Page 1 of 76

Report No.: 170615002RFC-4

TEST REPORT

Product Name: WIFI+BT Module

Trade Mark: GSD

Model No.: WCT6LA2701

Report Number: 170615002RFC-4

FCC 47 CFR Part 15 Subpart E

Test Standards: RSS-247 Issue 2

RSS-Gen Issue 4

FCC ID: 2AC23-WCT6LA2701

IC: 12290A-WCT6LA2701

Test Result: PASS

Date of Issue: July 11, 2017

Prepared for:

Hui Zhou Gaoshengda Technology Co.,LTD NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	12.	Reviewed by:	7 im long	
	Kevin Liang		Jim Long	
	Senior Engineer		Senior Supervisor	
Approved by:	19/	Date:	July 11, 2017	
()	Billy Li	-		
	Technical Director			

Page 2 of 76

Report No.: 170615002RFC-4

Version

Version No.	Date	Description
V1.0	July 11, 2017	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	CLIENT INFORMATION EUT INFORMATION 1.2.1 GENERAL DESCRIPTION OF EUT 1.2.2 DESCRIPTION OF ACCESSORIES PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD OTHER INFORMATION DESCRIPTION OF SUPPORT UNITS TEST LOCATION TEST FACILITY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS OTHER INFORMATION REQUESTED BY THE CUSTOMER MEASUREMENT UNCERTAINTY	4 4 6 6 6 7 7
2.		SUMMARY	
3.		PMENT LIST	
4.	TEST	CONFIGURATION	10
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	10
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	10
		4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL RATES	
		4.4.2 WORST-CASE DATA RATES	
	4.5	TEST SETUP	
	4.5	4.5.1 FOR RADIATED EMISSIONS TEST SETUP.	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	15
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	
	5.1	REFERENCE DOCUMENTS FOR TESTING	18
	5.2	ANTENNA REQUIREMENT	18
	5.3	26 dB Bandwidth & Occupied Bandwidth	
	5.4	6 DB BANDWIDTH & OCCUPIED BANDWIDTH	
	5.5	MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P	_
	5.6	PEAK POWER SPECTRAL DENSITY	
	5.7	FREQUENCY STABILITY	
	5.8	RADIATED EMISSIONS AND BAND EDGE MEASUREMENT	
		X 1 PHOTOGRAPHS OF TEST SETUP	
AP	PENDI	X 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	76

Page 4 of 76 Report No.: 170615002RFC-4

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	Hui Zhou Gaoshengda Technology Co.,LTD	
Address of Applicant:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co.,LTD	
Address of Manufacturer:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Scheral Beschption of E01					
Product Name:	WIFI+BT Module	WIFI+BT Module			
Model No.:	WCT6LA2701				
Add. Model No.:	N/A				
Trade Mark:	GSD				
DUT Stage:	Identical Prototype				
	2.4 GHz ISM Band:	IEEE 802.11b/g/n			
		Bluetooth: V3.0+EDR & V4.1 LE			
EUT Supports Function:	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz IEEE 802.11a/n/ac			
		5 725 MHz to 5 850 MHz IEEE 802.11a/n/ac			
Software Version:	N/A				
Hardware Version:	94V-0				
Sample Received Date:	June 20, 2017 June 20, 2017 to July 11, 2017				
Sample Tested Date:					

1.2.2 Description of Accessories

None.

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Erogueney Benge	5150 MHz to 5250 MHz		
Frequency Range:	5 725 MHz to 5 850 MHz		
Support Standards:	IEEE 802.11a/n/ac		
TPC Function:	Not Support		
DFS Operational mode:	N/A		
	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)		
Type of Modulation:	IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK)		
	IEEE 802.11ac: OFDM(256QAM, 64QAM, 16QAM, QPSK, BPSK)		
	IEEE 802.11a/n-HT20/ac-VHT20: 20 MHz		
Channel Spacing:	IEEE 802.11n-HT40/ac-VHT40: 40 MHz		
	IEEE 802.11ac-VHT80: 80 MHz		
	IEEE 802.11a: Up to 54 Mbps		
	IEEE 802.11n-HT20: Up to MCS15		
Data Rate:	IEEE 802.11n-HT40: Up to MCS15		
Dala Rale.	IEEE 802.11ac-VHT20: Up to MCS8		
	IEEE 802.11ac-VHT40: Up to MCS9		
	IEEE 802.11ac-VHT80: Up to MCS9		
	5150 MHz to 5250 MHz:		
Number of Channels:	4 for IEEE 802.11a/n-HT20/ac-VHT20		
	2 for IEEE 802.11n-HT40)/ac-VHT40		

Page 5 of 76

Report No.: 170615002RFC-4

r	1 for IEEE 802.11acVHT80				
	1 for IEEE 802.1	1acVHT80			
	5725 MHz to 5850 MHz: 5 for IEEE 802.11a/n-HT20/ac-VHT20 2 for IEEE 802.11n-HT40/ac-VHT40 1 for IEEE 802.11ac-VHT80				
Antonna Typo:	Chain 0	Chain 0 PIFA Antenna			
Antenna Type:	Chain 1	PIFA Antenna			
Antonno Coini	Chain 0	5150 MHz to 5250 MHz: 2.57 dBi 5725 MHz to 5850 MHz: 2.57 dBi			
Antenna Gain:	Chain 1	5150 MHz to 5250 MHz: 2.5 5725 MHz to 5850 MHz: 2.5			
-	5150 MHz to 5250 MHz:	5.58 dBi			
Directional gain:	5725 MHz to 5850 MHz:	5.58 dBi			
	SISO_Chain 0	U-NII-1	U-NII-3		
	IEEE 802.11a:	14.70	14.78		
	IEEE 802.11n-HT20:	11.20	11.37		
	IEEE 802.11n-HT40:	11.06	10.84		
	IEEE 802.11ac-VHT80:	9.82	8.95		
	SISO_Chain 1	U-NII-1	U-NII-3		
Maximum Conducted	IEEE 802.11a:	14.00	14.05		
Output Power (dBm):	IEEE 802.11n-HT20:	10.37	9.34		
	IEEE 802.11n-HT40:	10.12	9.01		
	IEEE 802.11ac-VHT80:	8.15	7.24		
	MIMO_Chain 0+1	U-NII-1	U-NII-3		
	IEEE 802.11n-HT20:	13.82	13.48		
	IEEE 802.11n-HT40:	13.63	13.03		
	IEEE 802.11ac-VHT80:	12.08	11.19		
	SISO_Chain 0	U-NII-1	U-NII-3		
	IEEE 802.11a:	17.27	17.35		
	IEEE 802.11n-HT20:	13.77	13.94		
	IEEE 802.11n-HT40:	13.63	13.41		
	IEEE 802.11ac-VHT80:	12.39	11.52		
	SISO_Chain 1	U-NII-1	U-NII-3		
Maximum EIRP	IEEE 802.11a:	16.57	16.62		
(dBm):	IEEE 802.11n-HT20:	12.94	11.91		
	IEEE 802.11n-HT40:	12.69	11.58		
	IEEE 802.11ac-VHT80:	10.72	9.81		
	MIMO_Chain 0+1	U-NII-1	U-NII-3		
	IEEE 802.11n-HT20:	19.40	19.06		
	IEEE 802.11n-HT40:	19.21	18.61		
	IEEE 802.11ac-VHT80: 17.66 16.77				
Normal Test Voltage:	3.3 Vdc				
Extreme Test Voltage:	2.8 to 3.8 Vdc				
Extreme Test Temperature:	-20 °C to +50 °C				

Page 6 of 76 Report No.: 170615002RFC-4

1.4 OTHER INFORMATION

	Operation Frequency Each of Channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
F	For IEEE 802.11a/n-HT20/ac-VHT20 operation in the 5150 MHz to 5250 MHz band						d
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz
F	or IEEE 802.	11a/n-HT20/a	c-VHT20 oper	ation in the 5	725 MHz to 5	850 MHz ban	d
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz
165	5825 MHz			ı			
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	ntion in the 5	150 MHz to 52	250 MHz band	
38	5190 MHz	46	5230 MHz	1			
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	tion in the 57	725 MHz to 58	50 MHz band	
151	5755 MHz	159	5795 MHz				
	For IEEE	802.11ac-VH	T80 operation	in the 5150	MHz to 5250 I	MHz band	
42	5210 MHz			-			
	For IEEE 802.11ac-VHT80 operation in the 5725 MHz to 5850 MHz band						
155	5775 MHz						

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
		-		

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable * 2	SMA	0.30 Meter	UnionTrust
2	USB Cable	USB	0.80 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Tests were sub-contracted.

Compliance Certification Services (Shenzhen) Inc.

Address: No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan Distr,

Shenzhen, Guangdong, China.

Telephone: +86 (0) 755 28055000 Fax: +86 (0) 755 29055221

Page 7 of 76 Report No.: 170615002RFC-4

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Compliance Certification Services (Shenzhen) Inc.

FCC Registration Number is 441872. IC Registration Number is 2324I-2.

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	ltem	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.2878 dB
2	Conducted emission 150KHz-30MHz	±3.2878 dB
3	Radiated emission 30MHz-200Hz	±3.8928 dB
4	Radiated emission 200MHz-1GHz	±3.8753 dB
5	Radiated emission 1GHz-8GHz	±5.3112 dB
6	Radiated emission Above 8GHz	±5.3493 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart E Test Cases					
Test Item	Test Requirement	Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart C Section 15.407(a)(1) (2) RSS-Gen Issue 4, Section 8.3	ANSI C63.10-2013	PASS		
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5) RSS-247 Issue 2 Section 6.2.1.2	KDB 789033 D02 v01r04 Section C.1	PASS		
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e) RSS-247 Issue 2 Section 6.2.4.1	KDB 789033 D02 v01r04 Section C.2	PASS		
Occupied Bandwidth	RSS-Gen section 6.6	KDB 789033 D02 v01r04 Section D	PASS		
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1	KDB 789033 D02 v01r04 Section E.3.a(Method PM)	PASS		
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1	KDB 789033 D02 v01r04 Section F	PASS		
Frequency stability	FCC 47 CFR Part 15 Subpart E Section 15.407 (g) RSS-Gen Issue 4, Section 6.11	ANSI C63.10-2013	PASS		
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205 RSS-247 Issue 2 Section 6.2.1.2/6.2.2.2/6.2.3.2/6.2.4.2	KDB 789033 D02 v01r04 Section G.3, G.4, G.5, and G.6	PASS*		
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h) RSS-247 Issue 2 Section 6.3	KDB 905462 D03 Client Without DFS New Rules v01r02	N/A		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 4, Section 8.8	ANSI C63.10-2013	N/A NOTE 2		

Note:

- 1) N/A: In this whole report not application.
- 2) This EUT is powered by DC.
- 3) "*": In this whole report "*" means tests were sub-contracted Item.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
>	PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	Feb. 17, 2017	Feb. 16, 2018				
>	High Noise Amplifier	Agilent	8449B	3008A01838	Feb. 11, 2017	Feb. 10, 2018				
>	Amplifier	HP	8447D	2944A08999	Feb. 12, 2017	Feb. 11, 2018				
~	Antenna	SCHAFFNER	CBL6143	5082 Feb. 12, 2017		Feb. 11, 2018				
•	Horn Antenna	SCHWARZBEC K	BBHA9120	D286	Feb. 12, 2017	Feb. 11, 2018				
>	Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	Feb. 11, 2017	Feb. 10, 2018				
>	Turn Table	N/A	N/A	N/A	N.C.R	N.C.R				
~	Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R				
~	Controller	СТ	N/A	N/A	N.C.R	N.C.R				
~	Antenna Tower	Antenna Tower SUNOL		N/A	N.C.R	N.C.R				
>	Temp. / Humidity Meter	Anymetre	JR913	N/A	Feb. 15, 2017	Feb. 14, 2018				

	Conducted RF test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017				
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017				
V	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017				
V	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017				
	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	Jan. 09, 2016	Jan. 08, 2018				
>	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Jan. 08, 2016	Jan. 07, 2018				
~	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 21, 2016	Sep. 20, 2017				
V	Temp & Humidity chamber	Ispec	GL(U)04KA(W)	1692H201P3	Sep. 21, 2016	Sep. 20, 2017				
>	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	Jun. 19, 2017	Jun. 18, 2018				

	Conducted Emission Test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Cal. date Number (mm dd, yyy		Cal. Due date (mm dd, yyyy)				
~	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017				
>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 22, 2016	Dec. 22, 2017				
>	LISN	R&S	ESH2-Z5	860014/024	Dec. 22, 2016	Dec. 22, 2017				
	LISN	ETS-Lindgren	3816/2SH	00201088	Aug. 24, 2016	Aug. 23, 2017				
>	Test Software	Audix	e3	Software Version: 9.160323						

Page 10 of 76 Report No.: 170615002RFC-4

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Test Environment	Selected Values During Tests						
Toot Condition	Ambient						
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)				
TN/VN	+15 to +35	3.3	20 to 75				
TL/VL	-20	2.8	20 to 75				
TH/VL	+50	2.8	20 to 75				
TL/VH	-20	3.8	20 to 75				
TH/VH	+50	3.8	20 to 75				

Remark:

- 1) The EUT just work in such extreme temperature of -20 °C to +50 °C and the extreme voltage of 2.8 V to 3.8 V, so here the EUT is tested in the temperature of -20 °C to +50 °C and the voltage of 2.8 V to 3.8 V.
- 2) VN: Normal Voltage; TN: Normal Temperature;
 - TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
 - VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by
AC Power Line Conducted Emission	N/A	N/A	N/A	N/A
26 dB emission bandwidth & Occupied Bandwidth	24.8	52	100.1	Tiny You
Maximum conducted output power	25.3	57	100.2	Tiny You
Peak Power Spectral Density	24.8	52	100.1	Tiny You
6 dB bandwidth & Occupied Bandwidth	24.8	52	100.1	Tiny You
Dynamic Frequency Selection	N/A	N/A	N/A	N/A
Radiated Emissions and Band Edge Measurement	25.6	49	100.2	Tiny You

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists				
Wiode	1x/Kx Frequency	Lowest(L)	Middle(M)	Highest(H)		
	5150 MHz to 5250 MHz	Channel 36	Channel 44	Channel 48		
IEEE 802.11a IEEE 802.11n-HT20	3 130 MHZ 10 3230 MHZ	5180 MHz	5220 MHz	5240 MHz		
IEEE 802.1111-H120	5725 MHz to 5850 MHz	Channel 149	Channel 157	Channel 165		
1222 002.1140 111120	3723 WITZ 10 3030 WITZ	5745 MHz	5785 MHz	5825 MHz		
	5150 MHz to 5250 MHz	Channel 38	1	Channel 46		
IEEE 802.11n-HT40	3 130 MHZ 10 3230 MHZ	5190 MHz	ı	5230 MHz		
IEEE 802.11ac-VHT40	5725 MHz to 5850 MHz	Channel 151	I	Channel 159		
	3723 IVII 12 10 3030 IVII 12	5755 MHz	ı	5795 MHz		
	5150 MHz to 5250 MHz	-	Channel 42			
IEEE 802.11ac-VHT80	3 130 MHZ 10 3230 MHZ	-	5210 MHz			
	5725 MHz to 5850 MHz		Channel 155			
	37 23 WII 12 10 3030 WIFIZ		5775 MHz			

4.3 EUT TEST STATUS

Mode	Tx/Rx Function		Description
IEEE 802.11a/n/ac	1Tx/1Rx or 2Tx/2Rx	1.	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Report No.: 170615002RFC-4

4.4 PRE-SCAN

4.4.1 Pre-scan under all rates

Mode and Frequency	Ma	aximum Co	onducted A	Average Po	ower (dBm)) for Data F	Rates (Mbp	os)
IEEE 802.11a	6	9	12	18	24	36	48	54
5180 MHz	14.52	14.36	14.31	14.29	11.93	11.71	11.7	10.38
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11n-HT20	10.25	10.01	9.67	7.53	7.29	7.05	5.87	4.98
5180 MHz	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
	10.26	9.97	9.75	7.45	7.26	7.25	6.18	5.14
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11n-HT40	10.11	9.49	9.37	7.71	7.55	7.26	6.26	4.51
5190 MHz	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
	10.13	9.31	9.09	7.56	7.21	7.05	5.57	4.13
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac- VHT20	9.47	9.16	8.94	6.64	6.45	6.44	5.37	4.33
5180 MHz	MCS8							
	4.27							
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac- VHT40	9.13	8.60	8.48	7.82	7.66	7.37	6.37	5.62
5190 MHz	MCS8	MCS9						
	4.70	4.00						
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	9.03	7.96	7.72	7.33	6.06	5.86	4.51	4.10
VHT80 5210 MHz	MCS8	MCS9						
021011112	3.19	3.26						

4.4.2 Worst-case data rates

Mode	Worst-case data rates
IEEE 802.11a	6 Mbps
IEEE 802.11n-HT20	MCS8
IEEE 802.11n-HT40	MCS8
IEEE 802.11ac-VHT20	MCS0
IEEE 802.11ac-VHT40	MCS0
IEEE 802.11ac-VHT80	MCS0

4.4.3 Test mode selected

Mode	Test and report
IEEE 802.11a	▼
IEEE 802.11n-HT20	V
IEEE 802.11n-HT40	V
IEEE 802.11ac-VHT20	
IEEE 802.11ac-VHT40	
IEEE 802.11ac-VHT80	V

Report No.: 170615002RFC-4

Remark:

- 1. The mark " means is chosen for testing;
- 2. The mark " means is not chosen for testing.

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

4.5.2 For Conducted Emissions test setup

For Conducted RF test setup 4.5.3 Spectrum Analyzer EUT Non-Conducted Table Normal Environment **Shielding Chamber** Spectrum Analyzer Decoupling filter (for battery operated devices) EUT Non-Conducted Table Power supply Temperature Chamber **Extreme Environment**

Page 14 of 76 Report No.: 170615002RFC-4

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.3Vdc. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
	1TX	Chain 0	Z axis	
Above 1GHz	1TX	Chain 1	Z axis	
	2TX	Chain 0+1	Z axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)		Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	2.07	2.16	0.96	95.83	0.18	0.48	-0.37
IEEE 802.11n-HT20	MCS8	1.92	2.02	0.95	95.05	0.22	0.52	-0.44
IEEE 802.11n-HT40	MCS8	0.95	1.045	0.91	90.91	0.41	1.05	-0.83
IEEE 802.11ac-VHT80	MCS0	0.465	0.558	0.83	83.33	0.79	2.15	-1.58

Report No.: 170615002RFC-4

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 18 of 76 Report No.: 170615002RFC-4

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
4	RSS-Gen Issue 4	General Requirements for Compliance of Radio Apparatus
5	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
6	KDB 789033 D02 General UNII Test Procedures New Rules v01r04	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15 subpart E
7	905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)
8	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-Gen Issue 4, Section 8.3 requirement:

According to RSS-Gen Issue 4, section 8.3, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

EUT Antenna:

Both antenna in the interior of the equipment and no consideration of replacement. The transmit signals are correlated with each other and the antenna gain of both chains is completely consistent, the best case directional gain of the antenna is 5.58 dBi (See section 5.5).

Page 19 of 76 Report No.: 170615002RFC-4

5.326 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a) (2)(5)

Test Method: RSS-247 Issue 2 Section 6.2.1.2
KDB 789033 D02 v01r04 Section C.1
Limit: None; for reporting purposes only.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:

- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Mode	Channel	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)					
The worst case test data: Chain 0								
	36 (5180)	19.49	16.395					
IEEE 802.11a	44 (5220)	19.34	16.337					
	48 (5240)	20.84	16.422					
	36 (5180)	19.74	17.454					
IEEE 802.11n-HT20	44 (5220)	20.28	17.426					
	48 (5240)	19.87	17.462					
IEEE 802.11n-HT40	38 (5190)	40.25	35.865					
IEEE 002.1111-H140	46 (5230)	40.74	35.867					
IEEE 802.11ac-VHT80	42 (5230)	83.89	75.201					

The test plot as follows: **IEEE 802.11a** IEEE 802.11n-HT20 **Channel 36** Ref Offset 12 dB Ref 20.00 dBr Center Free Center Freq 5.180000000 GHz CF St Center 5.18 GHz Res BW 300 kH: enter 5.18 GHz Res BW 300 kHz Span 40 MH: Sweep 1 m: #VBW 1 MHz Occupied Bandw 16.395 MHz 17.454 MHz 162.12 kHz 64.775 kHz Transmit Freg Error **OBW Power** 99.00 % Transmit Freg Error **OBW Power** 99.00 % 19.49 MHz -26.00 dB x dB Bandwidth 19.74 MHz -26.00 dB x dB Bandwidth x dB x dB **Channel 44** Ref Offset 12 dB Ref 20,00 dBn Center Freq 5.220000000 GHz Center Fre er 5.22 GHz CF S Occupied Bandwidth Total Powe 16.337 MHz 17.426 MHz Freq Offset 170.85 kHz 92.527 kHz **OBW Power** 99.00 % **OBW Power** 99.00 % Transmit Freq Error Transmit Freq Error 20.28 MHz x dB -26.00 dB **Channel 48** 02:34:29 PM 3J/07, 20 Radio Std: None Radio Device: BTS Ref Offset 12 dB Ref 20.00 dBr Ref Offset 12 dB Ref 20.00 dBn Center Fre Center Free CF Ste 4.000000 CF St. 5.24 GHz #VBW 1 MHz #VBW 1 MHz 22.1 dBm 16.422 MHz 17.462 MHz 160.94 kHz 75.135 kHz 99.00 % 20 84 MHz x dB -26.00 dB v dR Randwidth 19.87 MHz x dB -26.00 dB

Page 22 of 76 Report No.: 170615002RFC-4

5.46 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

RSS-247 Issue 2 Section 6.2.4.1 **Test Method:**KDB 789033 D02 v01r04Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) ≥ 3 * RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
The worst case test da	ta: Chain 0				
	149 (5745)	15.27	16.453	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	15.32	16.405	> 500 kHz	Pass
	165 (5825)	15.10	16.292	> 500 kHz	Pass
	149 (5745)	15.11	17.425	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	15.45	17.448	> 500 kHz	Pass
	165 (5825)	15.47	17.434	> 500 kHz	Pass
IEEE 002 115 UT40	151 (5755)	33.94	35.759	> 500 kHz	Pass
IEEE 802.11n-HT40	159 (5795)	35.19	35.726	> 500 kHz	Pass
IEEE 802.11ac-VHT80	155 (5775)	75.21	75.057	> 500 kHz	Pass

The test plot as follows: **IEEE 802.11a** IEEE 802.11n-HT20 Channel 149 Ref Offset 12 dB Ref 20.00 dBr Center Free Center Freq 5.745000000 GHz CF St enter 5.745 GHz Res BW 100 kHz Span 40 MH: Sweep 3.867 m enter 5.745 GHz Res BW 100 kHz CF Ste Occupied Bandw 16.453 MHz 17.425 MHz 50.149 kHz 77.089 kHz Transmit Freg Error **OBW Power** 99.00 % Transmit Freg Error **OBW Power** 99.00 % 15.11 MHz -6.00 dB 15.27 MHz -6.00 dB x dB Bandwidth x dB Bandwidth x dB x dB Channel 157 Ref Offset 12 dB Ref 20,00 dBn Center Freq 5.785000000 GHz Center Fre Total Powe 16.405 MHz 17.448 MHz Freq Offset -4.488 kHz 104.69 kHz **OBW Power** 99.00 % **OBW Power** 99.00 % Transmit Freq Error Transmit Freq Error 15.32 MHz -6.00 dB 15.45 MHz x dB **Channel 165** 01:45:24 PM 3J/07, 20 Radio Std: None Radio Device: BTS Ref Offset 12 dB Ref 20.00 dBr Ref Offset 12 dB Ref 20.00 dBn Center Fre Center Fre CF Ste 4.000000 CF St. 5.825 GHz #VBW 300 kHz #VBW 300 kHz 19.8 dBm 15.1 dBr 17.434 MHz 16.292 MHz 70.069 kHz 99.00 % 116.02 kHz 99.00 % 15.10 MHz x dB -6.00 dB v dR Randwidth 15.47 MHz x dB -6.00 dB

Page 25 of 76 Report No.: 170615002RFC-4

5.5 MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P.

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1 KDB 789033 D02 v01r04 Section E.3.a(Method PM)

Limits: FCC 47 CFR Part 15 Subpart E

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 26 of 76 Report No.: 170615002RFC-4

Limits: RSS-247 Issue 2

1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 $log_{10}B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log₁₀B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Additional requirements

In addition to the above requirements, devices shall comply with the following, where applicable:

a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

> i. -13 dBW/MHz for $0^{\circ} \le \theta < 8^{\circ}$ ii. -13 - 0.716 (θ -8) dBW/MHz for $8^{\circ} \le \theta < 40^{\circ}$ iii. -35.9 - 1.22 (θ -40) dBW/MHz for $40^{\circ} \le \theta \le 45^{\circ}$ iv. -42 dBW/MHz for $\theta > 45^{\circ}$

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
 - i. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
 - ii. devices shall implement a method to permanently reduce their e.i.r.p. via a firmwarefeature in the event that the Department requires it. The test report must demonstratehow the device's power table can be updated to meet this firmware requirement. Themanufacturer shall provide this firmware to update all systems automatically incompliance with the directions received from the Department.

3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 \log_{10} B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any

Page 27 of 76 Report No.: 170615002RFC-4

corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint³ systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

Test Procedure:

1. Connected the EUT's antenna port to measure device by 10dB attenuator.

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Directional gain and the maximum output power limit.

RSS-247 Issue 2

Frequency Band Chain 0 Antenna Gain (dBi)		Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	Peak Power Limits (dBm)	
Ī	U-NII-1	2.57	2.57	5.58	23.00
Ī	U-NII-3	2.57	2.57	5.58	30.00

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

If any transmit signals are correlated with each other,

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

FCC 47 CFR Part 15 Subpart E

Frequency Band Chain 0 Antenna Gain (dBi)		Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)		
	U-NII-1	2.57	2.57	5.58	24.00
	U-NII-3	2.57	2.57	5.58	30.00

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

If any transmit signals are correlated with each other,

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

Page 28 of 76 Report No.: 170615002RFC-4

Frequency band 5150-5250 MHz RSS-247 Issue 2:

For IEEE 802.11 a, the minimum 99% emission bandwidth is 16.337 MHz 10 dBm + $10log_{10}$ (16.337) = 22.13 dBm < 23 dBm (200mW) So the 22.13 dB limit applicable

For IEEE 802.11 n-HT20, the minimum 99% emission bandwidth is 17.426 MHz 10 dBm + $10\log_{10}(17.426)$ = 22.41 dBm < 23 dBm (200mW) So the 22.41 dB limit applicable

For IEEE 802.11 n-HT40/ac-VHT80, the minimum 99% emission bandwidth is 35.865 MHz 10 dBm + $10\log_{10} (35.865) = 25.55$ dBm > 23 dBm (200mW) So the 23 dB limit applicable

Mode	Channel/ Frequency	Maximum e.i.r.p (dBm) SISO		Total e.i.r.p MIMO_ Chain 0+1	Limit (dBm)	Pass / Fail	
	(MHz)	Chain 0	Chain 1	(dBm)	(abiii)		
	36 (5180)	17.27	16.57	N/A	22.13	Pass	
IEEE 802.11a	44 (5220)	17.00	16.55	N/A	22.13	Pass	
	48 (5240)	16.96	16.86	N/A	22.13	Pass	
	36 (5180)	13.05	12.26	18.69	22.41	Pass	
IEEE 802.11n-HT20	44 (5220)	13.35	12.51	18.97	22.41	Pass	
	48 (5240)	13.77	12.94	19.40	22.41	Pass	
IEEE 802.11n-HT40	38 (5190)	13.11	12.11	18.66	23	Pass	
IEEE 802.11N-H140	46 (5230)	13.63	12.69	19.21	23	Pass	
IEEE 802.11ac-VHT80	42 (5210)	12.39	10.72	17.66	23	Pass	

Remark:

- 1. Maximum e.i.r.p = Maximum conducted output power + Antenna Gain
- 2. Total e.i.r.p (Chain 0+1) = $10*log[(10^{Chain 0/10})+(10^{Chain 1/10})] + Directional gain$

FCC 47 CFR Part 15 Subpart E:

Mode	Channel/ Frequency	output pov		Total Power MIMO_ Chain 0+1	Limit (dBm)	Pass / Fail
	(IVITIZ)	Chain 0	Chain 1	(dBm)		
	36 (5180)	14.70	14.00	N/A	24	Pass
IEEE 802.11a	44 (5220)	14.43	13.98	N/A	24	Pass
	48 (5240)	14.39	14.29	N/A	24	Pass
	36 (5180)	10.48	9.69	13.11	24	Pass
IEEE 802.11n-HT20	44 (5220)	10.78	9.94	13.39	24	Pass
	48 (5240)	11.20	10.37	13.82	24	Pass
IEEE 000 44 × 11740	38 (5190)	10.54	9.54	13.08	24	Pass
IEEE 802.11n-HT40	46 (5230)	11.06	10.12	13.63	24	Pass
IEEE 802.11ac-VHT80	42 (5210)	9.82	8.15	12.08	24	Pass

Remark:

- 1. Maximum conducted output power = Conducted output power + Duty Cycle Factor
- 2. Total Power (Chain 0+1) = $10*\log[(10^{\text{Chain 0/10}})+(10^{\text{Chain 1/10}})]$

Frequency band 5725-5850 MHz

Mode	Channel/ Frequency (MHz)	output po	conducted wer (dBm) SO	Total Power MIMO_ Chain 0+1	Limit (dBm)	Pass / Fail
	(IVITIZ)	Chain 0	Chain 1	(dBm)		
	149 (5745)	14.78	14.05	N/A	30	Pass
IEEE 802.11a	157 (5785)	14.40	14.02	N/A	30	Pass
	165 (5825)	14.01	13.60	N/A	30	Pass
	149 (5745)	11.37	9.34	13.48	30	Pass
IEEE 802.11n-HT20	157 (5785)	10.76	8.91	12.94	30	Pass
	165 (5825)	10.21	8.67	12.52	30	Pass
IEEE 802.11n-HT40	151 (5755)	10.84	9.01	13.03	30	Pass
IEEE 002.1111-1140	159 (5795)	10.08	8.52	12.38	30	Pass
IEEE 802.11ac-VHT80	155 (5775)	8.95	7.24	11.19	30	Pass

- Maximum conducted output power = Conducted output power + Duty Cycle Factor Total Power(Chain 0+1) = $10*log[(10^{Chain 0/10})+(10^{Chain 1/10})]$

Page 30 of 76 Report No.: 170615002RFC-4

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1

Test Method: KDB 789033 D02 v01r04 Section F **Limits:** FCC 47 CFR Part 15 Subpart E

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 31 of 76 Report No.: 170615002RFC-4

Limits: RSS-247 Issue 2

1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or $10 + 10 \log_{10}B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log₁₀B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Additional requirements

In addition to the above requirements, devices shall comply with the following, where applicable:

a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

i. -13 dBW/MHz for $0^{\circ} \le \theta < 8^{\circ}$ ii. -13 - 0.716 (0-8) dBW/MHz for $8^{\circ} \le \theta < 40^{\circ}$ iii. -35.9 - 1.22 (0-40) dBW/MHz for $40^{\circ} \le \theta \le 45^{\circ}$ iv. -42 dBW/MHz for $\theta > 45^{\circ}$

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
 - iii. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
 - iv. devices shall implement a method to permanently reduce their e.i.r.p. via a firmwarefeature in the event that the Department requires it. The test report must demonstratehow the device's power table can be updated to meet this firmware requirement. Themanufacturer shall provide this firmware to update all systems automatically incompliance with the directions received from the Department.

3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any

Page 32 of 76 Report No.: 170615002RFC-4

corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint³ systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)

2. For U-NII-3 band:

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Page 33 of 76

Report No.: 170615002RFC-4

Directional gain and the maximum power spectral density limit. RSS-247 Issue 2

Frequency Band Chain 0 Antenna Gain (dBi)		Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)	
U-NII-1	2.57	2.57	5.58	10.00	
U-NII-3	2.57	2.57	5.58	30.00	

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

If any transmit signals are correlated with each other,

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

FCC 47 CFR Part 15 Subpart E

Frequency Band Chain 0 Ante Gain (dBi		Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-1	2.57	2.57	5.58	11.00
U-NII-3	2.57	2.57	5.58	30.00

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

If any transmit signals are correlated with each other,

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

Page 34 of 76 Report No.: 170615002RFC-4

The worst case test data:

Frequency band 5150-5250 MHz

RSS-247 Issue 2

Mode	Channel/ Frequency (MHz)	(dBm	tral density /MHz) SO	Total e.i.r.p. spectral density MIMO_ Chain 0+1	Limit (dBm/MHz)	Pass / Fail
	(1411 12)	Chain 0	Chain 1	(dBm/MHz)		
	36 (5180)	8.457			10	Pass
IEEE 802.11a	44 (5220)	8.766			10	Pass
	48 (5240)	8.823			10	Pass
	36 (5180)	4.028	2.643	9.41	10	Pass
IEEE 802.11n-HT20	44 (5220)	4.498	2.346	9.57	10	Pass
	48 (5240)	4.760	2.627	9.84	10	Pass
IEEE 802.11n-HT40	38 (5190)	1.151	-0.421	6.46	10	Pass
IEEE 802.11n-H140	46 (5230)	1.397	-0.555	6.55	10	Pass
IEEE 802.11ac- VHT80	42 (5210)	-3.022	-5.292	2.01	10	Pass

Remark:

- 1. e.i.r.p. spectral density = Power spectral density + Duty Cycle Factor + Antenna Gain
- 2. Total e.i.r.p. spectral density (Chain 0+1) = 10*log[(10^{Chain 0/10})+(10^{Chain 1/10)}] + Directional gain

FCC 47 CFR Part 15 Subpart E

OO 47 OF KT dit 10 Odbpart E								
Mode	Channel/ Frequency	Power spectral density (dBm/MHz) SISO		Total power spectral density MIMO_ Chain 0+1	Limit (dBm/MHz)	Pass / Fail		
	(MHz)	Chain 0	Chain 1	(dBm/MHz)	(aBillininiz)	/ I all		
	36 (5180)	5.887			11	Pass		
IEEE 802.11a	44 (5220)	6.196			11	Pass		
	48 (5240)	6.253			11	Pass		
	36 (5180)	1.458	0.073	3.83	11	Pass		
IEEE 802.11n-HT20	44 (5220)	1.928	-0.224	3.99	11	Pass		
	48 (5240)	2.190	0.057	4.26	11	Pass		
IEEE 000 44× 11740	38 (5190)	-1.419	-2.991	0.88	11	Pass		
IEEE 802.11n-HT40	46 (5230)	-1.173	-3.125	0.97	11	Pass		
IEEE 802.11ac- VHT80	42 (5210)	-5.592	-7.862	-3.57	11	Pass		

Remark:

- 1. Power spectral density = Conducted power spectral density + Duty Cycle Factor
- 2. Total Power (Chain 0+1) = $10*log[(10^{Chain 0/10})+(10^{Chain 1/10})]$

Page 35 of 76 Report No.: 170615002RFC-4

Frequency band 5725-5850 MHz

Mode	Channel/ Frequency (MHz)	Power spectral density (dBm/MHz) SISO		Total power spectral density MIMO_ Chain 0+1	Limit (dBm/500KHz)	Pass / Fail
		Chain 0	Chain 1	(dBm/MHz)		
IEEE 802.11a	149 (5745)	2.221			30	Pass
	157 (5785)	1.690			30	Pass
	165 (5825)	1.595			30	Pass
IEEE 802.11n-HT20	149 (5745)	-1.013	-3.574	0.90	30	Pass
	157 (5785)	-2.062	-3.808	0.16	30	Pass
	165 (5825)	-1.941	-3.645	0.30	30	Pass
IEEE 802.11n-HT40	151 (5755)	-3.921	-5.958	-1.81	30	Pass
	159 (5795)	-4.444	-6.274	-2.25	30	Pass
IEEE 802.11ac- VHT80	155 (5775)	-8.100	-9.862	-5.88	30	Pass

Remark:

- Power spectral density = Conducted power spectral density + Duty Cycle Factor
 Total Power (Chain 0+1) = 10*log[(10^{Chain 0/10})+(10^{Chain 1/10)}]

Page 42 of 76 Report No.: 170615002RFC-4

5.7 FREQUENCY STABILITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (g)

RSS-Gen Issue 4, Section 6.11

Test Method: ANSI C63.10-2013

Limit: The frequency of the carrier signal shall be maintained within band of operation.

Test Procedure:

a) To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.

b) The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10 dB lower than the measured peak value.

c) The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

EUT Operation Condition:

Keep the EUT transmit at un-modulation mode to frequency stability

Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

	Frequency Stability Versus Temp.										
Operation Frequency: 5180 MHz											
Temp.	Voltage	Mea	sured Frequency (ИHz)	Frequency Drift						
(°C)	Voltage	FL	FH	FC	(ppm)						
50		5171.640119	5188.394511	5180.017315	3.342664						
40		5171.640070	5188.398629	5180.019350	3.735425						
30		5171.640362	5188.394524	5180.017443	3.367375						
20	VN	5171.639830	5188.392617	5180.016224	3.131950						
10	VIN	5171.639271	5188.393760	5180.016516	3.188320						
0		5171.639506	5188.390775	5180.015141	2.922876						
-10		5171.639548	5188.388989	5180.014269	2.754537						
-20		5171.639860	5188.395820	5180.017840	3.444015						

Frequency Stability Versus Voltage									
Operation Frequency: 5180 MHz									
Temp.	Voltago	Mea	Measured Frequency (MHz)						
remp.	Voltage	FL	FH	Fc	(ppm)				
	VL	5171.639537	5188.391989	5180.015763	3.043050				
TN	VN	5171.639830	5188.392617	5180.016224	3.131950				
	VH	5171.639950	5188.397913	5180.018932	3.654730				

	Frequency Stability Versus Temp.										
	Operation Frequency: 5745 MHz										
Temp.	Voltage	Mea	sured Frequency (I	MHz)	Frequency Drift						
(°C)	Voltage	FL	FH	FC	(ppm)						
50		5736.750927	5753.320178	5745.035553	6.188425						
40		5736.750742	5753.321841	5745.036292	6.317058						
30		5736.750246	5753.320603	5745.035425	6.166144						
20	VN	5736.750246	5753.321750	5745.035998	6.265970						
10	VIN	5736.749936	5753.321098	5745.035517	6.182245						
0		5736.750121	5753.321363	5745.035742	6.221410						
-10		5736.750076	5753.322344	5745.036210	6.302872						
-20		5736.750752	5753.322001	5745.036377	6.331854						

Frequency Stability Versus Voltage									
Operation Frequency: 5745 MHz									
Temp.	Voltage	Mea	sured Frequency (M	ИHz)	Frequency Drift				
remp.	voitage	FL	FH	FC	(ppm)				
	VL	5736.750312	5753.322697	5745.036505	6.354134				
TN	VN	5736.750246	5753.321750	5745.035998	6.265970				
	VH	5736.750444	5753.322309	5745.036377	6.331854				

Page 44 of 76 Report No.: 170615002RFC-4

5.8 RADIATED EMISSIONS AND BAND EDGE MEASUREMENT

FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.209/205

RSS-247 Issue 2 Section 6.2.1.2/6.2.2.2/6.2.3.2/6.2.4.2

Test Method: KDB 789033 D02 v01r04 Section G.3, G.4, G.5, and G.6

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
ADOVE 1 GHZ	Peak	1 MHz	10 Hz	Average

Limits:

1. Limits of Radiated Emission and Band edge Measurement

Radiated emissions that fall in the restricted bands must comply with the general emissions limits in 15.209(a) as below table. Other emissions shall be at least 20 dB below the highest level of the desired power.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	-		300
0.490 MHz-1.705 MHz	24000/F(kHz)	-	-	30
1.705 MHz-30 MHz	30		-	30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Page 45 of 76 Report No.: 170615002RFC-4

2. Limits of Unwanted Emission Out of the Restricted Bands

Applicable To	Limit				
789033 D02 General U-NII Test	Field Strength at 3 m				
Procedures New Rules v01r04	PK: 74 (dBμV/m)	AV: 54 (dBμV/m)			
Applicable To	EIRP Limit	Equivalent Field Strength at 3 m			
RSS-247 Issue 2 Section 6.2.1.2	PK: -27 (dBm/MHz)	PK: 74 (dBμV/m)			
RSS-247 Issue 2 Section 6.2.2.2	PK: -27 (dBm/MHz)	PK: 74 (dBµV/m)			
RSS-247 Issue 2 Section 6.2.3.2	PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)			
RSS-247 Issue 2 Section 6.2.4.2	27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges; 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges; 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.	PK: 68.2 (dBμV/m)			

Test Setup: Refer to section 4.5.1 for details.

Test Procedures:

- 1. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- 6. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Remark:

- a) The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) at frequency below 1 GHz.
- b) The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- c) The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- d) The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) or ≥ 1/T(duty cycle is < 98%) for Average detection (AV) at frequency above 1 GHz.
- e) All modes of operation were investigated and the worst-case emissions are reported.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

Page 46 of 76 Report No.: 170615002RFC-4

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Page 50 of 76 Report No.: 170615002RFC-4

Radiated Emission Test Data (Above 1GHz):

IEEE 802.11a_SISO_Chain 0_Channel 36

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	10360.00	62.48	74.00	-11.52	Peak	Horizontal
2	10360.00	47.86	54.00	-6.14	Average	Horizontal
3	15540.00	53.01	74.00	-20.99	Peak	Horizontal
4	15540.00	40.58	54.00	-13.42	Average	Horizontal
5	10360.00	61.52	74.00	-12.48	Peak	Vertical
6	10360.00	47.78	54.00	-6.22	Average	Vertical
7	15540.00	51.63	74.00	-22.37	Peak	Vertical
8	15540.00	39.48	54.00	-14.52	Average	Vertical

IEEE 802.11a	IEEE 802.11a_SISO_Chain 0_Channel 44								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10440.00	62.51	74.00	-11.49	Peak	Horizontal			
2	10440.00	46.50	54.00	-7.50	Average	Horizontal			
3	15660.00	51.67	74.00	-22.33	Peak	Horizontal			
4	15660.00	39.30	54.00	-14.70	Average	Horizontal			
5	10440.00	58.93	74.00	-15.07	Peak	Vertical			
6	10440.00	46.67	54.00	-7.33	Average	Vertical			
7	15660.00	52.44	74.00	-21.56	Peak	Vertical			
8	15660.00	40.25	54.00	-13.75	Average	Vertical			

IEEE 802.11a_	_SISO_Chain 0	_Channel 48				
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	10480.00	62.17	74.00	-11.83	Peak	Horizontal
2	10480.00	47.76	54.00	-6.24	Average	Horizontal
3	15720.00	52.43	74.00	-21.57	Peak	Horizontal
4	15720.00	39.94	54.00	-14.06	Average	Horizontal
5	10480.00	62.63	74.00	-11.37	Peak	Vertical
6	10480.00	47.03	54.00	-6.97	Average	Vertical
7	15720.00	51.90	74.00	-22.10	Peak	Vertical
8	15720.00	38.99	54.00	-15.01	Average	Vertical

IEEE 802.11	a_SISO_Chain 0	_Channel 149				
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	11490.00	65.59	74.00	-8.41	Peak	Horizontal
2	11490.00	47.59	54.00	-6.41	Average	Horizontal
3	17235.00	53.20	74.00	-20.80	Peak	Horizontal
4	17235.00	40.45	54.00	-13.55	Average	Horizontal
5	11490.00	60.91	74.00	-13.09	Peak	Vertical
6	11490.00	43.26	54.00	-10.74	Average	Vertical
7	17235.00	54.49	74.00	-19.51	Peak	Vertical
8	17235.00	41.29	54.00	-12.71	Average	Vertical

IEEE 802.11a	IEEE 802.11a_SISO_Chain 0_Channel 157								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11570.00	52.54	74.00	-21.46	Peak	Horizontal			
2	11570.00	40.41	54.00	-13.59	Average	Horizontal			
3	17355.00	53.20	74.00	-20.80	Peak	Horizontal			
4	17355.00	42.39	54.00	-11.61	Average	Horizontal			
5	11570.00	66.33	74.00	-7.67	Peak	Vertical			
6	11570.00	49.35	54.00	-4.65	Average	Vertical			
7	17355.00	54.46	74.00	-19.54	Peak	Vertical			
8	17355.00	41.50	54.00	-12.50	Average	Vertical			

IEEE 802.11a_	IEEE 802.11a_SISO_Chain 0_Channel 165							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11650.00	63.80	74.00	-10.20	Peak	Horizontal		
2	11650.00	49.10	54.00	-4.90	Average	Horizontal		
3	17475.00	54.39	74.00	-19.61	Peak	Horizontal		
4	17475.00	42.50	54.00	-11.50	Average	Horizontal		
5	11650.00	58.05	74.00	-15.95	Peak	Vertical		
6	11650.00	47.37	54.00	-6.63	Average	Vertical		
7	17475.00	55.64	74.00	-18.36	Peak	Vertical		
8	17475.00	43.29	54.00	-10.71	Average	Vertical		

Page 52 of 76 Report No.: 170615002RFC-4

IEEE 802.11n-	IEEE 802.11n-HT20_MIMO_Chain 0+1_Channel 36								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10360.00	61.59	74.00	-12.41	Peak	Horizontal			
2	10360.00	45.55	54.00	-8.45	Average	Horizontal			
3	15540.00	53.12	74.00	-20.88	Peak	Horizontal			
4	15540.00	40.58	54.00	-13.42	Average	Horizontal			
5	10360.00	60.53	74.00	-13.47	Peak	Vertical			
6	10360.00	44.77	54.00	-9.23	Average	Vertical			
7	15540.00	51.70	74.00	-22.30	Peak	Vertical			
8	15540.00	39.63	54.00	-14.37	Average	Vertical			

IEEE 802.11n	IEEE 802.11n-HT20_MIMO_Chain 0+1_Channel 44								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10440.00	58.57	74.00	-15.43	Peak	Horizontal			
2	10440.00	42.61	54.00	-11.39	Average	Horizontal			
3	15660.00	52.80	74.00	-21.20	Peak	Horizontal			
4	15660.00	40.25	54.00	-13.75	Average	Horizontal			
5	10440.00	59.90	74.00	-14.10	Peak	Vertical			
6	10440.00	45.00	54.00	-9.00	Average	Vertical			
7	15660.00	52.86	74.00	-21.14	Peak	Vertical			
8	15660.00	39.45	54.00	-14.55	Average	Vertical			

IEEE 802.11n-HT20_MIMO_Chain 0+1_Channel 48							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	10480.00	60.71	74.00	-13.29	Peak	Horizontal	
2	10480.00	44.94	54.00	-9.06	Average	Horizontal	
3	15720.00	52.21	74.00	-21.79	Peak	Horizontal	
4	15720.00	40.09	54.00	-13.91	Average	Horizontal	
5	10480.00	58.77	74.00	-15.23	Peak	Vertical	
6	10480.00	43.00	54.00	-11.00	Average	Vertical	
7	15720.00	51.55	74.00	-22.45	Peak	Vertical	
8	15720.00	38.99	54.00	-15.01	Average	Vertical	

IEEE 802.11n-	IEEE 802.11n-HT20_MIMO_Chain 0+1_Channel 149								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11490.00	56.72	74.00	-17.28	Peak	Horizontal			
2	11490.00	42.25	54.00	-11.75	Average	Horizontal			
3	17235.00	55.17	74.00	-18.83	Peak	Horizontal			
4	17235.00	41.29	54.00	-12.71	Average	Horizontal			
5	11490.00	61.35	74.00	-12.65	Peak	Vertical			
6	11490.00	43.34	54.00	-10.66	Average	Vertical			
7	17235.00	53.24	74.00	-20.76	Peak	Vertical			
8	17235.00	40.45	54.00	-13.55	Average	Vertical			

IEEE 802.11n-	IEEE 802.11n-HT20_MIMO_Chain 0+1_Channel 157								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11570.00	56.27	74.00	-17.73	Peak	Horizontal			
2	11570.00	44.33	54.00	-9.67	Average	Horizontal			
3	17355.00	55.22	74.00	-18.78	Peak	Horizontal			
4	17355.00	42.39	54.00	-11.61	Average	Horizontal			
5	11570.00	61.56	74.00	-12.44	Peak	Vertical			
6	11570.00	44.11	54.00	-9.89	Average	Vertical			
7	17355.00	55.54	74.00	-18.46	Peak	Vertical			
8	17355.00	41.50	54.00	-12.50	Average	Vertical			

IEEE 802.11n-	IEEE 802.11n-HT20_MIMO_Chain 0+1_Channel 165							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11650.00	55.74	74.00	-18.26	Peak	Horizontal		
2	11650.00	43.39	54.00	-10.61	Average	Horizontal		
3	17475.00	55.06	74.00	-18.94	Peak	Horizontal		
4	17475.00	43.29	54.00	-10.71	Average	Horizontal		
5	11650.00	61.10	74.00	-12.90	Peak	Vertical		
6	11650.00	43.64	54.00	-10.36	Average	Vertical		
7	17475.00	54.87	74.00	-19.13	Peak	Vertical		
8	17475.00	42.50	54.00	-11.50	Average	Vertical		

IEEE 802.11n	IEEE 802.11n-HT40_MIMO_Chain 0+1_Channel 38							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	10380.00	59.48	74.00	-14.52	Peak	Horizontal		
2	10380.00	45.67	54.00	-8.33	Average	Horizontal		
3	15570.00	53.29	74.00	-20.71	Peak	Horizontal		
4	15570.00	40.58	54.00	-13.42	Average	Horizontal		
5	10380.00	57.14	74.00	-16.86	Peak	Vertical		
6	10380.00	43.47	54.00	-10.53	Average	Vertical		
7	15570.00	51.63	74.00	-22.37	Peak	Vertical		
8	15570.00	39.63	54.00	-14.37	Average	Vertical		

IEEE 802.11n	IEEE 802.11n-HT40_MIMO_Chain 0+1_Channel 46								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10460.00	56.48	74.00	-17.52	Peak	Horizontal			
2	10460.00	44.71	54.00	-9.29	Average	Horizontal			
3	15690.00	53.08	74.00	-20.92	Peak	Horizontal			
4	15690.00	40.40	54.00	-13.60	Average	Horizontal			
5	10460.00	56.99	74.00	-17.01	Peak	Vertical			
6	10460.00	43.78	54.00	-10.22	Average	Vertical			
7	15690.00	51.98	74.00	-22.02	Peak	Vertical			
8	15690.00	39.45	54.00	-14.55	Average	Vertical			

IEEE 802.11n-HT40_MIMO_Chain 0+1_Channel 151							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	11510.00	55.45	74.00	-18.55	Peak	Horizontal	
2	11510.00	42.52	54.00	-11.48	Average	Horizontal	
3	17265.00	53.93	74.00	-20.07	Peak	Horizontal	
4	17265.00	42.55	54.00	-11.45	Average	Horizontal	
5	11510.00	58.69	74.00	-15.31	Peak	Vertical	
6	11510.00	45.93	54.00	-8.07	Average	Vertical	
7	17265.00	53.44	74.00	-20.56	Peak	Vertical	
8	17265.00	40.63	54.00	-13.37	Average	Vertical	

IEEE 802.11n-	IEEE 802.11n-HT40_MIMO_Chain 0+1_Channel 159							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11590.00	54.93	74.00	-19.07	Peak	Horizontal		
2	11590.00	43.11	54.00	-10.89	Average	Horizontal		
3	17385.00	55.33	74.00	-18.67	Peak	Horizontal		
4	17385.00	42.39	54.00	-11.61	Average	Horizontal		
5	11590.00	60.67	74.00	-13.33	Peak	Vertical		
6	11590.00	45.90	54.00	-8.10	Average	Vertical		
7	17385.00	53.62	74.00	-20.38	Peak	Vertical		
8	17385.00	41.66	54.00	-12.34	Average	Vertical		

Page 55 of 76 Report No.: 170615002RFC-4

IEEE 802.11ac	IEEE 802.11ac-VHT80_MIMO_Chain 0+1_Channel 42								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10420.00	57.31	74.00	-16.69	Peak	Horizontal			
2	10420.00	46.04	54.00	-7.96	Average	Horizontal			
3	15630.00	52.91	74.00	-21.09	Peak	Horizontal			
4	15630.00	40.55	54.00	-13.45	Average	Horizontal			
5	10420.00	56.76	74.00	-17.24	Peak	Vertical			
6	10420.00	43.17	54.00	-10.83	Average	Vertical			
7	15630.00	52.70	74.00	-21.30	Peak	Vertical			
8	15630.00	39.59	54.00	-14.41	Average	Vertical			

IEEE 802.11ac-VHT80_MIMO_Chain 0+1_Channel 155						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	11550.00	54.01	74.00	-19.99	Peak	Horizontal
2	11550.00	43.05	54.00	-10.95	Average	Horizontal
3	17325.00	53.89	74.00	-20.11	Peak	Horizontal
4	17325.00	41.47	54.00	-12.53	Average	Horizontal
5	11550.00	57.44	74.00	-16.56	Peak	Vertical
6	11550.00	47.38	54.00	-6.62	Average	Vertical
7	17325.00	53.16	74.00	-20.84	Peak	Vertical
8	17325.00	40.63	54.00	-13.37	Average	Vertical

Band Edge Measurements (Radiated)

IEEE 802.11a SISO Chain 0

IEEE 802.11a SISO Chain 1

IEEE 802.11n-HT20 MIMO Chain 0+1

IEEE 802.11n-HT40 MIMO Chain 0+1

IEEE 802.11ac-VHT80 MIMO Chain 0+1

Page 76 of 76 Report No.: 170615002RFC-4

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

