Feuille d'exercices 1

- Chapitre 1 : Intégrales de Riemann. -

INTÉGRALES DE FONCTIONS EN ESCALIERS

Exercice 1. Soit f la fonction définie sur [0,4] par :

$$f(x) = \begin{cases} 0 & \text{si } x = 0; \\ -1 & \text{si } 0 < x < 1; \\ 2 & \text{si } x = 1; \\ -2 & \text{si } 1 < x \le 2; \\ 1 & \text{si } 2 < x \le 4. \end{cases}$$

- 1° . f est-elle une fonction en escalier? Dessiner son graphe.
- 2° . Lesquelles de ces subdivisions sont-elles adaptées à $f: \sigma_1 = \{0, 2, 4\}, \sigma_2 = \{0, 1, 2, 4\},$ $\sigma_3 = \{0, 1, 2, 3, 4\}$? Laquelle est la plus fine?
- 3°. En utilisant une subdivision adaptée, calculer $\int_0^4 f(x)dx$.
- 4° . On considère maintenant la fonction g définie sur [0,4] par :

$$g(x) = \begin{cases} -1 & \text{si } 0 \le x < 2; \\ 0 & \text{si } x = 2; \\ 2 & \text{si } 2 < x \le 3; \\ -2 & \text{si } 3 < x \le 4. \end{cases}$$

- a. Calculer $\int_0^4 g(x)dx$. Donner la valeur de $\int_0^4 f(x)dx + \int_0^4 g(x)dx$. b. Donner une subdivision σ adaptée à f+g. c. Calculer $\int_0^4 \left(f(x)+g(x)\right)dx$ en utilisant la subdivison σ .

Exercice 2. Soit f la fonction définie sur [-1,1] par

$$f(x) = 2 \text{ si } -1 \le x < 0; -1 \text{ si } 0 \le x \le 1.$$

Pour tout $x \in [-1, 1]$, on pose $f_{+}(x) = \max(f(x), 0)$ et $f_{-}(x) = \min(f(x), 0)$.

- 1°. Vérifier que f_+ et f_- et sont deux fonctions en escalier. 2°. Calculer $\int_{-1}^{1} f_+(x) dx$ et $\int_{-1}^{1} f_-(x) dx$. 3°. Montrer que pour tout $x \in [0,2]$, $f(x) = f_+(x) + f_-(x)$ et $|f(x)| = f_+(x) f_-(x)$. 4°. Calculer les intégrales $\int_{-1}^{1} f(x) dx$ et $\int_{-1}^{1} |f(x)| dx$.

Exercice 3. On note $\lfloor x \rfloor$ la partie entière d'un nombre réel x. Calculer $\int_0^3 \lfloor x \rfloor dx$, puis $\int_0^b \lfloor x \rfloor dx$ pour un réel b > 0.

Exercice 4. Montrer que la fonction $x \mapsto \sin\left(\frac{\pi}{2}\lfloor x^2\rfloor\right)$ est en escalier sur [0,2] et calculer son intégrale.

CALCUL D'INTÉGRALES

 $Calcul\ direct\ en\ en\ utilisant\ des\ primitives$

Exercice 5. Calculer les intégrales suivantes :

$$\int_{0}^{1} \frac{x}{(x^{2}+1)^{2}} dx, \qquad \int_{0}^{1} \frac{e^{\arctan x}}{x^{2}+1} dx, \qquad \int_{2}^{3} \sqrt{x-1} dx, \\ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{x} \sin(e^{x}) dx, \qquad \int_{1}^{2} \frac{\ln x}{x} dx, \qquad \int_{2}^{4} \frac{dx}{x \ln x},$$

En utilisant des changements de variables

Exercice 6. En utilisant le changement de variables $u = \sqrt{e^x - 1}$, calculer l'intégrale $\int_{\ln 2}^{\ln 3} \sqrt{e^x - 1} \, dx$.

Exercice 7. Calculer les intégrales suivantes :

$$\int_{\ln 3}^{3 \ln 2} \frac{1}{\sqrt{1 + e^x}} \, dx, \qquad \int_{1}^{2} \frac{1}{3 + e^{-x}} \, dx, \qquad \int_{0}^{1} \frac{1}{(x^2 + 1)^2} \, dx, \qquad \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{1 + \cos^2 x} \, dx, \qquad \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos x} \, dx,$$

Exercice 8. Calculer les intégrales $\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \operatorname{Arctan}(x) dx$ et $\int_{0}^{\pi} \frac{x}{1 + \sin(x)} dx$.

En utilisant l'intégration par parties

Exercice 9. Calculer les intégrales suivantes :

$$\int_{1}^{2} x \ln x \, dx, \qquad \int_{0}^{1} \operatorname{Arctan}(x) \, dx, \qquad \int_{-\frac{1}{2}}^{1} x \operatorname{Arcsin}(x) \, dx, \qquad \int_{-\frac{1}{2}}^{1} x \operatorname{Arcsin}(x) \, dx, \qquad \int_{0}^{1} (x+2)e^{x-1} \, dx, \qquad \int_{0}^{\pi} x \sin(x)e^{2x} \, dx, \qquad \int_{0}^{1} (x^2+1) \sin(x) \, dx.$$

Exercice 10. Pour $a \in \mathbb{R}^+$ et $n \in \mathbb{N}$ on pose $I(a,n) = \int_0^1 x^a (1-x)^n dx$.

- 1. Trouver une relation entre I(a+1,n) et I(a,n+1).
- 2. Calculer I(a,n) I(a,n+1).
- 3. En déduire une expression de I(a, n + 1) en fonction de I(a, n) puis donner une expression de I(a, n).

En trouvant vous-mêmes la méthode de calcul

Exercice 11. Calculer les intégrales suivantes :

SOMMES DE RIEMANN

Exercice 12. On note $f(x) = x^2$ pour tout $x \in \mathcal{R}$. Soit b > 0. On se propose de calculer l'intégrale $\int_0^b x^2 dx$ sans utiliser de primitive.

1°. Montrer que pour tout $n \in \mathcal{N}^*$, on a :

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}.$$

2°. En considérant les sommes de Riemann de f sur [0,b], calculer $\int_0^b x^2 dx$.

Exercice 13. 1°. Montrer que pour tout $n \in \mathcal{N}^*$, on a :

$$\sum_{j=1}^{n} \sin(jx) = \frac{\sin(\frac{n}{2}x)\sin(\frac{n+1}{2}x)}{\sin(\frac{x}{2})}.$$

2°. En considérant les sommes de Riemann, calculer $\int_0^\pi \sin(x) dx$.

Exercice 14. Montrer que les suites suivantes convergent et déterminer leurs limites :

1.
$$u_n = \frac{1}{n^3} \sum_{k=1}^n k^2 \sin(\frac{k\pi}{n})$$

2.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k \sqrt[n]{e^{-k}}$$

3.
$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

4.
$$u_n = \sum_{k=n+1}^{2n} \frac{n}{k^2}$$

5.
$$u_n = \frac{1}{n^2} \left(\prod_{k=1}^n (n^2 + k^2) \right)^{\frac{1}{n}}$$

6.
$$u_n = \frac{1}{n} \left(\prod_{p=1}^n (n+p) \right)^{\frac{1}{n}}$$

7.
$$u_n = \frac{\sum_{k=0}^{n-1} \frac{2n^2 + kn}{n^2 + (n+k)^2}}{\sum_{k=0}^{n-1} \sqrt{1 - \frac{k}{n}}}$$

8.
$$u_n = \frac{1}{n^{\frac{3}{2}}} \sum_{k=1}^n E(\sqrt{k}).$$

AUTRES EXERCICES

Exercice 15 (Intégrales de Wallis.). On pose pour tout entier naturel $n:W_n:=$ $\int_{a}^{\frac{\pi}{2}} \cos^{n}(t) dt.$

- 1. Montrer que $W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.
- 2. Montrer que $W_{n+2} = \frac{n+1}{n+2} W_n$ puis en déduire une expression de W_{2p} et W_{2p+1}
- 3. Après avoir calculé nW_nW_{n+1} pour tout $n\in\mathbb{N}$ et montré que $W_n\sim W_{n+1}$ lorsque n tend vers $+\infty$, proposer un équivalent de W_n lorsque n tend vers $+\infty$.

Exercice 16 (Formule de Taylor avec reste intégral). Soit $n \in \mathbb{N}$ et soit f de classe \mathcal{C}^{n+1} $\operatorname{sur}\left[a,b\right]$

1. Montrer que
$$f(b) = \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!} + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$
.

2. Applications:

— Montrer que
$$\forall x \in \mathbb{R}_+^*, \ \forall n \in \mathbb{N}, \ e^x > \sum_{k=0}^n \frac{x^k}{k!}.$$

— Montrer que
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = \ln 2$$
.

Exercice 17. Calculer leur primitives suivantes et en donner l'ensemble de définition :

Exercise 17. Calcular leur primitives suivantes et en donner l'ensemble de definition :
$$\int \frac{1}{x-i} \, dx, \qquad \int \frac{3x+2}{x^2+x+1} \, dx, \qquad \int \frac{x}{x^2+x+1} \, dx,$$
$$\int \frac{x}{(x^2+x+1)^3} \, dx, \qquad \int \frac{x}{2x^2-6x+4} \, dx, \qquad \int \frac{1}{x^n-1} \, dx \text{ où } n \in \mathbb{N}^*$$
$$\int \cos^3(x) \sin^2(x) \, dx, \qquad \int \frac{dx}{\sin(x)} \qquad \int \sin^2(x) \cos^4(x) \, dx,$$
$$\int \cosh^3(x) \sinh^4(x) \, dx, \qquad \int \frac{\cos^3(x)}{2+3\sin(x)} \, dx, \qquad \int \frac{dx}{\sin(x)},$$

Exercice 18. Dire, en le justifiant, si les affirmations suivantes sont vraies ou fausses.

- 1. Une fonction en escalier est une fonction continue par morceaux.
- 2. La fonction $\begin{bmatrix}]0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x} \end{bmatrix}$ se prolonge en une fonction continue par morceaux sur [0,1].
- 3. La fonction $x \longmapsto x \lfloor x \rfloor$ est continue par morceaux sur tout segment.
- 4. Une fonction définie sur [0,1] est continue si et seulement si elle est uniformément continue.
- 5. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble des fonctions continues par morceaux définies sur [0,1] et à valeurs dans \mathbb{K} est un \mathbb{K} -espace vectoriel.
- 6. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble des fonctions continues par morceaux définies sur [0,1] et à valeurs dans \mathbb{K} est stable par produit.
- 7. L'ensemble des fonctions continues par morceaux définies sur [0,1] et à valeurs dans \mathbb{R} est stable par prise de la valeur absolue.
- 8. Pour toutes fonctions en escalier $f,g:[0,1]\longrightarrow \mathbb{R},$ $\int_{[0,1]}fg=\int_{[0,1]}f\times\int_{[0,1]}g.$
- 9. Si $f:[0,1] \longrightarrow \mathbb{R}$ est continue par morceaux, alors f est bornée.

Exercice 19. Soient a < b deux réels.

- 1. Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue telle que $\int_a^b f = 0$. Montrer que f s'annule au moins une fois sur [a,b].
- 2. Le résultat est-il encore vrai si l'on suppose seulement f à valeurs dans \mathbb{C} ?
- 3. Le résultat est-il encore vrai si l'on suppose seulement f continue par morceaux?

Exercice 20. Soient a < b deux réels.

- 1. Soit f continue sur [a, b] à valeurs positives telle que $\int_{[a, b]} f = 0$. Montrer que f est identiquement nulle sur [a, b].
- 2. Le résultat est-il encore vrai si f n'est pas supposée à valeurs positives?