Tae Eun Kim Autumn 2019

Practice problems for comprehensive final exam.

Problem 1. (True/false)

(True/False) Circle T if the statement is ALWAYS true; circle F otherwise. No explanation is required.

(a)
$$(T/F)$$
 $f(x) = x + 1$ and $g(x) = \frac{x^2 - 1}{x - 1}$ are the same functions.

(b)
$$\left(\mathsf{T} / \mathsf{F} \right)$$
 If $\lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$ exists, then f is continuous at 3 .

(c) (T/F) If f has a vertical asymptote
$$x=-3$$
, then $\lim_{x\to -3} f(x)=\infty$.

(d) ($\mathsf{T} \ / \ \mathsf{F}$) A function may possess three distinct horizontal asymptotes.

(e) (T/F) Let f be continuous on [1,3). If f(1)=-2 and f(3)=5, then the equation f(x)=0 must have a solution between 1 and 3.

Select correct answers. A question may have multiple correct answers. No partial credit is given for this problem.

- (a) At what point(s) c does the conclusion of the Mean Value Theorem hold for $f(x) = x^3$ on the interval [-3,3]?
 - A. $-\sqrt{3}$
 - B. $-1/\sqrt{3}$
 - C. 0
 - D. $1/\sqrt{3}$
 - E. $\sqrt{3}$
 - F. None of the above
- (b) The equation of the line that represents the linear approximation to the function $f(x) = \ln(x)$ at a = 1 is
 - A. y = x 1
 - B. y = x + 1
 - C. y = -x 1
 - D. y = -x + 1
 - E. None of the above
- (c) Let $f(x) = \sqrt[3]{x}$ and let L(x) be the linear approximation of f(x) at a = 64.
 - i. Select the figure which includes the correct graph of L(x).

Α.

В.

С.

- ii. If L(50) is used to approximate $\sqrt[3]{50}$,
 - A. it gives an overestimate.
 - B. it gives an underestimate.
 - C. it gives an exact value of $\sqrt[3]{50}$.
 - D. it cannot be determined.

(a) Evaluate the following limits. You may use L'Hôpital's rule.

i.
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

ii.
$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x$$

iii.
$$\lim_{x \to -\infty} \frac{\sqrt{16x^6 + 8x^3 - 4}}{3x^3 - 7x}$$

(b) A table of values for f(x) and f'(x), along with a graph of a function g(x) is shown below.

\boldsymbol{x}	f(x)	f'(x)
1	2	3
2	4	1
3	6	5

Compute the following or state "DNE". There is no partial credit for this problem. i. $\frac{d}{dx}g(x)$ at x=5

i.
$$\frac{d}{dx}g(x)$$
 at $x=5$

ii.
$$\frac{d}{dx}g(f(x))$$
 at $x=2$

iii.
$$f^{-1}(6)$$

iv.
$$\frac{d}{dx}f^{-1}(x)$$
 at $x = 6$

v.
$$\frac{d}{dx} \left[f(x) e^{g(x)} \right]$$
 at $x = 3$

Compute the following integrals.

(a)
$$\frac{d}{dx} \int_0^{\pi/2} \sin^7 t \, dt$$

(b)
$$\int_0^{\pi/2} \frac{d}{dx} (\sin^7 x) \, dx$$

(c)
$$\frac{d}{dx} \int_0^{\sin(x)} \ln(t^2 + 1) dt$$

(d)
$$\int_{-1}^{1} \frac{\theta^5 + \sin \theta}{\sqrt{1 + \cos^2 \theta}} d\theta$$

(e)
$$\int (4x-6)\sqrt{x^2-3x} \, dx$$

(f)
$$\int_0^{\pi/4} \frac{1 + \tan \theta}{\sec \theta} \, d\theta$$

Consider the three functions, g, f, and h, defined on the interval (-2,2). Given that

$$g(x) = \cos(\pi x), \quad h(x) = x^2 + 1 \text{ and } g(x) \le f(x) \le h(x),$$

answer the following questions.

(a) Sketch and label the graph of g and h, and a possible graph of f.

(b) Use the Squeeze Theorem to evaluate $\lim_{x\to 0} f(x)$.

(c) Evaluate

$$\lim_{x \to 0} \frac{g(x) - 1}{h(x) - 1}$$

(Write "does not exist" only if the limit does not exist and is neither $+\infty$ nor $-\infty$.)

Problem 6.

(1-D motion)

Consider the motion of a particle moving on a straight line whose velocity v is described in the graph below:

Assume that s(0) = 0.

(a) Determine the displacement between t = 0 and t = 7.

(b) Determine the distance traveled between t = 0 and t = 7.

(c) Determine the position function, s(t), for $5 \le t \le 7$.

(d) Determine the acceleration, a(t), for 5 < t < 7.

Problem 7. (Optimization)

The figure shows a right triangle in the first quadrant. One side of the triangle is on the x-axis; its hypotenuse runs from the origin to a point on the parabola $y = 4 - x^2$. Find the coordinates that maximize the area of the triangle.

In your solution:

- State explicitly the domain of objective function.
- Be sure to justify that your answer indeed yields the maximal area.

Problem 8.

(More integrals)

Suppose that $\int_{-1}^{2} f(x) dx = 4$. Assume that f is **odd**.

(a) Evaluate $\int_{1}^{2} f(x) dx$.

(b) Which average value of f is larger, the one over [-1,2] or the one over [1,2]? Explain.

(c) Evaluate $\int_0^{2\ln 2} e^x f(e^x - 2) dx$.