Vetores

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

1 de Setembro de 2022

Sumário

- Grandezas escalares e vetoriais
- Soma de vetores
- Apêndice

Grandezas escalares e vetoriais

Grandezas escalares

Quando dizemos, por exemplo, que uma garrafa de refrigerante tem o volume de 1 L, que o tempo gasto para chegar em tal lugar são de 2 horas e que a temperatura em Curitiba hoje são de 20 °C, estamos informando o seu valor (módulo). E podemos perceber que essas grandezas ficam completamente determinadas apenas com o seu módulo.

Grandezas vetoriais

Entretanto, existem grandezas que não ficam completamente determinadas apenas com o seu módulo, elas necessitam de mais informação. Essas grandezas são chamadas de grandezas vetoriais.

Corollary

Toda grandeza vetorial é representado por uma seta: \vec{v} , \vec{F} .

Distância percorrida

Considere uma pessoa que está em Brasília e pretende ir para Recife. Ela está viajando de carro, e durante o percurso ela terá que fazer várias curvas e entrar em várias outras cidades. assim como mostra a figura ao lado. Ao chegar em Brasília, no painel do carro irá marcar o quanto o automóvel andou, e será o comprimento da traietória marcada em azul. Podemos perceber que a distância percorrida fica completamente determinada apenas com esse valor. Não importa se o viajante retornar pela mesma trajetória, o seu valor será o mesmo. Portanto, a distância percorrida pela pessoa é um exemplo de grandeza escalar.

Distância percorrida (em azul) [1].

Deslocamento

Agora, queremos saber a menor distância entre Brasília e Recife, que seria o segmento de reta AB. Além disso, gostaríamos de saber o sentido que a pessoa está viajando (de Brasília para Recife ou o sentido inverso). O segmento AB seria o módulo da grandeza deslocamento, e podemos perceber que ela não fica completamente determinada apenas com o seu valor, ela precisa de uma direcão e sentido.

Deslocamento \bar{AB} [1].

Representação de uma grandeza vetorial

Assim, para uma grandeza vetorial é necessário fornecer:

- ✓ o seu módulo: o seu valor;
- ✓ a sua direção: ângulo em relação a um eixo de referência;
- ✓ o seu sentido: se foi de A para B ou de B para A.

Graficamente, representamos uma grandeza vetorial por um vetor, que seria uma seta com comprimento, direção e sentido (ponta da seta), assim como mostra a figura ao lado.

Representação de um vetor.

Resultante de dois vetores

Considere um automóvel que parte do ponto A e pretende chegar em B. Ele pode seguir o trecho AB e depois BC. O deslocamento AB pode ser representado pelo vetor \vec{a} , e o deslocamento BC pelo vetor \vec{b} . Podemos ver que a soma dos deslocamentos AB e BC surte o mesmo efeito do deslocamento AC, representado pelo vetor \vec{c} . Dizemos que \vec{c} é a soma ou resultante dos vetores \vec{a} e \vec{b} , ou seia.

$$\vec{c} = \vec{a} + \vec{b}$$
.

Vetor resultante \vec{c} .

Resultante entre dois vetores e a regra do paralelogramo

Uma maneira de obter a resultante \vec{c} da soma de dois vetores é a regra do paralelogramo. Como o próprio nome diz, a intenção é organizar os dois vetores de modo a formar a figura geométrica de um paralelogramo. Inicialmente colocamos os vetores \vec{a} e \vec{b} juntos, de modo a representar as laterais de um paralelogramo (atenção: não podemos alterar o seu comprimento, direção e sentido). O módulo de \vec{c} será a diagonal maior. Aplicando a lei dos cossenos teremos

$$c = \sqrt{a^2 + b^2 + 2ab\cos\theta}.$$

Resultante de dois vetores \vec{a} e \vec{b} a partir da regra do paralelogramo.

Resultante de vários vetores e a regra do polígono fechado

Agora, supomos que temos três vetores ou mais, como poderemos obter a resultante da soma de todos eles? Como no exemplo do deslocamento. o que importa são as posições inicial ou final (pontos A e B no slide anterior). Sabendo que se organizarmos os vetores de modo que o final de um coincida com o início do outro, poderemos obter a resultante \vec{c} apenas fechando uma figura geométrica de um polígono, assim como mostra a figura ao lado. Esse método é chamado da regra do polígono fechado.

$$|\vec{d} = \vec{a} + \vec{b} + \vec{c}|$$

Resultante de três vetores.

Componentes de um vetor

Consideremos o vetor \vec{v} , como mostra a figura ao lado. Traçamos a partir da origem os eixos perpendiculares Ox e Oy. Projetando o vetor \vec{v} no eixo Ox teremos o vetor \vec{v}_x , e projetando \vec{v} no eixo Oy teremos \vec{v}_y . Dizemos que \vec{v}_x e \vec{v}_y são as componentes de \vec{v} nos eixos Ox e Oy.

Corollary

As componentes de um vetor em uma direção é a projeção ortogonal desse vetor nessa direção.

Componentes v_x e v_y do vetor \vec{v} .

Determinando as componentes de um vetor usando trigonometria

Observando a figura ao lado, podemos perceber que v_x , v_y e v formam um triângulo retângulo. Portanto, para calcular os valores dessas componentes poderemos usar as relações seno e cosseno,

$$\cos \theta = \frac{v_x}{v} :: v_x = v \cos \theta,$$

 $\sin \theta = \frac{v_y}{v} :: v_y = v \sin \theta.$

Componentes v_x e v_y do vetor \vec{v} .

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Р	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

https://sistemametricodecimal.wordpress.com/2016/07/12/
objetivos/

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.