Business Analytics 3rd Assignment

LINEAR REGRESSION WITH CATEGORICAL VARIABLES

CONTEXT

- 1. Summary of My Previous Analysis
- 2. Fix Model by Changing Categorical Variables to Dummy Variables
- 3. Modeling Result
- 4. Explain About How to Use 'zipcode', 'lat' and 'long' variables in Linear Regression Model.
 - Without Other Resources
 - With Other Resources

SUMMARY OF MY PREVIOUS ANALYSIS

VARIABLE TRANSFORM

	id	recent_built	date	price	bedrooms	bathrooms	sqft_
0	7129300520	1955	20141013T000000	221900.0	3	1.00	
1	6414100192	1991	20141209T000000	538000.0	3	2.25	
2	5631500400	1933	20150225T000000	180000.0	2	1.00	
3	2487200875	1965	20141209T000000	604000.0	4	3.00	
4	1954400510	1987	20150218T000000	510000.0	3	2.00	
21608	263000018	2009	20140521T000000	360000.0	3	2.50	
21609	6600060120	2014	20150223T000000	400000.0	4	2.50	
21610	1523300141	2009	20140623T000000	402101.0	2	0.75	
21611	291310100	2004	20150116T000000	400000.0	3	2.50	
21612	1523300157	2008	20141015T000000	325000.0	2	0.75	

- Because value of some renovated house is 0. This cause some problem in Analysis .So I think 'year_built' column and 'year_renovated' column can be combined with 'recent_built.
- ➤ So I make new column 'recent_built' and not renovated house ('year_renovate' =0) have year_built value in 'recent_built' and renovated house have year_renovated value in 'recent_built'.

VARIABLE SELECTION

- > Date is not numerical but object of date format. So I don't use 'Date' Column
- And I think latitude, longitude, zipcode is not affect to House' price

zipcode	describe
count	21613.000000
mean	98077.939805
std	53.505026
min	98001.000000
25%	98033.000000
50%	98065.000000
75%	98118.000000
max	98199.000000
Name: z	ipcode, dtype: float64

lat de	escribe
count	t 21613.000000
mean	47.560053
std	0.138564
min	47.155900
25%	47.471000
50%	47.571800
75%	47.678000
max	47.777600
Name:	lat, dtype: float64

long o	describe
count	t 21613.000000
mean	-122.213896
std	0.140828
min	-122.519000
25%	-122.328000
50%	-122.230000
75%	-122.125000
max	-121.315000
Name:	long, dtype: float64

There are zipcode, lat and long's describe.

The describes show there is a little difference each column's datas(location) So I don't use these columns in Linear Regression Model

VARIABLE SELECTION

▶ Before deleting outliers, I select variable first. Because if I delete outlier before variable selection, there are many datas which is deleted before use.

```
corr = house[['price','date','sqft_lot','recent_built','bedrooms','grade','sqft_above','bathrooms','sqft_lot','condi
corr['price']
                 1.000000
price
                 0.091812
sqft_lot
recent built
                 0.103392
                 0.313419
bedrooms
                 0.678333
grade
sqft_above
                 0.596404
bathrooms
                 0.519106
                 0.091812
sqft_lot
                 0.041264
condition
sqft_living
                 0.692901
                 0.309669
sqft_basement
                 0.265588
floors
                 0.390700
view
waterfront
                 0.230223
sqft_living15
                 0.599003
sqft_lot15
                 0.083281
Name: price, dtype: float64
```

- **Above numbers represents correlation between price and other columns.**
- 'Grade', 'sqft_above', 'bathrooms','sqft_living', 'view' and 'sqft_living15' have higher correlation than other columns

DELETING OUTLIERS

- The reason why I delete outliers by using graph is ,when I use IQR outlier, so many datas are deleted.
- Those variables(sqft_living, sqft_above, sqft_living15) are continuous variable. So I make scatter plot between those columns and price. There are some outliers (when I see) that stand out. So I delete those datas

DELETING OUTLIERS

Those variables (view, bathrooms, grade) are discrete variable. And I make box plot x is variable and y is price. So I find some outliers. So I delete them

IN MODELING, HAVE A COEFFICIENT PROBLEM

- Except for sqft_above and bathrooms, all coefficient of values are positive.
 This is understandable.
- ▶ But coefficient of sqft_above and bathrooms are negative. This is not understandable. Because house price and sqft_above&bathroom have positive correlation, which is common sense.
- So After VIF calculation, I decide drop sqft_living.

MODELING BY OLS IN PYTHON

```
house['sqft_above'].astype('float')
house['sqft living15'].astype('float')
house['sqft_above'] = house['sqft_above']/100
house['sqft_living15'] = house['sqft_living15']/100
reg = sm.OLS(house['price'],house[['intercept','sqft_above','sqft_living15','view','grade','bathrooms']])
result = reg.fit()
result.summary()
     Dep. Variable:
                                                        0.540
                            price
                                       R-squared:
                                                        0.540
           Model:
                                   Adj. R-squared:
                                        F-statistic:
          Method:
                     Least Squares
                                                         5062.
            Date: Sat, 18 Sep 2021 Prob (F-statistic):
                                                         0.00
            Time:
                         11:27:17
                                   Log-Likelihood: -2.9705e+05
 No. Observations:
                           21581
                                                     5.941e+05
                           21575
                                                     5.942e + 05
     Df Residuals:
        Df Model:
                               5
  Covariance Type:
                        nonrobust
                   coef
                           std err
                                       t P>|t|
                                                    [0.025
                                                              0.975]
    intercept -6.473e+05 1.26e+04 -51.571 0.000 -6.72e+05 -6.23e+05
                         345.209
                                  15.680 0.000
                                                           6089.464
              5412.8285
                                                 4736.193
                          366.638
                                  17.248 0.000
                                                           7042.269
              6323.6311
              1.023e+05 2165.270
                                  47.260 0.000
                                                 9.81e+04
                                                           1.07e+05
              1.158e+05 2287.230
                                   50.614 0.000
                                                 1.11e+05
                                                            1.2e+05
                                   8.210 0.000 1.85e+04
  bathrooms 2.424e+04 2952.214
                                                              3e + 04
      Omnibus: 10534.180
                            Durbin-Watson:
                                                 1.971
                    0.000 Jarque-Bera (JB): 120850.626
 Prob(Omnibus):
                    2.068
                                  Prob(JB):
                                                  0.00
         Skew:
```

13.830

Kurtosis:

Cond. No.

240.

- This is output of my previous model.
- That is problem what I use categorical variables 'view', 'grade' and 'bathrooms' like continuous variables.
- > So I change those variables to dummy variables for linear regression model.
- Price = -6.473*10^5 + 5412.8285*sqft_above + 6323.6311*sqft_living15 + 1.023*10^5 *view + 1.158*10^5*grade + 2.424*10^4*bathrooms

FIX MODEL BY CHANGING CATEGORICAL VARIABLES

CHECK MULTICOLLINEARITY

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
from patsy import dmatrices
y, X = dmatrices('price ~sqft_above+sqft_living15+view+grade+bathrooms+condition',house, return_type = 'dataframe')
vif["vif value"] = [variance_inflation_factor(X.values,i) for i in range(0,7)]
vif["explanatory variables"] = X.columns
vif
     vif value explanatory variables
0 101.701657
                      Intercept
    3.217097
                     sqft_above
2 2.549807
                    sqft_living15
    1.110155
                         view
    2.908025
                        grade
   2.060369
                     bathrooms
   1.036314
                      condition
```

- ▶ Because my previous model use 'bathrooms' variable as input variable of Linear Regression model and to compare new model with previous model, I make dummy variables not only assignment requirement ('view', 'condition' and 'grade') but also 'bathrooms' variable.
- And all input variables have VIF value under 10. So we can decide the model don't have multicollinearity

MAKE DUMMY VARIABLES

```
house['view'].value_counts()

0    19480
2    958
3    508
1    331
4    304
Name: view, dtype: int64
```

```
house['condition'].value_counts()

3    14006
4    5673
5    1700
2    172
1    30
Name: condition, dtype: int64
```

```
house['grade'].value_counts()

7    8980
8    6068
9    2615
6    2038
10    1132
11    392
5    242
12    75
4    29
13    6
3    3
1    1
Name: grade, dtype: int64
```

```
house['bathrooms'].value_counts()
2.50
        5380
        3852
1.75
        3047
2.25
        2047
        1930
        1446
2.75
        1185
         752
3.00
3.50
         730
3.25
3.75
         154
4.00
         134
4.50
4.25
          77
          72
0.75
4.75
          21
5.00
5.25
1.25
5.50
0.50
5.75
6.00
6.50
7.50
6.75
```

- > 'view' and 'condition' have 5 unique values and interval is 1. So 4 dummy variables are made.
- > 'grade' looks like having 13 unique values. But there are no house which is grade = 2. So 11 dummy variables are made and interval is 1.
- > 'bathrooms' have 27 unique values and interval is 0.25. So 26 dummy variables are made

MAKE DUMMY VARIABLES

```
catvar = ['bathrooms','view','condition','grade']
for c in catvar:
   dummy = pd.get_dummies(house[c],prefix = c, drop_first = True)
   house = pd.concat((house,dummy),axis=1)
```

- **By using this code, I make dummy variables.**
- Bathrooms' 0.5 to 7.5 (interval 0.5): 27 dummy columns are made
- 'view' 1 to 4 (interval 1): 4 columns are made
- > 'condition' 2 to 5 (interval 1 : 4 columns are made

RESIDUAL NORMALITY

Omnibus:	8594.377	Durbin-Watson:	1.983
Prob(Omnibus):	0.000	Jarque-Bera (JB):	82726.804
Skew:	1.648	Prob(JB):	0.00
Kurtosis:	12.008	Cond. No.	1.60e+06

This model Jarque-Bera test p-value is 0. So this cannot select Null Hypothesis.

And the Q-Q plot of residual shows datas are not located near normal distribution line. So we cannot decide this model's residual have normality.

MODELING RESULT

LS Regression Res	sults						bathrooms_5.25	5.355e+05	1.08e+05	4.974	0.000	3.24e+05	7.46e+05	
Dep. Variable:		price		R-squ	ared:	0.615	bathrooms_5.5	4.981e+05	1.2e+05	4.145	0.000	2.63e+05	7.34e+05	
Model:		OLS	Adj.	R-squ	ared:	0.614	bathrooms_5.75	1.239e+05	1.52e+05	0.817	0.414	-1.73e+05	4.21e+05	
Method:	l east	Squares	-	F-stat	istic:	732.8	bathrooms_6.0	1.502e+05	1.51e+05	0.992	0.321	-1.47e+05	4.47e+05	
_		•					bathrooms_6.5	4.669e+05	1.74e+05	2.684	0.007	1.26e+05	8.08e+05	
Date:	,		Prob (-	0.00	bathrooms_6.75	-4.233e+05	2.29e+05	-1.850	0.064	-8.72e+05	2.51e+04	•
Time:		22:01:19	Log-	Likelih	ood: -2.	9511e+05	bathrooms_7.5	1.049e+05	2.28e+05	0.459	0.646	-3.43e+05	5.53e+05	<
No. Observations:		21581			AIC: 5	5.903e+05	view_1	1.697e+05	1.18e+04	14.417	0.000	1.47e+05	1.93e+05	
Df Residuals:		21533			BIC: 5	5.907e+05	view_2	1.042e+05	7115.038	14.650	0.000	9.03e+04	1.18e+05	
Df Model:		47					view_3	1.84e+05	9714.090	18.939	0.000	1.65e+05	2.03e+05	
Covariance Type:	n	onrobust					view_4	4.924e+05	1.25e+04	39.479	0.000	4.68e+05	5.17e+05	
							condition_2	-7020.8696	4.24e+04	-0.166	0.868	-9.01e+04	7.61e+04	
	coef	std err	t	P> t	[0.025	0.975]	condition_3	-5698.2367	3.94e+04	-0.144	0.885	-8.3e+04	7.16e+04	
const	3.089e+04	2.1e+05	0.147	0.883	-3.82e+05	4.43e+05	condition_4	4.9e+04	3.95e+04	1.242	0.214	-2.84e+04	1.26e+05	
sqft_above	36.9703	3.292	11.231	0.000	30.518	43.422	condition_5	1.417e+05	3.97e+04	3.570	0.000	6.39e+04	2.2e+05	
sqft_living15	61.9659	3.434	18.043	0.000	55.234	68.698	grade_3	1.227e+04	2.48e+05	0.049	0.961	-4.74e+05	4.99e+05	
bathrooms_0.5	3.376e+04	1.38e+05	0.245	0.806	-2.36e+05	3.03e+05	grade_4	-5.485e+04	2.35e+05	-0.233	0.815	-5.15e+05	4.06e+05	
bathrooms_0.75	7.609e+04	9.14e+04	0.832	0.405	-1.03e+05	2.55e+05	grade_5	-5.322e+04	2.32e+05	-0.230	0.818	-5.08e+05	4.01e+05	
bathrooms_1.0	1.056e+05	8.86e+04	1.193	0.233	-6.8e+04	2.79e+05	grade_6	2599.6369	2.32e+05	0.011	0.991	-4.52e+05	4.57e+05	•
bathrooms_1.25	1.152e+05	1.13e+05	1.020	0.308	-1.06e+05	3 click to	grade_7	8.048e+04	2.32e+05	0.347	0.728	-3.74e+05	5.35e+05	4
bathrooms_1.5	9.745e+04	8.86e+04	1.099	0.272	-7.63e+04	2.71e+05	grade_8	1.773e+05	2.32e+05	0.765	0.444	-2.77e+05	6.31e+05	
bathrooms_1.75	1.019e+05	8.86e+04	1.151	0.250	-7.17e+04	2.75e+05	grade_9	3.252e+05	2.32e+05	1.403	0.161	-1.29e+05	7.79e+05	
bathrooms_2.0	1.102e+05	8.86e+04	1.243	0.214	-6.35e+04	2.84e+05	grade_10	5.045e+05	2.32e+05	2.176	0.030	5e+04	9.59e+05	
bathrooms_2.25	1.068e+05	8.86e+04	1.206	0.228	-6.68e+04	2.8e+05	grade_11	7.319e+05	2.32e+05	3.153	0.002	2.77e+05	1.19e+06	
bathrooms_2.5	6.197e+04	8.85e+04	0.700	0.484	-1.12e+05	2.36e+05	grade_12	1.007e+06	2.33e+05	4.316	0.000	5.5e+05	1.46e+06	•
bathrooms_2.75	1.209e+05	8.87e+04	1.363	0.173	-5.3e+04	2.95e+05	grade_13	1.682e+06	2.48e+05	6.783	0.000	1.2e+06	2.17e+06	
bathrooms_3.0	1.739e+05	8.88e+04	1.958	0.050	-201.608	3.48e+05	Omnibus:	8594.377	Durbin-Wa	atson:	1.983	3		
bathrooms_3.25	2.374e+05	8.9e+04	2.668	0.008	6.3e+04	4.12e+05	Prob(Omnibus):	0.000	Jarque-Bera	a (JB): 8	32726.804	1		
bathrooms_3.5	1.911e+05	8.89e+04	2.149	0.032	1.68e+04	3.65e+05	Skew:	1.648	Pro	b(JB):	0.00)		
bathrooms_3.75	3.426e+05	9.02e+04	3.797	0.000	1.66e+05	5.19e+05	Kurtosis:	12.008	Con	d. No.	1.60e+06	3		4
bathrooms_4.0	3.553e+05	9.05e+04	3.926	0.000	1.78e+05	5.33e+05								
bathrooms_4.25	4.422e+05	9.19e+04	4.811	0.000	2.62e+05	6.22e+05								
bathrooms_4.5	3.354e+05	9.12e+04	3.677	0.000	1.57e+05	5.14e+05								
bathrooms_4.75	8.254e+05	1e+05	8.253	0.000	6.29e+05	1.02e+06								

bathrooms_5.0 4.322e+05 1.01e+05 4.298 0.000 2.35e+05 6.29e+05

MODELING

- F-test's p-value is 0 => Residual have homogeneity.
- Interestingly, the coefficient 'grade4' to 'grade13' is gradually increase -> This means that high 'grade' make high 'price'.
- Also the coefficient 'condition2' to 'condition5' is same with 'grade'
- Coefficient of 'view1' is higher than of 'view2', but of 'view2' to 'view4' is gradually increase.
- > But coefficient of 'bathrooms' don't have trend of increasing or decreasing.

COMPARE RESULT WITH MY PREVIOUS MODEL

Dep. Variable:	price	R-squared:	0.540
Model:	OLS	Adj. R-squared:	0.540
Method:	Least Squares	F-statistic:	5062.
Date:	Sat, 18 Sep 2021	Prob (F-statistic):	0.00
Time:	11:27:17	Log-Likelihood:	-2.9705e+05
No. Observations:	21581	AIC:	5.941e+05
Df Residuals:	21575	BIC:	5.942e+05
Df Model:	5		
Covariance Type:	nonrobust		

LS Regression Resu	ults		
Dep. Variable:	price	R-squared:	0.615
Model:	OLS	Adj. R-squared:	0.614
Method:	Least Squares	F-statistic:	732.8
Date:	Thu, 23 Sep 2021	Prob (F-statistic):	0.00
Time:	22:01:19	Log-Likelihood:	-2.9511e+05
No. Observations:	21581	AIC:	5.903e+05
Df Residuals:	21533	BIC:	5.907e+05
Df Model:	47		
Covariance Type:	nonrobust		

Previous Model

New Model

▶ By using more categorical variables and changing them to dummy variables, R^2 value is increased. In other words, the explanatory power of the model is increased.

HOW TO USE 'ZIPCODE', 'LAT' AND 'LONG'

WITHOUT OTHER RESOURCES

```
house['zipcode'].value_counts()
98103
             602
                                               print("Depending on zipcode value mean of standard deviation of 'lat'\n\n",lat_std.mean(),"\n")
98038
             590
                                                                                                                                                       print("Depending on zipcode value mean of standard deviation of 'long'\n\n", long_std.mean(),"\n")
                                               print("standard deviation of 'lat' column \n\n" ,house['lat'].std())
98115
             583
                                                                                                                                                       print("standard deviation of 'long' column \n\n" ,house['long'].std())
98052
             574
                                               Depending on zipcode value mean of standard deviation of 'lat'
                                                                                                                                                       Depending on zipcode value mean of standard deviation of 'long'
98117
             553
                                                                                                                                                       0.019429508395824427
                                                0.01589899563147026
            . . .
                                                                                                                                                       standard deviation of 'long' column
98102
             103
                                               standard deviation of 'lat' column
98010
             100
                                                                                                                                                        0.14085387080836465
                                                0.1386231069375018
98024
              81
```

In same 'zipcode' value, there are hundreds or lower houses.

98148

98039

57

The value of standard deviation is much bigger when classify 'lat' and 'long' depending on zipcode than when handle all of data's 'lat' and 'long'. This means data of same zipcode have similar values of 'long' and 'lat'.

WITHOUT OTHER RESOURCES

- > By using 'long' and 'lat', we can decide specific location coordinate = ('long', 'lat'). And 'zipcode' means indicating the address of house in number.
- > Error-bar consist dot and line. Dot is mean of y_value and line is sd of y_value. Above graphs show data describe of 'long' and 'lat' depending on value of 'zipcode'.

WITHOUT OTHER RESOURCES

```
# for show two graph in one graph standardization |
# So i can see those graph in one graph
house['lat'] = (house['lat'] - house['lat'].mean())/house['long'].std()
house['long'] = (house['long'] - house['long'].mean())/house['long'].std()
long_mean = house.groupby('zipcode')['long'].mean()
long_std = house.groupby('zipcode')['long'].std()
lat_mean = house.groupby('zipcode')['lat'].mean()
lat_std = house.groupby('zipcode')['lat'].std()

plt.figure(figsize=(10,5))
plt.errorbar(range(len(lat_mean)),lat_mean,yerr=lat_std, fmt='o', c='b',ecolor='b',capthick=1,capsize=1)
plt.errorbar(range(len(long_mean)),long_mean,yerr=long_std, fmt='o', c='r',ecolor='r',capthick=1,capsize=1)
```

<ErrorbarContainer object of 3 artists>

- ➤ I want to show two graph in one graph with same condition. So do standardization of datas.
- When 'zipcode' are similar, many datas have similar lat or long.

 And when lat or long are similar, lat or long are similar. Meaning of this can see circle.
- ▶ By group (like circle)datas what have similar zipcode, similar lat and similar long, make new column 'group_zipcode'

WITH OTHER RESOURCES

```
price_min = house.groupby('zipcode')['price'].min()
price_max = house.groupby('zipcode')['price'].max()
plt.figure(figsize=(50,10))
for x in price_min.index:
   plt.plot([x,x],[price_min[x],price_max[x]])
#by this graph i can see the min_price value don't high difference between zipcode
price_mean = house.groupby('zipcode')['price'].mean()
price_std = house.groupby('zipcode')['price'].std()
plt.figure(figsize=(50,10))
plt.bar(range(len(price_mean)),price_mean)
plt.errorbar(range(len(price_mean)),price_mean,yerr=price_std, fmt='o', c='r',ecolor='r',capthick=1,capsize=1)
<ErrorbarContainer object of 3 artists>
```

- ▶ 1st graph is collected line graphs connect minimum of price and maximum of price depending on value of 'zipcode'.
- 2nd graph is same type graph in previous silde. This shows sd and average.
 - By seeing two graph together, I can think the min and max is not meaningful to group 'zipcode' by using price information. Because minimum of price is similar and maximum of price is not meaningful to average

WITH OTHER RESOURCES

```
price_mean = house.groupby('zipcode')['price'].mean()
price_std = house.groupby('zipcode')['price'].std()

plt.figure(figsize=(50,10))
plt.bar(range(len(price_mean)),price_mean)
plt.errorbar(range(len(price_mean)),price_mean,yerr=price_std, fmt='o', c='r',ecolor='r',capthick=1,capsize=1)

<ErrorbarContainer object of 3 artists>
```

```
price_mean.describe()
         7.000000e+01
count
         5.520771e+05
mean
         2.734145e+05
std
         2.342840e+05
min
         3.528348e+05
25%
         4.919520e+05
50%
75%
         6.425136e+05
         1.831578e+06
max
Name: price, dtype: float64
```

- > 'lat' and 'long' is mixed with zipcode in the way I did before to 'group_zipcode' column.
- > So make new column 'rank'(categorical variable). This include 'group_zipcode' in without other resource part's column,
- > Average of price in each 'group_zipcode' decide value of 'rank'. So I think this 'rank' column is more meaningful when predict 'price' value

THANKYOU