Alexandria University
Faculty of Engineering
Electrical and Electronics Engineering
Department
Fall semester, 2021/2022



جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدراسي الأول, 2022/2021

# Lab3: Communication systems. (Section-6)



### **WLAN** module

| ID  | Name                            |
|-----|---------------------------------|
| 172 | محمد علاء مصطفی خلیل هیکل       |
| 185 | محمود صلاح احمد محمد زهران      |
| 189 | محمود فوزي طه العربي عبد الحليم |

### **Problem 1: General report about WLAN Standard**

- 1. Describe the history of the WLAN and how this standard started.
- WLAN: wireless local area network (802.11)
- First WLAN devices appeared on the market in mid 1990s and after 10 years LAN became the main technology for connection.
- Based on existing LAN standards created by IEEE (Ethernet 802.3)

#### 2. Mention some of WLAN applications.

- LAN extinction saves installation of LAN cables
- Open hotspots

#### 3. Describe the protocol stack of WLAN

The 802.11 standards focus on the MAC and PHY as a whole. WLAN Toolbox functionality focuses on the physical-medium-dependent (PMD) and physical layer convergence procedure (PLCP) sublayers of the PHY, the MAC sublayer, and their interfaces.



## 4. In details describe the WLAN system architecture (configurations), with the difference between the two modes.

 An 802.11 LAN is based on a cellular architecture where the system is divided into cells called basic Service set (BSS) and each cell is controlled by a base station called Access point (AP). The WLAN can be formed by a single cell or several cells, where the access points.

| Ad-Hoc Mode                                                                                                                                                                                                                          | Infrastructure Mode                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Two or more wireless devices<br/>communicate with each other</li> <li>All devices are equal</li> </ul>                                                                                                                      | <ul> <li>Suitable to access local network<br/>and internet</li> <li>Access points (APs) used as</li> </ul>                                                                                          |
| <ul> <li>Packets exchanged directly</li> <li>between two devices</li> <li>All devices share the same medium</li> <li>The Packets received by all</li> <li>stations are ignored except for</li> <li>the intended recipient</li> </ul> | <ul> <li>gateway between all wireless and wire line network for all devices of basic service set (BSS)</li> <li>The data sent from one device to another device passes through AP first.</li> </ul> |

#### 5. What are the advantages and disadvantages of Infrastructure mode?

| Ad-Hoc Mode                         | Infrastructure Mode           |  |  |
|-------------------------------------|-------------------------------|--|--|
| Two or more wireless devices        | Packets that is transmitted   |  |  |
| communicate with each other over    | between two devices has to be |  |  |
| a larger distance with AP in middle | transmitted twice over air    |  |  |

#### 6. How to configure Ad-Hoc network?



- Network must have name (SSID Service Set identity)
- All users select the same frequency channel number
- All users use the same ciphering key
- Individual IP address has to be configured in every device

# 7. Show in detail how the WLAN standard changed through the versions 802.11b/g/a/n/ac/ad.

| Version | Frequency | Theoretical   | Changes                                |
|---------|-----------|---------------|----------------------------------------|
|         | band GHz  | max data rate |                                        |
| 802.11b | 2.4       | 1-11 Mbps     | BW= 22 MHz                             |
|         |           |               | No of channels= 11 in US / 13 in Euro  |
| • DBPSK |           |               | Up to three Aps working on frequency   |
| • DQPSK |           |               | channel numbers 1,6 and 11             |
|         |           |               | Power up to 0.1 W                      |
|         |           |               | DSSS To limit interference effect from |
|         |           |               | Bluetooth signals                      |

| 802.11g  | 2.4   | 6-54 Mbps  | Compatible with 802.11b  OFDM to solve the multipath fading |
|----------|-------|------------|-------------------------------------------------------------|
| • BPSK   |       |            | problem                                                     |
| • QPSK   |       |            | Same number of channels, BW and                             |
| • 16QAM  |       |            | frequency band                                              |
| • 64QAM  |       |            |                                                             |
| 802.11a  | 5     | 6-54 Mbps  | Incompatible with 802.11b and 802.11g                       |
| 802.11n  | 2.4/5 | 6-600 Mbps | Double BW                                                   |
|          |       |            | Use MIMO                                                    |
| 802.11ac | 5     | Up to 6.93 | BW 20/40/80/160                                             |
|          |       | Gbps       |                                                             |
| 802.11ad | 60    | Up to 6.76 | BW 2,160                                                    |
|          |       | Gbps       |                                                             |

# 8. Discuss how the WLAN system improved through the versions 802.11e/f/h/i/w

| 802.11 standard | Features                                            |
|-----------------|-----------------------------------------------------|
| 802.11e         | Adds QoS (Quality of service)                       |
| 802.11f         | Adds interoperability between APs                   |
| 802.11i         | Improves security of existing 802.11a/11b/11g based |
|                 | networks                                            |
| 802.11w         | increases security of 802.11 management frames and  |
|                 | protect broadcast as well as multicast robust       |
|                 | management WLAN frames                              |

# 9. How to limit/decrease the interference between Access Points (AP) within the extended service set (ESS)

APs cells should be designed so that adjacent APs use different channels.



# 10. Discuss the MAC frame format for WLAN and mention the function of each group of bits in it.



## 12. Describe the ACK frame format and what is the functionality of the ACK frame?

Acknowledgment (ACK) frames is a control frame specifies which data frames have successfully arrived at the receiving end of the link.



#### 13. Describe the CSMA/CA Protocol and RTS/CTS messages

- Carrier sense multiple access/collision avoidance (CSMA/CA) is a protocol for carrier transmission in 802.11 networks. It was developed to minimize the potential of a collision occurring when two or more stations send their signals over a data link layer.
  - Before node transmit data it checks the medium
    - Medium is free: node sends it's signal
    - Medium is busy: wait for a random time then send again
- RTS/CTS is the optional mechanism used by the 802.11 wireless networking protocol to reduce frame collisions introduced by the hidden terminal problem.
  - If terminal sense idle medium, it sends RTS signal
  - o If no other terminal is transmitting, AP sends CTS signal to terminal
  - $\circ\hspace{0.4cm}$  If AP was busy, the terminal waits random time then send again

#### 14. Describe both the RTS and CTS frame format.

The RTS and CTS frame headers all contain a frame control field (two bytes of metadata flags), duration field, a field for the receiver MAC address, and a frame check sequence. Additionally, an RTS frame contains the transmitter's MAC address.

| RTS | Frame Ctrl | Duration | DA | SA  | FCS |
|-----|------------|----------|----|-----|-----|
| CTS | Frame Ctrl | Duration | DA | FCS | ]   |

## 15. Discuss Direct sequence spread spectrum (DSSS) and how it is useful in WLAN.

Direct-sequence spread spectrum is a spread-spectrum modulation technique primarily used to reduce overall signal interference. The direct-sequence modulation makes the transmitted signal wider in bandwidth than the information bandwidth.



### **DSSS Chipping Sequence**



## 17. Discuss orthogonal frequency division multiplexing (OFDM) and how it is useful in WLAN

OFDM is a specialized FDM having the constraint that the sub-streams in which the main signal is divided, are orthogonal to each other. Orthogonal signals are signals that are perpendicular to each other. A main property of orthogonal signals is that they do not interfere with each other.



It is used to solve problem of multipath fading

#### 18. What is (MIMO) and how can we make use of it.

MIMO: multiple input multiple output, is the use of multiple antennas in both TX and RX

| Spatial multiplexing           | Diversity                             |
|--------------------------------|---------------------------------------|
| Split data across two antennas | Send multiple copies of the same data |
| Increase data rate             | Lower BER                             |

### **Problem 2: Questions Related to the Experiment**

1. For WLAN module in our experiment what is the type of antenna in it?

The MRF24WB0MA has an integrated PCB antenna.

2. How can we set the network name?

```
char strSSID[13] = "Ahmed50";
```

3. How can we change the channel number we use to transmit?

```
char channels[11] = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\};
```

- 4. How can we change the mode of WLAN in our Experiment from Infrastructure to Ad-hoc?
  - Open CMD
  - Write this command: >> netsh wlan set profileparameter strSSID connectiontype=ibss

#### Code

```
clc; clear all; close all;
%% Initialization
Frames = 1000; %Number of Frames
fft size = 128; %FFT Size (Number of subcarriers)
M = 16; K = log2(M); %16-QAM Modulation
delta = 312.5*10^(3); %Carrier Separation
delay spread = 0.2*10^(-6); %Delay Spread
SNRdb = 0:3:30; %SNR Range in dB
delay spread max = delay spread*fft size*delta; %Number of paths
msg size bits = K*fft size;
                                                             BER vs. SNR for 16-QAM with fading
msq size symbols = msq size bits/K;
                                                   10<sup>0</sup>
BER = zeros(length(SNRdb), Frames);
BER avg = zeros(length(SNRdb),1);
응응
for i = 1:length(SNRdb)
for k = 1:Frames
                                                   10<sup>-1</sup>
%% Message Generation
msg bits=randi([0,1],msg size symbols,K);
msg = bi2de(msg bits,'left-msb')';
%% QAM Modulation
                                                   10<sup>-2</sup>
X = qammod(msg,M,'UnitAveragePower',true);
x = sqrt(fft size).*ifft(X);
%% ADD Cyclic Prefix
                                                   10<sup>-3</sup>
CP = x(128-31:128);
                                                                                          30
msg CP = [CP x];
                                                                      SNR(dB)
%% Channel (fading + noise)
[fadedSamples, gain] = ApplyFading(msg CP, 1, delay spread max);
msg rx=awgn(fadedSamples, SNRdb(i), 'measured');
%% Cyclic prefix removal
Y = msg rx(33:160);
%% Freq domain equalization
Y = fft(Y)./sqrt(fft size);
Z = Y ./fft(gain, 128);
%% QAM Demodulation
msg demod = gamdemod(Z,M,'UnitAveragePower',true);
msg demod bits = de2bi(msg demod, 4, 'left-msb');
%% BER calculation
[~,BER(i,k)] = biterr(msg demod bits,msg bits);
BER avg(i) = sum(BER(i,:))./Frames;
```

end end

figure

%% Plotting BER vs. SNR

semilogy(SNRdb', BER avg)

xlabel('SNR(dB)')
ylabel('BER')

title('BER vs. SNR for 16-QAM with fading');