Computational Linear Algebra, Module 9 (1-10)

Maya Shende

Due: March 28st, 2017

- 1. Yes, this does draw the function $g(x) = x \frac{5}{3}x^3$
- 2. When more terms are added to the approximation function, we see that it looks like the sine function
- 3. Errors for interval $[0, 2\pi]$:

n=5 n=7		The difference between $n = 3$ and $n = 13$ is 44.03945
n=13	0.22859	

0.22859 = 43.81086. The errors for n = 3 and n = 13 for the interval $[0, \pi]$ are: $n = 3 \rightarrow 1.13981$ and $n = 13 \rightarrow 4.30594 \times 10^{-6}$

For the interval $[0,\pi/2]$, the errors are $n=3\to 0.01836$ and $n=13\to 4.30594\times 10^{-11}$

The error at each point is multiplied by deltaX because we are calculating the area between the two curves to find the error.

4. Taylor series expansion: $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$ The coefficients printed in the alpha array are the same as those we saw in the earlier exercise.

cin-cun

k = 7

k = 9:

k = 11:

6. Any piecewise function cannot be represented by a linear combination of $\sin{(2\pi kx)}$. For example,

$$h(x) = \begin{cases} 1 & x \le 0 \\ 3 & 0 \le x \le 20 \\ 5 & x > 20 \end{cases}$$

- 7. The second graph that is output by this program is a subsection of the first graph, and this is a fractal so the subsection looks like the full graph.
- 8. $k = 0 \rightarrow \text{evaluates to } 1$

 $k=1 \rightarrow \text{evaluates to } n$

 $k = n - 1 \rightarrow \text{evaluates to } n$, which is the same as when k = 1

 $k=n \rightarrow \text{evaluates to 1}$, which is the same as when k=0

9. $\binom{n}{k} = \frac{n!}{k!(n-k)!} \to \text{this is derived by taking the total number of combinations possible, and dividing out the repeated combinations.}$

tions poss				
k	$\binom{n}{k}$			
0	1			
1	5			
2	10			
3	10			
4	5			
5	1			

10. We know that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, $\binom{n-1}{k} = \frac{(n-1)!}{k!(n-1-k)!}$ and $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}$.

3

So now we have:

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{(n-1)!(n-k) + k(n-1)!}{k!(n-k)!}$$

$$= \frac{n! - k(n-1)! + k(n-1)!}{k!(n-k)!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

Therefore, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

 $\binom{n}{k}$ is a symmetric function because of how choosing combinations works. Pascal's Triangle:

Each row of Pascal's Triangle gives the values of $\binom{n}{k}$, where k is the column of the row and n is the row number.