Amendments to the Claims

Please amend the claims as follows:

1. (Currently amended) A compound of formula I:

$$R^{17}$$
 R^{16}
 $N-R^{15}$
 R^{16}
 $N-R^{15}$
 R^{16}
 R^{10}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

wherein

 R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$; R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^c$, or $-O-R^c$;

Application Serial No.: <u>09/776,466</u> Attorney Docket No. <u>P-087-R</u> page 2 of 17

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)$.

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form - Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

R¹² is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heterocyclic, -C(O)R^d, -C(NH)R^d,

Application Serial No.: 09/776,466 Attorney Docket No. P-087-R

Received from < 650 808 6078 > at 4/18/03 12:18:50 PM [Eastern Daylight Time]

page 3 of 17

-C(O)NR^cR^c, -C(O)OR^d, -C(NH)NR^cR^c and -R^a-Y-R^b-(Z)_x, or R¹¹ and R¹² are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;

 R^{15} is hydrogen or $-R^{a}-Y-R^{b}-(Z)_{x}$;

R¹⁶ is hydrogen or methyl;

R¹⁷ is hydrogen, alkyl or substituted alkyl;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^e is a saccharide group;

W is selected from the group consisting of ΘR^{\bullet} , $-SR^{\circ}$, $-S-S-R^{d}$, $-NR^{\circ}R^{\circ}$, $-S(O)R^{d}$, $-SO_{2}R^{d}$, $-NR^{\circ}C(O)R^{d}$, $-OC(O)R^{d}$, $-NR^{\circ}SO_{2}R^{d}$, $-C(O)NR^{\circ}R^{\circ}$, $-C(O)OR^{\circ}$, $-C(NR^{\circ})OR^{\circ}$, $-SO_{2}NR^{\circ}R^{\circ}$, $-SO_{2}OR^{\circ}$, $-P(O)(OR^{\circ})_{2}$, $-P(O)(OR^{\circ})NR^{\circ}R^{\circ}$, $-OP(O)(OR^{\circ})NR^{\circ}R^{\circ}$, $-OC(O)OR^{d}$, $-NR^{\circ}C(O)OR^{d}$, $-NR^{\circ}C(O)NR^{\circ}R^{\circ}$, $-OC(O)NR^{\circ}R^{\circ}$, $-NR^{\circ}SO_{2}NR^{\circ}R^{\circ}$; $-N^{+}(R^{\circ})=CR^{\circ}R^{\circ}$, $-N=P(R^{d})_{3}$, $-N^{+}(R^{d})_{3}$, $-P^{+}(R^{d})_{3}$, $-C(S)OR^{d}$, and $-C(S)SR^{d}$;

X¹, X² and X³ are independently selected from hydrogen or chloro;

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, -NR^c-, -S(O)-, -SO₂-, -NR^cC(O)-, -OSO₂-, -OC(O)-, -NR^cSO₂-, -C(O)NR^c-, -C(O)O-, -SO₂NR^c-, -SO₂O-, -P(O)(OR^c)O-, -P(O)(OR^c)NR^c-, -OP(O)(OR^c)O-,

Application Serial No.: 09/776,466
Attorney Docket No. P-087-R

page 4 of 17

 $-OP(O)(OR^{\circ})NR^{\circ}-$, -OC(O)O-, $-NR^{\circ}C(O)O-$, $-NR^{\circ}C(O)NR^{\circ}-$, $-OC(O)NR^{\circ}-$ and $-NR^{\circ}SO_{2}NR^{\circ}-$;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{15} , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 or R^{12} has a substitutent substituent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
 - 2. (Original) The compound of Claim 1, wherein \mathbb{R}^2 is hydrogen and \mathbb{R}^{13} is -OH.
- 3. (Original) The compound of Claim 2, wherein R⁴, R⁶ and R⁷ are each hydrogen.
 - 4. (Original) The compound of Claim 3, wherein R⁸ is -CH₂C(O)NH₂.
- 5. (Original) The compound of Claim 4, wherein R⁹ is hydrogen; R¹⁰ is isobutyl; R¹¹ is methyl; and R¹² is hydrogen.

Al

Application Serial No.: 09/776,466
Attorney Docket No. P-087-R

- 6. (Original) The compound of Claim 5, wherein R^5 is hydrogen, $-CH_2$ -NHR°, $-CH_2$ -NR°R° and $-CH_2$ -NH-R°- $-(Z)_x$.
 - 7. (Original) The compound of Claim 6, wherein R³ is -OR^c or -NR^cR^c.
 - 8. (Original) The compound of Claim 7, wherein R³ is -OH and R⁵ is hydrogen.
 - 9. (Original) The compound of Claim 8, wherein R^{15} is $-R^a-Y-R^b-(Z)_x$.
 - 10. (Currently amended) A compound of formula II:

II

wherein

Application Serial No.: <u>09/776,466</u> Attorney Docket No. <u>P-087-R</u> page 6 of 17

 R^{15} is hydrogen or $-R^a-Y-R^b-(Z)_x$;

R¹⁶ is hydrogen or methyl;

 R^{22} is $-OR^{c}$, $-NR^{c}R^{c}$, $-O-R^{a}-Y-R^{b}-(Z)_{x}$ or $-NR^{c}-R^{a}-Y-R^{b}-(Z)_{x}$;

 R^{23} is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-R^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_c$;

R²⁴ is selected from the group consisting of hydrogen and lower alkyl;

R²⁵ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R²⁶ is selected from the group consisting of hydrogen and lower alkyl; or R²⁵ and R²⁶ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

R²⁷ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, -C(O)R^d, -C(NH)R^d, -C(O)NR^cR^c, -C(O)OR^d, -C(NH)NR^cR^c and -R^a-Y-R^b-(Z)_x, or R²⁶ and R²⁷ are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R* is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R° is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d:

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R° is an aminosaccharide group;

Application Serial No.: 09/776,466 Attorney Docket No. P-087-R page 7 of 17

1

```
W \ is \ selected \ from \ the \ group \ consisting \ of \ = \ OR^\circ_7 \ -SR^\circ, \ -S-S-R^d, \ -NR^\circ R^\circ, \ -S(O)R^d, \ -SO_2R^d, \ -NR^\circ C(O)R^d, \ -OC(O)R^d, \ -NR^\circ SO_2R^d, \ -C(O)NR^\circ R^\circ, \ -C(O)OR^\circ, \ -C(NR^\circ)OR^\circ, \ -SO_2NR^\circ R^\circ, \ -SO_2OR^\circ, \ -P(O)(OR^\circ)_2, \ -P(O)(OR^\circ)NR^\circ R^\circ, \ -OP(O)(OR^\circ)_2, \ -OP(O)(OR^\circ)NR^\circ R^\circ, \ -OC(O)OR^d, \ -NR^\circ C(O)OR^d, \ -NR^\circ C(O)NR^\circ R^\circ, \ -OC(O)NR^\circ R^\circ, \ -NR^\circ SO_2NR^\circ R^\circ; \ -N^*(R^\circ) = CR^\circ R^\circ, \ -N = P(R^d)_3, \ -N^*(R^d)_3, \ -P^*(R^d)_3, \ -C(S)OR^d, \ and \ -C(S)SR^d;
```

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, $-NR^c-$, -S(O)-, $-SO_2-$, $-NR^cC(O)-$, $-OSO_2-$, -OC(O)-, $-NR^cSO_2-$, $-C(O)NR^c-$, -C(O)O-, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$, $-OP(O)(OR^c)O-$, $-OP(O)(OR^c)NR^c-$, -OC(O)O-, $-NR^cC(O)O-$, $-NR^cC(O)NR^c-$, $-OC(O)NR^c-$ and $-NR^cSO_2NR^c-$;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{15} , R^{22} , R^{23} or R^{27} has a substitutent substituent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
- 11. (Original) The compound of Claim 10, wherein R^{24} is hydrogen; R^{25} is isobutyl; R^{26} is methyl; and R^{27} is hydrogen.

Application Serial No.: 09/776,466
Attorney Docket No. P-087-R

page 8 of 17

- 12. (Original) The compound of Claim 11, wherein R²² is -OH.
- 13. (Original) The compound of Claim 12, wherein R²³ is hydrogen.
- 14. (Original) The compound of Claim 13, wherein R¹⁵ is -R^a-Y-R^b-(Z)_x.
- 15. (Original) The compound of Claim 9 or 14, wherein W is -NH₂.
- 16. (Original) The compound of Claim 15, wherein the $-R^a-Y-R^b-(Z)_x$ group is selected from the group consisting of:

```
-CH<sub>2</sub>CH<sub>2</sub>-NH-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
```

$$-CH_2CH_2-NHSO_2-(CH_2)_0CH_3$$
;

$$-CH_2CH_2-S-(CH_2)_9CH_3$$
;

$$-CH2CH2CH2-S-(CH2)8CH3;$$

$$-CH_2CH_2CH_2-S-(CH_2)_9CH_3;$$

- $-CH_2CH_2CH_2-S-(CH_2)_3-CH=CH-(CH_2)_4CH_3$ (trans);
- -CH₂CH₂CH₂CH₂-S-(CH₂)₇CH₃;
- $-CH_2CH_2-S(O)-(CH_2)_9CH_3;$
- $-CH_2CH_2-S-(CH_2)_6Ph;$
- -CH₂CH₂-S-(CH₂)₈Ph;
- -CH₂CH₂CH₂-S-(CH₂)₈Ph;
- -CH₂CH₂-NH-CH₂-4-(4-Cl-Ph)-Ph;
- -CH₂CH₂-NH-CH₂-4-[4-CH₃)₂CHCH₂-]-Ph;
- -CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph;

Application Serial No.: 09/776,466 Attorney Docket No. P-087-R

page 9 of 17

- -CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-)-Ph; -CH₂CH₂-NHSO₂-CH₂-4-[4-(4-Ph)-Ph]-Ph; -CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-NHSO₂-CH₂-4-(Ph-C≡C-)-Ph; -CH₂CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph; and -CH₂CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.
- 17. (Original) A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.
- 18. (Original) The pharmaceutical composition of Claim 17, wherein the composition further comprises a cyclodextrin.
- 19. (Currently Amended) A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a pharmaceutical pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.
- 20. (Original) A compound as shown in any of Tables I, II, III or IV, or a pharmaceutically-acceptable salts thereof.

AI

Application Serial No.: <u>09/776,466</u> Attorney Docket No. <u>P-087-R</u>

21. (Currently amended) A compound of the formula:

wherein

R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

W is selected from the group consisting of $\frac{-OR^6}{7}$ -SR°, -S-S-R^d, -NR°R°, -S(O)R^d, -SO₂R^d, -NR°C(O)R^d, -OSO₂R^d, -OC(O)R^d, -NR°SO₂R^d, -C(O)NR°R°, -C(O)OR°,

Application Serial No.: 09/776,466 Attorney Docket No. P-087-R

page 11 of 17

A

$$\begin{split} &-C(NR^c)OR^c, -SO_2NR^cR^c, -SO_2OR^c, -P(O)(OR^c)_2, -P(O)(OR^c)NR^cR^c, -OP(O)(OR^c)_2, \\ &-OP(O)(OR^c)NR^cR^c, -OC(O)OR^d, -NR^cC(O)OR^d, -NR^cC(O)NR^cR^c, -OC(O)NR^cR^c, \\ &-NR^cSO_2NR^cR^c; -N^+(R^c) = CR^cR^c, -N = P(R^d)_3, -N^+(R^d)_3, -P^+(R^d)_3, -C(S)OR^d, \\ &-C(S)SR^d; \end{split}$$

P is hydrogen or a protecting group; and salts thereof.

Application Serial No.: 09/776,466 Attorney Docket No. P-087-R