# Representação e descrição

**Agostinho Brito** 

# Representação e descrição

- Uma vez que um conjunto de pixels tenha sido selecionado a partir da segmentação, é necessário representá-los e descrevê-los de forma adequada para posterior processamento.
- A representação de uma região pode ser feita de duas formas:
  - Pelo seu contorno.
  - Pelos pixels que representam o interior.
- A descrição consiste gerar características com base no esquema de representação escolhido.
- Ex: uma região pode ser representada por sua fronteira e descrita pelo número de concavidades do polígono que aproxima esta fronteira.
- Representações externas: formas de objetos.
- Representações internas: cor e textura.

# Algoritmo seguidor de fronteira



Critério de parada: O ponto inicial é encontrado e o próximo ponto é o mesmo encontrado para a primeira ocorrência.





## Esquemas de representação - códigos de encadeamento

- Utilizados para representar uma fronteira de comprimento e direção especificados.
- Baseados em conectividades tipo 4 ou 8 dos segmentos.
- Operar diretamente nos pixels da imagem pode ser inviável, pois:
  - os códigos gerados são longos(direção dos vetores que ligam pares de pixels).
  - as imperfeições na segmentação podem afetar os códigos, de modo que as mudanças ocorrentes no mesmo não estariam diretamente relacionada com a forma da fronteira.
  - Possível solução: reamostrar os pixels utilizando uma grade mais espaçada.
- O contorno pode ser representado por 4-códigos ou 8-códigos.





# Esquemas de representação - Códigos de encadeamento

- Códigos de cadeia de Freeman: segue-se a grade reamostrada, substituindo a direção dos segmentos por números.
- Normalização em relação ao ponto inicial: trata-se a cadeia como uma sequência circular e escolhe-se a combinação que gera o menor número inteiro.
- Normalização em relação à rotação: contagem das mudanças de direção que separam os segmentos no sentido anti-horário, ou primeira diferença do código.





código de cadeia 000667554433121

006016070706177 primeira diferença

# Polígono de Perímetro Mínimo - MPP



- Percorre-se a fronteira procurando vértices côncavos (Pretos) ou convexos (Brancos).
- Vértices côncavos possuem espelhos na diagonal.
- O MPP não possui autointerseção
- Todo vértice convexo é um vértices Branco, mas nem todo vértice Branco pertence ao polígono.
- Todo vértice côncavo espelhado do MPP é um vértice Preto, mas nem todo vértice Preto pertence ao MPP.
- Vértices Pretos estão no MPP ou fora dele. Vértices brancos estão no MPP ou dentro dele.

# Polígono de Perímetro Mínimo - MPP

- Percorra a fronteira no sentido anti-horário.
- Para três pontos em sequência,  $a = (x_1, y_1)$ ,  $b = (x_2, y_2)$  e  $c = (x_3, y_3)$ , arranje

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

- Avaliar sinal(a, b, c) = det(A)
  - se sinal(a,b,c) > 0: a sequência ocorre no sentido anti-horário
  - se sinal(a, b, c) = 0: pontos colineares
  - se sinal(a,b,c) < 0: a sequência ocorre no sentido horário
- Ex:  $(3,4) \rightarrow (2,3) \rightarrow (3,2)$ . Determinante = 2 > 0 (sentido anti-horário)



## Polígono de Perímetro Mínimo - MPP

- Organize os vértices em sequência, incluindo indicação se o vértice é Preto ou Branco.
   Vértices pretos devem ser previamente espelhados.
- ullet Prepare dois vértices  $B_R$  e  $P_R$  para rastrear os pontos brancos e pretos.
- Faça  $B_R = P_R = V_0$ .  $V_L$  é o último vértice encontrado.  $V_k$  é o vértice atual analisado.
- Três condições podem acontecer:
  - $sinal(V_L, B_R, V_k) > 0$
  - $sinal(V_L, B_R, V_k) \leq 0$  (ou  $sinal(V_L, P_R, V_k) \geq 0$ )
  - $sinal(V_L, P_R, V_k) < 0$
- Se  $sinal(V_L, B_R, V_k) > 0$ , o próximo **vértice do MPP** é  $B_R$ . Faz-se  $V_L = B_R$  e reinicializa-se o algoritmo:  $B_R = P_R = V_L$ . Caminha-se para o próximo vértice.
- Se  $sinal(V_L, B_R, V_k) \le 0$ ,  $V_L$  é **candidato** ao MPP. Define-se  $B_R = V_L$  se  $V_K$  é convexo, ou  $P_R = V_K$  se este é côncavo.
- Se  $sinal(V_L, P_R, V_k) < 0$ , o próximo **vértice do MPP** é  $P_R$ . Faz-se  $V_L = P_R$  e reinicializa-se o algoritmo:  $B_R = P_R = V_L$ . Caminha-se para o próximo vértice.
- $\bullet$  O conjunto de vértice  $V_L$  forma o MPP.

# Representação e descrição de regiões



| Index      | $V_k$            | $s(V_L, B_R, V_k)$ | $s(V_L, P_R, V_k)$ | $B_R$  | $P_R$  | $V_L$  |
|------------|------------------|--------------------|--------------------|--------|--------|--------|
| 0          | $\circ$ (1,4)    | _                  |                    | (1,4)  | (1,4)  | (1,4)  |
| 1          | $\bullet$ (2, 3) | 0                  | 0                  | (1,4)  | (2,3)  | (1,4)  |
| 2          | $\circ$ (3, 3)   | 0                  | 1                  | (3,3)  | (2,3)  | (1,4)  |
| 3          | $\bullet$ (3, 2) | -2                 | 0                  | (3,3)  | (3, 2) | (1,4)  |
| 4          | $\circ$ (4, 1)   | -3                 | 0                  | (4, 1) | (3, 2) | (1,4)  |
| 5          | $\circ$ (7, 1)   | 9 > 0              | : <del></del> :    | (4, 1) | (3, 2) | (4, 1) |
| <b>C</b> 5 | $\circ$ (7, 1)   | -                  |                    | (4,1)  | (4, 1) | (4,1)  |
| 5          | $\circ$ (7, 1)   | 0                  | 0                  | (7,1)  | (4, 1) | (4, 1) |
| 6          | $\bullet(8,2)$   | 3 > 0              |                    | (7,1)  | (4, 1) | (7,1)  |
| <b>C</b> 6 | •(8,2)           |                    |                    | (7,1)  | (7,1)  | (7,1)  |
| 6          | •(8,2)           | 0                  | 0                  | (8,2)  | (7,1)  | (7,1)  |

#### Outras técnicas

- Fusão
- Separação
- Assinaturas: distância para o centróide a passos fixos do ângulo



- Invariância à rotação: uso dos eixos principais com pontos do contorno.
- Invariância à escala: normalização em relação ao máximo, ou divisão pela variância.

# Esqueletos digitais

Não pode remover pontos extremos, sem quebrar a conectividade e sem causar erosão excessiva

- $\bullet$  N(P): número de vizinhos de P.
- T(P): número de transições  $0 \to 1$  ao redor de P
- Ex:  $N(p_1) = 4$ ,  $T(p_1) = 3$ .
- Passo 1: marcar para remoção

• 
$$2 \le N(p_1) \le 6$$

- $T(p_1) = 1$
- $p_2 \cdot p_4 \cdot p_6 = 0$
- $p_4 \cdot p_6 \cdot p_8 = 0$
- Remover pontos marcados no passo 1
- Passo 2: marcar para remoção

• 
$$2 \le N(p_1) \le 6$$

- $T(p_1) = 1$
- $p_2 \cdot p_4 \cdot p_8 = 0$
- $p_2 \cdot p_6 \cdot p_8 = 0$
- Remover pontos marcados no passo 2
- Repetir passos 1 e 2 até não haver mais remoções





| 0 | 0     | 1 |
|---|-------|---|
| 1 | $p_1$ | 0 |
| 1 | 0     | 1 |

| <i>p</i> <sub>9</sub> | $p_2$ | $p_3$ |
|-----------------------|-------|-------|
| $p_8$                 | $p_1$ | $p_4$ |
| $p_7$                 | $p_6$ | $p_5$ |

#### Descritores de Fourier



- Pares de coordenadas são montados percorrendo a fronteira no sentido anti-horário.
- Cada ponto é representado como um número complexo da forma s(k) = x(k) + jy(k), para  $k = 0, 1, 2, \dots, K - 1$  pares.

$$a(u) = \frac{1}{K} \sum_{k=0}^{K-1} s(k) e^{-j2\pi uk/K}$$

- Os valores a(u) são os descritores de fourier.
- Reconstrução pela transformada inversa.

$$\hat{s}(k) = \frac{1}{P} \sum_{u=0}^{P-1} a(u) e^{-j2\pi uk/P}$$

 Com menos componentes de frequência é possível reconstruir o contorno com menos detalhes, entretanto usando a mesma quantidade de pontos.

#### Descritores de Fourier

- Problemas: invariância à rotação, translação, ponto de partida e escala.
- Rotação por  $\theta$ :  $s_r(k) = s(k)e^{j\theta}$

$$a_r(u) = \sum_{k=0}^{K-1} s(k)e^{j\theta}e^{-j2\pi uk/K}$$
$$= a(u)e^{j\theta}$$

• Translação por  $z_0 = x_0 + jy_0$ :  $s_t(k) = s(k) + z_0$ .

$$u(k) = \sum_{k=0}^{K-1} s(k) + z_0 ] e^{-j2\pi uk/K}$$

$$= \sum_{k=0}^{K-1} s(k) e^{-j2\pi uk/K} + \sum_{k=0}^{K-1} z_0 e^{-j2\pi uk/K}$$

$$= u(k) + z_0 \delta(k)$$

• É afetada apenas a componente DC da transformada: u(0). O impulso vale zero em outros lugares da transformada

#### Descritores de Fourier

• Ponto inicial:  $s_p(k) = x(k-k_0) + jy(k-k_0)$ . Pelo teorema do deslocamento,

$$u_p(k) = u(k)e^{-j2\pi k_0 u/K}$$

• Escala:  $s_s(k) = \alpha s(k)$ 

$$u_s(k) = \alpha u(k)$$

Resumo das propriedades

| Transformação    | Fronteira                           | Descritor                         |  |
|------------------|-------------------------------------|-----------------------------------|--|
| Identidade       | s(k)                                | u(k)                              |  |
| Rotação          | $s(k)e^{j\theta}$                   | $u(k)e^{j\theta}$                 |  |
| Translação       | $s_t(k) = s(k) + z_0$               | $u_t(k) = u(k) + z_0 \delta(k)$   |  |
| Ponto de partida | $s_p(k) = x(k - k_0) + jy(k - k_0)$ | $u_p(k) = u(k)e^{-j2\pi k_0 u/K}$ |  |
| Escala           | $s_s(k) = \alpha s(k)$              | $u_s(k) = \alpha u(k)$            |  |

O que fazer para buscar a invariância às transformações?

# Descrição de Texturas

As abordagens mais comuns são a estatística e a espectral.

#### Abordagens estatísticas: Momentos estatísticos

- Momentos estatísticos do histograma de uma região
- Seja  $p(z_i)$ ,  $i = 0, 1, \dots, L-1$  o histograma de uma região.
- O n-ésimo momento de z em torno da média é dado por

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i)$$

- $\bullet$   $\mu_0 = 1$  e  $\mu_1 = 0$ .
- $\bullet$   $\mu_2$  é a variância. Fornece medida de contraste presente na região.
- Suavidade relativa:

$$R(z) = 1 - \frac{1}{1 + \mu_2(z)}$$

R(z) = 0 para regiões de intensidade constante. R(z) é próximo de 1 para regiões com muita variação de tons.

• O terceiro momento  $\mu_3(z)$  mede a assimetria do histograma. O quarto momento  $\mu_4(z)$  mede o quão este é plano.

15 / 23

# Abordagens estatísticas: Momentos estatísticos

Uniformidade

$$U(z) = \sum_{i=0}^{L-1} p^2(z_i)$$

Entropia média: medida de variabilidade

$$e(z) = -\sum_{i=0}^{L-1} p(z_i) log_2 p(z_i)$$







| Textura | Média  | Desv. Pad. | R     | $\mu_3$ | U(z)  | e(z)  |
|---------|--------|------------|-------|---------|-------|-------|
| Suave   | 82.64  | 11.79      | 0.002 | -0.105  | 0.026 | 5.434 |
| Rugosa  | 143.56 | 74.63      | 0.079 | -0.151  | 0.005 | 7.783 |
| Regular | 99.72  | 33.73      | 0.017 | 0.750   | 0.013 | 6.674 |

#### Matrizes de co-ocorrência

- Incorporação de informação sobre posição relativa de pixels: Matriz de co-ocorrência.
- ullet Os elementos  $g_{ii}$  de uma matriz de co-ocorrência G contam a quantidade de vezes que o tom de cinza j ocorreu à direita do tom de cinza i.
- $\bullet$  Para imagens com 256 tons de cinza, tais matrizes podem ter tamanhos de 256  $\times$  256, podendo ser quantizadas em tamanhos menores pela conveniência.
- Médias e variâncias nas linhas e colunas

$$m_r = \sum_{i=1}^{K} i \sum_{j=1}^{K} p_{ij}$$
  $\sigma_r^2 = \sum_{i=1}^{K} (i - m_r)^2 \sum_{j=1}^{K} p_{ij}$   $m_c = \sum_{j=1}^{K} j \sum_{i=1}^{K} p_{ij}$   $\sigma_c^2 = \sum_{j=1}^{K} (j - m_c)^2 \sum_{i=1}^{K} p_{ij}$ 

# Alguns descritores baseados em matrizes de co-ocorrência

| Prob. Máxima  | Resposta mais forte de $G$                                  | $\max_{i,j}(p_{ij})$                                                           |
|---------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|
| Correlação    | Diz como um pixel está<br>correlacionado com seu<br>vizinho | $\sum_{i=1}^{K} \sum_{j=1}^{K} \frac{(i-m_r)(j-m_c)p_{ij}}{\sigma_r \sigma_c}$ |
| Contraste     | Contraste entre um pixel<br>e seu vizinho                   | $\sum_{i=1}^{K} \sum_{j=1}^{K} (i-j)^2 p_{ij}$                                 |
| Uniformidade  | Uniformidade da matriz                                      | $\sum_{i=1}^K \sum_{j=1}^K p_{ij}^2$                                           |
| Homogeneidade | Proximidade da diagonal                                     | $\sum_{i=1}^{K} \sum_{j=1}^{K} \frac{p_{ij}}{1 +  i - j }$                     |
| Entropia      | Aleatoriedade de G                                          | $-\sum_{i=1}^K \sum_{j=1}^K p_{ij} \log p_{ij}$                                |

# Matrizes de co-ocorrência: exemplo









| G         | Prob.   | Corr    | Contr. | Unif.   | Homog. | Entr  |
|-----------|---------|---------|--------|---------|--------|-------|
| $G_1/n_1$ | 0.00006 | -0.0005 | 10.838 | 0.0002  | 0.0366 | 15.75 |
| $G_2/n_2$ | 0.01500 | 0.965   | 570    | 0.01230 | 0.0824 | 6.43  |
| $G_3/n_3$ | 0.06860 | 0.8798  | 1356   | 0.0048  | 0.2048 | 13.58 |

# Abordagens espectrais

- Abordagens espectrais avaliam o espectro de Fourier de uma região para medir características de textura.
- Monta-se uma função  $S(r, \theta)$ , função da distância r para o centro do espectro e do ângulo  $\theta$ formado com o eixo horizontal.

$$S(r) = \sum_{\theta=0}^{R} S_{\theta}(r)$$
  $S(\theta) = \sum_{r=0}^{\pi} S_{r}(\theta)$ 

#### **Momentos invariantes**

• O momento de ordem (p+q) de f(x,y) é definido como:

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y)$$

• O momento central de ordem (p+q) de f(x,y) é definido como:

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

Os momentos centrais normalizados são definidos como

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}} \quad \gamma = \frac{p+q}{2} + 1 \quad p+q = 2, 3, \dots$$

#### **Momentos invariantes**

$$\phi_{1} = \eta_{20} + \eta_{02}$$

$$\phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$\phi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$\phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$\phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})$$

$$[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$\phi_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

$$\phi_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})$$

$$[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

# **Momentos invariantes**

| Momento  | Original | Translação | Escala   | Espelho  | 45°      | $90^{0}$ |
|----------|----------|------------|----------|----------|----------|----------|
| $\phi_1$ | 2.8806   | 2.8807     | 2.8817   | 2.8807   | 2.8807   | 2.8807   |
| $\phi_2$ | 8.2933   | 8.2932     | 8.3000   | 8.29453  | 8.2910   | 8.2945   |
| $\phi_3$ | 11.5038  | 11.5038    | 11.5139  | 11.5007  | 11.4978  | 11.5007  |
| $\phi_4$ | 10.2548  | 10.2548    | 10.2593  | 10.2553  | 10.2559  | 10.2553  |
| $\phi_5$ | -21.1346 | -21.1346   | -21.1469 | -21.1336 | -21.1330 | -21.1336 |
| $\phi_6$ | 14.4366  | 14.4366    | 14.4441  | 14.4374  | 14.4354  | 14.4374  |
| $\phi_7$ | -22.4931 | -22.4931   | -22.3274 | -22.5590 | -22.5706 | -22.5590 |











