Problem 1. Say whether the following is true or false and support your answer by a proof.

$$(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(3m + 5n = 12)$$

Proof. By contradiction.

The negation of the proposition will be

$$(\forall m \in \mathbb{N})(\forall n \in \mathbb{N})(3m + 5n \neq 12)$$

We will need to show that the above is TRUE.

The natural numbers start from 1 and do not include 0.

$$\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$$

Rearranging the equation in the original proposition to get the value of n on the left hand side

$$3m + 5n = 12$$

 $\implies 5n = 12 - 3m$ [Subtracting both sides by $3m$]
 $\implies 5n = 3(4 - m)$ [Factoring out the common factor 3]
 $\implies n = \frac{3}{5}(4 - m)$ [Dividing both sides by 5]

For n to be in the natural numbers, it must be the case that 5|(4-m) i.e.

$$(x \in \mathbb{N})(4 - m = 5x)$$

Taking the smallest value of x i.e. x = 1. We have

$$4-m=5$$

 $\implies 4=5+m$ [Adding m to both sides]
 $\implies m=-1$ [Subtracting 5 from both sides]

But the above conclusion is FALSE by the definition of m, i.e. $m \in \mathbb{N}$ $(-1 \notin \mathbb{N})$. Larger values of x will give even smaller values of m.

Hence for all values of m and n, the negation $3m + 5n \neq 12$ is TRUE which means that the original proposition was **FALSE**.