- (OV |X,Y| = E[(X-E(X))(Y-E(Y))] = E(XY)-E(X)E(Y)(COVACIANCE, NOTE THAT (OV |X|X) = VAR(X))
- · (ORRELATION: CORR(X,4) = COV(X,4)
 - · IT TAKES VALUES IN [-1,1]
 - · iti sign bets in poetant mething-
 - · it X AUD Y LEE INDEPENDENT THEN CORR 1X, Y)=0
 - THE REVERSE STATEMENT IS TYPICALLY NOT THE COUNTEREXAMPLE: $X \sim N(0,1)$, $Y = X^2$. Then X ALM Y ARE OPINIOUSLY NOT INSERTINGLY, HOWEVER, THOUSENESS, $CW(X,Y) = E(X^2) = E(X^3) = \int_{-\infty}^{\infty} x^3 dx dx = 0$
 - * WE WILL SEE THAT IN THE LORGELATION MEASURES THE STRENGTH OR THE LINEAR RELATIONSHIP BETWEEN THE TWO VARIABLES

SIMULATION OF A TWO DIRENTION CONTINONS R.V. (X, Y):

- (1) WE SIMULATE X VIA THE FORMULY FA (CANDOI)
- DET Frin (91x) DENOTES THE INVERSE WITH RESPECT TO y
 OF THE CONDITIONAL DISTRIBUTION FUNCTION FRIN(91x)
 WE SIRVLATE Y USING THE ALREADY SIRVLATED X AND
 FRIN 191x) VIA THE FURRULA FRM (RANDL) (X)

- THE PAIR (X14) HAS DOINT NORMAL DITRIBUTION WITH

 PARAMETERS MAINER, bubz, 2 is their Two Dinensional

 DENSITY ERUXLS... (JEE PART IN OF THE NOTES WRITTEN BY A. VETIER
- THE PARAMETERS HAVE INDUCTANT MEANING: E(XI=M, D(X)=(1,E(Y)=M2,D(Y)=62, CORR(X,Y)=7
- · X ~ N (Mr. 61), Y~ N (M2, 62)
- · Y(X = X ~ N(M2 + 2. 6/ (x-M), 62. 51-22)
- · X14=4 ~ N (m+ 2. 61 (4-12), 62. Ja-12)

NETIARY: IF THE DISTRIBUTION OF (XY) II JOINT NUMBERLY AND L=0 THEN X AND Y ARE INDEPENDENT.