All rings are Noetherlan, all schemes over bocally Noetherlan.
Zariski Man Thm. If X is grast-compact, (Noetherlan), then any Recell, fina type, fibre discours, separated, quasi-finite morphism for T-0 X factors as
γ <u>f'</u> γ' <u>3</u> χ
where f ¹ is an open immersion and g is finite.

Proof of Zarishi Thm. f: Y->X By Nagata compactofication: Since X 13 Gyast-compact. quasi-separated (since X is assume to be Noetherlan), and 73 Y5x of 15 separated, there exists j is an open immersion, and it is proper. Then & B proper, those From B a coherene Ox-shoef. We consider the oten factorisation: Y' & speex Froy' 3X Letter one is a finite morphism Then we just need to show that Y' - spee Tx Of is an open immersion. By prop 2.5.13. In les Fis book Algebraic Cheonerry. **Proposition 2.5.13.** Let $f: X \to Y$ be a proper morphism of noetherian schemes and let X' be the subset of X consisting of those points x which are isolated in $f^{-1}(f(x))$. Then X' is open in X. Let $X \stackrel{f'}{\to} Y' \stackrel{g}{\to} Y$ be the Stein factorization of f. Then $f'|_{X'}: X' \to Y'$ is an open immersion.

chore, one should also read Theorem 25.10, the Theorem

Connectness)

Since f: T - X is quasi-finite, -> If lose Y'ST'
denote all y, s.t. y & soluted in F-1(figs). then
Y C T", and Y - T" -> T' B an open promotion
and Y" - Spac x fx by 18 an open mmerson.
Hence Y = Spee x fx U7 = X is the desired
deamposition.