

23BD1A05A2

INTRODUCTION & PROBLEM STATEMENT

What is Avatar Lab?

- > AI-powered tool that converts text into realistic talking head videos.
- > Uses deep learning for facial animation and speech synthesis.

Cutting-Edge Developments

Leverages Diff Dub for high-fidelity facial motion synthesis and SMALL-E for neural speech generation, ensuring precise lip-sync and expressive vocal output.

End Goal:

To build an application that generates realistic, interactive Al avatars for digital experiences

20XX Pitch Deck 2

MARKET > Video production is expensive and time-intensive. **CHALLENGE** > Scalable, high-quality video creation remains a challenge. > Limited AI solutions for realistic, customizable, and costeffective avatars. TYPICAL USERS > Content Creators > Educators > Virtual Assistants & Game Developers **OUR SOLUTION** > Improves realism with precise lip-syncing and expressions > Customizable avatars for personalized, engaging experiences > User-राम्ब्रिकाण्डाविकालमं, ११० एवर मने दिसां ब्रेश्मा स्वर्धां विकास **FUTURE SCOPE** > Multi-language support for global accessibility. > Real-time avatar streaming for live interactions.

USER ROLES & INTERACTION

User Roles

General Users: Input text, customize avatar appearance & voice, generate videos.

Developers: Fine-tune AI models and optimize system performance.

User Interaction

Input: Text script + optional emotion/voice parameters.

Processing: AI models generate lip-sync + speech synthesis.

Output: Downloadable AI-generated talking head videos.

Interface: Web-based platform with real-time preview.

TECH STACK & AI PIPELINE

Frontend: Next.js (User Interface)

Backend: Flask (API & Model Integration)

AI Models:

*DiffDub: Advanced facial animation and lip-sync.

***SMALL-E:** High-quality text-to-speech synthesis.

Database: MongoDB (User Data) + PostgreSQL (Structured

Metadata)

Cloud Deployment: AWS/GCP for scalable inference.

Preprocessing Steps:

- •Remove misaligned audio-video pairs.
- *Standardize audio (16kHz) and video resolution.
- •Validate synchronization between speech and lip movements.

ARCHITECTURE DIAGRAM

THANK YOU