WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

Hiermit erkläre ich mich damit	
einverstanden, dass die Klausur- ergebnisse per Aushang im Inter-	
net der HAW veröffentlicht werden.	

Punkteverteilung:	Aufgabengruppe	Teilaufgaben	Gesamtpunkte	Punkte
	1	10	10	
	2	10 + 15	25	
	3	20 + 20	40	
	4	25 + 20	45	
	Gesamt:		120	
Note 5 Punkte	ab 50 Punkten			Endnote
Note 15 Punkte	ab 100 Punkten			
Erlaubtes Material:	6 Seiten Notizen			
Dauer:	120 Minuten			

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

Testebene	n - Komponen	tentest			10 Pu
	i Testziele des Kom		nd erläutern Sie si	e kurz	
Testziel 1					
Testziel 2					
	ırz zwei wesentliche ür den Komponente		ischen dem Test-l	First Ansatz un	d herkömm
			ischen dem Test-l	First Ansatz un	d herkömm
			ischen dem Test-I	First Ansatz und	d herkömm
			ischen dem Test-l	First Ansatz und	d herkömm
			ischen dem Test-l	First Ansatz und	d herkömm

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

2	Statischer Test	
2.1	Reviews	10 Punkte
Begn	ründen Sie kurz, warum folgendes Auswahlkriterium für die Review-Arten sinnvoll ist:	
	Wenn viel Fachwissen über das Prüfobjekt für die Gutachter notwendig ist, sollte zu Walkthrough durchgeführt werden, danach ev. noch eine Inspektion oder ein technisches	

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

2.2 Metriken - Komplexität

15 Punkte

Berechnen Sie die Zyklomatische Komplexität der folgenden Methode:

```
public int f (int x; boolean b2){
2
       int res = 0;
3
       int i;
4
       if (x > 10) {
         if b2 {
5
6
            i = x;
            b2 = false; }
7
         else {
8
9
            i = 0;
            if b2 {
10
              b2 = false; }
11
12
            else {
              b2 = true; }; }; };
13
       if ((i < x) || b2) {
14
15
         res = res * x; }
16
       return sum;
     }
17
```

a) Bestimmen Sie den Kontrollflussgraphen G zu dem angegebenen Code. (Beachten Sie dabei, dass Kopf der Methode und die letzte schließende Klammer als Anweisungen zählen)

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

b) Berechnen Sie die Zyklomatische Zahl $\mathrm{cn}(G)$ des Kontrollflussgraphen Gsowie die McCabe-Metrik $\mathrm{v}(G)$ des Codes

	Formel	konkreter Wert
cn (G)		
v (G)		

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

3 Dynamischer Test: Black-Box und White-Box

3.1 Äquivalenzklassen und Grenzwerte

20 Punkte

Betrachten Sie die Methode public int H (int x, int y) mit den Vorbedingungen

V1 x soll echt größer 1 sein

V2 y soll echt kleiner als 10 sein

V3 y soll größer oder gleich 0 sein

Die Funktion H soll den Wert 1 liefern falls $x \leq y$ und sonst 0.

- a) Bestimmen Sie für diese Funktion die Äquivalenzklassen (Angabe als logische Testfälle)
- b) für jede Äquivalenzklasse einen Repräsentanten und den zugehörigen Sollwert

Tragen Sie die Ergebnisse in die folgende Tabelle ein:

Tragen Sie die Ergen	omsse m die loigende	e rabelle elli.		
Äquivalenzklasse				
Repräsentant				
Sollwert				
Äquivalenzklasse				
Repräsentant				
Sollwert				
Äquivalenzklasse				
Repräsentant				
Sollwert				

Anmerkung: es sind u.U. mehr Zellen vorhanden als Klassen benötigt werden.

c) Geben Sie 5 weitere Testfälle an (Eingabedaten und Sollwerte), die sich bei einer Grenzwertanalyse zusätzlich ergeben würden.

Eingabedaten			
Sollwert			

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

3.2 Zustandsbasierte Testfallerzeugung

20 Punkte

Gegeben sei der folgende Zustandsautomat :

a) Bestimmen Sie zunächst den Übergangsbaum für den Zustands-Konformanztest (Verwenden Sie den Wurzelknoten S1 und nennen Sie den Endknoten Final)

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

b)	Geben Sie eine möglichst kleine Anzahl von Testfällen an (als Folge von Ereignissen und Zuständen), di	ϵ
	für eine 100 %ige Zustandsüberdeckung genügen.	

Anmerkung: die Tabelle enthält u.U. mehr Zeilen als notwendig.

TFZ 1	
TFZ 2	
TFZ 3	
TFZ 4	

c) Geben Sie weitere Testfälle an, die darüberhinaus für eine 100 %
ige Zustandsübergangsüberdeckung (Transistionsüberdeckung) beim Konformanz
test benötigt werden.

TFT 1	
TFT 2	
TFT 3	
TFT 4	

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

4 Dynamischer Test: White-Box

4.1 Code-Überdeckung

25 Punkte

Gegeben sei der folgende abstrakte Code einer (nicht notwendigerweise sinnvollen) Funktion. Dabei sollen die folgenden Attribute im Rahme der Klasse oder Konstruktoren vordefiniert sein:

```
public static int grenze = 10;
public static bool b1 = false;

...
```

Der Code der Methode sei dann wie folgt gegeben:

```
public int g (int x; boolean b2){
1
2
       int res = 10;
3
       int i = 0;
4
       if (x < grenze) {
5
            i = grenze - x;
            res = 7; };
6
7
       if (res < 10) {
            i = grenze + x;
9
            res = 2 * res;
10
            b1 = true; };
11
       if ((i < grenze) and b1 and b2) {
12
         res = res * res; }
13
       else { res = 1; };
14
      println(''final result:'' res)
15
       return res;
```

Betrachten Sie die folgenden Testfälle für die Funktion g:

- TF 1: x == 7; b2 == true (Aufruf von g (7,true)))
- a) Bestimmen Sie zunächst die Anweisungsüberdeckung

	Folge der durchlaufenen Zeilen (Zeilennr)
TF 1	
Anzahl Anweisungen gesamt in g	
Anweisungsüberdeckung in % durch TF 1	

Anmerkung: bei den Anweisungen zählen der Methodenkopf (Startknoten) und die schließende Klammer des Rumpfs (Endknoten) auch als je 1 Anweisung.

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

b) Bestimmen Sie eine möglichst kleine Auswahl von zusätzlichen Testfällen, die eine 100% -ige Zweigüberdeckung sicherstellen

	x	b2	durchlaufene Folge von Zeilen
TFZ 1			
TFZ 2			
TFZ 3			
TFZ 4			
TFZ 5			

Anmerkung: unter Umständen werden auch weniger als die vorgesehenen Testfälle reichen.

c) Ist Ihrer Meinung nach eine 100 %
ige Pfadüberdeckung (gegenüber den Pfaden im Kontrollflussgraphen) für diesen Code erreichbar? Begründen Sie Ihre Aussage.

100 % möglich? (Ja / Nein):				
Begründung:				

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

4.2 Bedingungsüberdeckung

20 Punkte

a) Seien A, B, C atomare boolesche Ausdrücke. Bestimmen Sie möglichst wenig generische Testfälle, die für den Ausdruck $(\neg A \land B \land C)$ eine einfache Bedingungsüberdeckung (EBÜ) und eine minimale Mehrfachbedingungsüberdeckung (MMBÜ) ergeben. Markieren Sie in den letzten Spalten die ausgewählten Testfälle.

A	В	С	$(\neg A \land B \land C)$	ausgewählt für EBÜ?	ausgewählt für MMBÜ?
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	0		

b) Seien A, B, C wie folgt definiert:

 $A=x<10,\,B=y+x<10,\,C=(z+y==x),$ wobe
ix,y,z Integervariablen sein sollen.

Geben Sie konkrete Testfälle an, die Ihrer MMBÜ entsprechen.

A	В	С	$(\neg A \land B \land C)$	X	У	z
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			

WP-CT SoSe 10	Klausur	Prof. Dr. B. Buth 16.07.2010
Name		Matrikelnummer

Aufgabe 3.2 Metriken- Wiederholung des Codes

```
public int f (int x; boolean b2){
 2
       int res = 0;
 3
       int i;
 4
       if (x > 10) {
         if b2 {
 5
6
            i = x;
 7
            b2 = false; }
 8
         else {
9
            i = 0;
10
            if b2 {
              b2 = false; }
11
12
            else {
13
              b2 = true; }; }; };
14
       if ((i < x) || b2) {
15
         res = res * x; }
16
       return sum;
17
```

Aufgabe 4.2 Zustandsbasierter Test - Wiederholung Automat

Aufgabe 5.1 Code-Überdeckung - Wiederholung des Codes

```
1 ...
2 public static int grenze = 10;
3 public static bool b1 = false;
4 ...
```

Der Code der Methode sei dann wie folgt gegeben:

```
public int g (int x; boolean b2){
 1
 2
       int res = 10;
 3
       int i = 0;
 4
       if (x < grenze) {</pre>
 5
            i = grenze - x;
 6
            res = 7; };
 7
       if (res < 10) {
 8
            i = grenze + x;
 9
            res = 2 * res;
10
            b1 = true; };
11
       if ((i < grenze) and b1 and b2) \{
12
         res = res * res; }
       else { res = 1; };
13
       println(''final result:'' res)
14
15
       return res;
     }
16
```