9. Consider the event space $\Omega \stackrel{\text{def}}{=} [0,1)$ with probability measure dx. Consider the partition

$$\mathcal{P} \stackrel{\mathrm{def}}{=} \{[0, 1/3), [1/3, 2/3), [2/3, 1)\}$$
 .

Assume that $f: \Omega \to \mathbb{R}$ is such that

$$\mathbb{E}\left[f\middle|\mathcal{P}\right](x) = 5\mathbf{1}_{[0,1/3)}(x) - 2\mathbf{1}_{[1/3,2/3)}(x) + \underline{6}\mathbf{1}_{[2/3,1)}(x)$$

Define

$$g(x) = 4\mathbf{1}_{[0,1/3)}(x) - 2\mathbf{1}_{[1/3,2/3)}(x).$$

and compute $\mathbb{E}[fg]$.

Let
$$g(x) = 4 \times 1_{(0,\frac{1}{3})}(x) - 2 \times 1_{\frac{1}{3}/\frac{1}{3}}(x)$$

$$= 2 \times 1 \times 1_{An}(x)$$
where $2Y_1 = 4$ and $A_1 = [0/\frac{1}{3}]$

$$Y_2 = -Y$$

$$Y_3 = 0$$

$$A_3 = [\frac{1}{3}, \frac{1}{3}]$$

let
$$E[f|p](x) = 5 \times 1_{A1}(x) -2 \times 1_{A2}(x) + 6 \times 1_{A3}(x)$$

= $\sum_{n=1}^{3} t_{An} 1_{An}(x)$

where
$$\int_{A_3}^{h=1} \int_{A_3}^{h=1} \int_{A_3}^$$

$$\forall$$
 if X on $A_1 = [0/3]$, we estimate f by 5 .
 X on $A_7 = [-3/3]$, we estimate f by $-x$.
 X on $A_3 = [-3/1]$, we estimate f by 6 .

$$= 2 [tg] = \sum Y_{n} \times E[t]_{An}]$$

 $= Y_{1} E[t_{n}]_{A_{1}}] + Y_{2} E[t_{n}]_{A_{2}}] + Y_{3} E[t_{n}]_{A_{2}}]$
 $= 4 \times 5 + (-2) \times (-2) + 0 \times 6$
 $= 20 + 4 = 24 \times 10$

10. Define

$$\Omega \stackrel{\text{def}}{=} [0, 1)^2$$

$$A \stackrel{\text{def}}{=} [0, 2/3) \times (1/2, 1)$$

$$B \stackrel{\text{def}}{=} [1/3, 1) \times [0, 1).$$

Enumerate and sketch all sets in $\sigma(\{A, B\})$.

to get all $S(\{A,B\})$ s, we can list out all combinations of X, B, Y, Z (totaly $Z^{2}=cL$)

11. Define
$$\Omega \stackrel{\text{def}}{=} [0, 1)$$
 and

$$f(x) \stackrel{\text{def}}{=} x^3.$$
 $x \in [0,1)$

Compute the conditional expectation of f given the partition

$$P \stackrel{\text{def}}{=} \{[0, 1/2], (1/2, 3/4], (3/4, 1)\}.$$

Let
$$A_1 = [0, \frac{1}{2}]$$
, $A_2 = (\frac{1}{2}, \frac{2}{4}]$, $A_3 = (\frac{3}{4}, 1)$
then $A_1 = \frac{1}{\frac{1}{2} - 0} \int_0^{\frac{1}{2}} x^3 dx$
 $A_2 = \frac{1}{\frac{1}{2} - 0} \int_0^{\frac{3}{2}} x^3 dx$
 $A_3 = \frac{1}{\frac{1}{2} - 0} \int_0^{\frac{3}{2}} x^3 dx$
 $A_4 = \frac{1}{\frac{3}{4} - \frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{3}{2}} x^3 dx$
 $A_4 = \frac{1}{\frac{3}{4} - \frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{3}{4}} x^3 dx$
 $A_5 = \frac{1}{\frac{1}{2} - \frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{3}{2}} x^3 dx$
 $A_7 = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} -$

12. Let X and Y be independent Gaussian random variables; let X have mean 1 and variance 4, and let Y have mean -1 and variance 2. Define

$$S_0 \stackrel{\mathrm{def}}{=} 3, \qquad S_1 \stackrel{\mathrm{def}}{=} S_0 \exp[X], \qquad \mathrm{and} \qquad \text{ (S)} \stackrel{\mathrm{def}}{=} \text{ (S)} \exp[Y].$$

Compute

(a)
$$\mathbb{E}[S_1]$$

(b)
$$\mathbb{E}[S_2]$$

(c)
$$\mathbb{E}[S_2|S_1]$$
.

$$X \sim \mu(1, 9)$$

(a)
$$E(41) = E(40 \text{ exp} X)$$

$$= 3 E[e^{x}]$$

$$\Rightarrow \text{ let } y = \frac{x-1}{7}, \text{ then } y \sim N(0(1))$$

$$\Rightarrow y + 1 = X$$

(b) $E[5] = E[5] e^{Y}] = E[5] e^{X+Y}]$ = $3E[e^{X+Y}]$ * let z = X+Y. $z \sim N(0, 6)$ * let $y = \frac{z}{76}$, $y \sim N(0, 1)$, 56y = z $3E[e^{X+Y}] = 3 \times e^{\frac{5}{2}} = 3e^{3}$.

 $|U \geq [5 \times |5]| = 2 \times |5| = 3 = 2 \times |5| = 5$ $= 2 \times \frac{P(5|=5 \cap 52=X)}{P(5|=5)} = 2 \times \frac{P(5+=5) P(5>=x)}{P(5|=5)}$ $= 2 \times P(5=5) \times P(5=5)$ $= 2 \times P(5=5) \times P(5=5)$ $= 2 \times P(5=5) = 2 \times P(5=5)$ $= 2 \times$

SI have is constant.