Assessment 4

-Vaibhav Bhandari

-17BCB0102

Q-1) Implement Naïve Bayes Classifier for the following data (Predict {Biopsy: target variable or Cytology: target variable })

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29

Find accuracy, AUC and confusion matrix for the above prediction.

Code)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pandas as pd
import itertools
from sklearn import svm, datasets
dataset = pd.read_csv('risk_factors_cervical_cancer.csv')
dataset.head()

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	 STDs: Time since first diagnosis	STDs: Time since last diagnosis	Dx:Cancer	Dx:CIN
(18	4	15	1	0	0.0	0.0	0	0.0	0	 0	0	0	0
1	15	1	14	1	0	0.0	0.0	0	0.0	0	 0	0	0	0
2	34	1	0	1	0	0.0	0.0	0	0.0	0	 0	0	0	0
;	52	5	16	4	1	37.0	37.0	1	3.0	0	 0	0	1	0
4	46	3	21	4	0	0.0	0.0	1	15.0	0	 0	0	0	0
5	rows ×	36 colum	ns											
5 rows × 36 columns														

X = dataset.iloc[:,:33].values

y = dataset.iloc[:,33].values

```
Out[4]: array([[18., 4., 15., ...,
                                              0.,
                                        0.,
                                                    0.],
                                                    0.],
                 [15.,
                        1., 14., ...,
                                        0.,
                                              0.,
                 [34.,
                        1., 0., ...,
                                         0.,
                                              0.,
                                                    0.],
                 . . . ,
                 [25.,
                        2., 17., ...,
                                         0.,
                                              0.,
                                                    0. |,
                        2., 24., ...,
                                        0.,
                                                    0.],
                 [33.,
                                              0.,
                        2., 20., ...,
                 [29.,
                                        0.,
                                              0.,
                                                    0.]])
                       2., 20., ..., 0., 0.,
                 29.,
```

Υ

```
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
        1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
       1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
       0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
       0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
```

from sklearn.model_selection import train_test_split

from sklearn.naive bayes import GaussianNB

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 82)
nvclassifier = GaussianNB()
nvclassifier.fit(X_train, y_train)
```

```
Out[6]: GaussianNB(priors=None, var_smoothing=1e-09)
```

y_pred = nvclassifier.predict(X_test)
print(y_pred)

from sklearn.metrics import confusion_matrix
confmat = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
print(confmat)

[[127 31]

```
[ 3 11]]

a = confmat.shape
corrPred = 0
falsePred = 0

for row in range(a[0]):
    for c in range(a[1]):
        if row == c:
            corrPred +=confmat[row,c]
        else:
            falsePred += confmat[row,c]
print('Correct predictions: ', corrPred)
print('False predictions', falsePred)
```

print ('\n\nAccuracy of the Naive Bayes Clasification is: ', corrPred/(confmat.sum()))

Correct predictions: 138 False predictions 34

Accuracy of the Naive Bayes Clasification is: 0.8023255813953488