Homework

Frederick Robinson

17 January 2010

1 Chapter 6

1.1 Problem 16

1.1.1 Question

For $1 < s < \infty$, define

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

(This is Riemann's zeta function, of great importance in the study of the prime numbers.) Prove that

1.

$$\zeta(s) = s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx$$

2.

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{x - [x]}{x^{s+1}} dx.$$

where [x] denotes the greatest integer $\geq x$.

Prove that the integral in 2 converges for all s > 0.

Hint: To prove 1, compute the difference between the integral over [1, N] and the Nth partial sum of the series that defines $\zeta(s)$.

1.1.2 Answer

1. Proof. We take the expression

$$s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx$$

and express it as a sum of integrals on the intervals (n, n + 1) to get

$$s\left(\int_{1}^{2} \frac{[x]}{x^{s+1}} dx + \int_{2}^{3} \frac{[x]}{x^{s+1}} dx + \ldots\right)$$

but since each such interval [x] is the same, we just write

$$s\left(\int_{1}^{2} \frac{1}{x^{s+1}} dx + \int_{2}^{3} \frac{2}{x^{s+1}} dx + \ldots\right) \tag{1}$$

Now we exploit the Fundamental Theorem of Calculus, computing

$$\int_{n}^{n+1} \frac{n}{x^{s+1}} dx = n \left[-\frac{x^{-s}}{s} \right]_{n}^{n+1} = n \left(-\frac{(n+1)^{-s}}{s} + \frac{n^{-s}}{s} \right)$$

So, the summation in Equation 1 can, more explicitly be written as

$$s\sum_{n=1}^{\infty} n\left(-\frac{(n+1)^{-s}}{s} + \frac{n^{-s}}{s}\right) = \sum_{n=1}^{\infty} \left(\frac{n}{n^s} - \frac{n}{(n+1)^s}\right)$$

However, grouping common denominators, we observe that the sum partially telescopes to yield more simply

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \zeta(s)$$

2. Having now proved Part 1 it suffices to show that

$$s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx.$$

Proof. By the Fundamental Theorem of Calculus we have

$$\int_{1}^{\infty} \frac{1}{x^{s}} dx = \frac{1}{s-1}$$

So

$$\int_{1}^{\infty} \frac{x}{x^{s+1}} dx = \frac{1}{s-1}$$

$$\Rightarrow s \int_{1}^{\infty} \frac{x}{x^{s+1}} dx = \frac{s}{s-1}$$

$$\Rightarrow s \int_{1}^{\infty} \left(\frac{x - [x]}{x^{s+1}} + \frac{[x]}{x^{s+1}}\right) dx = \frac{s}{s-1}$$

$$\Rightarrow s \int_{1}^{\infty} \left(\frac{x - [x]}{x^{s+1}} + \frac{[x]}{x^{s+1}}\right) dx = \frac{s}{s-1}$$

$$\Rightarrow s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx$$

as desired \Box

It remains now to show that the integral in Part 2 converges.

Proof. Since for $x \in (1, \infty)$ we have

$$0 \le \frac{x - [x]}{x^{s+1}} \le \frac{1}{x^{s+1}}$$

we know that

$$\int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx$$

converges if and only if

$$\int_{1}^{\infty} \frac{1}{x^{s+1}} dx$$

converges.

However,

$$\int_{1}^{\infty} \frac{1}{x^{s+1}} dx$$

converges by the integral test (Problem 8) since we have already shown that the sequence

$$\sum_{x=1}^{\infty} \frac{1}{x^{s+1}}$$

is convergent for $1 < s < \infty$.

2 Chapter 7

2.1 Problem 2

2.1.1 Question

If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n+g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.

2.1.2 Answer

If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, then $\{f_n + g_n\}$ converges uniformly on E.

Proof. Let $\{f_n\}$ and $\{g_n\}$ converge uniformly on E to f and g respectively. Then, by definition we have that for every $\epsilon > 0$ there is a corresponding N such that $n > N \Rightarrow |f_n(e) - f(e)| \le \epsilon$ for any $e \in E$. And, moreover the same holds for $\{g_n\}$. That is, for any $\epsilon > 0$ there exists some M such that $m > M \Rightarrow |g_m(e) - g(e)| \le \epsilon$ for any $e \in E$. But it is easy to see that these sums converge to f + g.

For, given ϵ , let $\delta = \frac{\epsilon}{2}$. Then take the maximum of N, M where N, M are selected so that $n > N \Rightarrow |f_n(e) - f(e)| \le \delta$ and $m > M \Rightarrow |g_m(e) - g(e)| \le \delta$ respectively. Say $\max\{N, M\} = K$.

Then for all n > K we have $|f_n(e) - f(e)| + |g_n(e) - g(e)| \le 2\delta = \epsilon \Rightarrow |f_n(e) - f(e) + g_n(e) - g(e)| \le \epsilon \Rightarrow |(f_n(e) + g_n(e)) - (f(e) + g(e))| \le \epsilon$. This however is just the definition for uniform convergence of $\{f_n + g_n\}$.

Now we wish to show that if $\{f_n\}$ and $\{g_n\}$ converge uniformly and are bounded on a set E then $\{f_ng_n\}$ converges uniformly on E.

Proof. We begin as above by noting that by definition we have that for every $\epsilon > 0$ there is a corresponding N such that $n > N \Rightarrow |f_n(e) - f(e)| \le \epsilon$ for any $e \in E$. And, moreover the same holds for $\{g_n\}$. That is, for any $\epsilon > 0$ there exists some M such that $m > M \Rightarrow |g_m(e) - g(e)| \le \epsilon$ for any $e \in E$.

Now recall the identity (Page 50)

$$f_n g_n - f g = (f_n - f)(g_n - g) + f(g_n - g) + g(f_n - f).$$

So, call the bounds on $\{f_n\}$ and $\{g_n\}$ F and G respectively. Now, fixing some $\epsilon > 0$ there must be values N, M, N', and M' so that $n > N \Rightarrow |f_n - f| \le \sqrt{\epsilon/3}$, $n > M \Rightarrow |g_n - g| \le \sqrt{\epsilon/3}$, $n > N' \Rightarrow |f_n - f| \le \epsilon/(3G)$, and $n > M' \Rightarrow |g_n - g| \le \epsilon/(3F)$. So taking $O = \max\{N, M, N', M'\}$ we see that $n > O \Rightarrow f_n g_n - fg = (f_n - f)(g_n - g) + f(g_n - g) + g(f_n - f) \le \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$. Thus we have shown that $\{f_n g_n\}$ converges uniformly as desired.

2.2 Problem 3

2.2.1 Question

Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E (of course, $\{f_ng_n\}$ must converge on E).

2.2.2 Answer

Let $\{f_n(x)\}=1+\frac{1}{n}$ and let $\{g_n(x)\}$ be the constant valued series with $\{g_n(x)\}=x$ for each n.

Clearly both of these series converge uniformly. The series $\{f_n\}$ converges (uniformly) to f(x) = 1. For any $\epsilon > 0$ take $1/\delta = N$ where $\delta \in \mathbb{Q}$ is some rational number expressible as 1/p $p \in \mathbb{N}$ which has $\delta < \epsilon$. We see that for each n > N we have $|f_n(e) - 1| \le \epsilon$ for any $e \in \mathbb{R}$. So $\{f_n\}$ converges uniformly.

Since the second sequence $\{g_n\}$ is constant valued it is uniformly convergent (to its value) for clearly $|g_n(x)-g(x)|=0<\epsilon$ for any $n\in\mathbb{N},\,\epsilon>0$ $\epsilon\in\mathbb{R}$ and $x\in\mathbb{R}$.

Now it remains only to show that the product $\{f_ng_n\}=x+\frac{x}{n}$ does not converge uniformly.

Proof. We see that this sequence converges pointwise to h(x) = x as fixing x the sequence $x + \frac{x}{n}$ converges to x.

However this is not uniformly convergent, for suppose towards a contradiction that it is uniformly convergent. Then pick some $\epsilon > 0$. By assumption there is some N such that for each n > N we have $|f_n(x) - x| \le \epsilon$ so pick some $n_0 > N$. Now we see however that for $x = 2n\epsilon$ and so $|f_n(x) - x| = |x + \frac{x}{n} - x| = |\frac{x}{n}| = |2\epsilon| > \epsilon$. This is a contradiction. \square