Modal Logic and BDI Logic: an Overview

Stefania Costantini, University of L'Aquila

Introduction

- We want to model situations like this one:
- 1. "Fausto is always happy" (necessarily happy)
- 2. "Fausto is happy under certain circumstances" (possibly happy)
- In Propositional Logic/Classical Logic we could have: HappyFausto
- In modal logic we have:
- 1. □ HappyFausto
- 2. ♦ HappyFausto
- As we will see, this is captured through the notion of "possible words" and of "accessibility relation"

Syntax

• We extend propositional first-order logic (PL) with two logical *modal* operators:

□ (box) and ◊ (diamond)

□P: "Box P" or "necessarily P" or "P is necessary true"

◇P: "Diamond P" or "possibly P" or "P is possible"

Note that we define $\Box P = \Box \Diamond \Box P$, i.e. \Diamond is a primitive symbol

Syntax

• The grammar of well-formed formulas (wwf) of underlying logic language L is extended as follows:

```
<Atomic Formula> ::= A | B | ... | P | Q | ... | \bot | \top |
    <wff> ::= <Atomic Formula> | \neg<wff> | <wff> \( \widetilde{\text{wff}} \) \( \widetilde{\text{wff}} \) |
    <wff> | <wff> | <wff> | \( \widetilde{\text{wff}} \) |
```

Different interpretations

Philosophy	□P: "P is necessary"	
	♦P : "P is possible"	
Epistemic	□aP : "Agent a believes P" or "Agent a knows P"	
Temporal logics	□P : "P is always true"	
	◊P : "P is sometimes true"	

Modal Logic: Semantics

- Semantics is given in terms of Kripke Models (also known as Kripke Sructures possible worlds structures)
- Due to American logician Saul Kripke, City University of NY (result dating back to 1959)

Semantics: Kripke Models

- A Kripke Model is a triple M = <W, R, I> where:
- W is a non empty set of worlds
- R ⊆ W x W is a binary relation called the accessibility relation
- I is an interpretation function I: L □ pow(W) such that to each proposition P we associate a set of possible worlds I(P) in which P holds

Semantics: Kripke Models

• Consider the following situation:

- M = <W, R, I>
 BeingNormal
 W = {1, 2, 3, 4}
 R = {<1, 2>, <1, 3>, <1, 4>, <3, 2>, <4, 2>}
 I(BeingHappy) = {2} I(BeingSad) = {1} I(BeingNormal) = {3, 4}
- Each w ∈ W is said to be a world, point, state, event, situation, class ... according to the problem we model

Truth relation (true in a world)

Given a Kripke Model $M = \langle W, R, I \rangle$, a proposition P and a possible world $w \in W$, we say that "w satisfies P in M" or that "P is satisfied by w in M" or "P is true in M via w", in symbols:

 $M, w \models P$ in the following cases:

```
1. P atomic
                 w \in I(P)
```

$$2. P = M, w \neq Q$$

3.
$$P = Q \nearrow T$$
 $M, w \models Q \text{ and } M, w \models T$

4.
$$P = Q \nabla T$$
 $M, w \models Q \text{ or } M, w \models T$

5.
$$P = Q \textcircled{T} T \quad M, w \not\models Q \text{ or } M, w \models T$$

6.
$$P = \Box Q$$
 for every $w' \in W$ such that wRw' then $M, w' \models Q$

7.
$$P = \Diamond Q$$
 for some $w' \in W$ such that wRw' then $M, w' \models Q$

NOTE: wRw' can be read as "w' is accessible from w via R" or that "w' is reachable from w via R"

Semantics: Kripke Models

- \bullet Each $w \in W$ is said to be a world, point, state, event, situation, class ... according to the problem we model
- •For "world" we mean a Propositional Logic model (a set of atoms). Focusing on this definition, we can see a Kripke Model as a set of different PL models related by an "evolutionary" relation R; in such a way we are able to represent formally for example the evolution of a model in time.
- •In a Kripke model, <W, R> is called <u>frame</u> and is a relational structure.

1

Semantics: Kripke Model

• Consider the following situation:

M,
$$2 \models BeingHappy$$
 M, $2 \models \Box BeingSad$ M, $4 \models \Box BeingHappy$ M, $1 \models \Diamond BeingHappy$ M, $1 \models \Box \Diamond BeingSad$

Satisfiability and Validity

Satisfiability

A proposition $P \in L$ is satisfiable in a Kripke model $M = \langle W, R, I \rangle$ if

M, w = P for all worlds w ∈ W. // Pvnle in totti i m and de ganjo

We can then write M = P 1/19 modelloimplica Pindifendentemente dal mondo

Validity

A proposition $P \in L$ is valid if P is satisfiable for all models M (and by varying the frame $\langle W, R \rangle$).

We can write $\models P$

Satisfiability

• Consider the following situation:

BeingHappy

 $M, w \models \Box BeingHappy$ for all $w \in W$, therefore $\Box BeingHappy$ is satisfiable in M.

Axiomatic theory of Knowledge

- The modal operator $\Box i$ becomes Ki
- Worlds accessible from w according to accessibility relation Ri are those indistinguishable to agent i from world w
- *Ki* means "agent *i* knows that"
- Start with the simple axioms:
- (Classical) All propositional tautologies are valid
- (Modus Ponens) if [] and [] [] are valid, infer that [] is valid

Axiomatic theory of Knowledge (More Axioms)

- **(K)** From (*Ki***[***[*] | *Ki*(**[**] | **[**] **[**])) infer *Ki***[**[]
- Means that the agent knows all the consequences of his knowledge
- This is also known as logical omniscience
- (Necessitation) From \square , infer that $Ki\square$
- Means that the agent knows all propositional tautologies

Axiomatic theory of Knowledge (More Axioms)

D'ON AGBUTE NOW SA"

-D'ON AGENTE SA"

- Axiom (D) $(N \times i)$ ($(N \times i)$)
- This is called the axiom of consistency
- Axiom (T) (Ki (Z) 1)
- This is called the veridity axiom
- Means that if an agent cannot know something that is not true.

Axiomatic theory of Knowledge (More Axioms)

- **Axiom** (4) *Ki* 💯 🗗 *Ki Ki* 💯
- Called the positive introspection axiom
- **Axiom (5)** ∃*Ki* 况 ∃ *Ki* ∃*Ki* ₩
- Called the negative introspection axiom

Axiomatic theory of Knowledge (Overview of Axioms, Modal Logic S5)

Name	Axiom	Accessibility Relation
Axiom K	$(K_i(\varphi) \land K_i(\varphi \rightarrow \psi)) \rightarrow K_i(\psi)$	NA
Axiom D	$\neg K_i(p \land \neg p)$	Serial
Axiom T	$K_i \varphi \to \varphi$	Reflexive
Axiom 4	$K_i \varphi \to K_i K_i \varphi$	Transitive
Axiom 5	$\neg K_i \varphi \to K_i \neg K_i \varphi$	Euclidean

Table 13.1: Axioms and corresponding constraints on the accessibility relation.

5. Logics of knowledge and belief

- Used to model "modes of truth" of cognitive agents
- Distributed modalities
- Cognitive agents characterise an intelligent agent using symbolic representations and mentalistic notions:
- knowledge John knows humans are mortal
- beliefs John took his umbrella because he believed it was going to rain
- desires, goals John wants to possess a PhD
- intentions John intends to work hard in order to have a PhD
- commitments John will not stop working until getting his PhD

Logics of knowledge and belief

- How to represent knowledge and beliefs of agents?
- FOPL (First-Order Predicate Logic) augmented with two modal operators K and B

```
K(a, \square) - a knows \square

B(a, \square) - a believes \square

with \square \square LFOPL, a \square A, set of agents
```

- Associate with each agent a set of possible worlds
- Kripke model Ma of agent *a* for a formula [
- Ma =<W, R, I> with $R \sqcap W \times W$

and I - interpretation of the formula on a Kripke frame <W,R> which makes the formula true for agent *a*

Logics of knowledge and belief: Observations

• An agent *knows* a propositions in a given world if the proposition holds in all worlds accessible to the agent from the given world

• An agent *believes* a propositions in a given world if the proposition holds in all worlds accessible to the agent from the given world

```
Ma \models W B \square \text{ iff } \square w': R(w,w') \square Ma \models W' \square
```

• The difference between **B** and **K** is given by their properties (sometimes the difference is neglected)

Properties of knowledge

(A1) Distribution axiom:
$\mathbf{K}(\mathbf{a}, \square) \square \mathbf{K}(\mathbf{a}, \square \square \square) \square \mathbf{K}(\mathbf{a}, \square)$
"The agent ought to be able to reason with its knowledge"
(A2) Knowledge axiom: K (a, □) □ □
"The agent can not know something that is false"
K(a, □) □ □

Properties of knowledge (A3) Positive introspection axiom

```
\mathbf{K}(\mathbf{a}, \Pi) \prod \mathbf{K}(\mathbf{a}, \mathbf{K}(\mathbf{a}, \Pi))
 \prod X \prod \prod X  (S4)
 K(a, \prod) \prod K(a, K(a, \prod))
```

(A4) Negative introspection axiom

$$\square$$
K(a, \square) \square K(a, \square K(a, \square)) \square X \square X \square X (S5)

Inference rules for knowledge

(R1) Epistemic necessitation |- □ □ K(a, □)

modal rule of necessity |- | | |

(R2) Logical omniscience

 \square \square and $K(a, \square)$ \square $K(a, \square)$

Properties of belief

```
Distribution axiom: \mathbf{B}(\mathbf{a}, \square) \square \mathbf{B}(\mathbf{a}, \square \square) \square \mathbf{B}(\mathbf{a}, \square)

YES

Knowledge axiom: \mathbf{B}(\mathbf{a}, \square) \square \square \mathbf{NO}
```

Positive introspection axiom

$$B(a, \square) \square B(a, B(a, \square))$$

YES

Negative introspection axiom

$$\square B(a, \square) \square B(a, \square B(a, \square))$$

problematic

Inference rules for belief

(R2) Logical omniscience

☐ ☐ ☐ and B(a, ☐) ☐ B(a, ☐)

usually NO

Some more axioms for beliefs

Knowing what you believe

$$\mathbf{B}(\mathbf{a}, \square) \square \mathbf{K}(\mathbf{a}, \mathbf{B}(\mathbf{a}, \square))$$

Believing what you know

$$\mathbf{K}(\mathbf{a}, \square) \square \mathbf{B}(\mathbf{a}, \square)$$

Have confidence in the belief of another agent

$$\mathbf{B}(a1, \mathbf{B}(a2, \square)) \square \mathbf{B}(a1, \square)$$

Using modal reasoning in practice

At the Pub

- Three Logicians enter a pub.
- The barman asks: "Three beers, as usual?"
- The first logician says: "I do not know!"
- The second logician then says "I also do not know!"
- The third logician says "Yes!"

Q: How did they reason?

The King's Three Wise Men Puzzle

- The King called the three wisest men in the country.
- He painted a spot on each of their foreheads and told them that at least one of them has a white spot on his forehead. Then he asked them in turn: "Do you know if you have a white spot on your forehead?"
- The first wise man said: "I do not know whether I have a white spot".
- The second man then says "I also do not know whether I have a white spot".
- The third man says then "I know I have a white spot on my forehead".
 - *Q:* How did the third wise man reason?

Two-wise men problem - Genesereth, Nilsson

Variation of the King's Wise Men Puzzle

- The King called the two wisest men in the country.
- He painted a spot on one of their foreheads and told them that at least one of them has a white spot on his forehead.
- The first wise man said: "I do not know whether I have a white spot"
- The second wise man said then "I know I have a white spot on my forehead".
 - Q: How did the second wise man reason?
- (1) We call the first wiseman "B" and the second wiseman "A"
- (2) Ther spot is on "B"'s forehead
- (3) A and B know that each can see the other's forehead. Thus:
 - (1a') If A does not have a white spot, B will know that A does not have a white spot
 - (1a") A knows (1a')
 - (1b') If B does not have a white spot, A will know that B does not have a white spot
 - (1b") B knows (1b')
 - (2) A and B each know that at least one of them have a white spot, and they each know that the other knows that. In particular
 - (2a) A knows that B knows that either A or B has a white spot (and so does B w.r.t. A)
 - (3) B says that he does not know whether he has a white spot, and A thereby knows that B does not know

Two-wise men problem - Genesereth, Nilsson

- (1) A and B know that each can see the other's forehead. (2) A and B each know that at least one of them have a white spot, and they each know that the other knows that. In particular
 - (2a) A knows that B knows that either A or B has a white spot
- (3) B says that he does not know whether he has a white spot, and A thereby knows that B does not know

Proof of why A answers YES from B saying "I don't' know"

- 1. **K**A(□WA □ **K**B(□ WA) Axiom 1
- 2. **K**A(**K**B(WA \square WB)) Axiom 2
- 3. **K**A(**□K**B(WB)) Axiom 3

Proof

- 4. □WA □ **K**B(□WA) 1, A2 A2: **K**(a, □) □ □
- 5. **K**B(□WA □ WB) 2, A2
- 6. $\mathsf{KB}(\square \mathsf{WA}) \square \mathsf{KB}(\mathsf{WB})$ 5, A1 A1: $\mathsf{K}(\mathsf{a},\square \square \square) \square (\mathsf{K}(\mathsf{a},\square) \square \mathsf{K}(\mathsf{a},\square))$
- 7. | WA | KB(WB) 4, 6
- 8. **□K**B(WB) **□** WA contrapositive of 7
- 9. **K**A(WA) answer Yes!!! 3, 8, R2

R2: \square \square and $\mathbf{K}(a, \square)$ infer $\mathbf{K}(a, \square)$

6. Temporal logic

- The time may be linear or branching; the branching can be in the past, in the future of both
- Time is viewed as a set of moments with a strict partial order, <, which denotes temporal precedence.
- Every moment is associated with a possible state of the world, identified by the propositions that hold at that moment

Modal operators of temporal logic (linear) LTL

p U q - p is true until q becomes true - until

Xp - **p** is true in the next moment - next

Pp - p was true in a past moment - past

Fp - **p** will finally (eventually) be true in the future - eventually

Gp - p will always be true in the future – always

Fp \square true U p Gp \square \square F \square p

F – one time point

G - each time point

Branching time logic - CTL

- Temporal structure with a branching time future and a single past - time tree T
- CTL Computational Tree Logic
- In a branching logic of time, a path at a given moment is any maximal set of moments containing the given moment and all the moments in the future along some particular branch of T (so, a path is actually a subtree)
 - * Situation a world w at a particular time point t, wt
- **State formulas** evaluated at a specific *time point* in a time tree
- *Path formulas* evaluated over a *specific path* in a time tree

Branching time logic - CTL

CTL Modal operators over both state and path formulas

From Temporal logic (linear)

```
Fp - p will sometime be true in the future - eventually
```

```
Gp - p will always be true in the future - always
```

Xp - **p** is true in the next moment - next

p U q - p is true until q becomes true - until

(p holds on a path s starting in the current moment t until q comes true)

F – one time point

G – each time point

Modal operators over path formulas (branching)

Ap - at a particular time moment, **p** is true in all paths emanating from that point - inevitable p

 $\mathbf{E}\mathbf{p}$ - at a particular time moment, \mathbf{p} is true in some path emanating from that point - optional \mathbf{p}

A – all path E – some path

- s is true in each time point (G) and in all path (A)
- **r** is true in each time point (G) in some path (E)
- **p** will eventually (F) be true in some path (E)
- q will eventually (F) be true in all path (A)

r - Alice is in Italy p -Alice visits Paris s – Paris is the capital of France q - It is spring time

6 BDI logic

Modal operators Bel, Des, Int, (KW)

M=<W, T, R, B, D, I> where T = time (under Linear-Time Temporal Logic)

B: belief accessibility relation for operator Bel

belief accessible worlds; the worlds the agent believes possible

D: desire (goal) accessibility relation for operator Des

- Requires the desires to be consistent; therefore Desires [] Goals
- Each situation has associated a set of goal -accessible worlds realism
- Strong realism = for each belief-accessible world w at a given time moment t, there must be a goal-accessible world that is a sub-world of w at time t

I: intention accessibility relation for operator Int

- Intentions similarly represented by sets of intention-accessible worlds. These are the worlds the agent has committed to realize.
- Corresponding to each intention-accessible world at some time t there must be a goal-accessible world: however, the agent may choose only a subset of goal-accessible worlds

belief accessible worlds

intention accessible worlds

r - Alice is in Italy p - Alice visits Paris

s – Paris is the capital of France q - it is spring time

Assiomi Bel, Des, Int

$$M = t \times Belp \quad iff (\exists t' : (t,t') \exists B(x,t) \exists M = t' p)$$

an agent x has a belief p in a given moment t if and only if p is true in all belief accessible worlds of the agent in that moment

$$M = t \times Desp \quad iff (\exists t' : (t,t') \exists D(x,t) \exists M = t' p)$$

an agent x has a desire p in a given moment t if and only if p is true in all goal accessible worlds of the agent in that moment

$$M = t x Intp iff (s: s I(x,t) M = s,t Fp)$$

at each moment t, I assigns a set of paths that the agent x has selected or preferred, i.e., if the agent has selected p as an intention, p will hold eventually in the future

F - eventually
G - always
A - inevitable
E - optional

Relationship among Modal Operators

Belief-goal compatibility

If an agent adopts **p** as a goal, then the agent believes that there exists (at least) one path on which **p** will be true as it is an adopted desire but it needs not believe that it will ever reach that point

$$x$$
Des $p \square (x$ **Bel** $(E G p)$

Goal-intention compatibility

If an agent adopts **p** as an intention, it should have adopted it as a goal to be achieved

F - eventually

xIntp □ xDesp

F - eventually G - always

A - inevitable

E - optional

Relationship among Modal Operators

Beliefs about intentions

$$xIntp \square xBel(xIntp)$$

No infinite deferral

The agent should not procrastinate with respect to its intentions; if the agent forms an intention, then sometimes in the future it will give up this intention

 $xIntp \square A F(\square xIntp)$

F - eventually

G - always

A - inevitable

E - optional

Commitment

- An agent is considered as being committed to its intention but, cf. no infinite deferral, it will give up these intentions eventually - when?
- Different types of agents will have different commitment strategies. F - eventually

Blindly committed agent

G - always A - inevitable

E - optional

o maintains its intentions until it believes it has achieved them

$$xInt(A Fp) \square A (xInt(A Fp) \square xBelp)$$
 (exclusive \square)

- an agent can be committed to means (**p** is an action) or to ends (**p** 0 is a formula)
- defined only for intentions toward actions or conditions that are 0 true for all paths in the agent's intention accessible worlds.

Single-minded committed agent

maintains its intentions as long as it believes they are still options

 $xInt(A Fp) \square A (xInt(A Fp) \square (xBelp \square \square xBel(E Fp)))$

Open-minded committed agent

 maintains its intentions as long as these intentions are still its desires (goals)

 $xInt(A Fp) \square A (xInt(A Fp) \square (xBelp \square \square xDes(E Fp)))$

F - eventually
G - always
A - inevitable
E - optional

References

- M. P. Singh, A.S. Rao. Formal methods in DAI: Logic-based representation and reasoning. In Multiagent Systems - A Modern Approach to Distributed Artficial Intelligence, G. Weiss (Ed.), The MIT Press, 2001, p.331-355.
- M. Wooldrige. Reasoning about Rational Agents. The MIT Press, 2000, Chapter 2
- A.S. Rao, M.P. Georgeff. Modeling rational agents within a BDI-architecture. In Readings in Agents, M. Huhns & M. Singh (Eds.), Morgan Kaufmann, 1998, p.317-328.
- M.R. Genesereth, N.J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987, Chapter 9.
- o D. Kayser: La représentation des connaissances. Hermès, 1997.
- J.Y. Halpern. Reasoning about knowledge: A survey. In Handbook of Logic in Artificial Intelligence and Logic Programming, Vol.4, D. Gabbay, C.A. Hoare, J.A. Robinson (Eds.), Oxford University Press, 1995, p.1-34.
- o A. Florea. Bazele logice ale inteligentei artificiale. UPB, 1995.