

可证明安全的 隐私计算

洪澄 阿里安全双子座实验室

01 隐私计算的安全性与效率

03 其他可证明 安全方法

02 密码学中的可证明安全简介

隐私计算: Privacy-preserving computation

- 视隐私保护程度的不同,计算的效率也有所不同
- 例:广域网下,多方合作训练一个 LR模型,1024行64列,迭代1次
 - SecureML[SP17]需要~100秒
 - ABY3[CCS18]需要0.3秒
 - Blaze[NDSS20]需要2秒
 - Helen[SP20]需要~15分钟

Q: "请问现在隐私计算能做到 比明文慢多少倍?"

这个东西我没法和你解释

A:

- 只有同时给出安全性和效率两方面的数据,才是有意义的数据
- 业界现状:
 - 计算的效率是容易衡量的,各家PR都擅长此道
 - 安全指标则甚少有厂商主动提及
 - 客户有如盲人摸象

"比明文仅慢X倍", X已经从3个量级来到 2个量级,甚至3-5倍 都有之

安全性: 看不见 摸不着 摸不着 蒸率: 看得见 效率: 摸得着

- 最高级安全性的代价太高
 - 不需要最高级安全性的场合,可以适当降低安全性以提升效率
 - 但是一定要厘清安全性在哪里进行了取舍,有什么样的风险
- 如何讲清楚一个方案的安全性?
 - 明确定义安全假设:能防什么样的攻击者,不能防什么样的攻击者
 - 明确定义防护效果:有没有中间信息泄露
 - 若有,应清晰的描述泄露内容

"我的方案是安全的"

"我的方案在双方都是半诚实的假设下,除了数据行数、列数、最终建模结果之外,没有其他信息泄露"

• 反例: Dragon in my garage

我的仓库里有一条喷火龙

Q: 你的龙为什么看不见? A: 因为它是透明的

Q: 你的龙为什么没有脚印? A: 因为它是飞着的

Q: 你的龙为什么摸不着? A: 因为它是等离子态的

我有一个隐私计算解决方案

Q:你的方案可能会泄露XX统计信息? A:我们认为XX统计信息不影响方案的安全 性

Q: 你的方案需要额外的第三方?

A: 我们认为只要严格审计是可以接受第三 方的

Q: 你们的自研算法有严格的安全证明吗?

A: 有专利, 论文还在投稿中

- 安全性需要正向定义:
 - 需要描述"龙"到底能在什么环境下做到什么,才有办法证明它的存在

01 隐私计算的安全性与效率

03 其他可证明 安全方法

02 密码学中的可证明安全简介

- 可证明安全:密码学领域评估安全性的黄金准则
- 两种安全证明方式

- 基于游戏的证明方式举例: Paillier
 - Alice选择 m₀, m₁
 - Bob选择 c ∈ { Enc(m₀), Enc(m₁) }
 - Alice猜测c的明文,猜对则赢得游戏

密钥生成:

- 生成两个大质数p,q, n=p*q,
 λ=lcm(p-1,q-1), g=n+1
- g, n是公钥, λ是私钥

加密m

选择随机数r, 计算c = g^m * rⁿ mod n²

- 反证法:假设Alice能以不可忽略的优势(>50%的概率)赢得游戏
 - 设Alice能成功判断出c是mo的密文,
 - 因为d = c*g-m₀ = rn mod n²,所以她也能判断出d是一个n次幂
 - 而判别一个数是不是mod n²上的n次幂,这个问题称为DCR问题(decisional composite residuosity problem),目前认为是困难的,与大数分解接近
 - 矛盾,证毕

• 基于模拟的证明方式举例: OT

• 恶意模型下,基于模拟的证明更加复杂

We begin by proving that conditioned on S' not outputting \bot , it generates output that is identically distributed to V^{*} 's output in a real proof. That is, for every V^{*} , every $(G, \psi) \in R_{L}$ and every $z \in \{0.1\}^{*}$.

$$\left\{ \mathrm{output}_{V^{\bullet}}(P(G,\psi),V^{\bullet}(G,z)) \right\} \equiv \left\{ \mathcal{S}'^{V^{\bullet}(G,z,\mathbf{r},\cdot)}(G,\psi) \mid \mathcal{S}'^{V^{\bullet}(G,z,\mathbf{r},\cdot)}(G,\psi) \neq \bot \right\}. \tag{5.1}$$

In order to see this, observe that the distribution over the commitments viewed by V^* is identical to a real proof (since they are commitments to a random permutation of a valid coloring). The only difference is that S' chooses an edge e ahead of time and only concludes an iteration if the query sent by V^* equals e. However, since e is chosen uniformly every time, and since V^* is rewound to the beginning of each iteration until it succeeds (and we condition on it indeed succeeding), these have identical distributions.

Next, we prove that \mathcal{S}' outputs \bot with at most negligible probability. Observe that the commitments provided by \mathcal{S}' reveal no information whatsoever about the choice of e in that iteration (this is due to the fact that the commitments are the same for every choice of e). Thus, the probability that a single iteration succeeds is exactly 1/|E|, implying that \mathcal{S}' outputs \bot for one of the i's in the simulation with probability $\left(1-\frac{1}{|E|}\right)^{n\cdot|E|} < e^{-n}$. There are $n\cdot|E|$ iterations, and so by the union bound, \mathcal{S}' outputs \bot somewhere in the simulation with probability less than $n\cdot|E| \cdot e^{-n}$, which is negligible. This implies that 2

$$\left\{ \mathcal{S'}^{V^*(G,z,r,\cdot)}(G,\psi) \mid \mathcal{S'}^{V^*(G,z,r,\cdot)}(G,\psi) \neq \bot \right\} \stackrel{c}{\equiv} \left\{ \mathcal{S'}^{V^*(G,z,r,\cdot)}(G,\psi) \right\}. \tag{5.2}$$

Finally, we prove that the outputs of S and S' are computationally indistinguishable:

$$\{S'^{V^*(G,z,r,\cdot)}(G,\psi)\} \stackrel{c}{=} \{S^{V^*(G,z,r,\cdot)}(G)\}.$$
 (5.3)

Intuitively, we prove this via a reduction to the security of the commitment scheme. Specifically, assume by contradiction, that there exists a probabilistic-polynomial time verifier V^* , a probabilistic-polynomial time distinguisher D, and a polynomial $p(\cdot)$ such that for an infinite sequence (G,ψ,z) where $(G,\psi)\in R$ and $z\in\{0,1\}^*$,

$$\left|\Pr\left[D\left(G,\psi,z,\mathcal{S}^{V^{\bullet}(G,z,r,\cdot)}(G,\psi)\right)=1\right]-\Pr\left[D\left(G,\psi,z,\mathcal{S}^{V^{\bullet}(G,z,r,\cdot)}(G)\right)=1\right]\right|\geq \frac{1}{p(n)},$$

where n denotes the number of nodes in G, and R denotes the 3-coloring relation. Without loss of generality, assume that D outputs 1 with higher probability when it receives the output of S'than when it receives the output of S. We construct a non-uniform probabilistic polynomial-time adversary A for the commitment experiment LR-commit as defined in Section 5.2. Adversary Areceives (G, ψ, z) on its advice tape (for n, where G has n nodes), and works as follows:

A initializes V* with input graph G, auxiliary input z and a uniform random tape r.

如何证明方案的安全性?

- Step 1:证明每个底层模块的安全性
 - 只有每个模块都安全,才可以讨论整体方案的安全
- Step 2: 判断模块的运行方式
 - 模块之间是串行运行:方案满足可证明安全
 - 因为证明是sequential composable的
 - 模块之间不是串行运行:则还需要相关模块满足UC (universal composable)特性
 - 一般的PPML任务可认为是串行的,不必考虑UC问题

一些错误的打开方式

- 算法在xxx步骤使用了Paillier同态加密,
 Paillier可证明安全,所以算法是安全的
 - 需要算法中所有的模块都是可证明安全
 - 例:某个模块直接把中间结果发回去解密
- 只要不能反推原始数据,就是安全的
 - 有的泄露一开始认为不可反推,后来发现可反推
 - 例: Deep leakage from gradients
 - 有的泄露是原始数据的一个函数约束
 - 虽然不可直接反推原始数据,但可以间接反推
 - 例: 泄露了张三的年龄+工资 = 25000

01 隐私计算的安全性与效率

03 其他可证明 安全方法

02 密码学中的可证明安全简介

• Q: 这些证明太难学了, 还有别的方法可以证明隐私计算方案的安全性吗?

• A:

- 好消息:有别的方法

- 坏消息: 也很难

- 差分隐私 Differential Privacy
 - Alice从Bob的信息中难以知晓任意指定行的信息
 - 推论: Bob数据集里所有的行都得到了保护

- 例: DP-SGD
 - Clip, aggregate, then add noise
 - Noise值与每条记录算得梯度的最大值 (args.max grad norm) 有关
 - TensorFlow Privacy集成了相关算法
 - 可以容易的用于横向分割的联邦学习

```
for batch in Dataloader(train dataset, batch size=32):
 for param in model.parameters():
     param.accumulated grads = []
 # Run the microbatches
 for sample in batch:
     x, v = sample
     y hat = model(x)
     loss = criterion(y hat, y)
     loss.backward()
     # Clip each parameter's per-sample gradient
     for param in model.parameters():
         per sample grad = p.grad.detach().clone()
         clip grad norm (per sample grad, max norm=args.max grad norm) # in-place
         param.accumulated grads.append(per sample grad)
 # Aggregate back
 for param in model.parameters():
     param.grad = torch.stack(param.accumulated grads, dim=0)
 # Now we are ready to update and add noise!
 for param in model.parameters():
     param = param - args.lr * param.grad
     param += torch.normal(mean=0, std=args.noise multiplier * args.max grad norm)
```


- DP不仅可以用在FL,也可以用在MPC
- 例:[1]使用DP保护PSI中的桶内元素数目,以降低padding, 提高PSI性能

[1]: Cheaper Private Set Intersection via Differentially Private Leakage, PETS19

DP挑战1: DP会大幅影响数据分析的准确率

No DP	10 epochs	10 epochs	30 epochs	60 epochs	90 epochs
No DP	tuned LR		learning	rate = 0.4	
Resnet-18	58.7%	57.6%	67.5%	70.3%	70.8%
Resnet-50	62.1%	60.5%	72.0%	74.5%	75.3%

DD	privacy loss bound ε							
DP	4.6	13.2	71	$\approx 10^7$	109	1011	10^{13}	1015
Resnet-18	3.7%	6.9%	11.3%	45.7%	55.4%	56.0%	56.3%	56.4%
Resnet-50	2.4%	5.0%	7.7%	44.3%	58.8%	57.8%	58.2%	58.6%

Table 4: Comparison of the best Resnet-18 and Resnet-50 top-1 accuracies obtained at 10 epochs and batch size 1024, for various values of the privacy loss bound ε

Google: Toward Training at ImageNet Scale with Differential Privacy

DP挑战2:目前DP+隐私计算的研究集中在横向分割

• 纵向分割方面的研究不多

- 而纵向是国内隐私计算的主流应用场景

- 有待从业者投入研究

Alice已经知道了 我有张三的数据, 我需要保护的是 特征3和特征4

	特征1	特征2
张三	XXX	XXX
李四	XXX	XXX
王五	XXX	XXX

	特征3	特征4
张三	XXX	XXX
李四	XXX	XXX
王五	XXX	XXX

01 隐私计算的安全性与效率

03 其他可证明 安全方法

02 密码学中的可证明安全简介

总结: 隐私计算领域公认的两种可证明安全方法

- 基于游戏/模拟的证明方式
 - 目标是刻画信息的泄露边界
- 基于差分隐私的证明方式
 - 目标是防止信息重识别到单条记录
- 呼吁隐私计算业界做好安全证明,让方案的安全性看得见,摸得着

THANKS

