#43 a) $U_1 = (3,-1)$ $U_2 = (6,-2)$ in \mathbb{R}^2 U_1 and U_2 are $\lim_{n \to \infty} \log_n 2^n = 2U_1$.

b) $U_1 = (-2,0,1)$, $U_2 = (4,-2,0)$, $U_3 = (6,-6,3)$ in \mathbb{R}^3 $U_4 + U_2 = (2,-2,1)$ $U_3 = 3U_1 + 3U_2$ $U_4 = (2,-2,1)$ $U_5 = (3,-2,1)$ $U_6 = (4,-2,0)$, $U_7 = (6,-6,3)$ in \mathbb{R}^3

c)
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
 in M_{22}

$$B = \begin{bmatrix} 0 & -1 \\ -2 & -3 \end{bmatrix}$$

A & B are lin. deg bevauge B=-A.

A & B are
$$\lim_{x \to 2} \lim_{x \to 2} \lim_{x$$

in ? (onc: S-57,12,13).s P = 3+ x+ x2 $R_{2} = 2 - x + 5x^{2}$ $R_{3} = 4 - 3x^{2}$ If K, P, + K, P, + k, P, = 0 +hun $K(3+x+x^2)+K_2(2-x+5x^2)+K_3(4-3x^2)=0=0+0x+0x^2$ $3K_{1} + 2K_{2} + 4K_{3} = 0$ $K_{1} - K_{2}$ $K_{1} - K_{2}$ $K_{1} + 5K_{2} - 3K_{3} = 0$ $K_{1} + 5K_{2} - 3K_{3} = 0$ $K_{1} + 5K_{2} - 3K_{3} = 0$ $K_{2} + 5K_{3} - 3K_{3} = 0$ $K_{3} + 5K_{4} - 3K_{5} = 0$ $K_{4} + 5K_{5} - 3K_{5} = 0$ $K_{5} + 5K_{5} - 3K_{5} = 0$ $K_{7} + 5K_{7} - 3K_{7} = 0$ $K_{1} + 5K_{2} - 3K_{3} = 0$ $K_{2} + 5K_{3} - 3K_{5} = 0$ $K_{3} + 5K_{5} - 3K_{5} = 0$ $K_{4} + 5K_{5} - 3K_{5} = 0$ $K_{5} + 5K_{5} - 3K_{5} = 0$ $K_{7} + 5K_{7} - 3K_{7} = 0$ $K_{7} + 5K_{7} - 3K_{7} = 0$

50)
$$\sqrt{9}_{1} = (1_{1}2_{1}3_{1}4)$$
 in $\sqrt{8}$

a) $\sqrt{1}_{2} = (2_{1}2_{1}2_{1}4)$ in $\sqrt{8}$

by inspection, we see that $\sqrt{9}_{2} = \sqrt{1}_{2} - \sqrt{9}_{1}$

Hence $S = \sqrt{1}_{1} + \sqrt{1}_{2}$

b) $\sqrt{9}_{1} = \sqrt{1}_{1} + \sqrt{1}_{2}$

could $\sqrt{9}_{1} = \sqrt{1}_{1} + \sqrt{9}_{2}$

b) $\sqrt{9}_{1} = \sqrt{1}_{1} + \sqrt{9}_{2}$

55) Ceiden S=8 21, 22 } lin. ind. and viz & spom(s). then: vi +o'; vi +o'; vi +o' and vi is not a linear co-bi-ation of vi and vi Show that & William ind. DC; suppose that Kirithing + Kirithing = 0 (ase 5: If k3 = 0) then k12, +k20, = 0, which implies K1=K2=0

Case 5: If k3 = 0) then IS = -K1 D3 - K2 U2

Case 5: If k3 = 0) then IS = -K1 D3 - K2 U2

Case 6: 16 C Dan 16 i.e. Vij Espon(S). Contradiction