Числови редове.

Нека е дадена числовата редица $\{a_n\}$, $n=1,2,\ldots$. Ще казваме, че тя определя **числов ред**, записван формално във вида:

$$a_1 + a_2 + \ldots + a_n + \ldots$$
 или $\sum_{n=1}^{\infty} a_n$.

Числата

$$S_k = a_1 + a_2 + \ldots + a_k = \sum_{n=1}^k a_n$$

се наричат частични (парциални) суми на реда $\sum\limits_{n=1}^{\infty} a_n$.

Определение. Pedът $\sum_{n=1}^{\infty} a_n$ ще наричаме **сходящ**, ако редицата $\{S_k\}$ от частичните му суми е сходяща. Границата S на тази редица се нарича **сума** на реда.

Формално това се записва чрез равенството

$$\sum_{n=1}^{\infty} a_n = S.$$

Редът $\sum_{n=1}^{\infty} a_n$ ще наричаме **разходящ**, ако редицата $\{S_n\}$ от частичните му суми не притежава граница.

Необходимо условие за сходимост. Да предположим, че редът с общ член a_n е сходящ, т.е. че редицата $\{S_n\}$ от частичните му суми притежава граница S . Тогава имаме

$$a_n = S_{n+1} - S_n.$$

Като извършим в това равенство граничен преход при $n \to \infty$, получаваме:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_{n+1} - \lim_{n \to \infty} S_n = S - S = 0$$

т.е. изпълнено е твърдението:

Теорема 1. Ако един числов ред е сходящ, то общият му член клони към нула.

Обратното твърдение не е вярно: Пример за това е реда $\sum_{n=1}^{\infty} \frac{1}{n}$.

Оценка на остатъка на един сходящ ред. Ако редът $\sum_{n=1}^{\infty} a_n$ е сходящ и има сума S, а S_n са неговите частични суми, то величината $R_n = S - S_n = \sum_{k=n+1}^{\infty} a_k$ се нарича n-ти остатък на реда. Очевидно $R_n \to 0$. Както от теоретична, така и от приложна гледна точка е интересно да се направят оценки, показващи колко бързо тази величина намалява или казано по-просто, да се определи колко събираеми трябва да се вземат, за да се изчисли сумата на реда с дадена точност. Ще направим такива оценки за някои примери.

1. За реда
$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$
 имаме

$$R_n = \sum_{k=n+1}^{\infty} \frac{1}{k!} = \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots \right) < 1$$

$$<\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^2}+\ldots\right)=\frac{1}{(n+1)!}\frac{1}{1-\frac{1}{n+1}}=\frac{1}{n!\,n}\,$$

т.е. скоростта на намаляване на остатъците е доста висока.

Може да се покаже, че от тази оценка следва, че числото e е ирационално (виж упражнение 1.).

2. За реда $\sum_{n=0}^{\infty} x^n$ при |x| < 1 имаме

$$R_n = \sum_{k=n+1}^{\infty} x^k = x^{n+1} \frac{1}{1-x}.$$

Тук скоростта на сходимост е по-бавна, отколкото в предния пример, но също достатъчно добра.

Необходимо и достатъчно условие на Коши за сходимост на редове. Ще преформулираме на езика на редовете НДУ на Коши за сходимост на редици. Нека n и m са две естествени числа, така че m>n. Имаме

$$S_m - S_n = \sum_{k=n+1}^m a_k.$$

Да си припомним, че редицата S_n е сходяща точно тогава, когато за всяко $\varepsilon > 0$ съществува номер ν , така че при $n,m>\nu$ да имаме $|S_m-S_n|<\varepsilon$. Удобно е да положим m=n+p, p - естествено. Оттук получаваме следното твърдение (условие на Коши за сходимост на редове):

Теорема 2. Ped $\sigma m \sum_{n=1}^{\infty} a_n$ e cxod sum m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o r a m o m o r a m o r a m o r a m o r a m o m

$$\left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon.$$