NOTES ON PROBABILITY THEORY

YANNAN MAO

23RD NOVEMBER 2024

CONTENTS

1	Measures	1
1.1	Topological Spaces and Metric Spaces	1
1.2	σ-Algebras	3

MEASURES

Suppose that $(A_n)_{n\in\mathbb{N}}$ is a countably infinite sequence of sets. The sequence is *increasing* if $A_n\subseteq A_{n+1}$ for each $n\in\mathbb{N}$, and *decreasing* if $A_{n+1}\subseteq A_n$ for each $n\in\mathbb{N}$. The sequence is *monotone* if it is increasing or decreasing.

If $(A_n)_{n\in\mathbb{N}}$ is increasing, the *increasing union thereof* is

$$\bigcup_{n\in\mathbb{N}}A_n;$$

if $(A_n)_{n\in\mathbb{N}}$ is decreasing, the **decreasing intersection thereof** is

$$\bigcap_{n\in\mathbb{N}}A_n.$$

The limit inferior of the countably infinite sequence $(A_n)_{n\in\mathbb{N}}$ is

$$\liminf_{n\to\infty} A_n = \bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty} A_i,$$

and the *limit superior thereof* is

$$\limsup_{n\to\infty} A_n = \bigcap_{n=0}^{\infty} \bigcup_{i=n}^{\infty} A_i.$$

1.1 TOPOLOGICAL SPACES AND METRIC SPACES

DEFINITION 1. Let *X* be a set. Then $\mathcal{T} \subseteq \mathcal{P}(X)$ is a **topology on** *X* if and only if

- (a) $\emptyset \in \mathcal{F}$;
- (b) $X \in \mathcal{F}$;
- (c) \mathcal{T} is closed under finite intersections; and
- (d) \mathcal{T} is closed under unions.

A *topological space* is an ordered pair (X, \mathcal{F}) wherein X is a set and \mathcal{F} is

a topology thereon, and a subset of X is **open** if it is in \mathcal{F} .

A subset of X is *closed* if and only if the relative complement thereof is open. For each $A \subseteq X$, the *closure of* A is the intersection of all closed sets which include A. A subset of X is *dense* if and only if the closure thereof is X. The topological space is *separable* if and only if there exists a countable dense subset of X.

For each $\mathcal{X} \subseteq \mathcal{P}(X)$, there exists a smallest topology on X which includes \mathcal{X} , referred by as the *topology generated by* \mathcal{X} .

Let $(X_i, \mathcal{T}_i)_{i \in I}$ be topological spaces with I as an index set. Let \mathcal{X} be the cartesian product of $(X_i)_{i \in I}$; i.e.,

$$\mathcal{X} = \prod_{i \in I} X_i.$$

For each $i \in I$, let $\operatorname{pr}_i : \mathcal{X} \to X_i$ denote the i-th projection on \mathcal{X} ; i.e.,

$$\operatorname{pr}_{i}(x) = x_{i}$$

wherein $x = (x_i)_{i \in I}$. The **product topology on** \mathcal{X} is the topology generated by

$$\{\operatorname{pr}_i^{-1}[U]: U \in \mathcal{T}_i \wedge i \in I\}.$$

DEFINITION 2. Let *X* be a set. Then $d: X^2 \to \mathbb{R}$ is a *metric on X* if and only if

- (a) d(x, x) = 0 for each $x \in X$;
- (b) d(x, y) > 0 if $x \neq y$ for each $x, y \in X$;
- (c) d(x, y) = d(y, x) for each $x, y \in X$; and
- (d) (*triangle inequality*) $d(x, y) + d(y, z) \ge d(x, z)$ for each $x, y, z \in X$.

A *metric space* is an ordered pair (X, d) wherein X is a set and d is a metric thereon.

Given $\varepsilon \in \mathbb{R}_{>0}$ and $x \in X$, the *open* ε -ball of x in X is

$$B_d(x,\varepsilon) = \{y : d(x,y) < \varepsilon\}.$$

The *metric topology on* X *induced by* d is

$$\{U \subseteq X : \forall x \in U \big(\exists \varepsilon \in \mathbb{R}_{>0} (B_d(x, \varepsilon) \subseteq U)\big)\}.$$

A topological space (X, \mathcal{T}) is *metrisable* if and only if there exists a metric on X whereby \mathcal{T} is the induced metric topology.

1.2 σ -ALGEBRAS

DEFINITION 3. Let X be a set. Then $\Sigma \subseteq \mathcal{P}(X)$ is a σ -algebra on X if and only if

- (a) $\Sigma \neq \emptyset$;
- (b) Σ is closed under complementation; and
- (c) Σ is closed under countable unions.

A *measurable space* is an ordered pair (X, Σ) wherein X is a set and Σ is a σ -algebra thereon, and a subset of X is *measurable* if it is in Σ .

It follows that $X \in \Sigma$ and $\emptyset \in \Sigma$ for each σ -algebra on X and that each σ -algebra is closed under countable intersections. Hence, the smallest σ -algebra on X is $\{X, \emptyset\}$ and the largest thereon is $\mathcal{P}(X)$.

A σ -algebra is closed under both increasing unions and decreasing intersections.

For each $P \in \mathcal{P}(X)$, there exists a smallest σ -algebra on X which includes P, referred to as the σ -algebra generated by P and denoted by $\sigma(P)$.

A π -system on X is a set of subsets of X which is closed under finite intersections. A **Dynkin system on** X is a set of subsets of X which contains X and is closed under both proper differences and increasing unions.

Theorem 1 (Sierpiński–Dynkin's π – λ theorem). Let \mathcal{C} be a π -system on X, and let \mathcal{D} be a Dynkin system thereon.

If
$$\mathcal{C} \subseteq \mathcal{D}$$
, then $\sigma(\mathcal{C}) \subseteq \mathcal{D}$.

Proof. First, \mathcal{C} is a σ -algebra if and only if it is also a Dynkin system.

Assume that \mathcal{D} is the smallest Dynkin system which includes \mathcal{C} . It then suffices to show that \mathcal{D} is also a π -system. Hence, we need to show that $A \cap B \in \mathcal{D}$ for any $A, B \in \mathcal{D}$.

To demonstrate the above proposition, first define $\mathcal{X}_B = \{A \subseteq X : A \cap B \in \mathcal{D}\}$ for each $B \in \mathcal{C}$. Then each \mathcal{X}_B is a Dynkin system including \mathcal{C} , and so it includes \mathcal{D} . Thus, $A \cap B \in \mathcal{D}$ for each $A \in \mathcal{D}$ and $B \in \mathcal{C}$. Next, define $\mathcal{X}_A' = \{B \subseteq X : A \cap B \in \mathcal{D}\}$ for each $A \in \mathcal{D}$. Similarly, we note that each \mathcal{X}_A' includes \mathcal{D} .

Therefore, the theorem holds.

DEFINITION 4. Let (X, \mathcal{T}) be a topological space. The *Borel* σ -algebra of (X, \mathcal{T}) , denoted by $\mathcal{B}(X, \mathcal{T})$, is the σ -algebra generated by \mathcal{T} .

A **Borel set of** (X, \mathcal{T}) is an element of $\mathcal{B}(X, \mathcal{T})$.

Let $(X_i, \Sigma_i)_{i \in I}$ be measurable spaces with I as an index set. The **product** σ -algebra of $(\Sigma_i)_{i \in I}$ is

$$\bigotimes_{i \in I} \Sigma_i = \sigma \left(\left\{ A_i \times \prod_{j \in I \land j \neq i} X_j : A_i \in \Sigma_i \land i \in I \right\} \right).$$

Lemma 1. Let $(X_i)_{i \in I}$ be separable metric spaces with I as an index set. Then

$$\mathcal{B}\left(\prod_{i\in I}X_i\right) = \bigotimes_{i\in I}\mathcal{B}(X_i).$$