Samar Sajnani

Phone: (226) 700-6041 • Email: samar.sajnani@live.com • Website: samar.pw • GitHub: ssajnani

Experience –

Senior Site Reliability Engineer - Blueshift San Francisco

Apr. 2022 - Present

- Ownership of reliability, configuration and operations of 410 applications running on AWS
- Only SRE member in the North American timezone with hiring responsibilities
- Responsibilities include incident (Datadog), infrastructure (Terraform and Nomad) and configuration management (Ansible)
- Able to help with software development in GoLang and Elixir as well as scripting work
- Helped migrate Elasticsearch 1 to Elasticsearch 7 that helped increase reliability and resiliency
- Found application optimizations that reduced AWS weekly costs by \$3000 per week

Projects:

- Developed the terraform classes and nomad jobs for tile38 (a clustered geographic cache)
- Architected the OpsToolKit used to search across thousands of configurations on AWS and consul

Team Lead Senior Software Engineer Loblaw Digital Developer II – Productivity Engineering June. 2021 – Mar. 2022 Dec. 2021 – June. 2021 Sept. 2019 – Dec. 2021

- Working with the internal tools team to "reduce toil, increase happiness and get sh!t done"
- Exposure to cutting-edge technologies such as Google Kubernetes Engine on GCP
- Development of metricized, scalable, fault-tolerant and highly available software
- Main languages and frameworks are Elixir, Phoenix Framework, GoLang, and Bash

Projects

- Setup metrics and monitoring for our applications using Prometheus, Grafana, and BigQuery
- Developed an application that automated the product recall process reducing 2 days of work a week
- Modularized the CI/CD pipeline in Gitlab for the tools team to reduce redundancy 9-fold
- Ownership of the nine application developed by the Internal Tools team
- Architected a service templating tool for Loblaws that automated the generation of code, pipelines and deployment of applications.

IBM Watson Data Platform Private Cloud Intern

May. 2017 - Aug. 2018

- Interviewed candidates for full-time and internship roles
- Collected approximately 1300+ contributions on IBM's enterprise Github
- Won an award for DSX poster presentation and a CrushIT award for the ICP4D Installer
- Developed the SMTP framework for the dashboard team and the UI installer for the product
- Optimized CI/CD time by 50%+: created an automated framework ranging from provisioning to testing, presented the framework at CASCON, framework was run on Jenkins
- Lead developer for the ICP4D installer, a new product that made \$12 million in 6 months

Research -

POJO Model-Based Cloud Reconfiguration System

Sept. 2018 – Present

- Began as my thesis project that I continued working on outside of school
- Utilized the Kubernetes Java API as a metamodel to generate a POJO-based model of cloud services
- Developed an ecosystem for dynamic reconfiguration of Kubernetes microservices using Plain Old Java Objects (POJOs)
- Architectural patterns that were used include but are not limited to the Singleton, Abstract factory, and Adapter patterns

Implications:

- Simpler than other existing dynamic reconfiguration systems
- Novel since this system bypasses manual configuration of a metamodel and uses a metamodel inherent in the Kubernetes API, no such other Kubernetes dynamic reconfiguration system exists
- Use of the Kubernetes APIs ensures that the latest and complete set of Kubernetes functions are available to users

Components:

- Variable Fetcher (Using Java SpringBoot as the server and CompletableFuture for concurrency) holds system logs as variables, these variables are required to evaluate policies
- Policy-Action Server (Java Spark server) gathers variables from the fetcher and evaluates a tree-based policy, an action is generated as a response to policy validation or violation
- Metamodel server (Java Spark server) encodes the atomic actions that can be performed on each type of microservices provided by Kubernetes, by using the Kubernetes Java API.

Literature Review on the k-Median Problem (Internet Algorithmics Course) Sept. – Dec. 2018

- Meant to be completed by master's students, I volunteered to work on this paper to learn new things
- The current best approximation algorithm for the k-median problem has a ratio of about $1 + \sqrt{3} + \varepsilon$

Skills -

Elixir: Worked with Ecto for database management, Phoenix as a web framework and OTP servers.

C++: Developed a transport layer protocol and Bluetooth Low Energy server for the LifeVector project

Cloud Computing: Knowledge of AWS, GCP, Kubernetes, Docker, Ansible and GlusterFS from IBM

Linux: Analysis of repositories, research on disk usage, logging, scripting, and creating installer executables

Web Development: Worked on multiple javascript projects such as FaStack, LifeVector, Capacity, and Aux

- Projects -

FaStack Mobile and Desktop Application

Mar. 2018 - June 2019

• Daily stack that allows users to schedule and prioritize everyday tasks using CPU scheduling algorithms

Life Vector Time-Management Mobile Application (Western University)

Nov. 2017 – Present

• An application that generates an activity profile by gathering a user's location and analyzing time usage

Education -

BSc Honours in Computer Science: Western University (3.95/4.0 CS GPA) **BMSc Honours in Biochemistry:** Western University (3.6/4.0 GPA)

Received April 2019 Received April 2016