Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

In the Claims:

- 1. (Cancelled).
- 2. (Previously Presented) A compound or salt thereof selected from the group consisting of

$$H_3^{\circ}C^{\circ} = \begin{pmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_5 & C_6 & C_6 \\ C_6 & C_7 & C_7 \\ C_7 & C_7 &$$

3. (Previously Presented) A compound selected from the group consisting of tert-butyl 3-(3,4-dichlorophenyl)-3-[3-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-8-yl)propyl]pyrrolidine-1-carboxylate;

8-{3-[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-(isoxazol-5-ylcarbonyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-(1H-pyrrol-2-ylcarbonyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-pentanoylpyrrolidin-3-yl]propyl}-1-[3-(trifluoromethyl)phenyl]-1,3,8-triazaspiro[4.5]decan-4-one;

8-{3-[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]propyl}-1-[3-(trifluoromethyl)phenyl]-1,3,8-triazaspiro[4.5]decan-4-one;

- 8-{3-[1-(cyclobutylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-[3-(trifluoromethyl)phenyl]-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[3-(3,4-dichlorophenyl)-1-pentanoylpyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[1-(cyclopentylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[1-(cyclobutylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-{3-[1-(cyclobutylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-(3-methylphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 3-acetyl-8-{3-[1-acetyl-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]propyl}-1-(3-methylphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-(cyclopentylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-acetyl-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[3-(3,4-dichlorophenyl)-1-(2-furoyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one;
- 8-(2-{[1-(cyclopentylcarbonyl)-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one; and
- 8-(2-{[1-acetyl-3-(3,4-dichlorophenyl)pyrrolidin-3-yl]oxy}ethyl)-1-(3-methoxyphenyl)-1,3,8-triazaspiro[4.5]decan-4-one.
- 4.-47. (Cancelled).
- 48. (Currently Amended) A compound of formula (I)

$$R^{3}-(Y)_{m}-N$$
 B
 $X-N$
 A
 N
 R^{0}
 R^{0}
 R^{0}
 R^{0}
 R^{0}
 R^{0}

and pharmaceutically acceptable derivatives thereof, wherein X is $(CH_2)_3$;

Ring A is a saturated, 6-membered monocyclic ring having one ring nitrogen;

Ring B is a saturated 4 or 5 membered ring containing the depicted ring nitrogen; R¹ is a phenyl or a phenyl substituted with mono- or di- halogen;

Y is -C(O)- or -C(O)-O, and m is 1;

R³ is H, -N(R⁰)₂, -N(R⁰)C(O)R⁰, -CN, halogen, CF₃, alkyl optionally substituted by one or more groups selected from R⁷ or -S-aryl optionally substituted by - (CH₂)₁₋₆-N(R⁰)SO₂(R⁰), alkenyl optionally substituted by one or more groups selected from R⁷ or -S-aryl optionally substituted by -(CH₂)₁₋₆-N(R⁰)SO₂(R⁰), alkynyl optionally substituted by one or more groups selected from R⁷ or -S-aryl optionally substituted by -(CH₂)₁₋₆-N(R⁰)SO₂(R⁰), cycloalkyl or carbocyclyl optionally substituted by one or more R⁸, aryl optionally substituted by one or more R⁶, heteroaryl optionally substituted by one or more R⁶, or heterocyclyl optionally substituted by one or more R⁸;

each R⁶ is independently selected from the group consisting of halogen, -CF₃, -OCF₃,

 $-\mathsf{OR}^0, -(\mathsf{CH}_2)_{1\text{-6}}-\mathsf{OR}^0, -\mathsf{SR}^\circ, -(\mathsf{CH}_2)_{1\text{-6}}-\mathsf{SR}^0, -\mathsf{SCF}_3, -\mathsf{R}^0, \text{ methylenedioxy},\\ \text{ethylenedioxy}, -\mathsf{NO}_2, -\mathsf{CN}, -(\mathsf{CH}_2)_{1\text{-6}}-\mathsf{CN}, -\mathsf{N}(\mathsf{R}^0)_2, -(\mathsf{CH}_2)_{1\text{-6}}-\mathsf{N}(\mathsf{R}^0)_2, -\\ \mathsf{NR}^\circ\mathsf{C}(\mathsf{O})\mathsf{R}^0, -\mathsf{NR}^0(\mathsf{CN}), -\mathsf{NR}^0\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{NR}^\circ\mathsf{C}(\mathsf{S})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{NR}^\circ\mathsf{CO}_2\mathsf{R}^0,\\ -\mathsf{NR}^0\mathsf{NR}^0\mathsf{C}(\mathsf{O})\mathsf{R}^0, -\\ \mathsf{NR}^0\mathsf{NR}^0\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{NR}^0\mathsf{NR}^0\mathsf{CO}_2\mathsf{R}^0, -\mathsf{C}(\mathsf{O})\mathsf{C}(\mathsf{O})\mathsf{R}^0, -\mathsf{C}(\mathsf{O})\mathsf{CH}_2\mathsf{C}(\mathsf{O})\mathsf{R}^0,\\ -(\mathsf{CH}_2)_{0\text{-6}}\mathsf{CO}_2\mathsf{R}^0, -\mathsf{O}\text{-C}(\mathsf{O})\mathsf{R}^0, -\mathsf{C}(\mathsf{O})\mathsf{R}^0, -\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)\mathsf{OH}, -\mathsf{C}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)\mathsf{SO}_2\mathsf{R}^0, -\mathsf{OC}(\mathsf{O})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{S}(\mathsf{O})_t\mathsf{R}^0, -\mathsf{S}(\mathsf{O})_t\mathsf{O}^0,\\ -\mathsf{S}(\mathsf{O})_t\mathsf{N}(\mathsf{R}^0)\mathsf{C}(\mathsf{O})\mathsf{R}^0, -\mathsf{S}(\mathsf{O})_t\mathsf{N}(\mathsf{R}^0)\mathsf{OR}^0, -\mathsf{NR}^0\mathsf{SO}_2\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{NR}^0\mathsf{SO}_2\mathsf{R}^0,\\ -\mathsf{C}(=\mathsf{S})\mathsf{N}(\mathsf{R}^0)_2, -\mathsf{C}(=\mathsf{NH})-\mathsf{N}(\mathsf{R}^0)_2, -(\mathsf{CH}_2)_{1\text{-6}}-\mathsf{C}(\mathsf{O})\mathsf{R}^0, -\mathsf{C}(=\mathsf{N}\text{-O}\mathsf{R}^0)-\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{S})\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{R}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N}(\mathsf{N}^0)_2,\\ -\mathsf{C}(=\mathsf{N}\mathsf{O}_2\mathsf{N$

-(CH₂)₁₋₆-NHC(O)R⁰, and -SO₂N(R⁰)₂ wherein the two R⁰s on the same nitrogen are optionally taken together to form a 5-8 membered saturated, partially saturated, or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen, or sulfur;

each R^7 is independently selected from the group consisting of halogen, $-CF_3$, $-R^0$, $-OR^0$, $-OCF_3$, $-(CH_2)_{1-6}-OR^0$, $-SR^0$, $-SCF_3$, $-(CH_2)_{1-6}-SR^0$, aryl optionally substituted by R^6 , methylenedioxy, ethylenedioxy, $-NO_2$, -CN, $-(CH_2)_{1-6}-CN$, $-N(R^0)_2$, $-(CH_2)_{1-6}-N(R^0)_2$, $-NR^0C(O)R^0$, $-NR^0(CN)$, $-NR^0C(O)N(R^0)_2$, $-N(R^0)C(S)N(R^0)_2$,

 $-NR^{0}CO_{2}R^{0}$, $-NR^{0}NR^{0}C(O)R^{0}$, $-NR^{0}NR^{0}C(O)N(R^{0})_{2}$, $-NR^{0}NR^{0}CO_{2}R^{0}$,

 $-C(O)C(O)R^0, \ -C(O)CH_2C(O)R^0, \ -(CH_2)_{0-6}-CO_2R^0, \ -C(O)R^0, \ -C(O)N(R^0)N(R^0)_2, \ -(CO)R^0, \ -(CO$

 $-C(O)N(R^{0})_{2}$, $-C(O)N(R^{0})OH$, $-OC(O)R^{0}$, $-C(O)N(R^{0})SO_{2}R^{0}$, $-OC(O)N(R^{0})_{2}$,

 $-S(O)_{t}R^{0}, \ -S(O)_{t}-OR^{0}, \ -S(O)_{t}N(R^{0})C(O)R^{0}, \ -S(O)_{t}N(R^{0})OR^{0}, \ -NR^{0}SO_{2}N(R^{0})_{2}, \ -NR^{0$

 $-NR^0SO_2R^0$, $-C(=S)N(R^0)_2$, $-C(=NH)-N(R^0)_2$, $-(CH_2)_{1-6}-C(O)R^0$,

 $-C(=N-OR^0)-N(R^0)_2$, $-O-(CH_2)_{0-6}-SO_2N(R^0)_2$, $-(CH_2)_{1-6}-NHC(O)R^0$, and

 $-SO_2N(R^0)_2$ wherein the two R^0 s on the same nitrogen are optionally taken together to form a 5-8 membered saturated, partially saturated, or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen, or sulfur;

each R^8 is independently selected from R^7 , =0, =S, =N(R^0), and =N(CN); R^9 is H;

- each R⁰ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, carbocyclylalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, heterocyclyl, and heterocyclylalkyl, wherein each member of R⁰ except H is optionally substituted by one or more R*, OR*, N(R*)₂, =O, =S, halo, CF₃, NO₂, CN, -C(O)R*, -CO₂R*, -C(O)-aryl, -C(O)-heteroaryl, -C(O)-aralkyl, -S(O)₁-aryl,
 - $-S(O)_{t}\text{-heteroaryl, -NR*}SO_{2}R^{\star}, -NR^{\star}C(O)R^{\star}, -NR^{\star}C(O)N(R^{\star})_{2},$
 - $-N(R^*)C(S)N(R^*)_2$,
 - -NR*CO₂R*, -NR*NR*C(O)R*, -NR*NR*C(O)N(R*)₂, -NR*NR*CO₂R*,
 - $-C(O)C(O)R^*, \ -C(O)CH_2C(O)R^*, \ -C(O)N(R^*)N(R^*)_2, \ -C(O)N(R^*)_2, \ -C(O)N(R^*)_2$
 - -C(O)NR*SO₂R*, -OC(O)N(R*)₂, -S(O)_tR*, -NR*SO₂N(R*)₂, -SO₂N(R*)₂ wherein the two R*s on the same nitrogen are optionally taken together to

form a 5-8 membered saturated, partially saturated or aromatic ring having additional 0-4 heteroatoms selected from oxygen, phosphorus, nitrogen or sulfur:

each R* is independently H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, or heteroaryl.

- 49. (New) The compound of claim 48 wherein the B ring is pyrrolidine.
- 50. (New) The compound of claim 48 wherein R¹ is phenyl mono- or disubstituted with halogen.
- 51. (New) The compound of claim 48 wherein R¹ is phenyl di-substituted with Cl.
- 52. (New) The compound of claim 48 wherein $-(Y)_m$ - R^3 is selected from the group consisting of

53. (New) The compound of claim 48 wherein $-(Y)_m$ - R^3 is selected from the group consisting of

- 54. (New) The compound of claim 48 wherein m is 1, Y is –C(O)-, and R³ is either aryl or heteroaryl, wherein said aryl or heteroaryl is optionally substituted, with an optionally substituted alkyl, or an optionally substituted cycloalkyl.
- 55. (New) The compound of claim 48 wherein m is 1, Y is -C(O)O-, and R³ is optionally substituted alkyl or optionally substituted aryl.
- 56. (New) The compound of claim 48 wherein the A ring, with an asterisk indicating the point of substitution, is

57. (New) The compound of claim 48 wherein the A ring in combination with R² is selected from the group consisting of

- 58. (New) A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to claim 48 together with a pharmaceutically acceptable carrier.
- 59. (New) The pharmaceutical composition according to claim 58 in the form of a tablet or capsule.
- 60. (New) The pharmaceutical composition according to claim 58 in the form of a liquid.