Autoencoder

- Unsupervised learning where Neural networks are subject to the task of representation learning (i.e. Encoding of input data / inner structure of the data)
- Impose a **bottleneck** in the network
- The bottleneck forces a compressed knowledge representation of the input

Autoencoder

- Input network re constructed output (should be identical to the input)
 - Network may eventually learn Identity mapping
 - Does not learn the representation
- · Compressed representation is required
 - Done by the bottleneck layer

Autoencoder

- Assumption High degree of correlation exists in the data for the compressed domain representation
- Two different functions required
 - Encoding (input to compressed representation)
 - Decoding (compressed representation to the reconstructed output)

Autoencoder

- No. of nodes in the bottleneck layer is much less than the no. of nodes in the input layer
 - For d dimension, it should be d nodes
- No. of nodes in the input layer is the same as the number of nodes in the output layer

Expectation

• Sensitive enough to input for accurate reconstruction

Expectation

- Sensitive enough to input for accurate reconstruction
- Insensitive enough that it does not memorize or overfit the training data

Loss function = L (X, \hat{X}) + Regularizer

Regularizer learns salient features

- Higher dimensional data is represented in to Lower dimensional space representation
- One of the functionality of Autoencoder is dimensionality reduction of the input data

Autoencoder Training

- Layer by Layer Pre training
 - To reduce complexity in learning
 - To reduce no. of weights to learn at a time

Autoencoder Training

- The salient features (reduced features) can be used for various applications
 - Classification
 - Segmentation (pixel classification)

Autoencoder

• Sparse Autoencoder

- Sparse Autoencoder
 - Interesting features can be learnt even when number of nodes in the hidden layer is large
 - Introduces sparsity constraint on the hidden layer nodes that penalize activations within a layer
 - Network learns encoding-decoding that relies on activating a small number of neurons
 - It regularize the activations, not the weights

Autoencoder

• Sparse Autoencoder – Sparsity constraint

Sigmoid activation function

 $a_i^h \to \text{Activation of } j^{th} \text{ Neuron in hidden layer h}$

 $a_j^h \rightarrow 1 \Rightarrow$ Neuron is active

Average activation $\rightarrow \hat{\rho}_j = \frac{1}{m} \sum_{i=1}^m \alpha_j^h(x_i)$

Sparsity parameter (p) degree of sparsity that we want to impose on the network layer

Constraint $\rightarrow \hat{\rho}_j = \rho$

Usually kept very low

 $\rho \rightarrow$ sparsity parameter (typically a small value)

Autoencoder encoder – Sparsity constr

Sparse Autoencoder – Sparsity constraint

 $\begin{aligned} \text{Regularizer:} \quad & \sum_{j=1}^{N} \left[\rho \log \frac{\rho}{\hat{\rho}_{j}} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_{j}} \right] \implies \sum_{j=1}^{N_{b}} KL(\rho \parallel \hat{\rho}_{j}) \end{aligned} \\ \frac{1}{\int_{sparse} (W)} = L(X, \hat{X}) + \lambda \sum_{j=1}^{N} KL(\rho \parallel \hat{\rho}_{j}) \end{aligned}$

Back propagation algorithm can be applied to optimize the overall function

Regularization term: KL Divergence between two distributions $(\rho \text{ and } \hat{\rho})$

Complete Loss function

Autoencoder

• Sparse Autoencoder – Sparsity constraint Back propagation

$$\boldsymbol{\delta}_{i}^{k} = \boldsymbol{O}_{i}^{k} \big(1 - \boldsymbol{O}_{i}^{k} \big) \sum_{j=1}^{M_{k+i}} \hat{\boldsymbol{O}}_{j}^{k+i} \boldsymbol{W}_{ij}^{k+1}$$

$$\mathcal{S}_i^k = O_i^k (1 - O_i^k) \Biggl[\Biggl(\sum_{j=1}^{M_{k+1}} \partial_i^{k+1} W_{ij}^{k+1} \Biggr) + \lambda \Biggl(-\frac{\rho}{\hat{\rho}_i} + \frac{1-\rho}{1-\hat{\rho}_i} \Biggr) \Biggr]$$

Autoencoder

- Sparse Autoencoder Sparsity constraint
- Even though the number of nodes in hidden layer is large, but still it learns compressed domain representation
 - Because with the help of sparsity constraint, number of nodes to be active is controlled
 - It learns salient features and not a simple identity mapping
 - Different inputs having particular feature will make a particular node active in the hidden layer

Autoencoder

· Denoising Autoencoder

- Denoising Autoencoder
- The autoencoder learns generalizable encoding decoding scheme
 - While training, use corrupt/noisy data as input but output as uncorrupted original data
 - The model can not memorize the training data as input and target output is not same any more

Autoencoder

• Denoising Autoencoder

Autoencoder

• Contractive Autoencoder

Autoencoder

- · Contractive Autoencoder
 - For similar inputs learned encoding (compress domain representation) should also be similar
 - Hidden layer activation variation with input data should be small
 - Effectively the Model learns to contract a neighbourhood of inputs to a small neighbourhood of outputs

Autoencoder

- · Contractive Autoencoder
 - A contractive autoencoder makes this encoding less sensitive to small variations in its training dataset.
 - This is accomplished by adding a regularizer, or penalty term, to whatever cost or objective function the algorithm is trying to minimize.
 - The end result is to reduce the learned representation's sensitivity towards the training input.

Applications

· Image inpainting

- Autoencoder learns salient features. From them, it can reconstruct the input
- It can remove corrupted region from the input

Applications

- To detect/identify Abnormal Event
 - On a road, only pedestrians are allowed to walk
 - While training, the encoder is given only the proper sequences, i.e. only pedestrians are present
 - While in testing, if any car comes on that pedestrian road, car can not be properly reconstructed (as it was never given while training)
 - So, in output the region where the reconstructed error is very large, that region has some Abnormal Event

Regularization

- Regularization is a set of techniques that can prevent overfitting in neural networks and thus improve the accuracy of a Deep Learning model when facing completely new data from the problem domain
 - L1 regularizer
 - L2 regularizer
 - Dropout

Regularization

 Regularization refers to a set of different techniques that lower the complexity of a neural network model during training, and thus prevent the overfitting