Borne supérieure dans ${\mathbb R}$

Aperçu

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de ${\mathbb R}$
- 3. La droite achevée $\overline{\mathbb{R}}$

Borne supérieure dans $\mathbb R$

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 2. Les dix types d'intervalles de $\mathbb R$
- 3. La droite achevée $\overline{\mathbb{R}}$

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 2. Les dix types d'intervalles de R
- 3. La droite achevée \mathbb{R}

C'est *la* propriété cruciale de \mathbb{R} .

D 1 Soit A une partie de \mathbb{R} . Si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A et on la note sup A.

On admet la propriété fondamentale suivante

- T 2 Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.
- **E 3** 1. L'ensemble \mathbb{N} n'a pas de borne supérieure dans \mathbb{R} .
 - 2. La borne supérieure de [0, 1] est 1, c'est aussi son plus grand élément.
 - 3. La borne supérieure de [0, 1[est 1, mais [0, 1[n'a pas de plus grand élément.

C'est la propriété cruciale de \mathbb{R} .

D 1 Soit A une partie de \mathbb{R} . Si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A et on la note sup A.

On admet la propriété fondamentale suivante

- **T** 2 Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.
- **E 3** 1. L'ensemble \mathbb{N} n'a pas de borne supérieure dans \mathbb{R} .
 - 2. La borne supérieure de [0, 1] est 1, c'est aussi son plus grand élément.
 - 3. La borne supérieure de [0,1[est 1, mais [0,1[n'a pas de plus grand élément.
 - Il est faux que toute partie non vide majorée de $\mathbb Q$ admet une «borne supérieure» dans $\mathbb Q$. Par exemple avec $A = \{ x \in \mathbb Q \mid x^2 < 2 \}$. L'ensemble des rationnels qui majore A est $[\sqrt{2}, +\infty \cap \mathbb Q]$: il n'a pas de plus petit élément dans $\mathbb Q$.

$$A = \left\{ -\frac{1}{n} \mid n \in \mathbb{N}^{+} \right\} = \left\{ -1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots \right\}$$

Alors A n'a pas de plus grand élément et $\sup(A) = 0$.

T 5 Soit A et B deux parties non vides de \mathbb{R} . On suppose que $A \subset B$ et que B est majorée. Alors A est majorée et sup $A \leq \sup B$.

- 1. Théorème de la borne supérieure
- 1.1 Borne supérieure
- 1.2 Borne inférieure
- 2. Les dix types d'intervalles de R
- 3. La droite achevée \mathbb{R}

- **D 6** Soit A une partie de \mathbb{R} . Si l'ensemble des minorants de A admet un plus grand élément, celui-ci est appelé la borne inférieure de A et on la note inf A.
- **T 7** Toute partie non vide et minorée de \mathbb{R} admet une borne inférieure.
- **T 8** Soit A et B deux parties non vides de \mathbb{R} . On suppose que $A \subset B$ et que B est minorée. Alors A est minorée et inf $A \geq \inf B$.
- **T 9** Soit A une partie non vide majorée de \mathbb{R} . On pose $B = \{-x \mid x \in A\}$. Alors B est minorée et inf $B = -\sup A$.

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de \mathbb{R}
- 2.1 Parties convexes de \mathbb{R}
- 2.2 Caractérisation des parties convexes
- 3. La droite achevée $\overline{\mathbb{R}}$

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de \mathbb{R}
- 2.1 Parties convexes de \mathbb{R}
- 2.2 Caractérisation des parties convexes
- 3. La droite achevée $\mathbb R$

D 10 Une partie A de \mathbb{R} est **convexe** lorsque tout segment dont les extrémités sont deux éléments de A est inclus dans A, c'est-à-dire

$$\forall (x, y) \in A^2, [x, y] \subset A.$$

ou encore

$$\forall (x, y) \in A^2, \forall z \in \mathbb{R}, x \le z \le y \implies z \in A.$$

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de $\mathbb R$
- 2.1 Parties convexes de R
- 2.2 Caractérisation des parties convexes
- 3. La droite achevée $\mathbb R$

T 11 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles ouverts, de la forme

$$\begin{aligned}]a, +\infty[&= \{ \ x \in \mathbb{R} \mid a < x \ \} \\]-\infty, b[&= \{ \ x \in \mathbb{R} \mid x < b \ \} \\]a, b[&=]-\infty, b[\cap]a, +\infty[&= \{ \ x \in \mathbb{R} \mid a < x < b \ \} \\]-\infty, +\infty[&= \mathbb{R} \end{aligned}$$

T 11 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de \mathbb{R} sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles fermés, de la forme

$$[a, +\infty[= \{ x \in \mathbb{R} \mid a \le x \}]$$

$$]-\infty, b] = \{ x \in \mathbb{R} \mid x \le b \}$$

$$[a, b] =]-\infty, b] \cap [a, +\infty[= \{ x \in \mathbb{R} \mid a \le x \le b \}]$$

$$]-\infty, +\infty[= \mathbb{R}$$

Les intervalles de la forme [a, b] fermés et bornées sont aussi appelés segments.

T 11 Caractérisation des partie convexes de $\mathbb R$

Les parties convexes de \mathbb{R} sont les suivantes, les bornes a et b étant des nombres réels.

Les intervalles de la forme

$$[a, b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

 $[a, b[= \{ x \in \mathbb{R} \mid a \le x < b \}]$

Ces intervalles ne sont ni ouverts, ni fermés.

T 11 Caractérisation des partie convexes de ${\mathbb R}$

Les parties convexes de $\mathbb R$ sont les suivantes, les bornes a et b étant des nombres réels.

- L'ensemble vide : Ø.
- Noter que si b < a, alors $]a, b[= [a, b] = \emptyset$. Si a = b, on a $[a, a] = \{a\}$.
- Par ailleurs, $\mathbb R$ et \emptyset sont des intervalles ouverts et fermés.

C 12 Toute intersection d'intervalles est un intervalle.

- Théorème de la borne supérieure
- 2. Les dix types d'intervalles de R
- 3. La droite achevée \mathbb{R}
- 3.1 Prolongement de la relation \leq , de l'addition, de la multiplication
- 3.2 Borne supérieure dans $\overline{\mathbb{R}}$
- 3.3 Intervalles de $\overline{\mathbb{R}}$

On note $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ appelé droite numérique achevée.

Notation à ne pas confondre avec l'adhérence de $\mathbb R$ dans $\mathbb R$ qui est $\mathbb R!$

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de R
- 3. La droite achevée \mathbb{R}
- 3.1 Prolongement de la relation \leq , de l'addition, de la multiplication
- 3.2 Borne supérieure dans R
- 3.3 Intervalles de R

D 13 On étend à $\overline{\mathbb{R}}$ la relation \leq de la façon suivante

 $\forall x \in \mathbb{R}, -\infty < x < +\infty.$

D 14 On prolonge l'addition de \mathbb{R} de la façon suivante

$$\forall x \in \mathbb{R}, x + (+\infty) = (+\infty) + x = +\infty$$

$$\forall x \in \mathbb{R}, x + (-\infty) = (-\infty) + x = -\infty$$

$$(+\infty) + (+\infty) = +\infty$$

$$(-\infty) + (-\infty) = -\infty$$

Par contre, nous ne donnerons aucun sens aux expressions

$$(+\infty) + (-\infty)$$
 et $(-\infty) + (+\infty)$.

D 15 On prolonge la multiplication de $\mathbb R$ de la façon suivante

$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (+\infty) = (+\infty) \times x = \begin{cases} +\infty & \text{si } x > 0 \\ -\infty & \text{si } x > 0 \end{cases}$$

$$\forall x \in \overline{\mathbb{R}} \setminus \{0\}, x \times (-\infty) = (-\infty) \times x = \begin{cases} -\infty & \text{si } x > 0 \\ +\infty & \text{si } x > 0 \end{cases}$$

Nous posons également

$$\frac{1}{+\infty} = 0 \qquad \qquad \frac{1}{-\infty} = 0$$

Par contre, nous ne donnerons aucun sens aux expressions

$$0 \times (\pm \infty), \quad (\pm \infty) \times 0, \quad \frac{\pm \infty}{+\infty}, \quad \frac{x}{0}$$

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de R
- 3. La droite achevée \mathbb{R}
- 3.1 Prolongement de la relation \leq , de l'addition, de la multiplication
- 3.2 Borne supérieure dans $\overline{\mathbb{R}}$
- 3.3 Intervalles de R

- **T 16** Toute partie de $\overline{\mathbb{R}}$ possède une borne supérieure dans $\overline{\mathbb{R}}$, éventuellement $\pm \infty$.
- **E 17** 1. Si A est une partie non vide et majorée de \mathbb{R} , sa borne supérieure dans \mathbb{R} et dans \mathbb{R} coïncide.
 - 2. Tout partie de $\overline{\mathbb{R}}$ est majorée par $+\infty$.
 - 3. Si A est une partie non majorée de \mathbb{R} , elle est toutefois majorée dans $\overline{\mathbb{R}}$ par $+\infty$. On peut alors écrire

$$\sup(A) = +\infty.$$

- 4. L'ensemble vide admet tout élément de $\overline{\mathbb{R}}$ pour majorant dans $\overline{\mathbb{R}}$. Or $\overline{\mathbb{R}}$ admet $-\infty$ pour plus petit élément (dans $\overline{\mathbb{R}}$). Donc la borne supérieure de \emptyset dans $\overline{\mathbb{R}}$ est $-\infty$.
- **T** 18 Toute partie de $\overline{\mathbb{R}}$ possède une borne inférieure dans $\overline{\mathbb{R}}$, éventuellement $\pm \infty$.

- 1. Théorème de la borne supérieure
- 2. Les dix types d'intervalles de R
- 3. La droite achevée \mathbb{R}
- 3.1 Prolongement de la relation \leq , de l'addition, de la multiplication
- 3.2 Borne supérieure dans R
- 3.3 Intervalles de $\overline{\mathbb{R}}$

D 19 Pour $a, b \in \mathbb{R}$ avec $a \le b$, on définit les intervalles

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a \le x \le b \right\}$$

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a < x < b \right\}$$

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a \le x < b \right\}$$

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} \mid a < x \le b \right\}$$

D 20 Une partie A de $\overline{\mathbb{R}}$ est convexe lorsque

$$\forall (x, y) \in A^2, [x, y] \subset A.$$

T 21 Les parties convexes de $\overline{\mathbb{R}}$ sont exactement les intervalles de $\overline{\mathbb{R}}$.