EE23BTECH11054 - Sai Krishna Shanigarapu*

GATE EC 2021

49. A sinusoidal message signal having root mean square value of 4V and frequency of 1 kHz fed to a phase modulator with phase deviation constant 2 rad/volt. If the carrier signal is $c(t) = 2\cos(2\pi 10^6 t)$, the maximum instantaneous frequency of the phase modulated signal (rounded off to one decimal place) is _____ Hz. (GATE 2021 EC)

Solution:

Parameter	Description	Value
f_m	Message signal frequency	1 kHz
$c\left(t\right)$	Carrier signal	$2\cos\left(2\pi 10^6 t\right)$
k_p	Phase sensitivity factor	$2 \text{ rad } V^{-1}$
$m\left(t\right)$	message signal	$A_m \sin 2\pi f_m t$
f_c	Carrier signal frequency	1 kHz
A_c	Amplitude of carrier signal	2
A_m	Amplitude of message signal	

TABLE I INPUT PARAMETERS

Parameter	Description	Formula
$m\left(t\right)_{rms}$	rms value of $m(t)$	$\frac{A_m}{\sqrt{2}}$
$s\left(t\right)$	Phase modulation	$A_c \cos \left[2\pi f_c t + \theta_i\left(t\right)\right]$
$\theta_{i}\left(t ight)$	phase	$k_{p} m (t)$

TABLE II FORMULAE

$$m(t)_{rms} = 4V (1)$$

$$A_m = 4\sqrt{2} \tag{2}$$

From Table I, eq (1) and eq (2)

$$m(t) = 4\sqrt{2}\sin\left(2\pi 10^3 t\right) \tag{3}$$

(4)

From Table I, II, using phase modulation, instantaneous frequency is given as,

$$f_i(t) = f_c + \frac{1}{2\pi} \frac{d}{dt} \theta_i(t)$$
 (5)

$$= f_c + \frac{1}{2\pi} \frac{d}{dt} \left[k_p m \left(t \right) \right] \tag{6}$$

$$= f_c + \frac{1}{2\pi} \frac{d}{dt} \left(4\sqrt{2} \sin\left(2\pi 10^3 t\right) \right) \tag{7}$$

$$= f_c + \frac{2}{2\pi} 4\sqrt{2} \left(2\pi 10^3\right) \left(\cos\left(2\pi 10^3 t\right)\right)$$
 (8)

$$= 1000 + 8\sqrt{2} \times 10^{3} \cos\left(2\pi 10^{3} t\right) \tag{9}$$

Fig. 1. Block diagram of phase modulation

Thus,

$$\implies f_{i_{max}} = 1011313.7 \, Hz \tag{10}$$

Fig. 2. plot of m(t) and c(t)