Homework 3

Matthew Daunt Computational Physics

October 25, 2019

Problem 1. It appears there are 24 sunspot peaks in this set of data, so the frequency of them is about $2 * \pi * \frac{24}{3100}$, which a frequency of .0486 per month or .584 per year. The

discete fourier transform is plots the fourier coefficients mod squared $|c_k|^2$ with respect to it's frequency 1/mo. The maximum here occurs at .04598 1/mo. This is not too far from my estimate frequency.

Problem 2. Below is the original image, the point spread function,

$$f(x,y) = \frac{1}{2\pi\sigma^2} exp[-\frac{x^2}{2\sigma^2} - \frac{y^2}{2\sigma^2}]$$

and the new de-convoluted version with minimum epsilon 10^{-5} . The image is first fourier transformed then divided by gaussian point spread function with $\sigma = 25$. Then the image

inverse fourier transformed. The image cannot be fully restored because dividing by very small values of the point spread function leads to large error.

