MATH 6230 HOMEWORK 12

COLTON GRAINGER APRIL 25, 2019

Problems from Introduction to Smooth Manifolds, Chapter 11.

30. Say that S is an immersed k-dimensional submanifold $\iota \colon S \to M$, and consider $f \in C^{\infty}(M)$. Then the differential of f restricted to S is the pullback of the differential of f under ι^* , i.e.,

$$d\left(f\Big|_{S}\right) = \iota^*(df). \tag{30.1}$$

Proof. Let $p \in S$. Choose a slice chart $(U,(x^i))$ centered about $\iota(p)$ such that the first $k = \dim S$ coordinates $\iota^{-1}(x^i)$ parameterize $S \cap \iota^{-1}U$. Identifying $S \cap \iota^{-1}U \hookrightarrow \iota(S) \cap U$, both f and $f \mid_S$ are determined (in the neighborhood U of p) by coordinates by $(x^1, \ldots, x^k, x^{k+1}, \ldots, x^j)$.

Now we evaluate the cotangent vectors on the LHS and RHS of (30.1) at an arbitrary tangent vector $v_p \in T_pS \cong T_p(S \cap U)$, where $v_p = \sum_{i=1}^n v^i \frac{\partial}{\partial x_i} \big|_p$. On the LHS, $f \big|_S$ is constant with respect to x^{k+1}, \dots, x^n , therefore

$$d\left(f \middle|_{S}\right) (v_{p}) = \begin{bmatrix} \frac{\partial f}{\partial x^{1}} & \cdots & \frac{\partial f}{\partial x^{k}} \end{bmatrix} \middle|_{p} \begin{bmatrix} dx^{1} \\ \vdots \\ dx^{k} \end{bmatrix} \middle|_{p} \begin{bmatrix} \frac{\partial}{\partial x^{1}} & \cdots & \frac{\partial}{\partial x^{n}} \end{bmatrix} \middle|_{p} \begin{bmatrix} v^{1} \\ \vdots \\ v^{n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f}{\partial x^{1}} & \cdots & \frac{\partial f}{\partial x^{k}} \end{bmatrix} \middle|_{p} [I_{k} \mid \mathbf{0}] \begin{bmatrix} v^{1} \\ \vdots \\ v^{n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f}{\partial x^{1}} & \cdots & \frac{\partial f}{\partial x^{k}} \end{bmatrix} \middle|_{p} \begin{bmatrix} v^{1} \\ \vdots \\ v^{k} \end{bmatrix}.$$

On the RHS, pulling back v_p under ι^* , we have

$$\iota^*(\mathrm{d}f_p)(v_p) = v_p f = \begin{bmatrix} \frac{\partial f}{\partial x^1} & \cdots & \frac{\partial f}{\partial x^k} \end{bmatrix} \Big|_p \begin{bmatrix} v^1 \\ \vdots \\ v^k \end{bmatrix}.$$

This shows that the covectors on the LHS and RHS of (30.1) agree at each point p in S.

- **6.** Let M be a smooth n-dimensional manifold, let $W \subset M$ be an open subset of M, and consider k smooth functions $y^i \colon W \to \mathbb{R}$ for $i = 1, \dots, k$.
 - (a) At a point $p \in W$, if k = n and

$$\mathrm{d}y^1 \bigg|_p, \dots, \mathrm{d}y^k \bigg|_p$$
 are linearly independent in T_p^*M ,

then

 $\begin{bmatrix} y^1 \\ \vdots \\ y^k \end{bmatrix} \text{ is a local coordinate system in a neighborhood } U \subset W \text{ of } p.$

Proof. Choose local coordinates (x^j) about p. Then each y^i has differential w.r.t. the (x^j) given by

$$\begin{bmatrix} dy^1 \mid_p \\ \vdots \\ dy^n \mid_p \end{bmatrix} = \begin{bmatrix} \frac{\partial y^1}{\partial x^1} \mid_p & \dots & \frac{\partial y^1}{\partial x^n} \mid_p \\ \frac{\partial y^n}{\partial x^1} \mid_p & \dots & \frac{\partial y^n}{\partial x^n} \mid_p \end{bmatrix} \begin{bmatrix} dx^1 \mid_p \\ \vdots \\ dx^n \mid_p \end{bmatrix}.$$

Our hypothesis is that the set $\left\{ \left[\frac{\partial y^i}{\partial x^1} \Big|_p \right] \cdots \left(\frac{\partial y^i}{\partial x^n} \Big|_p \right] \right\}_{i=1}^n$ (vectors of evaluated partial derivatives) is linearly independent over \mathbb{R}^n . Therefore the linear transformation $\left[\frac{\partial y^i}{\partial x^j} \Big|_p \right] = [\varphi_*]$ is invertible, where φ is the map

$$\varphi \colon W \to \mathbb{R}^n \quad \text{such that} \quad q \stackrel{\varphi}{\longmapsto} \begin{bmatrix} y^1(q) \\ \vdots \\ y^n(q) \end{bmatrix}.$$
 (6.1)

By the inverse function theorem, there's an open neighborhood $U \subset W$ of p such that $\varphi^{-1} \circ \varphi = \mathrm{id} \colon U \to U$, where φ^{-1} is smooth. So $\varphi \mid_U$ is a diffeomorphism into \mathbb{R}^n . Therefore the (y^i) are local coordinates on U. \square

(b) Similarly, if $p \in W$, k < n, and

$$\mathrm{d} y^1 \bigg|_p, \dots, \mathrm{d} y^k \bigg|_p$$
 are linearly independent in $T_p^* M$,

then

 $\begin{bmatrix} y^1 \\ \vdots \\ y^k \end{bmatrix} \quad \text{can be } \textit{extended} \text{ to a local coordinates in a neighborhood } U \subset W \text{ of } p.$

Proof. Again, take local coordinates (x^j) about p. Each y^i has differential w.r.t. the (x^j) given by

$$\begin{bmatrix} dy^1 \mid_p \\ \vdots \\ dy^k \mid_p \end{bmatrix} = \begin{bmatrix} \frac{\partial y^1}{\partial x^1} \mid_p & \dots & \frac{\partial y^1}{\partial x^n} \mid_p \\ \frac{\partial y^k}{\partial x^1} \mid_p & \dots & \frac{\partial y^k}{\partial x^n} \mid_p \end{bmatrix} \begin{bmatrix} dx^1 \mid_p \\ \vdots \\ dx^n \mid_p \end{bmatrix}.$$
(6.2)

Assuming k < n and $\left\{ \begin{bmatrix} \frac{\partial y^i}{\partial x^1} \Big|_p & \cdots & \frac{\partial y^i}{\partial x^n} \Big|_p \end{bmatrix} \right\}_{i=1}^k$ is linearly independent, there are precisely n-k differentials $\mathrm{d} x^{j_\ell}$ in the nullspace of $\begin{bmatrix} \frac{\partial y^i}{\partial x^2} \Big|_p \end{bmatrix}$ (6.2). Define

$$\varphi \colon W \to \mathbb{R}^n \quad \text{such that} \quad q \overset{\varphi}{\longmapsto} \begin{bmatrix} y^1(q) \\ \vdots \\ y^k(q) \\ x^{j_1} \\ \vdots \\ x^{j_{n-k}} \end{bmatrix}.$$

In particular, k < n and 6.2 imply that $[\varphi_*]$ has full rank at p. Applying the inverse function theorem as before, there's a neighborhood U such that $p \in U \subset W$ for which $\varphi|_U$ is a coordinate chart extending the (y^j) .

(c) Lastly, if $p \in W$, k > n, and $\mathrm{d} y^1 \big|_p, \dots, \mathrm{d} y^k \big|_p$ are linearly independent in T_p^*M as before, then there are n indices i_ℓ such that $\begin{bmatrix} y^{i_1} & \vdots & y^{i_n} \end{bmatrix}$ is a chart on a neighborhood U of p.

Proof. With local coordinates (x^j) about p, each y^i has differential w.r.t. the (x^j)

$$\begin{bmatrix} dy^1 \mid_p \\ \vdots \\ dy^k \mid_p \end{bmatrix} = \begin{bmatrix} \frac{\partial y^1}{\partial x^1} \mid_p & \cdots & \frac{\partial y^1}{\partial x^n \mid_p} \\ \vdots \\ \frac{\partial y^k}{\partial x^1} \mid_p & \cdots & \frac{\partial y^k}{\partial x^n \mid_p} \end{bmatrix} \begin{bmatrix} dx^1 \mid_p \\ \vdots \\ dx^n \mid_p \end{bmatrix}, \tag{6.3}$$

and our hypothesis is that the linear transformation $\left[\frac{\partial y^i}{\partial x^j}\Big|_p\right]$ has rank n. Choose n differentials as a basis for the image of $\left[\frac{\partial y^i}{\partial x^j}\Big|_p\right]$ (a subspace of T_p^*M), call these y^{i_ℓ} . Defined φ as the map

$$\varphi \colon W \to \mathbb{R}^n \quad \text{such that} \quad q \overset{\varphi}{\longmapsto} \begin{bmatrix} y^{i_1}(q) \\ \vdots \\ y^{i_n}(q) \end{bmatrix}.$$

Then k > n and equation 6.3 imply that $[\varphi_*]$ has full rank at p. Apply the inverse function theorem to obtain a neighborhood U such that $p \in U \subset W$ and $\varphi|_U$ is a chart.

11. Say that M is a smooth n-dim manifold, $C \subset M$ is embedded n-k dim manifold, and $f \in C^{\infty}(M)$ is a smooth function. Suppose the restriction $f|_C$ has a (relative) maximum point at $p \in C$. Then fore any defining function $\Phi \colon U \to \mathbb{R}^k$ for C on a neighborhood of p, there exist k real numbers ℓ_1, \ldots, ℓ_k such that

$$\mathrm{d}f_p = \begin{bmatrix} \ell_1 & \cdots & \ell_k \end{bmatrix} \begin{bmatrix} \mathrm{d}\Phi^1 \\ \vdots \\ \mathrm{d}\Phi^k \end{bmatrix} \Big|_p.$$

Proof. If C = M, then k = 0, the defining function is trivial, and $\mathrm{d}f_p = 0$. This follows because for any local chart (x^i) centered at p, the path $f(\mathbf{u}t)$ has a local maximum point at t = 0 for any unit vector $\mathbf{u} \in S^{n-1} \subset \mathbb{R}^n$, and therefore $\frac{\partial f}{\partial x^i} = 0$ for all $i = 1, \ldots, n$.

Let $\Phi \colon U \to \mathbb{R}^k$ be a local defining function for $C \cap U$. Because Φ is a submersion, the push-forwards Φ_* surjects onto the tangent space $T_0\mathbb{R}^k$. Dually, the pullback Φ^* is a rank $k = \dim T_0\mathbb{R}^k$ injection into the cotangent space T_pM . Because $\Phi \mid_C$ is constant, the image of the pullback $T_0^*\mathbb{R}^k \to T_p^*M$ must be orthogonal to every cotangent vector in T_p^*C . So the cotangent space over M splits

$$T_p^* \mathbb{R}^k \oplus T_p^* C \xrightarrow{\cong} T_p^* M. \tag{11.1}$$

Our hypothesis is that p is a local maximum point of $f|_C$. Consider that, for any smooth path $\gamma(t)$ in C passing through p at time t=0, the composite $f(\gamma(t))$ has a local extremum at t=0. It follows that

every tangent vector $\gamma'(0)$ in T_pC annihilates $f \implies$ the components of $\mathrm{d}f_p$ in T_p^*C are trivial.

We have shown that the differential $\mathrm{d}f_p$ is orthogonal to T_p^*C , so, by 11.1, $\mathrm{d}f_p$ lies in the image of the pullback Φ^* . The Lagrange multipliers ℓ_1,\ldots,ℓ_k are just the coordinates of $\mathrm{d}f_p$ in the covector space $T^*\mathbb{R}^k\hookrightarrow T_p^*M$.