Logika Cyfrowa

Jakub Gałaszewski

May 20, 2024

1 Pokaż, w jaki sposób można wykorzystać pamięci SRAM 4×4 (4 słowa po 4 bity) aby skonstruować pamięć 8×8 (8 słów po 8 bitów).

Możemy połączyć każdą jednostkę SRAM w kwadrat 2x2. Wtedy Pierwsza pamięć SRAM będzie odpowiadała za słowa 0-3 i bity 0-3, druga za słowa 0-3 i bity 4-7, trzeci za słowa 4-7 i bity 0-3, a czwarty za słowa 4-7 i bity 4-7. Może to poszerzyć.

2 W jaki sposób należy podzielić bity adresu pamięci ROM 16-kilobitowej (16384 indywidualnie adresowanych bitów), aby zminimalizować liczbę wejść/wyjść dekodera i multipleksera wchodzących w skład tej pamięci?

Wiemy że 16384 bitów to 2¹⁴, tak więc aby zminimalizować maksimum wyjść i wejść dekodera oraz multipleksera. Wystarczy policzyć liczbę bitów na pół, czyli dekoder będzie miał 0-6 pierwszych bitów, a multiplekser od 7 do 13, czyli bedzie po 7 bitów dla jednego i drugiego.

3 Ile układów $32 \text{K} \times 8$ należy użyć, aby uzyskać pamięć o pojemności 256 K bajtów? Ile potrzeba linii adresowych? Ile z tych linii będzie bezpośrednio podłączonych do linii adresowych układów

Najpierw przeliczmy sobie pojemność w bajtach 256KB=256K8b, natomiast jeden układ posiada 32K8b=256Kb, tak więc potrzeba 8 takich układów. Linii adresowych na układ potrzeba 15, ponieważ $2^{15}=2^5K=32K$, czyli sumarycznie potrzebujemy 120 układów (32*8) i tyle samo(?) będzie bezpośrednio podłączone do linii adresowych układów.(DOPYTAĆ)

4 Pokaż, jak zaprogramować układ PLA (odpowiedniego rozmiaru), aby wykonywał operację podnesienia do kwadratu liczby 4-bitowej. Postaraj się, aby użyć jak najmniej zasobów.

PLA to programowalny układ AND-OR. TODO

5 Pokaż, jak wykorzystać makrokomórkę CPLD z wykładu, aby zaimplementować układ, którego wyjściem jest XOR dwóch wejść x, y oraz stanu przerzutnika z poprzedniego cyklu zegara (czyli Dt+1 = Dt xor x xor y). Wyjście przerzutnika może być podłączone do jednego z wejść makrokomórki przez interconnect

to akurat proste, potem załączyć zdjęcie.

6 Dla poniższej tabeli stanów narysuj odpowiadający jej diagram stanów. Zminimalizuj automat, narysuj tabelę i diagram stanów zminimalizowanego automatu.

q	$q_{\rm o} \ \bar{x}$	q_{o} x	$\frac{o}{\bar{x}}$	o x
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	\overline{f}	b	1	1
g	g	h	0	1
h	g	a	1	0

zrobić na kartce i wstawić