

COMPUTER NETWORKS AND INTERNET PROTOCOLS

Circuit Switching and Packet Switching

SOUMYA K GHOSH

COMPUTER SCIENCE AND ENGINEERING
IIT KHARAGPUR

SANDIP CHAKRABORTY

COMPUTER SCIENCE AND ENGINEERING
IIT KHARAGPUR

Switched Network

- Communication between distant stations/ end-devices is typically done over a network of switching nodes.
- Switching nodes do not concern with content of data. The purpose is to provide a switching facility that will communicate/transmit the data from source to destination via intermediate node(s).
- A collection of nodes and connections forms a communications network.
- In a switched communications network, data entering the network from a source station are routed to the destination by being switched from node to node.

Typical Switching Network

Switching Technologies

- Switching nodes may connect to other nodes, or to some stations.
- Network is usually partially connected
 - However, some redundant connections are desirable for reliability

- Two different switching technologies
 - Circuit switching
 - Packet switching

Circuit Switching

- Dedicated communication path between two stations
- Three phases
 - Establish
 - Transfer
 - Disconnect
- Must have switching capacity and channel capacity to establish connection
- Must have intelligence to work out routing

Packet Switching

- A station breaks long message into packets
- Packets are sent out to the network sequentially, one at a time
- The stream of packets are routed through the network and are delivered to the intended destination?
 - Two approaches
 - Datagram approach
 - Virtual circuit approach

Circuit Switching - Approaches

- Space-Division Switch
- Time-Division Switch
- TDM Bus
- Combinations

Circuit Switching - Approaches

Circuit Switching - Space Division Switch

Circuit Switching – Multi-stage Space Division Switch

3-stage Space **Division Switch**

Circuit Switching - Time Division Multoplexing

Circuit Switching - Time Slot Interchange

Circuit Switching - Properties/Issues

- Once connected, transfer is transparent
- Developed for voice traffic (phone)
- Inefficient
 - Channel capacity dedicated for duration of connection
 - If no data, capacity wasted
- Set up (connection) takes time
- Data rate is fixed Both ends must operate at the same rate

Packet Switching - Basics

- Data transmitted in small packets
 - Typically 1000 octets (8 bit byte)
 - Longer messages split into series of packets
 - Each packet contains a portion of user data plus some control info
- Control info
 - Routing (addressing) info
- Packets are received, stored briefly (buffered) and passed on to the next node
 - Store and forward

Packet Switched Network

Packet Switching - Advantages

- Line efficiency
 - Single node to node link can be shared by many packets over time
 - Packets queued and transmitted as fast as possible
- Data rate conversion
 - Each station connects to the local node at its own speed
 - Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
 - Delivery may slow down
- Priorities can be used

Packet Switching - Techniques

- Station breaks long message into packets
- Packets sent one at a time to the network
- Packets are handled in two ways
 - Datagram
 - Virtual circuit

Packet Switching - Datagram

- Each packet treated independently
- Packets can take any practical route
- Packets may arrive out of order
- Packets may get lost or delayed
- Up to receiver to re-order packets and recover from missing packets

Packet Switching - Datagram

Packet Switching - Virtual Circuit

- Preplanned route established before any packets sent
- Call request and call accept packets establish connection (handshake)
- Each packet contains a virtual circuit identifier instead of destination address
- No routing decisions required for each packet
- Clear request to drop circuit
- Not a dedicated path

Packet Switching - Virtual Circuit

Packet Switching – VC Switching Table

Virtual Circuit - Source to Destination

Packet Switching - Virtual Circuits vs Datagram

- Virtual circuits
 - Network can provide sequencing and error control
 - Packets are forwarded more quickly
 - No routing decisions to make
 - Less reliable
 - Loss of a node loses all circuits through that node
- Datagram
 - No call setup phase
 - Better if few packets
 - More flexible
 - Routing can be used to avoid congested parts of the network

Circuit vs. Packet Switching

Circuit Switched

- Bandwidth guaranteed
- Circuit capacity not reduced by other network traffic
- Circuit costs independent of amount of data transmitted, resulting in wasted bandwidth
- Suitable for voice communication

Packet Switched

- Bandwidth dynamically allocated on as-needed basis
- May have concurrent transmissions over physical channel
- May have delays and congestion
- More cost-effective, offer better performance
- Suitable for data communication

