Compressione di grafi di grandi dimensioni tramite sistemi di numerazione asimmetrici

Francesco Tomaselli

Sebastiano Vigna

Relatore

Paolo Boldi Correlatore

Università degli studi di Milano

- ► Codificatori entropici presentati da Jarek Duda;
- Compressione paragonabile a codifica aritmetica, con velocità dei codici di Huffman.
- Base di tutti i sistemi di compressione moderni: Zstd, JPEG XL, etc.

Obiettivi della tesi:

- Applicazione a grafi web e sociali di grandi dimensioni;
- ► Valutazione su compressione e velocità di accesso.

- Sequenza di simboli codificata in un singolo intero x;
- ▶ Codifica di *s* con probabilità p_s , crea nuovo stato $x' \approx x/p_s$;
- ► Numero di bit per x vicino all'entropia di Shannon;
- Operazioni di divisione intera e non con virgola mobile;
- Gestione overflow stato.

- ▶ Dato un grafo G con nodi numerati da 0 a N-1;
- Rappresentazione successori per gap:

$$succ(x) = 1, 2, 3, 7, 9, 11, ...$$

 $gap(x) = 1, (2-1), (3-2), (7-4), (9-7), (11-9), ...$

► Modello ottimo per i gap di ogni nodo:

Sym	f_s
1	3
4	1
2	2

Costo nascosto: i simboli vanno elencati esplicitamente.

.graph

Nodo	Outd.	ld mod.	# stati	Stati
1	5	1	1	1873215
2	2	2	1	4732153
3	130	3	16	1237953, 543843,

.model

ld mod.	# sim.	Simboli	Frequenze
1	3	1, 5, 3	211, 300, 513
2	1	1	1024
3	6	1, 2, 4, 9,	32, 84, 12, 4,

Osservazioni sull'approccio base:

- ► Spazio ottimo per .graph;
- Occupazione su disco dominata da .model.

Idee:

- Limitare il numero di modelli, rendendoli sub-ottimali;
- Rimuovere simboli rari dalle mappe di frequenza.

- ▶ Ordinamento dei modelli: elementi consecutivi → simboli simili;
- ► Partizionamento dei modelli ordinati:
- Unione dei codificatori nella stessa partizione.

Modelli disordinati

S	f_s	
1	8	
2	5	
3	3	

S	f_s
5	4
6	2
9	1

S	f_s
1	10
2	8
4	5

Ordinamento e partizione

S	fs
1	8
2	5
3	3

S	fs
1	10
2	8
4	5

S	f_s
2	5
3	3
4	1

S	fs	S	fs
5	4	5	14
6	2	6	6
9	1	8	3

Unione

S	fs
1	23
2	16
3	3
4	6

S	f_s
5	18
6	8
8	3
9	1

- ▶ Unione dei gap rari in un simbolo speciale;
- Scrittura esplicita elementi rimossi;
- ► Tradeoff su spazio occupato da successori e modelli.

Sim.	Freq.			
			Sim.	Freq.
10	1	\longrightarrow		
123	1		*	3
312	1			

 $encode(state, 10) \longrightarrow encode(state, *), write(10)$

Miglioramento di compressione su indochina-2014:

Valutazioni:

- ▶ Bit spesi per ogni arco;
- ► Velocità di accesso: nanosecondi per arco.

Tecniche a confronto:

- ▶ BV: tecnica presentata in Webgraph che utilizza codici istantanei, reference encoding e intervalisation;
- ► EF: liste monotone quasi-succinte di Elias-Fano.

Conclusioni 15

- Nuova tecnica agnostica rispetto alla distribuzione dei gap;
- ► Compressione fino a \approx 3.5 bit per link;
- ► Velocità paragonabile a sistemi esistenti.

Lavori futuri:

- Utilizzo delle proprietà empiriche dei grafi di interesse;
- Ordinamento e partizioni dei modelli con criteri differenti;
- Riduzione del numero di simboli tramite preprocessing.

- ▶ Simboli $S = \{s_1, ... s_n\}$ con frequenze $F = \{f_1, ... f_n\}$;
- ► Sia M la somma delle frequenze, $p_s = f_s/M$;
- Cumulativa per ogni simbolo $c_s = \sum_{t < s} f_t$;
- ▶ $n \in [0, M-1]$, simbolo associato $sym(n) = \max_{c_s \le n} S$.

Esempio:

$$V = 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 3, 1$$

Sym	f_s	Cs	sym(6) = 1
1	8	0	sym(8) = 2
2	5	8	sym(0) = 2
3	3	13	sym(15) = 3

Primitive di codifica e decodifica:

$$encode(state, s) = \lfloor state/f_s \rfloor * M + c_s + state \mod f_s$$

 $decode(state) = \langle \lfloor (state - r)/M \rfloor * f_s - c_s + r, s \rangle$

 $r = state \mod M$, s = sym(r).

Osservazioni:

- $encode(state, s) \approx state/f_s * M \approx state/p_s$;
- Spazio ottimale per una determinata sorgente;
- Overflow stato.

Ordinamento per codici di Gray:

- $ightharpoonup sym_1 = [0, 1, 2, 4], sym_2 = [2, 4, 5], sym_3 = [1, 2, 3];$
- ightharpoonup gray₁ = 111010, gray₂ = 001011, gray₃ = 011100;
- ► Risultato: sym_2 , sym_3 , sym_1 ;

Partizionamento euristico:

- Scelta numero massimo di simboli;
- Aggiunta a partizione attuale, se sforo, nuova partizione;
- ► Se risultano troppe partizioni, raddoppiamento soglia.

- Calcolo statistiche per i gap di una partizione;
- Aggiungo progressivamente simboli meno frequenti all'insieme di escape;
- ► Scelgo threshold che minimizza:

$$\underbrace{E_{ans} + E_{esc}}_{codifica\ entropica} + \underbrace{escape\ bits + model\ bits}_{info\ su\ escape\ e\ modelli}$$

Esempio:

$$\textit{syms} = 1, 2, 5, 3, 13, 110, 45$$

$$S' = \emptyset \rightarrow \{45\} \rightarrow \{45, 110\} \rightarrow \{45, 110, 13\} \rightarrow \dots$$