# Query-based Workload Forecasting for Self-Driving DBMSs

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, Geoffrey J. Gordon

#### Motivation

- Database optimization requires experience and takes significant time
- Self-driving DBMSs will reduce the complications and costs involved with deploying a database
- Workload forecasting resilient to hardware and database system design is crucial for autonomous optimizations

#### QueryBot 5000: Overview

- Pre-Processor: Extract template for each query and record the arrival rate history for each template
- Clusterer: Group similar templates together to reduce the modeling overhead
- Forecaster: Predict the future arrival pattern for templates in each cluster at different horizons/intervals

### QB5000 Framework Pipeline



#### **Arrival Rate Forecasting**

- Popular models in the literature
  - > Linear Regression (LR), ARMA, FNN, Recurrent Neural Network (RNN), Kernel Regression (KR), PSRNN
- ENSEMBLE: LR+RNN gives the best average accuracy





KR: Able to predict the spike patterns with limited data



 HYBRID: combine ENSEMBLE with KR to achieve both good MSE and the ability to predict spikes





## Cluster SQL Templates on Arrival Rates

- Feature Options: Physical X Logical X Arrival Rate √
- Top 4 query templates within the largest cluster



## **Example: Automatic Index Building**

- Building indexes for the DBMS according to the workload forecasting in real time
- Use the same index suggestion algorithm to build 20 indexes in total in all the settings
- At the end, AUTO (using QB5000 in real time)
  achieves 25% better performance than STATIC
  (building all indexes at first using static workload
  sample)





Carnegie Mellon University