An Experiment on Bare-Metal BigData Provisioning

Ata Turk, Ravi S. Gudimetla, Emine Ugur Kaynar, Jason Hennessey, Sahil Tikale, Peter Desnoyers, Orran Krieger

BigData Analytics on the Cloud

- BigData deployments are moving to the cloud
 - On-demand usage (Cost), Elasticity, Agility, Simplicity, ...
 - Virtualized laaS solutions: Amazon EMR, Azure HDInsight, ...
- Virtualization drawbacks
 - Overhead, unpredictability, security concerns, device functionality, ...
 - Bare-metal cloud solutions: IBM, Rackspace, and Internap, ...

Bare-Metal BigData Cloud Solutions

- Bare-Metal cloud provisioning
 - Automated provisioning: Ironic, MaaS, ...
 - Image copy to local disk => long waits => loss of agility & elasticity
- OS streaming*, Lazy copy & de-virtualization**
- What about network booting?
 - incur an ongoing unacceptable overhead during runtime

^{*} David Clerc, "OS Streaming Deployment", in IPCCC'10, pp. 169-179, 2010.

^{**} Y. Omote, T. Shinagawa, and K. Kato, "Improving Agility and Elasticity in Bare-metal Clouds," in ASPLOS'15, pp. 145-159, 2015.

- Large parts of the HPC community has been doing it for the last 20 years.
- Virtualized laaS is doing it all the time.
- Why not bare-metal cloud?

Network-Mounted BigData System

- Clients access kernel and init ramdisk via PXE
- Mount OS & BigData apps from a remote iSCSI volume
- Use local disk for ephemeral storage (HDFS, /swap, /tmp, ...)

Hardware Isolation Layer:

A service to allocate baremetal nodes out of a shared pool and isolate network

Provisioning VM:

Gateway between isolated servers and image store

Provisioning Time

Provisioning Time

Provisioning Time Scaling

Read Traffic over Boot Drive

Read Traffic over Boot Drive

Read Traffic over Boot Drive

Write Traffic over Boot Drive

Write Traffic over Boot Drive

Runtime Performance of Network-Mounted Boot Drive

Runtime Performance of Network-Mounted Boot Drive

Runtime Performance of Network-Mounted Boot Drive

Take-aways

- Network booting the OS for bare-metal BigData
 - uses only a fraction of boot disk during start-up
 - improves provisioning time with no runtime degradation
 - provisioning time < 5 mins, boot disk reads: ~3KB/s, writes: ~14KB/s
- Enormous effort on bare-metal provisioning on local disks may be unnecessary, especially for BigData deployments
- We are building a new Bare Metal Imaging Service using remote network boot mechanisms
 - enable capabilities available on virtualized platforms (e.g. snapshotting, cloning, ...) to bare metal cloud solutions

Questions

Provisioning Time

^{*} A. Chandrasekar and G. Gibson, "A comparative study of baremetal provisioning frameworks," Parallel Data Laboratory, Carnegie Mellon University, Tech. Rep. CMU-PDL-14-109, 2014.

Provisioning Time

^{*} A. Chandrasekar and G. Gibson, "A comparative study of baremetal provisioning frameworks," Parallel Data Laboratory, Carnegie Mellon University, Tech. Rep. CMU-PDL-14-109, 2014.