A Group Recommendation System for Music Using Implicit User Feedback

Te Lan (he/him)
MSc Data Science & Al for the Creative Industries

A system recommending songs to a group of people at events

e.g. dinner parties, small gatherings, team-buildings...

Processing dataset of implicit user feedback (play counts)

Training a model to learn the preferences from the dataset

Predict new songs that the group may like through different methods

Generating explanations for predictions

Research background

Music Recommendation System & Group Recommendation System

Explicit Feedback & Implicit Feedback as user data

Explainable Recommendation System

"Because you listened to..."

Technical challenges

Implementing implicit user feedback to an algorithm designed for explicit user feedback

Unfortunately, the majority of the work in matrix factorization is centered on high-quality explicit feedback datasets, in which users make their preferences known by directly rating subsets of accessible items on a fixed scale (Hu et al., 2008). However, these explicit ratings are not available in many real-world situations.

2

Assessing different group recommendation methods on new dataset

3

Generating explanations for recommendations

The group recommendation approaches can be roughly differentiated into two, the Pseudo-user approach (Kim and Lee, 2014) and the Consensus approach (Villavicencio et al., 2016; Kim and El Saddik, 2015).

It is acknowledged that explainability is essential between Human-Al interaction for the purpose of enhancing people's understanding of the system and building trust (Q. Vera et al, 2021).

Preparing the dataset

Implicit user feedback

*a subset of the Million Song Dataset

1,019,318 384,546 Users Archived songs

48,373,586 user - song - play count triplets

0.5% Top active user (1,353) 2% Top songs (4,362) 41,062 triplets

EN41K Dataset

Density: 0.07%

	user_id	music_id	ratings
0	0	0	4.000000
1	0	1	2.545455
2	1	2	4.000000
3	1	3	3.960265
4	1	4	3.920530
			•••

Preparing the dataset

continues...

Original

Echo Nest Tast Profile Dataset Play count distribution

Goal

MovieLens 100K Ratings distribution

Result

EN41K Ratings distribution

Group recommendation methods

Pseudo-user approach

(Virtual user)

Consensus approach

(Simulating negotiation)

Group recommendation methods in detail

Training process review

Optimising training parameters for Matrix Factorisation

Parameter	Value	
λ	0.7	
Learning rate	0.15	
Feature numbers	5	
Iteration times	5	

Training results

Dataset	Root Mean Square Error (RMSE)
Training	0.91447380953
Test	1.0147757779

Experiment setup

Group generation

Small group size: 3
Medium group size: 5
Large group size: 10
Group number: 10

Recommendation parameters

Recommendation number: 25 Ratings threshold: 3.0

```
****** Running for small groups ********
generated groups (only first 5 are getting printed here):
[310, 1058, 1164]
[398, 756, 1319]
[39, 1019, 1287]
[559, 618, 1078]
[305, 796, 1311]
***** Running for medium groups ********
generated groups (only first 5 are getting printed here):
[421, 509, 818, 949, 1270]
[214, 349, 661, 702, 1248]
[333, 709, 1147, 1242, 1259]
[380, 582, 647, 819, 1302]
[209, 303, 471, 1151, 1215]
****** Running for large groups ********
generated groups (only first 5 are getting printed here):
[278, 373, 396, 584, 709, 979, 1153, 1171, 1181, 1224]
[83, 221, 314, 554, 603, 646, 737, 975, 995, 1344]
[37, 660, 780, 785, 848, 922, 954, 1003, 1021, 1148]
[163, 238, 551, 869, 878, 1132, 1188, 1249, 1282, 1333]
[175, 247, 546, 601, 679, 1009, 1027, 1100, 1120, 1134]
```

group members: [278, 373, 396, 584, 709, 979, 1153, 1171, 1181, 1224] recommendation list: [2732 3471 206 3696 287 3378 4125 1371 2531 1769 2189 1669 3339 2423 1694 3870 1540 3714 2901 1724 451 3610 3168 1927 48]

System performance

* Averaged statistics from 20 times experiment

Precision

The percentage of songs recommended to a group that would be liked by every group member.

$$precision_G = \frac{\#TP_G}{\#(TP_G \bigcup FP_G)}$$

Recall

The ratio of recommended and liked songs to all songs that meet the same criteria.

$$recall_G = \frac{\#TP_G}{\#T_G}$$

Explaining recommendations

Explanation writing 1

"Top influencers for the playlist"

Sorting the similarities between the group vector and user vectors

```
group members: [278, 373, 396, 584, 709, 979, 1153, 1171, 1181, 1224]
recommendation list: [2732 3471 206 3696 287 3378 4125 1371 2531 1769 2189 1669 3339 2423
1694 3870 1540 3714 2901 1724 451 3610 3168 1927 48]
{709: '89%',
584: '88%',
278: '84%',
979: '83%',
396: '82%',
373: '80%',
1153: '30%',
1171: '28%',
1181: '28%'}

Similarity between user
```

User Index (can be linked to user id)

Similarity between user vector and group vector

Explaining recommendations continues...

Explanation writing 2

"Likely enjoyed by..."

comparing the predicted rating between the vectors of every user and every recommended music

```
music_top_enjoyed_user
{2732: [278, 396, 709, 373, 1224, 584, 979, 1181, 1171, 1153],
3471: [1171, 1181, 278, 396, 1153, 709, 584, 373, 979, 1224],
206: [278, 396, 709, 1224, 1181, 1153, 1171, 373, 584, 979],
3696: [1171, 278, 396, 709, 979, 373, 584],
287: [278, 1181, 396, 709, 1171, 373, 584, 1224, 1153, 979],
3378: [278, 396, 709, 584, 1171, 979, 373],
4125: [1181, 1153, 278, 373, 709, 1171, 396, 584, 1224, 979],
1371: [278, 396, 1171, 709, 1153, 584, 373, 979, 1224, 1181],
2531: [278, 1181, 396, 1171, 709, 373, 584, 1224, 1153, 979],
1769: [1181, 278, 396, 709, 1171, 1224, 373, 584, 979, 1153],
2189: [1153, 1181, 278, 1224, 396, 709, 373, 584, 979, 1171],
1669: [1181, 1153, 278, 709, 396, 979, 373, 584, 1224],
3339: [1224, 278, 396, 709, 373, 979, 584, 1153],
2423: [1171, 278, 1181, 709, 396, 1224, 584, 373, 979],
1694: [1181, 1153, 1224, 373, 278, 584, 709, 396, 979],
3870: [1171, 1224, 278, 396, 709, 373, 584, 1181, 979],
1540: [1171, 1181, 278, 396, 709, 584, 373, 979, 1153, 1224],
3714: [278, 396, 979, 709, 373, 584],
2901: [1181, 278, 709, 396, 373, 979, 584],
1724: [1181, 278, 1153, 396, 709, 1224, 373, 584, 979, 1171],
451: [278, 396, 1181, 1171, 709, 373, 584, 979, 1224],
3610: [1181, 1224, 1153, 278, 709, 396, 979, 584, 373],
3168: [278, 396, 1153, 1181, 709, 979, 373, 584, 1224],
1927: [278, 1171, 396, 709, 1224, 373, 584, 1181, 979, 1153],
48: [1224, 278, 396, 709, 1153, 979, 373, 584]}
```

Music Index

User Index

Discussion

Converting play count data to rating data work is practicable for recommendation algorithm using Matrix Factorisation based Collaborative Filtering.

The precision rates using AF method is significantly higher in all three group sizes, with the best performance (precision = 0.729881) for medium size groups (n=5).

Explanations can be generated after the recommendation is performed. "Top influencers for the playlist" informs the representation of every group member in the playlist, "Likely enjoyed by..." tells why a song is recommended.

Discussion continues..

User trust and clarity

Factors and bias of group profile and group members, an example from a medium size group using AF method

User Index	Similarity	F_1	F_2	F_3	F_4	F_5	b_u
(Group profile)		0.02101781	0.04496065	-0.07088136	0.00342788	-0.02857114	-0.04823289
734	93%	0.07451212	0.08319631	-0.05291501	-0.00177048	-0.02293285	-0.16143093
808	92%	-0.01362764	0.01744778	-0.11239957	0.00766848	-0.07983841	-0.13342482
512	92%	-0.02173481	0.01814226	-0.04460008	0.00639390	0.03168001	0.25780084
1134	48%	-0.64848781	0.18999331	0.06307645	0.73891721	-0.28622930	0.00000000
1270	45%	0.09736188	0.26146698	0.41860049	0.70812905	0.73932672	0.00000000

Discussion continues...

Low Recall

Selection Bias

17 0.0035885167464114833]

Conclusions

- O1 Utilising implicit user feedback like play counts by converting to ratings is practical given the limits of obtaining explicit user feedback real world.
- The after factorisation method (AF) is proven to perform the best for all group sizes between three to ten people.
- We can generate explanation to inform the reason for every suggested music as well as how much every group member is represented in the playlist.

Future work

Modifying the evaluation method

Applying a larger dataset

Optimising the sampling process.

User test that draw on how the explanation affect the mental model in users

It is acknowledged that explainability is essential between Human-Al interaction for the purpose of enhancing people's understanding of the system and building trust (Liao et al, 2021).

Thank you