This is the complete list of typos that have been discovered so far in the first printing of my book "The Art of Computer Systems Performance Analysis," published by John Wiley & Sons, New York, NY. Most of these typos have been corrected in later printings of the book. Recently detected typos are indicated with an asterisk after the page number.

If you find any additional typos, please bring them to my attention.

Thanks.

February 25, 2017

Raj Jain

Professor of Computer Science and Engineering

Washington University in Saint Louis

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63131

U.S.A.

Email: Jain@wustl.edu

URL: http://www.cse.wustl.edu/~jain/

Errata for The Art of Computer Systems Performance Analysis

Page	Line	Current Text	Correct Text
xxvii	7	650Z	6502
1	14	compre	compare
$\begin{vmatrix} 1 \\ 10 \end{vmatrix}$	28	Box 9280, Phoenix, AZ 85068)	Box 82266, Phoenix, AZ 85071)
26	17	procedurelike	procedure like
35	11	is equal to the product of	is equal to the quotient of
47	12	database systems, network, and	database systems, networks, and
49*	19	It must be pointed that	It must be pointed out that
58	36	8-queens	9-queens
59	16	the system under test and the	the reference system and the sys-
	10	reference system is	tem under test is
59	18	taking 15 times as long	taking only 1/15th as long
59	$\frac{10}{24}$	of the SPECthruputs for	of the time ratios for single
	21		copies of
69	4	components, and timeliness are	components, and repeatability
	1	components, and uniformess are	are
75	23	a large number of disks—	a large number of disk I/Os—
78*	Last	$567,119,488-18\times5353^2 - 1741.0$	$\frac{567,119,488-18\times5352^2}{567,119,488-18\times5352^2} = 1741.0^2$
79*		$\begin{array}{c} \frac{567,119,488-18\times5353^2}{17} = 1741.0\\ s_{x_r}^2 = \frac{462,661,024-18\times4889.4^2}{17} = \end{array}$	$\begin{array}{ccc} \frac{567,119,488-18\times5352^2}{17} = 1741.0^2 \\ s_{x_r}^2 &= \frac{462,661,024-18\times4889.4^2}{17} &= \end{array}$
19	2	$S_{x_r} \equiv {17} \equiv $	$s_{x_r}^2 = \frac{402,001,024 \cdot 10 \times 4005 \cdot 1}{17} = 1379.5^2$
- 04	10	1379.5 $1/n\sum_{i=1}^{n} (x_{ii} - \bar{x}_{i})(x_{ii} - \bar{x}_{i})$	
79*	10	$R_{x_s,x_r} = \frac{1/n\sum_{i=1}^{n}(x_{si}-\bar{x}_s)(x_{ri}-\bar{x}_r)}{s_{x_s}s_{x_r}} =$	$R_{x_s,x_r} = $
		0.916	$R_{x_s,x_r} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_{si} - \bar{x}_s)(x_{ri} - \bar{x}_r)}{s_{x_s} s_{x_r}} = 0.970$ 970 (replace 916 by 970 every
79*	10-22	916	970 (replace 916 by 970 every
			where on the page. Total 11
			changes.)
79*	18	The eigenvalues are 1.916 and	The eigen values are 1.970 and
		0.084.	.030.
		$\left[\frac{1}{2}\right]$	$\left\lceil \frac{1}{\sqrt{2}} \right\rceil$
79	Last	$oxed{\mathbf{q}_1 = egin{array}{c} igg rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \ \end{array}}$	$\mathbf{q}_1 = \left egin{array}{c} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{array} ight $
00		· — ·	
89	9	$\sqrt{10.25}$	$\sqrt{8}$
89	1	2	$\sqrt{2}$
89	10	$\sqrt{24.4}$	$\sqrt{24.5}$
89	13	distance is 4.5	distance is $\sqrt{4.5}$
89	22	distance is 12.5	distance is $\sqrt{12.5}$
101	28-29	In this chapter,	In this section,
101	31	in this chapter	in this section
112	Last	instruction	instructions
113	16	elasped time.	elapsed time.
129	4	plus minus	plus or minus
135	8	12 seconds	18 seconds
141	15	Figure 10.2a	Figure 10.2b
141	18	Figure 10.2b	Figure 10.2a

Page	Line	Current Text	Correct Text
145	16-17	The percentage of packets be-	The performance in MIPS for
		longing to various protocol types	various CPU types are plotted
		are plotted on the chart.	on the chart.
146	1	protocol types	CPU types
147	8	goes up	goes down
150	9	Computer Performance	computer performance evalua-
		Evaluation	tion
161	2	it may be	it may not be
162	Item 7	(Similarly,	(similarly,
162	Item 13	never	ever
162	Item 25	self-stablizing	self-stabilizing
166	13-end	650Z	6502
166	Case Study	650Z	6502
	11.1		
172	Table 11.10	$\frac{(z+y)}{2}$	$\frac{(x+y)}{2}$
181	6	$Cov(x,y) = \sigma_{xy} = \cdots$	$\int_{-\infty}^{\infty} \operatorname{Cov}(x,y) = \sigma_{xy}^{2} = \cdots$
181	8	E(xy) - E(x)E(y)	E(xy) = E(x)E(y)
182	25	all distributions.	all distributions with finite vari-
			ances.
183	36	the mean of a sum is a sum of	the mean of a sum of random
		the means.	variables is the sum of their
			means.
186	21	means if and only if	means if
192**	17	$\log c = \log b_i - \log a_i$	$\log c = \log a_i - \log b_i$
192**	18	$\log b_i - \log a_i$	$\log a_i - \log b_i$
192**	19	b_i/a_i	a_i/b_i
192	35	would your prefer	would you prefer
194	28	75% are less than the	75% are less than or equal to the
194	31-32	For quantities exactly half way	To be precise, for continuous
		between two integers, use the	variables use linear interpola-
		lower integer.	tion between two nearest obser-
			vations.
195	3	median absolute deviation	mean absolute deviation
195	25	$=16^{\text{th}} \text{ element} = 3.9$	$= 0.5(16^{\mathrm{th}} \mathrm{element} + 17^{\mathrm{th}} \mathrm{ele}$
			ment) = 3.9
195	26	The third quartile Q_1 is	The third quartile Q_3 is
196	13	are not not stored; therefore,	are not stored; therefore,
197*	6	$\int x_{(n-1)/2)}$	$\int x_{(n+1)/2)}$
		$\begin{cases} x_{(n-1)/2} \\ 0.5(x_{(n/2)} + x_{(1+n)/2}) \\ f(x) = (1-p)^{x-1}x \end{cases}$	$\begin{cases} x_{(n+1)/2} \\ 0.5(x_{(n/2)} + x_{(n+2)/2}) \\ f(x) = (1-p)^{x-1}p \end{cases}$
200	Exercise 12.2	$f(x) = (1-p)^{x-1}x$	$f(x) = (1-p)^{x-1}p$

Page	Line	Current Text	Correct Text
201	3	$f(x) = \lambda^{x} \frac{e^{-\lambda x}}{x!}$ $f(x) = \lambda^{x} \frac{e^{-\lambda x}}{x!}$ $f(y) = \lambda^{y} \frac{e^{-\lambda y}}{y!}$	$f(x) = \lambda^{x} \frac{e^{-\lambda}}{x!}$ $f(x) = \lambda^{x} \frac{e^{-\lambda}}{x!}$ $f(y) = \lambda^{y} \frac{e^{-\lambda}}{y!}$
201	8	$f(x) = \lambda^x \frac{e^{-\lambda x}}{x!}$	$f(x) = \lambda^x \frac{e^{-\lambda}}{x!}$
201	9	$f(y) = \lambda^y \frac{e^{-\lambda y}}{y!}$	$f(y) = \lambda^y \frac{e^{-\lambda}}{y!}$
201*	16	Coefficent	Coefficient
201	19	$F(x) = 1 - e^{-x/a} \left[\sum_{i=0}^{m-1} \frac{(x/a)^i}{i!} \right]$	F(x) = 1 -
		[$ F(x) = 1 - $ $e^{-x/a} \left[\sum_{i=0}^{m-1} \frac{(x/a)^i}{i!} \right] \qquad 0 \le $
			$r < \infty$
201	23	$F(x) = 1 - x^{-a} \qquad 1 \le x \le$	$F(x) = 1 - x^{-a} \qquad 1 \le x \le 1$
		∞	0 < a
204	16	For example,	For instance,
205	2-3 of Example 13.1	$n = 32$. Since \cdots t-table:	n=32:
207	7	$0 \mp 1.895 \times 0.138 = 0 \mp 0.262 =$	$0 \mp 1.895 \times 0.138/\sqrt{8} = 0 \mp$
		(-0.262, 0.262)	0.0926 = (-0.0926, 0.0926)
208	15	$1.03 \mp 0.6t$	$1.03 \mp 0.605t$
209	10	n experiments each on the	n experiments on each of the
		$\left(\frac{s_a^2}{r_a} + \frac{s_b^2}{r_b}\right)^2$	$\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2$
210*	16	$\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a + 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b + 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$	$\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a - 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b - 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$
210*	20	freedom.	freedom. Note that we use s
			and not $s/\sqrt{\nu}$ in the above confi-
			dence interval. This is because s
			is the standard deviation of the
			mean and not standard deviation
			of the sample. Its magnitude is
			already of the order of $1/\sqrt{\nu}$ th of
211*	16	Effective number of degrees of	the sample standard deviations.
211*	16	Effective number of degrees of freedom $f = 11.921$	Effective number of degrees of freedom $\nu = 7.943$
211*	17	The 0.95 -quantile of a t -variate	The 0.95-quantile of a t -variate
		with 12 degrees of freedom =	with 8 degrees of freedom =
		1.71	1.860
211*	18	The 90% confidence interval for the difference = $(-6.92, 6.26)$	The 90% confidence interval for the difference = $(-7.21, 6.54)$
213	6	The test for zero mean \cdots	(Move the text and the exam-
210		The test for zero mean	ple to just before Section 13.9.
			Renumber examples 13.8, 13.9,
			13.10)
	1	<u> </u>	

		Errata (Continued)	
Page	Line	Current Text	Correct Text
214*	7	$(\bar{x}-t_{[1-\alpha;n-1]}\frac{s}{\sqrt{n}},\bar{x})$	$(\bar{x} - t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}}, \infty)$
214*	11	$\left(\bar{x}, \bar{x} + t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}}\right)$	$\left(-\infty, \bar{x} + t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}}\right)$
214*	18	The standard deviation of the	The standard deviation of the
		difference is:	mean difference is:
214*	21	$\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a + 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b + 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$	$\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a - 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b - 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$
214*	22	$= \frac{\left(\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}\right)}{\frac{1}{972+1}\left(\frac{(198.20)^2}{972}\right)^2 + \frac{1}{153+1}\left(\frac{(226.11)^2}{153}\right)^2} - 2$	$= \frac{\left(\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}\right)^2}{\frac{1}{972 - 1}\left(\frac{(198.20)^2}{972}\right)^2 + \frac{1}{153 - 1}\left(\frac{(226.11)^2}{153}\right)^2} - 2$
214*	23	= 191.05	= 188.56
215*	4	$(-17.37, -17.37 + 1.28 \times 19.35) =$	
		(-17.37, 7.402)	$(-\infty, 7.402)$
219*	9	$\left(-\infty, \bar{x} + z_{1-\alpha}s/\sqrt{n}\right)$ or $(\bar{x} - z_{1-\alpha}s)$	$(-\infty, \bar{x} + z_{1-\alpha}s/\sqrt{n})$ or $(\bar{x} - $
24.014		$ \begin{vmatrix} z_{1-\alpha} s / \sqrt{n}, \infty) \\ \text{If the } n & \leq & 30:^{\dagger} \end{aligned} $	$z_{1-\alpha}s/\sqrt{n},\infty)$
219*	10	If the $n \leq 30$:	If the $n \leq 30$:
219*	14	$(\bar{x}, \bar{x} + t_{[1-\alpha;n-1]}s/\sqrt{n}) \text{ or } (\bar{x} - t_{[1-\alpha;n-1]}s/\sqrt{n}, \bar{x})$ $\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a+1}\left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b+1}\left(\frac{s_b^2}{n_b}\right)^2} - 2$	$(-\infty, \bar{x} + t_{[1-\alpha;n-1]}s/\sqrt{n}) \text{ or } (\bar{x} - t_{[1-\alpha;n-1]}s/\sqrt{n}, \infty) \nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a - 1}\left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b - 1}\left(\frac{s_b^2}{n_b}\right)^2} - 2$
219	23		$ \begin{pmatrix} 0, p + z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}} \\ p - z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}, 1 \end{pmatrix} $ or
220	13.2 d.	95%	90%
223	12-13	parameter b_0 and b_1 $\sum_{x} \sum_{xy = \bar{x}\bar{y}} xy = \bar{x}$	parameters b_0 and b_1 $\Sigma xy - n\bar{x}\bar{y}$
223	Eq 14.1	$b_1 = rac{\sum xy - xar{y}}{\sum x^2 - n(ar{x})^2}$	$b_1 = rac{\sum xy - nar{x}ar{y}}{\sum x^2 - n(ar{x})^2}$
224 225	19 Last	estimate close the $\sum_{n=1}^{\infty} [(y_n - \bar{y})^2 + 2b_n(y_n - \bar{y}) \dots]$	estimate close to the $\sum_{n=1}^{\infty} [(u_n - \bar{u})^2 - 2h_n(u_n - \bar{u}) \dots]$
		$\sum_{i=1}^{n} [(y_i - \bar{y})^2 + 2b_1(y_i - \bar{y}) \cdots]$	$\sum_{i=1}^{n} \begin{bmatrix} (g_i & g) & 2b_1(g_i & g) \end{bmatrix}$
226	$\begin{bmatrix} 1 \\ c \end{bmatrix}$	$= \frac{1}{n-1} \cdots$ $\frac{d(SSE)}{db_1} =$ $\cdots = \frac{\sum xy - \bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$	$\sum_{i=1}^{n} \left[(y_i - \bar{y})^2 - 2b_1(y_i - \bar{y}) \cdots \right]$ $\frac{SSE}{n-1} = \frac{1}{n-1} \cdots$ $\frac{1}{n-1} \frac{d(SSE)}{db_1} =$ $\cdots = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$
226	6	$\frac{\overline{db_1}}{db_1} = \sum_{\Sigma xy - \bar{x}\bar{y}}$	$\frac{1}{n-1}\frac{db_1}{db_1} = \sum_{xy-n\bar{x}\bar{y}}$
226	8	$\cdots = \frac{\sum_{x=\sigma} - \sigma}{\sum_{x=\sigma} - n(\bar{x})^2}$	
228	13	$s_e^2 = \sqrt{\frac{\text{SSE}}{n-2}}$	$s_e^2 = \frac{\text{SSE}}{n-2}$
230**	29	Time on $UNIX = 0.030$ (data	Time on UNIX = 0.017 (data
		size in bytes) $+24$	size in bytes) $+26.898$
230**	30	Time on ARGUS = 0.034 (data	Time on ARGUS = 0.034 (data
		size in bytes) $+30$	size in bytes) $+ 31.068$
234	12	$1.0834 \left[1 + \frac{(100 - 38.71)^2}{13.855 - 7(38.71)^2} \right]^{1/2}$	$1.0834 \left[1 + \frac{1}{7} + \frac{(100 - 38.71)^2}{13,855 - 7(38.71)^2} \right]^{1/2}$

Page	Line	Current Text	Correct Text
235**	18	ϵ_i	e_i
240	Box 14.1 Item 2	$b_1 = rac{\sum xy - ar{x}ar{y}}{\sum x^2 - n(ar{x})^2}$	$b_1 = rac{\sum xy - nar{x}ar{y}}{\sum x^2 - n(ar{x})^2}$
240	Box 14.1 Item 5	s_e^2	s_e
243	6	number of keys	number of keywords
243	16	keys	keywords
245	9	$y_1 = b_0 - b_1 x_{11} - b_2 x_{21} - \dots -$	$y_1 = b_0 + b_1 x_{11} + b_2 x_{21} + \dots + $
		$b_k x_{k1} + e_1$	$b_k x_{k1} + e_1$
245	10	$y_2 = b_0 - b_1 x_{12} - b_2 x_{22} - \dots -$	$y_2 = b_0 + b_1 x_{12} + b_2 x_{22} + \dots + $
		$b_k x_{k2} + e_2$	$b_k x_{k2} + e_2$
245	12	$y_n = -b_0 - b_1 x_{1n} - b_2 x_{2n} - \dots -$	$y_n = b_0 + b_1 x_{1n} + b_2 x_{2n} + \dots + $
		$b_k x_{kn} + e_n$	$b_k x_{kn} + e_n$
249	11	$s_e = \sqrt{\frac{\text{SSE}}{n-2}} =$	$s_e = \sqrt{\frac{\text{SSE}}{n-3}} =$
249	16	The 90% t -value at four	The 0.95-quantile for a t -variate
		2110 00,000 varies as 10 as	with four
252	Table 15.3,	1	k
	row: Regres-		
	sion, column:		
	Degrees of		
	Freedom		
257	28 (left)	y = x/(a+bx)	y = 1/(a + bx)
257	30 (left)	y = abx	$y = ab^x$
257	31 (left)	$y = a + bx_n$	$y = a + bx^n$
263	4	$a \leftarrow 0$	$a \to 0$
265	30	based on the intuition.	based on intuition.
268	31	minimum R^2	maximum R^2
277	7	1215	1620
278	Figure 16.1 Y-	2, 6, 8	2, 6, 10
	axis Labels		
280	31	2^k experiment.	2^k experiments.
283	9	factors and their level	factors and their levels
287	3	divided in to three	divided into three
288*	18	$\bar{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$	$\bar{y} = \frac{1}{4}(15 + 45 + 25 + 75) = 40$
288*	19	$= (25^2 + 15^2 + 15^2 + 35^2)$	$= (25^2 + 5^2 + 15^2 + 35^2)$

Page	Line	Current Text	Correct Text
290	Table 17.5	0.0641	0.6041
290	Row 1 Col T	0.0041	0.0041
290*	Table 17.5	0.4220	0.7922
290	Row 2 Col T	0.4220	0.1922
290**	Table 17.5	5	2
290	Row 2 Col N	0	
290**	Table 17.5	2.378	1.262
290	Row 2 Col R	2.316	1.202
290*	Table 17.5	0.7022	0.4220
290	Row 3 Col T	0.7922	0.4220
290**	Table 17.5	0	<u> </u>
290	Row 3 Col N	2	5
290**	Table 17.5	1 000	0.270
290	Row 3 Col R	1.262	2.378
292*	Table 17.9	9	8
	Col: ABC		
	Row: Total		
299	16	$t_{[1-lpha/2;2^2r]}$	$t_{[1-lpha/2;2^2(r-1)]}$
299*	23	$\bar{u} = 21.5 + 9.5 - 2 \times 5 = 11$	$\bar{u} = 21.5 + 9.5 - 2 \times 5 = 21$
299*	30	$\bar{u} \mp t s_u = 11 \mp 1.86 \times 2.52 =$	$\bar{u} \mp ts_u = 21 \mp 1.86 \times 2.52 = 1$
		(6.31, 15.69)	(16.31, 25.69)
301*	5	(8.09, 22.91)	(7.09, 22.91)
301*	10	(9.79, 20.29)	(9.79, 20.21)
301*	20	$s_{\hat{y}_1} = \sqrt{\frac{s_e \sum h_i^2}{2^2 r}}$	$s_{\hat{y}_1} = \sqrt{rac{s_e^2 \sum h_i^2}{2^2 r}}$
		· · · · · · · · · · · · · · · · · · ·	, v = ·
302	31	plot of y	$\bigcup_{i=1}^{n} \operatorname{plot} of e_{i}$
304**	11	$y_{ij} = v_i w_j$	$y_{ij} = rac{w_j}{v_i}$
304**	14	$\log(y_{ij}) = \log(v_i) + \log(w_j)$	$\log(y_{ij}) = \log(w_j) - \log(v_i)$
308**	6	9	9.35
308**	7	one-ninth	1/9.35th
308**	8	81	87.4
	9	81	87.4
308**	10	81	87.4
310*	Last para	90% confidence	80% confidence
311*	5	=3.52	= 3.75
311*	8 TV-1.1. 10.0	90% confidence	80% confidence
312*	Table 18.9	Total/8	Total/16
	Last Col,		
01044	Last Row	190.1	
312**	Table 18.10	138.1	(delete)
	Col 3 Row 1		
316	13	Thus, the factors A through	Thus, factors A through

Page	Line	Current Text	Correct Text
316**	14	4.74	4.47
316	15	that the further experimentation	that further experimentation
316	21	understanding the 2^{k-p} designs	understanding 2^{k-p} designs
317	4	Of the $2^{k-p} - k - p - 1$ columns	Of the $2^{k-p} - k + p - 1$ columns
321*	9	= BDFG = ABDG = CEFG =	= BDFG $=$ CEFG $=$
		ABCDEFG	ABCDEFG
321*	14	= ABDFG = BDG = ACEFG =	= ABDFG = ACEFG =
321	11	BCDEFG	BCDEFG
322*	16	= BDFG = ABDG = CEFG =	= BDFG = CEFG =
334*	Table 20.4	$y_{}$	$ar{y}_{\cdot\cdot}$
	Col 1 Row 2	9	9
334*	Table 20.4	y-y	$y-ar{y}_{\cdot\cdot}$
001	Col 1 Row 3	g = g	9 9
335	11	at r(a-1) degrees of freedom	at a(r-1) degrees of freedom
336*	Table 20.5	\overline{y}	$ar{y}_{.j}$
	Col 2 Row 3		g.j
336*	Table 20.5	$\sum_{j=1}^{a} s_e^2 h_j^2 / ar$	$\sum_{j=1}^{a} s_e^2 h_j^2 / r$
	Col 3 Row 5	$\sum_{j=1}^{\infty} \frac{3e^{it_j}}{a^{it}}$	$\sum_{j=1}^{\infty} e^{it_j/t}$
336	8	$\alpha_j = s_e / \sqrt{\{(a-1)/(ar)\}}$	$\alpha_j = s_e \sqrt{\{(a-1)/(ar)\}}$
330	O	$ \begin{vmatrix} \alpha_j - s_{e/} \sqrt{(u-1)/(u)} \\ = 88.7/\sqrt{(2/15)} = 32.4 \end{vmatrix} $	$\begin{vmatrix} \alpha_j - s_e \sqrt{((u-1)/(ut))} \\ = 88.7\sqrt{(2/15)} = 32.4 \end{vmatrix}$
336*	11	, , , , , ,	I
		$\mu = 197.7 \pm$	$\mu = 187.7\pm$
337*	3	$=rac{s_e}{\sqrt{(\sum h_i^2/ar)}}$	$=s_e\sqrt{\sum h_j^2/(r)}$
		$=\frac{88.7}{\sqrt{\frac{2}{15}}}=56.1$	$=88.7\sqrt{\frac{2}{5}}=56.1$
240	11	V 15	l
340	11	$\alpha_3 = y_{.3} - y_{}$	$lpha_3 = ar{y}_{.3} - ar{y}_{}$
340	Table 20.9	$y_{\cdot \cdot}$	$ar{y}_{\cdot\cdot}$
240	Col 1 Row 2		=
340	Table 20.9 Col 1 Row 3	$y-y_{}$	$y-\bar{y}_{}$
341*	Box 20.1	$u = \bar{z} - \sum_{i=1}^{a} \sum_{j=1}^{r} u_j$	$u = \bar{z} = 1 \sum_{i=1}^{n} \sum_{i=1}^{r} u_i$
341		$\mu = \bar{y}_{} = \sum_{j=1}^{a} \sum_{i=1}^{r} y_{ij}$	$\mu = \bar{y}_{} = \frac{1}{ar} \sum_{j=1}^{a} \sum_{i=1}^{r} y_{ij}$
	Item 2	$\alpha_j = \bar{y}_{.j} - \bar{y}_{} = \sum_{i=1}^r y_{ij} - \bar{y}_{}$	$\alpha_j = \bar{y}_{.j} - \bar{y}_{} = \frac{1}{r} \sum_{i=1}^r y_{ij} - \bar{y}_{}$
341**	Dog 20 1	$j = 1, 2, \dots, a$ $\sum_{n=1}^{\infty} a_n x_n^2 + n \sum_{n=1}^{\infty} a_n^2 + \sum_{n=1}^{\infty} a_n^2$	$j = 1, 2, \dots, a$ $\sum_{\alpha = 1}^{n} \sum_{\alpha = 1}^{$
341	Box 20.1	$\sum_{ij} y_{ij}^2 = ar\mu^2 + r\sum_j \alpha_j^2 + \sum_{ijk} e_{ij}^2$	$\sum_{ij} y_{ij}^2 = ar\mu^2 + r\sum_j \alpha_j^2 + \sum_{ij} e_{ij}^2$
2/1*	Item 3		
341*	Box 20.1	Variance = $\sum_{j=1}^{a} s_e^2 h_j^2 / ar$	$Variance = \sum_{j=1}^{a} s_e^2 h_j^2 / r$
211*	Item 9	factor A is at level i and factor	factor A is at level i and factor
344*	19	factor A is at level i and factor	factor A is at level j and factor
946*	7	B is at level j .	B is at level i .
346*	7	no-cache processor is 41.4-20.2,	no-cache processor is 41.4+20.2
		or 21.2, milliseconds.	or 61.6 milliseconds.

Page	Line	Current Text	Correct Text
347**	3	$SSE = (3.5)^2 + (0.2)^2 + \dots +$	$SSE = (3.5)^2 + (0.2)^2 + \dots +$
		$(-2.4)^2 = 2368.00$	$(-2.4)^2 = 236.8$
349	Table 21.4	$ar{y}_{}$	$\mid ar{y}_{\cdot \cdot} \mid$
	Col 1 Row 2		
349	Table 21.4	$y-ar{y}_{}$	$y-\bar{y}_{}$
	Col 1 Row 3		
349	Table 21.5	$y_{}$	$ \bar{y}_{\cdot\cdot} $
	Col 1 Row 2		
349	Table 21.5	$y-y_{}$	$y-\bar{y}_{\cdot\cdot}$
	Col 1 Row 3		
351*	17	$5.4\sqrt{\frac{2}{15}} = 2.8$ $5.4\sqrt{\frac{4}{15}} = 2.0$	$5.4\sqrt{\frac{2}{15}} = 2.0$ $5.4\sqrt{\frac{4}{15}} = 2.8$
351*	19	$5.4\sqrt{\frac{4}{15}} = 2.0$	$\int 5.4\sqrt{\frac{4}{15}} = 2.8$
352**	Table 21.7	2.8	2.0
	Col 3 Row 3-5		
352**	Table 21.7	2.0	2.8
	Col 3 Row 7-11		
354	10	125 microseconds	125 nanoseconds
355	Table 21.13	0.00	0.0025
	Line 9		
355	Table 21.13	$\sqrt{0.00} = 0.05$	$\sqrt{0.0025} = 0.05$
	Line 10		
355	Table 21.13	$y_{}$	$\mid ar{y}_{\cdot \cdot} \mid$
	Col 1 Row 2		
355	Table 21.13	$y-y_{}$	$y-\bar{y}_{\cdot\cdot}$
	Col 1 Row 3		
357	Table 21.16	$y_{}$	$\mid ar{y}_{\cdot\cdot}$
	Col 1 Row 2		
357	Table 21.16	$y-y_{}$	$y-ar{y}_{\cdot\cdot}$
	Col 1 Row 3		
358*	Case Study	only 0.6% variation is unex-	only 0.8% variation is unex-
	21.4	plained.	plained.
358*	Table 21.17	$y_{}$	$ \bar{y}_{\cdot\cdot} $
	Col 1 Row 2		
358*	Table 21.17	$y-y_{}$	$y-\bar{y}_{\cdot\cdot}$
	Col 1 Row 3		

Page	Line	Current Text	Correct Text
359*	Table 21.19	<i>y</i>	$\bar{y}_{\cdot\cdot}$
	Col 1 Row 2		
359*	Table 21.19	$y-y_{}$	$y-ar{y}_{}$
	Col 1 Row 3		
370*	Table 22.1	W	$\mid M \mid$
	Col 1 Row 13		
371	7	Processor W requires	Processor X requires
371	7	0.02 more (a factor of 1.05 more)	0.02 less (a factor of 1.05 less)
371	8	ratio of log code sizes	difference of log code sizes
371*	9	is 0.25 (a factor of 1.78).	is 0.21 (a factor of 1.62).
371*	Table 22.3		
		Row	Row
		Sum	Sum
		49.1315	16.3772
		44.3377	14.7792
		47.3646	15.7882
		46.5887	15.5295
070	~	49.1163	16.3720
372	5	Workload I on processor X	Workload I on processor W
373*	20	$SSAB = \dots + (0.0200)^2] = 0.15$	$[SSAB = \cdots + (0.0066)^2] = 0.15$
375*	Table 22.5	$SSY = \sum y_{ij}^2$	$SSY = \sum y_{ijk}^2$
075**	Col 2 Row 1	(1)	(1)
375**	Table 22.5	(a-1)	(a-1)
	Col 4 Row 6	b-1)	(b-1)
375**	Table 22.5	MSA MSE	$\frac{\text{MSAB}}{\text{MSE}}$
0	Col 6 Row 6		
375*	Table 22.6	$y_{\cdot \cdot}$	$ \bar{y}_{} $
0=54	Col 1 Row 2		_
375		$y-y_{}$	$y-y_{}$
201		E	E
381	18	_ :	
		replications, the model is	
202	20	the purehen pegs	
1		- 9 -	
384"	Col 1 Row 2	y	$\mid \mathcal{Y}_{\cdots} \mid$
393	4	– Brately, Fox, and Schrage	Bratley, Fox, and Schrage
		, , , , , , , , , , , , , , , , , , , ,	
1			
375* 381 383 384* 393 404 416 421		$y-y$ For example, with three factors A, B, C at level a, b, c and r replications, the model is the number page swaps \bar{y} Brately, Fox, and Schrage $I = E(y) = \frac{1}{n} \sum_{i=1}^{n} y_i 2e^{-x_i^2}$ praph-plotting waiting to the	For example, with three factors $A, B,$ and C at $a, b,$ and c levels, respectively and r replications, the model is the number of page swaps \bar{y} Bratley, Fox, and Schrage $I = E(y) = \frac{1}{n} \sum_{i=1}^{n} y_i$ graph-plotting waiting till the

Page	Line	Current Text	Correct Text
423*	34	run chosen in long enough.	run chosen is long enough.
424	32	trasient	transient
427	Figure 25.9a	mean	mean
421	rigure 25.9a	$oxed{ar{x_j}}$	$ ar{ar{x_j}}$
427	Figure 25.9b	mean	mean
421	Figure 25.55	$ar{x_j}$	$ ar{ar{x_j}}$
430*	16	$\bar{x} \mp z_{1-\alpha/2} Var(\bar{x})$	$\bar{x} \pm z_{1-\alpha/2} \sqrt{Var(\bar{x})}$
431*	1	times that obtained computed	times that computed using
		using	
431	27	the mean response is	the mean response is* (Foot-
			note:) *Throughout this section,
			use $t_{[1-\alpha/2;m-1]}$ in place of $z_{1-\alpha/2}$
			if m is less than 30 as explained
			in Section 13.2.
431*	28	$\left[\bar{\bar{x}} \mp z_{1-\alpha/2} Var(\bar{x})\right]$	$\left[\bar{x} \mp z_{1-\alpha/2} \sqrt{\frac{Var(\bar{x})}{m}}\right]$
431*	Footnote	use $t_{[1-\infty/2,m-1]}$ in place of	use $t_{[1-\alpha/2,m-1]}$ in place of $z_{1-\alpha/2}$
		$z_{1-\infty/2}$	
432*	19	$\left[\bar{x} \mp z_{1-\alpha/2} Var(\bar{x})\right]$	$\left[\bar{x} \mp z_{1-\alpha/2} \sqrt{\frac{Var(\bar{x})}{m}}\right]$
441*	25	obtained using multiplicative	obtained using LCGs
		LCGs	
443*	13	= 12,773	=127,773
443*	Figure 26.2	IF $x_new > 0$ THEN	$ \text{IF x_new} >= 0 \text{ THEN} $
444**	Figure 26.3	IF $x_{\text{new}} > 0.0 \text{DO THEN}$	$ \text{IF x_new} >= 0.0 \text{DO THEN} $
445**	22	$b_{n+7} \oplus b_{n+4} \oplus b_n = 0$	$b_{n+7} \oplus b_{n+3} \oplus b_n = 0$
445**	24	$b_{n+7} = b_{n+4} \oplus b_n$	$b_{n+7} = b_{n+3} \oplus b_n$
452	17	26.2and 26.3	26.2 and 26.3
452	27	"RANDU" [27], was	"RANDU" (IBM 1968), was
457*	14		$x_n = 25, 173x_{n-1} \mod 2^{16}$
4554	10	13,849)mod 2 ¹⁶	
457*	18	the LCG: $x_n = (25, 173x_{n-1} + 12, 840) = 12, 12, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15$	the LCG: $x_n = \frac{1}{2}$
457*	Table 26.3	$(13,849) \mod 2^{16}$	$25,173x_{n-1} \mod 2^{16}$ the LCG: $x_n = $
407	1able 20.3	the LCG: $x_n = (25, 173x_{n-1} + 13, 849) \mod 2^{16}$	the LCG: $x_n = 25,173x_{n-1} \mod 2^{16}$
457xx	vv	1000011 1000000.	$1000011 \ 1011110.$
461*	xx 16		
401	10	is less than the $\chi^2_{[1-\alpha;k-1]}$	is less than the $\chi^2_{[\alpha;k-1]}$

Page	Line	Current Text	Correct Text
462*	4	we see that $\chi^2_{[0.9,9]}$ is 14.68	we see that $\chi^2_{[0.1,9]}$ is 4.168
462*	5	10.380, is less	10.380, is more
462*	6	we accept	we reject
463*	4	than $K_{[1-\alpha;n]}$	$ ag{than } K_{[\alpha;n]}$
464	7	0.03026	0.03226
464	8	0.03026	0.03226
465*	1	the $K_{[0.9,n]}$ value	the $K_{[0.1,n]}$ value
465*	2	is 1.0424	is 0.2006
477*	Table 28.1	$a + b \ln \ln u$	$a+b\ln\ln u^{-1}$
488*	28 =	$=\frac{(1-e^{-\lambda(x+t)})-(1-e^{-\lambda x})}{1-\lambda x}$	
	$\frac{(1-e^{-\lambda(x+t)})-(1-e^{-\lambda t})}{(1-e^{-\lambda t})}$	$\frac{e^{-\lambda x}}{}$	
488*	$29 = 1 - e^{-\lambda x}$	$= \frac{(1 - e^{-\lambda(x+t)}) - (1 - e^{-\lambda x})}{e^{-\lambda x}}$ $= 1 - e^{-\lambda t}$	
496*	XX	If $u \leq p$ return 0. Otherwise re-	If $u \leq (1-p)$ return 0. Otherwise
		turn 1.	return 1.
501*	Problem 29.1	Observatiosn	observations
502	3	Brately, Fox, and Schrage	Bratley, Fox, and Schrage
502	7	Bobillier, et al. (1986)	Bobillier, et al. (1976)
502	8	Markowitz et al. (1983)	Markowitz et al. (1963)
509	34	Exponential, Erlang, and hyper-	Exponential and Erlang distri-
		exponential distributions	butions
514*	24	This is the Little's law.	This is Little's law.
517	Figure 30.6b	$\sum p_k = 1$	$\Sigma p_i = 1$
521	9	$\Delta t \leftarrow 0$	$\Delta t \to 0$
521	12	$t \leftarrow \infty$	$t \to \infty$
521	14	$t \leftarrow \infty$	$t o \infty$
521	Last	$p_0 = \frac{1}{1 + \sum_{n=1}^{\infty} \frac{n-1}{j=0} [\lambda_j / \mu_{j+1}]}$	$p_0 = \frac{1}{1 + \sum_{n=1}^{\infty} \prod_{j=0}^{n-1} [\lambda_j / \mu_{j+1}]}$ $= \rho^{14} = 0.25^{14} = 3.73 \times 10^{-9}$
524*	26	$= \rho^{13} = 0.25^{13} = 1.49 \times 10^{-8}$	$= \rho^{14} = 0.25^{14} = 3.73 \times 10^{-9}$
524*	27	=15	$\mid 4 \mid$
524*	27	≈ 15	≈ 4
526*	6	$1/[\mu^2(1-\rho)^3]$	$2/[\mu^2(1-\rho)^3]$
526*	9	10	9
528*	23 (Item 12)	$ \begin{array}{c} $	$1 - e^{-\mu r} - \frac{\varrho}{1 - m + m\rho} (e^{-m\mu(1 - \rho)r} - \frac{\varrho}{1 - m + m\rho})$
		$e^{-\mu r}$	$e^{-\mu r}$
537'	23	$ \begin{aligned} e^{-\mu r} \\ E[n_q] &= \sum_{n=m}^{B} (n-m) p_n = (2-1) \\ 1) \times 0.0476 &= 0.0476 \end{aligned} $	$E[n_q] = \sum_{n=m+1}^{D} (n-m)p_n = 0$
	D 01 = 7	$1) \times 0.0476 = 0.0476$	$(2-1) \times 0.0476 = 0.0476$
540	Box 31.5 Item 8		$\operatorname{Var}[n_q] = \operatorname{Var}[n] - \rho - \rho^2$
543*	Box 31.8 Item 3	$\rho < \infty$ is less than 1	$\rho < \infty$
554	2-3	Only fixed-capacity centers and	Fixed-capacity centers and delay
		delay centers are considered in	centers are considered in Chap-
		this chapter.	ters 34 and 35.

Page	Line	Current Text	Correct Text
568	Exercise 33.6	For a transaction · · · For this	For the system of Exercise 33.5,
577*	Box 34.2 Line 20	$X = \frac{N}{Z+R}$	$X = \frac{n}{Z + R}$
589'	21	$\frac{N}{4+6+(N-1)2\frac{6(N-1)}{6(N-1)+4}} \le X(N) \le$	0(1, 1) 1
589'	22		$\min\left\{\frac{1}{3}, \frac{N}{4+6+(N-1)2\frac{6}{6+4}}\right\} \ge \max\left\{3N - 4, 6 + (N-1)2\frac{6}{6+4}\right\} \le R(N) \le 6 + (N-1)3\frac{6(N-1)}{6(N-1)+4}$
590**	24	5 ()	
591*	xx	$\max \left\{ 3N - 4, 6 + (N - 1)3 \frac{6}{6+4} \right\} \ge$	$R_{min}(n) = \max\{\}$ $\geq \max\{3N - 4, 6 + (N - 1)3\frac{6}{6+4}\} \leq$
		$R(N) \le 6 + (N-1)2\frac{6(N-1)}{6(N-1)+4}$	$R(N) \le 6 + (N-1)2\frac{6(N-1)}{6(N-1)+4}$
592*	Problem 34.2	For the system of Exercise 33.6	For the system of Exercise 33.5
595	Table 35.1	CPU Disk B Disk A	CPU Disk A Disk B
607*	Exercise 35.2	system of Exercise 33.6	system of Exercise 33.5
610*	Box 36.1	$P_i(0) = 0$	$P_i(0) = 1$
	Line 17		
616*	21	$R_i = Q_i X_i$	$R_i = Q_i / X_i$
619*	6	times are $4, 68, 6.54$	times are 4.68, 6.54
624	4	Pujjole	Pujolle
628	3	0.3486	0.3485
629	4	gives $z_p = 1.958$	gives $z_p = 1.960$
632*	2	For example, the $\chi^2_{[0.95;13]}$	For example, the $\chi^{2}_{[0.05:13]}$
632*	3	is 22.362	is 5.892
635**	3	2.70	2.65
640*	10.1 d.	Line	Bar
640	12.4f	$5\lambda^{-1/2}$	$-5\lambda^{-1/2}$
640	12.6	mode=0	mode=1
640*	12.7 a.	0.2742	0.0013
640*	12.7 b.	0.5793	0.8413
640*	12.7 c.	0.2348	0.8185
640*	12.7 d.	6.644 seconds	6.645 seconds

Page	Line	Current Text	Correct Text
641*	13.1 b.	$N(0,2/\sqrt{n})$	$N(0,\sqrt{2/n})$
641*	13.1 c.	$N(2\mu, 2/\sqrt{n})$	$N(2\mu,\sqrt{2/n})$
641*	13.2 e.	(24.79, 26.91) or (26.91, 29.03)	$(24.79, \infty) \text{ or } (-\infty, 29.03)$
642	14.5	Elapsed time = $0.074 + 0.009 \times$	Elapsed time = $0.635 + 0.063 \times$
642	14.6	Number of disk I/O 's = 13.494	Number of disk I/O's = $-3.875+$
		$+$ 1.634 \times	6.625×
642	15.1 c	$ x_5 $	$ x_4 $
642	15.1 d	$ x_1 $	$ x_2 $
642	15.1 e	$x_2, x_3, \text{ and } x_4$	All
642*	16.1 b	9	7
642*	16.1 c	7	9
643*	19.1 a	$q_0 + q_{ACD} = 48.13, q_A + q_{CD} =$	$q_0 + q_{ACD} = 48.13, q_A + q_{CD} = 0$
		$1.88, q_B + q_{ABCD} = -13.13, q_C +$	$26.88, q_B + q_{ABCD} = 1.88, q_C + $
		$ q_{AD} = -21.88, q_{AB} + q_{BCD} =$	$ q_{AD} = -21.88, q_{AB} + q_{BCD} = $
		$ -1.88, q_{AC} + q_D = 1.88, q_{BC} +$	$8.13, q_{AC} + q_D = -13.13, q_{BC} + $
		$q_{ABD} = 26.88$, and $q_{ABC} + q_{BD} =$	$q_{ABD} = 1.88$, and $q_{ABC} + q_{BD} = 1.88$
		8.13	-1.88
643*	19.1 b	0.24%, $11.88%$, $33.01%$, $0.24%$,	49.8%, 0.24%, 33.0%, 4.60%,
		0.24%, 49.82%, 4.55%	11.9%, 0.24%, 0.24%
643*	19.1 c	BC, C, B, BD, A, AB, D.	A, C, D, AB, BC, B, BD.
		Higher order interactions are as-	Higher order interactions are as-
	_	sumed smaller.	sumed smaller.
643**	19.1 d	See a above. The generator is	I = ACD, A = CD, B =
		I = -ACD.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			AB = BCD, BC = ABD,
a tok	22.4.1	10.004	BD = ABC
643*	22.1 b	16.8%	5.2%
644*	24.1 c	continuous state,	discrete state,
644*	24.1 d	Discrete time, deterministic,	Discrete time, discrete state, de-
C11*	04.16	Discoulation of the second of	terministic,
644*	24.1 f	Discrete time, continuous state,	Discrete time, probabilistic,
C11*	00.1	probabilistic,	1 . 9 5 11 . 19
644*	26.1	a must be 5 or 11.	a must be 3, 5, 11, or 13.

Page	Line	Current Text	Correct Text
651	14	30 (7), 112-118	31 (7), 112-118
654	27	Murhpy, M.	Murphy, M.
661		Adam, N. R., 502, 651, 657	Adam, N. R., 502, 651, 656
661		Anonymous, 651	Anonymous, 56, 651
661		Birtwhistle, G., 652	Birtwhistle, G., 502, 652
661		Bobillier, P. A., 652	Bobillier, P. A., 502, 652
661		Bratley, P., 393, 652	Bratley, P., 393, 502, 652
661		Bucholz, W., 652	Buchholz, W., 50, 652
661		Bulgren, W. G., 652	Bulgren, W. G., 502, 652
661		CACI, 652	CACI, 502, 652
661		COMTEN, 652	COMTEN, 175, 652
661		Chambers, J. M., 271, 652	Chambers, J. M., 272, 652
661		Chariton, D	Cheriton, D
661		Cleveland, W. S., 653	Cleveland, W. S., 652
661		Crane, M. A., 653	Crane, M. A., 502, 653
661		Das, M. N., 271, 653	Das, M. N., 272, 653
661		Datametrics, 653	Datametrics, 176, 653
662		Devil's DP Dictionary, The, 30,	Devil's DP Dictionary, The, 30,
		403, 437	47, 403, 437
662		Dogramaci, A., 651, 657	Dogramaci, A., 502, 651, 656
662		Duval, P., 662	Duval, P., 502, 660
662		Fleming, P. J., 271, 653	Fleming, P. J., 272, 653
662		Franta, W. R., 653	Franta, W. R., 502, 653
662		Giri, N. C., 271, 653	Giri, N. C., 272, 653
662		Gross, T., 271, 654	Gross, T., 272, 654
662		Haack, D. G., 271, 654	Haack, D. G., 272, 654
662		Hastings, C., Jr., 503, 654	Hastings, C., Jr., 503, 638, 654
662		Hooke, R., 271, 654	Hooke, R., 272, 654
662		Huff, D., 271, 654	Huff, D., 272, 654
662		IBM, 655	IBM, 452, 655
662		Jackson, J. R., 655	Jackson, J. R., 551, 655
662		Jackson, W. R., 551	(delete)
662		Johnk, M. D., 655	Jöhnk, M. D., 485, 655
662		Julstrom, B., 271, 655	Julstrom, B., 272, 655
662		King, R. S., 271, 655	King, R. S., 272, 655
662		Katzan, H., 452	(delete)
662		Katzan, H., Jr., 655	Katzan, H., Jr., 452, 655

Page	Line	Current Text	Correct Text
662		Lucas, H. C., 175	(delete)
662		Lucas, H. C., Jr., 656	Lucas, H. C., Jr., 175, 656
663		Levin, R. I., 271, 656	Levin, R. I., 272, 656
663		MacKinnon, D. R., 176	MacKinnon, D. R., 176, 657
663		Maly, K., 502	Maly, K., 502, 653
663		Natrella, M. G., 271, 657	Natrella, M. G., 272, 657
663		Papoulis, A., 658	Papoulis, A., 272, 658
663		Prime Computer, 658	Prime Computer, 452, 658
663		Pujolle, G., 654	Pujolle, G., 624, 654
663		Reichmann, W. J., 271, 658	Reichmann, W. J., 272, 658
663		Runyon, R. P., 271, 658	Runyon, R. P., 272, 658
664		SPEC, 659	SPEC, 58, 659
664		Smith, J. E., 271, 659	Smith, J. E., 272, 659
664		Transaction Processing Perfor-	Transaction Processing Perfor-
		mance Council, 659	mance Council, 58, 659
664		Trivedi, K. S., 271, 660	Trivedi, K. S., 272, 660
664		Wallace, J. J., 271, 653	Wallace, J. J., 272, 653
664		Wright, L. S., 660	Wright, L. S., 175, 660
665		2^2r experimental designs, 293,	2^2r experimental designs, 293-
		309	308
665		2^k experimental designs, 280	2^k experimental designs, 280, 283-292
665		650Z processor, 166	6502 processor, xxvii, 166
665		68000 processor, xii, 275, 276,	68000 processor, xii, 275, 276,
		280, 282, 359, 360, 361, 366	281, 282, 359, 360, 361, 365, 367
665		8086 processor, xii, 275, 280,	8086 processor, xii, 275, 281,
		281, 282	282, 359
665		Ackermann benchmark, 50, 53,	Ackermann benchmark, 50, 53,
		167, 358, 359, 360, 361, 367	167, 358, 359, 360, 361, 365
665		Analysis rat holes, 162	Analysis rat holes, 161
666		Assymetric plot, 199, 200	Asymmetric plot, 199, 200
666		Benchmark(s) \cdots	Benchmark(s) \cdots
		Ackermann, 50, 53, 167, 358	, Ackermann, 50, 53, 167, 358
		359, 360, 361, 367	359, 360, 361, 365
		•••	
		puzzle, 50, 167, 359, 360, 361	, puzzle, 50, 167, 359,360, 361
		367	365
		• • •	• • • •
		towers of Hanoi, 167, 360, 361	
		367	365

Page	Line	Current Text	Correct Text
667		Code size comparison study, 167,	Code size comparison study, 167,
		329, 367, 390	329, 365, 390
668*		Confidence Intervals one-sided, 214	Confidence Intervals one-sided, 213-215
		• • •	•••
		vs. hypothesis testing, 213-214	vs. hypothesis testing, 213
668		C/70 processor, 167, 360, 361, 367	C/70 processor, 167, 360, 361, 365
670		8086 processor, xii, 275, 280, 281, 282	8086 processor, xii, 275, 281, 282
671		Experimental de-	Experimental de-
		signs, types of, fractional factorial, 25, 281	signs, types of, fractional factorial, 18, 25, 281
		• • •	
		partial factorial, 18	(delete)
		two-factor:	two factor:
		• • •	•••
		2^2r factorial, 293, 309	2^2r factorial, 293-308
672		Hanoi, towers of, benchmark,	Hanoi, towers of, benchmark,
		167, 360, 361	167, 360, 361, 365
672		Hypothesis testing, 213-214	Hypothesis testing, 213
673		K-S comparison with Chi-squar	K-S
		test	e comparison with chi-square test
674		Mean ···	Mean ····
		testing for zero, 207-208	testing for zero, 207-208, 216
676		One-sided confidence intervals,	One-sided confidence intervals,
		214	213-215
677		p^2 algorithms for percentiles, 196	P^2 algorithm for percentiles, 196
677		Operating systems: CPM, 282	Operating systems: CPM, 282
		PRIMOS, 452	MS-DOS, 70, 282 PRIMOS, 452
677		PDP-11/70 processor, xii, 167,	PDP-11/70 processor, xii, 167,
		367	361, 365

Page	Line	Current Text	Correct Text
678		68000 Processor, xii, 275, 276,	68000 Processor, xii, 275, 276,
		280, 282, 359, 360, 361, 366, 367	281, 282, 359, 360, 361, 365, 367
678		8086 Processor, xii, 275, 280, 281	8086 Processor, xii, 275, 281,
010		6000 1 10ccsso1, xii, 270, 200, 201	282, 359
678		Processors:	Processors:
		A8001, 360, 361	(delete)
		650Z, 166	6502, xxvii, 166
678		Z80 Processor, xii	Z80 Processor, xii, 275, 276, 279,
070		70000 D 167 960 961	281
678		Z8002 Processor, 167, 360, 361,	Z8002 Processor, 167, 360, 361,
		367	365
678		Processors:	Processors:
		68000, xii, 275, 276, 281, 282	
		359, 366, 367	359, 360, 361, 365, 367
		8080, 166	8080, 166, 276
		8086, xii, 275, 281, 282	8086, xii, 275, 281, 282, 359
		A8001, 360, 361	(delete)
		C/70, 167, 360, 361, 367	C/70, 167, 360, 361, 365
		PDP-11/70, xii, 167, 367	PDP-11/70, xii, 167, 360,
		RISC-I, 167, 360, 361, 367	361,365
		VAX-11/780, xii, 167, 359, 36	,
		VAX-11/100, XII, 101, 559, 50	
		6507 166	VAX-11/780, xii, 167, 359, 360,
		650Z, 166 Z8002, 167, 367	361, 365
		20002, 101, 001	6502, xxvii, 166
			Z8002, 167, 360, 361, 365
678		Puzzle benchmark, 50, 359, 360,	Puzzle benchmark, 50, 167, 359,
		361, 367	360, 361, 365
680		2^2r experimental designs, 293,	2^2r experimental designs, 293-
		309	308
680		RISC-I code size study, 367	RISC-I code size study, 167, 329,
			365, 390
680		RISC-I processor, 166, 167, 360,	RISC-I processor, 166, 167, 360,
		361, 367	361, 365
680		Results:	Results:
		reasons for not accepting, 161	reasons for notaccepting, 161-162
682		650Z processor, 166	6502 processor, xxvii, 166
682		SSO, $227, \cdots$	$SS0, 227, \cdots$
		; ;	, ,

Page	Line	Current Text	Correct Text
683		Test(s):	Test(s):
		hypothesis, 213-214	hypothesis, 213
		for zero mean, 207-208	for zero mean, 207-208, 216
683		Testing:	Testing:
		hypothesis, 213-214	hypothesis, 213
683		$Test(s)$: \cdots	$Test(s): \cdots$
		t-test, 210	t-test, 209-211
684*		Towers of Hanoi benchmark,	Towers of Hanoi benchmark,
		167, 360, 361, 367	167, 360, 361, 365
684*		2^2r experimental designs, 293,	2^2r experimental designs, 293-
		309	308
685*		Zero mean, testing for, 207-208	Zero mean, testing for, 207-208,
			216
685		650Z processor, 166	6502 processor, xxvii, 166
685		VAX-11/780 processor, xii, 167,	VAX-11/780 processor, xii, 167,
		359, 367	359, 365
Back		Erol Gelenbe	Dr. Erol Gelenbe
Cover			
Back		Raymond L. Pickholtz	Dr. Raymond L. Pickholtz
Cover			
Back		Vinton G. Cerf	Dr. Vinton G. Cerf
Cover			
Cover		He has taught graduate courses	He received the Ph. D. degree
Back		on computer systems perfor-	from Harvard and has taught
Flap		mance techniques at Mas-	courses on performance at Mas-
		sachusetts Institute of Technol-	sachusetts Institute of Technol-
		ogy.	ogy.
Cover	3	systems networks	systems, networks
Front			
Flap*			