	<pre>import pandas as pd # Read in track metadata with genre labels tracks = pd.read_csv('datasets/fma-rock-vs-hiphop.csv') # Read in track metrics with the features echonest_metrics = pd.read_json('datasets/echonest-metrics.json', precis e_float=True) # Merge the relevant columns of tracks and echonest_metrics echo_tracks = echonest_metrics.merge(tracks[['genre_top', 'track_id']], on='track_id')</pre>
	<pre>on='track_id') <class 'pandas.core.frame.dataframe'=""> Int64Index: 4802 entries, 0 to 4801 Data columns (total 10 columns): acousticness</class></pre>
In [15]:	memory usage: 412.7+ KB
Out[15]:	<pre>try: pd.testing.assert_frame_equal(echonest_metrics, ech_met_test) except AssertionError: assert False, "The echonest_metrics data frame was not read in c orrectly." def test_merged_shape(): merged_test = echonest_metrics.merge(tracks[['genre_top', 'track_i d']], on='track_id') try: 3/3 tests passed</pre>
In [16]:	<pre>corr_metrics = echonest_metrics.corr()</pre>
Out[16]:	corr_metrics.style.background_gradient() acousticness danceability energy instrumentalness liveness acousticness 1 -0.189599 -0.477273 0.110033 0.0413193 danceability -0.189599 1 0.0453446 -0.118033 -0.143339 energy -0.477273 0.0453446 1 -0.00241179 0.0457524 instrumentalness 0.110033 -0.118033 -0.00241179 1 -0.0585932 liveness 0.0413193 -0.143339 0.0457524 -0.0585932 1 speechiness 0.0387845 0.171311 -0.00864488 -0.216689 0.0731041
In [17]:	<pre>tempo</pre>
Out[17]:	3. Normalizing the feature data As mentioned earlier, it can be particularly useful to simplify our models and use as few features as necessary to achieve the best result. Since we didn't find any particular strong correlations between our features, we can instead use a common approach to reduce the number of features called principal component analysis (PCA). It is possible that the variance between genres can be explained by just a few features in the dataset. PCA rotates the data along the axis of highest variance, thus allowing us to determine the relative contribution of each feature of our data towards the variance between classes. However, since PCA uses the absolute variance of a feature to rotate the data, a feature with a broader range of values will overpower and bias the algorithm relative to the other features. To
In [18]:	<pre># Define our features features = echo_tracks.drop(columns=['genre_top', 'track_id']) # Define our labels labels = echo_tracks['genre_top'] # Import the StandardScaler from sklearn.preprocessing import StandardScaler # Scale the features and set the values to a new variable scaler = StandardScaler() scaled_train_features = scaler.fit_transform(features)</pre>
In [19]:	<pre>%%nose import sys def test_dropped_columns(): try: pd.testing.assert_frame_equal(features, echo_tracks.drop(columns) =['genre_top', 'track_id'])) except AssertionError: assert False, 'Use the .drop method to remove the genre_top and track_id columns.'</pre>
	<pre>def test_labels_df(): try: pd.testing.assert_series_equal(labels, echo_tracks['genre_top']) except AssertionError: assert False, 'Does your labels DataFrame only contain the genre _top column?' def test_standardscaler_import(): assert 'sklearn.preprocessing' in list(sys.modules.keys()), \ 'The StandardScaler can be imported from sklearn.preprocessing.'</pre>
	4/4 tests passed 4. Principal Component Analysis on our scaled data Now that we have preprocessed our data, we are ready to use PCA to determine by how much we can reduce the dimensionality of our data. We can use scree-plots and cumulative explained ratio plots to find the number of components to use in further analyses. Scree-plots display the number of components against the variance explained by each component, sorted in descending order of variance. Scree-plots help us get a better sense of which components explain a sufficient amount of variance in our data. When using scree plots, an
In [20]:	<pre>%matplotlib inline # Import our plotting module, and PCA class import matplotlib.pyplot as plt from sklearn.decomposition import PCA # Get our explained variance ratios from PCA using all features pca = PCA() pca.fit(scaled_train_features) exp_variance = pca.explained_variance_ratio_ # plot the explained variance using a barplot fig, ax = plt.subplots()</pre>
Out[20]:	ax.bar(range(pca.n_components_), exp_variance) ax.set_xlabel('Principal Component #') Text(0.5,0,'Principal Component #') 0.25 0.15 0.10 0.05
In [21]:	0.00 0 1 2 3 4 5 6 7 Principal Component #
Out[21]:	
In [22]:	Unfortunately, there does not appear to be a clear elbow in this scree plot, which means it is not straightforward to find the number of intrinsic dimensions using this method. But all is not lost! Instead, we can also look at the cumulative explained variance plot to determine how many features are required to explain, say, about 85% of the variance (cutoffs are somewhat arbitrary here, and usually decided upon by 'rules of thumb'). Once we determine the
	# Plot the cumulative explained variance and draw a dashed line at 0.85. fig, ax = plt.subplots() ax.plot(cum_exp_variance) ax.axhline(y=0.85, linestyle='') # choose the n_components where about 85% of our variance can be explain ed n_components = 6 # Perform PCA with the chosen number of components and project data onto components pca = PCA(n_components, random_state=10)
	0.9 0.8 0.7 0.6 0.5 0.4 0.3
In [23]:	
0+ [00]	<pre>def test_n_comp(): assert n_components == 6, \ ('Check the values in cum_exp_variance if it is difficult ' 'to determine the number of components from the plot.') def test_trans_pca(): pca_test = PCA(n_components, random_state=10) pca_test.fit(scaled_train_features) assert (pca_projection == pca_test.transform(scaled_train_feature) 4/4 tests passed</pre>
	6. Train a decision tree to classify genre Now we can use the lower dimensional PCA projection of the data to classify songs into genres. To do that, we first need to split our dataset into 'train' and 'test' subsets, where the 'train' subset will be used to train our model while the 'test' dataset allows for model performance validation. Here, we will be using a simple algorithm known as a decision tree. Decision trees are rule-based classifiers that take in features and follow a 'tree structure' of binary decisions to ultimately classify a data point into one of two or more categories. In addition to being easy to both use and interpret, decision trees allow us to visualize the 'logic flowchart' that the model generates from the training bland. It is an example of a decision tree that demonstrates the process by which an input image (in this case, of a shape) might be classified based on the number of sides it has and whether it is rotated.
	straight rotated straight rotated
In [24]:	<pre># Import train_test_split function and Decision tree classifier from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # Split our data train_features, test_features, train_labels, test_labels = train_test_sp lit(pca_projection, labels, random_state=10)</pre>
	<pre># Train our decision tree tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels)</pre>
In [25]:	<pre>tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels) # Predict the labels for the test data</pre>
	<pre>tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels) # Predict the labels for the test data %*nose import sys def test_train_test_split_import(): assert 'sklearn.model_selection' in list(sys.modules.keys()), \</pre>
Out[25]:	tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels) # Predict the labels for the test data **Simose import sys def test_train_test_split_import(): assert 'sklearn.model_selection' in list(sys.modules.keys()), \
Out[25]:	tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels) # Predict the labels for the test data %%nose import sys def test_train_test_split_import(): assert 'sklearn.model_selection' in list(sys.modules.keys()), \
Out[25]:	tree = DecisionTreeClassifier(random_state=10) tree.fit((rain_features, train_labels) # Predict the labels for the rest data ***Monose import sys def test_train_test_split_import(): assert 'sklearn.model selection' in list(sys.modules.keys()), \
Out[25]:	tree = becisionTreeClassifier(random state=10) tree.fit(train_features, train_labels) # Predict the labels for the test data **XMANOSE import sys def test_train_test_split_import(): assert 'sklearn.model_selection' in list(sys.modules.keys()), \
Out[25]:	tree = DecisionTreeClassifier(random_state=10) **Predict the labels for the test data **Unose Import sys def test_train_test_split_import():
Out[25]: Out[27]:	tree = Docision/rectinas/fire/readom state=18) # Predict the Jabels for the test data **Nanae* inport sys def test_train_test_split_import():
Out [27]: In [28]:	tree = DelisionTreeClassIter(Irandom, State = 18) **Profest Chalabols for the test data **Import sys** def test_train_test_solit_lapor():
Out [27]: In [28]:	Lines of the extraction of collaboration of control collaboration of colla
Out[25]: In [26]: In [27]:	trees = Provision revolutions (community) ### Provision for the language for the foreign data ### Provision foreign the provision of the foreign data ### Provision foreign the provision of the language for t
Out[25]: In [26]: Out[27]:	The control of the co
In [27]: In [28]:	### STATES OF THE PART AND ADDRESS OF THE PART AND ADD
Out[25]: In [26]: Out[27]:	cross testimonic reconstructions and control of the control testimonic reconstructions and contr
Out[25]: In [26]: In [27]: In [30]:	Figure 1 (and the processor of the control of the c

def test_log_score():

Out[33]: 3/3 tests passed

1. Preparing our dataset

These recommendations are so on point! How does this playlist know me so well?

Over the past few years, streaming services with huge catalogs have become the primary means through which most people listen to their favorite music. But at the same time, the sheer amount of