Geometría epipolar y la matriz esencial Lección 09.1

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Reconstrucción 3D

- ¿Cómo inferir información 3D de imágenes 2D?
- Métodos
 - Estimación de pose
 - Visión estéreo
 - Estructura desde movimiento
 - Imágenes de rango

Reconstrucción 3D

- ¿Cómo inferir información 3D de imágenes 2D?
- Métodos
 - Estimación de pose 🗸
 - Visión estéreo ✓
 - Estructura desde movimiento ←
 - Imágenes de rango

Estimación de pose

• Primer caso: estimación de pose

Determina relación entre sistemas de referencias de objeto y de cámara

Visión estéreo

- Dos cámaras calibradas, con pose relativa conocida
- Determina posiciones de puntos en escena

Estructura desde movimiento

- Una cámara móvil calibrada captura escena
- Se determina posición de cámara en cada captura y estructura de la escena

Geometría Epipolar

- Asúmase escena con punto X capturado desde dos poses diferentes
- ullet Cámara $\underline{\mathbf{C}}_1$ captura $\underline{\mathbf{x}}_1$
- Conociendo solo $\underline{\mathbf{x}}_1$ ¿dónde se proyecta $\underline{\mathbf{X}}$ en la imagen 2?

Geometría Epipolar

- Asúmase escena con punto X capturado desde dos poses diferentes
- Cámara $\underline{\mathbf{C}}_1$ captura $\underline{\mathbf{x}}_1$
- Conociendo solo $\underline{\mathbf{x}}_1$ ¿dónde se proyecta $\underline{\mathbf{X}}$ en la imagen 2?
- Respuesta: En línea epipolar

Línea Epipolar

- Por $\underline{\mathbf{C}}_1$, $\underline{\mathbf{C}}_2$ y $\underline{\mathbf{X}}$ pasa plano epipolar
- Puntos x₁ y x₂ se encuentran sobre líneas epipolares
 ⇒ Intersección de plano epipolar con planos de cámara
- Punto $\underline{\mathbf{x}}_i$ representa al rayo $\overrightarrow{\mathbf{XC}}_i$ en imagen i
- Linea epipolar en imagen j es imagen del rayo $\overrightarrow{\mathbf{XC}}_i$ $(i \neq j)$
- El **epipolo** $\underline{\mathbf{e}}_i$ es la imagen del centro $\underline{\mathbf{C}}_i$ en imagen i

Coordenadas normalizadas

- Matriz de proyección de cámara: $\mathbf{P}_i = \mathbf{K}_i[\mathbf{R}_i \mid \underline{\mathbf{t}}_i]$
- Imagen de punto $\underline{\mathbf{X}}$ es: $\underline{\mathbf{x}}_i = \mathbf{P}_i \underline{\mathbf{X}}$
- Con \mathbf{K}_i conocida sea $\hat{\mathbf{x}}_i = \mathbf{K}_i^{-1} \mathbf{x}_i = [\mathbf{R}_i \mid \mathbf{t}_i] \mathbf{X}$
- ullet $\hat{\underline{\mathbf{x}}}_i$ es el punto expresado en **coordenadas normalizadas**
- Interpretación: $\hat{\mathbf{x}}_i$ equivale a \mathbf{X} visto por una cámara "normalizada" con matriz de calibración intrínseca \mathbf{I}
- Por eso a matriz de proyección $\mathbf{K}_{i}^{-1}\mathbf{P}_{i} = [\mathbf{R}_{i} \mid \underline{\mathbf{t}}_{i}]$ se le denomina cámara normalizada
- Recuérdese que R_i alínea el sistema de cámara con sistema global (de X)

Coplanaridad

- Los vectores $\overrightarrow{\underline{C_1}}\overrightarrow{\underline{x_1}}$, $\overrightarrow{\underline{C_2}}\overrightarrow{\underline{x_2}}$ y $\overrightarrow{\underline{C_1}}\overrightarrow{\underline{C_2}}$ son coplanares Eso implica que $\overrightarrow{\underline{C_1}}\overrightarrow{\underline{x_1}} \cdot (\overrightarrow{\underline{C_1}}\overrightarrow{\underline{C_2}} \times \overrightarrow{\underline{C_2}}\overrightarrow{\underline{x_2}}) = 0$
- \mathbf{v}_1 y \mathbf{v}_2 los vectores de dirección respecto al sistemas de referencia de cada cámara: $\underline{\mathbf{v}}_i = \frac{\mathbf{K}_i^{-1}\underline{\mathbf{x}}_i}{\|\mathbf{K}_i^{-1}\mathbf{x}_i\|} = \frac{\hat{\mathbf{x}}_i}{\|\hat{\mathbf{x}}_i\|}$
- Observe que $\hat{\mathbf{x}}_i$ tiene misma dirección que \mathbf{v}_i

Matriz esencial (1)

• Sean las cámaras normalizadas $\mathbf{P}_1 = [\mathbf{R}_1 \mid \underline{\mathbf{t}_1}]$ y $\mathbf{P}_2 = [\mathbf{R}_2 \mid \underline{\mathbf{t}}_2]$

- ullet Sea $\underline{\check{\mathbf{X}}}$ el punto $\underline{\mathbf{X}}$ en coordenadas no homogéneas
- Se cumple

$$\hat{\underline{\mathbf{x}}}_{i} = [\mathbf{R}_{i} \mid \underline{\mathbf{t}}_{\underline{\mathbf{i}}}]\underline{\mathbf{X}} = \mathbf{R}_{i}\underline{\check{\mathbf{X}}} + \underline{\mathbf{t}}_{\underline{\mathbf{i}}} \Rightarrow \\
\underline{\check{\mathbf{X}}} = \mathbf{R}_{i}^{-1}\underline{\hat{\mathbf{x}}}_{i} - \mathbf{R}_{i}^{-1}\underline{\mathbf{t}}_{\underline{\mathbf{i}}}$$

• Sea el sistema de cámara 1 la referencia: i.e. $P_1 = [I \mid \underline{0}]$ entonces

$$\begin{split} \textbf{R}_1^{-1} \hat{\underline{\textbf{x}}}_1 - \textbf{R}_1^{-1} \underline{\textbf{t}_1} &= \textbf{R}_2^{-1} \hat{\underline{\textbf{x}}}_2 - \textbf{R}_2^{-1} \underline{\textbf{t}_2} \\ \hat{\underline{\textbf{x}}}_1 &= \textbf{R}_2^{-1} \hat{\underline{\textbf{x}}}_2 - \textbf{R}_2^{-1} \underline{\textbf{t}_2} \\ \textbf{R}_2 \hat{\underline{\textbf{x}}}_1 &= \hat{\underline{\textbf{x}}}_2 - \underline{\textbf{t}_2} \\ \textbf{R}_2 \hat{\underline{\textbf{x}}}_1 + \textbf{t}_2 &= \hat{\underline{\textbf{x}}}_2 \end{split}$$

Matriz esencial

• Con el producto cruz " $\underline{\mathbf{t}}_2 \times$ " a ambos lados:

$$\begin{split} \underline{t_2} \times R_2 \underline{\hat{x}}_1 + \underbrace{\underline{t_2} \times \underline{t_2}}_{\underline{0}} &= \underline{t_2} \times \underline{\hat{x}}_2 \\ \\ \underline{[\underline{t_2}]_{\times}} R_2 \underline{\hat{x}}_1 &= \underline{[\underline{t_2}]_{\times}} \underline{\hat{x}}_2 \end{split}$$

donde $[\underline{\mathbf{t}}]_{\times}$ es la matriz equivalente del producto cruz:

$$[\underline{\mathbf{t}}]_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

que es antisimétrica: $[\underline{\mathbf{t}}]_{\times}^T = -[\underline{\mathbf{t}}]_{\times}$

Matriz esencial

• Haciendo el producto punto con $\hat{\mathbf{x}}_2$ a ambos lados:

$$\begin{split} &\hat{\underline{\mathbf{x}}}_2 \cdot [\underline{\mathbf{t}}_2]_{\times} \mathbf{R}_2 \hat{\underline{\mathbf{x}}}_1 = \hat{\underline{\mathbf{x}}}_2 \cdot [\underline{\mathbf{t}}_2]_{\times} \hat{\underline{\mathbf{x}}}_2 \\ &\hat{\underline{\mathbf{x}}}_2^T [\underline{\mathbf{t}}_2]_{\times} \mathbf{R}_2 \hat{\underline{\mathbf{x}}}_1 = \hat{\underline{\mathbf{x}}}_2^T [\underline{\mathbf{t}}_2]_{\times} \hat{\underline{\mathbf{x}}}_2 \end{split}$$

- $\underline{\mathbf{t_2}} \times \hat{\mathbf{\underline{x}}}_2$ es ortogonal a $\hat{\mathbf{\underline{x}}}_2 \Rightarrow \hat{\mathbf{\underline{x}}}_2 \cdot (\underline{\mathbf{t_2}} \times \hat{\mathbf{\underline{x}}}_2) = 0$
- Finalmente

$$\underline{\hat{\boldsymbol{x}}}_{2}^{T} \underbrace{([\underline{\boldsymbol{t}_{2}}]_{\times} \boldsymbol{R}_{2})}_{\boldsymbol{E}} \underline{\hat{\boldsymbol{x}}}_{1} = 0$$

- $\hat{\mathbf{x}}_{2}^{T}\mathbf{E}\hat{\mathbf{x}}_{1}=0$ se conoce como **restricción epipolar**
- ullet ${f E}=[{f t_2}]_{ imes}{f R}_2$ se conoce como la matriz esencial

Mapeo punto a línea

- La matriz esencial **E** mapea $\hat{\mathbf{x}}_1$ en imagen 1 a la linea $\underline{\mathbf{I}}_2 = \mathbf{E}\hat{\mathbf{x}}_1$ en la imagen 2, pues $\hat{\mathbf{x}}_2^T\underline{\mathbf{I}}_2 = 0$.
- ullet Todas esas líneas pasan por el epipolo ${f e}_2$
- ullet El epipolo es la proyección del vector $\underline{\mathbf{t}}$ sobre la imagen

Simetría

• Si $\hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1 = 0$ entonces

$$\hat{\mathbf{x}}_2 \cdot \mathbf{E} \hat{\mathbf{x}}_1 = (\mathbf{E} \hat{\mathbf{x}}_1) \cdot \hat{\mathbf{x}}_2 = (\mathbf{E} \hat{\mathbf{x}}_1)^T \hat{\mathbf{x}}_2 = 0
\hat{\mathbf{x}}_1^T \mathbf{E}^T \hat{\mathbf{x}}_2 = 0$$

- La matriz esencial \mathbf{E}^T mapea $\hat{\mathbf{x}}_2$ en imagen 2 a la linea $\underline{\mathbf{I}}_1 = \mathbf{E}^T \hat{\mathbf{x}}_2$ en la imagen 1, pues $\hat{\mathbf{x}}_1^T \underline{\mathbf{I}}_1 = 0$.
- ullet Todas esas líneas pasan por el epipolo ${f e}_1$

Resumen

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica