Cours de Mathématiques — Niveau terminale RYAN BOUCHOU

Sommaire

1	Les	ensem	ıbl	es																							3
	1	Éléme	ents	géi	néra	ıux																					3
	2	Opéra	itio	ns e	ense	mb	list	tes																			3
	3	Cardir																									3
	4	Produ	iit (4
2	Dén	ombre	em	ent																							5
	1	k_Arr	ran	gem	ent	\mathbf{S}																					5
	2	1 k_Arrangements 5 2 Combinaisons 5																									
	3	Triang																									6
3	TD																										8
	1	Rappe	els	de c	cour	\mathbf{s}																					9
		1.1			nage																						9
	2	Limites											9														
		2.1			tion																						9
		2.2	•		onst																						9
		2.3	_		cices																						9
		2.4	Α	11to	ur d																						10
		2.5			ur sı																						10
7	Bib	liograp	phi	e																							14

1 Les ensembles

1 Éléments généraux

Définition: Ensemble

Un ensemble est une collection d'objets appelés **éléments**, qui peuvent être en nombre fini ou non.

Un ensemble peut se définir de deux manières :

• En donnant la liste explicite et exhaustive de ses éléments. (Raisonnablement dans le cas des ensembles finis)

Exemple: $E = \{6, 8, D, \%\}$

• Par compréhension : lorsque les éléments vérifient une propriété particulière. Exemple: $E = \{x \in \mathbb{R} : x^2 + x + 1 = 0\}$ i.e $Rac(X^2 + X + 1)$

On note \emptyset l'ensemble vide, ne contenant donc aucun élément. Par ailleurs, un certain nombre d'ensembles de références sont nécessaires ; à savoir: $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ On définit pour la suite E et F des ensembles quelconques, ainsi que $n \in \mathbb{N}^*$

2 Opérations ensemblistes

- Appartenance: $x \in E$ si x appartient à E
- Inclusion: $E \subset F$ si E est inclus dans F ; i.e, E est un sous-ensemble de F
- Réunion: $E \cup F$ est l'ensemble des éléments appartenant à E ou F
- Intersection: $E \cap F$ est l'ensemble des éléments appartenant à E et à F
- Exclusion: $E \setminus F$ est l'ensemble des éléments de E qui n'appartiennent pas à F
- Différence symétrique: $E\triangle F$ est l'ensemble des éléments qui sont uniquement dans E et uniquement dans F. Autrement dit, $E\triangle F = (E \cup F) \setminus (E \cap F)$

Par ailleurs, on note P(E) les parties de E, l'ensemble des sous-ensembles de E.

 $\underline{\wedge}$ Si $B = \{1, 7, 8\}$ Attention à la différence entre $\{1\} \subset B$ et $\{1\} \in P(B)$

3 Cardinalité

Définition: Cardinal

On note Card(E), |E| ou encore #E, le nombre d'éléments de E. On l'appelle **cardinal** de E.

Définition: Ensembles deux à deux disjoints

Si $E_1, ..., E_n$ sont deux à deux disjoints, alors $\forall i, j \in [1..n]$ et $i \neq j, Card((E_i \cap E_j)) = 0$

Propriété

Si $E_1, ..., E_n$ sont deux à deux disjoints et finis, alors $Card(E_1 \cup ... \cup E_n) = \sum_{i=1}^n Card(E_i)$

Ryan Bouchou 3/14

Produit cartésien

On appelle produit cartésien de n ensemble $E_1, ..., E_n$, l'ensemble

$$E_1 \times ... \times E_n = \{(x_1, ..., x_n) \mid x_1 \in E_1, ..., x_n \in E_n\}$$

dont les éléments sont des n_uplets. On parle alors de couple, triplet, quadruplets etc... Si l'un des E_i est vide alors, le produit cartésien l'est aussi. Enfin, si $E_1 = ... = E_n = E$ alors on note leur produit cartésien E^n

Propriété

Soient
$$E_1, ..., E_n$$
 des ensembles finis.
 $Card(E_1 \times ... \times E_n) = \prod_{i=1}^n Card(E_i)$

Exercices

Exercices 1

On considère le diagramme de Venn suivant, avec A,B,C trois parties d'un ensemble E; et a,b,c,d,e,f,g,h des éléments de E.

Dire si les affirmations suivantes sont vraies ou fausses:

- $g \in A \cap B$
- $g \in \bar{A} \cap \bar{B}$
- $g \in \bar{A} \cup \bar{B}$
- $f \in C \backslash A$
- $e \in \bar{A} \cap \bar{B} \cap \bar{C}$
- $\{h,b\}\subset \bar{A}\cap \bar{B}$

Exercice 2

Soient A , B , C trois ensembles tels que $A \cup B = B \cap C$. Montrer que $A \subset B \subset C$.

Exercice 3

Soient A, B et C trois parties d'un ensemble E. Pour $X \subset E$, on note X^c le complémentaire de X dans E . Démontrer les lois de Morgan suivantes :

1.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
 2. $(A^c)^c = A$

2.
$$(A^c)^c = A$$

3.
$$(A \cap B)^c = A^c \cup B^c$$

4.
$$(A \cup B)^c = A^c \cap B^c$$
.

Exercice 4

Écrire l'ensemble des parties de E=a,b,c,d.

Ryan Bouchou 4/14

Exercice 5

On considère l'ensemble $D = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1\}$. Montrer qu'il ne peut pas s'écrire comme un produit cartésien de deux parties de \mathbb{R} .

Exercice 6

On considère $\Sigma_1 = \{0, 1\}$ et $\Sigma_2 = \{a, b, c, d, e\}$. On souhaite composer des mots de passes composé d'un chiffre et de 8 lettres. Quel est le nombre de mdp possibles ?

Quel est le nombres de mots de passes si on s'autorise à avoir un ou deux chiffres?

2 Dénombrement

On considère dans cette partie un ensemble E de cardinal fini n et $0 \le k \le n$:

1 k_Arrangements

Définition: Arrangement

On appelle k_liste ou k_Arrangements un k_ uplet d'éléments de E tous différents.

On assimile un k_Arrangement au nombre d'issues lors d'un tirage sans remise de k éléments dans un ensemble à n éléments.

Propriété

Le nombre de k_Arrangements vaut $n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$

Propriété

Le nombre de permutations de E vaut n!

2 Combinaisons

Définition: k_Combinaison

Partie de E à k éléments.

On assimile le nombre de k-combinaison au nombre d'issues d'un tirage avec remise de k éléments dans un ensemble de cardinal n.

Propriété

Le nombre de k-combinaisons de E est $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Symétrie des coefficients binomiaux: $\binom{n}{k} = \binom{n}{n-k}$

Exercice 7

On considère une course de karting comprenant n pilotes. Déterminer le nombre de podium possibles (on classera les 3 premiers).

Ryan Bouchou 5/14

Exercice 8

On considère une course de karting comprenant n pilotes. Malheureusement, tous ne peuvent pas s'élancer sur la grille de départ en même temps. Déterminer le nombre de possibilités de sélectionner les k premiers qui partiront en premiers.

3 Triangle de Pascal

Démonstrations

 \rightarrow Méthode combinatoire

ightarrow Méthode algébrique

Ryan Bouchou 6/14

Propriété

Pour n un entier natural, on a $:\sum_{k=0}^{n} = \binom{n}{k} = 2^{n}$

Démonstrations

 \rightarrow Méthode combinatoire

 \rightarrow Méthode algébrique

Propriété

Le nombre de parties d'en ensemble à n éléments vaut 2^n

Exercice - Spécialité NSI

On pourra aborder ici quelques notions sur les Langages

On considère $\Sigma_1 = \{0,1\}$ et $\Sigma_2 = \{a,b,c,d,e\}$. On souhaite composer des mots de passes à partir du langage engendré par $L = \Sigma_1^+ \cdot \Sigma_2^+$; dont on restreindra leur taille à un entier n>1. On notera L' le langage subséquent.

• Cas où n=2

Préciser la partie de L, notée L', qui nous intéresse ici à l'aide d'une description ensembliste par compréhension.

Même question avec un produit cartésien. Donner alors le cardinal de cet ensemble.

• Cas où n>1

On considère u un mot de L'. Préciser sa décomposition et les caractéristiques de celles-ci. Donner le cardinal de L' en fonction de n, et des autres données de l'exercice.

Ryan Bouchou 7/14

\mathbf{Q}	П	וח	
O.			L

1. Limite et continuité	Ç
2. Ensemble et dénombrement	11

Ryan Bouchou 8/14

LIMITES ET CONTINUITÉ

On considère dans tout ce qui suit une fonction f de $I \subset \mathbb{R} \to \mathbb{R}$ et $a \in \overline{I}$

1 Rappels de cours

1.1 Voisinage

Analogie avec les suites et la condition "à partir d'un certain rang".

Définition: Voisinage de $a \in \mathbb{R}$

On dit que f vérifie une propriété $\mathcal P$ au voisinage de a ssi $\exists \ \varepsilon > 0 : f$ vérifie $\mathcal P$ sur $I \cap [a-\varepsilon,a+\varepsilon]$

Définition: Voisinage de $a = \infty$

On dit que f vérifie une propriété $\mathcal P$ au voisinage de $+\infty$ ssi $\exists \ M \in \mathbb R: f$ vérifie $\mathcal P$ sur $I \cap [M, +\infty[$

On notera $\mathcal{V}(a)$ l'ensemble des voisinages de a. Dans \mathbb{R} , $\{[a-\eta, a+\eta], \eta \in \mathbb{R}\}$ forme une base de $\mathcal{V}(a)$. Ce faisant, tout voisinage de a peut s'écrire sous cette forme.

2 Limites

2.1 Question de cours

On considère un réel l. Traduisez les assertions suivantes:

• f tend vers l en a.

• f tend vers $+\infty$ en a.

• f tend vers l en $+\infty$.

• f tend vers $+\infty$ en $+\infty$.

2.2 Démonstrations

Proposition

Si f admet une limite finie en a, alors f est bornée au voisinage de a.

- 1. Démontrer la propriété précédente.
- 2. Démontrer le théorème d'unicité de la limite.

2.3 Exercices

- 1. Démontrer que la fonction sinus n'admet pas de limite en l'infini
- 2. Montrer que $\sqrt{x^2 + 1} x \xrightarrow[x \to +\infty]{} 0$
- 3. La fonction $f = \begin{cases} e^{\frac{-1}{x}} & \text{si } x > 0 \\ 0 & \text{sinon.} \end{cases}$ est-elle continue sur \mathbb{R} ?
- 4. Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose que f admet une limite ℓ en $+\infty$, avec $\ell > 0$. Démontrer qu'il existe un réel A > 0 tel que, pour tout $x \ge A$, f(x) > 0.
- 5. Soit $f: \mathbb{R} \to \mathbb{R}$ périodique et admettant une limite finie l en $+\infty$. Montrer que f est constante.

Définition: Sinus et cosinus hyperbolique

On définit sur \mathbb{R} les fonctions sh : $x \to \frac{e^x - e^{-x}}{2}$ et ch : $x \to \frac{e^x + e^{-x}}{2}$

Autour de e^x 2.4

1. Résoudre les systèmes d'équations suivantes :

1.
$$\begin{cases} e^{x}e^{y} = 10 \\ e^{x-y} = \frac{2}{5} \end{cases}$$
2.
$$\begin{cases} e^{x} - 2e^{y} = -5 \\ 3e^{x} + e^{y} = 13 \end{cases}$$
3.
$$\begin{cases} 5e^{x} - e^{y} = 19 \\ e^{x+y} = 30 \end{cases}$$

2. Démontrer que, pour tout $n \geq 2$, on a

$$\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}.$$

3. Démontrer que, pour tous $x, y \in \mathbb{R}$,

$$sh(x+y) = sh(x)ch(y) + ch(x)sh(y)$$

4. Montrer que, pour tout $x \neq 0$,

$$\sum_{k=0}^{n} ch(kx) = \frac{ch(nx/2)sh((n+1)x/2)}{sh(x/2)}.$$

2.5Retour sur les limites..

1. Montrer que: $\lim_{x\to l} f(x) = +\infty \iff \forall (x_n) \in I^{\mathbb{N}} \mid x_n \underset{n\to +\infty}{\longrightarrow} l, \ f(x_n) \underset{n\to +\infty}{\longrightarrow} +\infty$

2. Variante - Soit $f: \mathbb{R} \to \mathbb{R}$ périodique. Montrer qu'elle ne peut pas avoir de limite infinie en $+\infty$

3. Déterminer les limites des fractions rationnelles suivantes:

1.
$$\frac{X^2-X+1}{7X^3}$$
 en $+\infty$ 2. $\frac{X^2+4e^X}{e^X}$ en $+\infty$

2.
$$\frac{X^2+4e^X}{e^X}$$
 $en + \infty$

3.
$$x^{\frac{1}{1-x}}$$
 en 1

3.
$$x^{\frac{1}{1-x}}$$
 en 1 **4.** $\lim_{x\to 0^+} \left(\left(1 + \frac{1}{\sqrt{x}} \right) (x-3) \right)$

Ensemble et dénombrement

Formalisme des ensembles Exercice 4

Question 1 Cours

• $\pi \dots \mathbb{Q}$

ℚ…ℝ

• 8.5 . . . R

N...Z

• $\{6\}\dots\mathbb{Z}$

ℝ…ℤ

• $(7, -9, 5.8) \dots \dots$

ℝ* . . . ℝ

Question 2 Cours

Rappeler la définition d'un ensemble formulé par compréhension

Question 3

- Donner l'ensemble des entiers naturels pairs
- Donner l'ensemble des entiers relatifs impairs
- Donner l'ensemble des entiers relatifs dont le reste de leur division par 3 vaut 2
- Soit $(n, S) \in \mathbb{N}^2$. Donner l'ensemble des n_uplets dont la somme de leurs éléments vaut S.

Question 4

Soient $A = \{1, 2, 3\}$ et $B = \{0, 1, 2, 4\}$. Donner les ensembles $A \cap B$, $A \cup B$ et $A \times B$

Question 5

Déterminer deux 3_uplets de 0,1. Combien en existe-t-il au total?

Question 6

Soient A = [0, 2] et B = [1.5, 3]. Donner les ensembles $A \cap B$, $A \cup B$

Question 7

Soient A, B et C trois parties d'un ensemble E. Pour $X \subset E$, on note X^c le complémentaire de X dans E. Démontrer les lois de Morgan suivantes :

1.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
 2. $(A^c)^c = A$

2.
$$(A^c)^c = A$$

$$3. \ (A \cap B)^c = A^c \cup B^c$$

$$4. \ (A \cup B)^c = A^c \cap B^c.$$

Exercice 5 Propriétés sur les ensembles

Question 1

Soient $A = \{1, 2, 3\}$ et $B = \{0, 1, 2, 4\}$. Donner $\#A, \#B, \#A \cup B$

Question 2

On réalise un sondage sur un ensemble d'individus afin de connaître les langages qu'ils maîtrisent. On reporte les résultats sur le diagramme de Venn suivant:

Pour chacune des questions, on donnera une notation ensembliste afin de traduire l'énoncer.

- Donner le nombre total de personnes interrogées.
- Donner le nombre d'individus qui parlent Anglais, Espagnol et Italien.
- Donner le nombre d'individus qui parlent Espagnol et Italien seulement.
- Donner le nombre d'individus qui parlent (Anglais et Italien) ou (Anglais et Espagnol)

Question 3

Soient A et B deux ensembles finis et disjoints. On sait que $Card(A \cup B)=23$ et $Card(A \times B)=132$. Déterminer Card(A) et Card(B) sachant que Card(A) < Card(B).

Exercice 6 Dénombrement

Question 1

- Combien y-a-t-il de podiums possibles?
- Combien y-a-t-il de podiums possibles où Émile est premier?
- Combien y-a-t-il de podiums possibles dont Émile fait partie?
- On souhaite récompenser les 3 premiers en leur offrant un prix identique à chacun. Combien y-a-t-il de distributions de récompenses possibles?

Question 2

Un cadenas possède un code à 3chiffres, chacun des chiffres pouvant être un chiffre de 1 à 9.

- Combien y-a-t-il de codes possibles?
- Combien y-a-t-il de codes se terminant par un chiffre pair?
- Combien y-a-t-il de codes contenant au moins un chiffre 4?
- Combien y-a-t-il de codes contenant exactement un chiffre 4?

Dans cette question on souhaite que le code comporte obligatoirement trois chiffres distincts.

• Combien y-a-t-il de codes possibles?

Ryan Bouchou 12/14

- Combien y-a-t-il de codes se terminant par un chiffre impair?

Ryan Bouchou 13/14

7 Bibliographie

Ryan Bouchou 14/14