

Evaluating Astronaut Training Algorithms in Virtual Reality for Long-Duration Exploration Missions

A. Verniani¹, E. Galvin², S. Tredinnick², E. Vance², A. P. Anderson¹ ¹Ann & H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder ²Department of Applied Mathematics, University of Colorado, Boulder

Objective

Astronauts on deep space missions will require automated rather than facilitated training^{1,2,3}. Virtual reality (VR) is immersive, lowcost, programmable, and effective for astronaut training^{4,5}.

Goal: Evaluate the feasibility of automated, personalized, and individually-adaptive training algorithms

Objective 1: Investigate the importance of personalization

Objective 2: Investigate the importance of responsiveness

Credit: NASA

Methods: Training Simulator and Algorithms

VIRTUAL TRAINING SIMULATOR

Entry, descent, and landing (EDL) on Mars

(1) Landing site selection

(2) Piloting and navigation

(3) Landing burn and touchdown

TRAINING ALGORITHMS

Subtask difficulty modulated between levels 1-24

How can we modulate training algorithm adaptivity, sensitivity, and lockstep to maintain a **flow state**6?

Subject testing (n=48, 24M/24F) across 6 training algorithms VR training (30 trials over 3 sessions, 18-48 hours apart)

Variable 1: Adaptivity: Individually-adaptive vs. non-adaptive

Variable 2: Sensitivity: High vs. low threshold for progression

Variable 3: Lockstep: Unified vs. discrete difficulty modulation

Adaptive Non-Adaptive

Adaptive

Non-Adaptive

References

[1] Gabay et al., 2019 [2] Kumar et al., 2018 [3] Wickens et al., 2013 [4] Saurav et al., 2018 [5] Summa et al., 2015 [6] Wightman et al., 1985

Methods: Cockpit Testing

COCKPIT MOCK-UP

Subjects put their training to the test in the Aerospace Research Simulator (ARES) cockpit mock-up to test skill transfer from virtual to physical environment (fixed subtask difficulty, level 18, lockstep, 10 trials)

Preliminary Results

Characterization of logistic "learning" curves for initial 3 algorithms (n=15 subjects)

Method: Kruskal-Wallis hypothesis testing

RATE PARAMETER How quickly did subjects learn?

> Goal 1: Analyze skill acquisition

Goal 2: Analyze skill *retention*

ASYMPTOTE

How *much* did

subjects learn?

How *general* are training outcomes?

VARIANCE

Goal 3: Analyze skill transfer (VR-Cockpit)

Figs 2-3: Mean skill distribution: piloting (2) and landing site selection (3) 2↑,1↓ Locked has highest average skill achievement for both subtasks

Fig 1: Composite learning curves (30 trials, 8 subjects, 3 conditions) 2↑,1↓ Locked has highest asymptote and steepest rate parameter

Preliminary Result: personalization and adaptivity lead to improved training

Conclusions

Personalized, individually-adaptive training algorithms lead to:

- Faster skill acquisition
- Increased learning retention between trials
- Improved cockpit performance

Low thresholds for progression (1↑,1↓) is hypothesized* to lead to:

- Faster learning rates
- Higher maximum performance
- Increased initial variability

*Data collection is ongoing

Independently modulated difficulty across subtasks () is hypothesized* to lead to:

- Better performance outcomes
- Faster learning progression

*Data collection is ongoing

Future Work

Run-dependence: dynamically switching between 2↑,1↓ and 1↑,1↓ after "runs" of consecutive excellent

Scaled-response: Dynamic scaling of difficulty up or down by variable rather than fixed (i.e. +/- 1) amounts for rapid performance to incentivize progression response to subject learning needs

Probabilistic estimation: Using a Bayesian approach to predict the optimal difficulty of subtasks using past subject performance data

Learn More

Immersive and Adaptive Training With Virtual Reality for LDEM

Presented by: Esther Putman 4DZ40809DK in Poster Session B **TRINITY: Multi-Environment Virtual Trainer** For Long-Duration Exploration Missions Presented by: Dr. Allison P. Anderson 0BQQ909VBW in Poster Session B

