Résumé 15 – Équations différentielles linéaires

Équations linéaires scalaires d'ordres 1 et 2

→ Équations différentielles linéaires d'ordre 1

On considère l'équation différentielle linéaire d'ordre 1 et l'équation homogène associée :

$$y' = a(t)y + b(t) \quad (E) \quad y' = a(t)y \quad (H)$$

Théorème

On suppose $a, b: I \to \mathbb{K}$ continues sur l'*intervalle I*. Soit *A* une primitive de *a* sur *I*.

- L'équation homogène y' = a(t)y admet pour solution générale $t \mapsto \lambda e^{A(t)}$ où $\lambda \in \mathbb{K}$.
- L'équation y' = a(t)y + b(t) admet pour solution générale $t \mapsto y_p(t) + \lambda e^{A(t)}$ où y_p est une solution particulière de l'équation complète.

On peut même écrire :

$$y(t) = \lambda e^{A(t)} + e^{A(t)} \int_{t_0}^t b(x) e^{-A(x)} dx \quad (\lambda \in \mathbb{K})$$

On considère maintenant l'équation différentielle linéaire d'ordre 1 et son équation homogène associée, où les fonctions $a, b, c: I \to \mathbb{R}$ sont continues sur l'*intervalle I*:

$$a(t)y' + b(t)y = c(t)$$
 et $a(t)y' + b(t)y = 0$

Théorème : Problème de Cauchy

Si a ne s'annule pas sur l'intervalle I, le problème de Cauchy

$$\begin{cases} a(t)y' + b(t)y = c(t) \\ y(t_0) = y_0 \end{cases}$$

admet une unique solution sur I.

Corollaire: Structure de l'ensemble des solutions

Lorsque $a: I \to \mathbb{R}$ ne s'annule pas sur l'intervalle I,

- l'ensemble \mathcal{S}_H des solutions de (H) est une droite vectorielle;
- l'ensemble \mathcal{S}_E des solutions de (E) est une droite affine de direction \mathcal{S}_H .

Plan de résolution :

- Identification de l'équation.
- Mise sous forme résolue/normalisée en divisant par a(t) sur les intervalles où a ne s'annule pas.
- Résolution de l'équation homogène y' = f(t)y. $y(t) = \lambda e^{F(t)}$ où F est une primitive de f sur I et $\lambda \in \mathbb{R}$.
- Résolution de l'équation avec second membre. On recherche une solution particulière y_0 de (E). S'il n'y a pas de solution évidente, on utilise la méthode de variation de la constante en posant $y(t) = \lambda(t)e^{F(t)}$. La solution générale est $y(t) = \lambda e^{F(t)} + y_n(t)$.
- Recollement éventuel des solutions (souvent via un DL).
- · Utilisation des conditions initiales.

→ Équations différentielles linéaires d'ordre 2

On considère l'équation différentielle linéaire d'ordre 1 suivante et on note (H) l'équation homogène associée :

$$a(t)y'' + b(t)y' + c(t)y = d(t)$$
 (E)

On suppose $a, b, c, d : I \to \mathbb{R}$ continues sur l'*intervalle I*.

Théorème: Problème de Cauchy

Si a ne s'annule pas sur l'intervalle I, le problème de Cauchy

$$\begin{cases} a(t)y'' + b(t)y' + c(t)y = d(t) \\ y(t_0) = y_0; \ y'(t_0) = y_0' \end{cases}$$

admet une unique solution sur I.

Théorème: Structure de l'ensemble des solutions

Lorsque $a: I \to \mathbb{R}$ ne s'annule pas sur l'intervalle I,

- l'ensemble \mathcal{S}_H des solutions de (H) est un plan vectoriel;
- l'ensemble \mathcal{S}_E des solutions de (E) est un plan affine de direction \mathcal{S}_H .

Proposition : Principe de superposition

Si y_1 est solution de l'équation $ay''+by'+cy=d_1(t)$ et y_2 de l'équation $ay''+by'+cy=d_2(t)$ alors y_1+y_2 est solution de $ay''+by'+cy=d_1(t)+d_2(t)$.

Résolution de (H) *lorsque les coefficients sont constants* : On résout l'équation caractéristique $aX^2 + bX + c = 0$ de discriminant associé Δ .

- Si $\Delta > 0$, deux racines réelles distinctes r_1 et r_2 . $y(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$ avec $\lambda_1, \lambda_2 \in \mathbb{R}$.
- Si $\Delta = 0$, une racine réelle double r. $y(t) = (\lambda_1 + \lambda_2 t)e^{rt}$ avec $\lambda_1, \lambda_2 \in \mathbb{R}$.
- Si $\Delta < 0$, deux racines complexes conjuguées $\alpha \pm i\beta$. $y(t) = (\lambda_1 \cos(\beta t) + \lambda_2 \sin(\beta t))e^{\alpha t}$ avec $\lambda_1, \lambda_2 \in \mathbb{R}$.

On peut déterminer une solution particulière de (E) lorsque le second membre d(t) est de la forme :

- $d(t) = P(t)e^{mt}$ avec $P \in \mathbb{R}[X]$, on cherche y_0 sous la forme $y_0(t) = Q(t)e^{mt}$ avec $Q \in \mathbb{R}[X]$ et $\deg(Q) = \deg(P) + k$, k étant l'ordre de multiplicité de m en tant que racine de l'équation caractéristique.
- $d(t) = \cos(\omega t)$, on passe en complexe.

On pourra utiliser le principe de superposition.

Résolution lorsque les coefficients ne sont pas constants : (on se laisse guider par l'énoncé)

- Recherche de solutions polynomiales (on commence par l'étude du degré).
- Recherche de solutions développables en série entière.
- Recherche d'une solution sous la forme $y(t) = z(t)y_0(t)$ où y_0 est une solution déjà connue (méthode dite de Lagrange).
- · Changement de variables ou d'inconnues.

Systèmes différentiels linéaires

→ Systèmes différentiels à coefficients continus

Soit le système linéaire à coefficients continus suivant :

$$\begin{cases} x_1'(t) = a_{11}(t)x_1(t) + \dots + a_{1n(t)}x_n(t) + b_1(t) \\ x_2'(t) = a_{21}(t)x_1(t) + \dots + a_{2n}(t)x_n(t) + b_2(t) \\ \vdots & \vdots \\ x_n'(t) = a_{n1}(t)x_1(t) + \dots + a_{nn}(t)x_n(t) + b_n(t) \end{cases}$$

Il se réécrit sous la forme X'(t) = A(t)X(t) + B(t) avec :

$$X \in \mathcal{C}^1(I, \mathbb{K}^n); A \in \mathcal{C}(I, \mathcal{M}_n(\mathbb{K})); B \in \mathcal{C}(I, \mathbb{K}^n)$$

De manière équivalente,

$$x' = a(t)(x) + b(t)$$
 avec $a \in \mathcal{C}(I, \mathcal{L}(E))$ et $b \in \mathcal{C}(I, E)$

Théorème: Cauchy-Lipschitz linéaire -

Soient I un intervalle de \mathbb{R} , $t_0 \in I$ et $X_0 \in \mathcal{M}_{n,1}(\mathbb{K})$. Si $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathcal{M}_{n,1}(\mathbb{K})$ sont continues sur I, le problème de Cauchy

$$\begin{cases} X' = A(t)X + B(t) \\ X(t_0) = X_0 \end{cases}$$

admet une et une seule solution.

Théorème : Structure de l'ensemble des solutions

Lorsque $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathbb{K}^n$ sont continues sur l'intervalle I,

- l'ensemble \mathcal{S}_H des solutions de X' = A(t)X est un s.e.v. de $\mathcal{C}^1(I, \mathbb{K}^n)$ de dimension n;
- l'ensemble des solutions de X' = A(t)X + B(t) est un sous-espace affine de $\mathscr{C}^1(I,\mathbb{K}^n)$ de direction \mathscr{S}_H .

→ Équations différentielles linéaires scalaires

On peut transformer une équation linéaire scalaire d'ordre n en un système différentiel linéaire d'ordre 1.

$$x^{(n)} = a_0(t)x + a_1(t)x' + \dots + a_{n-1}(t)x^{(n-1)} \iff X' = A(t)X$$

$$\operatorname{avec} X = \begin{bmatrix} x \\ x' \\ \vdots \\ x^{(n-1)} \end{bmatrix} \text{ et } A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ a_0 & a_1 & \cdots & \cdots & a_{n-1} \end{bmatrix}.$$

- L'ensemble des solutions de l'équation X' = AX sur un intervalle est donc un e.v. de dimension n.
- Le problème de Cauchy

$$\begin{cases} x^{(n)} = a_0(t)x + a_1(t)x' + \dots + a_{n-1}(t)x^{(n-1)} \\ x(t_0) = x_0, x'(t_0) = x_1, \dots, x^{(n-1)}(t_0) = x_{n-1} \end{cases}$$

admet une et une seule solution.

→ Méthode de variation des constantes

Il s'agit de trouver les solutions de X' = A(t)X + B(t) connaissant une base $(X_1, ..., X_n)$ de l'équation homogène X' = A(t)X. La famille $(X_1, ..., X_n)$ est alors qualifiée de système fondamental des solutions.

$$X' = A(t)X + B(t) \iff \lambda'_1(t)X_1(t) + \dots + \lambda'_n(t)X_n(t) = B(t)$$

Pour l'équation scalaire x'' + a(t)x' + b(t)x = c(t), il s'agit de résoudre le système :

$$\begin{cases} \lambda' x_1 + \mu' x_2 = 0 \\ \lambda' x_1' + \mu' x_2' = c \end{cases}$$

→ Wronskien d'une équation linéaire d'ordre 2

- Définition : Wronskien -

On appelle wronskien de deux solutions x_1 et x_2 de a(t)x'' + b(t)x' + c(t)x = 0, l'application :

$$W: t \mapsto \begin{vmatrix} x_1(t) & x_2(t) \\ x_1'(t) & x_2'(t) \end{vmatrix} = x_1(t)x_2'(t) - x_2(t)x_1'(t)$$

Soient x_1 et x_2 deux solutions de l'équation a(t)x'' + b(t)x' + c(t)x = 0, avec a ne s'annulant par sur I. Les assertions suivantes sont équivalentes :

(i) (x_1, x_2) est un système fondamental de solutions

(ii)
$$\forall t \in I$$
, $W(t) \neq 0$ (iii) $\exists t_0 \in I$, $W(t_0) \neq 0$

→ Résolution des systèmes à coefficients constants

Lorsque le système différentiel linéaire est à coefficients constants, on sait le résoudre explicitement.

- Théorème -

Soit $A \in \mathcal{M}_n(\mathbb{K})$. L'équation homogène X' = AX admet pour solution générale $X : t \mapsto e^{tA}C$ où $C \in \mathbb{K}^n$.

Théorème : Cas diagonalisable

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable. Il existe alors une base (X_1,\ldots,X_n) de vecteurs propres associés aux valeurs propres $\lambda_1,\ldots,\lambda_n$, éventuellement multiples. Les solutions de l'équation X'=AX sont de la forme :

$$X(t) = C_1 e^{\lambda_1 t} X_1 + \dots + C_n e^{\lambda_n t} X_n$$
 avec $C_1, \dots, C_n \in \mathbb{K}$

Lorsque le système est à coefficients réels et que l'on diagonalise A dans \mathbb{C} , il suffit d'extraire les parties réelles et imaginaires de $\mathrm{e}^{\lambda t} X$ pour trouver les solutions.

On retrouve le résultat du théorème en écrivant :

$$X' = AX \iff X' = PDP^{-1}X \iff P^{-1}X' = DP^{-1}X$$

$$\iff Y' = DY \text{ avec } Y = P^{-1}X$$

Le calcul de P^{-1} est inutile.

Cette méthode fonctionne également lorsque A est seulement trigonalisable ou bien lorsque le système comporte un second membre.

© Mickaël PROST Année 2022/2023