$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\Upsilon(3S)$ MASS

DOCUMENT ID TECN COMMENT VALUE (MeV)

¹ ARTAMONOV 00 MD1 10355.2 ± 0.5

• • We do not use the following data for averages, fits, limits, etc.

 10355.3 ± 0.5

2,3 **BARU**

86B REDE $e^+e^- \rightarrow \text{hadrons}$

$m \gamma(3S) - m \gamma(2S)$

VALUE (MeV) DOCUMENT ID TECN COMMENT

11C BABR $e^+e^- \rightarrow \pi^+\pi^- X$ $331.50 \pm 0.02 \pm 0.13$ **LEES**

$\Upsilon(3S)$ WIDTH

VALUE (keV) DOCUMENT ID

20.32±1.85 OUR EVALUATION See the Note on "Width Determinations of the \varUpsilon States"

$\Upsilon(3S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	$\varUpsilon(2S)$ anything	$(10.6 \pm 0.8)\%$	
Γ_2	\varUpsilon (2S) $\pi^+\pi^-$	$(2.82\pm\ 0.18)\%$	S=1.6
Γ_3	$\Upsilon(2S)\pi^0\pi^0$	$(1.85\pm~0.14)~\%$	
Γ_4	\varUpsilon (2 S) $\gamma\gamma$	(5.0 ± 0.7) %	
	$\Upsilon(2S)\pi^0$	< 5.1 ×	10^{-4} CL=90%
Γ_6	$\Upsilon(1S)\pi^+\pi^-$	(4.37± 0.08) %	
Γ_7	$\Upsilon(1S)\pi^0\pi^0$	$(2.20\pm~0.13)~\%$	
Γ ₈	$\Upsilon(1S)\eta$	< 1 ×	10^{-4} CL=90%
	$\Upsilon(1S)\pi^0$	< 7 ×	10^{-5} CL=90%
Γ_{10}	$h_b(1P)\pi^0$	< 1.2 ×	10^{-3} CL=90%
	$h_b(1P)\pi^0 ightarrow \gamma \eta_b(1S)\pi^0$	(4.3 \pm 1.4) \times	10^{-4}
Γ_{12}	$h_b(1P)\pi^+\pi^-$	< 1.2 ×	10^{-4} CL=90%
Γ_{13}	$ au^+ au^-$	$(2.29\pm~0.30)~\%$	
Γ_{14}	$\mu^+\mu^-$	$(2.18\pm~0.21)~\%$	S=2.1
Γ_{15}	e^+e^-	$(2.18\pm~0.20)~\%$	
Γ_{16}	hadrons	$(93 \pm 12)\%$	
Γ_{17}	ggg	(35.7 \pm 2.6) %	
Γ ₁₈	<u> </u>	(9.7 \pm 1.8) \times	10^{-3}
Γ ₁₉	2H anything	($2.33\pm~0.33$) $ imes$	10^{-5}

HTTP://PDG.LBL.GOV Page 1 Created: 5/30/2017 17:21

 $^{^{1}\,\}text{Reanalysis}$ of BARU 86B using new electron mass (COHEN 87). $^{2}\,\text{Reanalysis}$ of ARTAMONOV 84.

³ Superseded by ARTAMONOV 00.

Radiative decays

Γ ₂₀	$\gamma \chi_{b2}(2P)$	(13.1	\pm 1.6) %	S=3.4
Γ_{21}	$\gamma \chi_{b1}(2P)$	(12.6	\pm 1.2) %	S=2.4
Γ_{22}	$\gamma \chi_{b0}(2P)$	(5.9	\pm 0.6) %	S=1.4
Γ ₂₃	$\gamma \chi_{b2}(1P)$	(9.9	$\pm 1.2) \times 10^{-3}$	S=1.9
Γ_{24}	$\gamma \chi_{b1}(1P)$	(9	\pm 5) \times 10 ⁻⁴	S=1.8
Γ_{25}	$\gamma \chi_{b0}(1P)$	(2.7	$\pm 0.4) \times 10^{-3}$	
Γ ₂₆	$\gamma \eta_b(2S)$	< 6.2	× 10 ⁻⁴	CL=90%
	$\gamma \eta_b(1S)$	(5.1	$\pm 0.7) \times 10^{-4}$	
Γ ₂₈	$\gamma A^0 \rightarrow \gamma$ hadrons	< 8	× 10 ⁻⁵	CL=90%
	$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$	[a] < 2.2	_	CL=95%
	$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	< 5.5	$\times 10^{-6}$	CL=90%
Γ ₃₁	$\gamma a_1^0 \rightarrow \gamma \tau^+ \tau^-$	[b] < 1.6	× 10 ⁻⁴	CL=90%

Lepton Family number (LF) violating modes

[a] 1.5 GeV $< m_X < 5.0$ GeV

[b] For $m_{\tau^+\,\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.

$\Upsilon(3S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

 $\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{16}\Gamma_{15}/\Gamma$

Created: 5/30/2017 17:21

VALUE (keV)	DOCUMENT ID		TECN	COMMENT
0.414±0.007 OUR AVERAGE				
$0.413\!\pm\!0.004\!\pm\!0.006$	ROSNER	06	CLEO	10.4 $e^+e^- ightarrow hadrons$
$0.45\ \pm0.03\ \pm0.03$	⁴ GILES	84 B	CLEO	$e^+e^- o$ hadrons

⁴ Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85.

$\Gamma(\Upsilon(1S)\pi^+\pi^-)$	× Γ(<i>e</i> ⁼	[⊢] e−)/Γ _{total}			$\Gamma_6\Gamma_{15}/\Gamma$
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
$18.46 \pm 0.27 \pm 0.77$	6.4K	⁵ AUBERT	08BP BABR	$e^+e^- \rightarrow \gamma \pi^+$	$\pi^-\ell^+\ell^-$
⁵ Using B($\Upsilon(1S)$ 0.05)%.	\rightarrow e^+e	$^{-}) = (2.38 \pm 0.11)$)% and B(Υ ($1S) \rightarrow \mu^+ \mu^-)$	= (2.48 ±

$\Upsilon(3S)$ PARTIAL WIDTHS

 $\Gamma(e^+e^-)$ VALUE (keV)
DOCUMENT ID

 0.443 ± 0.008 OUR EVALUATION

$\Upsilon(3S)$ BRANCHING RATIOS

$\Gamma(\Upsilon(2S))$ anything $\Gamma(\Upsilon(2S))$

 Γ_1/Γ

((- / - / - 0	// LOCA!					±/
<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT	
0.106 ±0.008 OUR	AVERA	SE				
$0.1023\!\pm\!0.0105$	4625	6,7,8 BUTLER	94 B	CLE2	$e^+e^- \rightarrow \ell^+$	- ℓ - X
0.111 ± 0.012	4891	^{7,8,9} BROCK	91	CLEO	$e^+e^- \rightarrow \pi^-$	
					$\pi^+\pi^-\ell^+$	
6 Using B($\Upsilon(2S)$ -	\rightarrow $\Upsilon(1S)$	$\gamma\gamma)=(0.038\pm0.00)$	7)%, a	and B(γ	$\Upsilon(2S) \rightarrow \Upsilon(1S)$	$)\pi^{0}\pi^{0}) =$
$(1/2)$ B $(\Upsilon(2S)$ $-$	$\rightarrow \gamma(1S)$	$\pi^{+}\pi^{-}$).				
7 Using B($\Upsilon(1S)$ -	$\rightarrow \mu^+\mu^-$	$(2.48 \pm 0.06)\%$.	With	the assu	mption of $e\mu$ u	niversality.
		$(\pi^+\pi^-) = (18.5 \pm 0)$				
		$(1.31 \pm 0.21)\%$				
)%, and B($\Upsilon(2S) ightarrow$				$\rightarrow \mu^+\mu^-)$
$= (0.436 \pm 0.056)$	5)%. Wit	h the assumption of ϵ	μ uni	versality.		

$\Gamma(\Upsilon(2S)\pi^+\pi^-)/\Gamma_{\rm total}$

 Γ_2/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT	ID	TECN	COMMENT
2.82 ± 0.18 OUR AVE	RAGE Erro	or includes sca	le fact	or of 1.6	. See the ideogram below.
$3.00\!\pm\!0.02\!\pm\!0.14$	543k	LEES	110	BABR	$e^+e^- \rightarrow \pi^+\pi^- X$
$2.40 \pm 0.10 \pm 0.26$	800	¹⁰ AUBERT	08 BP	BABR	$e^+e^- \rightarrow \gamma \pi^+\pi^-e^+e^-$
3.12 ± 0.49	980 11,	12 BUTLER	94 B	CLE2	$e^+e^- \rightarrow \pi^+\pi^-\ell^+\ell^-$
2.13 ± 0.38	974	¹³ BROCK	91	CLEO	$e^+e^- ightarrow \pi^+\pi^-X$,
					$\pi^{+}\pi^{-}\ell^{+}\ell^{-}$

• • We do not use the following data for averages, fits, limits, etc. • • •

4.82 \pm 0.65 \pm 0.53 138 13 WU 93 CUSB $\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\ell^{+}\ell^{-}$ 3.1 \pm 2.0 5 MAGERAS 82 CUSB $\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\ell^{+}\ell^{-}$

WEIGHTED AVERAGE 2.82±0.18 (Error scaled by 1.6)

HTTP://PDG.LBL.GOV

Page 3

```
<sup>10</sup> Using B(\Upsilon(1S) \rightarrow e^+e^-) = (2.38 ± 0.11)%, B(\Upsilon(1S) \rightarrow \mu^+\mu^-) = (2.48 ± 0.05)%,
   and \Gamma_{ee}(\Upsilon(3S)) = 0.443 \pm 0.008 keV.
```

$\Gamma \left(\varUpsilon(2S) \pi^0 \pi^0 ight) / \Gamma_{ m to}$	otal				Γ ₃ /Γ
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.85 ± 0.14 OUR AVER	AGE				
$1.82\!\pm\!0.09\!\pm\!0.12$	4391	¹⁴ BHARI			$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\ell^{+}\ell^{-}$
2.16 ± 0.39		15,16 BUTLER	94 B	CLE2	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\ell^{+}\ell^{-}$
$1.7 \pm 0.5 \pm 0.2$	10	¹⁷ HEINTZ	92	CSB2	$e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$

¹⁴ Authors assume B($\Upsilon(1S) \rightarrow e^+e^-$) + B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = 4.06%.

$\Gamma(\Upsilon(2S)\gamma\gamma)/\Gamma_{\text{total}}$

 Γ_4/Γ

VALUE	DOCUMENT ID	TECN	COMMENT
0.0502±0.0069	18 BUTLER	94B CLE2	$e^+e^- \rightarrow \ell^+\ell^-2\gamma$

¹⁸ From the exclusive mode.

$\Gamma(\Upsilon(2S)\pi^0)/\Gamma_{\text{total}}$

 Γ_5/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<0.51	90	¹⁹ HE	08A	CLEO	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
10					

¹⁹ Authors assume B($\Upsilon(2S) \rightarrow e^+e^-$) + B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = 4.06%.

$\Gamma(\Upsilon(1S)\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_6/Γ

Abbreviation MM in the COMMENT field below stands for missing mass.

/ IDDICVIATION IVIIVI	Abbreviation with in the Comment held below stands for missing mass.							
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT I	D	TECN	COMMENT			
4.37±0.08 OUR AVERA	GE							
$4.32\!\pm\!0.07\!\pm\!0.13$	90k	²⁰ LEES	11L	BABR	$\Upsilon(3S) \rightarrow \pi^+\pi^-\ell^+\ell^-$			
$4.46 \pm 0.01 \pm 0.13$	190k	²¹ BHARI	09		$e^+e^- ightarrow \pi^+\pi^-$ MM			
$4.17\!\pm\!0.06\!\pm\!0.19$	6.4K	²² AUBERT	08 BF	BABR	10.58 $e^+e^- \rightarrow$			
4.52 ± 0.35	11830	²³ BUTLER	94 B	CLE2	$\gamma \pi^+ \pi^- \ell^+ \ell^ e^+ e^- \rightarrow \pi^+ \pi^- X$, $\pi^+ \pi^- \ell^+ \ell^-$			
$4.46 \pm 0.34 \pm 0.50$	451	²³ WU	93		$\Upsilon(3S) \rightarrow \pi^+\pi^-\ell^+\ell^-$			
4.46 ± 0.30	11221	²³ BROCK	91	CLEO	$e^+e^- \rightarrow \pi^+\pi^-X$,			
$\pi^+\pi^-\ell^+\ell^-$								
 ● ● We do not use the 	e followin	g data for averag	es, fit	s, limits	, etc. • • •			

$4.9\ \pm1.0$	22	GREEN	82	CLEO	$\Upsilon(3S) \rightarrow$	$\pi^{+}\pi^{-}\ell^{+}\ell^{-}$
39 + 13	26	MAGERAS	82	CUSB	$\Upsilon(3S) \rightarrow$	$\pi^{+}\pi^{-}\ell^{+}\ell^{-}$

¹¹ From the exclusive mode.

¹² Using B($\varUpsilon(2S) \rightarrow \varUpsilon(1S) \gamma \gamma$) = (0.038 \pm 0.007)%, and B($\varUpsilon(2S) \rightarrow \varUpsilon(1S) \pi^0 \pi^0$) = (1/2)B $(\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-)$.

¹³ Using B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1.31 \pm 0.21)%, B($\Upsilon(2S) \rightarrow \Upsilon(1S) \gamma \gamma$)×2B($\Upsilon(1S) \rightarrow \Upsilon(1S) \gamma \gamma$) $\mu^{+}\mu^{-}) = (0.188 \pm 0.035)\%$, and B($\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^{0}\pi^{0}$)×2B($\Upsilon(1S) \rightarrow \mu^{+}\mu^{-}$) = (0.436 ± 0.056)%. With the assumption of $e\mu$ universality.

¹⁵B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1.31 ± 0.21)% and assuming $e\mu$ universality.

¹⁶ From the exclusive mode.

 $^{^{17}}$ B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1.44 \pm 0.10)% and assuming $e\mu$ universality. Supersedes HEINTZ 91.

```
<sup>20</sup> Using B( \Upsilon(1S) \rightarrow e^+e^-) = (2.38 \pm 0.11)% and B( \Upsilon(1S) \rightarrow \mu^+\mu^-) = (2.48 \pm 0.05)%.
```

$\Gamma(\Upsilon(2S)\pi^+\pi^-)/\Gamma(\Upsilon(1S)\pi^+\pi^-)$

 Γ_2/Γ_6

<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • •

0.577
$$\pm$$
 0.026 \pm 0.060 800 ²⁴ AUBERT 08BP BABR $e^+e^- \rightarrow \gamma \pi^+ \pi^- \ell^+ \ell^-$
²⁴ Using B($\Upsilon(1S) \rightarrow e^+e^-$) = (2.38 \pm 0.11)%, B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.48 \pm 0.05)%, B($\Upsilon(2S) \rightarrow e^+e^-$) (1.01 \pm 0.16)%, and B($\Upsilon(2S) \rightarrow e^+e^-$) (1.03 \pm 0.17)%

B($\Upsilon(2S) \rightarrow e^+e^-$) = (2.36 \pm 0.11)%, B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.46 \pm 0.05)%, B($\Upsilon(2S) \rightarrow e^+e^-$) = (1.91 \pm 0.16)%, and B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1.93 \pm 0.17)%. Not independent of other values reported by AUBERT 08BP.

$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma_{ ext{total}}$

 Γ_7/Γ

VALUE (units 10 2)	EVIS	DOCUMENT ID		IECN	COMMENT
2.20±0.13 OUR AVERA	AGE				
$2.24\!\pm\!0.09\!\pm\!0.11$	6584	²⁵ BHARI	09	CLEO	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\ell^{+}\ell^{-}$
1.99 ± 0.34	56	²⁶ BUTLER	94 B	CLE2	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\ell^{+}\ell^{-}$
$2.2 \pm 0.4 \pm 0.3$	33	²⁷ HEINTZ	92	CSB2	$e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\ell^{+}\ell^{-}$

²⁵ Authors assume B($\Upsilon(1S) \rightarrow e^+e^-$) + B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = 4.96%.

$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma(\Upsilon(1S)\pi^+\pi^-)$

 Γ_7/Γ_6

VALUE DOCUMENT ID TECN COMMENT

$\Gamma(\Upsilon(1S)\eta)/\Gamma_{\text{total}}$

 Γ_8/Γ

Created: 5/30/2017 17:21

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<0.1	90	²⁹ LEES	11L	BABR	$\Upsilon(3S) \rightarrow (\pi^+\pi^-)(\gamma\gamma)\ell^+\ell^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		-	_	
< 0.8	₉₀ 29,30 A	UBERT 08B	BP BABR e ⁺ e ⁻	$\rightarrow \gamma \pi^{+} \pi^{-} \pi^{0} \ell^{+} \ell^{-}$
< 0.18	90 ³¹ H	E 08A	CLEO e^+e^-	$\rightarrow \ell^+\ell^-\eta$
< 2.2	90 B	ROCK 91	CLFO e ⁺ e ⁻	$\rightarrow \ell^+\ell^-n$

²⁹ Using B($\Upsilon(1S) \rightarrow e^+e^-$) = (2.38 ± 0.11)%, B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.48 ± 0.05)%.

²¹ A weighted average of the inclusive and exclusive results.

²² Using B($\Upsilon(2S) \rightarrow e^+e^-$) = (1.91 ± 0.16)%, B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1.93 ± 0.17)%, and $\Gamma_{ee}(\Upsilon(3S)) = 0.443 \pm 0.008$ keV.

²³ Using B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.48 ± 0.06)%. With the assumption of $e\mu$ universality.

²⁶ Using B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.48 \pm 0.06)% and assuming $e\mu$ universality.

²⁷ Using B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.57 ± 0.07)% and assuming $e\mu$ universality. Supersedes HEINTZ 91.

²⁸ Not independent of other values reported by BHARI 09.

 $^{^{30}}$ Using $\Gamma_{ee}(\Upsilon(3S)) = 0.443 \pm 0.008$ keV.

³¹ Authors assume B($\Upsilon(1S) \rightarrow e^+e^-$) + B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = 4.96%.

$\Gamma(\varUpsilon(1S)\eta)/\Gamma$	(~ (1 C	:_+_=	- \				Γ_8/Γ_6
	•	=	•	TECN	601414		18/16
VALUE (units 10^{-2})							\(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\)
<0.23			S 11L				$)(\gamma\gamma)\ell^{\perp}\ell^{-}$
• • • We do not							. 0 1 .
<1.9	90		BERT 08BF			$\rightarrow \gamma \pi^+ \pi^-$	$-(\pi^0)\ell^+\ell^-$
			ues reported by Lues reported by A				
$\Gamma(\Upsilon(1S)\pi^0)/$. ,				٦/و٦
		CL%	DOCUMENT II	D	TECN	COMMENT	
VALUE (units 10 ⁻³) <0.07		90	34 HF	08A	CLEO	$e^+e^- \rightarrow$	$\ell^+\ell^-\gamma\gamma$
			$e^+e^-) + B(\Upsilon$				0 0 11
		(13)	e e) + b(1	(13) —	μ · μ) = 4.9070.	
$\Gamma(h_b(1P)\pi^0)$	$/\Gamma_{\text{total}}$						Γ_{10}/Γ
<i>VALUE</i> <1.2 × 10 ^{−3}		CL%	DOCUMENT II	D	TECN	COMMENT	
$< 1.2 \times 10^{-3}$		90	³⁵ GE	11	CLEO	$\Upsilon(3S) \rightarrow$	π^{0} anything
³⁵ Assuming <i>M</i>	$(h_b(1P)$) = 9900	MeV and $\Gamma(h_b($	(1P)) = 0) MeV, a	and allowing	$B(h_b(1P) \to$
$\gamma\eta_{b}(1S))$ to	vary fro	om 0–100	0%.				
$\Gamma(h_b(1P)\pi^0$ -	<i>γη_Ь</i> ($(1S)\pi^0$	$/\Gamma_{ ext{total}}$				Γ ₁₁ /Γ
VALUE (units 10^{-4})			DOCUMENT II	D	TECN	COMMENT	
$4.3 \pm 1.1 \pm 0.9$			LEES	11K	BABR	$\Upsilon(3S) \rightarrow$	$\eta_{b}\gamma\pi^{0}$
$\Gamma(h_b(1P)\pi^+\pi$	r ⁻)/Γ _t	otal					Γ ₁₂ /Γ
<u>VALUE</u> (units 10 ⁻⁴)		CL%	DOCUMENT II	D	TECN	COMMENT	
< 1.2		90	36 LEES	11 C	BABR	$e^+e^- ightarrow$	$\pi^+\pi^-X$
• • • We do not	t use the	e followin			limits, e	etc. • • •	
<18			³⁶ BUTLER			$e^+e^- ightarrow$	
<15			³⁶ BROCK	91	CLEO	$e^+e^- \rightarrow$	$\pi^+\pi^-X$
³⁶ For <i>M</i> (<i>h_b</i> (1 <i>H</i>	P)) = 99	900 MeV	-				
$\Gamma(au^+ au^-)/\Gamma_{ ext{to}}$	1						Γ ₁₃ /Γ
VALUE (units 10 ⁻²		S DO	OCUMENT ID	TECN	COMN	<i>I</i> FNT	,
2.29±0.21±0.22		2 37 _{BI}	ESSON 07	CLEC	<u> </u>	$^- \rightarrow \gamma(35)$	$\rightarrow \tau^+\tau^-$
			$(\tau) \rightarrow \tau^+ \tau^-)/\Gamma_1$				
			by our best value				
10^{-2} . Our f	irst erro	or is their	experiment's err	or and o	our seco	μ μ μ μ μ μ μ μ	ne systematic
error from us	sing our	best valu	ıe.				
$\Gamma(\tau^+\tau^-)/\Gamma(\mu$,+,,-\						Γ. /Γ.
VALUE	. μ)	EVTS	DOCUMENT II	D	TECN	COMMENT	Γ_{13}/Γ_{14}
1.05±0.08±0.09	5	15k	BESSON	07		$e^+e^- \rightarrow$	Υ(35)
1.00 T 0.00 T 0.03	•	TOV	DESSON	01	CLLO	→	, (33)

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_{14}/Γ **EVTS** TECN COMMENT 0.0218±0.0021 OUR AVERAGE Error includes scale factor of 2.1. See the ideogram below. CLEO $e^+e^- \rightarrow \mu^+\mu^-$ **ADAMS** $0.0239 \pm 0.0007 \pm 0.0010$ 81k 89B CLEO $e^+e^- \rightarrow \mu^+\mu^ 0.0202 \pm 0.0019 \pm 0.0033$ CHEN CSB2 $e^+e^- \rightarrow \mu^+\mu^-$ CLEO $e^+e^- \rightarrow \mu^+\mu^-$ KAARSBERG 89 $0.0173 \pm 0.0015 \pm 0.0011$ $0.033 \pm 0.013 \pm 0.007$ 1096 **ANDREWS**

$\Gamma(ggg)/\Gamma_{\text{total}}$ Γ_{17}/Γ

35.7±2.6	3M	38 BESSON	06A	CLEO	$\Upsilon(3S) \rightarrow hadrons$	
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
(),						-

³⁸ Calculated using BESSON 06A value of $\Gamma(\gamma g g)/\Gamma(g g g)=(2.72\pm0.06\pm0.32\pm0.37)\%$ and the PDG 08 values of B($\Upsilon(2S)+$ anything) = (10.6 \pm 0.8)%, B($\pi^+\pi^ \Upsilon(1S)$) = (4.40 \pm 0.10)%, B($\pi^0\pi^0$ $\Upsilon(1S)$) = (2.20 \pm 0.13)%, B($\gamma\chi_{b2}(2P)$) = (13.1 \pm 1.6)%, B($\gamma\chi_{b1}(2P)$) = (12.6 \pm 1.2)%, B($\gamma\chi_{b0}(2P)$) = (5.9 \pm 0.6)%, B($\gamma\chi_{b0}(1P)$) = (0.30 \pm 0.11)% ,B($\mu^+\mu^-$) = (2.18 \pm 0.21)%, and R_{hadrons} = 3.51. The statistical error is negligible and the systematic error is partially correlated with $\Gamma(\gamma g g)/\Gamma_{total}$ BESSON 06A value.

 $\Gamma(\gamma g g)/\Gamma_{\text{total}}$ Γ_{18}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
0.97±0.18	60k	39 BESSON	06A	CLEO	$\Upsilon(3S) ightarrow \gamma + hadrons$

 $^{^{39}}$ Calculated using BESSON 06A values of $\Gamma(\gamma g\,g)/\Gamma(g\,g\,g)=(2.72\pm0.06\pm0.32\pm0.37)\%$ and $\Gamma(g\,g\,g)/\Gamma_{\text{total}}.$ The statistical error is negligible and the systematic error is partially correlated with $\Gamma(g\,g\,g)/\Gamma_{\text{total}}$ BESSON 06A value.

$\Gamma(\gamma g g)/\Gamma(g g g)$					Γ_{18}/Γ_{17}
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.72\pm0.06\pm0.49$	3M	BESSON	06A	CLEO	$\Upsilon(3S) o (\gamma +)$ hadrons
$\Gamma(\overline{^2H} \text{ anything})/\Gamma_1$	total				Γ ₁₉ /Γ
<i>VALUE</i> (units 10^{-5})		DOCUMENT ID		TECN	COMMENT
$2.33 \pm 0.15 ^{igoplus 0.31}_{-0.28}$		LEES	14 G	BABR	$e^+e^- ightarrow \overline{^2H}~X$

 $\Gamma(\gamma \chi_{b2}(2P))/\Gamma_{total}$

 Γ_{20}/Γ

VALUE	EVTS				COMMENT
0.131 ±0.016 OUR AVERAG	E Error	includes scale factor	or of 3	3.4. See	the ideogram
below.					
$0.1579 \pm 0.0017 \pm 0.0073$	568k	ARTUSO	05	CLEO	$e^+e^- o \gamma X$
$0.111 \pm 0.005 \pm 0.004$	10319	⁴⁰ HEINTZ			$e^+e^- ightarrow \gamma X$
$0.135 \pm 0.003 \pm 0.017$	30741	MORRISON	91	CLE2	$e^+e^- ightarrow \gamma X$

⁴⁰ Supersedes NARAIN 91.

WEIGHTED AVERAGE 0.131±0.016 (Error scaled by 3.4)

 $\Gamma(\gamma \chi_{b2}(2P))/\Gamma_{\mathsf{total}}$

 $\Gamma\big(\gamma\chi_{b1}(2P)\big)/\Gamma_{\rm total}$

 Γ_{21}/Γ

VALUE		<u>DOCUMENT ID</u>			
0.126 ±0.012 OUR AVERAG below.	E Error	includes scale facto	or of 2	2.4. See	the ideogram
$0.1454 \pm 0.0018 \pm 0.0073$	537k	ARTUSO			$e^+e^- \rightarrow \gamma X$
$0.115 \pm 0.005 \pm 0.005$	11147	⁴¹ HEINTZ	92	CSB2	$e^+e^- o \gamma X$
$0.105 \ {}^{+0.003}_{-0.002} \ \pm 0.013$	25759	MORRISON	91	CLE2	$e^+e^- ightarrow \gamma X$

⁴¹ Supersedes NARAIN 91.

HTTP://PDG.LBL.GOV

Page 8

 $\Gamma(\gamma \chi_{b0}(2P))/\Gamma_{total}$

 Γ_{22}/Γ

Created: 5/30/2017 17:21

(, , , , , , , , , , , , , , , , , , ,					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.059 ±0.006 OUR AVERAG	E Erro	r includes scale fact	or of	1.4. See	the ideogram
below.					
$0.0677 \pm 0.0020 \pm 0.0065$	225k	ARTUSO	05	CLEO	$e^+e^- ightarrow \gamma X$
$0.060 \pm 0.004 \pm 0.006$	4959	⁴² HEINTZ	92	CSB2	$e^+e^- ightarrow \gamma X$
$0.049 {}^{+ 0.003}_{- 0.004} \pm 0.006$	9903	MORRISON	91	CLE2	$e^+e^- ightarrow \gamma X$

WEIGHTED AVERAGE 0.059±0.006 (Error scaled by 1.4)

HTTP://PDG.LBL.GOV

Page 9

⁴² Supersedes NARAIN 91.

$\Gamma(\gamma \chi_{b2}(1P))/\Gamma_{\text{total}}$

 Γ_{23}/Γ

<i>VALUE</i> (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
9.9±1.2 OUR	_	Error includes scale		-	
$7.6 \pm 1.2 \pm 0.4$	126	43,44 KORNICER	11	CLEO	$e^+e^- o \gamma\gamma\ell^+\ell^-$
$10.5\!\pm\!0.3 {+0.7\atop -0.6}$	9.7k	LEES	11 J	BABR	$\Upsilon(3S) \rightarrow X\gamma$
ullet $ullet$ We do not	use the follow	ving data for average	s, fits,	limits, e	etc. • • •
<19	90	⁴⁵ ASNER	A80	CLEO	$\Upsilon(3S) ightarrow \gamma + hadrons$
seen		⁴⁶ HEINTZ	92	CSB2	$e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$
43 Assuming B($\Upsilon(1S) \rightarrow \ell^+$	$(\ell^{-}) = (2.48 \pm 0.05)$)%.		
⁴⁴ KORNICER 1	1 reports [Γ($\Upsilon(3S) \rightarrow \gamma \chi_{b2}(1P)$))/Γ _{to}	$_{tal}] \times [E$	$\beta(\chi_{b2}(1P) \rightarrow \gamma \Upsilon(1S))$
					best value B($\chi_{b2}(1P) \rightarrow$
					periment's error and our
second error i	s the systema	tic error from using o	our be	st value.	

⁴⁵ ASNER 08A reports $[\Gamma(\Upsilon(3S) \to \gamma \chi_{b2}(1P))/\Gamma_{total}] / [B(\Upsilon(2S) \to \gamma \chi_{b2}(1P))]$ < 27.1 × 10⁻² which we multiply by our best value $B(\Upsilon(2S) \to \gamma \chi_{b2}(1P)) = 7.15 \times 10^{-2}$.

46 HEINTZ 92, while unable to distinguish between different J states, measures $\sum_J \mathrm{B}(\varUpsilon(3S) \to \gamma \chi_{bJ}) \times \mathrm{B}(\chi_{bJ} \to \gamma \varUpsilon(1S)) = (1.7 \pm 0.4 \pm 0.6) \times 10^{-3}$ for J = 0.1,2 using inclusive $\varUpsilon(1S)$ decays and $(1.2^{+0.4}_{-0.3} \pm 0.09) \times 10^{-3}$ for J = 1,2 using $\varUpsilon(1S) \to \ell^+ \ell^-$.

$\Gamma(\gamma \chi_{b1}(1P))/\Gamma_{total}$

 Γ_{24}/Γ

Created: 5/30/2017 17:21

<u>VALUE</u> (units 10^{-3}) CL	% EVTS	DOCUMENT ID)	TECN	COMMENT	
0.9±0.5 OUR AVE						
$1.5\!\pm\!0.4\!\pm\!0.1$	50 47,	⁴⁸ KORNICER	11	CLEO	$e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$	
$0.5\!\pm\!0.3\!+\!0.2\ -0.1$		LEES	11 J	BABR	$\Upsilon(3S) \rightarrow X\gamma$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<1.7 90 49 ASNER 08A CLEO \varUpsilon(3S) \to \gamma + {\rm hadrons} seen 50 HEINTZ 92 CSB2 e^+e^- \to \gamma\gamma\ell^+\ell^-
```

⁴⁷ Assuming B($\Upsilon(1S) \rightarrow \ell^+ \ell^-$) = (2.48 ± 0.05)%.

⁴⁸ KORNICER 11 reports $[\Gamma(\Upsilon(3S) \to \gamma \chi_{b1}(1P))/\Gamma_{total}] \times [B(\chi_{b1}(1P) \to \gamma \Upsilon(1S))] = (5.38 \pm 1.20 \pm 0.95) \times 10^{-4}$ which we divide by our best value $B(\chi_{b1}(1P) \to \gamma \Upsilon(1S)) = (35.0 \pm 2.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴⁹ ASNER 08A reports $[\Gamma(\Upsilon(3S) \to \gamma \chi_{b1}(1P))/\Gamma_{total}] / [B(\Upsilon(2S) \to \gamma \chi_{b1}(1P))] < 2.5 \times 10^{-2}$ which we multiply by our best value $B(\Upsilon(2S) \to \gamma \chi_{b1}(1P)) = 6.9 \times 10^{-2}$.

Figure 50 HEINTZ 92, while unable to distinguish between different J states, measures $\sum_J \mathbb{B}(\varUpsilon(3S) \to \gamma \chi_{bJ}) \times \mathbb{B}(\chi_{bJ} \to \gamma \varUpsilon(1S)) = (1.7 \pm 0.4 \pm 0.6) \times 10^{-3}$ for J = 0,1,2 using inclusive $\varUpsilon(1S)$ decays and $(1.2^{+0.4}_{-0.3} \pm 0.09) \times 10^{-3}$ for J = 1,2 using $\varUpsilon(1S) \to \ell^+\ell^-$.

$\Gamma(\gamma \chi_{b0}(1P))/\Gamma_{\text{total}}$						Γ ₂₅ /Γ
$VALUE$ (units 10^{-2}) CL %	6 EVTS	DOCUMENT ID		TECN	COMMENT	
0.27±0.04 OUR AVE						
$0.27 \pm 0.04 \pm 0.02$	2.3k	LEES			$\Upsilon(3S) \rightarrow X\gamma$	
	8.7k	ARTUSO			$e^+e^- \rightarrow \gamma X$	
• • • We do not use th						
< 0.8 90	5.	^L ASNER	A80	CLEO	$\Upsilon(3S) \rightarrow \gamma +$	hadrons
51 ASNER 08A reports $< 21.9 \times 10^{-2} \text{ w} $ $3.8 \times 10^{-2}.$	$\Gamma(\Upsilon(3S))$	$ ightarrow \gamma \chi_{b0}(1P)$ ultiply by our b)/F _{to} est v	tal] / [E alue B(1	$\mathcal{C}(\gamma(2S) \to \gamma \chi)$ $\gamma(2S) \to \gamma \chi_{b0}$	b0(1P))] $(1P)) =$
$\Gamma(\gamma\eta_b(2S))/\Gamma_{total}$						Γ_{26}/Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
< 6.2	90	ARTUSO	05	CLEO	$e^+e^- \rightarrow \gamma X$	
• • • We do not use th	e following	data for average	es, fits	, limits,	etc. • • •	
<19	90	LEES	11 J	BABR	$\Upsilon(3S) \rightarrow X\gamma$	
$\Gamma(\gamma \eta_b(1S))/\Gamma_{total}$						Γ_{27}/Γ
VALUE (units 10^{-4}) CL%	EVTS	DOCUMEN	IT ID	T	ECN COMMENT	
5.1±0.7 OUR AVERA		F0				
	$2.3\pm0.5\text{k}$				LEO $\Upsilon(3S) \rightarrow$,
$4.8 \pm 0.5 \pm 0.6$	$19 \pm 3k$	⁵² AUBERT		•	ABR $\Upsilon(3S) \rightarrow$	γX
• • • We do not use th						
< 8.5 90		LEES		11J B	ABR $\Upsilon(3S) ightarrow$ ABR $\Upsilon(3S) ightarrow$	$X\gamma$
$4.8 \pm 0.5 \pm 1.2$	$19 \pm 3k$	54 ARTUSC				
<4.3 90		34 ARTUSC)	05 C	LEO $e^+e^- \rightarrow$	γX
52 Assuming $\Gamma_{\eta_b(1S)}$	= 10 MeV.					
53 Systematic error re-6 54 Superseded by BON	evaluated by	y AUBERT 09A0	Q .			
$\Gamma(\gamma A^0 \rightarrow \gamma \text{ hadrons})$ (0.3 GeV < m_{A^0}	/F _{total} < 7 GeV)					Γ ₂₈ /Γ
VALUE A°		DOCUMENT ID		TECN	COMMENT	
<8 × 10 ⁻⁵	90 5	55 I FFS	11н	BARR	$ ag{COMMENT} ag{7}(3S) ightarrow \gamma ext{ h.}$	adrons
⁵⁵ For a narrow scalar						
range 0.3–7 GeV. M						
to 8×10^{-5} .						
$\Gamma(\gamma X \to \gamma + \ge 4 \text{ pro})$ $(1.5 \text{ GeV} < m_X < 6)$	ongs)/Γ _{to} < 5.0 GeV)	tal				Γ ₂₉ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<2.2	95	ROSNER	07A	CLEO	$e^+e^- \rightarrow \gamma X$	

 56 For a narrow scalar or pseudoscalar a_1^0 with mass in the range 212–9300 MeV, excluding J/ψ and $\psi(2S)$. Measured 90% CL limits as a function of $m_{a_1^0}$ range from 0.27–5.5 \times 10–6

 57 For a narrow scalar or pseudoscalar a_1^0 with M($\tau^+\tau^-$) in the ranges 4.03–9.52 and 9.61–10.10 GeV. Measured 90% CL limits as a function of M($\tau^+\tau^-$) range from 1.5–16 \times 10 $^{-5}$.

LEPTON FAMILY NUMBER (LF) VIOLATING MODES —

 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ VALUE (units 10⁻⁶)

CL%

DOCUMENT ID

TECN

COMMENT

4.2

4.2

90

LEES

10B BABR $e^+e^- \rightarrow e^{\pm}\tau^{\mp}$

 $\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Γ_{33}/Γ

VALUE (units 10^{-6})CL%DOCUMENT IDTECNCOMMENT< 3.1</td>90LEES10BBABR $e^+e^- \rightarrow \mu^{\pm}\tau^{\mp}$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

<20.3 95 LOVE 08A CLEO $e^+e^ightarrow \mu^\pm au^\mp$

$\Upsilon(3S)$ REFERENCES

ARTUSO ARTAMONOV	05 00	PRL 94 032001 PL B474 427	M. Artuso <i>et al.</i> A.S. Artamonov <i>et al.</i>	(CLEO Collab.)
BUTLER	94B	PR D49 40	F. Butler <i>et al.</i>	(CLEO Collab.)
WU	93	PL B301 307	Q.W. Wu et al.	(CUSB Collab.)
HEINTZ	92	PR D46 1928	U. Heintz <i>et al.</i>	(CÙSB II Collab.)
BROCK	91	PR D43 1448	I.C. Brock et al.	` (CLEO Collab.)
HEINTZ	91	PRL 66 1563	U. Heintz <i>et al.</i>	(CUSB Collab.)
MORRISON	91	PRL 67 1696	R.J. Morrison et al.	(CLEO Collab.)
NARAIN	91	PRL 66 3113	M. Narain <i>et al.</i>	(CUSB Collab.)
CHEN	89B	PR D39 3528	W.Y. Chen et al.	(CLEO Collab.)
KAARSBERG	89	PRL 62 2077	T.M. Kaarsberg et al.	(CUSB Collab.)
BUCHMUEL			W. Buchmueller, S. Cooper	(HANN, DESY, MIT)
		nd P. Soeding, World Scie		(DICC NDC)
COHEN	87 06 D	RMP 59 1121		(RISC, NBS)
BARU	86B	ZPHY C32 622 (erratum		(NOVO)
KURAEV	85	Translated from YAF 41	E.A. Kuraev, V.S. Fadin	(NOVO)
ARTAMONOV	84	PL 137B 272	A.S. Artamonov <i>et al.</i>	(NOVO)
GILES	84B	PR D29 1285	R. Giles <i>et al.</i>	(CLEO Collab.)
ANDREWS	83	PRL 50 807	D.E. Andrews et al.	(CLEO Collab.)
GREEN	82	PRL 49 617	J. Green <i>et al.</i>	(CLEO Collab.)
MAGERAS	82	PL 118B 453	G. Mageras <i>et al.</i>	(COLU, CORN, LSU+)
MAGENAS	02	1 5 1100 400	G. Mageras et al.	(COLO, COM, LSO+)