Space Robotics

Space System Design, MAE 342, Princeton University Robert Stengel

- Robots and Robotics
- Autonomous Spacecraft
- Planetary and Lunar Rovers
- Path Planning
- Robotic Arms
- Robonauts
- Deep Impact 1

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

1

Robots and Robotics

- Design, manufacture, control, and programming of robots
- Use of robots to solve problems
- Study of control processes, sensors, and algorithms used in humans, animals, and machines
- Application of control processes and algorithms to designing robots

Biomimetics (Bionics)

- Understanding biological principles and applying them to system design
 - Configuration
 - Structure
 - Behavior
 - Dynamics
 - Control

3

Autonomous Robots

- Self control
- Self maintenance
- Awareness of environment
- Task orientation
- Mission specificity

- Power source
- Cooperation and collaboration
- = Intelligence?
- Self replication?
- Ethical issues

Elements of Intelligent Control

Declarative Functions Procedural Functions Reflexive Functions Expert Systems, Decision Trees Estimation and Control "Circuits" Control Laws, Neural Networks

5

Robotic Vehicles

Expendable (Rocket)Launch Vehicles

Current space launch vehicles are largely autonomous

Atlas V
http://www.youtube.com/watch?
v=KxQbex7LJwg

7

X-37B

- Reusable experimental/ operational vehicle
- Unmanned "mini-Space Shuttle"
- Highly classified project
- 1st 3 missions: 224, 469, & 675 days in orbit
- 4th mission ongoing

Orbital Express: ASTRO and NEXTSat

- · DARPA, 2007
 - -Automatic rendezvous, docking, and undocking
 - On-orbit transfer of replaceable units
 - -6DOF robot arm
 - -Video guidance sensor
 - -Atlas 5 launch

https://en.m.wikipedia.org/wiki/Robotic_spacecraft

_

Mars Science Laboratory (Curiosity)

- Rocker-bogie suspension
- Communications with Earth
- Guidance, navigation, and control
- Power supply
- Support for deployable devices
- Size ~ Mini-Cooper
- Landed, 8/6/12, and operational

Curiosity Trailer http://www.jpl.nasa.gov/video/details.php?id=1014

Curiosity Rocker-Bogie Suspension

Curiosity Robotic Arms

11

Curiosity Preparation, Spacecraft, and Aeroshell

Curiosity Approach and Landing

13

Mars Opportunity Rover Navigation

Google LunarX Prize

1st privately funded spacecraft to land on Moon, travel 500m, and stream live TV

https://en.m.wikipedia.org/wiki/Google_Lunar_X_Prize

15

Path Planning on Occupancy Grid

Admissible and Inadmissible Blocks

- Identify feasible paths from Start to Goal
- Chose path that best satisfies criteria, e.g.,
 - Simplicity of calculation
 - Lowest cost
 - Highest performance

Bug Path Planning

- 1) Identify shortest unconstrained path from Start to Goal
- 2) Chose path that navigates the boundary
 - 1) Stays as close as to possible to unconstrained path
 - 2) Satisfies constraint
 - 3) Follows simple rule, e.g., "stay to the left"

17

D* or A* Path Planning

- Determine <u>occupancy cost</u> of each block
- Chose path from Start to Goal that minimizes occupancy cost with each step

Probabilistic Road Map

- · Construction Phase: Random configuration of admissible points
 - Connect admissible points to nearest neighbors
- <u>Assessment Phase</u>: Assess incremental cost of traveling along each "edge" between points
- Query Phase: Find all feasible paths from Start to Goal and select lowest cost path

Note that this approach would miss the lowest cost path found on the previous slide

19

Rapidly Exploring Random Trees (RRT, RRT*)

RRT

- Space-filling tree evolves from Start
- Open-loop trajectories with state constraints
- Initially feasible solution converges to optimal solution through searching

RRT*

- "Committed trajectories"
- Branch-and-bound tree adaptation
- Provable convergence

Connect the Dots

- Piecewise polynomials (linear -> quintic)
 - End-point discontinuities
 - End-point constraints
- Single polynomial through all points
 - Polynomial degree = # of points 1
 - Sensitivity to high-degree terms (e.g., ct⁶)
 - · Possibility of large excursions between points
- Polynomials through adjacent points
 - e.g., cubic B splines

0

Path Planning with Potential Fields

Features attract or repel path from Start to Goal, e.g., +/- gravity fields

Simultaneous Location and Mapping (SLAM)

- Build or update a local map within an unknown environment
 - Stochastic map, defined by mean and covariance of many points
 - Landmark, terrain, and target tracking
 - Multi-sensor integration
 - SLAM Algorithm = <u>Bank</u> of state estimators

23

Mars Aerial Regional-Scale Environmental Survey (*ARES*) Research Airplane Concept, ~2008

https://www.youtube.com/watch?v=8YutbpJuFil

https://www.youtube.com/watch?v=wAOTOmGFs5M

ARES System Layout

Table 3: Airplane Mass and Performance Summary

	Airplane Design									
	Current Best Estimate	Growth	Allocation 127 48							
Airplane dry mass (kg)	82	101								
Propellant mass (kg)	48	48								
Airplane wet mass (kg)	130	149	175							
Range, km	680	600	500							
Endurance, min	81	71	60							

25

Articulated Robot Arms

Robot Arms for Space

27

DEXTRE

Manipulator Redundancy

and Degeneracy

More than one link configuration may provide a given end point if $\dim(x_J) \ge \dim(x_E) \ge \dim(x_T)$

 Redundancy: Finite number of joint vectors provide the same taskdependent vector

 Degeneracy: Infinite number of joint vectors provide the same taskdependent vector

Co-linear joint axes are degenerate

29

Space Robot Arms are Highly Redundant

Why?

Robot Arm Configurations

31

Robot Arm Workspaces

Cylindrical

Articulated Revolute

McKerrow, 1991

Serial Robotic Manipulators

Proximal link: closer to the base Distal link: farther from the base

- Serial chain of robotic links and joints
 - Large workspace
 - Low stiffness
 - Cumulative errors from link to link
 - Proximal links carry the weight and load of distal links
 - Actuation of proximal joints affects distal links
 - Limited load-carrying capability at end effecter

33

NASA/GM Robonaut R2

Robonaut 2 Structure

35

Robonaut 2 Hand

Robonaut 2 Fingers

- Control by tendons and four-bar linkages
- Linear actuators in forearm

Four-Bar Linkage

- Closed-loop structure
- Rotational joints
- Planar motion
- Proportions of link lengths determine pattern of motion

Robonaut 2
Wrist and
Forearm

Figure 9 Wrist mechanism

3

Prismatic Robotic Joints

Sliding along a single axis

41

Universal

Spherical (or ball)

Other Robotic Joints

Flexible

Constant-Velocity

Roller Screw

Cylindrical (sliding and turning composite)

Planar (sliding and turning composite)

Characteristic Transformation of a Link

Link: solid structure between two joints

- Each link type has a characteristic transformation matrix relating the proximal joint to the distal joint
- Link n has
 - Proximal end: Joint n,
 coordinate frame n 1
 - <u>Distal end</u>: Joint n + 1,
 coordinate frame n

Links Between Revolute Joints

- Link: solid structure between two joints
 - Proximal end: closer to the base
 - Distal end: farther from the base
- 4 Link Parameters
 - Length of the link between rotational axes, I, along the common normal
 - Twist angle between axes, a
 - Angle between 2 links, θ (revolute)
 - Offset between links. d (prismatic)

44

 <u>Joint Variable</u>: single <u>link parameter</u> that is free to vary

Homogeneous Transformation Matrix

Express rotation and translation in a single transformation

$$(4\times1)_{new} = \left[\begin{array}{c|c} (3\times3) & (3\times1) \\ \hline (1\times3) & (1\times1) \end{array}\right] (4\times1)_{old} = \left[(4\times4)\right] (4\times1)_{old}$$

45

Homogeneous Transformation

- Rotation <u>and</u> translation can be expressed in terms of homogeneous coordinates
 - Single matrix-vector product produces rotation and transformation

$$\mathbf{s}_{new} = \begin{bmatrix} H_{old}^{new} & \mathbf{r}_{old_{new}} \\ (0 & 0 & 0) & 1 \end{bmatrix} \mathbf{s}_{old} = \mathbf{A} \mathbf{s}_{old}$$

• or
$$\begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix}_{new} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & x_o \\ h_{21} & h_{22} & h_{23} & y_o \\ h_{31} & h_{32} & h_{33} & z_o \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{old}$$

46

Equivalent Scalar Equations for Homogeneous Transformation

$$\mathbf{s}_{new} = \mathbf{A}_{old}^{new} \mathbf{s}_{old}$$

Matrix-Vector Multiplication

$$\begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix}_{new} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & x_o \\ h_{21} & h_{22} & h_{23} & y_o \\ h_{31} & h_{32} & h_{33} & z_o \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{old}$$

Individual Operations

$$x_{new} = h_{11}x_{old} + h_{12}y_{old} + h_{13}z_{old} + x_{o}$$

$$y_{new} = h_{21}x_{old} + h_{22}y_{old} + h_{23}z_{old} + y_{o}$$

$$z_{new} = h_{31}x_{old} + h_{32}y_{old} + h_{33}z_{old} + z_{o}$$

$$----$$

$$1 = 1$$

47

Series of Homogeneous Transformations

Two serial transformations can be combined in a single transformation

$$\mathbf{s}_2 = \mathbf{A}_1^2 \mathbf{A}_0^1 \ \mathbf{s}_0 = \mathbf{A}_0^2 \ \mathbf{s}_0$$

Four transformations for SCARA robot

$$\mathbf{s}_4 = \mathbf{A}_3^4 \mathbf{A}_2^3 \mathbf{A}_1^2 \mathbf{A}_0^1 \ \mathbf{s}_0 = \mathbf{A}_0^4 \ \mathbf{s}_0$$

Transformation for a Single Robotic Joint

- <u>Each joint</u> requires four <u>sequential</u> transformations:
 - Rotation about a
 - Translation along d
 - Translation along I
 - Rotation about θ

$$\mathbf{s}_{n+1} = \mathbf{A}_{3}^{n+1} \mathbf{A}_{2}^{3} \mathbf{A}_{1}^{2} \mathbf{A}_{n}^{1} \mathbf{s}_{n} = \mathbf{A}_{n}^{n+1} \mathbf{s}_{n}$$
$$= \mathbf{A}_{\theta} \mathbf{A}_{d} \mathbf{A}_{l} \mathbf{A}_{\alpha} \mathbf{s}_{n} = \mathbf{A}_{n}^{n+1} \mathbf{s}_{n}$$

... axes for each transformation (along or around) must be specified

$$\mathbf{s}_{n+1} = \mathbf{A}(z_{n-1}, \theta_n) \mathbf{A}(z_{n-1}, d_n) \mathbf{A}(x_{n-1}, l_n) \mathbf{A}(x_{n-1}, \alpha_n) \mathbf{s}_n = \mathbf{A}_n^{n+1} \mathbf{s}_n$$

40

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

	inen					inen			rnen				FII				
	$\cos \theta_n$	$-\sin\theta_n$	0	0][₁	0	0	0	7[1	0	0	l_n][1	0	$0\\ -\sin\alpha_n\\ \cos\alpha_n\\ 0$	0]
Δ _	$\sin \theta_n$	$\cos \theta_n$	0	0	0	1	0	0		0	1	0	0	0	$\cos \alpha_n$	$-\sin\alpha_n$	0
\mathbf{A}_n –	0	0	1	0	0	0	1	$d_{\scriptscriptstyle n}$		0	0	1	0	0	$\sin \alpha_n$	$\cos \alpha_n$	0
	0	0	0	1][0	0	0	1		0	0	0	1][0	0	0	1

$$\mathbf{A}_{n} = \begin{bmatrix} \cos \theta_{n} & -\sin \theta_{n} \cos \alpha_{n} & \sin \theta_{n} \sin \alpha_{n} & l_{n} \cos \theta_{n} \\ \sin \theta_{n} & \cos \theta_{n} \cos \alpha_{n} & -\cos \theta_{n} \sin \alpha_{n} & l_{n} \sin \theta_{n} \\ 0 & \sin \alpha_{n} & \cos \alpha_{n} & d_{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward and Inverse Transformations

Forward transformation through links requires pre-multiplication of matrices

$$\mathbf{s}_1 = \mathbf{A}_0^1 \mathbf{s}_0$$
 ; $s_2 = \mathbf{A}_1^2 \mathbf{s}_1 = \mathbf{A}_1^2 \mathbf{A}_0^1 \mathbf{s}_0 = \mathbf{A}_0^2 \mathbf{s}_0$

Reverse transformation uses the matrix inverse

$$\mathbf{s}_0 = \left(\mathbf{A}_0^2\right)^{-1} \mathbf{s}_2 = \mathbf{A}_2^0 \mathbf{s}_2 = \mathbf{A}_1^0 \mathbf{A}_2^1 \mathbf{s}_2$$

51

Homogeneous Transformation Matrix is not Orthonormal

$$\mathbf{A}_2^0 = \left(\mathbf{A}_0^2\right)^{-1} \neq \left(\mathbf{A}_0^2\right)^T$$

...but a useful identity makes inversion simple

Matrix Inverse Identity

Forward transformation

$$\begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{old}^{new} & \mathbf{r}_o \\ (0 \ 0 \ 0) \ 1 \end{bmatrix}$$

Inverse

$$\begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{H}_{new}^{old} & -\mathbf{H}_{new}^{old}\mathbf{r}_o \\ \hline \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} & 1 \end{bmatrix}$$

53

Manipulator Maneuvering Spaces

Joint space: Vector of joint variables, e.g.,

$$\mathbf{r}_{J} = \begin{bmatrix} \theta_{waist} & \theta_{shoulder} & \theta_{elbow} & \theta_{wrist-bend} & \theta_{flange} & \theta_{wrist-twist} \end{bmatrix}^{T}$$

End-effecter space: Vector of end-effecter positions, e.g.,

$$\mathbf{r}_{E} = \begin{bmatrix} x_{tool} & y_{tool} & z_{tool} & \boldsymbol{\psi}_{tool} & \boldsymbol{\theta}_{tool} & \boldsymbol{\phi}_{tool} \end{bmatrix}^{T}$$

<u>Task space</u>: Vector of <u>task-dependent positions</u>, e.g., locating a symmetric grinding tool above a horizontal surface:

$$\mathbf{r}_{T} = \begin{bmatrix} x_{tool} & y_{tool} & z_{tool} & \boldsymbol{\psi}_{tool} & \boldsymbol{\theta}_{tool} \end{bmatrix}^{T}$$

Forward and Inverse Transformations of a Robotic Assembly

Forward Transformation

Transforms homogeneous coordinates from tool frame to reference frame coordinates

$$\begin{split} s_{base} &= \mathbf{A}_{tool}^{base} \mathbf{s}_{tool} \\ &= \mathbf{A}_{waist} \mathbf{A}_{shoulder} \mathbf{A}_{elbow} \mathbf{A}_{wrist-bend} \mathbf{A}_{flange} \mathbf{A}_{wrist-twist} \mathbf{s}_{tool} \end{split}$$

Inverse Transformation

Transform homogeneous coordinate from reference frame to tool frame coordinates

$$S_{tool} = \mathbf{A}_{base}^{tool} \mathbf{s}_{base}$$

$$= \mathbf{A}^{-1}_{wrist-twist} \mathbf{A}^{-1}_{flange} \mathbf{A}^{-1}_{wrist-bend} \mathbf{A}^{-1}_{elbow} \mathbf{A}^{-1}_{shoulder} \mathbf{A}^{-1}_{waist} \mathbf{s}_{base}$$

55

Deep Impact 1

Deep Space 1 Flyby and Impactor Spacecraft

Figure 3. Impactor spacecraft flight system configuration.

57

Deep Space 1 Encounter Scenario

Impactor Characteristics

- Image data volume:
 - 17 MB (~35 images)
- Pointing accuracy:
 - $3\sigma = 2 \text{ mrad}$
- Energy storage for 24-hr mission:
 - 28 KWh
- Propulsion/RCS:
 - 25 m/s divert, 1750 N-s impulse

59

Deep Space 1 Autonomous Navigation and Targeting

- Flyby spacecraft comes within 500 km of Tempel 1comet, observes impact event for 800 s
- Impactor guided toward comet nucleus by AutoNav software (s/w)
- Identical attitude determination and control (ADCS) s/w in Flyby and Impactor
- Impactor Targeting Sensor (ITS) commands images every 15 sec
- "Scripted Autonomy"

Flyby Flight Control System

- Two RAD750 computers
- Medium Resolution Imager (MRI) for autonomous navigation during encounter
- High Resolution Imager (HRI) for approach phase optical navigation
- Power to both s/c while attached
- High-gain antenna for data return
- S-band antenna for communication with Impactor
- 3-axis momentum wheel attitude control
- 4 RCS thrusters for divert and momentum dumps
- Star Tracker/Inertial Reference Unit (SSIRU)

Mastrodemos, Kubitschek, Synnott, JPL, 2005

61

Impactor Flight Control System

- Battery power for 24-hr operation
- One RAD750 computer
- SSIRU
- Simple ITS
- Divert/RCS thrusters
- AutoNav components
 - Image processing
 - Orbit determination
 - Maneuver computation

Impactor Targeting Strategy

- Options
 - Proportional Navigation
 - Measurement of closing velocity and line-of-sight angular rates
 - · "Reduced dynamic approach"
 - Predictive Guidance
 - Equations of motion for target and interceptor
 - State estimation ("filtering"), like SLAM

- <u>Selected</u>: Predictive, Pulsed Guidance to desired location on target
- Best quality observations obtained during non-thrusting periods

Mastrodemos, Kubitschek, Synnott, JPL, 2005

63

Impactor Targeting Strategy

- Large uncertainty in knowledge of prior position reduced via optical navigation
- Nucleus rotation rate and solar phase angle induce motion in center of brightness (CB)
- Mitigated by batch filtering process and selection of 20-min data arc length

Autonomous Navigation

- AutoNav modes
 - Star-relative mode
 - Star-less mode based on ADCS only and camera alignment
- Autonomous guidance process
 - 1) T_{impact} 2 hr: Acquire comet nucleus images every 15 sec
 - 2) Compute pixel/line location of CB
 - 3) Compute measurement error
 - 4) Perform trajectory observation (OD) updates every min
 - 5) Perform 3 Impactor targeting maneuvers (ITM), at T_{impact} 100 min, T_{impact} 35 min, T_{impact} 7.5 min
 - 6) Compute scene-analysis-based offset prior to 3rd ITM
 - 7) T_{impact} 4 min: Point *ITS* along estimated comet-relative velocity vector
 - 8) Flyby maintains tracking of impact point

Mastrodemos, Kubitschek, Synnott, JPL, 2005

65

Trajectory Determination

- Updated once per minute for last 2 hr
- Sequential batch processing updates position, velocity, navigation line-of-sight attitude bias drift errors
- 80 observations in each 20-min arc
- Time series of Impactor position relative to the nucleus predicted with Chebyshev polynomial (i.e., smooth extrapolation of prior position estimates)

Impactor Targeting Maneuvers (ITM)

- Initiated via AutoNav sequence command
- Required impulsive maneuver ΔV magnitude and direction calculated
- Finite-burn start time computed, t_{start}
- Integration of accelerometer data indicates when ΔV has been reached, and burn is terminated, t_{finish}
- ITM-1 removes Flyby pre-release delivery errors (~6 km), requiring $\Delta V \sim 1$ m/s
- ITM-2 improves targeting, requiring ΔV ~ 11 cm/s
- ITM-3 refines fine targeting of illuminated nucleus based on CB observations, requiring $\Delta V \sim 7m/s$
 - B-plane correction of as much as 4 km
 - Accurate to ~ 54 m

Mastrodemos, Kubitschek, Synnott, JPL, 2005

67

Expected Targeting Error

Expected Targeting Error

Mastrodemos, Kubitschek, Synnott, JPL, 2005

69

Next Time: Human Factors of Spaceflight

Supplemental Material

71

MSL Descent

ARES Data Handling and Processing System

Links Involving Prismatic Joints

- Link n extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}$, along z_{n-1} (variable)
 - $\theta_n = 0$, about z_{n-1}
 - a_n = fixed orientation of n + 1 prismatic axis about x_{n-1}

- Link *n* extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}$, along z_{n-1} (fixed)
 - θ_n = variable joint angle n about z_{n-1}
 - a_n = fixed orientation of n + 1 prismatic axis about x_{n-1}

Two-Link/Three-Joint Manipulator

Denavit-Hartenberg Representationof Joint-Link-Joint Transformation

 Like Euler angle rotation, transformational effects of the 4 link parameters are defined in a specific application sequence (right to left): {θ, d, l, a}

4 link parameters

- Angle between 2 links, θ (revolute)
- Distance (offset) between links, d (prismatic)
- Length of the link between rotational axes, I, along the common normal (prismatic)
- Twist angle between axes, a (revolute)

$$\mathbf{A}_{n} = \mathbf{A}(z_{n-1}, \theta_{n}) \mathbf{A}(z_{n-1}, d_{n}) \mathbf{A}(x_{n-1}, l_{n}) \mathbf{A}(x_{n-1}, \alpha_{n})$$

$$= \text{Rot}(z_{n-1}, \theta_{n}) \operatorname{Trans}(z_{n-1}, d_{n}) \operatorname{Trans}(x_{n-1}, l_{n}) \operatorname{Rot}(x_{n-1}, \alpha_{n})$$

$$\triangleq {}^{n} \mathbf{T}_{n+1} \quad \text{in some references (e.g., McKerrow, 1991)}$$

Denavit-Hartenberg Demo http://www.youtube.com/watch?v=10mUtjfGmzw

75

Four Transformations from One Joint to the Next

(Single Link)

Rotation of θ_n about the z_{n-1} axis

$$\operatorname{Rot}(z_{n-1}, \theta_n) = \begin{bmatrix} \cos \theta_n & -\sin \theta_n & 0 & 0 \\ \sin \theta_n & \cos \theta_n & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \operatorname{Trans}(z_{n-1}, d_n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation of I_n along the x_{n-1} axis

$$\operatorname{Trans}(x_{n-1}, l_n) = \begin{bmatrix} 1 & 0 & 0 & l_n \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation of d_n along the z_{n-1} axis

Trans
$$(z_{n-1}, d_n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation of a_n about the x_{n-1} axis

$$\operatorname{Trans}(x_{n-1}, l_n) = \begin{bmatrix} 1 & 0 & 0 & l_n \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \operatorname{Rot}(x_{n-1}, \alpha_n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_n & -\sin \alpha_n & 0 \\ 0 & \sin \alpha_n & \cos \alpha_n & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Joint Variable = θ_n

 θ = variable d = 0 ml = 0.25 m $\alpha = 90 \deg$

 $\theta \triangleq 30 \deg$ d = 0 ml = 0.25 m $\alpha = 90 \deg$

Example: Denavit-Hartenberg Representation of Joint-Link-Joint Transformation for Type 1 Link

$$\mathbf{A}_{n} = \begin{bmatrix} \cos \theta_{n} & -\sin \theta_{n} \cos \alpha_{n} & \sin \theta_{n} \sin \alpha_{n} & l_{n} \cos \theta_{n} \\ \sin \theta_{n} & \cos \theta_{n} \cos \alpha_{n} & -\cos \theta_{n} \sin \alpha_{n} & l_{n} \sin \theta_{n} \\ 0 & \sin \alpha_{n} & \cos \alpha_{n} & d_{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{n} = \begin{bmatrix} \cos \theta_{n} & 0 & \sin \theta_{n} & 0.25 \cos \theta_{n} \\ \sin \theta_{n} & 0 & -\cos \theta_{n} & 0.25 \sin \theta_{n} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{n} = \begin{bmatrix} 0.866 & 0 & 0.5 & 0.217 \\ 0.5 & 0 & -0.866 & 0.125 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrix Inverse Identity

Given: a square matrix, A, and its inverse, B

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \frac{m \times m}{\mathbf{A}_3} & \mathbf{A}_4 \\ \frac{n \times m}{n \times m} & \frac{n \times n}{n \times n} \end{bmatrix} \quad ; \quad \mathbf{B} \triangleq \mathbf{A}^{-1} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix}$$

Then

$$\mathbf{A}\mathbf{B} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_{m+n}$$

$$= \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n} \end{bmatrix} = \begin{bmatrix} (\mathbf{A}_{1}\mathbf{B}_{1} + \mathbf{A}_{2}\mathbf{B}_{3}) & (\mathbf{A}_{1}\mathbf{B}_{2} + \mathbf{A}_{2}\mathbf{B}_{4}) \\ (\mathbf{A}_{3}\mathbf{B}_{1} + \mathbf{A}_{4}\mathbf{B}_{3}) & (\mathbf{A}_{3}\mathbf{B}_{2} + \mathbf{A}_{4}\mathbf{B}_{4}) \end{bmatrix}$$

Equating like parts, and solving for B_i

$$\begin{bmatrix} \mathbf{B}_{1} & \mathbf{B}_{2} \\ \mathbf{B}_{3} & \mathbf{B}_{4} \end{bmatrix} = \begin{bmatrix} (\mathbf{A}_{1} - \mathbf{A}_{2} \mathbf{A}_{4}^{-1} \mathbf{A}_{3})^{-1} & -\mathbf{A}_{1}^{-1} \mathbf{A}_{2} (\mathbf{A}_{4} - \mathbf{A}_{3} \mathbf{A}_{1}^{-1} \mathbf{A}_{2})^{-1} \\ -\mathbf{A}_{4}^{-1} \mathbf{A}_{3} (\mathbf{A}_{1} - \mathbf{A}_{2} \mathbf{A}_{4}^{-1} \mathbf{A}_{3})^{-1} & (\mathbf{A}_{4} - \mathbf{A}_{3} \mathbf{A}_{1}^{-1} \mathbf{A}_{2})^{-1} \end{bmatrix}$$

79

Forward and Inverse Kinematics Between Joints, Tool Position, and Tool Orientation

Forward Kinematic Problem: Compute the position of the tool in the reference frame that corresponds to a given joint vector (i.e., vector of link variables)

$$s_{base} = \mathbf{A}_{waist} \mathbf{A}_{shoulder} \mathbf{A}_{elbow} \mathbf{A}_{wrist-bend} \mathbf{A}_{flange} \mathbf{A}_{wrist-twist} \mathbf{s}_{tool} = \mathbf{A}_{tool}^{base} \mathbf{s}_{tool}$$
To Be Determined \Leftarrow Given

<u>Inverse Kinematic Problem</u>: Find the vector of link variables that corresponds to a desired task-dependent position

$$\mathbf{A}_{waist} \mathbf{A}_{shoulder} \mathbf{A}_{elbow} \mathbf{A}_{wrist-bend} \mathbf{A}_{flange} \mathbf{A}_{wrist-twist} \mathbf{s}_{tool} = \mathbf{A}_{tool}^{base} \mathbf{s}_0 = \mathbf{s}_{base}$$
To Be Determined \Leftarrow Given