Diabetes prediction

OptML Project 1

- <u>Aim</u> Diabetes prediction using "Gradient Descent" and "Gradient Descent With Nesterov Momentum".
- <u>Problem Statement</u> Implement the "Gradient Descent" and "Gradient Descent With "Nesterov Momentum" from scratch for classifying the diabetes data.
- <u>Motivation</u> Predict the possibility of having diabetes, based on certain diagnostic measurements like Glucose, blood pressure, skin thickness, etc..
- **Novelity** Observed behaviors of GD and Nesterov momentum with "Hinge loss".

Mukesh Kumar Ram 20654 **<u>Dataset</u>**- "Diabetes Dataset" having diagnostic measurements.

Source - https://www.kaggle.com/datasets/akshaydattatraykhare/diabetes-dataset

Dimension -768×9

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
(6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0

Model- Logistic Regression

Loss – Binary cross Enrtopy - L(y, \hat{y}) = - [y * log(\hat{y}) + (1-y) * log(1- \hat{y})]

Activation function – Sigmoid

<u>Gradient Descent</u>- Gradient descent is an optimization algorithm that iteratively minimizes a cost function by updating model parameters in the opposite direction of the gradient of the cost function.

Waight update

<u>Gradient Descent With Nesterov Momentum</u> - Nesterov Momentum is an enhanced version of gradient descent that uses a "momentum" term to speed up the optimization process.

Update

```
v = gamma * v + learning_rate * gradient_w
w = w - gamma * v + learning rate * gradient w
```

- v' is the previous update vector
- 'gamma' is the momentum term, typically set between 0.9 and 0.99
- 'learning_rate' is the step size or learning rate
- 'gradient_w' is the gradient of the cost function with respect to 'w'

iterations

0.70

0.65

Obserevation

- The data set is linearly separable, because Gradient descent is working similarly for cross-entropy and hinge loss in logistic regression.
- The loss function is convex.

Thank You