Capstone Project

Battle of Seoul

1. Introduction

Now that you have been equipped with the skills and the tools to use location data to explore a geographical location, over the course of two weeks, you will have the opportunity to be as creative as you want and come up with an idea to leverage the Foursquare location data to explore or compare neighborhoods or cities of your choice or to come up with a problem that you can use the Foursquare location data to solve. If you cannot think of an idea or a problem, here are some ideas to get you started:

- 1. In Module 3, we explored New York City and the city of Toronto and segmented and clustered their neighborhoods. Both cities are very diverse and are the financial capitals of their respective countries. One interesting idea would be to compare the neighborhoods of the two cities and determine how similar or dissimilar they are. Is New York City more like Toronto or Paris or some other multicultural city? I will leave it to you to refine this idea.
- 2. In a city of your choice, if someone is looking to open a restaurant, where would you recommend that they open it? Similarly, if a contractor is trying to start their own business, where would you recommend that they set up their office?

These are just a couple of many ideas and problems that can be solved using location data in addition to other datasets. No matter what you decide to do, make sure to provide sufficient justification of why you think what you want to do or solve is important and why would a client or a group of people be interested in your project. So I decided to try to answer this simple question: where would you recommend to open a new restaurant?

1.1. Business problem

The city chosen to answer the initial question is Seoul a capital and the most populous city in South Korea. Its continuously built-up urban area, that stretches well beyond the boundaries of the administrative metropolitan city with over 9.7 million inhabitants.

Seoul is considered a leading alpha global city, with strengths in the field of the art, commerce, design, education, entertainment, fashion, finance, healthcare, media, services, research and tourism. Its business district hosts Korea's stock exchange, and the headquarters of national and international banks and companies.

1.2. Target audience

- A business entrepreneur that wants open a new restaurant in Seoul.
- Business Analyst or Data Scientists, who wish to analyze the districts of Seoul using python, jupyter notebook and some machine learning techniques.
- Someone curious about data that want to have an idea, how beneficial it is to open a restaurant and what are the pros and cons of this business.

2. Data Section

First we need some information about the area of Seoul such as borough, districts, population etc... I think a good place to take a look is wikipedia.

The districts are 24 with these coordinates:

	District	Population	Area(km2)	Population_Density(km2)	Latitude	Longitude
0	Dobong	355712	20.70	17184	37.695000	127.046940
	Dongdaemun	376319	14.21	26483	37.571000	127.009700
2	Dongjak	419261	16.35	25643	37.512403	126.939253
3	Eunpyeong	503243	29.70	16944	37.602697	126.929111
4	Gangbuk	338410	23.60	14339	37.639611	127.025656
5	Gangdong	481332	24.59	19574	37.530000	127.123890
6	Gangnam	583446	39.50	14771	37.496670	127.027500
7	Gangseo	591653	41.43	14281	37.548610	126.850830
8	Geumcheon	258030	13.02	19818	37.451853	126.902036
9	Guro	457131	20.12	22720	37.495000	126.887000
10	Gwanak	531960	29.57	17990	37.478400	126.951600
11	Gwangjin	377375	17.06	22120	37.537900	127.082100
12	Jongno	165344	23.91	6915	37.599440	126.974720
13	Jung	136227	9.96	13677	37.556000	126.970000
14	Jungnang	423411	18.50	22887	37.606400	127.092600
15	Маро	395830	23.84	16604	37.563800	126.908400
16	Nowon	586056	35.44	16536	37.654192	127.056794
17	Seocho	454288	47.00	9666	37.483610	127.032500
18	Seodaemun	320861	17.61	18220	37.579170	126.936670
19	Seongbuk	475961	24.58	19364	37.589170	127.018330
20	Seongdong	303891	16.86	19364	37.563330	127.036940
21	Songpa	671794	33.88	19829	37.514170	127.106670
22	Yangcheon	490708	17.40	28202	37.516872	126.866397
23	Yeongdeungpo	421436	24.53	17180	37.526390	126.896390
24	Yongsan	249914	21.87	11427	37.538330	126.965560

3. Methodology

3.1. Business Understanding

The aim of this project is to find the best district of Seoul to open a new restaurant.

3.2. Analytical Approach

The total number of districts in Seoul are 24 so we need to find a way to cluster them based on their similarities, that are the number and the kind of restaurant. Briefly, after some steps of Data Cleaning and Data Exploration, I will use a K-Means algorithm to extract the clusters, produce a map and make an argument on the final result.

3.3. Data Exploration

To explore the data, I will use "Folium" a python library that can create interactive leaflet map using coordinate data.

Create map of Seoul using latitude and longitude values

3.3. Data Exploration

It's pretty important to use some good visualization to understand better the area

A map of Seoul with centroids of every district:

```
map_s = folium.Map(location=[latitude, longitude], zoom_start=12)
# add markers to map
for lat, lng, district in zip(swiki_df['Latitude'],
                              swiki_df['Longitude'],
                              swiki_df['District']):
   label = '{}'.format(district)
    label = folium.Popup(label, parse_html=True)
    folium.CircleMarker(
        [lat, lng],
        radius=5,
        popup=label,
        color='blue',
        fill=True.
        fill_color='#3186cc',
        fill_opacity=0.7,
        parse_html=False).add_to(map_s)
map_s
```


3.3. Data Exploration

nearby_venues.columns = ['District',

Extract venues for each district in Seoul

```
# create the API request URL
url = 'https://api.foursquare.com/v2/venues/explore?&section=food&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
    CLIENT_ID,
    CLIENT_SECRET,
    VERSION,
    lat,
    lng,
    radius,
    LIMIT)

nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list])
```

'District Latitude', 'District Longitude', District District Latitude District Longitude Venue Category Venue Venue Latitude Venue Longitude 'Venue'. 'Venue Latitude', Dobong 37.695 127.04694 PARIS BAGUETTE 37.683948 127.045930 Bakery 'Venue Longitude', 우리나라 BBQ Joint Dobong 37.695 127.04694 37.701103 127.054487 'Venue Category'] 127.04694 산넘어남촌 의정부점 Dobong 37.695 37.704067 127.047874 Korean Restaurant 도봉산갈비 Dobong 37 695 127.04694 37.685881 127.046143 Korean Restaurant 도봉산 산두부 Dobong 37.695 127.04694 37.686635 127.037702 Korean Restaurant

To analyze which district of Seoul is good to open a new restaurant, I will use a K-means clustering: a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided. Data points are clustered based on feature similarity.

So the first step is identify the best "K" using a famous analytical approach: the elbow method.

```
from sklearn.cluster import KMeans
from yellowbrick.cluster import KElbowVisualizer

s_part_clustering = s_grouped.drop('District', 1)

# Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(model, k=(4,11))

visualizer.fit(s_part_clustering)  # Fit the data to the visualizer
visualizer.poof()  # Draw/show/poof the data
```

From the plot up here, I can easily say that the best K is 7.

Finally, we can try to cluster the neighborhood based on the venue categories and use K-Means clustering. The 7 clusters are partitioned based on similar type of restaurants that belong to neighborhoods.

To run the cluster, I have used the code snippet below.

```
# set number of clusters
kclusters = 7
s_grouped_clustering = s_grouped.drop('District', 1)
# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(s_grouped_clustering)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

And merge to obtain the final dataset:

```
s_complete = swiki_df.join(s_sorted.set_index('District'), on='District')
s_complete['Cluster Labels'] = s_complete['Cluster Labels'].fillna(0)
s_complete['Cluster Labels'] = s_complete['Cluster Labels'].astype(int)
s_complete.head()
```

	District	Population	Area(km2)	Population_Density(km2)	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Dobong	355712	20.70	17184	37.695000	127.046940		Korean Restaurant	Pizza Place	Spanish Restaurant	Vegetarian / Vegan Restaurant	Restaurant	Japanese Restaurant	Seafood Restaurant	Sandwich Place	Sushi Restaurant	Chinese Restaurant
	ongdaemun	376319	14.21	26483	37.571000	127.009700		Korean Restaurant	Chinese Restaurant	Noodle House	Japanese Restaurant	Indian Restaurant	Seafood Restaurant	Pizza Place	Fried Chicken Joint	Fast Food Restaurant	Burger Joint
2	Dongjak	419261	16.35	25643	37.512403	126.939253		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Seafood Restaurant	Fast Food Restaurant	Noodle House	Fried Chicken Joint	Italian Restaurant	Food Court	Steakhouse
3	Eunpyeong	503243	29.70	16944	37.602697	126.929111		Korean Restaurant	Fast Food Restaurant	Japanese Restaurant	Chinese Restaurant	Fried Chicken Joint	Seafood Restaurant	Sushi Restaurant	Steakhouse	Spanish Restaurant	Diner
4	Gangbuk	338410	23.60	14339	37.639611	127.025656	2	Korean Restaurant	Fast Food Restaurant	Fried Chicken Joint	Japanese Restaurant	Noodle House	Sushi Restaurant	Spanish Restaurant	Diner	Pizza Place	Restaurant

Before to start to analyze all the clusters, let's take a look on a folium map:

As we can see, each cluster belong to a color with different characteristics. You can read the complete list above:

Cluster 1:

[49] s_	complete.loc[s	_complete	['Cluster La	bels'] == 0, s	s_complete.columns[[1] + list(range(4, s	_complete.shape[1]))]	11						
C•	Population 1	Latitude :	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	355712	37.695	127.04694		Korean Restaurant	Pizza Place	Spanish Restaurant	Vegetarian / Vegan Restaurant	Restaurant	Japanese Restaurant	Seafood Restaurant	Sandwich Place	Sushi Restaurant	Chinese Restaurant

Cluster 2:

[50] s	50] s_complete.loc[s_complete['Cluster Labels'] == 1, s_complete.columns[[1] + list(range(4, s_complete.shape[1]))]]													
D	Population	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	1 377375	37.53790	127.08210		Chinese Restaurant	Korean Restaurant	Italian Restaurant	Fast Food Restaurant	Japanese Restaurant	Sushi Restaurant	Asian Restaurant	Pizza Place	Restaurant	Noodle House
1	8 320861	37.57917	126.93667		Korean Restaurant	Chinese Restaurant	Fast Food Restaurant	Italian Restaurant	Japanese Restaurant	Noodle House	Pizza Place	Restaurant	American Restaurant	Sandwich Place

Cluster 3:

Cluster 4:

Cluster 5:

[52]	_complete.1	oc[s_comple	te['Cluster	Labels'] == 4,	s_complete.columns[[1] + list(range(4, s	complete.shape[1]))	11						
D·	Populatio	on Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	5032	37.602697	126.929111		Korean Restaurant	Fast Food Restaurant	Japanese Restaurant	Chinese Restaurant	Fried Chicken Joint	Seafood Restaurant	Sushi Restaurant	Steakhouse	Spanish Restaurant	Diner
	7 5916	37.548610	126.850830		Korean Restaurant	Fast Food Restaurant	Italian Restaurant	Steakhouse	Restaurant	Japanese Restaurant	Sushi Restaurant	Chinese Restaurant	Noodle House	Asian Restaurant
!	45713	37.495000	126.887000		Korean Restaurant	Fast Food Restaurant	Chinese Restaurant	Japanese Restaurant	Fried Chicken Joint	Sushi Restaurant	Steakhouse	Noodle House	Restaurant	Food Truck
1	6 5860	6 37.654192	127.056794		Korean Restaurant	Fast Food Restaurant	Japanese Restaurant	Italian Restaurant	Fried Chicken Joint	Steakhouse	Seafood Restaurant	Noodle House	American Restaurant	Pizza Place
2	2 49070	8 37.516872	126.866397		Korean Restaurant	Fast Food Restaurant	Chinese Restaurant	Sushi Restaurant	Fried Chicken Joint	Salad Place	Italian Restaurant	Food Court	Asian Restaurant	Steakhouse

Cluster 6:

	_complete.loc	[s_complet	e['Cluster La	bels'] == 5, s	_complete.columns[[1] + list(range(4, s	_complete.shape[1])	011						
	Population	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	419261	37.512403	126.939253		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Seafood Restaurant	Fast Food Restaurant	Noodle House	Fried Chicken Joint	Italian Restaurant	Food Court	Steakhouse
	583446	37.496670	127.027500		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Sushi Restaurant	Fried Chicken Joint	Noodle House	Seafood Restaurant	Burger Joint	Italian Restaurant	Pizza Place
10	531960	37.478400	126.951600		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Fast Food Restaurant	Burger Joint	Spanish Restaurant	Sushi Restaurant	Italian Restaurant	Noodle House	Asian Restaurant
13	136227	37.556000	126.970000		Korean Restaurant	Chinese Restaurant	Seafood Restaurant	Japanese Restaurant	Italian Restaurant	Bistro	Noodle House	Ramen Restaurant	Sandwich Place	Sushi Restaurant
15	395830	37.563800	126.908400		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Italian Restaurant	Sandwich Place	Sushi Restaurant	Ramen Restaurant	Noodle House	Vegetarian / Vegan Restaurant	Breakfast Spot
19	475961	37.589170	127.018330		Korean Restaurant	Noodle House	Chinese Restaurant	Fast Food Restaurant	Indian Restaurant	Japanese Restaurant	Fried Chicken Joint	Sandwich Place	Burger Joint	Sushi Restaurant
21	671794	37.514170	127.106670		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Italian Restaurant	Seafood Restaurant	Sandwich Place	Indian Restaurant	Restaurant	Burger Joint	Fast Food Restaurant
23	421436	37.526390	126.896390		Korean Restaurant	Japanese Restaurant	Chinese Restaurant	Asian Restaurant	Restaurant	Seafood Restaurant	Noodle House	Italian Restaurant	Pizza Place	Fried Chicken Joint

Cluster 7:

[54]	s_comp	lete.loc[s_complete	e['Cluster La	bels'] == 6, s	_complete.columns[[1] + list(range(4, s_	_complete.shape[1]))	11						
D	Por	pulation	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue		4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
		165344	37.59944	126.97472		Korean Restaurant	Italian Restaurant	Chinese Restaurant	Japanese Restaurant	Restaurant	Fried Chicken Joint	Noodle House	Burger Joint	Pizza Place	Seafood Restaurant

5. Conclusion

As the analysis is performed on small set of data, we can achieve better results by increasing the district information (see the next chapter). Anyway Seoul is an international city with many different types of new restaurant business to offer and I think we have gone through the process of identifying the business problem, specifying the data required, clean the datasets, performing a machine learning algorithm using k-means clustering and providing some useful tips to our stakeholder.

6. Next Developments

Next steps I recommend would be:

- Use a different Venue API with more data. Unfortunately foursquare isn't pretty famous in Korea.
- Mostly users prefer Google Maps or Facebook.
- Find and use updated demographics data about Milan's Neighborhood.
- Try a Neighborhood-Based Clustering.