Baye's Theorem
$$p(w_i/\vec{x}) = p(\vec{x}/w_i) p(w_i)$$

$$p(\vec{x})$$

$$\vec{x} = \text{Feature Vector}$$

$$w_i^\circ = i^{\text{th}} \text{ class}$$

$$p(A/B) = p(B/A) p(A)$$

$$p(B)$$

Say our data looks like this,

features

			Sheet1	3	class/ wi
PROPERTY	Sex	Age	No of Siblings	Ticket Fare	Survived
	male	38	4	25	(
	female	38	5	25	
	female	35	2	25	1
	female	35	4	25	1
	male	35	4	25	
	male	54	2	15	(
	male	12	3	25	(
	female	27	0	25	
1	female	27	1	. 25	
	female	28	1	10	
	female	58	2	15	(
	male	58	0	15	(
	male	58	1	15	1
	female	27	5	30	
	female	55	1	. 30	
	male	27	4	25	
	male	35	2	30	
	male	58	1	15	
	female	27	5	30	1
	male	28	4	25	0
	female	58	3	15	
	female	27	5	25	1

The above formula says, tell me the class of also feature vector if you have the classpriors, feature priors and likelihood of that feature. class prior = No of occourance of class i Total number of occorance of In above example, the (survived) 0, 1 is the dans we are trying to predict. : clas prior = No of times Zero occoured of class (6000) Total numbers of ocuranu of all does class 1(w.) Symbol P(N1) = No of ocurrance of class 1" Total no of occerance 20 p(w;) = ith class probability

feature = No of occurance of feature x Total no of all feature vectors Say x = Lfemale, 35, 2 = , 25 } E So we need to find how many time ? -Occoured in the above data sect Such combination : Feature = p(x) = 1 to occoured only 22 once (for 3) Symbol Say X = [male, 58, 1, 15] $p(\vec{x}) = \frac{2}{22}$ such combination occoured only "2" times in entire data set. (Row 14 22) likelihood = class conditional probability $= \rho(\vec{x}/\omega_i)$ - No of occurance of X given that Total number of feature vectors in that clay Say you are given that, the passenger has already survived ("class 1"), then find the probability of feature vector = [mile, 58, 1, 15] 2 -> 2 such feature vector p(x/w1) = in class "1" ,12, No of datas rows with survived == 1

Say $\overrightarrow{X} = [female, 27, 5, 30]$ P(\overrightarrow{X}/W_1) = $\frac{2}{12}$ --- (YOW 15 and 23)

Total points to with sorvived == 1

P(\overrightarrow{X}/W_1) = Find probability of occurance of \overrightarrow{X} in class i

= frequency of occurance of \overrightarrow{X} in class i

Total number of \overrightarrow{X} points in class i

So, say, for example, given $\vec{X} = [\text{male}, 58, 1, 15]$, then find the closest \vec{X} : $\rho(w_i/\vec{X}) = \rho(\vec{X}/w_i) \rho(w_i)$ $\rho(\vec{x})$ $\rho(\vec$

$$\rho(\vec{x}/\omega_0) = \rho(cc) rance of \vec{x} in classes occurred of the such feature occurred of the points in class (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of \vec{x} in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of \vec{x} in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\vec{x}/\omega_1) = \rho(cc) rance of the points in classes (zero)$$

$$\rho(\omega_0/\overline{x}) = \rho(x/\omega_0) \times \rho(\omega_0)$$

$$= \frac{2}{2}$$

$$\rho(\omega_1/\overline{x}) = \rho(\overline{x}/\omega_1) \times \rho(\omega_1)$$

$$= \frac{2}{12} \times \frac{1}{22}$$

$$= \frac{2}{12} \times \frac{1}{22}$$

$$= \frac{2}{22} \times \frac{2}{22} = 1$$

:. $p(w_0/\vec{x}) = 0.0$ & $p(\omega_1/\vec{x}) = 1.0$ $p(\vec{x}/w_0)$ So if you are [mole, 58, 1, 15], then

you have a higher chance of surviving

{ In this case completely:)}

The above values are probability & not absolute numbers. It is by pure chance that we got o & 1 as probability. This is a toy example to show you baye's rule.