МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№2
по дисциплине «Организация ЭВМ и систем»
Тема: Изучение режимов адресации и формирования
исполнительного адреса.

Студентка гр. 1303	Королева П.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Изучить режимы адресации и формирование исполнительного адреса на языке ассемблер.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы

- 1. У преподавателя получен вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и свои данные занесены вместо значений, указанных в приведенной ниже программе.
- 2. Программа протранслирована с созданием файла диагностических сообщений; операторы, вызывающие ошибку, закомментированы, ниже приведено объяснение каждой ошибки:
 - 1) mov mem3, [bx]

lr2.asm(42): error A2052: Improper operand type

Ошибка: Неправильный тип операнда.

Пояснение: Машинные команды не могут манипулировать одновременно двумя операндами, находящимися в оперативной памяти, то есть в команде только 1 операнд может указывать на ячейку памяти, другой операнд должен быть либо регистром, либо непосредственным значением.

lr2.asm(49): warning A4031: Operand types must match

Ошибка: Типы операндов должны соответствовать друг другу.

Пояснение: сх имеет размерность 2 байта, а vec2[di] – размерность 1 байт

lr2.asm(53): warning A4031: Operand types must match

Ошибка: Типы операндов должны соответствовать друг другу.

Пояснение: сх имеет размерность 2 байта, а matr[bx][di] – размерность 1 байт.

4) mov ax, matr[bx*4][di]

lr2.asm(54): error A2055: Illegal register value

Ошибка: Запрещенное значение регистра.

Пояснение: Масштабирование регистра запрещено в используемой версии процессора.

5) mov ax,matr[bp+bx]

lr2.asm(73): error A2046: Multiple base registers

Ошибка: Несколько базовых регистров.

Пояснение: В адресации с базированием и индексированием исполнительный адрес берется в виде суммы адресов, находящихся в базовом и индексном регистрах, а в данной строке оба регистра базовые.

lr2.asm(74): error A2047: Multiple index registers

Ошибка: Несколько базовых регистров.

Пояснение: В адресации с базированием и индексированием исполнительный адрес берется в виде суммы адресов, находящихся в базовом и индексном регистрах, а в данной строке два индексных регистра.

7) Main ENDP

lr2.asm(81): error A2006: Phase error between passes

Ошибка: Фазовая ошибка между проходами через код.

Пояснение: Во время таят трансляции ассемблер несколько раз проходит по коду. Когда он проходит первый раз, он высчитывает смещение, а при втором проходе — создает объектный файл. Ошибка возникает если при втором проходе текущее смещение отличается от теоретического (то есть высчитанного изначально).

В нашем случае это говорит о том, что в функции Маіп допущены ошибки, после их исправления эта ошибка исчезает.

- 3. Снова протранслирована программа и скомпонован загрузочный модуль.
- 4. Программа выполнена в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды. Результат представлен в таблице 1.

Исходный код программы и листинг программы с закомментированными ошибочными операциями приведены в приложении А.

Таблица 1 LR2_2.exe

Адрес	Символический	16-ричный	Изменяемь	іе данные		
команды	ианды код команды к	код команды	до		после	
0000 PUSH DS	1E	IP = 0000		IP = 0001		
		SP=0018		SP=0016		
			Stack:		Stack:	
				+0 0000		+0 19F5
				+2 0000		+2 0000
				+4 0000		+4 0000
				+6 0000		+6 0000
0001	SUB AX, AX	2BCO	AX=0000		AX=0000	
			IP = 0001		IP = 0003	
			SP=0016		SP=0016	
			Stack:		Stack:	
				+0 19F5		+0 19F5
				+2 0000		+2 0000
				+4 0000		+4 0000
				+6 0000		+6 0000
0003	PUSH AX	50	IP = 0003		IP = 0004	
			SP=0016		SP=0014	
			Stack:		Stack:	
				+0 19F5		+0 0000
				+2 0000		+2 19F5
				+4 0000		+4 0000
				+6 0000		+6 0000

0004	MOV AX,1A07	B8071A	AX = 0000	AX =1A07
			IP = 0004	IP = 0007
			SP=0014	SP=0014
0007	MOV DS,AX	8ED8	DS=19F5	DS=1A07
			IP = 0007	IP = 0009
			SP=0014	SP=0014
0009	MOV AX,01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
			SP=0014	SP=0014
000C	MOV CX,AX	8BC8	CX = 00B0	CX=01F4
			AX = 01F4	AX = 01F4
			IP = 000C	IP = 000E
			SP=0014	SP=0014
000E	MOV DL 24	D224	BX = 0000	BX = 0024
000E	MOV BL,24	B324	IP = 000E	IP = 0010
			SP = 0014	SP=0014
0010	MOV BH,CE	B7CE	BX = 0024	BX = CE24
			IP = 0010	IP = 0012
			SP=0014	SP=0014
0012	MOV	C7060200C	BX = CE24	BX = CE24
	[0002],FFCE	EFF	IP = 0012	IP = 0018
			SP=0014	SP=0014
0018	MOV BX,0006	BB0600	BX = CE24	BX = 0006
			IP = 0018	IP = 001B

001B	MOV [0000],AX	A30000	IP = 001B	IP = 001E
001E	MOV AL,[BX]	8A07	AX = 01F4 $[BX] = [0006] = 01$ $IP = 001E$	AX = 0101 $IP = 0020$
0020	MOV AL,[BX+03]	8A4703	AX = 0101 $[BX+03] = 04$ $IP = 0020$	AX = 0104 IP = 0023
0023	MOV CX, [BX+03]	8B4F03	CX = 01F4 $[BX+03] = 04$ $IP = 0023$	CX = 0804 $IP = 0026$
0026	MOV DI, 0002	BF0200	DI = 0000 IP = 0026	DI = 0002 IP = 0029
0029	MOV AL, [000E+DI]	8A850E00	AX = 0104 $[000E+DI] = 0A$ $IP = 0029$	AX = 010A $IP = 002D$
002D	MOV BX, 0003	BB0300	BX = 0006 $IP = 002D$	BX = 0003 IP = 0030
0030	MOV AL, [0016+BX+DI]	8A811600	[0016+BX+DI] = FD $AX = 010A$	AX = 01FD $IP = 0034$

			IP = 0030	
0034	MOV AX, 1A07	B8071A	AX = 01FD	AX = 1A07
			IP = 0034	IP = 0037
0037	MOV ES, AX	8EC0	ES = 19F5	ES = 1A07
			AX = 1A07	IP = 0039
			IP = 0037	
0039	MOV AX,	268B07	AX = 1A07	AX = 00FF
	ES:[BX]		IP = 0039	IP = 003C
003C	MOV AX, 0000	B80000	AX = 00FF	AX = 0000
			IP = 003C	IP = 003F
003F	MOV ES, AX	8EC0	ES = 1A07	ES = 0000
			AX = 0000	IP = 0041
			IP = 003F	
0041	PUSH DS	1E	DS = 1A07	DS = 1A07
			IP = 0041	IP = 0042
			SP = 0014	SP = 0012
			Stack:	Stack:
			+0 0000	+0 1A07
			+2 19F5	
			+4 0000	
			+6 0000	+6 0000

0042	POP ES	07	ES = 0000	ES = 1A07	
			IP = 0042	IP = 0043	
			SP = 0012	SP = 0014	
			Stack:	Stack:	
			+0 1A0	7	+0 0000
			+2 000	0	+2 19F5
			+4 19F	5	+4 0000
			+6 000	0	+6 0000
0043	MOV CX,	268B4FFF	CX = 0804	CX = FFCE	
	ES:[BX—01]		IP = 0043	IP = 0047	
0047	XCHG AX, CX	91	AX = 0000	AX = FFCE	
			CX = FFCE	CX = 0000	
			IP=0047	IP=0048	
0048	MOV DI, 0002	BF0200	DI = 0002	DI = 0002	
			IP = 0048	IP = 004B	
004B	MOV	268901	IP = 004B	IP = 004E	
	ES:[BX+DI], AX				
004E	MOV BP, SP	8BEC	BP = 0010	BP = 0014	
			SP = 0014	IP = 0050	
			IP = 004E		
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054	
			[0000] = 01F4	[0000] = 01F	4
			SP = 0014	SP = 0012	

			Stack:		Stack:	
				+0 0000		+0 01F4
				+2 19F5		+2 0000
				+4 0000		+4 19F5
				+6 0000		+6 0000
0054	PUSH [0002]	FF360200	IP = 0054		IP = 0058	
			[0002] = FFC	CE	[0002] = FF	CE
			SP = 0012		SP = 0010	
			Stack:		Stack:	
				+0 01F4		+0 FFCE
				+2 0000		+2 01F4
				+4 19F5		+4 0000
				+6 0000		+6 19F5
0058	MOV BP, SP	8BEC	BP = 0014		BP = 0010	
			SP = 0010		SP = 0010	
			IP = 0058		IP = 005A	
005A	MOV DX,	8B5602	DX = 0000		DX = 01F4	
	[BP+02]		BP+02]=0	1F4	IP = 005D	
			IP = 005A			
005D	RET Far 0002	CA0200	IP = 005D		IP = FFCE	
			SP = 0010		SP = 0016	
			CS = 1A0A		CS = 01F4	
			Stack:		Stack:	
				+0 FFCE		+0 19F5
				+2 01F4		+2 0000

	+4 0000	+4 0000
	+6 19F5	+6 0000

Выводы

Изучены режимы адресации и формирование исполнительного адреса на языке ассемблер.

ПРИЛОЖЕНИЕ А

Название файла: lr2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 1,2,3,4,8,7,6,5
vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al, [bx]
mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov cx, matr[bx] [di]
mov ax, matr[bx*4][di]
```

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx, ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
mov ax,matr[bp+bx]
mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
     Название файла: lr2 2.lst
Microsoft (R) Macro Assembler Version 5.10
                                                                  10/8/22
14:33:55
                                                                Page 1-
1
                       ; Программа изучения режиЙ
                      ¼ов адресации процессора I
                      ntelX86
 = 0024
                            EOL EQU '$'
 = 0002
                            ind EQU 2
 = 01F4
                            n1 EQU 500
 =-0032
                            n2 EQU -50
                       ; Стек программы
 0000
                      AStack SEGMENT STACK
 0000 0000[
                           DW 12 DUP(?)
         ????
                  1
 0018
                      AStack ENDS
                       ; Данные программы
 0000
                      DATA SEGMENT
                       ; Директивы описания даннэ
                      \square x
 0000 0000
                            mem1 DW 0
```

```
0002 0000
                          mem2 DW 0
 0004 0000
                         mem3 DW 0
 0006 01 02 03 04 08 07
                          vec1 DB 1,2,3,4,8,7,6,5
      06 05
 000E F6 EC 0A 14 E2 D8
                          vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
      1E 28
 0016 01 02 03 04 FC FD
                         matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-
6,-5
      FE FF 05 06 07 08
      F8 F9 FA FB
 0026
                     DATA ENDS
                     ; Код программы
 0000
                     CODE SEGMENT
                     ASSUME CS:CODE, DS:DATA, SS:AStack
                     ; Головная процедура
 0000
                     Main PROC FAR
 0000 1E
                     push DS
 0001
     2B C0
                           sub AX, AX
 0003 50
                    push AX
 0004 B8 ---- R
                    mov AX, DATA
 0007 8E D8
                          mov DS, AX
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                     ¦ИИ НА УРОВНЕ СМЕЩЕНИЙ
                     ; Регистровая адресация
 0009 B8 01F4
                          mov ax, n1
 000C 8B C8
                           mov cx,ax
 000E B3 24
                           mov bl, EOL
 0010 B7 CE
                           mov bh, n2
                     ; Прямая адресация
 0012 C7 06 0002 R FFCE mov mem2, n2
                  mov bx, OFFSET vec1
 0018 BB 0006 R
 001B A3 0000 R
                    mov mem1,ax
                     ; Косвенная адресация
 001E 8A 07
                          mov al, [bx]
                     ;mov mem3,[bx]
                     ; Базированная адресация
```

```
Microsoft (R) Macro Assembler Version 5.10
                                                                  10/8/22
14:33:55
                                                               Page 1-
2
 0020 8A 47 03
                           mov al, [bx]+3
 0023 8B 4F 03
                           mov cx, 3[bx]
                       ; Индексная адресация
 0026 BF 0002
                           mov di, ind
 0029 8A 85 000E R
                           mov al, vec2[di]
                      ;mov cx,vec2[di]
                      ; Адресация с базированиеЙ
                      \frac{1}{4} и индексированием
```

mov al, matr[bx][di]

mov bx,3

;mov cx,matr[bx][di]

002D BB 0003

0030 8A 81 0016 R

```
; mov ax, matr[bx*4] [di]
                   ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                   ¦ИИ С УЧЕТОМ СЕГМЕНТОВ
                   ; Переопределение сегмент
                   ; ---- вариант 1
0034 B8 ---- R
                   mov ax, SEG vec2
0037 8E CO
                   mov es, ax
0039 26: 8B 07
                   mov ax, es:[bx]
003C B8 0000
                   mov ax, 0
                   ; ----- вариант 2
                    mov es, ax
003F 8E C0
    1E
0041
                   push ds
0042 07
                   pop es
0043 26: 8B 4F FF
                   mov cx, es:[bx-1]
0047 91
                 xchg cx, ax
                   ; ----- вариант 3
                     mov di,ind
0048 BF 0002
004B 26: 89 01
                   mov es:[bx+di],ax
                   ; ---- вариант 4
004E 8B EC
                       mov bp,sp
                   ; mov ax, matr[bp+bx]
                   ; mov ax, matr[bp+di+si]
                   ; Использование сегмента э
                   □тека
0050 FF 36 0000 R
                        push mem1
                       push mem2
0054 FF 36 0002 R
0058 8B EC
                       mov bp,sp
005A 8B 56 02
                       mov dx, [bp]+2
005D CA 0002
                       ret 2
0060
                   Main ENDP
0060
                   CODE ENDS
                   END Main
```

Segments and Groups:

	N a m e	Length Alig	n Combine Class
ASTACK CODE DATA		0018 PARA 0060 PARA 0026 PARA	NONE
Symbols:			
	N a m e	Type Value	Attr
EOL		NUMBER	0024
IND		NUMBER	0002
MAIN		F PROC	0000 CODE Length =
MATR		L BYTE L WORD L WORD L WORD	0016 DATA 0000 DATA 0002 DATA 0004 DATA
N1		NUMBER NUMBER	01F4 -0032
VEC1 VEC2		L BYTE L BYTE	0006 DATA 000E DATA
		TEXT 01011 TEXT 1r2_1 TEXT 510	

⁸³ Source Lines 83 Total Lines

47812 + 459448 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors

¹⁹ Symbols