浙江大学

基于新冠疫情紧急救援行动的声控红绿灯

课程名称: 信息、控制与计算

姓 名: 钱煜

学院:信息与电子工程学院

专 业: 微电子科学与工程

学 号: 3180103948

指导教师: 陈晓明 高智赫

2020年1月10日

一、背景概述

近日,疫情再次开始蔓延,不少省份(如河北、辽宁等)都面临较为严峻的 挑战。在遇到需要抢救的情况时,疾控安全中心联合交通指挥中心需要指挥交通, 为救护车让出一条安全通道。

本项目即实现了简易的声控红绿灯,使得指挥中心能声控(用简短的钢琴音 代替相对复杂的人声)某红绿灯及其旁边的大屏幕,对来往车辆进行隔空指挥。

二、问题分解

1. 信息内容

- a. 控制语言的选择
- b. 所有信息构成的集合的确定
- c. 每个信息出现概率的确定

2. 信源编码

- a. 信息的编码(压缩)方式
- b. 每个消息序列的码长

3. 信道编码

- a. 信道选择
- b. 参数设定

4. 信宿译码

- a. 去噪并数字化得到数字序列
- b. 转换成信息

5. 控制输出

- a. 能控性
- b. 能观性

三、解决思路

1. 信息内容

a. 控制语音的选择

为了方便,用钢琴音的片段模拟控制的语音。这一方面减小了人声由于音色、 频率、身体状况(如哑嗓子)等带来的不确定性,一方面确定的音乐格式也便于 机器识别。

b. 所有信息构成的集合的确定

假设传递的信息集合 S 为{(红灯,STOP),(绿灯,GO),(黄灯,CAREFUL)}, 共有三个元素。每个元素由两个部分组成,前者指示路灯的颜色,后者指示显示 屏的内容。

c. 每个信息出现概率的确定

假设绿灯出现的概率是50%,红灯、黄灯均为25%。

2. 信源编码

a. 信息的编码(压缩)方式

根据输入信息的集合以及概率分布,采用霍夫曼不等长编码,具体如下:

输入信息	概率	编码结果
(绿灯, GO)	0.5	0
(红灯, STOP)	0. 25	10
(黄灯, CAREFUL)	0. 25	11

b. 每个消息序列的码长

假设每个消息序列包含10则消息,即码长为10。

3. 信道编码

a. 信道选择

采用高斯噪声信道,并采用 CRC 信道编码方式。

b. 参数设定

参考第四章课件,设定均值 $\mu=0$,方差 σ^2 基准值为 0.01。

4. 信宿译码

a. 去噪并数字化得到数字序列

根据一个周期波形中每个点对应数值的平均值进行判定。

b. 转换成信息

根据前缀码的性质从前往后进行转换。

5. 控制输出

a. 能控性

每次给出的 10 条命令,间隔 1s 执行一次。同时,系统会设定相应内部参数 (在"实现过程"中将详细介绍)代表对应状态。让输入和状态一一对应即可符合能控性的要求。

b. 能观性

由于内部参数代表了系统状态,也控制了最终输出(一一对应),故可以通过输出反观系统当前的状态。

四、实现过程

1. 预处理

本项目采用 ios 自带软件 GarageBand 进行钢琴音乐制作(如图 1)。

图 1 GarageBand 制作琴声示意图

其中,每次旋律分为1至2个小节不等。用一个小节的持续声音代表"绿灯"指令;用两个小节,其中第一个小节有声音,第二个小节没声音代表"红灯"指令;用两个小节,其中两个小节都有声音代表"黄灯"指令。

在钢琴模拟人声过程中,因考虑到人声随着时间推移,功率不断衰减的情况,本项目采用了只在各小节开始按下琴键,之后让其自然变小,来更好地模拟现实环境。(见图 2)

图 2 三种模拟人声波形示意图(横坐标为时间,纵坐标为归一化幅度值)

2. 信源编码

根据"解决思路",三种信息的输入概率分别为 50%, 25%, 25%。因此,采用 霍夫曼编码后结果如图 3。(具体代码实现将在下文说明)

图 3 信源霍夫曼不等长编码

3. 信宿编码序列

对于输入概率的设定,本项目使用了 ransrc 函数。

```
temp=randsrc(1,1,[1 2 3; 0.5 0.25 0.25]);
```

在利用循环语句产生 10 条命令,构造消息序列后,利用 CRC 编码的性质,假设生成多项式 $G(x)=x^4+x+1$,通过模 2 除法得到 4 位的循环冗余校验码 C(x),并附在原消息序列的末尾。

```
code_c=ori_code(1:k-1);
g=[1 0 0 1 1];%生成多项式g(x)=x4+x+1, crc-4 这个最简单
会产生 4 位冗余码
```

```
R=length(g)-1; %冗余码长为生成多项式长度减 1
[q,r] = deconv([code c zeros(1,R)],g);
```

%为数据右边补 K 个 0, 然后用 deconv 计算数据多项式除以生成多项式

```
r=mod(r(end-R+1:end),2); %取余数的最后 R 位 mod2 运算 code source=[code c r];
```

4. 理想传输波形

本项目采用取绝对值的 sin 函数作为基本载波信号。在一个周期内,如果波形为正常的波峰,则代表 1, 否则代表 0。

```
假设一个周期为 1000us (工作频率为 1KHZ),通过 input_y=sin(0.001 * pi * input_x); input_y=abs(input_y);
```

实现了原始波形产生。

同时采用变量 tail 指示"当前时刻",从而正确刻画"随时间改变的波形"。如下为具体代码。

```
if (temp ==1) %0
   input_y(tail:1:tail+999)=0;
   tail=tail+1000;
else
   if (temp ==2) %10
      %input_y(tail:1:tail+999)=1;
      input_y(tail+1000:1:tail+1999)=0;
      tail=tail+2000;
```

```
else %11
    %input_y(tail:1:tail+1999)=1;
    tail=tail+2000;
end
end
```

最终得到原始传输(理想传输)数据波形如图 4。

5. 高斯信道加噪

在原始数据波形的基础上,本项目采用高斯加噪来模拟高斯信道,取均值为 0,方差为0.01。得到结果如图5。

raw_data=imnoise(input_y, 'gaussian', 0, 0.01);

6. ADC 转换

根据观察加噪后的波形,和多次尝试,本项目最终采用基于 mean 函数的平均值指标来判定每个周期代表的数值。具体代码如下。

7. 霍夫曼译码

按照前缀码的性质,任意码的后缀码能被唯一分解,且具有实时性。接受方采用从前往后,逐次寻找码字并译码的过程进行译码。具体代码如下。

```
info=zeros(1,10);
index=1;
i=1;
while (i \le 10)
   if (index>20)
       break
   end
   if (decode(index) == 0)
       info(i)=1;
       index=index+1;
   else
       index=index+1;
       if (index>20)
           break
       end
       if (decode(index) == 0)
           info(i) = 2;
           index=index+1;
       else
```

```
info(i)=3;
index=index+1;
end
end
i=i+1;
end
```

8. CRC 校验

基于接收方和发送方约定好的 G(x),接收方将收到的消息序列 decode 与 G(x) 相除,若余数为 0,则说明无误差,若不为 0,则说明传输过程中出现了误码。

需要注意,由于 CRC 校验码本身并不代表完全校验,例如两个码的反转可能导致最终"无误差"的校验结果。

在此基础上,本项目通过调整信噪比和计算对应的误码率,关键代码和结果 图如下。

```
while(i<=10000)
fangcha=i*0.1;
[info,decode,raw_data,wumalv] =
xindao(input_y,code_source,fangcha);
curve_wumalv(i)=wumalv;
sigPower =
sum(abs(input_y).^2)/length(input_y);
零
noisePower=sum(abs(raw_data-
input_y).^2)/length(raw_data); %求出噪声功率
SNR(i)=10*log10(sigPower/noisePower); %由信噪比定义
求出信噪比,单位为db
i=i+1;
end
```


可以看到,基本当信号功率小于噪声功率时,误码率才会显著上升。

7. 控制输出

假设输入的控制命令为 1/2/3,对应的系统状态为"绿"/"红"/"黄",对应的输出为"绿灯+G0!!!"/"红灯+STOP!!!"/"黄灯+CAREFUL!!!"。从该设定可以看到,系统的能观性得到了满足,即可以从输出观测系统当前的状态。为了满足能控性,该系统设置了每间隔 1s 执行下一条命令,考虑到一次传输 10 条命令,故一定能在 10s 内控制系统的状态和输出,这也符合了能控性的要求。

为了方便展示"时间"因素,本项目加入了datanow函数,并在显示屏模块的输出中添加了当前的时间以便更好地展示效果。具体代码和结果图如下。

```
fprintf('STOP!!! %s\n',a);

rectangle('Position',[100,100,10],'Curvature',[1,1],
'FaceColor','r');
    else
        a=datestr(now);
        fprintf('CAREFUL!!! %s\n',a);

rectangle('Position',[100,100,10],'Curvature',[1,1],
'FaceColor','y');
    end
    end
    i=i+1;
    pause(1);
end
```


图 7(a)显示屏结果图(b)红绿灯结果图(部分)

五、总结感想

1. 项目感想

在本次大作业中,我用到了一些课上讲到的知识,如消息序列传输、霍夫曼编码等,通过自己动手编程,让整个流程更加清晰明了,加深了对课程的理解。在实验内容上,我也根据时间、自己的能力进行了一定的调整,通过跟助教的交流和讨论,最终完成了该项目。虽然整体难度不是很大,但对于基于信息传输的整个系统的把控,我有了更好的理解。

2. 意见和建议

a. 安排尽早明确

对于本次大作业,老师们似乎都没有给予明确的说明和指导,学生们也都多少有些云里雾里。就我个人而言,我记得在第五周前后问过老师,当时老师的回复是不用担心,后续会讲,且当时的讲课进度无法开展大作业,但到了期末阶段,好像也没有相关的安排。

b. 内容目的明确

本次大作业的所有内容都是我个人所想,我在构思的过程中也尝试着尽可能 多地利用上课所讲知识,但能用到实践中的并不多。在完成了将近四分之三后, 我询问了助教,虽然他表示我的内容是符合要求的,但他也不是很明白该大作业 的具体内容和目的。我在和助教交流前,总是会担心自己做的是否偏离主题,或 者不符合要求等。因此我希望以后的课程里,有关的要求和目的能更好的明确, 例如附上一张流程图、明确考察重点是应用编码/能观能控性等,否则从单纯的 宏观文字描述来看,该项目是一个很宏大很复杂的工程。

c. 坚持改革

作为做大作业的第一年, 势必会遇到一些问题, 但作为信电学院的专业课程, 文字形式的考试的确不能塑造一个全面的学生, 大作业的布置的确是必要的。希望之后的改革能越来越完善, 能帮助以后的学弟学妹更好地理解和应用信息论。

d. 明确 dd1

这次大作业的 deadline 在期末阶段有所修改,我认为这是不公平的。就我个人而言,我根据之前的 ddl 制定了计划,并在原 ddl 之前完成了大作业。但是

dd1 推迟后,很多同学来问我做了什么,怎么做的,我自然也告诉了他们。而客观来说,dd1 的推迟对于那些一开始没有制定计划,没能在原定 dd1 前完成的同学来讲,他们可以"集大成",通过询问已经做好的同学,集思广益,既节省了自己的时间,也能在短时间内汲取其他同学的作品优势。在本学期,我还上了另一门"硬件描述语言原理与应用"的课程,当时只有 4 个人(包括我)在老师制定的 dd1 前完成了作业。老师最后的解决方案是,给在原定 dd1 前上交作业的同学给予一定优惠,我觉得这不失为一种好的方法。

参考文献

- [1]叶青, 刘瑞明, 自兴发. 基于 MATLAB 的 BFSK 在高斯白噪声信道中的传输性能研究[J]. 楚雄师范学院学报, 2015, 30(03):21-25.
- [2]李宝山, 戴仁辉, 刘客, 周鹏, 钱婷, 孙俊海. Matlab 在音频、图像噪声及数据拟合中的应用[J]. 电脑与信息技术, 2019, 27(03):10-14.
- [3]魏西媛, 蓝洋. CRC 纠错原理及其 Matlab 仿真[J]. 科技信息, 2008 (26): 407-408.