

Outline

- Filter
- ❖ Konvolusi
- Proses Konvolusi
- Jenis Konvolusi

Proses Filter

- Cara untuk mengekstraksi bagian tertentu dari suatu himpunan data,
 dengan menghilangkan bagian-bagian data yang tidak diinginkan
- Tujuan: membuat citra menjadi tampak lebih baik, atau tampak lebih jelas untuk dianalisis, diantaranya:
 - Menekan frekuensi tinggi pada citra, memperhalus citra (smoothing)
 - · Menekan frekuensi rendah seperti, memperjelas atau mendeteksi tepi pada citra.

Proses Filter

- Domain Frekuensi, mengubah citra ke domain frekuensi, mengalikannya dengan sebuah fungsi filter frekuensi, kemudian mentransformasikan kembali hasilnya ke ruang lingkup spasial
- Domain Spasial, proses manipulasi kumpulan piksel dari sebuah citra untuk menghasilkan citra baru

Filter Domain Spasial

• Pemfilteran citra pada ruang lingkup spasial adalah melakukan konvolusi citra input f(i,j) dengan fungsi filter h(i,j), dimana fungsi filter yang digunakan harus disimulasikan dalam bentuk kernel diskret tertentu

$$g(i,j) = h(i,j) \odot f(i,j)$$

- Konvolusi merupakan penjumlahan dari perkalian setiap titik pada kernel dengan setiap titik pada fungsi masukan
- Kernel dioperasikan secara bergeser pada fungsi masukan/citra input f(x)
- Kernel menggunakan konsep piksel tetangga (neighbouring pixels), dimana matriks kernel dibuat dengan asumsi bahwa nilai sebuah piksel bisa dipengaruhi oleh piksel-piksel tetangganya

$$g(x,y) = f(x,y) \odot h(x,y) = \sum_{a=-\infty}^{\infty} \sum_{b=-\infty}^{\infty} f(a,b)g(x-a,y-b)$$

Contoh

5	5	6	6
5	4	4	7
0	0	2	2
0	1	1	3

Citra input

1/4	1/4	1/4
1/4	1/4	1/4
1/4	1/4	1/4

Kernel

$$g(2,2) = 5 \times \frac{1}{2} + 5 \times \frac{1}{2} + 6 \times \frac{1}{2} + 5 \times \frac{1}{2} + 4 \times \frac$$

Contoh

$$f(x,y) = \begin{bmatrix} 4 & 4 & 3 & 5 & 4 \\ 6 & 6 & 5 & 5 & 2 \\ 5 & 6 & 6 & 6 & 2 \\ 6 & 7 & 5 & 5 & 3 \\ 3 & 5 & 2 & 4 & 4 \end{bmatrix} \qquad g(x,y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & *4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

catatan: tanda * menunjukkan posisi (0,0) dari kernel

4	4	3	5	4				
6	6	5	5	2		3		
5	6	6	6	2				
6	7	5	5	3				
3	5	2	4	4				

Hasil konvolusi = 3. Nilai ini dihitung dengan cara berikut:

$$(0 \times 4) + (-1 \times 4) + (0 \times 3) + (-1 \times 6) + (4 \times 6) + (-1 \times 5) + (0 \times 5) + (-1 \times 6) + (0 \times 6) = 3$$

4	4	3	5	4				
6	6	5	5	2		3	0	
5	6	6	6	2				
6	7	5	5	3				
3	5	2	4	4				

Hasil konvolusi = 0. Nilai ini dihitung dengan dengan cara berikut:

$$(0 \times 4) + (-1 \times 3) + (0 \times 5) + (-1 \times 6) + (4 \times 5) + (-1 \times 5) + (0 \times 6) + (-1 \times 6) + (0 \times 6) = 0$$

4	4	3	5	4					
6	6	5	5	2		3	0	2	
5	6	6	6	2					
6	7	5	5	3					
3	5	2	4	4					

Hasil konvolusi = 2. Nilai ini dihitung dengan cara berikut:

$$(0 \times 3) + (-1 \times 5) + (0 \times 4) + (-1 \times 5) + (4 \times 5) + (-1 \times 2) + (0 \times 6) + (-1 \times 6) + (0 \times 2) = 2$$

Hasil konvolusi = 0. Nilai ini dihitung dengan cara berikut:

$$(0 \times 6) + (-1 \times 6) + (0 \times 5) + (-1 \times 5) + (4 \times 6) + (-1 \times 6) + (0 \times 6) + (-1 \times 7) + (0 \times 5) = 0$$

Hasil konvolusi = 6. Nilai ini dihitung dengan cara berikut:

$$(0 \times 5) + (-1 \times 5) + (0 \times 2) + (-1 \times 6) + (4 \times 6) + (-1 \times 2) + (0 \times 5) + (-1 \times 5) + (0 \times 3) = 6$$

(ii)	4	4	3	5	4					
	6	6	5	5	2		4	0	8	
	5	6	6	6	2		0	2		
	6	7	5	5	3					
	3	5	2	4	4					

Hasil konvolusi = 2. Nilai ini dihitung dengan cara berikut:

$$(0 \times 6) + (-1 \times 5) + (0 \times 5) + (-1 \times 6) + (4 \times 6) + (-1 \times 6) + (0 \times 7) + (-1 \times 5) + (0 \times 5) = 2$$

Hasil

4	0	8	
0	2	6	
6	0	2	

Permasalahan

4	4	3	5	4	?
6	6	5	5	2	?
5	6	6	6	2	?
6	7	5	5	3	
3	5	2	4	4	

Solusi

• Piksel-piksel pinggir diabaikan, tidak dikonvolusi

Duplikasi elemen citra

5	5	5		
5	5	5	6	6
5 <	-5	4	4	7
	0	0	2	2
	0	1	1	3

 Elemen yang ditandai dengan "?" diasumsikan bernilai 0 atau konstanta yang lain

4	4	3	5	4
6	4	0	8	2
5	0	2	6	2
6	6	0	2	3
3	5	2	4	4

Algoritma Konvolusi

```
For x = 0 to image_width-1
    For y = 0 image_height-1
        z(x,y) = 0
    For k1 = 0 to filter_width-1
        For k2 = 0 to filter_height-1
        z(x,y) = z(x,y) + H(k1,k2)*Img_pixel(x+k1, y+k2)
        next k2
        next k1
    next y
next x
```

Jenis Filter

- Sharpening (penajaman)
- Blurring (pengaburan)
- Emboss
- Edge detection (deteksi tepi)

Sharpening

intensitas piksel pusat harus lebih diperkuat pada arah yang berlawanan terhadap tetangganya

0	-1	0
-1	5	-1
0	-1	0

courtesy http://docs.gimp.org/en/plug-in-convmatrix.html

1	1	1
1	-8	1
1	1	1

courtesy http://www.imagesincontext.com/IICFeatures/ convolution-filter.htm

Blurring

nilai piksel pusat harus dibuat mendekati piksel tetangganya (mengurangi perbedaan)

$$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Emboss

memperkuat edge pada satu arah tertentu, tanpa menghilangkan warna lainnya

-2	-1	0
-1	1	1
0	1	2

courtesy http://docs.gimp.org/en/plug-in-convmatrix.html

1	0	0
0	0	0
0	0	-1

courtesy http://www.imagesincontext.com/IICFeatures/ convolution-filter.htm

