Analyse I

Mohammed D. Belgoumri

18 août 2021

Table des matières

P	age de garde	1
T_{i}	able des matières	1
1	Droite réelle achevée	2
	Suites numériques	3
	2.1. Généralités	3

Chapitre 1

Droite réelle achevée

Chapitre 2

Suites numériques

2.1 Généralités

Dans la suite de ce chapitre, $(\mathbb{K}, +, \cdot)$ est l'un des deux corps $(\mathbb{R}, +, \cdot)$ ou $(\mathbb{C}, +, \cdot)$.

Définition 1 (Suite numérique).

On appelle une suite numérique toute application $u : \mathbb{N} \to \mathbb{K}$. Une suite numérique est notée $(u_n)_{n \in \mathbb{N}}$ plutôt que :

$$\begin{cases} u: \mathbb{N} \to \mathbb{K} \\ n \mapsto u_n \end{cases}$$

 u_n (l'image de n par cette application) est appelée le terme $g\acute{e}n\acute{e}ral$ de la suite.

Définition 2 (Suite extraite).

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On appelle une suite extraite de $(u_n)_{n\in\mathbb{N}}$ toute suite numérique $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=u_{\varphi(n)}$ où $\varphi:\mathbb{N}\to\mathbb{N}$ est une application croissante.

Théorème et définition 2.1 (Limite d'un suite, convergence, divergence).

— Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. Il existe au plus un seul $l\in\mathbb{K}$ qui vérifie la condition :

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - l| < \varepsilon$$

Un tel l (s'il existe) est appelé la limite de $(u_n)_{n\in\mathbb{N}}$. Il est noté $\lim_{n\to+\infty}u_n$, ou encore $\lim u_n$.

- Une suite est dite *convergente* ssi elle possède une limite $l \in \mathbb{K}$. Dans ce cas on dit que la suite *converge vers* l.
- Une suite qui n'est pas convergente est dite divergente.

$D\'{e}monstration.$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique, $\varepsilon\in]0,+\infty[$ et $l,l'\in\mathbb{K}$ vérifient tous les deux :

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - l| < \varepsilon$$

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - l'| < \varepsilon$$

On en déduit l'existence de $n_1,n_2\in\mathbb{N}$ tels que :

$$\forall n \in \mathbb{N}, \quad n > n_1 \Rightarrow |u_n - l| < \frac{\varepsilon}{2}$$

 $\forall n \in \mathbb{N}, \quad n > n_2 \Rightarrow |u_n - l'| < \frac{\varepsilon}{2}$

En posant $n_0 = \max\{n_1, n_2\}$, on trouve que :

$$\forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |l - l'| = |l - u_n + u_n - l'| \le |u_n - l| + |u_n - l'| < \varepsilon$$

Autrement dit, on a:

$$\forall \varepsilon > 0, \quad |l - l'| < \varepsilon$$

D'où la conclusion : l = l'