Steelhead Overshoot Update

Markus Min 4/7/2022

Changes to model

Expanding the number of states

Expanding the number of states

An individual in the BON to MCN state now has these movement options:

Previous approach: Multinomial likelihood

- Get a vector of probabilities *p* with length *K*, where *K* is the number of unique observed detection histories
- In the John Day River dataset, K = 169 (169 unique detection histories)
- · Example:

$$n_7 = f_{bon} * o_{bon} * f_{bon} * o_{bon} * h_{bon_mcn} * l_{nat_trib}$$
$$p[7] = n_7$$

Previous approach: Multinomial likelihood

```
p <- c(n1, n2, n3, ... n169)

# Evaluate counts, where y are the counts of
# the number of times each of the unique detection
# histories was observed

# 2121 are the number of fish
y[1:N] ~ dmulti(p[1:N], 2121)</pre>
```

Multinomial likelihood no longer works with covariates

For fish *i* at location *l* at time *t*:

$$\psi_{12} = f(temperature_{l,t}, origin_i)$$

- Each movement probability is different for each individual fish, depending on the unique combination of covariates that it is experiencing
- Therefore, a multinomial likelihood, or using an m-array approach to summarize detection histories, becomes untenable, or at least very complicated

Moving to an individual-based model

Moving to an individual-based model

```
for(i in 1:n.ind){ # Loop through all individuals
  for(j in 1:n.encounters){ # Loop through the encounters (detections)
    psi 12 <- f(origin[i], temperature[j])</pre>
    psi 13 <- f(origin[i], temperature[j])</pre>
    psi 14 <- f(origin[i], temperature[j])</pre>
    psi 1 loss <- 1 - psi 12 - psi 13 - psi 14
    # Likelihood: evaluate multinomial with single trial (categorical)
    # Get a vector of probabilities
    p <- c(psi 12, psi 13, psi 14, psi 1 loss)
    # y is an array, with dimensions (number of fish) X
    # (number of possible states) X (number of encounters)
    # y[i,,j] is the vector containing all possible next states for a fish
    y[i,,j] \sim dmulti(p, 1)
}
```

Example: y[i, ,] matrix

##	[,1]	[,2]	[,3]	[,4]	[,5]
## mainstem, mouth to BON	0	0	0	0	0
## mainstem, BON to MCN	1	0	1	0	0
## mainstem, MCN to ICH or PRA	0	1	0	0	0
## mainstem, PRA to RIS	0	0	0	0	0
## mainstem, RIS to RRE	0	0	0	0	0
## mainstem, RRE to WEL	0	0	0	0	0
## mainstem, upstream of WEL	0	0	0	0	0
## mainstem, ICH to LGR	0	0	0	0	0
## mainstem, upstream of LGR	0	0	0	0	0
## Asotin Creek	0	0	0	0	0
## Clearwater River	0	0	0	0	0
## Deschutes River	0	0	0	0	0
## Entiat River	0	0	0	0	0
## Fifteenmile Creek	0	0	0	0	0
## Grande Ronde River	0	0	0	0	0
## Imnaha River	0	0	0	0	0
## John Day River	0	0	0	1	0
## loss	0	0	0	0	1

Including covariates

Enforcing sum to 1 constraint with covariates via the multinomial logit

$$\psi_{12} = \frac{\exp(\beta_{0,12} + \beta_{temp,12} * temp + \beta_{origin,12}[origin])}{1 + \exp(\beta_{0,12} + \beta_{temp,12} * temp + \beta_{origin,12}[origin]) + \exp(\beta_{0,13} + \beta_{temp,13} * temp + \beta_{origin,13}[origin]) + \exp(\beta_{0,14} + \beta_{temp,14} * temp + \beta_{origin,14}[origin])}$$

Detection probabilities - auxiliary likelihoods?

New approach to covariate time window

Old approach and issues:

- Old approach: Determine the median travel time from one dam to the next dam for each month and each natal origin; get the average value of the variable (e.g., temperature) for the weeklong window around that time
- This works well for upstream travel, but with downstream travel, we don't typically know when individuals entered states because of the low detection probability with downstream travel

Old approach and issues:

 Our state-based model also doesn't assume the direction a fish is traveling when in a given state, so calculating a median travel time (either upstream or downstream) is problematic

New approach:

- Calculate an "experience date", from the time at arrival in state 1 and the time at arrival at state 2, which are typically known (e.g., the date + time that an individual was seen in the adult fish ladder at a dam)
- Calculate the time spent in this state as (time at arrival in state 2)
 (time at arrival in state 1)
- Get the "experience date" by dividing the time spent in the state by 2 (this is equivalent to the median time in the state)

```
## state pathway arrival_date exp_date
## 1 BON to MCN BON (adult) 2010-07-24 2010-08-23
## 2 MCN to ICH or PRA MCN (adult) 2010-09-22 <NA>
```

New approach:

- · If the arrival time in a state is not known (i.e., the site visit was implicit), then take the halfway point between two known site arrivals as the arrival time in the implicit state
- If there were N implicit site visits between known arrival times, divide the time between the two known arrival times by N+1 to estimate the time spent in each state


```
##
                               date time
                                                       date source arrival date
                                             pathway
               state
## 1
          RRE to WEL 2011-05-03 09:23:37 RRE (adult) known arrival
                                                                     2011-05-03
## 2
          RIS to RRE
                                            implicit interpolated
                                                                     2011-05-07
                                    <NA>
## 3 Wenatchee River 2011-05-11 04:09:47
                                           WEN sites known arrival
                                                                     2011-05-11
```

New approach: Example detection history

```
##
                                  pathway arrival date
                                                         exp date
                 state
## 1
                              BON (adult)
                                             2010-07-24 2010-08-23
            BON to MCN
                              MCN (adult)
                                             2010-09-22 2010-09-25
## 2 MCN to ICH or PRA
## 3
                              PRA (adult)
                                             2010-09-28 2010-09-30
           PRA to RIS
                              RIS (adult)
## 4
           RIS to RRE
                                             2010-10-02 2011-01-09
                              RRE (adult)
                                             2011-04-18 2011-04-22
## 5
           RRE to WEL
           RIS to RRE RRE fallback arrays
                                             2011-04-27 2011-04-30
## 6
## 7
           RRE to WEL
                              RRE (adult)
                                             2011-05-03 2011-05-05
## 8
                                  implicit
                                             2011-05-07 2011-05-09
           RIS to RRE
      Wenatchee River
                                WEN sites
## 9
                                             2011-05-11 2011-05-11
```

Indexing to covariate by state (location) and "experience date"

```
##
                         pathway arrival date exp date
         state
                      RRE (adult) 2011-04-18 2011-04-22
## 5 RRE to WEL
## 6 RIS to RRE RRE_fallback arrays
                                   2011-04-27 2011-04-30
##
          date ICH.to.LGR BON.to.MCN PRA.to.RIS RIS.to.RRE RRE.to.WEL
## 1 2011-04-22
                  8.4292
                            8.0042
                                                 6.3833
                                       6.4667
                                                           6.3043
## 2 2011-04-23
                  8.5250
                            8.1417
                                       6.5750
                                                 6.4042
                                                           6.4333
## 3 2011-04-24
                  8.8083
                            8.2917
                                      6.6292
                                                 6.5292
                                                           6.6417
## 4 2011-04-25
               8.8750
                                                 6.6875
                            8.5125
                                      6.7875
                                                           6.7667
## 5 2011-04-26
                 9.0458
                            8.6417
                                      6.9000
                                                6.7958
                                                           6.8417
## 6 2011-04-27
                                      6.9542
                                                6.9083
                 9.3375
                            8.6833
                                                           6.9083
                                      7.1478
## 7 2011-04-28
                 9.5792
                            8.7500
                                                 7.0261
                                                           6.9909
                                                 7.0792
## 8 2011-04-29
                  9.6583
                            8.7708
                                       7.2042
                                                           7.0542
## 9 2011-04-30
                  9.6083
                            8.7417
                                       7.2125
                                                 6.2500
                                                           6.9417
```

Problem: What to do at branching states?

MCN to PRA or ICH

- Two dams with covariate data at this state: PRA tailrace and ICH tailrace
- Potential solution could be to include the covariates
 (temperature, spill, flow) at both dams as covariates for just this
 state
- Could have temperature at PRA tailrace be covariate for ascending PRA, and temperature at ICH tailrace be covariate for ascending ICH

New potential covariate: time in a state

For individuals who are in the "mainstem, BON to MCN" state, how long does it take them to reach the next state?

Time in a state: directionality issue

Individuals in BON to MCN state who just ascended BON

```
## # A tibble: 8 × 2
                                   `median time (days)`
    next state
     <chr>
##
                                                  <dbl>
## 1 Umatilla River
                                                  126.
## 2 John Day River
                                                   79.5
## 3 BON to MCN other tributaries
                                                    21
## 4 mainstem, MCN to ICH or PRA
                                                    14
## 5 Deschutes River
                                                     7
## 6 Fifteenmile Creek
## 7 Hood River
## 8 mainstem, mouth to BON
                                                     0
```

Time in a state: directionality issue

Individuals in BON to MCN state who did not just ascend BON

```
## # A tibble: 6 × 2
                                   `median time (days)`
    next state
##
     <chr>
                                                   <dbl>
## 1 John Day River
                                                    64
## 2 BON to MCN other tributaries
                                                    62
## 3 Umatilla River
                                                    51
## 4 mainstem, mouth to BON
                                                    46
## 5 Deschutes River
                                                     5.5
## 6 mainstem, MCN to ICH or PRA
                                                     1
```

Note: no individuals entered Hood River or Fifteenmile Creek next

Missing covariate data

- How do we handle missing covariate data?
- Does missing covariate data indicate no flow?

2004-2022 Bonneville
Daily Average Tailrace Temperature (C)
Observed Range 3.2:23.4

