基础过关

一、填空

1.
$$\frac{\pi}{4}$$
.

$$2 \cdot \frac{a-x}{F_x} = \frac{b-y}{F_y} = \frac{c-z}{F_z}.$$

二、切线:
$$\frac{x-1}{1} = \frac{y-\frac{1}{2}}{2} = \frac{z-1}{-2}$$
.

法平面:
$$x+2y-2z=0$$
.

三、曲线在点
$$(1,-2,1)$$
 的切向量 $\vec{\tau} = (1,-\frac{3}{2},2)$ 直线的方向向量 $\vec{s} = (-14,-12,-2)$,

$$\vec{\tau} \cdot \vec{s} = 0.$$

四、切平面:
$$2x + y - 4 = 0$$
.

法线:
$$\frac{x-1}{4} = \frac{y-2}{2} = \frac{z-0}{0}$$
.

$$\mathbb{H}$$
, $4x-2y-3z=3$.

能力拓展

$$-$$
, $(0,\frac{\sqrt{10}}{5},\frac{\sqrt{15}}{5})$.

$$=$$
, $a = -5, b = -2.$

延伸探究

一、
$$f(tx,ty) = t^2 f(x,y)$$
 两边对 t 求导得

$$xf_1'(tx, ty) + yf_2'(tx, ty) = 2tf(x, y).$$

将
$$t=1$$
代入上式得

$$xf'_{y}(x, y) + yf'_{y}(x, y) = 2f(x, y).$$

将
$$x = 1, y = -2$$
 代入上式得

$$f'_{x}(1,-2)-2f'_{y}(1,-2)=2f(1,-2).$$

即 $4-2f_y'(1,-2)=4$. 由此得到 $f_y'(1,-2)=0$. 于是 Σ 在点 P_0 处的法线方程为

$$\frac{x-1}{f_x'(1,-2)} = \frac{y+2}{f_x'(1,-2)} = \frac{z-2}{-1}, \ \text{for } \frac{x-1}{4} = \frac{y+2}{0} = \frac{z-2}{-1}.$$