AMS 261: Probability Theory (Fall 2017)

Homework 5 solutions

- 1. Let X be a random variable defined on a probability space (Ω, \mathcal{F}, P) and taking values in a measurable space (Ψ, \mathcal{G}) , where \mathcal{G} is the σ -field on space Ψ . Consider the collection \mathcal{A} of subsets of Ω consisting of $X^{-1}(B)$ for all $B \in \mathcal{G}$. Show that \mathcal{A} is a σ -field on Ω .
 - **Solution:** First, note that because X is a random variable, we know that $A \subseteq \mathcal{F}$. To show that A is a σ -field, we need to verify the three conditions of the definition of a σ -field. First, because $\Psi \in \mathcal{G}$, we have $X^{-1}(\Psi) = \Omega \in \mathcal{A}$. Next, consider $A \in \mathcal{A}$. We have $A = X^{-1}(B)$ for some $B \in \mathcal{G}$. Using properties of inverse images, $X^{-1}(B^c) = (X^{-1}(B))^c = A^c$. Because \mathcal{G} is a σ -field, we have $B^c \in \mathcal{G}$, which implies that $X^{-1}(B^c) \in \mathcal{A}$, and therefore $A^c \in \mathcal{A}$. Finally, let $\{A_n : n = 1, 2, ...\}$ be a countable collection of members of \mathcal{A} . For each n, $A_n = X^{-1}(B_n)$ for $B_n \in \mathcal{G}$. Now, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{G}$, since \mathcal{G} is a σ -field. Hence, $X^{-1}(\bigcup_{n=1}^{\infty} B_n) \in \mathcal{A}$, which yields the third condition, since $X^{-1}(\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} X^{-1}(B_n) = \bigcup_{n=1}^{\infty} A_n$, using again properties of inverse images.
- 2. For k=1,2,..., consider random variables $X_k:(\Omega,\mathcal{F},P)\to (\Psi_k,\mathcal{G}_k)$ and measurable functions $\varphi_k:(\Psi_k,\mathcal{G}_k)\to (\Theta_k,\mathcal{H}_k)$. Assume that the countable sequence of random variables $\{X_k:k=1,2,...\}$ is independent. Prove that the sequence $\{\varphi_k\circ X_k:k=1,2,...\}$ is independent.

Solution: We are given that $\{X_k : k = 1, 2, ...\}$ is independent, i.e., $\{\sigma(X_k) : k = 1, 2, ...\}$ is independent, i.e., for any finite index set J (with $J \subset \{1, 2, ...\}$), $\{\sigma(X_j) : j \in J\}$ is independent, which implies that for any $B_j \in \mathcal{G}_j$,

$$P(\bigcap_{j \in J} X_j^{-1}(B_j)) = \prod_{j \in J} P(X_j^{-1}(B_j)).$$
(2.1)

Consider an arbitrary finite index set J and $C_j \in \mathcal{H}_j$. We have

$$P(\bigcap_{j\in J}(\varphi_j\circ X_j)^{-1}(C_j))=P(\bigcap_{j\in J}X_j^{-1}(\varphi_j^{-1}(C_j)))=\prod_{j\in J}P(X_j^{-1}(\varphi_j^{-1}(C_j)))=\prod_{j\in J}P((\varphi_j\circ X_j)^{-1}(C_j))$$

using (2.1) (with $B_j = \varphi_j^{-1}(C_j)$). Hence, $\{\sigma(\varphi_j \circ X_j) : j \in J\}$ is independent for any finite index set J, and therefore $\{\sigma(\varphi_k \circ X_k) : k = 1, 2, ...\}$ is independent.

3. Let $\{A_n: n=1,2,...\}$ be a countable independent sequence of events on a probability space (Ω, \mathcal{F}, P) . Prove that $P(\bigcap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} P(A_n)$. (Note: For a countable sequence of reals, $\{b_n: n=1,2,...\}$, the infinite product $\prod_{n=1}^{\infty} b_n$ is defined by $\lim_{n\to\infty} \prod_{k=1}^n b_k$, provided this limit exists.)

Solution: Consider the new sequence of events $\{B_n: n=1,2,...\}$, where $B_n = \bigcap_{k=1}^n A_k$. This is a decreasing sequence of events with $\lim_{n\to\infty} B_n = \bigcap_{n=1}^{\infty} B_n = \bigcap_{n=1}^{\infty} \bigcap_{k=1}^n A_k = \bigcap_{n=1}^{\infty} A_n$. Therefore, using continuity of probability measure and the assumption of independence for $\{A_n: n=1,2,...\}$, we have

$$P(\bigcap_{n=1}^{\infty} A_n) = P(\lim_{n \to \infty} B_n) = \lim_{n \to \infty} P(B_n) = \lim_{n \to \infty} P(\bigcap_{k=1}^n A_k) = \lim_{n \to \infty} \prod_{k=1}^n P(A_k) = \prod_{n=1}^{\infty} P(A_n).$$

Note that for the sequence $q_n = \prod_{k=1}^n P(A_k)$ we have $1 \ge q_n \ge q_{n+1} \ge ... \ge 0$, and therefore the infinite product $\prod_{n=1}^{\infty} P(A_n) = \lim_{n \to \infty} q_n$ exists as either a strictly positive constant or 0.

4. Consider two countable sequences of events, $\{A_n:n=1,2,...\}$ and $\{B_n:n=1,2,...\}$, on the same probability space (Ω,\mathcal{F},P) . Assume that, for each n, A_n and B_n are independent. Moreover, assume that $A=\lim_{n\to\infty}A_n$ and $B=\lim_{n\to\infty}B_n$ exist. Show that A and B are independent. Solution: We have $\lim_{n\to\infty}1_{A_n}(\omega)=1_A(\omega)$ and $\lim_{n\to\infty}1_{B_n}(\omega)=1_B(\omega)$, for each $\omega\in\Omega$. Therefore $1_{A\cap B}(\omega)=1_A(\omega)1_B(\omega)=\lim_{n\to\infty}(1_{A_n}(\omega)1_{B_n}(\omega))=\lim_{n\to\infty}1_{A_n\cap B_n}(\omega)$, for each $\omega\in\Omega$, and thus $\lim_{n\to\infty}(A_n\cap B_n)=A\cap B$. Hence,

$$P(A \cap B) = P(\lim_{n \to \infty} (A_n \cap B_n)) = \lim_{n \to \infty} P(A_n \cap B_n) = \lim_{n \to \infty} (P(A_n)P(B_n))$$

= $(\lim_{n \to \infty} P(A_n))(\lim_{n \to \infty} P(B_n)) = P(\lim_{n \to \infty} A_n)P(\lim_{n \to \infty} B_n) = P(A)P(B)$

using continuity of probability measure (twice) and the independence of A_n and B_n , for each n.

5. A sequence $\{X_n: n=1,2,...\}$ of \mathbb{R} -valued random variables, defined on a common probability space (Ω,\mathcal{F},P) , is said to converge completely if for any $k=1,2,...,\sum_{n=1}^{\infty}P(|X_n|>k^{-1})<\infty$. Show that if $\{X_n: n=1,2,...\}$ converges completely, then $\lim_{n\to\infty}X_n=0$ almost surely.

Solution: The assumption of complete convergence yields that

$$P(\limsup_{n\to\infty}\{\omega\in\Omega:|X_n(\omega)|>k^{-1}\})=0, \text{ for } k=1,2,...$$

using the Borel lemma. Now the result follows using one of the equivalent definitions of almost sure convergence proved in class.

- 6. Construct a sequence $\{X_n:n=1,2,...\}$ of \mathbb{R}^+ -valued random variables (i.e., $X_n\geq 0$, for all n) that satisfies $\sum_{n=1}^{\infty}P(X_n>k^{-1})<\infty$, for any k=1,2,..., but for which $\lim_{n\to\infty}\mathrm{E}(X_n)\neq 0$. Solution: For each n=1,2,..., define X_n so that it takes value 3^n with probability 2^{-n} , and value 0 with probability $1-2^{-n}$. (For example, X_n can be defined on $\Omega=(0,1]$, with $\mathcal F$ the Borel σ -field on (0,1] and P the uniform distribution, such that $X_n(\omega)=3^n$, if $\omega\in(0,2^{-n}]$, and $X_n(\omega)=0$, otherwise.) Then, for any k=1,2,..., $\sum_{n=1}^{\infty}P(X_n>k^{-1})=\sum_{n=1}^{\infty}2^{-n}=1<\infty$, but $\lim_{n\to\infty}\mathrm{E}(X_n)=\lim_{n\to\infty}(3/2)^n=\infty$.
- 7. Consider a countable sequence $\{X_n: n=1,2,...\}$ of random variables defined on a common probability space (Ω, \mathcal{F}, P) . Assume that each random variable X_n is uniformly distributed on (0,1), hence, $P(c < X_n < d) \equiv P(\{\omega \in \Omega: X_n(\omega) \in (c,d)\}) = d-c$, for any $0 \le c < d \le 1$. Show that the sequence $\{1/(n^2X_n): n=1,2,...\}$ converges almost surely to 0 as $n \to \infty$.

Solution: We need to show that $P\left(\left\{\omega \in \Omega : \forall k, \exists j, \forall n \geq j, \frac{1}{n^2 X_n(\omega)} < \frac{1}{k}\right\}\right) = 1$, or, equivalently, that

$$P\left(\bigcap_{k=1}^{\infty}\bigcup_{j=1}^{\infty}\bigcap_{n=j}^{\infty}\left\{\omega\in\Omega:\frac{1}{n^{2}X_{n}(\omega)}<\frac{1}{k}\right\}\right)=P\left(\bigcap_{k=1}^{\infty}\liminf_{j\to\infty}A_{j,k}\right)=1,$$

or, equivalently, that

$$0 = P\left(\left(\bigcap_{k=1}^{\infty} \liminf_{j \to \infty} A_{j,k}\right)^{c}\right) = P\left(\bigcup_{k=1}^{\infty} \left(\liminf_{j \to \infty} A_{j,k}\right)^{c}\right) = P\left(\bigcup_{k=1}^{\infty} \limsup_{j \to \infty} A_{j,k}^{c}\right)$$
(7.1)

Here, for each j=1,2,..., k=1,2,..., $A_{j,k}$ is the event $\{\omega\in\Omega:\frac{1}{j^2X_j(\omega)}<\frac{1}{k}\}.$

Now, if we fix k, there exists some M=M(k) such that $k/j^2<1$, for any $j\geq M$. Then, for any such $j\geq M$,

$$P\left(A_{j,k}^c\right) = P\left(\left\{\omega \in \Omega: \frac{1}{j^2 X_j(\omega)} \geq \frac{1}{k}\right\}\right) = P\left(\left\{\omega \in \Omega: X_j(\omega) \leq \frac{k}{j^2}\right\}\right) = \frac{k}{j^2},$$

since each X_j is uniformly distributed on (0,1). Hence, the series $\sum_{j=1}^{\infty} P(A_{j,k}^c)$ converges, since $\sum_{j=M}^{\infty} P(A_{j,k}^c) = \sum_{j=1}^{\infty} P(A_{j,k}^c)$

 $k \sum_{i=M}^{\infty} j^{-2} < \infty$. Therefore, the Borel lemma yields that $P(\limsup_{j\to\infty} A_{j,k}^c) = 0$, for any k. Finally,

(7.1) is established if we note that
$$P\left(\bigcup_{k=1}^{\infty} \limsup_{j\to\infty} A_{j,k}^{c}\right) \leq \sum_{k=1}^{\infty} P(\limsup_{j\to\infty} A_{j,k}^{c}) = 0.$$