Molecular emission around low-mass protostars in the Serpens Main with IRAM 30m

A. Mirocha^{1,2}, A. Karska², L. E. Kristensen³, M. Gronowski⁴, M. Figueira⁵, M. Gładkowski^{2,6}, M. Żółtowski²

¹Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland; ²Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland; ³Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark; ⁴Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland; ⁵National Centre for Nuclear Research, ul. Pasteura 7, 02-093 Warszawa, Poland; ⁶Nicolaus Copernicus Astronomical Center, ul. Rabiańska 8, 87-100 Toruń, Poland

Questions

- ☐ Where are molecules dissociated in molecular outflows?
- ☐ What are the typical UV fields in Class 0/I protostars?
- What is the influence of UV radiation on the surroundings of low-mass protostars?

Observations

☐ Spectra are obtained using IRAM 30m single dish antenna ☐ Targeted lines: HCN, CN, CS and their isotopologues

Serpens Main				
Molecule	Freq. [GHz]	Beam size [arcsec]		
HCN 1-0	88.63	28		
CN 1-0	113.49	22		
CS 3-2	146.96	16		
C ³⁴ S 3-2	144.62	16		
H13CN 2-1	86.34	29		
H ¹³ CN 1-0	172.68	14		

CN/HCN: UV field tracer

HCN UV CN + H

Conclusions

- CN/HCN ratio is higher around more envolved low-mass protostars
- ☐ N(CN)/N(HCN) ratio
 does not depend strongly
 on excitation conditions
- Nahoon astrochemical model shows that an additional UV radiation of a few percent of the average in the ISM is required
- The UV radiation cannot be neglected in models of star formation

Astrochemical model

□ Nahoon code calculates
abundances of 474 species
□ In low temperature regime
abundances of CN/HCN not

SED analysis

Sbmm source	$T_{ m bol}$	$L_{\rm bol}$	Class
	(K)	(L_{\odot})	
SMM9	46.14	11.69	Early Class 0
SMM1	40.35	108.72	Early Class 0
SMM5	148.24	4.49	Early Class I
SMM10	85.09	5.13	Late Class 0
SMM4	29.54	13.6	Early Class 0
SMM6	526.44	43.39	Late Class I
SMM12	100.87	6.68	Early Class I
SMM3	42.39	27.49	Early Class 0
SMM2	41.6	5.1	Early Class 0
SMM8		0.068^{a}	

CN/HCN column density ratio

☐ RADEX set of models
☐ Column density ratio covers the range of 1-10 irrespectively of the

gas parameters

CN/HCN spatial distribution

