Manual for Package: mathematics

Karl Kastner

$\mathrm{July}\ 5,\ 2019$

${\bf Contents}$

1	compl	ex-analysis	21
	1.1	complex_exp_product_im_im	21
	1.2	complex_exp_product_im_re	21
	1.3	complex_exp_product_re_im	21
	1.4	complex_exp_product_re_re	22
	1.5	croots	22
	1.6	root_complex	22
	1.7	test_imroots	22
2	deriva	ation	23
	2.1	derive_acfar1	23
	2.2	derive_ar2param	23
	2.3	derive_arc_length	23
	2.4	derive_fourier_power	23
	2.5	derive_fourier_power_exp	23
	2.6	derive_laplacian_curvilinear	23
	2.7	derive_laplacian_fourier_piecewise_linear	23
	2.8	derive_logtripdf	23
	2.9	derive_smooth1d_parametric	23
	2.10	simplify_atan	24
3	fourie	r/@STFT	24
	3.1	STFT	24
	3.2	itransform	24
	3.3	stft	24
	3.4	stftmat	24
	3.5	$transform \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	24
4	fourie	${f r}$	24
	4.1	amplitude_from_peak	25
	4.2	dftmtx man	25

4.3	example_fourier_window	25
4.4	fft_derivative	25
4.5	fft_man	25
4.6	fftsmooth	26
4.7	fix_fourier	26
4.8	fourier_axis	26
4.9	fourier_coefficient_piecewise_linear	27
4.10		27
4.11		27
4.12		27
4.13	fourier_coefficient_ramp_step	28
4.14		28
4.15		28
4.16		28
4.17	fourier_fit	28
4.18		28
4.19		28
4.20		28
4.21		28
4.22		29
4.23	1	29
4.24		29
4.25	1	29
4.26		29
4.27	0	29
4.28		30
4.29		30
4.30		30
4.31		30
4.32	<i>U</i> 1	30
4.33		31
4.34		31
4.35		31
4.36	1	31
4.37		32
4.38	1 0	32
4.39		32
1.00		_
geom	etry/@Geometry 3	32
5.1		32
5.2		32
5.3	9	32
5.4	9	32
5.5		33

5.6	base_point_limited	33
5.7	$\operatorname{centroid}$	33
5.8	cross2	33
5.9	curvature	33
5.10	ddot	33
5.11	distance	33
5.12	$distance 2 \dots $	33
5.13	dot	33
5.14	${\it edge_length} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	34
5.15	$enclosed_angle \ \dots $	34
5.16	enclosing_triangle	34
5.17	hexagon	34
5.18	inPolygon	34
5.19	inTetra	34
5.20	inTetra2	34
5.21	inTriangle	34
5.22	intersect	34
5.23	lineintersect	34
5.24	lineintersect1	35
5.25	minimum_distance_lines	35
5.26	mittenpunkt	35
5.27	nagelpoint	35
5.28	onLine	35
5.29	orthocentre	35
5.30	plumb_line	35
5.31	poly_area	35
5.32	$poly_edges \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	35
5.33	poly_set	35
5.34	poly_width	36
5.35	polyxpoly	36
5.36	project_to_curve	36
5.37	$random_disk$	36
5.38	random_simplex	36
5.39	sphere_volume	36
5.40	$tetra_volume \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	36
5.41	tobarycentric	36
5.42	tobarycentric1	36
5.43	tobarycentric2	37
5.44	tobarycentric3	37
5.45	tri_angle	37
5.46	tri_area	37
5.47	$tri_centroid$	37
5.48	$tri_distance_opposit_midpoint$	37
5.49	tri_edge_length	37

	5.50	tri_edge_midpoint	37
	5.51	tri_excircle	37
	5.52	tri_height	37
	5.53	tri_incircle	38
	5.54	tri_isacute	38
	5.55	tri_isobtuse	38
	5.56	tri_semiperimeter	38
	5.57	tri_side_length	38
6	geome	etry	38
	6.1	Polygon	38
	6.2	bounding_box	38
	6.3	$curvature_1d \ \dots $	39
	6.4	cvt	39
	6.5	${\rm deg_to_frac} \ \dots $	39
	6.6	ellipse	39
	6.7	$ellipseX \dots \dots$	39
	6.8	ellipseY	39
	6.9	$first_intersect \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	39
	6.10	golden_ratio	39
	6.11	hypot3	39
	6.12	meanangle	39
	6.13	meanangle2	40
	6.14	meanangle3	40
	6.15	meanangle4	40
	6.16	medianangle	40
	6.17	medianangle2	40
	6.18	pilim	40
	6.19	streamline_radius_of_curvature	40
7	linear-	algebra	41
	7.1	averaging_matrix_2	41
	7.2	colnorm	41
	7.3	$condest_{-}$	41
8	linear-	-algebra/coordinate-transformation	41
	8.1	barycentric2cartesian	41
	8.2	barycentric2cartesian3	41
	8.3	cartesian2barycentric	41
	8.4	$cartesian_to_unit_triangle_basis \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	41
	8.5	latlon2utm	41
	8.6	$lowrance_mercator_to_wgs84 $	41
	8.7	nmea2utm	42
	8.8	sn9vv	42

	8.9	unit_triangle_to_cartesian	42
	8.10	utm2latlon	42
	8.11	xy2nt	42
	8.12	xy2sn	42
	8.13	xy2sn_java	42
	8.14	xy2sn_old	42
9	linear-	algebra	43
	9.1	$det2x2 \dots $	43
	9.2	$\det 3x3 \ldots \ldots \ldots \ldots \ldots$	43
	9.3	$det4x4 \dots $	43
	9.4	$diag2x2 \dots \dots \dots \dots \dots \dots$	43
	9.5	$eig2x2\dots$	43
	9.6	first	43
	9.7	gershgorin_circle	43
	9.8	haussdorff	43
	9.9	ieig2x2	44
	9.10	inv2x2	44
	9.11	inv3x3	44
	9.12	inv4x4	44
	9.13	lpmean	44
	9.14	lpnorm	44
	9.15	$matvec 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44
	9.16	$\max 2d \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44
	9.17	mpoweri	44
	9.18	$mtimes2x2 \dots $	44
	9.19	mtimes3x3	45
	9.20	nannorm	45
	9.21	nanshift	45
	9.22	nl	45
	9.23	normalise	45
	9.24	normalize1	45
	9.25	normrows	45
	9.26	orth2	45
	9.27	orth_man	45
	9.28	orthogonalise	46
	9.29	paddext	46
	9.30	paddval1	46
	9.31	paddval2	46
		-	
1 0	linear-	algebra/polynomial	46
	10.1	chebychev	46
	10.2	piecewise_polynomial	46
	10.3	roots1	46

	10.4	roots2	46
	10.5	vanderi_1d	47
	10.6	vandermonde	47
11	linear-	algebra	17
	11.1	9	47
	11.2		47
	11.3	0 -	$^{-1}47$
	11.4		$\frac{1}{47}$
	11.5		$\frac{1}{47}$
	11.6		$\frac{1}{47}$
	11.7		$\frac{1}{47}$
	11.8	· ·	48
	11.9		48
	11.10		48
	11.11	•	48
	11.11	transposean	10
12	logic		18
	12.1	bitor_man	48
13	numbe	er-theory	18
	13.1	v	48
	13.2		48
	13.3	8 - 8	$\frac{1}{48}$
	13.4		49
	13.5		49
	13.6		49
	13.7		49
	13.8	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	49
	10.0	Toundi	10
14		, , , , , , , , , , , , , , , , , , , ,	19
	14.1		49
	14.2	derivative2	49
15	numer	ical-methods/finite-difference	50
	15.1	•	50
	15.2	cdiffb	50
	15.3		50
	15.4		50
	15.5		50
	15.6		50
	15.7		50
	15.8		50 50
	15.0		50 51

	15.10	distmat	51
	15.11	gradpde2d	51
	15.12	laplacian	51
	15.13	laplacian_fdm	51
	15.14	left	51
	15.15	$lrmean \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	51
	15.16	mid	51
	15.17	pwmid	52
	15.18	ratio	52
	15.19	steplength \dots	52
	15.20	$swapoddeven \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	52
	15.21	$test_derivative_matrix_2d \ \dots \dots \dots \dots \dots \dots \dots$	52
	15.22	$test_derivative_matrix_curvilinear . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	52
	15.23	$test_difference_kernel $	52
16		${ m ical-methods/finite-volume/@Advection}$	52
	16.1	Advection	
	16.2	dot_advection	52
17	numer	ical-methods/finite-volume/@Burgers	53
	17.1	burgers_split	53
	17.2	dot_burgers_fdm	53
	17.3	dot_burgers_fft	
18	numer	ical-methods/finite-volume/@Finite_Volume	53
-0	18.1	Finite_Volume	53
	18.2	apply_bc	53
	18.3	solve	53
	18.4	step_split_strang	54
	18.5	step_unsplit	
19		ical-methods/finite-volume/@Flux_Limiter	54
	19.1	Flux_Limiter	
	19.2	beam_warming	54
	19.3	fromm	54
	19.4	lax_wendroff	54
	19.5	minmod	54
	19.6	monotized_central	55
	19.7	muscl	55
	19.8	superbee	55
	19.9	upwind	55
	10 10		~ ~
	19.10	vanLeer	55

	20.1	dot_kdv_fdm	55
	20.2	$dot_kdv_fft \ \dots $	55
	20.3	$kdv_split \ \dots $	55
21	numer	$ical-methods/finite-volume/@Reconstruct_Average_E$	volve 56
	21.1	Reconstruct_Average_Evolve	56
	21.2	advect_highres	56
	21.3	advect_lowress	56
22	numer	ical-methods/finite-volume	56
	22.1	Godunov	56
	22.2	Lax_Friedrich	56
	22.3	Measure	56
	22.4	Roe	57
	22.5	fv_swe	57
	22.6	$staggered_euler \dots \dots \dots \dots \dots$	57
	22.7	$staggered_grid \ \dots $	57
23	numer	ical-methods	57
	23.1	$\operatorname{grid2quad} \dots $	57
24	numer	ical-methods/integration	57
	24.1	cumintL	57
	24.2	cumintR	57
	24.3	$int_trapezoidal \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	57
25	numer	ical-methods/interpolation/@Kriging	58
	25.1	Kriging	58
	25.2	estimate_semivariance	58
	25.3	$interpolate\ \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	58
26	numer	${\it ical-methods/interpolation/@RegularizedInterpolator}$	·1 58
	26.1	RegularizedInterpolator1	
	26.2	init	
27	numer	${\it ical-methods/interpolation/@RegularizedInterpolator}$	2 58
	27.1	RegularizedInterpolator2	58
	27.2	init	59
28	numer	ical-methods/interpolation/@RegularizedInterpolator	:3 59
-0	28.1	RegularizedInterpolator3	59
	28.2	init	59
29	numer	ical-methods/interpolation	59
-	29.1	• =	59

	29.2	IPoly	59
	29.3	IRBM	59
	29.4	ISparse	59
	29.5	Inn	59
	29.6	Interpolator	60
	29.7	fixnan	60
	29.8	idw1	60
	29.9	idw2	60
	29.10	inner2outer	60
	29.11	inner2outer2	60
	29.12	$interp1_limited \dots \dots \dots \dots \dots \dots \dots \dots$	60
	29.13	interp1_man	60
	29.14	interp1_save	61
	29.15	interp1_smooth	61
	29.16	$interp1_unique \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	61
	29.17	interp2_man	61
	29.18	interp_angle	61
	29.19	$interp_fourier \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	61
	29.20	interp_fourier_batch	61
	29.21	$interp_sn \ \dots $	61
	29.22	$interp_sn2$	62
	29.23	interp_sn3	62
	29.24	$interp_sn_\dots$	62
	29.25	$limit_by_distance_1d\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	62
	29.26	$resample 1 \dots \dots$	62
	29.27	$resample_d_min \dots $	62
	29.28	$resample_vector \ \dots $	62
	29.29	$test_interp1_limited \ \dots \dots \dots \dots \dots \dots \dots$	62
30	numer	ical-methods	62
•	30.1	inverse_complex	62
	33.2		-
31	numer	ical-methods/ode	63
	31.1	bvp2c	63
	31.2	bvp2c2	63
	31.3	bvp2fdm	63
	31.4	bvp2wavetrain	64
	31.5	bvp2wavetwopass	64
	31.6	$ivp_euler_forward \dots \dots \dots \dots \dots \dots \dots$	64
	31.7	$ivprk2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	64
	31.8	$ode 2_matrix \dots \dots$	64
	31.9	ode2characteristic	64
	31.10	$step_trapezoidal \dots \dots \dots \dots \dots$	65

32	numer	ical-methods/optimisation	65
	32.1	armijo_stopping_criterion	65
	32.2	astar	65
	32.3	binsearch	65
	32.4	bisection	65
	32.5	box1	65
	32.6	box2	65
	32.7	cauchy	65
	32.8	cauchy2	66
	32.9	directional_derivative	66
	32.10	dud	66
	32.11	extreme3	66
	32.12	extreme_quadratic	66
	32.13	ftest	66
	32.14	grad	67
	32.15	hessian	67
	32.16	hessian_from_gradient	67
	32.17	hessian_projected	67
	32.18	line_search	67
	32.19	line_search2	67
	32.20	line_search_polynomial	67
	32.21	line_search_polynomial2	68
	32.22	line_search_quadratic	68
	32.23	line_search_quadratic2	68
	32.24	line_search_wolfe	68
	32.25	ls_bgfs	68
	32.26	ls_broyden	68
	32.27	ls_generalized_secant	69
	32.28	nlcg	69
	32.29	nlls	69
	32.30	picard	69
	32.31	poly_extrema	69
	32.32	quadratic_function	70
	32.33	quadratic_programming	70
	32.34	quadratic_step	70
	32.35	rosenbrock	70
	32.36	sqrt_heron	70
	32.37	test_directional_derivative	70
	32.38	test_dud	70
	32.39	test_line_search_quadratic2	70
	32.40	test_ls_generalized_secant	70
	32.41	test_nlcg_6_order	70
		test nlls	71

33	numer	ical-methods/piecewise-polynomials	7 1				
	33.1	Hermite1	71				
	33.2	hp2_fit	71				
	33.3	hp2_predict	71				
	33.4	hp_predict	71				
	33.5	hp_regress	71				
	33.6	lp_count	71				
	33.7	lp_predict	72				
	33.8	lp_regress	72				
	33.9	lp_regress	72				
34	regress	sion/@PolyOLS	72				
	34.1	PolyOLS	72				
	34.2	coefftest	72				
	34.3	$\operatorname{detrend} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	72				
	34.4	$\mathrm{fit} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	72				
	34.5	$\operatorname{fit} \ \ldots \ $	72				
	34.6	predict	72				
	34.7	$\operatorname{predict}_{-} \ldots \ldots \ldots \ldots \ldots$	73				
	34.8	slope	73				
35	regression/@PowerLS 73						
	35.1	PowerLS	73				
	35.2	fit	73				
	35.3	predict	73				
	35.4	$\operatorname{predict}_{-} \dots \dots \dots \dots \dots \dots$	73				
36	regress	sion/@Theil	73				
	36.1	Theil	73				
	36.2	$\operatorname{detrend} \ldots \ldots$	73				
	36.3	$\mathrm{fit} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	74				
	36.4	predict	74				
	36.5	slope	74				
37	regress	sion	74				
	37.1	Theil_Multivariate	74				
	37.2	areg	74				
	37.3	ginireg	74				
	37.4	hessimplereg	74				
	37.5	l1lin	75				
	37.6	lsq_sparam	75				
	37.7	polyfitd	75				
	37.8	regression_method_of_moments	75				
	37.9	robustlinreg	75				

	37.10	theil 2	75
	37.11	theil_generalised	75
	37.12	total_least_squares	76
	37.13	weighted_median_regression	76
38	set-the	eorv	76
	38.1	issubset	76
20	aign al	processing	76
39	39.1	acf_effective_sample_size	76
	39.1		76
	39.3	acf_genton	76
	39.3	acfar1	76
	39.4	acfar1_2	77
		acfar2	
	39.6	acfar2_2	77
	39.7	ar1_cutoff_frequency	77
	39.8	ar1_effective_sample_size	77
	39.9	ar1_mse_mu_single_sample	77
	39.10	ar1_mse_pop	77
	39.11	ar1_mse_range	77
	39.12	ar1_spectrum	77
	39.13	ar1_to_tikhonov	77
	39.14	ar1_var_factor	78
	39.15	$ar1_var_factor_$	78
	39.16	ar1_var_range2	78
	39.17	ar1delay	78
	39.18	ar1delay_old	78
	39.19	ar2conv	78
	39.20	ar2dof	78
	39.21	ar2param	79
	39.22	asymwin	79
	39.23	autocorr_fft	79
	39.24	bandpass	79
	39.25	bandpass2	79
	39.26	$bartlett \dots $	79
	39.27	bartlett_spectrogram	79
	39.28	bin1d	79
	39.29	bin2d	80
	39.30	binormrnd	80
	39.31	conv1_man	80
	39.32	conv2_man	80
	39.33	conv2z	80
	39.34	conv30	80
	30 35	conv	80

39.36	conv_centered	80
39.37	convz	81
39.38	cosexpdelay	81
39.39		81
39.40	$daniell_window \dots \dots \dots \dots$	81
39.41	danielle_window	81
39.42	db2neper	81
39.43	db2power	81
39.44	derive_danielle_weight	81
39.45	derive_limit_0_acfar	81
39.46	detect_peak	82
39.47		82
39.48		82
39.49		82
39.50		82
39.51		82
39.52		82
39.53		82
39.54		83
39.55		83
39.56		83
39.57	1	84
39.58		84
39.59		84
39.60		84
39.61		84
39.62		84
39.63		84
39.64		84
39.65	0	84
39.66		84
39.67		85
39.68	0 1	85
39.69		85
39.70		85
39.71		85
39.71 39.72		85
39.73	1	85
39.74	•	85
39.74 39.75	•	85
39.75 39.76	1	85
39.70 39.77	•	86
39.77 39.78		80 86
39.78 39.79		80 86
39.19	meanna man	$\alpha()$

39.80	medfilt1_man2
39.81	medfilt1_padded
39.82	medfilt1_reduced
39.83	mid_term_single_sample
39.84	minfilt1
39.85	mu2ar1
39.86	nanautocorr
39.87	nanmedfilt1
39.88	neper2db
39.89	peaks_man
39.90	polyfilt1
39.91	qmedfilt1
39.92	randar1
39.93	randar1_dual
39.94	randar2
39.95	randarp
39.96	range_window
39.97	rectwin
39.98	recursive_sum
39.99	select_range
39.100	smooth1d_parametric
39.101	smooth2
39.102	smooth_man
39.103	smooth_parametric
39.104	smooth_parametric2
39.105	smoothfft
39.106	spectrogram
39.107	std_window
39.108	sum_i_lag
39.109	sum_ii
39.110	sum_ii
39.111	sum_ij
39.112	sum_ij
39.113	sum_ij_partial
39.114	sum_multivar
39.115	test_acfar1
39.116	test_acfar1_2
39.117	test_acfar1_3
39.118	test_acfar1_4
39.119	test_acfar2
39.120	test_ar1_var_factor
39.121	test_ar1_var_factor_2
39.122	test_ar1_var_mu_single_sample
39.123	test_ar1_var_pop

	39.124	test_ar1_var_pop_1	91
	39.125	test_ar1delay	91
	39.126	test_bivariate_covariance_term	91
	39.127	test_convexity	91
	39.128	test_lanczoswin	91
	39.129	test_madcorr	91
	39.130	test_randar1	91
	39.131	test_randar1_multivariate	91
	39.132	test_randar2	91
	39.133	test_sum_ij	92
	39.134	test_sum_multivar	92
	39.135	test_trifilt1	92
	39.136	test_wautocorr	92
	39.137	test_wavelet_transform	92
	39.138	test_wordfilt	92
	39.139	test_xar1_mid_term	92
	39.140	tikhonov_to_ar1	92
	39.141	trapwin	92
	39.142	trifilt1	92
	39.143	triwin	93
	39.144	triwin2	93
	39.145	varar1	93
	39.146	welch_spectrogram	93
	39.147	wfilt	93
	39.148	winbandpass	93
	39.149	window_make_odd	93
	39.150	winfilt0	93
	39.151	winlength	93
	39.152	wmeanfilt	94
	39.153	wmedfilt	94
	39.154	wordfilt)4
	39.155	wordfilt_edgeworth	94
	39.156	xcorr_man)4
4.0	. •	_	
40	sorting)4
	40.1)4
	40.2	sort2d)4
41	special	l-functions 9	14
	41.1)4
	41.2	•)5
	41.3		95
	41.4		95
	41.5		95

42	statist	ics 99
	42.1	atan_s2
	42.2	beta_mode_to_parameter
	42.3	correlation_confidence_pearson
43	statist	ics/distributions 96
	43.1	PDF 90
	43.2	binorm_separation_coefficient
	43.3	binormedf
	43.4	binormfit
	43.5	binormpdf
	43.6	edgeworth_cdf
	43.7	edgeworth_pdf
	43.8	logn_mode2param
	43.9	logn_param2mode
	43.10	$lognpdf_{-}$
	43.11	pdfsample
	43.12	t2cdf
	43.13	t2inv
44	statist	ics 9'
	44.1	example_standard_error_of_sample_quantiles 9
	44.2	f_var_finite
	44.3	gamma_mode_to_parameter
	44.4	hodges_lehmann_correlation
	44.5	hodges_lehmann_dispersion
45		ics/information-theory 98
	45.1	akaike_information_criterion
	45.2	bayesian_information_criterion
40	_4_4:_4	: o
40	statist	
	46.1 46.2	
		limit
	46.3	logfactorial
	46.4	loglogpdf
	46.5	logskewcdf
	46.6	logskewpdf
17	statist	ics/logu 99
41	47.1	lambertw_numeric
	47.1	logtrialtcdf
	47.3	logtrialtinv
	41.3 47.4	logtrialtmean

	47.5	logtrialtpdf
	47.6	$log trial trnd \dots \dots$
	47.7	logtricdf
	47.8	logtriinv
	47.9	logtrimean
	47.10	$logtripdf \dots \dots$
	47.11	logtrirnd
	47.12	logucdf
	47.13	logucm
	47.14	loguinv
	47.15	logumean
	47.16	$logupdf \dots \dots$
	47.17	logurnd
	47.18	loguvar
	47.19	medlogu
	47.20	test_logurnd
	47.21	tricdf
	47.22	triinv
	47.23	trimedian
	47.24	tripdf
	47.25	trirnd
48	statisti	
	48.1	maxnnormals
	48.2	midrange
	48.3	minavg
	48.4	mode_man
40		100
49		ics/moment-statistics 103
	49.1 49.2	autocorr_man3
		autocorr_man4
	49.3	autocorr_man5
	49.4 49.5	blockserr
	49.6	
	49.0	
	49.8	dof
	49.9	edgeworth_quantile
	49.10	effective_sample_size
	49.11	f_correlation
	49.12	f_finite
	49.13	lmean
	49.14	lmoment
	49.15	maskmean

49.16	masknanmean
49.17	mean1
49.18	mean_man
49.19	mse
49.20	nanautocorr_man1
49.21	nanautocorr_man2
49.22	nanautocorr_man4
49.23	nancorr
49.24	nancumsum
49.25	nanlmean
49.26	nanr2
49.27	nanrms
49.28	nanrmse
49.29	nanserr
49.30	nanwmean
49.31	nanwstd
49.32	nanwvar
49.33	nanxcorr
49.34	pearson
49.35	pearson_to_kendall
49.36	pool_samples
49.37	qmean
49.38	range_mean
49.39	rmse
49.40	serr
49.41	serr1
49.42	test_qskew
49.43	test_qstd_qskew_optimal_p
49.44	wautocorr
49.45	wcorr
49.46	wcov
49.47	wdof
49.48	wkurt
49.49	wmean
49.50	wrms
49.51	wserr
49.52	wskew
49.53	wstd
49.54	wvar
50 statist	tics 110
50.1	nangeomean
50.1 50.2	9
$_{00.2}$	nangeostd

51	statisti	ics/nonparametric-statistics 110
	51.1	$kernel1d \ldots \ldots$
	51.2	kernel2d
${f 52}$	statisti	
	52.1	normmoment
	52.2	normpdf2
53	statisti	ics/order-statistics 110
	53.1	$hodges_lehmann_location \ldots \ldots$
	53.2	$kendall \ldots $
	53.3	$kendall_to_pearson \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	53.4	$mad2sd\ \dots$
	53.5	madcorr
	53.6	$median 2_holder $
	53.7	median_ci
	53.8	median_man
	53.9	mediani
	53.10	nanmadcorr
	53.11	nanwmedian
	53.12	nanwquantile
	53.13	oja_median
	53.14	qkurtosis
	53.15	qmoments
	53.16	qskew
	53.17	qskewq
	53.18	qstdq
	53.19	quantile1_optimisation
	53.20	quantile2_breckling
	53.21	quantile2_chaudhuri
	53.22	quantile2_projected
	53.23	quantile2_projected2
	53.24	quantile_envelope
	53.25	quantile_regression_simple
	53.26	ranking
	53.27	spatial_median
	53.28	spatial_quantile
	53.29	spatial_quantile2
	53.30	spatial_quantile3
	53.31	spatial_rank
	53.32	spatial_sign
	53.33	spatial_signed_rank
	53.34	spearman
	53.35	spearman_rank
		=

	53.36	spearman_to_pearson	15
	53.37	wmedian	15
	53.38	wquantile	15
$\bf 54$	statist	ics/random-number-generation 1	15
	54.1	laplacernd	15
	54.2	randc	
	54.3	skewrnd	15
	54.4	$skewrnd2 \dots \dots$	16
55	statist	ics 1	16
	55.1	range	16
56		, 1 0	16
	56.1	Jackknife	
	56.2	estimated_STATIC	
	56.3	matrix1_STATIC	
	56.4	matrix2	17
57	statist	ics/resampling-statistics 1	17
	57.1	block_jacknife	17
	57.2	jackknife_moments	
	57.3	moving_block_jacknife	
	57.4	randblockserr	17
	57.5	resample	18
58	statist	ics 1	18
	58.1	$scale_quantile_sd$	
	58.2	skewpdf	
	58.3	trimmed_mean	
	58.4	ttest2_man	
	58.5	ttest_man	
	58.6	ttest_paired	
	58.7	wharmean	
-0	,		
59	wavele		19
	59.1		19
	59.2		19
	59.3	r	19
	59.4	r	19
	59.5		19
	59.6		19
	59.7		20
	59.8	test_wavelet2	
	59.9	test_wavelet_analysis	20

59.10	test_wavelet_reconstruct
59.11	test_wtc
59.12	wavelet
59.13	wavelet_reconstruct
59.14	wavelet_transform

1 complex-analysis

operations on complex numbers

1.1 complex_exp_product_im_im

1.2 complex_exp_product_im_re

op : frequencies of the product

1.3 complex_exp_product_re_im

the product has two frequency components

product of the imaginary part of one and the real part of a second complex exponential

$1.4 \quad complex_exp_product_re_re$

1.5 croots

```
input:
c : complex number
n : order of root
    n must be rational, to obtain n solutions
    otherwise no finite set of solutions exists
r : roots of the complex number
```

$1.6 \quad root_complex$

1.7 test_imroots

derivation $\mathbf{2}$

derivation of several functions by means of symbolic computation 2.1derive_acfar1 2.2 $derive_ar2param$ ${\bf 2.3}\quad derive_arc_length$ ${\bf 2.4}\quad {\bf derive_fourier_power}$ ${\bf derive_fourier_power_exp}$ 2.5 $derive_laplacian_curvilinear$ 2.62.7 $derive_laplacian_fourier_piecewise_linear$ $derive_logtripdf$ 2.82.9 $derive_smooth1d_parametric$

2.10 simplify_atan

3 fourier/@STFT

3.1 STFT

```
Note: the interval Ti should be set to at leat 2*max(T), as
   otherwise coefficients
    tend to oscillate in the presence of noise
Note: for convenience, the independent variable is labeled as time
   (t),
   but the independent variable is arbitrary, so it works
        likewise in space
```

3.2 itransform

- 3.3 stft_
- 3.4 stftmat
- 3.5 transform

4 fourier

support and analysis functions both for the discrete (fast) fourier transform (dft/fft) and continuous fourier analysis (fourier series)

4.1 amplitude_from_peak

```
represented by a peak in the fourier domain input:
h : peak height
w : peak width at half height

output:
a : amplitude in real space
s : standard deviation of the frequency (!)

4.2 dftmtx_man
```

columns of higher frequencies are omitted

input :

n : number of samples
nr : number of columns

output :

F : fourier matrix

4.3 example_fourier_window

4.4 fft_derivative

```
exponential convergence for periodic functions results in spurious oscillations for aperiodic functions input:  x \,:\, \text{data, sampled in equal intervals}
```

 ${\bf k}$: order of the derivative

 $\ensuremath{\mathtt{d}} x$: kth-derivative of x

4.5 fft_man

```
input:
F : data in real space
output :
F : fourier transformation of F
```

4.6 fftsmooth

```
input :
f :
sfunc : a smoothing function (for example fir convolution with
    rectangular window)
        returns filtered (mean) value and normalized fir window
nf : window length
nsigma : number of standard deviations for confidnce intervals

output :
ff : filtered fourier transform
l : lower bound
u : upper bound
```

4.7 fix_fourier

```
fix periodic data series with fourier interpolation
longest gap should not exceed 1/2 of the shortest time span of
interest (1/cutoff frequency)
note: this limit equals the position of first side lobe of the ft
of a rectangular window with gap length
```

4.8 fourier_axis

```
as computed by fft (matlab-style)
input:
X : sample locations (equal interval)
L : length of samples
n : number of samples
```

output :

f : frequencies
T : periods

 ${\tt N}$: frequency id

4.9 fourier_coefficient_piecewise_linear

(not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

l,r: end points of piecewise linear function

lval, rval : values at end points

L : length of domain

n : number of samples/highest frequency

output :

a, b : coefficients for frequency components

4.10 fourier_coefficient_piecewise_linear_1

(not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

 ${\tt X}$: end points of piecewise linear function

Y : values at end points

output :

ab : coefficients for frequency components

4.11 fourier_coefficient_ramp3

4.12 fourier_coefficient_ramp_pulse

4.13	fourier_coefficient_ramp_step
------	-------------------------------

4.14 fourier_coefficient_square_pulse

4.15 fourier_derivative

```
not of discrete fourier transform (fft)
```

4.16 fourier_expand

4.17 fourier_fit

equal intervals

4.18 fourier_interpolate

4.19 fourier_matrix

(not for the discrete dft/fft)

4.20 fourier_matrix2

(not for the discrete dft/fft)

4.21 fourier_matrix3

this is a matrix with (2*n+1) real columns

4.22 fourier_power

```
powers of a^p = (ur + u1 sin(ot) + u2 sin(ot+dp))^p
phase of first component assumed 0

frequencies higher than 2-omega ignored in input
frequencies higher than 3-omega not computed
```

4.23 fourier_power_exp

4.24 fourier_predict

4.25 fourier_range

$$range(y) = max(y) - min(y)$$

4.26 fourier_regress

at equal intervals

4.27 fourier_resampled_fit

but stores them as resampled values

4.28 fourier_resampled_predict

```
at their support points
```

4.29 fourier_signed_square

4.30 fourier_transform

```
(not discrete fourier transformation dft/fft)
input:
    b : data sampled at equal intervals
    T : length of data in time or space, i.e. position of last sample if
    position of first sample is 0
    T_max : maximum period to include

output :
    A : fourier matrix
    p : fourier transformation of b
    tt : TODO
```

4.31 hyperbolic_fourier_box

4.32 idftmtx_man

with a limited number of columns, thus ignoring higher frequencies keep 2nc+1 columns (mean and conj-complex pairs of nc frequencies)

4.33 laplace_2d_pwlinear

with piecewise constant boundary conditions

```
linear system with 4 unknowns per freqency component
these are coefficients of s,c,sh,ch
       (pu*(s + c) + qu*(s' + c'))*(shu + chu) = ru
                                                         % upper bc
       (pd*(s + c) + qd*(s' + c'))*(shd + chd) = rd
                                                         % lower bc
       ((sl + cl)*(pl*(shl + chl) + ql*(shl' + chl')) = rl % left
       ((sr + cr)*(pr*(shr + chr) + qr*(shr' + chr')) = rr % right
 least squares with piecewise integration
 [x0,p,q,r] piecewise linear polynomials at the boundaries
4.34 nanfft
4.35 peaks
rule for peaks: there is no higher value left or right of the "peak
               until the signal drops to p*y_peak, p = 0.5
works best, when spectrum has been smoothened
input :
f : frequency
y : absolute value of fourier transform (power spectrum)
L : length in space or time of series
output :
a0 : amplitude
s0 : standard deviation (error?) of amplitude
w0 : width of peak
lambda = wave length (period?)
pdx : index of peak
```

4.36 roots_fourier

f : frequency (if not given as input)

```
f = a_0 + sum_j = n a_i cos(j x) + b_i sin(j x)
```

- 4.37 spectral_density
- $4.38 \quad test_complex_exp_product$
- 4.39 test_idftmtx
- 5 geometry/@Geometry
- 5.1 Geometry

5.2 arclength

```
8th order accurate does not require the segments length to vary smoothly % \left( 1\right) =\left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right)
```

note: the curve can be considered parametric, e.g. x = x(t), y=y(t) and

and t = t(s), but the error term contains derivatives of t, thus a non smooth t (strongly varying distance between points) requires the scaling as done below

- 5.3 arclength_old
- 5.4 arclength_old2

5.5	${\bf base_point}$
to a	nother point
5.6	$base_point_limited$
5.7	centroid
5.8	${ m cross2}$
5.9	curvature
5.10	${f ddot}$
5.11	distance
5.12	${ m distance 2}$
	function requires a and be of equal dimensions, or the least the first pair or second pair to be a scalar
5.13	dot

5.14	${ m edge_length}$
5.15	$enclosed_angle$
5.16	${\rm enclosing_triangle}$
5.17	hexagon
5.18	inPolygon
much	faster than matlab internal function
5.19	inTetra
5.20	inTetra2
5.21	inTriangle
5.22	intersect
5.23	lineintersect

5.24	lineintersect1
5.25	$minimum_distance_lines$
5.26	mittenpunkt
5.27	${f nagel point}$
5.28	onLine
5.29	orthocentre
5.30	$plumb_line$
5.31	poly _area
5.32	$\operatorname{poly_edges}$
5.33	$\operatorname{poly_set}$

and assign the value of the polygon to it

5.34 poly_width

holes / islands separated with NaN
order of points of outer boundary must be cw
order of points of holes must be ccw
note that this function does not give the true width for expanding
sections
use voronoi polygons for this

- 5.35 polyxpoly
- 5.36 project_to_curve
- 5.37 random_disk
- 5.38 random_simplex
- 5.39 sphere_volume
- 5.40 tetra_volume
- 5.41 tobarycentric
- 5.42 tobarycentric1

5.43	tobarycentric2
5.44	tobarycentric3
5.45	$ m tri_angle$
5.46	tri_area
5.47	${ m tri_centroid}$
5.48	$tri_distance_opposit_midpoint$
5.49	${ m tri_edge_length}$
5.50	${ m tri_edge_midpoint}$
5.51	${ m tri_excircle}$
5.52	${ m tri_height}$

- 5.53 tri_incircle
- 5.54 tri_isacute
- 5.55 tri_isobtuse
- 5.56 tri_semiperimeter
- 5.57 tri_side_length
- 6 geometry
- 6.1 Polygon

```
Polygon properties:
```

x - x coordinates of polygon
y - y coordinates of polygon
nnodes - number of nodes in the polygon

Polygon methods:

in - checks whether given points lie inside, on the edge, or
 outside of the polygon
area - returns the area of the polygon
centerline - computes the centerline of the river
iscw - check whether polygon is clockwise
reverse - reverse the order of the polygon

6.2 bounding_box

0.4	CVt
6.5	$ m deg_to_frac$
6.6	ellipse
6.7	${ m ellipse}{f X}$
6.8	${ m ellipseY}$
6.9	$first_intersect$
6.10	${f golden_ratio}$
6.11	hypot3
6.12	meanangle

 $6.3 \quad curvature_1d$

6.13 meanangle2

6.14 meanangle3

6.15 meanangle 4

6.16 medianangle

angle, that has the smallest squared distance to all others

6.17 medianangle2

```
input
alpha : x*m, [rad] angle

ouput
ma    : 1*m, [rad] median angle
sa    : 1*m, [rad] standard error of median angle for uncorrelated
    error
```

6.18 pilim

6.19 streamline_radius_of_curvature

```
simplifies when rotatate to streamwise coordinates to R = 1/dv/ds * u
```

1	iinear-aigeora
7.1	$averaging_matrix_2$
7.2	colnorm
7.3	${f condest}_{-}$
8	linear-algebra/coordinate-transformation
8.1	barycentric2cartesian
8.2	barycentric2cartesian3
8.3	cartesian2barycentric
8.4	$cartesian_to_unit_triangle_basis$
8.5	latlon2utm
8.6	$lowrance_mercator_to_wgs84$
bas	ed on spreadsheet by D Whitney King and Patty B at Lowrance

- 8.7 nmea2utm
- $8.8 \quad sn2xy$
- 8.9 unit_triangle_to_cartesian
- 8.10 utm2latlon
- 8.11 xy2nt

- 8.12 xy2sn
- 8.13 xy2sn_java
- $8.14 \text{ xy}2sn_old$

 $\ensuremath{\mathsf{NOTE}}$: prefer the java version, this has some problems with round off

9	linear-al	\mathbf{geb}	ra						
9.1	det2x2								
9.2	det3x3								
9.3	det4x4								
9.4	diag2x2								
9.5	m eig2x2								
9.6	first								
9.7	gershgor	in_ci	rcle						
9.8	haussdor	ff							
box	counting: c	ount	cectangles	passed	through	by	line	(covered	by

polygon)

Koch snow flake 3:4 -> 1.2619

Kantor set 2:3, (4:9) -> 0.6309
quadrat 4:2, 9:3, 16:4 -> 2

- 9.9 ieig2x2
- $9.10 \quad inv2x2$
- $9.11 \quad inv3x3$
- 9.12 inv4x4
- 9.13 lpmean
- 9.14 lpnorm
- 9.15 matvec3
- $9.16 \quad \text{max2d}$
- 9.17 mpoweri
- $9.18 \quad mtimes 2x2$

9.19	mtimes3x3
9.20	nannorm
9.21	nanshift
9.22	nl
analog	gue to unix nl command
9.23	normalise
ne orthog	that the columns are independently normalised, and hence not ecessarily gonal to each other use the gram schmidt algorithm for this (or or orth)
9.24	normalize1
9.25	normrows
9.26	$\operatorname{orth2}$
9.27	orth_man

9.28 orthogonalise

9.29 paddext

```
not suitable for noisy data
order = 0 : constant extrapolation (hold)
order = 1 : linear extrapolation
```

- 9.30 paddval1
- 9.31 paddval2
- 10 linear-algebra/polynomial
- 10.1 chebychev
- 10.2 piecewise_polynomial
- 10.3 roots1
- 10.4 roots2

$$c1 x^2 + c2 x + c3 = 0$$

10.6	vandermonde
	linear-algebra randrot
	right
	rot2
11.4	${ m rot2dir}$
11.5	${ m rot}3$
11.6	rownorm

 $11.7 \quad simmilarity_matrix$

 $10.5 \quad vanderi_1d$

- 11.8 spnorm
- 11.9 spzeros
- 11.10 transpose3
- 11.11 transposeall
- 12 logic

bitwise operations on integers

12.1 bitor_man

input:
 A (positive integer)

- 13 number-theory
- 13.1 ceiln
- 13.2 digitsb
- 13.3 floorn

13.4 iseven

13.5 multichoosek

if x vector : the exact combinations

13.6 nchoosek_man

```
b = N!/K!(N-K)!
```

13.7 pythagorean_triple

13.8 roundn

14 numerical-methods/differentiation

14.1 derivative1

second order accurate

14.2 derivative2

15 numerical-methods/finite-difference

15.1 cdiff

degree = 1 : central first order differences
degreee = 2 : central second order differences

15.2 cdiffb

degree = 1 : central first order differences
degreee = 2 : central second order differences
TODO use difference matrix function for simplicity

15.3 cmean

- 15.4 derivative_matrix_1_1d
- 15.5 derivative_matrix_2_1d
- 15.6 derivative_matrix_2d
- 15.7 derivative_matrix_curvilinear
- 15.8 derivative_matrix_curvilinear_2

the grid has not necessarily to be orthogonal

15.9 difference_kernel

c.f. Computing the Spectrum of the Confined Hydrogen Atom, Kastner, 2012

15.10 distmat

15.11 gradpde2d

```
numeric gradient for non-linear least squares optimisation of a PDE on a rectangular grid x_* = \min(f(x)) f = (v(x) - v(x_*))^2 = f(x) + A dx + O(dx^2) a_ij = df_i/dx_j
```

15.12 laplacian

15.13 laplacian_fdm

BC

15.14 left

15.15 lrmean

15.16 mid

15.17	pwmid
15.18	ratio
15.19	steplength
15.20	swapoddeven
15.21	$test_derivative_matrix_2d$
15.22	$test_derivative_matrix_curvilinear$
15.23	$test_difference_kernel$
	${f numerical-methods/finite-volume/@Advection} \ {f Advection}$
16.2	${ m dot}_{ ext{-}}{ m advection}$

17 numerical-methods/finite-volume/@Burgers

17.1 burgers_split

mixed analytic and numerical derivative in frequency space by splitting sheme $u_t = -(0.5*u^2)_x + c*u_xx$

17.2 dot_burgers_fdm

$$u_t = -d/dx (1/2*u^2) + c d^2/dx^2 u_xx$$

17.3 dot_burgers_fft

$$u_t + (0.5*u^2)_x = c*u_x$$

18 numerical-methods/finite-volume/@Finite_Volume

18.1 Finite_Volume

(time and space)

18.2 apply_bc

apply boundary conditions

18.3 solve

this is a trivial implmentation with constant step length severity of diffusive error depends on dt/dx-ratio stability depends on wave height printf('Progress %2.1f%% %2.1fs\n',100*(t-Ti (1))/(Ti(2)-Ti(1)),t_real);

18.4 step_split_strang

this scheme is not suitable for stationary solutions, for example steady shallow water flow $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

18.5 step_unsplit

step in time, without splitting the inhomogeneous term

19 numerical-methods/finite-volume/@Flux_Limiter

19.1 Flux_Limiter

19.2 beam_warming

low resolution note: works only if sign of eigenvalues point into the same direction according to ${\rm RL}\,$

19.3 fromm

low res

19.4 lax_wendroff

second order accurate, but no tvd this is effectively not a limiter eq. 6.39 in randall, leveque

19.5 minmod

- 19.6 monotized_central
- 19.7 muscl
- 19.8 superbee
- 19.9 upwind

godunov, first order accurate

19.10 vanLeer

- 20 numerical-methods/finite-volume/@KDV
- $20.1 \quad dot_kdv_fdm$

```
u_t + (0.5*u^2)_x = c*u_xxx
```

 $20.2 \quad dot_kdv_fft$

```
compute derivatives in frequency space u_t + (0.5*u^2)_x = c*u_xxx
```

 $20.3 kdv_split$

derivative treated by splitting scheme

$21 \quad numerical-methods/finite-volume/@Reconstruct_Average_E$

21.1 Reconstruct_Average_Evolve

```
McCronack Scheme err = 0(dt^2) + 0(dx^2), except as discontinuities error:  h\_xxx(3:end-2) = 1/dx^3*(-0.5*h(1:end-4) + h(2:end-3) - h(4:end-1) + 0.5*h(5:end));   th = -1/6*dx^2*qh\_.*(1 - (qh\_*dt/dx).^2).*h\_xxx;
```

21.2 advect_highres

21.3 advect_lowress

low resolution

22 numerical-methods/finite-volume

22.1 Godunov

22.2 Lax_Friedrich

```
for hyperbolic conservation laws err = O(dt) + O(dx)
|a dt/dx| < 1
```

22.3 Measure

22.4 Roe

The roe solver guarantess:

- A is diagonalisable with real eigenvalues (15.12)
- can be determined by a closed formula
- is an efficient replacement for true Rieman solver
- 22.5 fv_swe
- 22.6 staggered_euler
- 22.7 staggered_grid
- 23 numerical-methods
- 23.1 grid2quad

in form of an unstructured quad-mesh format

- 24 numerical-methods/integration
- 24.1 cumintL
- 24.2 cumintR
- 24.3 int_trapezoidal

25 numerical-methods/interpolation/@Kriging

25.1 Kriging

25.2 estimate_semivariance

 $\mbox{\%}$ set up the regression matrix and solve for parameters

25.3 interpolate_

this function may interpolate several quantities per coordinate, using the same variogram, if the semivariance of the quantities differs, the user may prefer to estimate the semivariance and interpolate each quantity individually

Xs : source point coordinates
Vs : value at source points
Xt : targe point coordinates
Vt : value at target points

E2t : squared interpolation error at target points

- $26 \quad numerical-methods/interpolation/@RegularizedInterpolator$
- 26.1 RegularizedInterpolator1
- 26.2 init
- $27 \quad numerical-methods/interpolation/@RegularizedInterpolator$
- 27.1 RegularizedInterpolator2

27.2	init
28	numerical-methods/interpolation/@RegularizedInterpolator 3
28.1	${\bf Regularized Interpolator 3}$
(unst	tructured mesh)
28.2	init
29	numerical-methods/interpolation
29.1	IDW
29.2	IPoly
29.3	IRBM
	<pre>fprintf(1,'Progress IRBM: %d%%\n',round(100* idx/size(Xi,1)));</pre>
29.4	ISparse

29.5 Inn

29.6 Interpolator

fprintf(1,'Progress: %f%% %fs\n',100*
 idx/size(Xt,1),t);

- 29.7 fixnan
- 29.8 idw1
- 29.9 idw2

29.10 inner2outer

assumes equal grid spacing

29.11 inner2outer2

29.12 interp1_limited

this function is idempotent, i.e. it will not extrapolate over into gaps

exceedint the limit and thus not spuriously extend the series when called a second time on the same data

29.13 interp1_man

29.14 interp1_save

the matlab internal interpolation suffers from rounding errors,
 which
are unacceptable when values of X and Y are large (for example UTm
 coordinates)
this normalization prevents this

29.15 interp1_smooth

29.16 interp1_unique

this function makes the values unique before use

29.17 interp2_man

29.18 interp_angle

29.19 interp_fourier

29.20 interp_fourier_batch

29.21 interp_sn

```
This gives similar result to setting aspect ratio for sN to
   infinity,
but not quite,as the input point set is not dense (scale for sN to
   infinity does not work)
        sdx = sdx(sdx_);
```

- $29.22 \quad interp_sn2$
- $29.23 \quad interp_sn3$
- 29.24 interp_sn_

29.25 limit_by_distance_1d

- 29.26 resample1
- $29.27 \quad resample_d_min$
- $29.28 \quad resample_vector$
- $29.29 \quad test_interp1_limited$
- 30 numerical-methods
- 30.1 inverse_complex

numerical-methods/ode 31

31.1 bvp2c

```
as boundary value problems
odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
   c_1 y" + c_2 y'
                         + c_3 y + c_4 = c_4
subject to the boundary conditions
bcfun provides v and p and optionally q, so that:
b_1 y + b_2 y' = f
   q(x,1)*(p(x,1) y_1(x) + p(x,2) y_1'(x)
 + q(x,2)*(p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)
where q weighs the waves travelling from left to right and right to
     left (default [1 1])
31.2 bvp2c2
```

```
polynomial
input:
x : [nx1] discretized domain
     n : number of vertices
    ns = n-1: number of segments
bc : struct : boundary condition
     bc.p(1)*y(0) + bc.pd(2)*y'(0) = bc.val(1)
     bc.p(2)*y(L) + bc.pd(2)*y'(L) = bc.val(2)
output:
A : [2*ns x 2*ns] disrcretisation matrix
rhs : [2*ns x 1] right hand size
y = A^-1 rhs
```

31.3 bvp2fdm

as boundary value problems by the finite difference method

```
odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
c_1 y" + c_2 y' + c_3 y + c_4 = 0

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
    q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
    + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
    left (default [1 1])
```

31.4 bvp2wavetrain

31.5 bvp2wavetwopass

solve first for the wave number k, and then for y

31.6 ivp_euler_forward

31.7 ivprk2

31.8 ode2_matrix

```
to left and right going wave
c = odefun(x)
c1 y'' + c2' y + c3 y == 0
y = y_p + y_m, left and right going wave
d/dx [y_p, y_m] = A*[y_m, y_p]
```

31.9 ode2characteristic

transmittded and reflected wave

$31.10 \quad step_trapezoidal$

32	numerical - methods/optimisation
32.1	$armijo_stopping_criterion$
32.2	astar

32.3 binsearch

32.4 bisection

 $32.5 \quad box1$

32.6 box2

32.7 cauchy

32.8 cauchy2

slower than quadratic optimisation, but does not require a hessian

fun : objective function, returns

f : scalar, objective function value

g : nx1, gradient
c : nx1, initial position

opt : options

32.9 directional_derivative

d : derivative, highest first
p : series expansion around x0

32.10 dud

32.11 extreme3

```
intended to be called after [mval, mid] = max(val) for refinement
   of
locatian and maximum

input
t : sampling time (uniformly spaced)
v : values at sampling times
ouput:
tdx : index where extremum should be computed
t0 : location of the extremum
val0 : value of extremum
```

v'(dt0) = 0 and v''(dt0) determines type of extremum

32.12 extreme_quadratic

32.13 ftest

32.14 grad

32.15 hessian

32.16 hessian_from_gradient

32.17 hessian_projected

32.18 line_search

32.19 line_search2

```
fun : objective funct
x0 : start value
```

f0: objective function value at x0

g : gradient at x0

p : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for x
up : upper bound for x

32.20 line_search_polynomial

 $\begin{array}{ll} \text{fun} \; : \; \text{objective funct} \\ \text{x0} \; : \; \text{start value} \end{array}$

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

 dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for x
up : upper bound for x

32.21 line_search_polynomial2

fun : objective funct
x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

 dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for x
up : upper bound for x

32.22 line_search_quadratic

fun : objective funct
x0 : start value

f0 : objective function value at x0

g : gradient at x0

dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

 $\begin{array}{ll} \mbox{1b} & : \mbox{lower bound for } x \\ \mbox{up} & : \mbox{upper bound for } x \end{array}$

32.23 line_search_quadratic2

32.24 line_search_wolfe

c.f.: OPTIMIZATION THEORY AND METHODS - Nonlinear Programming, Sun,
 Yuan

32.25 ls_bgfs

32.26 ls_broyden

32.27 ls_generalized_secant

Barnes, 1965 Wolfe, 1959 Fletcher 1980, 6.3 seber 2003 gerber

32.28 nlcg

input:

x : nx1 start vectort
opt : struct options
fdx : gradient constraint

32.29 nlls

32.30 picard

32.31 poly_extrema

32.32	$quadratic_function$
32.33	${\bf quadratic_programming}$
32.34	${\bf quadratic_step}$
32.35	rosenbrock
32.36	$\mathbf{sqrt}_{\mathbf{heron}}$
32.37	$test_directional_derivative$
32.38	${ m test}_{ m -}{ m dud}$
32.39	$test_line_search_quadratic2$
32.40	${ m test_ls_generalized_secant}$

 $32.41 \quad test_nlcg_6_order$

32.42 test_nlls

- 33 numerical-methods/piecewise-polynomials
- 33.1 Hermite1

33.2 hp2_fit

fit a hermite polynomial
coefficients are derivative free
x0 : left point of first segment
x1 : right point of last segment

n : number of segments
x : sample x-value
val : sample y-value

c : coefficients (values at points, no derivatives)

$33.3 \quad hp2_predict$

c are values at support points

$33.4 hp_predict$

33.5 hp_regress

coefficients are values and derivatives

33.6 lp_count

count number of valid samples

33.7	${ m lp_predict}$
33.8	$ m lp_regress$
33.9	$ m lp_regress_$
34	regression/@PolyOLS
	PolyOLS
34.2	coefftest
34.3	detrend
34.4	fit
like	polyfit, but returns parameter error estimates
34.5	\mathbf{fit}_{-}

34.6 predict

- $34.7 \quad predict_{-}$
- 34.8 slope
- 35 regression/@PowerLS
- 35.1 PowerLS
- 35.2 fit

like polyfit, but returns parameter error estimates

35.3 predict

```
S2 = diag((A*obj.C)*A');
L = Y - S;
U = Y + S;
```

- $35.4 \quad \mathrm{predict}_{-}$
- 36 regression/@Theil
- 36.1 Theil
- 36.2 detrend

36.3 fit

c : confidence interval c = 2*ns*normcdf(1) for ns-sigma

intervals

 $\begin{array}{l} \texttt{param} \; : \; \texttt{itercept} \; \texttt{and} \; \texttt{slope} \\ \texttt{P} \; : \; \texttt{confidence} \; \texttt{interval} \end{array}$

36.4 predict

36.5 slope

37 regression

linear and non-linear regression

37.1 Theil_Multivariate

means of the Gauss-Seidel iteration

37.2 areg

37.3 ginireg

37.4 hesssimplereg

$$rhs = p(1) + p(2) x + eps$$

37.5 l1lin

37.6 lsq_sparam

```
\begin{array}{lll} & \text{fun} : \text{model function for predtiction} \\ b & : \text{sample values} \\ & f(p) = b \\ p & : \text{parameter at point of evaluation (preferably optimum)} \end{array}
```

37.7 polyfitd

```
of the derivative

x0 must contain at least for conditioning as otherwise the intercept
cannot be determined
```

37.8 regression_method_of_moments

```
y+eps = alpha + beta*x
```

37.9 robustling

```
(med(y_left) - med(y_right))/(med(x_left)-med(x_right) this approach performs poorly compared to the theil-senn operator
```

37.10 theil2

37.11 theil_generalised

```
for arbitrary functions such as polynomials and multivariate
   regression
either higher order polynomials or glm
c.f. "On theil's fitting method", Pegoraro, 1991
```

$37.12 \quad total_least_squares$

37.13 weighted_median_regression

```
c.f. Scholz, 1978
```

38 set-theory

38.1 issubset

```
A : first set
B : second set
```

P : set of primes (auxiliary)

39 signal-processing

39.1 acf_effective_sample_size

39.2 acf_genton

39.3 acfar1

```
a_k = 1/(n-k)sum x_ix_i+1 + (xi + xi+k)mu + mu^2
= r^k + 1/n sum_ij + 1/n
pause
```

$39.4 \quad acfar1_2$

39.5 acfar2

$$39.6 \quad acfar2_2$$

$$X_i + a1 X_{i-1} + a2 X_{i-2} = 0$$

 $39.7 \quad ar1_cutoff_frequency$

39.8 ar1_effective_sample_size

 $39.9 \quad ar1_mse_mu_single_sample$

 $39.10 \quad ar1_mse_pop$

$$E[(mu_N-0)^2] = E[mu_N^]$$

 $39.11 \quad ar1_mse_range$

 $39.12 \quad ar1_spectrum$

39.13 ar1_to_tikhonov

$39.14 \quad ar1_var_factor$

```
n : [1 .. inf] population size m : [1 .. n] samples size rho : [ -1 < rho < 1 (for convergence) ] correlation of samples
```

$39.15 \quad ar1_var_factor_$

$39.16 \quad ar1_var_range2$

```
from the finite length first order autocorrelated process s2 = 1/m^2 \ sum\_i^m \ sum\_j^m \ rho^-|i-j|
```

39.17 ar 1 delay

39.18 ar1delay_old

39.19 ar2conv

```
of the acf [1,r1,r2,\ldots]
```

39.20 ar2dof

39.21 ar2param

```
acf = [1 a1 a2 ...]
```

39.22 asymwin

filter will always have negative weights

39.23 autocorr_fft

39.24 bandpass

39.25 bandpass2

39.26 bartlett

```
c.f. thiebaux c.f spectral analysis-jenkins, eq. (6.3.27) c = acf note: results seams always to be 1 tac too low T : reduction factor for dof for ar1 with a = rho^k = \exp(-k/L), T = 2L
```

39.27 bartlett_spectrogram

TODO sliding window

39.28 bin1d

apply function v to it

39.29 bin2d

apply function func to all walues in the bin
func = mean : default
func = sum : non-normalized frequency histogram in 2D

39.30 binormrnd

39.31 conv1_man

39.32 conv2_man

39.33 conv2z

39.34 conv30

circular boundaries

 $39.35 \quad conv_{-}$

39.36 conv_centered

when length of f is even, this guarantees a symmetric result (no
 off by on
displacement) by making the length of f odd at first

39.38	cosexpdelay
39.39	$\operatorname{csmooth}$
39.40	${\bf daniell_window}$
	aniell 1946 ield 2000 015
39.41	${\bf danielle_window}$
39.42	db2neper
39.43	db2power
39.44	${\bf derive_danielle_weight}$

39.45 derive_limit_0_acfar

39.37 convz

39.46 detect_peak

requires function value to fall to p*max before new value is allowed

39.47 digital_low_pass_filter

```
and sampling period
alalogue low pass with pole at s=-omega_c=1/tau=1/RC
Ha = tau/(tau + s) = 1/(1 + omega_c*s)
```

39.48 doublesum_ij

$39.49 \quad effective_sample_size_to_ar1$

39.50 filt_hodges_lehman

39.51 filter1

39.52 filter2

39.53 filter_

39.54 filteriir

```
v : nz,nt : values to be filtered
H : nt,1
          : depth of ensemble
last : nt,1 : last bin above bottom that can be sampled without
   side lobe interference
nf : scalar : number of reweighted iterations
when samples
- distance to bed is reference (advantageous for near-bed suspended
     transport)
TODO for wash load: distance to surface is more relevant
interpolate depending on z
when depth changes, neighbouring indices do not correspond to same
   relative position in the water column
relative poisition in the colum (s-coordinate) smoothes values
near the bed: absolute distance to bed is chosen
near surface: absolute distance to surface is chosen
-> cubic transformation of index
faster and avoid alising (smoothing along z)
      resample ensemble to same number of bins in S -> filter ->
          resample back
      use nonlinear transform z-s coordinates
-> resampling has to be local (Hi -> H-filtered)
filtered profile coordinates to sample coordinates
      zf -> zi (special transform)
corresponding indices and fractions
filtration step (update of hf and vf)
sample coordinates to updated profile coordinates
(the inverse step is actually not necessary)
write filtered value
```

39.55 filterp

39.56 filterp1

39.58	$\mathrm{firls_man}$
39.59	flattopwin
39.60	$frequency_response_boxcar$
39.61	${ m freqz_boxcar}$
39.62	${ m gauss filt 1}$
39.63	hanchangewin
39.64	hanchangewin2
39.65	hanwin

39.57 filterstd

39.66 hanwin_

39.67 highpass 39.68 kaiserwin 39.69 kalman 39.70 lanczoswin 39.71 last 39.72 lowpass 39.73 lowpass2 39.74 lowpass_iir

39.75 lowpass_iir_symmetric

39.76 lowpassfilter2

39.77 maxfilt1

39.78 meanfilt1

 $39.79 \quad medfilt1_man$

 $39.80 \quad medfilt1_man2$

 $39.81 \quad medfilt1_padded$

 $39.82 \quad medfilt1_reduced$

 $39.83 \quad mid_term_single_sample$

39.84 minfilt1

39.85 mu2ar1

 $(mu)^2 = (sum \ epsi)^2 = sum_i \ sum_j \ eps_i \ eps_j = sum_ii(rho,n)/n^2$ this has the limit s^2 for rho->1

39.86 nanautocorr 39.87 nanmedfilt1 39.88neper2db 39.89 peaks_man 39.90 polyfilt1 can be achieved by iteratively processing the data with a mean (zero-order) filter 39.91 qmedfilt1 39.92 randar1 e1 = randar1(sigma,p,n,m) 39.93 randar1_dual

39.94 randar2

39.96 range_window

39.97 rectwin

39.98 recursive_sum

39.99 select_range

$39.100 \quad smooth1d_parametric$

so that distance to p1 and p2 becomes equal and the chord length remains the same

 $39.101 \quad smooth2$

 $39.102 \quad smooth_man$

39.103 smooth_parametric

matvec2x2(R,[dxc;dyc])

39.104 smooth_parametric2

39.105 smoothfft

39.106 spectrogram

 $39.107 \quad std_window$

 $39.108 \quad sum_i_lag$

sum_i=1^n rho^|i-k|

39.109 sum_ii

sum_i=1^n sum_j=1^n rho^|i-j|
this is for the variance, take square root for the standard
 deviation factor

 $39.110 \quad sum_ii_$

39.111 sum_ij

 $sum_{i=1}^n sum_{j=1}^m r^{i-j}$

 $39.112 \quad sum_{ij}$

- $39.113 \quad sum_ij_partial_$
- 39.114 sum_multivar
- 39.115 test_acfar1
- 39.116 test_acfar1_2
- 39.117 test_acfar1_3
- 39.118 test_acfar1_4
- 39.119 test_acfar2
- 39.120 test_ar1_var_factor
- 39.121 test_ar1_var_factor_2
- 39.122 test_ar1_var_mu_single_sample

- $39.123 \quad test_ar1_var_pop$
- $39.124 \quad test_ar1_var_pop_1$
- 39.125 test_ar1delay
- 39.126 test_bivariate_covariance_term
- 39.127 test_convexity
- 39.128 test_lanczoswin
- 39.129 test_madcorr
- 39.130 test_randar1
- 39.131 test_randar1_multivariate
- 39.132 test_randar2

- 39.133 test_sum_ij
- 39.134 test_sum_multivar
- 39.135 test_trifilt1
- 39.136 test_wautocorr
- 39.137 test_wavelet_transform
- 39.138 test_wordfilt
- 39.139 test_xar1_mid_term
- $39.140 \quad tikhonov_to_ar1$
- 39.141 trapwin
- 39.142 trifilt1

39.143 triwin

39.144 triwin2

39.145 varar1

with respect to the mean, averaged over the population

39.146 welch_spectrogram

39.147 wfilt

39.148 winbandpass

39.149 window_make_odd

39.150 winfilt0

39.151 winlength

power at fc is halved $H(wf) = 1/sqrt(2) \ H(f)$ if the filter window were used as a low pass filter note: the user should prefer a windowed ideal low pass filter TODO, relate this to DOF

- 39.152 wmeanfilt
- 39.153 wmedfilt
- 39.154 wordfilt
- 39.155 wordfilt_edgeworth
- $39.156 \quad xcorr_man$
- 40 sorting
- 40.1 sort2
- $40.2 \quad sort2d$

returns row and column index of sorted values

- 41 special-functions
- 41.1 bessel_sphere

$41.2 \quad hankel_sphere$

first kind

41.3 hermite

input :
n : order
x : value

output:
f : H_n(x)
df : d/dx H_n(x)

41.4 legendre_man

41.5 neumann_sphere

Bessel function of the second kind

42 statistics

$42.1 \quad atan_s2$

$42.2 \quad beta_mode_to_parameter$

$42.3 \quad correlation_confidence_pearson$

c.f. Fischer 1921

- 43 statistics/distributions
- 43.1 PDF
- 43.2 binorm_separation_coefficient
- 43.3 binormcdf
- 43.4 binormfit
- 43.5 binormpdf
- 43.6 edgeworth_cdf

with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

43.7 edgeworth_pdf

probability density of and unknown distribution with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

$43.8 logn_mode2param$

43.9 logn_param2mode
$43.10 \mathrm{lognpdf}_{-}$
43.11 pdfsample
Note: better use kernal density estimates
43.12 t2cdf
43.13 t2inv
44 statistics
$44.1 example_standard_error_of_sample_quantiles$
44.2 f_var_finite
44.2 Lvai iiiite
without replacement
44.3 gamma_mode_to_parameter

44.4 hodges_lehmann_correlation

```
c.f. Shamos 1976
c.f. Bickel and Lehmann 1976
c.f. rousseeuw 1993
c.f. Shevlyakov 2011
```

44.5 hodges_lehmann_dispersion

45 statistics/information-theory

45.1 akaike_information_criterion

```
serr : rmse of model prediction
n : effective sample size
k : number of parameters

c.f. akaike (1974)
c.f. sugiura 1978
```

45.2 bayesian_information_criterion

46.2	limit
46.3	logfactorial
46.4	$\log\!\log\!\mathrm{pdf}$
46.5	logskewcdf
46.6	logskewpdf
	$statistics/logu$ $lambertw_numeric$

47.2 logtrialtcdf

46 statistics

 $46.1 kurtosis_bias_corrected$

47.3 logtrialtiny

```
= (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/
    log(a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b
    ) + d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c)
    + b log(c) - d F log(a) log(c)))/(log(a) - log(b)))
x = (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/log
    (a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b) +
    d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c) + b
    log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

47.4 logtrialtmean

- 47.5 logtrialtpdf
- 47.6 logtrialtrnd
- 47.7 logtricdf
- 47.8 logtriinv
- 47.9 logtrimean

- $47.10 \quad logtripdf$
- 47.11 logtrirnd
- 47.12 logucdf
- 47.13 logucm
- 47.14 loguinv
- 47.15 logumean
- 47.16 logupdf
- 47.17 logurnd
- 47.18 loguvar
- $47.19 \quad medlogu$

$47.20 \quad test_logurnd$

- 47.21 tricdf
- 47.22 triinv
- 47.23 trimedian
- 47.24 tripdf
- 47.25 trirnd

48 statistics

48.1 maxnnormals

c.f. Wolperts
this is the median, not the mean of the maximum!
see median of gumbel

48.2 midrange

48.3 minavg

minimise the variance of the weighted sum of n-independent random variables with equal mean and individual variance

$48.4 \quad mode_man$

49 statistics/moment-statistics

49.1 autocorr_man3

49.2 autocorr_man4

columns of x if x is a matrix

c.f. box jenkins 2008 eq. 2.1.12

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

49.3 autocorr_man5

49.4 blockserr

by blocking

block length should be sufficiently larger than correlation length and sufficiently smaller than data length $\,$

this uses a sliding block approach, which reduces the variation of the error estimate

49.5 comoment

 ${\tt c.f.}$ Moments and cumulants of the multivariate real and complex Gaussian distributions

note : there seem to be some typos in the original paper, for $x^4 cii^2$, the square seems to be missing

mu : nx1 mean vector
C : nxn covariance matrix

k : nx1 powers of variables in moments

49.6 corr_man

49.7 cov_man

49.8 dof

for a polynomial of degree order in dim dimensions

49.9 edgeworth_quantile

c.f. cornis fisher 1937
c.f. Rao 2010
c.f. 2.50 in hall
CHERNOZHUKOV 3.3

49.10 effective_sample_size

c.f. Kish

49.11 f_correlation

49.12 f_finite without replacement 49.13 lmean 49.14 lmoment 49.15 maskmean 49.16 masknanmean 49.17 mean1 49.18 mean_man 49.19 mse

this is de-facto the std for an unbiased residual

 $49.20 \quad nanautocorr_man1$

49.21 nanautocorr_man2

49.22 nanautocorr_man4

columns of x if x is a matrix box jenkins 2008 eq. 2.1.12 TODO nan is problematic! Note that it is faster to compute the acf in frequency space as done in the matlab internal function

- 49.23 nancorr
- 49.24 nancumsum
- 49.25 nanlmean
- 49.26 nanr2
- 49.27 nanrms
- 49.28 nanrmse

this is de-facto the std for an unbiased residual $% \left(1\right) =\left(1\right) \left(1\right) \left($

49.29 nanserr

49.30 nanwmean

```
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = nanwmean(w,x)
```

49.31 nanwstd

49.32 nanwvar

```
s^2 = sum(w*(x-sum(wx)/sum(w))^2)/sum(w)
```

49.33 nanxcorr

49.34 pearson

$49.35 \quad pearson_to_kendall$

c.f. Kruskal 1958

49.36 pool_samples

49.37 qmean

49.38 range_mean

49.39 rmse

this is de-facto the std for an unbiased residual

49.40 serr

49.41 serr1

49.42 test_qskew

49.43 test_qstd_qskew_optimal_p

49.44 wautocorr

columns of x if x is a matrix
samples can be weighted

 $\hbox{c.f. box jenkins 2008 eq. } 2.1.12$

c.f. autocorr_man4

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

49.45 wcorr

49.46 wcov

```
49.47 wdof
49.48 wkurt
49.49 wmean
min_x sum w (x-mu)^2 \Rightarrow mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = wmean(w,x)
49.50 wrms
49.51 wserr
49.52 wskew
49.53 wstd
49.54 wvar
```

variance of the weighted sample mean of samples with same mean (but

not necessarily same variance)

 $s2_mu$: error of mean, $s2_mu$: sd of prediction

 $s^2 = sum (w^2(x-sum(wx)^2))$

- 50 statistics
- 50.1 nangeomean
- 50.2 nangeostd

51 statistics/nonparametric-statistics

51.1 kernel1d

xi : samples along x
m : number of bins in X
fun : kernel function

pdf : propability density of xi

51.2 kernel2d

- 52 statistics
- 52.1 normmoment
- 52.2 normpdf2
- 53 statistics/order-statistics
- 53.1 hodges_lehmann_location

Asymptotic rms efficency of location estimte:

mean: 1 s/sqrt(n)

hodges lehman: sqrt(pi/3)*s ~ 1.0233 s/sqrt(n) median: pi/2 s/sqrt(n) ~ 1.25 s / sqrt(n)

53.2 kendall

$53.3 \quad kendall_to_pears on$

correlation coefficient

c.f. Kruska, 1985

$53.4 \mod 2sd$

for normal distributed values

53.5 madcorr

53.6 median2_holder

53.7 median_ci

```
se_me = sqrt(1/2 pi) 1.25331 * sd/sqrt(n)
```

53.8 median_man

c is a P value for the confidence interval, default is 0.95 (2-sigma) median of the colums of X

53.9 mediani

53.10 nanmadcorr

53.11 nanwmedian

53.12 nanwquantile

53.13 oja_median

```
note: the multivariate median is not unique oja 1983, for extension to multivariate function, see chaudhri
```

53.14 qkurtosis

```
Note: this is a measurement of shape-tailedness and yields the same value for the normal distribution as "kurtosis"

However, this is a separate statistic and hence requires different methods for calculating P-values and hypothesis testing
```

53.15 qmoments

53.16 qskew

Note : this is a measurement of shape-symmetry and yields the same skew-normal distribution as "skewness" However, this is an own statistic and hence requires different methods for calculating P-values and hypothesis testing 53.17 qskewq 53.18 qstdq 53.19 quantile 1_optimisation 53.20 quantile 2_breckling $53.21 \quad quantile 2_chaudhuri$ 53.22 quantile 2_projected

 $53.23 \quad quantile 2_projected 2$

53.24	${\bf quantile_envelope}$
53.25	$quantile_regression_simple$
53.26	ranking
53.27	$spatial_median$
is this	s the same as the oja simplex median (c.f. small 1990)?
53.28	$spatial_quantile$
53.29	${\bf spatial_quantile2}$
53.30	${ m spatial_quantile3}$
53.31	spatial_rank
53.32	spatial sign

$53.33 \quad spatial_signed_rank$

Note:	this	is	only	a	true	rank	if	X	is	normal	with	zero	mean,
ab	oitrar	y v	arian	ıce	9								

- 53.34 spearman
- 53.35 spearman_rank
- 53.36 spearman_to_pearson
- 53.37 wmedian
- 53.38 wquantile
- 54 statistics/random-number-generation
- 54.1 laplacernd
- **54.2** randc
- 54.3 skewrnd

54.4 skewrnd2

55 statistics

55.1 range

56 statistics/resampling-statistics/@Jackknife

56.1 Jackknife

note 1 : the 1-delete jackknife does not yield consistend estimates
 for all functions,

in particular it will perform poorly on robust estimation functions

this is overcome by the d-delete jacknife, where d has to exceed the breakdown point

of the estimating function, for example $\operatorname{sqrt}(n)$ for the median

as this leads to unreasonably large number of repetitions, bootstrap

is recommended for large sample cases (or blocking for sequential data)

note 2 : as a linearisation, jackknife underestimates the error variance in case of

dependence in the data

note 3 : studentisation and the leave out 1 jackknife are related note 4 : the double 1 sample jacknife performs iferior to the d1 jacknife $^{\circ}$

56.2 estimated_STATIC

 $\verb|theta0|: estimate from all samples|\\$

thetad : set of estimates obtained by leaving out one data point

each

last dimension of theta is assumed to be the jackknife dimension

56.3 matrix1_STATIC

56.4 matrix2

57 statistics/resampling-statistics

57.1 block_jacknife

57.2 jackknife_moments

```
func : function of interest on the samples (e.g. mean)
```

A : parameter matrix columns : parameters

rows : samples of the parameter sets

d : number of samples left out

57.3 moving_block_jacknife

```
blocked Jacknfife for autocorrelated data
sliding block, statistically more efficient but computationally
    expensive
note, number of blocks must be sufficiently large h ~ sqrt(n)? << n</pre>
```

57.4 randblockserr

block length should be sufficiently larger than correlation length and sufficiently smaller than data length

this uses a sliding block approach, which reduces the variation of the error estimate

TODO this does not work, randomly picking samples does not reveal the correlation

57.5 resample

TODO, should be with replacement

n : number of samples
m : number of subsamples

cx : maximum number of combinations

58 statistics

58.1 scale_quantile_sd

of the asymtpotic distibution of sample quantiles (for normal distribution) see cadwell, 1952

58.2 skewpdf

c.f. Azzalini 1985

58.3 trimmed_mean

58.4 $ttest2_man$

here posix return value standard: h = 0 accepted, h = 1 failed note: the matlab logic is inverse : h = 1 accepted, h = 0 failed two sided univariate t-test

58.5 ttest_man

unequal sample size
equal variance

58.6 ttest_paired

unequal sample size equal variance more powerfull than unpaired test, as long as correlation between x1 and x2 > 0

58.7 wharmean

59 wavelet

59.1 continuous_wavelet_transform

follows "The Illustrated Wavelet Transform Handbook: Introductory Theory and \dots "

59.2 cwt_man

as of time of implmentation, the matlab interal cwt is affected by serious round-off errors and has issues with the scaling, which is not the case here

59.3 example_wavelets

59.4 phasewrap

59.5 test_cwt_man

59.6 test_phasewrap

59.7	test	wave	ρt
07.1	test_	.wave	ιeυ

59.8 test_wavelet2

59.9 test_wavelet_analysis

59.10 test_wavelet_reconstruct

59.11 test_wtc

59.12 wavelet

59.13 wavelet_reconstruct

```
(reconstruction of time series) 
 {\tt n} : window lengths in multiples of filter period 1/f0
```

59.14 wavelet_transform

```
{\tt n} : window lengths in multiples of filter period 1/f0
```