

이차방정식

01	이차방정식의 풀이	137
	예제	
02	이차방정식의 판별식	150
	예제	
03	이차방정식의 근과 계수의 관계	156
	예제	
기본	다지기	170
실력	다지기	172

예제 • •

다음 x에 대한 방정식을 풀어라.

$$(1) a(x-1) = x+1$$

$$(2)(a-1)(a+5)x=a-8x+3$$

접근 방법

x에 대한 방정식이므로 x에 대하여 정리하고, x의 계수가 0이 아닌 경우와 0인 경우로 나누어서 풀어야합니다. x의 계수가 0일 때, $0 \cdot x = k$ 에서 k = 0인 경우에는 해가 무수히 많고, $k \neq 0$ 인 경우에는 해가 없습니다.

Bible 방정식 ax=b의 해는 $a\neq 0$ 인 경우와 a=0인 경우로 나누어 생각한다.

상세 풀이

(1)a(x-1)=x+1에서

$$ax-a=x+1$$
 $\therefore (a-1)x=a+1$

(i)
$$a \neq 1$$
일 때, 양변을 $a - 1$ 로 나누면 $x = \frac{a+1}{a-1}$

(ii) a=1일 때, $0 \cdot x = 2$ 이므로 해가 없습니다.

$$(2)(a-1)(a+5)x=a-8x+3$$

$$(a^2+4a-5)x=a-8x+3$$

$$(a^2+4a+3)x=a+3$$

$$(a+3)(a+1)x=a+3$$

(i)
$$a \neq -3$$
, $a \neq -1$ 일 때, $x = \frac{1}{a+1}$

(ii) a=-3일 때 $0 \cdot x=0$ 이므로 해가 무수히 많습니다

(iii)
$$a = -1$$
일 때, $0 \cdot x = 2$ 이므로 해가 없습니다.

정답 ⇒ 풀이 참조

보충 설명

일차방정식 ax=b와 방정식 ax=b라는 표현에는 의미의 차이가 있음에 주의해야 합니다. 즉, 일차방정식 ax=b는 최고차항이 일차항이라는 의미를 포함하므로 $a\neq 0$ 이라는 조건을 가집니다. 하지만 방정식 ax=b에서는 다음과 같이 $a\neq 0$ 인 경우와 a=0인 경우로 나누어 생각해야 합니다.

- (i) $a \neq 0$ 일 때, $x = \frac{b}{a}$ 로 하나의 해를 가집니다.
- (ii) a=0일 때, $b\neq 0$ 이면 방정식 ax=b를 만족시키는 해는 없고, 이를 불능이라고 합니다. b=0이면 방정식 ax=b를 만족시키는 해는 무수히 많고, 이를 부정이라고 합니다.

01-1 다음 *x*에 대한 방정식을 풀어라.

(1) $ax - a^2 = bx - b^2$

(2) $(a^2+2)x+2=a(3x+1)$

표현 바꾸기

① -1

20

③1

4) 2

⑤ 3

개념 넓히기 ★☆☆

01-3 x에 대한 방정식 $(k+1)(k-2)x=k^2+k(x+2)+6x$ 의 해가 무수히 많도록 하는 상수 k의 값을 m, 해가 없도록 하는 상수 k의 값을 n이라고 할 때, m+n의 값을 구하여라.

8日 01-1 (1)(i) $a \neq b$ 일 때, x = a + b (ii) a = b일 때, 해가 무수히 많다. (2)(i) $a \neq 1$, $a \neq 2$ 일 때, $x = \frac{1}{a-1}$ (ii) a = 1일 때, 해가 없다. (iii) a = 2일 때, 해가 무수히 많다.

01-2 ⑤

01-3 2

예제 **0** 2

다음 이차방정식을 풀어라.

(1)
$$x^2 - x - 2 + \sqrt{2} = 0$$

(2)
$$4x^2 + 5x + 3 = 0$$

$$(3) 3x^2 + 2x - 4 = 0$$

$$(4) 2x^2 - \sqrt{3}x + 2 = 0$$

접근 방법

(1)은 상수항을 $-\sqrt{2}(\sqrt{2}-1)$ 로 정리하면 쉽게 인수분해할 수 있습니다. (2), (3), (4)는 좌변이 모두 쉽게 인수분해가 되지 않으므로 근의 공식을 이용합니다

Bible

이차방정식
$$ax^2+bx+c=0$$
의 근은 $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

이치방정식
$$ax^2+2b'x+c=0$$
의 근은 $x=\frac{-b'\pm\sqrt{b'^2-ac}}{a}$

상세 풀이

(1)
$$x^2 - x - 2 + \sqrt{2} = 0$$
 에서 $x^2 - x - \sqrt{2}(\sqrt{2} - 1) = 0$
좌변을 인수분해하면 $\{x + (\sqrt{2} - 1)\}(x - \sqrt{2}) = 0$

$$\therefore x = -\sqrt{2} + 1$$
 $\exists = \sqrt{2}$

$$(2)4x^2+5x+3=0$$
에서 근의 공식을 이용하면

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 4 \cdot 3}}{2 \cdot 4} = \frac{-5 \pm \sqrt{23}i}{8}$$

$$(3) 3x^2 + 2 \cdot 1 \cdot x - 4 = 0$$
 에서 근의 공식을 이용하면

$$x = \frac{-1 \pm \sqrt{1^2 - 3 \cdot (-4)}}{3} = \frac{-1 \pm \sqrt{13}}{3}$$

$$(4)2x^2-\sqrt{3}x+2=0$$
에서 근의 공식을 이용하면

$$x \! = \! \frac{- \left(-\sqrt{3}\right) \! \pm \! \sqrt{\left(-\sqrt{3}\right)^2 \! - \! 4 \! \cdot \! 2 \! \cdot \! 2}}{2 \! \cdot \! 2} \! = \! \frac{\sqrt{3} \! \pm \! \sqrt{13} i}{4}$$

정답
$$\Rightarrow$$
 (1) $x=-\sqrt{2}+1$ 또는 $x=\sqrt{2}$ (2) $x=\frac{-5\pm\sqrt{23}i}{8}$ (3) $x=\frac{-1\pm\sqrt{13}}{3}$ (4) $x=\frac{\sqrt{3}\pm\sqrt{13}i}{4}$

보충 설명

이차방정식의 좌변이 인수분해가 쉽게 되지 않을 때에는 식을 변형하여 좌변을 완전제곱식으로 나타내어 근을 구할 수 있는데, 이를 이용한 것이 근의 공식입니다.

한편, 이차방정식에서 x^2 의 계수가 무리수 또는 허수인 경우에는 양변에 적절한 수를 곱해서 무리수는 유리수로, 허수는 실수로 바꾸어 문제를 풉니다.

02-1 다음 이치방정식을 풀어라.

(1)
$$x^2 - x - 3 + \sqrt{3} = 0$$

$$(2) x^2 - 3x - 3 = 0$$

(3)
$$\frac{1}{5}x^2 - \frac{2}{3}x + 2 = 0$$

(4)
$$x^2 - 2\sqrt{2}x + 7 = 0$$

표현 바꾸기

02-2 다음 x에 대한 이차방정식을 풀어라.

$$(1) x^2 - (a-b)x - ab = 0$$

(2)
$$(a+b)x^2+2ax+a-b=0$$

개념 넓히기 ★☆☆

02-3 다음 이차방정식을 풀어라.

(1)
$$(\sqrt{2}+1)x^2 - (3+\sqrt{2})x + \sqrt{2} = 0$$
 (2) $(\sqrt{3}-1)x^2 + 2x + 3 - \sqrt{3} = 0$

$$(2)\left(\sqrt{3}-1\right)x^2+2x+3-\sqrt{3}=0$$

02-1 (1)
$$x = -\sqrt{3} + 1$$
 $\pm \pm x = \sqrt{3}$ (2) $x = \frac{3 \pm \sqrt{21}}{2}$ (3) $x = \frac{5 \pm \sqrt{65}i}{3}$ (4) $x = \sqrt{2} \pm \sqrt{5}i$

02-2 (1)
$$x=a$$
 또는 $x=-b$ (2) $x=-\frac{a-b}{a+b}$ 또는 $x=-1$

02-3 (1)
$$x = \sqrt{2} - 1$$
 또는 $x = \sqrt{2}$ (2) $x = -\sqrt{3}$ 또는 $x = -1$

범위를 나누어 푸는 이차방정식

다음 방정식을 풀어라.

$$(1) x^2 - |x| - 12 = 0$$

$$(2) x^2 - 2|x-1| - 1 = 0$$

접근 방법

(1)에서는 x < 0일 때와 $x \ge 0$ 일 때로 나누어 식을 정리하고 (2)에서는 x < 1일 때와 $x \ge 1$ 일 때로 나누 어 정리하여 이차방정식의 근을 구합니다. 이때, 해당 범위에 속하는 것만 주어진 방정식의 근입니다.

Bible 절댓값 기호 안의 식의 값이 0이 되는 x의 값을 기준으로 x의 값의 범위를 나누어 푼다.

상세 풀이

(1) 절댓값 기호 안의 식의 값이 0이 되는 x의 값 0을 기준으로 x의 값의 범위를 나눕니다.

(i) x < 0일 때, $x^2 + x - 12 = 0$

$$(x+4)(x-3)=0$$

$$\therefore x = -4 \, \text{E} = x = 3$$

그런데 x < 0이므로 x = -4

 $(ii) x \ge 0$ 일 때 $x^2 - x - 12 = 0$

$$(x+3)(x-4)=0$$
 $\therefore x=-3 \pm \frac{1}{2} x=4$

그런데 $x \ge 0$ 이므로 x = 4

(i) (ii)에서 구하는 방정식의 해는

$$x = -4$$
 또는 $x = 4$

(2) 절댓값 기호 안의 식의 값이 0이 되는 x의 값 1을 기준으로 x의 값의 범위를 나눕니다.

(i) x < 1일 때, $x^2 + 2(x-1) - 1 = 0$ 이므로 $x^2 + 2x - 3 = 0$

$$(x+3)(x-1)=0$$
 $\therefore x=-3 \pm x=1$

그런데 x < 1이므로 x = -3

(ii) $x \ge 1$ 일 때, $x^2 - 2(x-1) - 1 = 0$ 이므로 $x^2 - 2x + 1 = 0$

$$(x-1)^2 = 0$$
 : $x=1$

(i) (ii)에서 구하는 방정식의 해는

$$x = -3$$
 또는 $x = 1$

정답 \Rightarrow (1) x=-4 또는 x=4 (2) x=-3 또는 x=1

보충 설명

절댓값 기호를 포함한 방정식은 절댓값 기호 안의 식의 값이 001 되는 x의 값을 기준으로 x의 값의 범위를 나누 어 해를 구합니다. 한편 가우스 기호를 포함한 이차방정식은 정수 n에 대하여 $n \le x < n+1$ 일 때 [x]=n임을 이용할 수 있도록 x의 값의 범위를 나누어 해를 구합니다. 이때, 반드시 구한 해가 각 범위에 속하는지 확인해야 합니다.

03-1 다음 방정식을 풀어라.

$$(1) x^2 + 2 |x| - 3 = 0$$

$$(2) x^2 - 3 |x - 1| - 7 = 0$$

표현 바꾸기

03-2 방정식 $x^2 + |2x - 1| = 2$ 의 모든 근의 합을 구하여라.

개념 넓히기 ★★☆

03-3 $0 \le x < 2$ 일 때, 방정식 $2x^2 - [x] - 1 = 0$ 을 풀어라.

(단. [x]는 x 보다 크지 않은 최대의 정수이다.)

정답 03-1 (1) x = -1 또는 x = 1 (2) x = -5 또는 x = 4

03-2
$$2-\sqrt{2}$$

03-3
$$x = \frac{\sqrt{2}}{2}$$
 또는 $x = 1$

가로. 세로의 길이가 각각 60 m. 40 m 인 직사각형 모양의 땅에 오른쪽 그림과 같이 폭이 일정한 디자 모양의 길을 만들었다. 남은 땅의 넓이가 $1512 \,\mathrm{m}^2$ 일 때, 길의 폭은 몇 m 인지 구하여라.

이차방정식의 활용

접근 방법

길의 폭을 x m라 하고 남은 땅의 넓이를 이용하여 x에 대한 방정식을 세울 수 있습니다. 이때, 방정식을 풀고 나서 구한 미지수의 값이 조건을 만족시키는지 꼭 확인해야 합니다.

Bible 미지수를 x라 하고 주어진 조건에 맞게 방정식을 세운다.

상세 풀이

길의 폭을 x m라고 하면 남은 땅의 가로의 길이는 (60-x)m, 세로의 길이는 (40-2x)m이므로

$$(60-x)(40-2x)=1512$$

좌변을 전개하면

 $2x^2 - 160x + 2400 = 1512$, $2x^2 - 160x + 888 = 0$

$$x^2-80x+444=0$$
, $(x-6)(x-74)=0$

∴ *x*=6 또는 *x*=74

그런데 세로의 길이에서 0 < x < 20이므로 x = 6

따라서 길의 폭은 6 m입니다.

정답 ⇒ 6 m

보충 설명

이차방정식의 활용 문제에서는 미지수를 정하고 식을 세웁니다. 그런데 구하는 값을 x라 하기도 하고, 조건에 의 하여 식을 세우기 쉽도록 하는 값을 x라 하기도 하는데, 후자의 경우에는 방정식을 풀고 나서 원래 구하려는 값 을 한 번 더 구해 주는 과정을 빼먹지 않도록 합니다.

04-1 한 변의 길이가 $10 \,\mathrm{m}$ 인 정사각형 모양의 꽃밭에 오른쪽 그림 과 같이 폭이 일정한 T자 모양의 길을 만들었다. 남은 꽃밭의 넓이가 $64 \,\mathrm{m}^2$ 일 때, 길의 폭은 몇 m 인지 구하여라.

표현 바꾸기

04-2 오른쪽 그림과 같이 정사각형 모양의 토지에서 가로의 길이는 3 m 짧 게 하고, 세로의 길이는 4m 길게 하여 직사각형 모양의 토지를 만들 었더니 넓이가 반으로 줄었다. 처음 정사각형 모양의 토지의 한 변의 길이가 몇 m인지 구하여라.

개념 넓히기 ★★☆

04-3 고대 그리스 사람들은 황금비를 회화나 조각 등에 활용하여 아 름다움을 추구하였다. 오른쪽 그림과 같이 0 < b < a인 직사각 형에서 $\frac{b}{a} = \frac{a}{a+b}$ 를 만족시키는 a:b의 값을 황금비라고 할 때, a:b=x:1을 만족시키는 x의 값을 구하여라.

정답 04-1 2 m

04-2 4 m

이차방정식의 근의 판별

x에 대한 이차방정식 $x^2+(2k-1)x+k^2=0$ 이 다음과 같은 근을 가지도록 하는 실수 k 의 값 또는 그 범위를 구하여라.

(1) 서로 다른 두 실근 (2) 중근

(3) 서로 다른 두 허근

접근 방법

이차방정식 $ax^2+bx+c=0$ 의 판별식 $D=b^2-4ac$ 의 값의 부호에 따라 이차방정식이 서로 다른 두 실 근을 가지는지, 중근을 가지는지, 서로 다른 두 허근을 가지는지를 판별할 수 있습니다.

Bible 계수가 실수인 이치방정식 $ax^2+bx+c=0$ 에서 $D=b^2-4ac$ 라고 할 때

- (i) D>0이면 서로 다른 두 실근을 가진다.
- (ii) D=0이면 중근(실근)을 가진다.
- (iii) D < 0이면 서로 다른 두 허근을 가진다.

상세 풀이

주어진 이차방정식의 판별식을 D라고 하면

$$D = (2k-1)^2 - 4 \cdot 1 \cdot k^2 = 4k^2 - 4k + 1 - 4k^2 = -4k + 1$$

(1) 서로 다른 두 실근을 가져야 하므로

$$D = -4k+1>0$$
 $\therefore k < \frac{1}{4}$

(2) 중근을 가져야 하므로

$$D = -4k + 1 = 0$$
 : $k = \frac{1}{4}$

(3) 서로 다른 두 허근을 가져야 하므로

$$D = -4k + 1 < 0$$
 : $k > \frac{1}{4}$

정답 \Rightarrow (1) $k < \frac{1}{4}$ (2) $k = \frac{1}{4}$ (3) $k > \frac{1}{4}$

보충 설명

판별식을 이용하여 이차방정식의 근을 판별하는 것은 계수가 실수인 이차방정식에서만 가능합니다. 허수는 대소 비교를 할 수 없으므로 계수가 허수인 이차방정식의 경우에는 일반적으로는 판별식의 부호로 이차 방정식의 근을 판별할 수 없습니다. 하지만 계수가 허수인 이처방정식이라도 두 근이 서로 같다는 조건에 대해서 는 판별식 D=0임을 이용할 수 있습니다

- 05-1 x에 대한 이차방정식 $x^2-2(k+1)x+k^2+3=0$ 이 다음과 같은 근을 가지도록 하는 실수 k의 값 또는 그 범위를 구하여라.
 - (1) 서로 다른 두 실근 (2) 중근

(3) 서로 다른 두 허근

표현 바꾸기

- 다음 이차방정식이 실근을 가지도록 하는 실수 k 의 값의 범위와 허근을 가지도록 하는 실수 05-2 k의 값의 범위를 각각 구하여라.
 - $(1) x^2 + 4x + 3 = k$

(2)(x+3)(x+1)=k-x

개념 넓히기 ★☆☆

05-3 x에 대한 두 이차방정식 $x^2 - x + 7 + a = 0$, $x^2 + 2ax + a^2 - a = 0$ 이 모두 허근을 가지도 록 하는 정수 a의 개수를 구하여라.

- 정답 **05-1** (1) k>1 (2) k=1 (3) k<1
 - **05-2** (1) 실근 : $k \ge -1$, 허근 : k < -1 (2) 실근 : $k \ge -\frac{13}{4}$, 허근 : $k < -\frac{13}{4}$
 - **05-3** 6

다음 물음에 답하여라.

- (1) 이차방정식 $x^2 2(a+1)x + 9 = 0$ 이 중근을 가지도록 하는 실수 a의 값을 정하 고. 그때의 해를 구하여라.
- (2) 이차식 $x^2 + ax + a + 3$ 이 완전제곱식이 될 때, 실수 a의 값을 구하여라.

접근 방법

(1)에서는 이차방정식이 중근을 가지려면 판별식 D=0이 됨을 이용하여 실수 a의 값을 정하고. 그때의 중근을 구합니다. (2)에서는 주어진 이차식이 완전제곱식이 된다는 것은 이차방정식의 판별식 D=0이 됨 을 이용하여 실수 a의 값을 구합니다.

Bible 이처방정식 $ax^2+bx+c=0$ 의 판별식 D=0이면 이차식 ax^2+bx+c 는 완전제곱식이다.

상세 풀이

(1) 주어진 이차방정식이 중근을 가져야 하므로 판별식을 D라고 하면

$$\frac{D}{4} = \{-(a+1)\}^2 - 1 \cdot 9 = 0$$

$$a^2+2a-8=0$$
, $(a+4)(a-2)=0$

$$\therefore a = -4 \pm a = 2$$

- (i) a = -4일 때, $x^2 + 6x + 9 = 0$ 에서 $(x+3)^2 = 0$ $\therefore x = -3$
- (ii) a=2일 때 $x^2-6x+9=0$ 에서 $(x-3)^2=0$ $\therefore x=3$
- (i) (ii)에서 a=-4일 때 x=-3. a=2일 때 x=3
- (2) 주어진 이차식이 완전제곱식이 되려면 이차방정식 $x^2 + ax + a + 3 = 0$ 의 판별식을 D라고 할 때.

$$D=a^2-4(a+3)=0$$

$$a^2-4a-12=0$$
, $(a+2)(a-6)=0$

$$\therefore a = -2 \, \text{E} = -2 \, \text{E}$$

정답 \Rightarrow (1) a=-4일 때 x=-3, a=2일 때 x=3 (2) a=-2 또는 a=6

보충 설명

(2)에서 이차식을 완전제곱식이 되도록 다음과 같이 변형하여 구할 수도 있습니다.

$$x^{2}+ax+a+3=\left(x+\frac{a}{2}\right)^{2}-\frac{a^{2}}{4}+a+3$$

이므로 완전제곱식이 되려면 $-\frac{a^2}{4} + a + 3 = 0$

$$a^2-4a-12=0$$
, $(a+2)(a-6)=0$ $\therefore a=-2 \subseteq a=6$

06-1 다음 물음에 답하여라.

- (1) 이차방정식 $4x^2 (a+2)x + 1 = 0$ 이 중근을 가지도록 실수 a 의 값을 정하고, 그때의 해를 구하여라.
- (2) 이차식 $kx^2 + kx + 1$ 이 완전제곱식이 될 때. 실수 k의 값을 구하여라.

표현 바꾸기

06-2 이처방정식 $x^2 - (k-1)x + 2k + 3 = 0$ 이 중근 α 를 가질 때, $k + \alpha$ 의 값을 구하여라. (단. k 는 양수이다.)

개념 넓히기 ★★☆

06-3 x에 대한 이차방정식 $x^2-2(m+a)x+m^2-2m+a^2=0$ 이 실수 m의 값에 관계없이 항상 중근을 가질 때, 실수 α 의 값을 구하여라.

정 06-1 (1) a=-6일 때 $x=-\frac{1}{2}$, a=2일 때 $x=\frac{1}{2}$ (2) 4

06-2 16

06-3 -1

이차방정식의 근과 계수의 관계(1)

예제 • • 7

이차방정식 $x^2-2x+3=0$ 의 두 근을 a, β 라고 할 때, 다음 식의 값을 구하여라.

$$(1)\frac{1}{\alpha} + \frac{1}{\beta}$$

$$(2) \alpha^2 \beta + \alpha \beta^2$$

$$(3) \alpha^2 + \beta^2$$

$$(4) \alpha^3 + \beta^3$$

접근 방법

이차방정식의 근과 계수의 관계를 이용하여 두 근의 합과 곱을 구한 다음, 곱셈 공식의 변형을 이용하여 각각의 식의 값을 찾습니다.

Bible

이차방정식 $ax^2+bx+c=0$ 의 두 근을 a, β 라고 하면

$$\alpha + \beta = -\frac{b}{a}, \ \alpha \beta = \frac{c}{a}$$

상세 풀이

근과 계수의 관계에 의하여

$$\alpha + \beta = -\frac{-2}{1} = 2$$
, $\alpha \beta = \frac{3}{1} = 3$

$$(1)\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{2}{3}$$

$$(2)\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha+\beta) = 3 \cdot 2 = 6$$

$$(3) \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 2 \cdot 3 = -2$$

$$(4) \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = 2^3 - 3 \cdot 3 \cdot 2 = -10$$

정답
$$\Rightarrow$$
 (1) $\frac{2}{3}$ (2)6 (3) -2 (4) -10

보충 설명

이치방정식의 근과 계수의 관계를 이용하면 이치방정식의 근을 직접 구하지 않고, 이치방정식의 계수만으로도 두 근의 합과 곱을 쉽게 구할 수 있습니다.

07-1 이차방정식 $2x^2-4x-1=0$ 의 두 근을 $a,\ \beta$ 라고 할 때, 다음 식의 값을 구하여라.

 $(1)\frac{1}{\alpha} + \frac{1}{\beta}$

(2) $(\alpha - \beta)^2$

(3) $\alpha^2 + \beta^2$

(4) $\alpha^3 + \beta^3$

표현 바꾸기

07-2 이차방정식 $x^2-3x+1=0$ 의 두 근을 a, β 라고 할 때, 다음 식의 값을 구하여라.

$$(1)\left(\alpha^2 + \frac{1}{\beta}\right)\left(\beta^2 + \frac{1}{\alpha}\right)$$

(2)
$$(\alpha^2 + 5\alpha + 2)(\beta^2 + 5\beta + 2)$$

개념 넓히기 ★☆☆

이차방정식 $x^2 - ax + b = 0$ 의 두 근을 α , β 라고 할 때, 이차방정식 07-3 $x^2-(2a+1)x+2=0$ 의 두 근이 a+eta, lpha이다. 상수 a,b에 대하여 a^2+b^2 의 값을 구 하여라.

8 07-1 (1) -4 (2) 6 (3) 5 (4) 11

07-2 (1) 5 (2) 89

07-3 5

이차방정식의 근과 계수의 관계(2)

^{୴୷} **`**•

이차방정식 $x^2-4x+k-1=0$ 의 두 실근이 다음 조건을 만족시킬 때, 실수 k의 값을 각각 구하여라.

- (1) 두 실근의 차가 2
- (2) 두 실근의 제곱의 합이 10

접근 방법

두 실근에 대한 조건이 주어진 경우에는 곱셈 공식을 변형하여 조건에 맞는 식을 찾도록 합니다. 이차방정식의 두 실근을 α , β 라고 하면 (1)에서 두 실근의 차는 $|\alpha-\beta|=\sqrt{(\alpha+\beta)^2-4\alpha\beta}$ 를 이용하여 구할 수 있고, (2)에서 두 실근의 제곱의 합은 $\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta$ 를 이용하여 구할 수 있습니다.

Bible 이치방정식의 두 실근을
$$\alpha$$
, β 라고 하면
$$|\alpha-\beta|=\sqrt{(\alpha+\beta)^2-4\alpha\beta}$$

$$\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta$$

상세 풀이

이차방정식 $x^2-4x+k-1=0$ 의 두 실근을 α . β 라고 하면 근과 계수의 관계에 의하여

$$\alpha + \beta = 4$$
, $\alpha\beta = k-1$

(1) 두 실근의 차가 2이므로

$$|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{4^2 - 4(k - 1)} = 2$$

 $\sqrt{20 - 4k} = 2, 4k = 16$ $\therefore k = 4$

(2) 두 실근의 제곱의 합이 10이므로

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 4^{2} - 2(k - 1) = 10$$

2k=8 : k=4

정답 ⇒ (1)4 (2)4

보충 설명

(1)에서와 같이 이차방정식의 두 실근의 차가 2로 주어진 경우에는 두 실근을 각각 α , α + 2라고 할 수 있습니다. 이때, 근과 계수의 관계에 의하여

$$\alpha + (\alpha + 2) = 4$$
, $\alpha(\alpha + 2) = k - 1$

에서 $\alpha=1$ 이므로 k=4임을 알 수 있습니다

- 08-1 이치방정식 $x^2+2x-(k+1)=0$ 의 두 실근이 다음 조건을 만족시킬 때, 실수 k의 값을 구 하여라.
 - (1) 두 실근의 차가 6
 - (2) 두 실근의 제곱의 합이 4

표현 바꾸기

08-2 x에 대한 이차방정식 $x^2-2kx+k^2-k=0$ 의 두 실근의 차의 제곱이 12일 때, 실수 k의 값은?

① -3

3 1

(4) **3**

(5) 5

개념 넓히기 ★★☆

08-3 x에 대한 이치방정식 $x^2 + (a^2 - a - 2)x + a = 0$ 의 두 실근의 절댓값이 서로 같고 부호가 서로 다를 때, 실수 a의 값을 구하여라.

8-1 (1) 7 (2) -1

08-2 ④

08-3 −1

두 수를 근으로 가지는 이차방정식

이차방정식 $x^2-3x+1=0$ 의 두 근을 α , β 라고 할 때, 다음을 두 근으로 가지고 x^2 의 계수가 1인 이차방정식을 구하여라.

$$(1) 2\alpha, 2\beta$$

(2)
$$\alpha - 2$$
, $\beta - 2$

$$(3)\frac{1}{\alpha},\frac{1}{\beta}$$

접근 방법

주어진 이차방정식에서 근과 계수의 관계에 의하여 $\alpha+\beta$, $\alpha\beta$ 의 값을 구한 후, 이를 이용하여 주어진 두 값의 합과 곱을 구하여, 구하려는 이차방정식의 계수를 찾습니다.

Bible

두 수 a, β 를 근으로 가지고 x^2 의 계수가 1인 이차방정식 $\Rightarrow x^2 - (\alpha + \beta)x + \alpha\beta = 0$

상세 풀이

이차방정식 $x^2-3x+1=0$ 의 두 근이 α . β 이므로 근과 계수의 관계에 의하여

$$\alpha + \beta = 3$$
 $\alpha \beta = 1$

(1) 두 근 2α , 2β 의 합과 곱을 구하면

$$2\alpha + 2\beta = 2(\alpha + \beta) = 2 \cdot 3 = 6$$
, $2\alpha \cdot 2\beta = 4\alpha\beta = 4 \cdot 1 = 4$

따라서 2α , 2β 를 두 근으로 가지고 x^2 의 계수가 1인 이차방정식은

$$x^2 - 6x + 4 = 0$$

(2) 두 근 α -2. β -2의 합과 곱을 구하면

$$(\alpha-2)+(\beta-2)=(\alpha+\beta)-4=3-4=-1$$

$$(\alpha-2)(\beta-2) = \alpha\beta-2(\alpha+\beta)+4=1-2\cdot3+4=-1$$

따라서 $\alpha-2$. $\beta-2$ 를 두 근으로 가지고 x^2 의 계수가 1인 이차방정식은

$$x^2 + x - 1 = 0$$

(3) 두 근 $\frac{1}{\alpha}$, $\frac{1}{\beta}$ 의 합과 곱을 구하면

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{3}{1} = 3, \frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{\alpha \beta} = \frac{1}{1} = 1$$

따라서 $\frac{1}{\alpha}$, $\frac{1}{\beta}$ 을 두 근으로 가지고 x^2 의 계수가 1인 이차방정식은

$$x^2 - 3x + 1 = 0$$

정답 \Rightarrow (1) $x^2-6x+4=0$ (2) $x^2+x-1=0$ (3) $x^2-3x+1=0$

보충 설명

이차방정식 $ax^2+bx+c=0$ 의 두 근을 a, β 라고 하면 $ax^2+bx+c=a(x-a)(x-\beta)$ 로 인수분해됩니다. 따라서 모든 이차식은 복소수의 범위에서 인수분해됩니다.

09-1 이차방정식 $x^2-2x-1=0$ 의 두 근을 lpha, eta라고 할 때, 다음을 두 근으로 가지고 x^2 의 계수 가 1 인 이차방정식을 구하여라.

(1) $2\alpha - 1$, $2\beta - 1$ (2) α^2 , β^2

(3)
$$2\alpha + \frac{1}{\beta}$$
, $2\beta + \frac{1}{\alpha}$

표현 바꾸기

이차방정식 $x^2+2x+3=0$ 의 두 근을 α , β 라고 할 때, 다음 중 $\alpha+\beta$, $\alpha^2+\beta^2$ 을 두 근으로 09-2 가지는 이차방정식은?

① $x^2-2x+1=0$ ② $x^2+2x+1=0$ ④ $x^2+4x-4=0$ ⑤ $x^2+4x+4=0$

(3) $x^2 - 4x + 4 = 0$

개념 넓히기 ★★☆

이처방정식 $x^2-5x-3=0$ 의 두 근을 a, $\frac{1}{\beta}$ 이라고 할 때, $\frac{1}{a}$, β 를 두 근으로 가지고 09-3 x^2 의 계수가 3인 이차방정식을 구하여라.

정말 **09-1** (1)
$$x^2-2x-7=0$$
 (2) $x^2-6x+1=0$ (3) $x^2-2x-1=0$

09-2 ⑤

09-3 $3x^2 + 5x - 1 = 0$

이차방정식의 켤레근

다음 물음에 답하여라.

- (1) 이차방정식 $x^2 + (1-a)x + b 3 = 0$ 의 한 근이 $2 + \sqrt{3}$ 일 때, 유리수 a, b의 값 을 각각 구하여라.
- (2) 이차방정식 $x^2 (a-3)x + b + 2 = 0$ 의 한 근이 1-i일 때, 실수 a, b의 값을 각 각 구하여라.

접근 방법

(1)의 이차방정식의 계수가 유리수이고, (2)의 이차방정식의 계수가 실수이므로 이차방정식의 켤레근의 성질을 이용할 수 있습니다. 또한 주어진 근을 방정식에 대입한 후 무리수가 서로 같을 조건 또는 복소수 가 서로 같을 조건을 이용하여 풀 수도 있습니다.

Bible 이처방정식 $ax^2+bx+c=0$ 에서

(1) a, b, c 가 유리수일 때, $p+q\sqrt{m}$ 이 근이면 $p-q\sqrt{m}$ 도 근이다. (단, p, q는 유리수, \sqrt{m} 은 무리수이다.)

(2) a, b, c가 실수일 때, p+qi가 근이면 p-qi도 근이다.

(단, p, q는 실수, $i = \sqrt{-1}$ 이다.)

상세 풀이

(1)a, b가 유리수이고 주어진 이차방정식의 한 근이 $2+\sqrt{3}$ 이므로 다른 한 근은 $2-\sqrt{3}$ 입니다. 근과 계수의 관계에 의하여

$$(2+\sqrt{3})+(2-\sqrt{3})=a-1, 4=a-1$$
 : $a=5$
 $(2+\sqrt{3})(2-\sqrt{3})=b-3, 1=b-3$: $b=4$

(2)a, b가 실수이고 주어진 이차방정식의 한 근이 1-i이므로 다른 한 근은 1+i입니다. 근과 계수의 관계에 의하여

(1-i)+(1+i)=a-3, 2=a-3 : a=5

(1-i)(1+i)=b+2, 2=b+2 : b=0

정답 \Rightarrow (1) a=5, b=4 (2) a=5, b=0

보충 설명

(1)의 이차방정식 $x^2+(1-a)x+b-3=0$ 에 $x=2+\sqrt{3}$ 을 대입하면 $(2+\sqrt{3})^2+(1-a)(2+\sqrt{3})+b-3=0$ $(6-2a+b)+(5-a)\sqrt{3}=0$

이때, a, b가 유리수이므로 무리수가 서로 같을 조건에 의하여

6-2a+b=0, 5-a=0 : a=5, b=4

10-1 다음 물음에 답하여라.

- (1) 이차방정식 $2x^2 + ax + b 1 = 0$ 의 한 근이 $1 \sqrt{2}$ 일 때, 유리수 a, b의 값을 각각 구 하여라
- (2) 이차방정식 $2x^2 + (a-2)x + b = 0$ 의 한 근이 3 + 2i 일 때, 실수 a, b의 값을 각각 구 하여라.

표현 바꾸기

10-2 이차방정식 $x^2 - ax + b = 0$ 의 한 근이 1 + 2i일 때, 이차방정식 $ax^2 + bx + 2 = 0$ 의 두 근 의 합을 구하여라. (단, a, b는 실수이다.)

개념 넓히기 ★☆☆

10-3 이차방정식 $x^2+ax+b=0$ 의 한 근이 $3-\sqrt{3}$ 일 때, 이차방정식 $x^2+bx+a=0$ 의 두 근 을 α , β 라고 하자. 유리수 a, b에 대하여 $\alpha^2 + \beta^2$ 의 값을 구하여라.

8 10-1 (1) a=-4, b=-1 (2) a=-10, b=26

10-2 $-\frac{5}{2}$

10-3 48