Estimation and Accuracy after Model Selection

Bradley Efron

Stanford University

Estimation after Model Selection

- My usual bad practice:
 - (a) look at data
 - (b) choose model (linear, quad, cubic ...?)
 - (c) fit estimates using chosen model
 - (d) analyze as if pre-chosen
- Today: include model selection process in the analysis
- Question Effects on standard errors, confidence intervals, etc.?
- Two examples: nonparametric, parametric

Cholesterol Data

- n = 164 men took Cholestyramine for ~ 7 years
- x = compliance measure (adjusted: $x \sim \mathcal{N}(0, 1)$)
- \bullet y = cholesterol decrease
- Regression y on x?

[wish to estimate
$$\mu_j = E\{y|x_j\}, j = 1, 2, ..., n$$
]

Cholesterol data, n=164 subjects: cholesterol decrease plotted versus adjusted compliance; Green curve is OLS cubic regression; Red points indicate 5 featured subjects

C_p Selection Criterion

• Regression Model
$$\mathbf{y} = \mathbf{X}_{n \times m} \beta + \mathbf{e}_{n \times 1}$$

 $|e_i \sim (0, \sigma^2)|$

 \bullet C_p Criterion

$$\left\| \mathbf{y} - X\hat{\beta} \right\|^2 + 2m\sigma^2$$

 $\hat{\beta} = \text{OLS estimate}, m = \text{"degrees of freedom"}$

- Model selection: from possible models X_1, X_2, X_3, \ldots choose the one minimizing C_n .
- Then use OLS estimate from chosen model.

C_p for Cholesterol Data

df	$C_p - 80000$	(Boot %)
2	1132	(19%)
3	1412	(12%)
4	667	(34%)
5	1591	(8%)
6	1811	(21%)
7	2758	(6%)
	2 3 4 5 6	2 1132 3 1412 4 667 5 1591 6 1811

(σ = 22 from "full model" \mathcal{M}_6)

Nonparametric Bootstrap Analysis

• data = $\{(x_i, y_i), i = 1, 2, ..., n = 164\}$ gave original estimate

$$\hat{\mu} = X_3 \hat{\beta}_3$$

• Bootstrap data set data* = $\{(x_j, y_j)^*, j = 1, 2, ..., n\}$ where $(x_j, y_j)^*$ drawn randomly and with replacement from data:

$$\mathsf{data}^* \; \underset{C_p}{\longrightarrow} \; m^* \; \underset{\mathsf{OLS}}{\longrightarrow} \; \hat{\beta}^*_{m^*} \; \longrightarrow \; \hat{\mu}^* = X_{m^*} \hat{\beta}^*_{m^*}$$

• I did this all B = 4000 times.

4 🗗 ト

B=4000 nonparametric bootstrap replications for the model-selected regression estimate of Subject 1; boot (m,stdev)=(-2.63,8.02); 76% of the replications less than original estimate 2.71

bootstrap estimates for subject 1 Red triangles are 2.5th and 97.5th boot percentiles

Boxplot of Cp boot estimates for Subject 1; B=4000 bootreps; Red bars indicate selection proportions for Models 1–6

only 1/3 of the bootstrap replications chose Model 3

Bootstrap Smoothing

Replace original estimator $t(\mathbf{y})$ with bootstrap average Idea

$$s(\mathbf{y}) = \sum_{i=1}^{B} t(\mathbf{y}_{i}^{*}) / B$$

- Model averaging
- Same as bagging ("bootstrap aggregation" / Breiman)
- Removes discontinuities Reduces variance

Bootstrap Confidence Intervals

- Standard: $\hat{\mu} \pm 1.96 \ \widehat{se}$
- Percentile: $[\hat{\mu}^{*(.025)}, \hat{\mu}^{*(.975)}]$
- Smoothed Standard: $\tilde{\mu} \pm 1.96 \ \widetilde{\text{se}}$
- BCa/ABC: corrects percentiles for bias and changing se

Accuracy Theorem

- Notation $s_0 = s(y)$, $t_i^* = t(y_i^*)$, i = 1, 2, ... B
- ullet $N_{ij}^* = \#$ of times jth data point appears in ith boot sample
- ullet cov $_j = \sum_{i=1}^B N_{ij}^* \cdot \left(t_i^* s_0\right) / B$ [covariance N_{ij}^* with t_i^*]

Theorem

The delta method standard deviation estimate for s_0 is

$$\boxed{\widetilde{\mathsf{sd}} = \left[\sum_{j=1}^n \mathsf{cov}_j^2\right]^{1/2}},$$

always
$$\leq \left[\sum_{i=1}^{B} (t_i^* - s_0)^2 / B\right]^{1/2}$$
, the boot stdev for $t(\boldsymbol{y})$.

Projection Interpretation

95% Bootstrap Confidence Intervals for Subject 1

Standard Deviation of smoothed estimate relative to unsmoothed for five subjects; Green is naive sd compared to unsmoothed.

How Many Bootstrap Replications Are Enough?

- How accurate is sd? *Jackknife*
- Divide the 4000 bootreps t_i^* into 20 groups of 200 each
- Recompute sd with each group removed in turn
- Jackknife gave coef variation (sd) = 0.02 for all 164 subjects (could have stopped at B = 500)

Model Probability Estimates

- 34% of the 4000 bootreps chose the cubic model
- Poor man's Bayes posterior prob for "cubic"
- How accurate is that 34%?
- Apply accuracy theorem to indicator function for choosing "cubic"

Model	Boot %	± Standard Error
\mathcal{M}_1 (linear)	19%	±24
\mathcal{M}_2 (quad)	12%	±18
\mathcal{M}_3 (cubic)	34%	±24
\mathcal{M}_4 (quartic)	8%	±14
\mathcal{M}_5 (quintic)	21%	±27
\mathcal{M}_6 (sextic)	6%	±6

Random Forest Predictions & Bagged Stdevs:

Automobile Data

The Supernova Data

• data =
$$\{(x_j, y_j), j = 1, 2, ..., n = 39\}$$

- y_j = absolute magnitude of Type Ia supernova
- x_j = vector of 10 spectral energies (350–850nm)

• Full Model
$$\mathbf{y} = \underset{39 \times 10}{X} \beta + \mathbf{e}$$
 $\left[\mathbf{e}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(0,1) \right]$

Adjusted absolute magnitudes for 39 Type1A supernovas plotted versus OLS predictions from 10 spectral measurments; Naive R2 (squared correlation)=.82; Adjusted R2=.62

Lasso Model Selection

- Lasso estimate is $\hat{\beta}$ minimizing $\|\mathbf{y} X\beta\|^2 + \lambda \sum_{1}^{p} |\beta_k|$
- Shrinks OLS estimates toward zero (all the way for some)
- Degrees of freedom "m" = number of nonzero $\hat{\beta}_k$'s
- Model selection: Choose λ (or m) to maximize adjusted R^2 .
- Then $\hat{\mu} = X\hat{\beta}_m$.

Lasso for the Supernova Data

λ	m (# nonzero $\hat{\beta}_k$'s)	Naive R ²	Adjusted R ²	
63.0	1	.17	.12	
12.9	4	.77	.72	
3.56	7	.81	.73	(Selected)
0.50	9	.82	.71	
0	10	.82	.69	(OLS)

Parametric Bootstrap Smoothing

• Original estimates

$$\mathbf{y} \overset{\mathsf{Lasso}}{\longrightarrow} m, \hat{eta}_m \longrightarrow \hat{\mu} = X \hat{eta}_m$$

• Full model bootstrap $\mathbf{y}^* \sim \mathcal{N}_{39}\left(\hat{\mu}_{\text{oLS}}, \mathbf{I}\right)$

$$\mathbf{y}^* \longrightarrow m^*, \hat{\boldsymbol{\beta}}_{m^*}^* \longrightarrow \hat{\mu}^* = X \hat{\boldsymbol{\beta}}_{m^*}^*$$

• I did this all B = 4000 times giving boots for super k

$$\hat{\mu}_{ik}^*$$
, $i = 1, 2, ..., 4000$

• Smoothed estimates $s_k = \sum_{i=1}^{4000} \mu_{ik}^* / 4000$ [k = 1, 2, ..., 39]

Parametric Accuracy Theorem

Theorem

The delta method standard deviation estimate for s_k is

$$\widehat{\operatorname{sd}}_k = \left[\widehat{\operatorname{\it cov}}_k' \, \mathcal{G} \, \widehat{\operatorname{\it cov}}_k \right]^{1/2}$$
 ,

where G = X'X and \widehat{cov}_k is bootstrap covariance between $\hat{\beta}_{OLS}^*$ and $\hat{\mu}_{ik}^*$.

This is always less than the bootstrap estimate of standard deviation for unsmoothed intervals.

Standard Deviation of smoothed estimate relative to original (Red) for five Supernova; green line using Bootstrap reweighting

Supernova number bottom numbers show original standard deviations

Better Confidence Intervals

- Smoothed standard intervals and percentile intervals have coverage errors of order $O(1/\sqrt{n})$.
- "ABC" intervals have errors O(1/n): corrects for bias and "acceleration" (change in stdev as estimate varies).
- Uses local reweighting for 2nd order correction.

95% intervals five selected SNs (subtracting smoothed ests); ABC black; smoothed standard red.

Smooth Estimation Model: ' y ' is observed data; Ellipses indicate bootstrap distribution for ' y* '; Red curves level surfaces of equal estimation for thetahat=t(y)

Estimation with model selection: now the curves of equal estimation are discontinuous across the Model region boundaries

References

- Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference. *Ann. Statist.* 41: 802–837, **conservative** frequentist intervals à la Tukey, Scheffé.
- Buja, A. and Stuetzle, W. (2006). Observations on bagging. *Statist. Sinica* 16: 323–351, **more on bagging**.
- DiCiccio, T. J. and Efron, B. (1992). More accurate confidence intervals in exponential families. *Biometrika* 79: 231–245, **ABC confidence intervals**.
- Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators. *J. Amer. Statist. Assoc.* 98: 879–899, **model selection asymptotics**.
- Sexton, J. and Laake, P. (2009). Standard errors for bagged and random forest estimators. *Comput. Statist. Data Anal.* 53: 801–811, close development to current work.
- Wager, S., Hastie, T. and Efron, B. (2013). Confidence intervals for random forests: The jackknife and the infinitesimal jackknife. *ArXiv* 1311.4555, **the Automobile example**.