EE210: Analog Electronics - Quiz 4

NAME (in capital) Roll No

Time: 15 minutes

1) : For the transistor in the following circuit $\mu_n C_{ox}=200\mu A/V^2$, $V_{tn}=1V$, W/L=10, $I_{DC}=1mA$. Also, $V_{DD}=6V$, $V_B=4V$.

Fig. 1. Problem 1

a): Find the maximum R_L that can while keeping the transistor in saturation under quiescent condition. [2]

$$V_{08} = V_{00} - 3cR > V_{3} - V_{4n}$$

$$\Rightarrow R_{2} \leq \frac{V_{00} - V_{8} + V_{4n}}{2c}$$

$$= 3k_{0} = 3k_{0} = 3k_{0}$$

b) : Assume $i_{in}=I_p\sin(\omega_0t)$, $R_s=10k\Omega$ and C acts as a short circuit at ω_0 . What fraction of the i_{in} flows into the transistor? Is the element inside the box more suited to accept a current input or a voltage input? Assume that the current source has an internal resistance of more than $10k\Omega$ (in parallel) [4 + 2]

