Serial No.: 10/813,615

Amdt. dated 05 June 2009

Reply to Office Action of 05 December 2008

AMENDMENTS TO THE CLAIMS:

This listing of claims replaces all previous versions and listing of claims in the subject

application:

Listing of Claims:

1. (Currently Amended) A computer processor for processing (i) instruction packets comprising

a plurality of only control instructions, the control instructions having a control bit width, and (ii)

instruction packets comprising a plurality of instructions comprising at least one data processing

instruction, the data processing instructions having a data processing bit width wider than the control

bit width, the processor comprising:

a decode unit for decoding sequentially the instruction packets fetched from a memory holding

the instruction packets;

a control processing channel capable of performing control operations, the control processing

channel comprising a plurality of functional units including a control register file having a first bit

width; and

a data processing channel capable of performing data processing operations at least one input

of which is a vector, the data processing channel comprising a plurality of functional units including a

data register file having a second bit width, wider than the first bit width;

wherein the decode unit comprises decode circuitry configured to decode identification bits of

each instruction packet to determine which type (i), (ii), of instruction packet is being decoded, and control circuitry configured to pass the plurality of only control instructions from an instruction

packet of type (i) to the control processing channel when the decode circuitry indicates so and to pass

the plurality of instructions comprising at least one data processing instruction from an instruction

packet of type (ii) to the data processing channel when the decode circuitry indicates so;

wherein, in use the decode unit causes instructions of (i) instruction packets comprising a

plurality of only control instructions to be executed sequentially on the control processing channel;

and

2

Serial No.: 10/813,615 Amdt. dated 05 June 2009

Reply to Office Action of 05 December 2008

wherein, in use the decode unit causes instructions of (ii) instruction packets comprising a

plurality of instructions comprising at least one data processing instruction to be executed

simultaneously on the data processing channel.

2. (Previously Presented) A computer processor according to claim 1, wherein the control

processing channel further comprises a branch unit and a control execution unit.

3. (Previously Presented) A computer processor according to claim 1, wherein the data

processing channel further comprises a fixed data execution unit and a configurable data execution

unit.

4. (Original) A computer processor according to claim 3, wherein the fixed data execution unit and

the configurable data execution unit both operate according to a single instruction multiple data

format.

(Previously Presented) A computer processor according to claim 1, wherein the control and

data processing channels share a load store unit.

6. (Previously Presented) A computer processor according to claim 5, wherein the load store unit

uses control information supplied by the control processing channel and data supplied by the data

processing channel.

7. (Original) A computer processor according to claim 1, wherein the instruction packets are all of

equal bit length.

8. (Original) A computer processor according to claim 7, wherein the instruction packets are all of

a 64-bit length.

9. (Original) A computer processor according to claim 1, wherein the control instructions are all of

a bit length between 18 and 24 bits.

3

BST99 1621401-1.066365.0020

Serial No.: 10/813,615 Amdt. dated 05 June 2009

Reply to Office Action of 05 December 2008

 $10. \ (Original) \ A computer processor according to claim 9, wherein the control instructions are all of$

a 21-bit length.

 $11. \ (Original) \ \ A \ computer \ processor \ according \ to \ claim \ 7, \ wherein \ the \ nature \ of \ each \ instruction \ in$

an instruction packet is selected at least from a control instruction, a data instruction, and a memory

access instruction.

12. (Original) A computer processor according to claim 11, wherein the bit length of each data

instruction is 34 bits.

13. (Original) A computer processor according to claim 11, wherein the bit length of each memory

access instruction is 28 bits.

14. (Previously Presented) A computer processor according to claim 1, wherein when the decode

unit detects that the instruction packet defines three control instructions, the decode unit is operable

to supply the control processing channel with the three control instructions whereby the three control $% \left(1\right) =\left(1\right) \left(1\right)$

instructions are executed sequentially.

 $15. \ (Previously\ Presented) \qquad A\ computer\ processor\ according\ to\ claim\ I,\ wherein\ when\ the\ decode$

unit detects that the instruction packet defines two instructions comprising at least one data instruction, the decode unit is operable to supply the data processing channel with at least the data

instruction, the decode unit is operable to supply the data processing channel with at least the data

instruction whereby the two instructions are executed simultaneously.

 $16. \ (Previously \ Presented) \qquad A \ computer \ processor \ according \ to \ claim \ I, \ wherein \ the \ decode \ unit \ is$

operable to read the values of a set of designated bits at predetermined bit locations in each

instruction packet of the sequence, to determine:

a) whether the instruction packet defines a plurality of control instructions or a plurality of

instructions of which at least one is a data instruction; and

b) where the instruction packet defines a plurality of instructions of which at least one is a data

instruction, the nature of each of the two instructions selected from; a control instruction; a data

4

Serial No.: 10/813,615 Amdt. dated 05 June 2009

Reply to Office Action of 05 December 2008

instruction; and a memory access instruction.

 $17. \ (Original) \ \ A \ computer \ processor \ according \ to \ claim \ 3, \ wherein \ the \ configurable \ data \ execution$

unit is capable of executing more than two consecutive operations on the data provided by a single

issued instruction before returning a result to a destination register file.

18. (Currently Amended) A method of operating a computer processor for processing (i)

instruction packets comprising a plurality of only control instructions, the control instructions having

a control bit width, and (ii) instruction packets comprising a plurality of instructions comprising at least one data processing instruction, the data processing instructions having a data processing bit

width wider than the control bit width, the processor comprising a decode unit for decoding

sequentially the instruction packets fetched from a memory holding the instruction packets; a control

processing channels comprising a plurality of functional units including a control register file having a

first bit width; and a data processing channel capable of performing data processing operations at

least one input of which is a vector, the data processing channel comprising a plurality of functional

units including a data register file having a second bit width, wider than the first bit width, the method

comprising:

decoding identification bits of each instruction packet to determine which type (i), (ii), of

instruction packet is being decoded, and passing the plurality of only control instructions from an instruction packet of type (i) to the control processing channel when the decode circuitry indicates so

instruction packet of type (1) to the control processing channel when the decode circuit y indicates so

and passing the plurality of instructions comprising at least one data processing instruction from an

instruction packet of type (ii) to the data processing channel when the decode circuitry indicate so;

when the instruction packet defines (i) a plurality of only control instructions supplying the

control instructions to the control processing channel wherein the control instructions are executed

sequentially; and

when the instruction packet defines (ii) a plurality of instructions comprising at least one data

processing instruction, supplying at least the data instruction to the data processing channel wherein

5

BST99 1621401-1.066365.0020

Serial No : 10/813 615 Amdt. dated 05 June 2009

Reply to Office Action of 05 December 2008

the plurality of instructions are executed simultaneously.

19.-20. (Canceled)

21. (Currently Amended) A computer program product comprising program code means which

include a sequence of instruction packets,

said instruction packets including a first type of instruction packet comprising a plurality of

only control instructions of substantially equal length width, the control instructions having a control

bit width, and a second type of instruction packet comprising a plurality of instructions comprising at

least one data processing instruction, the at least one data processing instructions having a data

processing bit width wider than the control bit width, and wherein at least one data processing

instruction is a vector.

said instruction packets including at least one indicator bit at a designated bit location within

the instruction packet, wherein the computer program product is adapted to run on a computer such that said indication bit is adapted to cooperate with a decode unit of the computer to designate

whether:

a) the instruction packet defines a plurality of only control instructions or a plurality of

instructions comprising at least one data processing instruction; and

b) in the case when there is a plurality of instructions comprising at least one data instruction.

the nature of each of the first and second instructions selected from: a control instruction: a data

instruction; and a memory access instruction.

6