${\bf Administrativia} :$ discussed problem 2 with Ming Feng Wan, no extra material consulted

Problem I

(1)	Let $f \in \mathcal{F}$ and be arbitrary.	
(2)	Let $g \in \mathcal{F}$ and be arbitrary.	
(3)	$\forall n \in \mathbb{Z}^+.(f(n) = 2^{\frac{1}{n}} \text{ AND } g(n) = 2f(n))$	Assumption
(4)	Let $n \in \mathbb{Z}^+$ be arbitrary.	
(5)	$f(n) = 2^{\frac{1}{n}} \text{ AND } g(n) = 2f(n))$	Specialization, (3)-(4)
(6)		Use of Conjunction, (5)
(7)		Definition of log, (6)
(8)		Use of Conjunction,(5)
(9)		Definition of \log , (7) , (6)
(10)	Let $c \in \mathbb{R}^+$ be arbitrary.	
(11)	Let $b \in \mathbb{Z}^+$ be arbitrary.	
(12)	Let $m \in \mathbb{Z}^+$ be such that $m \ge \max\{\frac{1}{c}, b\}$	
(13)		Construction, (12)
(14)	$\boxed{ \qquad \qquad \boxed{m \geq \frac{1}{c}} }$	Use of Conjunction, (13)
(15)	$m > \frac{1-c}{c}$	Well-Ordering of \mathbb{R} , (14)
(16)		Multiplication by $\frac{c}{m} \in \mathbb{R}^+$, (15)
(17)		Addition of $\frac{c}{m} \in \mathbb{R}^+$, (16)
(18)		Distributive Law of \mathbb{R} , (17)
(19)		Specialisation, (7)
(20)		Specialisation, (9)
(21)		Substitution, (18), (19), (20)
(22)	$\boxed{ \qquad \qquad m \geq b }$	Use of Conjunction, (13)
(23)	$ m \ge b \text{ AND } \log_2 f(m) < c \cdot \log_2 g(m)$	Proof of Conjunction, (21), (22)
(24)		Proof by Construction, (12)-(23)
(25)		Generalisation, (11), (24)
	$\mid \cdot \mid \cdot \mid \cdot \mid (n \ge b \text{ AND } \log_2 f(n) < c \cdot \log_2 g(n))$	

$$(26) \qquad \forall c \in \mathbb{R}^+. \forall b \in \mathbb{Z}^+. \exists n \in \mathbb{Z}^+. \qquad \text{Generalisation, } (10), (25)$$

$$(n \geq b \text{ AND } \log_2 f(n) < c \cdot \log_2 g(n))$$

$$\text{NOT } [\exists c \in \mathbb{R}^+. \exists b \in \mathbb{Z}^+. \forall n \in \mathbb{Z}^+. \qquad \text{Tautology, } (26)$$

$$(n \geq b \text{ IMPLIES } \log_2 f(n) \geq c \cdot \log_2 g(n))]$$

$$(28) \qquad [\log_2 f \notin \Omega(\log_2 g) \qquad \text{Definition of } \Omega, (27)$$

$$(29) \qquad [\forall n \in \mathbb{Z}^+. (f(n) = 2^{\frac{1}{n}} \text{ AND } g(n) = 2f(n))] \qquad \text{Proof of Implication, } (3), (28)$$

$$\text{IMPLIES } \log_2 f \notin \Omega(\log_2 g)$$

$$(30) \qquad \forall g \in \mathcal{F}. ([\forall n \in \mathbb{Z}^+. (f(n) = 2^{\frac{1}{n}} \text{ AND } g(n) = 2f(n))] \qquad \text{Generalisation, } (2)$$

$$\text{IMPLIES } \log_2 f \notin \Omega(\log_2 g))$$

$$(31) \qquad \forall f \in \mathcal{F}. \forall g \in \mathcal{F}. \qquad \text{Generalisation, } (1)$$

$$([\forall n \in \mathbb{Z}^+. (f(n) = 2^{\frac{1}{n}} \text{ AND } g(n) = 2f(n))]$$

$$\text{IMPLIES } \log_2 f \notin \Omega(\log_2 g))$$

Problem II

(1) Let
$$f \in \mathcal{F}$$
 and be arbitrary.

(2) Let $g \in \mathcal{F}$ and be arbitrary.

$$f \in \Omega(g) \text{ AND } \forall n \in Z^+.(f(n) \geq 2 \text{ AND } g(n) \geq 1) \text{ Assumption}$$
(4) Use of Conjunction, (3)

(5)
$$\exists c \in \mathbb{R}^+.\exists b \in \mathbb{Z}^+.\forall n \in \mathbb{Z}^+. \text{ Definition of } \Omega, (4)$$
(6)
$$(n \geq b \text{ IMPLIES } f(n) \geq c \cdot g(n))$$
Let $s \in \mathbb{R}^+$ and $z \in \mathbb{Z}^+$ be such that $\forall n \in \mathbb{Z}^+$.
($n \geq z \text{ IMPLIES } f(n) \geq s \cdot g(n)$)

Let $m \in \mathbb{Z}^+$ be such that $m \geq z$.

(8)
$$\forall n \in \mathbb{Z}^+ (n \geq z \text{ IMPLIES } f(n) \geq s \cdot g(n)) \text{ Construction, (6)}$$
(9)
$$m \geq z \text{ IMPLIES } f(m) \geq s \cdot g(m) \text{ Specialisation, (7), (8)}$$
(10)
$$m \geq z \text{ Construction, (7)}$$
(11)
$$f(m) \geq s \cdot g(m) \text{ Modus Ponens, (9), (10)}$$
(12)
$$\log_2 f(m) \geq \log_2 s + \log_2 g(m) \text{ Increasing log, (11)}$$
(13)
$$\forall n \in \mathbb{Z}^+.(f(n) \geq 2 \text{ AND } g(n) \geq 1) \text{ Use of Conjunction, (3)}$$
(14)
$$f(m) \geq 2 \text{ AND } g(m) \geq 1 \text{ Specialisation, (7), (13)}$$
(15)
$$f(m) \geq 2 \text{ AND } g(m) \geq 1 \text{ Use of Conjunction, (14)}$$

(16)		Increasing log, (15)
(17)		Use of Conjunction, (14)
(18)	$\log_2 g(m) \ge 0$	Increasing \log , (15)
(19)	$ \begin{array}{ c c c } \hline m \geq z \text{ IMPLIES} \\ \log_2 f(m) \geq \log_2 s + \log_2 g(m) \\ \forall n \in \mathbb{Z}^+. (n \geq z \text{ IMPLIES} \end{array} $	Proof of Implication, (10), (12)
(20)	$\log_2 f(n) \ge \log_2 s + \log_2 g(n)$	Generalisation, (6), (7), (19)
(21)	$\forall c \in \mathbb{R}^+. \forall b \in \mathbb{Z}^+. \exists n \in \mathbb{Z}^+. $ $(n \ge b \text{ AND } \log_2 f(n) < c \log_2 g(n))$	Assumption
(22)	$\forall b \in \mathbb{Z}^+. \forall c \in \mathbb{R}^+. \exists n \in \mathbb{Z}^+. \\ (n \ge b \text{ AND } \log_2 f(n) < c \log_2 g(n))$	Tautology, (21)
(23)	$\forall n \in \mathbb{Z}^+. \log_2 g(n) = 0$	Assumption
(24)		Logical Substitution, (21) , (23)
(25)	$\log_2 f(n) < 0$	Use of Conjunction,(24)
(26)		Generalisation, (16)
(27)	$ \forall \log x \in \mathbb{R}.x \in \mathbb{R}^+$	Nonnegativity of log (informal)
(28)		Proof by Contradiction,(23)-(27)
(29)	$\exists r' \in \mathbb{R}^+.r' \cdot \log_2 g(n) > \log_2 s$ Let r be a number such that	Archimidean Property of $\mathbb R$
(30)	Let r be a number such that $r \cdot \log_2 g(n) > \log_2 s$	Instantiation, (29)
(31)	$r > \frac{\log_2 s}{\log_2 g(n)}$	Algebra of \mathbb{R} , (27)
(32)	$\exists n \in \mathbb{Z}^+. \\ (n \ge z \text{ AND } \log_2 f(n) < (r+1)\log_2 g(n)) \\ \exists n \in \mathbb{Z}^+.$	Specialization, (21)
(33)	$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	Definition of r , (32), (31)
(34)	$\exists c \in \mathbb{R}^+ . \exists b \in \mathbb{Z}^+ . \forall n \in \mathbb{Z}^+ . \\ (n \ge b \text{ IMPLIES } \log_2 f(n) \ge c \log_2 g(n))$	Proof by Contradiction,(21)-(33)
(35)	$\left \ \right \ \left \ \log_2 f \in \Omega(\log_2 g) \right $	Definition of Ω , (34)
(36)	$\left \left(f \in \Omega(g) \text{ AND } \forall n \in Z^+. (f(n) \ge 2 \text{ AND } g(n) \ge 1) \right) \right $	Proof of Implication, (3), (35)
	$\Big \text{IMPLIES } \log_2 f \in \Omega(\log_2 g)$	
(37)	$\forall f \in F. \forall g \in \mathcal{F}.$	Generalisation, (1), (2)
	$(f \in \Omega(g) \text{ AND } \forall n \in Z^+.(f(n) \ge 2 \text{ AND } g(n) \ge 1))$	

IMPLIES $\log_2 f \in \Omega(\log_2 g)$