Introduction to Nanotechnology in the Solid State

Onri Jay Benally
University of Minnesota
Department of Electrical & Computer Engineering
Principal Investigator: Prof. Jian-Ping Wang

Table of Contents

- I. Quick Bio.
- II. Background & Motivation.
- III. Quantum Effects vs. Scale.
- IV. List of Physical Qubits.
- V. Solid-State vs. Non-Solid State.
- VI. Phase Diagrams as Maps.
- VII. Quantum Stack Overview.
- VIII. Conclusion.

Raith Nanofabrication, Multi-Sample Holder (2022)

Quick Notes

- This presentation/ lecture series will involve extensive use of metaphors & analogies to illustrate key ideas 199.
- QuantumGrad is part of a recent effort dedicated to providing quantum resources & relative content that can be accessed on a single website.
 - Recent news
 - Journal publications
 - Jobs/ workforce
 - Articles
 - Books
 - Conferences
 - Hackathons
 - Tutorials/ public lecture series

Biography

- Originally from Oak Springs (Tsé Ch'il Yaa Tó), Arizona, on the Navaho Nation
 - Largest <u>Native American tribe</u> in the United States

[Diné Bikéyah]

- Came to Minnesota in 2017 on a nanotechnology research fellowship.
 - Before I started my B.S. program
- Doctoral researcher & quantum hardware team leader in
- Department of Electrical and Computer Engineering

Nano Magnetism and Quantum Spintronics Lab

- Electrical Engineering Ph.D. program
- My primary area of work is nanofabrication & quantum hardware development
- IBM Quantum Provider Administrator & Quantum Developer
- Member of Quantum & IEEE Quantum

Collection of My Work

1. Taken from: Wikimedia Commons

2. Taken from: thomann.de

• From: fire starters to basic plugs/valves >> electrical switches >> vacuum tubes

(thermionic valves) >> transistors >> LASERs >> integrated computer chips/touch displays

made of melted sand/metal.

JNIVERSITY OF MINNESOTA

Driven to Discover®

2-nm Node (Nanosheet Cross Section)

- 1. IBM Research, 2-nm Node (2022)
- 2. Fuechsle et al., Nature Nanotechnology (2012)
- 3. Taken from: cdegroup.com
- 4. Taken from: coremarkmetals.com

Single Atom Transistor

- Quantum Effects vs. Scale

 We acknowledge 6 quantum postulates*. It turns out that the smaller objects become, they behave more like waves.
- According to the <u>De Broglie wavelength</u>, you can relate Planck's constant to an object's momentum.
 - Ex: a person with a mass of 70 kg moving at 5 m/s has a wavelength of 1.89×10^{-36} m. (Short wavelength = virtually impossible quantum tunneling!)
- We can build nanostructures, which have larger wavelengths that can allow for > likely quantum.

Lower wavelength = more particle-like behavior

Higher wavelength = more wave-like behavior

More Background & Motivation

- In 1982, Richard Feynman described an idea of creating quantum simulators, which would need physical devices that use quantum mechanical effects, rather than logic alone.
- Quantum bits = qubits (anharmonic oscillator).
- Qubits can either function as artificial atoms or be made of natural atoms.

• Quantum states created by qubits can be thought of as vectors, which can be modified by matrices.

Basic gubit circuit elements

Means's law" for

- Quantum state = vector
- Qubit = matrix

Josephson junction: nonlinear inductance

- .. Feynman, Int. J. Theor. Phys. (1981)
- 2. Oliver et al., Materials Research Society (2013)

List of Physical Qubits

- 2 flavors exist: solid-state qubits & non-solid-state qubits (photonic or similar).
- A key challenge for solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols.

Physical Support	Name	Information Support	0>	 1 >
	Polarization encoding	Light polarization	Horizontal	Vertical
Photons	Number of photons	Fock state	Vacuum	Single photon state
	Time-bin encoding	Time of arrival	Early	Late
Coherent state of light	Squeezed light	Quadrature	Amplitude-squeezed state	Phase-squeezed state
Electron	Electron spin	Spin	Up	Down
	Electron number	Charge	No electron	One electron
<u>Nucleus</u>	Nuclear spin (NMR)	Spin	Up	Down
Optical lattices	Atomic spin	Spin	Up	Down
	Superconducting charge	Charge	Uncharged superconducting island	Charged superconducting island
Josephson junction	Superconducting flux	Current	Clockwise current	Counterclockwise current
	Superconducting phase	Energy	Ground state	First excited state
Single-charged quantum dot pair	Electron localization	Charge	Electron on left dot	Electron on right dot
Quantum dot	Dot spin	Spin	Down	Up
Gapped topological system	Non-abelian anyons	Excitation braiding	Topological system specific	Topological system specific
<mark>Phonon</mark>	Vibrational states	Phonon/ vibron	01) Superposition	10) Superposition
van der Waals heterostructure	Electron localization	Charge	Electron on bottom sheet	Electron on top sheet

17

Phase Diagrams as Guiding Maps

N content [wt.%]

Reactive Ion Etching System vs. Ion Beam Etching System

Corial-Plasma-Therm. 3. ST Instruments

2. Intl Vac

Extreme Ultraviolet Lithography System vs. Electron-Beam Lithography System

ASML NXE 3300B

Raith EBPG-5000+

1. ASML, NXE:3300B

Quantum Stack vs. Quantum Device Control Schematic

Hardware Footprint

Example of Our Nano MTJ Chips

MTJ = Magnetic Tunnel Junction, a device that employs quantum effects for classical purposes.

Summary

- Physical devices used as qubits are a type of quantum anharmonic oscillator.
- One can treat phase diagrams as maps for growing materials that are needed to build a nano scale device.
- It is possible to pick from a number of fabrication methods widely available to develop critical features of devices.
- Multiple platforms of physical qubits can be fabricated with micro & nano.
 - The top-3 qubit systems are superconducting, trapped ion, & photonic.
- Quantum processor chips exist at bottom of the overall quantum stack.
 - This is where we place a fabricated set of devices for computing & memory.