Prüfungsteilne	hmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:			
Kennwort:		Herbst	46113
Arbeitsplatz-Nr.		2012	
Erste S	• 0	ir ein Lehramt an d Prüfungsaufgaben –	öffentlichen Schulen —
Fach:	Informatik (Unterrichtsfach)		
Einzelprüfung:	inzelprüfung: Theoretische Informatik		
Anzahl der gestel	lten Themen (Aufgabe	en): 2	
Anzahl der Druck	seiten dieser Vorlage:	9	

Bitte wenden!

Thema Nr. 1

Aufgabe (Komplexitätstheorie):

Sei ImpF die Menge aller aussagenlogischen Formeln, die ausschließlich mit den Konstanten 0 (false) und 1 (true), logischen Variablen xi mit $i \in \mathbb{N}$ und der Implikation \Rightarrow als Operationszeichen aufgebaut sind, wobei auch Klammern zugelassen sind. Insbesondere sind in ImpF nicht die logischen Operatoren \neg (not), \land (and) und \lor (or) erlaubt.

Wir betrachten das Problem ImpSAT:

Gegeben: $F \in ImpF$.

Problem: Ist F erfüllbar, d. h., gibt es eine Belegung der Variablen mit Konstanten 0 oder 1, so dass F den Wert 1 annimmt?

Zeigen Sie: ImpSAT ist NP-vollständig.

Sie dürfen benützen, dass das SAT-Problem (Erfüllbarkeitsproblem der Aussagenlogik)

NP-vollständig ist.

Fortsetzung nächste Seite!

Aufgabe (Berechenbarkeitstheorie):

- 1. Zeigen Sie, dass die Abstandsfunktion $dist\ (m,n)=\left|m-n\right|$ primitiv rekursiv ist. Dabei bezeichnet "-" die ganzzahlige Subtraktion!
- 2. Zeigen Sie, dass die Funktion $qsum(n) = \sum_{i=0}^{n} i^2$ primitiv rekursiv ist!

Hinweis: Sie dürfen zusätzlich zu den Basisfunktionen der primitiven Rekursion die folgenden Funktionen als primitiv rekursiv annehmen: Addition(m+n), Multiplikation (m*n), modifizierte

Subtraktion $(m - n) = \begin{cases} m - n, falls \ n < m \\ 0, \ sonst \end{cases}$ und Gleichheit (m = n). Sie dürfen die erweiterte

Komposition und das erweiterte rekursive Definitionsschema verwenden!

Aufgabe (Berechenbarkeitstheorie):

Sei $\Sigma = \{0,1\}$ ein Alphabet und $f: \Sigma^* \to \Sigma^*$ die Funktion, die jede 0 aus einem Wort löscht (z.B. gilt f(00100110) = 111). Formal ist f durch die folgenden Gleichungen definiert:

$$f(\varepsilon) = \varepsilon$$
, $f(0w) = f(w)$, $f(1w) = 1f(w)$

Konstruieren Sie eine 1-Band-Turingmaschine M, die f berechnet! Geben Sie M als Tupel an und beschreiben Sie die Zustandsübergangsfunktion als Graph, Tabelle oder Liste von Gleichungen! Kommentieren Sie Ihre Konstruktion durch eine informelle Beschreibung Ihrer Lösungsidee!

Aufgabe (Formale Sprachen und Automatentheorie):

Seien $\Sigma = \{a,b,c\}$ und $A = (\{1,2,3\},\Sigma,\delta,1\{3\})$ ein nicht-deterministischer endlicher Automat, der durch das folgende Übergangsdiagramm definiert ist:

- 1. Geben Sie einen regulären Ausdruck r_A an, der L(A) darstellt!
- 2. Berechnen Sie mithilfe der Potenzmengenkonstruktion einen deterministischen endlichen Automaten B mit L(B) = L(A).
- 3. Sei $\Sigma_c = \Sigma \cup \{d\}$. Geben Sie einen endlichen Automaten C an mit $L(C) = \Sigma_c^* \setminus L(A)$.

Aufgabe (Reguläre Ausdrücke und Endliche Automaten):

Für ein Alphabet Σ und eine Sprache $L \subseteq \Sigma^*$ definieren wir die Sprache

$$E(L) = \left\{ x_1 x_3 ... x_{2n-1} \left| x_1, x_2, ..., x_{2n} \in \Sigma \land x_1 x_2 ... x_{2n} \in L \right\} \right.$$

Damit ist E(L) die Sprache aller Wörter, die dadurch entstehen, dass man bei einem Wort aus L geradzahliger Länge jedes zweite Zeichen entfernt.

- 1. Geben Sie reguläre Ausdrücke für $E(L((ab)^*))$ und $E(L(a|b|(aba)^*))$ an.
- 2. Gegeben sei folgender DFA N:

Geben Sie einen endlichen Automaten (DFA oder NFA) an, der E(L(N)) akzeptiert.

3. Zeigen Sie, z.B. mittels einer Automatenkonstruktion, die Gültigkeit folgender Aussage: Wenn L regulär ist, dann ist auch E(L) regulär.

Thema Nr. 2

Aufgabe 1: Formale Sprachen

- 1. Sind die folgenden Sprachen regulär? Begründen Sie Ihre Antwort!
 - (a) Die Menge aller Zeichenketten der Form $w \circ w^{rev}$, wobei w eine Zeichenkette aus Nullen und Einsen der Länge $|w| \leq 10$ ist und w^{rev} das Wort w rückwärts gelesen ist.
 - (b) Die Menge aller Zeichenketten der Form $01^{i}01^{j}01^{i\cdot j}0$ für $i, j \ge 0$ über dem Alphabet $\Sigma = \{0, 1\}.$
- 2. Beweisen oder widerlegen Sie folgende Aussage: Sei X eine reguläre Sprache, dann ist auch jede Sprache $Y\subseteq X$ regulär.
- 3. Löschen und Einfügen in reguläre Sprachen
 - (a) Sei L eine reguläre Sprache über dem Alphabet $\Sigma = \{a,b,c\}$. Zeigen Sie, dass die Sprache L', die entsteht, wenn man aus den Worten $w \in L$ alle Vorkommen des Zeichens c entfernt, ebenfalls regulär ist.
 - (b) Sei L eine reguläre Sprache über dem Alphabet Σ und sei $x \notin \Sigma$. Zeigen Sie, dass die Sprache $L' \subseteq (\Sigma \cup \{x\})^*$ gegeben als

$$L' = \{x^{i_1}w_1x^{i_2}w_2\dots x^{i_k}w_kx^{i_{k+1}} \mid w_1w_2\dots w_k \in L; w_l \in \Sigma; i_j \geq 0\}$$
ebenfalls regulär ist.

- 4. Chomsky-Normalform
 - (a) Für welche Grammatiken gibt es eine Chomsky-Normalform? Wann ist eine Grammatik in Chomsky-Normalform?
 - (b) Geben Sie für folgende Sprache eine Grammatik an und bringen Sie sie in Chomsky-Normalform.

$$L = \{a^n b^n c^m \, | \, n, m > 0\}$$

Aufgabe 2: NP-Vollständigkeit

(a) Wann ist ein Problem NP-vollständig?

Folgendes Problem wird CLIQUE genannt und ist NP-vollständig:

gegeben: Ein Graph G = (V, E), ein k > 1.

Frage: Hat G eine Clique (einen vollständigen Teilgraphen bei

dem zwischen je zwei Knoten eine Kante besteht)

 $mit \ge k$ Knoten?

Folgendes Problem wird KNOTENÜBERDECKUNG genannt:

gegeben: Ein Graph G = (V, E), ein k > 1.

Frage: Hat G eine überdeckende Knotenmenge $V' \subset V$

(für alle Kanten $\{u, v\} \in E$ gilt $u \in V' \lor v \in V'$)

mit höchstens k Knoten?

- (b) Zeigen Sie, dass Knotenüberdeckung ∈ NP.
- (c) Zeigen Sie, dass

G=(V,E) hat eine Clique mit $\geq k$ Knoten genau dann wenn $\overline{G}=(V,\{\{u,v\}|u,v\in V,\{u,v\}\notin E\})$ eine überdeckende Kno-

tenmenge von höchstens |V| - k Knoten hat.

(d) Folgern Sie daraus, dass Knotenüberdeckung NP-vollständig ist.

Aufgabe 3: Entscheidbarkeit und Berechenbarkeit

- (a) Was ist der Zusammenhang des Konzepts *Entscheidbarkeit* für Sprachen mit dem Konzept der *Berechenbarkeit* für Funktionen?
- (b) Wann sagt man, dass ein Problem P semi-entscheidbar ist?
- (c) Beweisen oder widerlegen Sie folgende Aussage: Für eine konkrete Instanz I und ein beliebiges Entscheidungsproblem P (z.B. das Postsche Korrespondenzproblem) ist die Funktion f_I mit

$$f_I = egin{cases} wahr & ext{falls I eine ja Instanz von P ist,} \\ falsch & ext{sonst.} \end{cases}$$

berechenbar.

- (d) Seien $A \subseteq \Sigma^*$ und $B \subseteq \Gamma^*$ Sprachen. Welche Eigenschaften muss eine Funktion $f: \Sigma^* \to \Gamma^*$ besitzen, um A auf B zu reduzieren?
- (e) Betrachten Sie die Reduktion $A \leq B$,
 - i. Wenn A (semi-)entscheidbar ist, was ist über B bekannt?
 - ii. Wenn B (semi-)entscheidbar ist, was ist über A bekannt?
 - iii. Wenn A nicht entscheidbar ist, was ist über B bekannt?
 - iv. Wenn B nicht entscheidbar ist, was ist über A bekannt?