ASI331 - TP1

Cryptanalyse d'un schéma de chiffrement de Vigenère

Françoise Levy-dit-Vehel

10 septembre 2020

Il s'agit ici de cryptanalyser la substitution polyalphabétique de Vigenère. Celleci est définie par un mot-clef, qui constitue la clef secrète (cf. cours).

Méthode

Étape 1 - Détermination de la longueur de la clef : indice de coïncidence (Friedman, 1920)

On note $c_0c_1c_2...$ les lettres du chiffré. Pour m=3,... on calcule les quantités

$$IC(\mathbf{y}_i) = \frac{\sum_{k=0}^{25} f_k^{(i)} (f_k^{(i)} - 1)}{|\mathbf{y}_i| \cdot (|\mathbf{y}_i| - 1)}$$

où, pour $0 \le i < m$, $|\mathbf{y}_i|$ est la longueur de la sous-suite chiffrée $\mathbf{y}_i = c_i c_{m+i} c_{2m+i} \dots$ et $f_k^{(i)}$ est le nombre d'apparitions de la k-ème lettre de l'alphabet dans la sous-suite \mathbf{y}_i . On calcule $IC(\mathbf{y}_i)$ pour toutes les sous-suites \mathbf{y}_i , $0 \le i < m$. Si m est égal à la longueur de la clef, alors les $I_c(\mathbf{y}_i)$ sont tous proches de $I_c = 0.071$ qui est l'indice de coïncidence du français. Sinon les $I_c(\mathbf{y}_i)$ sont tous proches de la valeur $1/26 \approx 0.038$, correspondant à une répartition aléatoire des lettres.

Étape 2 - Détermination de la clef

On suppose que la longueur m de la clef est connue.

1-Recouvrement de la clef à décalage près : indice de coïncidence mutuelle

L'indice de coïncidence mutuelle permet de retrouver les positions relatives des lettres de la clef dans l'alphabet.

Soit $\mathbf{y} = c_0 c_1 c_2 \dots$ le chiffré et soit \mathbf{y}_i , $0 \le i < m$, les sous-suites de \mathbf{y} définies comme précédemment.

Fixer
$$i \in \{1, ..., m-1\}$$

Pour g = 0...25, calculer les indices de coïncidence mutuelle

$$ICM_{0,i,g} = ICM(\mathbf{y}_0, \mathbf{y}_i^g) = \frac{1}{|\mathbf{y}_0| \cdot |\mathbf{y}_i|} \cdot \sum_{k=0}^{25} f_k^{(0)} f_{k-g}^{(i)}$$

où k-g s'entend mod 26 et $f_k^{(i)}$ est la fréquence de la kème lettre de l'alphabet dans la sous-suite \mathbf{y}_i .

Garder le (0, i, g) dont l'indice de coïncidence mutuelle $ICM_{0,i,g}$ est le plus élevé (idéalement, proche de 0,071).

Répéter ce calcul pour tous les $i \in \{1, ..., m-1\}$.

Déterminer la clef utilisée à décalage k_0 près en résolvant un système linéaire issu des triplets d'indices conservés précédemment.

2-Recouvrement de la clef : déterminer k_0 et en déduire la clef.

Étape 3 - Recouvrement du clair

En inversant le procédé de chiffrement, retrouver le texte clair.

Mise en oeuvre informatique

Chiffrement et Cryptanalyse

- 1. Chiffrer le message se trouvant dans le fichier Clair.txt à l'aide de la clef BEAU; déchiffrer ensuite le message chiffré obtenu et vérifier que l'on retrouve bien le clair.
- 2. En appliquant la méthode ci-dessus, retrouver la clef et le texte clair correspondant au chiffré présent dans le fichier Chiffre.txt.

Challenge 4 de Simon SINGH

Dans son livre "Histoire des codes secrets", Simon SINGH propose un prix de 10.000 Livres Sterling à la personne capable de résoudre les 10 challenges proposés dans l'appendice.

Le quatrième challenge est un texte chiffré par un cryptosystème de Vigenère, dont le texte se trouve dans le fichier $Vigenere_Singh.txt$.

Retrouver la clef et le texte original.