••• معماری کامپیوتر (۱۱۰–۱۱۱–۱۱۱) بلسهی یازدهم

دانشگاه شهید بهشتی دانشکده ی مهندسی برق و کامپیوتر بهار ۱۳۹۱ لعمد معمودی ازناوه

-فهرست مطالب

– مروری بر جلسهی پیش

*– مم*یز شناور

مميز شناور

- برای نمایش اعداد اعشاری و اعداد بسیار بزرگ از سیستم عددی میز شناور استفاده می شود.
 - m116199469
 - $-h'\Lambda V V V$
 - $\circ \circ \circ \circ \circ \circ \circ = \circ , 1 \times 1 \circ^{-9}$

Copyright 2004 Koren

			· · · · ·
	IBM/370	DEC/VAX	Cyber 70
Word length (double)	32 (64) bits	32 (64) bits	60 bits
Significand+{hidden bit}	24 (56) bits	23 + 1 (55 + 1) bits	48 bits
Exponent	7 bits	8 bits	11 bits
Bias	64	128	1024
Base	16	2	2
Range of M	$\frac{1}{16} \le M < 1$	$\frac{1}{2} \le M < 1$	$1 \le M < 2$
Representation of M	Signed-magnitude	Signed-magnitude	One's complement
Approximate range	$16^{63} \approx 7 \cdot 10^{75}$	$2^{127} \approx 1.9 \cdot 10^{38}$	$2^{1023} \approx 10^{307}$
Approximate resolution	$2^{-24} \approx 10^{-7} (10^{-17})$	$2^{-24} \approx 10^{-7} (10^{-17})$	$2^{-48} \approx 10^{-14}$

Exponential Notation-

$$123,400.0 \times 10^{-2}$$

 $12,340.0 \times 10^{-1}$

$$1,234.0 \times 10^{0}$$

$$123.4 \times 10^{1}$$

$$12.34 \times 10^2$$

$$1.234 \times 10^{3}$$

$$0.1234 \times 10^4$$

با تغییر همزمان توان و جایگاه ممیز نمایشهای متفاوتی برای یک عدد به دست میآید.

مميز شناور (ادامه...)

- در سال ۱۹۸۵ استاندارد IEEE Std 754 مطرم شد.
- این استاندارد واگرایی شیوههای به کار رفته برای نمایش ممیز شناور را کاهش داد.
- بدین ترتیب برنامه های نوشته شده برای مقاصد علمی قابل عمل شدند.
 - بر طبق این استاندارد، اعداد به دو شیوه نشان داده میشود:
- single
- double

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

Single: Bias = 127; Double: Bias = 1023

Single Precision Format-

 $Value = (-1)^{S} 1.F \times 2^{E-127}$

Denormal Numbers

اعداد ناهنجار

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- بدین ترتیب میتوان اعداد کوچِکتری را نیز نمایش داد.
 - در صورتی که بخش کسری را برابر صفر قرار دهیه:

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

بدین ترتیب رو نمایش برای و خواصیم داخت

Infinities and NaNs

اناعدد و بینهایت

- Exponent = 111...1, Fraction = 000...0 $-\pm\infty$
 - در مماسبات بعدی نیز قابل استفاده است.
- Exponent = 111...1, Fraction ≠ 000...0
 (Not-a-Number (NaN)) ناعدد
 - بیان گر مماسبات نادرست میباشد.
 - این اعداد نیز قابلیت استفاده در مماسبات بعدی را دارند.

Single	precision	Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

معاسبات مقادیر فاص

•
$$(+0) + (+0) = (+0) - (-0) = +0$$

•
$$(+0) \times (+5) = +0$$

•
$$(+0)/(-5) = -0$$

•
$$(+\infty) + (+\infty) = +\infty$$

•
$$\chi - (+\infty) = -\infty$$

- $(+\infty) \times x = \pm \infty$, depending on the sign of x
- $x/(+\infty) = \pm 0$, depending on the sign of x

•
$$\sqrt{(+\infty)} = +\infty$$

- نمایش در مبنای شانزده

• نمایش یک عدد ممیز شناور در مبنای شانزده معمول است:

-15.6875

$1\ 10000010\ 1111011000000000000000000_2$

M

S E

1 = negative
0 = positive

laliiim)-

• محاسباتی که منجر به تولید ناعدد میشود:

$$- (\pm 0) / (\pm 0) = NaN$$

$$- (+\infty) + (-\infty) = NaN$$

$$-(\pm 0) \times (\pm \infty) = NaN$$

$$-(\pm\infty)/(\pm\infty) = NaN$$

• ناعدد در مماسبات و مقایسه ها

- NaN + x = NaN NaN < 2 → false

– NaN + NaN = NaN
NaN = Nan → false

- NaN × 0 = NaN NaN ≠ $(+\infty)$ → true

– NaN × NaN = NaN → true

براکندگی دادهها در ممیز شناور

 ± 0 , $\pm \infty$, NaN $1.f \times 2^e$

Denormals:

 $0.f \times 2^{e_{min}}$

گرد کردن

Number	Trunc(x)	Error
X.00	X	0
X.01	X	-1/4
X.10	X	-1/2
X.11	X	-3/4

Round-to- nearest(x) 100. 011. 010. 001.	
000.	···
	$00.0 \ 00.1 \ 01.0 \ 01.1 \ 10.0 \ 10.1 \ 11.0 \ 11.1 \ ^x$

Number	Round-to-nearest(x)	Error
X.00	X	0
X.01	X	-1/4
X.10	X + 1	+1/2
X.11	X + 1	+1/4

گرد کردن به نزدیک ترین مقدار زوج

Number	Round(x)	Error	Number	Round(x)	Error
X0.00	<i>X</i> 0.	0	X1.00	<i>X</i> 1.	0
X0.01	X0.	-1/4	X1.01	X1.	-1/4
X0.10	X0.	-1/2	X1.10	X1. + 1	+1/2
X0.11	X1.	+1/4	X1.11	X1. + 1	+1/4

- شیوههای گرد کردن در استاندارد IEEE754

LSB	\mathbf{R}	S	Operation	\overline{Error}
0	0	0	+ 0	0
0	0	1	+ 0	$-0.25 \ ulp$
0	1	0	+ 0	$-0.50 \ ulp$
0	1	1	$\mid +0.5 \; ulp \mid$	$+0.25 \ ulp$
1	0	0	+ 0	0
1	0	1	+ 0	$-0.25 \ ulp$
1	1	0	$\mid +0.5 \; ulp \mid$	$+0.50 \ ulp$
1	1	1	$+0.5 \ ulp$	+0.25~ulp
			Total	0

(a) Round-to-nearest-even scheme

R	S	Operation	\overline{Error}
0	0	+ 0	0
0	1	+ 0	-0.25~ulp
1	0	+ 0	$-0.50 \ ulp$
1	1	+ 0	-0.75~ulp
		Total	$-0.375 \ ulp$

(b) Round-to-zero scheme

Sign	R	S	Operation
+	0	0	+ 0
+	0	1	$+1 \ ulp$
+	1	0	$+1 \ ulp$
+	1	1	$+1 \ ulp$
_	0	0	+ 0
_	0	1	+ 0
_	1	0	+ 0
	1	1	+ 0

(c) Round-to-plus-infinity scheme

Sign	R	S	Operation
_	0	0	+ 0
_	0	1	+1 ulp
_	1	0	+1 ulp
_	1	1	+1 ulp
+	0	0	$+ 0^{-}$
+	0	1	+ 0
+	1	0	+ 0
+	1	1	+ 0

(d) Round-to-minus-infinity scheme

115

معدودهی قابل نمایش

• کوچکترین مقدار ممکن

- Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
- Fraction: $000...00 \Rightarrow$ significand = 1.0
- $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

• بزرگترین مقدار ممکن

- exponent: 111111110⇒ actual exponent = 254 127 = +127
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

معدودهی قابل نمایش با دقت مضاعف

کوچېترين مقدار ممکن

- Exponent: 0000000001 ⇒ actual exponent = 1 - 1023 = -1022
- Fraction: $000...00 \Rightarrow$ significand = 1.0
- $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

بزرگترین مقدار ممکن

- Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $-\ \pm2.0\times2^{+1023}\approx\pm1.8\times10^{+308}$

دقت در ممیز شناور

- Single: approx 2⁻²³
 - Equivalent to $23 \times log_{10}2 \approx 23 \times 0.3 \approx 6$
 - برابر با شش رقم اعشار دقت
- Double: approx 2⁻⁵²
 - Equivalent to $52 \times log_{10}2 \approx 52 \times 0.3 \approx 16$
 - برابر با شانزده رقم اعشار دقت

مشنصات اعداد مميز شناور TEEE 754

Feature	Single/Short	Double/Long
Word width in bits	32	64
Significand in bits	23 + 1 hidden	52 + 1 hidden
Significand range	$[1, 2-2^{-23}]$	$[1, 2-2^{-52}]$
Exponent bits	8	11
Exponent bias	127	1023
Zero (±0)	e + bias = 0, f = 0	e + bias = 0, f = 0
Denormal	e + bias = 0, $f \neq 0$ represents $\pm 0.f \times 2^{-126}$	e + bias = 0, $f \neq 0$ represents $\pm 0.f \times 2^{-1022}$
Infinity (±∞)	e + bias = 255, f = 0	e + bias = 2047, f = 0
Infinity $(\pm \infty)$,	,
Not-a-number (NaN)	$e + bias = 255, f \neq 0$	e + bias = 2047, $f \neq 0$
Ordinary number	e + bias ∈ [1, 254] e ∈ [-126, 127] represents 1. f × 2 e	$e + bias \in [1, 2046]$ $e \in [-1022, 1023]$ represents $1.f \times 2^e$
min	$2^{-126} \cong 1.2 \times 10^{-38}$	$2^{-1022}\cong 2.2\times 10^{-308}$
max	$\cong 2^{128} \cong 3.4 \times 10^{38}$	$\cong 2^{1024} \cong 1.8 \times 10^{308}$

جمع در ممیز شناور

- 1. ابتدا توانها را یکسان میکنیه.
- این کار با شیفت عدد کوچکتر به راست انجاه میشود.
- 2. مقادیر اعشاری با هم جمع میشوند|
 - 3. ماصل بهنجار شده و وقوع سرریز و فروریز بررسی میشود.
 - 4. عاصل گرد میشود.
 - مجددا بهنجار بودن عدد بررسی میشود.

Done

Start

- سفت لفزار جمع مميز شناور

Start 1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent 2. Multiply the significands Normalize the product if necessary, shifting it right and incrementing the exponent Overflow or Yes underflow? No Exception 4. Round the significand to the appropriate number of bits Still normalized? Yes 5. Set the sign of the product to positive if the signs of the original operands are the same; if they differ make the sign negative Done

اضرب مميز شناور

- 1. توانها با هم جمع میشود
 - significand .2ها در هم ضرب میشوند.
- 3. اعداد بهنجار شده و بروز سرریز یا فروریز چک میشود.
 - 4. اعداد گرد میشوند و در صورت نیاز مجدد بهنجار میشوند.
- 5. علامت عدد تعیین میشود.

- ولعد مميز شناور

- واحد محاسبات ممیز شناور معمولا اعمال جمع، تفریق، ضرب، تقسیم، معکوسسازی و تبدیل به صحیح را انجام میدهد.
 - عملیات ممیز شناور به چند سیکل برای اجرا نیاز دارد.
 - به صورت خط لوله نیز قابل استفاده میباشد.

- دستورالعملهای ممیز شناور در MIPS

- سی و دو ثبات جداگانه برای عملیات ممیز شناور وجود دارد:
 - \$f0, \$f1, ... \$f31
 - در صورت استفاده از دقت مضاعف این ثباتها به صورت دو تایی مورد استفاده قرار میگیرند:
 - \$f0/\$f1, \$f2/\$f3
 - نسخهی ۱ MIPS، سیودو ثبات شصت و چهار بیتی دارد.
- دستورات ممیز شناور تنها بر روی ثباتهای ممیز شناور عمل میکنند.

- دستورالعملهای ممیز شناور در MIPS (ادامه...)

- دستورات خواندن و نوشتن
- lwc1, ldc1, swc1, sdc1
 - ldc1 \$f8, 32(\$sp)
 - مماسیات با دقت معمولی
- add.s, sub.s, mul.s, div.s
 - -add.s \$f0, \$f1, \$f6
 - محاسبات با دقت مضاعف
- add.d, sub.d, mul.d, div.d
 - -e.g., mul.d \$f4, \$f4, \$f6

- دستورالعملهای ممیز شناور در MIPS (ادامه...)

- دستورات مقایسه
- -c.xx.s, c.xx.d (xx is eq. 1t, 1e, ...)
- Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- دستورات پرش

- -bc1t, bc1f
 - e.g., bc1t TargetLabel

- فلاصهای از دستورات ممیز شناور

Copy

Arithmetic

Conversions^{*}

Memory access

Control transfer

	· · ·
Instruction	Usage
Move s/d registers	mov.* fd,fs
Move fm coprocessor 1	mfc1 rt,rd
Move to coprocessor 1	mtc1 rd,rt
Add single/double	add.* fd,fs,ft
Subtract single/double	sub.* fd,fs,ft
Multiply single/double	mul.* fd,fs,ft
Divide single/double	div.* fd,fs,ft
Negate single/double	neg.* fd,fs
Compare equal s/d	c.eq.* fs,ft
Compare less s/d	c.lt.* fs,ft
Compare less or eq s/d	c.le.* fs,ft
Convert integer to single	cvt.s.w fd,fs
Convert integer to double	cvt.d.w fd,fs
Convert single to double	cvt.d.s fd,fs
Convert double to single	cvt.s.d fd,fs
Convert single to integer	cvt.w.s fd,fs
Convert double to integer	cvt.w.d fd,fs
Load word coprocessor 1	lwc1 ft,imm(rs)
Store word coprocessor 1	swc1 ft,imm(rs)
Branch coproc 1 true	bc1t L
Branch coproc 1 false	bc1f L

مثال تبدیل فارنهایت به سلسیوس

• کد به زبان C

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

```
f2c: lwc1 $f16, const5($gp)
lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra
```


