

Projections, Dissections and Bandwidth Expansion Mappings

(*)University of Campinas (UNICAMP), Brazil, (**)AT&T Shannon Laboratory, Florham Park - NJ

Antonio Campello(*), Vinay Vaishampayan(**), Sueli Costa(*)

UNICAMP

Communication system

Vector $\mathbf{x} \in [0, 1]^k$ drawn from a discrete-time continuous alphabet source transmitted over an \mathbf{n} -dimensional Gaussian channel

- Bandwidth expansion ratio n/k.
- Under constraint $\boldsymbol{E}\left[\left\|\boldsymbol{s}(\boldsymbol{x})\right\|^2\right] \leq \boldsymbol{P}$, minimize MSE

$$MSE = \frac{1}{k} E \left[\left\| \boldsymbol{x} - \hat{\boldsymbol{x}} \right\|^2 \right].$$

Information-Theoretical Limits

Rate-Distortion Theory + Separation Principle:

$$D \geq \frac{1}{2\pi e (1 + \text{SNR})^{n/k}}$$

- Achievable with arbitrarily long (digital) block codes and infinite delay
- Question: How to design explicit and efficient analog mappings $s:[0,1]^k \to \mathbb{R}^n$ with asymptotically optimal behavior MSE = $\Theta(\mathsf{SNR}^{-n/k})$?
- If s(x) is linear, then $MSE = \Theta(SNR^{-1})$. Thus we must consider *non-linear* functions.

Threshold Effect

Design criteria:

- ► Maximize distance between "segments" of the locus s([0,1]^k).
- Stretch" the locus as much as possible.

The mod-1 map

For $\mathbf{A} \in \mathbb{Z}^{n \times k}$, we consider the piecewise linear map

$$s_1(x) = (A(x))_1 := Ax \pmod{1} = Ax - \lfloor Ax \rfloor.$$

The map is injective iff A is primitive set of vectors in \mathbb{Z}^n (i.e., can be completed to a basis). Images are parallel "planes" inside the box $[-1/2, 1/2]^n$.

Distance between two segments:

$$\delta = \min_{\boldsymbol{n} \in \mathbb{R}^n, \boldsymbol{n} \notin A^{\perp}} \min_{\boldsymbol{x} \in \mathbb{Z}^k} ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{n}||.$$

= the norm of the shortest vector in the lattice obtained by the projection of \mathbb{Z}^n onto \mathbf{A}^{\perp} . Tradeoff between minimum distance/determinant:

$$\rho = \frac{\alpha \delta}{2} = \frac{2\sqrt{3P}\Delta^{1/(n-k)}}{\sqrt{n}\det\left(A^tA\right)^{1/2(n-k)}}.$$

Analysis of the map

When there are no large errors:

$$\mathsf{MSE} pprox rac{\sigma^2 n \mathsf{tr}(A^t A)^{-1}}{12 k P},$$

but to meet the small error conditions we need ρ to be large $\Rightarrow \det(A^t A)$ small. To achieve optimal exponent we need a family of matrices with:

- 1 (Injectivity) The columns of **A** are *primitive*.
- 2 (Minimum distance) The density of the projections of \mathbb{Z}^n onto \mathbf{A}^{\perp} is bounded away from zero.
- 3 (MSE Exponent) $tr(A^tA)^{-1} = O(\det(A^tA)^{-1/k})$
- (3.) is trivially satisfied if A is orthogonal. For some parameters (k = n 2, n 1) constructions are possible. However, orthogonality + primitivity + good projections are hard to ensure simultaneously.

An Alternative Mapping: Modifying the support

By a matrix factorization, we can find Q and R, where $\det R = 1$ and columns of Q orthogonal, such that A = QR. Then the mapping:

$$s_Q:\mathcal{S} o\mathbb{R}^n$$

$$s_Q(\mathbf{x}_2) = Q\mathbf{x}_2 \pmod{1}.$$

where $S = R[0, 1]^k$ yields an asymptotically optimal family (provided that A is chosen according to good projections). However the source is now $S \neq [0, 1]^k$.

Dissections of polyhedra

Idea: use s_Q and a bijection between the cube $[0,1]^k$ and S provided by a *dissection* to come back to the original support.

Dissect $[0,1]^k$ and S into m non-overlapping polyhedra T_1, T_2, \ldots, T_m and $\tilde{T}_1, \tilde{T}_2, \ldots, \tilde{T}_m$ so that $[0,1]^k = \bigcup_{i=1}^m T_i, S = \bigcup_{i=1}^m \tilde{T}_i$ and $\tilde{T}_i = \phi_i(T_i)$. Define the map $s(x) = s_Q(\phi_i(x))$ if $x \in T_i$. Discontinuities can cause large errors. Solution: shrinking factor.

Proposition: For k = 2, there is a family of matrices and a proper choice of the "shrinking factor" such that the MSE degradation caused by the dissection is exponentially small and MSE = $\Theta(\text{SNR}^{-n/2})$.

Acknowledgments

This work was partially supported by São Paulo Research Foundation (FAPESP) Grant 2012/09167-2. Antonio Campello would like to thank AT&T Shannon Laboratory, where this work was developed.