3. Analysis of Data Quality

3.1 Python preprocessing

The raw data downloaded from the source is in line-separated JSON format. We first read the data, convert it into a data frame format, and perform data cleaning using python. From 8 columns, we remove the *abstract* column out because the column contains very long string which consumes large memiry and is difficult to interpret and visualize. There are two columns that contain numeric values, **n_citation** and **year**. The **authors** and **references** column contain lists of string values which we convert to string in comma-separated format. The remaining three columns, **id**, **title** and **venue**, has string type values.

As mentioned earlier, we then subset data by selecting the papers from 10 venues with the highest citations for further analysis.

From the subsetted data, we decide to generate the 8th column named **topic** using Latent Dirichlet Allocation (LDA) [http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf] with titles of papers to cluster them into 5 topics. The reason is that we actually found a dataset with labeled fields of study, but it does not contain the information about citations that we need. By systematically generating the topics from our data, we are not only able to find a more interesting pattern in our data, but also create a sample guideline on visualizing similar research paper datasets.

The output file is in feather [https://github.com/wesm/feather] format which can be processed interchangeably between R and python.

3.2 Missing values

The original data contains some missing values in 'reference' column for approximately 17.28% which is the only missing value pattern found in the dataset. We assume that the NaN value results from the fact that the paper has no reference and handle it by replacing with an empty string.

3.3 id column

id is a string column containing unique identity for each research paper. We have to be certain that each id is unique.

```
sum(duplicated(papers$id))
```

```
## [1] 0
```

The id column is not duplicated. We can safely use it to count and join data in further analysis.

3.4 authors column

The **authors** column contains a string with a comma-separated format. For example, *Gareth Beale, Graeme Earl*. We need to convert it into multiple lines, each of which contains a single author name and the other columns remain the same.

```
papers_authors <- papers %>%
    mutate(authors = strsplit(authors, ",")) %>%
    unnest(authors)

ggplot(count(papers_authors, authors), aes(x = n)) +
    geom_bar() +
    coord_cartesian(xlim = c(0,50)) +
    ylab("Frequency") +
    xlab("Number of Authors") +
    ggtitle("Histogram of Number of Authors per paper")
```

Histogram of Number of Authors per paper


```
summary(count(papers_authors, authors)$n)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 1.000 1.988 2.000 172.000
```

From the plot and summary, we found that the number of authors is very skewed. While more than 75% of authors have less than or equal to 2 papers, there are some authors that have published more than a hundred research papers in the 10 conferences.

The names of several authors, especially Chinese authors, are not their full or uniques name such as Wei Wang and Tomasi. As a result, when we aggregate the data, we usually find these names with unusually high frequency. This problem cannot be solved easily using just the cuurent dataset. However, we do not see these names much in our analysis on subsetted data and after using average number instead of frequency.

3.5 venue column

venue is a catgorical string column containing 10 unique values. It is useful to know the distribution of papers among the venues.

```
ggplot(data=papers, aes(fct_rev(fct_infreq(venue)))) +
  geom_bar(stat="count") +
  coord_flip() +
  ylab("Number of Papers") +
  xlab("Venues") +
  ggtitle("Venues and Number of Papers") +
  theme(axis.text.y=element_text(size=rel(0.7)))
```

Venues and Number of Papers

It appears that some of the venues have a significantly higher number of papers than the other especially Lecture Notes in Computer Science, International Conference on Acoustics, Speech, and Signal Processing, and International Conference on Robotics and Automation. When we analyze data using **venue** column, we need to be cautious and use statistics such as mean, median, or distribution to decrease the impact of different volumes between venues.

3.6 n_citation column

 $\textbf{n_citation}$ is a numerical column containing the number of citation of each paper

```
ggplot(data=papers, aes(n_citation)) +
  geom_bar(stat="count") +
  coord_cartesian(xlim = c(0,100)) +
  ylab("Frequency") +
  xlab("Citations") +
  ggtitle("Histogram of Citations per paper")
```

Histogram of Citations per paper

summary(papers\$n_citation)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 4.00 50.00 67.61 50.00 24182.00
```

The number of citation is very skewed ranging from zero to 24,182 citations per paper with mean = 28.88 and median = 12. Moreover, we also found that the frequency of n_citation is unusually high and seems to often be capped at 50. Our assumption is that the data is topcoded at some point of collection process or 50 might be the number of some standards or qualifications of research papers. However, it is difficult to figure out what really happens or extrapolate the data, so we will leave it as it is.

3.7 year column

year is a numerical column containing the number of citation of each paper

```
ggplot(data=papers, aes(year)) +
  geom_bar(stat="count")+
  ylab("Number of Papers") +
  xlab("Year") +
  ggtitle("Number of Papers over Time")
```

Number of Papers over Time


```
count_by_year = papers %>% filter(year <2017) %>% group_by(year) %>% count()

count_by_year$pct = (count_by_year$n / lag(count_by_year$n) -1) * 100

ggplot(data=count_by_year, aes(x=year, y=pct)) +
    geom_bar(stat="identity") +
    ylab('Percent Change') +
    ylim(-100, 100) +
    ggtitle('Yearly Change in Paper Published') +
    theme_grey(14)
```

Yearly Change in Paper Published

The number of papers increases drastically from 1960s to 2000s. However, it dropped sharply in 2007 and remain at roughly the same until 2016. It is also useful to note that the data is collected until 2017. Therefore, the number of papers in 2017 is very small because it is not collected completely at the time. We sometimes exclude the data from 2017 in some visualization.

3.8 title column

title is a discrete numerical column containing the year of publication of each paper

Frequency of Papers with certain Number of Title Length


```
summary(papers$title_length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.000 7.000 9.000 9.493 12.000 50.000
```

The title length of papers is a right-skewed normal distribution with mean = 9.493. Since the title itself is a long text which is difficult to process, we decided to create a column named **title_length** to represent and utilize it further.

3.9 references column

The **references** column contains string with comma-separated format. For example, '8c78e4b0-632b-4293-b491-85b1976675e6', '9cdc54f0-f1a0-4422-ac16-d9164d9371ee'. We need to convert it into mulitiple lines, each of which contains a single author name and the other columns remain the same.

```
papers_reference <- papers %>%
    mutate(references = strsplit(references, ",")) %>%
    unnest(references)

ggplot(count(papers_reference, references), aes(x = n)) +
    geom_bar() +
    coord_cartesian(xlim = c(0,50)) +
    ylab("Frequency") +
    xlab("Number of References") +
    ggtitle("Frequency of Papers with certain Number of References")
```



```
summary(count(papers_reference, references)$n)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 1.000 3.275 3.000 1843.000
```

The median of number of references is as low as 1 which makes us doubt the correctness of the data and decided to verify directly at the actual papers. We found that the number of references a paper references is not correct in the case that it is almost always lower than it should be. This might result from the fact that the referenced papers are not in this database, as a result no id can be assigned and included in the list of references. Again, there is no way to fix the problem using the given dataset.

3.10 topic column

topic is a categorical string column containing 6 unique values which we generate using the title column.

```
ggplot(data=papers, aes(fct_rev(fct_infreq(topic)))) +
  geom_bar(stat="count")+
  xlab("Topics") +
  ylab("Number of Papers") +
  ggtitle("Number of Papers from each Topic") +
  coord_flip()
```

Number of Papers from each Topic

Each topic contains a similar number of research papers ranging from 25,000 to 31,000 papers.

4. Main Analysis (Exploratory Data Analysis)

4.1 Citation over Time

Mean and Median of Citations Over Time

Since the number of papers in each year differs substantially. It is more suitable to compare the number of citations across year using mean as a summarized statistics along with median which allows us to see the middle value better in the case that the data is asymmetric. From the grouped bar chart, we observe that the avaerage number of citations reached its peak during 1955, 1975, and 1990, then it gradually decreases until present. The reason is likely to be that the researches published in the past have been cited longer than the more recent publications. Moreover, it might be the case that the papers from early years tend to be more fundamental which is more common to be cited than more applied papers published later. However, there is not sufficient data on the time of each citation and whether the research is fundamental or applied to verify these assumptions from this dataset.

The bars for median can capture the abnormality of the number of citations equal to 50 which makes the plot contain less valuable information about the middle value of citations over years.

4.2 Citation and Authors

```
top_10_authors <- head(arrange(dplyr::summarise(group_by(papers_authors, authors),
                                                total_citation =sum(n_citation)),
                               desc(total_citation)), n=10)
papers top authors <- papers authors %>%
  filter(authors %in% top_10_authors$authors)
authors_citation <- dplyr::summarise(group_by(papers_top_authors, authors, year),
                                     yearly_citation =sum(n_citation))
cumsum_authors_citation <- authors_citation %>%
  group_by(authors) %>%
  mutate(cum_citations = cumsum(yearly_citation))
ggplot(cumsum_authors_citation, aes(year, cum_citations,colour=authors)) +
  geom_line() +
  geom point(size = 1) +
  ggtitle("Number of Citations of top Authors Over Time") +
  ylab("Cumulated Citations") +
  xlab("Year")
```

Number of Citations of top Authors Over Time

We are interested in how each authors, especially the top-cited authors all time, gain their citation over years. The cumulative frequency plot give two interesting patterns that while some popular authors accumulate the number of citations over a long period of time such as TJitendra Malik who started to publish their works in these conferences before 1990 until they gain the number of citations up to 50,000 citations in 2017. However, the other pattern that we found is that some other authors gain their number of

citations significantly over a short period of time, such as Rodrigo Lopez and Stephane Mallat who were cited over 20,000 times and became one of the most cited authors within only one of the years in their careers.

After exploring the total number of citation. We found that some authors have been publishing their work longer the others which make us curious about the impact from each paper they produced. The Cleveland dot plot show the average number of citations of each paper the author published. We found that many of the authors in this plot does not appear in the all-time list, although their works are cited for over a 10,000 times on average. This can be caused by two reasons. The first one is that they are relatively new researchers who has published only a few works. For the second reasons, we need to refer back to the previous plot in the case of Stephane Mallat who appears the plot for only a few years. Since this is the subsetted data of 10 venues, it is possible that they are famous authors but only submitted their works to these venues for only a few times

4.3 Citation and Topic

```
topic_freq <- dplyr::summarise(group_by(papers, year, topic), frequency = n())

ggplot(topic_freq, aes(year, frequency,colour=topic)) +
    geom_line() +
    ggtitle("Number of Papers from Each Topic over Time") +
    xlim(1954, 2016)</pre>
```

Number of Papers from Each Topic over Time

The number of papers in each topic has a similar general trend over the papers overall as discussed earlier that it reached its peak in 2006, then falls drastically and remians about the same level until present. However, it is difficult to discuss the ranking and trend of topics from this frequency plot. Therefore, we create the percentage version of this graph and discuss it in the next plot.

Percentage of Papers by Topic over time

By comparing by percentage, we can see the trend clearer that from 1960 to 1980, the papers on Signal and Speech Processing dominates imterms of the number of papers among all Computer Science publications. We can also see the Pattern Recognition and Machine Learning field gaining its volume share during the period. In the recent years, we can also see the trend in popularity of Machine Learning and Conputer Vision field. However, Signal and Speech Processing which once had a lot of interest in the past is having the least contribution volume.

Percentage of Topic by Number of Cltations Over Time

From the line plot, we can see that the popularity of papers (measured by the number of citations) has a similar pattern with the percentage of papers by topic, but with higher variance. This suggests an interesting relationship between number of papers and citations that when papers are published more in a field, the citations percentage usually grow accordingly.

```
ggplot(papers, aes(n_citation, fill = topic, colour = topic)) +
  geom_density(alpha = 0.1) +
  coord_cartesian(xlim = c(0,500))+
  ylab("Density") +
  xlab("Citations") +
  ggtitle("Density Plot of Citations among Topics")
```


The density plot of citations of each topic has very similar shape. Although it is very subtle, we can see that Computer Vision has the highest density at the higher number of citaions.

However, we believe that the density plot will give us more information about the distribution of citaions in each topic if it is not disturbed by the unusal peak at 50.

4.4 Citation and Venue

Boxplot of Venues and Citations

The boxplot shows us a vast difference in the distribution of citations among all venues. It is obvious that some venues seem to be more popular and get cited than the other. For example, the IEEE Transactions on Pattern Analysis and Machine Intelligence has the median of citations as high as 70, while the International Conference on Computer Graphics and Interactive Techniques has the median of fewer than 10 citations. Most of the conference have the median around 50 citations per research papers. We also include the boxplot of non-subsetted data (All venues) and find that our lists of most cited venues all time also have higher citations per paper than all the venues in general.

Note that the problem of n_citation = 50 is also captured by the boxplot of some, but not all, venues.

4.5 Citation and Title

As we tried to make use of the title column in our analysis. We found a research, "Papers with shorter titles get more citations" [https://www.nature.com/news/papers-with-shorter-titles-get-more-citations-1.18246], which suggests an interesting relationship between title length and citations. We decide to use a scatter plot to see the relationship between the variables.

Average Citations and Title Length

Poisson 95% Confidence Interval

The dot plot shows the relationship between average number of citations and title length. Since the distribution of citations resembles a Poisson distribution, we decide to include the 95% confidence interval of Poisson distribution to take into account the deviation. Although we cannot summarize statistically that the title length has a linear relationship with the citations, the plot still show an interesting trend that papers with shorter title length seem to have more citations than those with longer names.