4. Regula Falsi Method

```
In[31]:= regulafalsi[f_, a0_, b0_, n_] := Module[{}, a = N[a0];
    b = N[b0]; c = (a * f[b] - b * f[a]) / (f[b] - f[a]); k = 0;
    Print["_______"];
    Print["S.No.", " ", "C", " ", "F[C]"];
    Print["______"];
    While[k < n, If[f[a] * f[c] < 0, b = c, a = c;
        Print[k, " ", NumberForm[c, 10], " ", NumberForm[f[c], 10]];];
    c = (a * f[b] - b * f[a]) / (f[b] - f[a]);
    k = k + 1;];
    Print[" "];
    Print["c = ", NumberForm[c, 16]];
    Print["f[c]", NumberForm[f[c], 16]];
    Plot[f[x], {x, -3, 3},
        GridLines → Automatic, GridLinesStyle → Directive[Black, Dashed],
    PlotStyle → {Thickness[0.004], Magenta}, PlotLegends → {f[x]}, Frame -> True]]
```

Question - 1

```
ln[32] = f[x_] := x^3 + x^2 - 3 * x - 3
regulafalsi[f, 1, 2, 5]
```

S.No.	С	F [C]
0	1.571428571	-1.364431487
1	1.705410822	-0.2477450996
2	1.727882728	-0.03933955131
3	1.731404866	-0.006110673094
4	1.731950853	-0.000945920667

c = 1.732035343851165

f[c]-0.0001463487141180053

Question - 2

 $In[50] = f[x_] = x^2 - 3 * x + 1$ regulafalsi[f, 1, 3, 10]

Out[50]= $1 - 3 x + x^2$

S.No.		С	F[C]
0	2.	-1.	
1	2.5	-0.25	
2	2.6	-0.04	
3	2.615384615		-0.005917159763
4	2.617647059		-0.0008650519031
5	2.617977528		-0.000126246686
6	2.618025751		-0.00001841993774
7	2.618032787		$-2.68744961 \times 10^{-6}$
8	2.618033813		$-3.920939751 \times 10^{-7}$
9	2.61803	3963	$-5.720574681 \times 10^{-8}$

c = 2.618033985017358

f[c]-8.34620639267314 \times 10 $^{-9}$

Question - 3

 $In[65] = f[x_] = Cos[x] + x^4$ regulafalsi[f, 0, 1, 5]

Out[65]= $x^4 + Cos[x]$

S.No.	С	F [C]
0	-1.850815718	11.45780491
1	1.442764494	4.460613441
2	0.7664662634	1.065487768
3	0.2424146185	0.9742144899
4	-1.061359522	1.756651926

c = 15.67586039879742

f[c]60383.51084576982

Question -4

In[73]:= f[x_] = x^3
regulafalsi[f, 1, 3, 5]
Out[73]= x³

S.No.	C	F[C]
0	0.9230769231	0.7865270824
1	0.8607594937	0.6377426532
2	0.8090080485	0.5294909319
3	0.7651815256	0.4480159007
4	0.7274730739	0.384991171

c = 0.6946005391326552

f[c]0.3351238588812435

In[54]:=