МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3343	Пухов А.Д.
Преподаватель	Иванов Д.В

Санкт-Петербург 2023

Цель работы

Реализация машины Тьюринга на Python.

Задание.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Ī			a	С	С	a	b	С	b	a	b	a	a	С	a	b		
	'	1 1	l i	1	1 1	1 1	1 1	!	1		۱ ۱	¶ 1	۱ ۱	1	۱ ۱	1 1	1	

Напишите программу, которая заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'с' на символ, следующий за первым встретившимся символом 'а'. Если первый встретившийся символ 'а' в конце строки, то используйте его в качестве заменяющего.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

		С	С	С	a	b	С	b	a	b	a	a	С	a	b		
l					1												

Алфавит:

- a
- b
- C
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Таблица 1 – таблица состояний

	ʻa'	'b'	'c'	"
q0	'a', R, 'q1'	'b', R, 'q0'	'c', R, 'q0'	'', R, 'q0'
q1	'a', L, 'qa'	'b', L, 'qb'	'c', L, 'qc'	'', L, 'qa_end'
qa	'a', L, 'qa'	'b', L, 'qa'	'c', L, 'qa'	'', R, 'qa1'
qa1	'a', R, 'qa1'	'b', R, 'qa1'	'c', L, 'qac'	
qac	'a', N, 'qT'	'a', N, 'qT'		'a', N, 'qT'
qb	'a', L, 'qb'	'b', L, 'qb'	'c', L, 'qb'	'', R, 'qb1'
qb1	'a', R, 'qb1'	'b', R, 'qb1'	'c', L, 'qbc'	
qbc	'b', N, 'qT'	'b', N, 'qT'		'b', N, 'qT'
qc	ʻa', L, ʻqc'	'b', L, 'qc'	'c', L, 'qc'	'', R, 'qc1'
qc1	'a', R, 'qc1'	'b', R, 'qc1'	'c', L, 'qcc'	
qcc	'c', N, 'qT'	'c', N, 'qT'		'c', N, 'qT'

Описание состояний:

- q0 ищет первый встретившийся символ 'a'.
- q1 определяет какой символ стоит после 'a'.
- qa, qb, qc переводит курсор на самый первый символ в строке
- qa1, qb1, qc1 ищет первый символ 'c'
- qac, qbc, qcc заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'c' на символ, следующий за первым встретившимся символом 'a'

•

Принцип работы машины Тьюринга:

- memory введённая строка
- index индекс ячейки (начальное значение 0)
- state текущее состояние (начальное значение q0)
- stable таблица состояний

• С помощью цикла while и словаря stable строка преобразуется согласно условию.

Разработанный программный код см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	cccab	bcccab	ОК
2.	bbbbcbcbbcca	bbbacbcbbcca	OK

Выводы

В данной лабораторной работе был изучен и применён на практике принцип работы машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: арр-002.ру
table = {
   'q0': {'a': ('a', 1, 'q1'), 'b': ('b', 1, 'q0'), 'c': ('c', 1, 'q0'), ' ': (' ', 1, 'q0')},
   'q1': {'a': ('a', -1, 'qa'), 'b': ('b', -1, 'qb'), 'c': ('c', -1, 'qc'), ' ': (' ', -1, 'qa')},
   'qa':{'a': ('a', -1, 'qa'), 'b': ('b', -1, 'qa'), 'c': ('c', -1, 'qa'), ' ': (' ', 1, 'qa1')},
   'qa1':{'a': ('a', 1, 'qa1'), 'b': ('b', 1, 'qa1'), 'c': ('c', -1, 'qac')},
   'qac':{'a': ('a', 0, 'qT'), 'b': ('a', 0, 'qT'), ' ':('a', 0, 'qT')},
   'qb':{'a': ('a', -1, 'qb'), 'b': ('b', -1, 'qb'), 'c': ('c', -1, 'qb'), ' ': (' ', 1, 'qb1')},
   'qb1':{'a': ('a', 1, 'qb1'), 'b': ('b', 1, 'qb1'), 'c': ('c', -1, 'qbc')},
   'qbc':{'a': ('b', 0, 'qT'), 'b': ('b', 0, 'qT'), ' ':('b', 0, 'qT')},
   'qc': {'a': ('a', -1, 'qc'), 'b': ('b', -1, 'qc'), 'c': ('c', -1, 'qc'), ' ': (' ', 1, 'qc1')},
   'qc1': {'a': ('a', 1, 'qc1'), 'b': ('b', 1, 'qc1'), 'c': ('c', -1, 'qcc')},
   'qcc': {'a': ('c', 0, 'qT'), 'b': ('c', 0, 'qT'), ' ':('c', 0, 'qT')},
}
memory = input()
memory = list(' ' + memory + ' ')
index = 0
state = 'q0'
while state != 'qT':
   sim = memory[index]
   new_sim, delta, state = table[state][sim]
   memory[index] = new_sim
```

index += delta
print(".join(memory))