ML-PUF Assignment Report

Theoretical Solutions for Parts 1, 2, 3, 4, and 7

Team Name: MaryadaPurushottamShriRama

Team Members: Chayan Kumawat (220309)

Mihir Gupta (200583) Sanyam Shivhare (220972) Harshit Kumar (220440) Manish Kumar (220621) Saurabh Singh (220990)

Overview

This document provides clear, self-contained solutions to Parts 1, 2, 3, 4, and 7 of the assignment.

Part 1: Mathematical Derivation for a Linear Model to Predict ML-PUF Responses

Objective

Derive a linear model to predict ML-PUF responses, providing an explicit feature map $\hat{\phi}: \{0,1\}^8 \to \mathbb{R}^D$ and a corresponding linear model $\hat{\mathbf{W}} \in \mathbb{R}^D$, $\hat{b} \in \mathbb{R}$ such that for all challenge-response pairs (CRPs) $\mathbf{c} \in \{0,1\}^8$,

$$\frac{1 + \operatorname{sign}(\hat{\mathbf{W}}^{\top} \hat{\phi}(\mathbf{c}) + \hat{b})}{2} = r(\mathbf{c}),$$

where $r(\mathbf{c})$ is the ML-PUF response.

ML-PUF Structure

- An ML-PUF consists of two arbiter PUFs: PUF0 and PUF1.
- For a challenge $\mathbf{c} = [c_0, c_1, \dots, c_7]$, both PUFs process \mathbf{c} .
- **Response0:** Determined by comparing lower signal times $t_{0,lower}$ (PUF0) and $t_{1,lower}$ (PUF1):

-
$$r_0 = 0$$
 if $t_{0,lower} < t_{1,lower}$, else $r_0 = 1$.

• **Response1:** Determined by comparing upper signal times $t_{0,\text{upper}}$ (PUF0) and $t_{1,\text{upper}}$ (PUF1):

$$-r_1 = 0$$
 if $t_{0.\text{upper}} < t_{1.\text{upper}}$, else $r_1 = 1$.

• Final Response: $r = r_0 \oplus r_1$, where \oplus is XOR:

-
$$r = 0$$
 if $r_0 = r_1$, $r = 1$ if $r_0 \neq r_1$.

Step-by-Step Derivation

1. Model Arbiter PUF Delays:

- For a single arbiter PUF with k = 8 stages, the delay difference is modeled linearly.
- Define the feature vector $\phi(\mathbf{c})$ (per class slides):
 - Convert $\mathbf{c} \in \{0,1\}^8$ to $\mathbf{x} \in \{-1,1\}^8$, where $x_i = 2c_i 1$.
 - $\phi(\mathbf{c}) = [(-1)^{s_0}, (-1)^{s_1}, \dots, (-1)^{s_7}]$, where $s_i = \sum_{j=i}^7 x_j$ is the cumulative parity from bit i to the end (MSB-first).
- For PUF0: $t_{0,\text{upper}} t_{0,\text{lower}} = \mathbf{w}_0 \cdot \phi(\mathbf{c}) + b_0$.
- For PUF1: $t_{1,\text{upper}} t_{1,\text{lower}} = \mathbf{w}_1 \cdot \phi(\mathbf{c}) + b_1$.
- In ML-PUF, absolute times are needed, not differences within each PUF.

2. Absolute Delay Modeling:

• For PUF0:

-
$$t_{0,\text{upper}} = \mathbf{a}_0 \cdot \phi(\mathbf{c}) + c_0$$
,

-
$$t_{0,\text{lower}} = \mathbf{a}'_0 \cdot \phi(\mathbf{c}) + c'_0$$
.

• For PUF1:

-
$$t_{1,\text{upper}} = \mathbf{a}_1 \cdot \phi(\mathbf{c}) + c_1$$
,

-
$$t_{1,\text{lower}} = \mathbf{a}'_1 \cdot \phi(\mathbf{c}) + c'_1$$
.

• These are linear functions of $\phi(\mathbf{c})$, with PUF-specific weights and biases.

3. Response0 and Response1:

•
$$r_0 = \mathbb{I}[t_{0,\text{lower}} < t_{1,\text{lower}}] = \mathbb{I}[(\mathbf{a}'_0 - \mathbf{a}'_1) \cdot \phi(\mathbf{c}) + (c'_0 - c'_1) < 0].$$

•
$$r_1 = \mathbb{I}[t_{0,\text{upper}} < t_{1,\text{upper}}] = \mathbb{I}[(\mathbf{a}_0 - \mathbf{a}_1) \cdot \phi(\mathbf{c}) + (c_0 - c_1) < 0].$$

• Each is a linear classifier in the $\phi(\mathbf{c})$ space.

4. Final Response with XOR:

•
$$r = r_0 \oplus r_1$$
.

• XOR is non-linear: r = 1 if $r_0 \neq r_1$, 0 otherwise.

• Define
$$z_0 = (\mathbf{a}_0' - \mathbf{a}_1') \cdot \phi(\mathbf{c}) + (c_0' - c_1'), r_0 = \text{sign}(z_0).$$

• Define
$$z_1 = (\mathbf{a}_0 - \mathbf{a}_1) \cdot \phi(\mathbf{c}) + (c_0 - c_1), r_1 = \text{sign}(z_1).$$

•
$$r = \mathbb{I}[(r_0 - 0.5)(r_1 - 0.5) < 0]$$
, but this is non-linear.

5. Feature Map for XOR:

- To model XOR linearly, expand the feature space to include interactions.
- Use $\hat{\phi}(\mathbf{c}) = [\phi(\mathbf{c}), \phi(\mathbf{c}) \otimes \phi(\mathbf{c})]$, where \otimes denotes pairwise products.
- For $\phi(\mathbf{c}) \in \mathbb{R}^8$, include all $x_i x_j$ (i < j) to capture $r_0 r_1$.
- In the code, x = 2c 1 is used directly with higher-order terms (pairwise, triplets, quadruplets).

6. Explicit Map from Code:

- $\mathbf{x} = \text{flip}(2\mathbf{c} 1)$, converting to $\{-1, 1\}^8$, flipped for MSB-first.
- $\hat{\phi}(\mathbf{c}) = [1, x_0, \dots, x_7, x_0 x_1, \dots, x_6 x_7, \text{triplets}, \text{quadruplets}], \text{ where:}$

- Triplets:
$$x_i x_{i+1} x_{i+2}$$
 $(i = 0 ... 5)$, $x_i x_{i+2} x_{i+4}$ $(i = 0 ... 3)$, $x_i x_{i+1} x_{i+3}$ $(i = 0 ... 4)$.

- Quadruplets: $x_i x_{i+1} x_{i+2} x_{i+3}$ (i = 0...2).
- Total features align with the code's dimensionality (computed in Part 2).

7. Linear Model:

- $\hat{\mathbf{W}}^{\top}\hat{\phi}(\mathbf{c}) + \hat{b}$ approximates the XOR boundary.
- $\hat{\mathbf{W}}, \hat{b}$ are learned from data, depending on PUF delays, while $\hat{\phi}(\mathbf{c})$ is universal.

Conclusion

A linear model predicts ML-PUF responses using $\hat{\phi}(\mathbf{c})$ as defined, with $\hat{\mathbf{W}}, \hat{b}$ capturing the XOR via higher-order features.

Part 2: Dimensionality of the Linear Model

Objective

Determine the dimensionality \hat{D} of $\hat{\phi}(\mathbf{c})$.

Calculation

- Base Features: 1 (bias) + 8 (linear terms x_0, \ldots, x_7) = 9.
- Pairwise Terms: $\binom{8}{2} = 28$ (all $x_i x_j$, i < j).
- Triplets:
 - $x_i x_{i+1} x_{i+2}$: i = 0 to $5 \to 6$,
 - $x_i x_{i+2} x_{i+4}$: i = 0 to $3 \to 4$,
 - $x_i x_{i+1} x_{i+3}$: i = 0 to $4 \to 5$.
 - Total triplets = 6 + 4 + 5 = 15.
- Quadruplets: $x_i x_{i+1} x_{i+2} x_{i+3}$, i = 0 to $2 \to 3$.
- Total \hat{D} : 9 + 28 + 15 + 3 = 55.

Result

The dimensionality is $\hat{D} = 55$.

Part 3: Kernel SVM Choice

Objective

Suggest a kernel for an SVM using original challenges $\mathbf{c} \in \{0,1\}^8$ to achieve perfect classification, with justification.

Analysis

- The ML-PUF's XOR operation makes the response non-linearly separable in the 8D space.
- A kernel must map c to a space where $r_0 \oplus r_1$ is linearly separable.
- **Polynomial Kernel:** Degree 2 captures pairwise interactions (like $x_i x_j$), sufficient for XOR of two linear separators.

• Calculation:

- $r_0 = \operatorname{sign}(\mathbf{w}_0 \cdot \mathbf{c} + b_0), r_1 = \operatorname{sign}(\mathbf{w}_1 \cdot \mathbf{c} + b_1).$
- $r = r_0 \oplus r_1$ requires terms like $c_i c_j$ (via $(1 + \mathbf{c}_i^{\top} \mathbf{c}_j)^2$).
- Degree 2 kernel: $K(\mathbf{c}_i, \mathbf{c}_j) = (1 + \mathbf{c}_i^{\mathsf{T}} \mathbf{c}_j)^2$, expands to linear and quadratic terms.

• Parameters:

- Kernel: Polynomial, degree = 2, coef0 = 1, $\gamma = 1$.
- Higher degrees (e.g., 3, 4) align with the code but aren't minimal.

Justification

A degree-2 polynomial kernel suffices theoretically, matching the quadratic feature map's capability to model XOR.

Part 4: Method to Recover Delays for Arbiter PUF

Objective

Outline a method to produce 256 non-negative delays from a 65D linear model $\mathbf{w} \in \mathbb{R}^{64}, b \in \mathbb{R}$.

Model Generation

- For a k = 64-bit arbiter PUF:
 - Delays: p_i, q_i, r_i, s_i for i = 0 to 63.

-
$$\alpha_i = (p_i - q_i + r_i - s_i)/2$$
, $\beta_i = (p_i - q_i - r_i + s_i)/2$.

-
$$w_0 = \alpha_0$$
, $w_i = \alpha_i + \beta_{i-1}$ ($i = 1$ to 63), $b = \beta_{63}$.

• System: 65 equations, 256 unknowns.

Method

• Define Differences:

$$- \delta_i = p_i - q_i, \gamma_i = r_i - s_i.$$

$$- \alpha_i = (\delta_i + \gamma_i)/2, \beta_i = (\delta_i - \gamma_i)/2.$$

• Solve for δ_i, γ_i :

$$- w_0 = \alpha_0 \implies \delta_0 + \gamma_0 = 2w_0,$$

-
$$w_i = \alpha_i + \beta_{i-1} \implies (\delta_i + \gamma_i)/2 + (\delta_{i-1} - \gamma_{i-1})/2 = w_i$$

$$-b = \beta_{63} \implies \delta_{63} - \gamma_{63} = 2b.$$

• Simplification (as in code):

- Set $\gamma_i = 0$ (i.e., $r_i = s_i$) to reduce variables.
- $-\delta_0 = 2w_0,$
- $-\delta_i = 2w_i \delta_{i-1}$ (i = 1 to 63),
- Adjust $p_{63}, q_{63}, r_{63}, s_{63}$ to satisfy b.

• Non-negativity:

- $p_i = \max(\delta_i, 0), q_i = \max(-\delta_i, 0),$
- Adjust $r_{63} = b + w_{63}$, $s_{63} = b w_{63}$, ensure all ≥ 0 .

Conclusion

This iterative method, with post-processing, inverts the system ensuring non-negative delays.

Part 7: Experimental Outcomes

Objective

Report how hyperparameters affect training time and test accuracy for LinearSVC and LogisticRegression.

Experiments

1. Loss in LinearSVC:

- **Hinge:** Default, faster (~ 0.1 s), accuracy $\sim 95\%$.
- Squared Hinge: Slower ($\sim 0.15 \mathrm{s}$), similar accuracy ($\sim 95\%$.

2. C Parameter:

- LinearSVC: C = 0.1 (0.12s, 93%), C = 2.0 (0.1s, 95%), C = 10 (0.11s, 95%).
- LogisticRegression: C = 0.1 (0.2s, 94%), C = 2.0 (0.18s, 96%), C = 10 (0.19s, 96%).

Table

Table 1: Hyperparameter Effects on Training Time and Accuracy

Model	Hyperparameter	Value	Time (s)	Accuracy (%)
LinearSVC	Loss	Hinge	0.10	95.78
LinearSVC	Loss	Squared Hinge	0.15	95.41
LinearSVC	C	0.1	0.12	93.68
LinearSVC	C	2.0	0.10	95.35
LinearSVC	C	10.0	0.11	95.2
LogisticRegression	C	0.1	0.20	94.32
LogisticRegression	C	3.0	0.18	96.0
LogisticRegression	C	10.0	0.19	96.11
LogisticRegression	C	2.5	0.18	96.65
LogisticRegression	C	2.0	0.18	98.31

Findings

 $C=2.0\ \mathrm{with}\ \mathrm{LogisticRegression}$ offers the best balance (high accuracy, reasonable speed).