- 1. Prove that for any pair z, w of complex numbers, the following properties hold:
 - \bullet $\overline{z+w} = \overline{z} + \overline{w}$
 - $\overline{zw} = \overline{zw}$
 - \bullet |zw| = |z||w|

Proof. Let z = a + bi and w = c + di.

- $\bullet \ \overline{z+w} = \overline{(a+bi)+(c+di)} = \overline{(a+c)+(b+d)i} = (a+c)-(b+d)i = (a-bi)+(c-di) = \overline{z}+\overline{w}$
- $\overline{zw} = \overline{(a+bi)(c+di)} = \overline{(ac-bd) + (ad+bc)i} = (ac-bd) (ad+bc)i = (a-bi)(c-di) = \overline{zw}$
- $|zw| = |(a+bi)(c+di)| = |(ac-bd) + (ad+bc)i| = (ac-bd)^2 + (ad+bc)^2 = a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2 = (a^2+b^2)(c^2+d^2) = |a+bi||c+di| = |z||w|$
- 2. Prove that the modulus function $\mathbb{C} \to [0, \infty)$ is continuous.

Lemma. A function $f: X \to Y$ is continuous if the preimage of every basic open set, for a fixed basis of Y, is open.

Proof. Let \mathcal{B} be a basis for Y, and suppose $f^{-1}(B)$ is open for every $B \in \mathcal{B}$. Let $U \subseteq Y$ be open. Then there exists some collection $\mathcal{C} \subseteq \mathcal{B}$ such that $U = \bigcup_{B \in \mathcal{C}} B$. Therefore,

$$g^{-1}(U) = g^{-1}(\bigcup_{B \in \mathcal{C}} B) = \bigcup_{B \in \mathcal{C}} g^{-1}(B)$$

is a union of open sets, and hence open. So the preimage of every open set is open, thus f is continuous.

Main proof. The set $\mathcal{B} = \{[0,b): b>0\} \cup \{(a,b): a,b\geq 0\}$ of open balls in $[0,\infty)$ forms a basis for $[0,\infty)$. The preimage of any open ball of the form [0,b) is the open ball $\{x\in\mathbb{C}: d(0,x)< b\}$ in \mathbb{C} , and the preimage of any ball of the form (a,b) is the open annulus $\{x\in\mathbb{C}: a< d(0,x)< b\}$. (Clearly, this annulus is open - it is the intersection of two open sets: the open ball of radius b centered at 0, and the complement of the closed ball of radius a centered at 0). Hence, by the lemma, the modulus function is continuous.

3. Let $p:\mathbb{C}\to\mathbb{C}$ be a polynomial with real coefficients. Prove that the roots of p occur in conjugate pairs.

Proof. Let $p(x) = \sum_{k=0}^{n} a_k x^k$ for some $a_0, \ldots, a_n \in \mathbb{R}$, and suppose that p(z) = 0. Recall that conjugation distributes over addition and multiplication, and also that conjugation is the identity on the real numbers. Observe that

$$p(\overline{z}) = \sum_{k=0}^{n} a_k \overline{z}^k = \sum_{k=0}^{n} \overline{a_k} \overline{z^k} = \sum_{k=0}^{n} a_k z^k = \overline{p(z)} = \overline{0} = 0$$

so \overline{z} is a root of p as well.

Now, suppose that $z \in \mathbb{C} \setminus \mathbb{R}$ has multiplicity r as a root. We will show by induction on r that \overline{z} has multiplicity r as well. This is trivial if r = 0, since then neither z nor \overline{z} is a root. Assuming this holds for some r, suppose z has multiplicity r + 1. We know that \overline{z} is a root, so we may consider the polynomial

$$q(x) = \frac{p(x)}{(x-z)(x-\overline{z})}.$$

We know that z is a root of q(x) with multiplicity r. By the inductive hypothesis, \overline{z} is a root with multiplicity r as well. Clearly, then, $p(x) = (x-z)(x-\overline{z})q(x)$ has \overline{z} as a root with multiplicity r+1. \square

- 4. Describe the following sets geometrically and draw a picture of each:
 - (a) $\{z \in \mathbb{C} : |z+i| \le 1\}$

This is the set of all points of distance at most 1 from the point -i.

(b) $\{z \in \mathbb{C} : |z - 1| = |z - i|\}$

This is the set of points equidistant from 1 and i, which we know from geometry is the perpendicular bisector of the line segment between these two points.

(c) $\{z \in \mathbb{C} : |z - 4i| + |z + 4i| = 10\}$

An ellipse is the set of points for which the sum of the distances to some two foci is constant. The major axis must have length 10. Since |3-4i|+|3+4i|=10, the minor axis has length 6.

(d) $\{z \in \mathbb{C} : \frac{1}{z} = \overline{z}\}$

Multiplying both sides by z gives the equation |z| = 1. So this is the unit circle centered at the origin.

5. Prove that \mathbb{C} cannot be made into an ordered field.

Proof. Suppose $(\mathbb{C}, <)$ is an ordered field. First, assume i > 0. This means that $-1 = i \cdot i > 0$, and by the same logic 1 = (-1)(-1) > 0. But then we must have 0 = 1 + (-1) > 0, a contradiction because no element is strictly less than itself in a total ordering.

Next, assume i < 0. Subtracting i from both sides gives -i > 0. Again, we have $(-i)^2 = -1 > 0$. We have just shown this to be a contradiction. The only remaining possibility now is i = 0, which is absurd. Therefore, no such ordered field $(\mathbb{C}, <)$ exists.

6. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Fix $w \in \mathbb{D}$ and define $f : \overline{\mathbb{D}} \to \mathbb{C}$ by

$$f(z) = \frac{w - z}{1 - \overline{w}z}.$$

Show the following:

- f maps \mathbb{D} to \mathbb{D} and $\partial \mathbb{D}$ to $\partial \mathbb{D}$.
- f is a bijection on \mathbb{D} .
- f is holomorphic on \mathbb{D} .

Proof. We are given that |w| < 1. To prove that f maps \mathbb{D} to \mathbb{D} and $\partial \mathbb{D}$ to $\partial \mathbb{D}$, we need to show that if |z| < 1 then |f(z)| < 1 and if |z| = 1 then |f(z)| = 1. Note that

$$|f(z)| = \left(\frac{w-z}{1-\overline{w}z}\right) \overline{\left(\frac{w-z}{1-\overline{w}z}\right)} = \frac{(w-z)(\overline{w}-\overline{z})}{(1-\overline{w}z)(1-w\overline{z})} = \frac{|w|+|z|-(w\overline{z}+\overline{w}z)}{1+|w||z|-(w\overline{z}+\overline{w}z)}.$$

If |z|=1 then f(z)=1, since the numerator equals the denominator. So f maps $\partial \mathbb{D}$ into itself.

To see that f maps \mathbb{D} into itself as well, it suffices to show that if |z| < 1 then the numerator is less than the denominator, which is equivalent to showing that |w| + |z| < 1 + |w||z|. This is equivalent to showing

$$0 < 1 + |w||z| - |w| - |z| = (|w| - 1)(|z| - 1).$$

Given the restriction |w|, |z| < 1, this inequality holds since both factors on the right-hand side are negative. f is its own inverse, so it is a bijection:

$$f(f(z)) = \frac{w - \frac{w - z}{1 - \overline{w}z}}{1 - \overline{w}\frac{w - z}{1 - \overline{w}z}} = \frac{(1 - \overline{w}z)w - (w - z)}{(1 - \overline{w}z) - \overline{w}(w - z)} = \frac{w - |w|z - w + z}{1 - \overline{w}z - |w| + \overline{w}z} = z\left(\frac{1 - \overline{w}}{1 - \overline{w}}\right) = z.$$

We will now show that f is holomorphic on \mathbb{D} . The numerator and denominator of f are both linear combinations of holomorphic functions, since z is holomorphic and any constant function is holomorphic. Also, the denominator is nonzero on \mathbb{D} : we know that $|1-\overline{w}z| \geq ||1|-|\overline{w}z|| > 0$ because $|\overline{w}z| = |w||z| < 1$ for $z, w \in \mathbb{D}$. Therefore, by the quotient rule, f must be holomorphic on \mathbb{D} .