Programme de khôlle de maths no 5

Semaine du 14 Octobre

Cours

Chapitre 3: Ensembles et applications

- Egalité, inclusion d'ensembles
- Ensemble vide, ensemble $\mathcal{P}(E)$ des sous-ensembles d'un ensemble E, ensemble $F \setminus E = \{x \in F, x \notin E\}$.
- Union et intersection de deux ensembles, complémentaire dans un ensemble.
- Union et intersection d'une famille quelconque d'ensembles.
- Produit cartésien, n-uplet (définitions)
- Application $f: E \to F$, ensemble de départ, ensemble d'arrivée, image directe f(A) de $A \in \mathcal{P}(E)$, image réciproque $f^{-1}(A)$ de $A \in \mathcal{P}(F)$.
- Restriction d'une application, prolongement d'une application
- Injection, surjection, bijection. Application réciproque d'une bijection. Application identité. $f: E \to F$ est une bijection si et seulement si il existe $g: F \to E$ tel que $f \circ g = \operatorname{Id}_F$ et $g \circ f = \operatorname{Id}_E$ et alors $f^{-1} = g$.
- Dénombrement : arrangements, permutations, combinaisons.

Chapitre 4: Entiers, sommes et récurrences

- Nombres entiers, familles finies et dénombrables
- Sommes sur une partie finie de Z, relation de Chasles, changement d'indice, changement de sens de sommation
- Somme double sur un rectangle $(\sum_{i=a}^b \sum_{j=c}^d u_{i,j})$, somme double sur un triangle $(\sum_{i=1}^n \sum_{j=1}^i u_{i,j})$.
- Récurrence simple.

Questions de cours et exercices vus en classe

- Montrer que :
 - 1. $g \circ f$ surjective $\Longrightarrow g$ surjective
 - 2. $g \circ f$ injective $\Longrightarrow f$ injective
- Montrer que $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ en utilisant le fait que pour un ensemble E fini, $\operatorname{card}(\mathcal{P}(E)) = 2^{\operatorname{card}(E)}$.
- Calculer $\sum_{k=1}^{n} \left(\frac{1}{k} \frac{1}{k+2} \right)$
- Calculer $\sum_{k=5}^{20} 2^{20-k}$
- Calculer $\sum_{k=-10}^{20} |k-5|$
- Calculer $\sum_{k=1}^{n-1} \ln \left(\frac{k}{n-k} \right)$
- Déterminer deux réels α, β tels que $\forall n \in \mathbb{N}^*$, $\frac{1}{n(n+1)} = \frac{\alpha}{n} + \frac{\beta}{n+1}$ et en déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ en fonction de n.
- Calculer $\sum_{i=1}^{n} \sum_{j=1}^{i} \frac{i}{j}$

Exercices

- 1. Montrer que f injective et g injective $\Longrightarrow g \circ f$ injective et que f surjective et g surjective $\Longrightarrow g \circ f$ surjective.
- 2. Montrer que si $f: E \to F$ est injective on a pour tout $A, B \in \mathcal{P}(E), f(A \cap B) = f(A) \cap f(B)$.
- 3. Montrer que toute restriction d'une injection est une injection et que tout prolongement d'une surjection est une surjection.

Plus précisément : soit $A \subset E$, soit $f: E \to F$ une injection et $g: A \to F$ une surjection. Montrer que $f_{|A}$ est une injection et montrer que si $\widetilde{g}: E \to F$ vérifie $\forall x \in A, \widetilde{g}(x) = g(x)$, alors \widetilde{g} est une surjection.

- 4. Soit $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$, $(x; y) \mapsto (x + 2y; -x 3y)$. Montrer que f est bijective et déterminer son application réciproque.
- 5. Soit $f: E \to E$ une application d'un ensemble E vers lui-même telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.
- 6. Les applications suivantes sont-elles injectives/surjectives/les deux?

(a)
$$f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$$

(d)
$$f: \mathbb{Z} \to \mathbb{N}, n \mapsto n^2$$

(g)
$$f: [1; +\infty[\rightarrow \mathbb{R}, x \mapsto x^3 - x^2]$$

(b)
$$f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$$

(e)
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$$

(h)
$$f: [1; +\infty[\to [0; +\infty[, x \mapsto x^3 - x^2]]]$$

(c)
$$f: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1$$

(f)
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3 - x^2$$

7. Calculer à l'aide d'un ou plusieurs changement d'indice :

(a)
$$\sum_{k=2}^{n} x^{k-2}$$

(d)
$$\sum_{k=10}^{55} (k-10)$$

(g)
$$\sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) + \sum_{k=n+1}^{2n-1} \sin\left(\frac{k\pi}{n}\right)$$

(b)
$$\sum_{k=3}^{n} (n-k)^2$$

(e)
$$\sum_{k=2}^{11} \ln \left(\frac{2^k}{4} \right)$$

(h)
$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right)$$

(c)
$$\prod_{k=1}^{n} 2^{k-1}$$

$$(f) \prod_{k=0}^{n} e^{2k-n}$$