PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(21) International Application Number:

C12N 15/12, C07K 14/705, C12Q 1/68, C12N 5/10, A01K 67/027, C12N 15/00, C12Q 1/02, G01N 33/68, C07K 16/18

(11) International Publication Number: (43) International Publication Date:

WO 98/13490

2 April 1998 (02.04.98)

(22) International Filing Date:

PCT/NL97/00538

26 September 1997 (26.09.97)

(30) Priority Data:

27 September 1996 (27.09.96) EP 96202707.4

(34) Countries for which the regional or international application was filed:

NL et al.

A2

(71) Applicant (for all designated States except US): RIJKSUNI-VERSITEIT TE LEIDEN [NL/NL]; Stationsweg 46, NL-2312 AV Leiden (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRANTS, Rune, Robert, Isak, Erik [NL/NL]; Wilsonstraat 85, NL-2131 PM Hoofddorp (NL). FERRARI, Michel, Dominique [NL/NL]; Bernardiaan 59, NL-2341 KJ Oegstgeest (NL). TERWINDT, Gisela, Marie [NL/NL]; Lanckhorstlaan 115, NL-2101 BC Heemstede (NL). OPHOFF, Roel, André [NL/NL]; Rijksuniversiteit te Leiden, Faculteit Geneeskunde, Wassenaarseweg 72, NL-2333 AL Leiden (NL).

(74) Agent: SMULDERS, Th., A., H., J.; Vereenigde Octrooibureaux, Nieuwe Parklaan 97, NL-2587 BN The Hague (NL).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A GENE RELATED TO MIGRAINE IN MAN

(57) Abstract

Genes for familial hemeplegic migraine (FHM), episodic ataxia type-2 (EA-2), common forms of migraine, and other episodic neurological disorders, such as epilepsy, have been mapped to chromosome 19p13 and chromosome 10p12. A brain-specific P/Q-type calcium channel subunit gene, covering 300 kb with 47 exons is provided. The exons and their surroundings reveal polymorphic variations and deleterious mutations that are linked to various types of calcium channel dysfunctions causing episodic neurological disorders in man or animals.

Title: A gene related to migraine in man.

-

5. ♥

20

25

30

Migraine is a frequent paroxysmal neuro-vascular disorder, characterized by recurrent attacks of disabling headache, vomiting, photo/phonophobia, malaise, and other general symptoms (migraine without aura). Up to 20% of patients may, in addition, experience transient neurological (aura) symptoms during attacks (migraine with aura) (HCC, 1988). Up to 24% of females and 12% of males in the general population are affected, however with variable attack frequency, duration and severity (Russell et al., 1995).

10. Knowledge about the mechanisms of the final common pathway of migraine attacks has increased substantially the last five years, resulting in improved, though still only symptomatic (and sub-optimal) acute treatment for the attack. There is, however, still very little knowledge about the etiology of migraine attacks, i.e. why and how attacks begin and recur. Accordingly, prophylactic treatment for migraine is non-specific and has only limited efficacy.

Family, twin and population-based studies suggest that genetic factors are involved in migraine, most likely as part of a multifactorial mechanism (reviewed by Haan et al., 1996). The complex genetics has hampered identification of candidate genes for migraine. Familial Hemiplegic Migraine (FHM) is a rare, autosomal dominant, subtype of migraine with aura, associated with ictal hemiparesis and, in some families cerebellar atrophy (HCC, 1988). Otherwise, the symptoms of the headache and aura phase of FHM and "normal" migraine attacks are very similar and both types of attacks may alternate within subject and co-occur within families. FHM is thus part of the migraine spectrum and can be used as a model to study the complex genetics of the more common forms of migraine (Haan et al., 1996). A gene for FHM has been assigned to chromosome 19p13 in about half of the families tested (Joutel et al., 1993; Ophoff et al., 1994;

2

Joutel et al., 1995). Remarkably, cerebellar atrophy was found only in families with FHM linked to chromosome 19p13, but not in unlinked families. Recently, we showed the 19p13 FHM locus to be also involved in "normal" migraine (May et al., 1995).

5

10

25

30

35

Episodic ataxia type 2 (EA-2) is another, autosomal dominant, paroxysmal neurological disorder, characterized by acetazolamide-responsive attacks of cerebellar ataxia and migraine-like symptoms, and interictal nystagmus and cerebellar atrophy. Recently, a gene for EA-2 was assigned to chromosome 19p13, within the same interval as for FHM (Kramer et al., 1995). This finding, as well as the clinical similarities, raise the possibility of EA-2 and FHM being allelic disorders.

Since other hereditary episodic neurological disorders responding to acetazolamide (such as hypokalaemic and hyperkalaemic periodic paralysis), as well as EA type-1 (which, in contrast to EA-2, is associated with continuous myokymia and non-responsive to acetazolamide) have all been associated with mutations in genes encoding for ion channels (Ptacek et al., 1991; Ptacek et al., 1994; Brown et al., 1994), we specifically looked for similar genes within the FHM and EA-2 candidate region.

In view of the above, the FHM/EA-2 locus can, since FHM is part of the migraine spectrum, thus be used to study the genetic factors and biological mechanisms that are related to various episodic neurological disorders such as FHM, EA-2, common migraine and others such as epilepsy.

Calcium channels are multisubunit complexes composed of at least an $\alpha 1$, an $\alpha 2\delta$, and a β subunit. The central $\alpha 1$ subunit is functionally the most important component, acting as a voltage sensor and forming the ion-conducting pore. The other subunits have auxiliary regulatory roles. The membrane topology of the $\alpha 1$ subunit consist of four hydrophobic motifs (I to IV), each containing six transmembrane α -helices (S1-

ε,

ر -

10

15

20

25

30

35

3

S6) and one hairpin (P) between S5-S6 that spans only the outer part of the transmembrane region.

The present invention provides an isolated and/or recombinant nucleic acid, or fragments thereof, encoding a Ca^{2+} -channel αl subunit related to familial hemiplegic migraine and/or episodic ataxia type-2, derived from a gene present on chromosome 19p13.1-19p13.2; a gene encoding the αl (ion-conducting) subunit of a P/Q-type voltage gated calcium channel. The present invention also provides access to and methods to study the genetic background and identify other subunits of the calcium channel subunit complexes and the proteins related therewith that are associated with the genetic factors and biological mechanisms that are related to various episodic neurological disorders such as FHM, EA-2, common migraine and others such as epilepsy which are related to cation channel dysfunction.

The sequence of the cDNA of the gene is highly related (≥90%) to a brain-specific rabbit and rat voltage gated P/Q-type calcium channel αl subunit (Mori et al., 1991; Starr et al., 1991), and the open reading frame consists of 2261 amino acid residues. Northern blot analysis showed a brain-specific expression, especially in the cerebellum. Primary study of a cosmid contig harbouring the gene already indicated an exon distribution over at least 300 kb of genomic DNA. Recently, a neuronal Ca^{2+} $\alpha 1A$ subunit gene was localized to chromosome 19p13.1-p13.2 by FISH analysis (Diriong et al, 1995). The gene symbol is CACNL1A4 and the al subunit is classified as a P/Q-type. No sequence data for the CACNL1A4 gene have been provided by Diriong or others, but the same localization (chromosome 19p13.1) and the identical classification (P/Q-type) suggests that the Ca^{2+} channel α l subunit we have identified is very similar to CACNL1A4. No relation with migraine has been disclosed for CACNL1A4. The genomic structures of three other human Ca²⁺ channel \(\alpha \) subunit genes (CACNL1A1, CACNL1A2 and CACNL1A3) have been published to date (Hogan et al, 1994; Soldatov,

1994; Yamada et al, 1995). Both CACNL1A1 and CACNL1A2 span

4

about 150 kb and consist of 50 and 49 exons, respectively. The smaller CACNL1A3 gene is composed of 44 exons, distributed over 90 kb.

The present invention also provides an isolated and/or recombinant nucleic acid comprising alleles of the invented gene which contain mutations relevant to the occurence of migraine and other neurological disorders which are related to cation channel dysfunction. Such mutations are for example a mutation at codon 192 resulting in the replacement of arginine by glutamine (R192Q), and/or a mutation at codon 666 resulting in the replacement of threonine by methionine, and/or a mutation at codon 714 resulting in a replacement of valine by alanine and/or a mutation at codon 1811 resulting in a replacement of isoleucine by leucine, but also other mutations of alleles of said gene which bear relationships with cation channel dysfunction.

10

15

20

25

30

35

The present invention also provides isolated and/or recombinant nucleic acid comprising alleles of said gene which contain a polymorphic CA-repeat sequence specific for various alleles of said gene. The present invention also provides isolated and/or recombinant nucleic acids comprising alleles of said gene which contain a CAG repeat.

The present invention also provides methods and tests (such as PCR, but also other tests to detect or amplify nucleic acids are known in the art) to detect, identify and localize or distinguish genes and alleles of such genes, or fragments thereof, encoding for proteins or α , β or χ subunits of specific cerebral cation channels, more specifically the invented gene and its various alleles encoding the α l subunit of a P/Q-type voltage gated calcium channel and the gene encoding the β 2 sub-unit, which are involved in the primary pathogenesis of neurological disorders such as FHM, migraine, EA-2 and SCA6. With such methods and tests one can study abnormalities of said gene.

The invention also provides recombinant expression vectors comprising isolated and/or recombinant nucleic acid comprising alleles of said genes or fragments therof, and

WO 98/13490

10

15

20

25

30

35

٠.

5

provides host cells or animals that comprise such vectors or that are otherwise transformed with an isolated and/or recombinant nucleic acid according to the invention.

The invention thus also provides a rationale and methods for the testing and the development of specific prophylactic medication for migraine and other episodic neurological, in particular brain, disorders, such as epilepsy, associated with cation channel dysfunction.

The invention for example provides cells or animals that comprise recombinant vectors that comprise variants of said genes or cells or animals that are transformed with said variants. Also, the invention provides means to identify naturally occuring variants of experimental animals with changes in said gene related to FHM, EA-2, SCA7, migraine or other neurological disorders associated with cation channel dysfunction. An example of such an animal is the tottering mouse, and its variants called leaner and rolling, described in the experimental part of the invention. The invention also provides cells or animals in which changes such as deletions or mutations in said gene have been introduced by recombinant nucleic acid techniques. All such cells or animals provided by the invention can be used to study the pathophysiology of FHM, EA-2, migraine or other neurological disorders associated with cation channel dysfunction, for example to test or develop specific medication for the treatment of said disorders.

The invention also provides proteins or peptides encoded by said genes, or fragments thereof, related with cation channel dysfunction, and detection of such proteins or peptides by antibodies directed against said proteins or peptides. Such antibodies can be of natural or synthetic origin, and can be produced by methods known in the art. Such proteins and antibodies and detection methods can be used to further in vitro or in vivo studies towards the pathophysiology of FHM, EA-2, migraine or other neurological disorders associated with cation channel dysfunction, in addition such proteins, antibodies and detection methods can

6

also be used to diagnose or identify such disorders in patients or in experimental animals.

Experimental Procedures

5

10

15

20

:..

٠- •

Subjects

Sixteen FHM patients were selected, including eight individuals from four unrelated chromosome 19-linked FHM families (NL-A, UK-B, USA-C (Ophoff et al, 1994), and USA-P (Elliot et al., 1995), two affected individuals from two small FHM families from Italy (Italy I & II) and six individuals with sporadic hemiplegic migraine (i.e. no other family member was shown to suffer from attacks of hemiplegic migraine). In families NL-A and USA-P cerebellar ataxia and/or nystagmus is associated with FHM. An additional set of four subjects from four unrelated EA-2 families linked to chromosome 19, was also included (CAN-25, -45, -191, -197. Fifty randomly collected individuals from the Dutch population (Smith et al., 1988) were used as a control to determine the allele frequencies of polymorphic sites.

Patients with migraine with or without aura were diagnosed according to the international Headache Society (IHS) classification criteria. Patients attending the neurology outpatient clinic of Leiden University Medical 25 Center, The Netherlands, and patients responding to calls in local newspapers or in the periodical of the Dutch Migraine Patients Association, were screened for a positive family history of migraine. Only families with migraine in at least two generations were asked to participate. Probands (n=36) 30 and relatives (n=492) were personally examined and interviewed using semi-structured questionnaires. The questionnaire included guestions about age at onset, frequency and duration of attacks, aura symtoms, premonitory signs and symptoms, triggers for attacks, medication, and 35 additional headaches. When family members were not available for a personal interview, information on their migraine was collected by interviewing their relatives. Because of the low

٠.

٠. •

7

validity of diagnosing migraine auras through relatives, we only assessed the presence or absence of migraine headaches. Whenever possible, medical records were examined.

5 Genomic structure

Ten different cosmids from the contig extending the invented gene, were subcloned separately in either M13 or pBlueScript KS vector. From each cosmid library at least 3x96 random clones with an average insert size of about 2 kb, were picked. Positive clones were identified by hybridization techniques and subsequently sequenced with vector-specific primers; intron-exon boundary sequences were completed using cDNA-based primers.

15 Mutation analysis, DHPLC and SSCP

Genomic DNA was used as template to generate polymerase chain reaction (PCR) products for single-strand conformational polymorphism (SSCP) analysis and denaturing high-performance liquid chromatography (DHPLC).

- Amplifications were performed in standard conditions with primer pairs as listed in Table 1 or listed below. Except for the 5' side of exon 6, primers were chosen to produce fragments that contained a single exon and at least 35 basepairs (including primer) of each flanking intron
- sequence. Amplification of exons 1 and 20 was performed producing two overlapping fragments and exon 19 was amplified into three overlapping fragments. In addition, the following markers;
- D10S191 Primer sequence 1 CTT TAA TTG CCC TGT CTT C

 30 Primer sequence 2 TTA ATT CGA CCA CTT CCC
 - D10S245 Primer sequence 1 AGT GAG ACT CGT CTC TAA TG
 Primer sequence 2 ACC TAC CTG AAT TCC TGA CC
- 35 D10S89 Primer sequence 1 AAC ACT AGT GAC ATT ATT TTC A
 Primer sequence 2 AGC TAG GCC TGA AGG CTT CT

8

DHPLC (Oefner et al., 1995; Hayward et al., 1996) was carried out on automated HPLC instrumentation. Crude PCR products, which had been subjected to an additional 3-minute 95°C denaturing step followed by gradual reannealing from 95-65°C over a period of 30 minutes prior to analysis, were eluted with a linear acetonitrile (9017-03, J.T. Baker, Phillipsburg, N.J., USA) gradient of 1.8% per minute at a flow-rate of 0.9 ml/min. The start- and end-points of the gradient were adjusted according to the size of the PCR products (Huber et al., 1995). The temperature required for successful resolution of heteroduplex molecules was determined empirically by injecting one PCR product of each exon at increasing mobile phase temperatures until a significant decrease in retention was observed.

For SSCP analysis, primary PCR products were labeled by incorporation of $[\alpha^{-32}P]dCTP$ in a second round of PCR. Samples were diluted and denatured in formamide buffer before electrophoresis. SSCP was carried out according to published protocols (Orita et al., 1989; Glavac et al., 1994).

Digestion of several exons to yield products suitable for SSCP analysis.

25

30

Sequencing of PCR products was performed with an ABI 377 automated sequencing apparatus with cycle sequencing according to the manufacturer. Furthermore, PCR products were cloned in the TA vector (Invitrogen) and subjected to manual dideoxy sequence analysis (T7 Sequencing kit, Pharmacia Biotech.).

A total of 481 blood samples were collected from patients with migraine. Genomic DNA was isolated as described by Miller et al., 1988. The analyses of the highly informative microsatellite markers D19S391, D19S394, D19S221 and D19S226, D10S191, D10S245 and D10S89 were performed by PCR; primer sequences related to these markers are available through the human Genome Data Base (GDB).

The relative frequencies of marker alleles were estimated on the entire family material, with the relevant

9

correction for genetic relationships between individuals (Boehnke, M, 1991) with the ILINK option of the I-INKAGE package, version 5.03 (Lathrop et al., 1985). The following marker order and recombination frequencies were used in the multipoint sib-pair analysis: D19S391-5%-D19S394-3%-D19S221-5%-D19S226. Affected-sib-pair analysis was performed using the MAPMAKER/SIBS software package, simultaneously including marker information for all four DNA markers (Kruglyak, 1995). Separate analyses were performed for migraine with aura, migraine without aura, and a combination of both. Allowance was made for dominance variance. When more than two affected sibs occurred in a single sibship, weighted scores were computed according to Suarez and Hodge (1979).

In a sib-pair analysis, the occurrence of parental marker alleles is compared among sibs. Normally, 25% of sib pairs share their marker alleles from both parents, 50% share one marker allele from one of their parents, while the remaining 25% share no parental allele. Deviations from this pattern towards increased sharing, and consistent with the constraints of Holmans's (1993) possible triangle, are explained as linkage (expressed as the maximum lod score MLS). Increased sharing of marker alleles thus indicate that the marker is located closely near a genetic risk factor. The relative-risk ratio for a sib $(\lambda_{\rm R})$, defined as the ratio of the prevalence of a disease in sibs of affected individuals, divided by the prevalence of a disease in the population, can be calcutated (May et al., 1995). In other words:

 $\lambda_{R} = ------$ Affection risk for an individual in the general population

Results

٠.

10

15

20

25

35 Genomic structure

The combination of hybridization and PCR strategies resulted in a rapid assembly of the complete coding sequence

5

10

10

of the human cDNA, with an open reading frame of 6783 nucleotides encoding 2261 amino acid residues (figure 4). The spatial distribution of the human Ca²⁺ channel expression was assayed in rhesus monkey tissues. Total RNA was isolated from several tissues, including various brain structures, and probed with a human cDNA fragment. The probe detected a major transcript of approximately 9.8 kb in cerebellum, cerebral cortex, thalamus and hypothalamus, whereas no transcript was detected in heart, kidney, liver or muscle. There was also no hybridization signal found in RNA preparations from mouse skin tissue or from human peripheral lymphocytes. In addition, an attempt to amplify parts of the cDNA from human peripheral lymphocytes failed.

Complete alignment between the cDNA and individual exon sequences was achieved, allowing the establishment of the 15 exon-intron structure (Table 1). The reconstruction of the exon-intron structure of the CACNL1A4 gene revealed 47 exons ranging in size from 36 bp (exon 44) to 810 bp (exon 19). The exons are distributed over about 300 kb at genomic DNA level. The result shows that the first 10 exons are located in a 20 region of about 150 kb covered by the first 5 cosmids of the contig indicating relatively large introns at 5' side of the gene. Sequences (Figure 1) were obtained of all exons including approximately 100 bp of flanking introns, except for intron 5 adjacent to exon 6. The forward primer of exon 6 25 harbours the splice junction and 3 bp of exon 6. Splice sites around all exons are compatible with consensus sequence with the exception of splice donor and acceptor of the first intron.

30 The cosmid contig that yielded the initial Ca²⁺ channel gene exons was extended to cover more than 300 kb.

Hybridization experiments showed that the first and last cosmids of the contig were positive for 3'- and 5'-end cDNA sequences, respectively, indicating a genomic distribution of the gene over at least 300 kb (Figure 2). The cosmid contig has been placed into the LLNL physical map of chromosome 19 at band pl3.1, between the markers Dl9S221 and Dl9S226

11

(Figure 2). We identified a new polymorphic CA-repeat sequence (D19S1150) on the cosmid contig. Oligonucleotide primers (Table 1) flanking the repeat were synthesized and amplification was performed by PCR as described. Analysis of D19S1150 in 45 random individuals from the Dutch population revealed nine alleles with an observed heterozygosity of 0.82. This highly polymorphic marker is located within the gene and is therefore very useful in genetic analysis.

10 Mutation analysis

5

20

25

30

35

٦,

Exons and flanking intron sequences, containing the complete coding region of CACNL1A4 and part of untranslated sequences, were screened for the presence of mutations by · SSCP and DHPLC analysis in 20 individuals with either FHM or EA-2. Several synonymous nucleotide substitutions and 15 polymorphisms were identified including a highly polymorphic (CAG)n-repeat in the 3' untranslated region of exon 47 (Table 2). Of all polymorphisms only one was identified predicting an amino acid change, an alanine to threonine substitution at codon 454 (A454T).

Four different missense mutations were found in FHM patients of which one mutation was observed in two unrelated FHM affected individuals (Table 3). The mutations were shown to segregate with the disease within the families; and were not present in about 100 control chromosomes. A G-to-A transition was identified in family Italy-II at codon 192, resulting in a substitution of arginine to glutamine (R192Q) within the first voltage sensor domain (IS4). A second missense mutation occurs at codon 666, within the P-segment of the second repeat replacing a threonine residue for methione (T666M) in family USA-P. Two other mutations are located in the 6th transmembrane spanning segment of respectively repeat II and IV. The IIS6 mutation is a T-to-C transition at codon 714, resulting in a substitution of valine to alanine (V714A), identified in FHM family UK-B. The mutation in domain IVS6 is an A-to-C transversion at codon 1811 resulting in a substitution of isoleucine to leucine

٥.

12

(I1811L). This I1811L mutation is found in family NL-A and family USA-C, two unrelated FHM families. Comparison of haplotypes in this region, including intragenic markers, did not reveal any evidence for a common founder of family NL-Aand USA-C (data not shown). No mutation was found in FHM family Italy-I nor in the six sporadic hemiplegic migraine patients. In addition to missense mutations in FHM families, we also identified mutations in two out of four EA-2 families (Table 3). In EA-2 family CAN-191, a basepair deletion occurs in exxon 22 at nucleotide position 4073 causing a frameshift 10 and a premature stop. The second EA-2 mutation is a transition of G-to-A of the first nucleotide of intron 24, predicted to leading to an aberrant splicing in family CAN-26. The invented gene also contains a CAG repeat, of which expansions have been found in patients with autosomal dominant cerebellar ataxia (SCA6). Hence FHM, EA-2 and SCA6 are allelic ion channel disorders and different mutations are associated with different clinical symptomatologies.

Our study patients with common migraine (with or 20 without aura) included 36 independent multigenerational Dutch families. At least some data were available on 937 family members and 212 persons who "married-in" (spouses). Of these, 442 family members (247 affected) and 86 spouses (7 affected) were personally interviewed. The distribution of the 25 different types of migraine among the 247 affected family members are as follows: 132 family members showed migraine without aura, 93 showed migraine with aura and 22 showed months-migraine, not fulfilling all critera by IHS. Among the 7 affected spouses these figures were 4, 1 and 2, respectively. We scored the parental transmission of migraine in the 36 families (Tabel 4) to investigate if an additional X-linked dominant or mitachondrial gene was involved. An approximately 2.5:1 preponderance of females among the migraine sufferers was noted, which remained in the affected 35 offspring. Affected fathers were found to transmit migraine

13

to their sons in 21 cases, making X-linked dominant or mitochondrial inheritance highly unlikely.

The genetic analysis included 204 potentially affected sib pairs; after correction for more than one sib pair in a single sibship the total number of sib pairs was 108. 5 Affected-sib-pair analysis was performed for sib pairs who were both affected with any form of migraine and, in separate analyses, for sib pairs who where both suffering from either migraine with aura or migraine without aura. The informativeness of the region between the markers D19S391, 10 D19S394, D19S221 and D19S226 varied between 82% and 96%. The combined analysis of migraine with and without aura resulted in a maximum multipoint lod score of 1.69 (p \approx 0.005) with marker D19S226. For migraine with aura the maximum multipoint lod score was 1.29 corresponding with p≈0.013 with marker 15 D19S394. The maximum lod score for migraine without aura was not significant (MLS <0.25)(data not shown). The relative risk ratio for a sib to suffer from migraine with aura (λ_p) , defined as the increase in risk of the trait attributable to the 19p13 locus, varied between $\lambda_a=1.5$ (for marker D19S394) 20 and λ_{R} =2.4 (for marker D19S226). When combining migraine with and without aura, λ_s was 1.25. In a selected portion of 36 Dutch families with migraine with aura and without aura, affected sib-pair analysis was performed for sib pairs who were affected with any form of migraine. The following 25 markers, flanking the $\beta 2$ (CACNB2) calcium channel subunit gene on chromosome 10p12, were tested: D108191, D10S246 and D10S89. For the combined phenotype (migraine with and without aura) a maximum pultipoint iod score of 0,95 (p<0,01) was obtained with marker; D10S191. This result gives independent 30 evidence for a role of the P/Q type Ca2+ channel in migraine and other neurological disorders.

Discussion

35

The genomic structure of the exemplified invented gene revealed 47 exons distributed over about 300 kb (Table 1; Figure 1). A comparison of the gene structure to already

٦,

5

10

15

20

25

30

14

known Ca²⁺ channel al subunit genes (CACNL1A1, CACNL1A2, and CACNL1A3) (Soldatov, 1994; Yamada et al., 1995; Hogan et al., 1995), reveals a similar number of exons (50, 49, and 44 respectively) but a larger genomic span (300 kb vs 90-150 kb). Remarkebly, all splice sites are according to consensus sequence except for intron 1. Splice donor as well as splice acceptor of the first intron do not contain the expected gt...ag intron sequence. An incorrect cDNA sequence is unlikely because the cDNA sequence containing the junction of the first two exons is identical to rabbit and rat sequence. Sequences corresponding to splice donor and acceptor are present in exon 1 and 2, suggesting an additional (yet unidentified) exon in the first intron encompassing part of sequences of exon 1 and exon 2.

To test the possible involvement of the invented gene relating to the CA² -channel sub-unit in migraine FHM, SCA6 and EA-2, we performed a mutation analysis by DHPLC and SSCP and found several alterations (For example Table 2 & 3). Only one missense variation was observed also present in 2% of the normal controls (Table 2). This polymorphism is a alanine to threonine substitution at codon 454 (A454T), located in the intracellular loop between IS6 and IIS1 (Figure 2). This region contains a conserved alpha interaction domain (AID) that binds subunits (De Waard et al., 1996). However, A454T is located outside the AID consensus sequence and is not likely to be involved.

The identification of two mutations that disrupt the predicted translation product of the invented gene in two unrelated EA-2 patients and the segregation of these mutations with the episodic ataxia phenotype in their families provide strong evidence that the invented gene is the EA-2 gene. A basepair deletion leads to a frame-shift in the putative translation product and encounters a stop codon in the next exon. The frame-shift in this EA-2 family is predicted to yield a calcium channel α l subunit polypeptide consisting of repeat I and II, and a small portion of repeat III (IIIS1). The G-to-A transition of the first nucleotide of

- .

٠.

5

25

30

35

15

intron 24 is affecting the nearly invariant GT dinucleotide of the intronic 5' splice junction. The brain-specific expression of the exemplified invented gene makes it extremely difficult to test the hypothesis that this mutation produces aberrantly spliced RNAs by retaining the intron or utilizing other cryptic 5' splice sites.

The frameshift and splice site mutations in EA-2 may suggest a dominant negative effect of the truncated proteins by overruling the (corresponding) intact α 1 subunits.

No mutations were found in the remaining EA-2 families 10 (CAN-25 and -197). The use of two independent techniques for mutation screening (DHPLC and SSCP) makes it unlikely that we missed a heterozygote PCR product. Mutations in the promoter region or in intron sequences, resulting in aberrant splicing, may have been the cause of EA-2 in these families. 15 We could also have missed a mutation around the splice acceptor site of intron 5, covered by the forward primer of exon 6. However, larger deletions of e.g. complete exons with flanking intron sequence will disturb the predicted translation product, like the ΔC_{4073} and splice site mutation 20 do, but this is not detectable by a PCR-based screening method but can be seen Southern blot analysis instead.

Four different missense mutations were identified in five unrelated FHM families. These mutations all segregate with FHM within a family and are not observed in over 100 normal chromosomes. The first missense mutation that we describe in the exemplified invented gene occurs in the IS4 domain of the αl subunit (Table 3; Figure 3). The S4 domains are postulated to be voltage sensors because they have an unusual pattern of positively charged residues at every third or fourth position separated by hydrophobic residues (Tanabe et al., 1987). In calcium channels the positively charged amino acid is an arginine residue (Stea et al., 1995). The mutation in FHM family Italy-II predicts a substitution of the first arginine in the IS4 segment with a neutral, non-polar glutamine (R192Q). The change of the net positive

: .

٦.

10

15

35

16

charge of this conserved region of the protein may influence correct functioning of the voltage sensor.

The second missense mutation in FHM family USA-P occurs in the P-segment of the second transmembrane repeat. A C-to-T transition predicts substitution of a threonine residue with methionine at codon 666 (T666M). Various observations have shown that P-segments, the hairpin between S5 and S6 that spans only the outer part of the transmembrane region, form the ion-selectivity filter of the pore and binding sites for toxins (Guy and Durell (1996). Alignment of protein sequence of different P-segments indicating that some residues occur in many different channel genes (Guy and Durell, 1996). The T666M substitution alters one of the conserved residues in the P-segment. It is conceivable that an alteration of a P-segment affects the ion-selectivity or toxin binding of a channel gene.

The remaining two missense mutations identified in FHM families alter the S6 segment of the second and the fourth repeat. A valine to alanine substitution in FHM family UK-B is found in domain IIS6 at codon 714 (V714A). Domain IVS6 is 20 mutated in two unrelated FHM families (NL-A and USA-C), predicting a isoleucine to leucine substitution at codon 1811 (I1811L). The V714A and I1811L missense mutations do not really change the neutral-polar nature of the amino acid residues. However, both S6 mutations are located nearly at 25 the same residue at the intracellular site of the segment and are conserved in all calcium channel α 1 subunit genes. In addition, the A-to-C transversion leading the I1811L substitution occurred in two unrelated FHM families on different haplotypes indicating recurrent mutations rather than a founder effect. Although the exact function of the S6 domains are not known, these data strongly suggest that mutations in IIS6 and IVS6 result in FHM.

The I1811L mutation is present in two FHM families of which one (NL-A) also displays a cerebellar atrophy in (some) affected family members. The presence of cerebellar atrophy in FHM families has been reported in about 40% of chromosome

٠,

10

15

20

25

30

35

17

19-linked FHM families, whereas none of the unlinked families was found to have cerebellar atrophy (Terwindt et al., 1996).

The I1811L mutation excludes the possibility of allelic mutations in FHM and FHM with cerebellar atrophy. However, it is likely that FHM or FHM with cerebellar atrophy are the result of pleiotropic expression of a single defective gene.

No mutation was found in a small Italian FHM family (Italy-I). Apart from the possibilities discussed for EA-2, it should be noted that linkage to 19p13 was only suggested but never proved with significant lod scores (M. Ferrari, personal knowledge).

The four missense mutations identified indicate a mechanism for FHM in which both alleles of the αl subunit are expressed, one harbouring an amino acid substitution which affects the function of this calcium channel αl subunit by reducing or enhancing the electrical excitability. The relationship of FHM and other types of migraine makes it highly rewarding to investigate the involvement of the only missense variant observed (A454T) (Table 2), and to continue the search for other variants of the exemplified invented gene specific for common types of migraine.

The mutations in EA-2 and FHM demonstrate among others that the brain specific calcium channel gene CACNL1A4 is responsible for both EA-2 and FHM, and is also involved in the primary pathogenesis of the more common forms of migraine. We conducted the common migraine study in an independent sample of 36 extended Dutch families, with migraine with aura and migraine without aura. We found significant increased sharing of the marker alleles in sibs with migraine with aura (MLS=1.29 corresponding with $p\approx 0.013$). Although no such increased sharing was found for migraine without aura, a combined analysis for both migraine types resulted in an even more significant increased sharing (MLS=1.69 corresponding with p \approx 0.005). These results clearly indicate the involvement of the calcium $\alpha_{\text{\tiny 1A}}\text{-subunit}$ gene region on 19p13 in both migraine with and without aura; the contribution to migraine with aura, however, seems strongest.

18

The positive findings in our study clearly demonstrate an involvement of the FHM locus region in non-hemiplegic familial migraine, notably in migraine with aura. The P/Q-type calcium channel α_{la} -subunit gene on chromosome 19p13 may be an "aura-gene" and is involved in both FHM and migraine with aura, but not in migraine without aura. This however, seems unlikely since an increased sharing of marker alleles was also found when we combined the results for migraine with and without aura. Furthermore, the increase in sharing was stronger than expected to be only due to the contribution of migraine with aura. An alternative explanation is that the gene is involved in both types of migraine, but in migraine without aura there is an additional strong effect of other, possibly environmental factors, thereby reducing the penetrance.

10

15

20

25

3.0

35

The latter view is also supported by the results obtained from calculating the relative risk ratios $(\lambda_{\scriptscriptstyle R})$ for sibs from affected individuals to also have migraine. The relative risk ratio for a sib to suffer from migraine with aura was $\lambda_\text{R}\text{=}2.4\,.$ When combining migraine with and without aura, λ_{R} was 1.25. In a population-based study the relative risk for first degree relatives of probands with migraine with aura to also have migraine with aura was $\lambda_\text{g}\text{=3.8.}$ Because of the female preponderance among migraine patients, X-linked dominant or mitochondrial inheritance has been suggested to be involved in familial migraine. Although a predominant maternal inheritance pattern was noted in our families, Xlinked dominant or mitochondrial inheritance were found to be highly unlikely because affected fathers transmit migraine to their sons. Furthermore, the predominant maternal inheritance can be explained by the female preponderance among the migraine patients.

We conclude that the well-established genetic contribution to the etiology of migraine is partly, but not entirely, due to genetic factors located in the chromosomal region of the P/Q-type calcium channel $\alpha_{\text{lA}}\text{-subunit gene}\,.$ Further analysis of the cerebral distribution and function of

WO 98/13490

19

this calcium channel, as well as of the "mutated channels", will help to unravel the pathogenetic pathway of migraine. It may also contribute to a better understanding of the mechanisms involved in related disorders such as episodic ataxia type-2, autosomal dominant cerebellar ataxia (SCA6), cerebral atrophy, and epilepsy, which all have been found to be associated with mutations in this gene. Study of FHM, EA-2 mutants and variants such as the A454T variant expressed in vitro or in mouse or other experimental animal models will ultimately lead to better understanding of the diseases, their cellular mechanisms, and the clinical relationship between FHM, EA-2, migraine, and other episodic neurological disorders such as epilepsy, and will provide rationales for the development of prophylactic therapy.

15

10

. .

Localization and identification of the mouse gene related to the neurological mouse mutations tottering, leaning and rolling.

The tottering (tg) mutation arose spontaneously in the

DBA inbred strain, and has been back-crossed into a C57BL/6J

(B6) inbred strain for at least 30 generations. The genome of
the tg mouse therefore is of B6 origin except for a small
region around the tg gene on chromosome 8. Interestingly, the
chromosome 8 region in mouse has synteny with the human

chromosome 19p13.1, in which the human calcium channel alphal
subunit has been identified. We therefore consider the tg
locus as a possible site of the mouse homologue of the human
calcium channel gene.

To determine the exact localization of the mouse homologue, PCR was carried out with primers based on human cDNA sequence selected from Figure 1 and mouse genomic DNA as template. In human, primers were known to be located in different flanking exons. PCR amplification on human DNA yielded a 1.5kb fragment.

Forward primer: 5'- caa cat cat gct ttc ctg cc-3'
Reversed primer: 5'- atg atg acg gcg aca aag ag-3'

∵.

10

15

20

25

30

35

20

Amplification on mouse DNA yielded a 750-bp fragment. The fragment mainly consists of intronic sequences. SSCP analysis revealed several polymorphisms in the different inbred strains (each strain a specific pattern). Analysis of amplified product of the tg/tg (homozygote) and tg/+ (heterozygote) mice demonstrated a DBA specific signal in the tg/tg mouse, and a heterozygous pattern of DBA and B6 inbred strains in the heterozygous tg/+ mouse.

These results show that the mouse homologue of the human calcium channel alphal subunit is located within the mouse tottering interval on chromosome 8.

In conclusion: the phenotypic characteristics of the tg mouse (tg/tg and tg/+) suggest involvement of ion-channels in the tg-etiology. The localization of the mouse homologue of the human calcium gene within the tottering interval show that a tottering phenotype in mouse is caused by a mutation in the mouse homologue of the CACNL1A4 gene. With various variants of the tottering mouse (the Jackson Laboratory, Bar Habor, ME, USA), such as the leaner and rolling varieties, such mutations in the mouse homologue of the CACNL1A4 gene can be found, clearly demonstrating that the gene is related to a variety of episodic neurologic disorders and using this genetic information one can engage in a variety of pathofysiological studies, as for example indicated below.

The tg mutation arose spontaneously in the DBA/2 inbred strain. tg/tg homozygotes are characterized by a wobbly gait affecting the hindquarters in particular, which begins at about 3 to 4 weeks of age, and by intermittent spontaneous seizures which resemble human epileptic absence seizures. The central nervous system of the mice appears normal by light microscopy. There is no discernible cerebellar hypoplasia. In fluorescent histochemistry studies tg/tg mice show a marked increase in number of noradrenergic fibers in the terminal fields innervated by locus ceruleus axons, the hippocampus, cerebellum, and dorsal lateral geniculate. Treatment of neonatal tg/tg mice with 6-hydroxydopamine, which selectively causes degeneration of distal noradrenergic axons from the

:.

25

30

35

21

locus ceruleus, almost completely abolishes the ataxic and seizure symptoms.

The leaner mutation of the tottering mouse arose spontaneously in the AKR/J strain. Homozygotes are recognized at 8 to 10 days of age by ataxia, stiffness, and retarded motor activity. Adults are characterized by instability of the trunk, and hypertonia of trunk and limb muscles. The cerebellum is reduced in size, particularly in the anterior region, in tg<la>/tg<la> mice, as is the case with a certaim number of FHM patients. There is loss of granule cells 10 beginning at 10 days of age and loss of Purkinje and Golgi cells beginning after 1 month. Cell loss later slows but continues throughout life. Granule and Purkinje cells are more severely affected than Golgi cells and the anterior folia more severely affected than other parts of the 15 cerebellum. The cerebellum of tg<la>/tg mice shows shrinkage and degenerative changes of the Purkinje cells. The loss in cerebellar volume in tg<la>/tg and in tg/tg mice is specific to the molecular layer, with no change in volume of the granule cell layer or the white matter layer. Allelism of 20 leaner with tottering was shown in complementation and linkage tests.

linkage tests.

A third variety of the tottering mouse is (tg<rol>) called the rolling Nagoya. Found among descendants of a cross

between the SIII and C57BL/6 strains, the tg<rol> mutation apparently occurred in the SIII strain. Homozygotes show poor motor coordination of hindlimbs that may lead to falling and rolling, and sometimes show stiffness of the hindlimbs and tail. No seizures have been observed. Symptoms are

recognizable at 10 to 14 days old. They appear a little earlier than those of tg/tg mice and are somewhat more severe. The cerebellum is grossly normal until 10 days of age, but after that grows more slowly than normal. The size of the anterior part of the central lobe of the cerebellum is reduced with reduction in the numbers of granule, basket, and stellate cells but normal numbers of Purkinje cells. There is

a reduced concentration of glutamate and an increasd

22

concentration of glycine and taurine in the cerebellum and decreased activity of tyrosine hydroxylase in the cerebellum and other areas.

23

Legends to figures

Figure 1

Nucleic acid sequences of 47 exons and flanking intron sequences containing the complete coding region of the invented gene and part of untranslated sequences.

Figure 2

Genetic map, cosmid contig and global exon distribution of
the invented gene om chromosome 19p13.1. The cosmid contog is
shown with EcoRI restriction sites, available via Lawrence
Livermore National Laboratory; exon positions are indicated
schematically, regardless of exon or intron sizes (Table 1).
D19S1150 is a highly polymorpmic intragenic (Ca)n-repeat.

15

Figure 3

Membrane topology of αl subunit of the P/Q-type Ca²+-channel. The location and amino acid substitutions are indicated for mutations that cause FHM or EA-2

20

Figure 4

The coding sequence of human cDNA of the invented gene with an open reading frame encoding 2261 amino acid residues.

- -

References

- 1. Browne, D.L., Gancher S.T, Nutt, J.G., Brunt, E.R., Smith E.A., Kramer P., and Litt M. (1994). Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat. Genet. 8:
- 136-140. 2. Diriong S., Lory P., Williams M.E., Ellis S.B., Harpold M.M., and Taviaux S. (1995). Chromosomal localization of the humangenesfor α lA, α lB, and α lE voltage-dependent Ca²⁺ channel subunits. *Genomics* 30: 605-609.
- 10. Headache Classification Committee (HCC) of the International Headache Society (1988). Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia 8: 19-28.
 - 4. Hogan, K., Powers, P.A., and Gregg, R.G. (1994). Cloning of the human ekeletal muscle alpha 1 subunit of the
- of the human skeletal muscle alpha 1 subunit of the dihydropyridine-sensitive L-type calcium channel (CACNL1A3).

 Genomics 24: 608-609.
 - 5. Joutel A., Bousser M-G., Biousse V., Labauge P., Chabriat H., Nibbio A., Maciazek J., Meyer B., Bach M-A.,
- Weissenbach J., Lathrop G.M., and Tournier-Lasserve E. (1993). A gene for familial hemiplegic migraine maps to chromosome 19. Nature Genet. 5: 40-45.
 - 6. Joutel A., Ducros A., Vahedi K., Labauge P., Delrieu O., Pinsard N., Mancini J., Ponsat G., Gaoftiere F., Gasant J.L.,
- Maziaceck J, Weissenbach J., Bousser M.G., and Tournier-Lasserve E. (1994). Genetic heterogeneity of familial hemiplegic migraine. Am. J. Hum. Genet. 55: 1166-1172.
 - 7. Hayward-Lester, A., Chilton, B.S., Underhill, P.A., Oefner, P.J., Doris, P.A. (1996). Quantification of specific
- nucleic acids, regulated RNA processing and genomic polymorphisms using reversed-phase HPLC.
 - In: F. Ferr (Ed.), Gene Quantification, Birkhuser Verlag, Basel, Switzerland.

: .

•

- 8. Huber, C.G., Oefner, P.J., Bonn, G.K. (1995) Rapid and accurate sizing of DNA fragments by ion-pair chromatography on alkylated nonporous poly(styrene-divinylbenzene) particles. *Anal. Chem.*, 67, 578-585.
- 9. Kramer P.L., Yue Q., Gancher S.T., Nutt J.G., Baloh R., Smith E., Browne D., Bussey K., Lovrien E., Nelson S, and Litt M. (1995). A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p. Am. J. Hum. Genet. 57: 182-185.
- 10 10. May A, Ophoff R.A., Terwindt G.M., Urban C., Van Eijk R., Haan J., Diener H.C., Lindhout D., Frants R.R., Sandkuiji L.A., and Ferrari M.D. (1995). Familial hemiplegic migraine locus on 19p13 is involved in the common forms of migraine with and without aura. Hum. Genet. 96: 604-608.
- 15 ll. Mori Y, Friedrich T., Kim M.S., Mikami A., Nakai J., Ruth P., Bosse E., Hofmann F., Flockerzi V., Furuichi T., Mikoshiba K. Imoto K., Tanabe T., and Numa S. (1991). Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350: 398-402.
- 20 12. Oefner, P.J., Underhill, P.A. (1995) Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am. J. Hum. Genet. 57 [Suppl.], A266. 13. Ophoff R.A., Van Eijk R., Sandkuijl L.A., Terwindt G.M., Grubben C.P.M., Haan J., Lindhout D., Ferrari M.D., and
- 25 Frants R.R. (1994). Genetic heterogeneity of familial hemiplegic migraine. *Genomics* 22: 21-26.
 - 14. Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K. (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction.
- 30 Genomics 5: 874-879.
 - 15. Ptacek L.J., George A.L., Griggs R.C., Tawil R., Kallen R.G., Barchi R.L., Robertson M., and Leppert M.F. (1991). Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67: 1021-1027.
- 16. Ptacek L.J., Tawil R., Griggs R.C., Engel A.G., Layzer R.B., Kwiecinski H., McManis P.G., Santiago L., Moore M., Fouad G., Bradley P., and Leppert M.F. (1994).

26

Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77: 863-868.

- 17. Ravnik-Glavac, M., Glavac D., and Dean, M. (1994). Sensitivity of single-strand conformation polymorphism and
- 5 heteroduplex method for mutation detection in the cystic fibrosis gene. Hum. Mol. Genet. 3: 801-807.
 - 18. Russell, M.B., Rasmussen B K., Thorvaldsen P., and Olesen J. (1995). Prevalence and sex-ratio of the subtypes of migraine. *Int. J Epidemiol*. **24**: 612-618.
- 10 19. Starr T.V.B., Prystay W., and Snutch T. (1991). Primary structure of a calcium channel that is highly expressed in the rat cerebellum. *Proc. Natl. Acad. Sci.* 88: 5621-5625.
 - 20. Soldatov N.M. (1994) Genomic structure of Human L-type Ca²⁺ channel. *Genomics* 22: 77-87.
- 15 21. Teh B.T., Silburn P., Lindblad K., Betz R., Boyle R., Schalling M., and Larsson C. (1995). Familial periodic cerebellar ataxia without myokymia maps to a 19-cM region on 19p13. Am. J. Hum. Genet. 56: 1443-1449.
 - 22. Terwindt G.M., Ophoff R.A., Haan J., Frants R.R., and
- Ferrari M.D. (1996). Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19. Cephalagia 16: 153-155.
 - 23. Von Brederlow, B., Hahn, A.F., Koopman, W.J., Ebers, G.C., and Bulman, D. (1995). Mapping the gene for
- acetozolamide responsive hereditary paroxysmal cerebellar ataxia to chromosome 19p. Hum. Mol. Genet. 2: 279-284.

30

24. Yamada Y., Masuda K., Li Q., Ihara Y, Kubota A., Miura T., Nakamura K., Fujii Y., Seino S., and Seino Y. (1995) The structures of the Human Calcium channel α 1 subunit (CACNL1A2) and β -subunit (CACNLB3) genes. *Genomics* 27: 312-319.

Exon/intron organization of the human invented gene and exon-specific primer pairs

Table 1

	Table 1	a exon	-specific [orimer pairs			Size
Exon	CDNA	Size	Domain	Cosmid(s)	Primer Forward	Primer Reversed	
ı	UTR - 568	: 500		25960 / 30151	tot cog cag tog tag oto ca ogo aaa gga tgt aca ago ag	ggt tgt aga gtg cca tgg tc att ccc aag cct cca ggg tag	320 370
	569 - 674	106	1S1	30151	cac ete caa cae eet tet tt	tot gtg coo tgo too act c	240
2	675 - 814	140	1 \$2. 1 \$3	30151	acg ctg acc ttg cct tct ct	caa cca aaa gcc tcg taa tc	230
3	815 - 906	92	183.184	28913	aaa acc cac cct ctg ttc tc	ttg tca ggg tcg gaa act ca	160
4	907 - 1059	153	155	28913 / 27415	cit ggt ggc ggg gtt t	ctg cct aat cct ccc aag ag	290
5	1060 - 1253	194		27415	too off occ fff tgt aga tg	gtg ggg ctg tgt tgt cct t	350
6	1254 - 1357	104	I S6	27415	gac aga gcc aca aga gaa cc	age aaa gag gag tga gtg gg	250
7	ĺ	116		34077 / 27415	ata ctc tgg cft ftc tat gc	gca tga ctc tct ttg tac tc	230
8	1358 - 1473	57		34077	gca gag aat ggg ggt gg	ctg agg tgg gtt tag agc ag	180
9	1474 - 1530	93		34077	ggg taa egt cit tit ete tig e	atg tot oft ggg oga tag gt	200
10	1531 - 1623	210	II S1	16894 / 32236	att tot tot gaa gga aca gc	gga ggg atc agg gag ttg gc	310
11	1624 - 1833	113	II S2, II S3	16894	caa gcc taa cct cct ctc tg	Ica tto cag gca aga gct g	200
12	1834 - 1946	105	11 S3, II S4	16894	an tgg agg gag gag ttt gg	tea ctt tee caa ctt tet gg	310
13	1947 - 2051	140	II S4. II S5	16894	cag aaa gtt ggg aaa gta gc	ng aat too tgt gaa gga c	250
14	2052 - 2191		11 34. 11 33	16894	cit gga gat gag ata ctg agc	cag gca ctt tca tct gtg ac	200
15.	2192 - 2264	73	II S6	16894	tee aca get gea tet eca ag	acc etc cet tga gee eet	270
16	2265 · 2382	118		16894	cag tgg ttg ctt ttc ctg ac	ttg cca gag aaa cat tot cc	130
17	2383 - 2450	68	II S6	16894	tga aca aag att cca cgt gc	ttc agg agc cag ggt agc atc	170
18	2451 - 2557 2558 - 3367	810		16894	tag caa tgo tot aag too tg cgc agg aga acc gca aca a gc agc agg gag agc cgc agc	tgt ttc ctg agg aag tcc tc gcg atg acg tcg atg ctc tac cgt cat tct gcg gat tc	320 450 300
20	3368 - 3831	464		16894	ggt tet tit tea ite act tge gag aat age eft ate gie ac	itt cct ggc agt cit agc tg cag tga tgt gag agc aga g	430 200
21	3832 - 3973	142		16894 / 34275	:gg gaa att gtg gag gga gc	tga ctt ccg cca ccc tgg tg	250
22	3974 - 4103	1	III S1	16894 / 34275	age etg tgg tet gag tgg ac	tag gaa ggg gtg tgc tct gtg	210
23	4104 - 4163		III S2. III S3	16894 / 34275	atc cac tgc tct ctt gct tt	gtg gtt ctc act tat aat ctg c	170
1	4164 - 4270			34275	igg cet cat tgg ett cee tge	aag agg aaa ccc ttg cga ag	250
24	4271 - 4370			34275	cta ccc aac ctg acc tct gc	aca tga taa ccc tga cag tc	220
25	4371 - 453	1 _		34275	cic atg ctc tet gtc aac te	igg no caa igg gaa igt go	250
25		1	1	34275	cig cit ccc aag cag tot ag	tee tgg ata gat tte eag te	300
27	4532 - 466	1	1	34275		nt ccc tgc ccc an cct ng c	280
23	4670 - 487	Ì	_	3427		m atc agg tag agg cag g	250
23	4872 - 503	1	04 114 50			tga ccc tgc tac tcc tgc ttc	180
30	5037 - 514	17 11	1 1 14 31.14 32				

SUBSTITUTE SHEET (RULE 26)

						1	
31	5148 - 5231	84	IV S3	15496	act gtg cct cta aca tgc ac	aag tgc tgg ctc aag cag	250
32	5232 - 5348	117	IV S4	15496	tet gtg agt ggt gac agc te	gte ace tgt ctt ctc age	240
33	5349 - 5414	66	IV S5	15496	tgg aag gac tot ggc acg tg	gga ggc tot ggg aac ott ag	250
34	5415 - 5530	116		15496	aga age cae tgg agg aat gge	att atc aga gca ggt ccc ctt c	250
35	5531 - 5681	151	IV S6	15496	tcc gag tct ctg att tct cc	aga egg ecc tea eag tgt e	210
36	5682 - 5809	128	IV S6	15496	nc an ccc tcg gtc tct gc	cig act gaa cct gig aga c	350
37	5810 - 5906	97		15496	tgt gaa ccc att gcc tgc a	tgg gaa tga ctg cgc ttg c	200
38	5907 - 6012	106		15496	atg cct ggg aat gac tgc	tgt cac gcc tgt ctg tgc	200
39	6013 - 6120	108		15496	tga cac cca ggc agg cag	tel gle etg glg gat igg atc	200
40	6121 - 6221	101		15496	ttg gtg agc tca ccg tgt	ttc ccg tgg tga cat gca agc	200
41	6222 - 6331	110		15496	gtc cac aca ctg ctc tct gc	aca ete cae ete cet gge	320
42	6332 - 6470	139		15496	gcc agg gag gtg gag tgt	ggt tee tte eac ege aac	550
43	6471 - 6584	114	i	15496 / 30762	caa ctc ccc aat ggc tc	cet ace eag tge aga gtg agg	350
44	6585 - 6620	36		15496 / 30762	tot gtg tgc acc atc cca tg	aag gat tgg gct cca tgg ag	200
45 -	6621 - 6807	187		15496 / 30762	gtt ggt gct agc tgc tga c	ctt tet tet tee tta gtg te	330
46	6808 - 7061	254		15496 / 30762	gtg tgc tgt ctg acc ctc ac	age etg ggg tea ett gea ge	320
47	7062 - UTR	≥ 350		/ 30762	cct ttg ttt caa ttt tcg tgt ag	tgg ggc ctg ggt acc tcc ga	280

Note. Sizes of exons and PCR products are given in basepairs; domains of protein are indicated according to Stea et al., 1995.

Table 2 Polymorphisms in coding sequence of the invented gene

Location Nu		icleotide cha	nge	Frequency	Consequence	
exon 4	nt 854	G - A	Thr ₁₉₃	0.02	-	
exon 6	nt 1151	A - G	Glu ₂₉₂	0.07	-	
exon 8	nt 1457	G - A	Glu ₃₉₄	0.38	-	
exon 11	nt 1635	G - A	Ala ₄₅₄	0.02	Ala ₄₅₄ - Thr (A454T)	
exon 16	nt 2369	G - A	Three	0.12	-	
exon 19	nt 3029	G - A	Glugie	0.07	-	
exon 23	nt 4142	T - C	Phe ₁₂₈₉	0.22	-	
exon 46	nt 6938	T - C	His ₂₂₂ ,	0.46	-	
exon 47	nt 7213	(CAG),	3'UTR	#	-	

Note. Frequency as observed in 100 control chromosomes: = Seven alleles of (CAG), were observed in the range between n=4 to n=14, with a neterozygosity value of 0.75.

Table 3 Mutations of the invented gene in families with FHM or EA-2

Disease	isease Family Location		Domain	Domain Nucleotide change		Consequence	
FHM:	It-II	exon 4	1 S4	nt 850	G - A	Arg ₁₉₂ - Gln (gain of Sfc! site)	R1920
FHM	US-P	exon 16	P-segmen:	nt 2272	C - T	Thr ₆₆₆ - Met	T666M
FHM	UK-B	exon 17	II S6	nt 2416	T - C	Val ₁₁₄ - Ala (gain of Bovi site)	V714A
FHM	NL-A/US-C	exon 36	IV S6	nt 5706	A - C	lle.g Leu (gain of Mnll site)	11811L
EA-2	CAN-191	exon 22	III S1	nt 4073	aeletion C	framesnift (loss of NIaIV site)	STOP ₁₂₉₄
EA-2	CAN-26	intron 24	spiice site	: nt 4270-1	G - A	AC/gt - AC/at (loss of BsaAl site)	aberrant splicing

Table 4. Parental transmission of migraine for 36 unrelated Dutch families.

parents	N	offspring	N	affected	ratio
				N(%)	
heathy father x migraine	51	daughters	72	48 (66.7%)	2.3:1
mother		sons	72	21 (29.2%)	
migraine father x healthy		daughters	26	17 (65.4%)	2.5:1
mother	18	sons	15	4 (26.7%)	

^{*} ratio of proportion affected sons/proportion affected daughters

20

30

32

CLAIMS

- 1. An isolated and/or recombinant nucleic acid encoding a Ca^{2+} -channel $\alpha 1$ subunit related to (familial hemiplegic) migraine and/or episodic ataxia type-2 derived from, related to or associated with a gene which in humans is present on chromosome 19p13.1-19p13.2 or a specific fragment or homolog or derivative thereof.
 - 2. A nucleic acid according to claim 1 which is a cDNA molecule.
- 3. A cDNA molecule according to claim 2 comprising a 10. 6800 bp coding region.
 - 4. A nucleic acid according to claim 1, 2 or 3 which is of human origin.
 - 5. A nucleic acid according to claim 4 and showing at least 70% homology with the nucleic acid sequence as listed in figure 1.
 - 6. A nucleic acid according to any of claims 1-5 and showing at least 90% homology with the nucleic acid sequence as listed in figure 1.
 - 7. A nucleic acid according to any of claims 1-6 and showing a mutation at codon 192 resulting in the replacement of arginine by glutamine.
 - 8. A nucleic acid according to any of claims 1-7 and showing a mutation at codon 666 resulting in the replacement of threonine by methionine.
- 9. A nucleic acid according to any of claims 1-8 and showing a mutation at codon 714 resulting in the replacement of valine by alanine.
 - 10. A nucleic acid according to any of claims 1-9 and showing a mutation at codon 1811 resulting in the replacement of isoleucine by leucine.
 - 11. A nucleic acid according to any of claims 1-10 and comprising a CA-repeat sequence as shown in figure 2.

30

- 12. A nucleic acid according to any of claims 1-11 and comprising a (CAG)n repeat sequence as shown in figure 2.
- 13. A nucleic acid according to any of claims 1-12 and comprising a polymorphism in the coding sequence.
- 5 14. A nucleic acid according to claim 13 and comprising a polymorphism in the coding sequence as shown in table 2.
 - 15. A nucleic acid according to claim 13 or 14 and comprising a mutation at codon 454 resulting in a replacement of alanine by threonine.
- 10 16. A nucleic acid according to any of claims 1-15 and comprising a deletion.
 - 17. A nucleic acid according to any of claims 1-16 and comprising a frameshift at codon 1266.
 - 18. A nucleic acid according to any of claims 1-17 and comprising a mutation resulting in abberant splicing.
 - 19. A nucleic acid according to any of claims 1-18 and comprising a mutation resulting in abberant splicing of intron 28.
- 20. An isolated and/or recombinant nucleic acid encoding a

 20 CA²⁺ channel subunit or a functional fragment thereof related
 to (familial hemiplegic) migraine and/or episodic ataxia type

 2.
 - 21. An isolated and/or recombinant nucleic acid encoding a $CA^{2^{\star}}$ channel $\beta 2$ subunit related to (familial hemiplegic)
- migraine and/or episodic ataxia type 2, derived from, related to or associated with a gene which in humans is present on chromosome 10p12 or a specific fragment thereof.
 - 22. A method for localising or identifying a gene using a nucleic acid molecule or a fragment of fragments thereof according to any of claims 1-21.
 - 23. A method according to claim 22 wherein the gene is related to episodic neurological disorders.
 - 24. A method according to claim 22 or 23 wherein the gene is related to migraine.
- 35 25. A method according to claim 22, 23 or 24 wherein the gene is related to FHM and/or EA-2 and/or autosomal dominant cerebellar ataxia.

34

- 26. A method distinguishing between alleles of a gene using a nucleic acid molecule or a fragment of fragments thereof according to any of claims 1-21.
- 27. A method according to any of claims 23-26 in which the gene is of human origin.
 - 28. A method according to any of claims 23-27 which comprises selecting a cell or an animal.

10

15

- 29. A recombinant expression vector comprising a nucleic acid molecule or a fragment of fragments thereof according to any of claims 1-21.
- 30. A cell or an animal comprising a vector according to claim 29.
- 31. A cell or an animal comprising a nucleic acid molecule or a fragment of fragments thereof according to any of claims 1-21.
 - 32. A cell or an animal selected by a method according to claim 28.
 - 33. A cell or an animal comprising a genome in which nucleic acid sequences corresponding to nucleic acid molecules
- according to any of claims 1-21 have been modified.

 34. Use of a cell or an animal according to any of claim

 30-33 to test or develop specific medication for the

 treatment of FHM, EA-2, SCA6, migraine or other neurological
 disorders associated with cation channel dysfunction.
- 25 35. A protein or peptide comprising an amino acid sequence encoded by a nucleic acid molecule, or a fragment or fragments thereof, according to any of claims 1-21.

 36. A natural or synthetic antibody directed against a protein or peptide according to claim 35.
- 30 37. Use of a protein or peptide or antibody according to claim 35 or 36 to detect or diagnose FHM, EA-2, SCA6, migraine or other neurological disorders associated with cation channel dysfunction.

```
Figure 1
```

Submission no : 1
exon 1 : <..672
start codon : 381..383
intron 1 : 673.
Remarks : no consensus splice site intron 1

rtttttacq	ttctctttt	tttcgagtgg	tgactggatg	ctgattcttc	50
ctcgtatttt	tgctgcttct	ctctccctcc	cctccttccc	gggcccgggc	100
ccgccccgca		gcccctcctt	ctccggggtc	agccaggaag	150
atgtcccgag	ctgctatccc	cggctcggcc	cgggcagccg	ccttctgagc	200
ccccgacccg	agcgccgagc	cgccgcgcga	tgggctgggc	cgtggagcgt	250
ctccgcagtc	gtagctccag	ccgccgcgct	cccagccccg	gcagcctcag	300
catcagcggc	ggcggcggcg	gcggcggcgt	cttccgcatc	gttcgccgca	350
gcgtaaccgg	agccctttgc	tctttgcaga	ATGGCCCGCT	TCGGAGACGA	400
GATGCCGGCC	CGCTACGGGG	GAGGAGGCTC	CGGGGCAGCC	GCCGGGGTGG	450
TCGTGGGCAG	CGGAGGCGGG	CGAGGAGCCG	GGGGCAGCCG	GCAGGGCGGG	500
CAGCCCGGGG	CGCAAAGGAT	GTACAAGCAG	TCAATGGCGC	AGAGAGCGCG	550
GACCATGGCA	CTCTACAACC	CCATCCCCGT	CCGACAGAAC	TGCCTCACGG	600
TTAACCGGTC	TCTCTTCCTC	TTCAGCGAAG	ACAACGTGGT	GAGAAAATAC	650
GCCAAAAGAT	CACCGAATGG	CCatatcctt	ttgcccgaac	cccagcagca	700
gctgcgcctc	cccctcctcc	ctccgcctcc	cctcttccag	gctgggagag	750
agacccgggg	gttgatggga	ggtggggagg	aggggggtct	tccaggggct	800
gggagagggg	gcaccgggag	gagtgtgaaa	gaatctctcc	accccgagct	850
gggttgagct	accctggagg	cttgggaatg	ggtttttcgg	gggctggggg	900
ccggccagcc	ggagagtgga	tccttcccaa	ggaccgactc	tagaatgaga	950
tct					953

Submission no : 2
Intron 1 : <..88
Exon 2 : 89..194
Intron 2 : 195..>
Remarks : No consensus splice site intron 1

gatctttycc actggggtc	a gtggggggg	gtgcacctcc	aacacccttc	50
ttttctttga acaagattt	t toottaatto	cccaatacTC	CCTTTGAATA	100
TATGATTTTA GCCACCATC	A TAGCGAATTG	CATCGTCCTC	GCACTGGAGC	150
AGCATCTGCC TGATGATGA	C AAGACCCCGA	TGTCTGAACG	GCTGgtgagt	200
gatgtctttt ctcagggtc	t tctccttggc	tttagcagga	cattaatttt	250
tgggggggtg gagcagggc				300
qccaqatcat gggaagcct				350
gtctcgctct gtcacccag				400
tgcagcctcc acctcctgg				450
agtagcaggg actaacagg				500
tatcttttt tgtaagaag				527

רוות אוות בשות בשוות ביידי ושווו ביידי

. //

Submission no : 3 Intron 2 : <..57 Exon 3 : 58..197 Intron 3 : 198..>

astattata	acatetece	agcccaagac	gctgaccttg	ccttctctcc	50
cttccagGAT	GACACAGAAC	CATACTTCAT	TGGAATTTTT	TGTTTCGAGG	100
CTCCAATTAA	AATCATTGCC	CTTGGGTTTG	CCTTCCACAA	AGGCTCCTAC	150
TTCACCAATC	GCTGGAATGT	CATGGACTTT	GTGGTGGTGC	TAACGGGgta	200
antageaeat	gctatacgct	ttggatttaa	ctagctgaag	gattacgagg	250
crtttaatta	atataatcca	ggcaggctc	aggaaggctg	agcccttgtg	300
ttctccctcc	ccttottato	cacctacctc	ctttctgcca	acaccccacc	350
tocatototo	agctgtatat	tacagcagat	gctttctgtt	acaattaaaa	400
taataqctca	ttattgttgg	ctgcttccag	agtgctttat	g	441

Submission no : 4
Intron 3 : <..142
Exon 4 : 143..234
Intron 5 : 235..>

aaaactgagg	ccagtggtgt	cgagtcacct	gcctgtggtc	acccaaccaa	50
tacaggacag	cttggaatcc	caagcacccc	caccetacta	tctgaccccc	100
aaaacccacc	ctctattctc	cattctqqct	tctttctttc	agCATCTTGG	150
CGACAGTTGG	GACGGAGTTT	GACCTACGGA	CGCTGAGGGC	AGTTCGAGTG	200
CTGCGGCCGC	TCAAGCTGGT	GTCTGGAATC	CCAAgtgcgt	gagtttccga	250
ccctgacaa			, , ,		259

Submission no : 5
Intron 4 : <..118
Exon 5 : 119..271
Intron 5 : 272..>

gtcttggtgg ctctctgtgt GCGATGATCC TATTTTTGCA CCTGCTTTGA	cctcaggaac cggggtttg cccccagGT CTTTGCTGCA ATCATAGGGT AGAGGGGACA cttcagggac ctggcagctg	ggggtacttg TTACAAGTCG GATCGGCCTC TAGAATTTTA Ggtaggtcca aagctcttgg	TCCTGAAGTC CTCCTATTTT TATGGGAAAA cggagcatga gaggattagg	GATCATGAAG TTGCAATCCT TTTCATACCA tgcatctttc caggggtgtg	50 100 150 200 250 300 350 399
attattata	ctggcagctg	ggaggaccgt	Ctccttcaga	gageactec	

Submission no : 6
Intron 5 : <..22
Exon 6 : 23..216
Intron 6 : 217..>

Submission no : 7
Intron 6 : <..183
Exon 7 : 184..287
Intron 7 : 288..>

tttcttcaga	aaacggttcc	ttcctccatt	tccccctctg	ggatçccaga	50
gcccagaac	tccacaagcc	aagaacattt	aagacagagc	cacaagagaa	100
ccgagettee	ccttccctca	cciqtcaqqt	tctatctgag	tcccagtcaa	150
ctctcacctg	ctttccctcc	tcacacccta	cagAGCAACG	ATGCCTCAGG	. 200
GAACACTTGG	AACTGGTTGT	ACTTCATCCC	CCTCATCATC	ATCGGCTCCT	250
	GAACCTTGTG				300
	ccatcccact				350
	aagctttgtt				387

Submission no : 8 Intron 7 : <..190 Exon 8 : 191..30 191..306 Exon 8 307..> Intron 8

412 Sequence

intron 7 contains CA-repeat (D19S1150) Remark

cccagtettt	teccagaagt	cctgactcct	cctgttgaaa	actcctgacc	50
tocaggette	totgaatooo	caaacacaca	cacacacaaa	cacacacaca	100
cacacacaca	cacacacaca	caaacacaca	cacaaacgtt	tcctaacatt	150
ttrasaacan	ccatactctq	octtttctat	gcttctccag	GGAGTTTGCC	200
AAAGAAAGGG	AACGGGTGGA	GAACCGGCGG	GCTTTTCTGA	AGCTGAGGCG	250
GCAACAACAG	ATTGAACGTG	AGCTCAATGG	GTACATGGAA	TGGATCTCAA	300
AAGCAGataa	ggccctttca	testagages	cagggatgga	gatcccaggc	350
cacagagtac	aaagagagtc	atgcagtttg	gagaaggcta	agctgggagg	400
gttatgatgg					412

Submission no : 9
Intron 8 : <..513
Exon 9 : 514..570
Intron 9 : 571..>

gagtaggaag	ttagaggcag	ggtggtcagg	gaaggcttct	ctaaggaagt	50
	cagagagacc				100
	aggggcattc				150
	gtatttgaga				. 200
gagtgagagg	tggggacagc	tggaggagag	gaagacagga	aggtgatgga	250
gatcagatca	agcaggggct	tataggctgt	ggtgtggaca	ttggttttta	300
ttttgcgcga	ggtggggaga	atgttggcta	ttgctactgt	tgcggaggtg	350
gggcttgaag	tcacaaacca	cccagcagca	tgttttttgg	tcggttgagc	400
	agtcagcaga				450
	ggagaactca				500
tcttcctctt	cagAAGAGGT	GATCCTCGCC	GAGGATGAAA	CTGACGGGGA	550
GCAGAGGCAT	CCCTTTGATG	gtaactgctc	taaacccacc	tcaggggtgg	600
gtcccagggg	a				611

Submission no : 10
Intron 9 : <..86
Exon 10 : 87..179
Intron 10 : 179..>

taacgtcttt ttctcttgcc atgtttccat tgttagGAGC TCTGCGGAGA ACCACCATAA AGAAAAGCAA GACAGATTTG CTCAACCCCG AAGAGGCTGA GGATCAGCTG GCTGATATAG CCTCTGTGGG tgagtccctt cctctgccac ctatcagttg ttcatcacct atcgcccaag agacatggtg gggtgggggc agagggcttg caaaccgtgc tgcctggatt tgggtctcag ctccaccctt tcccacctgt gcgtgtgtcc tgggcagatt acatcattat gggaataaca tccgtgccta gcttctcatt attttgtggg aattcaacta aatgatcccc atgaagcatg gcaaaccagc acctggcagg gacgaagctc ccagtcaagt tggtgaatgt ttgtgactca ttcgggaagt atcatggggg acctgcttat attaggtgct tggttgcaaa caaacaaggc agtcacgagg ctgagctggg aggatcactt gagcctgga agtggaggct gcaataagcc attattgtgt tactgcactc cagcctggca cagaaaaaaa aaaaaaanac aaactgagcc	200 250 300 350 400 450 500 650
tactgcacto cagootggca cagaaaaaaa aaaaaaanac aaactgagco agcaca	656

Submission no : 11
Intron 10 : <..450
Exon 11 : 451..660
Intron 11 : 661..>

				atccacatct	50
				tgcctgcccc	100
	aatggaggct				150
	agatgtggct				200
gcaacagaga	actatcagcc	ttcccatcaa	ttggttactt	ctaattctgt	250
	gggcactgtc				300
	catgatggtt				350
aatggatccc	ctggctaaaa	tctgtgcttg	ggctgcacat	tggttaattt	400
	aacagcctga				450
	CGCCCGAGCC				500
	ACAAAAAGGA				550
	CAGGCCTTCT				600
	TGTTGCTATT				650
GACTTCCTTT	gtgagtatca	cccagcccca	cccctgccaa	ctccctgatc	700
cctccctcac	acccttttc	cacttctctt	tctctggtag	tatgtgtatc	750
ttctttggtc	ctcattgaat	ctgccctt			778

Submission no : 12
Intron 11 : <..323
Exon 12 : 324..436
Intron 12 : 437..>

gatcacttgt	ggccaggagt	tcaagancag	ccagggcaac	atagtgagga	50
ccccatctc	cacattaaaa	attttaaaaa	gaaaaaagat	aagtcagaag	100
ttagatataa	tgacacatgc	ctgtagttct	agcatgttgg	aggccaaatc	150
agggaaactg	titgaggcca	ggagtttgaa	accagcctaa	cagcatagca	. 200
agacctcatc	tctacaaaaa	ataaaaaqtt	taaaaatgat	aataaaagga	250
aagtcagagc	cacctggaac	ccctaccctc	agcaagccta	acctcctctc	300
tatttcctcc	ttctcccttc	tagACTATGC	AGAATTCATT	TTCTTAGGAC	350
TCTTTATGTC	CGAAATGTTT	ATAAAAATGT	ACGGGCTTGG	GACGCGGCCT	400
	CTTCCTTCAA				450
	tcatttctcc				500
cacattaaag	ggagaaaggt	aaagtcaccc	ctgaatatga	gagactcaga	550
tagatacaga	aggaatgaga	aaacaatcca	aacactggca	aggatacagt	600
	ccctcaacca				626

Submission no : 13 Intron 12 : <..545 Exon 13 : 546..658 Intron 13 : 659..821 Exon 14 : 822..953 Intron 14 : 954..>

gatcngncat	gcacaccagc	ctgggtgata	agagcaagac	tcctctcaaa	50
ataaatgaat	aaataaaaat	aaataaataa	ataagaggcc	gggtgcagtg	100
gctcaatgct	ttggaaagtg	gaggccaaca	gttggagaga	ccaaagcagg	150
aggatggctt	cagcccagaa	gtttgaggcc	mgcctgggca	atactagcga	200
gacactatct	ctataaaaat	gttttaaaat	tagccagatg	tggtggggca	250
cacctgtaat	cccagctact	caagaggctg	aggtgggagg	atcacttaag	300
cccaggagga	cagtgctgca	gtgagctatg	attgcgccca	ctgcactcca	350
gcctgggtga	cacagtgaga	cccggtctct	atagataaat	gaatggatga	400
atgagggggt	caaggatcct	cacccggctt	ccatttggag	ggaggagttt	450
ggttgagttc	ttgcaaggtt	ggtacctagg	aaatgcttgc	cagttctgga	500
gcccagacac	tgtccctgga	catgagacca	ggttctctgc	cctagGTTAT	550
CATTGGGAGC	ATCTTCGAGG	TCATCTGGGC	TGTCATAAAA	CCTGGCACAT	600
CCTTTGGAAT	CAGCGTGTTA	CGAGCCCTCA	GGTTATTGCG	TATTTTCAAA	650
GTCACAAAgt	aagtctttgg	ggttcctgga	catttgtaca	gggggtgggg	700
atgggggaca	tggtggggcc	gcctccagaa	agttgggaaa	gtgagcctcg	750
tgtttcgagg	gctgactccg	gggcctgcct	wccccgcctg	gcctgagtcc	800
tcgcctggsc	tctgtcggca	gGTACTGGGC	ATCTCTCAGA	AACCTGGTCG	850
TCTCTCTCCT	CAACTCCATG	AAGTCCATCA	TCAGCCTGTT	GTTTCTCCTT	900
TTCCTGTTCA	TTGTCGTCTT	CGCCCTTTTG	GGAATGCAAC	TCTTCGGCGG	950
CCAgtaagtc	cttcacagga	attcaa			976

Submission no : 14
Intron 14 : <..201
Exon 15 : 202..274
Intron 15 : 274..>

ccctccacqt	gcaggctgcc	ttcctcgtag	cccagacacc	catttgcggt	50
cacccaaatq	ggcagggccc	tgggtaccac	tcagggtttc	ctggggacag	100
agatgatgga	aacgttcgtt	tccttggaga	tgagatactg	agccacaccc	150
	ccgggtgggg				200
GGTTTÄATTT	CGATGAAGGG	ACTCCTCCCA	CCAACTTCGA	TACTTTTCCA	250
	TGACGGTGTT				300
	tcagtgtcac				350
	actéctectt				400
	tatggttatc				450
	tgtčáttgga				500
	tcccagcact				550
	ttgggåagcc				600
	cctggccaan				650
	cgggcgtggt				700
	caagaattgc			ttgcagtgag	750
	gccactgcac			gagactccat	800
	caaaagaaaa				850
	aggccaggag				900
	gcaaaaaaat				950
	ágctactagg				1000
	ggctgcagta				1050
	gcaaagccct				1100
ctcacagate					1110
_					

//		
Submission no	:	15
Intron 15	:	<524
Exon 16	:	525642
Intron 16	:	643795
Exon 17	:	796863
Intron 17	:	864.>

gatcctccca	ccttggcctc	ccaaagtgct	gggattacag	gcatgagcca	50
tggcatgcgg	tctcttcctg	ttcttataag	ggcactaata	ccatcatgaa	100
gtcccccatg	acctcatcta	accctagtta	cctcttaaag	gccccatctc	150
caaataccat	cccatcatag	gttagggctt	caactcatga	atttggaggc	200
gggcacaatt	tagtccataa	caaatcccct	taatcacatc	aagtaagaca	250
gagttacagg	agggtctgtg	actcctccag	ggtcccattt	tcctagaagc	300
caggctaaga	gccccacgac	gcaggaacgg	ccctttctac	tcgcaaacaa	350
agagaaaagc	caaggagaag	ccaacacgga	gtctggctct	gcaaaccggg	400
caggattgtt	aaagacctcc	tgggctcggg	gatggggtgg	gcggattccg	450
gctccacagc	tgcatctcca	aggggcccgt	ggctgagagg	ggggttggct	500
gtgtgtttct	tcctcccctt	tcagATCCTG	ACGGGCGAAG	ACTGGAACGA	550
GGTCATGTAC	GACGGGATCA	AGTCTCAGGG	GGGCGTGCAG	GGCGGCATGG	600
TGTTCTCCAT	CTATTTCATT	GTACTGACGC	TCTTTGGGAA	CTgtatcctt	650
catggagaga	gagaagggga	caggcctgga	cctctggcag	aggagaggtt	700
gcaggggctc	aagggagggt	actgagagac	ccagataccc	agggcccaag	750
tggtgtccca	ccagtggttg	cttttcctga	ctcagacatt	tgcagACACC	800
CTCCTGAATG	TGTTCTTGGC	CATCGCTGTG	GACAATCTGG	CCAACGCCCA	850
GGAGCTCACC	AAGgtggagg	cggtgggaga	atgtttctct	ggcaaagtta	900
ccacctgccc	atggcagatc	aagcactttt	ttggattaac	tgagccacag	950
gaaataacat	tttcaaatag	atkaaaaaga	tc		982

PCT/NL97/00538 WO 98/13490

11

Submission no : 16
Intron 17 : <..119
Exon 18 : 120..226
Intron 18 : 227..>

cottggttot gattggtoga aatatttoaa atgttgcccc tggtcagcaa	50
cagggtcaga agtgagtccc caaggcctag ttcatgtttt gtgaacaaag	100
attocacgtg cottttcagG ACGAGCAAGA GGAAGAAGAA GCAGCGAACC	150
attocacgtg cottiticage Accade and Board and Constitution	200
AGAAACTTGC CCTACAGAAA GCCAAGGAGG TGGCAGAAGT GAGTCCTCTG	250
TCCGCGGCCA ACATGTCTAT AGCTGTgtaa gtcccctaat ccctgggatg	
ctancetgge teetgaacgt gteegaceae tateeaggea cagatttggg	300
aagcagtggg ggtg	314

Submission no : 17
Intron 18 : <..209
Exon 19 : 210..1019
Intron 19 : 1020..>

gcccctagcc	aggtgggagc	catggagggt	tcttgagcag	aggaggctgg	50
			cattcaggtg		100
ggtggagagc	aggagtggga	ggctgagatg	tgggttggtt	cgcctgggtc	150
atccatccaa	gctacagtgc	ctagcaatgc	tctaagctcc	tgtgaccatg	200
			AAAGCCAGCC		250
GGGAGCAGCG	GACCAGTGAG	ATGCGAAAGC	AGAACTTGCT	GGCCAGCCGG	300
GAGGCCCTGT	ATAACGAAAT	GGACCCGGAC	GAGCGCTGGA	AGGCTGCCTA	350
CACGCGGCAC	CTGCGGCCAG	ACATGAAGAC	GCACTTGGAC	CGGCCGCTGG	400
TGGTGGACCC	GCAGGAGAAC	CGCAACAACA	ACACCAACAA	GAGCCGGGCG	450
GCCGAGCCCA	CCGTGGACCA	GCGCCTCGGC	CAGCAGCGCG	CCGAGGACTT	500
CCTCAGGAAA	CAGGCCCGCT	ACCACGATCG	GGCCCGGGAC	CCCAGCGGCT	550
CGGCGGGCCT	GGACGCACGG	AGGCCCTGGG	CGGGAAGCCA	GGAGGCCGAG	600
CTGAGCCGGG	AGGACCCCTA	CGGCCGCGAG	TCGGACCACC	ACGCCCGGGA	650
GGGCAGCCTG	GAGCAACCCG	GGTTCTGGGA	GGGCGAGGCC	GAGCGAGGCA	700
AGGCCGGGGA	CCCCCACCGG	AGGCACGTGC	ACCGGCAGGG	GGGCAGCAGG	750
GAGAGCCGCA	GCGGGTCCCC	GCGCACGGGC	GCGGACGGGG	AGCATCGACG	800
TCATCGCGCG	CACCGCAGGC	CCGGGGAGGA	GGGTCCGGAG	GACAAGGCGG	850
AGCGGAGGGC	GCGGCACCGC	GAGGGCAGCC	GGCCGGCCCG	GGGCGGCGAG	900
GGCGAGGGCG	AGGGTCCCGA	CGGGGGCGAG	CGCAGGAGAA	GGCACCGGCA	950
TGGCGCTCCA	GCCACGTACG	AGGGGGACGC	GCGGAGGGAG	GACAAGGAGC	1000
GGAGGCATCG	GAGGAGGAAg	taagtggagg	tgacctcgaa	tccgcagaat	1050
gacggtaaca	ttaataatac	aacagccaaa	gtagcacgtg	ctgtgtattt	1100
ottataaaat	ata				1113

Submission no : 18
Intron 19 : <..67
Exon 20 : 68..531
Intron 20 : 532..>

gtcctgaaac	tttgcctttt	aatcctaaat	cattgttggt	tctttttcat	50
tcacttgcct	tcctcagAGA	GAACCAGGGC	TCCGGGGTCC	CTGTGTCGGG	100
CCCCAACCTG	TCAACCACCC	GGCCAATCCA	GCAGGACCTG	GGCCGCCAAG	150
ACCCACCCCT	GGCAGAGGAT	ATTGACAACA	TGAAGAACAA	CAAGCTGGCC	200
ACCGCGGAGT	CGGCCGCTCC	CCACGGCAGC	CTTGGCCACG	CCGGCCTGCC	250
CCAGAGCCCA	GCCAAGATGG	GAAACAGCAC	CGACCCCGGC	CCCATGCTGG	300
CCATCCCTGC	CATGGCCACC	AACCCCCAGA	ACGCCGCCAG	CCGCCGGACG	350
CCCAACAACC	CGGGGAACCC	ATCCAATCCC	GGCCCCCCA	AGACCCCCGA	400
GAATAGCCTT	ATCGTCACCA	ACCCCAGCGG	CACCCAGACC	AATTCAGCTA	450
AGACTGCCAG	GAAACCCGAC	CACACCACAG	TGGACATCCC	CCCAGCCTGC	500
CCACCCCCC	TCAACCACAC	CGTCGTACAA	Ggtgagaccc	tctgctctca	550
	caggggacct			-	590

WO 98/13490 19/48 PCT/NL97/00538

11

Submission no : 19
Intron 20 : <..75
Exon 21 : 76..217
Intron 21 : 218..>

ggagtacacc gaggagtto	c cagagacttg	tgggaaattg	tggagggagc	50
cctgtgttgg ttcttgtcd				100
ACTGCCAAAA AAAGAGGAA				150 ⁻
GTGGGGAAGA CGGCCCTAA	G CCAATGCCTC	CCTATAGCTC	CATGTTCATC	200
CTGTCCACGA CCAACCCgt	g agtatggccc	ccgagcagag	ggcagggggg	250
gctgggtctc ccaccaggg	t ggcggaannn	nnnnnnnnn	nnnnnnctc	300
ccaccagggt ggcggaagt				340

Submission no : 20 Intron 21 : <..97 Exon 22 : 98..227 Intron 22 : 228..>

gtggtaggta	acatgagatt	atggaagaaa	agggtttgtg	50
				100
TGCCATTACA	TCCTGAACCT	GCGCTACTTT	GAGATGTGCA	150
				200
ACGCACCTCG	GAACAACgtg	agtcccacag	agcacacccc	250
ggctgctctg	cctcaggcca	ctttctcctg	catccaaaat	300
agggtgggat	gttggggtca	cccctaggca	tagcccttat	350
				400
				450
				477
	ctgagtggac TGCCATTACA CATTGCCATG ACGCACCTCG ggctgctctg agggtgggat tgagaggga ccttgaggca	ctgagtggac ctctgcacgc TGCCATTACA TCCTGAACCT CATTGCCATG AGCAGCATCG ACGCACCTCG GAACAACgtg ggctgctctg cctcaggcca agggtgggat gttggggtca tgagagggga agctctgatt	ctgagtggac ctctgcacge ccatctgtct TGCCATTACA TCCTGAACCT GCGCTACTTT CATTGCCATG AGCAGCATCG CCCTGGCCGC ACGCACCTCG GAACAACgtg agtcccacag ggctgctctg cctcaggcca ctttctcctg agggtgggat gttggggtca cccctaggca tgagagggga agctctgatt ccttggggat ccttgaggca gtttctctgt gagcctggtg	gtggtaggta acatgagatt atggaagaaa agggtttgtg ctgagtggac ctctgcacgc ccatctgtct ccaacagCCT TGCCATTACA TCCTGAACCT GCGCTACTTT GAGATGTGCA CATTGCCATG AGCAGCATCG CCCTGGCCGC CGAGGACCCT ACGCACCTCG GAACAACgtg agtcccacag agcacacccc ggctgctctg cctcaggcca ctttctcctg catccaaaat agggtgggat gttggggtca cccctaggca tagcccttat tgagaggga agctctgatt ccttggggat gctcttggga ccttgaggca gtttctctgt gagcctggtg gggtggaggt gactqgggt gaaaatt

Submission no : 21
Intron 22 : <..33
Exon 23 : 34..93
Intron 23 : 94..>

gatccactgc CTACGTTTTT cagattataa	ACAGGCGTCT	TTACCTTTGA	GATGGTGATC	AAGgtgagtg	50 100 150
ggctgggcac		acggtaattt	CCCCCCCA	gcaagegcag	168

Submission no : 22 Intron 23 : <..232 Exon 24 : 233..339 Intron 24 : 340..>

gatctaagag	ccggcaagcc	agagctggct	tccatcaggc	aaaggggggc	50
cgcctcatgg	ggcaggggct	cccactcct	ccctgggagt	cctctggcca	100
ctgcccatcc	ctgcaagatg	aggtggcctc	attggcttcc	ctgcctctcc	150
ccgagaggct	agagagtggg	tggcagcacc	ccagggtggg	gatcaggtgg	200
gggttctgag	caccctctct	tctcccccac	agATGATTGA	CCTGGGGCTC	250
GTCCTGCATC	AGGGTGCCTA	CTTCCGTGAC	CTCTGGAATA	TTCTCGACTT	300
CATAGTGGTC	AGTGGGGCCC	TGGTAGCCTT	TGCCTTCACg	taagtctctt	350
cgcaagggtt	tcctcttg				368

Submission no : 23
Intron 25 : <..244
Exon 25 : 245..344
Intron 24 : 345..>

datettaace	ccaagacact	tcatctaaag	gaaaaactgc	cataatacac	50
agarrattt	aggtcagctc	actttactgc	catctgctgg	gaagttgtaa	100
taatacaaat	atccatacac	gatggctagg	atgttatcag	cacctccttt	150
aatatattat	ccttgagcag	tatacaacct	actcagctgt	acatgataac	200
activity	cccccaccg	caccccacca	totoccaato	tcacCTTGAG	250
CTTTTCCCAGC	CGCTTGATGG	TTTTAAGAGG	TCGTAGCACC	CGGAGGACTC	300
CITIGGCAGC	AATCGTGTTG	ATGTCTTTTC	CTTTGCTATT	GCCActataa	350
	aggtgggaag				400
aggaatgttt	agcccacagc	tecaragas	cctacccttc	ccaggcctag	450
ggtaggggc	tgagcttggc	acaaggggg	cettecetaa	tgaagagtgg	500
tccattttac		acaugeouge		-33-3-33	515

Submission no : 24
Intron 25 : <..67
Exon 26 : 68..228
Intron 26 : 229..>

11 Submission no : 25
Intron 27 : <..177
Exon 27 : 178..315
Intron 26 : 316..>
Remark : reversed direction!

				cotcotaaaa	50
gatctcaaac	tcctggcctc	aagtgataca	tctgccttgg	CCCCCaaag	
tattaggatt	acaggcgtga	gcaccatgcc	cggcctccaa	gacctttctt	100
attoctaage	tetcaddccc	tttatcctcc	tgctccccag	ggctcctcct	150
ggatagattt	ccagtcgggc	cacttacTGT	GGCCAGCCTT	CTCCCGTGGA	. 200
CACGGTGAAG	AGGGTCAGCA	GAGCCCACAG	CACATTGTCG	TAATGGAATT	250
CATACTTCTT	CCACTCCCGG	TCTCGCGCCT	TCACCTCATT	CTTCTCGTAG	300
AGGAGGTATT	TGCCTctacc	acagagagtg	gggactgtta	gtaaatggga	350
aagaggggt	grottgcact	tatetttaat	tatcagagac	agggggaggg	400
aagaggggcc	goodagaaa		att = = = = = = = = = = = = = = = = = =	agraacttcc	450
aaaggaagag	tggtccacca	nectagacts	cttgggaagc	agegaceece	*
catcotocca	ccatgtgttc	ctgtgcttca	taggggatgn	cgtgtgcaat	500
			,,,,,	• •	516
ctacttttna	ggataa				310

Submission no : 26 Intron 27 : <..84 Exon 28 : 85..276 Intron 28 : 277..>

accttcctca	tcacccttqq	gtccctgtct	ctctccttcc	tgccccttcc	50
ctctccctac	cccattcctt	gcagGGTCCT	CAAGCATTCG	GTGGACGCCA	100
CCTTTGAGAA	CCAGGGCCCC	AGCCCCGGGT	ACCGCATGGA	GATGTCCATT	150
TTCTACGTCG	TCTACTTTGT	GGTGTTCCCC	TTCTTCTTTG	TCAATATCTT	200
TGTGGCCTTG	ATCATCATCA	CCTTCCAGGA	GCAAGGGGAC	AAGATGATGG	250
AGGAATACAG	CCTGGAGAAA	AATGAGgtgc	cacttccaat	tccatctgtc	300
ctttaaaaac	tqqqqacaca	cacaaacttt	aaaacacaca	caacacccag	350
gaaccccttt	ctaggggtac	ctgggggagg	gaacagaagc	attgtcccaa	400
ccgaatccag	tettcaggge	agcccttcat	ggagtttcag	aggaaacaca	450
tcatatagtg	tatgtatcag	tcagtttaga	ctaggttat		489

//
Submission no : 27
Intron 28 : <..253
Exon 29 : 254..418
Intron 29 : 419..>

tagcccatgc		2225676365	gcaagttttg	gcagttgntg	50	
tagcccatgc	aanaatgggg	adatgiicage	geaugecetg	getgetgetgetg	100	
acatctcaag	caactgtanc	tgttgggata	agaaagcaat	ggcgagaagg		
aanagaganc	ccaggaatee	taactaaaaa	caananaggc	agagactcaa	150	
gcagaagcac	the second	cascasatta	gacagagggt	acccaatata	200	
gcagaagcac	ttgagaaccy	cgacgageea	gacagaggg	atatatasa	250	5.0
cagccacctt	cctcctgcct	ctgccgctct	caccactggc	etetetete	-	50
cagAGGGCCT	GCATTGATTT	CGCCATCAGT	GCCAAGCCGC	TGACCCGACA	300	
CATGCCGCAG	nnannachan	CCTTCCAGTA	CCGCATGTGG	CAGTTCGTGG	350	
CATGCCGCAG	AACAAGCAGA	GCTTCCAGTA		CCTCDDCDCC	400	
TGTCTCCGCC	TTTCGAGTAC	ACGATCATGG	CCATGATCGC	CCTCAACACC		
ATCGTGCTTA	TGATGAAGat	aagtgcccca	caccagcccc	cagcactant	450	
taacccccac		cetetaceet	gataaaatga	aaccatttgc	500	
taacccccac	ctcgttcctg	CCCCCaccc	gacacacag-		512	
agatttccca	ga				312	

Submission no : 28
Intron 29 : 156
Exon 30 : 157..267
Intron 30 : 268..>

agatettee	tgaactgtgc	ctcctaccag	tgaggttgct	cagaccttgc	50
ctagaactag	agtgttgcct	ggagaacagc	catgaagctg	acctccccac	100
ttcccacttc	ccacccctgc	togotgacco	ctgctactcc	tgcttctttc	150
CCCCCCCCCC	ATGGGGCTTC	TGTGGCTTAT	GAÁAATGCCC	TGCGGGTGTT	200
CRECE	TTCDCCCTCCC	TCTTCTCTCT	GGAATGTGTG	CTGAAAGCCA	250
CAACATCGCC	CATTCTCAL	agraceacct	tggggctaca	actatagact	300
TGGCTTTTGG	GATICIGGCA	agcaccacce	ctacataata	gtctcccaac	350
tgglanaanc	ccaaggggga	acaatgggtt	ctggatgatg	cctacccaat	400
		ctcaagggtg	gcttcagtat	cccgcccagc	411
ggccacagat	С				411

29/48 WO 98/13490 PCT/NL97/00538

11

Submission no : 29
Intron 30 : <..115
Exon 31 : 116..199
Intron 31 : 200..>

ctgtcccggg	cactccgctg	atgggcaact	gtgcctctaa	catgcaccgg	50
ccagcctagg	gggccgggaa	ccaagccctc	tgttggcatc	tctgtcttgt	100.
gggtccccat	tctagAATTA	TTTCCGCGAT	GCCTGGAACA	TCTTCGACTT	150
TGTGACTGTT	CTGGGCAGCA	TCACCGATAT	CCTCGTGACT	GAGTTTGGGg	200
taagtctccc					250
gcggcagggg					300
tagctgcttg					350
cccggggaca					400
aacaaagctt					420

Submission no : 30
Intron 31 : <..148
Exon 32 : 149..265
Intron 32 : 266..>

ttaatagtgc	tttctctctc	cctccttatt	tggggtctgg	cttgcttttt	50
rectattaat	tagetteata	taggggcctc	tgtgagtggt	gacagetetg	100
agectttggg	gtgggtggat	ggtcacccct	cttcctccat	ctccccagAA	150
TARCTTCATC	AACCTGAGCT	TTCTCCGCCT	CTTCCGAGCT	GCCCGGCTCA	200
TCABACTTCT	CCGTCAGGGT	TACACCATCC	GCATTCTTCT	CTGGACCTTT	250
GTGCAGTCCT	TCAAGgtgag	tcctcatccc	tgctgctggc	ccaggggctg	300
			aatgtagaag		342

//
Submission no : 31
Intron 32 : <..156
Exon 33 : 157..222
Intron 33 : 223..394
Exon 34 : 395..509
Intron 34 : 510..>

asstaccesc.	caageeetgg	aaggactctg	gcacgtggca	50
		25 27 27 27 27	ggaggaggag	100
caacccagtg	gggcagagca	Clyggacaag	ggaggaagaa	. 150
craaggaacc	cccagcactc	ttcttcattg	CCTTTTTCC	
TCCCTT TCT	CTCTCTCCTC	ATCGCCATGC	TCTTCTTCAT	200
IGCCLIAIGI	CIGICIGOIO		agetteccag	250
ATTGGGATGC	AGgtgagtgt	cgtgtcccia	aggettetag	
	caccettaga	aaggggtggg	tcagaggagc	300
	tagagattaa	actagattte	ccagaagcca	350
gaagcagcca	Lygayyccya	geegggees	2 G 2 G C T C T T T	400
ggcagcccct	ggtcgtcacc	cwmcaattcc	acagoroni	
	GGAGGACGAG	GACAGTGATG	AAGATGAGTT	450
		CTTCTTCCAG	GCCCTCATGC	500
GAGCACAATA	ACT CCGGAC	CITCITCCIC	tteestess	550
tcagaagggg	acctgctctg	ataatnotgt	tteegtgggg	
2 2233	-			559
	caacccagtg ctgagggacc TGCCTTATGT ATTGGGATGC ggagggcagc gaagcagcca ggcagccct GCATCGACGT	caacccagtg gggcagagca ctgagggacc cccagcactc TGCCTTATGT CTGTCTGCTG ATTGGGATGC AGgtgagtgt ggagggcagc cacccttaga gaagcagcca tggaggttga ggcagccct ggtcgtcacc GCATCGACGT GGAGGACGAG GAGCACAATA ACTTCCGGAC	caacccagtg gggcagagca ctgggacaag ctgagggaca ccgaggaca ctgggacaag ctgagggaca ccgaggacaag ccgaggacaag caccatcactc ttcttcattg cattagaattgaggaggaggaggaggaggaggaggaggagg	TGCCTTATGT CTGTCTGCTG ATCGCCATGC TCTTCTTCAT ATTGGGATGC AGgtgagtgt cgtgtcccta aggttcccag ggagggcagc caccettaga aaggggtggg tcagaggagc gaagcagcca tggaggttga gctgggtttc ccagaagcca ggcagccct ggtcgtcacc cwmcaattcc acagGTGTTT GCATCGACGT GGAGGACGAG GACAGTGATG AAGATGAGTT GAGCACAATA ACTTCCGGAC CTTCTTCCATGG

Submission no : 32
Intron 34 : <..94
Exon 35 : 95..245
Intron 35 : 246..>
Sequence : 316

gtcagggctg CACCGGGGAA CGTGTGATAA	GCTTGGCACA GAACTCTGGC ACTTTGTTTC ctgtgagggc	ACATCATGCT ATCCTGACTC	TTCCTGCTC GAGAGTGTGG CTCTGCTCGT	AGCGGGAAAC CAATGAATTT	50 100 150 200 250 300 316
--	--	--------------------------	---------------------------------------	--------------------------	--

Submission no : 33 Intron 35 : <..211 Exon 36 : 212..339 Intron 36 : 340..>

	aactcacctc	tocattocco	agtctctttc	tgtctctgtc	50
gegeagegag	aacccacccc	ctctctatcc	ctctctccat	ctagagacete	100
tcatttcctt	teeccatett	tetateate	tgactgtctg	ratecttete	150
tgtgtctgtc	tttgggtctg	Lauguagua	cactactact	cttaatccca	200
acttcactca	ttcattccct	eggtetetge	cccattctct	cccggccccg	250
ggtccccaca	gATGCTGAAT	CTCTTTGTCG	CCGTCATCAT	GGACAACTTT	
GAGTACCTCA	CCCGAGACTC	CTCCATCCTG	GGCCCCACC	ACCTGGATGA	300
GTACGTGCGT	GTCTGGGCCG	AGTATGACCC	CGCAGCTTGg	taagaagtca	350
ccccaatcc	treadceaca	atactcacct	ctccctggaa	ctggaacacg	400
andt saact 3	aanccccaga	ctctggagca	ctgaactcct	ggggctccta	450
ggctaggcta	ggneeccaga	atcaddadad	aagatataag	aatcatcacc	500
gcaggggccc	Cacaggeeea	gccaggagag	accasectac	ccaaacctt	550
cttgcatacc	ccagattaaa	cacgtagggt	gccaacctgc	ccaaaccccg	600
gaggactttc	tgggaaatga	ggagggcgtc	aaccatgaga	Egecegaaga	
accetetect	cctacgagtc	tctcctgtct	ctcactgtga	agtctccaga	650
tggtgaggat	cgattagcca	ggctccagga	gaaaccaaca	gact	694

Submission no : 34
Intron 36 : <..213
Exon 37 : 214..310
Intron 37 : 311..>

	aatacaatcc	cdaactcdac	tgacatccta	cacccctggg	50
aagggaggrg	Congragace		ttcacttatc	cccagtetet	100
tetececagt	gtctgggaat	gtactgggaa	ccaccage	atmacctcat	150
cccactcctt	gaagccaggg	acaccccagc	ctcgggcatc	algacelege	200
tatataccca	gggagggggt	gtgaacccat	tgcctgcact	aacccccttt	
cttctccttt	CARCEGTOGG	ATTCATTATA	AGGATATGTA	CAGTTTATTA	250
CGAGTAATAT	CTCCCCTCT	CGGCTTAGGC	AAGAAATGTC	CTCATAGGGT	300
CGAGTAATAT	CICCCCICI		tactaccatc	catogaatga	350
TGCTTGCAAG	gtttgacttc	cactaaaacc	cyclaycate	*****	400
gtgtggcttg	gggttcttca	atatatatat	ttcatatata	lalalalala	450
tatctctctc	tototaaaaa	aacagagcca	tctctctttc	ttgcattaaa	• • •
ctagaaaact					474

Submission no : 35
Intron 37 : <..82
Exon 38 : 83..188
Intron 38 : 189..>

gaatgactgc CTGCCCGTCG TCTGATCCGC caggggcggg ctaccccaaa	gettgeettg CAGATGACAA ACAGCCCTGG cacagacagg ctagaggatc tegttecaca ttttgagaca	ggttttctgt CACCGTCCAC ACATCAAGAT cgtgacaggg tgctgtcacc ggnntttttg	gacccaggag agCGGCTTCT TTCAATTCCA TGCCAAGGgt tggaactggg acccggatct gnnnttggnn ctgttgccca	CCCTCATGGC aaggaagga gatctcctcc tcattcactc ntttggtgtt	50 100 150 200 250 300 350 400 413
--	--	--	--	---	--

//
Submission no : 36
Intron 38 : <..96
Exon 39 : 97..204
Intron 39 : 205..369
Exon 40 : 370..470
Intron 40 : 471..>

tataatt	creadaaacc	targgetttg	cagctgaccc	agagtccagc	50
gggtetegtt	cccyggagee	caeggeeeeg			100
tgacacccag	gcaggcagtc	agggtctgtc	tacaccccca	-	150
AGCCGACAAA	CAGCAGATGG	ACGCTGAGCT	GCGGAAGGAG	ATGATGGCGA	
TTTGGCCCAA	TCTGTCCCAG	AAGACGCTAG	ACCTGCTGGT	CACACCTCAC	200
77.0000000	2010100011	accetagaat	ccaatccacc	aggacagatg	250
AAGTGtaaga	gergageeea	geeergggar		gagetagtat	300
gag. gggagg	gaaaggggag	gcctggggag	agtgttggct	gggctggtat	
acacagggac	ccaggacaag	gtccccaaag	angcctgccc	ttggtgagct	350
acacatatat	arccccadC	CACGGACCTC	ACCGTGGGGA	AGATCTACGC	400
Caccycycyc	geeeeeage	n cmn cccccr	CACCAAGGCC	PAGAAGCTGC	450
AGCCATGATG	ATCATGGAGT	ACTACCGGCA	GAGCAAGGCC	7707100100	500
AGGCCATGCG	CGAGGAGCAG	gtgcgctgtt	cgccgctctg	gggacatetg	-
agat agage	agragattac	atotcaccac	gggaaccaac	tqqaatatga	550
ggcrggggac	ageggeeege	2555555	2230530000	ctagtagaga	600
gggtggctga	gccccagggc	aggiccciga	aaagtagggg	ceggegeace	636
gcagctcaca	cctgcaatct	cagtgctttg	agaggc		630
J J	-				

11 Submission no : 37 <..407 Intron 40 : 408..517 Exon 41 Intron 41 : 518..62 Exon 42 : 626..76 Intron 42 : 765..> Sequence : 829 518..625 626..764 gatottcagg gocatgggag otgcaggaag gactotggot tittcoccaa gcaagtggga gccatggagg gttctaagca aaggagggat aggacctgac 100 tcaagtgctc atgggcgccc tctggtggct cttgtggaac agtggggttg 150 aaggtaggag cgggagacct gggagaaggt gcctgcagtg agagatgagg 200 acgcgggacc aggctggggc tatgacttgg gtggaggagt gagaagtggt 250 300 ccagttctgc gtggaattgg aagggtctag atggatgaga cctgagagag 350 tgtgtgtgtg tgtgtgtgt tatactgggg atgtcgcaat gccttctggg taccaccgtc caccacccca cccttgtcca cacactgctc tctgccccat 400 teccaggae eggacacee teatgiteea gegeatggag ecceegtee 450 500 GACCCAGGAG GAGCCCTgtg agtgtcaccc ctgccaggga ggtggagtgt gggggtgccg tggtccccac gttctggaag ctgcccaagc gcccactgct 550 600

accoggect ctgtcccca tgcagGATGG CTCACGAAAG CGGCCTCAAG

GAGAGCCCGT CCTGGGTGAC CCAGCGTGCC CAGGAGATGT TCCAGAAGAC

GGGCACATGG AGTCCGGAAC AAGGCCCCCC TACCGACATG CCCAACAGCC

AGCCTAACTC TCAGgtgcct ctgtccccca actccccaat ggctcccagg

gcccgggtgg ttgcggtgga aggaaccat

650

700

750 800

829

WO 98/13490 PCT/NL97/00538

11

Submission no : 38
Intron 42 : <..219
Exon 43 : 220..333
Intron 43 : 334..>

teactgcaac	ctccaccttc	cagtctcaag	tgattcctcc	tgcctcagcc	50
	ctggattaca	ggcgcccacc	accatgetea	ggtattttt	100
_	tagtagagac		aatgtiggto		150
	nccattgtga		aggccccaga		. 200
			GCGAGAGATG		250
-	cgtccgcagT		TGGAAGGCCA		300
GCTACTCCGA					350
GCCTCCATGC	CCCGCCTCCC		CAGgtgaggg		
tgccctgggg	ctggacccct	cactctgcac	tgggtagggc	caggcccccc	400
cacaagcagc	ccagtgcatc	ccctcctgcc	ggactcaggc	ctgggtaggg	450
actccttcag	tctctgaagc	agtctgcagg	ccccacccac	cacctggtca	500
cacctggagc	acctgcagac	cctcctccct	cacagaggac	agagaggaaa	550
gtgctcccc		ggcagtggcc	actgcaaaat	ggtctctggc	600
tgccctggtt			gttgtggaar		650
gcagcagggt			ctgccacgaa		700
gaccaggagt	ttgagaccag		atagcaaaac		750
+++++++++	gagacggagt	Étcáctotto	ttgccccagg	ctggagtgac	800
	3-3-59		,	,, , ,	801
a					

Submission no : 39
Intron 43 : <..83
Exon 44 : 84..119
Intron 44 : 120..>
Sequence : 329

cctcctcact	cttccctctt	gcctttatat	ttattttctt	ctttctgttt	50
tttctgtgtg	caccatccat	ggggctgtga	cagAGGAGAA	GGGGCCGGCC	100
ACGTGGGAAT	AACCTCAGTG	tatqtacqqc	ctgcccaggg	cccagcaggc	150
teeggeeee	tettectece	caccconcct	ccagggagtc	ccgtaatctc	200
taccggtccc	cggaccccac	cctttctttg	gcaatcgcac	cctctcccct	250
ccatggagcc	caatccttgt	atatagtato	ctgtgtgtgc	cctgacccat	300
aagcctggtg	gggcggccat	ccccatcct			329

Submission no : 40
Intron 44 : <..166
Exon 45 : 167..353
Intron 45 : 354..>

	3466334466	ccatggcatc	ccctggcccc	taccccaaga	50
gatcaggggg	agccaaggcc	22444	ccaaactacc	acaatogggg	100
tggtcacacc	geagteaceg	aaggccacca	ccaggctgcc	404409999	150
aggaaggacc	gggaccactt	ggtgctagct	gctgacccca	gcccaccggc	
ctatecests	ccccagACCA	TCTCAGACAC	CAGCCCCATG	AAGCGTTCAG	200
CCTCCGTGCT	GGGCCCCAAG	GCCCGACGCC	TGGACGATTA	CTCGCTGGAG	250
CGGGTCCCGC	CCGAGGAGAA	CCAGCGGCAC	CACCAGCGGC	GCCGCGACCG	300
CAGCCACCGC	GCCTCTGAGC	GCTCCCTGGG	CCGCTACACC	GATGTGGACA	350
			aagcagaaca		400
CAGGLGGGCa		9000099990	actaaccaac	aagaaaggga	450
gaggggagga	gaaggcaggg	cygaggagac	actaaggaag		500
gaggcctcca	tggagagggg	acagagcggg	ccaggcagcg	gctgcaygaa	
cctaggtact	acccctccc	cccaacccac	tgacctgcct	cggttcaggg	550
			, ,		554
gatc					

//
Submission no : 41
Intron 45 : <..31
Exon 46 : 32..285
Intron 46 : 286..>

ctatatacta	tctgaccctc	acccggccca	gGCTTGGGGA	CAGACCTGAG	50
CATGACCACC	CAATCCGGGG	ACCTGCCGTC	GAAGGAGCGG	GACCAGGAGC	100
GGGGCCGGCC	CAAGGATCGG	AAGCATCGAC	AGCACCACCA	CCACCACCAC	150
CACCACCACC	ATCCCCCGCC	CCCCGACAAG	GACCGCTATG	CCCAGGAACG	200
GCCGGACCAC	GGCCGGGCAC	GGGCTCGGGA	CCAGCGCTGG	TCCCGCTCGC	250
CCAGCGAGGG	CCGAGAGCAC	ATGGCGCACC	GCCAGgtggg	tgcggctgca	300
agtgacccca	ggctgggctc	ggccgggagg	cggggaggag	agaaggggat	350
accccatcca	acagccactc	taggcaaagg	tccccggatc	ccggctgtga	400
ccacctccca	tcctgccccc	aagccaccgg	ggtgcccggc	ggccggagcg	450
gagcacggat	c				461

Submission no : 42
Intron 46 : <..279
Exon 47 : 280..>
Stop codon : 280..282
UTR 3' : 283..>

tttctcattt ctcttttcactcctctcattctcatt caatgtcctctctctcctcctcctcctcctcctcctcctcctc	tgtcccctcc tgtccccct cggcccctct tttgattttg gtagggcagT CCAGCACTCC	tectectgt ctectectec ceettegete ttgtatettt AGTTCCGTAA GCGGCGGGGC ACGTGTCCTA	ggetgttget teeteeteet ceeteatett ttttttgatt GTGGAAGCCC CGCCGCCAGC TTCCCCTGTG	50 100 150 200 250 300 350 400
tcctttgttt caattttcgt AGCCCCCTCA ACATCTGGTA	gtagggcagT	AGTTCCGTAA	GTGGAAGCCC	300
	CCAGCACTCC	GCGGCGGGGC	CGCCGCCAGC	350
ATCCGTAAGG CCGGCGGCTCGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	GGGGCCCCCG	CAGCAGCAGC	AGCAGCAGCA	450
	CCAGGCCGGC	CGGGCGGCCA	CCAGCGGCCC	500
TCGGAGGTAC CCAGGCCCCA CACGGGGGGC CACAGCAGCG AGGCCCGGCC CGGAGCGAGT GGCTGGCGGC AGTC	GCCGCACGCC	CAGGATGGAG	AGGCGGGTCC	550 600 650 664

Fig. 2

5 M M-P-SP: 4P-SP

Fig. 3

WO 98/13490

Figure 4

atggcccgcttcggagacqagatgccggcccgctacgggggaggaggctccggggcagcc 60 MARFGDEMPARYGGGSGAA 20 gccggggtggtcgtgggcagcggaggcggggagccggggggcagccggcaggcggg 120 A G V V V G S G G R G A G G S R Q G G 40 cagcccggggcgcaaaggatgtacaagcagtcaatggcgcagagagcgcggaccatggca 180 Q P G A Q R M Y K Q S M A Q R A R T M A 60 ctctacaaccccatccccgtccgacagaactgcctcacggttaaccggtctctcttcctc 240 ጸብ LYNPIPVRQNCLTVNRSLFL 300 ttcagcgaagacaacgtggtgagaaaatacgccaaaaagatcaccgaatggcctcccttt 100 F S E D N V V R K Y A K K I T E W P P F gaatatatgattttagccaccatcatagcgaattgcatcgtcctcgcactggagcagcat 360 IIANCIVLALEQH 120 EYMILAT 420 ctgcctgatgatgacaagaccccgatgtctgaacggctggatgacacagaaccatacttc 140 L P D D D K T P M S E R L D D T E P Y F 480 attggaattttttgtttcgaggctggaattaaaatcattgcccttgggtttgccttccac 160 IFCFEAGIKIIALGFAFH 540 aaaggctcctacttgaggaatggctggaatgtcatggactttgtggtggtgctaacgggc 180 K G S Y L R N G W N V M D F V V V L T G 600 atcttggcgacagttgggacggagtttgacctacggacgctgagggcagttcgagtgctg 200 ATVGTEFDLRTLRAVRVL cggccgctcaagctggtgtctggaatcccaagtttacaagtcgtcctgaagtcgatcatg 660 L K L V S G I P S L Q V V L K S I M 220 720 aaggcgatgatccctttgctgcagatcggcctcctcctattttttgcaatccttatttt 240 K A M I P L L Q I G L L L F F A I L I F gcaatcatagggttagaattttatatgggaaaatttcataccacctgctttgaagagggg 780 260 AIIGLEFYMGKFHTTCFEEG 840 280 D D I Q G E S P A P C G T E E P A R T 900 tgccccaatgggaccaaatgtcagccctactgggaagggcccaacaacgggatcactcag C P N G T K C Q P Y W E G P N N G I T Q 300 960 ttcgacaacatcctgtttgcagtgctgactgttttccagtgcataaccatggaagggtgg D N I L F A V L T V F Q C I T M E G W 320 1020 actgatctcctctacaatagcaacgatgcctcagggaacacttggaactggttgtacttc 340 TDLLYNSNDASGNTWNWLYF 1080 atccccctcatcatcgcctccttttttatgctgaaccttgtgctgggtgtgctgtca 360 I P L I I I G S F F M L N L V L G V L S 1140 ggggagtttgccaaagaaagggaacgggtggagaaccggcgggcttttctgaagctgagg 380 GEFAKERERVENRRAFLKLR 1200 cggcaacaacagattgaacgtgagctcaatgggtacatggaatggatctcaaaagcagaa 400 RQQIERELNGYMEWISKAE 1260 gaggtgatcctcgccgaggatgaaactgacggggagcagaggcatccctttgatggagct 420 EVILAEDET DGEQRHPF DGA 1320 ctgcggagaaccaccataaagaaaagcaagacagatttgctcaaccccgaagaggctgag 440 LRRTTIKKSKTDLLNPEEAE 1380 gatcagctggctgatatagcctctgtgggttctcccttcgcccgagccagcattaaaagt Q L A D I A S V G S P F A R A S I K S 460 1440 gccaagctggagaactcgaccttttttcacaaaaaggagaggaggatgcgtttctacatc 480 AKLENSTFFHKKERRMRFYI 1500 cgccgcatggtcaaaactcaggccttctactggactgtactcagtttggtagctctcaac 500 RRMVKTQAFYWTVLSLVALN 1560 acgctgtgtgttgctattgttcactacaaccagcccgagtggctctccgacttcctttac 520 T L C V A I V H Y N Q P E W L S D F L Y 1620 tatgcagaattcattttcttaggactctttatgtccgaaatgtttataaaaatgtacggg 540 Y A E F I F L G L F M S E M F I K M Y G 1680 cttgggacgcggccttacttccactcttccttcaactgctttgactgtggggttatcatt 560 LGTRPYFHSSFNCFDCGVI 1740 gggagcatcttcgaggtcatctgggctgtcataaaacctggcacatcctttggaatcagc

580 G S I F E V I W A V I K P G T S F G qtqttacgagccctcaggttattgcgtattttcaaagtcacaaagtactgggcatctctc 1800 V L R A L R L L R I F K V T K Y W A S L 600 agaaacctggtcgtctctctcctcaactccatgaagtccatcatcagcctgttgtttctc 1860 RNLVVSLLNSMKSIISLLFL 620 1920 cttttcctgttcattgtcgtcttcgcccttttgggaatgcaactcttcggcggccagttt L F L F I V V F A L L G M Q L F G G Q F 640 1980 aatttcgatgaagggactcctcccaccaacttcgatacttttccagcagcaataatgacg NFDEGTPPTNFDTFPAAIMT 660 gtgtttcagatcctgacgggcgaagactggaacgaggtcatgtacgacgggatcaagtct 2040 V F Q I L T G E D W N E V M Y D G I K S 680 2100 Q G G V Q G G M V F S I Y F I V L T L F 700 gggaactacaccctcctgaatgtgttcttggccatcgctgtggacaatctggccaacgcc 2160 G N Y T L L N V F L A I A V D N L A N A 720 caggagctcaccaaggacgagcaagaggaagaagaagcagcgaaccagaaacttgcccta 2220 740 Q E L T K D E Q E E E A A N Q K L A L 2280 cagaaagccaaggaggtggcagaagtgagtcctctgtccgcggccaacatgtctatagct Q K A K E V A E V S P L S A A N M S I A 760 gtgaaagagcaacagaagaatcaaaagccagccaagtccgtgtgggagcagcggaccagt 2340 V K E Q Q K N Q K P A K S V W E Q R T S 780 gagatgcgaaagcagaacttgctggccagccgggaggccctgtataacgaaatggacccg 2400 E M R K Q N L L A S R E A L Y N E M D P 800 gacgagcgctggaaggctgcctacacgcggcacctgcggccagacatgaagacgcacttg 2460 820 D E R W K A A Y T R H L R P D M K T H L 2520 gaccggccgctggtggtggacccgcaggagaaccgcaacaacaacaccaacaagagccgg 840 D R P L V V D P Q E N R N N N T N K S R geggeegageecacegtggaecagegeeteggeeageagegeegaggaetteeteagg 2580 A A E P T V D Q R L G Q Q R A E D F L R 860 2640 aaacaggcccgctaccacgatcgggcccgggaccccagcggctcggcgggcctggacgca 880 K Q A R Y H D R A R D P S G S A G L D A cggaggccctgggcgggaagccaggaggccgagctgagccgggaggacccctacggccgc 2700 R R P W A G S Q E A E L S R E D P Y G R 900 2760 gagtcggaccaccacgcccgggagggcagcctggagcaacccgggttctgggagggcgag E S D H H A R E G S L E Q P G F W E G E 920 gccgagcgaggcaaggccggggacccccaccggaggcacgtgcaccggcaggggggagc 2820 A E R G K A G D P H R R H V H R Q G G S 940 2880 agggagagccgcagcgggtccccgcgcacgggcgcggacgggagcatcgacgtcatcgc 960 R E S R S G S P R T G A D G E H R R H R 2940 gcgcaccgcaggcccggggaggagggtccggaggacaaggcggagcggggggcgcgcac AHRRPGEEGPEDKAERRARH 980 3000 cgcgagggcagccggcccgggcgggcgagggcgagggcgagggtcccgacgggggc 1000 REGSRPARGGEGEGPDGG 3060 gagcgcaggagaaggcaccggcatggcgctccagccacgtacgagggggacgcgcggagg 1020 ERRRRHGAPATYEGDARR gaggacaaggagcggaggcatcggaggaaggaaagagaaccagggctccggggtccctgtg 3120 E D K E R R H R R R K E N Q G S G V P V 1040 tcgggccccaacctgtcaaccaccggccaatccagcaggacctgggccgccaagaccca 3180 SGPNLSTTRPIQQDLGRQDP 1060 cccctggcagaggatattgacaacatgaagaacaacaagctggccaccgcggagtcggcc 3240 P L A E D I D N M K N N K L A T A E S A 1080 gctccccacggcagccttggccacgccggcctgcccagagcccagccaagatgggaaac 3300 A P H G S L G H A G L P Q S P A K M G N 1100 3360 agcaccgaccccggccccatgctggccatccctgccatggccaccaacccccagaacgcc S T D P G P M L A I P A M A T N P Q N A 1120 gccagccgccggacgcccaacaacccggggaacccatccaatcccggcccccccaagacc 3420 1140 SRRTPNNPGNPSNPGPPKT

WO 98/13490 PCT/NL97/00538

cccgagaatagccttatcgtcaccaaccccagcggcacccagaccaattcagctaagact 3480 ENSLIVTNPSGTQTNSAKT 1160 gccaggaaacccgaccacaccacagtggacatcccccagcctgcccacccccctcaac 3540 ARKPDHTTVDIPPACPPPLN 1180 cacaccgtcgtacaagtgaacaaaaacgccaacccagacccactgccaaaaaaagaggaa 3600 H T V V Q V N K N A N P D P L P K K E E 1200 gagaagaaggaggaggaagaagacgaccgtggggaagacggccctaagccaatgcct 3660 E K K E E E E D D R G E D G P K P M P 1220 ccctatagctccatgttcatcctgtccacgaccaacccccttcgccgcctgtgccattac 3720 P Y S S M F I L S T T N P L R R L C H Y 1240 atcctgaacctgcgctactttgagatgtgcatcctcatggtcattgccatgagcagcatc 3780 ILNLRYFEMCILMVIAMSSI 1260 gccctggccgccgaggaccctgtgcagcccaacgcacctcggaacaacgtgctgcgatac 3840 1280 ALAAEDPVQPNAPRNNVLRY tttgactacgtttttacaggcgtctttacctttgagatggtgatcaagatgattgacctg 3900 F D Y V F T G V F T F E M V I K M I D L 1300 gggctcgtcctgcatcagggtgcctacttccgtgacctctggaatattctcgacttcata 3960 1320 G L V L H Q G A Y F R D L W N I L D F I qtqqtcaqtqqqqccctqqtaqcctttqccttcactqqcaataqcaaaqqaaaaqacatc 4020 V V S G A L V A F A F T G N S K G K D I 1340 aacacgattaaatccctccgagtcctccgggtgctacgacctcttaaaaccatcaagcgg 4080 NTIKSLRVLRPLKTIKR 1360 ctgccaaagctcaaggctgtgtttgactgtgtggtgaactcacttaaaaacgtcttcaac 4140 LPKLKAVFDCVVNSLKNVFN 1380 atcctcatcgtctacatgctattcatgttcatcttcgccgtggtggctgtgcagctcttc 4200 1400 I L I V Y M L F M F I F A V V A V Q L F aaggggaaattottocactgcactgacgagtocaaagagtttgagaaagattgtcgaggo 4260 1420 K G K F F H C T D E S K E F E K D C R G aaatacctcctctacgagaagaatgaggtgaaggcgcgagaccgggagtggaagaagtat 4320 K Y L L Y E K N E V K A R D R E W K K Y 1440 gaattccattacgacaatgtgctgtgggctctgctgaccctcttcaccgtgtccacggca 4380 1460 E F H Y D N V L W A L L T L F T V S T A 4440 gaaggctggccacaggtcctcaagcattcggtggacgccacctttgagaaccagggcccc EGWPQVLKHSVDATFENQGP 1480 agccccgggtaccgcatggagatgtccattttctacgtcgtctactttgtggtgttcccc 4500 P G Y R M E M S I F Y V V Y F V V F P 1500 ttcttctttgtcaatatctttgtggccttgatcatcaccttccaggagcaaggggac 4560 1520 F F V N I F V A L I I I T F Q E Q G D aagatgatggaggaatacagcctggagaaaaatgagagggcctgcattgatttcgccatc 4620 M M E E Y S L E K N E R A C I D F A I 1540 agtgccaagccgctgacccgacacatgccgcagaacaagcagagcttccagtaccgcatg 4680 S A K P L T R H M P Q N K Q S F Q Y R M 1560 tggcagttcgtggtgtctccgcctttcgagtacacgatcatggccatgatcgccctcaac 4740 W Q F V V S P P F E Y T I M A M I A L N 1580 accatcgtgcttatgatgaagttctatggggcttctgtggcttatgaaaatgccctgcgg 4800 1600 TIVLMMKFYGASVAYENALR qtgttcaacatcgccttcacctcctcttctctctggaatgtgtgctgaaagccatggct 4860 1620 V F N I A F T S L F S L E C V L K A M A tttgggattctgaattatttccgcgatgcctggaacatcttcgactttgtgactgttctg 4920 F G I L N Y F R D A W N I F D F V T V L 1640 ggcagcatcaccgatatcctcgtgactgagtttgggaataacttcatcaacctgagcttt 4980 G S I T D I L V T E F G N N F I N L S F 1660 ctccgcctcttccgagctgcccggctcatcaaacttctccgtcagggttacaccatccgc 5040 1680 LRLFRAARLIKLLRQGYTIR 5100 I L L W T F V Q S F K A L P Y V C L L I 1700 5160 gccatgctcttcttcatctatgccatcattgggatgcaggtgtttggtaacattggcatc

5220

1740

5280

1760

5340

1780

5400

1800

5460

1820

5520

1840

5580

1860

5640

1880

5700

1900

5760

1920

5820

1940

5880 1960

5940

1980

6000

2000

6060

2020 6120

2040

6180

2060

6240

2080

6300

2100

6360

2120 6420

2140

6480

2160

6540

2180

6600

2220

6660

2240

6720 2260

6780 2280

6786

2282

A M L F F I Y A I I G M Q V F G N I G I gacgtggaggacgaggacagtgatgaagatgagttccaaatcactgagcacaataacttc D V E D E D S D E D E F Q I T E H N N F cggaccttcttccaggccctcatgcttctcttccggagtgccaccggggaagcttggcac RTFFQALMLLFRSATGEAWH aacatcatgctttcctgcctcagcgggaaaccgtgtgataagaactctggcatcctgact N I M L S C L S G K P C D K N S G I L T cgagagtgtggcaatgaatttgcttatttttactttgtttccttcatcttcctctgctcg RECGNEFAYFYFVSFIFLCS tttctgatgctgaatctctttgtcgccgtcatcatggacaactttgagtacctcacccga FLM LNLF V Á V I M ĎN F É Y L T R D S S I L G P H H L D E Y V R V W A E Y gaccccgcagcttgcggtcggattcattataaggatatgtacagtttattacgagtaata D P A A C G R I H Y K D M Y S L L R V I S P P L G L G K K C P H R V A C K R L L cggatggacctgcccgtcgcagatgacaacaccgtccacttcaattccaccctcatggct RMDLPVÄDDNTVHFNSTLMÄ ctgatccgcacagccctggacatcaagattgccaagggaggagccgacaaacagcagatg LIRTALDIKIAKGGADKQQM gacgctgagctgcggaaggagatgatggcgatttggcccaatctgtcccagaagacgcta D'AELRKEMMAIWPNLSQKTL gacctgctggtcacacctcacaagtccacggacctcaccgtggggaagatctacgcagcc DLLVTPHKSTDLTVGKIYAA atgatgatcatggagtactaccggcagagcaaggccaagaagctgcaggccatgcgcgag M M I M E Y Y R Q S K A K K L Q A M R E gagcaggaccggacacccctcatgttccagcgcatggagcccccgtccccaacgcaggaa E Q D R T P L M F Q R M E P P S P T Q E gggggacctggccagaacgccctcccctccacccagctggacccaggaggagccctgatg G G P G Q N A L P S T Q L D P G G A L M gctcacgaaagcggcctcaaggagagcccgtcctgggtgacccagcgtgcccaggagatg Ā H Ē S G L K Ē S P S W V T Q R Ā Q Ē M ttccagaagacgggcacatggagtccggaacaaggcccccctaccgacatgcccaacagc F Q K T G T W S P E Q G P P T D M P N S cagcctaactctcagtccgtggagatgcgagagatgggcagagatggctactccgacagc Q P N S Q S V E M R E M G R D G Y S D S gagcactacctccccatggaaggccagggccgggctgcctccatgccccgcctccctgca E H Y L P M E G Q G R A A S M P R L P A gagaaccagaggagaaggggccggccacgtgggaataacctcagtaccatctcagacacc ENQRREGRPRGNNLSTISDT agccccatgaagcgttcagcctccgtgctgggccccaaggcccgacgcctggacgattac S P M K R S Å S V L G P K Å R R L D D Y tcgctggagcgggtcccgccgaggagaaccagcggcaccaccagcggcgccgcgaccgc S L E R V P P E E N Q R H H Q R R R D R agccaccgcgcctctgagcgctccctgggccgctacaccgatgtggacacaggcttgggg S H R A S É R S L G R Y T D V D T G L G acagacctgagcatgaccacccaatccggggacctgccgtcgaaggagcgggaccaggag T D L S M T T Q S G D L P S K E R D Q E cggggccggcccaaggatcggaagcatcgacagcaccaccaccaccaccaccaccac R G R P K D R K H R Q H H H H H H H H H cateceeegeeecegacaaggacegetatgeecaggaacggeeggaceaeggeegggea H P P P P D K D R Y A Q E R P D H G R A cgggctcgggaccagcgctggtcccgctcgcccagcgagggccgagagcacatggcgcac RARDQRWSRSPSEGREHMA'H cggcagtag R Q