2004~2005	党在第一党曲	《直笙粉学》	期末考试试题	R 光 (216 学时
2004/~2003	子牛东一子册	《向守奴子》	别不写风风渺	D 称(210 子则

一、填空题: (4×4分)

2.
$$\lim_{x\to 1} \frac{\sin(1-x)}{(x-1)(x+2)} = \underline{\hspace{1cm}}$$

3、设
$$f'(x_0) = -2$$
,则 $\lim_{h \to 0} \frac{f(x_0 - h) - f(x_0 + h)}{h} = \underline{\qquad}$

$$4, \int [f(x) + xf'(x)]dx = \underline{\qquad}$$

$$5. \frac{d}{dx} \int_0^{x^2} \frac{\sin t}{1 + \cos^2 t} dt = \underline{\hspace{1cm}}$$

二、选择题: (5×3分)

1、
$$\mathbf{x} = 2$$
 是函数 $f(\mathbf{x}) = \arctan \frac{1}{2-\mathbf{x}}$ 的 ()

A、连续点:

B、可去间断点;

C、第一类不可去间断点; D、第二类间断点;

2、设
$$f(x) = \begin{cases} \frac{1 - \cos x}{\sqrt{x}} &, x > 0 \\ x^2 g(x) &, x \le 0 \end{cases}$$
, 其中 $g(x)$ 是有介函数,则 $f(x)$ 在 $x = 0$ 处()

A、极限不存在;

B、极限存在, 但不连续;

C、连续, 但不可导;

D、可导;

3、在区间 (a,b) 内,f(x) 的一阶导数 f'(x) > 0,二阶导数 f''(x) < 0,则 f(x) 在区间 (a,b)

内是

A、单增且凸;

B、单减且凸;

C、单增且凹;

D、单减且凹;

4、下列命题中正确的是

A、
$$f''(x_0) = 0$$
,则 $(x_0, f(x_0))$ 一定是由曲线 $y = f(x)$ 的拐点;

B、若
$$f'(x_0) = 0$$
,则 $f(x)$ 在 x_0 处一定取极值;

$$C$$
、 $f(x)$ 可导,且在 $x = x_0$ 上取得极值,则 $f'(x_0) = 0$;

D、f(x) 在[a,b]上取得最大值,则该最大值一定是f(x) 在(a,b) 内的极大值。

$$5$$
、 $F(x)$ 是 $f(x)$ 的一个原函数,则

) (

A.
$$(\int f'(x)dx)' = F(x)$$
;

B.
$$(\int f(x)dx)' = f(x)$$
;

$$C, \quad \int dF(x) = F(x);$$

D.
$$(\int F(x)dx)' = f(x)$$
;

三、试解下列各题 (8×5分)

$$1, \lim_{x\to 0}\frac{1}{x}(\cot x-\frac{1}{x}).$$

$$2 \cdot \lim_{x \to 0} (1 + 3x)^{\frac{2}{\sin x}} \circ$$

$$3, \quad y = x \arctan x - \ln \sqrt{1 + x^2} , \quad \Re dy .$$

$$4, e^{x+y} - xy = 0, \quad \stackrel{\text{dy}}{=} \frac{dy}{dx}.$$

6.
$$y = xan \tan x - / n\sqrt{1 + x^2}$$
.

$$7. \int_{-\frac{\Pi}{4}}^{\frac{\Pi}{4}} \frac{\sin^2 x}{1 + e^{-x}} dx .$$

8.
$$\int_0^1 \arctan(1+\sqrt{x}) dx$$
.

四、(5分) 举例说明: 广义积分 $\int_a^b f(x) dx$ 收敛时, 广义积分 $\int_a^b f^2(x) dx$ 不一定收敛。

五、(6 分) 证明: 当x > 0 时, $e^x - 1 < xe^x$ 。

六、(7分)设函数 f(x) 在[-1,1] 上三阶可导,且 f(-1)=0,f(0)=0,f(1)=1,f'(0)=0。证明:存在某个 $\eta \in (-1,1)$,使 $f''(\eta) \geq 3$ 。

七、(5分)证明: $f(x) = \sin x$ 在($-\infty$, $+\infty$)上一致连续。

八、应用题(6分)如右图所示,在[0,1]上给定

函数 $y = x^2$,问t为何值时,面积 s_1 与 s_2 之和最小?

何时最大?

