Homework 7

Jaden Wang

Problem (1.5.4). Since $X \cap Z$, $X \cap Z$ is a manifold. Let $y \in X \cap Z$ and given $[\gamma] \in T_y(X \cap Z)$, we know that $\gamma : [-\varepsilon, \varepsilon] \to X \cap Z$, $\gamma(0) = y \in X \cap Z$. Since the base point of this class of smooth curves is in both X and Z, $[\gamma]$ is also an equivalence class of smooth curves in X and Z as well so $[\gamma] \in T_yX$ and T_yZ , *i.e.* their intersection. Given $[c] \in T_yX \cap T_yZ$, then $c : [-\varepsilon, \varepsilon] \to Y$ and $c : [-\varepsilon, \varepsilon] \to Z$ and therefore $c : [-\varepsilon, \varepsilon] \to Y \cap Z$. Since the base point y is in both X and C and therefore $y \in X \cap Z$, we have $[c] \in T_y(X \cap Z)$.

Problem (7). We need a fact from Exercise 1.5.5: the tangent space to the preimage of Z is the preimage of the tangent space of Z. The proof is self-evident boring set containment argument similar to 1.5.4, so we leave it as an exercise for the undergrad.

(⇒): Suppose $f \pitchfork g^{-1}(W)$. Since $g \pitchfork W$, $g^{-1}(W)$ is a submanifold of Y and $dg_y(T_yY) + T_{g(y)}W = T_{g(y)}Z$. Moreover, $df_x(T_xX) + T_{f(x)}g^{-1}(W) = T_{f(x)}Y$. Applying $dg_{f(x)}$ to both sides yields

$$dg_{f(x)}(df_{x}(T_{x}X)) + T_{f(x)}g^{-1}(W)) = dg_{f(x)}(T_{f(x)}Y)$$

$$dg_{f(x)}(df_{x}(T_{x}X)) + dg_{f(x)}(T_{f(x)}g^{-1}(W)) = dg_{f(x)}(T_{f(x)}Y) \qquad \text{linearity}$$

$$dg_{f(x)}(df_{x}(T_{x}X)) + T_{g(f(x))}W = dg_{f(x)}(T_{f(x)}Y)$$

$$d(g \circ f)_{x}(T_{x}X)) + T_{g \circ f(x)}W = dg_{f(x)}(T_{f(x)}Y) + T_{g \circ f(x)}W \qquad + \text{ means span}$$

$$d(g \circ f)_{x}(T_{x}X)) + T_{g \circ f(x)}W = T_{g \circ f(x)}Z$$

(\Leftarrow): We wish to prove the contrapositive: suppose $f \not \bowtie g^{-1}(W)$, that is, there exists a vector $[v] \in T_{f(x)}Y$ that is not in $df_x(T_xX) + T_{f(x)}g^{-1}(W)$, then as we apply $dg_{f(x)}([v])$ which is an element of $T_{g\circ f(x)}Z$, then I claim that it is not in $d(g\circ f)_x(T_xX) + T_{g\circ f(x)}W$. We already know that $dg_{f(x)}([v]) \not\in T_{g\circ f(x)}W$ because $[v] \not\in T_{f(x)}g^{-1}(W)$. It remains to check that it is not in the first term (since any component $dg_{f(x)}([v])$ that is in $T_{g\circ f(x)}W$ comes from $T_{f(x)}g^{-1}(W)$ so WLOG we just need to show the other component is not in the first term).

Suppose to the contrary that $dg_{f(x)}([v]) \in d(g \circ f)_x(T_xX)$, then there exists a vector

 $[y] \in df_x(T_xX)$ s.t. $dg_{f(x)}([y]) = dg_{f(x)}([v])$. That means $[v] = [y] + \ker dg_{f(x)}$. But clearly $\ker dg_{f(x)} \subseteq T_{f(x)}g^{-1}(W)$ since $T_{g\circ f(x)}W$ contains 0. Hence $[v] \in df_x(T_xX) + T_{f(x)}g^{-1}(W)$, a contradiction. Therefore, $dg_{f(x)}([v]) \not\in d(g \circ f)_x(T_xX) + T_{g\circ f(x)}W$ and thus $g \circ f \not \bowtie W$.

Problem (1.5.11). Let C be a closed set of \mathbb{R}^k , then there exists a smooth function $f: \mathbb{R}^k \to \mathbb{R}$ s.t. $C = f^{-1}(0)$. Consider the function $g: \mathbb{R}^{k+1} \to \mathbb{R}, (x_1, \dots, x_k, x_{k+1}) \mapsto f(x_1, \dots, x^k) + x_{k+1}$. I claim that 0 is a regular value of g. Indeed, the Jacobian of this function is (df, 1) which has full rank for any point. Therefore, $M := g^{-1}(0)$ is a submanifold of \mathbb{R}^{k+1} . Now consider

$$M \cap \mathbb{R}^k = \{ x \in \mathbb{R}^{k+1} : x_{k+1} = 0, g(x) = f(x_1, \dots, x_k) + x_{k+1} = 0 \}$$
$$= \{ x \in \mathbb{R}^{k+1} : f(x_1, \dots, x_k) = 0 \}$$
$$= \{ f^{-1}(0) \}$$
$$= C$$

as desired.

Problem (1.6.7). We prove by induction. Denote I_n to be the $n \times n$ identity matrix. For k = 1, we see that by choosing a basis of \mathbb{R}^2 , the antipodal map $S^1 \to S^1, x \mapsto -x$ can be described by -I. Then

$$\begin{pmatrix} \cos(\pi t) & \sin(\pi t) \\ \sin(\pi t) & \cos(\pi t) \end{pmatrix}$$

is a homotopy between the identity map I and antipodal map -I.

Now assume that the identity I_k is homotopic to the antipodal map $-I_k$ for odd k via some homotopy $H: S^k \times I \to S^k$. Then for the next odd number k+2,

$$\begin{pmatrix} H_t & 0 & 0 \\ 0 & \cos(\pi t) & \sin(\pi t) \\ 0 & \sin(\pi t) & \cos(\pi t) \end{pmatrix}$$

is a homotopy between I_{k+2} and $-I_{k+2}$. Hence we show that identity and antipodal maps are homotopic for all odd k.

Problem (1.6.8). First, we consider the case where the manifold is path-connected. Note that since any manifold is locally diffeomorphic to \mathbb{R}^n , it is locally path-connected since \mathbb{R}^n

is. This allows us to use path-connectedness and connectedness interchangably by Munkres Theorem 25.5. Since f is a diffeomorphism, it is also a local diffeomorphism and an embedding onto N. Therefore for any homotopy of f, there exist $\varepsilon_1, \varepsilon_2 > 0$ that preserve these properties under perturbation. Let $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$, then $f_t : M \to N$ is a local diffeomorphism and an embedding for any $t \in [0, \varepsilon)$. Given any open set U of M, let U_m denotes the neighborhood of m where f_t is a local diffeomorphism. Then $U = \bigcup_{m \in U} U \cap U_m$. Notice f_t is also a diffeomorphism restricted to $U \cap U_m$ which is open so $f_t(U)$ is a union of open sets which is open. That is, f_t is an open map. In particular, $f_t(M)$ is open. Since M is compact, $f_t(M)$ is also compact. Since N is Hausdorff, $f_t(M)$ is closed so $N - f_t(M)$ is open. This implies that $f_t(M)$ and $N - f_t(M)$ form a separation of N. But since N is connected, and clearly $f_t(M)$ as an embedding is not empty so this forces $f_t(M) = N$. That is, $f_t(M)$ is a surjective embedding so it is a diffeomorphism onto N.

Now suppose M has multiple path components. Then since f is a diffeomorphism, it must map path components of M to path components of N in a bijective way. Together with the fact that homotopy can never cross path components, we are allowed to consider one pair of components at a time so the above result applies. Since M is compact, the path components must be finite (or each component would require at least one open set in any covering and we would not have finite subcover). , it suffices to take the minimum of the ε yielded from each path component from above and we are done.

Problem (1.7.11). Since a is a nondegenerate critical point of f, by Morse Lemma, there exists a local coordinate system $x = (x_1, \dots, x_n)^T$ s.t.

$$f = f(a) + x^T H x,$$

where H is the nondegenerate Hessian of f under this coordinate system. Notice that H is symmetric so it is also diagonalizable, *i.e.* $H = P^{-1}DP = P^{T}DP$ where D has nonzero eigenvalues $\lambda_1, \ldots, \lambda_n$ on the diagonal. Let $\varepsilon_i = \operatorname{sgn}(\lambda_i)$. Then

$$H = P^{T} \begin{pmatrix} \sqrt{|\lambda_{1}|} & 0 & \cdots & 0 \\ 0 & \sqrt{|\lambda_{2}|} & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}} \end{pmatrix} \begin{pmatrix} \varepsilon_{1} & 0 & \cdots & 0 \\ 0 & \varepsilon_{2} & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \varepsilon_{n} \end{pmatrix} \begin{pmatrix} \sqrt{|\lambda_{1}|} & 0 & \cdots & 0 \\ 0 & \sqrt{|\lambda_{2}|} & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}} \end{pmatrix} P$$

$$=: (P^{T}\Lambda)E(\Lambda P)$$
$$= (\Lambda P)^{T}E(\Lambda P)$$
$$=: \tilde{P}^{T}E\tilde{P}$$

Since each $|\lambda_i| > 0$, the diagonal matrix Λ and thus \tilde{P} is invertible. Let $\tilde{x} = \tilde{P}x$. Since \tilde{P} is a linear isomorphism, \tilde{x} is also a local coordinate. Under this local coordinate, we see that

$$f = f(a) + \tilde{x}^T E \tilde{x}$$

as desired.

Problem (1.7.14). We wish to use the lemma on page 42 of the book to show that the poles are the only critical points and they are nondegenerate (and therefore the height function h is a Morse function on S^{k-1}).

First we consider the south pole S. View S^{k-1} as a unit sphere inside \mathbb{R}^k with the south pole at the origin so S=0. Consider the height function restricted to $S^{k-1}-N$ which is $h_S: S^{k-1}-N\to\mathbb{R}$, and the inverse stereographic projection $g_S: \mathbb{R}^{k-1}\to S^{k-1}-N$. We see that $h_S=(h_S\circ g_S)\circ g_S^{-1}$. Since $g_S^{-1}(0)=0$ (maps the south pole to the origin), by lemma it suffices to consider the critical points of $h_S\circ g_S: \mathbb{R}^{k-1}\to \mathbb{R}, x\mapsto \frac{4+\|x\|^2}{4-\|x\|^2}$. By the quotient rule, its derivative is

$$d(h_S \circ g_S)(x) = \frac{2\|x\|(4 - \|x\|^2) - (4 + \|x\|^2)(-2\|x\|)}{(4 - \|x\|^2)^2}$$
$$= \frac{16\|x\|}{(4 - \|x\|^2)^2}.$$

By basic geometry, $||x||^2 = 4 \Leftrightarrow x = (0, ..., 0, 2) = N$, the derivative is well-defined everywhere. It equals zero iff the numerator is zero iff ||x|| = 0 iff x = 0 = S by positive definiteness of the norm. Hence S is the unique critical point. Again by the positive definiteness of the norm, the Jacobian of the derivative, *i.e.* the Hessian of $h_S \circ g$, must also be positive definite. Thus S is nondegenerate as well. Hence by lemma, S is the unique critical point of h restricted to one chart and it is nondegenerate.

By a similar argument, we can view S^{k-1} as the unit sphere with normal pole at the origin. Consider $h_N: S^{k-1} - S \to \mathbb{R}$ and inverse stereographic projection $g_N: \mathbb{R}^{k-1} \to S^{k-1} - S$. The composition $h_N \circ g_N : \mathbb{R}^{k-1} \to \mathbb{R}, x \mapsto \frac{4-\|x\|^2}{4+\|x\|^2}$. This time we have negative definition Hessian. So N is the unique critical point of h restricted to the other chart and it is also nondegenerate. That is all the critical points of h and both are nondegenerate so h is a Morse function of S^{k-1} .