

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

SIGUD Sistema Integrado de Gestión

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:			Tecnológica					
PROYECTO CURRICULAR:		Tecnología en elelctrónica industrial			CÓDIGO PLAN DE ESTUDIOS:		305	
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO								
NOMBRE DEL E	SPACIO ACADÉ	MICO: FÍSICA II – ELECT	ROMAGNETISMO					
Código del espacio académico:			13	Número de créditos académicos:			3	
Distribución horas de trabajo:			HTD	2	HTC	3	НТА	9
Tipo de espacio académico:			Asignatura	х	Cátedra			
NATURALEZA DEL ESPACIO ACADÉMICO:								
Obligatorio Básico	х		gatorio ementario		Electivo Intrínseco		Electivo Extrínseco	
			CAI	RÁCTER DEL ESPACIO ACA	DÉMICO:			
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:								
Presencial	x	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:
II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS								

Se recomienda que el estudiante haya cursado Física Mecánica y Cálculo Integral. Debe tener bases sólidas en manipulación de vectores, funciones matemáticas continuas y derivables, así como nociones de circuitos eléctricos. Es fundamental su disposición para el uso de herramientas digitales de simulación (GeoGebra, PhET, Falstad, Python, MATLAB) y sensores experimentales que permitan relacionar teoría y práctica. Estas competencias facilitarán la comprensión de los campos eléctrico y magnético, así como su interacción con cargas, corrientes y materiales.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El electromagnetismo es uno de los pilares fundamentales de la física moderna y base para el desarrollo de tecnologías en electrónica, comunicaciones, sensores, energías limpias y dispositivos inteligentes. Esta asignatura proporciona los conceptos necesarios para comprender cómo se generan y actúan los campos eléctricos y magnéticos, cómo se almacenan y transportan energías eléctricas, y cómo interactúan los materiales con dichos campos. A través de este conocimiento, los estudiantes podrán desarrollar habilidades para analizar, diseñar e implementar soluciones electrónicas, energéticas e instrumentales en diversos contextos tecnológicos y sociales.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General

Comprender y aplicar los conceptos fundamentales del electromagnetismo clásico al análisis, modelado y solución de situaciones reales en circuitos, materiales y sistemas electrónicos.

Objetivos Específicos

- Explicar el comportamiento de partículas cargadas en presencia de campos eléctricos y magnéticos.
- $\bullet \text{Analizar fen\'omenos electrost\'aticos y capacitores en sistemas reales y simulados}.$
- Comprender la corriente eléctrica desde una perspectiva microscópica y su relación con la resistividad de materiales.
- Aplicar leyes de circuitos (Ohm, Kirchhoff) y modelos energéticos en sistemas electrónicos.
- Estudiar la inducción electromagnética y sus aplicaciones en generación de energía, almacenamiento y sensores.
- Utilizar herramientas computacionales y experimentales para la simulación y verificación de fenómenos electromagnéticos.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

- •Integrar el conocimiento físico con el análisis de sistemas eléctricos y electrónicos reales.
- •Desarrollar pensamiento crítico y habilidades experimentales en contextos energéticos, tecnológicos y ambientales.
- •Formar competencias para el diseño, simulación y evaluación de dispositivos electromagnéticos en contextos industriales.

Resultados de Aprendizaje:

- $\bullet Interpreta\ modelos\ físicos\ de\ campos\ eléctricos\ y\ magnéticos\ aplicados\ en\ electrónica\ industrial.$
- Aplica conceptos de capacitancia, resistencia e inducción en sistemas reales y simulados.
- •Utiliza software de simulación y herramientas experimentales para visualizar y analizar fenómenos electromagnéticos.
- Formula proyectos o soluciones a problemáticas reales usando principios del electromagnetismo clásico.

VI. CONTENIDOS TEMÁTICOS

1.Introducción a la Electricidad y la Carga (1 semana)

oCarga eléctrica, ley de Coulomb, conductores y aislantes.

oConservación y cuantización de la carga.

a Evnarimentas cimplas con alactrosconios y datactoras da carga

OEXPERMIENTOS SIMPIES COM EJECTIOSCOPIOS y detectores de carga.

2.Campo Eléctrico (2 semanas)

oCampo generado por cargas puntuales y distribuciones.

oLíneas de campo y fuerza sobre cargas de prueba.

oDipolos eléctricos y simulaciones con superficies equipotenciales.

3.Ley de Gauss y Aplicaciones (2 semanas)

oFlujo eléctrico y simetría.

oAplicación en esferas, cilindros y planos.

oConductores en equilibrio electrostático.

4. Potencial Eléctrico (2 semanas)

oRelación entre campo y potencial.

oEnergía potencial y equipotenciales.

oCálculo del potencial en diferentes geometrías.

5. Capacitores y Dieléctricos (2 semanas)

oCapacitancia y almacenamiento de energía.

oDisposición de capacitores (serie/paralelo).

oComportamiento de dieléctricos y simulaciones de campo en medios no homogéneos.

6. Corriente, Resistencia y Circuitos DC (2 semanas)

oDensidad de corriente, resistividad, Ley de Ohm.

oLeyes de Kirchhoff, análisis de mallas y nodos.

oCircuitos RC: respuesta transitoria y permanente.

7. Campo Magnético y Fuerza Magnética (2 semanas)

oMovimiento de partículas cargadas en campos magnéticos.

o Fuerzas sobre corrientes y momentos de dipolo magnético.

oRepresentación de líneas de campo y comportamiento de materiales.

8. Leyes de Ampère y Biot-Savart (1 semana)

oCampo magnético generado por corrientes.

oInteracciones entre conductores paralelos.

oAplicaciones a solenoides, toroides y bobinas.

9. Ley de Faraday e Inducción Electromagnética (1 semana)

o Feminducida, ley de Lenz y campos eléctricos no conservativos.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante clases participativas, laboratorios experimentales, trabajo autónomo, proyectos interdisciplinarios y simulaciones. Se usará el Aprendizaje Basado en Proyectos (ABP) con problemáticas reales como: monitoreo de campos electromagnéticos, diseño de sensores capacitivos e inductivos, almacenamiento de energía, o instrumentación de bajo consumo. Se emplearán herramientas como Tracker, GeoGebra, PhET, Falstad, Arduino, Python y simuladores de campo (EM Field, Comsol). Las prácticas buscarán generar pensamiento crítico, interpretación gráfica y construcción colaborativa del conocimiento.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) 2 35%

Segundo corte (hasta la semana 16) 2 35%

Proyecto final (hasta la semana 18) 2 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, software (PhET, GeoGebra, Falstad, LTspice, Tracker, Arduino IDE), textos base, hojas de datos, artículos técnicos, manuales técnicos, datasheets, bibliotecas digitales y plataforma LMS para seguimiento de actividades, entrega de tareas y discusión asincrónica.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio de física con fuentes de alimentación, multímetros, bobinas, capacitores, electroscopios, sensores y osciloscopios, etc. Asimismo, se recomienda el uso de software de simulación con licencia o de acceso abierto

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se desarrollarán laboratorios presenciales y virtuales para el análisis de campo eléctrico y magnético, líneas equipotenciales, mapeo de campos reales con sensores, diseño de sensores capacitivos y bobinas de inducción. Como actividad complementaria se podrá visitar un laboratorio de metrología, un centro de investigación en energía, o una empresa donde se utilicen dispositivos de almacenamiento o transmisión de energía eléctrica.

XI. BIBLIOGRAFÍA

• Halliday, D., Resnick, R., & Walker, J. (2021). Funda	amentos de Física Vol II. Ed. Wiley.						
•Serway, R. A., & Jewett, J. W. (2021). Física para Ciencias e Ingeniería Vol II. Ed. Cengage.							
•Young, H. D., & Freedman, R. A. (2021). Física Unive	ersitaria Vol II. Ed. Pearson.						
•Tipler, P., & Mosca, G. (2020). Física para la Ciencia	y la Tecnología Vol II. Ed. Reverté.						
OpenStax. (2023). University Physics Vol II. Disponible en: https://openstax.org							
•Alonso, M., & Finn, E. (2009). Física: Campos y Ond	as. Fondo Educativo Interamericano.						
XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS							
Fecha revisión por Consejo Curricular:							

Número de acta:

Fecha aprobación por Consejo Curricular: