Jour 4 : exp et intégrale

Partie A.

Dans le plan muni d'un repère orthogonal, la courbe $\mathscr C$ ci-dessous représente une fonction f définie sur l'ensemble $\mathbb R$ des nombres réels.

La tangente \mathcal{D} à la courbe \mathscr{C} au point A(0; -2) passe par le point B(2; -4).

On désigne par f' la fonction dérivée de f.

- **1. a.** Donner la valeur de f(0).
 - **b.** Justifier que : f'(0) = -1.
- **2. a.** On admet qu'il existe deux réels a et b tels que, pour tout réel x, $f(x) = (x+a)\mathrm{e}^{bx}.$

Vérifier que pour tout réel x, $f'(x) = (bx + ab + 1)e^{bx}$.

b. Utiliser les résultats précédents pour déterminer les valeurs exactes des réels a et b.

Partie B.

On considère maintenant la fonction f définie pour tout réel x par

$$f(x) = (x-2)e^x.$$

- 1. Donner l'expression de f'(x) pour tout réel x; en déduire le sens de variation de la fonction f sur l'ensemble des réels \mathbb{R} .
- **2. a.** Calculer $\lim_{x \to +\infty} f(x)$.
 - **b.** Déterminer $\lim_{x \to -\infty} f(x)$. et interpréter graphiquement le résultat obtenu.
- **3.** Démontrer que le point A est l'unique point d'inflexion de la courbe représentative de la fonction f.
- **4. a.** À l'aide d'une interprétation par parties, calculer $\int_2^3 f(x) dx$.
 - **b.** Préciser le signe de f(x) pour tout x de l'intervalle [2; 3].
 - **c.** Calculer la valeur, en unités d'aire, de l'aire de la partie du plan délimitée par la courbe $\mathscr C$, l'axe des abscisses et les droites d'équation x=2 et x=3.