Particle spectrograph

Wave operator and propagator

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^+lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1-lpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{#2}{}_{\alpha}$
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	$-\frac{1}{\frac{3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3)}{16 (\beta_1 + 2 \beta_3)} + (\alpha_2 + \alpha_5) k^2}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$-\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1+k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$\frac{6\alpha_{0} + 8(\beta_{1} + 8\beta_{3} + 3(\alpha_{2} + \alpha_{5})k^{2})}{(1 + k^{2})^{2}(-3(\alpha_{0} - 4\beta_{1})(\alpha_{0} + 8\beta_{3}) + 16(\alpha_{2} + \alpha_{5})(\beta_{1} + 2\beta_{3})k^{2})}$	$\frac{2 i k (3 \alpha_0 + 4 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2))}{(1 + k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$ au_1^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1 + k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	$-\frac{2ik(3\alpha_{0}+4(\beta_{1}+8\beta_{3}+3(\alpha_{2}+\alpha_{5})k^{2}))}{(1+k^{2})^{2}(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$\frac{2 k^2 (3 \alpha_0 + 4 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2))}{(1 + k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_{1}^{\#1} \dagger^{lpha}$	0	0	0	$-\frac{\frac{1}{3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)}+(\alpha_4+\alpha_5)k^2}{8(2\beta_1+\beta_2)}$	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	0	$\frac{4 i (3 \alpha_0 - 4 \beta_1 + 4 \beta_2) k}{(1 + 2 k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$\sigma_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	$\frac{6 \alpha_0 + 8 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2)}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$	0	$\frac{2 i \sqrt{2} k (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{4 i (3 \alpha_{0}-4 \beta_{1}+4 \beta_{2}) k}{(1+2 k^{2}) (-3 (\alpha_{0}-4 \beta_{1}) (\alpha_{0}+2 \beta_{2})+8 (\alpha_{4}+\alpha_{5}) (2 \beta_{1}+\beta_{2}) k^{2})}$	$-\frac{2i\sqrt{2}k(3\alpha_{0}+4(\beta_{1}+2\beta_{2}+3(\alpha_{4}+\alpha_{5})k^{2}))}{(1+2k^{2})^{2}(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+2\beta_{2})+8(\alpha_{4}+\alpha_{5})(2\beta_{1}+\beta_{2})k^{2})}$	0	$\frac{4 k^2 (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$

		$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1^{-}\alpha}^{$ #2	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1}$ †	αβ	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 8 \beta_3) + (\alpha_2 + \alpha_5) k^2$	$\frac{3\alpha_0-4\beta_1+16\beta_3}{6\sqrt{2}}$	$\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}$ †	αβ	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)$	$\frac{2}{3}i(\beta_1+2\beta_3)k$	0	0	0	0
f ₁ ^{#1} †	αβ	$-\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	$-\frac{2}{3}i(\beta_1+2\beta_3)k$	$\frac{2}{3}(\beta_1 + 2\beta_3)k^2$	0	0	0	0
$\omega_1^{\#1}$	† ^α	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2 \beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_0-4\beta_1+4\beta_2)k$
$\omega_1^{\#2}$	† ^α	0	0	0	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	$\frac{1}{3}\left(2\beta_1+\beta_2\right)$	0	$\frac{1}{3} i \sqrt{2} (2 \beta_1 + \beta_2) k$
$f_{1}^{#1}$	† ^α	0	0	0	0	0	0	0
$f_1^{#2}$	\dagger^{α}	0	0	0	$\frac{1}{6}$ i (3 α_0 - 4 β_1 + 4 β_2) k	$-\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$	0	$\frac{2}{3} (2 \beta_1 + \beta_2) k^2$

_	$\omega_{0}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	$\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2$	$-\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$2 \beta_2 k^2$	0	0
$f_{0}^{\#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$\frac{\alpha_0}{2}+4\beta_3+(\alpha_2+\alpha_3)k^2$

Source constraints/ga	Source constraints/gauge generators					
SO(3) irreps	Multiplicities					
$\tau_{0+}^{\#2} == 0$	1					
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3					
$\tau_{1}^{\#1\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3					
Total constraints:	10					

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$-\frac{4 \beta_2}{\alpha_0^2 + 2 \alpha_0 \beta_2 - 4 (\alpha_4 + \alpha_6) \beta_2 k^2}$	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{-\alpha_0(\alpha_0+2\beta_2)k+4(\alpha_4+\alpha_6)\beta_2k^3}$	0	0
$ au_{0}^{\#1} +$	$\frac{i \sqrt{2} (\alpha_0 + 2 \beta_2)}{\alpha_0 (\alpha_0 + 2 \beta_2) k - 4 (\alpha_4 + \alpha_6) \beta_2 k^3}$	$\frac{\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2}{\frac{1}{2} \alpha_0 (\alpha_0 + 2 \beta_2) k^2 + 2 (\alpha_4 + \alpha_6) \beta_2 k^4}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0+8\beta_3+2(\alpha_2+\alpha_3)k^2}$

	$\sigma_{2^{+}\alpha\beta}^{\sharp 1}$	$\tau_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\sharp 1}{}_{lphaeta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{16 \beta_1}{-\alpha_0^2 + 4 \alpha_0 \beta_1 + 16 (\alpha_1 + \alpha_4) \beta_1 k^2}$	$\frac{2 i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k - 16 (\alpha_1 + \alpha_4) \beta_1 k^3}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2 i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k - 16 (\alpha_1 + \alpha_4) \beta_1 k^3}$	$\frac{2 (\alpha_0 - 4 (\beta_1 + (\alpha_1 + \alpha_4) k^2))}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 - 16 (\alpha_1 + \alpha_4) \beta_1 k^2)}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2}$

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\sharp 1}{}_{lphaeta\chi}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_4)k^2$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{#1}$ † $^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2$

Massive and massless spectra

Massive particle					
Pole residue:	$(3 (\alpha_0^2 (3 \alpha_2 + 3 \alpha_5 + 2 \beta_1 + 4 \beta_3) - 8 \alpha_0 (\beta_1^2 + \alpha_2 (\beta_1 - 4 \beta_3) + \alpha_5 (\beta_1 - 4 \beta_3) - 4 \beta_3^2) + 16 (-4 \beta_1 \beta_3 (\beta_1 + 2 \beta_3) + \alpha_2 (\beta_1^2 + 8 \beta_3^2) + \alpha_5 (\beta_1^2 + 8 \beta_3^2))))/(2 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) (3 \alpha_0^2 - 12 \alpha_0 (\beta_1 - 2 \beta_3) + 16 (\alpha_5 \beta_1 + 2 \alpha_5 \beta_3 - 6 \beta_1 \beta_3 + \alpha_2 (\beta_1 + 2 \beta_3)))) > 0$				
Polarisations:	3				
Square mass:	$\frac{\frac{3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)}{16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)}}{16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)} > 0$				
Spin:	1				
Parity:	Even				

Massive particle					
Pole residue:	$-((3(\alpha_0^2(3\alpha_4 + 3\alpha_5 + 4\beta_1 + 2\beta_2) + \alpha_0(-2\alpha_4\beta_1 - 2\alpha_5\beta_1 - 4\beta_1^2 + 2\alpha_4\beta_2 + 2\alpha_5\beta_2 + \beta_2^2) + \alpha_0(-2\beta_1\beta_2(2\beta_1 + \beta_2) + \alpha_4(2\beta_1^2 + \beta_2^2) + \alpha_5(2\beta_1^2 + \beta_2^2))))/$ $(2(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)(3\alpha_0^2 + 6\alpha_0(-2\beta_1 + \beta_2) + \alpha_4(2\alpha_5\beta_1 + \alpha_5\beta_2 - 6\beta_1\beta_2 + \alpha_4(2\beta_1 + \beta_2))))) > 0$				
Polarisations:	3				
Square mass:	$\frac{\frac{3(\alpha_0 - 4\beta_1)(\alpha_0 + 2\beta_2)}{8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)}}{8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)} > 0$				
Spin:	1				
Parity:	Odd				

۷ 0

`.~			?		٥	`.?
Pole residue:	Massive particle	Parity:	Spin:	Square mass:	Polarisations:	Pole residue:
$-\frac{2}{\alpha_0} + \frac{\alpha_1 + \alpha_4 + 2}{2\alpha_1\beta_1 + 2\alpha_4}$	ē	Even	0	$\frac{\alpha_0 (\alpha_0 + 2\beta_2)}{4 (\alpha_4 + \alpha_6) \beta_2} > 0$	1	$\frac{1}{\alpha_0} + \frac{\alpha_4 + \alpha_6 + 2\beta_2}{2\alpha_4\beta_2 + 2\alpha_6}$

Massive particle

.~	.~
$\frac{1}{k^t}$	$\int_{P} J^{p}$
*	

Square mass:

۷ 0

	•~			
Spin:	Square mass:	Polarisations:	Pole residue:	Massive particle
2	$\frac{\alpha_0 - 4\beta_1}{4(\alpha_1 + \alpha_2)} > 0$	5	$-\frac{1}{\alpha_1 + \alpha_2} > 0$	е

$\frac{1}{\alpha_0}$	Polarisations:	Pole residue:	Quadratic pole
	2	$\frac{1}{\alpha_0} > 0$	

Unitarity conditions