## **EXAMENUL DE BACALAUREAT - 2009** Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
  B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

## **B. ELEMENTE DE TERMODINAMICA**

Se consideră: numărul lui Avogadro  $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$ , constanta gazelor ideale  $R = 8.31 \, \frac{\text{J}}{\text{mol} \cdot \text{K}}$ . Între parametri

de stare ai gazului ideal într-o stare dată există relația:  $p \cdot V = \nu RT$ . Exponentul adiabatic este definit prin relația:  $\gamma = \frac{C_P}{C_V}$ .

SUBIECTUL I -

Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

- 1. Un gaz considerat ideal efectuează o transformare izobară dacă: a. presiunea variază, iar masa rămâne constantă
- b. presiunea se menține constantă, iar masa variază
- c. atât presiunea cât și masa rămân constante
- d. atât presiunea cât și masa variază.

(2p)

2. Simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică unitatea de măsură în S.I. a mărimii descrise de relația  $\frac{p\Delta V}{v-1}$  este:

- **d.**  $J/(kg \cdot K)$ **b.** J/(mol·K) a.J c.J/K (3p)
- 3. Ciclul idealizat de funcționare al motorului Otto este format din:
- a. două izoterme și două adiabate
- b. două adiabate și două izocore
- c. două izoterme și două izobare
- d. două adiabate o izocoră și o izobară.
- (2p)

**4.** O cantitate constantă v moli de gaz ideal suferă succesiunea de transformări  $1\Rightarrow 2\Rightarrow 3$  , reprezentată în figura alăturată. Dacă  $T_1$  este temperatura absolută în starea (1) și  $T_2$  este temperatura absolută în starea (2), atunci căldura totală schimbată de gaz cu exteriorul în această succesiune de transformări este:



- **a.**  $-2vR(T_2-T_1)$
- **b.**  $-vR(T_2-T_1)$
- **c.**  $vR(T_2 T_1)$
- **d.**  $2vR(T_2 T_1)$ . (5p)

5. Într-un vas de volum  $V=2\ell$  se află oxigen molecular  $(C_V=2.5R)$  la presiunea  $p=26660\,\mathrm{Pa}$ . Energia internă a gazului este egală cu:

- **a.** 266.6 kJ
- **b.** 133.3 kJ
- **c.** 266.6 J
- **d.** 133.3 J
- (3p)