Функциональные прочтения вопросов (Heim 2018; Haldar 2024)

Аркадий Шалдов

27 Nov 2024, НИС «Синсем», НИУ ВШЭ

О чем это?

Некоторые вопросы исчисляют по отношениям между индивидами — $\langle e, e \rangle$

- (1) Какого своего родственника не позвала ни одна девочка? 'Какая функция f_{ee} из индивидов в их родственников такова, что ни одна девочка x не позвала f(x)'
 - Мать / брата / кума / .../ #Петю

Здесь две проблемы

- > Во-первых, реляционность ИГ просачивается доверху
- > Во-вторых, рефлексив не с-коммандуется антецедентом

Значение

(2) Какого своего родственника не позвала ни одна девочка?

Engdahl (1986):

- > $\{p: \exists f_{(e,e)} [\forall x [\text{родств}(f(x), x) = 1] \land p = (\lambda w_s. \neg \exists x [\text{девочка}(x) = 1 \land \text{позвала}(x, f(x) = 1)])]\}$
- > множество пропозиций p, для которых есть функция из индивидов в их родственников f такая, что в интенсионале p ни одна девочка не позвала своего f
- напр. в интенсионале Ни одна девочка не позвала кума есть такая функция кум

Оригинальное решение (Engdahl 1986)

Что для этого нужно?

> Семантическое связывание нулевым оператором E

$$[\![E_y \, \xi]\!]^g = \lambda f_{ee}. \, \forall x. \, [\![\xi]\!]^{g^{x/y}} (f(x)) = 1$$

- > Полиморфичное *какой* (принимает втч. функции $\langle e, e \rangle$) $[\![\kappa a \kappa o \mathring{u}]\!] = \lambda P_{gt} \cdot \lambda Q_{gt} \cdot \exists x_g [P(x) = 1 \wedge Q(x) = 1]$
- > Слоистые следы (из нескольких частей, связываемых в разных местах)

Структура поверхностная

- (3) а. $[\lambda p \ [какого \ [E_y \ [своего_y \ родственника]] \lambda f \ [[Q(p)] \ [\lambda w \ ни \ одна$ девочка] $[\lambda x \ [t_x \ не \ позвала \ t_{f(x)}]]]]^1$
 - b. $\llbracket E_y [$ своего родственника $] \rrbracket = \lambda f_{ee}$. $\forall z$. родственник(z)(f(z)) = 1

 $^{^1}Q$ — Карттуненов прото-вопросный оператор $\lambda p_{st}.\ \lambda q_{st}.\ p$ = q

Проблемы особого оператора связывания

Heim (2018):

- 1. Откуда берутся ϕ -признаки?
- (4) Which picture of herself / *himself did no girl submit?
 - 2. Что лицензирует рефлексив?
- (5) Какого ее / *своего родственника нет на фотокарточке ни одной девочки?

Все указывает на необходимость с-коммандования. Решение Гейм: реконструкция

Рестриктор in-situ

Рестриктор wh-слова *своего родственника* теперь интерпретируется в базовой позиции:

(6) $[_{CP}$ какого $[_{TP}]_{DP}$ ни одна девочка $][_{VP}$ не позвала $[_{DP}]_{CP}$ своего родственника]]]]

Следствие: какой теперь принимает только один аргумент

Композиция по Неіт (2018)

Конверсия следов (Fox 2000): между копированием и удалением происходит вставление переменной и связывающего оператора:

- 1. Изначальная структура: [λp . [[Q(p)] [λw . Саша позвала [какого студента]]]]
- 2. Копирование: [λp . [[какого студента] [[Q(p)] [λw . Саша позвала [какого студента]]]]]
- 3. Вставление переменной: $[\lambda p. \ [[какого студента] \ [\lambda x. \ [[Q(p)] \ [\lambda w. \ Саша позвала [какого студента <math>x]]]]]]$
- 4. Удаление: [λp . [какого [λx . [[Q(p)] [λw . Саша позвала [студента x]]]]]]

Затайпшифтим:

- (7) а. [λp . [какого [λx . [[Q(p)] [λw . Саша позвала [тне студента [IDENT x]]]]]]]
 - b. $[THE] = \lambda P_{et} : \exists ! x_{\sigma} [P(x)] . \iota x_{\sigma} [P(x)]$
 - c. [IDENT] = λx_{σ} . λy_{σ} . x = y
 - d. $\llbracket какой \rrbracket = \lambda P_{\sigma t}$. $\exists x_{\sigma} [P(x)]$

одноместное wh-слово

Композиция по Неіт (2018)

Затайпшифтим:

- (8) а. $[\lambda p. [какого [\lambda x. [[Q(p)]] [\lambda w. Саша позвала [тне студента [IDENT x]]]]]]]$
 - b. $[THE] = \lambda P_{et} : \exists ! x_{\sigma} [P(x)]. ix_{\sigma} [P(x)]$
 - c. $[\![IDENT]\!] = \lambda x_{\sigma}. \ \lambda y_{\sigma}. \ x = y$
 - d. $\llbracket какой \rrbracket = \lambda P_{\sigma t}$. $\exists x_{\sigma} \llbracket P(x) \rrbracket$

одноместное wh-слово

Деривация:

- (9) a. $[\![IDENT \, x]\!]^g = \lambda y_e$. g(x) = y
 - b. $[[\texttt{студента іdеnт } x]]^g = \lambda y_e$. $g(x) = y \land \texttt{студент}(y)$
 - с. $[[THE \ CTYДЕНТА \ IDENT \ x]]^g = g(x)$ е.т.е. CTYДЕНТ(g(x))
 - d. $[[[(\lambda x. [[Q(p)] [\lambda w. Саша позвала [тне студента [ідент <math>x]]]]]]]^g = \lambda x. g(p) = \lambda w : студент(g(x)). позвала<math>_w(M, g(x))$
 - e. $[[(8a)]] = \{p : \exists x [\mathsf{студент}(x) \land p = \lambda w. \mathsf{позвала}_w(M, x)]\} \cup \{\emptyset\}$

А функциональные?

Позволим вставку рго на $\Pi\Phi$ и вставим рго как аргумент $\langle e,e \rangle$ -следа:

- (10) а. $[\lambda p. [какого [\lambda f. [[Q(p)] [\lambda w. ни одна девочка] [\lambda x. [t_x не позвала [тне своего родственника ідент <math>[f \operatorname{pro}_x]]]]]]]]$
 - b. $[[THE CBOEFO POДСТВЕННИКА IDENT [f pro_x]]]^g = g(f)(g(y))$ е.т.е. g(y) ∈ dom(g(f)) ∧ POДСТВЕННИК(g(f)(g(y)), g(y))
 - с. $[\![[\lambda f. \ldots]]\!] = \lambda f. \ g(p) = \lambda w.$: пресуппозиция. $\forall y \ [$ девочка $(y) \to \neg$ позвала(y,f(y))]
 - d. $[[(10a)]] = \{p : \exists f [\forall y [девочка(y) \to y \in dom(f) \land pодственник(f(y), y)] \land p = \lambda w. \forall y [девочка(y) \to \neg nозвала(y, f(y))]]\}$

Проблема одноместного какой (Haldar 2024)

В вопросах с функциональными прочтениями возможен эффект избежания реконструкции

- (11) Какого родственника, которого знает Петя $_i$, он не видел ни у одной девочки в гостях? 'Какая функция f_{ee} из индивидов в их родственников, которых знает Петя, такова, что ни для одной девочки x не верно, что Петя видел у x в гостях f(x)?'
 - > Одноместный какой предполагает, что весь рестриктор реконструируется
 - Однако при реконструкции которого знает Петя нарушается принцип С теории связывания
- (12) Какого [... [он $_i$ не видел ... [родственника, которого знает Петя $_i$]]]

Известная проблема

Как объясняют контраст между (13)?

(13) а. *Какую картину Пикассо $_i$ он $_i$ решил купить какую картину Пикассо? b. ок Какую картину, которую написал Пикассо $_i$, он $_i$ решил купить?

Sportiche (2016):

- (14) а. Heyчет (Neglect): любой материал на любом интерфейсе возможно игнорировать, если это не приводит к провалу
 - b. Принцип Полной интерпретации (FI): Все синтаксические объекты должны быть интерпретированы хотя бы однажды
 - с. Локальное насыщение предикатов: На LF любой предикат должен быть насыщен аргументами локально
 - > ЛНП: необходимо интерпретировать *Пикассо* (аргумент *картину*, аргумента *купить*) втч. снизу \implies принцип C нарушен
 - > Относительные клаузы не аргументы их нижние копии могут не учитываться

Разбиваем рестриктор

- > ИГ необходимо интерпретировать снизу (классические данные)
- Относительную клаузу необходимо интерпретировать сверху (данные Халдар)
- (15) а. Какого родственника, которого знает Петя $_i$, он $_i$ не видел ни у одной девочки в гостях?
 - b. $[\lambda p.$ [какого [которого знает Π етя $_i$] [$\lambda f.$ [[Q(p)] [$\lambda w.$ [[ни одной девочки] [$\lambda y.$ [он $_i$ не видел у t_y в гостях [тне родственника IDENT [$fpro_y$]]]]]]]]]

Двухместный какой!

Сразу сложности

- (16) а. Какого родственника, которого знает Петя $_i$, он $_i$ не видел ни у одной девочки в гостях?
 - b. $[\lambda p.$ [какого [которого знает Петя $_i$] [$\lambda f.$ [[Q(p)] [$\lambda w.$ [[ни одной девочки] [$\lambda y.$ [он $_i$ не видел у t_y в гостях [тне родственника іDENТ [$fpro_y$]]]]]]]]]]

Какие аргументы у какого?

$$> \lambda f. \dots - \langle ee, t \rangle$$

> [которого знает Петя] $- \langle e, t \rangle$

Типы разные! Оригинальный какой Энгдаль такого не поддерживает

(17)
$$\llbracket \kappa \text{акой} \rrbracket = \lambda P_{\sigma t}. \ \lambda Q_{\sigma t}. \ \exists x_{\sigma} [P(x) = 1 \land Q(x) = 1]$$
 (Engdahl 1986)

Новый тайпшифтер

Какие аргументы у какого?

$$> \lambda f. \dots - \langle ee, t \rangle$$

> [которого знает Петя] $- \langle e, t \rangle$

(18)
$$\llbracket \text{какой} \rrbracket = \lambda P_{\sigma t}. \ \lambda Q_{\sigma t}. \ \exists x_{\sigma} [P(x) = 1 \land Q(x) = 1]$$
 (Engdahl 1986)

У Энгдаль то же самое

(19) а.
$$[\![E_y \, \xi]\!]^g = \lambda f_{ee}$$
. $\forall x. \, [\![\xi]\!]^{g^{x/y}}(f(x)) = 1$
b. $[\![E_y[\![$ своего родственника $]\!] = \lambda f_{ee}$. $\forall z.$ родственник $(z)(f(z)) = 1$

Но нам больше не нужно связывать рефлексив

Поэтому можно проще — тайпшифтер из Jacobson (2002)

(20)
$$\llbracket E^J \rrbracket = \lambda P_{et}$$
. λf_{ee} . $\forall x \ [x \in \text{dom}(f) \to P(f(x)) = 1]$ $\llbracket E^J [$ которого знает Петя $] \rrbracket = \lambda f_{ee}$. $\forall x . \ [x \in \text{dom}(f) \to \text{знает}(f(x))(\Pi) = 1]$

N. В. Если рестриктора нет, первый аргумент *какой* можно связать контекстным рестриктором

Последний слайд

Сравним два тайпшифтера

(21) a.
$$\llbracket E_y \xi \rrbracket^g = \lambda f_{ee}$$
. $\forall x$. $\llbracket \xi \rrbracket^{g^{x/y}}(f(x)) = 1$ (Engdahl 1986)
b. $\llbracket E^J \rrbracket = \lambda P_{et}$. λf_{ee} . $\forall x [x \in \text{dom}(f) \to P(f(x)) = 1]$ (Haldar 2024)

Первый изменяет функцию присваивания, второй нет

Халдар: тайп-шифтеров (как и языковых выражений), которые изменяют функцию присваивания, в нашей семантике не должно существовать

(22) **Гипотеза об изменимости присваиваний**: единственные связыватели переменных, доступные в естественном языке — это λ -связыватели, присоединенные к структуре при передвижении в А-позицию.

Итоги

- Функциональные вопросы ставят вопросы, во-первых, о месте интерпретации выражений, а во-вторых — о композиции выражений разных типов
- Engdahl (1986): рестриктор интерпретируется наверху и связывается семантически (проблемы — эффекты синтаксического связывания)
- Heim (2018): рестриктор интерпретируется снизу, какой одноместен (проблемы — избежание реконструкции относительными клаузами)
- Haldar (2024): рестриктор разбивается: основной интерпретируется снизу, относительные клаузы сверху; тайп-шифтер для композиции предикатов над индивидами и функциями
- > Сложная машинерия: свободная вставка *pro*, два тайпшифтера внизу, один тайпшифтер наверху
- > И почему мы вообще считаем, что мать имеет тип $\langle e, e \rangle$?

Ссыпки

Engdahl, Elisabet (1986). Constituent Questions: The Syntax and Semantics of Questions with Special Reference to Swedish. D. Reidel Pub. Co.

Fox, Danny (2000). Economy and Semantic Interpretation. MIT Press. 242 pp.

Haldar, Shrayana (2024). Towards a Middle Ground between Engdahl and Heim on Functional Readings of Wh-Questions. URL:

https://ling.auf.net/lingbuzz/008059 (visited on 11/15/2024). Pre-published.

Heim, Irene (2018). "Functional Readings without Type-Shifted Noun Phrases". In: Reconstruction Effects in Relative Clauses. Ed. by Manfred Krifka and Mathias Schenner. De Gruyter (A), pp. 283–302.

Jacobson, Pauline (2002). "Direct Compositionality and Variable-Free Semantics: The Case of Binding into Heads". In: Semantics and Linguistic Theory, pp. 144–163.

Sportiche, Dominique (2016). Neglect (or Doing Away with Late Merger and Countercyclicity). URL: https://lingbuzz.net/lingbuzz/002775 (visited on 11/26/2024). Pre-published.