http://www.makaut.com

http://www.makaut.com

CS/B.TECH/ECE/NEW/SEM-4/EC-401/2013 2013 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The point P(1, 3, 5) in the Cartesian co-ordinate system is P(.....) in the Cylindrical co-ordinate system
 - a) 3-16, 71-565°, 5
 - b) 3:162, 5, 71:565°
 - c) 5-916, 32-11°, 3-162
 - d) 5-916, 3-162, 32-11

4304 Turn over

CS/B.TECH/ECE/NEW/SEM-4/EC-401/2013

ii) Which of the following is zero?

a) grad div

b) curl grad

c) div grad

d) curl curl.

iii) The unit of electric field intensity is

a) Volt

- b) Volt/m
- c) Coulomb/m
- d) Weber/m.

iv) On a perfect conductor surface

- a) The tangential component of E and normal component of B are zero
- The tangential component of H is equal to the surface current density
- The normal component of D is the surface charge density
- d) All of these.

v) The rate of energy flow is given by

- a) Maxwell Equation
- b) Poynting Vector
- c) Poisson Equation
- d) Equation of Continuity.

http://www.makaut.com

vi) The characteristic impedance of a transmission line is

- a) directly proportional to its length
- b) inversely proportional to its length
- c) independent of its length
- d) directly proportional to square root of its length.
- vii) For a line of characteristic impedance Z_0 , terminated by a load impedance $Z = Z_0/3$, the reflection coefficient is
 - a) 1/3

b) 2/3

c) -1/3

d) -1/2.

viii) Reflector in Yagi-Uda antenna is

- a) active element
- b) driven element
- identical to dipole
- d) parasitic element.
- ix) A short-circuited transmission line stub is preferred in stub-matching than an open-ended stub because
 - a) Short-circuited stub does not radiate
 - It is easy to maintain short-circuit
 - c) Length of short-circuit stub is less
 - d) none of these.

4304

2

4304

3

Turn over

http://www.makaut.com

CS/B.TECH/ECE/NEW/SEM-4/EC-401/2013

- x) If E_0 and B_0 be the amplitude of electric field and magnetic field associated with an electromagnetic wave propagating in space, then E_0/B_0 is

- Voltage standing wave ratio of a matched transmission line is
 - Zero

Infinity

Unity

- None of these.
- xii) Poynting vector for e.m. wave has unit

d) $(W/m)^2$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction 2i - j - 2k.
- What is divergence theorem? a)
 - Prove that $\nabla \cdot (\phi A) = (\nabla \phi) = (\nabla \phi) \cdot A + \phi (\nabla \cdot A)$.

2 + 3

4304

http://www.makaut.com

| Turn over

- CS/B.TECH/ECE/NEW/SEM-4/EC-401/2013
- What are the transmission line parameters? Mention the different modes of transmission lines. 2 + 3
- 5. Write down the Maxwell's equations in integral form
 - What is the relation between decibel and neper? 4 + 1
- Derive the relation between antenna aperture and effective height of an antenna.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- In the cylindrical region 0 < r < 0.5m, $J = 4.5 e^{-2r} a$ 7. Amp/m². Determine $H = H_{\omega}A_{\omega}$ everywhere.
 - Prove that Curl H = J
 - c) An magnetic field intensity due to a current source is given by $H = y \cos(ax) a_x(y + e^x) a_y$. Describe the current density over the YZ plane. 5 + 5 + 5
- 8. What is 'Biot-Savart's law in magnetostatics?
 - b) If a infinite long wire of negligible cross section is carrying current I. Find the magnetic field intensity at a distance r from the wire.
 - What is Magnetic vector potential?

http://www.makaut.com

- d) Using integral form of Ampere's circuit law find the magnetic field intensity inside the infinite long straight wire carrying steady current 1.
 2+5+3+5
- 9. a) Explain directivity of an antenna with an example.
 - b) Give the relation between directivity and gain of an antenna. What is the limit of efficiency factor of an antenna?
 - c) What are half power beam width (HPBW) and beam width between flint nulls (BWFN)?
 - d) Define radiation resistance of folded dipole antenna.
 Why is it beneficial for our TV reception antenna?
- a) Differentiate between a plane wave and a uniform plane wave.
 - Explain the 'quarter-wave transformer' technique of matching.
 - c) A distorionless transmission line has $Z_0 = 50$ Ohm and a phase constant of 3rd/m at 10 MHz. Find the inductance and the capacitance of this line.

- d) A lossless, half wavelength line has $Z_0 = 50$ Ohm, and is terminated in a load resistance of 100 Ohm. Determine
 - (i) Reflection coefficient
 - (ii) VSWR
 - (iii) Z_{min}
 - (iv) Z_{max} .

2 + 5 + 3 + 5

- 11. Write short notes on any three of the following: $3 \times 5 = 15$
 - a) Gradient of a scalar field
 - b) Boundary conditions for electric and magnetic fields
 - c) Distortionless transmission line
 - d) Use of transmission line as circuit element
 - e) Basic antenna elements.