Trip Planner

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

The planet Xero has two islands A and B, each having n cities. The cities on island A are numbered A_1, A_2, \ldots, A_n and cities on island B are numbered B_1, B_2, \ldots, B_n .

Within an island, Rishabh can travel from any city to another by road. Rishabh can also travel from a city to itself by road. To travel across islands, Rishabh has to use air travel. Air travel exists between A_i and B_j only if gcd(i,j) = 1.

Rishabh(a certified globetrotter) plans to make a trip from city A_x to city B_y in m steps. Each step consists of a road/air travel. Two steps are different if they differ at the starting and/or ending cities. Two trips are said to be distinct if there exists an i $(1 \le i \le m)$ such that the ith steps of the trips are different.

Find the number of distinct trips Rishabh can plan from city A_x to city B_y in m steps. Since this number can be large, print it modulo $10^9 + 7$.

Input

The first line of input contains two integers n and m denoting the number of cities on an island and the number of steps respectively $(1 \le n \le 10^4, 1 \le m \le 100)$.

The second line contains two integers x and y denoting the starting $\operatorname{city}(A_x)$ and ending $\operatorname{city}(B_y)$ respectively $(1 \le x, y \le n)$.

Output

Print the number of distinct trips Rishabh can plan from city A_x to city B_y in m steps, modulo $10^9 + 7$.

Examples

standard input	standard output
5 2	7
4 3	
12 4	5416
6 9	

Note

For the first testcase, 7 distinct trips from A_4 to B_3 are:

- 1. $A_4 \rightarrow A_1 \rightarrow B_3$
- $2. A_4 \rightarrow A_2 \rightarrow B_3$
- 3. $A_4 \rightarrow A_4 \rightarrow B_3$
- 4. $A_4 \rightarrow A_5 \rightarrow B_3$
- 5. $A_4 \rightarrow A_7 \rightarrow B_3$
- 6. $A_4 \rightarrow A_8 \rightarrow B_3$
- 7. $A_4 \to A_{10} \to B_3$