

Tutorial day 7

ANOVA

- = Analysis of variance
- * all explanatory variables are categorical

Terminology

- * explanatory variables are called factors
- * one-way anova
- = one factor with two or more levels
- * two-way/three-way anova
- = two or more factors with two or more levels
- * factorial design
- = replication of each combination of levels in a multi-way ANOVA (allows to study interaction of variables)
- * split-plot design
- = experiments have different treatments applied to plots of different sizes

Example of one way ANOVA

*y= yield

* X= soil

*k=three soil types

*n=10

* degrees of freedom:

= k * (n - 1)

= 3 * (10 - 1)

= 27

Factor: soil

Response: yield

Balanced design & constancy of variance (homoscedasticity)

* fligner.test(yield~soil)

Fligner-Killeen test of homogeneity of variances

data: yield by soil

Fligner-Killeen:med chi-squared = 0.3651, df = 2, p-value = 0.8332

Constancy of variance (homoscedasticity)

* visual inspection

plot(model)

* there should be no pattern in the residuals against the fitted values

Variance not constant

* visual inspection plot(model)

* this is a clear pattern

Example of factorial design

Response: growth

Factor: fodder Factor: supplement

control

supergain

agrimore

supersupp

Example of factorial design

- * allows to test for interactions
- * how does fodder effect weight gain of farm animals?
- * how does supplement effect weight gain?
- * Pothe factors interact?

Interaction

- * the response of one factor depends upon the level of the other factor
- * in our example: an interactive effect could be that our farm animals grow faster with supersupp and oat, but not with supersupp and wheat or barley

Example of split plot experiment

Response: yield

yes no

N, P, NP

Block 1 Block 2 Block 3 Block 4

ck 2
ock 4

Split-plot experiment

* build the full model with the Error structure

- * each different plot size is associated with its own error variance
- * model<-aov(yield~irrigation*density*
 fertilizer+Error(block/
 irrigation/density))
 summary(model)</pre>

Take home message

- * ANOVA has its own terminology (one-way, two-way....)
- * all explanatory variables are categorical
- * with an interactive effect the response of one factor depends upon the level of the other factor
- * preconditions for an ANOVA: sufficient variance on each factor level, homoscedasticity, balanced design (same number of samples for each factor level), normal error structure (residuals)