Generative Networks

Thomas Ricatte 2018-02-15

Outline

Motivation

Variational Autoencoders

Generative Adversarial Nets

Wrapping up

Motivation

Generative Networks

- A <u>discriminative</u> model is a way to model the conditional probability of a target *Y* (low-dimension) given some covariates *X* (high-dimension).
- Conversely, a <u>generative</u> model tries to model the conditional probability of X given Y (or even the joint probability X × Y

Figure 1: Sampling from P(X|Y) on MNIST using a ConditionalGan (Mirza and Osindero 2014)

Inverse convolutions

- Our objective is to expand the signal from a low-dimension representation to an high-dimension signal space.
- In feed-forward networks, the objective was to reduce the signal dimension using for instance conv layers

• To do the opposite, we introduce the <u>inverse convolutional</u> operator

Inverse convolutions (1D case)

1	4	-1	0	2
Conv	, ,	2	1	
6	3	7 -	2 2	2
Deconv	, -	1 :	3	

$$\begin{pmatrix}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 1
\end{pmatrix}$$

$$\begin{bmatrix}
21 \\
-2 \\
-6
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\
6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 3 & 0 & 0 & 0 \\
0 & 1 & 3 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 3
\end{bmatrix}$$

Inverse convolutions

- Applying convolution + inverse convolution will keep the signal "roughly" unchanged (intuition: mass of K · K^T will concentrate on the diagonal)
- We can define <u>stride</u>, <u>padding</u> and <u>dilatation</u> similarly to regular convolution
- Since it's an upscaling operation, it can creates artifacts on the resulting image especially when <u>stride</u> > 1

4	1	2	4	2	4	2	4	4
'		_	l I	~	l I	~	l I	ı

Figure 2: Result of (1, 1, 1, 1) (stride 2)

In some cases, it's better to combine this with interpolation.

Variational Autoencoders

Autoencoders

 Main idea: force a self-supervised network to compress the original representation in a low-dimensional latent space.

- The goal is to learn an encoder f and a decoder g such that g ∘ f is close to identity.
- If f and g are linear, the optimal solution is given by a PCA
- Otherwise, we can achieve better performance with deep networks

Deep Autoencoders

X (original samples)

$$g \circ f(X)$$
 (CNN, $d = 8$)

$$g \circ f(X)$$
 (PCA, $d = 8$)

How to sample from autoencoders?

- Simple answer: sample z in the latent space and feed it into the decoder
- However it is very likely that the encoded inputs lies in a low-dimensional manifold inside the latent space

- Let us constraint the latent variable z to follow a fixed distribution from which we can sample easily
- Let's rewrite everything with probabilities!

$$X \longrightarrow \boxed{p_{\theta}(z|X)} \longrightarrow Z \longrightarrow \boxed{p_{\theta}(x|z)} \longrightarrow \chi'$$

• $p_{\theta}(z|x)$ is untractable since we do not know the distribution of the true data so we approximate it by the variational distribution $q_{\phi}(z|x)$ that should minimize

$$\mathbb{D}_{KI}(q_{\phi}(z|x), p_{\theta}(z|x))$$
.

VAE in a nutshell (cted)

Lemma

For any variational distribution q_{ϕ} , the (true) marginal log-likelihood $log(p_{\theta}(x))$ can be written as

$$\mathbb{D}_{\mathit{KL}}(q_{\phi}(z|x), p_{\theta}(z|x)) + \mathcal{L}_{\theta,\phi}$$
 .

Note that:

- $\mathcal{L}_{\theta,\phi}$ is called the **variational lower bound** since $log(p_{\theta}(x)) > \mathcal{L}_{\theta,\phi}$
- For a fixed θ , minimizing the KL-divergence wrt ϕ is similar to **maximize** $\mathcal{L}_{\theta,\phi}$.
- For a fixed ϕ , maximizing $\mathcal{L}_{\theta,\phi}$ wrt θ , maximizes the marginal log-likelihood of the data.

VAE in a nutshell

• Let's summarize ! The loss function to minimize is $-\mathcal{L}_{\theta,\phi}$ and can be rewritten as

$$\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[-log(p_{\theta}(x|z)) \right] + \mathbb{D}_{\mathit{KL}}(q_{\phi}(z|x)|p_{\theta}(z)) \ .$$

- The first term is called the reconstruction loss.
- The second term can be seen as a <u>regularizer</u> toward the prior distribution of the latent variable p_{θ}

One last problem! How to backprop?

 Problem: Impossible to backpropagate through a stochastic node like z

• **Solution:** Let's write $z = \mu_z + \sigma_z \odot \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$ to have a differentiable path end-to-end.

Generative Adversarial Nets

real images

New idea by Goodfellow et al. 2014: let us write the problem as a minimax game between a generator and a discriminator

GANs (cted)

- Let us consider a generator G parametrized by θ and a discriminator D parametrized by ϕ and
 - $(x^i)_{i=1...n}$ a batch of *n* training images
 - (zⁱ)_{i=1...n} a batch of n noise samples sampled from a fixed noise prior.
- The goal of the discriminator is to distinguish between G(z) and x so minimize the negative log-likelihood

$$NLLH(x, z, \theta) = -\left[\sum_{i=1}^{n} log(D_{\theta}(x^{i})) + log(1 - D_{\theta}(G_{\phi}(z^{i})))\right].$$

The goal of the generator is to minimize the log-likelihood

$$LLH(x,\phi) = \sum_{i=1}^{n} log(1 - D_{\theta}(G_{\phi}(z^{i})))$$

GANs:: Pathological behaviors

- Oscillation / bad convergence
 Due to minimax game
- Mode collapse
 Happens when the training data is multi-modal (which is usually the case in practice): can be a good strategy for the generator to target the easiest mode of the target distribution (pullover in the example below)

GANs :: Alchemy ?

Lots of "hacks" to stabilize the training

- 1. Normalize the inputs
- 2. min log(1 D) vs max log(D)
- 3. Choose the noise prior wisely
- 4. BatchNorm on full real / fake images
- Avoid Sparse Gradients (ReLu -> LeakyReLu)
- 6. Use soft / noisy labels
- 7. Choose the optimizers wisely (e.g. Adam for G, SGD for D)
- 8. ...

(from https://github.com/soumith/ganhacks)

GANs :: (A bit of) theory

- Let us denote
 - μ the density of the true data
 - $\mu_G = G(\mu_{\text{noise}})$ the density of the data generated by a generator G
- Our main goal is to find ${\it G}$ that minimizes the distance between μ and $\mu_{\it G}$
- Intuition: the bigger gap between μ and μ_G , the better the optimal discriminator.

Can we formalize this intuition?

GANs :: (A bit of) Theory

Theorem

The optimal discriminator (without regularization) D_G^* is

$$X \to \frac{\mu(X)}{\mu(X) + \mu_G(X)}$$
.

The corresponding loss at this point is

$$\mathcal{L}_{G}(\textit{D}_{G}^{*}) = 2 \mathbb{D}_{\textit{JS}}(\mu, \mu_{G}) - \textit{log}(4) \ ,$$

where \mathbb{D}_{JS} is the Jensen-Shannon divergence (symmetric variant of the KL-divergence).

Training the GAN \equiv finding G that minimizes $\mathbb{D}_{JS}(\mu, \mu_G)$

Wasserstein GANs

- Arjovsky et al. 2017 claims that the Jensen-Shannon divergence does not allow to take into account the metric structure of the space.
- They proposes to go with the Wasserstein distance \mathbb{D}_{W_1} .

$$\mathbb{D}_{W_1}(\mu,\nu) = \inf_{\gamma \in \Gamma(\mu,\nu)} \int d(x,y) d\gamma(x,y)$$

"earth moving distance"

Wasserstein GANs (cted)

Advantages of \mathbb{D}_{W_1} over \mathbb{D}_{JS} ?

$$\mathbb{D}_{W_1}({\color{red}\mu},\nu)=2>\mathbb{D}_{W_1}({\color{red}\mu},\gamma)=1.5$$

$$\mathbb{D}_{JS}({\color{blue}\mu},\nu)=0.20<\mathbb{D}_{JS}({\color{blue}\mu},\gamma)=0.25$$

Problem: How to compute $\operatorname{argmin}_{G} \mathbb{D}_{W_{1}}(\mu, \mu_{G})$?

Wasserstein GANs (cted)

Using Kantorovich-Rubinstein duality theorem,

$$\mathbb{D}_{W_1}(\mu,\mu_G) = \max_{\|D\|_I \leqslant 1} \left[\mathbb{E}_{X \sim \mu} \left[D(X) \right] - \mathbb{E}_{X \sim \mu_G} \left[D(X) \right] \right] \ ,$$

where $||D||_L$ is the Lipschitz semi-norm equal to

$$\max_{x,y} \frac{\|D(x) - D(y)\|}{\|x - y\|}$$
.

- We get a new loss for the discriminator!
- · Main issue is to deal with the semi-norm constraint!
 - · Weight clipping (original idea)
 - Smooth penalty (Gulrajani et al. 2017)

Conditional GANs

Cycle GANs

Image 2 Image

Wrapping up

VAE vs GANs

	VAE	GAN	
Modules	Encoder + Decoder	Generator + Discriminator	
Training?	Reconstruction Loss	Minimax game	
	+ Latent Loss		
Stability ?	Closed-form	Need to reach	
		a <u>Nash</u> equilibrium	
Quality ?	Good but	High quality	
	blurry images	sharp images	

References

References

Goodfellow, lan et al. (2014). "Generative adversarial nets". In:

Advances in neural information processing systems, pp. 2672–2680

Gulrajani, Ishaan et al. (2017). "Improved training of wasserstein gans". In: Advances in neural information processing systems, pp. 5767–5777.

Mirza, Mehdi and Simon Osindero (2014). "Conditional Generative Adversarial Nets". In: <u>CoRR</u> abs/1411.1784. arXiv: 1411.1784. URL: http://arxiv.org/abs/1411.1784.