Riemann Hypothesis for "fake L-functions" coming from elliptic curves

Daniel Miller

June 16, 2016

1 Introduction

Let $E_{/\mathbf{Q}}$ be an elliptic curve, l an odd prime, and $\rho_{E,l}: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{Z}_l)$ the associated Galois representation. For p not dividing the conductor of E, we define

$$a_p = p + 1 - \#E(\mathbf{F}_p)$$

= tr \rho_{E,l}(fr_p).

Then the Hasse bound $|a_p| \leq 2\sqrt{p}$ allows us to define an angle $\theta_p = \theta_p(E) \in [0, \pi]$ by the equation

$$2\cos\theta_p = \frac{a_p}{\sqrt{p}}.$$

Let $S([0,\pi])$ be the space of step functions on $[0,\pi]$. For $\eta \in S([0,\pi])$ with $\|\eta\|_{\infty} \leq 1$, we define a "fake *L*-function" $L_{\eta}(E,s)$ by an infinite product

$$L_{\eta}(E,s) = \prod_{p} \left(1 - \eta(\theta_p)p^{-s}\right)^{-1}$$

where here and in the remainder of the document we take the product over all unramified primes of E.

Our goal is to show that, assuming a kind of "strong Sato–Tate conjecture" for E, the $L_{\eta}(E,s)$ satisfy the appropriate analogue of the Riemann Hypothesis.

2 Heuristics

Just for this section, let $\{\theta_p\}$ be a collection of i.i.d. random variables with joint distribution μ_{ST} and f a function on $[0, \pi]$. Then $\{f(\theta_p)\}$ is a collection

of i.i.d. random variables with expected value $\mathbf{E}[f(\theta_p)] = \mu_{ST}(f)$. The strong law of large numbers tells us that

$$\frac{1}{\pi(X)} \sum_{p \leqslant X} f(\theta_p) \to \mu_{\mathrm{ST}}(f).$$

We want quantitative bound on the convergence. A basic but involved computation yields

$$\mathbf{E}\left[\left(\frac{1}{\pi(X)}\sum_{p\leqslant X}f(\theta_p)-\mu_{\mathrm{ST}}(f)\right)^2\right]=\frac{1}{\pi(X)}\operatorname{Var}(f)$$

So heuristically, if the θ_p come from an elliptic curve, we expect

$$\left| \frac{1}{\pi(X)} \sum_{p \leqslant X} f(\theta_p) - \int f \, \mathrm{d}\mu_{\mathrm{ST}} \right| = O\left(\mathrm{Var}(f) X^{-\frac{1}{2} + \epsilon}\right).$$

3 First properties

Throughout this section, $E_{/\mathbf{Q}}$ is an elliptic curve and all notation is as above.

Lemma 3.1. The product for $L_{\eta}(E,s)$ converges absolutely on the region $\{\Re s > 1\}$.

Proof. By [Kno56, §3.7, Th. 5], it suffices to prove that the sum $\sum_{p} \frac{|\eta(\theta_{p})|}{p^{s}}$ converges when $\Re s > 1$. This is simple:

$$\sum_{p} \frac{|\eta(\theta_p)|}{p^s} \leqslant \sum_{n} n^{-s} = \zeta(s)$$

which is already known to converge.

Let $\mu_{\rm ST}$ be the Sato–Tate measure $\frac{2}{\pi}\sin^2\theta\,\mathrm{d}\theta$ and, for each X>0, define a measure $\mu^X=\frac{1}{\pi(X)}\sum_{p\leqslant X}\delta_{\theta_p}$. Then the Sato–Tate conjecture states that $\mu^X\to^*\mu_{\rm ST}$, in the sense that for each $f\in C([0,\pi])$,

$$\lim_{X \to \infty} \frac{1}{\pi(X)} \sum_{p \leqslant X} f(\theta_p) = \int_{[0,\pi]} f \,\mathrm{d}\mu_{\mathrm{ST}}.$$

To simplify notation, for any measure μ , write $\mu(f) = \int f d\mu$.

Conjecture 3.2 (Akiyama-Tanigawa).

$$\sup_{x \in [0,\pi]} \left| (\mu^X - \mu_{ST})(\chi_{[x,\pi]}) \right| = O(X^{-\frac{1}{2} + \epsilon}).$$

This is a trivial rewriting of the statement in [AT99, Conj. 1].

Theorem 3.3. Assume the Akiyama–Tanigawa conjecture. Then for any step function $\eta: [0, \pi] \to [-1, 1]$, we have

$$\left| (\mu^X - \mu_{\mathrm{ST}})(\eta) \right| = O_{\eta}(X^{-\frac{1}{2} + \epsilon}).$$

Proof. We may write $\eta = \sum \lambda_i \chi_{[x_i,\pi]}$. Then

$$\begin{aligned} \left| (\mu^X - \mu_{\text{ST}})(\eta) \right| &= \left| \sum \lambda_i (\mu^X - \mu_{\text{ST}}) (\chi_{[x_i, \pi]}) \right| \\ &\leqslant \sum |\lambda_i| \left| (\mu^X - \mu_*) (\chi_{[x_i, \pi]}) \right| \\ &= \left(\sum |\lambda_i| \right) O(X^{-\frac{1}{2} + \epsilon}). \end{aligned}$$

Theorem 3.4.

4 Functions with non-zero expected value

Any integrable function on $[0, \pi]$ can be written as $c + \eta$, where $c \in \mathbf{R}$ and $\mu_{\mathrm{ST}}(\eta) = 0$. Then

$$L_{c+\eta}(E,s) = \prod_{p} (1 - (c + \eta(\theta_p))p^{-s})^{-1}$$
$$= \prod_{p} (1 - \eta(\theta_p)p^{-s + \log_p c})^{-1}.$$

References

- [AT99] Shigeki Akiyama and Yoshio Tanigawa. "Calculation of values of L-functions associated to elliptic curves". In: $Math.\ Comp.\ 68.227$ (1999), pp. 1201–1231.
- [Kno56] Konrad Knopp. *Infinite sequences and series*. Translated by Frederick Bagemihl. Dover Publications, Inc., New York, 1956.