Awesome-state Aiyagari

July 14, 2024

• Young individual's problem:

$$V^{Y}(a, e) = \max_{l, a'} \left\{ \frac{\left(c^{\gamma} (1 - l)^{1 - \gamma}\right)^{1 - \sigma}}{1 - \sigma} + \beta (1 - p_{ret}) \sum_{e'} V^{Y}(a', e') \Pi^{e}(e, e') + \beta p_{ret} V^{R}(a') \right\}$$

subject to

$$c + a' = wel + (1+r)a,$$
$$a' \ge 0.$$

Policy functions: $a' = g_{a'}^{Y}(a, e)$ and $l = g_{l}^{Y}(a, e)$.

• Old individual's problem:

$$V^{R}(a) = \max_{a'} \left\{ \frac{c^{1-\sigma}}{1-\sigma} + \beta p_{death} \sum_{e'} V^{Y}(a', e') G^{e}(e') + \beta \left(1 - p_{death}\right) V^{R}(a') \right\}$$

subject to

$$c + a' = \omega_{ret} + (1+r)a,$$
$$a' > 0.$$

Here Π^e denotes the transition matrix of the idiosyncratic shock e, G^e denotes the *initial* distribution of e. Pension benefits are denoted as ω_{ret} . Policy function: $a' = g_{a'}^R(a)$.

• Stationary distribution $\left[\mu^{Y}(a,e),\mu^{R}(a)\right]$ satisfies

$$\mu^{Y}(a',e') = (1 - p_{ret}) \sum_{a} \sum_{e} \mathbb{I}_{\left\{a' = g_{a'}^{Y}(a,e)\right\}} \Pi^{e}(e,e') \mu^{Y}(a,e) + p_{death} \sum_{a} \mathbb{I}_{\left\{a' = g_{a'}^{R}(a)\right\}} G^{e}(e') \mu^{R}(a)$$

$$\mu^{R}(a') = p_{ret} \sum_{e} \sum_{e} \mathbb{I}_{\left\{a' = g_{a'}^{Y}(a,e)\right\}} \mu^{Y}(a,e) + (1 - p_{death}) \sum_{e} \mathbb{I}_{\left\{a' = g_{a'}^{R}(a)\right\}} \mu^{R}(a)$$

- Calibration. Guvenen et al. (2023) assume that newborn individuals draw their initial labor efficiency from the initial distribution G^e . Guvenen et al. (2023) set $n_e = 4$, and take the values e_1, e_2, e_3 and the 4×4 transition matrix Π^e from Castaneda, Diaz-Gimenez and Rios-Rull (2003, Tables 4-5). They calibrate e_{n_e} , the value of the "awesome" state, to match a share of wealth held by the top 1% equal to 30%. They calibrate ω_{ret} so that the ratio of pension benefits to GDP is equal to 4.9%. For simplicity, they set G^e equal to the stationary distribution of labor efficiency, γ^e .
- VFI toolkit. We combine $e = [e_1, \dots, e_4]$ and age = [Y, R] into

$$z_grid = [e_grid; age_grid]$$

obtaining a vector with $2n_e$ points for the exogenous state. Note that this wastes grid points since we need only $n_e + 1$ values for the exogenous state z!. We set the transition matrix for the exogenous state z as follows

$$\underbrace{\Pi^{z}}_{2n_{e} \times 2n_{e}} = \begin{bmatrix} (1 - p_{ret}) \underbrace{\Pi^{e}(e, e')} & p_{ret}I_{n_{e}} \\ p_{death} \underbrace{ones(n_{e}, 1)G^{e}}_{n_{e} \times n_{e}} & (1 - p_{death}) I_{n_{e}} \end{bmatrix}$$

where I_{n_e} denotes the $n_e \times n_e$ identity matrix and $ones(n_e, 1)G^e$ denotes a matrix with G^e in every row. Let $n_z = 2n_e$. The toolkit will compute the arrays V, Policy and StationaryDist

$$V: n_a \times n_e \times n_{age} \text{ array}$$

 $Policy: 2 \times n_a \times n_e \times n_{age} \text{ array}$

 $StationaryDist: n_a \times n_e \times n_{age}$ array

Note that

$$g_l(a, e, age) = Policy(1, a, e, age),$$

 $g_{a'}(a, e, age) = Policy(2, a, e, age),$

where $a = 1, ..., n_a$, $e = 1, ..., n_e$ and age = Y, R. Note that e.g. V(a, e, R) must be the same for all e, since once the individual is retired the only relevant state variable is a, not labor productivity.

• VFI toolkit with correlated shocks. TBA.