# Math 1010: One-Variable Analysis

Milan Capoor

Spring 2024

# Chapter 1

# The Real Numbers

# Lecture 1 - Jan 24:

#### **Preliminaries**

1. Sets

**Definition:** A set is a collection of objects.

De Morgan's Laws:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Proof: HW

2. Functions

**Definition:** Given two sets A, B, a function  $f : A \to B$  is a rule that assigns to each  $a \in A$  a unique element  $f(a) \in B$ .

The domain of f is A. The range of f is a subset of B.

Examples:

(a) Dirichlet Function:

$$g(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

(Its domain is  $\mathbb{R}$  and its range is  $\{0,1\}$ )

(b) Absolute value function:

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Properties:

$$|ab| = |a| \cdot |b|$$
  
 $|a+b| \le |a| + |b|$  (Triangle Inequality)

#### 3. Proofs

Types of Proofs:

- Direct Proof Start with a valid statement (usually the hypothesis) and proceed by logical steps
- Indirect Proof (Proof by Contradiction) Begin by negating the conclusion and proceed by logical steps to a contradiction.

### **Theorem:** Let $a, b \in \mathbb{R}$ . Then $a = b \iff \forall \varepsilon > 0, |a - b| < \varepsilon$

*Proof:* We have two statements:

- If  $a = b \implies \forall \varepsilon > 0, |a b| < \varepsilon$
- If  $\forall \varepsilon > 0, |a-b| < \varepsilon \implies a = b$

Proof of first statement: Suppose a=b. Then |a-b|=0. Thus,  $\forall \varepsilon>0, \ |a-b|<\varepsilon$ .

Proof of second statement: Assume  $a \neq b$ . Then  $\exists \varepsilon_0 > 0$  s.t.  $|a - b| = \varepsilon_0$  But this is contradiction by hypothesis.

Proof by induction:

Example: Let  $x_1 = 2$  and  $\forall n \in \mathbb{N}$ , define  $x_{n+1} = \frac{x_n + 5}{3}$ ,  $n \ge 1$ . Prove that  $x_n$  is increasing.

*Proof:* 

(a) Base Case:

$$x_1 = 2 < x_2 = \frac{7}{3}$$
  $\checkmark$ 

(b) Inductive Step: Assume  $x_n \leq x_{n+1}$ . Then

$$\underbrace{\frac{x_n+5}{3}}_{x_{n+1}} \le \underbrace{\frac{x_{n+1}+5}{3}}_{x_{n+2}} \implies x_{n+1} \le x_{n+2} \quad \blacksquare$$

#### Axioms for the real numbers

• Field Axioms:  $\forall a, b, c \in \mathbb{R}$ 

1. 
$$(a+b)+c=a+(b+c)$$
 (Additive Associativity)

2. 
$$\exists 0 \in \mathbb{R} \text{ s.t. } a+0=a \text{ (Additive Identity)}$$

3. 
$$\exists -a \in \mathbb{R} \text{ s.t. } a + (-a) = 0 \text{ (Additive Inverse)}$$

4. 
$$a \cdot b = b \cdot a$$
 (Commutativity)

5. 
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 (Multiplicative Associativity)

6. 
$$\exists 1 \in \mathbb{R} \text{ s.t. } a \cdot 1 = a \text{ (Multiplicative Identity)}$$

7. 
$$\exists a^{-1} \in \mathbb{R} \text{ s.t. } a \cdot a^{-1} = 1 \text{ (Multiplicative Inverse)}$$

8. 
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 (Distributivity)

 $\bullet$  Order Axioms: there exists a subset of positive numbers P such that

10. exclusively either 
$$a \in P$$
 or  $-a \in P$  or  $a = 0$  (Trichotomy)

11. 
$$a, b \in P \implies a + b \in P$$
 (Closure under addition)

12. 
$$a, b \in P \implies a \cdot b \in P$$
 (Closure under multiplication)

• Completeness Axiom: a least upper bound of a set A is a number x such that  $x \ge y$  for all  $y \in A$ , and such that if z is also an upper bound of A, then

 $z \geq x$ .

13. Every nonempty set A which is bounded above has a least upper bound.

We will call Properties 1-12, and anything that follows from them, elementary arithmetic. These alone imply that  $\mathbb{Q}$  is a subfield of  $\mathbb{R}$  and basic properties of inequalities under addition and multiplication.

Adding Property 13 uniquely determines the real numbers. The standard proof is to identify each  $x \in \mathbb{R}$  with the subset of rationals  $\{y \in \mathbb{Q} : y < x\}$ , the Dedekind cut. This can also construct the reals from the rationals.

### Lecture 2 - Jan 30:

# **Axiom of Completeness**

- 1.  $\mathbb{R}$  is an ordered field.
- 2. There is a least upper bound and a greatest lower bound

*Note:* the axiom of completeness is only true for  $\mathbb{R}$ 

**Definition:** Let  $A \subseteq \mathbb{R}$  be a set. Then:

- 1. A is bounded above if  $\exists b \in \mathbb{R}$  s.t.  $a \leq b$  for all  $a \in A$ . Conversely, then b is an upper bound of A.
- 2. A is bounded below if  $\exists l \in \mathbb{R}$  s.t.  $a \geq l$  for all  $a \in A$ . Conversely, then l is a lower bound of A.

**Definition:**  $s \in \mathbb{R}$  is least upper bound of  $A \subseteq \mathbb{R}$  if

- 1. s is an upper bound of A
- 2. if b is any upper bound for A, then  $s \leq b$

s is called the supremum of A and is denoted  $s := \sup A$ . Further, it is unique.

Similarly, inf A (the *infimum*) is the greatest lower bound of A.

Example:  $A = \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ . Then  $\sup A = 1$ .

*Proof:* 

1.  $1 \ge \frac{1}{n}$  for all  $n \in \mathbb{N}$   $\checkmark$ 

2. Assume b is another upper bound. Since  $1 \in A$ ,  $1 \le b$ 

**Remark:**  $\sup A$  and  $\inf A$  do not have to be elements of A.

• When  $\sup A \in A$ , we call it the maximum

• When  $\inf A \in A$ , we call it the *minimum* 

Example: In the example above, inf  $A = 0 \notin A$ .

Example:

$$(0,2) = \{x \in \mathbb{R} : \underbrace{0}_{\inf} < x < \underbrace{2}_{\sup} \}$$
$$[0,2] = \{x \in \mathbb{R} : \underbrace{0}_{\min} \le x \le \underbrace{2}_{\max} \}$$

#### **Theorem:** There is no rational number whose square is 2

*Proof:* Suppose  $\exists$ ,  $p, q \in \mathbb{Z}$  s.t.  $(\frac{p}{q})^2 = 2$ . We further assume that  $q \neq 0$  and GCF(p,q) = 1.

Then

$$\left(\frac{p}{q}\right)^2 = 2 \implies \frac{p^2}{q^2} = 2 \implies p^2 = 2q^2$$

Thus,  $p^2$  is even so p is even (because the product of two odd numbers is odd).

Thus, we can write  $p = 2r, r \in \mathbb{Z}$ . Substituting,

$$(2r)^2 = 2q^2 \implies 4r^2 = 2q^2 \implies 2r^2 = q^2$$

By similar logic, q is even. But this contradicts our assumption that GCF(p,q) = 1.

This allows us to show that  $\mathbb{Q}$  has gaps (it is incomplete). Consider:

$$S = \{ r \in \mathbb{Q} : r^2 < 2 \}$$

A sensible upper bound is  $\sqrt{2} \approx 1.4142...$  Since  $\sqrt{2} \notin \mathbb{Q}$ , we need to approximate it with rational numbers. We can get infinitely close,

$$\frac{3}{2}, \frac{142}{100}, \frac{1415}{1000}, \dots$$

but because we need infinitely many terms, we do not have a least upper bound (the next term will always be closer).

**Lemma:** Let  $s \in \mathbb{R}$  be an upper bound for a set  $A \subseteq \mathbb{R}$ . Then  $s = \sup A$  iff  $\forall \varepsilon > 0 \ \exists a \in A \text{ s.t. } s - \varepsilon < a$ 

#### Proof:

- 1. Suppose  $s = \sup A$ . Consider any  $s \varepsilon$  with  $\varepsilon > 0$ . From the definition of supremum,  $s \varepsilon$  is not an upper bound for A (because  $s \varepsilon < \sup A$ ). Thus,  $\exists a \in A \text{ s.t. } s \varepsilon < a$
- 2. Suppose  $\forall \varepsilon > 0 \ \exists \ a \in A \text{ s.t. } s \varepsilon < a$ .

Since  $s - \varepsilon < a$ , it cannot be an upper bound by definition. Thus, for any b < s, b is not an upper bound. Therefore, any upper bound b' must satisfy s < b'. This is precisely the definition of  $\sup A$ .

### Lecture 3 - Feb 1:

#### Recall

- ullet R is an ordered field satisfying the Axiom of Completeness
- ullet Q is an ordered field but does not satisfy the Axiom of Completeness
- ullet Z satisfies the AOC but is not a field (so we ignore it in analysis)
- $s = \sup A \implies a \le b$  for any other upper bound b

# Consequences of Completeness

**Theorem (Nested interval property):** For each  $n \in \mathbb{N}$ , assume we are given a closed interval  $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$ . Assume also that  $I_n$  contains  $I_{n+1}$ . Then the resulting nested sequence  $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$  has a nonempty intersection  $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ 

#### *Proof:*

Let  $A = \{a_n : n \in \mathbb{N}\}$  be the set of all left endpoints of the intervals  $I_n$ . Then A is nonempty and bounded above by the b (right) endpoints.

Consider  $x = \sup A$ . We know  $a_n \le x \le b_n$  for all  $n \in \mathbb{N}$  by the fact that x is an upper bound for A and that it is the *least* upper bound for A.

And indeed, this is exactly the intersection of the intervals.

Note that the theorem does not hold for  $\mathbb{Q}$ ! Imagine the series of intervals centered at  $\frac{1}{\sqrt{2}}$  – all are non-empty but their intersection is empty (because there are rational numbers infinitely close to  $\frac{1}{\sqrt{2}}$  but that final interval would be empty).

Theorem (Archimedian Property): Given any number  $x \in \mathbb{R}$ ,  $\exists n \in \mathbb{N}$  satisfying n > x. (i.e.  $\mathbb{N}$  is *not* bounded above)

Proof by contradiction:

Suppose  $\mathbb N$  is bounded above. By the axiom of completeness,  $\mathbb N$  has a least upper bound  $\alpha = \sup \mathbb N$ . By definition of supremum,  $\alpha - 1 < n \implies \alpha < n + 1$ . But  $n + 1 \in \mathbb N$ , so  $\alpha$  is not an upper bound.

Consequence: Given any real number y > 0,  $\exists n \in \mathbb{N}$  satisfying  $\frac{1}{n} < y$ .

*Proof:* Let  $x=\frac{1}{y}$ . By the Archimedean Property,  $\exists n\in\mathbb{N}$  satisfying n>x. Then  $n>\frac{1}{y}\implies y<\frac{1}{n}$ 

**Theorem (Density of \mathbb{Q} in \mathbb{R}):** For every two real numbers a and b with a < b,  $\exists r \in \mathbb{Q}$  s.t. a < r < b

Proof:

We want to show that  $\exists m \in \mathbb{Z}, n \in \mathbb{N} : a < \frac{m}{n} < b$ .

First note that we can choose  $m \in \mathbb{Z}, n \in \mathbb{N}$  to bound a. We choose n such that

$$\frac{m-1}{n} < a < \frac{m}{n}$$

and m to be the smallest integer greater than na:

$$m - 1 \le na < m$$

The RHS inequality gives  $a < \frac{m}{n}$ .

By Archimedean property, we can pick  $n \in \mathbb{N}$  such that  $\frac{1}{n} < b-a$ . Equivalently,  $a < b - \frac{1}{n}$ .

The LHS gives

$$m \le na + 1 < n(b - \frac{1}{n}) + 1 = nb \implies m < nb \implies \frac{m}{n} < b$$

Thus,

$$a < \frac{m}{n} < b$$

Corollary: Density of Irrationals ( $\mathbb{I}$ ) in  $\mathbb{R}$ 

# Cardinality

**Definition:** Cardinality is the size of a set

**Definition:** 

• A function  $f: A \to B$  is injective (or one-to-one) if  $a_1 \neq a_2$  in A implies  $f(a_1) \neq f(a_2)$ .

• A function  $f: A \to B$  is surjective (onto) if, given any  $b \in B$ , it is possible to find an element  $a \in A$  for which f(a) = b (all elements in B have a pre-image in A)

• A function  $f: A \to B$  is bijective (has a "1-to-1 correspondence") if it is both injective and surjective

**Definition:** The set A has the same cardinality as the set B if there exists a bijection  $f: A \to B$ .

Example:  $E = \{2, 4, 6, 8, \dots\}$ . We create an equivalence relation  $\mathbb{N} \sim E$  induced by  $f : \mathbb{N} \to E$  given by f(n) = 2n. Thus  $\mathbb{N}$  and E have the same cardinality.

Example:  $\mathbb{N} \sim \mathbb{Z}$ . Consider

$$f(n) = \begin{cases} \frac{n-1}{2} & n \text{ is odd} \\ -\frac{n}{2} & n \text{ is even} \end{cases}$$

Proof of bijection is left as an exercise.

Example:  $(a,b) \sim \mathbb{R}$ 

# Lecture 4 - Feb 6:

### Countable Sets

**Definition:** A set A is *countable* if  $A \sim \mathbb{N}$  (it has the same cardinality as  $\mathbb{N}$ )

#### **Theorem:** $\mathbb{Q}$ is countable

*Proof:* It suffices to construct a bijection  $\phi : \mathbb{N} \to \mathbb{Q}$ .

Consider  $A_1 = \{0\}$  and for each  $n \geq 2$ ,

$$A_n = \{\pm \frac{p}{q} : p, q \in \mathbb{N} \text{ with p/q in lowest term with } p + q = n\}$$

i.e., 
$$A_2 = \{1, -1\}, \ A_3 = \{\frac{1}{2}, -\frac{1}{2}, 2, -2\}, \ A_4 = \{\pm \frac{1}{3}, \pm 3\}$$

We know that each  $A_n$  is finite. Further, every rational number appears exactly once in these sets.

We can then define  $\phi : \mathbb{N} \to \mathbb{Q}$  by the one-to-one correspondence between the natural numbers and each element of the  $A_n$ 's

The correspondence is onto: every rational will appear. (e.g.  $\frac{22}{7} \in A_{29}$ )

The correspondence is 1-1: each rational appears exactly once.

#### **Theorem:** $\mathbb{R}$ is uncountable

*Proof:* Assume  $\mathbb{R}$  is countable. Then  $\mathbb{R} = \{x_1, x_2, \dots\}$ 

Let  $I_1$  be a closed interval which does not contain  $x_1$ . Then  $I_2 \subseteq I_1$  and does not contain  $x_2$ . By induction,  $I_{n+1} \subseteq I_n$ ,  $x_n \notin I_n$ 

Consider  $\bigcap_{n=1}^{\infty} I_n$ . If  $x_{n_0}$  is in the list,  $\exists I_{n_0}$  s.t.  $x_{n_0} \notin I_{n_0}$ . But then

$$\bigcap_{n=1}^{\infty} I_n = \emptyset$$

However, by the nested interval property,  $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ .

**Theorem:** If  $A \subseteq B$  and B is countable, then A is countable or finite

Proof: HW

#### Theorem:

- 1. If  $A_1, A_2, \ldots, A_m$  are countable, then  $\bigcup_{n=1}^m A_n$  is countable
- 2. If  $A_1, A_2, \ldots$  are countable, then  $\bigcup_{n=1}^{\infty} A_n$  is countable

Proof: HW

# Chapter 2

# Sequences and Series

# Lecture 1 - Feb 6 (Continued):

### The Limit of a Sequence

**Definition:** A sequence is a function whose domain is  $\mathbb{N}$ 

Examples:

- $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots) = (\frac{1}{n})_{n \in \mathbb{N}}$
- $(\frac{1+n}{n})_{n=1}^{\infty} = (2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots)$
- $x_1 = 2$ ,  $x_{n+1} = \frac{x_n+1}{2}$

**Definition (convergence of a sequence):** A sequence  $(a_n)$  converges to a real number a if, for every positive number  $\varepsilon$ , there exists a  $N \in \mathbb{N}$  such that  $n \geq N$  implies  $|a_n - a| < \varepsilon$ :

$$\lim_{n \to \infty} a_n = a \iff a_n \to a$$

$$\iff \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n \ge N \implies |a_n - a| < \varepsilon$$

**Definition** ( $\varepsilon$ -neighborhood): The  $\varepsilon$ -neighborhood of  $a \in \mathbb{R}$  (given  $\varepsilon > 0$ ) is the set  $V_{\varepsilon}(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$ 

Here,  $\varepsilon$  is the radius about the center a.

**Definition:** A sequence  $(a_n)$  converges to a if, given any  $\varepsilon$ -neighborhood  $V_{\varepsilon}(a)$  if a, there exists a point in the sequence after which all the terms are in  $V_{\varepsilon}(a)$ 

# Lecture 2 - Feb 08:

### Convergence

**Example:** Let  $a_n = \frac{1}{\sqrt{n}}$ . Show  $\lim_{n \to \infty} a_n = 0$ .

First we try a few values of epsilon:

•  $\varepsilon = \frac{1}{10}$ :  $(0 - \frac{1}{10}, 0 + \frac{1}{10}) = (-\frac{1}{10}, \frac{1}{10})$ 

When  $n = 100 \implies a_{100} = \frac{1}{10}$ . So the first element in the interval is  $a_{101}$ .

•  $\varepsilon = \frac{1}{50}$ :  $(-\frac{1}{50}, \frac{1}{50})$ 

Here, the first element in the interval is  $a_{2501}$ .

Now for the rigorous version: Let  $\varepsilon > 0$ . Choose  $N \in \mathbb{N}$  such that  $N > \frac{1}{\varepsilon^2} \implies \frac{1}{\sqrt{N}} < \varepsilon$ .

Let  $n \geq N$ . Then

$$n > \frac{1}{\varepsilon^2} \implies \frac{1}{\sqrt{N}} < \varepsilon \implies \left| \frac{1}{\sqrt{n} - 0} \right| < \varepsilon$$

### A template for convergence proofs:

- 1. Let  $\varepsilon > 0$
- 2. Demonstrate a choice for  $N \in \mathbb{N}$
- 3. Verify N
- 4. With N well chosen, it should be possible to get  $|x_n x| < \varepsilon$

**Example:** Prove that  $\lim \frac{n+1}{n} = 1$ 

We want  $\left|\frac{n+1}{n}-1\right|<\varepsilon$ . This is equivalent to  $\left|\frac{1}{n}\right|<\varepsilon$ . So we choose  $N\in\mathbb{N}>\frac{1}{\varepsilon}$ .

The actual proof then reads: Let  $\varepsilon > 0$ . Choose  $N \in \mathbb{N}$  s.t.  $N^{\frac{1}{\varepsilon}}$ . Let  $n \geq N$ .

$$n > \frac{1}{\varepsilon} \implies \frac{1}{n} < \varepsilon \implies \left| \frac{n+1}{n} - 1 \right| < \varepsilon$$

Theorem (Uniqueness of limits): The limit of a sequence, when it exists, is unique

Proof: HW

# The algebraic and order limit theorems

**Definition:** A sequence  $(x_n)$  is bounded if there exists a number M > 0, such that  $|x_n| \leq M$  for all  $n \in \mathbb{N}$ .

### Theorem: Every convergent sequence is bounded

*Proof:* Assume  $(x_n)$  converges to l.

Given  $\varepsilon > 0$ ,

$$\exists N \in \mathbb{N} \text{ s.t. } x_n \in (l - \varepsilon, l + \varepsilon) \ \forall n \geq N$$

Since we do not know if l is positive or negative, we can only say

$$|x_n| < |l| + \varepsilon$$

From this we know x is bounded for  $n \ge N$ . Now we check the case n < N. Luckily, this is a finite number of cases.

By construction,  $M = \max\{|x_1|, |x_2|, \dots, |x_{N-1}|, |l|+1\}$ . Then  $|x_n| \leq M$  for all  $n \in \mathbb{N}$ .

# Theorem (Algebraic Limit Theorems): Let $\lim a_n = a$ , $\lim b_n = b$

- 1  $\lim(ca_n) = ca, \quad \forall c \in \mathbb{R}$
- $2. \lim(a_n + b_n) = a + b$
- 3.  $\lim(a_n \cdot b_n) = a \cdot b$
- 4.  $\lim \frac{a_n}{b_n} = \frac{a}{b}$ , provided  $b \neq 0$

Proof:

1. Let  $\varepsilon > 0$ . We want to show  $|ca_n - ca| < \varepsilon$ . Notice

$$|ca_n - ca| = |c| \cdot |a_n - a|$$

Since  $a_n$  is convergent, we can make  $|a_n - a|$  arbitrarily small.

We choose  $N \in \mathbb{N}$  s.t.  $|a_n - a| < \frac{\varepsilon}{|c|}$  so  $\forall n > N$ ,

$$|ca_n - ca| < |c| \frac{\varepsilon}{|c|} = \varepsilon$$
  $\checkmark$ 

2. Let  $\varepsilon > 0$ . We want to show  $|a_n + b_n - (a+b)| < \varepsilon$ . We can say  $|a_n - a + b_n - b| \le |a_n - a| + |b_n - b|$  by the Triangle inequality. Then since  $a_n$  and  $b_n$  are convergent, we note that

$$\exists N_1 \in \mathbb{N}, \text{ s.t. } \forall n \geq N_1 : |a_n - a| < \frac{\varepsilon}{2}$$
  
 $\exists N_2 \in \mathbb{N}, \text{ s.t. } \forall n \geq N_2 : |b_n - b| < \frac{\varepsilon}{2}$ 

Choose  $N = \max\{N_1, N_2\}$  so

$$\forall n \ge N: \quad |(a_n + b_n) - (a + b)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \checkmark$$

3. Let  $\varepsilon > 0$ . We want to show that  $|a_n \cdot b_n - a \cdot b| < \varepsilon$ . We can say

$$|a_n b_n - ab_n + ab_n - ab| \le |a_n b_n - ab_n| + |ab_n - ab|$$
  
=  $|b_n| \cdot |a_n - a| + |a| \cdot |b_n - b|$ 

Since  $a_n$  and  $b_n$  are convergent,  $\exists N_1 \in \mathbb{N}$ , s.t.  $\forall n \geq N_1 : |b_n - b| < \frac{\varepsilon}{2|a|}$ . Note then that  $b_n$  is convergent so bounded:  $|b_n| \leq M$ . Then  $\exists N_2$ , s.t.  $\forall n \geq N_2 : |a_n - a| < \frac{\varepsilon}{2M}$ 

So with  $N = \max N_1, N_2, \forall n \geq N$ , we have

$$|a_n b_n - ab| \le M \cdot \frac{\varepsilon}{2M} + |a| \cdot \frac{\varepsilon}{2|a|} = \varepsilon$$

4. Let  $\varepsilon > 0$ . We want to show that  $\left| \frac{a_n}{b_n} - \frac{a}{b} \right| < \varepsilon$ . This is the same as showing  $a_n \cdot \frac{1}{b_n} \to a \cdot \frac{1}{b}$  so it suffices to show that  $\frac{1}{b_n} \to \frac{1}{b}$  and apply the multiplicative limit theorem.

Observe:

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b_n \cdot b} \right| = \frac{|b - b_n|}{|b_n| \cdot |b|}$$

Intuitively, finding a lower bound for  $b_n$  gives an upper bound for  $1/b_n$ . Trick: Choose a large n such that  $|b_n - b| > |b_n - 0| \implies |b_n| > \frac{|b|}{2}$ . By convergence of  $(b_n)$ ,  $\exists N_1 \in \mathbb{N}$  s.t.  $\forall n \geq N : |b_n - b| < \frac{|b|}{2}$ . Then  $|b_n| > \frac{|b|}{2}$ .

Now bound  $|b_n - b| < \frac{\varepsilon |b|^2}{2}$  by convergence at  $N_2 \in \mathbb{N}$ .

Finally, let  $N = \max\{N_1, N_2\}$  then for n > N,

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b - b_n|}{|b_n| \cdot |b|} < \frac{\varepsilon |b|^2}{2} \cdot \frac{2}{|b|} \cdot \frac{1}{|b|} = \varepsilon \quad \blacksquare$$

# Lecture 3 - Feb 15:

Theorem (Order Limit Theorem): Assume  $(a_n) \to a$ ,  $(b_n) \to b$ .

- 1. If  $a_n \ge 0 \quad \forall n \in \mathbb{N}$ , then  $a \ge 0$
- 2. If  $a_n \leq b_n \quad \forall n \in \mathbb{N}$ , then  $a \leq b$
- 3. If  $\exists c \in \mathbb{R} \text{ s.t. } c \leq b_n \quad \forall n \in \mathbb{N}, \text{ then } c \leq b$

Proof:

1. Suppose a<0. Consider  $\varepsilon=|a|$  so  $\exists N\in\mathbb{N}$  s.t.  $\forall n\geq N: |a_n-a|<|a|$ . However, since a<0, this tells us

$$a < a_n - a < -a \implies a_n < 0$$

But this contradicts the fact that  $a_n \geq 0$ .

- 2. By the Algebraic limit theorem,  $(b_n a_n) \to b a$ . Since  $a_n \le b_n$  for all  $n \in \mathbb{N}$ ,  $b_n a_n \ge 0$ , by part 1,  $b a \ge 0 \implies b \ge a$
- 3. Take  $a_n = c \quad \forall n \in \mathbb{N}$ . Then  $(a_n) \to c$ . The result follows from part 2.

### Monotone Convergence Theorem

**Definition:** A sequence  $(a_n)$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}$ . It is decreasing if  $a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$ .

A sequence is *monotone* if it is either increasing or decreasing for all  $n \in \mathbb{N}$ .

Theorem (Monotone Convergence Theorem): If a sequence is monotone and bounded, then it is convergent

*Proof:* Let  $(a_n)$  be monotone and bounded. Assume WLOG that  $(a_n)$  is increasing. Consider the set  $A = \{a_n : n \in \mathbb{N}\}$ . SInce  $(a_n)$  is bounded, supA exists.

We claim  $\lim_{n\to\infty} a_n = \sup A$ . Let  $\varepsilon > 0$ . Since  $\sup A$  is the least upper bound,  $\sup A - \varepsilon$  is not an upper bound. Thus,  $\exists N \in \mathbb{N} \text{ s.t. } a_N > \sup A - \varepsilon$ . Since  $a_n$  is monotone,  $a_n > \sup A - \varepsilon$   $\forall n \geq N$ . Further,  $a_n \leq \sup A + \varepsilon$  so

$$|a_n - \sup A| < \varepsilon$$

### Series Introduction

**Definition (Convergence of Series):** Let  $(b_n)$  be a sequence. A *infinite series* is an expression of the form

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + \dots$$

The series converges to S if the sequence of partial sums  $(S_n)$  given by

$$S_m = \sum_{n=1}^m b_n = b_1 + \dots + b_m$$

converges to S.

**Example:** Consider  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ .

$$S_m = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{m^2}$$

We seek an upper bound for  $(S_m)$ . Notice

$$S_{m} = \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 3} + \frac{1}{4 \cdot 4} + \dots + \frac{1}{m \cdot m}$$

$$< \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(m-1) \cdot m}$$

$$= 1 + (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{m-1} - \frac{1}{m})$$

$$= 2 - \frac{1}{m} < 2$$

Since  $(S_m)$  has an upper bound and is increasing, it is convergent to some limit s.

**Example (Harmonic Series):** Consider  $\sum_{n=1}^{\infty} \frac{1}{n}$ . Taking partial sums,

$$S_m = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m}$$

Is  $S_m$  bounded? No!

$$S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = 2$$

But

$$S_8 > 2 + \frac{1}{2}$$

and

$$S_{2^k} > 1 + k(\frac{1}{2})$$

and this is unbounded!

# Lecture 4 - Feb 22:

Theorem (Cauchy Condensation Test): Suppose  $(b_n)$  is decreasing and  $b_n \ge 0 \quad \forall n \in \mathbb{N}$ . Then  $\sum_{n=1}^{\infty} b_n$  converges iff  $\sum_{n=1}^{\infty} 2^n b_{2^n} = b_1 + 2b_2 + 4b_4 + 8b_8 + \dots$  converges

Proof: Omitted.

**Remark:** This is a mostly useless theorem used only for showing the harmonic series diverges.

Corollary: The series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converges iff p > 1.

### Subsequences

**Definition:** Let  $(a_n)$  be a sequence and let  $n_1 < n_2 < n_3 < \dots$  be an increasing sequence of natural numbers. Then the sequence  $(a_{n_1}, a_{n_2}, a_{n_3}, \dots)$  is a *subsequence* of  $(a_n)$  and is denoted by  $(a_{n_k})$  where  $k \in \mathbb{N}$  is the index.

#### Example:

If we choose  $n_1 = 3$ ,  $n_2 = 4$ ,  $n_3 = 6$ , ... then  $(a_{n_k}) = (-3, 10, -8, ...)$ 

**Note:** The order of the terms in the subseq is the same as in the original sequence. Further, no repetitions are allowed.

**Examples:**  $(a_n) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots)$ 

- $(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8})$  is a subsequence
- $(\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000}, \frac{1}{10000}, \dots)$  is a subsequence
- $(\frac{1}{10}, \frac{1}{5}, \frac{1}{100}, \frac{1}{5}, \dots)$  is *not* a subsequence
- $(1, 1, \frac{1}{3}, \frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \dots)$  is *not* a subsequence

**Theorem:** A subsequence of a convergent sequence converges to the same limit as the original sequence

*Proof:* Assume  $(a_n) \to a$ . Let  $(a_{n_k})$  be a subsequence. Given  $\varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  s.t.  $\forall n \geq N : |a_n - a| < \varepsilon$ . Since  $n_k \geq k \quad \forall k$ , the same N will suffice for the subsequence. Then,

$$|a_{n_k} - a| < \varepsilon \quad \forall k \ge N$$

**Example:** Let 0 < b < 1. Then  $b > b^2 > b^3 > \cdots > 0$ . Therefore,  $(b^n)$  is decreasing and bounded below. By the Monotone Convergence Theorem,  $(b^n) \to l$ .  $(b^{2n})$  is a subsequence so by the Theorem above,  $(b^{2n}) \to l$ . However,

$$b^{2n} = b^n \cdot b^n \to l \cdot l \implies l^2 = l \implies l = 0$$

Therefore,  $(b_n) \to 0$ .

**Example:** Consider the sequence  $(1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, \dots)$ . Does it converge? Consider:

- $(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \dots) \to \frac{1}{5}$
- $\left(-\frac{1}{5}, -\frac{1}{5}, -\frac{1}{5}, -\frac{1}{5}, \dots\right) \to -\frac{1}{5}$

Since the subsequences do not converge to the same limit, the original sequence does not converge.

# Theorem (Bolzano-Weierstrass): Every bounded sequence contains a convergent subsequence

*Proof:* Let  $(a_n)$  be a bounded subsequence.  $\exists M > 0 \text{ s.t. } |a_n| \leq M \quad \forall n \in \mathbb{N}.$ 

Split [-M, M] into equal intervals [-M, 0] and [0, M]. At least one these intervals must contain infinitely many terms of  $(a_n)$ . Call this interval  $I_1$ . WLOG, suppose  $I_1 = [-M, 0]$ .

Let  $(a_{n_1})$  to be some term of  $(a_n)$  which lies in  $I_1$ . Now we repeat:  $I_1 = [-M, \frac{M}{2}] \cup [-\frac{M}{2}, 0]$ . Label the interval with infinite terms  $I_2$  and pick  $(a_{n_2})$  from  $I_2$  with  $n_2 > n_1$ .

In general, construct the closed  $I_k$  by taking the half of  $I_{k-1}$  containing infinitely many terms of  $(a_n)$ . Select  $n_k > n_{k-1} > n_{k-2} > \cdots > n_1$  such that  $a_{n_k} \in I_k$ .

Notice that the sets  $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$  are nested and closed. By the Nested Interval Property,  $\exists x \in \mathbb{R}$  which lies in every  $I_k$ . Intuitively, this is a good limit candidate.

Now we seek to show that  $(a_{n_k}) \to x$ . Let  $\varepsilon > 0$ . By construction, each  $I_k$  has length  $M(\frac{1}{2})^{k-1} \to 0$ .  $\exists N \in \mathbb{N} \text{ s.t. } \forall k \geq N$ , the length of  $I_k$  is less than  $\varepsilon$ . Since  $x \in I_k$  and  $a_{n_k} \in I_k$ ,  $|a_{n_k} - x| < \varepsilon$ .

Therefore,  $(a_{n_k})$  is a convergent subsequence of the bounded sequence  $(a_n)$ .

# Lecture 5 - Feb 27:

#### Recall:

- A subsequence of  $(a_n)$  is a sequence  $(a_{n_k})$  where  $n_1 < n_2 < n_3 < \dots$
- Any subsequence of a convergent sequence converges to the same limit as the original sequence

- If two convergent subsequences converge to different limits, the original sequence diverges
- Bolzano-Weierstrass Theorem: Every bounded sequence contains a convergent subsequence

# The Cauchy Criterion

**Definition:** A sequence  $(a_n)$  is called a Cauchy sequence if  $\forall \varepsilon > 0$ ,

$$\exists N \in \mathbb{N} \text{ s.t. } |a_n - a_m| < \varepsilon \quad \forall n, m \ge N$$

#### Theorem: Every convergent sequence is a Cauchy sequence

*Proof:* Assume  $(x_n)$  converges to x. To prove  $(x_n)$  is a Cauchy sequence, we need to find a point in the sequence after which  $|x_n - x_m| < \varepsilon$ .

Since  $(x_n) \to x$ ,  $\forall \varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  such that  $|x_n - x| < \frac{\varepsilon}{2}$ .

$$|x_n - x_m| = |(x_n - x) + (x - x_m)| \le |x_n - x| + |x_m - x| < \varepsilon$$

### Lemma: Cauchy sequences are bounded

*Proof:* Set  $\varepsilon = 1$ . Then  $\exists N \in \mathbb{N}$  such that  $\forall m, n \geq N$ ,

$$|x_n - x_m| < 1 \implies |x_n| < |x_N| + 1 \quad \forall n \ge N$$

Then

$$M = \max\{|x_1|, |x_2|, \dots, |x_{N-1}|, |x_N| + 1\}$$

is a bound for the sequence.

# Theorem (Cauchy Criternion): A sequence converges iff it is a Cauchy sequence

*Proof:* The first direction follows from the fact that every convergent sequence is Cauchy.

For the other direction, assume  $(x_n)$  is a Cauchy sequence. Then  $(x_n)$  is bounded by the Lemma. By the Bolzano-Weierstrass Theorem,  $(x_n)$  contains a convergent subsequence  $(x_{n_k}) \to x$ .

Since  $(x_n)$  is Cauchy,  $\forall \varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  s.t.  $|x_n - x_m| < \frac{\varepsilon}{2} \quad \forall n, m \ge N$ .

Since  $(x_{n_k}) \to x$ , choose  $x_{n_k}$  with  $n_k \ge N$ . Then,

$$|x_{n_k} - x| > \frac{\varepsilon}{2}$$

Now

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

### Properties of Infinite Series

#### Recall:

• For a sequence  $(a_1, a_2, a_3, \dots)$ , the sequence of partial sums is given by

$$(S_m) = (S_1, S_2, S_3, \dots,) = (a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots)$$

• A series  $\sum_{n=1}^{\infty} a_n$  converges to A if  $\lim(S_m) = A$ 

Theorem (Algebraic Limit Theory for Series): If  $\sum_{k=1}^{\infty} = A$  and  $\sum_{k=1}^{\infty} b_k = B$ , then

- 1.  $\sum_{k=1}^{\infty} ca_k = cA, \quad \forall c \in \mathbb{R}$
- 2.  $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$

#### Proof:

- 1. Since  $\sum_{k=1}^{\infty} a_k = A$ ,  $(S_m) = \sum_{k=1}^{m} a_k \to A$ . Then  $\lim(cS_m) = c \lim S_m = cA$  by the Algebraic Limit Theorem for Sequences (ALT). Then, by definition,  $\sum_{k=1}^{\infty} ca_k = cA$
- 2. Let  $S_m = \sum_{k=1}^m a_k$  and  $T_m = \sum_{k=1}^m b_k$ . Then  $S_m + T_m = \sum_{k=1}^m (a_k + b_k)$ . Since  $(S_m) \to A$  and  $(T_m) \to B$ ,  $(S_m + T_m) \to A + B$  by the ALT. Then  $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$

Theorem (Cauchy Criterion for Series): The series  $\sum_{k=1}^{\infty} a_k$  converges iff  $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall m \geq n \geq N \text{ we have}$ 

$$\left| \sum_{k=m+1}^{n} a_k \right| = |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon$$

*Proof:* Define  $S_n = a_1 + a_2 + \cdots + a_n$ . Observe that

$$\sum_{k=1}^{\infty} a_k \text{ converges } \iff (S_n) \text{ converges } \iff (S_n) \text{ Cauchy seq}$$

where  $\iff$  follows from the Cauchy Criterion for sequences.

Further, if and only if  $(S_n)$  is Cauchy,  $\forall \varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  s.t.  $\forall n > m \geq N$ ,

$$|S_n - S_m| = |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon$$

### Lecture 6 - Feb 29:

**Theorem:** If the series  $\sum_{k=1}^{\infty} a_k$  converges, then  $(a_k) \to 0$ .

Proof: Pick n = m + 1 in previous theorem: for m > N,

$$|a_{m+1}| < \varepsilon$$

**Remark:** The converse is *not* true! Consider the harmonic series:  $a_n = \frac{1}{n} \to 0$  but  $\sum_{n=1}^{\infty} a_n = \infty$ 

Theorem (Comparison Test): Assume  $(a_k)$  and  $(b_k)$  are sequences satisfying  $0 \le a_k \le b_k$  for all  $k \in \mathbb{N}$ . Then

- 1. If  $\sum_{k=1}^{\infty} b_k$  converges, then  $\sum_{k=1}^{\infty} a_k$  converges.
- 2. If  $\sum_{k=1}^{\infty} \overline{a_k}$  diverges, then  $\sum_{k=1}^{\infty} \overline{b_k}$  diverges.

Proof: Apply Cauchy Criterion for series and observe that

$$|a_{m+1} + a_{m+2} + \dots + a_n| \le |b_{m+1} + \dots + b_n|$$

**Example (Geometric Series):** A series is called a *geometric series* if it is of the form

$$\sum_{k=0}^{\infty} ar^{k} = a + ar + ar^{2} + ar^{3} + \dots$$

If  $r \geq 1$  and  $a \neq 0$ , then the series diverges. If  $r \neq 1$ , we use the identity

$$(1-r)(1+r+r^2+r^3+\cdots+r^{m-1})=1-r^m$$

Then for partial sums

$$S_m = a + ar + ar^2 + \dots + ar^{m-1} = a(1 + r + r^2 + \dots + r^{m-1}) = a\frac{1 - r^m}{1 - r}$$

If |r| < 1,  $a \frac{1-r^m}{1-r} \to \frac{a}{1-r}$ . Therefore, for |r| < 1,

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

Theorem (Absolute Convergence Test): If the series  $\sum_{n=1}^{\infty} |a_n|$  converges, then  $\sum_{n=1}^{\infty} a_n$  converges.

*Proof:* Since  $\sum_{n=1}^{\infty} |a_n|$  converges, by Cauchy Criterion, given  $\varepsilon > 0$ ,  $\exists N \in \mathbb{N}$  such that for all  $n > m \ge N$ ,

$$|a_{m+1}| + |a_{m+1}| + \dots + |a_n| < \varepsilon$$

By triangle inequality,

$$|a_{m+1} + a_{m+2} + \dots + a_n| \le |a_{m+1}| + |a_{m+2}| + \dots + |a_n| < \varepsilon$$

**Remark:** The converse is not true! Consider the alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \text{ converges}, \quad \sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges}$$

Theorem (Alternating Series Test): Let  $(a_n)$  be a sequence satisfying

- (a)  $a_1 \ge a_2 \ge \dots \ge a_n \ge a_{n+1} \ge \dots$  (Decreasing)
- (b)  $(a_n) \to 0$  (Converges to 0)

Then the alternating series  $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$  converges.

*Proof:* From conditions (i) and (ii), we have that  $a_n \geq 0$ . We want to show that the sequence of partial sums  $(S_n)$  converges by showing that  $(S_n)$  is Cauchy. Let  $\varepsilon > 0$  be arbitrary. We need to find an N such that  $n > m \geq N$  implies  $|S_n - S_m| < \varepsilon$ .

$$|S_n - S_m| = |a_{m+1} - a_{m+2} + a_{m+3} - \dots \pm a_n|$$

Since  $(a_n)$  is decreasing and all the terms are positive, we can use an induction argument to show  $|S_n - S_m| \le |a_{m+1}|$  for all n > m.

Sketch:

$$|a_{m+3}| \le |a_{m+2}| \le |a_{m+1}| \implies a_{m+1} - a_{m+2} + a_{m+3} \le a_{m+1}$$

Since  $(a_n) \to 0$ , we can choose N such that  $m \ge N$  implies  $|a_m| < \varepsilon$ . Then

$$|S_n - S_m| \le |a_{m+1}| < \varepsilon$$

Therefore,  $(S_n)$  is Cauchy so it converges

#### **Definition:**

- If  $\sum_{n=1}^{\infty} |a_n|$  converges, then  $\sum_{n=1}^{\infty} a_n$  converges absolutely
- If  $\sum_{n=1}^{\infty} a_n$  converges but  $\sum_{n=1}^{\infty} |a_n|$  diverges, then  $\sum_{n=1}^{\infty} a_n$  converges conditionally

**Definition:** Let  $\sum_{n=1}^{\infty} a_n$  be a series. A series  $\sum_{n=1}^{\infty} b_n$  is called a rearrangement of the original series if there exists  $f: \mathbb{N} \hookrightarrow \mathbb{N}$  such that  $b_{f(n)} = a_n$  for all  $n \in \mathbb{N}$ .

*Note:* the bijectivity means that every term eventually appears and there are no repetitions.

**Theorem:** If  $\sum_{n=1}^{\infty} a_n$  converges absolutely, then every rearrangement of the series converges to the same limit.

Proof: Omitted

# Chapter 3

# Basic Topology on $\mathbb{R}$

# March 05:

**Recall:** an  $\varepsilon$ -neighborhood of a point  $x \in \mathbb{R}$  is the set

$$V_{\varepsilon}(a) = \{ x \in \mathbb{R} : |x - a| < \varepsilon \}$$

**Definition:** A set  $O \subseteq \mathbb{R}$  is *open* if for all points  $a \in O$ , there exists an  $\varepsilon$ -neighborhood of a such that  $V_{\varepsilon}(a) \subseteq O$ .

#### Examples:

- $\mathbb{R}$  is open
- Ø is open
- $(c,d) = \{x \in \mathbb{R} : c < x < d\}$  is open (*Proof:* Let  $x \in (c,d)$ . Then  $V_{\min\{x-c,d-x\}}(x) \subseteq (c,d)$ )

#### Theorem:

- 1. The union of an arbitrary collection of open sets is open
- 2. The intersection of a finite collection of open sets is open

#### *Proof:*

1. Let  $\{O_{\lambda} : \lambda \in \Lambda\}$  be a collection of open sets.

Let  $O = \bigcup_{\lambda \in \Lambda} O_{\lambda}$ . We need an  $\varepsilon$ -neighborhood of an arbitrary  $a \in O$  to be completely contained in O.

Notice that  $a \in O \implies a \in O_{\lambda'}$  for some  $\lambda' \in \Lambda$ . Since  $O_{\lambda'}$  is open,  $\exists \varepsilon > 0$  such that  $V_{\varepsilon}(a) \subseteq O_{\lambda'} \subseteq O$ .

2. Let  $\{O_1, O_2, \dots, O_n\}$  be a finite collection of open sets. Denote  $O = \bigcap_{k=1}^n O_k$ . We need to show that O is open.

Let  $a \in O$ . Then  $a \in O_k$  for all k = 1, 2, ..., n. Since  $O_k$  is open,  $\exists \varepsilon_k > 0$  such that  $V_{\varepsilon_k}(a) \subseteq O_k$  for all k.

Now, we have different  $\varepsilon$ -neighborhoods in each  $O_k$ . We want an  $\varepsilon$ -neighborhood which is contained in every  $O_k$ .

Let  $\varepsilon = \min\{\varepsilon_1, \dots, \varepsilon_n\}$ . Then  $V_{\varepsilon}(a) \subseteq O_k$  for all  $k = 1, 2, \dots, n$ . Therefore,  $V_{\varepsilon}(a) \subseteq \bigcap_{k=1}^n O_k$ .

**Definition:** A point x is a *limit point* (cluster point/accumulation point) of a set A if every  $\varepsilon$ -neighborhood of x intersects A at some point other than x.

**Theorem:** A point x is a limit point of a set A iff there exists a sequence  $(a_n)$  in A such that  $(a_n) \to x$  and  $a_n \neq x$  for all  $n \in \mathbb{N}$ 

#### *Proof:*

Assume x is a limit point of A. We need a sequence  $(a_n)$  in A such that  $(a_n) \to x$ . By definition, every  $\varepsilon$ -neighborhood of x intersects A at some point other than x. Pick  $\varepsilon = \frac{1}{n}$ . Then for all  $n \in \mathbb{N}$ , pick

$$a_n \in V_{1/n}(x) \cap A, \quad a_n \neq x$$

Now we want  $(a_n) \to x$ . Given  $\varepsilon > 0$  choose N such that  $\frac{1}{N} < \varepsilon$  so  $|a_n - x| < \varepsilon$  for all  $n \in N$ 

Now, suppose there exists a sequence  $(a_n)$  in A such that  $(a_n) \to x$  and  $a_n \neq x$  for all  $n \in \mathbb{N}$ . We need to show that x is a limit point of A.

Let  $V_{\varepsilon}(x)$  be an arbitrary  $\varepsilon$ -neighborhood. By definition of convergence,  $\exists N \in \mathbb{N}$  such that for all  $n \geq N$ ,  $|a_n - x| < \varepsilon$ . Then  $a_n \in V_{\varepsilon}(x)$  for all  $n \geq N$ .

**Definition:** A point  $a \in A$  is an isolated point of A if it is not a limit point of A

**Note:** An isolated point is *always* a point in the set. A limit point does not necessarily belong to the set.

**Definition:** a set  $F \subseteq \mathbb{R}$  is closed if it contains its limit points.

**Theorem:** A set  $F \subseteq \mathbb{R}$  is closed iff every Cauchy sequence contained in F has a limit in F

Proof: HW

**Example:** Let  $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ . Show each point in A is isolated.

Given  $\frac{1}{n} \in A$ , choose  $\varepsilon = \frac{1}{n} - \frac{1}{n+1}$ . Therefore,  $V_{\varepsilon}(\frac{1}{n}) \cap A = \{\frac{1}{n}\}$  so  $\frac{1}{n}$  is an isolated point and not a limit point.

Further, the limit of A is 0. Therefore,  $\forall \varepsilon > 0$ ,  $V_{\varepsilon}(0)$  contains points in A. Since  $0 \notin A$ , A is not closed.

However, we can create a closed set  $F = A \cup \{0\}$ . This is the *closure* of A.

**Example:** Show  $[c,d] = \{x \in \mathbb{R} : c \le x \le d\}$  is closed.

If x is a limit point, then  $\exists (x_n) \in [c,d]$  with  $(x_n) \to x$ . We want to show that  $x \in [c,d]$ . Since  $c \le x_n \le d$ , by the Order Limit Theorem,

$$c \le \lim x_n \le d \implies \lim x_n \in [c, d] \implies x \in [c, d]$$

so the set is closed.

**Example:**  $\mathbb{Q} \subseteq \mathbb{R}$ . The set of all limit point in  $\mathbb{Q}$  is  $\mathbb{R}$ .

*Proof:* Let  $y \in \mathbb{R}$ . Consider any neighborhood  $V_{\varepsilon}(y) = (y - \varepsilon, y + \varepsilon)$ . From the density of  $\mathbb{Q}$  in  $\mathbb{R}$ ,  $\exists r \neq y$  such that  $y - \varepsilon < r < y + \varepsilon$ . Therefore,  $r \in V_{\varepsilon}(y)$  so y is a limit point of  $\mathbb{Q}$ .

# Lecture 1 - March 7:

**Definition:** given a set  $A \subseteq \mathbb{R}$ , let L be the set of all limit points of A. The *closure* of A is the set  $\overline{A} = A \cup L$ .

Example:

- $\overline{\mathbb{Q}} = \mathbb{R}$
- $A = (a, b) \implies \overline{A} = [a, b]$

• If A is closed,  $\overline{A} = A$ 

**Theorem:** For any  $A \subseteq \mathbb{R}$ , the closure  $\overline{A}$  is a closed set and it is the smallest closed set containing A

*Proof:* Let L be the set of limit points of A. Then  $\overline{A} = A \cup L$  is closed (it contains all its limit points, obviously). Any closed set containing A must contain L. Therefore  $\overline{A}$  is the smallest closed set containing A.

Complement: Recall that  $A^c = \{x \in \mathbb{R} : x \notin A\}$ 

#### Theorem:

- 1. A set O is open  $\iff$   $O^c$  is closed
- 2. A set F is closed  $\iff F^c$  is open

#### *Proof:*

1. Let  $O \subseteq \mathbb{R}$  be open. We want to show  $O^c$  is closed. By definition, if x is a limit point of  $O^c$ , then every  $\varepsilon$ -neighborhood of x contains some point of  $O^c$ . Thus, any  $\varepsilon$ -neighborhood of x cannot be a subset of X0 so  $X \notin X$ 2. Since X3 is closed.

Now assume  $O^c$  is closed. We want to show that O is open, i.e. for any  $x \in O$ ,  $\exists V_{\varepsilon}(x) \subseteq O$ . By definition,  $O^c$  is closed so x is not a limit point of  $O^c$ . Therefore,  $\exists V_{\varepsilon}(x)$  which does not intersect  $O^c$ . Then  $V_{\varepsilon}(x) \subseteq O$ .

2.  $(E^c)^c = E$ . The rest of the proof follows from 1).

#### Theorem:

- 1. The union of a finite collection of closed sets is closed
- 2. The intersection of an arbitary collection of closed sets is closed

*Proof:* Follows from previous theorem and de Morgan's laws:

$$\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}, \quad \left(\bigcap_{\lambda \in \Lambda} E_{\lambda}\right)^{c} = \bigcup_{\lambda \in \Lambda} E_{\lambda}^{c}$$

### Compact Sets

Motivation: Bring "finite" quality to infinite arguments.

**Definition:** A set  $K \subseteq \mathbb{R}$  is *compact* if every sequence in K has a convergent subsequence whose limit is in K.

**Example:** [c, d] is compact. *Proof:* if  $(a_n) \in [c, d]$ , then it is bounded so by Bolzano-Weierstrass,  $\exists (a_{n_k})$  which converges to a. Further  $a \in [c, d]$  since [c, d] is closed.

**Definition:** A set  $A \subseteq \mathbb{R}$  is bounded if  $\exists M > 0$  such that |a| < M for all  $a \in A$ .

# Theorem (Characterization of compactness in $\mathbb{R}$ ): A set $K \subseteq \mathbb{R}$ is compact iff it is closed and bounded

*Proof:* Assume K is compact. Suppose K is not bounded. Since K is not bounded:

$$\forall n \in \mathbb{N} : \exists x_n \in K, \text{ s.t. } |x_n| > n$$

Since K is compact,  $(x_n)$  should have a convergent subsequence. However,  $(x_n)$  is unbounded so  $(x_{n_k})$  is unbounded. Therefore, there is no convergent subsequence in  $(x_n)$ . This is a contradiction of compactness so K is bounded.

Now we want to show K is closed. Let  $x = \lim x_n$  with  $(x_n) \in K$ . It suffices to show  $x \in K$ . By definition, K is compact so  $(x_n)$  has a convergent subsequence  $(x_{n_k})$  which converges to x and lies in K.  $(x_{n_k}) \to x \implies x \in K \implies K$  is closed

It remains to prove that K is compact if it is closed and bounded. This is left for HW.

# Theorem (Nested Compact Set Property): If $K_1 \supseteq K_2 \supseteq K_3 \supseteq \dots$ is a nested sequence of nonempty compact sets, then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$

*Proof:* Use compactness of  $K_n$  to produce a sequence that belongs to each set.  $\forall n \in \mathbb{N}$ , pick  $x_n \in K_n$ . Therefore,  $(x_n) \in K_1 \implies \exists (x_{n_k}) \in K_1$  with  $\lim x_{n_k} = x \in K_1$ .

Given an  $n_0 \in \mathbb{N}$ , the terms of  $(x_n)$  are contained in  $K_{n_0}$  as long as  $n > n_0$ . We now ignore the finite number of terms for which  $n_k < n_0$ . Therefore,  $(x_{n_k}) \in K_{n_0}$  so  $\lim x_{n_k} = x \in K_{n_0}$ . Since  $n_0$  was arbitrary,

$$x \in \bigcap_{n=1}^{\infty} K_n$$

# March 12:

**Definition:** Let  $A \subseteq \mathbb{R}$ . An *open cover* of A is a (possibly infinite) collection of open sets  $\{O_{\lambda} : \lambda \in \Lambda\}$  such that

$$A\subseteq\bigcup_{\lambda\in\Lambda}O_\lambda$$

Given an open cover for A, a *finite subcover* is a finite collection of open sets from the original open cover, whose union still contains A

**Example:** Find an open cover for (0,1).

 $\forall x \in (0,1)$ , let  $O_x$  be the open interval  $(\frac{x}{2},1)$  so we have the infinite collection

$$\{O_x : x \in (0,1) \text{ covering } (0,1)\}$$

However, it is impossible to find a finite subcover for (0,1) using this open cover: Construct  $\{O_{x_1},O_{x_2},\ldots,O_{x_n}\}$  and set  $x'=\min\{x_1,\ldots,x_n\}$ . But then any  $y\in\mathbb{R}$  with  $0< y\leq \frac{x'}{2}$  is not in  $\bigcup_{i=1}^n O_{x_i}$ 

**Example:** Find an open cover for [0,1].

Naturally, we can use the same open cover as (0,1). However, this does not include the endpoints. Now let  $\varepsilon > 0$  and define  $O_0 = \{-\varepsilon, \varepsilon\}, O_1 = (1 - \varepsilon, 1 + \varepsilon)$ . Then

$${O_0, O_1, O_x : x \in (0,1)}$$

is an open cover if [0, 1].

To find a finite subcover, choose x' such that  $\frac{x'}{2} < \varepsilon$ :

$$\{O_0, O_1, O_{x'}\}$$

**Theorem (Heine-Borel):** For  $K \subseteq \mathbb{R}$ , then the following are equivalent:

- (i) K is compact
- (ii) K is closed and bounded
- (iii) Every open cover of K has a finite subcover

*Proof:* (i)  $\iff$  (ii) follows from the Characterization of compactness in  $\mathbb{R}$ .

It suffices to show (ii)  $\iff$  (iii):

Assume that every open cover of K has a finite subcover. We want to show that K is closed and bounded. Let  $O_x = \{|x - a| < 1 : a \in \mathbb{R}\} = V_1(x)$ . Since  $\{O_x : x \in K\}$  must have finite subcover,  $\exists x_1, x_2, \ldots, x_n \in K$  such that  $\{O_{x_1}, O_{x_2}, \ldots, O_{x_n}\}$  is a finite subcover of K.

Since K is contained in a finite collection of sets, it is bounded.

To show K is closed, let  $(y_n)$  be a Cauchy sequence is K with  $(y_n) \to y$ . Suppose  $y \notin K$ , i.e.  $\forall x \in K$ , x lies some positive distance away from y.

Construct an open cover by taking  $O_x$  to be the interval of radius  $\frac{|x-y|}{2}$  around  $x \in K$ . By (iii), we have a finite subcover  $\{O_{x_1}, O_{x_2}, \dots, O_{x_n}\}$ .

Let  $\varepsilon_0 = \min \left\{ \frac{|x_i - y|}{2} : 1 \le i \le n \right\}$ . Since  $(y_n) \to y$ ,  $\exists y_N$  such that  $|y_N - y| < \varepsilon_0$ .

This means that  $y_N$  must be excluded from each  $O_x$  so certainly,  $y \notin \bigcup_{i=1}^n O_{x_i}$ . Therefore, this finite collection cannot be a subcover since it does not contain all of K. This is a contradiction so K contains every limit point, and therefore K is closed.

The other direction, (ii)  $\implies$  (iii), is left for homework.

# Chapter 4

# Functional Limits and Continuity

# March 12 (Continued)

**Definition (Functional limit):** Let  $f: A \to \mathbb{R}$  be a function and let c be a limit point of the domain A. We say  $\lim f(x) = L$  if  $x \to c$ .

Then  $\forall \varepsilon > 0, \ \exists \delta > 0$ , such that whenever  $0 < |x - c| < \delta$  and  $x \in A$ , we have  $|f(x) - L| < \varepsilon$ .



**Topological Definition:** Let c be a limit point in A of  $f: A \to \mathbb{R}$ . We say that

$$\lim_{x \to c} f(x) = L$$

if  $\forall V_{\varepsilon}(L)$ , there exists  $V_{\delta}(c)$  such that  $\forall x \in V_{\delta}(c), f(x) \in V_{\varepsilon}(L)$ 

**Example:** Show  $\lim_{x\to 2} f(x) = 7$  with f(x) = 3x + 1.

Let  $\varepsilon > 0$ . We need to produce a  $\delta > 0$  such that  $0 < |x-2| < \delta$  implies  $|f(x)-7| < \varepsilon$ .

$$|f(x) - 7| = |3x + 1 - 7| = |3x - 6| = 3|x - 2|$$

Choose  $\delta = \frac{\varepsilon}{3}$  so  $0 < |x - 2| < \delta \implies |f(x) - 7| < 3\delta = \varepsilon$ .

**Example:** Show  $\lim_{x\to 2} g(x) = 4$ ,  $g(x) = x^2$ .

Let  $\varepsilon > 0$ . We want  $|g(x) - 4| < \varepsilon$  by restricting  $|x - 2| < \delta$ .

Notice

$$|g(x) - 4| = |x^2 - 4| = |x + 2| |x - 2|$$

So we construct a  $\delta$ -neighborhood around c=2 with radius no bigger than  $\delta=1$ :

$$|x+2| \le |3+2| = 5$$

Choose  $\delta = \min\{1, \frac{\varepsilon}{5}\}$ . Then when  $0 < |x-2| < \delta$ , we have

$$|g(x) - 4| < \varepsilon$$