REMARKS

Claims 1-10, 12, 14, 17-31, 33, 36-48, 50, 52, 55-57, 59, 61, 62, 73-82 and 93-110 are pending in this application. Claims 11, 13, 15, 16, 32, 34, 35, 49, 51, 53, 54, 58, 60, 63-72 and 83-92 have been canceled.

Claim Rejection - 35 U.S.C. § 112, first paragraph

Claims 58, 60, 63-72 and 83-92 have been rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement. Although Applicants do not necessarily agree with the propriety of the rejection, Claims 58, 60, 63-72 and 83-92 have been canceled solely to advance prosecution of the remaining claims. Applicants reserve the ability to pursue the same or similar claims in one or more continuing applications. In view of the claim cancellations, Applicants respectfully requests withdrawal of the rejection.

Claim Rejections - 35 U.S.C. § 102(b) - Mastrototaro

Claims 1, 4-7, 15-20, 23-26, 30, 34-40, 43-45, 55-57, 59, 61, 73, 74, 78, 81, 82, 96, 99 and 100 have been rejected under 35 U.S.C. §102(b) as anticipated by "The MiniMed Continuous Glucose Monitoring System," Diabetes Technology & Therapeutics, Volume 2, Supplement 1, 2000, Mary Ann Liebert, Inc., pp. S-13 to S-18 ("Mastrototaro"). "A rejection for anticipation under section 102 requires that each and every limitation of the claimed invention be disclosed in a single prior art reference." See, e.g., In re Paulsen, 31 U.S.P.Q.2d 1671 (Fed. Cir. 1994). Mastrototaro does not disclose every element of Applicants' claims, and therefore cannot be considered as an anticipating reference under 35 U.S.C. § 102(b).

Pending Claim 1 recites a method for evaluating a quality of a calibration of an analyte sensor including, *inter alia*, a step of "providing the calibrated data to a user interface only when the data association is above a predetermined threshold." Mastrototaro discloses always providing data on a graph (see page S-16, Fig. 4), notably, even when the Data Summary Table on page S-16 indicates that certain of the data displayed on the graph does not satisfy the criteria for optimal accuracy. Because Mastrototaro does not disclose every element of Applicants' Claim 1, as well as its corresponding dependent claims, Applicants respectfully request withdrawal of the rejection.

Pending Claim 20 recites a system for evaluating a quality of a calibration of an analyte sensor including, *inter alia*, a "means for providing calibrated data only when the data association is above a predetermined threshold." As discussed above, Mastrototaro discloses always providing data on a graph (see page S-16, Fig. 4). Because Mastrototaro does not disclose every element of Applicants' Claim 20, as well as its corresponding dependent claims, Applicants respectfully request withdrawal of the rejection.

Pending Claim 39 recites a computer system for evaluating a quality of a calibration of an analyte sensor including, *inter alia*, "an interface control module that displays said calibrated data only when the data association is above a predetermined threshold." As discussed above, Mastrototaro discloses always providing data on a graph (see page S-16, Fig. 4). Because Mastrototaro does not disclose every element of Applicants' Claim 39, as well as its corresponding dependent claims, Applicants respectfully request withdrawal of the rejection.

Pending Claim 59 recites a method for evaluating a quality of a calibration of an analyte sensor including, *inter alia*, a step of "calibrating the sensor data comprising said at least one matched data pair responsive to the association above a predetermined threshold." Mastrototaro discloses that at least four SMBG meter readings should be entered into the monitor each day, which readings are used to calibrate the sensor's nA readings at the time the data are downloaded to a PC and the graphing utility is run. Specifically, page S-15, beginning on the last sentence of the left column states, "calibration is based upon a linear regression of all of the meter entries with corresponding valid sensor reading (nA)." Namely, Mastrototaro calibrates the sensor based on all of the meter entries regardless of the correlation coefficient, rather than "responsive to the association above a predetermined threshold" as claimed in Claim 59. Because Mastrototaro does not disclose every element of Applicants' Claim 59, as well as its corresponding dependent claims, Applicants respectfully request withdrawal of the rejection.

Pending Claim 61 recites a computer system for evaluating a quality of a calibration of an analyte sensor wherein, inter alia, "the processor module is configured to calibrate the sensor data including said at least one matched data pair responsive to the association above a predetermined threshold." As discussed above, Mastrototaro calibrates the sensor based on all of the meter entries regardless of the correlation coefficient, rather than "responsive to the association above a predetermined threshold" as claimed by Applicants. Because Mastrototaro

does not disclose every element of Applicants' Claim 61, as well as its corresponding dependent claims, Applicants respectfully request withdrawal of the rejection.

Claim Rejections - 35 U.S.C. § 103(a) - Mastrototaro

Claims 2, 3, 8-10, 21, 22, 27-29, 21, 41, 42, 46-48, 79, 80, 97 and 98 have been rejected under 35 U.S.C. §103(a) as obvious over Mastrototaro. The rejected claims each depend from one of Claims 1, 20, 39, 59, and 61. To establish a *prima facie* case of obviousness, three basic criteria must be met: first, the prior art reference (or references when combined) must teach or suggest all the claim limitations; second, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings; finally, there must be a reasonable expectation of success. See M.P.E.P. § 2143.

As discussed above, Mastrototaro discloses always providing data on a graph (see page S-16, Fig. 4) rather than "only when the data association is above a predetermined threshold" as claimed by Applicants. Mastrototaro also discloses calibrating the sensor based on all of the meter entries regardless of the correlation coefficient, rather than "responsive to the association above a predetermined threshold" as claimed by Applicants. Because Mastrototaro does not teach or suggest every element of Applicants' Claims 1, 20 39, 59 and 61, a prima facie case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejections - 35 U.S.C. § 103(a) - Mastrototaro in view of Sato

Claims 12, 14, 31-33 and 50-52 have been rejected under 35 U.S.C. §103(a) as obvious over Mastrototaro in view of U.S. Publ. No. 2003/0023171 to Sato et al. ("Sato"). Claim 51 has been canceled. Claims 12, 14, 31-33, 50 and 52 each depend from one of Claims 1, 20 and 39.

As discussed above, Mastrototaro discloses always providing data on a graph (see page S-16, Fig. 4). Mastrototaro does not teach or suggest displaying calibrated data only when the data association is above a predetermined threshold, as recited in Claims 1, 20 and 39. Because Mastrototaro does not disclose every element of Applicants' Claims 1, 20 and 39, and because Sato does not include any teaching or suggestion overcoming the deficiencies of Mastrototaro, a

prima facie case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejections - 35 U.S.C. § 102(b) - Shin in view of Mastrototaro

Claims 58 and 60 have been rejected under 35 U.S.C. §102(b) as anticipated over U.S. Publ. No. 2003/0023171 to Shin et al ("Shin") in view of Mastrototaro. Applicants assume that reference to section 102(b) was a typographical error and that a rejection under section 103(a) was intended. Although Applicants do not necessarily agree with the propriety of the rejection, Claims 58 and 60 have been canceled solely to advance prosecution of the remaining claims. Applicants reserve the ability to pursue the same or similar claims in one or more continuing applications. In view of the claim cancellations, Applicants respectfully request that the rejection be withdrawn.

Claim Rejections - 35 U.S.C. § 102(b) - Mastrototaro in view of Causey

Claims 62, 101, 102 and 106-110 have been rejected under 35 U.S.C. §102(b) as anticipated by over Mastrototaro in view of U.S. Patent No. 6,558,320 to Causey et al ("Causey"). Applicants assume that reference to section 102(b) was a typographical error and that a rejection under section 103(a) was intended, and respond accordingly.

In the Office Action it is asserted that because Mastrototaro provides retrospective calibration and Causey teaches the equivalence of retrospective and real time calibration, it would have been obvious to modify Mastrototaro to provide real time data, as it is the substitution of one known calibration technique for another.

Pending Claim 62 recites a method for evaluating a quality of a calibration of a glucose sensor including a steps of "evaluating a quality of said calibration set based on a statistical analysis or a clinical acceptability analysis of at least one matched data pair" and "processing real-time sensor data responsive to the quality of said calibration set above a predetermined threshold." (emphasis added.) Such a method is not fairly taught or suggested by Mastrototaro in combination with Causev.

Firstly, the statistical analysis performed by Mastrototaro is not a part of sensor calibration and is in fact a separate step from sensor calibration, performed after sensor

calibration. For example, the statistical analysis of Mastrototaro is performed on the "calculated sensor glucose values" (i.e., calibrated sensor glucose values), thus the statistical analysis is performed separate from and after sensor calibration. Thus, a modification of Mastrototaro's retrospective calibration to a real-time calibration would not include a modification of the retrospective statistical analysis, which is performed as a separate step after calibration. Furthermore, Causey does not disclose, teach, or fairly suggest whether an evaluation of optimal accuracy can be performed in real-time.

Secondly, Mastrototaro teaches away from the use of evaluating the correlation coefficient in real-time. Namely, on page S-15, right column, Mastrototaro discloses that a warning message "appears if there are fewer than three meter-sensor data pairs for a day, because the correlation coefficient in such a case cannot be meaningfully calculated." Thus, if implemented in real-time, a meaningful correlation coefficient could not be obtained for some portion of each day (until at least three SMBG meter entries had been obtained), making it unsatisfactory for its intended purpose.

Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejections - 35 U.S.C. § 102(b) - Mastrototaro in view of Shin

Claims 75-77 and 93-95 have been rejected under 35 U.S.C. §102(b) as anticipated by Mastrototaro in view of U.S. Publication No. 2002/0161288 to Shin et al ("Shin"). Applicants assume that reference to section 102(b) was a typographical error and that a rejection under section 103(a) was intended, and respond accordingly.

In the Office Action it is asserted that it would have been obvious to modify Mastrototaro to use a forward-looking calibration scheme as taught by Shin. Applicants respectfully disagree. Claims 75-77 and 93-95 depend from Claims 59 and 61, respectively. Pending claims 59 and 61 recite a method and system for evaluating a quality of a calibration of an analyte sensor including, inter alia, evaluating at least one matched data pair based on an association function and calibrating the sensor data responsive to the association above a predetermined threshold.

As described above, the statistical analysis performed by Mastrototaro is not a part of sensor calibration and is in fact a separate step from sensor calibration, performed *after* sensor calibration. Thus, a modification of Mastrototaro's retrospective calibration to a real-time

calibration would not include a modification of the retrospective statistical analysis, which is performed as a separate step *after calibration*. Furthermore, neither Mastrototaro nor Shin disclose, teach or fairly suggest calibrating the sensor *responsive to* the association above a predetermined threshold as claimed by Applicants (*emphasis added*). Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejections - 35 U.S.C. § 102(b) - Mastrototaro in view of Causey and Shin

Claims 103-105 have been rejected under 35 U.S.C. §102(b) as anticipated over Mastrototaro in view of Causey and further in view of Shin. Applicants assume that reference to section 102(b) was a typographical error and that a rejection under section 103(a) was intended, and respond accordingly. Claims 103 and 105 depend from Claim 62. As discussed above, neither Mastrototaro nor Causey disclose, teach or fairly suggest a method for evaluating a quality of a calibration of a glucose sensor including a step of "evaluating a quality of said calibration set based on a statistical analysis or a clinical acceptability analysis of at least one matched data pair" and "processing real-time sensor data responsive to the quality of said calibration set above a predetermined threshold." Shin does not include any teaching overcoming the deficiencies of Mastrototaro or Causey, thus a prima facie case of obviousness cannot be established. Accordingly, Applicants respectfully request that the rejection be withdrawn.

No Disclaimers or Disavowals

Although the present communication may include alterations to the application or claims, or characterizations of claim scope or referenced art, the Applicants are not conceding in this application that previously pending claims are not patentable over the cited references. Rather, any alterations or characterizations are being made to facilitate expeditious prosecution of this application. The Applicants reserve the right to pursue at a later date any previously pending or other broader or narrower claims that capture any subject matter supported by the present disclosure, including subject matter found to be specifically disclaimed herein or by any prior prosecution. Accordingly, reviewers of this or any parent, child or related prosecution history

shall not reasonably infer that the Applicants have made any disclaimers or disavowals of any subject matter supported by the present application.

Co-Pending Applications of Assignee

Applicant wishes to draw to the Examiner's attention to the following co-pending applications of the present application's assignee.

Serial Number	Title	Filed
07/216683	BIOLOGICAL FLUID MEASURING DEVICE	July 7, 1988
08/811473	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	March 4, 1997
09/447227	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	November 22, 1999
09/489588	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	January 21, 2000
09/636369	SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES	August 11, 2000
09/916386	MEMBRANE FOR USE WITH IMPLANTABLE DEVICES	July 27, 2001
09/916858	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	July 27, 2001
10/153356	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	May 22, 2002
10/632537	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	August 1, 2003
10/633367	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	August 1, 2003
10/633404	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	August 1, 2003
10/646333	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	August 22, 2003
10/647065	POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES	August 22, 2003
10/648849	SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM	August 22, 2003
10/657843	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	September 9, 2003

Appl. No. Filed : 10/633,329 : August 1, 2003

10/768889	MEMBRANE FOR USE WITH IMPLANTABLE DEVICES	January 29, 2004
10/789359	INTEGRATED DELIVERY DEVICE FOR CONTINUOUS GLUCOSE SENSOR	February 26, 2004
10/838658	IMPLANTABLE ANALYTE SENSOR	May 3, 2004
10/838909	IMPLANTABLE ANALYTE SENSOR	May 3, 2004
10/838912	IMPLANTABLE ANALYTE SENSOR	May 3, 2004
10/842716	BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS	May 10, 2004
10/846150	ANALYTE MEASURING DEVICE	May 14, 2004
10/885476	SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE- MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM	July 6, 2004
10/896637	ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE	July 21, 2004
10/896639	OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES	July 21, 2004
10/897312	ELECTRODE SYSTEMS FOR ELECTROCHEMICAL SENSORS	July 21, 2004
10/897377	ELECTROCHEMICAL SENSORS INCLUDING ELECTRODE SYSTEMS WITH INCREASED OXYGEN GENERATION	July 21, 2004
10/991353	AFFINITY DOMAIN FOR ANALYTE SENSOR	November 16, 200
10/991966	INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR	November 17, 200
11/004561	CALIBRATION TECHNIQUES FOR A CONTINUOUS ANALYTE SENSOR	December 3, 2004
11/007635	SYSTEMS AND METHODS FOR IMPROVING ELECTROCHEMICAL ANALYTE SENSORS	December 7, 2004
11/007920	SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR	December 8, 2004
11/021046	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	December 22, 200-
11/021162	SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICES	December 22, 200-
11/034343	COMPOSITE MATERIAL FOR IMPLANTABLE DEVICE	January 11, 2005
11/034344	IMPLANTABLE DEVICE WITH IMPROVED RADIO FREQUENCY CAPABILITIES	January 11, 2005
11/038340	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	January 18, 2005

11/039269	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	January 19, 2005
11/055779	BIOINTERFACE WITH MACRO-AND MICRO- ARCHITECTURE	February 9, 2005
11/077643	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077693	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077713	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077714	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077715	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077739	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077740	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077759	TRANSCUTANEOUS MEDICAL DEVICE WITH VARIABLE STIFFNESS	March 10, 2005
11/077763	METHOD AND SYSTEMS FOR INSERTING A TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077765	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/077883	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/078072	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/078230	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/078232	TRANSCUTANEOUS ANALYTE SENSOR	March 10, 2005
11/157365	TRANSCUTANEOUS ANALYTE SENSOR	June 21, 2005
11/157746	TRANSCUTANEOUS ANALYTE SENSOR	June 21, 2005
11/158227	TRANSCUTANEOUS ANALYTE SENSOR	June 21, 2005
11/201445	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	August 10, 2005
11/280102	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	November 16, 2005
11/280672	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	November 16, 2005
11/333837	LOW OXYGEN IN VIVO ANALYTE SENSOR	January 17, 2006
11/334876	TRANSCUTANEOUS ANALYTE SENSOR	January 18, 2006
11/335879	CELLULOSIC-BASED INTERFERENCE DOMAIN FOR AN ANALYTE SENSOR	January 18, 2006
11/360250	ANALYTE SENSOR	February 22, 2006
11/360252	ANALYTE SENSOR	February 22, 2006
11/360262	ANALYTE SENSOR	February 22, 2006
11/360299	ANALYTE SENSOR	February 22, 2006

11/360819	ANALYTE SENSOR	February 22, 2006
11/373628	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA FOR SENSOR CALIBRATION	March 9, 2006
11/404417	SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS	April 14, 2006
11/404418	SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS	April 14, 2006
11/404421	ANALYTE SENSING BIOINTERFACE	April 14, 2006
11/404929	ANALYTE SENSING BIOINTERFACE	April 14, 2006
11/404946	ANALYTE SENSING BIOINTERFACE	April 14, 2006
11/410392	OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES	April 25, 2006
11/410555	OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES	April 25, 2006
11/411656	ANALYTE SENSOR	April 26, 2006
11/413238	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	April 28, 2006
11/413242	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	April 28, 2006
11/413356	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	April 28, 2006
11/415593	TRANSCUTANEOUS ANALYTE SENSOR	May 2, 2006
11/415631	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	May 2, 2006
11/415999	TRANSCUTANEOUS ANALYTE SENSOR	May 2, 2006
11/416058	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	May 2, 2006
11/416346	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	May 2, 2006
11/416375	TRANSCUTANEOUS ANALYTE SENSOR	May 2, 2006
11/416734	BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS	May 3, 2006
11/416825	BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS	May 3, 2006
11/439559	ANALYTE SENSOR	May 23, 2006
11/439630	ANALYTE SENSOR	May 23, 2006
11/439800	ANALYTE SENSOR	May 23, 2006
11/445792	ANALYTE SENSOR	June 1, 2006

11/498410	SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM	August 2, 2006
11/503367	ANALYTE SENSOR	August 10, 2006
11/515342	SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	September 1, 2006
11/515443	SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	September 1, 2006
11/543396	ANALYTE SENSOR	October 4, 2006
11/543404	ANALYTE SENSOR	October 4, 2006
11/543490	ANALYTE SENSOR	October 4, 2006
11/543539	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	October 4, 2006
11/543683	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	October 4, 2006
11/543707	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	October 4, 2006
11/543734	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	October 4, 2006
11/546157	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	October 10, 2006
11/654135	POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES	January 17, 2007
11/654140	MEMBRANES FOR AN ANALYTE SENSOR	January 17, 2007
11/654327	MEMBRANES FOR AN ANALYTE SENSOR	January 17, 2007
11/675063	ANALYTE SENSOR	February 14, 2007
11/681145	ANALYTE SENSOR	March 1, 2007
11/690752	TRANSCUTANEOUS ANALYTE SENSOR	March 23, 2007
11/691424	ANALYTE SENSOR	March 26, 2007
11/691426	ANALYTE SENSOR	March 26, 2007
11/691432	ANALYTE SENSOR	March 26, 2007
11/691466	ANALYTE SENSOR	March 26, 2007
11/692154	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	March 27, 2007
11/734178	TRANSCUTANEOUS ANALYTE SENSOR	April 11, 2007
11/734184	TRANSCUTANEOUS ANALYTE SENSOR	April 11, 2007
11/734203	TRANSCUTANEOUS ANALYTE SENSOR	April 11, 2007
11/750907	ANALYTE SENSORS HAVING A SIGNAL-TO- NOISE RATIO SUBSTANTIALLY UNAFFECTED BY NON-CONSTANT NOISE	May 18, 2007

: 10/633,329 : August 1, 2003

11/762638 SYSTEMS AND METHODS FOR REPLACING June 13, 2007 SIGNAL DATA ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM 11/763215 SILICONE COMPOSITION FOR June 14, 2007 BIOCOMPATIBLE MEMBRANE 11/797520 TRANSCUTANEOUS ANALYTE SENSOR May 3, 2007 11/797521 TRANSCUTANEOUS ANALYTE SENSOR May 3, 2007 11/842142 TRANSCUTANEOUS ANALYTE SENSOR August 21, 2007 11/842143 TRANSCUTANEOUS ANALYTE SENSOR August 20, 2007 11/842146 ANALYTE SENSOR August 20, 2007 11/842148 TRANSCUTANEOUS ANALYTE SENSOR August 21, 2007 11/842149 TRANCHTANEOUS ANALYTE SENSOR August 21, 2007 11/842151 ANALYTE SENSOR August 21, 2007 11/842154 TRANSCUTANEOUS ANALYTE SENSOR August 20, 2007 11/842156 ANALYTE SENSORS HAVING A SIGNAL-TO-August 21, 2007 NOISE RATIO SUBSTANTIALLY UNAFFECTED BY NON-CONSTANT NOISE 11/842157 ANALYTE SENSOR August 21, 2007 11/855101 TRANSCUTANEOUS ANALYTE SENSOR September 13, 2007

Conclusion

60/942787

In view of the foregoing amendments and remarks, it is respectfully submitted that the present application is in condition for allowance. Should the Examiner have any remaining concerns that might prevent the prompt allowance of the application, the Examiner is respectfully invited to contact the undersigned at the telephone number below.

INTEGRATED DELIVERY DEVICE FOR

CONTINUOUS GLUCOSE SENSOR

Please charge any additional fees, including any fees for additional extension of time, or credit overpayment to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

June 8, 2007

Dated:

By:

Rose M. Thiessen Registration No. 40,202

> Attorney of Record Customer No. 20,995 (619) 235-8550

4281621_2 091807