МГТУ им. Н. Э. Баумана Курс «Основы Электроники»

Лабораторная работа №6 «ИССЛЕДОВАНИЕ ВАХ БИПОЛЯРНОГО ТРАНЗИСТОРА И КАСКАДА УСИЛЕНИЯ В МІСКОСАР. ЧАСТЬ 2»

Работу выполнил: Студент группы ИУ7-32Б Апсуваев Рамазан **Цель работы** - получить навыки в использовании базовых возможностей программы Microcap и знания при исследовании и настройке усилительных, ключевых и логических устройств на биполярных и полевых транзисторах.

Эксперимент 4

Диод моего варианта - 2N708

Получим Rb. Наши входные данные — $R\kappa = 300$ Oм, $E\kappa = 5$ B, Uвх = 5 B, Uкэ = 0.2 B, s = 1. Отсюда, ток коллектора при насыщении будет равен Ікнас = $(E\kappa - U\kappa \ni) / R\kappa = (5 - 0.2)/300 = 16$ мA. Uбэ = 0.7 B. Определим коэффициент усиления для тока Ікнас, как мы это делали в предыдущей лабораторной работе

Коэффициент усиления $\beta=78.964$. Минимальный ток базы, при котором транзистор переходит в режим насыщения Ібнас = Ікнас/ $\beta=16/78.964=0.2$ мА. Rb(s) = (Uвх — Uбэ)/(S*Ібнас) =(5 – 0.7)/(1 * 0.2) = 21500/s Ом. s = 1, Rb = 21500 Ом. Построим цепь

Параметры V1:

Воспользуемся Transient Analysis Limits со следующими параметрами

Получим следующий график

Воспользуемся функцией Stepping, чтобы получить графики для $s=1,\,2,\,5,\,20.$ Зависимость Rb от s мы уже вывели

Получаем следующий график

Определим длительности переднего t10 и заднего фронтов t01, время рассасывания tp и напряжение на коллекторе транзистора в режиме насыщения для s=2. R1=10750 Ом

Построим график, где s = 2.

Напряжение на коллекторе — 0.396В. Отсюда, амплитуда равна 5-0.396 = 4.604 В. 0.9*4.604 = 4.144 В, 0.1*4.604 = 0.46 В.

Найдем t01, t10, tp.

t01 = 8.393 - 8.050 = 0.343 мкс

$$t10 = 10.442 - 10.034 = 0.408$$
 мкс

$$tp = 1.641$$
 мкс

Добавим диод Шоттки, настроим сопротивление R1 для случая, когда s=20.

Влияние диода Шоттки на получаемый график:

Эксперимент 5

Уберем диод Шоттки, подберем емкость форсирующего конденсатора и сопротивление Rb (R1). Перестроим цепь следующим образом

С помощью Transient Analysis Limits, используя Stepping для значения С1, будем искать С1 в диапазоне 1-100 пФ. Пусть R1 = 21500, так как при таком сопротивлении мы уже достигаем состояния насыщения.

Получим следующий график

Наводясь курсором на синие кривые, можно узнать, при каком С1 эта кривая достигается

Видим, что при увеличении C1 длительность фронтов уменьшается. Будем использовать C1 = 100 пФ. Начнем подбирать R1 с 1000 до 40000 Ом. Установим R1 = 1000 Ом

Как мы видим, при R1 = 1000 Ом и C1 = 100 п Φ получается близкий к идеальному инвентор. Для сравнения, установим R1 = 10000 Ом

Видим, что синий график прямой не сразу — сначала он несколько выгнут. Отсюда можно сделать вывод, что нам нужно значение $R1=1000~{
m Om}$

При значениях C1 = 100 пФ и R1 = 1 кОм получается инвертор, близкий к идеальному.

Уберем конденсатор, заменим транзистор на 2N915.

Запустим Transient Analysis Limits, чтобы убедиться в том, что R1 был подобран верно.

Картина всё так же близка к идеальной, то есть R1 был подобран верно.

Эксперимент 6

Построим цепь

Воспользуемся Transient Analysis Limits

Получим следующий график

Из графиков, период открытого состояния - 0.528 мс, закрытого состояния – 0.525 мс. Увеличим R3 в 2 раза

Уменьшим R3 в 2 раза, уменьшим R4 в 2 раза

Поменяем транзистор на 2N915

Получим следующий график

Увеличим R3 в 2 раза

Уменьшим R3 в 2 раза, уменьшим R4 в 2 раза

Отсюда можно сделать вывод, что что транзистор влияет на периоды колебаний

Ответы на вопросы:

- 1. Основное влияние на на частоту мультивибратора оказывают сопротивления базы, емкости
- 2. При замене транзистора меняются длительности состояний открытия и закрытия.
- 3. Математическая модель мультивибратора нуждается во нарушении баланса в плечах. Реальное устройство такого не требует