

C4Hg is brurned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the enhaust gives the volume percents: $CO_2 = 14.95\%$, $C_4Hg = 0.75\%$, CO = 0%, $H_2 = 0\%$, $C_2 = 0\%$, with the rest being N_2 . Higher heating value of this fuel is $C_3 = 2\%$, white the balanced chemical equation for one more of this fuel at these conditions in Calculate: (a) Air-fuel ratio, (4) Equivalence ratio.

 $(7.95 \times C_4 H_8 + 22.42(O_2 + 3.76N_2) \rightarrow 14.95 \times O_2 + 0.75 \times C_4 H_8 + 84.3 N_2 + y' H_2 O_4$ (84.3) = 22.42 $\frac{84.3}{3.76} = 22.42$

14.95+ 0.75×4 = 17.95

 $4.49 \times 8 = 0.75 \times 8 + 24 \quad y = 14.96$

 $C_{4}H_{8} + 5(O_{2} + 3.76N_{2}) \rightarrow 3.33 CO_{2} + 0.167 C_{4}H_{8} + 18.77N_{2} + 3.33 H_{2}O$ $AF = \frac{5 \times 4.76 \times 28.97}{4 \times 12 + 8 \times 1}$ Ain = 28.97 hs/hmle