

PAC FIELDS OVER FINITELY GENERATED FIELDS

LIOR BARY-SOROKER AND MOSHE JARDEN

ABSTRACT. We prove the following theorem for a finitely generated field K : Let M be a Galois extension of K which is not separably closed. Then M is not PAC over K .

1. INTRODUCTION

A central concept in Field Arithmetic is “pseudo algebraically closed (abbreviated **PAC**) field”. If K is a countable Hilbertian field, then $K_s(\sigma)$ is PAC for almost all $\sigma \in \text{Gal}(K)^e$ [FrJ, Thm. 18.6.1]. Moreover, if K is the quotient field of a countable Hilbertian ring R (e.g. $R = \mathbb{Z}$), then $K_s(\sigma)$ is PAC over R [JaR1, Prop. 3.1], hence also over K .

Here K_s is a fixed separable closure of K and $\text{Gal}(K) = \text{Gal}(K_s/K)$ is the absolute Galois group of K . This group is equipped with a Haar measure and “almost all” means “for all but a set of measure zero”. If $\sigma = (\sigma_1, \dots, \sigma_e) \in \text{Gal}(K)^e$, then $K_s(\sigma)$ denotes the fixed field in K_s of $\sigma_1, \dots, \sigma_e$.

Recall that a field M is said to be **PAC** if every nonempty absolutely irreducible variety V defined over M has an M -rational point. One says that M is **PAC over** a subring R if for every absolutely irreducible variety V defined over M of dimension $r \geq 0$ and every dominating separable rational map $\varphi: V \rightarrow \mathbb{A}_M^r$ there exists an $\mathbf{a} \in V(M)$ with $\varphi(\mathbf{a}) \in R^r$.

When K is a number field, the stronger property of the fields $\tilde{K}(\sigma)$ (namely, being PAC over the ring of integers O of K) has far reaching arithmetical consequences. For example, $\tilde{O}(\sigma)$ (= the integral closure of O in $\tilde{K}(\sigma)$) satisfies Rumely’s local-global principle [JaR2, special case of Cor. 1.9]: If V is an absolutely irreducible variety defined over $\tilde{K}(\sigma)$ with $V(\tilde{O}) \neq \emptyset$, then V has an $\tilde{O}(\sigma)$ -rational point. Here \tilde{K} denotes the algebraic closure of K and $\tilde{K}(\sigma)$ is, as before, the fixed field of $\sigma_1, \dots, \sigma_e$ in \tilde{K} .

Date: February 1, 2008.

MSC-class: 12E30.

Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

This work constitutes a part of the Ph.D dissertation of the first author done at Tel Aviv University under the supervision of Prof. Dan Haran.

The article [JaR1] gives several distinguished Galois extensions of \mathbb{Q} which are not PAC over any number field and notes that no Galois extension of a number field K (except \tilde{K}) is known to be PAC over K . This lack of knowledge has come to an end in [Jar], where Neukirch's characterization of the p -adically closed fields among all algebraic extensions of \mathbb{Q} is used in order to prove the following theorem:

Theorem A. *If M is a Galois extension of a number field K and M is not algebraically closed, then M is not PAC over K .*

The goal of the present note is to generalize Theorem A to an arbitrary finitely generated field (over its prime field):

Theorem B. *Let K be a finitely generated field and M a Galois extension of K which is not separably closed. Then M is not PAC over K .*

The proof of Theorem B is based on Proposition 5.4 of [JaR1] which combines Faltings' theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic. The latter theorems are much deeper than the result of Neukirch used in the proof of Theorem A.

2. ACCESSIBLE EXTENSIONS

The proof of Theorem B actually gives a stronger theorem: No accessible extension (see definition prior to Theorem 4) of a finitely generated field K except K_s is PAC over K . Technical tools in the proof are the “field crossing argument” and “ring covers”:

An extension S/R of integral domains with an extension F/E of quotient fields is said to be a **cover of rings** if $S = R[z]$ and $\text{discr}(\text{irr}(z, E)) \in R^\times$ [FrJ, Definition 6.1.3]. We say that S/R is a **Galois cover of rings** if S/R is a cover of rings and F/E is a Galois extension of fields. Every epimorphism φ_0 of R onto a field \bar{E} extends to an epimorphism φ of S onto a Galois extension \bar{F} of \bar{E} and φ induces an isomorphism of the **decomposition group** $D_\varphi = \{\sigma \in \text{Gal}(F/E) \mid \sigma(\text{Ker}(\varphi)) = \text{Ker}(\varphi)\}$ onto $\text{Gal}(\bar{F}/\bar{E})$ [FrJ, Lemma 6.1.4]. In particular, $\text{Gal}(F/E) \cong \text{Gal}(\bar{F}/\bar{E})$ if and only if $[F : E] = [\bar{F} : \bar{E}]$.

As in the proof of [FrJ, Lemma 24.1.1], the field crossing argument is the basic ingredient of the construction included in the proof of the following lemma.

Lemma 1. *Let K be a field, M an extension of K , n a positive integer, N a Galois extension of M with Galois group A of order at most n , and t an indeterminate. Then there exist fields D, F_0, F, \hat{F} as in diagram (1) such that the following holds:*

- (a) F_0 is regular over K , F and D are regular over M , and \hat{F} is regular over N .
- (b) $FD = DN = \hat{F}$.
- (c) $F_0/K(t)$, $F/M(t)$, and $\hat{F}/N(t)$ are Galois extensions with Galois groups isomorphic to S_n .

(1)

$$\begin{array}{ccccc}
F_0 & \xrightarrow{\quad} & F & \xrightarrow{\quad A \quad} & \hat{F} \\
S_n \downarrow & & S_n \downarrow & \nearrow D & S_n \downarrow \\
K(t) & \xrightarrow{\quad} & M(t) & \xrightarrow{\quad} & N(t) \\
\downarrow & & \downarrow & & \downarrow \\
K & \xrightarrow{\quad} & M & \xrightarrow{\quad A \quad} & N
\end{array}$$

Proof. The field $K(t)$ has a Galois extension F_0 with Galois group S_n such that F_0 is regular over K [FrJ, Example 16.2.5 and Proposition 16.2.8]. In particular, F_0 is linearly disjoint from N and M over K . Set $F = F_0M$ and $\hat{F} = FN$. By [FrJ, Cor. 2.6.8], both F/M and \hat{F}/N are regular extensions. Moreover, both $F/M(t)$ and $\hat{F}/N(t)$ are Galois extensions with Galois groups isomorphic to S_n and \hat{F}/F is a Galois extension. We identify $\text{Gal}(\hat{F}/F)$ with A via restriction. Finally, $\hat{F}/M(t)$ is a Galois extension and $\text{Gal}(\hat{F}/M(t)) = \text{Gal}(\hat{F}/F) \times \text{Gal}(\hat{F}/N(t))$.

Multiplication from the right embeds A into S_m , where $m = |A|$. Since $m \leq n$, there exists an embedding $\alpha: A \rightarrow \text{Gal}(\hat{F}/N(t))$. Consider the diagonal subgroup $\Delta = \{(\sigma, \alpha(\sigma)) \in \text{Gal}(\hat{F}/M(t)) \mid \sigma \in A\}$ of $\text{Gal}(\hat{F}/M(t))$ and its fixed field D in \hat{F} . Then $\Delta \cap \text{Gal}(\hat{F}/F) = \Delta \cap \text{Gal}(\hat{F}/N(t)) = 1$. By Galois theory, $FD = DN(t) = \hat{F}$, so $DN = \hat{F}$. Restriction to N maps $\text{Gal}(\hat{F}/D)$ onto $\text{Gal}(N/M)$, hence $D \cap N = M$. Since \hat{F} is regular over N , it follows that D is regular over M . \square

The main ingredient in the proof of Lemma 3 is the following result of Faltings' theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic.

Lemma 2 ([JaR1, Prop. 5.4]). *Let K be an infinite finitely generated field, $f \in K[T, Y]$ an absolutely irreducible polynomial which is separable in Y , $g \in K[T, Y]$ an irreducible polynomial which is separable in Y , and $0 \neq r \in K[T]$. Then there exist a finite purely inseparable extension K' of K , a nonconstant rational function $q \in K'(T)$, and a finite subset B of K' such that $f(q(T), Y)$ is absolutely irreducible, $g(q(a), Y)$ is irreducible in $K'[Y]$, and $r(q(a)) \neq 0$ for each $a \in K' \setminus B$.*

Lemma 3. *Let K be an infinite finitely generated field, M/K a separable extension, PAC over K , n a positive integer, and N a Galois extension of M of degree at most*

n with Galois group A . Then there exist finite extensions $K' \subseteq L$ of K such that with $M' = K'M$ and $N' = K'N$ the following hold:

- (a) $N' = LM'$ and $\text{Gal}(N'/M') \cong A$.
- (b) L/K' is a Galois extension and $\text{Gal}(L/K') \cong S_n$.

Proof. We break the proof into three parts.

PART A: Transcendental extensions. First we apply Lemma 1 to construct Diagram (1). Then we choose $x \in F_0$ integral over $K[t]$ with $F_0 = K(t, x)$ and we let $g \in K[T, X]$ be the monic polynomial in X such that $g(t, X) = \text{irr}(x, K(t))$. In particular, $r_1(t) = \text{discr}(g(t, X)) \in K[t]$ and $r_1(t) \neq 0$. Finally we choose $z \in D$ integral over $M[t]$ with $D = M(t, z)$ and we let $f \in K[T, X]$ be the monic polynomial such that $f(t, X) = \text{irr}(z, M(t))$. Then $r_2(t) = \text{discr}(f(t, X)) \in M[t]$ and $r_2(t) \neq 0$. Since D is regular over M , the polynomial $f(T, X)$ is absolutely irreducible [FrJ, Cor. 10.2.2(b)]. Let $r(t) = r_1(t)r_2(t)$.

Replacing K by a finite extension in M , we may assume that K contains all of the coefficients of $f(t, X)$, $g(t, X)$, and $r(t)$. Set $R_0 = K[t, r(t)^{-1}]$, $R = R_0M = M[t, r(t)^{-1}]$, $S_0 = R_0[x]$, $S = S_0M = R[x]$, and $V = R[z]$. Then S_0/R_0 , S/R , and V/R are ring covers and $F_0/K(t)$, $F/M(t)$, and $D/M(t)$ are the corresponding field covers.

PART B: Specialization. Lemma 2 gives a finite purely inseparable extension K' of K , a nonconstant rational function $q \in K'(T)$, and a finite subset B of K' such that $f(q(T), X)$ is absolutely irreducible, $g(q(a), X)$ is irreducible in $K'[X]$, and $r(q(a)) \neq 0$ for each $a \in K' \setminus B$.

We put ' on rings and fields to denote their composition with K' . For example $M' = K'M$. Since \hat{F}/K is separable and K'/K is purely inseparable, these extensions are linearly disjoint. It follows that (a), (b), and (c) of Lemma 1 hold for the tagged rings and fields. In particular, S'_0/R'_0 and S'/R' are Galois covers of rings and $\text{Gal}(N'/M') \cong A$. By [JaR1, Cor. 2.5], M' is PAC over K' , hence there exists $(a, c) \in K' \times M'$ such that $a \notin B$ and $f(b, c) = 0$ with $b = q(a)$. By the choice of B , $g(b, X)$ is irreducible in $K'[X]$ and $r(b) \neq 0$.

The tag notation also gives $R'_0 = K'[t, r(t)^{-1}]$ and $V' = M'[t, z, r(t)^{-1}]$. Since V' is integral over R' and $f(t, z) = 0$, we may extend the specialization $(t, z) \rightarrow (b, c)$ to an M' -epimorphism $\psi: V' \rightarrow M'$ satisfying $\psi(R'_0) = K'$.

PART C: Finite extensions of K' . Let \hat{S}' be the integral closure of R' in \hat{F}' . Then $S' = \hat{S}' \cap F'$. By [FrJ, Lemma 2.5.10], $\hat{S}' = V' \otimes_{M'} N'$. Furthermore, D' is linearly disjoint from F' over $F' \cap D'$, hence by the same lemma, $\hat{S}' = S'V'$.

$$\begin{array}{ccccccc} S'_0 = R'_0[x] & \xrightarrow{\quad} & S' & \xrightarrow{\quad} & \hat{S}' \\ \downarrow & & \downarrow & & \searrow V' = R'[z] \\ R'_0 = K'[t, r(t)^{-1}] & \xrightarrow{\quad} & R' = M'[t, r(t)^{-1}] & \xrightarrow{\quad} & R'N' \\ \downarrow & & \downarrow & & \downarrow \\ K' & \xrightarrow{\quad} & M' & \xrightarrow{\quad} & N' \end{array}$$

Setting $\psi(vn) = \psi(v)n$ for each $v' \in V'$ and $n \in N'$ extends ψ to an N' -epimorphism $\psi: \hat{S}' \rightarrow N'$. In particular, $M' \subseteq \psi(S')$, hence $N' = \psi(\hat{S}') = \psi(S'V') = \psi(S')M' = \psi(S')$.

Let $L = K'(\psi(x))$. Then $\psi(S'_0) = \psi(R'_0[x]) = K'(\psi(x)) = L$. Since $\psi(x)$ is a root of $g(b, X)$ and $g(b, X)$ is irreducible over K' , we have

$$[L : K'] = \deg(g(b, X)) = \deg(g(t, X)) = [F_0 : K(t)] = n!.$$

Hence, $\text{Gal}(L/K') \cong \text{Gal}(F_0/K(t)) \cong S_n$. Finally, $N' = \psi(S') = \psi(S'_0M') = \psi(S'_0)M' = LM'$, as desired. \square

We say that a separable algebraic extension M of a field K is **accessible** if there exists a sequence of fields

$$K = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq M$$

such that K_{i+1}/K_i is Galois for each i and $\bigcup_{i=0}^{\infty} K_i = M$. In particular, every Galois extension of K is accessible. If L/K is a finite Galois extension, then the sequence $\text{Gal}(L/L \cap K_i)$, $i = 0, 1, 2, \dots$, of subgroups of $\text{Gal}(L/K)$ is finite, so there is a

positive integer m such that

$$\begin{aligned} \text{Gal}(L/L \cap M) &= \\ &= \text{Gal}(L/L \cap K_m) \triangleleft \text{Gal}(L/L \cap K_{m-1}) \triangleleft \cdots \triangleleft \text{Gal}(L/L \cap K_1) \triangleleft \text{Gal}(L/K). \end{aligned}$$

In other words, $\text{Gal}(L/L \cap M)$ is a **subnormal subgroup** of $\text{Gal}(L/K)$.

Theorem 4. *Let K be a finitely generated field, M_0 an accessible extension of K , and M a separable algebraic extension of M_0 . If M is PAC over K and $M \neq K_s$, then, as a supernatural number, $[M : M_0] = \prod_p p^\infty$.*

Proof. By [JaR1, Remark 1.2(b)], K is an infinite field. Choose a proper finite Galois extension N of M with Galois group A and let n be a positive integer dividing $5|A|$. Let K' and L be fields satisfying Conditions (a) and (b) of Lemma 3. Set $M'_0 = K'M_0$, $M' = K'M$, $L_0 = L \cap M'_0$, and $L_1 = L \cap M'$. Then M'_0 is an accessible extension of K' , hence $\text{Gal}(L/L_0)$ is a subnormal subgroup of $\text{Gal}(L/K') \cong S_n$. Since $n \geq 5$, the sequence $1 \triangleleft A_n \triangleleft S_n$ is the only composition series of S_n [Hup, p. 173, Thm. 5.1]. Therefore $\text{Gal}(L/L_0)$ is either 1 or A_n or S_n . By Condition (a) of Lemma 3,

$$\text{Gal}(L/L_0) \geq \text{Gal}(L/L_1) \cong \text{Gal}(N'/M') \cong A \neq 1.$$

Therefore, $A_n \leq \text{Gal}(L/L_0)$, so $\frac{(n-1)!}{2}$ divides $[L_1 : L_0] = [L_1 M'_0 : M'_0]$ (note that $\frac{|A_n|}{|A|} \mid \frac{(n-1)!}{2}$).

Since n is arbitrarily large and $L_1 M'_0 \subseteq M'$, we have $[M' : M'_0] = \prod_p p^\infty$. Since K' is a finite extension, $[M : M_0] = \prod_p p^\infty$. \square

The main result of this note is a special case of Theorem 4:

Corollary 5. *Let K be a finitely generated field and let N/K be a separable extension PAC over K , $N \neq K_s$. Then N is not an accessible extension of K . In particular N is not Galois over K .*

Corollary 6. *Let K be an infinite finitely generated field and let e be a positive integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the extension $K_s(\sigma)$ of K is inaccessible.*

Proof. By [JaR1, Prop. 3.1], for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_s(\sigma)$ is PAC over K ; in addition, $K_s(\sigma) \neq K_s$. Hence, by Theorem 4, $K_s(\sigma)$ is inaccessible over K . \square

Conjecture 7. *Let K be a finitely generated field and M an algebraic extension of K . If M is PAC over K , then $\text{Gal}(M)$ is finitely generated.*

REFERENCES

- [FrJ] M. D. Fried and M. Jarden, *Field Arithmetic, Second Edition*, revised and enlarged by Moshe Jarden, *Ergebnisse der Mathematik (3)* **11**, Springer, Heidelberg, 2005.
- [Hup] B. Huppert, *Endliche Gruppen I*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen **134**, Springer, Berlin, 1967.
- [JaR1] M. Jarden and A. Razon, *Pseudo algebraically closed fields over rings*, Israel Journal of Mathematics **86** (1994), 25–59.
- [JaR2] M. Jarden and A. Razon, *Rumely’s local global principle for algebraic PSC fields over rings*, Transactions of AMS **350** (1998), 55–85.
- [Jar] M. Jarden, *PAC fields over number fields*, Journal de Théorie des Nombres de Bordeaux **18** (2006), 371–377.

SCHOOL OF MATHEMATICS, TEL AVIV UNIVERSITY,, RAMAT AVIV, TEL AVIV 69978, ISRAEL
E-mail address: barylitor@post.tau.ac.il and jarden@post.tau.ac.il