Example Science Applications

Far too many for the time we have in this session

Download Slides and Follow Along

mcbios.readthedocs.org

RNA-Seq with Tuxedo Pipeline Overview

Determine differential expression abundance of transcripts in between a WT and mutant organism

See Full tutorial in CyVerse Learning Center

Experiment Overview

Example experiment

- LONG HYPOCOTYL 5 (HY5) is a basic leucine zipper transcription factor (TF).
- Mutations cause aberrant phenotypes in Arabidopsis morphology, pigmentation and hormonal response.
- We will use RNA-Seq to compare WT and *hy5* to identify HY5-* w-B regulated genes.

Now what?

@SRR070570.4 HWUSI-EAS455:3:1:1:1096 length=41 CAAGGCCCGGGAACGAATTCACCGCCGTATGGCTGACCGGC

+

+

@=:9>5+.5=?@<6>A?@6+2?:</7>,%1/=0/7/>48##
@SRR070570.13 HWUSI-EAS455:3:1:2:869 length=41
TGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCA

+

A;BAA6=A3=ABBBA84B<&78A@BA=(@B>AB2@>B@/9? @SRR070570.32 HWUSI-EAS455:3:1:4:1075 length=41 CAGTAGTTGAGCTCCATGCGAAATAGACTAGTTGGTACCAC

+

BB9?A@>AABBBB@BCA?A8BBBAB4B@BC71=?9;B:3B? @SRR070570.40 HWUSI-EAS455:3:1:5:238 length=41 AAAAGGGTAAAAGCTCGTTTGATTCTTATTTTCAGTACGAA

+

BBB?06-8BB@B17>9)=A91?>>8>*@<A<>>@1:B>(B@ @SRR070570.44 HWUSI-EAS455:3:1:5:1871 length=41 GTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTGTAAG

+

BBBCBCCBBBBBA@BBCCB+ABBCB@B@BB@:BAA@B@BB>
@SRR070570.46 HWUSI-EAS455:3:1:5:1981 length=41
GAACAACAAAACCTATCCTTAACGGGATGGTACTCACTTTC

+

?A>-?B;BCBBB@BC@/>A<BB:?<?B?=75?:9@@@3=>:

Bioinformatician

0	A	8	C	D	E	į.
1	gene_id	gene_name	fold_change	direction	g-value	gene_description
2	#1G7978	ATTIGFEEZE	111973.46	Ų2	£999311	(ATLG/SEYS) chestra (Source/ReSec CNA Acc./AL 603405)
3	475613225	AT9013225	3960.23	COWN	2.045-09	SISHA Source DRAID CSC11225
4	ATSC66564	AT9066564	1468.45	COWN	1.58E-11	proBNA (Secret: TARCATE IC SCEESSA)
5	ATS644574	A79544574	441.65	COWN	3.556-07	uncharacterized protein [Source: EMB.; Acc AED95130.17
6	ATM(£037)	03F117	40138	COWN	2,375-09	hypothetical protein. [Source T43R;Acc; #TMD00970]
7	JUNESCI 23	NACO	194.9	COWN	0.030277167	148H dehydrogenase IB [Seurce:TAIR;4cc;479G0120]
	ATMEECL23	4796-2	92.27	N ₂	3.685-06	ATPase, FI complex, subarit A protein [Source:TAR;Ast:47NEE1178]
9	JU3546433	A75046433	99.19	COWN	4,265-05	906 ribosomal pretein E32-2 [Source EMBL;Acc:AED65385.1]
10	ATMSEC273		77.45	COWN	0.14399	mitochondria risosoma protein S7 (Source:T4R;Acc:47M30(270)
	ATS627715	A75027715	7631	COWN	0.542217	pre-ERRA [Source TAIR; Ace ATSG27715]
	ATS(6595)	A75G85960		COWN		GTF binding protein (Source:EMBL, Art: AEDSB132.1)
	ATME6000			COWN		NASH dehydrogenase subunit SC [Source:TXXII; Acc; RTH033390]
	ATSG57080	A75057080		COWN		uncharacterized protein [Source: 8481; Arc AED98944.1]
	ATS(66400	R6838	47.41			dehyd in Rab18 (Source:EPBL;As::AED98208.1)
	ATM(E0035)	TRMP		COVN		Mischenerial-erocced proline-accepting SRVA. (Source TAIR Acc AIMS)
17	JE'5644572	479044572	31.48	Na	0.0353399	uncharacterized protein (Source: EMB), Arc AED95129.17
18	475615853	AT9015853	30.41	DOWN	0.0554273	unchanderase onten [Saurce: PHB.; Arc AED32215.1]
19	JUNESCO285	1000	28 58	COWN	0.00660002	NASH dehydrogenase 2A [Seurce: TAIR; Rec: ATMC00285]
20	#E5625753	AT9G25750	28.15	COWN	0.0303476	uncharacterized protein [Source: EMB.; Arc: AED33478.1]
21	ACSCC03285	ATSC03285	26.18	COWN	0.0404388	(ATSG13285) ethor@A [Source:RefSec DNA;Ace:NR,(62330]
	ATS619800	AT9G15800	25.25	U2	0.030313226	hydroxyproline-rich gyosprosen family protein (Source:1998L;Asc 4209
23	ATSC15905	ATS015805	22.13	COWN		pre-198A (Source SAIR, Ace ATSCESSOS)
	ATM500730		1929	COWN		cytochrome c celdase subunit 1 (Source TACR, Acc A/M (000730)
	ATS045715	AT5045715	17.43	COVM		pre-tRNA (Source TAIR; Acc ATSGAS715)
	AT1674253	AT1G74251	15.05	Na .		DKAI heat shock II-terminal demain-containing protein [Source: EMBL;4
27	475626293	475026293	14.12	COWN	0.400341	TRAF-like family crotein [Source:@MBL;4cc;4ED93548.1]

Tuxedo Workflow

Differential expression

*TopHat and Cufflinks require a sequenced genome

Discovery Environment

Using a GUI

Genome annotation with MAKER-P Overview

Annotate your Genome of Choice (in your lifetime)

See Full tutorial in

CyVerse Learning Center

Genome annotation with MAKER-P

What Are Annotations?

Quick Review

Annotations are descriptions of features of the genome

- Structural: exons, introns, UTRs, splice forms etc.
- Coding & non-coding genes
- Expression, repeats, transposons

Annotations should include evidence trail

Assists in quality control of genome annotations

Examples of evidence supporting a structural annotation:

- Ab initio gene predictions
- ESTs
- Protein homology

Options for Protein-coding Gene Annotation

MAKER-P Automated Pipeline

MPI-enabled to allow parallel operation on large compute clusters

Ab initio prediction

Input Genomic Sequence Repeat Library Split into 100 kb Chunks Compute:RepeatMasker Compute:BLAST **Compute: SNAP** Compute: Augustus proteins ESTs/mRNA Evidence Compute: GeneMark Compute: FGENESH Filter/Cluster Polish w/ Exonerate Filter/Cluster **SNAP** Augustus Synthesis GeneMark **FGENESH** Annotation Output: GFF3; FASTA

MAKER-P at iPlant

TACC Lonestar Supercomputer 22,656 CPU cores on 1,888 nodes

Genome	Assembly	Size (Mb)	CPU	Run Time
Arabidopsis thaliana	TAIR10	120	600	2:44
Arabidopsis thaliana	TAIR10	120	1500	1:27
Zea mays	RefGen_v2	2067	2172	2:53

Campbell et al. Plant Physiology. December 4, 2013, DOI:10.1104/pp.113.230144

W559 - Annotation of the Lobolly Pine Megagenome—Jill Wegrzyn

20.15 Gb assembly—split into 40 jobs—216 CPU/job (8640 CPU total)—17 hours

P157 - Disease Resistance Gene Analysis on Chromosome 11 Across Ten Oryza Species

10 rice species (each w/12 chromosome pseudomolecules)

96 CPU per chromosome (1152 CPU total) ~ 2hr per genome

Extreme Science and Engineering Discovery Environment

Agave API

Transcriptome assembly with SOAPdenovo-Trans Overview

Generate and validate your transcriptome

See Full tutorial in

CyVerse Learning Center

Why SOAPdenovo-Trans?

Some comparisons

Table 1. Computational requirements.

	Rice				Mouse			
	Small dataset		Large dataset		Small dataset		Large dataset	
Method	Peak memory (GB)	Time (hr)	Peak memory (GB)	Time (hr)	Peak memory (GB)	Time (hr)	Peak memory (GB)	Time (hr)
SOAPdenovo-Trans	10.7	0.2	29.3	0.8	10.5	0.3	16.7	1.0
Trinity	10.1	17.7	37.6	35.6	10.5	16.6	26.3	47.5
Oases	9.0	0.6	53.2	3.0	8.8	0.7	35.1	2.7

All assemblies were processed with 10 threads, on a computer with two Quad-core Intel 2.8GHz CPUs and 70GB of memory, running CentOS 5.

- *Runs more quickly (easier to refine parameters)
- Less memory demands
- Good quality (Software changes rapidly, so "clear winners" will always change, you
 can too when the time comes)

Overview

- De Brujin graphs are constructed
- Error correction
- Contigs are constructed and single/paired reads are mapped to contigs to make scaffold graphs
- Transcripts are created from scaffold graphs

Kmers and De Brujin graphs

- Reads split into kmers
- De Brujin graph constructed from kmers

Kmers and De Brujin graphs

- Redundancies are collapsed
- Paths through the graph that explained the observed sequence generate the alignments

CEGMA

How good is assembly coverage?

Sample Data

Asian honeybee transcriptome

Transcriptome Analysis of the Asian Honey Bee Apis cerana cerana

Zi Long Wang 🔤, Ting Ting Liu 🔤, Zachary Y. Huang, Xiao Bo Wu, Wei Yu Yan, Zhi Jiang Zeng 🖾

- Published: October 24, 2012
- DOI: 10.1371/journal.pone.0047954

Article	About the Authors	Metrics	Comments	Related Content		
₩						
Abstract Introduction	Abstract					
Results	Background					
Discussion	2401.9.0411	-				
Conclusions	The Eastern hive honey bee, <i>Apis cerana cerana</i> is a native and widely bred honey bee					

Choosing kmers

- Transcripts with lower read depths were represented better with lower K values
- Transcripts with higher read depth represented better with higher K

