Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 4

Piotr Chachuła, Cezary Dudkiewicz, Piotr Roszkowski

Spis treści

	I. Projekt	
1.	Weryfikacja punktu pracy	. ;
	.1. Opis postępowania	
2.	Odpowiedzi skokowe	
	2.1. Wyznaczanie odpowiedzi skokwych	
3.	Wyznaczanie odpowiedzi skokowych	
4.	Regulator DMC	. !
	4.1. Algorytm działania	
5.	Zakłócenie w regulatorze DMC	. 1
	5.1. Dobór parametru D_z	
6.	Zakłócenie sinusoidalne	. 1

II. Laboratoria

Część I

Projekt

1. Weryfikacja punktu pracy

1.1. Opis postępowania

W celu sprawdzenia poprawności wartości sygnałów u, y oraz z pobudzono obiekt sterowaniem o wartości u=0,0, zakłóceniem z=0,0 i sprawdzeniu czy stabilizuje się on w punkcjie pracy y=0,0. Do symulacji wyjscia obiektu użyto udostępnionej funkcji symulacja_obiektu4y. Do testów napisano skrypt Zad1.m. Wyniki przedstawiono poniżej.

1.2. Wyniki

Zgodnie z przewidywaniami wyjscie obiektu ustaliło się na wartości y=0,0. Punkt pracy ustalony jest więc poprawnie.

Rys. 1.1. Odpowiedź obiektu na sterowanie
i $u=0,\!0$ i zakłócenie $z=0,\!0$

2. Odpowiedzi skokowe

2.1. Wyznaczanie odpowiedzi skokwych

W celu wyznaczenia odpowiedzi skokowej obiekt, znajdujący się w punkcie pracy (tzn. $u=0,0,\,z=0,0,\,y=0,0$) pobudzony zostaje skokową wartością sterowania/zakłócenia. Rysunek 2.1 oraz 2.2 przedstawia odpowiedź obiektu na dane skoki.

2.2. Wyznaczanie charakterystyki statycznej procesu

Aby wyznaczyć charakterystykę statyczną procesu przeprowadzono analogiczne działania co w rozdziale 1. Tym razem przy użyciu skryptu ${\tt Zad2.m}$ dla wielu wartosci u oraz z wyznaczono odpowiadające im y oraz z ich pomocą utworzono wykres 2.2. Jak widać charakterystyka statyczna obiektu jest liniowa, a co za tym idzie obiekt jest liniowy.

2.3. Wzmocnienie statyczne

Wzmocnienie statyczne, czyli stosunek pomiędzy zmianą wartosci wyjscia i zmianą wartosci wejścia w stanie ustalonym. Aby ją wyznaczyć można na przykład znaleźć nachylenie charakterystyki statycznej do osi OU lub OZ, czyli np.:

$$K_{\text{stat}_u} = \frac{y(u_{\text{max}}) - y(u_{\text{min}})}{u_{\text{max}} - u_{\text{min}}}$$
(2.1)

W przypadku tak wykreślonej charakterystyki, wzmocnienie statyczne jest równe tangensowi kąta α pomiędzy prostą a osią OU.

$$K_{\text{stat}_u} = \frac{24.9903 - 0}{10 - 0} \approx 2.5 \tag{2.2}$$

$$K_{\text{stat}_z} = \frac{11.9884 - 0}{10 - 0} \approx 1.2$$
 (2.3)

2. Odpowiedzi skokowe 5

Rys. 2.1. Odpowiedz procesu na skokową zmiane sterowania

Rys. 2.2. Odpowiedz procesu na skokową zmiane zakłócenia

2. Odpowiedzi skokowe 6

Rys. 2.3. Charakterystka statyczna $\boldsymbol{y}(\boldsymbol{u},\boldsymbol{z})$ symulowanego procesu

3. Wyznaczanie odpowiedzi skokowych

Odpowiedz skokowa w algorytmie DMC oznacza odpowiedz obiektu na jednostkowy skok sterowania. Wyznacza się ją poprzez albo pobudzenie obiektu takim właśnie skokiem jednostkowym, albo, gdy jest to niemożliwe, jakimkolwiek innym i normalizowanie jej. W naszym przypadku nic nie stoi na przeszkodzie aby odrazu pobudzić obiekt takimi właśnie sygnałami.

Rys. 3.1. Odpowiedz skokowa obiektu pobodzonego jednotkowym skokiem sterowania \boldsymbol{u}

Rys. 3.2. Odpowiedz skokowa obiektu pobodzonego jednotkowym skokiem sterowania \boldsymbol{z}

4. Regulator DMC

4.1. Algorytm działania

Algorytm działania regulatora oraz implementacja została dobrze udokumentowana w pliku $\mathtt{DMC.m}$. Listing jego częsci algorytmicznej przedstawiony jest poniżej:

Listing 4.1. Implementacja regulatora DMC

4.2. Strojenie regulatora DMC

Strojenie regulatora przeprowadzone zostało metodą automatyczną przy użyciu funkcji ga(@DMC,nvars,[],[],[],lb,ub,[],IntCon,options). Strojonymi parametrami były N, N_u oraz λ . Za dolne ograniczenie przyjęte zostały wartości N=1, $N_u=1$, $\lambda=1$, natomiast za górne N=D, $N_u=D$ oraz $\lambda=1000$, gdzie D=116. Wyniki strojenia regulatora przedstiowone są na wykresie 4.1.

Rys. 4.1. Wyniki strojenia regulatora przy użyciu funkcji ga

Przykładowy przebieg pokazujący pracę wystrojonego już regulatora można zobaczyć na wykresie $4.2\,$

4. Regulator DMC

Rys. 4.2. Przebieg dla parametrów $N=116,\,N_u=4,\,\lambda=1$

5. Zakłócenie w regulatorze DMC

Poniżej (rys. 5.1) został zaprezentowany przebieg, w którym po osiągnięciu wartości zadanej, w chwili k=100 następuje skokowy wzrost zakłócenie z 0 na 1.

Rys. 5.1. Przebieg bez uwzględniania zakłócenia w regulacji

5.1. Dobór parametru D_z

Prametr D_z został dobrany, podobniej jak inne, za pomącą funkcji ga. Poszykiwanie zostało przedstawione na wykresie 5.2.

Najlepszą jakość regulacji osiągnięto dla $D_z=25.$ Przebieg dla tej wartości można zobaczyć na wykresie $5.3\,$

Rys. 5.2. Poszukiwanie parametru \mathcal{D}_z

Rys. 5.3. Przebieg z uwzględnieniem zakłócenia w regulacji

5.2. Omówienie wyników

Jak można zaobserwować na wykresach 5.1 i 5.3 regulator biorący pod uwagę zakłócenie znacznie lepiej radzi sobie z zakłóceniem, szybciej wraca do wartości zadanej i zapobiega większym błędom.

W celu sprawdzenia wpływu zakłócenia sinusoidalnego na jakość regulacji (z pomierem i bez pomiaru) wygenerowane zostały przebiegi z zakłóceniami o różnej częstotliwości i różnej amplitudzie. Sygnałem zakłócający generowany był jako

$$\begin{split} \mathbf{z} &= \sin(\mathbf{k}/\mathbf{p})^* \mathbf{a}(6.1) \mathbf{g} \text{dzie } p \text{ przybierało wartości:} \\ &- p = 5, \\ &- p = 10, \\ &- p = 20, \\ \text{natomist } a: \\ &- a = 0.1, \\ &- a = 0.2, \\ &- a = 1. \end{split}$$

Tak przygotowane wykresy można obejrzeć poniżej.

Rys. 6.1. Przebieg dla zakłócenia z parametrami p=5 oraz a=1

Rys. 6.2. Przebieg dla zakłócenia z parametrami p=5oraz a=0.2

Rys. 6.3. Przebieg dla zakłócenia z parametrami p=5 oraz a=0.1

Rys. 6.4. Przebieg dla zakłócenia z parametrami $p=10~{\rm oraz}~a=1$

Rys. 6.5. Przebieg dla zakłócenia z parametrami p=10 oraz a=0.2

Rys. 6.6. Przebieg dla zakłócenia z parametrami p=10oraz $a=0.1\,$

Rys. 6.7. Przebieg dla zakłócenia z parametrami p=20oraz $a=1\,$

Rys. 6.8. Przebieg dla zakłócenia z parametrami p=20oraz $a=0.2\,$

Rys. 6.9. Przebieg dla zakłócenia z parametrami p=20 oraz a=0.1

Część II

Laboratoria