Analyse Complexe

Ariane Mézard

26 février 2024

Table des matières

I	Fonctions Holomorphes	1
1	Fonctions Analytiques 1.1 Séries Entières	2 2 4 4
2	Théorie de Cauchy 2.1 Homotopie et Simple Connexité	
3	3.2 \mathbb{R} -différentiabilité	13 14 16 17 21
4	Propriétés Éléméntaires des Fonctions Holomorphes 4.1 Théorème d'inversion locale	

Première partie

Fonctions Holomorphes

1 Fonctions Analytiques

1.1 Séries Entières

Définition 1.1: Série Entière

Une série entière est une série de la forme $\sum_{n\in\mathbb{N}}a_nz^n$ où $z\in\mathbb{C}$ et $a_n\in\mathbb{C}$. Le domaine de convergence de la série entière est l'ensemble Δ des nombres complexes $z\in\mathbb{C}$ pour lesquels la série converge.

Proposition 1.1: Critère de Cauchy

Soient a_n une suite complexe et $0 < r < r_0$. S'il existe M > 0 tel que

$$|a_n| r_0^n \leq M, n \geq 0$$

alors $a_n z^n$ converge normalement sur $\overline{D}(0,r)$.

Démonstration. Pour tout $n \in \mathbb{N}$ et $z \in \overline{D}(0,r)$ on a :

$$|a_n z^n| \le |a_n| r^n \le M \left(\frac{r}{r_0}\right)^n$$

Comme $0 < r < r_0, M\left(\frac{r}{r_0}\right)^n$ est le terme d'une série géométrique convergente.

Corollaire 1.1: Rayon de Convergence

Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière et $R\in\mathbb{R}_+\cup\{+\infty\}$ défini par

$$R = \sup \left\{ r \geq 0 \text{ tel que la suite } (|a_n| r^n)_{n \in \mathbb{N}} \text{ soit bornée} \right\}$$

Alors le domaine de convergence Δ de la série vérifie :

$$D(0,R) \subseteq \Delta \subseteq \overline{D}(0,R)$$

Définition 1.2: Rayon de Convergence

On appelle le nombre R défini ci-dessus rayon de convergence.

Proposition 1.2: Rayon d'Hadamard

Le rayon de convergence est donné par

$$R = \liminf_{n \to \infty} \frac{1}{\left|a_n\right|^{1/n}}$$

Avec la convention $1/0 = \infty$

Lemme 1.1: Lemme d'Abel

Soit u_n une suite réelle décroissante vers 0 et v_n une suite complexe telle que les sommes partielles $s_n = \sum_{k=0}^n v_k$ soient bornées. Alors la série $\sum u_n v_n$ converge.

Proposition 1.3: Principe des Zéros Isolés

Soit $f(z) = \sum a_n z^n$ la somme d'une série entière de rayon de convergence R > 0. Si au moins un des coefficients a_n n'est pas nul, il existe $r \in]0, +\infty[$ tel que f ne s'annule pas pour $|z| \in]0, r[$.

Démonstration. Soit $l = \min\{n \in \mathbb{N}, a_n \neq 0\}$, on a :

$$f(z) = \sum_{n \ge l} a_n z^n = z^l g(z)$$

avec $g(z) = a_l + a_{l+1}z + \dots$ et $g(0) \neq 0$.

Définition 1.3: Dérivée Complexe

Une fonction $f:U\to\mathbb{C}$ admet une dérivée par rapport à la variable complexe au point z_0 si

$$\lim_{z \to u} \frac{f(z_0 + u) - f(z_0)}{u}$$

existe. Cette limite est alors appelée dérivée de f en z_0 .

Proposition 1.4: Dérivée d'une Série Entière

Soit $f(z) = \sum a_n z^n$ une série entière de rayon de convergence R > 0. Alors, pour tout $l \in \mathbb{N}^*$, les dérivées l-ièmes de f ont pour rayon de convergence R et pour expression :

$$f^{(l)}(z) = \sum_{n \in \mathbb{N}} \frac{(n+l)!}{n!} a_{n+l} z^n$$

Corollaire 1.2: Primitive

Une série entière $f(z) = \sum a_n z^n$ de rayon de convergence R > 0 admet sur D(0, R) une primitive complexe

$$F(z) = \sum \frac{a_n}{n+1} z^{n+1}$$

Proposition 1.5: S

it $f(z) = \sum a_n z^n$ une série entière de rayon de convergence R > 0. Soit $z_0 \in D(0, R)$. La série entière

$$\sum_{n\in\mathbb{N}}\frac{1}{n!}f^{(n)}(z_0)\omega^n$$

a un rayon de convergence supérieur à $R - |z_0|$ et pour tout $z \in D(z_0, R - |z_0|)$,

$$f(z) = \sum_{n>0} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n$$

3

1.2 Fonctions Analytiques

Définition 1.4: Fonction Analytique

Une fonction $f:U\to\mathbb{C}$ est dite analytique si elle est DSE au voisinage de chaque point de U.

Proposition 1.6: Dérivabilité

Une fonction analytique sur un ouvert U de \mathbb{C} admet des dérivées de tous ordres qui sont des fonctions analytiques sur U. De plus, pour tout $z_0 \in U$, f est somme de sa série de Taylor en z_0 sur un voisinage de z_0 .

Corollaire 1.3: Unicité du DSE

Une fonction analytique sur U admet un unique développement en série entière au voisinage de chaque point de U.

Lemme 1.2: Nullité

Si U est connexe et f est analytique sur U, nulle sur un ouvert non-vide de U, alors f est identiquement nulle sur U.

Proposition 1.7: Zéros Isolés

oit f une fonction analytique sur un ouvert connexe U. Si f n'est pas identiquement nulle, ses zéros sont isolés, i.e. si $z_0 \in U$ avec $f(z_0) = 0$, alors il existe r > 0 tel que z_0 soit le seul z_0 de f sur $D(z_0, r)$

Théorème 1.1: Prolongement Analytique

Soit U un ouvert connexe de \mathbb{C} , f, g des fonctions analytiques sur U. Si f, g coincident sur une partie Σ de U qui a un point d'accumulation dans U, alors elles coincident sur U.

Définition 1.5: Primitive

Etant donnée une fonction analytique f sur U, une fonction analytique F de U dans \mathbb{C} est dite primitive de f si F'(z) = f(z) sur U.

1.3 Détermination du Logarithme

Définition 1.6: Détermination de l'Argument

Soit $U \subseteq \mathbb{C}^*$ ouvert. Une fonction continue $\arg: U \to \mathbb{R}$ est dite détermination continue de l'argument sur U si pour tout $z \in U$, $\exp(i \arg(z)) = \frac{z}{|z|}$

Définition 1.7: Détermination Principale

La détermination continue de l'argument

$$\begin{array}{ccc}
\mathbb{C} - \mathbb{R}_{-} & \longrightarrow &]-\pi, \pi[\\
z & \mapsto & 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right)
\end{array}$$

en prenant la racine carrée de z appartenant au demi-plan $\Re z>0$ est appelée détermination principale de l'argument.

Définition 1.8: Logarithme

Soit $U\subseteq \mathbb{C}^*$ ouvert. Une fonction continue $f:U\to \mathbb{C}$ est dite détermination du logarithme sur U si

$$\forall z \in U, \exp(f(w)) = w$$

Définition 1.9: Détermination Principale du Log

On définit pour $\theta \in \mathbb{R}$ la fonction

$$\log_{\theta} : \mathbb{C} \to \mathbb{R}_{-}e^{i\theta}, \log_{\theta}(w) = \log|w| + i\arg_{\theta}(w)$$

La fonction \log_0 est appelée détermination principale du logarithme et notée \log .

Proposition 1.8: DSE du Logarithme

log est DSE sur D(1,1) et sur D(0,1) on a

$$\log(1+z) = \sum \frac{(-1)^{n+1}}{n} z^n$$

Par conséquent, sur $D(z_0, |z_0|)$,

$$g(z) = \log z_0 + i\theta_0 + \sum_{n>1} \frac{(-1)^{n-1}}{n} \left(\frac{z-z_0}{z_0}\right)^n$$

est une détermination analytique du logarithme.

Proposition 1.9: Analycité des Déterminations

Il y a équivalence sur un ouvert connexe U de \mathbb{C}^* pour une application continue l entre :

- ullet est une détermination du logarithme à l'addition d'une constante près
- l est une primitive analytique de $\frac{1}{z}$ sur U.

Définition 1.10: Détermination

Soit $U \subseteq \mathbb{C}^*$ et $\alpha \in \mathbb{C}$. Une détermination continue de z^{α} est une application continue g de U dans \mathbb{C} telle qu'il existe une détermination du logarithme l(z) de z telle que $g(z) = \exp^{\alpha l(z)}$.

2 Théorie de Cauchy

2.1 Homotopie et Simple Connexité

Définition 2.1: Chemin

Soit [a, b] un intervalle de \mathbb{R} . Un chemin $\gamma : [a, b] \to \mathbb{C}$ est une application continue. Le point $\gamma(a)$ est appelé origine et le point $\gamma(b)$ est dit extrémité. On orientera par défaut un chemin dans le sens des paramètres croissants. Si $\gamma(a) = \gamma(b)$, le chemin est dit lacet d'origine $\gamma(a)$.

Définition 2.2: Opérations

- 1. Si γ est constant, son image est réduite à un point. Il est alors appelé chemin (ou lacet) constant.
- 2. Soit $\alpha \in \mathbb{R}^*$, $\gamma : t \in [0,1] \mapsto e^{2i\pi\alpha t}$ est un chemin dont l'image est une partie du cercle unité $\partial D(0,1)$. Si $\alpha = n \in \mathbb{Z}^*$, $\gamma([0,1])$ est le cercle tout entier parcouru n fois.
- 3. Si $\gamma:[a,b]\to\mathbb{C}$ est un chemin, le chemin opposé

$$\gamma^0: t \in [a,b] \mapsto \gamma(a+b-t)$$

est γ parcouru en sens inverse.

4. La juxta position de γ_1,γ_2 tels que $\gamma_1(b)=\gamma_2(c)$ est le chemin $\gamma=\gamma_1\wedge\gamma_2:[a,d+b-c]\to\mathbb{C}$

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{pour } a \le t \le b \\ \gamma_2(t - b + c) & \text{pour } b \le t \le d + b - c \end{cases}$$

Définition 2.3: Homotopie

Soit U un ouvert de \mathbb{C} , $\gamma_i:I\to U,\ i\in\{1,2\}$ deux chemins. Une homotopie de γ_1 à γ_2 dans U est une application continue φ de $I\times J$ dans U où I=[a,b] et J=[c,d] sont deux intervalles de \mathbb{R} telle que :

$$\varphi(t,c) = \gamma_1(t)$$
 et $\varphi(t,d) = \gamma_2(t), t \in I$

Définition 2.4: Simple Connexité

Un espace topologique X connexe par arcs est dit simplement connexe si tout lacet dans X est homotope à un point dans X.

Proposition 2.1

- Un espace topologique est simplement connexe si et seulement si tous les chemins de même extrémités sont homotopes.
- Un ouvert étoilé par rapport à un point est simplement connexe. En particulier, dans \mathbb{C} , le plan, un demi-plan, un disque ouvert, l'intérieur d'un rectangle ou d'un triangle sont simplement connexes.
- Le demi-plan ouvert $\Im z > 0$ auquel nous ôtons un nombre fini de demi-droites fermées $z = t + i\beta_k, \ t \in]-\infty, \alpha_k]$ est simplement connexe non étoilé.
- \bullet \mathbb{C}^{\star} n'est pas simplement connexe car le cercle unité n'est pas homotope à un chemin constant.

2.2 Intégrales sur un Chemin

Dorénavant, les chemins sont supposés C^1 par morceaux.

Définition 2.5: Equivalence de Chemins

Deux chemins $\gamma_i:I_i\to\mathbb{C}$ sont dits équivalents s'il existe une bijection croissante $\varphi:I_2\to I_1$ continue de réciproque continue et \mathcal{C}^1 par morceaux telle que :

$$\gamma_2(t) = \gamma_1(\varphi(t)), t \in I_2$$

Définition 2.6: Intégrale le long d'un Chemin

Soit $f:U\to\mathbb{C}$ continue et $\gamma:I=[a,b]\to\mathbb{C}$ un chemin avec $\gamma(I)\subseteq U$. Alors, la fonction $t:f(\gamma(t))\gamma'(t)$ est continue par morceaux dans [a,b]. On appelle intégrale de f le long du chemin γ :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Définition 2.7: Longueur

La longueur d'un chemin est le réel :

$$long(\gamma) = \int_{a}^{b} \left| \gamma^{'}(t) \right| \, \mathrm{d}t$$

Proposition 2.2: Propriétés

• Si F est une primitive de f, pour tout chemin γ :

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

• Si $\gamma_1 \sim \gamma_2$ alors

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

- Si $[Z_0, z_1] \subseteq U$, nous notons $\int_{[z_0, z_1]} f(z) dz = \int_{\gamma} f(z) dz$ où $\gamma : t \in [0, 1] \mapsto (1 t)z_0 + tz_1$.
- Si $\partial D(z_0, r) \subseteq U$, soit le lacet $\gamma : \theta \in [0, 2\pi] \mapsto z_0 + re^{i\theta}$. On a :

$$\int_{\gamma} f(z) dz = \int_{\partial D(z_0, r)} f(z) dz = \int_{0}^{2\pi} f(z_0 + re^{i\theta}) i r e^{i\theta} d\theta$$

• En séparant parties réelles et imaginaires, f = P + iQ et $\gamma = u + iv$, on a :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} ((P \circ \gamma) u' - (Q \circ \gamma) v') dt + i \int_{a}^{b} ((Q \circ \gamma) u' + (P \circ \gamma) u') dt$$
$$= \int_{\gamma} (P dx - Q dy) + i \int_{\gamma} (P dy + Q dx)$$

• On a:

$$\int_{\gamma} f(z) dz = -\int_{\gamma^0} f(z) dz$$

• On a :

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le long(\gamma) \max_{\gamma} |f|$$

2.3 Théorème de Cauchy

Théorème 2.1: de Cauchy

Soit $U \subseteq \mathbb{C}$ un ouvert connexe et f une fonction analytique dans U. Si γ_1, γ_2 sont deux lacets homotopes dans U, alors

$$\int_{\gamma_1} f(z) \, \mathrm{d}z = \int_{\gamma_2} f(z) \, \mathrm{d}z$$

En particulier, si U est simplement connexe, l'intégrale sur un lacet de f est nulle.

Théorème 2.2

Soit $U \subseteq \mathbb{C}$ un ouvert simplement connexe.

- 1. Toute fonction analytique dans U admet une primitive.
- 2. Si $f:U\to\mathbb{C}^\star$ est analytique, alors il existe $g:U\to\mathbb{C}$ analytique tel que $\exp(g)=f$ sur U.

2.4 Formule de Cauchy

Lemme 2.1: Intégrité de l'Indice

Soit $\gamma: I = [c, d] \to \mathbb{C}$ un lacet et $a \notin \gamma(I)$. Alors

$$j(a, \gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z - a} \in \mathbb{Z}$$

Démonstration. Pour $t \in [c, d]$ on pose

$$h(t) = \int_{c}^{t} \frac{\gamma'(s) \, \mathrm{d}s}{\gamma(s) - a}$$

On a $h'(t) = \frac{\gamma'(t)}{\gamma(t)-a}$, sauf en un nombre fini de points de I.

Remarquons que $g(t) = e^{-h(t)} (\gamma(t) - a)$ a pour dérivée

$$g'(t) = -h'(t)e^{-h(t)} (\gamma(t) - a) + \gamma'(t)e^{-h(t)} = 0$$

sauf en un nombre fini de points de I. Comme g est continue, elle est constante et g(c) = g(d). Or, h(c) = 0 donc $g(c) = \gamma(c) - a = g(d) = e^{-h(d)}(\gamma(d) - a)$. Mais γ est un lacet, donc $\gamma(c) = \gamma(d)$. Donc $h(d) = 2in\pi$. Donc $j(a, \gamma) = n \in \mathbb{Z}$.

Définition 2.8: Indice

L'entier $j(a, \gamma)$ est appelé indice de a par rapport au lacet γ et s'interprète comme le nombre de fois que le lacet tourne autour de a lorsque a est intérieur au lacet.

Proposition 2.3: Propriétés

1. Soit $\gamma, \gamma_1, \gamma_2$ des lacets de même origine dont les lacets ne contiennent pas a. Alors,

$$j(a,\gamma^0) = -j(a,\gamma)$$
 et $j(a,\gamma_1 \wedge \gamma_2) = j(a,\gamma_1) + j(a,\gamma_2)$

- 2. En appliquant le théorème de Cauchy à la fonction analytique 1/(z-a) dans $\mathbb{C} \{a\}$, nous obtenons $j(a, \gamma_1) = j(a, \gamma_2)$ si γ_1, γ_2 sont homotopes dans $\mathbb{C} \{a\}$.
- 3. Soit $U \subset \mathbb{C}$ un ouvert simplement connexe et $\gamma \subset U$. Si $a \notin U$, alors $j(a, \gamma) = 0$.
- 4. Si γ set un lacet dans \mathbb{C} , pour tout ouvert connexe U de $\mathbb{C} \gamma(I)$, la fonction $z \mapsto j(z,\gamma)$ est constante dans U.
- 5. Soit $\gamma_n: t \mapsto e^{int}$, on a:

$$j(z_0, \gamma_n) = \begin{cases} n & si |z_0| < 1\\ 0 & si |z_0| > 1 \end{cases}$$

Démonstration du point iv. Soit $z \in D(z_0, r) \subseteq U$,

$$j(z,\gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}u}{u-z} = \frac{1}{2i\pi} \int_{\gamma_1} \frac{\mathrm{d}u}{u-z} = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}u}{u-z_0} = j(z_0,\gamma)$$

pour $\gamma_1: t \mapsto \gamma(t) + (z - z_0)$ qui est homotopie à γ via

$$\varphi(t,s) = \gamma(t) + s(z - z_0), 0 \le s \le 1$$

Donc $j(\cdot, \gamma)$ est localement constante donc constante sur U connexe.

Théorème 2.3: Formule de Cauchy

Soit $U\subseteq\mathbb{C}$ un ouvert simplement connexe, $\gamma:I\to U$ un lacet dans U. Soit f analytique sur U. Pour tout $w\in U\setminus\gamma(I)$

$$j(w,\gamma)f(w) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z-w} dz$$

Démonstration. La fonction

$$g: z \in U \mapsto \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{si } z \neq w \\ f'(w) & \text{si } z = w \end{cases}$$

est analytique sur U. En effet pour r>0 assez petit, f admet un développement de Taylor sur $D(w,r)\subseteq U$ et donc pour $z\in D(w,r)$:

$$g(z) = f'(w) + \frac{f''(w)}{2!}(z - w) + \dots + \frac{f^{(n)}(w)}{n!}(z - w)^{n-1} + \dots$$

Comme U est simplement connexe, le théorème de Cauchy donne $\int_{\gamma} g = 0$ et comme $w \notin \gamma(I)$, $\int_{\gamma} \frac{f(z) - f(w)}{z - w} dz = 0$ c'est à dire :

$$\int_{\gamma} \frac{f(z) dz}{z - w} = f(w) \int_{\gamma} \frac{dz}{z - w} = 2i\pi j(w, \gamma) f(w)$$

Corollaire 2.1: Valeur en un point

On a:

$$f(w) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} \frac{f(z)}{z - w} \, \mathrm{d}z, w \in D(z_0, r)$$

Proposition 2.4: Continuité sur un Lacet

Soit $\gamma:I=[c,d]\to\mathbb{C}$ un lacet et $g:\gamma(I)\to\mathbb{C}$ une fonction définie et continue sur $\gamma(I)$. Alors :

$$f(z) = \int_{\gamma} \frac{g(u) \, \mathrm{d}u}{u - z}$$

est définie et analytique dans $\mathbb{C} \setminus \gamma(I)$.

Précisément, pour tout $w \in \mathbb{C} \setminus \gamma(I)$ pour tout $n \in \mathbb{N}$ et

$$c_n = \int_{\mathcal{X}} \frac{g(u) \, \mathrm{d}u}{(u - w)^{n+1}}$$

nous avons un développement en série entière convergente

$$f(z) = \sum_{n \ge 0} c_n (z - w)^n$$

dans tout disque ouvert de centre w et de rayon $r = d(w, \gamma(I))$ et

$$f^{(n)}(w) = n!c_n = n! \int_{\gamma} \frac{g(u) du}{(u - w)^{n+1}}$$

Démonstration. Pour tout $u \in \gamma(I), z \in D(w,qr), q \in [0,1]$, la série

$$\frac{1}{u-z} = \frac{1}{u-w} \frac{1}{1 - \frac{z-w}{u-w}} = \sum_{n=0}^{+\infty} \frac{(z-w)^n}{(u-w)^{n+1}}$$

est convergente. Comme $(g \circ \gamma) \gamma'$ est continue par morceaux sur [c, d] il existe M tel que

$$|g(\gamma(t))\gamma'(t)| \le M$$

Donc:

$$\left| g\left(\gamma(t)\right)\gamma'(t)\frac{(z-w)^n}{\left(\gamma(t)-w\right)^{n+1}} \right| \le M\frac{q^n}{r}, t \in [c,d]$$

Finalement, la série sous l'intégrale est normalement convergente et :

$$f(z) = \int_c^d \frac{g(\gamma(t))\gamma'(t) dt}{\gamma(t) - z} = \int_c^d g(\gamma(t))\gamma'(t) \left(\sum_{n=0}^{+\infty} \frac{(z - w)^n}{(\gamma(t) - w)^{n+1}} \right) dt$$

et donc $f(z) = \sum_{n=0}^{+\infty} c_n (z - w)^n$

Proposition 2.5: Dérivée n-ième

Soit f analytique sur U et γ le bord de $\overline{D}(w,r) \subseteq U$. D'après la formule de Cauchy :

$$f^{(n)}(w) = \frac{n!}{2\pi r^n} \int_0^{2\pi} \frac{f(w + re^{it})}{e^{nit}} dt$$

Corollaire 2.2

- 1. Soit f analytique sur U. Pour tout $a \in U$, la série de Taylor de f au voisinage de a est convergente et a pour somme f(z) dans le plus grand disque ouvert de centre a contenu dans U
- 2. Si f est analytique sur \mathbb{C} , sa série de Taylor en tout point de \mathbb{C} est convergente sur \mathbb{C} .

Démonstration. On applique la formule de Cauchy sur le contour γ d'un disque D(a,r) contenu dans U. Pour $z \in D(a,r), j(z,\gamma)=1$ et

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} dz$$

La proposition 2.4 donne un développement en série entière de f en z-a convergeant sur D(a,r). Par unicité du développement, il s'agit de la série de Taylor. En faisant tendre r vers $d(a, \mathbb{C} - U)$, nous obtenons le résultat annoncé.

Corollaire 2.3: Constance Locale

Supposons U connexe, $a \in U$ et $f: U \to \mathbb{C}$ analytique. Si pour tout $k > 0, f^{(k)}(a) = 0$, alors f est constante sur U.

Démonstration. D'après le corollaire $\ref{eq:constante}$, f est localement somme de sa série de Taylor. Donc f est constante sur un ouvert contenant a. Soit $\Omega = \{w \in U, \forall k > 0, f^{(k)}(w) = 0\}$. Cet ensemble est ouvert, non vide, et fermé. Par connexité de U, $\Omega = U$, f' = 0 sur U et f est constante sur U.

Théorème 2.4: Multiplicité

Soit $f: U \to \mathbb{C}$ analytique non constante au voisinage de $a \in U$. Si f(a) = 0, il existe un unique entier $m \ge 1$ et $g: V \to \mathbb{C}$ analytique sur un voisinage V de a tels que

$$f(z) = (z - a)^m g(z), g(a) \neq 0, z \in V$$

En particulier, le point a possède un voisinage dans lequel il est l'unique zéro de f.

Démonstration. D'après le corollaire 2.4, si f n'est pas constante dans un voisinage de a, il existe $m \ge 1$ tel $f^{(m)}(a) \ne 0$ et $f'(a) = \ldots = f^{(m-1)}(a) = 0$.

Comme f(a) = 0, on peut alors factoriser $(z - a)^m$ dans le développement en série de Taylor de f

Définition 2.9: Ordre

L'entier m du théorème précédent est dit ordre de f en a, noté ord(f,a).

2.5 Inégalités de Cauchy, Premières Applications

Proposition 2.6: Inégalités de Cauchy

Soit $f: U \to \mathbb{C}$ analytique, $\overline{D}(w,r) \subset U, r > 0$. On a, pour $n \in \mathbb{N}$:

$$\left| f^{(n)}(w) \right| \le \frac{n!}{r^n} \sup_{z \in \partial D(w,r)} |f(z)|$$

Démonstration. On a :

$$f^{(n)}(w) = \frac{n!}{2\pi r^n} \int_0^{2\pi} \frac{f(w + re^{it})}{e^{nit}} dt$$

On en déduit immédiatement le résultat.

Lemme 2.2: Bornitude et Polynomialité

Soit f analytique sur \mathbb{C} . Supposons qu'il existe $A, B \geq 0$ tels que

$$\forall z \in \mathbb{C}, |f(z)| \leq A (1+|z|)^B$$

Alors f est un polynôme de degré $\leq B$.

Démonstration. Soit $n \ge \lfloor B \rfloor + 1 > B$. Par les inégalités de Cauchy, puisque

$$\sup_{\partial D(z,r)} |f(z)| \le A (1 + |z| + r)^B$$

on a:

$$\left| f^{(n)}(z) \right| \le \frac{n!}{r^n} A (1 + |z| + r)^B$$

En faisant tendre r vers $+\infty$, par croissance comparée, $f^{(n)}(w) = 0$ pour $n \geq B$. Localement, f étant somme de sa série de Taylor, c'est localement un polynôme de degré au plus B, ce qui est donc le résultat.

Théorème 2.5: Liouville

Une fonction analytique bornée sur \mathbb{C} est constante.

Théorème 2.6: d'Alembert-Gauss

Tout polynôme $P \in \mathbb{C}[z]$ de degré ≥ 1 admet une racine dans \mathbb{C} .

Démonstration. Par l'absurde, si $P(z) = \sum_{i=0}^d a_i z^i$ ne s'annule pas, f = 1/P est analytique sur $\mathbb C$ et $|f(z)| \sim \frac{1}{|a_d||z|^d}$ tend vers 0 quand |z| tend vers $+\infty$. En particulier, f est bornée sur $\mathbb C$ donc constante d'après le théorème de Liouville. Ainsi, P = 1/f est constant, ce uqui est absurde.

Théorème 2.7: Topologie

Les ouverts \mathbb{C} et D(0,1) sont homéomorphes mais pas isomorphes.

3 Fonctions Holomorphes

3.1 Définitions

Définition 3.1: Holomorphie

Une fonction $f: U \to \mathbb{C}$ est dite holomorphe en $z_0 \in U$ si la limite

$$\lim_{h \in \mathbb{C} \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

existe. On la note $f'(z_0)$.

On définit $\mathcal{O}(U)$ l'ensemble des fonctions holomorphes.

Proposition 3.1: Exemples Holomorphe

- Si f est constante, f est holomorphe et f' = 0
- \bullet Si f est un polynôme, f est holomorphe
- \bullet Si f est analytique, f est holomorphe
- \sin, \cos, \exp, \tan sont holomorphes $\sup \mathbb{C}$.
- $z \mapsto \bar{z}$ n'est pas holomorphes en aucun point :

$$\frac{f(z+h) - f(z)}{h} = \frac{\bar{h}}{h}$$

n'a pas de limite en 0.

• $f(z) = |z|^2$ n'est holomorphe que pour z = 0:

$$\frac{\left(z+h\right)\left(\bar{z}+\bar{h}\right)-z\bar{z}}{h}=\frac{h\bar{z}+\bar{h}z+h\bar{h}}{h}$$

n'a une limite que si z = 0.

3.2 \mathbb{R} -différentiabilité

Définition 3.2: Forme Différentielle

Une 1-forme différentielle sur Ω est une application $\alpha: \Omega \to Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{C})$. En particulier, les $dx_i \in Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{C})$ qui à $a \mapsto dx_i(a) = a_i$ permettent d'écrire :

$$\alpha(x) = \sum_{i=1}^{n} \alpha_i(x) \, \mathrm{d}x_i$$

où $\alpha_i:\Omega\to\mathbb{C}$. On a alors :

$$\alpha(x)(a) = \sum_{i=1}^{n} \alpha_i(x) \, \mathrm{d}x_i(a)$$

On dit que α est de classe \mathcal{C}^k si et seulement si tous les α_i sont de classe \mathcal{C}^k .

Définition 3.3: R Différentiabilité

Une fonction f d'un ouvert connexe Ω de \mathbb{R}^n est dite \mathbb{R} -différentiable sur Ω si et seulement si il existe une 1-forme différentielle $\mathrm{d} f:\Omega\to Hom_{\mathbb{R}}\left(\mathbb{R}^n,\mathbb{C}\right)$ telle que

$$f(z+h) = f(z) + df(z)(h) + o(h)$$

On pose $d_x f = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) dx_i$.

Dans la suite on travaille dans $\mathbb{C} \simeq \mathbb{R}^2$ et pour $h \in \mathbb{C}$, on note h = k + il = (k, l) et pour $z \in U = \Omega, z = x + iy = (x, y)$.

Proposition 3.2: Différentielle dans une base

Soit $f: U \to \mathbb{C}$ différentiable de différentielle $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$. On a $\forall z \in U$:

$$d_z f = \frac{\partial f}{\partial x}(z) dx + \frac{\partial f}{\partial y}(z) dy$$

En h = k + il:

$$d_z f(h) = \frac{\partial f}{\partial x}(z)k + \frac{\partial f}{\partial y}(z)l$$

On définit

$$dz = dx + i dy$$
 et $d\bar{z} = dx - i dy$

On a alors:

$$\mathrm{d}f = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \, \mathrm{d}z + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \, \mathrm{d}\bar{z}$$

ce qu'on écrit aussi :

$$\mathrm{d}f = \frac{\partial f}{\partial z} \, \mathrm{d}z + \frac{\partial f}{\partial \bar{z}} \, \mathrm{d}\bar{z}$$

On a par ailleurs

$$\overline{\left(\frac{\partial f}{\partial z}\right)} = \frac{\partial \bar{f}}{\partial \bar{z}}$$

Proposition 3.3: Exemples

- 1. Si $f(z)=z, \ \frac{\partial z}{\partial z}=\frac{\partial f}{\partial z}=1$ et $\frac{\partial z}{\partial \bar{z}}=0$. A l'inverse, $\frac{\partial \bar{z}}{\partial z}=0$.
- 2. Pour $P(x,y)=\sum_{0\leq\alpha,\beta\leq d}c_{\alpha,\beta}x^{\alpha}y^{\beta}$. En notant $x=\frac{z+\bar{z}}{2}$ et $y=\frac{z-\bar{z}}{2i}$, on a :

$$P(z) = \sum_{\alpha,\beta} a_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$

où on a

$$a_{\alpha,\beta} = \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta}}{\partial z^{\alpha} \partial z^{\beta}} P(0)$$

On retrouve que P est holomorphe si on a $a_{\alpha,\beta} = 0$ pour $\beta \geq 1$.

Théorème 3.1: Lien \mathbb{C} -dérivabilité et \mathbb{R} -différentiabilité

Soit $f: U \to \mathbb{C}$. On a équivalence entre :

- 1. $f \in \mathcal{O}(U)$
- 2. f est $\mathbb{R}\text{-diff}$ érentiable sur U et $\,\mathrm{d}_z f$ est $\mathbb{C}\text{-linéaire}$ pour tout $z\in U$
- 3. f est $\mathbb{R}\text{-diff\'erentiable}$ sur U et $\frac{\partial f}{\partial \bar{z}}=0$ pour tout $z\in U$

Démonstration. $i \Rightarrow ii \ f(z+h) = f(z) + hf'(z) + o(h) \Longrightarrow f$ est \mathbb{R} -différentiable en z et $\mathrm{d}_z f: \mathbb{R}^2 \to \mathbb{C}$ qui à $h \mapsto hf'(z)$ est \mathbb{C} -linéaire.

 $ii \Rightarrow iii$ On a :

$$d_z f(h) = \frac{\partial f}{\partial z}(z) dz(h) + \frac{\partial f}{\partial \bar{z}}(z) d\bar{z}(h)$$
$$= \frac{\partial f}{\partial z}(z)h + \frac{\partial f}{\partial \bar{z}}(z)\bar{h}$$
$$d_z f(h) = \frac{\partial f}{\partial z}h + \frac{\partial f}{\partial \bar{z}}\bar{h}$$

On a alors : $\mathrm{d}_z f(ih) = \frac{\partial f}{\partial z} ih - i \frac{\partial f}{\partial \bar{z}} \bar{h}$. Mais $\mathrm{d}_z f$ est \mathbb{C} -linéaire par hypothèse. Donc :

$$d_z f(ih) = i d_z f(h) = i \frac{\partial f}{\partial z} h + i \frac{\partial f}{\partial \bar{z}} \bar{h}$$

Ainsi : $\frac{\partial f}{\partial \bar{z}} = -\frac{\partial f}{\partial \bar{z}} = 0.$

 $iii \Rightarrow i$ On a :

$$\mathrm{d}_z f(h) = \frac{\partial f}{\partial z} h$$

D'où

$$f(z+h) = f(z) + \frac{\partial f}{\partial z}h + o(h)$$

Ainsi:

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \frac{\partial f}{\partial z}$$

et f est holomorphe en z.

Proposition 3.4: Équations de Cauchy-Riemann

On note f(x+iy)=P(x,y)+iQ(x,y) où $P,Q:\mathbb{R}^2\to\mathbb{R}.$ Si f est holomorphe, on a :

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$$

i.e.

$$\begin{cases} \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0\\ \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} = 0 \end{cases}$$

Ce sont les équations de Cauchy-Riemann.

Démonstration. On a :

$$d_z f(h) = \frac{\partial f}{\partial x}(z) dx(h) + \frac{\partial f}{\partial y}(z) dy(h) = f'(z)h = f'(z)(k+il)$$

On obtient

$$f'(z)(k+il) = \frac{\partial f}{\partial x}(z)k + \frac{\partial f}{\partial y}(z)l$$

et donc:

$$\begin{cases} f'(z) = \frac{\partial f}{\partial x}(z) \\ if'(z) = \frac{\partial f}{\partial y}(z) \end{cases}$$

On obtient ainsi la première égalité en identifiant.

On réécrit ceci avec $\frac{\partial f}{\partial \bar{z}} = 0$:

$$\begin{cases} \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0\\ \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} = 0 \end{cases}$$

Proposition 3.5: Constance sur un Connexe

Si f est holomorphe sur U connexe on a équivalence entre :

- ullet f est constante sur U
- ℜ f l'est
- 3f l'est
- |f| l'est
- \bar{f} est holomorphe

3.3 Intégrale sur le bord d'un Compact

Définition 3.4: Classe du Bord d'un Compact

Soit K un compact de \mathbb{R}^2 . K est dit à bord compact de classe \mathcal{C}^1 par morceaux si pour tout élément $z_0 \in \partial K$, il existe des coordonnées (u,v) associées à un repère affine de \mathbb{R}^2 d'origine z_0 orienté positivement par rapport à l'orientation canonique de \mathbb{R}^2 et un rectangle ouvert $R = \{-\delta < u < \delta\} \times \{-\eta < v < \eta\}$ tel que :

$$K\cap R=\{(u,v)\in R, v\geq h(u)\}$$

où h est une fonction réelle \mathcal{C}^1 par morceaux sur $[-\delta, \delta]$ avec h(0) = 0 et sup $|h| < \eta$.

Définition 3.5: Orientation du Bord

Soit K un compact à bord de classe \mathcal{C}^1 par morceaux. On appelle orientation canonique du bord l'orientation donnée par les arcs $u \mapsto (u, h(u))$ avec u croissant.

Lemme 3.1: Existence de l'Orientation

La définition a du sens.

Lemme 3.2: Recoupement de Rectangles

Soit R, R' des rectangles ouverts tels que $\partial K \cap R \cap R' \neq \emptyset$. On définit

$$K \cap R = \{(u, v) \in R, v \ge h(u)\}$$

 et

$$K \cap R'$$
) $\{(u', v') \in R', v' \ge l(u')\}$

Alors, les orientations sur $\partial K \cap R \cap R'$ coïncident.

Démonstration. Soit $z_0 \in \partial K \cap R \cap R'$. h et l sont \mathcal{C}^1 par morceaux. En évitant un nombre fini de points de $\partial K \cap R \cap R'$ on peut supposer h et l \mathcal{C}^1 en z_0 . Autrement dit, le bord admet une tangente en z_0 . On a deux repères affines orientés (z_0, e_1, e_2) et (z_0, e_1', e_2') qui génèrent des coordonnées (u, v) et (u', v'). Quitte à remplacer h par h(u) - h'(0)u on peut supposer que h'(0) = l'(0) = 0. Ainsi, e_1 et e_1' sont colinéaires. Puisqu'on a supposé que (e_1, e_2) et (e_1', e_2') sont orientés positivement par rapport à l'orientation canonique de \mathbb{R}^2 et puisque e_2 et e_2' doivent être dans le même sens (i.e. à l'intérieur du compact), on a bien le fait que e_1 et e_1' sont dans le même sens. Finalement, les orientations sur $\partial K \cap R \cap R'$ coïncident.

3.4 Formule de Green-Riemann

Soit $p, n \in \mathbb{N}^*$. On note $\Lambda^p_{\mathbb{R}}(\mathbb{R}^n)$ le \mathbb{R} -ev des formes p-linéaires alternées sur \mathbb{R}^n . Toute forme $S \in \Lambda^p_{\mathbb{R}}(\mathbb{R}^n)$ s'écrit de manière unique

$$S = \sum_{1 \le i_1 < \dots < i_p \le n} c_{i_1,\dots,i_p} \, \mathrm{d} x_{i_1} \wedge \dots \wedge \, \mathrm{d} x_{i_p}$$

Définition 3.6: Produit Extérieur

Pour $S \in \Lambda^p_{\mathbb{R}}(\mathbb{R}^n), T \in \Lambda^q_{\mathbb{R}}(\mathbb{R}^n)$ on définit le produit extérieur de S et T noté $S \wedge T \in \Lambda^{p+q}_{\mathbb{R}}(\mathbb{R}^n)$ comme :

$$S \wedge T(v_1, \dots, v_{p+q}) = \frac{1}{p!q!} \sum_{\sigma} \operatorname{sgn}(\sigma) S(v_{\sigma(1)}, \dots, v_{\sigma(p)}) T(v_{\sigma(p+1)}, \dots, v_{\sigma(p+q)})$$

Proposition 3.6: Exemples

La paire (dx, dy) forme une base de $\Lambda^1_{\mathbb{R}}(\mathbb{C})$. Les seuls produits extérieurs à considérer sont :

$$dx \wedge dx = dy \wedge dy = 0, \quad dx \wedge dy = -dy \wedge dx$$

De plus, $dx \wedge dy$ est la forme bilinéaire alternée déterminant dans la base canonique.

Définition 3.7: 2-forme différentielle

Une 2-forme différentielle β sur un ouvert U de $\mathbb C$ est une application continue de U dans $\Lambda^2_{\mathbb R}(\mathbb C): \beta = w(x,y)\,\mathrm{d} x\wedge\mathrm{d} y$ pour w continue.

Définition 3.8: Intégrale d'une 2-forme

Soit $\beta = w(x, y) dx \wedge dy$ une 2-forme différentielle sur U. On définit :

$$\int_{U} \beta = \int_{U} w(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Définition 3.9: Différentielle d'une Différentielle

Soit $\alpha = u(x,y) dx + v(x,y) dy$ une 1-forme différentielle \mathcal{C}^1 sur U. La différentielle $d\alpha$ de α est la 2-forme différentielle

$$d\alpha = du \wedge dx + dv \wedge dy = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) dx \wedge dy$$

Proposition 3.7: Exemples

1. Soit α une 1-forme différentielle sur U et $f: U \to \mathbb{C}$ de classe \mathcal{C}^1 . Alors

$$d(f\alpha) = df \wedge \alpha + f d\alpha$$

2. Si on écrit la 1-forme différentielle C^1 $\alpha = f \, \mathrm{d}z + g \, \mathrm{d}\bar{z}$ on a :

$$d(f dz + g d\bar{z}) = (\partial_z g - \partial_{\bar{z}} f) dz \wedge d\bar{z} = -2i (\partial_z - \partial_{\bar{z}} f) dx \wedge dy$$

En particulier, si $\alpha = f dz$ avec f holomorphe, alors $\partial_{\bar{z}} f = 0$ et $d\alpha = 0$.

Lemme 3.3: Formule de Green-Riemann sur un rectangle

Soit K un compact de \mathbb{C} à bord de classe \mathcal{C}^1 par morceaux orienté canoniquement. Soit $\alpha = u(x,y) \, \mathrm{d} x + v(x,y) \, \mathrm{d} y$ une forme 1-différentielle de classe \mathcal{C}^1 sur un ouvert de K à support dans un rectangle $R = [-\delta, \delta] \times [-\eta, \eta] \subseteq K$. Alors

$$\int_{\partial K} \alpha = \int_K d\alpha \text{ i.e. } \int_{\partial K} u(x,y) dx + v(x,y) dy = \int_K \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy$$

Démonstration. Comme K est compact, $R \subseteq \mathring{K}$ ou bien $\partial K \cap R$ est le graphe d'une fonction h et $K \cap R$ est la partie située à l'intérieur du graphe.

Supposons $R \subseteq \check{K}$, alors u = v = 0 sur ∂R et

$$\int_{-\delta}^{\delta} \frac{\partial v}{\partial x}(x, y) \, \mathrm{d}x = v(\delta, y) - v(-\delta, y) = 0$$

$$\int_{-\eta}^{\eta} \frac{\partial u}{\partial y}(x, y) \, \mathrm{d}y = u(x, \eta) - u(x, -\eta) = 0$$

et

$$\int_K d\alpha = \int_R d\alpha = \int_{-\delta < x < \delta, -\eta < y < \eta} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy = 0$$

Puisque le support de α ne rencontre pas ∂K on a $\int_{\partial K} \alpha = 0 = \int_K d\alpha$. Si $K \cap R = \{(x,y) \in R \mid y \leq h(x)\}$, alors

$$\begin{split} \int_K \mathrm{d}\alpha &= \int_{K\cap R} \mathrm{d}\alpha = \int_{-\delta}^\delta \mathrm{d}x \int_{h(x)}^\eta \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) \, \mathrm{d}y \\ &= \int_{-\delta}^\delta \left(\frac{\partial}{\partial x} \left(\int_{h(x)}^\eta v(x,y) \, \mathrm{d}x\right) + v(x,h(x))h'(x) - \left(u(x,\eta) - u(x,h(x))\right)\right) \, \mathrm{d}x \\ &= \int_{h(\delta),\eta} v(\delta,y) \, \mathrm{d}y - \int_{h(-\delta)}^\eta v(-\delta,y) \, \mathrm{d}y + \int_{-\delta}^\delta \left(v(x,h(x))h'(x) + u(x,h(x))\right) \, \mathrm{d}x \\ &= \int_{-\delta}^\delta \left(v(x,h(x))h'(x) + u(x,h(x))\right) \, \mathrm{d}x \end{split}$$

car $u(x,\eta) = v(\delta,y) = v(-\delta,y) = 0$. Par ailleurs, comme $\partial K \cap R$ est paramétré par y = h(x),

$$\int_{\partial K \cap R} \alpha = \int_{\partial K \cap R} u(x, y) \, \mathrm{d}x + v(x, y) \, \mathrm{d}y = \int_{-\delta}^{\delta} \left(v(x, h(x)) h'(x) + u(x, h(x)) \right) \, \mathrm{d}x$$

Le support de α est inclus dans R. Nous concluons donc :

$$\int_{K} d\alpha = \int_{\partial K} \alpha$$

Définition 3.10: Partition de l'unité

Soit K un compact de \mathbb{C} recouvert par un nombre fini d'ouverts U_i . Une partition de l'unité de classe \mathcal{C}^1 subordonnée au recouvrement U_i est une famille φ_i de fonctions de K dans [0,1] de classe \mathcal{C}^1 à support dans U_i telles que $\sum \varphi_i(x) = 1$ pour tout $x \in K$.

Lemme 3.4: Unité sur un Voisinage

Soit $z \in U$. Il existe V un voisinage de z avec $\overline{V} \subseteq U$ et une fonction \mathcal{C}^1 φ_U à support dans U valant 1 sur V.

Démonstration. Soit r > r' > 0 tel que $D(z, r') \subset D(z, r) \subset U$. On définit les fonctions \mathcal{C}^{∞}

$$f_r : \mathbb{R} \to \mathbb{R}, f_r(t) = \begin{cases} e^{\frac{1}{t^2 - r^2}} & \text{si } |t| < r \\ 0 & \text{sinon} \end{cases}$$

et

$$g_r : \mathbb{R} \to \mathbb{R}, g_r(s) = \frac{\int_{-\infty}^s f_r(t) dt}{\int_{-\infty}^{\infty} f_r(t) dt}$$

En particulier:

$$g_r(s) = \begin{cases} 0 & \text{si } s \le -r \\ 1 & \text{si } s \ge r \end{cases}$$

Alors, V = D(z, r') et $\varphi_U(w) = f_r \left(r + \frac{2r}{r-r'} \left(r' - |w-z| \right) \right)$ conviennent.

Lemme 3.5: Existence d'une Partition

Soit $K \subseteq \mathbb{C}$ un compact et (U_i) un recouvrement fini par des ouverts de K. Il existe une partition de l'unité \mathcal{C}^1 subordonnée au recouvrement U_i

Démonstration. Pour tout $z \in K \setminus U_j$ il existe i tel que $z \in U_i$. Par le lemme 3.4 on constuit ψ_z^j de classe \mathcal{C}^1 qui vaut 1 sur un voisinage ouvert W_z^j de z et dont le support est dans l'ouvert $U_i \cap (K \setminus U_j)$. Le support de ψ_z^j est un fermé de K donc est compact.

On obtient donc un recouvrement ouvert W_z^j du compact $K \setminus U_j$ donc on extrait un sous-recouvrement fini $\left\{W_{z_1}^j, \ldots, W_{z_{j_l}}^j\right\}$.

On procède de même pour tout $j \leq n$. En réindexant on obtient une famille finie $(\psi_l)_{1 \leq l \leq N}$ de fonctions dont l'union des supports recouvre K, i.e. pour tout $z \in K$, il existe l tel que $\psi_l(z) > 0$. On pose alors

$$\psi = \sum \psi_l$$
 et pour $l \le N, \rho_l = \frac{\psi_l}{\psi}$

Ainsi, ρ_l est une partition de l'unité de classe \mathcal{C}^1 de K telle que pour tout l il existe $1 \leq i \leq n$ tel que le support de ρ_l soit inclus dans U_i .

Théorème 3.2: Formule de Green-Riemann

Soit K un compact de \mathbb{C} à bord de classe \mathcal{C}^1 par morceaux orienté canoniquement. Soit α une 1-forme différentielle de classe \mathcal{C}^1 sur un ouvert de K. On a alors

$$\int_{\partial K} \alpha = \int_K d\alpha$$

Démonstration. Comme K est compact, il est recouvert par un nombre fini de rectangles ouverts R_j qui vérifient $R_j \subseteq \mathring{K}$ ou $\partial (K \cap R_j)$ est le graphe d'une fonction h_j et $K \cap R_j$ est la partie située à l'intérieur du graphe. Soit (χ_j) une partition de l'unité subordonnée au recouvrement R_j . Écrivons $\alpha = \sum \alpha_j$ où les 1-formes différentielles $\alpha_j = \chi_j \alpha$ sont de classes \mathcal{C}^1 à support dans R_j . On se ramène alors au cas du lemme 3.3

Théorème 3.3: Cauchy

Soit U un ouvert de \mathbb{C} , K un compact à bord de classe \mathcal{C}^1 par morceaux inclus dans U, avec l'orientation canonique du bord. Alors pour toute fonction holomorphe de classe \mathcal{C}^1 sur K nous avons

$$\int_{\partial K} f(z) \, \mathrm{d}z = 0$$

Démonstration. On applique la formule de Green-Riemann 3.2 à $\alpha = f(z) \, dz$, 1-forme différentielle de classe \mathcal{C}^1 . On a $d\alpha = -\partial_{\bar{z}} f \, dz \wedge d\bar{z} = 0$.

Corollaire 3.1: Analycité Holomorphe C^1

Soit f holomorphe de classe \mathcal{C}^1 sur un ouvert U. Alors f est analytique sur U.

Démonstration. Soit $\overline{D}(w,r) \subseteq U$ et γ le lacet $t \mapsto w + re^{it}$. Pour $\lambda \leq 1$, on pose

$$g(\lambda) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z + \lambda(u - z))}{u - z} du = \frac{r}{2\pi} \int_{0}^{2\pi} \frac{f(z + \lambda(w + re^{it} - z))}{w + re^{it} - z} e^{it} dt$$

Ainsi, g est continue sur [0,1], dérivable sur]0,1[de dérivée

$$g'(\lambda) = \frac{r}{2\pi} \int_0^{2\pi} f'\left(z + \lambda\left(w + re^{it} - z\right)\right) e^{it} dt = \left[\frac{1}{2i\pi\lambda} f\left(z + \lambda\left(w + re^{it} - z\right)\right)\right]_{t=0}^{2\pi} = 0$$

Donc g est constante avec

$$g(1) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(u) du}{u - z}$$
 et $g(0) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z) du}{u - z} = f(z)$

D'où, par la proposition 2.4, f est analytique

3.5 Analycité des Fonctions Holomorphes

Lemme 3.6: Goursat

Soient $U\subseteq \mathbb{C}$ un ouvert et T un triangle inclus dans U. Pour tout fonction holomorphe sur U

$$\int_{\partial T} f(z) \, \mathrm{d}z = 0$$

 $D\acute{e}monstration$. Nous décopons T en quatre triangles T_i dont les sommets sont ceux de T et les milieux des côtés de T. Nous orientons les arêtes opposées des triangles T_k de telle façon que

$$I = \int_{\partial T} f(z) dz = \sum_{k=1}^{4} \int_{\partial T_k} f(z) dz$$

Il existe donc un indice k avec $\left|\int_{\partial T_k} f(z) \, \mathrm{d}z\right| \ge |I|/4$. De cette façon, nous construisons une suite de triangles emboîtés $T_0' = T, T_1' = T_k$ avec $diam T_n' = diam T/2^n$ et $\left|\int_{\partial T_n'} f(z) \, \mathrm{d}z\right| \ge |I|/4^n$. L'intersection des triangles emboîtés T_n' est réduite à un point z_0 . Comme f est holomorphe en z_0 :

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + (z - z_0)\varepsilon(z)$$

avec $\varepsilon(z)$ qui tend vers 0 quand z tend vers z_0 . On a ainsi :

$$\left| \int_{\partial T'_n} f(z) \, \mathrm{d}z \right| = \left| \int_{\partial T'_n} (z - z_0) \varepsilon(z) \, \mathrm{d}z \right| \le \log(\partial T'_n) \sup_{\partial T'_n} |z - z_0| \, |\varepsilon(z)|$$

et donc

$$\left| \int_{\partial T'_n} f(z) \, \mathrm{d}z \right| \leq 3 \left(\mathrm{diam} T'_n \right)^2 \sup_{\partial T'_n} |\varepsilon(z)|$$

Donc $|I| \le 4^n \left| \int_{\partial T'_n} f(z) \, \mathrm{d}z \right| \le 3 \left(\mathrm{diam} T_n \right)^2 \sup_{\partial T'_n} |\varepsilon(z)|$ et donc I = 0.

Théorème 3.4: Goursat

Soit $U\subseteq\mathbb{C}$ ouvert et K un compact à bord de classe \mathcal{C}^1 avec l'orientation canonique du bord. Pour toute fonction holomorphe sur U on a :

$$\int_{\partial K} f(z) \, \mathrm{d}z = 0$$

Démonstration. On approche K par des compacts à bords polygonaux. Notons $\delta = d(K, \mathbb{C} \setminus U) > 0$. Paramétrons δK par un nombre fini d'arcs \mathcal{C}^1 par morceaux. Pour chaque tel arc $\gamma: [a,b] \to U$, soit une subdivision $a = \tau_0 < \tau_1 < \ldots < \tau_n = b$ telle que $|\gamma(\tau_{j+1}) - \gamma(\tau_j)| \le \varepsilon \le \delta/2$. Chaque segment $[\gamma(\tau_{j+1}), \gamma(\tau_j)] \subset U$. Pour ε assez petit, la réunion de ces segments constitue le bord d'un compact K_{ε} à bord polygonal. $K_{\varepsilon} = \bigcup_i T_i$ est réunion de triangles adjacents et le lemme de Goursat 3.6 implique

$$\int_{\partial K_{\varepsilon}} f(z) d(z) = \sum_{i} \int_{\partial T_{i}} f(z) dz = 0$$

D'après la proposition , on a bien :

$$\lim_{\varepsilon \to 0} \int_{\partial K_{\varepsilon}} = \int_{\partial K} f(z) \, \mathrm{d}z$$

D'où le résultat.

Théorème 3.5: Formule de Cauchy

Soit f holomorphe sur un ouvert $U\subseteq\mathbb{C}$ et K un compact à bord orienté \mathcal{C}^1 par morceaux inclus dans U. Alors, pour tout $z\in K$

$$f(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega$$

Démonstration. Soit r > 0 tel que $\overline{D(z,r)} \subset \mathring{K}$. On note $K_r = K \setminus D(z,r)$. K_r est un compact à bord orienté \mathcal{C}^1 par morceaux dont le bord est $\partial K_r = \partial K \cup \partial D^-(z,r)$ où ∂D^- signifie que ce cercle a l'orientation opposée à celle obtenue comme bord de $\overline{D(z,r)}$. La fonction $g(\omega) = f(\omega)/(\omega - z)$ et holomorphe sur $U \setminus \{z\}$. Le théorème de Goursat 3.4 appliqué à g sur le compact $K_r \subseteq U \setminus \{z\}$ donne

$$\int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega - \int_{\partial D(z,r)} \frac{f(\omega)}{\omega - z} d\omega = 0$$

En posant $\omega = z + re^{it}$ on a

$$\int_{\partial D(z,r)} \frac{f(\omega)}{\omega - z} d\omega = \int_0^{2\pi} \frac{f(z + re^{it})}{re^{it}} i re^{it} dt = i \int_0^{2\pi} f(z + re^{it}) dt$$

et cette dernière intégrale tend vers $2i\pi f(z)$ lorsque r tend vers 0 par continuité de f au point z.

Théorème 3.6: Équivalence Holomorphie-Analycité

Soit $f: U \to \mathbb{C}$. f est holomorphe sur U si et seulement si elle est analytique.

 \underline{D} émonstration. On a déjà l'implication analycité holomorphie. Supposons f holomorphe sur U et $\overline{D}(z_0,r)\subset U$. Pour $z\in D(z_0,r)$, la formule de Cauchy 3.5 donne

$$f(z)$$
) $\frac{1}{2i\pi} \int_{\partial D(z_0,r)} \frac{f(\omega)}{\omega - z} d\omega$

Or

$$\frac{1}{\omega - z} = \sum_{n=0}^{+\infty} \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}}$$

De plus, pour $\omega = z_0 + re^{it}$,

$$\left| \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}} \right| = \frac{1}{r} \left(\frac{|z - z_0|}{r} \right)^n, \text{ avec } |z - z_0| / r < 1$$

Par convergence normale pour $t \in [0, 2\pi]$, on obtient :

$$f(z) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} f(\omega) \sum_{n=0}^{+\infty} \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}} d\omega = \sum_{n=0}^{+\infty} \int_{\partial D(z_0, r)} \frac{f(\omega)}{2i\pi (\omega - z_0)^{n+1}} d\omega (z - z_0)^n = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

et la série entière ci-dessus converge normalement sur les compacts de $D(z_0, r)$.

Corollaire 3.2: Classe des Dérivées

Soit U un ouvert de \mathbb{C} . Toute fonction holomorphe sur U est de classe \mathcal{C}^{∞} sur U. Précisément, pour tout $K \subset U$ compact à bord de classe \mathcal{C}^1 par morceaux et pour tout $z \in \mathring{K}$ nous avons :

1.
$$\forall n \geq 0, \frac{\partial^n f}{\partial z^n}(z) = f^{(n)}(z) = \frac{n!}{2i\pi} \int_{\partial K} \frac{f(\omega)}{(\omega - z)^{n+1}} d\omega$$

2.
$$\forall n \geq 0, \forall m \geq 0, \frac{\partial^{n+m} f}{\partial z^n \partial \bar{z}^m}(z) = 0.$$

En particulier, une fonction holomorphe f admet des dérivées complexes $f^{(n)}$ d'ordre n arbitraire et les dérivées $f^{(n)}$ sont holomorphes.

Théorème 3.7: Morera

Soit f une fonction continue sur un ouvert U de \mathbb{C} . Nous supposons que $\int_{\partial T} f(z) dz = 0$ pour tout triangle T inclus dans U. Alors f est holomorphe sur U.

Démonstration. Soit $z_0 \in U$ et r > 0 tel que $\overline{D}(z_0, r) \subset U$. Pour $z \in D(z_0, r)$, on pose

$$F(z) = \int_{[z_0, z]} f(\omega) \, \mathrm{d}\omega$$

Soit $z \in D(z_0, r)$ et $h \neq 0$ tel que $z + h \in D(z_0, r)$. Comme le triangle de sommets $z_0, z, z + h$ est inclus dans $D(z_0, r)$, nous avons

$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \int_{[z,z+h]} f(\omega) d\omega = \int_0^1 f(z+th) dt$$

Comme f est continue au point z,

$$\lim_{h \in \mathbb{C}^*} \frac{F(z+h) - F(z)}{h} = f(z)$$

Ainsi F est holomorphe sur $D(z_0, r)$ donc analytique d'après le théorème 3.6 et sa dérivée f = F' l'est donc aussi.

Corollaire 3.3: Γ

La fonction Γ

$$\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} \, \mathrm{d}t$$

est holomorphe pour $\Re s > 0$.

Démonstration. L'intégrale converge en t=0 car $\left|t^{s-1}e^{-t}\right| \leq t^{\Re s-1}$. À s fixé pour $t \in \mathbb{R}_+$ grand,

$$|t^{s-1}e^{-t}|=t^{\Re s-1}e^{-t}\leq e^{t/2}e^{-t}=e^{-t/2}$$

Donc $\Gamma(s)$ est bien définie pour $\Re s > 0$. Soit $\gamma : [0,1] \to \{s, \Re s > 0\}$ la courbe décrivant un triangle. Alors, d'après le théorème de Fubini

$$\int_{\gamma} \Gamma(s) \, \mathrm{d}s = \int_{\gamma} \int_{0}^{+\infty} t^{s-1} e^{-t} \, \mathrm{d}t \, \mathrm{d}s = \int_{0}^{+\infty} \left(\int_{\gamma} t^{s-1} \, \mathrm{d}s \right) e^{-t} \, \mathrm{d}t = 0$$

Ainsi, en appliquant le théorème de Morera 3.7, la fonction Γ est holomorphe sur le demi-plan $\Re s > 0$.

4 Propriétés Éléméntaires des Fonctions Holomorphes

4.1 Théorème d'inversion locale

Théorème 4.1: Inversion Locale

Si $f \in \mathcal{O}(U)$, $a \in U$, $f'(a) \neq 0$, alors, $\exists V$ voisinage ouvert de a inclus dans U sur lequel f est biholomorphe sur f(V) ouvert.

Démonstration. Comme $f \in \mathcal{O}(U)$, f est \mathbb{R} -différentiable. Donc il existe un voisinage V ouvert de U contenant a sur lequel $f_{|V}: V \to f(V)$ est un difféomorphisme. Alors, $d_{f(z)}(f^{-1}) = (d_z f)^{-1}$ et donc $f^{-1} \in \mathcal{O}(U)$.

Idée des Séries Majorantes.

• On suppose d'abord a=0, f(a)=0, f'(a)=1. On a

$$f(z) = z - \sum_{n>2} a_n z^n, z \in D(0, r)$$

On veut résoudre $f(z) = \omega = z - \sum_{n \geq 2} a_n z^n$ i.e. $z = \omega + \sum_{n \geq 2} a_n z^n$. Mais, $\sum_{n \geq 2} a_n z^n = \mathcal{O}(w^2)$:

$$z = \omega + \sum_{n \ge 2} a_n \left(\omega + \mathcal{O}(\omega^2) \right)^n = \omega + a_2 \omega^2 + \mathcal{O}(\omega^3)$$

On peut alors réinjecter :

$$z = \omega + a_2 \omega^2 + (2a_2^2 + a_3) \omega^3 + \mathcal{O}(\omega^4)$$

et ainsi de suite :

$$z = \omega + \sum_{n=2}^{N} P_n(a_2, \dots, a_n) \omega^n + \mathcal{O}(\omega^{N+1})$$

où les $P_n \in \mathbb{N}[X_2, \dots, X_n]$.

• Montrons maintenant que cette série converge lorsque $N \to \infty$. On sait que la série $\sum a_n z^n$ converge sur D(0,r). Pour r' < r, $|a_n r'^n| \to 0$. Donc il existe M > 0 tel que $|a_n| \le M^n$. Or,

$$z = \omega + \sum_{n=2}^{+\infty} P_n (M^2, \dots, M^n) \omega^n$$

est solution de :

$$\omega = z - \sum_{n \ge 2} M^n z^n$$
$$= z - \left(\frac{1}{1 - Mz} - 1 - Mz\right)$$

Donc

$$(1 - Mz) \omega = z(1 - Mz) - 1 + 1 - Mz + Mz(1 - Mz)$$

C'est à dire :

$$z^{2}(M+M^{2})+z(-M\omega-1)+\omega=0$$

ou

$$z = \frac{\left(M\omega + 1\right) - \sqrt{\left(1 + M\omega\right)^2 - 4\omega\left(M + M^2\right)}}{2(M + M^2)}$$

On prend ici pour $\sqrt{\cdot}$ la détermination holomorphe de ()^{1/2} qui existe sur D(1,1) et pour laquelle $\sqrt{1} = 1$ de sorte que pour $\omega = 0$, z = 0.

La série définissant $\sqrt{\cdot}$ converge alors sur D(0,R) où $R = \frac{1}{\left(1+\sqrt{2}\right)M+4M^2}$. En effet, alors, on a

$$\left|M^2\omega^2\right| \le M^2 \left|\omega\right| R \le \frac{M^2 \left|\omega\right|}{\left(1+\sqrt{2}\right)M} = \left(\sqrt{2}-1\right)M \left|\omega\right|$$

et donc

$$\left|\left(2M+4M^2\right)\omega-M^2\omega^2\right|\leq \left(2M+4M^2\right)\left|\omega\right|+\left|M^2\omega^2\right|\leq \left(\left(1+\sqrt{2}\right)M+4M^2\right)\left|w\right|<1$$

D'où la convergence de $g(\omega) = \omega + \sum_{n\geq 2} P_n(a_2,\ldots,a_n) \omega^n$ sur D(0,R). et $g(D(0,R)) \subset D(0,1/M)$.

• Par identification de la série entière en zéro et principe du prolongement analytique, nous avons $f \circ g(\omega) = \omega$ pour $\omega \in D(0,R)$. De plus, par construction, g est injective sur W = D(0,R) et l'image $\omega = f(z)$ atteint surjectivement W sur $g(W) \subseteq D(0,1/M) \cap f^{-1}(W)$. Prenons V la composante connexe de 0 dans $D(0,1/M) \cap f^{-1}(W)$. Alors $f(V) \subset W$ et $g(W) \subset V$. V, W sont ouverts et $f_{|V|} \circ g_{|W|} = id_W$. Par connexité de V et prolongement analytique, $g_{|W|} \circ f_{|V|} = id_V$.

4.2 Théorème de l'Application Ouverte

Théorème 4.2: Pré-Application Ouverte

Soit $f \in \mathcal{O}(U)$ non constante au voisinage de $a \in U$, f(a) = 0 et

$$m = \min\{k \in \mathbb{N}^* \mid f^{(k)}(a) \neq 0\}$$

Il existe alors un voisinage ouvert V de a, un voisinage ouvert W de 0 et un biholomorphisme $\varphi:V\to W$ tel que φ envoie a sur 0 et $f(z)=f(a)+\varphi(z)^m$.

Démonstration. D'après le théorème 2.4 il existe $U'\subseteq U$ un voisinage de a et $g\in\mathcal{O}(U')$ tels que pour tout $z\in U'$

$$f(z) - f(a) = \alpha(z - a)^m g(z)$$

avec $\alpha \in \mathbb{C}^*$ et g(a) = 1.

Soit $V = \{z \in U' \mid |g(z) - 1| < 1\}$. C'est un voisinage de a sur lequel $\exp \frac{1}{m} \log(g(z))$ existe. On a alors

$$\forall z \in V', f(z) = f(a) + (\varphi(z))^m$$

οù

$$\varphi(z) = \alpha_m(z-a) \exp\left(\frac{1}{m}\log(g(z))\right)$$

où $\alpha_m^m = \alpha$. Alors, $\varphi \in \mathcal{O}(V')$ avec $\varphi(a) = 0$ et $\varphi'(a) = 1$. Par théorème d'inversion locale 4.1, on a un voisinage $V \subset V'$ de a sur lequel φ est un biholomorphisme.

Corollaire 4.1: Solutions d'une Équation

Soit $f \in \mathcal{O}(U)$ non constante au voisinage de $a \in U$ et

$$m = \min\{k \in \mathbb{N}^* \mid f^{(k)}(a) \neq 0\}$$

. Alors, $\exists r, \rho \in \mathbb{R}_+^*$ tels que $\forall \omega \in D(f(a), \rho) \setminus \{f(a)\}$ l'équation $f(z) = \omega$ a exactement m solutions dans D(a, r).

Démonstration. On écrit par le théorème 4.2 précédent $f(z) = \omega = f(a) + \varphi(z)^m$ où $\varphi: V \to W$ est tel que $\varphi(a) = 0$. On suppose $\varphi(z) = (\omega - f(a))^{1/m}$ pour une certaine détermination de l'exponentielle. On prend r tel que $D(a,r) \subset V$. $\varphi(D(a,r))$ est un ouvert de W voisinage de 0.

Il existe un ρ' tel que $D(0, \rho')$ est inclus dans $\varphi(D(a, r))$. Alors, pour tout $\omega \in D(f(a), \rho'^m)$, $(\omega - f(a))^{1/m} \in D(0, \rho')$. Mézalor, $e^{2ik\pi/m} (w - f(a))^{1/m}$ sont dans $D(0, \rho')$. On obtient alors

$$z_k = \varphi^{-1} \left(e^{2ik\pi/m} \left(\omega - f(a) \right)^{1/m} \right) \in D(a, r)$$

Les z_k sont solutions de $f(z) = \omega$ et donc il y en a bien exactement m.

De même, l'équation f(z) = f(a) n'a qu'une solution z = a dans D(a, r) de multiplicité m.

Théorème 4.3: Application Ouverte

Une fonction holomorphe non constante sur un ouvert U connexe est une application ouverte.

Démonstration. Par le corollaire 4.1, tout point $z_0 \in U$ admet un voisinage $V_{z_0} \subset U$ tel que $f(V_{z_0}) = D(f(z_0), \rho(z_0))$. Ainsi, $f(U) = \bigcup D(f(z_0), \rho(z_0))$ est ouvert.

Théorème 4.4: Théorème d'Inversion Gloable

Soit U un ouvert connexe et $f \in \mathcal{O}(U)$ injective. Alors :

- 1. f(U) est un ouvert de \mathbb{C}
- 2. f' ne s'annule pas sur U
- 3. $f: U \to f(U)$ est un biholomorphisme

Démonstration. 1. D'après le théorème de l'application ouverte 4.3, f, injective donc non constante, est ouverte donc f(U) est ouverte et f est une bijection continue ouverte de U dans f(U), i.e., un homéomorphisme.

- 2. Supposons qu'il existe z_0 pour lequel $f'(z_0) = 0$. Dans le théorème 4.1, on a un entier $m \ge 2$ et donc f n'est pas injective au voisinage de z_0 ce qui est absurde. Donc f' ne s'annule pas sur U.
- 3. D'après les deux premiers points et le théorème 4.1 d'inversion locale, f^{-1} est holomorphe sur f(U) et $f: U \to f(U)$ est un biholomorphisme.

4.3 Lemme de Schwarz

Théorème 4.5: Principe du Maximum

Soit $f \in \mathcal{O}(U)$

- 1. Si |f| admet une maximum local en un point $a \in U$, alors f est constante sur la composante connexe contenant a.
- 2. Pour tout $K \subset U$

$$\max_{K} |f| = \max_{\partial K} |f| \,, \max_{K} \Re f = \max_{\partial K} \Re f, \max_{K} \Im f = \max_{\partial K} \Im f$$

Démonstration. 1. Supposons f non constante sur la composante connexe U_0 de U contenant a avec $|f(a)| = \sup_U |f| = \sup_{U_0} |f|$. D'après le théorème de l'application ouverte, f est ouverte sur U_0 . L'image $f(U_0)$ est un voisinage de f(a) donc contient des points de module strictement supérieur à |f(a)|.

2. Si $\max_{\partial K} \Re f < \max_K \Re f$, il existe $z_0 \in \mathring{K}$ avec $\Re f(z_0) = \max_K \Re f$. Soit U_0 une composante connexe de z_0 dans \mathring{K} et f non constante dans U_0 . Alors $f(U_0)$ est un ouvert qui contient

 $f(z_0)$ et qui est contenue dans le demi-plan $\{w\mid \Re w\leq \Re f(z_0)\}$. Donc f est constante sur U_0 et $\Re f_{|\partial U_0}=\Re f(z_0)$ par continuité de f. Or

$$\varnothing \neq \partial U_0 \subset \partial \mathring{K} = \overline{\mathring{K}} \setminus \mathring{K} \subseteq \overline{K} \setminus \mathring{K} = \partial K$$

ainsi, $\max_K \Re f = \Re f(z_0)$ est atteint sur ∂K . Les cas |f| et $\Im f$ sont analogues.