MECH 4450 Term Project Report

Project 2 (Static structure)

Kong Xiangzhou 20026414

1 Introduction

TODO

2 Program modelling

2.1 Geometry

The top view of original design is shown below:

Where H1=42cm, H10=5cm, H11=12cm, H9=25cm, V3=2cm, V6=5cm, V7=6cm, diameters of all holes are 6cm.

It is resembled as below:

The 3D model built is then as below, where the height of the component is assumed to be 10cm:

The boundary conditions are the loads, where symmetric properties on both axis can be assumed.

3 FEM analysis

3.1 Mesh setup

For the mesh, two refinements are added as below, where the first one (Refinement) is for the cylindrical surface of loading, and the second one $(Refinement\ 2)$ is for the sharp edges of 90 degree where stress concentration might occur.

The overall mesh with a size of 2cm is shown below:

3.2 Boundary conditions setup

3.3 Convergence study

For convergence study, mesh sizes of 3cm, 2cm, 1.5cmm 1cm, 0.8cm and 0.65cm are used. The mesh of minimum (0.65cm) and maximum (3cm) mesh size are shown below:

The results for principle stresses are below, listed in size-decreasing order.

The results for deformations are below, listed in size-decreasing order.

The change of both results with mesh sizes can be plotted below (x-axis in reciprocal scale):

