Hex Inverter

The MC14069UB hex inverter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These inverters find primary use where low power dissipation and/or high noise immunity is desired. Each of the six inverters is a single stage to minimize propagation delays.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Triple Diode Protection on All Inputs
- Pin-for-Pin Replacement for CD4069UB
- Meets JEDEC UB Specifications

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 2.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 3.)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor™

http://onsemi.com

MARKING DIAGRAMS

PDIP-14 P SUFFIX CASE 646

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

EIAJ SO-14 F SUFFIX CASE 965

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

ORDERING INFORMATION

Device	Package	Shipping	
MC14069UBCP	PDIP-14	2000/Box	
MC14069UBD	SOIC-14	2750/Box	
MC14069UBDR2	SOIC-14	2500/Tape & Reel	
MC14069UBDT	TSSOP-14	96/Rail	
MC14069UBDTEL	TSSOP-14	2000/Tape & Reel	
MC14069UBDTR2	TSSOP-14	2500/Tape & Reel	
MC14069UBF	EIAJ SO-14	See Note 1.	
MC14069UBFEL	EIAJ SO-14	See Note 1.	

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

Figure 1. Pin Assignment

Figure 3. Logic Diagram

*Double diode protection on all inputs not shown

Figure 2. Circuit Schematic

(1/6 of circuit shown)

Figure 4. Switching Time Test Circuit and Waveforms

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

		Symbo	V _{DD}	- 5	5°C		25°C		12	5°C	
Characterist	tic	I	Vdc	Min	Max	Min	Typ ^(4.)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD}	"0" Level	V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
V _{in} = 0	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage $ (V_O = 4.5 \text{ Vdc}) $ $ (V_O = 9.0 \text{ Vdc}) $ $ (V_O = 13.5 \text{ Vdc}) $	"0" Level	V _{IL}	5.0 10 15		1.0 2.0 2.5	=	2.25 4.50 6.75	1.0 2.0 2.5		1.0 2.0 2.5	Vdc
$(V_O = 0.5 \text{ Vdc})$ $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	4.0 8.0 12.5	_ _ _	4.0 8.0 12.5	2.75 5.50 8.25	_ _ _	4.0 8.0 12.5		Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	 - - -	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	 - - -	- 1.7 - 0.36 - 0.9 - 2.4	 - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4		mAdc
Input Current		I _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_		_	5.0	7.5	_		pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	_ _ _	0.25 0.5 1.0	_ _ _	0.0005 0.0010 0.0015	0.25 0.5 1.0	_ _ _	7.5 15 30	μAdc
Total Supply Current ^(5.) ^(6.) (Dynamic plus Quiescent, Per Gate) (C _L = 50 pF)		I _T	5.0 10 15			$I_T = (0.$.3 μA/kHz) f .6 μA/kHz) f .9 μA/kHz) f	+ I _{DD} /6			μAdc
Output Rise and Fall Tim $(C_L = 50 \text{ pF})$ $t_{TLH}, t_{THL} = (1.35 \text{ ns/pF})$ $t_{TLH}, t_{THL} = (0.60 \text{ ns/pF})$ $t_{TLH}, t_{THL} = (0.40 \text{ ns/pF})$	C _L + 33 ns C _L + 20 ns	t _{TLH} , t _{THL}	5.0 10 15	_ _ _	_ _ _	_ _ _	100 50 40	200 100 80		_ _ _	ns
Propagation Delay Times $(C_L = 50 \text{ pF})$ $t_{PLH}, t_{PHL} = (0.90 \text{ ns/pF})$ $t_{PLH}, t_{PHL} = (0.36 \text{ ns/pF})$ $t_{PLH}, t_{PHL} = (0.26 \text{ ns/pF})$	C _L + 20 ns C _L + 22 ns	t _{PLH} , t _{PHL}	5.0 10 15	_ _ _	_ _ _ _	_ _ _	65 40 30	125 75 55	_ _ _	_ _ _	ns

^{4.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002.

^{5.} The formulas given are for the typical characteristics only at 25°C.
6. To calculate total supply current at loads other than 50 pF:

PACKAGE DIMENSIONS

PDIP-14 **P SUFFIX** CASE 646-06 ISSUE M

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.715	0.770	18.16	18.80	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54	BSC	
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
K	0.115	0.135	2.92	3.43	
L	0.290	0.310	7.37	7.87	
М		10°		10°	
N	0.015	0.039	0.38	1.01	

PACKAGE DIMENSIONS

SO-14 **D SUFFIX** CASE 751A-03 ISSUE F

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX MIN		MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.228	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

TSSOP-14 **DT SUFFIX** CASE 948G-01 **ISSUE O**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- PROTRUSION SHALL NOT EXCEED
 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE DETERMINED
 AT DATUM PLANE –W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	
M	0°	8°	0°	8°

PACKAGE DIMENSIONS

SO-14 **F SUFFIX** CASE 965-01

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARB MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
0.50	0.50	0.85	0.020	0.033
Ь	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		1 42		0.056

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.