Old Problem: Logic + ML often at odds

March 2, 2016

Old Problem: Logic + ML often at odds

ML gives us practical, generalizable systems:

- P: Ovaries are the female part of the flower, which produces eggs that are needed for making seeds.
- H: A flower produces the seeds.

...But struggles with logical subtleties

- P: Eating candy for dinner is an example of a poor health habit.
- H: Eating candy is an example of a good health habit.

Make ML more first-order-logic-like

Markov Logic Networks

- [Richardson and Domingos, 2006]
- [Niu et al., 2011]

Probabilistic Soft Logic

- [Kimmig et al., 2012]
- [Beltagy et al., 2014]

Deep Learning + Logic

• [Rocktäschel et al., 2014]

Natural Logic!

Natural Logic!

Logic over natural language

- Instantaneous and perfect semantic parsing!
- Plays nice with lexical methods

Natural Logic!

Logic over natural language

- Instantaneous and perfect semantic parsing!
- Plays nice with lexical methods

Tractable

 Polynomial time entailment checking [MacCartney and Manning, 2008].

Natural Logic!

Logic over natural language

- Instantaneous and perfect semantic parsing!
- Plays nice with lexical methods

Tractable

 Polynomial time entailment checking [MacCartney and Manning, 2008].

Expressive (for common inferences)

Second-order phenomena; most; quantifier scoping

S N L P

[Sánchez Valencia, 1991, MacCartney and Manning, 2008, Icard III and Moss. 2014]

Natural Logic!

Logic over natural language

- Instantaneous and perfect semantic parsing!
- Plays nice with lexical methods

Tractable

 Polynomial time entailment checking [MacCartney and Manning, 2008].

Expressive (for common inferences)

- Second-order phenomena; most; quantifier scoping
- No free lunch: shallow quantification; single-premise only [Sánchez Valencia, 1991, MacCartney and Manning, 2008,

The Persians are Invading Greece

How Did You Solve This?

Show of Hands: First Order Logic?

```
\forall x \; God(x) \supset LivesOnOlympus(x)
2
        \exists x \; \operatorname{Hero}(x) \wedge \operatorname{God}(x)
3
        \neg \exists x \text{ LivesOnOlympus}(x) \land \text{Persian}(x)
             \forall x \; \operatorname{Hero}(x) \supset \operatorname{Persian}(x)
4
5
             a Hero(a) \wedge God(a)
                                                                            ∃E. 2
                                                                            ∧E. 5
6
                   Hero(a)
                   Hero(a) ⊃ Persian(a)
                                                                            ∀E, 4
8
                   Persian(a)
                                                                            ⇒E, 6, 7
9
                   God(a)
                                                                            ∧E, 5
10
                   God(a) \supset LivesOnOlympus(a)
                                                                            ∀E, 1
11
                   LivesOnOlympus(a)
                                                                            ⇒E. 9. 10
12
                   LivesOnOlympus(a) \land Persian(a)
                                                                            ∧I. 8. 11
                   \exists x \text{ LivesOnOlympus}(x) \land \text{Persian}(x)
13
                                                                            ∃I. 12
             \exists x \text{ LivesOnOlympus}(x) \land \text{Persian}(x)
                                                                            R. 12
14
15
                                                                            \perp I, 3, 14
16
        \neg \forall x \text{ Hero}(x) \supset \text{Persian}(x)
                                                                            ¬ I. 4—15
```


Syllogisms: The First Natural Logic

- 1 All Gods live on Mount Olympus
- 2 Some heroes are Gods
- 3 Nobody who lives on Mount Olympus is Persian
- 4 Some heroes live on Mount Olympus
- 5 Some heroes are not Persian
 - ¬ All heroes are Persian

- All (Darii), 1, 2
- EIO (Ferio), 4, 3
- SaP \(\text{SoP. 5}

Syllogisms: The First Natural Logic

- 1 All Gods live on Mount Olympus
- 2 Some heroes are Gods
- 3 Nobody who lives on Mount Olympus is Persian
- 4 Some heroes live on Mount Olympus

AII (Darii), 1, 2

5 Some heroes are not Persian

EIO (Ferio), 4, 3

¬ All heroes are Persian

SaP \(\text{SoP. 5}

...But syllogisms are cripplingly unexpressive

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Mutations must respect polarity.

Not pictured: also handles negation

Shorthand for a node:

No carnivores eat animals?

Three Contributions for Generalizable Inference

1. Partial order over meronymy + relations

7/17

Three Contributions for Generalizable Inference

1. Partial order over meronymy + relations

2. Natural Logic over dependency trees

Three Contributions for Generalizable Inference

1. Partial order over meronymy + relations

2. Natural Logic over dependency trees

3. Hybrid statistical / logical solver

8 / 17

Rain and snow are types of precipitation

Rain and snow are forms of precipitation?

Rain and snow are forms of weather

Heavy rain and snow are forms of precipitation

Forms of precipitation include rain and sleet

Rain and snow are types of precipitation

Rain and snow are forms of precipitation?

Rain and snow are forms of weather

Heavy rain and snow are forms of precipitation

Forms of precipitation include rain and sleet

Lexical Alignment Classifier

Forms of precipitation include rain and sleet

Rain and snow are forms of precipitation

Forms of precipitation include rain and sleet

Rain and snow are forms of precipitation

Features

Matching words

Features

- 1. Matching words
- 2. Mismatched words

Features

- Matching words
- Mismatched words
- 3. Unmatched words in premise/consequent

Features

- Matching words
- Mismatched words
- 3. Unmatched words in premise/consequent

Competitive with Stanford RTE system (63% on RTE3)

Old Problem: Logic + Lexical Classifiers

FOL and lexical classifiers don't speak the same language

Old Problem: Logic + Lexical Classifiers

FOL and lexical classifiers don't speak the same language ...but natural logic does!

Big Picture

Run our usual search

1. If we find a premise, great!

Big Picture

Run our usual search

- 1. If we find a premise, great!
- 2. If not, use lexical classifier as an evaluation function

Big Picture

Run our usual search

- 1. If we find a premise, great!
- 2. If not, use lexical classifier as an evaluation function

Visit 1M nodes / second: We have to be fast!

Dissecting Our Classifier

Anatomy of a Classifier

- Features *f* (matching / mismatched / unmatched words)
- Weights w
- Entailment pair x

$$p(\text{entail} \mid x) = \frac{1}{1 + \exp(-w^T f(x))}$$

Dissecting Our Classifier

Anatomy of a Classifier

- Features f (matching / mismatched / unmatched words)
- Weights w
- Entailment pair x

$$p(\text{entail} \mid x) = \frac{1}{1 + \exp(-w^{\mathrm{T}}f(x))}$$

$$p(\text{entail} \mid x)$$
 monotone w.r.t. $(w^T f(x))$

Dissecting Our Classifier

Anatomy of a Classifier

- Features f (matching / mismatched / unmatched words)
- Weights w
- Entailment pair x

$$p(\text{entail} \mid x) = \frac{1}{1 + \exp(-w^T f(x))}$$

$$p(\text{entail} \mid x)$$
 monotone w.r.t. $(w^T f(x))$

- Only need $w^T f(x)$ during search to compute $\max p(\text{entail} \mid x)$
- $w^{T}f(x)$ is our evaluation function

Incorporating our Evaluation Function

Anatomy of a Search Step

- 1. Mutate a word, or
- 2. Delete a word, or
- 3. Insert a word.

Each step updates a small number of features

$$W^{T} f(x) = V$$

March 2, 2016

Incorporating our Evaluation Function

Anatomy of a Search Step

- 1. Mutate a word, or
- 2. Delete a word, or
- 3. Insert a word.

Each step updates a small number of features

$$w^{\mathrm{T}} f(x) = v$$

Incorporating our Evaluation Function

Anatomy of a Search Step

- 1. Mutate a word, or
- 2. Delete a word, or
- 3. Insert a word.

Each step updates a small number of features

Why is this Important?

Faster Search ⇒ Deeper Reasoning

Speed: Around 1M search states visited per second

Memory: 32 byte search states

Speed: Don't re-featurize at every timestep.

Memory: Never store intermediate fact as String.

Score $w^{T}f(x)$: -0.5

Feature	W	f(x)
Matching words	2.0	2
Mismatched words	-1.0	2
Unmatched premise	-0.5	1
Unmatched consequent	-0.75	0
Bias	-2.0	1

Score
$$w^{T}f(x)$$
: -0.5 + 2 - -1

Feature	W	f(x)
Matching words	2.0	3
Mismatched words	-1.0	1
Unmatched premise	-0.5	1
Unmatched consequent	-0.75	0
Bias	-2.0	1

Score $w^{T}f(x)$: 2.5

Feature	W	f(x)
Matching words	2.0	3
Mismatched words	-1.0	1
Unmatched premise	-0.5	1
Unmatched consequent	-0.75	0
Bias	-2.0	_1

Multiple choice questions from real 4th grade science exams

Multiple choice questions from real 4th grade science exams

Which activity is an example of a good health habit?

- (A) Watching television
- (B) Smoking cigarettes
- (C) Eating candy
- (D) Exercising every day

Multiple choice questions from real 4th grade science exams

Which activity is an example of a good health habit?

- (A) Watching television
- (B) Smoking cigarettes
- (C) Eating candy
- (D) Exercising every day

In our corpus:

- Plasma TV's can display up to 16 million colors ... great for watching TV ... also make a good screen.
- Not smoking or drinking alcohol is good for health, regardless of whether clothing is worn or not.
- Eating candy for diner is an example of a poor health habit.
- Healthy is exercising

Multiple choice questions from real 4th grade science exams

System	Train	Test
Knowbot	45	
KNOWBOT (ORACLE)	57	

Multiple choice questions from real 4th grade science exams

System	Train	Test
Knowbot	45	
KNOWBOT (ORACLE)	57	
IR Baseline	49	
This Work	52	

Multiple choice questions from real 4th grade science exams

System	Train	Test
Киомвот	45	
KNOWBOT (ORACLE)	57	
IR Baseline	49	
This Work	52	
More Data + IR Baseline	62	
More Data + This Work	65	

Learning Knowledge From Text

Multiple choice questions from real 4th grade science exams

System	Train	Test
Knowbot	45	_
Knowbot (oracle)	57	_
IR Baseline	49	42
This Work	52	51
More Data + IR Baseline	62	58
More Data + This Work	65	61

Multiple choice questions from real 4th grade science exams

System	Train	Test
Knowbot	45	_
KNOWBOT (ORACLE)	57	_
IR Baseline	49	42
This Work	52	51
More Data + IR Baseline	62	58
More Data + This Work	65	61
This Work + >+ >	74	67

Multiple choice questions from real 4th grade science exams

System	Train	Test
Knowbot	45	_
KNOWBOT (ORACLE)	57	_
IR Baseline	49	42
This Work	52	51
More Data + IR Baseline	62	58
More Data + This Work	65	61
This Work + >+ >	74	67

We're able to pass 4th grade science!

Conclusions

Natural Logic

- A logic over the syntax of natural language
- Expressive but efficient

Natural Logic "plays nice" with statistical (/deep?) methods

- Both operate directly over text
- Use lexical classifier as evaluation function

NaturalLI + Evaluation Function

- Also detects likely entailment / contradictions
- 3% improvement on science exam questions

References I

Semantic parsing using distributional semantics and probabilistic logic.

In Association for Computational Linguistics (ACL), page 7.

Hixon, B., Clark, P., and Hajishirzi, H. (2015).

Learning knowledge graphs for question answering through conversational dialog.

NAACL.

Recent progress on monotonicity.

Linguistic Issues in Language Technology.

References II

Kimmig, A., Bach, S., Broecheler, M., Huang, B., and Getoor, L. (2012). A short introduction to probabilistic soft logic.

In Proceedings of the NIPS Workshop on Probabilistic Programming: Foundations and Applications, pages 1–4.

MacCartney, B. and Manning, C. D. (2008).

Modeling semantic containment and exclusion in natural language inference.

In Coling.

Niu, F., Ré, C., Doan, A., and Shavlik, J. (2011).

Tuffy: Scaling up statistical inference in markov logic networks using an rdbms.

VLDB.

References III

Richardson, M. and Domingos, P. (2006).

Markov logic networks.

Machine learning, 62(1-2):107–136.

Rocktäschel, T., Bošnjak, M., Singh, S., and Riedel, S. (2014).

Low-dimensional embeddings of logic.

In *Proceedings of the ACL 2014 Workshop on Semantic Parsing*.

Sánchez Valencia, V. M. (1991). Studies on natural logic and categorial grammar. PhD thesis, University of Amsterdam.

