Lecture 1

October 14, 2019

<IPython.core.display.HTML object>

1 Metody Numeryczne

- 1.1 Elementy analizy numerycznej
- 1.1.1 dr hab. in. Jerzy Baranowski, Prof. nadzw.
- 1.2 Informacje ogólne
 - Katedra Automatyki i Robotyki, C3, p. 214
 - Konsultacje
 - Czwartki 11:00-12:00 (o ile nie ma Kolegium Wydziaowego lub seminarium)
 - jb@agh.edu.pl
 - wykady dostpne tutaj: https://github.com/KAIR-ISZ/public_lectures

2 Reprezentacja liczb

2.1 Kod binarny

- Zapis liczby z wykorzystaniem dwóch symboli 1 i 0
- Podstawa wspóczesnego sposobu reprezentacji informacji

2.2 Zamierzcha historia

- Pingala, Chandastra i Prozodia
 - Ok. 4 wiek pne
 - Wykorzystanie zapisu w formie zer i jedynek do opisu metrum
- Chiny, hexagramy, Shao Yong, I-Ching
- Leibniz

2.3 Algebra Boole'a

$x \wedge y = xy$	Koniunkcja
$x \vee y = x + y - xy$	Alternatywa
$\neg x = 1 - x$	Negacja
$x \to y = (\neg x \lor y)$	Implikacja
$x \oplus y = (x \vee y) \wedge \neg (x \wedge y)$	EXOR
$x = y = \neg(x \oplus y)$	Rwnowano

2.4 Nieco mniej zamierzcha historia

- 1937 Shannon przekanikowa realizacja operacji binarnych i algebry Boole'a
- 1937 Stibitz Pierwszy komputer przekanikowy (dodawanie)

2.5 Kod binarny

$$2^{7} \quad \frac{0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1}{2^{6} \quad 2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1}} \quad 2^{0}$$

Co daje $$=2^{5+2}3+2^{1+2}0=32+8+2+1=43$$

2.6 Liczby naturalne

- Ogólnie zakres od 0 do 2n-1
- 8 bit zakres od 0 do 255
- 16 bit zakres od 0 do 65,535 (short, int)
- 32 bit zakres od 0 do 4,294,967,295 (long)

W Pythonie i matlabie za bardzo nie przejmujemy si typami, chyba e je wymusimy

2.7 Operacje na liczbach binarnych

- Dodawanie
 - -0+0=0
 - **-** 0+1=1
 - -1+0=1
 - 1+1=0, przenie 1
- Jak w dodawaniu pisemnym

1 1 1 1 1(cyfry przenoszone) 0 1 1 0 1(1310) + 1 0 1 1 1(2310)

=1 0 0 1 0 0 (3610)

2.8 Operacje na liczbach binarnych

- Odejmowanie
 - 0-0=0
 - 0-1=1, poyczka 1
 - **-** 1-0=1
 - -1-1=0,
- Analogicznie

2.9 Co z liczbami ujemnymi?

Uzupeniamy zapis o tzw. bit znaku

Co daje
$$=(-1)^{1/2}3+2^{1+2}0)=-(8+2+1)=-11$$
\$
Zmieniaj si zakresy: - 8 bit (-128 do 127) - 16 bit (32,768 do 32,767) - itd

2.10 Problemy

- Niepraktyczny zapis
- Trzeba przekodowywa wyniki operacji
- Potencjalnie podatniejsze na bdy

2.11 Kod uzupenienia do 2 (U2)

$$-2^{7} \frac{1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1}{2^{6} \quad 2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1}} \quad 2^{0}$$

Co daje
$$=-2^{7+2}6+2^{5+2}4+2^{3+2}1+2^{0}$$

= $-128+64+32+16+8+2+1=-5$

2.12 Bardzo atwa konwersja

- Liczby dodatnie s takie same jak byy
- Aby zamieni liczb na jej przeciwn wystarczy zanegowa wszystkie bity i do wyniku doda 1 (w obie strony)

	0	0	0 0	0	1	0	1 5	10	orygina
1	1	1	1	1	0	1	0		negacja
1	1	1	1	1	0	1	1	-510	dodanie 1
0	0	0	0	0	1	0	0		negacja
0	0	0	0	0	1	0	1	510	dodanie 1
-2 ⁷	2^6	2^{5}	2^4	2^3	2^2	2^1	2^{0}		

2.13 Jaka z tego korzy?

• Odejmowanie staje si dodawaniem (prawie)

$$A - B = A + \neg B + 1$$

• Przykad 13 – 7 (na 8 bitach)

2.14 Operacje na liczbach binarnych

Mnoenie równie przypomina mnoenie pisemne

2.15 A co z uamkami?

S dwa sposoby zapisu liczb niecakowitych - Staoprzecinkowy (staopozycyjny) - Zmiennoprzecinkowy (zmiennopozycyjny)

2.16 Zapis staoprzecinkowy

2.17 Zalety zapisu staoprzecinkowego

- Nie ma rónicy w kodowaniu
- Mamy stale okrelon dokadno, któr moemy w miar dokadnie ksztatowa
- Stosunkowa prostota
- Mae wymagania sprztowe

2.18 Wady zapisu staoprzecinkowego

Problemy z dokadnoci, np. nie da si dokadnie przedstawi liczby 0.1 - Na 3 bitach czci uamkowej rónica wynosi 0.025 - Na 7 bitach czci uamkowej rónica wynosi ok. 0.001

2.19 Jak wykonujemy dziaania?

- Dziaania wykonujemy traktuje zapis liczby staoprzecinkowej jako normaln binarn
- Kod U2 dalej dziaa
- Naley pamita, e wtedy liczba jest pomnoona przez 2n gdzie n to ilo bitów czci uamkowej
- W liczbach poddanych dziaaniu liczba bitów czci cakowitej i uamkowej musi by równa

2.20 Dziaania staoprzecinkowe

- Dodawanie wykonujemy identycznie
- W przypadku mnoenia wynik musimy podzieli przez 2n
- Mnoenie liczb staoprzecinkowych przez potg 2 polega tylko na przesuwaniu bitów (bardzo proste w realizacji)

	1	0	1 1	1 0	0	0	
			$\begin{array}{c} 1 \\ 2^{-4} \end{array}$			Podziele	enie przez 2 ²

2.21 Format zmiennoprzecinkowy

- Bardziej zaawansowany sposób przedstawiania liczb
- Ustandaryzowany norm IEEE
- Dajcy pod pewnymi wzgldami wiksz dokadno

2.22 Format zmiennoprzecinkowy

Reprezentacja liczby

$$x = S \cdot M \cdot B^E$$

- S znak (sign)
- M mantysa (*mantissa*, take *fraction*)
- B podstawa (base, zazwyczaj 2, rzadziej 10)
- E wykadnik (*exponent*)

2.23 Mantysa

- Liczba odpowiadajca za uamkow cz zapisu
- Format staoprzecinkowy, zazwyczaj liczba z przedziau [1,2)

2.24 Podstawa i wykadnik

Pozwalaj na okrelenie szerokiego zakresu

- Ze wzgldu na kodowanie, zazwyczaj podstawa to 2
- Wykadnik moe by ujemny lub dodatni.
- Wykadnik koduje si w U2, lub te wprowadza si przesunicie

2.25 Dziaania na liczbach zmiennoprzecinkowych

Dodawanie i odejmowanie

$$x_1 \pm x_2 = \left(M_1 \pm M_2 \cdot B^{E_2 - E_1} \right) \cdot B^{E_1}$$

Mnoenie i dzielenie

$$x_1 \cdot x_2 = (S_1 \cdot S_2) \cdot (M_1 \cdot M_2) \cdot B^{E_1 + E_2}$$

$$x_1/x_2 = (S_1 \cdot S_2) \cdot (M_1/M_2) \cdot B^{E_1-E_2}$$

2.26 Dzielenie

- Majc moliwo zapisu liczby ulamkowej mona sformuowa operacj dzielenia.
- Istnieje wiele algorytmów np.
 - restoring division
 - non-restoring division
 - SRT
 - algorytm Newtona-Raphsona
 - algorytm Goldschmidta
- S one ju zaimplementowane, jedno dzielenie zazwyczaj wymaga przeprowadzenia 3-4 mnoe

2.27 Wane formaty – IEEE Single precision

nika, wykadnik przesunity o 127 (zamiana z -126 do 127 na 1 do 244) - 24 bity mantysy, ale zawsze koduje si tylko 23 po kropce, przed kropk jest 1 - Specjalne zapisy nieskoczonoci i bdów - w NumPy - float32

2.28 Wane formaty – IEEE Double precision

- 11 bitów wykad-

nika, wykadnik przesunity o 1023 (zamiana z -1022 do 1023 na 1 do 2046) - 53 bity mantysy, ale zawsz koduje si tylko 52 po kropce, przed kropk jest 1 - Specjalne zapisy nieskoczonoci i bdów - w

NumPy - float64, ale w zasadzie kada liczba w Pythonie i Matlabie to double, chyba e wymusimy inaczej

2.29 Wywietlanie liczb

- Normalnie
- Notacja inynierska

$$-3700 = 3.7 \cdot 10^3, 0.12 = 120 \cdot 10^{-3}$$

- Notacja naukowa
 - 3700=3.7E3, 0.12=1.2E-1

3 Bdy numeryczne

3.1 Podstawowe definicje

Warto dokadna

$$y = \tilde{y} + \varepsilon$$

- \tilde{y} - warto przybliona - ε - bd

3.2 Bd bezwzgldny

Warto bezwzgldna rónicy midzy rozwizaniem dokadnym i przyblionym

$$\varepsilon = |y - \tilde{y}|$$

3.3 Bd wzgldny

Stosunek bdu bezwzgldnego do wartoci bezwzgldnej rozwizania

$$\eta = \frac{|y - \tilde{y}|}{|y|} = \left| \frac{y - \tilde{y}}{y} \right| = \left| 1 - \frac{\tilde{y}}{y} \right|$$

Czasami bd wzgldny wyraamy w procentach

3.4 Przykady

Pierwiastek kwadratowy ze 122

$$y = \sqrt{122} \approx 11.04536$$

$$\tilde{y} = 11$$

$$\varepsilon = |y - \tilde{y}| = 0.04536$$

$$\eta = \frac{|y - \tilde{y}|}{|y|} = 0.00411$$

3.5 Przykady

Liczba obywateli Polski (stan na ostatni spis powszechny z 2011)

$$y = 38538447$$

 $\tilde{y} = 38500000$
 $\varepsilon = |y - \tilde{y}| = 38447$
 $\eta = \frac{|y - \tilde{y}|}{|y|} = 9.97627 \cdot 10^{-4} \approx 0.001$

3.6 Przykady

Obliczanie staej grawitacji

$$y = 6.673841 \cdot 10^{-11}$$

$$\tilde{y} = 6.7 \cdot 10^{-11}$$

$$\varepsilon = |y - \tilde{y}| = 2.6159 \cdot 10^{-13}$$

$$\eta = \frac{|y - \tilde{y}|}{|y|} = 0.00391$$

3.7 róda bdów

Bdy powstajce przy formuowaniu zagadnienia - Bdy pomiaru - Bdy wynikajce z przyjcia okrelonych przyblie opisu zjawisk fizycznych

Bdy powstajce przy obliczeniach - Bdy grube (pomyki) - Bdy metody (obcicia) - Bdy zaokrgle

3.8 Bdy grube

- Bd przy wpisywaniu wzoru do komputera np. x=A/b zamiast x=A\b
- Za implementacja algorytmu
- Niewaciwa kolejno wykonywania dziaa

3.9 Bdy metody (obcicia)

- Bdy obcicia s nieodcznym elementem oblicze numerycznych.
- Bd obcicia jest to bd wynikajcy z tego, e do uzyskania dokadnego rozwizania potrzebujemy wykona nieskoczenie wiele oblicze

3.10 Przykady bdów metody

Mona wykaza, e

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots =$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Bdem odcicia bdzie

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

3.11 Przykady bdów metody

Metoda bisekcji

```
[2]: def bisection(f,a,b,N):
    a_n = a
    b_n = b
    for n in range(1,N+1):
        m_n = (a_n + b_n)/2
        f_m_n = f(m_n)
        if f(a_n)*f_m_n < 0:
            a_n = a_n
            b_n = m_n
        elif f(b_n)*f_m_n < 0:
            a_n = m_n
            b_n = b_n
        return (a_n + b_n)/2</pre>
```

Szukamy pierwiastka wielomianu $x^2 - 2$, w przedziale [1, 2]. Rozwizanie to $\sqrt{2}$.

```
[3]: f = lambda x: x**2 - 2 # definicja funkcji
bisection(f,1,2,5) # 5 kroków
```

[3]: 1.421875

```
[4]: bisection(f,1,2,10) # 10 kroków
```

[4]: 1.41455078125

```
[5]: bisection(f,1,2,15) # 15 kroków
```

[5]: 1.4141998291015625

```
[6]: import numpy as np np.sqrt(2)
```

[6]: 1.4142135623730951

3.12 Bd metody - podsumowanie

- Praktycznie wszystkie metody numeryczne maj jaki bd metody
- Dobre algorytmy podaj jednak jego oszacowanie, w ten sposób wiemy jak daleko jestemy od rozwizania nawet jak przerwiemy obliczenia

3.13 Bdy zaokrgle

Kolejne nieusuwalne w peni ródo bdów, nad którym mamy mniejsz kontrol ni nad bdem metody

3.14 Zaokrglenie i cyfry znaczce

Liczba $\tilde{y} = rd(y)$ jest poprawnie zaokrglona do d miejsc po przecinku, jeeli

$$\varepsilon = |y - \tilde{y}| \le \frac{1}{2} \cdot 10^{-d}$$

k-t cyfr dziesitn liczby \tilde{y} nazwiemy znaczc gdy

$$|y - \tilde{y}| \le \frac{1}{2} \cdot 10^{-k}$$

oraz

$$|\tilde{y}| \geq 10^{-k}$$

3.15 Rzeczywiste obliczenia zmiennoprzecinkowe

$$fl(x + y) = rd(x + y)$$

$$fl(x - y) = rd(x - y)$$

$$fl(x \cdot y) = rd(x \cdot y)$$

$$fl(x/y) = rd(x/y)$$

3.16 Liczby maszynowe

- Liczba maszynowa, to taka liczba jak mona przedstawi w komputerze. Zbiór tych liczb oznaczamy A
- Dokadno maszynow (epsilon maszynowy) eps, ε_m , definiujemy:

$$eps = min\{x \in A : fl(1+x) > 1, x > 0\}$$

Innymi sowy, jest to najmniejsza liczba, któr moemy doda do 1, aby uzyska co wikszego od 1.

3.17 Epsilon maszynowy w rónych formatach

Zaley on od liczby bitów na cz uamkow - Single precision $\varepsilon_m=2^{-24}\approx 5.96\cdot 10^{-8}$ - Double precision $\varepsilon_m=2^{-52}\approx 1.11\cdot 10^{-16}$

Przykad

[7]: (True, False)

3.18 Maksymalny bd reprezentacji

Dla kadej liczby rzeczywistej x istnieje taka liczba ε , taka e $|\varepsilon| < \varepsilon_m$, e fl $(x) = x(1 + \varepsilon)$

Oznacza to, e bd wzgldny midzy liczb rzeczywist, a jej najblisz reprezentacj zmiennoprzecinkow jest zawsze mniejszy od ε_m

3.19 Lemat Wilkinsona

Bedy zaokrgle powstae podczas wykonywania dziaa zmiennoprzecinkowych s równowane zastpczemu zaburzeniu liczb, na których wykonujemy dziaania

$$fl(x+y) = (x+y)(1+\varepsilon_1)$$

$$fl(x-y) = (x-y)(1+\varepsilon_2)$$

$$fl(x \cdot y) = (x \cdot y)(1+\varepsilon_3)$$

$$fl(x/y) = (x/y)(1+\varepsilon_4)$$

$$|\varepsilon_i| < \varepsilon_m$$

(dla kadej pary liczb x, y zaburzenia zastpcze ε_i s inne)

3.20 Konsekwencja lematu Wilkinsona

Prawa cznoci i rozdzielnoci operacji matematycznych s ogólnie nieprawdziwe dla oblicze zmiennoprzecinkowych

3.20.1 Przykad

```
[8]: a=np.float32(0.23371258*10**(-4))
b=np.float32(0.33678429*10**(2))
c=np.float32(-0.33677811*10**(2))
print([a,b,c])
```

[2.3371258e-05, 33.67843, -33.67781]

Chcemy obliczy a+b+c

3.21 Obliczenia

```
[9]: ## Podejcie 1
d=b+c
wynik_1=a+d
print(wynik_1)
```

0.0006413522

```
[10]: ## Podejcie 2
e=a+b
wynik_2=e+c
print(wynik_2)
```

0.00064086914

3.22 Co tu si porobio?

3.23 Konsekwencje obliczen zmiennoprzecinkowych

```
[11]: m_a, e_a = np.frexp(a)
    print(m_a,e_a)
    m_b,e_b = np.frexp(b)
    print(m_b,e_b)
    m_c,e_c = np.frexp(c)
    print(m_c,e_c)
```

- 0.7658294 -15
- 0.52622545 6
- -0.5262158 6

Wykadnik a od wykadników b i c róni si o 21. Oznacza to, e z 23 bitów mantysy liczby a po sprowadzeniu do wspólnego wykadnika z b zostan nam tylko 2 najbardziej znaczce.

3.24 Konsekwencje cd..

Jeeli dodajemy ma liczb do duej, zawsze musimy si liczy z zaokrgleniem i to normalne. W tym przypadku jednak dwie due liczby b i c s przeciwnych znaków i bliskie co do wartoci bezwzgldnej. Wynik tego dziaania:

```
[12]: m_d,e_d = np.frexp(d)
print(m_d,e_d)
print(wynik_2)
```

- 0.6328125 -10
- 0.00064086914

W konsekwencji dodajc a do d na zaokrgleniu stracimy jedynie 5 bitów mantysy a.

3.25 O ile si pomylilimy (w stosunku do dokadniejszych oblicze)

```
[13]: a_dbl=(0.23371258*10**(-4))
b_dbl=(0.33678429*10**(2))
c_dbl=(-0.33677811*10**(2))
d_dbl=b_dbl+c_dbl
wynik_dbl=a_dbl+d_dbl
epsilon_1=np.abs((wynik_1)-wynik_dbl)
eta_1=epsilon_1/np.abs(wynik_dbl)
print("Metoda 1: Bd bezwzgldny %10.2e, Bd wzgldny %10.2e"%(epsilon_1,eta_1))
epsilon_2=np.abs((wynik_2)-wynik_dbl)
eta_2=epsilon_2/np.abs(wynik_dbl)
print("Metoda 2: Bd bezwzgldny %10.2e, Bd wzgldny %10.2e"%(epsilon_2,eta_2))
```

```
Metoda 1: Bd bezwzgldny 1.91e-08, Bd wzgldny 2.97e-05
Metoda 2: Bd bezwzgldny 5.02e-07, Bd wzgldny 7.83e-04
```

4 Analiza algorytmów numerycznych

4.1 Notacja O due

• Mówimy, e dla wielkoci zalenej od parametru np. F(n) zachodzi

$$F(n) = O(G(n))$$

jeeli istnieje taka staa *C*, e przy *n* zmierzajcym do nieskoczonoci (odpowiednio duym), mamy

- Jeeli interesuje nas O(c), gdzie c jest sta, zaleno ta ma zachodzi niezalenie od wielkoci parametru.
- Mówimy potocznie, gdy bd jest równy $O(n^2)$, e bd jest rzdu n^2

4.2 Ocena algorytmu

- Naszym celem jest obliczenie pewnej wielkoci f(x), zalenej od danych wejciowych x
- W przypadku oblicze komputerowych zawsze mamy do czynienia z obliczaniem przyblionym std algorytm obliczania f(x) bdziemy oznacza jako $f^*(x)$
- Dane w komputerze równie s reprezentowane w sposób zaokrglony, wie bdziemy je oznacza jako x^*

4.3 Uwarunkowanie problemu

- Mówimy, e problem f(x) jest dobrze uwarunkowany, jeeli maa zmiana x powoduje ma zmian wf(x)
- Problem jest le uwarunkowany, jeeli maa zmiana x powoduje du zmian w f(x)
- Miar uwarunkowania jest staa κ (kappa), która (nieformalnie) okrela najwikszy iloraz zaburze f(x) wywoanych przez najmniejsze zaburzenia x.
- Sta κ mona wyliczy tylko w niektórych probemach

4.4 Dokadno algorytmu

• Algorytm jest dokadny, jeeli

$$\frac{\|f^*(x) - f(x)\|}{\|f(x)\|} = O(\varepsilon_m)$$

• Zagwarantowanie, e algorytm jest dokadny wg tej definicji jest niezwykle trudne, zwaszcza dla le uwarunkowanych problemów

4.5 Stabilno algorytmu

Mówimy, e algorytm jest stabilny, gdy dla kadego x, zachodzi

$$\frac{\|f^*(x) - f(x^*)\|}{\|f(x^*)\|} = O(\varepsilon_m)$$

dla takich x^* , e

$$\frac{\|x-x^*\|}{\|x\|} = O(\varepsilon_m)$$

Innymi sowy Stabilny algorytm daje prawie dobr odpowied na prawie dobre pytanie

4.6 Stabilno wsteczna algorytmu

Algorytm jest stabilny wstecznie, jeeli dla kadego x, zachodzi

$$f^*(x) = f(x^*)$$

dla takich x^* , e

$$\frac{\|x-x^*\|}{\|x\|} = O(\varepsilon_m)$$

Innymi sowy Stabilny wstecznie algorytm daje prawidow odpowied na prawie dobre pytanie

4.7 Dokadno algorytmów stabilnych wstecznie przy zym uwarunkowaniu

Jeli algorytm jest stabilny wstecznie, to jego bd wzgldny pogarsza si proporcjonalnie do staej uwarunkowania tj. $O(\kappa \varepsilon_m)$