Compiling For High Performance

Issues

- parallelism
- locality

Classical compilation

- \bullet focus on individual operations
- scalar variables
- flow of values
- \bullet unstructured code

High-performance compilation

- \bullet focus on aggregate operations (loops)
- array variables
- memory access patterns
- structured code

1____

- dependence analysis
- \bullet loop transformations

CMSC 430 Lecture 24, Page 1

Data Locality

Why locality?

- memory accesses are expensive
- exploit higher levels of memory hierarchy by reusing registers, cache lines, TLB, etc.
- locality of reference ⇔ reuse

Locality

- temporal locality
- spatial locality

reuse of a specific location reuse of adjacent locations (cache lines, pages)

Reuse

- self-reuse
- group-reuse

caused by same reference caused by multiple references

What reuse occurs in this loop nest?

do i = 1, N
do j = 1, N
$$A(i) += B(j) + B(j+2)$$

Refs	Reuse on loop i	Reuse on loop j	
Α	spatial	temporal	
В	temporal, group spatial	spatial, group temporal	

CMSC 430 Lecture 24. Page 2

Loop Transformations to Improve Reuse

To calculate temporal and spatial reuse

For each loop l in a nest, consider l innermost

- partition references with group-reuse
 ⇒ reference groups
- 2. compute the cost in cache lines accessed
 ⇒ loop cost
- 3. rank the loops based on their loop cost \Rightarrow memory order

Key insight

If loop l promotes more reuse than loop k at the innermost position, then it probably promotes more reuse at any outer position

Selecting a loop permutation

- \bullet select memory~order if legal
- \bullet if not, find a nearby legal permutation
- \bullet avoids evaluating many permutations

CMSC 430 Lecture 24, Page 3

Selecting a Loop Permutation

Cost of reference group for loop \boldsymbol{k}

- 1. select representative from reference group 2. find cost (in cache lines) with k innermost
- 3. multiply by trip counts of outer loops

$\label{eq:loop_cost} \mbox{Loop cost} = \mbox{sum of costs for reference groups} \\ \mbox{Matrix multiplication example}$

$$\begin{array}{l} \text{do } j = 1, \ N \\ \text{do } k = 1, \ N \\ \text{do } i = 1, \ N \\ \text{C(}i,j) = \text{C(}i,j) + \text{A(}i,k) \, * \, \text{B(}k,j) \end{array}$$

RefGroups	J	K	I
C(i,j)	$n * n^2$	$1 * n^2$	$\frac{1}{4}n * n^2$
A(i,k)	$1 * n^{2}$	$n * n^2$	$\frac{1}{4}n * n^2$
B(k,j)	$n * n^2$	$\frac{1}{4}n * n^2$	$1 * n^2$
total	$2n^3+n^2$	$\frac{5}{4}n^3 + n^2$	$\frac{1}{2}n^3 + n^2$

 ${\sf LoopCost}\ (with\ cls=4)$

CMSC 430 Lecture 24, Page 4

Matrix Multiply (exec time in seconds)

CMSC 430 JKI KJI JIK IJK KIJ IKJ

Lecture 24, Page 6

Matrix Multiply

Example

do i = 1, n
do j = 1, n
do k = 1, n

$$A(i,j) = A(i,j) + B(i,k) * C(k,j)$$

Question

- suppose arrays do not fit in cache
- can we exploit more reuse?

CMSC 430 Lecture 24, Page 7

Reusing Cache Lines

Matrix multiple example

```
Do i = 1, 500
Do j = 1, 500
Do k = 1, 500
Do k = 1, 500
A[i,j] = A[i,j] + B[i,k] * C[k,j]

Reuse Analysis (terations reusing data/cache line)

Transformation

Data Used
```

Tiled version

do ii = 1, 500, T
do jj = 1, 500, T
do i = ii, ii+T-1
do j = jj, jj+T-1
do k = 1, 500

$$A(i,j) = A(i,j) + B(i,k) * C(k,j)$$

CMSC 430 Lecture 24. Page 8

Tiling

Transformation

• strip-mine loops, then interchange

Benefits

- increases size of localized iteration set
- \bullet exploits reuse among multiple loops
- \bullet uses larger portion of cache

Problems

- less reuse per loop
- higher loop overhea
- needs information about cache size
- need to avoid conflict misses

Question

- \bullet how to choose tile dimensions, size?
- \bullet is it simply question of cache size?

CMSC 430 Lecture 24, Page 9

Performance of Tiling

IBM RS6000

Results

 \bullet potentially large improvement, but sensitive to cache / array size

Cache Conflicts

- \bullet set associativity \to conflict misses
- too many addresses mapped to same cache line
- common for power-of-two array sizes

M. Lam, E. Rothberg, M. Wolf, "The Cache Performance and Optimizations of Blocked Algorithms," ASPLOS'91

CMSC 430 Lecture 24, Page 10

Avoiding Cache Conflict

Use less cache

- choose smaller tile sizes
- \bullet reduces portion of cache used
- \bullet lowers chance of cache conflict
- \bullet empirically, 20–30% seems to work
- \bullet higher loop overhead

Copy optimization

- \bullet copy each tile to contiguous locations
- modify code to access new location
- \bullet amortize overhead for high reuse
- \bullet explicit copy code, overhead

Rectangular tiles

- \bullet calculate rectangular tile size
- \bullet explicitly chosen to avoid cache conflict
- may result in long thin tiles (equivalent to no tiling)

CMSC 430 Lecture 24, Page 11

Scalar Replacment

Array references

- \bullet difficult to allocate to registers
- need to identify potential aliases
- dependences point out reuse

Scalar replacement transformation

- \bullet replace array reference with scalar
- \bullet eliminates aliases through renaming
- \bullet relies on dependence analysis
- \bullet simplifies scalar compiler back end

 $D.\ Callahan,\ S.\ Carr,\ K.\ Kennedy,\ "Improving \ Register\ Allocation\ for\ Subscripted\ Variables,"\ PLDI'90$

Unroll-and-Jam

Reusing registers on outer loops

- \bullet temporal locality (deps) at outer loop
- need to move reuse to loop body

Unroll-and-jam transformation

- \bullet unroll outer loop
- fuse (jam) inner loops
- \bullet results in multiple outer loop bodies

```
{1:original}
                     {2:unroll i}
                     do i=1,100,2
  do j=1,100
                       do j=1,100
                         A(i) +=B(j)
    A(i)+=B(j)
                       do j=1,100
                         A(i+1)+=B(j)
{3:fuse j}
                     {4:replace B}
do i=1,100,2
                     do i=1,100,2
 do j=1,100,2
do j=1,100
A(i) +=B(j)
                       do j=1,100
                         t = B(j)

A(i) += t
    A(i+1)+=B(j)
                          A(i+1)+=t
```

CMSC 430 Lecture 24, Page 13

Memory Latency

Data locality

- \bullet loop permutation, tiling increase reuse
- accesses more likely to be in cache
- but still some cache misses

Latency

- time between data request and receipt
- \bullet needed to move data at address to processor
- can overlap memory fetch with computation or other memory fetches!

Approaches to reducing memory latency

- faster memory
- (get data to processor faster)
- \bullet nonblocking caches
- (continue execution after miss)
- \bullet hardware prefetching

(fetch rest of data on cache line)

• software prefetching (instructions to prefetch data)

CMSC 430 Lecture 24. Page 14

Software Prefetching

Indiscriminate prefetching

- insert prefetch for every reference
- high instruction overhead
- 60-95% of prefetches redundant in study

Selective prefetching

- \bullet reuse analysis \to whether data in cache
- \bullet translate into $prefetch\ predicate\ \mathcal{P}$
 - temporal locality: i = 0
 - spatial locality: i mod $\operatorname{\mathit{cls}}=0$
- group reuse: prefetch leader of group
- \bullet issue prefetch if predicates satisfied
- loop transformations to avoid conditionals
- peel or split if \mathcal{P} is i = 0
- strip-mine or unroll if \mathcal{P} is i mod $\mathit{cls} = 0$
- \bullet software pipeline fetches across iterations

CMSC 430 Lecture 24, Page 15

Software Prefetching

Example

- \bullet two elements per cache line
- latency of six iterations

Prefetching side effects

- \bullet higher instruction overhead
- \bullet increases application memory bandwidth
- increases lifetime of cache line, may cause more misses

ISC 430 Lecture 24, Page 16

Dependence Analysis

Question

Do two references never/maybe/always access the same memory location?

Benefits

- \bullet improves alias analysis
- \bullet enables loop transformations

Motivation

- \bullet classic optimizations
- instruction scheduling
- \bullet data locality (register/cache reuse)
- \bullet vectorization, parallelization

Obstacles

- \bullet array references
- pointer references

Dependence Analysis

do I = 1, 100

$$A(I) =$$
 $= A(I-1)$
enddo

do I = 1, 100
 $A(I) =$
 $= A(I)$
enddo

- I -

1 2 3 4 5 ...

1 2 3 4 5 ...

A loop-independent dependence exists regardless of the loop structure. The source and sink of the dependence occur on the same loop iteration.

A loop-carried dependence is induced by the iterations of a loop. The source and sink of the dependence occur on different loop iterations.

 $Loop\text{-}carried\ dependences\ can\ inhibit\ parallelization\ and\ loop\ transformations$

CMSC 430 Lecture 24, Page 18

Dependence Testing

Given

A dependence between statement S_1 and S_2 , denoted $S_1 \delta S_2$, indicates that S_1 , the source, must be executed before S_2 , the sink on some iteration of the nest.

Let α & β be a vector of n integers within the ranges of the lower and upper bounds of the n loops.

Does
$$\exists \ \alpha \leq \beta, \text{ s.t.}$$

$$f_k(\alpha) = g_k(\beta) \quad \forall k, \ 1 \le k \le m ?$$

CMSC 430 Lecture 24, Page 19

Iteration Space

do I = 1, 5 do J = I, 6 ... enddo enddo
$$1 \le I \le 5$$
 I $\le J \le 6$ -- J --

• lexicographical (sequential) order for the above iteration space is

$$(1,1), (1,2), \ldots, (1,6)$$

 $(2,2), (2,3), \ldots (2,6)$
 \ldots
 $(5,5), (5,6)$

• given
$$I = (i_1, \dots i_n)$$
 and $I' = (i'_1, \dots, i'_n)$,
 $I < I'$ iff
 $(i_1, i_2, \dots i_k) = (i'_1, i'_2, \dots i'_k)$ & $i_{k+1} < i'_{k+1}$

CMSC 430 Lecture 24. Page 20

Distance Vectors

 $\label{eq:Distance Vector} \textbf{Distance Vector} = \text{number of iterations between accesses to the same location}$

distance vector

 $S_1\delta S_1$ (0,1)

 $S_2\delta S_2$ (1,1)

 $S_3\delta S_3$ (1,-1)

CMSC 430 Lecture 24, Page 21

Loop Interchange

Loop interchange is safe iff

- \bullet it does not create a lexicographically negative direction vector
- $\Rightarrow \text{Benefits}$
 - o may expose parallel loops, increase granularity
 - o reordering iterations may improve reuse

CMSC 430 Lecture 24, Page 22

 $(1,-1) \rightarrow (-1,1)$

Forms of Parallelism

Instruction-level parallelism

- \bullet for superscalar and VLIW architectures
- examine dependences between statements
- very fine grain parallelism

Task-level parallelism

- \bullet for multiprocessors
- \bullet examine dependences between tasks
- \bullet parallelism is not scalable

do i = 1,10 do i = 1,10
$$A(i) = A(i+1)$$
 $B(i) = B(i+1)$

B = C

Loop-level parallelism

- \bullet for vector machines and multiprocessors
- examine dependences between loop iterations
- \bullet parallelism is scalable

CMSC 430 Lecture 24, Page 23

Loop-level Parallelism

${\sf Basic\ approach}$

- \bullet execute loop iterations in parallel
- safe if no loop-carried data dependences (i.e., no accesses to same memory location)

do i = 1,10 doall i = 1,10
$$A(i) = A(i+1)$$
 $A(i) = A(i+10)$

Several parallel architectures

• vector processors

• multiprocessors

doall i = 1,10
$$A(i) = B(i+1)$$

• message-passing machines

Which Loops are Parallel?

- a dependence $D=(d_1,\ldots,d_k)$ is carried at $level\ i$, if d_i is the first nonzero element of the distance vector
- ullet a loop l_i is parallel, if $\not\exists$ a dependence D_j carried at level i

$$\begin{array}{c|c} & \text{distance vector} \\ \forall D_j & d_1, \dots, d_{i-1} > 0 \\ \text{OR} & d_1, \dots, d_i = 0 \end{array}$$

CMSC 430 Lecture 24, Page 25

Exposing Parallelism

Storage-related dependences

- anti and output dependences
- caused by reusing storage
- no flow of values (not inherently sequential)

Solution techniques

 \bullet renaming

• scalar/array expansion

• scalar/array privatization

CMSC 430 Lecture 24, Page 27

Vectorization

Vector processors

- \bullet operations on vectors of data
- \bullet overlap iterations of inner loop

doall i = 1,10
$$A[1:10] = 1.0$$

 $A(i) = 1.0$ $B[1:10] = A[1:10]$
 $B(i) = A(i)$

- \bullet exploits fine-grain parallelism
- \bullet expressed in vector languages (APL, Fortran 90)

Execution model

- single thread of control single instruction, multiple data (SIMD)
- \bullet load data into vector registers
- \bullet efficiently execute pipelined operations

Issues

- vector length coalesce loops to reduce overhead
- \bullet control flow convert conditions into explicit data

CMSC 430 Lecture 24, Page 29

Exposing Parallelism

Scalar analysis

- \bullet improve precision of dependence tests
- eliminate unnecessary scalar statements
- based on data-flow analysis

Solution techniques

• forward propagation (expose value of scalar variables)

constant propagation

$$k = 1$$
 $k = 1$ $do i = 1,10$ $A(i+k) = A(i+1) =$

• induction variable recognition

CMSC 430 Lecture 24. Page 26

Exposing Parallelism

Reductions

- loop-carried true (flow) dependences
- operations are associative (can commute)

• roundoff error for floating point arithmetic

Solution techniques

 \bullet vector reduction operation

 \bullet parallelize reduction

ISC 430 Lecture 24, Page 28

Parallelization

Multiprocessors

- multiple independent processors (MIMD)
- assign iterations to different processors

• exploits coarse-grain parallelism

Execution model

- \bullet for k-join parallelism
- master executes sequential code
- \bullet workers (and master) execute parallel code
- master continues after workers finish

Issue

- \bullet granularity larger computation partitions to reduce overhead
- \bullet scheduling policy for assigning iterations to processors

Multithreading

High latency event

- I/O
- interprocessor communication
- page miss
- \bullet cache miss

Multiple threads of execution

- switch to new thread after event
- \bullet overlaps computation with event
- \bullet requires threads, efficient context switch

Hardware support

- \bullet switch sets of registers
- shared caches
- \bullet HEP, Tera

Software support

- \bullet uncover parallelism for multiple threads
- \bullet reduce context switch overhead

 ${\bf CMSC~430} \hspace{35pt} {\bf Lecture~24, Page~31}$