▶ 투영(projection)이란?

우선 투영의 의미를 국어사전에서 찾아보면 '물체의 그림자를 어떤 물체 위에 비추는 일 또는 그 비친 그림자', '도형이나 입체를 다른 평면에 옮기는 일'이라고 나와있다[1]. 그림1과 같이 주황색 막대 바로 위<u>에 태양이 있을 때</u> 바닥에 그림자를 생기게 하는 것을 투영이라고 생각하면 된다. 만약 태양의 위치 에서 주황색 막대를 본다면 그림자와 같은 길이로 보일 것이다.

그림1. 투영의 의미

이것을 벡터와 관련지어서 생각해보자. 아래와 같은 서로 다른 두 벡터 a, b가 있다(그림2).

그림2. 벡터b를 벡터a에 투영시킨 결과.

벡터b를 벡터a로 투영시키면 투영벡터p가 생긴다. 벡터p는 벡터b를 벡터a를 이용해서 나타낼 수 있는 최선의 결과라고 볼 수 있다. 왜냐하면 벡터a 하나만으로는 완벽하게 벡터b를 설명해낼 수 없기 때문이다. 벡터a에 어떠한 수x를 곱하더라도 ax = b는 불가능하다. 벡터a의 크기만 달라질 뿐 방향이 달라지지는 않기 때문이다. 한면 투영벡터p는 벡터a에 어떤 계수 $^{\hat{x}}$ 를 곱하는 것으로 표현할 수 있다:

 $p = \hat{x} a_{...(공식1: 투영벡터)}$

그러면 \hat{x} 를 어떻게 계산할 수 있을까? 에러벡터e와 벡터a가 서로 수직관계에 있다는 것을 이용한다. 우선 에러벡터e는 그림2를 보면

$$e = b - p = b - \hat{x} a$$
...(공식2: 에러벡터)

임을 알 수 있다. 벡터a와 벡터e가 수직이므로

$$a^T e = a^T (b - \hat{x} a) = 0$$

ि ५ जामा असे खे, पायु 0.

이 성립해야 한다. 이것을 계산하면

$$a^{T}b - \hat{x}a^{T}a = 0$$

$$\hat{x}a^{T}a = a^{T}b$$

$$\hat{x} = \frac{a^{T}b}{a^{T}a}$$

-X: 지고: 떨턴 위에 2개의 정선이 서로 정각으로 한번 것.

이 된다. 즉 계수 $\overset{\circ}{x}$ 는 벡터a와 벡터b를 이용해서 나타낼 수 있다는 것을 알게 되었다. 그러면 투영벡터에 관한 공식1은 이렇게 다시 쓸 수 있다:

$$p = \hat{x}a = \frac{a^Tb}{a^Ta}a$$
...(공식1-1: 투영벡터)