APUNTS

La primera meitat del 2n curs

AUTOR: EDUARDO PÉREZ MOTATO

${\rm \acute{I}ndex}$

1	Bases de Dades Relacionals	1
2	Equacions Diferencials Ordinàries 2.0 Introducció	
3	Modelització i Inferència	5
4	Tècniques de Disseny d'Algoritmes	6
5	Visualització 3D 5.1 Geometria euclidiana 3D	
	5.1.1 L'espai euclidia estàndard 3-dimensional	8

Bases de Dades Relacionals

Horari

- Dimarts 11-13h.
- Dijous 11-13h.

Equacions Diferencials Ordinàries

Horari

- Dimarts 9-11h.
- Divendres 11-13h.

2.0 Introducció

Les equacions diferenciàls són una eina molt important de modelització.

Definició: Les equacions diferencials son equacions que relacionen una funció (incognita) amb les seves derivades.

Definició: Si la funció és d'una variable $u:I\subset\mathbb{R}\to\mathbb{R}\mid\mid t\mapsto u(t)$ es diuen Equacions Diferencials Ordinàries.

Definició: Si la funció és de diverses variables $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ Es diuen Equacions de Derviades Parcials.

2.1 Equacions diferencials de 1r ordre

Definició: Una equació diferencial ordinária de primer ordre per una funció y(x) és una equació

$$F(x, y, y') = 0$$

Definició: La forma explícita d'una equació diferencial ordinària de 1r ordre es

$$\frac{dy}{dx} = y' = f(x, f(x))$$

Definició: La forma explícita d'una equació diferencial ordinària de 1r ordre es diu autònoma si f no depèn explicitament de x o sigui, és de la forma y' = f(y)

Definició: Una solució de la forma explícita d'una equació diferencial ordinària de 1r ordre es una funció y(x) diferenciable definida en un interval I tal que per a tot $x \in I$ se satisfà l'equació diferencial ordinària de 1r ordre.

En general, les solucions d'una EDO de 1r ordre formen una família uniparamètrica de funcions d'un paràmetre constant. Aquesta experssío s'anomena solució general de la EDO de 1r ordre.

Definició: Una equació diferencial de primer ordre amb una condició inicial s'anomena problema de valor inicial

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

La solució d'un problema de valor inicial s'anomena solució particular de l'equació.

Definició: Un cas particular de solucions són els equilibris que són les solucions que no depenen de la variable independent.

Una solució d'equilibri de y' = f(x, y) és una solució de la forma $y(x) = y^*$ (numero). Es compleix que $y(x) = y^*$ és solució d'equilibri de y' = f(x, y) si i només si $f(x, y^*) = 0$ per a tot x per al que f(x, y) estigui ben definit. Si l'equació és autonòma (y' = f(y)) les solucions d'equilibri y(x) = y estàn donades pels zeros de f i estan definides $\forall x \in \mathbb{R}$.

Teorema (Picardo-Gindelof) Sigui \mathcal{R} una regió rectangular del pla xy definida per $R = \{(x,y) | a \le x \le b, c \le y \le d\}$ que conté el punt (x_0,y_0) . Suposem que f i que $\frac{\partial f}{\partial y}$ sigui continues a \mathcal{R} .

Aleshores existeix una única solució y(x) definida a un interval $I_0 = (x_0 - h, x_0 + h), h > 0$ contingut a [a, b] del PVI

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

A més a més si denotem la solució de l'anterior sistema per $y(x; x_0, y_0)$ es compleix que $y(x; x_0, y_0)$ és una funció continua respecte x_0, y_0 .

- Per assegurar unicitat és suficient amb què f sigui de Lipschitz respecte a la variable y
 - Que sigui de Lipschitz significa que $\exists L>0: |f(x,y)-f(x,z)|< L\,|y-z|\,(c,d)\,\,\forall (y,z,c,d)$

Teorema (de Peano) Si f és contínua, existeix solució del sistema.

Teorema Si f i que $\frac{\partial f}{\partial y}$ són contínues a \mathcal{R} aleshores dues corbes solució de y' = f(x, y) diferents no es poden tallar a \mathbb{R} .

2.1.1 Alguns mètodes analítics de resolució d'EDO de 1r ordre

1. EDO separable o de variable separada.

Una edo de variables separades és de la forma

$$y' = g(x) h(y)$$

Si $h(y) \not\equiv 0$ llavors podem fer $\frac{1}{h(y)}y'(x) = g(x)$ Integrant respecte a x tenim

$$\int \frac{1}{h(y(x))} y'(x) dx = \int g(x) dx$$

Denotem per H una primitiva de $\frac{1}{h(y)}$ i per G una primitiva de g(x), llavors tenim

$$H(y(x)) = G(x) + C$$

Llavors $y(x) = H^{-1}(G(x) + C)$.

Si $h(y) \equiv 0$, llavors $y(x) = y^*$, és a dir, té una solucío d'equilibri.

2. more later

Modelització i Inferència

Horari

- Dilluns 11-13h.
- \bullet Dimecres 11-13h.

Tècniques de Disseny d'Algoritmes

Horari

- Dilluns 9-11h.
- Dijous 9-11h.

Visualització 3D

Horari

- Dimecres 9-11h.
- Divendres 9-11h.

5.1Geometria euclidiana 3D

L'espai euclidia estàndard 3-dimensional 5.1.1

Treballem a l'espai 3-dimensional en el qual vivim i que identifiquem amb \mathbb{R}^3 .

Notació. En l'espai euclidia tenim l'origen a $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ i un punt arbitrari $P = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (0,0,0) \in \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}. \ Ambdues \ notacions \ (vertical \ i \ horitzontal)$ són vàlides malgrat representar diferents conceptes tecnicament.

Aquesta norma medeix la distància euclidiana entre dos punts $P_1=(x_1,y_1,z_1)$ i $P_2=$ A requesta norma medera la distancia euchdiana entre dos punts P_1 (x_2, y_2, z_2) per la fórmula $\mathcal{D}(P_1, P_2) = \|P_1 - P_2\|$ que compleix $\bullet \ \mathcal{D}(P_1, P_3) \leq \mathcal{D}(P_1, P_2) + \mathcal{D}(P_2, P_3)$ $\bullet \ \mathcal{D}(P_1, P_2) = \mathcal{D}(P_2, P_1)$ $\bullet \ \mathcal{D}(P_1, P_2) = 0 \iff P_2 = P_1$

La norma euclidiana d'un vector V correspon exactament a la seva longitud.

Demostracio Recordem el teorema de Pitàgores. Aleshores, veiem que ||V||és exactament aplicar el teorema de Pitàgores dos cops, tal que

•
$$||V|| = d^2 + V_3^2$$

•
$$d^2 = V_1^2 + V_2^2$$

Com la norma d'un vector $V \in \mathbb{R}^3$ correspon a la seva longitud, de forma equivalent la distància entre dos punts a \mathbb{R}^3 correspon a la longitud del segment que els uneix.

Si tenim P_1 i P_2 punts que defineixen un segment, la longitud $\mathcal{D}(P_1, P_2) =$

Per tant, la distància euclidiana entre dos punts és la que coneixem! Aquesta norma (i distància) euclidiana prové d'una estructura que a més de les longítuds contè la nociò d'ortogonalitat:

Definició: Anomenem producte escalar a \mathbb{R}^3 la funció

$$(V,W) \mapsto \langle V,W \rangle = V_1W_1 + V_2W_2 + V_3W_3$$
 que és

- $\langle \dots, \dots \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ $\langle V, W \rangle \mapsto \langle V, W \rangle = V_1 W_1 + V_2 W_2 + V_3 W_3 \text{ que \'es}$ Bilineal: $\langle V + \lambda \bar{V}, W \rangle = \langle V, W \rangle + \lambda \langle \bar{V}, W \rangle$ idem si $V \leftrightsquigarrow W$ Simètrica: $\langle V, W \rangle = \langle W, V \rangle$

 - Definit positiu: $\langle V, V \rangle > 0$ si $V \neq 0$

Observem que $\forall V \in \mathbb{R}^3$, $||V|| = \sqrt{\langle V, V \rangle}$: la norma es pot definir en funció del producte escalar.

Reciprocament, veiem facilment la Identitat de Polarització

$$\langle V, W \rangle = \frac{1}{2} (\|V + W\|^2 - \|V\|^2 - \|W\|^2) \, \forall V, W \in \mathbb{R}^3$$

Exercici Arribar a la Identitat de Polarització apartir d'allò.

El producte escalar permet definir la noció d'ortogonalitat. Per veure aixó, necessitem primer el resultat següent:

Teorema (Desigualtat de Cauchy-Schwartz)

$$\forall V, W \in \mathbb{R}^3, |\langle V, W \rangle| \le ||V|| \, ||W||$$

A més, la igualtat s'assoleix només si $\exists \lambda \in \mathbb{R} : V = \lambda W$

Demostracio Fixem $V, W \in \mathbb{R}^3$ qualsevol. Aleshores definim $\forall \lambda \in \mathbb{R}$ $\mathcal{P}(\lambda) := \|V + \lambda W\|^2 \ge 0$

Observem que $\mathcal{P}(\lambda) = \langle V + \lambda W, V + \lambda W \rangle = \|V\|^2 + 2\lambda \langle V, W \rangle + \lambda^2 \|W\|^2 \Rightarrow \mathcal{P}$ és un polinomi en λ de grau 2. Llavors $\Delta = 4 \left(\langle V, W \rangle^2 - \|V\|^2 \|W\|^2 \right)$ ha de ser ≤ 0 , ja que $\mathcal{P} \geq 0$.

Deduim que $\Delta \leq 0 \iff \langle V, W \rangle^2 - \|V\|^2 \|W\|^2 \leq 0 \iff \langle V, W \rangle^2 \leq \|V\|^2 \|W\|^2$

Si
$$\Delta = 0$$
 aixó implica que $\exists \lambda_0 \in \mathbb{R} : \mathcal{P}(\lambda_0) = 0$, aleshores $\mathcal{P}(\lambda_0) = 0 \iff \|V + \lambda_0 W\| = 0 \iff V = -\lambda_0 W$

Com a consequencia, obtenim que el número

$$\frac{\langle V, W \rangle}{\|V\| \|W\|} \in [-1, 1] \quad \forall V, W \in \mathbb{R}^3 \setminus \{0\}$$
$$(\iff |\langle V, W \rangle| \le \|V\| \|W\|)$$

Definició: L'ùnic $\theta \in [0, \pi]$: $\cos \theta = \frac{\langle V, W \rangle}{\|V\| \|W\|}$ s'anomena angle euclidia entre V i W.

L'angle és efectivament l'angle que coneixem.

Si
$$V=(1,0,0)$$
 i $W=(\cos\alpha,\sin\alpha,0)$ obtenim que $\cos\theta=\frac{\langle V,W\rangle}{\|V\|\|W\|}=\frac{\cos\alpha}{1\times 1}=\cos\alpha\Rightarrow\theta=\alpha$

Definició: Diem que V i W són ortogonals si $\langle V, W \rangle = 0$ o, de forma equivalent, si l'angle entre V i W és $\frac{\pi}{2}$.

Notació:. Denotem dos vectors ortogonals entre si com $V \perp W$

Un conjunt de 3 vectors és base ortogonal si $\langle U, V \rangle = \langle V, W \rangle = \langle U, W \rangle = 0$, És base ortonormal, si és base ortogonal i a més ||U|| = ||V|| = ||W|| = 1.