Prime Numbers

Prime Numbers

- prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

```
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
```

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: n=a x b x c
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes
 - **eg.** 91=7x13 ; $3600=2^4x3^2x5^2$

$$a = \prod_{p \in P} p^{a_p}$$

Relatively Prime Numbers & GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
 - eg. $300=2^1 \times 3^1 \times 5^2$ $18=2^1 \times 3^2$ hence GCD $(18,300)=2^1 \times 3^1 \times 5^0=6$

Fermat's Theorem

- a^{p-1} = 1 (mod p)
 where p is prime and gcd(a,p)=1
- also known as Fermat's Little Theorem
- also have: ap = a (mod p)
- useful in public key and primality testing

Euler Totient Function ø(n)

- when doing arithmetic modulo n
- ▶ complete set of residues is: 0..n-1
- reduced set of residues is those numbers (residues) which are relatively prime to n
 - eg for n=10,
 - complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 - reduced set of residues is {1,3,7,9}
- number of elements in reduced set of residues is called the Euler Totient Function ø(n)

Euler Totient Function ø(n)

- to compute ø(n) need to count number of residues to be excluded
- in general need prime factorization, but
 - for p (p prime) $\varphi(p) = p-1$
 - for p.q (p,q prime) \varnothing (p.q) = (p-1) x (q-1)
- eg.

```
\emptyset (37) = 36

\emptyset (21) = (3-1)x(7-1) = 2x6 = 12
```

Euler's Theorem

- a generalisation of Fermat's Theorem
- $a^{\emptyset(n)} = 1 \pmod{n}$
 - o for any a, n where gcd(a, n) =1
- eg.

```
a=3; n=10; \emptyset (10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \emptyset (11)=10;
hence 2^{10}=1024=1 \mod 11
```

▶ also have: $a^{\emptyset(n)+1} = a \pmod{n}$

Primality Testing

- often need to find large prime numbers
- traditionally sieve using trial division
 - ie. divide by all numbers (primes) in turn less than the square root of the number
 - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudoprimes, also satisfy the property
- can use a slower deterministic primality test

Miller Rabin Algorithm

- a test based on prime properties that result from Fermat's Theorem
- algorithm is:

```
TEST (n) is:
```

- 1. Find integers k, q, k > 0, q odd, so that $(n-1) = 2^k q$
- 2. Select a random integer a, 1 < a < n-1
- 3. if $a^q \mod n = 1$ then return ("inconclusive");
- 4. for j = 0 to k 1 do
 - 5. if $(a^{2^{j}q} \mod n = n-1)$ then return("inconclusive")
- 6. return ("composite")

Miller Rabin Algorithm

Miller Rabin Algorithm

Probabilistic Considerations

- if Miller-Rabin returns "composite" the number is definitely not prime
- otherwise is a prime or a pseudo-prime
- chance it detects a pseudo-prime is $< \frac{1}{4}$
- hence if repeat test with different random a then chance n is prime after t tests is:
 - Pr(n prime after t tests) = $1-4^{-t}$
 - \circ eg. for t=10 this probability is > 0.99999
- could then use the deterministic AKS test

Chinese Remainder Theorem

- used to speed up modulo computations
- if working modulo a product of numbers
 - eg. mod $M = m_1 m_2 ... m_k$
- Chinese Remainder theorem lets us work in each moduli m_i separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem

- can implement CRT in several ways
- ▶ to compute A (mod M)
 - first compute all $a_i = A \mod m_i$ separately
 - determine constants c_i below, where $M_i = M/m_i$
 - then combine results to get answer using:

$$A \equiv \left(\sum_{i=1}^k a_i c_i\right) \pmod{M}$$

$$c_i = M_i \times (M_i^{-1} \mod m_i)$$
 for $1 \le i \le k$

```
What's x such that:
                                                                     m = m_1 \cdot ... \cdot m_n
          x \equiv 2 \pmod{3}
                                       (So, a_1 = 2, etc.
          x \equiv 3 \pmod{5}
                                                                     M_i = m/m_i
                                       and m_{1=3} etc.)
          x \equiv 2 \pmod{7}?
                                                                    y_i M_i \equiv 1 \pmod{m_i}.
  Using the Chinese Remainder theorem:
                                                                        x = \sum_{i} a_{i} y_{i} M_{i}
m = 3 \times 5 \times 7 = 105
M_1 = m/3 = 105/3 = 35
             2 is an inverse of M_1 = 35 \pmod{3} (since 35x2 \equiv 1 \pmod{3})
  M_2 = m/5 = 105/5 = 21
              1 is an inverse of M_2 = 21 \pmod{5} (since 21x1 \equiv 1 \pmod{5})
M_3 = m/7 = 15
               1 is an inverse of M_3 = 15 \pmod{7} (since 15x1 \equiv 1 \pmod{7})
```

▶ So, $x \equiv 2 \times 2 \times 35 + 3 \times 1 \times 21 + 2 \times 1 \times 15 = 233 \equiv 23 \pmod{105}$

We're solving equations in modular arithmetic

So answer: $x \equiv 23 \pmod{105}$

Primitive Roots

- ▶ from Euler's theorem have a^{Ø(n)} mod n=1
- **consider** $a^m=1 \pmod{n}$, GCD(a,n)=1
 - must exist for $m = \emptyset(n)$ but may be smaller
 - once powers reach m, cycle will repeat
- if smallest is $m = \emptyset(n)$ then a is called a primitive root
- if p is prime, then successive powers of a "generate" the group mod p
- these are useful but relatively hard to find

Powers mod 19

a	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	- 11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	- 11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Discrete Logarithms

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- that is to find i such that $b = a^i \pmod{p}$
- ▶ this is written as $i = dlog_a$ b (mod p)
- If a is a primitive root then it always exists, otherwise it may not, eg.
 - $x = log_3 4 mod 13 has no answer$
 - $x = log_2 3 \mod 13 = 4$ by trying successive powers
- whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

Summary

- have considered:
 - prime numbers
 - Fermat's and Euler's Theorems & ø(n)
 - Primality Testing
 - Chinese Remainder Theorem
 - Primitive Roots & Discrete Logarithms