PARTE I: CONCEITOS BÁSICOS DE COMPUTAÇÃO

Introdução à Computação

Sistemas de Numeração

Sistemas de Numeração

- Principais sistemas de numeração:
 - Decimal
 - **0**, 1, ..., 9
 - Binário
 - **0,** 1
 - Octal
 - **0**, 1, ..., 7
 - Hexadecimal
 - 0, 1, ..., 9, A, B, C, D, E, F
 - As letras de A até F equivalem, em decimal, a 10, 11, 12, 13, 14 e 15, respectivamente
- O sistema octal foi muito utilizado em informática como uma alternativa mais compacta ao binário na programação em linguagem de máquina. Hoje, o sistema hexadecimal é mais utilizado como alternativa ao binário. Ambos permitem saber de forma simplificada o valor de cada byte da memória

Sistemas de Numeração

Comparação entre as bases										
16, 10, 8 e 2										
O_hex	O_dec	O_oct	$0\ 0\ 0\ 0_{bin}$							
1 _{hex}	1 _{dec}	1_{oct}	0 0 0 1 _{bin}							
2_{hex}	2_{dec}	2_{oct}	0 0 1 0 _{bin}							
3_{hex}	3_{dec}	3_{oct}	0 0 1 1 _{bin}							
4 _{hex}	4_{dec}	4_{oct}	0 1 0 0 _{bin}							
5_{hex}	5_{dec}	5_{oct}	0 1 0 1 _{bin}							
6 _{hex}	6_{dec}	6_{oct}	0 1 1 0 _{bin}							
7_{hex}	$7_{ m dec}$	$7_{\rm oct}$	0 1 1 1 _{bin}							
8 _{hex}	8_{dec}	10 _{oct}	1 0 0 0 _{bin}							
9 _{hex}	9_{dec}	11 _{oct}	1 0 0 1 _{bin}							
A_{hex}	10 _{dec}	12 _{oct}	1 0 1 0 _{bin}							
B_hex	11 _{dec}	13 _{oct}	1011 _{bin}							
C_hex	12 _{dec}	14 _{oct}	1 1 0 0 _{bin}							
D_hex	13 _{dec}	15 _{oct}	1 1 0 1 _{bin}							
E_hex	14 _{dec}	16 _{oct}	1 1 1 0 _{bin}							
F_{hex}	15 _{dec}	17 _{oct}	1 1 1 1 _{bin}							

$$num_{10} = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 x^0$$

□ Binário - Decimal:
$$1011_2$$

$$1*2^3 + 0*2^2 + 1*2^1 + 1*2^0$$

$$1*8 + 0*4 + 1*2 + 1*1 = 11_{10}$$
□ Octal - Decimal: 271_8

$$2*8^2 + 7*8^1 + 1*8^0$$

$$2*64 + 7*8 + 1*1 = 185_{10}$$
□ Hexadecimal - Decimal: $2AB3_{16}$

$$2*16^3 + A*16^2 + B*16^1 + 3*16^0$$

$$2*16^3 + 10*16^2 + 11*16^1 + 3*16^0$$

$$2*4.096 + 10*256 + 11*16 + 3*1 = 10.931_{10}$$

Conversão Base X — Base 10 Números Fracionários

$$num_{10} = a_n x^n + ... + a_0 x^0, a_{-1} x^{-1} + ... + a_{-n} x^{-n}$$

- □ Binário − Decimal: $101,101_2$ $1*2^2 + 0*2^1 + 1*2^0, 1*2^{-1} + 0*2^{-2} + 1*2^{-3}$ 1*4 + 0*2 + 1*1, 1*0.5 + 0*0.25 + 1*0.125 $4 + 0 + 1, 0.5 + 0 + 0.125 = 5,625_{10}$
- □ Octal Decimal: $0,307_8$ $\mathbf{0} * 8^0$, $\mathbf{3} * 8^{-1} + \mathbf{0} * 8^{-2} + \mathbf{7} * 8^{-3} = 0,388671875_{10}$
- □ Hexadecimal Decimal: $0.2B_{16}$ $0*16^{0}$, $2*16^{-1}$ + $11*16^{-2}$ = 0.16796875_{10}

Conversão Base 10 — Base X Números Fracionários

- \square Parte Inteira: $num_x = num_d r_n...r_2r_1$
- Parte Fracionária
 - Realizada mediante multiplicações sucessivas por X, separando-se as partes inteiras dos resultados, até que se obtenha o valor zero para a parte fracionária dos mesmos
 - Caso o zero nunca seja alcançado, tem-se uma dízima periódica
 - As partes inteiras obtidas são os dígitos da conversão

Conversão Base 10 — Base X Números Fracionários

$$(0.5625)_{10}$$
 para a base 8:
8 * $0.5625 = 4 + 0.5$
8 * $0.5 = 4 + 0.0$
 $(0.5625)_{10} = (0,44)_8$

```
(0.169189453125)_{10} para a base 16:

16 * 0.169189453125 = 2 + 0.70703125

16 * 0.70703125 = 11 + 0.3125

16 * 0.3125 = 5 + 0.0

(0.169189453125)_{10} = (0,2B5)_{16}
```

Conversão Base 10 — Base X Números Fracionários

```
(0.3)_{10} para a base 2:
2 * 0.3 = 0 + 0.6

2 * 0.6 = 1 + 0.2

2 * 0.2 = 0 + 0.4

2 * 0.4 = 0 + 0.8

2 * 0.8 = 1 + 0.6

Dízima periódica
2*0.6 = 1 + 0.2
(0.3)_{10} = (0,0 \ 1001 \ 1001 \ \dots)_2
```

Aritmética Binária

Opera	andos	a -	⊦ b	a -	a * b		
a	Ь	soma	carry	subtração	borrow	produto	
0	0	0	0	0	0	0	
0	1	1	0	1	1	0	
1	0	1	0	1	0	0	
1	1	0	1	0	0	1	

Aritmética Binária

Opera	andos	a -	⊦ b	a -	a * b		
a	Ь	soma	carry	subtração	borrow	produto	
0	0	0	0	0	0	0	
0	1	1	0	1	1	0	
1	0	1	0	1	0	0	
1	1	0	1	0	0	1	

Exercícios

- Transformar os seguintes números da base 10 para as bases 2, 8 e 16
 - 184₁₀
 - 1632₁₀
 - □ 113,5₁₀
- Transformar os seguintes números das bases 2, 8 e
 16 para a base 10
 - □ A53₁₆
 - □ 756₈
 - **1011100,101**₂

Tipos de Dados

Tipos de Dados

□ <u>Tipos de Dados Primitivos</u>

- Demais Tipos
 - Tipo Cadeia de Caracteres (Strings)
 - Tipo Array

Tipos de Dados Primitivos

- Tipos de dados não-definidos em termos de outros tipos são chamados tipos de dados primitivos
- Praticamente todas as linguagens de programação oferecem um conjunto de tipos de dados primitivos
- □ Dividem-se em:
 - Numéricos
 - Inteiro
 - Ponto-flutuante
 - Booleano/Lógico
 - Caractere

- Representado em um computador por uma palavra, com um dos bits, tipicamente da extrema esquerda, representando o sinal
- Um inteiro pode ser armazenado de três formas:
 - Notação de sinal-magnitude
 - Complemento de um
 - Complemento de dois
 - Utilizado pela maioria dos computadores
 - Conveniente para a adição e subtração
 - Mesmas regras para soma e subtração

- Complemento de dois
 - O número negativo é formado tomando-se o complemento lógico da versão positiva e adicionando-se um

```
0 = + / 1 = -
+10 = 0 0001010
-10 = 1° passo (complemento) Faixa de Representação
1 1110101 -2^{N-1} <= X <= +2^{N-1} -1, N=bits
2° passo (adição 1) 8 bits: -128<= X<= +127
11110101 2^8 = 256 representações e 256 valores
```

Complemento de dois

Vantagens:

- 1. Mesmas regras para soma e subtração
- 2. Única representação para o número 0

```
00000000 (+0)
11111111
1
```

1 0000000 (carry desprezado) (**-0**)

Qual o número em decimal? (considerando 5 bits)

0 1101 =
$$01101_2 = 13_{10}$$

1
$$1001 = 00111_2 = -7_{10}$$

Copia-se da direita para a esquerda até o primeiro um, inclusive, e depois complementa

- Complemento de dois
 - Aritmética em complemento de dois

Em todos os exemplos a seguir, considere uma palavra de 5 bits: [-16,+15]

- Complemento de dois
 - Aritmética em complemento de dois

$$6_{10} = 00110_2$$

- Complemento de dois
 - Aritmética em complemento de dois

$$10_{10} = 01010_2$$

• 15 – 10 = 15 + (–10): o resultado deve ser +5;
Ora, observando a Tabela 1.10, comp-2 (+15) = 01111 e comp-2 (–10) = 10110.

Então,

Carrys: 11110
Os dois mais
à esquerda
são iguais

10110

100101

Como o número de bits do resultado deve ser 5, elimina-se o bit mais à esquerda, resultando

 $0\ 0\ 1\ 0\ 1 = \text{comp-2}\ (+5) \rightarrow \text{Resultado correto}$

- Complemento de dois
 - Aritmética em complemento de dois
- 12 + 6: o resultado deve ser + 18, que está fora do intervalo de números representáveis em complemento de 2 de 5 bits, ou seja [-16, +15]; não se pode esperar que a operação produza resultados corretos.

Observando a Tabela 1.10, comp-2 (+12) = 01100 e comp-2 (+6) = 00110. Então,

 $1\ 0\ 0\ 1\ 0 = \text{comp-2}\ (-14) \rightarrow \text{Resultado incorreto, como esperado}$

- Complemento de dois
 - Aritmética em complemento de dois

$$9_{10} = 01001_2$$

 $8_{10} = 01000_2$

 -9-8 = (-9) + (-8): o resultado deve ser -17, que também está fora do intervalo de números representáveis em complemento de 2 de 5 bits; não se pode esperar que a operação produza resultados corretos.

Observando a Tabela 1.10, comp-2 (-9) = 10111 e comp-2 (-8) = 11000. Então,

Como o número de bits do resultado deve ser 5, elimina-se o bit mais à esquerda, resultando

 $0\ 1\ 1\ 1\ 1 = \text{comp-2}\ (+15) \rightarrow \text{Resultado incorreto}$, como esperado

- Modelam os números reais, mas são aproximações
- São representados como frações e expoentes (notação científica)
- Linguagens para fins científicos
- Suportam pelo menos dois tipos de ponto-flutuante (float e double)

- Formatos de Representação de Pontos Flutuantes:
 - (a) Precisão Simples, (b) Precisão Estendida

IEEE Floating-Point Standard 754

$$57,683 = 0,57683 \times 10^{2}$$

 $\pm 0,M \times B^{\pm e}$ (B = base; e = expoente; M = mantissa)
 $B = 10$; $e = 2$; $M = 57683$

 $+0,57683 \times 10^{+2}$ Se a base fosse 10!

8 bits

Exponent

Sign bit

23 bits

Fraction

32 bits = float

```
407,375
(407)_{10} = (110010111)_2
(0,375)_{10} = (0,011)_2
(407,375)_{10} = (110010111,011)_{2}
(407,375)_{10} = 1100101111,011 \times 2^{0}
(407,375)_{10} = 0,110010111011 \times 2^{9(1001)}
```

0	00001001	11001011101100000000000
---	----------	-------------------------

A base implícita é 2!

$$\pm$$
 0,M \times B $^{\pm e}$

Tipos de Dados Primitivos Representação Booleano/Lógico

- Só permite dois valores: verdadeiro ou falso (true or false)
- Pode ser implementado num bit, mas geralmente é implementado num byte
 - Um bit é difícil de ser acessado com eficiência
 - Byte = menor célula de memória eficientemente endereçável

Tipos de Dados Primitivos Representação Caractere

- Armazenados como codificações numéricas
- O código mais usado: ASCII (baseado no inglês)
 - Codifica 128 caracteres diferentes (2⁷ = 128; 7 bits + 1 paridade; 0..127)
 - \square ASCII estendida: 8 bits = $2^8 = 256$ caracteres (0..255)
- □ Globalização: Unicode (UTF-8, UTF-16 e UTF-32)
 - Inclui caracteres da maioria das linguagens naturais
 - Usado em Java, C#, JavaScript, etc.

http://www.douglaspasqua.com/slides/unicode.pdf

Tipos de Dados Primitivos Representação Caractere

Tabela ASCII

dec.	hex.	octal	ASCII	mnm.	dec.	hex.	octal	ASCII	dec.	hex.	octal	ASCII	dec.	hex.	octal	ASCII
0	00	000	^@	NUL	32	20	040		64	40	100	@	96	60	140	•
1	01	001	^A	SOH	33	21	041	į.	65	41	101	Α	97	61	141	a
2	02	002	^B	STX	34	22	042	"	66	42	102	В	98	62	142	b
3	03	003	^C	ETX	35	23	043	#	67	43	103	С	99	63	143	С
4	04	004	^D	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	05	005	^E	ENQ	37	25	045	%	69	45	105	E	101	65	145	е
6	06	006	۸F	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	07	007	^G	BELL	39	27	047	100	71	47	107	G	103	67	147	g
8	08	010	^H	BS	40	28	050	(72	48	110	H	104	68	150	h
9	09	011	^	HTAB	41	29	051)	73	49	111	1	105	69	151	i
10	0A	012	^J	LF	42	2A	052	*	74	4A	112	J	106	6A	152	j
11	0B	013	^K	VTAB	43	2B	053	+	75	4B	113	K	107	6B	153	k
12	0C	014	^L	FF	44	2C	054	,	76	4C	114	L	108	6C	154	1
13	0D	015	^M	CR	45	2D	055	-	77	4D	115	M	109	6D	155	m
14	0E	016	^N	SO	46	2E	056		78	4E	116	N	110	6E	156	n
15	0F	017	^O	SI	47	2F	057	1	79	4F	117	0	111	6F	157	0
16	10	020	^P	DLE	48	30	060	0	80	50	120	Р	112	70	160	р
17	11	021	^Q	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	^R	DC2	50	32	062	2	82	52	122	R	114	72	162	Γ
19	13	023	^S	DC3	51	33	063	3	83	53	123	S	115	73	163	S
20	14	024	^T	DC4	52	34	064	4	84	54	124	T	116	74	164	t
21	15	025	^U	NACK	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	۸V	SYN	54	36	066	6	86	56	126	V	118	76	166	V
23	17	027	^W	ETB	55	37	067	7	87	57	127	W	119	77	167	W
24	18	030	^X	CAN	56	38	070	8	88	58	130	X	120	78	170	X
25	19	031	۸Y	EN	57	39	071	9	89	59	131	Υ	121	79	171	У
26	1A	032	^Z	SUB	58	3A	072		90	5A	132	Z	122	7A	172	Z
27	1B	033]^	ESC	59	3B	073	;	91	5B	133	[123	7B	173	{
28	1C	034	^/	FS	60	3C	074	<	92	5C	134	\	124	7C	174	
29	1D	035	^]	GS	61	3D	075	=	93	5D	135]	125	7D	175	}
30	1E	036	^^	RS	62	3E	076	>	94	5E	136	۸	126	7E	176	~
31	1F	037	^_	US	63	3F	077	?	95	5F	137	_	127	7F	177	DEL

Exercícios

- Os códigos a seguir são números binários inteiros escritos em complemento de 2, cada um com diferente número de bits. Dizer o valor em decimal com sinal de cada um deles.
 - 11110
 - 11
 - 010101010
- Realizar as operações a seguir em complemento de 2 e dizer se o resultado é correto. Considere uma representação de 8 bits.
 - **□** 75 + 60 = 135
 - 35 + (-70) = -35
 - \Box (-70) + (-70) = -140
 - \Box 15 + 35 = 50

Referências

Referências

- Mokarzel, F. C. Introdução à ciência da computação. Elsevier, 2008.
- Sebesta, R. W. Conceitos de linguagens de programação. Bookman, 2003.