TMT4110 KJEMI

LØSNINGSFORSLAG TIL ØVING NR. 9, VÅR 2015

OPPGAVE 1

a)
$$2 \text{ Hg (g)} + O_2 \text{ (g)} = 2 \text{ HgO (s)}$$

$$\Delta H^{\circ}_{\text{f}} \quad 61 \quad 0 \quad -91 \quad \text{kJ mol}^{-1}$$

$$\Delta S^{\circ} \quad 175 \quad 205 \quad 70 \quad \text{J K}^{-1} \text{ mol}^{-1}$$

$$\Delta G^{\circ}_{\text{f}} \quad 32 \quad 0 \quad -59 \quad \text{kJ mol}^{-1}$$

 $\Delta H^{\circ}_{r} = 2 \text{ mol} \times (-91 \text{ kJ mol}^{-1}) - 2 \text{ mol} \times 61 \text{ kJ mol}^{-1} = -304 \text{ kJ}$

$$\Delta S_{\rm r}^{\circ} = 2 \text{ mol} \times 70 \text{ J K}^{-1} \text{ mol}^{-1} - 2 \text{ mol} \times 175 \text{ J K}^{-1} \text{ mol}^{-1} - 1 \text{ mol} \times 205 \text{ J K}^{-1} \text{ mol}^{-1} = -415 \text{ J K}^{-1}$$

 $\Delta G_{\rm r}^{\circ} = 2 \text{ mol} \times (-59 \text{ kJ mol}^{-1}) - 2 \text{ mol} \times 32 \text{ kJ mol}^{-1} = -182 \text{ kJ}$

b) $\ln K_{298} = -\frac{\Delta G_{\rm r}^{\circ}}{RT} = -\frac{-182000}{8,314 \times 298} = 73,5$

$$\ln K_{600} = -\frac{\Delta G_{\rm r}^{\circ}}{RT} = -\frac{1}{R} \left(\frac{\Delta H_{\rm r}^{\circ}}{T} - \Delta S_{\rm r}^{\circ} \right) = -\frac{1}{8,314} \left(\frac{-304000}{600} + 415 \right) = 11,03$$

$$K_{600} = 61425$$

 $K_{298} = 8 \times 10^{31}$

c)
$$\ln K = 0 \implies \Delta G^{\circ}_{r} = 0 \implies \Delta G^{\circ}_{r} = \Delta H^{\circ}_{r} - T \Delta S^{\circ}_{r}$$

$$T = \frac{\Delta H^{\circ}_{r}}{\Delta S^{\circ}_{r}} = \frac{304000 J}{415 J/K} = 732 \text{ K}$$

OPPGAVE 2

a)
$$C_3H_8(g) \longrightarrow C_3H_6(g) + H_2(g)$$

 $\Delta H^o/kJ$ -105 20 0
 $\Delta G^o/kJ$ -24 62 0
 S^o/J 270 267 131

i)
$$\Delta H^o = 20 + 0 + 105 = 125 \text{ kJ/mol}$$

 $\Delta S^o = 267 + 131 - 270 = 128 \text{ J/mol}$
 $\Delta G^o = 62 + 0 + 24 = 86 \text{ kJ/mol}$

- ii) $\Delta H^o > 0 \implies$ endoterm rx. LV forskyves mot høyre v/økende T \implies K blir større (dannes flere produkter
- b) $\Delta G^{o} = -RT \ln K$ $\ln K = -\frac{\Delta G^{o}}{RT} = -\frac{86 \cdot 10^{3} J / mol}{8,31451 J / Kmol \cdot 298 K} = -34,7$ $K = 8,43 \cdot 10^{-16}$

c)
$$\Delta H^{\circ} - T\Delta S^{\circ} = \Delta G^{\circ} = -RT \ln K$$

 $\ln K = -\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT} = -\frac{125 \cdot 10^{3} J / mol - 1073 K \cdot 128 J / K}{3,31451 J / K mol \cdot 1073 K} = 1,38$
 $K = 3.99$

d) Fra ideell gasslov: $P_{C_3H_8,1073K} = \frac{T_{1973K} \cdot P_{298K}}{T_{298K}} = \frac{1073K \cdot 3,00atm}{298K} = 10,8atm$ Dette er da ved 800°C, men før reaksjonen starter.

$$K_{P} = \frac{P_{C_{3}H_{6}} \cdot P_{H_{2}}}{P_{C_{3}H_{8}}} = \frac{x^{2}}{10.8 - x} = 3,99$$

$$= P_{C_{1}H_{6}} = P_{H_{2}} = \underbrace{4.87atm}_{P_{C_{3}H_{8}}} = 10.8 - 4.87 = \underbrace{5.93atm}_{P_{C_{3}H_{8}}}$$

Alternativt ved å bruke $K_p = 1.5$:

$$K_P = \frac{P_{C_1 H_6} \cdot P_{H_2}}{P_{C_1 H_8}} = \frac{x^2}{10.8 - x} = 1.5$$

=>
$$P_{C_1H_8} = P_{H_2} = 3.34 atm$$

 $P_{C_1H_8} = 10.8 - 3.34 = 7.46 atm$

e) For å få best mulig utbytte (mest mulig produkter) bør reaksjonen kjøres ved lavt trykk og høy temperatur, i henhold til Le Chateliers prinsipp.

OPPGAVE 3

a)
$$3 \text{ Mg (s)} + \text{N}_2(\text{g}) = \text{Mg}_3\text{N}_2(\text{s}) \quad [\Delta G^{\circ}_r = \text{-} 401 \text{ J K}^{-1}]$$

 $\text{Mg}_3\text{N}_2(\text{s}) + 6 \text{ H}_2\text{O} = 3 \text{ Mg}(\text{OH})_2 + 2 \text{ NH}_3(\text{g})$

b)
$$N_2(g) + 3 H_2(g) = 2 NH_3$$

 $\Delta H^{\circ}_{r} = -92 kJ$ $\Delta G^{\circ}_{r} = -32 kJ$

Likevekten forskyves mot venstre med økende temp. (Eksoterm reaksjon.)

Likevekten forskyves mot høyre med økende trykk. (Mindre antall gassmolekyler.)

OPPGAVE 4

a) (i) C (s) + O₂ (g) \rightarrow CO₂ (g) 1 mol: ΔH°_{r} = -394 kJ \Rightarrow **Det utvikles 394 kJ varme**

(ii) Spesifikk varmekapasitet for CO_2 (g) = 37 J mol⁻¹ K⁻¹

Kalorimeterligningen: $q = C_P \times \Delta T$

$$\Delta T = \frac{q}{C_P} = \frac{394000 \text{ J}}{37 \text{ J K}^{-1}} = 10650 \text{ K}$$

$$T = 10650 + 298 \approx 11000 \text{ K}$$

b)
$$HCl (g) = HCl (aq)$$
 ΔH°_{f} -92 -167 kJ mol⁻¹

$$\Delta H^{\circ}_{r} = -167 + 92 = -75 \text{ kJ}$$

$$\Delta T = \frac{q}{C_{p}} = \frac{75000 \text{ J}}{75 \frac{\text{J}}{\text{K mol}} \times (1 + 55, 5) \text{ mol}} = 18 \text{ K}$$

$$T = 273 + 18 = 291 \text{ K}$$

OPPGAVE 5

a) (i) Na⁺ (aq) + e⁻
$$\rightarrow$$
 Na (s): $E^{\circ} = -2.71 \text{ V}, n = 1$
(ii) Ca²⁺ (aq) + 2 e⁻ \rightarrow Ca (s): $E^{\circ} = -2.87 \text{ V}, n = 2$
(iii) Cu²⁺ (aq) + e⁻ \rightarrow Cu⁺ (aq): $E^{\circ} = 0.16 \text{ V}, n = 1$
(iv) 2 H⁺ (aq) + 2 e⁻ \rightarrow H₂ (g): $E^{\circ} = 0.0 \text{ V}, n = 1$
(pr. def. Hydrogenelektroden er referanseelektrode.)
(v) O₂ (g) + 2 H₂O (l) + 4 e⁻ \rightarrow 4 OH⁻ (aq): $E^{\circ} = 0.40 \text{ V}, n = 4$
(Her er det flere forskjellige mulige formuleringer.)
(vi) MnO₂ (s) + 4 H⁺ (aq) + 2e⁻ \rightarrow Mn²⁺ (aq) + 2 H₂O: $E^{\circ} = 1.23 \text{ V}, n = 2$

b) (i) Na⁺ (aq) + e⁻
$$\rightarrow$$
 Na (s): E° = -2,71 V, n = 1 ×(-2) \Rightarrow 2 Na (s) \rightarrow 2 Na⁺ (aq) + 2e⁻: E° = 2,71 V 2 H⁺ (aq) + 2 e⁻ \rightarrow H₂ (g): E° = 0,0 V, n = 1 ×1 \Rightarrow 2 H⁺ (aq) + 2 e⁻ \rightarrow H₂ (g): E° = 0,0 V Totalreaksjon: 2 Na (s) + 2 H⁺ (aq) \rightarrow 2 Na⁺ (aq) + H₂ (g) E° = 2,71 V, n = 2

(ii)
$$\text{Cu}^{2^{+}}$$
 (aq) + e⁻ \rightarrow Cu^{+} (aq): $E^{\circ} = 0.16 \text{ V}, n = 1$ \times (-2) MnO_{2} (s) + 4 H⁺ (aq) + 2e⁻ \rightarrow Mn²⁺ (aq) + 2 H₂O $E^{\circ} = 1.23 \text{ V}, n = 2$ \times 1 \times 1 \times 1 \times 1 \times 2 \times 1 \times 2 \times 2 \times 1 \times 1 \times 2 \times 2 \times 2 \times 3 \times 4 \times 2 \times 3 \times 4 \times 4 \times 6 \times 4 \times 6 \times 6 \times 9 \times 9 \times 1 \times 2 \times 1 \times 1 \times 1 \times 2 \times 2 \times 1 \times 1 \times 2 \times 2 \times 1 \times 1 \times 2 \times 3 \times 4 \times 1 \times 2 \times 1 \times 2 \times 3 \times 4 \times 4 \times 4 \times 2 \times 4 \times 4 \times 4 \times 6 \times 5 \times 6 \times 1 \times 1

Merk: Når man snur en halvreaksjon, endres fortegnet, men man endrer ikke potensialet ved å multiplisere reaksjonsligningen med en faktor. Potensialet er nemlig ikke en molar størrelse, slik som f. eks. entalpi, entropi eller energi.

Spørsmål: Hvordan skal man vite hvilken reaksjon som skal snus? Svar: Dersom cellereaksjonen går frivillig, skal cellepotensialet være positivt. Blir derimot *E* negativ, må man snu totalreaksjonen og fortegnet.

OPPGAVE 6

a) Sitronen fungerer som elektrolytt. Det er høyt innhold av sitronsyre som gjør sitroner til en godt egnet frukt-elektrolytt. Syrer av forskjellig slag finnes i de fleste varer i frukt og grønt-disken, og det finnes mange alternativer som kan fungere som elektrolytt på samme måte.

b) Sinkplate = anode:
$$Zn = Zn^{2+} + 2e^{-}$$
 $(E^{\circ}_{a} = 0.76 \text{ V})$
Kobberplate = katode: $2H^{+} + 2e^{-} = H_{2}$ $(E^{\circ}_{k} = 0 \text{ V})$

Ut fra spenningsrekken skulle en kanskje tro at følgende halvreaksjon kunne være aktuell som katodereaksjon:

$$Cu^{2+} + 2e^{-} = Cu(s)$$
 (E°_k = 0,34 V)

Dette vil derimot ikke skje, siden det ikke er noen kobberioner i sitronen som kan forbrukes i reaksjonen. Hydrogenutvikling vil derfor være den mest aktuelle katodereaksjonen, men kobberplaten kalles fortsatt katode siden det er der reaksjonen skjer, og den er også nødvendig for å lage elektrisk kontakt med sitronen.

c) Total
reaksjon:
$$Zn + 2H^+ = Zn^{2+} + H_2$$

$$E_r^{\circ} = E_a^{\circ} + E_k^{\circ} = 0.76 \text{ V}$$

OPPGAVE 7

$$Ni(s)|Ni^{2+}(1,0 M)||Sn^{2+}(1,0\cdot 10^{-4} M)|Sn(s)|$$

Halvcellereaksjonene er:

OKS
$$Ni (s) = Ni^{2+} (aq) + 2e^{-}$$
 $E^{\circ} = 0.24 \text{ V}$
RED $Sn^{2+} (aq) + 2e^{-} = Sn (s)$ $E^{\circ} = -0.14 \text{ V}$
 $Sn^{2+} (aq) + Ni (s) = Sn (s) + Ni^{2+}$ $E_{celle}^{\circ} = 0.10 \text{ V}$

Cellespenningen E_{celle} følger av Nernsts lov:

$$E_{\text{celle}} = E_{\text{celle}}^{\text{o}} - \frac{0,059}{2} \log \left[\frac{|\text{Ni}^{2+}|}{|\text{Sn}^{2+}|} \right] = 0,10 - \frac{0,059}{2} \log \frac{1,0}{1,0 \times 10^{-4}}$$

$$\Rightarrow E_{\text{celle}} = 0,10 - 0,12 = \underline{-0,02 \text{ V}}$$

Da $E_{\text{celle}} < 0$ vil cellereaksjonen ved de angitte betingelser være:

$$\xrightarrow{} \text{Ni}^{2+} (aq) + \text{Sn} (s) = \text{Ni} (s) + \text{Sn}^{2+}$$
(1)

Det skal her fremheves at når vi for enkelthet skriver

$$\begin{array}{c} A(s)|A^+ \parallel B^+ \mid B(s) \\ \uparrow & \uparrow \\ \text{Anode} & \text{Katode} \end{array}$$

så refererer alltid denne skrivemåte seg til hva som er anode og katode under <u>standardbetingelser</u>. Den refererer seg <u>ikke</u> til hva som er anode og katode under <u>ikke-standardbetingelser</u>. Fra (1) følger: <u>Sn-elektroden er anoden</u>.