UNIVERSIDADE FEDERAL DO ABC

BC0003 - Bases Matemáticas

B - Noturno, Prof. Vladimir Perchine **Prova - 1 (gabarito)**

1. Sejam P e Q as proposições "eu tenho um cachorro" e "eu tenho um gato". Escreva em português as frases correspondentes à proposição $P' \to Q$, à negação e à contraposição dela.

 $P' \to Q$: Se eu não tenho um cachorro, então tenho um gato.

Negação $P' \wedge Q'$: Não tenho nem cachorro, nem gato.

Contraposição $Q' \to P$: Se eu não tenho um gato, então tenho um cachorro.

2. Determine o conjunto $C^C \cap (A \cup B)$, onde $A = \mathbb{Z}$, $B = \{x \in \mathbb{R}, x^2 > 2\}$ e $C = \{x \in \mathbb{R}, x \geq 0\}$.

$$\begin{split} A \cup B &= (-\infty, -\sqrt{2}) \cup \{-1, 0, 1\} \cup (\sqrt{2}, \infty), \quad C^C = (-\infty, 0) \\ C^C \cap (A \cup B) &= (-\infty, -\sqrt{2}) \cup \{-1\} \end{split}$$

3. Prove que para todo $n \in \mathbb{N}$, o número $n^5 - n$ é divisível por 5.

Se n=1, temos $1^5-1=0$, e zero é divisível por 5. Supondo que a afirmação seja válida para algum $n, n^5-n=5k, k\in\mathbb{N}$, temos

$$(n+1)^5 - (n+1) = (n^5 - n) + 5n^4 + 10n^3 + 5n = 5(k+n^4 + 2n^3 + n)$$

Logo, pelo principio de indução, a identidade é válida para todo n.

4. Resolva a inequação |-x+2| < 2x+1

Se $x \le 2$, temos $-x + 2 < 2x + 1 \Rightarrow x > 1/3$. Logo, as soluções nesta região são (1/3, 2].

Se x > 2, temos $x - 2 < 2x + 1 \Rightarrow x > -3$. Logo, as soluções nesta região são $(2, \infty)$.

Juntando as duas regiões, temos a resposta final x > 1/3.

5. Determine o domínio da função $f(x) = \sqrt{2 + x - x^2}$

O domínio é determinado pela ineqação $2+x-x^2 \geq 0,$ ou $(x-2)(x+1) \leq 0.$ Logo, $x \in [-1,2].$