State Farm Distracted Driver Detection

Team Members

- Fatima Samir
- Alaa Saleh Mohamed
- Asmaa Saeed
- Omar Ahmed Mohamed
- Mohamed salama

Present to:

Dr. Ahmed El-Sallab

Group: 15

Content

State Farm Distracted Driver Detection Data

 About driver images, each taken in a car with a driver doing something in the car.

Goal is to predict the likelihood of what the driver is doing in each picture.

Pre-processing

- Load images and Normalize them
- Resizing images into (150*150) images
- Encode labels by using categorical mode

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train datagen = ImageDataGenerator(rescale=1./255)
test datagen = ImageDataGenerator(rescale=1./255)
train generator = train datagen.flow from directory(
        # This is the target directory
        train dir,
        # All images will be resized to 150x150
        target size=(150, 150),
        batch size=24,
        # Since we use binary crossentropy loss, we need binary labels
        class mode='categorical')
validation generator = test datagen.flow from directory(
        validation dir,
        target size=(150, 150),
        batch size=20,
        class mode='categorical')
Found 20424 images belonging to 10 classes.
Found 2000 images belonging to 10 classes.
```

Dense Model

 Using neural network in which every neuron in a layer is connected to every neuron the consequent layer.

Model Parameters

- Using 4 dense layers
- at the first layers using relu activation function, data classified to 10 classes so the last layer is softmax with 10 neurons.

Training Model

Training is done with 10 epochs and batch size, using Adam optimizer and categorical cross entropy as the loss function.

```
from tensorflow.keras import models
from tensorflow.keras import layers
import tensorflow as tf

model = models.Sequential()
model.add(tf.keras.layers.Reshape((150*150*3,), input_shape=(150,150,3)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
```

Model: "sequential_3"

Layer (type)	Output Shape	Param #
reshape_1 (Reshape)	(None, 67500)	0
dense_8 (Dense)	(None, 512)	34560512
dense_9 (Dense)	(None, 256)	131328
dense_10 (Dense)	(None, 128)	32896
dense_11 (Dense)	(None, 10)	1290

Total params: 34,726,026 Trainable params: 34,726,026 Non-trainable params: 0

Evaluation

After training the model for 6 epochs, the training accuracy settled at 95.3 % and the validation accuracy settled around 92.3% which indicates that there is no overfitting.

CNN Model

→ Baseline CNN model

Transfer Learning

After apply baseline CNN model, lets using Transfer Learning concept - with fine tuning - on our dataset and see the output.

- We will use the VGG16 architecture
- Using the "convolutional base" of the VGG16 model to extract "features" and then,
- Add new classifier on top of the output "densely-connected classifier".

Transfer Learning

```
conv base = VGG16(weights='imagenet',
                include top=False,
                input shape=(150, 150, 3))
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16 weights tf dim ordering tf kernels notop.h5
58900480/58889256 [=========== ] - Os Ous/step
from tensorflow.keras import models
from tensorflow.keras import layers
conv base.trainable = False
model = models.Sequential()
model.add(conv base)
model.add(layers.Flatten())
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
Model: "sequential"
Layer (type)
                          Output Shape
                                                  Param #
vgg16 (Functional)
                          (None, 4, 4, 512)
                                                  14714688
flatten (Flatten)
                          (None, 8192)
dense (Dense)
                          (None, 32)
                                                  262176
dense 1 (Dense)
                           (None, 10)
                                                  330
Total params: 14,977,194
Trainable params: 262,506
Non-trainable params: 14,714,688
```

Transfer Learning

Evaluation:-

The graphs show the output accuracy and loss for 6 epochs on Training and validation Dataset.

 We notice with using The Transfer learning the model is more accurate which achieved 0.9855, 0.0907 accuracy and loss respectively.

Visualization

```
import cv2

# We use cv2 to load the original image
img = cv2.imread('/content/data/imgs/train/c0/img_100337.jpg')

# We resize the heatmap to have the same size as the original image
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))

# We convert the heatmap to RGB
heatmap = np.uint8(255 * heatmap)

# We apply the heatmap to the original image
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

# 0.4 here is a heatmap intensity factor
superimposed_img = heatmap * 0.4 + img

# Save the image to disk
cv2.imwrite('output.jpg', superimposed_img)
```

[] from google.colab.patches import cv2_imshow cv2 imshow(superimposed img)

