Murat Osmanoglu

probably the best known design technique

- probably the best known design technique
- similar to Decrease-and-Conquer, the technique exploits the relationship between a solution of a given instance of a problem and a solution of its smaller instance

- probably the best known design technique
- similar to Decrease-and-Conquer, the technique exploits the relationship between a solution of a given instance of a problem and a solution of its smaller instance
 - divide the problem into a number of subproblems
 - solve each subproblem recursively
 - combine solutions to obtain a solution for the original problem

- probably the best known design technique
- similar to Decrease-and-Conquer, the technique exploits the relationship between a solution of a given instance of a problem and a solution of its smaller instance
 - divide the problem into a number of subproblems
 - solve each subproblem recursively
 - combine solutions to obtain a solution for the original problem
- in general, subproblems are independent of each other

Multiplication of Large Integers

Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution :

123456

***** 654321

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution :

123456 ***** 654321 123456

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution :

123456 **★** 654321 123456 246912

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution :

123456 **★** 654321 123456 246912

.

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution:

- takes $O(n^2)$,

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution:

 takes O(n²), i.e. multiply each digit of the second one with the digits of the first one, put them in the correct positions and calculate the final sum

Multiplication of Large Integers

- Given two n-digit integers a and b, compute a × b
 (especially in modern crypto, some algorithms deal with integers
 having more than 500 digits)
- brute-force solution :

123456
654321123456246912

Can we get better one?

- takes $O(n^2)$, i.e. multiply each digit of the second one with the digits of the first one, put them in the correct positions and calculate the final sum

<u>Multiplication of Large Integers</u>

• rewrite the integers a = 123456 and b = 654321 as

Multiplication of Large Integers

• rewrite the integers a = 123456 and b = 654321 as

$$a = 123000 + 456$$
, $b = 654000 + 321$

- thus, $a \times b = 123 \times 654 \times 10^6 + (123 \times 321 + 456 \times 654) \times 10^3 + 456 \times 321$

Multiplication of Large Integers

rewrite the integers a = 123456 and b = 654321 as
 a = 123000 + 456, b = 654000 + 321

- thus, $a \times b = 123 \times 654 \times 10^6 + (123 \times 321 + 456 \times 654) \times 10^3 + 456 \times 321$

```
Multiply(a, b, n)

input: two n-digit numbers

output: a × b

if n ≤ 1

return a × b

a ← a_1 \times 10^{n/2} + a_2; b ← b_1 \times 10^{n/2} + b_2

A ← Multiply(a_1, b_1, n/2); B ← Multiply(a_1, b_2, n/2)

C ← Multiply(a_2, b_1, n/2); D ← Multiply(a_2, b_2, n/2)

return A \times 10^n + (B + C) \times 10^{n/2} + D
```

<u>Multiplication of Large Integers</u>

```
Multiply(a, b, n)

input: two n-digit numbers

output: a × b

if n ≤ 1

return a × b

a ← a_1 \times 10^{n/2} + a_2; b ← b_1 \times 10^{n/2} + b_2

A ← Multiply(a_1, b_1, n/2); B ← Multiply(a_1, b_2, n/2)

C ← Multiply(a_2, b_1, n/2); D ← Multiply(a_2, b_2, n/2)

return A \times 10^n + (B + C) \times 10^{n/2} + D
```

<u>Multiplication of Large Integers</u>

```
Multiply(a, b, n)

input: two n-digit numbers

output: a × b

if n ≤ 1

return a × b

a ← a_1 \times 10^{n/2} + a_2; b ← b_1 \times 10^{n/2} + b_2

A ← Multiply(a_1, b_1, n/2); B ← Multiply(a_1, b_2, n/2)

C ← Multiply(a_2, b_1, n/2); D ← Multiply(a_2, b_2, n/2)

return A \times 10^n + (B + C) \times 10^{n/2} + D
```

recurrence relation for the running time

$$T(n) = 4T(n/2) + O(n)$$

Multiplication of Large Integers

```
Multiply(a, b, n)

input: two n-digit numbers

output: a × b

if n ≤ 1

return a × b

a ← a_1 \times 10^{n/2} + a_2; b ← b_1 \times 10^{n/2} + b_2

A ← Multiply(a_1, b_1, n/2); B ← Multiply(a_1, b_2, n/2)

C ← Multiply(a_2, b_1, n/2); D ← Multiply(a_2, b_2, n/2)

return A \times 10^n + (B + C) \times 10^{n/2} + D
```

recurrence relation for the running time

$$T(n) = 4T(n/2) + O(n)$$

where $O(n)$ accounts for partitioning, additions and shifting (merging time)

Multiplication of Large Integers

```
Multiply(a, b, n)

input: two n-digit numbers

output: a × b

if n ≤ 1

return a × b

a ← a_1 \times 10^{n/2} + a_2; b ← b_1 \times 10^{n/2} + b_2

A ← Multiply(a_1, b_1, n/2); B ← Multiply(a_1, b_2, n/2)

C ← Multiply(a_2, b_1, n/2); D ← Multiply(a_2, b_2, n/2)

return A \times 10^n + (B + C) \times 10^{n/2} + D
```

- recurrence relation for the running time
 - T(n) = 4T(n/2) + O(n)where O(n) accounts for partitioning, additions and shifting (merging time)
- if you apply Master Theorem, $T(n) = O(n^2)$

<u>Multiplication of Large Integers</u>

```
Karatsuba(a, b, n)

input: two n-digit numbers

output: a \times b

if n \le 1

return a \times b

a \leftarrow a_1 \times 10^{n/2} + a_2; b \leftarrow b_1 \times 10^{n/2} + b_2

A \leftarrow Karatsuba(a_1, b_1, n/2)

B \leftarrow Karatsuba(a_2, b_2, n/2)

C \leftarrow Karatsuba(a_1 + a_2, b_1 + b_2, n/2)

return A \times 10^n + (C - A - B) \times 10^{n/2} + B
```

<u>Multiplication of Large Integers</u>

```
Karatsuba(a, b, n)

input: two n-digit numbers

output: a \times b

if n \le 1

return a \times b

a \leftarrow a_1 \times 10^{n/2} + a_2; b \leftarrow b_1 \times 10^{n/2} + b_2

A \leftarrow Karatsuba(a_1, b_1, n/2)

B \leftarrow Karatsuba(a_2, b_2, n/2)

C \leftarrow Karatsuba(a_1 + a_2, b_1 + b_2, n/2)

return A \times 10^n + (C - A - B) \times 10^{n/2} + B
```

recurrence relation for the running time

$$T(n) = 3T(n/2) + O(n)$$

<u>Multiplication of Large Integers</u>

```
Karatsuba(a, b, n)

input: two n-digit numbers

output: a \times b

if n \le 1

return a \times b

a \leftarrow a_1 \times 10^{n/2} + a_2; b \leftarrow b_1 \times 10^{n/2} + b_2

A \leftarrow Karatsuba(a_1, b_1, n/2)

B \leftarrow Karatsuba(a_2, b_2, n/2)

C \leftarrow Karatsuba(a_1 + a_2, b_1 + b_2, n/2)

return A \times 10^n + (C - A - B) \times 10^{n/2} + B
```

recurrence relation for the running time

$$T(n) = 3T(n/2) + O(n)$$

where $O(n)$ accounts for partitioning, additions (merging time)

<u>Multiplication of Large Integers</u>

```
Karatsuba(a, b, n)

input: two n-digit numbers

output: a \times b

if n \le 1

return a \times b

a \leftarrow a_1 \times 10^{n/2} + a_2; b \leftarrow b_1 \times 10^{n/2} + b_2

A \leftarrow Karatsuba(a_1, b_1, n/2)

B \leftarrow Karatsuba(a_2, b_2, n/2)

C \leftarrow Karatsuba(a_1 + a_2, b_1 + b_2, n/2)

return A \times 10^n + (C - A - B) \times 10^{n/2} + B
```

- recurrence relation for the running time
 - T(n) = 3T(n/2) + O(n)where O(n) accounts for partitioning, additions (merging time)
- if you apply Master Theorem, $T(n) = O(n^{1.585})$

Mergesort
(divide the elements according to their position in the array)

Mergesort

(divide the elements according to their position in the array)

• given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$

<u>Mergesort</u>

(divide the elements according to their position in the array)

- given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given sequence into two halves, sort each of them recursively, and merge the smaller sorted array into a single sorted array

<u>Mergesort</u>

(divide the elements according to their position in the array)

- given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given sequence into two halves, sort each of them recursively, and merge the smaller sorted array into a single sorted array

```
Merge-Sort(X[1,n], p, r)

input: an array of n orderable items

output: sorted array of n items

if p < r

q \leftarrow (p + r)/2

Merge-Sort(X, p, q)

Merge-Sort(X, q + 1, r)

Merge(X, p, q, r)
```

Mergesort

(divide the elements according to their position in the array)

- given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given sequence into two halves, sort each of them recursively, and merge the smaller sorted array into a single sorted array

Merge-Sort(X[1,n], p, r)

```
input: an array of n orderable items
output : sorted array of n items
```

$$T(n) = \Theta(1) \text{ if } n = 1$$

 $T(n) = 2.T(n/2) + f(n) \text{ if } n > 1$

<u>Mergesort</u>

(divide the elements according to their position in the array)

- given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given sequence into two halves, sort each of them recursively, and merge the smaller sorted array into a single sorted array

Merge-Sort(X[1,n], p, r)

input: an array of n orderable items
output : sorted array of n items

$$T(n) = \Theta(1) \text{ if } n = 1$$

 $T(n) = 2.T(n/2) + f(n) \text{ if } n > 1$

merging time when i = 1 and j = n

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
copy X[q+1, r] to R[1, b]
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i ← 1 ; j ← 1
for k = p to r
     if L[i] ≤ R[j]
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
     else
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
copy X[q+1, r] to R[1, b]
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                             X
                                                         2
                                                                              3
                                                                                                   10
                                                               5
                                                                       9
for k = p to r
     if L[i] ≤ R[j]
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
     else
           X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                    q = 4
copy X[q+1, r] to R[1, b]
                                             p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                          X
                                                       2
                                                                            3
                                                                                                 10
                                                              5
                                                                     9
                                                                                   4
for k = p to r
     if L[i] ≤ R[j]
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
     else
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                    q = 4
copy X[q+1, r] to R[1, b]
                                             p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                          X
                                                       2
                                                                            3
                                                                                                 10
                                                              5
                                                                     9
                                                                                   4
for k = p to r
     if L[i] ≤ R[j]
         X[k] \leftarrow L[i]
                                                                                                              R
          i \leftarrow i + 1
     else
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                                r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                            X
                                                        2
                                                                             3
                                                                                                  10
                                                               5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
         X[k] \leftarrow L[i]
                                                                             3
          i \leftarrow i + 1
                                             2
                                                    5
                                                           9
                                                                                                  10
                                                                  \infty
                                                                                                          \infty
     else
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                       2
                                                                             3
                                                                                                 10
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                              k = 1
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                            2
                                                    5
                                                           9
                                                                            3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                   i = 1
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                       2
                                                                             3
                                                                                                 10
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                              k = 1
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                            2
                                                    5
                                                           9
                                                                            3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                   i = 1
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                       2
                                                                             3
                                                                                                 10
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                              k = 1
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                            2
                                                    5
                                                           9
                                                                            3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                   i = 1
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                                r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                        2
                                                                             3
                                                                                                  10
                                                               5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                              k = 1
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                    5
                                                           9
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                           i = 2
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                  10
                                                       2
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                     k = 2
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                    5
                                                           9
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                           i = 2
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                  10
                                                       2
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                     k = 2
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                    5
                                                           9
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                           i = 2
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                  10
                                                       2
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                     k = 2
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                    5
                                                           9
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                           i = 2
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                 10
                                                       2
                                                              5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                     k = 2
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                    5
                                                           9
                                                                            3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                                  i = 3
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                                r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                  10
                                                        2
                                                               5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                            k = 3
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                                  i = 3
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                                r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                  10
                                                        2
                                                               5
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                            k = 3
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                                  i = 3
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                                r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                             3
                                                                                                  10
                                                        2
                                                               3
                                                                      9
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                            k = 3
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                                             3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                                  i = 3
                                                                           j = 1
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                     q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                                     9
                                                                             3
                                                                                                 10
                                                       2
                                                              3
                                                                                    4
for k = p to r
     if L[i] ≤ R[j]
                                                            k = 3
         X[k] \leftarrow L[i]
          i \leftarrow i + 1
                                                           9
                                                                            3
                                                                                                 10
                                                                  \infty
                                                                                                         \infty
     else
                                                  i = 3
                                                                                j = 2
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                    q = 4
copy X[q+1, r] to R[1, b]
                                             p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                          X
                                                       2
                                                              3
                                                                            5
                                                                                           9
                                                                                                 10
                                                                     4
for k = p to r
     if L[i] ≤ R[j]
                                                                                               k = 8
         X[k] \leftarrow L[i]
                                                                            3
          i \leftarrow i + 1
                                            2
                                                   5
                                                          9
                                                                                                 10
                                                                  \infty
                                                                                                        \infty
     else
                                                                i = 5
                                                                                               j = 4
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                    q = 4
copy X[q+1, r] to R[1, b]
                                             p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                          X
                                                       2
                                                              3
                                                                            5
                                                                                           9
                                                                                                 10
                                                                     4
for k = p to r
     if L[i] ≤ R[j]
                                                                                               k = 8
         X[k] \leftarrow L[i]
                                                                            3
          i \leftarrow i + 1
                                            2
                                                   5
                                                          9
                                                                                                 10
                                                                  \infty
                                                                                                        \infty
     else
                                                                i = 5
                                                                                               j = 4
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                    q = 4
copy X[q+1, r] to R[1, b]
                                             p = 1
                                                                                               r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                           X
                                                       2
                                                              3
                                                                            5
                                                                                           9
                                                                                                 10
                                                                     4
for k = p to r
     if L[i] ≤ R[j]
                                                                                               k = 8
         X[k] \leftarrow L[i]
                                                                            3
          i \leftarrow i + 1
                                            2
                                                   5
                                                           9
                                                                                                 10
                                                                  \infty
                                                                                                        \infty
     else
                                                                i = 5
                                                                                               j = 4
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
<u>Merge(X[1,n], p, q, r)</u>
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                      q = 4
copy X[q+1, r] to R[1, b]
                                              p = 1
                                                                                                 r = 8
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
i \leftarrow 1; j \leftarrow 1
                                                                                                            X
                                                        2
                                                               3
                                                                              5
                                                                                            9
                                                                                                   10
                                                                      4
for k = p to r
     if L[i] ≤ R[j]
                                                                                                k = 8
          X[k] \leftarrow L[i]
                                                                             3
          i \leftarrow i + 1
                                             2
                                                    5
                                                           9
                                                                                                  10
                                                                                                          \infty
                                                                   \infty
     else
                                                                 i = 5
                                                                                                        j = 5
          X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge(X[1,n], p, q, r)
                                                                       • let n = r - p + 1
a \leftarrow q - p + 1
b \leftarrow r - q
let L[1, a + 1] and R[1, b + 1] be new arrays
copy X[p, q] to L[1, a]
                                                                                     \theta(a)
copy X[q+1, r] to R[1, b]
L[a+1] \leftarrow \infty; R[b+1] \leftarrow \infty
                                                                                     \theta(b)
i \leftarrow 1; j \leftarrow 1
for k = p to r
     if L[i] ≤ R[j]
          X[k] \leftarrow L[i]
          i \leftarrow i + 1
     else
                                                                            \Theta(n)
           X[k] \leftarrow R[j]
          j \leftarrow j + 1
```

```
Merge-Sort(X[1,n], p, r)

input: an array of n orderable items

output: sorted array of n items

if i < j
q \leftarrow (i + j)/2
Merge-Sort(X, p, q)
Merge-Sort(X, q + 1, r)
Merge(X, p, q, r)

T(n) = \theta(1) \text{ if } n = 1
T(n) = 2.T(n/2) + f(n) \text{ if } n > 1
```

```
Merge-Sort(X[1,n], p, r)

input: an array of n orderable items

output: sorted array of n items

if i < j
q \leftarrow (i + j)/2
Merge-Sort(X, p, q)
Merge-Sort(X, q + 1, r)
Merge(X, p, q, r)

T(n) = \theta(1) \text{ if } n = 1
T(n) = 2.T(n/2) + \theta(n) \text{ if } n > 1
```

```
Merge-Sort(X[1,n], p, r)

input: an array of n orderable items

output: sorted array of n items

if i < j
q \leftarrow (i + j)/2
Merge-Sort(X, p, q)
Merge-Sort(X, q + 1, r)
Merge(X, p, q, r)

T(n) = \theta(1) if n = 1
T(n) = 2.T(n/2) + <math>\theta(n) if n > 1

from Master Theorem (the second case),
```

```
Merge-Sort(X[1,n], p, r)

input: an array of n orderable items

output: sorted array of n items

if i < j
q \leftarrow (i + j)/2
Merge-Sort(X, p, q)
Merge-Sort(X, q + 1, r)
Merge(X, p, q, r)

T(n) = \theta(1) \text{ if } n = 1
T(n) = 2.T(n/2) + \theta(n) \text{ if } n > 1
from Master Theorem (the second case),
f(n) = \theta(n, \log^k n) \text{ for } k = 0,
```

<u>Mergesort</u>

```
Merge-Sort(X[1,n], p, r)
input: an array of n orderable items
output : sorted array of n items
if i < j
  q \leftarrow (i + j)/2
  Merge-Sort(X, p, q)
                                          T(n) = \Theta(1) if n = 1
  Merge-Sort(X, q + 1, r)
  Merge(X, p, q, r)
                                          T(n) = 2.T(n/2) + \Theta(n) if n > 1
                                          from Master Theorem (the second case),
                                          f(n) = \Theta(n, \log^k n) for k = 0,
                                          T(n) = \Theta(nlogn)
```

Mergesort

Merge-Sort(X[1,n], p, r)

```
S E L E C T I O N
```

```
if i < j
    q ← (i + j)/2
    Merge-Sort(X, p, q)
    Merge-Sort(X, q + 1, r)
    Merge(X, p, q, r)</pre>
```

Mergesort

```
Merge-Sort(X[1,n], p, r)

if i < j
q \leftarrow (i + j)/2
```

Merge-Sort(X, p, q) Merge-Sort(X, q + 1, r)

Merge(X, p, q, r)

Quicksort (divide the elements according to their value)

• given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$

Quicksort (divide the elements according to their value)

- given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given array into two parts such that the elements in the left part less than a certain element of the array (pivot) and the elements in the right part greater than the pivot, sort each of them recursively

Quicksort (divide the elements according to their value)

- given an array of n orderable items $[a_1, a_2, ..., a_n]$, reorder the items as $[a_1', a_2', ..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given array into two parts such that the elements in the left part less than a certain element of the array (pivot) and the elements in the right part greater than the pivot, sort each of them recursively (making effort on dividing rather than merging)

Quicksort (divide the elements according to their value)

- given an array of n orderable items $[a_1, a_2,..., a_n]$, reorder the items as $[a_1', a_2',..., a_n']$ such that $a_1' \le a_2' \le ... \le a_n'$
- divide the given array into two parts such that the elements in the left part less than a certain element of the array (pivot) and the elements in the right part greater than the pivot, sort each of them recursively (making effort on dividing rather than merging)

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

```
if p < r
    s ← Partition(X,p,r)
    Quick-Sort(X,p,s-1)
    Quick-Sort(X,s+1,r)</pre>
```

Quicksort

```
Quick-Sort(X[1,n],p,r)
input: an array of n orderable items
output : sorted array of n items
if p < r
  s \leftarrow Partition(X,p,r)
  Quick-Sort(X,p,s-1)
  Quick-Sort(X,s+1,r)
<u>Lomuto-Partition(X,p,r)</u>
input: an array of n orderable items
output: the partition of the array and new
position for pivot
k \leftarrow a_{p}; s \leftarrow p
for i = p + 1 to r
    if a_i < k
       s \leftarrow s + 1; swap(a_s, a_i)
swap(a_p, a_s)
return s
```

Quicksort

return s

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

```
7 2 5 8 9 3
```

<u>Lomuto-Partition(X,p,r)</u>

```
input: an array of n orderable items
output: the partition of the array and new
position for pivot

k \leftarrow a_p; s \leftarrow p
for i = p + 1 to r
    if a_i < k
    s \leftarrow s + 1; swap(a_s, a_i)
swap(a_p, a_s)
```

Quicksort

return s

Quick-Sort(X, 1, 6)

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

```
7 2 5 8 9 3
```

<u>Lomuto-Partition(X,p,r)</u>

```
input: an array of n orderable items

output: the partition of the array and new

position for pivot

k \leftarrow a_p; s \leftarrow p

for i = p + 1 to r

if a_i < k

s \leftarrow s + 1; swap(a_s, a_i)

swap(a_p, a_s)
```

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```


<u>Lomuto-Partition(X,p,r)</u>

```
input: an array of n orderable items
output: the partition of the array and new
position for pivot

k \leftarrow a_p; s \leftarrow p
for i = p + 1 to r
    if a_i < k
    s \leftarrow s + 1; swap(a_s, a_i)
swap(a_p, a_s)
return s
```

Quicksort

Quick-Sort(X[1,n],p,r) input: an array of n orderable items output: sorted array of n items if p < r s ← Partition(X,p,r) Quick-Sort(X,p,s-1) Quick-Sort(X,s+1,r)

Lomuto-Partition(X,p,r)

```
input: an array of n orderable items
output: the partition of the array and new
position for pivot
k ← a<sub>p</sub>; s ← p
for i = p + 1 to r
    if a<sub>i</sub> < k</pre>
```

swap(a_p , a_s)

return s

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

<u>Lomuto-Partition(X,p,r)</u>

$$k \leftarrow a_p$$
; $s \leftarrow p$
for $i = p + 1$ to r
if $a_i < k$
 $s \leftarrow s + 1$; $swap(a_s, a_i)$
 $swap(a_p, a_s)$
return s

Quicksort

Quick-Sort(X[1,n],p,r) input: an array of n orderable items output: sorted array of n items if p < r s ← Partition(X,p,r) Quick-Sort(X,p,s-1) Quick-Sort(X,s+1,r)

Lomuto-Partition(X,p,r)

$$k \leftarrow a_p$$
; $s \leftarrow p$
for $i = p + 1$ to r
if $a_i < k$
 $s \leftarrow s + 1$; $swap(a_s, a_i)$
 $swap(a_p, a_s)$
return s

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

```
if p < r
    s ← Partition(X,p,r)
    Quick-Sort(X,p,s-1)
    Quick-Sort(X,s+1,r)</pre>
```

Lomuto-Partition(X,p,r)

$$k \leftarrow a_p$$
; $s \leftarrow p$
for $i = p + 1$ to r
if $a_i < k$
 $s \leftarrow s + 1$; $swap(a_s, a_i)$
 $swap(a_p, a_s)$
return s

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

Lomuto-Partition(X,p,r)

$$k \leftarrow a_p$$
; $s \leftarrow p$
for $i = p + 1$ to r
if $a_i < k$
 $s \leftarrow s + 1$; $swap(a_s, a_i)$
 $swap(a_p, a_s)$
return s

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

Lomuto-Partition(X,p,r)

$$k \leftarrow a_p$$
; $s \leftarrow p$
for $i = p + 1$ to r
if $a_i < k$
 $s \leftarrow s + 1$; $swap(a_s, a_i)$
 $swap(a_p, a_s)$
return s

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

 the running time of the algorithm depends on whether the partitioning is balanced or unbalanced

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

- the running time of the algorithm depends on whether the partitioning is balanced or unbalanced
- if the partitioning is balanced, the algorithm runs asymptotically as fast as merge sort

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

- the running time of the algorithm depends on whether the partitioning is balanced or unbalanced
- if the partitioning is balanced, the algorithm runs asymptotically as fast as merge sort

if it is unbalanced, it can run asymptotically as slowly as insertion sort

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Worst-Case Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Worst-Case Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```


Worst-Case Partitioning

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

Worst-Case Partitioning

$$T(n) = T(n-1) + O(n)$$

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

Worst-Case Partitioning

$$T(n) = T(n - 1) + O(n)$$

 $T(n) = O(n^2)$

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

Balance Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

Balance Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

Balance Partitioning

Quicksort

Balance Partitioning

Quicksort

<u>Balance Partitioning</u>

$$T(n) = T(n/10) + T(9n/10) + O(n)$$

Quicksort

<u>Balance Partitioning</u>

$$T(n) = T(n/10) + T(9n/10) + O(n)$$

Quicksort

Balance Partitioning

$$(9/10)^i$$
.n = 1
i = $\log_{10/9}$ n

$$T(n) = T(n/10) + T(9n/10) + O(n)$$

Quicksort

Balance Partitioning

$$T(n) = T(n/10) + T(9n/10) + O(n)$$

 $T(n) = O(nlog_{10/9}n)$

Quicksort

Balance Partitioning

- at each step, partitioning procedure creates one subproblem with n/10 - 1 elements and one subproblem with 9n/10 elements
- $i = \log_{10/9} n$

$$T(n) = T(n/10) + T(9n/10) + O(n)$$

 $T(n) = O(nlog_{10/9}n) \approx O(nlogn) (log_{10/9}n > log n)$

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Best-Case Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

Best-Case Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```


Best-Case Partitioning

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```


Best-Case Partitioning

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

Best-Case Partitioning

$$T(n) = 2T(n/2) + O(n)$$

Quicksort

Quick-Sort(X[1,n],p,r) input: an array of n orderable items output: sorted array of n items if p < r s ← Partition(X,p,r) Quick-Sort(X,p,s-1)

Best-Case Partitioning

Quick-Sort(X,s+1,r)

$$T(n) = 2T(n/2) + O(n)$$
$$T(n) = O(nlogn)$$

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)

Average-Case Partitioning
```

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items

output: sorted array of n items

if p < r

s ← Partition(X,p,r)

Quick-Sort(X,p,s-1)

Quick-Sort(X,s+1,r)
```

Average-Case Partitioning

- assume you run Quicksort on a random input, the partitioning is highly unlikely to happen in the same way at every level
 - i.e. some splits will be well balanced (having constant proportionality), some will be unbalanced

Quicksort

```
Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output: sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)
```

Average-Case Partitioning

- assume you run Quicksort on a random input, the partitioning is highly unlikely to happen in the same way at every level
 i.e. some splits will be well balanced (having constant proportionality), some will be unbalanced
- in the corresponding recursion tree, the good and bad splits distributed randomly

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

Average-Case Partitioning

- assume you run Quicksort on a random input, the partitioning is highly unlikely to happen in the same way at every level
 i.e. some splits will be well balanced (having constant proportionality), some will be unbalanced
- in the corresponding recursion tree, the good and bad splits distributed randomly
 assume a bad split followed by a good split, and a good split followed by a bad one

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

Average-Case Partitioning

- assume you run Quicksort on a random input, the partitioning is highly unlikely to happen in the same way at every level
 i.e. some splits will be well balanced (having constant proportionality), some will be unbalanced
- in the corresponding recursion tree, the good and bad splits distributed randomly
 assume a bad split followed by a good split, and a good split followed by a bad one

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

Average-Case Part

- combined partitioning cost will be O(n) + O(n-1) = O(n)
- assume you run Quicksort on a random input, the partitioning is nightly unlikely to happen in the same way at every level
 i.e. some splits will be well balanced (having constant proportionality), some will be unbalanced
- in the corresponding recursion tree, the good and bad splits distributed randomly
 assume a bad split followed by a good split, and a good split followed by a bad one

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

Average-Case Part

- assume you run unlikely to happe i.e. some splits w will be unbalance
- combined partitioning cost will be O(n) + O(n-1) = O(n)
- O(n) cost of bad split can be absorbed into O(n) cost of good split
- in the corresponding recursion tree, the good and bad splits distributed randomly
 - assume a bad split followed by a good split, and a good split followed by a bad one

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

Average-Case Part

- assume you run unlikely to happe
 i.e. some splits w will be unbalance
- in the correspor randomly

- combined partitioning cost will be O(n) + O(n-1) = O(n)
- O(n) cost of bad split can be absorbed into O(n) cost of good split
- thus, a bad split and a following good split yield a good split

assume a bad split followed by a good split, and a good split followed by a bad one

Quicksort

Quick-Sort(X[1,n],p,r)

input: an array of n orderable items
output : sorted array of n items

if p < r
s ← Partition(X,p,r)
Quick-Sort(X,p,s-1)
Quick-Sort(X,s+1,r)</pre>

а

Average-Case Part

- assume you run unlikely to happe
 i.e. some splits w will be unbalance
- in the correspor randomly

- combined partitioning cost will be O(n) + O(n-1) = O(n)
- O(n) cost of bad split can be absorbed into O(n) cost of good split
- thus, a bad split and a following good split yield a good split

assume a bad split follow bad one

 $T_{avg}(n) \approx 1.39 \text{nlogn (check pg 180)}$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

•
$$c_{11} = a_{11} \times b_{11} + a_{12} \times b_{21}$$
, $c_{12} = a_{11} \times b_{12} + a_{12} \times b_{22}$
 $c_{21} = a_{21} \times b_{11} + a_{21} \times b_{21}$, $c_{22} = 2_{11} \times b_{12} + a_{22} \times b_{22}$

Matrix Multiplication

•
$$c_{11} = a_{11} \times b_{11} + a_{12} \times b_{21}$$
, $c_{12} = a_{11} \times b_{12} + a_{12} \times b_{22}$
 $c_{21} = a_{21} \times b_{11} + a_{21} \times b_{21}$, $c_{22} = 2_{11} \times b_{12} + a_{22} \times b_{22}$

 thus, brute-force algorithm applies 8 multiplications and four additions

•
$$c_{11} = a_{11} \times b_{11} + a_{12} \times b_{21}$$
, $c_{12} = a_{11} \times b_{12} + a_{12} \times b_{22}$
 $c_{21} = a_{21} \times b_{11} + a_{21} \times b_{21}$, $c_{22} = 2_{11} \times b_{12} + a_{22} \times b_{22}$

- thus, brute-force algorithm applies 8 multiplications and four additions
- Strassen (1969) developed an algorithm that applies
 7 multiplications and 18 addition/subtractions

Matrix Multiplication (Strassen's Algorithm)

The algorithm employs the following formula

Matrix Multiplication (Strassen's Algorithm)

The algorithm employs the following formula

Matrix Multiplication (Strassen's Algorithm)

The algorithm employs the following formula

where
$$m_1 = (a_{11} + a_{22}) \times (b_{11} + b_{22})$$
, $m_2 = (a_{21} + a_{22}) \times b_{11}$, $m_3 = a_{11} \times (b_{12} - b_{22})$, $m_4 = a_{22} \times (b_{21} - b_{11})$, $m_5 = (a_{11} + a_{12}) \times b_{22}$, $m_6 = (a_{21} - a_{11}) \times (b_{11} + b_{12})$, $m_7 = (a_{12} - a_{22}) \times (b_{12} + b_{22})$

<u>Matrix Multiplication</u> (Strassen's Algorithm)

• let A and B be two nxn matrices where n is a power of 2

Matrix Multiplication (Strassen's Algorithm)

let A and B be two nxn matrices where n is a power of 2

$$\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
=
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}$$

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

where
$$M_1 = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$
, $M_2 = (A_{21} + A_{22}) \times B_{11}$, $M_3 = A_{11} \times (B_{12} - B_{22})$, $M_4 = A_{22} \times (B_{21} - B_{11})$, $M_5 = (A_{11} + A_{12}) \times B_{22}$, $M_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12})$, $M_7 = (A_{12} - A_{22}) \times (B_{12} + B_{22})$

Matrix Multiplication (Strassen's Algorithm)

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
=
\begin{bmatrix}
M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\
M_2 + M_4 & M_1 + M_3 - M_2 + M_6
\end{bmatrix}$$

where Strassen's algorithm applies 7 multiplication and 18 additions and subtractions on the sub-matrices

$$M_3 = A_{11} \times (B_{12} - B_{22}), \quad M_4 = A_{22} \times (B_{21} - B_{11}),$$

$$M_5 = (A_{11} + A_{12}) \times B_{22}, \quad M_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12}),$$

$$M_7 = (A_{12} - A_{22}) \times (B_{12} + B_{22})$$

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four $n/2 \times n/2$ sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

- where Strassen's algorithm applies 7 multiplication and 18 additions and subtractions on the sub-matrices
 - T(n) = 7T(n/2) + f(n)

$$M_5 = (A_{11} + A_{12}) \times B_{22}, \quad M_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12}),$$

 $M_7 = (A_{12} - A_{22}) \times (B_{12} + B_{22})$

Matrix Multiplication (Strassen's Algorithm)

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

where

- Strassen's algorithm applies 7 multiplication and 18 additions and subtractions on the sub-matrices
- T(n) = 7T(n/2) + f(n)
- each sub-matrix contains $(n/4)^2$ entries, thus $f(n) = O(n^2)$

$$M_5 = (A_{11} + A_{12}) \times B_{22}, M_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12}),$$

$$M_7 = (A_{12} - A_{22}) \times (B_{12} + B_{22})$$

Matrix Multiplication (Strassen's Algorithm)

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

where

- Strassen's algorithm applies 7 multiplication and 18 additions and subtractions on the sub-matrices
- T(n) = 7T(n/2) + f(n)
- each sub-matrix contains $(n/4)^2$ entries, thus $f(n) = O(n^2)$
- from Master Theorem (the first case),

$$M_7 = (A_{12} - A_{22}) \times (B_{12} + B_{22})$$

Matrix Multiplication (Strassen's Algorithm)

- let A and B be two nxn matrices where n is a power of 2
- divide A and B into four n/2 x n/2 sub-matrices

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

where

- Strassen's algorithm applies 7 multiplication and 18 additions and subtractions on the sub-matrices
- T(n) = 7T(n/2) + f(n)
- each sub-matrix contains $(n/4)^2$ entries, thus $f(n) = O(n^2)$
- from Master Theorem (the first case),

$$T(n) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})$$