Last update: Oct 2

List of theorems or properties:

Properties of a probability measure:

- $0 \le P(A) \le 1$
- P(S) = 1
- If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
- $P(A^c) = 1 P(A)$
- $P(A) = P(A \cap B) + P(A \cap B^c)$
- $B \subseteq A$ then $P(A) = P(B) + P(A \cap B^c)$
- $B \subseteq A$ then $P(B) \le P(A)$
- A_1, A_2, \ldots a partition of S, then $P(B) = \sum_i P(B \cap A_i)$
- $P(A \cup B) = P(A) + P(B) + P(A \cap B)$
- $P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$

Combinatorics

- n! is the number of permutations of a set of n elements (How many different arrangements)
- $\binom{n}{k} = rac{n!}{k!(n-k!)} o$ choose k elements from a set of n order doesn't matter
- What if order matters? $\binom{n}{k} \times k!$
- $\frac{n!}{(n-k!)}$ Number of ways to pick k items out of n where order does matter.
 - Is the same as $\binom{n}{k} \times k!$ Choosing without order and then calculating permutations of k items.

Conditional probability

- $P(A|B) = \frac{P(A \cap B)}{P(B)}$ if P(B) > 0
- $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
- A_1,A_2,\ldots a partition of S, then $P(B)=\sum_i P(A_i)P(B|A_i)=\sum_i P(B\cap A_i)$
- $P(A|B) = \frac{P(A)}{P(B)}P(B|A)$

Independence

- A and B are independent if $P(A \cap B) = P(A)P(B)$
- A_1,A_2,A_3,\ldots are independent if $P(A_{i_1}\cap A_{i_2}\cap\ldots\cap A_{i_k})=P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$ for any finite subcollection of events.

Continuity

- If $\{A_n\} \nearrow A$ then $\lim_{n \to \infty} P(A_n) = P(A)$
- If $\{A_n\} \searrow A$ then $\lim_{n \to \infty} P(A_n) = P(A)$

Random variables (r.v)

- A function $X:S o \mathbb{R}$ is a random variable
- The distribution of a random variable is the collection of all of the probabilities
 - of the variable being in every possible subset of \mathbb{R} .
- ullet A r.v. is discrete if $\sum_{x\in\mathbb{R}}P(X=x)=1$
- Probability function $p_X(k) := P(X = k)$

Discrete random variables

ullet $X \sim Bernoulli(heta)$ if

$$p_X(k) = heta^k (1- heta)^{1-k} \, \mathbb{1}_{k \in \{0,1\}}$$

$$p_X(k) = egin{cases} heta & ext{if } k=1 \ 1- heta & ext{if } k=0 \ 0 & ext{otherwise} \end{cases}$$

 $ullet \ X \sim Binomial(n, heta)$ if

$$p_X(k) = inom{n}{k} heta^k (1- heta)^{n-k} \, \mathbb{1}_{k \in \{0,1,...,n\}}$$

 $ullet \ X \sim Geometric(heta)$ if

$$p_X(k) = (1- heta)^k heta \, \mathbb{1}_{k \in \{0,1,...\}}$$

This one counts # of failures before the first success. there's a second parametrization of geometric counting the number of trials until first success. Check wikipedia!

$$p_Y(k) = (1- heta)^{k-1} heta \, \mathbb{1}_{k \in \{1,2,...\}}$$

Geometric series

Let a_0 be a constant and define $a_n=a_0r^n$ as a geometric series

Define $S_n:=\sum_{k=0}^n r^k$ the partial sums of the first $\{r^k\}_{k=0}^n$ note that $\sum_{k=0}^n a_k=\sum_{k=0}^n a_0 r^k=a_0\sum_{k=0}^n r^k=a_0S_n$

Now $S_n=r^0+r^1+\dots r^n$ and $rS_n=r^1+r^2+\dots r^{n+1}$, then

$$S_n - rS_n = r^0 - r^{n+1}$$

$$S_n(1-r)=r^0-r^{n+1}$$

then

$$S_n = rac{r^0 - r^{n+1}}{1-r} = rac{1 - r^{n+1}}{1-r} \qquad ext{if } r
eq 1$$

Now if $r \in (0,1)$

$$\sum_{k=0}^{\infty} r^k = \lim_{n o\infty} \sum_{k=0}^n r^k = \lim_{n o\infty} S_n = rac{1}{1-r}$$

#probability

#ta