四川大学期中试题 (A)

(2021-2022 学年第1学期)

课程号:	课程名称: _离	散数学	任课教师:		
适用专业年级:	学号:		姓名:		
注:本试题由五本试	个题目构成,所 题单上一律不约				写在
一、选择题(本大题共 题目要求的	5 小题,每题 3 分,封 的,请将其代码填写在				是符合
1) 集合 A 上的所有置	奂都是 ()				
A、自反的二元关系 2)一个命题公式的主析耳 命题变元个数为(11,那么该命题。	公式的
	, 3; C, 11				
3)下列集合 X 和 Y 等势	的是(),注 <i>N</i> =	表示自然数集合,	R表示实数集合。	
$A \times X=R,Y=N;$	$B \setminus X=N,Y=$	$=2^N$;			
C、 $X = N$, Y 为集合 4)下列推理正确的有(<i>ì N</i> 上二元关系; D)。	、X=N,Y 为以 5	为分子的真分数;		
$A \cdot \forall x \forall y p(x, y) \Leftrightarrow$	$\forall x \exists y p(x, y); B, \exists x$	$c\exists y[p(x) \land q(y)]$	$)] \Rightarrow \exists x p(x);$		
$C, \forall x \exists y p(x, y) \Rightarrow$	$\exists x \exists y p(x, y) ; D, \exists x$	$\exists y p(x, y) \Rightarrow \exists x$	$\forall yp(x,y)$.		
5)下列语句真值为1的存	育 ()。			
A、如果1+2=4,则2-	+4=5; B	、集合间的等势	学系是等价关系;		
C、如果雪是白色的,「	则人会长生不老; [D、集合 A 的空	关系具有自反性。		
二、填空题(本大题共	10 空, 每空 3 分, 共	; 30 分)			
1)若集合 $A = \{a, b, c, d\}$	},那么在A上有()个具	有对称性的二元关	系;有()
个具有反对称性的二 有()/ 2)设 R 是 A = {1, 2, 3,	个不同的置换。		反的、对称的和传递 <-A,R> 可转变为 (
3) 在论域 D=	·		_, , , _, ,		
$\forall y \exists x P(x, y) \to \exists x \forall y$	$\nu P(x,y)$ 的真值()。			

4) 集合 M={1,2,3,4,5	$\{\sigma_i\}, \sigma_i$	和τ是M上I	的两个置换	$\sigma=(1$	3	5)	(2	4), $\tau = (1$	4	5)(2	3)
则 $\sigma \circ \tau = ($),	$ au^{-1} \circ \sigma =$	()。							

5)设函数 $f: R \times R \to R \times R$, f 定义为: $f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f^{-1}(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其逆函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。 其迹函数 $f \circ f(\langle x, y \rangle) = \langle x + y, x - y$

三、演算题(本大题共2小题,每小题5分 共10分)

1) 设 A={a, b, c, d}, R 是 A 上的二元关系,且 R={<a, b>, <b, a>, <b, c>, <c, d>}, 求 r(R)、 s(R)和 t(R)。

2) 3、某班有学生 60 人,其中有 38 人会说中文, 16 人会说英文, 21 人会说德文;有 3 个人这三种语言都会说,有 2 个人这三种语言都不会说,问只会说两门语言的学生数是多少?

四、证明题(本大题共 3 小题, 第 1,2 小题 10 分, 第 3 小题 15 分, 共 35 分)

1) 证明 $P \rightarrow (Q \rightarrow S)$ 是 $P \rightarrow (Q \rightarrow R)$, $R \rightarrow (Q \rightarrow S)$ 的有效结论。

3)某小学生兴趣小组负责人正拟定在 30 天内对学生进行 45 课时的兴趣实践,要求每天至少 1 课时.证明: 他无论怎样安排,必然存在相继若干天内正好安排了 14 课时.

五、应用题(本大题共1小题,共10分,注:给出具体过程,无过程以0分计)

设集合 $A = \{1,3,4,5,7\}$,以集合 A 上任意两元素的差被 3 整除为依据,

- 1) 试构建集合 A 上的二元关系 R 。
- 2) 试分析是否可以运用 1)中的 R 对集合 A 进行划分。如果能?可将集合 A 划分为多少个子集,每个子集由哪些元素构成。