Основные определения и теоремы, вынесенные на минисессию Четвертый семестр, 2016

Основные определения

- 1. Элементарная поверхность
- 2. Поверхностный интеграл первого рода.
- 3. Поверхностный интеграл второго рода.
- 4. Векторное поле.
- 5. Потенциал векторного поля.
- 6. Поток векторного поля.
- 7. Дивергенция векторного поля.
- 8. Ротор векторного поля.
- 9. Циркуляция векторного поля.
- 10. Потенциальное векторное поле.
- 11. Соленоидальное векторное поле.
- 12. Внешние дифференциальные формы и допустимые действия над ними.
- 13. Дифференциал внешней дифференциальной формы и его свойства.
- 14. Интеграл внешней дифференциальной формы. Формулы Гаусса-Остроградского и Стокса на языке внешних дифференциальных форм.

Основные формулы и теоремы (с доказательством)

- 1. Свойства поверхностного интеграла первого рода.
- 2. Свойства поверхностного интеграла второго рода.
- 3. Формула Гаусса-Остроградского для элементарных областей.
- 4. Формула Стокса для дважды непрерывно дифференцируемых поверхностей.
- 5. Необходимые и достаточные условия соленоидальности векторного поля.
- 6. Необходимые и достаточные условия потенциальности векторного поля.

Экзаменационный билет

Математический анализ. Четвертый семестр (сессия), 2015 год Вариант 0

	<u>-</u>	
Фамилия		Группа

1	2	3	4	5	6	Σ
3	5	7	9	9	7	40

- 1. Внешние дифференциальные формы и допустимые действия над ними. (3 балла)
- 2. Сформулируйте и докажите теорему Гаусса-Остроградского для элементарных областей. (5 балла)
- 3. Дайте определение и вычислите поверхностный интеграл первого рода $\int_S (x+y+z)ds$, где S поверхность, заданная представлением $x=u\cos v,\ y=u\sin v,\ z=v,\ u\in[0,2],\ v\in[0,2\pi].$ (7 баллов)
- 4. Используя формулу Гаусса-Остроградского, найдите поток векторного поля $\vec{\mathbf{a}} = 2x\vec{\mathbf{i}} + y\vec{\mathbf{j}} 2xz\vec{\mathbf{k}}$ через внешнюю поверхность S цилиндра: боковая поверхность $-x^2 + y^2 = 1$, $0 \le z \le H$; нижнее основание $-x^2 + y^2 \le 1$, z = 0; верхнее основание $-x^2 + y^2 = 1$, z = H. (9 баллов)
- 5. Используя формулу Стокса вычислите циркуляцию векторного поля $\vec{\mathbf{a}} = 2x\vec{\mathbf{i}} + z\vec{\mathbf{j}} 2y\vec{\mathbf{k}}$ вдоль непрерывного контура Γ , ориентированного против часовой стрелки: $x^2 + y^2 = 1$, z = 3. (9 баллов)
- 6. Сформулируйте необходимые и достаточные условия потенциальности (соленоидальности) векторного поля и проверьте с их помощью, является ли векторное поле $\vec{\mathbf{a}} = 2x\vec{\mathbf{i}} + z\vec{\mathbf{j}} + y\vec{\mathbf{k}}$ потенциальным (или соленоидальным). (7 баллов)