ANÁLISIS MATEMÁTICO I

Primer Parcial – Ejemplo 2

APELLIDO: CURSO: CURSO:

1	2	3	4	5	NOTA

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No está permitido el uso de calculadoras graficadoras. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición mínima de aprobación, 6 puntos: 50% del examen correctamente resuelto. Condición mínima de aprobación por promoción, 8 puntos: 70% del examen correctamente resuelto.

- 1) Indicar si las siguientes proposiciones son Verdaderas o Falsas, justificando la respuesta:
 - a) La función $f: R \to R/f(x) = x^5 + x^3 + x 8$ tiene una única raíz en el intervalo (1; 2).
 - b) En el punto (0;1) la curva cuya ecuación es $x^2 \cdot y + \cos x \cdot \ln y 3 \cdot e^{x \cdot y} + 3 = 0$ tiene una recta tangente horizontal.
- 2) Hallar las ecuaciones de las asíntotas lineales de $f: D_f \to R/f(x) = \sqrt{1+x^2} x$
- 3) Si $f: R \to R/f(x) = 5 \cdot e^{-x}$ pueden construirse $\forall x > 0$ triángulos con vértices en los puntos (0;0), (x;0) y (x;f(x)). Determinar el triángulo de área máxima.
- 4) Hallar los valores de $a \in R$ y $b \in R$ para que $f: R \to R/f(x) = \begin{cases} \frac{\sin(2x)}{e^x 1} & \text{si } x > 0 \\ x^2 + ax + b & \text{si } x \le 0 \end{cases}$ sea

continua y derivable en x = 0

5) Indicar los intervalos de crecimiento y decrecimiento, de concavidad positiva y negativa de $f: R \to R/f(x) = 3x \cdot \sqrt[3]{x^2} - 5x$

Respuestas

1)

- a) Verdadero: puede demostrarse que tiene al menos una raíz en el intervalo dado utilizando el teorema de Bolzano; puede demostrarse que esa raíz es única, por ejemplo, porque es estrictamente creciente en ese intervalo.
- b) Falso: y'(0;1)=3 por lo que la recta tangente a la curva en ese punto no es horizontal.

Verificación con un software:

2) Es continua en R por lo que no tiene asíntotas verticales. Asíntota horizontal:

$$y = 0 \ (x \to +\infty)$$
. Asíntota oblicua: $y = -2x \ (x \to -\infty)$

Verificación con un software:

3) El triángulo de área máxima resulta aquel que tiene los vértices en los puntos (0;0); (1;0) y (1;f(1))

4)
$$a = -1$$
; $b = 2$

5) Intervalo de crecimiento = $(-\infty; -1) \cup (1; +\infty)$. Intervalo de decrecimiento = (-1; 1). Intervalo de concavidad negativa = $(-\infty; 0)$. Intervalo de concavidad positiva = $(0; +\infty)$. Verificación con un software:

