CSC 735 – Data Analytics

Chapter 7
Aggregations

Aggregations

- Aggregation is an important feature for big data analytics
- It allow us to summarize the data in order to extract patterns or insights
- Ex: sum, average, stdev, count

Aggregations (cont.)

Spark has many functions for aggregations

Aggregations (cont.)

- Spark has many functions for aggregations
- For big data analysis, it can be expensive to get an exact answer
- There are many aggregate functions that provide an answer with a reasonable degree of accuracy

Aggregations (cont.)

- Spark has many functions for aggregations
- For big data analysis, it can be expensive to get an exact answer
- There are many aggregate functions that provide an answer with a reasonable degree of accuracy
- The aggregation functions are designed to perform aggregation on a set of rows in a DataFrame
- The set of rows can be all or some of the rows

Reading the Dataset

```
val df = spark.read.format("csv")
 .option("header", "true")
 .option("inferSchema", "true")
 .load("/data/retail-data/all/*.csv")
 .coalesce(5)
df.cache()
df.createOrReplaceTempView("dfTable")
```

A Sample of the Data

Aggregate Functions

- All aggregations are available as functions
- Most aggregation functions are in the package org.apache.spark.sql.functions

count

• In this example, count performs as a transformation instead of an action

import org.apache.spark.sql.functions.count df.select(count("StockCode")).show() // 541909

count

• In this example, count performs as a transformation instead of an action

import org.apache.spark.sql.functions.count df.select(count("StockCode")).show() // 541909

- Using count, we can do one of 2 things:
 - specify a certain column to count
 - or count all the columns by using count("*")

count

 In this example, count performs as a transformation instead of an action

import org.apache.spark.sql.functions.count df.select(count("StockCode")).show() // 541909

- Using count, we can do one of 2 things:
 - specify a certain column to count
 - or count all the columns by using count("*")
 - The first one (count over individual column) ignore null values; count(*) does not

countDistinct

It counts only the unique values under a given column

import org.apache.spark.sql.functions.countDistinct df.select(countDistinct("StockCode")).show() // 4070

approx_count_distinct

- Counting the exact number of unique items in each group in a large dataset can take long time
- Sometimes, it is sufficient to have an approximation to a certain degree of accuracy
- In such case, we can use approx_count_distinct

```
import org.apache.spark.sql.functions.approx_count_distinct df.select(approx_count_distinct("StockCode", 0.05)).show() // 3804
```

approx_count_distinct

- Counting the exact number of unique items in each group in a large dataset can take long time
- Sometimes, it is sufficient to have an approximation to a certain degree of accuracy
- In such case, we can use approx_count_distinct

```
import org.apache.spark.sql.functions.approx_count_distinct df.select(approx_count_distinct("StockCode", 0.05)).show() // 3804
```

df.select(countDistinct("StockCode")).show() // 4070

Return the maximum age of customers per gender

Grouping

Return the maximum age of customers per gender

More examples

Return the maximum and minimum age of

customers per gender

More examples

Return the maximum and minimum age of

customers per gender

```
scala> customerDF.show()
                                                                        cIdl
                                                                               name age gender
                                                                               James
                                                                          4 Jennifer
                                                                              Robert
 Command Prompt - spark-shell
                                                                Sandra
scala> customerDF.groupBy("gender").agg(max("age"), min("age")).show()
gender|max(age)|min(age)
             45
                       25
             41
```

Х

Command P...

More examples

```
Command Prompt - spark-shell
                                                                             X
scala> df.groupBy("InvoiceNo", "CustomerId").agg(count("Quantity")).show(5)
|InvoiceNo|CustomerId|count(Quantity)|
    536846
                14573
                                   76
    537026
                12395
                                   12
                14437
    537883
    538068
                17978
                                   12
   538279
                14952
only showing top 5 rows
```

Grouping with Expressions – Renaming Columns

Rename inside agg using .alias and .as

```
Command Prompt - spark-shell — X

scala> customerDF.groupBy("gender").agg(max("age").alias("maxAge"),  
min("age").as("minAge")).show()

+----+
| gender | maxAge | minAge |  
+----+
| F | 45 | 25 |  
| M | 41 | 21 |  
+----+

**
```

Grouping with Maps

- We can specify the arguments of the agg function as a series of key-value maps
 - the key is the column name, and
 - the value is an aggregation function to apply to the key

Grouping Sets

- Aggregate functions are computed for each group, and then the results are added to the output
- Each sublist of grouping sets may specify zero or more columns
- An empty grouping set means that all rows are aggregated down to a single group
- References to the grouping columns are replaced by null values in result rows

Aggregations with Rollups and Cubes

- Grouping sets are only available in SQL
- To do the same thing using DataFrames, we use rollup and cube operations

A clause of the form

```
ROLLUP (e1, e2, e3, ...)
```

is equivalent to

```
GROUPING SETS (
    (e1, e2, e3, ...),
    ...
    (e1, e2),
    (e1),
    ()
)
```

a GROUPING SETS operation that represents the given list of expressions and **all prefixes** of the list including the empty list

• A clause of the form

ROLLUP(warehouse, product)

is equivalent to

?

a GROUPING SETS operation that represents the given list of expressions and all prefixes of the list including the empty list

A clause of the form

```
ROLLUP(warehouse, product)
```

is equivalent to

```
GROUPING SETS(
(warehouse, product),
(warehouse),
()
)
```

A clause of the form

```
ROLLUP(warehouse, product)
```

is equivalent to

```
GROUPING SETS(
(warehouse, product),
(warehouse),
()
)
```

The N elements of a ROLLUP specification results in N+1 GROUPING SETS

Rollups – Example

Rollups – Example

A clause of the form

```
CUBE (e1, e2, e3, ...)
```

is equivalent to

```
GROUPING SETS (
    (a, b, c),
    (a, b),
    (a, c),
    (a),
    (b, c),
    (b),
    (c),
    (c),
    (d)
```

A clause of the form

```
CUBE(warehouse, product) is equivalent to
```

?

A clause of the form

```
CUBE(warehouse, product) is equivalent to
```

```
GROUPING SETS(
(warehouse, product),
(warehouse),
(product),
())
)
```

A clause of the form

```
CUBE(warehouse, product) is equivalent to
```

```
GROUPING SETS(
(warehouse, product),
(warehouse),
(product),
())
)
```

Cubes

- A cube is a more advanced version of a rollup
- It performs the aggregations across all the possible combinations of the grouping columns
- Therefore, the result includes what a rollup provides as well as other combinations.

Pivot

- Pivoting is a technique to convert rows into columns
- to create a different view of a table
- Pivoting starts with grouping over one or more columns, then pivoting on a column, and ends with applying one or more aggregations on one or more columns

