Pertemuan ke-4

Oleh:

Santi Arum Puspita Lestari, M.Pd
Teknik Informatika
Universitas Buana Perjuangan Karawang

LIMIT FUNGSI DI SATU TITIK

- Perhatikan fungsi $f(x) = \frac{x^2-1}{x-1}$
- Fungsi tersebut tidak terdefinisi di x=1, karena pada titik tersebut f(x) berbentuk $\frac{0}{0}$
- Tetapi masih bisa ditanyakan beberapa nilai f(x) jika x mendekati 1.
- Dengan bantuan kalkulator dapat diperoleh nilai f(x) bila x mendekati 1, seperti pada tabel berikut:

x	0,9	0,99	0,999	0,999	→ 1 ←	1,0001	1,001	1,01	1,1
f(a)	1.0	1.00	1 000	1 000	. 2 .	2.0001	2.001	2.01	0.1
$\int f(x)$	1,9	1,99	1,999	1,999	$ ightarrow \epsilon \leftarrow $	2,0001	2,001	2,01	∠, I

SECARA GRAFIK

- Dari grafik di samping terlihat bahwa f(x) mendekati 2 jika x mendekati 1.
- Secara matematis dapat dituliskan

dapat dituliskan
$$\lim \frac{x^2 - 1}{1} = 2$$

Definisi:

Untuk mengatakan bahwa $\lim_{x\to c} f(x) = L$ berarti bahwa bilamana x dekat, tetapi berlainan dengan c, maka f(x) dekat ke L.

LIMIT KIRI DAN LIMIT KANAN

 Jika x menuju c dari arah kiri (dari arah bilangan yang lebih kecil dari c) maka limit dinamakan limit kiri;

$$\lim_{x\to c^-} f(x)$$

• Jika x menuju c dari arah kanan (dari arah bilangan yang lebih besar dari c) maka limit dinamakan limit kanan;

$$\lim_{x\to c^+} f(x)$$

Hubungan antara limit dengan limit sepihak (kiri/kanan)

$$\checkmark \lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = L \text{ dan } \lim_{x \to c^{+}} f(x) = L$$

✓ $\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = L$ dan $\lim_{x \to c^{+}} f(x) = L$ ✓ Jika $\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x)$ maka $\lim_{x \to c} f(x)$ tidak ada

CONTOH 1:

- 1. Tentukan nilai dari $\lim_{x\to 3} 4x 3$
- 2. Jika diketahui $f(x) = \begin{cases} x + 3, \text{ untuk } x \le 1 \\ -x + 1, \text{ untuk } x > 1 \end{cases}$ hitunglah $\lim_{x \to 1^{-}} f(x)$ dan $\lim_{x \to 1^{+}} f(x)$

Penyelesaian:

1.
$$\lim_{x \to 3} 4x - 3 = (4.3) - 3 = 12 - 3 = 9$$

2. Untuk
$$\lim_{x \to 1^{-}} f(x)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+3) = 1+3=4$$
Untuk $\lim_{x \to 1^{+}} f(x)$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (-x+1) = -1+1=0$$

MENENTUKAN NILAI LIMIT

- Ada beberapa cara untuk menentukan limit, yaitu:
- 1. Metode **Substitusi** : mensubstitusikan nilai x pada limit fungsi.
- 2. Metode **Faktorisasi**: penyelesaian limit dengan cara memfaktorkan persamaan fungsi sehingga mempermudah dalam menentukan nilai limit fungsi.
- 3. Metode **Perkalian Sekawan**: metode ini digunakan jika limit pecahan terdapat bentuk akar.

CONTOH 2:

- Tentukan nilai dari limit berikut:
- 1. $\lim_{x \to 3} 2x + 4$
- 2. $\lim_{x \to 3} \frac{x^2 2x 3}{x 3}$
- 3. $\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$

Penyelesaian:

1.
$$\lim_{x \to 3} 2x + 4 = 2 \times 3 + 4 = 6 + 4 = 10$$

2.
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 1)}{x - 3} = \lim_{x \to 3} (x + 1)$$
$$= 3 + 1 = 4$$

LANJUTAN CONTOH 2:

3.
$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3} = \lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3} \times \frac{\sqrt{x} + 3}{\sqrt{x} + 3}$$
$$= \lim_{x \to 9} \frac{(x - 9)(\sqrt{x} + 3)}{x - 9}$$
$$= \lim_{x \to 9} \sqrt{x} + 3$$
$$= \sqrt{9} + 3$$
$$= 6$$

TEOREMA LIMIT UTAMA

Andaikan n bilangan bulat positif, k konstanta dan f dan g adalah fungsi-fungsi yang mempunyai limit di c, maka:

$$1. \quad \lim_{x \to c} k = k$$

$$2. \quad \lim_{x \to c} x = c$$

3.
$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$

4.
$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

5.
$$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

TEOREMA LIMIT UTAMA

6.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \text{ dimana } \lim_{x \to c} g(x) \neq 0$$

7.
$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n$$

8.
$$\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to c} f(x)}$$
, dimana $\lim_{x\to c} f(x) > 0$ apabla n genap

CONTOH 3:

Jika diketahui $f(x) = x^3 + 2x^2 - 1$ dan g(x) = 5 - 3xTentukan:

a.
$$\lim_{x \to 2} 3f(x)$$
 b. $\lim_{x \to 2} \frac{f(x)}{g(x)}$

b.
$$\lim_{x\to 2} \frac{f(x)}{g(x)}$$

C.
$$\lim_{x\to 2} \sqrt[3]{g(x)}$$

Penyelesaian:

a.
$$\lim_{x \to 2} 3f(x) = \lim_{x \to 2} 3(x^3 + 2x^2 - 1)$$

$$= 3 \cdot \lim_{x \to 2} (x^3 + 2x^2 - 1)$$

$$= 3 \cdot \left(\lim_{x \to 2} x^3 + \lim_{x \to 2} 2x^2 - \lim_{x \to 2} 1\right)$$

$$= 3 \cdot (2^3 + 2 \cdot (2)^2 - 1)$$

$$= 3 \cdot 15$$

$$= 45$$

LANJUTAN CONTOH 3:

b.
$$\lim_{x \to 2} \frac{f(x)}{g(x)} = \lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{2^3 + 2(2)^2 - 1}{5 - 3(2)} = \frac{8 + 8 - 1}{5 - 6} = -15$$

c.
$$\lim_{x \to 2} \sqrt[3]{g(x)} = \lim_{x \to 2} \sqrt[3]{5 - 3x}$$

= $\sqrt[3]{5 - 3(2)}$
= $\sqrt[3]{-1}$
= -1

CONTOH 4:

• Carilah $\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$ jika diketahui fungsi f(x) = 2x + 3

<u>Penyelesaian:</u>

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(2(x+h)+3) - f(2x+3)}{h}$$

$$= \lim_{h \to 0} \frac{(2x+2h+3) - (2x+3)}{h}$$

$$= \lim_{h \to 0} \frac{2x+2h+3-2x-3}{h}$$

$$= \lim_{h \to 0} \frac{2h}{h}$$

$$= \lim_{h \to 0} 2$$

$$= 2$$

LIMIT TAK HINGGA

- Misalkan $\lim_{x \to a} f(x) = L \neq 0$ dan $\lim_{x \to a} g(x) = 0$, maka $\lim_{x \to a} \frac{f(x)}{g(x)} = \cdots$
- i. $+\infty$, jika L>0 dan $g(x)\to 0$ dari arah atas
- ii. $-\infty$, jika L > 0 dan $g(x) \to 0$ dari arah bawah
- iii. $+\infty$, jika L < 0 dan $g(x) \rightarrow 0$ dari arah bawah
- iv. $-\infty$, jika L < 0 dan $g(x) \to 0$ dari arah atas

Catatan:

- $g(x) \rightarrow 0$ dari arah atas maksudnya g(x) menuju 0 dari nilai g(x) positif.
- $g(x) \rightarrow 0$ dari arah bawah maksudnya g(x) menuju 0 dari nilai g(x) negatif.

CONTOH 5:

•
$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{x - 1}$$

 $\lim_{x\to 1^-} x^2 + 1 = 2 > 0$, g(x) = x - 1 akan menuju 0 dari arah bawah karena $x\to 1$ dari kiri berarti x lebih kecil dari 1, akibatnya x-1 akan bernilai negatif.

Sehingga
$$\lim_{x\to 1^-} \frac{x^2+1}{x-1} = -\infty$$

•
$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{x^2 - 1}$$

 $\lim_{x\to 1^-} x^2 + 1 = 2 > 0$, $g(x) = x^2 - 1$ akan menuju 0 dari arah atas karena $x\to -1$ dari kiri berarti x lebih kecil dari -1, tapi bilangan negatif yang lebih kecil dari -1 jika dikuadratkan lebih besar dari 1 sehingga $x^2 - 1$ bernilai positif.

Sehingga
$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{x^2 - 1} = +\infty$$

LIMIT DI TAK HINGGA

- Misalkan $f(x) = \frac{1}{x^2}$ dengan daerah asalnya $D_f = \{x | x \in R, x \neq 0\}.$
- Nilai f(x) untuk nilai x yang semakin besar dapat dilihat pada tabel berikut:

x	$f(x) = \frac{1}{x^2}$	x	$f(x) = \frac{1}{x^2}$
1	1	-1	1
2	0,25	-2	0,25
5	0,04	-5	0,04
10	0,01	-10	0,01
100	0,0001	-100	0,0001
•••	•••	•••	•••
∞	0	$-\infty$	0

LIMIT DI TAK HINGGA

- Berdasarkan tabel sebelumnya, terlihat bahwa apabila nilai x semakin besar maka nilai fungsi f(x) akan mendekati 0.
- Sehingga dapat ditunjukkan bahwa;

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x^2} = 0$$
Atau
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

CONTOH 6:

1.
$$\lim_{x \to \infty} \frac{3x^3 - 5x^2 + 5x}{6x^3 + 7x^2 - 8x} = \lim_{x \to \infty} \frac{\frac{3x^3}{x^3} - \frac{5x^2}{x^3} + \frac{5x}{x^3}}{\frac{6x^3}{x^3} + \frac{7x^2}{x^3} - \frac{8x}{x^3}} = \lim_{x \to \infty} \frac{3 - \frac{5}{x} + \frac{5}{x^2}}{6 + \frac{7}{x} - \frac{8}{x^2}} = \frac{3 - 0 + 0}{6 + 0 - 0} = \frac{1}{2}$$

2.
$$\lim_{x \to \infty} \frac{2x^3 + 4x^2 - 10x}{3x^4 + 5x^2 + x} = \lim_{x \to \infty} \frac{\frac{2x^3}{x^4} + \frac{4x^2}{x^4} - \frac{10x}{x^4}}{\frac{3x^4}{x^4} + \frac{5x^2}{x^4} + \frac{x}{x^4}} = \frac{0 + 0 - 0}{3 + 0 + 0} = 0$$

3.
$$\lim_{x \to \infty} \frac{2x^3 - 3x^2 + 1}{x^2 - 2x + 3} = \lim_{x \to \infty} \frac{\frac{2x^3}{x^3} - \frac{3x^2}{x^3} + \frac{1}{x^3}}{\frac{x^2}{x^3} - \frac{2x}{x^3} + \frac{3}{x^3}} = \frac{2 - 0 + 0}{0 - 0 + 0} = \frac{2}{0} = \infty$$

SIFAT LIMIT TAK HINGGA

- Jika derajat f(x) = derajat g(x), maka; $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\text{koefisien pangkat derajat tertinggi dari } f(x)}{\text{koefisien pangkat derajat tertinggi dari } g(x)}$
- Jika derajat f(x) > derajat g(x) dan koefisien pangkat tertinggi f(x) bernilai positif, maka

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

• Jika derajat f(x) > derajat g(x) dan koefisien pangkat tertinggi f(x) bernilai negatif, maka

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = -\infty$$

• Jika derajat f(x) < derajat g(x), maka;

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

CONTOH 7:

$$\lim_{x \to \infty} \sqrt{x^2 + 6x + 2} - \sqrt{x^2 - 4x + 1} \cdot \frac{(\sqrt{x^2 + 6x + 2} + \sqrt{x^2 - 4x + 1})}{(\sqrt{x^2 + 6x + 2} + \sqrt{x^2 - 4x + 1})} = \lim_{x \to \infty} \frac{(x^2 + 6x + 2) - (x^2 - 4x + 1)}{\sqrt{x^2 + 6x + 2} + \sqrt{x^2 - 4x + 1}} = \lim_{x \to \infty} \frac{10x + 1}{\sqrt{x^2 + 6x + 2} + \sqrt{x^2 - 4x + 1}}, \text{ karena}$$

pangkat tertinggi pembilang = 1

Dan pangkat tertinggi penyebut = 1 karena $\sqrt{x^2} = x$, maka:

$$= \lim_{x \to \infty} \frac{10 + \frac{1}{x}}{\sqrt{1 + \frac{6}{x} + \frac{2}{x^2}} + \sqrt{1 - \frac{4}{x} + \frac{1}{x^2}}} = \frac{10}{2} = 5$$

CONTOH 8:

$$\lim_{x \to \infty} \sqrt{x^2 + 2x - 1} - \sqrt{2x^2 + 3x + 1} \cdot \frac{(\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1})}{(\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1})}$$

$$\lim_{x \to \infty} \frac{(x^2 + 2x - 1) - (2x^2 + 3x + 1)}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}} = \lim_{x \to \infty} \frac{-x^2 - x - 2}{\sqrt{x^2 + 2x - 1} + \sqrt{2x^2 + 3x + 1}}$$

$$\lim_{x \to \infty} \frac{-1 - \frac{1}{x} - \frac{2}{x^2}}{\sqrt{\frac{1}{x^2} + \frac{2}{x^3} - \frac{1}{x^4}} + \sqrt{\frac{2}{x^2} + \frac{3}{x^3} + \frac{1}{x^4}}} = \frac{-1}{0} = -\infty$$

LATIHAN

Tentukan nilai dari limit berikut:

1.
$$\lim_{x \to 2} \frac{x-4}{x^2+1}$$

2.
$$\lim_{x \to 3} \frac{\sqrt{x^2 + 16} - 4}{x^2}$$

3.
$$\lim_{x \to 3} \frac{3x^2 - 5x - 12}{x^2 - 9}$$

4.
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

5.
$$\lim_{x \to \infty} \frac{6x^2 - 7x + 5}{10 - 4x + 3x^2}$$

6.
$$\lim_{x \to \infty} \sqrt{x^2 + 3x} - x + 2$$

SEKIAN DAN TERIMA KASIH