

Computer Science Fundamentals

Number Systems – Conversions

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Overview

- Place-value numeral systems (Stellenwertsysteme)
- Conversion of
 - integers (ganze Zahlen)
 - fractional numbers (gebrochene Zahlen)

Number Representation

- Focus: efficient and reversible mapping between numbers and bit sequences
- Bit sequences of a fixed length $N \rightarrow 2^N$ numbers can be represented
- Common choices are N = 8, 16, 32 or 64
- Using bit sequences of length N we can code for example
 - the natural numbers from 0 to $2^{N} 1$, or
 - the integers between -2^{N-1} und $2^{N-1} 1$, or
 - an interval of the real numbers with limited accuracy.

Place-value Numeral Systems

- Also called positional numeral system or positional/place-value notation
- The value of a number depends on the **position** of a digit
- Advantage: simple calculation rules
- Examples:
 - Dual system (also: Binary system)
 - Octal system
 - Decimal system
 - Hexadecimal system

Place-value Notation – Natural Numbers

- a positional system with base B is a numeral system, in which a number is broken down according to powers of B
- A natural number n is represented by the following sum:

$$n = \sum_{i=0}^{N-1} b_i B^i$$

- $B = \text{Base of the numeral system } (B \in \mathbb{N}, B \ge 2),$
- $b_i = \text{digits } (b_i \in \mathbb{N}_0, 0 \le b_i < B)$,
- N = number of digits

Decimal System

Representation of an integer z

- Sum of powers of base 10
- $z = a_n 10^n + a_{n-1} 10^{n-1} + ... + a_2 10^2 + a_1 10^1 + a_0 10^0$, where a_0 , a_1 , a_2 , ... $\in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Example

$$4711 = 4 \cdot 10^{3} + 7 \cdot 10^{2} + 1 \cdot 10^{1} + 1 \cdot 10^{0}$$

= $4 \cdot 1000 + 7 \cdot 100 + 1 \cdot 10 + 1$

Dual System

- Representation of numbers by base 2 using the digits {0, 1}
- For example, the bit sequence 1101 has the numerical value:

$$1101 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1$$

$$= 13$$

Notation:

$$1101_2 = 13_{10}$$

Octal System

- Disadvantage of dual system: very long numbers, therefore difficult to read/remember
 - Idea: Combine a certain number of binary digits
- Octal system
 - 3 binary digits are combined into a single octal digit
 - Representation of numbers by base $2^3 = 8$ using digits $\{0, 1, 2, 3, 4, 5, 6, 7\}$
 - Examples

$$4711_8 = 4 \cdot 8^3 + 7 \cdot 8^2 + 1 \cdot 8^1 + 1 \cdot 8^0 = 2505_{10}$$

$$53_{10} = 110 \ 101_2 = 65_8$$

Hexadecimal System

- Even more compact number representation
 - 4 binary digits are combined into a hexadecimal one
 - Representation of numbers by base 2⁴ = 16 using digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Examples

$$53_{10} = 0011 \ 0101_2$$

= 35_{16}

$$4711_8 = 100 \ 111 \ 001 \ 001_2$$

= $1001 \ 1100 \ 1001_2$
= $9C9_{16}$

Conversion from any Base to Decimal

- can be done using the sum equation directly: $n = \sum_{i=0}^{N-1} b_i B^i$
- or, more efficiently, using Horner's Scheme:

$$n = \sum_{i=0}^{N-1} b_i B^i = \left(\cdots \left(\left((b_{N-1} \cdot B + b_{N-2}) \cdot B + b_{N-3} \right) \cdot B + b_{N-4} \right) \cdot B + \cdots + b_1 \right) \cdot B + b_0$$

$$1578_{10} = ((1 \cdot 10 + 5) \cdot 10 + 7) \cdot 10 + 8$$

$$754_8 = (7 \cdot 8 + 5) \cdot 8 + 4$$

= 492_{10}

Exercise

Convert the number 2375₉ to decimal using Horner's Scheme.

Conversion from Decimal to any Base

- Tables
- Direct methods
- Repeated division by base

Direct Methods: Tables

Can be used for small numbers

Decimal	Dual	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	\mathbf{C}
13	1101	15	D
14	1110	16	${ m E}$
15	1111	17	\mathbf{F}

Direct Methods: Decomposition (by Integer Division)

Conversion from Decimal to Dual

- Divide the decimal number to be converted by the greatest power of 2 less than or equal to that decimal number; write down a 1 for the leftmost (highest) binary digit
- Divide the result by the next smaller power of 2 (result – 0 or 1 – indicates the next binary digit)
- Proceed until division by $2^0 = 1$ terminates the procedure

This is basically a decomposition of the decimal into a sum of powers of 2

Direct Methods: Decomposition Example

Convert 116₁₀ to binary

$$\rightarrow$$
 116₁₀ = 111 0100₂

Conversions between **Dual system and Octal system**

• To convert a number represented in the dual system to the octal system, so-called dual triads (groups of three) are formed starting from the right.

Dual	110	111	001	110	010
Octal	6	7	1	6	2

• When converting an octal number into its dual representation, we use the opposite way

Octal	3	2	1	5
Dual	011	010	001	101

Direct Methods: Dual ↔ Hexadecimal

Conversions between **Dual system and Hexadecimal system**

• To convert a number represented in the dual system to the hexadecimal system, so-called dual tetrades (groups of four) are formed starting from the right.

... and for Hex → Dual:

Exercises

Convert the number 2E4₁₆ to dual as well as to decimal

Convert the number 753₈ to dual as well as to hexadecimal

• Convert the number 110101111111111010₂ to octal as well as to hexadecimal

Repeated Division by Base

Conversion from decimal system to any base

- Continued division of a decimal number by the desired base
- returns the new digits as a division remainder

Algorithm to convert a decimal number x to a numeral system with base B:

- 1. x : B = y remainder z
- 2. Make y the new x
 - if this x is not equal to 0, proceed with step 1,
 - otherwise proceed with step 3
- 3. The resulting remainders z written read bottom to top = left to right are the converted number

Repeated Division by Base – Example

•
$$43_{10} = ?_2$$

X		В	\	/	Z	
43	:	2	=	21	Rem.	1
21	:	2	=	10	Rem.	1
10	:	2	=	5	Rem.	0
5	:	2	=	2	Rem.	1
2	:	2	=	1	Rem.	0
1	:	2	=	0	Rem.	1

The remainders z written from bottom to top provide the dual number you are looking for.

• Result: 101011₂

Exercise

Convert the number 10172_{10} using repeated division by base to the dual system as well as the hexadecimal system

Place-value Notation – Fractions

- For fractions, a point separates the integer part of a number from the fractional part.
- A fractional number n is represented by the following sum: $n = \sum_{i=-M}^{N-1} b_i B^i$
 - $B = \text{Base of the numeral system } (B \in \mathbb{N}, B \ge 2),$
 - $b_i = \text{digits } (b_i \in \mathbb{N}_0, 0 \le b_i < B),$
 - N = number of digits to the left of the point
 - M = number of digits to the right of the point

Decimal Fractions – Examples

$$17,05_{10} = 1 \cdot 10^{1} + 7 \cdot 10^{0} + 0 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

$$3758,0_{10} = 3 \cdot 10^3 + 7 \cdot 10^2 + 5 \cdot 10^1 + 8 \cdot 10^0$$

$$9,702_{10} = 9 \cdot 10^{0} + 7 \cdot 10^{-1} + 0 \cdot 10^{-2} + 2 \cdot 10^{-3}$$

$$0,503_{10} = 0.10^{0} + 5.10^{-1} + 0.10^{-2} + 3.10^{-3}$$

Converting Pure Fractions to Decimal

• A pure fraction n (n < 1) can be represented using Horner's Scheme as

$$n = \sum_{i=-M}^{-1} b_i B^i = \frac{1}{B} \left(b_{-1} + \frac{1}{B} \left(b_{-2} + \frac{1}{B} \left(b_{-3} + \dots + \frac{1}{B} \left(b_{-M+1} + \frac{1}{B} b_{-M} \right) \right) \right) \right)$$

Examples

$$0,193_{10} = \frac{1}{10} \cdot \left(1 + \frac{1}{10} \cdot \left(9 + \frac{1}{10} \cdot 3 \right) \right)$$

$$0.011_2 = \frac{1}{2} \cdot \left(0 + \frac{1}{2} \cdot \left(1 + \frac{1}{2} \cdot 1 \right) \right) = 0.375_{10}$$

Converting Pure Fractions from Decimal

Algorithm for converting the fractional part of a decimal number to a system with base B:

- 1. $x \cdot B = y$ overflow z (z = integer part of y, i.e., left of decimal point)
- 2. Make fractional part of y the new x
 - if this new x is not equal to 0, and more fractional digits are required, go to step 1,
 - otherwise proceed to step 3
- 3. Write down the determined overflow-digits from top to bottom on the right side of "0." to get the corresponding converted number

Converting Pure Fractions from Decimal – Example

• $0.34375_{10} = ?_2$

X	В		У	<u>Z</u>	
0.34375	•	2 =	0.6875	overflow	0
0.6875	•	2 =	1.375	overflow	1
0.375	•	2 =	0.75	overflow	0
0.75	•	2 =	1.5	overflow	1
0.5	•	2 =	1.0	overflow	1
0.0	•	2 =	0.0	overflow	0

The overflows z written from top to bottom after 0. provide the dual number you are looking for.

• Result: 0.01011₂

Converting Pure Fractions from Decimal

Some fractional numbers that can be represented exactly in the decimal system cannot be represented exactly as a dual number

- Typical example $0.1_{10} = 0.0\ 0011\ 0011\ ..._2$
- Periodic sequence of digits, repeating bit pattern 0011
- This leads to a loss of accuracy in the computer

X	E	3	У	Z	
0.1	•	2 =	= 0.2	overf.	0
0.2	•	2 =	0.4	overf.	0
0.4	•	2 =	= 0.8	overf.	0
0.8	•	2 =	= 1.6	overf.	1
0.6	•	2 =	1.2	overf.	1
0.2	•	2 =	0.4	overf.	0
0.4	•	2 =	= 0.8	overf.	0
0.8	•	2 =	1.6	overf.	1
0.6	•	2 =	= 1.2	overf.	1

Converting Pure Fractions from Decimal

- The other way around: **All** pure fractions that can be represented exactly in the dual system can also be represented exactly as a decimal number
- General: Any rational number p/q with gcd(p, q) = 1 can be represented exactly to base B, if all prime factors of q are also prime factors of B

Examples

```
• 1/3_{10} = 0.33333...<sub>10</sub>
```

• $1/3_{10} = 0.010101..._2$

• $1/3_{10} = 0.1_3$

• $1/10_{10} = 0.1_{10}$

• $1/10_{10}$ = 0.000110011...₂

3 is not a prime factor of 10

3 is not a prime factor of 2

3 is a prime factor of 3

2 and 5 are prime factors of 10

5 is not a prime factor of 2

Convert the following fractional numbers

•
$$0.375_{10} = dual$$
?

•
$$0.25_{10}$$
 = in the base 5 system?

•
$$0.19_{10}$$
 = hexadecimal?

Converting Non-pure Fractional Numbers

- Split the number
 - into its integer part
 - and its fractional part, and convert separately.
- Example

$$12.25_{10} = 1100.01_2$$

integer part

$$12_{10} = 1100_2$$

fractional part

$$0.25_{10} = 0.01_2$$

Exercise

Convert 39.6875₁₀ to binary as well as the hexadecimal system.