MATH455 - Analysis 4

Based on lectures from Winter 2025 by Prof. Jessica Lin. Notes by Louis Meunier

Contents

1.	Abstract Metric and Topological Spaces	2
	1.1 Review of Metric Spaces	
	1.2 Compactness, Separability	
	1.3 Arzelà-Ascoli	
	1.4 Baire Category Theorem	
	1.4 Daile Category Theorem	,

§1 ABSTRACT METRIC AND TOPOLOGICAL SPACES

§1.1 Review of Metric Spaces

Throughout fix *X* a nonempty set.

 \hookrightarrow **Definition 1.1** (Metric): *ρ* : *X* × *X* → \mathbb{R} is called a *metric*, and thus (*X*, *ρ*) a *metric space*, if for all *x*, *y*, *z* ∈ *X*,

- $\rho(x,y) \geq 0$,
- $\rho(x,y) = 0 \Leftrightarrow x = y$,
- $\rho(x, y) = \rho(y, x)$, and
- $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Definition 1.2 (Norm): Let *X* a linear space. A function $\| \cdot \| : X \to [0, \infty)$ is called a *norm* if for all *u*, *v* ∈ *X* and *α* ∈ \mathbb{R} ,

- $||u|| = 0 \Leftrightarrow u = 0$,
- $||u + v|| \le ||u|| + ||v||$, and
- $\bullet \|\alpha u\| = |\alpha| \|u\|.$

Remark 1.1: A norm induces a metric by $\rho(x, y) := ||x - y||$.

Definition 1.3: Given two metrics ρ , σ on X, we say they are *equivalent* if $\exists C > 0$ such that $\frac{1}{C}\sigma(x,y) \le \rho(x,y) \le C\sigma(x,y)$ for every $x,y \in X$. A similar definition follows for equivalence of norms.

Given a metric space (X, ρ) , then, we have the notion of

- open balls $B(x,r) = \{ y \in X : \rho(x,y) < r \}$,
- open sets (subsets of X with the property that for every $x \in X$, there is a constant r > 0 such that $B(x,r) \subseteq X$), closed sets, closures, and
- convergence.

```
\hookrightarrow Definition 1.4 (Convergence): \{x_n\} ⊆ X converges to x \in X if \lim_{n\to\infty} \rho(x_n, x) = 0.
```

We have several (equivalent) notions, then, of continuity; via sequences, $\varepsilon - \delta$ definition, and by pullbacks (inverse images of open sets are open).

1.1 Review of Metric Spaces

 \hookrightarrow **Definition 1.5** (Uniform Continuity): $f:(X,\rho) \to (Y,\sigma)$ uniformly continuous if f has a "modulus of continuity", i.e. there is a continuous function $\omega:[0,\infty) \to [0,\infty)$ such that $\sigma(f(x_1),f(x_2)) \le \omega(\rho(x_1,x_2))$

for every $x_1, x_2 \in X$.

Remark 1.2: For instance, we say f Lipschitz continuous if there is a constant C > 0 such that $\omega(\cdot) = C(\cdot)$. Let $\alpha \in (0,1)$. We say f α -Holder continuous if $\omega(\cdot) = C(\cdot)^{\alpha}$ for some constant C.

 \hookrightarrow **Definition 1.6** (Completeness): We say (X, ρ) *complete* if every cauchy sequence in (X, ρ) converges to a point in X.

Remark 1.3: If (X, ρ) complete and $E \subseteq X$, then (E, ρ) is complete iff E closed in X.

§1.2 Compactness, Separability

Definition 1.7 (Open Cover, Compactness): $\{X_{\lambda}\}_{{\lambda} \in \Lambda} \subseteq 2^{X}$, where X_{λ} open in X and Λ an arbitrary index set, an *open cover* of X if for every $x \in X$, $\exists \lambda \in \Lambda$ such that $x \in X_{\lambda}$.

X is *compact* if every open cover of *X* admits a compact subcover. We say $E \subseteq X$ compact if (E, ρ) compact.

Definition 1.8 (Totally Bounded, *ε*-nets): (X, ρ) *totally bounded* if $\forall ε > 0$, there is a finite cover of X of balls of radius ε. If E ⊆ X, an ε-net of E is a collection $\{B(x_i, ε)\}_{i=1}^N$ such that $E ⊆ \bigcup_{i=1}^N B(x_i, ε)$ and $x_i ∈ X$ (note that x_i need not be in E).

 \hookrightarrow **Definition 1.9** (Sequentially Compact): (*X*, *ρ*) *sequentially compact* if every sequence in *X* has a convergence subsequence whose limit is in *X*.

 \hookrightarrow **Definition 1.10** (Relatively/Pre-Compact): *E* ⊆ *X relatively compact* if \overline{E} compact.

→Theorem 1.1: TFAE:

- *X* complete and totally bounded;
- *X* compact;
- *X* sequentially compact.

Remark 1.4: $E \subseteq X$ relatively compact if every sequence in E has a convergent subsequence.

Let $f:(X,\rho)\to (Y,\sigma)$ continuous with (X,ρ) compact. Then,

- f(X) compact in Y;
- if $Y = \mathbb{R}$, the max and min of f over X are achieved;
- *f* is uniformly continuous.

Let $C(X) := \{f : X \to \mathbb{R} \mid f \text{ continuous}\}\$ and $||f||_{\infty} := \max_{x \in X} |f(x)|$ the sup (max, in this case) norm. Then,

 \hookrightarrow Theorem 1.2: Let (X, ρ) compact. Then, $(C(X), \|\cdot\|_{\infty})$ is complete.

PROOF. Let $\{f_n\}\subseteq C(X)$ Cauchy with respect to $\|\cdot\|_\infty$. Then, there exists a subsequence $\{f_{n_k}\}$ such that for each $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty\leq 2^{-k}$ (to construct this subsequence, let $n_1\geq 1$ be such that $\|f_n-f_{n_1}\|_\infty<\frac{1}{2}$ for all $n\geq n_1$, which exists since $\{f_n\}$ Cauchy. Then, for each $k\geq 1$, define inductively n_{k+1} such that $n_{k+1}>n_k$ and $\|f_n-f_{n_{k+1}}\|_\infty<\frac{1}{2^{k+1}}$ for each $n\geq n_{k+1}$. Then, for any $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty<2^{-k}$, since $n_{k+1}>n_k$.).

Let $j \in \mathbb{N}$. Then, for any $k \ge 1$,

$$\|f_{n_{k+j}} - f_{n_k}\|_{\infty} \le \sum_{\ell=k}^{k+j-1} \|f_{n_{\ell+1}} - f_{n_{\ell}}\|_{\infty} \le \sum_{\ell} 2^{-\ell}$$

and hence for each $x \in X$, with $c_k := f_{n_k}(x)$,

$$|c_{k+j} - c_k| \le \sum_{\ell=k}^{\infty} 2^{-\ell}.$$

The RHS is the tail of a converging series, and thus $|c_{k+j} - c_k| \to 0$ as $k \to \infty$ i.e. $\{c_k\}$ a Cauchy sequence, in \mathbb{R} . $(\mathbb{R}, |\cdot|)$ complete, so $\lim_{k\to\infty} c_k =: f(x)$ exists for each $x\in X$. So, for each $x\in X$, we find

$$|f_{n_k}(x) - f(x)| \le \sum_{\ell=k}^{\infty} 2^{-\ell},$$

and since the RHS is independent of x, we may pass to the sup norm, and find

$$||f_{n_k} - f||_{\infty} \le \sum_{\ell=k}^{\infty} 2^{-\ell},$$

with the RHS $\to 0$ as $k \to \infty$. Hence, $f_{n_k} \to f$ in C(X) as $k \to \infty$. In other words, we have uniform convergence of $\{f_{n_k}\}$. Each $\{f_{n_k}\}$ continuous, and thus f also continuous, and thus $f \in C(X)$.

It remains to show convergence along the whole sequence. Suppose otherwise. Then, there is some $\alpha > 0$ and a subsequence $\left\{ f_{n_j} \right\} \subseteq \left\{ f_n \right\}$ such that $\|f_{n_j} - f\|_{\infty} > \alpha > 0$ for every $j \geq 1$. Then, let k be sufficiently large such that $\|f - f_{n_k}\|_{\infty} \leq \frac{\alpha}{2}$. Then, for every $j \geq 1$ and k sufficiently large,

$$\begin{split} \|f_{n_j}-f_{n_k}\|_{\infty} &\geq \|f_{n_j}-f\|_{\infty} - \|f-f_{n_k}\|_{\infty} \\ &> \alpha - \frac{\alpha}{2} > 0, \end{split}$$

which contradicts the Cauchy-ness of $\{f_n\}$, completing the proof.

§1.3 Arzelà-Ascoli

The goal in this section is to find conditions for a sequence of functions $\{f_n\} \subseteq C(X)$ to be precompact, namely, to have a uniformly convergent subsequence.

Corollary 1.1: Any Cauchy sequence converges if it has a convergent subsequence.

PROOF. Let $\{x_n\}$ be a Cauchy sequence in a metric space (X, ρ) with convergent subsequence $\{x_{n_k}\}$ which converges to some $x \in X$. Fix $\varepsilon > 0$. Let $N \ge 1$ be such that if $m, n \ge N$, $\rho(x_n, x_m) < \frac{\varepsilon}{2}$. Let $K \ge 1$ be such that if $k \ge K$, $\rho(x_{n_k}, x) < \frac{\varepsilon}{2}$. Let $n, n_k \ge \max\{N, K\}$, then

$$\rho(x,x_n) \leq \rho\big(x,x_{n_k}\big) + \rho\big(x_{n_k},x_n\big) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition 1.11 (Equicontinuous): A family $\mathcal{F} \subseteq C(X)$ is called *equicontinuous* at $x \in X$ if $\forall \varepsilon > 0$ there exists a $\delta = \delta(x, \varepsilon) > 0$ such that if $\rho(x, x') < \delta$ then $|f(x) - f(x')| < \varepsilon$ for every $f \in \mathcal{F}$.

Remark 1.5: \mathcal{F} equicontinuous at x iff every $f \in \mathcal{F}$ share the same modulus of continuity.

Definition 1.12 (Pointwise / uniformly bounded): $\{f_n\}$ pointwise bounded if $\forall x \in X$, $\exists M(x) > 0$ such that $|f_n(x)| \leq M(x) \forall n$, and uniformly bounded if such an M exists independent of x.

Lemma 1.1 (Arzelà-Ascoli Lemma): Let X separable and let $\{f_n\}$ ⊆ C(X) be pointwise bounded and equicontinuous. Then, there is a subsequence $\{f_{n_k}\}$ and a function f which converges pointwise to f on all of X.

PROOF. Let $D = \left\{x_j\right\}_{j=1}^{\infty} \subseteq X$ be a countable dense subset of X. Since $\{f_n\}$ p.w. bounded, $\{f_n(x_1)\}$ as a sequence of real numbers is bounded and so by the Bolzano-Weierstrass (BW) Theorem there is a convergent subsequence $\left\{f_{n(1,k)}(x_1)\right\}_k$ that converges to some $a_1 \in \mathbb{R}$. Consider now $\left\{f_{n(1,k)}(x_2)\right\}_k$, which is again a bounded sequence of \mathbb{R} and so has a convergent subsequence, call it $\left\{f_{n(2,k)}(x_2)\right\}_k$ which converges to some $a_2 \in \mathbb{R}$. Note that $\left\{f_{n(2,k)}\right\} \subseteq \left\{f_{n(1,k)}\right\}$, so also $f_{n(2,k)}(x_1) \to a_1$ as

1.3 Arzelà-Ascoli 5

 $k \to \infty$. We can repeat this procedure, producing a sequence of real numbers $\{a_\ell\}$, and for each $j \in \mathbb{N}$ a subsequence $\{f_{n(j,k)}\}_k \subseteq \{f_n\}$ such that $f_{n(j,k)}(x_\ell) \to a_\ell$ for each $1 \le \ell \le j$. Define then

$$f:D\to\mathbb{R}, f(x_j):=a_j.$$

Consider now

$$f_{n_k} := f_{n(k,k)}, k \ge 1,$$

the "diagonal sequence", and remark that $f_{n_k}(x_j) \to a_j = f(x_j)$ as $k \to \infty$ for every $j \ge 1$. Hence, $\{f_{n_k}\}_k$ converges to f on D, pointwise.

We claim now that $\{f_{n_k}\}$ converges on all of X to some function $f: X \to \mathbb{R}$, pointwise. Put $g_k \coloneqq f_{n_k}$ for notational convenience. Fix $x_0 \in X$, $\varepsilon > 0$, and let $\delta > 0$ be such that if $x \in X$ such that $\rho(x,x_0) < \delta$, $|g_k(x) - g_k(x_0)| < \frac{\varepsilon}{3}$ for every $k \ge 1$, which exists by equicontinuity. Since D dense in X, there is some $x_j \in D$ such that $\rho(x_j,x_0) < \delta$. Then, since $g_k(x_j) \to f(x_j)$ (pointwise), $\{g_k(x_j)\}_k$ is Cauchy and so there is some $K \ge 1$ such that for every $k,\ell \ge K$, $|g_\ell(x_j) - g_k(x_j)| < \frac{\varepsilon}{3}$. And hence, for every $k,\ell \ge K$,

$$|g_k(x_0) - g_\ell(x_0)| \le |g_k(x_0) - g_k(x_j)| + |g_k(x_j) - g_\ell(x_j)| + |g_\ell(x_j) - g_\ell(x_0)| < \varepsilon,$$

so namely $\{g_k(x_0)\}_k$ Cauchy as a sequence in \mathbb{R} . Since \mathbb{R} complete, then $\{g_k(x_0)\}_k$ also converges, to, say, $f(x_0) \in \mathbb{R}$. Since x_0 was arbitrary, this means there is some function $f: X \to \mathbb{R}$ such that $g_k \to f$ pointwise on X as we aimed to show.

Definition 1.13 (Uniformly Equicontinuous): $\mathcal{F} \subseteq C(X)$ is said to be uniformly equicontinuous if for every $\varepsilon < 0$, there exists a $\delta > 0$ such that $\forall x, y \in X$ with $\rho(x, y) < \delta$, $|f(x) - f(y)| < \varepsilon$ for every $f \in \mathcal{F}$. That is, every function in \mathcal{F} has the same modulus of continuity.

→ Proposition 1.1 (Sufficient Conditions for Uniform Equicontinuity):

- 1. $\mathcal{F} \subseteq C(X)$ uniformly Lipschitz
- 2. $\mathcal{F} \subseteq C(X) \cap C^1(X)$ has a uniform L^{∞} bound on the first derivative
- 3. $\mathcal{F} \subseteq C(X)$ uniformly Holder continuous
- 4. (X, ρ) compact and \mathcal{F} equicontinuous

Theorem 1.3 (Arzelà-Ascoli): Let (X, ρ) a compact metric space and $\{f_n\}$ ⊆ C(X) be a uniformly bounded and (uniformly) equicontinuous family of functions. Then, $\{f_n\}$ is precompact in C(X), i.e. there exists $\{f_{n_k}\}$ ⊆ $\{f_n\}$ such that f_{n_k} is uniformly convergent on X.

Remark 1.6: If $K \subseteq X$ a compact set, then K bounded and closed.

1.3 Arzelà-Ascoli 6

Theorem 1.4: Let (X, ρ) compact and $\mathcal{F} \subseteq C(X)$. Then, \mathcal{F} a compact subspace of C(X) iff \mathcal{F} closed, uniformly bounded, and (uniformly) equicontinuous.

§1.4 Baire Category Theorem

We'll say a set $E \subseteq X$ hollow if int $E = \emptyset$, or equivalently if E^c dense in X.

- \hookrightarrow Theorem 1.5: Let *X* be a complete metric space.
 - (a) Let $\{F_n\}$ a collection of closed hollow sets. Then, $\bigcup_{n=1}^{\infty} F_n$ also hollow.
 - (b) Let $\{O_n\}$ a collection of open dense sets. Then, $\bigcap_{n=1}^{\infty} O_n$ also dense.
- **Corollary 1.2**: Let *X* complete and $\{F_n\}$ a sequence of closed sets in *X*. If $X = \bigcup_{n \ge 1} F_n$, there is some n_0 such that int $(F_{n_0}) \ne \emptyset$.
- \hookrightarrow Corollary 1.3: Let X complete and $\{F_n\}$ a sequence of closed sets in X. Then, $\bigcup_{n=1}^{\infty} \partial F_n$ hollow.

1.4 Baire Category Theorem 7