AI PROJECT

Students GPA Estimation

OVERVIEW

Introduction

Problem Statement

Related Work

Dataset Overview

Data Preprocessing

Visualizations

Prepare for Models

Applied Models

Compare the Models

Result

Conclusion

Thank You

INTRODUCATION

Objective:

Develop an Al-powered model to predict students' GPA using relevant factors. This tool aims to enhance early identification of at-risk students.

Impact:

Empowers educators to provide timely interventions, improving student success and well-being through targeted support.

Students face a mix of academic and non-academic challenges (e.g., socioeconomic status, mental health, family support). Traditional methods may fail to address these complex issues effectively

Goal

Empower educators with data-driven insights to foster an inclusive and supportive environment, addressing the holistic needs of students.

Solution

Develop an Al-powered predictive model to estimate GPA using diverse factors (demographic, academic, behavioral, and non-academic data). Leverage machine learning to proactively identify at-risk students and provide timely, personalized interventions.

RELATED WORK

- Does the Education Level of a Parent Affect a Child's Achievement in School?
- 2 Parental Involvement is Key to Student Success
- The influence of sports participation on academic performance among students in higher education
- School absenteeism and academic achievement: Does the timing of the absence matter?

DATASET OVERVIWE

- Format CSV file
- Size 2,393 rows and 15 features.
- key Features

Absence: Tracks student attendance.

Demographic Information: Age, gender, socioeconomic status, etc.

Academic Performance: study time, test scores, and study habits.

Non-Academic Factors: Family support, mental health indicators, etc.

Missing Data:

We have no missing data

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2392 entries, 0 to 2391
Data columns (total 13 columns):
    Column
                       Non-Null Count Dtype
                       2392 non-null int64
     Age
                       2392 non-null int64
     Gender
     Ethnicity
                                      int64
                       2392 non-null
    ParentalEducation 2392 non-null int64
    StudyTimeWeekly
                      2392 non-null float64
     Absences
                       2392 non-null
                                      int64
                       2392 non-null int64
   Tutoring
                       2392 non-null int64
     ParentalSupport
   Extracurricular
                                      int64
                       2392 non-null
   Sports
                       2392 non-null int64
 10 Music
                       2392 non-null int64
 11 Volunteering
                                      int64
                       2392 non-null
                       2392 non-null float64
 12 GPA
dtypes: float64(2), int64(11)
memory usage: 243.1 KB
```


Duplicated Values:

And no duplicated values

```
df.duplicated().sum()
0
```

PREPROCESSING

Check for outliers:

There is a small amount of outliers

VISUALIZATIONS

The Distribution of the Target Feature

VISUALIZATIONS

The Count of Each Categorical Feature

VISUALIZATIONS

Heatmap for Detecting the Most Important Features

PREPARE FOR MODELS

```
from sklearn.model_selection import train_test_split
    x = df.drop(['GPA'],axis=1)
    y = df['GPA']

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
```

Splitting the data for train & test data

MODELS

APPLIED MODELS

DECISION TREE

The R2 Score: 85.5

Mean Squared Error: 0.11

SUPPORT VECTOR MACHINE (SVM)

The R2 Score: 95.0

Mean Squared Error: 0.04

RANDOM FOREST

The R2 Score: 93.0

Mean Squared Error: 0.05

● K-NEAREST NEIGHBORS (KNN)

The R2 Score: 90.8

Mean Squared Error: 0.07

COMPARING MODELS

SCATTER PLOT

The Distribution of the Predicted and Actual data points

LOOKS LIKE SVM IS THE BEST MODEL!

Lets Make Sure

RESULT

The SVM Has the Best Accuracy

CONCLUSION

This project demonstrates the power of AI in predicting GPA and identifying at-risk students early. By leveraging data-driven insights, educators can provide targeted support, improve student outcomes, and enhance overall academic success. Ultimately, this model aims to create a more supportive and proactive learning environment.

PRESENTED BY:

- 1.Ziad Wael El-Gharib
- 2. Mahmoud Rafaat El-Alawy
- 3.Ahmed Abd-Elfatah Mohammed
- 4.Islam Mostafa Abd-Elaziz
- 5. Mohammed Mahmoud Fathey

THANKYOU