

Compiladores Aula 13

Celso Olivete Júnior

olivete@fct.unesp.br

Na aula de hoje

Na aula de hoje


```
public class JavaApplication8 {
       /**
        * @param args the command line arguments
     /*-comentario do codigo fonte*/
      public static void main(String[] args) {
           // TODO code application logic here
                                          Instrucoes2 - Bloco de notas
                                                                                                              _ - X
      int i = 0;
                                         <u>Arquivo Editar Formatar Exibir Aju</u>da
                                         Compiled from "JavaApplication8.java" public class javaapplication8.JavaApplication8 { public javaapplication8.JavaApplication8();
      double i = 0;
      while (i<10)
                                             Code:
                                                 0: aload 0
             i = i + 1;
                                                 1: invokespecial #1 // Method java/lang/Object."<init>":()
             i = i + 1;
                                                 4: return
                                           public static void main(java.lang.String[]);
                                             code:
                                                0: iconst_0
                                                 1: istore_1
                                                 2: dconst_0
                                                 3: dstore_2
                                                 4: iload 1
                                                 5: bipush
                                                                    10
                                                                    21
                                                 7: if_icmpge
                                                10: iload 1
                                               11: iconst_1
                                                12: iadd
                                               13: istore_1
                                               14: dload_2
                                               15: dconst_1
                                               16: dadd
                                               17: dstore_2
                                               18: goto
                                                21: return
```


Geração de código intermediário

□ Objetivos

- ☐ Gerar o *Bytecode* (código de montagem) para LALG
 - □ Formato de código intermediário entre o código fonte, o texto que o programador consegue manipular, e o código de máquina, que o computador consegue executar.

- ☐ Requer interpretação posterior
 - ☐ Executar o *Bytecode* com a máquina virtual MEPA

Geração de código para LALG

☐ Geração de código será feita de forma *Ad hoc,* atrelada aos procedimentos sintáticos

- ☐ Geração diretamente dos procedimentos sintáticos ou
- □ Via chamada a procedimentos/funções de geração com argumentos específicos
 - ☐ Tabela de símbolos dará o suporte necessário para a geração

Geração de código intermediário

MEPA: MÁQUINA DE EXECUÇÃO PARA PASCAL (OU C)

☐ É uma máquina virtual para execução dos programas escritos em Pascal Simplificado. Dado um programa, o objetivo será apresentar as instruções *assembly* que causam o efeito esperado

MEPA - Arquitetura

- Máquina a pilha (Stack Machine), dividida em:
 - Área de Código- simulado em um vetor (C)
 - Área de Dados simulado em um vetor (D)
- Dois registradores
 - Contador de programa i
 - Topo da Pilha s

Geração de código para LALG

- ☐ Área de Código (C)
- □ A geração consiste no <u>preenchimento deste vetor</u>
 conforme o programa for sendo compilado
 - □ Posição atual marcada por C[i]
 - ☐ Ao final, o vetor C é gravado em um arquivo de saída
 - ☐ As instruções não podem ir direto para o arquivo conforme forem sendo geradas
 - ☐ Ainda poderão ser modificadas
 - □ O processo pode parar por algum motivo e o tempo de escrita em arquivo seria perdido

Geração de código para LALG

- ☐ Área de Dados (D)
 - □ Vetor que se comporta como uma pilha
 - ☐ Topo marcado por D[s]
 - ☐ Só existirá realmente durante a execução
 - ☐ As instruções funcionarão sobre seu topo e, muitas vezes, sobre a posição imediatamente abaixo do topo (no caso de uma operação binária)

MEPA – Arquitetura e interpretação

Geração de código Vetor de código (C)

- O código intermediário é gerado em conjunto com a análise sintática
 - □ Registrador i indica a posição atual;
 - ☐ Cada posição contém uma instrução gerada de acordo as instruções da MEPA;
 - No final da compilação C[i] conterá o código intermediário.

Geração de código Vetor de código (C)

- O código intermediário é gerado em conjunto com a análise sintática
 - ☐ Necessário acrescentar na tabela de símbolos um novo atributo
 - ☐ Endereço relativo de um identificador na pilha (D)

Geração de código Vetor de código (C)

O código intermediário armazenado no vetor C será interpretado posteriormente

Geração de código Vetor de dados (D)

Características

- ☐ Vetor que se comporta como uma pilha
 - □ Topo acessado via D[s]
- ☐ Só existe em tempo de execução
- ☐ Instruções operam sobre o topo (e/ou topo -1)

Interpretação do código

- O código armazenado no vetor C é executado a partir de um interpretador
 - ☐ Instruções C[i] são executadas, manipulando os dados do vetor D, até encontrar uma instrução de parada (neste caso, a inst. **PARA**) ou algum erro
 - ☐ Conforme as instruções são executadas, a pilha é manipulada
 - □ A execução de cada instrução aumenta de 1 o valor de i, exceto as instruções que envolvem desvios
 □ Como só há os tipos inteiro e real na LALG, a pilha D pode ser um vetor de reais

Significado	Instrução	Execução
Carrega Constante c no Topo (pilha)	CRCT c	s:=s+1; D[s]:=c;
Carrega valor de end. n no Topo	CRVL n	s:=s+1; D[s] := D[n];
Armazena valor do Topo no end. n de D	ARMZ n	D[n] := D[s]; s := s - 1;
Soma	SOMA	D[s-1]:=D[s-1]+D[s]; s:=s-1;

Subtração (SUBT), Multiplicação (MULT), Divisão (DIVI) e Resto da divisão Inteira (MODI) – Idem a SOMA

Efetua a soma dos dois valores do topo da pilha. Desempilha os dois valores do topo da pilha e empilha o resultado no topo da pilha

Código (C)	Dados (D)	
INPP AMEM 2 CRCT 1 ARMZ 0 CRCT 2 ARMZ 0. CRVL 0. CRVL 0. SOMA PARA	2 1 (1+2)	

Significado	Instrução	Execução
Inverte Sinal do Topo	INVR	D[s]:=-D[s];
Conjunção (and) de valores lógicos -> Falso=0; Verdadeiro=1	CONJ	Se D[s-1]=1 and D[s]=1 então D[s-1]:=1; senão D[s-1]:=0; s:=s-1;
Disjunção (or) de valores lógicos	DISJ	Se D[s-1]=1 or D[s]=1 então D[s-1]:=1; senão D[s-1]:=0; s:=s-1;
Negação (not)	NEGA	D[s]:= 1 - D[s]
Compara se Menor	CMME	Se D[s-1] < D[s] então D[s-1]:=1 senão D[s-1]:=0; s:=s-1;

Compara se Maior (CMMA), Compara se Igual (CMIG), Compara se Desigual (CMDG), Compara se Maior ou Igual (CMAG) e Compara se Menor ou Igual (CMEG) – todas instr. idem a CMME

MEPA – exemplo 1

☐ Considerando a tabela de símbolos com os atributos endereço

de memória e valor.

ID	Endereço	Valor
a	[100]	10
b	[102]	100
С	[99]	-2
s		104

	00 00 00		0.140.090
Variável	Endereço	Pilha	
			1
	[109]		
	[108]		
	[107]		
	[106]		
	[105]		
	[104]	5	← s
	[103]	5	
b	[102]	100	
	[101]	5	
a	[100]	10	
С	[99]	-2	/
	• • •		
			,

Exemplo de Comando de atribuição

$$\Box$$
 a = a + b * c

☐ Tradução

CRVL a*

CRVL b*

CRVL c*

MULT

SOMA

ARMZ a*

* endereço na Pilha obtido na Tabela de Símbolos

ID	Endereço	Valor
a	[100]	10
b	[102]	100
С	[99]	-2
s		104

Variável	Endereço	Pilha	
		ı	1
	[109]		
	[108]		1
	[107]		
	[106]		
	[105]		1
	[104]	5	← s
	[103]	5	
b	[102]	100	1
	[101]	5	
a	[100]	10	
С	[99]	-2	
	• • •		
			7

MEPAComando de atribuição

Comandos condicionais

- if E then C1 else C2
- ☐ Tradução

Significado	Instrução	Execução	
Desvia sempre para a instr. de endereço p	DSVS p	i:=p;	
Desvia se Falso	DSVF p	se D[s]=0 então i:=p senão i:=i+1; s:=s-1;	/
Comando Nulo	NADA	{}	2

Comandos condicionais

Exemplo: if (q)

then a:= 1

else a := 2

Tradução

CRVL q*

DSVF L1

CRCT 1

ARMZ a*

DSVS L2

L1 NADA

CRCT 2

ARMZ a*

L2 NADA

* endereço na pilha D obtido da tabela de símbolos

23

Significado	Instrução	Execução
Desvia sempre	DSVS p	i:=p;
Desvia se Falso	DSVF p	se D[s]=0 então i:=p senão i:=i+1; s:=s-1;
Comando Nulo	NADA	{}

Comandos condicionais

```
Exemplo: if (a>b) then q := p and q

else if (a <2 *b) then p := true

else q := false
```

Tradução

	CRVL a*	CRVL b*
	CRVL b*	MULT
	CMMA	CMME
	DSVF L3	DSVF L5
	CRVL p*	CRCT 1
	CRVL q*	ARMZ p*
	CONJ	DSVS L6
	ARMZ q*	L5 NADA
	DSVS L4	CRCT 0
L3	NADA	ARMZ q*
	CRVL a*	L6 NADA
	CRCT 2	L4 NADA

MEPAComandos iterativos

☐ Tradução

Significado	Instrução	Execução
Desvia sempre	DSVS p	i:=p;
Desvia se Falso	DSVF p	se D[s]=0 então i:=p senão i:=i+1; s:=s-1;
Comando Nulo	NADA	{}

Comandos iterativos

 \Box while (s <=n) do s := s +3 * s

NADA		CRVL s*	
CRVL s*		MULT	
CRVL n*		SOMA	
CMEG		ARMZ s*	
DSVF L2		DSVS L1	
CRVL s*	L2	NADA	
CRCT 3			
	CRVL s* CRVL n* CMEG DSVF L2 CRVL s*	CRVL s* CRVL n* CMEG DSVF L2 CRVL s* L2	CRVL s* CRVL n* CMEG DSVF L2 CRVL s* L2 NADA

Significado	Instrução	Execução	
Desvia sempre	DSVS p	i:=p;	
Desvia se Falso	DSVF p	se D[s]=0 então i:=p senão i:=i+1; s:=s-1;	
Comando Nulo	NADA	{}	26

Comandos de entrada/saída

read (V1, V2, . . . , Vn)

LEIT

☐ Tradução

ARMZ v1*

LEIT

ARMZ v2*

• • •

LEIT

ARMZ vn*

Significado	Instrução	Execução
Leitura de numero inteiro	LEIT	s:=s+1; D[s] := <entrada padrão=""></entrada>
Leitura de caractere	LECH	s:=s+1; D[s] := <entrada padrão=""></entrada>
Imprime número inteiro	IMPR	<saída padrão=""> := D[s]; s:=s-1;</saída>
Imprime caractere	IMPC	<saída padrão=""> := D[s]; s:=s-1;</saída>
Imprime <enter></enter>	IMPE	

Comandos de entrada/saída

Significado	Instrução	Execução
Leitura de numero inteiro	LEIT	s:=s+1; D[s] := <entrada padrão=""></entrada>
Leitura de caractere	LECH	s:=s+1; D[s] := <entrada padrão=""></entrada>
Imprime número inteiro	IMPR	<saída padrão=""> := D[s]; s:=s-1;</saída>
Imprime caractere	IMPC	<saída padrão=""> := D[s]; s:=s-1;</saída>
Imprime <enter></enter>	IMPE	

Tradução de programas

- Para traduzir um programa simples é necessário:
 - □ alocar e liberar variáveis;
 - ☐ iniciar máquina virtual;
 - ☐ terminar máquina virtual.

MEPA – Tradução de programas Exemplo

	Significado	Instrução	Execução
	Inicia Programa Principal	INPP	s:= -1;
	Aloca Memória na Pilha, no caso de LALG m=1	AMEM m	s := s+m;
	Desaloca Memória	DMEM m	s := s-m;
\	Termina a execução	PARA	{}

MEPA Tradução de programa

Exemplo completo

Entrada

Tradução

	INPP	
	AMEM	1
	AMEM	1
	LEIT	
	ARMZ	0
	LEIT	
	ARMZ	1
	CRVL	0
	CRVL	1
	CMMA	
	DSVF	0
	CRVL	0
	IMPR	
0	NADA	
	PARA	

Geração de código para LALG

Só será gerado o código de montagem para programas escritos em LALG sem procedimentos.

Detalhes de implementação

- Programa vetor C
- Dados vetor D
- i → Registrador de C es → registrador de D

☐ Obs:

- 1. Uma vez que o programa da MEPA está carregado na região C e os registradores têm seus valores iniciais, o funcionamento da máquina é muito simples. As instruções indicadas pelo registrador i são executadas até que seja encontrada a instrução de parada, ou ocorra algum erro. A execução de cada instrução aumenta de 1 o valor de i, exceto as instruções que envolvem desvios.
- a nível de projeto, o Programa vetor de código (C) armazena o conjunto de instruções MEPA geradas pelo compilador. Esta saída será a entrada de um programa interpretador deste código.

☐ Como a área D em LALG só manipula inteiros, então

var

D: array [0 .. tpilha] of integer;

s: -1 .. tpilha;

□ A Tabela de Símbolos deverá ser aumentada com um campo: end_rel (endereço relativo à base na pilha M).

Detalhes de implementação


```
Type Funções = (SOMA, SUBT, ARMZ,...);
var C: array[0..MaxC] of
    record
        F: Funções;
        C: -1..MaxInt;
    end;
```


Interpretador para LALG

- A entrada para o Interpretador é o array de códigos C. A pilha D será sua área de trabalho e eventualmente ele necessitará de informações da Tabela de Símbolos.
- □ O procedimento principal seria aquele que percorreria o array C a partir da posição 0, interpretando cada instrução. Terminaria ao encontrar a instrução PARA.

Em caso de desvios

Geração de código para LALG

Definir uma rotina Gerar(rótulo, código, par1, par2) ☐ Que receberá como parâmetros: rótulo/nada, código, seguido de 0,1 ou 2 argumentos Uma instrução da **MEPA**

Geração de código para LALG


```
Rotina Declaração de Variáveis
procedimento dc_v(S)
                                          <DC V> ::= var <VARIAVEIS> : <TIPO VAR> ; <DC V> \mid \lambda
begin
                                          <TIPO VAR> ::= integer | real
   se (simb=var) então obter símbolo()
                                          <VARIAVEIS> ::= <ID> <MAIS VAR>
                                          <MAIS VAR> ::= , <VARIAVEIS> | \lambda |
   senão
         imprimir("Erro: var esperado");
         ERRO(Primeiro(variaveis)+S); //consome até encontrar ID
   variaveis({:}+S);
   se (simb=simb dp) então obter símbolo()
   senão
         imprimir("Erro: \':' esperado");
         ERRO(Primeiro(tipo_var)+S); //consome até encontrar integer ou real
   tipo_var({;}+S);
   se (simb=simb_pv) então obter_símbolo()
   senão
         imprimir("Erro: \;' esperado");
         ERRO(Primeiro(dc_v)+S); //consome até encontrar ;
   dc_v(S);
end;
```

```
Rotina Declaração de Variáveis
procedimento variaveis(S)
                                          <DC V> ::= var <VARIAVEIS> : <TIPO VAR> ; <DC V> \mid \lambda
begin
                                          <TIPO VAR> ::= integer | real
                                          <VARIAVEIS> ::= <ID> <MAIS VAR>
s:=0
                                          <MAIS VAR> ::= , <VARIAVEIS> \mid \lambda
se (simb=id)
   então
   se busca(cadeia, token="id", cat="var")=false
     então inserir(cadeia,token="id",cat="var", end_rel=s++);Gerar(branco,"AMEM", 1);
     senão ERRO("identificador já declarado");
   obtem simbolo(cadeia, simbolo)
   enquanto (simbolo=simb virgula) faça
         obtem_simbolo(cadeia,simbolo)
         se (simb=id)
         então
            se busca(cadeia, token="id", cat="var")=false
    então inserir(cadeia,token="id",cat="var", end_rel=s++); Gerar(branco,"AMEM", 1);
                    senão ERRO("identificador já declarado")
                  obtem simbolo(cadeia, simbolo)
         fim-então
         senão ERRO(S+{simb virgula,simb dois pontos});
   fim-enquanto
end;
```

Analisador semântico

Geração de código

Rotina Declaração de Variáveis

```
<DC_V> ::= var <VARIAVEIS> : <TIPO_VAR> ; <DC_V> | \lambda
<TIPO_VAR> ::= integer | real
<VARIAVEIS> ::= <ID> <MAIS_VAR>
<MAIS_VAR> ::= , <VARIAVEIS> | \lambda
```

```
procedimento tipo_var(S)
begin
se (simb=integer)
    então tab_simb_alterar_tipo(cadeia, token="id", cat="var", tipo="integer")
    senãotab_simb_alterar_tipo(cadeia, token="id", cat="var", tipo="real")
end;
```

var x,y: integer

Cadeia	Token	Categoria	Tipo	Valor	•••	End.relativo
meu_prog	id	meu_prog	-	-		
X	id	var	integer			0
У	id	var	integer			1

Analisador semântico

Geração de código

```
procedure termo (var t: string);
var t1, t2: string;
begin
                                                   Rotina Termo
Fator (t);
Enquanto simbolo in [*,div, and] faça
                                          21. <termo> ::= <fator>
                                                  {(*| div| and)<fator>}
begin
                                          22.<fator> ::= <variavel>
   s1:= simbolo;
                                                            <número>
                                                            (<expressão>)
   simbolo:= analex(s);
                                                            not <fator>
   Fator(t1);
   Caso s1 seja
      * : t2 := 'inteiro'; Gerar(branco, "MULT");
      div: t2 := 'inteiro'; Gerar(branco, "DIVI");
      and: t2:= 'booleano' Gerar(branco, "CONJ");
   end;
   Se (t <> t1) ou (t <> t2) então erro('incompatibilidade de tipos')
   end
end;
         Analisador semântico
                                             Geração de código
```

```
procedure fator (var t: string);
Inicio
Caso simbolo seia
Número: {t:=inteiro; Gerar(branco, "CRCT", simbolo); simbolo := analex(s);}
Identificador: {Busca(Tab: TS; id: string; ref: Pont_entrada; declarado: boolean);
Se declarado = false então erro;
 Obtem_atributos(ref: Pont_entrada; AT: atributos);
 Caso AT.categoria seja
   Variavel: {t:= AT.tipo; Gerar(branco, "CRVL", AT.escopo, AT.end); simbolo := analex(s);}
   Constante: {t:= "boolean";
                                                                     Rotina Fator
    caso simbolo seia
                                                              22.<fator> ::=
         "true": Gerar(branco,"CRCT",1);
                                                                <variavel>
         "false": Gerar(branco,"CRCT",0);
                                                                <número>
    end; simbolo:= analex(s);}
                                                                (<expressão>)
                                                                not <fator>
  Else erro:
fim caso:
Cod_abre_par: {simbolo := analex(s); expressao(t); se simbolo <>
                 Cod_fecha_par then erro; simbolo := analex(s);}
Cod_neg: {simbolo := analex(s); fator(t); se t <> 'booleano' então erro
Gerar(branco,"NEGA")
Else erro:
Fim caso:
    Analisador semântico
                                    Geração de código
```


Geração de código para LALG

☐ Demais comandos: atribuição, condicional, iterativo, entrada/saída consultar páginas 165-172 do livro "Implementação de Linguagens de Programação" — Tomasz Kowaltowski – Unicamp

- □ Acrescente ao seu projeto uma rotina para geração de código intermediário e uma rotina para interpretação do código. Obs: código-fonte sem procedimentos
 - □ Data limite de entrega: 24/11/18

Exemplo de geração de código para LALG

🗖 Gere código para o programa abaixo e interprete o

código gerado

```
INPP
         AMEM
         AMEM
         LEIT
         ARMZ
         LEIT
         ARMZ
         CRVL
         CRVL
         CMMA
         DSVF
         CRVL
         IMPE
         NADA
0
         PARA
```

```
Entre com um inteiro:
89
Entre com um inteiro:
2
89
Execução encerrada com sucesso
```


Exemplo de geração de código para LALG

program testebytecode;						
var x, y, z : integer;						
begin						
	read(y, z					
	x := x + z	:*(10 div y + 1);				
	writeln(x, y, z);				
	16 0.1					
	if $x > 0$ the second of the					
		if y > 0 then				
		y := x*y				
		else				
		y := y + x				
	else					
		if y > 0 then				
		y := -y				
		else				
		y := y + z				
end.						

INPP			CRVL	2
AMEM	1		IMPE	
AMEM	1		CRVL	0
AMEM	1		CRCT	0
LEIT			CMMA	
ARMZ	1		DSVF	0
LEIT			CRVL	1
ARMZ	2		CRCT	0
CRVL	0		CMMA	
CRVL	2		DSVF	1
CRCT	10		CRVL	0
CRVL	1		CRVL	1
DIVI			MULT	
CRCT	1		ARMZ	1
SOMA			DSVS	2
MULT		1	NADA	
SOMA			CRVL	1
ARMZ	0		CRVL	0
CRVL	0		SOMA	
IMPE			ARMZ	1
CRVL	1	2	NADA	
IMPE			DSVS	3

2	0	NADA	
		CRVL	1
		CRCT	0
		CMMA	
		DSVF	4
		CRVL	1
		CRCT	-1
		MULT	
		ARMZ	1
		DSVS	1 5
	4	NADA	
		CRVL	1
		CRVL	1 2
		SOMA	
		ARMZ	1
	5	NADA	
	3	NADA	
		PARA	
	Entre com u	m inteiro:	

```
Entre com um inteiro:

2

Entre com um inteiro:

5

30

2

5

Execução encerrada com sucesso
```