This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

		Y I
the state of the s	Participation of the Control of the	ļ
		å
e.		
	\$.	
	•	
	• .	
		. ·
		-
		J.
		, 7 9 7
		,
		(ja)
		. 4
		- 4

POWERED BY Dialog

New sulfonylureidopyrazole derivatives - have endothelin converting enzyme (ECE) inhibitory activity, useful for treating e.g. hypertension, arteriosclerosis, cardinal and vascular disorders and cerebrovascular disorder

Patent Assignee: SUMITOMO SEIYAKU KK

Patent Family

Patent Number	Kind	Date	Application Number	لــــــا		Week Type
JP 2000053649	Α	20000222	JP 98226684	Α	19980811	200027 B

Priority Applications (Number Kind Date): JP 98226684 A (19980811)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP 2000053649	A		54	C07D-231/40	

Abstract:

JP 2000053649 A

NOVELTY - Sulfonylureido-(1H)-pyrazole derivatives (I) and their acid or alkali salts are new. DETAILED DESCRIPTION - Sulfonylureido-(1H)-pyrazole derivatives of formula (I) and their acid or alkali salts are new. R1 = (cyclo)alkyl, (cyclo)alkenyl, alkynyl, aryl, OR7, SR7, a group of formula (a) or (b); R2, R3 = H, (cyclo)alkyl, (cyclo)alkenyl, aryl, hetero cycle, group (a) or (b), etc.; R4 = H, halo, cyano, nitro, alkyl, alkenyl, alkynyl, OR7, N(R7)T8, C(O)R7, C(S)R7, group (a) or (b), etc.; R5 = H, (cyclo)alkyl, (cyclo)alkenyl, alkynyl, aryl, hetero ring, group (a) or (b), etc.; R6 = Rz-Bo-Y-Ao-.

USE - (I) have endothelin converting enzyme (ECE) inhibitory activity. (I) are useful for the prevention and treatment of circulatory organs' disorder, tracheal contraction, secretion system failure, vascular disorder, ulcer, tumor, endotoxin shock, sepsis, kidney disorder, hypertension, myocardial infarction, angina pectoris, heart failure, cerebral infarction, pulmonary hypertension, Raynaud disease, etc.

ADVANTAGE - (I) have excellent ECE inhibitory activity.

Dwg.0/0

Derwent World Patents Index © 2001 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 13134791

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-53649

(P2000-53649A)

(43)公開日 平成12年2月22日(2000.2.22)

(51) Int.Cl.7	識別記号	FΙ					テーマコート*(参考)		
C 0 7 D 231/40		C 0 7 D 231/40						4 C O 6 3	
A 6 1 K 31/415	AED		A 6	1 K	31/415		AED	4C086	
31/44	ABN				31/44		ABN		
	ABU						ABU		
	ABX						ABX		
	審3	を簡 す	未請求	水簡	≷項の数17	OL	(全 54 頁)	最終頁に続く	
(21)出願番号	特願平10-226684		(71)	出願人	ر 000183	370			
					住友製	薬株式	会社		
(22)出顧日	平成10年8月11日(1998.8.11)				大阪府	大阪市	中央区道修町	2丁目2番8号	
			(72)	発明和	皆 長谷川	浩彦			
					大阪市.	此花区	春日出中3丁	目1番98号 住	
					友製薬	株式会	社内		
			(72)	発明和	皆山崎 一	一人			
					大阪市	此花区	春日出中3丁	目1番98号 住	
	•				友製薬	株式会	社内		
			(74)	代理人	ላ 100107	629			
					弁理士	中村	敏夫		
								最終頁に続く	

(54) 【発明の名称】 スルホニルウレイドピラゾール誘導体

(57)【要約】

【課題】 エンドセリンに起因する、または起因すると考えられる各種疾患、例えば高血圧症、動脈硬化、心血管系疾患(例えば、心筋梗塞、狭心症、心不全、不整脈等)、脳血管系疾患(クモ膜下出血後の脳血管れん縮、脳梗塞等)、腎疾患(慢性あるいは急性腎不全等)、肺高血圧、気管支喘息、バージャー病、高安動脈炎、レイ

ノー病、糖尿病の合併症、エンドトキシンショック、敗血症、潰瘍などの治療薬および予防薬として有用な、エンドセリン変換酵素阻害作用を有する化合物を提供する。

【解決手段】 一般式(1) 【化1】

(式中、 R^1 はアルキル基等を、 R^2 および R^3 はそれ ぞれ同一または異なっていてもよく、各々水素原子、アルキル基等を、 R^4 は水素原子、ハロゲン原子、シアノ基、ニトロ基、アルキル基等を、 R^5 は、水素原子、ア

ルキル基等を、 R^6 は $R^2 - B_0 - Y - A_0 - \epsilon$ 表す。 A_0 および B_0 は単結合、アルキレン、アルケニレンまたはアルキニレンを、Yは-O-C(O) - 等を表す。)

【特許請求の範囲】

【請求項1】 一般式(1)

[式中、R¹ はアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基、ヘテロアリールアルキル基、ヘテロ環基、-OR⁷、-SR⁷、-N(R⁷)R⁸、置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換シクロアルケニルアルキル基、置換アリール基、置換アラルキル基、置換ヘテロアリールアルキル基、または置換ヘテロ環基を表すか、または式(a)

【化2】

$$--D_0 \xrightarrow{(CH_2)_0} R^x$$

$$(CH_2)_0$$
(a)

もしくは式(b)

【化3】

を表す。R2 およびR3 はそれぞれ同一または異なって いてもよく、各々水素原子、アルキル基、アルケニル 基、アルキニル基、シクロアルキル基、シクロアルケニ ル基、アリール基、ヘテロ環基、ヘテロアリールアルキ ル基、置換アルキル基、置換アルケニル基、置換アルキ ニル基、置換シクロアルキル基、置換シクロアルケニル 基、置換シクロアルキルアルキル基、置換シクロアルケ ニルアルキル基、置換アリール基、置換アラルキル基、 置換へテロ環基、もしくは置換へテロアリールアルキル 基を表すか、または前記式(a)もしくは(b)を表 す。R4は水素原子、ハロゲン原子、シアノ基、ニトロ 基、アルキル基、アルケニル基、アルキニル基、シクロ アルキル基、シクロアルケニル基、アリール基、ヘテロ 環基、ヘテロアリールアルキル基、-OR7、-N(R 7) R^{8} \sim -C (O) $-R^{7}$ \sim -C (S) $-R^{7}$ \sim -C $O_2 - R^7 \setminus -C(0) - S - R^7 \setminus -CS_2 - R^7$ $-C(S)-O-R^{7}, -O-C(O)-R^{7}, -O-C(O)$ $C(S) - R^{7} = -S - C(O) - R^{7} = -S - C$ $(S) - R^7 = C(O) - N(R^7) R^8 = C$

【化1】

 $(S) - N(R^7) R^8 - S(O)_1 - R^7 - SO$ $_{2}$ -N (R⁷) R⁸ \ -N (R⁷) -C (O) -R⁸ \ -OSO₂-R⁷、置換アルキル基、置換アルケニル 基、置換アルキニル基、置換シクロアルキル基、置換シ クロアルケニル基、置換シクロアルキルアルキル基、置 換シクロアルケニルアルキル基、置換アリール基、置換 アラルキル基、置換ヘテロアリールアルキル基、もしく は置換ヘテロ環基を表すか、または前記式(a)もしく は(b)を表す。R5は、水素原子、アルキル基、アル ケニル基、アルキニル基、シクロアルキル基、シクロア ルケニル基、アリール基、ヘテロ環基、ヘテロアリール Pルキル基、 $-C(O)-R^7$ 、 $-C(S)-R^7$ 、- $CO_2 - R^7$, $-C(O) - S - R^7$, $-CS_2 R^7$, $-C(S)-O-R^7$, $-C(O)-N(R^7)$ $R^{8} \setminus -C(S) - N(R^{7}) R^{8} \setminus -S(O)_{1} - R$ 7、もしくは-SO₂-N(R⁷)R⁸、置換アルキル 基、置換アルケニル基、置換アルキニル基、置換シクロ アルキル基、置換シクロアルケニル基、置換シクロアル キルアルキル基、置換シクロアルケニルアルキル基、置 換アリール基、置換アラルキル基、置換ヘテロ環基、も しくは置換ヘテロアリールアルキル基を表すか、または 前記式(a)もしくは(b)を表す。R6はR2-Bo -Y-A0-を表す。前記及び後記の定義もしくは式に おいて、

(1) R7 及びR8 は同一または互いに独立して水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルケニル基、アリール基、ヘテロアリールアルキル基、温換アルキル基、置換アルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換シクロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基、置換フロアルケニルアルキル基を表す。ただし、-N(R7)R8、-CON(R7)R8、-CON(R7)R8、-CON(R7)R8、-CON(R7)R8 または-N(R7)-CON(R7)R8 が互いに結合して、それらが結合する窒素原子(及び炭素原子と)ー緒になって、環中に他のヘテロ原子を含んでもよい。また、-O-C

 $(O) - R^7 \setminus -O - C(S) - R^7 \setminus -S - C(O)$

 $-R^7$ 、-S-C(S) $-R^7$ 、 $-SO-R^7$ または $-SO_2$ $-R^7$ であるときは、 R^7 は水素原子でない。 (2) D_0 は単結合、低級アルキレン、低級アルケニレ

(2) D_0 は単結合、仏教 / N キレン、仏教 / N クーレンまたは仏教 / N キニレンを表す。

(3) R^{x} はなくてもよいが、1つまたは2以上あってもよく、環構成炭素原子に結合する水素原子と置き換わる基であり、それぞれ同一または異なってハロゲン原子、ニトロ基、シアノ基、アルキル基、アルケニル基、シクロアルキルアルキル基、シクロアルケニルアルキル基、シクロアルケニルアルキル基、アリール基、アラルキル基、ヘテロアリールアルキル基、ヘテロ環基、または $-E_0-R^{y}$ を表す。

(4) oおよびpは独立して0または1から3の整数 (ただし、oとpは同時に0にならない)を表す。

(5) Jは酸素原子、または $-S(O)_q - (式中_Q)$ は0、1、または2を表す)を表す。

(6) R11は水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、ヘテロアリールアルキル基、置換アルキル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキル基、置換シクロアルケニルアルキル基、置換アリール基、置換アラルキル基、置換ヘテロ環基、または置換ヘテロアリールアルキル基を表す。

(7) E_0 は単結合、低級アルキレン、低級アルケニレンまたは低級アルキニレンを表す。

 $(8) R^{Y} U - OR^{9} - N(R^{9}) R^{10} - C$

 $(O) - R^9$ 、-C $(S) - R^9$ 、 $-CO_2 - R^9$ 、-C $(O) - S - R^9$ 、 $-CS_2 - R^9$ 、-C (S) - O $-R^9$ 、-O - C $(O) - R^9$ 、-O - C $(S) - R^9$ 、-S - C $(O) - R^9$ 、-S - C $(S) - R^9$ 、-C (O) - N $(R^9) R^{10}$ (C) - C (C) - N (C) - C (C) - C

(9)1は0、1または2を表す。

(10) R^9 及び R^{10} は同一または互いに独立して水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルキル基、シクロアルケニルアルキル基、アリール 基、アラルキル基、ヘテロ環基、またはヘテロアリールアルキル基を表す。ただし、-N (R^9) R^{10} 、-C (O) -N (R^9) R^{10} 、-C (S) -N (R^9) R^{10} 、-C (O) $-R^9$) R^{10} 、 $+R^9$ 0 、+

 $(O) - R^9$ 、-S - C $(S) - R^9$ 、-S (O) - R 9 または $-SO_2 - R^9$ のときは、 R^9 は水素原子でない。

(11) A_0 は単結合、アルキレン、アルケニレンまたはアルキニレンを表す。

(12) B_0 は単結合、アルキレン、アルケニレンまたはアルキニレンを表す。

(13) -A₀ -で表される2価炭素鎖およびR^z -B₀ -で表される1価炭素鎖の炭素原子上の1個或いは複数個の水素原子は、各々同一または異なってアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、シクロアルキル基、シクロアルケニルアルキル基、アラルキル基、でクロアルケニルアルキル基、置換アルキニル基、置換アルケニル基、置換アルケニル基、置換シクロアルケニル基、置換シクロアルケニル基、置換シクロアルケニルを、置換シクロアルケニルを、置換シクロアルケニルを、置換シクロアルケニルをル基、置換シクロアルケニルをル基、置換シクロアルケニルアルキル基、置換シクロアルケニルアルキル基、置換へテロアリールアルキル基、またはR^Yと置き換えられていてもよい。

(14) R² は水素原子、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、-OR⁹、-N(R⁹) R¹⁰、-C(O)-R⁹、-C(S)-R⁹、-CO₂-R⁹、-C(O)-S-R⁹、-CS₂-R⁹、-C(S)-O-R⁹、-O-C(O)-R⁹、-O-C(S)-R⁹、-S-C(O)-R⁹、-S-C(S)-R⁹、-C(O)-N(R⁹) R¹⁰、-C(S)-N(R⁹) R¹⁰、-S(O)₁-R⁹、-SO₂-N(R⁹) R¹⁰、-O-CO₂-R⁹、-N(R⁹)-C(O)-R¹⁰、-N(R⁹)-C(O)-O-R¹⁰、置換シクロアルキル基、置換シクロアルケニル基、置換アリール基、置換へテロ環基、または、式(c)

【化4】

$$(CH2)0 (CH2)p (c)$$

もしくは式 (d) 【化5】

$$(CH_2)_0$$
 $N-R^{14}$
 $(CH_2)_p$
 (d)

を表す。

(15) Y\$\text{it}-O-C (0) -\ \cdot -C (0) -O-\ \\
-N (R^7) -C (0) -\ \cdot -C (0) -N (R^7) \\
-\ \cdot -C (S) -\ \cdot -C (S) -O-\ \cdot -S-C \\ (0) -\ \cdot -C (0) -S-\ \cdot -S-C (S) -\ \cdot -C \\ (S) -S-\ \cdot -O-\ \cdot -N (R^7) -\ \cdot -S (O)_1

-、-C(O)-を表す。

(16) 置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルキル基、置換シクロアルキルをでは、置換シクロアルケニルアルキル基、置換シクロアルケニルアルキル基、置換フラルキル基、置換へテロアリールアルキル基、または置換へテロ環基における置換基は、同一または異なって1個または2個以上あってもよく、ハロゲン原子、ニトロ基、シアノ基、アルキル基、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルケニルをでは、シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。シクロアルケニルをできる。

【化6】

(式中、B環はシクロアルキル基、シクロアルケニル基、アリール基またはヘテロ環基を表す)から選ばれる。ただし、当該置換基が置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキル基、置換シクロアルケニルアルキル基、置換アリール基、置換アラルキル基、置換ヘテロ環基、もしくは置換ヘテロアリールアルキル基における置換基である場合には、隣接する炭素原子に結合する置換基どうしが結合し、該炭素原子と一緒になって、4~8員環を形成してもよい。]で表されるスルホニルウレイドー(1H)ーピラゾール誘導体またはそれらの薬学的に許容される酸付加塩もしくはアルカリ付加塩。

【請求項2】 R1 がアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロアリール基、ヘテロ環基、置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルケニル基、置換やテロアリール基もしくは置換へテロ環基である請求項1記載のスルホニルウレイドー(1H)ーピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項3】 R² およびR³ がそれぞれ同一または異なっていてもよく、各々水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、ヘテロ環基、置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルケニル基もしくは置換ヘテロ環基である請求項1記載のスルホニルウレイドー(1H)ーピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項4】 R4が水素原子、シアノ基、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、ヘテロ

アリールアルキル基、一CO2-R7、置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換シクロアルケニルアルキル基、置換アリール基、置換アラルキル基、置換へテロアリールアルキル基、もしくは置換へテロ環基である請求項1記載のスルホニルウレイド-(1H)-ピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項5】 R5 が水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、ヘテロアリールアルキル基、置換アルキル基、置換アルケニル基、置換シクロアルキニル基、置換シクロアルキニル基、置換シクロアルケニル基、置換シクロアルケニルアルキル基、置換ツラルキル基、置換へテロ環基、もしくは置換ヘテロアリールアルキル基である請求項1記載のスルホニルウレイドー(1H)ーピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項6】 Yが-O-C(O)-,-C(O)-O-、 $-N(R^7)-C(O)-,-C(O)-N$ ($R^7)-,-O-,-S(O)_1-,$ もしくは-C(O)-である請求項1記載のスルホニルウレイドー(1H)-ピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項7】 R1 がシクロヘキシル、2-シクロヘキ シルエチル、3-シクロヘキシルプロピル、フェニル、 ベンジル、2-フェニルエチル、3-フェニルプロピ ル、4-フェニルブチル、1-ナフチル、2-ナフチ ル、3-トリル、4-トリル、3-エチルフェニル、4 -エチルフェニル、3-n-プロピルフェニル、4-n ープロピルフェニル、3ーイソプロピルフェニル、4-イソプロピルフェニル、3-n-ブチルフェニル、4nープチルフェニル、3-イソプチルフェニル、4-イ ソブチルフェニル、3ーメトキシフェニル、4ーメトキ シフェニル、3ークロロフェニル、4ークロロフェニ ル、3ープロモフェニル、4ープロモフェニル、2ーチ エニル、3ーチエニル、2ーフリル、3ーフリル、2ー ピリジル、3-ピリジル、もしくは4-ピリジルである 請求項1記載のスルホニルウレイドー(1H)ーピラゾ ール誘導体またはその酸付加塩もしくはアルカリ付加 塩、

【請求項8】 R² が水素原子、メチル基またはベンジルであり、R³ が水素原子、メチル基、またはベンジル基である請求項1記載のスルホニルウレイドー(1H)ーピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項9】 R4 が水素原子、シアノ基、カルボキシル基、メトキシカルボニル、エトキシカルボニル、プロ ピルオキシカルボニル、イソプロピルオキシカルボニ ル、メチル、エチル、n-プロピル、イソプロピル、フェニル、ベンジル、2-フェニルエチル、3-フェニルプロピル、4-フェニルブチル、シクロヘキシル、シクロヘキシルメチル、2-シクロヘキシルエチル、3-チエニル、2-プリル、3-プリル、3-プリル、3-プリル、3-プリル、3-ピリジルである請求項1記載のスルホニルウレイド-(1H)-ピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

【請求項10】 R5 がビニル基、エチル基、n-プロ ピル基、イソプロピル基、シクロブチル、シクロペンチ ル、シクロヘキシル、シクロヘプチル、フェニル、ベン ジル、2-フェニルエチル、3-フェニルプロピル、4 ーフェニルブチル、5ーフェニルペンチル、2ーチエニ ル、チオフェン-2-イルーメチル、2-(チオフェン -2-イル) エチル、3-(チオフェン-2-イル) プ ロピル、4-(チオフェン-2-イル)ブチル、チオフ ェン-3-イルーメチル、2-(チオフェン-3-イ ル) エチル、3-(チオフェン-3-イル) プロピル、 4-(チオフェン-3-イル)ブチル、2-フリル、フ ラン-2-イルーメチル、2-(フラン-2-イル)エ チル、3-(フラン-2-イル)プロピル、4-(フラ ン-2-イル) ブチル、フラン-3-イルーメチル、2 - (フラン-3-イル) エチル、3-(フラン-3-イ ル) プロピル、もしくは4-(フラン-3-イル) ブチ ルである請求項1記載のスルホニルウレイドー(1H) ピラゾール誘導体またはその酸付加塩もしくはアルカ リ付加塩。

【請求項11】 R6 がフェニルオキシカルボニルメチ ル、ベンジルオキシカルボニル、2-フェニルエチルオ キシカルボニルメチル、3-フェニルプロピルオキシカ ルボニルメチル、4-フェニルブチルオキシカルボニル メチル、5-フェニルペンチルオキシカルボニルメチ ル、6-フェニルヘキシルオキシカルボニルメチル、シ クロヘキシルオキシカルボニルメチル、シクロヘキシル メチルオキシカルボニルメチル、2-シクロヘキシルエ チルオキシカルボニルメチル、3-シクロヘキシルプロ ピルオキシカルボニルメチル、4-シクロヘキシルブチ ルオキシカルボニルメチル、5-シクロヘキシルペンチ <u>ルオキシカルボニルメチル、6</u>-シクロヘキシルオキシ カルボニルメチル、フェニルカルバモイルメチル、2-フェニルエチルカルバモイルメチル、3-フェニルプロ ピルカルバモイルメチル、4-フェニルブチルカルバモ イルメチル、5-フェニルペンチルカルバモイルメチ ル、シクロヘキシルカルバモイルメチル、シクロヘキシ ルメチルカルバモイルメチル、2-シクロヘキシルエチ ルカルバモイルメチル、3-シクロヘキシルプロピルカ ルバモイルメチル、ジメチルカルバモイルメチル、ピペ リジン-1-イルーカルボニルメチル、4-メチルフェ ニルカルバモイルメチル、4-ジメチルアミノフェニル

カルバモイルメチル、4-アセトキシフェニルカルバモ イルメチル、4ーヒドロキシフェニルカルバモイルメチ ル、4-ベンジルオキシフェニルカルバモイルメチル、 4-エトキシカルボニルフェニルカルバモイルメチル、 4-カルボキシフェニルカルバモイルメチル、4-ジメ チルアミノメチルフェニルカルバモイルメチル、3-メ チルフェニルカルバモイルメチル、3-ジメチルアミノ フェニルカルバモイルメチル、3-アセトキシフェニル カルバモイルメチル、3-ヒドロキシフェニルカルバモ イルメチル、3-エトキシカルボニルフェニルカルバモ イルメチル、3-カルボキシフェニルカルバモイルメチ ル、2-メチルフェニルカルバモイルメチル、2-ジメ チルアミノフェニルカルバモイルメチル、2-アセトキ シフェニルカルバモイルメチル、2-ヒドロキシフェニ ルカルバモイルメチル、2-エトキシカルボニルフェニ ルカルバモイルメチル、2-カルボキシフェニルカルバ モイルメチル、もしくは3-ピコリルカルバモイルメチ ルである請求項1記載のスルホニルウレイド-(1 H) - ピラゾール誘導体またはその酸付加塩もしくはアルカ リ付加塩。

【請求項12】 R¹ がアルキル基、シクロアルキル 基、シクロアルケニル基、アリール基、アラルキル基、 ヘテロアリールアルキル基、ヘテロ環基、置換アルキル 基、置換シクロアルキル基、置換シクロアルケニル基、 置換シクロアルキルアルキル基、置換シクロアルケニル アルキル基、置換アリール基または置換アラルキル基で あり、R² およびR³ がそれぞれ同一または異なってい てもよく、各々水素原子、アルキル基、置換アルキル基 または置換アラルキル基であり、R4 が水素原子、シア ノ基、アルキル基、アルケニル基、アルキニル基、シク ロアルキル基、シクロアルケニル基、アリール基、置換 アルキル基、置換アルケニル基、置換アルキニル基、置 換シクロアルキル基、置換シクロアルケニル基、置換シ クロアルキルアルキル基、置換シクロアルケニルアルキ ル基、置換アリール基または置換アラルキル基であり、 R5 がアルキル基、シクロアルキル基、シクロアルケニ ル基、アリール基、置換アルキル基、置換アルケニル 基、置換アルキニル基、置換シクロアルキル基、置換シ クロアルケニル基、置換シクロアルキルアルキル基、置 換シクロアルケニルアルキル基、置換アリール基、置換 アラルキル基であり、Yが一〇一C(O)-、一C

 $(O) - O - \sqrt{-N}$ $(R^7) - C$ $(O) - \sqrt{-N}$ $(R^7) - C$ (O) - N $(R^7) - C$ (O) - N (O

【請求項13】 下記(1)~(45)いずれかの化合物である請求項1記載のスルホニルウレイドー(1H)ーピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩。

(1) 4-シアノ-1-フェニル-3-フェノキシカル

ボニルメチルー5ー {3-(4-クロロベンゼンスルホニル) ウレイド} - (1H) - ピラゾール

(2) 4-シアノ-1-フェニル-3-ベンジルオキシカルボニルメチル-5-(3-(4-)200)ルホニル)ウレイド(1H)-200

(3) 4-シアノ-1-フェニル-3-(2-フェニル エトキシカルボニルメチル) -5-(3-(4-クロロ ベンゼンスルホニル) ウレイド}-(1H)-ピラゾー ル

 $(4) 4-シアノ-1-フェニル-3-(3-フェニル プロピルオキシカルボニルメチル) -5-<math>\{3-(4-2)$ クロロベンゼンスルホニル) ウレイド $\{-(1H)-2\}$ ラゾール

(6) 4-シアノ-1-フェニル-3-(5-フェニル ペンチルオキシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピ ラゾール

(7) 4-シアノ-1-フェニル-3-(n-ブチルオ キシカルボニルメチル) -5- {3-(4-クロロベン ゼンスルホニル) ウレイド} - (1H) -ピラゾール

 $(8) 4-シアノ-1-フェニル-3-(シクロヘシルメチルオキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(9) 4-シアノ-1-フェニル-3-(2,6-ジイソプロピルフェニルオキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ビラゾール

 $(10)4-シアノ-1-フェニル-3-(2-フェニル-エトキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(11)4-シアノ-1-フェニル-3-(フェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール

(12)4-シアノ-1-フェニル-3-(ベンジルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール

 $(13)4-シアノ-1-フェニル-3-(N-ベンジル-N-メチルカルバモイルメチル)-5-<math>\{3-(4-2)$

(14)4-シアノ-1-フェニル-3-(2-フェニルエチルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール

(15) 4-シアノ-1-フェニル-3-(3-フェニルプロピルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

 $(16)4-シアノ-1-フェニル-3-(4-フェニルブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(17) 4 - シアノ-1-フェニル-3-(ジメチルカルバモイルメチル) - 5 - {3 - (4 - クロロベンゼンスルホニル) ウレイド} - (1H) - ピラゾール

 $(18) 4-シアノ-1-フェニル-3-(ピペリジン-1-イルーカルボニルメチル)-5-<math>\{3-(4-2)\}$ ロロベンゼンスルホニル) ウレイド $\}-(1H)$ -ピラゾール

(19)4-シアノ-1-フェニル-3-(シクロヘキシルメチルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール

(20)4-シアノ-1-フェニル-3-(シクロへキシルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール(21)4-シアノ-1-フェニル-3-(n-ブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール(22)4-シアノ-1-フェニル-3-(N-(4-

フェニル) ブチルーNーエチルカルバモイルメチル) ー $5 - \{3 - (4 - 0)$ ロロベンゼンスルホニル) ウレイド $\} - (1 + 1)$ ーピラゾール

 $(23) 4-シアノ-1-フェニル-3-(4-メチル フェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ビラゾール$

(24)4-シアノ-1-フェニル-3-(4-ジメチルアミノフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1 H)-ピラゾール

 $(25)4-シアノ-1-フェニル-3-(4-アセト キシフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(26) 4-シアノ-1-フェニル-3-(4-ヒドロ キシフェニルカルバモイルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピ ラゾール

(27) 4 - シアノ-1-フェニル-3-(4-ベンジルオキシフェニルカルバモイルメチル) - 5-(3-(4-クロロベンゼンスルホニル) ウレイド - (1H) - ピラゾール

(28) 4ーシアノー1ーフェニルー3ー(4-エトキ

シカルボニルフェニルカルバモイルメチル) $-5-{3}$ -(4-)00ペンゼンスルホニル) ウレイド} -(1H) -ピラゾール

(29) 4-シアノ-1-フェニル-3-(4-カルボ キシフェニルカルバモイルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピ ラゾール

(30)4-シアノ-1-フェニル-3-(4-ジメチルアミノメチルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール

(31) 4-シアノ-1-フェニル-3-(3-メチルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ビラゾール

 $(32) 4-シアノ-1-フェニル-3-(3-ジメチルアミノフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(33) 4-シアノ-1-フェニル-3-(3-アセト キシフェニルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピ ラゾール

(34) 4-シアノ-1-フェニル-3-(3-ヒドロキシフェニルカルバモイルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

 $(35) 4-シアノ-1-フェニル-3-(3-エトキシカルボニルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

 $(36) 4-シアノ-1-フェニル-3-(3-カルボ キシフェニルカルバモイルメチル) -5-<math>\{3-(4-2)$ 000ベンゼンスルホニル) ウレイド $\}-(1H)$ -ピラゾール

(37) 4-シアノ-1-フェニル-3-(2-メチル

フェニルカルバモイルメチル) -5- {3-(4-クロロベンゼンスルホニル) ウレイド} - (1H) -ピラゾール

 $(38) 4-シアノ-1-フェニル-3-(2-ジメチルアミノフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(39) 4-シアノ-1-フェニル-3-(2-アセトキシフェニルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

(40) 4ーシアノー1ーフェニルー3ー(2ーヒドロキシフェニルカルバモイルメチル) -5ー(3-(4-クロロベンゼンスルホニル) ウレイド) -(1H) -ピラゾール

 $(41)4-シアノ-1-フェニル-3-(2-エトキシカルボニルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(42) 4-シアノ-1-フェニル-3-(2-カルボ キシフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピ ラゾール

 $(43) 4-シアノ-1-フェニル-3-(3-ピコリ ルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール (44) 4-シアノ-1-フェニル-3-{(4-(t-ブトキシカルボニルアミノ) ブチル) カルバモイルメチル<math>}-5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール$

(45) 4-シアノ-1-フェニル-3-{(4-アミノブチル) カルバモイルメチル}-5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

【請求項14】一般式(1)

【化7】

 $(R^1 \ R^2 \ R^3 \ R^4 \ R^5$ および R^6 は請求項1 と同じ意味を表す)で表される化合物またはその薬学的 に許容される酸付加塩もしくはアルカリ付加塩を含有す

る医薬。

【請求項15】一般式(1)

【化8】

(R¹、R²、R³、R⁴、R⁵ およびR⁶ は請求項1 と同じ意味を表す)で表される化合物またはそれらの薬 学的に許容される酸付加塩もしくはアルカリ付加塩を含 有する循環器系の疾患、気管収縮、神経性障害、分泌系 不全、血管障害、潰瘍、腫瘍、胃粘膜障害、エンドトキ シンショック、敗血症または腎障害の治療薬または予防 薬。

【請求項16】一般式(1) 【化9】

(R¹、R²、R³、R⁴、R⁵ およびR⁶ は請求項1 と同じ意味を表す)で表される化合物またはそれらの薬 学的に許容される酸付加塩もしくはアルカリ付加塩を含 有する高血圧症、動脈硬化、心筋梗塞、狭心症、心不 全、不整脈、クモ膜下出血後の脳血管れん縮、脳梗塞、 腎不全、肺高血圧、気管支喘息、バージャー病、高安動脈炎、レイノー病、糖尿病の合併症、エンドトキシンショック、敗血症または潰瘍の治療薬もしくは予防薬。 【請求項17】一般式(1)

【化10】

 $(R^1 \ R^2 \ R^3 \ R^4 \ R^5$ および R^6 は請求項1 と同じ意味を表す)で表される化合物またはそれらの薬学的に許容される酸付加塩もしくはアルカリ付加塩を含有するエンドセリン変換酵素阻害剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は新規なスルホニルウレイドピラゾール誘導体及びその薬理学的に許容される塩、並びにそれらの用途に関するものである。

[0002]

【従来の技術】エンドセリン(以下、ETと略す)は血管内皮細胞の培養上清から単離された21アミノ酸残基からなる強力な血管収縮ペプチドである(Yanagisawaら、Nature,332,411-415,1988)。ETは生体内で強い血管収縮作用、細胞増殖作用を有し、血管など各種臓器で生産され生理的に重要な役割をはたしていると考えら

れている。またETはその作用から高血圧、クモ膜下出 血後の脳血管れん縮、心筋梗塞、動脈硬化、腎不全、心 不全、喘息等の疾患の成立に関わっていると考えられて いる。また、レイノー患者、バージャー病患者、高安病 患者、川崎病患者、シスプラチン投与時の腎障害患者の 血中などにおいてET濃度が正常人に比して有為に高い ことが知られている。ETはその生合成において、活性 の低い前駆体であるビッグエンドセリン; (以下、big ETと略す)から特異的プロテアーゼであるET変換酵 素(ECEと略す)により生成される。従って、ECE を阻害しETの生合成を抑えることは上記の各種疾患の 治療および予防に有効であると考えられる。これまでに ECEを阻害する化合物としてはストレプトマイセス・ タナシエンシス等の放線菌によって生産されるホスホラ ミドンが知られていた。特開平10-7658にはEC E阻害作用を有するスルホニルウレイドピラゾール誘導 体が記載されている。

[0003]

【発明が解決しようとする課題】上記理由から、ECE を阻害する物質の開発が求められるところであり、そしてこのECEを阻害する物質の開発によって、ETに起因する、または起因すると考えられる各種疾患、例えば高血圧症、動脈硬化、心血管系疾患(例えば、心筋梗塞、狭心症、心不全、不整脈等)、脳血管系疾患(クモ膜下出血後の脳血管れん縮、脳梗塞等)、腎疾患(慢性あるいは急性腎不全等)、肺高血圧、気管支喘息、バージャー病、高安動脈炎、レイノー病、糖尿病の合併症、エンドトキシンショック、敗血症、潰瘍などの治療薬お

よび予防薬の新たな開発の可能性が開かれることになる。すなわち本発明は、ECEを阻害する物質と、このECEの阻害作用に基づいた上記各種疾患の治療剤および予防剤を提供するものである。

[0004]

【課題を解決するための手段】本発明者らは、ET変換 酵素阻害剤について鋭意研究を試みた結果、下記一般式 で示される化合物が格段に優れた阻害活性を有すること を見出し、本発明を完成するに至った。即ち、本発明 は、

【0005】〔1〕 一般式(1) 【化11】

[式中、R1 はアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基、ヘテロアリールアルキル基、ヘテロ環基、一〇R7、一SR7、一N(R7)R8、置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキニル基、置換シクロアルキルルスと、置換シクロアルケニルアルキル基、置換アリール基、置換アラルキル基、置換ヘテロアリールアルキル基、または置換ヘテロ環基を表すか、または式(a)

【化12】

$$--D_0 \xrightarrow{(CH_2)_0} R^x$$
 (a)

もしくは式(b) 【化13】

$$(CH_2)_0 R^x$$

 $N-R^{11}$ (b)

を表す。R² およびR³ はそれぞれ同一または異なっていてもよく、各々水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、ヘテロアリールアルキル基、置換アルキル基、置換アルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換シクロアルケニルを、置換シクロアルケニルでルキル基、置換シクロアルケニルアルキル基、置換シクロアルケニルアルキル基、置換フリール基、置換へテロアリールアルキル

基を表すか、または前記式(a)もしくは(b)を表 す。R4 は水素原子、ハロゲン原子、シアノ基、ニトロ 基、アルキル基、アルケニル基、アルキニル基、シクロ アルキル基、シクロアルケニル基、アリール基、ヘテロ 環基、ヘテロアリールアルキル基、-OR7、-N(R 7) R^{8} , -C (O) $-R^{7}$, -C (S) $-R^{7}$, -C $O_2 - R^7$, $-C(O) - S - R^7$, $-CS_2 - R^7$, $-C(S) - O - R^7 = O - C(O) - R^7 = O C(S) - R^{7}, -S - C(O) - R^{7}, -S - C$ $(S) - R^7 \setminus -C(O) - N(R^7) R^8 \setminus -C$ $(S) - N(R^7) R^8 - S(0) - R^7 - S0$ $_{2}$ -N (R⁷) R⁸, -N (R⁷) -C (O) -R⁸, $-OSO_2 - R^7$ 、置換アルキル基、置換アルケニル 基、置換アルキニル基、置換シクロアルキル基、置換シ クロアルケニル基、置換シクロアルキルアルキル基、置 換シクロアルケニルアルキル基、置換アリール基、置換 アラルキル基、置換ヘテロアリールアルキル基、もしく は置換へテロ環基を表すか、または前記式(a)もしく は(b)を表す。R5は、水素原子、アルキル基、アル ケニル基、アルキニル基、シクロアルキル基、シクロア ルケニル基、アリール基、ヘテロ環基、ヘテロアリール アルキル基、-C(O)-R7、-C(S)-R7、- $CO_2 - R^7$, $-C(O) - S - R^7$, $-CS_2 R^7$, $-C(S) - O - R^7$, $-C(O) - N(R^7)$ $R^{8} \cdot -C(S) -N(R^{7}) R^{8} \cdot -S(O)_{1} -R$ 7、もしくは-SO₂-N(R⁷)R⁸、置換アルキル 基、置換アルケニル基、置換アルキニル基、置換シクロ アルキル基、置換シクロアルケニル基、置換シクロアル キルアルキル基、置換シクロアルケニルアルキル基、置 換アリール基、置換アラルキル基、置換ヘテロ環基、も

しくは置換へテロアリールアルキル基を表すか、または前記式(a)もしくは(b)を表す。 R^6 は $R^z-B_0-Y-A_0-$ を表す。前記及び後記の定義もしくは式において、

(1) R7 及びR8 は同一または互いに独立して水素原 子、アルキル基、アルケニル基、アルキニル基、シクロ アルキル基、シクロアルケニル基、アリール基、ヘテロ アリールアルキル基、ヘテロ環基、置換アルキル基、置 換アルケニル基、置換アルキニル基、置換シクロアルキ ル基、置換シクロアルケニル基、置換シクロアルキルア ルキル基、置換シクロアルケニルアルキル基、置換アリ ール基、置換アラルキル基、置換ヘテロ環基、または置 換ヘテロアリールアルキル基を表す。ただし、-N(R 7) R^{8} $-CON(R^{7})$ R^{8} -C(S) -N(R7) $R^8 \setminus -SO_2 N(R^7) R^8$ $\Rightarrow x$ $\Rightarrow t$ $\Rightarrow t$ $\Rightarrow t$ $-C(O)-R^8$ の場合には、 R^7 及び R^8 が互いに結 合して、それらが結合する窒素原子(及び炭素原子と) 一緒になって、環中に他のヘテロ原子を含んでもよい飽 和3ないし8員環を表してもよい。また、一〇一〇 $(0) - R^7 \setminus -O - C(S) - R^7 \setminus -S - C(O)$

 $-R^7$ 、-S-C(S) $-R^7$ 、 $-SO-R^7$ または $-SO_2$ $-R^7$ であるときは、 R^7 は水素原子でない。 (2) D_0 は単結合、低級アルキレン、低級アルケニレンまたは低級アルキニレンを表す。

(3) R^{x} はなくてもよいが、1つまたは2以上あってもよく、環構成炭素原子に結合する水素原子と置き換わる基であり、それぞれ同一または異なってハロゲン原子、ニトロ基、シアノ基、アルキル基、アルケニル基、シクロアルキルアルキル基、シクロアルケニル基、シクロアルケニルアルキル基、アリール基、アラルキル基、ヘテロアリールアルキル基、ヘテロ環基、または $-E_0$ $-R^{y}$ を表す。

(4) oおよびpは独立して0または1から3の整数 (ただし、oとpは同時に0にならない)を表す。

(5) Jは酸素原子、または-S(O)_q-(式中、qは0、1、または2を表す)を表す。

(6) R1 1 は水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、ヘテロアリールアルキル基、置換アルキル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換シクロアルケニルをニルアルキル基、置換アリール基、置換アラルキル基、置換ヘテロ環基、または置換ヘテロアリールアルキル基を表す。

(7) E_0 は単結合、低級アルキレン、低級アルケニレンまたは低級アルキニレンを表す。

(8) R^{Y} $U - OR^{9}$ $- N(R^{9}) R^{10}$ - C

(O) $-R^9$, $-C(S) -R^9$, $-CO_2 -R^9$, $-C(O) -S -R^9$, $-CS_2 -R^9$, -C(S) -O

 $-R^9$ 、-O-C(O) $-R^9$ 、-O-C(S) $-R^9$ 、-S-C(O) $-R^9$ 、-S-C(S) $-R^9$ 、-C(O)-N(R^9) R^{10} 、-C(S)-N(R^9) R^{10} 、-S(O) $_1-R^9$ 、 $-SO_2-N$ (R^9) R^{10} 、 $-O-CO_2-R^9$ または-N(R^9)-C(O) $-R^{10}$ を表す。

(10) R^9 及び R^{10} は同一または互いに独立して水素原子、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルトル基、シクロアルケニル基、シクロアルケニル基、アリールを、ステロ環基、またはヘテロアリールアルキル基を表す。ただし、-N (R^9) R^{10} 、-C (O) -N (R^9) R^{10} 、-C (S) -N (R^9) R^{10} 、-C (S) -N (S) -C (S) (S) -C (S) (

(11) A_0 は単結合、アルキレン、アルケニレンまたはアルキニレンを表す。

(12) B₀ は単結合、アルキレン、アルケニレンまたはアルキニレンを表す。

(14) R^Z は水素原子、シクロアルキル基、シクロアルケニル基、アリール基、ヘテロ環基、-OR⁹、-N(R⁹) R¹⁰、-C(O)-R⁹、-C(S)-R⁹、-CO₂-R⁹、-C(O)-S-R⁹、-CS₂-R⁹、-C(S)-O-R⁹、-O-C(O)-R⁹、-O-C(S)-R⁹、-S-C(O)-R⁹、-S-C(S)-R⁹、-C(O)-N(R⁹)R¹⁰、-C(S)-N(R⁹)R¹⁰、-S(O)₁-R⁹、-SO₂-N(R⁹)R¹⁰、-O-CO₂-R⁹、-N(R⁹)-C(O)-R¹⁰、-N(R⁹)-C

 $(O) - O - R^{10}$ 、置換シクロアルキル基、置換シクロアルケニル基、置換アリール基、置換ヘテロ環基、または、式(c)

【化14】

$$(CH2)0$$
 $(CH2)0 $(CH2)$ $(CH2)0 $(CH2)$$$

もしくは式 (d) 【化15】

$$(CH_2)_0$$

 $(CH_2)_p$ $N-R^{14}$ (d)

を表す。

(15) Yは-O-C(O)-、-C(O)-O-、-N(R⁷)-C(O)-、-C(O)-N(R⁷)-、-O-C(S)-、-C(S)-O-、-S-C(O)-、-C(O)-S-、-S-C(S)-、-C(S)-S-、-O-、-N(R⁷)-、-S(O)₁-、-C(O)-を表す。

(16) 置換アルキル基、置換アルケニル基、置換アルキニル基、置換シクロアルキル基、置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルケニルアルキル基、置換シクロアルケニルアルキル基、置換ツラルキル基、置換ペテロアリールアルキル基、または置換ペテロ環基における置換基は、同一または異なって1個または2個以上あってもよく、ハロゲン原子、ニトロ基、シアノ基、アルキル基、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルケニル基、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、シクロアルケニルを、カーロック・ストーの一尺のよりで、または式(e)

【化16】

(式中、B環はシクロアルキル基、シクロアルケニル基、アリール基またはヘテロ環基を表す)から選ばれる。ただし、当該置換基が置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキル基、置換シクロアルケニルアルキル基、置換アリール基、置換アラルキル基、置換ヘテロ環基、もしくは置換ヘテロアリールアルキル基における置換基である場合には、隣接する炭素原子に結合する置換基どうしが結合し、該炭素原子と一緒になって、4~8員環を形成してもよい。]で表されるスルホニルウレイドー(1H)ーピラゾール誘導体またはそれらの薬学的に許容される酸付加塩もしくはアルカリ付加塩、〔2〕 R1 がアルキル

基、アルケニル基、アルキニル基、シクロアルキル基、 シクロアルケニル基、アリール基、ヘテロアリール基、 ヘテロ環基、置換アルキル基、置換アルケニル基、置換 アルキニル基、置換シクロアルキル基、置換シクロアル ケニル基、置換アリール基、置換ヘテロアリール基もし くは置換へテロ環基である〔1〕記載のスルホニルウレ イドー(1H)ーピラゾール誘導体またはその酸付加塩 もしくはアルカリ付加塩、〔3〕 R2 およびR3 がそ れぞれ同一または異なっていてもよく、各々水素原子、 アルキル基、アルケニル基、アルキニル基、シクロアル キル基、シクロアルケニル基、ヘテロ環基、置換アルキ ル基、置換アルケニル基、置換アルキニル基、置換シク ロアルキル基、置換シクロアルケニル基、置換ヘテロ環 基である〔1〕記載のスルホニルウレイドー(1H)-ピラゾール誘導体またはその酸付加塩もしくはアルカリ 付加塩、〔4〕 R4 が水素原子、シアノ基、アルキル 基、アルケニル基、アルキニル基、シクロアルキル基、 シクロアルケニル基、アリール基、ヘテロ環基、ヘテロ アリールアルキル基、-CO₂-R⁷、置換アルキル 基、置換アルケニル基、置換アルキニル基、置換シクロ アルキル基、置換シクロアルケニル基、置換シクロアル キルアルキル基、置換シクロアルケニルアルキル基、置 換アリール基、置換アラルキル基、置換ヘテロアリール アルキル基、もしくは置換へテロ環基である〔1〕記載 のスルホニルウレイドー (1H) - ピラゾール誘導体ま たはその酸付加塩もしくはアルカリ付加塩、〔5〕 R 5 が水素原子、アルキル基、アルケニル基、アルキニル 基、シクロアルキル基、シクロアルケニル基、アリール 基、ヘテロ環基、ヘテロアリールアルキル基、置換アル キル基、置換アルケニル基、置換アルキニル基、置換シ クロアルキル基、置換シクロアルケニル基、置換シクロ アルキルアルキル基、置換シクロアルケニルアルキル 基、置換アリール基、置換アラルキル基、置換ヘテロ環 基、もしくは置換ヘテロアリールアルキル基である 〔1〕記載のスルホニルウレイド-(1H)-ピラゾー ル誘導体またはその酸付加塩もしくはアルカリ付加塩、 (6) YM-O-C(O)-, -C(O)-O-, - $N(R^7) - C(O) - C(O) - N(R^7) - C(O) -$ -O-、-S(O)₁-、-C(O)-である〔1〕記 載のスルホニルウレイドー(1H)-ピラゾール誘導体 またはその酸付加塩もしくはアルカリ付加塩、〔7〕 R1 がシクロヘキシル、2-シクロヘキシルエチル、3 ーシクロヘキシルプロピル、フェニル、ベンジル、2-フェニルエチル、3ーフェニルプロピル、4ーフェニル ブチル、1ーナフチル、2ーナフチル、3ートリル、4 ートリル、3-エチルフェニル、4-エチルフェニル、 3-n-プロピルフェニル、4-n-プロピルフェニ ル、3-イソプロピルフェニル、4-イソプロピルフェ ニル、3-n-ブチルフェニル、4-n-ブチルフェニ

ル、3-イソブチルフェニル、4-イソブチルフェニ

ル、3-メトキシフェニル、4-メトキシフェニル、3 ークロロフェニル、4ークロロフェニル、3ープロモフ ェニル、4ープロモフェニル、2ーチエニル、3ーチエ ニル、2-フリル、3-フリル、2-ピリジル、3-ピ リジル、4-ピリジルである〔1〕記載のスルホニルウ レイドー(1H)ーピラゾール誘導体またはその酸付加 塩もしくはアルカリ付加塩、〔8〕 R2 が水素原子、 メチル基またはベンジルであり、R3 が水素原子、メチ ル基、またはベンジル基である〔1〕記載のスルホニル ウレイドー(1H)ーピラゾール誘導体またはその酸付 加塩もしくはアルカリ付加塩、〔9〕 R4 が水素原 子、シアノ基、カルボキシル基、メトキシカルボニル、 エトキシカルボニル、プロピルオキシカルボニル、イソ プロピルオキシカルボニル、メチル、エチル、nープロ ピル、イソプロピル、フェニル、ベンジル、2-フェニ ルエチル、3-フェニルプロピル、4-フェニルブチ ル、シクロヘキシル、シクロヘキシルメチル、2-シク ロヘキシルエチル、3-シクロヘキシルプロピル、2-チエニル、3ーチエニル、2ーフリル、3ーフリル、2 ーピリジル、3ーピリジル、4ーピリジルである〔1〕 記載のスルホニルウレイドー(1H)-ピラゾール誘導 体またはその酸付加塩もしくはアルカリ付加塩、〔1 0) R5がビニル基、エチル基、n-プロピル基、イ ソプロピル基、シクロブチル、シクロペンチル、シクロ ヘキシル、シクロヘプチル、フェニル、ベンジル、2-フェニルエチル、3-フェニルプロピル、4-フェニル ブチル、5-フェニルペンチル、2-チエニル、チオフ ェンー2-イルーメチル、2-(チオフェンー2-イ ル) エチル、3-(チオフェン-2-イル) プロピル、 4-(チオフェン-2-イル)ブチル、チオフェン-3 -イルーメチル、2-(チオフェン-3-イル)エチ ル、3-(チオフェン-3-イル)プロピル、4-(チ オフェン-3-イル) ブチル、2-フリル、フラン-2 ーイルーメチル、2-(フラン-2-イル)エチル、3 - (フラン-2-イル)プロピル、4-(フラン-2-イル) ブチル、フラン-3-イル-メチル、2-(フラ ン-3-イル) エチル、3-(フラン-3-イル) プロ ピル、4-(フラン-3-イル)ブチルである〔1〕記 載のスルホニルウレイドー(1 H)ーピラゾール誘導体 またはその酸付加塩もしくはアルカリ付加塩、〔11〕

R6 がフェニルオキシカルボニルメチル、ベンジルオキシカルボニル、2-フェニルエチルオキシカルボニルメチル、3-フェニルプロピルオキシカルボニルメチル、4-フェニルブチルオキシカルボニルメチル、5-フェニルペンチルオキシカルボニルメチル、6-フェニルヘキシルオキシカルボニルメチル、シクロヘキシルオキシカルボニルメチル、2-シクロヘキシルエチルオキシカルボニルメチル、3-シクロヘキシルプロピルオキシカルボニルメチル、4-シクロヘキシルプチルオキシカルボニルメチル、4-シクロヘキシルプチルオキシカルボニルメチル、4-シクロヘキシルブチルオキシカルボ

ニルメチル、5-シクロヘキシルペンチルオキシカルボ ニルメチル、6-シクロヘキシルオキシカルボニルメチ ル、フェニルカルバモイルメチル、2-フェニルエチル カルバモイルメチル、3-フェニルプロピルカルバモイ ルメチル、4-フェニルブチルカルバモイルメチル、5 ーフェニルペンチルカルバモイルメチル、シクロヘキシ ルカルバモイルメチル、シクロヘキシルメチルカルバモ イルメチル、2-シクロヘキシルエチルカルバモイルメ チル、3-シクロヘキシルプロピルカルバモイルメチ ル、ジメチルカルバモイルメチル、ピペリジン-1-イ ルーカルボニルメチル、4ーメチルフェニルカルバモイ ルメチル、4ージメチルアミノフェニルカルバモイルメ チル、4-アセトキシフェニルカルバモイルメチル、4 -ヒドロキシフェニルカルバモイルメチル、4-ベンジ ルオキシフェニルカルバモイルメチル、4-エトキシカ ルボニルフェニルカルバモイルメチル、4-カルボキシ フェニルカルバモイルメチル、4 - ジメチルアミノメチ ルフェニルカルバモイルメチル、3-メチルフェニルカ ルバモイルメチル、3ージメチルアミノフェニルカルバ モイルメチル、3-アセトキシフェニルカルバモイルメ チル、3-ヒドロキシフェニルカルバモイルメチル、3 ーエトキシカルボニルフェニルカルバモイルメチル、3 ーカルボキシフェニルカルバモイルメチル、2-メチル フェニルカルバモイルメチル、2-ジメチルアミノフェ ニルカルバモイルメチル、2-アセトキシフェニルカル バモイルメチル、2-ヒドロキシフェニルカルバモイル メチル、2-エトキシカルボニルフェニルカルバモイル メチル、2-カルボキシフェニルカルバモイルメチル、 3-ピコリルカルバモイルメチルである〔1〕記載のス ルホニルウレイドー(1H)-ピラゾール誘導体または その酸付加塩もしくはアルカリ付加塩、〔12〕 R¹ がアルキル基、シクロアルキル基、シクロアルケニル 基、アリール基、アラルキル基、ヘテロアリールアルキ ル基、ヘテロ環基、置換アルキル基、置換シクロアルキ ル基、置換シクロアルケニル基、置換シクロアルキルア ルキル基、置換シクロアルケニルアルキル基、置換アリ ール基または置換アラルキル基であり、R2 およびR3 がそれぞれ同一または異なっていてもよく、各々水素原 子、アルキル基、置換アルキル基または置換アラルキル 基であり、R4 が水素原子、シアノ基、アルキル基、ア ルケニル基、アルキニル基、シクロアルキル基、シクロ アルケニル基、アリール基、置換アルキル基、置換アル ケニル基、置換アルキニル基、置換シクロアルキル基、 置換シクロアルケニル基、置換シクロアルキルアルキル 基、置換シクロアルケニルアルキル基、置換アリール基 または置換アラルキル基であり、R5 がアルキル基、シ クロアルキル基、シクロアルケニル基、アリール基、置 換アルキル基、置換アルケニル基、置換アルキニル基、 置換シクロアルキル基、置換シクロアルケニル基、置換 シクロアルキルアルキル基、置換シクロアルケニルアル

- キル基、置換アリール基、置換アラルキル基であり、Y が-O-C(O)-、-C(O)-O-、 $-N(R^7)-C(O)-$ 、 $-C(O)-N(R^7)-$ である〔1〕 記載のスルホニルウレイド-(1H)-ピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩、〔13〕 下記(1)-(45)いずれかの化合物である
- 〔1〕記載のスルホニルウレイドー(1H)ーピラゾール誘導体またはその酸付加塩もしくはアルカリ付加塩;
- (1) 4-シアノ-1-フェニル-3-フェノキシカル ボニルメチル-5- $\{3-(4-)$ ロロベンゼンスルホニル) ウレイド $\}-(1H)-ピラゾール$
- (2) $4-シアノ-1-フェニル-3-ベンジルオキシカルボニルメチル-5-(3-(4-クロロベンゼンスルホニル) ウレイド<math>\}$ -(1H) -ピラゾール
- (3) 4-シアノ-1-フェニル-3-(2-フェニル エトキシカルボニルメチル) -5-{3-(4-クロロ ベンゼンスルホニル) ウレイド}-(1H)-ピラゾー ル
- (4) 4-シアノ-1-フェニル-3-(3-フェニル プロピルオキシカルボニルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド (1H) -ピラゾール
- (5) $4-シアノ-1-フェニル-3-(4-フェニルブチルオキシカルボニルメチル) -5-<math>\{3-(4-2)$ ロロベンゼンスルホニル) ウレイド $\}-(1H)$ -ピラゾール
- (6) 4-シアノ-1-フェニル-3-(5-フェニルペンチルオキシカルボニルメチル) <math>-5-(3-(4-2) クロロベンゼンスルホニル) ウレイド -(1H) -ピラゾール
- $(7) 4-シアノ-1-フェニル-3-(n-ブチルオキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール$
- $(8) 4-シアノ-1-フェニル-3-(シクロヘシルメチルオキシカルボニルメチル)-5-<math>\{3-(4-2)$ ロロベンゼンスルホニル)ウレイド $\}-(1H)-$ ピラゾール
- $(10) 4-シアノ-1-フェニル-3-(2-フェニル-エトキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$
- (11)4-シアノ-1-フェニル-3-(フェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール
- (12) 4-シアノ-1-フェニル-3-(ベンジルカルバモイルメチル)-5-{3-(4-クロロベンゼン

- スルホニル) ウレイド $\}$ (1H) \mathbb{C} ラゾール (13) 4 \mathbb{C} $\mathbb{C$
- (14)4-シアノ-1-フェニル-3-(2-フェニルエチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール
- $(15) 4-シアノ-1-フェニル-3-(3-フェニルプロピルカルバモイルメチル) -5-<math>\{3-(4-20)\}$ (3-2)
- $(16)4-シアノ-1-フェニル-3-(4-フェニルブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$
- (17) 4-シアノ-1-フェニル-3-(ジメチルカルバモイルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド (1H) -ピラゾール(18) 4-シアノ-1-フェニル-3-(ピペリジン-1-イル-カルボニルメチル) -5-(3-(4-ク
- -1-イルーカルボニルメチル) -5- {3-(4-クロロベンゼンスルホニル) ウレイド} (1H) -ピラゾール
- (19)4-シアノ-1-フェニル-3-(シクロヘキシルメチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール
- $(20) 4-シアノ-1-フェニル-3-(シクロへキシルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール(21) 4-シアノ-1-フェニル-3-(n-ブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール(22) 4-シアノ-1-フェニル-3-(N-(4-フェニル) ブチル-N-エチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール$
- (23)4ーシアノー1ーフェニルー3ー(4ーメチルフェニルカルバモイルメチル)ー5ー{3ー(4ークロロベンゼンスルホニル)ウレイド}ー(1H)ーピラゾール
- $(24)4-シアノ-1-フェニル-3-(4-ジメチルアミノフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$
- $(25)4-シアノ-1-フェニル-3-(4-アセトキシフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(26) 4-シアノ-1-フェニル-3-(4-ヒドロ キシフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピ ラゾール

(27) 4-シアノ-1-フェニル-3-(4-ベンジルオキシフェニルカルバモイルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

 $(28) 4-シアノ-1-フェニル-3-(4-エトキシカルボニルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

 $(29)4-シアノ-1-フェニル-3-(4-カルボキシフェニルカルバモイルメチル)-5-<math>\{3-(4-2)$ 000ベンゼンスルホニル)ウレイド $\{-(1H)-2\}$ ラゾール

(30)4-シアノ-1-フェニル-3-(4-ジメチルアミノメチルフェニルカルバモイルメチル)-5-<math>(3-(4-2)ロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール

 $(31)4-シアノ-1-フェニル-3-(3-メチルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド<math>\}-(1H)-ピラゾール$

 $(32) 4-シアノ-1-フェニル-3-(3-ジメチルアミノフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(34) 4-シアノ-1-フェニル-3-(3-ヒドロキシフェニルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

 $(35) 4-シアノ-1-フェニル-3-(3-エトキシカルボニルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(36) 4-シアノ-1-フェニル-3-(3-カルボ キシフェニルカルバモイルメチル) -5-(3-(4-クロロベンゼンスルホニル) ウレイド - (1H) -ピラゾール

(37) 4-シアノ-1-フェニル-3-(2-メチルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド<math>-(1H)-ピラゾール

 $(38) 4-シアノ-1-フェニル-3-(2-ジメチルアミノフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール$

(39) 4 - シアノ - 1 - フェニル - 3 - (2 - アセト キシフェニルカルバモイルメチル) - 5 - (3 - (4 -クロロベンゼンスルホニル) ウレイド} - (1 H) - ピ ラゾール

(40) 4-シアノ-1-フェニル-3-(2-ヒドロキシフェニルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール

(42) 4-シアノ-1-フェニル-3-(2-カルボ キシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピ ラゾール

(45) 4-シアノ-1-フェニル-3-{(4-アミノブチル) カルバモイルメチル}-5-{3-(4-アミロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾール、〔14〕一般式(1) 【化17】

 $(R^1 \setminus R^2 \setminus R^3 \setminus R^4 \setminus R^5$ および R^6 は(1)と同じ意味を表す)で表される化合物またはその薬学的に

許容される酸付加塩もしくはアルカリ付加塩を含有する 医薬、〔15〕一般式(1) 【化18】

(R¹、R²、R³、R⁴、R⁵ およびR⁶ は〔1〕と同じ意味を表す)で表される化合物またはそれらの薬学的に許容される酸付加塩もしくはアルカリ付加塩を含有する循環器系の疾患、気管収縮、神経性障害、分泌系不

全、血管障害、潰瘍、腫瘍、胃粘膜障害、エンドトキシンショック、敗血症または腎障害の治療薬または予防薬、〔16〕一般式(1) 【化19】

(R¹、R²、R³、R⁴、R⁵ およびR⁶ は〔1〕と同じ意味を表す)で表される化合物またはそれらの薬学的に許容される酸付加塩もしくはアルカリ付加塩を含有する高血圧症、動脈硬化、心筋梗塞、狭心症、心不全、不整脈、クモ膜下出血後の脳血管れん縮、脳梗塞、腎不

全、肺高血圧、気管支喘息、バージャー病、高安動脈炎、レイノー病、糖尿病の合併症、エンドトキシンショック、敗血症、潰瘍などの治療薬および予防薬、および〔17〕一般式(1)

【化20】

 $(R^1 \ R^2 \ R^3 \ R^4 \ R^5$ および R^6 は〔1〕と同じ意味を表す)で表される化合物またはそれらの薬学的に許容される酸付加塩もしくはアルカリ付加塩を含有するエンドセリン変換酵素阻害剤、に関する。

【0006】本発明における各種の基を以下に説明する。アルキル基としては、他の置換基の部分である場合を含め、例えばメチル、エチル、プロピル、2ープロピル、ブチル、2ーブチル、2ーメチルプロピル、1,1ージメチルエチル、ペンチル、ヘキシル、ヘプチル、オクチル、などの直鎖または分枝した炭素原子数8個以下のアルキル基が挙げられる。置換アルキル基としては好ましくはシクロアルキルアルキル基、シクロアルケニルアルキル基、アラルキル基等が挙げられる。アルケニルをしては、他の置換基の部分である場合を含め、例えばビニル、アリル、2ープロペニル、1ープテニル、2ーブテニル、3ーブテニル、1ーペンテニル、2ーペン

テニル、3ーペンテニル、4ーペンテニル、1ーへキセニル、2ーヘキセニル、3ーヘキセニル、4ーヘキセニル、5ーヘキセニル、1ーヘプテニル、2ーヘプテニル、3ーペプテニル、4ーペプテニル、5ーペプテニル、6ーペプテニル、1ーオクテニル、2ーオクテニル、3ーオクテニル、4ーオクテニル、5ーオクテニル、5ーオクテニル、5ーオクテニル、7ーオクテニル、などの直鎖または分枝した炭素原子数2~8個のアルケニル基が挙げられる。

【0007】アルキニル基としては、他の置換基の部分である場合を含め、例えばエチニル、1ープロピニル、2ープロピニル、1ーブチニル、2ープチニル、3ープチニル、1ーペンチニル、1ーペキシニル、2ーペキシニル、3ーペナチニル、4ーペナニル、4ーペナニル、5ーペキシニル、1ーペプチニル、2ーペプチニル、3ーペプチニル、3ーペプチニル、3ーペプチニ

ル、4-ヘプチニル、5-ヘプチニル、6-ヘプチニ ル、1-オクチニル、2-オクチニル、3-オクチニ ル、4-オクチニル、5-オクチニル、6-オクチニ ル、7-オクチニルなどの直鎖または分枝した炭素原子 数2~8個のアルキニル基が挙げられる。シクロアルキ ル基としては、他の置換基の部分である場合を含め、例 えばシクロプロピル、シクロブチル、シクロペンチル、 シクロヘキシル、シクロヘプチル、シクロオクチル、シ スーデカリンー1ーイル、シスーデカリンー2ーイル、 トランスーデカリンー1ーイルなどの炭素原子数3~1 2個のシクロアルキル基が挙げられる。Do およびEo における低級アルキレン、低級アルケニレン及び低級ア ルキニレンとしては、例えば各々、炭素原子数6個以下 の基が挙げられ、好ましくは例えば式:-DE1-DE $_2 - DE_3 - DE_4 - ($ 式中、 $DE_1 \setminus DE_2 \setminus DE_3$ 及びDE4は、互いに同一または異なって、各々単結合 またはメチレン基を表すか、または隣り合う二つが一緒 になって-CH=CH-または-CH≡CH-を表す。 但し、DE₁、DE₂、DE₃及びDE₄の内少なくと も一つは単結合ではない)で示される基を挙げることが できる。Ao およびBo におけるアルキレン、アルケニ レン及びアルキニレンとしては、例えば各々炭素原子数 8個以下の基が挙げられ、更に具体的には例えば式:- $AB_1 - AB_2 - AB_3 - AB_4 - AB_5 - AB_6 - A$ $B_7 - AB_8 - (\exists + AB_1 \setminus AB_2 \setminus AB_3 \setminus AB$ 4、AB₅、AB₆、AB₇及びAB₈は、互いに同一 または異なって、各々単結合またはメチレン基を表す か、または隣り合う二つが一緒になって-CH=CH-または-CH≡CH-を表す。但し、AB₁、AB₂、 AB₃、AB₄、AB₅、AB₆、AB₇及びAB₈の 内少なくとも一つは単結合ではない)で示される基を挙 げることができる。

【0008】シクロアルキルアルキル基としては、例え ばシクロプロピルメチル、シクロブチルメチル、シクロ ペンチルメチル、シクロヘキシルメチル、シクロヘプチ ルメチル、シクロオクチルメチル、1-シクロプロピル エチル、2-シクロブチルエチル、1-シクロペンチル エチル、1-シクロヘキシルエチル、2-シクロヘプチ ルエチル、2-シクロオクチルエチルなどの炭素原子数 4~14個のシクロアルキルアルキル基が挙げられる。 シクロアルケニル基としては、他の置換基の部分である 場合を含め、例えば1-シクロブテニル基、1-シクロ ペンテニル基、2-シクロペンテニル基、3-シクロペ ンテニル基、1-シクロヘキセニル基、2-シクロヘキ セニル基、3ーシクロヘキセニル基、1ーシクロヘプテ ニル基、2-シクロヘプテニル基、3-シクロヘプテニ ル基、4-シクロヘプテニル基、1-シクロオクテニル 基、2-シクロオクテニル基、3-シクロオクテニル 基、4-シクロオクテニル基などの炭素原子数3~8個 のシクロアルケニル基が挙げられる。

【0009】シクロアルケニルアルキル基としては、例 えば1-シクロブテニルメチル、1-シクロペンテニル メチル、2-シクロペンテニルメチル、3-シクロペン テニルメチル、1-シクロヘキセニルメチル、2-シク ロヘキセニルメチル、3-シクロヘキセニルメチル、1 ーシクロヘプテニルメチル、2ーシクロヘプテニルメチ ル、3-シクロヘプテニルメチル、4-シクロヘプテニ ルメチル、1-シクロオクテニルメチル、2-シクロオ クテニルメチル、3-シクロオクテニルメチル、4-シ クロオクテニルメチル、2-(1-シクロプテニル)-エチル、1-(1-シクロペンテニル)-エチル、2-(2-シクロペンテニル)ーエチル、2-(3-シクロ ペンテニル)-エチル、2-(1-シクロヘキセニル) -エチル、2-(2-シクロヘキセニル)-エチル、2 (3-シクロヘキセニル)ーエチル、1-(1-シク ロヘプテニル)ーエチル、2-(2-シクロヘプテニ ル)ーエチル、2-(3-シクロヘプテニル)ーエチ ル、2-(4-シクロヘプテニル)-エチル、2-(1 ーシクロオクテニル)ーエチル、2-(2-シクロオク テニル)ーエチル、2-(3-シクロオクテニル)ーエ チル、2-(4-シクロオクテニル)-エチルなどの炭 素原子数4~14個のシクロアルケニルアルキル基が挙 げられる。

【0010】アリール基としては、他の置換基の部分である場合を含め、例えばフェニル、1ーナフチル、2ーナフチルなどの炭素原子数10個以下のアリール基が挙げられる。アラルキル基としては、例えばベンジル、1ーフェニルエチル、2ーフェニルプロピル、1ーフェニルプロピル、3ーフェニルブチル、2ーフェニルブチル、1ーナフチルメチル、2ーナフチルメチル、2ー(1ーナフチル)ーエチル、2ー(2ーナフチル)ーエチル)ープロピル、2ー(2ーナフチル)ープロピル、4ー(1ーナフチル)ーブチル、3ー(2ーナフチル)ーブチルなどの炭素原子数14以下のアラルキル基が挙げられる。

【0011】へテロ環基としてはヘテロアリール基、または窒素、酸素、硫黄原子から選ばれた2~3個のヘテロ原子と炭素原子で構成される5~6員環の不飽和複素環基もしくは飽和複素環基が挙げられる。飽和複素環基としては2ーピペラジル、1ーモルホリニル、2ーモルホリニル、3ーモルホリニルなどが挙げられる。不飽和複素環基としてはイミダゾリンー2ーイルなどが挙げられる。へテロアリール基としては、他の置換基の部分である場合を含め、例えば窒素原子を1~4個含む5~6員環の基、窒素原子を1~2個と酸素原子を1個もしくは硫黄原子を1個をむ5~6員環の基、酸素原子を1個もしくは硫黄原子を1個含む5員環の基、あるいは上記の環同士または上記の環とベンゼン環もしくはナフタ

レン環が縮合した基が挙げられる。具体的には、2-ピリジル、3-ピリジル、4-ピリジル、2-チエニル、3-チエニル、2-フリル、3-フリル、1-イミダゾリル、2-ピラゾリル、2-ピロリル、2-チアゾリル、3-イソチアゾリル、2-オキサゾリル、3-イソオキサゾリル、3-キノリル、4-キノリル、2-インドリニル、3-(1H)-インダゾリル、8-プリニル、2-キナゾリニル、3-シンノリニル、2-ナフチリジニルなどが挙げられる。

【0012】ヘテロアリールアルキル基としては、例え ば直鎖または分岐した炭素原子数が1~8個のアルキル 基に窒素原子を1~4個含む5~6員環の基、窒素原子 を1~2個と酸素原子を1個もしくは硫黄原子を1個を 含む5員環の基、酸素原子を1個もしくは硫黄原子を1 個含む5~6員環などの基が結合したものが挙げられ る。具体的には、2ーピリジルメチル、1-(2-ピリ ジル)ーエチル、3ーピリジルメチル、2ー(3ーピリ ジル)ーエチル、3ー(3ーピリジル)ープロピル、4 -ピリジルメチル、2-チエニルメチル、3-(2-チ エニル) -2-メチループロピル、3-チエニルメチ ル、4-(2-チエニル)-3-メチルーブチル、2-(2-フリル) -エチル、4-(2-フリル) -ペンチ ル、3-フリルメチル、5-(3-フリル)-3-メチ ルーペンチル、2-イミダゾリルメチル、3-(1-ピ ラゾリル)ープロピル、3-(3-ピラゾリル)ープロ ピル、1-ピロリルメチル、3-(1-ピロリル)-ブ チル、2-ピロリルメチル、2-チアゾリルメチル、4 - (2-チアゾリル) -ペンチル、3-イソチアゾリル メチル、3-(2-オキサゾリル)-ペンチル、3-イ ソオキサゾリルメチルなどが挙げられる。

 $[0013]-N(R^7)R^8,-C(0)-N$ (R^7) R^8 \sim C(S) \sim $N(R^7)$ R^8 \sim \sim SO_2 $-N(R^7)R^8 - N(R^7) - C(O) - R^8 N(R^9)R^{10}$ $-C(O)-N(R^9)R^{10}$ - $C(S) - N(R^9) R^{10} - SO_2 - N(R^9) R$ 10、-N(R9)-C(O)-R10の場合にR7と R® またはR® とR10 が互いに結合して形成する、環 中に他のヘテロ原子を含んでもよい飽和3員ないし8員 環としては、一つの窒素原子の他に窒素、酸素、硫黄原 子から選ばれた0~2個のヘテロ原子と炭素原子で構成 される3~8員環の不飽和環もしくは飽和環が挙げられ る。例えば、-N(R⁷) R⁸ または-N(R⁹) R 10としては、ピペリジン-1-イル、ピロリジン-1 ーイル、モルホリノ、ピペラジン-1-イルが挙げら h, -C(O)-N(R 7)R 8 $\pm h$ c $\pm h$ C(O)-N(R9) R10 としては、ピペリジン-1-イルーカル ボニル、ピロリジン-1-イルーカルボニル、モルホリ ノカルボニル、ピペラジン-1-イル-カルボニルが挙 FSAN, -C(S)-N(R⁷)R⁸ <math>shcharpa

【0014】置換アルキル基、置換アルケニル基、置換 アルキニル基における置換基として好ましくは、同一ま たは異なって1個または2個以上あってもよく、ハロゲ ン原子、ニトロ基、シアノ基、シクロアルキル基、シク ロアルケニル基、アリール基、-Eo-RY、式(e)、 $-OR^{9}$ $\langle -N (R^{9}) R^{10} \langle -C (O) -R^{9} \langle C(S)-R^{9}$, $-CO_{2}-R^{9}$, -O-C(O)-R $9 - C(0) - NR9R^{10} - S(0)_{1} - R^{8} SO_2-N(R^9)R^{10}$ 、 $state(R^9)-C$ (O) -R1 0 が挙げられる。置換シクロアルキル基、 置換シクロアルケニル基、置換シクロアルキルアルキル 基、置換シクロアルケニルアルキル基、置換アリール 基、置換アラルキル基、置換ヘテロアリールアルキル 基、または置換ヘテロ環基における置換基として好まし くは、同一または異なって1個または2個以上あっても よく、ハロゲン原子、ニトロ基、シアノ基、アルキル 基、アルケニル基、アルキニル基、シクロアルキル基、 シクロアルキルアルキル基、シクロアルケニル基、シク ロアルケニルアルキル基、アリール基、アラルキル基、 ヘテロアリールアルキル基、 $-E_0 - R^Y$ 、式(e)、- $OR^{9} \setminus -N (R^{9}) R^{10} \setminus -C (O) -R^{9} \setminus -C$ $(S) - R^{9} = -CO_{9} - R^{9} = -O - C(O) R^9 = C(O) - NR^9 R^{10} = S(O)_1 - R^8$ $-SO_2-N(R^9)R^{10}$ 、または $-N(R^9)-C$ (O) -R¹⁰ が挙げられる。

【0015】置換シクロアルキル基、置換シクロアルケニル基、置換シクロアルキルアルキル基、置換アラルキルケニルアルキル基、置換アリール基、置換アラルキル基、置換へテロ環基、または置換へテロアリールアルキル基の場合において、隣接する炭素原子に結合する置換基どうしが結合し、該炭素原子と一緒になって、4~8員環を形成したものとしては、窒素、酸素、硫黄原子から選ばれた0~2個のヘテロ原子と炭素原子で構成される4~8員環の不飽和環もしくは飽和環が挙げられる。例えば、置換シクロアルキル基としてはパーヒドロインドールー5・イル、パーヒドロベンゾフラン・5・イル、置換シクロアルケニル基としては、2、3、4、5、6、7~ヘキサヒドロー(1H)・インドールー5

ーイル、5、6、7、8ーテトラヒドロキノリンー7ー イル、置換シクロアルキルアルキル基としては、2-(パーヒドロインドールー5ーイル)ーエチル、2ー (パーヒドロベンゾフラン-5-イル)-エチル、置換 シクロアルケニルアルキル基としては、2-(2、3、 4、5、6、7-ヘキサヒドロー(1H)-インドール -5-イル) -エチル、2-(5、6、7、8-テトラ ヒドロキノリン-7-イル)-エチル、置換アリール基 としては2、3ージヒドロー(1H)ーインドールー5 ーイル、2、3ージヒドロベンゾフランー6ーイル、 1、3-ジオキサインダン-4-イル、置換アラルキル 基としては、2、3-ジヒドロー(1H)ーインドール -5-イルーメチル、クロマン-6-イルーメチル、置 換へテロ環基としては、5、6、7、8~テトラヒドロ キナゾリンー6ーイル、置換ヘテロアリールアルキルと しては、2-(5、6、7、8-テトラヒドロキナゾリ ン-6-イル) -エチル等が挙げられる。

【0016】 R^1 として好ましくは、シクロヘキシル、2ーシクロヘキシルエチル、3ーシクロヘキシルプロピル、フェニル、ベンジル、2ーフェニルエチル、3ーフェニルプロピル、4ーフェニルブチル、1ーナフチル、2ーナフチル、3ートリル、3ーエチルフェニル、4ーエチルフェニル、3ーn-プロピルフェニル、4ーn-ブチルフェニル、3ーイソプロピル、3ーn-ブチルフェニル、4ーn-ブチルフェニル、4ーイソプロピル、3ーイソブチルフェニル、4ーメトキシフェニル、3ークロロフェニル、4ークロロフェニル、3ーブロモフェニル、4ーブロモフェニル、2ーチエニル、3ーチエニル、2ーフリル、3ーピリジルまたは4ーピリジルなどが挙げられる。

【0017】R²として好ましくは、水素原子、メチル基、ベンジル基が挙げられる。R³として好ましくは、水素原子、メチル基、ベンジル基が挙げられる。R⁴として好ましくは、水素原子、シアノ基、カルボキシル基、メトキシカルボニル、エトキシカルボニル、nープロピルオキシカルボニル、イソプロピルオキシカルボニル、メチル、エチル、nープロピル、イソプロピル、フェニル、ベンジル、2-フェニルエチル、3-フェニルプロピル、4-フェニルブチル、シクロヘキシルメチル、2-シクロヘキシルエチル、3-シクロヘキシルプロピル、2-チエニル、3-チエニル、2-フリル、3-フリル、2-ピリジル、3ーピリジルまたは4ーピリジルが挙げられる。

【0018】R⁵として好ましくは、ビニル基、エチル基、n-プロピル基、イソプロピル基、シクロブチル、シクロペンチル、シクロペキシル、シクロヘプチル、フェニル、ベンジル、2-フェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチ

ル、2ーチエニル、チオフェンー2ーイルーメチル、2 ー(チオフェンー2ーイル)ーエチル、3ー(チオフェ ンー2ーイル)ープロピル、4ー(チオフェンー2ーイ ル)ーブチル、チオフェンー3ーイルーメチル、2ー (チオフェンー3ーイル)ーエチル、3ー(チオフェン ー3ーイル)ープロピル、4ー(チオフェンー3ーイ ル)ーブチル、2ーフリル、フランー2ーイルーメチ ル、2ー(フランー2ーイル)ーエチル、3ー(フラン ー2ーイル)ープロピル、4ー(フランー2ーイル)ー ブチル、フランー3ーイルーメチル、2ー(フランー3 ーイル)ーエチル、3ー(フランー3ーイル)ープロピ ルまたは4ー(フランー3ーイル)ーブチルが挙げられ る。

【0019】R⁶として好ましくは、フェニルオキシカ ルボニルメチル、ベンジルオキシカルボニル、2-フェ ニルエチルオキシカルボニルメチル、3-フェニルプロ ピルオキシカルボニルメチル、4-フェニルブチルオキ シカルボニルメチル、5-フェニルペンチルオキシカル ボニルメチル、6-フェニルヘキシルオキシカルボニル メチル、シクロヘキシルオキシカルボニルメチル、シク ロヘキシルメチルオキシカルボニルメチル、2-シクロ ヘキシルエチルオキシカルボニルメチル、3-シクロヘ キシルプロピルオキシカルボニルメチル、4-シクロへ キシルブチルオキシカルボニルメチル、5-シクロヘキ シルペンチルオキシカルボニルメチル、6-シクロヘキ シルオキシカルボニルメチル、フェニルカルバモイルメ チル、2-フェニルエチルカルバモイルメチル、3-フ ェニルプロピルカルバモイルメチル、4-フェニルブチ ルカルバモイルメチル、5ーフェニルペンチルカルバモ イルメチル、シクロヘキシルカルバモイルメチル、シク ロヘキシルメチルカルバモイルメチル、2-シクロヘキ シルエチルカルバモイルメチル、3-シクロヘキシルプ ロピルカルバモイルメチル、ジメチルカルバモイルメチ ル、ピペリジン-1-イルーカルボニルメチル、4-メ チルフェニルカルバモイルメチル、4-ジメチルアミノ フェニルカルバモイルメチル、4-アセトキシフェニル カルバモイルメチル、4-ヒドロキシフェニルカルバモ イルメチル、4ーベンジルオキシフェニルカルバモイル メチル、4 -エトキシカルボニルフェニルカルバモイル メチル、4-カルボキシフェニルカルバモイルメチル、 4-ジメチルアミノメチルフェニルカルパモイルメチ ル、3-メチルフェニルカルバモイルメチル、3-ジメ チルアミノフェニルカルバモイルメチル、3-アセトキ シフェニルカルバモイルメチル、3-ヒドロキシフェニ ルカルバモイルメチル、3-エトキシカルボニルフェニ ルカルバモイルメチル、3-カルボキシフェニルカルバ モイルメチル、2-メチルフェニルカルバモイルメチ ル、2-ジメチルアミノフェニルカルバモイルメチル、 2-アセトキシフェニルカルバモイルメチル、2-ヒド ロキシフェニルカルバモイルメチル、2-エトキシカル

ボニルフェニルカルバモイルメチル、2-カルボキシフェニルカルバモイルメチル、3-ピコリルカルバモイルメチルメチルが挙げられる。

【0020】本発明化合物は1個若しくは複数個の不斉 炭素原子或いは幾何異性体を含んでいる場合があり、立 体異性体が存在する。本発明化合物には各異性体の混合 物や単離されたものを含む。

【0021】一般式(1)で表される本発明化合物は、 例えば以下に示す方法によって製造することができる。 【0022】(A) 【化21】

(式中、 R^1 , R^3 、 R^4 、 R^6 、 R^6 は前記と同義であり、 R^2 は R^2 と同じ意味を表し(但し水素原子は除く)、 R^6 ・は R^6 、もしくは $L-A_0$ ーを表し(但し、Lは後記(H)で説明する基である)必要ならば適当な保護基で保護されていてもよく、Wは求核攻撃により容易に置換しうる脱離基を表す。 $}$

化合物(1b)は、化合物(la)と1~5当量の化合物 (3)とを適当な塩基の存在下、適当な触媒の存在下ま たは非存在下、通常用いられる溶媒中、冷却下、室温下 または加熱下反応させることにより、合成することがで きる。前記反応において、塩基としては、水酸化リチウ ム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウ ム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリ ウムなどの無機塩基、水素化ナトリム、水素化リチウ ム、水素化カリウム、水素化カルシウムなどの金属水素 化物、ブチルリチウム、フェニルリチウム、ナトリウム エトキシド、ナトリウムメトキシド、ナトリウムter t-ブトキシド、カリウムtert-ブトキシド、リチ ウムアミド、リチウムジイソプロピルアミドなどの有機 金属塩基、トリエチルアミン、ピリジン、ジイソプロピ ルエチルアミン、1、4-ジアザビシクロ[5.4.0] ーウンデセー7ーエンなどの有機塩基が、触媒としては 硫酸水素テトラーnーブチルアンモニウム、リン酸二水 素テトラブチルアンモニウム、塩化テトラブチルアンモ

ニウム、pートルエンスルホン酸テトラエチルアンモニウム等が、溶媒としてはヘキサン、ペンタン等の脂肪族性溶媒、ベンゼン、トルエン、モノクロロベンゼンなどの芳香族性炭化水素系溶媒、ジクロロメタン、クロロホルム、1、2ージクロロエタンなどのハロゲン化炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、テトラヒドロフラン、エーテル、1、4ージオキサン、1、2ージメトキシエタンなどのエーテル系溶媒、ピリジンなどの塩基性溶媒、またはそれらの混合溶媒が挙げられる。脱離基Wとしては、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基、置換ベンゼンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、トリクロロアセトイミデート等が挙げられる。

【0023】一般式(1a)で表される本発明化合物は、例えば以下(B)~(E)に示す方法によって製造することができる。

(B) 本発明化合物(1a)は、化合物(4)と1~5当量の化合物(5)とを塩基の存在下或いは非存在下、通常用いられる溶媒中、冷却下、室温または加熱下反応させることによって得ることができる。__

【化22】

《式中、R¹、R³, R⁴, R⁵, R⁶ は前記と同義である。}

前記反応において、塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムなどの無機塩基、水素化ナトリム、水素化リチウム、水素化カリウム、水素化カルシウムなどの金属水素化物、ブチルリチウム、フェニルリチウム、ナトリウムエトキシド、ナトリウムメトキシド、ナトリウムエーブトキシド、リリウムギーブトキシド、リチウムジイソプロピルアミドなどの有機金属塩基、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン、1、4ージアザビシクロ[5.4.0]ーウンデセー7ーエンなどの有機塩基が、溶媒としてはベンゼン、トルエン、モノクロロベンゼンなどの芳香族性炭化水素溶媒、ジクロロメタン、クロロホルム、1、2ージ

クロロエタンなどのハロゲン化炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、テトラヒドロフラン、エーテル、1、4ージオキサン、1、2ージメトキシエタンなどのエーテル系溶媒、ピリジンなどの塩基性溶媒、またはそれらの混合溶媒が挙げられる。式(5)で表される原料化合物は市販されているか、もしくは文献記載の方法で合成することができる。 {例えば、特開昭51-26816、Tetrahedron Letters,34,2839,(1993)}

【0024】(C) 本発明化合物(1a)は、化合物(4)と1~5当量の化合物(6)とを適当な塩基および1~5当量の化合物(7)の存在下、不活性溶媒中、冷却下、室温または加熱下、反応させることによって得ることができる。

【化23】

$$R^{6}$$
 R^{4}
 R^{5}
 R^{3}
 R^{6}
 R^{6}

(式中、R¹、R³、R⁴、R⁵、R⁶¹は前記と同義であり、VおよびZは求核攻撃により容易に置換しうる脱離基を表す)

本反応において、使用される塩基および溶媒は前記 (B) で述べたものと同様の物が挙げられる。

【0025】(D)本発明化合物(1a)は、化合物

(4)と1~5当量の化合物(7)とを適当な塩基の存

在下、不活性溶媒中、冷却下、室温または加熱下反応させることによって化合物(8)とし、これを1~5当量の化合物(6)とを適当な塩基の存在下、不活性溶媒中、冷却下、室温または加熱下反応させることにより、得ることができる。

【化24】

$$R^{6'}$$
 R^{4}
 R^{5}
 R^{3}
 R^{5}
 R^{5}
 R^{3}
 R^{5}
 R^{5}

 ${ 式中、R^1 、 R^3 、 R^4 、 R^5 、 R^6 ^6 ~ \ VおよびZ は前記と同義である。 }$

本反応において、使用される塩基および溶媒は前記

(B) で述べたものと同様の物が挙げられる。

【0026】(E)本発明化合物(1a)は、化合物

(6)と1~5当量の化合物(7)とを適当な塩基の存

在下、不活性溶媒中、冷却下、室温または加熱下反応させることによって式(9)で表される化合物を得、これと1~5当量の化合物(4)とを適当な塩基の存在下、不活性溶媒中、冷却下、室温下、加熱下反応させることにより得ることができる。

【化25】

$$H_2N - S - R^1$$
 (6)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (7)
 (8)
 (9)
 (9)
 (9)
 $(1a)$
 $(1a)$

{式中、 R1、R3、R4、R5、R6 '、 VおよびZは前

記と同義である。

本反応において、使用される塩基および溶媒は前記(B)で述べたものと同様の物が挙げられる。化合物(7)、(8)及び(9)において、脱離基V及びZとしては同一もしくは互いに独立して、低級アルコキシ基、アラルキルオキシ基、アリールオキシ基、置換アリールオキシ基、1-イミダゾリル基、トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、トリョードメチル基等のトリハロメチル基及びハロゲン原子

等が挙げられる。

【0027】(F)本発明化合物(1c)は、化合物(10)を適当な塩基の存在下あるいは非存在下、不活性溶媒中、冷却下、室温または加熱下、1~30当量のイソシアネート化剤と反応させることによって化合物(15)とした後に(6)とを適当な塩基の存在下、不活性溶媒中、冷却下、室温または加熱下反応させることによって得ることができる。

【化26】

《式中、R¹、R⁴、R⁵、R⁶およびR⁶ は前記と同義 である。}

本反応において、使用される塩基および溶媒は前記 (B)で述べたものと同様のものがあげられる。イソシ アネート化剤としては、ホスゲン、トリホスゲン等があ げられる。

【0028】(G)原料化合物(4)は下記方法により 化合物(10)及び化合物(4')として製造すること が出来る。

【化27】

$$R^{6'}$$
 R^{10}
 R^{4}
 R^{5}
 R^{10}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 $R^{6'}$
 $R^{6'}$
 R^{4}
 R^{5}
 R^{5}

(式中、R⁴、R⁵、R⁶、 乙は前記と同義であり、R³ はR³ と同じ意味を表し(但し水素原子は除く)、R³ およびR³ はーCH(R³)R³ がR³ (但し、α位に水素原子を持つ基に限る)と同じ意味になる様な基を表し、R¹⁰は水素原子、アルキル基、アリール基、置換アルキル基、置換アリール基を表す。)原料化合物(4))は、化合物(10)と1~5当量の化合物(13)とを適当な塩基の存在下、通常用いられる溶媒中、冷却下、室温または加熱下反応させることによって得ることができるか、或いは1~5当量の化合物(10)と化合物(14)とを還元的Nーアルキル化反応を行うことによって得ることができる。式(10)で表される原料化合物は市販されているか、もしくは文献記載〔例えば J. Org. Chem., 21,1240, (1956),特開昭

62-195376号、Aust. J.Chem., 42, 747, (1989), J.Med.Chem., 3263, 35, (1992)、Chemcal Abstract56, 1459, (1962),米国特許第4622330号、特開昭60-115581号、J. Med. Chem. 34, 2892, (1991),特表平6-503069号、J.Am.Chem.Soc., 81, 2456, (1959)、Chemical abstract. 79, 146518, Heterocycles. 26,613, (1987), J. Org. Chem. 58, 6155, (1993)〕の方法で合成することができるか、あるいは化合物(11)と1~5当量の化合物(12)とを通常用いられる溶媒中、酸或いは塩基の存在下、冷却下、室温または加熱下反応させることにより得ることができる。化合物(10)と化合物(13)とを反応させる場合は、塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナ

トリウム、炭酸カリウム、炭酸水素カリウムなどの無機 塩基、水素化ナトリム、水素化リチウム、水素化カリウ ム、水素化カルシウムなどの金属水素化物、ブチルリチ ウム、フェニルリチウム、ナトリウムエトキシド、ナト リウムメトキシド、ナトリウムセertーブトキシド、 カリウムtertーブトキシド、リチウムアミド、リチ ウムジイソプロピルアミドなどの有機金属塩基、トリエ チルアミン、ピリジン、ジイソプロピルエチルアミンな どの有機塩基が、溶媒としてはベンゼン、トルエンなど の芳香族性炭化水素系溶媒、ジクロロメタン、クロロホ ルム、1、2-ジクロロエタンなどのハロゲン化炭化水 素溶媒、ジメチルホルムアミド、ジメチルアセトアミド などのアミド系溶媒、テトラヒドロフラン、エーテル、 1、4-ジオキサン、1、2-ジメトキシエタンなどの エーテル系溶媒、ピリジンなどの塩基性溶媒、またはそ れらの混合溶媒が挙げられる。化合物(10)を化合物 (14)で還元的N-アルキル化を行う場合は、化合物 (10)と化合物(14)を水素化シアノほう素ナトリ ウムおよび適当な酸の存在下、一般的に用いられる溶媒

$$R^{Z}$$
- B_{0} - G
(16)
L- A_{0} - T
(17)

(式中、 R^z 、 B_0 、Y、および A_0 は前記と同じ意味を表し、Tは式(1a)、(1b)、(1c)、(4)、(4')、(8)、(10)、(11)または(15)の化合物の R^6 以外の部分構造を表す。) R^6 が $L-A_0$ 一の場合には、(1a)、(1b)、(1c)、(4)、(4')、(8)、(10)、(1) および(15)のいずれかの化合物で(16) および(17)(式中、Gおよび Lは縮合反応、置換反応、還元的アルキル化反応等に付すのに適当な官能基を表す。)を適当な塩基の存在下、または非存在下、通常用いられる溶媒中、冷却下、室温下または加熱下において縮合反応、置換反応、還元的N-アルキル化反応等を行うことにより、本発明化合物(1)の R^6 に相当する $R^z-B_0-Y-A_0-$ を構築することが出来る。(1)縮合反応は、Gがカルボン酸、チオカルボン酸、

(i)縮合反応は、Gがカルボン酸、チオカルボン酸、スルホン酸、酸クロリド、スルホニルクロリド、混合酸無水物等であり、Lがアミノ基、水酸基あるいはチオール基である場合、もしくはLがカルボン酸、チオカルボン酸、スルホン酸、酸クロリド、スルホニルクロリド、混合酸無水物等であり、 Gがアミノ基、水酸基あるいはチオール基である場合に行うことが出来る。縮合剤としては、N、N'ー(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド、ジシクロヘキシルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩等が挙げられ、塩基および溶媒としては前記(B)で述べたものと同様のものがあ

中、冷却下、室温下または加熱下反応させることにより 得ることができるか、或いは化合物(10)と化合物 (14)を適当な酸および触媒の存在下、水素雰囲気下 で接触還元反応を行うことにより得ることができる。酸 としては、塩酸、硫酸、酢酸、硝酸、リン酸、トリフル オロ酢酸等が、触媒としては、パラジウムー炭素、二酸 化白金ー炭素、ロジウムー炭素等が挙げられ、溶媒とし てはヘキサン、ペンタン等の脂肪族性溶媒、ベンゼン、 トルエン、モノクロロベンゼンなどの芳香族性炭化水素 系溶媒、ジクロロメタン、クロロホルム、1、2-ジク ロロエタンなどのハロゲン化炭化水素溶媒、ジメチルホ ルムアミド、ジメチルアセトアミドなどのアミド系溶 媒、テトラヒドロフラン、エーテル、1、4-ジオキサ ン、1、2~ジメトキシエタンなどのエーテル系溶媒、 ピリジンなどの塩基性溶媒、メタノール、エタノール、 イソプロパノール、セーブタノール、フェノール等のア ルコール系溶媒またはそれらの混合溶媒が挙げられる。 [0029] (H)

【化28】

$$\rightarrow R^{Z}-B_{0}-Y-A_{0}-T$$
(18)

げられる。

(ii)置換反応は、Gが塩素原子、臭素原子、ヨウ素 原子等のハロゲン原子、メタンスルホニルオキシ基、ベ ンゼンスルホニルオキシ基、トルエンスルホニルオキシ 基、置換ベンゼンスルホニルオキシ基、トリフルオロメ タンスルホニルオキシ基等のスルホニルオキシ基、トリ クロロアセトイミデート等の脱離基であり、しがアミノ 基、水酸基あるいはチオール基である場合、あるいはL が塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、 メタンスルホニルオキシ基、ベンゼンスルホニルオキシ 基、トルエンスルホニルオキシ基、置換ベンゼンスルホ ニルオキシ基、トリフルオロメタンスルホニルオキシ基 等のスルホニルオキシ基、トリクロロアセトイミデート 等の脱離基であり、Gがアミノ基、水酸基あるいはチオ ール基である場合に行うことが出来る。塩基としては前 記(B)で述べたものと同様のものがあげられ、溶媒と しては前記-(-G-)-で述べたものと同様<u>の</u>ものがあげられ

(iii) 還元的Nーアルキル化反応は、Gがアルデヒド、ケトンであり、Lがアミノ基である場合、あるいは Lがアルデヒド、ケトンであり、Gがアミノ基である場合に行うことが出来る。還元的Nーアルキル化反応は、 水素化シアノほう素化ナトリウムを用いる場合と水素雰囲気下で接触還元反応を行う場合があるが、どちらの場合も酸、触媒および溶媒は前記(G)で述べたものと同様のものがあげられる。

【〇〇30】前記(A)~(H)の反応における化合物において、水酸基、カルボキシル基、アミノ基、チオール基等の反応性基を有する場合は予め適当な保護基で保護しておき、反応を実施した後に保護基を除去することにより、目的とする化合物を得ることができる。使用される保護基としては、有機合成化学の分野で使われる通常の保護基を用いればよく、このような保護基の導入および除去は通常の方法に従って行うことができる。(例えば、Protective Groups in Organic Synthesis, JOHN WILLEY&; SONS, 1991 年)

例えば、水酸基の保護基としては、メトキシメチル基、 テトラヒドロピラニル基、ベンジル基、アセチル基、ベ ンゾイル基、ベンジル基、4ーメトキシベンジル基等が 挙げられる。カルボキシル基の保護基としては、メチル 基、エチル基、プロピル基、ノルマルブチル基、イソブ チル基、tertーブチル基、ベンジル基等が挙げられ る。アミノ基の保護基としては、tertーブチルオキ シカルボニル基、ベンジルオキシカルボニル基、アセチ ル基、ベンゾイル基、ベンジル基等が挙げられる。チオ ール基の保護基としては、ベンジル基、ジフェニルメチ ル基、メトキシメチル基、アセチル基、ベンゾイル基、 tert-ブトキシカルボニル基、ベンジルオキシカル ボニル基などが挙げられる。上述した製造法における中間体及び目的化合物は、有機合成化学で常用される精製法、例えば、沪過、抽出、洗浄、乾燥、濃縮、再結晶、 各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては、特に精製することができる。また、中間体においては、特に精製することなく次の反応に供することも可能である。化合物(1)または(2)の塩を取得したいとき、化合物(1)または(2)が塩の形で得られ得る場合には、適当な溶媒に溶解懸濁させ、酸または塩基を加えて、塩を形成させればよい。化合物(1)及びその薬理学上許容される塩は、 水或いは各種溶媒との付加物の形で存在することもあるが、付加物も本発明に含まれる。

【0031】上記のように製造される一般式(1)、または(2)で表される化合物として、例えば以下の化合物、又は製造例及び実施例で得られる化合物が挙げられる

【化29】

[0032]

表 1					
R¹	R²	R ³	R4	R ⁵	R ⁸
Ne-	-н	-н	-CN	Ph-	Ph0-C(0)-CH2-
Et-	-H	− H	-CN	Ph-	Ph0-C(0)-CH2-
iPr~	-H	-н	-CN	Ph-	Ph0-C(0)-CH2-
H ₂ C=C-	-H	-н	-CN	Ph-	Ph0-C(0)-CH ₂ -
Ne-	− H	− H	-н	Ph-	Ph0-C(0)-CH2-
Me ₂ N-	-H	-н	-н	Ph~	PHO-C(0)-CH ₂ -
MeO-(CH ₂) ₂ -	-H	-н	-H	Ph-	Ph0-C(0)-CH ₂ -
CF₃-	-н	-H	Н	Ph-	Ph0-C(0)-CH2-
4-C1 -Ph-	H	Me-	-cooh	Ph-	Ph0-C (0) -CH2-
4-CI -Ph-	-н	iPr-	-COOEt	Ph-	PhO-C (0) -CH ₂ -
4-01-Ph-	-н	PhCH ₂ -	-NH ₂	Ph-	Ph0-C(0)-CH ₂ -
4-CI -Ph-	-H	MeO-(CH ₂) ₂ -	-NHMe	Ph-	Ph0-C(0)-CH2-
4-01 - Ph-	-н	3-ピコリル-	3-ピコリル-	Ph≕	Ph0-C(0)-CH ₂ -
4-CI - Ph-	- H	4-Et00C-PhCH ₂ -	H ₂ C=C-	Ph-	Ph0-C (0) -CH2-
4-01-Ph-	Me-	-н	-C00H	Ph-	Ph0-C(0)-CH2-
4-01 -Ph-	iPr-	-н	-C00Et	Ph-	Ph0-C(0)-CH ₂ -
4CIPh	PhGH ₂ -	-н	-NH ₂	Ph-	Ph0-C(0)-CH2-
4-01-Ph-	NeO-(CH ⁵) 5-	− H	-NHMe	Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	3-ピコリル-	− H	3-ピコリル-	Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	4-Et00C-PhCH ₂ -	-H	H ₂ C=C-	Ph-	Ph0-C(0)-CH2-
4-01-Ph-	-н	-н	-CN	− H	Ph0-C(0)-CH2-
4-01-Ph-	-н	-н	-CN	Me-	Ph0-C(0)-CH2-
4-CI -Ph-	н	-н	-CN	iPr-	Ph0-C(0)-CH ₂ -
4-CI -Ph-	-н	-н	-CN	PhCH ₂ -	PhO-C (0) -CH ₂ -
4-01-Ph-	-H	-н	-CN	Me0-(CH ₂) ₂ -	Ph0-C(0) -CH ₂ -
4-CI -Ph-	H	-н	-н	3-ピコリル-	PhO-C (0) -CH ₂ -
4-CI -Ph-	-H	-H	-н	H ₂ C=C-	Ph0-C (0) -CH ₂ -
Ph-	-H	-H	-H	Ph-	Ph0-C(0) -CH ₂ -
4-CI -Ph-	-н 	-H	-H	Ph-	PhO-C(0) -CH ₂ -
3-01-Ph-	-н	-н	-н	Ph-	Ph0-G(0)-CH ₂ -
2-CI-Ph-	-H	-H	-н	Ph-	PhO-C(0) -CH ₂ -
4-F-Ph-	-H	-H	-н 	Ph-	PhO-G(0) -CH ₂ -
3-F-Ph-	-H	-н	− H	Ph-	Ph0-C(0)-CH ₂ -
2-F-Ph-	-H	-н	−H −CN	Ph-	PhO-C (0) -CH ₂ -
4-Br-Ph-	-H	-H -H		Ph-	PhO-C (0) -CH ₂ -
3-Br-Ph-	-H	-H	−CN −CN	₽h - ₽h-	PhO-C (0) -CH ₂ -
2-Br-Ph-	~H −H	−H −H	H	rn− Ph−	Ph0-C(0)-CH ₂ - Ph0-C(0)-CH ₂ -
4-Me-Ph-	•				Ph0-C(0)-CH ₂ -
3-Me-Ph-	-H	−H −H	∼H −CN	Ph- Ph-	-
2-Me-Ph-	- H -⊔				Ph0-C(0)-CH ₂ - Ph0-C(0)-CH ₂ -
4-Et-Ph- 3-Et-Ph-	–H –H	-H -H	-CN -CN	Ph− Ph−	Ph0-C(0)-CH ₂ -
2-Et-Ph-	-н -н	-н -н	-H	Ph-	Ph0-C(0)-CH ₂ -
4-1Pr-Ph-	-n 		-H	Ph-	Ph0-C(0)-CH ₂ -
3-iPr-Ph-		-H	-CN		-Ph0-C-(0)_=CH,=_
	-H		_CM	Ph-	F 110-0-107-20115-

表 2					
R ¹	R²	R ³	R4	R ⁵	R ⁶
2-iPr-Ph-	-H	-H	-CN	Ph-	Ph0-C(0)-CH2-
4-Me ₂ N-Ph-	-H	−H	-CN	Ph-	Ph0-C(0)-CH2-
4-Ac-Ph-	-H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
Ph-	-H	-H	-н	Ph-	Ph0-C(0)-CH₂-
4-PhCH ₂ 0-Ph-	-H	-H	-H	Ph-	Ph0-C(0)-CH ₂ -
4-Et00C-Ph-	-H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
4-H00C-Ph-	-H	-H	-CN	Ph-	Ph0-C(0)-CH2-
4-Me ₂ N(CH ₂) ₃ -Ph-	-H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
2-ナフチル-	-H	-H	- H	Ph-	Ph0-C(0)-CH ₂ -
3-ナフチル-	-H	−H	-H	Ph-	PhO-C(0)-CH ₂ -
2-フリル-	-H	−H	-CN	Ph-	PhO-C(0)-CH ₂ -
3-フリル-	-н	-H	-CN	Ph-	PhO-C(0)-CH ₂ -
2-チェニル-	-н	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
3-チエニル-	-H	-H	-H	Ph-	PhO-C(0)-CH ₂ -
2-ピリジル-	-H	−H	~H	Ph-	Ph0-C(0)-CH2-
3-ピリジル-	-H	-H	-CN	Ph-	PhO-C(0)-CH ₂ -
4-ピリジル-	-н	- H	-CN	Ph-	PhO-C(0)-CH₂-
PhCH ₂ -	-H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
Ph(CH ₂) ₂ -	-H	-H	-н	Ph-	Ph0-C(0)-CH ₂ -
Ph (CH ₂) 3	-H	-H	-H	Ph-	Ph0-C(0)-CH ₂ -
Ph(CH ₂) ₄ -	-н	-н	-CN	Ph~	Ph0-C(0)-CH ₂ -
Ph (CH ₂) 5-	-н	- H	-CN	Ph-	Ph0-C(0)-CH ₂ -
Ph(CH₂) ₆ -	-H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
Ph(CH ₂) ₇ -	-н	-н	- H	Ph-	Ph0-C(0)-CH ₂ -
Ph(CH ₂) ₈ -	-H	- H	-н	Ph-	Ph0-C(0)-CH ₂ -
シクロペンチル-	−H	-н	-CN	Ph-	Ph0-C(0)-CH ₂ -
シクロヘキシルー	-н	-Н	-CN	Ph~	Ph0-C(0)-CH ₂ -
シクロヘプチルー	-H	-H	-CN	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	Ph-	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	4-01-Ph-	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-н	-H	3-01-Ph-	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	2-01-Ph-	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	4-F-Ph- 3-F-Ph-	Ph- Ph-	PhO-C(0)-CH ₂ - PhO-C(0)-CH ₃ -
4-CI-Ph-	-H	-H	3-F-Ph-	Ph-	Pho-C(0)-CH,-
4-CI-Ph-	-H	-H	4-Br-Ph-	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph- 4-CI-Ph-	-H	-H	3-Br-Ph-	Ph-	PhO-C(0)-CH,-
					•
					-
	-H	-H		Ph-	PhO-C(0)-CH2-
4-CI-Ph- 4-CI-Ph- 4-CI-Ph- 4-CI-Ph- 4-CI-Ph- 4-CI-Ph- 4-CI-Ph-	-H -H -H -H -H -H	# # # # # # # # # # # # # # # # # # #	2-Br-Ph- 4-Ne-Ph- 3-Ne-Ph- 2-Ne-Ph- 4-Et-Ph- 3-Et-Ph- 2-Et-Ph- 2-ナフチル-	Ph- Ph- Ph- Ph- Ph- Ph- Ph- Ph-	PhO-C (0) - CH ₂ - PhO-C (0) - CH ₂ -

【0034】 【表3】

表 3					
R¹	R²	R ³	R ⁴	R ⁵	R ⁶
4-01-Ph-	-H	-H	2-フリル-	Ph-	PhO-C(0)-CH2-
4-01-Ph-	-H	-H	2-チェニル-	Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	- H	-CN	Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	−H	-CN	Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	− H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	-H	-H	PhCH2-	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	Ph (CH ₂) ₂ -	Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-н	−H	Ph (CH ₂) 3-	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	Ph (CH ₂) ₄ -	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	−H	Ph (CH ₂) 5-	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	Ph(CH ₂) ₆ -	Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	-H	Ph (CH ₂) ,-	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	−H	Ph (CH ₂) ₈ ~	Ph-	PhO~C(0)-CH₂-
4-01 - Ph-	-H	− H	3-ピコリル-	Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	−H	CF₃-	Ph-	Ph0-C(0)-CH₂-
4-01-Ph-	-H	− H	Me-	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	−H	iPr-	Ph-	Ph 0- C(0)-CH₂-
4-CI-Ph-	-H	-н	-CN	4-01-Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	-н	-CN	3-01-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-н	-CN	2-C1-Ph-	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-H	4-F-Ph-	PhO-C(0)-CH ₂ -
4-C1-Ph-	-H	-H	− H	3-F-Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	− H	-н	-H	2-F-Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	−H	-CN	4-Br-Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	-H	− H	-CN	3-Br-Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	-H	-н	-CN	2-Br-Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	− H	-H	− H	4-Me-Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	-H	3-Me-Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	-H	2-Me-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	− H	-CN	4-Et-Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-CN	3-Et-Ph-	Ph0-C(0)-CH ₂ -
4-01-Ph-	-н	-н	-cn	2-Et-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-н	-H	4-iPr-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-н	-H	3-iPr-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-н	-н	-H	2-iPr-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	-CN	4-Me ₂ N-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-CN	4-Ac0-Ph-	PhO-C(0)-CH ₂ -
4-Ci-Ph-	-H	-H	−CN −H	Ph-	PhO-C(0)-CH ₂ -
4-C1-Ph-	-H	-H -U		4-PhCH ₂ 0-Ph~	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-H -u	4-Et00C-Ph- 4-H00C-Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph- 4-CI-Ph-	-H -H	-H -H	−H −CN		PhO-C(0)-CH ₂ - PhO-C(0)-CH ₂ -
		-H		4-Me ₂ N(CH ₂) ₃ -Ph-	Ph0-C(0)-CH₂-
4-CI-Ph- 4-CI-Ph-	-H -H	-n -H	-CN	2-ナフチル- 3-ナフチル-	Ph0-C(0)-CH ₂ -
					Ph0-C(0)-CH ₂ -
4-01-Ph-	<u>. −H</u>	<u>-H</u>	-н	2-フリル-	FN0-0(0)-0N2-

表 4					
R¹	R^2	R³	R⁴	R ⁵	R ⁶
4-01-Ph-	-H	-н	-CN	3-フリル-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	-CN	2-チエニル-	PhO-C(0)-CH ₂ -
4-01-Ph-	− H	-H	-CN	3-チエニル-	PhO-C(0)-CH ₂ -
4-CI-Ph-	− H	−H	-н	2-ピリジル-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	-H	3-ピリジル-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	− H	-H	4-ピリジル-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	− H	-CN	PhCH ₂ -	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	-CN	Ph (CH ₂) ₂ -	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	− H	-CN	Ph (CH ₂) 3-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-H	Ph (CH₂) ₄-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	- H	− H	Ph (CH ₂) 5-	Ph0-C(0)-CH ₂ -
	-H	− H	− H	Ph (CH ₂) ₆ -	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-н	-CN	Ph (CH ₂) ₇ -	Ph0-C(0)-CH ₂ -
4-01-Ph-	- H	− H	-cn	Ph (CH ₂) 8-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	− H	-H	-CN	CF₃-	Ph0-C(0)-CH₂-
4-01-Ph-	− H	− H	-H	Me-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	- H	-H	-H	iPr-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-H	nBu-	Ph0-C(0)-CH ₂ -
	-н	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-CN	Ph-	PhCH ₂ O-C(0)-CH ₂ -
	-н	− H	-CN	Ph-	$Ph(CH_2)_20-C(0)-CH_2-$
	-н	-н	-CN	Ph-	$Ph(CH_2)_30-C(0)-CH_2-$
	- H	-н	-CN	Ph-	Ph (CH ₂) ₄ 0 -C (0) -CH ₂ -
	-H	- H	-CN	Ph-	Ph (CH ₂) ₅ 0-C(0)-CH ₂ -
	− H	-H	-CN	Ph-	Ph (CH ₂) ₆ 0-C(0)-CH ₂ -
	-H	-н	-CN	Ph-	Ph (CH ₂),0-C(0)-CH ₂ -
	− H	- H	-CN	Ph-	$Ph(CH_2)_{8}0-C(0)-CH_2-$
	-H	~H	-CN	Ph-	nBu0-C(0)-(CH ₂) ₃ -
	-H	-H	-CN	Ph-	3-ピコリル-0-C(0)-(CH ₂) ₃ -
	-H	-H	-CN	Ph-	Ph0-C(0)-CH ₂ -
	-H	-H -∪	-CN	Ph-	Ph0-C(0)-(CH ₂) ₂ -
	-H -H	-H -H	-CN	Ph-	Ph0-C(0)-(CH ₂) ₃ -
				Ph-	Ph0-C(0)-(CH ₂) ₄ -
	-H -H	-H -H	-CN	Ph− Ph−	Ph0-C(0)-(CH ₂) ₅ - Ph0-C(0)-(CH ₂) ₅ -
	-H	-H	-CN	Ph-	Ph0-C(0)-(CH ₂),-
	-H	-H	-CN	Ph-	Ph0-C (0) - $(CH_2)_8$ -
	 -H	-H	-CN	Ph-	Ph (CH ₂) ₂ -C(0)-0-CH ₂ -
	-H	-H	-CN	Ph-	Ph $(CH_2)_2 - C(0) - 0 - (CH_2)_2 -$
	-H	-H	-CN	Ph-	Ph (CH ₂) ₂ -C(0)-0-(CH ₂) ₃ -
	-H	-H	-CN	Ph-	Ph $(CH_2)_2 - C(0) - 0 - (CH_2)_4 -$
	-H	-H	-CN	Ph-	Ph $(CH_2)_2 - C(0) - 0 - (CH_2)_5 -$
	-H	-H	-CN	Ph-	Ph $(CH_2)_2 - C(0) - 0 - (CH_2)_6 -$
	-H	-H	-CN	Ph-	Ph $(CH_2)_2 - C(0) - 0 - (CH_2)_7 -$
	-H	H	-CN	Ph-	Ph (CH ₂) ₂ -C(0)-0-(CH ₂) ₈ -

[0036]

表 5					
R¹	R ²	R ³	R⁴	R⁵	R ⁶
4-CI-Ph-	-н	-н	-CN	Ph-	4-Me-Ph-C(0)-0-(CH ₂) ₃ -
4-CI-Ph-	. − H	-H	-CN	Ph-	$4-Me_{2}N-Ph-C(D)-O-(CH_{2})_{3}-$
4-01-Ph-	− H	-H	-CN	Ph-	4-Ac-Ph-C(0)-0-(CH ₂) ₃ -
4-CI-Ph-	~H	-H	-CN	Ph-	Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	4-PhCH ₂ 0-Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	-H	~H	-CN	Ph-	4-Et00C-Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	− H	-H	-CN	Ph-	4-H00C-Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	4-Me,N(CH ₂) ₃ -Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	− H	-H	-CN	Ph-	Me-
4-01-Ph-	-H	-H	-CN	Ph-	Et-
4-01-Ph-	-+	-H	-cn	Ph-	iPr-
4-01-Ph-	-H	-H	-cn	Ph-	nPr-
4-CI-Ph-	-++	H	-CN	Ph-	nBu~
4-01-Ph-	-H	-H	-cn	Ph-	iBu-
4-01-Ph-	-H	-H	-cn	Ph-	PhNH-C(0)-(CH,) ₃ -
4-01 - Ph-	- H	-H	-cn	Ph-	PhOH2NH-C(0)-(OH2)3-
4-01-Ph-	− H	- H	-cn	Ph-	Ph (CH ₂) ₂ NH-C (0) - (CH ₂) ₃ -
4-01-Ph-	- H	-н	-cn	Ph-	Ph (CH ₂) ₃ NH-C (0) - (CH ₂) ₃ -
4-01-Ph-	-H	- H	-CN	Ph~	Ph (CH ₂) NH-C (0) - (CH ₂) -
4-CI-Ph-	-H	-H	-cn	Ph-	Ph (CH ₂) $_{3}^{1}$ NH-C (0) - (CH ₂) $_{3}^{2}$ -
4-01-Ph-	H	-H	-CN	Ph-	Ph (CH ₂) NH-C (0) - (CH ₂) -
4-CI-Ph-	-н	− H	-CN	Ph-	Ph (CH ₂) ₇ NH-C (0) - (CH ₂) ₃ -
4-01-Ph-	-#	- H	-CN	Ph-	Ph (CH ₂) ₈ NH-C (0) - (CH ₂) ₃ -
4-01-Ph-	- H	-н	-CN	Ph-	PhCH, (Me) N-C(0) - (CH,),-
4-01-Ph-	~H	. - H	-CN	Ph-	nBuNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-н	-H	-CN	Ph-	Me ₂ N-C(O)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-CN	Ph-	3-ピコリル-NH-C(0)-(CH₂)₃-
4-01-Ph-	-H	-н	-CN	Ph-	PhNH-C(0)-CH2-
4-01-Ph-	-H	- H	-CN	Ph-	PhNH-C(0)-(CH,),-
4-01-Ph-	-H	-H	-cn	Ph-	PhNH-C(0)-(CH,),-
4-CI-Ph-	− H	-н	-CN	Ph-	PhNH-C(0)-(CH,),-
4-01-Ph-	−H	-H	-cn	Ph-	PhNH-C(0)-(CH ₂) ₅ -
4-C1-Ph-	-H	-H	-CN	Ph-	PhNH-C (0) - (CH ₂) ₆ -
4-01-Ph-	-H	- H	-cn	Ph-	PhNH-C(0)-(CH ₂),-
4-01-Ph-	-H	-н	-cn	Ph-	PhNH-C (0) - (CH ₂) 8-
4-01-Ph-	-++	-H	-CN	Ph-	Ph (CH ₂) ,-C(0)-NH-CH ₂ -
4-01-Ph-	-н	-H	-cn	Ph-	Ph(CH ₂) ₂ -C(0)-NH-(CH ₂) ₂ -
4-01-Ph-	- H	- H	-CN	Ph-	Ph (CH ₂) 2-C (0) -NH- (CH ₂) 3-
4-CI-Ph-	-H	H	-CN	Ph-	$Ph(CH_{2}^{1})_{2}^{1}-C(0)-NH-(CH_{2}^{1})_{4}^{1}-$
4-01-Ph-	- H	~H	-CN	Ph-	Ph (CH ₂) 2-C (0) -NH-(CH ₂) 5-
4-01-Ph-	-н	-H	-CN	Ph-	$Ph(CH_{2})_{2}^{2}-C(0)-NH-(CH_{2})_{6}^{2}-$
4-CI-Ph-	~H	− H	-CN	Ph-	Ph (CH ₂) ₂ -C(0)-NH-(CH ₂) ₇ -
4-01-Ph-	-H	-н	-CN	Ph-	Ph (CH ₂) ₂ -C(0)-NH-(CH ₂) ₈ -
4-C1-Ph-	-H	-н	-CN	Ph-	4-Ne-PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-CN	Ph-	4-Ne ₂ N-PhNH-C(0)-(CH ₂) ₃ -
					,

§ 6		_		_	_
R¹	R²	R ³	R⁴	R ⁵	R ⁶
4-01-Ph-	-H	-H	-CN	Ph-	$4-A_0-PhNH-C(0)-(CH_2)_3-$
4-CI-Ph-	-н	−H	-CN	Ph-	$PhNH-C(0)-(GH_2)_3-$
4-01-Ph-	− H	. − H	-CN	Ph-	$4-PhCH_2O-PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	- H	-CN	Ph-	4-Et00C-PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	4-H00C-PhNH-C(0)-(CH2)3-
4-01-Ph-	-H	-H	-CN	Ph-	4-Me ₂ NCH ₂ -PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	Ph(CH ₂) ₂ -S-CH ₂ -
4-01-Ph-	-H	-H	-CN	Ph-	$Ph(CH_2)_2-S-(CH_2)_2-$
4-01-Ph-	-H	-H	-CN	Ph~	$Ph(CH_2)_2-S-(CH_2)_3-$
4-01-Ph-	-н	-H	-CN	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₄ -
4-C1-Ph-	-н	− H	-CN	Ph-	$Ph(CH_2)_2-S-(CH_2)_5-$
4-01-Ph-	H	-H	-CN	Ph-	$Ph(CH_2)_2-S-(CH_2)_6-$
4-01-Ph-	-H	–H	-CN	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₇ -
4-01-Ph-	-H	- H	-CN	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₈ -
4-01-Ph-	-н	− H	-CN	Ph-	4-Me-Ph-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	− H	-CN	Ph-	$4-Me_2N-Ph-C(0)-(CH_2)_3-$
4-01-Ph-	-н	- H	-CN	Ph-	4-Ac-Ph-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-н	-H	-CN	Ph-	Ph-C(0)-(CH ₂) ₃ -
4-01-Ph-	-н	− H	-CN	Ph-	4-PhCH ₂ 0-Ph-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	Ph-	4-Et00C-Ph-C(0)-(CH,)3-
4-01-Ph-	-н	-H	-cn	Ph-	4-H00C-Ph-C(0)-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-CN	Ph-	4-Me,NCH,-Ph-C(O)-(CH,),-
4-01-Ph-	−H .	- H	-cn	Ph-	Et-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-cn	Ph-	Ph (CH ₂) 5-C (O) -CH ₂ -
4-01-Ph-	-H	- H	-CN	Ph~	Ph-0-(CH ₂) ₃ -
4-C1-Ph-	-н	-H	-cn	Ph-	Ph(CH ₂) ₃ -0-(CH ₂) ₃ -
4-01-Ph-	-н	-H	-cn	Ph-	Ph (CH ₂) ₂ -0-(CH ₂) ₃ -
4-01-Ph-	-н	- H	-CN	Ph-	Ph(CH ₂) ₃ -0-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	Ph (CH ₂) ₄ -0-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-CN	Ph-	Ph(CH ₂) ₅ -0-(CH ₂) ₃ -
4-01-Ph-	~H	-H	-CN	Ph-	Ph(CH ₂) ₈ -0-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-cn	Ph-	Ph (CH ₂) ₇ -0-(CH ₂) ₃ -
4-01-Ph-	~ H	-н	-CN	Ph-	Ph (CH ₂) 8-0-(CH ₂) 3-
4-01-Ph-	-н	-н	-cn	Ph-	Et-0-(CH ₂) ₃ -
4-01-Ph-	-н	-H	-CN	Ph-	4-Me-Ph-O-(CH ₂) ₃ -
4-01-Ph-	-н	- H	-CN	Ph-	4-Me,N-Ph-0-(CH ₂) ₃ -
4-01-Ph-	-н	–H	-CN	Ph-	4-Ac-Ph-0-(CH ₂) ₃ -
4-01-Ph-	~H	-H	-CN	Ph-	Ph-0-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-CN	Ph-	4-PhCH,0-Ph-0-(CH ₂) ₃ -
4-01-Ph-	-н	-H	-CN	Ph-	4-Et00C-Ph-0-(CH ₂)3-
4-01-Ph-	-н	-н	-CN	Ph-	4-H00C-Ph-0-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	Ph-	4-Me ₂ N(CH ₂) ₃ -Ph-0-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	HO (CH ₂) 20-C (0) - (CH ₂) 3-
4-CI-Ph-	-H	-H	-CN	Ph-	MeO(CH ₂) ₂ 0-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	H2N(CH ₂) ₃ 0-C(0)-(CH ₂) ₃ -

【表7】

表 7					
R¹	R²	R ³	R⁴	R⁵	R ^e
4-01-Ph-	-H	-н	-CN	Ph-	HDOC (CH ₂) 40-C (O) - (CH ₂) 3-
4-CI-Ph-	-H	- H	-CN	Ph-	$(Et)_{2}N(CH_{2})_{5}O-C(O)-(CH_{2})_{3}-$
4-01-Ph-	-H	- H	-CN	₽h−	$E \pm 00C(CH_2)_60 - C(0) - (CH_2)_3 -$
4-01-Ph-	-н	- H	-CN	Ph-	$Et0(CH_2)_70-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-н	-cn	Ph-	EtS(CH ₂) ₈ 0-C(0)-(CH ₂) ₃ -
4-01-Ph-	− H	-н	-CN	Ph-	Ph-NH-(CH ₂) ₃ -
4-CI-Ph-	− H	-H	-CN	Ph-	$Ph(CH_2)_3-NH-(CH_2)_3-$
4-01-Ph-	−H	-H	-CN	Ph-	Ph(CH ₂) ₂ -NH-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-CN	Ph-	Ph (CH ₂) ₃ -NH-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	Ph(CH ₂) ₄ -NH-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	Ph (CH ₂) ₃ -NH-(CH ₂) ₃ -
4-01-Ph-	− H	− H	-CN	Ph−	Ph(CH2)6-NH-(CH2)3-
4-CI-Ph-	-н	~ H	-CN	Ph-	Ph (CH ₂) ₇ -NH-(CH ₂) ₃ -
4-01-Ph-	-H	− H	-CN	Ph-	Ph(CH ₂) ₈ -NH-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	4-Me-Ph-NH-(CH2)3-
4-01-Ph-	-H	–H	-CN	Ph-	4-Me ₂ N-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-H	−H	-CN	Ph-	4-Ac-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-H	 H	-CN	Ph-	Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-н	-H	-CN	Ph-	4-PhCH ₂ 0-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-H	H	-CN	Ph-	4-Et00C-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-CN	Ph-	4-H00C-Ph-NH-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	Ph-	$4-\text{Me}_2\text{N}(\text{CH}_2)_3-\text{Ph}-\text{NH}-(\text{CH}_2)_3-$
4-Ci-Ph-	-Н	-H	-CN	Ph-	Ph-N(CH ₂ Ph)-(CH ₂) ₃ -
4-CI-Ph-	-H	- H	-CN	Ph-	Ph (CH2)3 - N (CH2Ph) - (CH2)3 -
4-01-Ph-	-H	− H	-CN	Ph-	Ph (CH2)2-N (CH2Ph) - (CH2)3-
4-CI-Ph-	-н	-H	-CN	Ph-	Ph(CH ₂) ₃ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	Ph (CH2)4 - N (CH2Ph) - (CH2)3 -
4-CI-Ph-	-H	-H	-CN	Ph-	Ph (CH ₂) ₅ -N (CH ₂ Ph)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	Ph-	Ph (CH2)6-N (CH2Ph) - (CH2)3-
4-CI-Ph-	-H	-H	-CN	Ph-	Ph (CH ₂) ₇ -N (CH ₂ Ph) - (CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	Ph-	$Ph(CH_2)_8 - N(CH_2Ph) - (CH_2)_3 - A_1 - A_2 - A_3 - A_4 - A_4 - A_5 $
4-01-Ph-	-H	-H	-CN	Ph-	4-Me-Ph-N(iBu)-(CH ₂) ₃ -
4-C1-Ph-	-H	H	-CN	Ph-	4-Me ₂ N-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-CN	Ph-	4-Ac-Ph-N(iBu)-(CH ₂) ₃ -
4-CI-Ph-	- H	-н	-CN	Ph-	Ph-N(iBu)-(CH ₂) ₃ -
4-CI-Ph-	-H	- H	-CN	Ph-	4-PhCH ₂ 0-Ph-N(iBu)-(CH ₂) ₃ -
4-CI-Ph-	~H	-н	-CN	Ph-	4-Et00C-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	4-H00C-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	-H -H	-CN	. Ph-	$4-Me_2N(CH_2)_3-Ph-N(iBu)-(CH_2)_3-$
4-01-Ph-	-H		-CN	Ph-	$HO (CH_2)_2NH-C (0)-(CH_2)_3-$
4-01-Ph-	-H	H H	−CN −CN	Ph-	$Me0(CH_2)_2NH-C(0)-(CH_2)_3-$
4-01-Ph-	-H			Ph-	H2N(CH ₂) ₃ NH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	Ph-	H00C(CH ₂) ₄ NH-C(0)-(CH ₂) ₃ -
4-Ci-Ph-	-H	-H	-CN	Ph-	$(Et)_{2}N(CH_{2})_{3}NH-C(0)-(CH_{2})_{3}-$
4-01-Ph-	-н	H	-CN	Ph-	Et 00C (CH2)6NH-C (0) - (CH2)3-

【表8】

表 8					
R¹	R²	R ³	R ⁴	R⁵	R ⁶
4-CI-Ph-	-#	-H	-CN	Ph-	EtO(CH2),NH-C(O)-(CH2)3-
4-01-Ph-	-H	-н	-CN	Ph-	$EtS(CH_2)_8NH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	- H	Ph-	PhO-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	− H	Ph-	PhCH ₂ 0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-H	Ph-	$Ph(CH_2)_2O-C(O)-CH_2-$
4-01-Ph-	- H	−H	−H	Ph-	Ph(CH2)30-C(0)-CH2-
4-01-Ph-	-H	- H	~H	Ph-	Ph(CH2)40-C(0)-CH2-
4-01-Ph-	-H	− H	−H	Ph-	Ph(CH2)50-C(0)-CH2-
4-01-Ph-	− H	− H	- H	Ph-	$Ph(CH_2)_60-C(0)-CH_2-$
4-01-Ph-	−H	−H	-H	Ph-	Ph(CH2)70-C(0)-CH2-
4-CI-Ph-	-н	~ H	- H	Ph-	Ph(CH2)80-C(0)-CH2-
4-CI-Ph-	− H	- H	- H	Ph-	nBu0-C(0) - (CH ₂) ₃ -
4-CI-Ph-	-++	−H	~H	Ph-	3-ピコリル-0-C(0)-(CH₂)₃-
4-01-Ph-	-H	-н	− H	Ph-	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-н	- H	Ph-	Ph0-C(0)-(CH ₂) ₂ -
4-01-Ph-	- H	-H	−H	Ph-	PhO-C(0)-(CH ₂) ₃ -
4-01-Ph-	- H	-н	- H	Ph-	Ph0-C(0)-(CH ₂) ₄ -
4-01-Ph-	−H	- H	- H	Ph-	PhO-C(0)-(CH ₂) ₅ -
4-01-Ph-	− H	− H	-H	Ph-	Ph0-C(0)-(CH ₂) ₆ -
4-01-Ph-	-H	− H	− H	Ph-	Ph0-C(0)-(CH ₂),-
4-01-Ph-	-Н	-н	-H	Ph-	Ph0-C(0)-(CH ₂) ₈ -
4-CI-Ph-	-H	-н	-H	Ph-	Ph (CH ₂) ₂ -C(0)-0-CH ₂ -
4-01-Ph-	- H	- H	-H	Ph-	$Ph(CH_2)_2 - C(0) - 0 - (CH_2)_2 -$
4-CI-Ph-	-H	− H	-H	Ph-	$Ph(CH_2)_2-C(0)-0-(CH_2)_3-$
4-01-Ph-	- H	- H	-H	Ph-	Ph (CH ₂) ₂ -C(0)-0-(CH ₂) ₄ -
4-C1-Ph-	−H	-H	-н	Ph-	Ph (CH ₂) ₂ -C(0)-0-(CH ₂) ₅ -
4-01-Ph-	-H	-н	-#	Ph-	$Ph(CH_2)_2-C(0)-0-(CH_2)_6-$
4-C1-Ph-	- H	- H	-н	Ph-	$Ph(CH_2)_2-C(0)-0-(CH_2)_7-$
4-CI-Ph-	-H	− H	- H	Ph-	$Ph(CH_2)_2-C(0)-0-(CH_2)_8-$
4-CI-Ph-	−H	− H	− H	Ph-	4-Ne-Ph-C(0)-O-(CH ₂) ₃ -
4-CI-Ph-	-H	- H	− H	Ph-	4-Ne ₂ N-Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	-н	− H	-H	Ph-	4-Ac-Ph-C(0)-O-(CH ₂) ₃ -
4-CI-Ph-	-#	-H	-H	Ph-	Ph-C(0)-0-(CH ₂) ₃ -
4-01-Ph-	− H	-H	− H	Ph-	4-PhCH ₂ O-Ph-C(0)-O-(CH ₂) ₃ -
4-CI-Ph-	- H	-н	-H	Ph-	4-Et00C-Ph-C(0)-0-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	- H	Ph-	4-H00C-Ph-C(0)-0-(CH ₂) ₃ -
4-CI-Ph-	-H	-н	- H	Ph-	$4-\text{Me}_2\text{N}(\text{CH}_2)_3-\text{Ph-C}(0)-0-(\text{CH}_2)_3-$
4-01-Ph-	- H	~H	· -H	Ph-	Me-
4-CI-Ph-	-H	-H	− H	Ph-	Et-
4-CI-Ph-	 H	− H	-H	Ph-	iPr-
4-CI-Ph-	-H	- H	-н	Ph-	nPr-
4-CI-Ph-	-H	-H	− H	Ph-	nBu-
4-CI-Ph-	- H	-H	-H	Ph-	iBu-
4-CI-Ph-	-#	-н	− H	Ph-	PhNH-C (0) - (CH ₂) ₃ -
4-CI-Ph-	<u> </u>	<u>-H</u>	_ H	Ph-	PhCH ₂ NH-C(0)-(CH ₂) ₃ -

[0040]

表 9					
R¹	R²	R ³	R⁴	R ⁵	R ^e
4-01-Ph-	-H	H	-H	Ph-	Ph (CH ₂) ₂ NH-C (0) - (CH ₂) ₃ -
4-CI-Ph-	-H	-н	- H	Ph-	$Ph(CH_2)_3NH-C(0)-(CH_2)_3-$
4-01-Ph-	- H	− H	− H	Ph-	$Ph(CH_2)_4NH-C(0)-(CH_2)_3-$
4-01-Ph-	− H	− H	₩	Ph-	Ph(CH2)5NH-C(0)-(CH2)3-
4-CI-Ph-	-H	− H	-#	Ph-	$Ph(CH_2)_6NH-C(0)-(CH_2)_3-$
4-01-Ph-	-н	-H	~H	Ph-	$Ph(CH_2)_7NH-C(0)-(CH_2)_3-$
4-01-Ph-	∽H	~H	− H	Ph-	Ph (CH ₂) ₈ NH-C (0) - (CH ₂) ₃ -
4-01-Ph-	-H	- H	- H	Ph-	PhCH2(Me)N-C(0)-(CH2)3-
4-CI-Ph-	- H	-H	− H	Ph-	$nBuNH-C(0)-(CH_2)_3-$
4-CI-Ph-	-H	-H	-H	Ph-	$Ne_2N-C(0)-(CH_2)_3-$
4-01-Ph-	−H	− H	- H	Ph-	3-ピコリル-NH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-H	Ph-	PhNH-C(0)-CH ₂ -
4-CI-Ph-	−H	-H	-H	Ph-	$PhNH-C(0)-(CH_2)_2-$
4-01-Ph-	-++	- H	- H	Ph-	$PhNH-C(0)-(CH_2)_3-$
4-CI <i>-</i> Ph-	-H	− H	-H	Ph-	$PhNH-C(0)-(CH_2)_4-$
4-01-Ph-	− H	-H	- H	Ph-	PhNH-C(0)-(CH ₂) ₅ -
4-01-Ph-	−H	-H	− H	Ph-	$PhNH-C(0)-(CH_2)_6-$
4-01-Ph-	-#	− H	- H	Ph-	$PhNH-C(0)-(CH_2)_7-$
4-01-Ph-	-H	-н	− H	Ph-	$PhNH-C(0)-(CH_2)_8-$
4-01-Ph-	− H	− H	-н	Ph-	$Ph(CH_2)_2-C(0)-NH-CH_2-$
4-01-Ph-	-H	H	 H	₽h−	$Ph(CH_2)_2-C(0)-NH-(CH_2)_2-$
4-CI-Ph-	-H	-н	-н	Ph-	$Ph(CH_2)_2-C(0)-NH-(CH_2)_3-$
4-01-Ph-	-н	− H	-н	Ph-	$Ph(CH_2)_2 - C(0) - NH - (CH_2)_4 -$
4-CI-Ph	-H	-н	−H	Ph-	$Ph(CH_2)_2-C(0)-NH-(CH_2)_5-$
4-CI-Ph-	- H	− H	-н	Ph-	Ph(CH2)2-C(0)-NH-(CH2)6-
4-CI-Ph-	-н	~H	- H	Ph-	$Ph(CH_2)_2-C(0)-NH-(CH_2)_7-$
4-01-Ph-	-H	-H	-н	Ph−	Ph (CH ₂) ₂ -C(0)-NH-(CH ₂) ₈ -
4-CI-Ph-	-н	-H	− H	Ph-	4-Me-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-н	Ph-	4-Me ₂ N-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-н	Ph-	4-Ac-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-H	Ph-	PhNH-C(0) - (CH ₂) ₃ -
4-01-Ph-	- H	-H	-H	Ph-	4-PhCH ₂ 0-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-н	Ph-	4-Et00C-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-н	-н	Ph-	4-H00C-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-н	-н	Ph-	4-Me ₂ NCH ₂ -PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-H	Ph-	Ph (CH ₂) ₂ -S-CH ₂ -
4-C1-Ph-	-H	-H	− H	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₂ -
4-01-Ph-	-H	- H	− H	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-H	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₄ -
4-01-Ph-	− H	-H	- H	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₅ -
4-CI-Ph-	− H	-н	-#	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₈ -
4-CI-Ph-	-H	-H	-H	Ph-	Ph (CH ₂) ₂ -S-(CH ₂) ₇ -
4-01-Ph-	- H	-H	- H	Ph-	Ph(CH ₂) ₂ -S-(CH ₂) ₈ -
4-CI-Ph-	−H	-H	- H	Ph-	4-Me-Ph-C(0)-(CH ₂) ₃ -
4-01-Ph-	<u>-H</u>	-H	-H	Ph-	4-Me ₂ N-Ph-C(0)-(CH ₂) ₃ -

[0041]

表 1 0					
R ^t	R²	R ³	R⁴	R ⁵	R ⁶
4-01-Ph-	-н	-H	-H	Ph-	4-Ac-Ph-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	H	Ph-	Ph-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	− H	-H	Ph-	$4-PhCH_2O-Ph-C(0)-(CH_2)_3-$
4-01-Ph-	-н	-H	-H	Ph-	4-Et00C-Ph-C(0)-(CH2)3-
4-01-Ph-	-H	- H	-H	Ph-	4-H00C-Ph-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	− H	Ph-	$4-Me_2NCH_2-Ph-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$Et-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$Ph(CH_2)_5-C(0)-CH_2-$
4-CI-Ph-	-н	-H	-H	Ph-	Ph-0-(CH ₂) ₃ -
4-01-Ph-	− H	- H	-H	Ph-	$Ph(CH_2)_3 - 0 - (CH_2)_3 -$
4-CI-Ph-	-н	-H	-н	Ph-	$Ph(CH_2)_2-0-(CH_2)_3-$
4-01-Ph-	− H	-H	-H	Ph-	$Ph(CH_2)_3 - 0 - (CH_2)_3 -$
4-01-Ph-	-H	-H	-н	Ph-	$Ph(CH_2)_4 - 0 - (CH_2)_3 -$
4-01-Ph-	− H	- H	-H	Ph-	$Ph(CH_2)_5-0-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$Ph(CH_2)_6 - 0 - (CH_2)_3 -$
4-01-Ph-	-H	-H	-H	Ph-	$Ph(CH_2)_7 - 0 - (CH_2)_3 -$
4-01-Ph-	-H	-H	-H	Ph-	Ph(CH ₂) ₀ -0-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	$Et-0-(CH_2)_3-$
4-01-Ph-	-H	−H	-н	Ph-	4-Ne-Ph-0-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-H	Ph-	4-Ne ₂ N-Ph-0-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-H	Ph-	4-Ac-Ph-D-(CH ₂) ₃ -
4-01-Ph-	-H	−H	-н	Ph-	Ph-0-(CH ₂) ₃ -
4-01-Ph-	−H .	-H	-H	Ph-	4-PhCH ₂ 0-Ph-0-(CH ₂) ₃ -
4-C1-Ph-	-н	-H	-H	Ph-	4-Et00C-Ph-0-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	4-H00C-Ph-0-(CH ₂) ₃ -
4-01-Ph-	-H	-н	-H	Ph-	4-Me ₂ N (CH ₂) ₃ -Ph-0-(CH ₂) ₃ -
4-01-Ph-	-H	- H	− H	Ph-	$HO(CH_2)_2O-C(O)-(CH_2)_3-$
4-01-Ph-	-H	- H	-H	Ph-	$MeO(CH_2)_2O-C(O)-(CH_2)_3-$
4-01-Ph-	-H	-H	- H	Ph-	$H2N(CH_2)_3O-C(O)-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$Ph(CH_2)_3 - S(0)_2 - (CH_2)_3 -$
4-01-Ph-	-H	− H	-H	Ph-	$Ph(CH_2)_2 - S(0) - (CH_2)_3 -$
4-01-Ph-	-H	-H	-H	Ph-	$Ph(CH_2)_3 - S - C(0) - (CH_2)_3 -$
4-C1-Ph-	-H	-н	-н	Ph-	$Ph(CH_2)_4 - S - C(S) - (CH_2)_3 -$
4-01-Ph-	-H	-н	-H	Ph-	$Ph(CH_2)_5-0-C(S)-(CH_2)_3-$

[0042]

【表11】

表 1 1					
R¹	R²	R ³	R⁴	R⁵	R ⁶
4-01-Ph-	-H	-H	-H	Ph-	4-Ac-Ph-NH-(CH ₂) ₃ -
4-CI-Ph-	-H	- H	-H	Ph-	Ph-NH-(CH ₂) ₃ -
4-CI-Ph-	− H	− H	-H	Ph-	4-PhCH ₂ 0-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-н	-н	-H	Ph-	4-Et00C-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-H	Ph-	4-H00C-Ph-NH-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	4-Me2N(CH2)3-Ph-NH-(CH2)3-
4-C1-Ph-	-H	-H	- H	Ph-	Ph-N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	− H	Ph-	Ph(CH ₂) ₃ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	Ph(CH _z) ₂ -N(CH ₂ Ph)-(CH _z) ₃ -
4-01-Ph-	-H	H	-H	Ph-	Ph(CH ₂) ₃ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-C1-Ph-	-H	- H	-H	Ph-	Ph(CH ₂) ₄ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-H	Ph-	Ph (CH ₂) 5-N (CH ₂ Ph) - (CH ₂) 3-
4-CI-Ph-	-H	-H	-н	Ph-	Ph(CH ₂) ₈ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	Ph(CH ₂) ₇ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	−H	- H	Ph-	Ph(CH ₂) ₈ -N(CH ₂ Ph)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-H	Ph-	4-Me-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	4-Me ₂ N-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	~H	Ph-	4-Ac-Ph-N(iBu)-(CH ₂) ₃
4-01-Ph-	-H	-H	-H	Ph-	Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-H	Ph-	4-PhCH ₂ 0-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	-н	-H	Ph-	4-Et00C-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	 H	-H	Ph-	4-H00C-Ph-N(iBu)-(CH ₂) ₃ -
4-01-Ph-	-H	− H	-H	Ph-	$4-Me_2N(CH_2)_3-Ph-N(iBu)-(CH_2)_3-$
4-01-Ph-	-H	H	-H	Ph-	$HO(CH_2)_2NH-C(O)-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$MeO(CH_2)_2NH-C(O)-(CH_2)_3-$
4-C1-Ph-	 H	–H	-н	Ph-	$H2N(CH_2)_3NH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$HOOC(CH_2)_4NH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-H	Ph-	$Et2N(CH_2)_5NH-C(0)-(CH_2)_3-$
4-CI-Ph-	-H	− H	-H	Ph-	$E \pm 00C (CH_2)_6 NH - C (0) - (CH_2)_3 -$
4-01-Ph-	-H	−H	-H	Ph-	$Et0(CH_2)_7NH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	- H	-H	Ph-	$EtS(CH_2)_8NH-C(0)-(CH_2)_3-$

[0043]

【表12】

表 1 2					
R¹	R ²	R ³	R⁴	R⁵	R ^e
4-01-Ph-	H	- H	-CN	シクロペンチル-	PhO-C(0)-CH ₂ -
4-C1-Ph-	- H	− H	-CN	シクロペンチル-	PhCH ₂ 0-C(0)-CH ₂ -
4-01-Ph-	− H	–H	-CN	シクロペンチル-	$Ph(CH_2)_2O-C(0)-CH_2-$
4-01-Ph-	− H	−H	-CN	シクロペンチルー	Ph (CH ₂) 30-C (0) -CH ₂ -
4-01-Ph-	− H	-H	-cn	シクロペンチル-	Ph (CH ₂) 40-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロペンチルー	Ph (CH ₂) ₅ 0-C(0)-CH ₂ -
4-01-Ph-	-H	H	-CN	シクロペンチルー	Ph (CH ₂) ₆ 0-C (0) -CH ₂ -
4-01-Ph-	-н	-H	-CN	シクロペンチルー	Ph (CH ₂),0-C(0)-CH ₂ -
4-CI-Ph-	-H	H	-CN	シクロペンチルー	Ph (CH ₂) ₈ 0-C (0) -CH ₂ -
4-01-Ph-	-H	− H	-CN	シクロペンチルー	nBu0-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	− H	-CN	シクロペンチルー	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロペンチルー	PhO-C(0)-(CH ₂) ₂ -
4-CI-Ph-	-H	− H	-CN	シクロペンチルー	PhO-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	- H	-CN	シクロペンチルー	Pho-C(0)-(CH ₂) ₄ -
4-01-Ph-	-H	- H	-CN	シクロペンチルー	Ph0-C(0)-(CH ₂) ₅ -
4-01-Ph- 4-01-Ph-	-H	-H -H	-CN	シクロペンチル- シクロペンチル-	PhO-C(0)-(CH ₂) ₆ -
4-01-Ph-	-H	-H	−CN −CN	シクロペンチルーシクロペンチルー	Ph0-C(0)-(CH ₂),- Ph0-C(0)-(CH,) ₈ -
4-01-Ph-	-H	-H	-CN	シクロペンチルー	PhNH-C(0)-CH ₂ -
4-01-Ph-	H	-H	-CN	シクロペンチルー	PhCH,NH-C(0)-CH,-
4-01-Ph-	-H	-H	-CN	シクロペンチルー	Ph (CH ₂) ,NH-C (0) -CH,-
4-CI-Ph-	-H	-H	-CN	シクロペンチルー	Ph $(CH_2)_3NH-C(0)-CH_2-$
4-01-Ph-	-H	-H	-CN	シクロペンチルー	Ph (CH ₂) 4NH-C (0) -CH ₂ -
4-CI-Ph-	-H	-H	-CN	シクロペンチルー	Ph (CH ₂) ₅ NH-C (0) -CH ₂ -
4-01-Ph-	-H	-н	-CN	シクロペンチルー	Ph (CH ₂) ₆ NH-C (O) -CH ₂ -
4-CI-Ph-	-н	-H	-CN	シクロペンチルー	Ph (CH ₂) ₇ NH-C (0) -CH ₂ -
4-01-Ph-	− H	-н	-cn	シクロペンチルー	Ph (CH ₂) ₈ NH-C (0) -CH ₂ -
4-01-Ph-	- H	- H	-CN	シクロペンチル-	PhGH ₂ (Me) N-C (0) -CH ₂ -
4-01-Ph-	- H	-H	-cn	シクロペンチルー	nBuNH-C(0)-CH ₂ -
4-01-Ph-	- H	~ H	-CN	シクロペンチル-	PhNH-C(0)-CH ₂ -
4-01-Ph-	− H	- H	-CN	シクロペンチル-	PhNH-C(0)-(CH ₂) ₂ -
4-01-Ph-	− H	− H	-cn	シクロペンチルー	PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	シクロペンチルー	PhNH-C(0)-(CH ₂) ₄ -
4-01-Ph-	-H	-H	-CN	シクロペンチルー	PhNH-C(0)-(CH ₂) ₅ -
4-CI-Ph-	-H	− H	-CN	シクロペンチルー	PhNH-C(0)-(CH ₂) ₆ -
4-01-Ph-	- H	− H	-CN	シクロペンチルー	PhNH-C(0)-(CH ₂) ₇ -
4-C1-Ph-	- H	-H	-CN	シクロペンチルー	PhNH-C(0)-(CH ₂) ₈ -
4-01-Ph-	- H	- H	-CN	シクロペンチルー	Ph (CH ₂) ₂ -C(0)-NH-CH ₂ -
4-01-Ph-	-H	-H	-CN		$Ph(CH_2)_2 - C(0) - NH - (CH_2)_2 - C(0) - NH - (CH_2)_2 - C(0) - NH - (CH_2)_2 - C(0)_2 - $
4-01-Ph-	-H	− H	-CN		Ph (CH ₂) ₂ -C(0)-NH-(CH ₂) ₃ -
4-01-Ph-	-H -∪	-H	-CN		$Ph(CH_2)_2 - C(0) - NH - (CH_2)_4 - C(0) - NH - (CH_2)_4 - C(0)_2 - NH_2 - (CH_2)_4 - C(0)_2 - (CH_2)_2 $
4-01-Ph- 4-01-Ph-	-H	–H –H	-CN -CN		$Ph(CH_2)_2 - C(0) - NH - (CH_2)_5 -$
4-01-Ph-	-H -H	-H -H	-CN		$Ph(CH_2)_2 - C(0) - NH - (CH_2)_6 - Ph(CH_1)_6 - C(0)_2 - NH_2 - (CH_1)_6 - C(0)_6 - NH_2 - (CH_1)_6 - C(0)_6 - C(0)_6$
4-01-Ph-	-H	-H	-CN		$Ph(CH_2)_2 - C(0) - NH - (CH_2)_7 - Ph(CH_1)_2 - C(0) - NH - (CH_1)_2 - C(0)_2 - C(0)_2 - NH - (CH_1)_2 - C(0)_2 - C(0)_2 - NH - (CH_1)_2 - C(0)_2 - C(0)$
4-01-64			-014	ファロハンブルー	Ph(CH2)2-C(0)-NH-(CH2)8-

【0044】 【表13】

表 1 3					
R ¹	R²	R ³	R⁴	R⁵	R [€]
4-01-Ph-	-H	-H	-CN	シクロペンチル-	4-Me-PhNH-C(0)-(CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	シクロペンチルー	$4-Me_2N-PhNH-C(0)-(CH_2)_3-$
4-C1-Ph-	-H	- H	-CN	シクロペンチルー	$4-Ac-PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-CN	シクロペンチルー	PhNH-C(0)-(CH ₂) ₃ -
4-C1-Ph-	-H	-H	-CN	シクロペンチルー	$4-PhCH_2O-PhNH-C(0)-(CH_2)_3-$
4-C1-Ph-	-H	-H	-CN	シクロペンチルー	4-Et00C-PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	シクロペンチルー	4-H00C-PhNH-C(0)-(CH2)3-
4-01-Ph-	-н	− H	-CN		$4-\text{Me}_2\text{N}(\text{CH}_2)_3-\text{PhNH-C}(0)-(\text{CH}_2)_3-$
4-C1-Ph-	-H	-н	-CN	シクロヘキシルー	Ph0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘキシル-	PhCH ₂ 0-C(0)-CH ₂ -
4-C1-Ph-	-H	- H	-CN	シクロヘキシルー	Ph (CH ₂) ₂ 0-C (0) -CH ₂ -
4-01-Ph-	-H	- H	-CN	シクロヘキシルー	Ph (CH ₂) ₃ 0-C (0) -CH ₂ -
4-C1-Ph-	-H	-H	-CN	シクロヘキシルー	Ph (CH ₂) 40-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	Ph (CH ₂) ₅ 0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘキシルー	Ph (CH ₂) ₆ 0-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	Ph (CH ₂) ₇ 0-C(0)-CH ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘキシルー	Ph (CH ₂) ₀ 0 -C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	nBu0-C(0)-(CH ₂) ₃ -
4-01-Ph- 4-01-Ph-	-H -H	H	-CN	シクロヘキシルー	PhO-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘキシル- シクロヘキシル-	PhO-C(0)-(CH ₂) ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘキシルー	PhO-C(0)-(CH ₂) ₃ - PhO-C(0)-(CH ₂) ₄ -
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	Ph0-C(0)-(CH ₂) ₃ -
4-01-Ph-	_н	-H	-CN	シクロヘキシルー	PhO-C(0)-(CH ₂) ₄ -
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	PhO-C (0) - (CH ₂) ₇ -
4-01-Ph-	-H	H	-CN	シクロヘキシルー	PhO-C(0)-(CH ₂) _A -
4-01-Ph-	-H	−H	-CN	シクロヘキシル~	PhNH-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	PhCH,NH-C(0)-CH,-
4-01-Ph-	-H	-H	-CN	シクロヘキシルー	Ph (CH ₂) ,NH-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-cn	シクロヘキシル-	Ph (CH ₂) 3NH-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘキシル-	$Ph(CH_2)_4^NH-C(0)-CH_2^-$
4-01-Ph-	-н	-H	-CN	シクロヘキシル-	$Ph(CH_2)_5NH-C(0)-CH_2-$
4-CI-Ph-	-H	-H	-CN	シクロヘキシル-	$Ph(CH_2)_6NH-C(0)-CH_2-$
4-01-Ph-	-H	−н .	-CN	シクロヘキシル-	$Ph(CH_2)_7NH-C(0)-CH_2-$
4-C1-Ph-	-H	-H	-CN	シクロヘキシル-	Ph(CH ₂) ₈ NH-C(0)-CH ₂ -
4-01-Ph-	-н	-11	-CN	シクロヘキシル-	PhCH2(Me)N-C(0)-CH2-
4-CI-Ph-	-н	-н	-CN	シクロヘキシルー	nBuNH-C(0)-CH ₂ -
4-01-Ph-	-H	- H	-CN	シクロヘキシル-	PhNH-C(0)-CH ₂ -
4-01-Ph-	-н	-H	-CN	シクロヘキシルー	PhNH-C(0)-(CH ₂) ₂ -
4-01-Ph-	-H	- H	-CN	シクロヘキシルー	PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-н	-H	-CN	シクロヘキシルー	PhNH-C(0)-(GH ₂) ₄ -
4-CI-Ph-	-H	-#	-CN	シクロヘキシルー	PhNH-C(0) - (CH ₂) ₅ -
4-CI-Ph-	-H	-H	-CN	シクロヘキシルー	PhNH-C(0)-(GH ₂) ₆ -
4-CI-Ph-	-H	- H	-CN	シクロヘキシルー	PhNH-C(0)-(CH ₂) ₇ -
4-01-Ph-	<u>-н</u>	_ -H	-CN	シクロヘキシル-	PhNH-C(0)-(CH ₂) ₈ -

表 1 4					
R¹	R²	R³	R⁴	R ⁵	R ⁶
4-01-Ph-	-H	-H	-CN	シクロヘキシル-	Ph (CH ₂) ₂ -C(0)-NH-CH ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘキシル-	$Ph(CH_2)_2-C(0)-NH-(CH_2)_2-$
4-01-Ph-	-н	- H	-CN	シクロヘキシル-	$Ph(CH_2)_2-C(0)-NH-(CH_2)_3-$
4-CI-Ph-	-н	− H	-CN	シクロヘキシルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_4-$
4-01-Ph-	-H	- H	-CN	シクロヘキシルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_5-$
4-CI-Ph-	-H	- H	-CN	シクロヘキシルー	Ph(CH2)2-C(0)-NH-(CH2)6-
4-C1-Ph-	-H	-H	-CN	シクロヘキシル-	$Ph(CH_2)_2-C(0)-NH-(CH_2)_7-$
4-01-Ph-	-H	- H	-CN	シクロヘキシルー	Ph(CH2)2-C(0)-NH-(CH2)8-
4-CI-Ph-	~H	-H	-CN	シクロヘキシル-	$4-Me-PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-CN	シクロヘキシル-	$4-Me_2N-PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	- H	-CN	シクロヘキシル-	$4-Ac-PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-CN	シクロヘキシル-	$PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-CN	シクロヘキシル-	$4-PhCH_2D-PhNH-C(0)-(CH_2)_3-$
4-01 - Ph-	-H	-H	-CN	シクロヘキシル-	4-Et00C-PhNH-C(0)-(CH2)3-
4-CI-Ph-	-H	-н	-CN	シクロヘキシル-	4-H00C-PhNH-C(0)-(CH2)3-
4-01 - Ph-	-H	–H	-CN	シクロヘキシル-	$4-\text{Me}_2\text{N}(\text{CH}_2)_3-\text{PhNH-C}(0)-(\text{CH}_2)_3-$
4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	Ph0-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-cn	シクロヘブチルー	$PhCH_2O-C(O)-CH_2-$
4-01-Ph-	−H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2O-C(0)-CH_2-$
4-01-Ph-	-H	− H	-CN	シクロヘブチルー	bp (CH ⁵) ² 0-C (0) -CH ⁵ -
4-01-Ph-	−H	-H	-CN	シクロヘプチルー	Ph (CH ₂) 40-C (0) -CH ₂ -
4-01 - Ph-	-H	− H	-CN	シクロヘプチルー	Ph (CH ₂) ₅ 0-C(0)-CH ₂ -
4-01-Ph-	- H	–H	-CN	シクロヘプチルー	Ph (CH ₂) ₆ 0-C(0) -CH ₂ -
4-CI-Ph-	-H	-н	-CN	シクロヘプチルー	Ph (CH ₂) ₇ 0-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	Ph(CH ₂) ₈ 0-C(0)-CH ₂ -
4-01-Ph-	-н	-H	-CN	シクロヘプチルー	uBn0-C(0)-(CH ⁵) ³ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	PhO-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	PhO-C (0) - (CH ₂) ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	PhO-C (0) - (CH ₂) ₃ -
4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	PhO-C (0) - (CH ₂) ₄ -
4-CI-Ph-	-H	-H	-CN	シクロヘプチル- シクロヘプチル-	PhO-C(0)-(CH ₂) ₅ -
4-01-Ph-	-H -H	-H	-CN -CN	シクロヘプテルー	Ph0~C (0) - (CH ₂) ₈ - Ph0-C (0) - (CH ₂) ₇ -
4-CI-Ph- 4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	Ph0-C (0) - (CH ₂) ₈ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	PhNH-C (0) -CH,-
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	PhCH ₂ NH-C(0)-CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	Ph (CH ₂) ₂ NH-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	Ph (CH ₂) ₃ NH-C (O) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	Ph (CH ₂) ₄ NH-C (0) -CH ₂ -
4-01-Ph-	-H	-H	-CN	シクロヘブチルー	Ph (CH ₂) ₅ NH-C (0) -CH ₂ -
4-CI-Ph-	-н	-H	-CN	シクロヘプチルー	Ph (CH ₂) ₆ NH-C (0) -CH ₂ -
4-CI-Ph-	-H	-H	CN	シクロヘブチルー	Ph (CH ₂) ₇ NH-C (0) -CH ₂ -
4-01-Ph-	-H	–H	-CN	シクロヘプチルー	Ph (CH ₂) ₈ NH-C (0) -CH ₂ -
4-CI-Ph-	-H	-H	-CN	シクロヘブチルー	PhCH ₂ (Me) N-C (0) -CH ₂ -
4-01-Ph-	-H	-н	-CN	シクロヘプチルー	nBuNH-C(0)-CH ₂ -
	:-				

【0046】 【表15】

表 1 5					
R¹	R ²	R^3	_ R ⁴	R ⁵	R ⁶
4-01-Ph-	-н	-H	-CN	シクロヘプチル-	PhNH-C(0)-CH2-
4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	PhNH-C(0)-(CH ₂),-
4-01-Ph-	- H	-H	-CN	シクロヘプチルー	PhNH-C(0)-(CH ₂) ₃ -
4-C1-Ph-	−H	-H	-CN	シクロヘプチルー	PhNH-C(0)-(CH2)4-
4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	PhNH-C(0)-(CH ₂) ₅ -
4-01-Ph-	-н	-н	~CN	シクロヘプチルー	PhNH-C(0)-(CH ₂) ₈ -
4-01-Ph-	- H	-H	-CN	シクロヘプチルー	PhNH-C(0)-(CH ₂),-
4-01-Ph-	- H	-н	-cn	シクロヘプチルー	PhNH-C(0)-(CH2) 8-
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2-C(0)-NH-CH_2-$
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_2-$
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_3-$
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_4-$
4-CI-Ph-	-H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_5-$
4-01-Ph-	-н	-H	-CN	シクロヘプチルー	Ph(CH ₂) ₂ -C(0)-NH-(CH ₂) ₆ -
4-01-Ph-	- H	-H	-CN	シクロヘプチルー	$Ph(CH_2)_2-C(0)-NH-(CH_2)_7-$
4-01-Ph-	- H	-H	-CN	シクロヘプチルー	Ph(CH ₂) ₂ -C(0)-NH-(CH ₂) ₈ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	$4-\text{Me-PhNH-C}(0)-(\text{CH}_2)_3-$
4-01-Ph-	-н	-H	-CN	シクロヘプチルー	4-Me ₂ N-PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	- H	-H	-CN	シクロヘプチルー	$4-Ac-PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	-H	-CN	シクロヘプチル-	$PhNH-C(0)-(CH_2)_3-$
4-01-Ph-	-H	- H	-CN	シクロヘプチルー	4-PhCH ₂ 0-PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	H	-н	-CN	シクロヘプチルー	4-Et00C-PhNH-C(0)-(CH2)3-
4-01 <i>-</i> Ph-	-H	-H	-CN	シクロヘプチルー	4-H00C-PhNH-C(0)-(CH ₂) ₃ -
4-01-Ph-	-H	-H	-CN	シクロヘプチルー	$4-\text{Me}_2\text{N}(\text{CH}_2)_3-\text{PhNH-C}(0)$
					(CH ₂) ₃ -

【0047】一般式(1)で表される化合物は、必要に応じて医薬として許容される無機酸または有機酸との酸付加塩或いはアルカリ付加塩とすることができる。そのような酸付加塩としては、例えば塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩等の無機酸塩、およびギ酸塩、酢酸塩、フマル酸塩、マレイン酸塩、シュウ酸塩、クエン酸塩、リンゴ酸塩、酒石酸塩、アスパラギン酸塩、グルタミン酸塩等の有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸塩、pートルエンスルホン酸塩、ヒドロキシベンゼンスルホン酸塩、ジヒドロキシベンゼンスルホン酸塩等のスルホン酸塩、ジヒドロキシベンゼンスルホン酸塩等のスルホン酸との塩が、また、薬理学的に許容されるアルカリ付加塩としては、アンモニウム塩、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等があげられる。

【0048】本発明化合物は静脈内投与のみならず経口投与でも有効性を示すものである。前記一般式(1)で表される化合物またはその酸付加塩、アルカリ付加塩は、これを治療または予防する薬剤として用いるにあたり、非経口的または経口的に投与することが出来る。すなわち通常用いられる投与形態、例えば粉末、顆粒、錠剤、カプセル剤、シロップ剤、懸濁液等の剤形で経口的に投与することができる、あるいは、例えば、その溶液、乳剤、懸濁液の剤形にしたものを注射の型で非経口的に投与することができる。坐型の型で直陽投与することもできる。前記の適当な剤形は、例えば、許容される、通常の担体、賦型剤、結合剤、安定剤、希釈剤に活性化合物を配合することにより製造することができる。注射

利型で用いる場合には、例えば、許容される緩衝剤、溶解補助剤、等張剤も添加することができる。これらの製剤は通常の技術により製造することができる。投与量および投与回数は、例えば、対象疾患、症状、年齢、体重、投与形態によって異なるが、通常は成人に対して一日あたり0.1mg ~2000mg 好ましくは1~200mg を一回または数回に分けて投与することができる。

[0049]

【実施例】以下に製造例、製剤例及び試験例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、以下の参考例及び実施例において示された化合物名は、必ずしもIUPAC命名法に従うものではない。

【0050】実施例1

4ーシアノー1ーフェニルー3ーフェノキシカルボニル メチルー5ー {3ー (4ークロロベンゼンスルホニル) ウレイド}ー (1H)ーピラゾールの合成

a) 5-アミノー4ーシアノー1ーフェニルー3ーフェーノキシカルボニルメチルー(1H)ーピラゾールの合成5ーアミノー4ーシアノー1ーフェニルー3ーカルボキシメチルー(1H)ーピラゾール[J. Am. Chem. Soc., (1959), <u>81</u>, 2456 より公知](500 mg, 1.82 mmol), フェノール(237 mg, 2.52 mmol), トリエチルアミン(1.20 元, 8.61 mmol) のジクロロメタン(10元) 溶液を0℃にて撹拌。これにN、N′ー(2ーオキソー3ーオキサゾリジニル)ホスフィニッククロリド(610mg, 2.48 mmol)を加え、

徐々に室温まで昇温しながら8.0時間撹拌。これを氷ー水に注いだ。有機層を分離した後、水層をクロロホルムにて抽出した。合わせた有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水にて洗浄、硫酸ナトリウムにて乾燥後、減圧留去し残渣を得た。これをシリカゲルカラムクロマトグラフィー(クロロホルムー酢酸エチル20:1) にて精製し、標題化合物(517 mg)を得た。NMR: (CDC1₃)7.14-7.56 (10H, m), 4.63 (2H, brs), 3.97 (2H, s)

b) $4-シアノ-1-フェニル-3-フェノキシカルボニルメチルー5-<math>\{3-(4-\rho)$ ロベンゼンスルホニル) ウレイド $\}-(1H)-$ ピラゾールの合成5-アミノー4-シアノ-1-フェニル-3-フェノキシカルボニルメチルー(1H)-ピラゾール(250g, 0.785mmol) のジクロロメタン(10元)溶液を0 でにて撹拌。これに4-クロロベンゼンスルホニルイソシアネート(140 μ L, 0.797 mmol)を滴下。徐々に室温まで昇温しながら2.0時間撹拌。減圧留去し残渣を得た。これをこれをシリカゲルカラムクロマトグラフィー(クロロホルムー酢酸エチル $1:1\rightarrow 1:4$) にて精製し、標題化合物(6.3m)を得た。

NMR : (CD_3OD) 7.22-7.77 (2H, m), 7.34-7.52 (7H, m), 7.21-7.29 (2H, m), 7.07-7.17 (3H, m), 4.06 (2 H. s)

【0051】実施例2

4 ーシアノー1 ーフェニルー 3 ーベンジルオキシカルボニルメチルー5ー {3 ー (4 ークロロベンゼンスルホニル) ウレイド}ー (1 H)ーピラゾールの合成a) 5 ーアミノー4 ーシアノー1 ーフェニルー 3 ーベンジルオキシカルボニルメチルー (1 H)ーピラゾールの合成 実施例1 a)の方法に準じて、5 ーアミノー4 ーシアノー1ーフェニルー 3 ーカルボキシメチルー (1 H)ーピラゾール、ベンジルアルコール、トリエチルアミン、N、N・ー (2 ーオキソー3 ーオキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。IR: (KBr) 3365, 3231, 2223, 1724, 1649, 1571, 1540, 1496, 1456, 1309, 1201, 1153, 982, 766, 699 cm

b) 4-シアノ-1-フェニル-3-ベンジルオキシカルボニルメチル-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成実施例1b)の方法に準じて、5-アミノ-4-シアノ-1-フェニル-3-ベンジルオキシカルボニルメチル-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3426, 2233, 1735, 1628, 1258, 1146, 107 5, 846, 631 cm⁻¹

【0052】実施例3

4-シアノ-1-フェニル-3-(2-フェニルエトキシカルボニルメチル)-5-{3-(4-クロロベンゼ

ンスルホニル) ウレイド} - (1H) - ピラゾールの合成

a) 5-アミノー4-シアノ-1-フェニル-3-(2 -フェニルエトキシカルボニルメチル)-(1H)-ピ ラゾールの合成

実施例 1 a) の方法に準じて、5-Pミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H)ーピラゾール、2-フェニルエチルアルコール、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR : (KBr) 3368, 3233, 2224, 1724, 1650, 1568, 153 7, 1495, 1217, 1160, $694cm^{-1}$

b) $4-シアノ-1-フェニル-3-(2-フェニルエトキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド<math>\}-(1H)-ピラゾールの合成$

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1-フェニルー3-(2-フェニルエトキシカルボ ニルメチル)-(1H)-ピラゾール、4-クロロベン ゼンスルホニルイソシアネートより標題化合物を合成し た。

IR: (KBr) 3450, 2938, 2233, 1738, 1614, 1506, 139 5, 1263, 1148, 1077, 755, 630 cm⁻¹

【0053】実施例4

4-シアノ-1-フェニルー3-(3-フェニルプロピルオキシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(3-フェニルプロピルオキシカルボニルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、3-フェニルプロピルアルコール、トリエチルアミン、N、N'-(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

NMR: (CDCl₃) 9.18 (1H, brs), 7.71-7.57 (10H, m), 5.47 (1H, brs), 5.30(2H, s), 3.97 (2H, m), 2.77 (2 H, m), 2.08 (2H, m)

b) $4-シアノ-1-フェニル-3-(3-フェニルプ ロピルオキシカルボニルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピラゾールの合成$

実施例1 b) の方法に準じて、 5-アミノ-4-シア ノ-1-フェニル-3-(3-フェニルプロピルオキシ カルボニルメチル)-(1H)-ピラゾール、<math>4-クロ ロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3422, 2364, 1638, 1304, 1207, 1087, 760 cm^{-1}

【0054】実施例5

4-シアノ-1-フェニル-3-(4-フェニルブチル オキシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノー4-シアノー1-フェニルー3-(4 ーフェニルブチルオキシカルボニルメチル)-(1H) ーピラゾールの合成

実施例 1 a) の方法に準じて、5-アミノ-4-シアノ-1-フェニル-3-カルボキシメチル-(1H)-ピラゾール、<math>4-フェニルブチルアルコール、トリエチルアミン、N、N '-(2-オキソ-3-オキサゾリジニル) ホスフィニッククロリド より、標題化合物を合成した。

NMR : (CDCl₃) 7.40-7.54 (5H, m), 7.15-7.29 (5H, m), 4.59 (2H, brs), 4.19(2H, m), 3.71 (2H, s), 2.

64 (2H, m), 1.68-1.74 (4H, m)

b) 4-シアノ-1-フェニル-3-(4-フェニルブ $チルオキシカルボニルメチル) <math>-5-\{3-(4-クロ$ $ロベンゼンスルホニル) ウレイド\}-(1H)-ピラゾ$ ールの合成

実施例1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(4-フェニルブチルオキシカルボニルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3450, 2233, 1738, 1613, 1263, 1148, 107 7, 755, 698, 630 cm $^{-1}$

【0055】実施例6

 $4-シアノ-1-フェニル-3-(5-フェニルペンチルオキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド<math>}-(1H)-ピラゾールの合成$

a) 5-アミノー4-シアノー1-フェニルー3-(5--フェニルペンチルオキシカルボニルメチル)-(1-H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノ-4-シアノ -1-フェニルー3-カルボキシメチルー(1H)-ピ ラゾール、5-フェニルペンチルアルコール、トリエチ ルアミン、N、N '-(2-オキソー3-オキサゾリジ ニル)ホスフィニッククロリド より、標題化合物を合 成した。

IR: (KBr) 3397, 3326, 3230, 2933, 2226, 1723, 164 6, 1535, 1338, 1194, 1067, 762, 700 cm⁻¹

b) 4-シアノ-1-フェニル-3-(5-フェニルペンチルオキシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5ーアミノー4ーシア ノー1ーフェニルー3ー(5ーフェニルペンチルオキシ カルボニルメチル)- (1H) ーピラゾール、4ークロ ロベンゼンスルホニルイソシアネートより標題化合物を 合成した。

IR : (KBr) 3450, 2233, 1738, 1613, 1263, 1148, 107 7, 755, 698, 630 cm $^{-1}$

【0056】実施例7

 $4-シアノ-1-フェニル-3-(n-ブチルオキシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成a)5-アミノ-<math>4-シアノ-1-フェニル-3-(n?ブチルオキシカルボニルメチル)-(1H)-ピラゾールの合成$

実施例1 a) の方法に準じて、5-アミノー4-シアノ -1-フェニル-3-カルボキシメチルー(1H)ーピ ラゾール、n-ブチルアルコール、トリエチルアミン、 N、N '-(2-オキソ-3-オキサゾリジニル)ホス フィニッククロリド より、標題化合物を合成した。

IR : (KBr) 3371, 3231, 2964, 2225, 1727, 1649, 154 0, 1492, 1184, 760, $700cm^{-1}$

b) $4-シアノ-1-フェニル-3-(n-ブチルオキシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成実施例<math>1$ b) の方法に準じて、5-アミノ-4-シアノ-1-フェニル-3-(n-ブチルオキシカルボニルメチル)-(1H)-ピラゾール、<math>4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

NMR : (DMSO+D₂O) 7.94 (2H, m), 7.67 (2H, m), 7.47-7.58 (5H, m), 3.80 (2H, s and 2H, t, J=6.8Hz), 1.3 7-1.47 (2H, m), 1.17-1.29 (2H, m), 0.83 83H,t, J=7.3Hz)

【0057】実施例8

4-シアノ-1-フェニル-3-(シクロヘシルメチル オキシカルボニルメチル)-5-{3-(4-クロロベ ンゼンスルホニル)ウレイド}-(1H)-ピラゾール の合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(シ クロヘキシルメチルオキシカルボニルメチル)-(1 H)-ピラゾールの合成

実施例1 a) の方法に準じて、5ーアミノー4ーシアノー1ーフェニルー3ーカルボキシメチルー(1H)ーピラゾール、シクロヘキシルメチルアルコール、トリエチルアミン、N、N'ー(2ーオキソー3ーオキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR : (KBr) 3422, 3328, 2930, 2212, 1731, 1258, 121 2, 1168, $995cm^{-1}$

b) 4-シアノ-1-フェニル-3-(シクロヘシルメ チルオキシカルボニルメチル)-5-{3-(4-クロ ロベンゼンスルホニル) ウレイド} - (1H) - ピラゾ ールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1-フェニルー3-(シクロヘキシルメチルオキシ カルボニルメチル)-(1H)-ピラゾール、4-クロ ロベンゼンスルホニルイソシアネートより標題化合物を 合成した。

IR: (KBr) 3528, 2928, 2853, 2233, 1736, 1637, 157 2, 1503, 1395, 1260, 1148, 1076, 756, 694, 630 cm

【0058】実施例9

4-シアノ-1-フェニル-3-(2,6-ジイソプロ $ピルフェニルオキシカルボニルメチル)-5-{3 (4-クロロベンゼンスルホニル)ウレイド}-(1$ H)-ピラゾールの合成

a) 5-アミノー4-シアノー1-フェニルー3-(2,6-ジイソプロピルフェニルオキシカルボニルメチル)-(1H)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、2, 6-ジイソプロピルフェノール、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

NMR : $(CDC1_3)$ 7.39-7.54 (5H, m), 7.12-7.23 (3H, m), 4.73 (2H, brs), 4.00(2H, s), 2.96 (2H, hep, J=7.0Hz), 1.17 (12H, d, J=7.0Hz)

b) 4-シアノ-1-フェニル-3-(2,6-ジイソプロピルフェニルオキシカルボニルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3-(2,6-ジイソプロピルフェニルオキシカルボニルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3415, 2966, 2232, 1760, 1626, 1258, 114 4, 1075, 757 cm $^{-1}$

【0059】実施例10

 $4-シアノ-1-フェニル-3-(1-フェニルーエト キシカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-(1-フェニル-エトキシカルボニルメチル)-(1+)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-Pミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H)ーピラゾール、1-フェニルエタノール、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)

ホスフィニッククロリド より、標題化合物を合成した。

NMR: (CDC1₃) 7.23-7.52 (10H, m), 5.94 (1H, q, J=6.6Hz), 4.72 (2H, brs),3.71 (2H, d, J=1.5Hz), 1.57 (3H, d, J=6.6Hz)

b) 4-シアノ-1-フェニル-3-(1-フェニル-エトキシカルボニルメチル)-5-{3-(4-クロロ ベンゼンスルホニル)ウレイド}-(1H)-ピラゾー ルの合成

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1ーフェニルー3-(1-フェニルーエトキシカル ボニルメチル)-(1H)-ピラゾール、4-クロロベ ンゼンスルホニルイソシアネートより標題化合物を合成 した。

IR: (KBr) 3317, 2232, 1593, 1497, 1334, 1257, 114 8, 1088, 921 cm⁻¹

【0060】実施例11

4-シアノ-1-フェニル-3-(フェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノー4-シアノ-1-フェニル-3-(フェニルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、アニリン、トリエチルアミン、N、N'ー(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3311, 3229, 2221, 1679, 1646, 1599, 155 2, 1529, 1497, 1445, 1318, 751, 694 cm⁻¹

b) 4-シアノ-1-フェニル-3-(フェニルカルバ $モイルメチル) <math>-5-\{3-(4-クロロベンゼンスル$ $ホニル) ウレイド <math>\}-(1H)$ -ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1ーフェニルー3ー(フェニルカルバモイルメチル)-(1H)ーピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3258, 2232, 1667, 1531, 1500, 1445, 135 2, 1158, 758, 694 cm $^{-1}$

【0061】実施例12

4-シアノ-1-フェニル-3-(ベンジルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(ベンジルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-Pミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H)ーピラゾール、ベンジルアミン、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニ

ッククロリドより、標題化合物を合成した。

IR: (KBr) 3356, 3175, 2214, 1653, 1534, 704 cm⁻¹ b) 4-シアノ-1-フェニル-3-(ベンジルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4-シア ノー1-フェニルー3-(ベンジルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 2226, 1742, 1634, 1555, 1466, 1358, 115 1, 1092, 917, 760 cm⁻¹

【0062】実施例13

 $4-シアノ-1-フェニル-3-(N-ベンジル-N-メチルカルバモイルメチル)-5-<math>\{3-(4-クロロベンゼンスルホニル)$ ウレイド $\}-(1H)-ピラゾールの合成$

a) 5-アミノー4-シアノー1-フェニルー3-(N-ベンジル-N-メチルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、N-ベンジルーN-メチルアミン、N リエチルアミン、N、N 'ー (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3356, 3202, 2221, 1635, 1597, 1571, 154 1, 1491, 1455, 759, 706 cm⁻¹

b) 4-シアノ-1-フェニル-3-(N-ベンジル-N-メチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例 1 b) の方法に準じて、5-アミノー4ーシア ノー1-フェニルー3ー(N-ベンジルーN-メチルカル バモイルメチル)-(1H)-ピラゾール、4-クロロ ベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3227, 2233, 1734, 1618, 1496, 1477, 145 4, 1398, 1355, 1158, 1091, 757 $\rm cm^{-1}$

【0063】実施例14

4 = シアノー1 - フェニル = 3 - (2 - フェニルエチル カルバモイルメチル) - 5 - {3 - (4 - クロロベンゼ ンスルホニル) ウレイド} - (1 H) - ピラゾールの合 成

a) 5-アミノ-4-シアノ-1-フェニル-3-(2-7)-フェニルエチルカルバモイルメチル) -(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H)ーピラゾール、2-フェニルエチルアミン、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)

ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3308, 3185, 2221, 1651, 1571, 1534, 149 5, 1460, 762, 692 cm⁻¹

b) 4-シアノ-1-フェニル-3-(2-フェニルエ チルカルバモイルメチル)-5-(3-(4-クロロベ ンゼンスルホニル)ウレイド}-(1H)-ピラゾール の合成

実施例1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(2-フェニルエチルカルバモイルメチル)-(1 H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3306, 2230, 1648, 1623, 1532, 1269, 116 2. 1086, 756 cm^{-1}

【0064】実施例15

 $4-シアノ-1-フェニルー3-(3-フェニルプロピルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-(3-1)-フェニルプロピルカルバモイルメチル) -(1H)-1ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノ-4-シアノ-1-フェニル-3-カルボキシメチル-(1H)-ピラゾール、3-フェニルプロピルアミン、トリエチルアミン、N、N'-(2-オキソ-3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した

IR : (KBr) 3353, 3272, 3226, 2216, 1627, 1563, 153 5, 760, 697 $\rm cm^{-1}$

b) $4-シアノ-1-フェニル-3-(3-フェニルプロピルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド<math>}-(1H)-ピラゾールの合成$

実施例1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(3-フェニルプロピルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3350, 2232, 1728, 1634, 1500, 1161, 758 cm⁻¹

【0065】実施例16

 $4-シアノ-1-フェニル-3-(4-フェニルブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-(4-フェニルブチルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、4-フェニルブチルアミン、トリエチルアミン、N、N'ー(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3351, 2219, 1646, 1533, 1496, 694 cm⁻¹b) 4-シアノ-1-フェニル-3-(4-フェニルブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1-フェニルー3-(4-フェニルブチルカルバモ イルメチル)-(1H)-ピラゾール、4-クロロベン ゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3423, 2231, 1648, 1534, 1259, 1148, 107 7, 754 $\rm cm^{-1}$

【0066】実施例17

4-シアノ-1-フェニル-3-(ジメチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(ジ メチルカルバモイルメチル)-(1H)-ピラゾールの 合成

実施例1 a) の方法に準じて、5-Pミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、ジメチルアミン塩酸塩、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

NMR: $(CDCl_3)$ 7.34-7.52 (5H, m), 5.51 (2H, brs), 3.82 (2H, s), 3.31 (3H,s), 2.98 (3H, s)

b) 4-シアノ-1-フェニル-3-(ジメチルカルバ モイルメチル)-5-{3-(4-クロロベンゼンスル ホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4-シア ノー1-フェニルー3-(ジメチルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3278, 2237, 1140, 1615, 1575, 1508, 147 6, 1356, 1158, 1092, 757 cm⁻¹

【0067】実施例18

 $4-シアノ-1-フェニル-3-(ピペリジン-1-イルーカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-(ピペリジン-1-イルーカルボニルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノ

-1-フェニル-3-カルボキシメチル-(1H)-ピラゾール、ピペリジン、トリエチルアミン、N、N'-(2-オキソ-3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

NMR : (CDCl₃) 7.36-7.51 (5H, m), 4.90 (2H, brs), 3.71 (2H, s), 3.55 (2H, m), 6.48 (2H, m), 1.43-4.67 (6H, m)

b) 4-シアノ-1-フェニル-3-(ピペリジン-1-イルーカルボニルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1ーフェニルー3ー(ピペリジンー1ーイルーカル ボニルメチル)- (1H) - ピラゾール、4-クロロベ ンゼンスルホニルイソシアネートより標題化合物を合成 した。

IR : (KBr) 3449, 2942, 2233, 1629, 1254, 1147, 107 9, 755 cm $^{-1}$

【0068】実施例19

 $4-シアノ-1-フェニル-3-(シクロヘキシルメチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノー4-シアノ-1-フェニルー3-(シクロヘキシルメチルカルバモイルメチル) -(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、シクロヘキシルメチルアミン、トリエチルアミン、N、N '-(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3300, 2922, 2217, 1657, 1533, 1455, 75 9, 693 cm⁻¹

b) 4-シアノ-1-フェニル-3-(シクロヘキシルメチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(シクロヘキシルメチルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3234, 2926, 2233, 1741, 1635, 1553, 150 3, 1476, 1361, 1154, 1091, 758 cm⁻¹

【0069】実施例20

4-シアノ-1-フェニル-3-(シクロヘキシルカル バモイルメチル)-5-{3-(4-クロロベンゼンス ルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(シ

クロヘキシルカルバモイルメチル) - (1H) - ピラゾ ールの合成

実施例1 a) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、シクロヘキシルアミン、トリエチルアミン、N、N'ー(2-オキソー3ーオキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。IR:(KBr)3300,2931,2220,1655,1562,1532,1497,1456,756,695 cm⁻¹b) 4ーシアノー1ーフェニルー3ー(シクロヘキシルカルバモイルメチル)ー5ー(3ー(4ークロロベンゼンスルホニル)ウレイド)ー(1H)ーピラゾールの合成

実施例 1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(シクロヘキシルカルバモイルメチル)- $(1\,\mathrm{H})$ -ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。IR: (KBr) 3334, 2935, 2232, 1723, 1631, 1558, 1505, 1156, 1093, 757 cm $^{-1}$

【0070】実施例21

 $4-シアノ-1-フェニル-3-(n-ブチルカルバモ イルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成 a) <math>5-アミノ-4-シアノ-1-フェニル-3-(n-ブチルカルバモイルメチル)-(1H)-ピラゾールの合成$

実施例 1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、n-ブチルアミン、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリドより、標題化合物を合成した。

NMR: $(CDC1_3)$ 7.43-7.58 (5H, m), 6.49 (1H, brs), 4.73 (2H, brs), 3.62 (2H, s), 3.27 (2H, m), 1.32-1.54 (4H, m), 0.90 (3H, t, J=7.2Hz)

b) $4-シアノ-1-フェニル-3-(n-ブチルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成実施例<math>1$ b) の方法に準じて、5-アミノ-4-シアノ-1-フェニル-3-(n-ブチルカルバモイルメチル)-(1H)-ピラゾール、<math>4-クロロベンゼンスル

IR: (KBr) 3424, 2931, 2231, 1622, 1385, 1256, 114 6, 1074, 826, 761, 623cm⁻¹

-ホニルイソシアネートより標題化合物を合成した。

【0071】実施例22

 $4-シアノ-1-フェニル-3-{N-(4-フェニル ブチル)-N-エチルカルバモイルメチル}-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-{N-(4-フェニルブチル)-N-エチルカルバモイルメチル}-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、N-(4-フェニルブチル)-N-エチルアミン、トリエチルアミン、N、N'-(2-オキソー3ーオキサゾリジニル)ホスフィニッククロリドより、標題化合物を合成した。

NMR: (CDCI₃) 7.15-7.50 (10H, m), 4.66 (2H, brs), 3.71 (1H, s), 3.68 (1H, s), 3.32-3.42 (4H, m), 2.6 0-2.65 (2H, m), 1.59-1.68 (4H, m), 1.23 (3H, m) b) 4-シアノ-1-フェニル-3-{N-(4-フェニルブチル)-N-エチルカルバモイルメチル)-5- {3-(4-クロロベンゼンスルホニル)ウレイド}- (1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3ー { N-(4-ブェニルブチル)-N-エチルカルバモイルメチル}-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3437, 2936, 2231, 1622, 1262, 1147, 107 7, 755, 699, 629cm⁻¹

【0072】実施例23

4-シアノ-1-フェニル-3-(4-メチルフェニル カルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(4-メチルフェニルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノ -1-フェニル-3-カルボキシメチル-(1H)-ピ ラゾール、4-トルイジン、トリエチルアミン、N、N '-(2-オキソー3-オキサゾリジニル)ホスフィニ ッククロリドより、標題化合物を合成した。

IR: (KBr) 3415, 3283, 3150, 2218, 1680, 1637, 160 0, 1535, 1496, 1405, 1346, 824, 774, 696 cm⁻¹

b) 4-シアノ-1-フェニル-3-(4-メチルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4-シア プー1-フェニルー3-(4-メチルフェニルカルバモ イルメチル)-(1H)-ピラゾール、4-クロロベン ゼンスルホニルイソシアネートより標題化合物を合成し た。

IR: (KBr) 3260, 2231, 1668, 1531, 1353, 1158, 109 3, 758 cm⁻¹

【0073】実施例24

4-シアノ-1-フェニル-3-(4-ジメチルアミノフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾ

ールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(4 -ジメチルアミノフェニルカルバモイルメチル)-(1 H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノ-4-シアノ -1-フェニル-3-カルボキシメチル-(1H)-ピ ラゾール、N,N-ジメチル-4-フェニレンジアミン二 塩酸塩、トリエチルアミン、N、N'-(2-オキソ-3-オキサゾリジニル)ホスフィニッククロリド よ り、標題化合物を合成した。

IR : (KBr) 3312, 2220, 1654, 1597, 1565, 1534, 149 4, 765 cm $^{-1}$

b) 4-シアノ-1-フェニル-3-(4-ジメチルアミノフェニルカルバモイルメチル)-5-(3-(4- $クロロベンゼンスルホニル)ウレイド}-(1H)-ピ$ ラゾールの合成

実施例 1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(4-ジメチルアミノフェニルカルバモイルメチル)-(1 H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3294, 2228, 1654, 1622, 1531, 1267, 116 2, 759 cm $^{-1}$

【0074】実施例25

4-シアノ-1-フェニル-3-(4-アセトキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 4-アセトキシアニリンの合成

4-アセトキシーニトロベンゼン(13.5g, 74.5m mol)、10%パラジウムー炭素(1.40g)のテトラヒドロフラン懸濁液(100m)を水素ガス雰囲気下室温にて4.0時間撹拌した。セライトを用い吸引デ過し、河液を減圧留去し残さを得た。シリカゲルカラムクロマトグラフィー(クロロホルムー酢酸エチル $10:1\rightarrow 4:1$)にて精製し、標題化合物(1.90g)を得た。

NMR : (CDC1 $_3$) 6.85 (2H, m), 6.65 (2H, m), 3.62 (2 H, brs), 2.26 (3H, s)

b) 5-アミノ-4-シアノ-1-フェニル-3-(4-アセトキシフェニルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、4-アセトキシアニリン、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した

IR: (KBr) 3267, 2222, 1744, 1661, 1538, 1508, 122 7, 1200, 1019, 920, 850, 766, 696 cm⁻¹

c) $4-シアノ-1-フェニル-3-(4-アセトキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

実施例1 b) の方法に準じて、5-アミノー4ーシア ノー1-フェニル-3-(4-アセトキシフェニルカル バモイルメチル)-(1H)-ピラゾール、4-クロロ ベンゼンスルホニルイソシアネートより標題化合物を合 成した。

IR : (KBr) 3296, 2230, 1760, 1665, 1622, 1535, 150 8, 1268, 1216, 1198, 1158, 1079, 755 cm $^{-1}$

【0075】実施例26

4-シアノ-1-フェニル-3-(4-ヒドロキシフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

4-シアノ-1-フェニルー3-(4-アセトキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール(123mg,0.207mmol)のテトラヒドロフラン溶液(10ml)を室温にて撹拌。これに0.1N水酸化リチウム水溶液(2.1ml)を加え室温にて10時間撹拌した。反応液を0℃に冷却し、0.1N塩酸を加え中和した。テトラヒドロフランを減圧留去し、酢酸エチルにて抽出した。有機層を硫酸ナトリウムにて乾燥後、減圧留去し残さを得た。これを分取薄層シリカゲルクロマトグラフィー(酢酸エチルーメタノール 9:1)により精製し、標題化合物を合成した。

IR : (KBr) 3298, 2233, 1642, 1514, 1256, 1145, 107 5, 828, 754 cm $^{-1}$

【0076】実施例27

 $4-シアノ-1-フェニル-3-(4-ベンジルオキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-(4 -ベンジルオキシフェニルカルバモイルメチル)-(1 H)-ピラゾールの合成

実施例1 a) の方法に準じて、 $5-P \ge J-4- > PJ-1- J-2 = J-4- > PJ-1- J-2 = J-$

IR : (KBr) 3315, 2228, 1662, 1637, 1532, 1511, 125 0 $\rm cm^{-1}$

b) 4-シアノ-1-フェニル-3-(4-ベンジルオ キシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピ ラゾールの合成 実施例1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(4-ベンジルオキシフェニルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3258, 2231, 1667, 1531, 1510, 1354, 1157, 1092, 825, 757, 696cm⁻¹

【0077】実施例28

4-シアノ-1-フェニル-3-(4-エトキシカルボニルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノ-4-シアノ-1-フェニル-3-(4 -エトキシカルボニルフェニルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、4-アミノ安息香酸エチル、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR : (KBr) 3330, 2223, 1705, 1645, 1539, 1050, 128 8, 1176, 1108, $768cm^{-1}$

b) 4-シアノ-1-フェニル-3-(4-エトキシカルボニルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1 H)-ピラゾールの合成

実施例 1 b) の方法に準じて、5-アミノー4ーシア ノー1-フェニルー3-(4-エトキシカルボニルフェ ニルカルバモイルメチル)-(1H)-ピラゾール、4 -クロロベンゼンスルホニルイソシアネートより標題化 合物を合成した。

IR: (KBr) 3319, 2232, 1698, 1601, 1536, 1275, 114 1, 1108, 1075, 770 cm⁻¹

【0078】実施例29

 $4-シアノ-1-フェニル-3-(4-カルボキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

4ーシアノー1ーフェニルー3ー(4ーエトキシカルボニルフェニルカルバモイルメチル)ー5ー{3ー(4ークロロベンゼンスルホニル)ウレイド}ー(1H)ーピラゾール(58g,0.0955㎜)をテトラヒドロフラン溶液中(5.0 mL)の℃にて撹拌。これに0.1N水酸化リチウム水溶液(0.955 mL)を加え徐々に昇温しながら8時間撹拌した。0.1N塩酸を加え(0.955 mL)を加え、テトラヒドロフランを減圧留去した。酢酸エチルにて抽出し、硫酸マグネシウムにて乾燥後、減圧留去し残さを得た。これを分取薄層シリカゲルクロマトグラフィー(酢酸エチルーメタノール 1:9)にて

精製し、標題化合物(1.2g)を得た。

高分解能質量分析 (FAB-): 計算値577.0697 ($C_{26}H_{18}C$ IN_6O_6S)、実測値 577.0691

【0079】実施例30

4-シアノー1-フェニルー3-(4-ジメチルアミノメチルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 4-ジメチルアミノメチルニトロベンゼンの合成 4-ニトロベンズアルデヒド (5.00g, 33.1 mmo 1), 塩酸ジメチルアミン(4.10g, 50.3 mmol) のメタノール溶液 (150 ml) を0℃にて撹拌。これにシアノ水素化ほう素ナトリウム (2.29g, 36.4 mmol) を加え0℃にて1時間撹拌。次に氷ー水浴を取り除き12時間撹拌。反応液に飽和炭酸水素ナトリウム水溶液を加えて pH9 としメタノールを減圧留去した。酢酸エチルにて抽出し、有機層を硫酸ナトリウムにて乾燥後、減圧留去し残さを得た。これをシリカゲルカラムクロマトグラフィー (クロロホルムー酢酸エチル 40:1→20:1→1:1) にて精製し、標題化合物 (964 mg) を得た。

NMR: $(CDCl_3)$ 8.18 (2H, m), 7.50 (2H, m), 3.51 (2H, s), 2.26 (6H, s)

b) 4-ジメチルアミノメチルアニリンの合成

4-iジメチルアミノメチルニトロベンゼン(764mg, 4.22mmol)、10%パラジウム – 炭素(90m)のメタノール懸濁液(20m)を水素ガス雰囲気下、室温にて6時間撹拌。セライトを用い吸引iで過した。iでで減圧留去し残さを得た。これをシリカゲルカラムクロマトグラフィー(クロロホルム – 酢酸エチル4: $1 \rightarrow$ メタノール:クロロホルム 1:9)にて精製し標題化合物(493mg)を得た。

NMR: (CDCl₃) 7.08 (2H, m), 6.65 (2H, m), 3.64 (2 H, brs), 3.33 (2H, s),2.22 (6H, s)

c) 5-アミノ-4-シアノ-1-フェニル-3-(4 -ジメチルアミノメチルフェニルカルバモイルメチル) -(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、 $5-アミノ-4-シアノ-1-フェニル-3-カルボキシメチル-(1H)-ピラゾール、<math>4-ジメチルアミノメチルアニリン、トリエチルアミン、N、N--(2-オキソ-3-オキサゾリジニル) ホスフィニッククロリド より、標題化合物を合成した。NMR : (CDC1<math>_3$) 8.66 (1H, brs), 7.45-7.55 (7H, m), 7.21-7.27 (2H, m), 4.86(2H, brs), 3.78 (2H, s), 3.38 (2H, s), 2.21 (6H, s)

d) 4 - シアノ-1-フェニル-3-(4-ジメチルア ミノメチルフェニルカルバモイルメチル) -5- {3-(4-クロロベンゼンスルホニル) ウレイド} - (1 H) - ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノ-4-シア

ノー1-フェニルー3-(4-ジメチルアミノメチルフェニルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3313, 2232, 1607, 1539, 1338, 1256, 114 4, 1086, 753 cm⁻¹

【0080】実施例31

 $4-シアノ-1-フェニル-3-(3-メチルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノー4-シアノー1-フェニルー3ー(3-メチルフェニルカルバモイルメチル)ー(1H)ーピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノ -1-フェニル-3-カルボキシメチルー(1H)ーピ ラゾール、3-トルイジン、トリエチルアミン、N、N '-(2-オキソー3-オキサゾリジニル)ホスフィニ ッククロリドより、標題化合物を合成した。

IR: (KBr) 3309, 3199, 2220, 1672, 1633, 1616, 155 7, 1534, 1490, 761, 692 cm⁻¹

b) 4-シアノ-1-フェニル-3-(3-メチルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

実施例 1 b) の方法に準じて、5-アミノー4ーシア ノー1ーフェニルー3ー(3-メチルフェニルカルバモ イルメチル)-(1H)-ピラゾール、4-クロロベン ゼンスルホニルイソシアネートより標題化合物を合成した

IR: (KBr) 3253, 2233, 1667, 1596, 1529, 1402, 135 3, 1157, 1092, 758, 692cm⁻¹

【0081】実施例32

 $4-シアノ-1-フェニル-3-(3-ジメチルアミノフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) N,N-ジメチルアミノ-3-アニリンの合成

N,N-ジメチル-3-ニトロベンゼン (3.13g, 26.0 mol), 10%パラジウム-炭素 (320mg) のエタノール懸濁液 (200ml) を水素ガス雰囲気下、室温にて2.5時間撹拌。セライトを用い吸引沪過した。沪液を減圧留去し残さを得た。これをシリカゲルカラムクロマトグラフィー (クロロホルム-酢酸エチル 10:

1) にて精製し標題化合物 (2.37g) を得た。

NMR: (CDC1₃) 7.03 (1H, t, J=8.0Hz), 6.07-6.21 (3 H, m), 3.58 (2H, brs), 2.904 (3H, s), 2.902 (3H, s) b) 5-アミノー4-シアノー1-フェニルー3- (3-ジメチルアミノフェニルカルバモイルメチル)- (1 H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3ーカルボキシメチルー(1 H) ーピラゾール、 N,N-ジメチルアミノー3-アニリン、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル) ホスフィニッククロリド より、標題化合物を合成した。

IR : (KBr) 3316, 2216, 1613, 1532, 1496, 767, 695c $^{\rm m^{-1}}$

c) 4-シアノ-1-フェニル-3-(3-ジメチルア ミノフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピ ラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-(3-ジメチルアミノフェニルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3310, 2232, 1614, 1500, 1258, 1145, 107 5, 757, 630 cm $^{-1}$

【0082】実施例33

4-シアノ-1-フェニル-3-(3-アセトキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 3-アセトキシニトロベンゼンの合成

3-ニトロフェノール (17.8g, 0.128mmol)、トリエチルアミン (54.0ml, 0.387mmol) のテトラヒドロフラン溶液 (200ml) を0℃にて撹拌。これに無水酢酸 (15.0ml, 0.159mmol) を滴下した。氷ー水浴を取り除き、2時間撹拌。水を加えテトラヒドロフランを減圧留去した。酢酸エチルにて抽出し、有機層を飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥後減圧留去し残さを得た。これをシリカゲルカラムクロマトグラフィー (ヘキサンー酢酸エチル 4:1) にて精製し標題化合物 (23.1g) を得た。

NMR : (CDCl₃) 8.12 (1H, m), 8.00 (1H, t, J=2.2Hz), 7.57 (1H, t, J=8.2 Hz), 7.50 (1H, m), 2.36 (3H, s)

【0083】b) 5ーアミノー4ーシアノー1ーフェニルー3ー(3ーアセトキシフェニルカルバモイルメチル)-(1H)-ピラゾールの合成

3-アセトキシニトロベンゼン (5.08g, 28.0 mmo l) 10%パラジウムー炭素 (510 mg) のテトラヒドロフラン懸濁液 (150 ml) を水素ガス雰囲気下、室温にて4時間撹拌。セライトを用い吸引沪過し、沪液を減圧留去し残さを得た。続いて実施例1 a) の方法に準じて、この残さと、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー (1H) ーピラゾール、トリエチルアミン、N、N 'ー(2-オキソー3-オキサゾリジニル) ホスフィニッククロリド より、標題化合

物を合成した。

IR: (KBr) 3327, 2217, 1608, 1533, 1492, 1211, 76 5, 697cm⁻¹

c) $4-シアノ-1-フェニル-3-(3-アセトキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

実施例 1 b) の方法に準じて、5-アミノー4-シア J-1-フェニルー3-(3-アセトキシフェニルカル バモイルメチル) -(1 H) - ピラゾール、4-クロロ ベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3328, 2232, 1740, 1613, 1547, 1491, 144 1, 1264, 1147, 1078, 770 cm $^{-1}$

【0084】実施例34

 $4-シアノ-1-フェニル-3-(3-ヒドロキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

4ーシアノー1ーフェニルー3ー(3ーアセトキシフェニルカルバモイルメチル)ー5ー(3ー(4ークロロベンゼンスルホニル)ウレイド}ー(1H)ーピラゾール(297g,0.501㎜)のテトラヒドロフラン溶液(20m)を室温にて撹拌。これに 1N水酸化リチウム水溶液(1.00m)を加え、室温にて16時間撹拌。1N塩酸(1.20m)を加え、テトラヒドロフランを減圧留去した。水を加え酢酸エチルにて抽出し、硫酸ナトリウムにて乾燥後、減圧留去し残さを得た。これを、分取薄層シリカゲルクロマトグラフィー(酢酸エチルーメタノール 9:1)にて精製し標題化合物(235mg)を得た。

IR: (KBr) 3325, 2233, 1611, 1560, 1260, 1145, 107 5, 766cm⁻¹

【0085】実施例35

4-シアノ-1-フェニル-3-(3-エトキシカルボニルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5ーアミノー4ーシアノー1ーフェニルー3ー(3 --エトキシカルボニルフェニルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-Pミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、3-アミノ安息香酸エチル、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR : (KBr) 3327, 2217, 1608, 1533, 1492, 1211, 76 5, $697cm^{-1}$

b) 4-シアノ-1-フェニル-3-(3-エトキシカ

ルボニルフェニルカルバモイルメチル) -5- {3-(4-クロロベンゼンスルホニル) ウレイド} - (1 H) -ピラゾールの合成

実施例1 b) の方法に準じて、5-アミノー4ーシアノー1-フェニルー3-(3-エトキシカルボニルフェニルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3328, 2232, 1740, 1613, 1547, 1491, 144 1, 1264, 1147, 1078, 770 cm⁻¹

【0086】実施例36

 $4-シアノ-1-フェニル-3-(3-カルボキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

4ーシアノー1ーフェニルー3ー(3ーエトキシカルボニルフェニルカルバモイルメチル)-5ー(3ー(4ークロロベンゼンスルホニル)ウレイド > ー(1 H)ーピラゾール(58 mg,0.0955 mmol)のエタノール溶液(20 mL)を室温にて撹拌。これに 1N 水酸化ナトリウム水溶液(0.955 mL)を加え、室温にて3日間撹拌。反応液を0℃に冷却し、1N 塩酸を加え pH 1 とした。減圧留去し残さを得た。これを分取薄層クロマトグラフィー(酢酸エチルーメタノール 4:1)にて精製した後、高速液体クロマトグラフィーにて精製し(カラム:YMC-Pack ODS,溶出溶媒:0.1%トリフルオロ酢酸含有 H_2 0-0.1%トリフルオロ酢酸含有Tセトニトリル)標題化合物(6.0 mg)を得た。

高分解能質量分析 (FAB-) 計算值: 577.0697 (C₂₆H₁₈C 1N₆O₆S)、実測值 577.0717

【0087】実施例37

 $4-シアノ-1-フェニル-3-(2-メチルフェニル カルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 5-アミノ-4-シアノ-1-フェニル-3-(2 -メチルフェニルカルバモイルメチル)-(1 H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3-カルボキシメチルー(1H)ーピラゾール、2-トルイジン、トリエチルアミン、N、N-(2-オキソー3-オキサゾリジニル)ホスフィニッククロリドより、標題化合物を合成した。

IR : (KBr) 3300, 2222, 1660, 1638, 1531, 1493, 145 6, 759 cm⁻¹

b) $4-シアノ-1-フェニル-3-(2-メチルフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

実施例1 b) の方法に準じて、5-アミノー4-シア

ノー1-フェニルー3-(2-メチルフェニルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3300, 2232, 1662, 1623, 1530, 1265, 116 4, 1083, 754 cm⁻¹

【0088】実施例38

 $4-シアノ-1-フェニル-3-(2-ジメチルアミノフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

a) 2-ジメチルアミノニトロベンゼンの合成 2-クロロニトロベンゼン (13.4g, 85.2mol) 炭酸ナトリウム (23.0g, 0.217mol) のピリジン 懸濁液 (140ml) に塩酸ジメチルアミン (14.0g, 0.172mol) の水溶液 (7.0ml) を加えた後に12時間加熱還流した。冷却後不溶物をろ別し、酢酸エチルにて洗浄、沪液に水を加え減圧留去。残さを酢酸エチルにて抽出し有機層を5%食塩水にて洗浄し、硫酸ナトリウムにて乾燥後、減圧留去し残さを得た。シリカゲルカラムクロマトグラフィー (ヘキサンー酢酸エチル 1:1) にて精製し、標題化合物を合成した。 (14.1g) 質量分析: (EI) m/z 167 (M+1), 149, 133, 119, 104, 91, 77, 63

b) N,Nージメチルアミノー2-アニリンの合成 N,Nージメチルー2-ニトロベンゼン(5.80g, 34.9 mmol), 10%パラジウムー炭素(620mg)のエタノール懸濁液(30ml)を水素ガス雰囲気下、室温にて8.0時間撹拌。セライトを用い吸引沪過した。沪液を減圧留去し残さを得た。これをシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル4:1)にて精製

NMR: $(CDC1_3)$ 7.02 (1H, m), 6.91 (1H, m), 6.76 (2 H, m), 4.02 (2H, brs), 2.67 (6H, s)

し標題化合物(3.72g)を得た。

c) 5-アミノ-4-シアノ-1-フェニル-3-(2 -ジメチルアミノフェニルカルバモイルメチル)-(1 H)-ピラゾールの合成

実施例 1 a) の方法に準じて、5-アミノ-4-シアノ-1-フェニル-3-カルボキシメチル-(1H)-ピラゾール、<math>N,N-ジメチルアミノ-2-アニリン、トリエチルアミン、<math>N、N '-(2-オキソ-3-オキサゾリジニル) ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3399, 3326, 3229, 2210, 1677, 1638, 159 0, 1528, 1479, 1452, 765cm⁻¹

d) 4-シアノ-1-フェニル-3-(2-ジメチルア ミノフェニルカルバモイルメチル) -5-{3-(4-クロロベンゼンスルホニル) ウレイド}-(1H)-ピ ラゾールの合成

実施例1 b) の方法に準じて、5-アミノ-4-シア

ノー1-フェニルー3-(2-ジメチルアミノフェニルカルバモイルメチル)-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3306, 2232, 1648, 1525, 1456, 1258, 114 6, 1075, 755cm⁻¹

【0089】実施例39

4-シアノ-1-フェニル-3-(2-アセトキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 2-アセトキシニトロベンゼンの合成

2-ニトロフェノール (10.0g, 72.1 mmol)、トリエチルアミン (15.0 mL, 0.387 mmol) のテトラヒドロフラン溶液 (100 mL) を0℃にて撹拌。これに無水酢酸 (8.10g, 79.3 mmol) を滴下した。氷ー水浴を取り除き、2時間撹拌。水を加えテトラヒドロフランを減圧留去した。酢酸エチルにて抽出し、有機層を飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥後減圧留去し残さを得た。これをシリカゲルカラムクロマトグラフィー (クロロホルムー酢酸エチル4:1) にて精製し標題化合物 (13.0g) を得た。

NMR : (CDCl₃) 8.10 (1H, dd, J=1.7, 8.3Hz)<; 7.66 (1 H, m), 7.40 (1H, m), 7.24 (1H, dd, J=1.4, 8.1Hz), 2.38 (3H, s)

b) 2-アセトキシアニリンの合成

2-アセトキシニトロベンゼン(7.15g, 39.5mmo l) 10%パラジウムー炭素 (335mg) のテトラヒドロフラン懸濁液 (50ml) を水素ガス雰囲気下、室温にて2.5時間撹拌。セライトを用い吸引沪過し、沪液を減圧留去し残さを得た。これを酢酸エチルーテトラヒドロフランより再結晶を行い、標題化合物 (1.75g) を得た。

NMR : (DMSO- d_6) 9.73 (1H, brs), 9.30 (1H, brs), 7.66 (1H, m), 6.93 (1H,m), 6.85 (1H, m), 6.75 (1H, m), 2.09 (3H, s)

c) 5-アミノ-4-シアノ-1-フェニル-3-(2-アセトキシフェニルカルバモイルメチル)-(1H)-ピラゾールの合成

実施例1 a) の方法に準じて、5-アミノー4-シアノー1-フェニルー3ーカルボキシメチルー(1H)ーピラゾール、 2-アセトキシアニリン、トリエチルアミン、N、N、-(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した

IR: (KBr) 3445, 3366, 22 28, 1750, 1673, 1644, 153 5, 1494, 1454, 1313, 115 0, 769cm⁻¹

d) 4-シアノ-1-フェニル-3-(2-アセトキシ

フェニルカルバモイルメチル) -5- (3-(4-クロロベンゼンスルホニル) ウレイド} - (1H) -ピラゾールの合成

実施例 1 b) の方法に準じて、5-アミノー4ーシア ノー1ーフェニルー3ー(2-アセトキシフェニルカル バモイルメチル)-(1H)-ピラゾール、4-クロロ ベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR : (KBr) 3375, 3272, 2237, 1750, 1672, 1610, 153 6, 1455, 1360, 1149, 1091, 757, 626 $\rm cm^{-1}$

【0090】実施例40

 $4-シアノ-1-フェニル-3-(2-ヒドロキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

 $4-シアノ-1-フェニル-3-(2-アセトキシフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール(220g,0.371 mol)のテトラヒドロフラン溶液(10 ml)を室温にて撹拌。これに1N水酸化リチウム水溶液(0.75 ml)を加え、室温にて8時間撹拌。さらに1N水酸化リチウム水溶液(1.00 ml)を加え室温にて10時間撹拌した。1N塩酸を加え、減圧留去し残さを得た。これを、分取薄層シリカゲルクロマトグラフィー(酢酸エチルーメタノール9:1)にて精製し標題化合物(23 mg)を得た。$

IR: (KBr) 3464, 2930, 2233, 1652, 1538, 1456, 126 6, 1146, 1075, 758, 630 cm⁻¹

【0091】実施例41

4-シアノ-1-フェニル-3-(2-エトキシカルボニルフェニルカルバモイルメチル)-5-(3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成

a) 5-アミノー4-シアノ-1-フェニル-3-(2 -エトキシカルボニルフェニルカルバモイルメチル)-(1H)-ビラゾールの合成

実施例 1 a) の方法に準じて、5-アミノー4ーシアノー1ーフェニルー3ーカルボキシメチルー(1H)ーピラゾール、2-アミノ安息香酸エチル、トリエチルアミン、N、N'-(2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3366, 3235, 2221, 1693, 1679, 1648, 159 1, 1529, 1450, 1300, 1269, 1240, 1091, 760 cm⁻¹ b) 4ーシアノー1ーフェニルー3ー(2ーエトキシカルボニルフェニルカルバモイルメチル)ー5ー{3-(4ークロロベンゼンスルホニル)ウレイド}ー(1 H)ーピラゾールの合成

実施例1b) の方法に準じて、5-アミノ-4-シア ノー1-フェニル-3-(2-エトキシカルボニルフェ

ニルカルバモイルメチル) - (1 H) - ピラゾール、4 - クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

IR: (KBr) 3264, 2231, 1688, 1645, 1530, 1261, 114 6, 1088, 756, 629 cm⁻¹

【0092】実施例42

 $4-シアノ-1-フェニル-3-(2-カルボキシフェニルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成$

4ーシアノー1ーフェニルー3ー(2ーエトキシカルボニルフェニルカルバモイルメチル)ー5ー(3ー(4ークロロベンゼンスルホニル)ウレイド > ー(1 H)ーピラゾール(35 mg,0.0577 mmol)のエタノール溶液(15 ml)を室温にて撹拌。これに 1N 水酸化ナトリウム水溶液(0.58 ml)を加え、室温にて3日間撹拌。反応液を0℃に冷却し、1N 塩酸を加え pH 1 とした。減圧留去し残さを得た。これを分取薄層クロマトグラフィー(酢酸エチルーメタノール 4:1)にて精製した後、高速液体クロマトグラフィーにて精製し(カラム: YMC-Pack ODS,溶出溶媒:0.1%トリフルオロ酢酸含有 H_2 0-0.1%トリフルオロ酢酸含有Tセトニトリル)標題化合物(T.0 mg)を得た。

高分解能質量分析 (FAB+): 計算值579.0853 (C₂₆H ₂₀CIN₆O₆S)、実測值 579.0850

【0093】実施例43

 $4-シアノ-1-フェニル-3-(3-ピコリルカルバモイルメチル)-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾールの合成a)5-アミノ-4-シアノ-1-フェニル-3-(3-ピコリルカルバモイルメチル)-(1H)-ピラゾールの合成$

実施例1 a) の方法に準じて、5-Pミノー4-シアノー1-フェニルー3-カルボキシメチルー(1 H) ーピラゾール、3-ピコリルメチルアミン、トリエチルアミン、N、N '- (2-オキソー3-オキサゾリジニル)ホスフィニッククロリド より、標題化合物を合成した。

IR: (KBr) 3360, 3183, 2213, 1665, 1662, 1537cm⁻¹b) 4ーシアノー1ーフェニルー3ー(3ーピコリルカールバモイルメチル)ー5ー {3ー(4ークロロベンゼンスルホニル)ウレイド}ー(1H)ーピラゾールの合成実施例1b)の方法に準じて、5ーアミノー4ーシアノー1ーフェニルー3ー(3ーピコリルカルバモイルメチル)ー(1H)ーピラゾール、4ークロロベンゼンスルホニルイソシアネートより標題化合物を合成した。質量分析(FAB+): m/z 594 (M+2Na+1), 572 (M+Na+1), 550 (M+1), 377, 355, 220

【0094】実施例44

4-シアノ-1-フェニル-3-[{4-(t-ブトキ

シカルボニルアミノ) ブチル} カルバモイルメチル] -5-{3-(4-クロロベンゼンスルホニル) ウレイ ド}-(1H)-ピラゾールの合成

a) 5-アミノー4-シアノー1-フェニルー3-[{4-(t-ブトキシカルボニルアミノ) ブチル} カルバモイルメチル] - (1H) - ピラゾールの合成実施例1 a) の方法に準じて、5-アミノー4-シアノー1 ーフェニルー3-カルボキシメチルー(1H) - ピラゾール、4-(t-ブトキシカルボニルアミノ) ブチルア ミン、トリエチルアミン、N、N '-(2-オキソー3 ーオキサゾリジニル) ホスフィニッククロリド より、 標題化合物を合成した。

IR : (KBr) 3315, 2218, 1681, 1647, 1535, 1170, 766 cm^{-1}

b) 4-シアノ-1-フェニル-3-[{4-(t-ブ トキシカルボニルアミノ)ブチル}カルバモイルメチ ル]-5-{3-(4-クロロベンゼンスルホニル)ウ レイド}-(1H)-ピラゾールの合成

実施例 1 b) の方法に準じて、 5-アミノー4-シア ノー1-フェニルー3-[{4-(t-ブトキシカルボニルアミノ)ブチル}カルバモイルメチル]-(1H)-ピラゾール、4-クロロベンゼンスルホニルイソシアネートより標題化合物を合成した。

NMR : (CD₃OD) 7.74 (2H, m), 7.37-7.57 (7H, m), 3.6 5 (2H, s), 3.22 (2H, s), 3.03 (2H, m), 1.47-1.55 (4H, m), 1.42 (9H, s)

【0095】実施例45

 $4-シアノ-1-フェニル-3-\{(4-アミノブチル)カルバモイルメチル\}-5-\{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール、トリフルオロ酢酸塩の合成$

 $4-シアノ-1-フェニル-3-\{(4-(t-プトキシカルボニルアミノ)ブチル)カルバモイルメチル}-5-{3-(4-クロロベンゼンスルホニル)ウレイド}-(1H)-ピラゾール(38mg、0.0603mmo1)をジクロロメタン(2.0mL)溶液を室温にて撹拌。これにトリフルオロ酢酸(100<math>\mu$ L)を加え、室温にて6時間撹拌した。反応液を減圧留去後、減圧乾燥し、標題化合物を合成した。

NMR : (CD₃OD) 7.94-7.99 (2H, m), 7.52-7.61 (7H, m), 3.77 (2H, s), 3.12 (2H, t, J=6.7Hz), 2.93 (2H, t, J=7.4Hz), 1.52-1.70 (4H, m)

【0096】実施例46

4-シアノ-1-フェニル-3-{2-(4-フェニル ブチルオキシ)エチル}-5-{3-(4-クロロベン ゼンスルホニル)ウレイド}-(1H)-ピラゾールの 合成

a) $4-シアノ-1-フェニル-3-(2-ヒドロキシエチル)-5-(N-(t-ブトキシカルボニル)-N-ベンジルアミノ}-(1H)-ピラゾールの合成$

 $4-シアノ-1-フェニル-3-(2-ヒドロキシエチル)-5-(t-ブトキシカルボニルアミノ)-(1H)-ピラゾール(1.98g、6.02mmol)ベンジルブロマイド(790<math>\mu$ L、6.64mmol)、炭酸カリウム(2.50g、18.1mmol)の混合物をジメチルホルムアミド(40mL)中、室温にて3時間撹拌した。反応液に、水および酢酸エチルを加え、有機層を分離した。有機層を5%食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥後、減圧留去し残渣を得た。これをシリカゲルカラムクロマトグラフィー(クロロホルムー酢酸エチル 100:1→4:1)にて精製し、標題化合物(2.47g)を得た。

質量分析 (FAB+): m/z 419 (M+1)

b) $4-シアノ-1-フェニル-3-\{2-(4-フェニルブチルオキシ) エチル<math>\}$ -5- $\{N-(t-プトキシカルボニル)-N-ベンジルアミノ\}-(1H)-ピラゾールの合成$

 $4-シアノ-1-フェニルー3-(2-ヒドロキシエチル)-5-(t-ブトキシカルボニルアミノ)-(1H)-ピラゾール(1.00g、2.39mmo1)のジメチルホルムアミド(10mL)溶液を室温にて撹拌。これに水素化ナトリウム(60%含有するオイル)(114mg、2.85mmo1)を加え1時間撹拌した。これに<math>4-フェニルブチルトシラート(1.11g、3.65mmo1)のジメチルホルムアミド溶液(5.0mL)を加え6時間撹拌した。反応液に水を加え、酢酸エチルにて抽出した。有機層を5%食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥後、減圧留去し残渣を得た。これをシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル <math>10:1\rightarrow 4:1$)にて精製し、標題化合物(306mg)を得た。

IR: (KBr) 3310, 2232, 1614, 1500, 1258, 1145, 107 5, 756, 630 cm⁻¹

c) $4-シアノ-1-フェニル-3-\{2-(4-フェニルブチルオキシ) エチル<math>\}-5-(t-プトキシカルボニルアミノ)-(1H)-ピラゾールの合成$

4ーシアノー1ーフェニルー3ー {2-(4ーフェニルブチルオキシ)エチル}ー5ー {N-(tープトキシカルボニル)-N-ベンジルアミノ}ー(1H)ーピラゾール(11.0mg、0.0200mmol)、10%パラジウムー炭素(3.0mg)の混合物をテトラヒドロフラン(2.0mL)中、水素ガス雰囲気下、室温にて15時間撹拌した。この反応液をセライトを用い沪過し、沪液を減圧留去し残渣を得た。この残渣を分取薄層シリカゲルクロマトグラフィー(ヘキサンー酢酸エチル4:1)により精製し、標題化合物(2.1mg)を

得た。 NMR: (CDC1₃) 7.41-7.50 (5H, m), 7.15-7.28 (5H, m), 6.22 (1H, brs), 3.79(2H, t, J=6.9Hz), 3.50 (2H, m), 3.03 (2H, t, J=6.9Hz), 2.61 (2H, m), 1.631.68 (4H, m), 1.42 (9H, s)

d) $5-アミノ-4-シアノ-1-フェニル-3-{2}$ - (4-フェニルブチルオキシ) エチル $}-(1H)-$ ピラゾールの合成

4-シアノ-1-フェニル-3-{2-(4-フェニルブチルオキシ)エチル}-5-(t-ブトキシカルボニルアミノ)-(1H)-ピラゾール(1.5mg、3.26μmmol)のジクロロメタン溶液(2.0mL)を0℃にて撹拌。これにトリフルオロ酢酸(5μL、64.9μmmol)を加え、室温にて8時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムにて抽出した。有機層を無水硫酸ナトリウムにて乾燥後、減圧留去し残渣を得た。これをシリカゲルカラムクロマトグラフィー(メタノールークロロホルム1:9)にて精製し、標題化合物(0.8mg)を得た。

NMR : (CD₃OD) 7.44-7.54 (5H, m), 7.10-7.24 (5H, m), 3.86 (2H, m), 3.50 (2H, m), 3.11 (2H, m), 2.56 (2H, m), 1.58 (4H, m)

e) $4-シアノ-1-フェニル-3-\{2-(4-フェニルブチルオキシ) エチル<math>\}$ -5- $\{3-(4-クロロベンゼンスルホニル) ウレイド<math>\}$ - $\{1H\}$ -ピラゾールの合成

実施例1 b) の方法に準じて、 5-アミノー4-シア ノー1-フェニルー3-{2-(4-フェニルブチルオ キシ)エチル}-(1H)-ピラゾール、4-クロロベ ンゼンスルホニルイソシアネートより標題化合物を合成 した。

質量分析 (FAB-) : m/z 576(M-1), 403 【 O O 9 7 】

【発明の効果】試験例1 5-スルホニルウレイドピラゾール誘導体のECE阻害作用

方法

ラット肺ECEの調製

ラット肺組織を5mM 塩化マグネシウム、1mM フッ化フェニルメチルスルホニル(PMSF)、20μM ペプスタチンA、20μM ロイペプチンを含む20

mMトリスー塩酸緩衝液(pH 7.5)中で、氷冷下にてポリトロン型ホモジナイザーでホモジナイズした。そのホモジネートを遠心分離(800×G)することにより得られた上清を超遠心分離した(100,000×G)。そこで得られた沈殿を上記緩衝液にて懸濁した後に超遠心分離する操作を2度繰り返した。最終的に得られた沈殿を懸濁し、その懸濁液をガラスホモジナイザーでホモジナイズした。そのホモジネートを超遠心分離し、得られた沈殿を0.5% トライトンX-100が含まれる上記緩衝液で可溶化した。その可溶化後の液を再び超遠心分離し、その上清をラット肺ECE標品とした。

【0098】ECE阻害活性の測定

試験化合物とラット肺ECE (10μg)を1mM N-エチルマレイミド、100μM ロイペプチン、20μ M ペプスタチンAを含む100mMトリスー塩酸緩衝液 (pH 7.0)中にて、37℃で15分間プレインキュベートした。そこにヒトbigET-1を最終濃度が0.1μMになるように添加し、37℃で1時間インキュベートした(全量200μ1)。EDTAを最終濃度1mMとなるように添加することによって反応を停止した後、生産されたET-1量をET-1に特異的なサンドウィッチ型酵素抗体法により定量し、ECEの変換活性を測定した。試験化合物のECE阻害活性は、試験化合物存在下あるいは非存在下でECE変換活性の測定を行なうことにより評価した。表16に示すようにスルホニルウレイドピラゾール誘導体はECEを阻害した。

【0099】結果

表16に示すようにスルホニルウレイドピラゾール誘導体はECEを阻害した。スルホニルウレイドピラゾール誘導体のECE阻害活性

【表16】

本発明化合物	IC ₅₀ (μM)
実施例2	0.058

フロントページの続き

(51) Int. Cl. ⁷	識別記号	FI		
A 6 1 K 31/44	ACD	A 6 1 K 31/44	ACD	
	ACL	•	ACL	
	ACV		ACV	
	ADZ		ADZ	•
CO7D 401/04	231	CO7D 401/04	231	
401/12	231	401/12	231	
401/14	231	401/14	231	
405/04	231	405/04	231	

(54) 月2000-53649 (P2000-536町

	405/12	231		405/12	2		23	1		
	409/04	231		409/04	1		23	1		
	409/12	231		409/12	2		23	L		
(72)発明者	金岡 昌治			Fターム(参考)	4C063	AA01	BB01	BB02	BB03	BB07
	大阪市此花区春	日出中3丁目1番98号	住			BB09	CC22	CC75	CC92	DD12
	友製薬株式会社	内				DD22	EE01			
(72)発明者	大橋 尚仁				4C086	AA01	AA02	AA03	BC36	DA22
	大阪市此花区春	日出中3丁目1番98号	住			GA02	GA04	GA07	GA08	GA12
	友製薬株式会社	内				MA01	MA04	NA14	ZA02	ZA36
						ZA39	ZA40	ZA42	ZA45	ZA59
						ZA68	ZA81	ZB01	ZB26	ZB35
						ZC20	ZC35			