Assignment 9

Jayati Dutta

Abstract—This is a simple document explaining how to express a matrix by the linear combination of the rows of another matrix.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ ncert/geometry/figs

1 Problem

Let
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 1 \\ -4 & 4 \end{pmatrix}$ Is there any

matrix C such that CA = B?

2 EXPLANATION

The matrix B is obtained by multiplying the matrix A with matrix C. B is a 2×2 matrix and A is a 3×2 matrix. so matrix C must be a 2×3 matrix. Let the matrix C is:

$$C = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \tag{2.0.1}$$

So, after multiplying with A matrix we get,

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix} =$$

$$\begin{pmatrix} a_1 + 2b_1 + c_1 & -a_1 + 2b_1 \\ a_2 + 2b_2 + c_2 & -a_2 + 2b_2 \end{pmatrix} (2.0.2)$$

Matrix A is a rectangular matrix, so pseudo inverse of matrix A exists. Now, Considering CA = B and by transposing both side,

$$(CA)^T = B^T \qquad (2.0.3)$$

$$\implies A^T C^T = B^T \qquad (2.0.4)$$

$$\implies \begin{pmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ c_1 & c_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 1 & 4 \end{pmatrix} \qquad (2.0.5)$$

(2.0.6)

1