U.S.S.N.: 10/521,300 Filed: 1/14/05

Case No.: 21126YP

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

PCT

(10) International Publication Number WO 02/086097 A2

(51) International Patent Classification7:

- (21) International Application Number: PCT/US02/03987
- (22) International Filing Date: 8 February 2002 (08.02.2002)
- (25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

60/267,636

9 February 2001 (09.02.2001) US

- (71) Applicant (for all designated States except US): ELITRA PHARMACEUTICALS, INC. [US/US]; Suite A, 3510 Dunhill Street, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CARR, Grant, J. [GB/US]; 2210 Sonrisa Glen, Escondido, CA 92029 (US). XU, Howard, H. [US/US]; 14695 Penasquitos Drive, San Diego, CA 92129 (US). FOULKES, Gordon, J. [US/US]; 1220 Rancho Encinitas Drive, Encinitas, CA 92024 (US). ZAMUDIO, Carlos [US/US]; #88, 8724 Villa La Jolla

Drive, La Jolla, CA 92037 (US). HASELBECK, Robert [US/US]; 4672 El Cerrito Drive, San Diego, CA 92115 (US). OHLSEN, Kari, L. [US/US]; 3560 Vista De La Orilla, San Diego, CA 92117 (US). ZYSKIND, Judith, W. [US/US]; 8415 La Jolla Scenic Drive, La Jolla, CA 92037 (US). WALL, Daniel [US/US]; 3734 Brookshire Street, San Diego, CA 92111 (US). TRAWICK, John, D. [US/US]; 7975 Michelle Drive, La Mesa, CA 91942 (US). YAMAMOTO, Robert, T. [US/US]; 3725 Notre Dame Avenue, San Diego, CA 92122 (US). ROEMER, Terry [CA/CA]; 4935 Connaught Avenue, Montreal, Québec H4V 1X4 (CA). JIANG, Bo [CA/CA]; 5231 Globert Street, Montreal, Québec H3W 2L6 (CA). BOONE, Charles [CA/CA]; 254 Glenrose Avenue, Toronto, Ontario M4T 1K9 (CA). BUSSEY, Howard [CA/CA]; 325 Victoria Avenue, Westmount, Québec H3Z 2N1 (CA).

- (74) Agent: HART, Daniel; Knobbe, Martens, Olson & Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

[Continued on next page]

(54) Title: METHODS FOR IDENTIFYING THE TARGET OF A COMPOUND WHICH INHIBITS CELLULAR PROLIFERA-TION

Hypothetical 3 D Matrix Hybridization Results for A Specific Clone

(57) Abstract: The present invention relates to cultures or collections of strains which overexpress or underexpress gene products required for the proliferation of an organism. The present invention also includes methods for identifying the target on which a compound which inhibits the proliferation of an organism acts and methods for identifying the extent to which a strain is present in a culture or collection of strains.

2/086097 A2

WO 02/086097 A2

CII, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GII, GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PII, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHODS FOR IDENTIFYING THE TARGET OF A COMPOUND WHICH INHIBITS CELLULAR PROLIFERATION

Background of the Invention

5

Many important therapeutic compounds act by reducing or eliminating the activity or level of a gene product required for cellular proliferation. For example, most antibiotic compounds act by reducing or eliminating the activity or level of gene products which are required for the proliferation of a pathogenic organism. Similarly, compounds used to treat or ameliorate cancer also reduce or inhibit the activity or level of a gene product required for cellular proliferation.

10

Current drug discovery methods involve screening large number of prospective therapeutic compounds to identify those that are effective therapeutic agents or that can be optimized to provide an effective therapeutic agents. For example, the compounds to be evaluated for therapeutic activity may be members of a library of compounds generated by combinatorial chemistry or members of a library of natural products.

15

Unfortunately, current methods are laborious and time consuming and may yield compounds which have already been identified or which act on gene products which are already targeted by an existing therapeutic agent. Accordingly, there is a need for rapid screening techniques which yield novel compounds or compounds which act on novel targets.

20

In addition, a large number of compounds have been identified which have antimicrobial activity but which cannot be administered to individuals suffering from infection due to the fact that their targets are unknown. Accordingly, there is a need for methods which permit the identification of the target on which a compound with antimicrobial activity acts.

25

30

Field of the Invention

The present invention provides reagents and methods for identifying the target of a compound which reduces the activity or level of gene products required for

cellular proliferation. In addition, the present invention provides reagents and methods for identifying novel therapeutic compounds or compounds which act on novel targets.

Sequence Listing

5

10

The present application is being filed along with 4 copies of a CD-ROM marked "Copy 1," "Copy 2," "Copy3" and "CRF" containing a Sequence Listing in electronic format. The copies of the CD-ROM each contain a file entitled 028vpc-final.txt created on February 8, 2002 which is 36,220,587 bytes in size. The information on these duplicate CD-ROMs is incorporated herein by reference in its entirety.

Definitions

As used herein, the terminology "proliferation-required" or "required for proliferation" encompasses instances where the absence or substantial reduction of a gene transcript and/or gene product completely eliminates cell growth as well as instances where the absence of a gene transcript and/or gene product merely reduces cell growth.

By "E. coli or Escherichia coli" is meant Escherichia coli or any organism previously categorized as a species of Shigella including Shigella boydii, Shigella flexneri, Shigella dysenteriae, Shigella sonnei, Shigella 2A.

20

25

30

15

By "homologous coding nucleic acid" is meant a nucleic acid homologous to a nucleic acid encoding a gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 or a portion thereof. In some embodiments, the homologous coding nucleic acid may have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. In other embodiments the homologous coding nucleic acids may have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 50%, or at least 40% nucleotide sequence

5

10

15

20

25

30

identity to a nucleotide sequence selected from the group consisting of the nucleotide sequences complementary to one of SEQ ID NOs.: 8-3795 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Identity may be measured using BLASTN version 2.0 with the default parameters or tBLASTX with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety) Alternatively a "homologous coding nucleic acid" could be identified by membership of the gene of interest to a functional orthologue cluster. All other members of that orthologue cluster would be considered homologues. Such a library of functional orthologue clusters can be found at http://www.ncbi.nlm.nih.gov/COG. A gene can be classified into a cluster of orthologous groups or COG by using the COGNITOR program available at the above web site, or by direct BLASTP comparison of the gene of interest to the members of the COGs and analysis of these results as described by Tatusov, R.L., Galperin, M.Y., Natale, D. A. and Koonin, E.V. (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research v. 28 n. 1, pp. 33-36.

The term "homologous coding nucleic acid" also includes nucleic acids comprising nucleotide sequences which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide comprising the amino acid sequence of one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 or to a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs: 8-3795 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, TBLASTN with the default parameters, or tBLASTX with the

5

10

15

20

25

30

default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).

The term "homologous coding nucleic acid" also includes coding nucleic acids which hybridize under stringent conditions to a nucleic acid selected from the group consisting of the nucleotide sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and coding nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944. As used herein, "stringent conditions" means hybridization to filter-bound nucleic acid in 6xSSC at about 45°C followed by one or more washes in 0.1xSSC/0.2% SDS at about 68°C. Other exemplary stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C, 48°C, 55°C, and 60°C as appropriate for the particular probe being used.

The term "homologous coding nucleic acid" also includes coding nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence selected from the group consisting of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and coding nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944. As used herein, "moderate conditions" means hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45°C followed by one, preferably 3-5 washes in 0.2xSSC/0.1% SDS at about 42-65°C.

The term "homologous coding nucleic acids" also includes nucleic acids comprising nucleotide sequences which encode a gene product whose activity may be

complemented by a gene encoding a gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795. In some embodiments, the homologous coding nucleic acids may encode a gene product whose activity is complemented by the gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944. In other embodiments, the homologous coding nucleic acids may comprise nucleotide sequences which encode a gene product whose activity is complemented by one of the polypeptides of SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110 and 14945-15778.

10

15

20

...

5

The term "homologous antisense nucleic acid" includes nucleic acids comprising a nucleotide sequence having at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, or at least 40% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 8-3795 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Homologous antisense nucleic acids may also comprising nucleotide sequences which have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, or at least 40% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of the sequences complementary to one of sequences of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Nucleic acid identity may be determined as described above.

25

30

The term "homologous antisense nucleic acid" also includes antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleotide sequence complementary to one of SEQ ID NOs.: 8-3795 and antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to

one of SEQ ID NOs. 8-3795. Homologous antisense nucleic acids also include antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944.

The term "homologous antisense nucleic acid" also includes antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence complementary to one of SEQ ID NOs.: 8-3795 and antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795. Homologous antisense nucleic acids also include antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and antisense nucleic acids which comprising nucleotide sequences hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944.

By "homologous polypeptide" is meant a polypeptide homologous to a polypeptide whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or by a homologous antisense nucleic acid. The term "homologous polypeptide" includes polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795 or by a homologous

antisense nucleic acid, or polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide to a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 or by a homologous antisense nucleic acid. Identity or similarity may be determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).

The term homologous polypeptide also includes polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778.

The term, Salmonella, is the generic name for a large group of gram-negative enteric bacteria that are closely related to Escherichia coli. The diseases caused by Salmonella are often due to contamination of foodstuffs or the water supply and affect millions of people each year. Traditional methods of Salmonella taxonomy were based on assigning a separate species name to each serologically distinguishable strain (Kauffmann, F 1966 The bacteriology of the Enterobacteriaceae. Munksgaard, Copenhagen). Serology of Salmonella is based on surface antigens (O [somatic] and

H [flagellar]). Over 2,400 serotypes or serovars of Salmonella are known (Popoff, et al. 2000 Res. Microbiol. 151:63-65). Therefore, each serotype was considered to be a separate species and often given names, accordingly (e.g. S. paratyphi, S. typhimurium, S. typhi, S. enteriditis, etc.).

5

However, by the 1970s and 1980s it was recognized that this system was not only cumbersome, but also inaccurate. Then, many Salmonella species were lumped into a single species (all serotypes and subgenera I, II, and IV and all serotypes of Arizona) with a second subspecies, S. bongorii also recognized (Crosa, et al., 1973, J. Bacteriol. 115:307-315). Though species designations are based on the highly variable surface antigens, the Salmonella are very similar otherwise with a major exception being pathogenicity determinants.

10

15

20

There has been some debate on the correct name for the Salmonella species. Currently (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467), the accepted name is Salmonella enterica. S. enterica is divided into six subspecies (I, S. enterica subsp. enterica; II, S. enterica, subsp. salamae; IIIa, S. enterica subsp. arizonàe; IIIb, S. enterica subsp. diarizonae; IV, S. enterica subsp. houtenae; and VI, S. enterica subsp. indica). Within subspecies I, serotypes are used to distinguish each of the serotypes or serovars (e.g. S. enterica serotype Enteriditis, S. enterica serotype Typhimurium, S. enterica serotype Typhi, and S. enterica serotype Choleraesuis, etc.). Current convention is to spell this out on first usage (Salmonella enterica ser. Typhimurium) and then use an abbreviated form (Salmonella Typhimurium or S. Typhimurium). Note, the genus and species names (Salmonella enterica) are italicized but not the serotype/serovar name (Typhimurium). Because the taxonomic committees have yet to officially approve of the actual species name, this latter system is what is employed by the CDC (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467). Due to the concerns of both taxonomic priority and medical importance, some of these serotypes might ultimately receive full species designations (S.typhi would be the most notable).

25

Therefore, as used herein "Salmonella enterica or S. enterica" includes serovars Typhi, Typhimurium, Paratyphi, Choleraesuis, etc." However, appeals of the "official" name are in process and the taxonomic designations may change (S.

choleraesuis is the species name that could replace S. enterica based solely on priority).

By "inducer" is meant an agent or solution which, when placed in contact with a cell or microorganism, increases transcription, or inhibitor and/or promoter clearance/fidelity, from a desired promoter.

5

10

15

20

25

As used herein, "nucleic acid" means DNA, RNA, or modified nucleic acids. Thus, the terminology "the nucleic acid of SEQ ID NO: X" or "the nucleic acid comprising the nucleotide sequence" includes both the DNA sequence of SEQ ID NO: X and an RNA sequence in which the thymidines in the DNA sequence have been substituted with uridines in the RNA sequence and in which the deoxyribose backbone of the DNA sequence has been substituted with a ribose backbone in the RNA sequence. Modified nucleic acids are nucleic acids having nucleotides or structures which do not occur in nature, such as nucleic acids in which the internucleotide phosphate residues with methylphosphonates, phosphorothioates, phosphoramidates, and phosphate esters. Nonphosphate internucleotide analogs such as siloxane bridges, carbonate bridges, thioester bridges, as well as many others known in the art may also be used in modified nucleic acids.

Modified nucleic acids may also comprise, α -anomeric nucleotide units and modified nucleotides such as 1,2-dideoxy-d-ribofuranose, 1,2-dideoxy-1-phenylribofuranose, and N^4 , N^4 -ethano-5-methyl-cytosine are contemplated for use in the present invention. Modified nucleic acids may also be peptide nucleic acids in which the entire deoxyribose-phosphate backbone has been exchanged with a chemically completely different, but structurally homologous, polyamide (peptide) backbone containing 2-aminoethyl glycine units.

As used herein, the terminology "overexpress" refers to strains which possess either a level of the gene product which is higher than the level possessed by wild type cells or an affinity for a test compound which is lower than the affinity of a wild type gene product, while the terminology "underexpress" refers to strains which possess a level of the gene product which is lower than the level possessed by wild

type cells or an affinity for a test compound which is higher than the affinity of a wild type gene product.

Summary of the Invention

5

Some aspects of the present invention are described in the following numbered paragraphs:

1. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

10

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism;

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

20

- The method of Paragraph 1, wherein said culture includes at least one strain which does not overexpresses a gene product which is essential for proliferation of said organism.
- 3. The method of Paragraph 1, wherein said strains which overexpress said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.
- 4. The method of Paragraph 1, wherein said strains which overexpress said gene products a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a constitutive promoter.

5. The method of Paragraph 1, wherein said identification step comprises determining the nucleotide sequence of a nucleic acid encoding said gene product in said cell which proliferated more rapidly in said culture.

6. The method of Paragraph 1, wherein said identification step comprises performing an amplification reaction to identify the nucleic acid encoding said gene product in said cell which proliferated more rapidly in said cell culture.

5

10

15

20

25

- 7. The method of Paragraph 6, wherein the products of said amplification reaction are labeled with a detectable dye.
- 8. The method of Paragraph 1, wherein said identification step comprises performing a hybridization procedure.
- 9. The method of Paragraph 1, wherein said identification step comprises contacting a nucleic acid array with a nucleic acid encoding said gene product in said cell which proliferated more rapidly in said cell culture.
- 10. The method of Paragraph 1, wherein said organism is selected from the group consisting of bacteria, fungi, and protozoa.
- 11. The method of Paragraph 1, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Candida Candida parapsilosis, Torulopsis glabrata), Candida tropicalis, called Candida Candida kefyr (also guilliermondii, Candida krusei, pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis,

Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

12. The method of Paragraph 1, wherein said compound is obtained from a library of natural compounds.

- 13. The method of Paragraph 1, wherein said compound is obtained from a library of synthetic compounds.
- 14. The method of Paragraph 1, wherein said compound is present in a crude or partially purified state.
- 15. The method of Paragraph 1, further comprising determining whether said gene product in said strain which proliferated more rapidly in said culture has a counterpart in at least one other organism.
- 16. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

5

10

15

20

17. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

18. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

13

5

10

15

20

25

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

19. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

5

10

15

20

25

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed;

PCT/US02/03987 WO 02/086097

5

10

15

20

25

..

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

20. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEO ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate

more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

obtaining a culture comprising a plurality of strains wherein each strain

5

10

15

21. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-

14110 and 14945-15778 is overexpressed;

20

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

25

22. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining an array of strains on a solid growth medium wherein each strain in overexpresses a different gene product which is essential for proliferation of said organism

5

10

15

20

25

30

contacting said array of strains with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly on said solid medium.

23. The method of Paragraph 21, wherein at least one strain in said array does not overexpresses a gene product which is essential for proliferation of said organism.

24. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a plurality of cultures, wherein each culture comprises a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism;

contacting each of said cultures with a different concentration of said compound; and

identifying the gene product which is overexpressed in a strain whose proliferation is inhibited by said compound.

25. The method of Paragraph 23, wherein at least one strain in said plurality of cultures does not overexpress a gene product which is essential for proliferation of said organism.

26. A method of profiling a compound's activity comprising

performing the method of Paragraph 1 on a first culture using a first compound;

performing the method of Paragraph 1 on a second culture using a second compound; and

comparing the strains identified in said first culture to the strains identified in said second culture.

27. A method of profiling a first compound's activity comprising

growing an array of strains on a first solid medium comprising said first compound and on a second solid medium comprising a second compound, wherein each strain in said array overexpresses a different gene product which is essential for proliferation of an organism and wherein said first compound and said second compound inhibit the proliferation of said organism; and

5

comparing the pattern of strains which grow on said first solid medium with the pattern of strains which grow on said second solid medium.

28. The method of any one of Paragraphs 26 and 27, wherein said first compound is present in a crude or partially purified state.

10

29. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism;

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

20

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

30. The method of Paragraph 29, wherein at least one strain in said culture does not underexpresses a gene product which is essential for proliferation of said organism.

25

31. The method of Paragraph 29, wherein said strains which underexpresess said gene products comprise a nucleic acid complementary to at least a portion of a gene encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.

32. The method of Paragraph 29, wherein said strains which underexpress said gene products express an antisense nucleic acid complementary to at least a portion of a gene encoding said gene product which is essential for proliferation of said organism, wherein expression of said antisense nucleic acid reduces expression of said gene product in said strain.

5

10

15

20

- 33. The method of Paragraph 29, wherein said identification step comprises determining the nucleotide sequence of a nucleic acid encoding said gene product in said strain which proliferated more slowly.
- 34. The method of Paragraph 29, wherein said identification step comprises performing an amplification reaction to identify the nucleic acid encoding said gene product in said cell which proliferated more slowly.
- 35. The method of Paragraph 34, wherein the products of said amplification reaction are labeled with a detectable dye.
- 36. The method of Paragraph 29, wherein said identification step comprises performing a hybridization procedure.
- 37. The method of Paragraph 29, wherein said identification step comprises contacting a nucleic acid array with a nucleic acid encoding said gene product in said cell which proliferated more slowly.
- 38. The method of Paragraph 29, wherein said organism is selected from the group consisting of bacteria, fungi, protozoa.
- 39. The method of Paragraph 29, wherein said compound is obtained from a library of natural compounds.
- 40. The method of Paragraph 29, wherein said compound is obtained from a library of synthetic compounds.
- 41. The method of Paragraph 29, wherein said compound is present in a crude or partially purified state.
- 42. The method of Paragraph 29, further comprising determining whether said gene product in said strain which proliferated more slowly in said culture has a counterpart in at least one other organism.

5

10

15

20

25

30

43. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organismwherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

44. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is underexpressed;

compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

45. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

5

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

10

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

15

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

20

46. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

25

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid

5

10

15

20

25

30

encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

47. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least

5

10

15

20

25

30

70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

48. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

5

10

15

20

25

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

49. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a plurality of cultures, each culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism; and

contacting each of said cultures with a different concentration of said compound; and

identifying the gene product which is underexpressed in a strain whose rate of proliferation is reduced by said compound.

50. A method of profiling a compound's activity comprising

performing the method of Paragraph 29 on a first culture using a first compound;

performing the method of Paragraph 29 on a second culture using a second compound; and

comparing the strains identified in said first culture to the strains identified in said second culture.

51. A method of profiling a first compound's activity comprising

growing an array of strains on a first solid medium comprising said first compound and on a second solid medium comprising a second compound, wherein said array comprises a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of

an organism and wherein said first compound and said second compound inhibit the proliferation of said organism; and

comparing the pattern of strains which grow on said first solid medium with the pattern of strains which grow on said second solid medium.

52. The method of any one of Paragraphs 49 and 50, wherein said first compound is present in a crude or partially purified state.

5

10

15

20

25

30

53. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a plurality of culturescomprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism;

contacting each of said plurality of cultures with a varying concentration of a regulatory agent which regulates the level of expression of said gene products which are essential for proliferation of said organism; and

identifying the gene product which is underexpressed in a strain whose rate of proliferation is reduced by said compound.

54. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism.

55. The culture of Paragraph 54, wherein said strains which overexpresess said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.

56. The culture of Paragraph 54, wherein said strains which overexpresess said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a constitutive promoter.

57. The culture of Paragraph 54, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida

5

10

15

20

25

Candida kefyr (also called Candida guilliermondii, Candida krusei. pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

58. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed.

59. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed.

60. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising

5

10

15

20

25

30

÷

. .

an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed.

61. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed.

62. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence

identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed.

10

15

5

63. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed.

20

organism.

65. The culture of Paragraph 64, wherein said strains which underexpress said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.

underexpresses a different gene product which is essential for proliferation of said

64. A culture comprising a a plurality of strains wherein each strain

25

66. The culture of Paragraph 64, wherein said strains which underexpress said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a constitutive promoter.

30

67. The culture of Paragraph 64, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia

5

10

15

20

25

30

cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Candida parapsilosis, Candida Candida tropicalis, Torulopsis glabrata). called Candida kefyr (also guilliermondii, Candida krusei. Candida Candida dubliniensis, Chlamydia pneumoniae, Chlamydia pseudotropicalis), trachomatus. Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae. Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

68. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is underexpressed.

•

69. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is underexpressed.

70. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said

5

10

15

20

25

30

organism, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed.

71. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is underexpressed.

72. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of

a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is underexpressed.

10

15

5

73. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed.

20

74. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

25

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes;

30

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains

which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

5

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

75. The method of Paragraph 74, wherein the nucleotide sequence of each of the genes encoding an overexpressed gene product has been altered by replacing the native promoters of said genes with promoters which facilitate overexpression of said gene products.

10

76. The method of Paragraph 74, wherein the nucleotide sequence of each of the genes encoding an overexpressed gene product has been altered by inserting a regulatory element into the native promoters of said genes with a promoter which facilitates overexpression of said gene products.

15

77. The method of Paragraph 76, wherein said regulatory element is selected from the group consisting of a regulatable promoter, an operator which is recognized by a repressor, a nucleotide sequence which is recognized by a transcriptional activator, a transcriptional terminator, a nucleotide sequence which introduces a bend in the DNA and an upstream activating sequence.

20

78. The method of Paragraph 74, wherein the step of identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene comprises performing an amplification reaction and detecting a unique amplification product corresponding to said gene.

25

79. The method of Paragraph 75, wherein the native promoter of each of the genes encoding a gene product essential for proliferation is replaced with the same promoter.

80. The method of Paragraph 75, wherein the native promoters of the genes encoding gene products essential for proliferation are replaced with a plurality of promoters selected to give a desired expression level for each gene product.

81. The method of Paragraph 75, wherein said promoters which replaced the native promoters in each strain comprise regulatable promoters.

- 82. The method of Paragraph 75, wherein said promoters which replaced the native promoters in each strain each strain comprise constitutive promoters.
- 83. The method of Paragraph 74, wherein said organism is selected from the group consisting of bacteria, fungi, and protozoa.

5

10

15

20

25

30

- 84. The method of Paragraph 74, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida Candida called kefyr (also guilliermondii, Candida krusei, pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.
- 85. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of

5

10

15

20

25

30

said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

86. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains

which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

5

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

87. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

10

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed;

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

20

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

25

88. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

30

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of

5

10

15

20

25

30

said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs: 8-3795 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate

more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

89. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

90. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene

5

10

15

20

25

5

10

15

20

25

30

product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed.

91. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes;

compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene

contacting said culture with a sufficient concentration of said

product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

92. The method of Paragraph 91, wherein the nucleotide sequence of each of the genes encoding an underexpressed gene product has been altered by replacing the native promoters of said genes with promoters which facilitate underexpression of said gene products.

93. The method of Paragraph 91, wherein the nucleotide sequence of each of the genes encoding an underexpressed gene product has been altered by inserting a regulatory element into the native promoters of said genes with a promoter which facilitates underexpression of said gene products.

94. The method of Paragraph 93, wherein said regulatory element is selected from the group consisting of a regulatable promoter, an operator which is recognized by a repressor, a nucleotide sequence which is recognized by a transcriptional activator, a transcriptional terminator, a nucleotide sequence which introduces a bend in the DNA and an upstream activating sequence.

95. The method of Paragraph 91, wherein the step of identifying the gene product which is underexpressed in a strain which proliferated more slowly in said

25

5

10

15

culture by detecting the unique product corresponding to said gene comprises performing an amplification reaction and detecting a unique amplification product corresponding to said gene.

96. The method of Paragraph 92, wherein the native promoter of each of the genes encoding a gene product essential for proliferation is replaced with the same promoter.

5

10

15

20

25

30

97. The method of Paragraph 92, wherein the native promoters of the genes encoding gene products essential for proliferation are replaced with a plurality of promoters selected to give a desired expression level for each gene product.

98. The method of Paragraph 92, wherein said promoters which replaced the native promoters in each strain comprise regulatable promoters.

99. The method of Paragraph 92, wherein said promoters which replaced the native promoters in each strain each strain comprise constitutive promoters.

100. The method of Paragraph 91, wherein said organism is selected from the group consisting of bacteria, fungi, and protozoa.

The method of Paragraph 91, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Candida Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida kefyr (also called Candida guilliermondii, Candida krusei, pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis,

Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

5

102. The method of Paragraph 91, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is underexpressed.

10

103. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

15

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes and wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is underexpressed;

20

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

25

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

104. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

5

10

15

20

25

30

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

105. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0

5

10

15

20

25

with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

5

10

15

20

25

106. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

5

10

15

20

25

30

107. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

108. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

10

5

determining the lengths of the amplification products obtained in said amplification reaction.

109. The method of Paragraph 108, wherein one member of each primer pair for each of said genes is labeled with a detectable dye.

110. The method of Paragraph 108 wherein: said nucleic acid sample is divided into N aliquots;

15

said amplification reaction is performed on each aliquot using primer pairs complementary to nucleotide sequences within or adjacent to 1/N of the genes which encode said gene products, wherein one of the members of each primer pair in each aliquot is labeled with a dye and wherein the dyes on the primers in each aliquot are distinguishable from one another.

20

111. The method of Paragraph 109, further comprising pooling the amplification products from each of the aliquots prior to determining the lengths of the amplification products.

The method of Paragraph 108, wherein the native promoters of said

genes which encode said gene products have been replaced with a regulatable promoter and one of the primers in said primer pairs is complementary to a nucleotide sequence within said regulatable promoter.

113. The method of Paragraph 111, wherein the native promoters for each of said genes were replaced with the same regulatable promoter.

114. The method of Paragraph 111, wherein more than one regulatable promoter was used to replace the promoters of said genes such that some of said genes are under the control of a different regulatable promoter.

115. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

116. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a

25

5

10

15

nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which

5

which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or

are complementary to nucleotide sequences within or adjacent to the genes

10

determining the lengths of the amplification products obtained in said amplification reaction.

117. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

collection of strains; and

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed;

20

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide

sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

118. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented

30

5

10

15

20

by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed;

are complementary to nucleotide sequences within or adjacent to the genes

performing an amplification reaction using a set of primer pairs which

5

10

15

20

which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or

determining the lengths of the amplification products obtained in said amplification reaction.

119. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

collection of strains; and

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.:

30

3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

120. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification

25

5

10

15

product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

5

determining the lengths of the amplification products obtained in said amplification reaction.

121. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

10

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

15

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

20

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

25

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

5

10

15

20

25

30

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products.

122. The method of Paragraph 121, wherein one member of each primer pair for each of said genes is labeled with a detectable dye.

123. The method of Paragraph 121, wherein the native promoters of said genes which encode said gene products have been replaced with a regulatable promoter and one of the primers in said primer pairs is complementary to a nucleotide sequence within said regulatable promoter.

124. The method of Paragraph 121, wherein the native promoters for each of said genes were replaced with the same regulatable promoter.

125. The method of Paragraph 121, wherein more than one regulatable promoter was used to replace the promoters of said genes such that some of said genes are under the control of a different regulatable promoter.

126. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

5

10

15

20

25

30

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed.

127. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses

30

0

5

10

15

20

25

3.

said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed.

10

5

128. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

15

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

performing a first amplification reaction on said first nucleic acid

25

20

sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other

30

primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

5

15

10

20

30

25

30

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

129. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

5

10

15

20

25

30

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is

inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed.

15

10

5

130. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

20

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

25

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

30

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide

sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

10

15

20

25

5

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence

selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed.

131. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification

25

5

10

15

5

10

15

20

25

30

product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second culture or collection of strains comprise a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

132. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

133. The method of Paragraph 132, wherein one member of each primer pair for each of said genes is labeled with a detectable dye.

134. The method of Paragraph 132 wherein: said nucleic acid sample is divided into N aliquots;

said amplification reaction is performed on each aliquot using primer pairs complementary to nucleotide sequences within or adjacent to 1/N of the genes which encode said gene products, wherein one of the members of each primer pair in each aliquot is labeled with a dye and wherein the dyes on the primers in each aliquot are distinguishable from one another.

135. The method of Paragraph 134, further comprising pooling the amplification products from each of the aliquots prior to determining the lengths of the amplification products.

136. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene

10

5

20

15

25

product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed.

137. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed.

138. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic

30

5

10

15

20

acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

139. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by

30

25

5

10

15

an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed.

20

5

10

15

140. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

25

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

30

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the

PCT/US02/03987 WO 02/086097

> amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

5

10

15

20

25

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS .: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed.

141. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the

5

10

15

20

25

30

nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

142. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction.

143. The method of Paragraph 142, wherein said primer pairs are divided into at least two sets, each primer pair comprises a primer which is labeled with a

distinguishable dye, and the distinguishable dye used to label each set of primer pairs is distinguishable from the dye used to label the other sets of primer pairs.

144. The method of Paragraph 142 wherein:

said nucleic acid sample is divided into N aliquots;

5

said amplification reaction is performed on each aliquot using primer pairs complementary to nucleotide sequences within or adjacent to 1/N of the genes which encode said gene products, wherein one of the members of each primer pair in each aliquot is labeled with a dye and wherein the dyes on the primers in each aliquot are distinguishable from one another.

10

145. The method of Paragraph 144, further comprising pooling the amplification products from each of the aliquots prior to determining the lengths of the amplification products.

146. The method of Paragraph 142, wherein the native promoters of said genes which encode said gene products have been replaced with a regulatable promoter and one of the primers in said primer pairs is complementary to a nucleotide sequence within said regulatable promoter.

15

147. The method of Paragraph 146, wherein the native promoters for each of said genes were replaced with the same regulatable promoter.

20

148. The method of Paragraph 146, wherein more than one regulatable promoter was used to replace the promoters of said genes such that some of said genes are under the control of a different regulatable promoter.

149. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

25

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

30

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that

5

10

15

20

25

each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed.

150. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the

group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed.

151. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

5

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

10

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

15

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

20

152. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

25

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

30

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which

5

10

15

20

25

encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic

acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed.

153. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

5

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

10

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

15

buain, and

20

 \mathbf{x}

25

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.:

> 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed.

154. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

5

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

10

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of

15

strains; and

20

25

30

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

Brief Description of the Drawings

Figures 1A and 1B illustrate one method for identifying amplification products which are underrepresented or overrepresented in a culture.

Figures 2A and 2B illustrate another method for identifying amplification products which are underrepresented or overrepresented in a culture.

Figure 3 illustrates the results of a hybridization analysis where the antisense nucleic acid expressed by a strain in the culture is not complementary to all or a portion of the gene encoding the target of the compound (i.e. a nonspecific strain).

5

10

15

20

25

Figure 4 illustrates the results of a hybridization analysis where the antisense nucleic acid expressed by a strain in the culture is complementary to all or a portion of the gene encoding the target of the compound, the hybridization intensity for that strain will be intimately correlated with the concentration of the compound (i.e. a specific strain).

Figure 5A illustrates a method for replacing a promoter using a promoter replacement cassette comprising a 5' region homologous to the sequence which is 5' of the natural promoter in the chromosome, the promoter which is to replace the chromosomal promoter and a 3' region which is homologous to sequences 3' of the natural promoter in the chromosome.

Figure 5B illustrates a method for replacing a promoter using a promoter replacement cassette comprising a nucleic acid encoding an identifiable or selectable marker disposed between the 5' region which is homologous to the sequence 5' of the natural promoter and the promoter which is to replace the chromosomal promoter and a transcriptional terminator 3' of the gene encoding an identifiable or selectable marker.

Figures 6A and 6B depict the GRACE method for constructing a gene disruption of one allele of a gene (CaKRE9), and promoter replacement of the second allele of the target gene, placing the second allele under conditional, regulated control by a heterologous promoter.

Figure 7A depicts growth of a wild-type strain and a *CaHIS3* heterozygote strain as compared with a *CaHIS3* GRACE strain constitutively expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of inhibitory levels of 3-aminotriazole.

Figure 7B depicts growth of a wild-type strain, a haploinsufficient *CaHIS3* heterozygote strain, and a *CaHIS3* GRACE strain constitutively expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of an intermediate level of 3-aminotriazole.

5

Figure 7C depicts growth of a wild-type strain, a haploinsufficient *CaHIS3* heterozygote strain, and a *CaHIS3* GRACE strain minimally expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of an intermediate level of 3-aminotriazole.

10

Figure 7D demonstrates the hypersensitivity of the *CaHIS3* GRACE strain minimally expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of an intermediate level of 3-aminotriazole.

Figure 8 presents a Northern Blot Analysis of CaHIS3, CaALR1, CaCDC24 and CaKRE9 mRNA isolated from GRACE strains to illustrate elevated expression under non-repressing conditions.

15

Figure 9 presents conditional gene expression, using GRACE technology, with KRE1, KRE5, KRE6 and KRE9.

Figure 10 presents conditional gene expression using GRACE technology with CaKRE1, CaTUB1, CaALG7, CaAUR1, CaFKS1 and CaSAT2.

20

Figure 11 illustrates an oligonucleotide comprising a lac operator flanked on each side by 40 nucleotides homologous to the promoter is the promoter which drives expression of the yabB yabC ftsL ftsI murE genes in an operon for use in inserting the lac operator into the promoter.

Figure 12 illustrates a microtitration plate which contains antibiotic and inducer at gradient concentrations in a matrix format in 10 times excess quantity.

25

Figure 13 illustrates the results of an experiment demonstrating that at appropriate concentrations of inducer, cells which overexpress the defB gene product were able to grow at elevated concentrations of the antibiotic actinonin

Figure 14 illustrates the results of an experiment demonstrating that at appropriate concentrations of inducer cells which overexpress the folA gene product were able to grow at elevated concentrations of the antibiotic trimethoprim.

Figure 15 illustrates the results of an experiment demonstrating that overexpression of the fabI gene confers resistance to triclosan, which acts on the gene product of the fabI gene, but does not confer resistance to cerulenin, trimethoprim, or actinonin, each of which act on other gene products.

5

Figure 16 illustrates the results of an experiment demonstrating that overexpression of the folA gene confers resistance to trimethoprim, which acts on the gene product of the folA gene but does not confer resistance to triclosan, cerulenin, or actinonin, each of which act on other gene products.

10

Figure 17 illustrates the results of an experiment demonstrating that overexpression of the defB gene conferred resistance to actinonin, which acts on the gene product of the defB gene but does not confer resistance to cerulenin, trimethoprim, or triclosan, each of which act on other gene products.

15

Figure 18 illustrates the results of an experiment demonstrating that overexpression of the fabB gene conferred resistance to cerulenin, which acts on the gene product of the fabB gene, β keto-acyl carrier protein synthase but does not confer resistance to triclosan, trimethoprim, or actinonin, each of which act on other gene products.

20

Figure 19 illustrates the results of experiments in which a mixture of nine strains was grown wells in a 96 well plate in medium containing various concentrations of inducer and a sufficient concentration of actinonin, cerulenin, triclosan or trimethoprim to inhibit the growth of strains which do not overexpress the targets of these antibiotics.

Detailed Description of the Preferred Embodiment

25

The present invention utilizes collections or cultures of strains comprising strains which either overexpress a different gene product which is required for cellular proliferation or underexpress a different gene product which is required for cellular proliferation (i.e. at least some of the strains in the culture overexpress or underexpress a gene product required for cellular proliferation). In some embodiments, the present invention uses collections or cultures of strains comprising

30

both strains which overexpress gene products required for cellular proliferation and strains which underexpress the same gene products required for cellular proliferation. Preferably, each of the strains present in the culture or collection either overexpresses or underexpresses a different gene product which is required for cellular proliferation (i.e. all of the strains in the culture overexpress or underexpress a gene product required for cellular proliferation). The gene product which is overexpressed or underexpressed in each strain may be any gene product which is required for cellular proliferation. The gene product may be a nucleic acid or a polypeptide. As used herein the term "culture" refers to a plurality of strains growing in a single aliquot of a liquid growth medium and the term "collection" refers to a plurality of strains each of which is growing in a separate aliquot of liquid growth medium or a different location on a solid growth medium.

5

10

15

20

25

In some embodiments, if desired, one or more of the strains in the culture or collection of strains may overexpress or underexpress more than one gene product which is required for cellular proliferation. In this embodiment, the gene products which are overexpressed or underexpressed in one or more of the strains may be functionally related or functionally unrelated. This may facilitate the identification of compounds when two or more gene products share similar functions in the cell or where the cell has multiple biochemical pathways which lead to a particular end product.

Alternatively, if the gene product to be overexpressed or underexpressed is encoded by a gene which is part of an operon containing a plurality of genes, the desired gene may be overexpressed or underexpressed while the remaining genes in the operon are expressed at levels where they do not impact the ability of the cell to grow in the presence of a particular compound. For example, the desired gene may be placed under the control of a regulatable promoter, a transcriptional terminator may be placed 3' of the desired gene and a promoter, preferably a constitutive promoter, may be placed 3' of the transcriptional terminator and 5' of the remaining genes in the operon.

5

10

15

20

25

30

In some embodiments, the culture or collection of strains may comprise a strain which overexpresses or underexpresses a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795. In some embodiments, the culture or collection of strains may comprise strains which in aggregate overexpress or underexpress at least two gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795, at least 10 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795, at least 20 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795, at least 30 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795, at least 50 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795, at least 100 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795, at least 300 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOS.: 8-3795 or more than 300 gene products whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEO ID NOS.: 8-3795, wherein each strain in the culture or collection of strains overexpresses or underexpresses a single gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795. Alternatively, if desired, one or more of the strains in the culture or collection of strains may overexpress or underexpress more than one gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795.

In other embodiments, the culture or collection of strains may comprise a strain which overexpresses or underexpresses a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944. In some embodiments, the culture or collection of strains may comprise strains which in aggregate

5

10

15

20

25

30

overexpress or underexpress at least two gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, at least 10 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, at least 20 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, at least 30 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, at least 50 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, at least 100 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, at least 300 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 or more than 300 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ IN NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, wherein each strain in the culture or collection of strains overexpresses or underexpresses a single gene product encoded by a nucleic acid selected from the group consisting of SEQ ID NOs. 3796-3800, 3806-4860, 5916-10012, and 14111-14944. Alternatively, if desired, one or more strains in the culture or collection of strains may overexpress or underexpress more than one gene product encoded by a nucleic acid selected from the group consisting of SEQ ID NOs. 3796-3800, 3806-4860, 5916-10012, and 14111-14944.

In some embodiments the culture or collection of strains comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed. In some embodiments, the culture or collection of

5

10

15

20

25

30

strains may comprise strains which in aggregate overexpress or underexpress at least two gene products comprising an amino acid sequence selected from the group consisting of SEO IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, at least 10 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, at least 20 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, at least 30 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, at least 50 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, at least 100 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, at least 300 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 or more than 300 gene products comprising an amino acid sequence selected from the group consisting of SEQ IN NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, wherein each strain in the culture or collection of strains overexpresses or underexpresses a single gene product selected from the group consisting of SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110 and 14945-15778. Alternatively, if desired one or more of the strains in the culture or collection of strains may overexpress or underexpress more than one gene product selected from the group consisting of SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110 and 14945-15778.

In other embodiments, the culture or collection of strains comprises a strain in which at least one, at least 10, at least 20, at least 30, at least 50, at least 100, at least 300 or more than 300 gene products encoded by a homologous coding nucleic acid as defined above is overexpressed or underexpressed. If desired the culture or collection of strains may comprise one or more strains which overexpress or underexpress more than one gene product encoded by a homologous coding nucleic acid. In further embodiments, the culture or collection of strains comprises a strain in which at least

one, at least 10, at least 20, at least 30, at least 50, at least 100, at least 300 or more than 300 homologous polypeptidesas defined above is overexpressed or underexpressed. If desired the culture or collection of strains may comprise one or more strains which overexpress or underexpress more than one homologous polypeptide.

5

10

15

20

25

For example, in some embodiments, the culture or collection of strains comprises a strain or a group of strains in which in aggregate at least one, at least 10, at least 20, at least 30, at least 50, at least 100, at least 300, or more than 300 gene products selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed, wherein each strain overexpresses or underexpresses one gene product.

5

10

15

20

25

30

a Č

If desired, one or more of the strains in the culture or collection of strains may overexpress or underexpress more than one gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795.

In further embodiments, the culture or collection of strains comprises a strain of a group of strains in which in aggregate at least one, at least 10, at least 20, at least 30, at least 50, at least 100, at least 300, or more than 300 gene products encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide

sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed, wherein each strain overexpresses or underexpresses one gene product.

If desired, one or more of the strains in the culture or collection of strains may overexpress or underexpress more than one gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions.

In additional embodiments, the culture or collection of strains comprises a strain or a group of strains in which in aggregate at least one, at least 10, at least 20, at least 30, at least 50, at least 100, at least 300, or more than 300 gene products comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed, wherein each strain overexpresses or underexpresses one gene product.

If desired, one or more of the strains in the culture or collection of strains may overexpress or underexpress more than one polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778.

5

10

15

20

25

30

À

The methods of the present invention may be used to identify the targets of compounds which inhibit the proliferation of any desired cell or organism. In some embodiments, the methods of the present invention are employed to identify the targets of compounds which inhibit the proliferation of bacteria, fungi, or protozoans. In further embodiments, the methods of the present invention are employed to identify the targets of compounds which inhibit the growth of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, cloacae, Enterococcus faecalis, Enterobacter Cryptococcus neoformans, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes, Histoplasma capsulatum, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis. Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri,

5

10

15

20

25

30

Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

Overexpression may be obtained using a variety of techniques familiar to those skilled in the art. For example, overexpression may be obtained by operably linking a gene encoding the gene product to a promoter which transcribes a higher level of mRNA encoding or comprising the gene product than does a wild type cell. A variety of promoters may be used to overexpress the gene product. The promoters used to overexpress the gene product may be relatively strong promoters, promoters which possess a moderate level of activity, or relatively weak promoters and may be either constitutive or regulatable promoters. In some embodiments, several strains, each of which overexpresses the gene product to a different extent, may be used in order to optimize the degree of overexpression of the gene product.

In some embodiments, each of the gene products required for proliferation may be placed under the control of several different promoters of varying strengths to create several different strains which express the gene product at varying levels. The level of expression of the gene product in each of the strains is compared to that in wild type cells in order to identify a promoter which provides a desired level of expression relative to wild type cells (i.e. a desired level of overexpression or underexpression). The strain having the desired level of expression is then included in a culture or collection of strains to be contacted with a test compound as discussed below.

The promoter is selected to be active in the type of cell in which the gene product is to be expressed. For example, for overexpression of the gene product in mammalian cells, the gene encoding the gene product may be operably linked to promoters such as the SV40 promoter, the metallothionine promoter, the MMTV promoter, the RSV promoter, the tetP promoter, the adenovirus major late promoter or other promoters known to those skilled in the art. In yeast, the gene encoding the gene product may be operably linked to promoters such as the CYC1, ADHI, ADHII, GAL1, GAL10, PHO5, PGK or other promoters used in the art. Similarly, in bacteria,

5

10

15

20

25

30

.;>

the gene encoding the gene product may be operably linked to the, SP6, T3, trc promoter, lac promoter, temperature regulated lambda promoters, the Bacillus aprE and nprE promoters (U.S. Patent No. 5,387,521), the bacteriophage lambda P_L and P_R promoters (Renaut, et al., (1981) Gene 15: 81) the trp promoter (Russell, et al., (1982) Gene 20: 23), the tac promoter (de Boer et al., (1983) Proc. Natl. Acad. Sci. USA 80: 21), B. subtilis alkaline protease promoter (Stahl et al, (1984) J. Bacteriol. 158, 411-418) alpha amylase promoter of B. subtilis (Yang et al., (1983) Nucleic Acids Res. 11, 237-249) or B. amyloliquefaciens (Tarkinen, et al, (1983) J. Biol. Chem. 258, 1007-1013), the neutral protease promoter from B. subtilis (Yang et al, (1984) J. Bacteriol. 160, 15-21), T7 RNA polymerase promoter (Studier and Moffatt (1986) J Mol Biol. 189(1):113-30), B. subtilis xyl promoter or mutant tetR promoter active in bacilli (Geissendorfer & Hillen (1990) Appl. Microbiol. Biotechnol. 33:657-663), Staphylococcal enterotoxin D promoter (Zhang and Stewart (2000) J. Bacteriol. 182(8):2321-5), cap8 operon promoter from Staphylococcus aureus (Ouyang et al., (1999) J. Bacteriol. 181(8):2492-500), the lactococcal nisA promoter (Eichenbaum (1998) Appl Environ Microbiol. 64(8):2763-9), promoters from in Acholeplasma laidlawii (Jarhede et al., (1995) Microbiology 141 (Pt 9):2071-9), porA promoter of Neisseria meningitidis (Sawaya et al., (1999) Gene 233:49-57), the fbpA promoter of Neisseria gonorrhoeae (Forng et al., (1997) J. Bacteriol. 179:3047-3052), Corynebacterium diphtheriae toxin gene promoter (Schmitt and Holmes (1994) J. Bacteriol. 176(4):1141-9), the has A operon promoter from Group A Streptococci (Alberti et al., (1998) Mol Microbiol 28(2):343-53), the rpoS promoter of Pseudomonas putida (Kojic and Venturi (2001) J. Bacteriol. 183:3712-3720), and the IPTG inducible promoter in pLEX5BA (Krause et al., J. Mol. Biol. 274: 365 (1997), In another embodiment, which may be useful in Staphylococcus aureus, the promoter is a novel inducible promoter system, XylT5, comprising a modified T5 promoter fused to the xylO operator from the xylA promoter of Staphylococcus aureus. This promoter is described in U.S. Patent Application Serial Number 10/032,393, the disclosure of which is incorporated herein by reference in its entirety. In another embodiment the promoter may be a two-component inducible promoter system in

5

10

15

20

25

30

which the T7 RNA polymerase gene is integrated on the chromosome and is regulated by lacUV5/ lacO (Brunschwig, E. and Darzins, A. 1992. Gene 111:35-41, the disclosure of which is incorporated herein by reference in its entirety) and a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, is fused with a lacO operator. In another embodiment the promoter may be the promoters from the plasmids pEPEF3 or pEPEF14, which harbor xylose inducible promoters functional in E. faecalis, described in U.S. Patent Application Serial No. 10/032,393, the disclosure of which is incorporated herein by reference in its entirety. Other promoters which may be used are familiar to those skilled in the art. In fungi, the gene encoding the gene product may be operably linked to the CaACT1 promoter (Morschhauser, Mol. Gen. Genet. 257: 412-420 (1998), the disclosure of which is incorporated herein by reference in its entirety), the tetracycline regulatable promoter described in U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001, the disclosure of which is incorporated herein by reference in its entirety, or the promoters described in U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001, the disclosure of which is incorporated herein by reference in its entirety, or other promoters familiar to those skilled in the art. It will appreciated that other combinations of organisms and promoters may also be used in the present invention.

In some embodiments, overexpression may be achieved by using homologous recombination to replace the natural promoter which drives expression of the gene required for proliferation with a regulatable promoter. For example, the methods described in U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application 09/948,993 (the disclosure of which is incorporated herein by reference in its entirety) and U.S. Patent Application 09/948,993 (the disclosure of which is incorporated herein by reference in its entirety) may be used to place the gene required for proliferation under the control of a regulatable promoter. U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated

herein by reference in its entirety), U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/815,242 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/492,709 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/711,164 (the disclosure of which is incorporated herein by reference in its entirety), and U.S. Patent Application Serial Number 09/741,669 (the disclosure of which is incorporated herein by reference in its entirety) disclose genes and gene products required for proliferation which may be used in any of the methods of the present invention.

5

10

15

20

25

30

ç.;;

Briefly, in some embodiments of these methods, the cells may be haploid, such as bacterial cells. A linear promoter replacement cassette comprising a regulatable promoter flanked by nucleotide sequences having homology to the natural promoter is introduced into the cell. In some embodiments, the cassette also comprises a nucleotide sequence encoding a selectable marker or a marker whose expression is readily identified. The cassette may be a double stranded nucleic acid or a single stranded nucleic acid as described in U.S. Patent Application Serial Number 09/948,993, the disclosure of which is incorporated herein by reference in its entirety. Upon homologous recombination, the natural promoter is replaced with the regulatable promoter, leaving the gene required for proliferation under the control of the regulatable promoter. Strains in which the gene required for proliferation is under control of the regulatable promoter are grown under conditions in which the regulatable promoter provides a level of the proliferation-required gene product which is above the level in a wild type cell. For example, the strains may be grown in the presence of an inducer which induces expression from the regulatable promoter, or under conditions in which the action of a repressor on the regulatable promoter is reduced or eliminated.

Alternatively, rather than replacing the native promoters each of the genes encoding gene product required for proliferation with a single desired replacement promoter, a plurality of replacement promoters which provide desired expression

levels for the gene products to be overexpressed or underexpressed are used. The method is performed as described above except that rather than using a single labeled primer complementary to a nucleotide sequence within the single replacement promoter, a plurality of labeled primers complementary to suitable nucleotide sequences in the plurality of replacement promoters are used.

5

10

15

20

25

30

Alternatively, in embodiments in which the level or activity of gene products required for proliferation is reduced by transcribing an antisense nucleic acid complementary to at least a portion of the genes encoding such gene products, the strains may be designed such that the length of the nucleotide sequence encoding the antisense nucleic acid is different for each gene. Amplification reactions are performed as described above using primers at each end of the gene encoding the antisense nucleic acid such that the amplification product corresponding to each gene has a unique length or a dye which allows it to be distinguished from other amplification products of the same length. Alternatively, the lengths of the nucleotide sequences encoding the antisense nucleic acids may not be unique for each gene, but the primers used in the amplification reaction may be selected such that the length of the amplification product corresponding to each gene is unique.

In another embodiment, the native promoters may be replaced with promoters which include therein or adjacent thereto a unique nucleotide sequence which is distinct from that present in the other replacement promoters in the strains in the culture or collection of strains. In this embodiment, each promoter includes or has adjacent thereto a unique "tag" which may be used to identify strains which proliferate more rapidly or more slowly in the culture or collection of strains. The tag may be detected using hybridization based methods or amplification based methods, including the amplification method which generates amplification products having a unique size for each proliferation required gene described above.

Alternatively, the native promoter which directs the transcription of the gene required for proliferation may rendered regulatable by inserting a regulatory element into the chromosome of the cell via homologous recombination such that the regulatory element regulates the level of transcription from the promoter. The

regulatory element may be may be an operator which is recognized by a repressor (e.g. lac, tet, araBAD repressors) or a nucleotide sequence which is recognized by a transcriptional activator. In some embodiments, the regulatory element may be a transcriptional terminator, a nucleotide sequence which introduces a bend in the DNA or an upstream activating sequence. A linear regulatory element insertion cassette comprising a regulatory element flanked by nucleotide sequences having homology to the natural promoter is introduced into the cell. In some embodiments, the cassette also comprises a nucleotide sequence encoding a selectable marker or a marker whose expression is readily identified. The cassette may be a double stranded nucleic acid or a single stranded nucleic acid as described in U.S. Patent Application Serial Number 09/948,993, the disclosure of which is incorporated herein by reference in its entirety. Upon homologous recombination, the regulatory element is inserted into the chromosome, leaving the gene required for proliferation under the control of the regulatory element. Strains in which the gene required for proliferation is under control of the regulatory element are grown under conditions in which the regulatable promoter provides a level of the proliferation-required gene product which is above the level in a wild type cell. For example, the strains may be grown in the presence of an inducer which induces expression from the promoter, or under conditions in which the action of a repressor on the promoter is reduced or eliminated. It will be appreciated that the amplification method which generates amplification products having a unique size for each proliferation required gene may be used to detect strains which are overrepresented or underrepresented in the culture or collection of strains. For example, if desired, primers complementary to a nucleotide sequence within the regulatory element may be used in the amplification reaction.

25

30

5

10

15

20

.

e,

The promoter replacement cassette or regulatory element insertion cassette may be a double stranded nucleic acid, such as an amplicon generated through PCR or other amplification methods, or a single stranded nucleic acid, such as an oligonucleotide. For example, single stranded nucleic acids may be introduced into the chromosome using the methods described in Ellis et al., PNAS 98: 6742-6746, 2001, the disclosure of which is incorporated herein by reference in its entirety.

In some embodiments, the cell into which the promoter replacement cassette or regulatory element insertion cassette is introduced has an enhanced frequency of recombination. For example, the cells may lack or have a reduced level or activity of one or more exonucleases which would ordinarily degrade the DNA to be inserted into the chromosome. In further embodiments, the cells may both lack or have reduced levels of exonucleases and express or overexpress proteins involved in mediating homologous recombination. For example, if the methods are performed in Escherichia coli or other enteric prokaryotes, cells in which the activity of exonuclease V of the RecBCD recombination pathway, which degrades linear nucleic acids, has been reduced or eliminated, such as recB, recC, or recD mutants may be used. In some embodiments, the cells have mutations in more than one of the recB, recC, and recD genes which enhance the frequency of homologous recombination. For example the cells may have mutations in both the recB and recC genes.

The promoter replacement or regulatory element insertion methods may also be performed in *Escherichia coli* cells in which the activity of the RecET recombinase system of the Rac prophage has been activated, such as cells which carry an sbcA mutation. The RecE gene of the rac prophage encodes ExoVIII a 5'-3' exonuclease, while the RecT gene of the Rac prophage encodes a single stranded DNA binding protein which facilitates renaturation and D-loop formation. Thus, the gene products of the RecE and RecT genes or proteins with analogous functions facilitate homologous recombination. The RecE and RecT genes lie in the same operon but are normally not expressed. However, sbcA mutants activate the expression the RecE and RecT genes. In some embodiments, the methods may be performed in cells which carry mutations in the recB and recC genes as well as the sbcA mutation. The RecE and RecT gene may be constitutively or conditionally expressed. For example, the methods may be performed in *E. coli* strain JC8679, which carries the sbcA23, recB21 and recC22 mutations.

In some embodiments, the methods may be performed in *Escherichia coli* cells in which recombination via the RecF pathway has been enhanced, such as cells which carry an sbcB mutation.

5

10

15

20

25

30

7.

It will be appreciated that the recE and recT gene products, or proteins with analogous functions may be conditionally or constitutively expressed in prokaryotic organisms other than E. coli. In some embodiments, these proteins may be conditionally or constitutively expressed in Anaplasma marginale, Aspergillus fumigatus. Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida Candida Candida Candida krusei, kefyr (also called guilliermondii, pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, or Yersinia pestis. For example, plasmids encoding these gene products may be introduced into the organism. If desired, the coding sequences encoding these gene products may be optimized to reflect the codon preferences of the organism in which they are to be expressed. Similarly, in some embodiments, the organism may contain mutations analogous to the recB, recC, recD, sbcA or sbcB mutations which enhance the frequency of homologous recombination.

In further embodiments, the promoter replacement or regulatory element insertion methods may be conducted in cells which utilize the Red system of bacteriophage lambda (λ) or analogous systems from other phages to enhance the

frequency of homologous recombination. The Red system contains three genes, γ , β and exo whose products are the Gam, Bet and Exo proteins (see Ellis et al. PNAS 98:6742-6746, 2001, the disclosure of which is incorporated herein by reference in its entirety). The Gam protein inhibits the RecBCD exonuclease V, thus permitting Beta and Exo to gain access to the ends of the DNA to be integrated and facilitating homologous recombination. The Beta protein is a single stranded DNA binding protein that promotes the annealing of a single stranded nucleic acid to a complementary single stranded nucleic acid and mediates strand exchange. The Exo protein is a double-stranded DNA dependent 5'-3' exonuclease that leaves 3' overhangs that can act as substrates for recombination. Thus, constitutive or conditional expression of the λ red proteins or proteins having analogous functions facilitates homologous recombination.

5

10

15

20

25

30

It will be appreciated that the λ Beta, Gam and Exo proteins, or proteins with analagous functions may be expressed constitutively or conditionally in prokaryotic organisms other than E. coli. In some embodiments, these proteins may be conditionally or constitutively expressed in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Candida parapsilosis, Torulopsis glabrata), Candida tropicalis, Candida called Candida kefyr (also guilliermondii, Candida krusei, Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella

typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, or Yersinia pestis. For example, plasmids encoding these gene products may be introduced into the organism. If desired, the coding sequences encoding these gene products may be optimized to reflect the codon preferences of the organism in which they are to be expressed.

5

10

15

20

25

30

In some embodiments, the cells may have an increased frequency of homologous recombination as a result of more than one of the aforementioned characteristics. In some embodiments, the enhanced frequency of recombination may be a conditional characteristic of the cells which depends on the culture conditions in which the cells are grown. For example, in some embodiments, expression of the λ Red Gam, Exo, and Beta proteins or recE and recT proteins may be regulated. Thus, the cells may have an increased frequency of homologous recombination as a result of any combination of the aforementioned characteristics. For example, in some embodiments, the cell may carry the sbcA and recBC mutations.

In some embodiments, a linear double stranded DNA to be inserted into the chromosome of the organism is introduced into an organism constitutively or conditionally expressing the recE and recT or the \(\lambda \) Beta, Gam and Exo proteins or proteins with analogous functions as described above. In some embodiments, the organism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, cloacae, Enterococcus Enterobacter neoformans, Cryptococcus Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Histoplasma

Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, or Yersinia pestis. In some embodiments, the double stranded DNA may be introduced into an organism having the recBC and sbcA mutations or analogous mutations.

5

10

15

20

25

30

In other embodiments, a single stranded DNA to be inserted into the chromosome of the organism is introduced into an organism expressing the λ Beta protein or a protein with an analogous function. In some embodiments the single stranded DNA is introduced into an organism expressing both the λ Beta and Gam proteins or proteins with analogous functions. In further embodiments, the single stranded DNA is introduced into an organism expressing the λ Beta, Gam and Exo proteins or proteins with analogous functions. The λ proteins or analogous proteins may be expressed constitutively or conditionally. In some embodiments, the organism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis

carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, or Yersinia pestis.

5

10

15

20

25

30

٠.

In some embodiments, the linear nucleic acid may be introduced into the chromosome of a first organism which has an enhanced frequency of homologous recombination and then transferred to a second organism which is less amenable to direct application of the present methods. For example, the linear nucleic acid may be introduced into the chromosome of *E. coli* and transferred into a second organism via conjugation or transduction. After introduction into the second organism, the nucleic acid is inserted into the chromosome of the second organism via homologous recombination, thereby effectively transferring the regulatory element from the chromosome of the first organism into the corresponding location in the chromosome of the second organism.

In other embodiments, the cells may be diploid cells, such as fungal cells. In some embodiments, one copy of the gene encoding the proliferation-required gene product may be disrupted, rendering it inactive. In further embodiments, one copy of the gene encoding the proliferation-required gene product may be disrupted and the other copy of the gene encoding the proliferation-required gene product may be placed under the control of a regulatable promoter. Such strains may be generated by disrupting the first copy of the gene encoding the proliferation-required gene product by homologous recombination using a disruption cassette comprising a nucleotide sequence encoding an expressible dominant selectable marker flanked on each side by nucleic acids homologous to the target sequence to be disrupted. The second copy of the gene encoding the proliferation-required gene product may be placed under the control of a regulatable promoter by homologous recombination using a promoter replacement cassette comprising a regulatable promoter flanked on each side by nucleic acids homologous to the natural promoter for the proliferation-required gene.

5

10

15

20

25

30

The promoter replacement cassette may also include a nucleotide sequence encoding a selectable marker located 5' of the regulatable promoter but between the nucleic acids homologous to the natural promoter.

In other embodiments, overexpression may be achieved by operably linking the gene required for proliferation to a desired promoter in a vector. The vector may be a vector which replicates extrachromosomally or a vector which integrates into the chromosome. For example, if the vector is to be used in bacterial cells, the vector may be a pBR322 based vector or a bacteriophage based vector such as P1 or lambda. If the vector is to be used in Saccharomyces cerevisae, it may be a vector based on the 2 micron circle or a vector incorporating a yeast chromosomal origin of replication. If the vector is to be used in mammalian cells, it may be a retroviral vector, SV40 based vector, a vector based on bovine papilloma virus, a vector based on adenovirus, or a vector based on adeno-associated virus. If the vector is to be used in Candida albicans it may be a vector comprising a promoter selected from the group consisting of the CaPCK1, MET25, MAL2, PHO5, GAL1,10, STE2 or STE3 promoters. In some embodiments, the vectors described in the following publications (the disclosures of which are incorporated herein by reference in their entireties) may be used: CIp10, an efficient and convenient integrating vector for Candida albicans. Murad et al., Yeast 16(4):325-7 (2000); Transforming vector pCPW7, Kvaal et al., : Infect Immun 67(12):6652-62 (1999); Transforming vector pCWOP16, Kvaal et al.,: Infect Immun 65(11):4668-75 (1997); double-ARS vector, pRM1, to be used for direct cloning in Ca by complementation of the histidine auxotrophy of strain CA9, Pla et al., Gene 165(1):115-20 (1995); pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication (cited in Sanglard and Fiechter Yeast 8(12):1065-75 (1992); A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans, Cannon et al., Mol Gen Genet 235(2-3):453-7 (1992); Expression vector (CIp10-MAL2p) for use

in Candida albicans has been constructed in which a gene of interest can be placed under the control of the CaMAL2 maltase promoter and stably integrated at the CaRP10 locus (Backen et al., Yeast 16(12):1121-9 (2000)); (Volker, R. S., A. Sonneborn, C. E. Leuker, and J. F. Ernst. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO 16:1982-1991.); and A C. albicans transformation vector containing the C. albicans URA3 gene, a Candida ARS sequence, and a portion of the Saccharomyces cerevisiae 2 microns circle containing the replication origin was constructed. Goshorn et al., Infect Immun 60(3):876-84 (1992). A variety of other vectors suitable for use in foregoing organisms or in any other organism in which the present invention is to be practiced are familiar to those skilled in the art.

5

10

15

20

25

30

Underexpression of the gene product may be obtained in a variety of ways. For example, in one embodiment underexpression of the gene product may be achieved by providing an agent which reduces the level or activity of the gene product within the cell. In one embodiment, the agent may comprise an antisense nucleic acid which is complementary to a nucleic acid encoding the gene product or complementary to a portion of a nucleic acid encoding the gene product. For example, a nucleic acid which encodes the antisense nucleic acid may be operably linked to a regulatable promoter. When grown under appropriate conditions, such as media containing an inducer of transcription or an agent which alleviates repression of transcription, the antisense nucleic acid is expressed in the cell, thereby reducing the level or activity of the gene product within the cell. In some embodiments, the concentration of the inducer of transcription or the agent which alleviates repression of transcription may be varied to provide optimal results. Such methods have been described in U.S. Patent Application Serial Number 09/815,242 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/492,709 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/711,164 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application

Serial Number 09/741,669 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), or U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 the disclosure of which is incorporated herein by reference in its entirety). Each of the Patent Applications cited in the preceding sentence disclose genes and gene products required for proliferation which may be used in any of the methods of the present invention.

5

10

15

20

25

30

Alternatively, underexpression of a gene product required for proliferation may be achieved by constructing strains in which the expression of the gene product is under the control of a constitutive or regulatable promoter using methods such as those described above with respect to methods in which the gene product is overexpressed. To provide cells which underexpress the gene product, the cells are grown under conditions in which expression the gene product is expressed at a level lower than that of a wild type cell. For example, the cells may be grown under conditions in which a repressor reduces the level of transcription from the regulatable promoter.

In other embodiments, underexpression may be achieved by operably linking the gene required for proliferation to a desired promoter in a vector as described above with respect to embodiments in which gene products required for proliferation are overexpressed. In some embodiments, the vector may be present in cells in which the chromosomal copy or copies of the gene has been disrupted.

Gene products required for proliferation may be identified using a variety of methods, including the methods described in U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/815,242 (the disclosure of which is incorporated herein by reference in its entirety), U.S. Patent Application Serial Number 09/492,709 (the disclosure of which is incorporated herein by reference in its

5

10

15

20

25

30

entirety), U.S. Patent Application Serial Number 09/711,164 (the disclosure of which is incorporated herein by reference in its entirety), and U.S. Patent Application Serial Number 09/741,669 (the disclosure of which is incorporated herein by reference in its entirety). Each of the proliferation-required genes and gene products disclosed in the applications listed in the preceding sentence may be used in any of the methods of the present invention. Briefly, in one embodiment, gene products required for proliferation are identified by operably linking random genomic fragments to a regulatable promoter in a vector. The random genomic fragments may be generated by a partial digestion with a restriction enzyme, mechanical shearing, using techniques such as sonication and nebulization, or DNAseI digestion. Upon induction of transcription from the promoter with a suitable agent, the expression vectors produce an RNA molecule corresponding to the inserted genomic fragments. In those instances where the inserted genomic fragments are in an antisense orientation with respect to the promoter, the transcript produced is complementary to at least a portion of an mRNA encoding a gene product such that they interact with sense mRNA produced from various genes and thereby decrease the translation efficiency or the level of the sense messenger RNA (mRNA) thus decreasing production of the protein encoded by these sense mRNA molecules. In cases where the sense mRNA encodes a protein required for proliferation, cells grown under inducing conditions fail to grow or grow at a substantially reduced rate. Additionally, in cases where the transcript produced is complementary to at least a portion of a non-translated RNA and where that nontranslated RNA is required for proliferation, cells grown under inducing conditions also fail to grow or grow at a substantially reduced rate. In contrast, cells grown under noninducing conditions grow at a normal rate. The genes to which the antisense nucleic acids are complementary are then identified and utilized in the methods of the present invention.

Alternatively, genes required for proliferation may be identified by replacing the natural promoter for the proliferation required gene with a regulatable promoter as described above. The growth of such strains under conditions in which the promoter is active or non-repressed is compared to the growth under conditions in which the

promoter is inactive or repressed. If the strains fail to grow or grow at a substantially reduced rate under conditions in which the promoter is inactive or repressed but grow normally under conditions in which the promoter is active or non-repressed, then the gene which is operably linked to the regulatable promoter encodes a gene product required for proliferation. For example, proliferation-required genes and gene products identified using promoter replacement are described in U.S. Patent Application Serial Number 09/948,993 (the disclosure of which is incorporated herein by reference in its entirety) U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), and U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety). Each of the genes and gene products described in the applications listed in the preceding sentence may be used in any of the methods of the present invention.

The present invention includes a method for identifying the gene product on which a compound which inhibits the proliferation of an organism acts. The method employs a culture which comprises a mixture of strains of the organism. At least some of the strains in the culture overexpress a different gene product which is required for the proliferation of the organism. Preferably, each of the strains in the culture overexpresses a different gene product which is required for proliferation of the organism (i.e. all of the strains in the culture overexpress a gene product which is required for proliferation of the organism). Such strains may be obtained using the methods described above. The culture may comprise any number of strains. For example the culture may comprise at least two strains, at least 10 strains, at least 20 strains, at least 30, strains, at least 50 strains, at least 100 strains, at least 300 strains or more than 300 strains. In some embodiments, the culture may comprise strains which in aggregate overexpress all or most of the gene products required for proliferation of the organism.

The culture is contacted with a compound which inhibits proliferation of the organism. The compound may be a candidate drug compound obtained from any source. For example, the compound may be a compound generated using

5

10

15

20

25

30

3.

combinatorial chemistry, a compound from a natural product library, or an impure or partially purified compound, such as a compound in a partially purified natural extract. The culture is contacted with a sufficient concentration of the compound to inhibit the proliferation of strains of the organism in the culture which do not overexpress the gene product on which the compound acts, such that strains which overexpress said gene product on which the compound acts proliferate more rapidly in the culture than strains which do not overexpress said gene product on which said compound acts. Thus, after a sufficient period of time, the strain which overexpresses the gene product on which the compound acts will be more prevalent in the culture than strains which do not overexpress the gene product on which the compound acts. In a preferred embodiment, the growth conditions and incubation period are selected so that only one strain, the strain overexpressing the target of the compound, is recovered from the culture. Thus, in one embodiment, a plurality of cultures containing a plurality of strains each of which overexpresses a different proliferationrequired gene product may be grown in the presence of varying concentrations of the compound. In addition to varying the compound concentrations, in embodiments where expression of the proliferation-required gene product is under the control of a regulatable promoter, the plurality of cultures may be grown at varying concentrations of an agent which regulates the level of expression from the promoter, such as an inducer or an agent which reduces the effect of a repressor on transcription from the promoter. It will be appreciated, that the cultures may be grown in liquid medium in the presence of the compound whose target is to be identified (and where appropriate in the presence of an agent which regulates the level of expression from the promoter) or alternatively, a liquid culture comprising the strains which overexpress the proliferation-required gene products may be grown in the absence of the compound whose target is to be identified and then introduced onto a solid medium containing the compound (and, where appropriate, also containing an agent which regulates the level of expression from the promoter).

The identity of the overexpressed gene product which is the target of the compound may be determined using a variety of methods. For example, in some

embodiments of the present invention, the nucleic acids present in the culture or collection of strains which was contacted with the compound may be compared to the nucleic acids present in a control culture or collection of strains which was not contacted with the compound to identify nucleic acids which are overrepresented in the culture or collection of strains contacted with the test compound relative to the control culture or collection of strains. Alternatively, in some embodiments, the nucleic acids present in a culture or collection of strains contacted with the test compound may be analyzed to identify those nucleic acids which are present without comparison to a control culture or collection of strains.

10

15

20

25

30

5

In some embodiments of the present invention, the strains which proliferated more rapidly in the culture or collection of strains, i.e. strains having an enhanced ability to proliferate in the presence of a test compound relative to other strains in the culture or collection of strains, are identified as follows. Amplification products which are correlated with each of the overexpressed genes and which are distinguishable from one another are obtained from a culture or collection grown in the presence of a test compound. The amplification products are distinguished from one another to determine whether a particular amplification product is overrepresented in the culture or collection of strains. In some embodiments, the amplification products corresponding to each of the gene products have lengths which permit them to be distinguished from one another. In another embodiment, one or more of the amplification products have similar or identical lengths but are distinguishable from one another based on a detectable agent, such as a dye, attached thereto. In some embodiments, amplification products which are overrepresented are identified by comparing the amplification products from the culture or collection of strains which was contacted with the test compound to the amplification products from a culture or collection of strains which was not contacted with the test compound. Alternatively, amplification products which are overrepresented may be identified by simply identifying the amplification products obtained from the culture or collection of strains contacted with the test compound (for example, only one or a few strains may have proliferated in the presence of the test compound). The above methods for

generating distinguishable amplification products may be used in conjunction with any of the methods for generating strains which overexpress gene products required for proliferation described herein in order to facilitate the identification of strains which proliferate more rapidly or more slowly in the presence of a test compound.

5

For example, in some embodiments of the present invention, each of the native promoters of each of the genes encoding gene product required for proliferation are replaced by a single desired replacement promoter. After growth of the culture or collection of strains containing the strains in which the promoters have been replaced in the presence of a test compound for a desired period of time, an amplification reaction is performed on nucleic acids obtained from the culture as follows.

10

15

20

The nucleic acids from the culture or collection of strains may be divided into at least two aliquots if desired. In a preferred embodiment the nucleic acids from the culture or collection of strains are divided into four aliquots. A single primer complementary to a nucleotide sequence within the replacement promoter, within the proliferation required genes, or within nucleic acid sequences adjacent to the promoter or proliferation required genes is divided into at least two portions, one portion for each aliquot of nucleic acids. Each portion of the primer is labeled with a distinct detectable dye, such as the 6FAMTM, TETTM, VICTM, HEXTM, NEDTM, and PETTM dyes obtainable from Applied Biosystems (Foster City, CA). For example, the DS-31 or DS-33 dye sets available from Applied Biosystems (Foster City, CA) may be used to label the primers. Alternatively, the HEXTM, NED, JOE, TMR and TETTM dyes available from Amersham Biosciences may be used. Thus, if the nucleic acids from the culture are not divided into aliquots, a single primer labeled with a single dye may be used. If the nucleic acids from the culture are divided into aliquots, at least 2, at least 3, at least 4 or more than 4 primers labeled with distinguishable dyes may be used. Each of the portions of labeled primers are added to each of the aliquots of the nucleic acids from the culture or collection of strains such that each aliquot of nucleic acid receives a single labeled primer with a single detectable dye thereon. In some embodiments, the primers are divided into 3 portions, 4 portions or more than 4

25

5

10

15

20

25

30

portions, with each portion having a dye which is distinguishable from the dyes on the other portions thereon.

Each of the aliquots of nucleic acids also receives a set of unlabeled primers, with each of the unlabeled primers being complementary to a nucleotide sequence within the promoter, within a nucleotide sequence which is unique to one of the genes encoding gene products required for proliferation which were placed under the control of the replacement promoter, or within nucleotide sequences adjacent to the promoter or proliferation required genes. Each of the aliquots receives primers unique to 1/N proliferation required genes which were placed under the control of the replacement promoter, where N is the number of aliquots (i.e. if the culture or collection of strains consisted of 100 strains in which a gene required for proliferation was placed under the control of the replacement promoter and was divided into four aliquots, then each of the four aliquots of nucleic acids from the culture or collection of strains would receive primers complementary to 25 of the genes). The unlabeled primers are selected so that each will yield an amplification product having a length distinguishable from the length of the amplification product produced with the other unlabeled primers. Preferably, the amplification products are between about 100about 400 nucleotides in length, but any lengths which may be distinguished from each other may be used. In addition, in some of the embodiments some of the amplification products may have identical or very similar lengths but be distinguishable from one another due to labeling with distinguishable dyes.

A nucleic acid amplification reaction is conducted on each of the nucleic acid aliquots. The amplification products are then separated by length to identify amplification products having increased representation in the culture or collection of strains (i.e. amplification products derived from cells which proliferated more rapidly in the culture or collection of strains). The amplification products are then correlated with the corresponding genes to determine which strains proliferated more rapidly in the culture or collection of strains. If desired, amplification products having increased representation in the culture may be identified by comparing the amplification products obtained from a culture or collection of strains which was contacted with the

compound to amplification products obtained from a control culture or collection of strains which was not contacted with the compound. Alternatively, if desired, the amplification products which are obtained from a culture which was contacted with the compound may be directly identified without comparison to a control culture which was not contacted with the compound.

For example, in some embodiments, the amplification products from each of the nucleic acid aliquots are pooled and subjected to capillary electrophoresis. The amplification products are detected by detecting the fluorescent dyes attached thereto and their lengths are determined to identify those amplification products having increased or decreased representation in the culture or collection of strains. Figures 1A and 1B illustrate one embodiment of this method in which the absence of an amplification product from an amplification reaction performed on a culture comprising a plurality of strains underexpressing genes required for proliferation indicates that a test compound acts on the gene corresponding to the missing amplification product. It will be appreciated that the method may also be used to identify an amplification product which is overrepresented in an amplification reaction conducted on a culture or collection of strains overexpressing genes required for proliferation because the test compound acted on the corresponding gene.

Alternatively, in another embodiment, a first amplification reaction is performed on nucleic acids obtained from a culture or collection of strains which was contacted with the compound using a first primer complementary to a nucleotide sequence present upstream or downstream of all of the overexpressed genes (such as a primer complementary to a nucleotide sequence in a replacement promoter upstream of all of the overexpressed genes) and a set of primers complementary to a nucleotide sequence unique to each of the strains (such as a primer complementary to a nucleotide sequence within each of the proliferation-required genes). One of the two amplification primers for each of the proliferation required genes is labeled with a dye as described above. Preferably, the common primer complementary to a nucleotide sequence upstream or downstream of all of the overexpressed genes is labeled with the dye. The primers used in the amplification reaction are designed so that the

5

10

15

20

25

30

amplification product corresponding to each proliferation-required gene has a unique length or a dye which allows it to be distinguished from other amplification products of the same length. A second amplification reaction is conducted on a control culture or collection of strains which was not contacted with the compound using the same primers as in the first amplification reaction. The amplification products from the first amplification reaction are compared to those from the second amplification reaction to identify one or more amplification products which are overrepresented in the culture or collection of strains. For example, the amplification products from the first amplification reaction may be run in a separate lane of a polyacrylamide gel or a separate capillary than the amplification products from the second amplification reaction and the two lanes or capillaries are compared to one another. If desired, in the embodiment where the amplification products from the first amplification reaction are run in a different lane or capillary than the amplification products from the second amplification reaction, the same dye may be used to label the primers in the first and second amplification reactions. Alternatively, if desired, different dyes may be used to label the primers in the first and second amplification reactions. If desired, in the embodiment where the amplification products from the first amplification reaction are run in a different lane or capillary than the amplification products from the second amplification reaction, the same dye may be used to label the primers in the first and second amplification reactions. Alternatively, if desired, different dyes may be used to label the primers in the first and second amplification reactions.

Alternatively, in some embodiments, the primers in the second amplification reaction are labeled with a different dye which is distinguishable from the dye used in the first amplification reaction. In this embodiment, the amplification reactions may be pooled and run in the same lane on a polyacrylamide gel or in the same capillary and the products from each amplification reaction are compared by comparing the amount of each dye present for each amplification product. Figures 2A and 2B illustrate one embodiment of this method in which the absence of an amplification product from the amplification reaction performed on a culture comprising a plurality of strains underexpressing genes required for proliferation which was contacted with

the compound indicates that a test compound acts on the gene corresponding to the missing amplification product. It will be appreciated that the method may also be used to identify an amplification product which is overrepresented in an amplification reaction conducted on a culture or collection of strains overexpressing genes required for proliferation because the test compound acted on the corresponding gene.

5

10

15

20

25

30

If desired, rather than dividing the culture into aliquots, individual amplification reactions may be conducted on nucleic acids obtained from the culture or collection of strains. Each amplification reaction contains primers which will yield an amplification product specific for only one of the proliferation required genes. The resulting amplification products from each of the individual amplification reactions are pooled and amplification products having increased representation in the culture are identified as described above.

In another embodiment, a culture or collection of strains in which gene products required for proliferation are overexpressed from regulatable promoters which replaced the native promoters of the genes encoding these gene products is allowed to grow in the presence of a test compound for a desired number of generations. Preferably, the culture or collection of strains is allowed to grow in the presence of the test compound for at least 20 generations. Nucleic acids are isolated from the culture or collection of strains and an amplification reaction is performed using a primer which is complementary to a nucleotide sequence within the replacement promoter(s) or a nucleotide sequence adjacent to the a 5' end thereof and primers which are complementary to a nucleotide sequence within the proliferation required genes or nucleotide sequences adjacent thereto. The resulting amplification product(s) is directly sequenced using a primer complementary to a nucleotide sequence within the replacement promoter.

In one embodiment of the present invention, the vector containing the nucleotide sequence encoding the proliferation-required gene product is obtained from a strain which proliferated more rapidly in the culture using methods such as plasmid preparation techniques. Nucleic acid sequencing techniques are then employed to determine the nucleotide sequence of the gene which was overexpressed.

Alternatively, the identity of the overexpressed gene product which is the target of the compound may be determined by performing a nucleic acid amplification reaction, such as a polymerase chain reaction (PCR), to identify the nucleotide sequence of the gene which was overexpressed. For example, aliquots of a nucleic acid preparation, such as a purified plasmid, from the strain which is recovered from the culture may each be contacted with pairs of PCR primers which would amplify a different proliferation-required gene to determine which pair of primers yields an amplification product.

Yet another method for determining the identity of the gene product which is the target of the compound involves obtaining a nucleic acid array, such as a DNA chip, which contains each of the proliferation-required genes which were overexpressed in the strains in the culture. Each proliferation-required genes occupies a known location in the array. A nucleic acid preparation, such as a plasmid preparation, from the recovered strain is labeled with a detectable agent, such as radioactive or fluorescent moiety, and placed in contact with the nucleic acid array under conditions which permit the labeled nucleic acid to hybridize to complementary nucleic acids on the array. The location on the array to which the labeled nucleic acids hybridize is determined to identify the gene which was overexpressed in the recovered strain. If desired the hybridized nucleic acids from a culture which was contacted with the compound may be compared to the hybridized nucleic acids from a culture which was not contacted with the compound. Alternatively, the hybridized nucleic acids from a culture which was contacted with the compound may be directly identified without comparison to nucleic acids from a control culture.

In some embodiments of the invention, more than one strain may proliferate more rapidly in the presence of the compound. This may result from a variety of causes. For example, the concentration of the compound may not have been high enough to restrict proliferation only to cells which overexpress one gene product (i.e. the target gene product). While strains which overexpress the target gene product will be the most prevalent strain in the culture, other strains may also have proliferated. In such instances, the identity of the gene product in the strain which is most prevalent in

the culture may be identified by quantitating the levels of each of the genes encoding proliferation-required proteins in the culture. This may be accomplished by quantitative PCR, DNA sequencing, hybridization, or array technology as described above.

5

10

15

20

In other instances, multiple strains will exhibit more rapid proliferation in the culture as a result of a common functional attribute. For example, the strains which proliferate more rapidly may each overexpress a gene product with a common enzymatic activity, such as serine protease activity for example. Alternatively, the strains which proliferate more rapidly may each overexpress a gene product with a common functional domain, such as a cAMP binding domain. In such instances, the common attribute of the strains which proliferate more rapidly may provide information as to the mode of action of the compound or the biochemical activity of the target of the compound. For example, if all of the overexpressed genes in the strains which proliferated more rapidly are serine proteases, the compound acts by inhibiting serine protease activity and the target protein is a serine protease. If desired, the compound may be derivatized and the efficacy of the derivatized compound against each of the strains which proliferated more rapidly may be assessed as described herein in order to identify derivatives which are capable of interacting with a wide range of targets sharing a common activity or binding site (i.e. derivatives which have a greater ability to inhibit the proliferation of all the strains than the original compound) or to identify derivatives having greater specificity for a desired target (i.e. derivatives which have a greater specificity for one of the strains than the original compound). For example, it is possible that a nonessential gene product expressed in the cell might also bind to the initial test compound in addition to the gene product required for proliferation. In such an instance, it is desirable to obtain a derivative of the initial test compound which is specific for the gene product required for proliferation. In addition, it is possible that two gene products required for proliferation might bind to the initial test compound but specificity for one of the gene products is desired.

25

In some embodiments, rather than employing a single culture which contains multiple strains each of which overexpresses a proliferation-required gene product, the methods of the present invention may be performed using an array of individual strains (i.e. a collection of strains) each of which overexpresses a different proliferation-required gene product. For example, individual strains each overexpressing a different proliferation-required gene product may be grown in different wells of a multiwell plate. Each well is contacted with the compound (and, where appropriate an agent which regulates the level of expression from the promoter). The level of proliferation of the strains in each of the wells is determined to identify a strain which proliferated more rapidly. The identity of the overexpressed gene product in the strain that proliferated more rapidly is determined as described above.

In another embodiment, individual strains each overexpressing a different proliferation-required gene product (i.e. a collection of strains) are grown at different locations on a solid medium, such as an agar plate. The medium contains the compound and where appropriate an agent which regulates the level of expression from the promoter). The level of proliferation of each of the strains is determined to identify a strain which proliferated more rapidly. The identity of the overexpressed gene product in the strain that proliferated more rapidly is determined as described above.

The above methods may be used to prioritize compound development or to determine whether the compound has been previously identified or whether the target of the compound is the target of a previously identified drug. In particular, if the product is a natural product, it is advantageous to determine whether it has been previously identified prior to investing significant effort in developing it. Thus, in some embodiments of the present invention, the target of a partially purified or purified natural product or a compound produced by combinatorial chemistry is identified using the methods described above and compared to the targets of known drugs. If the target is identical to that of a known drug, further development of the compound is halted.

In some embodiments of the present invention, an array of strains each of which overexpresses a different gene product (i.e. a collection of strains) is grown on solid medium containing a compound to be evaluated. The location of each strain in the array and the gene product overexpressed by that strain is known. The pattern of colonies which grow in the presence of the compound is evaluated and compared to the pattern of colonies which grow in the presence of previously identified drugs. If the pattern of colonies which grow in the presence of the compound being evaluated is the same as the pattern of colonies which grow in the presence of a previously identified drug, further development of the compound is halted.

In another embodiment, the sequence of the gene product in a strain which proliferated more rapidly in the assays described above is compared to the sequence of gene products from heterologous organisms to determine the likely spectrum of species whose growth would be inhibited by the compound. If the gene product has a high degree of homology to gene products from heterologous species, it is likely that the compound would also inhibit the growth of these heterologous species. Homology may be determined using any of a variety of methods familiar to those skilled in the art. For example, homology may be determined using a computer program such as BLASTP or FASTA. The ability of the compound to inhibit the growth of the heterologous species may then be confirmed by comparing the growth of cells of the heterologous species in the presence and absence of the compound.

In some embodiments, the present invention uses collections or cultures of strains comprising both strains which overexpress gene products required for cellular proliferation and strains which underexpress the same gene products required for cellular proliferation. The culture or collection of strains is contacted with a compound and the nucleic acids present in the culture or collection of strains are analyzed. Preferably, nucleic acids derived from overexpressing strains can be distinguished from those derived from underexpressing strains. For example, the overexpressing strains may be obtained using promoter replacement as described above while the underexpressing strains may be obtained by expressing antisense nucleic acids. Accordingly, in one embodiment, amplification primers may be

designed which will uniquely amplify nucleic acids from the overexpressing strains or the underexpressing strains. If a compound acts on a gene product which was overexpressed and underexpressed in the culture, then the amplification product obtained from the strain in the culture or collection which overexpressed gene product will be overrepresented in the culture or collection while the amplification product obtained from the strain which underexpressed the gene product will be underrepresented in the culture or collection. If desired, nucleic acids from a culture or collection which was contacted with the compound may be compared to nucleic acids from a control culture or collection which was not contacted with the compound. Alternatively, nucleic acids from a culture or collection which was contacted with the compound may be directly analyzed without comparison to a control culture or collection.

Current methods for identifying the target of compounds which inhibit cellular proliferation are laborious and time consuming. The above methods may be employed to allow the targets of a large number of compounds to be rapidly identified. In such methods, the methods described above are simultaneously performed for each of a large number of compounds. For example, the compounds may be members of a library of compounds generated using combinatorial chemistry or members of a natural product library. In such methods, a plurality of cultures each comprising a plurality of strains each of which overexpresses a different gene product required for proliferation or a plurality of collections of individual strains each of which overexpresses a different gene product required for proliferation is obtained. Each culture or collection of strains is contacted with a different compound in the library and the target of the compound is identified as described above.

In another embodiment of the present invention, the gene product on which a compound which inhibits the proliferation of an organism acts is identified using a culture which comprises a mixture of strains of the organism including strains which underexpress a different gene product which is required for proliferation of the organism (i.e. at least some of the strains in the culture underexpress a gene product which is required for proliferation of the organism). Preferably, each of the strains in

the culture underexpress a different a gene product which is required for the proliferation of the organism (i.e. all of the strains in the culture underexpress a gene product which is required for the proliferation of the organism). Such strains may be obtained using the methods described above. The culture may comprise any number of strains. For example the culture may comprise at least two strains, at least 10 strains, at least 20 strains, at least 30, strains, at least 50 strains, at least 100 strains, at least 300 strains or more than 300 strains. In some embodiments, the strains in the culture in aggregate may underexpress all or most of the gene products required for proliferation of the organism.

10

15

20

25

5

The culture is contacted with a compound which inhibits proliferation of the organism. The compound may be a candidate drug compound obtained from any For example, the compound may be a compound generated using combinatorial chemistry, a compound from a natural product library, or an impure or partially purified compound, such as a compound in a partially purified natural extract. The culture is contacted with a sufficient concentration of the compound to inhibit the proliferation of strains of the organism in the culture which underexpress the gene product on which the compound acts, such that strains which do not underexpress the gene product on which the compound acts proliferate more rapidly in the culture than strains which do underexpress said gene product on which said Thus, after a sufficient period of time, the strain which compound acts. underexpresses the gene product on which the compound acts will be less prevalent in the culture than strains which do not underexpress the gene product on which the compound acts. In one embodiment, the growth conditions and incubation period are selected so that only one strain, the strain underexpressing the target of the compound, proliferates at a reduced rate in the culture. In another embodiment, the growth conditions may be selected so that the strain underexpressing the target of the compound is not recovered from the culture. Thus, in one embodiment, a plurality of cultures containing a plurality of strains each of which underexpresses a different proliferation-required gene product may be grown in the presence of varying concentrations of the compound. In addition to varying the compound concentrations,

in embodiments where expression of the proliferation-required gene product is under the control of a regulatable promoter, the plurality of cultures may be grown at varying concentrations of an agent which regulates the level of expression from the promoter, such as an inducer or an agent which reduces the effect of a repressor on transcription from the promoter. It will be appreciated, that the cultures may be grown in liquid medium in the presence of the compound whose target is to be identified (and where appropriate in the presence of an agent which regulates the level of expression from the promoter) or alternatively, a liquid culture comprising the strains which underexpress the proliferation-required gene products may be grown in the absence of the compound whose target is to be identified and then introduced onto a solid medium containing the compound (and, where appropriate, also containing an agent which regulates the level of expression from the promoter).

The identity of the underexpressed gene product which is the target of the compound may be determined using a variety of methods. For example, in some embodiments of the present invention, the nucleic acids present in the culture or collection of strains which was contacted with the compound may be compared to the nucleic acids present in a control culture or collection of strains which was not contacted with the compound to identify nucleic acids which are underrepresented in the culture or collection of strains contacted with the test compound relative to the control culture or strains. Alternatively, in some embodiments, the nucleic acids present in a culture or collection of strains contacted with the test compound may be analyzed to identify those nucleic acids which are missing or present at reduced levels without comparison to a control culture or collection of strains.

In some embodiments of the present invention, the strains which proliferated more slowly in the culture or collection of strains, i.e. strains having an decreased ability to proliferate in the presence of a test compound or which do not proliferate in the presence of a test compound, are identified as follows. Amplification products which are correlated with each of the underexpressed genes and which are distinguishable from one another are obtained from a culture or collection grown in the presence of a test compound. The amplification products are distinguished from

one another to determine whether a particular amplification product is underrepresented in the culture or collection of strains. In some embodiments, the amplification products corresponding to each of the gene products have lengths which permit them to be distinguished from one another. In another embodiment, one or more of the amplification products have similar or identical lengths but are distinguishable from one another based on a detectable agent, such as a dye, attached thereto. In some embodiments, amplification products which are underrepresented are identified by comparing the amplification products from the culture or collection of strains which was contacted with the test compound to the amplification products from a culture or collection of strains which was not contacted with the test compound. Alternatively, amplification products which are underrepresented in the culture or collection of strains may be identified simply by determining which amplification products are missing or present at reduced levels in the culture or collection of strains. The above methods for generating distinguishable amplification products may be used in conjunction with any of the methods for generating strains which underexpress gene products required for proliferation described herein in order to facilitate the identification of strains which proliferate more slowly in the presence of a test compound.

20

15

5

10

For example, in some embodiments of the present invention, each of the native promoters of each of the genes encoding gene product required for proliferation are replaced by a single desired replacement promoter. After growth of the culture or collection of strains containing the strains in which the promoters have been replaced in the presence of a test compound for a desired period of time, an amplification reaction is performed on nucleic acids obtained from the culture as follows.

25

30

The nucleic acids from the culture or collection of strains are divided into at least two aliquots. In a preferred embodiment the nucleic acids from the culture or collection of strains are divided into four aliquots. A single primer complementary to a nucleotide sequence within the replacement promoter, within the proliferation required genes, or within nucleic acid sequences adjacent to the promoter or proliferation required genes is divided into four groups. Each group is labeled with a

distinct detectable dye, such as the 6FAMTM, TETTM, VICTM, HEXTM, NEDTM, and PETTM dyes obtainable from Applied Biosystems (Foster City, CA). For example, the DS-31 or DS-33 dye sets available from Applied Biosystems (Foster City, CA) may be used to label the primers. Each of the groups of labeled primers are added to each of the aliquots of the nucleic acids from the culture or collection of strains such that each aliquot of nucleic acid receives a single labeled primer with a single detectable dye thereon.

5

10

15

20

25

30

Each of the aliquots of nucleic acids also receives a set of unlabeled primers, with each of the unlabeled primers being complementary to a nucleotide sequence within the promoter, within a nucleotide sequence which is unique to one of the genes encoding gene products required for proliferation which were placed under the control of the replacement promoter, or within nucleotide sequences adjacent to the promoter or proliferation required genes. Each of the aliquots receives primers unique to 1/N proliferation required genes which were placed under the control of the replacement promoter, where N is the number of aliquots (i.e. if the culture or collection of strains consisted of 100 strains in which a gene required for proliferation was placed under the control of the replacement promoter and was divided into four aliquots, then each of the four aliquots of nucleic acids from the culture or collection of strains would receive primers complementary to 25 of the genes). The unlabeled primers are selected so that each will yield an amplification product having a length distinguishable from the length of the amplification product produced with the other unlabeled primers. Preferably, the amplification products are between about 100about 400 nucleotides in length, but any lengths which may be distinguished from each other may be used. In addition, in some of the embodiments some of the amplification products may have identical or very similar lengths but be distinguishable from one another due to labeling with distinguishable dyes.

A nucleic acid amplification reaction is conducted on each of the nucleic acid aliquots. The amplification products are then separated by length to identify amplification products decreased representation or which are absent in the culture or collection of strains. The amplification products are then correlated with the

corresponding genes to determine which strains proliferated more slowly in the culture or collection of strains. If desired, amplification products having decreased representation in the culture may be identified by comparing the amplification products obtained from a culture or collection of strains which was contacted with the compound to amplification products obtained from a control culture or collection of strains which was not contacted with the compound. Alternatively, if desired, the amplification products which are missing or present at reduced levels in a culture which was contacted with the compound may be directly identified without comparison to a control culture which was not contacted with the compound.

10

15

5

For example, in some embodiments, the amplification products from each of the nucleic acid aliquots are pooled and subjected to capillary electrophoresis. The amplification products are detected by detecting the fluorescent dyes attached thereto and their lengths are determined to identify those amplification products having decreased representation in the culture or collection of strains. Figures 1A and 1B illustrate one embodiment of this method in which the absence of an amplification product from an amplification reaction performed on a culture comprising a plurality of strains underexpressing genes required for proliferation indicates that a test compound acts on the gene corresponding to the missing amplification product.

Alternatively, in another embodiment, a first amplification reaction is

20

performed on nucleic acids obtained from a culture or collection of strains which was contacted with the compound using a first primer complementary to a nucleotide sequence present upstream or downstream of all of the overexpressed genes (such as a primer complementary to a nucleotide sequence in a replacement promoter upstream of all of the overexpressed genes) and a set of primers complementary to a nucleotide sequence unique to each of the strains (such as a primer complementary to a nucleotide sequence within each of the proliferation-required genes). One of the two amplification primers for each of the proliferation required genes is labeled with a dye as described above. Preferably, the common primer complementary to a nucleotide sequence upstream or downstream of all of the overexpressed genes is labeled with the

dve.

25

The primers used in the amplification reaction are designed so that the

amplification product corresponding to each proliferation-required gene has a unique length. A second amplification reaction is conducted on a control culture or collection of strains which was not contacted with the compound using the same primers as in the first amplification reaction. The amplification products from the first amplification are compared to those from the second amplification reaction to identify one or more amplification products which are underrepresented in the culture or collection of strains. For example, the amplification products from the first amplification reaction may be run in a separate lane of a polyacrylamide gel or a separate capillary than the amplification products from the second amplification reaction and the two lanes or capillaries are compared to one another.

5

10

15

20

25

30

Alternatively, in some embodiments, the primers in the second amplification reaction are labeled with a different dye which is distinguishable from the dye used in the first amplification reaction. In this embodiment, the amplification reactions may be pooled and run in the same lane on a polyacrylamide gel or in the same capillary and the products from each amplification reaction are compared by comparing the amount of each dye present for each amplification product. Figures 2A and 2B illustrate one embodiment of this method in which the absence of an amplification product from the amplification reaction performed on a culture comprising a plurality of strains underexpressing genes required for proliferation which was contacted with the compound indicates that a test compound acts on the gene corresponding to the missing amplification product.

If desired, rather than dividing the culture into aliquots, individual amplification reactions may be conducted on nucleic acids obtained from the culture or collection of strains. Each amplification reaction contains primers which will yield an amplification product specific for only one of the proliferation required genes. The resulting amplification products from each of the individual amplification reactions are pooled and amplification products having decreased representation in the culture are identified as described above.

In one embodiment the representation of each strain in the culture may be assessed by hybridizing detectably labeled nucleic acids encoding the proliferation-

required gene products, or portions thereof, obtained from the culture to an array comprising nucleic acids encoding the gene products required for proliferation or portions thereof. Each nucleic acid encoding a gene product required for proliferation or portion thereof occupies a known location on the array. The signal from each location on the array is quantitated to identify those nucleic acids encoding a proliferation-required gene product which are underrepresented in the culture. If desired the hybridized nucleic acids from a culture which was contacted with the compound may be compared to the hybridized nucleic acids from a control culture which was not contacted with the compound. Alternatively, the hybridized nucleic acids from a culture which was contacted with the compound may be directly analyzed without comparison to nucleic acids from a control culture.

5

10

15

20

25

30

1

Alternatively, each strain underexpressing a gene product required for proliferation may be constructed to contain a unique nucleic acid sequence (referred to herein as a "tag"). The tag may be included in the chromosome of each strain or in an extrachromosomal vector. For example, the tag could be included in a vector encoding an antisense nucleic acid complementary to a gene encoding a gene product required for proliferation or a portion of such a gene or the tag may be included in the antisense nucleic acid itself. The representation of each strain in the culture may be assessed by performing an amplification reaction using primers complementary to each of the tags and quantitating the levels of the resulting amplification products to identify a tag which is underrepresented or absent from the culture. Since each tag corresponds to one strain, the strain which is underrepresented or absent from the culture may be identified. If desired the tags present in a culture which was contacted with the compound may be compared to the tags present in a control culture which was not contacted with the compound. Alternatively, the tags present in a culture which was contacted with the compound may be analyzed without comparison to a control culture.

It will be appreciated that, if desired, unique tags may also be used in embodiments in which gene products required for proliferation are overexpressed. In some aspects of such embodiments, the tags may be within or adjacent to the promoter

which drives expression of the gene encoding the gene product. In such embodiments, the gene product which is overexpressed in strains which proliferate more rapidly in the culture may be identified by detecting the presence or amount of the unique tag corresponding to that gene product in the culture.

In some embodiments of the invention, more than one strain may proliferate less rapidly in the presence of the compound. This may result from a variety of causes. For example, the concentration of the compound may not have been high enough to reduce the proliferation only in cells which underexpress one gene product (i.e. the target gene product). While strains which underexpress the target gene product will be the least prevalent strain in the culture, other strains may also be underrepresented. In such instances, the identity of the gene product in the strain which is least prevalent in the culture (or not recovered from the culture) may be identified by quantitating the levels of each of the genes encoding proliferation-required proteins in the culture. This may be accomplished by quantitative PCR, DNA sequencing, hybridization, or array technology as described above.

In other instances, multiple strains will exhibit less rapid proliferation in the culture as a result of a common functional attribute. For example, the strains which proliferate less rapidly (or the strains which are not recovered from the culture) may each underexpress a gene product with a common enzymatic activity, such as serine protease activity for example. Alternatively, the strains which proliferate less rapidly (or the strains which are not recovered from the culture) may each underexpress a gene product with a common functional domain, such as a cAMP binding domain. In such instances, the common attribute of the strains which proliferate less rapidly (or the strains which are not recovered from the culture) may provide information as to the mode of action of the compound or the biochemical activity of the target of the compound. For example, if all of the underexpressed genes in the strains which proliferated less rapidly are serine proteases, the compound acts by inhibiting serine protease activity and the target protein is a serine protease. If desired, the compound may be derivatized and the efficacy of the derivatized compound against each of the strains which proliferated more rapidly may be assessed as described herein in order to

identify derivatives which are capable of interacting with a wide range of targets sharing a common activity or binding site (i.e. derivatives which have a greater ability to inhibit the proliferation of all the strains than the original compound) or to identify derivatives having greater specificity for a desired target (i.e. derivatives which have a greater specificity for one of the strains than the original compound).

5

10

15

20

25

30

In some embodiments, rather than employing a single culture which contains multiple strains each of which underexpresses a proliferation-required gene product, the methods of the present invention may be performed using an array of individual strains (i.e. a collection of strains) each of which underexpresses a different proliferation-required gene product. For example, individual strains each underexpressing a different proliferation-required gene product may be grown in different wells of a multiwell plate. Each well is contacted with the compound (and, where appropriate an agent which regulates the level of expression from the promoter). The level of proliferation of the strains in each of the wells is determined to identify a strain which proliferated less rapidly or which did not proliferate at all. The identity of the underexpressed gene product in the strain that proliferated less rapidly or which did not proliferated less rapidly or which did not proliferate at all is determined as described above.

In another embodiment, individual strains each underexpressing a different proliferation-required gene product (i.e. a collection of strains) are grown at different locations on a solid medium, such as an agar plate. The medium contains the compound and, where appropriate, an agent which regulates the level of expression from the promoter. The level of proliferation of each of the strains is determined to identify a strain which proliferated less rapidly (or a strain which is not recovered from the culture). The identity of the underexpressed gene product in the strain that proliferated less rapidly (or the strain which is not recovered from the culture) is determined as described above.

The above methods may be used to prioritize compound development or to determine whether the compound has been previously identified or whether the target of the compound is the target of a previously identified drug. In particular, if the product is a natural product is advantageous to determine whether it has been

previously identified prior to investing significant effort in developing it. Thus, in some embodiments of the present invention, the target of a partially purified or purified natural product or a compound produced by combinatorial chemistry is identified using the methods described above and compared to the targets of known drugs. If the target is identical to that of a known drug, further development of the compound is halted.

5

10

15

20

25

In some embodiments of the present invention, an array of strains each of which underexpresses a different gene product (i.e. a collection of strains) is grown on solid medium containing a compound to be evaluated. The location of each strain in the array and the gene product underexpressed by that strain is known. The pattern of colonies which grow less rapidly or fail to grow in the presence of the compound is evaluated and compared to the pattern of colonies which grow less rapidly or fail to grow in the presence of previously identified drugs. If the pattern of colonies which grow less rapidly or fail to grow in the presence of the compound being evaluated is the same as the pattern of colonies which grow less rapidly or fail to grow in the presence of a previously identified drug, further development of the compound is halted.

In another embodiment, the nucleotide sequence of the gene product in a strain which proliferated less rapidly (or a strain which was not recovered from the culture) in the assays described above is compared to the nucleotide sequence of gene products from heterologous organisms to determine the likely spectrum of species whose growth would be inhibited by the compound. If the gene product has a high degree of homology to gene products from heterologous species, it is likely that the compound would also inhibit the growth of these heterologous species. Homology may be determined using any of a variety of methods familiar to those skilled in the art. For example, homology may be determined using a computer program such as BLASTP or FASTA. The ability of the compound to inhibit the growth of the heterologous species may then be confirmed by comparing the growth of cells of the heterologous species in the presence and absence of the compound.

Current methods for identifying the target of compounds which inhibit cellular proliferation are laborious and time consuming. The above methods may be employed to allow the targets of a large number of compounds to be rapidly identified. In such methods, the methods described above are simultaneously performed for each of a large number of compounds. For example, the compounds may be members of a library of compounds generated using combinatorial chemistry or members of a natural product library. In such methods, a plurality of cultures each comprising a plurality of strains each of which underexpresses a different gene product required for proliferation or a plurality of collections of individual strains each of which underexpresses a different gene product required for proliferation is obtained. Each culture or collection of strains is contacted with a different compound in the library and the target of the compound is identified as described above.

5

10

15

20

25

30

In some embodiments of the present invention, strains are constructed in which a nucleic acid complementary to a gene encoding a gene product required for proliferation, or a portion thereof (i.e. a nucleic acid encoding an antisense nucleic acid to the gene encoding the proliferation required gene product or a portion thereof) is operably linked to a regulatable promoter. A culture comprising a plurality of such strains wherein each strain expresses an antisense nucleic acid against a different gene product required for proliferation is grown in the presence of varying levels of a compound which inhibits proliferation and in the presence of varying levels of an agent which regulates the level of transcription from the regulatable promoter. Nucleic acids samples are obtained from the culture, detectably labeled and hybridized to a solid support comprising nucleic acids containing the genes encoding the proliferation-required gene products or a portion thereof. The level of hybridization is quantitated for each nucleic acid encoding each of the proliferation-required gene products to determine the rate at which each of the strains proliferated in the culture. If the antisense nucleic acid expressed by a strain in the culture is not complementary to all or a portion of the gene encoding the target of the compound (i.e. a nonspecific strain), then the hybridization intensity for that strain will not be correlated with the concentration of the compound (see Figure 3), while if the antisense nucleic acid

expressed by a strain in the culture is complementary to all or a portion of the gene encoding the target of the compound, the hybridization intensity for that strain will be intimately correlated with the concentration of the compound (see Figure 4). In this manner, the target of the compound may be identified. It will be appreciated that, as described above, rather than growing the strains in a single culture, each strain may be grown in a different location on a solid medium or in a different well of a multiwell plate.

5

10

15

20

25

30

The methods described herein may be performed simultaneously for each of a plurality of compounds which inhibit proliferation to allow the targets of those compounds to be rapidly identified.

Some embodiments of the present invention are summarized on the following pages. It will be appreciated that the present invention may be applied to cultures of any organism and that any gene product required for proliferation of the organism may be overexpressed or underexpressed. Accordingly, the organisms and gene products described in the following examples are exemplary only and do not limit the scope of the present invention.

Genes required for cellular proliferation for use in the present invention may be identified from the literature, may be identified using the following methods, or may be identified using other methods familiar to those skilled in the art. In some embodiments of the present invention, the culture comprises a strain in which a gene product selected from the group consisting of a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, and a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed. The identification of nucleic acids comprising a nucleotide sequence selected from the group consisting a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-

3800, 3806-4860, 5916-10012, and 14111-14944 and gene products comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 are described below.

5 <u>EXAMPLE 1</u>

10

15

20

25

30

Identification of Genes Required for Cellular Proliferation by Expressing Antisense RNA Complementary to at least a Portion of a Gene Required for Cellular Proliferation

Random genomic fragments are obtained from the organism in which it is desired to identify genes required for cellular proliferation. The random genomic fragments may be generated by a partial digestion with a restriction enzyme, mechanical shearing, using techniques such as sonication and nebulization, or DNAseI digestion. The random genomic fragments are operably linked to a regulatable promoter in a vector. In those instances where the inserted genomic fragments are in an antisense orientation with respect to the promoter, the transcript produced is complementary to at least a portion of an mRNA encoding a gene product such that they interact with sense mRNA produced from various genes and thereby decrease the translation efficiency or the level of the sense messenger RNA (mRNA) thus decreasing production of the protein encoded by these sense mRNA molecules. In cases where the sense mRNA encodes a protein required for proliferation, cells grown under inducing conditions fail to grow or grow at a substantially reduced rate. Additionally, in cases where the transcript produced is complementary to at least a portion of a non-translated RNA and where that non-translated RNA is required for proliferation, cells grown under inducing conditions also fail to grow or grew at a substantially reduced rate. In contrast, cells grown under non-inducing conditions grow at a normal rate. The genes to which the antisense nucleic acids are complementary are then identified and utilized in the methods of the present invention. Thus, to identify genes required for cellular proliferation, the extent of proliferation of cells containing the vectors in the presence of an agent which induces transcription from the regulatable promoter is compared to the extent of proliferation of cells in the absence of the agent. Those cells which grow

well in the absence of the agent but exhibit significantly reduced proliferation in the presence of the agent contain a vector encoding an antisense nucleic acid complementary to at least a portion of a gene required for cellular proliferation.

5

10

15

20

The above method was used to identify genes required for cellular proliferation in Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis. The identification of genes required for cellular proliferation in E. coli, Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis has been described in the following U.S. Patent Applications, the disclosures of which are incorporated herein by reference in their entireties: U.S. Patent Application Serial Number 09/815,242, filed March 21, 2001; U.S. Patent Application Serial Number 09/492709, filed January 27, 2000; U.S. Patent Application Serial Number 09/711164, filed November 9, 2000; U.S. Patent Application Serial Number 09/741669, filed December 19, 2000 and U.S. Patent Application Serial Number 09/815,242 filed March 21, 2001. The methods used to identify these genes required for cellular proliferation are summarized below.

To identify genes required for proliferation of *E. coli*, random genomic fragments were cloned into the IPTG-inducible expression vector pLEX5BA (Krause et al., J. Mol. Biol. 274: 365 (1997), the disclosure of which is incorporated herein by reference in its entirety) or a modified version of pLEX5BA, pLEX5BA-3' in which a synthetic linker containing a T7 terminator was ligated between the PstI and HindIII sites of pLEX5BA. In particular, to construct pLEX5BA-3', the following oligonucleotides were annealed and inserted into the PstI and HindIII sites of pLEX5BA:

- 25 5'-GTCTAGCATAACCCCTTGGGGCCTCTAAACGGGTCCTTGAGGGGTTTTTTGA-3' (SEQ ID NO: 15779) CORRECT SEQ ID NOS TO BE INSERTED THROUGHOUT THE APPLICATION
- 5'-AGCTTCAAAAAACCCCTCAAGGACCCGTTTAGAGGCCCCAAGGGGTTAT
 30 GCTAGACTGCA-3' (SEQ ID NO: 15780)

Random fragments of *E. coli* genomic DNA were generated by DNAseI digestion or sonication, filled in with T4 polymerase, and cloned into the SmaI site of pLEX5BA or pLEX5BA-3'. Upon activation or induction, the promoter transcribed the random genomic fragments

5

10

15

20

25

30

To study the effects of transcriptional induction in liquid medium, growth curves were carried out by back diluting cultures 1:200 into fresh media with or without 1 mM IPTG and measuring the OD₄₅₀ every 30 minutes (min). To study the effects of transcriptional induction on solid medium, 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 and 10^8 fold dilutions of overnight cultures were prepared. Aliquots of from 0.5 to 3 μ l of these dilutions were spotted on selective agar plates with or without 1 mM IPTG. After overnight incubation, the plates were compared to assess the sensitivity of the clones to IPTG.

Of the numerous clones tested, some clones were identified as containing a sequence that inhibited *E. coli* growth after IPTG induction. Accordingly, the gene to which the inserted nucleic acid sequence corresponds, or a gene within the operon containing the inserted nucleic acid, is required for proliferation in *E. coli*.

Nucleic acids required for proliferation of Staphylococcus aureus, Salmonella typhimurium, and Klebsiella pneumoniae were identified as follows. Randomly generated fragments of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genomic DNA were transcribed from inducible promoters.

In the case of Staphylococcus aureus, a novel inducible promoter system, XylT5, comprising a modified T5 promoter fused to the xylO operator from the xylA promoter of Staphylococcus aureus was used. The promoter is described in U.S. Patent Application Serial Number 10/032,393, the disclosure of which is incorporated herein by reference in its entirety. Transcription from this hybrid promoter is inducible by xylose.

Randomly generated fragments of Salmonella typhimurium genomic DNA were transcribed from an IPTG inducible promoter in pLEX5BA (Krause et al., J.

Mol. Biol. 274: 365 (1997) or a derivative thereof. Randomly generated fragments of Klebsiella pneumoniae genomic DNA were expressed from an IPTG inducible promoter in pLEX5BA-Kan. To construct pLEX5BA-kan, pLEX5BA was digested to completion with ClaI in order to remove the bla gene. Then the plasmid was treated with a partial NotI digestion and blunted with T4 DNA polymerase. A 3.2 kbp fragment was then gel purified and ligated to a blunted 1.3 kbp kan gene from pKanπ. Kan resistant transformants were selected on Kan plates. Orientation of the kan gene was checked by SmaI digestion. A clone, which had the kan gene in the same orientation as the bla gene, was used to identify genes required for proliferation of Klebsiella pneumoniae.

5

10

15

20

25

Randomly generated fragments of *Pseudomonas aeruginosa* genomic DNA were transcribed from a two-component inducible promoter system. Integrated on the chromosome was the T7 RNA polymerase gene regulated by *lacUV5/ lacO* (Brunschwig, E. and Darzins, A. 1992. Gene 111:35-41, the disclosure of which is incorporated herein by reference in its entirety). On a separate plasmid, a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, was fused with a *lacO* operator followed by a multiple cloning site.

In the case of Staphylococcus aureus, a shotgun library of Staphylococcus aureus genomic fragments was cloned into the vector pXyIT5-P15a, which harbors the XyIT5 inducible promoter. The vector was linearized at a unique BamHI site immediately downstream of the XyIT5 promoter/operator. The linearized vector was treated with shrimp alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from Staphylococcus aureus strain RN450 was fully digested with the restriction enzyme Sau3A, or, alternatively, partially digested with DNase I and "blunt-ended" by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 0.1 to 1, and ligated to form a shotgun library.

The ligated products were transformed into electrocompetent *E. coli* strain XL1-Blue MRF (Stratagene) and plated on LB medium with supplemented with carbenicillin at $100 \,\mu\text{g/ml}$. Resulting colonies numbering 5×10^5 or greater were scraped and combined, and were then subjected to plasmid purification.

5

The purified library was then transformed into electrocompetent Staphylococcus aureus RN4220. Resulting transformants were plated on agar containing LB + 0.2% glucose (LBG medium) + chloramphenicol at 15 μg/ml (LBG+CM15 medium) in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100μl of LBG + CM15 liquid medium. Inoculated 384 well dishes were incubated 16 hours at 37°C, and each well was robotically gridded onto solid LBG + CM15 medium with or without 2% xylose. Gridded plates were incubated 16 hours at 37°C, and then manually scored for arrayed colonies that were growth-compromised in the presence of xylose.

15

20

10

Arrayed colonies that were growth-sensitive on medium containing 2% xylose, yet were able to grow on similar medium lacking xylose, were subjected to further growth sensitivity analysis as follows: Colonies from the plate lacking xylose were manually picked and inoculated into individual wells of a 96 well culture dish containing LBG + CM15, and were incubated for 16 hours at 37°C. These cultures were robotically diluted 1/100 into fresh medium and allowed to incubate for 4 hours at 37°C, after which they were subjected to serial dilutions in a 384 well array and then gridded onto media containing 2% xylose or media lacking xylose. After growth for 16 hours at 37°C, the arrays that resulted on the two media were compared to each other. Clones that grew similarly at all dilutions on both media were scored as a negative and were no longer considered. Clones that grew on xylose medium but failed to grow at the same serial dilution on the non-xylose plate were given a score based on the differential, i.e. should the clone grow at a serial dilution of 104 or less on the xylose plate and grow-at a serial dilution of 108 or less on the non-xylose plate, then the corresponding clone received a score of "4" representing the log difference in growth observed.

25

For Salmonella typhimurium and Klebsiella pneumoniae growth curves were carried out by back diluting cultures 1:200 into fresh media containing 1 mM IPTG or media lacking IPTG and measuring the OD₄₅₀ every 30 minutes (min). To study the effects of transcriptional induction on solid medium, 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 and 10^8 fold dilutions of overnight cultures were prepared. Aliquots of from 0.5 to 3 μ l of these dilutions were spotted on selective agar plates with or without 1 mM IPTG. After overnight incubation, the plates were compared to assess the sensitivity of the clones to IPTG.

Nucleic acids involved in proliferation of *Pseudomonas aeruginosa* were identified as follows. Randomly generated fragments of *Pseudomonas aeruginosa* genomic DNA were transcribed from a two-component inducible promoter system. Integrated on the chromosome was the T7 RNA polymerase gene regulated by *lacUV5/lacO* (Brunschwig, E. and Darzins, A. 1992. Gene 111:35-41). On an expression plasmid there was a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, fused with a *lacO* operator followed by a multiple cloning site. Transcription from this hybrid promoter is inducible by IPTG. Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of an mRNA encoding a gene product involved in proliferation, then induction of expression from the promoter will result in detectable inhibition of proliferation.

A shotgun library of *Pseudomonas aeruginosa* genomic fragments was cloned into the vectors pEP5, pEP5S, or other similarly constructed vectors which harbor the T7lacO inducible promoter. The vector was linearized at a unique *SmaI* site immediately downstream of the T7lacO promoter/operator. The linearized vector was treated with shrimp alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from *Pseudomonas aeruginosa* strain PAO1 was partially digested with DNase I and "blunt-ended" by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 2 to 1, and ligated to form a shotgun library.

The ligated products were transformed into electrocompetent *E. coli* strain XL1-Blue MRF (Stratagene) and plated on LB medium with carbenicillin at 100 µg/ml or Streptomycin 100 µg/ml. Resulting colonies numbering 5 x 10⁵ or greater were scraped and combined, and were then subjected to plasmid purification.

5

The purified library was then transformed into electrocompetent *Pseudomonas aeruginosa* strain PAO1. Resulting transformants were plated on LB agar with carbenicillin at 100 µg/ml or Streptomycin 40 µg/ml in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 µl of LB + CB 100 or Streptomycin 40 liquid medium. Inoculated 384 well dishes were incubated 16 hours at room temperature, and each well was robotically gridded onto solid LB + CB100 or Streptomycin 40 medium with or without 1 mM IPTG. Gridded plates were incubated 16 hours at 37°C, and then manually scored for arrayed colonies that were growth-compromised in the presence of IPTG.

15

20

25

30

10

Arrayed colonies that were growth-sensitive on medium containing 1 mM IPTG, yet were able to grow on similar medium lacking IPTG, were subjected to further growth sensitivity analysis as follows: Colonies from the plate lacking IPTG were manually picked and inoculated into individual wells of a 96 well culture dish containing LB + CB100 or Streptomycin 40, and were incubated for 16 hours at 30°C. These cultures were robotically diluted 1/100 into fresh medium and allowed to incubate for 4 hours at 37°C, after which they were subjected to serial dilutions in a 384 well array and then gridded onto media with and without 1 mM IPTG. After growth for 16 hours at 37°C, the arrays of serially diluted spots that resulted were compared between the two media. Clones that grew similarly at all dilutions on both media were scored as a negative and were no longer considered. Clones that grew on IPTG medium but failed to grow at the same serial dilution on the non-IPTG plate were given a score based on the differential, i.e. should the clone grow at a serial dilution of 10⁴ or less on the IPTG plate and grow at a serial dilution of 10⁸ or less on the IPTG plate, then the corresponding clone received a score of "4" representing the log difference in growth observed.

Following the identification of those vectors that, upon induction, negatively impacted *Pseudomonas aeruginosa* growth or proliferation, the inserts or nucleic acid fragments contained in those vectors were isolated for subsequent characterization. Vectors of interest were subjected to nucleic acid sequence determination.

5

Nucleic acids involved in proliferation of *E. faecalis* were identified as follows. Randomly generated fragments of genomic DNA were expressed from the vectors pEPEF3 or pEPEF14, which contain the CP25 or P59 promoter, respectively, regulated by the xyl operator/repressor. Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of a mRNA encoding a gene product involved in proliferation, then induction of expression from the promoter will result in detectable inhibition of proliferation.

10

15

A shotgun library of *E. faecalis* genomic fragments was cloned into the vector pEPEF3 or pEPEF14, which harbor xylose inducible promoters. The vector was linearized at a unique *SmaI* site immediately downstream of the promoter/operator. The linearized vector was treated with alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from *E. faecalis* strain OG1RF was partially digested with DNase I and "blunt-ended" by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 2 to 1, and ligated to form a shotgun library.

20

The ligated products were transformed into electrocompetent $E.\ coli$ strain TOP10 cells (Invitrogen) and plated on LB medium with erythromycin (Erm) at 150 μ g/ml. Resulting colonies numbering 5 x 10⁵ or greater were scraped and combined, and were then subjected to plasmid purification.

25

The purified library was then transformed into electrocompetent E. faecalis strain OG1RF. Resulting transformants were plated on Todd-Hewitt (TH) agar with erythromycin at 10 μ g/ml in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 μ l of THB + Erm 10 μ g/ml. Inoculated

30

384 well dishes were incubated 16 hours at room temperature, and each well was robotically gridded onto solid TH agar + Erm with or without 5% xylose. Gridded plates were incubated 16 hours at 37°C, and then manually scored for arrayed colonies that were growth-compromised in the presence of xylose.

5

10

Arrayed colonies that were growth-sensitive on medium containing 5% xylose, yet were able to grow on similar medium lacking xylose, were subjected to further growth sensitivity analysis. Colonies from the plate lacking xylose were manually picked and inoculated into individual wells of a 96 well culture dish containing THB + Erm 10, and were incubated for 16 hours at 30°C. These cultures were robotically diluted 1/100 into fresh medium and allowed to incubate for 4 hours at 37°C, after which they were subjected to serial dilution on plates containing 5% xylose or plates lacking xylose. After growth for 16 hours at 37°C, the arrays of serially diluted spots that resulted were compared between the two media. Colonies that grew similarly on both media were scored as a negative and corresponding colonies were no longer considered. Colonies on xylose medium that failed to grow to the same serial dilution compared to those on the non-xylose plate were given a score based on the differential. For example, colonies on xylose medium that only grow to a serial dilution of -4 while they were able to grow to -8 on the non-xylose plate, then the corresponding transformant colony received a score of "4" representing the log difference in growth observed.

20

15

Following the identification of those vectors that, upon induction, negatively impacted *E. faecalis* growth or proliferation, the inserts or nucleic acid fragments contained in those expression vectors were isolated for subsequent characterization. The inserts in the vectors of interest were subjected to nucleotide sequence determination.

25

30

It will be appreciated that other restriction enzymes and other endonucleases or methodologies may be used to generate random genomic fragments. In addition, random genomic fragments may be generated by mechanical shearing. Sonication and nebulization are two such techniques commonly used for mechanical shearing of DNA.

EXAMPLE 2

Nucleotide Sequence Determination of Identified Clones Transcribing Nucleic Acid

Fragments with Detrimental Effects on Proliferation of Escherichia coli,

Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae,

Pseudomonas aeruginosa of Enterococcus faecalis

5

10

15

20

25

30

The nucleotide sequences of the nucleic acid sequences which inhibited the growth of *Escherichia coli* were determined using plasmid DNA isolated using QIAPREP (Qiagen, Valencia, CA) and methods supplied by the manufacturer. The primers used for sequencing the inserts were 5' - TGTTTATCAGACCGCTT - 3' (SEQ ID NO: 15781) and 5' - ACAATTTCACACAGCCTC - 3' (SEQ ID NO: 15782). These sequences flank the polylinker in pLEX5BA.

The nucleotide sequences of the nucleic acid sequences which inhibited the growth of *Staphylococcus aureus* were determined as follows. *Staphylococcus aureus* were grown in standard laboratory media (LB or TB with 15 ug/ml Chloramphenicol to select for the plasmid). Growth was carried out at 37°C overnight in culture tubes or 2 ml deep well microtiter plates.

Lysis of *Staphylococcus aureus* was performed as follows. Cultures (2-5 ml) were centrifuged and the cell pellets resuspended in 1.5 mg/ml solution of lysostaphin (20 μ l/ml of original culture) followed by addition of 250 μ l of resuspension buffer (Qiagen). Alternatively, cell pellets were resuspended directly in 250 μ l of resuspension buffer (Qiagen) to which 5-20 μ l of a 1 mg/ml lysostaphin solution were added.

DNA was isolated using Qiagen miniprep kits or Wizard (Qiagen) miniprep kits according to the instructions provided by the manufacturer.

The genomic DNA inserts were amplified from the purified plasmids by PCR as follows.

1 μ l of Qiagen purified plasmid was put into a total reaction volume of 25 μ l Qiagen Hot Start PCR mix. For *Staphylococcus aureus*, the following primers were used in the PCR reaction:

pXylT5F: CAGCAGTCTGAGTTATAAAATAG (SEQ ID NO: 15783)

LexL TGTTTTATCAGACCGCTT (SEQ ID NO: 15784)

Similar methods were conducted for Salmonella typhimurium and Klebsiella pneumoniae. For Salmonella typhimurium and Klebsiella pneumoniae the following primers were used:

5 5' - TGTTTTATCAGACCGCTT - 3' (SEQ ID NO: 15784) and

5'-ACAATTTCACACAGCCTC-3' (SEQ ID NO: 15782

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 95° C 15 min

Step 2. 94° C 45 sec

10 Step 3. 54° C 45 sec

Step 4. 72° C 1 minute

Step 5. Return to step 2, 29 times

Step 6. 72° C 10 minutes

Step 7. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

For *Pseudomonas aeruginosa*, plasmids from transformant colonies that received a dilution plating score of "2" or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. *Pseudomonas aeruginosa* were grown in standard laboratory media (LB with carbenicillin at 100 µg/ml or Streptomycin 40 µg/ml to select for the plasmid). Growth was carried out at 30°C overnight in 100 ul culture wells in microtiter plates. To amplify insert DNA 2 ul of culture were placed into 25 ul Qiagen Hot Start PCR mix. PCR reactions were in 96 well microtiter plates. For plasmid pEP5S the following primers were used in the PCR

25 reaction:

20

T7L1+: GTCGGCGATATAGGCGCCAGCAACCG (SEQ ID NO: 15785)

pStrA3: ATAATCGAGCATGAGTATCATACG (SEQ ID NO: 15786)

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 95° C 15 min

30 Step 2. 94° C 45 sec

Step 3. 54° C 45 sec

Step 4. 72° C 1 minute

Step 5. Return to step 2, 29 times

Step 6. 72° C 10 minutes

5 Step 7. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

The purified PCR products were then directly cycle sequenced with Qiagen Hot Start PCR mix. The following primers were used in the sequencing reaction:

10 T7/L2: ATGCGTCCGGCGTAGAGGAT (SEQ ID NO: 15787)

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 94° C 15 min

Step 2. 96° C 10 sec

Step 3. 50° C 5 sec

15 Step 4. 60 C 4 min

20

25

Step 5. Return to step 2, 24 times

Step 6. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

For *E. faecalis*, plasmids from transformant colonies that received a dilution plating score of "2" or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. *E. faecalis* were grown in THB 10 µg/ml Erm at 30°C overnight in 100 ul culture wells in microtiter plates. To amplify insert DNA 2 ul of culture were placed into 25 µl Qiagen Hot Start PCR mix. PCR reactions were in 96 well microtiter plates. The following primers were used in the PCR reaction:

pXyIT5: CAGCAGTCTGAGTTATAAAATAG (SEQ ID NO: 15783) and the pEP/pAK1 primer.

PCR was carried out in a PE GenAmp with the following cycle times:

30 Step 1. 95° C 15 min

Step 2. 94° C 45 sec

Step 3. 54° C 45 sec

Step 4. 72° C 1 minute

Step 5. Return to step 2, 29 times

5 Step 6. 72° C 10 minutes

Step 7. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

The purified PCR products were then directly cycle sequenced with Qiagen Hot Start PCR mix. The following primers were used in the PCR reaction:

pXyIT5: CAGCAGTCTGAGTTATAAAATAG (SEQ ID NO: 15783)

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 94° C 15 min

Step 2. 96° C 10 sec

15 Step 3. 50° C 5 sec

10

20

25

30

Step 4. 60° C 4 min

Step 5. Return to step 2, 24 times

Step 6. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

The amplified genomic DNA inserts from each of the above procedures were subjected to automated sequencing. The nucleotide sequences of the antisense nucleic acids which inhibited the proliferation of *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhimurium*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Enterococcus faecalis* are listed in the accompanying Sequence Listing as SEQ ID NOs.: 8-3795.

EXAMPLE 3

Comparison Of Isolated Nucleic Acids to Known Sequences

The nucleic acid sequences of the subcloned E. coli genomic fragments obtained from the vectors discussed above were compared to known E. coli sequences in

GenBank using BLAST version 1.4 or version 2.0.6 using the following default parameters: Filtering off, cost to open a gap=5, cost to extend a gap=2, penalty for a mismatch in the blast portion of run=3, reward for a match in the blast portion of run=1, expectation value (e)=10.0, word size=11, number of one-line descriptions=100, number of alignments to show (B)=100. BLAST is described in Altschul, J Mol Biol. 215:403-10 (1990), the disclosure of which is incorporated herein by reference in its entirety. The vectors were found to contain nucleic acid sequences in both the sense and antisense orientations. The presence of known genes, open reading frames, and ribosome binding sites was determined by comparison to public databases holding genetic information and various computer programs such as the Genetics Computer Group programs FRAMES and CODONPREFERENCE. Clones were designated as "antisense" if the cloned fragment was oriented to the promoter such that the RNA transcript produced was complementary to the expressed mRNA (or non-translated RNA) from a chromosomal locus. Clones were designated as "sense" if they coded for an RNA fragment that was identical to a portion of a wild type mRNA from a chromosomal locus.

5

10

15

20

25

30

The nucleotide sequences of the subcloned fragments from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa ot Enterococcus faecalis obtained from the expression vectors discussed above were compared to known sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis and other microorganisms as follows. First, to confirm that each clone originated from one location on the chromosome and was not chimeric, the nucleotide sequences of the selected clones were compared against the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genomic sequences to align the clone to the correct position on the chromosome. The NCBI BLASTN v 2.0.9 program was used for this comparison, and the incomplete Staphylococcus aureus genomic sequences licensed from TIGR, as well as the NCBI nonredundant GenBank database were used as the source of Salmonella typhimurium sequences were compared to sequences genomic data. from the Genome Sequencing Center available

(http://genome.wustl.edu/gsc/salmonella.shtml), and the Sanger Centre (http://www.sanger.ac.uk/projects/S__typhi). *Pseudomonas aeruginosa* sequences were compared to a proprietary database and the NCBI GenBank database. The *E. faecalis* sequences were compared to a proprietary database.

5

The BLASTN analysis was performed using the default parameters except that the filtering was turned off. No further analysis was performed on inserts which resulted from the ligation of multiple fragments.

10

15

In general, antisense molecules and their complementary genes are identified as follows. First, all possible full length open reading frames (ORFs) are extracted Such databases include the GenBank from available genomic databases. nonredundant (nr) database, the unfinished genome database available from TIGR and the PathoSeq database developed by Incyte Genomics. The latter database comprises over 40 annotated bacterial genomes including complete ORF analysis. If databases are incomplete with regard to the bacterial genome of interest, it is not necessary to extract all ORFs in the genome but only to extract the ORFs within the portions of the available genomic sequences which are complementary to the clones of interest. Computer algorithms for identifying ORFs, such as GeneMark, are available and well known to those in the art. Comparison of the clone DNA to the complementary ORF(s) allows determination of whether the clone is a sense or antisense clone. Furthermore, each ORF extracted from the database can be compared to sequences in well annotated databases including the GenBank (nr) protein database, SWISSPROT and the like. A description of the gene or of a closely related gene in a closely related microorganism is often available in these databases. Similar methods are used to

20

25

Each of the cloned nucleic acid sequences discussed above which inhibited proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis was used to identify the corresponding Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis ORFs in the PathoSeq v.4.1 (March 2000 release) database of microbial genomic sequences. For

identify antisense clones corresponding to genes encoding non-translated RNAs.

30

this purpose, the NCBI BLASTN 2.0.9 computer algorithm was used. The default parameters were used except that filtering was turned off. The default parameters for the BLASTN and BLASTX analyses were:

Expectation value (e)=10

5 Alignment view options: pairwise

Filter query sequence (DUST with BLASTN, SEG with others)=T

Cost to open a gap (zero invokes behavior)=0 Cost to extend a gap (zero invokes behavior)=0

X dropoff value for gapped alignment (in bits) (zero invokes behavior)=0

10 Show GI's in deflines=F

Penalty for a nucleotide mismatch (BLASTN only)=-3 Reward for a nucleotide match (BLASTN only)=1

Number of one-line descriptions (V)=500 Number of alignments to show (B)=250

15 Threshold for extending hits=default

Perform gapped alignment (not available with BLASTX)=T

Query Genetic code to use=1

DB Genetic code (for TBLAST[nx] only=1

Number of processors to use=1

20 SegAlign file

35

Believe the query defline=F

Matrix=BLOSUM62

Word Size= default

Effective length of the database (use zero for the real size)=0

Number of best hits from a region to keep=100

Length of region used to judge hits=20

Effective length of the search space (use zero for the real size)=0

Query strands to search against database (for BLAST[nx] and TBLASTX), 3 is both, 1 is top, 2 is bottom=3

30 Produce HTML output=F

Alternatively, ORFs were identified and refined by conducting a survey of the public and private data sources. Full-length gene protein and nucleotide sequences for these organisms were assembled from various sources. For *Pseudomonas aeruginosa*, gene sequences were adopted from the Pseudomonas genome sequencing project (downloaded from http://www.pseudomonas.com). For *Klebsiella pneumoniae*, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi, genomic sequences from PathoSeq v 4.1 (Mar 2000 release) was reanalyzed for ORFs using the

gene finding software GeneMark v 2.4a, which was purchased from GenePro Inc. 451 Bishop St., N.W., Suite B, Atlanta, GA, 30318, USA.

Antisense clones were identified as those clones for which transcription from the inducible promoter would result in the expression of an RNA antisense to a complementary ORF, intergenic or intragenic sequence.

5

10

15

20

25

30

It will be appreciated that ORFs may also be identified using databases other than PathoSeq. For example, the ORFs may be identified using the methods described in U.S. Provisional Patent Application Serial Number 60/191,078, filed March 21, 2000, the disclosure of which is incorporated herein by reference in its entirety.

The ORFs which correspond to the antisense nucleic acids which inhibited proliferation of Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis are listed in the accompanying Sequence Listing as SEQ ID NOs.: 3796-3800, 3806-4860, and 5916-10012. The polypeptides encoded by the identified ORFs are provided in the

accompanying Sequence Listing as SEQ ID NOs.: 3801-3805, 4861-5915, and 10013-14110.

In other embodiments, the culture comprises a strain in which a gene product encoded by a homologous coding nucleic acid as defined above is overexpressed or underexpressed. In further embodiments, the culture comprises a strain in which a homologous polypeptide as defined above is overexpressed or underexpressed.

Homologous coding nucleic acids may be obtained as described in Example 4 below.

EXAMPLE 4

Identification of Homologous Coding Nucleic Acids, Homologous Antisense Nucleic Acids or Homologous Polypeptides

Homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from other pathogenic microorganisms (including nucleic acids homologous to the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids homologous to the antisense nucleic acids of SEO ID NOs.: 8-3795, and polypeptides homologous to the polypeptides of SEQ ID

NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778) may be identified using methods such as those described below.

5

10

15

20

25

30

For example, in some embodiments, the proliferation-required nucleic acids, antisense nucleic acids, and polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis. Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa. Helicobacter pvlori. Staphylococcus aureus, Salmonella typhi, or Candida albicans described herein (including the nucleic acids of SEO ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, the antisense nucleic acids of SEQ ID NOs: 8-3795, and the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778) may be used to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides required for proliferation in prokaryotes and eukaryotes. For example, nucleic acids or polypeptides required for the proliferation of protists, such as Plasmodium spp.; plants; animals, such as Entamoeba spp. and Contracaecum spp; and fungi including Candida spp., (e.g., Candida albicans), Cryptococcus neoformans, and Aspergillus fumigatus may be identified. In one embodiment of the present invention, monera, specifically bacteria, including both Gram positive and Gram negative bacteria, are probed to identify genes required for cellular proliferation. Likewise, homologous antisense nucleic acids may also be identified.

The genes and polypeptides required for the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, or Candida albicans (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, the sequences complementary to the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, and the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778) can be used to identify

homologous coding nucleic acids or homologous polypeptides required for proliferation from these and other organisms using methods such as nucleic acid hybridization and computer database analysis. Likewise, the antisense nucleic acids which inhibit proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the antisense nucleic acids of SEQ ID NOs.: 8-3795 or the sequences complementary thereto) may also be used to identify homologous antisense nucleic acids using nucleic acid hybridization or computer database analysis.

5

10

15

20

25

30

...

For example, the nucleic acid sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhii, or Candida albicans (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and the antisense nucleic acids of SEQ ID NOs. 8-3795) are used to screen genomic libraries generated from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, or Candida albicans and other bacterial or fungal species of interest. For example, the genomic library may be from Gram positive bacteria, Gram negative bacteria or other organisms including Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae,

Enterobacter cloacae, Enterococcus faecalis, neoformans, Cryptococcus Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Histoplasma Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, epidermidis, Streptococcus pneumoniae, Shigella sonnei, Staphylococcus Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative species of Staphylococcus. In some embodiments, the genomic library may be from an organism other than E. coli.

15

10

5

Standard molecular biology techniques are used to generate genomic libraries from various cells or microorganisms. In one aspect, the libraries are generated and bound to nitrocellulose paper. The nucleic acids of SEQ ID NOs. 3796-3800, 3806-4860, 5916-10012, and 14111-14944 or SEQ ID NOs.: 8-3795, or portions thereof, can then be used as probes to screen the libraries for homologous sequences.

20

25

30

For example, the libraries may be screened to identify homologous coding nucleic acids or homologous antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence

5

10

15

20

25

30

4

complementary to one of SEO ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid complementary to one of SEO ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, and nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944.

The libraries may also be screened to identify homologous nucleic coding nucleic acids or homologous antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40,

50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids comprising nucleic acid sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 and nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944.

The homologous nucleic coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides identified as above can then be used in the methods described herein. In some embodiments, the homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides may be used to identify genes which are required for the proliferation of more than one microorganism. Such genes are valuable targets for broad spectrum antibiotics effective against more than one microorganism.

For example, the preceding methods may be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 8-3795, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. The preceding methods may also be used to isolate homologous coding nucleic acids or

5

10

15

20

25

30

٠.

homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the nucleotide sequences of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. In some embodiments, the preceding methods may be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleic acid sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 3796-3800, 3806-4860, 5916-10012, and 14111-14944, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. Identity may be measured using BLASTN version 2.0 with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety). For example, the homologous polynucleotides may comprise a coding sequence which is a naturally occurring allelic variant of one of the coding sequences described herein. Such allelic variants may have a substitution, deletion or addition of one or more nucleotides when compared to the nucleic acids of SEO ID NOs: 8-3795, SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 or the nucleotide sequences complementary thereto.

Additionally, the above procedures may be used to isolate homologous coding nucleic acids which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide comprising the sequence of one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 or to a polypeptide whose expression is inhibited by a nucleic acid of one of SEQ ID NOs: 8-3795 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or

150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).

5

10

15

20

25

30

Alternatively, homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides may be identified by searching a database to identify sequences having a desired level of nucleotide or amino acid sequence homology to a nucleic acid or polypeptide involved in proliferation or an antisense nucleic acid to a nucleic acid involved in microbial proliferation. A variety of such databases are available to those skilled in the art, including GenBank and GenSeq. In some embodiments, the databases are screened to identify nucleic acids with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleic acid required for proliferation, an antisense nucleic acid which inhibits proliferation, or a portion of a nucleic acid required for proliferation or a portion of an antisense nucleic acid which inhibits proliferation. For example, homologous coding sequences may be identified by using a database to identify nucleic acids homologous to one of SEQ ID Nos. 8-3795, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, nucleic acids homologous to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, nucleic acids homologous to one of SEQ ID Nos. 8-3795, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof or nucleic acids homologous to the sequences complementary to any of the preceding nucleic acids. In other embodiments, the databases are screened to identify polypeptides having at least

5

10

15

20

25

30

99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid sequence identity or similarity to a polypeptide involved in proliferation or a portion thereof. For example, the database may be screened to identify polypeptides homologous to a polypeptide comprising one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778, a polypeptide whose expression is inhibited by a nucleic acid of one of SEQ ID NOs: 8-3795 or homologous to fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of any of the preceding polypeptides. In some embodiments, the database may be screened to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from cells or microorganisms other than the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Helicobacter pylori, Staphylococcus aureus, or Salmonella typhi species from which they were obtained. For example the database may be screened to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from microorganisms such as Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium dubliniensis, botulinum. Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris,

Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative Staphylococcus. In some embodiments, the homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides are from an organism other than E. coli.

5

10

15

20

25

30

In another embodiment, nucleic acid arrays and microarrays can be employed to identify homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides. Nucleic acid arrays are high density arrays of DNA samples deposited at specific locations on a glass chip, nylon membrane, or the like. An example of this technology is found in U.S. Patent No. 5807522, which is hereby incorporated by reference. In such embodiments, an array comprising nucleic acids from an organism in which it is desired to identify a homologous coding nucleic acid, homologous antisense nucleic acid or nucleic acid encoding a homologous polypeptide is contacted with a detectable probe comprising the nucleic acid, or a portion thereof, for which it is desired to identify a homologue under conditions which permit the probe to specifically hybridize to the homologue. For example, the arrays may consist of 12 x 24 cm nylon filters containing PCR products corresponding to ORFs from the organism in which it is desired to identify the homologous nucleic acid. For example, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides may be identified in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium

botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative Staphylococcus.

15

20

٠,

10

5

Alternatively, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides can be identified by transcribing an antisense nucleic acid comprising a nucleotide sequence complementary to the proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or a portion thereof in a heterologous cell or microorganism and determining whether the antisense nucleic acid inhibits the proliferation of the cell or microorganism.

25

Alternatively, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides can be identified by transcribing a homologous antisense nucleic acid such as an antisense nucleic acid homologous to the nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, an antisense nucleic acid comprising a nucleotide sequence homologous to one of SEQ ID Nos.: 8-3795, or an antisense

nucleic acid comprising a nucleotide sequence complementary to a portion of any of the preceding nucleic acids in a microorganism, such as the microorganism in which the homologous antisense nucleic acid was identified, and determining whether the proliferation of the microorganism is inhibited as described above.

5

In another embodiment, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides can be identified by using the conserved portions of nucleotide sequences required for proliferation to generate degenerate primers for use in the polymerase chain reaction (PCR). The PCR technique is well known in the art. The successful production of a PCR product using degenerate probes generated from the nucleotide sequences identified herein indicates the presence of a homologous gene sequence in the species being screened. This homologous gene is then utilized in the present invention.

15

10

20

25

30

The nucleic acids homologous to the genes required for the proliferation of typhimurium, Klebsiella pneumoniae, Salmonella aureus, Staphylococcus Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi or Candida albicans or the sequences complementary thereto may be used to identify homologous coding nucleic acids, nucleic acids encoding homologous polypeptides, or homologous antisense nucleic acids from cells or microorganisms other than Klebsiella pneumoniae, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi or Candida albicans as described below. For example, the nucleic acids homologous to proliferation-required genes from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi or Candida albicans or the sequences complementary thereto may be used to

5

10

15

20

25

30

identify homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida Candida kefyr (also called Candida guilliermondii, Candida krusei, pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species. In some embodiments of the present invention, the nucleic acids homologous to proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including nucleic acids homologous to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944) or the sequences complementary thereto (including nucleic acids homologous to one of SEQ ID NOs.: 8-3795) are used to identify proliferation-required sequences in an organism other than E. coli.

2

5

10

15

20

25

30

In another embodiment of the present invention, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides are identified by transferring antisense nucleic acids complementary to the sequences identified as required for proliferation or portions thereof (including antisense nucleic acids comprising a nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 or portions thereof, such as the nucleic acids of SEQ ID NOs.: 8-3795) to vectors capable of functioning within a species other than the species from which the sequences were obtained. For example, the vector may be functional in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida Candida kefyr (also called guilliermondii, Candida krusei, pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the vector may be functional in an organism other than E. coli. As would be appreciated by one of ordinary skill in the art, vectors may contain certain elements that are species specific.

These elements can include promoter sequences, operator sequences, repressor genes, origins of replication, ribosomal binding sequences, termination sequences, and others. To use the antisense nucleic acids, one of ordinary skill in the art would know to use standard molecular biology techniques to isolate vectors containing the sequences of interest from cultured bacterial cells, isolate and purify those sequences, and subclone those sequences into a vector adapted for use in the species of bacteria to be screened.

5

10

15

20

25

30

150

Vectors for a variety of other species are known in the art. For example, numerous vectors which function in *E. coli* are known in the art. Also, Pla et al. have reported an expression vector that is functional in a number of relevant hosts including: Salmonella typhimurium, Pseudomonas putida, and Pseudomonas aeruginosa. J. Bacteriol. 172(8):4448-55 (1990). Brunschwig and Darzins (Gene (1992) 111:35-4, the disclosure of which is incorporated herein by reference in its entirety) described a shuttle expression vector for Pseudomonas aeruginosa. Similarly many examples exist of expression vectors that are freely transferable among various Gram-positive microorganisms. Expression vectors for Enterococcus faecalis may be engineered by incorporating suitable promoters into a pAK80 backbone (Israelsen, H., S. M. Madsen, A. Vrang, E. B. Hansen and E. Johansen. 1995. Appl. Environ. Microbiol. 61:2540-2547, the disclosure of which is incorporated herein by reference in its entirety).

Following the subcloning of the antisense nucleic acids complementary to sequences from Staphylococcus aureus, Salmonella proliferation-required typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Helicobacter Staphylococcus aureus, Salmonella typhi, or Candida albicans or portions thereof into a vector functional in a second cell or microorganism of interest (i.e. a cell or microorganism other than the one from which the identified nucleic acids were obtained), the antisense nucleic acids are conditionally transcribed to test for bacterial growth inhibition. The nucleotide sequences of the nucleic acids from Staphylococcus

5

10

15

20

25

30

aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans that, when transcribed, inhibit growth of the second cell or microorganism are compared to the known genomic sequence of the second cell or microorganism to identify the homologous gene from the second organism. If the homologous sequence from the second cell or microorganism is not known, it may be identified and isolated by hybridization to the proliferation-required Staphylococcus aureus, Salmonella Pseudomonas aeruginosa, Enterococcus typhimurium, Klebsiella pneumoniae, Haemophilus influenzae, faecalisEscherichia coli, Enterococcus faecalis, Helicobacter pylori, Salmonella typhi or Candida albicans sequence of interest or by amplification using PCR primers based on the proliferation-required nucleotide sequence of interest as described above. In this way, sequences which may be required for the proliferation of the second cell or microorganism may be identified. For example, the second microorganism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida Candida (also called guilliermondii, Candida krusei, Candida kefyr Candida dubliniensis, Chlamydia pneumoniae, Chlamydia pseudotropicalis). trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella

dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the second microorganism is an organism other than E. coli.

5

10

15

20

25

30

The homologous nucleic acid sequences from the second cell or microorganism which are identified as described above may then be operably linked to a promoter, such as an inducible promoter, in an antisense orientation and introduced into the second cell or microorganism. The techniques described herein for identifying Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi or Candida albicans genes required for proliferation may thus be employed to determine whether the identified nucleotide sequences from a second cell or microorganism inhibit the proliferation of the second cell or microorganism. For example, the second microorganism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella

enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the second microorganism may be an organism other than E. coli.

5

10

15

20

25

30

Antisense nucleic acids required for the proliferation of microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans or the genes corresponding thereto, may also be hybridized to a microarray containing the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi, or Candida albicans ORFs (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944) to gauge the homology between the typhimurium, Klebsiella pneumoniae, Salmonella Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans sequences and the proliferation-required nucleic acids from other cells or microorganisms. For example, the proliferation-required nucleic acid may be from Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli,

5

10

15

20

25

Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments, the proliferation-required nucleotide sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans or homologous nucleic acids are used to identify proliferation-required sequences in an organism other than E. coli. In some embodiments of the present invention, the proliferation-required sequences may be from an organism other than E. coli. The proliferation-required nucleic acids from a cell or microorganism other than Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans may be hybridized to the array under a variety of conditions which permit hybridization to occur when the probe has different levels of homology to the nucleotide sequence on the microarray. This would provide an indication of homology across the cells or microorganisms as well as clues to other possible essential genes in these cells or microorganisms.

:

EXAMPLE 5

<u>Identification of Nucleic Acids Homologous to Nucleic Acids Required for the</u> <u>Proliferation of E. coli in other Bacterial Species</u>

5

10

15

20

25

Homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides may be identified as follows. The ability of an antisense molecule identified in a first organism to inhibit the proliferation of a second organism (thereby confirming that a gene in the second organism which is homologous to the gene from the first organism is required for proliferation of the second organism) was demonstrated using some of the antisense nucleic acids which inhibit the growth of E. coli. Expression vectors which inhibited growth of E. coli upon induction of antisense RNA expression with IPTG were transformed directly into Enterobacter cloacae, Klebsiella pneumonia or Salmonella typhimurium. The transformed cells were then assayed for growth inhibition according to the methods described above. After growth in liquid culture, cells were plated at various serial dilutions and a score determined by calculating the log difference in growth for INDUCED vs. UNINDUCED antisense RNA expression as determined by the maximum 10 fold dilution at which a colony was observed. The results of these experiments are listed below in Table I. If there was no effect of antisense RNA expression in a microorganism, the clone is minus in Table I. In contrast, a positive in Table I means that at least 10 fold more cells were required to observe a colony on the induced plate than on the non-induced plate under the conditions used and in that microorganism.

TABLE I
Sensitivity of Other Microorganisms to Antisense Nucleic Acids That Inhibit
Proliferation in E. coli

Mol. No.	S. typhimurium	E. cloacae	K. pneumoniae
EcXA001	+	+	•
EcXA004	+	-	-
EcXA005	+	+	+
EcXA006	-	-	-
EcXA007	-	+	•

F-V4000	······································		
EcXA008	+	-	+
EcXA009		<u> </u>	
EcXA010	+	+	+
EcXA011	-	+	-
EcXA012		+	-
EcXA013	+	+	+
EcXA014	+	+	-
EcXA015	+	+	+
EcXA016	+	+	+
EcXA017	+	+	+
EcXA018	+	+	+
EcXA019	+	+	+
EcXA020	+	+	+
EcXA021	+	+	+
EcXA023	+	+	+
EcXA024	+	-	+
EcXA025		-	-
EcXA026	+	+	-
EcXA027	+	+	-
EcXA028	+	•	-
EcXA029	_	-	
EcXA030	+	+	+
EcXA031	+	•	-
EcXA032	+	+	
EcXA033	+	+	+
EcXA034	+	+	+
EcXA035	-	-	•
EcXA036	+		+
EcXA037	+	+	-
EcXA038	+	<u> </u>	+
EcXA039	+		-
EcXA041	+	- +	+
EcXA041 EcXA042		+	+
EcXA042 EcXA043	-		
	-		-
EcXA044	-	<u>-</u>	+
EcXA045	+	+	
EcXA046	-	-	
EcXA047	+	+	•
EcXA048	-	-	•
EcXA049	+		-
EcXA050	-		
EcXA051	+		
EcXA052	+	<u> </u>	<u> </u>
EcXA053	+	+	+
EcXA054		-	+
EcXA055	+		

r			 -
EcXA056	+	•	+
EcXA057	+	+	-
EcXA058	-	-	-
EcXA059	+	+	+
EcXA060	•	•	
EcXA061	•	•	•
EcXA062	-	. •	-
EcXA063	+	+	•
EcXA064	<u> </u>	-	. •
EcXA065	+	+	•
EcXA066	-		•
EcXA067	-	+	
EcXA068	-	-	
EcXA069		+	-
EcXA070		-	-
EcXA071		-	+
EcXA072	+	<u>-</u>	
EcXA073	+	+	+
EcXA074	+	+	+
EcXA075	+	•	
EcXA076		+	-
EcXA077	+	+	
EcXA079	+	+	+
EcXA080	+	•	•
EcXA082	-	+	•
EcXA083	-	•	-
EcXA084		+	-
EcXA086	-		•
EcXA087	-	•	-
EcXA088	-	•	•
EcXA089	•		=
EcXA090		-	-
EcXA091	-	•	-
EcXA092	•	-	-
EcXA093	-	•	=
	+	+	+
EcXA094	+	+	
EcXA095	<u> </u>		-
EcXA096	+	•	-
EcXA097		•	-
EcXA098	+		-
EcXA099	-		-
EcXA100	-	•	<u>-</u>
EcXA101	-		•
EcXA102	-	-	-
EcXA103	•	+	-
EcXA104	+	+	+
	1.4		

			<u> </u>
EcXA106	+	+	- <u>- </u>
EcXA107		•	-
EcXA108	•	-	•
EcXA109	. •	-	-
EcXA110	+	+	-
EcXA111		 	•
EcXA112		+	•
EcXA112 EcXA113	+	+	+
			
EcXA114	-	+	-
EcXA115		+	-
EcXA116	+	+	<u> </u>
EcXA117	+	<u> </u>	<u> </u>
EcXA118		-	-
EcXA119	+	+	
EcXA120	-	<u>-</u>	•
EcXA121	-	-	-
EcXA122	+	-	+
EcXA123	+		-
EcXA124	-	-	-
EcXA125	<u> </u>	-	-
EcXA126	-	-	-
EcXA127	+	+	-
EcXA128	-	-	-
EcXA129	-	+	-
EcXA130	+	+	-
EcXA130 EcXA132		 	-
EcXA132 EcXA133		<u>-</u>	
	-	-	<u>-</u>
EcXA136	-	-	-
EcXA137	-	-	-
EcXA138	+	•	-
EcXA139	•	<u> </u>	-
EcXA140	+	•	
EcXA141	+	-	-
EcXA142	-	-	-
EcXA143	*	+	-
EcXA144	+	+	
EcXA145	-	-	•
EcXA146	•	-	-
EcXA147	-	•	
EcXA148	-	-	•
EcXA149	+	+	+
EcXA150	- ,	-	**
EcXA151	+	_	-
EcXA151 EcXA152	-	 	-
EcXA153	+	+	-
			
EcXA154	-	<u> </u>	-

EcXA155		-	ND
EcXA156		+	
EcXA157	-		
EcXA158			-
EcXA159	+		
EcXA160	+		•
EcXA162			•
EcXA163	<u> </u>		
EcXA164			
EcXA165			
EcXA166	-	-	
EcXA167		•	
EcXA168		-	
EcXA169		+	
EcXA171			
EcXA171 EcXA172		-	<u> </u>
EcXA172 EcXA173	-		
EcXA173	-	-	
	-	-	
EcXA175		<u>-</u>	
EcXA176	-	-	
EcXA178	-	-	
EcXA179	<u> </u>	-	-
EcXA180	+	-	-
EcXA181	-	-	
EcXA182	-	•	-
EcXA183	<u> </u>	-	-
EcXA184		-	-
EcXA185	-	-	
EcXA186	-	-	-
EcXA187	+	+	+
EcXA189	+	-	-
EcXA190	+	+	+
EcXA191	+	+	•
EcXA192	-	+	<u> </u>

Thus, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides can be identified by measuring the ability of an antisense nucleic acid which inhibits the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans to inhibit the growth of other organisms. This may be evaluated by

5

5

10

15

20

25

30

transforming the antisense nucleic acid directly into species other than the organism from which they were obtained. In particular, the ability of the antisense nucleic acid to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. may be evaluated. In some embodiments of the present invention, the ability of the antisense nucleic acid to inhibit the growth of an organism other than E. coli may be In such embodiments, the antisense nucleic acids are inserted into evaluated. expression vectors functional in the organisms in which the antisense nucleic acids are evaluated.

It will be appreciated that the above methods for evaluating the ability of an antisense nucleic acid to inhibit the proliferation of a heterologous organism may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium,

Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids.

Those skilled in the art will appreciate that a negative result in a heterologous cell or microorganism does not mean that that cell or microorganism is missing that gene nor does it mean that the gene is unessential. However, a positive result means that the heterologous cell or microorganism contains a homologous gene which is required for proliferation of that cell or microorganism. The homologous gene may be obtained using the methods described herein. For example, the homologous gene may be isolated by performing a PCR procedure using primers based on the antisense sequence which reduced the level or activity of the gene product encoded by the homologous gene or by performing a Southern blot.

Those skilled in the art will appreciate that an antisense molecule which works in the microorganism from which it was obtained will not always work in a heterologous cell or microorganism.

20 EXAMPLE 6

5

10

15

25

<u>Identification of Nucleic Acids Homologous to Nucleic Acids Required for the</u> <u>Proliferation of Staphylococcus aureus in other Bacterial Species</u>

Nucleic acids homologous to proliferation-required nucleic acids from Staphylococcus aureus were identified as follows. Thirty-nine antisense nucleic acids which inhibited the growth of Staphylococcus aureus were inserted into an expression vector such that their expression was under the control of a xylose-inducible Xyl-T5 promoter. A vector with Green Fluorescent Protein (GFP) under control of the Xyl-T5 promoter was used to show that expression from the Xyl-T5 promoter in Staphylococcus epidermidis was comparable to that in Staphylococcus aureus.

5

10

15

20

25

The vectors were introduced into Staphylococcus epidermidis by electroporation as follows: Staphylococcus epidermidis was grown in liquid culture to mid-log phase and then harvested by centrifugation. The cell pellet was resuspended in 1/3 culture volume of ice-cold EP buffer (0.625 M sucrose, 1 mM MgCl₂, pH=4.0), and then harvested again by centrifugation. The cell pellet was then resuspended with 1/40 volume EP buffer and allowed to incubate on ice for 1 hour. The cells were then frozen for storage at -80°C. For electroporation, 50 µl of thawed electrocompetent cells were combined with 0.5 µg plasmid DNA and then subjected to an electrical pulse of 10 kV/cm, 25 uFarads, 200 ohm using a biorad gene pulser electroporation device. The cells were immediately resuspended with 200 µl outgrowth medium and incubated for 2 hours prior to plating on solid growth medium with drug selection to maintain the plasmid vector. Colonies resulting from overnight growth of these platings were selected, cultured in liquid medium with drug selection, and then subjected to dilution plating analysis as described for Staphylococcus aureus above to test growth sensitivity in the presence of the inducer xylose.

The results are shown in Table II below. The first column indicates the Molecule Number of the *Staphylococcus aureus* antisense nucleic acid which was introduced into *Staphylococcus epidermidis*. The second column indicates whether the antisense nucleic acid inhibited the growth of *Staphylococcus epidermidis*, with a "+" indicating that growth was inhibited. Of the 39 *Staphylococcus aureus* antisense nucleic acids evaluated, 20 inhibited the growth of *Staphylococcus epidermidis*.

TABLE II

Sensitivity of Other Microorganisms to Antisense Nucleic Acids That Inhibit

Proliferation of Staphylococcus aureus

Mol. No.	S. epidermidis
SaXA005	+
SaXA007	+
SaXA008	+
SaXA009	+

SaXA010 + SaXA011 - SaXA012 - SaXA013 - SaXA015 + SaXA017 - SaXA022 + SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027 - SaXA026 - SaXA027 - SaXA028 - SaXA029 + SaXA030 + SaXA031 + SaXA032 + SaXA033 + SaXA034 - SaXA039 - SaXA042 - SaXA043 - SaXA045 + SaXA053 -		
SaXA012 - SaXA013 - SaXA015 + SaXA017 - SaXA022 + SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027 - SaXA027 - SaXA028 - SaXA029 + SaXA030 + SaXA031 + SaXA032 + SaXA033 + SaXA034 - SaXA037 + SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +	SaXA010	+
SaXA013 - SaXA015 + SaXA017 - SaXA022 + SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027b - SaXA022c - SaXA028 - SaXA029 + SaXA030 + SaXA031 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +	SaXA011	-
SaXA015 + SaXA017 - SaXA022 + SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027b - SaXA02c - SaXA02e - SaXA02e + SaXA030 + SaXA031 + SaXA032 + SaXA033 + SaXA034 - SaXA037 + SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		•
SaXA017 - SaXA022 + SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027b - SaXA027b - SaXA022c - SaXA028 - SaXA029 + SaXA030 + SaXA031 + SaXA032 + SaXA033 + SaXA034 - SaXA037 + SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +	SaXA013	-
SaXA022 + SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027b - SaXA027b - SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA031 + SaXA033 + SaXA034 - SaXA035 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +	SaXA015	+
SaXA023 - SaXA024 - SaXA025 + SaXA026 + SaXA027 - SaXA027b - SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +	SaXA017	-
SaXA024 - SaXA025 + SaXA026 + SaXA027 - SaXA027b - SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +	SaXA022	+
SaXA025 + SaXA026 + SaXA027 - SaXA027b - SaXA02c - SaXA02e - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		_
SaXA026 + SaXA027 - SaXA027b - SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA027 - SaXA027b - SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		+
SaXA027b - SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		+
SaXA02c - SaXA028 - SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA028 - SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA029 + SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA030 + SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA032 + SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA044 - SaXA045 + SaXA051 +		
SaXA033 + SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		
SaXA034 - SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA044 - SaXA045 + SaXA051 +		+
SaXA035 + SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		+
SaXA037 + SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA039 - SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		+
SaXA042 - SaXA043 - SaXA044 - SaXA045 + SaXA051 +		+
SaXA043 - SaXA044 - SaXA045 + SaXA051 +		-
SaXA044 - SaXA045 + SaXA051 +	l	-
SaXA045 + SaXA051 +		-
SaXA051 +		-
1		+
SaXA053 -	ļ	+
	SaXA053	-

SaXA056b	-
SaXA059a	+
SaXA060	-
SaXA061	+
SaXA062	+
SaXA063	-
SaXA065	-

The above methods for identifying homologous genes using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans, (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids.

5

10

15

20

Homologous nucleic acids may also be identified using complementation analyses.

EXAMPLE 7

Identification of Homologous Nucleic Acids by Functional Complementation

Homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides may be identified as follows. Gene products whose activities may be complemented by a proliferation-required gene product from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or Candida albicans or homologous polypeptides are identified using merodiploids,

5

10

15

20

25

30

created by introducing a plasmid or Bacterial Artificial Chromosome into an organism having a mutation in the essential gene which reduces or eliminates the activity of the gene product. In some embodiments, the mutation may be a conditional mutation, such as a temperature sensitive mutation, such that the organism proliferates under permissive conditions but is unable to proliferate under non-permissive conditions in the absence of complementation by the gene on the plasmid or Bacterial Artificial Chromosome. Alternatively, duplications may be constructed as described in Roth et al. (1987) Biosynthesis of Aromatic Amino Acids in Escherichia coli and Salmonella typhimurium, F. C. Neidhardt, ed., American Society for Microbiology, publisher, pp. 2269-2270, the disclosure of which is incorporated herein by reference in its entirety. Such methods are familiar to those skilled in the art. Alternatively, homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides may be identified by placing a gene required for proliferation or a nucleic acid complementary to at least a portion of a gene required for proliferation under the control of a regulatable promoter as described above, introducing a plasmid or Bacterial Artificial Chromosome into the cell, and identifying cells which are able to proliferate under conditions which would prevent or reduce proliferation in the absence of the plasmid or Bacterial Artificial Chromosome.

Homologous coding nucleic acids, homologous antisense nucleic acids or nucleic acids encoding homologous polypeptides may be identified using databases as follows.

EXAMPLE 8

Identification of Homologous Nucleic Acids by Database Analysis

As a demonstration of the database methodology used to find homologues to an essential gene, nine prokaryotic organisms were analyzed and compared in detail. First, the most reliable source of gene sequences for each organism was assessed by conducting a survey of the public and private data sources. The nine organisms studied are Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi. Full-length gene protein and nucleotide sequences

for these organisms were assembled from various sources. For Escherichia coli, Haemophilus influenzae and Helicobacter pylori, gene sequences were adopted from the public sequencing projects, and derived from the GenPept 115 database (available from NCBI). For Pseudomonas aeruginosa, gene sequences were adopted from the Pseudomonas genome sequencing project (downloaded from http://www.pseudomonas.com). For Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi, genomic sequences from PathoSeq v 4.1 (Mar 2000 release) was reanalyzed for ORFs using the gene finding software GeneMark v 2.4a, which was purchased from GenePro Inc. 451 Bishop St., N.W., Suite B, Atlanta, GA, 30318, USA.

5

10

15

20

25

Subsequently, the essential genes found by the antisense methodology were compared to the derived proteomes of interest, in order to find all the homologous genes to a given gene. This comparison was done using the FASTA program v3.3. Genes were considered homologues if they were greater than 25% identical and the alignment between the two genes covered more than 70% of the length of one of the genes. The best homologue for each of the nine organisms, defined as the most significantly scoring match which also fulfilled the above criteria, was reported in Table III. Table III lists the best ORF identified as described above (column labelled LOCUSID), the SEQ ID, % identity, and the amount of the protein which aligns well with the query sequence (coverage) for the gene identified in each of the nine organisms evaluated as described above.

Table IV lists the PathoSeq cluster ID for genes identified as being required for proliferation in *Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa*, and *Staphylococcus aureus* using the methods described herein. As indicated in the column labelled PathoSeq cluster ID, these sequences share homology to one another and were consequently grouped within the same PathoSeq cluster. Thus, the methods described herein identified genes required for proliferation in several species which share homology.

ABLE III

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis	STI	er pylori 🏻	pneumoni as	32	cus aureus	cns	a typhi
				influenzae		ae	aeruginosa		pneumonia	
EFA10000 SeqID	SeqID	10430	10618	10998	11603	11739		12309	3524	14040
-	DENTITY	27%	100%	28%	28%	29%	•	52%	55% 98%	28%
EFA10002 SeqID	SeqID		10505					12860	13392	
)	IDENTITY COVERAGE		100%			-		27%	39%	
EFA10006 SeqID	SeqID	10322	10813	11177	11351		12018	12820	13186	13733
n	DENTITY	49%	100%	49% 95%	44% 96%		48%	59%	%86 88%	48%
EFA10015 SeqID	SeqID	10128	10516	11247	11340		11891	12529	13362	
4	IDENTITY COVERAGE	%66 80%	100%	37%	46% 100%		49%	54% 99%	51%	
EFA10015 SeqID	SeqID		10673		11448			12352	13176	
<u></u>	DENTITY		100%		39%			64%	74%	-
EFA10016 SeqID	SeqID	10031	10637	11189	11564		12009	12614	13399	14078
<u>. </u>	DENTITY	31%	100%	33%	28%		32%	29%	27%	29%
EFA10019 SeqID	SeqID	10364	10480	11061	11408	11659	11996	12444	13232	13966

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ .	Salmonell
		ia coli	us faecalis us	sm	er pylori	pneumoni as	Sz	cus aureus	cas	a typhi
				Iuenzae		ae	ruginosa		pneumonia e	
0	IDENTITY	54%	100%	57%	55%	25%	54%	78%	%08	54%
	COVERAGE	100%					100%			101%
EFA10019 SeqID	SeqID	10336	10540	11120	11426		11989	12230	13222	14096
4	IDENTITY	%09	100%	%29	62%		%09	85%	%98	%19
	COVERAGE	100%	101%	100%	102%		100%	101%	%76	101%
EFA10020 SeqID	SeqID	10323	10798	11193			12020	12527	13561	13731
5	IDENTITY	36%	100%	38%			40%	20%	29%	39%
	COVERAGE	85%					85%			85%
EFA10021 SeqID	SeqID	10352	10560	11104	11439		5171	12260	13204	13968
>	IDENTITY	53%	100%	23%	53%		54%	74%	93%	53%
	COVERAGE	%56			94%		%56	101%	94%	95%
EFA10021 SeqID	SeqID	10351	10523	11105	11438		11992	12214	13205	
┫	DENTITY	46%	10	46	396		43%	%69	63%	
	COVERAGE	87%	101%	87%	81%		81%	%16	81%	
EFA10028 SeqID	SeqID	10284	10810				11827		13245	
<u> </u>	DENTITY	30%	100%				31%		25%	
	COVERAGE	85%	100%				%06		84%	
EFA10029 SeqID 5	SeqID	10045	10517	11174	10911		11937	12390	91981	13911
	DENTITY	43%	100% 101%	41% 95%	41%		45% 97%	44% 99%	45%	43% 72%
EFA10031 SeqID	SeqID		10641					12178		

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us	KS.	er pylori	pneumoni as	Sz	cus aureus	cus	a typhi
				influenzae		ae	aeruginosa	11 0	pneumonia e	
2	DENTITY		100%					33%		
	COVERAGE		100%					%8%		
EFA10032 SeqID	SeqID		10782							
	IDENTITY COVERAGE		1 00% 100%							_
EFA10039 SeqID	SeqID	10465	10675	11238	11563		11961	13003	13684	13853
	DENTITY	43%	100%	4	4		44%	%99	72%	44%
	COVERAGE	108%	100%	109%	101%		108%	99%	00%	108%
EFA10039 SeqID	SeqID	10027	10773	11185			12012	12396	13478	14074
•	IDENTITY	31%	10	29			. 29%	43%	46%	31%
	COVERAGE	%96	100%	%86			93%	%16	7/%	93%
EFA10039 SeqID 9	SeqID	10295	99/01	11196	11483		11791	12281	13413	13739
	DENTITY	63%	100%	29%	%65		58%	72%	76%	63%
EFA10042 SeqID	SeqID	10224	1070			11638		12139	13348	1395
9_	DENTITY	7086	100%		_	%60		42%	41%	28%
	COVERAGE	%66				%66	-	%16		
EFA10047 SeqID 8	SeqID		10486	11135	11338			12986	13184	
	IDENTITY COVERAGE		100%	29% 72%	31%			44% 99%	43%	
EFA10061 SeqID	SeqID		10501	11139			12028	12641	13331	

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cas	a typhi
				luenzae		ae	aeruginosa		pneumonia e	
5		 								
••	DENTITY		100%	44%			47%	%19	78%	
	COVERAGE		100%	82%			%18	100%	100%	
EFA10061 SeqID		10314	10764	11216	16211		8618	12322	13381	13765
	DENTITY	43%	100%	43%	44%		21%	63%	%69	44%
	COVERAGE	%56	100%	%96	78%		73%	84%	85%	93%
EFA10064 SeqID	SeqID	10205	10793				11896	12862	13334	
•	DENTITY	28%	100%				31%	20%	32%	
	COVERAGE	%62	100%				74%	85%	82%	
EFA10064 SeqID	SeqID		10792		11520		12023	12493	13367	
	DENTITY		100%		46%		46%	73%	%69	
	COVERAGE		100%		100%		101%	100%	100%	
EFA10066 SeqID	SeqID	10026	10679	11184	11613		12013	12891	13505	14073
	DENTITY	78%	10	78%	296		28%	767	20%	27%
	COVERAGE	83%	100%	%9/	%8 <i>L</i>		92%	82%	%66	%56
EFA10068 SeqID	SeqID		10717					12523	13698	
	DENTITY		100%					33%	33%	
	COVERAGE		100%		!			100%	100%	
EFA10070 SeqID	SeqID	10362	10482	11059	11415		11995	12442	13171	13964
	IDENTITY COVERAGE	78% 100%	100%	78%	77% 101%		75% 101%	90%	78% 101%	77%
EFA10073 SeqID	SeqID	10111	10537	11052	11429	11651	11876	12228	13220	14010

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us	S71	er pylori	pneumoni as	zs.	cus aureus	cus	a typhi
				influenzae		ae	aeruginosa		pneumonia e	
6										
	DENTITY	71%	10	669	63	%02	%17	84%	84%	%02
	COVERAGE	83%	101%	83%	%98	87%	83%	%28	%28	87%
EFA10074 SeqID	SeqID	10075	10536	11008	11348	11633	11942	12227	13219	13717
0_	TATATA TATA	150/	1006	700)	760/	7007	707	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7407
	COVERAGE	45%	100%	94%	93%	94%	40%	94%	93%	94%
EFA10074 SeqID	SeqID	10339	10535	11118	11430		11991	12226	13218	14098
					,					
	DENTITY	40%	2	37	2		39%	48%	%09	4
	COVERAGE	103%	100%	102%			. 102%	101%	100%	103%
EFA10074 2	EFA10074 SeqID	10340	10534	11116	11431		5160	12225	13217	14099
	DENTITY	25%	10	25%	36%		46%	79	%88	25%
	COVERAGE	%66	101%	%66	65%		%66	101%	101%	%66
EFA10074 SeqID	SeqID	10287	10483	11004	11523	11690	11944	12595		13868
	IDENTITY	41%	100%	39%	767	42%	44%	52%		41%
	COVERAGE	%66	100%	%66	94%	%86	100%	100%		100%
EFA10075 SeqID	SeqID	10112	10575		11396		11875	12327	13343	14009
9			, 600		ì		3	3		
	COVERTOR	49%	2		43%		45%	64%	62%	47%
	COVERAGE	/3%	102%		%C/		81%	74%	74%	%c/
EFA10075 Seq.ID	SeqID	10155	10897				٠			-
	DENTITY	27%	10						-	
	COVERAGE	1%	100%							
EFA10078 SeqID	SeqID	10035	10811	10986	11543		11953	12738	13261	13914

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact.	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cus	a typhi
				influenzae	-	ae	aeruginosa		pneumonia e	
3	DENTITY	330%	100%	340%	%98		37%	7170%	750%	21%
	COVERAGE	104%					78%		%66	%66
EFA10079 SeqID	SeqID		10863						13416	
n	IDENTITY COVERAGE		100%				-		50%	
EFA10079 SeqID	SeqID	10382	10818	11153	11550		52211		13641	
×	DENTITY COVER A GE	62%	100%	61%	26%		63%		85%	
EFA10081 SeqID	SeqID		1054					12236	13439	
	DENTITY		100%					48%	%86 88%	
EFA10087 SeqID	SeqID	10439	10627	11036	11410		5179	12446	13646	14042
-	IDENTITY	47%	100%	46%	52%		46%	72%	78% 98%	46%
EFA10091 SeqID	SeqID	10399	1057	11018	11617	11758	12111	12368	13230	14065
4	IDENTITY	40%	100%	40%	34%	40%	40%	%65	63%	40%
	COVERAGE	102%								
EFA10091 SeqID	SeqID	10269	10491	11127	11419		11809	12556	13594	13874
	DENTITY	44%	100%	45%	. 40%		46%	55% 101%	63%	45% 101%
EFA10095 SeqIL	SeqID	10333	10542	11123	11582	11627	5158	12232	13224	14093

LOCUSID Data	Data	Escherich	Enterococc.	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cus	a typhi
				influenzae		ae	aeruginosa	~~	pneumonia e	
5	DENTITY	48%	100%	48%	42%	49%	43%	%59	76%	48%
	COVERAGE	%86		%86	%86	%6 <i>L</i>	%86	%66	101%	%86
EFA10097	EFA10097 SeqID		10906							
>	DENTITY		100%							·
EFA10097 SeqID	SeqID	10334	10541	11122	11583		11987	12231	13223	14094
	IDENTITY	46%	100%	46%	35%		45%	71%	70%	46%
EFA10099 SeqID	SeqID	10221	10681	11210	11607	11668	11801	12289	13191	14027
	IDENTITY	42%	10	40	29	42%	39%	49%	%95	30%
	COVERAGE	81%			1	94%	91%	•	92%	93%
EFA10102 SeqID	SeqID	10260	10875	10982	11401		11945	12715	13251	14086
	DENTITY	29%	10	586	20		61%	<i>1</i> 9%	%98	56%
	COVERAGE	85%		%¢8			%5%		89%	89%
EFA10106 SeqID 0	SeqID		10722		11575	11646	11957	12504	13554	
	DENTITY		100%		35%	37%	34%	71%	67%	
	COVERAGE		10170		0/00				0/101	
EFA10108 SeqID 6	SeqID	10315	10763	11215	11454	11716	12052	12953	13662	13764
	DENTITY	37%	100%	37%	27%	38% 91%	35% 92%	57% 98%	55% 95%	36% 93%
EFA10112 SeqID	SeqID	10017	10687	11219	11331		12057	12505	13498	14012

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us inf	us influenzae	er pylori	pneumoni as ae ae	as aeruginosa	cus aureus	cus pneumonia e	a typhi
0_	DENTITY	30%	100%	31%	27%		762	79%	64%	29%
	COVERAGE	102%	100%	102%			103%	%66	%86	103%
EFA10112 SeqID	SeqID		10686					12606	13600	
-	DENTITY		100%					38%	50%	
	COVERAGE		100%					78%		
EFA10112 SeqID		10420	10748	11131	11478	11629	11820	12674	13265	13783
n	DENTITY	43%	100%	39%	33%	43%	40%	%02	70	45%
	COVERAGE	%86	100%	%16		94%	%96	%66	100%	%86
EFA10114 SeqID	SeqID	10436	10614	11071	11573		5181	12450	13246	14045
	DENTITY	35%	100%	40%	35%		40%	%09	20%	31%
	COVERAGE	94%	101%	%96	%56		62%	%86	101%	%96
EFA10115 SeqID	SeqID	10174	10719	11221	11556		11880	12985	13385	13943
<u> </u>	DENTITY	35%	100%	36%	79%		33%	45%	%85	36%
	COVERAGE	100%		100%	102%		100%	100%	100%	
EFA10115 SeqID	SeqID	10359	10543	11097	11442		5176	12235	13197	13974
<u> </u>	DENTITY	25%	100%	52%	48%		46%	28%	%68	23%
	COVERAGE	100%			81%		101%	%66	%66	
EFA10116 SeqID 0	SeqID	10358	10549	11098	11595		5175	12240	13198	13973
	IDENTITY COVERAGE	43%	100%	43% 92%	33% 96%		45% 92%	62% 100%	74% 100%	43% 93%
EFA10116 SeqID	SeqID	10357	10551	11099			11994	12242	13199	13972

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cns	a typhi
				influenzae		ае	aeruginosa	7	pneumonia e	
1										,
	IDENTITY	39%	100%	35%			37%	%69	%99 %99	36%
	COVERAGE	%	01%	%66			%96	93%	103%	100%
EFA10116 SeqID	SeqID	10356	10555	11100	11441	11679	11993	12249	13200	13971
7	DENTITY	28%	100%	28%	%69	%65	57%	78%	. 84%	28%
	COVERAGE	100%		100%	100%	100%	%66	100%	100%	100%
EFA10116 SeqID	SeqID	10355	10557	11101	11594		5174	12255	13201	
<u></u>		/022	1000	/007	7003		7002	010%	7000	
	COVERAGE	100%	101%				100%		100%	
EFA10116 SeqID	SeqID	10354	10558	11102	11593		5173	12258	13202	13970
4										_
	IDENTITY	25%	100%	28%	47%		21%	%99	81%	25%
	COVERAGE	%16	101%	%16			85%	%16	%16	91%
EFA10116 SeqID	SeqID	10353	10559	11103	11592		5172	12259	13203	13969
)	IDENTITY	26%	100%	%09	25%		61%	78%	%88	29%
	COVERAGE	%56	_				%56			%56
EFA10116 SeqID	SeqID	10133	10574	11091			12025	12516		13849
<u>6</u>										
	DENTITY	27%	2	28			76%	416		27%
	COVERAGE	93%	100%	%16			94%	100%		93%
EFA10125 SeqID	SeqID	10389	10852	11065	11551		11838	13072	13457	
<u>) </u>	IDENTITY	43%	100%	42%	31%		39%	54%	61%	
	COVERAGE	97%	100%	%16			%66	%26	%66	
EFA10125 SeqID	SeqID	10124	10917	10976	11484		11914	12528	13357	14037

						±.	•			
LOCUSID Data		Escherich in coli	Enterococc Ha	Haemophil us	Helicobact er pylori	Klebsiella Ps pneumoni as	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ	Streptococ Salmonell cus	Salmonell a typhi
				influenzae		ae	ruginosa		итопіа	
7	DENTITY	40%	100%	39%	39%		37%	39%	28%	38%
	COVERAGE	%66	100%	%66	101%		%16	%26	100%	101%
EFA10125 SeqID	SeqID	10127	10918	10973	11513		11892	12802	13358	13871
0	DENTITY	40%	100%	40%	39%		36%	41%	%99 86%	29%
EFA10132 SeqID	SeqID		10620					12534	13328	
7	DENTITY		100%					%99	%59	
	COVERAGE		100%					86%		
EFA10133	EFA10133 SeqID		10743		11448			12326	13391	
<u></u>	DENTITY		100%		33%			46%	60%	
	COVERAGE		100%		%16			%86	%86	
EFA10134 SeqID	SeqID ,		10745							
2	DENTITY		100%					_	-	
EFA10135 SeqID	SeqD	10047	10648	11089	11608		11935	12617	13345	13913
4	IDENTITY	33%	100%	33%	32%		34%	38%	36%	32%
	COVERAGE	101%					104%		100%	101%
EFA10137 SeqID	SeqID		10738					13126		
>	DENTITY		100%					31%		
EFA10140 SeqID	SeqID		10662					12941		

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella Ps	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		2002	as juecums as	luenzae		ae	ruginosa		umonia	
3								2.40		
	IDENTITY COVERAGE		100%					34%		
EFA10140 SeqID	SeqID	10210	10663	11214	11554		11921	12135	13418	13925
4	DENTITY	767	100%	28%	39%		27%	%65	64%	30%
	COVERAGE	%66	100%	102%	%86		100%	%66	%66	%66
EFA10140 SeqID	SeqID	10350	10524	11106	11437		5170	12215	13207	
, <u> </u>	IDENTITY	54%	10	586	44%		53%	81%	87%	
	COVERAGE	83%	101%	80%	%98		91%	91%	%16	
EFA10141 SeqID	SeqID	10349	10525	11107	11436		5169	12216	13208	14108
>	IDENTITY	62%	100%	64%	63%		%99	%06	 %06	62%
	COVERAGE	101%		101%	100%		100%	101%	101%	102%
EFA10141 SeqID	SeqID	10348	10526	11108			5168	12217	13209	14107
-	IDENTITY	20%	100%	43%		_	46%	%99	71%	46%
	COVERAGE	%16					93%			%16
EFA10141 SeqID	SeqID	10347	10527	11109	11589	11654	2167	12218	13210	14106
7	TO TO THE VIEW V	/00/	1000	700 >	2005	610%	7085	%58	83%	%09
	COVERAGE	100%								
EFA10141 SeqID	SeqID	10345	1052	11111	11435		5165	12219	13212	14104
1	IDENTITY COVER AGE	49%	100%	47%	42%		46%	79%	81% 101%	49% 101%
EFA10141 SeqID	SeqID	10344	1052	11112	11434		5164	12220	1321	141

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us	STI	er pylori	pneumoni as	as	cus aureus	cns	a typhi
				influenzae		ae	aeruginosa		pneumonia e	
5	IDENTITY	7044	100%	.%0\$	%0t		49%	63%	74%	47%
	COVERAGE	%86	101%				%86			%86
EFA10141 SeqID	SeqID	10343	10530	11113	11433		5163	12221	13214	14102
9	IDENTITY	20%	100%	48%	42%	-	25%	%89	82%	51%
	COVERAGE	%16	101%				. 94%		101%	%86
EFA10141 SeqID	SeqID	10342	10531	11114	11432		5162	12222	13215	14101
7	IDENTITY	25%	100%	%95	%19		52%	72%	85%	25%
	COVERAGE	100%					92%			
EFA10142 SeqID	SeqID	10220	10784	11276		11765	11950	12350	13280	13934
4	IDENTITY	44%	100%	38%		34%	36%	%59	%61	41%
	COVERAGE	%66				73%	78%		%66	%66
EFA10142 SeqID	SeqID	10240	10785	11275			11925	12351	13281	13863
<u>^</u>	DENTITY	49%	100%	20%			39%	63%	78%	47%
	COVERAGE	%66	100%	%66			%66	100%	100%	84%
EFA10147 SeqID	SeqID	10263	10861	10965	11562		11948	13066	13525	14089
<u>. </u>	DENTITY	52%	100%	20%	41%		49%	%65	72%	20%
	COVERAGE	91%					%56	94%	91%	91%
EFA10153 SeqID	SeqID	10281	10823							
<u>ه</u>	DENTITY	30%	100%							
	COVERAGE	000								

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us	ST	er pylori	pneumoni as	as	cus aureus	cus	a typhi
			- 17.	influenzae		ае	aeruginosa		pneumonia e	
EFA10154 SeqID	SeqID	10041	10487	11149	11456		11941	12314	13438	13907
>	IDENTITY COVERAGE	51%	100%	50% 90%	50% 86%		49%	73%	%66 68%	51% 92%
EFA10154 SeqID	SeqID	10042	10488	11150	11620		11940	12742	13437	13908
1	DENTITY	41%	100%	45%	35% 121%		44%	63%	44%	41%
EFA10158 SeqID	SeqID		10593							
<u> </u>	IDENTITY COVERAGE		100%							
EFA10167 SeqID	SeqID		10511							
<u> </u>	IDENTITY COVERAGE		100%							
EFA10168 SeqID	SeqID	10238	10789	11178	11511		11829	12811	13673	13864
1	IDENTITY COVERAGE	45%	100%	45% 98%	40%		44% 91%	57% 96%	57% 95%	45% 97%
EFA10168 SeqID 5	SeqID		16/01		11369		12022	12492	13368	
	DENTITY		100%		47%		51% 98%	62% 97%		
EFA10168 SeqID 6	SeqID	10237	10940	10999	11325		11901	12456	13455	13956
	IDENTITY COVERAGE	39% 99%	100%	37% 99%	37%		36%	64%	63%	38%

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cas	a typhi
				influenzae		ae	aeruginosa		pneumonia e	<u></u>
EFA10169	SeqID	10204	10629	11017	11479	11715	12106	12560	13284	13928
·	IDENTITY	34%	100%	32%	34%	31%	35%	51%	75%	34%
EFA10173 SeqID	SeqID	10219	1077	1102			11924	12300	13340	139
9	DENTITY	33%	100%	29%			27%	35%	32%	28%
EFA10173 SeqID	SeqID	10218	1077	1102			11923	12301	13341	137
7	DENTITY	39%	100%	37%			42%	43%	43%	%96°.
EFA10175 SeqID	SeqID	10134	1055	11211			11895	12151	13693	13826
ĸ	DENTITY	36%	100%	37%			36% 90%	50%	%66 80%	37%
EFA10176 SeqID	SeqID		1058					13010	13353	
<u>ν</u>	IDENTITY COVERAGE		100%					28% 98%	35%. 97%	
EFA10179 SeqID	SeqID	10414	10803	11085			11915	12306		13747
>	IDENTITY COVERAGE	42% 101%	100%	41%			39% 101%			41% 101%
EFA10179 SeqID 1	SeqID		10804					12359		
	IDENTITY COVERAGE		100%					37%		

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cus	a typhi
			, , ,	influenzae		ae	aeruginosa		pneumonia e	
EFA10179 SeqID	SeqID	10030	10805	11188	11458		5187	12360	13333	14077
	IDENTITY COVERAGE	31%	100%	32%	27%		33%	34%	47%	31%
EFA10179 SeqID	SeqID	10329	10922	11159	11322		12062	12581	13363	13886
)	IDENTITY COVERAGE	34%	100%	36%	%66 %98		37%	36% 98%	47%	32% 97%
EFA10179 SeqID	SeqID	10330	10924	11160	11321		12063	13127	13364	13885
	IDENTITY COVERAGE	53% 98%	100%	52% 98%	49%		55% 98%	%86	74%	53% 98%
EFA10179 SeqID	SeqID	10048	10926	11014	11339		11934	12908	13366	13897
	IDENTITY COVERAGE	53%	100%	55% 97%	49%		55% 97%	54% 97%	%26 97%	54%
EFA10183 SeqID	SeqID	10429	10720		11335		12039	12340	13451	14072
ì	IDENTITY COVERAGE	31% 79%	100%		36% 92%		35% 89%	51% 92%	59% 91%	31% 79%
EFA10186 SeqID 8	SeqID		10829							
	DENTITY		100%							-
EFA10187 SeqID	SeqID	10305	10815	11044	11343	11639	11797	12568	13288	13779
	IDENTITY COVERAGE	62% 86%	100%	62% 86%	38%	61% 79%	60% 95%	93%	92%	62% 86%

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Dseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cns	a typhi
				influenzae		ae	aeruginosa		pneumonia e	
EFA10187 SeqID	SeqID		10816				11796			
1	DENTITY		100%	•		-	36% 94%			-
EFA10189 SeqID		10454	10506	11048	11281		12005	12142	13190	14021
1	IDENTITY COVERAGE	47%	100%	47%	41%		53%	49%	46%	47%
EFA10192 SeqID	SeqID		1089		11532			12331	13463	
4	DENTITY		100%		36%			65%	65%	
EFA10192 SeqID	SeqID		10893					12332		ė.
<u>, </u>	IDENTITY COVERAGE		100%					%66 68%		
EFA10196 SeqID	SeqID	10034	10848	11148	11536		12006	12552	13648	13901
<u> </u>	DENTITY	48%	100%	47% 105%	49%		47%	57% 101%	69% 100%	48% 105%
EFA10200 SeqID 6	SeqID		10580				11830	12804	13315	
	DENTITY		100%				33% 84%	42% 99%	43%	
EFA10202 SeqID	SeqID	10313	10881	11224	11502	11754	12051	12324	13485	13767
	IDENTITY COVERAGE	53% 88%	100% 101%	53%	\$1% 87%	54% 89%	55% 88%	78% 89%	78% 89%	\$2% 89%

LOCUSID Data		Escherich .	Enterococc	Haemophil	Helicobact.	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cus	a typhi
				influenzae		ae	aeruginosa	7	pneumonia e	
EFA10202 SeqID	SeqID	10312	10882	10989	11576	11755	12050	12325	13699	13768
ì	IDENTITY COVERAGE	51%	100%	%66 86%	38% 99%	50%	50%	63% 99%	70% 99%	50%
EFA10209 SeqID	SeqID	10363	10481	11060	11568		11858	12443	13233	13965
	DENTITY COVERAGE	60%	100%	61% 101%	63%		62%	75%	86%	59% 101%
EFA10211 SeqID	SeqID	10193	10841	11255			12082		13430	13752
	IDENTITY COVERAGE	32% 103%	100%	34% 94%			34% 100%		62%	32%
EFA10218 SeqID	SeqID	10393	10952	11057	11330		11774	12695	13420	13920
	IDENTITY COVERAGE	55% 84%	100%	54% 86%	50% 85%		54% 86%	%86 8%	78%	55% 84%
EFA10218 SeqID 5	SeqID	10458	10950	11051	11421	11632	12075	12413	13501	13858
	IDENTITY COVERAGE	27%	100%	29% 90%	29% 94%	28% 93%	29%	63% 91%	73%	27% 93%
EFA10218 SeqID 6	SeqID	10448	10949	56601	6/511			12412	13543	13817
	IDENTITY COVERAGE	29%	100%	29%	27%			53% 101%	60% 92%	30% 90%
EFA10220 SeqID 5	SeqID	10108	10769	10985	11375				13375	13997
	IDENTITY COVERAGE	46% 71%	100%	38%	56% 73%				55% 96%	37% 104%

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	sendomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Siaphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cus	a typhi
				influenzae		ae	aeruginosa	.3.3	pneumonia	
EFA10225 SeqID	SeqID	10275	10727	11175	11320		11933	12372	13376	13865
າ	IDENTITY COVERAGE	53%.	100%	55% 101%	48% 101%		53%	67%	%08 80%	54% 96%
EFA10228 SeqID	SeqID		10729					12607	13424	
1	IDENTITY		100%					40%	46%	
	COVERAGE		101%					- 1		
EFA10233 SeqID 8	SeqID	10250	10651	11012	11488			12940	13272	13705
	DENTITY	39%	100%	38%	35%		36%	42%	20%	38%
	COVERAGE	95%	100%	92%	%98		%86	%66	%66	%66
EFA10235 SeqID	SeqID		10632							
	IDENTITY COVER AGE		100%							
FFA10235 SeoID	SeoID		10634					12795	13406	
1	5							, 600	è	
	DENTITY		100%					33% 97%	38% 101%	
EFA10235 SeqID	SeqID	10028	10635	11186	11328	16911	12011	12347	13409	14075
<u> </u>	DENTITY COVER AGE	40%	100%	39%	35%	40%	39%	51% 99%	55% 100%	40%
EFA10235 SeqID	SeqID	10029	1063	1118	11329		12010	12348	13398	14076
<u> </u>	DENTITY	32%	10	34	286		32%	20%	61%	31%
	COVERAGE	%66	100%	98%	83%		76%			

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cns	a typhi
				influenzae		ae	aeruginosa		pneumonia	
EFA10238 SeqID	SeqID	10378	10904	11094			11781	12126	13263	
	DENTITY	41%	100%	42%			40%	54%	52%	
EFA10245 SeqID	SeqID		10931	10995	11579	11762		12412	13502	13819
1	IDENTITY COVERAGE		100%	29%	33%	33% 105%		54% 101%	54% 101%	29%
EFA10250 SeqID	SeqID	10438	10626	11037	11410		11997	12447	13187	14043
	IDENTITY	45%	10	44%	40%		44%	75%	16%	4
	COVERAGE	112%	100%	111%	114%		113%	93%	%96	112%
EFA10250 SeqID 2	SeqID	10439	10627	11036	11410		5179	12446	13646	14042
	IDENTITY COVER AGE	47%	100%	46%	52%		46%	72%	78%	46%
EFA10250 SeqID	SeqID	10016	1064		11446		12027	12995	13481	13947
	IDENTITY COVERAGE	45% 99%	100%		37% 101%		43%	61% 98%	65%	41% 85%
EFA10251 SeqID	SeqID	10288	10647			11681		12248	13229	13881
×	DENTITY	33%	10			50%		34%	Š	32%
	COVERAGE	105%	100%			/1/9		102%	100%	105%

TOCTION Dad		Poobarioh	Dutano again	Hamomort	Holicobact	Klobeiolla	Degudomon	Bookarich Eutonomaki Halimbank Kloheialla Beaudoman Krankuloma Krankuloma	Strontococ	Calmonoll
770007		ia coli	us faecalis us	us morning.	er pylori	pneumoni as	SZ	cus aureus	cus	a typhi
			<u> </u>	<i>чеп</i> zае		ae	ruginosa		neumonia	
EFA10254 SeqIL	SeqID	10327	10602	11241	11471	1	5188	12237	13356	13729
-4	IDENTITY COVERAGE	59% 77%	100%	59%	49%		59% 77%	%69% 77%	82% 81%	%95 77%
EFA10254 SeqID	SeqID	10326	10603	11240	11288		12016	12238	13361	13732
7	IDENTITY COVERAGE	75%	100%	70%	67% 100%		75%	77%	100%	76%
EFA10254 SeqID	SeqID	10338	10538	11117	11428		5159			
	IDENTITY COVERAGE	63%	100%	63%	71%		68%			
EFA10255 SeqID	SeqID	10337	10539	11119	11427	11688	11990	12229	13221	14097
4	DENTITY	%96 86%	100%	61%	%66 88%	30%	62% 96%	75%	81% 101%	%96 86%
EFA10255 SeqID	SeqID	10341	105	111115			5161	12223	13216	
1	IDENTITY COVERAGE	45% 93%	100%	40%			42% 97%	62% 102%	63%	
EFA10265 SeqID 5	SeqID	10049	10733	11086	11305		11813	12952	13228	13898
	IDENTITY COVERAGE	47%	100%	47%	42% 99%		48%	57% 98%	60% 108%	47%
EFA10265 SeqID 6	SeqID		10734					12321	13668	
	DENTITY		100%	·				55% 100%	55% 100%	

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as		cus aureus	cus	a typhi
				influenzae		ae	aeruginosa		pneumonia e	
EFA10269 SeqID	SeqID	10082	10909	10956			11807			14011
	DENTITY	%96 86%	100%	%96 %09			31%			55% 96%
EFA10272 8	EFA10272 SeqID	10459	10948	11050	11420		12074	12411	13503	13859
o	DENTITY COVED AGE	51%	100%	53%	52%		54%	%9L	81%	52%
EFA10273	EFA10273 SeqID	10285	10556	11205	11300		11943	ļ	1340	
9	DENTITY	53%	100%	52%	44%		51%		71%	
EFA10276 SeqID	SeqID	10201	1047	1105				12590	13425	13822
4	DENTITY	72%	100%	%66 %95				%66 %89	80%	71%
EFA10277 SeqID	SeqID	10142	10896	11261	11362		12040	12150	13235	13978
	IDENTITY COVERAGE	%96 8%	100%	52% 96%	52% 94%		\$1% 95%	%86 %89	74% 97%	%96 80%
EFA10278 SeqID 0	SeqID	10395	10908	11167	11616		11772	12701	13552	
	IDENTITY COVERAGE	49%	100%	46%	37%		51% 75%	51% 101%	46% . 98%	
EFA10278 SeqID 8	SeqID	10176	10661	11223	11297		11882	12630	13303	13941
	IDENTITY COVERAGE	59% 94%	100%	61%	54% 97%		63% 94%	70%	81% 96%	59% 94%

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis	STI	er pylori	pneumoni as	as	cus aureus	cus	a typhi
				influenzae	-	ae	aeruginosa		pneumonia e	
EFA10280 SeqID		10274	10854	11154	11298		11932	13128	13313	13866
	IDENTITY COVERAGE	%66 %99	100%	64%	%96 8%		64%	74%	. 83%	%59
EFA10281 SeqID	SeqID	10191	10878	11005	11347			12816	13492	13754
m	DENTITY COVERAGE	54%	100%	53%	51% 99%		52% 99%	64%	%66 86%	53%
EFA10291 SeqID	SeqID	10297	10640	10964	11323		11783	13090	13664	13737
5	5 IDENTITY COVERAGE	27%	100%	32% 100%	30%		31%	50%	52% 99%	28%
EFA10302	ClipaS	10434	10612	11039	11413		11999	12451	13517	
	IDENTITY COVERAGE	65%	100%	66%	%66 %09		62%	86%	%66 %98	
EFA10303 SeqID	SeqID	10221	10681	11210	11607	11668	11801	12289	13191	14027
<u>n</u>	DENTITY	42%	100%	40% 93%	29% 98%	42% 94%	39% 91%	49% 93%	56% 92%	30%
EFA10303 SeqID	SeqID	10435	10613	11038	11412		11998	12784	13397	14046
.	IDENTITY COVERAGE	54% 99%	100%	52% 100%	%66 86%		51% 100%	73%	73%	53% 99%
EFA10303 SeqID	SeqID	10293	10850	11041	11482	11728	11793	12541	13377	13741
	IDENTITY COVERAGE	45% 99%	100%	46%	44% 98%	40%	46%	73%	69%	45% 99%

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us	S71	er pylori	pneumoni as	as	cus aureus	cus	a typhi
				influenzae		ae	aeruginosa		pneumonia e	
EFA10306 SeqID	SeqID	10437	10615	11072	11572		5180	12449	13247	14044
	IDENTITY COMED A CE	59%	100%	64%	54%		65%	64%	68%	59%
EFA10308 SeqID	SeqID	10262	10862	1098	1140		11947		13415	14090
	IDENTITY COVER A GE	41%	100%	41%	40%		41%		74%	40%
EFA10317 SeqID	SeqID	10251	1068	10969	11370		11955	12600	13518	13703
4	DENTITY	32%	100%	32%	37%		33%	63%	77%	33%
EFA10321 SeqID	SeqID	10071	1068	11019	11371		11850	12601	13319	13945
0	IDENTITY COVERAGE	56% 97%	100%	%86 %89	39% 99%		57% 97%	%6 <i>L</i>	76%	57% 99%
EFA10326 SeqID	SeqID	10365	10479	11062	11409		5178	12445	13231	13967
ο	IDENTITY COVERAGE	69%	100%	70%	68% 100%		%66 80%	83%	93%	70% 101%
EFA10329 SeqID 5	SeqID	10319	10633	11140	11493		12029	12640	13320	13771
	IDENTITY COVERAGE	% <i>LL</i>	100%	58% 85%	58% 85%		70% 77%	79% 100%	%96 %98	%26 85%
EFA10334 SeqID 8	SeqID		10873	10983	11402		11946			
	IDENTITY COVERAGE		100%	39%	59% 85%		39%			

LOCUSID Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococ Streptococ Salmonell	Streptococ	Salmonell
		ia coli	us faecalis us		er pylori	pneumoni as	as	cus aureus		a typhi
				influenzae		ae	aeruginosa		pneumonia	-
									e	
EFA10336 SeqID 5	SeqID	10360	10533	11096	11443	11643	2177	12224	13196	13975
	IDENTITY COVER AGE	57%	100%	58%	53%	58%	58%	82% 88%	82% 101%	58%
EFA10337 SeqID	SeqID	10177	10660		11296		5120	12628	13302	
,	DENTITY	50%	100%	52% 82%	36%		50%	66%	78%	
EFA10350 SeqID	SeqID	10320	10671	11141	11492		12030	12638	13322	13766
ŧ	DENTITY	42%	100%	45%	41%		48%	63%	81%	41%
	COVERAGE	%16	101%	%26	%96		97%	%86	100%	100%
EFA10350 SeqID 8	SeqID		10672						13321	
	IDENTITY COVERAGE		100%						30% 80%	
EFA10357 SeqID	SeqID	10335	10879	11121	11425		11988	12578	13240	14095
	DENTITY	45%	10	4	₹		47%	%19	89	4
	COVERAGE	102%		102%	103%		102%	%66	100%	102%
EFA10378 SeqID 6	SeqID		10806					12361		
	DENTITY		100%					%65		
	COVERAGE		100%					94%		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	sn	er pylori	pneumoni as	as	us aureus	ns	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1000	SeqID							12533		
40	DENTITY			-	_			100%		
	COVERAGE							101%		
SAU1000	SeqID	10366		11075	11376	11723	11855		13318	13814
53	DENTITY	32%	46%	30%	32%	33%	33%	100%	48%	32%
	COVERAGE	%16		%66		84%	<u>~</u>	100%	100%	%16
SAU1000	SeqID		10930					12577	13477	
56	DENTITY		39%					100%	33%	
	COVERAGE		%86					100%	100%	
SAU1000	SeqID	10213	10598	11161	11528	11750	12064	12652	13433	13929
59	DENTITY	78%	70%	79%	76%	27%	78%	100%	25%	78%
	COVERAGE	71%			%56		%96	100%	%56	
SAU1000	SeqID	10430	10618	10998	11603	11739			13294	14040
62	DENTITY	27%	52%	767	73%	31%		100%	23%	78%
	COVERAGE	103%	%96	103%	41%	%9/		100%	%16	102%
SAU1000	SeqID		10565						13464	
77	DENTITY		64%					100%	62%	
	COVERAGE		102%					100%	102%	
SAU1001	SeqID	10059						12634		13895
12	DENTITY	49%			25%	53%	46%	100%		49%
	COVERAGE	97%			100%	77%	.00%	100%		%16
SAU1001	SeqID	10152		11279	11302		11851		13387	13824
14	DENTITY	44%	51%	43%	45%		43%	100	25%	43%
	COVERAGE	%86	%86	%86	%86		%86		102%	%86
SAU1001	SAU1001 SeqID		10903						13262	
118	DENTITY		41%				27%	100	37%	
	COVERAGE		101%				100%	100%	101%	
SAU1001 SeqID	SeqID IDENTITY	10258 52%	10628 43%	1113 4 53%	11489 47%		5192 52%	12526 100%	13421 45%	14088
3	* ***	2.4.	2 2	?	2 2	_	? ? ?	2,224	?	2/4/

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis		er pylori	eumoni	22	us aureus	577	a typhi
	COVERAGE	%86	100%	influenzae 97%	%96	ae	aeruginosa 98%	100%	pneumoniae 82%	%86
VU1001	SeqID	10466		11274			11960	12517		13854
	DENTITY	35%		33%			40%	100%		35%
	COVERAGE	71%		%16			%0/	100%		71%
SAU1001	SAU1001 SeqID	10311	10493	10990	11308	11703	11885	12574	13412	13769
33	DENTITY	34%	44%	34%	33%	30%	31%	100%	43%	34%
	COVERAGE	79%	%66	%08	78%	85%	%62	100%	%66	462
SAU1001 SeqID	SeqID	10355	10557	11101	11594		5174	12255	13201	
39	IDENTITY	%59	84%	%99	64%		63%	100%	%98	
	COVERAGE	82%	%98		83%		84%	101%	82%	
SAU1001	SeqID	10354	10558	11102	11440		5173	12258	13202	13970
40	DENTITY	54%	%99	54%	40%		48%	100%	,63%	54%
	COVERAGE	93%	91%	93%	94%		93%	101%	91%	93%
SAU1001	SAU1001 SeqID	10353	10559	11103	11592			12259	13203	13969
41	DENTITY	25%	~	28%	54%		21%	100	74%	25%
	COVERAGE	%96	101%	%96	%96		%96		100%	%96
SAU1001 SeqID	SeqID	10364	10480		ļ	11659		12444		13966
57	IDENTITY	%09 	78%	%09	25%	%79	21%	100%	71%	%09
	COVERAGE	100%	101%	100%	%66	88%	100%	101%	101%	101%
SAU1001	SAU1001 SeqID	10363	10481	09011	11568		11858	12443	13233	13965
58	IDENTITY	%09	75%	%65	63%		26%	100%	71%	28%
	COVERAGE	%86	%16	%86			%86	100%	%26	%66
SAU1001	SeqID	10069	10630	11239	11382		11971	12583	13597	14084
62	62 IDENTITY	43%	49%	44%	37%		43%	100	46%	43
	COVERAGE	92%	%68	%88	%08		83%		%68	
SAU1001	SAU1001 SeqID	1025	10651	11012			11954	12582	13272	13705
75	DENTITY	34	42	386			34%	100	45	35
	COVERAGE	%86	100%	93%			93%		102%	%66
SAU1001 82	SAU1001 SeqID 82 IDENTITY							12362 100%		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc (Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis	us	er pylori	pneumoni as	as	ns aureus	Sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	_
	COVERAGE							101%		
SAU1001	SeqID	10043	10489	11124	11423					13909
98	86 IDENTITY	46%	%19	44%	46%		45%	100	546	4
	COVERAGE	%66	%66	%66			100%	101%	%66	101%
SAU1001	SeqID				11445				13414	
86	IDENTITY				767			100%	29%	
	COVERAGE				78%			101%	79%	
SAU1002	SAU1002 SeqID		10765					12525		
27	DENTITY		36%					100%		
	COVERAGE		100%					100%		
SAU1002	SeqID	10097		11201			11836	12336		14056
42	IDENTITY	%59		62%			%59	100%		65%
	COVERAGE	94%		%96			%56	100%		94%
SAU1002	SAU1002 SeqID		10821						13490	
46	DENTITY		35%					100%	38%	
	COVERAGE		101%					101%	93%	
SAU1002	SAU1002 SeqID							12363		
21	DENTITY							100%		
	COVERAGE							100%		
	U1002 SeqID	10469						12122		
65	DENTITY	37%						100%		
	COVERAGE	88%						100%		
SAU1002	SAU1002 SeqID							12256		
99	DENTITY							100%		
	COVERAGE							101%		
SAU1002 SeqID	SeqID		21901					12141		L
72	DENTITY		26%					100%		
	COVERAGE	1	\$;	8	0,0	
SAU1002 75	SAU1002 SeqID 75 IDENTITY	10041	10487 73%	11149 47%	11621 51%		11941 51%	12314 100%	13438 65%	13907 51%

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Dseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us.faecalis	ns	er pylori	pneumoni as	22	us aureus	SI	a typhi
	COVERAGE	%88	94%	influenzae 93%	%86	ae	aeruginosa 90%	100%	pneumoniae 98%	88%
SAU1003 SeaID	SeaID	10434	10612	11039	11413		11999	12451	13517	
00	IDENTITY		%	\ 0	63%			%0	82%	
	COVERAGE	%66	%66		4		%66	101%	%16	
SAU1003	SAU1003 SeqID	10433	10624	11083	11414		12000		13168	
01	DENTITY	41%	28%	41%	35%		45%	100%	51%	
	COVERAGE	%66	%86	102%	%96		%86	101%	%26	
SAU1003	SAU1003 SeqID	10432		11082			12001	12453		
02	DENTITY	25%		34%			31%	100%		_
	COVERAGE	%76		82%			103%	102%		
SAU1003	SeqID	10311	10774	10990			11885	12397	13491	13769
05	DENTITY	40%	20%	38%			40%	100%	49%	40%
	COVERAGE	94%					%76			94%
SAU1003	SeqID	10392	10725	10954		11685			13252	13919
0.7	07 IDENTITY	78%	32%	29%		78%		100%	767	28%
	COVERAGE	%	100%			%66		100%	%66	%66
SAU1003	SAU1003 SeqID	10013	10814	10963					13244	13711
80	DENTITY	76%	44%	30%				100%	40%	27%
	COVERAGE	%06	%98	86%				100%	92%	%06
SAU1003	SeqID		10757						13293	
13	DENTITY		46%			•		100%	43%	
	COVERAGE		%66					100%	100%	,
SAU1003 SeqID	SeqID	10419	70801	11136	11326	11727	12087		13521	13791
15	DENTITY	54%	73%	53	53	55	23%	100	74%	24%
	COVERAGE	%96	%96	%96	%96	85%	%26		91%	%96
SAU1003 SeqID	SeqID	10216	10855					12575		13933
23	DENTITY	32%	71%					100%		34%
	COVERAGE	%8%	%66					100%		%88
SAU1003 SeqID 47 IDEN	SeqID IDENTITY		10895	10961 30%			12077 30%	12334 100%	13206 42%	:

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	sn.	er pylori	pneumoni as	22	us aureus	ns	a typhi
	COVERAGE		106%	influenzae 84%		ae	aeruginosa 100%	100%	pneumoniae	
SAU1003	SeqD		10683				200	12155	13300	
55	DENTITY		42%					%(31%	
	COVERAGE		93%					100%		
SAU1003	SeqID		10757					12239	13293	
59	59 IDENTITY		52%					100%	43%	
	COVERAGE		%16					100%		
SAU1003	SeqID	10411	10674				11903	12276		14031
81	DENTITY	28%	29		•		33%	100		28%
,	COVERAGE	2%	%66				92%	100%		101%
SAU1003	SeqID	10473	10737		11374				13344	
68	IDENTITY	72%	%05		41%			100%	27%	
	COVERAGE				%66			100%		
SAU1004	SeqID	10090		08601		11641		12576		14053
01	DENTITY	31	30	27		33%		100%		31%
	COVERAGE	95%	%66	95%		%56		101%		%66
SAU1004	SeqID	10102			11360		ŀ		13468	
12	DENTITY	31	4	30	33		35%	10	40%	
	COVERAGE	74%	100%	%08	74%		73%	100%		
SAU1004	SeqID				11300				13401	13872
14	14 IDENTITY	%09	80	61%	9		%29	100	%9/	%09
	COVERAGE	%96	%66	%86	%66		91%	101%	%96	%96
SAU1004	71004 SeqID	10436	10614		11411		5181		13246	14045
32	DENTITY	34%	609	κi	31%		39%	100	25%	31%
	COVERAGE	%86	%86	100%			99%	101%	%86	%86
SAU1004	SAU1004 SeqID	10437			11572		5180			14044
33	DENTITY	28%	64%	63%	579		%85	100	69	58
	COVERAGE	97%	%66	%86	%66		%86	101%	%66	%86
SAU1004 36	SAU1004 SeqID 36 IDENTITY		10569					12154	13393 27%	
, 		_	:	_	_	_	_		2	_

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
a		ia coli	us faecalis	ns	er pylori	pneumoni as	as	ns anreus	sn	a typhi
	COVERAGE		100%	influenzae		ae	aeruginosa	100%	pneumoniae 100%	-
SAU1004 SeqID	SeqID	ĺ	10894	11081			11930	Γ	13515	13869
43	DENTITY	40%	25%	39%			38%	100%	45%	40%
	COVERAGE	%76	100%				95%	100%	100%	
SAU1004	SeqID	10440	10583	11016	11540		11967		13403	14041
44	DENTITY	79%	30%	41%	41%		28%	100%	52%	. %67
	COVERAGE	75%	%88	94%	%06		81%		%16	75%
SAU1004	SAU1004 SeqID		10927				11911	12337		
75	DENTITY		. 33%				30%	100%		
	COVERAGE		101%				101%			
SAU1004	SAU1004 SeqID			11273				12605		
78	DENTITY			25%				100%		
	COVERAGE			%96				100%		
SAU1004	SeqID	10332	10685	11074	11580	11729	11778		13298	14100
89	IDENTITY	33%	33%	31%	34%	34%	73%	100%	34%	33%
	COVERAGE	101%	102%	%66	94%	101%	%66	100%	%16	94%
SAU1004	SeqID		10744					12484		
96	96 IDENTITY		40%				-	100%		
	COVERAGE		%08					100%		
SAU1004	SAU1004 SeqID	10245	10709	111171	11395		11792	12140		13740
97	IDENTITY	46%	55	49	44%		48%	100	-	45%
	COVERAGE	%66	101%	%66	100%		%66			100%
SAU1005	SeqID	10215			11388		12036	12626		13932
14	DENTITY	25%			34%		51%	100%		51%
	COVERAGE	93%			%26		%86	100%		%56
SAU1005 SeqID	SeqID	10251			11370			12600		13703
21	DENTITY	43%		39%	κň		39%	100		42%
	COVERAGE	104%		108%	103%		103%	100%		104%

Salmonell	a typhi		14007	35%	91%	13736	45%	%26				13744	31%	72%	13806		100%	13974	46%		13973	41%	93%						
Streptococc	Sm	pneumoniae				13452	43%		13470	33%	71%	13193		%16	123	35	102%	13197	%99		13198	63%		13651					
Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	ns anreus	•	12599	. 100%	100%	341	100%	101%	l	100%	101%	ľ	100%	~	l	100%	100%	235	100%	100%	240	100		12565	100%	12503	100%	12121	100%
Pseudomon	as	aeruginosa	11904	36%	%06	11782	41%	%86							1	31%	102%	5176	47%	%66	5175	46%	%26						
. Klebsiella	pneumoni as	ae	11680	30%	%08		···							.0		-	0			\0			.0						
Helicobact	er pylori											11389	34%		11422	46		11596	34%		11595	40%	%96						<u></u>
Haemophil	ns	influenzae	11206	34%	%68	10996	42%	%66				11128	5		11070	51%	%86	11097	46%	%16	11098	39%	%16						
Enterococc	us faecalis us					10721	48%		10521	30%	83%		47%								10549	%29		10928	%66 %700				
Escherich	ia coli		10114	36%	1%	10298	44%	%86				10235	39%	101%	10371	٠,		10359	43%	_	10358	41%	92%						
Data			ì	DENTITY	COVERAGE	SeqID	27 IDENTITY	COVERAGE	SeqID	28 IDENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	46 IDENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SAU1005 SeqID	COVERAGE	U1005 SeqID	COVERAGE	SAU1005 SeqID	COVERAGE
LOCUSI Data	Ω		SAU1005	22		SAU1005	27		SAU1005	28		l' 🚄	32		SAU1005	42		SAU1005	46		SAU1005	47		SAU1005	<u>}</u>	SAU1005	78	SAU1005	1

Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell is coli us aureus us atyphi
influenzae
10051 10832
699
8% 89%
108
20%
%66
10032 10870 11190
61%
102% 96%
10378 10904 11094
44% 54%
10502
26%
816
10079 10589
٠,0
92% 103%
105
50% 48% 95% 94%
-
vo.
100% 100%

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	S71	er pylori	pneumoni as	SZ	us aureus	S71	a typhi
	!			influenzae		ae	aeruginosa		pneumoniae	•
SAU1006	SeqID	10045	10923		11601					13911
59	IDENTITY	47%	54%	45%	40%		46%	100%	26%	44%
	COVERAGE	92%	92%	95%	103%		%/(101%	%56	81%
SAU1006	SeqID	10303		10997	11453	11713	1		13329	13757
79	79 IDENTITY	32%		31%	32%	33	35%	100	42	35%
	COVERAGE	%96		%66	106%	96%	%26		104%	%96
SAU1006	SeqID	10412			11486		12097	12632		13749
84	IDENTITY	46%			40%		46%	100%		46%
	COVERAGE	97%			%66		%66	100%		%16
SAU1006	SeqID							12633		
85	DENTITY							100%		•
	COVERAGE							100%		
SAU1006	SeqID		10694						13311	
68	DENTITY		25%					100%	46%	
	COVERAGE		%86					100%	%96	
SAU1007	SAU1007 SeqID		10655	,					13671	
05	DENTITY		46%					100%	41%	
	COVERAGE		%26					100%	91%	
SAU1007	SeqID						11908	12546		
10	10 IDENTITY						27%	100	_	•
	COVERAGE						73%	101%		
SAU1007	SeqID	10465	10675		11563				13382	13853
14	DENTITY	48%	Š	4	4		44%	100	8	4
	COVERAGE	8	100%	110%	102%		108%	103%	101%	108%
SAU1007	J1007 SeqID	10071	10688	11019	11371		11850			13945
31	DENTITY	62%	%62	%19	-		%69	100%	%91	9
	COVERAGE	%66	100%	100%	101%		%66	101%	100%	101%
SAU1007	SeqID	10415			11611	11636	2084	12602		13746
cc	COVERAGE	41%			33% 92%	74%	42%	100%		35% 95%
-	_	_	_	_	_				_	-

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis	sn	er pylori	pneumoni	22	us aureus	ns	a typhi
			,	influenzae		ae	aeruginosa		pneumoniae	
SAU1007	SeqD	10321	10573	11142	11306		12031			13734
	DENTITY	vo	36%	762	27%		78%	100%	31%	78%
	COVERAGE	%86			%06		93%	100%	72%	101%
SAU1007 SeaID	SeaID		10585						13404	
36	DENTITY		27%						792	
	COVERAGE		%16					100%	%26	
SAU1007	SAU1007 SeqID	10188	10847	10953	11600	11634	11907		13169	13981
38	DENTITY	48%	45%	<u>%</u>	42%	48%	51%	100	45%	49%
	COVERAGE	%16		%86	%/6	94%	7%	100%	%26	%26
SAU1007	SeqID	10081	\mathbf{c}		11459		11776	12409		13714
41	DENTITY	%59			35%		54%	10		%99
:	COVERAGE	100%	101%		82%		100%	101%		101%
SAU1007 SeqID	SeqID	10442	ı	11202	11607	11733				13847
45	DENTITY	34%	53%	35%	31%	35%	34%	100%	49%	35%
	COVERAGE	%86			%66	101%	%86	100%	%86	101%
SAU1007	SeqID		10749					12597	13266	_
47	47 IDENTITY		32%					100%	319	
	COVERAGE		74%					100%	73%	
SAU1007	SeqID	10425	10866	11080		11747	11927	12335	13431	13788
51	DENTITY	%29	64%	%65		62%	%79	100	63%	61
	COVERAGE	%66	%66	%86		87%		100%	%66	
SAU1007 SeqID	SeqID	10140					92611	12524		14022
52	DENTITY	31%					35%	3		38%
	COVERAGE	71%					82%	100%		72%
SAU1007 SeqID	SeqID	10290					12094	12579		13875
29	DENTITY	43%					42%	100%		42%
	COVERAGE	100%					%06	1		%00I
SAU1007	SAU1007 SeqID	10084					11821	12545	13306	13710
1/	COVERAGE	%88 88%					%08 %7			
	<u> </u>	_	_	_	-	-	_		•	•

...

LOCUSI Data		Escherich	Enterococc .	Haemophil .	Helicobact,	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	rrs.	er pylori 🏻 🎚	pneumoni as	ZZ.	us aureus	ns	a typhi
				zae			iosa		pneumoniae	
SAU1007	SeqID	10055	10758	11093	11336	11763		į	13250	
73	DENTITY	47%	70%	41%	41%	46%	51%	100	20%	
	COVERAGE	94%	100%	%86	%96	94%	93%	101%	%96	
SAU1007	1007 SeqID							12482		
92	DENTITY			-				100%		_
	COVERAGE							100%		
SAU1007	SAU1007 SeqID	10083		10957				12514		14062
78	DENTITY	25%		25%			45%	100		47%
	COVERAGE	%68		%68			%88	100%		%68
SAU1007	SeqID								13392	
93	DENTITY							100%	27%	- · · ·
	COVERAGE							100%	103%	
SAU1007	SAU1007 SeqID	10203						12189		
94	DENTITY	25%						100%		
	COVERAGE	101%						100%		
SAU1007	SeqID							12682		
66	99 IDENTITY							100%		•
	COVERAGE							100%		
SAU1008	SAU1008 SeqID							12345		14081
80	DENTITY							100%		35%
	COVERAGE							100%		70%
SAU1008	SAU1008 SeqID	10070						12343		14080
10	DENTITY	51%					49%	10		20%
	COVERAGE	94%					%96			%96
SAU1008	SAU1008 SeqID	10314	10764	11216	11501		5198		13381	13765
113	IDENTITY	47%	_	47%	45%		48%	100	58%	20%
	COVERAGE	%86	1	100%	91%		92%	100%	95%	92%
SAU1008 SeqID	SeqID	10376	107	41 11058			12093	12403	13349	
31	DENTITY COVERAGE	42%	•	42%			42%	100%	51%	42%
_	מסגעיים ססן	0//2		10/701	_	_	7670			

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis	STI	er pylori	pneumoni as	22	us aureus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1008	SAU1008 SeqID							12212		
36	DENTITY			-				100%		
	COVERAGE							100%		
SAU1008	SeqID							12211		
38	8 IDENTITY							100%		
	COVERAGE							2007		
SAU1008	ΩbəS		10794						13183	
39	39 IDENTITY		42%					100%	44%	
	COVERAGE		100%					100%	100%	
SAU1008	SeqID	10126	10921	10974	11342				13601	14092
43	DENTITY	792	78%	28%	78%			100%	79%	7
	COVERAGE	101%	73%	101%	102%			100%	100%	104%
SAU1008	SAU1008 SeqID							12329		
45	DENTITY							100%		-
	COVERAGE							100%		
SAU1008	SAU1008 SeqID	1	10776		11367	11719				13796
58	DENTITY	37%	48%		35%	37%		100%	33	36%
	COVERAGE	%	%86		103%	106%		. 0	100%	106%
SAU1008	SeqID	10446	10777	11254	11548		12071	1	13473	14026
59	59 IDENTITY	33%	386	33	35		34%	<u>)</u>	38%	32
	COVERAGE	\$	94%	95%			94%	100%	92%	
SAU1008	SeqID		10877		11406				13506	13704
65	DENTITY	36%	49%	4	78%		44%	100	489	m
	COVERAGE	100%	%66	100%			%66	100%	%66	
SAU1008	SAU1008 SeqID	10191	10878	11005	11347		11815		13492	13754
99	DENTITY	54%	64%	51%	51%		23%	100%	21%	25%
	COVERAGE	100%	100%	100%	100%		100%	100%	%66	
SAU1008 SeqID	SeqID							12483		
79	DENTITY							100%		
	COVERAGE							100%		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Streptococc	Salmonell
Ω		ia coli	us faecalis	rs	er pylori	pneumoni	Sz	ia coli us faecalis us er pylori pneumoni as us aureus us a typhi	ns	a typhi
				influenzae		ae	aeruginosa	4	pneumoniae	
SAU1008	SeqID	10429	10720		11335		12039		13451	14072
80	DENTITY	31%	51%		35%		36%	100%	45%	32%
	COVERAGE	81%	95%		%16		81%	100%	%66	85%
SAU1008	SeqID	10322	10750	11177	11351		12018		13330	13733
	IDENTITY	43%	\opensity or	42%	40%	-	45%	100%	52%	43%
	COVERAGE	%86			%66		%86		%86	%86
SAU1008	SAU1008 SeqID	10410 10754		11001	11509		12095	12376		14032
85	DENTITY	25%	%29	53%	52%		53%	100%		52%
	COVERAGE	%	74%	94%	%96		%76	100%		93%
SAU1008	SeqID	10224	10701	11213	11357		11905	12139	13348	13957
98	DENTITY	38%	%09	38%	36%		36%	100	22	38%
	COVERAGE	%16			%66		104%			%86
SAU1008	1008 SeqID	10393	10952	11057	11330		11774	12138	13342	13920
87	DENTITY	20%	519	50%	4		48%	100	70%	20%
	COVERAGE	85%	%96	82%	83%		83%		%96	85%
12	71008 SeqID							12277		· · · · · · · · · · · · · · · · · · ·
	DENTITY						-	100%		
	COVERAGE							100%		
SAU1009	SeqID							12278		
01	01 IDENTITY							100%		
	COVERAGE							100%		
SAU1009	SAU1009 SeqID	10209	10887					12394		13876
16	DENTITY	32%	349					100%		32%
	COVERAGE	%	72%					101%		75%
SAU1009	SAU1009 SeqID	10060	10772	111191	11530	11756	11983	12395		13896
20	DENTITY	43%	48%	319	28	4	30%	100		43%
	COVERAGE	12	86%	87%	91%	%98	8	100%		%16
SAU1009	SAU1009 SeqID		10773							14074
21	COVERAGE	32%	43%	33%			33%	100%	34%	32%
	201777	****			_	_	>			

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Ischerich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Д		ia coli	us faecalis	577	er pylori	pneumoni as	SI	us aureus	ns	a typhi
				influenzae		ae	osa		pneumoniae	
SAU1009	SeqID	10095		11271			11834	12615		14055
32	IDENTITY	39%		36%			39%	100		39%
	COVERAGE	101%		101%			102%	100%		101%
SAU1009	SeqID	10017	10687	11219	11506	<u>-</u>	12057			14012
4	44 IDENTITY	37%	76%	36%	36%		39%	10	27%	39%
	COVERAGE	%08		%62	79%		83%	100%		%08
SAU1009	SeqID		10717						133	1 1
52	DENTITY		33%					100%	31%	
	COVERAGE		104%					.100%	102%	
SAU1009	SeqID		10704						13504	
59	DENTITY		28%					100%		
	COVERAGE		%66					8	101%	
SAU1009	SeqID	10320	10671	11141	11312		12030		13322	13766
19	DENTITY	42%	63%	47%	40%		20%	100%	21%	.45%
	COVERAGE	%86	%66	%86	%16		%86	101%	101%	%66
SAU1009	SAU1009 SeqID				11299				13577	
62	IDENTITY				28%			100%	26%	
	COVERAGE				80%			101%	95%	
SAU1009	SeqID	10319	10633	11140	11493		12029	12640	13320	13771
63	IDENTITY	%09 —	79%	26%	616		63%	100	81%	- %09
	COVERAGE	84%	%96	81%	81%		84%			%88
SAU1009	SAU1009 SeqID		10501	11139			12028	12641	13331	-
49	DENTITY		61%	45%			47%	100	9	
	COVERAGE		101%	%91	-		77%	100%	101%	
SAU1009	U1009 SeqID							12642		
	IDENTITY							100%		
	COVERAGE			•				101%		
SAU1009	SAU1009 SeqID	10128	10516	11247			11891	529	(C)	
20	COVERAGE	\$2% 99%	54%	39%	100%		%55 85%	100%	46%	
	1001	-				_				~

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω.		ia coli	us faecalis us	us	er pylori	pneumoni as	7.2	us aureus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1009	SAU1009 SeqID		10686		11350				13600	
96	DENTITY		38%		34%			100%	36%	-
	COVERAGE		97%		73%			100%	%96	
SAU1010	SeqID	10185	10572	11022	11473		5122	12190		13820
90	IDENTITY	73%	40%	319	26	-	79%	100%		30%
	COVERAGE	84%	%86	%18	94%	•	%61			91%
SAU1010	SeqID							12710		
70	20 IDENTITY							100%		
	COVERAGE							100%		
SAU1010	SAU1010 SeqID							12711		
24	DENTITY							100%		
	COVERAGE							101%		•
SAU1010	SeqID	10034		11148	11364		12006	12552	3471	13901
28	IDENTITY	46%	21%	43%	46%		46%	100%	25%	45%
	COVERAGE	106%		107%	100%		108%	100%		106%
SAU1010	SeqID		10578					l	13654	
34	34 IDENTITY		36%					100%	37%	
	COVERAGE		%08					100%	71%	
SAU1010 SeqID	SeqID	_	10716				11822		13428	
38	DENTITY		42%				35%	100	36	
	COVERAGE		%96				78%	101%	103%	
SAU1010	SeqID							12522		
39	39 IDENTITY							100%		
	COVERAGE	ł						100%		
SAU1010	SAU1010 SeqID			11210	1607	ŀ			ľ	14027
65	IDENTITY	37%	24		7	38%	36%	100	46%	31%
	COVERAGE	%86		100%		%16	%86	100%	102%	%86
SAU1010	SAU1010 SeqD		10682					12290	(2)	
ò	COVERAGE		41%					100%	40%	
_		_	-	_	_	_	_	lazaa v		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
А		ia coli	us faecalis	sn	er pylori	pneumoni as	22	us aureus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1010 SeqIL	SeqID		10770						13380	
70	IDENTITY		40%					100%	32%	
	COVERAGE		%68					100%	82%	
SAU1010	SeqID	10066		11156			11974	12283		
84	IDENTITY	36%		34%			35%	100%		
	COVERAGE	%06		102%			92%	100%		
SAU1010		10170		11263	11462		1			13993
85		37%		34%	37%		38%	100	47	32%
	COVERAGE	%68		%88	94%		94%	100%	101%	88%
SAU1010	GlabaS				99811				13666	
98	IDENTITY				42%		34%	100%	49	•
	COVERAGE				74%	-	94%	100%		
SAU1010	SAU1010 SeqID		10755						13188	
8	IDENTITY		36%					100%	31%	
	COVERAGE		%26					100%	%16	
SAU1010	SeqID	10450	10567					12192		
. 76	92 IDENTITY	35%	33%				30%	100		
	COVERAGE	1%	%96				72%	100%		
SAU1011	SeqID	i		11248			69811	12195		13827
94	DENTITY	38%	45	χ̈́	37	37	45%	100	38%	37%
	COVERAGE	%86		100%	92%	%66	99%	100%	%96	%66
SAU1011	SAU1011 SeqID	10040		11157	11315			12502		13906
43	DENTITY	47%		27%	43		44%	100		47%
	COVERAGE	%66		82%	%86		%00			%66
SAU1011	U1011 SeqID		10548					12299		
45	DENTITY		42%				43%	201		
	COVERAGE	١	28%				ڲ	101%		
SAU1011 55	SAU1011 SeqID 55 IDENTITY	10287 43%	10697 49%	11077 11	1352 30%	11690 42%	11944 42%	12310 100%	13549 37%	13868 43%
	COVERAGE	%56					94%			

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	ns sn	er pylori	pneumoni as	Sz	us aureus	sn	a typhi
				Iuenzae		ae	aeruginosa		pneumoniae	
01011	SeqID	10426			11333			12311		13790
26	DENTITY	895	63%	%09	25%		28%	100%		25%
	COVERAGE	%96	101%	%96	%16		%96	101%		%96
SAU1011	U1011 SeqID		10891		11532			12331	13463	
59	DENTITY		%59		36%			100%	54%	
	COVERAGE		100%		100%			100%	104%	
SAU1011	SeqID							12213		
75	75 IDENTITY							100%		
	COVERAGE						!	101%		
SAU1011	SeqID		10888				11910	12656		
80	DENTITY	38%	20%				37%	100%		
	COVERAGE	72%	%68				70%			
SAU1011	SeqID		10843					12304		
83	83 IDENTITY		42%					100%		
	COVERAGE		102%				ļ	100%		
U1011	SeqID	10477	10711		11376	11735	12033		13499	13709
84	DENTITY	37%	46	36	30	38%	35%	100	44%	38%
	COVERAGE	86%	100%	102%	85%	82%	82%	100%	%86	85%
SAU1011	SeqID							12264		
88	IDENTITY							100%		
	COVERAGE							100%		
SAU1011	SAU1011 SeqID 10180	10180		11024			ŀ	12300	3	13976
97	DENTITY	31%	4	က			27%	10	46%	30%
	COVERAGE	86	%86	101%			100%	100%		%86
SAU1011	SeqID	~		11023				12301	13341	
86	DENTITY	43%	50,	43			41%	Õ	4	
	COVERAGE	74%	%86	73%			75%	100%	102%	
SAU1011 SeqID	SeqID	~ à	10742	≃:			11949	2302	13178	14
7	COVERAGE	%267	%98 86%	94%			30%	100%	37%	30%
_	-	-			_	_	:			

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
<u>a</u>		ia coli	us faecalis us	577	er pylori	pneumoni as	as	ns anreus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
U1012	SeqID	10286	10864						13390	13870
	DENTITY	32%	37%					100%	36%	31%
	COVERAGE	74%	81%					100%	%66	74%
SAU1012	SeqID				11533			12647		
24	24 IDENTITY COVERAGE				28%		-	100%	-	
SAU1012	SeqID		10837			11658	11825	П	13296	13721
26	DENTITY		52%			78%	、 。	%	27%	27%
	COVERAGE		%96			75%	%06	100%	77%	77%
SAU1012	SeqID		10513					12303		13759
31	DENTITY	32%				·	32%	20		31%
	COVERAGE	101%	100%				73%			106%
SAU1012	J1012 SeqID		10616	11087				12561	13486	i
35	IDENTITY COMMENT OF		37%	27%				100%	35%	
	COVERAGE		84%	30%				100%	9//6	
SAU1012	SAU1012 SeqID		10500						13474	
36	DENTITY	42%	25%			73%	33	100	35	_
	COVERAGE	101%	77%			108%	100%	100%	103%	
SAU1012	SeqID				11361	-		12570		
39	39 IDENTITY				33%			100%		
	COVERAGE				%86			100%		
SAU1012	SeqID							12573		
40	DENTITY							100%		
	COVERAGE							101%		
SAU1012	SAU1012 SeqID	10335	10879	11121	11425		11988		13240	14095
42	DENTITY	48%	9	47%	48%		47%	10	25%	47%
	COVERAGE	104%	101%	104%	105%		104%	101%	101%	105%
SAU1012 SeqID	SeqID		10919					12512	13359	
47	DENTITY		32%				36%	100	33%	
	COVERAGE		71%				30%	100%	- 1	

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	ns	er pylori	pneumoni as	as	ns aureus	sm.	a typhi
				influenzae		ae	aeruginosa		niae	
SAU1012	SeqID	10137	10735		11399				13238	13837
62		78%		_	47%		33%	100%	%19	78%
	COVERAGE	%	100%		101%		97%	100%	100%	
SAU1012	SAU1012 SeqID	10238	10789	1178	11517		11829		13317	13864
99	IDENTITY	45%	21%	46%	41%		43%	100%	51%	44%
	COVERAGE	100%	%66	100%	%86		%68		%86	100%
SAU1012	SeqID							12364		
29	67 IDENTITY							100%		
	COVERAGE							100%		
SAU1012	SeqID	10175		11220	11324		11881	365	13383	13942
70	DENTITY	20%	62%	47	45		52%	100	61%	20%
	COVERAGE	_	%66	62%			%16	100%	%86	
SAU1012	SAU1012 SeqID	10174	10719	221	11556		11880	366	13385	13943
71	DENTITY	37%	46%	36%			35%	10		37
	COVERAGE	8	102%	100%	100%		00	100%	. 101%	
SAU1012	SAU1012 SeqID		10684	186	1521	11708		12604	13299	13954
75	DENTITY	35%	57	38	33	34%	34%	100	57	35%
	COVERAGE	95%		93%	%86	%96	94%	100%	101%	95%
SAU1012	SeqID		10884						13189	
98	86 IDENTITY		47%					100%	40%	
	COVERAGE		100%					101%	%66	
SAU1012	SAU1012 SeqID							12631	i	
દ	COVERAGE							101%		
SAU1013	SeqID		10751					12557	13194	
00	00 IDÊNTITY		~					%(54%	
	COVERAGE		93%					101%	%06	
SAU1013 SeqID	SeqID		10752				11785	12558	~	
	COVERAGE		%96 86%				27%	100%	54% 99%	
_	1	_		_	_	_	, ·			_

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω	•	ia coli	us faecalis us	tus .	er pylori	pneumoni as	as	us aureus	, sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
U1013	SeqID		10753		11317			12559	13611	
02	IDENTITY	_	46%		33%			100%	79%	
	闬		101%		%98			101%		
SAU1013	SAU1013 SeqID	10330	10924	11160	11321		12063		13364	13885
10	IDENTITY	47%	52%	48%	43%		47%	100%	51%	47%
	COVERAGE	%86	%86		%86		%86			%86
SAU1013	SAU1013 SeqID	10094		11278			11859	12563		13891
11	IDENTITY	46%		46%		•	45%	100%		46%
	COVERAGE	%8		%86			%96	100%		%56
SAU1013	SAU1013 SeqID			10965	11562				13254	14089
20	DENTITY	20%	%65	49%	39%		21%	100%	%95	46%
	COVERAGE	%0	%66	%66	100%		%66	100%	%16	100%
SAU1013	U1013 SeqID		10710	11147				12612	13495	14014
27	IDENTITY	35%	46%	43			34%	100	35%	35%
	COVERAGE	%0	%16	101%			92%	101%	%66	100%
SAU1013	SeqID		10520		11365				13405	13888
39	39 IDENTITY	25%	30%		79%		54%	100	27%	45%
	COVERAGE	%66	74%		74%		%16	100%	%92	%66
SAU1013	SAU1013 SeqID	10092						12400		13889
40	IDENTITY	37%					35%	100		39%
	COVERAGE	%					101%	101%		104%
SAU1013	SAU1013 SeqID			11212	11385				13365	13952
41	DENTITY	47%	55	48	48		45%	100	48%	47%
	COVERAGE	3%	92%	92%	%86		92%		100%	93%
SAU1013 SeqID	SeqID			11162		11721			13346	13785
43	DENTITY	20%	χ.,	49%		20%		100%	58%	21%
	COVERAGE	8	100%	%66		%66		100%	92%	%66
SAU1013	SAU1013 SeqID	10171	10650	∷			11826			13755
<u> </u>	COVERAGE	81%	%88	1 %6 <i>L</i>			%Z8 8Z%	100%	%6 <i>L</i>	38% 81%

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact.	Klebsiella .	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	sn	er pylori	pneumoni as	STS	us aureus	ns	a typhi
				luenzae		ae	aeruginosa		pneumoniae	
SAU1013	SeqID	10058			11282		11803	12621		13894
46		36%			35%		43%	100		36%
	COVERAGE	%66			103%		%66	100%		%66
SAU1013	SeqID	10139		11163	11283		11877		13259	13839
47	DENTITY	63%		29%	62%		62%	100	30%	9
	COVERAGE	100%		%96			%00	100%	91%	100%
SAU1013	SeqID	10184	10508		11318			İ		13982
50	DENTITY	61%	%95	•	32%		46%	100	25%	%09
	COVERAGE	%56	%86		81%		100%	100%	%26	%26
SAU1013	SeqID		10507						13285	
51	DENTITY		%09					100%	29%	
	COVERAGE		% 96					100%		
SAU1013	SeqID	10138	10571	10977	11598	11684	11878		13175	13838
09	DENTITY	%95	70%	24%	35%	25%	28%	100	7	26
	COVERAGE	%86	101%	%86		88%	%86	100%	101%	
SAU1013	SeqID	10269	10491	11127	11577			Ì		13874
65	DENTITY	4	55	44%	40%		45%	100	20	4
	COVERAGE				%66		%	100%		101%
SAU1013	SeqID	2	10654						62151	13843
99	DENTITY	49	73%	-				100%	26%	48
	COVERAGE	99%	98%					100%	%66	%66
SAU1013	SAU1013 SeqID							12274		
3	COVERAGE							100%		
SAU1013	SeqID	-			11372		1		13243	
71	IDENTITY				40%		32%	100	34%	
	COVERAGE				86%		20%	100%	77%	
SAU1013 81	SAU1013 SeqID 81 DENTITY	10373 26%						12145 100%	3432 419	
!	COVERAGE	%86						100%		

D SAU1013 SeqID SAU1013						1	Seuanmoni	Staphytococc	Escherich (Enterococc Haemophil Helicobact Klebsiella Fseudomon Staphylococc Streptococc Salmonell	Salmoneu
		ia coli	us faecalis	ns.	er pylori	pneumoni as	57.	us aureus	sn	a typhi
				influenzae			aeruginosa		pneumoniae	
	SeqID	Į .	10707	11179	11292	11635		12146		13862
	DENTITY	53%	%09	20%	45%	39%	23%	100%	63%	25%
SAU1013 S	COVERAGE	%86		%16	%26	79%	%86	100%	%96	%86
	SeqID	10317	10625	11226	11418		12055			13761
83 I	DENTITY	37%	39%	36%	79%		38%	100	37	39%
	COVERAGE	2%	%06	%16	% %		94%	100%	112%	94%
SAU1013 SeqID	SeqID	10403	10830	11030	11368	11640	12115		13508	14067
85 I	DENTITY	33%	52%	31%	27%	32%	762	100	38%	32%
<u></u>	COVERAGE	%6	%06	%26	%68	%96	%86	100%	92%	
SAU1013 SeqID	SeqID	l	10839		11549					14068
[87] I	DENTITY	27%	35%		27%		27%	100%	32%	27%
	COVERAGE	87%			71%		%	1	%06	
SAU1013 SeqID	SeqID	10401	10801	11029	11400			12387	13510	14069
I 68	DENTITY	25%	72%	21%	%09		21%	100%	74%	25%
<u> </u>	COVERAGE	%80	%66		%		%	100%	94%	%86
SAU1013 SeqID	SeqID	10313	10881	11224	11502	11754				13767
I 86	DENTITY	25%	78%	24%	21%	21%	%95	100	%89	24%
<u>~</u> -	COVERAGE	100%	101%	100%	%66	101%	100%	101%	101%	
SAU1013 S	SeqID	10312	10882	10989	11416	11755	12050	12325	13699	13768
99 IDENTITY	DENTITY	20%	63%	48%	38%	21%	51%	100%	28%	49%
<u> </u>	COVERAGE	%66		%86		85%	%16	100%	%66	%66
U1014	SeqID		10743		11448			12326	13391	
<u></u> 	DENTITY		46%		32%			100%	41%	
<u> </u>	COVERAGE		%96		%56			100%	%96	
SAU1014 SeqID	SeqID	10267	10509					12308	13278	14050
I 80	DENTITY	37%	43%					100%	42	39%
)	COVERAGE	100%	%66					100%	101%	100%
SAU1014 SeqID	SeqID		708E 9L901				_	12498		
77	COVERAGE		93%					100%		

rocusi D	Data	Escherich ia coli	Enterococc Ha us faecalis us inf	Haemophil us influenzae	Helicobact er pylori	Klebsiella Ps pneumoni as ae ae	Pseudomon as aeruginosa	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell ia coli us faecalis us er pylori pneumoni as us aureus us atremoniae arruginosa pneumoniae	Streptococc us pneumoniae	Salmonell a typhi
SAU1014 27	SAU1014 SeqID 27 IDENTITY COVERAGE			į					13234 48% 100%	
SAU1014 32	SAU1014 SeqID 32 IDENTITY COVERAGE			11046 57% 99%	11286 60% 100%	1744 63% 101%	12065 68% 99%	12184 100% 101%	13538 26	
SAU1014 36	SAU1014 SeqID 36 IDENTITY COVERAGE	10271 27% 90%		11045 62% 99%			12067 1. 59% 98%	2183 100% 100%		13873 27% 90%
SAU1014 38	SAU1014 SeqD 38 DENTITY COVERAGE	10146 30% 88%	10825 29% 94%	11042 29% 89%				2379 100% 100%	337 27% 949	13842 30% 88%
SAU1014 44	SAU1014 SeqID 44 IDENTITY COVERAGE	10254 60% 100%	10827 66% 101%	11144 57% · 100%	11301 54% 100%		12034 60% 100%	12381 100% 100%	335 61% 99%	1379 <u>7</u> 59 1
SAU1014 45	SAU1014 SeqID 45 IDENTITY COVERAGE	1 ° 5	10828 70% 100%	11207 52% 96%			12037 54% 99%	12382 100% 100%	408 72% 1009	13949 51% 100%
SAU1014 46	SAU1014 SeqID 46 IDENTITY COVERAGE	10411 50% 98%	10674 59% 100%				11903 12 33% 97%	12383 100% 100%		1 3
SAU1014 47	SeqID IDENTITY COVERAGE							12683 100% 101%		
SAU1014 52	SAU1014 SeqID 52 IDENTITY COVERAGE							12684 100% 100%		
SAU1014 SeqD 55 DENT COVE	SeqID IDENTITY COVERAGE							12686 100% 100%		

WO 02/086097 PCT/US02/03987 .

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis	STA	er pylori	pneumoni as	sz	ns aureus	sm	a typhi
	_			influenzae		ae	ıosa		pneumoniae	
SAU1014 SeqID	SeqID		10705					12680		
61	DENTITY		54%				76%	100		
	COVERAGE		93%				%98	101%		
SAU1014	SeqID	10268	10708				61611	12679	13584	14051
63	63 IDENTITY	75%	45%				79%	100%	26%	73%
	COVERAGE	77%	%86				91%	101%	%88	77%
SAU1014	SeqID	10469	10905					12254	13454	13905
16	76 IDENTITY	38%	29%					100%	25%	76%
	COVERAGE	\$	94%					100%		73%
SAU1014	SeqID	10125	10920	10975	11290		11894		13580	
81	DENTITY	40%	39%	40%	32%		39%	100%	41%	
	COVERAGE	93%			93%		%96	100%	%96	
SAU1014	U1014 SeqID	10126		10974	11342	11738	11893		13360	14092
82	IDENTITY	25%	51%	52%	44%	36%	25%	%001	48%	37%
	COVERAGE	%86	100%	%86	%86	77%	%86	100%	%66	101%
SAU1014	SeqID	10127	10918	10973	11341				13674	13871
83	DENTITY	%59	41%	%69	28%		%19	100	519	31%
	COVERAGE	%88		%06	%06		81%	101%	92%	94%
SAU1014 SeqID	SeqID		10730				11868		13450	13799
88	DENTITY		28%				25%	10	33%	28
	COVERAGE		82%				74%	100%	86%	73%
SAU1014	AU1014 SeqID		10580						13315	
16	DENTITY	-	42%			-		100%	42%	
	COVERAGE		104%		•			100%	95%	
SAU1014	SAU1014 SeqID	10073	10581	11020	11284		11831			13715
26	DENTITY	38%	25%	37%	29%		37%	100	43%	38
	COVERAGE	98%	101%	%86	78%		94%	101%	85%	%86
SAU1014 SeqID	SeqID	10074		11021	11381			12167	13564	13716
93	DENTITY	45%		41%	30		43%	100	64%	44
	COVERAGE	%96		%16	94%		%86	101%	%16	%96

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis	STA	er pylori	pneumoni as	zs.	us aureus	sn	a typhi
				influenzae		ae	aeruginosa		oniae	
SAU1014 SeqID	SeqID	10030	10805	11188	11458				13333	14077
95	IDENTITY	32%	34%	36%	%67		33%	100%	32%	32%
	COVERAGE	%76		%06	%98		%06	100%	94%	95%
SAU1014	SeqID		10806					12361		
26	DENTITY		%65					100%		
	COVERAGE		100%					100%		
SAU1015	SeqID	10121				11712			13249	
60	09 IDENTITY	34%				36%		100%	49%	
	COVERAGE	104%				104%		100%	83%	
SAU1015	SeqID		10601						13465	
26	IDENTITY		38%	_				100%	34%	
	COVERAGE		%88	- i				100%		
SAU1015	SeqID							12544		
29	DENTITY							%001		
	COVERAGE							100%		
SAU1015	SeqID			111182	11526					14019
41	IDENTITY	41%	69	42%	38%		42%	100	%65	40%
	COVERAGE	>	ĺ	101%	%86		101%			
SAU1015	SAU1015 SeqID	10025	10634	11183			11867	12346	13406	14091
43	IDENTITY	76%	33	27			27%	10	329	78%
	COVERAGE	%8/	%16				73%	100%	%96	%9 <i>L</i>
SAU1015	SeqID		10636	11187	11329				13633	14076
45	DENTITY	31%	20%	32%	27%		28%	100%	47%	30%
	COVERAGE	%86	%66	%16	83%		%16	100%	%16	%86
SAU1015 46	SAU1015 SeqID 46 IDENTITY		10638 27%					12349 100%		
!	COVERAGE		%08					100%		
SAU1015 SeqD 49 IDEN	SeqID IDENTITY	10443 40%	10762 38	308		11767 38%	12049 29%	12549 100%	3460 39%	14030 38%
	COVERAGE	70%	%56			40%				

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	sn	er pylori	pneumoni as	ZZ.	ns aureus	sn	a typhi
	İ			influenzae		ae	aeruginosa		pneumoniae	
SAU1015	SeqID	10172	10490	11194	11360					13939
51	IDENTITY	52%	77%	76%	27%		79%	100%	<u>%91</u>	52%
	COVERAGE	%16		<u>%</u>			3	100%		
SAU1015	1015 SeqID		10485		11485			12551	13672	
54	DENTITY		48%		79%			100%	46%	
	COVERAGE		83%		81%			101%		
SAU1015	SAU1015 SeqID	10400	10937	11073	11355	11759	12112			14064
19	DENTITY	44%	21%	44%	38%	42%	44%	100%	46%	43%
	COVERAGE	%66	%66	%66	100%	%66	100%	100%	%66	%66
	SeqID	10134	10552	11211					13448	13826
65	DENTITY	37%	20%	35%			36%	100%	44%	36%
	COVERAGE	93%	%96	94%			95%	100%	%66	92%
SAU1015	11015 SeqID							12144		
29	IDENTITY							100%		
	COVERAGE							100%		
SAU1015	SeqID	10037	06901	11208		11700	11835		13563	13900
70	DENTITY	32%	48%	31%		34%	33%	100	37%	30%
	COVERAGE	100%	100%	%66		95%	02%	100%		100%
SAU1015	SAU1015 SeqID		10691				1	Γ	13308	-
71	DENTITY		45%				33%	100%	31%	
	COVERAGE		%86				94%	100%	97%	
SAU1015 SeqID	SeqID	10068	10692			68911				14083
72	DENTITY	79%	3			46%	43%	100	45%	25
	COVERAGE	75%	101%			%68	% 96	100%	%86	75%
SAU1015 SeqID	SeqID	10096		11270			Ì	12587		14054
73	DENTITY	31%	49	32%			30%	100		31%
	COVERAGE	%86	103%	%86			101%	100%		%86
SAU1015 SeqID	SeqID							12588		
<u>t</u>	COVERAGE							101%		

.. .

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	ıns	er pylori 🏻 🎚	pneumoni as	ZZ	us aureus	Sn	a typhi
				influenzae	•	ae	aeruginosa	.	pneumoniae	
U1015	SeqID		69801						13638	
75	DENTITY		31%					100%	27%	
	COVERAGE		%86				·	100%	%96	
SAU1015	SeqID		10762				12049		13460	
76 IDENTITY	IDENTITY		32%				767	100	39%	
	COVERAGE		93%				%86	102%	%86	
SAU1015	SeqID							12598	13487	
98	86 IDENTITY							100%	34%	
	COVERAGE							101%	78%	
SAU1015	SeqID	10249	10605	10987	11555	11741	1952	12406	1283	13950
92	DENTITY	51%	7_	55	53	51%	.25	100	2	S
	COVERAGE	101%			100%		101%			101%
SAU1015	SAU1015 SeqID							12478		
66	IDENTITY							100%		
	COVERAGE							100%		
SAU1016	SAU1016 SeqID	10449			11390		12048	12629		13816
10	IDENTITY	38%			38%		40%	100		38%
	COVERAGE	105%			101%		%66	100%		105%
SAU1016	SAU1016 SeqID							12637		
12	DENTITY							100%		
	COVERAGE							100%		
SAU1016	SAU1016 SeqID	10167			11534					13851
14	DENTITY	4	55	29%	762		39%	100	53%	4
	COVERAGE	100%		93%	94%		82%		%66	100%
SAU1016	SAU1016 SeqID	10186	10667		1	11695	1872	12432		13903
16	DENTITY	<u>ო</u>	28%		32%	762	34	100		33%
	COVERAGE		%66		38%	104%	%96	100%		100%
SAU1016	SAU1016 SeqID	10162					12104	12		13832
77	COVERAGE	100%			104%	%8L 78%	101%	100%		100%
-	_	_	_	-					_	•

WO 02/086097 PCT/US02/03987 ...

LOCUSI Data		Escherich	Enterococc .	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
_		ia coli	us faecalis	ns.	er pylori	pneumoni as	as	us aureus	STA	a typhi
			-	uenzae		ae	aeruginosa		pneumoniae	
SAU1016 SeqID	SeqID	10193			91811				13430	3
24	DENTITY	76%		27%	38			100%	79%	76%
	COVERAGE	101%		106%	%26			100%		1
SAU1016	SeqID							12410	1	
30	30 IDENTITY							100%		
	COVERAGE							100%		
SAU1016	SeqID							12407		
32	DENTITY							100%		
	COVERAGE							100%		
SAU1016	SeqID		10886					12201	33	
37	DENTITY		44%					100%	38%	
	COVERAGE		%66					101%		
3AU1016	SAU1016 SeqID	10223					11918	12193		
=	DENTITY	51%					23%	100%		
	COVERAGE	92%					%56	100%		
3AU1016	SeqID		10790		11552		12021	12491	13369	
51	DENTITY		38%		78%		34%	100%	42	
	COVERAGE		%26		%68		%06	101%	100%	
SAU1016	SeqID		10791		11369		12022	12492	13368	
52	52 IDENTITY		62%		49%		20%	100%	%95	
	COVERAGE		%26		91%		%56	100%		
SAU1016	SeqID		10792		11520			12493		
53	DENTITY		73%		46%		46%		63%	
	COVERAGE		100%	-	100%		%	100%		
SAU1016 SeqID	SeqID	l	10793				11896	2494	3	
55	DENTITY	31%	50,				30%	Õ	339	
	COVERAGE	84%	%26				83%		93%	
U1016	SeqID							\sim		
63	IDENTITY COME ACE							100%		
_	COVERAGE		_		_		_	100%		_

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis	sn	er pylori	pneumoni as	as	us aureus	ns	a typhi
			_	influenzae		ав	aeruginosa		pneumoniae	
SAU1016	SeqID	10202	10512	11138						13823
64	IDENTITY	37%	41%	36%			38%	100	38	36%
	COVERAGE	%86		108%			106%	101%	105%	%86
SAU1016	SeaID	10067					11846	12594		14082
74	DENTITY	27%					72%	100%		72%
	COVERAGE	103%					101%	100%		103%
SAU1016	SeqID	10190	10644	11055	11398		12105		13264	13756
79	IDENTITY	41%	%	42%	36%		45%	100	45%	40%
	COVERAGE	%06		%66	%98		%06	100%	86	%06
SAU1016	SeqID	10464	10746				11861	12592	13419	13987
81	IDENTITY	39%	46%				31%	100%	44%	40%
	COVERAGE	100%	102%				%	100%	102%	%16
SAU1016	SeqID	10156	10	11265					l	13884
82	DENTITY	28%	30%	28%				100%	34%	76%
	COVERAGE	94%		102%				100%		94%
SAU1016	SeqID		10590						13396	
85	IDENTITY		79%				37%	100		
	COVERAGE		%88			:	%	100%	100%	
SAU1017	SeqID	10129	10586	11027	11610		11890		13352	4
17	DENTITY	33%	21%	35%	31%		38%	10	49%	ų
-	COVERAGE	101%		93%	70%		%66	100%	93%	101%
SAU1017	SeqID	10309	10588	11268	11337				13678	13772
24	DENTITY	44%	44%	41%	36%		43%	100%	45%	43%
_	COVERAGE		%66	%/6	81%		%08	100%	%86	%26
SAU1017	SeqID	10130	10664	11026	11461				13550	14071
26	DENTITY	'n	š	4	ž		40%	100	48%	41
	COVERAGE	101%	100%	101%	101%		100%	100%	100%	77%
SAU1017	SAU1017 SeqID		10665					12133	13551 49%	
7	COVERAGE		101%	····				101%		

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ą		ia coli	us faecalis us	ns	er pylori	pneumoni as	as	ns aureus	sn	a typhi
				zae			aeruginosa		oniae	
SAU1017	SeqID	10019	99901	11053		11734	11800		13182	14015
28	IDENTITY	34%	54%	35%		35%	34%	100%	23%	34%
	COVERAGE	%98	%56	88%		85%	%06	100%	94%	%98
SAU1017	SeqID	10225					11817	12519		13958
36	36 IDENTITY	78%					38%	100%		762
	COVERAGE	72%					%66	100%		72%
SAU1017	SeqID				11405			12518		
37	DENTITY				32%		30%	100		
	COVERAGE				78%		%96	101%		
SAU1017	SeqID		10562					12367		
44	DENTITY		44%					100%		
	COVERAGE		101%					%		
SAU1017 SeqID	SeqID	10474	10606			11671		12448	13165	13706
51	IDENTITY	30%	46%			30%		100%	45%	31%
	COVERAGE	85%	100%			82%		100%		79%
SAU1017	SAU1017 SeqID	10438	10626	11037	11410		11997		13187	14043
52	IDENTITY	46%	75%	47%	40%		45%	10	69	4
	COVERAGE	115%	%66		120%		116%	100%	%66	115%
SAU1017	SAU1017 SeqID	10439	10627	9801	11571		5179	2446	13646	14042
54	DENTITY	46%			53,		46%		89	
	COVERAGE	116%	100%	117%	%08		118%	100%		116%
SAU1017	SAU1017 SeqID	ŀ	10479		11409		8118	2445	\mathbf{z}	13967
26	DENTITY	65%	83%	%99	65%		%89	9	82%	%59
	COVERAGE	91%	93%		91%		91%	101%	93%	93%
SAU1017	SAU1017 SeqID	10220	10784	11276		59/11	11950	12350	13280	13934
71	IDENTITY	43%	%59	37%		35%	36%	100%	%29	41%
	COVERAGE	91%	101%	77%		85%	80%	101%	%86	91%
SAU1017 SeqID	SeqID	10240	10785	11275	11294		11925		13281	13863
72	DENTITY	20%	69	51	27%		38%	100	19	48
	COVERAGE	100%	101%	100%	- 1		100%	100%	101%	84%

LOCUSI Data	Data	Escherich .	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us		er pylori 🏻 🏻	pneumoni as	SZ	us aureus	ns	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1017	SeqID		10673		11448				13176	 -
77	DENTITY		64%		43%			100%	%29	-
	COVERAGE		%26		%88			100%	%86	
SAU1017	SeaID		10495				11917	12353	13308	
81	IDENTITY		%19				38%	100%	28%	
	COVERAGE		%66				93%	100%	85%	
SAU1017	SeqID		10496			11689	91611		13309	
82	DENTITY		75%			44%	41%	100%	40%	
	COVERAGE		100%			%68	%66	100%	%96	
SAU1017	SeqID	10037	10498	11208		11700	11866			13900
84	DENTITY	44%	65%	45%		35%	42%	100%	37%	44%
	COVERAGE	%/6				92%	%66	100%		%16
SAU1017	SeqID	10350	10524	11106	11437				13207	
06	DENTITY	51%	81%	25%	48%		25%	100%	79%	
,	COVERAGE	%			%98		%06	101%	%66	
SAU1017	SeqID	10349	10525	11107	11436					14108
91	DENTITY	%29	%06	%69	62%		%99	100	8	
	COVERAGE	101%	101%	101%	100%		100%	101%	101%	102%
SAU1017	SeqID	10348	10526	11108			l		13209	14107
92	DENTITY	23%	%99	52%			49%	100	68%	20
	COVERAGE		94%	95%			%26	101%	94%	%96
SAU1017	SeqID	10347	10527	11109	11589	11654	2167		13210	14106
93	DENTITY	64%	%58	%59	51%	64%	63%	100	22	9
	COVERAGE		. 101%	%66	%66	101%	%66	101%	100%	101%
SAU1017	SAU1017 SeqID	10345	10528	11111	11435		5165		13212	14104
95	DENTITY	51%	262	47%	44%		44%	100	192	S
	COVERAGE	%66	101%	%66	%86		100%	101%	101%	101%
SAU1017	SAU1017 SeqID	10343	10530	1113	11433		5163 48%	12221	13214	14102 46%
<u> </u>	COVERAGE	100%	101%				%96			

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis	571	er pylori	pneumoni as	SI	us aureus	577	a typhi
	1			influenzae		ae c	aeruginosa	. 1	pneumoniae	_
SAU1017	SeqID	10342	10531	11114	11432		5162	12222	13215	14101
86	IDENTITY	25%	72%	25%	62%		25%	100%	%99	25%
	COVERAGE	%66	%56	%66	87%		%66		%96	%66
SAU1017	SeqID	10341	10532	11115			5161	12223	13216	
66	99 IDENTITY	51%	62%	42%			42%	100%	%69	
	COVERAGE	%	102%	100%			%16	102%	%86	
SAU1018	SeqID	10340	10534	11116	11431		5160		13217	14099
00	00 IDENTITY	47%	23%	46%	40%		42%	100%	84%	47%
	COVERAGE	%66	101%	%66	%06		%66	101%	101%	%66
SAU1018 SeqID	SeqID	10075	10536	11008	11348	11633	11942		13219	13717
02	IDENTITY	48%	64%	52%	31%	47%	23%	100%	26%	47%
	COVERAGE	%16			93%	%16	84%	100%	%96	%16
SAU1018 SeqID	SeqID	10111	10537	11052	11429	11651	11876		13220	14010
03	DENTITY	71%	84%	71%	%09	%02	71%	100%	82%	10%
	COVERAGE	%26	101%	%16	100%	101%	97%	101%	101%	101%
SAU1018	SAU1018 SeqID	10337	10539	111119	11427					14097
90	IDENTITY	23%	75	529	28		%09	100	74	22
	COVERAGE	%96	101%	%66	%66		%96	101%	101%	
SAU1018 SeqID	SeqID	10336		11120	11426				13222	14096
90	DENTITY	%79	<u></u>	64%	%09		%19	100	82%	63%
	COVERAGE	100%	101%	100%	102%		.00%	101%	92%	101%
SAU1018 SeqID	SeqID	10334		11122	11583		11987		13223	14094
	DENTITY	45%	71%	42%	37%		42%	100	28%	42%
	COVERAGE	%66	100%	%66	94%		%66	100%	%66	%66
SAU1018	SAU1018 SeqID	10333	10542	11123	ĺ	11627		12232		14093
80	IDENTITY	48%	69	49%	4	48	45%	100	6	48
	COVERAGE	%86	103%	%86		78%	%86		106%	%86
SAU1018 SeqID	SeqID	10053	10544	11229	11625		11909	12233	13441	14110
10	DENTITY	35%	25	346	32	36	336	100	47%	36
	COVERAGE	16%	%88	18%	 	73%	12%	100%	88%	73%

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis	sn	er pylori	pneumoni as	SZ	ns anreus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1018	SAU1018 SeqID	10196	10545	11068	11463	11666	11888	12234	13440	13721
11	IDENTITY	38%	46%	33%	32%	33%	32%	100%	45%	34%
	COVERAGE	78%		%		%	82%			%9/
SAU1018	SeqID	10327	10602	11241	11471	11655	5188	12237	13356	13729
14	IDENTITY	28%	%69	21%	47%	%95	25%	100%	%59	%95
	COVERAGE	94%	%96	94%	%76	71%	97%	101%	%66	94%
SAU1018	SeqID	10326		11240	11288		12016	12238	13361	13732
115	DENTITY	49%		48%	46%		53%	100%	%69	21%
	COVERAGE	%86		%86	93%		93%	101%	%66	%66
SAU1018	SeqID			11231	11307			12369	13494	
18	DENTITY			32%	33%		31%	100%	35%	
	COVERAGE			%56	%06		%96	101%	93%	
SAU1018	SeqID	10158					12004	12371		
24	24 IDENTITY	33%					28%	100		
	COVERAGE	1%					75%	100%		
SAU1018	SeqID	10207	10747	11040	11481				13388	13775
33	DENTITY	45%	46%	78%	44%		35%	100	46%	44%
	COVERAGE	100%	102%	%56	107%		117%	100%	103%	%68
SAU1018	SeqID	10398	10849	11236						13924
39	DENTITY	30%	33%	32%			25%	100%	32%	78%
	COVERAGE	94%	78%	%06			%86	100%	83%	94%
SAU1018	SeqID	10105	10942	11075	11376	11723	11855	12510	13445	13999
42	IDENTITY	45%	20%	33%	48%	33%	47%	100	%59	45%
	COVERAGE	% %	%56	95%	%66	94%	%16	100%	82%	%66
SAU1018	SeqID	10231	10739		11567				13544	13953
45	IDENTITY	30%	47%		40%		79%	100	43	78%
	COVERAGE	101%	102%		102%		01%	100%	102%	101%
SAU1018	SeqID		10740	1209	<u>, `</u>		12058	2567		13713
49	49 DENTITY	56%	77%	54%	56%		56%	100	75%	56%
_	COVERAGE	 				_	1057e	 	78%	

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella 1	seudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis	sn	er pylori	oneumoni	57	us aureus	rts.	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1018	SeqID							12569		
<u> </u>	COVERAGE							100%		
SAU1018	SeqID	10257	10817	10955	11334		11802			13797
62	IDENTITY	40%	63%	40%	33		39%	100	62%	39
	COVERAGE	%86	100%	%86	101%		%86	100%	%66	%86
SAU1018	SeqID							12572		
4	64 IDENTITY COVERAGE			•				100%		
SAU1018	SeaTD	10044	10834	11151	11417		11938	12318	13227	13910
65	DENTITY	43%	28%	45%	40%		40%	10	54%	41%
	COVERAGE	85%			81%		%2	100%	88%	88%
SAU1018	SeqID		10835				ł		13586	
99	DENTITY		42%				767	100	4	
	COVERAGE		102%				%66	100%	100%	
SAU1018	SeqID	10049	1	11086	11305				13228	13898
89	IDENTITY	45%	%95	45%	42%		48%	10	4	45
	COVERAGE	101%					100%	100%	108%	%66
SAU1018	SeqID		10734						13668	
69	69 IDENTITY	_	25%					100%	4	
	COVERAGE		100%					100%	101%	
SAU1018	SAU1018 SeqID							12169		
2	COVERAGE		•••					101%		
SAU1018	U1018 SeqID	10325					12081	12162		13728
81	DENTITY	45%					41%	100		42%
	COVERAGE	%86					97%	100%		%86
SAU1018 SeqID 82 IDEN	SeqID IDENTITY	10246 33%	10824 30%			11743 31%	12080 31%	12163 100%		13727 33%
<u>}</u>	COVERAGE	%96	%68			73%				%56

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella.	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	sn	er pylori	pneumoni as	as	ns aureus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1018	SeqID	10374		11125				12280		13809
		23%		49%			47%	100	-	23%
	COVERAGE			87%			93%	100%		91%
SAU1018	SeqID	10295	10766	11196	11483		16/11			13739
91	DENTITY	63%	72%	62%	%09		28%	100	679	49
	COVERAGE	91%		%06	%06	;	93%	100%	87%	91%
SAU1018	SeqID	10300	10724			1		12282	13290	13825
93	DENTITY	46%	47%			41%	35%	100	40%	43
	COVERAGE					হ	93%	100%	95%	%96
SAU1019	SeqID	10047	10648	680	11451		11935	2617		13913
8	DENTITY	34%	38%	33%	31%		31%	20	34%	33
	COVERAGE		101%	102%	105%		%4%	100%	93%	%86
SAU1019	SeqID	1036	10482	059	11415		11995	2442	3171	13964
07	DENTITY	_	%06	<i>1</i> 6%	74%		73%	100	75	7
	COVERAGE			100%			01%		101%	
SAU1019	SeqID	10390		11249	11346			12441		14063
60	IDENTITY	41		32%	29,		36%	100		32%
	COVERAGE	%66		%88	%06		201	100%		73%
SAU1019	SeqID	10199						12440		
10	10 IDENTITY	%95					%09	100		
	COVERAGE	97%					%16	100%		
SAU1019	SAU1019 SeqID		10838					12439		
115	DENIITY		%97					%001 		
	COVERAGE		%06	<u></u>				100%		
SAU1019	SAU1019 SeqID							12438		
22	IDENTITY							100%		
	COVERAGE		·					100%		
SAU1019	SeqID							12709		-
84	48 IDENTITY COVERAGE							100%		
_		_	_	_	_	_	_		_	-

LOCUSI Data	Data	Escherich	Enterococc .	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Streptococc	Salmonell
А		ia coli	us faecalis	ns	er pylori	pneumoni	as	ia coli us faecalis us er pylori pneumoni as us aureus us a typhi	sn	a typhi
				influenzae			aeruginosa		pneumoniae	
SAU1019	SeqID	10101						12186		14003
99	IDENTITY	45%	31%	32	37%	43%	45%	100		45%
	COVERAGE	%	91%	%76	%98	88%	88%	101%		%88
SAU1019	SeqID	10106	10568	11242	11480		11965	12187		13998
89	IDENTITY	30%	31%	33%	27%		30%	100%		31%
	COVERAGE	%06	%76	%06	%88		83%	100%		%9/
SAU1019	SeqID		10938					12454	13500	
91	91 IDENTITY		40%					100%	25%	
	COVERAGE		101%					101%	%08	
SAU1019	SeqID	10388	939	9901	11575	11646	11957		13386	
95	DENTITY	46%	47%	46%	28%	46%	21%	10	51%	
	COVERAGE	75%	78%	73%	72%	72%	49/	100%		
SAU1019	SAU1019 SeqID	10237	0940	6660	11325				13455	13956
96	IDENTITY	38%	64%	36%	38%		35%	100	58	37%
	COVERAGE	%	%66		%86		%6(100%	100%	
SAU1019	SeqID	10476	10941	11259	11304		12035		13241	13708
66	IDENTITY	48%	vo	46%	49%		51%	Õ	94	48%
	COVERAGE	%16			%16		%96			%16
SAU1020 SeqID	SeqID	10258	10628	11134	11489			12424	136	14088
01	DENTITY	47%	28%	47%	43%		49%	<u>0</u>	46%	4
	COVERAGE	105%	%86	106%	105%		%86		%86	105%
SAU1020	SAU1020 SeqID							12425		
02	DENTITY							100%		•
	COVERAGE							100%		
SAU1020	SAU1020 SeqID							12426		
03	DENTITY							100%		
	COVERAGE							101%		
SAU1020 SeqID	SeqID	·		11267	11555			12427	13260	
3	COVERAGE			95%				101%		

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Dseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	Sm	er pylori	pneumoni as	SI	us aureus	sn.	a typhi
				influenzae		ae	aeruginosa	,	pneumoniae	
SAU1020 SeqID	SeqID			11266					13258	
02	IDENTITY			%09				100%	61%	
	COVERAGE			%16				100%	%16	
SAU1020	SeqID						12086	12198		13989
32	IDENTITY						62%	100%		28%
	COVERAGE						%			75%
SAU1020	SeqID	10299	10933	10974	11514		11860			13763
35	IDENTITY	%09	20%	76%	76%		41%	100	31%	%95
	COVERAGE	%86	%66	85%			%16	100%	%98	%66
SAU1020	SeqID	10141	10916	11011	11344					13977
44	DENTITY	%95	%19	%65	20%		28%	100%	%69	%95
	COVERAGE	100%	102%	100%	101%		101%	100%	102%	100%
SAU1020	SAU1020 SeqID	10103	10723				12089	12415		14001
46	IDENTITY	32%	28				767	10		767
	COVERAGE	%	%98				%06	100%		%68
SAU1020	SAU1020 SeqID			10962	11291				13652	13781
49	DENTITY	36%	36	49%	4		41%	100	46%	36%
	COVERAGE	101%	%66	%16	99%		100%	100%	%86	101%
SAU1020 SeqID	SeqID	10280		11095	11356	9/911	1	12417		13877
54	IDENTITY	23%	50,	33	3	23	22%	100		23%
	COVERAGE	100%	%62	100%	100%	%02	%00	100%		100%
SAU1020	U1020 SeqID	10085	10771	11152	11622			12286	13226	14059
59	DENTITY	43%	77	43	₹	_	41%	100	72%	40%
	COVERAGE	107%			102%		109%	100%	71%	%68
SAU1020 SeqID	SeqID	10380	10564	11155					13407	13798
29	DENTITY	32%	52%	319			78%	100	44%	31%
	COVERAGE	%56	%86	%86			%26	100%	%86	94%
U1020	SeqID		10680					12288		
89	COVERAGE		29%					100%		•
_		_		_	_	_	_		_	-

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis	sn	er pylori	pneumoni as	as	us aureus	sn	a typhi
				influenzae	-	ae	aeruginosa		pneumoniae	
SAU1021	SeqID							12696		
02	IDENTITY							100%		
	COVERAGE						-	100%		
SAU1021	SeqID		10641					12178		
13	IDENTITY		34%					100%		
	COVERAGE		110%					101%		
SAU1021	SeqID		10642					12180	13480	
16	IDENTITY		767					100%	319	
	COVERAGE		85%					100%	81%	
SAU1021	SeqID		10643		11604			12181	81	m
17	DENTITY	43%			38%		42%	100%	25%	41%
	COVERAGE	101%	100%		102%		~	100%	100% 100%	85%
SAU1021	SAU1021 SeqID		10859					12176	13400	
29	IDENTITY		%09					100%	26%	
	COVERAGE		%86					100%	%66	
SAU1021	SAU1021 SeqID		10760					12177	33	
32	DENTITY		39%					100%	41	
	COVERAGE		101%					100%	101%	
SAU1021	SeqID	10						12457		
42	42 IDENTITY	37%						100%		
	COVERAGE	%66						100%		
SAU1021	SeqID	10154						12458		
43	IDENTITY	32%						100%		
	COVERAGE	100%						100%		
SAU1021	SAU1021 SeqID							12459		
44	DENTITY							100%		
	COVERAGE							100%		
SAU1021	SAU1021 SeqID			٠				12462		
3	COVERAGE			····				100%		

LOCUSI Data	Data	Escherich	Enterococc .	Haemophil	Helicobact	Klebsiella .	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	ns.	er pylori	pneumoni as	SE	us aureus	· sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
U1021	SeqID							12460		
	DENTITY					-		100%		
	COVERAGE							100%		
SAU1022	SeqID							12665		
8	00 IDENTITY COVERAGE	*****						100%		
SAU1022	SeqID							12666		
01	DENTITY							100%		-
	COVERAGE							101%		
SAU1022	SeqID	10447	10797	10994	11358		11986		13192	13818
22	DENTITY	28%	%89	28%	25%		%69	100	%19	28%
	COVERAGE			%66	%66	;	%66	100%	%66	%66
SAU1022	SeqID	10323	10798	11193					13561	13731
31	DENTITY	41%	20%	42%			38%	100	46%	41%
	COVERAGE	94%		%68			0	100%	%66	94%
SAU1022	SeqID	10100	10,			28911		12530	562	14004
32	32 IDENTITY	36%	40%			35%		100%	42%	34
	COVERAGE	75%				74%		100%	79%	75%
SAU1022	SAU1022 SeqID		10800					12531	4	
33	DENTITY		%19					100%	45%	
	COVERAGE		%86					100%	91%	
SAU1022	AU1022 SeqID	110	10845					12539		
41	DENTITY	≈ —	4					100%		
	COVEKAGE	/4/	766		1	-	1			
SAU1022	SAU1022 SeqID		10847 10	953			11907	2540	93	~
42	DENTITY	47%		4	.n	4			%0/	47%
	COVERAGE	ان	- 1	101%	100%	%86	100%	100%	100%	- 1
SAU1022	SAU1022 SeqID	10274	10854	154	11476		11932	542	13	\sim
40	COVERAGE	%66 %66	100%	97%	34% 96%		100%		101%	%66 66
_		-				_	•			

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	ns	er pylori	pneumoni as	as	us aureus	sn	a typhi
				influenzae		ae	ruginosa		pneumoniae	
SAU1022 SeqID	SeqID								13180	
47	DENTITY							100%	28%	-
	COVERAGE							% [0]	0/4/0	
SAU1022	11022 SeqID		10677			11748	11981			13825
	DENTITY	39%	48%			36%	37%	100	43%	41%
	COVERAGE	%62	93%			73%	61%	100%	95%	%86
SAU1022	SeqID	10451			11515				13531	
26	56 IDENTITY	33%			32%				75	
	COVERAGE	%16			%16			101%	101%	
SAU1022	SeqID	10451			11515				13274	
57	IDENTITY	38%			29%			100%	85	
	COVERAGE	81%			75%			101%	101%	
SAU1022	SeqID		10844						3519	13782
59	IDENTITY		%59					100%	72%	25%
	COVERAGE		97%					100%		87%
SAU1022	SeqID	10182	10646			11682		12246	8	13984
09	IDENTITY	34%	37%			32%		100%	83	32
	COVERAGE	%96				%96		101%	100%	
SAU1022	SAU1022 SeqID	10183	10731					12247	3276	131
61	IDENTITY	25%	300					100%	749	56
	COVERAGE							100%	%66	1
SAU1022	SeqID	ᆮ	10759			11724		12248	13277	13881
62	IDENTITY	35%	39%			31%	, -	100%	82	34%
	COVERAGE	104%	103%			84%		100%	100%	
SAU1022	VU1022 SeqID	10160					5103	12250		13830
64	DENTITY	45%					44%	100		43%
	COVERAGE	100%					ଞ୍ଚା	100%		101%
SAU1022 65	SAU1022 SeqD 65 IDENTITY						11926 37%	12251 100	·	
	COVERAGE					_	100%	100%		_

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	"seudomon"	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
А		ia coli	us faecalis us	sn	er pylori 🏻 🖟	pneumoni as	SZ SZ	ns aureus	sn	a typhi
				influenzae		ae c	aeruginosa		pneumoniae	
SAU1022	SeqID							12252		
89	DENTITY COVED A GE							100%		
C 4 T 11 000	CO VENCIO							12252		
SAU1022	SAUIUZZ SEQID					-		100%		
2	COVERAGE							100%		
SAU1022	SeqID							12378		
80	IDENTITY							100%		
	COVERAGE							100%		
SAU1022	SeqID	10316	i	11227	11469		12054			13762
81	DENTITY	45%		48%	39%		45%	<u>ŏ</u>	9	4
	COVERAGE	%66		%66	100%		%66	100%	100%	
SAU1022	SeqID	10260	10875	10982	11560		11945		13251	14086
83	IDENTITY	41%	29%	43%	41%		41%	100%	24%	41%
-	COVERAGE	%88		%88	%26		%56	102%		%88
SAU1022	SAU1022 SeqID							12389		
84	DENTITY							100%		
	COVERAGE							100%		
SAU1022	SAU1022 SeqID	10385	\sim						13688	
98	IDENTITY	37%	42%					100%	χ,	
	COVERAGE	8	%66		į			100%	101%	
SAU1022	SAU1022 SeqID	10220	0594	11025				12398		13934
87	DENTITY	42%	45	4		39%	41%	ğ	41	39
	COVERAGE	81%	95%	88%		%	84%	101%	94%	
SAU1022	SAU1022 SeqID	10399	0579	11018	11455	•		12368	13230	14065
92	IDENTITY	4	55	4	37	4	42%	100	57%	4
	COVERAGE	101%	100%	101%	100%	101%	101%	100%		101%
SAU1022	SeqID	 -						12610		
4	COVERAGE							100%		
_		_	-	_	-	-	_	_	•	-

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Streptococc	Salmonell
2		ia coli	us faecalis	, sn	er pylori	pneumoni as	as	ia coli us faecalis us er pylori pneumoni as us aureus us a typhi	us	a typhi
			j	influenzae		ae	uginosa		niae	
SAU1022 SeqID	SeqID	10405			11303		12117		13686	14066
97	DENTITY	52%	%99	51%	46%		20%	100	64%	48%
	COVERAGE	%	100%		%66		%8(100%	100%	77%
SAU1022	SeqID	10404	10914	11031		11686			13255	
86	98 IDENTITY	36%	62%	33%		35%	78%	100	54	
	COVERAGE	2	%66	87%		%68	87%	100%		
SAU1023	SeqID			11248	11625	11732			13350	13995
80	08 IDENTITY	38%	46%	37%	33%	36%	38%	20	45	39%
	COVERAGE	%	100%	%98	87%	88%	%06	100%	100%	%56
SAU1023	SAU1023 SeqID	10122	10795				11806	207		14039
18	IDENTITY	32%	75%				37%	<u>ŏ</u>	63%	31%
	COVERAGE	%	%26		-		72%	100%		
SAU1023			10550				12102	657	13316	13829
33	DENTITY	41%	43%				40%	100	31%	38%
	COVERAGE	%96	%16				~		%06	%56
SAU1023 SeqID	SeqID	10056					12101	12658		
34	DENTITY	20%					20%	100		
	COVERAGE	91%					92%			
U1023	SeqID							12659		
36	DENTITY							100%		
	COVERAGE							101%		
SAU1023	SAU1023 SeqID							12660		
40	DENTITY							100%		
	COVERAGE							100%		
SAU1023	SAU1023 SeqID							12655		
45	DENTITY						37%	100		
	COVERAGE						%98	101%		
SAU1023 SeqID	SeqID	l						12433		
20	DENTITY							100%		
	COVERAGE							101 /0		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Sscherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	Sn	er pylori	pneumoni as	as	ns aureus	571	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
U1023	SeqID		10657						13426	
52	DENTITY		25%			-		100%	39%	,
	COVERAGE		100%					100%	91%	
SAU1023	SeqID		10726					12435		
55	IDENTITY		39%					100%		
	COVERAGE		87%					100%		
SAU1023	U1023 SeqID	10227	1	11203	11546				13324	13960
56	DENTITY	43%	%09	45%	48%		43%	100	26%	43%
	COVERAGE	%56		95%	%86		%56	100%	%66	95%
SAU1023	SeqID							12437		
78	DENTITY							100%		
	COVERAGE							100%		
SAU1023	SeqID							12265		
80	DENTITY						32%	100		
	COVERAGE						71,			
SAU1023	SeqID	10367			11386			12267		13802
88	88 IDENTITY	36%		33%	27		. %6£	100		36%
	COVERAGE	%96		%06	101%		%66	100%		%96
SAU1023 SeqID	SeqID	10063	10547	10988						13917
68	DENTITY	33%	29,	319			36%	100	35%	33
	COVERAGE	%66	%26	97%			95%	100%	%86	%66
SAU1023	1U1023 SeqID	10192				11678		12269		13753
06	DENTITY	41%				76%		100%		42%
	COVERAGE	100%				%/6		101%		100%
SAU1023	SAU1023 SeqID	10131	10500						13474	
92	DENTITY	20%	42%			32%	42%	100	42%	
	COVERAGE	73%	%08			%Ó8	74%	100%	76%	
SAU1023 SeqID	SeqID		10807					12271		
	COVERAGE		32% 102%					100%		
_		_	-	_	_	-	_		_	_

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis	sn	er pylori	pneumoni as	as	us aureus	sn	a typhi
				influenzae		ae	ruginosa		niae	
SAU1023	SeqID	10243	10809							13794
	DENTITY		62%						27%	37%
	COVERAGE	101%	%66					100%	%86	%86
SAU1024	SeqID							12209		
01	DENTITY							100%		
	COVERAGE							100%		
SAU1024 SeqID	SeqID		10934					12204		
17	IDENTITY		31%				25%	20		
	COVERAGE		79%				72%	100%		
SAU1024	SAU1024 SeqID					11760		12205		
18	DENTITY					25%		100%		
	COVERAGE					%68		100%		
SAU1024	SAU1024 SeqID							12206		
20	DENTITY							100%		
	COVERAGE							100%		
SAU1024	SeqID	10308						12207		13776
22	IDENTITY	30%				30%	27%	100		31%
	COVERAGE	92%				72%	93%			92%
SAU1024	SeqID			11084	11491			12208		
23	23 IDENTITY			27%	25		27%	ĕ		
	COVERAGE			94%	92%		93%	100%		
SAU1024 SeqID	SeqID	10395		11167	11616		11772	Ż	13552	
33	DENTITY	42%	51%	ξ,	37%		25%	ğ	44%	
	COVERAGE	101%			73%		72%	စ္ကို	%86	
SAU1024	SAU1024 SeqID	10394	206	· ·			11773		146	_
34	DENTITY	76%	44%	28			79%	100%	40%	2
	COVERAGE	% 	100%		-		100%	8	101%	%66
SAU1024 SeqID	SeqID	10393	952	057	=		11774		420	
37	DENTITY	25%	%19	27	51		25%	100%	9	26
	COVERAGE	%98	%66	%88 	%98 		87%	100%	%66	86%

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Seudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	Sn	er pylori	pneumoni as	\$3	us aureus	sn	a typhi
				Tuenzae		ae c	aeruginosa		pneumoniae	
SAU1024 SeqID	SeqID						12085	12692		13990
40	IDENTITY				•		41%	100%		39%
	COVERAGE						%86	100%		%66
SAU1024 SeaID	SeqID		10947					12685	13436	
47	DENTITY		38%		•			100%	32%	
	COVERAGE		%86					100%	%86	
SAU1024	SeqID	10460	10946	11049	11332		l			13860
48	DENTITY	32%	55%	31%	35%		34%	100	46	32%
	COVERAGE	101%	102%				101%	101%		
SAU1024	SeqID	10445	10945	253	11444	11731			13434	14028
49	49 IDÊNTITY	45%	25%	43%	35%	43%	44%	100%	51	45%
	COVERAGE	%/6	%86	%86		%9/	%	100%	100%	
SAU1024	SeqID	10456	10943	264	11487		1	ļ.	13237	13857
50	50 IDENTITY		٠.	_	43%		47%	100%	%89	47%
·	COVERAGE	100%					%66	100%	100%	100%
SAU1024	SeqID	10420	10748	11143	11478	11629			132	13783
52	IDENTITY	41%	70%	37%	32%	40%	40%	100	62	38
	COVERAGE	%26		%16	%26	94%	7%	100%	100%	%66
SAU1024	SeqID		10749				12107		13266	
53	53 IDENTITY		43%				76%	100	41%	
·	COVERAGE		101%				70%	100%	71%	
SAU1024	SeqID	10063	10547	8				12171	13395	13917
09	DENTITY	34%	35%	34			34%	100	34	34
	COVERAGE	%86	100%	100%			100%	100%	101%	%86
SAU1024	SAU1024 SeqID	10217						12172		
69	DENTITY	28%			_			100%		
	COVERAGE	76%						0/001	,	
SAU1024 SeqID 73 IDEN	SeqID IDENTITY	·	10868 28%					12173 100%	13475 35%	
	COVERAGE		%88 					100%	83%	

Salmonell	- J.C	14025	27%						13770	27%	100%	13879	76%	102%	13961	8	93%	13962	37	%56			14092	36%	
Streptococc	рпеитопіае	13476	26% 89%												135	26	%66	13513	42%	93%			133	35%	
Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell			100%	12175	100%	2705	100%	100%	12404	100%	100%	12422	100%	01%		100%	100%	1	100%	101%	12419	100%	12688	100%	12689
Pseudomon	aeruginosa						·		11871	30%	100%										40			38%	12060
Klebsiella	ae								-														11706	37%	
Helicobact gr myori	er Pyton i																						Į.	33%	
Haemophil	influenzae	10971	26%															11025	27%	95%			10974	35% 93%	
Enterococc 1	us juecuns us inf	10713	%96 96%						10935	33%		10831	762		10890	23%	100%	10889	38%	%26			10597	35%	
Escherich .	1100 111					70201	26%	84%	10310		100%	10289	_	~~	10457	78%	%98	10294	36%	95%			10241	36%	
		SeaID	DENTITY	SeaTD	DENTITY	COVERAGE	DENTITY	COVERAGE	SeaID	80 IDENTITY	COVERAGE	SedID	IDENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	U1024 SeqID	DENTITY	COVERAGE	11024 SeqID	COVERAGE	SeqID	IDENTITY COVERAGE	SAU1025 SeqID
LOCUSI Data	<u> </u>	SAU1024 SealD	74	SAT11074	76 IDENTITY	7 00 712 7	SAU1024 SeqIU	`	SAU1024	08	3	SAU1024 SeaID	81	<u> </u>	SAU1024 SeqID	85		SAU1024	, 98		1	/8	SAU1024 SeqID	86	SAU1025

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	STA	er pylori	pneumoni	SZ	us aureus	rts.	ı typhi
				influenzae		ав	aeruginosa		pneumoniae	
SAU1025	SeqID						12059	12690		
3	COVERAGE				-		92%			
SAU1025 SealD	SeqID							12691		
26	DENTITY									
	COVERAGE							100%		
SAU1025	SAU1025 SeqID	10352	10560	11104	11439					13968
27	DENTITY	24%	74%	25%	%95		28%	100	75%	24%
	COVERAGE	93%	101%	93%	94%		93%	. 101%	94%	93%
SAU1025	U1025 SeqID		10765					12667		
31	DENTITY		34%					100%		
	COVERAGE		102%					100%		
SAU1025	SAU1025 SeqID	10076	10520	11000	11498		1		13405	13718
41	DENTITY	41%	49%	38	37		44%	100	45%	41%
	COVERAGE	93%	102%		93%		100%	100%	81%	93%
SAU1025	SeqID			11013	11353				13271	
51	DENTITY			47%	38%		39%	100	41%	
	COVERAGE			81%	84%		84%	101%	95%	
SAU1025	SeqID		10494						13466	
54	IDENTITY		47%					100%	44%	
	COVERAGE		%66					100%	%86	-
_	SeqID	10166		11232	11618			12609		13836
75	DENTITY	78%		762	35		30%	100		27%
	COVERAGE	%86		%16			%96	100%		%86
U1025	SeqID	10459	10948	11050	11420					13859
78	DENTITY	26%	76%	60%	516		65%	100	73%	29%
	COVERAGE	%88	95%	%88	%68		81%	101%	94%	%68
SAU1025	SAU1025 SeqD							12537	_	
<u></u>	COVERAGE							100%		

LOCUSI Data	ļ	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis	sn	er pylori	pneumoni	as	us aureus	rs	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU1025 SeqID	SeqID							12611		
82	DENTITY							100%		
	COVERAGE							100%		
SAU1025	SeqID		10889						13513	-
93	93 IDENTITY		27%					100%	27%	
	COVERAGE		87%					100%	88%	
SAU1025	SeqID	10187		10958		11710	6/611	12464		13833
86	98 IDENTITY	30%		32%		27%	31%	100%		31%
	COVERAGE	%		85%		75%	%	100%		%98
SAU1025	SeqID	10206	10944	10958	11619					13773
86	IDENTITY	36%	76%	30%	30%		33%	01	32	32%
	COVERAGE	%68	%9 L		73%		79%	100%	77%	101%
SAU1026	SeqID	10273		11076		11722	ł .	i	3256	3
01	IDENTITY	27%		30%		78%	78%	100%	51%	27%
	COVERAGE	5%		93%		95%	33%	100%		%76
SAU1026	SeqID			11100	11441	11679			13200	13971
02	DENTITY	28%	78%	61	21%	Š	60%	100	71%	28%
	COVERAGE	100%	100%				%66			%66
SAU1026	SAU1026 SeqID							12469		
03	DENTITY					-		100%		
	COVERAGE							100%		
SAU1026 SeqID	SeqID		10836					12470		
92	DENTITY		47%					100%		
	COVERAGE		%96					100%	·	
SAU1026	SAU1026 SeqID	10273		11076		11722	11931		13256	13867
90	IDENTITY	27%		30%		27%	25%	100	20%	56
	COVERAGE	%56		92%		95%	93%	100%	%16	94%
SAU1026 SeqID	SeqID								62581	
07	DENTITY							100%	43%	
	COVERAGE							100%	%86	

LOCUSI Data	Escherich ia coli	Enterococc	Haemophil 118	Helicobact er mlori	Klebsiella Ps.	Pseudomon 18	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell in facolis i	Streptococc us	Salmonell a tvohi
	700	m) necum	influenzae		ae c	ruginosa	2	eumoniae	J.F.
SAU1026 SeqID 09 IDENTITY							12473 100%		
OVERAG	ဓ						%00I		
SAU1026 SeqID				l.			12474		
OVERAG	<u>н</u>						100%		
SeqID	드		11272				12475		13988
13 IDENTITY	~		28%			-	100%		26%
COVERAGE	$\overline{}$	0	95%				N001		31%
SeqID	<u>=</u>	=					12476		13927
14 IDENTITY	33%						100%		32%
Cootto	1003	1-			11720	12098	12477		13926
DENTITY		40%			_	\c	100%		31%
COVERAGE					92%	%L8			100%
SeqID							12479	i	
DENTITY		•					100%		
COVERAGE	H						100		
SeqID	10288	10519			11724			13370	13881
21 IDENTITY	61%	62%			28%		100%	59	%19
COVERAC	3E 100%		9		81%		100%	101%	- 1
SAU1026 SeqID		10885					12481		
DENTILY		26%					100%		
COVERAC	Œ	108%	0				100%		
SeqID		10522					12712		
DENTITY		27%			44%	32%	100%		
COVERAC	72	700			0/00		0/001		
SAU1026 SeqID 36 IDENTITY							12650 100% 100%	13696 29% 102%	
COVERS	_ - 및		_				N 201		_

LOCUSI Data	Data	Escherich	Enterococc	Haemophil .	Helicobact.	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis	sn:	er pylori	pneumoni	SE	ns anreus	sn	a typhi
				influenzae	•	ae	aeruginosa		oniae	
SAU1026 SeqID 37 IDEN	SeqID IDENTITY							12651 100%	13697 39%	
	COVERAGE							100%		-
SAU1026 SeqID	SeqID							12653		
	DENTITY							100%		
	COVERAGE					-		101%		
SAU1026	U1026 SeqID	10283	10910	11064			12090		13514	13855
58	IDENTITY	45%	54%	42%			39%	100	49%	41%
	COVERAGE	%	87%	%16			37%	100%	%96	100%
SAU1026	SeqID	10304	10840	11043	11626				13172	13780
63	DENTITY	43%	28%	44%	34%		45%	100%	%95	41%
	COVERAGE	%	%66		%56		1%	100%	91%	
SAU1026	SeqID	10022	10756	11257					13371	14035
69	DENTITY	42%	%97	43%			41%	100	54%	41%
	COVERAGE	%96	91%	%56			94%	100%	62%	
SAU1026	SeqID	10409				11683				14033
71	DENTITY	34%		32%	44%	35%	%95	100	%69	33%
	COVERAGE	91%		%16	%96	74%	%66		%96	
SAU1026	SAU1026 SeqID	10020		11164		11648		12156		14016
74	DENTITY	25%		54%		46%	33	100		53%
,	COVERAGE	102%		103%		101%	105%			102%
SAU1026	SAU1026 SeqID	10178	10659		11474		11883	2627	13301	13940
93	DENTITY	23%	749		38%		49%	ĕ	61%	49%
	COVERAGE	%	87%		%98		%98	101%	%06	72%
SAU1026	SAU1026 SeqID			1	11296				13302	
94	DENTITY	48%	Ğ	50%	44		25%	100	00	
	COVERAGE	%	102%	97%	94%		94%	102%	102%	
SAU1027 SeqID	SeqD		10514	1137				12338	378	~
3	COVERAGE	40%	100%	39%	38%		3/%	100%	%001 100%	40% 96%
_		-				_	· · · · · · · · · · · · · · · · · · ·			

D SAU1027 SeqID 64 DENTITY COVERAGE SAU1028 SeqID 12 DENTITY COVERAGE SAU1028 SeqID 70 DENTITY COVERAGE COVERAGE COVERAGE SAU1028 SeqID COVERAGE		ia coli	us faecalis us		•	•	_		_	
SAU1027 Sequinos 64 DEP COV SAU1028 Sequinos 12 DEP COV SAU1028 Sequinos 70 DEP COV			· · · · · · · · · · · · · · · · · · ·		er pylori 🏻 🏻	pneumoni as		us aureus 11	S71	a typhi
SAU1027 Sequilibrium (COV SAU1028 Sequilibrium (COV SAU1028 Sequilibrium (COV SAU1028 Sequilibrium (COV SAU1028 Sequilibrium (COV SAU1028 Sequilibrium (COV SAU1028 Sequilibrium (COV SAU1028 Sequilibrium (COV SEQUILibrium (COV SAU1028 Sequilibrium (COV SEQUILibrium				luenzae		ae c	aeruginosa		рпеитопіае	
64 IDEN SAU1028 Seq1 12 IDEN COV SAU1028 Seq1 70 IDEN COV		10179	10929	11234	11295		11884			13938
SAU1028 SeqU 12 IDEN 12 COV SAU1028 SeqI 70 IDEN COV		44%	%19	42%	41%		42%	100%	63%	43%
SAU1028 SeqII 12 IDEN COV SAU1028 SeqII TO IDEN COV COV COV COV SAU1028 SeqII SAU1028 SeqII SAU1028 SeqII SeqII SeqII SAU1028 SeqII Se		%66	%66	%66	%06		97%	100%	%66	%66
12 IDÈN SAU1028 SeqI 70 IDEN COV SAU1028 SeqI			10860						13253	
SAU1028 SeqU 70 IDER COV SAU1028 SeqI			48%					100%	46%	
SAU1028 Sequ 70 IDER COV SAU1028 SeqI	1		100%					101%	%96	
70 IDET COV SAU1028 SeqI		10113	10880							14008
SAU1028 SeqI	VTITY	29%	35%	•				100%	29%	78%
SAU1028 SeqI	COVERAGE	%26	83%					100%	93%	87%
		10360	10533	96011	11443	11643	5177			13975
80 EB			82%	61%	21%	%19	28%	100%	85%.	61%
COVERAGE	ERAGE	100%				100%	%	101%	101%	100%
SAU1028 SeqL		10357	10551	11099			11994		13199	13972
81 IDENTITY			%69	37%			38%	100	24%	38%
COVERAGE		%68	3%	%68			%68	101%	102%	86%
SAU1028 SeqI	ļ	10396		11168	11449				13181	
83 IDE	IDENTITY	63%	,	%02	9		%59	100	76%	
CO CO	TERAGE	%98		%88	%98		%98	102%	%06	
SAU1029 SeqI	D		10732	11217	11373			12273		
05 IDE	YIIIY		31%	269	38			100%		
100	/ERAGE		95%	%08	81%			100%		
SAU1029 Seqi		10042	10488	11150	11457	11637	11940		13437	13908
09 IDENTITY	NTITY	%65	%89	%09	%69	26%	%09	100	73	59
100	/ERAGE	%56	%56	%56	130%	%56	%86	101%	124%	95%
SAU1029 SeqID	1	10448	10949	10995	11579		1	1		13817
33 IDE	NTITY	33%	53%	35%	32%	31%	%67	100%	20%	.,
65	COVERAGE	104%		101%	108%	107%	101%	101%	101%	. 103%
SAU1029 SeqID	1	10236	10872				11804	12356 100%		13955 33%
200	ERAGE	%26	100%				%96			%86

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
А		ia coli	us faecalis us	ns	er pylori	pneumoni as	SZ	us aureus	sn	a typhi
				influenzae			aeruginosa		niae	
SAU1029	SeqID	10136	10492	12		11696				13834
42	IDENTITY	52%		43%		20%	-	100%	51%	51%
	COVERAGE	100%	100%			%66		100%	%66	%66
SAU1029	SeqID								13257	
	IDENTITY							100%		
	COVERAGE							100%	%66	
SAU1029	SAU1029 SeqID	10014			11384			12536	3429	~
79	IDENTITY	33%		37%	32		41%	100%	33%	33%
	COVERAGE	%88		87%	87%		87%	100%	87%	%06
SAU1029	SeqID		10883		,				13269	
83	IDENTITY		78%					100%	27%	
	COVERAGE		70%					100%	76%	
SAU1029	SeqID	10176	10661	11223	11297				3303	13
92	IDENTITY	62%	%02	%29	48%		%65	100	63%	%19
	COVERAGE	%66		%66	97%		%66		%66	101%
SAU1030	SeqID							12194		
10	10 IDENTITY							100%		
	COVERAGE					1		%001		
SAU1030	SeqID							12200		
24	IDENTITY					44%	76%	2		
	COVERAGE					%68 ·	72	101%		
SAU1030	SAU1030 SeqID							12202		
3	COVERAGE	- i-						100%		
SAU1030	SeaID		10867						13267	
37	DENTITY		27%					100%	26%	
	COVERAGE		%66					101%	%98	
SAU1030	SAU1030 SeqID			!				12408		
`	COVERAGE							100%		
_	-	•	-		-			•	•	

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
a		ia coli	us faecalis us	STA	er pylori	pneumoni as	TS.	us aureus	sn	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
U1031	SeqID								13469	
	IDENTITY							100%	32	
	COVERAGE							101%	101%	
SAU1031	1 SeqID		10936					12663		
44	DENTITY		42%					100%		-
	COVERAGE		13	١			Ì	2001	, , ,	
U103	SeqID				11489				13411	13994
59	IDENTITY	43%	4	38%	4		48%	100	83	43%
	COVERAGE	115%	100%	112%	117%		%86	100%	101%	116%
SAU1031	SeqID								13239	
69	DENTITY							100%	34%	
	COVERAGE							100%	84%	
SAU1031	SAU1031 SeqID	10157						12687		
75	DENTITY	36%						100%		
	COVERAGE	%96						100%		
SAU1031	SAU1031 SeqID								133	
91	DENTITY							100%	42%	
	COVERAGE							102%	75%	
SAU1032	SAU1032 SeqID							12499		
94	DENTITY							100%	-	
	COVERAGE							101%		
SAU1032	SAU1032 SeqID							12713		
97	DENIII Y							100%		
	COVERAGE					1	1	%00I		
SAU1032	SAU1032 SeqID	10368					11848	12697		13803
32	IDENTITY	36%		-		35%	48%	100%		35%
	COVERAGE	102%				%86	101%	ارة ا		102%
SAU2000 SeqID	SeqID				11553		12007 12723		~~	_
8_	DENTITY COVED A CE	53%	. %0/ %0/	4/4	43		20% 80%	100%	65%	
	COVERAGE	 		84%	82%		07.40	10/001		_

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis	STI	er pylori	опештопі	as	us aureus	ns	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU2000 SeqID	SeqID DENTITY							12694 100%		
3	COVERAGE		•		:			100%		
SAU2000	SeqID	10372	10553	11056	11447	11672	12092		13449	13807
30	30 IDENTITY	45%	74%	39%	43%	41%	35%	100	73%	42
	COVERAGE	84%	%86	84%	93%	%98	93%	102%	%56	84%
SAU2000 SeqID	SeqID		10621					12719	13327	
58	DENTITY		39%					100%	37%	
	COVERAGE		19%				١	101%	0/0/	
SAU2000	SeqID	10259	10622	10978				12720		14087
59	DENTITY	31%	33%	32%			36%	100	40%	31
	COVERAGE	73%		73%			49	100%	%96	73%
SAU2000	SAU2000 SeqID	10262		10984	11403			12724	13415	14090
88	DENTITY	51%		%95	21%		45%	100%	89	4
	COVERAGE	85%		91%	93%		93%	102%	100%	82%
SAU2002	SeqID		10712					12734		
42	42 IDENTITY		78%				-	100%		
	COVERAGE		%66					100%		
SAU2002	SeqID	10109	10756	11257				12739	13371	13996
24	97 IDENTITY	33%	64%	34%			33%	100	33%	32
	COVERAGE	%56	100%	%86			%56	100%	%56	95%
SAU2003 SeqID	SeqID							12751		
45	DENTITY COMED A CIT							100%		
	COVEKAGE				,,,,,,			0/001		0000
SAU2003 SeqID	SeqID	10164		10968	11566			12/55		13892
92	DENTITY	792	30%	25%	27		33%	100%		26%
	COVERAGE	%26	%08	%96	%86		93%	- 1		%86
U2004	SeqID	10201	10478	11054			12061	12937	72	13822
89	IDENTITY	78%	75%	65			36%	100	76%	20
	COVERAGE	74%	75%	74%			81%	101%	75%	74%

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc [Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	STI	er pylori	pneumoni as	7.2	us aureus	ns	a typhi
				ızae		ae	aeruginosa		oniae	
SAU2005	SeqID	10039	10728	11277			12046			13904
58	DENTITY	78%	31%	76%			30%	100	32%	23
	COVERAGE	72%	102%	%08			75%	100%	%66	72%
SAU2005 SeqID	SeqID							12693		
61	DENTITY							100%		
	COVERAGE							100%		
SAU2005	SeqID	10099						12780		13992
64	64 IDENTITY	33%		31%	31%	34%	32%	100%		34%
	COVERAGE	%1%		81%	82%	%98	93%			87%
SAU2005	SeqID	10098		11250	11386			12781		13991
65	IDENTITY	32%		34%	35%		36%	10		33%
	COVERAGE	%16		%96			97%	100%		%26
SAU2005 SeqID	SeqID	10435	10613	11038	11412		86611		13397	14046
93	IDENTITY	23%	73%	20%	23%		52%	100%	64%	25%
	COVERAGE	%66		%66	%86		100%	100%	%66	%66
SAU2006	SAU2006 SeqID	10173	10856							13937
28	IDENTITY	32%	31%				-	100%	29%	34
_	COVERAGE	%76	%16		٠			100%	%26	94%
SAU2006 SeqID	SeqID								13185	
85	IDENTITY							100%	316	
	COVERAGE							100%	94%	
SAU2007	SeqID	10208	10582	11015	11541				13681	13922
21	DENTITY	40%	33%	41%	36%			100%	4	41
	COVERAGE	95%		%66	94%			100%	100%	94%
SAU2007	SAU2007 SeqID	10118	10761	10966			11780			14020
25	IDENTITY	30%		30,		_	25%	9	47	29
	COVERAGE	%86	100%	%26			%86	100%	100%	%86
SAU2007 SeqID	SeqID		10822				12090		13514	13855
31	IDENTITY COVED AGE	55%	54%	44%			43%	100%	51%	46%
_	יייייייייייייייייייייייייייייייייייייי	0/72				_	200			

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	us	er pylori	pneumoni as	SZ	ns aureus	Sm	a typhi
		—		influenzae		ae	aeruginosa		pneumoniae	
SAU2007	SeqID	10318	10554		11393		12056		13695	13760
40	DENTITY	48%	%95	48%	49%		20%	100%	25%	48%
	COVERAGE	%98	102%	%98	73%		87%	ĺ	93%	%98
SAU2007	SAU2007 SeqID							12809		
25	DENTITY							100% 100%		
0.000011	COVERNOE	+	10714					100%	12421	12700
SAU2009	SeqID	10383	10/14 28%			77%	77%	1283/	15451	13/88
	COVERAGE					%62	%06 ;			%06
SAU2009	SeqID							12838		
16	IDENTITY							100%		
	COVERAGE			į				100%		
SAU2009 SeqID	SeqID	10439	10627	11036	11571			12815	3646	14042
28	IDENTITY	54%	73%	55%	53		46%	100	69	24
	COVERAGE	%	%66	87%	%98		02%	100%	100%	%98
SAU2009	SeqID		10780					12842		13835
34	34 IDENTITY	44%	60%				42%	20		42%
	COVERAGE	72%	93%				82%	100%		%88
SAU2009	SeqID							12846		
49	49 IDENTITY							100%		
	COVERAGE							100%		
7	72009 SeqID				11500			12431		
09	DENTITY				42%		33%	ŏ		•
	COVERAGE				70%		%16	102%		
SAU2009	SeqID	10036		11270						14054
94	94 IDENTITY	36%	62	32			37%	100	35%	33%
	COVERAGE	100%	101%	100%			102%	100%	73%	%66
SAU2011 SeqID 67 IDEN	SeqID IDENTITY	<u> </u>	10779 37%					12887 100%		
_	COVERAGE		%86					100%		

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	ns	er pylori	pneumoni as	as	us aureus	STI	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU2011	SeqID		10819						13626	
89	DENTITY		53%			•		100%	26%	
	COVERAGE		102%					100%		
SAU2011	1	10448	10715	10995	11579		11985	12807	13502	13819
84		_	vo	35%	37%		37%	100%	23%	m
		%0 <i>L</i> .	108%	%26			%0 L	101%	111%	
SAU2011	SeqID	10330	1	11160	11321		5215	}	13364	13885
26	DENTITY	28%	%99	90%	23%		28%	100	63%	28
	COVERAGE	%66	%66		%86		%66	101%	%96	%66
SAU2012	SeqID			11090					13170	
25	25 IDENTITY	····	41%	33%				100%	38%	
-			93%	1				100%	87%	
SAU2012		10026	10679	11184	11613				13505	14073
36	DENTITY	32%	762	33%	33%		34%	100	30%	32%
	COVERAGE	92%	%96	93%	%68		62%	100%	%56	%06
SAU2013	SeqID							12899		
01	01 IDENTITY							100%		
								100%	į	
SAU2013	SAU2013 SeqID	10192				11678		12905		13753
33	DENTITY	41%				78%		100%		41%
i -	COVERAGE	100%				%96		101%		100%
SAU2013	SAU2013 SeqID 75 IDENTITY						11929 36%	12926 100%		
<u> </u>	COVERAGE						%			
SAU2013		10379			11313		l	12922		13801
80	DENTITY	34%			76%		25%			25%
i	COVERAGE	\$ 2	93%	i	35%		%68	100%		101%
U2013	SeqD	10241	7650	Ž,	11387	1706		12923	33	13878
<u></u>	COVERAGE	%68 89%	%96 %65	46% 90%	44% 91%	%68 86%	%/s 100%	100%	52% 92%	64% 89%
		-								

1396 43% 11357 50%	Escherich Enterococc	: Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Streptococc	Salmonell
10145 10145 10370 37% 10229 29% 10229 29% 71% 10109 33% 28% 96% 11257 10109 33% 96% 11257 10109 50% 11258 11258 11396 11358 11357 10500 50% 10112 10112 10112 11258 11396 11357 11357 11357 11357 11357 11357 11357 11358 11357 11357 11358 11357 11358 11357 11358 11357 11358	ia coli us faecalis	S71	er pylori	eneumoni	2.2	us aureus	ns	a typhi
10145 49% 1018 10229 29% 73% 73% 10229 29% 71% 10109 10109 10109 10109 10109 10109 10109 10109 10109 10109 10100 10100 10100 10100 10100 10100 10100 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 10200 10200 10200 10200 10200 10200 10200 10200 102000 102000 102000 102000 102000 102000 102000 102000 1020000 1020000 102000 10		influenzae		ae	aeruginosa		pneumoniae	
10145 49% 1018 10370 37% 73% 10229 29% 71% 10109 10109 10109 10109 10109 10109 10109 10109 10109 10109 1020 10109 1020 10109 1020 1020 1030 1040 1050 10						12913		
10145 49% 1018 10370 37% 73% 10229 29% 71% 10109 10229 10109 10109 10109 10109 10109 101000 10100 10100 10100 10100 10100 10100 10100 10100 101000 10100 10100 10100 10100 10100 10100 10100 10100 101000 10100 10100 10100 10100 10100 10100 10100 10100 101000 10100 10100 10100 10100 10100 10100 10100 10100 101000 10100 10100 10100 10100 10100 10100 10100 10100 101000 101000 10100 10100 10100 10100 10100 10100 10100 10100 101000 101000 101000 101000 101000 101000 10100 10100 10100 10100 10100 101000 101000 101000 101000 101000 10100 10						100%		-
10145 49% 1018 10370 37% 73% 10229 29% 10229 29% 10229 10229 10109 10109 10109 10109 10109 10109 10109 1020 10109 1020 1020 1030 104% 1050 105	(4)					100%		
10145 49% 10370 37% 10229 29% 10229 29% 10109 33% 10109 10109 50% 10109						12967		i
10145 49% 1018 10370 37% 73% 10229 10229 10109 10229 10109 10109 10109 10109 10109 10109 10109 10109 1020 10500 10112 10500 10112 10500 10112 105000 10500 10500 10500 10500 10500 10500 10500 10500 105000 105000 105000 105000 105000 105000 105000 105000 1050000 1050000 105000 105000 105000 105000 105000 10						100%		
10145 49% 101% 10370 37% 73% 10229 29% 10109 33% 95% 10131 10500 50% 71% <tr< td=""><td>73</td><td></td><td></td><td></td><td></td><td>0/ 00T</td><td></td><td></td></tr<>	73					0/ 00T		
10145 49% 101% 10370 37% 10229 29% 10109 10109 10109 10109 10109 10109 10109 10109 10109 10109 10109 10109 101000 101000 101000 101000 101000 101000 101000 101000 1010000 10100 1010						13023		
10145 49% 49% 101% 10370 37% 10229 29% 10109 11257 33% 28% 95% 96% 10131 10500 50% 74% 10112 51% 51% 51% 96% 94% 10224 10951 10224 10951 11213 11357 50% 47% 50% 47%	m					100%		
49% 101% 10370 37% 10229 29% 10109 33% 28% 95% 96% 10131 10500 50% 39% 10112 11258 10112 51% 51% 43% 96% 94% 10224 10951 11213 11357 50% 47% 50% 47%	믄				11963	12946		13841
101% 101% 10370 37% 37% 10229 29% 28% 10109 11257 33% 28% 33% 28% 10131 10500 50% 39% 10112 11258 51% 43% 51% 43% 10224 10951 11213 11357 50% 51% 50% 50%					46%	100		20%
10370 37% 73% 10229 29% 10109 33% 95% 10131 50% 39% 10112 50% 39% 10112 51% 43% 1024 1050 51% 43% 96% 11213 11356 51% 51% 51% 50% 10224 1050 11213 11253 11357 50% 61% 47% 50%				-	102%			100%
37% 37% 10229 10229 29% 11257 10109 28% 33% 28% 95% 96% 10131 10500 50% 39% 71% 74% 10112 11258 51% 43% 96% 94% 96% 11357 10224 10951 11213 11357 50% 47%	-					2		13805
10229 29% 71% 10109 33% 95% 10131 50% 71% 71% 71% 71% 71% 10112 51% 51% 96% 1024 1050 1050 51% 43% 96% 11258 11356 51% 43% 94% 94% 94% 11357 50% 61% 47% 50%	37				42%	10		36%
10229 29% 71% 10109 33% 95% 10131 50% 71% 71% 51% 51% 51% 56% 10112 51% 96% 10224 1051 50% 1051 51% 43% 94% 94% 96% 1051 11213 11357 50%					72%			73%
29% 71% 10109 11257 33% 28% 95% 96% 10131 10500 50% 39% 10112 11258 51% 43% 10224 10951 11213 11357 50% 51% 94% 94% 50% 61% 47% 50%	110				i	12944		-
10109 11257 33% 28% 95% 96% 10131 10500 50% 39% 71% 74% 10112 11258 51% 43% 96% 94% 10224 10951 11213 11357 50% 47%	 			-		100%		
33% 28% 95% 96% 10131 10500 50% 39% 10112 11258 51% 43% 96% 94% 1024 10951 11213 11357 50% 47%	1010	11257			5099	12943	13625	13996
95% 96% 10131 10500 50% 39% 71% 74% 10112 11258 51% 51% 96% 94% 10224 10951 11213 11357 50% 61% 47% 50%	_	78%			%	10	32%	33%
10131 10500 50% 39% 71% 74% 10112 11258 51% 51% 96% 94% 10224 10951 11213 11357 50% 61%		%96			%96	100%	%26	%56
50% 39% 71% 74% 10112 11258 51% 51% 96% 94% 10224 10951 11213 50% 61% 47%	10131 105					12942	3	
71% 74% 10112 11258 11 51% 51% 51% 96% 94% 10224 10951 11213 11 50% 61% 47%	20% 39%			33%	41%	100%	41%	
10112 11258 11 51% 51% 11 96% 94% 10224 10951 11213 11 50% 61% 47%	71%	%		77%	73	100%	73%	
51% 51% 96% 94% 10224 10951 11213 11 50% 61% 47%)[[11258	11396		11875	2954	3598	14009
96% 94% 10224 10951 11213 11 50% 61% 47%		21%	43		49%	100%	46%	51
10224 10951 11213 11 50% 61% 47%		94%			ğ١	101%	%96	%96
07/2 01/0	10224 10	11213	=		11905	997	3268	13957
98% 94% 99%	%66 860	%66 %/ *	92%		103%	100%		

Salmonell	a typhi								13902	46%	91%				13743	33%	71%													
Streptococc	sn	pneumoniae	13243	28%	%56													13689	40%					_						
Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	ns aureus		973	100%	100%	Ο,	5	100%	12662	8	101%	12982	100%	101%	18671	100%	100%	12963	100%	12770	100%	100%	12996	100%	100%	12996	100%	100%	12769	100%
Pseudomon	as	aeruginosa	11902	48%	%6	11962	40%	72%	12047 126	47%	91%					34%	73%													
Klebsiella	pneumoni as	ae							11707	49%	91				11761	32	%62		· · - · · ·											
Helicobact	er pylori		11539	38%	73%				11392	42%	91%				11557	319	20%	_												
Haemophil	sn	influenzae													11028	35%	%1/													
Enterococc	us faecalis								10842	23%	91%				10900	299	%08	10623	45%			,								
Escherich	ia coli								10038	46%	91%				10291	33%	71%													
Data			SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SAU2016 SeqID	DENTITY	COVERAGE	SAU2016 SeqID	DENTITY	COVERAGE	SAU2016 SeqID	IDENTITY	COVERAGE	SeqID	52 IDENTITY COVERAGE	SeaID	65 IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SAU2017 SeqID	DENTITY	COVERAGE	SeqID	COVERAGE
LOCUSI Data	Ω		SAU2016	11		SAU2016	15		SAU2016	21		SAU2016	54		SAU2016	99		SAU2017	52	SAU2017	65		SAU2017	73		SAU2017	75		SAU2018 SeqID	Q

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Q		ia coli	us faecalis us	S71	er pylori	pneumoni as	as	us aureus	us	a typhi
				influenzae		ав	aeruginosa		рпеитопіае	
U2018	SeqID	l			11310					14088
27	DENTITY	38%	46%	41%	41%		45%	100%	8	m
	COVERAGE	108%	100%		104%		%88	100%	101%	108%
SAU2019	SeqID							13008		
29	29 IDENTITY							100%		
CAT72010	Seoth							13020		
52	52 IDENTITY							100%		
	COVERAGE							100%		
SAU2019	SeqID							13015		
71	IDENTITY							100%		-
	COVERAGE							101%		
SAU2020	U2020 SeqID							13018		
90	DENTITY							100%		
	COVERAGE							100%		
SAU2020	SeqID				11359			13009	'n	
39	DENTITY				44%			100%	48%	
	COVERAGE				%96		i	201	98%	
SAU2021	SAU2021 SeqID	10261	10874	ĺ	11561		1	12714	3417	14085
26	DENTITY	51%	20%	52	33		46%	10	58%	25
•	COVERAGE	94%	94%	91%	84%		93%	101%	94%	94%
SAU2021	UZ021 SeqID							12895		
74	DENTITY							100%		
	COVERAGE							101%		
SAU2021	SAU2021 SeqID		-					12895		
92	DENTITY							100%		-
	COVERAGE							101%		
SAU2021 SeqID	SeqID	10062						12731		
98	DENTITY	28%						100%		
	COVERAGE	13%						101%		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella .	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	sn	er pylori	pneumoni as	as	us aureus	sn	a typhi
				influenzae		ae	ruginosa		pneumoniae	
SAU2022	SeqID							12727		
	COVERAGE							100%	-	
SAU2027	SeqID	10428	10913					12855		13735
80	DENTITY	25%	28%					100%		25%
_	COVERAGE		84%					%1		%98
SAU2027	SAU2027 SeqID	1014		11181	11494	ŀ		12927	3248	13844
36	DENTITY		40%	37	40%	37%	38%	100%	38	33
	COVERAGE		3%		%16	%08	93%	100%	103%	%56
SAU2027	SeqID	10436	1	11071				13027	3246	14045
56	DENTITY	4	63%	47%			44%		53%	4
	COVERAGE	%16					%76	100%	1	%26
SAU2027	SeqID							12718		
81	IDENTITY			-				100%		
	COVERAGE							100%		
SAU2028	SeqID		10656					12866	36	
72	DENTITY		45%					100%	78%	
	COVERAGE		101%					100%	%86	
SAU2028	SeqID							12848		
82	82 IDENTITY				_			100%		
	COVERAGE							101%		
SAU2029	SAU2029 SeqID							12871		
30	DENTILY							100%		
	COVERAGE							100%		
SAU2029	SeqID							12868		
45	DENTITY							100%		
	COVERAGE							100%		
SAU2029 68	SAU2029 SeqID							12886 100%		
3	COVERAGE							100%		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	ns.	er pylori	umoni				a typhi
				ınfluenzae	,	ae	aeruginosa		pneumoniae	
SAU2030 S	SeqID							12894		
01	IDENTITY				******			100%		
	COVERAGE							100%		
SAU2030	SeqID							12893		
02	07 IDENTITY							100%		
	COVERAGE							100%		
SAU2031	SeqID							12945		
96	DENTITY							100%		
	COVERAGE							101%		
SAU2032	SeqID							12979		
93	DENTITY	_				•		100%		
	COVERAGE					;		101%		_
SAU2032	SeqID				11330			12263		
96	DENTITY				767	•		100%		
	COVERAGE				%88			101%		
SAU2035	SeqID							12957		
24	DENTITY					•		100%		-
	COVERAGE									
SAU3001	SAU3001 SeqID	01	10544			11662		13031	37	
10	IDENTITY	33%	8			33%		100%	×	
	COVERAGE	≋	109%			73%		102%	109%	
SAU3001	<u>Grann</u>			11112	11434					14103
31	DENTITY	45%	71%	4	25		47%	10	%09	44%
	COVERAGE	100%	%66		%66		%66		%66	
SAU3001	SAU3001 SeqID							13036		
26	IDENTITY							100%		
	COVERAGE						i	100%		
SAU3001	SAU3001 SeqID		10562		11519 39%			12367 13522	13522	
7	COVERAGE		103%		91%		72%		104%	

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
Ω		ia coli	us faecalis us	ns	er pylori	pneumoni as	SZ	us aureus	277	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU3005 SeqID	SeqID				11522		-	12717		
72	DENTITY				32%			100%		_
	COVERAGE				108%			100%		
SAU3006	SeqID		10821						32	
17	17 IDÈNTITY		20%					100%	49%	
	COVERAGE	-	%16					100%	97%	
SAU3007	SAU3007 SeqID		10767					13058		
13	DENTITY		76%				30%	100		
	COVERAGE		83%) 3%	100%		
SAU3007	SAU3007 SeqID	10468	10611	11246	11380	11644	11887			13726
19	DENTITY	46%	34%	34%	30%	30%	40%	2	330	ω
	COVERAGE	100%					%		%96	100%
SAU3007	SeqID	10282	10682					13061	13394	
32	32 IDENTITY	79%	51%					100%	49%	
	COVERAGE	71%						100%	%98	
SAU3008	SAU3008 SeqID		10655						136	
25	IDENTITY		25%					100%	41%	
	COVERAGE	,	%16					100%	%16	
SAU3009	SAU3009 SeqID		10604					12203		
75	IDENTITY		30%					100%		
	COVERAGE		72%					102%		
SAU3009 SeqID	SeqID		10820					13077	34	_
86	DENTITY		40%					100%	4 %	
	COVERAGE		%66					102%	%66	
SAU3010	SAU3010 SeqID		10744					13079		
8	DENTITY		40%					100%		
	COVERAGE		101%					100%		
SAU3010	SAU3010 SeqID 30 IDENTITY							13080 100%		
<u>} </u>	COVERAGE							100%		

LOCUSI Data		Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
A		ia coli	us faecalis us	STI	er pylori 🏻 🖟	pneumoni as	as	ns anreus	ms	a typhi
				influenzae	7	ae	aeruginosa		pneumoniae	
SAU3010 80	SAU3010 SeqID 80 IDENTITY							13083 100%		
	COVERAGE							0/001		
SAU3011	SeqID	10242		11092		11653		12904		13795
18	DENTITY	47	28%	48%		53%		100%		48%
	COVERAGE	88%	%86	%16		78%		100%		%96
SAU3011	SeqID		10898					13087	13443	
33	DENTITY		39%					100%	30%	
	COVERAGE		%96		!			100%	93%	
SAU3012	SeqID	10297	10640	10964	11323		11783		13664	13737
23	DENTITY		20%	31%	32%		34%	100%	48%	32%
	COVERAGE	104%			%06		102%			
SAU3012	SeqID	10252	10877	11010		11669		13092	13506	13704
30	DENTITY	25%	25%	%89		25%	29%	100	29%	22
	COVERAGE	82%	92%	74%		%56	77%	100%	92%	95%
SAU3012	SeqID							13102		
89	68 IDENTITY COVERAGE							100%		-
SAU3012	SeqID	10048	10926	11014	11511		11934	13103	13366	13897
75	DENTITY	54%	47%	22%	%05		23%	100	46%	24%
	COVERAGE	%66	84%	%16	%16		%26	101%	84%	%66
SAU3013	SAU3013 SeqID		10696	11063		11766		12859	13354	
57	DENTITY		74%	32%		33%		100%	76	
	COVERAGE		%86	%08		93%		101%	100%	
SAU3014	SeqID							12845	13393	
33	33 IDENTITY COVERAGE					_		100%	26%	
SAU3014	SeqID	10210	10663	1214	11554		11921	13013	122	13925
65	65 IDENTITY	29%	54%	32%	37%		28%	100%	52%	29%
	COVERNUE	2001					0/101			

	•		macmohun	Denconaci	Klebsiella	seudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
	ia coli	us faecalis us	sn	er pylori	pneumoni as	SZ	us aureus	sn	a typhi
			influenzae	,	ae	aeruginosa		pneumoniae	
ENTITY OVERAGE	10157						12925		
OVERAGE	36%						100%		
	85%						100%		
<u> </u>							13137		
92 IDENTITY							100%		
OVERAGE							100%		
edID							13140		
DENTITY					•		100%		
OVERAGE							100%		
eqID							13156		
DENTITY							100%		
OVERAGE	•						100%		
eqID							12729		
DENTITY							100%		
							100%		
	10101			11309				13248	13935
DENTITY	45%			40%		47%	100%	38%	41%
COVERAGE	98%			%16		~			%66
eqID		10732		11373			12903		
DENTITY		30%		36%			100%		
COVERAGE		%08		%56			100%		
eqID		10932					13057		
DENTITY		27%					100%		
OVERAGE		71%					100%		-
SAU3020 SeqID							13042		
DENTITY							100%		
OVERAGE							100%		
SAU3025 SeqD 13 DENTITY							12851 100%		
OVERAGE							100%		

LOCUSI Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
a		ia coli	us faecalis us	sn	er pylori	pneumoni as	1S	us aureus	377	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
SAU3026	SAU3026 SeqID							13105		
56	COVED A CE							100%		
S AT 13076	SeaTT SeaTT							13113	-	
85	IDENTITY							100%		-
3	COVERAGE							100%		
SAU3026 SeqID	SeqID							12725		
86	IDENTITY							100%		
	COVERAGE							100%		
SAU3026	SeqID		i					13115		
66	DENTITY							100%		
	COVERAGE							100%		
SAU3028	SeqID				11345			13133		
05	IDENTITY				33%			100%		_
	COVERAGE				75%			101%		
SAU3029	SeqID		<u></u>					12872		
01	01 IDENTITY							100%		
	COVERAGE							%001		
SAU3029	SeqID							13155		
31	31 IDENTITY							100%		
CAT13020	Seam							12664		
50	DENTITY							100%		
<u>.</u>	COVERAGE					ļ		101%		
SAU3029 SeqID	SeqID	10023		11256				12930	3372	14018
99	DENTITY	32%		28%		31%	26%	100%	31%	32
	COVERAGE	%88	0	88%		88%	%98	- 1	88%	88%

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc (Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
		ia coli	us faecalis	sn	er pylori 🏻 🎚	pneumoni as	zz	us aureus	SII	a typhi
				influenzae)	ae	aeruginosa		pneumoniae	
ECO10007	Seq ID	10023		11256		11742	12044		13595	14018
	IDENTITY	100%		%99		%56	%59		41%	%16
	COVERAGE	100%		%86		100%	%66		%26	100%
ECO10025	Seq ID	10052			11503		12078	12626		13932
2 IDENTITY	DENTITY	100%			41%		48%	38%	•	40%
	COVERAGE	100%			%66		%96	93%		93%
ECO10039 Seq ID	Seq ID	10064	10781		11499		11959	12884	13614	13915
7	DENTITY	100%	20%	71%	38%		71%	45%	47%	94%
	COVERAGE	100%	%96		%16		62%	%16	%16	%66
ECO10039 Seq ID	Seq ID	10065	10653	10992	11311		11958	12883	13177	13916
∞	IDENTITY	100%	53%	81%	46%		71%	21%	20%	%86
	COVERAGE	100%			%86	-	%66	%56	%56	100%
ECO10099 Seq ID	Seq ID	10120				11768				
0	DENTITY	100%				72%				
	COVERAGE	100%				82%				
ECO10210 Seq ID	Seq ID	10214	10608	11129		11757	11852		13627	13931
00	DENTITY	100%	36%	74%		94%	36%		36%	%96
	COVERAGE	100%	%96	100%		100%	%26		97%	
ECO10226 Seq ID	Seq ID	10228		11204		11631	12038	13132		13963
2	DENTITY	100%		42%		%98	51%	35%		87%
	COVERAGE	100%		100%		81%	100%	100%		100%
ECO10244 Seq ID	Seq ID	10247					11812			13948
7	DENTITY	100%					47%			%66
	COVERAGE	100%					93%			%96
ECO10253 Seq ID	Seq ID				11489				13636	14088
a	COVERAGE	100%	46% 101%	100%	48%		/1% 100%	52% 100%	. 47%	100%
_	-	-				•		•		

.

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact.	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
		ia coli	us faecalis us	ZY1	er pylori	pneumoni as	as	us aureus	570	a typhi
				zae		ae	aeruginosa		oniae	
ECO10262	Seq ID	10266	10510	11269	11524		61811	12915	13279	14049
0	DENTITY	100%	51%	79%	30%		78%	42%	49%	%68
,	COVERAGE	100%	93%	%08	94%		91%	%96	101%	%66
ECO10310 Seq ID	Seq ID	10315	10763	11215	11615	11716	12052		13662	13764
-	IDENTITY	100%	37%	73%	79%	%96	64%	-	33%	94%
	COVERAGE	100%	74%	100%	%9 <i>L</i>	100%	100%		74%	101%
ECO10412 Seq ID	Seq ID	10462	10609	11034		11726	11853			13887
0	DENTITY	100%	767	34%		%28	78%			37%
	COVERAGE	%	276%	%68		100%	%68			%76
ECO10426 Seq ID	Seq ID	10475	10607					12370	13166	13707
∞	DENTITY	100%	43%	•				43%	38%	95%
	COVERAGE	100%	%76		•			%66	92%	100%
KPN10043 Seq ID	Seq ID	10258	10736	11134	11310	11628	5192	12789	13636	14088
2	DENTITY	%06	37%	%29	37%	100%	62%	41%	47%	%26
	COVERAGE	100%	%16	100%	93%	1%	%16	%98	%18	101%
KPN10085 Seq ID	Seq ID	10086	10652	111197	59511	11630	11862		13389	14060
4	DENTITY	35%	767	79%	27%	100%	45%		32%	35%
	COVERAGE	74%	72%	72%	85%	100%	%11%		71%	
KPN10102 Seq ID	Seq ID	10475	10607			11642		i	13166	13707
2	DENTITY	%06 —	29%			100%		27%	79%	91%
	COVERAGE	100%	77%			101%		101%	%61	101%
KPN10102 Seq ID	Seq ID	10228		11204		11631	12038	13132		13963
9	DENTITY	%98		44%		100%	54%	37%		85%
,	COVERAGE	%66	ļ	%16		100%	%86	%66		%66
KPN10172 Seq ID	Seq ID			11045	11467	1	12067	13032		
<u>6</u>	DENTITY			20%	20%	100%	63%	63%		
	COVERAGE			%96	%96	2%	96%	%96		
KPN10175 Seq ID	Seq ID	10052			11503	11652	12078	12626		13918

265

			- 1111	паетории 1	neucovaci	Klebsiella j	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
		ia coli	us faecalis us	sm	er pylori	pneumoni as	22	us aureus	STA	a typhi
				influenzae			aeruginosa		pneumoniae	
	IDENTITY	94%			38%	100%	41%	37%		34%
	COVERAGE	100%			103%	100%	%00	%96		100%
KPN10205	Seq ID	10406	10892	11035			11854	13153		13883
7	DENTITY	73%	30%	30%		100%	27%	78%		73%
	COVERAGE	%96	%96	84%		100%	%16	85%		%96
KPN10263	Seq ID	10266	10510		11524	11667		12915	l	14049
8	IDENTITY	11%	21%		73%	100%		44%	20%	77%
	COVERAGE	%62	%62		83%			80%	%	79%
KPN10388 Seq ID	Seq ID	10315	10763	11215	11454		12052		13662	13764
7	IDENTITY	%96	38%	73%	79%	100%	65		33%	9,
	COVERAGE	100%							74%	
KPN10418 Seq ID	Seq ID	10065	10653	10992	11490		11958	12883	13177	13916
8	IDENTITY	%16	26%	%08	46%	100%	%08	%09	25%	%86
	COVERAGE	85%	74%	%68	%98		82%	74%	74%	85%
KPN10428	KPN10428 Seq ID	10023		11256		ŀ	12044		13595	14018
1	DENTITY	%56		%89		100%	%99		41%	%56
	COVERAGE	94%		%76		101%	94%		91%	101%
KPN10453 Seq ID	Seq ID	10462	10609	11034		11726	11853			13887
∞	DENTITY	%18	27%	35%		100%	767			38%
	COVERAGE	100%		86%		0%	89%			94%
KPN10471	Seq ID	10214	10608	11129		11757	11852		13627	13931
9	IDENTITY	94%	36%	75%		100%	36%		35%	94%
	COVERAGE	100%	%96	100%		100%	%16		%16	73%
KPN10577	KPN10577 Seq ID						12103			
6	IDENTITY					100%	28%			
	COVERAGE					101%	99%			
KPN10665 Seq ID	Seq ID	10064	18/01	10993		11649	11959	12884	13614	13915
6_	IDENTITY	%06	28%	72%		100%	74%	21%	28%	91%

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
		ia coli	us faecalis	STI	er pylori	pneumoni as	225	us aureus	577	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
	COVERAGE	%08	70%	75%		101%	74%	72%	%02	81%
KPN10684 Seq ID	Seq ID	10259	10857	10978		11664	12026	12182	13691	14087
0	DENTITY	%16	44%	74%		100%	25%	38%	42%	%16
	COVERAGE	100%	101%	%86		100%	%66	94%	%76	100%
KPN10777 Seq ID	Seq ID	10222		11132			11810			13936
. 9	IDENTITY	78%		37%		100%	35%		-	%08
	COVERAGE	%86		%68		102%	87%			%86
SAU10096 Seq ID	Seq ID	10064	10781	10993	11499		11959	12643	13614	13915
∞.	DENTITY	45%	%29	44%	36%	•	46%	100%	%29	46%
	COVERAGE	%26	%16	100%	%66		%26	100%	%86	%26
SAU20114 Seq ID	Seq ID	10064	10781	10993	11499		11959	12884	13614	13915
٠	IDENTITY	45%	62%	44%	36%		46%	100%	%29	46%
	COVERAGE	%16	%16	100%	%66		%26	100%	%86	%16
SPN101971 Seq ID	Seq ID	10064	10781	10993	11499		11959	12884	13287	13915
	DENTITY	46%	77%	42%	36%		48%	%29	100%	46%
	COVERAGE	100%	%66	102%	100%		100%	%66	100%	100%
SPN201024 Seq ID	Seq ID	10064	10781	10993	11499		11959	12884	13614	13915
	IDENTITY	46%	21%	43%	36%		49%	%29	100%	46%
	COVERAGE	%66	%66	102%	101%		%66		100%	%66
STY000277 Seq ID	Seq ID	10475	10607					12370	13166	13707
	IDENTITY	%56	44%					45%	38%	100%
	COVERAGE	100%	91%					%66	%96	100%
STY000625 Seq ID	Seq ID	10421								13784
	DENTITY	93%								100%
	COVERAGE	100%								101%
STX000773	STY000773 Seq ID	10315	10763	11215			12052			13764
	IDENTITY	94%	36	7	56	6	62		31%	2
_	COVERAGE	100%	74%	100%	17%	100%	100%		74%	100%

LOCUSID Data	Data	Escherich	Enterococc	Haemophil	Helicobact	Klebsiella	nomopnas	Escherich Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococc Salmonell	Streptococc	Salmonell
		ia coli	us faecalis us		er pylori pneumoni as	pneumoni		us aureus	577	a typhi
				influenzae		ae	aeruginosa		pneumoniae	
STY001430 Seq ID	Seq ID	10064	10781	10993	11499		11959	12884	13614	13915
	IDENTITY	94%	46%	70%	37%		%02	46%	47%	100%
	COVERAGE	100%	%96	101%	%86		%86	%16	%86	100%
STY001433 Seq ID	Seq ID	10065	10653	10992	11311		11958	12883	13177	13916
	DENTITY	%86	53%	82%	46%		72%	28%	20%	100%
	COVERAGE	%66	94%	100%	%16		%66	94%	94%	100%
STY001867 Seq ID	Seq ID	10247					11812			13948
	IDENTITY	%66					47%			100%
	COVERAGE	%86					%96			100%
STY002995 Seq ID	Seq ID	10023		11256		11742	12044		13595	14018
	DENTITY	%/6		%19		%56	%59		40%	100%
	COVERAGE	94%		%76		101%	94%		91%	101%
STY003357 Seq ID	Seq ID	10228		11204		11631	12038	13132		13963
	DENTITY	%/8	_	42%		85%	49%	36%		100%
	COVERAGE	100%		100%		81%	101%	100%		100%

LOCUSI Data	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
A		a coli	us faecalis us	sn	er pylori	pneumonia as	as	us aureus	S	a typhi
				influenzae		в	aeruginosa		pneumoniae	
PA0028	SeqID						5053			
	COVERA						100%			
	GE						1000			
ł	י ווואומתו	,				İ	100/0			
PA0120	SeqID	9		10959			5054			13899
	COVERA	%96		94%			100%			%56
	GE		•							_
	DENTITY	78%		28%			100%			78%
PA0129	SeqID	10265			11388		5055	12844		14048
	COVERA	93%			91%		100%	94%		%16
	GE									
	DENTITY	%19			32%		100%	36%		%19
PA0141	SeqID						5056			
	COVERAG	田					100%	_		
	IDENTITY		,				100%			
PA0221	SeqID			11250	11386	11701		12781		13778
	COVERAGE	ш.		73%	77%	83%	100%	%96		77%
	DENTITY			32%	79%	78%		28%		75%
PA0265	SeqID	10264	10550		11466		8505	12375	13316	14047
	COVERA	100%	%26		%66		100%	%96	91%	100%
	GE									
	IDENTITY	81%	35%		79%		100%	38%	34%	%08
PA0321	SeqID						5059			
	COVERAGE	四.					100%			
ı	IITY						100%			
PA0337	SeqID	10278	10785	11275			0905	12351	13281	13880

LOCUSI Data		Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
A		a coli	us faecalis us	- cr	er pylori 🏻 🏻	pneumonia as	as I	ns aureus	S	a typhi
				influenzae	 -	<i>a</i>	aeruginosa		pneumoniae	
	COVERA	%66	73%	72%		-	100%	72%	73%	%66
	GE GE									
	DENTITY	43%	35%	37%			100%	36%	35%	45%
PA0353	SeqID	10408		11088	11397			12159	13511	14034
	COVERA	%16		100%	%88	101%	100%	100%	%96	101%
	GE									
	DENTITY	74%		75%	28%	74%	100%	45%	38%	74%
PA0378	SeqID	10324		11130			2905			13730
	COVERA	94%	•	%08			100%			%56
	GE									
	DENTITY	52%		46%			100%			53%
PA0401	SeqID	10078	10858				5063	12993	09581	13723
	COVERA	%66	100%				100%	%96	100%	%66
	뜅									
	DENTITY	76%	31%				100%	33%	33%	76%
PA0413	SeqID						5064			
	COVERAGE	円					100%			
	IDENTITY						100%			
PA0414	SeqID						2905			
	COVERAG	出_					100%			
PA0419	SeaID	10296	10871	11003		11660	9905	12971	13461	13738
	COVERA	×°	93%	102%		%82	100%	100%	91%	100%
	뜅									
	DENTITY	46%	29%	45%		47%	100%	27%	29%	47%
PA0423	SeqID	10123			11424			12708		14038
	COVERA	%66			%26		100%	75%		%66
	75. 10. 13. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17				2007		1000/			7697
	lmen III I	 %C/ 	_	_	0,75	_	100%	97%	•	0/0/

Salmonell a typhi												-			13846	%56	2007	3970						14013 101%	-
Streptococcu S	pneumoniae				-											%56	7000	2870							_
Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell a coli us faecalis us er pylori pneumonia as us aureus s a pphi	7	-													2153	%92		34%							_
Pseudomon as	aeruginosa	5068 100% 100%	5069	100%	100%	5070	100%	100%	5071	100%	10070	5072	100%	100%	5073	100%	,000	100%	5074	100%	100%	5075	100%	5076 100%	_
Klebsiella Ps.	в																								
Helicobact er pylori															11581	93%		35%							_
Haemophil us	influenzae														11237	83%		38%							_
Enterococc Ha							<u>.</u>																		_
Escherichi a coli		7. 1. 1.	10471	%88	47%		.出			円,		_	田田	<u> </u>	10150	%56		38%		8,	(2	10233 85%	
Data		SeqID COVERAGE	SealD	COVERA	GE	SeqID	COVERAGE	IDENTITY	SeqID	COVERAC	IDENTITY	SeqID	COVERAGE	IDENTITY	SeqID	COVERA	GE	IDENTITY	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	SeqID COVERA GR	<u>1</u>
LOCUSI Data		PA0469	PA0472			PA0506			PA0600			PA0642			PA0650				PA0715		•	PA0788		PA0882	_

LOCUSI Data	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
Q		a coli	us faecalis us	rns.	er pylori	pneumonia as	as	ns aureus	S	a typhi
	MENTITY	33%		luenzae		ø	aeruginosa 100%		pneumoniae	28%
1		10076	10076	11006		11752	5077	12646	13483	
FA0954	SedID		_	11000		,	7,000		7040	
	COVERA	101%	93%	101%		%0%	001	%76	94%	
	GE									
	DENTITY	47%	40%	46%		37%	100%	39%	38%	
PA0938	SeqID						5078			
	COVERAG	H					100%			_
	DENTITY						100%			
PA1019	SeqID	10467	10592	08111			5079			
	COVERA	%88	84%	%88			100%			
	GE									
	DENTITY	. 56%	25%	28%			100%			
PA1072	SeqID	10377					5080		13410	13813
	COVERA	100%					100%		71%	100%
	Œ									
	DENTITY	62%					100%		36%	. 61%
PA1115	SeqID						5081			
	COVERAGE	田.					100%			
	DENTITY						100%			
PA1270	SeqID	10328					2805			13946
	COVERA	%9/				79%	100%			%9/
	Œ									
	DENTITY	7 26%				25%	100%			79%
PA1301	SeqID	10					5083			
	COVERA	% 96					100%			
	GE	28%					100%			
PA1360	SeaID	10104					5084		13282	14000
, , ,			_	_	_	-	_	_	-	•

IS	LOCUSI Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
		a coli	us faecalis us		er pylori	pneumonia as		us aureus		a typhi
				influenzae		в	aeruginosa		pneumoniae	
	COVERA	%76					100%		%/6	%26
	IDENTITY	%89					100%		75%	%89
	SedID						5085			
_=	COVERAGE	-田·					100%		-	
<u></u>	DENTITY						100%			
	SeqID						5086			
	COVERAGE	出					100%			
	DENTITY						100%	•		
	SeqID		10915		11559		5087			
	COVERAGE	Ë.	%86		101%		100%			
• •	DENTITY		73%		30%		100%			
—	SeqID	10423				11718	8808			13786
	COVERA	%76				%/6	100%			%76
	Œ									
_	DENTITY	999				49%	100%			26%
	SeqID				11377		6805			
	COVERAG	H			%88		100%			
	DENTITY				28%		100%			
	SeqID	10001						29		13890
	COVERA	101%					100%	%96		81%
	Œ									
	DENTITY	37%	i				100%	79%		32%
	SeqID					11693	5091			
	COVERAG	E				%66	100%			
_	IDENTITY					29%	100%			
	SeqID	10					2605			
	COVERA	%2%					100%			
	<u>1</u>	_								_

Salmonell	a typhi		14036	93%	39%	13745	%62		28%											13861	%56		12006	12220	%96	37%	13893	%/6
Streptococcu	, S	pneumoniae																		13282	%88	\63°C	13676	12051	%06	75%	13683	%0%
Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	us aureus																						12042		94%	34%		
Pseudomon	as	aeruginosa 100%	5093	100%		5094	100%		100%	5095	100%	100%	9609	100%	100%	5097	100%		100%	5098	100%	1000/	0/001		%00I 	100%	5100	0/0/1
Klebsiella	pneumonia as	o	11746	%91	40%									_		11692	85%		35%								11752	07.00
Helicobact	er pylori										_																	
Haemophil	Sm	influenzae				11033	82%		28%									-					11257	11437	%56	27%		
Enterococc	us faecalis us										·				;												10865	0/02
Escherichi	a coli	35%		岜		10153	%62		31%		田			. <u>E</u> J		10253	%1%		31%	10198	92%	300%	10100	70707	%96 	37%	10472 97%	0///
		DENTITY	SeqID	COVERAGE	N.	SeqID		GE	IDENTITY	SeqID	COVERAGE	DENTITY	SeqID	COVERAG	IDENTITY	SeqID	COVERA	EE	IDENTITY	SeqID	COVERA	GE	Seal		COVEKA	DENTITY	SeqID COVERA	GE
LOCUSI Data	Ω		PA1876			PA1918				PA1986			PA2009			PA2083				PA2101			PA2108				PA2128	

Salmonell	a typhi	33%	13985	%86		29%	13852	%66		43%	13830	100%		73%															
Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	8	pneumoniae 27%																											
Staphylococc	us aureus								-		12917	%26 ·		44%							i .								
Pseudomon	as	aeruginosa 100%	5101	100%		100%	5102	100%		100%	5103	100%		100%	5104	100%	100%	5105	100%	100%	2106	100%		100%	5107	100%	100%	5108	100%
Klebsiella	pneumonia as	e 25%																											
Helicobact	er pylori										ļ -		<u> </u>																
Haemophi	sn	influenzae																											
Enterococc	us faecalis us	79%				•																							
Escherichi	a coli	27%	10181	%86		%09	10169	%66		43%	10160	100%		74%		<u>,E</u>			. 田		10132	%98		35%		田		<u></u>	8 —
		DENTITY	. 1	COVERA	GE	IDENTITY	SeqID	COVERA	GE	IDENTITY	SeqID	COVERA	GE	DENTITY	SeqID	COVERAGE	DENTITY	SeqID	COVERAGE	DENTITY	SeqID	COVERA	#	DENTITY	SeqID	COVERAC	DENTITY	SeqID	DENTITY
LOCUSI Data	Ω		DA2147				PA2196				PA2197				PA2222			PA2313			PA2398				PA2424			PA2461	

LOCUSI Data		Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella .	Pseudomon.	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
A		a coli	us faecalis us	STI	er pylori	pneumonia as	as	ns aureus	8	a typhi
				influenzae		e	aeruginosa		pneumoniae	
PA2470	SeqID						5109			13930
	COVERAGE	円					100%	-		%86
	DENTITY						100%			%09
PA2488	SeqID	10189		11172			5110			13980
	COVERA	%68		%02	•		100%			%28
	Œ				_					
	IDENTITY	32%		28%			100%			75%
PA2494	SeqID	10331		11145	11516		5111			13719
	COVERA	%66		%86	100%		100%			%86
	GE									
	DENTITY	_		31%	26%		100%			41%
PA2584	SeqID	10195	10899	10967	11504			12330	13442	14058
_	COVERA	94%	%66	94%	%26		100%	%66	%76	94%
	EE CE									
	DENTITY		37%	21%	38%		100%	41%	42%	28%
PA2594	SeqID	10116				11714	5113	-		
	COVERA	%26				%08	100%			
	E									
	DENTITY	-				45%	100%			
PA2634	SeqID	10441					5114			
	COVERA	74%					100%			
	<u>B</u>			_						
	DENTITY	Ī					100%		٠	
PA2641	SeqID	10226	10566				5115			13959
	COVERA	%56	%68				100%			%56
	B									
	IDENTITY	%08	37%				100%			%08
PA2671	SeqID COVERAGE	_ 円					5116 100%			
_			_	_	_	_	-		_	_

u Salmonell	a typhi		14029 101%	42%									%			13848	100%		%99	13750	%86 	64%	13777
Streptococc	S	pneumoniae								13302	%16		45%										
Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	ns anreus	 								12628	%16		25%			12339	75%		42%	12461	102%	40%	
Pseudomon	as	aeruginosa 100%	5117 100%		5118 100%	100%	5119	100%	100%		100%		100%	5121	100%	5122	100%		100%	5123	%00I	100%	5124
Klebsiella	pneumonia as	ø	11730 90%	43%																	-		
Helicobact	er pylori									11296	%68		47%			11293	%98		39%	11525	102%	41%	
Haemophil	SII	influenzae					ì		İ	11222	84%		67%			11233	100%		64%	11095	102%	43%	
Enterococc	us faecalis us		10703 74%							10660	%26		20%			10695	%62		40%	10494	%08 —	39%	
Escherichi	a coli		10444	42%	10384	33%		띩.		10177	91%	_	64%		思 _	10151	· 100%		%89	104	%86 -	64%	10307
		IDENTITY	SeqID COVERA	GE	SeqID COVERA	GE	SeqID	COVERAGE	DENTITY	SeqID	COVERA	GE	DENTITY	SeqID	COVERAGE	SealD	COVERA	뜅	DENTITY	SeqID	COVERA	GE	SeqID
LOCUSI Data	A		PA2680		PA2684		PA2726			PA2742			•	PA3006	····	PA3011				PA3013			PA3041

LOCUSI Data	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
		a coli	us faecalis us	trs.	er pylori	pneumonia as	as	us aureus	S	a typhi
-				luenzae		9	aeruginosa	···	pneumoniae	
	COVERA	%88					100%			%88
	DENTITY	32%					100%			32%
PA3048	SeqID	10117		10966			5125			14005
	COVERA	%66		75%		_	100%			%66
	<u>a</u>									
	DENTITY	47%		45%			100%			47%
PA3068	SeqID						5126			
	COVERAGE	대 —					100%			
PA3121	SeaTD	10021		11164	11363		5127	12156		14017
	COVERA	%66			81%		100%	%66		%66
	贯) 					2
	DENTITY	. 63%		29%	79%		100%	26%		%79
PA3153	SeqID						5128			
	COVERAGE	jĖ					100%			
	DENTITY						100%			-
PA3154	SeqID						5129			
	COVERAC	円.					100%			_
	DENTITY						100%			
PA3160	SeqID						5130			
	COVERAGE	田田					100%			
	DENTITY	·	ļ				100%		•	
PA3279	SeqID						5131			
	COVERAC	H					100%			
	DENTITY						100%			
PA3280	SeqID COVERAGE	 班					5132			
	DENTITY	ļ _ _					100%			
	•	•	•	•	•		•	•		•

Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	a typhi	pneumoniae			-		_					13719	%66		40%	13912	%66		52%	13751	100%		31%						13703
Staphylococc S	us aureus s							0							9				0				0			.0			
Pseudomon	as	aeruginosa	5133	100%	100%	5134	100%	100%	5135	100%	100%	5136	100%		100%	5137	100%		100%	5138	100%		100%	5139	100%	100%	5140	100%	6171
Klebsiella	pneumonia as	e																				· <u>·</u>							
Helicobact	er pylori		i									11516	%66		26%	11378	%62		30%										
Haemophil	sn	Iuenzae			 -						1		%66		0%	11173	100%		21%										,,,,,
Enterococc	us faecalis us																												
Escherichi	a coli		10452	%66	25%		m			Ш		10331	%86	-	41%	10046	%66		23%	10194	100%		30%		與.	,		H	2,200,
			SeqID	COVERA	DENTITY	SeqID	COVERAGE	DENTITY	SeqID	COVERAGE	$\overline{}$		COVERA	贸	DENTITY		COVERA	GE	IDENTITY	SeqID	COVERA	GE .	DENTITY	SeqID	COVERAGE	DENTITY	SeqID	COVERAG	
LOCUSI Data	Ω		PA3374			PA3479		•	PA3484			PA3522				PA3643				PA3703				PA3709			PA3716		,,,,,,

LOCUSI	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
A		a coli	us faecalis us	rrs.	er pylori	pneumonia as	as	us aureus	S	a typhi
			. 	26		e e	aeruginosa		pneumoniae	
	COVERA	94%		61%			100%			85%
	GE									
	DENTITY	38%		41%			100%			39%
PA3845	SeqID	10277		11200			5142			13882
	COVERA	%86		%86			100%			%86
	GE									
	DENTITY	34%		30%			100%			35%
PA3866	SeqID						5143			
	COVERAG	. 出 .					100%			•
	DENTITY						100%			
PA3876	SeqID	10144					5144			13840
	COVERA	%26					100%			%16
	GE									
	DENTITY	%19					100%			28%
PA3877	SeqID	10161					5145	12699		13831
	COVERA	%86					100%	%26		%86
	GE									
	DENTITY	78%				- 1	%00	27%		27%
PA3931	SeqID	10050	10833	11067					13173	13720
	COVERA	82%	%76	103%	%76	82%	100%	%96	109%	%56
	EB									
	IDENTITY	20%	43%		49%	48%	100%	44%	36%	35%
PA3984	SeqID	10087		11002		11674	5147			14061
	COVERA	%26		%86		91%	100%			%66
	GE									
	IDENTITY	40%		37%		8	100%			40%
PA4024	SeqID		10700		i		5148			13951
	COVERA	95%	%56			71%	100%			%56
	<u> </u>		_							_

a coli us faecalis us er pylori pneumonia as us aureus s a typhi influenzae con 50% 50% 50% 50% 50%	,000		12958	12958 13296 140 70%. 71% % 35% 31% 138	12958 13296 14002 70% 71% 72 ⁹ % 35% 31% 99 ⁹ %	12958 13296 14002 70% 71% 72' % 35% 31% 99% % 99%	12958 13296 14002 70% 71% 72' % 35% 31% 99% % 99%	70% 13296 14002 70% 35% 31% 729 % 35% 31% 999 % 13845 % 14023	2958 13296 14002 70% 71% 72° 35% 31% 99° % 99° % 99° % 99° % 14023
onia as taruginosa a aeruginosa 72% 100%	5149 100% 100%		5150 100% 3% 100%	5150 100% 5% 100% 5151 100%	5150 100% 100% 5151 100% 100% 100% 100%	5150 100% 100% 5151 100% 5152 100% 100% 100% 100%	5150 100% 100% 5151 100% 5152 100% 5153 100% 100% 100% 100% 100% 100%	5150 100% 5151 100% 100% 5152 100% 100% 100% 100% 100% 100% 100% 100	5150 100% 5151 100% 5152 100% 5153 100% 100% 100% 5155 100% 100% 100% 100%
er pylori pneumonia as ee 72%		-	11527 11725 72% 72% 34% 33	11725 6 72° 34%	34%	34%	34%	34%	34%
us er j influenzae		_	11194 72% 33%	11194 72% 33%	11194 72% 33%	11194 72% 33%	33% 33%	33%	33%
us faecalis us inf 50%			10563 83% 30%	10563 83% 30%	83% 30%	83% 30%	83% 30%	83% 30%	83% 30%
a coli 50%			10102 72%	02 72% - 35% 49 98% 44%	10102 72% 10149 98% 44% 10159 96%	10102 72% 35% 10149 98% 44% 28% E	10102 72% 35% 10149 98% 44% 28% E	10102 72% 35% 10149 98% 44% 28% E E	10102 72% 35% 10149 98% 28% E E E E
TITY	SeqID COVERAGE DENTITY			RA IITY RA	SeqID COVERA GE DENTITY SeqID COVERA GE DENTITY SeqID COVERA GE COVERA GE	RA RA RA RA RA RA RA RA RA RA RA RA GITTY	SeqID COVERA GE DENTITY SeqID COVERA GE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY	SeqID COVERA GE DENTITY SeqID COVERA GE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY SeqID COVERAGE DENTITY	SeqD 11 COVERA GE DENTITY SeqD 12 COVERA GE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY SeqD COVERAGE DENTITY
D D DEF	PA4027 S	PA4037							

LOCUSI Data		Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc.	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
Q		a coli	us faecalis us		er pylori	pneumonia as		ns aureus	S	a typhi
				luenzae			aeruginosa		pneumoniae	
	COVERA	%86	%56	%88	83%	74%	100%	%96		 %26
	GE			č	ò			7607		716/
	DENITY	%19	38%	2	0/,97	01.0	100%	2070		0/10
PA4237		10333	10542	11123	11582					14093
	COVERA	91%	%26	%86	%06		100%	%26	%26	%16
.,	GE	700/	/130/	7091	7987		100%	45%	47%	76%
ſ		10220	10520	11117	11/10		5150			
FA4242	SedID	:		;	11420		1000,			
	COVERA	100%	100%	100%	100%		100%			
	Œ									
	DENTITY	%28	%89	3	74%		100%			
PA4244	SeqID	10340	10534	11116			5160	12225	13217	14099
	COVERA	100%	100%	100%			100%	100%	100%	100%
	GE									
	IDENTITY	%59	46%	63%			100%	42%	43%	65%
PA4245	SeqID	10341	10532	11115					13216	13812
	COVERA	%56	%86	%56			100%	%86	%86	78%
	GE									
	DENTITY	26%	42%	28%			100%	42%	40%	33%
PA4246	SeqID	10342	10531	11114	11432			12222		14101
	COVERA	100%	%26	%66	%88		100%	%66	%26	100%
	GE									
	DENTITY	77%	52%	74%	49%		100%	52%	53%	%//
PA4247	SeqID	10343	10530		11433			12221	13214	14102
	COVERA	%66 	%86	%66	%26		100%	%86	%86	%66
	GE	26%	\$2%	63%	37%		100%	48%	54%	%65
PA4248	SeqID	10344	10529	11112	11434		5164	12220	13571	14103
_		_	_	-	•	-	-			•

LOCUSI Data		Escherichi .	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
Q		a coli	us faecalis us		er pylori	pneumonia as		ns aureus	S	a typhi
				luenzae		o	aeruginosa		pneumoniae	
	COVERA	100%	%66	100%	%66		100%	%66	%66	100%
·—-	DENTITY	%29	49%	%99	20%		100%	43%	47%	62%
PA4249	SeqID	10345	10528		11435		5165	13033	13212	14104
	COVERA	%66	102%	%66	100%		100%	102%	102%	%66
	뜅									
	DENTITY	64%	46%	64%	40%		100%	44%	47%	64%
PA4250	SeqID	10346	10599	11110			9915	12737	13211	14105
	COVERA	100%	100%	100%			100%	100%	100%	100%
	GE									
_	DENTITY		43%	%89			100%	46%	53%	67%
PA4251	SeqID	10347	10527	60111	11589	11654	2167	12218	13210	14106
	COVERA	%66	%66	%66	%66	%66	100%	%06	%86	%66
	89									
	DENTITY	%69	28%	%89	48%	%69	100%	63%	61%	%89
PA4252	SeqID	10348	10526	11108			5168	12217	13209	14107
	COVERA	%26	%76	94%			100%	%86	%26	%96
 -	GB									
•	DENTITY	%59	49%	%29			100%	49%		64%
PA4253	SeqID	10349	10525	11107	11436		5169	12216	13208	14108
	COVERA	.101%	100%	101%	100%		100%	100%	100%	101%
-	GE									
	DENTITY	85%	%99	82%	%59		100%	%99	%99	84%
PA4254	PA4254 , SeqID	10350			11437		5170	12215	13207	
	COVERA	%06	%86	%06	84%		100%	%68	%68	
	GE	710	430 /	7069	7051/		100%	7055	7095	
	DENTIL I						100/0			

LOCUSI Data		Escherichi	Escherichi Enterococc Haemophil Helicobact Klebsiella	Haemophil	Helicobact	_	Pseudomon	Staphylococc	Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
Ω		a coli	us faecalis	sn	er pylori	pneumonia as		us aureus	5	a typhi
			_	influenzae		e	aeruginosa		pneumoniae	
PA4256		10352	10560	11104	11439		1712	12260	13204	13968
	COVERA	100%	100%	100%	%96		100%	%86	%86	100%
	Œ			•					-	
	IDENTITY	%11%	24%	77%	%59		100%	28%	21%	77%
PA4257	SeqID	10353	10559	11103	11592		5172	12259	13203	13969
	COVERA	%66	91%	100%	%66		100%	91%	93%	%66
	Œ									
	DENTITY	74%	%19	72%	. 55%		100%	21%		74%
PA4258	SeqID	10354	10558	11102	11593		5173	12258	13202	13970
	COVERA	100%	91%	100%	%56		100%	%66	91%	100%
	뜅									
	IDENTITY	89%	21%	70%			100%	48%	28%	%69
PA4259	SeqID	10355	10557	111101	11594		5174	12255	13201	
	COVERA	100%	101%	100%	%66		100%	100%	100%	
	GE									
	IDENTITY	82%	40%	84%	61%		100%	63%		
PA4262	SeqID	10358	10549	11098	11595		5175	12240	13198	13973
	COVERA	100%	%56	100%	%96	_	100%	101%	%16	100%
	Œ									
	DENTITY	%89	45%				100%	46%	44%	%89
PA4263	SeqID	10359		11097	11442		9/15	12235	13197	13974
·	COVERA	%66		%86	91%		100%	103%	%66	%66
	GE									
	IDENTITY			73%	35%		100%	46%	51%	75%
PA4264	SeqID	10360	10533	11096	11443	11643	2177		13196	13975
	COVERA	100%	75%	100%	%56	100%	100%		%66	100%
	GE								,	
	DENIIIY	\$	%85	%76	2/%	%7.6	%00I		%19	%16
PA4268	SeqID	10365	10479	11062	11409		5178	12445	13231	13967

LOCUSI Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	occ	Streptococcu	Salmonell
	a coli	us faecalis us		er pylori	neumonia		us aureus		a typni
			influenzae		9	aeruginosa	,	pneumoniae	
COVERA	100%	111%	100%	100%		100%	111%	%111	100%
된 5	Č					1000		100/	7000
DENTITY	%	%0/	89%	0,270		2001	0/00		
SeqID	10439	10627	11036	11410			12446	13646	14042
COVERA	100%	100%	100%	109%		100%	101%	%66	100%
Œ									
DENTITY	%	46%	73%	47%		100%	46%	45%	75%
SeaID	10437	10615	11072	11572 .		5180	12449	13247	14044
COVERA	vo.	্	101%	102%		100%	%86	100%	%001
GE									
DENTITY	%99	%59	%99	54%		100%	28%	28%	64%
SeqID	10436	10614	11071				12450	13246	14045
COVERA	. 0	%56	100%			100%	%66	%56	%66
GE									
DENTITY	$\overline{}$	40%	%99			100%	39%	42%	65%
SeqID	10200		11235			5182			13821
COVERA	%88		%06			100%			%16
GE									1
IDENTITY	51%		47%			100%			51%
SeqID						5183			
COVERAGE	H					100%			
DENTITY						100%			
SeqID						5184			
COVERAC	H				%98	100%			
DENTITY					27%				
SeqID	10292				11740	5185			13742
COVERA	%56				81%	100%			%26
GE									-
TURNITY	40%				36%	100%			41%

LOCUSI Data	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
9		a coli	us faecalis us	sn	er pylori 🏻 🎚	pneumonia as	as	us aureus	S	a typhi
				influenzae		e	aeruginosa	,	pneumoniae	
PA4375	SeqID	10072		11145	11516		5186			13719
	COVERA	101%		100%	100%		100%			101%
-	뜅							****		
	IDENTITY	33%		45%	78%		100%			33%
PA4413	SeqID	10030	10805	11188	11458			12360	13333	14077
	COVERA	%06	94%	95%	93%		100%	93%	%86	%06
	出									
	DENTITY	45%	33%	41%	30%		100%	33%	32%	44%
PA4433	SeqID	10327	10602	11241	11289	11655		12237	13356	13729
	COVERA	100%	%66	100%	94%	72%	100%	%66	%66	100%
	GE									
	IDENTITY	75%	29%	73%	54%	76%	100%	25%	26%	72%
PA4473	SeqID	10463		56111			5189			13986
	COVERA	84%		%18			100%			84%
	GE									
	IDENTITY	39%		37%			100%			39%
PA4506	SeqID	10381	10658	11198	11314	11717	5190	12850	13248	13800
	COVERA	%66	77%	%86	%62	91%	100%	%66	81%	%66
	뜅									
	DENTITY	58%	48%	%09	21%	%65	100%	46%	42%	28%
PA4512	SeqID						5191			13815
	COVERAC	田					100%			%66
·	DENTITY						100%			21%
PA4542	SeqID	10258	10628		11489			12526		14088
	COVERA	100%	101%	100%	100%		100%	101%	%08	100%
	뜅									
	DENTITY	71%	47%	70%	49%		100%	52%	46%	71%
PA4576	SeqID COVERAGE	— 田					5193 100%			
-	-		-	-		_	-			•

Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	a typhi	pneumoniae	13719	100%		20%	13336 13979	%001 %66		20%							13765	91% 107%		43% 58%	13402 13828	%16 %96		33% 33%				13856
Staphylococc Stre	us aureus s						12380 133	%86		53%							12322 13663	78%		48%	134							
Pseudomon	as	aeruginosa 100%	5194	100%		100%	5195	100%		100%	5196	100%	100%	5197	100%	100%	5198	100%		100%	5199	100%		100%	5200	100%	1007	1075
Klebsiella	pneumonia as	w					11675	100%		%59																		
Helicobact	er pylori		11516	%66		28%	11287	%26		25%							11501	93%		39%								
Haemophil	571	influenzae	1	100%		29%	11251	101%		64%							11216	%86		28%	11280	%66		75%			10070	7/601
Enterococc	us faecalis us			-			10826	%26		24%																		
Escherichi .	a coli		10072	100%		20%	10143	100%		%99		ш			ш		10314	107%		28%	10387	100%		87%		'n	10455	1045
		DENTITY	SeqID	COVERA	CE CE	DENTITY		COVERA	GE	IDENTITY	SeqID	COVERAGI	IDENTITY	SeqID	COVERAGI	<u> </u>	SeqID	COVERA	GE	IIIY		COVERA	뜅	DENTITY	SeqID	COVERAGI	DA 4047 CS-TT	
LOCUSI Data	<u>A</u>		PA4598				PA4665				PA4681			PA4709		;	PA4744				PA4771				PA4888		C 7 0 7 4 C	FA4742

LOCUSI	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
Ω		a coli	us faecalis us	ns	er pylori	pneumonia as	as	us aureus	٠ د	a typhi
	DENTITY	48%		influenzae 41%		e u	aeruginosa 100%		pneumoniae	48%
PA4997	SeqID	10115	10619	10960	11394		5202	12501	13458	14006
	COVERA	%98	85%	%/6	83%		%	%	%	%98
	Œ						,			
- 1	IDENTILY	43%	36%	44%	31%		100%	37%	32%	44%
PA5030	SeqID	10165	•				5203			
	GEVERA	808					100%			
	DENTITY	64%					100%			
PA5076	SeqID	10197	10796	11176	11383	11694	5204		13292	14057
	COVERA	94%	82%	%/6	62%	%06	100%		%86	94%
	GE									
	DENTITY	79%	33%	27%	26%	75%	100%		30%	30%
PA5088	SeqID						5205			
	COVERAG	田					100%			
	IDENTITY					ļ	100%			
PA5193	SeqID	10373		11126		11709	5206			13808
	COVERA	100%		%96		77%	100%			100%
	Œ									
	DENTITY	41%		39%		42%	100%			41%
PA5199	SeqID	10375	96501			11711	5207			13810
	COVERA	102%	71%			102%	100%			103%
	E									•••
	IDENTITY	33%	26%			34%	100%			32%
PA5207	SeqID				11612		1	12730		
	COVERAGE	兕		100%	%6£ 36%		100%	100%		
PA5209		10302					5209			13758

LOCUSI Data	Data	Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
A		a coli	us faecalis us	sn	er pylori	pneumonia as	as 1	us aureus	s	a typhi
				influenzae		в	aeruginosa		pneumoniae	
	COVERA	%06					100%			%68
	GE									
	DENTITY	75%	-				100%			78%
PA5248	SeqID						5210			
	COVERAGE	·用					100%			
	DENTITY				-		100%			
PA5299	SeqID						5211			
•	COVERAC	H		_			100%			
	DENTITY						100%			
PA5316	SeqID	10391		11158	11327			12129		
	COVERA	100%		%66	78%		100%	73%		
	GE									
	DENTITY	82%		79%	39%		100%	40%		
PA5388	SeqID		10503				5213			
	COVERAC	出	%58				100%			
	DENTITY		28%				100%			
PA5393	SeqID						5214			
	COVERAC	田					100%		-	-
	DENTITY						100%			
PA5436	SeqID	10330			11321		}	13127		13885
	COVERA	94%	94%	94%	94%		100%	94%	94%	94%
	Œ									
	IDENTITY	52%	21%	52%	46%		100%	25%	54%	25%
PA5443	SeqID	104	88/01		11452			12489	13643	13748
	COVERA	100%	103%	100%	%96		100%	100%	105%	100%
	Œ									
	DENTITY	64%	38%	%95	35%		100%	38%	39%	64%
PA5490	SeqID COVERAGE						5217 100%			
_	- - -		_	_	_	_	200		_	

LOCUSI Data		Escherichi	Enterococc	Haemophil	Helicobact	Klebsiella	Pseudomon	Staphylococc	Escherichi Enterococc Haemophil Helicobact Klebsiella Pseudomon Staphylococc Streptococcu Salmonell	Salmonell
Q		a coli	us faecalis us		er pylori	er pylori pneumonia as		us aureus	S	a typhi
				influenzae		e	aeruginosa	-	pneumoniae	
	IDENTITY						100%			
PA5493	SeqID	10417	10668	11133	60911		5218	12623	13236	
	COVERA	102%	102%	102%	102%		100%	100%	101%	
	GE									
	IDENTITY	62%	37%	28%	31%		100%	38%	37%	
PA5507	SeqID	10119					5219			
	COVERA	%66					100%			
	GE									
	DENTITY	31%					100%			
PA5567 SeqID	SeqID	10397	10911	11169	11450		5220	12703	13338	13923
·	COVERA	%66	103%	%66	100%		100%	102%	101%	%66
	GB		•							
	DENTITY	%19	39%	64%	33%		100%	34%	37%	%29

TABLE IV

PathoSeq	Enterococcu	Escherichia	Pseudomonas	Staphylococcus
Cluster	s faecalis	coli	aeruginosa	aureus
D				
15	EFA102326	ECO101796	PAE100280	SAU102515
55	EFA100151	ECO104157	PAE100416	SAU100633
57	EFA100617	ECO102690	PAE105434	SAU100158
1443	EFA100689	ECO103692	PAE101987	SAU100952
1861	EFA101412	ECO103231	PAE104331	SAU101793
2286	EFA103268	ECO103265	PAE104314	SAU101756
2362	EFA101425	ECO100662	PAE101537	SAU101236
2367	EFA101417	ECO103226	PAE103206	SAU101798
2549	EFA101410	ECO103233	PAE104329	SAU101791
3816	EFA101159	ECO103243	PAE104319	SAU100546
3857	EFA101415	ECO103228	PAE103204	SAU101796
4322	EFA101165	ECO103237	PAE104325	SAU100141
4569	EFA100955	ECO103217	PAE103215	SAU101808
4948	EFA101160	ECO103242	PAE104320	SAU100547
5818	EFA100742	ECO103224	PAE103208	SAU101800
8159	EFA101163	ECO103239	PAE104323	SAU100139
8296	EFA101164	ECO103238	PAE104324	SAU100140
8316	EFA101409	ECO103234	PAE104328	SAU101790
8494	EFA103062	ECO103884	PAE104311	SAU100433
8498	EFA101411	ECO103232	PAE104330	SAU101792
8499	EFA101416	ECO103227	PAE103205	SAU101797
7		ECO100071	PAE100837	SAU102674
8	EFA101340		PAE106580	SAU100118
28	EFA101403		PAE102647	SAU100514
41	EFA101753	ECO100148		SAU101565
63	EFA101685		PAE103857	SAU100331
147		ECO100645	PAE100543	SAU100053
548		ECO100377	PAE100604	SAU100747
730		ECO103592	PAE103108	SAU100061
1721	EFA101686	ECO100663		SAU101996
1749	EFA101477	ECO102557		SAU100613
2153	EFA102656	ECO100184		SAU101869
2790	EFA102764	ECO100500		SAU101578
3164	EFA101162	ECO103240		SAU102602
3312	EFA103174		PAE105008	SAU100521
3926	EFA100194	ECO103220		SAU101806
4441	EFA102541		PAE105364	SAU101814
5685	EFA100190	ECO103264		SAU100157
7417	EFA102788	ECO101684		SAU102992
7437	EFA102351	ECO100084		SAU100056

PathoSeq	Enterococcu	Escherichia	Pseudomonas	Staphylococcus
Cluster	s faecalis	coli	aeruginosa	aureus
D				
7579		ECO102470	PAE102641	SAU100607
7726	EFA102551	ECO103221		SAU101805
7727	EFA100978	ECO103218		SAU101807
8092		ECO102035	PAE102964	SAU100794
8158	EFA103365		PAE104318	SAU102880
8161	EFA100210		PAE104326	SAU102527
8162	EFA101414		PAE103203	SAU101795
8164	EFA100741	ECO103223		SAU101801
8493	EFA101141		PAE104310	SAU100432
10185	EFA102728	ECO104092		SAU102578
35		ECO102870		SAU100497
44			PAE101061	SAU101143
54			PAE100225	SAU100123
85		ECO101104		SAU101262
184			PAE104901	SAU101366
362	EFA102736			SAU100414
575	EFA101790			SAU100133
579	EFA102110			SAU101624
911			PAE105432	SAU102054
941		ECO101365		SAU102162
952	EFA100615			SAU100964
1084	EFA100289	ECO102819		
1141		ECO102255		SAU102356
1232		ECO100703		SAU101346
1274			PAE103655	SAU102264
1337		ECO102562		SAU100567
1350		ECO100930	PAE103901	,
1374		ECO103659		SAU101385
1427	EFA100394			SAU100714
1535		ECO101207		SAU101561
1653	EFA102655			SAU101868
1849	EFA100642			SAU101653
1932	EFA100919			SAU101365
2156	EFA101150			SAU101271
2189		ECO102827	PAE100476	
2238	<u> </u>	ECO101436		SAU101092
2338	EFA103038			SAU100518
2411	EFA102802			SAU102246
2501	EFA101121			SAU100996
2974			PAE102537	SAU102125
3027		ECO103959		SAU200242
3239	EFA103021	<u> </u>	<u> </u>	SAU100300

PathoSeg	Enterococcu	Escherichia	Pseudomonas	Staphylococcus
Cluster	s faecalis	coli	aeruginosa	aureus
ID	1		_	
3244	EFA100399			SAU101891
3386	EFA100426			SAU100886
3447	EFA102915			SAU102112
3460	EFA102023			SAU101399
3682	EFA100740			SAU101802
3771	EFA101540			SAU100275
4424	EFA102542			SAU101815
4654		ECO100488	PAE106184	
5148	EFA100065			SAU100658
7227	EFA100023			SAU100436
7240		ECO103672		SAU101682
7278			PAE101620	SAU301370
7374			PAE106765	SAU103042
7375	EFA102051			SAU103038
7402		ECO103572	PAE106044	
7419		ECO101686		SAU102693
7436	EFA101792			SAU101495
7504	EFA101670			SAU102603
7653	EFA100397			SAU100246
7660	EFA102352	ECO103698		
7719	EFA100756			SAU100496
7725	EFA100739			SAU101803
8040	EFA101736			SAU101197
8058	EFA103571			SAU101242
8077	EFA100200			SAU102231
8082	EFA101080			SAU100199
8116	EFA101963			SAU101028
8122	EFA101737			SAU101198
8141	EFA102780			SAU102433
8177	EFA103348			SAU202126
8178	EFA101022			SAU102283
8181	EFA101541			SAU102909
8191	EFA102022			SAU101398
8234	EFA103033			SAU100745
8237	EFA101682			SAU101266
8238	EFA103295			SAU100963
8251			PAE100662	SAU100596
8300	EFA101120			SAU100944
8539	EFA101339			SAU101400
8610		ECO103661		SAU102298
8874	EFA100748			SAU101155
9028	EFA103210			SAU100731

PathoSeq	Enterococcu	Escherichia	Pseudomonas	Staphylococcus
Cluster	s faecalis	coli	aeruginosa	aureus
ID				
9996	EFA102338			SAU100175
10234	EFA102186			SAU102933
10248		ECO102828		SAU101220
10297			PAE105229	SAU101381
10328	EFA101079			SAU101547
10345	EFA100295			SAU100659
10365	EFA100641			SAU101655
10393	EFA103504			SAU100961
10402	EFA101833			SAU100880
12426	EFA101413			SAU101794
14277	EFA103081			SAU200088
14330	EFA101161			SAU102881
14455	EFA101424			SAU101771
14520	EFA100211			SAU101789
15660	EFA103375			SAU102694

Table VI A at the end of the present specification provides the SEQ ID NOs., clone names, and organisms for the sequences used in the above analysis. Table VI B at the end of the present specification provides the clone name, clone SEQ ID NO., PathoSeq locus, Gene SEQ ID NO. (protein) Genemarked gene and full length ORF protein SEQ ID NOs. for the sequences used in the above analysis. Table VI C at the end of the present specification provides the PathoSeq Gene Locus, nucleotide SEQ ID NOs. and Protein SEQ ID NOs. of the sequences used in the above analysis.

5

In some embodiments of the present invention, strains in which genes encoding gene products required for cellular proliferation under the control of a desired promoter, such as a constitutive or regulatable promoter which provides a desired level of expression, are constructed by replacing the natural promoter with the desired promoter through homologous recombination as described in Examples 9-13 below. It will be appreciated that although Examples 9-13 use *Candida albicans* as an exemplary organism, similar methods may be utilized in other organisms.

5

10

15

20

25

30

EXAMPLE 9

Construction of Strains which Overexpress or Underexpress Gene Products Required for Proliferation by Promoter Replacement

Strains which overexpress or underexpress gene products required for proliferation may also be constructed by replacing the promoters which naturally direct transcription of these gene products with promoters which provide the desired level of expression. As described above, such strains are useful in methods for identifying the targets of compounds which inhibit proliferation, as well as in methods for identifying genes encoding gene products required for proliferation.

For example, in some embodiments, the natural promoter may be replaced using techniques which employ homologous recombination to exchange a promoter present on the chromosome of the cell with the desired promoter. In such methodology, a nucleic acid comprising a promoter replacement cassette is introduced into the cell. As illustrated in Figure 5A, the promoter replacement cassette comprises a 5' region homologous to the sequence which is 5' of the natural promoter in the chromosome, the promoter which is to replace the chromosomal promoter and a 3' region which is homologous to sequences 3' of the natural promoter in the chromosome. In some embodiments, the promoter replacement cassette may also include a nucleic acid encoding an identifiable or selectable marker disposed between the 5' region which is homologous to the sequence 5' of the natural promoter and the promoter which is to replace the chromosomal promoter. If desired, the promoter replacement cassette may also contain a transcriptional terminator 3' of the gene encoding an identifiable or selectable marker, as illustrated in Figure 5B. As illustrated in Figure 5A and 5B, homologous recombination is allowed to occur between the chromosomal region

containing the natural promoter and the promoter replacement cassette. Cells in which the promoter replacement cassette has integrated into the chromosome are identified or selected. To confirm that homologous recombination has occurred, the chromosomal structure of the cells may be verified by Southern analysis or PCR.

5

In some embodiments, the promoter replacement cassette may be introduced into the cell as a linear nucleic acid, such a PCR product or a restriction fragment.

Alternatively, the promoter replacement may be introduced into the cell on a plasmid. Figures 5A and 5B illustrates the replacement of a chromosomal promoter with a desired promoter through homologous recombination.

10

15

20

In some embodiments, the cell into which the promoter replacement cassette is introduced may carry mutations which enhance its ability to be transformed with linear DNA or which enhance the frequency of homologous recombination. For example, if the cell is an Escherichia coli cell it may have a mutation in the gene encoding Exonuclease V of the RecBCD recombination complex. If the cell is an Escherichia coli cell it may have a mutation that activates the RecET recombinase of the Rac prophage and/or a mutation that enhances recombination through the RecF pathway. For example, the Escherichia coli cells may be RecB or RecC mutants carrying an sbcA or sbcB mutation. Alternatively, the Escherichia coli cells may be recD mutants. In other embodiments the *Escherichia coli* cells may express the λ Red recombination genes. For example, Escherichia coli cells suitable for use in techniques employing homologous recombination have been described in Datsenko, K.A. and Wanner, B.L., PNAS 97:6640-6645 (2000); Murphy, K.C., J. Bact 180: 2053-2071 (1998); Zhang, Y., et al., Nature Genetics 20: 123-128 (1998); and Muyrers, J.P.P. et al., Genes & Development 14: 1971-1982 (2000), the disclosures of which are incorporated herein by reference in their entireties. It will be appreciated that cells carrying mutations in similar genes may be constructed in organisms other than Escherichia coli.

25

In some embodiments, the methods described in U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), the U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), and U.S. Patent Application 09/948,993 (the disclosure of which is

30

WO 02/086097 . . . PCT/US02/03987

incorporated herein by reference in its entirety), may be used to place the gene required for proliferation under the control of a regulatable promoter.

If the organism in which promoter replacement is to be performed is diploid, strains in which genes encoding gene products required for proliferation are under the control of a desired promoter may be constructed using the methods described in U.S. Patent Application Serial No. 09/792,024 filed February 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), and U.S. Patent Application Serial Number 10/032,585 filed December 20, 2001 (the disclosure of which is incorporated herein by reference in its entirety), disclose genes and gene products required for proliferation which may be used in any of the methods of the present invention.. In such methods, one chromosomal copy of a gene encoding a gene product required for proliferation is inactivated. For example, the gene may be inactivated by insertion of or replacement by a nucleotide sequence encoding a selectable or detectable gene product, such as a polypeptide which provides resistance to a drug or which allows growth under certain culture conditions. The other chromosomal copy of the gene encoding a gene product required for proliferation is placed under the control of a regulatable promoter by homologous recombination. The resultant strains may be used to identify genes which encode gene products required for proliferation and in the methods of the present invention.

20

25

30

5

10

15

For example, one method of constructing diploid cells in which a gene encoding a gene product required for proliferation is under the control of a regulated promoter is depicted in Figures 6A and 6B. In the method illustrated in Figures 6A and 6B, one chromosomal copy of the essential *Candida albicans* gene CaKRE9 is disrupted using a cassette in which nucleic acid sequences homologous to the CaKRE9 gene flank a nucleic acid comprising the SAT1 gene, which is under the control of the ACT-1 promoter and the PCK1 terminator sequence, which is at the 3' end of the SAT1 gene. The presence of the *Escherichia coli* SAT1 gene within *C. albicans* allows acetylation of the drug rendering it nontoxic and permitting the strain to grow in the presence of streptothricin at a concentration of 200 micrograms per milliliter. Expression of the SAT1 gene in *C. albicans* is made possible by engineering the gene so that its DNA sequence is altered to conform to the genetic code of this organism and by providing a

CaACTI promoter (Morschhauser et al. (1998) Mol. Gen. Genet. 257:412-420) and a CaPCKI terminator sequence (Leuker et al. (1997) Gene 192: 235-40). This genetically modified marker is referred to as CaSATI which is the subject of a copending United States Patent Application, Serial No 09/785,669, filed February 16, 2001, Publication Number, US2001-0031724-A1, the disclosure of which is incorporated herein by reference in its entirety.

5

10

15

20

25

30

C. albicans is also sensitive to a second fungicidal compound, blasticidin, whose cognate resistance gene from Bacillus cereus, BSR, has similarly been genetically engineered for expression in C. albicans (CaBSR1), and has been shown to confer a dominant drug resistance phenotype. PCR amplification of either dominant selectable marker so as to include about 65 bp of flanking sequence identical to the sequence 5' and 3' of the C. albicans gene to be disrupted, allows construction of a gene disruption cassette for any given C. albicans gene.

By employing the method of Baudin et al. (1993, Nucleic Acids Research 21:3329-30), a gene disruption event can be obtained following transformation of a *C. albicans* strain with the PCR-amplified gene disruption cassette and selection for drug resistant transformants that have precisely replaced the wild type gene with the dominant selectable marker. Such mutant strains can be selected for growth in the presence of a drug, such as but not limited to streptothricin. The resulting gene disruptions are generally heterozygous in the diploid *C. albicans*, with one copy of the allelic pair on one homologous chromosome disrupted, and the other allele on the other homologous chromosome remaining as a wild type allele as found in the initial parental strain. The disrupted allele is non-functional, and expression from this allele of the gene is nil. By repeating this process for all the genes in the genome of an organism, a set of gene disruptions can be obtained for every gene in the organism. The method can also be applied to a desired subset of genes.

In the method illustrated in Figures 6A and 6B, the second chromosomal copy of the *Candida albicans* CaKRE9 gene is placed under the control of a regulatable promoter using a promoter replacement cassette in which nucleic acid sequences homologous to the promoter region to be replaced flank a nucleic acid comprising the

CaHIS3 gene (which encodes a selectable marker), the ADH terminator, which is at the 3' end of the CaHIS3 gene, and a tetracycline regulatable promoter (described below).

The tetracycline-regulatable promoter system was developed initially for S. cerevisiae but is modified for use in C. albicans. See Gari et al., 1997, Yeast 13:837-848; and Nagahashi et al., 1997, Mol. Gen. Genet. 255:372-375. Briefly, conditional expression is achieved by first constructing a transactivation fusion protein comprising the E. coli TetR tetracycline repressor domain or DNA binding domain (amino acids 1-207) fused to the transcription activation domain of S. cerevisiae GAL4 (amino acids 785-881) or HAP4 (amino acids 424-554). Multiple CTG codon corrections were introduced to comply with the C. albicans genetic code. The nucleotide sequences encoding the transactivation fusion proteins of E. coli TetR (amino acids 1-207) plus S. cerevisiae GAL4 (amino acids 785-881), and of E. coli TetR (amino acids 1-207) plus S. cerevisiae HAP4 (amino acids 424-554), both have been modified for proper expression in C. albicans.

15

20

5

10

Constitutive expression of the transactivation fusion protein in *C. albicans* can be achieved by providing a *CaACT1* promoter and *CaACT1* terminator sequence. However, it will be appreciated that any regulatory regions, promoters and terminators, that are functional in *C. albicans* can be used to express the fusion protein. Thus, a nucleic acid molecule comprising a promoter functional in *C. albicans*, the coding region of a transactivation fusion protein, and a terminator functional in *C. albicans* can be used to obtain cells in which a gene encoding a gene product required for proliferation is under the control of a regulatable promoter. Such a nucleic acid molecule can be a plasmid, a cosmid, a transposon, or a mobile genetic element. In a preferred embodiment, the TetR-Gal4 or TetR-Hap4 transactivators can be stably integrated into a *C. albicans* strain, by using either *ura3* and *his3* auxotrophic markers.

25

The heterologous tetracycline promoter initially developed for S. cerevisiae gene expression contains an ADH1 3' terminator sequence, variable number of copies of the tetracycline operator sequence (2, 4, or 7 copies), and the CYC1 basal promoter. The tetracycline promoter has been subcloned adjacent to both CaHIS3 and CaSAT1 selectable markers in the orientation favoring tetracycline promoter-dependent regulation when placed immediately upstream the open reading frame of the gene of

interest. PCR amplification of the CaHIS3-Tet promoter cassette incorporates 65bp of flanking sequence homologous to the promoter sequence around nucleotide positions -200 and -1 (relative to the start codon) of the target gene, thereby producing a conditional promoter replacement fragment for transformation. When transformed into a C. albicans strain made heterozygous as described herein using the CaSATI disruption cassette, homologous recombination between the promoter replacement fragment and the promoter of the wild type allele generates a strain in which the remaining wild type gene is conditionally regulated gene by the tetracycline promoter. Transformants are selected as His prototrophs and verified by Southern blot and PCR analysis.

In the method illustrated in Figures 6A and 6B, the promoter is induced in the absence of tetracycline, and repressed by the presence of tetracycline. Analogs of tetracycline, including but not limited to chlortetracycline, demeclocycline, doxycycline, meclocycline, methocycline, minocycline hydrochloride, anhydrotetracycline, and oxytetracycline, can also be used to repress the expression of the modified gene allele.

Alternative variants of the tetracycline promoter system, based upon a mutated tetracycline repressor (tetR) molecule, designated tetR', which is activated (i.e. binds to its cognate operator sequence) by binding of the antibiotic effector molecule to promote expression, and is repressed (i.e. does not bind to the operator sequence) in the absence of the antibiotic effectors, when the tetR' is used instead of, or in addition to, the wild-type tetR may also be used. For example, the method could be performed using tetR' instead of tetR in cases where repression is desired under conditions which lack the presence of tetracycline, such as shut off of a gene participating in drug transport (e.g. CaCDR1, CaPDR5, or CaMDR1). Also, the method could be adapted to incorporate both the tetR and tetR' molecules in a dual activator/repressor system where tetR is fused to an activator domain and tetR' is fused to a general repressor (e.g. CaSsr6 or CaTup1) to enhance or further repress expression in the presence of the antibiotic effector molecules (Belli et al., 1998, Nucl Acid Res 26:942-947 which is incorporated herein by reference). These methods of providing conditional expression are also contemplated.

5

10

15

20

25

30

7

The method may also be applied to haploid organisms by modifying the single allele of the gene via recombination of the allele with a promoter replacement fragment comprising a nucleotide sequence encoding a heterologous promoter, such that the expression of the gene is conditionally regulated by the heterologous promoter. By repeating this process for a preferred subset of genes in a haploid pathogenic organism, or its entire genome, a collection or a complete set of conditional mutant strains can be obtained. A preferred subset of genes comprises genes that share substantial nucleotide sequence homology with target genes of other organisms, e.g., C. albicans and S. cerevisiae. For example, the method may be applied to haploid fungal pathogens including, but not limited to, animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida glabrata, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. Similarly, the method may be applied to bacteria, including the bacterial species and genera discussed above.

It will be appreciated that the means to achieve conditional expression are not restricted to the tetracycline promoter system and can be performed using other conditional promoters. Such conditional promoter may, for example, be regulated by a repressor which repress transcription from the promoter under particular condition or by a transactivator which increases transcription from the promoter, such as, when in the presence of an inducer. For example, the *C. albicans CaPCK1* promoter is not transcribed in the presence of glucose but has a high level of expression in cells grown on other carbon sources, such as succinate, and therefore could also be adopted for conditional expression of the modified allele. To this end, it has been shown that both *CaHIS1* and *CaSAT1* are essential for growth on glucose-containing medium using the *CaPCK1* promoter as an alternative to the tetracycline promoter in the above description. In this instance, the *CaPCK1* promoter is heterologous to the gene expressed and not to the organism, and such heterologous promoters are also

encompassed in the invention. Alternative promoters that could functionally replace the tetracycline promoter include but are not limited to other antibiotic-based regulatable promoter systems (e.g., pristinamycin-induced promoter or PIP) as well as *Candida albicans* conditionally-regulated promoters such as *MET25*, *MAL2*, *PHO5*, *GAL1*,10, *STE2*, or *STE3*.

5

10

15

20

25

30

Although not mandatory, performing the gene disruption first enables heterozygous strains to be constructed and separately collected as a heterozygote strain collection during the process of drug target validation. Heterozygous strains for a given gene express approximately half the normal diploid level of a particular gene product. Consequently, these strains provide constructions having a diminished level of the encoded gene product, and they may be used in the methods described herein. However, it is clear to those skilled in the art that the order of allele modification followed in this embodiment of the invention is not critical, and that it is feasible to perform these steps in a different order such that the conditional-expressing allele is constructed first and the disruption of the remaining wild type gene allele be performed subsequently. However, where the promoter replacement step is carried out first, it is preferable to delete sequences homologous to those employed in the gene disruption step.

Alternatively, conditional expression could be achieved by means other than the reliance of conditional promoters. For example, conditional expression could be achieved by the replacement of the wild type allele in haploid or heterozygous strains with temperature sensitive alleles derived *in vitro*, and their phenotype would then be analyzed at the nonpermissive temperature. In a related approach, in heterozygous strains, insertion of a ubiquitination signal into the remaining wild type allele to destabilize the gene product during activation conditions can be adopted to examine phenotypic effects resulting from gene inactivation.

In another alternative, a constitutive promoter regulated by an excisable transactivator can be used. The promoter is placed upstream to a target gene to repress expression to the basal level characteristic of the promoter. For example, if the strains are fungal organisms, a heterologous promoter containing lexA operator elements may be used in combination with a fusion protein composed of the lexA DNA binding

domain and any transcriptional activator domain (e.g. GALA, HAP4, VP16) to provide constitutive expression of a target gene. Counterselection mediated by 5-FOA can be used to select those cells which have excised the gene encoding the fusion protein. This procedure enables an examination of the phenotype associated with repression of the target gene to the basal level of expression provided by the lexA heterologous promoter in the absence of a functional transcription activator. The strains generated by this approach may be used in the present invention.

5

10

15

20

25

30

Alternatively, conditional expression of a target gene can be achieved without the use of a transactivator containing a DNA binding, transcriptional activator domain. A cassette could be assembled to contain a heterologous constitutive promoter downstream of, for example, the URA3 selectable marker, which is flanked with a direct repeat containing homologous sequences to the 5' portion of the target gene. Additional homologous sequences upstream of the target, when added to this cassette would facilitate homologous recombination and replacement of the native promoter with e above-described heterologous promoter cassette immediately upstream of the start codon of the target gene or open reading frame. Conditional expression is achieved by selecting strains, by using 5-FOA containing media, which have excised the heterologous constitutive promoter and URA3 marker (and consequently lack those regulatory sequences upstream of the target gene required for expression of the gene) and examining the growth of the resulting strain versus a wild type strain grown under identical conditions.

A specific application of the above method as used to construct modified alleles of the target gene CaKRE9 is provided in Example 10 below.

EXAMPLE 10

Construction of a Candida albicans Strain in which a Gene Encoding a Gene Product

Required for Proliferation is Under the Control of a Regulatable Promoter

Oligonucleotide primers for PCR amplification of the SAT selectable marker used in Step 1 (i.e. gene replacement) contain 25 nucleotides complementary to the SAT disruption cassette in pRC18-ASP, and 65 nucleotides homologous to regions flanking the CaKRE9 open reading frame. Figures 6A and 6B illustrate the procedure for constructing Candida albicans strains in which a gene encoding a gene product is under

5

10

15

20

25

30

the control of a regulatable promoter. As Figures 6A and 6B illustrate, the 2.2 kb cakre9A::SAT disruption fragment produced after PCR amplification and resulting gene replacement of the first wild type CaKRE9 allele via homologous recombination following transformation. PCR conditions were as follows: 5-50 ng pRC18-ASP, 100 pmol of each primer, 200 µM dNTPs, 10 mM Tris- pH 8.3, 1.5 mM MgCl2, 50 mM KCl, 1 unit Taq DNA polymerase (Gibco). PCR amplification times were: 5 min 94°C, 1 min 54°C, 2 min 72°C, for 1 cycle; 45 sec 94°C, 45 sec 54°C, 2 min 72°C, for 30 cycles. Transformation was performed using the lithium acetate method adapted for C. albicans, by Braun and Johnson, (Braun, B. R., and A. D. Johnson (1997), Control of filament formation in Candida albicans by the transcriptional repressor TUP1, Science 277:105-109), with minor modifications, including shorter incubation times at 30°C and 42°C (1 hr and 5 min respectively) and a greater amount of material transformed (50 μg of ethanol-precipitated cakre9 A:: SAT PCR product). Transformed cells were spread onto YPD plates and incubated overnight at 30°C, providing a preincubation period for expression of SAT prior to replica plating onto YPD medium containing streptothricin (400µg/ml). Streptothricin-resistant colonies were detected after 36 hr and cakre9 A:: SAT/CaKRE9 heterozygotes identified by PCR analysis using suitable primers which amplify both CaKRE9 and cakre9∆::SAT alleles.

Oligonucleotide primers for PCR amplification of the conditional promoter used in Step 2 (i.e. promoter replacement) contain 25 nucleotides complementary to the CaHIS3-marked tetracycline regulated promoter cassette in pBSK-HT4 and 65 nucleotides of homologous sequence corresponding to promoter regions -270 to -205, relative to the point of transcription initiation, and nucleotides 1-65 of the CaKRE9 open reading frame. The resulting 2.2 kb PCR product was transformed into the cakre9\Delta::SAT/CaKRE9 heterozygous strain produced in step 1, and His⁺ transformants selected on YNB agar. Bonafide CaKRE9 strains containing both a cakre9\Delta::SAT allele and CaHIS3-Tet-CaKRE9 allele were determined by PCR analysis. Typically, 2 independent strains are constructed and evaluated to provide a reliable determination of the terminal phenotype of any given drug target. Terminal phenotype is that phenotype caused by the absence of the gene product of an essential gene.

The phenotype of the resulting strain was evaluated as follows.

, 1

EXAMPLE 11

Evaluation of Phenotype of Candida albicans Strains in which a Gene Encoding a Gene Product Required for Proliferation is Under the Control of a Regulatable

Promoter

10

5

15

Ť.

20

25

30

Three independent methods were used to evaluate the phenotype of Candida albicans strains in which one copy of the CaKRE9 gene was disrupted and the other copy was under the control of a regulatable promoter. In the first, rapid determination of the strain's terminal phenotype was achieved by streaking approximately 1.0 X 106 cells onto both a YNB plate and YNB plate containing 100µg/ml tetracycline and comparing growth rate after 48 hr at room temperature. For essential genes, such as CaKRE9, no significant growth is detected in the presence of tetracycline. In the second approach, the essential nature of a gene may be determined by streaking the cells onto a casamino acid plate containing 625 µg/ml 5-fluororotic acid (5FOA) and 100 µg/ml uridine to select for ura cells which have excised (via recombination between CaLEU2 sequence duplications created during targeted integration) the transactivator gene that is normally required for expression of the tetracycline promoter-regulated target gene. Again, whereas strains in which one copy of a gene which is not required for proliferation is disrupted and the other copy is under control of a regulatable promoter demonstrate robust growth under such conditions, the CaKRE9 strains prepared as described above fail to grow. Quantitative evaluation of the terminal phenotype associated with the CaKRE9 strain is performed using 2 x 103 cells/ml of overnight culture inoculated into 5.0 ml YNB either lacking or supplemented with 100 µg/ml tetracycline and measuring optical density (O.D.600) after 24 and 48 hr incubation at 30°C. Typically, for strains in which a gene required for proliferation is under the control of an inducible promoter, no significant increase in optical density is detected after 48 hrs in the absence of inducer. Discrimination between cell death (cidal) and growth inhibitory (static) terminal phenotypes for a demonstrated essential gene is achieved by determining the percentage of viable cells (as judged by the number of colony forming units (CFU) from an equivalent of 2 x 103 washed cells at T=0) from the above tetracycline-treated cultures after 24 and 48 hours of incubation. Strains producing a cidal terminal phenotype are those which display a reduction in percent viable cells (i.e. < 2 x 103 CFU) following incubation under repressing conditions.

To determine the variation in the level of a gene product under control of the tetracycline regulatable promoter the experiments described in Example 12 were performed.

EXAMPLE 12

Target Level Variation Under Induced and Repressed Conditions

5

10

15

20

25

30

Both a CaHIS3 heterozygote strain and a tetracycline promoter-regulated CaHIS3 strain in which one chromosomal copy of the CaHIS3 gene was disrupted and the other was under the control of a regulatable promoter were compared against a wild type (diploid) CaHIS3 strain for sensitivity towards the 3-aminotriazole (3-AT) (Figures 7A-7D). 3-AT is a competitive inhibitor of the enzyme encoded by CaHIS3, imidazoleglycerol phosphate dehydratase, and together serve as a model for a drug and drug target respectively. Overexpression, achieved by the constitutive expression level of CaHIS3 maintained by the tetracycline promoter, confers 3-AT resistance at concentrations sufficient to completely inhibit growth of both wild type and CaHIS3 heterozygote strains (Fig 7A). The phenotype observed is consistent with that expected in light of the predicted 7.5 fold overexpression of CaHIS3 determined by Northern bolt analysis (see Fig 8). A heterozygous CaHIS3 strain demonstrates enhanced sensitivity (i.e. haploinsufficient phenotype) to an intermediate 3-AT concentration unable to effect either wild type or tetracycline promoter-based overproducing CaHIS3 strains noticeably (Fig 7B). A third CaHIS3 expression level evaluated for differential sensitivity to 3-AT was produced by partial repression of the tetracycline regulated strain using a threshold concentration of tetracycline 0.1% that normally is used to achieve complete shut-off.

This level of CaHIS3 expression represents the minimum expression level required for viability and as predicted, demonstrates an enhanced drug sensitivity relative the heterozygous CaHIS3 strain at an intermediate 3-AT concentration (Fig 7C). Similarly, strain-specific drug resistance and sensitivity phenotypes to fluconazole and tunicamycin have been demonstrated by increasing and decreasing the level of expression of their respective known drug targets, CaERG11 and CaALG7. Together these results demonstrate that three different levels of expression are achieved using the C. albicans strain collection, and that they exhibit the predicted drug sensitivity phenotypes between known drugs and their known drug target.

5

10

15

20

25

30

EXAMPLE 13

<u>Identification of Candida albicans Genes which Encode a Gene Product</u> Required for Proliferation

Candida albicans genes which encode gene products required for proliferation were identified by constructing strains in which one chromosomal copy of a gene was disrupted and the other chromosomal copy of the gene was under the control of a regulatable promoter as described above. To identify genes which encode gene products required for proliferation, a strain containing the modified alleles of the gene was cultured under conditions wherein the second modified allele of the gene which is under conditional expression, was substantially underexpressed or not expressed. The viability and/or growth of the strain was compared with that of a wild type strain cultured under the same conditions. A loss or reduction of viability or growth indicated that the gene product encoded by the gene is required for proliferation. The level of expression of the gene in strains prepared as described above can be less than 50% of the non-modified allele, less than 30%, less than 20%, and preferably less than 10%. Depending on the heterologous promoter used, the level of expression can be controlled by, for example, antibiotics, metal ions, specific chemicals, nutrients, pH, temperature, etc.

For example, C. albicans conditional gene expression using the method described above was performed using CaKRE1, CaKRE5, CaKRE6, and CaKRE9 (Fig. 9). CaKRE5, CaKRE6, and CaKRE9 are predicted to be essential or conditionally essential (CaKRE9 null strains are nonviable on glucose but viable on galactose), in C. albicans as demonstrated by gene disruption using the Ura blaster method. CaKRE1 has been demonstrated as a nonessential gene using the Ura blaster method in C. albicans. Strains heterozygous for the above genes were constructed by PCR-based gene disruption method using the CaSATI disruption cassette followed by tetracycline regulated promoter replacement of the native promoter of the wild type allele. Robust growth of each of these strains suggests expression proceeds normally in the absence of tetracycline. When tetracycline is added to the growth medium, expression of these tetracycline promoter-regulated genes is greatly reduced or abolished. In the presence of tetracycline, the strains in which each of the three essential C. albicans genes cited

above were under the control of a regulatable promoter stopped growing. As expected, only the *CaKRE1* strain demonstrates robust growth despite repression of *CaKRE1* expression.

5

10

15

20

25

30

To further examine the utility of the above method in target validation, growth of four additional strains in which expression of the known essential genes CaTUB1, CaALG7, CaAUR1, and CaFKS1, as well as the predicted essential gene CaSAT2, and CaKRE1 were under the control of a regulatable promoter were compared under inducing versus repressing conditions (Fig. 10). As expected, strains in which CaTUB1, CaALG7, CaAUR1 and CaFKS1 were under the control of a regulatable promoter failed to grow under repressing conditions, unlike the strains in which the non-essential CaKRE1 was under the control of a regulatable promoter. Furthermore, as predicted, the strain in which the CaSAT2 gene was under the control of a regulatable promoter demonstrates essentiality of this gene in C. albicans. The CaSAT2 gene, which has been engineered as a dominant selectable marker for use in C. albicans, is a C. albicans gene that is homologous to a S. cerevisiae gene but is unrelated to the Sat1 gene of E. coli.

In all cases based on other disruption data that have been generated, this is the expected response if the tetracycline regulated gene is repressed to a level where it is nonfunctional in the presence of tetracycline. Furthermore, in applying the above methodology of conditional gene disruption to two additional *C. albicans* genes (CaYPD1, and CaYNL194c) whose *S. cerevisiae* counterpart is known not to be essential, no inhibition of growth was observed when these strains were incubated in the presence of tetracycline. These results establish that the above method of conditional gene expression is a reliable indicator of gene essentiality.

Furthermore, the utility of the present method, as a rapid and accurate means to identifying the complete set of essential genes in *C. albicans*, has been demonstrated by an analysis of the null phenotype of a large number of genes using the above two-step method of gene disruption and conditional expression. Target genes were selected as being fungal specific and essential. Such genes are referred to as target essential genes in the screening assays described below.

5

10

15

20

25

30

A literature search identified reports of URA blaster-based gene disruption experiments on a total of 89 genes, of which 13 genes were presumed to be essential, based on the inability to construct homozygous deletion strains. The 13 genes are CaCCT8 (Rademacher et al., Microbiology, UK 144, 2951-2960 (1998)); CaFKSI (Mio et al., J. Bacteriol, 179, 4096-105 (1997); and Douglas, et al., Antimicrob Agents Chemother 41, 2471-9 (1997)); CaHSP90 (Swoboda et al., Infect Immun 63, 4506-14 (1995)); CaKRE6 (Mio et al., J. Bacteriol 179, 2363-72 (1997)); CaNMT1 (Weinberg et al., Mol Microbiol 16, 241-50 (1995)); CaPRSI (Payne et al., J. Med. Vet. Mycol. 35, 305-12 (1997)); CaPSA1 (Care et al., Mol Microbiol 34, 792-798 (1999)); CaRAD6 (Care et al., Mol Microbiol 34, 792-798 (1999)); CaSEC4 (Mao et al., J. Bacteriol 181, 7235-7242 (1999)); CaSEC14 (Monteoliva et al., Yeast 12, 1097-105 (1996)); CaSNF1 (Petter et al., Infect Immun. 65, 4909-17 (1997)); CaTOP2 (Keller, et al., Biochem J., 329-39 (1997)); and CaEFT2 (Mendoza et al., Gene 229, 183-1991 (1999)). These 13 putatively essential genes and CaTUB1, CaALG1, and CaAUR1 of C. albicans are not initially identified by the above method. However, strains in which any one of these 17 genes are under the control of a regulatable promoter may be used in the methods of the present invention, for example, the CaTUB1, CaALG1, and CaAUR1 strains in Fig. 10 and the CaKRE6 strain in Fig. 9. Any of these 17 genes may be included as a control for comparisons in the methods described above, or as a positive control for essentiality in the collections of essential genes. The nucleic acid molecules comprising a nucleotide sequence corresponding to any of these 17 genes may be used in the methods of the present invention, as drug targets, or they may be included individually or in subgroups as controls in a kit or in a nucleic acid microarray.

Using methods such as those described above, the genes of SEQ ID NOs: 14111-14944, which encode the polypeptides of SEQ ID NOs.: 14945-15778 were identified as being required for proliferation. Table VII, provided at the end of the present specification, lists the SEQ ID NOs. of the identified genes along with their Candida designation. The Candida designations provided in Table VII were formulated by identifying the Saccharomyces cerevisae gene which is homologous to the identified Candida albicans gene. The Candida designation also references the location of the homologous Saccharomyces cerevisae gene in the Saccharomyces cerevisae genom.

For example, the Candida designation CaYAL038W means that the homologous Saccharomyces cerevisae gene was on yeast chromosome 1 (YB would mean yeast chromosome 2 etc), left arm of centromere (R means right arm of centromere), position 038, w for watson strand (c for crick strand). The homologous Saccharomyces cerevisae gene was identified from genome-www.stanford.edu/saccharomyces. Homologous coding nucleic acids, homologous antisense nucleic acids and homologous polypeptides having homology to the genes of SEQ ID NOs: 14111-14944, nucleic acids complementary to SEQ ID NOs: 14111-14944, or the polypeptides of SEQ ID NOs:: 14945-15778 may be identified using any of the methods described above.

10

15

20

5

An alternative method is available for assessing the essentiality of the modified gene in strains constructed as described above. Repression of expression of the modified gene allele within a strain constructed as described above may be achieved by homologous recombination-mediated excision of the gene encoding the transactivator protein. For example, where conditional expression of a target gene is achieved using the tetracycline-regulated promoter, constitutive expression (under nonrepressing conditions) may be repressed by homologous recombination-mediated excision of the transactivator gene (TetR-GAL4AD). In this way, an absolute achievable repression level is produced independently of that produced by tetracycline-mediated inactivation of the transactivator protein. Excision of the transactivator gene is made possible by virtue of the selectable marker and integration strategy used in strain construction. Stable integration of the CaURA3-marked plasmid containing the TetR-GAL4AD transactivator gene into the CaLEU2 locus results in a tandem duplication of CaLEU2 flanking the integrated plasmid. Counterselection on 5-FOA-containing medium can then be performed to select for excision of the CaURA3-marked transactivator gene and to directly examine whether this alternative repression strategy reveals the target gene to be essential.

25

30

Three examples of genes defined as essential on 5-FOA containing medium but lacking any detectable growth impairment on tetracycline supplemented medium are the genes, CaYCL052c, CaYNL194c and CaYJR046c. Presumably, this is due to the target gene exhibiting a lower basal level of expression under conditions where the transactivator gene has been completely eliminated than its gene product incompletely

inactivated by addition of tetracycline. Thus, the method described above offers two independent approaches for the determination of whether or not a given gene is essential for viability of the host strain.

EXAMPLE 14

<u>Promoter Replacement to Generate Cells Capable of Overexpressing or</u>

Underexpressing a Gene Encoding a Gene Product Required for Proliferation

5

10

15

20

25

30

٠.

A target for promoter replacement is selected. A promoter replacement cassette is obtained by inserting a nucleic acid comprising the rrnBT1T2 transcriptional terminator followed by the lac promoter into pACYC184 such that the rrnB terminator and lac promoter are positioned 3' of the CAT gene. The promoter replacement cassette (CAT-rrnBT1T2-plac) is amplified by PCR. The PCR product is used as the template for another round of PCR using primers with 60-80 bp of homology to a target promoter (i.e. a promoter which directs expression of a gene encoding a gene product required for proliferation) and 20 bp of homology to the CAT/rrnBT1T2/plac template as described above. The region of homology is chosen such that upon homologous recombination, the CAT/rrnBT1T2/plac cassette replaces the promoter of the target gene but leaves its Shine-Delgarno motif untouched.

The promoter replacement cassette is transformed into competent JC8679. JC8679 is available from the E. coli genetics stock center. JC8679 allows recombination of short linear DNAs and also contains a lacY mutation which allows titratable regulation of the lac promoter. The transformed cells are plated onto LB/chloramphenical plates containing various levels of IPTG to assure that the correct level of expression is achieved to allow survival. The correct integration of the promoter replacement cassette is confirmed by colony PCR. If desired, proper regulation of the target gene by the inserted promoter may be confirmed by testing the integrants for growth defects when inducer is absent or present at levels lower than that at which the original colonies were obtained. The inability to grow in the absence of inducer (IPTG) or in the presence of lower levels of the inducer than were used to obtain the clones confirms that the target gene is properly regulated by the inserted promoter. It will be appreciated that although the lac promoter and the strain JC8679 are used as examples, the method may be performed using any suitable regulatable

promoter and organism or strain to generate cells which are capable of overexpressing or underexpressing a gene encoding a gene product required for proliferation.

EXAMPLE 15

Operator Insertion to Generate Cells Capable of Overexpressing or Underexpressing a Gene Encoding a Gene Product Required for Proliferation

5

10

15

20

25

An oligonucleotide comprising a lac operator flanked on each side by 40 nucleotides homologous to the target promoter is designed. The target promoter is the promoter which drives expression of a gene encoding a gene product required for proliferation, such as the yabB yabC ftsL ftsI murE genes in an operon. The sequence of the oligonucleotide (SEQ ID NO. 15810) and locations of the regions homologous to the promoter are illustrated in Figure 11. The sequence of the promoter is also shown with the locations of the -10 and -35 regions indicated (SEQ ID NO. 15811). The single stranded oligonucleotide is transformed into a bacterium expressing the λ Beta and Gam proteins. The cells in the transformation mixture are diluted and plated on medium containing IPTG. Colonies in which the lac operator has integrated into the target promoter are identified by colony PCR. If desired, proper regulation of the target promoter by the inserted operator is confirmed by growing the identified colonies in medium containing or lacking IPTG. The colonies proliferate on medium containing IPTG but fail to grow on medium lacking IPTG, thereby confirming that the target promoter is properly regulated by the inserted operator. It will be appreciated that the preceding method may be performed with any target promoter and any operator to generate cells which overexpress or underexpress a gene encoding a gene product required for proliferation.

In the methods of the present invention, strains which overexpress or under express gene products required for proliferation are used to identify the gene product on which a compound which inhibits proliferation of an organism acts or to profile a compound's activity. Examples 16-18 describe methods for identifying the gene product on which a compound which inhibits the proliferation of an organism acts using cells which overexpress or underexpress a gene product required for proliferation.

EXAMPLE 16

Strains in which a Gene Encoding a Gene Product Required for Proliferation is Overexpressed are able to Grow at Elevated Antibiotic Concentrations

To confirm that cells which overexpress a gene product required for proliferation are able to grow at elevated antibiotic concentrations, 11 such genes from Staphylococcus aureus which are the targets of known antibiotics were operably linked to the xylose inducible promoter XylT5 described above as follows. The genes and the antibiotics which target the products of these genes are listed in Table V below.

5

10

15

20

25

30

PCR primer pairs were designed for each of the 11 genes encoding a gene product required for proliferation of Staphylococcus aureus as shown in Table V. The upstream primers for each gene included the native ribosomal binding sites (S-D sequences). In addition, restriction sites for appropriate restriction enzymes were designed into the primers to facilitate directional cloning of the genes. PCR reactions were carried out using Pfu DNA polymerase (Stratagene, San Diego) under the following conditions per 50 μl reaction: Pfu polymerase 2U, dNTP 200 μM, primers 400 nM each, S. aureus RN450 genomic DNA (template) 5-10 ng. The reaction involved an initial heating at 94°C for 5 min, followed by 25 cycles of 30 sec at 94°C/30 sec at 55°C/5 min at 72°C, and ending with 7 min of extension at 72°C.

The amplified genes were operably linked to the XyIT5 promoter as follows. PCR products were cleaned using QIAGEN PCR Cleaning Kits and then were digested with the proper restriction enzymes. The resulting fragments were ligated overnight at 16°C with precut vector DNA containing the XyIT5 promoter. Ligation mixtures were ethanol precipitated at -80°C for 20 min in the presence of 0.3 M sodium acetate. The precipitated DNA was spun down at 14,000 rpm for 30 min at 4°C and washed with 1 ml of 70% EtoH. The DNA pellets were air-dried and dissolved in EB or sterile water. To transform *Staphylococcus aureus* cells, the precipitated DNA was mixed with 45 μl of electroporation competent cells and incubated at room temperature for 30 min. The DNA/cell mixtures were electroporated (settings: 2 volts, 25 μF, 200 Ω) in 2 mm cuvettes and mixed with 450 μl B2 medium containing 0.2 μg/ml chloramphenicol. The cells were incubated at 37°C with shaking for 90 min. Transformed cells were plated onto LB agar plates containing chloramphenicol (34 μg/ml) for the selection of

plasmids. Several colonies for each cloning reaction were picked and streaked to obtain a pure culture. Colony PCR reactions using vector-specific primers were performed to verify the size and identity of the inserts.

155. Gene-walking sequencing was employed to completely sequence the entire insert for several clones of each cloned gene. This was carried out to avoid using a cloned gene whose DNA sequence was mutated during the PCR process.

5

10

15

20

25

30

To demonstrate that genes encoding gene products required for proliferation can confer resistance to their specific inhibitors upon induction at proper inducer levels, cells of each clone in which the genes were operably linked to the xylose inducible promoter were grown in LB medium with chloramphenicol (34 µg/ml) at a combination of differing antibiotic and inducer concentrations. This was accomplished by using microtitration plates (96 or 384 wells) which contained antibiotic and inducer at gradient concentrations in a matrix format in 10 times excess quantity (see Figure 12). Media containing inoculated cells (9 volume) was dispensed into the wells containing 1 volume of antibiotic/inducer for a final volume of 50 µl (for 384 well plates) or 200 µl (for 96 well plates). The plates were incubated at 37°C with periodic shaking and growth of cells was monitored by automatic measurement of optical density at OD600 using a Ultramark reader. A clone over-expressing a particular gene was considered resistant to its specific antibiotic (inhibitor) if significant growth was observed at appropriate inducer concentrations in the presence of a particular concentration of antibiotic but not in the absence of inducer at that concentration of antibiotic.

The results are indicated in Figure 13 and Figure 14. As illustrated in Figure 13, at appropriate concentrations of inducer cells which overexpress the defB gene product were able to grow at elevated concentrations of the antibiotic actinonin, which acts on the defB gene product. Similarly, as illustrated in Figure 14, at appropriate concentrations of inducer cells which overexpress the folA gene product were able to grow at elevated concentrations of the antibiotic trimethoprim, which acts on the folA gene product.

Thus, elevated expression of a gene product required for proliferation enables cells to grow in the presence of antibiotic concentrations which inhibit or prevent growth of wild type cells.

Table V - Essential Genes/Proteins and Specific Inhibitors

Gene	Target	Inhibitor	Primers
gyrB	β subunit of DNA gyrase or topoisomerase Π	Novobiocin	GCCGGATCCTTATAAAGTAACAGAAAGCGATGGTGACTGC; CAGGTCGACCAGCGCTTAGAAGTCTAAGTTTGCATAAACTG
murA	UDP-N-acetylglucosamine enolpyruvyl transferase	Fosfomycin	CCTGGATCCTTCTAAGTGGAGGATTTACG; CAGGTCGACGAATTAATCGTTAATACGTT
fabl	Enoyl-acyl carrier protein reductase	Triclosan	GCGGGATCCATAAGGAGTTATCTTACATG; CGCGTCGACTTATTAATTGCGTGGAATC
тов	RNA polymerase β subunit	Rifampicin	GCTGGATCCTGAGGGGGAATCTGTTTGGC; CTGCTCGAGTGCGTATTAATCAGTAACTT
fusA	Elongation factor G	Fusidic acid	GCTGGATCCCTGGAAGAGAAAAATACATGGCTAGAG; CCGGTCGACGGCTAGTCAAAACAAGTTATATTCAC
folA	Dihydrofolate reductase	Trimethoprim	GCTGGATCCAGAAGGAGGATAATTATG; CCGGTCGACTTTTCCCCCTTATTTTTAC
ileS	Isoleucyl tRNA synthetase	Mupirocin (bactroban)*	GCTGGATCCTAAGGAGTGAAAAAATGGATTACAAAGAAACG; CCGGTCGACCAATTATACAAGTGATTTTACAACTTGTTGGCATC
trpS	Tryptophanyl tRNA synthetase	Indolmycin*	GCGGGÁTCCCTAAGAAAGTAGGCATTTAAATGGAGAC; CCGGTCGACGTTTATTTATCTCTTACGTCCTAAACC
fabB	β keto-acyl carrier protein synthase	Cerulenin	GCTGGATCCAATAGGAGGATAACGAATGAG; CAGGTCGACAATTATGCTTCAAATTTCTT
defB	Peptide deformylase	Actinonin	GCTGGATCCATAAGGAAGGTGCAATATATG; CAGGTCGACGTTTTAAACTTCTACTGCAT
PBP-2a	Penicillin binding protein 2	Cloxacillin	GCCGGATCCCAATGTAGTCTTATATAGGAGGATATTGATG; CAGGTCGACGCTTCACTGTTTTGTTATTCATCTATATC

antibiotics unavailable commercially

. . .

THIS PAGE INTENTIONALLY LEFT BLANK.

EXAMPLE 17

Overexpression of Genes Encoding Gene Products Required for Proliferation Confers

Specific Resistance to Antibiotics which Target the Overexpressed Gene Product

5

10

15

20

25

To demonstrate that cells which overexpress a gene encoding a gene product required for proliferation are specifically resistant to antibiotics which target that gene product, the following experiments were performed. Several identical compound plates were prepared as described in Example 14 above in which different antibiotics were present in different wells. Media containing cells overexpressing different genes were separately dispensed into each one of these plates. Plate incubation and growth measurement were the same as described in Example 16 above. Growth was deemed specific if cells overexpressing one particular gene only gained resistance to antibiotics which target the product of the overexpressed gene but not to other antibiotics which target the products of genes which were not overexpressed.

As indicated in Figure 15 overexpression of the fabl gene conferred resistance to triclosan, which acts on the gene product of the fabl gene, enoyl-acyl carrier protein reductase. However, overexpression of the fabl gene did not confer resistance to cerulenin, trimethoprim, or actinonin, each of which act on other gene products.

Similarly, as indicated in Figure 16 overexpression of the folA gene conferred resistance to trimethoprim, which acts on the gene product of the folA gene, dihydrofolate reductase. However, overexpression of the folA gene did not confer resistance to triclosan, cerulenin, or actinonin, each of which act on other gene products.

As indicated in Figure 17 overexpression of the defB gene conferred resistance to actinonin, which acts on the gene product of the defB gene, peptide deformylase. However, overexpression of the defB gene did not confer resistance to cerulenin, trimethoprim, or triclosan, each of which act on other gene products.

As indicated in Figure 18 overexpression of the fabF gene conferred resistance to cerulenin, which acts on the gene product of the fabF gene, β keto-acyl carrier protein synthase II. However, overexpression of the fabF gene did not confer

resistance to triclosan, trimethoprim, or actinonin, each of which act on other gene products.

Thus, overexpression of a gene encoding a gene product required for proliferation confers specific resistance to antibiotics which target the overexpressed gene product.

5

10

15

20

25

30

EXAMPLE 18

Selection of a Strain Overexpressing a Gene Encoding a Target Gene Product from a

Mixture of Strains Overexpressing Genes Required for Proliferation

To confirm that a strain expressing the gene product targeted by an antibiotic can be selected from a mixture of strains which each overexpress a different gene required for proliferation, the following experiment was performed. *S. aureus* strains overexpressing one of nine genes encoding a gene product required for proliferation were constructed as described above. The nine overexpressed genes were fabF, defB, folA, fabI, ileS, fusA, gyrB, murA, rpoB. A mixture of the nine strains was grown wells in a 96 well plate in medium containing various concentrations of inducer and a sufficient concentration of actinonin, cerulenin, triclosan or trimethoprim to inhibit the growth of strains which do not overexpress the targets of these antibiotics.

Growth was observed in wells containing appropriate inducer concentrations and each one of the four antibiotics (See Figure 19). The cultures which grew in the presence of one of the antibiotics were analyzed as follows. The cultures were removed from the wells of the plate and single colonies were obtained by plating serial dilutions LB agar plates containing an appropriate antibiotic. Plasmids were isolated from at least 60 individual colonies for each culture and the genes which conferred antibiotic resistance were amplified by performing PCR reactions using vector-specific primers. The PCR products were then sequenced.

All of the plasmids obtained from the culture which grew in the presence of cerulenin contained the fabF sequence. Similarly, all of the plasmids obtained from clones which grew in the presence of triclosan contained the fabI gene. All of the plasmid obtained from colonies which grew in the presence of actinonin contained the defB gene. In addition, 81% of the plasmids obtained from colonies which grew in

the presence of trimethoprim contained the folA gene. Growth conditions could be further optimized to provide 100% recovery of plasmids containing the folA gene.

These results demonstrate that a strain expressing the gene product targetted by an antibiotic can be selected from a mixture of strains which each overexpress a different gene required for proliferation.

EXAMPLE 19

Identification of Amplification Products Having Distinguishable Lengths

As discussed above, plasmids in which antisense nucleic acids complementary to nucleotide sequences in the pbpC, secA, ylaO(Bs), yphC(Bs),trpS, polC, fabI, rpsR (Bs), fabF(yjaY), ileS, murC, fmhB, murA (Bs), murF(Bs), ftsZ, tufA, gyrA, rpoB, grlA or folA(dfrA) genes were transcribed from the XylT5 promoter were used to identify the foregoing genes as being required for proliferation. The sequences of the antisense nucleic acids are provided herein as follows:

15	tufA ylaO rpoB polC murC	SEQ ID NO: 1359 SEQ ID NO: 1380 SEQ ID NO: 1392 SEQ ID NO: 1409 SEQ ID NO: 1416
20	fmhB yphC gyrA	SEQ ID NO: 1444 SEQ ID NO 1463 SEQ ID NO 1483
	ileS secA	SEQ ID NO 1636 SEQ ID NO 1651
25	fabl murA grlA	SEQ ID NO 1697 SEQ ID NO 2086 SEQ ID NO 2331
	trpS folA	SEQ ID NO 2505 SEQ ID NO 2526
30	pbpC fabF murF rpsR	SEQ ID NO 2634 SEQ ID NO 2988 SEQ ID NO 3522 SEQ ID NO 3563
35	ftsZ	SEQ ID NO 3598

5

10

Amplification primers were designed which would yield amplification products of the following lengths if the plasmid encoding the corresponding antisense nucleic acid is present in a mixture of nucleic acids:

	yphC	260bp	secA	267bp
5	folA	230 bp	tufA	243bp
	fabI	220bp	gyrA	225bp
	trpS	208bp	ileS	215bp
	fabF	189bp	murF	203bp
	murA	176bp	fmhB	181bp
10	rpoB	159bp	ylaO	169bp
	grlA	151bp	pbpC	156bp
	murC	129bp	polC	145bp
	rpsR	109bp	ftsZ	11 7 bp

15

20

25

30

The 5' primer of each pair was complementary to a nucleotide sequence within the xylT5 promoter while 3' primer was complementary to a nucleotide sequence within the antisense clone. The 5' primer of each pair was identical for each amplification reaction. The nucleotide sequence GTTTCTT was appended on the 5' end of the 3' primers. One primer in each pair was labeled with either VIC or 6FAM.

Two sets of ten plasmids containing the antisense nucleic acids complementary to the genes listed in each of the columns above were mixed in equal amounts in 11 tubes except that either the plasmid encoding antisense nucleic acids complementary to a nucleotide sequence in the grlA gene or the plasmid encoding antisense nucleic acids complementary to nucleotide sequences in the finhB gene were serially diluted two fold in each of the 11 tubes (i.e. the first tube had 100pg of the grlA plasmid or the finhB plasmid while the last tube had 0.10pg of the grlA plasmid or the finhB plasmid). Amplification reactions were conducted on the mixtures and the amplification products were separated on a 5% NuSieve 3:1 agarose gel (BioWhittaker Molecular Applications Rockland, ME). The levels of the 151bp or 181 amplification products for the grlA or finhB primer respectively were specifically reduced in a stepwise fashion with increasing dilutions while the levels of the

undiluted products remained constant. The assay readily detected a 10-fold decrease in template concentration reflected in the amplification products corresponding to the grlA or fmhB plasmids.

EXAMPLE 20

Selective Disappearance of Amplification Products Corresponding to Strains

Underexpressing a Gene Product on which a Compound which Inhibits Proliferation

<u>Acts</u>

Strains of *Staphylococcus aureus* containing plasmids encoding antisense nucleic acids complementary to nucleotide sequences within the yphC, folA, fabI, trpS, fabF, murA, rpoB, grlA, murC or rpsR genes (described in Example 19 above) were mixed together in identical cultures such that the number of cells of each strain in the culture was identical. Each of the cultures containing the ten strains was contacted with one of the following antibiotics at one of the following concentrations: spectinomycin- 2.5, 5.0ug/ml

mupriocin- 4.3, 8.6, 17.2ug/ml.

5

10

15

20

25

30

cerulenin- 4.5, 9.0, 18.0ug/ml

Spectinomycin acts on the product of the rpsR gene, mupriocin acts on the product of the ileS gene and cerulenin acts on the product of the FabF gene. The middle concentration for each antibiotic is its IC50.

The culture containing the ten strains were grown in rich medium (L-Broth; for antisense LB + chloroamphenicol to maintain antisense plasmid) until the cells reached early log phase then contacted with of one of the above-stated compounds at one of the concentrations listed above (preferably near IC50). The cultures were grown for a sufficient length of time to permit the compounds to specifically inhibit the growth of strains underexpressing their targets. Preferably the cultures were grown at least 16 hr, more preferably between 24 and 48 hrs. It is desirable to avoid allowing the culture to grow for time periods which might places selective pressure on the strains which could lead to false positives.

The cells were harvested by centrifugation and plasmid DNA was isolated from the cultures. PCR amplifications were performed as described in Example 19.

Amplification products were run on NuSieve agarose gels as described above. The amounts of the amplification products corresponding to each antisense nucleic acid were determined and compared to those in a control culture which was not contacted with the drug or to the amounts of the amplification products corresponding to the other antisense nucleic acids which were not complementary to nucleotide sequences in the genes encoding the gene products on which the compounds act. In each case, only the amplification product corresponding to the target on which the antibiotic acts was not detectable on the gel.

It is desirable, in embodiments in which the level or activity of gene products is regulated by transcribing antisense nucleic acids complementary to gene products required for proliferation or by replacing the native promoters of such genes with regulatable promoters, to perform dose-response curve for the inducer used to induce transcription of the antisense nucleic acids or induce transcription from the regulatable promoter. In such embodiments, it is desirable to use the lowest concentration of inducer which provides optimal transcription levels for detecting the effects of a particular test compound while interfering as little as possible with the growth of strains which do not overexpress or underexpress the target on which the compound acts. It also desirable contact the cultures with varying amounts of test compounds to determine the optimal amounts for obtaining differential growth of strains which overexpress or underexpress the targets on which the compounds act. Preferably, if the strains overexpress gene products required for proliferation, the level of the compound is preferably about IC90 or above. Preferably, if the strains underexpress gene products required for proliferation, the level of the compound is preferably about IC₅₀ or below.

25

30

5

10

15

20

It will be appreciated that, if desired, the amplification products may be detected using the dyes described above. It will also be appreciated that amplification products may be detected using any desired amplification method including RT-PCR and PCR.

It will be appreciated that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should further be

noted that the use of particular terminology when describing certain features or aspects of the present invention should not be taken to imply that the broadest reasonable meaning of such terminology is not intended, or that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. Thus, although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims and any equivalents thereof. All documents cited herein are incorporated herein by reference in their entireties

5

10

TABLE VI A

SeqID	Clone name	Organism
8	E3M10000001A02	Enterococcus faecalis
9	E3M10000001A06	Enterococcus faecalis
10	E3M10000001B01	Enterococcus faecalis
11	E3M10000001B02	Enterococcus faecalis
12	E3M10000001B05	Enterococcus faecalis
13	E3M10000001B06	Enterococcus faecalis
14	E3M10000001B08	Enterococcus faecalis
15	E3M10000001B10	Enterococcus faecalis
16	E3M10000001C02	Enterococcus faecalis
17	E3M10000001C09	Enterococcus faecalis
18	E3M10000001D02	Enterococcus faecalis
19	E3M10000001D04	Enterococcus faecalis
20	E3M10000001D05	Enterococcus faecalis
21	E3M10000001D09	Enterococcus faecalis
22	E3M10000001E01	Enterococcus faecalis
23	E3M10000001E02	Enterococcus faecalis
24	E3M10000001E03	Enterococcus faecalis
. 25	E3M10000001E04	Enterococcus faecalis
26	E3M10000001E08	Enterococcus faecalis
27	E3M10000001E09	Enterococcus faecalis
28	E3M10000001F02	Enterococcus faecalis
29	E3M10000001F04	Enterococcus faecalis
30	E3M10000001F06	Enterococcus faecalis
31	E3M10000001F07	Enterococcus faecalis
32	E3M10000001G02	Enterococcus faecalis
33	E3M10000001G03	Enterococcus faecalis
34	E3M10000001G04	Enterococcus faecalis
35	E3M10000001G05	Enterococcus faecalis
36	E3M10000001H02	Enterococcus faecalis
37	E3M10000001H03	Enterococcus faecalis
38	E3M10000001H04	Enterococcus faecalis
39	E3M10000004A04	Enterococcus faecalis
40	E3M10000004C03	Enterococcus faecalis
41	E3M10000004D01	Enterococcus faecalis
42	E3M10000004D02	Enterococcus faecalis
43	E3M10000004D10	Enterococcus faecalis
44	E3M10000004E11	Enterococcus faecalis
45	E3M10000004F08	Enterococcus faecalis
46	E3M10000004F10	Enterococcus faecalis

SeqID	Clone name	Organism
47	E3M10000004G01	Enterococcus faecalis
48	E3M10000004H11	Enterococcus faecalis
49	E3M10000005A07	Enterococcus faecalis
50	E3M10000005B01	Enterococcus faecalis
51	E3M10000005B08	Enterococcus faecalis
52	E3M10000005C01	Enterococcus faecalis
53	E3M10000005C03	Enterococcus faecalis
54	E3M10000005C04	Enterococcus faecalis
55	E3M10000005D03	Enterococcus faecalis
56	E3M10000005D04	Enterococcus faecalis
57	E3M10000005D10	Enterococcus faecalis
58	E3M10000005E01	Enterococcus faecalis
59	E3M10000005E02	Enterococcus faecalis
60	E3M10000005E03	Enterococcus faecalis
61	E3M10000005E08	Enterococcus faecalis
62	E3M10000005F07	Enterococcus faecalis
63	E3M10000005F10	Enterococcus faecalis
64	E3M10000005G05	Enterococcus faecalis
65	E3M10000005H04	Enterococcus faecalis
66	E3M10000006B03	Enterococcus faecalis
67	E3M10000006C01	Enterococcus faecalis
68	E3M10000006C12	Enterococcus faecalis
69	E3M10000006D03	Enterococcus faecalis
70	E3M10000006E11	Enterococcus faecalis
71	E3M10000006F04	Enterococcus faecalis
72	E3M10000006G04	Enterococcus faecalis
73	E3M10000006G12	Enterococcus faecalis
74	E3M10000006H09	Enterococcus faecalis
75	E3M10000007A02	Enterococcus faecalis
76	E3M10000007B02	Enterococcus faecalis
77	E3M10000007B03	Enterococcus faecalis
78	E3M10000007C03	Enterococcus faecalis
79	E3M10000007C04	Enterococcus faecalis
80	E3M10000007D03	Enterococcus faecalis
81	E3M10000007E05	Enterococcus faecalis
82	E3M10000007F01	Enterococcus faecalis
83	E3M10000007F06	Enterococcus faecalis
84	E3M10000007G01	Enterococcus faecalis
85	E3M10000008C03	Enterococcus faecalis
86	E3M10000008C08	Enterococcus faecalis
87	E3M10000008C09	Enterococcus faecalis

SeqID	Clone name	Organism
88	E3M10000008D08	Enterococcus faecalis
89	E3M10000008E02	Enterococcus faecalis
90	E3M10000008G05	Enterococcus faecalis
91	E3M10000008G09	Enterococcus faecalis
92	E3M10000008H02	Enterococcus faecalis
93	E3M1000009C07	Enterococcus faecalis
94	E3M1000009C09	Enterococcus faecalis
95	E3M10000009D01	Enterococcus faecalis
96	E3M10000009E02	Enterococcus faecalis
97	E3M1000009E03	Enterococcus faecalis
98	E3M10000009E05	Enterococcus faecalis
99	E3M1000009G02	Enterococcus faecalis
100	E3M10000010C08	Enterococcus faecalis
101	E3M10000010D05	Enterococcus faecalis
102	E3M10000010F01	Enterococcus faecalis
103	E3M10000010G05	Enterococcus faecalis
104	E3M10000010G07	Enterococcus faecalis
105	E3M10000010G09	Enterococcus faecalis
106	E3M10000010G10	Enterococcus faecalis
107	E3M10000010H02	Enterococcus faecalis
108	E3M10000011A09	Enterococcus faecalis
109	E3M10000011B03	Enterococcus faecalis
110	E3M10000011B09	Enterococcus faecalis
111	E3M10000011C07	Enterococcus faecalis
112	E3M10000011D03	Enterococcus faecalis
113	E3M10000011H02	Enterococcus faecalis
114	E3M10000011H05	Enterococcus faecalis
115	E3M10000012B01	Enterococcus faecalis
116	E3M10000012B02	Enterococcus faecalis
117	E3M10000012B07	Enterococcus faecalis
118	E3M10000012B08	Enterococcus faecalis
119	E3M10000012C01	Enterococcus faecalis
120	E3M10000012D10	Enterococcus faecalis
121	E3M10000012E08	Enterococcus faecalis
122	E3M10000012F05	Enterococcus faecalis
123	E3M10000012F06	Enterococcus faecalis
124	E3M10000012F07	Enterococcus faecalis
125	E3M10000012F10	Enterococcus faecalis
126	E3M10000012G02	Enterococcus faecalis
127	E3M10000012G07	Enterococcus faecalis
128	E3M10000013A06	Enterococcus faecalis

SeqID	Clone name	Organism
129	E3M10000013A07	Enterococcus faecalis
130	E3M10000013C05	Enterococcus faecalis
131	E3M10000013D02	Enterococcus faecalis
132	E3M10000013D08	Enterococcus faecalis
133	E3M10000013D10	Enterococcus faecalis
134	E3M10000013E02	Enterococcus faecalis
135	E3M10000013E08	Enterococcus faecalis
136	E3M10000013F05	Enterococcus faecalis
137	E3M10000013F12	Enterococcus faecalis
138	E3M10000013G10	Enterococcus faecalis
139	E3M10000013H03	Enterococcus faecalis
140	E3M10000013H05	Enterococcus faecalis
141	E3M10000013H10	Enterococcus faecalis
142	E3M10000014B12	Enterococcus faecalis
143	E3M10000014E12	Enterococcus faecalis
144	E3M10000014G09	Enterococcus faecalis
145	E3M10000015B04	Enterococcus faecalis
146	E3M10000015B12	Enterococcus faecalis
147	E3M10000015E12	Enterococcus faecalis
148	E3M10000016A03	Enterococcus faecalis
149	E3M10000016A04	Enterococcus faecalis
150	E3M10000016C11	Enterococcus faecalis
151	E3M10000016D03	Enterococcus faecalis
152	E3M10000016F06	Enterococcus faecalis
153	E3M10000016F10	Enterococcus faecalis
154	E3M10000016H05	Enterococcus faecalis
155	E3M10000016H10	Enterococcus faecalis
156	E3M10000017A09	Enterococcus faecalis
157	E3M10000017D09	Enterococcus faecalis
158	E3M10000018A07	Enterococcus faecalis
159	E3M10000018C02	Enterococcus faecalis
160	E3M10000018E01	Enterococcus faecalis
161	E3M10000018G09	Enterococcus faecalis
162	E3M10000018H06	Enterococcus faecalis
163	E3M10000019B06	Enterococcus faecalis
164	E3M10000019D02	Enterococcus faecalis
165	E3M10000019E03	Enterococcus faecalis
166	E3M10000019E04	Enterococcus faecalis
167	E3M10000020G04	Enterococcus faecalis
168	E3M10000020H05	Enterococcus faecalis
169	E3M10000021A08	Enterococcus faecalis

SeqID	Clone name	Organism
170	E3M10000021A11	Enterococcus faecalis
171	E3M10000021B10	Enterococcus faecalis
172	E3M10000021C03	Enterococcus faecalis
173	E3M10000021C04	Enterococcus faecalis
174	E3M10000021C08	Enterococcus faecalis
175	E3M10000021D04	Enterococcus faecalis
176	E3M10000021E10	Enterococcus faecalis
177	E3M10000021G04	Enterococcus faecalis
178	E3M10000021G10	Enterococcus faecalis
179	E3M10000021G11	Enterococcus faecalis
180	E3M10000021H11	Enterococcus faecalis
181	E3M10000022A04	Enterococcus faecalis
182	E3M10000022A11	Enterococcus faecalis
183	E3M10000022B04	Enterococcus faecalis
184	E3M10000022B05	Enterococcus faecalis
185	E3M10000022B07	Enterococcus faecalis
186	E3M10000022C05	Enterococcus faecalis
187	E3M10000022C06	Enterococcus faecalis
188	E3M10000022C09	Enterococcus faecalis
189	E3M10000022D04	Enterococcus faecalis
190	E3M10000022F05	Enterococcus faecalis
191	E3M10000022F06	Enterococcus faecalis
192	E3M10000022F08	Enterococcus faecalis
193	E3M10000022G02	Enterococcus faecalis
194	E3M10000022G12	Enterococcus faecalis
195	E3M10000023A03	Enterococcus faecalis
196	E3M10000023A06	Enterococcus faecalis
197	E3M10000023A07	Enterococcus faecalis
198	E3M10000023A09	Enterococcus faecalis
199	E3M10000023B02	Enterococcus faecalis
200	E3M10000023B06	Enterococcus faecalis
201	E3M10000023C03	Enterococcus faecalis
202	E3M10000023C04	Enterococcus faecalis
203	E3M10000023C06	Enterococcus faecalis
204	E3M10000023C08	Enterococcus faecalis
205	E3M10000023C09	Enterococcus faecalis
206	E3M10000023D02	Enterococcus faecalis
207	E3M10000023D04	Enterococcus faecalis
208	E3M10000023D10	Enterococcus faecalis
209	E3M10000023E04	Enterococcus faecalis
210	E3M10000023E07	Enterococcus faecalis

SeqID	Clone name	Organism
211	E3M10000023E09	Enterococcus faecalis
212	E3M10000023F02	Enterococcus faecalis
213	E3M10000023F10	Enterococcus faecalis
214	E3M10000023G02	Enterococcus faecalis
215	E3M10000023G04	Enterococcus faecalis
216	E3M10000023G10	Enterococcus faecalis
217	E3M10000023H08	Enterococcus faecalis
218	E3M10000024A03	Enterococcus faecalis
219	E3M10000024A04	Enterococcus faecalis
220	E3M10000024A08	Enterococcus faecalis
221	E3M10000024C06	Enterococcus faecalis
222	E3M10000025A06	Enterococcus faecalis
223	E3M10000025B01	Enterococcus faecalis
224	E3M10000025B03	Enterococcus faecalis
225	E3M10000025B05	Enterococcus faecalis
226	E3M10000025B10	Enterococcus faecalis
227	E3M10000025C01	Enterococcus faecalis
228	E3M10000025C04	Enterococcus faecalis
229	E3M10000025C05	Enterococcus faecalis
230	E3M10000025C07	Enterococcus faecalis
231	E3M10000025C08	Enterococcus faecalis
232	E3M10000025C09	Enterococcus faecalis
233	E3M10000025C11	Enterococcus faecalis
234	E3M10000025D01	Enterococcus faecalis
235	E3M10000025D10	Enterococcus faecalis
236	E3M10000025E07	Enterococcus faecalis
237	E3M10000025E08	Enterococcus faecalis
238	E3M10000025E12	Enterococcus faecalis
239	E3M10000025F04	Enterococcus faecalis
240	E3M10000025F06	Enterococcus faecalis
241	E3M10000025F08	Enterococcus faecalis
242	E3M10000025F09	Enterococcus faecalis
243	E3M10000025F10	Enterococcus faecalis
244	E3M10000025F11	Enterococcus faecalis
245	E3M10000025F12	Enterococcus faecalis
246	E3M10000025G02	Enterococcus faecalis
247	E3M10000025G07	Enterococcus faecalis
248	E3M10000025G09	Enterococcus faecalis
249	E3M10000027A02	Enterococcus faecalis
250	E3M10000027A07	Enterococcus faecalis
251	E3M10000027A09	Enterococcus faecalis

SeqID	Clone name	Organism
252	E3M10000027B07	Enterococcus faecalis
253	E3M10000027B08	Enterococcus faecalis
254	E3M10000027B09	Enterococcus faecalis
255	E3M10000027C02	Enterococcus faecalis
256	E3M10000027C03	Enterococcus faecalis
257	E3M10000027C08	Enterococcus faecalis
258	E3M10000027D03	Enterococcus faecalis
259	E3M10000027D05	Enterococcus faecalis
260	E3M10000027D08	Enterococcus faecalis
261	E3M10000027D10	Enterococcus faecalis
262	E3M10000027G01	Enterococcus faecalis
263	E3M10000027G08	Enterococcus faecalis
264	E3M10000027H04	Enterococcus faecalis
265	E3M10000027H07	Enterococcus faecalis
266	E3M10000028A02	Enterococcus faecalis
267	E3M10000028A03	Enterococcus faecalis
268	E3M10000028A04	Enterococcus faecalis
269	E3M10000028A05	Enterococcus faecalis
270	E3M10000028A06	Enterococcus faecalis
271	E3M10000028A08	Enterococcus faecalis
272	E3M10000028B01	Enterococcus faecalis
273	E3M10000028B02	Enterococcus faecalis
274	E3M10000028B03	Enterococcus faecalis
275	E3M10000028B04	Enterococcus faecalis
276	E3M10000028B05	Enterococcus faecalis
277	E3M10000028B06	Enterococcus faecalis
278	E3M10000028B07	Enterococcus faecalis
279	E3M10000028B08	Enterococcus faecalis
280	E3M10000028C01	Enterococcus faecalis
281	E3M10000028C02	Enterococcus faecalis
282	E3M10000028C04	Enterococcus faecalis
283	E3M10000028C05	Enterococcus faecalis
284	E3M10000028C06	Enterococcus faecalis
285	E3M10000028C07	Enterococcus faecalis
286	E3M10000028C08	Enterococcus faecalis
287	E3M10000028D01	Enterococcus faecalis
288	E3M10000028D02	Enterococcus faecalis
289	E3M10000028D05	Enterococcus faecalis
290	E3M10000028D06	Enterococcus faecalis
291	E3M10000028D08	Enterococcus faecalis
292	E3M10000028E01	Enterococcus faecalis

SeqID	Clone name	Organism
293	E3M10000028E04	Enterococcus faecalis
294	E3M10000028E07	Enterococcus faecalis
295	E3M10000028F02	Enterococcus faecalis
296	E3M10000028F03	Enterococcus faecalis
297	E3M10000028F04	Enterococcus faecalis
298	E3M10000028F05	Enterococcus faecalis
299	E3M10000028F06	Enterococcus faecalis
300	E3M10000028F07	Enterococcus faecalis
301	E3M10000028G05	Enterococcus faecalis
302	E3M10000028G06	Enterococcus faecalis
303	E3M10000028G07	Enterococcus faecalis
304	E3M10000028H04	Enterococcus faecalis
305	E3M10000028H07	Enterococcus faecalis
306	E3M10000029A02	Enterococcus faecalis
307	E3M10000029A04	Enterococcus faecalis
308	E3M10000029A05	Enterococcus faecalis
309	E3M10000029A10	Enterococcus faecalis
310	E3M10000029A11	Enterococcus faecalis
311	E3M10000029B01	Enterococcus faecalis
312	E3M10000029B02	Enterococcus faecalis
313	E3M10000029B05	Enterococcus faecalis
314	E3M10000029B06	Enterococcus faecalis
315	E3M10000029B08	Enterococcus faecalis
316	E3M10000029B11	Enterococcus faecalis
317	E3M10000029B12	Enterococcus faecalis
318	E3M10000029C01	Enterococcus faecalis
319	E3M10000029C02	Enterococcus faecalis
320	E3M10000029C03	Enterococcus faecalis
321	E3M10000029C04	Enterococcus faecalis
322	E3M10000029C05	Enterococcus faecalis
323	E3M10000029C06	Enterococcus faecalis
324	E3M10000029C07	Enterococcus faecalis
325	E3M10000029C08	Enterococcus faecalis
326	E3M10000029C09	Enterococcus faecalis
327	E3M10000029C10	Enterococcus faecalis
328	E3M10000029C12	Enterococcus faecalis
329	E3M10000029D01	Enterococcus faecalis
330	E3M10000029D03	Enterococcus faecalis
331	E3M10000029D04	Enterococcus faecalis
332	E3M10000029D05	Enterococcus faecalis
333	E3M10000029D06	Enterococcus faecalis

SeqID	Clone name	Organism
334	E3M10000029D08	Enterococcus faecalis
335	E3M10000029D12	Enterococcus faecalis
336	E3M10000029E01	Enterococcus faecalis
337	E3M10000029E02	Enterococcus faecalis
338	E3M10000029E03	Enterococcus faecalis
339	E3M10000029E05	Enterococcus faecalis
340	E3M10000029E07	Enterococcus faecalis
341	E3M10000029E08	Enterococcus faecalis
342	E3M10000029E09	Enterococcus faecalis
343	E3M10000029E12	Enterococcus faecalis
344	E3M10000029F01	Enterococcus faecalis
345	E3M10000029F05	Enterococcus faecalis
346	E3M10000029F06	Enterococcus faecalis
347	E3M10000029F09	Enterococcus faecalis
348	E3M10000029F10	Enterococcus faecalis
349	E3M10000029F11	Enterococcus faecalis
350	E3M10000029F12	Enterococcus faecalis
351	E3M10000029G01	Enterococcus faecalis
352	E3M10000029G04	Enterococcus faecalis
353	E3M10000029G05	Enterococcus faecalis
354	E3M10000029G07	Enterococcus faecalis
355	E3M10000029G08	Enterococcus faecalis
356	E3M10000029G09	Enterococcus faecalis
357	E3M10000029G10	Enterococcus faecalis
358	E3M10000029G11	Enterococcus faecalis
359	E3M10000029G12	Enterococcus faecalis
360	E3M10000029H02	Enterococcus faecalis
361	E3M10000029H04	Enterococcus faecalis
362	E3M10000029H05	Enterococcus faecalis
363	E3M10000029H07	Enterococcus faecalis
364	E3M10000029H08	Enterococcus faecalis
365	E3M10000029H11	Enterococcus faecalis
366	E3M10000030A05	Enterococcus faecalis
367	E3M10000030A08	Enterococcus faecalis
368	E3M10000030A09	Enterococcus faecalis
369	E3M10000030A11	Enterococcus faecalis
370	E3M10000030B03	Enterococcus faecalis
371	E3M10000030B04	Enterococcus faecalis
372	E3M10000030B05	Enterococcus faecalis
373	E3M10000030B06	Enterococcus faecalis
374	E3M10000030B07	Enterococcus faecalis

SeqID	Clone name	Organism
375	E3M10000030B08	Enterococcus faecalis
376	E3M10000030B10	Enterococcus faecalis
377	E3M10000030B11	Enterococcus faecalis
378	E3M10000030B12	Enterococcus faecalis
379	E3M10000030C03	Enterococcus faecalis
380	E3M10000030C04	Enterococcus faecalis
381	E3M10000030C12	Enterococcus faecalis
382	E3M10000030D02	Enterococcus faecalis
383	E3M10000030D05	Enterococcus faecalis
384	E3M10000030D08	Enterococcus faecalis
385	E3M10000030D09	Enterococcus faecalis
386	E3M10000030D10	Enterococcus faecalis
387	E3M10000030D12	Enterococcus faecalis
388	E3M10000030E01	Enterococcus faecalis
389	E3M10000030E02	Enterococcus faecalis
390	E3M10000030E04	Enterococcus faecalis
391	E3M10000030E08	Enterococcus faecalis
392	E3M10000030E09	Enterococcus faecalis
393	E3M10000030E10	Enterococcus faecalis
394	E3M10000030F01	Enterococcus faecalis
395	E3M10000030F04	Enterococcus faecalis
396	E3M10000030F06	Enterococcus faecalis
397	E3M10000030F07	Enterococcus faecalis
398	E3M10000030F10	Enterococcus faecalis
399	E3M10000030F12	Enterococcus faecalis
400	E3M10000030G01	Enterococcus faecalis
401	E3M10000030G03	Enterococcus faecalis
402	E3M10000030G06	Enterococcus faecalis
403	E3M10000030G08	Enterococcus faecalis
404	E3M10000030G09	Enterococcus faecalis
405	E3M10000030G12	Enterococcus faecalis
406	E3M10000030H03	Enterococcus faecalis
407	E3M10000030H04	Enterococcus faecalis
408	E3M10000030H06	Enterococcus faecalis
409	Е3М10000030Н07	Enterococcus faecalis
410	E3M10000030H08	Enterococcus faecalis
411	E3M10000030H10	Enterococcus faecalis
412	E3M10000030H11	Enterococcus faecalis
413	E3M10000031A02	Enterococcus faecalis
414	E3M10000031A06	Enterococcus faecalis
415	E3M10000031A07	Enterococcus faecalis

SeqID	Clone name	Organism
416	E3M10000031A08	Enterococcus faecalis
417	E3M10000031B02	Enterococcus faecalis
418	E3M10000031B03	Enterococcus faecalis
419	E3M10000031B04	Enterococcus faecalis
420	E3M10000031B09	Enterococcus faecalis
421	E3M10000031B10	Enterococcus faecalis
422	E3M10000031B11	Enterococcus faecalis
423	E3M10000031B12	Enterococcus faecalis
424	E3M10000031C01	Enterococcus faecalis
425	E3M10000031C04	Enterococcus faecalis
426	E3M10000031C06	Enterococcus faecalis
427	E3M10000031C10	Enterococcus faecalis
428	E3M10000031C11	Enterococcus faecalis
429	E3M10000031C12	Enterococcus faecalis
430	E3M10000031D03	Enterococcus faecalis
431	E3M10000031D04	Enterococcus faecalis
432	E3M10000031D08	Enterococcus faecalis
433	E3M10000031E03	Enterococcus faecalis
434	E3M10000031E09	Enterococcus faecalis
435	E3M10000031F02	Enterococcus faecalis
436	E3M10000031F04	Enterococcus faecalis
437	E3M10000031F07	Enterococcus faecalis
438	E3M10000031F09	Enterococcus faecalis
439	E3M10000031F11	Enterococcus faecalis
440	E3M10000031G03	Enterococcus faecalis
441	E3M10000031G04	Enterococcus faecalis
442	E3M10000031G05	Enterococcus faecalis
443	E3M10000031G06	Enterococcus faecalis
444	E3M10000031G07	Enterococcus faecalis
445	E3M10000031G08	Enterococcus faecalis
446	E3M10000031G11	Enterococcus faecalis
447	E3M10000031H05	Enterococcus faecalis
448	E3M10000031H06	Enterococcus faecalis
449	E3M10000031H07	Enterococcus faecalis
450	E3M10000031H08	Enterococcus faecalis
451	E3M10000031H10	Enterococcus faecalis
452	E3M10000031H11	Enterococcus faecalis
453	E3M10000032A02	Enterococcus faecalis
454	E3M10000032A04	Enterococcus faecalis
455	E3M10000032A06	Enterococcus faecalis
456	E3M10000032A07	Enterococcus faecalis

SeqID	Clone name	Organism
457	E3M10000032A08	Enterococcus faecalis
458	E3M10000032A09	Enterococcus faecalis
459	E3M10000032A10	Enterococcus faecalis
460	E3M10000032A11	Enterococcus faecalis
461	E3M10000032B03	Enterococcus faecalis
462	E3M10000032B04	Enterococcus faecalis
463	E3M10000032B07	Enterococcus faecalis
464	E3M10000032B08	Enterococcus faecalis
465	E3M10000032B09	Enterococcus faecalis
466	E3M10000032B11	Enterococcus faecalis
467	E3M10000032B12	Enterococcus faecalis
468	E3M10000032C01	Enterococcus faecalis
469	E3M10000032C02	Enterococcus faecalis
470	E3M10000032C03	Enterococcus faecalis
471	E3M10000032C04	Enterococcus faecalis
472	E3M10000032C06	Enterococcus faecalis
473	E3M10000032C09	Enterococcus faecalis
474	E3M10000032C11	Enterococcus faecalis
475	E3M10000032C12	Enterococcus faecalis
476	E3M10000032D01	Enterococcus faecalis
477	E3M10000032D02	Enterococcus faecalis
478	E3M10000032D03	Enterococcus faecalis
479	E3M10000032D06	Enterococcus faecalis
480	E3M10000032D09	Enterococcus faecalis
481	E3M10000032D12	Enterococcus faecalis
482	E3M10000032E04	Enterococcus faecalis
483	E3M10000032E05	Enterococcus faecalis
484	E3M10000032E08	Enterococcus faecalis
485	E3M10000032E10	Enterococcus faecalis
486	E3M10000032E11	Enterococcus faecalis
487	E3M10000032E12	Enterococcus faecalis
488	E3M10000032F02	Enterococcus faecalis
489	E3M10000032F03	Enterococcus faecalis
490	E3M10000032F05	Enterococcus faecalis
491	E3M10000032F07	Enterococcus faecalis
492	E3M10000032F08	Enterococcus faecalis
493	E3M10000032F11	Enterococcus faecalis
494	E3M10000032F12	Enterococcus faecalis
495	E3M10000032G01	Enterococcus faecalis
496	E3M10000032G02	Enterococcus faecalis
497	E3M10000032G04	Enterococcus faecalis

SeqID	Clone name	Organism
498	E3M10000032G05	Enterococcus faecalis
499	E3M10000032G06	Enterococcus faecalis
500	E3M10000032G07	Enterococcus faecalis
501	E3M10000032H05	Enterococcus faecalis
502	E3M10000032H06	Enterococcus faecalis
503	E3M10000032H08	Enterococcus faecalis
504	E3M10000032H09	Enterococcus faecalis
505	E3M10000032H10	Enterococcus faecalis
506	E3M10000033A03	Enterococcus faecalis
507	E3M10000033A04	Enterococcus faecalis
508	E3M10000033A05	Enterococcus faecalis
509	E3M10000033A06	Enterococcus faecalis
510	E3M10000033A07	Enterococcus faecalis
511	E3M10000033A08	Enterococcus faecalis
512	E3M10000033A11	Enterococcus faecalis
513	E3M10000033B01	Enterococcus faecalis
514	E3M10000033B02	Enterococcus faecalis
515	E3M10000033B04	Enterococcus faecalis
516	E3M10000033B05	Enterococcus faecalis
517	E3M10000033B06	Enterococcus faecalis
518	E3M10000033B08	Enterococcus faecalis
519	E3M10000033B09	Enterococcus faecalis
520	E3M10000033C01	Enterococcus faecalis
521	E3M10000033C02	Enterococcus faecalis
522	E3M10000033C05	Enterococcus faecalis
523	E3M10000033C09	Enterococcus faecalis
524	E3M10000033C10	Enterococcus faecalis
525	E3M10000033C11	Enterococcus faecalis
526	E3M10000033C12	Enterococcus faecalis
527	E3M10000033D01	Enterococcus faecalis
528	E3M10000033D04	Enterococcus faecalis
529	E3M10000033D05	Enterococcus faecalis
530	E3M10000033D06	Enterococcus faecalis
531	E3M10000033D09	Enterococcus faecalis
532	E3M10000033D10	Enterococcus faecalis
533	E3M10000033D11	Enterococcus faecalis
534	E3M10000033E02	Enterococcus faecalis
535	E3M10000033E03	Enterococcus faecalis
536	E3M10000033E04	Enterococcus faecalis
537	E3M10000033E05	Enterococcus faecalis
538	E3M10000033E07	Enterococcus faecalis

SeqID	Clone name	Organism
539	E3M10000033E08	Enterococcus faecalis
540	E3M10000033E09	Enterococcus faecalis
541	E3M10000033E11	Enterococcus faecalis
542	E3M10000033F01	Enterococcus faecalis
543	E3M10000033F03	Enterococcus faecalis
544	E3M10000033F04	Enterococcus faecalis
545	E3M10000033F05	Enterococcus faecalis
546	E3M10000033F07	Enterococcus faecalis
547	E3M10000033F08	Enterococcus faecalis
548	E3M10000033F10	Enterococcus faecalis
549	E3M10000033F12	Enterococcus faecalis
550	E3M10000033G01	Enterococcus faecalis
551	E3M10000033G02	Enterococcus faecalis
552	E3M10000033G03	Enterococcus faecalis
553	E3M10000033G04	Enterococcus faecalis
554	E3M10000033G06	Enterococcus faecalis
555	E3M10000033G07	Enterococcus faecalis
556	E3M10000033G08	Enterococcus faecalis
557	E3M10000033G09	Enterococcus faecalis
558	E3M10000033G12	Enterococcus faecalis
559	E3M10000033H02	Enterococcus faecalis
560	E3M10000033H04	Enterococcus faecalis
561	E3M10000033H05	Enterococcus faecalis
562	E3M10000033H07	Enterococcus faecalis
563	E3M10000033H08	Enterococcus faecalis
564	E3M10000033H09	Enterococcus faecalis
565	E3M10000033H10	Enterococcus faecalis
566	E3M10000033H11	Enterococcus faecalis
567	E3M10000034A02	Enterococcus faecalis
568	E3M10000034A03	Enterococcus faecalis
569	E3M10000034A04	Enterococcus faecalis
570	E3M10000034B02	Enterococcus faecalis
571	E3M10000034B04	Enterococcus faecalis
572	E3M10000034C04	Enterococcus faecalis
573	E3M10000034D01	Enterococcus faecalis
574	E3M10000034D02	Enterococcus faecalis
575	E3M10000034E01	Enterococcus faecalis
576	E3M10000034E04	Enterococcus faecalis
577	E3M10000034F02	Enterococcus faecalis
578	E3M10000034F03	Enterococcus faecalis
579	E3M10000034F04	Enterococcus faecalis

SeqID	Clone name	Organism
580	E3M10000034G02	Enterococcus faecalis
581	E3M10000034G03	Enterococcus faecalis
582	E3M10000034H02	Enterococcus faecalis
583	E3M10000034H03	Enterococcus faecalis
584	E3M10000035A02	Enterococcus faecalis
585	E3M10000035A04	Enterococcus faecalis
586	E3M10000035A05	Enterococcus faecalis
587	E3M10000035A06	Enterococcus faecalis
588	E3M10000035A08	Enterococcus faecalis
. 589	E3M10000035A09	Enterococcus faecalis
590	E3M10000035A11	Enterococcus faecalis
591	E3M10000035B01	Enterococcus faecalis
592	E3M10000035B03	Enterococcus faecalis
593	E3M10000035B06	Enterococcus faecalis
594	E3M10000035B07	Enterococcus faecalis
595	E3M10000035B08	Enterococcus faecalis
596	E3M10000035B10	Enterococcus faecalis
597	E3M10000035B11	Enterococcus faecalis
598	E3M10000035B12	Enterococcus faecalis
599	E3M10000035C01	Enterococcus faecalis
600	E3M10000035C03	Enterococcus faecalis
601	E3M10000035C04	Enterococcus faecalis
602	E3M10000035C05	Enterococcus faecalis
603	E3M10000035C06	Enterococcus faecalis
604	E3M10000035C07	Enterococcus faecalis
605	E3M10000035C08	Enterococcus faecalis
606	E3M10000035C09	Enterococcus faecalis
607	E3M10000035C11	Enterococcus faecalis
608	E3M10000035C12	Enterococcus faecalis
609	E3M10000035D02	Enterococcus faecalis
610	E3M10000035D03	Enterococcus faecalis
611	E3M10000035D04	Enterococcus faecalis
612	E3M10000035D05	Enterococcus faecalis
613	E3M10000035D10	Enterococcus faecalis
614	E3M10000035D11	Enterococcus faecalis
615	E3M10000035E03	Enterococcus faecalis
616	E3M10000035E04	Enterococcus faecalis
617	E3M10000035E05	Enterococcus faecalis
618	E3M10000035E07	Enterococcus faecalis
619	E3M10000035E08	Enterococcus faecalis
620	E3M10000035E09	Enterococcus faecalis

SeqID	Clone name	Organism
621	E3M10000035E10	Enterococcus faecalis
622	E3M10000035E11	Enterococcus faecalis
623	E3M10000035E12	Enterococcus faecalis
624	E3M10000035F01	Enterococcus faecalis
625	E3M10000035F02	Enterococcus faecalis
626	E3M10000035F03	Enterococcus faecalis
627	E3M10000035F06	Enterococcus faecalis
628	E3M10000035F07	Enterococcus faecalis
629	E3M10000035F08	Enterococcus faecalis
630	E3M10000035F09	Enterococcus faecalis
631	E3M10000035F11	Enterococcus faecalis
632	E3M10000035F12	Enterococcus faecalis
633	E3M10000035G02	Enterococcus faecalis
634	E3M10000035G04	Enterococcus faecalis
635	E3M10000035G05	Enterococcus faecalis
636	E3M10000035G08	Enterococcus faecalis
637	E3M10000035G09	Enterococcus faecalis
638	E3M10000035G10	Enterococcus faecalis
639	E3M10000035G11	Enterococcus faecalis
640	E3M10000035H03	Enterococcus faecalis
641	E3M10000035H06	Enterococcus faecalis
642	E3M10000035H09	Enterococcus faecalis
643	E3M10000035H11	Enterococcus faecalis
644	E3M10000036A03	Enterococcus faecalis
645	E3M10000036A04	Enterococcus faecalis
646	E3M10000036A05	Enterococcus faecalis
647	E3M10000036A06	Enterococcus faecalis
648	E3M10000036A07	Enterococcus faecalis
649	E3M10000036A08	Enterococcus faecalis
650	E3M10000036A09	Enterococcus faecalis
651	E3M10000036A10	Enterococcus faecalis
652	E3M10000036B01	Enterococcus faecalis
653	E3M10000036B03	Enterococcus faecalis
654	E3M10000036B06	Enterococcus faecalis
655	E3M10000036B07	Enterococcus faecalis
656	E3M10000036B08	Enterococcus faecalis
657	E3M10000036B09	Enterococcus faecalis
658	E3M10000036B11	Enterococcus faecalis
659	E3M10000036B12	Enterococcus faecalis
660	E3M10000036C01	Enterococcus faecalis
661	E3M10000036C03	Enterococcus faecalis

SeqID	Clone name	Organism
662	E3M10000036C06	Enterococcus faecalis
663	E3M10000036C07	Enterococcus faecalis
664	E3M10000036C08	Enterococcus faecalis
665	E3M10000036C09	Enterococcus faecalis
666	E3M10000036C10	Enterococcus faecalis
667	E3M10000036C11	Enterococcus faecalis
668	E3M10000036D03	Enterococcus faecalis
669	E3M10000036D04	Enterococcus faecalis
670	E3M10000036D06	Enterococcus faecalis
671	E3M10000036D08	Enterococcus faecalis
672	E3M10000036D09	Enterococcus faecalis
673	E3M10000036D10	Enterococcus faecalis
674	E3M10000036D11	Enterococcus faecalis
675	E3M10000036D12	Enterococcus faecalis
676	E3M10000036E01	Enterococcus faecalis
677	E3M10000036E04	Enterococcus faecalis
678	E3M10000036E05	Enterococcus faecalis
679	E3M10000036E07	Enterococcus faecalis
680	E3M10000036E08	Enterococcus faecalis
681	E3M10000036F03	Enterococcus faecalis
682	E3M10000036F04	Enterococcus faecalis
683	E3M10000036F05	Enterococcus faecalis
684	E3M10000036F08	Enterococcus faecalis
685	E3M10000036F09	Enterococcus faecalis
686	E3M10000036F10	Enterococcus faecalis
687	E3M10000036F12	Enterococcus faecalis
688	E3M10000036G01	Enterococcus faecalis
689	E3M10000036G02	Enterococcus faecalis
690	E3M10000036G03	Enterococcus faecalis
691	E3M10000036G04	Enterococcus faecalis
692	E3M10000036G06	Enterococcus faecalis
693	E3M10000036G10	Enterococcus faecalis
694	E3M10000036H02	Enterococcus faecalis
695	E3M10000036H03	Enterococcus faecalis
696	E3M10000036H04	Enterococcus faecalis
697	E3M10000036H05	Enterococcus faecalis
698	E3M10000036H06	Enterococcus faecalis
699	E3M10000036H07	Enterococcus faecalis
700	E3M10000036H08	Enterococcus faecalis
701	E3M10000036H09	Enterococcus faecalis
702	E3M10000036H10	Enterococcus faecalis

SeqID	Clone name	Organism
703	E3M10000037A03	Enterococcus faecalis
704	E3M10000037A06	Enterococcus faecalis
705	E3M10000037A08	Enterococcus faecalis
706 ·	E3M10000037A09	Enterococcus faecalis
707	E3M10000037A10	Enterococcus faecalis
708	E3M10000037B02	Enterococcus faecalis
709	E3M10000037B07	Enterococcus faecalis
710	E3M10000037B08	Enterococcus faecalis
711	E3M10000037B11	Enterococcus faecalis
712	E3M10000037C01	Enterococcus faecalis
713	E3M10000037C02	Enterococcus faecalis
714	E3M10000037C04	Enterococcus faecalis
715	E3M10000037C05	Enterococcus faecalis
716	E3M10000037C07	Enterococcus faecalis
717	E3M10000037C11	Enterococcus faecalis
718	E3M10000037C12	Enterococcus faecalis
719	E3M10000037D02	Enterococcus faecalis
720	E3M10000037D03	Enterococcus faecalis
721	E3M10000037D04	Enterococcus faecalis
722	E3M10000037D05	Enterococcus faecalis
723	E3M10000037D06	Enterococcus faecalis
724	E3M10000037D09	Enterococcus faecalis
725	E3M10000037D11	Enterococcus faecalis
726	E3M10000037E01	Enterococcus faecalis
727	E3M10000037E02	Enterococcus faecalis
728	E3M10000037E03	Enterococcus faecalis
729	E3M10000037E05	Enterococcus faecalis
730	E3M10000037E07	Enterococcus faecalis
731	E3M10000037E08	Enterococcus faecalis
732	E3M10000037E10	Enterococcus faecalis
733	E3M10000037E12	Enterococcus faecalis
734	E3M10000037F01	Enterococcus faecalis
735	E3M10000037F02	Enterococcus faecalis
736	E3M10000037F06	Enterococcus faecalis
737	E3M10000037F07	Enterococcus faecalis
738	E3M10000037F12	Enterococcus faecalis
739	E3M10000037G01	Enterococcus faecalis
740	E3M10000037G02	Enterococcus faecalis
741	E3M10000037G03	Enterococcus faecalis
742	E3M10000037G05	Enterococcus faecalis
743	E3M10000037G06	Enterococcus faecalis

SeqID	Clone name	Organism
744	E3M10000037G07	Enterococcus faecalis
745	E3M10000037G08	Enterococcus faecalis
746	E3M10000037G10	Enterococcus faecalis
747	E3M10000037G11	Enterococcus faecalis
748	E3M10000037H02	Enterococcus faecalis
749	E3M10000037H05	Enterococcus faecalis
750	E3M10000037H07	Enterococcus faecalis
751	E3M10000037H10	Enterococcus faecalis
752	E3M10000037H11	Enterococcus faecalis
753	E3M10000038A02	Enterococcus faecalis
754	E3M10000038A03	Enterococcus faecalis
755	E3M10000038A05	Enterococcus faecalis
756	E3M10000038A06	Enterococcus faecalis
757	E3M10000038A07	Enterococcus faecalis
758	E3M10000038A09	Enterococcus faecalis
759	E3M10000038A10	Enterococcus faecalis
760	E3M10000038A11	Enterococcus faecalis
761	E3M10000038B02	Enterococcus faecalis
762	E3M10000038B03	Enterococcus faecalis
763	E3M10000038B04	Enterococcus faecalis
764	E3M10000038B05	Enterococcus faecalis
765	E3M10000038B07	Enterococcus faecalis
766	E3M10000038B08	Enterococcus faecalis
767	E3M10000038B09	Enterococcus faecalis
768	E3M10000038B11	Enterococcus faecalis
769	E3M10000038C02	Enterococcus faecalis
770	E3M10000038C03	Enterococcus faecalis
771	E3M10000038C05	Enterococcus faecalis
772	E3M10000038C07	Enterococcus faecalis
773	E3M10000038C10	Enterococcus faecalis
774	E3M10000038C12	Enterococcus faecalis
775	E3M10000038D01	Enterococcus faecalis
776	E3M10000038D02	Enterococcus faecalis
777	E3M10000038D04	Enterococcus faecalis
778	E3M10000038D08	Enterococcus faecalis
779	E3M10000038D10	Enterococcus faecalis
780	E3M10000038D11	Enterococcus faecalis
781	E3M10000038D12	Enterococcus faecalis
782	E3M10000038E02	Enterococcus faecalis
783	E3M10000038E03	Enterococcus faecalis
784	E3M10000038E04	Enterococcus faecalis

SeqID	Clone name	Organism
785	E3M10000038E05	Enterococcus faecalis
786	E3M10000038E07	Enterococcus faecalis
787	E3M10000038E08	Enterococcus faecalis
788	E3M10000038E11	Enterococcus faecalis
789	E3M10000038F02	Enterococcus faecalis
790	E3M10000038F04	Enterococcus faecalis
791	E3M10000038F05	Enterococcus faecalis
792	E3M10000038F06	Enterococcus faecalis
793	E3M10000038F07	Enterococcus faecalis
794	E3M10000038F09	Enterococcus faecalis
795	E3M10000038F10	Enterococcus faecalis
796	E3M10000038F11	Enterococcus faecalis
797	E3M10000038G02	Enterococcus faecalis
798	E3M10000038G03	Enterococcus faecalis
799	E3M10000038G06	Enterococcus faecalis
800	E3M10000038G07	Enterococcus faecalis
801	E3M10000038G11	Enterococcus faecalis
802	E3M10000038H02	Enterococcus faecalis
803	ЕЗМ10000038Н05	Enterococcus faecalis
804	E3M10000038H06	Enterococcus faecalis
805	E3M10000038H07	Enterococcus faecalis
806	E3M10000038H08	Enterococcus faecalis
807	E3M10000038H09	Enterococcus faecalis
808	E3M10000038H10	Enterococcus faecalis
809	E3M10000039A02	Enterococcus faecalis
810	E3M10000039A06	Enterococcus faecalis
811	E3M10000039A07	Enterococcus faecalis
812	E3M10000039A08	Enterococcus faecalis
813	E3M10000039A10	Enterococcus faecalis
814	E3M10000039A11	Enterococcus faecalis
815	E3M10000039B01	Enterococcus faecalis
816	E3M10000039B03	Enterococcus faecalis
817	E3M10000039B04	Enterococcus faecalis
818	E3M10000039B06	Enterococcus faecalis
819	E3M10000039B07	Enterococcus faecalis
820	E3M10000039B08	Enterococcus faecalis
821	E3M10000039B09	Enterococcus faecalis
822	E3M10000039B11	Enterococcus faecalis
823	E3M10000039C02	Enterococcus faecalis
824	E3M10000039C04	Enterococcus faecalis
825	E3M10000039C05	Enterococcus faecalis

SeqID	Clone name	Organism
826	E3M10000039C06	Enterococcus faecalis
827	E3M10000039C07	Enterococcus faecalis
828	E3M10000039C08	Enterococcus faecalis
829	E3M10000039C09	Enterococcus faecalis
830	E3M10000039C10	Enterococcus faecalis
831	E3M10000039D02	Enterococcus faecalis
832	E3M10000039D03	Enterococcus faecalis
833	E3M10000039D04	Enterococcus faecalis
834	E3M10000039D06	Enterococcus faecalis .
835	E3M10000039E01	Enterococcus faecalis
836	E3M10000039E02	Enterococcus faecalis
837	E3M10000039E03	Enterococcus faecalis
838	E3M10000039E05	Enterococcus faecalis
839	E3M10000039E07	Enterococcus faecalis
840	E3M10000039E08	Enterococcus faecalis
841	E3M10000039F01	Enterococcus faecalis
842	E3M10000039F02	Enterococcus faecalis
843	E3M10000039F03	Enterococcus faecalis
844	E3M10000039F06	Enterococcus faecalis
845	E3M10000039F07	Enterococcus faecalis
846	E3M10000039F08	Enterococcus faecalis
847	E3M10000039G01	Enterococcus faecalis
848	E3M10000039G02	Enterococcus faecalis
849	E3M10000039G05	Enterococcus faecalis
850	E3M10000039G07	Enterococcus faecalis
851	E3M10000039G09	Enterococcus faecalis
852	E3M10000039G10	Enterococcus faecalis
853	E3M10000039H02	Enterococcus faecalis
854	E3M10000039H07	Enterococcus faecalis
855	E3M10000039H08	Enterococcus faecalis
856	E3M10000039H10	Enterococcus faecalis
857	E3M10000039H11	Enterococcus faecalis
858	E3M10000040A03	Enterococcus faecalis
859	E3M10000040A05	Enterococcus faecalis
860	E3M10000040A07	Enterococcus faecalis
861	E3M10000040A09	Enterococcus faecalis
862	E3M10000040A10	Enterococcus faecalis
863	E3M10000040A11	Enterococcus faecalis
864	E3M10000040B01	Enterococcus faecalis
865	E3M10000040B02	Enterococcus faecalis
866	E3M10000040B05	Enterococcus faecalis

SeqID	Clone name	Organism
867	E3M10000040B06	Enterococcus faecalis
868	E3M10000040B08	Enterococcus faecalis
869	E3M10000040B09	Enterococcus faecalis
870	E3M10000040B10	Enterococcus faecalis
871	E3M10000040B11	Enterococcus faecalis
872	E3M10000040B12	Enterococcus faecalis
873	E3M10000040C02	Enterococcus faecalis
874	E3M10000040C05	Enterococcus faecalis
875	E3M10000040C06	Enterococcus faecalis
876	E3M10000040C07	Enterococcus faecalis
877	E3M10000040C08	Enterococcus faecalis
878	E3M10000040C09	Enterococcus faecalis
879	E3M10000040C10	Enterococcus faecalis
880	E3M10000040C11	Enterococcus faecalis
881	E3M10000040C12	Enterococcus faecalis
882	E3M10000040D03	Enterococcus faecalis
883	E3M10000040D04	Enterococcus faecalis
884	E3M10000040D08	Enterococcus faecalis
885	E3M10000040D12	Enterococcus faecalis
886	E3M10000040E02	Enterococcus faecalis
887	E3M10000040E10	Enterococcus faecalis
888	E3M10000040E11	Enterococcus faecalis
889	E3M10000040E12	Enterococcus faecalis
890	E3M10000040F01	Enterococcus faecalis
891	E3M10000040F03	Enterococcus faecalis
892	E3M10000040F08	Enterococcus faecalis
893	E3M10000040F09	Enterococcus faecalis
894	E3M10000040F10	Enterococcus faecalis
895	E3M10000040G01	Enterococcus faecalis
896	E3M10000040G02	Enterococcus faecalis
897	E3M10000040G04	Enterococcus faecalis
898	E3M10000040G05	Enterococcus faecalis
899	E3M10000040G07	Enterococcus faecalis
900	E3M10000040G08	Enterococcus faecalis
901	E3M10000040G09	Enterococcus faecalis
902	E3M10000040G11	Enterococcus faecalis
903	E3M10000040H02	Enterococcus faecalis
904	E3M10000040H03	Enterococcus faecalis
905	E3M10000040H04	Enterococcus faecalis
906	E3M10000040H05	Enterococcus faecalis
907	E3M10000040H09	Enterococcus faecalis

SeqID	Clone name	Organism
908	E3M10000041A03	Enterococcus faecalis
909	E3M10000041A05	Enterococcus faecalis
910	E3M10000041A08	Enterococcus faecalis
911	E3M10000041A09	Enterococcus faecalis
912	E3M10000041A10	Enterococcus faecalis
913	E3M10000041A11	Enterococcus faecalis
914	E3M10000041B02	Enterococcus faecalis
915	E3M10000041B03	Enterococcus faecalis
916	E3M10000041B05	Enterococcus faecalis
917	E3M10000041B06	Enterococcus faecalis
918	E3M10000041B08	Enterococcus faecalis
919	E3M10000041B09	Enterococcus faecalis
920	E3M10000041B10	Enterococcus faecalis
921	E3M10000041B11	Enterococcus faecalis
922	E3M10000041B12	Enterococcus faecalis
923	E3M10000041C01	Enterococcus faecalis
924	E3M10000041C07	Enterococcus faecalis
925	E3M10000041C08	Enterococcus faecalis
926	E3M10000041C09	Enterococcus faecalis
927	E3M10000041C10	Enterococcus faecalis
928	E3M10000041C11	Enterococcus faecalis
929	E3M10000041C12	Enterococcus faecalis
930	E3M10000041D02	Enterococcus faecalis
931	E3M10000041D03	Enterococcus faecalis
932	E3M10000041D04	Enterococcus faecalis
933	E3M10000041D05	Enterococcus faecalis
934	E3M10000041D06	Enterococcus faecalis
935	E3M10000041D08	Enterococcus faecalis
936	E3M10000041D09	Enterococcus faecalis
937	E3M10000041D10	Enterococcus faecalis
938	E3M10000041D11	Enterococcus faecalis
939	E3M10000041D12	Enterococcus faecalis
940	E3M10000041E02	Enterococcus faecalis
941	E3M10000041E03	Enterococcus faecalis
942	E3M10000041E05	Enterococcus faecalis
943	E3M10000041E07	Enterococcus faecalis
944	E3M10000041E10	Enterococcus faecalis
945	E3M10000041E11	Enterococcus faecalis
946	E3M10000041F03	Enterococcus faecalis
947	E3M10000041F05	Enterococcus faecalis
948	E3M10000041F06	Enterococcus faecalis

and the second second second second second second

SeqID	Clone name	Organism
949	E3M10000041F07	Enterococcus faecalis
950	E3M10000041F08	Enterococcus faecalis
951	E3M10000041F09	Enterococcus faecalis
952	E3M10000041F10	Enterococcus faecalis
953	E3M10000041F11	Enterococcus faecalis
954	E3M10000041G02	Enterococcus faecalis
955	E3M10000041G03	Enterococcus faecalis
956	E3M10000041G04	Enterococcus faecalis
957	E3M10000041G06	Enterococcus faecalis
958	E3M10000041G07	Enterococcus faecalis
959	E3M10000041G08	Enterococcus faecalis
960	E3M10000041G09	Enterococcus faecalis
961	E3M10000041G10	Enterococcus faecalis
962	E3M10000041G12	Enterococcus faecalis
963	E3M10000041H04	Enterococcus faecalis
964	E3M10000041H05	Enterococcus faecalis
965	E3M10000041H06	Enterococcus faecalis
966	E3M10000041H07	Enterococcus faecalis
967	E3M10000041H08	Enterococcus faecalis
968	E3M10000041H09	Enterococcus faecalis
969	E3M10000041H10	Enterococcus faecalis
970	E3M10000041H11	Enterococcus faecalis
971	E3M10000042A03	Enterococcus faecalis
972	E3M10000042A08	Enterococcus faecalis
973	E3M10000042A10	Enterococcus faecalis
974	E3M10000042B01	Enterococcus faecalis
975	E3M10000042B02	Enterococcus faecalis
976	E3M10000042B04	Enterococcus faecalis
977	E3M10000042B08	Enterococcus faecalis
978	E3M10000042B09	Enterococcus faecalis
979	E3M10000042B10	Enterococcus faecalis
980	E3M10000042B11	Enterococcus faecalis
981	E3M10000042C02	Enterococcus faecalis
982	E3M10000042C03	Enterococcus faecalis
983	E3M10000042C04	Enterococcus faecalis
984	E3M10000042C10	Enterococcus faecalis
985	E3M10000042D01	Enterococcus faecalis
986	E3M10000042D02	Enterococcus faecalis
987	E3M10000042D03	Enterococcus faecalis
988	E3M10000042D06	Enterococcus faecalis
989	E3M10000042D09	Enterococcus faecalis

SeqID	Clone name	Organism
990	E3M10000042D11	Enterococcus faecalis
991	E3M10000042D12	Enterococcus faecalis
992	E3M10000042E05	Enterococcus faecalis .
993	E3M10000042E12	Enterococcus faecalis
994	E3M10000042F11	Enterococcus faecalis
995	E3M10000042G01	Enterococcus faecalis
996	E3M10000042G05	Enterococcus faecalis
997	E3M10000042G07	Enterococcus faecalis
998	E3M10000042G08	Enterococcus faecalis
999	E3M10000042G11	Enterococcus faecalis
1000	E3M10000042G12	Enterococcus faecalis
1001	E3M10000042H06	Enterococcus faecalis
1002	E3M10000042H08	Enterococcus faecalis
1003	E3M10000042H11	Enterococcus faecalis
1004	E3M10000043A02	Enterococcus faecalis
1005	E3M10000043A03	Enterococcus faecalis
1006	E3M10000043A05	Enterococcus faecalis
1007	E3M10000043A08	Enterococcus faecalis
1008	E3M10000043A09	Enterococcus faecalis
1009	E3M10000043A10	Enterococcus faecalis
1010	E3M10000043A11	Enterococcus faecalis
1011	E3M10000043B01	Enterococcus faecalis
1012	E3M10000043B02	Enterococcus faecalis
1013	E3M10000043B03	Enterococcus faecalis
1014	E3M10000043B06	Enterococcus faecalis
1015	E3M10000043B08	Enterococcus faecalis
1016	E3M10000043B09	Enterococcus faecalis
1017	E3M10000043B10	Enterococcus faecalis
1018	E3M10000043B11	Enterococcus faecalis
1019	E3M10000043B12	Enterococcus faecalis
1020	E3M10000043C01	Enterococcus faecalis
1021	E3M10000043C08	Enterococcus faecalis
1022	E3M10000043C09	Enterococcus faecalis
1023	E3M10000043D01	Enterococcus faecalis
1024	E3M10000043D02	Enterococcus faecalis
1025	E3M10000043D09	Enterococcus faecalis
1026	E3M10000043D10	Enterococcus faecalis
1027	E3M10000043D12	Enterococcus faecalis
1028	E3M10000043E03	Enterococcus faecalis
1029	E3M10000043E07	Enterococcus faecalis
1030	E3M10000043E08	Enterococcus faecalis

SeqID	Clone name	Organism
1031	E3M10000043E10	Enterococcus faecalis
1032	E3M10000043E11	Enterococcus faecalis
1033	E3M10000043F03	Enterococcus faecalis
1034	E3M10000043F04	Enterococcus faecalis
1035	E3M10000043F06	Enterococcus faecalis
1036	E3M10000043F08	Enterococcus faecalis
1037	E3M10000043F10	Enterococcus faecalis
1038	E3M10000043F12	Enterococcus faecalis
1039	E3M10000043G03	Enterococcus faecalis
1040	E3M10000043G04	Enterococcus faecalis
1041	E3M10000043G05	Enterococcus faecalis
1042	E3M10000043G07	Enterococcus faecalis
1043	E3M10000043G08	Enterococcus faecalis
1044	E3M10000043G10	Enterococcus faecalis
1045	E3M10000043G11	Enterococcus faecalis
1046	E3M10000043G12	Enterococcus faecalis
1047	E3M10000043H02	Enterococcus faecalis
1048	E3M10000043H05	Enterococcus faecalis
1049	E3M10000043H08	Enterococcus faecalis
1050	E3M10000043H09	Enterococcus faecalis
1051	E3M10000043H11	Enterococcus faecalis
1052	E3M10000044C02	Enterococcus faecalis
1053	E3M10000044E01	Enterococcus faecalis
1054	K1M10000002F02	Klebsiella pneumoniae
1055	K1M10000003C01	Klebsiella pneumoniae
1056	K1M10000004F06	Klebsiella pneumoniae
1057	K1M10000007F01	Klebsiella pneumoniae
1058	K1M10000008C02	Klebsiella pneumoniae
1059	K1M10000008C10	Klebsiella pneumoniae
1060	K1M10000008G10	Klebsiella pneumoniae
1061	K1M10000009D04	Klebsiella pneumoniae
1062	K1M10000013E04	Klebsiella pneumoniae
1063	K1M10000013E06	Klebsiella pneumoniae
1064	K1M10000019D06	Klebsiella pneumoniae
1065	K1M10000020B02	Klebsiella pneumoniae
1066	K1M10000021H06	Klebsiella pneumoniae
1067	K1M10000022C10	Klebsiella pneumoniae
1068	K1M10000023E09	Klebsiella pneumoniae
1069	K1M10000023E10	Klebsiella pneumoniae
1070	K1M10000030C07	Klebsiella pneumoniae
1071	K1M10000030E07	Klebsiella pneumoniae

SeqID	Clone name	Organism
1072	K1M10000031B11	Klebsiella pneumoniae
1073	K1M10000032E11	Klebsiella pneumoniae
1074	K1M10000033B02	Klebsiella pneumoniae
1075	K1M10000033E01	Klebsiella pneumoniae
1076	K1M10000036G08	Klebsiella pneumoniae
1077	K1M10000037D10	Klebsiella pneumoniae
1078	K1M10000038H09	Klebsiella pneumoniae
1079	K1M10000039H03	Klebsiella pneumoniae
1080	K1M10000043C01	Klebsiella pneumoniae
1081	K1M10000043D05	Klebsiella pneumoniae
1082	K1M10000043H10	Klebsiella pneumoniae
1083	K1M10000044D05	Klebsiella pneumoniae
1084	K1M10000044D08	Klebsiella pneumoniae
1085	K1M10000044E05	Klebsiella pneumoniae
1086	K1M10000044G05	Klebsiella pneumoniae
1087	K1M10000045A07	Klebsiella pneumoniae
1088	K1M10000045D10	Klebsiella pneumoniae
1089	K1M10000003D03	Klebsiella pneumoniae
1090	K1M10000010C02	Klebsiella pneumoniae
1091	K1M10000021H10	Klebsiella pneumoniae
1092	P1M10000008C06	Pseudomonas aeruginosa
1093	P1M10000008G04	Pseudomonas aeruginosa
1094	P1M10000010C03	Pseudomonas aeruginosa
1095	P1M10000014H10	Pseudomonas aeruginosa
1096	P1M10000015C06	Pseudomonas aeruginosa
1097	P1M10000015C09	Pseudomonas aeruginosa
1098	P1M10000016C04	Pseudomonas aeruginosa
1099	P1M10000018B01	Pseudomonas aeruginosa
1100	P1M10000018C01	Pseudomonas aeruginosa
1101	P1M10000018E01	Pseudomonas aeruginosa
1102	P1M10000018G01	Pseudomonas aeruginosa
1103	P1M10000019F01	Pseudomonas aeruginosa
1104	P1M10000021G03	Pseudomonas aeruginosa
1105	P1M10000021G05	Pseudomonas aeruginosa
1106	P1M10000022D09	Pseudomonas aeruginosa
1107	P1M10000024D06	Pseudomonas aeruginosa
1108	P1M10000024E06	Pseudomonas aeruginosa
1109	P1M10000024H03	Pseudomonas aeruginosa
1110	P1M10000025A06	Pseudomonas aeruginosa
1111	P1M10000025G07	Pseudomonas aeruginosa
1112	P1M10000025H07	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1113	P1M10000026E06	Pseudomonas aeruginosa
1114	P1M10000026F04	Pseudomonas aeruginosa
1115	P1M10000026G09	Pseudomonas aeruginosa
1116	P1M10000026H02	Pseudomonas aeruginosa
1117	P1M10000026H05	Pseudomonas aeruginosa
1118	P1M10000027A06	Pseudomonas aeruginosa
1119	P1M10000027B02	Pseudomonas aeruginosa
1120	P1M10000027G05	Pseudomonas aeruginosa
1121	P1M10000028A08	Pseudomonas aeruginosa
1122	P1M10000028B01	Pseudomonas aeruginosa
1123	P1M10000028E02	Pseudomonas aeruginosa
1124	P1M10000029A09	Pseudomonas aeruginosa
1125	P1M10000029G03	Pseudomonas aeruginosa
1126	P1M10000029H05	Pseudomonas aeruginosa
1127	P1M10000032F04	Pseudomonas aeruginosa
1128	P1M10000033A02	Pseudomonas aeruginosa
1129	P1M10000033B08	Pseudomonas aeruginosa
1130	P1M10000033E03	Pseudomonas aeruginosa
1131	P1M10000033F01	Pseudomonas aeruginosa
1132	P1M10000033G08	Pseudomonas aeruginosa
1133	P1M10000035A06	Pseudomonas aeruginosa
1134	P1M10000037B12	Pseudomonas aeruginosa
1135	P1M10000037G12	Pseudomonas aeruginosa
1136	P1M10000038B08	Pseudomonas aeruginosa
1137	P1M10000038C03	Pseudomonas aeruginosa
1138	P1M10000038C06	Pseudomonas aeruginosa
1139	P1M10000038F04	Pseudomonas aeruginosa
1140	P1M10000038G02	Pseudomonas aeruginosa
1141	P1M10000039G05	Pseudomonas aeruginosa
1142	P1M10000039G12	Pseudomonas aeruginosa
1143	P1M10000040C01	Pseudomonas aeruginosa
1144	P1M10000040C04	Pseudomonas aeruginosa
1145	P1M10000040D04	Pseudomonas aeruginosa
1146	P1M10000040D05	Pseudomonas aeruginosa
1147	P1M10000040E10	Pseudomonas aeruginosa
1148	P1M10000040H03	Pseudomonas aeruginosa
1149	P1M10000041A12	Pseudomonas aeruginosa
1150	P1M10000041B02	Pseudomonas aeruginosa
1151	P1M10000041E01	Pseudomonas aeruginosa
1152	P1M10000041F01	Pseudomonas aeruginosa
1153	P1M10000042B12	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1154	P1M10000042E08	Pseudomonas aeruginosa
1155	P1M10000043A03	Pseudomonas aeruginosa
1156	P1M10000043D06	Pseudomonas aeruginosa
1157	P1M10000044F07	Pseudomonas aeruginosa
1158	P1M10000046B03	Pseudomonas aeruginosa
1159	P1M10000046C07	Pseudomonas aeruginosa
1160	P1M10000046C08	Pseudomonas aeruginosa
1161	P1M10000046C09	Pseudomonas aeruginosa
1162	P1M10000046G11	Pseudomonas aeruginosa
1163	P1M10000047B04	Pseudomonas aeruginosa
1164	P1M10000047E11	Pseudomonas aeruginosa
1165	P1M10000047F07	Pseudomonas aeruginosa
1166	P1M10000047G10	Pseudomonas aeruginosa
1167	P1M10000048A03	Pseudomonas aeruginosa
1168	P1M10000049E08	Pseudomonas aeruginosa
1169	P1M10000049G10	Pseudomonas aeruginosa
1170	P1M10000050G11	Pseudomonas aeruginosa
1171	P1M10000051D11	Pseudomonas aeruginosa
1172	P1M10000051F01	Pseudomonas aeruginosa
1173	P1M10000052C03	Pseudomonas aeruginosa
1174	P1M10000052C12	Pseudomonas aeruginosa
1175	P1M10000052E04	Pseudomonas aeruginosa
1176	P1M10000053B12	Pseudomonas aeruginosa
1177	P1M10000053C02	Pseudomonas aeruginosa
1178	P1M10000053E07	Pseudomonas aeruginosa
1179	P1M10000053F08	Pseudomonas aeruginosa
1180	P1M10000055A11	Pseudomonas aeruginosa
1181	P1M10000055C08	Pseudomonas aeruginosa
1182	P1M10000055E05	Pseudomonas aeruginosa
1183	P1M10000056C07	Pseudomonas aeruginosa
1184	P1M10000056F05	Pseudomonas aeruginosa
1185	P1M10000056F06	Pseudomonas aeruginosa
1186	P1M10000056G01	Pseudomonas aeruginosa
1187	P1M10000058B07	Pseudomonas aeruginosa
1188	P1M10000059B04	Pseudomonas aeruginosa
1189	P1M10000059B10	Pseudomonas aeruginosa
1190	P1M10000059B11	Pseudomonas aeruginosa
1191	P1M10000059D11	Pseudomonas aeruginosa
1192	P1M10000059H08	Pseudomonas aeruginosa
1193	P1M10000059H09	Pseudomonas aeruginosa
1194	P1M10000060E03	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1195	P1M10000060H02	Pseudomonas aeruginosa
1196	P1M10000060H04	Pseudomonas aeruginosa
1197	P1M10000061B04	Pseudomonas aeruginosa
1198	P1M10000061E04	Pseudomonas aeruginosa
1199	P1M10000061F04	Pseudomonas aeruginosa
1200	P1M10000062A12	Pseudomonas aeruginosa
1201	P1M10000062C03	Pseudomonas aeruginosa
1202	P1M10000062C04	Pseudomonas aeruginosa
1203	P1M10000062C07	Pseudomonas aeruginosa
1204	P1M10000062C12	Pseudomonas aeruginosa
1205	P1M10000062D07	Pseudomonas aeruginosa
1206	P1M10000062D08	Pseudomonas aeruginosa
1207	P1M10000062E08	Pseudomonas aeruginosa
1208	P1M10000062F06	Pseudomonas aeruginosa
1209	P1M10000062G11	Pseudomonas aeruginosa
1210	P1M10000062H01	Pseudomonas aeruginosa
1211	P1M10000062H04	Pseudomonas aeruginosa
1212	P1M10000063F02	Pseudomonas aeruginosa
1213	P1M10000063G02	Pseudomonas aeruginosa
1214	P1M10000063H02	Pseudomonas aeruginosa
1215	P1M10000064A10	Pseudomonas aeruginosa
1216	P1M10000064C02	Pseudomonas aeruginosa
1217	P1M10000064C03	Pseudomonas aeruginosa
1218	P1M10000064D03	Pseudomonas aeruginosa
1219	P1M10000064E05	Pseudomonas aeruginosa
1220	P1M10000064G12	Pseudomonas aeruginosa
1221	P1M10000064H07	Pseudomonas aeruginosa
1222	P1M10000065A04	Pseudomonas aeruginosa
1223	P1M10000065B07	Pseudomonas aeruginosa
1224	P1M10000065C03	Pseudomonas aeruginosa
1225	P1M10000065C05	Pseudomonas aeruginosa
1226	P1M10000065D06	Pseudomonas aeruginosa
1227	P1M10000065F01	Pseudomonas aeruginosa
1228	P1M10000065G06	Pseudomonas aeruginosa
1229	P1M10000065H07	Pseudomonas aeruginosa
1230	P1M10000066A10	Pseudomonas aeruginosa
1231	P1M10000066A11	Pseudomonas aeruginosa
1232	P1M10000066F04	Pseudomonas aeruginosa
1233	P1M10000067A05	Pseudomonas aeruginosa
1234	P1M10000067A06	Pseudomonas aeruginosa
1235	P1M10000067A08	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1236	P1M10000067C04	Pseudomonas aeruginosa
1237	P1M10000067C06	Pseudomonas aeruginosa
1238	P1M10000067D05	Pseudomonas aeruginosa
1239	P1M10000067F05	Pseudomonas aeruginosa
1240	P1M10000067G05	Pseudomonas aeruginosa
1241	P1M10000068A09	Pseudomonas aeruginosa
1242	P1M10000068D04	Pseudomonas aeruginosa
1243	P1M10000068F04	Pseudomonas aeruginosa
1244	P1M10000068F08	Pseudomonas aeruginosa
1245	P1M10000068G01	Pseudomonas aeruginosa
1246	P1M10000068H05	Pseudomonas aeruginosa
1247	P1M10000069D09	Pseudomonas aeruginosa
1248	P1M10000069G06	Pseudomonas aeruginosa
1249	P1M10000069H02	Pseudomonas aeruginosa
1250	P1M10000070A05	Pseudomonas aeruginosa
1251	P1M10000070B10	Pseudomonas aeruginosa
1252	P1M10000070C06	Pseudomonas aeruginosa
1253	P1M10000070D08	Pseudomonas aeruginosa
1254	P1M10000070E03	Pseudomonas aeruginosa
1255	P1M10000070G06	Pseudomonas aeruginosa
1256	P1M10000070G12	Pseudomonas aeruginosa
1257	P1M10000070H06	Pseudomonas aeruginosa
1258	P1M10000071A03	Pseudomonas aeruginosa
1259	P1M10000071C01	Pseudomonas aeruginosa
1260	P1M10000071E04	Pseudomonas aeruginosa
1261	P1M10000071F01	Pseudomonas aeruginosa
1262	P1M10000073A06	Pseudomonas aeruginosa
1263	P1M10000073B10	Pseudomonas aeruginosa
1264	P1M10000073D04	Pseudomonas aeruginosa
1265	P1M10000073D09	Pseudomonas aeruginosa
1266	P1M10000073G03	Pseudomonas aeruginosa
1267	P1M10000074B01	Pseudomonas aeruginosa
1268	P1M10000074B04	Pseudomonas aeruginosa
1269	P1M10000074E04	Pseudomonas aeruginosa
1270	P1M10000074E09	Pseudomonas aeruginosa
1271	P1M10000074F10	Pseudomonas aeruginosa
1272	P1M10000074G12	Pseudomonas aeruginosa
1273	P1M10000075A04	Pseudomonas aeruginosa
1274	P1M10000075B03	Pseudomonas aeruginosa
1275	P1M10000075F02	Pseudomonas aeruginosa
1276	P1M10000075G05	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1277	P1M10000076D05	Pseudomonas aeruginosa
1278	P1M10000076D10	Pseudomonas aeruginosa
1279	P1M10000077A08	Pseudomonas aeruginosa
1280	P1M10000077C08	Pseudomonas aeruginosa
1281	P1M10000077E04	Pseudomonas aeruginosa
1282	P1M10000077H05	Pseudomonas aeruginosa
1283	P1M10000079A10	Pseudomonas aeruginosa
1284	P1M10000079B10	Pseudomonas aeruginosa
1285	P1M10000079C10	Pseudomonas aeruginosa
1286	P1M10000079D01	Pseudomonas aeruginosa
1287	P1M10000079D10	Pseudomonas aeruginosa
1288	P1M10000079F06	Pseudomonas aeruginosa
1289	P1M10000080B01	Pseudomonas aeruginosa
1290	P1M10000080B06	Pseudomonas aeruginosa
1291	P1M10000080C01	Pseudomonas aeruginosa
1292	P1M10000080C06	Pseudomonas aeruginosa
1293	P1M10000080E04	Pseudomonas aeruginosa
1294	P1M10000081D12	Pseudomonas aeruginosa
1295	P1M10000081G05	Pseudomonas aeruginosa
1296	P1M10000081H05	Pseudomonas aeruginosa
1297	P1M10000082A05	Pseudomonas aeruginosa
1298	P1M10000082B04	Pseudomonas aeruginosa
1299	P1M10000082C05	Pseudomonas aeruginosa
1300	P1M10000082D05	Pseudomonas aeruginosa
1301	P1M10000082E05	Pseudomonas aeruginosa
1302	P1M10000083A11	Pseudomonas aeruginosa
1303	P1M10000083B01	Pseudomonas aeruginosa
1304	P1M10000083B12	Pseudomonas aeruginosa
1305	P1M10000083C11	Pseudomonas aeruginosa
1306	P1M10000083C12	Pseudomonas aeruginosa
1307	P1M10000084A04	Pseudomonas aeruginosa
1308	P1M10000084D03	Pseudomonas aeruginosa
1309	P1M10000084E04	Pseudomonas aeruginosa
1310	P1M10000084E11	Pseudomonas aeruginosa
1311	P1M10000084F08	Pseudomonas aeruginosa
1312	P1M10000085D06	Pseudomonas aeruginosa
1313	P1M10000086A02	Pseudomonas aeruginosa
1314	P1M10000086B01	Pseudomonas aeruginosa
1315	P1M10000086D02	Pseudomonas aeruginosa
1316	P1M10000086E05	Pseudomonas aeruginosa
1317	P1M10000087A11	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1318	P1M10000087C09	Pseudomonas aeruginosa
1319	P1M10000087E04	Pseudomonas aeruginosa
1320	P1M10000087F04	Pseudomonas aeruginosa
1321	P1M10000087F09	Pseudomonas aeruginosa
1322	P1M10000088A07	Pseudomonas aeruginosa
1323	P1M10000088D06	Pseudomonas aeruginosa
1324	P1M10000089C08	Pseudomonas aeruginosa
1325	P1M10000089D11	Pseudomonas aeruginosa
1326	P1M10000089G08	Pseudomonas aeruginosa
1327	P1M10000090B11	Pseudomonas aeruginosa
1328	P1M10000090F06	Pseudomonas aeruginosa
1329	P1M10000090F08	Pseudomonas aeruginosa
1330	P1M10000091D02	Pseudomonas aeruginosa
1331	P1M10000091E09	Pseudomonas aeruginosa
1332	P1M10000091G10	Pseudomonas aeruginosa
1333	P1M10000092B02	Pseudomonas aeruginosa
1334	P1M10000092B10	Pseudomonas aeruginosa
1335	P1M10000092D09	Pseudomonas aeruginosa
1336	P1M10000092E02	Pseudomonas aeruginosa
1337	P1M10000092F05	Pseudomonas aeruginosa
1338	P1M10000093A03	Pseudomonas aeruginosa
1339	P1M10000093B09	Pseudomonas aeruginosa
1340	P1M10000093C08	Pseudomonas aeruginosa
1341	P1M10000093E09	Pseudomonas aeruginosa
1342	P1M10000093F03	Pseudomonas aeruginosa
1343	P1M10000093H07	Pseudomonas aeruginosa
1344	P1M10000094F04	Pseudomonas aeruginosa
1345	P1M10000094H03	Pseudomonas aeruginosa
1346	P1M10000095C01	Pseudomonas aeruginosa
1347	P1M10000095C09	Pseudomonas aeruginosa
1348	P1M10000095E04	Pseudomonas aeruginosa
1349	P1M10000095G04	Pseudomonas aeruginosa
1350	P1M10000096E04	Pseudomonas aeruginosa
1351	P1M10000096E12	Pseudomonas aeruginosa
1352	ID2	Pseudomonas aeruginosa
1353	4.1	Pseudomonas aeruginosa
1354	S1M10000001A05	Staphylococcus aureus
1355	S1M10000001A08	Staphylococcus aureus
1356	S1M10000001A09	Staphylococcus aureus
1357	S1M10000001A10	Staphylococcus aureus
1358	S1M10000001C06	Staphylococcus aureus

SeqID	Clone name	Organism
1359	S1M10000001D01	Staphylococcus aureus
1360	S1M10000001D02	Staphylococcus aureus
1361	S1M10000001D06	Staphylococcus aureus
1362	S1M10000001D07	Staphylococcus aureus
1363	S1M10000001E02	Staphylococcus aureus
1364	S1M10000001E04	Staphylococcus aureus
1365	S1M10000001E05	Staphylococcus aureus
1366	S1M10000001E09	Staphylococcus aureus
1367	S1M10000001E10	Staphylococcus aureus
1368	S1M10000001E11	Staphylococcus aureus
1369	S1M10000001F02	Staphylococcus aureus
1370	S1M10000001F04	Staphylococcus aureus
1371	S1M10000001F08	Staphylococcus aureus
1372	S1M10000001F09	Staphylococcus aureus
1373	S1M10000001F10	Staphylococcus aureus
1374	S1M10000001F11	Staphylococcus aureus
1375	S1M10000001G01	Staphylococcus aureus
1376	S1M10000001G07	Staphylococcus aureus
1377	S1M10000001G08	Staphylococcus aureus
1378	\$1M10000001G10	Staphylococcus aureus
1379	S1M10000002A02	Staphylococcus aureus
1380	S1M10000002A09	Staphylococcus aureus
1381	S1M10000002A10	Staphylococcus aureus
1382	S1M10000002A12	Staphylococcus aureus
1383	S1M10000002B01	Staphylococcus aureus
1384	S1M10000002B03	Staphylococcus aureus
1385	S1M10000002B04	Staphylococcus aureus
1386	S1M10000002B05	Staphylococcus aureus
1387	S1M10000002B06	Staphylococcus aureus
1388	S1M10000002B07	Staphylococcus aureus
1389	S1M10000002B09	Staphylococcus aureus
1390	S1M10000002B11	Staphylococcus aureus
1391	S1M10000002C02	Staphylococcus aureus
1392	S1M10000002C09	Staphylococcus aureus
1393	S1M10000002C10	Staphylococcus aureus
1394	S1M10000002C11	Staphylococcus aureus
1395	S1M10000002C12	Staphylococcus aureus
1396	S1M10000002D01	Staphylococcus aureus
1397	S1M10000002D02	Staphylococcus aureus
1398	S1M10000002D03	Staphylococcus aureus
1399	S1M10000002D05	Staphylococcus aureus

. ..

SeqID	Clone name	Organism
1400	S1M10000002D07	Staphylococcus aureus
1401	S1M10000002D08	Staphylococcus aureus
1402	S1M10000002D10	Staphylococcus aureus
1403	S1M10000002D12	Staphylococcus aureus
1404	S1M10000002E01	Staphylococcus aureus
1405	S1M10000002E02	Staphylococcus aureus
1406	S1M10000002E07	Staphylococcus aureus
1407	S1M10000002E09	Staphylococcus aureus
1408	S1M10000002E11	Staphylococcus aureus
1409	S1M10000002E12	Staphylococcus aureus
1410	S1M10000002F01	Staphylococcus aureus
1411	S1M10000002F02	Staphylococcus aureus
1412	S1M10000002F04	Staphylococcus aureus
1413	S1M10000002F09	Staphylococcus aureus
1414	S1M10000002F12	Staphylococcus aureus
1415	S1M10000002G01	Staphylococcus aureus
1416	S1M10000002G03	Staphylococcus aureus
1417	S1M10000002G05	Staphylococcus aureus
1418	S1M10000002G06	Staphylococcus aureus
1419	S1M10000002G07	Staphylococcus aureus
1420	S1M10000002G08	Staphylococcus aureus
1421	S1M10000002G09	Staphylococcus aureus
1422	S1M10000002G10	Staphylococcus aureus
1423	S1M10000002G11	Staphylococcus aureus
1424	S1M10000002G12	Staphylococcus aureus
1425	S1M10000003A01	Staphylococcus aureus
1426	S1M10000003A02	Staphylococcus aureus
1427	S1M10000003A03	Staphylococcus aureus
1428	S1M10000003A04	Staphylococcus aureus
1429	S1M10000003A06	Staphylococcus aureus
1430	S1M10000003A07	Staphylococcus aureus
1431	S1M10000003A08	Staphylococcus aureus
1432	S1M10000003A10	Staphylococcus aureus
1433	S1M10000003A11	Staphylococcus aureus
1434	S1M10000003B06	Staphylococcus aureus
1435	S1M10000003B08	Staphylococcus aureus
1436	S1M10000003B09	Staphylococcus aureus
1437	S1M10000003B12	Staphylococcus aureus
1438	S1M10000003C06	Staphylococcus aureus
1439	S1M10000003C07	Staphylococcus aureus
1440	S1M10000003C10	Staphylococcus aureus

SeqID	Clone name	Organism
1441	S1M10000003C12	Staphylococcus aureus
1442	S1M10000003D05	Staphylococcus aureus
1443	S1M10000003D06	Staphylococcus aureus
1444	S1M10000003D08	Staphylococcus aureus
1445	S1M10000003D10	Staphylococcus aureus
1446	S1M10000003E07	Staphylococcus aureus
1447	S1M10000003E09	Staphylococcus aureus
1448	S1M10000003E10	Staphylococcus aureus
1449	S1M10000003E11	Staphylococcus aureus
1450	S1M10000003F02	Staphylococcus aureus
1451	S1M10000003F05	Staphylococcus aureus
1452	S1M10000003F06	Staphylococcus aureus
1453	S1M10000003F07	Staphylococcus aureus
1454	S1M10000003F08	Staphylococcus aureus
1455	S1M10000003F12	Staphylococcus aureus
1456	S1M10000003G03	Staphylococcus aureus
1457	S1M10000003G04	Staphylococcus aureus
1458	S1M10000003G08	Staphylococcus aureus
1459	S1M10000003G10	Staphylococcus aureus
1460	S1M10000004A04	Staphylococcus aureus
1461	S1M10000004A06	Staphylococcus aureus
1462	S1M10000004A07	Staphylococcus aureus
1463	S1M10000004A11	Staphylococcus aureus
1464	S1M10000004A12	Staphylococcus aureus
1465	S1M10000004B03	Staphylococcus aureus
1466	S1M10000004B04	Staphylococcus aureus
1467	S1M10000004B06	Staphylococcus aureus
1468	S1M10000004B08	Staphylococcus aureus
1469	S1M10000004B09	Staphylococcus aureus
1470	S1M10000004B11	Staphylococcus aureus
1471	S1M10000004C01	Staphylococcus aureus
1472	S1M10000004C02	Staphylococcus aureus
1473	S1M10000004C03	Staphylococcus aureus
1474	S1M10000004C06	Staphylococcus aureus
1475	S1M10000004C07	Staphylococcus aureus
1476	S1M10000004C08	Staphylococcus aureus
1477	S1M10000004C09	Staphylococcus aureus
1478	S1M10000004C10	Staphylococcus aureus
1479	S1M10000004C12	Staphylococcus aureus
1480	S1M10000004D01	Staphylococcus aureus
1481	S1M10000004D03	Staphylococcus aureus

SeqID	Clone name	Organism
1482	S1M10000004D04	Staphylococcus aureus
1483	S1M10000004D06	Staphylococcus aureus
1484	S1M10000004D07	Staphylococcus aureus
1485	S1M10000004D08	Staphylococcus aureus
1486	S1M10000004D10	Staphylococcus aureus
1487	S1M10000004D12	Staphylococcus aureus
1488	S1M10000004E03	Staphylococcus aureus
1489	S1M10000004E04	Staphylococcus aureus
1490	S1M10000004E06	Staphylococcus aureus
1491	S1M10000004E07	Staphylococcus aureus
1492	S1M10000004E11	Staphylococcus aureus
1493	S1M10000004E12	Staphylococcus aureus
1494	S1M10000004F01	Staphylococcus aureus
1495	S1M10000004F02	Staphylococcus aureus
1496	S1M10000004F06	Staphylococcus aureus
1497	S1M10000004F07	Staphylococcus aureus
1498	S1M10000004F08	Staphylococcus aureus
1499	S1M10000004F09	Staphylococcus aureus
1500	S1M10000004F12	Staphylococcus aureus
1501	S1M10000004G01	Staphylococcus aureus
1502	S1M10000004G02	Staphylococcus aureus
1503	S1M10000004G03	Staphylococcus aureus
1504	S1M10000004G05	Staphylococcus aureus
1505	S1M10000004G06	Staphylococcus aureus
1506	S1M10000004G07	Staphylococcus aureus
1507	S1M10000004G09	Staphylococcus aureus
1508	S1M10000004G12	Staphylococcus aureus
1509	S1M10000005A01	Staphylococcus aureus
1510	S1M10000005A03	Staphylococcus aureus
1511	S1M10000005A05	Staphylococcus aureus
1512	S1M10000005A06	Staphylococcus aureus
1513	S1M10000005A07	Staphylococcus aureus
1514	S1M10000005A08	Staphylococcus aureus
1515	S1M10000005A09	Staphylococcus aureus
1516	S1M10000005A10	Staphylococcus aureus
1517	S1M10000005A11	Staphylococcus aureus
1518	S1M10000005B02	Staphylococcus aureus
1519	S1M10000005B04	Staphylococcus aureus
1520	S1M10000005B07	Staphylococcus aureus
1521	S1M10000005B08	Staphylococcus aureus
1522	S1M10000005B09	Staphylococcus aureus

SeqID	Clone name	Organism
1523	S1M10000005B12	Staphylococcus aureus
1524	S1M10000005C01	Staphylococcus aureus
1525	S1M10000005C05	Staphylococcus aureus
1526	S1M10000005C06	Staphylococcus aureus
1527	S1M10000005C09	Staphylococcus aureus
1528	S1M10000005C11	Staphylococcus aureus
1529	S1M10000005D01	Staphylococcus aureus
1530	S1M10000005D02	Staphylococcus aureus
1531	S1M10000005D03	Staphylococcus aureus
1532	S1M10000005D04	Staphylococcus aureus
1533	S1M10000005D05	Staphylococcus aureus
1534	S1M10000005D06	Staphylococcus aureus
1535	S1M10000005D07	Staphylococcus aureus
1536	S1M10000005D08	Staphylococcus aureus
1537	S1M10000005D09	Staphylococcus aureus
1538	S1M10000005D11	Staphylococcus aureus
1539	S1M10000005D12	Staphylococcus aureus
1540	S1M10000005E01	Staphylococcus aureus
1541	S1M10000005E02	Staphylococcus aureus
1542	S1M10000005E05	Staphylococcus aureus
1543	S1M10000005E06	Staphylococcus aureus
1544	S1M10000005E07	Staphylococcus aureus
1545	S1M10000005E08	Staphylococcus aureus
1546	S1M10000005E10	Staphylococcus aureus
1547	S1M10000005E11	Staphylococcus aureus
1548	S1M10000005E12	Staphylococcus aureus
1549	S1M10000005F02	Staphylococcus aureus
1550	S1M10000005F03	Staphylococcus aureus
1551	S1M10000005F04	Staphylococcus aureus
1552	S1M10000006A03	Staphylococcus aureus
1553	S1M10000006A04	Staphylococcus aureus
1554	S1M10000006A05	Staphylococcus aureus
1555	S1M10000006A07	Staphylococcus aureus
1556	S1M10000006A08	Staphylococcus aureus
1557	S1M10000006A10	Staphylococcus aureus
1558	S1M10000006A12	Staphylococcus aureus
1559	S1M10000006B02	Staphylococcus aureus
1560	S1M10000006B03	Staphylococcus aureus
1561	S1M10000006B04	Staphylococcus aureus
1562	S1M10000006B07	Staphylococcus aureus
1563	S1M10000006B10	Staphylococcus aureus

SeqID	Clone name	Organism
1564	S1M10000006B11	Staphylococcus aureus
1565	S1M1000006C02	Staphylococcus aureus
1566	S1M10000006C04	Staphylococcus aureus
1567	S1M1000006C06	Staphylococcus aureus
1568	S1M1000006C07	Staphylococcus aureus
1569	S1M1000006C08	Staphylococcus aureus
1570	S1M10000006C10	Staphylococcus aureus
1571	S1M10000006D03	Staphylococcus aureus
1572	S1M1000006D05	Staphylococcus aureus
1573	S1M10000006D06	Staphylococcus aureus
1574	S1M10000006D07	Staphylococcus aureus
1575	S1M10000006D08	Staphylococcus aureus
1576	S1M10000006E02	Staphylococcus aureus
1577	S1M10000006E03	Staphylococcus aureus
1578	S1M10000006E04	Staphylococcus aureus
1579	S1M10000006E07	Staphylococcus aureus
1580	S1M10000006E08	Staphylococcus aureus
1581	S1M10000006F01	Staphylococcus aureus
1582	S1M10000006F02	Staphylococcus aureus
1583	S1M10000006F03	Staphylococcus aureus
1584	S1M10000006F04	Staphylococcus aureus
1585	S1M10000006F06	Staphylococcus aureus
1586	S1M1000006G02	Staphylococcus aureus
1587	S1M10000006G03	Staphylococcus aureus
1588	S1M1000006G05	Staphylococcus aureus
1589	S1M10000006G06	Staphylococcus aureus
1590	S1M1000006G07	Staphylococcus aureus
1591	S1M10000006G09	Staphylococcus aureus
1592	S1M10000006G10	Staphylococcus aureus
1593	S1M10000006G11	Staphylococcus aureus
1594	S1M10000007A02	Staphylococcus aureus
1595	S1M10000007A03	Staphylococcus aureus
1596	S1M10000007B02	Staphylococcus aureus
1597	S1M10000007B11	Staphylococcus aureus
1598	S1M10000007C02	Staphylococcus aureus
1599	S1M10000007C04	Staphylococcus aureus
1600	S1M1000007C05	Staphylococcus aureus
1601	S1M10000007C06	Staphylococcus aureus
1602	S1M10000007C07	Staphylococcus aureus
1603	S1M10000007C08	Staphylococcus aureus
1604	S1M10000007C09	Staphylococcus aureus

SeqID	Clone name	Organism
1605	S1M1000007D03	Staphylococcus aureus
1606	S1M10000007D06	Staphylococcus aureus
1607	S1M10000007D08	Staphylococcus aureus
1608	S1M10000007D10	Staphylococcus aureus
1609	S1M1000007D11	Staphylococcus aureus
1610	S1M10000007E04	Staphylococcus aureus
1611	S1M10000007E06	Staphylococcus aureus
1612	S1M10000007E07	Staphylococcus aureus
1613	S1M10000007F01	Staphylococcus aureus
1614	S1M10000007F02	Staphylococcus aureus
1615	S1M10000007F04	Staphylococcus aureus
1616	S1M10000007F08	Staphylococcus aureus
1617	S1M10000007F09	Staphylococcus aureus
1618	S1M10000007F10	Staphylococcus aureus
1619	S1M10000007F11	Staphylococcus aureus
1620	S1M10000007F12	Staphylococcus aureus
1621	S1M10000007G02	Staphylococcus aureus
1622	S1M10000007G03	Staphylococcus aureus
1623	S1M10000007G05	Staphylococcus aureus
1624	S1M10000007G07	Staphylococcus aureus
1625	S1M10000007G08	Staphylococcus aureus
1626	S1M10000008A03	Staphylococcus aureus
1627	S1M10000008A04	Staphylococcus aureus
1628	S1M10000008A05	Staphylococcus aureus
1629	S1M10000008A08	Staphylococcus aureus
1630	S1M10000008A09	Staphylococcus aureus
1631	S1M10000008A12	Staphylococcus aureus
1632	S1M10000008B03	Staphylococcus aureus
1633	S1M10000008B04	Staphylococcus aureus
1634	S1M10000008B06	Staphylococcus aureus
1635	S1M10000008B08	Staphylococcus aureus
1636	S1M10000008B09	Staphylococcus aureus .
1637	S1M10000008B10	Staphylococcus aureus
1638	S1M10000008C05	Staphylococcus aureus
1639	S1M10000008C06	Staphylococcus aureus
1640	S1M10000008C07	Staphylococcus aureus
1641	S1M10000008C08	Staphylococcus aureus
1642	S1M10000008C09	Staphylococcus aureus
1643	S1M10000008D05	Staphylococcus aureus
1644	S1M10000008D09	Staphylococcus aureus
1645	S1M10000008E05	Staphylococcus aureus

SeqID	Clone name	Organism
1646	S1M10000008E08	Staphylococcus aureus
1647	S1M10000008E09	Staphylococcus aureus
1648	S1M10000008E10	Staphylococcus aureus
1649	S1M10000008F01	Staphylococcus aureus
1650	S1M10000008F02	Staphylococcus aureus
1651	S1M10000008F03	Staphylococcus aureus
1652	S1M10000008F06	Staphylococcus aureus
1653	S1M10000008F08	Staphylococcus aureus
1654	S1M10000008F09	Staphylococcus aureus
1655	S1M10000008F10	Staphylococcus aureus
1656	S1M10000008F11	Staphylococcus aureus
1657	S1M10000008G02	Staphylococcus aureus
1658	S1M10000008G03	Staphylococcus aureus
1659	S1M10000008G05	Staphylococcus aureus
1660	S1M10000009A02	Staphylococcus aureus
1661	S1M10000009A04	Staphylococcus aureus
1662	S1M10000009A07	Staphylococcus aureus
1663	S1M10000009A08	Staphylococcus aureus
1664	S1M10000009A09	Staphylococcus aureus
1665	S1M10000009A10	Staphylococcus aureus
1666	S1M10000009A11	Staphylococcus aureus
1667	S1M10000009B01	Staphylococcus aureus
1668	S1M10000009B02	Staphylococcus aureus
1669	S1M10000009B03	Staphylococcus aureus
1670	S1M10000009B04	Staphylococcus aureus
1671	S1M10000009B05	Staphylococcus aureus
1672	S1M10000009B06	Staphylococcus aureus
1673	S1M10000009B07	Staphylococcus aureus
1674	S1M10000009B10	Staphylococcus aureus
1675	S1M10000009B11	Staphylococcus aureus
1676	S1M10000009B12	Staphylococcus aureus
1677	S1M10000009C01	Staphylococcus aureus
1678	S1M1000009C02	Staphylococcus aureus
1679	S1M1000009C05	Staphylococcus aureus
1680	S1M10000009C06	Staphylococcus aureus
1681	S1M10000009C07	Staphylococcus aureus
1682	S1M10000009C08	Staphylococcus aureus
1683	S1M10000009C09	Staphylococcus aureus
1684	S1M10000009C10	Staphylococcus aureus
1685	S1M10000009C11	Staphylococcus aureus
1686	S1M10000009D01	Staphylococcus aureus

SeqID	Clone name	Organism
1687	S1M10000009D02	Staphylococcus aureus
1688	S1M10000009D03	Staphylococcus aureus
1689	S1M10000009D04	Staphylococcus aureus
1690	S1M10000009D05	Staphylococcus aureus
1691	S1M10000009D07	Staphylococcus aureus
1692	S1M10000009D09	Staphylococcus aureus
1693	S1M10000009D11	Staphylococcus aureus
1694	S1M10000009E02	Staphylococcus aureus
1695	S1M10000009E06	Staphylococcus aureus
1696	S1M10000009E08	Staphylococcus aureus
1697	S1M10000009E09	Staphylococcus aureus
1698	S1M10000009E11	Staphylococcus aureus
1699	S1M10000009E12	Staphylococcus aureus
1700	S1M10000009F01	Staphylococcus aureus
1701	S1M10000009F02	Staphylococcus aureus
1702	S1M10000009F03	Staphylococcus aureus
1703	S1M10000009F05	Staphylococcus aureus
1704	S1M10000009F06	Staphylococcus aureus
1705	S1M10000009F07	Staphylococcus aureus
1706	S1M10000009F09	Staphylococcus aureus
1707	S1M10000009F10	Staphylococcus aureus
1708	S1M10000009G02	Staphylococcus aureus
1709	S1M1000009G03	Staphylococcus aureus
1710	S1M10000009G05	Staphylococcus aureus
1711	S1M10000009G06	Staphylococcus aureus
1712	S1M10000009G07	Staphylococcus aureus
1713	S1M1000009G09	Staphylococcus aureus
1714	S1M10000009G10	Staphylococcus aureus
1715	S1M10000009G11	Staphylococcus aureus
1716	S1M10000009H01	Staphylococcus aureus
1717	S1M10000009H02	Staphylococcus aureus
1718	S1M10000009H03	Staphylococcus aureus
1719	S1M10000009H05	Staphylococcus aureus
1720	S1M10000009H07	Staphylococcus aureus
1721	S1M10000009H09	Staphylococcus aureus
1722	S1M10000009H11	Staphylococcus aureus
1723	S1M10000011A02	Staphylococcus aureus
1724	S1M10000011A03	Staphylococcus aureus
1725	S1M10000011A04	Staphylococcus aureus
1726	S1M10000011A06	Staphylococcus aureus
1727	S1M10000011B01	Staphylococcus aureus

SeqID	Clone name	Organism
1728	S1M10000011B02	Staphylococcus aureus
1729	S1M10000011B03	Staphylococcus aureus
1730	S1M10000011B04	Staphylococcus aureus
1731	S1M10000011B05	Staphylococcus aureus
1732	S1M10000011C01	Staphylococcus aureus
1733	S1M10000011C05	Staphylococcus aureus
1734	S1M10000011C06	Staphylococcus aureus
1735	S1M10000011D01	Staphylococcus aureus
1736	S1M10000011D02	Staphylococcus aureus
1737	S1M10000011D04	Staphylococcus aureus
1738	S1M10000011D06	Staphylococcus aureus
1739	S1M10000011E02	Staphylococcus aureus
1740	S1M10000011E03	Staphylococcus aureus
1741	S1M10000011E04	Staphylococcus aureus
1742	S1M10000011F01	Staphylococcus aureus
1743	S1M10000011F03	Staphylococcus aureus
1744	S1M10000011F04	Staphylococcus aureus
1745	S1M10000011F06	Staphylococcus aureus
1746	S1M10000011G01	Staphylococcus aureus
1747	S1M10000011G03	Staphylococcus aureus
1748	S1M10000011G04	Staphylococcus aureus
1749	S1M10000011G05	Staphylococcus aureus
1750	S1M10000011G06	Staphylococcus aureus
1751	S1M10000011H01	Staphylococcus aureus
1752	S1M10000011H03	Staphylococcus aureus
1753	S1M10000011H04	Staphylococcus aureus
1754	S1M10000012A02	Staphylococcus aureus
1755	S1M10000012A06	Staphylococcus aureus
1756	S1M10000012A08	Staphylococcus aureus
1757	S1M10000012A09	Staphylococcus aureus
1758	S1M10000012A10	Staphylococcus aureus
1759	S1M10000012A11	Staphylococcus aureus
1760	S1M10000012B01	Staphylococcus aureus
1761	S1M10000012B05	Staphylococcus aureus
1762	S1M10000012B06	Staphylococcus aureus
1763	S1M10000012B07	Staphylococcus aureus
1764	S1M10000012B11	Staphylococcus aureus
1765	S1M10000012C01	Staphylococcus aureus
1766	S1M10000012C03	Staphylococcus aureus
1767	S1M10000012C04	Staphylococcus aureus
1768	S1M10000012C05	Staphylococcus aureus

SeqID	Clone name	Organism
1769	S1M10000012C06	Staphylococcus aureus
1770	S1M10000012C11	Staphylococcus aureus
1771	S1M10000012C12	Staphylococcus aureus
1772	S1M10000012D04	Staphylococcus aureus
1773	S1M10000012D06	Staphylococcus aureus
1774	S1M10000012D07	Staphylococcus aureus
1775	S1M10000012D08	Staphylococcus aureus
1776	S1M10000012D09	Staphylococcus aureus
1777	S1M10000012D12	Staphylococcus aureus
1778	S1M10000012E01	Staphylococcus aureus
1779	S1M10000012E02	Staphylococcus aureus
1780	S1M10000012E04	Staphylococcus aureus
1781	S1M10000012E07	Staphylococcus aureus
1782	S1M10000012E08	Staphylococcus aureus
1783	S1M10000012E12	Staphylococcus aureus
1784	S1M10000012F04	Staphylococcus aureus
1785	S1M10000012F07	Staphylococcus aureus
1786	S1M10000012F08	Staphylococcus aureus
1787	S1M10000012F09	Staphylococcus aureus
1788	S1M10000012F10	Staphylococcus aureus
1789	S1M10000012F11	Staphylococcus aureus
1790	S1M10000012F12	Staphylococcus aureus
1791	S1M10000012G01	Staphylococcus aureus
1792	S1M10000012G02	Staphylococcus aureus
1793	S1M10000012G03	Staphylococcus aureus
1794	S1M10000012G06	Staphylococcus aureus
1795	S1M10000012G07	Staphylococcus aureus
1796	S1M10000012G08	Staphylococcus aureus
1797	S1M10000012G10	Staphylococcus aureus
1798	S1M10000012H05	Staphylococcus aureus
1799	S1M10000012H08	Staphylococcus aureus
1800	S1M10000012H09	Staphylococcus aureus
1801	S1M10000012H10	Staphylococcus aureus
1802	S1M10000012H11	Staphylococcus aureus
1803	S1M10000013A02	Staphylococcus aureus
1804	S1M10000013A03	Staphylococcus aureus
1805	S1M10000013A05	Staphylococcus aureus
1806	S1M10000013A07	Staphylococcus aureus
1807	S1M10000013A08	Staphylococcus aureus
1808	S1M10000013A09	Staphylococcus aureus
1809	S1M10000013A10	Staphylococcus aureus

SeqID	Clone name	Organism
1810	S1M10000013A11	Staphylococcus aureus
1811	S1M10000013A12	Staphylococcus aureus
1812	S1M10000013B02	Staphylococcus aureus
1813	S1M10000013B03	Staphylococcus aureus
1814	S1M10000013B04	Staphylococcus aureus
1815	S1M10000013B05	Staphylococcus aureus
1816	S1M10000013B06	Staphylococcus aureus
1817	S1M10000013B07	Staphylococcus aureus
1818	S1M10000013B09	Staphylococcus aureus
1819	S1M10000013B11	Staphylococcus aureus
1820	S1M10000013C03	Staphylococcus aureus
1821	S1M10000013C05	Staphylococcus aureus
1822	S1M10000013C07	Staphylococcus aureus
1823	S1M10000013C08	Staphylococcus aureus
1824	S1M10000013C09	Staphylococcus aureus
1825	S1M10000013C10	Staphylococcus aureus
1826	S1M10000013C11	Staphylococcus aureus
1827	S1M10000013C12	Staphylococcus aureus
1828	S1M10000013D08	Staphylococcus aureus
1829	S1M10000013D09	Staphylococcus aureus
1830	S1M10000013D11	Staphylococcus aureus
1831	S1M10000013E01	Staphylococcus aureus
1832	S1M10000013E02	Staphylococcus aureus
1833	S1M10000013E04	Staphylococcus aureus
1834	S1M10000013E06	Staphylococcus aureus
1835	S1M10000013E08	Staphylococcus aureus
1836	S1M10000013E09	Staphylococcus aureus
1837	S1M10000013E10	Staphylococcus aureus
1838	S1M10000013F02	Staphylococcus aureus
1839	S1M10000013F03	Staphylococcus aureus
1840	S1M10000013F06	Staphylococcus aureus
1841	S1M10000013F07	Staphylococcus aureus
1842	S1M10000013F08	Staphylococcus aureus
1843	S1M10000013F09	Staphylococcus aureus
1844	S1M10000013F12	Staphylococcus aureus
1845	S1M10000013G01	Staphylococcus aureus
1846	S1M10000013G04	Staphylococcus aureus
1847	S1M10000013G05	Staphylococcus aureus
1848	S1M10000013G06	Staphylococcus aureus
1849	S1M10000013G07	Staphylococcus aureus
1850	S1M10000013G10	Staphylococcus aureus

SeqID	Clone name	Organism
1851	S1M10000013G11	Staphylococcus aureus
1852	S1M10000013G12	Staphylococcus aureus
1853	S1M10000013H03	Staphylococcus aureus
1854	S1M10000013H04	Staphylococcus aureus
1855	S1M10000013H05	Staphylococcus aureus
1856	S1M10000013H07	Staphylococcus aureus
1857	S1M10000013H09	Staphylococcus aureus
1858	S1M10000013H10	Staphylococcus aureus
1859	S1M10000013H11	Staphylococcus aureus
1860	S1M10000014A02	Staphylococcus aureus
1861	S1M10000014A03	Staphylococcus aureus
1862	S1M10000014A05	Staphylococcus aureus
1863	S1M10000014A07	Staphylococcus aureus
1864	S1M10000014A08	Staphylococcus aureus
1865	S1M10000014A11	Staphylococcus aureus
1866	S1M10000014A12	Staphylococcus aureus
1867	S1M10000014B01	Staphylococcus aureus
1868	S1M10000014B02	Staphylococcus aureus
1869	S1M10000014B03	Staphylococcus aureus
1870	S1M10000014B04	Staphylococcus aureus
1871	S1M10000014B05	Staphylococcus aureus
1872	S1M10000014B06	Staphylococcus aureus
1873	S1M10000014B07	Staphylococcus aureus
1874	S1M10000014B08	Staphylococcus aureus
1875	S1M10000014B10	Staphylococcus aureus
1876	S1M10000014B11	Staphylococcus aureus
1877	S1M10000014B12	Staphylococcus aureus
1878	S1M10000014C01	Staphylococcus aureus
1879	S1M10000014C05	Staphylococcus aureus
1880	S1M10000014C06	Staphylococcus aureus
1881	S1M10000014C07	Staphylococcus aureus
1882	S1M10000014C09	Staphylococcus aureus
1883	S1M10000014C10	Staphylococcus aureus
1884	S1M10000014C11	Staphylococcus aureus
1885	S1M10000014C12	Staphylococcus aureus
1886	S1M10000014D03	Staphylococcus aureus
1887	S1M10000014D06	Staphylococcus aureus
1888	S1M10000014D08	Staphylococcus aureus
1889	S1M10000014D09	Staphylococcus aureus
1890	S1M10000014D10	Staphylococcus aureus
1891	S1M10000014E01	Staphylococcus aureus

SeqID	Clone name	Organism
1892	S1M10000014E04	Staphylococcus aureus
1893	S1M10000014E05	Staphylococcus aureus
1894	S1M10000014E07	Staphylococcus aureus
1895	S1M10000014E08	Staphylococcus aureus
1896	S1M10000014E09	Staphylococcus aureus
1897	S1M10000014E10	Staphylococcus aureus
1898	S1M10000014E12	Staphylococcus aureus
1899	S1M10000014F02	Staphylococcus aureus
1900	S1M10000014F03	Staphylococcus aureus
1901	S1M10000014F04	Staphylococcus aureus
1902	S1M10000014F05	Staphylococcus aureus
1903	S1M10000014F08	Staphylococcus aureus
1904	S1M10000014F09	Staphylococcus aureus
1905	S1M10000014F10	Staphylococcus aureus
1906	S1M10000014G02	Staphylococcus aureus
1907	S1M10000014G04	Staphylococcus aureus
1908	S1M10000014G06	Staphylococcus aureus
1909	S1M10000014G07	Staphylococcus aureus
1910	S1M10000014G08	Staphylococcus aureus
1911	S1M10000014G12	Staphylococcus aureus
1912	S1M10000014H02	Staphylococcus aureus
1913	S1M10000014H03	Staphylococcus aureus
1914	S1M10000014H04	Staphylococcus aureus
1915	S1M10000014H05	Staphylococcus aureus
1916	S1M10000014H06	Staphylococcus aureus
1917	S1M10000014H07	Staphylococcus aureus
1918	S1M10000014H08	Staphylococcus aureus
1919	S1M10000014H11	Staphylococcus aureus
1920	S1M10000015A02	Staphylococcus aureus
1921	S1M10000015A03	Staphylococcus aureus
1922	S1M10000015A05	Staphylococcus aureus
1923	S1M10000015A06	Staphylococcus aureus
1924	S1M10000015A09	Staphylococcus aureus
1925	S1M10000015A10	Staphylococcus aureus
1926	S1M10000015A11	Staphylococcus aureus
1927	S1M10000015A12	Staphylococcus aureus
1928	S1M10000015B02	Staphylococcus aureus
1929	S1M10000015B05	Staphylococcus aureus
1930	S1M10000015B08	Staphylococcus aureus
1931	S1M10000015B09	Staphylococcus aureus
1932	S1M10000015B10	Staphylococcus aureus

SeqID	Clone name	Organism
1933	S1M10000015C01	Staphylococcus aureus
1934	S1M10000015C02	Staphylococcus aureus
1935	S1M10000015C03	Staphylococcus aureus
1936	S1M10000015C05	Staphylococcus aureus
1937	S1M10000015C06	Staphylococcus aureus
1938	S1M10000015C08	Staphylococcus aureus
1939	S1M10000015C10	Staphylococcus aureus
1940	S1M10000015C12	Staphylococcus aureus
1941	S1M10000015D02	Staphylococcus aureus
1942	S1M10000015D03	Staphylococcus aureus
1943	S1M10000015D04	Staphylococcus aureus
1944	S1M10000015D05	Staphylococcus aureus
1945	S1M10000015D06	Staphylococcus aureus
1946	S1M10000015D12	Staphylococcus aureus
1947	S1M10000015E02	Staphylococcus aureus
1948	S1M10000015E03	Staphylococcus aureus
1949	S1M10000015E06	Staphylococcus aureus
1950	S1M10000015E07	Staphylococcus aureus
1951	S1M10000015E09	Staphylococcus aureus
1952	S1M10000015E10	Staphylococcus aureus
1953	S1M10000015E11	Staphylococcus aureus
1954	S1M10000015E12	Staphylococcus aureus
1955	S1M10000015F01	Staphylococcus aureus
1956	S1M10000015F02	Staphylococcus aureus
1957	S1M10000015F03	Staphylococcus aureus
1958	S1M10000015F04	Staphylococcus aureus
1959	S1M10000015F06	Staphylococcus aureus
1960	S1M10000015F07	Staphylococcus aureus
1961	S1M10000015F08	Staphylococcus aureus
1962	S1M10000015F09	Staphylococcus aureus
1963	S1M10000015F10	Staphylococcus aureus
1964	S1M10000015G01	Staphylococcus aureus
1965	S1M10000015G02	Staphylococcus aureus
1966	S1M10000015G03	Staphylococcus aureus
1967	S1M10000015G04	Staphylococcus aureus
1968	S1M10000015G05	Staphylococcus aureus
1969	S1M10000015G06	Staphylococcus aureus
1970	S1M10000015G07	Staphylococcus aureus
1971	S1M10000015G08	Staphylococcus aureus
1972	S1M10000015G09	Staphylococcus aureus
1973	S1M10000015G10	Staphylococcus aureus

SeqID	Clone name	Organism
1974	S1M10000015G11	Staphylococcus aureus
1975	S1M10000015H04	Staphylococcus aureus
1976	S1M10000015H06	Staphylococcus aureus
1977	S1M10000016A03	Staphylococcus aureus
1978	S1M10000016A04	Staphylococcus aureus
1979	S1M10000016A06	Staphylococcus aureus
1980	S1M10000016A07	Staphylococcus aureus
1981	S1M10000016A09	Staphylococcus aureus
1982	S1M10000016A10	Staphylococcus aureus
1983	S1M10000016A12	Staphylococcus aureus
1984	S1M10000016B02	Staphylococcus aureus
1985	S1M10000016B05	Staphylococcus aureus
1986	S1M10000016B06	Staphylococcus aureus
1987	S1M10000016B07	Staphylococcus aureus
1988	S1M10000016B08	Staphylococcus aureus
1989	S1M10000016B09	Staphylococcus aureus
1990	S1M10000016B10	Staphylococcus aureus
1991	S1M10000016B11	Staphylococcus aureus
1992	S1M10000016B12	Staphylococcus aureus
1993	S1M10000016C01	Staphylococcus aureus
1994	S1M10000016C02	Staphylococcus aureus
1995	S1M10000016C04	Staphylococcus aureus
1996	S1M10000016C05	Staphylococcus aureus
1997	S1M10000016C06	Staphylococcus aureus
1998	S1M10000016C08	Staphylococcus aureus
1999	S1M10000016C09	Staphylococcus aureus
2000	S1M10000016C10	Staphylococcus aureus
2001	S1M10000016C11	Staphylococcus aureus
2002	S1M10000016C12	Staphylococcus aureus
2003	S1M10000016D01	Staphylococcus aureus
2004	S1M10000016D02	Staphylococcus aureus
2005	S1M10000016D04	Staphylococcus aureus
2006	S1M10000016D05	Staphylococcus aureus
2007	S1M10000016D06	Staphylococcus aureus
2008	S1M10000016D08	Staphylococcus aureus
2009	S1M10000016D09	Staphylococcus aureus
2010	S1M10000016D10	Staphylococcus aureus
2011	S1M10000016D11	Staphylococcus aureus
2012	S1M10000016E04	Staphylococcus aureus
2013	S1M10000016E05	Staphylococcus aureus
2014	S1M10000016E06	Staphylococcus aureus

SeqID	Clone name	Organism
2015	S1M10000016E07	Staphylococcus aureus
2016	S1M10000016E08	Staphylococcus aureus
2017	S1M10000016E09	Staphylococcus aureus
2018	S1M10000016E10	Staphylococcus aureus
2019	S1M10000016E11	Staphylococcus aureus
2020	S1M10000016E12	Staphylococcus aureus
2021	S1M10000016F02	Staphylococcus aureus
2022	S1M10000016F03	Staphylococcus aureus
2023	S1M10000016F05	Staphylococcus aureus
2024	S1M10000016F06	Staphylococcus aureus
2025	S1M10000016F08	Staphylococcus aureus
2026	S1M10000016F09	Staphylococcus aureus
2027	S1M10000016F11	Staphylococcus aureus
2028	S1M10000016G01	Staphylococcus aureus
2029	S1M10000016G03	Staphylococcus aureus
2030	S1M10000016G04	Staphylococcus aureus
2031	S1M10000016G05	Staphylococcus aureus
2032	S1M10000016H03	Staphylococcus aureus
2033	S1M10000016H04	Staphylococcus aureus
2034	S1M10000016H08	Staphylococcus aureus
2035	S1M10000016H10	Staphylococcus aureus
2036	S1M10000017A02	Staphylococcus aureus
2037	S1M10000017A03	Staphylococcus aureus
2038	S1M10000017A04	Staphylococcus aureus
2039	S1M10000017A08	Staphylococcus aureus
2040	S1M10000017A11	Staphylococcus aureus
2041	S1M10000017A12	Staphylococcus aureus
2042	S1M10000017B02	Staphylococcus aureus
2043	S1M10000017B05	Staphylococcus aureus
2044	S1M10000017B07	Staphylococcus aureus
2045	S1M10000017B08	Staphylococcus aureus
2046	S1M10000017B09	Staphylococcus aureus
2047	S1M10000017B10	Staphylococcus aureus
2048	S1M10000017B11	Staphylococcus aureus
2049	S1M10000017B12	Staphylococcus aureus
2050	S1M10000017C01	Staphylococcus aureus
2051	S1M10000017C03	Staphylococcus aureus
2052	S1M10000017C05	Staphylococcus aureus
2053	S1M10000017C08	Staphylococcus aureus
2054	S1M10000017C09	Staphylococcus aureus
2055	S1M10000017C10	Staphylococcus aureus

SeqID	Clone name	Organism
2056	S1M10000017C11	Staphylococcus aureus
2057	S1M10000017C12	Staphylococcus aureus
2058	S1M10000017D03	Staphylococcus aureus
2059	S1M10000017D09	Staphylococcus aureus
2060	S1M10000017D10	Staphylococcus aureus
2061	S1M10000017E04	Staphylococcus aureus
2062	S1M10000017E05	Staphylococcus aureus
2063	S1M10000017E08	Staphylococcus aureus
2064	S1M10000017E11	Staphylococcus aureus
2065	S1M10000017F01	Staphylococcus aureus
2066	S1M10000017F04	Staphylococcus aureus
2067	S1M10000017F05	Staphylococcus aureus
2068	S1M10000017F06	Staphylococcus aureus
2069	S1M10000017F11	Staphylococcus aureus
2070	S1M10000017G02	Staphylococcus aureus
2071	S1M10000017G05	Staphylococcus aureus
2072	S1M10000017G06	Staphylococcus aureus
2073	S1M10000018A03	Staphylococcus aureus
2074	S1M10000018A04	Staphylococcus aureus
2075	S1M10000018A05	Staphylococcus aureus
2076	S1M10000018A06	Staphylococcus aureus
2077	S1M10000018A08	Staphylococcus aureus
2078	S1M10000018A09	Staphylococcus aureus
2079	S1M10000018A10	Staphylococcus aureus
2080	S1M10000018A11	Staphylococcus aureus
2081	S1M10000018B02	Staphylococcus aureus
2082	S1M10000018B03	Staphylococcus aureus
2083	S1M10000018B05	Staphylococcus aureus
2084	S1M10000018B09	Staphylococcus aureus
2085	S1M10000018B10	Staphylococcus aureus
2086	S1M10000018B11	Staphylococcus aureus
2087	S1M10000018C01	Staphylococcus aureus
2088	S1M10000018C02	Staphylococcus aureus
2089	S1M10000018C03	Staphylococcus aureus
2090	S1M10000018C04	Staphylococcus aureus
2091	S1M10000018C05	Staphylococcus aureus
2092	S1M10000018C06	Staphylococcus aureus
2093	S1M10000018C08	Staphylococcus aureus
2094	S1M10000018C09	Staphylococcus aureus
2095	S1M10000018C10	Staphylococcus aureus
2096	S1M10000018C11	Staphylococcus aureus

SeqID	Clone name	Organism
2097	S1M10000018C12	Staphylococcus aureus
2098	S1M10000018D01	Staphylococcus aureus
2099	S1M10000018D02	Staphylococcus aureus
2100	S1M10000018D03	Staphylococcus aureus
2101	S1M10000018D04	Staphylococcus aureus
2102	S1M10000018D09	Staphylococcus aureus
2103	S1M10000018D10	Staphylococcus aureus
2104	S1M10000018D11	Staphylococcus aureus
2105	S1M10000018D12	Staphylococcus aureus
2106	S1M10000018E01	Staphylococcus aureus
2107	S1M10000018E02	Staphylococcus aureus
2108	S1M10000018E03	Staphylococcus aureus
2109	S1M10000018E04	Staphylococcus aureus
2110	S1M10000018E05	Staphylococcus aureus
2111	S1M10000018E08	Staphylococcus aureus
2112	S1M10000018E09	Staphylococcus aureus
2113	S1M10000018E11	Staphylococcus aureus
2114	S1M10000018E12	Staphylococcus aureus
2115	S1M10000018F03	Staphylococcus aureus
2116	S1M10000018F04	Staphylococcus aureus
2117	S1M10000018F07	Staphylococcus aureus
2118	S1M10000018F09	Staphylococcus aureus
2119	S1M10000018F10	Staphylococcus aureus
2120	S1M10000018F12	Staphylococcus aureus
2121	S1M10000018G03	Staphylococcus aureus
2122	S1M10000018G05	Staphylococcus aureus
2123	S1M10000018G07	Staphylococcus aureus
2124	S1M10000018G08	Staphylococcus aureus
2125	S1M10000018G09	Staphylococcus aureus
2126	S1M10000018G10	Staphylococcus aureus
2127	S1M10000018G12	Staphylococcus aureus
2128	S1M10000018H01	Staphylococcus aureus
2129	S1M10000018H02	Staphylococcus aureus
2130	S1M10000018H07	Staphylococcus aureus
2131	S1M10000018H09	Staphylococcus aureus
2132	S1M10000018H10	Staphylococcus aureus
2133	S1M10000019A02	Staphylococcus aureus
2134	S1M10000019A03	Staphylococcus aureus
2135	S1M10000019A05	Staphylococcus aureus
2136	S1M10000019A06	Staphylococcus aureus
2137	S1M10000019A07	Staphylococcus aureus

SeqID	Clone name	Organism
2138	S1M10000019A09	Staphylococcus aureus
2139	S1M10000019A11	Staphylococcus aureus
2140	S1M10000019A12	Staphylococcus aureus
2141	S1M10000019B03	Staphylococcus aureus
2142	S1M10000019B04	Staphylococcus aureus
2143	S1M10000019B07	Staphylococcus aureus
2144	S1M10000019B08	Staphylococcus aureus
2145	S1M10000019B09	Staphylococcus aureus
2146	S1M10000019B10	Staphylococcus aureus
2147	S1M10000019B11	Staphylococcus aureus
2148	S1M10000019B12	Staphylococcus aureus
2149	S1M10000019C01	Staphylococcus aureus
2150	S1M10000019C04	Staphylococcus aureus
2151	S1M10000019C05	Staphylococcus aureus
2152	S1M10000019C06	Staphylococcus aureus
2153	S1M10000019C07	Staphylococcus aureus
2154	S1M10000019C08	Staphylococcus aureus
2155	S1M10000019C11	Staphylococcus aureus
2156	S1M10000019C12	Staphylococcus aureus
2157	S1M10000019D01	Staphylococcus aureus
2158	S1M10000019D02	Staphylococcus aureus
2159	S1M10000019D04	Staphylococcus aureus
2160	S1M10000019D05	Staphylococcus aureus
2161	S1M10000019D06	Staphylococcus aureus
2162	S1M10000019D07	Staphylococcus aureus
2163	S1M10000019D09	Staphylococcus aureus
2164	S1M10000019D12	Staphylococcus aureus
2165	S1M10000019E01	Staphylococcus aureus
2166	S1M10000019E02	Staphylococcus aureus
2167	S1M10000019E07	Staphylococcus aureus
2168	S1M10000019F01	Staphylococcus aureus
2169	S1M10000019F05	Staphylococcus aureus
2170	S1M10000019F06	Staphylococcus aureus
2171	S1M10000019F08	Staphylococcus aureus
2172	S1M10000019F09	Staphylococcus aureus
2173	S1M10000019F11	Staphylococcus aureus
2174	S1M10000019G04	Staphylococcus aureus
2175	S1M10000019G07	Staphylococcus aureus
2176	S1M10000019G09	Staphylococcus aureus
2177	S1M10000019G10	Staphylococcus aureus
2178	S1M10000019G11	Staphylococcus aureus

SeqID	Clone name	Organism
2179	S1M10000019H05	Staphylococcus aureus
2180	S1M10000019H08	Staphylococcus aureus
2181	S1M10000020A05	Staphylococcus aureus
2182	S1M10000020A06	Staphylococcus aureus
2183	S1M10000020A07	Staphylococcus aureus
2184	S1M10000020A11	Staphylococcus aureus
2185	S1M10000020A12	Staphylococcus aureus
2186	S1M10000020B02	Staphylococcus aureus
2187	S1M10000020B03	Staphylococcus aureus
2188	S1M10000020B05	Staphylococcus aureus
2189	S1M10000020B06	Staphylococcus aureus
2190	S1M10000020B07	Staphylococcus aureus
2191	S1M10000020B09	Staphylococcus aureus
2192	S1M10000020B12	Staphylococcus aureus
2193	S1M10000020C09	Staphylococcus aureus
2194	S1M10000020C10	Staphylococcus aureus
2195	S1M10000020C11	Staphylococcus aureus
2196	S1M10000020D03	Staphylococcus aureus
2197	S1M10000020D04	Staphylococcus aureus
2198	S1M10000020D06	Staphylococcus aureus
2199	S1M10000020D07	Staphylococcus aureus
2200	S1M10000020D08	Staphylococcus aureus
2201	S1M10000020D09	Staphylococcus aureus
2202	S1M10000020D12	Staphylococcus aureus
2203	S1M10000020E01	Staphylococcus aureus
2204	S1M10000020E03	Staphylococcus aureus
2205	S1M10000020E04	Staphylococcus aureus
2206	S1M10000020E06	Staphylococcus aureus
2207	S1M10000020E08	Staphylococcus aureus
2208	S1M10000020E11	Staphylococcus aureus
2209	S1M10000020E12	Staphylococcus aureus
2210	S1M10000020F01	Staphylococcus aureus
2211	S1M10000020F05	Staphylococcus aureus
2212	S1M10000020F06	Staphylococcus aureus
2213	S1M10000020F07	Staphylococcus aureus
2214	S1M10000020F09	Staphylococcus aureus
2215	S1M10000020F11	Staphylococcus aureus
2216	S1M10000020F12	Staphylococcus aureus
2217	S1M10000020G01	Staphylococcus aureus
2218	S1M10000020G05	Staphylococcus aureus
2219	S1M10000020G07	Staphylococcus aureus

SeqID	Clone name	Organism
2220	S1M10000020G08	Staphylococcus aureus
2221	S1M10000020G09	Staphylococcus aureus
2222	S1M10000020G10	Staphylococcus aureus
2223	S1M10000020G11	Staphylococcus aureus
2224	S1M10000020G12	Staphylococcus aureus
2225	S1M10000020H01	Staphylococcus aureus
2226	S1M10000020H02	Staphylococcus aureus
2227	S1M10000020H04	Staphylococcus aureus
2228	S1M10000020H06	Staphylococcus aureus
2229	S1M10000020H08	Staphylococcus aureus
2230	S1M10000020H10	Staphylococcus aureus
2231	S1M10000020H11	Staphylococcus aureus
2232	S1M10000021A04	Staphylococcus aureus
2233	S1M10000021A05	Staphylococcus aureus
2234	S1M10000021A06	Staphylococcus aureus
2235	S1M10000021A07	Staphylococcus aureus
2236	S1M10000021A08	Staphylococcus aureus
2237	S1M10000021A09	Staphylococcus aureus
2238	S1M10000021A10	Staphylococcus aureus
2239	S1M10000021B05	Staphylococcus aureus
2240	S1M10000021B06	Staphylococcus aureus
2241	S1M10000021B07	Staphylococcus aureus
2242	S1M10000021B10	Staphylococcus aureus
2243	S1M10000021C04	Staphylococcus aureus
2244	S1M10000021C05	Staphylococcus aureus
2245	S1M10000021C07	Staphylococcus aureus
2246	S1M10000021C08	Staphylococcus aureus
2247	S1M10000021C10	Staphylococcus aureus
2248	S1M10000021C11	Staphylococcus aureus
2249	S1M10000021C12	Staphylococcus aureus
2250	S1M10000021D01	Staphylococcus aureus
2251	S1M10000021D03	Staphylococcus aureus
2252	S1M10000021D04	Staphylococcus aureus
2253	S1M10000021D06	Staphylococcus aureus
2254	S1M10000021D09	Staphylococcus aureus
2255	S1M10000021D10	Staphylococcus aureus
2256	S1M10000021E01	Staphylococcus aureus
2257	S1M10000021E02	Staphylococcus aureus
2258	S1M10000021E03	Staphylococcus aureus
2259	S1M10000021E05	Staphylococcus aureus
2260	S1M10000021E06	Staphylococcus aureus

SeqID	Clone name	Organism
2261	S1M10000021E09	Staphylococcus aureus
2262	S1M10000021E12	Staphylococcus aureus
2263	S1M10000021F02	Staphylococcus aureus
2264	S1M10000021F04	Staphylococcus aureus
2265	S1M10000021F05	Staphylococcus aureus
2266	S1M10000021F06	Staphylococcus aureus
2267	S1M10000021F07	Staphylococcus aureus
2268	S1M10000021F09	Staphylococcus aureus
2269	S1M10000021F11	Staphylococcus aureus
2270	S1M10000021G01	Staphylococcus aureus
2271	S1M10000021G03	Staphylococcus aureus
2272	S1M10000021G08	Staphylococcus aureus
2273	S1M10000021H04	Staphylococcus aureus
2274	S1M10000021H05	Staphylococcus aureus
2275	S1M10000021H07	Staphylococcus aureus
2276	S1M10000021H08	Staphylococcus aureus
2277	S1M10000021H11	Staphylococcus aureus
2278	S1M10000022A02	Staphylococcus aureus
2279	S1M10000022A03	Staphylococcus aureus
2280	S1M10000022A05	Staphylococcus aureus
2281	S1M10000022A08	Staphylococcus aureus
2282	S1M10000022A09	Staphylococcus aureus
2283	S1M10000022A12	Staphylococcus aureus
2284	S1M10000022B02	Staphylococcus aureus
2285	S1M10000022B03	Staphylococcus aureus
2286	S1M10000022B05	Staphylococcus aureus
2287	S1M10000022B06	Staphylococcus aureus
2288	S1M10000022B08	Staphylococcus aureus
2289	S1M10000022B09	Staphylococcus aureus
2290	S1M10000022B10	Staphylococcus aureus
2291	S1M10000022B11	Staphylococcus aureus
2292	S1M10000022B12	Staphylococcus aureus
2293	S1M10000022C02	Staphylococcus aureus
2294	S1M10000022C03	Staphylococcus aureus
2295	S1M10000022C04	Staphylococcus aureus
2296	S1M10000022C06	Staphylococcus aureus
2297	S1M10000022C07	Staphylococcus aureus
2298	S1M10000022C08	Staphylococcus aureus
2299	S1M10000022C11	Staphylococcus aureus
2300	S1M10000022D03	Staphylococcus aureus
2301	S1M10000022D05	Staphylococcus aureus

SeqID	Clone name	Organism
2302	S1M10000022D06	Staphylococcus aureus
2303	S1M10000022D07	Staphylococcus aureus
2304	S1M10000022D08	Staphylococcus aureus
2305	S1M10000022D09	Staphylococcus aureus
2306	S1M10000022D11	Staphylococcus aureus
2307	S1M10000022E01	Staphylococcus aureus
2308	S1M10000022E03 .	Staphylococcus aureus
2309	S1M10000022E05	Staphylococcus aureus
2310	S1M10000022E09	Staphylococcus aureus
2311	S1M10000022F04	Staphylococcus aureus
2312	S1M10000022F06	Staphylococcus aureus
2313	S1M10000022F07	Staphylococcus aureus
2314	S1M10000022F08	Staphylococcus aureus
2315	S1M10000022F11	Staphylococcus aureus
2316	S1M10000022G03	Staphylococcus aureus
2317	S1M10000022G04	Staphylococcus aureus
2318	S1M10000022G07	Staphylococcus aureus
2319	S1M10000022G08	Staphylococcus aureus
2320	S1M10000022G12	Staphylococcus aureus
2321	S1M10000022H03	Staphylococcus aureus
2322	S1M10000022H05	Staphylococcus aureus
2323	S1M10000022H06	Staphylococcus aureus
2324	S1M10000022H07	Staphylococcus aureus
2325	S1M10000022H08	Staphylococcus aureus
2326	S1M10000022H11	Staphylococcus aureus
2327	S1M10000023A05	Staphylococcus aureus
2328	S1M10000023A09	Staphylococcus aureus
2329	S1M10000023A11	Staphylococcus aureus
2330	S1M10000023A12	Staphylococcus aureus
2331	S1M10000023B01	Staphylococcus aureus
2332	S1M10000023B03	Staphylococcus aureus
2333	S1M10000023B07	Staphylococcus aureus
2334	S1M10000023B08	Staphylococcus aureus
2335	S1M10000023B09	Staphylococcus aureus
2336	S1M10000023B10	Staphylococcus aureus
2337	S1M10000023B11	Staphylococcus aureus
2338	S1M10000023B12	Staphylococcus aureus
2339	S1M10000023C02	Staphylococcus aureus
2340	S1M10000023C10	Staphylococcus aureus
2341	S1M10000023C11	Staphylococcus aureus
2342	S1M10000023C12	Staphylococcus aureus

SeqID	Clone name	Organism
2343	S1M10000023D01	Staphylococcus aureus
2344	S1M10000023D03	Staphylococcus aureus
2345	S1M10000023D04	Staphylococcus aureus
2346	S1M10000023D07	Staphylococcus aureus
2347	S1M10000023D08	Staphylococcus aureus
2348	S1M10000023D09	Staphylococcus aureus
2349	S1M10000023D10	Staphylococcus aureus
2350	S1M10000023D12	Staphylococcus aureus
2351	S1M10000023E01	Staphylococcus aureus
2352	S1M10000023E04	Staphylococcus aureus
2353	S1M10000023E07	Staphylococcus aureus
2354	S1M10000023E10	Staphylococcus aureus
2355	S1M10000023E11	Staphylococcus aureus
2356	S1M10000023F04	Staphylococcus aureus
2357	S1M10000023F07	Staphylococcus aureus
2358	S1M10000023F08	Staphylococcus aureus
2359	S1M10000023F10	Staphylococcus aureus
2360	S1M10000023F11	Staphylococcus aureus
2361	S1M10000023F12	Staphylococcus aureus
2362	S1M10000023G02	Staphylococcus aureus
2363	S1M10000023G03	Staphylococcus aureus
2364	S1M10000023G06	Staphylococcus aureus
2365	S1M10000023G07	Staphylococcus aureus
2366	S1M10000023G08	Staphylococcus aureus
2367	S1M10000023G09	Staphylococcus aureus
2368	S1M10000023G11	Staphylococcus aureus
2369	S1M10000023H02	Staphylococcus aureus
2370	S1M10000023H06	Staphylococcus aureus
2371	S1M10000023H07	Staphylococcus aureus
2372	S1M10000023H09	Staphylococcus aureus
2373	S1M10000023H10	Staphylococcus aureus
2374	S1M10000024A02	Staphylococcus aureus
2375	S1M10000024A04	Staphylococcus aureus
2376	S1M10000024A07	Staphylococcus aureus
2377	S1M10000024A08	Staphylococcus aureus
2378	S1M10000024A11	Staphylococcus aureus
2379	S1M10000024B05	Staphylococcus aureus
2380	S1M10000024B06	Staphylococcus aureus
2381	S1M10000024B08	Staphylococcus aureus
2382	S1M10000024B09	Staphylococcus aureus
2383	S1M10000024B10	Staphylococcus aureus

SeqID	Clone name	Organism
2384	S1M10000024C02	Staphylococcus aureus
2385	S1M10000024C04	Staphylococcus aureus
2386	S1M10000024C07	Staphylococcus aureus
2387	S1M10000024D02	Staphylococcus aureus
2388	S1M10000024D03	Staphylococcus aureus
2389	S1M10000024D10	Staphylococcus aureus
2390	S1M10000024D11	Staphylococcus aureus .
2391	S1M10000024E03	Staphylococcus aureus
2392	S1M10000024E05	Staphylococcus aureus
2393	S1M10000024E06	Staphylococcus aureus
2394	S1M10000024E07	Staphylococcus aureus
2395	S1M10000024E08	Staphylococcus aureus
2396	S1M10000024F02	Staphylococcus aureus
2397	S1M10000024F03	Staphylococcus aureus
2398	S1M10000024F05	Staphylococcus aureus
2399	S1M10000024F08	Staphylococcus aureus
2400	S1M10000024F10	Staphylococcus aureus
2401	S1M10000024G05	Staphylococcus aureus
2402	S1M10000024G06	Staphylococcus aureus
2403	S1M10000024G07	Staphylococcus aureus
2404	S1M10000024G08	Staphylococcus aureus
2405	S1M10000024G10	Staphylococcus aureus
2406	S1M10000024G12	Staphylococcus aureus
2407	S1M10000024H02	Staphylococcus aureus
2408	S1M10000024H04	Staphylococcus aureus
2409	S1M10000024H07	Staphylococcus aureus
2410	S1M10000024H08	Staphylococcus aureus
2411	S1M10000025A03	Staphylococcus aureus
2412	S1M10000025A08	Staphylococcus aureus
2413	S1M10000025A09	Staphylococcus aureus
2414	S1M10000025A10	Staphylococcus aureus
2415	S1M10000025B01	Staphylococcus aureus
2416	S1M10000025B02	Staphylococcus aureus
2417	S1M10000025B03	Staphylococcus aureus
2418	S1M10000025B05	Staphylococcus aureus
2419	S1M10000025B06	Staphylococcus aureus
2420	S1M10000025B09	Staphylococcus aureus
2421	S1M10000025B12	Staphylococcus aureus
2422	S1M10000025C01	Staphylococcus aureus
2423	S1M10000025C03	Staphylococcus aureus
2424	S1M10000025C05	Staphylococcus aureus

SeqID	Clone name	Organism
2425	S1M10000025C09	Staphylococcus aureus
2426	S1M10000025C10	Staphylococcus aureus
2427	S1M10000025C11	Staphylococcus aureus
2428	S1M10000025D01	Staphylococcus aureus
2429	S1M10000025D03	Staphylococcus aureus
2430	S1M10000025D04	Staphylococcus aureus
2431	S1M10000025D06	Staphylococcus aureus
2432	S1M10000025D08	Staphylococcus aureus
2433	S1M10000025D09	Staphylococcus aureus
2434	S1M10000025D10	Staphylococcus aureus
2435	S1M10000025E01	Staphylococcus aureus
2436	S1M10000025E04	Staphylococcus aureus
2437	S1M10000025E09	Staphylococcus aureus
2438	S1M10000025E11	Staphylococcus aureus
2439	S1M10000025F03	Staphylococcus aureus
2440	S1M10000025F05	Staphylococcus aureus
2441	S1M10000025F08	Staphylococcus aureus
2442	S1M10000025F09	Staphylococcus aureus
2443	S1M10000025F10	Staphylococcus aureus
2444	S1M10000025F12	Staphylococcus aureus
2445	S1M10000025G04	Staphylococcus aureus
2446	S1M10000025G06	Staphylococcus aureus
2447	S1M10000025G10	Staphylococcus aureus
2448	S1M10000025H05	Staphylococcus aureus
2449	S1M10000025H06	Staphylococcus aureus
2450	S1M10000025H07	Staphylococcus aureus
2451	S1M10000025H10	Staphylococcus aureus
2452	S1M10000026A02	Staphylococcus aureus
2453	S1M10000026A04	Staphylococcus aureus
2454	S1M10000026A05	Staphylococcus aureus
2455	S1M10000026A06	Staphylococcus aureus
2456	S1M10000026A07	Staphylococcus aureus
2457	S1M10000026A08	Staphylococcus aureus
2458	S1M10000026A09	Staphylococcus aureus
2459	S1M10000026A10	Staphylococcus aureus
2460	S1M10000026A11	Staphylococcus aureus
2461	S1M10000026B02	Staphylococcus aureus
2462	S1M10000026B03	Staphylococcus aureus
2463	S1M10000026B05	Staphylococcus aureus
2464	S1M10000026B06	Staphylococcus aureus
2465	S1M10000026B07	Staphylococcus aureus

SeqID	Clone name	Organism
2466	S1M10000026B10	Staphylococcus aureus
2467	S1M10000026B11	Staphylococcus aureus
2468	S1M10000026B12	Staphylococcus aureus
2469	S1M10000026C01	Staphylococcus aureus
2470	S1M10000026C06	Staphylococcus aureus
2471	S1M10000026C07	Staphylococcus aureus
2472	S1M10000026C08	Staphylococcus aureus
2473	S1M10000026C11	Staphylococcus aureus
2474	S1M10000026C12	Staphylococcus aureus
2475	S1M10000026D04	Staphylococcus aureus
2476	S1M10000026D05	Staphylococcus aureus
2477	S1M10000026D06	Staphylococcus aureus
2478	S1M10000026D07	Staphylococcus aureus
2479	S1M10000026D08	Staphylococcus aureus
2480	S1M10000026D10	Staphylococcus aureus
2481	S1M10000026D12	Staphylococcus aureus
2482	S1M10000026E01	Staphylococcus aureus
2483	S1M10000026E07	Staphylococcus aureus
2484	S1M10000026E09	Staphylococcus aureus
2485	S1M10000026E10	Staphylococcus aureus
2486	S1M10000026E11	Staphylococcus aureus
2487	S1M10000026E12	Staphylococcus aureus
2488	S1M10000026F01	Staphylococcus aureus
2489	S1M10000026F03	Staphylococcus aureus
2490	S1M10000026F04	Staphylococcus aureus
2491	S1M10000026F05	Staphylococcus aureus
2492	S1M10000026F06	Staphylococcus aureus
2493	S1M10000026F07	Staphylococcus aureus
2494	S1M10000026F08	Staphylococcus aureus
2495	S1M10000026F09	Staphylococcus aureus
2496	S1M10000026F10	Staphylococcus aureus
2497	S1M10000026F11	Staphylococcus aureus
2498	S1M10000026F12	Staphylococcus aureus
2499	S1M10000026G01	Staphylococcus aureus
2500	S1M10000026G03	Staphylococcus aureus
2501	S1M10000026G04	Staphylococcus aureus
2502	S1M10000026G05	Staphylococcus aureus
2503	S1M10000026G06	Staphylococcus aureus
2504	S1M10000026G07	Staphylococcus aureus
2505	S1M10000026G09	Staphylococcus aureus
2506	S1M10000026G10	Staphylococcus aureus

SeqID	Clone name	Organism
2507	S1M10000026G12	Staphylococcus aureus
2508	S1M10000026H01	Staphylococcus aureus
2509	S1M10000026H02	Staphylococcus aureus
2510	S1M10000026H03	Staphylococcus aureus
2511	S1M10000026H04	Staphylococcus aureus
2512	S1M10000026H05	Staphylococcus aureus
2513	S1M10000026H07	Staphylococcus aureus
2514	S1M10000026H09	Staphylococcus aureus
2515	S1M10000026H10	Staphylococcus aureus
2516	S1M10000027A04	Staphylococcus aureus
2517	S1M10000027A05	Staphylococcus aureus
2518	S1M10000027A08	Staphylococcus aureus
2519	S1M10000027A11	Staphylococcus aureus
2520	S1M10000027B04	Staphylococcus aureus
2521	S1M10000027B06	Staphylococcus aureus
2522	S1M10000027B07	Staphylococcus aureus
2523	S1M10000027B08	Staphylococcus aureus
2524	S1M10000027B09	Staphylococcus aureus
2525	S1M10000027B11	Staphylococcus aureus
2526	S1M10000027C02	Staphylococcus aureus
2527	S1M10000027C04	Staphylococcus aureus
2528	S1M10000027C05	Staphylococcus aureus
2529	S1M10000027C06	Staphylococcus aureus
2530	S1M10000027C08	Staphylococcus aureus
2531	S1M10000027C09	Staphylococcus aureus
2532	S1M10000027D02	Staphylococcus aureus
2533	S1M10000027D03	Staphylococcus aureus
2534	S1M10000027D05	Staphylococcus aureus
2535	S1M10000027D06	Staphylococcus aureus
2536	S1M10000027D08	Staphylococcus aureus
2537	S1M10000027D09	Staphylococcus aureus
2538	S1M10000027D10	Staphylococcus aureus
2539	S1M10000027D11	Staphylococcus aureus
2540	S1M10000027E05	Staphylococcus aureus
2541	S1M10000027E06	Staphylococcus aureus
2542	S1M10000027E07	Staphylococcus aureus
2543	S1M10000027E08	Staphylococcus aureus
2544	S1M10000027E09	Staphylococcus aureus
2545	S1M10000027E11	Staphylococcus aureus
2546	S1M10000027F01	Staphylococcus aureus
2547	S1M10000027F02	Staphylococcus aureus

SeqID	Clone name	Organism
2548	S1M10000027F05	Staphylococcus aureus
2549	S1M10000027F06	Staphylococcus aureus
2550	S1M10000027F08	Staphylococcus aureus
2551	S1M10000027F09	Staphylococcus aureus
2552	S1M10000027G03	Staphylococcus aureus
2553	S1M10000027G04	Staphylococcus aureus
2554	S1M10000027G05	Staphylococcus aureus
2555	S1M10000027G06	Staphylococcus aureus
2556	S1M10000027G07	Staphylococcus aureus
2557	S1M10000027G09	Staphylococcus aureus
2558	S1M10000027G11	Staphylococcus aureus
2559	S1M10000027H02	Staphylococcus aureus
2560	S1M10000027H04	Staphylococcus aureus
2561	S1M10000027H05	Staphylococcus aureus
2562	S1M10000027H06	Staphylococcus aureus
2563	S1M10000027H07	Staphylococcus aureus
2564	S1M10000027H08	Staphylococcus aureus
2565	S1M10000027H09	Staphylococcus aureus
2566	S1M10000027H10	Staphylococcus aureus
2567	S1M10000027H11	Staphylococcus aureus
2568	S1M10000028A02	Staphylococcus aureus
2569	S1M10000028A04	Staphylococcus aureus
2570	S1M10000028A06	Staphylococcus aureus
2571	S1M10000028A08	Staphylococcus aureus
2572	S1M10000028B01	Staphylococcus aureus
2573	S1M10000028B02	Staphylococcus aureus
2574	S1M10000028B03	Staphylococcus aureus
2575	S1M10000028B04	Staphylococcus aureus
2576	S1M10000028B05	Staphylococcus aureus
2577	S1M10000028B06	Staphylococcus aureus
2578	S1M10000028B08	Staphylococcus aureus
2579	S1M10000028B09	Staphylococcus aureus
2580	S1M10000028C02	Staphylococcus aureus
2581	S1M10000028C04	Staphylococcus aureus
2582	S1M10000028C05	Staphylococcus aureus
2583	S1M10000028C06	Staphylococcus aureus
2584	S1M10000028C08	Staphylococcus aureus
2585	S1M10000028D03	Staphylococcus aureus
2586	S1M10000028D04	Staphylococcus aureus
2587	S1M10000028D06	Staphylococcus aureus
2588	S1M10000028D07	Staphylococcus aureus

SeqID	Clone name	Organism
2589	S1M10000028D08	Staphylococcus aureus
2590	S1M10000028D09	Staphylococcus aureus
2591	S1M10000028E01	Staphylococcus aureus
2592	S1M10000028E03	Staphylococcus aureus
2593	S1M10000028E08	Staphylococcus aureus
2594	S1M10000028F01	Staphylococcus aureus
2595	S1M10000028F03	Staphylococcus aureus
2596	S1M10000028F04	Staphylococcus aureus
2597	S1M10000028F05	Staphylococcus aureus
2598	S1M10000028F06	Staphylococcus aureus
2599	S1M10000028F07	Staphylococcus aureus
2600	S1M10000028G01	Staphylococcus aureus
2601	S1M10000028G02	Staphylococcus aureus
2602	S1M10000028G03	Staphylococcus aureus
2603	S1M10000028G04	Staphylococcus aureus
2604	S1M10000028G05	Staphylococcus aureus
2605	S1M10000028G06	Staphylococcus aureus
2606	S1M10000028G08	Staphylococcus aureus
2607	S1M10000028H03	Staphylococcus aureus
2608	S1M10000028H04	Staphylococcus aureus
2609	S1M10000028H05	Staphylococcus aureus
2610	S1M10000029A02	Staphylococcus aureus
2611	S1M10000029A04	Staphylococcus aureus
2612	S1M10000029A09	Staphylococcus aureus
2613	S1M10000029A10	Staphylococcus aureus
2614	S1M10000029A11	Staphylococcus aureus
2615	S1M10000029A12	Staphylococcus aureus
2616	S1M10000029B02	Staphylococcus aureus
2617	S1M10000029B03	Staphylococcus aureus
2618	S1M10000029B04	Staphylococcus aureus
2619	S1M10000029B05	Staphylococcus aureus
2620	S1M10000029B06	Staphylococcus aureus
2621	S1M10000029B08	Staphylococcus aureus
2622	S1M10000029B10	Staphylococcus aureus
2623	S1M10000029C02	Staphylococcus aureus
2624	S1M10000029C03	Staphylococcus aureus
2625	S1M10000029C05	Staphylococcus aureus
2626	S1M10000029C07	Staphylococcus aureus
2627	S1M10000029C09	Staphylococcus aureus
2628	S1M10000029C10	Staphylococcus aureus
2629	S1M10000029C12	Staphylococcus aureus

SeqID	Clone name	Organism
2630	S1M10000029D02	Staphylococcus aureus
2631	S1M10000029D05	Staphylococcus aureus
2632	S1M10000029D09	Staphylococcus aureus
2633	S1M10000029D10	Staphylococcus aureus
2634	S1M10000029D12	Staphylococcus aureus
2635	S1M10000029E02	Staphylococcus aureus
2636	S1M10000029E05	Staphylococcus aureus
2637	S1M10000029E10	Staphylococcus aureus
2638	S1M10000029E11	Staphylococcus aureus
2639	S1M10000029F01	Staphylococcus aureus
2640	S1M10000029F02	Staphylococcus aureus
2641	S1M10000029F04	Staphylococcus aureus
2642	S1M10000029F09	Staphylococcus aureus
2643	S1M10000029F10	Staphylococcus aureus
2644	S1M10000029F11	Staphylococcus aureus
2645	S1M10000029F12	Staphylococcus aureus
2646	S1M10000029G01	Staphylococcus aureus
2647	S1M10000029G02	Staphylococcus aureus
2648	S1M10000029G03	Staphylococcus aureus
2649	S1M10000029G05	Staphylococcus aureus
2650	S1M10000029G07	Staphylococcus aureus
2651	S1M10000029G08	Staphylococcus aureus
2652	S1M10000029G12	Staphylococcus aureus
2653	S1M10000029H01	Staphylococcus aureus
2654	S1M10000029H05	Staphylococcus aureus
2655	S1M10000029H06	Staphylococcus aureus
2656	S1M10000029H08	Staphylococcus aureus
2657	S1M10000029H09	Staphylococcus aureus
2658	S1M10000029H10	Staphylococcus aureus
2659	S1M10000030A02	Staphylococcus aureus
2660	S1M10000030A05	Staphylococcus aureus
2661	S1M10000030A09	Staphylococcus aureus
2662	S1M10000030A10	Staphylococcus aureus
2663	S1M10000030A11	Staphylococcus aureus
2664	S1M10000030B02	Staphylococcus aureus
2665	S1M10000030B05	Staphylococcus aureus
2666	S1M10000030B07	Staphylococcus aureus
2667	S1M10000030B09	Staphylococcus aureus
2668	S1M10000030C02	Staphylococcus aureus
2669	S1M10000030C03	Staphylococcus aureus
2670	S1M10000030C04	Staphylococcus aureus

WO 02/086097 PCT/US02/03987.

SeqID	Clone name	Organism
2671	S1M10000030C05	Staphylococcus aureus
2672	S1M10000030C08	Staphylococcus aureus
2673	S1M10000030C09	Staphylococcus aureus
2674	S1M10000030C10	Staphylococcus aureus
2675	S1M10000030C12	Staphylococcus aureus
2676	S1M10000030D01	Staphylococcus aureus
2677	S1M10000030D02	Staphylococcus aureus
2678	S1M10000030D03	Staphylococcus aureus
2679	S1M10000030D05	Staphylococcus aureus
2680	S1M10000030D06	Staphylococcus aureus
2681	S1M10000030D07	Staphylococcus aureus
2682	S1M10000030D09	Staphylococcus aureus
2683	S1M10000030D10	Staphylococcus aureus
2684	S1M10000030D11	Staphylococcus aureus
2685	S1M10000030E02	Staphylococcus aureus
2686	S1M10000030E06	Staphylococcus aureus
2687	S1M10000030E07	Staphylococcus aureus
2688	S1M10000030E11	Staphylococcus aureus
2689	S1M10000030E12	Staphylococcus aureus
2690	S1M10000030F01	Staphylococcus aureus
2691	S1M10000030F07	Staphylococcus aureus
2692	S1M10000030F08	Staphylococcus aureus
2693	S1M10000030F09	Staphylococcus aureus
2694	S1M10000030F10	Staphylococcus aureus
2695	S1M10000030G03	Staphylococcus aureus
2696	S1M10000030G05	Staphylococcus aureus
2697	S1M10000030G07	Staphylococcus aureus
2698	S1M10000030G08	Staphylococcus aureus .
2699	S1M10000030G09	Staphylococcus aureus
2700	S1M10000030G10	Staphylococcus aureus
2701	S1M10000030G11	Staphylococcus aureus
2702	S1M10000030G12	Staphylococcus aureus
2703	S1M10000030H01	Staphylococcus aureus
2704	S1M10000030H02	Staphylococcus aureus
2705	S1M10000030H03	Staphylococcus aureus
2706	S1M10000030H05	Staphylococcus aureus
2707	S1M10000030H07	Staphylococcus aureus
2708	S1M10000030H09	Staphylococcus aureus
2709	S1M10000031A03	Staphylococcus aureus
2710	S1M10000031A08	Staphylococcus aureus
2711	S1M10000031A10	Staphylococcus aureus

SeqID	Clone name	Organism
2712	S1M10000031B01	Staphylococcus aureus
2713	S1M10000031B02	Staphylococcus aureus
2714	S1M10000031B04	Staphylococcus aureus
2715	S1M10000031B11	Staphylococcus aureus
2716	S1M10000031B12	Staphylococcus aureus
2717	S1M10000031C04	Staphylococcus aureus
2718	S1M10000031C07	Staphylococcus aureus
2719	S1M10000031C09	Staphylococcus aureus
2720	S1M10000031C11	Staphylococcus aureus
2721	S1M10000031D06	Staphylococcus aureus
2722	S1M10000031D07	Staphylococcus aureus
2723	S1M10000031D08	Staphylococcus aureus
2724	S1M10000031D09	Staphylococcus aureus
2725	S1M10000031E02	Staphylococcus aureus
2726	S1M10000031E03	Staphylococcus aureus
2727	S1M10000031E04	Staphylococcus aureus
2728	S1M10000031E07	Staphylococcus aureus
2729	S1M10000031E08	Staphylococcus aureus
2730	S1M10000031E10	Staphylococcus aureus
2731	S1M10000031E12	Staphylococcus aureus
2732	S1M10000031F02	Staphylococcus aureus
2733	S1M10000031F03	Staphylococcus aureus
2734	S1M10000031F04	Staphylococcus aureus
2735	S1M10000031F05	Staphylococcus aureus
2736	S1M10000031F08	Staphylococcus aureus
2737	S1M10000031F10	Staphylococcus aureus
2738	S1M10000031F11	Staphylococcus aureus
2739	S1M10000031F12	Staphylococcus aureus
2740	S1M10000031G02	Staphylococcus aureus
2741	S1M10000031G03	Staphylococcus aureus
2742	S1M10000031G04	Staphylococcus aureus
2743	S1M10000031G06	Staphylococcus aureus
2744	S1M10000031G09	Staphylococcus aureus
2745	S1M10000031G10	Staphylococcus aureus
2746	S1M10000031G11	Staphylococcus aureus
2747	S1M10000031H01	Staphylococcus aureus
2748	S1M10000031H02	Staphylococcus aureus
2749	S1M10000031H06	Staphylococcus aureus
2750	S1M10000031H09	Staphylococcus aureus
2751	S1M10000031H11	Staphylococcus aureus
2752	S1M10000032A03	Staphylococcus aureus

SeqID	Clone name	Organism
2753	S1M10000032A05	Staphylococcus aureus
2754	S1M10000032A06	Staphylococcus aureus
2755	S1M10000032A07	Staphylococcus aureus
2756	S1M10000032A08	Staphylococcus aureus
2757	S1M10000032A10	Staphylococcus aureus
2758	S1M10000032B01	Staphylococcus aureus
2759	S1M10000032B05	Staphylococcus aureus
2760	S1M10000032B07	Staphylococcus aureus
2761	S1M10000032B08	Staphylococcus aureus
2762	S1M10000032B11	Staphylococcus aureus
2763	S1M10000032B12	Staphylococcus aureus
2764	S1M10000032C01	Staphylococcus aureus
2765	S1M10000032C03	Staphylococcus aureus
2766	S1M10000032C04	Staphylococcus aureus
2767	S1M10000032C05	Staphylococcus aureus
2768	S1M10000032C09	Staphylococcus aureus
2769	S1M10000032C10	Staphylococcus aureus
2770	S1M10000032C11	Staphylococcus aureus
2771	S1M10000032C12	Staphylococcus aureus
2772	S1M10000032D03	Staphylococcus aureus
2773	S1M10000032D06	Staphylococcus aureus
2774	S1M10000032D07	Staphylococcus aureus
2775	S1M10000032D09	Staphylococcus aureus
2776	S1M10000032D11	Staphylococcus aureus
2777	S1M10000032E02	Staphylococcus aureus
2778	S1M10000032E03	Staphylococcus aureus
2779	S1M10000032E04	Staphylococcus aureus
2780	S1M10000032E06	Staphylococcus aureus
2781	S1M10000032E08	Staphylococcus aureus
2782	S1M10000032E09	Staphylococcus aureus
2783	S1M10000032E10	Staphylococcus aureus
2784	S1M10000032E11	Staphylococcus aureus
2785	S1M10000032E12	Staphylococcus aureus
2786	S1M10000032F01	Staphylococcus aureus
2787	S1M10000032F04	Staphylococcus aureus
2788	S1M10000032F05	Staphylococcus aureus
2789	S1M10000032F10	Staphylococcus aureus
2790	S1M10000032F11	Staphylococcus aureus
2791	S1M10000032F12	Staphylococcus aureus
2792		Staphylococcus aureus
2793	S1M10000032G03	Staphylococcus aureus

SeqID	Clone name	Organism
2794	S1M10000032G04	Staphylococcus aureus
2795	S1M10000032G06	Staphylococcus aureus
2796	S1M10000032G08	Staphylococcus aureus
2797	S1M10000032G10	Staphylococcus aureus
2798	S1M10000032G12	Staphylococcus aureus
2799	S1M10000032H01	Staphylococcus aureus
2800	S1M10000032H04	Staphylococcus aureus
2801	S1M10000032H07	Staphylococcus aureus
2802	S1M10000032H09	Staphylococcus aureus
2803	S1M10000032H11	Staphylococcus aureus
2804	S1M10000033A02	Staphylococcus aureus
2805	S1M10000033A07	Staphylococcus aureus
2806	S1M10000033A08	Staphylococcus aureus
2807	S1M10000033A10	Staphylococcus aureus
2808	S1M10000033B02	Staphylococcus aureus
2809	S1M10000033B07	Staphylococcus aureus
2810	S1M10000033B08	Staphylococcus aureus
2811	S1M10000033B11	Staphylococcus aureus
2812	S1M10000033B12	Staphylococcus aureus
2813	S1M10000033C04	Staphylococcus aureus
2814	S1M10000033D02	Staphylococcus aureus
2815	S1M10000033D03	Staphylococcus aureus
2816	S1M10000033D04	Staphylococcus aureus
2817	S1M10000033D05	Staphylococcus aureus
2818	S1M10000033D06	Staphylococcus aureus
2819	S1M10000033D10	Staphylococcus aureus
2820	S1M10000033D12	Staphylococcus aureus
2821	S1M10000033E04	Staphylococcus aureus
2822	S1M10000033E10	Staphylococcus aureus
2823	S1M10000033E12	Staphylococcus aureus
2824	S1M10000033F02	Staphylococcus aureus
2825	S1M10000033F03	Staphylococcus aureus
2826	S1M10000033F06	Staphylococcus aureus
2827	S1M10000033F07	Staphylococcus aureus
2828	S1M10000033F09	Staphylococcus aureus
2829	S1M10000033F11	Staphylococcus aureus
2830	S1M10000033G05	Staphylococcus aureus
2831	S1M10000033G07	Staphylococcus aureus
2832	S1M10000033G09	Staphylococcus aureus
2833	S1M10000033G10	Staphylococcus aureus
2834	S1M10000033G11	Staphylococcus aureus

SeqID	Clone name	Organism
2835	S1M10000033G12	Staphylococcus aureus
2836	S1M10000033H01	Staphylococcus aureus
2837	S1M10000033H02	Staphylococcus aureus
2838	S1M10000033H03	Staphylococcus aureus
2839	S1M10000033H07	Staphylococcus aureus
2840	S1M10000033H08	Staphylococcus aureus
2841	S1M10000033H09	Staphylococcus aureus
2842	S1M10000033H10	Staphylococcus aureus
2843	S1M10000033H11	Staphylococcus aureus
2844	S1M10000034A02	Staphylococcus aureus
2845	S1M10000034A03	Staphylococcus aureus
2846	S1M10000034A04	Staphylococcus aureus
2847	S1M10000034A05	Staphylococcus aureus
2848	S1M10000034A08	Staphylococcus aureus
2849	S1M10000034A09	Staphylococcus aureus
2850	S1M10000034A11	Staphylococcus aureus
2851	S1M10000034A12	Staphylococcus aureus
2852	S1M10000034B03	Staphylococcus aureus
2853	S1M10000034B05	Staphylococcus aureus
2854	S1M10000034B06	Staphylococcus aureus
2855	S1M10000034B07	Staphylococcus aureus
2856	S1M10000034B08	Staphylococcus aureus
2857	S1M10000034B09	Staphylococcus aureus
2858	S1M10000034B10	Staphylococcus aureus
2859	S1M10000034B12	Staphylococcus aureus
2860	S1M10000034C02	Staphylococcus aureus
2861	S1M10000034C06	Staphylococcus aureus
2862	S1M10000034C07	Staphylococcus aureus
2863	S1M10000034C09	Staphylococcus aureus
2864	S1M10000034C12	Staphylococcus aureus
2865	S1M10000034D01	Staphylococcus aureus
2866	S1M10000034D05	Staphylococcus aureus
2867	S1M10000034D06	Staphylococcus aureus
2868	S1M10000034D07	Staphylococcus aureus
2869	S1M10000034D08	Staphylococcus aureus
2870	S1M10000034D10	Staphylococcus aureus
2871	S1M10000034D11	Staphylococcus aureus
2872	S1M10000034D12	Staphylococcus aureus
2873	S1M10000034E01	Staphylococcus aureus
2874	S1M10000034E02	Staphylococcus aureus
2875	S1M10000034E04	Staphylococcus aureus

SeqID	Clone name	Organism
2876	S1M10000034E05	Staphylococcus aureus
2877	S1M10000034E06	Staphylococcus aureus
2878	S1M10000034E07	Staphylococcus aureus
2879	S1M10000034E10	Staphylococcus aureus
2880	S1M10000034E11	Staphylococcus aureus
2881	S1M10000034E12	Staphylococcus aureus
2882	S1M10000034F01	Staphylococcus aureus
2883	S1M10000034F02	Staphylococcus aureus
2884	S1M10000034F03	Staphylococcus aureus
2885	S1M10000034F04	Staphylococcus aureus
2886	S1M10000034F05	Staphylococcus aureus
2887	S1M10000034F07	Staphylococcus aureus
2888	S1M10000034F08	Staphylococcus aureus
2889	S1M10000034F09	Staphylococcus aureus
2890	S1M10000034F10	Staphylococcus aureus
2891	S1M10000034F12	Staphylococcus aureus
2892	S1M10000034G02	Staphylococcus aureus
2893	S1M10000034G03	Staphylococcus aureus
2894	S1M10000034G06	Staphylococcus aureus
2895	S1M10000034G07	Staphylococcus aureus
2896	S1M10000034G08	Staphylococcus aureus
2897	S1M10000034G09	Staphylococcus aureus
2898	S1M10000034G11	Staphylococcus aureus
2899	S1M10000034G12	Staphylococcus aureus
2900	S1M10000034H01	Staphylococcus aureus
2901	S1M10000034H02	Staphylococcus aureus
2902	S1M10000034H03	Staphylococcus aureus
2903	S1M10000034H06	Staphylococcus aureus
2904	S1M10000034H07	Staphylococcus aureus
2905	S1M10000034H08	Staphylococcus aureus
2906	S1M10000034H09	Staphylococcus aureus
2907	S1M10000034H10	Staphylococcus aureus
2908	S1M10000035A03	Staphylococcus aureus
2909	S1M10000035A08	Staphylococcus aureus
2910	S1M10000035A09	Staphylococcus aureus
2911	S1M10000035A10	Staphylococcus aureus
2912	S1M10000035A11	Staphylococcus aureus
2913	S1M10000035A12	Staphylococcus aureus
2914	S1M10000035B01	Staphylococcus aureus
2915	S1M10000035B03	Staphylococcus aureus
2916	S1M10000035B04	Staphylococcus aureus

SeqID	Clone name	Organism
2917	S1M10000035B08	Staphylococcus aureus
2918	S1M10000035B11	Staphylococcus aureus
2919	S1M10000035C01	Staphylococcus aureus
2920	S1M10000035C02	Staphylococcus aureus
2921	S1M10000035C04	Staphylococcus aureus
2922	S1M10000035C06	Staphylococcus aureus
2923	S1M10000035C11	Staphylococcus aureus
2924	S1M10000035D01	Staphylococcus aureus
2925	S1M10000035D04	Staphylococcus aureus
2926	S1M10000035D06	Staphylococcus aureus
2927	S1M10000035D09	Staphylococcus aureus
2928	S1M10000035D12	Staphylococcus aureus
2929	S1M10000035E02	Staphylococcus aureus
2930	S1M10000035E03	Staphylococcus aureus
2931	S1M10000035E04	Staphylococcus aureus
2932	S1M10000035E08	Staphylococcus aureus
2933	S1M10000035E09	Staphylococcus aureus
2934	S1M10000035E12	Staphylococcus aureus
2935	S1M10000035F03	Staphylococcus aureus
2936	S1M10000035F04	Staphylococcus aureus
2937	S1M10000035F09	Staphylococcus aureus
2938	S1M10000035F12	Staphylococcus aureus
2939	S1M10000035G02	Staphylococcus aureus
2940	S1M10000035G09	Staphylococcus aureus
2941	S1M10000035G11	Staphylococcus aureus
2942	S1M10000035G12	Staphylococcus aureus
2943	S1M10000035H01	Staphylococcus aureus
2944	S1M10000035H07	Staphylococcus aureus
2945	S1M10000035H08	Staphylococcus aureus
2946	S1M10000035H09	Staphylococcus aureus
2947	S1M10000035H10	Staphylococcus aureus
2948	S1M10000035H11	Staphylococcus aureus
2949	S1M10000036A02	Staphylococcus aureus
2950	S1M10000036A03	Staphylococcus aureus
2951	S1M10000036A04	Staphylococcus aureus
2952	S1M10000036A05	Staphylococcus aureus
2953	S1M10000036A08	Staphylococcus aureus
2954	S1M10000036A11	Staphylococcus aureus
2955	S1M10000036A12	Staphylococcus aureus
2956	S1M10000036B04	Staphylococcus aureus
2957	S1M10000036B06	Staphylococcus aureus

SeqID	Clone name	Organism
2958	S1M10000036B07	Staphylococcus aureus
2959	S1M10000036B08	Staphylococcus aureus
2960	S1M10000036B11	Staphylococcus aureus
2961	S1M10000036B12	Staphylococcus aureus
2962	S1M10000036C01	Staphylococcus aureus
2963	S1M10000036C03	Staphylococcus aureus
2964	S1M10000036C04	Staphylococcus aureus
2965	S1M10000036C05	Staphylococcus aureus
2966	S1M10000036C06	Staphylococcus aureus
2967	S1M10000036C07	Staphylococcus aureus
2968	S1M10000036C09	Staphylococcus aureus
2969	S1M10000036C10	Staphylococcus aureus
2970	S1M10000036D02	Staphylococcus aureus
2971	S1M10000036D03	Staphylococcus aureus
2972	S1M10000036D06	Staphylococcus aureus
2973	S1M10000036D08	Staphylococcus aureus
2974	S1M10000036D10	Staphylococcus aureus
2975	S1M10000036D11	Staphylococcus aureus
2976	S1M10000036D12	Staphylococcus aureus
2977	S1M10000036E06	Staphylococcus aureus
2978	S1M10000036E08	Staphylococcus aureus
2979	S1M10000036E11	Staphylococcus aureus
2980	S1M10000036F06	Staphylococcus aureus
2981	S1M10000036F07	Staphylococcus aureus
2982	S1M10000036F08	Staphylococcus aureus
2983	S1M10000036F09	Staphylococcus aureus
2984	S1M10000036F10	Staphylococcus aureus
2985	S1M10000036F11	Staphylococcus aureus
2986	S1M10000036G03	Staphylococcus aureus
2987	S1M10000036G07	Staphylococcus aureus
2988	S1M10000036G08	Staphylococcus aureus
2989	S1M10000036G11	Staphylococcus aureus
2990	S1M10000036H01	Staphylococcus aureus
2991	S1M10000036H02	Staphylococcus aureus
2992	S1M10000036H03	Staphylococcus aureus
2993	S1M10000036H04	Staphylococcus aureus
2994	S1M10000036H05	Staphylococcus aureus
2995	S1M10000036H06	Staphylococcus aureus
2996	S1M10000036H08	Staphylococcus aureus
2997	S1M10000036H11	Staphylococcus aureus
2998	S1M10000037A02	Staphylococcus aureus

SeqID	Clone name	Organism
2999	S1M10000037A03	Staphylococcus aureus
3000	S1M10000037A06	Staphylococcus aureus
3001	S1M10000037A08	Staphylococcus aureus
3002	S1M10000037A09	Staphylococcus aureus
3003	S1M10000037A11	Staphylococcus aureus
3004	S1M10000037A12	Staphylococcus aureus
3005	S1M10000037B03	Staphylococcus aureus
3006	S1M10000037B04	Staphylococcus aureus
3007	S1M10000037B05	Staphylococcus aureus
3008	S1M10000037B06	Staphylococcus aureus
3009	S1M10000037B07	Staphylococcus aureus
3010	S1M10000037B08	Staphylococcus aureus
3011	S1M10000037B10	Staphylococcus aureus
3012	S1M10000037B11	Staphylococcus aureus
3013	S1M10000037B12	Staphylococcus aureus
3014	S1M10000037C05	Staphylococcus aureus
3015	S1M10000037C06	Staphylococcus aureus
3016	S1M10000037C07	Staphylococcus aureus
3017	S1M10000037C08	Staphylococcus aureus
3018	S1M10000037C09	Staphylococcus aureus
3019	S1M10000037C10	Staphylococcus aureus
3020	S1M10000037D04	Staphylococcus aureus
3021	S1M10000037D05	Staphylococcus aureus
3022	S1M10000037D06	Staphylococcus aureus
3023	S1M10000037D09	Staphylococcus aureus
3024	S1M10000037D12	Staphylococcus aureus
3025	S1M10000037E02	Staphylococcus aureus
3026	S1M10000037E03	Staphylococcus aureus
3027	S1M10000037E06	Staphylococcus aureus
3028	S1M10000037E08	Staphylococcus aureus
3029	S1M10000037E09	Staphylococcus aureus
3030	S1M10000037E10	Staphylococcus aureus
3031	S1M10000037E11	Staphylococcus aureus
3032	S1M10000037E12	Staphylococcus aureus
3033	S1M10000037F02	Staphylococcus aureus
3034	S1M10000037F03	Staphylococcus aureus
3035	S1M10000037F04	Staphylococcus aureus
3036	S1M10000037F05	Staphylococcus aureus
3037	S1M10000037F06	Staphylococcus aureus
3038	S1M10000037F07	Staphylococcus aureus
3039	S1M10000037F08	Staphylococcus aureus

SeqID	Clone name	Organism
3040	S1M10000037F09	Staphylococcus aureus
3041	S1M10000037F10	Staphylococcus aureus
3042	S1M10000037G01	Staphylococcus aureus
3043	S1M10000037G02	Staphylococcus aureus
3044	S1M10000037G03	Staphylococcus aureus
3045	S1M10000037G06	Staphylococcus aureus
3046	S1M10000037G07	Staphylococcus aureus
3047	S1M10000037G08	Staphylococcus aureus
3048	S1M10000037G10	Staphylococcus aureus
3049	S1M10000037H02	Staphylococcus aureus
3050	S1M10000037H03	Staphylococcus aureus
3051	S1M10000037H05	Staphylococcus aureus
3052	S1M10000037H07	Staphylococcus aureus
3053	S1M10000037H08	Staphylococcus aureus
3054	S1M10000037H09	Staphylococcus aureus
3055	S1M10000037H11	Staphylococcus aureus
3056	S1M10000038A04	Staphylococcus aureus
3057	S1M10000038A07	Staphylococcus aureus
3058	S1M10000038A08	Staphylococcus aureus
3059	S1M10000038A09	Staphylococcus aureus
3060	S1M10000038A11	Staphylococcus aureus
3061	S1M10000038A12	Staphylococcus aureus
3062	S1M10000038B01	Staphylococcus aureus
3063	S1M10000038B03	Staphylococcus aureus
3064	S1M10000038B07	Staphylococcus aureus
3065	S1M10000038B08	Staphylococcus aureus
3066	S1M10000038B09	Staphylococcus aureus
3067	S1M10000038B12	Staphylococcus aureus
3068	S1M10000038C01	Staphylococcus aureus
3069	S1M10000038C02	Staphylococcus aureus
3070	S1M10000038C06	Staphylococcus aureus
3071	S1M10000038C08	Staphylococcus aureus
3072	S1M10000038C10	Staphylococcus aureus
3073	S1M10000038C11	Staphylococcus aureus
3074	S1M10000038C12	Staphylococcus aureus
3075	S1M10000038D02	Staphylococcus aureus
3076	S1M10000038D05	Staphylococcus aureus
3077	S1M10000038D07	Staphylococcus aureus
3078	S1M10000038D08	Staphylococcus aureus
3079	S1M10000038D09	Staphylococcus aureus
3080	S1M10000038D10	Staphylococcus aureus

SeqID	Clone name	Organism
3081	S1M10000038D11	Staphylococcus aureus
3082	S1M10000038D12	Staphylococcus aureus
3083	S1M10000038E01	Staphylococcus aureus
3084	S1M10000038E02	Staphylococcus aureus
3085	S1M10000038E03	Staphylococcus aureus
3086	S1M10000038E04	Staphylococcus aureus
3087	S1M10000038E05	Staphylococcus aureus
3088	S1M10000038E06	Staphylococcus aureus
3089	S1M10000038E07	Staphylococcus aureus
3090	S1M10000038E10	Staphylococcus aureus
3091	S1M10000038E12	Staphylococcus aureus
3092	S1M10000038F03	Staphylococcus aureus
3093	S1M10000038F04	Staphylococcus aureus
3094	S1M10000038F05	Staphylococcus aureus
3095	S1M10000038F06	Staphylococcus aureus
3096	S1M10000038F08	Staphylococcus aureus
3097	S1M10000038F09	Staphylococcus aureus
3098	S1M10000038F10	Staphylococcus aureus
3099	S1M10000038F11	Staphylococcus aureus
3100	S1M10000038F12	Staphylococcus aureus
3101	S1M10000038G01	Staphylococcus aureus
3102	S1M10000038G03	Staphylococcus aureus
3103	S1M10000038G04	Staphylococcus aureus
3104	S1M10000038G06	Staphylococcus aureus
3105	S1M10000038G08	Staphylococcus aureus
3106	S1M10000038G10	Staphylococcus aureus
3107	S1M10000038G11	Staphylococcus aureus
3108	S1M10000038G12	Staphylococcus aureus
3109	S1M10000038H03	Staphylococcus aureus
3110	S1M10000038H07	Staphylococcus aureus
3111	S1M10000038H09	Staphylococcus aureus
3112	S1M10000038H11	Staphylococcus aureus
3113	S1M10000039A02	Staphylococcus aureus
3114	S1M10000039A05	Staphylococcus aureus
3115	S1M10000039A07	Staphylococcus aureus
3116	S1M10000039A08	Staphylococcus aureus
3117	S1M10000039A11	Staphylococcus aureus
3118	S1M10000039A12	Staphylococcus aureus
3119	S1M10000039B02	Staphylococcus aureus
3120	S1M10000039B06	Staphylococcus aureus
3121	S1M10000039B07	Staphylococcus aureus

SeqID	Clone name	Organism
3122	S1M10000039B10	Staphylococcus aureus
3123	S1M10000039B12	Staphylococcus aureus
3124	S1M10000039C04	Staphylococcus aureus
3125	S1M10000039C06	Staphylococcus aureus
3126	S1M10000039C07	Staphylococcus aureus
3127	S1M10000039C08	Staphylococcus aureus
3128	S1M10000039C09	Staphylococcus aureus
3129	S1M10000039C10	Staphylococcus aureus
3130	S1M10000039C11	Staphylococcus aureus
3131	S1M10000039D02	Staphylococcus aureus
3132	S1M10000039D09	Staphylococcus aureus
3133	S1M10000039D10	Staphylococcus aureus
3134	S1M10000039E01	Staphylococcus aureus
3135	S1M10000039E08	Staphylococcus aureus
3136	S1M10000039E09	Staphylococcus aureus
3137	S1M10000039E10	Staphylococcus aureus
3138	S1M10000039E11	Staphylococcus aureus
3139	S1M10000039F02	Staphylococcus aureus
3140	S1M10000039F03	Staphylococcus aureus
3141	S1M10000039F05	Staphylococcus aureus
3142	S1M10000039F07	Staphylococcus aureus
3143	S1M10000039F08	Staphylococcus aureus
3144	S1M10000039F09	Staphylococcus aureus
3145	S1M10000039F10	Staphylococcus aureus
3146	S1M10000039F12	Staphylococcus aureus
3147	S1M10000039G03	Staphylococcus aureus
3148	S1M10000039G04	Staphylococcus aureus
3149	S1M10000039G07	Staphylococcus aureus
3150	S1M10000039G10	Staphylococcus aureus
3151	S1M10000039H02	Staphylococcus aureus
3152	S1M10000039H03	Staphylococcus aureus
3153	S1M10000039H04	Staphylococcus aureus
3154	S1M10000039H06	Staphylococcus aureus
3155	S1M10000039H07	Staphylococcus aureus
3156	S1M10000039H08	Staphylococcus aureus
3157	S1M10000040A04	Staphylococcus aureus
3158	S1M10000040A05	Staphylococcus aureus
3159	S1M10000040A07	Staphylococcus aureus
3160	S1M10000040A08	Staphylococcus aureus
3161	S1M10000040A10	Staphylococcus aureus
3162	S1M10000040A11	Staphylococcus aureus

SeqID	Clone name	Organism
3163	S1M10000040B01	Staphylococcus aureus
3164	S1M10000040B03	Staphylococcus aureus
3165	S1M10000040B07	Staphylococcus aureus
3166	S1M10000040B11	Staphylococcus aureus
3167	S1M10000040C03	Staphylococcus aureus
3168	S1M10000040C04	Staphylococcus aureus
3169	S1M10000040C05	Staphylococcus aureus
3170	S1M10000040C06	Staphylococcus aureus
3171	S1M10000040C07	Staphylococcus aureus
3172	S1M10000040C08	Staphylococcus aureus
3173	S1M10000040C10	Staphylococcus aureus
3174	S1M10000040C11	Staphylococcus aureus
3175	S1M10000040D01	Staphylococcus aureus
3176	S1M10000040D03	Staphylococcus aureus
3177	S1M10000040D08	Staphylococcus aureus
3178	S1M10000040D09	Staphylococcus aureus
3179	S1M10000040D11	Staphylococcus aureus
3180	S1M10000040E01	Staphylococcus aureus
3181	S1M10000040E02	Staphylococcus aureus
3182	S1M10000040E04	Staphylococcus aureus
3183	S1M10000040E05	Staphylococcus aureus
3184	S1M10000040E06	Staphylococcus aureus
3185	S1M10000040E07	Staphylococcus aureus
3186	S1M10000040E09	Staphylococcus aureus
3187	S1M10000040E10	Staphylococcus aureus
3188	S1M10000040E11	Staphylococcus aureus
3189	S1M10000040E12	Staphylococcus aureus
3190	S1M10000040F01	Staphylococcus aureus
3191	S1M10000040F02	Staphylococcus aureus
3192	S1M10000040F03	Staphylococcus aureus
3193	S1M10000040F04	Staphylococcus aureus
3194	S1M10000040F05	Staphylococcus aureus
3195	S1M10000040F06	Staphylococcus aureus
3196	S1M10000040F08	Staphylococcus aureus
3197	S1M10000040F09	Staphylococcus aureus
3198	S1M10000040F12	Staphylococcus aureus
3199	S1M10000040G01	Staphylococcus aureus
3200	S1M10000040G02	Staphylococcus aureus
3201	S1M10000040G04	Staphylococcus aureus
3202	S1M10000040G07	Staphylococcus aureus
3203	S1M10000040G08	Staphylococcus aureus

SeqID	Clone name	Organism
3204	S1M10000040G12	Staphylococcus aureus
3205	S1M10000040H02	Staphylococcus aureus
3206	S1M10000040H03	Staphylococcus aureus
3207	S1M10000040H04	Staphylococcus aureus
3208	S1M10000040H05	Staphylococcus aureus
3209	S1M10000040H07	Staphylococcus aureus
3210	S1M10000040H10	Staphylococcus aureus
3211	S1M10000041A03	Staphylococcus aureus
3212	S1M10000041B02	Staphylococcus aureus
3213	S1M10000041B03	Staphylococcus aureus
3214	S1M10000041B05	Staphylococcus aureus
3215	S1M10000041B06	Staphylococcus aureus
3216	S1M10000041B07	Staphylococcus aureus
3217	S1M10000041B12	Staphylococcus aureus
3218	S1M10000041C08	Staphylococcus aureus
3219	S1M10000041C10	Staphylococcus aureus
3220	S1M10000041C11	Staphylococcus aureus
3221	S1M10000041D06	Staphylococcus aureus
3222	S1M10000041D07	Staphylococcus aureus
3223	S1M10000041D08	Staphylococcus aureus
3224	S1M10000041D10	Staphylococcus aureus
3225	S1M10000041D12	Staphylococcus aureus
3226	S1M10000041E03	Staphylococcus aureus
3227	S1M10000041E06	Staphylococcus aureus
3228	S1M10000041E09	Staphylococcus aureus
3229	S1M10000041E12	Staphylococcus aureus
3230	S1M10000041F03	Staphylococcus aureus
3231	S1M10000041F11	Staphylococcus aureus
3232	S1M10000041F12	Staphylococcus aureus
3233	S1M10000041G01	Staphylococcus aureus
3234	S1M10000041G06	Staphylococcus aureus
3235	S1M10000041G08	Staphylococcus aureus
3236	S1M10000041G10	Staphylococcus aureus
3237	S1M10000041G11	Staphylococcus aureus
3238	S1M10000041H01	Staphylococcus aureus
3239	S1M10000041H04	Staphylococcus aureus
3240	S1M10000041H05	Staphylococcus aureus
3241	S1M10000041H07	Staphylococcus aureus
3242	S1M10000041H08	Staphylococcus aureus
3243	S1M10000041H09	Staphylococcus aureus
3244	S1M10000042A04	Staphylococcus aureus

SeqID	Clone name	Organism
3245	S1M10000042A05	Staphylococcus aureus
3246	S1M10000042A06	Staphylococcus aureus
3247	S1M10000042A07	Staphylococcus aureus
3248	S1M10000042A09	Staphylococcus aureus
3249	S1M10000042A11	Staphylococcus aureus
3250	S1M10000042A12	Staphylococcus aureus
3251	S1M10000042B02	Staphylococcus aureus
3252	S1M10000042B03	Staphylococcus aureus
3253	S1M10000042B06	Staphylococcus aureus
3254	S1M10000042B07	Staphylococcus aureus
3255	S1M10000042B08	Staphylococcus aureus
3256	S1M10000042B09	Staphylococcus aureus
3257	S1M10000042B10	Staphylococcus aureus
3258	S1M10000042B11	Staphylococcus aureus
3259	S1M10000042B12	Staphylococcus aureus
3260	S1M10000042C02	Staphylococcus aureus
3261	S1M10000042C06	Staphylococcus aureus
3262	S1M10000042C10	Staphylococcus aureus
3263	S1M10000042C11	Staphylococcus aureus
3264	S1M10000042D04	Staphylococcus aureus
3265	S1M10000042D07	Staphylococcus aureus .
3266	S1M10000042D10	Staphylococcus aureus
3267	S1M10000042D11	Staphylococcus aureus
3268	S1M10000042E03	Staphylococcus aureus
3269	S1M10000042E06	Staphylococcus aureus
3270	S1M10000042E08	Staphylococcus aureus
3271	S1M10000042F01	Staphylococcus aureus
3272	S1M10000042F02	Staphylococcus aureus
3273	S1M10000042F05	Staphylococcus aureus
3274	S1M10000042F06	Staphylococcus aureus
3275	S1M10000042F08	Staphylococcus aureus
3276	S1M10000042F09	Staphylococcus aureus
3277	S1M10000042F10	Staphylococcus aureus
3278	S1M10000042F11	Staphylococcus aureus
3279	S1M10000042G01	Staphylococcus aureus
3280	S1M10000042G03	Staphylococcus aureus
3281	S1M10000042G08	Staphylococcus aureus
3282	S1M10000042G09	Staphylococcus aureus
3283	S1M10000042G12	Staphylococcus aureus
3284	S1M10000042H05	Staphylococcus aureus
3285	S1M10000042H07	Staphylococcus aureus

SeqID	Clone name	Organism
3286	S1M10000042H11	Staphylococcus aureus
3287	S1M10000043A02	Staphylococcus aureus
3288	S1M10000043A03	Staphylococcus aureus
3289	S1M10000043A04	Staphylococcus aureus
3290	S1M10000043A06	Staphylococcus aureus
3291	S1M10000043A07	Staphylococcus aureus
3292	S1M10000043A08	Staphylococcus aureus
3293	S1M10000043A10	Staphylococcus aureus
3294	S1M10000043A11	Staphylococcus aureus
3295	S1M10000043A12	Staphylococcus aureus
3296	S1M10000043B01	Staphylococcus aureus
3297	S1M10000043B02	Staphylococcus aureus
3298	S1M10000043B07	Staphylococcus aureus
3299	S1M10000043B08	Staphylococcus aureus
3300	S1M10000043B09	Staphylococcus aureus
3301	S1M10000043B10	Staphylococcus aureus
3302	S1M10000043B12	Staphylococcus aureus
3303	S1M10000043C02	Staphylococcus aureus
3304	S1M10000043C07	Staphylococcus aureus
3305	S1M10000043C11	Staphylococcus aureus
3306	S1M10000043C12	Staphylococcus aureus
3307	S1M10000043D01	Staphylococcus aureus
3308	S1M10000043D02	Staphylococcus aureus
3309	S1M10000043D04	Staphylococcus aureus
3310	S1M10000043D10	Staphylococcus aureus
3311	S1M10000043D12	Staphylococcus aureus
3312	S1M10000043E02	Staphylococcus aureus
3313	S1M10000043E03	Staphylococcus aureus
3314	S1M10000043E05	Staphylococcus aureus
3315	S1M10000043E07	Staphylococcus aureus
3316	S1M10000043E08	Staphylococcus aureus
3317	S1M10000043E10	Staphylococcus aureus
3318	S1M10000043E11	Staphylococcus aureus
3319	S1M10000043E12	Staphylococcus aureus
3320	S1M10000043F01	Staphylococcus aureus
3321	S1M10000043F05	Staphylococcus aureus
3322	S1M10000043F07	Staphylococcus aureus
3323	S1M10000043F08	Staphylococcus aureus
3324	S1M10000043F09	Staphylococcus aureus
3325	S1M10000043G01	Staphylococcus aureus
3326	S1M10000043G04	Staphylococcus aureus

SeqID	Clone name	Organism
3327	S1M10000043G05	Staphylococcus aureus
3328	S1M10000043G09	Staphylococcus aureus
3329	S1M10000043G10	Staphylococcus aureus
3330	S1M10000043H01	Staphylococcus aureus
3331	S1M10000043H03	Staphylococcus aureus
3332	S1M10000043H04	Staphylococcus aureus
3333	S1M10000043H05	Staphylococcus aureus
3334	S1M10000043H06	Staphylococcus aureus
3335	S1M10000043H09	Staphylococcus aureus
3336	S1M10000043H10	Staphylococcus aureus
3337	S1M10000043H11	Staphylococcus aureus
3338	S1M10000044A02	Staphylococcus aureus
3339	S1M10000044A06	Staphylococcus aureus
3340	S1M10000044A08	Staphylococcus aureus
3341	S1M10000044A09	Staphylococcus aureus
3342	S1M10000044A11	Staphylococcus aureus
3343	S1M10000044A12	Staphylococcus aureus
3344	S1M10000044B01	Staphylococcus aureus
3345	S1M10000044B02	Staphylococcus aureus
3346	S1M10000044B05	Staphylococcus aureus
3347	S1M10000044B06	Staphylococcus aureus
3348	S1M10000044B08	Staphylococcus aureus
3349	S1M10000044B11	Staphylococcus aureus
3350	S1M10000044B12	Staphylococcus aureus
3351	S1M10000044C04	Staphylococcus aureus
3352	S1M10000044C06	Staphylococcus aureus
3353	S1M10000044C07	Staphylococcus aureus
3354	S1M10000044C08	Staphylococcus aureus
3355	S1M10000044C11	Staphylococcus aureus
3356	S1M10000044C12	Staphylococcus aureus
3357	S1M10000044D01	Staphylococcus aureus
3358	S1M10000044D04	Staphylococcus aureus
3359	S1M10000044D06	Staphylococcus aureus
3360	S1M10000044D08	Staphylococcus aureus
3361	S1M10000044D09	Staphylococcus aureus
3362	S1M10000044D10	Staphylococcus aureus
3363	S1M10000044D11	Staphylococcus aureus
3364	S1M10000044D12	Staphylococcus aureus
3365	S1M10000044E01	Staphylococcus aureus
3366	S1M10000044E02	Staphylococcus aureus
3367	S1M10000044E06	Staphylococcus aureus

SeqID	Clone name	Organism
3368	S1M10000044E07	Staphylococcus aureus
3369	S1M10000044E09	Staphylococcus aureus
3370	S1M10000044E10	Staphylococcus aureus
3371	S1M10000044E11	Staphylococcus aureus
3372	S1M10000044F02	Staphylococcus aureus
3373	S1M10000044F06	Staphylococcus aureus
3374	S1M10000044F08	Staphylococcus aureus
3375	S1M10000044F10	Staphylococcus aureus
3376	S1M10000044G02	Staphylococcus aureus
3377	S1M10000044G05	Staphylococcus aureus
3378	S1M10000044G08	Staphylococcus aureus
3379	S1M10000044G10	Staphylococcus aureus
3380	S1M10000044G11	Staphylococcus aureus
3381	S1M10000044H06	Staphylococcus aureus
3382	S1M10000044H07	Staphylococcus aureus
3383	S1M10000044H08	Staphylococcus aureus
3384	S1M10000044H09	Staphylococcus aureus
3385	S1M10000044H10	Staphylococcus aureus
3386	S1M10000044H11	Staphylococcus aureus
3387	S1M10000045A02	Staphylococcus aureus
3388	S1M10000045A06	Staphylococcus aureus
3389	S1M10000045A07	Staphylococcus aureus
3390	S1M10000045A08	Staphylococcus aureus
3391	S1M10000045A12	Staphylococcus aureus
3392	S1M10000045B01	Staphylococcus aureus
3393	S1M10000045B02	Staphylococcus aureus
3394	S1M10000045B03	Staphylococcus aureus
3395	S1M10000045B07	Staphylococcus aureus
3396	S1M10000045B10	Staphylococcus aureus
3397	S1M10000045B11	Staphylococcus aureus
3398	S1M10000045B12	Staphylococcus aureus
3399	S1M10000045C02	Staphylococcus aureus
3400	S1M10000045C03	Staphylococcus aureus
3401	S1M10000045C04	Staphylococcus aureus
3402	S1M10000045C05	Staphylococcus aureus
3403	S1M10000045C07	Staphylococcus aureus
3404	S1M10000045C09	Staphylococcus aureus
3405	S1M10000045D01	Staphylococcus aureus
3406	S1M10000045D03	Staphylococcus aureus
3407	S1M10000045D07	Staphylococcus aureus
3408	S1M10000045D08	Staphylococcus aureus

SeqID	Clone name	Organism
3409	S1M10000045D09	Staphylococcus aureus
3410	S1M10000045D10	Staphylococcus aureus
3411	S1M10000045D11	Staphylococcus aureus
3412	S1M10000045D12	Staphylococcus aureus .
3413	S1M10000045E04	Staphylococcus aureus
3414	S1M10000045E05	Staphylococcus aureus
3415	S1M10000045E08	Staphylococcus aureus
3416	S1M10000045E09	Staphylococcus aureus
3417	S1M10000045E10	Staphylococcus aureus
3418	S1M10000045E11	Staphylococcus aureus
3419	S1M10000045E12	Staphylococcus aureus
3420	S1M10000045F04	Staphylococcus aureus
3421	S1M10000045F05	Staphylococcus aureus
3422	S1M10000045F08	Staphylococcus aureus
3423	S1M10000045F11	Staphylococcus aureus
3424	S1M10000045F12	Staphylococcus aureus
3425	S1M10000045G03	Staphylococcus aureus
3426	S1M10000045G06	Staphylococcus aureus
3427	S1M10000045G07	Staphylococcus aureus
3428	S1M10000045G08	Staphylococcus aureus
3429	S1M10000045G10	Staphylococcus aureus
3430	S1M10000045G12	Staphylococcus aureus
3431	S1M10000045H06	Staphylococcus aureus
3432	S1M10000045H10	Staphylococcus aureus
3433	S1M10000045H11	Staphylococcus aureus
3434	S1M10000046A03	Staphylococcus aureus
3435	S1M10000046A04	Staphylococcus aureus
3436	S1M10000046A06	Staphylococcus aureus
3437	S1M10000046A08	Staphylococcus aureus
3438	S1M10000046A09	Staphylococcus aureus
3439	S1M10000046A11	Staphylococcus aureus
3440	S1M10000046A12	Staphylococcus aureus
3441	S1M10000046B01	Staphylococcus aureus
3442	S1M10000046B03	Staphylococcus aureus
3443	S1M10000046B04	Staphylococcus aureus
3444	S1M10000046B05	Staphylococcus aureus
3445	S1M10000046B07	Staphylococcus aureus
3446	S1M10000046B08	Staphylococcus aureus
3447	S1M10000046B09	Staphylococcus aureus
3448	S1M10000046B11	Staphylococcus aureus
3449	S1M10000046B12	Staphylococcus aureus

SeqID	Clone name	Organism
3450	S1M10000046C02	Staphylococcus aureus
3451	S1M10000046C04	Staphylococcus aureus
3452	S1M10000046C05	Staphylococcus aureus
3453	S1M10000046C06	Staphylococcus aureus
3454	S1M10000046C07	Staphylococcus aureus
3455	S1M10000046C08	Staphylococcus aureus
3456	S1M10000046C11	Staphylococcus aureus
3457	S1M10000046C12	Staphylococcus aureus
3458	S1M10000046D01	Staphylococcus aureus
3459	S1M10000046D02	Staphylococcus aureus
3460	S1M10000046D03	Staphylococcus aureus
3461	S1M10000046D04	Staphylococcus aureus
3462	S1M10000046D05	Staphylococcus aureus
3463	S1M10000046D08	Staphylococcus aureus
3464	S1M10000046D09	Staphylococcus aureus
3465	S1M10000046D10	Staphylococcus aureus
3466	S1M10000046D11	Staphylococcus aureus
3467	S1M10000046D12	Staphylococcus aureus
3468	S1M10000046E01	Staphylococcus aureus
3469	S1M10000046E02	Staphylococcus aureus
3470	S1M10000046E04	Staphylococcus aureus
3471	S1M10000046E07	Staphylococcus aureus
3472	S1M10000046E08	Staphylococcus aureus
3473	S1M10000046E10	Staphylococcus aureus
3474	S1M10000046F01	Staphylococcus aureus
3475	S1M10000046F02	Staphylococcus aureus
3476	S1M10000046F05	Staphylococcus aureus
3477	S1M10000046F06	Staphylococcus aureus
3478	S1M10000046F08	Staphylococcus aureus
3479	S1M10000046F09	Staphylococcus aureus
3480	S1M10000046F10	Staphylococcus aureus
3481	S1M10000046F12	Staphylococcus aureus
3482	S1M10000046G01	Staphylococcus aureus
3483	S1M10000046G02	Staphylococcus aureus
3484	S1M10000046G03	Staphylococcus aureus
3485	S1M10000046G04	Staphylococcus aureus
3486	S1M10000046G07	Staphylococcus aureus
3487	S1M10000046G09	Staphylococcus aureus
3488	S1M10000046G10	Staphylococcus aureus
3489	S1M10000046H01	Staphylococcus aureus
3490	S1M10000046H10	Staphylococcus aureus

SeqID	Clone name	Organism
3491	S1M10000047A03	Staphylococcus aureus
3492	S1M10000047A04	Staphylococcus aureus
3493	S1M10000047A05	Staphylococcus aureus
3494	S1M10000047A06	Staphylococcus aureus
3495	S1M10000047A07	Staphylococcus aureus
3496	S1M10000047A08	Staphylococcus aureus
3497	S1M10000047A09	Staphylococcus aureus
3498	S1M10000047A10	Staphylococcus aureus
3499	S1M10000047A11	Staphylococcus aureus
3500	S1M10000047A12	Staphylococcus aureus
3501	S1M10000047B02	Staphylococcus aureus
3502	S1M10000047B04	Staphylococcus aureus
3503	S1M10000047B05	Staphylococcus aureus
3504	S1M10000047B06	Staphylococcus aureus
3505	S1M10000047B08	Staphylococcus aureus
3506	S1M10000047B09	Staphylococcus aureus
3507	S1M10000047B10	Staphylococcus aureus
3508	S1M10000047B12	Staphylococcus aureus
3509	S1M10000047C01	Staphylococcus aureus
3510	S1M10000047C02	Staphylococcus aureus
3511	S1M10000047C03	Staphylococcus aureus
3512	S1M10000047C04	Staphylococcus aureus
3513	S1M10000047C06	Staphylococcus aureus
3514	S1M10000047C08	Staphylococcus aureus
3515	S1M10000047C09	Staphylococcus aureus
3516	S1M10000047C11	Staphylococcus aureus
3517	S1M10000047C12	Staphylococcus aureus
3518	S1M10000047D02	Staphylococcus aureus
3519	S1M10000047D03	Staphylococcus aureus
3520	S1M10000047D04	Staphylococcus aureus
3521	S1M10000047D05	Staphylococcus aureus
3522	S1M10000047D09	Staphylococcus aureus
3523	S1M10000047D10	Staphylococcus aureus
3524	S1M10000047D11	Staphylococcus aureus
3525	S1M10000047D12	Staphylococcus aureus
3526	S1M10000047E01	Staphylococcus aureus
3527	S1M10000047E02	Staphylococcus aureus
3528	S1M10000047E03	Staphylococcus aureus
3529	S1M10000047E04	Staphylococcus aureus
3530	S1M10000047E05	Staphylococcus aureus
3531	S1M10000047E06	Staphylococcus aureus

SeqID	Clone name	Organism
3532	S1M10000047E08	Staphylococcus aureus
3533	S1M10000047E09	Staphylococcus aureus
3534	S1M10000047E10	Staphylococcus aureus
3535	S1M10000047E11	Staphylococcus aureus
3536	S1M10000047E12	Staphylococcus aureus
3537	S1M10000047F02	Staphylococcus aureus
3538	S1M10000047F03	Staphylococcus aureus
3539	S1M10000047F04	Staphylococcus aureus
3540	S1M10000047F05	Staphylococcus aureus
3541	S1M10000047F06	Staphylococcus aureus
3542	S1M10000047F07	Staphylococcus aureus
3543	S1M10000047F08	Staphylococcus aureus
3544	S1M10000047F09	Staphylococcus aureus
3545	S1M10000047F10	Staphylococcus aureus
3546	S1M10000047F11	Staphylococcus aureus
3547	S1M10000047F12	Staphylococcus aureus
3548	S1M10000047G01	Staphylococcus aureus
3549	S1M10000047G02	Staphylococcus aureus
3550	S1M10000047G04	Staphylococcus aureus
3551	S1M10000047G05	Staphylococcus aureus
3552	S1M10000047G06	Staphylococcus aureus
3553	S1M10000047G07	Staphylococcus aureus
3554	S1M10000047G08	Staphylococcus aureus
3555	S1M10000047G09	Staphylococcus aureus
3556	S1M10000047G10	Staphylococcus aureus
3557	S1M10000047H03	Staphylococcus aureus
3558	S1M10000047H04	Staphylococcus aureus
3559	S1M10000047H05	Staphylococcus aureus
3560	S1M10000047H06	Staphylococcus aureus
3561	S1M10000047H07	Staphylococcus aureus
3562	S1M10000047H08	Staphylococcus aureus
3563	S1M10000047H09	Staphylococcus aureus
3564	S1M10000047H11	Staphylococcus aureus
3565	S1M10000048A02	Staphylococcus aureus
3566	S1M10000048A03	Staphylococcus aureus
3567	S1M10000048A04	Staphylococcus aureus
3568	S1M10000048A05	Staphylococcus aureus
3569	S1M10000048A06	Staphylococcus aureus
3570	S1M10000048A07	Staphylococcus aureus
3571	S1M10000048A09	Staphylococcus aureus
3572	S1M10000048A10	Staphylococcus aureus

SeqID	Clone name	Organism
3573	S1M10000048A11	Staphylococcus aureus
3574	S1M10000048A12	Staphylococcus aureus
3575	S1M10000048B02	Staphylococcus aureus
3576	S1M10000048B05	Staphylococcus aureus
3577	S1M10000048B08	Staphylococcus aureus
3578	S1M10000048B10	Staphylococcus aureus
3579	S1M10000048B11	Staphylococcus aureus
3580	S1M10000048B12	Staphylococcus aureus
3581	S1M10000048C01	Staphylococcus aureus
3582	S1M10000048C02	Staphylococcus aureus
. 3583	S1M10000048C03	Staphylococcus aureus
3584	S1M10000048C05	Staphylococcus aureus
3585	S1M10000048C06	Staphylococcus aureus
3586	S1M10000048C07	Staphylococcus aureus
3587	S1M10000048C08	Staphylococcus aureus
3588	S1M10000048C09	Staphylococcus aureus
3589	S1M10000048C11	Staphylococcus aureus
3590	S1M10000048D02	Staphylococcus aureus
3591	S1M10000048D08	Staphylococcus aureus
3592	S1M10000048D09	Staphylococcus aureus
3593	S1M10000048D10	Staphylococcus aureus
3594	S1M10000048D12	Staphylococcus aureus
3595	S1M10000048E02	Staphylococcus aureus
3596	S1M10000048E03	Staphylococcus aureus
3597	S1M10000048E04	Staphylococcus aureus
3598	S1M10000048E06	Staphylococcus aureus
3599	S1M10000048E07	Staphylococcus aureus
3600	S1M10000048E08	Staphylococcus aureus
3601	S1M10000048E10	Staphylococcus aureus
3602	S1M10000048F02	Staphylococcus aureus
3603	S1M10000048F07	Staphylococcus aureus
3604	S1M10000048F08	Staphylococcus aureus
3605	S1M10000048F09	Staphylococcus aureus
3606	S1M10000048F11	Staphylococcus aureus
3607	S1M10000048F12	Staphylococcus aureus
3608	S1M10000048G02	Staphylococcus aureus
3609	S1M10000048G03	Staphylococcus aureus
3610	S1M10000048G04	Staphylococcus aureus
3611	S1M10000048G05	Staphylococcus aureus
3612	S1M10000048G07	Staphylococcus aureus
3613	S1M10000048G10	Staphylococcus aureus

SeqID	Clone name	Organism	
3614	S1M10000048G11	Staphylococcus aureus	
3615	S1M10000048H01	Staphylococcus aureus	
3616	S1M10000048H02	Staphylococcus aureus	
3617	S1M10000048H03	Staphylococcus aureus	
3618	S1M10000048H04	Staphylococcus aureus	
3619	S1M10000048H05	Staphylococcus aureus	
3620	S1M10000048H07	Staphylococcus aureus	
3621	S1M10000048H08	Staphylococcus aureus	
3622	S1M10000048H09	Staphylococcus aureus	
3623	S1M10000048H10	Staphylococcus aureus	
3624	S1M10000048H11	Staphylococcus aureus	
3625	S1M10000009E10	Staphylococcus aureus	
3626	S1M10000001F01	Staphylococcus aureus	
3627	S1M10000006B12	Staphylococcus aureus	
3628	S1M10000003D09	Staphylococcus aureus	
3629	S1M10000001D11	Staphylococcus aureus	
3630	S1M10000003B07	Staphylococcus aureus	
3631	S1M10000002A07	Staphylococcus aureus	
3632	S1M10000003F11	Staphylococcus aureus	
3633	S1M10000047C07	Staphylococcus aureus	
3634	S1M10000013F10	Staphylococcus aureus	
3635	S1M10000014D11	Staphylococcus aureus	
3636	S1M10000015F05	Staphylococcus aureus	
3637	S1M10000048D01	Staphylococcus aureus	
3638	S1M10000011C03	Staphylococcus aureus	
3639	S1M10000012F03	Staphylococcus aureus	
3640	S1M10000002F07	Staphylococcus aureus	
3641	S1M10000048G01	Staphylococcus aureus	
3642	S1M10000009G12	Staphylococcus aureus	
3643	S1M10000012D05	Staphylococcus aureus	
3644	S1M10000014D07	Staphylococcus aureus	
3645	S1M10000047C05	Staphylococcus aureus	
3646	S1M10000018D08*	Staphylococcus aureus	
3647	S1M10000047B01	Staphylococcus aureus	
3648	S1M10000047H10	Staphylococcus aureus	
3649	S1M10000001A04	Staphylococcus aureus	
3650	S1M10000016E01	Staphylococcus aureus	
3651	S1M10000017E12	Staphylococcus aureus	
3652	S1M10000019B01	Staphylococcus aureus	
3653	S1M10000048F03	Staphylococcus aureus	
3654	S1M10000034A07	Staphylococcus aureus	

SeqID	Clone name	Organism	
3655	S1M10000023G01	Staphylococcus aureus	
3656	S1M10000021G12	Staphylococcus aureus	
3657	S1M10000024E04	Staphylococcus aureus	
3658	S1M10000028H08	Staphylococcus aureus	
3659	S1M10000022B07	Staphylococcus aureus	
3660	S1M10000003A05	Staphylococcus aureus	
3661	S1M10000003A09	Staphylococcus aureus	
3662	S1M10000003E01	Staphylococcus aureus	
3663	S1M10000004C11	Staphylococcus aureus	
3664	S1M10000007E08	Staphylococcus aureus	
3665	S1M10000021G06	Staphylococcus aureus	
3666	S1M10000024C06	Staphylococcus aureus	
3667	S1M10000024D01	Staphylococcus aureus	
3668	S1M10000027D07	Staphylococcus aureus	
3669	S1M10000027E03	Staphylococcus aureus	
3670	S1M10000027G01	Staphylococcus aureus	
3671	S1M10000029A03	Staphylococcus aureus	
3672	S1M10000032B10	Staphylococcus aureus	
3673	S1M10000032C07	Staphylococcus aureus	
3674	S1M10000038D04	Staphylococcus aureus	
3675	S1M10000047D07	Staphylococcus aureus	
3676	S1M10000048B03	Staphylococcus aureus	
3677	S1M10000048B06	Staphylococcus aureus	
3678	S1M10000048C10	Staphylococcus aureus	
3679	S1M10000048F05	Staphylococcus aureus	
3680	S4M10000001C01	Salmonella typhimurium	
3681	S4M10000002B06	Salmonella typhimurium	
3682	S4M10000002B09	Salmonella typhimurium	
3683	S4M10000002G04	Salmonella typhimurium	
3684	S4M10000002G08	Salmonella typhimurium	
3685	S4M10000005G05	Salmonella typhimurium	
3686	S4M10000005H02	Salmonella typhimurium	
3687	S4M10000006A06	Salmonella typhimurium	
3688	S4M10000006A08	Salmonella typhimurium	
3689	S4M10000006C05	Salmonella typhimurium	
3690	S4M10000006F08	Salmonella typhimurium	
3691	S4M10000007G01	Salmonella typhimurium	
3692	S4M10000008C08	Salmonella typhimurium	
3693	S4M10000008H10	Salmonella typhimurium	
3694	S4M10000009A05	Salmonella typhimurium	
3695	S4M10000010B05	Salmonella typhimurium	

SeqID	Clone name	Organism
3696	S4M10000010D04	Salmonella typhimurium
3697	S4M10000010H04	Salmonella typhimurium
3698	S4M10000011D08	Salmonella typhimurium
3699	S4M10000011E08	Salmonella typhimurium
3700	S4M10000012B06	Salmonella typhimurium
3701	S4M10000012B12	Salmonella typhimurium
3702	S4M10000012D02	Salmonella typhimurium
3703	S4M10000013H02	Salmonella typhimurium
3704	S4M10000014B05	Salmonella typhimurium
3705	S4M10000014D04	Salmonella typhimurium
3706	S4M10000014D07	Salmonella typhimurium
3707	S4M10000014H02	Salmonella typhimurium
3708	S4M10000015B11	Salmonella typhimurium
3709	S4M10000015E09	Salmonella typhimurium
3710	S4M10000016A02	Salmonella typhimurium
3711	S4M10000018D09	Salmonella typhimurium
3712	S4M10000018E10	Salmonella typhimurium
3713	S4M10000018F10	Salmonella typhimurium
3714	S4M10000018G03	Salmonella typhimurium
3715	S4M10000018H04	Salmonella typhimurium
3716	S4M10000019F05	Salmonella typhimurium
3717	S4M10000019G04	Salmonella typhimurium
3718	S4M10000019G05	Salmonella typhimurium
3719	S4M10000019H06	Salmonella typhimurium
3720	S4M10000020A04	Salmonella typhimurium
3721	S4M10000020F05	Salmonella typhimurium
3722	S4M10000020G10	Salmonella typhimurium
3723	S4M10000022D04	Salmonella typhimurium
3724	S4M10000022D12	Salmonella typhimurium
3725	S4M10000022E12	Salmonella typhimurium
3726	S4M10000022G07	Salmonella typhimurium
3727	S4M10000022H06	Salmonella typhimurium
3728	S4M10000023F01	Salmonella typhimurium
3729	S4M10000024B02	Salmonella typhimurium
3730	S4M10000024C06	Salmonella typhimurium
3731	S4M10000024C11	Salmonella typhimurium
3732	S4M10000024F08	Salmonella typhimurium
3733	S4M10000024G01	Salmonella typhimurium
3734	S4M10000024G04	Salmonella typhimurium
3735	S4M10000024G09	Salmonella typhimurium
3736	S4M10000024H02	Salmonella typhimurium

SeqID	Clone name	Organism
3737	S4M10000025A11	Salmonella typhimurium
3738	S4M10000025E02	Salmonella typhimurium
3739	S4M10000025E05	Salmonella typhimurium
3740	S4M10000025H07	Salmonella typhimurium
3741	S4M10000026C10	Salmonella typhimurium
3742	S4M10000026D04	Salmonella typhimurium
3743	S4M10000026E06	Salmonella typhimurium
3744	S4M10000026E12	Salmonella typhimurium
3745	S4M10000027C10	Salmonella typhimurium
3746	S4M10000027E02	Salmonella typhimurium
3747	S4M10000029B12	Salmonella typhimurium
3748	S4M10000029D12	Salmonella typhimurium
3749	S4M10000030D03	Salmonella typhimurium
3750	S4M10000030F07	Salmonella typhimurium
3751	S4M10000030G11	Salmonella typhimurium
3752	S4M10000032B12	Salmonella typhimurium
3753	S4M10000033F08	Salmonella typhimurium
3754	S4M10000033G05	Salmonella typhimurium
3755	S4M10000033G09	Salmonella typhimurium
3756	S4M10000034A02	Salmonella typhimurium
3757	S4M10000034A09	Salmonella typhimurium
3758	S4M10000034D06	Salmonella typhimurium
3759	S4M10000034H05	Salmonella typhimurium
3760	S4M10000034H09	Salmonella typhimurium
3761	S4M10000035B01	Salmonella typhimurium
3762	S4M10000035D01	Salmonella typhimurium
3763	S4M10000035D02	Salmonella typhimurium
3764	S4M10000035E03	Salmonella typhimurium
3765	S4M10000035F02	Salmonella typhimurium
3766	S4M10000035F09	Salmonella typhimurium
3767	S4M10000036D07	Salmonella typhimurium
3768	S4M10000036F07	Salmonella typhimurium
3769	S4M10000037A04	Salmonella typhimurium
3770	S4M10000037A10	Salmonella typhimurium
3771	S4M10000037E10	Salmonella typhimurium
3772	S4M10000037H09	Salmonella typhimurium
3773	S4M10000001H01	Salmonella typhimurium
3774	S4M10000002F06	Salmonella typhimurium
3775	S4M10000008D01	Salmonella typhimurium
3776	S4M10000009G11	Salmonella typhimurium
3777	S4M10000011F09	Salmonella typhimurium

SeqID	Clone name	Organism
3778	S4M10000020F08	Salmonella typhimurium
3779	S4M10000021E07	Salmonella typhimurium
3780	S4M10000022B05	Salmonella typhimurium
3781	S4M10000025H11	Salmonella typhimurium
3782	S4M10000026B10	Salmonella typhimurium
3783	S4M10000026E03	Salmonella typhimurium
3784	S4M10000029A03	Salmonella typhimurium
3785	S4M10000029C11	Salmonella typhimurium
3786	S4M10000030F06	Salmonella typhimurium
3787	S4M10000032F03	Salmonella typhimurium
3788	S4M10000032G01	Salmonella typhimurium
3789	S4M10000034C05	Salmonella typhimurium
3790	S4M10000034H04	Salmonella typhimurium
3791	S4M10000035A09	Salmonella typhimurium
3792	S4M10000035B06	Salmonella typhimurium
3793	S4M10000035F01	Salmonella typhimurium
3794	S4M10000037A08	Salmonella typhimurium
3795	S4M10000037E03	Salmonella typhimurium

TABLE VI B

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
					Protein Seq ID
E3M10000001A02	8	EFA101409	4934	EFA1c0022_orf_lip	10524
E3M10000001A06	9	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000001B01	10	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000001B02	11	EFA100739	4888	EFA1c0022_orf_23p	10537
E3M10000001B02	11	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000001B02	11	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000001B05	12	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000001B06	13	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000001B08	14	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000001B10	15	EFA101409	4934	EFA1c0022_orf_llp	10524
E3M10000001C02	16	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000001C09	17	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000001D02	18	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000001D04	19	EFA100742	4891	EFA1c0022_orf_20p	10534
E3M10000001D04	19	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000001D04	19	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000001D05	20	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000001D05	20	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000001D09	21	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000001D09	21	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000001E01	22	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000001E01	22	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000001E02	23	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000001E03	24	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000001E03	24	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000001E04	25	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000001E08	26	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000001E09	27	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000001E09	27	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000001F02	28	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000001F04	29	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000001F06	30	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000001F07	31	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000001G02	32	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000001G03	33	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000001G03	33	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000001G04	34	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M1000001G05	35	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000001H02	36	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000001H03	37	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000001H03	37	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000001H04	38	EFA100742	4891	EFA1c0022_orf_20p	10534

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000001H04	38	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000001H04	38	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000004A04	39	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000004A04	39	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000004C03	40	EFA100478	4880	EFA1c0012_orf_2p	10486
E3M10000004D01	41	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000004D01	41	EFA101413	4938	#N/A	#N/A
E3M10000004D01	41	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000004D02	42	EFA102022	4974	EFA1c0044_orf_106p	10881
E3M10000004D02	42	EFA102023	4975	EFA1c0044_orf_107p	10882
E3M10000004D10	43	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000004D10	43	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000004E11	44	EFA101086	4910	EFA1c0040_orf_90p	10763
E3M10000004F08	45	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000004F08	45	EFA102551	500i	EFA1c0022_orf_25p	10539
E3M10000004F10	46	EFA101086	4910	EFA1c0040_orf_90p	10763
E3M10000004G01	47	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000004H11	48	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000004H11	48	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000005A07	49	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000005B01	50	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000005B01	50	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000005B08	51	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000005B08	51	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000005C01	52	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000005C03	53	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000005C04	54	EFA102186	4981	EFA1c0045_orf_94p	10949
E3M10000005C04	54	EFA102453	4993	EFA1c0045_orf_203p	10931
E3M10000005C04	54	EFA102728	- 5006	EFA1c0045_orf_93p	10948
E3M10000005D03	55	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000005D04	56	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000005D10	57	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000005D10	57	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000005E01	58	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000005E01	58	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000005E02	59	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000005E02	59	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000005E03	60	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000005E08	61	EFA101403	4932	EFA1c0033_orf_54p	10662
E3M10000005F07	62	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000005F10	63	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000005F10	63	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000005G05	64	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000005G05	64	EFA102551	5001	EFA1c0022_orf_25p	10539

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	fuil length ORF Protein Seq ID
E3M10000005H04	65	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000006B03	66	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000006B03	66	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000006C01	67	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000006C01	67	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000006C12	68	EFA102549	5000	BFA1c0022_orf_24p	10538
E3M10000006C12	68	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000006D03	69	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000006D03	69	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000006E11	70	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000006E11	70	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000006F04	71	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000006F04	71	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000006G04	72	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000006G04	72	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000006G12	73	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000006G12	73	EFA101163	4920	EFA1c0022_orf_6p	10557
ЕЗМ10000006Н09	74	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000007A02	75	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007A02	75	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007B02	76	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007B02	76	EFA101163	4920	BFA1c0022_orf_6p	10557
E3M10000007B03	77	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007B03	77	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007C03	78	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000007C03	78	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000007C04	79	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000007D03	80	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007D03	80	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007E05	81	EFA100742	4891	EFA1c0022_orf_20p	10534
E3M10000007E05	81	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000007E05	81	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000007F01	82	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007F01	82	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007F06	83	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007F06	83	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007G01	84	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007G01	84	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000008C03	85	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000008C08	86	EFA101536	4946	EFA1c0042_orf_46p	10823
E3M10000008C09	87	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000008D08	88	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000008E02	89	EFA100783	4895	EFA1c0042_orf_141p	10811
E3M10000008G05	90	EFA101162	4919	EFA1c0022_orf_5p	10555

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
ļ					Protein Seq ID
E3M10000008G05	90	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000008G09	91	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000008G09	91	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000008H02	92	EFA101695	4954	EFA1c0031_orf_6p	10629
E3M10000009C07	93	EFA103508	5029	EFA1c0033_orf_95p	10672
E3M1000009C09	94	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000009D01	95	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000009E02	96	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000009E02	96	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000009E03	I	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000009E05	98	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000009G02	99	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000010C08	100	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000010D05	101	EFA100757	4894	EFA1c0044_orf_27p	10897
E3M10000010F01	102	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000010G05	103	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000010G07	104	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000010G09	105	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000010G10	106	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000010H02	107	EFA100194	4868	EFA1c0022_orf_26p	10540
E3M10000011A09	108	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000011B03	109	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000011B09	l	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000011C07	L	EFA101790	4959	EFA1c0042_orf_111p	10803
E3M10000011D03	112	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000011D03	112	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000011H02	113	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000011H05		EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000012B01	115	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000012B02		EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000012B07	117	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000012B07	l	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000012B07		EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000012B08	118	EFA101409	4934	EFA1c0022_orf_llp	10524
E3M10000012C01		EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000012D10		EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000012E08		EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000012F05	1	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000012F06		EFA101409	4934	EFA1c0022_orf_llp	10524
E3M10000012F07		EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000012F07		EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000012F10		EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000012F10	L	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000012G02	126	EFA101165	4922	EFA1c0022_orf_8p	10559

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000012G07	127	EFA101410	4935	EFA1c0022 orf 12p	10525
E3M10000012G07	127	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000012G07	128	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000013A07	129	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000013A07	130	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000013C05	130	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000013C03	131	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000013D08	132	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000013D10	133	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000013D10	133	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000013E02	134	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000013E08	135	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000013F05	136	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000013F12	137	EFA101164	4921	EFA1c0022 orf 7p	10558
E3M10000013F12	137	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000013G10	138	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000013H03	139	EFA101412	4937	EFA1c0022 orf 14p	10527
E3M10000013H05	140	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000013H10	141	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000014B12	142	EFA100739	4888	EFA1c0022_orf_23p	10537
E3M10000014B12	142	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000014B12	142	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000014E12	143	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000014E12	143	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000014G09	144	EFA100991	4905	EFA1c0035_orf_60p	10681
E3M10000014G09	144	EFA103033	5016	EFA1c0035_orf_60p	10681
E3M10000015B04	145	EFA100065	4863	EFA1c0042_orf_14p	10813
E3M10000015B12	146	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000015E12	147	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000015E12	147	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000016A03	148	EFA101753	4957	EFA1c0022_orf_50p	10552
E3M10000016A04	149	EFA101409	4934	EFA1c0022_orf_llp	10524
E3M10000016C11	150	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000016C11	150	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000016D03	151	EFA102774	5009	EFA1c0044_orf_25p	10896
E3M10000016F06	152	EFA102205	4983	EFA1c0041_orf_115p	10769
E3M10000016F10	153	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000016F10	153	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000016H05	154	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000016H10	155	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000017A09	156	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000017A09	156	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000017D09	157	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000018A07	158	EFA102091	4977	EFA1c0010_orf_3p	10481

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000018C02	159	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000018E01	160	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000018G09	161	EFA101583	4949	EFA1c0026_orf_23p	10593
E3M10000018H06	162	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000019B06	163	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000019D02	164	EFA102022	4974	EFA1c0044_orf_106p	10881
E3M10000019E03	165	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000019E03	165	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000019E04	166	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000020G04	167	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000020G04	167	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000020H05	168	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000021A08	169	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000021A08	169	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000021A11	170	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000021B10	171	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000021C03	172	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000021C04	173	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000021C08	174	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000021D04	175	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000021D04	175	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000021E10	176	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000021G04	177	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000021G10	178	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000021G11	179	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000021H11	180	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000022A04	181	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022A11	182	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000022B04	183	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022B05	184	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022B05	184	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000022B07	185	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000022C05	186	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000022C05	186	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000022C06	187	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000022C09	188	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000022D04	189	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000022F05	190	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000022F06	191	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000022F06	191	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000022F08	192	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022G02	193	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000022G12	194	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000023A03	195	EFA101413	4938	#N/A	#N/A

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000023A06	196	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000023A07	197	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000023A09	198	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000023B02	199	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000023B02	199	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000023B06	200	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000023C03	201	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000023C03	201	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000023C04	202	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000023C06	203	EFA101413	4938	#N/A	#N/A
E3M10000023C08	204	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000023C09	205	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000023C09	205	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000023D02	206	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000023D04	207	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000023D10	208	EFA101413	4938 \	#N/A	#N/A
E3M10000023E04	209	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000023E07	210	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000023E09	211	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000023F02	212	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000023F10	213	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000023G02	214	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000023G04	215	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000023G10	216	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000023H08	217	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000024A03	218	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000024A04	219	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000024A08	220	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000024A08	220	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000024C06	221	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000025A06	222	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000025B01	223	EFA100194	4868	EFA1c0022_orf_26p	10540
E3M10000025B01	223	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000025B03	224	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000025B03	224	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000025B05	225	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000025B10	226	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000025C01	227	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000025C04	228	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000025C05	229	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000025C05	229	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000025C07	230	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000025C08	231	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000025C08	231	EFA102502	4995	EFA1c0031_orf_36p	10627

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000025C09	232	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000025C11	233	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000025D01	234	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000025D01	234	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000025D10	235	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000025E07	236	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000025E08	237	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000025E12	238	EFA102728	5006	EFA1c0045_orf_93p	10948
E3M10000025F04	239	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000025F04	239	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000025F06	240	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000025F06	240	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000025F06	240	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000025F08	241	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000025F09	242	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000025F10	243	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000025F11	244	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000025F12	245	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000025G02	246	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000025G07	247	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000025G09	248	EFA102185	4980	EFA1c0045_orf_95p	10950
E3M10000027A02	249	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000027A07	250	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027A09	251	EFA101413	4938	#N/A	#N/A
E3M10000027A09	251	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000027B07	252	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000027B08	253	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027B09	254	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000027B09	254	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000027C02	255	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000027C03	256	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027C08	257	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000027D03	258	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000027D03	258	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000027D05	259	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000027D08	260	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000027D10	261	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000027G01	262	EFA102186	4981	EFA1c0045_orf_94p	10949
E3M10000027G08	263	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000027H04	264	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027H07	265	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000027H07	265	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000028A02	266	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000028A03	267	EFA102551	5001	EFA1c0022_orf_25p	10539

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000028A04	268	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000028A04	268	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000028A05	269	EFA101080	4909	#N/A	#N/A
E3M10000028A05	269	EFA102915	5014	EFA1c0032_orf_27p	10640
E3M10000028A06	270	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000028A08	271	EFA101424	4943	EFA1c0041_orf_39p	10784
E3M10000028A08	271	EFA101425	4944	EFA1c0041_orf_40p	10785
E3M10000028B01	272	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000028B02	273	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028B02	273	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000028B03	274	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000028B04	275	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000028B05	276	EFA101424	4943	EFA1c0041_orf_39p	10784
E3M10000028B05	276	EFA101425	4944	EFA1c0041_orf_40p	10785
E3M10000028B06	277	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000028B07	278	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000028B08	279	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000028C01	280	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028C01	280	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000028C02	281	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028C02	281	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000028C04	282	EFA101322	4927	EFA1c0030_orf_57p	10620
E3M10000028C05	283	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000028C06	284	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000028C07	285	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000028C08	286	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028C08	286	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000028D01	287	EFA100194	4868	EFA1c0022_orf_26p	10540
E3M10000028D01	287	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000028D02	288	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000028D05	289	BFA101080	4909	#N/A	#N/A
E3M10000028D06	290	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000028D08	291	EFA103268	5023	EFA1c0010_orf_lp	10479
E3M10000028E01	292	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000028E04	293	EFA101370	4931	EFA1c0040_orf_103p	10738
E3M10000028E07	294	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028F02	295	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000028F03	296	EFA100742	4891	EFA1c0022_orf_20p	10534
E3M10000028F03	296	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000028F03	296	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000028F04	297	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000028F04	297	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000028F05	298	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000028F06	299	EFA101164	4921	EFA1c0022_orf_7p	10558

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000028F07	300	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000028G05	301	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000028G06	302	EFA100748	4892	EFA1c0011_orf_10p	10483
E3M10000028G07	303	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000028G07	303	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000028H04	304	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000028H07	305	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000029A02	306	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000029A04	307	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000029A05	308	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000029A10	309	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000029A11	310	EFA101413	4938	#N/A	#N/A
E3M10000029B01	311	EFA103295	5024	EFA1c0032_orf_lp	10633
E3M10000029B02	312	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000029B05	313	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000029B06	314	EFA100914	4900	EFA1c0024_orf_9p	10579
E3M10000029B08	315	EFA102338	4987	EFA1c0032_orf_8p	10651
E3M10000029B11	316	EFA100397	4877	EFA1c0041_orf_148p	10773
E3M10000029B12	317	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000029C01	318	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000029C02	319	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000029C03	320	EFA102253	4984	EFA1c0038_orf_85p	10727
E3M10000029C04	321	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000029C05	322	EFA100399	4878	EFA1c0041_orf_104p	10766
E3M10000029C06	323	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000029C06	323	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000029C07	324	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000029C07	324	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000029C08	325	EFA101868	4966	EFA1c0042_orf_69p	10829
E3M10000029C09	326	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000029C10	327	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000029C12	328	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000029D01	329	EFA101080	4909	#N/A	#N/A 10549
E3M10000029D03	330	EFA101160	4917	EFA1c0022_orf_3p	10734
E3M10000029D04	331	EFA102656	5004	EFA1c0039_orf_26p	1
E3M10000029D05	332	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000029D06	333	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000029D06	333	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000029D08	334	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000029D12	335	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000029E01	336	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000029E02	337	EFA102051	4976	#N/A	#N/A
E3M10000029E03	338	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000029E05	339	EFA101686	4953	EFA1c0045_orf_63p	10940

Clone name	Clone	PathoSeq Locus	Gene SeqID	Genemarked gene	full length ORF
	SeqID		(protein)		Protein Seq
E3M10000029E07	340	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000029E08	341	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000029E09	342	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000029E12	343	EFA100397	4877	EFA1c0041_orf_148p	10773
E3M10000029F01	344	EFA100023	4862	EFA1c0017_orf_ip	10505
E3M10000029F05	345	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000029F06	346	EFA101795	4962	EFA1c0045_orf_165p	10922
E3M10000029F09	347	EFA100689	4886	EFA1c0038_orf_54p	10717
E3M10000029F10	348	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000029F11	349	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000029F12	350	EFA102282	4985	EFA1c0038_orf_89p	10729
E3M10000029G01	351	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000029G04	352	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000029G05	353	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000029G07	354	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000029G08	355	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000029G09	356	EFA102201	4982	#N/A	#N/A
E3M10000029G10	357	EFA101797	4963	EFA1c0045_orf_167p	10924
E3M10000029G11	358	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000029G12	359	EFA101541	4948	EFA1c0012_orf_5p	10488
E3M10000029H02	360	EFA101339	4928	EFA1c0040_orf_13p	10743
E3M10000029H02	360	EFA101340	4929	EFA1c0040_orf_15p	10745
E3M10000029H04	361	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000029H04	361	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000029H05	362	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000029H07	363	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000029H08	364	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000029H11	365	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000030A05	366	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000030A08	367	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000030A09	368	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000030A11	369	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000030B03	370	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000030B04	371	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000030B05	372	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030B06	373	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000030B07	374	EFA100642	'4884	EFA1c0041_orf_56p	10792
E3M10000030B08	375	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030B10	376	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000030B11	377	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000030B12	378	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000030B12	378	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000030C03	379	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000030C04	380	EFA101165	4922	EFA1c0022_orf_8p	10559

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000030C12	381	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000030D02	382	EFA102350	4988	EFA1c0032_orf_19p	10632
E3M10000030D05	383	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000030D08	384	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000030D09	385	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000030D10	386	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030D12	387	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000030E01	388	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000030E01	388	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000030E02	389	EFA100329	4875	EFA1c0041_orf_35p	10782
E3M10000030E04	390	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000030E08	391	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000030E09	392	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000030E10	393	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030F01	394	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000030F04	395	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000030F06	396	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000030F07	397	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030F10	398	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000030F12	399	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000030G01	400	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000030G03	401	EFA100023	4862	EFA1c0017_orf_lp	10505
E3M10000030G06	402	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000030G08	403	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000030G09	404	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000030G12	405	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000030H03	406	EFA101258	4926	EFA1c0045_orf_160p	10918
E3M10000030H04	407	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000030H06	408	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000030H07	409	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000030H08	410	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000030H10	411	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000030H11	412	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000031A02	413	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000031A06	414	EFA100970	4903	EFA1c0044_orf_98p	10906
E3M10000031A07	415	EFA102201	4982	#N/A	#N/A
E3M10000031A08	416	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000031A08	417	EFA100289	4872	EFA1c0042_orf_139p	10810
E3M10000031B02	418	EFA100426	4879	EFA1c0036_orf_59p	10702
E3M10000031B03	419	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000031B09	420	EFA102183	4979	EFA1c0045_orf_97p	10952
E3M10000031B10	421	EFA101253	4924	EFA1c0043_orf_178p	10852
E3M10000031B10	422	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000031B11	423	EFA100642	4884	EFA1c0041 orf 56p	10792

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Sea
					ID
E3M10000031C01	424	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000031C04	425	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000031C06	426	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000031C10	427	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000031C11	428	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000031C12	429	EFA100668	4885	EFA1c0035_orf_58p	10679
E3M10000031D03	430	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000031D04	431	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000031D08	432	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000031E03	433	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000031E09	434	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000031F02	435	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000031F02	435	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000031F04	436	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000031F07	437	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000031F09	438	EFA102764	5008	EFA1c0008_orf_3p	10478
E3M10000031F11	439	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000031F11	439	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000031G03	440	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000031G04	441	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000031G05	442	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000031G06	443	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000031G07	444	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000031G08	445	EFA 100295	4873	EFA1c0021_orf_15p	10517
E3M10000031G11	446	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000031H05	447	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000031H06	448	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000031H07	449	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000031H08	450	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000031H10	451	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000031H11	452	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000031H11	452	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000032A02	453	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000032A04	454	EFA101670	4950	EFA1c0019_orf_20p	10511
E3M10000032A06	455	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000032A07	456	EFA101670	4950	EFA1c0019_orf_20p	10511
E3M10000032A08	457	EFA100329	4875	EFA1c0041_orf_35p	10782
E3M10000032A09	458	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000032A10	459	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000032A11	460	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000032A11	460	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000032B03	461	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000032B04	462	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000032B07	463	EFA101164	4921	EFA1c0022_orf_7p	10558

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID 10909
E3M10000032B08	464	EFA102698	5005	EFA1c0045_orf_115p	
E3M10000032B09	465	EFA102051	4976	#N/A	#N/A
E3M10000032B11	466	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000032B12	467	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000032C01	468	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000032C02	469	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000032C03	470	EFA103348	5025	EFA1c0043_orf_67p	10873
E3M10000032C04	471	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000032C06	472	EFA101150	4915	EFA1c0038_orf_57p	10719
E3M10000032C09	473	EFA100740	4889	EFA1c0022_orf_22p	10536
E3M10000032C11	474	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000032C12	475	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000032D01	476	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000032D02	477	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000032D03	478	EFA100399	4878	EFA1c0041_orf_104p	10766
E3M10000032D06	479	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000032D09	480	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000032D12	481	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000032E04	482	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000032E04	482	EFA103786	5031	EFA1c0042_orf_114p	10806
E3M10000032E05	483	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000032E08	484	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000032E10	485	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000032E10	485	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000032E11	486	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000032E12	487	EFA102326	4986	#N/A	#N/A
E3M10000032F02	488	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000032F02	488	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000032F03	489	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000032F05	490	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000032F07	491	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000032F08	492	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000032F11	493	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000032F12	494	EFA102201	4982	#N/A	#N/A
E3M10000032G01	495	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000032G02	496	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000032G04	497	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000032G05	498	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000032G06	499	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000032G07	500	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000032H05	501	EFA100200	4869	EFA1c0041_orf_88p	10798
E3M10000032H06	502	EFA101833	4965	EFA1c0038_orf_61p	10720
E3M10000032H08	503	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000032H09	504	EFA103571	5030	EFA1c0044_orf_101p	10879

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000032H10	505	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000033A03	506	EFA101253	4924	EFA1c0043_orf_178p	10852
E3M10000033A04	507	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000033A05	508	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000033A06	509	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000033A07	510	EFA102774	5009	EFA1c0044_orf_25p	10896
E3M10000033A08	511	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033A11	512	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000033B01	513	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000033B02	514	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000033B04	515	EFA101765	4958	EFA1c0025_orf_33p	10587
E3M10000033B05	516	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000033B06	517	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000033B08	518	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000033B09	519	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000033C01	520	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000033C02	521	EFA103174	5021	EFA1c0036_orf_120p	10689
E3M10000033C05	522	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000033C05	522	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000033C09	523	EFA100811	4898	EFA1c0022_orf_33p	10546
E3M10000033C10	524	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000033C10	524	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000033C11	525	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000033C12	526	EFA102389	4992	EFA1c0044_orf_83p	10904
E3M10000033D01	527	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000033D04	528	EFA101682	4951	EFA1c0041_orf_53p	10789
E3M10000033D05	529	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000033D06	530	EFA100641	4883	EFA1c0041_orf_57p	10793
E3M10000033D06	530	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000033D09	531	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000033D10	532	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000033D11	533	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000033E02	534	EFA101477	4945	EFA1c0043_orf_224p	10861
E3M10000033E03	535	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000033E03	535	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000033E04	536	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033E05	537	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000033E07	538	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000033E08	539	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000033E09	540	EFA100617	4882	EFA1c0040_orf_93p	10764
E3M10000033E11	541	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000033F01	542	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000033F03	543	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000033F04	544	EFA100704	4887	EFA1c0010_orf_4p	10482

 \vec{q} .

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000033F05	545	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000033F07	546	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000033F08	547	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000033F10	548	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000033F12	549	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000033F12	549	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000033G01	550	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000033G02	551	EFA102813	5013	EFA1c0043_orf_9p	10878
E3M10000033G03	552	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033G04	553	EFA102326	4986	#N/A	#N/A
E3M10000033G06	554	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000033G07	555	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000033G08	556	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000033G09	557	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033G12	558	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000033H02	559	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000033H04	560	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000033H05	561	EFA100741	4890	EFA1c0022_orf_21p	10535
E3M10000033H07	562	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000033H08	563	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000033H09	564	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000033H10	565	EFA101079	4908	#N/A	#N/A
E3M10000033H11	566	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034A02	567	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000034A03	568	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000034A04	569	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000034B02	570	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000034B04	571	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000034C04	572	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000034D01	573	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000034D02	574	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034E01	575	EFA 101 162	4919	EFA1c0022_orf_5p	10555
E3M10000034E04	576	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034F02	577	EPA101162	4919	EFA1c0022_orf_5p	10555
E3M10000034F03	578	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000034F04	579	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034G02	580	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000034G03	581	EFA100740	4889	EFA1c0022_orf_22p	10536
E3M10000034H02	582	EFA101257	4925	EFA1c0045_orf_159p	10917
E3M10000034H03	583	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000035A02	584	EFA103268	5023	EFA1c0010_orf_lp	10479
E3M10000035A04	585	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000035A05	586	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000035A06	587	EFA103571	5030	EFA1c0044_orf_101p	10879

PCT/US02/03987

Cione name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000035A08	588	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035A08	589	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000035A11	590	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000035B01	591	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000035B03	592	EFA100704	4887	EPA1c0010 orf 4p	10482
E3M10000035B06	593	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000035B07	594	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000035B08	595	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000035B10	596	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000035B11	597	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000035B12	598	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035C01	599	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035C03	600	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000035C04	601	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035C04	602	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000035C05	603	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000035C07	604	EFA100870	4899	EFA1c0031 orf 36p	10627
	605	EFA100741	4890	EFA1c0022 orf 21p	10535
E3M10000035C08	605	EFA100741	4891	EFA1c0022_orf_20p	10534
E3M10000035C08	606	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000035C09	607	EFA100704	4887	EFA1c0010_orf_4p	10482
	608	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035C12	609	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000035D02	610	EFA103504	5028	EFA1c0033 orf 94p	10671
E3M10000035D03	611	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000035D04	612	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000035D05	613	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000035D10	614	EFA100919	4901	EFA1c0047_off_101p	10491
E3M10000035D11		EFA101414	4939	EFA1c0022 orf 15p	10528
E3M10000035E03	615	<u> </u>	4939	EFA1c0022_orf_18p	10614
E3M10000035E04	616	EFA101141	4973	EFA1c0030_off_17p	10580
E3M10000035E05	617	EFA102006 EFA100919	4973	EFA1c0013 orf 12p	10491
E3M10000035E07		EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000035E08	619	EFA100312	4874	EFA1c0032 orf 28p	10641
E3M10000035E09	620	EFA101022	4906	EFA1c0032_off_69p	10875
E3M10000035E10			4899	EFA1c0043_off_36p	10627
E3M10000035E11	622	EFA100870	4887	EFA1c0010 orf 4p	10482
E3M10000035E12	623	EFA100704	4942	EFA1c0022_orf_18p	10531
E3M10000035F01	624	EFA101417	.1	EFA1c0022_orf_18p	10331
E3M10000035F02	625	EFA101925	4971	EFA1c0032_orf_28p	10641
E3M10000035F03	626	EFA100312	4874 4909	#N/A	#N/A
E3M10000035F06	627	EFA101080	_i	EFA1c0022_orf_8p	10559
E3M10000035F07	628	EFA101165	4922	EFA1c0010_orf_4p	10339
E3M10000035F08	629	EFA100704	4887	EFA1c0022_orf_12p	10482
E3M10000035F09	630	EFA101410	4935	EFA100022_011_12p	10323

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000035F09	630	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000035F11	631	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035F12	632	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000035G02	633	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000035G02	633	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000035G04	634 .	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000035G05	635	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000035G08	636	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000035G09	637	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000035G09	637	EFA103508	5029	EFA1c0033_orf_95p	10672
E3M10000035G10	638	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035G11	639	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000035H03	640	EFA101080	4909	#N/A	#N/A
E3M10000035H06	641	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000035H09	642	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000035H11	643	EFA101257	4925	EFA1c0045_orf_159p	10917
E3M10000035H11	643	EFA101258	4926	EFA1c0045_orf_160p	10918
E3M10000036A03	644	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000036A04	645	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000036A05	646	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000036A06	647	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000036A07	648	EFA103268	5023	EFA1c0010_orf_lp	10479
E3M10000036A08	649	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000036A09	650	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000036A10	651	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000036B01	652	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036B03	653	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000036B06	654	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036B07	655	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000036B08	656	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000036B09	657	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000036B11	658	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000036B12	659	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036B12	659	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000036C01	660	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000036C03	661	EFA103571	5030	EFA1c0044_orf_101p	10879
B3M10000036C06	662	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000036C07	663	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000036C08	664	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000036C09	665	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000036C10	666	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000036C11	667	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000036D03	668	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000036D04	669	EFA102201	4982	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000036D06	670	EFA100740	4889	EFA1c0022_orf_22p	10536
E3M10000036D08	671	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000036D09	672	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000036D10	673	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036D11	674	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000036D12	675	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000036E01	676	BFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036E04	677	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036E05	678	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000036E07	679	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000036E08	680	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000036F03	681	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000036F04	682	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000036F05	683	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000036F08	684	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000036F09	685	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000036F10	686	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036F12	687	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000036G01	688	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000036G01	688	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000036G02	689	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036G03	690	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000036G04	691	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000036G06	692	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000036G10	693	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036H02	694	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000036H03	695	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000036H04	696	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000036H05	697	EFA100194	4868	EFA1c0022_orf_26p	10540
ЕЗМ10000036Н06	698	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036H07	699	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000036H08	700	EFA103210	5022	EFA1c0036_orf_119p	10688
ЕЗМ10000036Н09	701	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036H10	702	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000037A03	703	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000037A06	704	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000037A08	705	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000037A09	706	EFA100756	4893	EFA1c0024_orf_39p	10575
E3M10000037A10	707	EFA103268	5023	EFA1c0010_orf_lp	10479
E3M10000037B02	708	EFA100641.	4883	EFA1c0041_orf_57p	10793
E3M10000037B02	708	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000037B07	709	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000037B08	710	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000037B11	711	EFA101686	4953	EFA1c0045_orf_63p	10940

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000037C01	712	EFA101080	4909	#N/A	#N/A
E3M10000037C02	713	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000037C04	714	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000037C05	715	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000037C07	716	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000037C07	716	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000037C11	717	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000037C12	718	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000037D02	719	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000037D03	720	EFA100795	4896	EFA1c0043_orf_229p	10863
E3M10000037D03	720	EFA103081	5020	EFA1c0043_orf_228p	10862
E3M10000037D04	721	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037D05	722	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000037D06	723	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000037D09	724	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000037D09	724	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000037D11	725	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037E01	726	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000037E02	727	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000037E03	728	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000037E05	729	EFA101080	4909	#N/A	#N/A
E3M10000037E07	730	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037E08	731	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000037E10	732	EFA101253	4924	EFA1c0043_orf_178p	10852
E3M10000037E12	733	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000037F01	734	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000037F02	735	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000037F06	736	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037F07	737	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037F12	738	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000037G01	739	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000037G02	740	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000037G03	741	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000037G05	742	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000037G06	743	EFA103295	5024	EFA1c0032_orf_lp	10633
E3M10000037G07	744	EFA101541	4948	EFA1c0012_orf_5p	10488
E3M10000037G08	745	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000037G10	746	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000037G11	747	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000037H02	748	EFA101413	4938	#N/A	#N/A
E3M10000037H05	749	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000037H07	750	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000037H10	751	EFA101080	4909	#N/A	#N/A
E3M10000037H11	752	EFA102541	4998	EFA1c0028_orf_3p	10602

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000038A02		EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000038A03	754	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000038A05	755	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000038A06	756	EFA 102549	5000	EFA1c0022_orf_24p	10538
E3M10000038A07	757	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000038A09	758	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000038A10	759	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000038A11	760	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000038B02	761	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000038B03	762	EFA102389	4992	EFA1c0044_orf_83p	10904
E3M10000038B04	763	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000038B05	764	EFA100795	4896	EFA1c0043_orf_229p	10863
E3M10000038B05	764	EFA103081	5020	EFA1c0043_orf_228p	10862
E3M10000038B07	765	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000038B08	766	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038B09	767	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000038B11	768	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000038C02	769	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000038C03	770	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000038C05	771	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000038C07	772	EFA101963	4972	EFA1c0043_orf_162p	10848
E3M10000038C10	773	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000038C12	774	EFA101080	4909	#N/A	#N/A
E3M10000038D01	775	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038D02	776	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000038D04	777	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038D08	778	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038D10	779	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000038D11	780	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000038D12	781	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038E02	782	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000038E03	783	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000038E04	784	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038E05	785	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000038E07	786	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000038E08	787	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000038E11	788	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000038F02	789	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000038F04	790	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000038F05	791	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038F05	791	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000038F06	792	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000038F07	793	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000038F09	794	EFA102185	4980	EFA1c0045_orf_95p	10950

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000038F10	795	EFA101080	4909	#N/A	#N/A
E3M10000038F11	796	EFA100740	4889	EFA1c0022_orf_22p	10536
E3M10000038G02	797	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000038G03	798	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000038G06	799	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000038G07	800	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000038G07	800	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000038G11	801	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000038H02	802	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000038H05	803	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038H06	804	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000038H07	805	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000038H08	806	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000038H09	807	EFA102802	5012	EFA1c0043_orf_18p	10854
E3M10000038H10	808	EFA101541	4948	EFA1c0012_orf_5p	10488
E3M10000039A02	809	EFA101736	4955	EFA1c0041_orf_14p	10775
E3M10000039A02	809	EFA101737	4956	EFA1c0041_orf_15p	10778
E3M10000039A06	810	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000039A07	811	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000039A08	812	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039A10	813	EFA101257	4925	EFA1c0045_orf_159p	10917
E3M10000039A11	814	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000039B01	815	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000039B03	816	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000039B04	817	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000039B04	817	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000039B06	818	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000039B07	819	EFA102110	4978	EFA1c0042_orf_99p	10841
E3M10000039B08	820	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000039B09	821	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000039B11	822	EFA101080	4909	#N/A	#N/A
E3M10000039C02	823	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000039C04	824	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039C05	825	EFA100739	4888	EFA1c0022_orf_23p	10537
E3M10000039C06	826	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000039C07	827	EFA101791	4960	EFA1c0042_orf_112p	10804
E3M10000039C07	827	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000039C08	828	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000039C09	829	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000039C10	830	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039D02	831	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000039D03	832	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000039D04	833	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000039D06	834	EFA101540	4947	EFA1c0012_orf_4p	10487

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000039E01	835	EFA102201	4982	#N/A	#N/A
E3M10000039E02	836	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000039E03	837	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000039E05	838	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000039E07	839	EFA103295	5024	EFA1c0032_orf_lp	10633
E3M10000039E08	840	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000039F01	841	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000039F02	842	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000039F03	843	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000039F03	843	EFA103375	5027	EFA1c0033_orf_40p	10660
E3M10000039F06	844	EFA100739	4888	EFA1c0022_orf_23p	10537
E3M10000039F07	845	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000039F08	846	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039G01	847	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000039G02	848	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000039G05	849	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000039G07	850	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000039G09	851	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000039G10	852	EFA101682	4951	EFA1c0041_orf_53p	10789
E3M10000039H02	853	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000039H07	854	EFA101080	4909	#N/A	#N/A
E3M10000039H08	855	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000039H10	856	EFA101413	4938	#N/A	#N/A
E3M10000039H11	857	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000039H11	857	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000040A03	858	EFA101123	4913	EFA1c0040_orf_22p	10748
E3M10000040A05	859	EFA101080	4909	#N/A	#N/A
E3M10000040A07	860	EFA100157	4865	EFA1c0034_orf_63p	10673
E3M10000040A09	861	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000040A10	862	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000040A11	863	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000040B01	864	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000040B02	865	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000040B05	866	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000040B05	866	EFA103268	5023	EFA1c0010_orf_1p	10479
E3M10000040B06	867	EFA102518	4997	EFA1c0032_orf_46p	10647
E3M10000040B08	868	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000040B09	869	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000040B10	870	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000040B11	871	EFA102764	5008	EFA1c0008_orf_3p	10478
E3M10000040B12	872	EFA100210	4870 -	EFA1c0022_orf_9p	10560
E3M10000040C02	873	EFA101080	4909	#N/A	#N/A
B3M10000040C05	874	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000040C06	875	EFA102091	4977	EFA1c0010_orf_3p	10481

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000040C07	876	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000040C08	877	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000040C09	878	EFA100165	4866	EFA1c0032_orf_23p	10637
E3M10000040C09	878	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000040C10	879	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000040C11	880	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000040C12	881	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000040D03	882	EFA102201	4982	#N/A	#N/A
E3M10000040D04	883	EFA101080	4909	#N/A	#N/A
E3M10000040D08	884	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000040D12	885	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000040E02	886	EFA102051	4976	#N/A	#N/A
E3M10000040E10	887	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000040E11	888	EFA103039	5018	EFA1c0043_orf_16p	10850
E3M10000040E12	889	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000040F01	890	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000040F03	891	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000040F08	892	EFA101080	4909	#N/A	#N/A
E3M10000040F09	893	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000040F10	894	EFA102051	4976	#N/A	#N/A
E3M10000040G01	895	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000040G02	896	EFA101424	4943	EFA1c0041_orf_39p	10784
E3M10000040G02	896	EFA101425	4944	EFA1c0041_orf_40p	10785
E3M10000040G04	897	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000040G05	898	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000040G07	899	EFA101079	4908	#N/A	#N/A
E3M10000040G07	899	EFA101080	4909	#N/A	#N/A
E3M10000040G08	900	EFA102186	4981	EFA1c0045_orf_94p	10949
E3M10000040G09	901	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000040G11	902	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000040H02	903	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000040H03	904	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000040H04	905	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000040H04	905	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000040H05	906	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000040H05	906	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000040H09	907	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000040H09	907	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041A03	908	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000041A05	909	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000041A08	910	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041A09	911	EFA101354	4930	EFA1c0032_orf_69p	10648
E3M10000041A10	912	EFA100001	4861	EFA1c0030_orf_3p	10618
E3M10000041A11	913	EFA100642	4884	EFA1c0041_orf_56p	10792

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000041A11	913	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000041B02	914	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000041B03	915	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000041B05	916	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000041B06	917	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000041B08	918	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000041B09	919	EFA101924	4970	EFA1c0044_orf_18p	10891
E3M10000041B09	919	EFA101925	4971	EFA1c0044_orf_19p	10893
E3M10000041B10	920	EFA101080	4909	#N/A	#N/A
E3M10000041B11	921	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000041B11	921	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041B12	922	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000041C01	923	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000041C07	924	EFA100739	4888	EFA1c0022_orf_23p	10537
E3M10000041C08	925	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000041C09	926	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000041C10	927	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000041C11	928	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000041C12	929	EFA100798	4897	EFA1c0042_orf_160p	10818
E3M10000041D02	930	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000041D03	931	EFA101060	4907	EFA1c0038_orf_73p	10722
E3M10000041D04	932	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000041D04	932	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000041D05	933	EFA101080	4909	#N/A	#N/A
E3M10000041D06	934	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000041D08	935	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041D09	936	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000041D10	937	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000041D11	938	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041D12	939	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000041E02	940	EFA101797	4963	EFA1c0045_orf_167p	10924
E3M10000041E03	941	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000041E05	942	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000041E07	943	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000041E10	944	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041E11	945	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000041F03	946	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000041F05	947	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000041F06	948	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000041F07	949	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000041F08	950	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000041F09	951	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041F10	952	EFA101079	4908	#N/A	#N/A
E3M10000041F10	952	EFA101080	4909	#N/A	#N/A

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000041F11	953	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000041G02	954	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000041G03	955	EFA102253	4984	EFA1c0038_orf_85p	10727
E3M10000041G04	956	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000041G06	957	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000041G07	958	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000041G08	959	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041G09	960	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041G10	961	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000041G12	962	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000041H04	963	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000041H05	964	EFA100329	4875	EFA1c0041_orf_35p	10782
E3M10000041H06	965	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000041H07	966	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000041H08	967	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000041H09	968	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000041H10	969	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000041H11	970	EFA102253	4984	EFA1c0038_orf_85p	10727
E3M10000042A03	971	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000042A03	971	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042A08	972	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000042A10	973	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042B01	974	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000042B02	975	EFA100668	4885	EFA1c0035_orf_58p	10679
E3M10000042B04	976	EFA102186	4981	EFA1c0045_orf_94p	10949
E3M10000042B04	976	EFA102453	4993	EFA1c0045_orf_203p	10931
E3M10000042B08	977	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000042B09	978	EFA101797	4963	EFA1c0045_orf_167p	10924
E3M10000042B10	979	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042B11	980	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000042C02	981	EFA101150	4915	EFA1c0038_orf_57p	10719
E3M10000042C03	982	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000042C04	983	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000042C10	984	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000042C10	984	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000042D01		EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000042D02	986	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000042D03	987	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000042D06	988	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000042D09	989	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000042D11	990	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000042D12	991	EFA100795	4896	EFA1c0043_orf_229p	10863
E3M10000042E05	992	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000042E12	993	EFA102351	4989	EFA1c0032_orf_20p	10634

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID 10805
E3M10000042F11	994	EFA101792	4961	EFA1c0042_orf_113p	10527
E3M10000042G01	995	EFA101412	4937	EFA1c0022_orf_14p	
E3M10000042G05	996	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000042G07	997	EFA101169	4923	EFA1c0024_orf_38p	10574
E3M10000042G08	998	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000042G11	999	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000042G11	999	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042G12	1000	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000042H06	1001	EFA101799	4964	EFA1c0045_orf_169p	10926
E3M10000042H08	1002	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000042H11	1003	EFA100668	4885	EFA1c0035_orf_58p	10679
E3M10000043A02	1004	EFA101799	4964	EFA1c0045_orf_169p	10926
E3M10000043A03	1005	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000043A05	1006	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043A08	1007	EFA100689	4886	EFA1c0038_orf_54p	10717
E3M10000043A09	1008	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000043A09	1008	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000043A10	1009	EFA101080	4909	#N/A	#N/A
E3M10000043A11	1010	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000043B01	1011	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000043B02	1012	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000043B03	1013	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000043B06	1014	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000043B08	1015	EFA101123	4913	EFA1c0040_orf_22p	10748
E3M10000043B09	1016	EFA101892	4969	EFA1c0017_orf_21p	10506
E3M10000043B10	1017	EFA 102656	5004	EFA1c0039_orf_26p	10734
E3M10000043B11	1018	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000043B12	1019	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000043C01	1020	EFA 102656	5004	EFA1c0039_orf_26p	10734
E3M10000043C08	1021	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000043C09	1022	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000043D01	1023	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000043D02	1024	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043D09	1025	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000043D10	1026	EFA101872	4967	EFA1c0042_orf_152p	10815
E3M10000043D10	1026	EFA101873	4968	EFA1c0042_orf_153p	10816
E3M10000043D12	1027	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043E03	1028	EFA 100397	4877	EFA1c0041_orf_148p	10773
E3M10000043E07	1029	EFA101339	4928	EFA1c0040_orf_13p	10743
E3M10000043E08	1030	EFA101872	4967	EFA1c0042_orf_152p	10815
E3M10000043E08	1030	EFA101873	4968	EFA1c0042_orf_153p	10816
E3M10000043E10	1031	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000043E11	1032	EFA102813	5013	EFA1c0043_orf_9p	10878
E3M10000043F03	1033	EFA102655	5003	EFA1c0039_orf_25p	10733

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000043F04	1034	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000043F06	1035	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000043F08	1036	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000043F10	1037	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000043F12	1038	EFA101080	4909	#N/A	#N/A
E3M10000043G03	1039	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043G04	1040	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043G05	1041	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000043G07	1042	EFA100157	4865	EFA1c0034_orf_63p	10673
E3M10000043G08	1043	EFA101080	4909	#N/A	#N/A
E3M10000043G10	1044	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000043G11	1045	EFA101080	4909	#N/A	#N/A
E3M10000043G12	1046	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000043H02	1047	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000043H05	1048	EFA101080	4909	#N/A	#N/A
E3M10000043H08	1049	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000043H09	1050	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000043H11	1051	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000044C02	1052	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000044E01	1053	EFA102091	4977	EFA1c0010_orf_3p	10481
K1M10000002F02	1054	KPN101750	5037	KPN1c1723_orf_lp	11652
K1M10000003C01	1055	KPN103882	5040	KPN1c2848_orf_lp	11716
K1M10000007F01	1057	KPN104183	5041	KPN1c1646_orf_2p	11650
K1M10000007F01	1057	KPN106659	5049	KPN1c1646_orf_lp	11649
K1M10000008C02	1058	KPN107626	5051	#N/A	#N/A
K1M10000008C10	1059	KPN101729	5036	KPN1c1566_orf_lp	11647
K1M10000008G10	1060	KPN106840	5050	KPN1c2087_orf_1p	11664
K1M10000009D04	1061	KPN107776	5052	KPN1c4041_orf_lp	11771
K1M10000013E04	1062	KPN105779	5047	KPN1c4012_orf_lp	11770
K1M10000020B02	1065	KPN101729	5036	KPN1c1566_orf_1p	11647
K1M10000022C10	1067	KPN100854	5033	KPN1c0845_orf_lp	11630
K1M10000030C07	1070	KPN104716	5045	KPN1c3094_orf_5p	11757
K1M10000030E07	1071	KPN104538	5044	KPN1c2918_orf_2p	11726
K1M10000032E11	1073	KPN101729	5036	KPN1c1566_orf_1p	11647
K1M10000033B02	1074	KPN101729	5036	KPN1c1566_orf_1p	11647
K1M10000033E01	1075	KPN100432	5032	KPN1c0331_orf_lp	11628
K1M10000036G08	1076	KPN106044	5048	#N/A	#N/A
K1M10000037D10	1077	KPN104281	5042	KPN1c3000_orf_3p	11742
K1M10000038H09	1078	KPN102057	5038	KPN1c1958_orf_lp	11661
K1M10000039H03	1079	KPN106840	5050	KPN1c2087_orf_lp	11664
K1M10000043D05	1081	KPN102638	5039	KPN1c2127_orf_lp	11667
K1M10000043H10	1082	KPN105722	5046	#N/A	#N/A
K1M10000044D08	1084	KPN104430	5043	#N/A	#N/A
K1M10000044G05	1086	KPN101026	5035	KPN1c0875_orf_lp	11631

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
K1M10000045A07	1087	KPN101022	5034	KPN1c1316_orf_3p	11642
K1M10000045D10	1088	KPN102638	5039	KPN1c2127_orf_lp	11667
P1M10000008C06	1092	PA2424	5107	#N/A	#N/A
P1M10000008G04	1093	PA0337	5060	#N/A	#N/A
P1M10000010C03	1094	PA4997	5202	#N/A	#N/A
P1M10000014H10	1095	PA4252	5168	#N/A	#N/A
P1M10000014H10	1095	PA4253	5169	#N/A	#N/A
P1M10000015C06	1096	PA0413	5064	#N/A	#N/A
P1M10000015C06	1096	PA0414	5065	#N/A	#N/A
P1M10000015C09	1097	PA3041	5124	#N/A	#N/A
P1M10000016C04	1098	PA2680	5117	#N/A	#N/A
P1M10000018B01	1099	PA4264	5177	#N/A	#N/A
P1M10000018C01	1100	PA4264	5177	#N/A	#N/A
P1M10000018E01	1101	PA4067	5151	#N/A	#N/A
P1M10000018G01	1102	PA4067	5151	#N/A	#N/A
PIM10000019F01	1103	PA4271	5180	#N/A	#N/A
P1M10000019F01	1103	PA4272	5181	#N/A	#N/A
P1M10000021G03	1104	PA4264	5177	#N/A	#N/A
P1M10000021G05	1105	PA4251	5167	#N/A	#N/A
P1M10000022D09	1106	PA5299	5211	#N/A	#N/A
P1M10000024D06	1107	PA3160	5130	#N/A	#N/A
P1M10000024E06	1108	PA4888	5200	#N/A	#N/A
P1M10000024H03	1109	PA2313	5105	#N/A	#N/A
P1M10000025A06	1110	PA2222	5104	#N/A	#N/A
P1M10000025G07	1111	PA3153	5128	#N/A	#N/A
P1M10000025H07	1112	PA3153	5128	#N/A	#N/A
P1M10000025H07	1112	PA3154	5129	#N/A	#N/A
P1M10000026E06	1113	PA0715	5074	#N/A	#N/A
P1M10000026F04	1114	PA2222	5104	#N/A	#N/A
P1M10000026G09	1115	PA3011	5122	#N/A	#N/A
P1M10000026H02	1116	PA3013	5123	#N/A	#N/A
P1M10000026H05	1117	PA3154	5129	#N/A	#N/A
P1M10000027A06	1118	PA4257	5172	#N/A	#N/A
P1M10000027B02	1119	PA3154	5129	#N/A	#N/A
P1M10000027G05	1120	PA2313	5105	#N/A	#N/A
P1M10000028A08		PA0788	5075	#N/A	#N/A
P1M10000028B01	1122	PA4263	5176	#N/A	#N/A
P1M10000028E02	1123	PA2584	5112	#N/A	#N/A
P1M10000029A09	1124	PA3154	5129	#N/A	#N/A
P1M10000029G03	1125	PA1301	5083	#N/A	#N/A
P1M10000029H05	1126	PA0353	5061	#N/A	#N/A
P1M10000032F04	1127	PA0265	5058	#N/A	#N/A
P1M10000033A02	1128	PA3068	5126	#N/A	#N/A
P1M10000033B08	1129	PA4244	5160	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
	Seqid		(protein)		Protein Seq
P1M10000033E03	1130	PA3984	5147	#N/A	#N/A
P1M10000033F01	1131	PA1986	5095	#N/A	#N/A
P1M10000033G08	1132	PA2009	5096	#N/A	#N/A
P1M10000035A06	1133	PA4249	5165	#N/A	#N/A
PIM10000037B12	1134	PA4254	5170	#N/A	#N/A
PIM10000037G12	1135	PA5076	5204	#N/A	#N/A
P1M10000038B08	1136	PA4070	5152	#N/A	#N/A
P1M10000038C03	1137	PA3931	5146	#N/A	#N/A
P1M10000038C06	1138	PA2197	5103	#N/A	#N/A
P1M10000038F04	1139	PA5207	5208	#N/A	#N/A
P1M10000038G02	1140	PA4542	5192	#N/A	#N/A
P1M10000039G05	1141	PA3764	5141	#N/A	#N/A
PIM10000039G12	1142	PA5567	5220	#N/A	#N/A
P1M10000040C01	1143	PA4105	5154	#N/A	#N/A
P1M10000040C04	1144	PA1115	5081	#N/A	#N/A
P1M10000040D04	1145	PA0378	5062	#N/A	#N/A
P1M10000040D05	1146	PA5209	5209	#N/A	#N/A
P1M10000040E10	1147	PA2128	5100	#N/A	#N/A
P1M10000040H03	1148	PA1115	5081	#N/A	#N/A
P1M10000041A12	1149	PA4254	5170	#N/A	#N/A
P1M10000041B02	1150	PA2128	5100	#N/A	#N/A
P1M10000041E01	1151	PA2398	5106	#N/A	#N/A
P1M10000041F01	1152	PA4681	5196	#N/A	#N/A
P1M10000042B12	1153	PA0642	5072	#N/A	#N/A
P1M10000042E08	1154	PA4252	5168	#N/A	#N/A
P1M10000042E08	1154	PA4253	5169	#N/A	#N/A
P1M10000043A03	1155	PA3006	5121	#N/A	#N/A
P1M10000043D06	1156	PA3764	5141	#N/A	#N/A
P1M10000044F07	1157	PA4244	5160	#N/A	#N/A
P1M10000046B03	1158	PA1462	5087	#N/A	#N/A
P1M10000046C07	1159	PA2671	5116	#N/A	#N/A
PIM10000046C08	1160	PA0472	5069	#N/A	#N/A #N/A
P1M10000046C09	1161	PA3764 PA1115	5141	#N/A #N/A	#N/A
P1M10000046G11	1162	PA3006	5081	#N/A	#N/A
P1M10000047B04		PA2684	5118	#N/A	#N/A
P1M10000047E11			5190	#N/A	#N/A
PIM10000047F07		PA4506	5174	#N/A	#N/A
P1M10000047G10 P1M10000048A03	1166	PA4259 PA4105	5174	#N/A #N/A	#N/A
			5181	#N/A #N/A	#N/A
P1M10000049E08 P1M10000049G10	1168	PA4272 PA4027	5149	#N/A	#N/A
PIM10000049G10	1170	PA4249	5165	#N/A	#N/A
PIM10000051D11	1170	PA1365	5085	#N/A	#N/A
P1M10000051F01	1171	PA1115	5081	#N/A	#N/A
LIMITOOOOOJILOI	11/2	121112	3001	mara.	m.v.r.

	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
P1M10000052C03	1173	PA0938	5078	#N/A	#N/A
P1M10000052C12	1174	PA5076	5204	#N/A	#N/A
P1M10000052E04	1175	PA1398	5086	#N/A	#N/A
P1M10000053B12	1176	PA5436	5215	#N/A	#N/A
P1M10000053C02	1177	PA0353	5061	#N/A	#N/A
P1M10000053E07	1178	PA4254	5170	#N/A	#N/A
P1M10000053F08	1179	PA1270	5082	#N/A	#N/A
P1M10000055A11	1180	PA5076	5204	#N/A	#N/A
P1M10000055C08	1181	PA1493	5088	#N/A	#N/A
P1M10000055E05	1182	PA5507	5219	#N/A	#N/A
P1M10000056C07	1183	PA1360	5084	#N/A	#N/A
P1M10000056F05	1184	PA4258	5173	#N/A	#N/A
P1M10000056F05	1184	PA4259	5174	#N/A	#N/A
P1M10000056F06	1185	PA2634	5114	#N/A	#N/A
P1M10000056G01	1186	PA5076	5204	#N/A	#N/A
P1M10000058B07	1187	PA5436	5215	#N/A	#N/A
P1M10000059B04	1188	PA4375	5186	#N/A	#N/A
P1M10000059B10	1189	PA4269	5179	#N/A	#N/A
P1M10000059B11	1190	PA0934	5077	#N/A	#N/A
P1M10000059D11	1191	PA4027	5149	#N/A	#N/A
PIM10000059H08	1192	PA4027	5149	#N/A	#N/A
P1M10000059H09	1193	PA4271	5180	#N/A	#N/A
P1M10000060E03	1194	PA0423	5067	#N/A	#N/A
P1M10000060H02	1195	PA0221	5057	#N/A	#N/A
P1M10000060H04	1196	PA4473	5189	#N/A	#N/A
P1M10000061B04	1197	PA2726	5119	#N/A	#N/A
P1M10000061E04	1198	PA4244	5160	#N/A	#N/A
P1M10000061F04	1199	PA3522	5136	#N/A	#N/A
P1M10000062A12	1200	PA4598	5194	#N/A	#N/A
P1M10000062C03	1201	PA0321	5059	#N/A	#N/A
P1M10000062C04	1202	PA4254	5170	#N/A	#N/A
P1M10000062C07	1203	PA4251	5167	#N/A	#N/A
P1M10000062C12	1204	PA5316	5212	#N/A	#N/A
P1M10000062D07	1205	PA4247	5163	#N/A	#N/A
P1M10000062D08	1206	PA0882	5076	#N/A	#N/A
P1M10000062E08		PA4248	5164	#N/A	#N/A
P1M10000062E08	1207	PA4249	5165	#N/A	#N/A
P1M10000062F06	1208	PA0028	5053	#N/A	#N/A
P1M10000062G11	1209	PA4506	5190	#N/A #N/A	#N/A #N/A
P1M10000062H01 P1M10000062H04	1210	PA3121	5127	#N/A #N/A	#N/A
P1M10000062H04	1211	PA4254	5170	#N/A	#N/A #N/A
P1M10000063F02	1212	PA2684	5118 5175	#N/A	#N/A
P1M10000063H02	1213	PA4262 PA4081	5153	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
P1M10000064A10	1215	PA4268	5178	#N/A	#N/A
P1M10000064C02	1216	PA0650	5073	#N/A	#N/A
P1M10000064C03	1217	PA5030	5203	#N/A	#N/A
P1M10000064D03	1218	PA0129	5055	#N/A	#N/A
P1M10000064E05	1219	PA4512	5191	#N/A	#N/A
P1M10000064G12	1220	PA2147	5101	#N/A	#N/A
P1M10000064H07	1221	PA1072	5080	#N/A	#N/A
P1M10000065A04	1222	PA3522	5136	#N/A	#N/A
P1M10000065B07	1223	PA4347	5184	#N/A	#N/A
P1M10000065C03	1224	PA4347	5184	#N/A	#N/A
P1M10000065C05	1225	PA0642	5072	#N/A	#N/A
P1M10000065D06	1226	PA4347	5184	#N/A	#N/A
P1M10000065F01	1227	PA2494	5111	#N/A	#N/A
P1M10000065G06	1228	PA0423	5067	#N/A	#N/A
P1M10000065H07	1229	PA1019	5079	#N/A	#N/A
P1M10000066A10	1230	PA4709	5197	#N/A	#N/A
P1M10000066A11	1231	PA2594	5113	#N/A	#N/A
P1M10000066F04	1232	PA4024	5148	#N/A	#N/A
P1M10000067A05	1233	PA3876	5144	#N/A	#N/A
P1M10000067A05	1233	PA3877	5145	#N/A	#N/A
P1M10000067A06	1234	PA0419	5066	#N/A	#N/A
P1M10000067A08	1235	PA0600	5071	#N/A	#N/A
P1M10000067C04	1236	PA3845	5142	#N/A	#N/A
P1M10000067C06	1237	PA4433	5188	#N/A	#N/A
P1M10000067D05	1238	PA3479	5134	#N/A	#N/A
P1M10000067F05	1239	PA3643	5137	#N/A	#N/A
P1M10000067G05	1240	PA5199	5207	#N/A	#N/A
P1M10000068A09	1241	PA0353	5061	#N/A	#N/A
P1M10000068D04	1242	PA5388	5213	#N/A	#N/A
P1M10000068F04	1243	PA4237	5158	#N/A	#N/A
P1M10000068F08	1244	PA5193	5206	#N/A	#N/A
P1M10000068G01	1245	PA3716	5140	#N/A	#N/A
P1M10000068H05	1246	PA4268	5178	#N/A	#N/A
P1M10000069D09	1247	PA4246	5162	#N/A	#N/A
P1M10000069G06	1248	PA4246	5162	#N/A	#N/A
P1M10000069H02	1249	PA4433	5188	#N/A	#N/A
P1M10000070A05	1250	PA2470	5109	#N/A	#N/A
P1M10000070B10	1251	PA5393	5214	#N/A	#N/A
P1M10000070C06	1252	PA4237	5158	#N/A	#N/A
P1M10000070D08	1253	PA4105	5154	#N/A	#N/A
P1M10000070E03	1254	PA4709	5197	#N/A	#N/A
P1M10000070G06	1255	PA3374	5133	#N/A	#N/A
P1M10000070G12	1256	PA3121	5127	#N/A	#N/A
P1M10000070H06	1257	PA3374	5133	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
P1M10000071A03	1258	PA4251	5167	#N/A	ID #N/A
P1M10000071C01	1259	PA4251	5167	#N/A	#N/A
P1M10000071E04	1260	PA3484	5135	#N/A	#N/A
P1M10000071F01	1261	PA0506	5070	#N/A	#N/A
P1M10000073A06	1262	PA4246	5162	#N/A	#N/A
P1M10000073B10	1263	PA5248	5210	#N/A	#N/A
P1M10000073D04	1264	PA1115	5081	#N/A	#N/A
P1M10000073D09	1265	PA1918	5094	#N/A	#N/A
P1M10000073G03	1266	PA5248	5210	#N/A	#N/A
P1M10000074B01	1267	PA4771	5199	#N/A	#N/A
P1M10000074B04	1268	PA1684	5091	#N/A	#N/A
P1M10000074E04	1269	PA0120	5054	#N/A	#N/A
P1M10000074E09	1270	PA3479	5134	#N/A	#N/A
P1M10000074F10	1271	PA1019	5079	#N/A	#N/A
P1M10000074G12	1272	PA4244	5160	#N/A	#N/A
P1M10000074G12	1272	PA4245	5161	#N/A	#N/A
P1M10000075A04	1273	PA3279	5131	#N/A	#N/A
P1M10000075A04	1273	PA3280	5132	#N/A	#N/A
PIM10000075B03	1274	PA4576	5193	#N/A	#N/A
P1M10000075F02	1275	PA4254	5170	#N/A	#N/A
P1M10000075G05	1276	PA3709	5139	#N/A	#N/A
P1M10000076D05	1277	PA1876	5093	#N/A	#N/A
P1M10000076D10	1278	PA1636	5090	#N/A	#N/A
P1M10000077A08	1279	PA3479	5134	#N/A	#N/A
P1M10000077C08	1280	PA1019	5079	#N/A	#N/A
P1M10000077E04	1281	PA3522	5136	#N/A	#N/A
P1M10000077H05	1282	PA4246	5162	#N/A	#N/A
P1M10000079A10	1283	PA4576	5193	#N/A	#N/A
P1M10000079B10	1284	PA4576	5193	#N/A	#N/A
P1M10000079C10	1285	PA4576	5193	#N/A	#N/A
P1M10000079D01	1286	PA1547	5089	#N/A	#N/A
P1M10000079D10	1287	PA5490	5217	#N/A	#N/A
P1M10000079F06	1288	PA3006	5121	#N/A	#N/A
P1M10000080B01	1289	PA3866	5143	- #N/A	#N/A
P1M10000080B06	1290	PA4244	5160	#N/A	#N/A
P1M10000080B06		PA4245	5161	#N/A	#N/A
P1M10000080C01	1291	PA0469	5068	#N/A	#N/A
P1M10000080C06	1292	PA4250	5166	#N/A	#N/A
P1M10000080E04	1293	PA4250	5166	#N/A #N/A	#N/A
P1M10000081D12	1294	PA3006	5121		#N/A #N/A
PIM10000081G05	1295	PA4037	5150	#N/A #N/A	#N/A
P1M10000081H05	1296	PA4316	5182	#N/A #N/A	#N/A #N/A
P1M10000082A05	1297	PA0401	5063	#N/A	#N/A
P1M10000082B04	1298	PA3006	5121	#IVA	#IVA

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
P1M10000082C05	1299	PA4246	5162	#N/A	#N/A
P1M10000082D05	1300	PA4256	5171	#N/A	#N/A
P1M10000082E05	1301	PA4246	5162	#N/A	#N/A
P1M10000083A11	1302	PA3006	5121	#N/A	#N/A
P1M10000083B01	1303	PA4271	5180	#N/A	#N/A
P1M10000083B12	1304	PA4268	5178	#N/A	#N/A
P1M10000083C11	1305	PA4242	5159	#N/A	#N/A
P1M10000083C12	1306	PA3006	5121	#N/A	#N/A
P1M10000084A04	1307	PA4942	5201	#N/A	#N/A
P1M10000084D03	1308	PA3006	5121	#N/A	#N/A
PIM10000084E04	1309	PA5493	5218	#N/A	#N/A
P1M10000084E11	1310	PA2196	5102	#N/A	#N/A
P1M10000084F08	1311	PA4271	5180	#N/A	#N/A
P1M10000085D06	1312	PA3006	5121	#N/A	#N/A
P1M10000086A02	1313	PA4413	5187	#N/A	#N/A #N/A
P1M10000086B01	1314	PA4158	5157	#N/A #N/A	#N/A #N/A
P1M10000086D02	1315	PA2641	5115	#N/A	#N/A
P1M10000086E05	1316	PA3006	5121 5178	#N/A	#N/A
P1M10000087A11 P1M10000087C09	1317	PA4268 PA2083	5097	#N/A	#N/A
P1M10000087E04	1319	PA4246	5162	#N/A	#N/A
P1M10000087F04	1320	PA0141	5056	#N/A	#N/A
P1M10000087F09	1321	PA4124	5155	#N/A	#N/A
P1M10000087F09	1321	PA4125	5156	#N/A	#N/A
P1M10000087107	1322	PA2742	5120	#N/A	#N/A
P1M10000088D06	1323	PA2108	5099	#N/A	#N/A
P1M10000089C08	1324	PA3048	5125	#N/A	#N/A
P1M10000089D11	1325	PA4268	5178	#N/A	#N/A
P1M10000089G08	1326	PA2461	5108	#N/A	#N/A
P1M10000090B11	1327	PA3153	5128	#N/A	#N/A
P1M10000090F06	1328	PA2313	5105	#N/A	#N/A
P1M10000090F08	1329	PA4258	5173	#N/A	#N/A
P1M10000090F08	1329	PA4259	5174	#N/A	#N/A
P1M10000091D02	1330	PA3866	5143	#N/A	#N/A
P1M10000091E09	1331	PA5316	5212	#N/A	#N/A
P1M10000091G10	1332	PA2742	5120	#N/A	#N/A
P1M10000092B02	1333	PA2641	5115	#N/A	#N/A
P1M10000092B10	1334	PA4268	5178	#N/A	#N/A
P1M10000092D09		PA2128	5100	#N/A	#N/A
P1M10000092E02	1336	PA4256	5171	#N/A	#N/A
P1M10000092F05	1337	PA0423	5067	#N/A	#N/A
P1M10000093A03	1338	PA5088	5205	#N/A	#N/A
P1M10000093B09	1339	PA3703	5138	#N/A	#N/A
P1M10000093C08	1340	PA1868	5092	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
	1	7 4000		107/4	ID
P1M10000093E09	1341	PA4332	5183	#N/A	#N/A
P1M10000093F03	1342	PA2101	5098	#N/A	#N/A
P1M10000093H07	1343	PA4665	5195	#N/A	#N/A
P1M10000094F04	1344	PA4268	5178	#N/A	#N/A
PIM10000094H03	1345	PA4744	5198	#N/A	#N/A
P1M10000095C01	1346	PA2488	5110	#N/A	#N/A
PIM10000095C09	1347	PA5443	5216	#N/A	#N/A
PIM10000095E04	1348	PA4363	5185	#N/A	#N/A
PIM10000095G04	1349	PA4256	5171	#N/A	#N/A
P1M10000096E04	1350	PA0353	5061	#N/A	#N/A
P1M10000096E12	1351	PA4246	5162	#N/A	#N/A
SIM10000001A05	1354	SAU103232	5769	SAU1c0045_orf_341p	12697
SIM10000001A05	1354	SAU201508	5819	SAU2c0432_orf_19p	12947
S1M10000001A08	1355	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000001A09	1356	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM10000001A10	1357	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000001C06	1358	SAU102939	5747	#N/A	#N/A
S1M10000001D01	1359	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000001D02	1360	SAU100527	5285	SAU1c0037_orf_101p	12341
S1M10000001D02	1360	SAU100880	5346	SAU1c0037_orf_100p	12340
S1M10000001D06	1361	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000001D07	1362	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000001E02	1363	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000001E04	1364	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000001E04	1364	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000001E05	1365	SAU102939	5747	#N/A	#N/A
S1M10000001E09	1366	SAU201752	5832	SAU2c0436_orf_19p	12963
SIM10000001E10	1367	SAU103038	5757	#N/A	#N/A
SIM10000001E11	1368	SAU302513	5906	SAU3c1298_orf_lp	13085
S1M10000001F02	1369	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000001F04	1370	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000001F08	1371	SAU102437	5670	SAU1c0045_orf_33p	12695
SIM10000001F09	1372	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000001F10	1373	SAU102602	5708	SAUIc0032_orf_5p	12249
SIM10000001F11		SAU102939	5747	#N/A	#N/A
S1M10000001111	1375	SAU102939	5747	#N/A	#N/A
SIM1000001G07	1376	SAU102939	5747	#N/A	#N/A
S1M10000001G08	1377	SAU102939	5747	#N/A	#N/A
S1M10000001G10	1378	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000001G10	1379	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000002A02	1379	SAU101495	5467	SAU1c0037_orf_65p	12360
SIM1000002A09		SAU201810		SAU2c0308_orf_2p	12769
	1381	SAU201810	5836	SAU2c0412_orf_3p	12895
SIM10000002A10	1381	L	5845	#N/A	#N/A
SIM10000002A10	1381	SAU301148	5888	#N/A	#IN/A

١

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000002A12	1382	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000002A12	1382	SAU300455	5872	#N/A	#N/A
S1M10000002A12	1382	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000002B01	1383	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000002B03	1384	SAU101034	5371	SAU1c0044_orf_27p	12608
S1M10000002B04	1385	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002B05	1386	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000002B06	1387	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000002B07	1388	SAŪ101389	5441	SAU1c0038_orf_54p	12387
S1M10000002B09	1389	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000002B09	1389	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002B09	1389	SAU301148	5888	#N/A	#N/A
S1M10000002B11	1390	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000002C02	1391	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000002C02	1391	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002C02	1391	SAU301148	5888	#N/A	#N/A
S1M10000002C09	1392	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000002C10	1393	SAU103077	5759	SAU1c0039_orf_44p	12408
S1M10000002C11	1394	SAU202267	5848	SAU2c0204_orf_2p	12727
S1M10000002C11	1394	SAU202781	5853	SAU2c0109_orf_2p	12718
S1M10000002C11	1394	SAU203001	5859	SAU2c0412_orf_15p	12894
S1M10000002C11	1394	SAU302698	5909	SAU3c1408_orf_2p	13114
S1M10000002C11	1394	SAU302699	5910	SAU3cl408_orf_3p	13115
S1M10000002C12	1395	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000002D01	1396	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002D02	1397	SAU100741	5318	SAU1c0039_orf_48p	12409
S1M10000002D03	1398	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000002D05	1399	SAU202930	5856	SAU2c0396_orf_3p	12871
S1M10000002D07	1400	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000002D07	1400	SAU101653	5504	SAUIc0042_orf_124p	12493
S1M10000002D08	1401	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000002D10	1402	SAU102939	5747	#N/A	#N/A
S1M10000002D12	1403	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000002E01	1404	SAU101616	5495	SAU1c0040_orf_32p	12432
S1M10000002E02	1405	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000002E07	1406	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000002E07	1406	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002E07	1406	SAU301148	5888	#N/A	#N/A
S1M10000002E09	1407	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000002E11	1408	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000002E12	1409	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000002F01	1410	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000002F02	1411	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000002F04	1412	SAU102939	5747	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000002F09	1413	SAŪ302513	5906	SAU3c1298_orf_lp	13085
S1M10000002F12	1414	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002G01	1415	SAU102939	5747	#N/A	#N/A
S1M10000002G03	1416	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000002G05	1417	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002G06	1418	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002G07	1419	SAU103038	5757	#Ñ/A	#N/A
S1M10000002G08	1420	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000002G09	1421	SAU102939	5747	#N/A	#N/A
S1M10000002G10	1422	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000002G11	1423	SAU102939	5747	#N/A	#N/A
S1M10000002G12	1424	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003A01	1425	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000003A01	1425	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000003A01	1425	SAU301148	5888	#N/A	#N/A
S1M10000003A02	1426	SAU101624	5497	SAU1c0040_orf_25p	12429
S1M10000003A03	1427	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000003A04	1428	SAU101360	5431	SAUIc0044_orf_109p	12555
S1M10000003A06	1429	SAU101266	5408	SAU1c0042_orf_117p	12490
S1M10000003A07	1430	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003A08	1431	SAU102939	5747	#N/A	#N/A
S1M10000003A10	1432	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000003A11	1433	SAU101495	5467	SAUIc0037_orf_65p	12360
S1M10000003B06	1434	SAU102007	5590	SAU1c0040_orf_108p	12428
S1M10000003B08	1435	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000003B09	1436	SAU100771	5325	SAU1c0043_orf_49p	12545
S1M10000003B12	1437	SAU302060	5905	SAU3c0879_orf_lp	13042
S1M10000003C06	1438	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000003C07	1439	SAU101271	5411 -	SAU1c0037_orf_90p	12366
S1M10000003C10	1440	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003C12	1441	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003D05	1442	SAU102939	5747	#N/A	#N/A
S1M10000003D06	1443	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000003D08	1444	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000003D10	1445	SAU102422	5666	SAU1c0030_orf_22p	12207
S1M10000003E07	1446	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000003E09	1447	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003E10	1448	SAU101674	5508	SAU1c0044_orf_226p	12594
SIM10000003E11	1449	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003F02	1450	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003F05	1451	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000003F06	1452	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000003F07	1453	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000003F08	1454	SAU102939	5747	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
	SeqID		(protein)		Protein Seq
S1M10000003F12	1455	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000003G03	1456	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003G04	1457	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000003G04	1457	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000003G04	1457	SAU301148	5888	#N/A	#N/A
S1M10000003G08	1458	SAU102939	5747	#N/A	#N/A
S1M10000003G10	1459	SAU102939	5747	#N/A	#N/A
S1M10000004A04	1460	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000004A06	1461	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000004A07	1462	SAU200916	5797	SAU2c0373_orf_4p	12838
SIM10000004A11	1463	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000004A12	1464	SAU102132	5605	SAU1c0027_orf_19p	12177
SIM10000004B03	1465	SAU102610	5714	SAU1c0041_orf_53p	12474
S1M10000004B04	1466	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000004B06	1467	SAU102939	5747	#N/A	#N/A
S1M10000004B08	1468	SAU100272	5251	SAU1c0018_orf_7p	12141
S1M10000004B09	1469	SAU101476	5459	SAU1c0032_orf_69p	12254
S1M10000004B11	1470	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000004C01	1471	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000004C02	1472	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004C02	1472	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004C02	1472	SAU301148	5888	#N/A	#N/A
S1M10000004C03	1473	SAU102939	5747	#N/A	#N/A
S1M10000004C06	1474	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000004C07	1475	SAU102939	5747	#N/A	#N/A
S1M10000004C08	1476	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000004C08	1476	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000004C09	1477	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004C09	1477	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004C09	1477	SAU301148	5888	#N/A	#N/A
S1M10000004C10	1478	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000004C10	1478	SAU101286	5413	SAU1c0034_orf_67p	12292
S1M10000004C10	1478	SAU302931	5913	SAU3c1507_orf_10p SAU1c0040_orf_108p	13155
SIM10000004C12	1479	SAU102007	5590	SAU1c0040_orf_108p	12558
S1M10000004D01	1480	SAU101301	5416		12559
S1M10000004D01		SAU101302	5417	SAULe0044_orf_115p	
S1M10000004D03	1481	SAU102390	5657	SAUIc0033_orf_38p	12269
S1M10000004D03	1481	SAU201333 SAU101807	5810 5547	SAU2c0418_orf_8p SAU1c0032_orf_26p	12905
S1M10000004D04	1482			SAU1c0032_orf_27p	12237
S1M10000004D04	1482	SAU101808	5548	SAU2c0447_orf_17p	12997
S1M10000004D06	1483	SAU201571	5824	SAU2c0308_orf_2p	12769
S1M10000004D07	1484	SAU201810 SAU202174	5836 5845	SAU2c0412_orf_3p	12895
S1M10000004D07 S1M10000004D07	1484	SAU202174 SAU301148	5888	#N/A	#N/A
21M1000004D07	1404	DAU301148	1 3000	I WA	THE THE TAXABLE PARTY

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000004D08	1485	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000004D10	1486	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000004D12	1487	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000004D12	1487	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000004E03	1488	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000004E04	1489	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000004E06	1490	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000004E07	1491	SAU101476	5459	SAU1c0032_orf_69p	12254
S1M10000004E11	1492	SAU102939	5747	#N/A	#N/A
S1M10000004E12	1493	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000004F01	1494	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000004F02	1495	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000004F06	1496	SAU201611	5825	SAU2c0440_orf_14p	12973
S1M10000004F07	1497	SAU102764	5734	SAU1c0044_orf_56p	12625
S1M10000004F08	1498	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000004F08	1498	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000004F09	1499	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004F09	1499	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004F09	1499	SAU301148	5888	#N/A	#N/A
S1M10000004F12	1500	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000004G01	1501	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004G01	1501	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004G01	1501	SAU301148	5888	#N/A	#N/A
S1M10000004G02	1502	SAU102939	5747	#N/A	#N/A
S1M10000004G03	1503	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000004G05	1504	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM1000004G06	1505	SAU102939	5747	#N/A	#N/A
S1M10000004G07	1506	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M1000004G07	1506	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000004G09	1507	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000004G12	1508	SAU100497	5280	SAU1c0018_orf_3p	12140
S1M10000005A01	1509	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005A01	1509	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005A01	1509	SAU301148	5888	#N/A	#N/A
S1M10000005A03	1510	SAU101090	5380	SAU1c0028_orf_8p	12191
S1M10000005A05	1511	SAU102939	5747	#N/A	#N/A
S1M10000005A06	1512	SAU102939	5747	#N/A	#N/A
S1M10000005A07	1513	SAU100952	5358	SAU1c0043_orf_182p	12523
SIM10000005A08	1514	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005A08	1514	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005A08	1514	SAU301148	5888	, #N/A	#N/A
S1M10000005A09	1515	SAU103038	5757	#N/A	#N/A
S1M10000005A10	1516	SAU101239	5402	SAU1c0044_orf_15p	12570
S1M10000005A10	,1516	SAU101240	5403	SAU1c0044_orf_16p	12573

Clone name	Clone SegID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
			Q ,		Protein Seq
S1M10000005A11	1517	SAU100964	5363	SAUIc0044_orf_86p	12641
S1M10000005B02	1518	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000005B04	1519	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000005B07	1520	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005B07	1520	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005B07	1520	SAU301148	5888	#N/A	#N/A
S1M10000005B08	1521	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000005B09	1522	SAU102422	5666	SAU1c0030_orf_22p	12207
S1M10000005B12	1523	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000005B12	1523	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000005C01	1524	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005C01	1524	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005C01	1524	SAU301148	5888	#N/A	#N/A
S1M10000005C05	1525	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000005C06	1526	SAU100885	5348	SAU1c0038_orf_38p	12376
S1M10000005C09	1527	SAU302513	5906	SAU3c1298_orf_lp	13085
S1M10000005Cl1	1528	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000005D01	1529	SAU103038	5757	#N/A	#N/A
S1M10000005D02	1530	SAU102007	5590	SAU1c0040_orf_108p	12428
S1M10000005D03	1531	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000005D04	1532	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000005D04	1532	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000005D05	1533	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000005D06	1534	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000005D06	1534	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000005D07	1535	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000005D08	1536	SAU101624	5497	SAU1c0040_orf_25p	12429
S1M10000005D09	1537	SAU101752	5522	SAUIc0040_orf_85p	12447
S1M10000005D11	1538	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000005D12	1539	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000005E01	1540	SAU100542	5288	SAU1c0043_orf_210p	12532
S1M10000005E02	1541	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000005E05	1542	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005E05	1542	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005E05	1542	SAU301148	5888	#N/A	#N/A
S1M10000005E06	1543	SAU102939	5747	#N/A	#N/A
S1M10000005E07	1544	SAU102939	5747	#N/A	#N/A
S1M10000005E08	1545	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005E08	1545	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005E08	1545	SAU301148	5888	#N/A	#N/A
S1M10000005E10	1546	SAU102939	5747	#N/A	#N/A
S1M10000005E11	1547	SAU100381	5265	SAU1c0033_orf_9p	12276
S1M10000005E12	1548	SAU102939	5747	#N/A	#N/A
S1M10000005F02	1549	SAU100964	5363	SAU1c0044_orf_86p	12641

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000005F02	1549	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000005F03	1550	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000005F03	1550	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000005F04	1551	SAU102044	5593	SAU1c0039_orf_65p	12414
S1M10000005F04	1551	SAU102046	5594	SAU1c0039_orf_66p	12415
S1M10000005F04	1551	SAU201961	5840	#N/A	#N/A
S1M10000006A03	1552	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006A03	1552	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006A03	1552	SAU301148	5888	#N/A	#N/A
S1M10000006A04	1553	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000006A05	1554	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000006A05	1554	SAU101808	5548	SAUIc0032_orf_27p	12232
S1M10000006A07	1555	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000006A08	1556	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006A08	1556	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006A08	1556	SAU301148	5888	#N/A	#N/A
S1M10000006A10	1557	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006A10	1557	SAU202174	5845	SAU2c0412_orf_3p	12895
SIM1000006A10	1557	SAU301148	5888	#N/A	#N/A
S1M10000006A12	1558	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000006B02	1559	SAU100741	5318	SAU1c0039_orf_48p	12409
S1M10000006B03	1560	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000006B04	1561	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006B04	1561	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006B04	1561	SAU301148	5888	#N/A	#N/A
S1M10000006B07	1562	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000006B10	1563	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000006B11	1564	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000006C02	1565	SAU102939	5747	#N/A	#N/A
S1M10000006C04	1566	SAU102287	5637	SAU1c0038_orf_7p	12398
S1M10000006C06	1567	SAU102486	5687	SAU1c0039_orf_93p	12420
S1M10000006C06	1567	SAU102487	5688	SAU1c0039_orf_92p	12419
S1M10000006C07	1568	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000006C08	1569	SAU102939	5747	#N/A	#N/A
S1M10000006C10	1570	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006C10	1570	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006C10	1570	SAU301148	5888	#N/A	#N/A
S1M10000006D03	1571	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000006D05	1572	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006D05	1572	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006D05	1572	SAU301148	5888	#N/A	#N/A
S1M10000006D06	1573	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006D06	1573	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006D06	1573	SAU301148	5888	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000006D07	1574	SAU102936	5746	SAU1c0037_orf_57p	12356
S1M10000006D08	1575	SAU102939	5747	#N/A	#N/A
S1M10000006E02	1576	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006E02	1576	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006E02	1576	SAU301148	5888	#N/A	#N/A
S1M10000006E03	1577	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000006E04	1578	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000006E07	1579	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006E07	1579	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006E07	1579	SAU301148	5888	#N/A	#N/A
S1M10000006E08	1580	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000006F01	1581	SAU101869	5566	SAU1c0036_orf_24p	12967
S1M10000006F02	1582	SAU201469	5816	SAU2c0438_orf_6p	12610
S1M10000006F03	1583	SAU102294	5639	SAU1c0044_orf_288p SAU3c1287 orf lp	13083
S1M10000006F03	1583	SAU301080	5885		12641
S1M10000006F04	1584	SAU100964	5363	SAU1c0044_orf_86p	12442
S1M10000006F06	1585	SAU101907	5574	SAU1c0040_orf_79p	12373
S1M10000006G02	1586	SAU101833	5555	SAU1c0038_orf_34p SAU1c0036_orf_35p	12373
S1M10000006G03	1587	SAU101400	5444		12326
S1M10000006G05	1588	SAU100275 SAU201571	5252 5824	SAU1c0036_orf_15p SAU2c0447_orf_17p	12997
S1M10000006G06 S1M10000006G07	1589		5493	SAU1c0044_orf_7p	12637
	1590	SAU101612 SAU202945	5857	SAU2c0394_orf_7p	12868
S1M10000006G07	1590	SAU102939	5747	#N/A	#N/A
S1M10000006G09 S1M10000006G10	1591 1592	SAU102602	5708	SAU1c0032_orf_5p	12249
SIM10000006G10	1592	SAU101438	5450	SAU1c0038_orf_40p	12379
S1M10000008G11	1594	SAU102939	5747	#N/A	#N/A
S1M1000007A02	1595	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000007A03	1596	SAU102352	5650	SAU1c0040 orf 38p	12434
S1M10000007B02	1596	SAU202872	5854	SAU2c0393_orf_6p	12866
SIM10000007B02	1597	SAU101476	5459	SAU1c0032_orf_69p	12254
S1M10000007B11	1598	SAU102939	5747	#N/A	#N/A
S1M10000007C04	1599	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000007C05	1600	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000007C06	1601	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M1000007C07	1	SAU101266	5408	SAU1c0042_orf_117p	12490
S1M10000007C08	1603	SAU101717	5513	SAU1c0016_orf_16p	12131
S1M10000007C09	1604	SAU102939	5747	#N/A	#N/A
S1M10000007D03	1605	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000007D03	1605	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000007D03	1605	SAU301148.	5888	#N/A	#N/A
S1M10000007D06	1606	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000007D08	1607	SAU102939	5747	#N/A	#N/A
S1M10000007D10	1608	SAU100300	5253	SAU1c0040_orf_90p	12451

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000007D11	1609	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000007E04	1610	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000007E04	1610	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000007E04	1610	SAU301148	5888	#N/A	#N/A
S1M10000007E06	1611	SAU101495	5467	SAU1c0037_orf_65p	12360
SIM10000007E07	1612	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000007F01	1613	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000007F02	1614	SAU101685	5512	SAU1c0023_orf_llp	12152
S1M10000007F04	1615	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000007F08	1616	SAU100794	5330	SAU1c0028_orf_53p	12189
S1M10000007F09	1617	SAU202930	5856	SAU2c0396_orf_3p	12871
S1M10000007F10	1618	SAU101791	5532	SAU1c0032_orf_12p	12216
SIM10000007F11	1619	SAU102939	5747	#N/A	#N/A
SIM10000007F12	1620	SAU102939	5747	#N/A	#N/A
S1M10000007G02	1621	SAU101270	5410	SAU1c0037_orf_89p	12365
S1M10000007G03	1622	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000007G05	1623	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000007G07	1624	SAU102652	5725	SAU1c0045_orf_115p	12653
S1M10000007G08	1625	SAU103038	5757	#N/A	#N/A
S1M10000008A03	1626	SAU101476	5459	SAU1c0032_orf_69p	12254
S1M10000008A04	1627	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000008A05	1628	SAU102939	5747	#N/A	#N/A
S1M10000008A08	1629	SAU102905	5742	SAU1c0033_orf_45p	12273
S1M10000008A08	1629	SAU301869	5903	SAU3c1353_orf_lp	13093
S1M10000008A09	1630	SAU100741	· 5318	SAU1c0039_orf_48p	12409
S1M10000008A12	1631	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000008B03	1632	SAU103144	5761	SAU1c0045_orf_15p	12663
S1M10000008B04	1633	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000008B04	1633	SAU202174	5845	SAU2c0412_orf_3p	12895
SIM10000008B04	1633	SAU301148	5888	#N/A	#N/A
S1M10000008B06	1634	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000008B08	1635	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000008B09	1636	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000008B10	1637	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000008C05	1638	SAU102939	5747	#N/A	#N/A
S1M10000008C06	1639	SAU102939	5747	#N/A	#N/A
S1M10000008C07	1640	SAU102939	5747	#N/A	#N/A
S1M10000008C08	1641	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000008C09	1642	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000008D05	1643	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000008D09	1644	SAU103038	5757	#N/A	#N/A
S1M10000008E05	1645	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000008E08	1646	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000008E09	1647	SAU101343	5425	SAU1c0044_orf_40p	12619

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000008E10	1648	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000008F01	1649	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000008F01	1649	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000008F02	1650	SAU102007	5590	SAU1c0040_orf_108p	12428
S1M10000008F03	1651	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000008F06	1652	SAU100741	5318	SAU1c0039_orf_48p	12409
S1M10000008F08	1653	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000008F09	1654	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000008F09	1654	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000008F09	1654	SAU301148	5888	#N/A	#N/A
S1M10000008F10	1655	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000008F11	1656	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000008G02	1657	SAU201167	5803	SAU2c0407_orf_5p	12887
S1M10000008G03	1658	SAU101637	5500	SAU1c0029_orf_8p	12201
S1M10000008G05	1659	SAU102870	5738	SAU1c0026_orf_17p	12170
S1M10000009A02	1660	SAU101159	5387	SAU1c0036_orf_46p	12331
S1M10000009A04	1661	SAU102979	5750	SAU1c0043_orf_227p	12536
S1M10000009A07	1662	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000009A08	1663	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000009A08	1663	SAU100659	5304	SAU1c0038_orf_60p	12390
S1M10000009A09	1664	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000009A10	1665	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000009A11	1666	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000009B01	1667	SAU201506	5818	SAU2c0432_orf_18p	12946
S1M10000009B02	1668	SAU101159	5387	SAU1c0036_orf_46p	12331
S1M10000009B03	1669	SAU201506	5818	SAU2c0432_orf_18p	12946
S1M10000009B04	1670	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000009B05	1671	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000009B06	1672	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000009B07	1673	SAU201952	5839	SAU2c0457_orf_10p	13020
S1M10000009B10	1674	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000009B10	1674	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000009B11	1675	SAU301898	5904	SAU3c1079_orf_lp	13057
S1M10000009B12	1676	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000009C01	1677	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000009C01	1677	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000009C02	1678	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000009C05	1679	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000009C06	1680	SAU102613	5715	SAU1c0041_orf_55p	
S1M10000009C07	1681	SAU102460	5678	SAU1c0026_orf_18p	12171
S1M10000009C08	1682	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000009C09	1683	SAU102129	5604	SAU1c0027_orf_17p	12176
S1M1000009C10	1684	SAU102336	5646	SAU1c0045_orf_146p	12659
S1M10000009C11	1685	SAU102340	5647	SAU1c0045_orf_149p	12660

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000009D01	1686	SAU102262	5627	SAU1c0032_orf_58p	12248
S1M10000009D02	1687	SAU100355	5263	SAU1c0023_orf_6p	12155
S1M10000009D03	1688	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000009D04	1689	SAU102979	5750	SAU1c0043_orf_227p	12536
S1M10000009D05	1690	SAU100799	5331	SAU1c0045_orf_243p	12682
S1M10000009D07	1691	SAU200994	5802	SAU2c0428_orf_4p	12935
S1M10000009D09	1692	SAU101681	5510	SAU1c0044_orf_220p	12592
S1M10000009D09	1692	SAU101682	5511	SAU1c0044_orf_219p	12591
S1M10000009D11	1693	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000009D11	1693	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000009D11	1693	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000009E02	1694	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000009E02	1694	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000009E06	1695	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000009E08	1696	SAU201539	5821	SAU2c0431_orf_15p	12943
S1M10000009E09	1697	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000009E11	1698	SAU101801	5541	#N/A	#N/A
S1M10000009E12	1699	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000009F01	1700	SAU101452	5455	SAU1c0045_orf_247p	12684
S1M10000009F02	1701	SAU101818	5553	SAU1c0038_orf_20p	12369
S1M1000009F03	1702	SAU101488	5463	SAU1c0025_orf_18p	12164
S1M10000009F05	1703	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M1000009F06	1704	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000009F07	1705	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000009F07	1705	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000009F09	1706	SAU202176	5846	SAU2c0412_orf_3p	12895
S1M1000009F09	1706	SAU302805	5911	SAU3c1458_orf_lp	13133
S1M10000009F10	1707	SAU102392	5658	SAU1c0033_orf_40p	12270
S1M10000009F10	1707	SAU201541	5822	SAU2c0431_orf_14p	12942
S1M1000009G02	1708	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M1000009G02	1708	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000009G03	1709	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000009G05	1710	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000009G06	1711	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000009G07	1712	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000009G09	1713	SAU102693	5731	SAUlc0044_orf_58p	12627
S1M10000009G10	1714	SAU100646	5302	SAU1c0025_orf_5p	12168
S1M10000009G11	1715	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000009H01	1716	SAU201506	5818	SAU2c0432_orf_18p	12946
SIM1000009H02	1717	SAU102658	5726	SAU1c0045_orf_121p	12654
S1M10000009H03	1718	SAU201654	5829	SAU2c0442_orf_12p	12982
SIM10000009H05	1719	SAU100582	5292	SAU1c0042_orf_21p	12503
S1M10000009H05	1719	SAU102165	5610	SAU1c0041_orf_25p	12460
S1M10000009H05	1719	SAU201929	5838	SAU2c0451_orf_19p	13008

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
	•				Protein Seq ID
S1M10000009H07	1720	SAU102297	5640	SAUlc0045_orf_4lp	12704
S1M10000009H09	1721	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000009H11	1722	SAU101801.	5541	#N/A	#N/A
S1M10000011A02	1723	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000011A03	1724	SAU101271	5411	SAUlc0037_orf_90p	12366
SIM10000011A04	1725	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000011A06	1726	SAU101574	5486	SAU1c0044_orf_213p	12588
S1M10000011A06	1726	SAU101575	5487	SAU1c0044_orf_214p	12589
S1M10000011B01	1727	SAU102881	5740	SAU1c0032_orf_4p	12242
S1M10000011B02	1728	SAU101541	5472	SAU1c0037_orf_128p	12344
S1M10000011B03	1729	SAU101849	5559	SAU1c0044_orf_148p	12567
S1M10000011B04	1730	SAU101574	5486	SAU1c0044_orf_213p	12588
S1M10000011B04	1730	SAU101575	5487	SAUlc0044_orf_214p	12589
S1M10000011B05	1731	SAU200934	5799	SAU2c0375_orf_9p	12842
S1M10000011C01	1732	SAU101447	5454	SAUlc0045_orf_244p	12683
S1M10000011C05	1733	SAU100432	5271	SAUIc0040_orf_88p	12450
S1M10000011C05	1733	SAU202756	5852	SAU2c0470_orf_lp	13027
S1M10000011C06	1734	SAU102350	5649	SAUIc0040_orf_36p	12433
S1M10000011D01	1735	SAU101293	5414	SAU1c0044_orf_61p	12631
S1M10000011D02	1736	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000011D04	1737	SAU102280	5632	SAUIc0038_orf_3p	12378
S1M10000011D06	1738	SAU102942	5748	SAU1c0035_orf_103p	12296
S1M10000011E02	1739	SAU101966	5580	SAUlc0028_orf_4lp	12186
S1M10000011E03	1740	SAU101632	5499	SAU1c0039_orf_3p SAU1c0044_orf_211p	12586
S1M10000011E04	1741	SAU101572	5484	SAU1c0044_orf_112p	12556
S1M10000011F01	1742	SAU101365	5432 5649		12338
S1M10000011F03	1743	SAU102350	L	SAU1c0040_orf_36p SAU1c0036_orf_11p	12433
S1M10000011F04	1744	SAU101155	5385 5460	SAU1c0015_orf_9p	12310
S1M10000011F06	1745	SAU101481 SAU101482	5461	SAUIc0015_orf_10p	12130
S1M10000011F06 S1M10000011G01	1745	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000011G01	1747	SAU302626	5907	SAU3c1367_orf_3p	13105
S1M10000011G03	1748	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000011G04	1749	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000011G05	1750	SAU102298	5641	SAU1c0045_orf_42p	12705
S1M10000011H01	1751	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000011H01	1752	SAU100432	5271	SAUlc0040_orf_88p	12450
S1M10000011H03	1752	SAU202756	5852	SAU2c0470_orf_lp	13027
S1M100000111103	1753	SAU200934	5799	SAU2c0375_orf_9p	12842
S1M100000111104	1754	SAU102533	5695	#N/A	#N/A
S1M10000012A02	1754	SAU102534	5696	#N/A	#N/A
S1M10000012A06	1755	SAU100157	5237	SAU1c0040 orf 81p	12444
S1M10000012A08	1756	SAU101630	5498	SAU1c0039_orf_4p	12410
S1M10000012A08	1756	SAU300156	5867	SAU3c0609_orf_2p	13036

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000012A09	1757	SAU102356	5652	SAU1c0040_orf_41p	12436
S1M10000012A10	1758	SAU101266	5408	SAU1c0042_orf_117p	12490
S1M10000012A11	1759	SAU100390	5267	#N/A	#N/A
S1M10000012A11	1759	SAU200028	5771	SAU2c0145_orf_lp	12721
S1M10000012B01	1760	SAU100751	5321	SAU1c0036_orf_59p	12335
S1M10000012B05	1761	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000012B06	1762	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000012B07	1763	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000012B07	1763	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000012B11	1764	SAU102551	5698	SAU1c0045_orf_206p	12672
SIM10000012C01	1765	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000012C03	1766	SAU100776	5327	SAU1c0041_orf_72p	12482
S1M10000012C04	1767	SAU100776	5327	SAU1c0041_orf_72p	12482
S1M10000012C05	1768	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000012C06	1769	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000012C06	1769	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000012C11	1770	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000012C11	1770	SAU102881	5740	SAU1c0032_orf_4p	12242
S1M10000012C12	1771	SAU101781	5528	SAU1c0037_orf_43p	12353
S1M10000012D04	1772	SAU201952	5839	SAU2c0457_orf_10p	13020
S1M10000012D06	1773	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000012D07	1774	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000012D08	1775	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000012D09	1776	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000012D12	1777	SAU102620	5718	SAU1c0041_orf_62p	12479
S1M10000012D12	1777	SAU102621	5719	SAU1c0041_orf_63p	12480
S1M10000012D12	1777	SAU202006	5842	SAU2c0456_orf_20p	13018
S1M10000012E01	1778	SAU100733	5314	SAU1c0044_orf_254p	12602
S1M10000012E01	1778	SAU100734	5315	SAU1c0044_orf_255p	12603
S1M10000012E02	1779	SAU102485	5686	SAU1c0039_orf_95p	12421
S1M10000012E04	1780	SAU201486	5817	SAU2c0457_orf_34p	13023
S1M10000012E07	1781	SAU100390	5267	#N/A	#N/A
S1M10000012E07	1781	SAU200028	5771	SAU2c0145_orf_lp	12721
S1M10000012E08	1782	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000012E12	1783	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000012E12	1783	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000012E12	1783	SAU301148	5888	#N/A	#N/A
S1M10000012F04	1784	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000012F07	1785	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000012F07	1785	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000012F08	1786	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000012F09	1787	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000012F10	1788	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000012F11	1789	SAU101781	5528	SAU1c0037_orf_43p	12353

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000012F12		SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000012F12	1790	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000012F12	1790	SAU301148	5888	#N/A	#N/A
S1M10000012G01	1791	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000012G02	1792	SAU301758	5900	SAU3c1508_orf_5p	13156
S1M10000012G03	1793	SAU201301	5809	SAU2c0416_orf_17p	12899
S1M10000012G06	1794	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000012G07	1795	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000012G07	1795	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000012G08	1	SAU102593	5704	SAU1c0041_orf_39p	12463
S1M10000012G10		SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000012H05		SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000012H08	1799	SAU202186	5847	SAU2c0222_orf_lp	12731
S1M10000012H09	1800	SAU100227	5244	SAU1c0043_orf_188p	12525
S1M10000012H10	1801	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000012H10	1801	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000012H10	1801	SAU101751	5521	SAU1c0040_orf_86p	12448
S1M10000012H11	1802	SAU301118	5886	SAU3c1305_orf_3p	13086
S1M10000013A02	1803	SAU102674	5730	SAU1c0024_orf_12p	12156
S1M10000013A03	1804	SAU101006	5367	SAUlc0028_orf_59p	12190
S1M10000013A05		SAU102450	5675	SAUIc0045_orf_21p	12675
S1M10000013A07	1806	SAU102602	5708	SAUlc0032_orf_5p	12249 12502
S1M10000013A08		SAU101143	5383	SAULc0042_orf_159p	12302
S1M10000013A09	1	SAU101567	5481	SAU1c0022_orf_10p SAU2c0282_orf_3p	12745
S1M10000013A09		SAU200030	5772 5815	SAU2c0423_orf_3p	12743
S1M10000013A10		SAU201403 SAU101573	5485	SAU1c0044_orf_212p	12513
S1M10000013A11	1811	SAU100690	5309	#N/A	#N/A
SIM10000013A12 SIM10000013B02	1812	SAU100690 SAU100433	5272	SAUlc0040_orf_87p	12449
SIM10000013B02	1813	SAU201236	5808	SAU2c0409_orf_10p	12891
SIM10000013B03	1814	SAU200928	5798	SAU2c0365 orf_5p	12815
SIM10000013B04	1815	SAU100300	5253	SAU1c0040_orf_90p	12451
SIM10000013B05	1 .	SAU100118	5229	SAU1c0015_orf_13p	12125
SIM10000013B07	1817	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000013B07		SAU301148	5888	#N/A	#N/A
S1M10000013B07	1	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000013B03	1	SAU103042	5758	#N/A	#N/A
S1M10000013B11	1820	SAU101781	5528	SAU1c0037_orf_43p	12353
S1M10000013C05	1821	SAU101038	5372	SAU1c0043_orf_180p	12521
S1M10000013C07	1822	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000013C08	1823	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000013C09	1824	SAU102059	5597	SAU1c0034 orf 51p	12286
SIM10000013C09	1825	SAU100736	5316	SAU1c0038 orf 64p	12391
S1M10000013C11	1826	SAU102059	5597	SAUlc0034_orf_5lp	12286
0114110000012011	1020	10.10.0000			

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000013C12	1827	SAU103038	5757	#N/A	#N/A
S1M10000013C12	1828	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000013D08	1829	SAU102669	5728	SAU1c0024_orf_7p	12160
S1M10000013D09	1829	SAU302956	5915	SAU3c1513_orf_9p	13161
SIM10000013D03	1830	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000013E01	1831	SAU102674	5730	SAU1c0024_orf_12p	12156
S1M10000013E02	1832	SAU101184	5391	SAU1c0035_orf_80p	12305
S1M10000013E02	1833	SAU101802	5542	SAU1c0032 orf_22p	12227
S1M10000013E04	1834	SAU101833	5555	SAU1c0038 orf 34p	12373
S1M10000013E08	1835	SAU100831	5335	SAU1c0038_orf_93p	12403
SIM10000013E09	1836	SAU101571	5483	SAU1c0044 orf_210p	12585
S1M10000013E09	1837	SAU101801	5541	#N/A	#N/A
S1M10000013E10	1838	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000013F02	1839	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000013F06	1840	SAU103038	5757	#N/A	#N/A
S1M10000013F07	1841	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000013F08	1842	SAU100961	5360	SAU1c0044 orf_83p	12638
	1843	SAU100301 SAU101398	5442	SAU1c0036_orf_33p	12324
SIM10000013F09	1844	SAU102437	5670	SAU1c0045 orf_33p	12695
S1M10000013F12 S1M10000013G01	1845	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000013G01	1846	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000013G04	1847	SAU101392 SAU102241	5617	SAU1c0043_orf_25p	12539
SIM10000013G05	1847	SAU102241	5618	SAU1c0043 orf 26p	12540
S1M10000013G05	1848	SAU102380	5654	SAU1c0033_orf_29p	12265
S1M10000013G08	1849	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000013G10	1850	SAU201539	5821	SAU2c0431_orf_15p	12943
	1851	SAU101890	5570	SAU1c0034_orf_29p	12280
SIM10000013G11	1852	SAU100843	5339	SAU1c0036_orf_40p	12328
S1M10000013G12 S1M10000013H03	1853	SAU100690	5309	#N/A	#N/A
S1M10000013H03	1854	SAU100090	5675	SAU1c0045 orf 21p	12675
	1855	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000013H05 S1M10000013H07	1856	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000013H09	1857	SAU100414	5275	SAU1c0038_orf_67p	12392
S1M10000013H09	1857	SAU200721	5791	SAU2c0339 orf 5p	12797
S1M10000013H10	1858	SAU102059	5597	SAU1c0034_orf_51p	12286
			 	#N/A	#N/A
S1M10000013H11	1859	SAU100690 SAU200564	5309	SAU2c0324_orf_6p	12780
S1M10000014A02	1860			SAU1c0044_orf_125p	12562
S1M10000014A03	1861	SAU101310	5418 5582	SAU1c0040_orf_94p	12454
S1M10000014A05	1862	SAU101991	5470	SAU1c0027_orf_32p	12179
S1M10000014A07	1863	SAU101526	5757	#N/A	#N/A
S1M10000014A08	1864	SAU103038	l	SAU1c0044_orf_100p	12553
S1M10000014A11	1865	SAU100866	5344 5824	SAU2c0447_orf_17p	12997
S1M10000014A12	1866	SAU201571		SAU1c0032_orf_3p	12240
S1M10000014B01	1867	SAU100547	5290	GAUTOUSZ_UII_SP	1

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000014B02	1868	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000014B02	1868	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000014B03	1869	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000014B04	1870	SAU100778	5328	SAU1c0043_orf_140p	12514
S1M10000014B05	1871	SAU102476	5682	SAU1c0026_orf_33p	12175
S1M10000014B06	1872	SAU101199	5395	SAU1c0035_orf_62p	12302
S1M10000014B07	1873	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000014B08	1874	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000014B10	1875	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000014B11	1876	SAU102534	5696	#N/A	#N/A
S1M10000014B12	1877	SAU102534	5696	#N/A	#N/A
S1M10000014C01	1878	SAU101575	5487	SAU1c0044_orf_214p	12589
S1M10000014C05	1879	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000014C06	1880	SAU100305	5256	SAU1c0038_orf_77p	12397
S1M10000014C07	1881	SAU101801	5541	#N/A	#N/A
S1M10000014C09	1882	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000014C09	1882	SAU102881	5740	SAU1c0032_orf_4p	12242
S1M10000014C10	1883	SAU302901	5912	SAU3c1497_orf_8p	13146
S1M10000014C11	1884	SAU100514	5281	SAU1c0044_orf_57p	12626
S1M10000014C12	1885	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000014C12	1885	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000014D03	1886	SAU100885	5348	SAUIc0038_orf_38p	12376
S1M10000014D06	1887	SAU100305	5256	SAU1c0038_orf_77p	12397
S1M10000014D08	1888	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000014D09	1889	SAU100808	5332	SAU1c0037_orf_12p	12345
S1M10000014D10	1890	SAU102292	5638	SAUIc0038_orf_10p	12368
S1M10000014E01	1891	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000014E01	1891	SAU101794	5535	#N/A	#N/A
S1M10000014E04	1892	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000014E05	1893	SAU101565	5480	SAU1c0022_orf_8p	12151
S1M10000014E07	1894	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000014E07	1894	SAU100659	5304	SAU1c0038_orf_60p	12390
S1M10000014E08	1895	SAU202176	5846	SAU2c0412_orf_3p	12895
S1M10000014E09	1896	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000014E09	1896	SAU300269	5869	#N/A	#N/A
S1M10000014E10	1897	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000014E12	1898	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000014E12	1898	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000014F02	1899	SAU100128	5231	#N/A	#N/A
S1M10000014F02	1899	SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000014F02	1899	SAU101576	5488	SAUIc0044_orf_105p	12554
S1M10000014F03	1900	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000014F03	1900	SAU102201 ·	5612	SAU1c0045_orf_169p	12666
S1M10000014F04	1901	SAU102449	5674	SAU1c0045_orf_22p	12677

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000014F05	1902	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000014F08	1903	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000014F09	1904	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000014F09	1904	SAU300269	5869	#N/A	#N/A
S1M10000014F10	1905	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000014G02	1906	SAU102054	5596	SAU1c0039_orf_74p	12417
S1M10000014G04	1907	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000014G06	1908	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000014G07	1909	SAU201620	5827	#N/A	#N/A
S1M10000014G08	1910	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000014G12	1911	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000014H02	1912	SAU100242	5246	SAU1c0036_orf_5p	12336
S1M10000014H03	1913	SAU102264	5628	SAU1c0032_orf_60p	12250
S1M10000014H04	1914	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000014H05	1915	SAU102116	5602	SAU1c0027_orf_5p	12180
S1M10000014H06	1916	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000014H07	1917	SAU103038	5757	#N/A	#N/A
S1M10000014H08	1918	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000014H11	1919	SAU102534	5696	#N/A	#N/A
S1M10000015A02	1920	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000015A03	1921	SAU102388	5655	SAU1c0033_orf_35p	12267
S1M10000015A05	1922	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000015A06	1923	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000015A09	1924	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000015A10	1925	SAU103038	5757	#N/A	#N/A
S1M10000015A11	1926	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000015A12	1927	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000015B02	1928	SAU102340	5647	SAU1c0045_orf_149p	12660
S1M10000015B05	1929	SAU103038	5757	#N/A	#N/A
S1M10000015B08	1930	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000015B08	1930	SAU101792	5533	SAU1c0032_orf_13p	12217
S1M10000015B09	1931	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000015B09	1931	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000015B09	1931	SAU302685	5908	SAU3c1403_orf_lp	13113
S1M10000015B10	1932	SAU102308	5642	SAU1c0045_orf_50p	12706
S1M10000015C01	1933	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000015C02	1934	SAU102340	5647	SAU1c0045_orf_149p	12660
S1M10000015C03	1935	SAU102390	5657	SAU1c0033_orf_38p	12269
S1M10000015C03	1935	SAU201333	5810	SAU2c0418_orf_8p	12905
S1M10000015C05	1936	SAU100690	5309	#N/A	#N/A
S1M10000015C06	1937	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000015C08	1938	SAU100133	5233	SAU1c0044_orf_170p	12574
S1M10000015C08	1938	SAU100323	5261	SAU1c0044_orf_17lp	12575
S1M10000015C10	1939	SAU100414	5270	SAU1c0022_orf_24p	12148

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000015C12	1940	SAU100305	5256	SAU1c0038_orf_77p	12397
S1M10000015D02	1941	SAU100794	5330	SAU1c0028_orf_53p	12189
S1M10000015D03	1942	SAU102032	5591	SAU1c0029_orf_47p	12198
S1M10000015D04	1943	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000015D05	1944	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000015D06	1945	SAU100736	5316	SAU1c0038_orf_64p	12391
S1M10000015D12	1946	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000015E02	1947	SAU102390	5657	SAU1c0033_orf_38p	12269
S1M10000015E02	1947	SAU201333	5810	SAU2c0418_orf_8p	12905
S1M10000015E03	1948	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000015E06	1949	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000015E07	1950	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000015E09	1951	SAU102433	5668	SAU1c0045_orf_37p	12701
SIM10000015E10	1952	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000015E11	1953	SAU102286	5636	SAU1c0038_orf_6p	12393
SIM10000015E11	1953	SAU102287	5637	SAU1c0038_orf_7p	12398
S1M10000015E12	1954	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000015F01	1955	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000015F01	1955	SAU102001	5586	SAU1c0040_orf_102p	12424
SIM10000015F01	1955	SAU103159	5762	SAU1c0045_orf_204p	12670
S1M10000015F01	1955	SAU201827	5837	SAU2c0449_orf_21p	13002
S1M10000015F02	1956	SAU101561	5479	SAU1c0022_orf_4p	12149
S1M10000015F03	1957	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000015F04	1958	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000015F06	1959	SAU201385	5814	#N/A	#N/A
S1M10000015F07	1960	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000015F08	1961	SAU102102	5600	SAU1c0045_orf_340p	12696
S1M10000015F09	1962	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000015F09	1962	SAU101801	5541	#N/A	#N/A
S1M10000015F10	1963	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000015G01	1964	SAU102481	5685	SAU1c0039_orf_99p	12422
S1M10000015G02	1965	SAU200058	5773	SAU2c0134_orf_lp	12719
S1M10000015G02	1965	SAU200059	5774	SAU2c0134_orf_3p	12720
S1M10000015G03	1966	SAU101070	5376	SAU1c0034_orf_60p	12291
S1M10000015G04	1967	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000015G05	1968	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000015G06	1969	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000015G07	1970	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000015G08	1971	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000015G09	1972	SAU102143	5607	SAU1c0041_orf_14p	12458
S1M10000015G09	1972	SAU102144	5608	SAU1c0041_orf_15p	12459
S1M10000015G10	1973	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000015G11	1974	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000015H04	1975	SAU101801	5541	· #N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000015H04	1975	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000015H06	1976	SAU201385	5814	#N/A	#N/A
S1M10000016A03	1977	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000016A03	1977	SAU101804	5544	#N/A	#N/A
S1M10000016A04	1978	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000016A04	1978	SAU100433	5272	SAUIc0040_orf_87p	12449
S1M10000016A06	1979	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000016A07	1980	SAU100932	5356	SAUIc0044_orf_308p	12615
S1M10000016A09	1981	SAU101067	5375	SAU1c0034_orf_58p	12290
S1M10000016A09	1981	SAU300732	5877	SAU3cl116_orf_lp	13061
S1M10000016A10	1982	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000016A12	1983	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000016B02	1984	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000016B05	1985	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000016B06	1986	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000016B06	1986	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000016B07	1987	SAU103077	5759	SAU1c0039_orf_44p	12408
S1M10000016B08	1988	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000016B09	1989	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000016B10	1990	SAU101006	5367	SAU1c0028_orf_59p	12190
S1M10000016B11	1991	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000016B12	1992	SAU101794	5535	#N/A	#N/A
S1M10000016B12	1992	SAU101795	5536	SAU1c0032_orf_15p	12219
S1M10000016C01	1993	SAU100845	5340	SAU1c0036_orf_41p	12329
S1M10000016C02	1994	SAU102049	5595	SAU1c0039_orf_68p	12416
S1M10000016C04	1995	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000016C05	1996	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000016C06	1997	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000016C06	1997	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000016C06	1997	SAU301148	5888	#N/A	#N/A
S1M10000016C08	1998	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000016C09	1999	SAU102233	5616	SAU1c0043_orf_20p	12531
S1M10000016C10	2000	SAU201513	5820	SAU2c0432_orf_10p	12944
S1M10000016C10	2000	SAU203196	5861	SAU2c0432_orf_11p	12945
S1M10000016C11	2001	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000016C12	2002	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000016D01	2003	SAU102355	5651	SAU1c0040_orf_40p	12435
S1M10000016D02	2004	SAU200242	5777	. SAU2c0250_orf_2p	12734
S1M10000016D04	2005	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000016D05	2006	SAU100770	5324	#N/A	#N/A
S1M10000016D06	2007	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000016D08	2008	SAU101070	5376	SAU1c0034_orf_60p	12291
S1M10000016D09	2009	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000016D10	2010	SAU201513	5820	SAU2c0432_orf_10p	12944

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
	Judin]	(2.3.3.3)		Protein Seq
S1M10000016D10	2010	SAU203196	5861	SAU2c0432_orf_llp	12945
SIM10000016D11	2011	SAU101573	5485	SAU1c0044 orf_212p	12587
S1M10000016E04	2012	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000016E05	2013	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000016E06	2014	SAU102639	5724	#N/A	#N/A
S1M10000016E07	2015	SAU102636	5722	SAU1c0045_orf_101p	12650
S1M10000016E07	2015	SAU102637	5723	SAU1c0045_orf_102p	12651
S1M10000016E08	2016	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000016E09	2017	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000016E10	2018	SAU102983	5751	SAU1c0045_orf_224p	12676
S1M10000016E11	2019	SAU102281	5633	SAU1c0038_orf_4p	12384
S1M10000016E12	2020	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000016F02	2021	SAU102113	5601	SAU1c0027_orf_2p	12178
S1M10000016F02	2021	SAU301223	5889	SAU3c1345_orf_3p	13090
S1M10000016F03	2022	SAU101864	5562	SAU1c0044_orf_163p	12572
S1M10000016F05	2023	SAU201168	5804	SAU2c0407_orf_8p	12889
S1M10000016F06	2024	SAU102407	5662	#N/A	#N/A
S1M10000016F08	2025	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000016F09	2026	SAU102527	5693	SAU1c0032_orf_9p	12260
SIM10000016F11	2027	SAU102113	5601	SAU1c0027_orf_2p	12178
S1M10000016F11	2027	SAU301223	5889	SAU3c1345_orf_3p	13090
S1M10000016G01	2028	SAU102434	5669	SAU1c0045_orf_36p	12700
S1M10000016G03	2029	SAU101300	5415	SAU1c0044_orf_113p	12557
SIM10000016G03	2029	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000016G04	2030	SAU102450	5675	SAU1c0045_orf_21p	12675
S1M10000016G05	2031	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000016H03	2032	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000016H04	2033	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000016H08	2034	SAU101067	5375	SAU1c0034_orf_58p	12290
S1M10000016H08	2034	SAU300732	5877	SAU3cl116_orf_lp	13061
S1M10000016H10	2035	SAU101756	5524	SAU1c0040_orf_82p	12445 12319
S1M10000017A02	2036	SAU101866	5564	SAU1c0036_orf_21p	
S1M10000017A03	2037	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000017A03	2037	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000017A04	2038	SAU102292	5638	SAU1c0038_orf_10p	12308
S1M10000017A08	2039	SAU102117	5603	SAU1c0027_orf_6p	
S1M10000017A11	2040	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000017A12	2041	SAU301357	5893	SAU3c1394_orf_2p SAU1c0043_orf_26p	12540
S1M10000017B02	2042	SAU102242	5618 5906		13085
S1M10000017B05	2043	SAU302513	l	SAU3c1298_orf_1p SAU1c0032_orf_25p	12230
S1M10000017B07	2044	SAU101806	5546 5475	SAU1c0037_orf_133p	12349
S1M10000017B08	2045	SAU101546	5798	SAU2c0365_orf_5p	12815
S1M10000017B09	2046	SAU200928	5523	SAU1c0040 orf 84p	12446
SIM10000017B10	2047	SAU101754	3323	137.010040_011_04p	

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000017B11	2048	SAU101754	5523	SAU1c0040_orf_84p	12446
S1M10000017B12	2049	SAU201375	5811	SAU2c0426_orf_4p	12926
S1M10000017C01	2050	SAU101224	5397	SAU1c0044_orf_98p	12647
S1M10000017C03	2051	SAU101910	5576	SAU1c0040_orf_76p	12440
S1M10000017C05	2052	SAU200657	5789	#N/A	#N/A
S1M10000017C08	2053	SAU101890	5570	SAU1c0034_orf_29p	12280
S1M10000017C09	2054	SAU101398	5442	SAU1c0036_orf_33p	12324
S1M10000017C10	2055	SAU102614	5716	SAU1c0041_orf_56p	12476
S1M10000017C10	2055	SAU102615	5717	SAU1c0041_orf_57p	12477
S1M10000017C11	2056	SAU101799	5539	SAU1c0032_orf_19p	12223
S1M10000017C11	2056	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000017C12	2057	SAU101782	5529	SAU1c0037_orf_44p	12354
S1M10000017C12	2057	SAU200994	5802	SAU2c0428_orf_4p	12935
S1M10000017D03	2058	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000017D09	2059	SAU101799	5539	SAU1c0032_orf_19p	12223
S1M10000017D09	2059	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000017D10	2060	SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000017E04	2061	SAU101801	5541	#N/A	#N/A
S1M10000017E05	2062	SAU102334	5645	SAU1c0045_orf_144p	12658
S1M10000017E08	2063	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000017E11	2064	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000017F01	2065	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000017F04	2066	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000017F04	2066	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000017F05	2067	SAU102541	5697	SAU1c0045_orf_195p	12668
S1M10000017F06	2068	SAU102356	5652	SAU1c0040_orf_41p	12436
S1M10000017F11	2069	SAU101463	5458	SAU1c0045_orf_232p	12679
S1M10000017G02	2070	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000017G05	2071	SAU102259	5624	SAU1c0032_orf_55p	12245
S1M10000017G06	2072	SAU200565	5785	SAU2c0324_orf_7p	12781
S1M10000018A03	2073	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000018A03	2073	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000018A04	2074	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000018A05	2075	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000018A05	2075	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000018A06	2076	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000018A08	2077	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000018A08	2077	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000018A09	2078	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000018A10	2079	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000018A11	2080	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000018A11	2080	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000018B02	2081	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000018B02	2081	SAU100887	5350	SAU1c0018_orf_15p	12138

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000018B03	2082	SAU101839	5556	SAU1c0042_orf_12p	12495
S1M10000018B05	2083	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000018B09	2084	SAU100836	5336	SAU1c0031_orf_13p	12212
S1M10000018B09	2084	SAU202731	5850	#N/A	#N/A
S1M10000018B10	2085	SAU100401	5268	SAU1c0044_orf_174p	12576
S1M10000018B10	2085	SAU300335	5870	#N/A	#N/A
S1M10000018B11	2086	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000018C01	2087	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000018C02	2088	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000018C03	2089	SAU100778	5328	SAU1c0043_orf_140p	12514
\$1M10000018C04	2090	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000018C05	2091	SAU103038	5757	#N/A	#N/A
S1M10000018C06	2092	SAU100684	5306	SAU1c0044_orf_68p	12632
S1M10000018C08	2093	SAU102256	5622	SAU1c0032_orf_52p	12243
S1M10000018C08	2093	SAU102257	5623	SAU1c0032_orf_53p	12244
S1M10000018C09	2094	SAU101065	5374	SAU1c0034_orf_56p	12289
S1M10000018C09	2094	SAU102068	5599	SAU1c0034_orf_55p	12288
S1M10000018C10	2095	SAU100112	5227	SAU1c0044_orf_70p	12634
S1M10000018C11	2096	SAU102663	5727	SAU1c0024_orf_2p	12158
S1M10000018C12	2097	SAU101948	5579	SAUlc0045_orf_69p	12709
S1M10000018D01	2098	SAU101452	5455	SAU1c0045_orf_247p	12684
S1M10000018D02	2099	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000018D02	2099	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000018D03	2100	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000018D04	2101	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000018D09	2102	SAU101067	5375	SAU1c0034_orf_58p	12290
S1M10000018D10	2103	SAU301898	5904	SAU3c1079_orf_1p	13057
S1M10000018D11	2104	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000018D12	2105	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000018E01	2106	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000018E02	2107	SAU100265	5249	SAU1c0014_orf_11p	12122
S1M10000018E03	2108	SAU102420	5665	SAU1c0030_orf_20p	12206
S1M10000018E04	2109	SAU102035	5592	SAU1c0029_orf_50p	12199
SIM10000018E05	2110	SAU100596	5295	SAUIc0043_orf_63p	12548
S1M10000018E08	2111	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000018E09		SAU301898	5904	SAU3c1079_orf_1p	13057
S1M10000018E11	2113	SAU101799	5539	SAU1c0032_orf_19p	12223
S1M10000018E11	2113	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000018E12	2114	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000018F03	2115	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000018F04	2116	SAU102396	5660	SAU1c0033_orf_43p	12272
S1M10000018F04	2116	SAU301118	5886	SAU3c1305_orf_3p	13086
S1M10000018F07	2117	SAU102629	5720	SAU1c0041_orf_71p	12481
S1M10000018F09	2118	SAU101810	5549	SAU1c0032_orf_28p	12233

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000018F09	2118	SAU300110	5865	SAU3c0533_orf_2p	13031
S1M10000018F10	2119	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000018F10	2119	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000018F12	2120/	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000018G03	2121	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000018G05	2122	SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000018G07	2123	SAU101727	5516	SAU1c0016_orf_6p	12133
S1M10000018G08	2124	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000018G08	2124	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000018G09	2125	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000018G09	2125	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000018G10	2126	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000018G10	2126	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000018G12	2127	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000018H01	2128	SAU101663	5506	SAU1c0033_orf_14p	12261
S1M10000018H02	2129	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000018H02	2129	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000018H07	2130	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000018H09	2131	SAU101622	5496	SAU1c0040_orf_27p	12430
S1M10000018H10	2132	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000019A02	2133	SAU103077	5759	SAU1c0039_orf_44p	12408
S1M10000019A03	2134	SAU102352	5650	SAU1c0040_orf_38p	12434
SIM10000019A05	2135	SAU201469	5816	SAU2c0438_orf_6p	12967
SIM10000019A06	2136	SAU101311	5419	SAU1c0044_orf_126p	12563
S1M10000019A07	2137	SAU101727	5516	SAU1c0016_orf_6p	12133
SIM10000019A07	2137	SAU101728	5517	SAU1c0016_orf_5p	12132
S1M10000019A09	2138	SAU102117	5603	SAU1c0027_orf_6p	12181
SIM10000019A11	2139	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000019A12	2140	SAU102693	5731	SAU1c0044_orf_58p	12627
SIM10000019A12	2140	SAU102694	5732	SAU1c0044_orf_59p	12628
S1M10000019B03	2141	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000019B04	2142	SAU100899	5351	SAU1c0034_orf_11p	12277
S1M10000019B04	2142	SAU100901	5352	SAU1c0034_orf_13p	12278
S1M10000019B07	2143	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000019B08	2144	SAU102422	5666	SAU1c0030_orf_22p	12207
S1M10000019B08	2144	SAU102423	5667	SAU1c0030_orf_23p	12208
S1M10000019B09	2145	SAU100182	5241	SAU1c0037_orf_82p	12362
S1M10000019B09	2145	SAU100251	5248	SAU1c0037_orf_83p	12363
S1M10000019B10	2146	SAU101570	5482	SAU1c0044_orf_209p	12584
SIM10000019B11	2147	SAU100879	5345	SAU1c0041_orf_82p	12483
S1M10000019B12	2148	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000019C01	2149	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000019C04	2150	SAU103175	5764	SAU1c0045_orf_269p	12687
S1M10000019C04	2150	SAU301472	5897	SAU3c1431_orf_4p	13124

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
	Seque	}	(protein)		Protein Seg
S1M10000019C05	2151	SAU101756	5524	SAU1c0040_orf_82p	1D 12445
S1M10000019C06	2152	SAU101790	5531	SAU1c0032_orf_11p	12215
S1M10000019C06	2152	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000019C07	2153	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000019C08	2154	SAU202126	5844	SAU2c0045_orf_lp	12714
S1M10000019C11	2155	SAU100301	5254	SAU1c0040_orf_91p	12452
S1M10000019C12	2156	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000019D01	2157	SAU102270	5631	SAU1c0032_orf_65p	12253
S1M10000019D02	2158	SAU101145	5384	SAU1c0035_orf_43p	12299
S1M10000019D04	2159	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000019D05	2160	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000019D06	2161	SAU102526	5692	SAU1c0045_orf_299p	12691
S1M10000019D07	2162	SAU301898	5904	SAU3c1079_orf_1p	13057
S1M10000019D09	2163	SAU102639	5724	#N/A	#N/A
S1M10000019D12	2164	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000019E01	2165	SAU100961	5360	SAU1c0044_orf_83p	12638
S1M10000019E01	2165	SAU100962	5361	SAU1c0044_orf_84p	12639
S1M10000019E02	2166	SAU101624	5497	SAU1c0040_orf_25p	12429
S1M10000019E07	2167	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000019F01	2168	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000019F05	2169	SAU101612	5493	SAU1c0044_orf_7p	12637
S1M10000019F05	2169	SAU202945	5857	SAU2c0394_orf_7p	12868
S1M10000019F06	2170	SAU101864	5562	SAU1c0044_orf_163p	12572
S1M10000019F08	2171	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000019F09	2172	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000019F11	2173	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000019G04	2174	SAU101793	5534	SAUlc0032_orf_14p	12218
S1M10000019G07	2175	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000019G09	2176	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000019G10	2177	SAU101235	5400	SAUlc0044_orf_11p	12561
S1M10000019G10	2177	SAU101236	5401	SAU1c0044_orf_12p	12564
S1M10000019G11	2178	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000019H05	2179	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000019H05	2179	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000019H08	2180	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000020A05	2181	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000020A06	2182	SAU101801	5541	#N/A	#N/A
S1M10000020A07	2183	SAU101567	5481	SAU1c0022_orf_10p	12144
S1M10000020A07	2183	SAU200030	5772	SAU2c0282_orf_3p	12745
S1M10000020A11	2184	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000020A12	2185	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000020B02	2186	SAU100475	5276	SAU1c0036_orf_61p	12337
S1M10000020B03	2187	SAU100059	5224	SAU1c0045_orf_10p	12652
S1M10000020B05	2188	SAU301133	5887	SAU3c1311_orf_3p	13087

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000020B06	2189	SAU100747	5320	SAU1c0044_orf_235p	12597
S1M10000020B07	2190	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000020B09	2191	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000020B12	2192	SAU102143	5607	SAU1c0041_orf_14p	12458
S1M10000020C09	2193	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000020C10	2194	SAU101799	5539	SAU1c0032_orf_19p	12223
S1M10000020C10	2194	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000020C11	2195	SAU101452	5455	SAU1c0045_orf_247p	12684
S1M10000020D03	2196	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000020D04	2197	SAU102481	5685	SAU1c0039_orf_99p	12422
S1M10000020D06	2198	SAU102578	5701	SAU1c0039_orf_61p	12411
SIM10000020D07	2199	SAU100198	5243	SAU1c0009_orf_lp	12120
S1M10000020D08	2200	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000020D09	2201	SAU102939	5747	#N/A	#N/A
S1M10000020D12	2202	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000020E01	2203	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000020E03	2204	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000020E04	2205	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000020E06	2206	SAU102162	5609	SAU1c0041_orf_27p	12462
S1M10000020E08	2207	SAU101756	, 5524	SAU1c0040_orf_82p	12445
S1M10000020E11	2208	SAU101876	5567	SAU1c0025_orf_9p	12169
S1M10000020E12	2209	SAU200657 ·	5789	#N/A	#N/A
S1M10000020F01	2210	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000020F05	2211	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000020F06	2212	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000020F06	2212	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000020F07	2213	SAU200731	5793	SAU2c0352_orf_2p	12808
S1M10000020F09	2214	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000020F11	2215	SAU101663	5506	SAUIc0033_orf_14p	12261
S1M10000020F11	2215	SAU101664	5507	SAU1c0033_orf_15p	12262
S1M10000020F12	2216	SAU100745	5319	SAUIc0044_orf_233p	12596
S1M10000020G01	2217	SAU102905	5742	SAU1c0033_orf_45p	12273
S1M10000020G05	2218	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000020G07	2219	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000020G08	2220	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000020G09	2221	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000020G10	2222	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000020G10	2222	SAU101808	5548	SAU1c0032_orf_27p	12232 .
S1M10000020G11	2223	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000020G12	2224	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000020H01	2225	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000020H02	2226	SAU101754	5523	SAU1c0040_orf_84p	12446
S1M10000020H04	2227	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000020H06	2228	SAU101541	5472	SAU1c0037_orf_128p	12344

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000020H08	2229	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000020H10	2230	SAU101754	5523	SAU1c0040_orf_84p	12446
S1M10000020H11	2231	SAU100053	5222	SAUIc0020_orf_lp	12143
S1M10000021A04	2232	SAU200752	5795	SAU2c0354_orf_5p	12809
S1M10000021A04	2232	SAU300975	5880	SAU3c1240_orf_3p	13075
S1M10000021A05	2233	SAU101408	5445	SAU1c0035_orf_93p	12308
S1M10000021A06	2234	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000021A07	2235	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000021A07	2235	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000021A08	2236	SAU101183	5390	SAU1c0035_orf_79p	12304
S1M10000021A09	2237	SAU102933	5744	SAU1c0039_orf_62p	12412
S1M10000021A09	2237	SAU201184	5805	SAU2c0351_orf_19p	12807
S1M10000021A10	2238	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000021B05	2239	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000021B05	2239	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000021B06	2240	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000021B07	2241	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000021B10	2242	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000021C04	2243	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000021C05	2244	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000021C07	2245	SAU202968	5858	SAU2c0407_orf_2p	12886
S1M10000021C08	2246	SAU102575	5700	SAU1c0044_orf_283p	12609
S1M10000021C10	2247	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000021C11	2248	SAU200006	5770	SAU2c0157_orf_1p	12723
S1M10000021C12	2249	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000021D01	2250	SAU102503	5691	SAU1c0045_orf_274p	12690
S1M10000021D03	2251	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000021D03	2251	SAU101286	5413	SAU1c0034_orf_67p	12292
S1M10000021D04	2252	SAU100858	5341	SAU1c0038_orf_86p	12401
S1M10000021D04	2252	SAU100859	5342	SAU1c0038_orf_87p	12402
S1M10000021D06	2253	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000021D09	2254	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000021D10	2255	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000021E01	2256	SAU101655	5505	SAU1c0042_orf_125p	12494
S1M10000021E02	2257	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000021E02		SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000021E03	2258	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000021E05	2259	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000021E06	2260	SAU102663	5727	SAU1c0024_orf_2p	12158
S1M10000021E09	2261	SAU200006	5770	SAU2c0157_orf_1p	12723
S1M10000021E12	2262	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000021F02	2263	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021F04	2264	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000021F04	2264	SAU102602	5708	SAU1c0032_orf_5p	12249

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000021F05	2265	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021F06	2266	SAU101235	5400	SAU1c0044_orf_llp	12561
S1M10000021F07	2267	SAU101383	5438	SAU1c0022_orf_20p	12147
S1M10000021F09	2268	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021F09	2268	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000021F11	2269	SAU101371	5435	SAU1c0033_orf_7p	12275
SIM10000021G01	2270	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000021G03	2271	SAU301357	5893	SAU3c1394_orf_2p	13111
S1M10000021G08	2272	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000021H04	2273	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000021H04	2273	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000021H05	2274	SAU300131	5866	SAU3c0560_orf_2p	13034
S1M10000021H07	2275	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000021H08	2276	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021H11	2277	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000022A02	2278	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000022A02	2278	SAU301230	5890	SAU3c1347_orf_6p	13092
S1M10000022A03	2279	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000022A05	2280	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000022A08	2281	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000022A09	2282	SAU102939	5747	#N/A	#N/A
S1M10000022A12	2283	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000022B02	2284	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000022B02	2284	SAU301230	5890	SAU3c1347_orf_6p	13092
S1M10000022B03	2285	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000022B05	2286	SAU100920	5354	SAU1c0038_orf_75p	12395
S1M10000022B06	2287	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000022B08	2288	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000022B09	2289	SAU102939	5747	#N/A	#N/A
S1M10000022B10	2290	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000022B11	2291	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000022B12	2292	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000022C02	2293	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000022C03	2294	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000022C04	2295	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000022C06	2296	SAU100246	5247	SAU1c0042_orf_130p	12496
S1M10000022C06	2296	SAU300998	5881	SAU3c1253_orf_3p	13077
S1M10000022C07	2297	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000022C08	2298	SAU100528	5286	SAU1c0042_orf_87p	12507
S1M10000022C08	2298	SAU103115	5760	SAU1c0042_orf_88p	12508
SIM10000022C11	2299	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000022D03	2300	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000022D05	2301	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000022D06	2302	SAU100921	5355	SAU1c0038_orf_76p	12396

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000022D07	2303	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000022D08	2304	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000022D09	2305	SAU101726	5515	SAU1c0016_orf_7p	12134
SIM10000022D11	2306	SAU101447	5454	SAU1c0045_orf_244p	#N/A
S1M10000022E01	2307	SAU200601	5787	#N/A	
S1M10000022E03	2308	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000022E05	2309	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000022E09	2310	SAU101235	5400	SAU1c0044_orf_11p	12564
S1M10000022E09	2310	SAU101236	5401	SAU1c0044_orf_12p	12304
S1M10000022F04	2311	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000022F06	2312	SAU101868	5565	SAU1c0036_orf_23p	
S1M10000022F07	2313	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000022F08	2314	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000022F11	2315	SAU101592	5490	SAU1c0039_orf_37p SAU3c1429_orf_4p	13121
S1M10000022G03	2316	SAU301465	5896	SAU1c0037_orf_39p	12352
S1M10000022G04	2317	SAU101777	5527	SAU1c0037_orf_39p	12332
S1M10000022G07	2318	SAU100414	5270		12148
S1M10000022G08	2319	SAU100557	5291	SAU1c0044_orf_132p	12363
S1M10000022G12	2320	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000022H03	2321	SAU101006	5367	SAU1c0028_orf_59p SAU1c0032_orf_32p	12190
S1M10000022H05	2322	SAU101814	5551	SAU2c0365_orf_5p	12237
S1M10000022H06	2323	SAU200928	5798	SAU1c0044_orf_100p	12553
S1M10000022H07	2324	SAU100866	5344	SAU1c0018_orf_15p	12138
S1M10000022H08	2325	SAU100887	5350 5492	SAU1c0044_orf_5p	12629
S1M10000022H11	2326	SAU101610	5896	SAU3c1429_orf_4p	13121
SIM10000023A05	2327	SAU301465	5423	SAU1c0038_orf_82p	12400
S1M10000023A09	2328	SAU101340	5290	SAU1c0032_orf_3p	12240
S1M10000023A11	2329	SAU100547	5502	SAU1c0042_orf_122p	12491
S1M10000023A12	2330	SAU101651 SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000023A12	2330	SAU101632 SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000023B01 S1M10000023B03	2331	SAU100886 SAU101652	5503	SAU1c0042_orf_123p	12492
SIM10000023B03	2332	SAU101652	5504	SAU1c0042_orf_124p	12493
S1M10000023B03	2332	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000023B07	2334	SAU100140	5235	SAU1c0032_orf_7p	12258
		SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000023B08	2334	SAU100141 SAU101340	5423	SAU1c0038_orf_82p	12400
SIM10000023B09	2336	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000023B10 S1M10000023B11	2337	SAU102578	5715	SAU1c0041_orf_55p	12475
S1M10000023B11	2338	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000023B12	2338	SAU301148	5888	#N/A	#N/A
S1M10000023B12	2339	SAU100140	5235	SAU1c0032_orf_7p	12258
SIM10000023C02	2339	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000023C02	2340	SAU102554	5699	SAU1c0045_orf_209p	12673

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000023C11	2341	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000023C12	2342	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000023D01	2343	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000023D03	2344	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000023D04	2345	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000023D07	2346	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000023D08	2347	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000023D09	2348	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000023D10	2349	SAU100963	5362	SAU1c0044_orf_85p	12640
S1M10000023D12	2350	SAU102292	5638	SAU1c0038_orf_10p	12368
SIM10000023E01	2351	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000023E04	2352	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000023E07	2353	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000023E10	2354	SAU203293	5862	SAU2c0441_orf_21p	12979
SIM10000023E11	2355	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000023F04	2356	SAU101736	5518	SAU1c0043_orf_166p	12519
S1M10000023F04	2356	SAU101737	5519	SAU1c0043_orf_165p	12518
S1M10000023F07	2357	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000023F08	2358	SAU102883	5741	SAU1c0045_orf_38p	12702
SIM10000023F10	2359	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000023F11	2360	SAU100617	5300	SAU1c0035_orf_102p	12295
S1M10000023F12	2361	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000023G02	2362	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000023G03	2363	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000023G06	2364	SAU100887	5350	SAUlc0018_orf_15p	12138
S1M10000023G07	2365	SAU301054	5884	#N/A	#N/A
S1M10000023G08	2366	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000023G09	2367	SAU101968	5581	SAUIc0028_orf_43p	12187
S1M10000023G11	2368	SAU102613	5715	SAUlc0041_orf_55p	12475
S1M10000023H02	2369	SAU101996	5584	SAUlc0040_orf_99p	12456
S1M10000023H06	2370	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000023H07	2371	SAU100300	5253	SAUlc0040_orf_90p	12451
S1M10000023H09	2372	SAU101340	5423	SAUIc0038_orf_82p	12400
S1M10000023H10	2373	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000024A02	2374	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000024A04	2375	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000024A07	2376	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000024A08	2377	SAU101231	5399	SAU1c0035_orf_6p	12303
S1M10000024A11	2378	SAU103226	5768	SAU1c0045_orf_95p	12713
S1M10000024B05	2379	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000024B06	2380	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000024B08	2381	SAU100601	5296	SAU1c0044_orf_313p	12616
S1M10000024B09	2382	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000024B10	2383	SAU101265	5407	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000024C02	2384	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000024C04	2385	SAU101862	5561	SAU1c0044_orf_161p	12571
S1M10000024C07	2386	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000024D02	2387	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000024D03	2388	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000024D10	2389	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000024D10	2389	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000024D11	2390	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000024E03	2391	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000024E05	2392	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000024E05	2392	SAU101801	5541	#N/A	#N/A
S1M10000024E06	2393	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000024E07	2394	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000024E08	2395	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000024F02	2396	SAU101447	5454	SAU1c0045_orf_244p	12683
S1M10000024F03	2397	SAU102992	5752	SAU1c0044_orf_60p	12630
S1M10000024F05	2398	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000024F08	2399	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000024F10	2400	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000024G05	2401	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000024G05	2401	SAU101801	5541	#N/A	#N/A
S1M10000024G06	2402	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000024G07	2403	SAU102334	5645	SAU1c0045_orf_144p	12658
S1M10000024G08	2404	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000024G10	2405	SAU202176	5846	SAU2c0412_orf_3p	12895
S1M10000024G12	2406	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000024H02	2407	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000024H04	2408	SAU100770	5324	#N/A	#N/A
S1M10000024H07	2409	SAU200725	5792	SAU2c0428_orf_20p	12933
S1M10000024H08	2410	SAU102002	5587	SAU1c0040_orf_103p	12425
S1M10000024H08	2410	SAU102003	5588	SAU1c0040_orf_104p	12426
S1M10000025A03	2411	SAU101247	5405	SAU1c0043_orf_136p	12512
SIM10000025A08	2412	SAU102766	5735	#N/A	#N/A
S1M10000025A08	2412	SAU201236	5808	SAU2c0409_orf_10p	12891
S1M10000025A08	2412	SAU300338	5871	#N/A	#N/A
S1M10000025A09	2413	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000025A10	2414	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000025A10	2414	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000025A10	2414	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000025B01	2415	SAU101655	5505	SAU1c0042_orf_125p	12494
S1M10000025B02	2416	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000025B03	2417	SAU101385	5439	SAU1c0038_orf_50p	12385
S1M10000025B05	2418	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000025B05	2418	SAU200916	5797	SAU2c0373_orf_4p	12838

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000025B05	2418	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000025B06	2419	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000025B09	2420	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000025B12	2421	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000025C01	2422	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000025C03	2423	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000025C05	2424	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000025C09	2425	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000025C09	2425	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000025C10	2426	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000025C11	2427	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000025D01	2428	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000025D03	2429	SAU101771	5525	SAU1c0037_orf_33p	12350
S1M10000025D03	2429	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000025D04	2430	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000025D06	2431	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000025D08	2432	SAU102598	5705	SAU1c0041_orf_43p	12464
S1M10000025D08	2432	SAU102599	5706	SAU1c0041_orf_45p	12466
S1M10000025D08	2432	SAU103191	5765	SAU1c0041_orf_44p	12465
S1M10000025D09	2433	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000025D10	2434	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000025D10	2434	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000025E01	2435	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000025E04	2436	SAU100389	5266	SAU1c0034_orf_14p	12279
S1M10000025E09	2437	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000025E11	2438	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000025F03	2439	SAU102297	5640	SAU1c0045_orf_41p	12704
SIM10000025F05	2440	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000025F05	2440	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000025F08	2441	SAU200685	5790	SAU2c0344_orf_9p	12801
S1M10000025F09	2442	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000025F10	2443	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000025F12	2444	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000025F12	2444	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000025G04	2445	SAU300617	5874	SAU3c1046_orf_2p	13056
S1M10000025G06	2446	SAU300617	5874	SAU3c1046_orf_2p	13056
S1M10000025G10	2447	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000025H05	2448	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000025H06	2449	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000025H07	2450	SAU200752	5795	SAU2c0354_orf_5p	12809
S1M10000025H07	2450	SAU300975	5880	SAU3c1240_orf_3p	13075
S1M10000025H10	2451	SAU100590	5293	SAU1c0013_orf_5p	12121
S1M10000025H10	2451	SAU301268	5891	SAU3c1364_orf_2p	13102
S1M10000026A02	2452	SAU101907	5574	SAU1c0040_orf_79p	12442

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000026A04	2453	SAU102340	. 5647	SAU1c0045_orf_149p	12660
S1M10000026A05	2454	SAU200934	5799	SAU2c0375_orf_9p	12842
S1M10000026A06	2455	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000026A07	2456	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000026A08	2457	SAU100266	5250	SAU1c0032_orf_75p	12256
S1M10000026A09	2458	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000026A09	2458	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000026A10	2459	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000026A11	2460	SAU102259	5624	SAU1c0032_orf_55p	12245
S1M10000026A11	2460	SAU102260	5625	SAU1c0032_orf_56p	12246
S1M10000026A11	2460	SAU102261	5626	SAU1c0032_orf_57p	12247
S1M10000026A11	2460	SAU300868	5879	#N/A	#N/A
S1M10000026B02	2461	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000026B03	2462	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000026B05	2463	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000026B06	2464	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000026B07	2465	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000026B07	2465	SAU301275	5892	SAU3c1365_orf_2p	13103
S1M10000026B10	2466	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000026B11	2467	SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000026B12	2468	SAU100970	5365	SAUIc0043_orf_197p	12529
S1M10000026C01	2469	SAU100266	5250	SAU1c0032_orf_75p	12256
S1M10000026C06	2470	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000026C07	2471	SAU101842	5557	SAU1c0042_orf_9p	12510
S1M10000026C08	2472	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000026C11	2473	SAU200657	5789	#N/A	#N/A
S1M10000026C12	2474	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000026D04	2475	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000026D05	2476	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000026D06	2477	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000026D07	2478	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000026D08	2479	SAU100690	5309	#N/A	#N/A
S1M10000026D10	2480	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000026D12	2481	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000026E01	2482	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000026E07	2483	SAU102939	5747	#N/A	#N/A
S1M10000026E09	2484	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000026E09	2484	SAU102002	5587	SAU1c0040_orf_103p	12425
S1M10000026E10	2485	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000026E11	2486	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000026E12	2487	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000026F01	2488	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000026F03	2489	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000026F03	2489	SAU102201	5612	SAU1c0045_orf_169p	12666

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID 12997
S1M10000026F04	2490	SAU201571	5824	SAU2c0447_orf_17p	
S1M10000026F05	2491	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000026F06	2492	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000026F07	2493	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000026F08	2494	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000026F09	2495	SAU102939	5747	#N/A	#N/A
S1M10000026F10	2496	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000026F11	2497	SAU102939	5747	#N/A	#N/A
S1M10000026F12	2498	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000026G01	2499	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000026G03	2500	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000026G04	2501	SAU100690	5309	#N/A	#N/A
S1M10000026G05	2502	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000026G06	2503	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000026G07	2504	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000026G09	2505	SAU100542	5288	SAU1c0043_orf_210p	12532
S1M10000026G10	2506	SAU100613	5299	SAU1c0015_orf_14p	12126
S1M10000026G10	2506	SAU102812	5736	SAU1c0015_orf_15p	12127
S1M10000026G12	2507	SAU101551	5477	SAU1c0043_orf_67p	12550
S1M10000026H01	2508	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000026H02	2509	SAU102355	5651	SAU1c0040_orf_40p	12435
S1M10000026H03	2510	SAU101801	5541	#N/A	#N/A
S1M10000026H04	2511	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000026H04	2511	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000026H04	2511	SAU301148	5888	#N/A	#N/A
S1M10000026H05	2512	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000026H07	2513	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000026H07	2513	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000026H09	2514	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000026H09	2514	SAU301148	5888	#N/A	#N/A
S1M10000026H10	2515	SAU102479	5683	SAU1c0039_orf_101p	12405
S1M10000027A04	2516	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000027A05	2517	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000027A08	2518	SAU101772	5526	SAU1c0037_orf_34p	12351
SIM10000027A11	2519	SAU101551	5477	SAU1c0043_orf_67p	12550
S1M10000027B04	2520	SAU102939	5747	#N/A	#N/A
SIM10000027B06	2521	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000027B07	2522	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000027B08	2523	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000027B09	2524	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000027B11	2525	SAU101265	5407	#N/A	#N/A
S1M10000027C02	2526	SAU101327	5421	SAU1c0044_orf_296p	12612
S1M10000027C04	2527	SAU201236	5808	SAU2c0409_orf_10p	12891
S1M10000027C05	2528	SAU102117	5603	SAU1c0027_orf_6p	12181

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
			,		Protein Seq
S1M10000027C06	2529	SAU100114	5228	SAU1c0043_orf_225p	ID 12535
SIM10000027C08	2530	SAU101807	5547	SAU1c0032 orf 26p	12231
S1M10000027C09	2531	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000027D02	2532	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000027D02	2532	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000027D03	2533	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000027D05	2534	SAU101554	5478	SAU1c0043_orf_70p	12551
S1M10000027D06	2535	SAU202708	5849	SAU2c0385_orf_1p	12855
S1M10000027D08	2536	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000027D09	2537	SAU203524	5864	SAU2c0435_orf_lp	12957
S1M10000027D10	2538	SAU102283	5634	SAU1c0006_orf_lp	12119
S1M10000027D11	2539	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000027E05	2540	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000027E05	2540	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000027E06	2541	SAU100690	5309	#N/A	#N/A
S1M10000027E07	2542	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000027E08	2543	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000027E09	2544	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000027E11	2545	SAU101551	5477	SAU1c0043_orf_67p	12550
S1M10000027F01	2546	SAU103038	5757	#N/A	#N/A
S1M10000027F02	2547	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000027F05	2548	SAU100882	5347	SAU1c0038_orf_35p	12374
S1M10000027F06	2549	SAU100690	5309	#N/A	#N/A
S1M10000027F08	2550	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000027F09	2551	SAU100858	5341	SAU1c0038_orf_86p	12401
S1M10000027G03	2552	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000027G04	2553	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000027G05	2554	SAU102526	5692	SAU1c0045_orf_299p	12691
S1M10000027G06	2555	SAU202708	5849	SAU2c0385_orf_lp	12855
S1M10000027G07	2556	SAU102265	5629	SAU1c0032_orf_61p	12251
S1M10000027G09	2557	SAU101807	5547	SAU1c0032_orf_26p #N/A	#N/A
S1M10000027G11	2558	SAU102533	5695	#N/A	#N/A
S1M10000027G11	2558	SAU102534	5696	SAUIc0034 orf 51p	12286
S1M10000027H02	2559	SAU102059	5597	SAU1c0037_orf_39p	12352
S1M10000027H04	2560	SAU101777	5692	SAU1c0045_orf_299p	12691
S1M10000027H05	2561	SAU102526	5309	#N/A	#N/A
S1M10000027H06	2562	SAU100690 SAU100542	5288	SAU1c0043_orf_210p	12532
S1M10000027H07	2563 2564	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000027H08 S1M10000027H09	2565	SAU101382	5437	SAU1c0022_orf_19p	12146
	2566	SAU101382	5238	SAU1c0040_orf_80p	12443
S1M10000027H10 S1M10000027H11	2567	SAU102533	5695	#N/A	#N/A
S1M10000027H11	2567	SAU102534	5696	#N/A	#N/A
SIM10000027H11	2568	SAU101085	5378	SAU1c0034_orf_42p	12284
SIMITUUUUUZSAUZ	2308	040101000	1 3370		

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
					ID Erotein Seq
S1M10000028A02	2568	SAU101086	5379	SAU1c0034_orf_43p	12285
S1M10000028A04	2569	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000028A06	2570	SAU100478	5277	SAU1c0044_orf_265p	12605
S1M10000028A06	2570	SAU100996	5366	SAU1c0044_orf_266p	12606
S1M10000028A08	2571	SAU102054	5596	SAU1c0039_orf_74p	12417
S1M10000028B01	2572	SAU101085	5378	SAU1c0034_orf_42p	12284
S1M10000028B01	2572	SAU101086	5379	SAU1c0034_orf_43p	12285
S1M10000028B02	2573	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000028B02	2573	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000028B03	2574	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000028B04	2575	SAU102764	5734	SAU1c0044_orf_56p	12625
S1M10000028B05	2576	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000028B06	2577	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000028B08	2578	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000028B09	2579	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000028C02	2580	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000028C04	2581	SAU101381	5436	SAU1c0022_orf_18p	12145
S1M10000028C05	2582	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000028C05	2582	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000028C05	2582	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000028C06	2583	SAU103226	5768	SAU1c0045_orf_95p	12713
S1M10000028C08	2584	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000028D03	2585	SAU301898	5904	SAU3c1079_orf_lp	13057
S1M10000028D04	2586	SAU101381	5436	SAU1c0022_orf_18p	12145
S1M10000028D06	2587	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000028D07	2588	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000028D08	2589	SAU100858	5341	SAU1c0038_orf_86p	12401
S1M10000028D09	2590	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000028E01	2591	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000028E01	2591	SAU100231	5245	#N/A	#N/A
S1M10000028E03	2592	SAU100770	5324	#N/A	#N/A
S1M10000028E08	2593	SAU101865	5563	SAU1c0036_orf_20p	12318
S1M10000028F01	2594	SAU101085	5378	SAU1c0034_orf_42p	12284
S1M10000028F01	2594	SAU101086	5379	SAU1c0034_orf_43p	12285
S1M10000028F03	2595	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000028F04	2596	SAU100301	5254	SAU1c0040_orf_91p	12452
S1M10000028F04	2596	SAU100302	5255	SAU1c0040_orf_92p	12453
S1M10000028F05	2597	SAU100301	5254	SAU1c0040_orf_91p	12452
S1M10000028F05	2597	SAU100302	5255	SAU1c0040_orf_92p	12453
S1M10000028F06	2598	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000028F06	2598	SAU202756	5852	SAU2c0470_orf_lp	13027
S1M10000028F07	2599	SAU101006	5367	SAU1c0028_orf_59p	12190
S1M10000028G01	2600	SAU102554	5699	SAU1c0045_orf_209p	12673
S1M10000028G02	2601	SAU201236	5808	SAU2c0409_orf_10p	12891

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000028G02	2601	SAU300338	5871	#N/A	#N/A
S1M10000028G03	2602	SAU101231	5399	SAU1c0035_orf_6p	12303
S1M10000028G04	2603	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000028G04	2603	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000028G05	2604	SAU100690	5309	#N/A	#N/A
SIM10000028G06	2605	SAU101865	5563	SAU1c0036_orf_20p	12318
S1M10000028G08	2606	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000028G08	2606	SAU301275	5892	SAU3c1365_orf_2p	13103
S1M10000028H03	2607	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000028H04	2608	SAU103038	5757	#N/A	#N/A
S1M10000028H05	2609	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000029A02	2610	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000029A04	2611	SAU100489	5278	SAU1c0044_orf_133p	12566
S1M10000029A04	2611	SAU100557	5291	SAU1c0044_orf_132p	12565
S1M10000029A09	2612	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000029A10	2613	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000029A11	2614	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000029A12	2615	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000029B02	2616	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000029B03	2617	SAU201225	5807	SAU2c0412_orf_5p	12896
S1M10000029B04	2618	SAU201621	5828	SAU2c0437_orf_4p	12966
S1M10000029B05	2619	SAU100355	5263	SAU1c0023_orf_6p	12155
S1M10000029B06	2620	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000029B08	2621	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000029B10	2622	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000029C02	2623	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029C03	2624	SAU100690	5309	#N/A	#N/A
S1M10000029C05	2625	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000029C07	2626	SAU102222	5613	SAU1c0043_orf_12p	12511
S1M10000029C09	2627	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000029C10	2628	SAU101995	5583	SAU1c0040_orf_98p	12455
S1M10000029C12	2629	SAU100859	5342	SAU1c0038_orf_87p	12402
S1M10000029D02	2630	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000029D05	2631	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000029D09	2632	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000029D10	2633	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000029D12	2634	SAU100056	5223	SAU1c0044_orf_176p	12577
S1M10000029E02	2635	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000029E05	2636	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000029E10	2637	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029E11	2638	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029F01	2639	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000029F01	2639	SAU101804	5544	#N/A	#N/A
S1M10000029F02	2640	SAU101271	5411	SAU1c0037_orf_90p	12366

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000029F02	2640	SAU101286	5413	SAUlc0034_orf_67p	12292
S1M10000029F04	2641	SAU102639	5724	#N/A	#N/A
S1M10000029F09	2642	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000029F09	2642	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000029F10	2643	SAU102621	5719	SAU1c0041_orf_63p	12480
S1M10000029F11	2644	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000029F12	2645	SAU102603	5709	SAU1c0041_orf_48p	12469
S1M10000029F12	2645	SAU102609	5713	SAU1c0041_orf_52p	12473
S1M10000029G01	2646	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000029G02	2647	SAU101622	5496	SAU1c0040_orf_27p	12430
S1M10000029G03	2648	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000029G05	2649	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000029G07	2650	SAU101622	5496	SAU1c0040_orf_27p	12430
S1M10000029G08	2651	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000029G12	2652	SAU101270	5410	SAU1c0037_orf_89p	12365
S1M10000029H01	2653	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000029H05	2654	SAU102613	5715	SAU1c0041_orf_55p	12475
S1M10000029H06	2655	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000029H08	2656	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029H09	2657	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000029H10	2658	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000030A02	2659	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000030A05	2660	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000030A09	2661	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000030A10	2662	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000030A10	2662	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000030A11	2663	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000030B02	2664	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000030B05	2665	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000030B07	2666	SAU101180	5389	SAU1c0045_orf_126p	12656
S1M10000030B09	2667	SAU301898	5904	SAU3c1079_orf_lp	13057
S1M10000030C02	2668	SAU102531	5694	SAU1c0045_orf_186p	12667
S1M10000030C03	2669	SAU102629	5720	SAU1c0041_orf_71p	12481
S1M10000030C04	2670	SAU101999	5585	SAUIc0040_orf_101p	12423
S1M10000030C05	2671	SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000030C08	2672	SAU101175	5388	SAU1c0031_orf_lp	12213
S1M10000030C09	2673	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000030C10	2674	SAU301592	5898	SAU3c1467_orf_2p	13137
S1M10000030C12	2675	SAU100961	5360	SAU1c0044_orf_83p	12638
S1M10000030C12	2675	SAU100962	5361	SAU1c0044_orf_84p	12639
SIM10000030D01	2676	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000030D02	2677	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000030D03	2678	SAU100731	5313	SAU1c0044_orf_252p	12601
S1M10000030D05	2679	SAU102222	5613	SAU1c0043_orf_12p	12511

Clone name	Clone	PathoSeq Locus	Gene SeqID	Genemarked gene	full length
,	SeqID		(protein)		ORF Protein Sea
	1				ID
S1M10000030D06.	2680	SAU102392	5658	SAU1c0033_orf_40p	12270
S1M10000030D06	2680	SAU201541	5822	SAU2c0431_orf_14p	12942
S1M10000030D07	2681	SAU102392	5658	SAU1c0033_orf_40p	12270
S1M10000030D07 '	2681	SAU201541	5822	SAU2c0431_orf_14p	12942
S1M10000030D09	2682	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000030D10	2683	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000030D10	2683	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000030D11	2684	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000030E02	2685	SAU100731	5313	SAU1c0044_orf_252p	12601
S1M10000030E06	2686	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000030E07	2687	SAU102939	5747	#N/A	#N/A 12215
S1M10000030E11	2688	SAU101790	5531	SAU1c0032_orf_11p	12213
S1M10000030E12	2689	SAU100300	5253	SAU1c0040_orf_90p SAU1c0044 orf 252p	12431
S1M10000030F01	2690	SAU100731	5313 5747	#N/A	#N/A
S1M10000030F07	2691	SAU102939	5540	SAU1c0032 orf 20p	12225
S1M10000030F08	2692	SAU101800	5541	#N/A	#N/A
S1M10000030F08	2692 2693	SAU101801 SAU101266	5408	SAU1c0042_orf_117p	12490
S1M10000030F09	2693	SAU101266 SAU102453	5677	SAU1c0042_off_117p	12669
S1M10000030F10 S1M10000030G03	2694	SAU102453 SAU101752	5522	SAU1c0043_off_19p	12009
S1M10000030G03	2696	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000030G05	2696	SAU102247	5620	SAU1c0043_orf_31p	12543
S1M10000030G03	2697	SAU102602	5708	SAU1c0032 orf_5p	12249
S1M10000030G07	2698	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000030G08	2699	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000030G09	2700	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000030G11	2701	SAU101529	5471	SAU1c0043_orf_39p	12544
S1M10000030G17	2702	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000030H01	2703	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000030H02	2704	SAU200392	5780	SAU2c0298_orf_3p	12755
S1M10000030H03	2705	SAU102162	5609	SAU1c0041_orf_27p	12462
S1M10000030H05	2706	SAU102380	5654	SAU1c0033 orf 29p	12265
S1M10000030H07	2707	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000030H07	2707	SAU102001	5586	SAU1c0040 orf 102p	12424
S1M10000030H07	2707	SAU103159	5762	SAU1c0045_orf_204p	12670
S1M10000030H07	2707	SAU201827	5837	SAU2c0449_orf_21p	13002
S1M10000030H09	2708	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000031A03	2709	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000031A08	2710	SAU101641	5501	SAU1c0029_orf_12p	12193
S1M10000031A10	2711	SAU102242	5618	SAU1c0043_orf_26p	12540
S1M10000031B01	2712	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000031B02	2713	SAU102602	5708	SAU1c0032_orf_5p	12249
SIM10000031B04	2714	SAU200928	5798	SAU2c0365_orf_5p	12815
SIM10000031B11	2715	SAU101262	5406	SAU1c0042_orf_113p	12488

WO 02/086097 PCT/US02/03987

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000031B12	2716	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000031C04	2717	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000031C04	2717	SAU100231	5245	#N/A	#N/A
S1M10000031C07	2718	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000031C09	2719	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000031C11	2720	SAU102935	5745	#N/A	#N/A
S1M10000031D06	2721	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000031D07	2722	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000031D08	2723	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000031D09	2724	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000031E02	2725	SAU101350	5429	SAU1c0042_orf_109p	12487
S1M10000031E03	2726	SAU101267	5409	SAU1c0037_orf_86p	12364
S1M10000031E03	2726	SAU300719	5876	SAU3c1108_orf_3p	13059
S1M10000031E04	2727	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000031E07	2728	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000031E08	2729	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000031E10	2730	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000031E12	2731	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000031F02	2732	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000031F02	2732	SAU101801	5541	#N/A	#N/A
S1M10000031F03	2733	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000031F04	2734	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000031F04	2734	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000031F05	2735	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000031F08	2736	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000031F10	2737	SAU102593	5704	SAU1c0041_orf_39p	12463
S1M10000031F11	2738	SAU102469	5679	SAU1c0026_orf_25p	12172
S1M10000031F12	2739	SAU102593	5704	SAU1c0041_orf_39p	12463
S1M10000031G02	2740	SAU101797	5537	SAU1c0032_orf_17p	12221
S1M10000031G03	2741	SAU101679	5509	SAU1c0044_orf_222p	12593
S1M10000031G04	2742	SAU103198	5766	#N/A	#N/A
S1M10000031G06	2743	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000031G09	2744	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000031G10	2745	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000031G11	2746	SAU100118	5229	SAU1c0015_orf_13p	12125
S1M10000031H01	2747	SAU103144	5761	SAU1c0045_orf_15p	12663
S1M10000031H02	2748	SAU100886	5349	SAUIc0018_orf_16p	12139
S1M10000031H06	2749	SAU100690	5309	#N/A	#N/A
S1M10000031H09	2750	SAU201743	5831	#N/A	#N/A
S1M10000031H11	2751	SAU100077	5226	SAUIc0043_orf_178p	12520
S1M10000032A03	2752	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000032A05	2753	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000032A06	2754	SAU100610	5298	SAUlc0034_orf_7lp	12294
S1M10000032A07	2755	SAU102059	5597	SAU1c0034_orf_51p	12286

Clone name		PathoSeq Locus	Gene SeqID	Genemarked gene	full length
	SeqID		(protein)		ORF Protein Sea
					ID ID
S1M10000032A08	2756	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000032A08	2756	SAU102143	5607	SAU1c0041_orf_14p	12458
S1M10000032A10	2757	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000032B01	2758	SAU301898	5904	SAU3c1079_orf_lp	13057
S1M10000032B05	2759	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000032B05	2759	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000032B07	2760	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000032B08	2761	SAU100175	5240	SAU1c0044_orf_204p	12582
S1M10000032B11	2762	SAU100944	5357	SAU1c0042_orf_5p	12505
S1M10000032B12	2763	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000032C01	2764	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000032C03	2765	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000032C04	2766	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000032C05	2767	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000032C09		SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000032C10	2769	SAU201615 /	5826	SAU2c0440_orf_10p	12972
S1M10000032C11	2770	SAU102863	5737	#N/A	#N/A
S1M10000032C12	2771	SAU102863	5737	#N/A	#N/A
S1M10000032D03		SAU100613	5299	SAU1c0015_orf_14p	12126
S1M10000032D06		SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000032D07		SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000032D09	2775	SAU100128	5231	#N/A	#N/A
S1M10000032D09	2775	SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000032D09	2775	SAU101576	5488	SAU1c0044_orf_105p	12554
S1M10000032D11	2776	SAU100128	5231	#N/A	#N/A
S1M10000032D11	2776	SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000032D11		SAU101576	5488	SAU1c0044_orf_105p	12554
S1M10000032E02	2777	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000032E03		SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000032E04		SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000032E06		SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000032E08		SAU102281	5633	SAU1c0038_orf_4p	12384
S1M10000032E09		SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000032E10	2783	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000032E11		SAU101592	5490	SAUIc0039_orf_37p	12406
S1M10000032E12		SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000032F01		SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000032F01		SAU102002	5587	SAU1c0040_orf_103p	12425
S1M10000032F04	1	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000032F05	l	SAU101339	5422	SAU1c0038_orf_81p	12399
S1M10000032F10		SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000032F10		SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000032F11	1	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000032F12	2791	SAU100964	5363	SAU1c0044_orf_86p	12641

WO 02/086097 . PCT/US02/03987.

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000032G02	2792	SAU100710	5311	SAU1c0043_orf_54p	12546
S1M10000032G02	2792	SAU200628	5788	SAU2c0334_orf_4p	12790
S1M10000032G03	2793	SAU100813	5334	SAU1c0036_orf_29p	12322
S1M10000032G04	2794	SAU101904	5573	SAU1c0044_orf_36p	12617
S1M10000032G06	2795	SAU101509	5469	SAU1c0039_orf_81p	12418
S1M10000032G08	2796	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000032G10	2797	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000032G12	2798	SAU101084	5377	SAU1c0034_orf_41p	12283
S1M10000032H01	2799	SAU101445	5452	SAU1c0038_orf_47p	12382
S1M10000032H01	2799	SAU101446	5453	SAU1c0038_orf_48p	12383
S1M10000032H04	2800	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000032H07	2801	SAU101797	5537	SAU1c0032_orf_17p	12221
S1M10000032H07	2801	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000032H09	2802	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000032H11	2803	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000032H11	2803	SAU301148	5888	#N/A	#N/A
S1M10000033A02	2804	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000033A02	2804	SAU301080	5885	SAU3c1287_orf_lp	13083
S1M10000033A07	2805	SAU200949	5800	SAU2c0380_orf_11p	12846
S1M10000033A08	2806	SAU101231	5399	SAU1c0035_orf_6p	12303
S1M10000033A10	2807	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000033B02	2808	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000033B07	2809	SAU102044	5593	SAU1c0039_orf_65p	12414
S1M10000033B08	2810	SAU101868	5565	SAU1c0036_orf_23p	
S1M10000033B11	2811	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000033B11	2811	SAU301433	5895	SAU3c1420_orf_2p SAU1c0029_orf_20p	12195
S1M10000033B12	2812	SAU101104	5382	SAU1c0029_orf_19p	12194
S1M10000033B12	2812	SAU103010	5753	SAU1c0039_orf_62p	12412
S1M10000033C04	2813	SAU102933 SAU102333	5644	SAU1c0045 orf 143p	12657
S1M10000033D02	2814	SAU102333 SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000033D03 S1M10000033D04	2815	SAU101732 SAU100745	5319	SAU1c0044_orf_233p	12596
SIM10000033D05	2817	SAU100743	5254	SAU1c0040_orf_91p	12452
S1M10000033D05	2817	SAU100301	5601	SAU1c0027_orf_2p	12178
SIM10000033D06	2819	SAU100813	5334	SAU1c0036 orf 29p	12322
		SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000033D12 S1M10000033E04	2820	SAU102318	5643	SAU1c0045_orf_60p	12707
S1M10000033E04	2822	SAU100162	5239	SAU1c0044_orf_206p	12583
S1M10000033E10	2823	SAU100770	5324	#N/A	#N/A
S1M10000033E12	2824	SAU10170	5514	SAU1c0016_orf_9p	12136
S1M10000033F02	2825	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000033F05	2826	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000033F07	2827	SAU102044	5593	SAU1c0039_orf_65p	12414
S1M10000033F07	2828	SAU100414	5270	SAU1c0022_orf_24p	12148

Clone name		PathoSeq Locus	Gene SeqID	Genemarked gene	full length
	SeqID		(protein)		ORF Protein Seq
					ID
S1M10000033F11	2829	SAU100689	5308	SAU1c0036_orf_2p	12323
S1M10000033G05	2830	SAU101904	5573	SAU1c0044_orf_36p	12617
S1M10000033G07	2831	SAU101824	5554	SAU1c0038_orf_26p	12371
S1M10000033G09	2832	SAU102380	5654	SAUIc0033_orf_29p	12265
S1M10000033G10	2833	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000033G10	2833	SAU301433 SAU101968	5895	SAU3c1420_orf_2p	13118
S1M10000033G11	2834	SAU100300	5581	SAU1c0028_orf_43p SAU1c0040_orf_90p	12187
S1M10000033G12 S1M10000033H01	2835 2836	SAU301465	5253 5896		13121
S1M10000033H02	2837	SAU101907	5574	SAU3c1429_orf_4p SAU1c0040 orf 79p	12442
S1M10000033H02	2838	SAU101833	5555	SAU1c0038 orf 34p	12373
S1M10000033H07	2839	SAU101996	5584	SAU1c0040 orf 99p	12456
S1M10000033H07	2840	SAU101175	5388	SAU1c004U_GIT_99p	12213
S1M10000033H09	2841	SAU100710	5311	SAU1c0043 orf 54p	12546
S1M10000033H0	2842	SAU100690	5309	#N/A	#N/A
S1M10000033H11	2843	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000034A02	2844	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000034A03	2845	SAU102939	5747	#N/A	#N/A
S1M10000034A04	2846	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000034A05	2847	SAU101242	5404	SAU1c0044 orf 18p	12578
S1M10000034A08	2848	SAU101020	5368	SAUIc0045 orf 86p	12710
S1M10000034A09	2849	SAU100773	5326	SAU1c0038_orf_39p	12377
S1M10000034A11	2850	SAU102389	5656	SAU1c0033_orf_36p	12268
S1M10000034A12	2851	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000034B03	2852	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000034B05	2853	SAU101630	5498	SAU1c0039_orf_4p	12410
S1M10000034B06	2854	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000034B06	2854	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000034B07	2855	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000034B08	2856	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000034B09	2857	SAU101909	5575	SAU1c0040_orf_77p	12441
S1M10000034B10	2858	SAU101882	5569	SAU1c0025_orf_15p	12163
S1M10000034B12	2859	SAU200593	5786	SAU2c0327_orf_lp	12784
S1M10000034C02	2860	SAU100557	5291	SAU1c0044_orf_132p	12565
S1M10000034C06	2861	SAU200157	5776	#N/A	#N/A
S1M10000034C07	2862	SAU101343	5425	SAU1c0044_orf_40p	12619
S1M10000034C09	2863	SAU102281	5633	SAU1c0038_orf_4p	12384
S1M10000034C12	2864	SAU100859	5342	SAU1c0038_orf_87p	12402
S1M10000034D01	2865	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000034D05		SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000034D06	2867	SAU200157	5776	#N/A	#N/A
S1M10000034D07		SAU100745	5319	SAU1c0044_orf_233p	12596
S1M10000034D08 S1M10000034D08		SAU102284	5635	SAU1c0038_orf_5p SAU2c0438_orf_6p	12389 12967
21M10000034D08	2869	SAU201469	5816	3AU200436_011_0p	12907

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000034D10	2870	SAU102474	5681	SAU1c0026_orf_31p	12174
S1M10000034D11	2871	SAU101881	5568	SAU1c0025_orf_14p	12162
S1M10000034D12	2872	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000034E01	2873	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000034E02	2874	SAU100557	5291	SAU1c0044_orf_132p	12565
S1M10000034E04	2875	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000034E05	2876	SAU100738	5317	SAU1c0044_orf_52p	12624
S1M10000034E06	2877	SAU100347	5262	SAU1c0036_orf_56p	12334
S1M10000034E06	2877	SAU100443	5274	SAUIc0036_orf_55p	12333
S1M10000034E07	2878	SAU100617	5300	SAU1c0035_orf_102p	12295
S1M10000034B10	2879	SAU102401	5661	SAU1c0030_orf_4p	12209
S1M10000034E11	2880	SAU101881	5568	SAU1c0025_orf_14p	12162
S1M10000034E12	2881	SAU200960	5801	SAU2c0377_orf_5p	12843
S1M10000034F01	2882	SAU202731	5850	#N/A	#N/A
S1M10000034F02	2883	SAU201621	5828	SAU2c0437_orf_4p	12966
S1M10000034F03	2884	SAU201971	5841	SAU2c0455_orf_17p #N/A	13015
S1M10000034F03	2884	SAU301363	5894		#N/A
S1M10000034F04	2885	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000034F05	2886	SAU101630	5498	SAU1c0039_orf_4p SAU1c0031_orf_1p	12410
S1M10000034F07	2887	SAU101175	5388	SAU2c0426_orf_7p	12213
S1M10000034F08	2888 2889	SAU202736 SAU101869	5851 5566	SAU1c0036_orf_24p	12321
S1M10000034F09	2890	SAU101869 SAU102350	5649	SAU1c0040_orf_36p	12321
S1M10000034F10 S1M10000034F12	2891	SAU102530	5284	SAU1c0044_orf_249p	12599
S1M10000034F12	2892	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000034G03	2893	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000034G06	2894	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000034G07	2895	SAU102380	5654	SAU1c0033_orf_29p	12265
S1M10000034G07	2896	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000034G09	2897	SAU102294	5639	SAU1c0044_orf_288p	12610
S1M10000034G09	2897	SAU201775	5835	SAU2c0446_orf_4p	12996
SIM10000034G11	2898	SAU200558	5782	SAU2c0322_orf_5p	12777
S1M10000034G12	2899	SAU100557	5291	SAU1c0044_orf_132p	12565
S1M10000034H01	2900	SAU101293	5414	SAU1c0044_orf_61p	12631
S1M10000034H02	2901	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000034H03	2902	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000034H06	2903	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000034H07	2904	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000034H08	2905	SAU200740	5794	SAU2c0340_orf_3p	12798
S1M10000034H09	2906	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000034H10	2907	SAU102422	5666	SAU1c0030_orf_22p	- 12207
S1M10000035A03	2908	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000035A08	2909	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000035A09	2910	SAU101350	5429	SAU1c0042_orf_109p	12487

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000035A09	2910	SAU101351	5430	SAU1c0042_orf_108p	12486
S1M10000035A10	2911	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000035A11	2912	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000035A12	2913	SAU101455	5456	SAU1c0045_orf_250p	12686
SIM10000035A12	2913	SAU200916	5797	SAU2c0373_orf_4p	12838
SIM10000035A12	2913	SAU301620	5899	SAU3c1478_orf_2p	13140
SIM10000035B01	2914	SAU102584	5702	SAU1c0043_orf_239p	12537
S1M10000035B03	2915	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000035B04	2916	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000035B08	2917	SAU103232	5769	SAU1c0045_orf_341p	12697
S1M10000035B11	2918	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000035C01	2919	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000035C02	2920	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000035C04	2921	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000035C06	2922	SAU101497	5468	SAU1c0037_orf_66p	12361
S1M10000035C11	2923	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000035D01	2924	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000035D04	2925	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000035D06	2926	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000035D09	2927	SAU100970	5365	SAU1c0043_orf_197p	12529
SIM10000035D12	2928	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000035E02	2929	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000035E03	2930	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000035E04	2931	SAU103025	5755	SAU1c0029_orf_9p	12202
S1M10000035E08	2932	SAU100690	5309	#N/A	#N/A
S1M10000035E09	2933	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000035E12	2934	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000035F03	2935	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000035F03	2935	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000035F04	2936	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000035F09	2937	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000035F12	2938	SAU101427	5447	SAU1c0042_orf_144p	12500
S1M10000035F12	2938	SAU103204	5767	SAU1c0042_orf_143p	12499
S1M10000035G02	2939	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000035G09	2940	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000035G11	2941	SAU101344	5426	SAU1c0044_orf_41p	12620
S1M10000035G12	2942	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000035H01	2943	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000035H07	2944	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000035H07	2944	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000035H07	2944	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000035H08	2945	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000035H09	2946	SAU100496 .	5279	SAU1c0041_orf_83p	12484
S1M10000035H09	2946	SAU301004	5882	SAU3c1255_orf_lp	13079

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000035H10	2947	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000035H11	2948	SAU101344	5426	SAU1c0044_orf_4lp	12620
S1M10000036A02	2949	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000036A03	2950	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000036A04	2951	SAU200994	5802	SAU2c0428_orf_4p	12935
S1M10000036A05	2952	SAU101810	5549	SAU1c0032_orf_28p	12233
S1M10000036A05	2952	SAU101811	5550	SAU1c0032_orf_29p	12234
S1M10000036A05	2952	SAU300110	5865	SAU3c0533_orf_2p	13031
S1M10000036A08	2953	SAU101220	5396	SAU1c0044_orf_94p	12645
S1M10000036A11	2954	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000036A12	2955	SAU100813	5334	SAU1c0036_orf_29p	12322
S1M10000036B04	2956	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000036B04	2956	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000036B06	2957	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000036B07	2958	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000036B08	2959	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000036B11	2960	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000036B12	2961	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000036C01	2962	SAU100242	5246	SAU1c0036_orf_Sp	12336
S1M10000036C03	2963	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000036C04	2964	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000036C05	2965	SAU100497	5280	SAU1c0018_orf_3p	12140
S1M10000036C06	2966	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000036C07	2967	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000036C07	2967	SAU101801	5541	#N/A	#N/A
S1M10000036C09	2968	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000036C09	2968	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000036C09	2968	SAU302685	5908	SAU3c1403_orf_lp	13113
S1M10000036C10	2969	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000036C10	2969	SAU101751	5521	SAU1c0040_orf_86p	12448
S1M10000036D02	2970	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000036D03	2971	SAU103038	5757	#N/A	#N/A
S1M10000036D06	2972	SAU103024	5754	SAU1c0029_orf_6p	12200
S1M10000036D08	2973	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000036D10	2974	SAU102933	5744	SAU1c0039_orf_62p	12412
SIM10000036D11	2975	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000036D11	2975	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000036D12	2976	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000036E06	2977	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000036E06	2977	SAU202756	5852	SAU2c0470_orf_lp	13027
S1M10000036E08	2978	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000036E11	2979	SAU101343	5425	SAU1c0044_orf_40p	12619
S1M10000036F06	2980	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000036F07	2981	SAU200928	5798	SAU2c0365_orf_5p	12815

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000036F08	2982	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000036F09	2983	SAU100532	5287	SAU1c0044_orf_198p	12580
S1M10000036F10	2984	SAU101586	5489	SAU1c0044_orf_242p	12598
SIM10000036F11	2985	SAU201506	5818	SAU2c0432_orf_18p	12946
S1M10000036G03	2986	SAU101545	5474	SAU1c0037_orf_132p	12348
SIM10000036G07	2987	SAU102355	5651	SAU1c0040_orf_40p	12435
S1M10000036G08	2988	SAU102336	5646	SAU1c0045_orf_146p	12659
S1M10000036G11	2989	SAU101340	5423	SAU1c0038_orf_82p	12400
S1M10000036H01	2990	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000036H02	2991	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000036H03	2992	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000036H04	2993	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000036H05	2994	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000036H06	2995	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000036H08	2996	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000036H11	2997	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000037A02	2998	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000037A02	2998	SAU101653	5504	SAU1c0042_orf_124p	#N/A
S1M10000037A03	2999	SAU100128	5231	#N/A	#N/A 12549
S1M10000037A03	2999	SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000037A03	2999	SAU101576	5488	SAU1c0044_orf_105p	12641
S1M10000037A06	3000	SAU100964	5363	SAU1c0044_orf_86p	12160
S1M10000037A08	3001	SAU102669	5728	SAU1c0024_orf_7p	12686
S1M10000037A09	3002	SAU101455	5456	SAU1c0045_orf_250p	12838
S1M10000037A09	3002	SAU200916	5797 5449	SAU2c0373_orf_4p SAU1c0028_orf_23p	12183
S1M10000037A11	3003	SAU101436	5796	SAU2c0373_orf_2p	12837
S1M10000037A12	3004	SAU200914	5585	SAU1c0040_orf_101p	12423
S1M10000037B03	3005	SAU101999	5323	SAU1c0044_orf_192p	12579
S1M10000037B04	3006	SAU100767	5701	SAU1c0039_orf_61p	12411
S1M10000037B05	3007	SAU102578 SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000037B06	3008	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000037B06 S1M10000037B07	3009	SAU101915	5577	SAU1c0040_orf_72p	12439
	3010	SAU101513	5490	SAU1c0039_orf_37p	12406
SIM10000037B08	3010	SAU101392 SAU101346	5427	SAU1c0044 orf_43p	12621
SIM10000037B10		SAU101340.	5443	SAU1c0036 orf 34p	12325
S1M10000037B11 S1M10000037B12	3012	SAU101399 SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000037B12 S1M10000037C05	3013	SAU10117	5461	SAU1c0015_orf_10p	12123
S1M10000037C05	3014	SAU101482	5504	SAU1c0042_orf_124p	12493
S1M10000037C08	3015	SAU101641	5501	SAU1c0029_orf_12p	12193
S1M10000037C07	3017	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000037C09	3017	SAU101818	5553	SAU1c0038_orf_20p	12369
S1M10000037C09	3019	SAU101752	5522	SAU1c0040_orf_85p	12447
SIM10000037D04	3020	SAU102283	5634	SAU1c0006_orf_lp	12119

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000037D05	3021	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000037D06	3022	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000037D09	3023	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000037D12	3024	SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000037E02	3025	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000037E02	3025	SAU102448	5673	SAU1c0045_orf_23p	12681 .
S1M10000037E03	3026	SAU100813	5334	SAU1c0036_orf_29p	12322
S1M10000037E06	3027	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000037E08	3028	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000037E08	3028	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000037E09	3029	SAU102049	5595	SAU1c0039_orf_68p	12416
S1M10000037E10	3030	SAU101444	5451	SAU1c0038_orf_46p	12381
S1M10000037E11	3031	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000037E12	3032	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000037F02	3033	SAU100776	5327	SAU1c0041_orf_72p	12482
S1M10000037F03	3034	SAU101339	5422	SAU1c0038_orf_81p	12399
S1M10000037F04	3035	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000037F05	3036	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000037F06	3037	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000037F06	3037	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000037F07	3038	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000037F07	3038	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000037F08	3039	SAU203001	5859	SAU2c0412_orf_15p	12894
S1M10000037F08	3039	SAU203007	5860	SAU2c0412_orf_10p	12893
S1M10000037F09	3040	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000037F10	3041	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000037G01	3042	SAU102502	5690	SAU1c0045_orf_273p	12689
S1M10000037G01	3042	SAU102503	5691	SAU1c0045_orf_274p	12690
S1M10000037G02	3043	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000037G03	3044	SAU101344	5426	SAU1c0044_orf_41p	12620
S1M10000037G06	3045	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000037G07	3046	SAU103038	5757	#N/A	#N/A 12529
S1M10000037G08	3047	SAU100970	5365	SAU1c0043_orf_197p	1222
S1M10000037G10	3048	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000037H02	3049	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000037H03	3050	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000037H05 S1M10000037H07	3051 3052	SAU100964	5363	SAU1c0044_orf_86p SAU1c0044_orf_210p	12585
		SAU101571	5483	<u> </u>	12383
S1M10000037H08	3053 3054	SAU200928	5798	SAU2c0365_orf_5p SAU1c0032_orf_7p	12813
S1M10000037H09 S1M10000037H11	3055	SAU100140 SAU100608	5235 5297	SAU1c0032_on_/p	12293
S1M10000037H11	3056	SAU101275	5412	SAU1c0044_orf_257p	12604
S1M1000038A04	3057	SAU100414	5270	SAU1c0044_off_257p	12148
S1M1000038A07	3058	SAU102059	5597	SAU1c0034_orf_51p	12286
STIVITUUUUUSAAVA	2028	3AU102039	1866	2V010024_01721b	12200

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
	00422		(P ,		Protein Seq ID
S1M10000038A09	3059	SAU100307	5257	SAU1c0036_orf_134p	12313
S1M10000038A11	3060	SAU100547	5290	SAU1c0032_orf_3p	12240
SIM10000038A12	3061	SAU101799	5539	SAU1c0032_orf_19p	12223
S1M10000038B01	3062	SAU101483	5462	SAU1c0015_orf_11p	12124
S1M10000038B03	3063	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000038B07	3064	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000038B08	3065	SAU100308	5258	SAU1c0036_orf_133p	12312
S1M10000038B09	3066	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000038B09	3066	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038B12	3067	SAU102764	5734	SAU1c0044_orf_56p	12625
S1M10000038C01	3068	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000038C02	3069	SAU200657	5789	#N/A	#N/A
S1M10000038C06	3070	SAU101320	5420	SAU1c0015_orf_16p	12128
SIM10000038C08	3071	SAU102132	5605	SAU1c0027_orf_19p	12177
S1M10000038C10	3072	SAU101346	5427	SAU1c0044_orf_43p	12621
S1M10000038C10	3072	SAU101347	5428	SAU1c0044_orf_44p	12622
S1M10000038C11	3073	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000038C12	3074	SAU101792	5533	SAU1c0032_orf_13p	12217
S1M10000038D02	3075	SAU101842	5557	SAU1c0042_orf_9p	12510
S1M10000038D05	3076	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038D07	3077	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000038D08	3078	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000038D08	3078	SAU301275	5892	SAU3c1365_orf_2p	13103
SIM10000038D09	3079	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000038D10	3080	SAU101653	5504	SAU1c0042_orf_124p SAU1c0044_orf_113p	12493
S1M10000038D11	3081	SAU101300 SAU101365	5415 5432	SAU1c0044_on_113p	12556
S1M10000038D11 S1M10000038D12	3081 3082	SAU101363 SAU100752	5322	SAU1c0044_on_112p	12536
S1M10000038D12	3082	SAU100732 SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000038E01	3082	SAU101814	5551	SAU1c0043_off_182p	12237
S1M10000038E01	3084	SAU101842	5557	SAU1c0042_orf_9p	12510
S1M10000038E02	3085	SAU200928	5798	SAU2c0365_orf_Sp	12815
S1M10000038E03	3086	SAU101573	5485	SAU1c0044 orf 212p	12587
S1M10000038E05	3087	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038E06	3088	SAU102231	5614	SAU1c0043_orf_18p	12527
S1M10000038E06		SAU102232	5615	SAU1c0043_orf_19p	12530
S1M10000038E07	3089	SAU200593	5786	SAU2c0327 orf lp	12784
S1M10000038E07	3090	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000038E12	3091	SAU100838	5337	SAUIc0031_orf_12p	12211
S1M10000038B12	3091	SAU100839	5338	SAUlc0031_orf_llp	12210
S1M10000038E12	3092	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000038F04	3093	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000038F04	3093	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000038F05	3094	SAU100964	5363	SAU1c0044 orf 86p	12641
511.1100000301				<u> </u>	

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000038F05	3094	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000038F06	3095	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000038F08	3096	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000038F09	3097	SAU201666	5830	SAU2c0442_orf_llp	12981
S1M10000038F10	3098	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000038F11	3099	SAU100747	5320	SAU1c0044_orf_235p	12597
S1M10000038F12	3100	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000038G01	3101	SAU101271	5411	SAUIc0037_orf_90p	12366
S1M10000038G03	3102	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000038G04	3103	SAU100475	5276	SAU1c0036_orf_61p	12337
S1M10000038G06	3104	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000038G08	3105	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000038G10	3106	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000038G11	3107	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000038G11	3107	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000038G12	3108	SAU101184	5391	SAU1c0035_orf_80p	12305
S1M10000038H03	3109	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000038H07	3110	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000038H09	3111	SAU102340	5647	SAU1c0045_orf_149p	12660
S1M10000038H11	3112	SAU101452	5455	SAU1c0045_orf_247p	12684
S1M10000039A02	3113	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000039A02	3113	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000039A05	3114	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000039A05	3114	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000039A07	3115	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000039A08	3116	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000039A11	3117	SAU100613	5299	SAU1c0015_orf_14p	12126
S1M10000039A12	3118	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000039B02	3119	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000039B02	3119	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000039B06	3120	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000039B07	3121	SAU101869	5566	SAU1c0036_orf_24p	12321
SIM10000039B10	3122	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000039B12	3123	SAU301118	5886	SAU3c1305_orf_3p	13086
S1M10000039C04	3124	SAU102252	5621	SAU1c0032_orf_48p	12241
S1M10000039C06	3125	SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000039C07	3126	SAU200657	5789	#N/A	#N/A
S1M10000039C08	3127	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000039C09	3128	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000039C10	3129	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000039C11	3130	SAU200657	5789	#N/A	#N/A
S1M10000039D02	3131	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000039D09	3132	SAU102294	5639	SAU1c0044_orf_288p	12610
S1M10000039D09	3132	SAU301080	5885	SAU3c1287_orf_lp	13083

Clone name		PathoSeq Locus	Gene SeqID	Genemarked gene	full length ORF
	SeqID		(protein)		Protein Seq
					ID
S1M10000039D10	3133	SAU100323	5261	SAUIc0044_orf_171p	12575
S1M10000039E01	3134	SAU102264	5628	SAU1c0032_orf_60p	12250
S1M10000039E08	3135	SAU100412	5269	SAUlc0029_orf_38p	12197
S1M10000039E09	3136	SAU100056 SAU102394	5223	SAUlc0044_orf_176p	12577
S1M10000039E10 S1M10000039E10	3137 3137	SAU301118	5659 5886	SAU1c0033_orf_4lp SAU3cl305_orf_3p	13086
SIM10000039E10	3137	SAU102473	5680	SAUIc0026_orf_30p	12173
S1M10000039E11	3139	SAU201571	5824	SAU2c0447_orf_17p	12173
S1M10000039F03	3140	SAU102527	5693	SAUlc0032_orf_9p	12260
S1M10000039F05	3141	SAU100118	5229	SAUIc0015_orf_13p	12125
S1M10000039F07	3142	SAU102531	5694	SAU1c0045_orf_186p	12667
S1M10000039F08	3143	SAU100158	5238	SAUIc0040_orf_80p	12443
S1M10000039F09	3144	SAU200157	5776	#N/A	#N/A
S1M10000039F10	3145	SAU100059	5224	SAU1c0045 orf 10p	12652
S1M10000039F12	3146	SAU101565	5480	SAUIc0022_orf_8p	12151
S1M10000039G03	3147	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000039G04	3148	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000039G07	3149	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000039G07	3149	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000039G10	3150	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000039H02	3151	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000039H02	3151	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000039H03	3152	SAU100313	5259	SAU1c0045_orf_153p	12661
SIM10000039H03	3152	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000039H03	3152	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000039H04	3153	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000039H06	3154	SAU102283	5634	SAU1c0006_orf_lp	12119
S1M10000039H07	3155	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000039H07	3155	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000039H08	3156	SAU102440	5671	SAU1c0045_orf_30p	12692
S1M10000040A04	3157	SAU100040	5221	SAU1c0043_orf_217p	12533
S1M10000040A05	3158 3159	SAU102671	5729	SAU1c0024_orf_9p	12161
S1M10000040A07		SAU101028 SAU200157	5370	SAU1c0043_orf_7p	#N/A
S1M10000040A08 S1M10000040A10	3160 3161	SAU103038	5776 5757	#N/A #N/A	#N/A
S1M10000040A10	t	SAU101801	5541	#N/A	#N/A
S1M10000040A11		SAU101461	5457	SAU1c0045_orf_234p	12680
S1M10000040B01	3164	SAU102102	5600	SAU1c0045_orf_340p	12696
S1M10000040B03	3165	SAU101432	5448	SAU1c0028_orf_27p	12184
S1M10000040E07	3166	SAU101198	5394	SAU1c0035_orf_6lp	12301
S1M10000040C03	3167	SAU201971	5841	SAU2c0455_orf_17p	13015
S1M10000040C03	3167	SAU301363	5894	#N/A	#N/A
S1M10000040C04	3168	SAU102551	5698	SAU1c0045_orf_206p	12672
S1M10000040C05	3169	SAU102534	5696	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
				0.111.0042 - 6.126	1 D
S1M10000040C06	3170	SAU101247	5405	SAU1c0043_orf_136p	
S1M10000040C07	3171	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000040C08	3172	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000040C10	3173	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000040C10	3173	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000040C10	3173	SAU301148	5888	#N/A	#N/A
S1M10000040C11	3174	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000040D01	3175	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000040D01	3175	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000040D03	3176	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000040D03	3176	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000040D08	3177	SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000040D09	3178	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000040D11	3179	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000040E01	3180	SAU100916	5353	SAU1c0038_orf_71p	12394
S1M10000040E02	3181	SAU101845	5558	SAU1c0042_orf_7p	12506
S1M10000040E04	3182	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000040E05	3183	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000040E06	3184	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000040E07	3185	SAU101006	5367	SAU1c0028_orf_59p	12190
S1M10000040E09	3186	SAU102605	5710	SAU1c0041_orf_49p	12470
S1M10000040E10	3187	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000040E11	3188	SAU101226	5398	SAU1c0035_orf_2p	12298
S1M10000040E12	3189	SAU102503	5691	SAU1c0045_orf_274p	12690
S1M10000040E12	3189	SAU201380	5812	SAU2c0426_orf_11p	12922
S1M10000040F01	3190	SAU101226	5398	SAU1c0035_orf_2p	12298
S1M10000040F02	3191	SAU101614	5494	SAU1c0044_orf_9p	12649
S1M10000040F03	3192	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000040F04	3193	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000040F04	3193	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000040F04	3193	SAU103159	5762	SAU1c0045_orf_204p	12670
S1M10000040F04	3193	SAU201827	5837	SAU2c0449_orf_21p	13002
S1M10000040F05	3194	SAU102232	5615	SAU1c0043_orf_19p	12530
S1M10000040F06	3195	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000040F08	3196	SAU300713	5875	SAU3c1104_orf_lp	13058
S1M10000040F09	3197	SAU101610	5492	SAU1c0044_orf_5p	12629
S1M10000040F12	3198	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000040G01	3199	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000040G02	3200	SAU200561	5783	SAU2c0324_orf_3p	12779
S1M10000040G02	3200	SAU301773	5901	SAU3c1509_orf_2p	13157
S1M10000040G04	3201	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000040G07	3202	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000040G08	3203	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000040G12	3204	SAU101421	5446	SAU1c0042_orf_138p	12498

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000040H02	3205	SAU100773	5326	SAU1c0038_orf_39p	12377
S1M10000040H03	3206	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000040H04	3207	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000040H05	3208	SAU101400	5444	SAUIc0036_orf_35p	12326
S1M10000040H07	3209	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000040H10	3210	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000041A03	3211	SAU102054	5596	SAU1c0039_orf_74p	12417
S1M10000041B02	3212	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000041B03	3213	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000041B05	3214	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000041B06	3215	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000041B07	3216	SAU101145	5384	SAU1c0035_orf_43p	12299
S1M10000041B12	3217	SAU102725	5733	SAU1c0036_orf_68p	12338
S1M10000041C08	3218	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000041C08	3218	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000041C10	3219	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000041C11	3220	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000041D06	3221	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000041D07	3222	SAU102639	5724	#N/A .	#N/A
S1M10000041D08	3223	SAU200030	5772	SAU2c0282_orf_3p	12745
S1M10000041D10	3224	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000041D12	3225	SAU102658	5726	SAU1c0045_orf_121p	12654
S1M10000041E03	3226	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000041E06	3227	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000041E09	3228	SAU201236	5808	SAU2c0409_orf_10p	12891
S1M10000041E12	3229	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000041F03	3230	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000041F03	3230	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000041F11	3231	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000041F12	3232	SAU102480	5684	SAU1c0039_orf_100p	12404
S1M10000041F12	3232	SAU102481	5685	SAU1c0039_orf_99p	12422
S1M10000041G01	3233	SAU100532	5287	SAU1c0044_orf_198p	12580
S1M10000041G06	3234	SAU102345	5648	SAU1c0045_orf_125p	12655
S1M10000041G08	3235	SAU101546	5475	SAU1c0037_orf_133p	12349
SIM10000041G10	3236	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000041G11	3237	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000041H01	3238	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000041H04	3239	SAU100497	5280	SAU1c0018_orf_3p	12140
S1M10000041H05	3240	SAU100242	5246	SAU1c0036_orf_5p	12336
S1M10000041H07	3241	SAU102486	5687	SAU1c0039_orf_93p	12420
S1M10000041H07	3241	SAU102487	5688	SAU1c0039_orf_92p	12419
S1M10000041H08	3242	SAU301133	5887	SAU3c1311_orf_3p	13087
S1M10000041H09	3243	D .	5763	SAU1c0045_orf_230p	12678
S1M10000042A04	3244	SAU201236	5808	SAU2c0409_orf_10p	12891

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000042A05	3245	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000042A06	3246	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000042A07	3247	SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000042A09	3248	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000042A11	3249	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000042A12	3250	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000042B02	3251	SAU202736	5851	SAU2c0426_orf_7p	12927
S1M10000042B03	3252	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000042B06	3253	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000042B07	3254	SAU101343	5425	SAU1c0044_orf_40p	12619
S1M10000042B08	3255	SAU100443	5274	SAU1c0036_orf_55p	12333
S1M10000042B09	3256	SAU101802	5542	SAUIc0032_orf_22p	12227
S1M10000042B10	3257	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000042B10	3257	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000042B11	3258	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000042B12	3259	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000042C02	3260	SAU100617	5300	SAU1c0035_orf_102p	12295
S1M10000042C06	3261	SAU102032	5591	SAU1c0029_orf_47p	12198
S1M10000042C10	3262	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000042C11	3263	SAU103037	5756	SAU1c0044_orf_303p	12613
S1M10000042D04	3264	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000042D07	3265	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000042D10	3266	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000042D11	3267	SAU102663	5727	SAU1c0024_orf_2p	12158
S1M10000042E03	3268	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000042E06	3269	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000042E08	3270	SAU103198	5766	#N/A	#N/A
S1M10000042F01	3271	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000042F02	3272	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000042F05	3273	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000042F06	3274	SAU100773	5326	SAU1c0038_orf_39p	12377
S1M10000042F08	3275	SAU100162	5239	SAU1c0044_orf_206p	12583
S1M10000042F09	3276	SAU100246	5247	SAU1c0042_orf_130p	12496
S1M10000042F09	3276	SAU300998	5881	SAU3c1253_orf_3p	13077
S1M10000042F10	3277	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000042F11	3278	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000042G01	3279	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000042G03	3280	SAU101220	5396	SAU1c0044_orf_94p	12645
S1M10000042G08	3281	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000042G09	3282	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000042G12	3283	SAU100521	5283	SAU1c0044_orf_250p	12600
SIM10000042H05	3284	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000042H07	3285	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000042H11	3286	SAU101632	5499	SAU1c0039_orf_3p	12407

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000043A02	3287	SAU203001	5859	SAU2c0412_orf_15p	12894
S1M10000043A03	3288	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000043A04	3289	SAU200088	5775	SAU2c0159_orf_lp	12724
S1M10000043A06	3290	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000043A07	3291	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000043A08	3292	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000043A10	3293	SAU100865	5343	SAUIc0044_orf_99p	12648
S1M10000043A11	3294	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000043A12	3295	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000043B01	3296	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000043B02	3297	SAU100059	5224	SAU1c0045_orf_10p	12652
S1M10000043B07	3298	SAU101922	5578	SAU1c0040_orf_66p	12438
S1M10000043B07	3298	SAU200345	5779	SAU2c0292_orf_3p	12751
S1M10000043B08	3299	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000043B08	3299	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000043B08	3299	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000043B09	3300	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000043B10	3301	SAU100436	5273	SAU1c0023_orf_20p	12154
S1M10000043B12	3302	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000043C02	3303	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000043C07	3304	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000043C11	3305	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000043C12	3306	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000043D01	3307	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000043D02	3308	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000043D04	3309	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000043D10	3310	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000043D12	3311	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000043D12	3311	SAU301004	5882	SAU3c1255_orf_lp	13079
SIM10000043E02	3312	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000043E02	3312	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000043E03	3313	SAU102032	5591	SAU1c0029_orf_47p	12198
S1M10000043E05	3314	SAU102067	5598	SAU1c0034_orf_54p	12287
S1M10000043E07	3315	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000043E08	3316	SAU101344	5426	SAU1c0044_orf_41p	12620
S1M10000043E10	3317	SAU100186	5242	SAU1c0036_orf_19p	12317
S1M10000043E11	3318	SAU102498	5689	SAU1c0045_orf_270p	12688
S1M10000043E11	3318	SAU201381	5813	SAU2c0426_orf_16p	12923
S1M10000043E12	3319	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000043F01	3320	SAU101797	5537	SAU1c0032_orf_17p	12221
S1M10000043F01	3320	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000043F05	3321	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000043F07	3322	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000043F07	3322	SAU102448	5673	SAU1c0045_orf_23p	12681

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000043F08	3323	SAU101344	5426	SAUlc0044_orf_4lp	12620
S1M10000043F09	3324	SAU101801	5541	#N/A	#N/A
S1M10000043G01	3325	SAU100059	5224	SAU1c0045_orf_10p	12652
S1M10000043G04	3326	SAU102423	5667	SAU1c0030_orf_23p	12208
S1M10000043G05	3327	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000043G09	3328	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000043G09	3328	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000043G10	3329	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000043H01	3330	SAU101797	5537	SAU1c0032_orf_17p	12221
S1M10000043H01	3330	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000043H03	3331	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000043H03	3331	SAU101804	5544	#N/A	#N/A
SIM10000043H04	3332	SAU100128	5231	#N/A	#N/A
S1M10000043H04	3332	SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000043H04	3332	SAU101576	5488	SAU1c0044_orf_105p	12554
S1M10000043H05	3333	SAU200058	5773	SAU2c0134_orf_lp	12719
S1M10000043H05	3333	SAU200059	5774	SAU2c0134_orf_3p	12720
S1M10000043H06	3334	SAU102417	5663	SAU1c0030_orf_17p	12204
S1M10000043H06	3334	SAU102863	5737	#N/A	#N/A
S1M10000043H09	3335	SAU302950	5914	SAU3c1512_orf_12p	13160
S1M10000043H10	3336	SAU101024	5369	SAU1c0045_orf_90p	12711
S1M10000043H11	3337	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000044A02	3338	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000044A06	3339	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000044A08	3340	SAU101175	5388	SAU1c0031_orf_lp	12213
S1M10000044A09	3341	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000044A11	3342	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000044A12	3343	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000044B01	3344	SAU102268	5630	SAU1c0032_orf_63p	12252
S1M10000044B02	3345	SAU101968	5581	SAUIc0028_orf_43p	12187
S1M10000044B05	3346	SAU100690	5309	#N/A	#N/A
S1M10000044B06	3347	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000044B06	3347	SAU102881	5740	SAU1c0032_orf_4p	12242
SIM10000044B08	3348	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000044B11	3349	SAU101573	5485	SAU1c0044_orf_212p	12587
SIM10000044B12	3350	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000044C04	3351	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000044C06	3352	SAU101614	5494	SAU1c0044_orf_9p	12649
S1M10000044C07	3353	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000044C07	3353	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000044C08	3354	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000044C11	3355	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000044C12	3356	SAU102280	5632	SAU1c0038_orf_3p	12378
S1M10000044D01	3357	SAU100546	5289	SAU1c0032_orf_2p	12235

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000044D01	3357	SAU102880	5739	SAU1c0032_orf_lp	12224
S1M10000044D04	3358	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000044D06	3359	SAU101300	5415	SAU1c0044_orf_113p	12557
S1M10000044D06	3359	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000044D08	3360	SAU102270	5631	SAU1c0032_orf_65p	12253
S1M10000044D09	3361	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000044D10	3362	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000044D11	3363	SAU101571	5483	SAU1c0044_orf_210p	12585
SIM10000044D12	3364	SAU102231	5614	SAU1c0043_orf_18p	12527
S1M10000044D12	3364	SAU102232	5615	SAU1c0043_orf_19p	12530
S1M10000044E01	3365	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000044E02	3366	SAU102283	5634	SAU1c0006_orf_lp	12119
S1M10000044E06	3367	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000044E07	3368	SAU301829	5902	SAU3c1515_orf_7p	13162
S1M10000044E09	3369	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000044E10	3370	SAU100497	5280	SAU1c0018_orf_3p	12140
S1M10000044E11	3371	SAU101270	5410	SAU1c0037_orf_89p	12365
S1M10000044F02	3372	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000044F06	3373	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000044F08	3374	SAU101262	5406	SAU1c0042_orf_113p	12488
S1M10000044F10	3375	SAU101092	5381	SAU1c0028_orf_9p	12192
SIM10000044F10	3375	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000044G02	3376	SAU102933	5744	SAU1c0039_orf_62p	12412
S1M10000044G05	3377	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000044G08	3378	SAU102601	5707	SAU1c0041_orf_46p	12467
S1M10000044G08	3378	SAU102606	5711	SAU1c0041_orf_50p	12471
S1M10000044G10	3379	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000044G10	3379	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000044G11	3380	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000044H06	3381	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000044H06	3381	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000044H07	3382	SAU100595	5294	SAU1c0043_orf_62p	12547
S1M10000044H08	3383	SAU101543	5473	SAUlc0037_orf_130p	12346
S1M10000044H09	3384	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000044H09	3384	SAU100887	5350	SAUIc0018_orf_15p	12138
S1M10000044H10	3385	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000044H11	3386	SAU102578	5701	SAU1c0039_orf_61p	12411
SIM10000045A02	3387	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000045A06	3388	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000045A07	3389	SAU102378	5653	SAU1c0040_orf_61p	12437
S1M10000045A08	3390	SAU102336	5646	SAU1c0045_orf_146p	12659
S1M10000045A00	3391	SAU201765	5833	SAU2c0309_orf_5p	12770
S1M10000045R12	3392	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000045B01	3393	SAU100546	5289	SAU1c0032_orf_2p	12235

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000045B03	3394	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000045B07	3395	SAU101803	5543	SAU1c0032_orf_23p	12228
SIM10000045B10	3396	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000045B11	3397	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000045B12	3398	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000045C02	3399	SAU100690	5309	#N/A	#N/A
S1M10000045C03	3400	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000045C04	3401	SAU102286	5636	SAU1c0038_orf_6p	12393
S1M10000045C04	3401	SAU102287	5637	SAU1c0038_orf_7p	12398
S1M10000045C05	3402	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000045C07	3403	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000045C09	3404	SAU101744	5520	SAU1c0037_orf_94p	12367
S1M10000045C09	3404	SAU300191	5868	SAU3c0672_orf_lp	13037
S1M10000045D01	3405	SAU101893	5572	SAU1c0034_orf_32p	12282
S1M10000045D03	3406	SAU101599	5491	SAU1c0041_orf_5p	12478
S1M10000045D07	3407	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000045D08	3408	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000045D09	3409	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000045D10	3410	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000045D11	3411	SAU101492	5465	SAU1c0025_orf_21p	12166
S1M10000045D11	3411	SAU101493	5466	SAU1c0025_orf_22p	12167
S1M10000045D12	3412	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000045D12	3412	SAU101801	5541	#N/A	#N/A
S1M10000045E04	3413	SAU102132	5605	SAU1c0027_orf_19p	12177
S1M10000045E05	3414	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000045E08	3415	SAU201752	5832	SAU2c0436_orf_19p	12963
S1M10000045E09	3416	SAU101794	5535	#N/A	#N/A
S1M10000045E10	3417	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000045E11	3418	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000045E12	3419	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000045F04	3420	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000045F05	3421	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000045F08	3422	SAU200657	5789	#N/A	#N/A
S1M10000045F11	3423	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000045F12	3424	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000045G03	3425	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000045G06	3426	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000045G07	3427	SAU101561	5479	SAU1c0022_orf_4p	12149
S1M10000045G08	3428	SAU100690	5309	#N/A	#N/A
S1M10000045G10	3429	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000045G12	3430	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000045H06	3431	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000045H10	3432	SAU100414	5270	SAU1c0022_orf_24p	
S1M10000045H11	3433	SAU100414	5270	SAU1c0022_orf_24p	12148

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000046A03	3434	SAU202731	5850	#N/A	#N/A
S1M10000046A04	3435	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000046A04	3435	SAU100231	5245	#N/A	#N/A
S1M10000046A06	3436	SAU101383	5438	SAU1c0022_orf_20p	12147
S1M10000046A08	3437	SAU200994	5802	SAU2c0428_orf_4p	12935
S1M10000046A09	3438	SAU100315	5260	SAU1c0037_orf_62p	12358
S1M10000046A11	3439	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000046A11	3439	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000046A12	3440	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000046B01	3441	SAU102334	5645	SAU1c0045_orf_144p	12658
S1M10000046B03	3442	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000046B04	3443	SAU101797	5537	SAU1c0032_orf_17p	12221
S1M10000046B05	3444	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000046B07	3445	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000046B08	3446	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000046B09	3447	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000046B11	3448	SAU102541	5697	SAU1c0045_orf_195p	12668
S1M10000046B12	3449	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000046C02	3450	SAU200601	5787	#N/A	#N/A
S1M10000046C04	3451	SAU100118	5229	SAU1c0015_orf_13p	12125
S1M10000046C05	3452	SAU101159	5387	SAU1c0036_orf_46p	12331
S1M10000046C06	3453	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000046C06	3453	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000046C07	3454	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000046C08	3455	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000046C11	3456	SAU102144	5608	SAU1c0041_orf_15p	12459
S1M10000046C12	3457	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000046C12	3457	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000046D01	3458	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000046D02	3459	SAU102144	5608	SAU1c0041_orf_15p	12459
S1M10000046D03	3460	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000046D04	3461	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000046D05	3462	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000046D08	3463	SAU101495	5467	SAU1c0037_orf_65p	12360
SIM10000046D09	3464	SAU100679	5305	SAU1c0018_orf_14p	12137
SIM10000046D10	3465	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000046D11	3466	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000046D11	3466	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000046D12	3467	SAU100496	5279	SAU1c0041_orf_83p	12484
SIM10000046D12	3467	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000046E01	3468	SAU101610	5492	SAU1c0044_orf_5p	12629
S1M10000046E02	3469	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000046E04	3470	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000046E04	3470	SAU101801	5541	#N/A	#N/A

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000046E07	3471	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000046E08	3472	SAU102283	5634	SAUlc0006_orf_lp	12119
S1M10000046E10	3473	SAU102283	5634	SAUlc0006_orf_lp	12119
S1M10000046F01	3474	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000046F02	3475	SAU100546	5289	SAUlc0032_orf_2p	12235
S1M10000046F02	3475	SAU102880	5739	SAU1c0032_orf_lp	12224
S1M10000046F05	3476	SAU102671	5729	SAU1c0024_orf_9p	12161
S1M10000046F06	3477	SAU100702	5310	SAU1c0029_orf_34p	12196
S1M10000046F06	3477	SAU300825	5878	SAU3c1171_orf_lp	13068
S1M10000046F08	3478	SAU102297	5640	SAU1c0045_orf_41p	12704
S1M10000046F09	3479	SAU100517	5282	#N/A	#N/A
S1M10000046F10	3480	SAU102059	5597	SAUIc0034_orf_51p	12286
S1M10000046F12	3481	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000046G01	3482	SAU200752	5795	SAU2c0354_orf_5p	12809
S1M10000046G01	3482	SAU300975	5880	SAU3c1240_orf_3p	13075
S1M10000046G02	3483	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000046G03	3484	SAU100773	5326	SAU1c0038_orf_39p	12377
S1M10000046G04	3485	SAU100436	5273	SAU1c0023_orf_20p	12154
S1M10000046G07	3486	SAU101866	5564	SAU1c0036_orf_21p	12319
S1M10000046G09	3487	SAU102663	5727	SAU1c0024_orf_2p	12158
S1M10000046G10	3488	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000046H01	3489	SAU101445	5452	SAU1c0038_orf_47p	12382
S1M10000046H01	3489	SAU101446	5453	SAU1c0038_orf_48p	12383
S1M10000046H10	3490	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000047A03	3491	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000047A04	3492	SAU300572	5873	SAU3c1019_orf_lp	13051
S1M10000047A05	3493	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000047A06	3494	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000047A06	3494	SAU301030	5883	SAU3c1268_orf_1p	13080
S1M10000047A07	3495	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000047A08	3496	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000047A09	3497	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047A10	3498	SAU100751	5321	SAU1c0036_orf_59p	12335
S1M10000047A11	3499	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000047A12	3500	SAU100300	5253	SAU1c0040_orf_90p	10.00
S1M10000047B02	3501	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000047B04	3502	SAU101366	5433	SAU1c0033_orf_2p	12266
S1M10000047B05	3503	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000047B06	3504	SAU200006	5770	SAU2c0157_orf_1p	12723
S1M10000047B08	3505	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000047B09	3506	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000047B10	3507	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000047B12	3508	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000047C01	3509	SAU100275	5252	SAU1c0036_orf_15p	12314

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000047C02	3510	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000047C03	3511	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000047C04	3512	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047C06	3513	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000047C08	3514	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000047C09	3515	SAU101271	5411	SAU1c0037_orf_90p	12366
\$1M10000047C11	3516	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000047C11	3516	SAU301030	5883	SAU3c1268_orf_1p	13080
S1M10000047C12	3517	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000047D02	3518	SAU101387	5440	SAU1c0038_orf_52p	12386
S1M10000047D03	3519	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000047D04	3520	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000047D05	3521	SAU101271	5411	SAU1c0037_orf_90p	12366
SIM10000047D09	3522	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000047D10	3523	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000047D11	3524	SAU103038	5757	#N/A	#N/A
S1M10000047D12	3525	SAU101175	5388	SAU1c0031_orf_lp	12213
S1M10000047E01	3526	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000047E02	3527	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000047E03	3528	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000047E04	3529	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000047E05	3530	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000047E06	3531	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000047E08	3532	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000047E09	3533	SAU100810	5333	SAU1c0037_orf_lip	12343
S1M10000047E10	3534	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000047E11	3535	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000047E12	3536	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000047F02	3537	SAU100158	5238	SAU1c0040 orf_80p	12443
S1M10000047F03	3538	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000047F04	3539	SAU300572	5873	SAU3c1019_orf_lp	13051
S1M10000047F05	3540	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047F06	3541	SAU200928	5798	SAU2c0365 orf_5p	12815
S1M10000047F07	3542	SAU102602	5708	SAUIc0032 orf 5p	12249
S1M10000047F08	3543	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000047F09	3544	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000047F10	3545	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000047F11	3546	SAU101805	5545	SAUIc0032 orf_24p	12229
SIM10000047F12	3547	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000047F12	3548	SAU101369	5434	SAU1c0033_orf_5p	12274
S1M10000047G02	3549	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000047G04	3550	SAU101341	5424	SAU1c0044_orf_38p	12618
SIM10000047G05	3551	SAU100684	5306	SAU1c0044_orf_68p	12632
S1M10000047G05	3551	SAU100685	5307	SAU1c0044_orf_69p	12633

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000047G06	3552	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000047G07	3553	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000047G08	3554	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000047G09	3555	SAU100810	5333	SAU1c0037_orf_llp	12343
S1M10000047G10	3556	SAU102607	5712	SAUIc0041_orf_51p	12472
S1M10000047H03	3557	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000047H04	3558	SAU102200	5611	SAU1c0045 orf 168p	12665
S1M10000047H05	3559	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000047H06	3560	SAU103038	5757	#N/A	#N/A
S1M10000047H07	3561	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000047H08	3562	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000047H09	3563	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000047H11	3564	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048A02	3565	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000048A03	3566	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000048A04	3567	SAU103038	5757	#N/A	#N/A
S1M10000048A05	3568	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000048A06	3569	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048A07	3570	SAU101156	5386	SAUIc0036_orf_12p	12311
S1M10000048A09	3571	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000048A10	3572	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000048A11	3573	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000048A12	3574	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000048B02	3575	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000048B05	3576	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048B08	3577	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000048B10	3578	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000048B11	3579	SAU103038	5757	#N/A	#N/A
S1M10000048B12	3580	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000048B12	3580	SAU301620	5899	SAU3cl478_orf_2p	13140
S1M10000048C01	3581	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048C02	3582	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000048C03	3583	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000048C05	3584	SAU300998	5881	SAU3c1253_orf_3p	13077
S1M10000048C06	3585	SAU100684	5306	SAUIc0044_orf_68p	12632
S1M10000048C06	3585	SAU100685	5307	SAU1c0044_orf_69p	12633
S1M10000048C07	3586	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000048C08	3587	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000048C09	3588	SAU101907	5574	SAUIc0040_orf_79p	12442
S1M10000048C11	3589	SAU101815	5552	SAU1c0032_orf_33p	12238
SIM10000048D02	3590	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000048D02	3590	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000048D02	3590	SAU103159	5762	SAU1c0045_orf_204p	12670
S1M10000048D02	3590	SAU201827	5837	SAU2c0449_orf_21p	13002

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000048D08	3591	SAU300572	5873	SAU3c1019_orf_lp	13051
S1M10000048D09	3592	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000048D10	3593	SAU302950	5914	SAU3c1512_orf_12p	13160
S1M10000048D12	3594	SAU102599	5706	SAU1c0041_orf_45p	12466
S1M10000048D12	3594	SAU103191	5765	SAU1c0041_orf_44p	12465
S1M10000048E02	3595	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048E03	3596	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000048E04	3597	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000048E06	3598	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000048E07	3599	SAU100959	5359	SAU1c0042_orf_102p	12485
S1M10000048E08	3600	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000048E10	3601	SAU302950	5914	SAU3c1512_orf_12p	13160
S1M10000048F02	3602	SAU101387	5440	SAU1c0038_orf_52p	12386
S1M10000048F07	3603	SAU101175	5388	SAU1c0031_orf_1p	12213
S1M10000048F08	3604	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048F09	3605	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000048F11	3606	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000048F11	3606	SAU301148	5888	#N/A	#N/A
S1M10000048F12	3607	SAU103038	5757	#N/A	#N/A
S1M10000048G02	3608	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000048G03	3609	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000048G04	3610	SAU102602	5708	SAUlc0032_orf_5p	12249
S1M10000048G05	3611	SAU101752	5522	SAUlc0040_orf_85p	12447
S1M10000048G07	3612	SAU102006	5589	SAUlc0040_orf_107p	12427
S1M10000048G07	3612	SAU102007	5590	SAUIc0040_orf_108p	12428
S1M10000048G10	3613	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000048G11	3614	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000048H01	3615	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000048H02	3616	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000048H03	3617	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000048H04	3618	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000048H05	3619	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048H07	3620	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048H08	3621	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000048H09	3622	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048H10	3623	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000048H11	3624	SAU101271	5411	SAU1c0037_orf_90p	12366
K1M10000037D10	1077	ECO100078	10023	#N/A	#N/A
K1M10000002F02	1054	ECO100252	10052	#N/A	#N/A
K1M10000007F01	1057	ECO100397	10064	#N/A	#N/A
K1M10000007F01	1057	ECO100398	10065	#N/A	#N/A
K1M10000004F06	1056	ECO100990	10120	#N/A	#N/A
K1M10000019D06	1064	ECO100990	10120	#N/A	#N/A
K1M10000030C07	1070	ECO102108	10214	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
K1M10000044G05	1086	ECO102262	10228	#N/A	#N/A
K1M10000036G08	1076	ECO102447	10247	#N/A	#N/A
K1M10000033E01	1075	ECO102539	10258	#N/A	#N/A
K1M10000043D05	1081	ECO102620	10266	#N/A	#N/A
K1M10000045D10	1088	ECO102620	10266	#N/A	#N/A
K1M10000003C01	1055	ECO103101	10315	#N/A	#N/A
K1M10000030E07	1071	ECO104120	10462	#N/A	#N/A
K1M10000045A07	1087	ECO104268	10475	#N/A	#N/A
S4M10000020F05	3721	ECO100449	#N/A	#N/A	#N/A
S4M10000026D04	3742	ECO100676	#N/A	#N/A	#N/A
S4M10000014D07	3706	ECO100757	#N/A	#N/A	#N/A
S4M10000015B11	3708	ECO100757	#N/A	#N/A	#N/A
S4M10000016A02	3710	ECO100757	#N/A	#N/A	#N/A
S4M10000022E12	3725	ECO100757	#N/A	#N/A	#N/A
S4M10000026E12	3744	ECO100757	#N/A	#N/A	#N/A
S4M10000035E03	3764	ECO100757	#N/A	#N/A	#N/A
S4M10000008H10	3693	ECO100758	10101	#N/A	#N/A
S4M10000014B05	3704	ECO100758	10101	#N/A	#N/A
S4M10000014D07	3706	ECO100758	10101	#N/A	#N/A
S4M10000015B11	3708	ECO100758	10101	#N/A	#N/A
S4M10000015E09	3709	ECO100758	10101	#N/A	#N/A
S4M10000016A02	3710	ECO100758	10101	#N/A	#N/A
S4M10000022E12	3725	ECO100758	10101	#N/A	#N/A
S4M10000029B12	3747	ECO100758	10101	#N/A	#N/A
S4M10000020G10	3722	ECO100796	10105 .	#N/A	#N/A
S4M10000023F01	3728	ECO101916	#N/A	#N/A	#N/A
S4M10000014H02	3707	ECO102028	#N/A	#N/A	#N/A
S4M10000012B06	3700	ECO102066	#N/A	#N/A	#N/A
S4M10000035D01	3762	ECO102066	#N/A	#N/A	#N/A
S4M10000024C06	3730	ECO102189	10224	#N/A	#N/A
S4M10000006C05	3689	ECO102282	#N/A	#N/A	#N/A
S4M10000037H09	3772	ECO102296	#N/A	#N/A	#N/A
S4M10000030G11	3751	ECO102302	#N/A	#N/A	#N/A
S4M10000026C10	3741	ECO102416	10245	#N/A	#N/A
S4M10000026E06	3743	ECO102416	10245	#N/A	#N/A
S4M10000036F07	3768	ECO102416	10245	#N/A	#N/A
S4M10000034A02	3756	ECO102526	#N/A	#N/A	#N/A
S4M10000006F08	3690	ECO102541	10259	#N/A	#N/A
S4M10000002G08	3684	ECO102730	#N/A	#N/A	#N/A
S4M10000026C10	3741	ECO102870	#N/A	#N/A	#N/A
S4M10000026E06	3743	ECO102870	#N/A	#N/A	#N/A
S4M10000036F07	3768	ECO102870	#N/A	#N/A	#N/A
S4M10000034H05	3759	ECO102900	#N/A	#N/A	#N/A
S4M10000006A08	3688	ECO102944	#N/A	#N/A	#N/A

Clone name	SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S4M10000014D04	3705	ECO102986	10301	#N/A	#N/A
S4M10000022D12	3724	ECO103238	10354	#N/A	#N/A
S4M10000033F08	3753	ECO103238	10354	#N/A	#N/A
S4M10000033G09	3755	ECO103238	10354	#N/A	#N/A
S4M10000001C01	3680	ECO103265	10365	#N/A	#N/A
S4M10000024B02	3729	ECO103280	#N/A	#N/A	#N/A
S4M10000020A04	3720	ECO103461	#N/A	#N/A	#N/A
S4M10000002B06	3681	ECO103666	#N/A	#N/A	#N/A
S4M10000019H06	3719	ECO103738	#N/A	#N/A	#N/A
S4M10000024H02	3736	ECO103738	#N/A	#N/A	#N/A
S4M10000030F07	3750	ECO103738	#N/A	#N/A	#N/A
S4M10000034H09	3760	ECO103738	#N/A	#N/A	#N/A
S4M10000032B12	3752	ECO103935	#N/A	#N/A	#N/A
S4M10000002B09	3682	ECO103936	#N/A	#N/A	#N/A
S4M10000037A10	3770	ECO103951	#N/A	#N/A	#N/A
S4M10000018D09	3711	ECO104080	#N/A	#N/A	#N/A
S4M10000035F09	3766	EFA101301	#N/A	EFA1c0040_orf_173p	#N/A
S4M10000035F09	3766	EFA102170	#N/A	EFA1c0040_orf_121p	#N/A
S4M10000001C01	3680	EFA103268	#N/A	EFA1c0010_orf_1p	10479
S4M10000036F07	3768	HPY200334	#N/A	#N/A	#N/A
S4M10000001C01	3680	HPY201116	11570	#N/A	#N/A
S4M10000037A10	3770	KPN100467	#N/A	KPN1c0583_orf_2p	#N/A
S4M10000030G11	3751	KPN101078	#N/A	KPN1c1190_orf_lp	#N/A
S4M10000024B02	3729	KPN101160	#N/A	KPN1c1224_orf_lp	#N/A
S4M10000032B12	3752	KPN101846	#N/A	KPN1c1681_orf_2p	#N/A
S4M10000006C05	3689	KPN102011	#N/A	KPN1c1862_orf_4p	#N/A
S4M10000035B01	3761	KPN102014	#N/A	KPN1c1786_orf_lp	11654
S4M10000012B06	3700	KPN102524	#N/A	#N/A	#N/A
S4M10000035D01	3762	KPN102524	#N/A	#N/A	#N/A
S4M10000002G04	3683	KPN102558	#N/A	KPN1c1982_orf_3p	#N/A
S4M10000002G08	3684	KPN102558	#N/A	KPN1c1982_orf_3p	#N/A
S4M10000008H10	3693	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000014B05	3704	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000014D07	3706	KPN103640	#N/A	KPN1c2761_orf_1p	#N/A
S4M10000015B11	3708	KPN103640	#N/A	KPN1c2761_orf_1p	#N/A
S4M10000015E09	3709	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000016A02	3710	KPN103640	#N/A	KPN1c2761_orf_1p	#N/A
S4M10000022E12	3725	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000026E12	3744	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000035E03	3764	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000008H10	3693	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000014B05	3704	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000014D07	3706	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000015B11	3708	KPN103641	#N/A	KPN1c2761_orf_2p	11705

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S4M10000015E09	3709	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000016A02	3710	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000022E12	3725	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000029B12	3747	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000035E03	3764	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000026C10	3741	KPN103871	#N/A	KPN1c2844_orf_2p	#N/A
S4M10000026E06	3743	KPN103871	#N/A	KPN1c2844_orf_2p	#N/A
S4M10000036F07	3768	KPN103871	#N/A	KPN1c2844_orf_2p	#N/A
S4M10000019H06	3719	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000024H02	3736	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000030F07	3750	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000034H09	3760	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000035F02	3765	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000002B06	3681	KPN104608	#N/A	KPN1c3070_orf_3p	#N/A
S4M10000018D09	3711	KPN105957	#N/A	KPN1c3587_orf_lp	#N/A
S4M10000024C06	3730	KPN106468	#N/A	KPN1c1186_orf_lp	11638
S4M10000009A05	3694	KPN106681	#N/A	#N/A	#N/A
S4M10000010D04	3696	KPN106681	#N/A	#N/A	#N/A
S4M10000011E08	3699	KPN106681	#N/A	#N/A	#N/A
S4M10000020A04	3720	KPN106813	#N/A	KPN1c2010_orf_lp	#N/A
S4M10000005G05	3685	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000006F08	3690	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000007G01	3691	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000008C08	3692	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000018E10	3712	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000018F10	3713	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000019G04	3717	KPN106840	#N/A	KPN1c2087_orf_lp	11664
S4M10000001C01	3680	SAU101756	#N/A	SAU1c0040_orf_82p	12445
S4M10000001C01	3680	SAU200931	#N/A	SAU2c0151_orf_lp	12722
S4M10000001C01	3680	SPN102008	#N/A	SPN1c0007_orf_92p	#N/A
S4M10000001C01	3680	SPN202419	#N/A	SPN2c0592_orf_lp	#N/A
S4M10000019H06	3719	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000024H02	3736	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000030F07	3750	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000034H09	3760	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000035F02	3765	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000026C10	3741	STY000225	#N/A	STYc00041_orf_40p	13740
S4M10000026E06	3743	STY000225	#N/A	STYc00041_orf_40p	13740
S4M10000036F07	3768	STY000225	#N/A	STYc00041_orf_40p	13740
S4M10000026D04	3742	STY000244	#N/A	STYc00041_orf_llp	#N/A
S4M10000034H05	3759	STY000244	#N/A	STYc00041_orf_11p	#N/A
S4M10000027E02	3746	STY000409	#N/A	STYc00053_orf_110p	#N/A
S4M10000025E02	3738	STY000498	#N/A	STYc00072_orf_46p	#N/A
S4M10000034A02	3756	STY000498	#N/A	STYc00072_orf_46p	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S4M10000034D06	3758	STY000625	#N/A	STYc00062_orf_63p	13784
S4M10000014D04	3705	STY000737	#N/A	STYc00054_orf_108p	13759
S4M10000013H02	3703	STY000753	#N/A	STYc00054_orf_91p	#N/A
S4M10000006A08	3688	STY000817	#N/A	STYc00054_orf_145p	#N/A
S4M10000036D07	3767	STY000817	#N/A	STYc00054_orf_145p	#N/A
S4M10000018D09	3711	STY000848	#N/A	STYc00101_orf_23p	#N/A
S4M10000014H02	3707	STY000968	#N/A	STYc00086_orf_86p	#N/A
S4M10000024G04	3734	STY000986	#N/A	#N/A	#N/A
S4M10000025H07	3740	STY000986	#N/A	#N/A	#N/A
S4M10000029D12	3748	STY000986	#N/A	#N/A	#N/A
S4M10000037A10	3770	STY001009	#N/A	STYc00080_orf_144p	#N/A
S4M10000035F09	3766	STY001185	#N/A	STYc00098_orf_2p	#N/A
S4M10000026D04	3742	STY001220	#N/A	STYc00123_orf_17p	#N/A
S4M10000022H06	3727	STY001285	#N/A	#N/A	#N/A
S4M10000030D03	3749	STY001285	#N/A	#N/A	#N/A
S4M10000037E10	3771	STY001363	#N/A	STYc00034_orf_126p	#N/A
S4M10000002B06	3681	STY001380	#N/A	STYc00119_orf_3p	#N/A
S4M10000011D08	3698	STY001534	#N/A	#N/A	#N/A
S4M10000024C11	3731	STY001582	#N/A	#N/A	#N/A
S4M10000025A11	3737	STY001582	#N/A	#N/A	#N/A
S4M10000035F09	3766	STY001619	#N/A	#N/A	#N/A
S4M10000022D12	3724	STY001777	#N/A	STYc00187_orf_4p	13970
S4M10000033F08	3753	STY001777	#N/A	STYc00187_orf_4p	13970
S4M10000033G09	3755	STY001777	#N/A	STYc00187_orf_4p	13970
S4M10000001C01	3680	STY001790	#N/A	STYc00187_orf_14p	13967
S4M10000026C10	3741	STY001853	#N/A	STYc00180_orf_22p	#N/A
S4M10000026E06	3743	STY001853	#N/A	STYc00180_orf_22p	#N/A
S4M10000036F07	3768	STY001853	#N/A	STYc00180_orf_22p	#N/A
S4M10000020A04	3720	STY002064	#N/A	STYc00074_orf_163p	#N/A
S4M10000020A04	3720	STY002066	#N/A	#N/A	#N/A
S4M10000024B02	3729	STY002145	#N/A	STYc00074_orf_17p	#N/A
S4M10000010B05	3695	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000012B12	3701	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000022D04	3723	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000022G07	3726	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000024G01	3733	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000024G09	3735	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000025E05	3739	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000027C10	3745	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000034A09	3757	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000037H09	3772	STY002590	#N/A	STYc00114_orf_104p	#N/A
S4M10000002G04	3683	STY002623	#N/A	STYc00114_orf_90p	#N/A
S4M10000002G08	3684	STY002623	#N/A	STYc00114_orf_90p	#N/A
S4M10000033G05	3754	STY002638	#N/A	STYc00114_orf_15p	13870

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S4M10000006A06	3687	STY002672	#N/A	STYc00114_orf_136p	#N/A
S4M10000010H04	3697	STY002711	#N/A	STYc00223_orf_lp	#N/A
S4M10000005H02	3686	STY002738	#N/A	STYc00223_orf_17p	#N/A
S4M10000012B06	3700	STY002826	#N/A	STYc00152_orf_12p	#N/A
S4M10000035D01	3762	STY002826	#N/A	STYc00152_orf_12p	#N/A
S4M10000018G03	3714	STY002889	#N/A	#N/A	#N/A
S4M10000018H04	3715	STY002889	#N/A	#N/A	#N/A
S4M10000019F05	3716	STY002889	#N/A	#N/A	#N/A
S4M10000019G05	3718	STY002889	#N/A	#N/A	#N/A
S4M10000037E10	3771	STY002959	#N/A	STYc00215_orf_11p	14011
S4M10000002B09	3682	STY003082	#N/A	STYc00238_orf_12p	#N/A
S4M10000032B12	3752	STY003084	#N/A	STYc00238_orf_13p	#N/A
S4M10000024C06	3730	STY003375	#N/A	STYc00183_orf_19p	13957
S4M10000012D02	3702	STY003377	#N/A	#N/A	#N/A
S4M10000030G11	3751	STY003384	#N/A	STYc00183_orf_130p	#N/A
S4M10000006F08	3690	STY003460	#N/A	STYc00339_orf_20p	14087
S4M10000024F08	3732	STY003664	#N/A	#N/A	#N/A
S4M10000020G10	3722	STY004048	#N/A	STYc00207_orf_161p	13999
S4M10000008H10	3693	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000014B05	3704	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000015E09	3709	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000016A02	3710	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000022E12	3725	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000029B12	3747	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000035E03	3764	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000008H10	3693	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000014B05	3704	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000014D07	3706	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000015B11	3708	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000015E09	3709	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000016A02	3710	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000022E12	3725	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000026E12	3744	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000035E03	3764	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000005G05	3685	STY004239	#N/A	#N/A	#N/A
S4M10000007G01	3691	STY004239	#N/A	#N/A	#N/A
S4M10000008C08	3692	STY004239	#N/A	#N/A	#N/A
S4M10000018E10	3712	STY004239	#N/A	#N/A	#N/A
S4M10000018F10	3713	STY004239	#N/A	#N/A	#N/A
S4M10000019G04	3717	STY004239	#N/A	#N/A	#N/A
S4M10000037A04	3769	STY005016	#N/A	#N/A	#N/A
K1M10000007F01	1057	SAU100968	#N/A	SAU1c0044_orf_90p	12643
K1M10000007F01	1057	SAU201145	#N/A	SAU2c0405_orf_7p	12884
K1M10000007F01	1057	SPN101971	#N/A	SPN1c0009_orf_54p	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
K1M10000007F01	1057	SPN201024	#N/A	SPN2c0417_orf_4p	#N/A
K1M10000003C01	1055	STY000773	#N/A	STYc00054_orf_16p	13764
K1M10000023E09	1068	STY000886	#N/A	#N/A	#N/A
K1M10000023E10	1069	STY000886	#N/A	#N/A	#N/A
KIM10000007F01	1057	STY001430	#N/A	STYc00148_orf_11p	13915
K1M10000007F01	1057	STY001433	#N/A	STYc00148_orf_12p	13916
K1M10000036G08	1076	STY001867	#N/A	STYc00180_orf_50p	13948
K1M10000030C07	1070	STY002768	#N/A	#N/A	#N/A
K1M10000037D10	1077	STY002995	#N/A	STYc00215_orf_67p	14018
K1M10000044G05	1086	STY003357	#N/A	STYc00183_orf_91p	13963

TABLE VI C

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		•	SeqID
EFA100001		3806	4861
EFA100023		3807	4862
EFA100065		3808	4863
EFA100151		3809	4864
EFA100157		3810	4865
EFA100165		3811	4866
EFA100190		3812	4867
EFA100194		3813	4868
EFA100200		3814	4869
EFA100210		3815	4870
EFA100211		3816	4871
EFA100289		3817	4872
EFA100295		3818	4873
EFA100312		3819	4874
EFA100329		3820	4875
EFA100394		3821	4876
EFA100397		3822	4877
EFA100399		3823	4878
EFA100426		3824	4879
EFA100478		3825	4880
EFA100615		3826	4881
EFA100617		3827	4882
EFA100641		3828	4883
EFA100642		3829	4884
EFA100668		3830	4885
EFA100689		3831	4886
EFA100704		3832	4887
EFA100739		3833	4888
EFA100740		3834	4889
EFA100741		3835	4890
EFA100742		3836	4891
EFA100748		3837	4892
EFA100756		3838	4893
EFA100757		3839	4894
EFA100783		3840	4895
EFA100795		3841	4896
EFA100798		3842	4897
EFA100811		3843	4898
EFA100870		3844	4899
EFA100914		3845	4900

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		_	SeqID
EFA100919		3846	4901
EFA100955		3847	4902
EFA100970		3848	4903
EFA100978		3849	4904
EFA100991		3850	4905
EFA101022		3851	4906
EFA101060		3852	4907
EFA101079		3853	4908
EFA101080		3854	4909
EFA101086		3855	4910
EFA101120		3856	4911
EFA101121		3857	4912
EFA101123		3858	4913
EFA101141		3859	4914
EFA101150		3860	4915
EFA101159		3861	4916
EFA101160		3862	4917
EFA101161		3863	4918
EFA101162	-	3864	4919
EFA101163		3865	4920
EFA101164		3866	4921
EFA101165		3867	4922
EFA101169		3868	4923
EFA101253		3869	4924
EFA101257		3870	4925
EFA101258		3871	4926
EFA101322		3872	4927
EFA101339		3873	4928
EFA101340		3874	4929
EFA101354		3875	4930
EFA101370		3876	4931
EFA101403		3877	4932
EFA101404		3878	4933
EFA101409		3879	4934
EFA101410		3880	4935
EFA101411		3881	4936
EFA101412		3882	4937
EFA101413		3883	4938
EFA101414		3884	4939
EFA101415		3885	4940
EFA101416		3886	4941

PathoSeq	Gene Nucleotide SeqID	Protein
Locus		SeqID
EFA101417	3887	4942
EFA101424	3888	4943
EFA101425	3889	4944
EFA101477	3890	4945
EFA101536	3891	4946
EFA101540	3892	4947
EFA101541	3893	4948
EFA101583	3894	4949
EFA101670	3895	4950
EFA101682	3896	4951
EFA101685	3897	4952
EFA101686	3898	4953
EFA101695	3899	4954
EFA101736	3900	4955
EFA101737	3901	4956
EFA101753	3902	4957
EFA101765	3903	4958
EFA101790	3904	4959
EFA101791	3905	4960
EFA101792	3906	4961
EFA101795	3907	4962
EFA101797	3908	4963
EFA101799	3909	4964
EFA101833	3910	4965
EFA101868	3911	4966
EFA101872	3912	4967
EFA101873	3913	4968
EFA101892	3914	4969
EFA101924	3915	4970
EFA101925	3916	4971
EFA101963	3917	4972
EFA102006	3918	4973
EFA102022	3919	4974
EFA102023	3920	4975
EFA102051	3921	4976
EFA102091	3922	4977
EFA102110	3923	4978
EFA102183	3924	4979
EFA102185	3925	4980
EFA102186	3926	4981
EFA102201	3927	4982

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus			SeqID
EFA102205		3928	4983
EFA102253		3929	4984
EFA102282		3930	4985
EFA102326		3931	4986
EFA102338		3932	4987
EFA102350		3933	4988
EFA102351		3934	4989
EFA102352		3935	4990
EFA102353		3936	4991
EFA102389		3937	4992
EFA102453		3938	4993
EFA102501		3939	4994
EFA102502		3940	4995
EFA102503		3941	4996
EFA102518		3942	4997
EFA102541		3943	4998
EFA102542		3944	4999
EFA102549		3945	5000
EFA102551		3946	5001
EFA102554		3947	5002
EFA102655		3948	5003
EFA102656		3949	5004
EFA102698		3950	5005
EFA102728		3951	5006
EFA102736		3952	5007
EFA102764		3953	5008
EFA102774		3954	5009
EFA102780		3955	5010
EFA102788		3956	5011
EFA102802		3957	5012
EFA102813		3958	5013
EFA102915		3959	5014
EFA103021		3960	5015
EFA103033		3961	5016
EFA103038		3962	5017
EFA103039		3963	5018
EFA103062		3964	5019
EFA103081		3965	5020
EFA103174		3966	5021
EFA103210		3967	5022
EFA103268	•	3968	5023

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		_	SeqID
EFA103295		3969	5024
EFA103348		3970	5025
EFA103365		3971	5026
EFA103375		3972	5027
EFA103504		3973	5028
EFA103508		3974	5029
EFA103571		3975	5030
EFA103786		3976	5031
KPN100432		3977	5032
KPN100854		3978	5033
KPN101022		3979	5034
KPN101026		3980	5035
KPN101729		3981	5036
KPN101750		3982	5037
KPN102057		3983	5038
KPN102638		3984	5039
KPN103882		3985	5040
KPN104183		3986	5041
KPN104281		3987	5042
KPN104430		3988	5043
KPN104538		3989	5044
KPN104716		3990	5045
KPN105722		3991	5046
KPN105779		3992	5047
KPN106044		3993	5048
KPN106659		3994	5049
KPN106840		3995	5050
KPN107626		3996	5051
KPN107776		3997	5052
PA0028		3998	5053
PA0120		3999	5054
PA0129		4000	5055
PA0141		4001	5056
PA0221		4002	5057
PA0265		4003	5058
PA0321		4004	5059
PA0337		4005	5060
PA0353		4006	5061
PA0378		4007	5062
PA0401		4008	5063
PA0413		4009	5064

PathoSeq C	Gene Nucleotide SeqID	Protein
Locus		SeqID
PA0414	4010	5065
PA0419	4011	5066
PA0423	4012	5067
PA0469	4013	5068
PA0472	4014	5069
PA0506	4015	5070
PA0600	4016	5071
PA0642	4017	5072
PA0650	4018	5073
PA0715	4019	5074
PA0788	4020	5075
PA0882	4021	5076
PA0934	4022	5077
PA0938	4023	5078
PA1019	4024	5079
PA1072	4025	5080
PA1115	4026	5081
PA1270	4027	5082
PA1301	4028	5083
PA1360	4029	5084
PA1365	4030	5085
PA1398	4031	5086
PA1462	4032	5087
PA1493	4033	5088
PA1547	4034	5089
PA1636	4035	5090
PA1684	4036	5091
PA1868	4037	5092
PA1876	4038	5093
PA1918	4039	5094
PA1986	4040	5095
PA2009	4041	5096
PA2083	4042	5097
PA2101	4043	5098
PA2108	4044	5099
PA2128	4045	5100
PA2147	4046	5101
PA2196	4047	5102
PA2197	4048	5103
PA2222	4049	5104
PA2313	4050	5105

PathoSeq Gene	Nucleotide SeqID	Protein
Locus		SeqID
PA2398	4051	5106
PA2424	4052	5107
PA2461	4053	5108
PA2470	4054	5109
PA2488	4055	5110
PA2494	4056	5111
PA2584	4057	5112
PA2594	4058	5113
PA2634	4059	5114
PA2641	4060	5115
PA2671	4061	5116
PA2680	4062	5117
PA2684	4063	5118
PA2726	4064	5119
PA2742	4065	5120
PA3006	4066	5121
PA3011	4067	5122
PA3013	4068	5123
PA3041	4069	5124
PA3048	4070	5125
PA3068	4071	5126
PA3121	4072	5127
PA3153	4073	5128
PA3154	4074	5129
PA3160	4075	5130
PA3279	4076	5131
PA3280	4077	5132
PA3374	4078	5133
PA3479	4079	5134
PA3484	4080	5135
PA3522	4081	5136
PA3643	4082	5137
PA3703	4083	5138
PA3709	4084	5139
PA3716	4085	5140
PA3764	4086	5141
PA3845	4087	5142
PA3866	4088	5143
PA3876	4089	5144
PA3877	4090	5145
PA3931	4091	5146

PathoSeq Gene	Nucleotide SeqID	Protein
Locus		SeqID
PA3984	4092	5147
PA4024	4093	5148
PA4027	4094	5149
PA4037	4095	5150
PA4067	4096	5151
PA4070	4097	5152
PA4081	4098	5153
PA4105	4099	5154
PA4124	4100	5155
PA4125	4101	5156
PA4158	4102	5157
PA4237	4103	5158
PA4242	4104	5159
PA4244	4105	5160
PA4245	4106	5161
PA4246	4107	5162
PA4247	4108	5163
PA4248	4109	5164
PA4249	4110	5165
PA4250	4111	5166
PA4251	4112	5167
PA4252	4113	5168
PA4253	4114	5169
PA4254	4115	5170
PA4256	4116	5171
PA4257	4117	5172
PA4258	4118	5173
PA4259	4119	5174
PA4262	4120	5175
PA4263	4121	5176
PA4264	4122	5177
PA4268	4123	5178
PA4269	4124	5179
PA4271	4125	5180
PA4272	4126	5181
PA4316	4127	5182
PA4332	4128	5183
PA4347	4129	5184
PA4363	4130	5185
PA4375	4131	5186
PA4413	4132	5187

PathoSeq Gene	Nucleotide SeqID	Protein
Locus		SeqID
PA4433	4133	5188
PA4473	4134	5189
PA4506	4135	5190
PA4512	4136	5191
PA4542	4137	5192
PA4576	4138	5193
PA4598	4139	5194
PA4665	4140	5195
PA4681	4141	5196
PA4709	4142	5197
PA4744	4143	5198
PA4771	4144	5199
PA4888	4145	5200
PA4942	4146	5201
PA4997	4147	5202
PA5030	4148	5203
PA5076	4149	5204
PA5088	4150	5205
PA5193	4151	5206
PA5199	4152	5207
PA5207	4153	5208
PA5209	4154	5209
PA5248	4155	5210
PA5299	4156	5211
PA5316	4157	5212
PA5388	4158	5213
PA5393	4159	5214
PA5436	4160	5215
PA5443	4161	5216
PA5490	4162	5217
PA5493	4163	5218
PA5507	4164	5219
PA5567	4165	5220
SAU100040	4166	5221
SAU100053	4167	5222
SAU100056	4168	5223
SAU100059	4169	5224
SAU100062	4170	5225
SAU100077	4171	5226
SAU100112	4172	5227
SAU100114	4173	5228

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		_	SeqID
SAU100118		4174	5229
SAU100123		4175	5230
SAU100128		4176	5231
SAU100131		4177	5232
SAU100133		4178	5233
SAU100139	-	4179	5234
SAU100140		4180	5235
SAU100141		4181	5236
SAU100157		4182	5237
SAU100158		4183	5238
SAU100162		4184	5239
SAU100175		4185	5240
SAU100182		4186	5241
SAU100186		4187	5242
SAU100198		4188	5243
SAU100227		4189	5244
SAU100231		4190	5245
SAU100242		4191	5246
SAU100246		4192	5247
SAU100251		4193	5248
SAU100265		4194	5249
SAU100266		4195	5250
SAU100272		4196	5251
SAU100275		4197	5252
SAU100300		4198	5253
SAU100301		4199	5254
SAU100302		4200	5255
SAU100305		4201	5256
SAU100307		4202	5257
SAU100308		4203	5258
SAU100313		4204	5259
SAU100315		4205	5260
SAU100323		4206	5261
SAU100347		4207	5262
SAU100355		4208	5263
SAU100359		4209	5264
SAU100381		4210	5265
SAU100389		4211	5266
SAU100390		4212	5267
SAU100401		4213	5268
SAU100412		4214	5269

PathoSeq	Gene Nucleotide SeqID	Protein
Locus	4215	SeqID
SAU100414		
SAU100432	4216	5271
SAU100433	4217	5272
SAU100436	4218	5273
SAU100443	4219	5274
SAU100444	4220	5275
SAU100475	4221	5276
SAU100478	4222	5277
SAU100489	4223	5278
SAU100496	4224	5279
SAU100497	4225	5280
SAU100514	4226	5281
SAU100517	4227	5282
SAU100521	4228	5283
SAU100522	4229	5284
SAU100527	4230	5285
SAU100528	4231	5286
SAU100532	4232	5287
SAU100542	4233	5288
SAU100546	4234	5289
SAU100547	4235	5290
SAU100557	4236	5291
SAU100582	4237	5292
SAU100590	4238	5293
SAU100595	4239	5294
SAU100596	4240	5295
SAU100601	4241	5296
SAU100608	4242	5297
SAU100610	4243	5298
SAU100613	4244	5299
SAU100617	4245	5300
SAU100633	4246	5301
SAU100646	4247	5302
SAU100658	4248	5303
SAU100659	4249	5304
SAU100679	4250	5305
SAU100684	4251	5306
SAU100685	4252	5307
SAU100689	4253	5308
SAU100690	4254	5309
SAU100702	4255	5310

PathoSeq Gen	e Nucleotide SeqID	Protein
Locus	•	SeqID
SAU100710	4256	5311
SAU100714	4257	5312
SAU100731	4258	5313
SAU100733	4259	5314
SAU100734	4260	5315
SAU100736	4261	5316
SAU100738	4262	5317
SAU100741	4263	5318
SAU100745	4264	5319
SAU100747	4265	5320
SAU100751	4266	5321
SAU100752	4267	5322
SAU100767	4268	5323
SAU100770	4269	5324
SAU100771	4270	5325
SAU100773	4271	5326
SAU100776	4272	5327
SAU100778	4273	5328
SAU100793	4274	5329
SAU100794	4275	5330
SAU100799	4276	5331
SAU100808	4277	5332
SAU100810	4278	5333
SAU100813	4279	5334
SAU100831	4280	5335
SAU100836	4281	5336
SAU100838	4282	5337
SAU100839	4283	5338
SAU100843	4284	5339
SAU100845	4285	5340
SAU100858	4286	5341
SAU100859	4287	5342
SAU100865	4288	5343
SAU100866	4289	5344
SAU100879	4290	5345
SAU100880	4291	5346
SAU100882	4292	5347
SAU100885	4293	5348
SAU100886	4294	5349
SAU100887	4295	5350
SAU100899	4296	5351

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus			SeqID
SAU100901		4297	5352
SAU100916		4298	5353
SAU100920		4299	5354
SAU100921		4300	5355
SAU100932		4301	5356
SAU100944		4302	5357
SAU100952		4303	5358
SAU100959		4304	5359
SAU100961		4305	5360
SAU100962		4306	5361
SAU100963		4307	5362
SAU100964		4308	5363
SAU100965		4309	5364
SAU100970		4310	5365
SAU100996		4311	5366
SAU101006		4312	5367
SAU101020		4313	5368
SAU101024		4314	5369
SAU101028		4315	5370
SAU101034		4316	5371
SAU101038		4317	5372
SAU101039		4318	5373
SAU101065		4319	5374
SAU101067		4320	5375
SAU101070		4321	5376
SAU101084		4322	5377
SAU101085		4323	5378
SAU101086		4324	5379
SAU101090		4325	5380
SAU101092		4326	5381
SAU101104		4327	5382
SAU101143		4328	5383
SAU101145		4329	5384
SAU101155		4330	5385
SAU101156		4331	5386
SAU101159		4332	5387
SAU101175		4333	5388
SAU101180		4334	5389
SAU101183		4335	5390
SAU101184		4336	5391
SAU101189		4337	5392

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		•	SeqID
SAU101197		4338	5393
SAU101198		4339	5394
SAU101199		4340	5395
SAU101220		4341	5396
SAU101224		4342	5397
SAU101226		4343	5398
SAU101231		4344	5399
SAU101235		4345	5400
SAU101236		4346	5401
SAU101239		4347	5402
SAU101240		4348	5403
SAU101242		4349	5404
SAU101247		4350	5405
SAU101262		4351	5406
SAU101265		4352	5407
SAU101266		4353	5408
SAU101267		4354	5409
SAU101270		4355	5410
SAU101271		4356	5411
SAU101275		4357	5412
SAU101286		4358	5413
SAU101293		4359	5414
SAU101300		4360	5415
SAU101301		4361	5416
SAU101302		4362	5417
SAU101310		4363	5418
SAU101311		4364	5419
SAU101320		4365	5420
SAU101327		4366	5421
SAU101339		4367	5422
SAU101340		4368	5423
SAU101341		4369	5424
SAU101343		4370	5425
SAU101344		4371	5426
SAU101346		4372	5427
SAU101347		4373	5428
SAU101350		4374	5429
SAU101351		4375	5430
SAU101360		4376	5431
SAU101365		4377	5432
SAU101366		4378	5433

PathoSeq Locus	Gene	Nucleotide SeqID	Protein SeqID
SAU101369		4379	5434
SAU101371		4380	5435
SAU101381		4381	5436
SAU101382		4382	5437
SAU101383		4383	5438
SAU101385		4384	5439
SAU101387	•	4385	5440
SAU101389		4386	5441
SAU101398		4387	5442
SAU101399		4388	5443
SAU101400		4389	5444
SAU101408		4390	5445
SAU101421		4391	5446
SAU101427		4392	5447
SAU101432		4393	5448
SAU101436		4394	5449
SAU101438		4395	5450
SAU101444		4396	5451
SAU101445		4397	5452
SAU101446		4398	5453
SAU101447		4399	5454
SAU101452		4400	5455
SAU101455		4401	5456
SAU101461		4402	5457
SAU101463		4403	5458
SAU101476		4404	5459
SAU101481		4405	5460
SAU101482		4406	5461
SAU101483		4407	5462
SAU101488		4408	5463
SAU101491		4409	5464
SAU101492		4410	5465
SAU101493		4411	5466
SAU101495		4412	5467
SAU101497		4413	5468
SAU101509		4414	5469
SAU101526		4415	5470
SAU101529		4416	5471
SAU101541		4417	5472
SAU101543		4418	5473
SAU101545		4419	5474

PathoSeq	Gene Nucleotide SeqID	Protein
Locus		SeqID
SAU101546	4420	5475
SAU101549	4421	5476
SAU101551	4422	5477
SAU101554	4423	5478
SAU101561	4424	5479
SAU101565	4425	5480
SAU101567	4426	5481
SAU101570	4427	5482
SAU101571	4428	5483
SAU101572	4429	5484
SAU101573	4430	5485
SAU101574	4431	5486
SAU101575	4432	5487
SAU101576	4433	5488
SAU101586	4434	5489
SAU101592	4435	5490
SAU101599	4436	5491
SAU101610	4437	5492
SAU101612	4438	5493
SAU101614	4439	5494
SAU101616	4440	5495
SAU101622	4441	5496
SAU101624	4442	5497
SAU101630	4443	5498
SAU101632	4444	5499
SAU101637	4445	5500
SAU101641	4446	5501
SAU101651	4447	5502
SAU101652	4448	5503
SAU101653	4449	5504
SAU101655	4450	5505
SAU101663	4451	5506
SAU101664	4452	5507
SAU101674	4453	5508
SAU101679	4454	5509
SAU101681	4455	5510
SAU101682	4456	5511
SAU101685	4457	5512
SAU101717	4458	5513
SAU101724	4459	5514
SAU101726	4460	5515

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		•	SeqID
SAU101727		4461	5516
SAU101728		4462	5517
SAU101736		4463	5518
SAU101737		4464	5519
SAU101744		4465	5520
SAU101751		4466	5521
SAU101752		4467	5522
SAU101754		4468	5523
SAU101756		4469	5524
SAU101771		4470	5525
SAU101772		4471	5526
SAU101777		4472	5527
SAU101781		4473	5528
SAU101782		4474	5529
SAU101784		4475	5530
SAU101790		4476	5531
SAU101791		4477	5532
SAU101792		4478	5533
SAU101793	·	4479	5534
SAU101794		4480	5535
SAU101795		4481	5536
SAU101797		4482	5537
SAU101798		4483	5538
SAU101799		4484	5539
SAU101800		4485	5540
SAU101801		4486	5541
SAU101802		4487	5542
SAU101803		. 4488	5543
SAU101804		4489	5544
SAU101805		4490	- 5545
SAU101806		4491	5546
SAU101807		4492	5547
SAU101808		4493	5548
SAU101810		4494	5549
SAU101811		4495	5550
SAU101814		4496	5551
SAU101815		4497	5552
SAU101818		4498	5553
SAU101824		4499	5554
SAU101833		4500	5555
SAU101839		4501	5556

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		·	SeqID
SAU101842		4502	5557
SAU101845		4503	5558
SAU101849		4504	5559
SAU101857		4505	5560
SAU101862		4506	5561
SAU101864		4507	5562
SAU101865		4508	5563
SAU101866		4509	5564
SAU101868	_	4510	5565
SAU101869		4511	5566
SAU101876		4512	5567
SAU101881		4513	5568
SAU101882		4514	5569
SAU101890		4515	5570
SAU101891		4516	5571
SAU101893		4517	5572
SAU101904		4518	5573
SAU101907		4519	5574
SAU101909		4520	5575
SAU101910		4521	5576
SAU101915		4522	5577
SAU101922		4523	5578
SAU101948		4524	5579
SAU101966		4525	5580
SAU101968		4526	5581
SAU101991		4527	5582
SAU101995		4528	5583
SAU101996		4529	5584
SAU101999		4530	5585
SAU102001		4531	5586
SAU102002		4532	5587
SAU102003		4533	5588
SAU102006		4534	5589
SAU102007		4535	5590
SAU102032		4536	5591
SAU102035		4537	5592
SAU102044		4538	5593
SAU102046		4539	5594
SAU102049		4540	5595
SAU102054		4541	5596
SAU102059		4542	5597

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		_	SeqID
SAU102067		4543	5598
SAU102068		4544	5599
SAU102102		4545	5600
SAU102113		4546	5601
SAU102116		4547	5602
SAU102117		4548	5603
SAU102129		4549	5604
SAU102132		4550	5605
SAU102142		4551	5606
SAU102143		4552	5607
SAU102144		4553	5608
SAU102162		4554	5609
SAU102165	-	4555	5610
SAU102200		4556	5611
SAU102201		4557	5612
SAU102222		4558	5613
SAU102231		4559	5614
SAU102232		4560	5615
SAU102233		4561	5616
SAU102241		4562	5617
SAU102242		4563	5618
SAU102246		4564	5619
SAU102247		4565	5620
SAU102252		4566	5621
SAU102256		4567	5622
SAU102257		4568	5623
SAU102259		4569	5624
SAU102260		4570	5625
SAU102261		4571	5626
SAU102262		4572	5627
SAU102264		4573	5628
SAU102265		4574	5629
SAU102268		4575	5630
SAU102270		4576	5631
SAU102280		4577	5632
SAU102281		4578	5633
SAU102283		4579	5634
SAU102284		4580	5635
SAU102286		4581	5636
SAU102287		4582	5637
SAU102292		4583	5638

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		_	SeqID
SAU102294		4584	5639
SAU102297		4585	5640
SAU102298		4586	5641
SAU102308		4587	5642
SAU102318		4588	5643
SAU102333		4589	5644
SAU102334		4590	5645
SAU102336		4591	5646
SAU102340		4592	5647
SAU102345		4593	5648
SAU102350		4594	5649
SAU102352		4595	5650
SAU102355		4596	5651
SAU102356		4597	5652
SAU102378		4598	5653
SAU102380		4599	5654
SAU102388		4600	5655
SAU102389		4601	5656
SAU102390		4602	5657
SAU102392		4603	5658
SAU102394		4604	5659
SAU102396		4605	5660
SAU102401		4606	5661
SAU102407		4607	5662
SAU102417		4608	5663
SAU102418		4609	5664
SAU102420		4610	5665
SAU102422		4611	5666
SAU102423		4612	5667
SAU102433		4613	5668
SAU102434		4614	5669
SAU102437		4615	5670
SAU102440		4616	5671
SAU102447		4617	5672
SAU102448		4618	5673
SAU102449		4619	5674
SAU102450		4620	5675
SAU102452		4621	5676
SAU102453		4622	5677
SAU102460		4623	5678
SAU102469		4624	5679

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		_	SeqID
SAU102473		4625	5680
SAU102474		4626	5681
SAU102476		4627	5682
SAU102479		4628	5683
SAU102480	-	4629	5684
SAU102481		4630	5685
SAU102485		4631	5686
SAU102486		4632	5687
SAU102487		4633	5688
SAU102498		4634	5689
SAU102502		4635	5690
SAU102503		4636	5691
SAU102526		4637	5692
SAU102527		4638	5693
SAU102531		4639	5694
SAU102533		4640	5695
SAU102534		4641	5696
SAU102541		4642	5697
SAU102551		4643	5698
SAU102554		4644	5699
SAU102575	•	4645	5700
SAU102578		4646	5701
SAU102584		4647	5702
SAU102585		4648	5703
SAU102593		4649	5704
SAU102598		4650	5705
SAU102599		4651	5706
SAU102601		4652	5707
SAU102602		4653	5708
SAU102603		4654	5709
SAU102605		4655	5710
SAU102606		4656	5711
SAU102607		4657	5712
SAU102609		4658	5713
SAU102610		4659	5714
SAU102613		4660	5715
SAU102614		4661	5716
SAU102615		4662	5717
SAU102620		4663	5718
SAU102621		4664	5719
SAU102629		4665	5720

PathoSeq G	Gene Nucleotide SeqID	Protein
Locus	1	SeqID
SAU102631	4666	5721
SAU102636	4667	5722
SAU102637	4668	5723
SAU102639	4669	5724
SAU102652	4670	5725
SAU102658	4671	5726
SAU102663	4672	5727
SAU102669	4673	5728
SAU102671	4674	5729
SAU102674	4675	5730
SAU102693	4676	5731
SAU102694	4677	5732
SAU102725	4678	5733
SAU102764	4679	5734
SAU102766	4680	5735
SAU102812	4681	5736
SAU102863	4682	5737
SAU102870	4683	5738
SAU102880	4684	5739
SAU102881	4685	5740
SAU102883	4686	5741
SAU102905	4687	5742
SAU102909	4688	5743
SAU102933	4689	5744
SAU102935	4690	5745
SAU102936	4691	5746
SAU102939	4692	5747
SAU102942	4693	5748
SAU102944	4694	5749
SAU102979	4695	5750
SAU102983	4696	5751
SAU102992	4697	5752
SAU103010	4698	5753
SAU103024	4699	5754
SAU103025	4700	5755
SAU103037	4701	5756
SAU103038	4702	5757
SAU103042	4703	5758
SAU103077	4704	5759
SAU103115	4705	5760
SAU103144	4706	5761

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus			SeqID
SAU103159		4707	5762
SAU103169		4708	5763
SAU103175		4709	5764
SAU103191		4710	5765
SAU103198		4711	5766
SAU103204		4712	5767
SAU103226		4713	5768
SAU103232		4714	5769
SAU200006		4715	5770
SAU200028		4716	5771_
SAU200030		4717	5772
SAU200058		4718	5773
SAU200059	-	4719	5774
SAU200088		4720	5775
SAU200157		4721	5776
SAU200242		4722	5777
SAU200297		4723	5778
SAU200345		4724	5779
SAU200392		4725	5780
SAU200468		4726	5781
SAU200558		4727	5782
SAU200561		4728	5783
SAU200564		4729	5784
SAU200565		4730	5785
SAU200593		4731	5786
SAU200601		4732	5787
SAU200628		4733	5788
SAU200657		4734	5789
SAU200685		4735	5790
SAU200721		4736	5791
SAU200725		4737	5792
SAU200731		4738	5793
SAU200740		4739	5794
SAU200752		4740	5795
SAU200914		4741	5796
SAU200916		4742	5797
SAU200928		4743	5798
SAU200934		4744	. 5799
SAU200949		4745	5800
SAU200960		4746	5801
SAU200994		4747	5802

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		-	SeqID
SAU201167		4748	5803
SAU201168		4749	5804
SAU201184		4750	5805
SAU201197		4751	5806
SAU201225		4752	5807
SAU201236		4753	5808
SAU201301		4754	5809
SAU201333		4755	5810
SAU201375		4756	5811
SAU201380		4757	5812
SAU201381		4758	5813
SAU201385		4759	5814
SAU201403		4760	5815
SAU201469		4761	5816
SAU201486		4762	5817
SAU201506		4763	5818
SAU201508		4764	5819
SAU201513		4765	5820
SAU201539		4766	5821
SAU201541		4767	5822
SAU201558		4768	5823
SAU201571		4769	5824
SAU201611		4770	5825
SAU201615		4771	5826
SAU201620		4772	5827
SAU201621		4773	5828
SAU201654		4774	5829
SAU201666		4775	5830
SAU201743		4776	5831
SAU201752		4777	5832
SAU201765		4778	5833
SAU201773		4779	5834
SAU201775		4780	5835
SAU201810		4781	5836
SAU201827		4782	5837
SAU201929		4783	5838
SAU201952		4784	5839
SAU201961		4785	5840
SAU201971		4786	5841
SAU202006		4787	5842
SAU202039		4788	5843

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus		•	SeqID
SAU202126		4789	5844
SAU202174		4790	5845
SAU202176		4791	5846
SAU202186		4792	5847
SAU202267		4793	5848
SAU202708		4794	5849
SAU202731		4795	5850
SAU202736		4796	5851
SAU202756		4797	5852
SAU202781		4798	5853
SAU202872		4799	5854
SAU202882		4800	5855
SAU202930		4801	5856
SAU202945		4802	5857
SAU202968		4803	5858
SAU203001		4804	5859
SAU203007		4805	5860
SAU203196		4806	5861
SAU203293		4807	5862
SAU203296		4808	5863
SAU203524		4809	5864
SAU300110		4810	5865
SAU300131		4811	5866
SAU300156		4812	5867
SAU300191		4813	5868
SAU300269		4814	5869
SAU300335		4815	5870
SAU300338		4816	5871
SAU300455		4817	5872
SAU300572		4818	5873
SAU300617		4819	5874
SAU300713		4820	5875
SAU300719		4821	5876
SAU300732		4822	5877
SAU300825		4823	5878
SAU300868		4824	5879
SAU300975		4825	5880
SAU300998		4826	5881
SAU301004		4827	5882
SAU301030		4828	5883
SAU301054		4829	5884

PathoSeq	Gene	Nucleotide SeqID	Protein
Locus			SeqID
SAU301080		4830	5885
SAU301118		4831	5886
SAU301133		4832	5887
SAU301148		4833	5888
SAU301223		4834	5889
SAU301230		4835	5890
SAU301268		4836	5891
SAU301275		4837	5892
SAU301357		4838	5893
SAU301363		4839	5894
SAU301433		4840	5895
SAU301465		4841	5896
SAU301472		4842	5897
SAU301592		4843	5898
SAU301620		4844	5899
SAU301758		4845	5900
SAU301773		4846	5901
SAU301829		4847	5902
SAU301869		4848	5903
SAU301898		4849	5904
SAU302060		4850	5905
SAU302513		4851	5906
SAU302626		4852	5907
SAU302685		4853	5908
SAU302698		4854	5909
SAU302699		4855	5910
SAU302805		4856	5911
SAU302901		4857	5912
SAU302931		4858	5913
SAU302950		4859	5914
SAU302956		4860	5915

TABLE VII

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14111	CaYDL105W	14151	CaYOL026C
14112	CaYJL090C	14152	CaYGR251W
14113	CaYLR127C	14153	CaYDR118W
14114	CaYNL151C	14154	CaYJL085W
14115	CaYPL083C	14155	CaYDR052C
14116	CaYHR036W	14156	CaYGR002C
14117	CaYNL256W	14157	CaYLL004W
14118	CaYOL149W	14158	CaYOR075W
14119	CaYDR361C	14159	CaYMR005W
14120	CaYDR407C	14160	CaYHR172W
14121	CaYBR070C	14161	CaYGL122C
14122	CaYOR148C	14162	CaYOR287C
14123	CaYJR041C	14163	CaYMR149W
14124	CaYGR090W	14164	CaYKR071C
14125	CaYBR123C	14165	CaYDR412W
14126	CaYHR118C	14166	CaYKR025W
14127	CaYKR063C	14167	CaYJR112W
14128	CaYOR004W	14168	CaYMR277W
14129	CaYML025C	14169	CaYKR083C
14130	CaYKL033W	14170	CaYNL245C
14131	CaYDR498C	14171	CaYNL181W
14132	CaYIR011C	14172	CaYNL260C
14133	CaYMR220W	14173	CaYDR365C
14134	CaYPR105C	14174	CaYNL149C
14135	CaYDL153C	14175	CaYGL029W
14136	CaYPL128C	14176	CaYOR057W
14137	CaYER026C	14177	CaYIL022W
14138	CaYKL004W	14178	CaYMR203W
14139	CaYMR200W	14179	CaYOR206W
14140	CaYPR165W	14180	CaYBR167C
14141	CaYHR007C	14181	CaYDR016C
14142	CaYJL087C	14182	CaYNL306W
14143	CaYLR229C	14183	CaYJR067C
14144	CaYER118C	14184	CaYDR362C
14145	CaYPL228W	14185	CaYLR355C
14146	CaYPL160W	14186	CaYLR105C
14147	CaYHR101C	14187	CaYML127W
14148	CaYML085C	14188	CaYPL011C
14149	CaYBR243C	14189	CaYKL108W
14150	CaYLR342W	14190	CaYCR035C

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14191	CaYML114C	14235	CaYLR002C
14192	CaYNL118C	14236	CaYJL061W
14193	CaYDR527W	14237	CaYLR071C
14194	CaYBR256C	14238	CaYML031W
14195	CaYGL233W	14239	CaYIL147C
14196	CaYLR103C	14240	CaYJL025W
14197	CaYOR340C	14241	CaYOR353C
14198	CaYPR175W	14242	CaYKR008W
14199	CaYJR093C	14243	CaYMR033W
14200	CaYCL031C	14244	CaYNL313C
14201	CaYML130C	14245	CaYGL225W
14202	CaYAL033W	14246	CaYNL308C
14203	CaYNL062C	14247	CaYDR353W
14204	CaYNL132W	14248	CaYIL068C
14205	CaYDL193W	14249	CaYPR190C
14206	CaYDR489W	14250	CaYOR174W
14207	CaYJL069C	14251	CaYDL150W
14208	CaYPL063W	14252	CaYAL041W
14209	CaYNL232W	14253	CaYMR227C
14210	CaYNR054C	14254	CaYPL043W
14211	CaYGR245C	14255	CaYDR324C
14212	CaYPR162C	14256	CaYOL022C
14213	CaYHR058C	14257	CaYOL069W
14214	CaYKR081C	14258	CaYGR156W
14215	CaYNL240C	14259	CaYDL003W
14216	CaYPR168W	14260	CaYDR228C
14217	CaYKL099C	14261	CaYKR062W
14218	CaYLR008C	14262	CaYDR398W
14219	CaYOL142W	14263	CaYNL126W
14220	CaYDL015C	14264	CaYKL089W
14221	CaYDR472W	14265	CaYMR028W
14222	CaYNR046W	14266	CaYDR299W
14223	CaYDR473C	14267	CaYOL034W
14224	CaYGL207W	14268	CaYGR119C
14225	CaYHR088W	14269	CaYDL111C
14226	CaYIR015W	14270	CaYHR052W
14227	CaYHR197W	14271	CaYKL021C
14228	CaYMR218C	14272	CaYLL031C
14229	CaYKL182W	14273	CaYHR040W
14230	CaYDR325W	14274	CaYML015C
14231	CaYLL003W	14275	CaYIL004C
14232	CaYNR026C	14276	CaYDR302W
14233	CaYNL251C	14277	CaYPR133C
14234	CaYPL126W	14278	CaYDL195W

SEQ ID NO. designation SEQ ID NO. designation 14279 CaYCR052W 14323 CaYBR253W 14280 CaYFR042W 14324 CaYBR254C 14281 CaYNR017W 14325 CaYCL003W 14282 CaYOR254C 14326 CaYCL017C 14283 CaYFL029C 14327 CaYCL054W 14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL030W 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL060W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W <tr< th=""><th></th></tr<>	
14279 CaYCR052W 14323 CaYBR253W 14280 CaYFR042W 14324 CaYBR254C 14281 CaYNR017W 14325 CaYCL003W 14282 CaYOR254C 14326 CaYCL017C 14283 CaYFL029C 14327 CaYCL054W 14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL030W 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297	
14281 CaYNR017W 14325 CaYCL003W 14282 CaYOR254C 14326 CaYCL017C 14283 CaYFL029C 14327 CaYCL054W 14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14281 CaYNR017W 14325 CaYCL003W 14282 CaYOR254C 14326 CaYCL017C 14283 CaYFL029C 14327 CaYCL054W 14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	;
14282 CaYOR254C 14326 CaYCL017C 14283 CaYFL029C 14327 CaYCL054W 14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL03C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	/
14283 CaYFL029C 14327 CaYCL054W 14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14284 CaYBR265W 14328 CaYCR012W 14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14285 CaYNL312W 14329 CaYCR057C 14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14286 CaYBR155W 14330 CaYCR072C 14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14287 CaYGR280C 14331 CaYDL030W 14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14288 CaYJL203W 14332 CaYDL043C 14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14289 CaYIR012W 14333 CaYDL055C 14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14290 CaYMR093W 14334 CaYDL060W 14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14291 CaYPR137W 14335 CaYDL084W 14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14292 CaYLR298C 14336 CaYDL087C 14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14293 CaYBR192W 14337 CaYDL126C 14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14294 CaYPR112C 14338 CaYDL132W 14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14295 CaYLL011W 14339 CaYDL141W 14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14296 CaYER082C 14340 CaYKL059C 14297 CaYDL217C 14341 CaYDL108W	
14297 CaYDL217C 14341 CaYDL108W	
14299 CaYOR262W 14343 CaYHR070W	
14300 CaYLR323C 14344 CaYGR195W	
14301 CaYAR007C 14345 CaYOL102C	
14302 CaYBL023C 14346 CaYOR074C	
14303 CaYBL026W 14347 CaYGL155W	
14304 CaYBL030C 14348 CaYLR305C	
14305 CaYBL035C 14349 CaYNL222W	
14306 CaYBL040C 14350 CaYDR236C	
14307 CaYBL050W 14351 CaYBL020W	
14308 CaYBL076C 14352 CaYNL261W	
14309 CaYBR002C 14353 CaYDR246W	
14310 CaYBR029C 14354 CaYNL075W	
14311 CaYBR080C 14355 CaYOR145C	
14312 CaYBR091C 14356 CaYOL077C	
14313 CaYBR135W 14357 CaYBR257W	
14314 CaYBR142W 14358 CaYHR170W	
14315 CaYBR143C 14359 CaYNL263C	
14316 CaYBR160W 14360 CaYKR068C	
14317 CaYBR196C 14361 CaYPR016C	
14318 CaYBR198C 14362 CaYGR172C	
14319 CaYBR202W 14363 CaYHR089C	
14320 CaYBR234C 14364 CaYMR197C	
14321 CaYBR236C 14365 CaYHR188C	
14322 CaYBR237W 14366 CaYPL266W	•

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14367	CaYBR011C	14411	CaYFL017C
14368	CaYCL059C	14412	CaYFL022C
14369	CaYDL008W	14413	CaYFL038C
14370	CaYDL097C	14414	CaYFL045C
14371	CaYDL143W	14415	CaYFR004W
14372	CaYDL205C	14416	CaYFR037C
14373	CaYDL208W	14417	CaYFR050C
14374	CaYDR002W	14418	CaYFR052W
14375	CaYDR013W	14419	CaYDL029W
14376	CaYDR023W	14420	CaYDL147W
14377	CaYDR037W	14421	CaYDL148C
14378	CaYDR045C	14422	CaYDR060W
14379	CaYDR054C	14423	CaYDR062W
14380	CaYDR086C	14424	CaYDR211W
14381	CaYDR087C	14425	CaYDR328C
14382	CaYDR091C	14426	CaYER025W
14383	CaYDR167W	14427	CaYER136W
14384	CaYDR172W	14428	CaYER171W
14385	CaYDR189W	14429	CaYFL008W
14386	CaYDR196C	14430	CaYGL001C
14387	CaYDR212W	14431	CaYGL008C
14388	CaYDR238C	14432	CaYGL011C
14389	CaYDR280W	14433	CaYGL022W
14309	CaYDR331W	14434	CaYGL044C
14390	CaYDR373W	14435	CaYGL048C
14391	CaYDR376W	14436	CaYGL068W
14392	CaYDR390C	14437	CaYGL097W
14394	CaYDR394W	14438	CaYGL112C
14395	CaYDR404C	14439	CaYGL120C
14396	CaYDR404C	14440	CaYGL130W
14397	CaYDR454C	14441	CaYGR029W
14398	CaYEL020W-A	14442	CaYGR060W
14399	CaYEL026W	14443	CaYGR094W
14400	CaYER003C	14444	CaYGR103W
14401	CaYER006W	14445	CaYGR185C
	CaYER012W	14446	CaYGR211W
14402 14403	CaYER021W	14447	CaYGR218W
		14448	CaYGR246C
14404	CaYER036C	14449	CaYGR253C
14405	CaYER135W	14450	CaYHL015W
14406	CaYER148W	14451	CaYHR005C-A
14407	CaYER148W	14452	CaYHR019C
14408	CaYER159C	14453	CaYHR020W
14409	CaYFL002C	14453	CaYHR024C
14410	CaYFL005W	14404	C31 11KU24C

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14455	CaYHR062C	14499	CaYKR086W
14456	CaYHR072W	. 14500	CaYLL018C
14457	CaYHR072W-A	14501	CaYLR005W
14458	CaYHR090C	14502	CaYLR009W
14459	CaYHR122W	14503	CaYLR022C
14460	CaYHR143W-A	14504	CaYLR026C
14461	CaYHR148W	14505	CaYLR051C
14462	CaYHR165C	14506	CaYLR060W
14463	CaYHR166C	14507	CaYLR078C
14464	CaYHR169W	14508	CaYLR100W
14465	CaYHR190W	14509	CaYLR116W
14466	CaYIL003W	14510	CaYLR117C
14467	CaYIL021W	14511	CaYLR129W
14468	CaYIL075C	14512	CaYLR147C
14469	CaYIL078W	14513	CaYLR153C
14470	CaYIL142W	14514	CaYLR163C
14471	CaYIR008C	14515	CaYLR175W
14472	CaYIR022W	14516	CaYLR186W
14473	CaYJL001W	14517	CaYLR197W
14474	CaYJL014W	14518	CaYLR208W
14475	CaYJL050W	14519	CaYLR222C
14476	CaYJL074C	14520	CaYLR259C
14477	CaYJL081C	14521	CaYLR276C
14478	CaYJL104W	14522	CaYLR277C
14479	CaYJL111W	14523	CaYLR291C
14480	CaYJL143W	14524	CaYLR293C
14481	CaYJL167W	14525	CaYLR347C
14482	CaYJL194W	14526	CaYLR378C
14483	CaYJR006W	14527	CaYLR397C
14484	CaYJR017C	14528	CaYML064C
14485	CaYJR064W	14529	CaYML069W
14486	CaYJR065C	14530	CaYML092C
14487	CaYJR072C	14531	CaYML093W
14488	CaYJR123W	14532	CaYML125C
14489	CaYKL012W	14533	CaYML126C
14490	CaYKL019W	14534	CaYMR113W
14491	CaYKL028W	14535	CaYMR131C
14492	CaYKL058W	14536	CaYMR146C
14493	CaYKL104C	14537	CaYMR208W
14494	CaYKL144C	14538	CaYMR213W
14495	CaYKL145W	14539	CaYMR240C
14496	CaYKL172W	14540	CaYMR260C
14497	CaYKL210W	14541	CaYMR308C
14498	CaYKR079C	14542	CaYMR314W

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14543	CaYNL002C	14587	CaYPL211W
14544	CaYNL006W	14588	CaYPL235W
14545	CaYNL061W	14589	CaYPL252C
14546	CaYNL102W	14590	CaYPR019W
14547	CaYNL113W	14591	CaYPR025C
14548	CaYNL178W	14592	CaYPR034W
14549	CaYNL189W	14593	CaYPR055W
14550	CaYNL244C	14594	CaYPR056W
14551	CaYNL247W	14595	CaYPR082C
14552	CaYNL287W	14596	CaYPR103W
14553	CaYNR043W	14597	CaYPR107C
14554	CaYOL005C	14598	CaYPR108W
14555	CaYOL010W	14599	CaYPR110C
14556	CaYOL094C	14600	CaYPR113W
14557	CaYOL139C	14601	CaYPR176C
14558	CaYOR048C	14602	CaYPR183W
14559	CaYOR056C	14603	CaYPR186C
14560	CaYOR063W	14604	CaYPR187W
14561	CaYOR103C	14605	CaYGL123W
14562	CaYOR116C	14606	CaYHR042W
14563	CaYOR117W	14607	CaYIL062C
14564	CaYOR151C	14608	CaYJR042W
14565	CaYOR157C	14609	CaYJR063W
14566	CaYOR159C	14610	CaYJR076C
14567	CaYOR168W	14611	CaYKL013C
14568	CaYOR194C	14612	CaYLR196W
14569	CaYOR207C	14613	CaYLR272C
14570	CaYOR210W	14614	CaYNR035C
14571	CaYOR217W	14615	CaYPR088C
14572	CaYOR224C	14616	CaYDR397C
14573	CaYOR232W	14617	CaYAL032C
14574	CaYOR259C	14618	CaYBR060C
14575	CaYOR261C	14619	CaYBR154C
14576	CaYOR272W	14620	CaYDL028C
14577	CaYOR294W	14621	CaYDR088C
14578	CaYOR310C	14622	CaYDR235W
14579	CaYOR335C	14623	CaYDR267C
14580	CaYOR341W	14624	CaYDR460W
14581	CaYPL010W	14625	CaYEL032W
14582	CaYPL076W	14626	CaYER013W
14583	CaYPL094C	14627	CaYER048W-A
14584	CaYPL117C	14628	CaYER172C
14585	CaYPL122C	14629	CaYFR031C
14586	CaYPL131W	14630	CaYGL065C

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14631	CaYGL073W	14675	CaYOR249C
14632	CaYGL091C	14676	CaYOR250C
14633	CaYGL103W	14677	CaYOR257W
14634	CaYGL116W	14678	CaYOR370C
14635	CaYGL201C	14679	CaYPL151C
14636	CaYGL245W	14680	CaYPL204W
14637	CaYGL247W	14681	CaYPL209C
14638	CaYGR047C	14682	CaYPL242C
14639	CaYGR074W	14683	CaYPR048W
14640	CaYGR083C	14684	CaYPR086W
14641	CaYGR128C	14685	CaYPR178W
14642	CaYHR074W	14686	CaYIL109C
14643	CaYHR107C	14687	CaYKL045W
14644	CaYIL126W	14688	CaYLR316C
14645	CaYJL010C	14689	CaYBR087W
14646	CaYJL011C	14690	CaYGR048W
14647	CaYJL026W	14691	CaYPL169C
14648	CaYJL039C	14692	CaYGR186W
14649	CaYJL041W	14693	CaYNL131W
14650	CaYJR045C	14694	CaYLR088W
14651	CaYKL049C	14695	CaYKL193C
14652	CaYKL152C	14696	CaYJR007W
14653	CaYKL181W	14697	CaYJL034W
14654	CaYLR086W	14698	CaYDL207W
14655	CaYLR115W	14699	CaYDL017W
14656	CaYLR223C	14700	CaYAL035W
14657	CaYLR274W	14701	CaYBR038W
14658	CaYLR336C	14702	CaYBR159W
14659	CaYML065W	14703	CaYDR120C
14660	CaYML098W	14704	CaYER070W
14661	CaYMR043W	14705	CaYGL003C
14662	CaYMR112C	14706	CaYGL206C
14663	CaYMR281W	14707	CaYAL043C
14664	CaYMR288W	14708	CaYBL097W
14665	CaYMR290C	14709	CaYBL105C
14666	CaYMR309C	14710	CaYBR079C
14667	CaYNL039W	14711	CaYBR088C
14668	CaYNL110C	14712	CaYDL145C
14669	CaYNL221C	14713	CaYDL166C
14670	CaYNL317W	14714	CaYDR145W
14671	CaYNR053C	14715	CaYDR170C
14672	CaYOL038W	14716	CaYDR301W
14673	CaYOR095C	14717	CaYDR531W
14674	CaYOR204W	14718	CaYFL024C

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14719	CaYFR002W	14763	CaYPR041W
14720	CaYGR264C	14764	CaYGR255C
14721	CaYHR023W	14765	CaYBR055C
14722	CaYHR027C	14766	CaYER022W
14723	CaYJL008C	14767	CaYKL014C
14724	CaYJL033W	14768	CaYIL046W
14725	CaYJL054W	14769	CaYMR015C
14726	CaYJL109C	14770	CaYNL280C
14727	CaYJL125C	14771	CaYML075C
14728	CaYJL156C	14772	CaYCR042C
14729	CaYJR002W	14773	CaYMR235C
14730	CaYKL192C	14774	CaYIL026C
14731	CaYLL034C	14775	CaYPL085W
14732	CaYLR029C	14776	CaYGR005C
14733	CaYLR167W	14777	CaYOL144W
14734	CaYLR243W	14778	CaYHR005C
14735	CaYLR249W	14779	CaYGR013W
14736	CaYLR321C	14780	CaYIL115C
14737	CaYLR383W	14781	CaYGR147C
14738	CaYMR239C	14782	CaYOR336W
14739	CaYNL088W	14783	CaYPR159W
14740	CaYNL163C	14784	CaYJL174W
14741	CaYNR038W	14785	CaYOL130W
14742	CaYOL097C	14786	CaYNL048W
14743	CaYOR260W	14787	CaYER007W
14744	CaYPL028W	14788	CaYGL106W
14745	CaYPL153C	14789	CaYDL102W
14746	CaYPL210C	14790	CaYDL007W
14747	CaYPL217C	14791	CaYER031C
14748	CaYPR010C	14792	CaYDR226W
14749	CaYPR144C	14793	CaYOR349W
14750	CaYPR169W	14794	CaYNL148C
14751	CaYDL140C	14795	CaYPR119W
14752	CaYDL031W	14796	CaYMR055C
14753	CaYHR186C	14797	CaYFL018C
14754	CaYPL093W	14798	CaYNL238W
14755	CaYKL035W	14799	CaYPL231W
14756	CaYDL058W	14800	CaYNL025C
14757	CaYDR341C	14801	CaYJL141C
14758	CaYGL238W	14802	CaYLR306W
14759	CaYFR028C	14803	CaYLR300W
14760	CaYNL172W	14804	CaYKL046C
14761	CaYDR190C	14805	CaYDR311W
14762	CaYEL055C	14806	CaYDR449C

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14807	CaYER023W	14851	orf6.5199
14808	CaYGL040C	14852	orf6.5210
14809	CaYGR009C	14853	orf6.5520
14810	CaYNR003C	14854	orf6.569
14811	CaYOL066C	14855	orf6.5739
14812	CaYOR119C	14856	orf6.6011
14813	CaYMR049C	14857	orf6.7375
14814	CaYNR050C	14858	orf6.7629
14815	CaYPL203W	14859	orf6.8025
14816	CaYER113C	14860	orf6.804
14817	CaYOR280C	14861	orf6.8362
14818	CaYGR006W	14862	orf6.8377
14819	CaYJL122W	14863	orf6.8395
14820	CaORF6 3320	14864	orf6.8482
14821	CaORF6 7574	14865	orf6.8837
14822	CaORF6 6275	14866	orf6.889
14823	CaORF6 1979	14867	orf6.8938
14824	CaORF6 8942	14868	orf6.9113
14825	CaYJL153C	14869	CaLYS4
14826	CaYNL277W	14870	CaTRP5
14827	CaYIL104C	14871	CaPRO1
14828	CaYOL027C	14872	CaPBS2
14829	CaYJL134W	14873	CaYBL041W
14830	CaYLL012W	14874	CaYBR170C
14831	CaORF6_7779	14875	CaYDR188W
14832	CaORF6_3262	14876	CaYGR098C
14833	CaORF6_7304	14877	CaYGR267C
14834	CaORF6 2028	14878	CaYGR274C
14835	CaORF6 1717	14879	CaYJL002C
14836	CaORF6 1780	14880	CaYKL125W
14837	CaORF6 1932	14881	CaYLL035W
14838	CaORF6 1934	14882	CaYPL016W
14839	CaORF6 2193	14883	CaYPL218W
14840	CaORF6 2398	14884	CaYKL141W
14841	orf6.3168	14885	CaYHR174W
14842	orf6.3295	14886	CaYDR356W
14843	orf6.3939	14887	CaYNL124W
14844	orf6.4497	14888	CaYAL015C
14845	orf6.4499	14889	CaYBR001C
14846	orf6.4537	14890	CaYCL035C
14847	orf6.4747	14891	CaYCR048W
14848	orf6.4899	14892	CaYDR379W
14849	orf6.4974	14893	CaYER059W
14850	orf6.5147	14894	CaYGR070W
14000	0110.0147	17007	Sai Sinorum

	Candida		Candida
SEQ ID NO.	designation	SEQ ID NO.	designation
14895	CaYGR209C	14939	orf6.7893
14896	orf6.1498	14940	orf6.8239
14897	orf6.2086	14941	orf6.8461
14898	orf6.3026	14942	orf6.8607
14899	orf6.3261	14943	orf6.8654
14900	orf6.3819	14944	orf6.8716
14901	orf6.3864		
14902	orf6.3972		
14903	orf6.4005		
14904	orf6.4010		
14905	orf6.4114		
14906	orf6.4153		
14907	orf6.4206		
14908	orf6.4293		
14909	orf6.4463		
14910	orf6.4555		
14911	orf6.4628		
14912	orf6.4837		
14913	orf6.4854		
14914	orf6.4923		
14915	orf6.4927		
14916	orf6.5092		
14917	orf6.5279		
14918	orf6.5786	•	
14919	orf6.5919 .		
14920	orf6.5920		
14921	orf6.6022		
14922	orf6.6026		
14923	orf6.6030		
14924	orf6.6069		
14925	orf6.6140		
14926	orf6.6218		
14927	orf6.6390		
14928	orf6.6550		
14929	orf6.6562		
14930	orf6.6660		
14931	orf6.6664		
14932	orf6.6670		
14933	orf6.6700		
14934	orf6.6933		
14935	orf6.6939		
14936	orf6.7203		
14937	orf6.7214		
14938	orf6.7847		
-		•	

WHAT IS CLAIMED IS:

5

10

15

20

25

30

1. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

2. The method of Claim 1, wherein said culture includes at least one strain which does not overexpresses a gene product which is essential for proliferation of said organism.

- 3. The method of Claim 1, wherein said strains which overexpress said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.
- 4. The method of Claim 1, wherein said strains which overexpress said gene products a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a constitutive promoter.
- 5. The method of Claim 1, wherein said identification step comprises determining the nucleotide sequence of a nucleic acid encoding said gene product in said cell which proliferated more rapidly in said culture.
- 6. The method of Claim 1, wherein said identification step comprises performing an amplification reaction to identify the nucleic acid encoding said gene product in said cell which proliferated more rapidly in said cell culture.
- 7. The method of Claim 6, wherein the products of said amplification reaction are labeled with a detectable dye.

8. The method of Claim 1, wherein said identification step comprises performing a hybridization procedure.

- 9. The method of Claim 1, wherein said identification step comprises contacting a nucleic acid array with a nucleic acid encoding said gene product in said cell which proliferated more rapidly in said cell culture.
- 10. The method of Claim 1, wherein said organism is selected from the group consisting of bacteria, fungi, and protozoa.

5

10

15

20

25

- 11. The method of Claim 1, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium. Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides. Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.
- 12. The method of Claim 1, wherein said compound is obtained from a library of natural compounds.
- 13. The method of Claim 1, wherein said compound is obtained from a library of synthetic compounds.

14. The method of Claim 1, wherein said compound is present in a crude or partially purified state.

15. The method of Claim 1, further comprising determining whether said gene product in said strain which proliferated more rapidly in said culture has a counterpart in at least one other organism.

16. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

17. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress

10

5

15

20

25

said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

5

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

18. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

10

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed;

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

20

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

19. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

25

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the

group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed;

20

5

10

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

25

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

20. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

30

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a

gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

21. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain in said culture overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected

5

10

15

20

5

10

15

20

25

30

from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture.

22. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining an array of strains on a solid growth medium wherein each strain in overexpresses a different gene product which is essential for proliferation of said organism

contacting said array of strains with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly on said solid medium.

- 23. The method of Claim 21, wherein at least one strain in said array does not overexpresses a gene product which is essential for proliferation of said organism.
- 24. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a plurality of cultures, wherein each culture comprises a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism;

contacting each of said cultures with a different concentration of said compound; and

identifying the gene product which is overexpressed in a strain whose proliferation is inhibited by said compound.

5

- 25. The method of Claim 23, wherein at least one strain in said plurality of cultures does not overexpress a gene product which is essential for proliferation of said organism.
 - 26. A method of profiling a compound's activity comprising

performing the method of Claim 1 on a first culture using a first compound;

10

performing the method of Claim 1 on a second culture using a second compound; and

comparing the strains identified in said first culture to the strains identified in said second culture.

15

27. A method of profiling a first compound's activity comprising

growing an array of strains on a first solid medium comprising said first compound and on a second solid medium comprising a second compound, wherein each strain in said array overexpresses a different gene product which is essential for proliferation of an organism and wherein said first compound and said second compound inhibit the proliferation of said organism; and

20

comparing the pattern of strains which grow on said first solid medium with the pattern of strains which grow on said second solid medium.

28. The method of any one of Claims 26 and 27, wherein said first compound is present in a crude or partially purified state.

25

29. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism;

30

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said

gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

5

10

15

20

25

30

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

- 30. The method of Claim 29, wherein at least one strain in said culture does not underexpresses a gene product which is essential for proliferation of said organism.
- 31. The method of Claim 29, wherein said strains which underexpresses said gene products comprise a nucleic acid complementary to at least a portion of a gene encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.
- 32. The method of Claim 29, wherein said strains which underexpress said gene products express an antisense nucleic acid complementary to at least a portion of a gene encoding said gene product which is essential for proliferation of said organism, wherein expression of said antisense nucleic acid reduces expression of said gene product in said strain.
- 33. The method of Claim 29, wherein said identification step comprises determining the nucleotide sequence of a nucleic acid encoding said gene product in said strain which proliferated more slowly.
- 34. The method of Claim 29, wherein said identification step comprises performing an amplification reaction to identify the nucleic acid encoding said gene product in said cell which proliferated more slowly.
- 35. The method of Claim 34, wherein the products of said amplification reaction are labeled with a detectable dye.
- 36. The method of Claim 29, wherein said identification step comprises performing a hybridization procedure.
- 37. The method of Claim 29, wherein said identification step comprises contacting a nucleic acid array with a nucleic acid encoding said gene product in said cell which proliferated more slowly.

38. The method of Claim 29, wherein said organism is selected from the group consisting of bacteria, fungi, protozoa.

- 39. The method of Claim 29, wherein said compound is obtained from a library of natural compounds.
- 40. The method of Claim 29, wherein said compound is obtained from a library of synthetic compounds.
- 41. The method of Claim 29, wherein said compound is present in a crude or partially purified state.
- 42. The method of Claim 29, further comprising determining whether said gene product in said strain which proliferated more slowly in said culture has a counterpart in at least one other organism.
- 43. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organismwherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

44. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of 564

15

10

5

20

25

said organism wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is underexpressed;

5

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

10

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

45. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

15

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

20

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

25

30

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

46. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene producty whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs: 8-3795 is underexpressed;

25

20

5

10

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

47. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

5

10

15

20

25

30

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

48. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism wherein said culture comprises a strain in which a gene product

5

10

15

20

25

30

comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress said gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture.

49. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a plurality of cultures, each culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism; and

contacting each of said cultures with a different concentration of said compound; and

identifying the gene product which is underexpressed in a strain whose rate of proliferation is reduced by said compound.

50. A method of profiling a compound's activity comprising

performing the method of Claim 29 on a first culture using a first compound;

performing the method of Claim 29 on a second culture using a second compound; and

comparing the strains identified in said first culture to the strains identified in said second culture.

51. A method of profiling a first compound's activity comprising

growing an array of strains on a first solid medium comprising said first compound and on a second solid medium comprising a second compound, wherein said array comprises a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of an organism and wherein said first compound and said second compound inhibit the proliferation of said organism; and

comparing the pattern of strains which grow on said first solid medium with the pattern of strains which grow on said second solid medium.

52. The method of any one of Claims 49 and 50, wherein said first compound is present in a crude or partially purified state.

53. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a plurality of culturescomprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism;

contacting each of said plurality of cultures with a varying concentration of a regulatory agent which regulates the level of expression of said gene products which are essential for proliferation of said organism; and

identifying the gene product which is underexpressed in a strain whose rate of proliferation is reduced by said compound.

- 54. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism.
- 55. The culture of Claim 54, wherein said strains which overexpresess said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.
- 56. The culture of Claim 54, wherein said strains which overexpresess said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a constitutive promoter.
- 57. The culture of Claim 54, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus,

10

5

15

. 20

::

25

5

10

15

20

25

30

Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

58. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed.

59. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed.

60. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising an amino acid

sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed.

61. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed.

25

30

² 20

5

10

15

62. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860,

5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed.

- 63. A culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed.
- 64. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism.
- 65. The culture of Claim 64, wherein said strains which underexpress said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a regulatable promoter.
- 66. The culture of Claim 64, wherein said strains which underexpress said gene products comprise a nucleic acid encoding said gene product which is essential for proliferation of said organism operably linked to a constitutive promoter.

67. The culture of Claim 64, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium

30

5

10

15

20

difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

5

10

15

20

25

30

68. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795 is underexpressed.

69. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is underexpressed.

- :.

70. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed.

71. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from

the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is underexpressed.

20

25

30

5

10

15

72. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide

sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is underexpressed.

73. A culture comprising a a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed.

74. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

75. The method of Claim 74, wherein the nucleotide sequence of each of the genes encoding an overexpressed gene product has been altered by replacing the native promoters of said genes with promoters which facilitate overexpression of said gene products.

30

25

5

10

15

. 20

76. The method of Claim 74, wherein the nucleotide sequence of each of the genes encoding an overexpressed gene product has been altered by inserting a regulatory element into the native promoters of said genes with a promoter which facilitates overexpression of said gene products.

5

77. The method of Claim 76, wherein said regulatory element is selected from the group consisting of a regulatable promoter, an operator which is recognized by a repressor, a nucleotide sequence which is recognized by a transcriptional activator, a transcriptional terminator, a nucleotide sequence which introduces a bend in the DNA and an upstream activating sequence.

10

78. The method of Claim 74, wherein the step of identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene comprises performing an amplification reaction and detecting a unique amplification product corresponding to said gene.

15

- 79. The method of Claim 75, wherein the native promoter of each of the genes encoding a gene product essential for proliferation is replaced with the same promoter.
- 80. The method of Claim 75, wherein the native promoters of the genes encoding gene products essential for proliferation are replaced with a plurality of promoters selected to give a desired expression level for each gene product.

20

- 81. The method of Claim 75, wherein said promoters which replaced the native promoters in each strain comprise regulatable promoters.
- 82. The method of Claim 75, wherein said promoters which replaced the native promoters in each strain each strain comprise constitutive promoters.

25

83. The method of Claim 74, wherein said organism is selected from the group consisting of bacteria, fungi, and protozoa.

30

84. The method of Claim 74, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis,

5

10

15

20

25

Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

85. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

86. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

87. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product comprising an

5

10

15

20

amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

88. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected

30

5

10

15

20

from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed;

10

5

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

15

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

20

89. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes;

25

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

90. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain overexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the overexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which do not overexpress said gene product on which said compound acts, such that strains which overexpress said gene product on which said compound acts proliferate more rapidly than strains which do not overexpress said gene product on which said compound acts; and

identifying the gene product which is overexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene, wherein said culture comprises a strain in which a

30

5

10

15

20

25

gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed.

91. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

- 92. The method of Claim 91, wherein the nucleotide sequence of each of the genes encoding an underexpressed gene product has been altered by replacing the native promoters of said genes with promoters which facilitate underexpression of said gene products.
- 93. The method of Claim 91, wherein the nucleotide sequence of each of the genes encoding an underexpressed gene product has been altered by inserting a

10

15

20

25

regulatory element into the native promoters of said genes with a promoter which facilitates underexpression of said gene products.

94. The method of Claim 93, wherein said regulatory element is selected from the group consisting of a regulatable promoter, an operator which is recognized by a repressor, a nucleotide sequence which is recognized by a transcriptional activator, a transcriptional terminator, a nucleotide sequence which introduces a bend in the DNA and an upstream activating sequence.

5

10

15

. 20

25

30

95. The method of Claim 91, wherein the step of identifying the gene product which is underexpressed in a strain which proliferated more slowly in said culture by detecting the unique product corresponding to said gene comprises performing an amplification reaction and detecting a unique amplification product corresponding to said gene.

96. The method of Claim 92, wherein the native promoter of each of the genes encoding a gene product essential for proliferation is replaced with the same promoter.

97. The method of Claim 92, wherein the native promoters of the genes encoding gene products essential for proliferation are replaced with a plurality of promoters selected to give a desired expression level for each gene product.

98. The method of Claim 92, wherein said promoters which replaced the native promoters in each strain comprise regulatable promoters.

99. The method of Claim 92, wherein said promoters which replaced the native promoters in each strain each strain comprise constitutive promoters.

100. The method of Claim 91, wherein said organism is selected from the group consisting of bacteria, fungi, and protozoa.

101. The method of Claim 91, wherein said culture is a culture of an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae,

Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, and Yersinia pestis.

10

5

102. The method of Claim 91, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is underexpressed.

15

103. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

_ _

20

25

underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes and wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is underexpressed;

obtaining a culture comprising a plurality of strains wherein each strain

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than

strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

104. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

105. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence

25

5

: 10

٠.,

15

: 20

which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is underexpressed;

25

20

5

10

15

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

106. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

5

10

15

20

25

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

107. A method for identifying the gene product on which a compound which inhibits proliferation of an organism acts comprising:

obtaining a culture comprising a plurality of strains wherein each strain underexpresses a different gene product which is essential for proliferation of said organism and wherein the nucleotide sequence of each of the underexpressed genes has been altered so as to include a nucleotide sequence which can be used to generate a unique product corresponding to each of the overexpressed genes, wherein said culture comprises a strain in which a gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is underexpressed;

contacting said culture with a sufficient concentration of said compound to inhibit the proliferation of strains of said organism which underexpress said gene product on which said compound acts, such that strains which underexpress said gene product on which said compound acts proliferate more slowly than strains which do not underexpress the gene product on which said compound acts; and

identifying the gene product which is underexpressed in a strain which proliferated more rapidly in said culture by detecting the unique product corresponding to said gene.

108. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a

10

5

15

20

25

plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

109. The method of Claim 108, wherein one member of each primer pair for each of said genes is labeled with a detectable dye.

110. The method of Claim 108 wherein:

5

10

15

. 20

25

30

said nucleic acid sample is divided into N aliquots;

said amplification reaction is performed on each aliquot using primer pairs complementary to nucleotide sequences within or adjacent to 1/N of the genes which encode said gene products, wherein one of the members of each primer pair in each aliquot is labeled with a dye and wherein the dyes on the primers in each aliquot are distinguishable from one another.

- 111. The method of Claim 109, further comprising pooling the amplification products from each of the aliquots prior to determining the lengths of the amplification products.
- 112. The method of Claim 108, wherein the native promoters of said genes which encode said gene products have been replaced with a regulatable promoter and one of the primers in said primer pairs is complementary to a nucleotide sequence within said regulatable promoter.
- 113. The method of Claim 111, wherein the native promoters for each of said genes were replaced with the same regulatable promoter.

114. The method of Claim 111, wherein more than one regulatable promoter was used to replace the promoters of said genes such that some of said genes are under the control of a different regulatable promoter.

115. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

116. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group

5

10

15

20

5

10

15

20

25

30

consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

117. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

118. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

5

10

15

20

25

30

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

10

15

20

5

determining the lengths of the amplification products obtained in said amplification reaction.

119. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed:

30

25

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes 593

which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction.

120. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism, wherein said culture comprises a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

5

10

15

20

determining the lengths of the amplification products obtained in said amplification reaction.

121. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

5

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

10

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

15

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

20

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

25

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the

target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products.

5

10

15

- 122. The method of Claim 121, wherein one member of each primer pair for each of said genes is labeled with a detectable dye.
- 123. The method of Claim 121, wherein the native promoters of said genes which encode said gene products have been replaced with a regulatable promoter and one of the primers in said primer pairs is complementary to a nucleotide sequence within said regulatable promoter.
- 124. The method of Claim 121, wherein the native promoters for each of said genes were replaced with the same regulatable promoter.
- 125. The method of Claim 121, wherein more than one regulatable promoter was used to replace the promoters of said genes such that some of said genes are under the control of a different regulatable promoter.
- 126. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

20

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

25

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

30

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences

within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

10

5

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed.

20

15

127. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

30

5

10

15

20

25

30

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed.

128. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first

30

5

10

15

20

amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

129. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

10

5

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

15

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

20

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

30

25

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a

601

30

25

5

10

15

nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed.

130. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

5

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

10

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

15

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

20

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

25

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the

5

10

15

20

25

30

target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second cultures or collection of strains comprise a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed.

131. A method for identifying the target of a compound which inhibits the proliferation of an organism comprising:

obtaining a first nucleic acid sample comprising nucleic acids from a first culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains wherein each strain overexpresses or underexpresses a different gene product which is required for proliferation of said organism and wherein said culture or collection of strains has been contacted with said compound;

obtaining a second nucleic acid sample comprising nucleic acids from a second culture or collection of strains wherein said culture or collection of strains comprises the same strains as said first culture or collection of strains wherein said second culture or collection of strains has not been contacted with said compound;

5

10

15

20

25

30

performing a first amplification reaction on said first nucleic acid sample using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains;

performing a second amplification reaction on said second nucleic acid sample using the same set of primer pairs used in said first amplification reaction;

and comparing the amount of each amplification product in said first amplification reaction to the amount of that amplification product in said second amplification reaction, wherein an increased level of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products and a decreased level of of an amplification product in said first amplification reaction relative to said second amplification reaction indicates that the gene product corresponding to said amplification product is the target of said compound if said culture or strain overexpresses said gene products, wherein said first and second culture or collection of strains comprise a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

132. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

> obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

> are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the

performing an amplification reaction using a set of primer pairs which

5

10

15

. 20

25

30

determining the lengths of the amplification products obtained in said amplification reaction.

nucleotide sequences complementary to said primer pair is present in said

- The method of Claim 132, wherein one member of each primer pair for each of said genes is labeled with a detectable dye.
 - The method of Claim 132 wherein: 134.

culture or collection of strains; and

said nucleic acid sample is divided into N aliquots;

said amplification reaction is performed on each aliquot using primer pairs complementary to nucleotide sequences within or adjacent to 1/N of the genes which encode said gene products, wherein one of the members of each primer pair in each aliquot is labeled with a dye and wherein the dyes on the primers in each aliquot are distinguishable from one another.

- The method of Claim 134, further comprising pooling the amplification products from each of the aliquots prior to determining the lengths of the amplification products.
- A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a

plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed.

137. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene

10

5

15

20

25

product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed.

138. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

139. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set

10

5

15

·20

25

of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

5

10

15

20

25

30

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed.

140. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

> obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which

5

are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said

10

culture or collection of strains; and

15

20

25

30

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed.

A method for determining the extent to which each of a plurality of 141. strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a

plurality of strains which transcribe an antisense nucleic acid complementary to a different gene product which is required for proliferation of said organism;

performing an amplification reaction using a set of primer pairs which are complementary to nucleotide sequences within or adjacent to the nucleic acids which encode said antisense nucleic acids, wherein the members of said set of primer pairs are designed such that each primer pair would yield an amplification product having a length distinguishable from the lengths of the amplification products from the other primer pairs if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

determining the lengths of the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

142. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length

30

610

5

10

15

20

and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction.

143. The method of Claim 142, wherein said primer pairs are divided into at least two sets, each primer pair comprises a primer which is labeled with a distinguishable dye, and the distinguishable dye used to label each set of primer pairs is distinguishable from the dye used to label the other sets of primer pairs.

144. The method of Claim 142 wherein:

5

10

:-

15

20

25

30

said nucleic acid sample is divided into N aliquots;

said amplification reaction is performed on each aliquot using primer pairs complementary to nucleotide sequences within or adjacent to 1/N of the genes which encode said gene products, wherein one of the members of each primer pair in each aliquot is labeled with a dye and wherein the dyes on the primers in each aliquot are distinguishable from one another.

- 145. The method of Claim 144, further comprising pooling the amplification products from each of the aliquots prior to determining the lengths of the amplification products.
- 146. The method of Claim 142, wherein the native promoters of said genes which encode said gene products have been replaced with a regulatable promoter and one of the primers in said primer pairs is complementary to a nucleotide sequence within said regulatable promoter.
- 147. The method of Claim 146, wherein the native promoters for each of said genes were replaced with the same regulatable promoter.
- 148. The method of Claim 146, wherein more than one regulatable promoter was used to replace the promoters of said genes such that some of said genes are under the control of a different regulatable promoter.
- 149. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

5

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

15

10

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 is overexpressed or underexpressed.

20

150. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

25

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences

complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 is overexpressed or underexpressed.

151. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

152. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a

10

5

15

20

25

plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a

30

25

5

10

15

gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795 is overexpressed or underexpressed.

5

153. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product

obtaining a nucleic acid sample comprising nucleic acids from a culture

which is required for proliferation of said organism;

10

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

20

. 15

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and 14111-14944 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860,

25

5916-10012, and 14111-14944 under moderate conditions is overexpressed or underexpressed.

154. A method for determining the extent to which each of a plurality of strains are present in a culture or collection of strains comprising:

5

obtaining a nucleic acid sample comprising nucleic acids from a culture or collection of strains wherein said culture or collection of strains comprises a plurality of strains which overexpress or underexpress a different gene product which is required for proliferation of said organism;

10

performing an amplification reaction using primer pairs which are complementary to nucleotide sequences within or adjacent to the genes which encode said gene products, wherein said primer pairs are designed such that each primer pair would yield an amplification product which is distinguishable from the amplification products produced by the other primer pairs on the a basis selected from the group consisting of length, detectable label and both length and detectable label if a strain comprising the nucleotide sequences complementary to said primer pair is present in said culture or collection of strains; and

15

identifying the amplification products obtained in said amplification reaction, wherein said culture comprises a strain in which a gene product comprising a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and 14945-15778 is overexpressed or underexpressed.

25

PROLIFERATION — REQUIRED GENES GROWN IN PRESENCE CULTURE OF STRAINS OF TEST COMPOUND UNDEREXPRESSING ISOLATE NUCLEIC ACIDS

REQUIRED GENES GROWN IN ABSENCE OF TEST COMPOUND

PROLIFERATION -

ISOLATE NUCLEIC ACIDS

CULTURE OF STRAINS UNDEREXPRESSING

PRIMERS 2-81 PRIMER DYE 2AMPLIFICATION REACTION

PRIMERS 2-81 DYE 1 PRIMER

PROLIFERATION REQUIRED GENES YEARS 1-80) (COMPLEMENTARY TO NUCLEOTIDE SEQUENCES IN (COMPLEMENTARY TO NUCLEOTIDE SEQUENCE IN REPLACEMENT

PROMOTER)

AMPLIFICATION REACTION

FIG. 2A

FIG. 2B

FIG. 3

FIG, ${\cal A}$ Hypothetical 3 D Matrix Hybridization Results for A Specific Clone

PR = Regulatable promoter = homology relation	Pc = Chromosomal promoter Ps = Promoter plants by page to some Gs = Gene encoding selectuble or identifiable man Ti = Transcriptional Terminator promoter replacement casette
////// PR	1//////////////////////////////////////
Homologous Rec Chromosome	ombination -
- // // Pc	1////////
	, -
////// PR	11/1/1//
FIG. 5A	Re in place of Pc
	, fromoter replacement casette
Ps Gs TT	the same of the sa
X = Homologous Rea	our bination — chromosome
///// Pc	V///////
P. 63 T	T PR //////
FIG. 5B	Ps, Gs, Trand Pr in
	Place of Pc

FIG. 6A

• STEP 1: Gene Replacement

 STEP 2: Conditional Expression by Promoter Replacement

FIG. 6B

C. albicans GRACE Conditional Expression

transactivator

CaHIS3 expression levels vs 3-AT Sensitivity

Constitutive Expression Levels of GRACE Strains

FIG. 8

GRACE Validation of CaKRE Targets

Gene	S. cerevisiae	C. albicans URA blaster	C. albicans- GRACE
KRE1	Viable	Viable	Viable
KRE5	Essential	Essential	Essential
KRE6	Essential + skn1∆	Essential	Essential
KRE9	Essential + knh1∆	Essential	Essential

FIG. 9

Target Validation by GRACE Method

CaKRE1

CaSA72

Repressed

CaFKS1 CaAUR1 CaALG7

peonpul

FIG. 10

FOR yabB yabC ftsL ftsl murE OPERON PROMOTER

OLIGO USED FOR laco INSERTION

FIG. 11

FIG. 12

	MOJ	uoi	ntrat	əsuc	or C	iidid	uĮ	hgiĤ	
10									Low
6									
8									
7									ration
9									Inducer Concentration
ß									cer C
4									Indi
က									
2									
4									High
	∀	В	O	Q	Ш	T.	<u></u>	Ţ.	

☐ Series1
☐ Series2
☐ Series2
☐ Series3
☐ Series6
☐ Series6
☐ Series6
☐ Series7
☐ Series10
☐ Series11
☐ Series12
☐ Series12
☐ Series13
☐ Series13
☐ Series13

Series1	series2	series3	eries4	Series5	Series6	Series7	Series8	Series9	Series 10	erles11	eries12	erles13	eries14	Series15	Series16
Se	E Se	eS E	⊞Se	Se	BB Se	B Se	≣Se	Se	Se	Sei	BSel	E Se	E Se	E Se	ØSe

Target Clone Amplification in a Mixed Culture (Nine Staph Clones)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

(10) International Publication Number WO 02/086097 A3

- (51) International Patent Classification7: C12Q 1/68, 1/02, C12P 19/34, C12N 1/000
- (21) International Application Number: PCT/US02/03987
- (22) International Filing Date: 8 February 2002 (08.02.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 9 February 2001 (09.02.2001) US 60/267,636
- (71) Applicant (for all designated States except US): ELITRA PHARMACEUTICALS, INC. [US/US]; Suite A, 3510 Dunhill Street, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CARR, Grant, J. [GB/US]; 2210 Sonrisa Glen, Escondido, CA 92029 (US). XU, Howard, H. [US/US]; 14695 Penasquitos Drive, San Diego, CA 92129 (US). FOULKES, Gordon, J. [US/US]; 1220 Rancho Encinitas Drive, Encinitas, CA 92024 (US). ZAMUDIO, Carlos [US/US]; #88, 8724 Villa La Jolla Drive, La Jolla, CA 92037 (US). HASELBECK, Robert [US/US]; 4672 El Cerrito Drive, San Diego, CA 92115 (US). OHLSEN, Kari, L. [US/US]; 3560 Vista De La Orilla, San Diego, CA 92117 (US). ZYSKIND, Judith, W. [US/US]; 8415 La Jolla Scenic Drive, La Jolla, CA 92037 (US). WALL, Daniel [US/US]; 3734 Brookshire Street, San Diego, CA 92111 (US). TRAWICK, John, D. [US/US]; 7975 Michelle Drive, La Mesa, CA 91942 (US). YAMAMOTO, Robert, T. [US/US]; 3725 Notre Dame Avenue, San Diego, CA 92122 (US). ROEMER, Terry [CA/CA]; 4935 Connaught Avenue, Montreal, Québec H4V 1X4 (CA). JIANG, Bo [CA/CA]; 5231 Globert

Street, Montreal, Québec H3W 2E6 (CA). BOONE, Charles [CA/CA]; 254 Glenrose Avenue, Toronto, Ontario M4T 1K9 (CA). BUSSEY, Howard [CA/CA]; 325 Victoria Avenue, Westmount, Québec H3Z 2N1 (CA).

- (74) Agent: HART, Daniel; Knobbc, Martens, Olson & Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report:

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS FOR IDENTIFYING THE TARGET OF A COMPOUND WHICH INHIBITS CELLULAR PROLIFERA-TION

(57) Abstract: The present invention relates to cultures or collections of strains which overexpress or underexpress gene products required for the proliferation of an organism. The present invention also includes methods for identifying the target on which a compound which inhibits the proliferation of an organims acts and methods for identifying the extent to which a strain is present in a culture or collection of strains.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/03987

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : C12Q 1/68, 1/02; C12P 19/34; C12N 1/000						
US CL : 435/6, 91.2, 29, 243						
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols)						
U.S.: 435/6, 91.2, 29, 243						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WEST, STN, antibiotic, resistan\$, gene\$1, identi\$, Compugen, SEQ ID NO: 12600						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
Y DAVIS, B.D. et al. Microbiology, 1968, Hoeber Medical Division, Harper & Row, Publishers, New York, USA, chapter 10, pages 302-328, see entire document. 1-15, 22-28, 49-52, 74, 75, 78-84, 89, 108-114, 121-125, and 142-148						
BRAKHAGE, A.A. et al. Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. Journal of Bacteriology. May 1995, Vol. 177, No. 10, pages 2781-2788, see entire document.						
Further documents are listed in the continuation of Box C. See patent family annex.						
* Special categories of cited documents: "T" later document published after the international filing date or priority						
"A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention						
"E" carlier application or patent published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone						
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination						
*O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art						
*P document published prior to the international filing date but later than the *& document member of the same patent family priority date ctaimed						
Date of the actual completion of the international search Date of mailing of the international search report O A A OV 2002						
28 September 2002 (28.09.2002) Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 We shington address of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Authorized differration of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231						
Facsimile No. (703)305-3230 Tellephone No. (703) 308-0196						

Form PCT/ISA/210 (second sheet) (July 1998)

f	PCT/US02/03987
INTERNATIONAL SEARCH REPORT	
	ì
	Ì
	İ
Continuation of Box II Item 4:	
1-15, 18, 21-42, 45, 48-53, 60, 63, 70, 73-84, 87, 89-101, 104, 107-114, 117, 12	20-125, 128, 131-135, 138, 141-148, 151, and 154
·	!
e e	
	·
•	
·	
	•

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/03987

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Please See Continuation Sheet
Remark on Protest

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)