

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

INGENIERÍA EN SISTEMAS COMPUTACIONALES DESARROLLO DE SOFTWARE ISIE-DES-2022-01

SCD – 1003 ARQUITECTURA DE COMPUTADORAS

CÁTEDRA DEL ING. OSORIO SALINAS EDWARD

ALUMNOS:

No	Nombre	No de Control
01	Cruz Ramírez Jaczibeth	22320233
02	Velasco López Daniel	22620076

GRUPO:

5BS

CIRCUITOS ARITMÉTICOS Y LÓGICOS

REPORTE DE PRÁCTICA 2

TEMA 2: ESTRUCTURA Y FUNCIONAMIENTO DE LA CPU

Tlaxiaco, Oaxaca. A 28 de nov. de 24

Boulevard Tecnológico Km. 2.5, Llano Yosovee C.P. 69800. Tlaxiaco, Oaxaca. Tel. (953) 55 21322 y (953) 55 20405, e-mail: dir_tlaxiaco@tecnm.mx; tecnm.mx | tlaxiaco.tecnm.mx

Contenido.

Descripción	6
2. Objetivo	7
El alumno implementará las operaciones de suma, resta, multiplicación	y comparación
de 4 bits, basadas en circuitos integrados la familia TTL y/o tecnología N	• •
y comprobar su funcionamiento	7
3. Materiales	7
Instrucciones	7
3.1 Software utilizado	7
4. CIRCUITOS ARITMÉTICOS Y LÓGICOS	9
4.1 Circuito Sumador	9
4.1.1 Implementación	9
4.1.2 Tabla de Verdad para el Sumador	11
4.1.3 Simulación del circuito sumador	12
4.2 Circuito Restador	19
4.2.1 Implementación	19
4.2.2 Tabla de Verdad para el Restador	21
4.2.3 Simulación del circuito restador	21
4.3 Comparador de un Bit	24
4.3.1 Implementación	25
4.3.2 Tabla de Verdad para el Comparador	25
4.3.3 Simulación del circuito Comparador	26
4.4 Circuito Multiplicador	29
4.4.1 Implementación	29
4.4.2 Tabla de Verdad para el Multiplicador	30
4.4.3 Simulación del circuito Multiplicador	

5.	Conclusiones	38
6.	Bibliografías	39

Lista de Figuras.

Ilustración 1 Software Liveware	7
Ilustración 2 Versión 1.11	8
Ilustración 3 Captura Sumador completo	9
Ilustración 4 Captura Sumador de 4BITS	10
Ilustración 5 Captura Sumador de 4 bits	10
Ilustración 6 Medio Sumador	11
Ilustración 7 Sumador de 4 Bits	11
Ilustración 8 Primer resultado Sumador	12
Ilustración 9 Segundo resultado sumador	13
Ilustración 10 Tercer resultado sumador	14
Ilustración 11 Cuarto resultado sumador	15
Ilustración 12 Quinto resultado sumador	16
Ilustración 13 Sexto resultado sumador	17
Ilustración 14 Séptimo resultado sumador	18
Ilustración 15 Octavo resultado sumador	19
Ilustración 16 Circuito Restador	20
Ilustración 17 Tabla Restador	21
Ilustración 18 Primer resultado restador	21
Ilustración 19 Segundo resultado restador	22
Ilustración 20 Tercer resultado restador	23
Ilustración 21 Cuarto resultado restador	23
Ilustración 22 Quinto resultado restador	24
Ilustración 23 Circuito Comparador	25
Ilustración 24 Tabla Comparador	25

Ilustración 25 Primer resultado comparador	26
llustración 26 Segundo resultado comparador	26
Ilustración 27 Tercer resultado comparador	27
llustración 28 Cuarto resultado comparador	27
llustración 29 Quinto resultado comparador	28
Ilustración 30 Sexto resultado comparador	28
Ilustración 31 Séptimo resultado comparador	28
llustración 32 Octavo resultado comparador	29
Ilustración 33 Circuito implementado	29
Ilustración 34 Tabla Multiplicador	30
Ilustración 35 Primer resultado multiplicador	30
llustración 36 Segundo resultado multiplicador	31
Ilustración 37 Tercer resultado multiplicador	32
llustración 38 Cuarto resultado multiplicador	33
llustración 39 Quinto resultado multiplicador	34
llustración 40 Sexto resultado multiplicador	35
llustración 41 Séptimo resultado multiplicador	36
Illustración 42 Octavo resultado multiplicador	37

Descripción

En este informe se presenta el diseño, implementación y simulación de circuitos aritméticos y lógicos esenciales para la arquitectura de computadoras. Estas prácticas permiten comprender el funcionamiento de componentes clave como sumadores, restadores, comparadores y multiplicadores, utilizando herramientas de simulación digital. La implementación de estos circuitos no solo refuerza el conocimiento teórico, sino que también desarrolla habilidades prácticas necesarias para la ingeniería en sistemas computacionales. A través del uso del software Liveware, se analizan las operaciones de suma, resta, multiplicación y comparación de 4 bits, validando su funcionamiento mediante simulaciones detalladas.

2. Objetivo

El alumno implementará las operaciones de suma, resta, multiplicación y comparación de 4 bits, basadas en circuitos integrados la familia TTL y/o tecnología MSI, para validar y comprobar su funcionamiento.

3. Materiales

- Laptop.
- Software de simulación de circuitos digitales (Liveware, Logisim, Proteus, Multisim, etc.).

Instrucciones

- 1. Implemente el circuito sumador de 1 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.
- 2. Realice la tabla de verdad de la operación de suma de 1 bit.
- 3. Realice la simulación del circuito sumador en el software de simulación de circuitos digitales.

3.1 Software utilizado

En nuestro caso, se está utilizando el software Liveware.

Propiedades: LiveWire Seguridad Detalles Versiones anteriores General Acceso directo Compatibilidad LiveWire Tipo de archivo: Acceso directo (.lnk) Descripción: Livewire

Ilustración 1 Software Liveware

Ilustración 2 Versión 1.11

	- Professional Edition
1.11 (28 0	
Unlimited I	License
	ware is licensed for use by 0 concurrent users ensed address. Any other use is prohibited.
Cracked b	y CubituZ
	: -001301946029
Product ID	

4. CIRCUITOS ARITMÉTICOS Y LÓGICOS

Los circuitos aritméticos y lógicos (ALU) son los componentes básicos de sistemas digitales como computadoras y microprocesadores. Estos circuitos son responsables de realizar operaciones básicas de procesamiento de datos, incluidas la aritmética y la lógica.

4.1 Circuito Sumador

El circuito sumador es un componente fundamental de la electrónica digital y se encarga de sumar números binarios. Estos esquemas son la base del sistema numérico porque permiten operaciones aritméticas simples y son la base para operaciones más complejas.

Para este ejercicio ocupamos dos circuitos uno de un circuito medio sumador y un sumador completo los cuales son los siguientes:

4.1.1 Implementación

Ilustración 3 Captura Sumador completo

Ilustración 4 Captura Sumador de 4BITS

Ilustración 5 Captura Sumador de 4 bits

4.1.2 Tabla de Verdad para el Sumador

Ilustración 6 Tabla Sumador completo

SUMADOR COMPLETO							
Α	В	Cin	S	Cout			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

Ilustración 6 Medio Sumador

MEDIO SUMADOR							
Α	В	S	COUT				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

Ilustración 7 Sumador de 4 Bits

SUMADOR							
Α	В	Resultado (S)	Cout				
0000	0000	0000	0				
0001	0001	0010	0				
0010	0001	0011	0				
0111	0001	1000	0				
1111	0001	0000	1				
1010	0101	1111	0				
1100	1100	1000	1				
1111	1111	1110	1				

4.1.3 Simulación del circuito sumador

Ilustración 8 Primer resultado Sumador

Ilustración 9 Segundo resultado sumador

Ilustración 10 Tercer resultado sumador

Ilustración 11 Cuarto resultado sumador

Ilustración 12 Quinto resultado sumador

Ilustración 13 Sexto resultado sumador

Ilustración 14 Séptimo resultado sumador

De esta forma, hemos comprobado que la simulación funciona correctamente con el sumador en un bit.

4.2 Circuito Restador

Un restador de un bit es un circuito digital que realiza una resta entre dos bits. Como un sumador, tiene dos entradas: A y B. Sin embargo, a diferencia de un sumador, su función principal es determinar la diferencia entre dos bits.

4.2.1 Implementación

Continuamos implementando nuestros circuitos en el simulador.

Ilustración 16 Circuito Restador

4.2.2 Tabla de Verdad para el Restador

Ilustración 17 Tabla Restador

SUMADOR/RESTADOR									
Α		BBB		Sel		Resultado (S)		Cout	
0000	•	0000		0	_	0000	7	0	SUMADOR
0001	•	0001		0	_	0010	7	0	
0010	•	0001		0	_	0011	•	0	
1111	•	0001		0	_	0000	•	1	
0000	•	0000		1	ľ	0000	•	1	
0010	•	0001		1		0001	•	1	RESTADOR
0001	•	0010		1		1111	•	0	
1111		1111	•	1	_	0000	•	1	
1000		0100		0		1100		0	
1000		0100		1		0100	•	1	

4.2.3 Simulación del circuito restador

Ilustración 18 Primer resultado restador

Ilustración 19 Segundo resultado restador

Ilustración 20 Tercer resultado restador

Ilustración 21 Cuarto resultado restador

Ilustración 22 Quinto resultado restador

4.3 Comparador de un Bit

Un comparador de un solo bit es un circuito digital simple que compara dos bits de entrada y determina la relación entre ellos. Este tipo de comparación puede indicar si los bits son iguales o mayores.

4.3.1 Implementación

Ilustración 23 Circuito Comparador

4.3.2 Tabla de Verdad para el Comparador

Ilustración 24 Tabla Comparador

	COMPARADOR								
	Α	В	X3(A <b)< th=""><th>X2(A=B)</th><th>X1(A>B)</th></b)<>	X2(A=B)	X1(A>B)				
•	0000	0000	0	1	0				
	0001	0000	0	0	1				
	0001	0001	0	1	0				
	0010	0001	0	0	1				
	0011	0100	1	0	0				
	1111	0000	0	0	1				
	1111	1111	0	1	0				
•	1010	1100	1	0	0				

4.3.3 Simulación del circuito Comparador

Ilustración 25 Primer resultado comparador

Ilustración 26 Segundo resultado comparador

Ilustración 27 Tercer resultado comparador

Ilustración 28 Cuarto resultado comparador

Ilustración 29 Quinto resultado comparador

Ilustración 30 Sexto resultado comparador

Ilustración 31 Séptimo resultado comparador

Ilustración 32 Octavo resultado comparador

4.4 Circuito Multiplicador

Los circuitos multiplicadores son componentes digitales que realizan la multiplicación de números binarios. Este tipo de circuito es fundamental para los procesadores y sistemas digitales que requieren operaciones matemáticas complejas, como la informática científica, el procesamiento de señales y los gráficos.

4.4.1 Implementación

Ilustración 33 Circuito implementado

4.4.2 Tabla de Verdad para el Multiplicador

Ilustración 34 Tabla Multiplicador

MULTIPLICADOR 4 BITS							
A (S1: A3,A2,A1,A0)	BBB (S2: B3,B2,B1,B0)	Producto (P=A×B)	LEDs Encendidos				
0000 (0)	0000 (0)	00000000 (0)	Ninguno				
0001 (1)	0001 (1)	00000001 (1)	LED8				
0010 (2)	0001 (1)	00000010 (2)	LED6				
0011 (3)	0001 (1)	00000011(3)	LED8, LED6				
0100 (4)	0001 (1)	00000100 (4)	LED3				
0101 (5)	0010 (2)	00001010 (10)	LED8, LED3				
0110 (6)	0011 (3)	00010010 (18)	LED3, LED6				
1000 (8)	0010 (2)	00010000 (16)	LED9				

4.4.3 Simulación del circuito Multiplicador

Ilustración 35 Primer resultado multiplicador

Ilustración 36 Segundo resultado multiplicador

Ilustración 37 Tercer resultado multiplicador

Ilustración 38 Cuarto resultado multiplicador

Ilustración 39 Quinto resultado multiplicador

LED1 U17A 220Ω 7408N LEDS 74L \$32D 220Ω U18A 7408N LED2 74L \$32D 7408N U3A LED3 74L \$32D R5 7408N U4A 220Ω LED4 U19A R2 220Ω 74L \$32D 7498N 74L\$32D 1021A 7408N U7A V1 — 12V 7408N U8A 74L \$32D LED7 U22A R7 2200 74L \$32D 1 341 441 541 6/4L 532D 40 440 440 8140 8N 220Ω ÷

Ilustración 40 Sexto resultado multiplicador

Ilustración 41 Séptimo resultado multiplicador

LED1 UGA U17A 7408N LEDS 74L \$32D S1 :: U18A -V\\-220Ω AA H 7408N 74L \$32D 2200 7408N U23A LED3 74L \$32D R5 Ag LED4 220Ω U4A U19A R2 7/2 220Ω LED6 R2 74L \$32D 7408N 74L \$32D 1J21A 7408N V1 R8 7408N UBA 74L \$32D LED7 U22A R7 2200 74L \$32D U24A 220Ω ÷

Ilustración 42 Octavo resultado multiplicador

5. Conclusiones

Jaczibeth: Esta práctica fue fundamental para consolidar mi comprensión de los circuitos aritméticos y lógicos. La simulación de los diferentes circuitos me permitió observar cómo operan las compuertas lógicas para realizar operaciones básicas como suma y resto. Además, comprender la relación entre los circuitos implementados y las tablas de verdad refuerza mi habilidad para analizar y resolver problemas de diseño digital.

Daniel: El desarrollo de esta práctica me permitió integrar conceptos teóricos y herramientas prácticas para la implementación de circuitos digitales. La simulación de sumadores, restadores, multiplicadores y comparadores me ayudó a visualizar el proceso lógico detrás de cada operación, profundizando mi conocimiento sobre el funcionamiento interno de los sistemas computacionales. Este aprendizaje será de gran utilidad en el diseño y análisis de sistemas digitales más complejos.

6. Bibliografías

Para la verificación del desarrollo de la práctica, se consultó la siguiente dirección para seguir correctamente las indicaciones preestablecidas.

Edward, O. S. (02 de Septiembre de 2024). *GitHub*. Obtenido de https://github.com/Daniel-Velasco-Lopez/tec-nm-tlaxiaco-arqui-compu/blob/main/practices/Practica-1.md