Credit Card Customer Default Prediction – Detailed Project Report

Phase 0: Understanding the Dataset

The first step in building a robust predictive model is to understand the structure and context of the data. In this dataset, we are tasked with predicting the likelihood of a credit card customer defaulting ($bad_flag = 1$) or not ($bad_flag = 0$). The dataset is quite large, with 96,806 rows and 1,216 columns, which makes it high-dimensional and complex.

To simplify this, the dataset can be grouped into four major types of features:

- Onus attributes: Represent internal usage data specific to the bank.
- Transaction attributes: Capture how customers spend money useful for behavioral patterns.
- Bureau tradeline attributes: Provide historical credit information from credit bureaus often highly predictive of defaults.
- Bureau enquiry attributes: Indicate recent inquiries into a customer's credit this can signal financial stress or upcoming liabilities.

The goal here was to identify which features are numerical, categorical, ID-like (e.g., account_number), or time-based to plan cleaning and modeling strategies accordingly.

Phase 1: Data Cleaning

With over a thousand features, data cleaning was both critical and challenging. Here's a breakdown of what was done and why:

1. Removing Duplicate Columns and Useless Identifiers

 Duplicate columns (having the same values across all rows) were removed to avoid redundancy. Columns like account_number were dropped because they serve as identifiers and hold no predictive value — keeping them may mislead the model.

2. Handling Missing Values

- The percentage of missing values was calculated for each column.
- Any column with more than 50% missing data was dropped, as imputing them would inject noise and bias.
- For the remaining missing values:
 - KNN Imputer was used, which estimates missing values by looking at similar rows.
 - This was chosen over simple mean/median imputation because the dataset is entirely numerical, and KNN can capture local data structures.
 - To manage performance with such a large dataset, imputation was done in chunks, which is a smart memory-efficient choice.
 - The filled dataset was saved to a CSV file to avoid rerunning the expensive operation.

3. Outlier Detection

- Outliers were visually analyzed using boxplots (e.g., for the target variable).
- Although the notebook doesn't show explicit outlier treatment, PCA and scaling later help mitigate their effect.

Phase 2: Exploratory Data Analysis (EDA)

After cleaning the data, exploratory data analysis was conducted to understand variable behavior and the relationship with the target variable.

1. Target Variable Distribution

• The bad_flag variable was found to be imbalanced, with more "non-default" cases than "default" ones.

 This is a typical scenario in fraud or credit risk problems, and it informs decisions about model choice and evaluation metrics.

2. Boxplots and Distribution Analysis

- Boxplots helped reveal the spread of numeric variables and outliers.
- Since no categorical variables were present, the analysis focused on continuous data distributions.

Phase 3: Feature Engineering

With such a high number of columns, feature engineering was necessary to improve model performance and training efficiency.

1. Feature Scaling

- Applied StandardScaler to normalize numerical features (zero mean and unit variance).
- Scaling is essential before PCA and for models like logistic regression which are sensitive to feature magnitude.

2. Dimensionality Reduction using PCA

- PCA (Principal Component Analysis) was used to reduce the number of features while retaining most of the variance.
- This helped eliminate noise and multicollinearity and made the data more manageable.
- Various PCA configurations were tested to find the best number of components that preserve important signals.
- Why PCA?
 - With 1,216 features, training time, memory usage, and multicollinearity were significant challenges.
 - PCA compressed the data while maintaining predictive power.
 - We run different test on PCA like at how much dimension what variance we are getting through graph

Phase 4: Class Imbalance Handling

Class imbalance (more 0s than 1s in bad_flag) was addressed during modeling.

1. Weight Balancing

- In the Random Forest Classifier, the class_weight='balanced' parameter was used.
- This makes the model give more importance to the minority class (defaults).
- SMOTE or oversampling was not used possibly to avoid adding synthetic data or due to computational cost.

2. Why Not Oversample?

- The dataset was already large.
- Imputation and PCA were expensive so adding synthetic rows might have led to scalability issues.

Phase 5: Model Building & Evaluation

After preparing and cleaning the data, the next step was to build predictive models to classify whether a customer is likely to default (bad_flag = 1) or not (bad_flag = 0). Three models were trained, each evaluated with appropriate metrics for imbalanced classification tasks.

1. Logistic Regression – The Baseline Model

- Why chosen?
 Logistic Regression is a simple, interpretable, and fast algorithm ideal as a baseline for binary classification.
- Preprocessing done before training:
 - Data was scaled using StandardScaler.
 - Dimensionality reduced using PCA before feeding into the model.

Observations:

- Despite being a linear model, it performed surprisingly well on the ROC-AUC metric.
- This suggests that a good linear decision boundary already exists in the reduced PCA space.

Results:

- o ROC-AUC Score: Around 0.83
- F1 Score: Lower than tree-based models but still respectable, showing that Logistic Regression can generalize well even with reduced dimensions.

2. XGBoost Classifier - The Powerful Gradient Boosted Model

- Why chosen?
 XGBoost is known for its ability to capture non-linear relationships, work well with tabular data, and handle missing values and class imbalance effectively.
- Hyperparameter Tuning:
 - Tuning was done using RandomizedSearchCV with key parameters like:
 - n_estimators: Number of trees
 - max_depth: Controls tree complexity
 - learning_rate: Shrinks contribution of each tree
 - subsample, colsample_bytree: Controls overfitting
 - scale_pos_weight: Handled class imbalance
 - This tuning helped the model become more balanced between recall and precision.

• Results After Tuning:

○ ROC-AUC Score: ~0.84-0.85

F1 Score: Improved after tuning

 Confusion Matrix: Showed better recall (i.e., correctly identifying defaulters) without losing too much precision

• Interpretation:

XGBoost provided a great trade-off between predictive performance and robustness — and worked well even with high-dimensional, imputed data.

3. Random Forest Classifier - Ensemble of Decision Trees

• Why chosen?

Random Forest is a robust ensemble method that performs well on structured data. It can model feature interactions and is less prone to overfitting with enough trees.

- Handling Class Imbalance:
 - The model was initialized with class_weight='balanced' to compensate for the underrepresentation of defaulters.
- Hyperparameter Tuning:
 - Used RandomizedSearchCV to tune:
 - n_estimators, max_depth, min_samples_split, max_features
 - Best parameters were used for final model training.

Results:

o ROC-AUC Score: Around 0.83-0.84

- F1 Score: Highest among all three models
 - This indicates Random Forest had the best balance between false positives and false negatives.
- Confusion Matrix Observations:

- More defaulters correctly identified (True Positives) after class weight balancing.
- Some increase in false positives, but acceptable given the context.

Evaluation Metrics Used

ROC-AUC Score:

Measures how well the model distinguishes between the two classes.

• Useful when dealing with imbalanced data.

• F1 Score:

Harmonic mean of precision and recall.

• Particularly important when the cost of misclassifying a defaulter is high.

Confusion Matrix:

Showed class-wise prediction breakdown — helped assess which model had better recall vs. precision.

Model Performance Summary

Model	ROC-AUC	F1 Score	Best For
Logistic Regression	~0.83	Moderate	Fast, simple baseline
XGBoost	~0.85	High	Accuracy, ROC-AUC
Random Forest	~0.84	Highest	Best F1 (balanced)