Math 342W/642/742W

Recitation - Day #4 (2.11.25)

I. Hyperplanes

(i) Describe/explain/define what a **hyperplane** is in the context of \mathbb{R}^2 or \mathbb{R}^3 . (Visualizations may be useful.)

A **hyperplane** is a 1-dimensional plane (a line) in \mathbb{R}^2 and its a 2-dimensional plane in \mathbb{R}^2 . The commonality of these hyperplanes in either context is that the line or plane divides/partitions \mathbb{R}^2 or \mathbb{R}^3 into two (half-)spaces, respectively.

- (ii) Describe/explain/define what a **hyperplane** is in the context of \mathbb{R}^n . In \mathbb{R}^n , a **hyperplane** is a (n-1)-dimensional generalization of a 2D-plane in \mathbb{R}^3 .
- (iii) Write the "**Hesse Normal Form**" definition of a *hyperplane*. What does it mean that it is overparametrized?

Hesse Normal Form of a Hyperplane: $\mathbf{w} \cdot \mathbf{x} - b = 0$

It is considered to be *overparametrized* because for any nonzero constant c,

$$c\,\boldsymbol{w}\cdot\boldsymbol{x}-cb=0$$

represents the same hyperplane as $\mathbf{w} \cdot \mathbf{x} - b = 0$.

II. Terminology of Hyperplanes

(i) Define the set of candidate functions of interest, \mathcal{H} .

$$\mathcal{H} = \{\mathbb{1}_{\boldsymbol{w}\cdot\boldsymbol{x}-b>0}: \boldsymbol{w} \in \mathbb{R}^p, b \in \mathbb{R}\}$$

- (ii) Define the following terms:
 - \boldsymbol{w} : column vector of p weights ($\boldsymbol{w} \in \mathbb{R}^p$) which is a normal vector perpendicular to $\boldsymbol{\ell}$
 - w_0 : = $\frac{w}{\|w\|}$ (unit vector of w)
 - b: bias term
 - ℓ : the *optimal* hyperplane
 - ullet $oldsymbol{\ell}_L$: the lower boundary of the wedge/margin parallel to $oldsymbol{\ell}$
 - ℓ_U : the upper boundary of the

wedge/margin parallel to ℓ

- z: $\frac{b}{\|\boldsymbol{w}\|} \boldsymbol{w}_0$ (vector on $\boldsymbol{\ell}$)
- \boldsymbol{z}_L : $\frac{b-\delta}{\|\boldsymbol{w}\|} \boldsymbol{w}_0$ (vector on $\boldsymbol{\ell}_L$)
- z_U : $\frac{b+\delta}{\|\boldsymbol{w}\|}\boldsymbol{w}_0$ (vector on $\boldsymbol{\ell}_U$)
- $m := \frac{2}{\|\boldsymbol{w}\|}$ (width of margin)

III. Finding the Optimal Hyperplane

- (i) What is the main goal in finding the optimal hyperplane among linearly separable data? Finding the optimal hyperplane among linearly separable data points can be visualized in \mathbb{R}^2 where the line that divides the largest/widest "wedge" between two linearly separable sets of data points is considered as optimal. We then extend this geometric notion of a optimal hyperplane in \mathbb{R}^2 to \mathbb{R}^n .
- (ii) Which quantity are we maximizing? Which quantity are we minimizing?

To find the optimal hyperplane we have to:

- maximize m (width of the margin/wedge between the two groups of data)
- $minimize \| \boldsymbol{w} \|$ (the norm of the vector of weights)
- (iii) How do we express the optimization problem for finding the optimal hyperplane among linearly separable data?

Optimization Problem for finding the optimal hyperplane:

Minimize
$$\|\boldsymbol{w}\|$$
 such that $(y_i - \frac{1}{2}) \cdot (\boldsymbol{w} \cdot \boldsymbol{x} - b) \ge \frac{1}{2}, \quad \forall i \in \{1, \dots, n\}$

IV. Support Vector Machines (SVM)

(i) What constitutes as an **error** if we want to find the optimal hyperplane for when data are not linearly separable?

Errors arise when the two sets of data we are trying to divide by a line are **not** linearly separable so that at least one data point that will be misclassified by any proposed hyperplane.

(ii) Define **Hinge Error** (HE)/total **Hinger Error**(THE).

Hinge Error (HE):

$$ext{HE}_i = \max \left\{ 0, \frac{1}{2} - \left(y_i - \frac{1}{2} \right) \cdot (\boldsymbol{w} \cdot \boldsymbol{x}_i - b) \right\}$$

Total Hinge Error (THE):

THE =
$$\sum_{i=1}^{n} \max \left\{ 0, \frac{1}{2} - \left(y_i - \frac{1}{2} \right) \cdot (\boldsymbol{w} \cdot \boldsymbol{x}_i - b) \right\}$$

(iii) Express/formulate the optimization problem for finding the optimal hyperplane using *Vapnik* objective/fitness/loss function to be minimized.

$$\underset{\boldsymbol{w},b}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{n} \max \left\{ 0, \frac{1}{2} - \left(y_i - \frac{1}{2} \right) \cdot (\boldsymbol{w} \cdot \boldsymbol{x}_i - b) \right\} + \lambda \|\boldsymbol{w}\|^2 \right\} \quad \text{(hyperparameter: } \lambda > 0 \text{)}$$

(iv) What category of problems are SVMs applicable for?

SVMs are applicable/suitable for *binary classification* problems.