1) Descreva sobre as seguintes topologias de rede:

- Topologia Estrela

É o tipo de configuração mais comum. A rede é organizada de forma que os nós sejam conectados a um hub central, que atua como um servidor. O hub gerencia a transmissão de dados pela rede. Ou seja, qualquer dado enviado pela rede viaja pelo hub central antes de terminar em seu destino.

PRÓS:

- Gerenciamento conveniente de um local central
- Se um nó falhar, a rede ainda funciona
- Os dispositivos podem ser adicionados ou removidos sem interromper a rede
- Mais fácil de identificar e isolar problemas de desempenho

CONTRAS:

- Se o hub central falhar, toda a sua rede cairá
- O desempenho e a largura de banda são limitados pelo nó central
- Pode ser caro para operar

- Topologia Anel, padrões Token Ring e FDDI

Topologia Anel

Os nós são configurados em um padrão circular. Os dados viajam por cada dispositivo à medida que percorrem o anel. Em uma grande rede, repetidores podem ser necessários para evitar a perda de pacotes durante a transmissão. As topologias em anel podem ser configuradas como anel único (half-duplex) ou anel duplo (full-duplex) para permitir que o tráfego flua em ambas as direções simultaneamente.

PRÓS:

- Custo-beneficio
- Barato para instalar
- Fácil de identificar problemas de desempenho

CONTRAS

- Se um nó cair, ele pode derrubar vários nós com ele
- Todos os dispositivos compartilham largura de banda, o que pode limitar a taxa de transferência
- Adicionar ou remover nós significa tempo de inatividade para toda a rede

Padrões Token Ring

O **Token Ring** é um protocolo de rede que utiliza a topologia em anel. Neste sistema, um "token" (uma pequena mensagem) circula pelo anel e apenas o dispositivo que possui o token pode enviar dados. Isso ajuda a evitar colisões de dados e garante uma transmissão ordenada e eficiente. O padrão Token Ring foi amplamente utilizado em redes locais (LANs) antes de ser substituído por tecnologias mais modernas.

Funcionamento do Token Ring:

- A rede é configurada em forma de anel e um token circula constantemente entre os dispositivos.
- Quando um dispositivo deseja transmitir dados, ele deve "capturar" o token. Ao fazê-lo, ele insere os dados na rede e os envia para o próximo dispositivo.
- Quando o token chega ao destinatário, o dispositivo processa os dados e o token continua a circular pela rede.

Vantagens do Token Ring:

- Evita colisões: Como apenas um dispositivo pode transmitir dados de cada vez, não há colisões de pacotes, o que melhora o desempenho.
- Controle de tráfego: O sistema de token assegura que a rede funcione de forma ordenada.

Desvantagens do Token Ring:

- Custo mais alto: As redes Token Ring tendem a ser mais caras que as redes Ethernet devido à complexidade do hardware.
- **Baixa escalabilidade**: A medida que a rede cresce, o desempenho pode ser afetado, pois o token precisa percorrer um número maior de dispositivos.

FDDI (Fiber Distributed Data Interface)

O **FDDI** é uma tecnologia de rede que também utiliza a topologia em anel, mas foi projetada para ser mais rápida e eficiente, com maior capacidade de banda e alcance. Ele utiliza fibras ópticas para a transmissão de dados, o que permite velocidades muito mais altas e maior resistência a interferências eletromagnéticas em comparação com os cabos de cobre tradicionais. FDDI é capaz de suportar taxas de transferência de dados muito altas e é frequentemente usado em redes de área ampla (WANs) e em grandes redes locais (LANs). Ele oferece alta confiabilidade e largura de banda, tornando-se uma escolha popular para redes que exigem alta performance.

Características do FDDI:

- Velocidade: Suporta até 100 Mbps, o que é muito superior às redes Ethernet tradicionais.
- Uso de fibra ótica: A fibra ótica permite maior largura de banda e distância de transmissão em relação a outras tecnologias como o Token Ring.
- **Topologia de anel duplo**: O FDDI geralmente usa dois anéis (primário e secundário). Se um anel falhar, o outro assume automaticamente, aumentando a confiabilidade da rede.

Vantagens do FDDI:

- Alta largura de banda: O FDDI é ideal para redes de alto desempenho que exigem grandes volumes de dados.
- **Redundância**: O uso de anéis duplos oferece alta disponibilidade e recuperação rápida em caso de falhas
- Maior alcance: Pode cobrir distâncias de até 200 km (com fibras ópticas), enquanto outras tecnologias, como o Token Ring, são limitadas a distâncias menores.

Desvantagens do FDDI:

- **Custo mais elevado**: A infraestrutura necessária para o FDDI é mais cara devido ao uso de fibra ótica e à necessidade de equipamentos especializados.
- Complexidade: A configuração e manutenção de redes FDDI podem ser mais complexas do que outras tecnologias.

Característica	Topologia Anel	Token Ring	FDDI
Tipo de conexão	Circular, sequencial	Anel, com token	Anel duplo, fibra ótica
Velocidade	Baixa a moderada	Até 16 Mbps	Até 100 Mbps
Custo	Baixo a moderado	Médio	Alto
Distância	Limitada	Limitada	Até 200 km
Escalabilidade	Média	Baixa	Alta
Redundância	Não	Não	Alta (anéis duplos)

Conclusão

- **Token Ring** e **FDDI** usam a topologia anel, mas FDDI é mais avançado em termos de desempenho, capacidade de banda e confiabilidade.
- A principal diferença é que **FDDI** usa fibra ótica e oferece redundância através de dois anéis, sendo uma solução mais robusta e adequada para ambientes que exigem altas taxas de transmissão.
- **Token Ring**, embora mais simples e menos custoso, tem limitações em termos de velocidade e escalabilidade, o que levou ao seu declínio em favor de tecnologias como **Ethernet** e **FDDI**.

2) Rede Peer-to-Peer e Topologia Rede Estrela

- Descreva sobre o conceito básico de uma de Rede P2P, como é o seu funcionamento?

A **rede Peer-to-Peer** (P2P) é uma rede descentralizada onde cada dispositivo (ou "peer") tem tanto a capacidade de servidor quanto de cliente. Em uma rede P2P, não há um servidor central que controle as operações, e todos os nós (peers) podem compartilhar recursos e dados diretamente entre si.

Funcionamento de uma Rede P2P:

Em uma rede P2P, cada computador ou dispositivo é chamado de "peer" (par), e todos têm funções semelhantes, podendo ser clientes e servidores ao mesmo tempo. Isso significa que os peers podem compartilhar arquivos, processar dados e até mesmo oferecer serviços uns aos outros sem a necessidade de um servidor central. Quando um peer precisa acessar um recurso (como um arquivo), ele pode solicitar diretamente a outro peer na rede, sem que haja um intermediário.

Principais características da Rede P2P:

- Descentralização: Não existe um ponto único de controle. Todos os dispositivos são responsáveis por suas ações.
- **Compartilhamento direto**: Os peers podem compartilhar recursos como arquivos, impressoras, internet e poder de processamento diretamente com outros peers.
- **Escalabilidade**: A rede pode crescer de forma flexível, pois à medida que mais peers entram na rede, mais recursos ficam disponíveis.

• **Tolerância a falhas**: Se um peer falhar, a rede como um todo não é comprometida, pois outros peers ainda podem funcionar.

Exemplos de Redes P2P:

- Compartilhamento de arquivos: Aplicações como BitTorrent, em que os usuários compartilham arquivos diretamente entre si.
- **Comunicações e VoIP**: Redes P2P como Skype, onde as chamadas podem ser feitas diretamente entre os dispositivos.
- **Blockchain**: Redes descentralizadas como Bitcoin, onde a validação e o registro de transações são feitos por diversos nodes em um sistema P2P.

Vantagens de uma Rede P2P:

- **Descentralização**: Não há um ponto único de falha, tornando a rede mais resistente a falhas.
- Economia de custos: Não há a necessidade de servidores caros ou manutenção centralizada.
- **Escalabilidade**: A rede pode crescer de forma simples à medida que novos dispositivos entram.

Desvantagens de uma Rede P2P:

- **Segurança**: Como não há um controle centralizado, é mais difícil garantir a segurança, especialmente contra malware e ataques.
- **Desempenho inconsistente**: O desempenho pode variar dependendo do número de peers ativos e da qualidade das conexões.
- **Gerenciamento complexo**: Gerenciar a rede pode ser mais difícil, pois não há uma autoridade central para controlar as configurações.

- Descreva sobre Arquitetura cliente-servidor versus arquitetura P2P (quais são as diferenças entre as duas redes)

A arquitetura cliente-servidor e a arquitetura P2P são dois modelos de rede diferentes com características distintas no que diz respeito à forma como os dispositivos se comunicam, trocam dados e gerenciam recursos.

Arquitetura Cliente-Servidor

Na arquitetura **cliente-servidor**, há uma clara divisão de funções entre **clientes** e **servidores**. O servidor é o centro de controle da rede e é responsável por fornecer recursos, serviços e dados para os clientes. Os clientes solicitam informações ou serviços ao servidor, que processa as requisições e responde aos clientes.

Características da Arquitetura Cliente-Servidor:

- Centralização: O servidor centraliza a gestão dos dados, aplicativos e serviços.
- Cliente solicita, servidor responde: O cliente envia uma requisição, e o servidor processa e envia a resposta.
- **Dependência do servidor**: Se o servidor falhar, os clientes não poderão acessar os recursos ou serviços fornecidos.

Exemplo de Rede Cliente-Servidor:

- Web: Em uma rede da web, os navegadores (clientes) solicitam páginas a servidores web.
- **Banco de Dados**: Em um sistema de banco de dados, os clientes acessam e manipulam dados que estão armazenados em um servidor centralizado.

Vantagens da Arquitetura Cliente-Servidor:

- Segurança centralizada: A segurança pode ser mais facilmente controlada, pois os dados estão centralizados.
- Gerenciamento simplificado: Como o servidor controla as operações, é mais fácil de gerenciar a rede.

• **Desempenho consistente**: Como a comunicação é mediada por servidores, o desempenho pode ser mais estável.

Desvantagens da Arquitetura Cliente-Servidor:

- **Ponto único de falha**: Se o servidor falhar, toda a rede pode ser afetada.
- **Escalabilidade limitada**: O servidor precisa ser dimensionado para lidar com um grande número de clientes simultâneos.
- Custos de manutenção: Manter e atualizar servidores pode ser caro.

Arquitetura Peer-to-Peer (P2P)

Já na **arquitetura P2P**, cada dispositivo tem as mesmas capacidades de servidor e cliente, e não há um servidor central. Cada nó (peer) pode fornecer e solicitar recursos diretamente de outros nós da rede, tornando o sistema descentralizado.

Características da Arquitetura P2P:

- Descentralização: Não existe um servidor central; todos os peers são iguais e podem atuar como clientes e servidores.
- **Autonomia**: Cada peer pode compartilhar recursos diretamente com outros peers, sem a necessidade de intermediação.
- Escalabilidade flexível: À medida que mais peers se juntam à rede, mais recursos ficam disponíveis.

Exemplo de Rede P2P:

- **BitTorrent**: Para compartilhamento de arquivos, onde cada peer compartilha e recebe partes do arquivo de outros peers.
- **Skype**: Cada usuário pode tanto fazer chamadas (cliente) quanto fornecer o serviço de comunicação (servidor).

Vantagens da Arquitetura P2P:

- **Descentralização**: Não há um ponto único de falha, tornando a rede mais resiliente.
- Maior escalabilidade: A rede pode crescer facilmente à medida que mais peers se juntam.
- Eficiência de recursos: Cada peer pode fornecer recursos, diminuindo a necessidade de servidores caros.

Desvantagens da Arquitetura P2P:

- **Segurança**: Pode ser mais difícil controlar e garantir a segurança de uma rede P2P, pois não há um servidor centralizado.
- **Gerenciamento complexo**: A administração de uma rede P2P pode ser mais difícil, pois não há um ponto central de controle.

Diferenças Entre Arquitetura Cliente-Servidor e P2P			
Característica	Arquitetura Cliente-Servidor	Arquitetura P2P	
Centralização	Centralizada, com um servidor responsável por gerenciar a rede	Descentralizada, todos os dispositivos são iguais	
Função dos dispositivos	Servidores fornecem recursos, clientes solicitam	Todos os peers podem fornecer e solicitar recursos	
Escalabilidade	Limitada, pois o servidor precisa ser dimensionado para lidar com mais clientes	Mais escalável, pois cada novo peer traz mais recursos	
Segurança	Centralizada, mais fácil de controlar	Mais difícil de garantir, pois não há um controle central	
Custo	Maior custo com servidores e manutenção centralizada	Menor custo, pois não é necessário servidor central	
Ponto de falha	O servidor é um ponto único de falha	Não há ponto único de falha, mais resiliente	

3) Em que tipo de serviço/necessidade o profissional de TI irá optar por uma rede Cliente/Servidor?

Em situações que exigem **centralização**, **controle e segurança**, como:

Hospedagem de sites e web: servidores web para fornecer páginas e serviços online.

- Sistemas de banco de dados: armazenamento e consulta de grandes volumes de dados.
- E-mail corporativo: gerenciamento centralizado de e-mails em empresas.
- Compartilhamento de arquivos: servidores de arquivos para acesso controlado e seguro.
- Autenticação e controle de acesso: gerenciamento de usuários e permissões em redes corporativas.
- Backup de dados: armazenamento centralizado de dados críticos para recuperação.

4) Em que tipo de serviço/necessidade o profissional de TI irá optar por uma rede P2P?

Em situações que demandam descentralização, compartilhamento direto de recursos e Escabilidade flexível, como:

Compartilhamento de arquivos: como em redes BitTorrent.

Comunicação VoIP (ex: Skype, chamadas diretas entre usuários).

Criptomoedas: como Bitcoin, onde a rede distribui o processamento entre peers).

Jogos online: jogos multiplayer com conexões diretas entre jogadores.

Sistemas distribuídos: como o armazenamento em nuvem descentralizado.

5) Modelos de serviço em Nuvem:

- Descreva sobre o Modelos de serviço: IaaS

Infrastructure as a Service (Infraestrutura como Serviço), conhecida como IaaS, é o serviço de computação em nuvem formado por recursos automatizados e escaláveis. Ela se caracteriza por promover a mudança completa da infraestrutura física da empresa que a contrata. Isso significa que os processos de virtualização, rede e servidores são executados pela fornecedora do serviço.

Independentemente da companhia contratada para disponibilizar, a IaaS tem uma estrutura similar, além de apresentar um funcionamento simples. As empresas contratantes podem adquirir recursos conforme a demanda de suas operações.

A finalidade da IaaS é simplificar a rotina das empresas, eliminando a necessidade de configuração ou gerenciamento de uma infraestrutura complexa. Dessa maneira, elas pagam somente pelos recursos que utilizam.

- Descreva sobre o Modelos de serviço: PaaS

Platform as a Service (Plataforma como Serviço), ou PaaS, **é uma estrutura de implantação e desenvolvimento pronta na nuvem**. Logo, a empresa que a contrata se torna responsável apenas pela parte da aplicação.

Geralmente, esse modelo é utilizado na área de desenvolvimento, permitindo que os desenvolvedores construam novos sistemas com base nessas plataformas em nuvem. A PaaS também possibilita ao usuário criar, hospedar e gerenciar um software próprio, exigindo apenas acesso à internet.

O objetivo da PaaS é otimizar o trabalho dos desenvolvedores. Afinal, ela possibilita o desenvolvimento, a execução e o gerenciamento de sistemas, sem a obrigação de manter uma infraestrutura, o que é comum nesse tipo de processo.

- Descreva sobre o Modelos de serviço: SaaS

O *Software as a Service* (Software como Serviço), também chamado de SaaS, se configura como um modelo de armazenamento que dá total acesso ao cliente. Assim, **não há a necessidade de comprar o serviço para utilizá-lo.**

Portanto, todos os recursos são fornecidos pelo provedor, e o cliente só precisa de um login e senha para acessar a plataforma. O usuário pode comprar uma licença para acessar o software disponibilizado na nuvem, formato em que os recursos podem ser limitados. Ele também pode pagar uma taxa fixa ou um valor conforme o uso da plataforma.

O uso de um software SaaS requer acesso à internet e os dados armazenados no local podem ser acessados por meio de qualquer dispositivo. Trata-se de um jeito de as empresas utilizarem tipos de software online, sem ter que instalá-los, fazer manutenção ou atualizá-los.

6) IaaS (Infraestrutura como Serviço):

Desafios:

- Gerenciamento de custos: Embora escalável, o uso indevido pode levar a gastos desnecessários.
- **Segurança:** O compartilhamento de infraestrutura com outros clientes exige atenção para evitar brechas.
- **Dependência de terceiros:** A indisponibilidade do provedor pode afetar os serviços.
- Gerenciamento de recursos: Requer expertise para configurar e otimizar os recursos corretamente.

• **Conformidade e regulamentações:** Certificar-se de que os dados atendem às normas locais e internacionais.

Vantagens:

- **Escalabilidade:** Permite ajustar recursos rapidamente conforme a necessidade.
- Flexibilidade: Usuários têm controle total sobre servidores, armazenamento e rede.
- Custo-benefício: Sem necessidade de investimentos iniciais em hardware.
- Rapidez na implementação: Infraestrutura é provisionada em minutos.
- Confiabilidade: Provedores oferecem backup e alta disponibilidade.

Casos de uso:

- Hospedagem de sites e aplicativos: Servidores virtuais para plataformas online.
- **Testes e desenvolvimento:** Criação de ambientes temporários para desenvolvimento de software.
- Análise de Big Data: Processamento de grandes volumes de dados sem investir em infraestrutura física.
- Recuperação de desastres: Soluções para backup e continuidade de negócios.
- Execução de aplicativos empresariais: Sistemas ERP, CRM e outros.

7. Redes de Computadores e Interligação em Rede

- a) Redes Pessoais (PAN Personal Area Networks): São redes de pequeno alcance que conectam dispositivos pessoais, como smartphones, tablets e laptops. Geralmente utilizam tecnologias como Bluetooth e USB para comunicação entre os dispositivos.
- b) Redes Pessoais sem fio (WPANs Wireless Personal Area Networks): São PANs que utilizam tecnologias sem fio, como Bluetooth, ZigBee e Infrared, para conectar dispositivos pessoais sem a necessidade de cabos.
- c) Redes Locais (LANs Local Area Network): Abrangem uma área geográfica pequena, como uma casa, escritório ou prédio. Utilizam conexões de alta velocidade e são usadas para conectar computadores, impressoras e outros dispositivos dentro dessa área restrita.
- d) Redes Locais sem fio (WLANs Wireless Local Area Network): São LANs que utilizam tecnologias sem fio, como Wi-Fi, para conectar dispositivos dentro de uma área local sem a necessidade de cabos.
- e) Redes Metropolitanas (MANs Metropolitan Area Networks): Cobrem uma área geográfica maior que uma LAN, como uma cidade ou campus universitário. São usadas para conectar várias LANs em uma área metropolitana.
- f) Redes Metropolitanas sem fio (WMANs Wireless Metropolitan Area Networks): São MANs que utilizam tecnologias sem fio para conectar LANs dentro de uma área metropolitana. Tecnologias como WiMAX são comumente utilizadas.
- g) Redes de Longa Distância (WANs Wide Area Networks): Abrangem grandes áreas geográficas, como países ou continentes. Utilizam tecnologias de comunicação de longa distância, como MPLS e Internet, para conectar redes locais e metropolitanas.
- h) Redes de Longa Distância sem fio (WWANs Wireless Wide Area Networks): São WANs que utilizam tecnologias sem fio, como LTE, 5G e satélites, para conectar redes em grandes distâncias.