Primer Certamen Introducción a la Informática Teórica

11 de mayo de 2013

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

- 1. Determine si los lenguajes siguientes son regulares, de contexto libre, o ninguna de las anteriores:
 - a) $\mathcal{L}_a = \{ \text{bin}(n!) : n \in \mathbb{N} \}$, donde bin(n) es la representación en binario del número natural n.
 - b) \mathcal{L}_b es el conjunto de strings formados con símbolos de $\Sigma = \{a, b, c\}$ que comienzan ab ó ac, y que no contienen aa ni abc.
 - c) Con $\Sigma = \{a, b, c\}$, $\mathcal{L}_c = \{w : \#a + \#b = \#c\}$, donde #a es el número de a en w.

(30 puntos)

2. Diseñe una gramática de contexto libre para $\mathcal{L} = \{a^i b^{i+j} c^j : i, j \ge 1\}$. Explique su construcción.

(20 puntos)

3. Sea \mathcal{L}_1 regular y \mathcal{L}_2 de contexto libre. Determine si $\mathcal{L}_3 = \{x_1y_1x_2y_2...x_ny_n : n \ge 1 \land x_i \in \mathcal{L}_1 \land y_i \in \mathcal{L}_2\}$ es de contexto libre.

(20 puntos)

4. Para strings $\sigma_1 = a_1 a_2 \dots a_n$ y $\sigma_2 = b_1 b_2 \dots b_n$ se define

SHUFFLE(
$$\sigma_1$$
, σ_2) = $a_1b_1a_2b_2...a_nb_n$

Esta operación se extiende a lenguajes mediante:

$$\mathsf{SHUFFLE}(\mathcal{L}_1,\mathcal{L}_2) = \{\mathsf{SHUFFLE}(\sigma_1,\sigma_2) \colon \sigma_1 \in \mathcal{L}_1 \land \sigma_2 \in \mathcal{L}_2\}$$

Demuestre usando propiedades de clasusura que si \mathcal{L}_1 y \mathcal{L}_2 son ambos lenguajes regulares sobre Σ , entonces SHUFFLE($\mathcal{L}_1,\mathcal{L}_2$) es regular.

(25 puntos)

5. Dada la gramática:

$$S \to (L) \mid a$$
$$L \to SL \mid \epsilon$$

- a) Encuentre un árbol de derivación para (aa(a))
- b) ¿Cuál es el resultado de eliminar ϵ de esta gramática?
- c) Construya un PDA que acepte el lenguaje generado por esta gramática. Explique su construcción.

(25 puntos)