ICLR 2021

TOWARDS FASTER AND STABILIZED GAN TRAINING FOR HIGH-FIDELITY FEW-SHOT IMAGE SYNTHESIS

Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal

Chaerin Kong

What's New

- 1024 x 1024 Image Generation Few Hours Training on Single RTX-2080 GPU
- Comparable Performance with SOTA (StyleGAN2)
- Enables GAN Training in low-data regime

Figure 1: **Synthetic results on** 1024² **resolution** of our model, trained from scratch on single RTX 2080-Ti GPU, with only 1000 images. Left: 20 hours on Nature photos; Right: 10 hours on FFHQ.

Background

Difficulty in GAN Training

- Lack of Training Data (Medical Image, Art Work ···) → Overfitting, Mode Collapse
- High Computation Cost (StyleGAN, BigGAN ···)

"Light-weight, Robust GAN Model Quickly Trainable on Small(~1000) Dataset"

Contributions

- 1. Skip-Layer Channel-wise Excitation (SLE) Module
- → Gradient Flow + Style/Content Disentangle
- 2. Self-Supervised Discriminator trained as a Feature Encoder
 - → Mitigate Overfitting + Provide Better Signal
- 3. Computationally Efficient GAN with High Fidelity Output

SLE Module

$$\mathbf{y} = \mathcal{F}(\mathbf{x}_{low}, \{\mathbf{W}_i\}) \cdot \mathbf{x}_{high}$$

- SLE = Skip Connection + Channel Attention
- x_{low} (style) + x_{high} (content) Disentanglement

SLE Module

Unique from Residual Blocks in that

- 1) Apply channel-wise multiplication instead of element-wise addition
- → Can be applied when spatial dimensions are different
- → Relieves computation
- 2) Perform skip-connection between resolutions with much longer range
- → Use single conv layer on each resolution
- → Lighter computation

Self-supervised Discriminator

$$\mathcal{L}_{recons} = \mathbb{E}_{\mathbf{f} \sim D_{encode}(x), \ x \sim \underline{I_{real}}}[||\mathcal{G}(\mathbf{f}) - \mathcal{T}(x)||]$$

- D extracts more comprehensive representation from input covering both overall compositions and detailed textures
- Combats D overfitting by forbidding D to memorize and rely on small local patterns

Final Objective

$$\mathcal{L}_D = -\mathbb{E}_{x \sim I_{real}}[min(0, -1 + D(x))] - \mathbb{E}_{\hat{x} \sim G(z)}[min(0, -1 - D(\hat{x}))] + \mathcal{L}_{recons}$$

$$\mathcal{L}_G = -\mathbb{E}_{z \sim \mathcal{N}}[D(G(z))]$$

■ Different GAN losses make little performance difference → Hinge Loss (Fastest)

Experiments – (0) Qualitative Comparison

Trained for 10 hours with batch size=8

Experiments – (0) Qualitative Comparison

Trained for 10 hours with batch size=8

Experiments – (1) Computationally Efficient

Table 1: Computational cost comparison of the models.

		StyleGAN2@0.25	StyleGAN2@0.5	StyleGAN2	Baseline	Ours
Resolution: 256 ² Batch-size: 8	Training time (hour / 10k iter) Training vram (GB) Model parameters (million)	1 7 27.557	1.8 16 45.029	3.8 18 108.843	0.7 5 44.359	1 6.5 47.363
Resolution: 1024 ² Batch-size: 8	Training time (hour / 10k iter) Training vram (GB) Model parameters (million)	3.6 12 27.591	5 23 45.15	7 36 109.229	1.3 9 44.377	1.7 10 47.413

- StyleGAN2@0.25 cannot converge on 1024 x 1024 → Use StyleGAN2@0.5
- Nvidia RTX 2080-Ti GPU, Implemented in Pytorch

Experiments – (2) High Quality Synthesis

Table 2: FID comparison at 2562 resolution on few-sample datasets.

			Animal Face - Dog	Animal Face - Cat	Obama	Panda	Grumpy-cat
Image number		389	160	100	100	100	
Training time on one RTX 2080-Ti	20 hour	StyleGAN2 StyleGAN2 finetune	58.85 61.03	42.44 46.07	46.87 35.75	12.06 14.5	27.08 29.34
	5 hour	Baseline Baseline+Skip Baseline+decode Ours (B+Skip+decode)	108.19 94.21 56.25 50.66	150.3 72.97 36.74 35.11	62.74 52.50 44.34 41.05	15.4 14.39 10.12 10.03	42.13 38.17 29.38 26.65

Table 3: FID comparison at 1024^2 resolution on few-sample datasets.

			Art Paintings	FFHQ	Flower	Pokemon	Anime Face	Skull	Shell
Image number		1000	1000	1000	800	120	100	60	
Training time on one RTX TITAN	24 hour	StyleGAN2 StyleGAN2 finetune	74.56 N/A	25.66 N/A	45.23 36.72	190.23 60.12	152.73 61.23	127.98 107.68	241.37 220.45
	8 hour	Baseline Ours	62.27 45.08	38.35 24.45	42.25 25.66	67.86 57.19	101.23 59.38	186.45 130.05	202.32 155.47

Experiments – (3) With More Data Samples

Table 4: FID comparison at 1024^2 resolution on datasets with more images.

Model Dataset	Pataset Art Paintings			FF	HQ	Natu	Nature Photograph		
Image number	2k	5k	10k 2k	5k	10k	70k 2k	5k	10k	
StyleGAN2	70.02	48.36	41.23 18.38	10.45	7.86	4.4 67.12	41.47	39.05	
Baseline	60.02	51.23	49.38 36.45	27.86	25.12	17.62 71.47	66.05	62.28	
Ours	44.57	43.27	42.53 19.01	17.93	16.45	12.38 52.47	45.07	43.65	

- StyleGAN2@0.5 does better with more image samples
- (1) Capacity of *Ours* not big enough
- (2) StyleGAN2@0.5 is still to big for few shot (~1000)

Experiments – (4) Robust to Overfitting - D

Table 7: LPIPS on D's feature-extracting performance

	Grumpy Cat	Obama		FFHQ		A	rt
Image number	100	100	1k	70k	0	1k	0
StyleGAN2	0.914	0.652	3.177	2.43	2.289	3.051	2.761
Baseline	1.632	0.733	2.421	N/A	1.943	2.677	2.421
Baseline + Contrastive	1.251	0.647	1.821	N/A	1.943	2.124	2.421
Baseline + AE	0.725	0.405	1.075	N/A	1.943	1.806	2.421
Baseline + AE + Contrastive	1.156	0.578	1.345	N/A	1.943	1.927	2.421

- If D pays attention to all the regions of an image and encode it with minimum information loss
 - → Easier for decoder to reconstruct
- Vanilla GAN training makes D worse as feature encoder focus on rather local discriminative feature
- All SSL helps feature extraction, but Auto Encoding works best (in their setting)

Experiments – (4) Robust to Overfitting - G

Nearest Real Images / Synthesized Images (Left-Right) by LPIPS

Experiments – (5) Ablation – SLE

Figure 8: **Ablation study for SLE module** on 1024×1024 resolution datasets. Each unit on the x-axis represents 1000 training iterations, and y-axis represents the FID score.

Experiments – (6) Style Mixing

Figure 7: Style-mixing results from our model trained for only 5 hours on single GPU.