XINGYUE HAN

(1) 215 5946 917 | xingyueh@sas.upenn.edu

EDUCATION

Nanjing University Nanjing, China

Bachelor of Science in Physics

Sep. 2015-Jun. 2019 (expected)

- The National Basic Discipline Elite Program of Physics*
- GPA: 4.46/5.0; Compulsory courses' GPA: 4.51/5.0; Ranking: 13/144 (top 10%)

(*The Elite Program selects 30 students with outstanding academic performances out of 200 students in each grade.)

University of Pennsylvania

Philadelphia, US

Visiting student

Nov. 2019-May. 2019 (expected)

RESEARCH EXPERIENCE

Wu lab, University of Pennsylvania

> Topic: Berry curvature in magnetic Weyl semimetals using Terahertz time-domain spectroscopy (TTDS)

Undergraduate Research Assistant, Advisor: Prof. Liang Wu

Nov.2018-Now

- Built a THz spectrometer that emits and probes Terahertz signals. By measuring the sample transmission, the conductivity function of the sample can be extracted.
- Measured the second harmonic generation of ZnTe and GaP crystal.
- The first THz emitter I used is ZnTe which generates frequencies in a range of 0~4 THz. It is the frequency difference between two ultrafast laser pulses. The second emitter is a photoconductive antenna. It generates a higher amplitude radiation. The third emitter is a metallic spintronic trilayer. It generates a broadband radiation fully covering 1~30 THz.
- Further research will focus on topological aspects of magnetic Weyl semimetals like Mn₃Sn and Mn₃Ge. By measuring conductivity and Faraday angle measurement, I want to reveal the Berry curvature effects in these materials.

Low Dimensional Magnetism Group, Nanjing University

Undergraduate Research Assistant, Advisor: Prof. Haifeng Ding

Topic: Geometry frustration in an artificial 2D-rotational spin ice

Sep.2017-Nov.2018

- Developed an artificial 2D spin ice system in a macroscopic scale. In this system, we use little magnets to represent spins. The centers of these magnets are fixed in a 2D Kagome array. Each magnet can rotate freely in-plane. External magnetic fields can be applied in-plane.
- Measured the hysteresis loop and First-Order-Reversal-Curves (FORCs) of the system. Meta-stable regions were identified in the curves.
- Calculated the number of vertices obeying Ice Rule under different magnetic field.
- Measured the threshold external field needed to sustain a configuration obeying Ice Rule.

Design Project of College Physics Experiment

Topic: Verification experiment of Faraday Effect based on multiple wave interference

Undergraduate Research, Advisor: Prof. Sihui Wang

Jun.2017

- Built a simplified Fabry-Perot interferometer. External magnetic field is applied along the light path.
- Measured the transmission light intensity at different angle.
- Calculated the angle dependence of transmission light, which is the result of interference of multiple linear polarized lights with different polarization planes.

ACADEMIC ACTIVITIES

Magdalene College, University of Cambridge	Cambridge, UK
Summer Institute	Aug.2018
Oriel College, University of Oxford	Oxford, UK
Summer Institute	Aug.2018
Peking University	Beijing, China
Summer School	Jul.2017

HONORS & AWARDS

Elite Program Scholarship (top 2%)	Dec.2018
Guorui Scholarship	Nov.2018
Yingcai Scholarship (top 4%)	May.2018
Xing Quan Scholarship	Nov.2017
People's Scholarship (twice)	Nov.2017
China National Scholarship (top 1.5%)	Nov.2016
Outstanding Student Leaders of Nanjing University	Nov.2017
Outstanding Student of Nanjing University	Nov.2016

SKILLS

Lab skills: Terahertz spectrometer; Second-Harmonic Generation; Light path alignment; Laser instrument: Coherent-Vitara, Coherent-Astrella; Low temperature instrument: Montana.

Computer Skills: C language, Python, LabVIEW, Igor Pro.