

AS-Interface: A solução mais simples em Redes de Automação

18/03/98 1 AS-Interface @ AS-International Association

O padrão industrial para o nível mais baixo de automação com ...

80 membros internacionais, 9 grupos de usuários internacionais

AS- Interface = o sistema mais indicado se você procura por...

- ☆ Uma rede que não é cara
- ☆ Uma rede que roda segura e confiável mesmo sob as circunstancias mais severas...
- Uma rede que trabalha em tempo real
- ★ Uma rede que pode ser usada em muitas circunstancias
- ★ Uma rede que é fácil de instalar
- ★ Uma rede que pode ser expandida rapidamente e com flexibilidade

18/03/98 3 AS-Interface

Alguns fatos interessantes sobre a rede AS-Interface ...

- ★ princípio mestre-escravo
- * até 31 slaves em uma linha
- cada escravo pode ter até4 entradas digitais + 4 saídas digitais
- ★ 4 bits de parâmetros / slave
- ★ Max. 248 Entradas e Saídas digitais
- ★ Também é possível: I/O analógico!!!
- numeração automática de endereços através de conexão ao barramento

- ★ Cabo não blindado com 2 fios
- ★ dados e alimentação no mesmo cabo
- ★ Comprimento máximo da linha de: 100 m (300 m com repetidor/estensor)
- ★ Não requer resistor de terminação
- ★ Estrutura em árvore livre
- Classe de proteção até IP67, com possibilidades de níveis mais altos
- ★ Tempo de ciclo < 5 ms</p>

AS-Interface: pode ser usada diretamente ou conjugada com outra rede de campo

18/03/98 5 AS-Interface

Instalação simples...

- Flat cable polarizado
- Dois fios para dados e alimentação (24VDC / 8A)
- Conectores que perfuram o isolamento
 - simples & seguro
 - classe de proteção até IP67, mesmo após desconexão
- Ecravos diretamente conectados
 - sensores, atuadores
 - terminais de válvulas
 - módulos elétricos etc.
- Diferentes cores para diferentes tensões de operação:

Amarelo: AS-Interface

Preto: Fonte adicional de 24V Vermelho: Fonte adicional de 230V

Flat cable polarizado

Encapsulamento escravo

AS-Interface: A nova tecnologia de instalação

Cabeamento tradicional

com AS -Interface

Equipamento mínimo para uso da rede AS-Interface ?

Master: PCL Master ou Gateway

 Fonte de alimentação:
 Supre 30,5VDC com desacoplamento de dados

Cabos

Escravos

Módulos com I/O digital ou sensores com chip ASI integrado ou atuadores com chip ASI integrado

ZSI NTERFACE

Selecionando o cabo correto

Cabo redondo Principais vantagens

- Praticamente quaisquer cabos padrões podem ser utilizados
- Para instalações com requisitos especiais (alta flexibilidade, aplicações de robótica, etc.)
- A prova de torção
- Não é necessário forçar um loop no cabo para conexão.
- Conexão por bloco de conexão com rosca
- Versão com blindagem disponível
- Parâmetros do cabo influenciam a máxima do sistema (por ex.capacitância)

O Princípio: Mestre-Escravo

AS-Interface integra funcionalidade do escravo:

- Escravo com funções adicionais como parametrização.
- Diagnóstico na rede até o escravo.
- Atuadores em IP67 comutando no campo e não em painéis na sala elétrica

Livre escolha de estrutura de rede

Onde o chip ASI está localizado?

- O chip (ASIC) é:
- Integrado no módulo ativo com I/O elétrico (para conexão de sensores e atuadores padrões)
- Integrados diretamente em sensores e atuadores

ASIC:

Application Specific Integrated Circuit

Como a rede ASI trabalha

Rede ASI

Um sistema de barramento que substitui cabos paralelos de um PLC para um sensor ou atuador

- Dados e energia no mesmo cabo
- 1 Mestre e até 31 escravos
- Princípio Mestre/Escravo
 O mestre chama e os escravos chamados respondem imediatamente
- Tempo de ciclo total < 5ms
 - com até 31 escravos

Dicas para estender o comprimento da rede:

O comprimento de todos os cabos em um segmento de rede pode ter no máximo 100m. É possível estender uma rede até 300 metros (3 segmentos) através do uso de um extensor ou repetidor:

Dicas para estender o comprimento da rede:

Solução B: 2 repetidores

Max. Número de escravos é 31 !

Como conectar sensores que não possuem interface AS-i

Conexão de atuadores

Atuadores sem AS-i

Conexão via módulo de I/O

- Válvulas
- Contactores
- Indicadores

Atuadores com rede AS-I integrada

- Conexão direta com o cabo AS-I
- Blocos de partida de motores
- Indicadores
- Terminais de válvulas
- Drives elétricos, pneumático, hidráulico

18/03/98 18 AS-Interface @ AS-Interface

Sensores e atuadores AS-I:

Entrada de dados: para medição de temperatura, pressão, etc. Saída de dados analógicos

I/O: 0..20mA, 4..20mA, ou 0.. 10 V

O dado é transferido em pacotes de 4 bits

Bits de informação adicional: S: sinal, O: Overflow e V: válido

Valor de 12bits é transferido em 30ms (6 ciclos ASI)

18/03/98 19 AS-Interface @ AS-International Association

Alta confiabilidade

Cada telegrama será checado pelo receptor para verificação de possíveis falhas. Isto será feito checando-se o bit de paridade e vários outros fatores independentes.

Através disso implica numa confiabilidade extremamente alta é alcançada na detecção de faltas simples e múltiplas.

A repetição de um simples telegrama consome apenas 150 µs e é levada em conta no tempo de ciclo especificado.

AS-Interface pode ser usada mesmo em um ambiente com grande ruído eletro magnético como em máquinas de solda e conversores de freqüência.

ZSI NTERFACE

Primeiros passos...

1. Endereçando os escravos

Em uma rede ASI os endereços vão de 01 a 31

Escravos possuem sempre o endereço 00 quando vendidos

É proibido o endereçamento duplo dos escravos

Enderece os escravos via o modo automático de um mestre ou via um dispositivo de endereçamento

Rotule os escravos!

Programe os endereços de todos os escravos numa rede ASI

2. Instalação

Instale a parte inferior dos módulos ou escravos primeiro

Coloque o cabo ASI na posição correta

Use o cabo da fonte auxiliar se necessário

Aparafuse a parte superior do módulo

Conecte os sensores e/ou atuadores através do cabo padrão

Primeiros passos...

3. Fase de comissionamento

Checa as conexões das fontes de alimentação e das fontes auxiliares (cabo amarelo e o cabo preto opcional na posição correta) ?

Ligue o mestre da rede AS-Interface

O mestre reconhece todos os escravos durante a fase de comissionamento e compara com a lista de projeto

Em caso de erro um bit de erro de configuração é ativado

Comece o programa do CLP para controlar a aplicação ASI

Nota:

- É possível checar todas as entradas e saídas sem um PLC
- Unidades funcionais podem ser colocadas em serviço independentemente de outras partes da planta

Truques de Montagem

No campo

- Coloque as fontes de alimentação próximo aos escravos de mais alto consumo de corrente
- Mantenha máxima distância entre cabos AS-I e cabos de potência

No armário do CCM

- Trançar cada par de cabos em um cabo duplo
- Não instalar cabo ASI junto com linha de alimentação no mesmo cabo múltiplo
- Manter distancia mínima entre cabo AS-I e cabo de potência (mínimo 15 cm)
- Manter distância máxima de fontes de ruído, por exemplo, conversores de frequência
- Manter máxima distância entre PLCs e elementos de potência
- Não sobrecarregar o cabo ASI. Um escravo precisa de no mínimo 26.5 V

Endereçamento

 Endereçamento individual de cada unidade utilizando uma unidade de endereçamento

Endereçamento automático pelo mestre (um por um!)

Substituição de escravos

- O novo escravo deve possuir os mesmos atributos do primeiro:
- Código de I/O
- Código de Identificação
- Endereço do escravo

Nenhuma resposta de um escravo, por que ?

- O escravo não foi endereçado
- O escravo foi configurado errado (ver tabela de I/O)
- Escravo defeituoso
- Fratura no cabo
- Sem conexão
- Endereço foi usado duas vezes

Como AS-Interface trabalha com parâmetros

Métodos de diagnóstico

LEDS indicam o estado dos escravos:

Symptom	Rags on Master		Indication on Slave Standard Enhanced						Possible cause	
	Comitg Bird	Periph. Faul I	nomal		dual LED	normal		dust LED		
Normal operation	resel	resel	0	0	•	0	0	•		
No data excharge	æl	resel	• •			•	•	•	Mas er in STOP mod Saue not in LPS Saue with wrong 10/ RESET on slaue akt	
Nodala exchange (Address - C)	æl	resel		•	•		•	A	Saue Address - O	
Pedphery Faul	resel	se i	⊕ ₩	= 1	Dec	*	×	*	To be defined by manufacture r	
Berlous Periphery audi MI REBET	æl	æl		7	0	¥	*	To be defined by manufacture r		

18/03/98 28 AS-Interface @ AS-Interface

Watchdog

- Existem módulos com ou sem watchdog
- O Watchdog em um escravo monitora os telegramas de mestres e escravos
- O Watchdog é gatilhado se nenhum telegrama do mestre é detectado por mais de 40ms
- Todas as saídas dos escravos serão desligadas
- Existe também um módulo especial de watchdog que simula curto circuitos do escravo em caso de falta de comunicação
- Possíveis causas para disparo do watchdog são:
 - Cabo AS-I está quebrado
 - Falha do mestre
 - Mestre parado
 - Escravo n\u00e3o est\u00e1 na lista de escravos projetados (LPS)

Classes de proteção

Módulos I/O IP67

- Instalados diretamente no processo (colocados próximo a sensores e atuadores)
- Não existe necessidade de encapsulamentos adicionais no ambiente industrial
- Conexão padrão através de plugs M12 e glands PG-cable
- Interface padrão entre módulo do usuário e módulo de acoplamento
- Suporte completo a idéia de I/O descentralizado

Módulos de I/O IP20

- Pequenos encapsulamentos para uso de gabinetes
- Para instalação em máquina requer invólucro adicional
- Instalação flexível

Segurança: Fonte de alimentação PEL V

PELV

- Protective Extra Low (baixa tensão com isolação de segurança)
- AS-Interface requer fontes de alimentação PELV.

Conexão à Terra (PE)

- Não é necessário conexão à terra
- Não é permitido conectar fios do cabo ASI à terra!

Detector de fuga para terra

- Desliga a máquina imediatamente quando a primeira falha acontece
- Previne a partida n\u00e3o intencional da maquina causada por falha de isolamento para a terra
- Detecção de falhas de isolação em todas as partes da rede AS-i
- Não consome um endereço AS-i
- Monitora ASI-i+ e AS-i-
- Usa alimentação da rede AS-

Gateway com filedbusses

Módulos de interface AS-I permitem a conexão de sensores e atuadores convencionais:

Expandindo ? Como ?

O que pode ser economizado com AS-Interface ?

* hardware

- Cartões de E/S
- * Área de painéis
- **★** PG-fittings
- Conectores múltiplos
- Cabos, dutos e bandejas
- Múltiplos anéis deslizantes
- ***** Borneiras
- Conectores de distribuição
- Cabos/fios

* desperdícios

- * Menor tempo de instalação
- Menor tempo de teste
- Menos tempo para criar
 diagramas de interligação
- Menor gasto de tempo para rotular cabos e conectores

Benefícios adicionais

- * Anulação automática de falhas de cabos
- * extensão do número de E/S permitidos sem troca de gabinete
- * aumento da rede em qualquer tempo em qualquer lugar
- * fácil instalação por pessoas menos experientes
- * monta o sistema na sua plataforma ao invés da fábrica

Menor prazo para início de produção Menos dinheiro empatado !

Organização central:

AS - International Association e.V.

reasponsibilidades: promoção, padronização, certificação

gerenciamento: H. Walker, Siemens; D. Staniczek, Festo;

Dr. A. Schiff, ifm; Dr. P. Adolphs, Pepperl+Fuchs

Diretor executivo: Dr. O. W. Madelung

Endereço: Auf dem Broich 4a, D-51519 Odenthal

Tel.: +49-2174-40756; Fax: +49-2174-41571

Membros: (jundata 11 2 00)	Gavazzi	(CH)	INTERFACE \		
Wielliblos.	upuate 11.3.90)	Gebauer&Griller	(A)	Rechner	(D)	
Allen - Bradley	(D)	Harting	(D)	Schaltbau	(D)	
Allen - Bradley	(USA)	Hengstler	(D)	Schiele	(D)	
Amphenol - Tuchel	(D)	HERION	(D)	Schmersal	(D)	
Andras	(D)	Hirschmann	(D)	Schneider Electric	(F)	
AUCOTEC	(D)	Honeywell	(CH)	SGS-Thomson	(D)	
Balluff	(D)	HTL Oensingen	(CH)	Sick	(D)	
Banner	(USA)	ifm electronic	(D)	Siemens	(D)	
Baumer electric	(CH)	Klöckner-Moeller	(D)	SMC Pneumatik	(D)	
Bernstein	(D)	Kostal	(D)	Stahl Schaltgeräte	(D)	
Bihl + Wiedemann	(D)	Kuhnke	(D)	STZ Göppingen	(D)	
Binder	(D)	Lachmann & Rink	(D)	STZ Leipzig	(D)	
Bosch	(D)	Leuze electronic	(D)	STZ Weingarten	(D)	
Brad Harrison / Voge	l (D)	Lumberg	(D)	Technikum Kärnten	(A)	
Bürkert	(D)	Lütze	(D)	Technikum Vorarlberg	(A)	
Carinthian Tech Re	(A)	Melhardt	(D)	Thomas & Betts L	(L)	
Crouzet GmbH	(D)	Mitsubishi	(JP)	TMG i-tec	(D)	
Datalogic	(I)	MLS Lanny	(D)	Toyoda	(JP)	
EAO - Lumitas	(CH)	Murrelektronik	(D)	TU Brno	(CR)	
Eckert & Kälberer	(D)	Nixdorf Institut	(D)	Turck	(D)	
Egemin	(B)	Norgren	(GB)	VEGA B	(B)	
EMC	(DK)	Omron NL	(NL)	Vega NL	(NL)	
Endress + Hauser	(D)	Pepperl + Fuchs NL	(NL)	Visolux Elektronik	(D)	
Festo Denkendorf	(D)	Pepperl + Fuchs	(D)	Weidmüller	(D)	
FH Osnabrück	(D)	Phoenix Contact	(D)	WERMA	(D)	
Fuji	(JP)	Puls	(D)	Wiechers & Partner	(D)	
FZI Karlsruhe	(D)	Pulsotronic	(D)	Wöhner	(D)	

18/03/98 40 AS-Interface

Produtos Certificados:

Alta confiabilidade com produtos certificados