

$$\begin{cases}
f(g(a)) = 2 & | g(f(1)) = 10 \\
f(g(b)) = 1 & | g(f(a)) = a \\
f(g(c)) = 3 & | g(f(3)) = c
\end{cases}$$

- a) gof={(1,6); (2,7); (3,9); (4,10)}
- a) gof={(6,4);(7,2);(9,3);(10,4)}

69	A	A	a)	Sim, t	edes
	1	-4		tem pares!	
	2	-1		4	
	3	4	b)		
	4	11		Dom(R)	Img (R)
	5	20		(0)	F5)
	6	31		1	+41
	7	44		2	1-1
	8	59		3	111
	Q	7/			1+4

31

44

59

76

b) got é injetiva b é injetiva g é serbrejetiva

(79 Mõie Entendi!

\$0g(x)≠g0f(x) \$alosa!!

$$G^{2} = \frac{1}{3} (304)(4)?$$

$$g(x) = 2x^{2} + 1 \qquad (304)(4)?$$

$$g(x) = 2x - 3$$

$$g(4(x)) = 2x - 3$$

$$= 2(2x^{2} + 1) - 3$$

$$= 4x^{2} + 2 - 3$$

$$g(4(x)) = 4x^{2} - 1$$

$$g(4(x)) = 4x^{2} - 1$$

$$g(4(x)) = 4x^{2} - 1$$

$$= 4 \cdot 16 - 1$$

$$= 64 - 1$$

$$|g(4(4)) = 63/$$