Slides1

St. error $s(\hat{\beta})$ & sample size (n)

Reality (eta) vs. estin (\hat{eta}) Sample size $oldsymbol{n}$ vs.

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

 σ^2

How is $s(\hat{\beta}_j)$ estimated?

 $\overline{\operatorname{var}}(\hat{oldsymbol{eta}}_2\,|\,oldsymbol{x})$ formul come from? Homoskedasticity

Takeaways

Appendix

ECONOMETRICS I

Lecture 4

Understanding $\hat{\beta}$'s standard errors

Matías Cabello matias.cabello@wiwi.uni-halle.de

October 27, 2025

Introduction

St. error $s(\hat{\beta}_j)$ &

error variance (σ^2)

How is $s(\hat{\beta}_i)$

Takeaways

Tech Adoption: Linear vs Log-Linear Models Dependent variable: Users log(Users) Linear Log-Linear (1) (2) 200.094*** $\hat{\beta}_2$ estimate Year $\begin{array}{c} (25.205) \\ -401,968.400^{***} \\ (50.787.630) \end{array} \begin{array}{c} (0.022) \\ -479.229^{***} \\ (44.104) \end{array} \hat{\beta}_1 \text{ estimate} \end{array}$ Constant Observations R2 *p<0.1; **p<0.05; ***p<0.01 Note:

Introduction

sample size (n)

St. error $s(\hat{\beta}_{j})$ &

error variance (σ^2)

How is $s(\hat{\beta}_i)$

Takeaways

Tech Adoption: Linear vs Log-Linear Models Dependent variable: log(Users) Users Log-Linear Linear (1) (2) 200.094*** 0.241*** Year (25.205) (0.022)What is this? -401,968.400*** -479.229*** Constant (50,787.630) (44.104)**Observations** 21 21 R2 0.768 0.864 Note: *p<0.1; **p<0.05; ***p<0.01

Introduction

St. error $s(\hat{\beta})$ & sample size (n)

Reality $(oldsymbol{eta})$ vs. estima $(oldsymbol{eta})$ Sample size $oldsymbol{n}$ vs. estimation reliability

St. error $s(\hat{eta}_j)$ & error variance (σ^2)

How is $s(\hat{\beta}_j)$ estimated?

Where the the var $(\beta_j \mid a^j)$ formula contribution. The final formula (if

Takeaways

Appendix

The information in parentheses corresponds to the respective standard errors of each estimated $\hat{\beta}_j$.

Define st. error of
$$\hat{\beta}_j \equiv s(\hat{\beta}_j) = \sqrt{\mathrm{var}(\hat{\beta}_j)}$$

Today's objective: understand what $s(\hat{\beta}_j)$ means and how to estimate it.

```
St. error s(\hat{\beta}_j) & error variance (\sigma^2) How is s(\hat{\beta}_j) estimated?
```

Appendix

St. error $s(\hat{\beta})$ & sample size (n)

Reality (β) vs. estimate $(\hat{\beta})$

Consider a data-generator process (a "population")

$$y = 40 + 2 \cdot x + u, \qquad \text{with random error } u \sim N(0, \sigma).$$

That is, the true parameter is $\beta = 2$.

In reality, we don't know the value of β . We only can guess the value through the estimation

$$\hat{\beta} = \frac{\text{cov}(x, y)}{\text{var}(x)}$$

using n available data points.

St. error
$$s(\hat{\beta})$$
 & sample size (n) Reality (β) vs. estimate $(\hat{\beta})$

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

How is $s(\hat{\beta}_j)$ estimated?

View does the set $(\hat{\beta}_j \mid x)$ from loose from?

Homoskedasticity
The final formula kc=2)
Takeaways

Key takeam

Appendix

Reality (β) vs. estimate $(\hat{\beta})$

St. error $s(\hat{\beta})$ & sample size (n)Reality (β) vs. estimate

St. error $s(\hat{\beta}_j)$ &

How is $s(\hat{\beta}_j)$ estimated?

Takeaways

Will the sample size n affect the **precision** of our **estimate** $\hat{\beta}$?

Appendix


```
St. error s(\hat{\beta}) & sample size (n)
```

Sample size n vs.

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

```
How is s(\hat{\beta}_j) estimated?
```

Where does the $\sqrt{n} \cdot (\hat{\beta}_2 \mid x)$ form come from?

Homoskedasticity

The final formula (if

Takeaways

Appendix

Takeaway:

■ The larger the sample (the higher n) the more stable are the estimates of $\hat{\beta}_j$ — i.e., the lower is $s(\hat{\beta}_j) = \sqrt{\mathrm{var}(\hat{\beta}_j)}$.

St. error $s(\hat{\beta})$ & sample size (n) . St. error $s(\hat{\beta})$ How is $s(\hat{\beta}_j)$ estimated?

Takeaways

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

Let us play God and invent some data of the form

$$y_A = 40 + 2 \cdot x + u_A, \ u_A \sim N(0, 10^2)$$

 $y_B = 40 + 2 \cdot x + u_B, \ u_B \sim N(0, 40^2)$

Both populations are identical, except for the variances of the error terms u_A and u_B ($\sigma_B > \sigma_A$).

Appendix Variance and covar rules

Takeaways

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

The importance of the error-variance σ^2

How is $s(\hat{\beta}_i)$

Different error terms:

- Low-variance u_A vs. high-variance u_B .
- Both normally distributed

$$u_A \sim N(0, 10^2)$$

 $u_B \sim N(0, 40^2)$

St. error $s(\hat{\beta})$ & sample size (n)

St. error $s(\hat{\beta}_j)$ &

error variance (σ^2)

The importance of the error-variance σ^2 How is $s(\hat{\beta}_i)$

Takeaways

Dependent variable: yΑ (sigma = 10) (sigma = 40) 2.015*** 2.053*** х (0.032) (0.132)39.030*** 39.310*** Constant (1.931) (7.924)Observations 100 100 R2 0.976 0.711 *p<0.1; **p<0.05; ***p<0.01 Note:

St. error $s(\hat{\beta}_j)$ & error variance (σ^2) The importance of the error variance σ^2

Takeaways

1000 different estimates $\hat{\beta}$ using n=30 random samples of y_A

Sampling Distribution of $\mbox{\it B}$ (yA)

St. error $s(\hat{\beta}_j)$ & error variance (σ^2) The importance of the error variance σ^2

How is $s(\hat{\beta}_i)$

Takeaways

1000 different estimates $\hat{\beta}$ using n=30 random samples of y_B

Sampling Distribution of ß (yB)

Comparison of Sampling Distributions

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_j)$ &

error variance (σ^2) The importance of the

error-variance σ^2

How is $s(\hat{\beta}_i)$

Takeaways

sample size (n)

St. error $s(\hat{\beta})$ & sample size (n)

St. error $s(\hat{eta}_j)$ & error variance (σ^2)

error variance (σ^2) The importance of the error-variance σ^2 How is $s(\hat{\beta}_i)$

Where does the $\sqrt{n}t(\hat{\beta}_2 \mid x)$ for come from?

The final formul (c = 2)

Appendix

Takeaway:

■ The smaller the error variance (the lower σ) the more stable are the estimates of $\hat{\beta}_j$ – i.e., the lower is

$$s(\hat{\beta}_j) = \sqrt{\operatorname{var}(\hat{\beta}_j)}.$$

Notice higher standard errors (in parentheses) of the coefficients of y_B :

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

error variance σ^2

How is $s(\hat{\beta}_i)$

Takeaways

Appendix

Dependent variable: γA (sigma = 10) (sigma = 40) 2.015*** 2.053*** х (0.032) (0.132)39.030*** 39.310*** Constant (1.931) (7.924)Observations 100 100 R.2 0.976 0.711 *p<0.1; **p<0.05; ***p<0.01 Note:

```
St. error s(\hat{\beta}) & sample size (n) St. error s(\hat{\beta}_j) & error variance (\sigma^2)
```

Appendix

How is $s(\hat{\beta}_j)$ estimated?

St. error $s(\hat{\beta})$ & sample size (n) St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

Takeaways

In practice, we do not run thousands of estimates with different samples (like shown in the previous slides). Instead, we estimate the parameter vector $\hat{\beta} = \left[\hat{\beta}_1, \hat{\beta}_2, \dots \hat{\beta}_k\right]'$ just once.

Q: How do we then obtain an estimate of $s(\hat{\beta}_j) = \sqrt{\operatorname{var}(\hat{\beta}_j)}$?

A: In the simple case of the univariate model (k=2), it is estimated with the analytical solution

$$\widehat{\operatorname{var}}(\hat{\beta}_2|x) = \frac{\hat{\sigma}^2}{\sum (x_i - \bar{x})^2} \quad \text{with } \hat{\sigma}^2 = \frac{\sum_i^n \hat{u}_i^2}{n - 2}$$

That is the formula that statistical software use to estimate the st. errors $\hat{s}(\beta_2|x) = \sqrt{\widehat{\mathrm{var}}(\hat{\beta}_2|x)}$ shown in parenthesis in the introduction.

Where does the $\widehat{\mathrm{var}}(\hat{\beta}_2|x)$ formula come from?

Assume true model is $y = \beta_1 + x\beta_2 + u$. Then

$$\hat{\beta}_2 = \frac{\mathsf{cov}(x, y)}{\mathsf{var}(x)} = \frac{\mathsf{cov}(x, \beta_1 + x\beta_2 + u)}{\mathsf{var}(x)}$$

By the rules described in the appendix:

$$\begin{split} \hat{\beta}_2 &= \frac{\operatorname{cov}(x, x\beta_2)}{\operatorname{var}(x)} + \frac{\operatorname{cov}(x, u)}{\operatorname{var}(x)} \\ &= \beta_2 \frac{\operatorname{cov}(x, x)}{\operatorname{var}(x)} + \frac{\operatorname{cov}(x, u)}{\operatorname{var}(x)} \\ &= \beta_2 \frac{\operatorname{var}(x)}{\operatorname{var}(x)} + \frac{\operatorname{cov}(x, u)}{\operatorname{var}(x)} \\ &= \beta_2 + \frac{\operatorname{cov}(x, u)}{\operatorname{var}(x)} = \beta_2 + \frac{\sum_{i=1}^n (x_i - \bar{x}) u_i}{\sum_{i=1}^n (x_i - \bar{x})^2} \end{split}$$

St. error $s(\hat{\beta})$ &

St. error
$$s(\hat{\beta}_j)$$
 & error variance (σ^2)

How is
$$s(\hat{\beta}_j)$$
 estimated?

Where does the
$$\widehat{\mathrm{var}}(\widehat{\boldsymbol{\beta}}_2 \,|\, \boldsymbol{x})$$
 formula come from?

Homoskedasticity
The final formula (
$$k=2$$
)

Where does the $\widehat{\text{var}}(\hat{\beta}_2|x)$ formula come from?

St. error
$$s(\hat{\beta})$$
 & $\operatorname{var}(\hat{\beta}_2|x) = \operatorname{var}\left(\beta_2 + \frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n (x_i - \bar{x})^2} \middle| x\right)$

$$= \operatorname{var}\left(\frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n (x_i - \bar{x})^2} \middle| x\right)$$

$$= \operatorname{var}\left(\frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n (x_i - \bar{x})^2} \middle| x\right)$$
How is $s(\hat{\beta}_j)$ estimated estimated estimated
$$= \frac{1}{\left(\sum_{i=1}^n (x_i - \bar{x})^2\right)^2} \operatorname{var}\left(\sum_{i=1}^n (x_i - \bar{x})u_i \middle| x\right)$$

Let's first expand var $(\sum_{i=1}^{n} (x_i - \bar{x})u_i|x)$:

Takeaways

Where does the $\widehat{\mathrm{var}}(\hat{\beta}_2|x)$ formula come from?

Let's first expand $\operatorname{var} \left(\sum_{i=1}^n (x_i - \bar{x}) u_i | x \right)$ using the appendix rule 3:

$$\operatorname{var}\left(\sum_{i=1}^{n}(x_{i}-\bar{x})u_{i}\,\middle|\,x\right)$$
 St. error $s(\hat{\beta}_{j})$ & error surfance (σ^{2})

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}(x_{i}-\bar{x})(x_{j}-\bar{x})\operatorname{cov}(u_{i},u_{j}|x)$$
 How is $s(\hat{\beta}_{j})$ estimated?

Where does the Grand $(x_{i}-\bar{x})^{2}\operatorname{var}(u_{i}|x)+\sum_{i\neq j}(x_{i}-\bar{x})(x_{j}-\bar{x})\operatorname{cov}(u_{i},u_{j}|x)$ Takesavors

We will now assume

St. error $s(\hat{\beta})$ &

- Homoskedasticity: $var(u_i|x) = \sigma^2$ for all i
- No autocorrelation: $cov(u_i, u_j|x) = 0$ for $i \neq j$

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_{j})$ &

How is $s(\hat{\beta}_i)$

Homoskedasticity

Appendix

Homoskedastic errors: $var(u_i|x_i) = \sigma^2$ for all $i = 1 \dots n$

Source: Wooldridge's Introductory Econometrics

St. error $s(\hat{\beta})$ & sample size (n)

St. error $s(\hat{\beta}_{j})$ &

How is $s(\hat{\beta}_i)$

Homoskedasticity

Appendix

Heteroskedastic errors: $var(u_i|x_i) \neq var(u_j|x_j)$ for some $i \neq j$

Source: Wooldridge's Introductory Econometrics

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

How is $s(\hat{\beta}_j)$

Homoskedasticity

Homoskedastic assumption $\mathbb{E}(u_i^2|x_i) = \sigma^2$ violated in (b).

Thus:

$$\operatorname{var}\left(\sum_{i=1}^{n} (x_{i} - \bar{x})u_{i} \,\middle|\, x\right) = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sigma^{2} + 0$$
$$= \sigma^{2} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Now completing the derivation:

$$\operatorname{var}(\hat{\beta}_{2}|x) = \frac{1}{\left(\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right)^{2}} \operatorname{var}\left(\sum_{i=1}^{n} (x_{i} - \bar{x})u_{i} \middle| x\right)$$

$$= \frac{1}{\left(\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right)^{2}} \cdot \sigma^{2} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

How is $s(\hat{\beta}_i)$

Homoskedasticity

Takeaways

The final formula (if k = 2)

Thus, if we assume

- Model = Population: $y_i = \beta_1 + \beta_2 + u_i$
- Homoskedasticity: $var(u_i|x) = \sigma^2$ for all i
- **No autocorrelation**: $cov(u_i, u_j | x) = 0$ for $i \neq j$

The variance is

$$\operatorname{var}(\hat{\beta}_2|x) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

Note that σ^2 is also a population parameter that needs to be estimated.

We can use the SSR for that:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \hat{u}_i^2}{n-2}$$

St. error
$$s(\hat{eta})$$
 & sample size (n)

St. error
$$s(\hat{\beta}_j)$$
 & error variance (σ^2)

How is
$$s(\hat{\beta}_j)$$
 estimated?

Where coes the val $(\beta_2 \mid x)$ forms come from

The final formula (if
$$k=2$$
)

Appendi

The final formula (if k = 2)

Notice that $\sum_{i=1}^{n} (x_i - \bar{x})^2$ grows with n. This becomes explicit when substituting for $\text{var}(x) = \sum (x_i - \bar{x})^2/n$:

$$\operatorname{var}(\hat{\beta}_2|x) = \frac{\sigma^2}{n \operatorname{var}(x_1)}$$

As we saw before, **precision** will be higher (the variance lower):

- with more data $(\uparrow n)$
- with lower error variance $(\downarrow \sigma^2)$

- St. error $s(\hat{\beta})$ & sample size (n)
- (\hat{eta}) Sample size $m{n}$ vs. estimation reliability
- St. error $s(\hat{eta}_j)$ & error variance (σ^2)
- How is $s(\hat{\beta}_j)$ estimated?
- The final formula (if k=2)

k = 2)
Takeaways

Annendi

```
St. error s(\hat{\beta}_j) & error variance (\sigma^2) How is s(\hat{\beta}_j) estimated?
```

St. error $s(\hat{\beta})$ & sample size (n)

TAKEAWAYS

Key takeaways

St. error $s(\hat{\beta})$ & You should now know:

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

How is $s(\hat{\beta}_i)$

Key takeaways

- Difference between sample and population
- What standard errors represent
- How $var(\hat{\beta}_2|x)$ depends on n and σ
- Basic variance and covariance rules
- Homo- vs. heteroskedasticity
- How to derive $var(\hat{\beta}_2|x)$ in the univariate case

```
St. error s(\hat{\beta}_j) & error variance (\sigma^2) How is s(\hat{\beta}_j) estimated?
```

St. error $s(\hat{\beta})$ & sample size (n)

APPENDIX

Variance and covariance rules

Basic Variance Rules:

- $2 \operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$

Covariance Rules:

- 5 $Cov(X,Y) = E[(X \mu_X)(Y \mu_Y)]$
- 6 Cov(X, a) = 0 (constant a)
- $\operatorname{Cov}(aX + b, cY + d) = ac\operatorname{Cov}(X, Y)$
- $\operatorname{\mathsf{B}} \operatorname{\mathsf{Cov}}(X,Y+Z) = \operatorname{\mathsf{Cov}}(X,Y) + \operatorname{\mathsf{Cov}}(X,Z)$

Takeaways

St. error $s(\hat{\beta})$ &

St. error $s(\hat{\beta}_j)$ & error variance (σ^2)

How is $s(\hat{\beta}_i)$

