MA 102 (Ordinary Differential Equations)

IIT Guwahati

Tutorial Sheet No. 2 **Date:** March 15, 2018

Exact differential equations; Integrating Factors; Higher-order linear IVPs; Wronskian.

- (1) Under what conditions, the following differential equations are exact?
 - (a) (ax + by)dx + (kx + ly)dy = 0; (b) [f(x) + g(y)]dx + [h(x) + l(y)]dy = 0;
 - (c) $(x^3 + xy^2)dx + (ax^2y + bxy^2)dy = 0$.
- (2) Are the following equations exact? If exact, obtain the general solution.
 - (a) $(2xy \sec^2 x)dx + (x^2 + 2y)dy = 0$. (b) $(x 2xy + e^y)dx + (y x^2 + xe^y)dy = 0$.
- (3) In each case find an integrating factor and solve:
 - (a) $y' (2/x)y = x^2 \cos x$, (b) $ydx + (x^2y x)dy = 0$, (c) $y(2x^2y^3 + 3)dx + x(x^2y^3 1)dy = 0$
- (4) Show that if $(N_x M_y)/(xM yM) = g(xy)$ then the equation M(x,y)dx + N(x,y)dy = 0 has an integrating factor of the form $\mu(xy)$, where $\mu(u) = \exp(\int g(u)du)$.
- (5) Find the particular solution of
 - (a) $xy' + 3y = \frac{\sin x}{x^2}, \ x \neq 0, \ y(\pi/2) = 1.$
 - (b) y' + y = f(x), y(0) = 0, where $f(x) = \begin{cases} 2, & 0 \le x < 1, \\ 0, & x \ge 1. \end{cases}$
 - (c) $x^2y' + xy = \frac{y^3}{x}$, y(1) = 1, $x \neq 0$.
- (6) Given that $y_1(x) = x$ is a solution of $\frac{dy}{dx} = -y^2 + xy + 1$, obtain the general solution. (7) Find the value of n such that the curves $x^n + y^n = c_1$ are the orthogonal trajectories of the family $y = \frac{x}{1 c_2 x}$, where c_1 and c_2 are arbitrary constants.
- (8) Determine the largest interval (a, b) in which the given IVP is certain to have a unique solution:
 - (a) $e^x y'' \frac{y'}{x-3} + 3y = \ln x$, y(1) = 3, y'(1) = 2.
 - (b) $(1-x)y'' 3xy' + 3y = \sin x$, y(0) = 1, y'(0) = 1.
 - (c) $x^2y'' + 4y = \cos x$, y(1) = 0, y'(1) = -1.
- (9) Let y_1 and y_2 be two solutions of y''(x) + p(x)y'(x) + q(x)y = 0 defined in the interval [a, b]. Show that if their Wronskian $W(y_1, y_2) = 0$ at least one point in [a, b] then $W(y_1, y_2) = 0$ for all
- (10) If y_1 and y_2 are linearly independent solutions of $xy'' + 2y' + xe^xy = 0$ and if $W(y_1, y_2)(1) = 2$, find the value of $W(y_1, y_2)(5)$.
- (11) (a) Verify that the functions $y_1(x) = x^3$ and $y_2(x) = x^2|x|$ are linearly independent solutions of the differential equation $x^2y'' - 4xy' + 6y = 0$ on $(-\infty, \infty)$; (b) Show that y_1 and y_2 are linearly dependent on $(-\infty,0)$, but are linearly independent on $(-\infty,\infty)$; (c) Although y_1 and y_2 are linearly independent, show that $W(y_1, y_2) = 0$ for all $x \in (-\infty, \infty)$. Does this violate the fact that $W(y_1, y_2) = 0$ for every $x \in (-\infty, \infty)$ implies y_1 and y_2 are linearly dependent?
- (12) Let $p(x), q(x) \in C(I)$. Assume that the functions $y_1, y_2 \in C^2(I)$ are solutions of the differential equations y'' + p(x)y' + q(x)y = 0 on an open interval I. Prove that (a) if y_1 and y_2 are zero at the same point in I, then they cannot be a fundamental set of solutions on that interval; (b) if y_1 and y_2 have a common point of inflection x_0 in I, then they cannot be a fundamental set of solutions on that interval.