

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №1 по курсу «Методы вычислений» на тему: «Метод поразрядного поиска»

Студент _	ИУ7-22М (Группа)	(Подпись, дата)	E. О. Карпова (И. О. Фамилия)
Преподаватель		(Подпись, дата)	<u>П. А. Власов</u> (И. О. Фамилия)

1 Теоретический раздел

Цель работы: изучение метода поразрядного поиска для решения задачи одномерной минимизации.

Задание:

- 1. Реализовать метод поразрядного поиска в виде программы на ЭВМ.
- 2. Провести решение задачи

$$\begin{cases} f(x) \to \min, \\ x \in [a, b], \end{cases}$$

для данных индивидуального варианта.

3. Организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности точек $(x_i, f(x_i))$, приближающих точку исходного минимума (для последовательности точек следует предусмотреть возможность «отключения» вывода ее на экран).

1.1 Исходные данные варианта №7

$$f(x) = arctg(x^3 - 5x + 1) + \left(\frac{x^2}{3x - 2}\right)^{\sqrt{3}}.$$

$$x \in [1, 2].$$

1.2 Краткое описание метода поразрядного поиска

Метод поразрядного поиска является всовершенствованием метода перебора с целью уменьшения количества значений целевой функции f, которое необходимо найти для достижения заданной точности.

В основе метода поразрядного поиска лежат две идеи.

- 1. Свойство унимодальной функции: если $a \le x_1 \le x_2 \le b$, то
 - (a) если $f(x_1) \leq f(x_2)$, то $x^* \in [a, x_2]$,
 - (b) иначе $x \in [x_1, b]$.

2. Целесообразно сначала найти грубое приближением точки x^* минимума с достаточно большим шагом, а затем уточнить это значение с меньшим шагом.

Обычно сначала выбирают шаг $\Delta = \frac{b-a}{4}$, и последовательно вычисляют значения $f(x_0), f(x_1), \ldots$, где $x_i = a + \Delta i, i = 0, 1, \ldots$, до тех пор, пока не будет выполнено равенство $f(x_i) \leq f(x_{i+1})$. В этом случае направление поиска изменяют на противоположное, а величину шага уменьшают (обычно в 4 раза).

Рисунок 1.1 – Схема алгоритма поразрядного поиска

2 Практический раздел

Листинг 2.1 – Исходный код программы

```
# Лабораторная работа 1. Вариант 7.
2
   function main()
3
4
     clc;
6
     debug = true;
7
     a = 1;
8
     b = 2;
9
     eps = 0.001;
10
11
12
     draw_plot(a, b, eps);
13
     [x_min, f_min, n] = find_min(debug, a, b, eps);
14
     fprintf('\n\033[36mToчка минимума (x*, f(x*)) = (%f, %f),
15
        количество вычислений функции: %d.\033[0m\n', x_min, f_min,
        n);
16
   end
17
   function [x_min, f_min, n] = find_min(debug, a, b, eps)
18
19
     x0 = a;
     f0 = f(x0);
20
     delta = (b - a)/4;
21
22
     if debug
23
24
       fprintf('(x0, f(x0)) = (\%f, \%f).\n', x0, f0);
     endif
25
26
     i = 1;
27
28
29
     while true
       x1 = x0 + delta;
30
       f1 = f(x1);
       i = i + 1;
32
33
34
       if debug
         fprintf('(x%d, f(x%d)) = (%f, %f).\n', i-1, i-1, x1, f1);
35
36
       endif
```

```
37
        if f0 > f1
38
          if a <= x1 <= b
39
            x0 = x1;
40
            f0 = f1;
41
            continue;
42
43
          endif
        endif
44
45
       if abs(delta) < eps</pre>
46
          x_min = x0;
47
          f_min = f0;
48
         n = i;
49
         return;
50
51
        endif
52
       delta = -delta / 4;
53
       x0 = x1;
54
       f0 = f1;
55
     endwhile
56
57
   end
58
   function draw_plot(a, b, step)
59
     x=a:step:b;
60
     y=f(x);
61
62
     plot(x,y);
  end
63
64
65
  function y = f(x)
     y = atan(x .^3 - 5 * x + 1) + ((x .^2) / (3 * x - 2)) .^
        sqrt(3);
67
  end
```

Таблица 2.1 – Результаты расчетов по индивидуальному варианту

$N_{\overline{0}}$	ϵ	N	x^*	$f(x^*)$
1	10^{-2}	20	1.320312	-0.460964
2	10^{-4}	39	1.321167	-0.460965
3	10^{-6}	55	1.321161	-0.460965