Precalculus

Find circle arclength from radius and angle

Todor Miley

2019

Arc-length of a circle arc

Proposition

Let two circles have common center and radii s and r. Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

M and L. Then
$$\frac{s}{r} = \frac{M}{L}$$
.
$$\frac{s}{r} = \frac{M}{L}$$
 Choose $s = 1$, relabel $M = \alpha$

The angle-measure of a geometric angle is the arc-length cut off from a radius 1 circle, therefore we get the following.

Corollary

The arc-length cut off by an angle with measure α from a circle of radius r equals αr .

Example

Find the length of an arc of a circle of radius 2 cut off by an angle of measure $\frac{7\pi}{6}$ (= 210°).

arc-length =
$$\alpha r = \frac{7\pi}{6} \cdot 2 = \frac{7\pi}{3} \approx 7.33038$$
 (units)

Example

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$lpha = 230^\circ$$

$$= 230^\circ \frac{\pi \text{ rad}}{180^\circ} = \frac{23}{18}\pi \text{ rad}$$

$$= \alpha r = \frac{23\pi}{18} \cdot 3 = \frac{23\pi}{6} \approx 12.043$$

Convert to radians