

Mesenchymal Stem cell Loaded Thermosensitive Hydrogel Wound Dressings in Wound Healing

Wound Healing

R. Gu et al., "Research progress related to thermosensitive hydrogel dressings in wound healing: a review," Nanoscale Advances, vol. 5, no. 22, pp. 6017–6037, Jan. 2023, doi: 10.1039/d3na00407d.

Rules of dressings in Wound Healing

protective physical barrier

Moisture Management Absorb wound exudate

Prevent bacterial infection

Promote tissue regeneration

anti-inflammatory properties

Enhance angiogenesis and collagen synthesis

Therapeutic agents delivery

pressure redistribution

Pain Reduction and Comfort

Temperature Regulation

Hydrogels in Wound Care

High water content

Biocompatibility

Flexibility and conformability

thermosensitivity

Controlled release of therapeutics

Thermal

Thermosensitive Hydrogels

Thermal

expandable

R. Gu et al., "Research progress related to thermosensitive hydrogel dressings in wound healing: a review," Nanoscale Advances, vol. 5, no. 22, pp. 6017–6037, Jan. 2023, doi: 10.1039/d3na00407d.

Mesenchymal Stem Cell in Wound Healing

P. Ahangar, S. J. Mills, and A. J. Cowin, "Mesenchymal stem cell secretome as an emerging Cell-Free alternative for improving wound repair," International Journal of Molecular Sciences, vol. 21, no. 19, p. 7038, Sep. 2020, doi: 10.3390/ijms21197038.

Integration of Stem Cells with Thermosensitive Hydrogels

R. Gu et al., "Research progress related to thermosensitive hydrogel dressings in wound healing: a review," Nanoscale Advances, vol. 5, no. 22, pp. 6017–6037, Jan. 2023, doi: 10.1039/d3na00407d.

"Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: an in situ drug formation platform for accelerated wound healing | ACS Biomaterials Science & Engineering." https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c00988

"Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: an in situ drug formation platform for accelerated wound healing | ACS Biomaterials Science & Engineering." https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c00988

M. Yang, S. He, Z. Su, Z. Yang, X. Liang, and Y. Wu, "Thermosensitive injectable Chitosan/Collagen/B-Glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids," ACS Omega, vol. 5, no. 33, pp. 21015–21023, Aug. 2020, doi 10.1021/acsomega.0c02580.

Thermosensitive Injectable Chitosan/Collagen/β-Glycerophosphate Composite Hydrogels for Enhancing Wound Healing by Encapsulating Mesenchymal Stem Cell Spheroids

M. Yang, S. He, Z. Su, Z. Yang, X. Liang, and Y. Wu, "Thermosensitive injectable Chitosan/Collagen/B-Glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids," ACS Omega, vol. 5, no. 33, pp. 21015–21023, Aug. 2020, doi 10.1021/acsomega.0c02580.

H. Xu et al., "Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells," International Journal of Biological Macromolecules, vol. 137, pp. 433–441, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.246.

H. Xu et al., "Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells," International Journal of Biological Macromolecules, vol. 137, pp. 433–441, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.246.

