

Large Language Model Fine-Tuning

Josh Mineroff

Director of Solution Architecture, Tech Alliances

John Wu

Senior Product Manager,

NVIDIA

Agenda

- 1. Introduction
- 2. Today's Gen Al challenge
- 3. How to customize your LLMs
- 4. How do Domino & Nvidia help
- 5. Demo

Domino in 60 seconds

Build and operate AI at scale

On-Demand Infrastructure

Self-service access to compute & secure data Comprehensive Reproducibility

Collaboration across teams & technologies

Al Factory

Rapid model deployment to production

Model Governance

Responsible AI model monitoring, risk management, & remediation

Today's Challenge

We all know pretrained LLMs are great, but your use case requires ...

Business Context

The LLM doesn't know about your business since it wasn't trained on any of your **proprietary** data.

Industry Vocabulary

The LLM doesn't understand unique terminologies and concepts that are used within your industry.

Structured outputs

The LLM doesn't know the specific structure or style of outputs that your application is expecting.

Ways to customize LLMs to your needs

- Prompt Engineering: Use carefully structured inputs to guide the outputs.
- RAG (Retrieval Augmented Generation): Adds contextual information to prompts by querying a vector database for related information.
- Full Fine-Tuning: Transfer learning approach in which all the parameters are adjusted using task-specific data.
- Parameter-Efficient Fine-Tuning (PEFT): Modifies only a small select amount of parameters for more efficient adaptation.

Different ways to fine-tune using PEFT

- Prompt Tuning: Add task-specific prompt embeddings to the input and parameters are updated independently of the frozen pretrained model.
- **Prefix Tuning:** Similar to prompt tuning, but the embeddings are inserted in all of the model layers.
- P-Tuning: A prompt encoder (LSTM model) is used to predict the input embeddings and only weights are updated at each training step.
- LoRA (Low rank adaptation): Decomposes a large matrix into two smaller low-rank matrices in the attention layers (drastically reduce number of parameters).

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

Diving deeper into LoRA: Traditional Fine-Tuning

Diving deeper into LoRA: Low-Rank

$$m \times n = m \times r * r \times n$$

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

- 1. Let's say you have a $100K \times 100K$ weight matrix = 10B parameters
- 2. We can create our low-rank adaptor by reparameterizing the original weight into two matrices (A and B) of low rank R.
- 3. Our new low-rank matrix is then taken to be the product of A and B
- 4. If r=2, we end up updating $(100K \times 2) + (100K \times 2) = 400K$ parameters

How does Nvidia help?

- NVIDIA NeMo is a Generative AI framework built for researchers and developers working on large language and other types of models.
- Pre-built containers and existing code templates make it easy to apply existing adaptation techniques such as LoRA.
- Pretrained models such as NVIDIA Nemotron provide a powerful baseline to start fine-tuning from.

NVIDIA NeMo

NVIDIA AI Foundation Models

How does Domino help?

Al Hub

Templates with software, code, and configuration ready to go for common AI use cases and patterns (e.g., RAG)

Fine-tuning Wizard

Browse leading open source foundation models and generate code to fine-tune them on your data

Al Gateway

Control and audit access to commercial LLMs

Vector Data Sources

Control and audit access to vector DBs

Generative AI

Hybrid-Cloud Compute

Run Al workloads in any cloud, or on-prem — to reduce costs, simplify scaling, and protect data privacy

Data Access Layer

Put data at data scientists' fingertips through a central interface that secures and audits access

FinOps

Monitor and reduce Al costs; with proactive and granular budget management, and intelligent controls

Model Sentry

Customize processes for model review and validation, with complete audit records and reproducibility throughout the model lifecycle

Platform

RAG Fine-tune foundation models Build Your Own

Accelerate AI impact with Domino

DATA SCIENCE FREEDOM + ENTERPRISE CONTROL

Domino in 60 seconds

Build and operate AI at scale

On-Demand Infrastructure

Self-service access to compute & secure data Comprehensive Reproducibility

Collaboration across teams & technologies

Al Factory

Rapid model deployment to production

Model Governance

Responsible AI model monitoring, risk management, & remediation

Thank you!

- 1. **LEARN MORE:** domino.ai/NVIDIA
- 2. **VISIT OUR BOOTH:** #1612 in the Al Center of Excellence Pavilion.
- 3. **WIN**: NVIDIA Jetson Orin™ Nano Developer Kit!

