Replication Code: Government Responses to COVID-19, Mobility, and Poverty in South America

Demonstration for R

Bastián González-Bustamante*

May 28, 2021

Packages and Functions

```
## Run in R version 4.0.2 (2020-06-22) -- "Taking Off Again"
## Also in R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
## Packages
library(tidyverse)
library(ggplot2)
library(estimatr)
library(fmsb)
library(stargazer)
library(lmtest)
library(sandwich)
## Integer Function
is.integer0 <- function(x)</pre>
  is.integer(x) && length(x) == OL
## Poverty in Argentina Function
## GitHub Repository ~/tree/master/data/poverty-sources/ARG
mean_poverty_ARG <- 40.9
f.poverty.ARG <- function(x)</pre>
{ if(is.integer0(x)){
  print(NA)
} else if(x == "Buenos Aires"){
  print(17.3)
} else if(x == "Buenos Aires Province"){
  print(47.5)
```

^{*}DPhil (PhD) Researcher, Department of Politics and International Relations & St Hilda's College, University of Oxford, United Kingdom. Instructor Professor, Management and Public Policies Department, Faculty of Administration and Economics, Universidad de Santiago de Chile (USACH), Chile. Mailing address: St Hilda's College, Cowley Place, Oxford OX4 1DY, United Kingdom. Email: bastian.gonzalezbustamante@politics.ox.ac.uk. Website: https://bgonzalezbustamante.com. ORCID iD http://orcid.org/0000-0003-1510-6820

```
} else if(x == "Catamarca Province"){
  print(35.2)
} else if(x == "Chaco Province"){
  print(NA)
} else if(x == "Chubut Province"){
  print(NA)
} else if(x == "Cordoba"){
  print(40.7)
} else if(x == "Corrientes"){
  print(41.2)
} else if(x == "Entre Rios"){
  print(NA)
} else if(x == "Formosa Province"){
  print(42.4)
} else if(x == "Jujuy"){
  print(38)
} else if(x == "La Pampa"){
  print(NA)
} else if(x == "La Rioja Province"){
  print(29.8)
} else if(x == "Mendoza Province"){
 print(41.5)
} else if(x == "Misiones Province"){
  print(NA)
} else if(x == "Neuquen"){
  print(37.5)
} else if(x == "Rio Negro"){
  print(NA)
} else if(x == "Salta Province"){
 print(45.5)
} else if(x == "San Juan Province"){
  print(35.8)
} else if(x == "San Luis Province"){
  print(39.2)
} else if(x == "Santa Cruz Province"){
  print(NA)
} else if(x == "Santa Fe Province"){
  print(42.6)
} else if(x == "Santiago del Estero Province"){
  print(42.9)
} else if(x == "Tierra del Fuego Province"){
  print(NA)
} else if(x == "Tucuman"){
 print(41.5)
} else {
  print(NA)
}}
## Poverty in Chile Function
## GitHub Repository ~/tree/master/data/poverty-sources/CHL
mean_poverty_CHL <- 8.6</pre>
f.poverty.CHL <- function(x)</pre>
{ if(is.integer0(x)){
```

```
print(NA)
} else if(x == "Arica y Parinacota"){
  print(8.4)
} else if(x == "Tarapacá"){
  print(6.4)
} else if(x == "Antofagasta"){
 print(5.1)
} else if(x == "Atacama"){
  print(7.9)
} else if(x == "Coquimbo"){
  print(11.9)
} else if(x == "Valparaíso"){
  print(7.1)
} else if(x == "Santiago Metropolitan Region"){
 print(5.4)
} else if(x == "O'Higgins"){
  print(10.1)
} else if(x == "Maule"){
  print(12.7)
} else if(x == "Ñuble"){
  print(16.1)
} else if(x == "Bio Bio"){
 print(12.3)
} else if(x == "Araucania"){
  print(17.2)
} else if(x == "Los Ríos"){
  print(12.1)
} else if(x == "Los Lagos"){
 print(11.7)
} else if(x == "Aysén"){
  print(4.6)
} else if(x == "Magallanes and Chilean Antarctica"){
  print(2.1)
} else {
  print(NA)
}}
## Poverty in Colombia Function
## GitHub Repository ~/tree/master/data/poverty-sources/COL
mean_poverty_COL <- 35.7</pre>
f.poverty.COL <- function(x)</pre>
{ if(is.integer0(x)){
  print(NA)
} else if(x == "Amazonas"){
 print(NA)
} else if(x == "Antioquia"){
  print(29.8)
} else if(x == "Arauca"){
  print(NA)
} else if(x == "Atlantico"){
  print(27.3)
} else if(x == "Bogota"){
  print(27.2)
```

```
} else if(x == "Bolivar"){
  print(46)
} else if(x == "Boyaca"){
  print(35.7)
} else if(x == "Caldas"){
  print(28.7)
} else if(x == "Caqueta"){
  print(48.8)
} else if(x == "Casanare"){
  print(NA)
} else if(x == "Cauca"){
  print(59.6)
} else if(x == "Cesar"){
 print(51.7)
} else if(x == "Choco"){
  print(68.4)
} else if(x == "Cordoba"){
  print(54.2)
} else if(x == "Cundinamarca"){
  print(20.4)
} else if(x == "Guaviare"){
 print(NA)
} else if(x == "Huila"){
  print(51.2)
} else if(x == "La Guajira"){
  print(61.8)
} else if(x == "Magdalena"){
  print(53.5)
} else if(x == "Meta"){
 print(32.7)
} else if(x == "Narino"){
  print(51)
} else if(x == "North Santander"){
  print(51.9)
} else if(x == "Putamayo"){
  print(NA)
} else if(x == "Risaralda"){
  print(28.7)
} else if(x == "San Andres and Providencia"){
  print(NA)
} else if(x == "Santander"){
  print(31.1)
} else if(x == "Sucre"){
  print(50.3)
} else if(x == "Tolima"){
  print(39.3)
} else if(x == "Valle del Cauca"){
  print(24)
} else if(x == "Vichada"){
  print(NA)
} else {
  print(NA)
```

```
## Poverty in Peru Function
## GitHub Repository ~/tree/master/data/poverty-sources/PER
mean_poverty_PER <- 16.0020707435589
f.poverty.PER <- function(x)</pre>
{ if(is.integer0(x)){
  print(NA)
} else if(x == "Amazonas"){
 print(30.1724485103745)
} else if(x == "Ancash"){
  print(17.2014035176195)
} else if(x == "Apurimac"){
  print(11.3483419932819)
} else if(x == "Arequipa"){
  print(10.5929218558695)
} else if(x == "Ayacucho"){
  print(19.1847914434206)
} else if(x == "Cajamarca"){
  print(17.1953111040605)
} else if(x == "Callao Region"){
  print(5.11481472685651)
} else if(x == "Cusco"){
  print(13.546762877841)
} else if(x == "Huancavelica"){
  print(20.5397542865539)
} else if(x == "Huanuco"){
 print(23.8404272441335)
else if(x == "Ica"){
  print(8.96345334783655)
} else if(x == "Junin"){
 print(23.1032758602094)
} else if(x == "La Libertad"){
  print(10.1432418346883)
} else if(x == "Lambayeque"){
 print(10.2376802573772)
} else if(x == "Lima Region"){
  print(15.4991405118145)
} else if(x == "Loreto"){
 print(52.4256305274022)
} else if(x == "Madre de Dios"){
  print(23.2150761977107)
} else if(x == "Metropolitan Municipality of Lima"){
 print(8.80510784789396)
} else if(x == "Moquegua"){
  print(10.9651994187931)
} else if(x == "Pasco"){
  print(29.896691812666)
} else if(x == "Piura"){
  print(22.3131259897851)
} else if(x == "Puno"){
  print(20.8666595807204)
} else if(x == "San Martin"){
  print(29.0546286229956)
} else if(x == "Tacna"){
```

```
print(7.48157860009444)
} else if(x == "Tumbes"){
  print(20.7392401397941)
} else if(x == "Ucayali"){
  print(43.447542619887)
} else {
  print(NA)
}}
```

Google Data

```
## Google Data
mobility <- read.csv("../data/Google/Global_Mobility_Report.csv", encoding = "UTF-8")</pre>
## Download data from https://www.google.com/covid19/mobility/ and edit the route
## Subsample Argentina
ARG <- filter(mobility, country_region == "Argentina" & date < "2020-05-01" & date
              > "2020-02-29" & sub_region_1 != "" & sub_region_2 != "")
## Placebo Argentina
placebo_ARG <- filter(mobility, country_region == "Argentina" & date < "2020-03-11"</pre>
                      & date > "2020-02-14" & sub_region_1 != "" & sub_region_2 != "")
## Subsample Chile
CHL <- filter(mobility, country region == "Chile" & date < "2020-05-01" & date
              > "2020-02-29" & sub_region_1 != "" & sub_region_2 != "")
## Placebo Chile
placebo_CHL <- filter(mobility, country_region == "Chile" & date < "2020-03-11"
                      & date > "2020-02-14" & sub_region_1 != "" & sub_region_2 != "")
## Subsample Colombia
mobility$sub_region_2[which(mobility$sub_region_1 == "Bogota")] <- "Bogota"</pre>
COL <- filter(mobility, country_region == "Colombia" & date < "2020-05-01" & date
              > "2020-02-29" & sub_region_1 != "" & sub_region_2 != "")
## Placebo Colombia
placebo_COL <- filter(mobility, country_region == "Colombia" & date < "2020-03-11" & date
                      > "2020-02-14" & sub_region_1 != "" & sub_region_2 != "")
## Subsample Peru
PER <- filter(mobility, country_region == "Peru" & date < "2020-05-01" & date
              > "2020-02-29" & sub_region_1 != "" & sub_region_2 != "")
## Placebo Peru
placebo_PER <- filter(mobility, country_region == "Peru" & date < "2020-03-11" & date
                      > "2020-02-14" & sub_region_1 != "" & sub_region_2 != "")
```

Poverty Data

```
## Poverty in Argentina
for(i in 1:nrow(ARG)) {
  ARG$poverty[i] <- f.poverty.ARG(ARG$sub_region_1[i])</pre>
for(i in 1:nrow(placebo_ARG)) {
  placebo_ARG$poverty[i] <- f.poverty.ARG(placebo_ARG$sub_region_1[i])</pre>
## Poverty in Chile
for(i in 1:nrow(CHL)) {
 CHL$poverty[i] <- f.poverty.CHL(CHL$sub_region_1[i])</pre>
for(i in 1:nrow(placebo_CHL)) {
  placebo_CHL$poverty[i] <- f.poverty.CHL(placebo_CHL$sub_region_1[i])</pre>
### Poverty in Colombia
for(i in 1:nrow(COL)) {
 COL$poverty[i] <- f.poverty.COL(COL$sub_region_1[i])</pre>
for(i in 1:nrow(placebo COL)) {
  placebo_COL$poverty[i] <- f.poverty.COL(placebo_COL$sub_region_1[i])</pre>
### Poverty in Peru
for(i in 1:nrow(PER)) {
  PER$poverty[i] <- f.poverty.PER(PER$sub_region_1[i])</pre>
for(i in 1:nrow(placebo_PER)) {
  placebo_PER$poverty[i] <- f.poverty.PER(placebo_PER$sub_region_1[i])</pre>
## Recode Argentina
unique(ARG$sub_region_1[which(is.na(ARG$poverty))])
ARG.vor <- ARG %>% drop_na(poverty)
ARG.vor$Poverty <- ifelse(ARG.vor$poverty > mean_poverty_ARG, "High % of poor",
                           "Low % of poor")
ARG.vor$binary_poverty <- ifelse(ARG.vor$poverty > mean_poverty_ARG, 1, 0)
placebo_ARG <- placebo_ARG %>% drop_na(poverty)
placebo_ARG$binary_poverty <- ifelse(placebo_ARG$poverty > mean_poverty_ARG, 1, 0)
## Recode Chile
unique(CHL$sub_region_1[which(is.na(CHL$poverty))])
CHL$Poverty <- ifelse(CHL$poverty > mean_poverty_CHL, "High % of poor",
                       "Low % of poor")
CHL$binary_poverty <- ifelse(CHL$poverty > mean_poverty_CHL, 1, 0)
placebo_CHL$binary_poverty <- ifelse(placebo_CHL$poverty > mean_poverty_CHL, 1, 0)
## Recode Colombia
unique(COL$sub region 1[which(is.na(COL$poverty))])
COL.vor <- COL %>% drop_na(poverty)
```

Cross-National Mobility Changes

```
## Cross National Data Frame
baseline.cross <- bind_rows(ARG, CHL, COL, PER)</pre>
names(baseline.cross)[2] = "Country"
cross.national <- bind_rows(ARG.vor, CHL, COL.vor, PER)</pre>
names(cross.national)[2] = "Country"
## Plot Workplaces
ggplot(baseline.cross, aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
                           col = Country)) + geom_smooth(aes(linetype = Country,
                                                             fill = Country)) +
  theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
  theme(panel.grid.minor = element blank()) +
  theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
  labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
  theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
  scale_x_date(date_breaks = "1 week", date_minor_breaks = "1 week",
              date\_labels = "%Y-%m-%d") +
  scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
  scale_colour_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
  scale_fill_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "tomato2", lty = 2)
```



```
## Plot Transit Stations
ggplot(baseline.cross, aes(x = as.Date(date),
                          y = transit_stations_percent_change_from_baseline,
                          col = Country)) + geom_smooth(aes(linetype = Country,
                                                            fill = Country)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Transit Stations", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale_x_date(date_breaks = "1 week", date_minor_breaks = "1 week",
              date\_labels = "%Y-%m-%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
 scale_fill_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
 geom_vline(xintercept = as.Date("2020-03-11"), col = "tomato2", lty = 2)
```



```
## Plot Groceries
ggplot(baseline.cross, aes(x = as.Date(date),
                          y = grocery_and_pharmacy_percent_change_from_baseline,
                          col = Country)) + geom_smooth(aes(linetype = Country,
                                                            fill = Country)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Groceries", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale x date(date breaks = "1 week", date minor breaks = "1 week",
              date\_labels = "\%Y-\%m-\%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
 scale_fill_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
 geom_vline(xintercept = as.Date("2020-03-11"), col = "tomato2", lty = 2)
```



```
## dev.off()
## Plot Recreation
ggplot(baseline.cross, aes(x = as.Date(date),
                          y = retail_and_recreation_percent_change_from_baseline,
                          col = Country)) + geom_smooth(aes(linetype = Country,
                                                            fill = Country)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Retail and Recreation", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale_x_date(date_breaks = "1 week", date_minor_breaks = "1 week",
              date\_labels = "%Y-%m-%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
 scale_fill_manual(values = c("#1f78b4", "#e31a1c", "#ff7f00", "#33a02c")) +
 geom_vline(xintercept = as.Date("2020-03-11"), col = "tomato2", lty = 2)
```


Oxford Government Responses Tracker

```
## Code based on González-Bustamante (2021) DOI: 10.1016/j.worlddev.2020.105180
## OxCGRT - Covid-Policy-Tracker
stringencyindex <- read.csv("https://osf.io/kga4d/download", sep = ",")</pre>
c1_schoolclosing <- read.csv("https://osf.io/82hjz/download", sep = ",")
c1_flag <- read.csv("https://osf.io/qcmsb/download", sep = ",")</pre>
c2_workplaceclosing <- read.csv("https://osf.io/5fs42/download", sep = ",")</pre>
c2_flag <- read.csv("https://osf.io/yn83e/download", sep = ",")</pre>
c6_stayathomerequirements <- read.csv("https://osf.io/xpm74/download", sep = ",")
c6_flag <- read.csv("https://osf.io/62r7k/download", sep = ",")
## Period Coverage
dd_OXF <- as.numeric((as.Date("2020-05-15")) - as.Date("2020-01-01"))</pre>
begin_OXF <- ((as.Date("2020-05-15"))-dd_OXF) ## 01 January</pre>
dates_OXF <- seq(as.Date(begin_OXF), as.Date("2020-05-15"), by="days")</pre>
## Economic measures
e1_incomesupport <- read.csv("https://osf.io/f94d6/download", sep = ",")
e1_flag <- read.csv("https://osf.io/3eyt5/download", sep = ",")</pre>
e2_debtrelief <- read.csv("https://osf.io/d82gu/download", sep = ",")</pre>
```

Argentina Responses

```
## Code based on González-Bustamante (2021) DOI: 10.1016/j.worlddev.2020.105180
## stringencyindex
arg.stringencyindex <- slice(stringencyindex,</pre>
                               which(stringencyindex[,1] == "Argentina")
                               :which(stringencyindex[,1] == "Argentina")) %>%
 pivot_longer(-c(X, X.1), names_to = "Date", values_to = "stringency_index")
arg.stringencyindex <- slice(arg.stringencyindex, 1:136) ## 15 May
arg.stringencyindex <- data.frame(arg.stringencyindex, dates_OXF)</pre>
arg.stringencyindex$X <- NULL</pre>
arg.stringencyindex$X.1 <- NULL</pre>
arg.stringencyindex$Date <- NULL</pre>
## c1_schoolclosing
arg.c1_schoolclosing <- slice(c1_schoolclosing,</pre>
                                which(c1_schoolclosing[,1] == "Argentina")
                                :which(c1_schoolclosing[,1] == "Argentina")) %>%
 pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_schoolclosing")
arg.c1_schoolclosing <- slice(arg.c1_schoolclosing, 1:136) ## 15 May</pre>
arg.c1 schoolclosing <- data.frame(arg.c1 schoolclosing, dates OXF)
arg.c1_schoolclosing$X <- NULL</pre>
arg.c1_schoolclosing$X.1 <- NULL</pre>
arg.c1_schoolclosing$Date <- NULL</pre>
## c1_flag
arg.c1_flag <- slice(c1_flag, which(c1_flag[,1] == "Argentina")</pre>
                      :which(c1_flag[,1] == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_flag")
arg.c1_flag <- slice(arg.c1_flag, 1:136) ## 15 May
arg.c1_flag <- data.frame(arg.c1_flag, dates_OXF)</pre>
arg.c1_flag$X <- NULL</pre>
arg.c1 flag$X.1 <- NULL</pre>
arg.c1_flag$Date <- NULL</pre>
## c2_workplaceclosing
arg.c2_workplaceclosing <- slice(c2_workplaceclosing,</pre>
                                   which(c2_workplaceclosing[,1] == "Argentina")
                                   :which(c2_workplaceclosing[,1] == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c2_workplaceclosing")
arg.c2_workplaceclosing <- slice(arg.c2_workplaceclosing, 1:136) ## 15 May
arg.c2_workplaceclosing <- data.frame(arg.c2_workplaceclosing, dates_OXF)</pre>
arg.c2_workplaceclosing$X <- NULL</pre>
arg.c2_workplaceclosing$X.1 <- NULL</pre>
arg.c2_workplaceclosing$Date <- NULL</pre>
## c2_flag
arg.c2_flag <- slice(c2_flag, which(c2_flag[,1] == "Argentina")</pre>
                      :which(c2_flag[,1] == "Argentina")) %>%
 pivot longer(-c(X, X.1), names to = "Date", values to = "c2 flag")
arg.c2_flag <- slice(arg.c2_flag, 1:136) ## 15 May
```

```
arg.c2_flag <- data.frame(arg.c2_flag, dates_OXF)</pre>
arg.c2_flag$X <- NULL</pre>
arg.c2_flag$X.1 <- NULL</pre>
arg.c2_flag$Date <- NULL</pre>
## c6 stayathomerequirements
arg.c6_stayathomerequirements <- slice(c6_stayathomerequirements,</pre>
                                          which(c6 stayathomerequirements[,1] == "Argentina")
                                          :which(c6 stayathomerequirements[,1]
                                                 == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_stayathomerequirements")
arg.c6_stayathomerequirements <- slice(arg.c6_stayathomerequirements, 1:136) ## 15 May
arg.c6 stayathomerequirements <- data.frame(arg.c6 stayathomerequirements, dates OXF)
arg.c6_stayathomerequirements$X <- NULL</pre>
arg.c6_stayathomerequirements$X.1 <- NULL</pre>
arg.c6_stayathomerequirements$Date <- NULL</pre>
## c6_flag
arg.c6_flag <- slice(c6_flag, which(c6_flag[,1] == "Argentina")</pre>
                       :which(c6_flag[,1] == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_flag")
arg.c6_flag <- slice(arg.c6_flag, 1:136) ## 15 May
arg.c6_flag <- data.frame(arg.c6_flag, dates_OXF)</pre>
arg.c6_flag$X <- NULL</pre>
arg.c6 flag$X.1 <- NULL</pre>
arg.c6_flag$Date <- NULL</pre>
## e1 incomesupport
arg.e1_incomesupport <- slice(e1_incomesupport, which(e1_incomesupport[,1] == "Argentina")</pre>
                                :which(e1_incomesupport[,1] == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_incomesupport")
arg.e1_incomesupport <- slice(arg.e1_incomesupport, 1:136) ## 15 May</pre>
arg.e1_incomesupport <- data.frame(arg.e1_incomesupport, dates_OXF)</pre>
arg.e1_incomesupport$X <- NULL</pre>
arg.e1_incomesupport$X.1 <- NULL</pre>
arg.e1_incomesupport$Date <- NULL</pre>
## e1 flag
arg.e1_flag <- slice(e1_flag, which(e1_flag[,1] == "Argentina")</pre>
                       :which(e1_flag[,1] == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_flag")
arg.e1_flag <- slice(arg.e1_flag, 1:136) ## 15 May
arg.e1 flag <- data.frame(arg.e1 flag, dates OXF)</pre>
arg.e1 flag$X <- NULL</pre>
arg.e1_flag$X.1 <- NULL</pre>
arg.e1_flag$Date <- NULL</pre>
## e2_debtrelief
arg.e2_debtrelief <- slice(e2_debtrelief, which(e2_debtrelief[,1] == "Argentina")</pre>
                             :which(e2_debtrelief[,1] == "Argentina")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e2_debtrelief")
arg.e2_debtrelief <- slice(arg.e2_debtrelief, 1:136) ## 15 May</pre>
arg.e2_debtrelief <- data.frame(arg.e2_debtrelief, dates_OXF)</pre>
```

```
arg.e2_debtrelief$X <- NULL</pre>
arg.e2_debtrelief$X.1 <- NULL</pre>
arg.e2_debtrelief$Date <- NULL</pre>
## Dataframe Responses Argentina
arg_resp <- data.frame(arg.stringencyindex, arg.c1_schoolclosing$c1_schoolclosing,</pre>
                       arg.c1_flag$c1_flag, arg.c2_workplaceclosing$c2_workplaceclosing,
                        arg.c2 flag$c2 flag,
                        arg.c6 stayathomerequirements$c6 stayathomerequirements,
                       arg.c6_flag$c6_flag, arg.e1_incomesupport$e1_incomesupport,
                       arg.e1_flag$e1_flag, arg.e2_debtrelief$e2_debtrelief)
names(arg_resp)[1] = "stringencyindex"
names(arg_resp)[2] = "dates"
names(arg_resp)[3] = "c1_schoolclosing"
names(arg_resp)[4] = "c1_flag"
names(arg_resp)[5] = "c2_workplaceclosing"
names(arg_resp)[6] = "c2_flag"
names(arg_resp)[7] = "c6_stayathomerequirements"
names(arg_resp)[8] = "c6_flag"
names(arg_resp)[9] = "e1_incomesupport"
names(arg_resp)[10] = "e1_flag"
names(arg_resp)[11] = "e2_debtrelief"
```

Chile Responses

```
## Code based on González-Bustamante (2021) DOI: 10.1016/j.worlddev.2020.105180
## stringencyindex
chl.stringencyindex <- slice(stringencyindex, which(stringencyindex[,1] == "Chile")</pre>
                               :which(stringencyindex[,1] == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "stringency_index")
chl.stringencyindex <- slice(chl.stringencyindex, 1:136) ## 15 May
chl.stringencyindex <- data.frame(chl.stringencyindex, dates_OXF)</pre>
chl.stringencyindex$X <- NULL</pre>
chl.stringencyindex$X.1 <- NULL</pre>
chl.stringencyindex$Date <- NULL</pre>
## c1 schoolclosing
chl.c1_schoolclosing <- slice(c1_schoolclosing, which(c1_schoolclosing[,1] == "Chile")</pre>
                                :which(c1_schoolclosing[,1] == "Chile")) %>%
 pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_schoolclosing")
chl.c1_schoolclosing <- slice(chl.c1_schoolclosing, 1:136) ## 15 May
chl.c1_schoolclosing <- data.frame(chl.c1_schoolclosing, dates_OXF)</pre>
chl.c1_schoolclosing$X <- NULL</pre>
chl.c1_schoolclosing$X.1 <- NULL</pre>
chl.c1_schoolclosing$Date <- NULL</pre>
## c1_flag
chl.c1_flag <- slice(c1_flag, which(c1_flag[,1] == "Chile")</pre>
                      :which(c1_flag[,1] == "Chile")) %>%
 pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_flag")
```

```
chl.c1_flag <- slice(chl.c1_flag, 1:136) ## 15 May
chl.c1_flag <- data.frame(chl.c1_flag, dates_OXF)</pre>
chl.c1_flag$X <- NULL</pre>
chl.c1_flag$X.1 <- NULL</pre>
chl.c1_flag$Date <- NULL</pre>
## c2_workplaceclosing
chl.c2_workplaceclosing <- slice(c2_workplaceclosing,</pre>
                                   which(c2 workplaceclosing[,1] == "Chile")
                                   :which(c2_workplaceclosing[,1] == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c2_workplaceclosing")
chl.c2_workplaceclosing <- slice(chl.c2_workplaceclosing, 1:136) ## 15 May
chl.c2 workplaceclosing <- data.frame(chl.c2 workplaceclosing, dates OXF)</pre>
chl.c2_workplaceclosing$X <- NULL</pre>
chl.c2_workplaceclosing$X.1 <- NULL</pre>
chl.c2_workplaceclosing$Date <- NULL</pre>
## c2_flag
chl.c2_flag <- slice(c2_flag, which(c2_flag[,1] == "Chile")</pre>
                      :which(c2_flag[,1] == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c2_flag")
chl.c2_flag <- slice(chl.c2_flag, 1:136) ## 15 May
chl.c2_flag <- data.frame(chl.c2_flag, dates_OXF)</pre>
chl.c2_flag$X <- NULL</pre>
chl.c2 flag$X.1 <- NULL
chl.c2 flag$Date <- NULL</pre>
## c6_stayathomerequirements
chl.c6_stayathomerequirements <- slice(c6_stayathomerequirements,</pre>
                                          which(c6_stayathomerequirements[,1] == "Chile")
                                          :which(c6_stayathomerequirements[,1]
                                                 == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_stayathomerequirements")
chl.c6_stayathomerequirements <- slice(chl.c6_stayathomerequirements, 1:136) ## 15 May
chl.c6_stayathomerequirements <- data.frame(chl.c6_stayathomerequirements, dates_OXF)</pre>
chl.c6_stayathomerequirements$X <- NULL</pre>
chl.c6_stayathomerequirements$X.1 <- NULL</pre>
chl.c6_stayathomerequirements$Date <- NULL</pre>
## c6 flag
chl.c6_flag <- slice(c6_flag, which(c6_flag[,1] == "Chile")</pre>
                      :which(c6_flag[,1] == "Chile")) %>%
  pivot longer(-c(X, X.1), names to = "Date", values to = "c6 flag")
chl.c6_flag <- slice(chl.c6_flag, 1:136) ## 15 May
chl.c6_flag <- data.frame(chl.c6_flag, dates_OXF)</pre>
chl.c6_flag$X <- NULL</pre>
chl.c6_flag$X.1 <- NULL</pre>
chl.c6_flag$Date <- NULL</pre>
## e1_incomesupport
chl.e1_incomesupport <- slice(e1_incomesupport, which(e1_incomesupport[,1] == "Chile")</pre>
                                :which(e1_incomesupport[,1] == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_incomesupport")
```

```
chl.e1_incomesupport <- slice(chl.e1_incomesupport, 1:136) ## 15 May</pre>
chl.e1_incomesupport <- data.frame(chl.e1_incomesupport, dates_OXF)</pre>
chl.e1_incomesupport$X <- NULL</pre>
chl.e1_incomesupport$X.1 <- NULL</pre>
chl.e1_incomesupport$Date <- NULL</pre>
## e1_flag
chl.e1 flag <- slice(e1 flag, which(e1 flag[,1] == "Chile")</pre>
                      :which(e1 flag[,1] == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_flag")
chl.e1_flag <- slice(chl.e1_flag, 1:136) ## 15 May
chl.e1_flag <- data.frame(chl.e1_flag, dates_OXF)</pre>
chl.e1_flag$X <- NULL</pre>
chl.e1_flag$X.1 <- NULL</pre>
chl.e1_flag$Date <- NULL</pre>
## e2_debtrelief
chl.e2_debtrelief <- slice(e2_debtrelief, which(e2_debtrelief[,1] == "Chile")</pre>
                             :which(e2_debtrelief[,1] == "Chile")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e2_debtrelief")
chl.e2_debtrelief <- slice(chl.e2_debtrelief, 1:136) ## 15 May</pre>
chl.e2_debtrelief <- data.frame(chl.e2_debtrelief, dates_OXF)</pre>
chl.e2 debtrelief$X <- NULL</pre>
chl.e2_debtrelief$X.1 <- NULL</pre>
chl.e2 debtrelief$Date <- NULL</pre>
## Dataframe Responses Chile
chl_resp <- data.frame(chl.stringencyindex, chl.c1_schoolclosing$c1_schoolclosing,</pre>
                        chl.c1_flag$c1_flag, chl.c2_workplaceclosing$c2_workplaceclosing,
                        chl.c2_flag$c2_flag,
                        chl.c6_stayathomerequirements$c6_stayathomerequirements,
                        chl.c6_flag$c6_flag, chl.e1_incomesupport$e1_incomesupport,
                        chl.e1_flag$e1_flag, chl.e2_debtrelief$e2_debtrelief)
names(chl_resp)[1] = "stringencyindex"
names(chl_resp)[2] = "dates"
names(chl_resp)[3] = "c1_schoolclosing"
names(chl_resp)[4] = "c1_flag"
names(chl_resp)[5] = "c2_workplaceclosing"
names(chl_resp)[6] = "c2_flag"
names(chl_resp)[7] = "c6_stayathomerequirements"
names(chl_resp)[8] = "c6_flag"
names(chl_resp)[9] = "e1_incomesupport"
names(chl resp)[10] = "e1 flag"
names(chl_resp)[11] = "e2_debtrelief"
```

Colombia Responses

```
## Code based on González-Bustamante (2021) DOI: 10.1016/j.worlddev.2020.105180

## stringencyindex
col.stringencyindex <- slice(stringencyindex, which(stringencyindex[,1] == "Colombia")</pre>
```

```
:which(stringencyindex[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "stringency_index")
col.stringencyindex <- slice(col.stringencyindex, 1:136) ## 15 May
col.stringencyindex <- data.frame(col.stringencyindex, dates_OXF)</pre>
col.stringencyindex$X <- NULL</pre>
col.stringencyindex$X.1 <- NULL</pre>
col.stringencyindex$Date <- NULL</pre>
## c1 schoolclosing
col.c1_schoolclosing <- slice(c1_schoolclosing, which(c1_schoolclosing[,1] == "Colombia")</pre>
                                 :which(c1_schoolclosing[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_schoolclosing")
col.c1_schoolclosing <- slice(col.c1_schoolclosing, 1:136) ## 15 May</pre>
col.c1_schoolclosing <- data.frame(col.c1_schoolclosing, dates_OXF)</pre>
col.c1_schoolclosing$X <- NULL</pre>
col.c1_schoolclosing$X.1 <- NULL</pre>
col.c1_schoolclosing$Date <- NULL</pre>
## c1_flag
col.c1_flag <- slice(c1_flag, which(c1_flag[,1] == "Colombia")</pre>
                       :which(c1_flag[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_flag")
col.c1_flag <- slice(col.c1_flag, 1:136) ## 15 May</pre>
col.c1_flag <- data.frame(col.c1_flag, dates_OXF)</pre>
col.c1 flag$X <- NULL</pre>
col.c1 flag$X.1 <- NULL</pre>
col.c1_flag$Date <- NULL</pre>
## c2_workplaceclosing
col.c2_workplaceclosing <- slice(c2_workplaceclosing,</pre>
                                   which(c2_workplaceclosing[,1] == "Colombia")
                                    :which(c2_workplaceclosing[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c2_workplaceclosing")
col.c2_workplaceclosing <- slice(col.c2_workplaceclosing, 1:136) ## 15 May
col.c2_workplaceclosing <- data.frame(col.c2_workplaceclosing, dates_OXF)</pre>
col.c2_workplaceclosing$X <- NULL</pre>
col.c2_workplaceclosing$X.1 <- NULL</pre>
col.c2_workplaceclosing$Date <- NULL</pre>
## c2 flag
col.c2_flag <- slice(c2_flag, which(c2_flag[,1] == "Colombia")</pre>
                      :which(c2_flag[,1] == "Colombia")) %>%
  pivot longer(-c(X, X.1), names to = "Date", values to = "c2 flag")
col.c2_flag <- slice(col.c2_flag, 1:136) ## 15 May</pre>
col.c2_flag <- data.frame(col.c2_flag, dates_OXF)</pre>
col.c2_flag$X <- NULL</pre>
col.c2_flag$X.1 <- NULL</pre>
col.c2_flag$Date <- NULL</pre>
## c6_stayathomerequirements
col.c6_stayathomerequirements <- slice(c6_stayathomerequirements,</pre>
                                          which(c6_stayathomerequirements[,1] == "Colombia")
                                          :which(c6_stayathomerequirements[,1]
```

```
== "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_stayathomerequirements")
col.c6_stayathomerequirements <- slice(col.c6_stayathomerequirements, 1:136) ## 15 May
col.c6_stayathomerequirements <- data.frame(col.c6_stayathomerequirements, dates_OXF)</pre>
col.c6_stayathomerequirements$X <- NULL</pre>
col.c6_stayathomerequirements$X.1 <- NULL</pre>
col.c6_stayathomerequirements$Date <- NULL</pre>
## c6 flag
col.c6_flag <- slice(c6_flag, which(c6_flag[,1] == "Colombia")</pre>
                       :which(c6_flag[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_flag")
col.c6_flag <- slice(col.c6_flag, 1:136) ## 15 May</pre>
col.c6_flag <- data.frame(col.c6_flag, dates_OXF)</pre>
col.c6_flag$X <- NULL</pre>
col.c6_flag$X.1 <- NULL</pre>
col.c6_flag$Date <- NULL</pre>
## e1_incomesupport
col.e1_incomesupport <- slice(e1_incomesupport, which(e1_incomesupport[,1] == "Colombia")</pre>
                                 :which(e1_incomesupport[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_incomesupport")
col.e1_incomesupport <- slice(col.e1_incomesupport, 1:136) ## 15 May</pre>
col.e1_incomesupport <- data.frame(col.e1_incomesupport, dates_OXF)</pre>
col.e1 incomesupport$X <- NULL</pre>
col.e1 incomesupport$X.1 <- NULL</pre>
col.e1_incomesupport$Date <- NULL</pre>
## e1 flag
col.e1_flag <- slice(e1_flag, which(e1_flag[,1] == "Colombia")</pre>
                       :which(e1_flag[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_flag")
col.e1_flag <- slice(col.e1_flag, 1:136) ## 15 May</pre>
col.e1_flag <- data.frame(col.e1_flag, dates_OXF)</pre>
col.e1_flag$X <- NULL</pre>
col.e1_flag$X.1 <- NULL</pre>
col.e1_flag$Date <- NULL</pre>
## e2_debtrelief
col.e2_debtrelief <- slice(e2_debtrelief, which(e2_debtrelief[,1] == "Colombia")</pre>
                             :which(e2_debtrelief[,1] == "Colombia")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e2_debtrelief")
col.e2_debtrelief <- slice(col.e2_debtrelief, 1:136) ## 15 May</pre>
col.e2_debtrelief <- data.frame(col.e2_debtrelief, dates_OXF)</pre>
col.e2_debtrelief$X <- NULL</pre>
col.e2_debtrelief$X.1 <- NULL</pre>
col.e2_debtrelief$Date <- NULL</pre>
## Dataframe Responses Chile
col_resp <- data.frame(col.stringencyindex, col.c1_schoolclosing$c1_schoolclosing,</pre>
                         col.c1_flag$c1_flag, col.c2_workplaceclosing$c2_workplaceclosing,
                         col.c2_flag$c2_flag,
                         col.c6_stayathomerequirements$c6_stayathomerequirements,
```

Peru Responses

```
## Code based on González-Bustamante (2021) DOI: 10.1016/j.worlddev.2020.105180
## stringencyindex
per.stringencyindex <- slice(stringencyindex, which(stringencyindex[,1] == "Peru")</pre>
                               :which(stringencyindex[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "stringency_index")
per.stringencyindex <- slice(per.stringencyindex, 1:136) ## 15 May
per.stringencyindex <- data.frame(per.stringencyindex, dates_OXF)</pre>
per.stringencyindex$X <- NULL</pre>
per.stringencyindex$X.1 <- NULL</pre>
per.stringencyindex$Date <- NULL</pre>
## c1_schoolclosing
per.c1_schoolclosing <- slice(c1_schoolclosing, which(c1_schoolclosing[,1] == "Peru")</pre>
                                :which(c1 schoolclosing[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_schoolclosing")
per.c1_schoolclosing <- slice(per.c1_schoolclosing, 1:136) ## 15 May
per.c1_schoolclosing <- data.frame(per.c1_schoolclosing, dates_0XF)</pre>
per.c1_schoolclosing$X <- NULL</pre>
per.c1_schoolclosing$X.1 <- NULL</pre>
per.c1 schoolclosing$Date <- NULL</pre>
## c1 flag
per.c1_flag <- slice(c1_flag, which(c1_flag[,1] == "Peru")</pre>
                      :which(c1_flag[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c1_flag")
per.c1_flag <- slice(per.c1_flag, 1:136) ## 15 May</pre>
per.c1_flag <- data.frame(per.c1_flag, dates_OXF)</pre>
per.c1_flag$X <- NULL</pre>
per.c1_flag$X.1 <- NULL</pre>
per.c1_flag$Date <- NULL</pre>
## c2 workplaceclosing
per.c2_workplaceclosing <- slice(c2_workplaceclosing,</pre>
                                   which(c2_workplaceclosing[,1] == "Peru")
```

```
:which(c2_workplaceclosing[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c2_workplaceclosing")
per.c2_workplaceclosing <- slice(per.c2_workplaceclosing, 1:136) ## 15 May</pre>
per.c2_workplaceclosing <- data.frame(per.c2_workplaceclosing, dates_OXF)</pre>
per.c2_workplaceclosing$X <- NULL</pre>
per.c2_workplaceclosing$X.1 <- NULL</pre>
per.c2_workplaceclosing$Date <- NULL</pre>
## c2 flag
per.c2_flag <- slice(c2_flag, which(c2_flag[,1] == "Peru")</pre>
                       :which(c2_flag[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c2_flag")
per.c2_flag <- slice(per.c2_flag, 1:136) ## 15 May</pre>
per.c2_flag <- data.frame(per.c2_flag, dates_OXF)</pre>
per.c2_flag$X <- NULL</pre>
per.c2_flag$X.1 <- NULL</pre>
per.c2_flag$Date <- NULL
## c6_stayathomerequirements
per.c6_stayathomerequirements <- slice(c6_stayathomerequirements,</pre>
                                          which(c6_stayathomerequirements[,1] == "Peru")
                                          :which(c6_stayathomerequirements[,1]
                                                  == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_stayathomerequirements")
per.c6_stayathomerequirements <- slice(per.c6_stayathomerequirements, 1:136) ## 15 May
per.c6_stayathomerequirements <- data.frame(per.c6_stayathomerequirements, dates_OXF)</pre>
per.c6_stayathomerequirements$X <- NULL</pre>
per.c6_stayathomerequirements$X.1 <- NULL</pre>
per.c6_stayathomerequirements$Date <- NULL</pre>
## c6_flag
per.c6_flag <- slice(c6_flag, which(c6_flag[,1] == "Peru")</pre>
                       :which(c6_flag[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "c6_flag")
per.c6_flag <- slice(per.c6_flag, 1:136) ## 15 May</pre>
per.c6_flag <- data.frame(per.c6_flag, dates_OXF)</pre>
per.c6_flag$X <- NULL</pre>
per.c6_flag$X.1 <- NULL</pre>
per.c6_flag$Date <- NULL</pre>
## e1_incomesupport
per.e1_incomesupport <- slice(e1_incomesupport,</pre>
                                which(e1 incomesupport[,1] == "Peru")
                                :which(e1_incomesupport[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_incomesupport")
per.e1_incomesupport <- slice(per.e1_incomesupport, 1:136) ## 15 May</pre>
per.e1_incomesupport <- data.frame(per.e1_incomesupport, dates_0XF)</pre>
per.e1_incomesupport$X <- NULL</pre>
per.e1_incomesupport$X.1 <- NULL</pre>
per.e1_incomesupport$Date <- NULL</pre>
## e1_flag
per.e1_flag <- slice(e1_flag, which(e1_flag[,1] == "Peru")</pre>
```

```
:which(e1_flag[,1] == "Peru")) %>%
  pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e1_flag")
per.e1_flag <- slice(per.e1_flag, 1:136) ## 15 May
per.e1_flag <- data.frame(per.e1_flag, dates_OXF)</pre>
per.e1_flag$X <- NULL</pre>
per.e1_flag$X.1 <- NULL</pre>
per.e1_flag$Date <- NULL</pre>
## e2 debtrelief
per.e2_debtrelief <- slice(e2_debtrelief, which(e2_debtrelief[,1] == "Peru")</pre>
                            :which(e2_debtrelief[,1] == "Peru")) %>%
 pivot_longer(-c(X, X.1), names_to = "Date", values_to = "e2_debtrelief")
per.e2_debtrelief <- slice(per.e2_debtrelief, 1:136) ## 15 May</pre>
per.e2_debtrelief <- data.frame(per.e2_debtrelief, dates_OXF)</pre>
per.e2_debtrelief$X <- NULL</pre>
per.e2_debtrelief$X.1 <- NULL</pre>
per.e2_debtrelief$Date <- NULL</pre>
## Dataframe Responses Chile
per_resp <- data.frame(per.stringencyindex, per.c1_schoolclosing$c1_schoolclosing,</pre>
                        per.c1_flag$c1_flag, per.c2_workplaceclosing$c2_workplaceclosing,
                        per.c2_flag$c2_flag,
                        per.c6_stayathomerequirements$c6_stayathomerequirements,
                        per.c6_flag$c6_flag, per.e1_incomesupport$e1_incomesupport,
                        per.e1 flag$e1 flag, per.e2 debtrelief$e2 debtrelief)
names(per_resp)[1] = "stringencyindex"
names(per_resp)[2] = "dates"
names(per_resp)[3] = "c1_schoolclosing"
names(per_resp)[4] = "c1_flag"
names(per_resp)[5] = "c2_workplaceclosing"
names(per_resp)[6] = "c2_flag"
names(per_resp)[7] = "c6_stayathomerequirements"
names(per_resp)[8] = "c6_flag"
names(per_resp)[9] = "e1_incomesupport"
names(per_resp)[10] = "e1_flag"
names(per_resp)[11] = "e2_debtrelief"
```

Cross-National and National Trends

```
& col_resp$c1_flag == 1, arr.ind = TRUE)])[1]
## Checking Responses Peru
first_PER <- as.Date(per_resp$dates[which(per_resp$c1_schoolclosing == 3</pre>
                                          & per_resp$c1_flag == 1, arr.ind = TRUE)])[1]
lock_PER <- as.Date(per_resp$dates[which(per_resp$c6_stayathomerequirements == 3</pre>
                                         & per_resp$c6_flag == 1, arr.ind = TRUE)])[1]
## Plot Argentina
ggplot(ARG.vor, aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
                    col = Poverty)) + geom_smooth(aes(linetype = Poverty,
                                                      fill = Poverty)) +
  theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
  theme(panel.grid.minor = element_blank()) +
  theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
  labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
  theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
  scale_x_date(date_breaks = "1 week", date_minor_breaks = "1 week",
               date\_labels = "%Y-%m-%d") +
  scale_y = continuous(limits = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
  scale_colour_manual(values = c("#1f78b4","gray30")) +
  scale_fill_manual(values = c("#1f78b4","gray30")) +
  scale_linetype_manual(values = c(2,3)) +
  geom_vline(xintercept =
  as.Date(arg resp$dates[which(arg resp$c1 schoolclosing == 3
  & arg_resp$c1_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2) +
  geom vline(xintercept =
  as.Date(arg_resp$dates[which(arg_resp$c6_stayathomerequirements == 3
  & arg_resp$c6_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2)
```



```
## Plot Chile
ggplot(CHL, aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
                   col = Poverty)) + geom_smooth(aes(linetype = Poverty,
                                                     fill = Poverty)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale x date(date breaks = "1 week", date minor breaks = "1 week",
              date labels = "%Y-%m-%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("#e31a1c","gray30")) +
 scale_fill_manual(values = c("#e31a1c","gray30")) +
 scale_linetype_manual(values = c(2,3)) +
 geom_vline(xintercept =
 as.Date(arg_resp$dates[which(chl_resp$c1_schoolclosing == 3
 & chl_resp$c1_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2) +
 geom_vline(xintercept =
 as.Date(arg_resp$dates[which(chl_resp$c2_workplaceclosing == 3
 & chl_resp$c2_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2)
```



```
## Plot Colombia
ggplot(COL.vor, aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
               col = Poverty)) + geom_smooth(aes(linetype = Poverty,
                                                 fill = Poverty)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale x date(date breaks = "1 week", date minor breaks = "1 week",
              date labels = "%Y-%m-%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("#ff7f00","gray30")) +
 scale_fill_manual(values = c("#ff7f00","gray30")) +
 scale_linetype_manual(values = c(2,3)) +
 geom_vline(xintercept =
 as.Date(arg_resp$dates[which(col_resp$c1_schoolclosing == 3
 & col_resp$c1_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2) +
 geom_vline(xintercept =
 as.Date(arg_resp$dates[which(col_resp$c2_workplaceclosing == 3
 & col_resp$c2_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2)
```



```
## Plot Peru
ggplot(PER, aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
                   col = Poverty)) + geom_smooth(aes(linetype = Poverty,
                                                     fill = Poverty)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale x date(date breaks = "1 weeks", date minor breaks = "1 week",
              date labels = "%Y-%m-%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("#33a02c","gray30")) +
 scale_fill_manual(values = c("#33a02c","gray30")) +
 scale_linetype_manual(values = c(2,3)) +
 geom_vline(xintercept =
 as.Date(arg_resp$dates[which(per_resp$c1_schoolclosing == 3
 & per_resp$c1_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2) +
 geom_vline(xintercept =
 as.Date(arg_resp$dates[which(per_resp$c2_workplaceclosing == 3
 & per_resp$c2_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2) +
 geom_vline(xintercept
 = as.Date(arg_resp$dates[which(per_resp$c6_stayathomerequirements == 3
 & per_resp$c6_flag == 1, arr.ind = TRUE)[1]]), col = "tomato2", lty = 2)
```



```
## Cross-National Plot
ggplot(cross.national, aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
                          col = Poverty)) + geom_smooth(aes(linetype = Poverty,
                                                            fill = Poverty)) +
 theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
 theme(panel.grid.minor = element_blank()) +
 theme(axis.text.x = element_text(angle = 35, hjust = 1, color = "black", size = 9)) +
 labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
 theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
 scale_x_date(date_breaks = "1 week", date_minor_breaks = "1 week",
              date labels = "%Y-%m-%d") +
 scale_y = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
 scale_colour_manual(values = c("gray20", "gray60")) +
 scale_fill_manual(values = c("gray20","gray60")) +
 scale_linetype_manual(values = c(2,3)) +
 geom_vline(xintercept = as.Date("2020-03-11"), col = "tomato2", lty = 2)
```



```
## Cross-National Plot
ggplot(subset(cross.national, sub_region_1 != "Buenos Aires"
              & sub_region_1 != "Santiago Metropolitan Region"
              & sub_region_1 != "Bogota"
              & sub_region_1 != "Metropolitan Municipality of Lima"),
       aes(x = as.Date(date), y = workplaces_percent_change_from_baseline,
           col = Poverty)) +
  geom_smooth(aes(linetype = Poverty, fill = Poverty)) +
  theme_minimal(base_size = 12) + theme(legend.position = "bottom") +
  theme(panel.grid.minor = element_blank()) +
  theme(axis.text.x = element text(angle = 35, hjust = 1, color = "black", size = 9)) +
  labs(x = "Date", y = "Workplaces", title = NULL, subtitle = NULL) +
  theme(plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm")) +
  scale_x_date(date_breaks = "1 week", date_minor_breaks = "1 week",
              date\_labels = "%Y-%m-%d") +
  scale_y = continuous(limits = c(-100, 20), breaks = c(-100, -80, -60, -40, -20, 0, 20)) +
  scale_colour_manual(values = c("gray20","gray60")) +
  scale_fill_manual(values = c("gray20", "gray60")) +
  scale_linetype_manual(values = c(2,3)) +
  geom_vline(xintercept = as.Date("2020-03-11"), col = "tomato2", lty = 2)
```


JHU-CSSE COVID-19 Dataset

```
## Code based on González-Bustamante (2021) DOI: 10.1016/j.worlddev.2020.105180
## JHU-CSSE COVID-19 Confirmed Dataset
JHU_cases <- read.csv("https://osf.io/cpfra/download", sep = ",")</pre>
## JHU-CSSE COVID-19 Deaths Dataset
JHU_deaths <- read.csv("https://osf.io/h6yex/download", sep = ",")</pre>
## Period Coverage
dd JHU <- as.numeric((as.Date("2020-05-19")) - as.Date("2020-01-22"))</pre>
begin JHU <- ((as.Date("2020-05-19"))-dd JHU) ## 22 January
dates_JHU <- seq(as.Date(begin_JHU), as.Date("2020-05-19"), by="days")</pre>
## Argentina
cases_arg <- slice(JHU_cases, which(JHU_cases[,2] == "Argentina")</pre>
                    :which(JHU_cases[,2] == "Argentina")) %>%
 pivot_longer(-c(Province.State, Country.Region, Lat, Long),
               names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident_cases = c(0, diff(cumulative_cases)))
cases_arg <- data.frame(cases_arg, dates_JHU)</pre>
cases_arg$Province.State <- NULL</pre>
```

```
cases_arg$Lat <- NULL</pre>
cases_arg$Long <- NULL</pre>
cases_arg$Date <- NULL</pre>
cases_arg$lagged_date <- dates_JHU+1</pre>
cases_arg$incident_cases <- NULL</pre>
cases_arg$dates_JHU <- NULL</pre>
## Chile
cases_chl <- slice(JHU_cases, which(JHU_cases[,2] == "Chile")</pre>
                     :which(JHU_cases[,2] == "Chile")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident cases = c(0, diff(cumulative cases)))
cases_chl <- data.frame(cases_chl, dates_JHU)</pre>
cases_chl$Province.State <- NULL</pre>
cases_chl$Lat <- NULL</pre>
cases_chl$Long <- NULL</pre>
cases_chl$Date <- NULL</pre>
cases_chl$lagged_date <- dates_JHU+1</pre>
cases_chl$incident_cases <- NULL</pre>
cases_chl$dates_JHU <- NULL</pre>
## Colombia
cases_col <- slice(JHU_cases, which(JHU_cases[,2] == "Colombia")</pre>
                     :which(JHU cases[,2] == "Colombia")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names to = "Date", values to = "cumulative cases") %>%
  mutate(incident_cases = c(0, diff(cumulative_cases)))
cases_col <- data.frame(cases_col, dates_JHU)</pre>
cases_col$Province.State <- NULL</pre>
cases_col$Lat <- NULL</pre>
cases_col$Long <- NULL</pre>
cases_col$Date <- NULL</pre>
cases_col$lagged_date <- dates_JHU+1</pre>
cases_col$incident_cases <- NULL</pre>
cases_col$dates_JHU <- NULL</pre>
## Peru
cases_per <- slice(JHU_cases, which(JHU_cases[,2] == "Peru")</pre>
                     :which(JHU_cases[,2] == "Peru")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident cases = c(0, diff(cumulative cases)))
cases_per <- data.frame(cases_per, dates_JHU)</pre>
cases_per$Province.State <- NULL</pre>
cases_per$Lat <- NULL</pre>
cases_per$Long <- NULL</pre>
cases_per$Date <- NULL</pre>
cases_per$lagged_date <- dates_JHU+1</pre>
cases_per$incident_cases <- NULL</pre>
cases_per$dates_JHU <- NULL</pre>
## Argentina
```

```
deaths_arg <- slice(JHU_deaths, which(JHU_deaths[,2] == "Argentina")</pre>
                     :which(JHU_deaths[,2] == "Argentina")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident_cases = c(0, diff(cumulative_cases)))
deaths_arg <- data.frame(deaths_arg, dates_JHU)</pre>
deaths_arg$Province.State <- NULL</pre>
deaths arg$Lat <- NULL
deaths arg$Long <- NULL
deaths_arg$Date <- NULL</pre>
deaths_arg$lagged_date <- dates_JHU+1</pre>
deaths_arg$incident_cases <- NULL</pre>
deaths_arg$dates_JHU <- NULL</pre>
## Chile
deaths_chl <- slice(JHU_deaths, which(JHU_deaths[,2] == "Chile")</pre>
                     :which(JHU_deaths[,2] == "Chile")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident_cases = c(0, diff(cumulative_cases)))
deaths_chl <- data.frame(deaths_chl, dates_JHU)</pre>
deaths_chl$Province.State <- NULL</pre>
deaths chl$Lat <- NULL
deaths_chl$Long <- NULL</pre>
deaths chl$Date <- NULL
deaths chl$lagged date <- dates JHU+1
deaths chl$incident cases <- NULL
deaths_chl$dates_JHU <- NULL</pre>
## Colombia
deaths_col <- slice(JHU_deaths, which(JHU_deaths[,2] == "Colombia")</pre>
                     :which(JHU_deaths[,2] == "Colombia")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident_cases = c(0, diff(cumulative_cases)))
deaths_col <- data.frame(deaths_col, dates_JHU)</pre>
deaths_col$Province.State <- NULL</pre>
deaths col$Lat <- NULL
deaths_col$Long <- NULL</pre>
deaths_col$Date <- NULL</pre>
deaths_col$lagged_date <- dates_JHU+1</pre>
deaths_col$incident_cases <- NULL</pre>
deaths col$dates JHU <- NULL
## Peru
deaths_per <- slice(JHU_deaths, which(JHU_deaths[,2] == "Peru")</pre>
                     :which(JHU_deaths[,2] == "Peru")) %>%
  pivot_longer(-c(Province.State, Country.Region, Lat, Long),
                names_to = "Date", values_to = "cumulative_cases") %>%
  mutate(incident_cases = c(0, diff(cumulative_cases)))
deaths_per <- data.frame(deaths_per, dates_JHU)</pre>
deaths_per$Province.State <- NULL</pre>
deaths_per$Lat <- NULL</pre>
```

```
deaths_per$Long <- NULL
deaths_per$Date <- NULL
deaths_per$lagged_date <- dates_JHU+1
deaths_per$incident_cases <- NULL
deaths_per$dates_JHU <- NULL</pre>
```

Difference-in-Differences (DiD)

DiD Precoding

```
## Economic Measures
ecc_ARG <- as.Date(arg_resp$dates[which(arg_resp$e1_incomesupport == 1</pre>
                                         & arg_resp$e1_flag == 1, arr.ind = TRUE)])[1]
ecc_CHL <- as.Date(chl_resp$dates[which(chl_resp$e1_incomesupport == 1</pre>
                                         & chl_resp$e1_flag == 1, arr.ind = TRUE)])[1]
ecc_COL <- as.Date(col_resp$dates[which(col_resp$e1_incomesupport == 1</pre>
                                         & col_resp$e1_flag == 1, arr.ind = TRUE)])[1]
ecc_PER <- as.Date(per_resp$dates[which(per_resp$e1_incomesupport == 1</pre>
                                         & per_resp$e1_flag == 1, arr.ind = TRUE)])[1]
debt_ARG <- as.Date(arg_resp$dates[which(arg_resp$e2_debtrelief == 2, arr.ind = TRUE)])[1]</pre>
debt_COL <-as.Date(col_resp$dates[which(col_resp$e2_debtrelief == 2, arr.ind = TRUE)])[1]</pre>
debt_PER <- as.Date(per_resp$dates[which(per_resp$e2_debtrelief == 2, arr.ind = TRUE)])[1]</pre>
## Cross National Data Frame
cross.national_cases <- bind_rows(cases_arg, cases_chl, cases_col, cases_per)</pre>
cross.national deaths <- bind rows(deaths arg, deaths chl, deaths col, deaths per)
names(cross.national deaths)[2] = "cumulative deaths"
cross.national$date <- as.Date(cross.national$date)</pre>
cross.national <- left_join(cross.national, cross.national_cases,</pre>
                             by = c("Country" = "Country.Region", "date" = "lagged_date"))
cross.national <- left_join(cross.national, cross.national_deaths,</pre>
                             by = c("Country" = "Country.Region", "date" = "lagged_date"))
cross.national$income <- ifelse((cross.national$date > ecc_ARG) & cross.national$Country
                                 == "Argentina", 1, ifelse((cross.national$date > ecc_CHL)
                                        & cross.national$Country == "Chile", 1,
                                        ifelse((cross.national$date > ecc_COL)
                                                & cross.national$Country == "Colombia", 1,
                                                ifelse((cross.national$date > ecc PER)
                                                       & cross.national$Country
                                                       == "Peru", 1, 0))))
cross.national$debt <- ifelse((cross.national$date > debt_ARG) & cross.national$Country
                               == "Argentina", 1, ifelse((cross.national$date > debt_COL)
                                      & cross.national$Country == "Colombia", 1,
                                      ifelse((cross.national$date > debt PER)
                                             & cross.national$Country == "Peru", 1, 0)))
cs.baseline <- cross.national
## Codification Post Period
```

DiD NPIs

```
## Diff-in-Diff WHO Announcement
diff_1 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                    + I(date) + I(sub_region_1), data = cs.baseline,
                    cluster = sub region 2)
fit_1 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post + I(date)</pre>
            + I(sub_region_1), data = cs.baseline)
vif_1 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                + I(date) + I(sub_region_1), data = cs.baseline))
robust_1 <- as.vector(summary(fit_1, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff First Interventions
diff_2 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post
                    + I(date) + I(sub_region_1), data = cross.national,
                    cluster = sub_region_2)
fit_2 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post + I(date)</pre>
            + I(sub_region_1), data = cross.national)
vif 2 <- VIF(lm(workplaces percent change from baseline ~ binary poverty*post
                + I(date) + I(sub_region_1), data = cross.national))
robust_2 <- as.vector(summary(fit_2, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff Controlling for Cumulative Cases
diff_3 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post
                    + cumulative_cases + I(date) + I(sub_region_1),
                    data = cross.national, cluster = sub_region_2)
fit_3 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
            + cumulative_cases + I(date) + I(sub_region_1), data = cross.national)
vif_3 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                + cumulative_cases + I(date) + I(sub_region_1),
                data = cross.national))
robust_3 <- as.vector(summary(fit_3, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff Controlling for Cumulative Deaths
diff_4 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post
                    + cumulative cases + cumulative deaths + I(date)
                    + I(sub_region_1), data = cross.national, cluster = sub_region_2)
fit_4 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post
            + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
            data = cross.national)
vif_4 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
```

```
+ cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                data = cross.national))
robust_4 <- as.vector(summary(fit_4, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff Argentina
diff_5 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                    + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                    data = subset(cross.national, Country == "Argentina"),
                    cluster = sub region 2)
fit_5 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
            + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
            data = subset(cross.national, Country == "Argentina"))
vif_5 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                data = subset(cross.national, Country == "Argentina")))
robust_5 <- as.vector(summary(fit_5, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff Chile
diff_6 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                    + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                    data = subset(cross.national, Country == "Chile"),
                    cluster = sub_region_2)
fit_6 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
            + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
            data = subset(cross.national, Country == "Chile"))
vif_6 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                + cumulative cases + cumulative deaths + I(date) + I(sub region 1),
                data = subset(cross.national, Country == "Chile")))
robust_6 <- as.vector(summary(fit_6, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff Colombia
diff_7 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                    + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                    data = subset(cross.national, Country == "Colombia"),
                    cluster = sub_region_2)
fit_7 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
            + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
            data = subset(cross.national, Country == "Colombia"))
vif_7 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                data = subset(cross.national, Country == "Colombia")))
robust_7 <- as.vector(summary(fit_7, robust = T)$coefficients[,"Std. Error"])</pre>
## Diff-in-Diff Peru
diff_8 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post
                    + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                    data = subset(cross.national, Country == "Peru"),
                    cluster = sub_region_2)
fit_8 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
            + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
            data = subset(cross.national, Country == "Peru"))
vif_8 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
```

```
data = subset(cross.national, Country == "Peru")))
robust_8 <- as.vector(summary(fit_8, robust = T)$coefficients[,"Std. Error"])</pre>
## Robust Standard Errors
robust_se <- data.frame(Model = c("Model 1", "Model 2", "Model 3", "Model 4", "Model 5",
                                  "Model 6", "Model 7", "Model 8"),
                        Term = c(rep("Poverty x Post", 8)),
                        Est = c(coeftest(fit 1, vcov = vcovHC(fit 1, type="HC1"))
                                 [(length(coeftest(fit 1, vcov
                                                  = vcovHC(fit_1, type="HC1")))/4), 1],
                                coeftest(fit_2, vcov = vcovHC(fit_2, type="HC1"))
                                [(length(coeftest(fit_2, vcov
                                                  = vcovHC(fit_2, type="HC1")))/4), 1],
                                coeftest(fit_3, vcov = vcovHC(fit_3, type="HC1"))
                                [(length(coeftest(fit_3, vcov
                                                  = vcovHC(fit_3, type="HC1")))/4), 1],
                                coeftest(fit_4, vcov = vcovHC(fit_4, type="HC1"))
                                [(length(coeftest(fit_4, vcov
                                                  = vcovHC(fit_4, type="HC1")))/4), 1],
                                coeftest(fit_5, vcov = vcovHC(fit_5, type="HC1"))
                                [(length(coeftest(fit_5, vcov
                                                  = vcovHC(fit_5, type="HC1")))/4), 1],
                                coeftest(fit_6, vcov = vcovHC(fit_6, type="HC1"))
                                [(length(coeftest(fit_6, vcov
                                                  = vcovHC(fit 6, type="HC1")))/4), 1],
                                coeftest(fit_7, vcov = vcovHC(fit_7, type="HC1"))
                                [(length(coeftest(fit_7, vcov
                                                  = vcovHC(fit_7, type="HC1")))/4), 1],
                                coeftest(fit_8, vcov = vcovHC(fit_8, type="HC1"))
                                [(length(coeftest(fit_8, vcov
                                                  = vcovHC(fit_8, type="HC1")))/4), 1]),
                        SD = c(coeftest(fit_1, vcov = vcovHC(fit_1, type="HC1"))
                               [(length(coeftest(fit_1, vcov
                                                 = vcovHC(fit_1, type="HC1")))/4), 2],
                               coeftest(fit_2, vcov = vcovHC(fit_2, type="HC1"))
                               [(length(coeftest(fit_2, vcov
                                                 = vcovHC(fit_2, type="HC1")))/4), 2],
                               coeftest(fit_3, vcov = vcovHC(fit_3, type="HC1"))
                               [(length(coeftest(fit_3, vcov
                                                 = vcovHC(fit_3, type="HC1")))/4), 2],
                               coeftest(fit_4, vcov = vcovHC(fit_4, type="HC1"))
                               [(length(coeftest(fit_4, vcov
                                                 = vcovHC(fit 4, type="HC1")))/4), 2],
                               coeftest(fit_5, vcov = vcovHC(fit_5, type="HC1"))
                               [(length(coeftest(fit_5, vcov
                                                 = vcovHC(fit_5, type="HC1")))/4), 2],
                               coeftest(fit_6, vcov = vcovHC(fit_6, type="HC1"))
                               [(length(coeftest(fit_6, vcov
                                                 = vcovHC(fit_6, type="HC1")))/4), 2],
                               coeftest(fit_7, vcov = vcovHC(fit_7, type="HC1"))
                               [(length(coeftest(fit_7, vcov
                                                 = vcovHC(fit_7, type="HC1")))/4), 2],
                               coeftest(fit_8, vcov = vcovHC(fit_8, type="HC1"))
```

```
[(length(coeftest(fit_8, vcov
                                                 = vcovHC(fit_8, type="HC1")))/4), 2]))
## Models Table
stargazer(fit_1, fit_2, fit_3, fit_4,
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility I",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model I", "Model II", "Model III", "Model IV"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative deaths"),
          add.lines = list(c("Robust SE", format(round(robust_se$SD[1],
                                                       digits = 3), nsmall = 3),
                             format(round(robust_se$SD[2], digits = 3), nsmall = 3),
                             format(round(robust_se$SD[3], digits = 3), nsmall = 3),
                             format(round(robust_se$SD[4], digits = 3), nsmall = 3)),
                           c("Post-t", "WHO", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "No", "No", "Yes", "Yes"),
                           c("Lagged deaths", "No", "No", "No", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_1, digits = 3), nsmall = 3),
                             format(round(vif_2, digits = 3), nsmall = 3),
                             format(round(vif_3, digits = 3), nsmall = 3),
                             format(round(vif 4, digits = 3), nsmall = 3)),
                           c("Subsample", "No", "No", "No", "No"),
                           c("Exclusion", "No", "No", "No", "No")),
          covariate.labels = c("Poverty", "Post", "Poverty x Post"),
          notes = "Standard errors in parentheses")
```

```
## Models Table
stargazer(fit_5, fit_6, fit_7, fit_8,
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility II",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model V", "Model VI", "Model VII", "Model VII"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Robust SE", format(round(robust_se$SD[5],
                                                       digits = 3), nsmall = 3),
                             format(round(robust_se$SD[6], digits = 3), nsmall = 3),
                             format(round(robust_se$SD[7], digits = 3), nsmall = 3),
                             format(round(robust_se$SD[8], digits = 3), nsmall = 3)),
                           c("Post-t", "NPIs", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "Yes", "Yes", "Yes", "Yes"),
                           c("Lagged deaths", "Yes", "Yes", "Yes", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_5, digits = 3), nsmall = 3),
                             format(round(vif_6, digits = 3), nsmall = 3),
```

Table 1: Effect of Poverty on Work Mobility I

	Mobility Change from Baseline				
	Model I	Model II	Model III	Model IV	
Poverty	-8.279***	-7.657^{***}	-7.757***	-7.746***	
	(1.218)	(0.927)	(0.927)	(0.908)	
Post	-44.455***	-61.677***	-61.093***	-55.781***	
	(0.495)	(0.366)	(0.378)	(0.397)	
Poverty x Post	4.317***	4.608***	4.665***	4.399***	
	(0.576)	(0.398)	(0.398)	(0.390)	
Robust SE	0.388	0.338	0.337	0.347	
Post-t	WHO	NPIs	NPIs	NPIs	
Lagged cases	No	No	Yes	Yes	
Lagged deaths	No	No	No	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	2.522	4.113	4.118	4.294	
Subsample	No	No	No	No	
Exclusion	No	No	No	No	
N	33016	33016	33016	33016	
R-squared	0.604	0.757	0.757	0.767	
Adj. R-squared	0.603	0.756	0.757	0.767	

***p < .01; **p < .05; *p < .1Standard errors in parentheses

```
## Models Table
stargazer(fit_1, fit_2, fit_3, fit_4,
          se = starprep(diff_1, diff_2, diff_3, diff_4),
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility I",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model I", "Model II", "Model III", "Model IV"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Post-t", "WHO", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "No", "No", "Yes", "Yes"),
                           c("Lagged deaths", "No", "No", "No", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_1, digits = 3), nsmall = 3),
                             format(round(vif 2, digits = 3), nsmall = 3),
                             format(round(vif_3, digits = 3), nsmall = 3),
```

Table 2: Effect of Poverty on Work Mobility II

	Mobility Change from Baseline				
	$\mathbf{Model}\ \mathbf{V}$	$\widetilde{\mathrm{Model}}\ \mathrm{VI}$	Model VII	${\bf Model\ VII}$	
Poverty	20.521***	-0.447	0.329	15.621***	
	(0.904)	(1.257)	(0.884)	(2.297)	
Post	-44.121***	-23.104****	-36.284***	-28.016^{***}	
	(0.728)	(1.168)	(0.717)	(1.026)	
Poverty x Post	4.390***	-2.387***	2.061***	0.933	
	(0.561)	(0.880)	(0.659)	(1.019)	
Robust SE	0.560	0.874	0.549	0.672	
Post-t	NPIs	NPIs	NPIs	NPIs	
Lagged cases	Yes	Yes	Yes	Yes	
Lagged deaths	Yes	Yes	Yes	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	4.974	5.910	6.726	4.296	
Subsample	\overline{ARG}	CHL	COL	PER	
Exclusion	No	No	No	No	
N	15826	2932	9866	4392	
R-squared	0.799	0.831	0.851	0.767	
Adj. R-squared	0.799	0.830	0.851	0.766	

***p < .01; **p < .05; *p < .1Standard errors in parentheses

```
## Models Table
stargazer(fit_5, fit_6, fit_7, fit_8,
          se = starprep(diff_5, diff_6, diff_7, diff_8),
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility II",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model V", "Model VI", "Model VII", "Model VII"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Post-t", "NPIs", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "Yes", "Yes", "Yes", "Yes"),
                           c("Lagged deaths", "Yes", "Yes", "Yes", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_5, digits = 3), nsmall = 3),
                             format(round(vif_6, digits = 3), nsmall = 3),
                             format(round(vif 7, digits = 3), nsmall = 3),
                             format(round(vif_8, digits = 3), nsmall = 3)),
```

Table 3: Effect of Poverty on Work Mobility I

	Mobility Change from Baseline				
	$\mathbf{Model}\;\mathbf{I}$	Model II	Model III	$\mathbf{Model}\; \mathbf{IV}$	
Poverty	-8.279***	-7.657^{***}	-7.757***	-7.746***	
	(2.256)	(2.301)	(2.300)	(2.327)	
Post	-44.455^{***}	-61.677^{***}	-61.093****	-55.781***	
	(0.651)	(0.802)	(0.829)	(0.734)	
Pov. x Post	4.317***	4.608***	4.665***	4.399***	
	(0.797)	(0.860)	(0.848)	(1.012)	
Post-t	WHO	NPIs	NPIs	NPIs	
Lagged cases	No	No	Yes	Yes	
Lagged deaths	No	No	No	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	2.522	4.113	4.118	4.294	
Subsample	No	No	No	No	
Exclusion	No	No	No	No	
N	33016	33016	33016	33016	
R-squared	0.604	0.757	0.757	0.767	
Adj. R-squared	0.603	0.756	0.757	0.767	

 $^{***}p < .01; ^{**}p < .05; ^{*}p < .1$

Clustered standard errors by sub-national level in parentheses

DiD Types of Mobilities

```
## Diff-in-Diff Transit Stations
diff_9 <- lm_robust(transit_stations_percent_change_from_baseline</pre>
                    ~ binary_poverty*post + cumulative_cases + cumulative_deaths
                    + I(date) + I(sub_region_1), data = cross.national,
                    cluster = sub_region_2)
fit_9 <- lm(transit_stations_percent_change_from_baseline ~ binary_poverty*post
            + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
            data = cross.national)
vif 9 <- VIF(lm(transit stations percent change from baseline ~ binary poverty*post
                + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                data = cross.national))
## Diff-in-Diff Groceries
diff_10 <- lm_robust(grocery_and_pharmacy_percent_change_from_baseline</pre>
                     ~ binary_poverty*post + cumulative_cases + cumulative_deaths
                     + I(date) + I(sub_region_1), data = cross.national,
                     cluster = sub_region_2)
```

Table 4: Effect of Poverty on Work Mobility II

	Mobility Change from Baseline				
	$\mathbf{Model}\ \mathbf{V}$	$\widetilde{\text{Model VI}}$	Model VII	Model VII	
Poverty	20.521***	-0.447	0.329	15.621	
v	(2.266)	(5.089)	(1.495)	(606.873)	
Post	-44.121^{***}	-23.104****	-36.284^{***}	-28.016****	
	(0.968)	(1.132)	(0.770)	(1.490)	
Poverty x Post	4.390***	-2.387	2.061^{*}	$0.933^{'}$	
	(1.146)	(2.140)	(1.178)	(1.915)	
Post-t	NPIs	NPIs	NPIs	NPIs	
Lagged cases	Yes	Yes	Yes	Yes	
Lagged deaths	Yes	Yes	Yes	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	4.974	5.910	6.726	4.296	
Subsample	\overline{ARG}	CHL	COL	PER	
Exclusion	No	No	No	No	
N	15826	2932	9866	4392	
R-squared	0.799	0.831	0.851	0.767	
Adj. R-squared	0.799	0.830	0.851	0.766	

 $^{***}p < .01; ^{**}p < .05; ^{*}p < .1$

```
fit 10 <- lm(grocery and pharmacy percent change from baseline ~ binary poverty*post
             + cumulative_cases + cumulative_deaths + I(date)+ I(sub_region_1),
             data = cross.national)
vif_10 <- VIF(lm(grocery_and_pharmacy_percent_change_from_baseline</pre>
                 ~ binary_poverty*post + cumulative_cases + cumulative_deaths
                 + I(date)+ I(sub_region_1), data = cross.national))
## Diff-in-Diff Recreation
diff_11 <- lm_robust(retail_and_recreation_percent_change_from_baseline</pre>
                     ~ binary_poverty*post + cumulative_cases + cumulative_deaths
                     + I(date) + I(sub_region_1), data = cross.national,
                     cluster = sub_region_2)
fit_11 <- lm(retail_and_recreation_percent_change_from_baseline</pre>
             ~ binary_poverty*post + cumulative_cases + cumulative_deaths + I(date)
             + I(sub_region_1), data = cross.national)
vif_11 <- VIF(lm(retail_and_recreation_percent_change_from_baseline</pre>
                 ~ binary_poverty*post + cumulative_cases + cumulative_deaths
                 + I(date) + I(sub_region_1), data = cross.national))
## Diff-in-Diff Parks
diff_12 <- lm_robust(parks_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date)
                     + I(sub_region_1), data = cross.national,
                     cluster = sub region 2)
fit_12 <- lm(parks_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = cross.national)
```

```
vif_12 <- VIF(lm(parks_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date)
                 + I(sub_region_1), data = cross.national))
## Models Table
stargazer(fit_9, fit_10, fit_11, fit_12, se = starprep(diff_9, diff_10, diff_11, diff_12),
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Types of Mobility",
          dep.var.labels = c("Transit", "Groceries", "Recreation", "Parks"),
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Post-t", "NPIs", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "Yes", "Yes", "Yes", "Yes"),
                           c("Lagged deaths", "Yes", "Yes", "Yes", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_9, digits = 3), nsmall = 3),
                             format(round(vif_10, digits = 3), nsmall = 3),
                             format(round(vif_11, digits = 3), nsmall = 3),
                             format(round(vif_12, digits = 3), nsmall = 3)),
                           c("Subsample", "No", "No", "No", "No"),
                           c("Exclusion", "No", "No", "No", "No")),
          covariate.labels = c("Poverty", "Post", "Poverty x Post"),
          notes = "Clustered standard errors by sub-national level in parentheses")
```

Table 5: Effect of Poverty on Types of Mobility

	Transit	Groceries	Recreation	Parks
Poverty	3.847	-8.727**	11.199**	23.844***
	(11.008)	(4.193)	(4.552)	(3.661)
Post	-51.568****	-44.337^{***}	-47.523^{***}	-35.916***
	(1.669)	(0.901)	(1.071)	(0.947)
Poverty x Post	4.830**	5.512***	-2.247^*	-2.225^*
	(2.080)	(1.272)	(1.340)	(1.285)
Post-t	NPIs	NPIs	NPIs	NPIs
Lagged cases	Yes	Yes	Yes	Yes
Lagged deaths	Yes	Yes	Yes	Yes
Day FE	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes
VIF	3.204	2.408	5.036	3.165
Subsample	No	No	No	No
Exclusion	No	No	No	No
N	17664	22144	23586	38831
R-squared	0.688	0.585	0.801	0.684
Adj. R-squared	0.686	0.583	0.801	0.683

Robustness Cheks

```
## Diff-in-Diff WHO Announcement
diff_13 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + I(date) + I(sub_region_1), data =
                       subset(cs.baseline, sub region 1 != "Buenos Aires"
                              & sub region 1 != "Santiago Metropolitan Region"
                              & sub region 1 != "Bogota"
                              & sub_region_1 != "Metropolitan Municipality of Lima"),
                     cluster = sub_region_2)
fit_13 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post + I(date)</pre>
             + I(sub region 1), data
             = subset(cs.baseline), sub_region_1 != "Buenos Aires"
             & sub_region_1 != "Santiago Metropolitan Region"
             & sub_region_1 != "Bogota"
             & sub_region_1 != "Metropolitan Municipality of Lima")
vif_13 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + I(date) + I(sub region 1), data
                 = subset(cs.baseline, sub_region_1 != "Buenos Aires"
                          & sub_region_1 != "Santiago Metropolitan Region"
                          & sub_region_1 != "Bogota"
                          & sub_region_1 != "Metropolitan Municipality of Lima")))
## Diff-in-Diff First Interventions
diff_14 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + I(date) + I(sub_region_1), data
                     = subset(cross.national, sub_region_1 != "Buenos Aires"
                              & sub_region_1 != "Santiago Metropolitan Region"
                              & sub_region_1 != "Bogota"
                              & sub_region_1 != "Metropolitan Municipality of Lima"),
                     cluster = sub_region_2)
fit_14 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post + I(date)
             + I(sub_region_1), data
             = subset(cross.national, sub_region_1 != "Buenos Aires"
                      & sub_region_1 != "Santiago Metropolitan Region"
                      & sub_region_1 != "Bogota"
                      & sub_region_1 != "Metropolitan Municipality of Lima"))
vif_14 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + I(date) + I(sub_region_1), data
                 = subset(cross.national, sub_region_1 != "Buenos Aires"
                          & sub_region_1 != "Santiago Metropolitan Region"
                          & sub_region_1 != "Bogota"
                          & sub_region_1 != "Metropolitan Municipality of Lima")))
## Diff-in-Diff Controlling for Cumulative Cases
diff_15 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + I(date) + I(sub_region_1), data
                     = subset(cross.national, sub_region_1 != "Buenos Aires"
                              & sub_region_1 != "Santiago Metropolitan Region"
                              & sub_region_1 != "Bogota"
                              & sub_region_1 != "Metropolitan Municipality of Lima"),
                     cluster = sub region 2)
fit_15 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
```

```
+ cumulative_cases + I(date) + I(sub_region_1), data
             = subset(cross.national, sub_region_1 != "Buenos Aires"
                      & sub_region_1 != "Santiago Metropolitan Region"
                      & sub_region_1 != "Bogota"
                      & sub_region_1 != "Metropolitan Municipality of Lima"))
vif_15 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + I(date) + I(sub_region_1), data
                 = subset(cross.national, sub region 1 != "Buenos Aires"
                          & sub_region_1 != "Santiago Metropolitan Region"
                          & sub region 1 != "Bogota"
                          & sub_region_1 != "Metropolitan Municipality of Lima")))
## Diff-in-Diff Controlling for Cumulative Deaths
diff_16 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(cross.national, sub_region_1 != "Buenos Aires"
                                    & sub_region_1 != "Santiago Metropolitan Region"
                                    & sub_region_1 != "Bogota"
                                    & sub_region_1 != "Metropolitan Municipality of Lima"),
                     cluster = sub_region_2)
fit_16 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(cross.national, sub region 1 != "Buenos Aires"
                           & sub_region_1 != "Santiago Metropolitan Region"
                           & sub region 1 != "Bogota"
                           & sub region 1 != "Metropolitan Municipality of Lima"))
vif_16 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(cross.national, sub_region_1 != "Buenos Aires"
                               & sub_region_1 != "Santiago Metropolitan Region"
                               & sub_region_1 != "Bogota"
                               & sub_region_1 != "Metropolitan Municipality of Lima")))
## Diff-in-Diff Argentina
diff_17 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(cross.national, Country == "Argentina"
                                    & sub_region_1 != "Buenos Aires"),
                     cluster = sub_region_2)
fit_17 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(cross.national, Country == "Argentina"
                           & sub region 1 != "Buenos Aires"))
vif_17 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(cross.national, Country == "Argentina"
                               & sub_region_1 != "Buenos Aires")))
## Diff-in-Diff Chile
diff_18 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(cross.national, Country == "Chile"
                                    & sub_region_1 != "Santiago Metropolitan Region"),
```

```
cluster = sub_region_2)
fit_18 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(cross.national, Country == "Chile"
                           & sub_region_1 != "Santiago Metropolitan Region"))
vif_18 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(cross.national, Country == "Chile"
                               & sub region 1 != "Santiago Metropolitan Region")))
## Diff-in-Diff Colombia
diff_19 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(cross.national, Country == "Colombia"
                                    & sub_region_1 != "Bogota"), cluster = sub_region_2)
fit_19 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(cross.national, Country == "Colombia"
                           & sub_region_1 != "Bogota"))
vif_19 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(cross.national, Country == "Colombia"
                               & sub_region_1 != "Bogota")))
## Diff-in-Diff Peru
diff_20 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative cases + cumulative deaths + I(date)
                     + I(sub_region_1), data
                     = subset(cross.national, Country == "Peru"
                              & sub_region_1 != "Metropolitan Municipality of Lima"),
                     cluster = sub region 2)
fit_20 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(cross.national, Country == "Peru"
                           & sub_region_1 != "Metropolitan Municipality of Lima"))
vif_20 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(cross.national, Country == "Peru"
                               & sub_region_1 != "Metropolitan Municipality of Lima")))
## Models Table
stargazer(fit_13, fit_14, fit_15, fit_16,
          se = starprep(diff 13, diff 14, diff 15, diff 16),
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility Excluding Capitals I",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model I", "Model II", "Model III", "Model IV"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Post-t", "WHO", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "No", "No", "Yes", "Yes"),
                           c("Lagged deaths", "No", "No", "No", "Yes"),
```

Table 6: Effect of Poverty on Work Mobility Excluding Capitals I

	Mobility Change from Baseline				
	$\mathbf{Model}\;\mathbf{I}$	Model II	Model III	$\mathbf{Model}\; \mathbf{IV}$	
Poverty	-7.832***	-7.172***	-7.265***	-7.386***	
	(2.255)	(2.302)	(2.301)	(2.331)	
Post	-44.225^{***}	-61.186^{***}	-60.653^{***}	$-\hat{55.159}^{***}$	
	(0.666)	(0.823)	(0.848)	(0.771)	
Poverty x Post	3.769***	3.958***	4.012***	3.919***	
	(0.808)	(0.877)	(0.867)	(1.043)	
Post-t	WHO	NPIs	NPIs	NPIs	
Lagged cases	No	No	Yes	Yes	
Lagged deaths	No	No	No	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	2.482	4.015	4.019	4.201	
Subsample	No	No	No	No	
Exclusion	Capital	Capital	Capital	Capital	
N	31613	31613	31613	31613	
R-squared	0.597	0.751	0.751	0.762	
Adj. R-squared	0.596	0.750	0.751	0.761	

Table 7: Effect of Poverty on Work Mobility Excluding Capitals II

	Mobility Change from Baseline				
	$\mathbf{Model}\ \mathbf{V}$	Model VI	Model VII	Model VII	
Poverty	-5.022*	0.853	0.418	16.124	
	(2.714)	(5.084)	(2.823)	(610.051)	
Post	-41.255^{***}	-21.681****	-36.156***	-27.502***	
	(0.909)	(1.265)	(0.767)	(1.439)	
Poverty x Post	$1.103^{'}$	-4.082^*	1.947^{*}	0.302	
·	(1.017)	(2.203)	(1.176)	(1.852)	
Post-t	NPIs	NPIs	NPIs	NPIs	
Lagged cases	Yes	Yes	Yes	Yes	
Lagged deaths	Yes	Yes	Yes	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	4.722	5.892	6.710	4.264	
Subsample	\overline{ARG}	CHL	COL	PER	
Exclusion	Capital	Capital	Capital	Capital	
N	14911	2566	9805	4331	
R-squared	0.788	0.830	0.851	0.765	
Adj. R-squared	0.788	0.829	0.851	0.764	

```
## Diff-in-Diff WHO Announcement
diff_21 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + income + debt + I(date) + I(sub_region_1), data = cs.baseline,
                     cluster = sub_region_2)
fit_21 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post + income</pre>
             + debt + I(date) + I(sub_region_1), data = cs.baseline)
vif_21 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + income + debt + I(date) + I(sub_region_1), data = cs.baseline))
## Diff-in-Diff First Interventions
diff_22 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + income + debt + I(date) + I(sub_region_1),
                     data = cross.national, cluster = sub_region_2)
fit_22 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + income + debt + I(date) + I(sub_region_1), data = cross.national)
vif 22 <- VIF(lm(workplaces percent change from baseline ~ binary poverty*post
                 + income + debt + I(date) + I(sub_region_1), data = cross.national))
```

```
## Diff-in-Diff Controlling for Cumulative Cases
diff_23 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative cases + income + debt + I(date) + I(sub region 1),
                     data = cross.national, cluster = sub region 2)
fit_23 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + income + debt + I(date) + I(sub_region_1),
             data = cross.national)
vif 23 <- VIF(lm(workplaces percent change from baseline ~ binary poverty*post
                 + cumulative cases + income + debt + I(date) + I(sub region 1),
                 data = cross.national))
## Diff-in-Diff Controlling for Cumulative Deaths
diff_24 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + income + debt + I(date)
                     + I(sub_region_1), data = cross.national, cluster = sub_region_2)
fit_24 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + income + debt + I(date)
             + I(sub_region_1), data = cross.national)
vif_24 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative cases + cumulative deaths + income + debt + I(date)
                 + I(sub region 1), data = cross.national))
## Diff-in-Diff Argentina
diff_25 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + income + debt
                     + I(date)+ I(sub_region_1), data
                     = subset(cross.national, Country == "Argentina"),
                     cluster = sub_region_2)
fit_25 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + income + debt + I(date)
             + I(sub_region_1), data = subset(cross.national, Country == "Argentina"))
vif_25 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + income + debt + I(date)
                 + I(sub_region_1), data
                 = subset(cross.national, Country == "Argentina")))
## Diff-in-Diff Chile
diff 26 <- lm robust(workplaces percent change from baseline ~ binary poverty*post
                     + cumulative_cases + cumulative_deaths + income + debt
                     + I(date) + I(sub_region_1), data
                     = subset(cross.national, Country == "Chile"),
                     cluster = sub_region_2)
fit_26 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + income + debt + I(date)
             + I(sub_region_1), data = subset(cross.national, Country == "Chile"))
vif_26 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + income + debt
                 + I(date) + I(sub_region_1), data
                 = subset(cross.national, Country == "Chile")))
## Diff-in-Diff Colombia
diff_27 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + income + debt
```

```
+ I(date) + I(sub_region_1), data
                     = subset(cross.national, Country == "Colombia"),
                     cluster = sub_region_2)
fit_27 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + income + debt+ I(date)
             + I(sub_region_1), data = subset(cross.national, Country == "Colombia"))
vif_27 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative cases + cumulative deaths + income + debt + I(date)
                 + I(sub region 1), data
                 = subset(cross.national, Country == "Colombia")))
## Diff-in-Diff Peru
diff_28 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + income + debt
                     + I(date) + I(sub_region_1), data
                     = subset(cross.national, Country == "Peru"),
                     cluster = sub_region_2)
fit_28 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post
             + cumulative_cases + cumulative_deaths + income + debt + I(date)
             + I(sub_region_1), data = subset(cross.national, Country == "Peru"))
vif_28 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post
                 + cumulative_cases + cumulative_deaths + income + debt
                 + I(date)+ I(sub_region_1), data
                 = subset(cross.national, Country == "Peru")))
## Models Table
stargazer(fit_21, fit_22, fit_23, fit_24,
          se = starprep(diff_21, diff_22, diff_23, diff_24),
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility Considering Economic Measures I",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model I", "Model II", "Model III", "Model IV"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths", "income", "debt"),
          add.lines = list(c("Post-t", "WHO", "NPIs", "NPIs", "NPIs"),
                           c("Lagged cases", "No", "No", "Yes", "Yes"),
                           c("Lagged deaths", "No", "No", "No", "Yes"),
                           c("Income support", "Yes", "Yes", "Yes", "Yes"),
                           c("Debt relief", "Yes", "Yes", "Yes", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_21, digits = 3), nsmall = 3),
                             format(round(vif_22, digits = 3), nsmall = 3),
                             format(round(vif_23, digits = 3), nsmall = 3),
                             format(round(vif_24, digits = 3), nsmall = 3)),
                           c("Subsample", "No", "No", "No", "No"),
                           c("Exclusion", "No", "No", "No", "No")),
          covariate.labels = c("Poverty", "Post", "Poverty x Post"),
          notes = "Clustered standard errors by sub-national level in parentheses")
```

Table 8: Effect of Poverty on Work Mobility Considering Economic Measures I

	Mobility Change from Baseline				
	$\mathbf{Model}\;\mathbf{I}$	Model II	Model III	Model IV	
Poverty	-8.303***	-9.376***	-9.281^{***}	-8.483***	
	(2.272)	(2.297)	(2.297)	(2.307)	
Post	-39.668***	-56.813***	-57.323***	-51.803***	
	(0.778)	(0.903)	(0.895)	(0.870)	
Poverty x Post	4.829***	5.390***	5.340***	4.866***	
	(0.737)	(0.804)	(0.815)	(0.891)	
Post-t	WHO	NPIs	NPIs	NPIs	
Lagged cases	No	No	Yes	Yes	
Lagged deaths	No	No	No	Yes	
Income support	Yes	Yes	Yes	Yes	
Debt relief	Yes	Yes	Yes	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	3.111	4.474	4.482	4.667	
Subsample	No	No	No	No	
Exclusion	No	No	No	No	
N	33016	33016	33016	33016	
R-squared	0.679	0.777	0.777	0.786	
Adj. R-squared	0.678	0.776	0.776	0.785	

```
## Models Table
stargazer(fit_25, fit_26, fit_27, fit_28,
          se = starprep(diff_25, diff_26, diff_27, diff_28),
          type = "latex", header = FALSE, style = "ajps",
          title = "Effect of Poverty on Work Mobility Considering Economic Measures II",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model V", "Model VI", "Model VII", "Model VII"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                    "cumulative_deaths", "income", "debt"),
          add.lines = list(c("Post-t", "NPIs", "NPIs", "NPIs", "NPIs"),
                            c("Lagged cases", "Yes", "Yes", "Yes", "Yes"),
c("Lagged deaths", "Yes", "Yes", "Yes", "Yes"),
                            c("Income support", "Yes", "Yes", "Yes", "Yes"),
                            c("Debt relief", "Yes", "Yes", "Yes", "Yes"),
                            c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                            c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                            c("VIF", format(round(vif_25, digits = 3), nsmall = 3),
                              format(round(vif_26, digits = 3), nsmall = 3),
                              format(round(vif_27, digits = 3), nsmall = 3),
                              format(round(vif_28, digits = 3), nsmall = 3)),
                            c("Subsample", "ARG", "CHL", "COL", "PER"),
                            c("Exclusion", "No", "No", "No", "No")),
          covariate.labels = c("Poverty", "Post", "Poverty x Post"),
```

Table 9: Effect of Poverty on Work Mobility Considering Economic Measures II

	Mobility Change from Baseline				
	$\mathbf{Model}\ \mathbf{V}$	Model VI	Model VII	Model VII	
Poverty	20.560***	-0.450	0.328	16.618	
·	(2.274)	(5.088)	(2.954)	(365.301)	
Post	-42.309***	-22.438***	-10.881***	-7.641***	
	(0.966)	(1.129)	(0.610)	(1.314)	
Poverty x Post	4.364***	-2.383	2.080*	1.128	
	(1.148)	(2.140)	(1.180)	(1.954)	
Post-t	NPIs	NPIs	NPIs	NPIs	
Lagged cases	Yes	Yes	Yes	Yes	
Lagged deaths	Yes	Yes	Yes	Yes	
Income support	Yes	Yes	Yes	Yes	
Debt relief	Yes	Yes	Yes	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	5.345	6.014	7.484	7.866	
Subsample	\overline{ARG}	CHL	COL	PER	
Exclusion	No	No	No	No	
N	15826	2932	9866	4392	
R-squared	0.813	0.834	0.866	0.873	
Adj. R-squared	0.813	0.833	0.866	0.872	

Clustered standard errors by sub-national level in parentheses

Placebo Tests

```
## Placebo Data Frame
placebo.data <- bind_rows(placebo_ARG, placebo_CHL, placebo_COL, placebo_PER)</pre>
names(placebo.data)[2] = "Country"
## Codification Post Period
placebo.data$post <- ifelse(placebo.data$date > as.Date("2020-02-18"), 1, 0)
placebo.data$date <- as.Date(placebo.data$date)</pre>
placebo.data <- left_join(placebo.data, cross.national_cases,</pre>
                           by = c("Country" = "Country.Region", "date" = "lagged_date"))
placebo.data <- left_join(placebo.data, cross.national_deaths,</pre>
                           by = c("Country" = "Country.Region", "date" = "lagged_date"))
## Diff-in-Diff WHO Announcement
diff_29 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                      + I(date) + I(sub_region_1), data = placebo.data,
                      cluster = sub_region_2)
fit_29 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post + I(date)</pre>
             + I(sub_region_1), data = placebo.data)
vif_29 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
```

```
+ I(date) + I(sub_region_1), data = placebo.data))
## Diff-in-Diff First Interventions
diff_30 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                      + I(date) + I(sub_region_1), data = placebo.data,
                      cluster = sub region 2)
fit_30 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + I(date) + I(sub region 1), data = placebo.data)
vif_30 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + I(date) + I(sub region 1), data = placebo.data))
## Diff-in-Diff Controlling for Cumulative Cases
diff_31 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + I(date) + I(sub_region_1),
                     data = placebo.data, cluster = sub_region_2)
fit_31 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
              + cumulative_cases + I(date) + I(sub_region_1), data = placebo.data)
vif_31 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + I(date) + I(sub_region_1), data = placebo.data))
## Diff-in-Diff Controlling for Cumulative Deaths
diff_32 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative cases + cumulative deaths + I(date)
                     + I(sub_region_1), data = placebo.data, cluster = sub_region_2)
fit_32 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = placebo.data)
vif_32 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = placebo.data))
## Diff-in-Diff Argentina
diff_33 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(placebo.data, Country == "Argentina"),
                     cluster = sub_region_2)
fit_33 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(placebo.data, Country == "Argentina"))
vif_33 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(placebo.data, Country == "Argentina")))
## Diff-in-Diff Chile
diff_34 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(placebo.data, Country == "Chile"),
                     cluster = sub_region_2)
fit_34 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(placebo.data, Country == "Chile"))
vif_34 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
```

```
data = subset(placebo.data, Country == "Chile")))
## Diff-in-Diff Colombia
diff_35 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date)
                     + I(sub region 1),
                     data = subset(placebo.data, Country == "Colombia"),
                     cluster = sub region 2)
fit_35 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative cases + cumulative deaths + I(date) + I(sub region 1),
             data = subset(placebo.data, Country == "Colombia"))
vif_35 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                 data = subset(placebo.data, Country == "Colombia")))
## Diff-in-Diff Peru
diff_36 <- lm_robust(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                     + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
                     data = subset(placebo.data, Country == "Peru"),
                     cluster = sub_region_2)
fit_36 <- lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
             + cumulative_cases + cumulative_deaths + I(date) + I(sub_region_1),
             data = subset(placebo.data, Country == "Peru"))
vif_36 <- VIF(lm(workplaces_percent_change_from_baseline ~ binary_poverty*post</pre>
                 + cumulative cases + cumulative deaths + I(date) + I(sub region 1),
                 data = subset(placebo.data, Country == "Peru")))
## Models Table
stargazer(fit_29, fit_30, fit_31, fit_32,
          se = starprep(diff_29, diff_30, diff_31, diff_32),
          type = "latex", header = FALSE, style = "ajps",
          title = "Placebo on Work Mobility I",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model I", "Model II", "Model III", "Model IV"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Post-t-1", "Placebo", "Placebo", "Placebo", "Placebo"),
                           c("Lagged cases", "No", "No", "Yes", "Yes"),
                           c("Lagged deaths", "No", "No", "No", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif 29, digits = 3), nsmall = 3),
                             format(round(vif_30, digits = 3), nsmall = 3),
                             format(round(vif_31, digits = 3), nsmall = 3),
                             format(round(vif_32, digits = 3), nsmall = 3)),
                           c("Subsample", "No", "No", "No", "No"),
                           c("Exclusion", "No", "No", "No", "No")),
          covariate.labels = c("Poverty", "Post", "Poverty x Post"),
          notes = "Clustered standard errors by sub-national level in parentheses")
```

Table 10: Placebo on Work Mobility I

	Mobility Change from Baseline				
	Model I	Model II	Model III	Model IV	
Poverty	5.639***	5.639***	5.780***	5.628***	
	(1.429)	(1.429)	(1.424)	(1.425)	
Post	-7.412***	-7.412***	-7.211***	-7.913***	
	(0.410)	(0.410)	(0.421)	(0.450)	
Poverty x Post	-0.337	-0.337	-0.375	-0.384	
	(0.387)	(0.387)	(0.386)	(0.402)	
Post-t-1	Placebo	Placebo	Placebo	Placebo	
Lagged cases	No	No	Yes	Yes	
Lagged deaths	No	No	No	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	1.253	1.253	1.253	1.272	
Subsample	No	No	No	No	
Exclusion	No	No	No	No	
N	12284	12284	12284	12284	
R-squared	0.202	0.202	0.202	0.214	
Adj. R-squared	0.196	0.196	0.196	0.209	

```
## Models Table
stargazer(fit_33, fit_34, fit_35, fit_36,
          se = starprep(diff_33, diff_34, diff_35, diff_36),
          type = "latex", header = FALSE, style = "ajps",
          title = "Placebo on Work Mobility II",
          dep.var.labels = "Mobility Change from Baseline",
          notes.align = "c", model.numbers = FALSE, omit.stat = c("f", "ser"),
          column.labels = c("Model V", "Model VI", "Model VII", "Model VII"),
          omit = c("Constant", "date", "sub_region_1", "cumulative_cases",
                   "cumulative_deaths"),
          add.lines = list(c("Post-t-1", "Placebo", "Placebo", "Placebo", "Placebo"),
                           c("Lagged cases", "Yes", "Yes", "Yes", "Yes"),
                           c("Lagged deaths", "Yes", "Yes", "Yes", "Yes"),
                           c("Day FE", "Yes", "Yes", "Yes", "Yes"),
                           c("Region FE", "Yes", "Yes", "Yes", "Yes"),
                           c("VIF", format(round(vif_33, digits = 3), nsmall = 3),
                             format(round(vif_34, digits = 3), nsmall = 3),
                             format(round(vif_35, digits = 3), nsmall = 3),
                             format(round(vif_36, digits = 3), nsmall = 3)),
                           c("Subsample", "ARG", "CHL", "COL", "PER"),
                           c("Exclusion", "No", "No", "No", "No")),
          covariate.labels = c("Poverty", "Post", "Poverty x Post"),
          notes = "Clustered standard errors by sub-national level in parentheses")
```

Table 11: Placebo on Work Mobility II

	Mobility Change from Baseline				
	$\mathbf{Model}\ \mathbf{V}$	Model VI	Model VII	${\bf Model\ VII}$	
Poverty	9.068***	-4.305	-2.386***	4.514	
	(0.928)	(2.905)	(0.787)	(465.787)	
Post	-14.472***	-5.384***	-6.238***	-2.011***	
	(0.567)	(0.622)	(0.648)	(0.436)	
Poverty x Post	-0.292	0.955	1.170*	0.144	
	(0.534)	(0.767)	(0.700)	(0.568)	
Post-t-1	Placebo	Placebo	Placebo	Placebo	
Lagged cases	Yes	Yes	Yes	Yes	
Lagged deaths	Yes	Yes	Yes	Yes	
Day FE	Yes	Yes	Yes	Yes	
Region FE	Yes	Yes	Yes	Yes	
VIF	1.215	2.873	1.302	1.347	
Subsample	\overline{ARG}	CHL	COL	PER	
Exclusion	No	No	No	No	
N	6063	1175	3377	1669	
R-squared	0.177	0.652	0.232	0.258	
Adj. R-squared	0.174	0.646	0.226	0.245	

***p < .01; **p < .05; *p < .1 Clustered standard errors by sub-national level in parentheses