RELATIONAL OPERATORS: JOIN

CS 564- Fall 2021

JOIN OPERATOR

Algorithms for equijoin:

```
SELECT *

FROM R, S

WHERE R.a = S.a
```

Why can't we compute it as cartesian product?

JOIN ALGORITHMS

Algorithms for equijoin:

- nested loop join
- block nested loop join
- index nested loop join
- block index nested loop join
- sort merge join
- hash join

NESTED LOOP JOIN

for each page P_R in ${\bf R}$ #outer loop for each page P_S in ${\bf S}$ #inner loop join the tuples on P_R with the tuples in P_S

I/O cost =
$$M_R + M_S \cdot M_R$$

- M_R = number of pages in **R**
- M_S = number of pages in **S**

Note that we ignore the cost of writing the output to disk!

NESTED LOOP JOIN

- Which relation should be the outer relation in the loop?
 - The smaller of the two relations

- How many buffer frames do we need?
 - 3 frames suffice!

BLOCK NESTED LOOP JOIN

Assume *B* buffer pages

for each block of (B-2) pages from ${\bf R}$ #outer loop for each page P_S in ${\bf S}$ #inner loop join the tuples from the block with the ones in P_S

I/O cost =
$$M_R + M_S \cdot \left[\frac{M_R}{B-2} \right]$$

BLOCK NESTED LOOP JOIN

What happens if **R** fits in memory?

• the I/O cost is only $M_R + M_S$!

To increase CPU efficiency, we can build an inmemory hash table for each block

- the key of the hash table is the join attribute
- the cost becomes $M_R + M_S \cdot \left[\frac{f \cdot M_R}{B-2} \right]$ where f is the fudge factor

fudge factor: the factor by which storing increases because of an underlying data structure

NLJ VS BNLJ

Example:

- $M_R = 500$ pages, $M_S = 1000$ pages
- *B* = 12

NLJ cost =
$$500 + 500 \cdot 1,000 = 500,500$$

BNLJ cost = $500 + \frac{500 \cdot 1,000}{12-2} = 50,500$

The difference in I/O cost in an order of magnitude!

INDEX NESTED LOOP JOIN

S has an index on the join attribute

for each page P_R in ${\bf R}$ for each tuple r in P_R probe the index of ${\bf S}$ to retrieve matching tuples

$$I/O \cos t = M_R + |R| \cdot I^*$$

 I* is the I/O cost of searching an index, and depends on the type of index and whether it is clustered or not

BLOCK INDEX NESTED LOOP JOIN

for each block of B-2 pages in \mathbf{R} sort the tuples in the block for each tuple r in the block probe the index of \mathbf{S} to retrieve matching tuples

Why do we need to sort here?

SORT MERGE JOIN

SORT MERGE JOIN: BASIC VERSION

The basic version:

- sort R and S on the join attribute using external merge sort
- read the sorted relations in the buffer and merge

If **R**, **S** are already sorted on the join attribute we can skip the first step!

SORTING WITH DUPLICATES

SORTING WITH DUPLICATES

SMJ: I/O COST

- If there is no backup, the I/O cost of read + merge is only $M_R + M_S$
- If there is backup, in the worst case the I/O cost could be $M_R \cdot (M_S 1)$
 - this happens when there is a single join value

Total I/O cost ~
$$sort(R) + sort(S) + M_R + M_S$$

SORT MERGE JOIN: OPTIMIZED

- Generate sorted runs of size $\sim 2B$ for **R** and **S**
- Merge the sorted runs for R and S
 - while merging check for the join condition and output the join tuples

I/O cost
$$\sim 3(M_R + M_S)$$

But how much memory do we need for this to happen?

SMJ: MEMORY ANALYSIS

- In the first phase, we create runs of length \sim 2B
- Hence, the number of runs is $\frac{M_R + M_S}{2B}$
- To perform a k-way merge, we need k+1 buffer pages, so:

$$\frac{M_R + M_S}{2B} \le B - 1$$
 or $B(B - 1) \ge (M_R + M_S)/2$

If $B(B-1) \ge (M_R + M_S)/2$, then SMJ has I/O cost $\sim 3(M_R + M_S)$

HASH JOIN

HASH FUNCTION REFRESHER

- We will use a hash function *h* to map values of the join attribute (A) into buckets [1, B-1]
- A tuple t is then hashed to bucket h(t.A)

- A hash **collision** occurs when x != y but h(x) = h(y)
- It can never happen that x = y and h(x) != h(y)

HASH JOIN: OVERVIEW

Start with a hash function *h* on the join attribute

- Partition phase: partition R and S into k partitions using h
- Matching phase: join each partition of R with the corresponding (same hash value) partition of S using BNLJ

BUCKET SIZE

- We can create up to k = B-1 partitions in one pass
- How big are the buckets we create?
 - Ideally, each bucket has $\sim M/(B-1)$ pages
 - but hash collisions can occur!
 - or we may have many duplicate values on the join attribute (skew)
- In the matching phase, we join two buckets from R, S with the same hash value
 - We want to do this in linear time using BNLJ, so we must guarantee that each bucket from one of the two relations is at most B-1 pages

HJ: I/O COST

- Suppose $M_R \leq M_S$
- The partition phase gives buckets of size $\sim M_R/B$
- To make BNLJ run in 2 passes we need to make sure that:

$$\frac{M_R}{B-1} \le B-2 \text{ or } (B-2)(B-1) \ge M_R$$

If
$$(B-2)(B-1) \ge M_R$$
, then HJ has I/O cost $\sim 3(M_R + M_S)$

• If $M_R \le B - 2$, then HJ needs only one pass!

HJ/BNLJ COMPARISON

Suppose $M_R \leq M_S$

BNLJ cost =
$$M_R + M_S \cdot \left[\frac{M_R}{B-2} \right]$$

- If $M_R \le B 2$, HJ and BNLJ both run in 1 pass and have the same cost
- If $B 2 < M_R \le 3(B 2)$, BNLJ is better!
- For other values, it depends on M_R , M_S

SMJ/BNLJ COMPARISON

Suppose $M_R \leq M_S$

- To do a 2-pass, SMJ needs $B(B-1) \ge (M_R + M_S)/2$
 - the I/O cost is: $3(M_R + M_S)$

- To do a 2-pass, HJ needs $(B-2)(B-1) \ge M_R$
 - the I/O cost is: $3(M_R + M_S)$

GENERAL JOIN CONDITIONS

Equalities over multiple attributes

- e.g., R.sid=S.sid and R.rname=S.sname
- for Index Nested Loop Join
 - index on <sid, sname>
 - index on sid or sname
- for SMJ and HJ, we can sort or hash using the combination of join attributes

GENERAL JOIN CONDITIONS

Inequality conditions

- e.g., *R.rname < S.sname*
- For BINL, we need (clustered) B+ tree index
- SMJ and HJ are not applicable
- BNLJ can be always applied