PAA - Estudos para prova 3

Conteúdo

1	Teo	rema Mestre	2
2	Indução		
	2.1	Ávaliação de Polinômios 1	3
	2.2	Avaliação de Polinômios 2	4
	2.3	Avaliação de Polinômios 3	4
	2.4	Sub-grafo de grau mínimo K	4
	2.5	Sub-vetor de soma máxima	5
	2.6	Sub-vetor de soma máxima com Sufixo	5
	2.7	Celebridade em Grafos	5
	2.8	Centro de uma árvore	6
3	Divisão e Conquista		
	3.1	Maior Elemento de Vetor	7
	3.2	Exponenciação 2	7
	3.3	Exponenciação 3	8
	3.4	Multiplicação números grandes em base 2	8
	3.5	Multiplicação números grandes em base 2 (versão melhor)	8
	3.6	Menor distância entre par de pontos	9
	3.7	Sub-vetor de soma máxima	10
4	Algoritmos Gulosos 10		
	4.1	Seleção de atividades	11
5	Programação Dinâmica 1		
	5.1	N-ésimo elemento da Sequência de Fibonacci (top-down)	11
	5.2	N-ésimo elemento da Sequência de Fibonacci (Bottom-up)	12
	5.3	Problema da Mochila	12
	5.4	Seleção de atividades com peso	13
	5.5	Maior sequência crescente	13
	5.6	Major sequência crescente y 2	14

1 Teorema Mestre

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Figura 1: Teorma Mestre (Cormen)

☐ Theorem 3.4

The solution of the recurrence relation $T(n) = aT(n/b) + cn^k$, where a and b are integer constants, $a \ge 1$, $b \ge 2$, and c and k are positive constants, is

$$T(n) = \begin{cases} O(n^{\log_a a}) & \text{if } a > h^k \\ O(n^k \log n) & \text{if } a = b^k . \\ O(n^k) & \text{if } a < h^k \end{cases}$$

Figura 2: Teorma Mestre (Manber)

```
Case 1: f(n) = O(n^{\log_b a - \epsilon}) for some constant \epsilon > 0.
    (f(n) \text{ is polynomially smaller than } n^{\log_b a}.)
    Solution: T(n) = \Theta(n^{\log_b a}).
    (Intuitively: cost is dominated by leaves.)
Case 2: f(n) = \Theta(n^{\log_b a} \lg^k n), where k \ge 0.
    [This formulation of Case 2 is more general than in Theorem 4.1, and it is given
    in Exercise 4.6-2.1
    (f(n)) is within a polylog factor of n^{\log_b a}, but not smaller.)
    Solution: T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).
    (Intuitively: cost is n^{\log_b a} \lg^k n at each level, and there are \Theta(\lg n) levels.)
    Simple case: k = 0 \Rightarrow f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \lg n).
Case 3: f(n) = \Omega(n^{\log_b a + \epsilon}) for some constant \epsilon > 0 and f(n) satisfies the regu-
    larity condition a f(n/b) \le c f(n) for some constant c < 1 and all sufficiently
    (f(n) is polynomially greater than n^{\log_b a}.)
    Solution: T(n) = \Theta(f(n)).
    (Intuitively: cost is dominated by root.)
```

Figura 3: Teorma Mestre (Cormen, completo)

2 Indução

2.1 Avaliação de Polinômios 1

Depende da complexidade de se resolver x^n . Considerando que isso pode ser feito em tempo $\Theta(\log n)$, a relação fica $T(n) = T(n-1) + \Theta(\log n)$ cuja complexidade é $\Theta(n \log n)$.

```
Algorithm 1: AP1

Data: vetor de coeficientes a, grau n, ponto x a avaliar

Result: Avaliação do polinômio a_0 + a_1x + \cdots + a_nx^n no ponto x

1 if n == 0 then

2 | return a[0];

3 end

4 y = \text{AP1}(a, n - 1, x);

5 return y + a[n] \cdot x^n;
```

2.2 Avaliação de Polinômios 2

Relação T(n) = T(n-1) + 1, Complexidade $\Theta(n)$

Algorithm 2: AP2

```
Data: vetor de coeficientes a, grau n, ponto x a avaliar Result: Avaliação do polinômio a_0 + a_1x + \cdots + a_nx^n no ponto x 1 if n == 0 then 2 | return (a[0], 1); 3 end 4 (y, \text{potencia}) = \text{AP2}(a, n - 1, x); 5 return (y + a[n] \cdot x \cdot \text{potencia}, x \cdot \text{potencia});
```

2.3 Avaliação de Polinômios 3

Considera que o polinômio de grau n pode ser reescrito como $a_0 + x(a_1 + a_2x + \cdots + a_nx^{n-1})$. Relação T(n) = T(n-1) + 1, Complexidade $\Theta(n)$

Algorithm 3: AP3

```
Data: vetor de coeficientes a, grau n, coeficiente inicial i e ponto x a avaliar

Result: Avaliação do polinômio a_0 + a_1x + \cdots + a_nx^n no ponto x

1 if n == 0 then

2 | return a[i];

3 end

4 y = AP3(a, n - 1, i + 1, x);

5 return a[i] + x \cdot y;
```

2.4 Sub-grafo de grau mínimo K

Procedimento, num grafo de n vértices e m arestas, do cálculo do grau de um vértice e enfileiramento de vértices com grau < k em O(n+m). Remoção dos vértices e seus vizinhos que ficarem com grau < k também O(n+m).

Algorithm 4: SGM

```
Data: Grafo G e grau inteiro k
Result: subgrafo onde todos os vértices tem grau \geq k

1 if E(G) == \emptyset then

2 | return \emptyset];

3 end

4 if grau mínimo \geq k then

5 | return G;

6 end

7 ache v com grau < k;

8 return SGM(G - v, k);
```

2.5 Sub-vetor de soma máxima

Relação $T(n) = T(n-1) + \Theta(n)$, complexidade $O(n^2)$.

Algorithm 5: SSM

```
Data: vetor v[] de tamanho n
Result: Soma máxima de um sub-vetor em v

1 if n==0 then

2 | return 0;

3 end

4 soma = SSM(v, n-1);

5 x=0;

6 for i=n to 1 do

7 | x=x+v[i];

8 | soma = max(soma, x);

9 end

10 return soma;
```

2.6 Sub-vetor de soma máxima com Sufixo

Relação $T(n) = T(n-1) + \Theta(1)$, complexidade $\Theta(n)$.

```
Algorithm 6: SSM2
```

```
Data: vetor v[] de tamanho n
Result: Soma máxima de um sub-vetor em v e maior sufixo

1 if n==0 then

2 | return (0,0);

3 end

4 (\text{soma}, \text{sufixo}) = \text{SSM}(v, n-1);

5 \text{novasoma} = \max(\text{soma}, v[n] + \text{sufixo});

6 \text{novosufixo} = \max(0, v[n] + \text{sufixo});

7 return (\text{novasoma}, \text{novosufixo});
```

2.7 Celebridade em Grafos

Considera que a matriz de adjacências é dada. A indução está em que se descarta iterativamente vértices que não são celebridade, mesmo que a implementação

Algorithm 7: CELEB

```
Data: Grafo G (matriz de adjacências já montada)
  Result: Índice da celebridade ou 0 se não há
i = 1;
2 j = 2;
s for k=3 to n do
      if adj[i,j] == 0 then
       j=k;
6
      end
      else
      i=k;
8
      end
10 end
11 if adj[i, j] == 0 then
   cand = i;
13 end
14 else
   cand = j;
15
16 end
17 for k = 1 to n do
      if k \neq cand \ AND \ (adj[i, cand] == 0 \ OR \ adj[cand, i] == 1) then
        return 0;
19
20
      \mathbf{end}
21 end
22 return cand;
```

2.8 Centro de uma árvore

Implementação com fila e marcadores permite fazer em tempo linear. Termina quando a fila tem somente um ou dois elementos, que são a resposta. Complexidade $\Theta(n)$.

Algorithm 8: CENTRO

```
Data: Árvore T
Result: Vértice(s) do centro da árvore

1 if |V(T)| \le 2 then
2 | return V(T);
3 end
4 Seja F o conjunto de folhas de T;
5 return CENTRO(T - F);
```

3 Divisão e Conquista

3.1 Maior Elemento de Vetor

Relação T(n) = 2T(n/2) + O(1), complexidade $\Theta(n)$.

```
Algorithm 9: ME

Data: vetor v[], início i e fim f

Result: maior elemento de v[]

1 if i == f then

2 | return v[i];

3 end

4 meio = (i + f)/2;

5 maioresq = ME(v, 1, meio);

6 maiordir = ME(v, meio + 1, n);

7 return max(maioresq, maiordir);
```

3.2 Exponenciação 2

A primeira versão feita era iterativa. A primeira com paradigma recursivo era EXP2. Relação T(e) = 2T(e/2) + O(1), complexidade $\Theta(e)$.

```
Algorithm 10: EXP2
```

```
Data: base b, expoente e
Result: b^e

1 if e == 0 then

2 | return 1;

3 end

4 esq = EXP2(b, \lfloor e/2 \rfloor);

5 dir = EXP2(b, \lceil e/2 \rceil);

6 return esq · dir;
```

3.3 Exponenciação 3

Elimina uma chamada recursiva. Relação T(e) = T(e/2) + O(1), complexidade $\Theta(\log e)$.

Algorithm 11: EXP3

```
Data: base b, expoente e
Result: b^e

1 if e == 0 then

2 | return 1;

3 end

4 esq = EXP3(b, \lfloor e/2 \rfloor);

5 dir = esq;

6 if e \notin impar then

7 | dir = b \cdot dir;

8 end

9 return esq · dir;
```

3.4 Multiplicação números grandes em base 2

Relação $T(n)=4T(n/2)+\Theta(n),$ complexidade $\Theta(n^2).$ Não é melhor que o método tradicional.

Algorithm 12: MUL

```
 \begin{array}{lll} \textbf{Data: N\'umeros grandes como vetores } x[],\,y[] \ \text{de } n \ \text{d\'igitos} \\ \textbf{Result: vetor } x \cdot y \\ \textbf{1 if } n == 1 \ \textbf{then} \\ \textbf{2 } & | \ \textbf{return } x \cdot y; \\ \textbf{3 end} \\ \textbf{4 return } 2^n \cdot \text{MUL}(X_L,Y_L,n/2) + 2^{n/2} \cdot \text{MUL}(X_L,Y_R,n/2) + 2^{n/2} \cdot \\ & \quad \text{MUL}(X_R,Y_L,n/2) + \text{MUL}(X_R,Y_R,n/2); \end{array}
```

3.5 Multiplicação números grandes em base 2 (versão melhor)

Usa o fato de que a multiplicação pode ser escrita na forma $2^nA + 2^{n/2}B + C$. Ou, sendo $D = (X_L + X_R)(Y_L + Y_R)$, na forma $2^nA + 2^{n/2}(D - A - C) + C$, o que reduz uma multiplicação. Relação $T(n) = 3T(n/2) + \Theta(n)$, complexidade

```
\Theta(n^{\log_2 3}) = \Theta(n^{1.58}).
```

Algorithm 13: MULT

```
Data: Números grandes como vetores x[], y[] de n dígitos Result: vetor x \cdot y

1 if n == 1 then

2 | return x \cdot y;

3 end

4 A = \text{MULT}(X_L, Y_L, n/2);

5 C = \text{MULT}(X_R, Y_R, n/2);

6 D = \text{MULT}(X_L + X_R, Y_L + Y_R, n/2 + 1);

7 return 2^n \cdot A + 2^{n/2} \cdot (D - A - C) + C;
```

3.6 Menor distância entre par de pontos

Relação $T(n) = 2T(n/2) + O(n\log n)$, complexidade $O(n\log^2 n)$. Professor mostrou método para ordenar o vetor por x e por y uma vez só, que reduziria a complexidade para $O(n\log n)$, mas não fez a versão em algoritmo. Há algumas imprecisões no algoritmo que ele fez em sala. Tentei corrigir algumas, mas não é garantido.

Algorithm 14: PMP

```
Data: vetor de pontos P e tamanho n
  Result: menor distância entre par de pontos
 1 if n == 1 then
   return \infty;
 з end
 4 Ordenar P por coordenada x;
 5 d1 = PMP(P, 1, n/2);
 6 d2 = PMP(P, n/2 + 1, n);
 7 d = \min(d1, d2);
 8 Ordenar P por coordenada y;
 9 Eliminar pontos fora da faixa;
10 for i=1 to n do
      for j=i+1 to i+min(11, n-i) do
11
         if dist(P[i], P[j]) < d then
12
            d = \operatorname{dist}(P[i], P[j]);
13
         \mathbf{end}
14
      end
15
16 end
17 return d;
```

3.7 Sub-vetor de soma máxima

Algorithm 15: SSM

Relação T(n) = 2T(n/2) + O(1), complexidade $\Theta(n)$.

```
Data: indíces de início e fim ini e fim, vetor v
Result: soma dos elementos do sub-vetor de soma máxima

1 if ini == fim then

2 | resp.ssm = max(0, v[ini]);

3 | resp.pref = v[ini];

4 | resp.suf = v[ini];

5 | resp.total = v[ini];

6 end
```

```
7 meio = (ini + fim)/2;

8 esq = SSM(ini, meio, v);

9 dir = SSM(meio + 1, fim, v);

10 resp.ssm = max(esq.ssm, dir.ssm, esq.suf + dir.pref);

11 resp.pref = max(esq.pref, esq.total + dir.pref);

12 resp.suf = max(dir.suf, dir.total + esq.suf);

13 resp.total = esq.total + dir.total;

14 return resp;
```

4 Algoritmos Gulosos

São geralmente focados em problemas de otimização e muitas vezes não é possível pensar na forma de sub-problemas iguais, como nos demais paradigmas. O paradigma consiste em tomar seguidas decisões baseadas no que for a melhor escolha no momento, por isso seu nome.

4.1 Seleção de atividades

Complexidade $\Theta(n \log n)$, o tempo de ordenação domina o algoritmo.

Algorithm 16: SDA

5 Programação Dinâmica

Sub-problemas com interseção, se armazena o resultado dos sub-problemas para não ter que calculá-los novamente.

5.1 N-ésimo elemento da Sequência de Fibonacci (topdown)

A linha 7 é executada n-1 vezes (para todos os números ≤ 2). A cada vez que ela é executada são feitas 2 chamadas. Portanto a rotina é chamada 2(n-1)+1, contando a chamada externa. Portanto $\Theta(n)$.

Algorithm 17: FIB

```
Data: n número na sequência. Vetor f inicializado com valores negativos

Result: Valor do n-ésimo elemento da sequência de Fibonacci

if n \le 1 then

| return n; | send | f[n] \ge 0 then

| return f[n]; | end | f[n] = FIB(n-1) + FIB(n-2); | return f[n]; | end | f[n]; | end |
```

5.2 N-ésimo elemento da Sequência de Fibonacci (Bottomup)

Calcula de baixo pra cima, sem chamadas recursivas. Bem mais fácil de ver que complexidade é $\Theta(n)$.

Algorithm 18: FIB

```
Data: n número na sequência.

Result: Valor do n-ésimo elemento da sequência de Fibonacci

1 f[0] = 0;

2 f[1] = 1;

3 for i=2 to n do

4 |f[i] = f[i-1] + f[i-2];

5 end

6 return f[n];
```

5.3 Problema da Mochila

A relação de recorrência é:

$$\mathbf{M}(n,C) = \begin{cases} 0, & \text{se } n = 0 \text{ ou } C = 0, \\ \mathbf{M}(n-1,C), & \text{se } p_n > C \\ \max(\mathbf{M}(n-1,C), v_n + \mathbf{M}(n-1,C-p_n), & \text{outros casos} \end{cases}$$

Essa relação daria complexidade $O(2^n)$. A implementação com programação dinâmica (abaixo) consegue uma complexidade de $O(n \cdot C)$.

Algorithm 19: M

Data: n número de objetos, C capacidade da mochila, vetor p de pesos e vetorv de valores, matriz m de resultados intermediários com valores negativos

Result: maior valor possível de por na mochila

```
1 if n == 0 ou c == 0 then
2 | return 0;
3 end
4 if m[n][C] > 0 then
5 | return m[n][C];
6 end
7 if p[n] > C then
8 | m[n][C] = M(n-1,C);
9 | return m[n][C];
10 end
11 m[n][C] = \max(M(n-1,C),v[n] + M(n-1,C-p[n]));
12 return m[n][C];
```

5.4 Seleção de atividades com peso

Complexidade $O(n^2)$ se a busca das linhas 4 a 6 for feita com busca linear, $O(n\log n)$ com utilização de busca binária.

```
Algorithm 20: SAP
  Data: lista de atividades A ordenada por data fim, com elemento
         A_0.b = -\infty \ e \ p_0 = 0
  Result: Maior peso possível de se obter com as atividades
pd[0] = 0;
2 for i=1 to n do
3
     j = 0;
     while A[j].b < A[i].a do
4
      j = j + 1;
5
6
     pd[i] = \max(pd[i-1], p[i] + pd[j]);
8 end
9 return p[n];
```

5.5 Maior sequência crescente

Complexidade $O(n^2)$, por causa dos dois loops aninhados.

```
Algorithm 21: MSC
  Data: vetor v de tamanho n
   Result: soma da maior subsequência crescente
1 \text{ resposta} = 1;
2 for i=1 to n do
      msc[i] = 1;
 3
      for j=1 to i-1 do
 4
         if v/j/ < v/i/ then
 5
             if msc[j] + 1 > msc[i] then
 6
             |msc[i] = msc[j+1];
             end
 8
         end
 9
10
      resposta = max(resposta, msc[i]);
11
12 end
13 return resposta;
```

5.6 Maior sequência crescente v.2

Complexidade $O(n \log n)$, considerando busca binária para achar o maior j tal que a[j] < v[i].

```
Algorithm 22: MSC2
   Data: vetor v de tamanho n
   Result: soma da maior subsequência crescente
1 \text{ resposta} = 1;
2 a[0] = -\infty;
\mathbf{s} for i=1 to n do
a \mid a[i] = \infty;
5 end
6 for i=1 to n do
      ache maior j tal que a[j] < v[i];
      msc[i] = j + 1;
8
      a[j+1] = \min(a[j+1], v[i]);
      resposta = max(resposta, msc[i]);
11 end
12 return resposta;
```