# HILL CIPHER

by- Mridul Narang(039)
Dinesh Thawani(199)

#### **CRYTOGRAPHY**

• a cipher (or cypher) is an algorithm for performing encryption or decryption

• Cryptography is the study of Secret (crypto-)-Writing (-graphy). It is the science or art of

encompassing the principles and methods of transforming an intelligible message into one that is intelligible and then transforming the message back to its original for

## ENCRYPTION TECHNIQUE

There are basically two types of encryption techniques

- Substitution: In this technique letters of plaintext are replaced by or by numbers and symbols.
- Transposition: Transposition (or permutation) does not alter any of the bits in the plaintext, but instant moves the position around within it.

# HILL CIPHERS

- The core of Hill-cipher is matrix manipulations. It is a multiletter cipher, developed by the mathematician Lester Hill in 1929.
- Uses matrices to encrypt and decrypt
- Uses modular arithmetic (Mod 26)



### **HISTORY**

• Invented by Lester S. Hill in 1929.

• The Hill cipher is a polygraphic substitution cipher based on linear algebra, as it can work on digraphs, trigraphs (3 letter blocks) or theoretically any sized blocks.

• To counter charges that his system was too complicated for day to day use, Hill constructed a cipher machine for his system using a series of geared wheels and chains. However, the machine never really sold.

#### **ENCRYPTION**

Assign each letter in alphabet a number between  $^0$  and  $^{25}$  a=0,b=1,c=2....., z=25

Change message into <sup>2 x 1</sup> letter vectors

Convert product vectors to letters

Change each vector into  $^2$  x  $^1$  numeric vectors Multiply each numeric vector by encryption matrix

#### **DECRYPTION**

- Change message into  $^{2 \times 1}$  letter vectors
- Change each vector into  $^2 \times ^1$  numeric vectors
- Multiply each numeric vector by decryption matrix
- Convert new vectors to letters

# THANK YOU REFERENCES

- Wikipedia
  - https://en.wikipedia.org/wiki/Hill\_cipher