## Spring 2016

**Problem 2** Given training samples  $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ , ridge regression seeks to predict each response  $y^{(i)}$  with a linear model  $\theta \cdot x^{(i)}$  while encouraging  $\theta$  to have a small norm. We omit the offset parameter for simplicity. Specifically,  $\theta$  is estimated by minimizing

$$\left[\frac{1}{n}\sum_{i=1}^{n}(y^{(i)} - \theta \cdot x^{(i)})^{2}/2\right] + \frac{\lambda}{2}\|\theta\|^{2},\tag{6}$$

where  $\lambda \geq 0$  is the regularization parameter, typically chosen in advance.

(2.1) (2 points) What is the solution  $\hat{\theta}$  that minimizes Eq(6) if  $\lambda \to \infty$ ?

(2.2) (2 points) If we assume that  $(1/n) \sum_{i=1}^{n} (y^{(i)})^2/2 = 1$ , sketch in the figure how the squared training error

$$\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{\theta}(\lambda) \cdot x^{(i)})^2 / 2 \tag{7}$$

behaves as we vary  $\lambda$ . Here  $\hat{\theta}(\lambda)$  is the solution to Eq(6) with the chosen  $\lambda$ .

