144

electronics

Publisher C.R. Chandarana Editor Surendre Ner Editorial Assistance Ashok Dongle General Manager J Dhas Advertising B M Mehra Production C N Mithageri

Address

ELEKTOR ELECTRONICS PVT_LTD 52 C Proctor Road Rombay - 400 007 INDIA Telex (011) 76661 ELEK IN

Oversess editions

Elektor Electronice Standfast House Bath Place High Street, Gernet Herts EN5 5XE U K Editor. Len Seymour

Publitron Publicacoes Tecnicas Ltda Av Ipsanga 1100, 9" andas CEP 01040 Seo Paulo — Grazil Editor: Juliano Barsali Elektor sail Route Nationale, Le Seau; 8 P 53 59270 Gaillauf - France

Editors. D R S Meyer; G C P Reedersdorf Elektor Verlag GmbH Susterfeld-Straße 25 100 Aachen - West Germany Editor E J A Krempelsauer

Elektor EPE Kararskaki të 16673 Voula - Athens - Greece Edito: E Xanthoulis Elektuur BV

Treckpoelstreat 2-4 6191 VK Beek - the Netherlands Editor P E L Kersemakers Ferreno & Bento Lda R D Estelania, 32-1º 1000 Lisboa -- Portugal Editor Jorge Gancelves Ingelek S A Av Alfonso XIII, 141

Madrid 16 — Spain Editor A M Ferrer In pert Kedhorn Holdings PTY Ltd Cni Fox Valley Road & Kiogle Street

Wahroonga NSW 2076 - Australie Editor Roger Harrison Electronic Press AB Box 63 182 11 Denderyd - Sweden Editor Bill Cedium

The Circuits sie for demestic use only The submission of designs of process of The automission or commission to the publishers to alter and translate the rext and designand to use the contents in ono essignino que use lhe contanta in othes Elektor publications and activative. The publishers cannot puerantee to resum resultante and puerantee to resultante and the second call desired, photographs, ginited callucit boards and acticides published in

Elektor india ara copyright and may not be reproduced or imbated in whole or pail without prior written permission of Patent protection may awat in respect of circuits, devices, components etc.

The publishers do not accent responsibility for failing to identify such palent or other protection

Finted At-Trupti Offset Bombay - 400 013 Ph 4923261 4921354

the publishese

Copyright @ 1987 Elektuur 8.V. The Netherlands

Valume - 5, Number - 5 May. 1987

Electronice Technology

Electronic potentiometers	5.22
Secondary breakdown in power transistors	5.25
Linkwitz filters	5.30
RIMS : counting atoms	5.33
Where electronic messages have the edge	5.37
Local area networking	5.44
Schools equipment for tomorrow's scientists	5.45

Projects

Feedback in loudspeakers							 	5.19
Preset extension							 	5.28
MSX extensions - 5							 	5.40
Text display on junior computer								5 47

Information

News ● News	•	N	le	w	•					 						. 8	5.1	17
New products										 						. 5	5.5	5(
Info/Dsta she	et:	8								 						,	5.7	73

Guide linea

Switch board																		5.67
Clessified ads																		5.72
Index of sover	tis	86	F.	\$,														5.72
Corrections																		E 72

Salex-23

Sound of the	see				 				 					5.	50	>
Touch-Keys														6	53	

FEEDBACK IN LOUDSPEAKERS

by R Conell

Electrical feedback is the backbone of many an electronic circuit. Acoustic feedback is not nearly so common, but R Conell suggests some ways of experimenting with it in a low-trequency loudspeaker.

Ever since Thiele and Small published their works on loudspeaker theory, it has been possible to calculate fairly accurately what the ideal enclosure is for a certain type of loudspeaker, or conversely how a loudspeaker will behave in a certain enclosure. According to Small, a closed box will behave as a second-order highpass filter, while Thiele shows that bass reflex and transmission line boxes act as fourthor sixth-order filters. From this it is clear that a closed box will give better bass reproduction than an open system.

The performance of a filter is determined by its quality factor Q and its resonance frequency I. This is also true of a complete loudspeaker system, including the enclosure, when the total Q is designated Q and the resonant freguency I. In an ideal basis system, these quantities should have values as follows:

Ore=0.5 to 0.7, and

fe < 30 Hz.

Moreover, the volume of the enclosure should preferably not exceed 100 litres; the frequency range should be greater than 300 Hz and the dis-

Fig. 1. Block schematic of proposed set-up with modified drive unit.

It is virtually impossible to meet these requirements with a passive speaker system, particularly as regards $O_{\rm e}$ and $f_{\rm e}$. In an active system, it is far casier to approach the ideal. Prequiency response equalization is one way to tackle the problem. Basically, it is bener, however, to make use of a controlled system. Unfortunately, support of the problem of the probl

tortion should not exceed 1%.

Basic controlled system

Control is possible by convert-

Fig. 2. Circuit diagram of the impedance converter. The pin-out of the TL071 is shown in Fig. 3.

ing some of the acoustic output of the loudspeaker into an electrical signal and returning this to the input of the power amplifier. To this end, a low-mass acceleration pick-up has to be fitted to the cone of the drive

The block schematic of a possible arrangement is shown in Fig. 1. The left-hand box contains the control electronics, followed by the power amplifier. which has a gain of about 30 dB. and the loudspeaker system. The control electronics consist of an adder that combines the ' left- and right-hand signals, a low-pass filter with a cut-off frequency of 100 Hz, and a difference amplifier where the filtered input signal is reduced by the correction signal from the feedback loop

The power amplifier can be of any type, but its gain should preferably be about 30 dB. A smaller gain would reguire some adjustment of the control loop, while a higher gain in creases the tendency to oscillations in the loudspeaker system.

The loudspeaker system contains the drive unit, fitted with the acceleration pick-up, M, and an impedance converter,

Impedance converter

The impedance converter—see Fig. 2—consists of a Type TiO71 operational amplifier. Its pinouties shown in Fig. 3. Thus stage should be fitted as close as a possible to the acceleration pick-up, preferable direct onto the chassis of the drive unit as shown in Fig. 7.

Control circuits

Adder IC₂ in Fig. 3 combines the two stereo signals into a monaural signal Potentiometer P₁ sets the input level for low-pass filter IC₂-IC₄. This Begin filter has a cut-off frequency of 100 Hz and a roll-off of 24 dB/cc. tave. A similar filter was described in the January 1986 issue of Elektor India.

The control amplifier proper is formed by IG- the values of Rs. Ru., and Cs determine the transent response of the overall system. These values will be reverted to under Senting up. The control signal is deducted from the filtered audio signal in subtractor IG-. The output of this stape is fed to buffer IG- with the stape is fed to buffer IG- with the stape is fed to buffer IG- with the stape is fed to buffer IG- under suppress any tendency to oscillation and are absolutely necessary.

Fig. 3. Circuit diagram of the control electronics

It is possible to omit impedance convener IC: and buffer IC: but the values of the low-pass sections between ICs and ICs should then be recalculated with due account of the input impedance of the power amplifier.

Modifying the drive unit

The acceleration pick-up is made from a piezo tweeter from which the chassis has been removed as shown in Fig. 4. The connexion wires have been cut at the terminals, nor at the crystal end The remaining cone is then cut to the same size as the piezo disc

The resulting acceleration pickup may be fitted over or under the dust cap of the woofer. The latter method is preferable, but only possible if the dust cap has been fastened with a thermoplastic glue. The cap may then be removed quite easily with a heated knife as shown in Fig. 5. The removal of the cap should, of course, be carned out with the greatest care to avoid damage to the cone of the drive unit or its speech coil. Once the dust cap has been re-

moved, it should be stiffened with a thin layer of epoxy resin and a piece of glass fibre cloth at its inside-see Fig 6. The epoxy resin may be used at the same time to fix the pick-up in place. In the mean time, the woofer should be kept upside down to prevent dust entering the air gap. After the epoxy resin has

hardened, a thin flexible wire should be soldered to each of the two short connexions of the pick-up. These wires should also be glued to the dust cap to prevent them vibrating in unison with the cone later.

Next, the dust cap can be fastened onto the cone again. preferably with thermoplastic glue to enable removal at a later stage if necessary Before cluing it in place, however, pierce a small hole in the cone through which the flexible wires are fed. These wires should be glued to the cone in the same way as those to the speech coil. Finally, they should be connected to the impedance converter board as shown in Fig 2 and

Fig. 5 Removing the dust cap from the cone of the bass drive

Fig. 4. Piezo (weeter after its chassis has been removed

Fig. 6, the dustcep should be suffered on its inside with eithin layer of epoxy reson, which can be used at the seme time to fix the acceleration pick up.

Harmonic distortion at 96 dB at 1 m distance

Without feedback 4 5% 1.7% 0.65% 0.85%

98 dB 100 dB

1.9 48 Hz 29 Hz

0.6 17 Hz 20 Hz

101 dB 103 dB 105 dB

Maximum sound pressure at 40 Hz with ditterent enclosure volumes

System peremeters measured in a

Table 1

Frequency (Hz)

With feedback

Volume (litre)

With feedback

70 Lenclosure

Without teedback

Without teedback

Wrth feedback

changer is fixed to its chassis

100

Fig 7 They should preferably be of about the same length as those to the speech coil. The drive unit is then ready for operational use—see Fig. 7.

operational user-see rig. 1.

Setting up

All the constituent parts of the system should now be interconnected as shown in Fig. 1. Short out R₁₁ and C₅ with the aid of a switch to disable the control circuit. When the switch is opened momentarily, one of three things will happen.

- the loudspeaker remains
- the system oscillates at a low
- frequency (<100 Hz); • the system oscillates at a high
- frequency (>1 kHz).

 In the first case, everything is in order and the system can be

taken into use In the second case, the con-

nexions from the pick-up to the impedance converter board must be reversed.

In the third case, the oscillations must be damped by changing the values of a few components First, increase C12 to In8 and, if this does not help. C11 to 1 uF If that still does not cure the problem reduce the value of R11 and increase that of Cs. Resistor Rii affects the lower cross-over frequency. while Co alters the Ow of the system The author has built several of these systems and has never encountered oscillation problems. Do not forget to remove the switch from across Ru and Ru

The frequency characteristics in Fig. 8 show the results of the modification: it is quite evident that the lump between 30 and 100 Hz in the response of the system disappears when the feedback is thiroduced. The response between 20 and 30 Hz is also much improved.

A number of pertinent measurements are tabulated to Table 1

The system with feedback was also compared with a number of top quality loudspeaker systems in all cases, it performed equally well over the bass range, in spite of its cost being only a fraction of that of the competition

Fig. 8. The frequency response curves of the system with and without feedback

ELECTRONIC POTENTIOMETERS

by T Scherer

An explaratary lack at all-electronic replacements for patentiameters in high quality AF applications.

not the best way of controlling the volume and tone settings in an AF amplifier. We all know that they can cause scratching noises when operated, collect dust, and sometimes develop contact problems giving rise to troublesome discontinuities in the operative range. High quality potentiometers for AF applications are not only difficult to obtain, but also notonously expensive. In the following sections we will briefly examine a

to potentiometers used in various circuit sections of AF equipment.

The carbon track notentiometer

This most commonly used voltage divider is generally composed of a carbon film deposit on a ceramic base arranged in a three-quarter circular form (270°). The poor contact definition of the unper

Potentiometers are, arguably, number of low-cost alternatives on this thin carbon film readily gives use to scratching noises made audible in the loudspeakers Furthermore, dust and foreign particles can easily enter the potentiometer enclosure and block certain sections of the carbon track, so that the amplifier falls still at particular volume settings, making the adjustment very difficult. Stereo potentiometers of the

carbon film type are a further source of trouble. With most inexpensive types, the tolerance

on synchronicity of the set resistance is often no less than 20%, even with linear law types. The voltages at the wipers of a loganthmic stereo potentiometer can also differ by sonte 20%, causing a volume difference between the channels of a maximum of 2 dB, which may be noticeable in listening. Potentiometers are generally

mounted on equipment front panels, and are connected to the electronic circuit with the aid of shielded wires that often

Fig. 1. Experimental stereo volume control circuit based on the use of a LED LDR optocoupler.

carry very low signal level at relatively high impedance. This makes the amphifier susceptible to noise, hum and strong RF fields, which can still be picked up by the carbon track in the potentiometer (plastic en closures), and even in the cable sheld.

In conclusion, it is reasonable to say that the standard carbon track potentiometer is unsuitable lor a great many critical applications.

Stepping switches Rotary (wafer) switches with

fixed resistors at the contacts are, in principle, a good way to effect volume and tone setting in an amphifier. The tracking is adequate, and scratching noises due to spindle movement are effectively ruled out. However many rotary switches of suspect quality do develop contact problems after prologed use. A major difficulty in the designing with stepping switches is the finding of types having the number of positions required to ensure a sufficiently smooth adjustment range.

Wire-wound potentiometers

Long ago in the history of electronics, all notentiometers and resistors were made from resistance wire. For a number of specific applications, the wirewound potentiometer is still in use. Ganged types with motor drive units can be found in some of the most expensive types of amplifier. This application, however, requires sophisticated mechanical engineering on the one hand, and a fairly complex electronic control circuit on the other, making the whole set-up rather cumbersome and expensive at the same time.

An LDR-based potentiometer

The first attempts at making a fully electronic potentioneter were carried out with combinations of LDRs (light dependent resistor) and a small bulb Although the results were quite sastiactory for AF equipment on the market in the early 1960s, we would nowadays report the LDR and bulb control for more poranon in MFF equipment in view of the noise production.

Fig. 2. OTAs in use es e Hi Fi stereo volume control.

rumble sensitivity, and poor tracking characteristic of the stereo versions.

We all know that each and every electronic component remains subject to continuous enhancement by the joint force of manufacturers and their research laboratories. German firm Heimann, for instance, took up the long forgotten LDR for further research, and used two of these devices together with a LED to make an optocoupler that has adequate features for Hi-Fi applications. The LDRs in their Types LT10xx and LT20xx optocouplers are of excellent quality, and especially the LT20xx should do very well as a stereo potentiometer with adequate tracking properties-see Fig. la. for the pinning and R-Ls curves, and Fig. 1b for a suggested ap-

plication circuit.

An OTA-based potentiometer

A fauly simple potentioneter replacement can be realized with the aid of an OTA (operational reasonal transconductance amplifier), which is essentially an amplifier with current-controlled gain The gain range of about 80 dE the extensive usable frequency range and limeanty of the current-gain correlation, make an OTA such as the type LMI3800 eminently suitable for the applications we are concerned with here.

are concerned with here. Those who want to experiment with these devices will find the suggested circuit in Fig 2 of use for further experiments. The only drawback associated with OTAs is their limited dynamic range, which results in a maximum attainable signal-tonose ratio of about 80 dB.

Analogue multiplexers

The circuit shown in Fig 3 is a high-quality. all-electronic volume control featuring 16 dB and 2 dB steps as controlled from a 6-bit digital input. The ICs in this circuit are the wellknown Type 4051 eight-channel analogue multiplexer/demultiplexer, which is in essence an electronic version of an B-way. single pole rotary switch. The contacts are inputs 0.7, the pole is output Z, and the switch position is set with the 3 bits at the A-B-C inputs. Example: applying binary code 018 to the A.B.C. inputs of the left-hand multiplexer connects input 2 (pm 15) to output Z The input signal for opamp Az is therefore taken from the -32 dB contact on the resistor ladder. The resistors at the inputs of the second multiplexer driving As are dimen-

Fig. 3. A 6-bit high quality volume control circuit that uses CMOS analogue multiplexers.

Fig. 4. Using electronic switches instead of a potentiometer in a tone control circuit.

Table 1				
INPUT	STA	TES		"ON"
INHIBIT	C	В	A	CHANNEL(S)
CD4051B				
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
_ 0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	X	X	×	NONE

stoned to give 2 dB attenuation steps, so that the overall range of this electronic potentiometer is from 0 to —96 dB as set with 6 bits. A balance control can be made with two of these circuits, operated on the basis of soft ware.

The tone control section shown in Fig. 4 uses the same principle as the above volume adjustment. The resistors as part of the RC filters in the feedback loop of A_{ℓ} are selected with 3-bit codes for bass and treble.

Use high-stability resistors and capacitors when constructing these circuits, and provide ample decoupling of the supply lines. The opamps should be low noise types such as the TL074 indicated in the circuit diagram. The digital adjustment of the volume and tone control circuits is a matter we leave in your hands. You may want to use an up/down counter, a microprocessor port. or a special switch to arrange for the correct bit combinations at the multiplexer control inputs (consult Table I).

-

SECONDARY BREAKDOWN IN POWER TRANSISTORS

by Sue Catn & Ray Ashmore *

This orticle examines the different types of secondary breakdown that occur in power transistors, and investigates the phenomena that cause them. It concludes that secondary breakdown is a function of transistor technology, and connot always be improved without some trade-off in other parameters.

mechanisms to power transistors is second breakdown.

This term includes various physical phenomena which are completely different. They depend on the different use of transistors in the circuits and have in common the electrical and thermal instability inherent in transistors themselves.

The conduction behaviour of an emitter base junction and the current gain of a transistor depend significantly on the temperature and increase as a function of the temperature. Electrical and thermal instabilities may act simultaneously within the device, thereby giving rise to destructive second breakdown mechanism.

An understanding of this mechanism is of great importance for a safer optimum application of a power transistor.

A distinction should be made between direct second breakdown (Is/b) which is distinguished by a normal direction of base current Is (entering into an NPN transistor) and inverse second breakdown $(E_{1/6})$, when I_8 is in the opposite direction (extracted from an NPN transistor). The limits to which a transistor may be used without entering into Ent are defined by the reverse bias safe operating area (RBSOA).

Direct second breakdown

It is important for the power circuit designer to know the locus of the Ic-Vcs points defining the boundary between stable and unstable operation of forward brased transistors. This locus defines the SOA safe operating area, that is, the area

One of the basic failure of the logIc-logVcz plane which may be used without any risk in DC current conditions or with different width pulses at a known temperature. A typical SOA is shown in Fig. I. The limits of this area are as follows: 1) The A-B section represents

the upper limit of the collector current that may normally be used, generally bruted by wire bonds Operation at higher currents may cause damage to the wires of their bonding

2) The B-C section is the -1 slope curve section (i.e. the section with constant dissipation) defined by:

$$V_{CEIC} = P_{max} = (T_{;max} - T_{o})/R$$
. [1]

This section therefore indicates the maximum dissipable power of the device. Times is the maximum temperature which the collector-base unction may reach, over which the device reliability may be compro-

mised. In power transistors, T max varies between 125 and Z_0 with respect to R_0 .

3) Section C-D corresponds to the second breakdown phenomenon (or Is/b) and limits the maximum power that the transistor can dissipate This

may occur even at relatively low Ver voltages. 4) Section D-F is the limit due to the transistor's BVcco.

Second breakdown is generated by the electrical and thermal instability of the transistor. The main causes of this insta

bility are: * PULSE DURATION

base-emitter junction, at constant current, decreases linearly with temperature, with a +=2 to 2.5 mV/°C slope. The base current of the transistor may therefore be expressed by $I_B = I_0 [\exp(eV_{BE}^{-4T}/kT)]$

i) The Vas of a directly biased

and, when Vac is kept constant, it increases with temperature.

2) The her at the relevant voltage values increases as a function of temperature according to the law

 $h_{FE} = h_{FEG} \mid \exp(\Delta E_G/kT) \mid$ [3]

Where $\triangle E_g$ is an activation energy which is a feature of the transistor.

3) The thermal conductivity of silicon decreases when temperature uses, causing a worsening of the thermal resist ance of the transistor. When these three phenomena

are taken into consideration, it may be observed that a pulse of power P=VcEI denerates: a) an increase of the junction

temperature, giving rise to an increase of Is and hee, and therefore to an increase of Ic. with a following increase of P and, therefore, a further temperature increase

b)a dissipation to the external environment, controlled by the thermal resistance $R_0 = dT/dP$ which tends to stabilize the device.

The situation evolves towards stability when:

 $\frac{\Delta I_{C2}}{\Delta I_{C1}} = \frac{\partial I_{C}}{\partial T} V_{CE}R$

is smaller than 1, or instability if In this way, a stability factor, S.

may be defined that will be a function of Ver and le: $S=R_{\theta}V_{CE}\frac{\partial I_{C}}{\partial I_{C}}$

Figure 1 Safe operating meas which may be used without any risk in DC current conditions or with different width pulses at a known tempsiatuis.

elektor indie myy 1887 5.25

When S>1, so called "thermal | runaway" occurs and the junction temperature increases without any limit, thereby degrading and possibly damaging the transistor. The failure generally occurs when the surface temperature becomes greater than the eutectic temperature between silicon and the contact metal (front aluminium) with a consequent melting of the alloy. A localized temperature increase may also damage the crystal, or the inner temperature of the device may reach values high enough to melt the

To understand L_m phenomena which give rise to a reduction of the maximum power that the transistor can dissipate as Ver increases (zone D.E.). It is necessary to take into account that device operation is not homogeneous on all the dice area. There are dissunformates in the emitter base current density that may be due to junction and, most of all, to the emitter edge concentration phenomenon.

The voltage drop due to the base current flowing through the cross resistance thb' gives use to a disuniformity of V_{BR} at the junction, and therefore to the disuniformity of the current density f_{E} (see Fig. 2). A side drop of 26 mV reduces

the injected emitter current by a factor 1/e, where e is the base of the natural system of logar1thms (= 2.71828...).

A concentration of the current at the emitter periphery is therefore generated, so the active silicon area is reduced and hot spots occur, leading to an effective increase of the thermal resistance. As a result, the maximum dissipable power is decreased.

When VCE is increased, the effect of the base-collector electric field is to increase the base current concentration.

Different techniques may be adopted to limit the Interpetation of the In

 I) minimization of crystal damages, metal impurities, and doping disuniformities;

 optimization of package and die attach techniques to minimize the thermal resistance on which the stability factor S depends Disuniformities of sih con die bondings to the case may give rise to adverse variations of R₂ as a macroscopic parameter for the dice as a whole, but also to significant variations between different points, giving rise to premature second breakdown;

3) increase of the base thick

3) increase of the base thuckness to reduce the high current densities (due to emitter crowding) flowing through the collector base junction (where the electric field is localized), so that the density of the dissipated power is decreased. High base thucknesses, however, will result in lower cut off frequencies and slower switching times:

optimization of the horizontal geometry.

5) introduction of distributed ballast resistances connected in sense with the base, the emitter or both, which tend to give a negative feedback to thermal runaway, therefore stabilizing the device.
The introduction of a ballast re-

of the emitter may reduce from J_1 to J_2 the current density in the hot spot. The emitter ballast re-

sistance is generally obtained by opening emitter contacts tunner than the emitter strip. In this way it is possible to hims the current density at the boundances of the emitter. These resistances show the drawback of increasing the saturation voltage of the transistor by the amount Vectoral = Referent to the total contact the saturation. On the other hand, the base

amount Versur = ReLout
On the other hand, the base
ballist resistance is obtained
strough a "N" pocket" (in the
case of NPN), around the emut
ter area. Tims N' diffusion, being unbased, cannot be traversed by the base current, so
this is forced to flow below the
N' through a small section
and, in the case of a diffused
base, encounters a higher are
of the emitter. In this way it is
possible to immore L-s simple.

It should be noted that the SOA himits are temperature dependent and suitable derating must be applied

Reverse second breakdown

cantly.

The reverse breakdown phenomenon $(E_{2/6})$ is also due to thermal and electrical in-

2

Figure 2. The voltage drop resulting from the base current flowing through the cross resistance resi gives rise to a disuniformity of V86 at the junction, and so to the disuniformity of the current density $J\varepsilon$

Figure 3 The common emitter characteristic curves for a transistor.

stability of the transistor. As already mentioned, it is distinguished from $L_{\rm in}$ by the presence of a reverse $L_{\rm i}$ (i.e. with a direction opposite to the normal direction of a transistor operation in the active zone) and by high Ver values of the transistor. The device may be in these working conditions during turn-off twith an inductive integration of the device of the transition. The direction of the device may be in these working conditions during turn-off twith an inductive

In Figure 3 the common emitter characteristic curves for a transistor are shown.

It is easy to understand the behaviour of these curves when the common emitter gain expression is considered

hre = Ar/(1-Ar) [5]
for high Vce values, Ar is replaced by MAr.

For low Vce values, M is an insignificant factor, being very close to 1: it increases when Vce is increased according to the following expression:

 $M = 1/[1-Vce/BVcso]^n]$ [6] From expressions (5) and (6) it is clear that hre depends on Vce, becoming infinite when MR = 1/BVcso.

The negative slope section, which is a feature of the curves with Is<0, is due to the fact that A decreases at low values of the emitter current.

During turn-off with an inductive load, the transistor has to operate with negative base current and a high value of fc. It often has to reach a working area above Vero, remaining there all the time required for the inductance to be discharged. Fig. 4 shows the behaviour of fc. Verc. It and the power dissipated by the transistor during turn-off.

The area of the dissipated power corresponds to the energy stored by the inductance, %LD*, which is discharged into the transistor and this is called second breakdown energy (Evb.). Like fev. the voltage drop due

to the reverse Is flowing through the side resistance rbb' makes the centre of the emitter strip more biased than its periphery. In this way, a current concentration occurs at the emitter centre.

Let us analyse the case of an NPN transistor with diffused base and epitaxial collector, i.e. with constant concentration ND of donors doping particles i Poisson's equation is.

Figure 4. The behaviour of Ic. Vct. le and the power dissipated by the transistor during turn off

Figure 5 Typical electric field behaviour when the collector current is limited to low values.

Figure 6. The condition created by the intermediate laver inserted between the collector and the substrate in order to obtain high Esto values.

$\partial E/\partial X = \partial V/\partial X = D(x)/x$

The X axis is normal to the silv con dice surface, (x) is the charge per unit volume. E is the dielectric constant of silicon. When the collector current is limited to low values, expression [7] becomes (q being the electron charge);

$$\partial E/\partial X = qNo/\epsilon$$
 [8]

and the electric field behaviour is similar to that shown in figure S for Ic = I'i

The voltage Vcs (= Vcs) is given by the area of the E-X graph and is smaller than primary breakdown voltage due to the reaching of critical field $E_{\mathcal{O}}$. In the presence of significant values of current density Ic the expression [8] is modified due to the n concentration of electrons flowing at the speed V through the depletion layer [9]

$$\partial E/\partial X = [q(ND \cdot n)]/\ell$$

where $n = ic/\sigma V$

At constant V_{CR} , the area innited by E has to remain constant. When Ic increases, the E-X slope varies (12) until its sign is changed (J'3) and Ecr is reached (J'cr). At this point avalanche local multiplication of electrons occurs with an uncontrolled current increase-and so a strip is formed with a very high temperature that gives use to either crystal damage or silicon melting Possible crystal defects, metal ions, and junction disuniformities further exaggerate this phenomenon. The avalanche multiplication is very fast and very localized so the device remains externally cold. The End behaviour is not influenced by the die bonding quality. High Earls values can be obtained with a proper geometric design to limit the current crowding and, most of all, by inserting a second epitaxial faver N of intermediate doping between the collector and the substrate The intermediate laver creates

the condition shown in Fig. 6. When the current density increases (12) the electric field at the interface N /N is increased. Before the critical field Ecr is reached at the interface, the contribution of layer becomes significant in sustaining the voltage. A further density increase (J'3) reduces the electric field at the interface N /N and the breakdown is not triggered until the critical field is reached at interface N/N+ For a good power transistor with VCEO(SUS) = 450V the current density I'er corresponding to Ecr is of the order of 20A/mm2, i.e., greater by a factor 10 when compared to the average current density given by the rano between maximum saturation current and emitter

The Enb behaviour is also influenced by the conditions outside the transistor, Rev. Var. L. The base conditions are especially important, as they regulate the crowding phenomenon.

The system most commonly used by power designers to reduce the Esth effect during turn off with inductive load is a clamping or 'snubber' circuit, that hmits the voltage peak between collector and emitter

The presence of the clamping circuit allows only a minimal amount of the energy stored in the inductance to be absorbed by the transistor and E./bbecomes independent of the value of L and practical RBSOA limits may be defined.

The presence of high V_{CE} and negative base current. In may give rise at high current to the previously described $E_{\text{V/b}}$ phenomenon, even to the presence of the clamping circuit. The multi-epitaxial transistors show a better behaviour even in the presence of a clamp The reverse bias safe operating

area establishes the maximum switchable current with inductive load versus clamping voltage in very harsh base conditions that simulate the real base driving conditions in the circuits. The temperature is not a major

factor in the $E_{1/b}$ and so the RBSOA rating can be constdered to be independent of temperature.

Conclusion

Second breakdown performance is a function of transistor technology and cannot always be improved without some trade-off in other parameters. The application conditions have a considerable effect on both Is/b and Es/b capability.

* Sue Cam is with BA Electronics and Ray Ashmore is with SGS.

elektor andre may 1987 5.27

PRESET EXTENSION FOR FUNCTION GENERATOR

by M Kistinger

A simple ta build, ten-frequency preset unit tar the Elektar Functian Generatar that leatures an adjustable sweep functian, a LED indicatian, and much mare at a very small autlay.

The AF Function Generator described in Elektor India. January 1985, has generated a lot of interest, which is mainly due to the instrument being versatile, relatively simple to construct, and sufficiently accurate for a great many applications. The preset extension proposed here is a separately housed, 10-way programmable ancillary intended to drive the generator's VCO input. Frequencies that are often used for test and measurement purposes can be called up at the flick of a switch, and there is also a facility to successively select all ten of them at variable speed, providing a 10-frequency sweep lunction Furthermore, the extension provides an output signal to trigger an oscilloscope with any one of the ten available frequencies

Ease of control is the key word in this design. Once you have set the ten generator output frequencies with the aid of multiturn presets, you can select manual operation on the extension and press the single STEP key until the relevant frequency is enabled, as indicated by the associated LED If the MAN/AUTO switch is in the auto position, the VCO voltages are successively output at a rate defined with the SPEED potentiometer and the FAST/SLOW push-button selector A BCD (thumbwheel) switch is used to select the period of one of the 10 available VCO voltages for triggering an oscilloscope Standard components are used

throughout this extension, which will quickly prove an indispensable add-on unit that can save you quite some time in setting the generator's output frequency.

Circuit description

The circuit diagram of the proposed extension is shown in Fig 1. At the lower left is the power supply, which delivers +5 V for the logic circuits, and +10 V for the sweep oscillator, ICs, and the VCO output drivers. Tr-Tu The latter voltage is provided by a precision regulator Type LM317 (IC12) to ensure the stability of the ten VCO drive levels The +5 V supply is conventionally based on a Type 7805 regulator which can easily handle the 150 mA current demand of the (LS)TTL circuits.

With S3 set to MAN, depression of single step push-button S2 causes N₁ and delay network R10-C1 to provide a trigger pulse to the B input of monostable multivibrator IC2, whose output pened is defined with Rig-Co As Si is open, the pulse at output O of IC2 is passed through gates N s and N s and fed to the clock input of counter IC: Il Sa is in the Auto position. Na blocks the SINGLE STEP Dulses from IC2, and IC1 is arranged to be clocked from oscillator IC: via level translator Tiz Potentiometer Pr and FAST/SLOW pushbutton S1 allow precise setting of the VCO sweep speed. Note that So is actually part of the seem potentiometer, so that turning this Juliy counter-clockwise automatically enables manual selection of the direct voltage level from the preset extension, and hence of the function generator's output fre-

Counter IC₂ is advanced by pulses from N₁₁, and the BCD code at its Qa-Qo outputs is appled to the XOR gates in IC₄, as well as to BCD-to-decimal decoder IC₂. The Type 74LS90

counter is set up to count from θ to θ , and is reset to state θ at power-on with the ad-olf-C-R-u. The trugger signal for the oscilloscope is obtained from Ni-Nis. and Ni-Nis. which function as a 4-bit comparator in conjunction with Card ad 8CD switch for selection of the retwent trugger piles. The output of N is goes high if the logic state of outputs $Q_{i}Q_{i}$ on IC. matches that of the AD lines on the 8CD switch for selection of the AD lines on the BCD switch of the AD lines of the AD lines

Any one of the 10 outputs of decoder IC₅ can enable an associated driver stage, whose direct output voltage is defined

with a multiturn preset. II. for instance, output 9 of ICs goes low, the output of open-collector inverter N 12 goes high, Transistor Tio is turned on, LED Dre lights, and a portion of the emutter voltage is led to the VCO input of the lunction generator, via the wiper of P12 and summing diode D₁₀ The circuit around To serves to raise the ground potential of the extension so as to increase the active range of the presets in the analogue output stages. It should be noted that this arrangement makes it impossible to feed the preset extension from the generator's

Parts list

Resistors (= 5%t 8 x Rx = 4K22: 1% $R_2 = 100K$ Rs. Rss - 5K6 Rs Rsg: Rse Flas inct = 10K Ra = 1K5 Rr Rre Rre incl.: Rez = 1K0 Re Re, Ris, Ris = tK2 Ru Ru = 220R R₁₀ R₁₀ incl. = 270R Res = 100R P1 = 500K linear potentiometer with SPST switch (S₃) P₂ = 5K0 preset Pa . Psz incl = 4K7 multitum mesel

Capacitors: $C_1C_0 = 100n$ $C_1 = 2\mu 2, 25 \ V$ $C_2 = 10\mu, 10 \ V$ $C_3 = 4\mu 2, 15 \ V$ $C_4 = 4\mu 7, 63 \ V$ $C_6 = 47\mu, 63 \ V$ $C_{10} = 35 \ V$ $C_{11} = 2\mu 2, 25 \ V$

decoupling capacitors (100n) as

Semeconductors

B₁=880C1500 D₁ D₁₁ incl ;D₂₂=1N4148 D₁₁ D₂₁ incl. = LED D₂₂=1N4007

IC1 = 741 IC2 = 74121 IC2 = 74LS90 IC4 = 74LS86

#Cs = 74LS42 |Cs, 1Cr = 7405 |Cs = 74LS02 |Cs, 1Crs = 74LS00

IC₁₁= 7805 plus heat sink IC₁₂= LM317T T₁ , T₁₉ snct = BC549B T₁₁ = BC237B

T₁₂ = BCY59 Miscellaneous:

Miscoella neous:
Fi = 100 mA, delayed action,
Fuseholder for Fr
Tri = 15 V, 200 mC,
SijSr = push to-make bullion
SijSr = part of P;
Su-SPST mains switch
Suggested enclosure Verobox
Type 75 3097C (180 × 120 >
40 mm)

40 mm)
Prototyping board (Veroboard) as required

BCD Thumbwheel switch

supply Also, observe that the pulse level at the sync or termal is $5 \, V_{\rm FP}$ with respect to the extension ground potential, not that of the function generator, LED $D_{\rm TP}$ serves the double purpose of raising the base potential of $T_{\rm TP}$ and functioning as the on/off indicator of the preset extension.

1

Construction and setting up

The proposed extension circuit is readily built on a piece of

Veroboard and housed in an ABS enclosure that can be placed on top of the function generator or the associated sweep generator.

sweep gelerator.
Although not shown in the circuit diagram, the supply lines to the logic circuits should be decoupled with 100n capacitors. Keep the wires to the switches and the sircin potentiometer as short as possible. The frequency indication LEDs can be fitted in a neat row on the front panel, complete with numbers 1-10 for easy reference.

After building the circuit, it is suggested to adjust the output voltage of IC12. Use a DMM and set P2 for a reading of 10.00 V. Turn P: to MAN and check whether operation of St causes the LEDs to light in succession. Turn P1 to auro and check whether the sweep speed can be adjusted with P1 and S1. If necessary, adapt Ca or Ca to define the sweep speed. Turn P1 back to MAN and use a DCcoupled oscilloscope to see whether the VCO voltages are all stable and free from digital noise and ripple.

Finally, connect the extension to the VCO input on the function generator, and adjust the 10 presets for the test frequencies you require.

Th

Function generator. Elektor India, January 1985. Sweep generator. Elektor India. December 1985.

elektor under may 1987 5,29

LINKWITZ FILTERS

A brief look at the theory and practice of passive and octive Linkwitz cross-over networks.

An analysis by Siegfried Linkwitz in the lanuary 1976 issue of the Journal of the Audio Engineering Society shows that conventional cross-over filters have a negative effect on the radiation pattern of a multi-way loudspeaker system as regards both directivity and amplitude. On the basis of his research. lankwitz proposed a new type of network that gives a uniform radiation pattern and constant amplitude. This filter, which is essentially a Butterworth-denyed type, was first described by Riley and is, therefore, sometimes referred to as a Linkwitz-Riley network.

For simplicity's sake, the following discussion is based on a two-way loudspeaker system. For optimum results, Linkwitz suggested that the filter must meet three requirements:

- . there must be no phase shift between the outputs of the loudspeakers at the relevant cross over frequency to prevent an upward or downward displacement of the radiation pattern:
- the signal attenuation at each filter output must be 6 dB instead of the usual 3 dB to prevent peaks in the sums of the signals:
- · the phase shift between the output signals must be constant at all frequencies to retain the symmetry of the radiation pattern above and below the cross-over frequency: this condition is conveniently met by the use of symmetrical filters in both the low-pass and the highpass sections.

Linkwitz found that these requirements can be met by cascading two identical second-Butterworth filters. order Higher-order types may, of course, be used, but in practical applications these are less interesting It should be noted that in any case the filter must he an even-order type, since each order causes a phase shift of 45° at the cross-over freсцепсу.

Fig 1 shows the amplitude and phase shift behaviour of a Butterworth filter, and Fig 2 those of a Linkwitz-Riley network. Note the 3 dB peak of the Butterworth filter. This can not be obviated by increasing the separation of the cross-over frepass sections, because this would violate the first requirement of zero phase shift between the outputs. For clarity's sake, the two characteristics are combined in Fig. 3 to highlight the difference between them.

Fig. 1. Butterworth network amplitude and phase characteristics over the audio frequency range. The fat line represents the sum of the outputs of the filters.

Fig. 2. Linkwitz network amplitude and phase characteristics over the audio frequency range. The fat line represents the sum of the outputs of the filter sections.

Fig. 3. Butterworth and Linkwitz characteristics combined to highlight their differences. The networks used had a slope of 24 dB per octave.

quencies of the low- and high- . The Linkwitz curve is rather more rounded in the vicinity of the cross-over frequency, and starts falling off somewhat earlier. The slightly different phase shift of the two filters should also be noted The foregoing discussion is

true only if the signals are sinusoidal. The pulse (or step) response of the Linkwitz filter causes the same problems as that of a Butterworth filter, assuming that both filters have separate low and high pass sections. Even a Linkwitz filter is therefore not perfect.

A practical filter

A Linkwitz filter may be designed as a passive or as an active type. The circuit diagram of an active design is shown in Fig. 4: this may be constructed on the printed-circuit board shown in Fig. 5. Note that this board is identical to that used for the electronic cross-over network published in the September 1984 issue of Elektor Electronics.

The circuit of Fig. 4 is for a three-way loudspeaker system. The network has cross over frequencies of 500 Hz and 5,000 Hz and roll-offs of 24 dB per octave. Stage A₁ serves as a buffer for the input signal before this is split three-way. The low-pass section is formed by As and As: the middle-frequency section by Ar and As (high) and As and As (low); and the high-pass section by A11 and A12. Each section is provided with a potentiometer for setting the level of the output signal (Px P2, and P2 respectively), and a stage to buffer the output (A2, A3, and A4 respectively). The power supply lines are stabilized by voltage regulators IC, and ICs. The cross over frequencies may be altered with the aid of Table | (any frequency) or Table 2 (the 17 most likely frequencies). The values in

Table 2 have deliberately not

been rounded off to the nearest

5 30 elektor india may 1987

Fig. 4. Circuit diagram of an active Linkwitz filter

standard EI2 or E24 value. The sections may also be given a slope of 12 dB per octawe by using As. As., As., and As.; as buffers. Resistors Rs., Rs., Ts., and Rs., as well as capacitors C22, C2s., C2s., and C2s., are time replaced by wire hinks; while Rs., Rs., Rs., Rs., C2s, C3s., C3s., and C3s are omitted

The circuit may be adapted for use with a two-way system by the omission of the entire middle-frequency section, except for A_1 which is housed in the same package as A_4 .

If the slope is changed to 12db per octave, the connexions to one of the loudspeakers must be reversed, because the phase shift at the cross over frequency is 80° here in a three way system, this should be done at the middle-frequency system; in a two-way system at the tweeter.

A passive filter may be constructed as shown in Fig. 6. The values of the actual components used should be as close as possible to the calculated ones, otherwise the filter will become a cross between a Linkwitz and a Buterworth

Fig. 5 The printed-circuit board for constructing the Linkwitz filter of Fig. 4

Fig. 6. Passive Linkwitz sections is) with a 12 dB psi active stope, and (b) with a 24 dB per oktave slope.

type. If the filters are given a 12 dB per octave slope, the connexions to the middle-frequency loudspeaker (in a three-way system) or those to the tweeter (in a two-way system) should be reversed.

The loudspeaker impedance must be corrected in a manner that ensures that it is constant and ohmic at the cross-over frequency. The corrected impedance of the loudspeaker, R in Fig 6a and 6b, should be

ascertained as detailed in Loudspeaker Impedance Correction (Elektor India, June 1986).

ble 2		1		-		s 12 dB/octave		oh-pass 24 dB	In attach
Low-pass	12 dB/oktave	Low-p	ass 24 dB/ok	tave	High-pas	s 12 dB roctave	711	gn-pass 24 ub	rociave
9 = 5k6		R = 5k6			C=4n7		C=4n7		
/ (Hz)	CA = Ca (nF)	f (Hz)	CA = Cc (nF)	Ce = Co (nF)	f (Hz)	RA-RE (kQ)	f (Hz)	$R_A = R_C (k\Omega)$	Re-Rollko
100	284	100	402	201	100	339	100	239	478
200	142	200	200	100	200	169	296	120	240
300	94.7	300	134	67	300	113	300	79 8	159.6
400	71.1	400	100 4	50.2	400	84.7	400	59 9	119 8
500	56.8	500	80.4	40.2	500	67.7	500	47.9	96.8
600	47.4	600	67	33 5	600	56.4	600	39.9	79.8
700	40 6	700	57.4	28 7	700	48 4	700	34.2	68.4
800	35.5	900	50 2	25.1	800	42.3	800	29 9	59 8
1,000	28.4	1,000	40.2	20.1	1,000	33 9	1,000	23 9	47.8
1.500	18.9	1,500	26.8	13.4	1,500	22,6	1,500	16	32
2,000	14.2	2,000	20	10	2,000	16.9	2,000	12	24
2,500	11.4	2,500	161	8.04	2,500	13.5	2,500	9 58	19 16
3,000	9,47	3,000	13.4	67	3,000	11.3	3,000	7 98	15 96 13.68
3,500	8 12	3,500	11 5	5 74	3,500	9.68	3,500	6.84	11.98
4,000	7.11	4,000	10.04	5 02	4,000	B 47	4,000	5.98	9 58
5,000	5.68	5,000	8 04	4.02	5,000	6.77	5,900	4 79	
10,000	2.84	10,000	4.02	2.0t	10,000	3.39	10,000	2 39	4 78

RIMS: COUNTING ATOMS

by Dr Kenneth W. D. Ledingham, Department of Physics and Astronomy, University of Glasgow

Resonant Ionisation Mass Spectroscopy (RIMS) is a unique, ultro-sensitive analytic technique which can detect down to the level of a few otoms. It is opplicable to any sample, whether solid, liquid or gas and con be used to assay every element in the periodic table aport from helium and neon, as well as any stable or radioactive isotope. It is likely to find important applications in fundamental and applied physics, and to become a valuable tool in the semiconductor industry and in diagnostic medicine.

The need to develop new analytic ways to measure ultratrace quantities of elements in vanous substances is becoming urgent in many branches of science, engineering and medicine. There are already many sensitive analytic techniques, including neutron or photon activation analysis, inductively coupled plasma spectroscopy, atomic absorption and various kinds of mass spectroscopy. particularly secondary-ion mass spectroscopy (SIMS). The sensitivity of these techniques for trace analysis is usually limited to the order of parts in 10° or 10°.

In the last few years problems have arisen that require ultratrace analysis at the previously unheard-of sensitivities of parts in 10s to 10s2 or even further. Already three areas which require such analysis have been identified and as techniques are developed many more applications are likely to become apparent.

Firstly, it is essential to reduce the minimum detection limit of impurities in silicon if improvement, especially in miniaturisation, of the semiconductor manufacturing process is to be maintained Secondly, Professor M. Baxter of the Scottish Universities Research and Reactor Centre, near Glasgow. has speculated whether there is a health risk from the presence of very low-activity & emitters in the environment. They are very difficult to monitor because they are likely to be below the sensitivity range of conventional nuclear counter techniques Finally, the presence of trace

human body fluids and tissues is considered to be essential to health. This is a poorly understood branch of biochemistry and widely divergent figures for trace metal concentrations in apparently healthy people have been published. But there is growing evidence that many of the studies are flawed by gross analytic inaccuracies and that new, reliable techniques are necessary at sensitivity levels of parts in 109 During the middle and late 1970s the possibility of applying

laser techniques of single-atom detection to ultra-trace analysis attracted interest. The technology had been pioneered largely by Professor V S. Letokhov of the Academy of Sciences in Moscow and Professor G. S. Hurst of Oak Ridge National Laboratory, USA, Resonant Ionisation Spectroscopy, RIS as it has come to be known, can detect one atom of a specific type in a background of 1014 others in gaseous phase. The implications of this degree of sensitivity for many disparate fields of research are likely to

Resonant Ionisation Spectroscopy With the development of un-

be enormous.

tense, tuneable, pulsed lasers the simultaneous absorption of several photons by a single atom or molecule to produce a free electron and a positive ion became experimentally feas-In the simplest RIS process, a

pulsed laser is tuned precisely to the wavelength required to

amounts of certain elements in | excite the atom or molecule from its ground state of energy to an excited state that is unique to the element under study. A second photon, of the same wavelength and from the same laser pulse, interacts with the atom in its excited state and causes an electron to be released from it thereby creating a positive ion. This process can be made more selective by adding further resonant steps in the excitation process, using a second laser tuned to another frequency Five different laser schemes, represented in the first illustration, can tonise all the elements in the periodic table, except helium and neon From left to right in the diagram they are (a) A(whose)A.

This reaction means that two

photons of the same wavelength (that is, with angular velocity ωι) create the ion pair

(b) A(2ω1,ω1e)A'

The laser wavelength is frequency doubled into the ultra-violet and then mixed with the fundamental to create the ion pair.

(c) Λ(ω ιω ε, ω ι or ω ε ε ')Α ' fn this process three photons are absorbed with two colours being involved. indicated by we and we. (d) A(2ω1, ω1ω2 e)A 1

One colour is frequency doubled (2w1) and another photon of a second colour is absorbed as well as one of the original photons.

In this case usually three photons of the same colour are absorbed to create the IOTI DAIL.

(e) A(ωιαι, α e)A'

The second diagram is the periodic table of elements with one of the five schemes being ascribed to each, after Professor Hurst. In the early days of the technology, the electrons created in the resonance process were detected by ionisation or proportional counters. Soon, however, it became obvious the ultra-trace isotopic selectivity was needed, too, so mass spectrometers were innoduced to detect the positive ions. Although both magnetic sector and quadrupole mass spectrometers have been used by different research groups, the arrangement preferred now includes a time-of-flight mass spectrometer.

Resonant Ionisation Mass Spectroscopy

When laser techniques are used to detect ultra-trace amounts of elements or isotopes in a substance or matrix, three separate steps are involved. A typical laser time offlight mass spectrometer is shown in the third illustration, indicating the steps. Firstly, a pulsed, charged, argon beam or a neutral argon beam, ablates or creates neutral atoms from the surface of the solid sample to be assayed, Ideally, the atoms created should be accurately representative of the solid under analysis and to date argon ablation has been shown to be largely matrix-free. This technique is now considered to be superior to the laser ablation technique, which is a hightemperature method known to cause matrix problems because it favours the easily

vapounsable materials.

SIMS, already mentioned, also uses an ion beam to ablate the surface of the sample but analyses only the charged ions, which are created in numbers some two or three orders of magnitude lewer than the neutrals. Because they are charged, these ions are emitted at a rate that is a lunction of the chemical composition of the surface RIMS and SIMS are made quantitative by making compansons with well characterised standard samples, so tl there are any matrix problems. any quantitative analysis is likely to be maccurate.

Having created a cloud of vapour above the target. RIS lasers then selectively ionise atoms of the chosen element in the vapour cloud, which are subsequently accelerated into the time-of-flight mass spectrometer. Secondary ions created by the ablation process can be rejected by electrostatic helds or by varying the time between the ion beam pulse and the RIS laser pulse. The normal laser arrangement to achieve total elemental coverage is an Nd YAG laser powering two dye lasers, one of which has frequency doubling lacilities. Typical lasers of this kind operate with pulse lengths of several nanoseconds at repetition rates of some tens per second The transverse spatial dimensions of the beam are typically a lew millimetres. One of the strengths of RIS is that the photo-ionisation process can be made almost 100 per cent ef ficient, that is, it reaches saturation. By saturation of the RIS process, we mean that every atom of a quantum selected species which was in its ground state before being subjected to the photon field of a pulsed laser is converted to a positive ion and a free electron during the short duration of the laser pulse. Because saturation occurs when laser fluences, by which we mean energy per unit area, are typically about 100 ml cm⁻², conventional commercial lasers require modest focusing of a 3-mm beam. It is hoped that RIMS will become a routine ultra-trace analytic technique, so a short analysis time is desirable, of the order of minutes. For this purpose the low repetition rate of Nd.YAG lasers (30 sec-1) is a limitation.

These five different schemes, using a pulsed leser or lasers to excite an atom or a molecule from its ground state of energy, can ionise all the elements in the periodic table except helium and neon

٧	35	Ш	ŧ٧	V	IF	VII		VIII		٧
is										
3Li	48e	.5B	++6C +	+7N +	+ 80++					
11 Na	.12 Mg.	13 Al		, 15 P .	16.5	17 CI .				
19 K	20 Cs	21 Sc	22 Ti	23 V	24 Cr.	25 Mn	26 Fe	27 Co	28 Ni	
29 Cu	30 Zn	/31 Ga	32 Ge:	+ 33 As	34 Se	+35 Br+				36 Kr
37 Rb	38 Sr	_39 Y	40 Zr –	41 Nb.	42 Mo.	-43 Tc -	44 Ru	45 Rh	46 Pd	
47 Ag	48 Cd	49 In /	50 Sn	51 Sb:	52 Te	+ 53 i + ·	77777	****		54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W .	75 R e	76 Os 🗆	-77 lr	78 Pt	
79 Au	80 Hg	81 TI	82 Pis	83 Bi	84 Po					
87 Fr	B3 Ra									

Periodic table of elements, with one of the five schemes of the first diagram escribed to each. (After Professor Hurst)

conventional mass spectroscopy can be eliminated when tuned lasers are used to produce the ions for mass analysis. In a conventional mass spectrometer the ions to be analysed are normally electronbeam induced, so molecular interferences and isobanc effects cannot be avoided. A mass spectrometer cannot easily distinguish between CO and N₂, for example. This is a phenomenon known as mol-

ecular interference. Nor can it distinguish between *Ca, *OX and **Ar because they are isobaric; that is, they have similar masses. These ambiguities are avoided when RIMS is used. The final step of the RIMS tech-

Two of the severe limitations of

nique is to count and measure the mass of the laser induced ions, using a time-of-flight (TOF) mass spectrometer. A TOF instrument is a non-magnetic system in which the ions first accelerate through a series of closely spaced electrodes and then pass through a field-free region (D) of Considerable dimensions, of the order of one metre, to be detected by an ion detector such as a channeletron, fn its simplest form the transit time (t) of the ion in the field-free region is proportional to the length of the field-free region and to the square root of the ion mass (m) For an accelerating voltage of 1000 V. with D equal to 1 m. r is about 20 us for a singly ionised mass of 100 atomic mass units. There are several advantages to be gained by using a TOF mass spectrometer: firstly, entire mass spectra can be accumulated in a very short time and an entire spectrum can be recorded for each laser pulse; secondly, TOF systems measure isotopic ratios very accurately, because they measure them under identical conditions; finally, the accuracy of a TOF spectrometer depends on electronic circuitry instead of extremely accurate mechanical alignment, so it is simpler to make. The time honoured disadvantage of TOF instruments is low resolution due to the poorly defined spatial and temporal character of conventional ion formation. But that scarcely applies when the ions are formed by lasers, because the laser spot has a tight focus and the laser pulse is so short, between 5 and 10 ns.

In the last year a number of groups in the USA, the Soviet Union and Europe have been set up to exploit the sensitivity of RfMS. Already it is claimed that the technique is capable of detecting impurities at the level of 1 part in 1010 to a routine analysis time of 5 minutes.

Future Development

The design of the RIMS instrument so far described is by no means optimised A number of promising lines of research have yet to be investigated which may lead to better sensitivity. Each of the three steps in the RfMS process will be considered, to see whether improvements are possible.

Block diagram of a TOF resonant ionisation mass spectrometer, outlining the three separate steps in its principle of operation. detecting minute quantities of the actinides, recently demon-

During the past few years, a great deal of attention has been paid to photon, electron and ion ablation of solids. At present, argon ablation of the sample is the most popular technique. though recent developments in metal-ion beams such as those of gallium and caesium might increase the ion sputtered yield per unit incident current. What is not in question is that these metal-ion beams can be focused to far smaller spots than an argon beam, down to submicron focal dimensions, so they are likely to be of great importance in future for precision scanning of sample surfaces. Over the next few years, it is improvement of the RIS step that is likely to contribute most to greater sensitivity. While an Nd:YAG pumped dve laser system has a repetition rate of 30 pulses s.1, copper vapour lasers have recently been developed, in particular by Oxford Lasers (UK) which have a repetition rate of 6500 pulses s 1, capable of pumping dye lasers to provide saturation intensities. This is likely to increase the efficiency of RfMS

considerably, especially in

strated by Professor Kluge and Professor Trautmann of the University of Mainz. At present, however, there are electronic difficulties in handling data at such a large rate. The problems arise from not having enough storage capacity and from the transfer rates of available highspeed transient recorders One possible improvement in sensitivity may be understood by considering the stepped photo-ionisation process in the final diagram, fn (a) an electron in its ground state absorbs a photon and is promoted to an excited state with a cross-section that is typically about 10 11 to 10-12 cm2. Another photon is absorbed and the excited atom is ionised. The photo-ionisation step is characterised by a small cross-section of 10-17 to 10 18 cm2 and therefore by a large laser fluence being needed to achieve saturation. The fluence is achieved by focusing, so that the volume of interaction with the ablation

cloud is small. If, however, pro-

,cedures (b) and (c) are adopted

greater by two or three orders of magnitude in process (b) the atom is excited to close to the continuum (a Rydberg state) and then finally ionised with high efficiency using a pulsed electric field

Another possibility of improve-

ment is shown in (c) where the final ionisation step is to a socalled auto-ionisation state. above the ionisation level but having a large cross-section. Considerable research necessary to identify the autoionisation states in a number of elements before this powerful procedure can be adopted If processes (b) and (c) can be used then the saturation fluences of the laser are greatly

not be focused. The volume of interaction is then bigger. Future Applications

reduced, so that the beam need

One exciting aspect of thus technology is that there are likely to be important applications in both fundamental and applied physics, fn connection with fundamental physics, applications of RfMS to solar neutrino experiments, double the probability of ionisation is i

Stepped photo ionisation process 'at An electron in its ground state absorbs a photon and is ressed to an excited state. (b) The atom is excited to a Aydberg state and finally ionised by a pulsad electric field. (c) The final step is to an auto-ionisation state, to give a targe cross section.

beta decay, baryon conservation and magnetic monopole searches as well as detection of quark atoms and superheavy atoms are being actively pursued In particular, a detector based on the "'Br (v, e) "Kr to measure the 'Be neutrino source in the Sun has been shown to be feasible because the long-lived (2 x 10° year) *Kr | tend downwards the present

In applied and commercial science, the applications of RIMS are likely to be very far reaching. In the semiconductor and electronic industries RIMS can identify impurities that restrict performance of highspeed, high-density integrated circuits. The technique can ex-

can now be counted with RIMS.

contaminants by perhaps three orders of magnitude or greater. In the medical field, early diagnosis of certain diseases by using trace-element concentrations in body tissues and fluids is a very attractive possibility but must be carried out in a non-invasive way by using as small quantities of material as

minimum detection limits for possible. Finally, RIMS can assist in selecting sites for storing hazardous nuclear wastes by using ground-water dating techniques as well as alfaying public concern by ensuring that environmental monitoring be made as sensitive as poss-

0314/6

NEWS • NEWS • NEWS • NEWS • NEWS

Advanced universal digital filter

A real-time universal digital lilter, developed by Fern Developments for use in speech processing audiology, psychoacoustics, electrophysiology, and geophysics, offers linear liltering capabilities which are said to be superior to those that can be achieved with conventional analogue techniques The benchtop EF8, based on a

design conceived by the Medical Research Council, is a 512-coefficient finite-impulseresponse, non-recursive filter that offers an unlimited number of totally different filtering actions, the anti-alias (pre-process) and post-process sections use high-precision programmable low-pass filters

The filter unit has an operating bandwidth of 0-30 kHz, attenuation rates of typically 4000 dB per octave, and up to 512 weighting coefficients for sym metrical responses Fern Developments Ltd

7 Springburn Place College Milton North Glasgow G74 SNU

Grundig do it with robots

Helping Grundig on the road to success is a new robotic VCR production line which, the company says is in advance of any other in the world today. Making VS400 machines, which will retail in the UK at around the £400 mark, the production line cost over £5 million to install It was designed and built entirely by Grundia enameers and took a mere nine months to complete from putting pen to paper in the drawing office to the first complete machine coming off the 130-metre long production line

When on full production, the automated plant is expected to produce at least one million VCRs per year: each one taking just 3\$ minutes to make plus another two hours in soak testing Each machine goes through 87 work stations and through automatic quality tests on its way to completion

The new VCR line is just the first of a planned senes of developments which will conname to radically change Grundig's approach to video production

Grundig International Ltd 42 Newlands Park London SE26 SNO

SMA assembly of PCBs

The WSI500 combination workstation from Surface Mounted Production Systems Ltd is intended for the surface-mounted assembly (SMA) of printedcircuit boards (PCBs). It incorporates a precision dispenser, vacuum pick-up, ınfra-red soldering unit, and a soldering iron. PCBs up to 7 x 4 inches can be accommodated

The WS1500 enables prototype design and development. single or small batch production and repair work on surface-mounted circuit to be carried out at one workstation. it is priced at less than £2000

Surface Mounted Production Systems Ltd Unit 5

Sandbank Industrial Estate Duncon PA23 8PB

WHERE ELECTRONIC MESSAGES HAVE THE EDGE

by Barry Fox

The new age of information technology is tounded on one simple truth. It is auloker, easier, and cheaper to send pulses of electricity down a telephone wire or over a satellite link than it is to transport people or packages by raad, sea or air. The telex service has until naw been the standard means of sending text Telev is a reliable war horse but has its awn snaps The equipment is bulky and expensive trained operators are needed to send messages and the service relies on dedicated lines - that is to say special circuits designed to carry telex pulses rather than speech

It is still not widely recognized that almost every personal computer, either desk top or portable, can be used for electronic mail through one of the available services. It is the modern alternative to sending correspondence by telex. Text is sent from one computer to another along a conventional telephone line via a central messagehandling computer. Already script writers. translators, bankers, jaurnalists, and lawyers are using electronic mail to send text from home to office Sales teams use It to keep in touch with their headquarters while mov-Ing round the country. Muslolans use it while on tour Electronic mail ferminals can work equally well from an office desk or a hotel room far away.

Digital pulses

In its simplest form, a home computer sends messages either to the screen or to a printer. If it is programmed with addiffional communications software, it can send similar messages from its output - usually an RS-232 - sacket. This output is in the tarm at a stream of digital pulses, similar to telex, but much laster. They can be sent down a short wire cable to a matchina camputer system This is how several computers are networked in an office The pulses will not travet retiably down a conventional telephone line so they must lirst be converted into audible tones which the telephone network handles like speech

A special device called a modem — short for modutotal femodulator — is needed to convert the computer pulses into , sound tones. It is connected between the computer output and the telephone line socket, while a com-

puler at the other end at the telephone line has a matching modem. This converts incoming tones back into digital pulses which are then displayed on the compuler screen or printed on to paper.

Four services

Electronic mail provides a mail-box system into which messages can be dropped by one user to be picked up tater by another. A host computer handles the messages with a system of passwords to ensure that messages can only be picked up by the people to whom they are addressed. In Britain there are tour electronic mail services. The most successful so far is Telecom Gold which is run by British Telecom and has around 30 000 sub-

has around 30 000 subscribers. Rival services are

offered by Easylink-a subsidiary of Cable and Wireless: Comet from fstel-a subsidiary of British Leyland, and One-to-One-a private company now awned by United States Telecom's company Telesis. Each of these services offers a message drop tacility. When someone working from home or a hotel room wants to contact an office he or she calls the relevant electronic mail telephone number and sends a message which is held in a message services computer Later, the person at the office calls the same electronic mail number and reads the message off the computer The text can be viewed on screen, stored on maanetic disk for subsequent word processing, or printed direct on to paper tike a telex Any office wanting to use electronic mail should first

electronic mail should list lind out what services cre on offer. The Telecom Gold service in Britain is derived from the HT Dialcom system developed in the United States of America It is now used in over a dozen countries around the world, and is proving increasingly popular.

How to buy

Most businesses that decide to install an electronic mail system will find It cheaper In the long run to buy the hardware and software through a deater whose purchase price Includes the cost of Installing the equipment, getting it up and running. and teaching the staff how to use it. Once a system has been installed, statt may very soon wonder how they ever lived without it

Alan Freeman, Britain's western: Section agents
Telecom Gold, uses his electron about to communicate with customers and collegous

MSX EXTENSIONS — 5: EPROM PROGRAMMER (2)

The supporting software for the programmer is an EPROM-resident block of Z80 machine code that provides a deluxe menu, help pages, a built-in test routine, and, of course, EPROM status information plus error reports.

After last month's discussion of the programmer hardware, we will now study the way it is actually controlled from the MSX computer. To begin with, however, we will briefly detail the workings of intelligent programming, already funted at last month.

The intelligent programming algorithm

As the holding capacity of their EPROMs increases, it is logical for manufacturers to devise programming methods that enable loading these devices within an acceptable time. Should the "old" 50 ms per address programming method apply to, say, a Type 27256 EPROM (32 K × 8). roughly half an hour would be needed for the device to be completely loaded. Intel. Fuiitsu. National Semiconductor, and other leading EPROM manufacturers have, therefore, come up with various versions of an intelligent programming algorithm to speed up the loading process. As its name implies, this method relies on the use of a microprocessor. ruling out the possibility to use timers with a fixed output period for the generation of the programming pulses. The flowchart shown in Table 4 shows that the essence of the intelligent algorithm lies in the raising of Vec from +5 V to +6 V, and the variable length of the programming cycle The program-and-venfy loop can only be left with the byte either correctly programmed, or still incorrect after a 25-pulse cycle. Therefore, with relatively few programming pulses required for a byte to venfy correctly, the

value of vanable x is relatively low, and less time is needed for the address to be loaded. Following the variable number of programming pulses, an additional pulse of 3x ms ensures that programmed databytes are absolutely stable in the EPROM. At this stage, an example might help to illustrate how the algorithm works:

A specific byte requires 9 pulses for it to be stored correctly in the EPROM. The programming cycle thus takes (9x1)+(3x9)=36 ms.

Figure 8 illustrates that a programming cycle can be quite long. In fact, intelligent programming is not necessarily faster than normal (50 ms). fast-1 (20 ms), or fast-2 (10 ms) timing arrangements, since the worst case cycle duration is 25+(3×25)=100 ms. In practice. however, you will soon find that newly purchased, intelligently programmable EPROMs generally require only the minimum pulse time of 4 ms per address for reliable loading Returning to the previously mentioned Type 27256, 3 minutes or so then suffice to completely load this device

The intelligent programming methods adopted and recommended by Intel (intejigent programming, sic) and Funtsu (Quick ProTM) differ only marginally as regards the duration of the programming pulse, the number of iterations before the EPROM is rejected as faulty. and the pulse multiplication factor. National Semiconductor's algorithm, however, is based on the use of 05 ms pulses, a maximum iteration of 20, no multiplier, and a Von level of I3 V instead of the more usual 12.5 V. This MSX EPROM programmer does not support National's algorithm, but nonetheless gives good results with their chips. As could be expected, the

As could be expected, the imming of the programming cycles is interrupt-based and jointly controlled by the CPU in the L/O & Timer cartridge. The control program arranges for timer T_i in the CTC to royade.

the number of programming pulses required to successfully load a byte into an EPROM address. Beration and pulse multiplication are effected in accordance with the flowchart shown in Table 4 Extensive tests have shown that the adopted algorithm gives easis factory results with the vast majority of intelligently programmable EPROM.

Although not expressly indicated in the flowchart, the control program and the CTC ensure that EPROM data and address lines are stable before any write action can take place. For this purpose, timer Ts in the CTC provides 4 µs long delays as detailed in last month's instalment of this article

Program description

An MSX compatible micro can have up to 4 primary slots, numbered @ 1, 2, 3, each with a memory capacity of 64 Kbytes and subdivided in 4 pages of 16 Kbytes It is also possible for a slot to be expanded, which means that it comprises four sub-slots X-8 X-1, X-2 and X-3, Intheory, therefore, there can be a maximum of 16 slots identified as \$6 up to and including 3-3. Since the Type Z80(A) CPU is an 8-bit microprocessor, its addressable memory area is 64 Kbytes, that is, four pages. but these can be part of any (expanded) slot. It is, for instance, possible for the system to operate with page 0 from slot 0. page 1 from slot 2, and pages 2 and 3 from slot 3-2. The absolute address ranges are thus; page Ø

= 0000 3FFF, page 1 = 4000-7FFF, page 2 = 8000-BFFF; page 3 = C000-FFFF

Pages can be swapped and

necessary for correct loading

switched on and off by means of particular system commands, which will not be gone into in this article Page 0 is usually reserved for the MSX BIOS (Basic Input/Output system), and page 3 for the system stack and scraich blocks, variables, the keyboard buffer, etc. At power-on, an MSX computer invariably examines pages 1 and 2 in all slots for the presence of (E)PROM-resident programs, which are immediately started if a particular identification code is found in the first 16 address locations. If such an identifter is not found, the BASIC ROM on page I is enabled, and the machine boots up accord-

inaly. The control program for the EPROM programmer comes in the form of a ready-programmed EPROM Type 27128 (16 Kbytes), available through our Readers' Services under number 552. This EPROM is inserted in the socket on the cartridge board for MSX compulers, described in Elektor puters, described in Elektor India, March 1986. In the following section we will set out how to correct all add-on units to make a functional set-up.

power-on. After completing the necessary initialization routines, the program finds out which slot has RAM in pages 1 and 2 for use as the EPROM data area (32 Kbyte maximum size, 4000-BFFF), il copies part of itself into the highest possthle RAM area on page 3, that is,

The programmer software im-

mediately runs from page 1 at

Fig. 8. This oscillogram shows that addresses may differ in respect of the number of programming pulses required for loading a byte. Upper channel address line At; lower channel 18×11+24 ms for the first byte, (1×1)+3 for the second and third

**** ELEKTOR MSX EPROHM	
EPROM TYPE:	27126
PROGRAMMING VOLTAGE:	12.5V
EPRON BEGIN.	аневее
EPRON END:	8H3FFF
HENORY BIDSIN-	884000
HEMORY END:	AH7FFF
BLANK CHECK:	YES
PROGRAM	YES
VERIFY.	YES
READ AND RUN CHECK SUM	NO
DISPLAY MEMORY:	ИО
PROGRAM HODE	INTELL
CHECK SUM:	888888
ADDRESS COUNTER	&H3FFF
RESULT PROGRAMMED	

Fig 9 Screendump of the command input screen isettings are examples)

it inserts itself between the I stack and string & scratch blocks. After all this has been done, control is returned to the computer's normal start-up procedure, which means in most cases that BASIC will be started The EPROM software can now be run by typing CALL EPROMx, where x is the cartridge address area, # 1, 2, or 3. The program, when called automatically selects the appropriate slot(s) for the RAM buffer, and then switches back to where it came from with the aid of routines on page 3. All switching between RAM and EPROM resident subroutines in the programmer is invisible to the user, and makes it possible for the proposed software to run on any MSX computer equipped with at least 64 Kbytes of RAM. Extensive use is made of vectoraddressing, and all keyboard and screen input/output is routed via the BIOS on page @ To make sure that data for or from the EPROM is not overwriting the system stack, or possibly the RAM-resident portion of the control program itself, it is a good idea to check whether there is enough room for your data by typing PRINT HEX\$(FRE(0)+&H8000).

The address returned should be higher than the top location you need, observing that part of the available memory is used for the string and stack blocks, which extend downwards. Those MSX users in possession of a computer with a disc drive may have to limit the DISK-BASIC workspace somewhat by holding down the CONTROLkey during power-up as a means of telling the system there is but one virtual disc drive available. Similarly, holding down the SHIFT key disables the disc unit altogether.

Command summary

Although the proposed program is extremely simple to use, it is none the less recommended to study this brief summary of the available functions, commands and options. After typing CALL EPROMx. you should see the welcome screen. Pass on to the help pages with EPROM data and program information by pressing any key. You can leaf through the help pages by

pressing the appropriate cursor movement keys. The command input screen can be called up at any time by pressing the space

The following keys are used

during the command input mode: Cursor ' and . select the item you wish to work on.

Key H returns you to the help pages.

Key P causes the screen contents to be dumped to a printer (make sure this is properly connected else you will get a NO PRINTER error).

Key T runs a test program that causes all functions on the programmer to be successively enabled with aid of CTC interrupts, indicated by the flashing PGM LED. Make sure that number Is is not installed, and never run the test with an EPROM inserted in the ZIF socket

The space bar selects the various options for the command items (toggle function). Key S causes the program to start executing your set of commands. Always make sure that the command screen shows what you want before pressing

Key I enables the storing of BASIC programs in EPROM. The software automatically arranges for the correct initalisation of the memory begin & end, and EPROM begin & end addresses. Link addresses are automatically adapted to enable the BASIC program to be run from EPROM

With reference to Fig. 9, these are the various parameters you need to define before the programmer does what you want it to do:

ORY BEGIN = 4000: MEMORY END = 4FFF.

BLANK CHECK should be a fairly well-known facility: it checks, with the aid of EPROM BEGIN & END whether the specified address range contains only bytes FF, indicating that data can be loaded there. PROGRAM speaks for itself. This function uses both EPROM BEGIN & END and MEMORY BEGIN & END VERIFY checks whether the EPROM contents and the RAM buffer contents are the same. and evidently uses EPROM BE-GIN & END and MEMORY BE-GIN & END to determine what address ranges are to be compared

READ AND RUN CHECKSUM loads the data from the EPROM

EPROM TYPE and PRO-GRAMMING VOLTAGE: consult Table I or the relevant help page and use the space bar to select the appropriate EPROM type; notice that EPROM BE-GIN & END change in accordance with the holding capacity of the relevant EPROM type It is possible to program part of an EPROM by keying in the relevant hexadecimal address range. The program accepts entries in hexadecimal only and produces an error message if you try to define an impossible address range, or if the EPROM BEGIN & END entry is not in accordance with the MEMORY BEGIN & END entry Example: you want to program the first half of a Type 2764 (8 Kbyte): EPROM BEGIN = 0000; EPROM END = 0FFF: MEM-

speaks for itself. The contents of the EPROM are available for examination with DISPLAY MEMORY. For modification, you will probably want to resort to BASIC or a suitable utility package

into the buffer and adds the

values of all bytes to produce a

DISPLAY MEMORY offers the

user the possibility to load the

EPROM contents into the com-

puter for examination on the

screen (hexadecimal and ASCII

format, 8 bytes per line,

preceding address). You can

PROGRAM MODE simply

selects normal, fast-1, fast-2, or

intelligent programming as ap-

propriate for the specific type

of EPROM. Consult Table 1 or

ADDRESS COUNTER at the

lower end of the screen is a

16-bit counter that keeps track

of the EPROM location cur-

The RESULT Ime at the bottom

of the screen can be used to

display the following messages

ADDRESS ERROR is a general

message to tell you to re-do the

EPROM BEGIN & END and/or

the MEMORY BEGIN & END

entry before pressing S again

BLANK reports that the stated

address area contains only

bytes reading FF. The EPROM

area is not copied into RAM.

NOT BLANK reports that one or

more bytes in the specified

EPROM area do not read FF.

The address counter displays

the first address encountered,

and the program is halted

READING COMPLETED

(H returns to the help pages)

rently read from or written to.

the relevant help page

not alter the displayed bytes.

16-bit checksum

VERIFIED reports that the venfication routine has completed without finding errors. VERIFY ERROR indicates that one or more differences exist between the contents of the EPROM and that of the RAM The address counter displays the first incorrect address encountered, and the program is halted

REPROGRAMMABLE indicates that a verify error was found, but the relevant byte is reprogrammable, i.e., any of its bits reads logic 1 when it should be logic & Logic low levels in EPROMs can only be changed into logic high by exposing the chip to a dosage of ultra-violet light.

Table 5 Port C command date

EPROM	READ	VERIFY	WRITE
27 t6	88	08 + Vpp	28 + Vpp
2732	8F	OC + Vpp	68 + Vpo
2764	Ø8	08 + Vpp	28 + Vsp
27128	88	08 + Vpp	28 + Vpp
27256	88	48 + Vpa	68 + Vpp
27512	8F	OC + Vpp	68 ÷ V _{pp}
2516	88	98	68 + Vpp
2532	88	ØB	68 + Vpp
2564	89	ØB	48 + Vpp

Vpp = 5 V . 3 Vpp = 12 5 2 Vpp = 21 V . 1. Vpp = 25 V . 0 MS bit on port C is programmed as input.

Table 5. Command bit configuration at the Port C input.

ports that the address indicated by the address counter can not be loaded correctly, even after applying 25 programming pulses (see Table 4, intelligent prgramming only).

EXECUTION STOPPED displayed in response to the pressing of the RESET switch on the EPROM programmer. DEVICE f/O ERROR indicates that the computer is not receiving interrupts from the cartridge, which is possibly set to the wrong I/O address. NO PRINTER is a message that

speaks for uself ILLEGAL COMMAND ORDER informs you to re-do the YES/ NO setting of one or more commands. Note that it is allowed to chose YES for BLANK CHECK. PROGRAM and VERIFY the program performs these steps in the correct order, without the need for intermediate command starting with S.

As already noted, it is advisable to think well before pressing the S key and so start the program If you get an error report, do not get into a panic. but study the command screen to trace the fault and understand its nature. Once you have

worked with this EPROM programmer for some time, you will notice that it is highly userfriendly and easy to get going with the aid of the help pages, which are instantly available at

the pressing of key H. ff you do not know how to program an EPROM which is not included in Table I, simply begin with the lowest programming voltage, 12.5 V, to see if anything happens to the contents of the device; you can not damage it in this way, provided you do not select intelligent programming, as this causes the Voc line to be raised to 6 V during the programming cycle fn conclusion of this section, a few more tips. When an EPROM is stated to be programmable in the normal (50 ms) mode, it is worth while to try out the effect of selecting fast-1 or fast-2 programming to save time if you want to document the program settings for a specific EPROM. it is a good idea to use the screendump ontion for the recording of the checksum and other relevant data. Remember that a Type 27512 (64 Kbyte) EPROM must be programmed in two 32 Kbyte passes. Press CONTROL STOP to return to MSX BASfC, and type CALL EPROMX to run the programmer again. Use an assembler or a machine language upbty package to write bytes into the RAM buffer for loading into an EPROM, but make sure that data is not overwritten by stack or buffer usage of any program you run in combination with the EPROM programmer software Keep in mind that running BASIC programs that use PLAY

commands require the computer to be reset and hence the EPROM programmer software to be re-initialized. This is because the proposed program locates its jump table and vanable map in the voice queue area. In more general terms, do not use the EPROM programmer software before you are sure that there are no other programs, or remnants thereof, still around somewhere in the computer's memory The best way to avoid trouble is to reset the machine with the EPROM cartridge inserted. Finally, Table 5 shows the con-

trol words for the various EPROM types. These 7-bits words are specific to the EPROM type to be dealt with, and can be used by anyone contemplating the writing of his own version of the control software.

Getting started

Commence with fitting jumpers B D E and I on the EPROM cartridge board, then mount EPROM ESS 552 in the 28-way socket. Plug this cartridge into a slot of the MSX computer, and plug the I/O & timer cartridge either in a remaining slot, or in the one provided on the EPROM cartridge board Connect the EPROM programmer to the I/O & Itmer cartridge via the 50-way flat ribbon cable. and you have the system ready for use see Fig. 10. Please note that it is not possible to use the add-on busboard for MSX computers, in conjunction with the timer & f/O cartridge. Do not yet fit an EPROM in the ZIF socket, switch on the power, and call the program on completion of its initialisation. After viewing the welcome and copyright screen, go to the command screen and run the built-in test routine prior to working on any EPROMs. If all LEDs on the programmer's front

panel can be seen to go on and off at regular intervals, there is good reason to assume that the hardware and software functions satisfactorily, and it is high time to set the system to work on any EPROM that you may have available

We regret that we can not provide information on the use of this EPROM programmer with computers other than those in the MSX senes.

Previous articles on MSX extensions have appeared in the following issues of Elektor India: February 1986 (I/O bus, digitizer, f/O port);

March 1986 (EPROM cartridge board): April 1986 (add-on bus board);

February 1987 (I/O and timer cartridge).

Fig. 10. One slot can hold both the EPROM and the I/O cartridge

Local Area Networking

The proliferation of personal computers (PGS) as a busness tool has driven the need for a distributed processing environment where many microcomputers can share expensive perspheral devices, such as printers and hard disk drives. The capability to network equipment also enables users to share files and programs and lo centralize backup faculties and programs and to centralize backup faculties.

and procedures. Local Area Networking has two man requirements. It must be implemented in VISI, to simplify design and lower the overall "per node" cost of connection to a network. Second, the LAR must also run standardized software and conform to an industry standard, so that end users can interconnect equipment from different verification without worrying about protocols.

The IEEE 802.3 standard (EthernetTM) has gained wide acceptance by both large and small companies as a highspeed (10 megabit/second) LAN However, because of its cable requirements, it can be relatively expensive to implement. In response to this drawback, Thin Ethernet, also known as CheapernetTM - was developed Thin Ethernet uses less expensive coaxial cable and features a "node-integrated" transceiver Thin Ethernet maintains full compatibility with Ethernet's 10 megabit/second data rate.

Another network sponsored by the IEEE 802.3 committee is StatLANTM, a 1 megabits-persecond implementation that features a "star" configuration. Each node is connected to another central hub in point-topoint fashion. Continuing development of LAN interface chips has driven the LAN connection cost per node down to new levels, making networks affordable at all business levels. Because of its cost-effectiveness, the personal computer connection segment of the LAN marketplace is forecast to grow faster than any other segment. According to Dataquest, revenues in 1990 will top US\$ 528 million. Revenues in 1985 totalled USS 181.7 million. The installed base of networked PCs will be 3.7 million in 1990, up from 438,000

Current Status

The decision by 3Com and Novell to port their LAN operating stems to National Semiconductor's DP3890 Network Interface Controller marks the first time a semiconductor supplier has taken an active role in making network software standard with their chips. This makes it easier for designers to use the chips in a network, rather than having to write software themselves For original equipment manufacturers (OEMs), DP8390 compatibility with 3Com's 3+ network software and Novell's Advanced NetWare means an easy path to LAN design for IBM-compatible PCs. OEMs can use National Semiconductor's tool kit containing DP839EB LAN evaluation boards and 3Com 3+ network software to develop networking and workgroup computing products. Or they can use Novell's development kit and the DP839EB or the DP8390 LAN chip set, to design local area networks 3Com and Novell are respon-

sible for setting "de facto" stan-

dards in the PC LAN industry. 30cm is the leading vendor of LAN add-on boards for PCs, with a 19 percent share of the market, according to Dasaquest. Novell's NetWare, with 60,000 installations, is the most widely used PC LAN operating system. It supports 35 local area net work apparent, including ports and the property of the point apparent of the Point ATOT's Sard-AN and LBM's PC Cluster and Token Ring Network.

LAN suppliers reflects the emergence of the DP8390 as the standard LAN chip set of choice among system designers

National's Local Area Network Chip Set

Focusing specifically on the IEEE 802.3 local area network standard encompassing Ethernet. Thin-Ethernet (Cheapernet), and StarLAN compatible networks. National designers developed three integrated circusts: an Advanced Network Interface Controller (DP8390 NIC), a Serial Network Interface (DP839) SNI) and a Coaxial Transceiver Interface (DP8392) CTI). The chip set was the first complete VLSI implementation to meet the entire IEEE 802.3 standard Its availability makes National Semiconductor well positioned to provide the rapidly expanding PC LAN market with its cost-effective chip set. In particular, the DP8392 was the first monolithic chip implementation of a cable transceiver. The high level of integration saves users a significant amount of board space. In fact, the network chip set is the only one that fits on a short-slot PC card.

The DP8390 NIC features two 16-bit DMA channels that deliver all the data-link laver functions required for data packet transmission and reception. The DP8391 features a patented digital phase lock loop for most reliable data reception. The DP8392 CTl implements all driver receiver, abber and collision-detecting functions required by the IEEE 802.3 cable transcerver. In addition, the DP8392 exceeds the one million hour MTBF required in the 802 3 specification

for transceivers. Illustrating National Semiconductor's technological breadth. three distinct process technologies were used in fabricating the chips: microCMOS for the DP8390, a high-speed oxide isolated bipolar process for the DP8391 and a junction-isolated bipolar process for the DP8392. The DP839EB evaluation board. containing the chip set, plugs into any IBM PC-compatible computer and incorporates all of the components required to provide a LAN interface to Ethernet or Thin Ethernet networks.

The entire LAN chip set and evaluation board are all currently in production.

Ethernet is a trademark of Xerox Corporation.
Cheapernet is a trademark of National Semiconductor Corporation.

StarLAN is a trademark of AT&T Bell Laboratones.

(Source National Semiconductor)

ADEX Microtechnology's Idest, power operational emplifies, the Type PA73M offers oper action up to \$2.0 Y, outputs of up to \$5.4 a, high efficiency class Coulzut stage, and MIL STD 83XG screening Further details from APEX's UK representatives, Pascall Electronics Ltd 4 Saxon House = Downside • Sunbury on Thames TWIG 6HY Y

A new MSDOS emuletor for Arcom's 80188 processor boards provides e low cost PCbased development path. The package, calted APPCOM, is supptied in an EPROM by Arcom Control Systems Ltd Unit 8 • Clitton Road Cambridge CB1 4WH.

SCHOOLS EQUIPMENT FOR TOMORROW'S SCIENTISTS

by David Tawney, MA FInstP*

From magnilying glasses to microscopes, callipers to microscopes, callipers to computer interfaces, pipettes to pH meters: the range of equipment in the catalogues of educational aboratory suppliers is wast and continually changing in response to technological and educational developments

The Introduction of microcomputers such as the BBC B and the RM 3802 to schools in the United Kingdom has been rapidly followed by the development of computer inter taces whose purpose is either to enable data form school laboratory es each processed and displayed, or to control simple devices.

tion by industry of biotechnological techniques has led Britoin's major suppliers to sell kits by which these techniques can be simulated in schools. However, not all new equipment is stimutated by recent technological innovations: an educational concern to Introduce science and technology to pupils aged five to 11 has led to much recent interest in construction kits. There are several reasons why the range of educational laboratory equipment is so wide. First, science is taught in British schools over the age range at five to 18. Secandly as the emphasis is on alving pupils hands on experience, suppliers have learned how to provide equipment that schools can afford in quantities sufficient for classroom work. Some of it is, of course, for demonstration by teachers but much is meant to be used by pupils working in groups

Using Oriffin & George p. scientific instrumer

of two and three. Pupif practical work is a connerstone of education and so equipment must be strong and relatively inexpensive

Higher education equivalent

The high degree of specialization by British pupils who stay on after 16. in many cases to pre-

parts for a course at a university or polytechnic, is sometimes criticized but if has advantages. The level reached by these pupils is typical of lifts or even second year university students in some countries and so equipment that is useful for higher education is produced in the quantilies that schools need and at prices they can afford.

Britain does not have a centralized educational system and schools are aven extensive choices in the courses they provide for their pupils. There are eight area boards offering examinations for the more academic pupils, and while procedures ensure comparability between these examinations. syllabuses do vary which increases the range of equipment needed. In the 1960s and 1970s. there was considerable In British schools, much supported by money from the Nuttield Foundation or from the governmentfunded Schools Council

elektor india may 1987 5.45

This stimulated corresponding innovations in equipment, another reason why the range is so

In the late 1970s and early 1980s, most of the new courses were revised and these revisions, together with restrictions on money for education caused by falling school rolls and the worldwide slump, have eliminated from the suppliers' catalogues anything that has proved unpopular. Much of what is left - still very extensive - has been refined over

at teast a decade British schools tend to buy their laboratory equipment from three main general suppliers: Griffin & George (GG), Philip Harris (PH) and Irwin-Desman (ID). However, a number of specialist firms are also used. For example, interlaces for coupling equipment with microcomputers to capture data or demonstrate control are of-

major suppliers as well as Many functions

fered by all three of the

the specialists.

An example is the measurement module supplied by Educational Electronics (EE) which enables data from the outputs of a range of Instruments -Hall probe for measuring magnetic fields, pH meter and so on - to be re corded and strikingly displayed in several forms on a television monitor A range of sensors is being developed to go with this and other computer Interfaces. One of the most interesting recent developments using microelectronics is the GIPSI (Griffin Programmable Scientitic Instrument). There is concern that much of the more sophisticated equipment used in education spends much of its time on the shelt and is used only when its turn comes round in the syllabus so this instrument has many functions and will measure current, voltage, resistance, magnetic field,

pH. light levels, and so on, The function wanted is selected by connecting a module containing an appropriately programmed read only memory (ROM) and litting overlays over the control panel makes it

easy to use. Another current growth area is electronics teaching kits. There have for many years been small components of electronics in some school physics courses buf such physics teaching has recently been modernized and separate school electronics courses developed The emphasis has shifted from simple introductions to semiconductor diodes and triodes fa a systems approach to digital electronics and to operational amplifiers. There are currently many

approaches to teaching electronics embodied in kits. The equipment for one very popular course, "Micro-efectronics for All" Intended for 11 to 13 year olds but in fact used for older pupils as well, is available from Unitab (U) Ideas underlying microelectronics - or information technology as it is sometimes called - are learned through solving simple control problems. Other kits drawing interest are the Independent Schools Micro-electronics Centre (ISMEC) kits available from Griffin & George, Philip Harris, and Unitab. Unitab specializes in electrical and electronic equipment for education at competitive prices such as power supplies, meters, radiation counters, signal generators, and so an, all Items that can, at cause, be obtained from the general suppliers.

Move to plastics

It is easy to look just at recent major developments and forget that the bulk of purchases made by educational establishments are for cansumables. notably glassware and chemicals, both supplied

by Griffin & George and Philip Harris, Another

company that specializes is BDH Chemicals, A development over the last tew vears has been the slow acceptance by schools of plasticsware in place of alassware. Early examples of plasticsware stained too readily but recent products are more satisfactory and stand up to pupil use much longer than glass. Many of the top pan balances bought during the boom in science education in the 1960s and 1970s are now wearing out and schools are replacing them, as lunds permit, with electronic balances with dialtal displays. These are very quick to use so that fewer are required for a class. Griffin & George. Philip Harris, and frwin-Desman all supply balances but there are also several specialist suppliers, notably Oertling. There are several ranges of microscope and specialist firms such as Prior have

suitable instruments for the educational market Recently, biologists have shown interest in kits for environmental studies containing meters that measure pH, conductivity, lemperature, light levet, and so on. An example is an enzyme kit which provides insight into the industrial use of biotechnology A recent growth point has

been equipment for primary school science The educational emphasis is an using what can be found in the home and the classroom with the minimum use al special equipment but same Is needed, such as simple kitchen-type scales, magniflers, thermometers, construction kits, and sa on. Specialist primary school companies such as E.J. Arnold and Osmiroid have equipment suitable for primary science edu-

Checking for safetv

catian.

The School Science Ser-

vice provides information and consultancy on school science equipment and salety for the majority of British schools. Its task is to examine and test equipment and make recommendations to teachers Copies of its reports can be obtained overseos through the British Council or through subscribing to the service as an overseas associate Frequently the service is obliged to be critical of certain products but suppliers usually make modifications in the light of criticisms.

Parkside Lane, Leeds, West Yorkshire, England, LS11 5TD 8DH Chemicals Ltd. Broom Road, Parkstone, Poole,

E.J. Arnold Ltd. Lockwood

Distribution Centre.

Dorset, England, 8H12 4NN Educational Electronics 28 Lake Street, Leighton Buzzard, Bedfordshire, England, LU7 8RZ

Griffin & George Ltd. Bishops Meadow Road. Loughborough, Leicestershire, England, LE11 ORG

Philip Harris Ltd, Lynn Lane, Shenston, Statfordshire, England, W\$14 DEE.

294 Purley Way, Croydon, Surrey, England, CR9 4QL. Oertling, W. & T Avery Ltd,

Irwin-Desman Ltd,

Smethwick, Warley West Midlands, England, 866 2LP Osmiroid, E.J. Perry Ltd.

Gosport, Hampshire, England, P013 OAL.

Prior Scientific Instruments Ltd. London Road, Bishops Stortlord, Hertfordshire, England, CM23 5ND

Unilab Ltd. Clarendon Road, Blackburn, Lancashire, England, BB1 9TA

^{*}David Tawney is director of the Brunel University based School Science Service of Britain's Consortium of Local Authorities for the Provision of Science Equipment (CLEAPSE).

Hot ICs - no need for fear

it is perfectly normal for ICs particularly bipoler digital ICs such as TTL, to become very warm in operation. These fCs drew considerable power which is finally dissipated as heat. An example is the common. TTL IC 74145, Typical dissipation for this device is 215 mW and approximately 360mW maximum, this is in the quiescent state with unloaded outputs. When these are loaded the dissipation is even higher Since the area of the IC package is relatively small, the IC becomes very warm indeed This is no problem, however, it is raied appropriately and operates perfectly even at ambient temperatures of upto 70°C When the computer is installed in a housing, core should be taken to provide ventilation slots for the heat to dissipate. In the event of doubt regarding the temperature rise of ICs, the data sheet should be consulted, an IC with a maximum dissipation of 10 mW for instance, should not exhibit noticeable temperature rise

The Microcomputer as a source of interference

Every microcomputer system operates with relatively fast logic ICs, such as Schottky TTLs. This meens that the digital signals have rapid-rise slopes which produce hermonics extending far into the VHF/UHF region This cause interlerence, and not only to FM stereo reception The problem is not restricted to home made microcomputers. some commercially built microcomputers, perticularly teaching end experimental system, can unfortunately be classed as sources of electromagnetic pollution. The only solution is to install the mcrocomputer in a (metal) screened housing with an earth connection, it may also be necessary to fit a mains RF suppression filter Screened (coaxial) cable should be used for connections between the computer and peripheral equipment These preceutions apply to all digital equipment using last logic

This particular topic receives full attention in Junior Computer Book 2 (to be available shortly), but there is no harm in whetting the appetites of our readers even if it is a little premature.

How can the Junior Computer display words? Normally speaking, data and address information is displayed with the aid of the monitor routine SCANDS. This involves one of the hexadecimal numbers, 0. . F, in each display. Where texts are concerned.

text display on the Junior Computer

As we know, the display of the Junior Computer is suitable for displaying both numerical and hexadecimal data. By utilising a seven segment alphabet it is also possible to display written texts. If the text is to be static, a total of six letters are available. If, however a longer message is required, this may 'run' along the display rather like the electronic news display at the top of tall buildings (dynamic text),

from an idea by U. Seyffert

however, the monitor routines are no good. What is needed is the subroutine SHOW with the addition of a special look-up table. Which contains the corresponding seven segment pattern for each individual letter.

The state of the s

Now for a short program that will allow a six letter word to appear on permanent display. A good example would be the word 'Junior' as indicated on the prototype of the Junior Computer in the front cover photograph of the May 1980 issue of Elektor and Book 1. The program, JUNIOR, is listed in table 2. Here the modified SHOW routine will he called SHOWDS and the look-up table that holds the information relating to the display of any particular cheracter is called TXT (text table). The Y index register acts as the display counter and text index. The value contained in the Y register increases from 00 to 05 as an index for the particular character to be displayed. As soon as the value in the Y register becomes Ø6,

40	Ε	86	0	23
79	4	84	Р	øC.
24	F	8E	q	18
30	G	42	r	2F
19	9 (9)	10	S	52
12	H	09	S. (5)	12
02	h	08	1	07
78	1	7A	U	63
60	1	6F	V	41
10	1	72	W	Øt
08	K	8A	×	36
20	L.	47	Υ	11
03	1	4F	Z	64
46	M	48		3F
27	n	28		37
21	0 (0)	40	SD	7F
	79 24 30 19 12 02 78 60 10 08 20 03 46 27	79 # F 24 F 30 G 19 9 (9) 12 H 92 h 78 I 60 I 10 J 68 K 20 L 63 1 46 M 27 n	79 e 04 24 F 0E 30 G 42 19 9 G 10 12 H 09 92 h 08 78 i 7A 00 i 6F 10 j 72 08 K 0A 20 L 47 46 M 48 27 n 28	79 a 04 P 24 F 0E q 30 G 42 r 19 9 919 10 S 5,15) 12 H 09 5,15 78 I 7A U 00 I 72 W 10 I 72 W 20 L 47 Y 33 I 4F Z 46 M 48 - 27 n 28 =

after the instruction INY, it is reset to 00 (tump to DISMPX to begin another round). During the subroutine SHOWDS the Y register contains a delay value which determines the length of time that each display is actually lift. For this reason the previous value contained in the Y register (display countar/text index) must be saved in the address location TEMPY (0004) before the jump to the SHOWDS subroutine takes olace.

The function of the X index register, on the other hand, is the same as it was for the SHOW routine it acts as a display digit switch by way of port B. In other words, the information contained in the

X register (08, 0A, 0C, 0E, 10 and 12 consecutively) is passed to port B data register to turn each of the displays on in turn.

Text on the run . . .

A stationary text is all very well, but it does tend to get a little monotonous after a while. A much more interesting possibility would be to update the

displayed text every few moments. In this manner whole sentences could be displayed instead of just single words. This can be accomplished with the aid of the program JUNTXT shown in of an electronic news display. It is an expanded version of the earlier program JUNIOR (table 2). Page 83 is used to store the actual text which can, therefore, be up to 256 characters in length

Table 2.

JUNIDR		A9 7F	LDA # 7F
	0202	8D 81 1A	STA-PADD
DISMPX	0205		LDX = 08
	0207		LDY = 80
DNEDIS	0209		STYZ-TEMPY
	Ø20B		JSR-SHOWDS
	020E		LDYZ-TEMPY
	0210	C8	INY
	0211	C0 06	CPY # Ø6
	0213		8EQ DISMPX
	0215		SNE DNEDIS
SHDWDS	0217	89 30 92	LDA TXT, Y
	021A	8D 89 1A	STA-PAD
	021D		STX-PBD
	0220	AØ 7F	LDY # 7F
DELAY	0222	88	DEY
	0223	10 FD	BPL DELAY
	0225	8C 89 1A	STY-PAD /
	Ø228	A9 96	LDY * 06
	022A	8C 821A	STY-PBD
	#22D	E8	INX
	Ø22E	E8	INX
	022F	60	RTS
TXT	0230	61	J.,
	0231	63	"u"
	0232	2B	"n"
	9233	6F	191
	0234	23	"o"
	0235	2F	"r"

PA®. PAB are outputs start from D11 sherefrire display countar Y = 90 store display counter display first/haxt character entrawe state of display countar have all 6 displays bean accessed? if yes, start again it not, next display fatch seven segment code place segment code on port A turn on display digit

place segment code on port turn on display digit delay a short while Y = FF (blanking) to port A

turn off display

Y = text index (Y = 08 05)

9297 38 SEC 9298 E9 95 S8C: 929A 85 92 STAZ BEGIN 929C A9 99 LDA 929E 85 91 STAZ DSTIME 9219 A9 6F LDA	PADD PADD PADD PADD PADD PADD PADD PADD
9285 A5 90 LDAZ 9297 38 SEC 9298 E9 95 SBC : 929A 85 92 STAZ 929C 85 91 STAZ 05TIME 929E 85 91 STAZ 05TIME 9210 A9 6F LDA	2-NUM 2-05 NUMCOR 2-00 NUMVAR 2-6F DISCNT 2-08
9297 38 SEC 9298 E9 95 S8C: 929A 85 92 STAZ BEGIN 929C A9 99 LDA 929E 85 91 STAZ DSTIME 9219 A9 6F LDA	# 05 NUMCOR # 00 NUMVAR # 6F DISCNT # 08
9298 E9 95 S8C 929A 95 92 STAZ BEGIN 929C A9 99 LDA 029E 85 91 STAZ DSTIME 9210 A9 6F LDA	NUMCOR = 00 NUMVAR = 6F DISCNT = 08
929A 85 92 STAZ BEGIN 929C A9 99 LDA 929E 85 91 STAZ DSTIME 9210 A9 6F LDA	NUMCOR = 00 NUMVAR = 6F DISCNT = 08
BEGIN 020C A9 00 LDA 020E 85 01 STAZ DSTIME 9210 A9 6F LDA	# 00 NUMVAR # 6F DISCNT # 08
929E 85 91 STAZ DSTIME 9210 A9 6F LDA	# 6F DISCNT # 98
DSTIME 9210 A96F LDA	#6F DISCNT #08
	DISCNT # Ø8
	# #8
DISMPX 9214 A2 98 LDX	~ 60
Ø216 AØØØ LDY	
	TEMPY
92tA 98 TYA	
9218 18 CLC	
	RAVMUN-S
#21E A8 TAY	
	HOWDS
	Z-TEMPY
0224 C8 INY	
9725 C9 96 CPY	
	TMECHK
	ONEDIS
	DISCNT
	DISMPX
	NUMVAR
	Z-NUMÇDR
	RAVMUN-3
	DSTIME
	BEGIN
	TXT, Y
023C 8D 80 tA STA-	
023F 8E 82 IA STX-	
0242 A0 7F LDY	≈ 7F
DELAY 0244 88 DEY	- 1
	DELAY }
9247 8C 89 1A STY-	
924A A9 96 LDY	
924C 8C 82 tA STY-	28D
024F E8 {NX	
9259 E8 INX	
9251 60 RTS	

PAB ... PA6 are outputs contents NUM (8868) to accumulator

NUMCOR = NUM minus 65

first display text

establish text display time start from Del display counter (Y) = 66 store display counter

Y to accumulator C = 0 A ←Y + contents NUMVAR (6001) accumulator to Y

display first/next character retriave state of display counter increment display counter have all 6 display been accessed? if yes, move on to time check if not, next display time up?

if not, rapeat present tax t if yes, updata text

and of text? if not, show naw text if yas, start again

see 'JUNIDR' program TXT = 8360 (table 4) text index = Y + contents NUMVAR

- enough for the average length Table 4. paragraph! Again, this program uses the subroutine

SHOWDIS, only this time the text table (TXT) is located at address Ø300 and although the Y register is still used as a display counter it is no longer used as a text index directly. Instead, the particular section of the text to be displayed is calculated by adding the instantaneous value in the Y register to the contents of address location NUMVAR (0001). The value contained in NUMVAR will be constant for the period of time a certain text is on display (the actual duration can be adjusted by modifying the contents of location (211). As soon as that period of time is over the contents of NUMVAR are incremented by one; the entire text shifts one location to the left and the right hand display shows a new character. When the contents of NUMVAR are greater than the contents of location NUMCOR, we will have arrived back at the be ginning, as this means that the entire

0 1 2 3 4 5 6 7 8 9 A B C D E F 0300 7F 7F 7F 7F 7F 07 08 2F 23 01 7F 20 7F 02 7F 8310 01 6F 07 88 7F 07 88 96 7F 61 63 28 6F 23 2F 7F 8328 46 23 4B 8C 63 67 8B 2F 7F 3F 7F 83 63 t1 7F 63 #33# 23 23 #A 7F 24 xx xx

4444 (NI IM) = 34

text will have been displayed. This is because the contents of NUMCOR are 05 less than those of location NUM. The latter (location 0000) is where the user must store the low order byte of the last memory location of the text table, in other words, if the last character of the text message is stored in location Ø332, the value 32 is stored in location 0000 (NUM)

Table 4 provides a sample text which can be displayed on the Junior Computer with the eid of the program JUNTXT as given in table 3. The text contains a message for Junior Computer Book 1 owners. A text should always be preceded by at least six blank spaces (7F), so that the beginning and end of tha message are clearly separated from each other.

SOUND OF THE SEA

It is a well known fact that the sound of the roaring surf of the oceans is the most satisfying sound in our environment Those who have experienced the magic of this sound in an otherwise calm surroundings will immediately agree. It is quite a fantastic feeling to sit on the beach, close the eyes and listen to the sound of the seal The body and narvas which have been subjected to tremandous strass of the day to day life get relaxation from this sound and darive ranewed force and anargy. Unfortunately most of us can enjoy this pacifying experiance once in a while, during holidays, For thosa who are deprived of this

luxury, we present hera = small circuit which can generate the 'Sound of the Sea' The circuit can be built from just a few components and imitates the sound of the sea in an excellent manner. This can also be used as background for a session of viewing your stides of a holiday on the beach.

The Circuit

As it is already indicated. the circuit must produce the sound of the sea This is dona by the part A of the circuit block diagram shown in figure 1 In order to imitate the rising and falling of the roaring surf, it must

have a control for the sound. This control is provided by the blocks B and C. Block B is an astable multivibrator which produces a rectangular pulse train, with a non symmetrical duty cycle From the pulse train, block C generates a saw tooth waveform with a rapid rise and slow fall. Both these signals are fed to the input of an amplifier block D in such a way that the signal from A is amplified by block D with amplification proportional to the signal coming out of block C. The rising and falling of the

sound is created by this sawtooth waveform. Let us now sea the practical

Figure 1:

Block A produces the noise signel. blocks B & C produce the control signals and block D combines them to produce the sound of the the see

decause of this unusual connection, the Irenassior behaves as a noise source. The unwanted testure of the intrinsic noise of the transistor is made use of, for producing the sound of the sea

circuit Figure 2 shows the noise source. This is an unusual connection for a transistor The NPN transistor T1 is connected in à reverse manner using only the base emitter junction. The collector is left unconnected A transistor connected in such a manner behaves in a very noisy way. The intrinsic noise of a semiconductor device is a complex phenomena and will not be discussed here The reverse biased base emitter diode behaves some what like e zener diode. A reverse current flows through this diode and resistance R1 The noise component in this current is connected to the next stage via capacitor C1

Figure 3 shows the next stage which is an amptifier controlled by an astable multiwherent. Te is the emplifier of block D 13 end 14 form the astable multiwherent. The potential dwider R2 and P1 give the proper bias voltage to the base of 12 through R3. The setting of potentianetre? P1 decides the minimum volume of the sound of the soa

Figure 3

The functional blocks of figure 1 can be easily located in this circuit diagram. T1 is block A, T3 and T4 make block B, C4 and (R7 + P2) function as block C and the transactor T2 is the amplifier block.

Figure 4

The estable multivibrates produces the inctengular waveform shown as UC3 This is converted to the sawtooth waveform shown as UC4 by C4 and (R7 * P2). The rises rapidly and falls slowly.

selex

in absence of the signal from the astabla multivibrator, the sound would be a continuous noisa tona. To convart it into a rising and falling roar of the surf, the control signal is fad to the base Ihrough R6 The AMV (astable multi-vibrator) formed by T3 and T4 produces a ractangular waya as shown in figura 4 The frequency of this control signal is about 1/8 Hz. This low frequency is required for the most raalistic effacts. The C4 (B7+P2) combination produces a sawtooth wave from the rectangular signal The sawtooth wave is a result of charging and discharging of capacitor C4 During the OFF period of T3, The capacitor C4 charges through RB and D1 During the ON period of T3, the charging can no more continue, but discharging can take place through R7 and P2. The values are so selected that by the time C4 is discharged, the next charging cycle starts again. As R7 and P2 form a potential divider, the signal fed to base of T2 depends on setting of P2 In technical languaga, the C4 and (R7+P2) combination is said to be an integrator which intagrates the signal at the collector of T3. The sawtooth signal is superimposed on the constant DC leval sat by P1

rasulting vottage looks like the waveform shown in figure 5 (bottom part). This vottage at the base of T2 controls the amplification factor for the noise signal being amplified by T2. Thus lihe output of amplifier T2 rises sharply and falls slowly, similar to the real rear of the suff

The Construction :

The complete circuit can be accommodated on one smell SELEX PCB Component layout is shown in figure 6. As the circuit layout is a bit crov/ded compared to other simple SELEX circuits, the placement and soldering should be done carefully The soldering sequence is as usual - jumper wiras, resistors, diodes, capacitors. trimpots, transistors and finally the soldering pins or lugs for the external connections Pay proper attention to the polarity of electrolytic capacitors An important point to note about the transistor T1 is that its collector is not connected anywhere It should not be laft floating around on the board but should be cut off near the transistor casing itsalf T1 should preferably be BC 107 and may naed some trials for eatecting a 'good' noisy one To salect T1 by treals, the circuit of figure 2 can be connected to the Tape or Pickup input of the

preamplifier of the Hi-Fi system. If this gives a soft noise output through the speakers, the transistor has good noise properties. After selecting T1 the circuit canbe assembled and then the output of T2 should be connected to the Hi-Fi system librough the output capacitor C3.

A 9 V miniaturs battery pack is enough to power lina circuit, as the current drawn is between 2-5 to 4.3 mA However, an ON / OFF switch must be provided A shielded cable must be used for connecting life circuit to the Hi-Fi system, so that liha 50 Hz, hum is reduced The shield with the connected of the connected to the signal ground

Adjustments

Two trimpots P1 and P2 are provided for adjustments The adjustments are interdependent and should be done as follows

Both the sliding contacts of P1 and P2 should be fully turned lowards the earthed terminal initially. Now P1 is slowly rotated till a soft noise is heard. P2 is then adjusted to get the periodic rising and falling of the sound P1 can be once again adjusted to get the desired volume for the sound of the sexual p1 can be once again adjusted to get the desired volume for the sound of the sexual p1 can be sexual p1 can be once

Now, close the eyes and relax, imagining that you are already on the beach! 6

Figure 6

Figure 5
Uc4 is the vollage output from cepacitor C4 and UBT2 is the effective vollage at the base of T2 produced by superimposing the two input signets.

The eartipoth is superimposed on

The sawlooth is superimposed of the constent DC level set by potentiometer P1. The emptification provided by T2 is proportional to this signal.

Component leyout of the circust

Part List R1, R2, R5 = 100 K ft R3, R9 = 47 K il R4, R6, R11 = 4 7 K ii

R7, R10 = 220 K (1 F1 = 10 K() P2 = 100 K (1 C1, C3 = 1 µF/16 V C2 = 2.2 µF/18 V

C1, C3 - 1 µF/16 V C2 = 2.2 µF/16 V C4, C6 = 22 µF/18 V C5 = 47 µF/16 V C7 = 100 µF/16 V

D1 = 1N 4148 T1 = 8C 107 or 8C 847 8 T2, T3, T4 = 8C 847 8

Other Paris

1 Stendard SELEX PCB
Soldering lugs.

Bettery connector 3 V mineture bettery peck Hr-Fr Amplifier system or an Amplispecker of high capacity

TOUCH KEYS

Touch keys, sensor switches, touch switches. TAPs Touch Activated Programmer) these are many names for the touch keys. The principle of operation is the same for all Elektor magazine had developed and published the first touch switch project almost fifteen years ago Since then there have been meny variations and developments and the touch keys have replaced the mechanical keys switches in many sophisticated products Just touch with a finger and without any "click-clack" the switching operation takes place quickly, safely and quietly

Principle

The sensing surface of the key consists of two conductive surfaces separated by an insulator The insulator must have an infinitely high resistence or it can even be en airgap. If these two surfaces ere now touched simultaneously with the fingertip, the resistance between them drops below 500K. The exact value depends on verious factors like the skin resistance of the individual. the size of the touched area, pressure exerted and even the humidity of the skin To understand the working principle, you can carry out a small experiment as follows: Connect two coins to a multimeter with the help of crocodile clips. Set

two coins near to each other with a small airgap between them. Now touch both of them together with the fingertip. The meter now reads a value less than approximately 500K. The value falls down further if the pressure is increased or if the fingertip is moistened The principle is thus very clear, the skin has a finite resistance and this resistance appears across the two sensor surfaces of the touch key when it is touched with a finger When the key is not touched, the resistance between the two sensor surfeces is very high. This means that a current can flow between the two surfaces when touched The two possibilities are shown in figures 2 and 3. Figure 2 shows a two stage sensor. When the key is touched, e current flows into stage A, this activates the output stage C and the relay is energised. But the relay remeins energised only as long as the key is touched Figure 3 shows a three stage sensor. When the key is touched, a current flows into stage A, this triggers a flip flop stage B and the flipflop activates output stage C. As the flipflop is latched, the stage C remains activated and relay remains energised even after the finger is removed from the key. To de energise

the multimeter in

Megeohms renge Keep the

the relay the key must be touched again, so that the llipflop resets and stage C is deactivated again releasing the relay

Practical Design

A practical circuit is shown in figure 4. The functional blocks A,8 and C can be easily recognised in the diagram.

The first part of the circuit, consisting of transistors T1, T2 and T3 and the resistors capacitor and sensor corresponds to block A. If the sensor is touched, a current flows to the base of transistor T1. Transistors T2 and T3 amplify this current and due to the collector currents of all three transistors passing through R6 and R5 a sufficiently large voltage drop is developed across R6 This brings down the voltage at U1 to almost zero level Transistors T1, T2 and T3 are all connected in such e manner that they give maximum possible amplification Information about this type of connection (known as Darlington Connection) hes already been given in SELEX The middle portion of the

circuit enclosed with a dotted line in the diagram corresponds to block 8 which is the flipflop. For proper understanding of the functioning it is assumed that T5 is conducting and T4 is open.

Now when the sensor is touched. U1 drops from 9V to OV. This is transferred to the base of T5 via D3 (at point U5) The transistor T5 stops conducting and drives T4 into conduction. This condition is retained even after the finger is removed from the sensor Next time the sensor is touched, the jump in voltage at U1 from 9V to OV is connected to the base of T4 via D2 and now T4 stops conducting and drives T5 into conduction egain Figure 5 shows all the voltage et various points U1 to U6 in the circuit. Voltage at U6 is used to activate the last stage C which drives the relay Stage C consists of transistor T6 Voltage at U6 which is connected to the base of T6 via R12 switches the transistor ON and OFF depending on whether it is 0V or 9V. when U6 = OV, e current flows through R13 and R12 which develops a positive voltage et the base of T6 and T6 goes into conduction When U6 = 9V no current can flow through R13 and R12 and T6 is cut of

The relay contacts can be

device connected through it.

used to switch on any

2 3

Construction

The complete circuit of figure 4 can be assembled on a double size SELEX PCB (80 x 100 mm), Component levout of the circuit is shown in figure 6. The layout shows two connections in dotted lines between points A-B end C-D, and a connection in solid line between A-D. Connections A-B and C-D ere to be used if the complete circuit of figure 4 is assembled. Connection A-D will be used if only the blocks A and C are constructed without using the flipflop circuit of block B. The flip flop will not be required if the switch has to close only for the period when the touch key is touched with a finger. figure 7 shows an assembled PCB as per the layout of figure 6

A 9V miniature battery pack is used as the power supply. The current consumption of the circuit is less than 3 mA when relay is not energised. Any 9V battery eliminator can also be used as the power supply, but this needs a change in the value of C1. It should be increased to 10 µF. The relay contact can be

Figure 1: Two coins and a multimate: can demonstrate the principle behind the touch keye.

Figure 2 Glock deagram of the simple version of the touch key. The relay remains energised only as long as the touch key is touched with e

finger Figure 3

Touch key block diegrem with a flip flop stage edded for latching the relay. The flipflop and the switch toggles every time the key ie touched

selex

Figure 4:
The complete circuit of the touch key with both possibilities. Circuit of figure 2 is resilised by direct connection between A – D and the circuit of figure 3 is realised by connecting links A –B and C –D and assembling the complete flip flop circuit between them.

Figure 5:

Figure 5: The voltage waveforms at variou points marked on the circuit of figure 4.

connected in parallel with the existing ON/OFF switch of the device that is to be controlled by the touch key; for example a Hi—Fi amplifier system.

The scheme of this connection is shown in figure 8. The connection will be smilled for any device. Only preceute to be taken is that the rating of the relay contects must be suitable for the epiperation. The touch key is universely epificable, if it is properly casanged to the relay contects are made available over sockets es shown in figure 9.

Key Tip

Construction of key tip cen be done eccording to ones own creativity The importent feeture to be remembered is that the two conductive surfeces must be separated by an insulator or eir gep. The gep should be so small Ithet it cen be eesily bridged by the tip of e finger. Two ideas are illustreted in figures 10 end 11. One uses a benana socket with a small lug covered with insulating sleeve inserted from behind

selex

This type of touch key is very easy to install, as the banana socket comes ready with threading and matching nut. Only thing you have to do is drill a hole on the panel and mount the touch key.

Another type of touch key construction shown in figure 11 uses decorative nails, drawing pins and washers of suitable

diameter This type of construction is very difficult because it requires accurate drilling and soldering. The washer and the nail have to be perfectly concentric and an insulating material must be provided between them if the head of the nail is larger than the internal diameter of the washer. The mounting surface also must be of an insulating material as both the parts are directly mounted on it

directly mounted on it.

Two pins must be accurately soldered onto the washer as shown in figure 11. After inserting these through the panel they can be fixed with adhesive on the back side of the panel. In case the touch key is also assembled directly on the PCB, these pins can be directly soldered on to the PCB instead of

R8 R10 - 47 KII R9 R11 = 470 KII C1 1 µF/16V or 10µF 16V C2,C3 = 100nF C4 10uF/16V

D1 D5 1N4148 T1...T5 BC5478 T6 BC557B Other parts 1 SELEX PCS (80 x100 mm)

1 9V Minieture Battery Peck Re Suitable Relay

Figure 6.
Component layout for the touch key circuit using a double size.
SELEX PCB [80 a. 100 mm] The flip flop circuit using a double size.
SELEX PCB [80 a. 100 mm] The half of the PCB. If one does not went the flip flop stope the remaining circuit can be essembled on the emaller SELEX PCB (40 x 100 mm].

Figure 7.
Even after mounting the relay ther
is still e lot of spece left on the
PCB

Figure 8.
Touch key connected across the ON/OFF switch of a Hi—Fi amplifier system.

The touch key becomes universel, if mounted inside a separate case and relay contects connected to a nocket.

Figure 10. Touch key constructed using a banana socket and a metal fug with insulating sieeve inserted from bahind.

Figure 11. Touch key using decorative nell/pin and a weater This requires lot of skill in construction se the drilling and soldering must be very accurate

EW PRODUCTS • NEW PRODUCTS • NEW

SCOPE/METER

This system which is IBMPC supported is designed to make controlled checks and calibrations of oscilloscopes with bandwidths upto 1GHZ

(e) Sensivities are as low as 40 eV to 200V/div with outputs of ± DC and source were of 10HZ. 100HZ, 1 KHZ and 10KHZ

(b) Automated or menuel operation

(c) Fully programmeble for sutometed testing

The Autometed meter celibration system - Lets you calibrate en extensiva range ol voltmatars, ammeters. ohmmeters and multi-meters

Other features include remote

MURUGAPPA ELECTRONICS LTD

Agency Divn Parry House III floor 43 Magre Street Madras 600 001

For further details write to RIKEN INSTRUMENTATION 181/32 Industrial Area Phase I Chendiasth - 160 002.

For further details please contact. SUBESH FLECTRICS & ELECTRONICS Post Box No. 9141

Colcutto 700 016 MECO DPMs

MECD has just introduced 3 new series of light weight Dignal Panel Maters feeturing slim profiles with lerge displey These models are numbered GM-135A/B 3½ digit LED typel, GM-035 A/B 31/2 digit LCD type) and GM 0-45 A/B 41/4 digit LCD type)

These 3 new series feature eutomatic polarity switching. automatic zero function: over range indication and built-in hold function. The LED Modules operates on 0.5V power supply while the LCD Module operates on 0-9V power supply Decimal point selection, high input impedance (more than 100 M obms) ara additional features

Spacifications common to all models include bias current 1 nA typical and 10nA maximum. measurement precision of 0.1% + 2 digit for 31/2 digit and 0.05% + 3 digit for 41/2 digit instruments; typical temperature coefficient of 25 nnm/C for reference voltage. operating and storage temperature ranges 0-50C and minus 100 to 600 respectively and sampling speed of 2.5 times per second.

For Justiner information, write to MECD INSTRUMENTS PVT LTD Bharat Industriel Estate, TJ Road Sewree. Bombay 400 015

More information M/S THE FASTERN ELECTRIC AND ENGINEERING COMPANY PRIVATE LIMITED. Regd OII Gyan Ghar, Plot 434A. 14th Road Khar Bombey 400 052 Tal 537210

LCR METER

Ando Electric Co. Japan, offers the AG-4311 digital LCR meter This unit is designed to make measurements as close as possible to actual user conditions for L. C&R components, semiconductors. complex components, electronic metenels etc.

Measurement can be made at 31 spat frequencies from 100 Hz to 100 KHz and otleast signal levels between 1 mV to 5 V R L.CD O G EST B, IZI-O and deviation (absolute or percentage) of component value from a programmable valua are measurable. The instrument incorporates an eutomatic off set "Zero" adjustment function and a high resolution mode to measure minute fluctuations in

COMPONENT MARKING No special tools are required for

these Machines Specifictions Component Sizes Body length 250" - 2 75" 0.80* - 1.0* Body dia Maximum (mprint Depending on type with Rubberplates 2.14" x 1" circum Cucle rate Upto 3200 cycles/hr Weight

115 lb (52.3 Kg)

For lutther information please WEITE TO M/S KELLY CORPORATION 1413 Delamel Tower Ner iman Point Bombay -400 021

POWER FACTOR METER

Riken Instrumentation. Chendigarh, have developed a wide range of Power Fector Meters which ere claimed to be compact, handy and light weight while they are simple in operation These meters available in MINOR MAJOR. CLIPON and PANEL types. The instruments conform to IS 1248-68 and are type tested

SLIDE SWITCH "IEC" have now introduced new Slide Switch with a rating of 2 Amperes, 250V AC/DC. This Slide Switch is evariable in sungle pole on off sequence with insulation resistance of 100 M ohms and can withstand high voltages upto 2KV. The switch has a bakelite body with brass terminals and red ABS operating knob. The terminals can be provided with screw contacts or solder contacts. The switch is expected to have a mechanical life of more than 20000 cycles and electrical life over 10000 cycles

For further information write INDIAN ENGINEERING COMPANY Post Box 16551 Worll Neke

Sombey - 400 018

CABLE TIE

One piece Power Cord Ceble Tie provides positive holding of mains cord wire. Available in neturel or black colour for cable bundle diameter upto 51 mm Maintein holding strength ave a temperature extreme of -20°C to + 95°C

EW PRODUCTS • NEW PRODUCTS • NEW

IGE - CNC

I G E (Indie) Ltd. introduces Computer Numerical Controls in technical collaboration with General Flectric, USA, GE has proneered the introduction of Numerical Controls and CNCs IGE will menufecture GE's Mark Century 1050 HLX 2 exis lethe control and Mark Century One for lese complex machine tool epplications, including turning, milling end mechining

For further deteils please write

I.G.E. (INDIA) LIMITED Nirmal Nureman Point Bombey - 400 021

DIP REED RELAY

PLA series DIP reed releys ere now eveilable with 1C/0 and 2C/O contacts as well, besides 1N/0 end 2N/0 contects Suitable for mounting on e stenderd Duel-In-Line IC sockete PLA series DIP reed releys ere aveilable with various coil voltages with contacts capable of switching 10W/VA et 0.5 amps end 100V Mex. Salient features also include high speed switching end excellent input to output isolation characteristics

For further information write to M/S SAI ELECTRONICS (A DIVN OF STARCH & ALLIED

INDUSTRIESI Thakor Estate. Kurle Kirol Road.

Vidyan har (West) Bombay-400 086 Phones 5131219/5136601

UNITERRUPTIBLE POWER SUPPLY

'PROFILE' has introduced on U P S Systems which is designed to provide pure power with or without mains, with a reported efficiency of more than 80%

For further information, please write to TARGET MARKETING

DBS Executive Centre Rahera Chambers Nerimen Point Bombay-400 021.

KEYBOARD SWITCH

M/s Darshene Industries has introduced en indigenous low Profile Tectile Keyboard Switch It is a 12mm x 12mm, Four terminel SPST N/O Switch reted et 50m A 12V DC. end has a 0.3mm movement It. tectures e detachable A 8.S keytop with an acrylic cover legende may be Hot stemped. Engreved or stuck on to the A 8 S top end the ecrylic cover snep fitted on too. The switch is everlable with Silver/gold plated contact terminals

For further information contact M/s Darshana Industries 63, Industrial Estate, Hadapser, Pune - 4/1 013

DASA SYSTEM

A deta acquisition end signel enelysis system (DASA) developed by Gould Inc. USA is now everlable through Larsen & Toubro Limited (L&T) It is

designed to record, display and enalyse all kinds of test results it has application in such wide testing erees as shock and vibration, stress and strein. bellietics, eccoustics engine ansivers, cresh teeting, high voltage power life failures, deta stresm quelity and accuracy, biophysical research and many other types of tasts end analysis based on multiple enetog signel inpute

Date ecquisition ie accomplished by the Gould DASA system with a unique. instrument quality, mutte channel signal digitizer. This front end sub system sccepts upto eight englog signels (± 50 mV to ± 500 V) expandable for upto 112 channels and samples them simulteneously at predetermined rates from 500 Hz to 1/3 MHZ The use of common time base.

clock eccuracy of 0 01% and individual channel 8 bit A/D convertors ensure that the digite! date ecquired is synchronous and thet there is no time skew between them.

For further details, please contact LARSEN & TOUBRO LIMITED

(Instrument Division) Venketeremene Centre 8th Hone 563 Anna Sales, Post Box 6093 Teynemnet Madres 600 018

MAKE YOUR OWN TV KIT

Taurus Electronics hes introduced 14" 8 & W MAKE-YOUR-OWN TV Kit Model 14220 It is a low priced SKD Kit with cebinet, Picture Tube. ett accessories packed in a carron. The kill is pre-eligned with built in connectors. The unit has a highly sensitive VHF Tuner with Chennel Coverage 2-12 and gain at 60 db tt has a unique quick heet type picture system Only BEL make picture tubes are given inthe kits. The Peek Autio output is 2 W with an earphone teck for private listening The TV when assembled works on Ac 220-V

50 HZ, consumee 10 W power The TV elso worke on 12 V DC edopter A VCR sockt is provided for VCR viewing. The indoor anienna with the kit dispenses the necessity for instelling en externel entenns in a HPT zone. This kit is also querentend.

For further detwis, contact HARESH G NATHANI. TAURUS ELECTRONICS. 13. Bussa Udyog Bhavan. Lower Ground Floor T J Road, Sewree (W) near Sewree Bus Terminal, Bombay 400 015

MINIATURE SWITCH SWITCHCRAFT now offer a ministure toggle switch type T

202, D.P D.T reted for 2A-250V A C These switches cen be used for electrical & plactronic applications, in telecommunication, electronic dete processing etc. The insulating body is made of melemine pheolic to give excellent insulation with dielectic strength. Contact ere made of copper, silver plated and terminals are solder lug type, the switches ere tested for electrical life at full capacity load for 25,000 operations, the overell dimensions of the switch behind the panel ere 13x12 7x14 8 mm the mounting is on 6 mm die threeded bush.

For more information contact. SWITCHCRAFT 24 Panker Vakola Bridge, Santacruz (E)

Bombay-400 055

classified ads.

New Elektor kits assembling service and unmodified kits repairing facility evailable. Please write for datails to: RACHANA RADIOS, Laxmigan! Guns-473001 (M.P.).

Wented Knowhow for uninturruptsd power supply and 'SMPS' outright purchase or royalty, Write in confidence MARATHEY TARALIKA, 216, Bhalchandra Rosd, Bombsy - 400 019 For Printed circuit boards, Capacitors, Snapping clamp, Any type of press part, Art work, Layout, designing also undertaken, Contact Shiv enterprises P Bhagat Marg, Tukaram nagar. Ayra Road, Dombril (East) 421 201

KITS -Redic remote control Call bell Rs 150/- Radio remote control music light Rs. 150/- Ask project list with 60 paise stamps Super Electronics, Shrvaji Nagar Barsi - 413411

CORRECTIONS

Precision power supply

Fabrusry 1987p. 2.49

C1, C2 is 1000 µ/25 V and R 22 is 0.22 /3W as shown in the circuit diagram, above values are shown wrongly in the part list

COMPUTERSCOPE-2

February 1987 p. 2.51 Hard copy of the screen image may be

- made in one of 3 ways

 1. Write the screen contents into a disk and point it later.
- and print it later

 2. Use a printer with an RS232 interface.
- 3 Use the Electron interface on the BBC to field the pointer port

Figure IO of the article is wrong in several areas and should be replaced by new Fig. 10 shown here.

True-RMS meter January 1987 p. 1.30

The correct signal assignment for the contacts on Sec is. Sec contact a = Dp 2; Sec contact b = Dp 1; Sec contact e = Dp 3.

High power AF amplifier

July 1986 p 7-18 The suggested heat sink should be the

Fischer Type SK93, not the SK39 as stated in the parts list.

advertisers index

ACE COMPONENTS	5.64
ADVANCE VIDEO LAB	
ANANT ENTERPRISES	
APEX ELECTRONICS	5 64
APPOINTMENTS 5.0	
BMP MARKETING	
CHAMPION ELECTRONICS	
CREATIVE DATA SYSTEMS	5.70
CYCLO	5.12
DEVICE 5.12 5.6	2 5 56
ECONOMY ENGINEERING	5 5.00
ELECTRONICA	
ENGINEERING SYSTEMS	5.06
IEAP	
INSTRUMENTS CONTROL	.,, 0.00
DEVICES	5 66
KLAS	5 64
LEADER ELECTRONICS	5.16
LOGIC PROBE	5.61
MAYAN INDUSTRIAL	570
MECO	5.07
MX ELECTRONICS 5.1	0 5.11
NARMADA VALLEY	
NCS ELECTRONICS	
PHILIPS	5.13
PRECIOUS 5.0B 5.0	9 5.15
SAI 5.59 5.6	51 5.63
SAINI	5.14
SIEMENS 5.3	88 5.39
TESTICA	
TEXONIC INSTRUMENTS	
TRIMURTI ELECTRONICS	
UNLIMITED ELECTRONICS	
VASAVI ELECTRONICS	
VISHA ELECTRONICS	5.75
YABASU	

LEARN PROCESS CONTROL

ON IMPACT-1

Impact 1 is a unique combination of Hardware and Software designed for the first time in India for learning Process Control Applications. It is an 8086 A based system with on-board ADC/DAC, Timer/Counter, Interrupt Controller, RS 232C Senal Port, Centronics Parallel Port, ASCII Keyboard Interface, Cassette Interface, da Parallel I/O lines, EPROM Programmer for 2716 to 77256 with optional Fast-Intelligent Mode, Hex Keypod with 6 digit LED display, STD Bus on card edge and by 26 phis sockers to the memory upor 64K total. Powerful PRMMARE is given in a deepended of the Control of t

Want to know more about Impact-1?

Write to us today for the colour brochure of Impact-1 and other 8085 based systems.

14, Hanuman Terrace, Tara Temple Lane, Lamington Road, Bombay 400 007 Tet: 362421, 353029 Tb: 011-71801 DYN'A IN Gram FI MADEVICE