MTA Foot-Traffic

Kevin Joo - DA Flex Student

Introduction

Question: Are there avenue for improvements in entering and exiting stations?

Objective: Analyze the foot-traffic of people using the MTA to travel within NYC

Goal: To inform MTA of possible improvements for future renovation to a given station on turnstile placements and/or directing riders to other turnstiles

Methodology

Data:

- -3 month of MTA data (April'21 July'21)
- -COVID vaccines were rolled out

Metric:

-Look at the entry and exit data to understand the foot-traffic for each station and turnstile

Tools:

- -NumPy and Pandas for data manipulation
- -Matplotlib and Seaborn for data visualizations

Methodology

Initial Steps:

- 1. Use different built-in functions to clean up the raw data
 - a. .describe
 - b. .groupby chained w/ .diff()
 - c. mask
- 2. Interpret and visualize data

Results

Insight:

- Identified the top 10 stations with the most foot-traffic
- Penn Station: had the most foottraffic and was selected to take a deeper dive into the foot-traffic pattern

Results

Insight:

- There are 111 unique turnstiles placed through Penn Station
- The average foot traffic during the 3month period for Penn Station was: 74.6K riders
- Roughly 50% of the turnstiles are used above the mean
- Suggests there are room to help direct riders to other turnstiles to help decrease the chance of bottle-necking at certain "popular" turnstiles

```
penn_station_df["avg_foot_traffic"] = penn_station_df["total_traffic"] > penn_station_df["total_traffic"].mean()
penn_station_df.head()
                         turnstiles total_traffic avg_foot_traffic
 0 R138R29300-03-04_34 ST-PENN STA
                                    235635.0
                                                       True
 1 N067R01200-05-00_34 ST-PENN STA
                                     194128.0
                                     184551.0
                                                       True
 2 N067R01200-05-01_34 ST-PENN STA
 3 N073R01302-00-01_34 ST-PENN STA
                                     182315.0
   R138R29300-00-02_34 ST-PENN STA
                                                      True
penn_station_df.tail()
                           turnstiles total_traffic avg_foot_traffic
 106 N071R01300-03-05_34 ST-PENN STA
                                           0.0
                                                        False
 107 N071R01300-03-04_34 ST-PENN STA
                                           0.0
                                                        False
                                           0.0
 108 N071R01300-03-00_34 ST-PENN STA
                                                        False
                                           0.0
 109 N071R01300-03-02_34 ST-PENN STA
                                                        False
 110 R138R29300-03-00_34 ST-PENN STA
                                          -16.0
                                                        False
penn_station_df["avg_foot_traffic"].value_counts()
           56
True
```

Name: avg_foot_traffic, dtype: int64

False

Conclusion

Recommendation:

- -Roughly ~50% of turnstiles are under-utilized, which means there are room for traffic-flow improvement
- -To reduce bottle-necking, there are 2 recommendations:

Economical method: inform riders of other turnstiles available to them Costly method: build out new turnstiles to help direct foot-traffic away from "popular" turnstiles

Review the data again in the future

Future Work

If I had more time:

- -Understand how emergency exits are tracked and see how much it is costing MTA
- -Understand the placements of turnstiles to see which areas are being over/under utilized
- -Incorporate Power BI to help create more visualization for deeper insight

Appendix

N071	R013	00- 00- 01	34 ST- PENN STA	ACE	IND	05/24/2021	08:00:00	REGULAR	2597061	2634738	2021-05- 24 08:00:00	N071R01300- 00-01_34 ST- PENN STA	0.0	0.0	0.0
N071	R013	00- 00- 01	34 ST- PENN STA	ACE	IND	05/24/2021	11:47:10	REGULAR	3500758	7791164	2021-05- 24 11:47:10	N071R01300- 00-01_34 ST- PENN STA	903697.0	5156426.0	6060123.0
N071	R013	00- 00- 01	34 ST- PENN STA	ACE	IND	05/24/2021	12:00:00	REGULAR	3500761	7791172	2021-05- 24 12:00:00	N071R01300- 00-01_34 ST- PENN STA	3.0	8.0	11.0
		^^	04 OT								2024 25	1074004000			

R218	00- 00- 00	ELMHURST AV	MR	IND	07/26/2021	12:00:00	REGULAR	1037161	416028	2021-07- 26 12:00:00	N325AR21800- 00- 00_ELMHURST AV	2.0	13.0	15.0
R218	00- 00- 00	ELMHURST AV	MR	IND	07/26/2021	16:00:00	REGULAR	16777220	13	2021-07- 26 16:00:00	N325AR21800- 00- 00_ELMHURST AV	15740059.0	-416015.0	15324044.0
R218	00- 00- 00	ELMHURST AV	MR	IND	07/26/2021	20:00:00	REGULAR	16777220	13	2021-07- 26 20:00:00	N325AR21800- 00- 00_ELMHURST AV	0.0	0.0	0.0

End