计算机系统基础

Lab1 Data Lab

姓名: 傅文杰 学号:22300240028

2023年9月27日

目录

1	实验	目的	2
2	补全	bits.c	2
	2.1	$int\ bit Xor(int\ x,\ int\ y) $	2
	2.2	$\mathrm{int}\ \mathrm{tmin}(\mathrm{void})\ \ldots\ldots\ldots\ldots\ldots\ldots\ldots$	2
	2.3	$int\ isTmax(int\ x) \ \dots \dots \dots \dots \dots \dots$	3
	2.4	$int \ allOddBits(int \ x) \dots \dots \dots \dots$	3
	2.5	$int\ negate(int\ x)\ .\ .\ .\ .\ .\ .\ .$	4
	2.6	int is Ascii Digit(int x)	4
	2.7	int conditional(int x , int y , int z)	4
	2.8	int isLessOrEqual(int x , int y)	5
	2.9	$int\ logical Neg(int\ x) \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	5
	2.10	int howManyBits(int x)	5
	2.11	unsigned floatScale2(unsigned uf)	6
	2.12	int floatFloat2Int(unsigned uf)	7
	2.13	unsigned floatPower2(int x)	8

 1 实验目的
 2

 3 总结
 8

 3.1 特殊的二进制补码数
 8

 3.2 关于位运算
 9

 3.3 关于构造
 9

 3.4 关于IEEE浮点数
 10

1 实验目的

- 1. 深入理解并运用位运算
- 2. 深入了解IEEE754规范下的浮点数表示

2 补全bits.c

2.1 int bitXor(int x, int y)

- 1. 目的: 用与(&)和非(~)运算实现异或(^)
- 2. 证明:

$$A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

$$= \overline{\overline{A} \cdot B + A \cdot \overline{B}}$$

$$= \overline{(A + \overline{B}) \cdot (\overline{A} + B)}$$

$$= \overline{A \cdot \overline{A} + A \cdot B + \overline{A} \cdot \overline{B} + B \cdot \overline{B}}$$

$$= \overline{A \cdot B + \overline{A} \cdot \overline{B}}$$

$$= \overline{A \cdot B} \cdot \overline{\overline{A} \cdot \overline{B}}$$

3. 关键代码:

2.2 int tmin(void)

1. 目的: 返回最小的32位二进制补码整数

2. n位二进制补码整数的取值范围是[-2ⁿ⁻¹, 2ⁿ⁻¹ - 1]
 当首位为0时,该整数为正;当首位为1时,该整数为负,并且后面的n-1位越小,负数的绝对值越大
 因此返回0x 8000 0000(1 << 32)即可

2.3 int isTmax(int x)

- 1. 目的: 判断是否是最大的32位二进制补码整数,是则返回1,否则返回0
- 2. 最大的32位二进制补码整数是0x 7fff fff, 位数太多, 由于我们无法使用大常数, 所以我们将它加1(或者取反)成为0x 8000 0000 注意到这个数(最小的二进制补码整数)和0有一个特殊的性质: 它们的相反数都是自身。因此我们只需要判断它取反加一是否等于自己并且排除0即可
- 3. 判断两数相等, 我们用异或运算
- 4. 关键代码:

```
1 x = x + 1;
2 return !((~x+1) ^ x) & !!(x);
```

2.4 int allOddBits(int x)

- 1. 目的: 如果所有的奇数位都是1, 返回1
- 2. 我们只关心奇数位,所以与上一个奇数位全为1偶数位全为0的数即可
- 3. 但我们只能用0~0xFF的常数,因此在扩充位数时需要建立临时变量,利用C语言逻辑左移的特性和位或运算
- 4. 关键代码:

```
1 int mask = 0xAA;
2 int odd_bits = (mask << 8) | mask;</pre>
```

```
3 odd_bits = (odd_bits << 16) | odd_bits;
4 return !((x & odd_bits) ^ odd_bits);</pre>
```

2.5 int negate(int x)

- 1. 目的: 获得相反数
- 2. 取反加1即可

2.6 int isAsciiDigit(int x)

- 1. 目的: 如果是ASCII码数字,返回1,否则返回0
- 2. 如果 $0x30 \le x \le 0x39$,则返回1,否则返回0
- 3. 减法用加相反数表示,判断正负用与上0x 8000 0000(1<<31)表示
- 4. 关键代码:

```
1 int flag = 1 << 31;
2 return !((x + (~0x30 + 1)) & flag) & !((0x39 + (~x + 1)) & flag);</pre>
```

2.7 int conditional(int x, int y, int z)

- 1. 目的: 返回x?y:z
- 2. 先将x转换成逻辑0或者1,利用0的补码全0、1的补码全1的特性,将想要的结果与上全1 or 或上全0
- 3. 关键代码:

```
1 int notx = !x;
2 int flag = ~notx + 1;
3 return (y & ~flag) + (z & flag);
```

2.8 int isLessOrEqual(int x, int y)

- 1. 目的:如果x < y,返回1,否则返回0
- 2. 首先想到diff = $y+\sim x+1$, diff的第1位为0就返回1。但是这仅仅对于x,y同号的情况下成立,如果异号,当负数减正数时,加法可能会溢出得到正数,需要根据两数的符号位特判
- 3. 关键代码:

2.9 int logicalNeg(int x)

- 1. 目的:实现逻辑非运算(0则返回1,否则返回0)
- 2. 0和最小数的补码为它们自身,其他数的补码都会改变第一位的值。 而且,算术右移31位后0还是0,最小数变为全1,利用加法溢出的性 质加1即可
- 3. 关键代码:

```
1 return ((x | (~x + 1)) >> 31)+1;
```

2.10 int howManyBits(int x)

- 1. 目的:表示一个整数至少需要几位二进制位
- 2. 一定会有一位符号位,最后加1即可,所以对于正数,需要忽略去掉符号位之后的前导0,我们将其保持不变;对于负数,需要忽略去掉符号位之后的前导1,我们将其取反,就可以和正数统一操作了

3. 二分查找: 先查找后16位是否非0,如果是的话至少需要16位,否的话至少需要0位,记录下来,并将这16位或0位移掉; 然后查找后8位,后4位,后2位,后1位以及剩下的一位,重复相同的操作。最终把记录下来的需要的位数相加即可

4. 关键代码:

```
1 int b16, b8, b4, b2, b1, b0;
2 x = x ^ (x >> 31);
3 b16 = !!(x >> 16) << 4;
4 x = x >> b16;
5 b8 = !!(x >> 8) << 3;
6 x = x >> b8;
7 b4 = !!(x >> 4) << 2;
8 x = x >> b4;
9 b2 = !!(x >> 2) << 1;
10 x = x >> b2;
11 b1 = !!(x >> 1);
12 x = x >> b1;
13 b0 = x;
14 return b16 + b8 + b4 + b2 + b1 + b0 + 1;
```

2.11 unsigned floatScale2(unsigned uf)

- 1. 目的: 返回浮点数的2倍
- 2. 特殊处理:对于inf或者NaN(阶码全为1),返回它们本身
- 3. 对于规格数 (阶码不全为0), 阶码加1即可
- 4. 对于非规格数 (阶码全为0), 保持符号位不变, 其他位左移1即可
- 5. 关键代码:

```
1 if(((uf>>23)&0xff)==0xff) return uf;//nan or infinity
```

2.12 int floatFloat2Int(unsigned uf)

- 1. 目的: 浮点数取整
- 2. 分别提取出符号位sign,指数部分exp和小数部分frac
- 3. 32位二进制补码表示的整数的范围是 $\{x|0 \le x \le 2^{31} 1, x \in \mathbb{Z}\}$ $\therefore \text{ frac } \in [1,2)$ $\therefore \exp < 0 \Rightarrow x < 2 \times 2^{-1} = 1 \Rightarrow \lfloor x \rfloor = 0$ $\therefore \exp > 31 \Rightarrow x > 1 \times 2^{31} \Rightarrow |x| \ge 2^{31} \Rightarrow return \ 0x80000000u$
- 4. 当 $23 < \exp \le 31$ 时,小数部分可全部被保留,注意要添加隐藏的1, 并右移 $\exp - 23$ 位
- 5. 当 $0 < \exp \le 23$ 时,小数部分会被舍弃 $23 \exp$ 位,添加隐藏的1并右移即可
- 6. 最后要根据符号位定正负
- 7. 关键代码:

```
1 int sign = (uf >> 31) & 1;
2 int exp = ((uf >> 23) & 0xFF) - 127;
3 int frac = uf & 0x007FFFFF;
4 if (exp < 0) {
5    return 0;
6 }
7 if (exp > 31) {
8    return 0x8000000u;
9 } else if (exp > 23) {
```

3 总结

2.13 unsigned floatPower2(int x)

- 1. 目的: 返回2^x
- 2. 指数范部分可以表示 $2^{-126} \sim 2^{127}$,此时可以用规格数表示;小数部分可以表示 $2^{-150} \sim 2^{-127}$,此时可以用非规格数表示
- 3. 关键代码:

```
1 if (x >= 128) return 0x7f800000;
2 if (x >= -126) return (x + 127) << 23;
3 if (x >= -150)
4    return 1 << (x + 150);
5 else
6    return 0;</pre>
```

3 总结

3.1 特殊的二进制补码数

- 1. 补码和自身相等的数: 0 和 -1
- 2. 补码为全1的数: 1

3 总结 9

3.2 关于位运算

- 1. C语言位移运算的特性:
 - (1)对于补码表示整数,逻辑左移、算术右移
 - (2)对于无符号型整数,逻辑位移
 - (3)对于带符号型整数,算术位移
- 2. 位移运算的作用:
 - (1)左移给自己的尾巴补0
 - (2)左移得到2的乘方
 - (3) 右移给自己的头部补1或者0,并舍弃尾部数字
 - (4) 右移除以2的乘方
- 3. 位与运算的作用:
 - (1)有0则0的逻辑实现:排除某种特例
 - (2)只关注一个数的某一位或者某几位,与上一个在那些位为1、其余位为0的数
- 4. 位或运算的作用:
 - (1)有1则1的逻辑实现:允许某种特例
 - (2)保留一个数的某一位或者某几位:或0
- 5. 异或运算的作用:
 - (1)0和1之间的互相转换(判断同异号)
 - (2)判断相等

3.3 关于构造

- 1. 构造全0: 0
- 2. 构造全1:
 - (1) $int \ x = \overline{1 \cdots} \Rightarrow all_1 = x >> 31$
 - $(2) \ \overline{1}$
- 3. 构造重复的数: 假设 $x = \overline{x_1 x_1 x_1 \cdots}$, 其中 $x_1 = a_1 a_2 \cdots a_n$, 则令 $x = x_1$,循环 $x = (x << n)|x_1$ 即可

3 总结

- 4. 取符号位:
 - (1)x >> 31得到0或者-1
 - (2)x & 0x 8000 0000得到0或者最小数
- 5. 构造逻辑0或者1: !(x)或者!!(x)

3.4 关于IEEE浮点数

s ≠0 & ≠255	f	
2. 非规格化的		
s 0 0 0 0 0 0 0 0	f f	
3a. 无穷大		•
s 1 1 1 1 1 1 1 0 0 0	0000000000000000	000000
3b. NaN		
s 1 1 1 1 1 1 1 1	≠0	nek need
图 2-33 单精度浮点数值的分类(阶	码的值决定了这个数是规格化的、非	规格化的或特殊值

图 1: IEEE754浮点数标准

规格化数有隐含的1,非规格化数有隐含的0

Туре	Sign	Actual Exponent	Exp (biased)	Exponent field	Fraction field	Value
Zero	0	-126	0	0000 0000	000 0000 0000 0000 0000 0000	0.0
Negative zero		-126	0	0000 0000	000 0000 0000 0000 0000 0000	-0.0
One		0	127	0111 1111	000 0000 0000 0000 0000 0000	1.0
Minus One	1	0	127	0111 1111	000 0000 0000 0000 0000 0000	-1.0
Smallest denormalized number	*	-126	0	0000 0000	000 0000 0000 0000 0000 0001	$\pm 2^{-23} \times 2^{-126} = \pm 2^{-149} \approx \pm 1.4 \times 10^{-45}$
"Middle" denormalized number	*	-126	0	0000 0000	100 0000 0000 0000 0000 0000	$\pm 2^{-1} \times 2^{-126} = \pm 2^{-127} \approx \pm 5.88 \times 10^{-39}$
Largest denormalized number	*	-126	0	0000 0000	111 1111 1111 1111 1111 1111	$\pm(1-2^{-23}) \times 2^{-126} \approx \pm 1.18 \times 10^{-38}$
Smallest normalized number	*	-126	1	0000 0001	000 0000 0000 0000 0000 0000	±2 ⁻¹²⁶ ≈ ±1.18 × 10 ⁻³⁸
Largest normalized number	*	127	254	1111 1110	111 1111 1111 1111 1111	$\pm (2-2^{-23}) \times 2^{127} \approx \pm 3.4 \times 10^{38}$
Positive infinity	0	128	255	1111 1111	000 0000 0000 0000 0000 0000	+∞
Negative infinity	1	128	255	1111 1111	000 0000 0000 0000 0000 0000	
Not a number	*	128	255	1111 1111	non zero	NaN

图 2: 特殊的IEEE浮点数