

Ankit Gupta
VSB-Technical University of Ostrava

Outline

- ✓ REVISION: neural network
- ✓ CASE STUDY: wines classification
- ✓ CASE STUDY: Body Fat

Let's review some concepts

Example

Neural network for ripe tomato classification

How does a Neural Network work?

The weighted sum of inputs is a fed as input to the activation function to decide which nodes to fire for feacture extraction

How does a Neural Network work?

Input features are mapped to corresponding class labels using interative process called epoch. The respective weights of interconnections are optimised based on the estimated error (Backpropagation).

Mathematical Operations behind ANNs

Let the input unit, hidden unit and output unit be represented as i_1 , h_1 , and o_1 . Let the weight pointing from node i (input layer) to j (hidden layer) be w_{ji} , and from node j (hidden layer) to k (output layer) be w'_{ki} . Further, the weights associated with bias terms is equal to 1.

W43

Hidden Layer Units calculation

$$h_{1} = \sigma(\mathbf{w}_{10} * \mathbf{i}_{0} + \mathbf{w}_{11} * \mathbf{i}_{1} + \mathbf{w}_{12} * \mathbf{i}_{2} + \mathbf{w}_{13} * \mathbf{i}_{3})$$

$$h_{2} = \sigma(\mathbf{w}_{20} * \mathbf{i}_{0} + \mathbf{w}_{21} * \mathbf{i}_{1} + \mathbf{w}_{22} * \mathbf{i}_{2} + \mathbf{w}_{23} * \mathbf{i}_{3})$$

$$h_{3} = \sigma(\mathbf{w}_{30} * \mathbf{i}_{0} + \mathbf{w}_{31} * \mathbf{i}_{1} + \mathbf{w}_{32} * \mathbf{i}_{2} + \mathbf{w}_{33} * \mathbf{i}_{3})$$

$$h_{4} = \sigma(\mathbf{w}_{40} * \mathbf{i}_{0} + \mathbf{w}_{41} * \mathbf{i}_{1} + \mathbf{w}_{42} * \mathbf{i}_{2} + \mathbf{w}_{43} * \mathbf{i}_{3})$$

Output Layer Units calculation

$$o_1 = \sigma(w'_{10} * h_0 + w'_{11} * h_1 + w'_{12} * h_2 + w'_{13} * h_3 + w'_{14} * h_4)$$

$$o_2 = \sigma(w'_{20} * h_0 + w'_{21} * h_1 + w'_{22} * h_2 + w'_{23} * h_3 + w'_{24} * h_4)$$

Mathematical Operations behind ANNs

W43

Hidden Layer Units calculation

$$h_{1} = \sigma(\mathbf{w}_{10} * \mathbf{i}_{0} + \mathbf{w}_{11} * \mathbf{i}_{1} + \mathbf{w}_{12} * \mathbf{i}_{2} + \mathbf{w}_{13} * \mathbf{i}_{3})$$

$$h_{2} = \sigma(\mathbf{w}_{20} * \mathbf{i}_{0} + \mathbf{w}_{21} * \mathbf{i}_{1} + \mathbf{w}_{22} * \mathbf{i}_{2} + \mathbf{w}_{23} * \mathbf{i}_{3})$$

$$h_{3} = \sigma(\mathbf{w}_{30} * \mathbf{i}_{0} + \mathbf{w}_{31} * \mathbf{i}_{1} + \mathbf{w}_{32} * \mathbf{i}_{2} + \mathbf{w}_{33} * \mathbf{i}_{3})$$

$$h_{4} = \sigma(\mathbf{w}_{40} * \mathbf{i}_{0} + \mathbf{w}_{41} * \mathbf{i}_{1} + \mathbf{w}_{42} * \mathbf{i}_{2} + \mathbf{w}_{43} * \mathbf{i}_{3})$$

Output Layer Units calculation

$$o_1 = \sigma(w'_{10} * h_0 + w'_{11} * h_1 + w'_{12} * h_2 + w'_{13} * h_3 + w'_{14} * h_4)$$

$$o_2 = \sigma(w'_{20} * h_0 + w'_{21} * h_1 + w'_{22} * h_2 + w'_{23} * h_3 + w'_{24} * h_4)$$

Mathematical Operations behind ANNs

Let the input unit, hidden unit and output unit be represented as i_1 , h_1 , and o_1 . Let the weight pointing from node i (input layer) to j (hidden layer) be w_{ji} , and from node j (hidden layer) to k (output layer) be w'_{kj} . Fu

Hidden Layer Units calculation (Matrix Form)

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} w_{10} & w_{11} & w_{12} & w_{13} \\ w_{20} & w_{21} & w_{22} & w_{23} \\ w_{30} & w_{31} & w_{32} & w_{33} \\ w_{40} & w_{41} & w_{42} & w_{43} \end{bmatrix} \cdot \begin{bmatrix} i_0 \\ i_1 \\ i_2 \\ i_3 \end{bmatrix}$$

Output Layer Units calculation (Matrix Form)

$$\begin{bmatrix} o_1 \\ o_1 \end{bmatrix} = \begin{bmatrix} W_{10}' & W_{11}' & W_{12}' & W_{13}' & W_{14}' \\ W_{20}' & W_{21}' & W_{22}' & W_{23}' & W_{24}' \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix}$$

How does a Neural Network work?

Training error and validation error are functions of the number epochs.

Neural Network Training Basic Workflow

Neural Network Training Basic Workflow

- **Data Collection:** Collecting the features along with the corresponding labels.
- **Network Creation:** Deciding the number of hidden units and create a basic Neural Network architecture.
- **Configuring Network:** Selecting the error function and optimization algorithm, convergence condition, stopping criteria, train-test data splitting criteria.
- Weights and biases Initialization: This is done for faster convergence; depends on experience.
- Network Training: Multiple passes for mapping inputs(features) to outputs(labels).
- Network Validation: It is done by predicting the validation data samples followed by calculating various performance metrics e.g. confusion matrix.

Let's to our first case.

Case study:

wine classification

Pattern recognition neural network for wines classification by winery based on its chemical characteristics.

Case study:

wine classification

In this example we attempt to build a neural network that can classify wines from 3 wineries by 13 attributes:

- 1. Alcohol
- 2. Malic acid
- 3. Ash
- 4. Alcalinity of ash
- 5. Magnesium
- 6. Total phenols
- 7. Flavanoids
- 8. Nonflavanoid phenols
- 9. Proanthocyanins
- 10. Color intensity
- 11. Hue
- 12. OD280/OD315 of diluted wines
- 13. Proline

Preparing the Data

1. Load the dataset

- The data is organized into 2 matrices \rightarrow the input matrix x and the target matrix t.
- Both matrices have 178 columns → represent 178 wine sample attributes (inputs) and associated winery class vectors (targets).
- Input matrix x has 13 rows → represent the 13 attributes.
- Target matrix t has 3 rows → represent the 3 wineries.

Creating Neural Network for Pattern Recognition

2. Create a neural network that will learn to classify the wines

```
net = patternnet(10);
view(net);
```


Configuring the Neural Network

3. Configuration of neural network

```
net.trainFcn='trainIm'; 'Levenberg-Marquardt'
net.performFcn='mse';
net.trainParam.min_grad=0;
net.trainParam.epochs=50
net.trainParam.max_fail =50;
net.divideParam.trainRatio=0.7;
net.divideParam.valRatio=0.15;
net.divideParam.testRatio=0.15;
```


Training the Neural Network

4. Train of Neural Network

Testing the Neural Network

5. Test the performance of Neural Network

```
testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)
```


Checking the performance

5. Plot confusion

```
plotconfusion(testT,testY)
```

Or

```
[c,cm] = confusion(testT,testY);
fprintf('% Correct Classification : %f%%\n', 100*(1-c));
fprintf('% Incorrect Classification : %f%%\n', 100*c);
```


Confusion Matrix

TP-True Positive
True class(+)=Predicted class(+)

TN-True Negative
True class(-)=Predicted class(-)

FP-False Positive
True class(-)=Predicted class(+)

FN-False Negative
True class(+)=Predicted class(-)

Checking the performance

5. Plot confusion

- 1. The rows correspond to the predicted class: Output Class
- 2. the columns correspond to the true class: Target Class.
- 3. The diagonal cells correspond to observations that are correctly classified(**True Positives/True Negatives**).
- The off-diagonal cells correspond to incorrectly classified observations(False Negatives/False Positives).
- 5. The cell in the bottom right of the plot shows the overall accuracy

Checking the performance

5. Plot confusion

- Precision (positive predictive value) and false (positive)
 discovery rate: The column on the far right of the plot
 shows the percentages of all the examples predicted to
 belong to each class that are correctly and incorrectly
 classified.
- 7. Recall (or true positive rate) and false negative rate: The row at the bottom of the plot shows the percentages of all the examples belonging to each class that are correctly and incorrectly classified.

Checking the performance

5. Understanding confusion matrix for multi-classes

Analyzing the confusion matrix for multi-class classification is actually one-vs-all classification.

One-vs-all means one class is treated as positive class, while other classes are treated as negative classes, at a time.

redicted Class

	Target Class			
SS		1	2	3
ı Class	1	8	0	0
redicted	2	0	9	1
T E	3	0	0	0

Checking the performance

5. Understanding confusion matrix for multi-classes

Analyzing the confusion matrix for multi-class classification is actually one-vs-all classification.

One-vs-all means one class is treated as positive class, while other classes are treated as negative classes, at a time.

redicted Class

	Target Class			
SS		1	2	3
ı Class	1	8	0	0
redicted	2	0	9	1
T E	3	0	0	0

Checking the performance

5. Plot confusion

Target Class

Predicted Class

	1	2	3
1	8	0	0
2	0	9	1
3	0	0	0

Target Class

Predicted Class

	1	0	0
1	TP	FP	FP
0	FN	TN	TN
0	FN	TN	TN

Similar procedure can be followed for class 2 and 3, followed by calculating accuracy, sensitivity and specificity.

Checking the performance

5. Performance Metrics

$$Accuracy = \frac{TP + TN}{P + N}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN+FP}$$

3. CASE STUDY: Body fat

Let's to the third case.

Case study:

body fat

Fitting neural network for estimate the percentage of body fat of someone from various measures.

- 1. Age (years)
- 2. Weight (lbs)
- 3. Height (inches)
- 4. Neck circumference (cm)
- 5. Chest circumference (cm)
- 6. Abdomen 2 circumference (cm)
- 7. Hip circumference (cm)
- 8. Thigh circumference (cm)
- 9. Knee circumference (cm)
- 10. Ankle circumference (cm)
- 11. Biceps (extended) circumference (cm)
- 12. Forearm circumference (cm)
- 13. Wrist circumference (cm)

3. CASE STUDY: body fat

Pattern recognition neural network & Fitting neural network

Artificial neural network for fitting is quite similar for classifying

```
Instead of using:
```

net = patternnet(10);

We use:

net = fitnet(10);

3. CASE STUDY: body fat

Fitting neural network

Best Validation Performance is 21.4797 at epoch 6 Train Validation Test Best 100 0 2 4 6 8 10 12 14 16 16 Epochs

Performance during training process

Analysing Results

3. CASE STUDY: body fat

Neural Network Start GUI

[bodyfatInputs,bodyfatTargets]= bodyfat_dataset;
Open the Neural Network Start GUI with this command: nnstart

The rest of the process is similar to the previous case study

NOTES AND TIPS

Now, the most important thing is to practice to gain sensitivity for creating neural models

For practicing

Datasets: Deep Learning Toolbox Sample Data Sets

Use the Neural Network Start GUI. Use the script button to reproduce the neural network and, then, adapt it to solve similar problems.

Thanks!