Compiler Construction

Introduction

Overview of Compilation Process

Lexical Analysis	Front-end of the compiler.
Syntax Analysis	
Semantic Analysis	
Intermediate Code Generation	Back-end of the compiler
Code Optimisation	
Code Generation	

Lexical Analysis

- Convert a stream of characters into a stream of TOKENS.
 - Lexeme
 - A token with a value
- Scanner
 - A piece of code that performs lexical analysis.

Regular Expressions

- Use Regex to specify what a token is.
 - Example:
 - NUMBER: [0 9]+
 - ID: [a-zA-Z][a-zA-Z0-9]*
 - WHILE: while

Regex Shorthands

[axby]	a or x or b or y
M?	Optional
M+	One or more occurences

"a+*"	Literally a+*
	Everything except \n
[a-e]	abcde

Disambiguation Rules for Scanners

- 2 rules
- 1. Longest Match:

Longest Substring to match a regex is the choice that is taken.

Rule Priority:

If Longest Substring matches many regex's then the first regex to match the substring is chosen.

Finite Automota

- Consists of nodes & edges
 - Edges link nodes and have a symbol.
 - Nodes represent states.
- 2 types of Finite Automota:
- 1. Deterministic Finite Automaton:

NO pair of edges leading away from a node share the same symbol.

2. Nondeterministic Finite Automaton:

Two or more edges leading away from a node share the same symbol.

- Finite Automaton can be encoded by:
 - Transition matrix:
 - 2D matrix

```
int edges[][] = {/* ws,..., 0, 1, 2, ... d, e, f, ... o, ... */
    /* state 0 */ { 0,..., 0, 0, 0, ..., 0, 0, 0, ..., 0, ... },
    /* state 1 */ { 0,..., 7, 7, 7, ..., 2, 4, 4, ..., 4, ... },
    /* state 2 */ { 0,..., 4, 4, 4, ..., 4, 4, 4, ..., 3, ... },
    /* state 3 */ { 0,..., 4, 4, 4, ..., 4, 4, 4, ..., 4, ... },
    /* state 4 */ { 0,..., 4, 4, 4, ..., 4, 4, 4, ..., 4, ... },
    /* state 5 */ { 0,..., 6, 6, 6, ..., 0, 0, 0, ..., 0, ... },
...
}
```

- Action array:
 - Array indexed by final state number.

- Contains a corressponding action.
- Generally we need to use a NFA to represent Regex expressions.

NFA to DFA

- Unable to execute a NFA
 - Since it "Guesses"
 - However in our case instead of seeing it as choosing one path at random, we view it as choosing all paths concurrently.
- Subset Construction algorithm
 - Converts NFA to DFA
 - o 2 concepts:
 - i. ε closure(S):
 - a. All states can be reached only using ϵ (epsilon-empty symbol).
 - ii. DFAedge(d,c):
 - a. All states in d can be reached by only consuming edges labelled with c & E.
 - On algorithm termination:
 - Discard states array
 - Keep trans array to recognise tokens
 - State i in DFA is final iff states[i] is a final state.
 - Record type of TOKEN the final DFA state recognises
 - Rule Priority
 - Generated DFA is flawed:
 - Can merge equivalent states.

Reading Tokens

• JavaCC provide one method:

getNextToken()

- This method isn't generally called directly but instead through the parser interface.
- 2 important Token attributes:
- 1. kind: kind of token
 - a. (Example: REAL)
- 2. image: value of token
 - a. (Example: 1234)

Introduction to Parsers

Adding Recursion

- Regex cannot count.
- Therefore we use mutual recursion

Examples:

```
expr = a b(c | d)e
// Is now written as
aux = c
aux = d
expr = a b aux e
```

```
expr = (a b c)*
// Is now written as
expr = (a b c) expr
expr = E
```

• Simplified notation above is Context Free Grammar

Context Free Grammars(CFGs)

- G is a 4-tuple (Vt, Vn, S, P)
 - Vt
 - Set of terminals (a, b, c,... € Vt)
 - o Vn
 - Set of nonterminals (A,B,C,... € Vn)
 - V
 - (Vt Union Vn) aka vocabulary of G
 - o S
 - Goal symbol
 - Distinguished nonterminal (S € Vn)
 - о Р
 - Finite set of productions stating how terminals and non terminals can be combined
 - Rules
 - o V*

If $A \to \gamma$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a single-step derivation using $A \to \gamma$

Similarly, \Rightarrow^* and \Rightarrow^+ denote derivations of ≥ 0 and ≥ 1 steps.

If $S \Rightarrow^* \beta$ then β is said to be a *sentential form* of G.

$$L(G) = \{ w \in V_t^* | S \Rightarrow^+ w \}, w \in L(G) \text{ is called a sentence of } G.$$

Note,
$$L(G) = \{\beta \in V^* | S \Rightarrow^* \beta\} \cap V_t^*$$

Backus-Naur form (BNF)

- Grammars are written in this form of notation.
- 1. Non-terminals have angled brackets or capital letters.
- 2. Terminals normal font or underlined
- Production (Each possible image of <expr>, line 2,3,4 are all separate productions)

Derivations

- The resulting sequence of grammar rules after consuming all the characters.
 - Sequence of production applications is a *derivation* or a *parse*.
 - Parsing is the process of discovering the derivation.

2 types of derivations:

Both examples use the previous CFG and the following input "x + 2*y"

1. Left most derivation

2. Right most derivation

- Each derivation creates a different tree and therefore evalutates the input differently.
 - In the cases above:
 - left most derivation would result in x + (2*y)
 - right most derivation would result in (x+2) * y

Precedence

- Can add additional structure to create precedence.
- In the following example:
 - o terms must be derived from expr
 - o factors must be derived by terms

• Applying this new structure corrects the tree thats generated.

Ambiguity

- A grammar is ambiguous if a sentence has 2 or more derivations
- To solve this issue just simply split the sentence into further sentences.

Top-down Parsing

- Starts with the root of the parse tree
 - o Labelled with goal symbol for grammar

- Do the following steps until "fringe" of the parse tree matches input string.
- 1. At node A, select production A $\rightarrow \alpha$, construct the children for each member of α .
- 2. If a terminal is added to the fringe that doesn't match input string, backtrack.
- 3. Find next node to be expanded.

Left Recursion

- Top-down parsers CANNOT handle left-recursion.
- To eliminate left-recursion follow the rules below.

$$A ::= A\alpha$$
 $\mid \beta$

Left Recursive
Grammar

 $A ::= \beta A'$
 $A' ::= \alpha A'$
 $\mid \epsilon$

Introduction of A'
to remove left
recursion.

Lookahead

- Further we look ahead in the input stream the easier it is to see what rules work.
 - o Allows us to choose the right rules first time.
- CFG subclasses:
 - LL(1)
 - Left to right scan, Left-most derivation, look ahead of 1 token
 - o LR(1)
 - Left to right scan, Right-most derivation, look ahead of 1 token

Predictive Parsing

- For any 2 productions of A $\rightarrow \alpha | \beta$
 - We'd like to choose the correct production.
 - \circ FIRST(α)
 - $\blacksquare \quad \text{The set of tokens that appear in some string derived from } \alpha.$
- Note:

• If two productions $A \rightarrow \alpha \& A \rightarrow \beta$ are in a grammar the following should happen.

$$FIRST(\alpha) \cap FIRST(\beta) = \emptyset$$

• This allows the parser to make the correct choice when lookahead == 1.

Left Factoring

- If a productions in a grammar all have the same left most non terminal.
 - Which is NOT €

$$A \rightarrow \alpha \beta_1 |\alpha \beta_2| ... |\alpha \beta_n|$$

• We can left factor it to look like:

$$A \to \alpha A'$$

 $A' \to \beta_1 |\beta_2| ... |\beta_n|$

Indirect Left-recursion

• Basically an infinite loop caused by a production outside of a rule.

$$A_0 \rightarrow A_1 \alpha_1 | \dots$$

 $A_1 \rightarrow A_2 \alpha_2 | \dots$
 \dots
 $A_n \rightarrow A_0 \alpha_{n+1} | \dots$

 Fix for this is to remove the additional step required and have one of the rules directly point to whats needed?

- For each non-terminal A_i in turn, do:
 - For each A_i such that $1 \leq j < i$ and there is a production rule of the form $A_i \to A_j \alpha$, where the A_j productions are $A_j \to \beta_1 \mid \ldots \mid \beta_n$:
 - Replace the production rule $A_i \rightarrow A_j \alpha$ with the rule $A_i \rightarrow \beta_1 \alpha \mid \ldots \mid \beta_n \alpha$.

Table-Driven Parsing

Generation of tables can be automated.

• An expression grammar and its parse table

	id	num	+	ı	*	/	\$
<goal></goal>	1	1	_	ı	ı	ı	ı
<expr></expr>	2	2	-	ı	ı	١	١
<expr'></expr'>	-	-	3	4	ı	1	5
<term></term>	6	6	-	ı	ı	ı	ı
<term'></term'>	1	ı	9	9	7	8	9
<factor></factor>	11	10	-	I	I	I	ı

• To generate this table we use FIRST FOLLOW & LOOKAHEAD

FIRST

- FIRST(α)
 - o Set of terminal symbols

- $\circ \{a \in Vt | a \rightarrow^* \alpha \beta\}$
- $\circ \alpha \to^* \in \text{then } \in \in \text{FIRST}(\alpha)$
 - Read as alpha consists of 0 or more epsilons then epsilon is the set for FIRST(α).
- Compute FIRST(X) rules:
- 1. If X is a terminal, then $FIRST(X) = \{X\}$
- 2. If X is a nonterminal and $X \to Y1Y2...Yk$ is a production rule for some $k \ge 1$, then add a to FIRST(X) if for some i, a \in FIRST(Yi) and Y1...Yi-1 are nullable(empty strings). If all Y1...Yk are nullable, add \in to FIRST(X).
- 3. If $X \to E$ is a production rule, then add E to FIRST(X).

FOLLOW

- FOLLOW(X) is set of terminals that can immediately follow X.
- Compute FOLLOW(A) rules:
- 1. Place \$ in FOLLOW(S), S being start symbol and \$ being end of input.
- 2. If a production rule of A $\rightarrow \alpha$ B β , then everything in FIRST (β), except ϵ , is in FOLLOW(B).
- 3. If a production rule $A \to \alpha B$ or $A \to \alpha B \beta$ where FIRST(β) contains C, then everything in FOLLOW(A) is in FOLLOW(B).

6 Examples are demonstrated in the video below.

https://youtu.be/_uSIP91jmTM

LOOKAHEAD

- LOOKAHEAD(A $\rightarrow \alpha$)
 - Set of terminals which can appear in the next input.
- Build LOOKAHEAD(A $\rightarrow \alpha$)
- 1. Put FIRST(α) { ϵ } in LOOKAHEAD(A $\rightarrow \alpha$)
- 2. If \in FIRST(α) then put FOLLOW(A) in LOOKAHEAD(A $\rightarrow \alpha$)

LL(1) parse table construction

• Input: Grammar G

Output: Parsing table M

Method:

1. For all productions $A \rightarrow \alpha$:

For all a \in LOOKAHEAD(A \rightarrow α), add A \rightarrow α to M[A, a]

- 2. Set each undefined entry of M to error
- If a cell has more than 1 entry in M
 - NOT LL(1) grammar

LL(1) Grammar facts that arent fun

- 1. No left recursion
- 2. No ambiguous grammar
- 3. Some languages have no LL(1) grammar
- 4. If each alternative expansion for A begins with a distinct terminal & is 6-free
 - a. Then its a LL(1) grammar.

$$S o aS|a$$
 is not LL(1) because LOOKAHEAD($S o aS$) = LOOKAHEAD($S o a$) = $\{a\}$ $S o aS'$ $S' o aS'|\epsilon$ accepts the same language and is LL(1).

Error Recovery

- For each non terminal
 - Construct a set of terminals that the parser can synch.
- If an error occurs looking for A
 - Scan until an element of SYNCH(A) is found.
- Building SYNCH:
 - ∘ a \in FOLLOW(A) \rightarrow a \in SYNCH(A)
 - o Place keywords that start statements in SYNCH(A)
 - Add symbols in FIRTS(A) to SYNCH(A)
- If a terminal can't be matched to top of stack:

- o Pop it
- o Print saying it was inserted
- Continue to parse