

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B. Sc. (Four Year) Degree in Industrial Mathematics Fourth Year - Semester II Examination - July 2020

MAT 4309 - COMBINATORICS

	Time allowed:	Three (03) hour
Answer all questions		
1. a)	Define a difference set.	(05 marks)
	Construct a (11, 5,2) - difference set using quadratic residues.	(35 marks)
	Hence, obtain a Hadamard matrix of order 12.	(15 marks)
b)	Construct a 3 – (8, 4, 1) design.	(30 marks)
	Hence, obtain $2-(7,3,1)$ - design.	(15 marks)
2.	Define a Steiner Triple System STS (n) of order n .	(05 marks)
	Construct STS (7).	(30 marks)
	Using STS (7), construct STS (21) and STS (49).	(40 marks)
	Hence, construct STS (63).	(25 marks)
2 0)	Determine whether the resume $()^{\infty}$	and the Cal
3. a)	Determine whether the sequence $\{a_n\}_{n=1}^{\infty}$ given by $a_n = n \cdot 4^n$ is recurrence relation $a_n = 8a_{n-1} - 16a_{n-2}, n \ge 3$.	(40 marks)
b)	Solve each of the following recurrence relations:	

(30marks)

(i) $a_n = 7a_{n-1} - 12a_{n-2}$ where $a_0 = 5$, $a_1 = 8$ and $n \ge 2$.

- 4. a) Solve the recurrence relation $a_n = 3a_{n-1} + 4^{n-1}$ with the initial condition $a_0 = 1$, using the generating function. (65 marks)
 - b) Construct a tournament schedule for *seven* teams. Hence, obtain a schedule for *eight* teams. (35 marks)
- 5. a) Find the number of bit strings of length *six* that starts with the digit 1 and ends with 00s. (25 marks)
 - b) What is the minimum number of students required in a discrete mathematics class to be sure that at least *ten* will receive the same grade, if there are *five* possible grades, *A*, *B*, *C*, *D* and *E*? (20 marks)
 - c) How many different license plates can be made using *three* English Alphabets followed by *three* digits? (25 marks)
 - d) How many numbers must be selected from the set {1, 3, 5, 7, 9, 11, 13, 15} to guarantee that at least one pair of these numbers add up to 16? (30 marks)
- 6. a) Each user on a computer system has a password which is **seven** to **eight** characters long where each character is English Alphabet letter or a digit.

 How many possible passwords are there if each password must contain at least one digit? (50 marks)
 - b) Define Bell numbers. Find the first four Bell numbers. (25 marks)
 - c) Define Catalan numbers. Find the first four Catalan numbers. (25 marks)