I

1. Calculation (2 points)

1) Obtain the 1s and 2s complements of the following unsigned binary numbers. 00011101

1s:11100010 2s:11100011

2) Perform the indicated <u>substraction</u> with the following unsigned binary numbers by taking the 2s complement of the <u>substrahend</u>(減数).

101 - 001000

A:101+111000=111101

$$\begin{array}{c|cccc} 1 & 0 & \mathbf{I}_2 \\ 1 & 1 & \mathbf{I}_3 \end{array}$$

$$Y = \overline{S}_1 \overline{S}_0 I_0 + \overline{S}_1 S_0 I_1 + S_1 \overline{S}_0 I_2 + S_1 S_0 I_3$$

2) Please write a verilog description for the circuit by using a process containing case statement.

A:

```
endmodule
3) Please write a verilog description for the circuit by using a process containing if- else statement.
A:
module 1_MUX4T01(S, I, Y);
input wire [1:0] S;
input wire [3:0] I;
output reg Y;
always @ (*) begin
          (s==2'b00) Y = I[0];
    if
    else if (s==2'b01) Y = I[1];
    else if (s==2'b10) Y = I[2];
                        Y = I[3];
    else
end
endmodule
```

4) Which function does this circuit accomplish? What is the difference between the circuits implemented by the

two methods in 2) and 3)? (2points)

A: 4-to-1 1bit Multiplexer

circuit in 3) have priorities

正边沿维持阻塞型D触发器

异步控制		上升沿触发				
\overline{R}	\overline{s}	C_{P}	D	Q	$\overline{\varrho}$	
0	1	×	×	0	1	
1	0	×	×	1	0	
1	1	1	0	0	1	
1	1	1	1	1	0	

4. Analysis states (10 points)

Please draw the state diagram of "101" sequential detector(simplified as far as possible) and the input, output as following:

(1) Input A: 0101 01101 Output Z: 000101001

(2) Input A: 010 £011010 Output Z: 0001000010

A:

5. Sequential Circuits analysis (20 points)

1)A sequential circuit with two D lip- lops A and B, two inputs X and Y, and one output Z. The state table following:

Present state		Inputs		Next state		Output	
A	В	X	Y	A	В	z	
0	0	0	0	1	0	0	
0	0	0	1	0	0	0	
0	0	1	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	0	1	0	1	
0	1	0	1	0	0	1	
0	1	1	0	0	1	0	
0	1	1	1	0	1	0	
1	0	0	0	1	1	0	
1	0	0	1	0	1	0	
1	0	1	0	1	0	0	
1	0	1	1	1	0	0	
1	1	0	0	1	1	1	
1	1	0	1	0	1	1	
1	1	1	0	1	1	0	
1	1	1	1	1	1	0	

- 2. Find the delay from each input to the output.
 - (a) Finding t_{PHL} and t_{PLH} for each path, assuming t_{PHL} = 0.30ns and t_{PLH} = 0.50ns for each gate. From these values, find t_{pd} for each path.
 - (b) Using $t_{pd} = 0.40$ ns for each gate.
 - (c) Compare your answers in (a) and (b) and discuss the differences. (10 points)

(a) Please write the state table.

	Q_{A}	$Q_{\scriptscriptstyle B}$	Q_c	$Q_{\scriptscriptstyle D}$	D_{A}	D_{B}	D_{c}	D _D
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1