Lecture Notes for Machine Learning in Python

Professor Eric Larson Week Three, Lecture B

Class Logistics and Agenda

- Next Week: Project Work Week
 - and I am out of town all week...
- Finish Dimensionality Reduction
- Common Feature Extraction Methods for Images

Dimensionality Reduction (Continued)

Dimensionality Reduction: LDA

- PCA tell us variance explained by the data in different directions, but it ignores class labels
- Is there a way to find "components" that will help with discriminate between the classes?

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{ differences between classes}}{\sum \text{ variance within classes}}$$

- called Fisher's discriminant
- ...but we need to solve this using using Lagrange multipliers and gradient-based optimization
- which we haven't covered yet

I invented Lagrange multipliers... and ...nothing impresses me...

Dimensionality Reduction: LDA versus QDA

Dimensionality Reduction: LDA versus QDA

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{differences between classes}}{\sum \text{variance within classes}}$$

- "differences between classes" is calculated by trying to separate the mean value of each feature in each class
- Linear discriminant analysis:
 - assume the covariance in each class is the same
- Quadrature discriminant analysis:
 - estimate the covariance for each class

Self Test ML2b.2

LDA only allows as many components as there are unique classes in a dataset.

- A. True
- B. False

Dimensionality Reduction: non-linear

- Sometimes a linear transform is not enough
- A powerful non-linear transform has seen a resurgence in past decade: kernel PCA

Kernel PCA

- Project to higher dimensional space
- Employ principal components
- Apply transform in higher dimensional space

37.1	-6.7	-3.2
-6.7	43.9	1.45
-3.2	1.45	12.1

	B1	B2	<i>B</i> 3
1	66	33.6	0.3
2	54	26.6	0.4
3	69	23.3	-4
4	73	28.1	-5.6
5	61	43.1	0.23
6	62	25.6	-5

Kernel PCA

kernel: defines what the dot product is in higher dimensional space

some kernels have corresponding transformations with **infinite dimensions**!!

Just the dot product

37.1	-6.7	-3.2
-6.7	43.9	1.45
-3.2	1.45	12.1

 Key insight: don't need to know the actual transformation vectors

	B1	B2	<i>B</i> 3
1	66	33.6	0.3
2	54	26.6	0.4
3	69	23.3	-4
4	73	28.1	-5.6
5	61	43.1	0.23
6	62	25.6	-5
			4.0

10

Kernel PCA

Demo

PCA

LDA

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Image Processing and Representation

What is image processing

- the art and science of manipulating pixels
 - combining images (blending or compositing)
 - enhancing edges and lines
 - adjusting contrast, color
 - warping, transformation
 - filtering
 - features extraction

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels

used for capture and display

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix image[rows, cols]

	_	<u> </u>					
	G	1	4	2	5	6	9
\mathbb{B}	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	Г
2	4	2	8	7	9		_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

Solution: row concatenation

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Demo

Dimension Reduction with Images

Images Representation
Randomized PCA
Kernel PCA

Features of Images

Image Representation

need a compact representation

hsv

- what we perceive as color (ish)
 - •hue: the color value
 - saturation: the richness of the color relative to brightness
 - value: the gray level intensity

Common operations

images: Jianbo Shi, Upenn

Common operations: DAISY

take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \ldots, \mathbf{G}_{H}^{\Sigma}(u,v)\right]^{\top}$$

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{r}}_{\top}$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

Common operations: DAISY

 \mathcal{D}

step

 \mathcal{D}

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: DAISY

num Bag of Features Image Representation

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: Gabor filter Banks (if time)

common used for texture classification

Demo

More Image Processing

Gradients

DAISY

Gabor Filter Banks

Other Tutorials:

For Next Lecture

- There is no lecture next week!!
- Project work week:
 - Work on Lab One and Turn it in on Time.
- I am actually out of town (Germany)
- But email me your issues and I will try to get back when I can...