- b) How transistor work as an Inverter and Switch. 4
- 8. a) Derive the general equation of oscillator circuit and find out the frequency of oscillation for colpitt oscillator.
 - b) The emitter-bias circuit of an NPN transistor is depicted in fig4. Explain how the Q-point changes when the value of P changes from 60 to 100.

 Assume V_{BE}=0.7V 6

9. a) Write short notes on (Any three)

9

- i) RC phase shift oscillator
- ii) Wein Bridge Oscillator
- iii) Construction & VI characteristic of E-MOSFET
- iv) Voltage Divider Biasing
- How oscillator circuits are categorized? Find out necessary condition for sustained oscillation and positive feedback in oscillator circuits.

b) Figure 3 shows the fixed bias with emitter feedback circuit. Determine the base current, collector current, collector-to-emitter voltage and stability factor of a biasing circuit as shown in Fig 3. Assume V_{BE}=0.7V and p=50.

- 6. a) What is need of Bias stabilization and discuss the Base-width modulation with its effect on transistor's behavior and stability of operating point in detail.
 - b) A CB transistor amplifier has voltage source with R_s =750 Ω and load resistance R_L =1.5 Ω . The h-parameters are h_{ib} =25 Ω , h_{rb} =4x10⁴, h_{rb} =-0.98 and h_{ob} =0.2 μ A/V. Compute A_p , R_p , A_v , A_{vs} , A_{ls} , R_0 , A_p

SECTION-C

7. a) Explain different types of coupling techniques for amplifier circuits. Discuss transfer coupled amplifier with its advantages over RC coupled amplifier.

- A sample of pure Si semiconductor at 300K having a resistivity of 14.5x10⁴ ohm-cm is doped with 3.5x10¹⁰ donor impurity atoms/cm³ and 1.25x10¹⁰ acceptor impurity atoms/cm³. When an electric field of 1000mV/cm is applied, determine the total conduction current density. Assume mobility of electron is 2500cm²/v-s and mobility of hole is 4500cm²/V-s.
 - b) Draw & Explin the generation & recombination of charge carriers in detail.

SECTION-B

- 4. a) Explain the Esaki Diode and discuss its V-I characteristic using energy band diagram. 5
 - b) Discuss the Miller theorem & its Dual in detail. 4
 - c) Determine the output waveform for the square waveform.

and find the output Voltage.

5. a) Draw and explain the H-model of CE configuration. Analyze the darlington transistor using h-parameter and also find out current gain, input impedence, output admittance and voltage gain.

B.Tech. (III Sem.) 673 1812750

Engg 202

B.TECH. (THIRD SEMESTER) EXAMINATION, DECEMBER - 2019

ENGG 202- Basic Electronics

Time Allowed: 3 HOURS

Maximum Marks: 60

Attempt five questions in all, selecting not more than two questions from each Section. All questions carry equal marks.

SECTION-A

- 1. a) Write any four differences between Active & passive electronic components. Write the construction of Electrolytic capacitor with applications & limitations.
 - b) Draw and explain the different current components of a diode in detail.
- What do you understand by diode capacitance. Derive
 the expression for transition capacitance.

 6
 - b) Determine ID₂ & voltage V₀ in the following circuit assuming each diode as Si.: 6

