ความสัมพันธ์เวียนบังเกิด

กำหนดความสัมพันธ์เวียนบังเกิดในรูป

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

โดยที่ $1 \leq k \leq 10$ และ $1 \leq c_i \leq 100$ สำหรับ i ทุกค่า และมีการกำหนดค่า $a_0, a_1, a_2, ..., a_{k-1}$ มาให้ โดยที่ $1 \leq a_i \leq 100$ สำหรับ i ทุกค่า

นอกจากนี้ยังกำหนดจำนวนเต็ม $P \ (1 \leq P \leq 10{,}000)$ มาให้ จงคำนวณจำนวนเต็ม m ที่น้อยที่สุดที่ทำให้ $a_m \geq 2^P$

ข้อมูลนำเข้า

บรรทัดแรกมีจำนวนเต็ม k บรรทัดต่อ ไปมีจำนวนเต็มอยู่ k ตัว กั่นด้วยช่องว่าง เป็นค่าของ c_1, c_2, \ldots, c_k ตามถำดับ บรรทัดต่อ ไปมีจำนวนเต็มอยู่ k ตัว กั่นด้วยช่องว่าง เป็นค่าของ $a_0, a_1, \ldots, a_{k-1}$ ตามถำดับ บรรทัดต่อ ไปมีจำนวนเต็ม P

ข้อมูลส่งออก

พิมพ์จำนวนเต็ม m ที่น้อยที่สุดที่สอดคล้องกับเงื่อนไขข้างบนมาในบรรทัดแรก

ตัวอย่าง 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	10000
1 2	
1 2	
10000	

ในตัวอย่างนี้เราจะได้ว่า $a_n=a_{n-1}+2a_{n-2}$ โดยที่ $a_0=1$, $a_1=2$ เราสามารถพิสูจน์ได้ว่า $a_n=2^n$ ดังนั้นค่า m ที่น้อยที่สุดที่ทำให้ $a_m\geq 2^{10,000}$ คือ 10,000

ตัวอย่าง 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	7
2 2 3	
1 3 9	
10	

ในตัวอย่างนี้เราจะได้ว่า $a_n=2a_{n-1}+2a_{n-2}+3a_{n-3}$ โดยที่ $a_0=1,a_1=3,a_2=9$ เรา สามารถพิสูจน์ได้ว่า $a_n=3^n$ ดังนั้นค่า m ที่น้อยที่สุดที่ทำให้ $a_m\geq 2^{10}$ คือ 7 เนื่องจาก $a_7=3^7=2187$ ซึ่งมีค่ามากกว่า $2^{10}=1024$ แต่ $a_6=3^6=729<1024$