(a) If $\sigma_c^2 = 9$, use (6.2.34) to fill in the following table:

¥	0	0.05	0.10	0.15
$e(Q_2,X)$				

- (b) Notice from the table that the sample median becomes the "better" estimator when ϵ increases from 0.10 to 0.15. Determine the value for ϵ where this occurs [this involves a third-degree polynomial in ϵ , so one way of obtaining the root is to use the Newton algorithm discussed around expression (6.2.32)]
 - **6.2.7.** Let X have a gamma distribution with $\alpha=4$ and $\beta=\theta>0$.
 - (a) Find the Fisher information $I(\theta)$.
- (b) If X_1, X_2, \ldots, X_n is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ .
 - (c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$?
- **6.2.8.** Let X be $N(0, \theta)$, $0 < \theta < \infty$.
- (a) Find the Fisher information $I(\theta)$.
- (b) If X_1, X_2, \ldots, X_n is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ .
- (c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$?
- **6.2.9.** If X_1, X_2, \ldots, X_n is a random sample from a distribution with pdf

$$f(x;\theta) = \begin{cases} \frac{3\theta^3}{(x+\theta)^4} & 0 < x < \infty, 0 < \theta < \infty \\ 0 & \text{elsewhere,} \end{cases}$$

show that $Y=2\overline{X}$ is an unbiased estimator of θ and determine its efficiency.

6.2.10. Let X_1, X_2, \ldots, X_n be a random sample from a $N(0, \theta)$ distribution. We want to estimate the standard deviation $\sqrt{\theta}$. Find the constant c so that Y = 0 $c\sum_{i=1}^{n}|X_{i}|$ is an unbiased estimator of $\sqrt{\theta}$ and determine its efficiency.

tion, $-\infty < \theta < \infty$, $\sigma^2 > 0$. Assume that σ^2 is known. Show that $\overline{X}^2 - \frac{\sigma^2}{n}$ is an unbiased estimator of θ^2 and find its efficiency. **6.2.11.** Let \overline{X} be the mean of a random sample of size n from a $N(\theta, \tilde{\sigma}^2)$ distribu-

6.2.12. Recall that $\widehat{\theta} = -n/\sum_{i=1}^n \log X_i$ is the mle of θ for a beta $(\theta, 1)$ distribution. Also, $W = -\sum_{i=1}^{n} \log X_i$ has the gamma distribution $\Gamma(n, 1/\theta)$.

- (a) Show that $2\theta W$ has a $\chi^2(2n)$ distribution.
- (b) Using part (a), find c1 and c2 so that

$$P\left(c_1 < \frac{2\theta n}{\widehat{\theta}} < c_2\right) = 1 - \alpha,$$

for $0 < \alpha < 1$. Next, obtain a $(1 - \alpha)100\%$ confidence interval for θ .

6.3. Maximum Likelihood Tests

- (c) For $\alpha = 0.05$ and n = 10, compare the length of this interval with the length of the interval found in Example 6.2.6.
- 6.2.13. By using expressions (6.2.21) and (6.2.22), obtain the result for the one-step estimate discussed at the end of this section.

6.2.14. Let S^2 be the sample variance of a random sample of size n > 1 from $N(\mu, \theta)$, $0 < \theta < \infty$, where μ is known. We know $E(S^2) = \theta$.

- (a) What is the efficiency of S^2 ?
- (b) Under these conditions, what is the mle $\widehat{\theta}$ of θ ?
- (c) What is the asymptotic distribution of $\sqrt{n}(\widehat{\theta} \theta)$?

6.3 Maximum Likelihood Tests

The last section presented an inference for pointwise estimation and confidence intervals based on likelihood theory. In this section, we present a corresponding inference for testing hypotheses.

As in the last section, let X_1, \ldots, X_n be iid with pdf $f(x;\theta)$ for $\theta \in \Omega$. In this section, θ is a scalar, but in Sections 6.4 and 6.5 extensions to the vector-valued case are discussed. Consider the two-sided hypotheses

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta \neq \theta_0,$$
 (6.3.1)

where θ_0 is a specified value.

Recall that the likelihood function and its log are given by

$$L(\theta) = \prod_{i=1}^{n} f(X_i; \theta)$$

$$l(\theta) = \sum_{i=1}^{n} \log f(X_i; \theta).$$

Let $\widehat{\theta}$ denote the maximum likelihood estimate of θ .

To motivate the test, consider Theorem 6.1.1, which says that if θ_0 is the true value of θ , then, asymptotically, $L(\theta_0)$ is the maximum value of $L(\theta)$. Consider the ratio of two likelihood functions, namely,

$$\Lambda = \frac{L(\theta_0)}{L(\widehat{\theta})}.$$
 (6.3.3)

 Λ should be smaller. For a specified significance level α , this leads to the intuitive Note that $\Lambda \leq 1$, but if H_0 is true, Λ should be large (close to 1), while if H_1 is true,

Reject
$$H_0$$
 in favor of H_1 if $\Lambda \le c$, (6.3)

Theorem 6.3.1 derives the asymptotic distribution of Λ under H_0 , but first we look where c is such that $\alpha = P_{\theta_0}[\Lambda \le c]$. We call it the likelihood ratio test (LRT) at two examples.