

ici : moteurs de recommandation

Cette présentation pourrait vous intéresser...

Une introduction aux moteurs de recommendation

Jeff Abrahamson

Jellybooks

Définition

Étant donné information sur l'utilisateur, son environnement, et des objets d'intérêt, déterminer les objets recommandables les plus pertinents.

Définition

Étant donné information sur l'utilisateur, son environnement, et des objets d'intérêt, déterminer les objets recommandables les plus pertinents.

On n'est pas contraint à trouver les $\max k$.

Il suffit de trouver k parmi un max n.

Exemples

- Amazon
- Google News (ou Le Monde)
- Facebook
- Diagnostique médicale
- App Store / Google Play
- Youtube
- Publicités
- Netflix, last.fm, Spotify, Pandora, ...
- Browser (propositions de URL)
- Recherche

Valeur pour le client

- Trouver intéressant
- Réduire choix
- Explorer options
- Découverte ("long tail")
- Loisirs

Valeur pour le fournisseur

- Prestation unique / supplémentaire
- Confiance, fidélité
- Augmenter ventes, CTR, conversions
- Mieux comprendre le client

Attacher vos ceintures...

- On va beaucoup sauter
- Il restera des trous
- Trop de matériel, rien n'est vrai tout le temp

Attacher vos ceintures...

- On va beaucoup sauter
- Il restera des trous
- Trop de matériel, rien n'est vrai tout le temp
- Tout projet est un projet de recherche

Attacher vos ceintures...

- On va beaucoup sauter
- Il restera des trous
- Trop de matériel, rien n'est vrai tout le temp
- Tout projet est un projet de recherche
- Objectif: plus de perspectif

La recommendation

Content-based filtering (filtrage basée sur le continu)	Plus de ce qui ressemble à ce que j'aime.
Collaborative filtering (filtrage collaboratif)	Plus de ce que d'autres qui aiment ce que j'aime aiment.
Knowledge-based filtering (filtrage basée sur connaissance)	Plus de ce qu'il faut.

Content-based filtering

Pour

- Pas besoin de communauté
- Comparaison entre objets possible.

Contre:

- Comprendre contenu
- Cold start (nouveaux utilisateurs)
- Pas de sérendipité

Collaborative filtering

Pour

- Sans études du contenu
- Sérendipité
- Apprentissage du marché

Contre:

- Retours des utilisateurs
- Cold start (nouveaux utilisateurs)
- Cold start (nouveaux objects)

Knowledge-based filtering

Pour

- Déterministe
- Sûr
- Pas de cold start
- Expertise commerciale

Contre:

- Étude pour bootstrap
- Statique, ne répond pas aux tendances

Knowledge-based filtering

Pour

- Déterministe
- Sûr
- Pas de cold start
- Expertise commerciale

Contre:

- Étude pour bootstrap
- Statique, ne répond pas aux tendances

On n'en parle plus.

- Users (utilisateurs)
- Items (objets)

- Users (utilisateurs)
- Items (objets)

Le but est de trouver les blancs.

Par exemple, vente de livres chez Amazon.

Mais des milliers ou des millions de colonnes et de lignes.

- Users (utilisateurs)
- Items (objets)

Le but est de trouver les blancs.

Par exemple, avis de filmes à Netflix.

Mais des milliers ou des millions de colonnes et de lignes.

D'où viennent la matrice ?

- Demande aux utilisateurs
- Observer nos utilisateurs

Ça peut coûter cher...

Exemples:

- Filmes \Rightarrow ?
- Livres \Rightarrow ?
- Actualités ⇒ ?
- Images ⇒ ?

Exemples:

- Filmes \Rightarrow ?
- Livres \Rightarrow ?
- Actualités ⇒ ?
- Images ⇒ ?

Filmes:

Contenu : acteurs, cinéaste, année (décennie, etc.), durée

Collaboratif: vu, avis (1-5), ou vu, quand vu relatif à sa sortie

Exemples:

- Filmes \Rightarrow ?
- Livres \Rightarrow ?
- Actualités ⇒ ?
- Images ⇒ ?

Livres:

Contenu : auteur, genre, année (décennie, etc.), nombre de pages, contenu (très difficile)

Collaboratif: lu, avis (1-5), comment lu

Exemples:

- Filmes \Rightarrow ?
- Livres ⇒ ?
- Actualités ⇒ ?
- Images ⇒ ?

Actualités:

Contenu : source, section, vecteurs de mots avec TF-IDF important

Collaboratif:

Exemples:

- Filmes \Rightarrow ?
- Livres ⇒ ?
- Actualités ⇒ ?
- Images \Rightarrow ?

Images:

Contenu:

Collaboratif:

Exemples:

- Filmes \Rightarrow ?
- Livres ⇒ ?
- Actualités ⇒ ?
- Images ⇒ ?

Et puis profils d'utilisateur.

Le comportement de l'utilisateur lui attribue des composants des vecteurs.

Mathématiques

Vecteurs

Similarité

Similarité : Indice de Jaccard

ou: Jaccard index, Jaccard similarity coefficient

Similarité:

$$J(A,B)=\frac{|A\cap B|}{|A\cup B|}$$

Similarité: Indice de Jaccard

ou: Jaccard index, Jaccard similarity coefficient

Similarité:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Distance:

$$J_{\delta}(A,B)=1-J(A,B)$$

ou : mesure cosinus, cosine similarity

$$\cos\theta = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

ou : mesure cosinus, cosine similarity

Similarité:

$$S_C(A,B) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

ou : mesure cosinus, cosine similarity

Similarité:

$$S_C(A, B) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Distance:

$$D_C(A,B)=1-S_C(A,B)$$

ou : mesure cosinus, cosine similarity

Similarité:

$$S_C(A,B) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Distance:

$$D_C(A,B) = 1 - S_C(A,B)$$

On ne prend que les composants non-vides.

- Vecteurs de fréquences de mots
- ullet Fréquence \Rightarrow significance

- Vecteurs de fréquences de mots
- Fréquence ⇒ significance
- Term Frequency Inverse Document Frequency

$$TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$$
 $IDF_I = \log_2\left(rac{N}{n_i}
ight)$ $TF\text{-}IDF_{ij} = TF_{ij} \cdot IDF_i$

avec:

 f_{ij} = fréquence de mot i dans document j

N = nombre de document

 n_i = nombre de document dans lesquels on trouve terme i

$$TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$$
 $IDF_I = \log_2\left(rac{N}{n_i}
ight)$ $TF\text{-}IDF_{ij} = TF_{ij} \cdot IDF_i$

avec:

 f_{ij} = fréquence de mot i dans document j

N = nombre de document

 n_i = nombre de document dans lesquels on trouve terme i

IDF est une mesure de l'information que porte un mot.

TF-IDF nous dit quels mots caractérisent le mieux le document.

Textes: TF-IDF

$$TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$$
 $IDF_l = \log_2\left(rac{N}{n_i}
ight)$ $TF\text{-}IDF_{ij} = TF_{ij} \cdot IDF_i$

avec:

 $f_{ij} = \text{fréquence de mot } i \text{ dans document } j$

N = nombre de document

 n_i = nombre de document dans lesquels on trouve terme i

IDF est une mesure de l'information que porte un mot.

TF-IDF nous dit quels mots caractérisent le mieux le document.

Variation : boolean, log, filtrage de mots vide

Content-Based Filtering

Plus de ce qui ressemble à ce que j'aime

Content-Based Filtering

	<i>I</i> ₁	I_2	I_3	I_4	<i>I</i> ₅	
U_1	3					
U_2			5	1	4	
U ₃		2		5	1	

Plus de ce qui ressemble à ce que j'aime

Et puis, partitionnement de données (regroupement, *clustering*), etc.

Content-Based Filtering

Basé sur les profils d'objets (item profiles)

- Plus stable (en principe)
- $O(n^2)$ (mais souvent moins, objets sans co-classement)
- Peut réduire le seuil
- Pré-calcul possible, requête (plus) rapide

Collaborative Filtering

	11	I_2	I_3	I_4	<i>I</i> ₅
U_1	3		4	2	
U_2			5	1	4
U_3		2		5	1

Plus de ce que d'autres qui aiment ce que j'aime aiment.

Collaborative Filtering

	<i>I</i> ₁	I_2	I_3	I_4	I_5	
U_1	3					
U_2			5	1	4	
U_3		2		5	1	

Le Profil d'utilisateur.

Collaborative Filtering

Le Profil d'objet.

Utility Matrix Symmetry

- Proposer d'objets basés sur des utilisateurs
- Proposer d'utilisateurs basés sur des objets

Utility Matrix Symmetry

- Proposer d'objets basés sur des utilisateurs
- Proposer d'utilisateurs basés sur des objets

Mais, par exemple : 2 objets similaire $\not\equiv$ 2 utilisateurs similaires.

Utility Matrix Symmetry

- Proposer d'objets basés sur des utilisateurs
- Proposer d'utilisateurs basés sur des objets

Pour estimer $m_{u,i}$,

- Trouver k utilisateur comme Uu
- Trouver k objets comme l_i

- Trouver k utilisateur comme U_u , prendre $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Trouver k objets comme I_i , prendre $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

- Trouver k utilisateur comme U_u , prendre $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Trouver k objets comme I_i , prendre $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

Il faut calculer la ligne complète (ou la partie qui est susceptible d'être important)

- Trouver k utilisateur comme U_u , prendre $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Trouver k objets comme I_i , prendre $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

Une fois pour U_u , les k autres nous donne un raccourcis.

Pour I_i , il faut calculer presque tous les I_j avant de pouvoir remplir une seule ligne. Par contre, objet-objet souvent plus fiable (exemple de genre d'objet / genre de personne).

- Trouver k utilisateur comme U_u , prendre $\frac{1}{k} \sum_{j=1}^k m_{u_j,i}$
- Trouver k objets comme I_i , prendre $\frac{1}{k} \sum_{j=1}^k m_{u,i_j}$

En tout cas, on fait la plupart en avance.

Utility Matrix

La matrice est creuse.

 \implies clustering \implies matrice réduites

Utility Matrix

La matrice est creuse.

 \implies clustering \implies matrice réduites

Estimation sur la matrice réduite, puis prendre d'objets et d'utilisateurs représentatif dans le *cluster* (paquet).

Observations:

Clustering coûte cher, diminue qualité

Observations:

Dimension reduction diminue qualité

Observations:

Utilisateurs touchent peu d'objets

Observations:

Réponse rapide désirable

Scale indépendemment du nombre d'utilisateur et du nombre d'objets

- Online
- Offline

G. Linden, B. Smith, J. York, *Amazon.com Recommendations: Item-to-Item Collaborative Filtering*, Internet Computing (7, 1), 22 Jan 2003.

Offline (Precomputation) for chaque objet l₁ à vendre do for chaque utilisateur C qui a acheté I1 do for chaque objet l2 acheté par C do (I_1, I_2) ++ end end for chaque object l2 do $S_{l_1,l_2} \leftarrow S(l_1,l_2)$ end end

Slope One

Régression linéaire sur les avis des utilisateurs.

Daniel Lemire and Anna Maclachlan, *Slope One Predictors for Online Rating-Based Collaborative Filtering*, Proceedings of SIAM Data Mining (SDM) 2005.

Slope One: Régression

http://www.upa.pdx.edu/IOA/newsom/pa551/Image255.gif

Slope One: Régression

$$\min \sum (y_i - (ax_i + b))^2$$

http://www.upa.pdx.edu/IOA/newsom/pa551/Image255.gif

Slope One: algorithme

Offline : for chaque I_i , I_j do $| \mathcal{U} \leftarrow \{ \text{utilisateurs qui ont exprimé un avis sur } I_i, I_j \}$ $| \text{dev}_{i,j} \leftarrow \frac{1}{\|\mathcal{U}\|} \sum_{u \in \mathcal{U}} (r_u(i) - r_u(j))$ end

Online (pour u): $\mathcal{V} \leftarrow \{j \mid u \text{ a exprimé un avis sur } I_j\}$ $r_u(i) \leftarrow \frac{1}{\|\mathcal{V}\|} \sum_{u \in \mathcal{V}} (\text{dev}_{i,j} - r_u(j))$

Slope One: Régression

"Linear regression" by Sewaqu - Own work. Licensed under Public domain via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Linear_regression.svg#mediaviewer/File:Linear_regression.svg

Slope One: Régression

SVD, k = 20...100 typiquement

$$M = U\Sigma V^*$$

SVD, k = 20...100 typiquement

$$(a_1 \quad \cdots \quad a_m) \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \text{scalaire}$$

SVD, k = 20...100 typiquement

$$\begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}$$

SVD, k = 20...100 typiquement

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} \end{pmatrix} \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ b_{2,1} & \cdots & b_{2,n} \\ b_{3,1} & \cdots & b_{3,n} \end{pmatrix} = \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}$$

SVD, k = 20...100 typiquement

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,k} \end{pmatrix} \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{k,1} & \cdots & c_{k,n} \end{pmatrix} = \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ \vdots & & \vdots \\ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}$$

Problèmes particuliers

- Comment mesurer la réussite ?
- Quelles sont des critères ?

Clustering

- kNN
- Curse of Dimensionality
- Scalabilité

Clustering

- kNN k-Nearest Neighbor
- Curse of Dimensionality Fléau (ou : malédiction) de la dimension
- Scalabilité 10⁷ clients, 10⁶ objets

Questions?

Sondage: purple.com/devfest

Et si vous êtes dans la région, rdv sur meetup.com :

Nantes Machine Learning Meetup

github.com/JeffAbrahamson/talks/