

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BS (CS) Degree Program

Course Instructor	Ms. Alishba Tariq, Mr. Abdul Basit, Dr. Fahad Riaz, Ms. Javeria Iftikhar, Mr. Nadeem khan, Mr. Osama Bin Ajaz, Mr. Shahid Ashraf, Ms. Urooj.	Semester	Fall
Batch/Section(s)	Batch 2021	Year	2022
Course Title	MT 1004-Linear Algebra	Credit Hours	3
Prerequisite(s)	No	Course TA	

Text Book(s)	
Title of book	Elementary Linear Algebra, 12 th edition
Author(s)	Howard Anton and Anton Kaul

Reference Book(s)		
Title of book	Linear Algebra and its Application	
Author(s)	Gilbert Strang	
Title of book	Coding the Matrix: Linear Algebra through Applications to Computer Science	
Author(s)	Philip N Klein	

Course Description

Elementary operations on matrices, Gaussian and Gauss Jordan elimination, Elementary matrices and matrix factorization, determinants and their properties, vector spaces, subspaces and spanning sets, Linear Independence, Dimensions, Rank of a matrix, Linear transformation, Eigenvalues and Eigenvectors, Inner Product and Orthogonal basis, Diagonalization and Orthogonal Diagonalization, Application of linear algebra

S. No.	Course Learning Outcomes (CLO)	Domain	Taxonomy Level	PLO
1.	Interpreting and finding the solutions of linear equations in detail.	Cognitive	2	
2.	Understanding the core concepts of Euclidean vector spaces and matrix transformations.	Cognitive	2	2
3.	Applying the basic linear algebra concepts in computer science.	Cognitive	3	

Tentative Weekly Lectures Schedule:

Weeks	Contents/Topics	Remarks	Exercises	CLO's	Tools
	Introduction, System of				
Week 1	Linear equations,		1.1 (1-20)		
	Elementary row operation				
	Solving system of Linear equations:				
	Gaussian Elimination and Gauss Jordan		1.2 (1-26)		
Week 2	methods	Assignment 1	1.5 (1-6, 11-18)		
WCCR 2	Matrix Operations	rissignment i	1.6 (1-20)		
	Elementary Matrices, Methods for				
	finding Inverse, Invertible Matrices,				
	Diagonal, triangular, and symmetric		1.7 (1-10, 19-28)		Q1, A1,
Week 3	matrices,		1.8 (1-24, 27-41)	1	M1, F
	Matrix Transformations		(CLO 2)		1411, 1
	Application no 1:		1.10 (1-4)		
	Network Analysis		(CLO 3)		
Week 4	Determinants and their properties,	Quiz 1	2.1 (1-32)		
	Minors, Cofactors, Inverse using		2.2 (1-23)		
	cofactors, Cramer's Rule		2.3 (1-29,31,32)		
	General Vector Space		4.1 (1,2,9,11, 12)		
Week 5	Subspaces		Example: 1-5,7		
VV CCIA C			4.2 (1-5, 19)		
			Example: 1-6,13		
Week 6		1st Mid Term Ex		T	
Week 7	Spanning Sets		4.3 (1-20)		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Linear Independence		4.4 (1-15)		
	Coordinates and Bases		4.5 (1-22)		
Week 8	Dimensions	Quiz 2	4.6 (1-8,10,12-		
	Change of basis	Q 3222 =	13,15-20)	2	Q2, A2,
	D C 1 1 11		4.7 (1-19)		M2, F
Week 9	Bases for row, column, and null spaces,	Assignment 2	4.8 (1-19,21-30)		
	Rank and Nullity	0	4.9 (1-14,19-36)		
Week 10	Eigenvalues and Eigenvectors		5.1 (1-16)		
*** 1 44	Diagonalization	and a state of the	5.2 (1-20)		
Week 11		2 nd Mid Term Ex	kam T	1	
XX 1 10	Inner product spaces, Orthogonal		6.1 (1-26)		
Week 12	and orthonormal bases, Gram-	Assignment 3	6.2 (1-12, 17-19)		
	Schmidt Process;			_	
Wash 12	QR-Decomposition. Orthogonal		6.3 (1-14, 27-31,	2	
Week 13	Matrices		44-49)		Q3, A3, P,
	Ontho const Diographic Const C		7.1 (1-6) (CLO 1)	1	F
Week 14	Orthogonal Diagonalization, Quadratic	Quiz 3	7.2 (1-18) (CLO 1)		
	Forms	-	7.3 (1-8(CLO 1)		
Wash 15	Application no 2:	Dwogan 4s 45	0.4	2	
Week 15	Single Value Decomposition Markov Chains	Presentation	9.4	3	
Wast- 16			5.5		
Week 16	Revision				

Marks Distribution:

Particulars	% Marks
1. Quizzes and Assignments / Presentations	20
2. First Mid Exam	15
3. Second Mid Exam	15
4. Final Exam	50
Total:	100