

MONITORAMENTO E ACIONAMENTO REMOTO EM SISTEMAS LEGADOS

Aluno: Marcos André Magalhães de Sousa Filho Orientador: Prof. Dr. Rodrigo Maximiano Antunes de Almeida

INTRODUÇÃO

- Crescimento do teletrabalho no cenário do mercado nacional e internacional
- Desafios da implementação de soluções IoT para o cenário industrial

PROBLEMAS

- CLPs sem acesso a rede internet
- Ambiente hostil para eletrônicas mais sensíveis
- Incompatibilidade dos níveis de tensão
- Riscos de danos ao sistema de controle
- Comunicações ineficientes
- Dificuldade de integração com diversos protocolos e placas

PROPOSTA

- Desenvolvimento de um framework com uso em sistema de monitoramento e controle remoto para sistemas legados
- Integração entre Raspberry Pi 4 e a plataforma ThingsBoard
- Desenvolvimento de placas para isolamento elétrico entre sistemas
- Comunicação eficiente baseada no protocolo MQTT
- Arquitetura modular, baseada em programação orientada a objetos e padrões de projeto
- Solução adaptável para ambientes diversos (industrial, agrícola, etc)

PLACAS UTILIZADAS

SISTEMA DE CONTROLE

- User friendly ideal para prototipagem
- Plataforma opensource
- Compatível com sistemas operacionais baseados no kernel
 Linux

SISTEMALEGADO

- Sensor infravermelho para a simulação do sensor industrial
- Placa ESP8266 (sem acesso a rede) para a simulação de um
 CLP
- Led "onboard" da placa do ESP8266 para simulação do acionamento pneumático

SOFTWARE -

ARQUITETURA GPIO

ARQUITETURA CONEXÃO

ARQUITETURA APLICAÇÃO

HARDWARE

PLACAS DE DESACOPLAMENTO

VÍDEO DE DEMONSTRAÇÃO

MUITO OBRIGADO!

DÚVIDAS?

