Équivalents

Exercice 1. (Voir corrigé) (★)

Trouvez des équivalents des suites et fonctions suivantes :

1)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$
 en $+\infty$ 2) $v_n = \sqrt{n+1} - \sqrt{n-1}$ en $+\infty$ 3) $w_n = \sqrt{n+\sqrt{n}} - \sqrt{n}$ en $+\infty$ 4) $\ln(\cos x)$ en 0 5) $\frac{1}{x} - \frac{1}{\sin x}$ en 0 6) $\cos(\sin x)$ en 0

2)
$$v_n = \sqrt{n+1} - \sqrt{n-1} \text{ en } +\infty$$

3)
$$w_n = \sqrt{n + \sqrt{n}} - \sqrt{n} \text{ en } +\infty$$

4)
$$\ln(\cos x)$$
 en (

5)
$$\frac{1}{x} - \frac{1}{\sin x}$$
 en 0

6)
$$\cos(\sin x)$$
 en 0

Exercice 2. (Voir corrigé) (★)

Comparez les fonctions suivantes :

- 1) $x \ln x$ et $\ln(1+2x)$ au voisinage de 0
- 2) $x \ln x$ et $\sqrt{x^2 + 3x} \ln(x^2) \sin x$ au voisinage de $+\infty$

Développements limités

Exercice 3 (Voir énoncé) (★)

1)

Équivalents

Exercice 1. (Voir corrigé) (\bigstar)

- 1) On met sur le même dénominateur.
- 2) On utilise la quantité conjugée : $v_n = \frac{(\sqrt{n+1} + \sqrt{n-1})(\sqrt{n+1} \sqrt{n-1})}{\sqrt{n+1} + \sqrt{n-1}} = \cdots = \frac{2}{\sqrt{n+1} + \sqrt{n-1}}$. Aussi, on a $\frac{\sqrt{n+1} + \sqrt{n-1}}{2\sqrt{n}} = \frac{1}{2}\sqrt{1 + \frac{1}{n}} + \frac{1}{2}\sqrt{1 \frac{1}{n}}$, ces deux quantités tendant vers 1, on a un

équivalent (avec les 0.5). Ainsi $v_n \underset{+\infty}{\sim} = \frac{1}{\sqrt{n}}$

3)
$$w_n = \sqrt{n(1 + \frac{1}{\sqrt{n}})} - \sqrt{n} = \sqrt{n}(\sqrt{1 + \frac{1}{n}} - 1) \underset{+\infty}{\sim}$$

- 4) $\ln(\cos x) = \ln(1 (1 \cos x)) \sim -(1 \cos x) \sim -\frac{x^2}{2}$.
- 5) $\frac{1}{x} \frac{1}{\sin x} = \frac{\sin x x}{x \sin x} \sim \frac{\frac{-x^3}{3!}}{x^2} = -\frac{x}{6}$ (DL ordre 4 de sin en haut et ordre 2 en bas).
- 6) Par composition, $\cos(\sin x) \to 1$ en 0 et donc $\cos(\sin x) \sim 1$.

Exercice 2. (Voir énoncé) (★)

- 1) $\frac{\ln(1+2x)}{x\ln x} \sim \frac{2}{\ln x} \longrightarrow 0.$
- $x \ln x$ 0 $\ln x$ 2) Pour x assez grand, $\sqrt{x^2 + 3x} \leqslant 2x$ (passer au carré pour s'en convaincre) et on a aussi $\ln(x^2) = 2 \ln x$

et $|\sin x| \le 1$. Donc $|\sqrt{x^2 + 3x} \ln(x^2) \sin x| \le 4x \ln x$ et ainsi $\sqrt{x^2 + 3x} \ln(x^2) \sin x = O(x \ln x)$.

Dévelopments limités

Exercice 3 (Voir énoncé) (★)

1)