Planche 1.

Exercice 1. Soit $A \in M_n(\mathbb{R})$ telle que $A^3 = A + I_n$. Montrer que $\det(A) > 0$

Exercice 2. Soit $A, B \in M_n(\mathbb{C})$. On pose $f: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ définie par f(M) = AM - MB. Calculer le spectre de f.

Planche 2.

Exercice 1. Soit $f \in L(E)$. Montrer que f est diagonalisable ssi f^2 l'est et si $\ker(f) = \ker(f^2)$.

Exercice 2. Soit $A \in M_n(\mathbb{C})$ et $B = \begin{pmatrix} A & 2A \\ -A & 2A \end{pmatrix}$. Montrer que A est diagonalisable ssi B l'est.

Planche 3.

Exercice 1. Soit $A \in M_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Quelle est la parité de rg(A)?

Exercice 2. Soit $f \in L(E)$. Montrer que Π_f est de valuation 1 ssi $f \notin GL(E)$ et $\ker(f) \bigoplus \operatorname{Im}(f) = E$.