Date: Task No: 1

Design a multi-dimensional data model schema namely Star, Snowflake and Fact Constellations for a Categorical data using SQL Server Management Studio (SSMS). (Perform the above for Banking, Healthcare, Manufacturing, Sales and Automobile)

AIM:

PROCEDURE:

To practice creating a star schema data model from scratch, install SQL Server Management Studio, Microsoft SQL Server

Step 1: Install Diagram Support.

• Create a new database "BigData"

- Databases -> BigData -> Database Diagrams > Install Diagram Support
- Select the "Yes" in the pop-up window to close the window to one or more create support objects

Step 2: Create New Database Diagram.

• Right-click on the menu item "Database Diagrams" and select the "New Database Diagram" item.

• A pop-up window with a title "Add Table" shows up. Click on the "Close" button at the bottom of the new window to close the window

Step 3: Create User-Defined Data Types

• Right-click on the item "Databases -> data_modeling -> Programmability -> Types -> User-Defined Data Types" in the Object Explore panel and select the menu item "New User-Defined Data Type" in the context menu.

• A new window appears. Enter a value "udt_surrogate_key" in the name field and select the data type with "int". Then, click on the "OK" button to create a new data type.

• Follow the preceding procedure described in this step, create other user-defined data types.

Step 4: Create a Dimension Table in SSMS.

- Right-click on an empty space in the middle panel, select the "New Table..." menu item in the context menu
- A small pop-up window shows up and enter a value "dim_date" as the table name. Click the "OK" button to close this window and start a new pop-up window.
- In the new window, enter a value "date_key" as a column name and select the user-defined data type "udt_surrogate_key" as the data type. Then uncheck the "Allow Nulls" checkbox.

	n date Column Name	Data Type	Allow Nulls	^
P	date_key	udt_surrogate_key:int		
	sql_date	date		
	day_of_week	int		
	day_name_of_week	nchar(10)		
	day_of_month	nchar(10)		
	week_of_year	nchar(10)		
	month_of_year	nchar(10)		~
			>	

• Right-click on trigonal icon beside the text "date_key", select the "Set Primary Key" menu item in the context menu.

Step 5: Save the New Diagram.

- Click on the "Save" button on the window's toolbar.
- A pop-up window shows up to ask a name of the diagram. Enter a value "fact_sale_order" as the name for the diagram then click on the "OK" button.

Step 6: Create All Dimension Tables.

• Repeat Step 5 to create other dimension tables.

Step 7: Create a Fact Table.

- Right-click on an empty space in the diagram panel, select the "New Table..." menu item from the context menu
- enter a value "fact_sales_order" as the fact table name in the new pop-up window.
- Click the window by clicking on the "OK" button.
- The second pop-up window appears. Enter all dimension table keys and select the
 user-defined data type "udt_surrogate_key" as their data types. Uncheck all "Allow
 Nulls" checkboxes.

Step 8: Establish Relationship Between Dimension tables and Fact table

- In the diagram panel, drag the key icon in the table "dim_table" over the "date_key" in the table "fact_sales_order". Two pop-up windows appear immediately.
- In the first pop-up window presents the relationship name, "FK fact sales order dim date". All the foreign names will use this format.
- verify if the keys are linked correctly and click OK button

RESULT:

Date:

Task No: 2 To configure, monitor, and administer a Data warehouse and perform basic Query operations on the DW.

AIM:

TASK 2a:

PROCEDURE:

Connect to the SQL Server by choosing the server name, enter the user and password and click the Connect button.

Right-click the Databases node in the Object Explorer and select the New Database... menu item

Enter the **Database name** as BikeStores and click the **OK** button to create the new database.

From the File menu, choose Open > File... menu item to open a script file.

Select the **BikeStores Sample Database – create** objects.sql file and click the Open button

Click the **Execute** button to execute the SQL script

Choose the **BikeStores Sample Database – load data.sql** file and click the Open button.

Click the **Execute** button to load data into the tables.

Execute query to display the values from production.products table.

QUERY OPERATIONS ON THE DATA WAREHOUSE

UNION OPERATION

SELECT first_name, last_name FROM sales.staffs UNION SELECT first_name, last_name FROM sales.customers;

UNION ALL OPERATION

SELECT first_name, last_name FROM sales.staffs UNION ALL

SELECT first_name, last_name FROM sales.customers;

INTERSECT OPERATION

SELECT city FROM sales.customers INTERSECT

SELECT city FROM sales.stores ORDER BY city;

JOIN OPERATION

INNER JOIN

```
SELECT

product_name,
list_price,
category_id

FROM
production.products

ORDER BY
product_name DESC;
```


LEFT JOIN

```
SELECT

product_name,
order_id

FROM

production.products p

LEFT JOIN sales.order_items o ON o.product_id = p.product_id

ORDER BY
order_id;
```


TASK 2b:

PROCEDURE:

- 1. Install Microsoft SQL server Management Studio
- 2. Install MS Sql Server Developer Edition
- 3. Connect to the SQL Server

- 4. Choose Management -> Data Collection in the left side navigation bar
- 5. Right click on the Data collection > Tasks -> Configure Management Data Warehouse and Configure the data warehouse settings
- 6. Select Server Name and Database name and click next button
- 7. Change the settings in map login and users
 - a. User mapped to this login
 - b. Database membership for BikeStores

- 8. Check the Settings and Click finish button
- 9. Moniter and generate the various reports for the BikeStores, Right click the Bikestores-> Reports -> Standard Reports and select the reports needed.

RESULT:

Date: Task No: 3

Perform Data Cube Operations (OLAP Operations) using SQL Queries Rollup, Rolldown, Slicing, Dicing Database: MySQL

AIM:

PROCEDURE:

1) create the sales.sales_summary table by using the following query:

```
SELECT
```

```
b.brand_name AS brand,
  c.category_name AS category,
  p.model_year,
  round(
    SUM (
       quantity * i.list_price * (1 - discount)
    ),
  ) sales INTO sales.sales_summary
FROM
  sales.order_items i
INNER JOIN production.products p ON p.product_id = i.product_id
INNER JOIN production.brands b ON b.brand_id = p.brand_id
INNER JOIN production.categories c ON c.category_id = p.category_id
GROUP BY
  b.brand name,
  c.category_name,
  p.model_year
ORDER BY
  b.brand_name,
  c.category_name,
  p.model_year;
```

```
SQLQuery1.sql - CHARLES\SQLEXPRESS.BikeStores (CHARLES\Lenovo (52))* - Microsoft SQL Server Managem
<u>F</u>ile <u>E</u>dit <u>V</u>iew <u>Q</u>uery <u>P</u>roject <u>T</u>ools <u>W</u>indow <u>H</u>elp
New Query (Ctrl+N) ute ■ ✓ 🖁 🗊 🖫 🖁 🖫 🖫 🖫 🖺 🖺 🖺 🖫
                  ▼ Ț × SQLQuery1.sql - C...ARLES\Lenovo (52))* ⇒ ×
                           ⊟SELECT
Connect ▼ ¥ ▼ ■ ▼ ♂
                                b.brand_name AS brand,

☐ 
☐ CHARLES\SQLEXPRESS (SQL Ser

                                c.category_name AS category,
 p.model_year,
 round (
 SUM (
  Replication
                                       quantity * i.list_price * (1 - discoun
  0
                                ) sales INTO sales sales summary
```

2) CUBE:

Refer task 2a:

The CUBE is a subclause of the GROUP BY clause that allows you to generate multiple grouping sets. The following illustrates the general syntax of the CUBE:

```
SELECT
d1,
d2,
d3,
aggregate_function (c4)
FROM
table_name
GROUP BY
d1,
CUBE (d2, d3);
```

Example:

```
SELECT
brand,
category,
SUM (sales) sales
FROM
sales.sales_summary
GROUP BY
CUBE(brand, category);
```

3) ROLLUP

Refer task 2a:

SQL Server ROLLUP syntax

```
The general syntax of the SQL Server ROLLUP is as follows:
SELECT
  d1,
  d2,
  d3,
  aggregate_function(c4)
FROM
  table_name
GROUP BY
  ROLLUP (d1, d2, d3);
Upload and configure the sample data warehouse (refer task2a)
Select the New Query, then new query tab will be opened.
ROLLUP Query
SELECT
  brand,
  category,
  SUM (sales) sales
FROM
```

4) DRILLDOWN

GROUP BY

sales.sales_summary

ROLLUP(brand, category);

This is a reverse of the ROLL UP operation. The data is aggregated from a higher level summary to a lower level summary/detailed data.

```
SELECT
brand,
category,
SUM (sales) sales
FROM
sales.sales_summary
GROUP BY
ROLLUP(brand, category)
HAVING SUM (sales) > 20000;
```

5) SLICING:

A slice in a multidimensional array is a column of data corresponding to a single value for one or more members of the dimension. It helps the user to visualize and gather the information specific to a dimension.

```
SELECT

*
FROM
sales.customers
WHERE
state = 'CA';
```

6) DICING:

Dicing is similar to slicing, but it works a little bit differently. Dicing, on the other hand, is more of a zoom feature that selects a subset over all the dimensions, but for specific values of the dimension.

```
SELECT
city,
COUNT (*)
FROM
sales.customers
WHERE
state = 'CA'
GROUP BY
city
HAVING
COUNT (*) > 10
ORDER BY
city;
```

7) PIVOT

The steps to make a query a pivot table:

- 1) First, select a base dataset for pivoting.
- 2) Second, create a temporary result by using a derived table or common table expression (CTE)
- 3) Third, apply the PIVOT operator.
- First, select category name and product id from the production.products and production.categories tables as the base data for pivoting:

```
SELECT
category_name,
product_id
FROM
production.products p
INNER JOIN production.categories c
ON c.category_id = p.category_id
```

> Second, create a temporary result set using a derived table:

```
SELECT * FROM (
  SELECT
    category_name,
    product_id
  FROM
    production.products p
    INNER JOIN production.categories c
      ON c.category_id = p.category_id
) t
> Third, apply the PIVOT operator:
   SELECT * FROM
     SELECT
        category_name,
        product_id
      FROM
        production.products p
        INNER JOIN production.categories c
          ON c.category_id = p.category_id
   ) t
   PIVOT(
     COUNT(product_id)
     FOR category_name IN (
        [Children Bicycles],
        [Comfort Bicycles],
        [Cruisers Bicycles],
        [Cyclocross Bicycles],
        [Electric Bikes],
        [Mountain Bikes],
        [Road Bikes])
   ) AS pivot_table;
```

RESULT:

Date: Task No: 4

Implement matrix multiplication with Map Reduce

AIM:

Task 4.1

VMWare AND Apache Hadoop

To Install VMWare AND Apache Hadoop, follow the steps

STEP 1. First of all, enter to the official site of VMware and download VMware Workstation https://www.vmware.com/tryvmware/?p=workstation-w

STEP 2. After downloading VMware workstation, install it on your PC

Step3: Installing Java 8 version.

Openjdk version "1.8.0_91"

OpenJDK Runtime Environment (build 1.8.0_91-8u91-b14-3ubuntu1~16.04.1-b14)

OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)

This output verifies that OpenJDK has been successfully installed.

Note: To set the path for environment variables. i.e. JAVA_HOME

Step4: Installing Hadoop

With Java in place, we'll visit the Apache Hadoop Releases page to find the most recent stable release. Follow the binary for the current release:

Download Hadoop from www.hadoop.apache.org

Task 4.2

Develop a MapReduce program to implement Matrix Multiplication.

Assumes that you are using the Hadoop MapReduce framework and have two input matrices, Matrix A and Matrix B, stored in separate files.

Mapper Function: The mapper function takes as input a row from Matrix A and a column from Matrix B. It emits key-value pairs, where the key is the index of the resulting cell in the output matrix, and the value is the partial product of the corresponding elements from Matrix A and Matrix B.

Reducer Function:

The reducer function takes as input a key representing the index of a cell in the output matrix and a list of values representing the partial products for that cell. It calculates the final product by summing up the partial products and emits the result as the output.

Flow Diagram

The implementation should perform matrix multiplication using the MapReduce paradigm by distributing the computation across multiple mappers and reducers, resulting in efficient processing of large-scale matrices.

Task 4.3

Develop a MapReduce program to find the maximum temperature in each year.

A MapReduce program to find the maximum temperature in each year using the MapReduce paradigm. Assume that you are using the Hadoop MapReduce framework and have input data in the format: <Year> <Temperature>.

Mapper Function:

The mapper function takes as input a line from the input data file. It extracts the year and temperature from each line and emits key-value pairs, where the key is the year, and the value is the temperature.

Reducer Function:

The reducer function takes as input a year and a list of temperatures associated with that year. It iterates through the list of temperatures to find the maximum temperature and emits the result as the output.

RESULT:

	4	
	OTO.	
J,	au.	

Task No: 5 Write a Spark application to perform word count in the input file.

AIM:

5.1: Apache Spark Installation

PROCEDURE:

- 1. Download and install Java Development Kit (JDK) version 8 or higher, and ensure the RAM size, least 8 GB.
- 2. Download and install Python latest version from https://www.python.org/
- 3. Visit the Apache Spark website at https://spark.apache.org/downloads.html to download the latest stable release of Spark. [figure 1]
- 4. Type the following command in the command prompt to check the java and python version:
 - java --version
 - python --version
- 5. Create a new folder named Spark in the root of your C: drive and locate the Spark file you downloaded.
- 6. Right-click the file and extract it to C:\Spark using the tool you have on your system
- 7. Download the winutils.exe file for the underlying Hadoop version for the Spark installation, from the URL https://github.com/cdarlint/winutils [figure 2]
- 8. Configure Environment Variables
 - Click Start and type environment.
 - Select the result labeled Edit the system environment variables.
 - A System Properties dialog box appears. In the lower-right corner, click Environment Variables and then click New in the next window.
 - For Variable Name type SPARK_HOME. [figure 3,4]
 - For Variable Value type C:\Spark\spark-2.4.5-bin-hadoop2.7 and click OK. If you changed the folder path, use that one instead.
 - In the top box, click the Path entry, then click Edit. Be careful with editing the system path. Avoid deleting any entries already on the list.
 - The system highlights a new line. Enter the path to the Spark folder C:\Spark\spark-2.4.5-bin-hadoop2.7\bin. We recommend using %SPARK_HOME%\bin to avoid possible issues with the path. [figure 5,6,7]
 - Repeat this process for Hadoop and Java. For Hadoop, the variable name is HADOOP_HOME and for the value use the path of the folder you created earlier:

C:\hadoop. Add C:\hadoop\bin to the Path variable field, but we recommend using %HADOOP_HOME%\bin.

- For Java, the variable name is JAVA_HOME and for the value use the path to your Java JDK directory (in our case it's C:\Program Files\Java\jdk1.8.0_251).
- 9. Launch Spark, To start Spark, enter the command
 - C:\Spark\spark-2.4.5-bin-hadoop2.7\bin>spark-shell
 - If you set the environment path correctly, you can type spark-shell to launch Spark.
 - Finally, the Spark logo appears, and the prompt displays the Scala shell.
 - Open a web browser and navigate to http://localhost:4040/.
- 10. Launch pyspark, enter the command

C:\Spark\spark-2.4.5-bin-hadoop2.7\bin>pyspark

5.2: Spark application to perform word count

PROCEDURE:

sc.stop()

spark.stop()

- 1. Check the spark installation, environmental variables setup
- 2. Import necessary libraries from pyspark
- 3. Create a SparkConf and SparkContext (or SparkSession):
- 4. Load the input data
- 5. Read the input file and Calculating words count
- 6. Perform the word count operation
- 7. Save the output, Stop the SparkContext or SparkSession
- 8. Stopping Spark-Session and Spark context

```
Program:
import findspark
findspark.init()
from pyspark.sql import SparkSession
spark = SparkSession.builder\
            .master("local")\
            .appName('Firstprogram')\
            .getOrCreate()
sc=spark.sparkContext
text_file = sc.textFile("firstprogram.txt")
counts = text_file.flatMap(lambda line: line.split(" ")) \
                 .map(lambda word: (word, 1)) \
                .reduceByKey(lambda x, y: x + y)
output = counts.collect()
for (word, count) in output:
  print("%s: %i" % (word, count))
```

File Name: firstprogram.txt

Chennai formerly known as Madras, is the capital city of Tamil Nadu, the southernmost Indian state.

Output:

Chennai: 1

Formerly: 1

Known: 1

as: 1

Madras: 1

ls: 1

the: 2

Capital: 1

City: 1

Of: 1

Tamil: 1

Nadu: 1

southernmost: 1

Indian: 1

state.: 1

RESULT:

Date: Task No: 6 Implement CURD operations on Casandra

AIM:

PROCEDURE:

- 1. Install Java Development Kit (JDK) version 8 or higher.
- 2. Install Python stable version
- 3. Visit the Apache Cassandra website at https://cassandra.apache.org/download/ to download the latest stable release of Cassandra.
- 4. Set up the required, environment variables.
- 5. Modify the configuration files cassandra.yaml to adjust the settings according to your requirements.
- 6. Open the command prompt at bin folder and Start the Cassandra server using the command "cassandra"
- 7. Open the another command prompt at bin folder and start the command-line interface (CLI) using the command "cqls"
- 8. Create the keyspace and tables, then execute the CURD operations create, update, read, delete.
- 9. Execute various no-sql queries and find the results.
- 10. Stop the cassandra server.

Create Keyspace:

A keyspace is like RDBMS database which contains column families, indexes, user defined types, data center awareness, strategy used in keyspace, replication factor, etc.

CREATE KEYSPACE <identifier> WITH

Or

Create keyspace KeyspaceName with replication={'class':strategy name,

'replication_factor': No of replications on different nodes}

Alter Keyspace:

ALTER KEYSPACE <identifier> WITH

Or

ALTER KEYSPACE "KeySpace Name"

WITH replication = {'class': 'Strategy name', 'replication_factor' : 'No.Of replicas'};


```
Drop Keyspace:
DROP keyspace KeyspaceName;
Create Table Operation:
Syntax of Create Operation-
CREATE (TABLE | COLUMNFAMILY) < tablename>
('<column-definition>', '<column-definition>')
(WITH <option> AND <option>)
Sample No-SQL queries
CREATE TABLE student(
 student_id int PRIMARY KEY,
 student_name text,
 student_city text,
 student_fees varint,
 student_phone varint
 );
CURD OPERATION:
Create Data:
INSERT INTO student (student_id, student_fees, student_name)
VALUES(1,5000, 'Ajeet');
INSERT INTO student (student_id, student_fees, student_name)
VALUES(2,3000, 'Kanchan');
INSERT INTO student (student_id, student_fees, student_name)
VALUES(3, 2000, 'Shivani');
READ Data
SELECT * FROM student;
SELECT * FROM student WHERE student_id=2;
Update Data:
UPDATE student SET student_fees=10000,student_name='Rahul'
WHERE student_id=2;
DELETE Data:
DELETE student_fees FROM student WHERE student_id=4;
```


Date:	Task No: 7 Implementing Producer and Consumer problem in kafca.
AIM:	
PROC	EDURE:
1.	Install Java Development Kit (JDK) version 8 or higher.
2.	Install ZooKeeper: Kafka relies on ZooKeeper for distributed coordination. Kafka comes with an inbuilt Zookeeper
3.	Visit the Apache Kafka website (https://kafka.apache.org/downloads) and download the latest version of Kafka for Windows.
4.	Extract the contents of the Apache Kafka ZIP file to a required directory
5.	Configure Environment Variables and path in System and User settings.
6.	Start zookeeper by execute the zookeeper-server-start.bat script and pass the zookeeper configuration file path
	cd C:\bigdata\kafka2.5
	$start\ cmd\ /k\ bin\windows\zookeeper-server-start.bat\ config\zookeeper.properties$
7.	Start Kafka by executing the kafka-server-start.bat script and pass broker configuration file path.
	cd C:\bigdata\kafka2.5
	start cmd /k bin\windows\kafka-server-start.bat config\server.properties
8.	Open a new command prompt, and create new Kafka topic.
	$bin\windows\kafka-topics.bat\create\bootstrap-server\ localhost: 9092\replication-factor\ 1\partitions\ 1\topic\ test$
	Created topic test.
9.	List all the topics to verify the created topic is present in this Topics list
	bin\windows\kafka-topics.batlistbootstrap-server localhost:9092
	test
10.	Produce some messages and submit to test topic. I added two messages i.e. "Hello" and "Kafka".

bin\windows\kafka-console-producer.bat --bootstrap-server localhost:9092 --topic test

```
C:\Users\Lokesh>cd E:\devsetup\bigdata\kafka2.5>bin\windows\kafka-topics.bat --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic test
C:\devsetup\bigdata\kafka2.5>bin\windows\kafka-topics.bat --list --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic test
Created topic test.

E:\devsetup\bigdata\kafka2.5>bin\windows\kafka-topics.bat --list --bootstrap-server localhost:9092 test

E:\devsetup\bigdata\kafka2.5>bin\windows\kafka-console-producer.bat --bootstrap-server localhost:9092 --topic test
Hello
Kafka
>Terminate batch job (Y/N)? y

E:\devsetup\bigdata\kafka2.5>bin\windows\kafka-console-consumer.bat --bootstrap-server localhost:9092 --topic test --from-beginning
Hello
Kafka
```

	11. Consume the messages and submit to test topic.
	bin\windows\kafka-console-consumer.batbootstrap-server localhost:9092topic testfrom-beginning
	Hello
	Kafka
RE	SULT:

Date:	Task No: 8 Implement basis commands in HIVE.
AIM:	
8 A)	
PROC	EDURE:
1.	Install Java Development Kit (JDK) version 8 or higher.
2.	Install Hadoop-2.9.2, or use any other STA BLE version for Hadoop.
3.	Install MySQL Query Browser
4.	Download and install Hive-3.1.2, or use any other STABLE version for Hive.
5.	Set the environmental variables for HIVE_HOME and Path variables %HIVE_HOME%\bin
6.	Open a NEW Command Window, check the path settings
	echo %HIVE_HOME%
7.	Edit the Properties of hive-site.xml and Replace the value for <your address="" ip=""> with the IP Address of your System and replace <your drive="" folder=""> with the Hive folder Path.</your></your>
8.	Removing Special Characters and Adding few More Properties in hive-site.xml File.
9.	Creating Hive User in MySQL Database for reading and writing data from it.
10	. Grant permission to Users and Creating Metastore
11	. Starting Hadoop, Hive Metastore and Hive shell prompt
	start-all.cmd
	hiveservice metastore
12	. Open a new cmd window and run the below command to start Hive
	> hive
Hive I	Basic Commands:
Show	Databases:
SHOV	V DATABASES;
Use D	atabase:
USE d	atabase_name;
Show	Tables:


```
SHOW TABLES;
Create a Database:
CREATE DATABASE new_database;
Create a Table:
CREATE TABLE my_table (
  id INT,
  name STRING,
  age INT
);
Load Data into a Table:
LOAD DATA LOCAL INPATH '/path/to/datafile.csv' OVERWRITE INTO TABLE my_table;
Query Data:
SELECT * FROM my_table WHERE age > 25;
Insert Data into a Table:
INSERT INTO TABLE my_table VALUES (1, 'John', 30);
Describe Table:
DROP TABLE my_table;
```


PROCEDURE:

- 1. Install Java Development Kit (JDK) version 8 or higher.
- 2. Install Hadoop-2.9.2, or use any other STABLE version for Hadoop.
- 3. Install MySQL Query Browser and configure the Hadoop, msql and Hive
- 4. Starting Hadoop, Hive Metastore and Hive shell prompt

```
start-all.cmd
```

hive --service metastore

5. Open a new cmd window and run the below command to start Hive

```
> hive
```

- 6. Execute the various Hql Commands in Hive shell
- 7. Stop the hive and other server

HQL COMMANDS:

Create Database

```
hive> create database demo;
```

hive> create a database if not exists demo;

hive> show databases;

hive> describe database extended demo;

Create Table

```
hive> create table demo.employee (Id int, Name string, Salary float)
```

row format delimited

fields terminated by ',';

hive> create table if not exists demo.employee (Id int, Name string, Salary float)

row format delimited

fields terminated by ',';

Alter Table

hive> alter table old_table_name rename to new_table_name;

hive> Alter table emp rename to employee_data;

Drop Table

hive> drop table new_employee;

Aggregate Functions in Hive

employee_data

Id	Name	Salary			
1	Gaurav	30000			
2	Aryan	20000			
3	Vishal	40000			
4	John	10000			
5	Henry	25000			
6	William	9000			
7	Lisa	25000			
8	Ronit	20000			

Load the below data file "empl details" from local drive to HQL table "employee data" and perform HQL function.

hive> create table employee_data (Id int, Name string, Salary float)

row format delimited

fields terminated by ',';

hive> load data local inpath '/home/codegyani/hive/emp_details' into table employee_data;

hive> select max(Salary) from employee_data;

GROUP BY and HAVING Clause

hive> select department, sum(salary) from emp group by department;

hive> select department, sum(salary) from emp group by department having sum(salary)>=35000;

View and Indexes

HQL Views:

Views are generated based on user requirements and save any result set data as a view.

hive> CREATE VIEW emp_30000 AS

SELECT * FROM employee

WHERE salary>30000;

Dropping a View

hive> DROP VIEW emp_30000;

Creating an Index:

An Index is nothing but a pointer on a particular column of a table. Creating an index means creating a pointer on a particular column of a table.

hive> CREATE INDEX inedx_salary ON TABLE employee(salary)

AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler';

Dropping an Index:

hive> DROP INDEX index_salary ON employee;

RESULTS:

Date: Task No: 9 Write Pig Latin scripts sort, group, join, project, and filter the data

AIM:

PROCEDURE:

- 1) Install the prerequisite Stable software's Java Development Kit and Java Runtime Environment, Apache Hadoop.
- 2) Visit the Apache Pig download page: https://pig.apache.org/downloads.html
- 3) Download the latest stable release of Pig.
- 4) Extract the Pig Archive and Set Environment Variables for java, Apache Hadoop and Apache Pig

For Java:

JAVA_HOME=C:\Program Files\Java\jdk-1.8

Path = $C:\Pr$ Files\Java\jdk-1.8\bin

For Hadoop:

HADOOP_HOME=C:\ApacheHadoop2.9.2

Path = $C:\ApacheHadoop2.9.2\bin$

For Pig:

PIG_HOME = C:\Apachepig

Path = C:\Apachepig\bin

 $Path = C:\Apachepig\conf$

5) Verify the Paths, Run following commands in a NEW Command Window

echo %PIG_HOME%

6) Open the pig. cmd file in edit mode, and change the value of the HADOOP_BIN_PATH

Old value:- %HADOOP_HOME%\bin

New Value:- %HADOOP_HOME%\libexec

7) Edit Pig Configuration, go to the conf directory within your Pig installation directory, rename the pig.properties.template file to pig.properties. and set the exectype property to "local"

exectype=local

8) Start Apache Pig, run the following command in a new Command Prompt as administrator

C:\Users\Lenovo>echo %PIG HOME%

O/P: C:\ApachePig

C:\Users\Lenovo>pig -version

Pig Latin scripts: Input.txt Rajiv,42 siddarth,45 Rajesh,40 Preethi,23 Trupthi,34 Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai Antolina,Chennai Antolina,Chennai	Output:			
Rajiv,42 siddarth,45 Rajesh,40 Preethi,23 Trupthi,34 Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Pig Latin scripts:			
siddarth,45 Rajesh,40 Preethi,23 Trupthi,34 Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Input.txt			
Rajesh,40 Preethi,23 Trupthi,34 Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Rajiv,42			
Preethi,23 Trupthi,34 Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	siddarth,45			
Trupthi,34 Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Rajesh,40			
Archana,21 Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Preethi,23			
Robin,22 BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Trupthi,34			
BOB,23 Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Archana,21			
Maya,23 Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Robin,22			
Sara,25 David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	BOB,23			
David,23 Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Maya,23			
Maggy,22 Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Sara,25			
Addressfile.txt Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	David,23			
Rajiv,Chennai Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Maggy,22			
Rajesh,Delhi Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Addressfile.txt			
Trupthi,Hyderabad Robin,Pune Maya,Hyderabad Anderson,Chennai	Rajiv,Chennai			
Robin,Pune Maya,Hyderabad Anderson,Chennai	Rajesh,Delhi			
Maya,Hyderabad Anderson,Chennai	Trupthi, Hyderabad			
Anderson, Chennai	Robin,Pune			
	Maya,Hyderabad			
Antolina, Chennai	Anderson, Chennai			
	Antolina,Chennai			

```
Apache Pig version 0.17.0 (r1797386) compiled Jun 02 2017, 15:41:58 C:\Users\Lenovo>pig Grunt Shell started: grunt>
```

Load Data:

data = LOAD './input.txt' USING PigStorage(',') AS (name:chararray, age:int);

Sort Operator:

sortbyage = ORDER data BY age ASC|DESC; dump sortbyage;

Group Operator:

grouped_data = GROUP data BY age; dump grouped_data;

Filter Operator:

filterbyage = FILTER data BY (age>40); dump filterbyage;

Inner Join Operator:

table1 = LOAD './input.txt' USING PigStorage(',') AS (name:chararray, age:int); table2 = LOAD './addressfile.txt' USING PigStorage(',') AS (name:chararray, address:chararray);

joinbyname = JOIN table1 BY name, table2 BY name;

OuterJoin Operator;

LO = JOIN table1 BY name LEFT OUTER, table2 BY name; dump LO;

RO = JOIN table1 BY name RIGHT, table2 BY name; dump RO;

FO = JOIN table 1 BY name FULL OUTER, table 2 BY name; dump FO;

Store Operator:

grouped_data = GROUP data BY age; result = FOREACH grouped_data GENERATE group AS age, COUNT(data) AS count; STORE result INTO 'output';

RESULT:

.

Date: Task No: 10

i.) Construct the Pig Latin Scripts to find character Count
ii. Construct the Pig Latin Scripts to find a max temp for each and every
vear

AIM:

PROCEDURE:

Construct the Pig Latin Scripts to find character Count

- 1) Load the data from LOCAL file system
- 2) Convert the Sentence into words using TOKENIZE Function with delimeter
- 3) Convert Column into Rows
- 4) Apply GROUP BY and Generate word count
- 5) Dump the word count

Construct the Pig Latin Scripts to find a max temp for each and every year

- 1) Load your data (assuming it's in a tab-delimited file)
- 2) Extract the year from the date column (assuming date is in 'YYYY-MM-DD' format)
- 3) Group the data by year
- 4) Calculate the maximum temperature for each year
- 5) Store the result in an output file

Pig Latin Scripts:

(i) Construct the Pig Latin Scripts to find character Count

File Name: wordcount.pig

data = LOAD './countwords.txt' USING PigStorage() AS (line:chararray);

Words = FOREACH data GENERATE FLATTEN(TOKENIZE(line, ' ')) AS word;

Grouped = GROUP Words BY word;

wordcount = FOREACH Grouped GENERATE group, COUNT(Words);

DUMP wordcount;

(ii) Construct the Pig Latin Scripts to find a max temp for each and every year

File Name: tempanalysis.pig


```
raw_data = LOAD './temperature.txt' USING PigStorage('\t') AS (date:chararray, temperature:double);
data_with_year = FOREACH raw_data GENERATE SUBSTRING(date, 0, 4) AS year, temperature;
grouped_data = GROUP data_with_year BY year;
max_temp_per_year = FOREACH grouped_data GENERATE group AS year,
MAX(data_with_year.temperature) AS max_temperature;
```

STORE max_temp_per_year INTO 'your_output_file.txt' USING PigStorage('\t');

Input Files:

countwords.txt

This is a hadoop post hadoop is a bigdata technology

temperature.txt 9/12/2020

33.4 7/13/2021 30.45 9/14/2020 28.6 8/15/2023 30.4 6/16/2022 33.5 9/17/2023 38.6 9/18/2020 38.5 5/19/2023 36.4 9/20/2023 35.7 9/21/2021 36.7 39.4 2/22/2023 9/23/2023 40.2 3/24/2022 40.6 1/25/2022 40.8 9/26/2023 42.8

RESULT:

Date: Task No: 11

A . Collect Social Media Data from a Twitter to a Local File with the Topic 'covid 19'

AIM:

PROCEDURE:

- 1. Install tweepy and json module in pycharm
- 2. Import tweepy and json module.
- 3. Create an account in Twitter Developer mode.
- 4. Get the Twitter API credentials consumer key, consumer secret, access token, access token secret.
- 5. Authenticate with Twitter API
- 6. Search query and set, number of tweets to collect
- 7. Create File to save the collected data with file name 'covid19_tweets.json'
- 8. Collect tweets and save to a file

PROGRAM:

```
import tweepy
import ison
consumer key = 'KbKxl06BkeqAcwNhJnBMN5s5M'
consumer_secret = 'LaVFLQhzzy57mVDo9dbT60QOXnN6Ajm09Q6PAmSgPGoozZqhM9'
access_token = '1709726896194244609-w4KYxcGTyA4GHjlO7kJHzQlCWiVvSm'
access token secret = 'G8uyaHaIXoDUmFzVW3Ao6sAWRZ328Y2B6RraAeEU8p4e3'
auth = tweepy.OAuth2BearerHandler(consumer_key, consumer_secret)
auth.set access token(access token, access token secret)
api = tweepy.API(auth, wait_on_rate_limit=True)
search query = 'covid 19'
num\_tweets = 1000
output_file = 'covid19_tweets.json'
tweets = []
for tweet in tweepy. Cursor(api.search, q=search_query, lang='en').items(num_tweets):
  tweets.append(tweet._json)
with open(output_file, 'w', encoding='utf-8') as file:
  json.dump(tweets, file, ensure ascii=False, indent=4)
print(f'{len(tweets)} tweets collected and saved to {output_file}')
```

```
'covid19_tweets.json'
[{
  "State": "Andaman and Nicobar Islands",
  "Confirmed": 7651,
  "Recovered": 7518,
  "Deaths": 129,
  "Active": 4,
  "Last_Updated_Time": "13/08/2021 23:27:22",
  "Migrated_Other": 0,
  "State_code": "AN",
  "Delta_Confirmed": 0,
  "Delta_Recovered": 0,
  "Delta_Deaths": 0,
  "State_Notes": ""
  "State": "Andhra Pradesh",
  "Confirmed": 2066450,
  "Recovered": 2047722,
  "Deaths": 14373,
  "Active": 4355,
  "Last_Updated_Time": "13/08/2021 23:27:22",
  "Migrated_Other": 0,
  "State_code": "AP",
  "Delta_Confirmed": 0,
  "Delta_Recovered": 0,
  "Delta_Deaths": 0,
  "State_Notes": ""
 }]
```


.

B. Download and Set Up MongoDB Server and a Client Mongodb Compass.

PROCEDURE:

- 1. Installing MongoDB on Windows:
- 2. Go to the official MongoDB website (https://www.mongodb.com/try/download/community) and download the MongoDB Community Server for Windows.
- 3. Run the downloaded installer (.msi file).
- 4. Choose a custom installation if you want to specify a custom installation directory or options.
- 5. After installation, MongoDB should start automatically as a Windows service. Check this in the Windows Services Manager.
- 6. Open Mongodb Compass, By default, MongoDB listens on port 27017.
- 7. Import the COIVD19, state-wise data into the Mongodb

SAMPLE INPUT FILE: [File Name: covid19statewise.json]

```
[{
  "State": "Andaman and Nicobar Islands",
  "Confirmed": 7651,
  "Recovered": 7518,
  "Deaths": 129,
  "Active": 4,
  "Last_Updated_Time": "13/08/2021 23:27:22",
  "Migrated Other": 0,
  "State_code": "AN",
  "Delta Confirmed": 0,
  "Delta_Recovered": 0,
  "Delta Deaths": 0,
  "State_Notes": ""
  "State": "Andhra Pradesh",
  "Confirmed": 2066450,
  "Recovered": 2047722,
  "Deaths": 14373,
  "Active": 4355,
  "Last_Updated_Time": "13/08/2021 23:27:22",
  "Migrated_Other": 0,
  "State_code": "AP",
  "Delta Confirmed": 0,
  "Delta Recovered": 0,
  "Delta_Deaths": 0,
  "State Notes": ""
 }]
```

.

Import Completed 38 Documents Imported

Date:

Task No: 12

A. Retrieve Analytic Information given from MongoDB i. For each "place_type", Find total favorite_count ii. For each "country_code", find total "retweet_count"

AIM:

.

PROCEDURE:

- 1. Install pymongo in Pycharm IDE
- 2. Import the pymongo module in the analytics program
- 3. Configure the mongodb server using mongodb compass
- 4. Upload the country dataset in to Mongodb
- 5. Get the MongoDB URI, Database name and Collection Name
- 6. Establish the MongoDB connection using MongoDB URI, Database name and Collection Name
- 7. Aggregation pipeline to calculate the total favorite_count, retweet_count
- 8. Generate the results using aggregate functions.
- 9. Print the results, total favorite_count, retweet_count

PROGRAM:

```
import pymongo
mongo_uri = "mongodb://localhost:27017/"
database name = "Country"
collection_name = "Tweets"
client = pymongo.MongoClient(mongo uri)
db = client[database_name]
collection = db[collection_name]
pipeline = [
     "$group": {
       "_id": "$country_code",
       "total favorite count": {"$sum": "$favorite count"},
       "total_retweet_count": { "$sum": "$retweet_count"}
1
result = list(collection.aggregate(pipeline))
if result:
  total_favorite_count = result[0]["total_favorite_count"]
```

Total favorite_count: 3

Total_retweet_count: 6

else:

print("No tweets found in the collection.")

Close the MongoDB connection client.close()

total_retweet_count = result[1]["total_retweet_count"]
print(f"Total favorite_count: {total_favorite_count}")
print(f"Total_retweet_count: {total_retweet_count}")

SAMPLE DATASET:

country_code	latitude	longitude	country_name	place_type	favorite_count	retweet_count
AE	23.424076	53.847818	United Arab Emirates	Residential	7	4
AE	23.424076	53.847818	United Arab Emirates	Commercial	5	2
AR	- 38.416097	-63.616672	Argentina	Educational	4	6
AR	- 38.416097	-63.616672	Argentina	Cultural	5	5
IN	20.593684	78.96288	India	Religious	80	3
IN	20.593684	78.96288	India	Historical	100	6
TH	15.870032	100.992541	Thailand	Shopping	2	5
IN	20.593684	78.96288	India	Sports	55	3
AO	- 11.202692	17.873887	Angola	Residential	2	6
AQ	- 75.250973	-0.071389	Antarctica	Commercial	4	4
AR	- 38.416097	-63.616672	Argentina	Educational	5	9
AS	- 14.270972	- 170.132217	American Samoa	Cultural	3	6
BD	23.684994	90.356331	Bangladesh	Religious	0	4
AU	- 25.274398	133.775136	Australia	Historical	8	4
AW	12.52111	-69.968338	Aruba	Shopping	2	8
AZ	40.143105	47.576927	Azerbaijan	Sports	4	5
EG	26.820553	30.802498	Egypt	Tourist	2	2
IN	20.593684	78.96288	India	Tourist	8	5
BD	23.684994	90.356331	Bangladesh	Religious	9	2

RESULT:

B. Find out top 10 most frequent topic words of the entire tweet message texts of your collection after lemmatization/stemming and removing all the Stop Words.

AIM:

PROCEDURE:

- 1. Install NLTK data in the PyCharm IDE
- 2. Import the NLTK libraries WordNetLemmatizer, PorterStemmer, stopwords
- 3. Read the sample tweet message from Mongodb or assign tweet = 'sample message'
- 4. Tokenize the tweet into words
- 5. Initialize lemmatizer and stemmer
- 6. Lemmatize and stem each word
- 7. Remove stop words
- 8. Define the list of English stop words
- 9. Join the filtered words back into a sentence
- 10. Print the results

PROGRAM:

import nltk

```
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
tweet = "The quick brown foxes are jumping over the lazy dogs' bones."
words = nltk.word_tokenize(tweet)
lemmatizer = WordNetLemmatizer()
stemmer = PorterStemmer()
lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
stemmed_words = [stemmer.stem(word) for word in words]
words = nltk.word_tokenize(tweet)
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word.lower() not in stop_words]
filtered_text = ' '.join(filtered_words)
print("Original words:", words)
```

[nltk_data] Downloading package punkt to

[nltk_data] C:\Users\Lenovo\AppData\Roaming\nltk_data...

[nltk_data] Package punkt is already up-to-date!

[nltk data] Downloading package wordnet to

[nltk_data] C:\Users\Lenovo\AppData\Roaming\nltk_data...

[nltk_data] Package wordnet is already up-to-date!

[nltk_data] Downloading package stopwords to

[nltk_data] C:\Users\Lenovo\AppData\Roaming\nltk_data...

[nltk_data] Package stopwords is already up-to-date!

Original words: ['The', 'quick', 'brown', 'foxes', 'are', 'jumping', 'over', 'the', 'lazy', 'dogs', "'", 'bones', '.']

Lemmatized words: ['The', 'quick', 'brown', 'fox', 'are', 'jumping', 'over', 'the', 'lazy', 'dog', "'", 'bone', '.']

Stemmed words: ['the', 'quick', 'brown', 'fox', 'are', 'jump', 'over', 'the', 'lazi', 'dog', "'", 'bone', '.']

Tweet without stop words: quick brown foxes jumping lazy dogs bones.

I	print("Lemmatized words:", lemmatized_words) print("Stemmed words:", stemmed_words) print("Tweet without stop words:", filtered_text)
-	
1	RESULT: