AULA 09 Regressão

Ernesto F. L. Amaral

17 de setembro de 2012

Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Fonte:

Triola, Mario F. 2008. "Introdução à estatística". 10 ª ed. Rio de Janeiro: LTC. Capítulo 10 (pp.408-467).

REGRESSÃO

- Após determinar se há ou não correlação linear entre duas variáveis, é preciso descrever a relação entre duas variáveis.
- Podemos usar gráficos e a equação da reta (equação de regressão) que melhor representa a relação.
- Com base em **valores amostrais** emparelhados, estimamos intercepto (b_0) e inclinação (b_1) e identificamos uma reta com a equação:

$$\hat{y} = b_0 + b_1 x$$

– A verdadeira equação de regressão é:

$$y = \beta_0 + \beta_1 x$$

– Essa é a mesma equação típica de uma reta: y = mx + b.

CONCEITOS BÁSICOS DE REGRESSÃO

- Há variáveis que se relacionam de maneira determinística, em que valor de uma variável é automaticamente dado por valor de outra variável, sem erro (ex.: custo é dado pelo preço).
- Porém, estamos interessados em modelos probabilísticos, em que uma variável não é completamente determinada por outra variável.
- Equação de regressão expressa relação entre x (variável explanatória, variável previsora, variável independente) e ŷ (variável resposta, variável dependente).
- Usamos estatísticas amostrais (b_0 e b_1) para estimar os parâmetros populacionais (β_0 e β_1).

REQUISITOS SIMPLIFICADOS

- Amostra de dados emparelhados (x, y) é uma amostra aleatória de dados quantitativos.
- Exame do diagrama de dispersão mostra que pontos se aproximam do padrão de uma reta.
- Valores extremos (outliers) devem ser removidos se forem erros.

REQUISITOS FORMAIS

- Para cada valor fixo de x, os valores correspondentes de y
 têm uma distribuição que tem forma de sino.
- Para os diferentes valores fixados de x, as distribuições dos valores correspondentes de y têm todas a mesma variância.
 - Isso é violado se parte do diagrama de dispersão exibir pontos muito próximos da reta de regressão, enquanto outra parte exibir pontos muito afastados da reta.
- Para os diferentes valores fixados de x, as distribuições dos valores correspondentes de y têm médias próximas de uma reta.
- Os valores de y são independentes.
- Resultados não são seriamente afetados se afastamento da normal não for muito extremo.

DEFINIÇÕES

 Utilizando dados amostrais emparelhados, a equação de regressão descreve a relação algébrica entre duas variáveis:

$$\hat{y} = b_0 + b_1 x$$

 O gráfico da equação de regressão é a reta de regressão (reta de melhor ajuste, reta de mínimos quadrados).

Notação	Parâmetro populacional	Estatística amostral
Intercepto	$oldsymbol{eta}_0$	b_0
Inclinação	$oldsymbol{eta}_1$	b_1
Equação da reta	$y = \beta_0 + \beta_1 x$	$\hat{y} = b_0 + b_1 x$

– Determinando inclinação (b_1) e intercepto (b_0) :

$$b_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \qquad b_0 = \bar{y} - b_1\bar{x}$$

OUTROS PONTOS IMPORTANTES

 A reta de regressão é a que melhor se ajusta aos dados amostrais.

– Arredonde b_1 e b_0 para três dígitos significativos.

EQUAÇÃO DE REGRESSÃO PARA PREVISÕES

- Equações de regressão podem ser úteis para prever valor de uma variável, dado algum valor de outra variável.
- Não baseie previsões em valores muito distantes dos limites dos dados amostrais.

- Se a reta de regressão se ajusta bem aos dados, faz sentido usá-la para previsões.
- Devemos usar equação da reta de regressão apenas se equação de regressão for bom modelo para dados.

OBSERVANDO A CORRELAÇÃO LINEAR

- Devemos usar a equação de regressão para previsões apenas se houver correlação linear.
- Ou seja, a adequação de usar a regressão pode ser avaliada pelo teste da significância do coeficiente de correlação linear (r).
- Se não há correlação linear, não usamos a equação de regressão, mas simplesmente a média amostral da variável como seu preditor.

EM SUMA...

- Na previsão de um valor de y com base em algum valor dado de x:
 - Se não há correlação linear, o melhor valor previsto de y é \bar{y} .
 - Se há correlação linear, melhor valor previsto de y é encontrado pela substituição do valor de x na equação de regressão.
- O coeficiente de correlação linear (r) é a medida de quão bem a reta de regressão se ajusta aos dados amostrais.
- Mesmo que r tenha um valor pequeno (0,2), a equação de regressão pode ser modelo aceitável se r for significativo.
- Se r não for significativo, equação de regressão não deve ser usada para previsões.

PROCEDIMENTO PARA PREVISÃO

DIRETRIZES PARA USO DA EQUAÇÃO DE REGRESSÃO

- Se não há qualquer correlação linear, não use a equação de regressão para fazer previsões.
- Quando usar equação de regressão para previsões, permaneça dentro do alcance dos dados amostrais disponíveis.
- Uma equação de regressão com base em dados antigos,
 não é necessariamente válida no momento atual.

 Não faça previsões sobre uma população que é diferente da população da qual se extraíram os dados amostrais.

MUDANÇA MARGINAL

- Ao trabalhar com duas variáveis relacionadas por uma equação de regressão, a **mudança marginal** em uma variável (y) é a quantidade que ela varia (b_1) quando outra variável (x) varia em exatamente uma unidade.
- A inclinação b₁ representa a mudança marginal em y
 quando x varia em uma unidade.

OUTLIERS E PONTOS INFLUENTES

- Uma análise de correlação e regressão de dados bivariados (pares) deve incluir pesquisa de valores extremos (outliers) e pontos influentes.
- Em um diagrama de dispersão, um outlier é um ponto que se situa muito afastado dos demais pontos amostrais.
- Dados amostrais emparelhados podem incluir um ou mais pontos influentes, que são pontos que afetam fortemente o gráfico da reta de regressão.

RESÍDUOS

- Há critérios para dizer que a equação de regressão representa a reta que melhor se ajusta aos dados.
- Esse critério se baseia nas distâncias verticais entre os pontos de dados originais e a reta de regressão (resíduos).
- Para uma amostra de dados emparelhados (x, y), um resíduo é a diferença $(y \hat{y})$ entre um valor amostral y observado e o valor de \hat{y} , que é o valor de y predito pelo uso da equação de regressão.

resíduo = y observado – y previsto = $y - \hat{y}$

PROPRIEDADE DOS MÍNIMOS QUADRADOS

 Uma reta satisfaz a propriedade dos mínimos quadrados se a soma dos quadrados dos resíduos é a menor possível.

 A soma das áreas dos quadrados na próxima figura é a menor soma possível.

RESÍDUOS E QUADRADOS DOS RESÍDUOS

GRÁFICOS DOS RESÍDUOS

- Gráficos de resíduos podem ser instrumento útil para:
 - Análise dos resultados da correlação e regressão.
 - Verificação dos requisitos necessários para fazer inferências sobre correlação e regressão.
- Para construir gráfico de resíduos, use o mesmo eixo x do diagrama de dispersão, mas use um eixo vertical para os valores dos resíduos.
- Trace uma reta horizontal passando pelo resíduo de valor 0.
- Um gráfico de resíduos é um diagrama de dispersão dos valores de (x, y) depois que cada um dos valores da coordenada y tiver sido substituído pelo valor do resíduo (yŷ).
- Ou seja, é um gráfico dos pontos $(x, y-\hat{y})$.

ANÁLISE DOS GRÁFICOS DOS RESÍDUOS

- Se o gráfico de resíduos não revela qualquer padrão, a equação de regressão é uma boa representação da associação entre as duas variáveis.
- Se o gráfico de resíduos revela algum padrão sistemático, a equação de regressão não é uma boa representação da associação entre as duas variáveis.

EXEMPLOS

 Reta de regressão se ajusta bem aos dados. Gráfico dos resíduos não revela qualquer padrão.

EXEMPLOS

 Diagrama de dispersão mostra que associação não é linear.

Gráfico dos resíduos
 exibe um padrão distinto
 (não linear).

EXEMPLOS

- Diagrama de dispersão exibe variação crescente dos pontos em relação à reta de regressão.
- No gráfico dos resíduos, pontos exibem maior dispersão indo da esquerda para a direita.

 Isso viola requisito de que, para diferentes valores de x, distribuição dos valores de y tem mesma variância.

VARIAÇÃO E INTERVALOS DE PREVISÃO

VARIAÇÃO E INTERVALOS DE PREVISÃO

 Veremos a variação que pode ser explicada e que não pode ser explicada pela correlação linear entre x e y.

- Em seguida, construiremos um intervalo de previsão, que é uma estimativa intervalar para o valor previsto de y:
 - Estimativas de intervalos de parâmetros são chamados de intervalos de confiança.
 - Estimativas de intervalos de variáveis são chamados de intervalos de previsão.

DESVIOS TOTAL, EXPLICADO E NÃO-EXPLICADO

- Suponha que tenhamos um conjunto de pares de dados com o ponto amostral (x, y), que \hat{y} seja o valor previsto de y (obtido pelo uso da equação de regressão) e que a média dos valores amostrais de y seja \bar{y} .
- **Desvio total** de (x, y) é a distância vertical $y \overline{y}$, que é a distância entre o ponto (x, y) e a reta horizontal que passa pela média amostral.
- **Desvio explicado** de (x, y) é a distância vertical $\hat{y} \overline{y}$, que é a distância entre o valor previsto de y e a reta horizontal que passa pela média amostral.
- **Desvio não-explicado (resíduo)** é a distância vertical $y \hat{y}$, que é a distância vertical entre o ponto (x, y) e a reta de regressão.

DESVIOS TOTAL, EXPLICADO E NÃO-EXPLICADO

VARIÂNCIAS TOTAL, EXPLICADA E NÃO-EXPLICADA

(desvio total) = (desvio explicado) + (desvio não-explicado)

$$(y - \overline{y}) = (\hat{y} - \overline{y}) + (y - \hat{y})$$

- Se somarmos os quadrados dos desvios usando todos os pontos (x, y), obteremos quantidades de variação.
- A variância total se expressa como a soma dos quadrados dos valores do desvio total.
- A variância explicada é a soma dos quadrados dos valores do desvio explicado.
- A variância não-explicada é a soma dos quadrados dos valores do desvio não explicado.

COEFICIENTE DE DETERMINAÇÃO

- Lembremos que o valor de r² é a proporção em y que pode ser explicada pela relação linear entre x e y.
- Este coeficiente de determinação é então a quantidade de variação em y que é explicada pela reta de regressão.

$$r^{2} = \frac{variação\ explicada}{variação\ total} = \frac{\sum(\hat{y} - \bar{y})^{2}}{\sum(y - \bar{y})^{2}}$$

INTERVALOS DE PREVISÃO

- Sabemos que estimativas pontuais têm a séria desvantagem de não fornecerem qualquer informação sobre o nível de precisão.
- Usamos os intervalos de confiança para estimar intervalos de parâmetros.
- Agora usaremos intervalos de previsão para estimar intervalos de uma variável (valor previsto de y).
- O desenvolvimento de um intervalo de previsão requer uma medida da dispersão dos pontos amostrais em torno da reta de regressão.

ERRO PADRÃO DA ESTIMATIVA

- Erro padrão da estimativa é uma medida da dispersão dos pontos amostrais em torno da reta de regressão.
- É utilizado o desvio não-explicado (resíduo).
- O erro padrão da estimativa (s_e) é uma medida das diferenças (distâncias) entre os valores amostrais de y observados e os valores previstos \hat{y} que são obtidos com o uso da reta de regressão.

$$s_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$$
 $s_e = \sqrt{\frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n - 2}}$

DESVIO PADRÃO E ERRO PADRÃO DA ESTIMATIVA

- O desvio padrão é uma medida de como os valores se afastam de sua média.
- O **erro padrão da estimativa** (s_e) é uma medida de como os pontos amostrais se afastam de sua reta de regressão.
- Valores de s_e relativamente menores refletem pontos que permanecem mais próximos da reta de regressão.
- Valores relativamente maiores ocorrem com pontos mais afastados da reta de regressão.

INTERVALO DE PREVISÃO PARA y INDIVIDUAL

Dado o valor fixo x₀, o intervalo de previsão para um y individual é:

$$\hat{y} - E < y < \hat{y} + E$$

– A margem de erro (E) é:

$$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n(\sum x^2) - (\sum x)^2}}$$

- Em que:
 - $-x_0$ representa o valor dado de x.
 - $-t_{\alpha/2}$ tem n-2 graus de liberdade.
 - $-s_e$ é encontrado pela fórmula apresentada anteriormente.

REGRESSÃO MÚLTIPLA

REGRESSÃO MÚLTIPLA

 Trataremos de um método para análise de uma relação linear que envolve mais de duas variáveis.

- Mais especificamente, serão abordados:
 - Equação de regressão múltipla.
 - Valor do R² ajustado.
 - Valor P.

EQUAÇÃO DE REGRESSÃO MÚLTIPLA

– Uma equação de regressão múltipla expressa uma relação linear entre uma variável dependente (y) e duas ou mais variáveis previsoras ($x_1, x_2, ..., x_k$).

Forma geral da equação de regressão múltipla estimada:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

NOTAÇÃO

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

- -n = tamanho amostral
- -k = número de variáveis independentes
- $-\hat{y}$ = valor previsto de y, calculado com equação de regressão
- $-x_1, x_2, ..., x_k$ = variáveis independentes
- $-\beta_0$ = parâmetro populacional que indica intercepto y (valor de y quando todos x_k são zero)
- $-b_0$ = estimativa amostral de β_0
- $-\beta_1, \beta_2, ..., \beta_k$ = são coeficientes das variáveis $x_1, x_2, ..., x_k$
- $-b_1, b_2, ..., b_k$ = são estimativas amostrais de $\beta_1, \beta_2, ..., \beta_k$

ERRO ALEATÓRIO

– Para qualquer conjunto específico de valores de x, a equação de regressão está associada a um erro aleatório (ε).

- Admitimos que estes erros:
 - São distribuídos normalmente.
 - Possuem média zero.
 - Possuem desvio padrão de σ .
 - São independentes das variáveis do modelo.

COEFICIENTE DE DETERMINAÇÃO MÚLTIPLA (R2)

- R² é o coeficiente de determinação múltipla:
 - Mede o quão bem a equação de regressão múltipla se ajusta aos dados amostrais.
 - Indica a proporção de variação em y que pode ser explicada pela variação em $x_1, x_2, ..., x_k$.
 - $-R^2$ = 1: significa ajuste perfeito.
 - R² próximo de 1: ajuste muito bom.
 - − R² próximo de 0: ajuste muito ruim.
- Na medida em que mais variáveis são incluídas, R² cresce.
- O maior R² é obtido pela inclusão de todas variáveis disponíveis, mas esta não é a melhor equação de regressão.

COEFICIENTE DE DETERMINAÇÃO AJUSTADO

– Como o R² sempre aumenta com a inclusão de variáveis, a comparação de diferentes equações de regressão múltipla é realizada com o R² ajustado pelo número de variáveis e tamanho amostral:

$$R^2 a justado = 1 - \frac{(n-1)}{[n-(k+1)]} (1-R^2)$$

- Em que:
 - -n = tamanho amostral.
 - -k = número de variáveis independentes (x).

OBSERVAÇÕES IMPORTANTES

- O R² ajustado auxilia na escolha de modelo sem variáveis independentes redundantes (entre modelos não-aninhados).
- Comparação dos R² ajustados pode ser feita para optar entre modelos com formas funcionais diferentes das variáveis independentes:

$$y = \beta_0 + \beta_1 \log(x) + u$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

- Não podemos usar nem o R² nem o R² ajustado para escolher entre modelos não-aninhados com diferentes formas funcionais da variável dependente.
- Os R² medem a proporção explicada do total da variação de qualquer variável dependente.
 - Portanto, diferentes funções da variável dependente terão diferentes montantes de variação a serem explicados.

VALOR P

- O valor P é uma medida da significância global da equação de regressão múltipla.
- A hipótese nula testada é (H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$).
- O valor P indica a probabilidade de H₀ não ser rejeitada:
 - Se valor P for pequeno (<0,05), rejeitamos H₀, o que implica: (1) pelo menos um dos betas não é zero; e (2) a equação de regressão é eficaz na determinação de y.
 - Se valor P for pequeno, dizemos que a equação de regressão múltipla tem boa significância geral e é adequada para previsões.
- Assim como o R^2 ajustado, o valor P é uma boa medida de quão bem a equação se ajusta aos dados amostrais.

DIRETRIZES PARA DETERMINAR MELHOR EQUAÇÃO

- Utilize teoria, hipóteses e estudos anteriores para incluir ou excluir variáveis.
- Considere o valor P.
- Considere equações com altos valores de R² ajustado e tente incluir poucas variáveis:
 - Não inclua variáveis que não aumentam R² ajustado substancialmente.
 - Para um dado número de variáveis independentes,
 escolha o modelo com maior R² ajustado.
 - Se duas variáveis independentes possuem alta correlação linear entre si, não há necessidade de incluir ambas na regressão.

REGRESSÃO PASSO A PASSO (STEPWISE)

– Há alguns problemas com a regressão passo a passo:

 Não resultará necessariamente no melhor modelo, se algumas variáveis independentes forem altamente correlacionadas.

– Pode resultar em valores inflacionados de R^2 .

Não pensamos sobre o problema.

VARIÁVEIS DUMMY E REGRESSÃO LOGÍSTICA

- Muitas aplicações usam variável dicotômica (dummy), que assume apenas dois possíveis valores discretos.
- Geralmente representamos estes valores por 0 (fracasso) e
 1 (sucesso).
- Se incluirmos uma variável dummy como variável independente, podemos usar os métodos anteriores:
 - O coeficiente desta variável indicará a diferença no valor de y, quando obtemos sucesso, em relação ao fracasso.
- Se a variável dummy for a variável resposta (y), devemos usar regressão logística.

REGRESSÃO LOGÍSTICA

 Se a variável dependente é binária, temos esta expressão na regressão logística:

$$\ln\left(\frac{p}{1-p}\right) = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

- Nesta expressão, p representa uma probabilidade.
- Um valor de p=0 indica que obtivemos fracasso.
- Um valor de p=1 indica que obtivemos sucesso.
- Um valor de p=0,2 indica que há chance de 0,2 de obter sucesso e chance de 0,8 de obter fracasso.

MODELAGEM

MODELAGEM

- É importante realizar ajustes no modelo de regressão para que ele se ajuste aos dados do mundo real.
- Não devemos ficar restritos a modelos lineares:
 - Linear: y = a + bx
 - Quadrática: $y = ax^2 + bx + c$
 - Logarítmica: $y = a + b \ln(x)$
 - Exponencial: $y = ab^x$
 - Potência: $y = ax^b$
- Em vez de amostras aleatórias, podemos considerar dados coletados ao longo do tempo (séries temporais).

GRÁFICOS DE MODELOS MATEMÁTICOS

$$Linear: y = 1 + 2x$$

Quadrática: $y = x^2 - 8x + 18$ Logarítmica: $y = 1 + 2 \ln x$

Exponencial: $y = 2^x$

Potência: $y = 3x^{2,5}$

ESCOLHA DO MODELO

- O modelo selecionado depende da natureza dos dados:
 - Procure um padrão no gráfico: com um diagrama de dispersão entre x e y, selecione um modelo que se ajuste razoavelmente aos pontos observados.
 - Ache e compare valores de R²: diminua número de modelos possíveis e selecione funções com maiores R² (já que indicam melhor ajuste aos pontos observados).
 - Pense: use o modelo para calcular valores futuros,
 passados e para datas omitidas, observando se resultados são realistas.
 - "A melhor escolha de um modelo depende do conjunto de dados que está sendo analisado e requer um exercício de julgamento, não apenas computacional."