Bayesian Regression

Dataset - A

Error Rate Graph

Bayesian Regression

Dataset – usps

Error Rate Graph

Poisson Regression

Dataset – AP

Error Rate Graph

Ordinal Regression

Dataset – AO

Error Rate Graph

Discussion of Results:

Statistics of time per iteration

Dataset	Average time	Minimum	Maximum time	Total time	Average
	required for	time required	required for one	required*	WMAP
	one iteration*	for one	iteration*		convergence
		iteration*			time*
Α	0.1421	0.1366	0.1645	4.3413	0.0133
USPS	0.7411	0.7081	0.8876	22.36018	0.0729
AP	0.3297	0.3051	0.3580	9.9723	0.0305
AO	1.0926	1.0462	1.2596	32.8561	0.1065

^{*}All the above values are approximate and are in seconds

- Yes, all the learning curves are almost as expected. Accuracy for all the 4 dataset predictions
 in the start is approximately 40-45% which later decreases to 30-35% as the iterations
 increase.
- Learning time for Bayesian is completely dependent on the dataset, whereas Poisson shows a good learning time compared to Ordinal algorithm for classification and likelihood model.
- For Bayesian and Poisson approach time cost is not much as y_hat is (n X 1). But for ordinal as the yhat number of column increases to the size of classifiers making it a 2D array of (n X m) creating the need for nested loop and thus increasing time. (n = size of dataset, m = K)

Model Selection for Alpha

- For model selection of alpha I have used Bayesian approach.
- In Bayesian approach we converge alpha beta value to get the value of our unknown parameter lambda.(convergence value 10^-7 or 100 loops(for time efficiency))
- This lambda value is used as alpha value for calculating wmap.
- In the below graphs we can clearly see that by using BMS for alpha value our prediction accuracy for all the 4 data sets have increased.
- I am calculating alpha for data part [0.1...1] for 30 iterations and using it to calculate wmap for the corresponding iteration.
- Downside to this is that it is not time efficient.

Alpha Values

Dataset USPS - 0.0771 Dataset A - 0.0285 Dataset AP - 0.0364 Dataset AO - 0.1135

