

Liposomas de polietilenglicol (PEG)
con folato para el suministro de
metotrexato vía inyección
intra-articular para el tratamiento de
Artritis Reumatoide

- Alexandro Abad
- Jesús de la Vega
- María Paz Muramatsu
- Jairo Narro
- Tamara Ortiz

Contenido

UI Problemática

O2 Propuesta v d

Propuesta y objetivos

03

Fundamentación teórica

04

Diseño y síntesis

05

Caraterización

06

Conclusiones

Problemática

Artritis Reumatoide (RA)

- Enfermedad autoinmune:
 - Inflamación crónica de las articulaciones
 - infiltración de células inmunitarias del sinovio→ destrucción del cartílago y del hueso articular.
- Líquido sinovial:
 - En sinovio → membrana
 - Lubricante en articulaciones
 - Administra nutrientes y metabolitos

Síntomas:

- Articulaciones inflamadas y sensibles
- Rigidez en las articulaciones
- Fatiga, pérdida de apetito
- Dolor articular

Estadísticas

- → Afecta al **1%** de la población adulta en Europa y USA
- → **71/10000** personas diagnosticadas al año
- → Incidencia: 75% mayor en mujeres.
- → Factores que incrementan el riesgo: grasas saturadas y azúcares.
- → Edad: 30-60 años en mujeres

Tratamientos actuales

No existe cura

Los tratamientos se basan en la supresión o atenuación de la inflamación para mejorar los síntomas, y en la preservación estructural de las articulaciones

NSAIDs (nonsteroidal anti-inflammatory drugs)

- Para el dolor, rigidez articular e inflamación
- No ayuda con la progresión del daño articular

Corticosteroides

Antiinflamatorio, inmunoregulador

- Evita expresión de moléculas para adhesión celular y citoquinas
- Poca duración al ser administrado intravenoso, dosis mayor necesaria
- Efectos adversos a largo plazo:
 hipertensión, osteoporosis, cataratas

DMARDs: disease modifying antirheumatic drugs

- Disminuye la progresión del daño estructural en las articulaciones
- 2 tipos:
 - Sintéticos (Metotrexato es el más usado, es inmunosupresor)
 - Moléculas biológicas

Encapsulación

Rápida difusión al torrente sanguíneo, perdiendo especificidad. Solución

Vías de administración:

- Oral, intravenosa, intramuscular, directo a sinovio
- Sistemáticas → afectan a todo el sistema inmune (distintas partes del cuerpo)

Propuesta y objetivos

Liposomas de polietilenglicol (PEG) con folato para el suministro de metotrexato para aplicación vía inyección intra-articular

Liposomas de 100 nm Ligeramente negativos Cadenas de PEG de 5kDa

Objetivos

03

Aumentar la vida media de la droga

Mayor tiempo de circulación → dosis más pequeñas, menos frecuencia

Promover la acumulación de la droga en las articulaciones

Enhanced permeability and retention (acumulación en zonas de mayor permeabilidad vascular)

Unión a receptores de folato en macrófagos → 40% de contenido celular

Reducir efecto sistémico de la droga

Reducir la inmunosupresión sistémica de la droga y efectos.

Reducir acumulación en el hígado

Potencialidades

- Sistema puede utilizarse para el suministro de drogas hidrofóbicas e hidrofílicas
- Permite aumentar eficacia de la droga al aumentar su tiempo de circulación, concentración localizada y vida media
- Necesidad de dosis más pequeñas y menos frecuencia

Limitaciones

- Liposoma y drogas igual circula por el cuerpo, llegando a otros órganos
- No se pueden eliminar los efectos secundarios por completo

Drug Delivery

- **Tecnologías diseñadas** para administración dirigida controlada de agentes terapéuticos.
- Sus sistemas de administración controlan la velocidad en la que se libera el fármaco y el lugar donde se libera.
- La eficacia y seguridad de esta tecnología depende de l distintos factores cómo: l
 - Principios de preparación del fármaco.
 - Vía de administración
 - Destino
 - -
 - Toxicidad

NanoCarrier NanoCarrier

- Nanomaterial que se utiliza como módulo de transporte para otra sustancia, como un fármaco.
- Ayudan a mejorar la eficacia de los fármacos mediante la encapsulación de fármacos hidrofóbicos dentro del núcleo de los nanoportadores.
- Ventajas de Nanocarrier
 - Protege al fármaco de degradación
 - Inhibe la interacción prematura con el entorno biológico.
 - Mejora la penetración celular
 - Controla la farmacocinética

- Vesículas esféricas muy pequeñas que se componen de fosfolípidos organizados en bicapas que se asemejan a estructura de las membranas celulares.
- Su tamaño suele oscilar entre 20 nm y decenas de µm.
- Su capacidad de encapsular activos de naturaleza muy diversa, su biodegradabilidad y ausencia de toxicidad han favorecido la difusión de su utilización y aparición continuada de nuevas aplicaciones.

Rinmaterial

- "Cualquier material, natural o artificial, que abarca total o parcialmente una estructura viva o un dispositivo biomédico que se realice o substituye una función natural"
- Desempeñan un papel integral en la medicina de hoy: restablecen la función y facilitan la curación de las personas después de una lesión o enfermedad
- Los metales, la cerámica, el plástico, el vidrio e incluso células las

pueden para biomaterial.

Cochlear Replacements Contact Lenses

Dental Implants

Skin Renair Devices

PEG (polietilenglicol)

- Poliéter con muchas aplicaciones desde la industria manufacturera hasta la industria medicinal.
- Se produce por la interacción de óxido de etileno con la agua, etilenglicol u oligómeros de etilenglico.
- Se utilizan comercialmente en numerosas aplicaciones, l
 tales

Base

- Excipientes en tabletas

de

HO (CH2-CH2-O)-H

ositorios

Metrotexato

- Fármaco desarrollado como un análogo estructural del **ácido fólico.**
- Como antagonista del ácido fólico, bloquea la síntesis de purinas al inhibir numerosas enzimas reguladoras. Evita que las células se dividan y formen nuevas células
- Se usa para prevenir la enfermedad de injerto frente a huésped luego del trasplante de médula ósea o el trasplante de células madre, así como para el tratamiento de la artritis reumatoide y la psoriasis.

Diseño y síntesis

Composición del liposoma

Politetilenglicol (PEG)

Incrementa tiempo de circulación Incrementa estabilidad

Folato

Unión a receptores de folato en macrófagos → acción focalizada

$$H = \begin{bmatrix} O & & \\ & & \\ & & \end{bmatrix}_{n} O = H$$

Metotrexato

Disease-modifying anti-rheumatic drug

Bicapa lipídica

Fosfatidilcolina (POPC) y colesterol

Características del liposoma

TAMAÑO

100 nm

Mayor tamaño → Fagocitosis Menor tamaño → Filtrado

CARGA

Ligeramente negativa

Cargas positivas → acumulación en el hígado

CADENAS DE PEG

5kDa

Cadenas muy largas → micelas curvas

Dispersión y extrusión

Dispersión

- 1. Preparación de solución de fosfolípidos
- 2. Evaporación del solvente para la formación de la capa delgada
- Hidratación de la capa lipídica con buffer (tampón fosfato salino PBS)
- 4. Formación de vesículas multilamelares
- Congelado y descongelado para obtención de vesículas más pequeñas

Extrusión

- 1. Extrusión a través de membranas porosas para la obtención de vesículas unilamelares
- Cromatografía de exclusión por tamaño para distribución homogénea de tamaño.

(Sejwal, Kushal, Chami et al. 2016)

Caracterización

Microscopía Electrónica de Transmisión para observar la

morfología de los liposomas

Dynamic Light Scattering para estudiar la distribución del tamaño de

los liposomas

CARGA

Ligeramente negativa

Cargas positivas → acumulación en el hígado

Espectroscopía para el análisis de la composición de los liposomas

Resonancia Magnética Nuclear

Transformada de Fourier Infraroja

Farmacocinética: Efecto del organismo sobre el fármaco

Ensayos de citotoxicidad

CONCLUSIONES

Los liposomas tienen mucho potencial como nanocarriers debido a lo versátiles que son en cuanto a su diseño e implementación.

02

Los liposomas tienen el potencial de aumentar la eficacia de tratamientos de artritis reumatoide al aumentar su tiempo de circulación y su acumulación localizada.

Potencial de liposomas como nanocarriers para minimizar los efectos secundarios y reducir inmunosupresión sistémica.

Referencias

Chen, M., et.al. . (2019). Folate receptor-targeting and reactive oxygen species-responsive liposomal formulation of methotrexate for treatment of rheumatoid arthritis. *Pharmaceutics*, 11 (11), 582.

Ferreira-Silva, M., et.al. (2021). Liposomal nanosystems in rheumatoid arthritis. *Pharmaceutics, 13*(4), 454.

Kanásová, M., & Nesměrák, K. (2017). Systematic review of liposomes' characterization methods. Monatshefte Für Chemie - Chemical Monthly, 148(9), 1581–1593. https://doi.org/10.1007/s00706-017-1994-9

Kapoor, B., Singh, S. K., Gulati, M., Gupta, R., & Vaidya, Y. (2014). Application of liposomes in treatment of rheumatoid arthritis: quo vadis. *The scientific world Journal, 2014*.

Mayo Clinic. (2022). *Rheumatoid Arthritis*. Recuperado de https://www.mayoclinic.org/diseases-conditions/rheumatoid-arthritis/symptoms-causes/syc-20353648

National Institute of Biomedical Imaging and Bioengineering. (2022). Drug Delivery Systems. Recuperado de https://www.nibib.nih.gov/science-education/science-topics/drug-delivery-systems-getting-drugs-their-targets-controlled-manner

Nunes, S. S., Fernandes, R. S., Cavalcante, C. H., da Costa César, I., Leite, E. A., Lopes, S. C. A., ... & de Barros, A. L. B. (2019). Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. *Drug delivery and translational research*, *9*(1), 123-130.

Ren, H., et.al. (2019). Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. *ACS applied materials & interfaces*, 11(22), 20304-20315.

Referencias

Sejwal, Kushal & Chami, Mohamed & Baumgartner, Paul & Kowal, Julia & Müller, Shirley & Stahlberg, Henning. (2016). Proteoliposomes - A system to study membrane proteins under buffer gradients by cryo-EM. *Nanotechnology Reviews*. 6. 10.1515/ntrev-2016-0081.

Sultana, F., Neog, M. K., & Rasool, M. (2017). Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. *Colloids and Surfaces B: Biointerfaces, 155*, 349-365.

Tu, A. B., & Lewis, J. S. (2021). Biomaterial-based immunotherapeutic strategies for rheumatoid arthritis. *Drug Delivery and Translational Research*, *11*(6), 2371-2393.

Timoszyk, A. (2017). Application of Nuclear Magnetic Resonance Spectroscopy (NMR) to Study the Properties of Liposomes. In (Ed.), Liposomes. IntechOpen. https://doi.org/10.5772/intechopen.68522

Zhang, H. (2017). Thin-film hydration followed by extrusion method for liposome preparation. In *Liposomes* (pp. 17-22). Humana Press, New York, NY.