Overview

- Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s}=13$ TeV; Eur.Phys.J. C79 (2019) no.2, 94
 - ▶ I served as the contact person of this analysis
- Search for the decay of a Higgs boson in the lly channel in proton-proton collisions at $\sqrt{s}=13$ TeV; JHEP 1811 (2018) 152
 - I was one of the main authors of this analysis, working on the trigger efficiency measurement & establishing the procedure for background model for the H→γ*γ part
- First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter; JINST 13 (2018) no.10, P10023
 - ▶ I attended several beamtests for HGCAL

$Z/H \rightarrow J/\psi + \gamma$ search

In some extensions to the SM, modified H-c coupling can arise

- ▶ Relevant in the BSM perspective
- ightharpoonup The search for $Z
 ightharpoonup J/\psi + \gamma$ decay is jointly performed
 - ▶ (1) Similar event signatures (2) large XS for the Z boson, leading to a much better sensitivity than the Higgs decay (3) the first search of this decay in CMS that motivates searches for the Z/H to quarkonium states

Hao-Ren Jheng (NCU)

$Z/H \rightarrow J/\psi + \gamma$ search

Two well-identified muons originated from PV to form J/ψ candidate

One energetic&isolated&well-separated from the J/ψ cand. photon

m_{µµY} is used as signal/background
 discriminating variable in the hypothesis test.

Non-resonant bkg.

- → modeled with analytic function
- → data-driven

Resonant bkg.

→ independently modeled/ estimated from simulation

Signal

→ independently modeled/ estimated from simulation

Hao-Ren Jheng (NCU)

$Z/H \rightarrow J/\psi + \gamma$ search

	Obs. (exp.) upper limit		Run1 results	
Channel	BR	BR BR _{SM}	ATLAS Phys. Rev. Lett. 114, 121801	CMS Phys. Lett. B 753 (2016) 341
Z→J/ψγ	$1.4(1.6_{-0.5}^{+0.7}) \times 10^{-6}$	15 (1 <i>7</i>)	$2.6(2.0^{+1.0}_{-0.6}) \times 10^{-6}$	_
H→J/ψγ	7.6(5.2 $^{+2.4}_{-1.6}$) \times 10 $^{-4}$	260 (170)	$1.5(1.2^{+0.6}_{-0.3}) \times 10^{-3}$	$1.5(1.6_{-0.8}^{+0.8}) \times 10^{-3}$
	Combination with CMS Run1 result leads to an upper limit of 220 (160)×SM			

- ♦ The results of this analysis (CMS-SMP-17-012) was published at Eur. Phys. J. C 79 (2019)94
- ♦ It's still a long way to go for both channels → The Z boson decay seems more promising at HL-LHC → Further improvements to make the analysis more advanced are foreseeable!

Hao-Ren Jheng (NCU)

HGCAL beamtest

• One of the important upgrades of the CMS is the **HGCAL**. I was involved in several beamtests and worked on the energy reconstruction and basic particle identification using machine learning technique

"Regression": train a regressor with the information recorded in the silicon sensors to predict the energy of the electron 100GeV electron shower in the EM section of HGCAL

100GeV pion shower in the EM section of HGCAL

"Classification": train a classifier to discriminate the electron (red in left plot) and pion (blue)

This study is still underway!