

WHAT IS CLAIMED IS:

1 1. An erythropoietin peptide comprising the moiety:

2

3 wherein

4 D is a member selected from -OH and R¹-L-HN-;

5 G is a member selected from R¹-L- and -C(O)(C₁-C₆)alkyl;

6 R¹ is a moiety comprising a member selected a moiety comprising a straight-
7 chain or branched poly(ethylene glycol) residue; and

8 L is a linker which is a member selected from a bond, substituted or
9 unsubstituted alkyl and substituted or unsubstituted heteroalkyl,

10 such that when D is OH, G is R¹-L-, and when G is -C(O)(C₁-C₆)alkyl, D is
11 R¹-L-NH-.

1 2. The peptide according to claim 1, wherein L-R¹ has the formula:

2

3 wherein

4 a is an integer from 0 to 20.

1 3. The peptide according to claim 1, wherein R¹ has a structure that is a member

2 selected from:

3

4 wherein

5 e and f are integers independently selected from 1 to 2500; and
6 q is an integer from 0 to 20.

1 4. The peptide according to claim 1, wherein R¹ has a structure that is a member
2 selected from:

3

4 wherein

5 e, f and f' are integers independently selected from 1 to 2500; and
6 q and q' are integers selected from 1 to 20.

1 5. The peptide according to claim 1, wherein R¹ has a structure that is a member
2 selected from:

3
4 wherein

5 e, f and f'' are integers independently selected from 1 to 2500; and
6 q, q' and q'' are integers independently selected from 1 to 20.

1 6. The peptide according to claim 1 wherein R¹ has a structure that is a member
2 selected from:

3
4 wherein

5 e and f are integers independently selected from 1 to 2500.

1 7. The peptide according to claim 1, wherein said moiety has the formula:

2

1 8. The peptide according to claim 1, wherein said moiety has the formula:

1 9. The peptide according to claim 1, wherein said moiety has the formula:

3 wherein AA is an amino acid residue of said peptide.

1 10. The peptide according to claim 9, wherein said amino acid residue is a
2 member selected from serine or threonine.

1 11. The peptide according to claim 10, wherein said peptide has the amino acid
2 sequence of SEQ. ID. NO:1.

1 12. The peptide according to claim 11, wherein said amino acid residue is a serine
2 at position 126 of SEQ. ID. NO:1.

1 13. The peptide according to claim 1, wherein said peptide comprises at least one
2 of said moiety according to a formula selected from:

5 wherein AA is an amino acid residue of said peptide and t is an integer equal to 0
6 or 1.

1 14. The peptide according to claim 13, wherein said amino acid residue is an
2 asparagine residue.

1 15. The peptide according to claim 14, wherein said peptide has the amino acid
2 sequence of SEQ ID NO:1, and wherein said amino acid residue is an asparagine
3 residue which is a member selected from N24, N38, N83, and combinations thereof.

1 16. The peptide according to claim 1 wherein said peptide comprises at least one
2 of said moiety according to the formula:

3
4 wherein AA is an amino acid residue of said peptide, and t is an integer equal to 0 or
5 1.

1 17. The peptide according to claim 16, wherein said amino acid residue is an
2 arginine residue.

1 18. The peptide according to claim 17, wherein said peptide has the amino acid
2 sequence of SEQ ID NO:1, and wherein said amino acid residue is an asparagine
3 residue which is a member selected from N24, N38, N83, and combinations thereof.

1 19. The peptide of claim 1, wherein said peptide comprises at least one of said
2 moiety according to a formula selected from:

9 wherein AA is an amino acid residue of said peptide, and t is an integer equal to
10 0 or 1.

1 20. The peptide according to claim 1 wherein said peptide comprises at least one
2 said moiety according to a formula selected from:

7 wherein AA is an amino acid residue of said peptide, and t is an integer equal to 0
8 or 1.

1 21. The peptide according to claim 20, wherein said amino acid residue is an
2 asparagine residue.

1 22. The peptide according to claim 21, wherein said peptide has the amino acid
2 sequence of SEQ ID NO:1, and wherein said amino acid residue is an asparagine
3 residue which is a member selected from N24, N38, N83, and combinations thereof.

1 23. The peptide according to claim 1, wherein said peptide is a bioactive
2 erythropoietin peptide.

1 24. The peptide according to claim 23, wherein said peptide is erythropoietically
2 active.

1 25. The peptide according to claim 24, wherein said peptide is essentially non-
2 erythropoietically active.

1 26. The peptide according to claim 25, wherein said peptide is tissue protective.

1 27. A method of making a PEG-ylated erythropoietin comprising the moiety:

2
3 wherein

4 R¹ is a moiety comprising straight-chain or branched poly(ethylene glycol)
5 residue; and

6 L is a linker which is a member selected from substituted or unsubstituted
7 alkyl and substituted or unsubstituted heteroalkyl,
8 said method comprising:

9 (a) contacting a substrate erythropoietin peptide comprising the
10 glycosyl moiety:

11
12
13 with a PEG-sialic acid donor moiety having the formula:

14
15 and an enzyme that transfers said PEG-sialic acid onto the Gal of said glycosyl
16 moiety, under conditions appropriate to for said transfer.

1 28. The method of claim 27, further comprising, prior to step (a):
2 (b) expressing said substrate erythropoietin peptide in a suitable host.
1 29. The method of claim 28, wherein said host is selected from an insect cell and a
2 mammalian cell.
1 30. The method of claim 29, wherein said insect cell is a *Spodoptera frugiperda*
2 cell line.
1 31. A method of treating a condition in a subject in need thereof, said condition
2 characterized by compromised red blood cell production in said subject, said method
3 comprising the step of administering to the subject an amount of a peptide according
4 to claim 1, effective to ameliorate said condition in said subject.
1 32. A method of enhancing red blood cell production in a mammal, said method
2 comprising administering to said mammal an peptide according to claim 1.
1 33. A method of treating a tissue injury in a subject in need thereof, said injury
2 characterized by damage resulting from ischemia, trauma, inflammation or contact
3 with toxic substances, said method comprising the step of administering to the subject
4 an amount of an erythropoietin peptide according to claim 1, effective to ameliorate
5 the damage associated with the tissue injury in said subject.
1 34. A pharmaceutical formulation comprising the erythropoietin peptide according
2 to claim 1, and a pharmaceutically acceptable carrier.