10

15

rotosass curso:

CLAIMS

What is claimed:

J./

An optical fiber enclosure, comprising:

a housing having a front compartment and a bulkhead; a plurality of optical adapters mounted to the bulkhead;

at least one optical coupler connector assembly coupled to at least one of the plurality of adapters.

- 2. The optical fiber enclosure of Claim 1 wherein the optical coupler connector assembly includes an optical coupler adjacent to a ferrule in the optical connector.
- 3. The optical fiber enclosure of Claim 1 wherein the optical coupler connector assembly further comprises at least two output ports.
- 4. The optical fiber enclosure of Claim 1 further comprising the optical coupler connector assembly located in each port in the enclosure.
- 5. The optical fiber enclosure of Claim 1 wherein the bend radius of the optical coupler connector assembly does not exceed approximately 1.5 inches.

20 20 L

An optical monitoring device comprising:

an optical connector having at least one output port; and an optical coupler integral with the optical connector.

25

7. The optical monitoring device of Claim 6 wherein the optical coupler is integrated adjacent to a ferrule in the optical connector.

10

15

20

- 8. The optical monitoring device of Claim 6 further comprising a bend radius such that the device when coupled to an adapter in a conventional panel requires no additional frame space.
- 9. The optical monitoring device of Claim 8 wherein the bend radius does not exceed approximately 1.5 inches.
 - 10. An optical network system comprising:

a patch panel having a housing, the housing having a front compartment and a bulkhead, the bulkhead having a plurality of adapters; and

at least one optical coupler-connector assembly coupled to at least one of the plurality of adapters.

- 11. The optical network of Claim 10 further comprising a gigabit Ethernet.
- 12. The optical network system of Claim 10 wherein the optical coupler-connector assembly includes an optical coupler adjacent to a ferrule in the optical connector.

13. The optical network system of Claim 11 wherein the optical coupler connector assembly further comprises at least two output ports.

385/48
14. An optical tap, comprising:
25 an optical connector
an optical coupler in

an optical connector having at least one output port; and an optical coupler integral with the optical connector.

15. The optical tap of Claim 14 wherein the optical coupler is integrated adjacent to a ferrule in the optical connector.

15

20

- 16. The optical tap of Claim 14 further comprising a bend radius such that the device when coupled to an adapter in a conventional panel requires no additional frame space.
- 5 The optical tap of Claim 16 wherein the bend radius does not exceed approximately 1.5 inches.
 - 18. The optical tap of Claim 14 wherein the optical coupler comprises a quartz substrate.
 - 19. The optical tap of Claim 14 wherein the optical coupler comprises a glass waveguide.
 - 20. The optical tap of Claim 19 further comprising at least one channel for at least one of splitting and coupling an optical signal into a plurality of outputs.
 - 21. A wavelength division multiplexing assembly, comprising:

 an optical connector having at least one output port; and
 an optical coupler integral with the optical connector.
 - 22. The wavelength division multiplexing assembly of Claim 21 wherein the optical coupler is integrated adjacent to a ferrule in the optical connector.
- 23. The wavelength division multiplexing assembly of Claim 21 further comprising a bend radius such that the device when coupled to an adapter in a conventional panel requires no additional frame space and the bend radius does not exceed approximately 1.5 inches.

10

15

20

25

24.	An optical power splitter, comprising:
	an optical connector having at least one output port; and
	an optical coupler integral with the optical connector.
25.	The optical power splitter of Claim 24 wherein the optical coupler is
	integrated adjacent to a ferrule in the optical connector.
26.	The optical power splitter of Claim 24 further comprising a bend radius
	such that the device when coupled to an adapter in a conventional panel
	requires no additional frame space.
27.	A method of fabricating an optical tap device, comprising the steps of:
	fusing an optical coupler into a connector ferrule;
	joining the ferrule to a fiber to result in a fiber coupler-connector
	assembly;
	curing the fiber coupler-connector assembly; and
	providing a protective shroud over the assembly.
28.	An optical connector for coupling optical data signals, comprising:
	a connector and splitter portion;
	at least a pair of optical cables extending from the connector and
	splitter portion; and
	an optical connector at the distal end of each of the optical cables
	from the connector and splitter.
29.	The optical connector of Claim 28 wherein the connector and splitter
	portion includes a coupler connector for joining at least one optical cable

to a primary optical cable.

IOOOOBE OTIE

- 30. The optical connector of Claim 29 wherein the connector and splitter portion has a ferrule and outer connection for connecting to an adapter of an optical fiber cassette.
- 5 31. The optical connector of Claim 28 wherein a first optical cable carries data at 1550 nm wavelength and a second optical cable carries data at 1310 nm wavelength.