PHYS 123 Exam 2 Equations

Chapter 18:
$$P = \frac{dF_{fs}^{press}}{dA}$$
, or, if uniform: $P = \frac{F_{fs}^{press}}{A}$ $P(\text{at depth } d) = P_{\text{surf}} + \rho g d$

$$P = P_{\text{gauge}} + P_{\text{atm}}$$
, $P_{\text{atm}} = 1.013 \times 10^5$ Pa at sea level 1 Pa = 1 N/m²

Buoyant force:
$$F_{\text{fo}}^{\text{b}} = \sum F_{\text{fo}}^{\text{press}} = \rho g V_{\text{disp}}$$
 Continuity: $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$

Laminar flow rate:
$$Q = \frac{V}{\Delta t} = Av$$
 Bernoulli: $P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$

Chapter 30: Poynting vector in direction of
$$\vec{v}$$
: $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ $I = |\vec{S}| \text{ W/m}^2$

Polarization (Malus):
$$I_{\text{out}} = I_{\text{in}} \cos^2 \theta$$

Chapter 33: index of refraction:
$$n = \frac{c_0}{c_{\text{material}}}$$
 $\lambda_{\text{mat}} = \frac{\lambda}{n_{\text{mat}}}$ Snel: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Lens-mirror equ:
$$\frac{1}{f} = \frac{1}{o} + \frac{1}{i}$$
 Magnification: $M = \frac{h'}{h} = -\frac{i}{o}$ Angular: $M_{\theta} = \left| \frac{\theta_{i}}{\theta_{o}} \right|$

Lensmaker:
$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
 Mirror: $f = \frac{R}{2}$ Magnifying glass: $M_\theta \approx \frac{0.25 \text{ m}}{f}$

Cmpd. Microscope:
$$M = M_1 M_{\theta 2} = \frac{-0.25 \text{ m}}{f_2 \left(\frac{o_1}{f_1} - 1\right)}$$
 Refr. Telescope: $M_{\theta} = \left|\frac{\theta_i}{\theta_o}\right| \approx \left|\frac{f_1}{f_2}\right|$

Chapter 34: Principle maxima multi-slits:
$$d \sin \theta = \pm m\lambda$$
, $m = 0, 1, 2, 3,...$

Dark fringes multi-slits:
$$d \sin \theta_{\min} = \pm \frac{k}{N} \lambda$$
, $k = 1, 2,...$ not multiple of N

Thin film:
$$\phi = \frac{4\pi n_b t}{\lambda} + \phi_{r2} - \phi_{r1}$$
 Thin slit width a , dark: $a \sin \theta = \pm n\lambda$, $n = 1, 2, 3, ...$

Rayleigh:
$$\theta_{\rm r} \approx 1.22 \frac{\lambda}{D}$$
, $D = {\rm diameter}$ light speed: $c_0 = 2.998 \times 10^8 {\rm m/s}$

Energy: 1 eV = 1.602×10⁻¹⁹ J Planck:
$$h = 6.626 \times 10^{-34}$$
 J·s deBroglie: $\lambda = \frac{h}{p}$

Photoelectric:
$$E_{\text{photon}} = hf = K_{\text{max}}^{\text{elec}} + E_0$$
 Momentum: $p_{\text{photon}} = \frac{E}{c_0} = \frac{hf}{c_0}$