University of South Wales Prifysgol De Cymru

School of Computing and Mathematics University of South Wales

DS70N25A - Predictive Analysis of Online Retail Sales Trends and Customer behavior

Student name: Nithyashree Thimmegowda Student ID: 30119304

Contents:

Background

- E-commerce growth has shifted retail from physical stores to online platforms.
- Massive transactional data is generated but often underutilized.
- Traditional decision-making struggles with pattern detection and forecasting.
- Predictive analytics and machine learning help extract actionable insights.
- This study analyzes 541,909 UK online retail transactions (2010–2011).
- Techniques used: Random Forest, Logistic Regression, ARIMA, SARIMA, and Apriori for segmentation, churn prediction, forecasting, and association analysis.

Problem Statement:

E-commerce generates complex, noisy, and incomplete transactional data.

Businesses struggle to extract actionable insights for customer segmentation, forecasting, and churn prediction.

Challenges: missing customer IDs, class imbalance, seasonality effects.

Lack of integrated and interpretable predictive frameworks limits data-driven decisions.

This study develops a robust ML-based framework to address these issues.

Aim & Objectives

>Aim:

Develop a predictive analytics framework using ML & statistical models to analyze customer behavior, predict churn, forecast sales, and identify product associations.

≻Objectives:

- Clean & preprocess online retail data.
- Perform EDA on temporal, geographic & product trends.
- Segment customers via RFM & K-means clustering.
- Build churn prediction models (Logistic Regression, Random Forest).
- Forecast sales (ARIMA, SARIMA, Prophet).
- Apply Apriori for association rule mining.
- Evaluate models using accuracy, recall, RMSE, MAPE.

Research Questions

- What sales trends (temporal & product-level) exist in the dataset?
- How can behavioral customer segmentation improve marketing?
- Which behavioral features predict customer churn?
- Which products have strong co-purchase relationships for cross-selling?
- Which forecasting models best predict future sales?
- How do ML models (Logistic Regression vs. Random Forest) compare for churn prediction?

Literature review

Study	Techniques Used	Dataset Type	Validati on/Accu racy	Unique Contribution	Key Limitation	
Kaya & Saleem (2023)	Clustering, Assoc. Rules, Trend Analysis	Genuine business data	Not reported	Focus on temporal behavior	Lack of model validation	
Alghanam et al. (2022)	K-means, J48, C4.5, Apriori	Northwin d (syntheti c)	95.2% (claimed	Hybrid modelling for recommendations	Reproducibility not addressed	
Thomas (2024)	Overview: Clustering, Assoc. Rules, NLP	Conceptu	N/A	Sentiment analysis and ethics	No implementation or dataset evaluation	
Sri Darshan et al. (2024)	Prefix Span, Apriori, Prophet	Synthetic retail data	MAE, RMSE used	Time series + sequential behavior	Not customer- segment focused	
Alawadh & Barnawi (2024)	Clustering, C4.5, Apriori	1M+ real transacti ons	Not reported	Practical deployment with customer segments	Theoretical grounding and validation lacking	

Data preparation and Cleaning

- ➤ **Methodology:** CRISP-DM framework (Business Understanding → Deployment)
- ➤ Dataset: 541,909 UK online retail transactions (Dec 2010–Dec 2011)
- **▶** Data Cleaning:
 - Removed missing CustomerID (~25%) and Description fields.
 - Removed duplicates, cancelled transactions (InvoiceNo starting with 'C').
 - Eliminated invalid Quantity & UnitPrice (≤0).
 - Standardized data types (InvoiceDate, CustomerID).

Feature Engineering

- Created **TotalPrice** (Quantity × UnitPrice).
- Extracted temporal features (Month, Day, Hour).
- Calculated **RFM metrics** (Recency, Frequency, Monetary).
- Computed Basket Size.
- Created Churn Labels (inactive >90 days).

Exploratory Visualizations

Top Products by Revenue:

'Paper Craft Little Birdie', 'Regency Cakestand 3 Tier' are top sellers.

Country Insights:

UK: 90% of sales; EIRE: highest average revenue per customer.

Exploratory Visualizations continued

Monthly Sales Trends:

- Peak sales: Nov 2011 (holiday season).
- Lowest sales: Feb & Apr 2011.

• Basket Size Trends:

Highest basket size in December 2011.

- Adopted CRISP-DM framework for entire modeling pipeline.
- Tools: R (dplyr, ggplot2, caret, forecast, randomForest, arules).
- Methods applied:
 - Customer Segmentation
 - Churn Prediction
 - Time Series Forecasting
 - Association Rule Mining
 - Interactive Dashboards

- Customer Segmentation (RFM)
- Used Recency, Frequency, Monetary (RFM) model.
- RFM scores: 1 (low) to 5 (high) for each dimension.
- Segments identified:
 - Champions
 - Loyal Customers
 - At Risk
 - Hibernating

- Clustering: Persona Development
- Applied **K-Means Clustering** on normalized RFM data.
- Optimal clusters determined using Elbow Method (**k=4**).
- Resulting Personas:
 - Bargain Hunters
 - Big Spenders
 - Occasional Buyers
 - Frequent Buyers

- Churn Prediction
- Defined churn: No purchase in last 90 days.
- Features: Recency, InvoiceCount, TotalSpent.
- Models used:
 - Logistic Regression
 - Random Forest (better performance)
- Random Forest Results:
 - Accuracy: **82%**
 - Recall: 76%
 - F1-Score: **0.78**
 - AUC: >0.80

Feature Importance - Random Forest

- Time Series Forecasting
- Models applied:
 - ARIMA
 - SARIMA
 - Prophet
- Best performing model: **SARIMA**(with seasonality)
 - RMSE: 281,292
 - MAPE: 36.6%
- Seasonal patterns successfully captured.

- Association Rule Mining
- Applied Apriori algorithm.
- Extracted frequent product pairs for cross-selling.
- Identified high-lift rules to support bundling & promotion strategies.

Rule (If	then	Support	Confidence	Lift	Insight
customer	also				
buys)	buys				
pink knitted egg	blue	0.0012	88.0%	652.3	Strong complementary
cosy	knitted				purchase – almost always
	egg cosy				bought together
blue knitted egg	pink	0.0012	88.0%	652.3	Same as above – bi-
cosy	knitted				directional relationship
	egg cosy				
pantry hook	tea	0.0011	90.9%	601.7	High-value kitchen
balloon whisk +	strainer				bundle
spatula					
balloon whisk +	spatula	0.0011	83.3%	594.0	Another strong pantry set
tea strainer					rule
pantry hook	tea	0.0012	84.6%	560.0	Consistently paired tools
spatula	strainer				
tea strainer	spatula	0.0012	78.6%	560.0	Very high frequency
					pairing
spatula + tea	balloon	0.0011	90.9%	543.5	Suggests promoting as a
strainer	whisk				set
tea strainer	balloon	0.0013	85.7%	512.4	Strong unidirectional
	whisk				affinity
balloon whisk	tea	0.0013	77.4%	512.4	Mirrors above pattern
	strainer				
party pizza	green	0.0011	87.5%	506.7	Party dish set frequently
dishes (3 styles)	polkadot				bought as full color range
	dish				

- Interactive Dashboards:
 - Developed for business users to explore sales, segmentation & churn predictions.

Online Retail Sales Dashboard

Sales Over	Time Cus	stomer Segmei	nts	Churn Prediction	
Recency	Frequency	Monetary	Chu	ırn	
2.31	-0.41	7.28	1.	00	
-0.91	0.35	0.21	0.	00	
-0.75	-0.41	-0.04	0.	00	
2.16	-0.41	-0.18	1.	00	
1.10	-0.41	-0.20	1.	00	
1.38	-0.41	-0.10	1.	00	
1.20	-0.41	-0.16	1.	00	
-0.71	-0.16	0.06	0.	00	
-0.60	-0.41	0.39	0.	00	
-0.92	-0.28	-0.10	0.	00	

Online Retail Sales Dashboard

ttp://127.0.0.1:6293 | 🔎 Open in Browser

Online Retail Sales Dashboard

◆ Publish ▼

Conclusion

- Developed an integrated **predictive analytics framework** for online retail.
- Enabled actionable insights for:
 - Customer engagement
 - Retention strategies
 - Sales forecasting
 - Cross-selling opportunities
- Framework applicable to real-world business decision-making.

Future Work

- Incorporate real-time data & deep learning models.
- Apply fairness-aware analytics.
- Integrate external data sources: IoT, social media, customer feedback.
- Extend framework to longer time periods for seasonal stability.

