

### **FACULTY OF COMPUTING**

#### **SEMESTER 1 2024/2025**

#### **SECI 1013 DISCRETE STRUCTURE**

#### **SECTION 03**

#### **EXERCISE CHAPTER 2**

LECTURER: DR. MUHAMMAD ALIIF BIN AHMAD

| Student name                    | Matric Number |
|---------------------------------|---------------|
| TOH SHEE THONG                  | A24CS0309     |
| NUR ALIA ATHIRAH BINTI SUZUDDIN | A24CS0153     |
| LEE PEI YUAN                    | A24CS0262     |
| MUHAMMAD ALIFF BIN HELMI        | A24CS0272     |

# Exercise (hapler 2

Define a relation R from **Z** to **Z** as follows: For all integer number m and n,  $(m,n) \in \mathbf{Z} \times \mathbf{Z}$ ,

 $m R n \leftrightarrow m - n$  is even

- i) Is 4 R 0?
- ii) Is 2 R 6?
- ii) Is 3 R (-3)?
- iv) Is 5 R 2?
- v) List 5 integers that are related by R to 1.

) Yes v) 3, 5, 7, 9, 11 i) Yes ii) Yes <u>v) No</u>

An airline services the five cities  $c_1$ ,  $c_2$ ,  $c_3$ ,  $c_4$  and  $c_5$ . Table below gives the cost (in dollars) of going from  $c_i$  to  $c_j$ . Thus the cost of going from  $c_1$  to  $c_3$  is RM100, while the cost of going from  $c_4$  to  $c_2$  is RM200

| To<br>from            | <b>c</b> <sub>1</sub> | c <sub>2</sub> | <i>c</i> <sub>3</sub> | C <sub>4</sub> | <b>c</b> <sub>5</sub> |
|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|
| $c_1$                 |                       | 140            | 100                   | 150            | <del>-200</del>       |
| $c_2$                 | 190                   |                | <del>-200-</del>      | 160            | <del>-220</del>       |
| <i>c</i> <sub>3</sub> | 110                   | 180            |                       | 190            | 250-                  |
| C4                    | 190                   | 200            | 120                   |                | 150                   |
| <i>c</i> <sub>5</sub> | <del>-200</del>       | 100            | 200-                  | 150            |                       |

If the relation R on the set of cities  $A = \{c_{2}, c_{2}, c_{3}, c_{4}, c_{5}\} : c_{i} R c_{j}$  if and only if the cost of going from  $c_{i}$  to  $c_{j}$  is defined and less than or equal to RM180.

- i) Find R.
- ii) Matrices of relations for R

ii) Matrices of Relation R, Mr = 
$$\binom{1}{2}$$
  $\binom{1}{3}$   $\binom{1}{4}$   $\binom{1}{5}$   $\binom{1}{3}$   $\binom{1}{4}$   $\binom{1}{5}$   $\binom{1}{3}$   $\binom{1}{4}$   $\binom{1}{5}$   $\binom$ 

Let 
$$A = \{1, 2, 3, 4\}$$
 and  $R$  is a relation from  $A$  to  $A$ .

Suppose  $R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$ 

- What is R (represent)?
- What is matrix representation of R?

 $I.(m,n) \in R$  if M < N and  $M,n \in A$ 

2 Matrix Representation R=

|   | ı       | 1 |   | Т. |
|---|---------|---|---|----|
|   | 0       | 1 | l | 1  |
| 2 | 0       | 0 | 1 | 1  |
| 3 | 0       | 0 | 0 | 1  |
| 4 | 0 0 0 0 | 0 | 0 | 0  |
|   |         |   |   |    |

Let  $A = \{1, 4, 5\}$  and let R be given by the digraph shown below. list in-degrees and out-degrees of all vertices.



|            | 1 | 4 | 5 |
|------------|---|---|---|
| In-Degree  | 1 | 3 | 2 |
| Out-Begree | 2 | 2 | 2 |
| J          |   |   |   |

1. Let 
$$A=\{1,2,3,4\}$$
 and let  $R=\{(1,2), (2,2), (3,4), (4,1)\}$ 

Determine whether *R* symmetric, asymmetric or antisymmetric.

antisymmetric

Determine which of the relations f are functions from the set  $\mathbf{X}$  to the set  $\mathbf{Y}$ . In case any of these relations are functions, determine if they are one-to-one, onto  $\mathbf{Y}$ , and/or bijection.

a) 
$$X = \{-2, -1, 0, 1, 2\}$$
,  $Y = \{-3, 4, 5\}$  and  $f = \{(-2, -3), (-1, -3), (0, 4), (1, 5), (2, -3)\}$ 

b) **X** = { -2, -1, 0, 1, 2 }, **Y** = { -3, 4, 5 } and 
$$f$$
 = { (-2,-3), (1,4), (2,5)}

a) onto Y b) not a function () not a function

### Exercise 1

A depositor deposits RM 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let  $P_n$  denote the amount in the account after n years.

$$P_0: 10000$$
  
 $P_1 \cdot 1.05P_0$   
 $P_2: 1.05P_1 = 1.05 (1.05P_0)$   
 $= (1.05)^2 P_0$   
 $P_3: 1.05P_2 = 1.05 [(1,05)^2 P_0]$   
 $= (1,05)^3 Po$   
...  
 $p_n = (1.05)^n Po$   
 $p_{30}: (1,05)^{30} (10000)$   
 $= 43219,424$   
 $\therefore RM43219,424$ 

## **Exercise 2**

Consider the following sequence:

1, 5, 9, 13, 17

Find the recurrence relation that defines the above sequence.

$$P_{0}=1$$
 $P_{1}=5$ 
 $P_{2}=9$ 
 $P_{n}=P_{n-1}=44$ 
 $P_{n}=1$ 

# **Exercise 3**

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.

a)Write a recursive formula,  $a_n$ , that completely defines the height reached on the  $n_{\rm th}$  bounce, where the first term in the sequence is the height reached on the ball's first bounce.

b)How high does the basketball reach after the  $4_{\rm th}$  bounce? Give your answer to two decimal places.

```
Qu: 15
Q: (15 x 0-55)
: 8.25
Q: (8.25 x 0.55)
: 4.5375
Q: (4.5375 x 0.55)
: 2.4956
Qu: (2.4956 x 0.55)
: 1.37
```