# Accelerator-Based Programming -

CUDA – part 1

Jörn Zimmerling

September 6, 2022



# Using a GPU

- Specific hardware architecture of GPUs necessitates problem-adapted codes
- Tradeoff between programming effort and achievable performance





# Writing applications for a GPU

#### Libraries

- Small code changes call an accelerated function for big chunk of work
- High performance
- Limited availability, no fine-grained control
- Example: cuBLAS

#### Directives

- Annotate loops in existing languages
- Simple to adapt, but need to touch all relevant "loops"
- Less performance control
- Example: OpenACC

#### Languages

- Maximal performance
- Low-level interface close to the hardware
- Time-consuming to develop and maintain
- Example: CUDA





# GPU parallellism

- Fine-grained data parallelism
- SIMT (Single Instruction Multiple Thread) execution
  - Many threads execute concurrently
  - Different data elements correspond to different threads
  - Hardware automatically handles thread divergence
- Not the same as SIMD because of multiple register sets, addresses, and flow paths see
  - SIMD < SIMT < SMT: parallelism in NVIDIA GPUs (yosefk.com)</li>
- Hardware multithreading
  - High number of threads to hide latency
  - Context switching is essentially free



#### Parallelization for GPUs

- Parallelization = find a mapping of the problem to the machine model to maximize concurrent execution
- For GPUs with their fine-grained data parallelism
  - Fine-grained = split program in large number of small tasks
  - Map data and associated work to threads
  - Write the computation for 1 thread!
  - Organize threads in blocks and blocks in grids
  - Let the hardware scheduler do the rest
- Assumption: Work is expressed in terms of loops with little or no data dependencies between items

# thread block



# GPU program organization

- Two types of code:
  - **Device code** = GPU code = kernel(s)
    - A kernel is a sequential program
    - Write for 1 thread, execute for all
  - Host code = CPU code
    - Instantiate the "grid" and run the kernel
    - Memory allocation, management, deallocation
    - C, C++, Java, Python, . . .
- Host-device communication
  - Explicit or implicit
  - Hardware side:
    - Via PCI/e
    - Via NVLink (if available)





#### Thread model on a GPU

# Thread hierarchy:

- Threads execute a kernel
- Threads grouped into blocks
- Threads in a block run together
- Blocks organized in a grid
- Origin of these names: computer graphics of 2D image Block size:
- Configurable, optimum depends application and hardware
- Often, large blocks are better
- Typically, ~ 256–1024 threads/block



# Model of parallelism vs GPU hardware



- A Thread is the code executed on one processor
- A Block gets scheduled to be executed on one Streaming Multiprocessor:
  - (share memory),
  - communication
  - synchronization easy
- A Grid is executed on a device



# Model of parallelism vs GPU hardware



- A Thread is the code executed on one processor
- A **Warp** is a subdivision of a block
  - Warp = 32 threads
  - Threads in a warp are executed in parallel on one SM in a Single Instruction (SIMD) fashion
- A Block gets scheduled to be executed on one Streaming Multiprocessor:
  - (share memory),
  - communication
  - synchronization easy
- · A Grid is executed on a device



# Scheduling threads to the GPU hardware

#### At runtime:

- Blocks assigned to SMs
- Many blocks ensure good utilization
- of hardware and hence scalability

#### Warps:

- Smaller subdivision of a block
- One warp = 32 threads (HW:16)
- Threads in warp executed in

SIMD (Single Instruction Multiple Data) fashion

#### The hardware schedules warps:

- Want high number of active warps, or occupancy
- Usage of resources (registers, shared memory, etc) limits occupancy
- Not handled explicitly when programming, but can matter for performance (next lecture)





# Thread model

# **Branch divergence:**

- Threads in warp execute simultaneously on the SM
- Must execute the same instruction.
- Branch divergence can hurt performance

# **Example:**



# Thread model

# **Branch divergence:**

- Threads in warp execute simultaneously on the SM
- Must execute the same instruction
- Branch divergence can hurt performance

# **Example:**



#### Thread model

#### **Branch divergence:**

- Threads in warp execute simultaneously on the SM
- Must execute the same instruction.
- Branch divergence can hurt performance

#### **Example:**



Efficiency loss!

Note: Threads in the same block but different Warps do not have this problem

#### CUDA introduction

#### Compute Unified Device Architecture

- Dedicated framework for GPU programming
  - Programming language (C/C++ extension)
  - Hardware and thread model
  - Development toolkit

#### Pros/Cons

- ++ Low-level (high performance)
  - Low-level (hard to program)
  - + Mature (debugger, profiler, ...
  - Nvidia only
  - + Portable across Nvidia GPUs







# OpenCL & CUDA

- Also: OpenCL
  - Open standard
  - Cross platform (GPUs, multicores, FPGA, etc)
  - Low-level (high performance)
- Why CUDA?
  - OpenCL must be tuned to perform
  - CUDA performs better
  - Not as mature
  - Messy to program
- They are similar:
  - Very similar programming models
  - Can "easily" convert ~ CUDA ⇔ OpenCL

















Imagination

















#### First CUDA code

**Vector addition:** x := x + y

#### **CPU** function:

```
void vec_add(int N, float *x, const float *y) {
  for(int i=0; i<N; ++i)
    x[i] = x[i] + y[i];
}</pre>
```

#### **CUDA** kernel:

```
__global__
void vec_add(int N, float *x, const float *y) {
  int i = threadIdx.x;
  x[i] = x[i] + y[i];
}
```

#### Call:

```
vec_add <<<1,N>>>(N, x, y);
```

Additional reading: https://developer.nvidia.com/blog/even-easier-introduction-cuda/



# Understanding CUDA kernels

# **Types of functions:**

| global | Device code called from host – kernel        |
|--------|----------------------------------------------|
| device | Device code called from device               |
| host   | Host code called from host (usual functions) |

# **Identifying threads:**

| threadIdx | Thread index in a block |
|-----------|-------------------------|
| blockIdx  | Block index in a grid   |
| blockDim  | Size of a block         |

#### **Data Type:**

dim3

- 1D, 2D or 3D data type
- Integer vector type:

threadIdx.x/ threadIdx.y / threadIdx.z



# Launching CUDA kernels

• Kernel invocation via triple chevrons:

• Configuration parameters:

| block_dim | Size of thread block | (dim3) |
|-----------|----------------------|--------|
| grid_dim  | Blocks per grid      | (dim3) |



# Example: matrix addition. Given N, A, B

#### Code:

#### **Invocation:**

```
Round up

/* kernel configuration */
dim3 block_dim(8, 8);

int num_blocks = 1 + (N-1)/8;
dim3 grid_dim(num_blocks, num_blocks);
/* kernel launch */
matrix_sum<<<grid_dim,block_dim>>>(N, C, A, B);
...
```



# Memory in CUDA - on GPU

#### Types of memory:

- Single thread has registers
  - ≤ 255 32-bit regs
  - 0 cycle access cost
- Threads in block share memory
  - shared memory up to 192 kB / SM
  - $\sim 50$  cycles
  - up to ~ 10 TB/s on recent GPUs
  - High BW, high latency compared to cpu
- Main device memory –
   global memory
  - ~ 8–40 GB
  - ~ 500 cycles
  - ~ 200-1600 GB/s



# Memory in CUDA - on GPU

- Allocating device memory:
  - cudaMalloc allocates global memory on device
  - cudaFree frees it again
  - cudaMemset used for initializing memory
- Used exactly like:
  - malloc
  - free
  - memset
- Device and host pointers:
  - Pointers either valid on host or device
- Exception: Unified memory
  - cudaMallocManaged





# Memory in CUDA

- Host-device transfer cudaMemcpy:
- · Host to device:

```
cudaMemcpy( x_dev , x_host , num_bytes , cudaMemcpyHostToDevice);
```

Device to host:

```
cudaMemcpy( x_host , x_device , num_bytes , cudaMemcpyDeviceToHost);
```

#### Also cudaMemcpyAsync:

- Non-blocking communication
- Overlap communication and computation
- Cf. MPI Isend



# Memory in CUDA

# Example:

```
void main() {
  int n = 256;
  int num_bytes = n*sizeof(int);
  int *x_dev, *x_host;
 /* allocate memory */
 x_host = (int*) malloc(num_bytes);
  cudaMalloc(&x_dev, num_bytes);
  /* set to 0 */
  cudaMemset(x_dev, 0, num_bytes);
  /* copy memory to host */
  cudaMemcpy(x_host, x_dev, num_bytes,
             cudaMemcpyDeviceToHost);
  /* free up memory */
  free(x_host);
  cudaFree(x_dev);
```



# Further Sources

- Current capabilities see e.g.
  - https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Read the Whitepaper:

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

• Other resources are:

https://developer.nvidia.com/blog/even-easier-introduction-cuda/

They start with Unified Memory.

