Pragmatism and Climate Policy

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #37: Wednesday, April 20 2022

Reviewing Emissions Regulation Game

Review of Game

- Command and Control:
 - Each company emits the same amount
 - A: 12 total, 6 each
 - B: 16 total, 8 each
 - C: 16 total, 8 each
- Cap-and-trade:
 - Give each company equal permits.
 - Let them trade
 - A: 6 permits each, Alpha buys 1 for \\$42
 - B: 8 permits each, Alpha buys 1 for \\$35.5
 - C: 8 permits each, Alpha buys 1 for \\$34

- Carbon Tax:
 - Put a price on CO₂ emissions
 - Each company can emit as much as it wants to
 - But it must pay the tax on every ton.
 - A: \\$15/ton
 - B: \\$32/ton
 - C: \\$35/ton

Default

Default

Actor	Emissions	Profit	Cost	Net
Alpha	15	\\$630		\\$630
Beta	15	\\$420		\\$420
Society			-\\$930	-\\$930
Total	30	\\$1050	-\\$930	\\$120

Deadweight loss = \\$456 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\\$540		\\$540
Beta	7	\\$308		\\$308
Society			-\\$272	-\\$272
Total	16	\\$848	-\\$272	\\$576

Group A Results

Command & Control (Group A)

Actor	Emissions	Profit	Cost	Net
Alpha	6	\\$414		\\$414
Beta	6	\\$276		\\$276
Society			-\\$156	-\\$156
Total	12	\\$690	-\\$156	\\$534

Deadweight loss = \\$42 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Cap & Trade (Group A)

Actor	Permits	Bought	Sold	Emissions	Price	Profit	Cost	Net
Alpha	6	1		7	-\\$42	\\$462		\\$420
Beta	6		1	5	\\$42	\\$240		\\$282
Society							-\\$156	-\\$156
Total	12	1	1	12		\\$702	-\\$156	\\$546

Deadweight loss = \\$30 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Carbon Tax (Group A): \\$/ton

Actor	Emissions	Tax	Profit	Cost	Net	Rebate	Net with Rebate
Alpha	12	-\\$180	\\$612		\\$432	+\\$172.5	\\$604.5
Beta	11	-\\$165	\\$396		\\$231	+\\$172.5	\\$403.5
Society		+\\$345		-\\$552	-\\$207	-\\$345	-\\$552
Total	23		\\$1008	-\\$552	\\$456		\\$456

Deadweight loss = \\$120 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Group B Results

Command & Control (Group B)

Actor	Emissions	Profit	Cost	Net
Alpha	8	\\$504		\\$504
Beta	8	\\$336		\\$336
Society			-\\$272	-\\$272
Total	16	\\$840	-\\$272	\\$568

Deadweight loss = \\$8 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Cap & Trade (Group B)

Actor	Permits	Bought	Sold	Emissions	Price	Profit	Cost	Net
Alpha	8	1		9	-\\$35.5	\\$540		\\$504.5
Beta	8		1	7	\\$35.5	\\$308		\\$343.5
Society							-\\$272	-\\$272
Total	16	1	1	16		\\$848	-\\$272	\\$576

Deadweight loss = \\$0 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Carbon Tax (Group B): \\$32/ton

Actor	Emissions	Tax	Profit	Cost	Net	Rebate	Net with Rebate
Alpha	9	-\\$288	\\$540		\\$252	+\\$256	\\$508
Beta	7	-\\$224	\\$308		\\$84	+\\$256	\\$340
Society		+\\$512		-\\$272	\\$240	-\\$512	-\\$272
Total	16		\\$848	-\\$272	\\$576		\\$576

Deadweight loss = \\$0 million Optimal

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Group C Results

Command & Control (Group C)

Actor	Emissions	Profit	Cost	Net
Alpha	8	\\$504		\\$504
Beta	8	\\$336		\\$336
Society			-\\$272	-\\$272
Total	16	\\$840	-\\$272	\\$568

Deadweight loss = \\$8 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Cap & Trade (Group C)

Actor	Permits	Bought	Sold	Emissions	Price	Profit	Cost	Net
Alpha	8	1		9	-\\$34	\\$540		\\$506
Beta	8		1	7	\\$34	\\$308		\\$342
Society							-\\$272	-\\$272
Total	16	1	1	16		\\$848	-\\$272	\\$576

Deadweight loss = \\$0 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Carbon Tax (Group C): \\$35/ton

Actor	Emissions	Tax	Profit	Cost	Net	Rebate	Net with Rebate
Alpha	9	-\\$315	\\$540		\\$225	+\\$262.5	\\$487.5
Beta	6	-\\$210	\\$276		\\$66	+\\$262.5	\\$328.5
Society		+\\$525		-\\$240	\\$285	-\\$525	-\\$240
Total	15		\\$816	-\\$240	\\$576		\\$576

Deadweight loss = \\$0 million

Actor	Emissions	Profit	Cost	Net
Alpha	9	\$540		\$540
Beta	7	\$308		\$308
Society			-\$272	-\$272
Total	16	\$848	-\$272	\$576

Summary of Deadweight Losses

Summary of Deadweight Losses

Group	Default	Command & Control	Cap & Trade	Тах
Group A	\$456	\$42	\$30	\$120
Group B	\$456	\$8	\$0	\$0
Group C	\$456	\$8	\$0	\$0

Group A:

- EPA had poor information
- Even so, deadweight losses from inefficient regulations were much smaller than with • Command and Control had no regulations
- Cap and Trade performed best
- Tax performed worst

Group B:

- EPA had good information, made good estimates of optimum emissions
- very small deadweight losses
- Cap & Trade and Taxes had deadweight loss of \\$0

Group C:

- EPA had good information, made good estimates of optimum emissions
- Command and Control had very small deadweight losses
- Cap & Trade and Taxes had deadweight loss of \\$0

Summary of Net Profit/Cost

Group A

	Default	Cmd & Ctrl	Cap & Trade	Tax	Tax & Rebate
Alpha profit	630	414	420	432	604
Beta profit	420	276	282	231	404
Social cost	-930	-156	-156	-207	-552
Total	120	534	546	456	456

Group B

	Default	Cmd & Ctrl	Cap & Trade	Tax	Tax & Rebate
Alpha profit	630	504	504	252	508
Beta profit	420	336	344	84	340
Social cost	-930	-272	-272	240	-272
Total	120	568	576	576	576

Group C

	Default	Cmd & Ctrl	Cap & Trade	Tax	Tax & Rebate
Alpha profit	630	504	506	225	488
Beta profit	420	336	342	66	328
Social cost	-930	-272	-272	285	-240
Total	120	568	576	576	576

Challenges of Decarbonization

Challenges of Decarbonization

- How hard will it be to reduce CO₂ emissions?
 - Nordhaus:
 - What technology can replace fossil fuels?
 - What policies can stimulate innovation, investment, production, purchase of clean technology?
 - Pielke:
 - The biggest challenge is cost: \(RE < C\)
 - Make clean technology cheaper than fossil fuels and the problem is solved.

Perspective: US CO₂ Emissions

Rate of Decarbonization

- 2009 policy goal: US emissions 83% less than 2005 by 2050
- ef must drop by 6.2% per year
- Actual rate has been about 2.3% per > year

Implied Decarbonization

Pielke's Views

Tax on death?

What do you think of Pielke's argument?

Challenge of decarbonizing

- Trend in *e* (1980–present): -0.9% per year.
- Trend in *f* (1970–2000): -0.5% per year.
 - Trend reversed in 2000, but rapid decrease since around 2008.
- So far: Decarbonization driven much more by efficiency than clean energy.
- Rebound: greater efficiency → more consumption.

Energy Poverty

Photo credit: Rebecca Blackwell, Associated Press

- 1.1 billion people (17% of planet) lack access to electricity
- Over 3 billion (38%) lack clean cooking facilities
- In many nations in Africa and Asia 80–95% of the population is energy-poor.

Nordhaus's Perspective

Innovation

Innovation Policy

- Knowing price of CO₂ will rise provides incentive to invest in R&D
- Valley of Death:
 - Technology looks promising in laboratory
 - Potential for big profits
 - Many years, lots of money to turn laboratory device into product
 - Product development might fail
 - Product might not sell
 - Competitors might copy product
 - Valley of death
 - Double externality
 - 1. Inventors don't get all the value of their inventions
 - 2. Polluters don't pay the costs of pollution
 - Government support to cross valley of death

Image: Osawa & Miyazaki, Asian Journal of Technology Innovation 14, 93 (2006) doi: 10.1080/19761597.2006.9668620

Pielke's Policy Proposal

Pielke's Policy Proposal:

- Competition within government
- Public-works model
- Demonstration projects
- Government as consumer of energy innovations
 - Federal government is the largest consumer of energy in the U.S.
 - 350,000 buildings
 - 600,000 vehicles
- \\$5/ton carbon tax (\\$0.04 per gallon gas)
 - invest in clean-energy R&D
- Monitor progress
- Develop "plan B" (geoengineering)

Obliquity

- Appeal to people who don't care about climate change
 - Cheaper energy
 - Reduce pollution (smog, etc.)
 - Reduce dependence on foreign oil