Ferienkurs der Experimentalphysik II Übung 4

Michael Mittermair

29. August 2013

Aufgabe 1

Ein Elektron hat die Ruhemasse $m_0 = 9, 11 \cdot 10^{-31}$ kg.

- a) Berechnen Sie die Ruheenergie in Elektronenvolt
- b) Welche Spannung muss ein Elektron durchlaufen, damit sich seine Masse verdoppelt?
- c) Welche Geschwindigkeit hat ein Elektron dessen Masse seiner doppelten Ruhemasse entspricht?

Aufgabe 2

Zum Zeitpunkt t=0 startet von er Erde(Bezugssystem S, Ursprung) ein Raumschiff mit der Geschwindigkeit $v\frac{3}{5}c$. Die Erde funkt zum Zeitpunkt $\tau=1d$ eine Nachricht an das Schiff.

- a) Zeigen Sie: Wenn der Funkspruch empfangen wird, hat das Raumschiff im System S den Ort $x=\frac{v\tau}{1-\beta}$ und es ist die Zeit $t=\frac{\tau}{1-\beta}$ auf der Erde vergangen.
- b) Bestimmen sie die Ankunftszeit des Funkspruchs, die von einer Uhr an Board des Schiffs gemessen wird.

Aufgabe 3

Die Erde, eine bemannte Rakete und ein Meteor bewegen sich zufällig in die gleiche Richtung. An der Erde fliegt die Rakete mit einer Geschwindigkeit $v_{E,R}=\frac{3}{4}c$, betrachtet im Eigensystem der Erde vorbei. Die Rakete wird von dem Meteor mit einer Relativgeschwindigkeit von $v_{R,M}=\frac{1}{2}c$ überholt.

- a) Welche Geschwindigkeit hat der Meteor für einen Betrachter auf der Erde?
- b) Zeichnen Sie ein Minkowski-Diagramm für die se Situation aus Sicht der Raketenbesatzung.

Aufgabe 4

Betrachten Sie zwei Ereignisse E_1 , E_2 im Koordinatensystem S. E_1 finde vor E_2 statt. Es sei außerdem ohne Beschränkung der Allgemeinheit $x_2 > x_1$ Zeigen Sie:

- a) Es gibt eine Lorentztransformation, die die beiden Ereignisse auf den gleichen Ort transformiert genau dann, wenn für die Koordinaten $c^2(t_1 t_2)^2 (x_1 x_2)^2 > 0$. Wie nennt man ein derartig getrenntes Ereignispaar?
- b) Es gibt eine Lorentztransformation, die die beiden Ereignisse auf die gleiche Zeit transformiert genau dann, wenn für die Koordinaten $c^2(t_1 t_2)^2 (x_1 x_2)^2 < 0$. Wie nennt man ein derartig getrenntes Ereignispaar?

Aufgabe 5

Zwei Raumschiffe R_1 und R_2 starten zur Erdzeit t=0 für eine Forschungsmission in Richtung des Sternbilds des Schwans. Mit der Erdstation sei das System S, mit Raumschiff R_1 S' und mit Raumschiff R_2 S" fest verknüpft. Bezogen auf die Erdstation hat Raumschiff R_1 die Geschwindigkeit 0, 6c und Raumschiff R_2 0, 8c. Beim Start werden die Borduhren mit der der Basisstation auf der Erde synchronisiert.

- a) Zeichnen sie ein Minkowski-Diagramm für das System S und tragen sie die Weltlinien der Raumschiffe ein.
- b) Bestimmen Sie die Geschwindigkeit des Raumschiffs R_2 im System des Raumschiffs R_1

Zum Zeitpunkt $t_1 = 1h$ wird zur Kontrolle an die Raumschiffe ein Funkspruch gesandt. Der Funkspruch wird von Raumschiff R_2 zum Zeitpunkt t_2'' (Ereignis P) sofort beantwortet und zur Erdstation zurückgesandt. Dort trifft er zum Zeitpunkt t_3 ein.

c) Tragen Sie das Ereignis P in das Minkowskidiagramm ein. Berechnen sie die Zeit
 $t_{\rm 3}$

Nach $t_P'=10$ Stunden Flugzeit registriert das Raumschiff R_1 (Ereignis Q) gleichzeitig zwei Sternenexplosionen $E_1(T_Q', x_{E1}')$ und $E_2(T_Q', x_{E2}')$. Der räumliche Abstand $|x_{E1}'-x_{E2}'|$ der beiden Explosionen wird zu $\frac{8}{5}$ Lichtstunden bestimmt. Die beiden Explosionen liegen symmetrisch zur halben bis t_Q' von R_1 zurückgelegten Flugstrecke. Das Raumschiff meldet das Ereignis Q per Funkspruch an Raumschiff R_2 und die Erdstation. Auf der Erde trifft die Nachricht zum Zeitpunkt t_4 und bei R_2 zum Zeitpunkt t_4'' ein.

- d) Tragen sie das Ereignis Q in das Minkowski-Diagramm ein. Berechnen Sie die Zeitpunkte t_4 und t_4' .
- e) Berechnen Sie die räumlichen Koordinaten x_{E1} und x_{E2} der Ereignisse E_1 und E_2 im System S. Tragen Sie die Ereignisse E_1 und E_2 in das Diagramm ein. Erläutern Sie kurz, welche Bedeutung die Linie hat, auf der die Ereignisse Q, E_1 und E_2 liegen.