

planetmath.org

Math for the people, by the people.

LR(k)

Canonical name LRk

Date of creation 2013-03-22 19:00:31 Last modified on 2013-03-22 19:00:31

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

 $\begin{array}{lll} \text{Author} & \text{CWoo (3771)} \\ \text{Entry type} & \text{Definition} \\ \text{Classification} & \text{msc 03D10} \\ \text{Classification} & \text{msc 68Q42} \\ \text{Classification} & \text{msc 68Q05} \\ \text{Synonym} & LR(k) \end{array}$

Synonym LR(k)Related topic LLk Given a word u and a context-free grammar G, how do we determine if $u \in L(G)$?

One way is to look for any subword v of u such that there is a production $A \to v$. If this is successful, we may replace v with A in u to obtain a word w, so that $w \Rightarrow u$. We may then repeat the process on w to obtain another word x such that $x \Rightarrow w$ (if successful). In the end, if everything works successfully, we arrive at the starting non-terminal symbol σ , and get a derivation $\sigma \Rightarrow^* u$ as a result, so that $u \in L(G)$. This procedure is known as the bottom-up parsing of the word u.

In general, unless one is very lucky, successfully finding a derivation $\sigma \Rightarrow^* u$ requires many trials and errors, since at each stage, for a given word u, there may be several words w such that $w \Rightarrow u$.

Nevertheless, there is a particular family of context-free grammars, called the LR(k) grammars, which make the bottom-up parsing described above straightforward in the sense that, given a word u, once a word w is found such that $w \Rightarrow_R u$, any other word w' such that $w' \Rightarrow_R u$ forces w' = w. Here, \Rightarrow_R is known as the rightmost derivation (meaning that u is obtained from w by replacing the rightmost non-terminal in w). The L in LR(k) means scanning the symbols of u from left to right, R stands for finding a rightmost derivation for u, and k means having the allowance to look at up to k symbols ahead while scanning.

The details are as follows:

Definition. Let $G = (\Sigma, N, P, \sigma)$ be a context-free grammar such that $\sigma \to \sigma$ is not a production of G, and $k \geq 0$ an integer. Suppose U is any sentential form over Σ with the following setup: $U = U_1U_2U_3$ where

- U_3 is a terminal word,
- $X \to U_2$ a production, and
- $\bullet \ \sigma \Rightarrow_R^* U_1 X U_3 \Rightarrow_R U.$

Let $n = |U_1U_2| + k$, and Z the prefix of U of length n (if |U| < n, then set Z = U).

Then G is said to be LR(k) if W is another sentential form having Z as a prefix, with the following setup: $W = W_1W_2W_3$, where

- W_3 is a terminal,
- $Y \to W_2$ is a production, and

$$\bullet \ \sigma \Rightarrow_R^* W_1 Y W_3 \Rightarrow_R W$$

implies that

$$W_1 = U_1, \qquad Y = X, \qquad \text{and} \qquad W_2 = U_2.$$

Simply put, if D_U and D_W are the rightmost derivations of U and W respectively, and if the prefix of U obtained by including k symbols beyond the last replacement in D_U is also a prefix of W, then the prefix of U' obtained by including k symbols beyond the last replacement in D_U is also a prefix of W', where U' and W' are words at the next to the last step in D_U and D_W respectively. In particular, if U = W, then U' = W'. This implies that any derivable in an LR(k) grammar has a unique rightmost derivation, hence

Proposition 1. Any LR(k) grammar is unambiguous.

Examples.

• Let G be the grammar consisting of one non-terminal symbol σ (which is also the final non-terminal symbol), two terminal symbols a, b, with productions

$$\sigma \to a\sigma b$$
, $\sigma \to \sigma b$ and $\sigma \to b$.

Then G is not LR(k) for any $k \ge 0$. For instance, look at the following two derivations of $U = a^2 \sigma b^3$:

$$\sigma \Rightarrow^* a\sigma b^2 \Rightarrow a^2\sigma b^3$$
 and $\sigma \Rightarrow^* a^2\sigma b^2 \Rightarrow a^2\sigma b^3$

Here, $U_1 = a$, $U_2 = \sigma b$. Let k = 1. Then the criteria in the definition are satisfied. Yet, $W_1 = a^2 \neq U_1$. Therefore, G is not LR(1).

• Note that the grammar G above generates the language $L = \{a^m b^n \mid n > m\}$, which can also be generated by the grammar with three non-terminal symbols σ, X, Y , with σ the final non-terminal symbol, where the productions are given by

$$\sigma \to XY$$
, $X \to aXb$, $X \to \lambda$, $Y \to Yb$, and $Y \to b$.

However, this grammar is LR(1).

Determining whether a context-free grammar is LR(k) is a non-trivial problem. Nevertheless, an algorithm exists for determining, given a context-free grammar G and a non-negative integer k, whether G is LR(k). On the other hand, without specifying k in advance, no algorithms exist that determine if G is LR(k) for some k.

Definition. A language is said to be LR(k) if it can be generated by an LR(k) grammar.

Theorem 1. Every LR(k) language is deterministic context-free. Every deterministic context-free language is LR(1).

Hence, deterministic context-free languages are the same as LR(1) languages.

References

- [1] A. Salomaa, Formal Languages, Academic Press, New York (1973).
- [2] J.E. Hopcroft, J.D. Ullman, Formal Languages and Their Relation to Automata, Addison-Wesley, (1969).