保密★启用前

2018-2019 学年第一学期期末考试 《高等数学 AI》

考生注意事项

- 1. 答题前,考生须在试题册指定位置上填写考生**教学号**和考生姓名;**在答题** 卡指定位置上填写考试科目、考生姓名和考生教学号,并涂写考生教学号 信息点。
- 2. 选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须 书写在答题卡指定位置的边框区域内。超出答题区域书写的答案无效;在 草稿纸、试题册上答题无效。
- 3. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用 2B 铅笔填涂。
- 4. 考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)

考生教学号				
考生姓名				

一、选择题: $1\sim6$ 小题,每小题 3 分,共 18 分.下列每题给出的四个选项

题册上无效.	^文 的.请将答案写在答题卡上,写在试						
1. $\lim_{n\to\infty} (1+n)^{\frac{1}{n}} = ($).							
(A) 0 (B) 1	(C) e (D) $\frac{1}{e}$						
2. 当 a 取下列哪个值时,函数 $f(x) = 2x^3 - 9x^2 + 12x - a$ 恰有两个不同的零点							
().							
(A) 2 (B) 4	(C) 6 (D) 8						
3. 设 $F(x) = \int_0^x (x-t)f(t)dt$, $f(x)$ 为连续函数,且 $f(0)=0$, $f'(x)>0$,则							
$y = F(x)$ 在 $(0,+\infty)$ 内 $($							
(A) 单调增加且为下凸	(B) 单调增加且为上凸						
(C) 单调减少且为下凸	(D) 单调减少且为上凸						
4. 曲线 $y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$ () .							
(A) 没有渐近线	(B) 仅有水平渐近线						
(C) 仅有铅直渐近线	(D) 既有水平渐近线又有铅直渐近线						
5. 若 $\ln f(t) = \sin t$,则 $\int \frac{tf'(t)}{f(t)} dt = $).						
(A) $t\sin t + \cos t + C$	(B) $t\sin t - \cos t + C$						
(C) $t\sin t + t\cos t + C$	(D) $t\sin t + C$						
6. 使不等式 $\int_{1}^{x} \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是().							
(A) $(1, \frac{\pi}{2})$ (B) $(\frac{\pi}{2}, \pi)$	(C) $(0,1)$ (D) $(\pi,+\infty)$						

- 二、填空题: 7~12 小题, 每小题 3 分, 共 18 分.
- 7. 设当 $x\to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $\sin x^n$ 高阶的无穷小,而 $\sin x^n$ 是比 $e^{x^2}-1$ 高阶的无穷小,则正整数n等于______.
- 8. 设 f(x) 为可导函数,且满足条件 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则曲线 y = f(x) 在点 (1, f(1)) 处的切线的斜率 $k = _____$.
- 9. 设函数 y = y(x) 由方程 $e^{2x+y} \cos(xy) = e-1$ 所确定,求 $\frac{dy}{dx}\Big|_{x=0} = \underline{\qquad}$.
- 10. 函数 $y = \ln(1-2x)$ 在 x = 0 处的 n(n > 2) 阶导数 $f^{(n)}(0) =$ ______.
- 11. $\int_{-1}^{2} |x^2 x| \, \mathrm{d}x = \underline{\qquad}.$
- 12. $\int_0^{\frac{\pi}{2}} \sin^4 x \, dx = \underline{\qquad}.$
- 三、解答题: $13\sim19$ 小题, 共 64 分. 解答应写出文字说明、证明过程或演算步骤.
- 13. (本题满分 10 分)

求函数 $f(x) = \frac{\sin \pi x}{x - x^3}$ 的间断点,并判断间断点的类型.

- 14. (本题满分 10 分) 设 $f(x) = 2^{|a-x|}$, 求 f'(x).
- 15. (本题满分 10 分) 求 $\int \frac{1}{x^2 \sqrt{1+x^2}} dx$.

《高等数学 AI》试题 第 2 页 (共 3 页)

- 16. (本题满分 10 分) $求 \int_0^1 x \ln(1+x) dx.$
- 17. (本题满分 10 分) 求函数 $y = 2x^3 6x^2 18x 7$ 的极值.
- 18. (本题满分 8 分) $\text{求曲线} \begin{cases} x = \cos t + t \sin t, \\ y = \sin t t \cos t \end{cases}$ 在 $t = \frac{\pi}{4}$ 对应点处的曲率.
- 19. (本题满分 6 分) 设函数 f(x) 在 $[0,2\pi]$ 上连续,在 $(0,2\pi)$ 内可导,且 $f(0)=1,f(\pi)=3$, $f(2\pi)=2$. 试证明在 $(0,2\pi)$ 内至少存在一点 ξ ,使 $f'(\xi)+f(\xi)\cos\xi=0$.