

Permutations and Combinations

Model 1: Permutation Basic

- 1) 100
- 2) 120
- 3) 50
- 4) 5
- 5) None of these

2. How many different words can be formed using the letters of the word 'BANKER'?

- 1) 120
- 2) 6
- 3) 720
- 4) 12
- 5) None of these

3. In how many ways can the letters of the word COMPUTER be arranged?

- 1) 6!
- 2) 7!
- 3) 8!
- 4) 5040
- 5) None of these

4. How many different 4 digit numbers can be formed using the digits 1, 2,3,6,7 and 9?

- 1) 120
- 2) 24
- 3) 720
- 4) 360
- 5) None of these

Model 2: Permutation Advanced

5. How many different words can be formed using the letters of the words

- (i) MIRROR
- (ii) BANANA
- (iii) SUCCESSFUL

1) 120, 60, 151200

2) 6!, 6!, 10!

3) 4!, 3!, 6!

4) 120, 120, 360

5) None of these

6. A set of 12 books has 3 identical Quant books, 3 identical Reasoning books, 4 identical English books and 2 different books on General Awareness. In how many different ways can these 12 books be arranged in a book-shelf?

1) 12!

- 2) 12!/(3!x3!x4!)
- 3) 12!/(3!x3!x4!x2!)

4) 126

5) None of these

www.talentsprint.com 1

7. In how many ways can a set of chess pieces consisting of a king, a queen, two identical rooks, two identical knights and two identical bishops be placed on the first row of a chessboard?

- 1) 8!
- $2)8^{8}$
- 3) 5040
- 4) 4280
- 5) None of these

8. A father has 2 apples and 3 pears. Each weekday (Monday through Friday) he gives one of the fruits to his daughter. In how many ways can this be done?

- 1) 120
- 2) 10
- 3) 24
- 4) 12
- 5) None of these

Model 3: Permutation Conditional

9. How many different words can be formed using the letters of the word 'EDUCATION' such that

- (i) the word always starts with the letter 'D'?
 - 1) 9!
- 2) 8!
- 3) 2 x 8!
- 4) 8!/2
- 5) None of these

- (ii) the word always ends with a vowel?
 - 1) 5! x 8!
- 2) 8!
- 3) 5 x 8!
- 4) 9!
- 5) None of these

(iii) the word always begins with the letter 'A' and ends with a consonant?

- 1) 7!
- 2) 7! x 4!
- 3) 4 x 7!
- 4) 8! x 4
- 5) None of these

(iv) all the consonants are always together

- 1) 6! x 4
- 2) 6!
- 3) 2 x 8!
- 4) 6! x 4!
- 5) None of these

(v) the letters D, A, O and N are always together

- 1) 6! x 4
- 2) 6!
- 3) 2 x 8!
- 4) 6! x 4!
- 5) None of these

(vi) No two consonants are together

- 1) 6! x ⁶P₄
- 2) 6!
- 3) 5! x ⁶P₄
- 4) 6! x 2!
- 5) None of these

(vii) the letters A and T are never together

- 1) 7! x ⁸P₄
- 2) 7!
- 3) 2 x 7!
- 4) 7! x ⁸P₂
- 5) None of these

10.	In how	many	ways	can	the	letters	of	the	word	PLUMBER	such	that	all	the	vowels	are
	always t	ogethe	r?													

- 1) 6! x 2!
- 2) 7!
- 3) 5! x 2!
- 4) 6!
- 5) None of these

Model 4: Permutation with and Without Repetitions

11. How many 5 digit numbers can be formed with the digits 2, 4, 5, 8 and 9 when

- (i) Repetition is not allowed
 - 1) 5
- 2) 5!
- $3)5^{5}$
- 4) 25
- 5) None of these

- (ii) Repetition is allowed
 - 1) 5
- 2) 5!
- 3) 5^5
- 4) 25
- 5) None of these

12. How many 4 digit numbers can be formed with the digits 0, 1, 3 and 6?

- 1)6
- 2) 4!
- 3) 9
- 4) 18
- 5) None of these

13. How many 4 digit numbers can be formed using the digits 5, 6, 8 and 9 such that

- (i) The number is greater than 8000
 - 1) 6
- 2) 4!
- 3) 12
- 4) 24
- 5) None of these

- (ii) The number is less than 6000
 - 1)6
- 2) 4!
- 3) 12
- 4) 24
- 5) None of these

Model 5: Permutation Circular

14. In how many ways can 6 persons be seated around a circular table for dinner?

- 1) 6!
- 2) 5!
- 3) 5!/2
- 4) 6!/2
- 5) None of these

15.	How many	different garl	ands can be	made using 1	12 flowers of	different colors?
	J	()		()		

- 1) 12!
- 2) 11!
- 3) 11!/2
- 4) 12!/2
- 5) None of these

16. How many bracelets can be made by stringing 9 different colored beads together?

- 1) 20160
- 2) 40320
- 3) 80640
- 4) 10080
- 5) None of these

Model 6: Permutation Complex

- 17. Eight boys participated in each of 5 different competitions. In how many different ways can the winner prize be given for all the competitions?
 - 1) 5
- 2) 5!
- $3)8^{5}$
- 4) ⁸P₅
- 5) None of these
- 18. In how many ways can the top three ranks be awarded for a particular exam/competition involving 12 participants?
- \odot
- 1) 12!
- 2) 3!
- 3) 12!/3!
- 4) ¹²P₃
- 5) None of these

Model 7: Combination Basic

- 19. In how many different ways can a committee of 8 persons be formed out of 5 men and 3 women?
- $oldsymbol{f O}$
- 1) 8!
- 2) 8
- 3) 1
- 4) ⁸C₃
- 5) None of these
- 20. In how many different ways can a cricket team of 11 players be chosen out of total 14 players?

- 1) 356
- 2) 364
- 3) 256
- 4) 712
- 5) None of these

Model 8: Combination Conditional Type 1

21. Out of 10 men, there are 4 doctors, 3 teachers and 3 lawyers and out of 8 women, there are 3 doctors, 3 dancers and 2 lawyers. In how many ways can a committee of 5 persons be formed such that

(i) There are 3 doctors and 2 lawyers in the committee?

1) ⁷C₅ x ⁵C₅

2) ${}^{10}\text{C}_5 \times {}^{8}\text{C}_5$ 3) ${}^{10}\text{C}_7 \times {}^{8}\text{C}_5$

4) ⁷C₃ x ⁵C₂

5) None of these

(ii) There are 2 teachers and 1 doctor in the committee?

1) 678

2) 588

3) 756

4) 624

5) None of these

(iii) There are 2 female doctors and 2 male lawyers?

1) 108

2) 188

3) 256

4) 124

5) None of these

(iv) There are at least 3 doctors in the committee?

1) ${}^{7}C_{3} \times {}^{11}C_{3} + {}^{7}C_{4} \times {}^{11}C_{4} + {}^{7}C_{5}$

2) ${}^{7}C_{2} \times {}^{11}C_{3} + {}^{7}C_{1} \times {}^{11}C_{4} + {}^{7}C_{5}$

3) ${}^{7}C_{3} \times {}^{11}C_{2} + {}^{7}C_{5}$

4) ${}^{7}C_{3} \times {}^{11}C_{2} + {}^{7}C_{4} \times {}^{11}C_{1} + {}^{7}C_{5}$

- 5) None of these
- (v) There is no doctor and no dancer in the committee?

1) 108

2) 178

3) 56

4) 112

5) None of these

- 22. A committee of 5 members is to be formed out of 5 professors, 6 Teachers and 3 Readers. In how many different ways can this be done such that
 - (i) The committee consists of 2 Professors, 2 Teachers and 1 Reader

1) 450

2) 225

3) 55

4) 90

5) None of these

(ii) The committee includes all the 3 Readers

1) 90

2) 180

3) 21

4) 55

5) None of these

- 23. A committee of 5 members is to be formed out of 3 trainees, 4 professors and 6 research associates. In how many different ways can this be done if
 - (i) The committee should have all 4 professors and 1 research associate or all 3 trainees and professors
 - 1) 12
- 2) 13
- 3) 24
- 4) 52
- 5) None of these
- (ii) The committee should have 2 trainees and 3 research associates.
 - 1) 15
- 2) 45
- 3) 60
- 4) 9
- 5) None of these

Model 9: Combination Conditional Type 2

24. In how many ways can a cricket team of 11 players be chosen out of 8 batsmen and 6 bowlers such that

- (i) There are 7 batsmen
 - 1) ⁸C₄ x ⁶C₄

- 2) ${}^{14}C_{11}$ 3) ${}^{8}C_{7} \times {}^{6}C_{4}$ 4) ${}^{8}C_{7} \times {}^{6}C_{5}$ 5) None of these
- (ii) There are 5 bowlers
 - 1) ⁸C₆ x ⁶C₅
- 2) ¹⁴C₁₁

- 3) ${}^{8}C_{7} \times {}^{6}C_{4}$ 4) ${}^{8}C_{7} \times {}^{6}C_{5}$ 5) None of these
- (iii) The majority is of batsmen
 - 1) ${}^{8}C_{7} \times {}^{6}C_{4} + {}^{8}C_{8} \times {}^{6}C_{3}$
- 2) ${}^{8}C_{6} \times {}^{6}C_{5} + {}^{8}C_{7} \times {}^{6}C_{4} + {}^{8}C_{8} \times {}^{6}C_{3}$

3) ⁸C₆ x ⁶C₅

4) ${}^{7}C_{3} \times {}^{11}C_{2} + {}^{7}C_{4} \times {}^{11}C_{1} + {}^{7}C_{5}$

- 5) None of these
- (iv) There are not more than 5 bowlers
 - 1) ${}^{8}C_{7} \times {}^{6}C_{4} + {}^{8}C_{8} \times {}^{6}C_{3}$
- 2) ¹⁴C₁₁ ⁶C₆ x ⁸C₅

3) 6C₅ x 8C₆

4) ${}^{7}C_{3} \times {}^{11}C_{2} + {}^{7}C_{4} \times {}^{11}C_{1} + {}^{7}C_{5}$

- 5) None of these
- (v) 2 particular batsmen are always included and 1 particular bowler is always excluded
 - 1) ⁶C₆ x ⁵C₅
- 2) ¹¹C₉
- 3) 8C₇ x 6C₄
- 4) 8C₇ x 6C₅
- 5) None of these

25. In how many ways can 3 women be selected out of 15 women if one particular woman is always included and two particular women are always excluded?

- 1) 66
- 2) 77
- 3) 88
- 4) 99
- 5) None of these

Model 10: Miscellaneous

26. In how many ways can a person choose one or more out of 5 different subject books?

- 1) 15
- 2) 32
- 3) 31
- 4) 16
- 5) None of these

27. In how many ways can a person choose 1 or more out of 4 electrical appliances?

- 1) 10
- 2) 12
- 3) 14
- 4) 15
- 5) None of these

28. In a party, there are 15 persons and every person shakes hand with every other person.

What will be the total number of handshakes?

- 1) 105
- 2) 120
- 3) 140
- 4) 210
- 5) None of these

29. How many parallelograms are formed by a set of 5 parallel lines intersecting another set of 8 parallel lines?

- \odot
- 1) 56
- 2) 140
- 3) 280
- 4) 120
- 5) None of these

30. A sentence can be formed by choosing one word of each type from 7 nouns, 5 verbs and 2 adjectives written on a blackboard and we do not care about how much sense the sentence makes. How many different sentences can be formed? [October 18, 2014 @ 1h 34m 40s]

- 1) $7^2 \times 5^2 \times 2^2$
- 2) 7×5×2×3!
- 3) 7! ×5! × 2!
- 4) $2^7 \times 2^5 \times 2^2$
- 5) None of these

Answers

1 - 2	2 - 3	3 - 3	4 - 4	5 - 1	6 - 2	7 - 3	8 - 2	9(i)-2
9(ii)-3	9(iiii)-3	9(iv)-4	9(v)-4	9(vi)-3	9(vii)-4	10 - 1	11(i)-2	11(ii)-3
12 - 4	13(i)-3	13(ii)-1	14 - 2	15 - 3	16 - 1	17 - 3	18 - 4	19 - 3
20 - 2	21(i)-4	21(ii)-2	21(iii)-1	21(vi)-4	21(v)-3	22(i)-1	22(ii)-4	23(i)-1
23(ii)-3	24(i)-3	24(ii)-1	24(iii)-2	24(iv)-2	24(v)-2	25 - 1	26 - 3	27 - 4
28 - 1	29 - 3	30 - 2						

Note: The date and time mentioned against some questions refer to the doubts clarification session on Quantitative Aptitude in which the question was solved.

www.talentsprint.com 8