Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = a_1 + r = 1 + 2 =$	3 p
	= 3	2 p
2.	$f(m) = 0 \Leftrightarrow m+1 = 0$	3 p
	m = -1	2p
3.	$x^2 + 4 = 8 \Leftrightarrow x^2 = 4$	2p
	$x_1 = -2$ și $x_2 = 2$, care verifică ecuația	3 p
4.	Mulțimea M are 8 elemente, deci sunt 8 cazuri posibile În mulțimea M sunt 2 numere divizibile cu 3, deci sunt 2 cazuri favorabile $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{8} = \frac{1}{4}$	1p 2p 2p
5.	$\frac{a+1}{1} = \frac{4}{2}$ $a=1$	3p 2p
6.	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\cos x = \frac{\sqrt{3}}{2}$ $\sin 2x = 2\sin x \cos x = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$	2p
	$\sin 2x = 2\sin x \cos x = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2014) = \begin{pmatrix} 2014 & 3 \\ 2013 & 2 \end{pmatrix}, \ A(2016) = \begin{pmatrix} 2016 & 3 \\ 2015 & 2 \end{pmatrix}, \ A(2015) = \begin{pmatrix} 2015 & 3 \\ 2014 & 2 \end{pmatrix}$	3 p
	$A(2014) + A(2016) = $ $\begin{pmatrix} 4030 & 6 \\ 4028 & 4 \end{pmatrix} = 2 \begin{pmatrix} 2015 & 3 \\ 2014 & 2 \end{pmatrix} = 2A(2015)$	2 p
b)	$\det(A(a)) = \begin{vmatrix} a & 3 \\ a - 1 & 2 \end{vmatrix} = 3 - a$	3 p
	$3-a=0 \Leftrightarrow a=3$	2p
c)	$A(2) + xA(3) = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} + x \begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 2+3x & 3+3x \\ 1+2x & 2+2x \end{pmatrix} \Rightarrow \det(A(2) + xA(3)) = x+1$	3 p
	$x+1=0 \Leftrightarrow x=-1$	2 p
2.a)	$(-1)*1 = -(-1)\cdot 1 - (-1) - 1 - 2 =$	3 p
	=1+1-1-2=-1	2 p
b)	x * y = -xy - x - y - 1 - 1 =	2p
	=-x(y+1)-(y+1)-1=-(x+1)(y+1)-1, pentru orice numere reale x și y	3 p

c)	(x+2)*(2x-3) = -(x+3)(2x-2)-1	2p
	$x^2 + 2x = 0 \Leftrightarrow x_1 = -2 \text{ si } x_2 = 0$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 4x^3 - 16x =$	3 p
	$=4x(x^2-4)=4x(x-2)(x+2), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) - x^4}{x^2 + 1} = \lim_{x \to +\infty} \frac{-8x^2 + 16}{x^2 + 1} =$	2p
	=-8	3 p
c)	$f'(x) = 0 \Leftrightarrow x(x-2)(x+2) = 0$	2 p
	Coordonatele punctelor sunt $x_1 = -2$, $y_1 = 0$; $x_2 = 0$, $y_2 = 16$ și $x_3 = 2$, $y_3 = 0$	3 p
2.a)	$\int_{1}^{2} x f(x) dx = \int_{1}^{2} (x+2) dx = \left(\frac{x^{2}}{2} + 2x\right) \Big _{1}^{2} =$	3 p
	$=6-\frac{5}{2}=\frac{7}{2}$	2p
b)	$F'(x) = (x + 2\ln x + 2015)' = 1 + \frac{2}{x} =$	3p
	$=\frac{x+2}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{e} g(x) dx = \int_{1}^{e} \frac{2}{x} \ln x dx = \ln^{2} x \Big _{1}^{e} =$	3 p
	$= \ln^2 e - \ln^2 1 = 1$	2p