followed by a magnetic Low Energy Beam Transport line, which consists of 2 solenoids, a pre chopper system, and an iris in order to modulate the beam intensity from 6.3 to 62.5 mA at the target window.

CEA is in charge of the control command for the source and Low Energy Beam Transmission (LEBT). It's based on Experimental Physics and Industrial Control System (EPICS).

This document will present the control command of the ESS Source and the LEBT. If more information are needed on a control of a device, please refer to the documentation dedicated.

2. PRESENTATION

2.1 Source (Isrc)

The devices to be controlled are located on the HV platform and at ground potential. In order to prevent damages for instrumentations due to HV discharges all the devices interacting with the beam line and platform shall be adequately grounded. The link between the HV plateform and the ground is done by an optical fiber.

Devices to be controlled on the HV platform are:

- Magnetron
- Automatic tuning Unit (ATU)
- MFC, vacuum gauge & valve
- COILS Power supply
- PLC (remote I/O)
- Ethercat remote I/O (sensors, temperatures)

Devices to be controlled at the ground are:

- High Voltage power supply
- Repeller electrode
- PLC
- Ethercat Remote I/O (Sensors, temperatures)

2.2 LEBT

The LEBT is composed of:

- Faraday Cup
- Power supplies dedicated to steerers, solenoids.
- The chopper
- The IRIS
- Two EMUs vertical and horizontal
- Doppler
- And other devices, but not on the charge of CEA.

3. SYSTEM CONFIGURATION

3.1 Hardware: ESS Control Box

The control command uses the Control Box provided by ICS. It's based on a VME-64x architecture and Industrial PC (NEXCOM NISE 6500).

3.1.1 Isrc

The ISRC VME crate is composed of:

Description	Name	Observations
Mother board	IFC1210 (IOXOS)	VME-64X
DACQ Board	ACQ420FMC	4 channels, 16 bits, +/- 10V, 2 MSample, FMC format
Timing Generator	MRF-EVG-230	VME format
Timing Receiver	MRF-EVR-230	VME Format

Table 2: ISRC VME Control Box composition

3.1.2 **LEBT**

Excepted for both EMU, the devices installed on the LEBT are controlled by the IPC of the source (IPC_ISRC-LEBT).

The EMUs VME crate is composed of:

Description Name		Observations		
Mother board	IFC1210 (IOXOS)	VME-64X		
DACQ Board	ACQ420FMC	4 channels, 16 bits, +/- 10V, 2 MSample, FMC format		
Timing Receiver	MRF-EVR-230	VME Format		

Table 3: EMU VME Control Box composition

3.2 Network architecture

Figure 1: Isrc Network architecture

Figure 2: LEBT network architecture

3.3 IP address of devices

Description	Name	IP ADDRESS NETWORK	IP ADDRESS SUBNETWORK (CA)			
MAIN DEVICES						
Main server	Server	172.16.30.135	10.10.0.1			
User or Devell PC	Devenv	172.16.30.136	10.10.0.10			
Archivage	Sispck16		10.10.0.11			
VME Source	VME_SOURCE		10.10.0.15			
IPC Source	IPC_ISRC-LEBT		10.10.0.16			
VME EMU	VME_EMU		10.10.0.19			
IPC_EMU	IPC_EMU		10.10.0.18			
Doppler PC	Doppler		10.10.0.20			
	1	SOURCE DEVIC	ES			
ATU	SAIREM AI4S		10.10.1.36:502			
Magnetron	SAIREM GMP20KED		10.10.1.38:502			
HV PS	FUG HCH15K100K		10.10.1.37:2101			
Reppeler PS	FUG HCP353500		10.10.1.34:2101			
Coils PS	TDK GEN10500		10.10.1.31/32/33/:8003			
MFC & Gauge	MOXA GATE- WAY		10.10.1.20			
PLC PLC-Source			 Interface IPC: 10.10.2.2 Interface VME: 10.10.1.30 (I/O on HV) Remote IO: 10.10.1.29 			
		LEBT DEVI	CES			
Steerer PS 1	SORENZEN SGA30x501d		10.10.1.53 :5025			
Steerer PS 2	SORENZEN SGA30x501d		10.10.1.54:5025			
Steerer PS 3	SORENZEN SGA30x501d		10.10.1.55 :5025			
Motor Controller IRIS	GEOBRICK		10.10.1.40			
Motor Controller EMU Ver. and Hor.	GEOBRICK		10.10.3.42 (Subnet on IPC_EMU)			
PLC EMU	PLC-EMU	10.10.2.3 (Subnet on IPC_EMU)				
Solenoid PS	SOL1-PS	10.10.1.35				
Solenoid PS	SOL2-PS		10.10.1.36			

*CA: Channel Access

Table 1: IP addresses of devices of ISRC and LEBT

3.4 Software: Linux

3.4.1 Server

The installation of the main server is full compliant with the INKIND EEE Server:

https://confluence.esss.lu.se/display/DE/In-kind+EEE+server+setup

3.4.2 Client

The installation of the client is full compliant with the IN-KIND EEE Devenv:

https://confluence.esss.lu.se/display/DE/In-kind+physical+DM+setup

4. EPICS CONTROL SOFTWARE

4.1 Overview

A module is developed for each device. In the following tables is presented all modules used to control and test the Source (Isrc) and LEBT:

4.1.1 Isrc modules

Device	Module
Magnetron	m-epics-sairemgmp20ked
ATU	m-epics-sairemai4s
MFC	m-epics-vac_ctrl_mks946
	m-epics-vac_mfc_mks_gv50a
	m-epics-vac_gauge_mks_vgd
COILS Power supply	m-epics-tdkgen10500
PLC	m-epics-plc-source
HV Power supply	m-epics-fug
Faraday Cup	m-epics-faradaycup
FastAcquisistion	m-epics-fastacquisition
DataAcquisition	m-epics-dataacquisition

Table 2: List of modules used for Isrc

The module **m-epics-source** is used essentially to load all devices modules with their EPICS database. It contains main screens and only one database for sensors and ISEG power supply (Faraday Cup).It has the following structure.

Folder	File	Description		
	Makefile	makefile of the module		
db	source-sensors.substitutions	Substitution file to create Database		
doc	ISrcEPICSmanual.pdf	this document		
opi	source.opi	Main opi		
opi	Source-second.opi	Diags OPI		

Folder	File	Description	
opi/scripts	s DiagOpiSwitch.js javascript used by Source-second.opi to switch views		
opi/scripts PlcOpiSwitch.js javascript used by Source-second.opi		javascript used by Source-second.opi to switch views for the PLC part	
Startup	Source-vme.cmd	IOC startup script on the VME	
Startup	Source-ipc.cmd	IOC startup script on the IPC	

Table 3: m-epics-source module structure

The last version tagged on bitbucket of ESS is: v1.2.0-catania

4.1.2 **LEBT** modules

Device	Module
Steerers PS	m-epics-sorensenXG125120
Solenoids PS	m-epics-sorensenSGA30x501d
Iris	m-epics-iris
EMU	m-epics-emu
EMU (PLC)	m-epics-emu-plc
EMU (PMAC)	m-epics-emu-pmac
Doppler	m-epics-doppler
Chopper	m-epics-chopper

Table 4: List of modules used for LEBT

The module **m-epics-lebt** is used essentially to load all devices modules with their EPICS database. It has the following structure.

Folder	File	Description	
	Makefile makefile of the module		
db	Lebt.substitution	Substitution file	
doc	ISrc-LEBT_usermanual.pdf	this document	
Startup	lebt-ipc.cmd	IOC startup script on the IPC	

Table 5: m-epics-lebt module structure

The last version tagged on bitbucket of ESS is: v0.2.0

4.2 Database

4.2.1 Isrc

This database is used essentially to control sensors and ISEG power supply (Faraday cup). These measures are done by Ethercat remote I/O. To reduce the cost of Ethercat controller, the I/O of the chopper located on the LEBT were added to this list (Red).

EQPT	DEVICE NAME	AREA	SIGNALS	DEVICE	CHANNEL
Temperature1 - coil1 exit temperature (copper) (PT100)	LNS-ISRC- 10:ISS-Coil-01	HV	TempR	ES3208 (1)	Chan 1
Temperature2 - coil2 exit temperature (copper) (PT100)	LNS-ISRC- 10:ISS-Coil-02	HV	TempR	ES3208 (1)	Chan 2
Temperature3 - coil3 exit temperature (copper) (PT100)	LNS-ISRC- 10:ISS-Coil-03	HV	TempR	ES3208 (1)	Chan 3
Temperature4 - plasma chamber (PT100)	LNS-ISRC- 10:PBI	HV	tempPlasmR	ES3208 (1)	Chan 4
Temperature5 - matching transformer (PT100)	LNS-ISRC- 10:PBI	HV	TempMatch- TransR	ES3208 (1)	Chan 5
Temperature6 - collimator (PT100)	NC - TBD	Ground	TempR	ES3208 (2)	Chan 1
Temperature7 - chopper (PT100)	LNS-ISRC- 10:PBI-PrChop	Ground	TempR	ES3208 (2)	Chan 2
Temperature8 – temperature ambiant (PT100)	LNS-ISRC- 10:PBI	Ground	TempAmbR	ES3208 (2)	Chan 3
Temperature9 - humid- ity (PT100)	LNS-ISRC- 10:PBI	Ground	TempHumR	ES3208 (2)	Chan 4
BIAS Power supply FC1 – Set current	LNS-ISRC- 10:PBI-PSFC-01	Ground	RepCurS	ES4104	Chan1
BIAS Power supply FC1 – Set Voltage	LNS-ISRC- 10:PBI-FC1	Ground	RepVolS	ES4104	Chan2
LEBT Chopper Setpoint	LNS-LEBT- 010:BMD-Chop	Groud	VolS	ES4104	Chan3
BIAS Power supply FC1 – Get Current	LNS-ISRC- 10:PBI-FC1	Ground	RepCurR	ES3164	Chan1
BIAS Power supply FC1 – Get Voltage	LNS-ISRC- 10:PBI-FC1	Ground	RepVolR	ES3164	Chan2
BIAS Power supply FC1 – Set ON	LNS-ISRC- 10:PBI-FC1	Ground	RepOnS	ES2124	Chan1
LEBT Chopper voltage	LNS-LEBT- 010:BMD-Chop	Ground	VolR	ES3164	Chan3
LEBT Chopper current	LNS-LEBT- 010:BMD-Chop	Ground	CurR	ES3164	Chan4

Table 6: Ethercat remote I/O

The substitution file is:

```
file ecat2el316x.template
pattern {PREFIX,CH_ID, SLAVE_IDX, PDO_IDX,EGU,ESLO,EOFF}
           {\text{PREFIX,CH_ID, SLAVE_IDX, PDO_IDX,EGU,ESLO,EOFF}} \{\text{"LNS-ISRC-010:PBI","TempAmbR",2 ,0, "mA", 0.003051850947599719,"-30"}} \{\text{"LNS-ISRC-010:PBI","TempHumR",2 ,1, "V", 0.002136296,"0"}} \{\text{"LNS-ISRC-010:PBI-FC-BPS","CurR",3 ,0, "mA", 0.000244148,"0"}} \{\text{"LNS-ISRC-010:PBI-FC-BPS","VolR",3 ,1, "V", 0.09155553,"0"}}
}
file ecat2el41xx.template
            {PREFIX,CH_ID, SLAVE_IDX,PDO_IDX, EOFF, ESLO, DRVL, DRVH, PREC,EGU} {"LNS-ISRC-010:PBI-FC-BPS","CurS", 4 ,0, 0,0.000244148, 0, 8,1,"mA"} {"LNS-ISRC-010:PBI-FC-BPS","VolS", 4 ,1, 0 , 0.09155553, 0, 1500,1,"V"}
pattern
             {"LNS-LEBT-010:BMD-Chop", "Vols", 4 ,2, 0,0.0003051850947599719, 0, 10,2, "kV"}
file "ecat2el3208.template"
pattern {PREFIX,CH ID, SLAVE IDX, PDO IDX,EGU,ESLO}
           {"LNS-ISRC-010:ISS-Coil-01", "TempR", 8, 0, C, 0.1}
{"LNS-ISRC-010:ISS-Coil-02", "TempR", 8, 1, C, 0.1}
{"LNS-ISRC-010:ISS-Coil-03", "TempR", 8, 2, C, 0.1}
           {"LNS-ISRC-010:PBI","TempPlasmR",8,3 , C, 0.1}
{"LNS-ISRC-010:PBI","TempMatchTransR",8,4 , C, 0.1}
}
```

4.2.2 LEBT

This database is used to control power supplies of Steerers, Solenoids, Chopper, Iris.

The substitution file is:

```
file motor_iris.template
         {P
                             MOTOR
                                       EGU
                                                 SCAN
                                                                    PREC
                                                                              SPORT }
pattern
                                                 ".1 second"
                                                                              GEOBRICK_ASYN}
          {LEBT
                   IRIS
                             1
                                       mm
                                                                    3
                                                 ".1 second"
                   IRIS
                                                                              GEOBRICK ASYN}
         {LEBT
                             2
                                                                    3
                                       mm
                                                 ".1 second"
                                                                              GEOBRICK ASYN}
         {LEBT
                   TRTS
                             3
                                       mm
                                                                    3
                                                 ".1 second"
         {LEBT
                   IRIS
                             4
                                                                    3
                                                                              GEOBRICK_ASYN}
                                                 ".1 second"
         {LEBT
                   TRTS
                             5
                                                                    3
                                                                              GEOBRICK_ASYN}
                                       mm
         {LEBT
                   IRIS
                             6
                                                 ".1 second"
                                                                    3
                                                                              GEOBRICK ASYN}
                                       mm
}
file get value pmac.template
pattern {P, M, NAME, DESC, EGU, P-VARIABLE, PREC, SCAN, SPORT}
         {LEBT, IRIS, INIT PROCESSING, "inidcates if a init procedure is running", Boolean, P4800, 0
          ".1 second", GEOBRICK_ASYN}
          {LEBT, IRIS, LAST_COMMAND, "LAST_COMMAND of iris's position send", mm, P4805, 0, ".1 second"
         GEOBRICK ASYN}
         {LEBT, IRIS, APERTURE_MIN, "get the aperture min", mm, P4829, 0, ".1 second", GEOBRICK_ASYN} {LEBT, IRIS, INIT_PROCEDURE_DONE, "if this PC=0 => init procedure not done", boolean
         P4837, 0, ".1 second", GEOBRICK_ASYN}
          {LEBT, IRIS, CABLING_ISSUE, "bit cacling issue (limit or power motor", Boolean, P4889, 0
          ".1 second", GEOBRICK_ASYN}
         {LEBT, IRIS, IRIS_MOVING, "iris is running a program?", Boolean, M5280, 0, ".1 second"
         GEOBRICK_ASYN}
}
file set_value_pmac.template
pattern
         {P
                             NAME
                                                DESC
         EGU
                   DRVL
                             DRVH
                                       CALC
                                                           ADEL
                                                                    MDEL
                                                                              PREC
                                                                                        P-VARIABLE
         SPORT }
                                                 "launch an init procedure"
                                                                                                  hoolean
         {LEBT
                   IRIS
                             TNTT
                                                                              P4800
                                                                                                  GEO-
                   1
                                       0
         0
                             Α
                                                           -1
BRICK ASYN}
                             APERTURE "set an aperture"
          {LEBT
                   IRIS
                                                                                                  1
                                                          0
                                                                    P4801
                                                                                        GEOBRICK_ASYN}
         76
                   Α
                                                0
                   IRIS
                             VELOCITY "velocity between 1 (slow) and 5 (fast)"
         {LEBT
                                                                                        mm/s
                                                                                                  1
                   10*A
                                       0
                                                0
                                                          0
                                                                    P4803
                                                                                        GEOBRICK ASYN}
         {LEBT
                   IRIS
                             OFFSET_X "move the center of the iris"
                   20
                                                                              P4807
          -20
                                                a
                                                          a
                                                                                                  GFO-
BRICK ASYN}
         {LEBT
                   IRIS
                             OFFSET_Y "move the center of the iris"
                                                                                                  mm
                   20
                                                          0
                                                                              P4808
                                                                                                  GEO-
          -20
BRICK ASYN}
                                                 "set iris blades kind"
          {LEBT
                   IRIS
                             BLADES KIND
                                                                                        P4838
         boolean 0
                                       Α
         GEOBRICK ASYN}
}
file console.template
         {P
pattern
                   Μ
                             SPORT}
         {LEBT
                   TRTS
                             GEOBRICK_ASYN}
```

The Ethercat remote IO of the chopper used the same Ethercat controller than the source.

Substitution file of the chopper looks like:

4.3 IOC

4.3.1 Startup scripts

4.3.1.1 source-vme.cmd

This startup IOC runs on the VME. Its controls all power supplies, acquisition for the Faraday Cup, Magnetron, ATU, and the timing system. The control software of the source requires the following ICS EPICS modules (only explicit IOC dependencies are listed).

Module	Version	Description
Modbus	2.9.0-ESS0	modbus driver
Streamdevice	2.7.7	Streamdevice driver
Ps-fug	1.0.2	HV Power supply application
sairemgmp20ked	1.0.1	Magnetron application
Sairemai4s	1.0.1	ATU application
tdkgen10500	1.0.1	COILS Power supply application
vac_ctrl_mks946	1.0.1	MFC - MKS946 application
vac_gauge_mks_vgd	2.0.2	
vac_mfc_mks_gv50a	2.0.5	
Ifcdaq	0.2.1+build0	Acquisition driver
FastAcquisition	1.0.4	Fast Acquisition application
DataAcquisition	1.1.2	Acquisition treatment application
mrfioc2	2.7.13-ESS0	Timing driver
Pev	0.1.2	
Faradaycup	1.1.1	Faraday cup application
PVArchiving	1.0.2	Archiving application driver

Table 7: List of modules+version used on the VME-SOURCE

The startup script begins with the require statements.

```
require modbus, 2.9.0-ESS0
require streamdevice, 2.7.7
require ps-fug, 1.0.2
require sairemgmp20ked, 1.0.1
require sairemai4s, 1.0.1
require tdkgen10500, 1.0.1
require vac ctrl mks946, 1.0.1
require vac gauge mks vgd, 2.0.2
require vac mfc mks gv50a, 2.0.5
require ifcdaq,0.2.1+build0
require FastAcquisition, 1.0.4
require DataAcquisition, 1.1.1
require mrfioc2, 2.7.13-ESS0
require pev,0.1.2
require faradaycup,1.1.+
require acct, 0.0.+
require autosave, 5.0.0
require PVArchiving, 1.0.2
```

The following environment variables are created.

```
# ARCHIVE macros #
epicsEnvSet("ARCHIVE-MACRO","LNS-ISRC-010:ISS")
# Configuration Timing #
epicsEnvSet("SYS","LNS-ISRC-010")
epicsEnvSet("EVENT_14HZ","14")
# Configuration EVG #
epicsEnvSet("EVG","EVG")
epicsEnvSet("EVG_VMESLOT","2")
# Configuration EVR #
epicsEnvSet("EVR","EVR0")
epicsEnvSet("EVR","EVR0")
epicsEnvSet("EVR_VMESLOT","5")
# Channel access maximum size since large waveforms will be transferred.
epicsEnvSet EPICS_CA_MAX_ARRAY_BYTES 40000000
```

Configuration of the timing system (EVG & EVR).

```
# Configuration EVG
mrmEvgSetupVME($(EVG), $(EVG_VMESLOT), 0x100000, 1, 0x01)

dbLoadRecords("evg-vme-230.db", "DEVICE=$(EVG), SYS=$(SYS), EvtClk-FracSynFreq-SP=88.0525, TrigEvt0-EvtCode-SP=$(EVENT_14HZ), Mxc1-Frequency-SP=14, Mxc1-TrigSrc0-SP=1")

mrmEvgSoftTime("$(EVG)")

# Configuration EVR
mrmEvrSetupVME($(EVR), $(EVR_VMESLOT), 0x3000000, 5, 0x026)

dbLoadRecords("evr-vme-230.db", "DEVICE=$(EVR), SYS=$(SYS), Link-Clk-SP=88.0525, Fron-tOut0-Src-SP=0, FrontOut0-Ena-SP=1, FrontUnivOut0-Src-SP=0, FrontUnivOut0-Ena-SP=1, Pul0-Prescaler-SP=77, Pul0-Width-SP=20000, Pul0-Delay-SP=0")

dbLoadRecords("evr-pulserMap.template", "DEVICE=$(EVR), SYS=$(SYS), EVT=$(EVENT_14HZ), PID=0, F=Trig, ID=0")
```

Configuration of devices on the HV platform

```
# FUG HCH 15k-100k [High Voltage Power Supply]
drvAsynIPPortConfigure("HVPS", "10.10.1.37:2101")
dbLoadRecords("fughch15k100k.db")

# FUG HCP 35-3500 [Repeller Power Supply]
drvAsynIPPortConfigure("RepPS-01", "10.10.1.34:2101")
dbLoadRecords("fughcp353500.db")
```

Configuration of devices at ground

```
# Sairem GMP20KED [Magnetron]
drvAsynIPPortConfigure("conn-LNS-ISRC-ISS-Magtr", "10.10.1.38:502", 0, 0, 1)
modbusInterposeConfig("conn-LNS-ISRC-ISS-Magtr", 0, 1000, 0)
drvModbusAsynConfigure("sgmp20ked-modbus-write-word", "conn-LNS-ISRC-ISS-Magtr", 1, 6, 0,
9, 0, 1000, "Function6")
drvModbusAsynConfigure("sgmp20ked-modbus-read-word", "conn-LNS-ISRC-ISS-Magtr", 1, 3,
100, 109, 0, 1000, "Function3")
dbLoadRecords("sairemgmp20ked.db")
# Sairem AI4S [ATU]
drvAsynIPPortConfigure("conn-LNS-ISRC-ISS-ATU", "10.10.1.36:502", 0, 0, 1)
modbusInterposeConfig("conn-LNS-ISRC-ISS-ATU", 0, 1000, 0)
drvModbusAsynConfigure("sai4s-modbus-write-word", "conn-LNS-ISRC-ISS-ATU", 0, 6, 0, 10,
0, 1000, "Function6")
drvModbusAsynConfigure("sai4s-modbus-read-word", "conn-LNS-ISRC-ISS-ATU", 0, 3, 100, 5,
0, 1000, "Function3")
dbLoadRecords("sairemai4s.db")
# TDK Lambda Genesys 10-500 [Coils]
drvAsynIPPortConfigure("CoilsPS-01", "10.10.1.31:8003") drvAsynIPPortConfigure("CoilsPS-02", "10.10.1.32:8003") drvAsynIPPortConfigure("CoilsPS-03", "10.10.1.33:8003")
dbLoadRecords("tdkGen10500.db")
```

IOC initialization followed by process variables initialization.

```
dbpf $(SYS):CARD0:NSAMPLES 100
dbpf LNS-ISRC-010:PBI-FC1:CurR:LinearConversion 0.0000000062
dbpf LNS-ISRC-010:PBI-BCM:CurR:LinearConversion 0.000000093132
dbpf $(SYS):CARD0:SAMPLINGRATE 1000000
dbpf $(SYS):CARD0:SAMPLINGRATE 250000
dbpf $(SYS):CARD0:TRIGGERSOURCE "EXT-GPIO"
sleep(1)
dbpf $(SYS):CARD0-STAT ON
sleep(3)
dbpf $(SYS):CARD0-STAT RUNNING
sleep(1)
dbpf $(SYS):CARD0-STAT RUNNING
# Auto switch on and off cold cathod
seq switch_cc_state
# TIMING GENERATOR: timestamp synchronisation
dbpf $(SYS)-$(EVG):SyncTimestamp-Cmd 1
# Archiving configuration
dbpf $(ARCHIVE-MACRO):PVS "LNS-ISRC-010:PBI-FC1:CurR,LNS-ISRC-010:PBI-BCM:CurR")
dbpf $(ARCHIVE-MACRO):Archive 0
```

4.3.1.2 ipc-source.cmd

This startup IOC runs on the IPC_ISRC-LEBT. It controls the PLC, different sensors and the ISEG power supply used for the Faraday cup. The control software of the source requires the following ICS EPICS modules (only explicit IOC dependencies are listed).

Module	Version	Description
Ecat2db	0.4.3	ethercat driver
S7plc	1.0.0	S7PLC driver
Plc-source	1.0.3	PLC

Table 8: List of modules used on the IPC

The startup script begins with the require statements.

```
require ecat2db,0.4+
require source,1.1+
require s7plc, 1.1.0
require plc-source, 1.0+
require autosave,5.0+
```

Configuration of devices

```
# PLC configuration
s7plcConfigure("plc", "10.10.2.2", 2000, 138, 24, 1, 1000, 500)
dbLoadRecords("output.db")
dbLoadRecords("input.db")

# Beckhoff module (Iseg PS and PT100)
ecat2configure(0,500,1,1)
dbLoadTemplate(source-sensors.substitutions)
```

4.3.1.3 ipc-lebt.cmd

This startup IOC runs on the IPC_ISRC-LEBT. It controls the chopper, power supplies (Steerers, Solenoids), Iris. For the chopper, the Ethercat part uses the same controller than used for sensors.

For both EMU it's a dedicated VME and IPC. The control software of the LEBT requires the following ICS EPICS modules (only explicit IOC dependencies are listed).

Module	Version	Description
m-epics-sorenzenxg	0.4.3	Steerer Power supplies
m-epics-sorensenSG	1.0.0	Solenoid Power supplies
m-epics-iris	1.1.0	IRIS
Ecat2db	0.4.3	ethercat driver

Table 9: List of modules used on the IPC

The startup script begins with the require statements.

```
require asyn,4.31+
require streamdevice, 2.7.7
require sorensenxg125120, 0.2+
require sorensensga30x501d,0.3+
require lebt,0.2+

require iris, 1.1+
require tpmac,3.11.2-ESS0

## SOLENOIDS
drvAsynIPPortConfigure("SolPS-01", "10.10.1.50:5025")
drvAsynIPPortConfigure("SolPS-02", "10.10.1.51:5025")

## STEERERS
drvAsynIPPortConfigure("SteerPS-H1", "10.10.1.52:5025")
drvAsynIPPortConfigure("SteerPS-H2", "10.10.1.53:5025")
drvAsynIPPortConfigure("SteerPS-V2", "10.10.1.54:5025")
drvAsynIPPortConfigure("SteerPS-V2", "10.10.1.55:5025")
## GEOBRICK (IRIS)
pmacAsynIPConfigure("GEOBRICK_ASYN", "10.10.1.40:1025")
dbLoadRecords("lebt.db")
```

Configuration of devices

4.3.2 Booting configuration

At each boot of VME or IPC, scripts will executed in order for instance to configure IP or to load kernel module. A script a dedicated for each machine inside the directory: /opt/startup/bot/{VME_NAME or IPC_NAME}

For the VME, inside the directory /opt/startup/boot/VME_SOURCE/

```
#FMCModules.sh => load kernel module for timing(mrf)and acquisition(pev)
#! /bin/bash
modprobe mrf
ioxos_load pev-linux-ppc
#ip.sh => configure IP address
#! /bin/bash
ifconfig eth0 10.10.1.1 netmask 255.255.255.0
ip route add 192.84.151.3 via 10.10.0.1 dev eth1
#pev_irq.sh => IRQ priority
```

For the IPC, inside the directory /opt/startup/boot/IPC_ISRC-LEBT/

```
#ethercat.sh => load kernel module for ethercat
#! /bin/bash
modprobe ec_master main_devices="a0:36:9f:78:0c:4d"
modprobe ec_generic
#ip.sh => configure IP address
#! /bin/bash
ifconfig enp5s0 10.10.2.1 netmask 255.255.255.0
nmcli con mod enp5s0 connection.autoconnect yes
ifconfig enp1s0f0 10.10.1.2 netmask 255.255.255.0
```

4.3.3 Services starting

At each boot of VME or IPC, IOCs will start automatically. A script a dedicated for each IOC inside the directory: /opt/startup/ioc/{VME_NAME or IPC_NAME}/{name of the service}

For the VME, inside the directory: /opt/startup/ioc/VME_SOURCE/source/

```
Require source, 1.1.0-catania 

/opt/epics/modules/source/1.1.0-catania/startup/source-vme.cmd
```

For the IPC_ISRC-LEBT, inside the directory: /opt/startup/ioc/IPC_ISRC-LEBT/source/

```
Require source, 1.1.0-catania 
< /opt/epics/modules/source/1.1.0-catania/startup/source-ipc.cmd</pre>
```

For the IPC_ISRC-LEBT, inside the directory: /opt/startup/ioc/IPC_ISRC-LEBT/lebt/

```
Require source, 1.1.0-catania 

    /opt/epics/modules/lebt/1.1.0-catania/startup/source-ipc.cmd
```

5. OPERATOR INTERFACE

The control of the source is designed to use two screens. One screen is dedicated to control the source, and another one to control all diagnostics.

5.1 Main User interface: source.opi

This main User Interface is used to control the source and the LEBT. It's composed of tabs.

The first tab which is the main tab gives a global status of the Source.

There is also a tab for:

- Interlock PLC which gives a status of the interlock on all the injector (Isrc + LEBT)
- Vaccum PLC which gives a status of the vaccum on all the injector (Isrc + LEBT)
- LEBT which allows to control all devices installed on the LEBT.

For all other tabs, it's a view more detailed dedicated to a device.

5.1.1 Main tab: source control

Figure 3: Main User Interface

The main tab is composed of subsection as descripted in following lines.

5.1.1.1 Magnetron

Figure 4: Magnetron User Interface

This subsection allows to control the magnetron and the shape of the beam. The type of pulse could be selected: **Pulse** or **continuous**. According to this option, some parameters like Pulse Frequency or Pulse width are enable or disable.

Leds located on the right gives the status of the magnetron: Filament is heating, MW is ON, etc...

On the top of this subsection, two square Leds represent the status of:

The connection between the device and the VME

- The interlock status given by the PLC interlock.

For more information please refer to: sairemgmp20ked.pdf

5.1.1.2 Automatic Tuning Unit (ATU)

Figure 5: ATU User Interface

This subsection allows to control the ATU. For each axe (X or Y) there is a button to activate the "automatic mode". By default, the mode is configured in "manual mode".

On the top of this subsection, two square Leds represent the status of:

- The device (Fault mode or OK)
- The connection between the device and the VME

For more information please refer to: sairemai4s.pdf

5.1.1.3 Magnetic System

Figure 6: Magnetic system User Interface

This subsection allows to control COILS Power supplies. For each power supply, the Max voltage and the Target current can be adjusted. A status of the Over Voltage Protection is also displayed.

On the top of this subsection, two square Leds represent the status of:

- The connection between devices and the VME
- The interlock status given by the PLC interlock.

5.1.1.4 High Voltage Power supply

Figure 7: HV User interface

This subsection allows to control the High Voltage Power supply. The Max current and the Target voltage can be adjusted.

On the top of this subsection, two square Leds represent the status of:

- The connection between the device and the VME
- The interlock status given by the PLC interlock.

For more information please refer to: ps-fug.pdf

5.1.1.5 Repeller Power supply

Figure 8: Reppeler User Interface

This subsection allows to control the Repeller Power supply. The Max current and the Target voltage can be adjusted.

On the top of this subsection, on square Led indicates the status of the connection between the device and the VME.

For more information please refer to: ps-fug.pdf

5.1.1.6 Sensors

Figure 9: Cooling User Interface

This subsection allows to display all sensors around the source located at the ground and on the High Voltage platform.

5.1.1.7 Vacuum status

Figure 10: Vacuum User Interface

This subsection allows to control hydrogen injection and the open/close valve on the High Voltage platform.

On the top of this subsection, two squares Leds indicates the status of:

- The connection between the device and the VME.
- The status of the device (Fault mode or OK)

For more information please refer to: mks946.pdf

5.1.2 Interlock tab

This tab is dedicated to have an overview of all Interlocks on the Source and LEBT.

For more information about the EPICS part please refer to: **ESS_Source_PLC_usermanual.pdf**

5.1.3 Vaccum tab

This tab is dedicated to have an overview of the Vaccum on the Source and LEBT.

Figure 11: LEBT Vacuum system (Source)

Figure 12: LEBT vacuum system

5.2 Diagnostic User interface: second-source.opi

Figure 13: second-source.opi => Diagnostics User Interface

This screen is composed on two parts:

- On the left, a menu to select the diagnostic
- On the right, an embedded display to display the User Interface dedicated to the diagnostic selected

On this document will be treated only the User interface of diagnostics. For more details of a diagnostic, please refers to the dedicated documentation.

5.2.1 Faraday Cup

When the button **Faraday Cup** is selected, this OPI appears:

Figure 14: Display the beam on the Faraday Cup

For more information please refer to: FaradayCup_usermanual.pdf

5.2.2 IRIS

When the button **IRIS** is selected, this OPI appears:

For more information please refer to: Iris_control_systeme_documentation_v1.pdf

5.2.3 Doppler

When the button **DOPPLER** is selected, this OPI appears:

For more information please refer to: Doppler_Shift_Software.pdf

5.2.4 **EMU**

When the button **EMU** is selected, this OPI appears:

For more information please refer to: documentation in progress...

6. LIST OF ABBREVIATIONS

Abbreviation	Definition		
GUI	Graphical User Interface		
IOC	Input Output Controller		
ISRC	Source		
LEBT	Low Energy Beam Transport		
EPICS	Experimental Physics and Industrial Control System		
MFC	Mass Flow Controller		
ATU	Automatic Tuning Unit		
HV	High Voltage		
I/O	Input/Ouput		
EEE	ESS Epics Environment		
EVG	Event Generator		
EVR	Event Receiver		
IPC	Industrial Personal Computer		