

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Лабораторна робота №3 теорія автоматичного керування. частина 2. теорія цифрових систем управління

«Екстраполятор нульового порядку (ZOH). Приведена неперервна частина об'єкту»

Bapiaнт <mark>327</mark>

Виконав: студент групи IA-1<mark>3</mark> Тарасовець Максим Олександрович Перевірив: Тюляков Д. І.

Завдання 1. (Без звіту)

Ознайомитись з роботою екстраполятора (фіксатора) нульового порядку в середовищі Simulink на прикладі моделі **ZOH_ie.slx**

Завдання 2.

Знайти передавальну функцію W(s) Об'єкта керування. Параметри системи задати згідно таблиці варіантів (було виконане в ЛР1):

Var	T1	T2	q	T3	K1	K2	Un
<mark>327</mark>	<mark>2,5</mark>	<mark>6,5</mark>	<mark>0,4</mark>	<mark>0,6</mark>	<mark>0.2</mark>	<mark>0,4</mark>	<mark>100</mark>

Для наступних експериментів задати період дискретизації згідно таблиці варіантів за формулою Ts = 0.1 (T1+T2+T3):

$$Ts = 0.1 (2,5+6,5+0,6) = 0.96s$$

Задати період тестового синусоїдального сигналу Tu=20Ts. Знайти частоту тестового сигналу (Гц, рад\сек)

$$Tu = 20*\frac{0.96}{0.96} = 19.2$$
 сек, $fu = 1/Tu = \frac{1/19.2}{1/19.2}$ Гц, $wu = 2*pi*fu = 2*pi/Tu = \frac{0.3272}{0.92}$ рад\сек

Рекомендація: встановити час моделювання Tsim=[5..20]*Tu, щоб на графіку було видно усталені коливання наприкінці перехідного процесу.

$$Tsim = 5*19.2 = 96 cek$$
.

Визначити затримку сигналу (без звіту).

Завдання 3.1 (Без звіту)

Змінюючи період дискретизації та частоту синусоїдального сигналу знайти залежність затримки від цих параметрів.

Завдання 3.2 (Без звіту)

Повторити експеримент для тестового сигналу 1(t-st) змінюючи st (Step time) від 0 до Тs. Визначити затримку сигналу.

Завдання 4

Для заданої передавальної функції W(s) Об'єкта керування з фіксатором нульового порядку знайти дискретну передавальну функцію Wp(z) за допомогою MatLab, та за формулою:

$$W_p(z) = (1 - z^{-1}) * \mathbf{Z} \left\{ \frac{W(s)}{s} \right\} = \frac{z - 1}{z} * \mathbf{Z} \left\{ \frac{W(s)}{s} \right\}$$

Виконання.

Модель в Simulink:

Перевірка результатів:

