ESTRUTURA ATÔMICA

ESTRUTURA ATÔMICA

- 1) Distribuição Eletrônica "simplificada"
- 2) Distribuição Eletrônica terminada em s²d⁵
- 3) Distribuição Eletrônica terminada em s²d⁹
- 4) Distribuição Eletrônica de ânions
- 5) Distribuição Eletrônica de cátions

PROFESSOR: THÉ

LIÇÃO: **186**

1) Distribuição Eletrônica "simplificada"

Distribuição eletrônica do Neônio (Z=10)

Neônio: Z= 10

Distribuição eletrônica do sódio, Na(11).

Nessa distribuição constata-se que ela é igual à distribuição do neônio mais o subnível 3s, com um elétron $3s^{1}$.

Simplifica-se então a distribuição, informando que ela é igual à do neônio + os subníveis que completam a distribuição.

[Na] : Ne (3s1)

Os chamados **gases nobres** são normalmente usados para "simplificar" as distribuições eletrônicas

GASES NOBRES
He (Z=2)
Ne (Z=10)
Ar (Z=18)
Kr (Z=36)
Xe (Z=54)
Rn (Z=86)

SUBNÍVEL DE MAIOR ENERGIA
1s²
2s²2p ⁶
3s² 3p ⁶
4s² 4p ⁶
5s² 5p ⁶
6s² 6p ⁶

Então, a distribuição eletrônica do Ca (Z=20)

O cálcio tem número atômico, maior do que o do argônio, logo, escreve-se o símbolo do **argônio mais os subníveis que completam a distribuição**.

Distribuição Eletrônica dos elementos crômio e molibdênio

(Elementos terminados em d⁴)

$$\triangleright$$
Cr (Z = 24)

O crômio possui 24 elétrons, e sua distribuição é a seguinte:

Verificou-se que um elétron passa do subnível **4s** para o **3d**. Então, a distribuição correta passa a ser:

Justifica-se esse fato admitindo que a energia do subnível 4s é muito próxima do 3d de modo que é mais estável a distribuição com:

Distribuição Normal

Redistribuição mais estável

Como se aplicasse a Regra de Hund

EXEMPLO - 1

Quantos elétrons há na última camada do molibdênio Mo (Z=42).

RESOLUÇÃO

Redistribuindo... um elétron vai passar do 5s para 4d

Daí, a resposta é: 5s1

Distribuição Eletrônica dos elementos cobre, prata e ouro

(Elementos terminados em d⁹)

- Cu (Z=29)

Distribuição eletrônica do cobre, seguindo o diagrama:

Verifica-se que **um elétron** passa do subnível **4s** para o **3d.** Então a distribuição correta passa ser a seguinte:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d¹⁰

Conclui-se com esse fato, que a passagem de 1 elétron do subnível 4s para o 3d deve dar mais estabilidade ao átomo.

Na distribuição observada nota-se:

EXEMPLO - 2

Quantos orbitais semipreenchidos são encontrados no átomo de prata (Z=47).

RESOLUÇÃO

Em um orbital pode existir até 2 elétrons, então, um orbital semipreenchido deve haver apenas 1 elétron. Diagrama de subníveis de energia.

Transferindo 1 elétron do 5s para o 4d obtém-se:

Logo, o único orbital incompleto é o 5s. RESPOSTA: Um único orbital semipreenchido.

4) Distribuição Eletrônica de um Ânion

O átomo neutro de nitrogênio possui 7 prótons e 7 elétrons e sua distribuição eletrônica é a seguinte:

Examinando a distribuição eletrônica, observa-se que o último subnível, o 3p, está incompleto.

Nesse subnível há apenas 3 elétrons $(3p^3)$ daí é possível ainda ganhar 3 elétrons para completar o subnível, transformando-se em **ânion**.

Distribuição eletrônica do ânion $\left(\mathbf{N}^{3-}\right)$

$$\lceil N^{3-} \rceil$$
: $1s^2 2s^2 2p^6$

CONCLUSÃO:

Para distribuir elétrons de um ânion, realizam-se dois passos:

PASSO 1) Distribuir os elétrons do átomo neutro.

PASSO 2) Acrescentar os elétrons até completar o subnível incompleto.

OBS: O número máximo de elétrons que um átomo pode receber é igual ao número de elétrons que completa o subnível de maior energia (o último subnível).

EXEMPLO - 3

Qual a distribuição eletrônica do ânion sulfeto (\mathbf{S}^{2-}) .

Dado:
$$S(Z=16)$$

RESOLUÇÃO

O ânion sulfeto (S^{2-}) possui dois elétrons a mais que o átomo neutro de enxofre.

PASSO 1) Distribuição do átomo neutro, S (Z=16)

PASSO 2) Acrescentam-se dois elétrons ao subnível incompleto (3p⁴)

$$[S^{2-}]: 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$$

5) Distribuição Eletrônica de um Cátion

Um átomo neutro de sódio apresenta 11 prótons e 11 elétrons cuja distribuição eletrônica é:

$$Na(z=11): 1s^2 2s^2 2p^6 3s^1$$

O cátion sódio, Na^+ , apresenta 1 elétron a menos que o átomo neutro, Na^0 .

De onde vai ser retirado o elétron?

Os elétrons de um átomo são retirados a partir do último nível de energia.

Examinando os elétrons nos diversos níveis.

lível	Elétrons
1 —	→ 1s²
2 —	2s² 2p ⁶
3	(3s¹)

Então, o elétron será retirado do último nível (3s¹), então a distribuição do cátion será a seguinte:

$$\left[\mathbf{Na}^{+}\right] = \mathbf{1s}^{2} \ \mathbf{2s}^{2} \ \mathbf{2p}^{6} \ \left(\begin{array}{c} \\ \end{array}\right)$$

CONCLUSÃO:

A distribuição eletrônica de um cátion segue 3 passos:

- PASSO 1) Distribuir os elétrons do átomo neutro seguindo a ordem de energia, estabelecida pelo diagrama de energia dos subníveis.
- PASSO 2) Reescrever a distribuição eletrônica em ordem de camadas (ordem geométrica)
- Passo 3) Começar a retirada de elétrons a partir do último nível de energia.
- OBS.: É possível fazer a retirada de todos os elétrons de um átomo, se houver interesse.

EXEMPLO – 4

Qual a distribuição eletrônica dos íons:

$$_{26}$$
Fe²⁺ $_{26}$ Fe³⁺

RESOLUÇÃO

PASSO 1) Distribuição em ordem de energia, segundo o diagrama de energia.

Ordem energética:

$$[Fe]: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$$

PASSO 2) Ordem de camadas (geométrica)

[Fe]:
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 (4s^2)$$

PASSO 3) Retirada de elétrons

$$[Fe^{2+}]:1s^2 2s^2 2p^6 3s^2 3p^6 3d^6)$$

$$\lceil Fe^{3+} \rceil$$
: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ ()

RESUMO:

1) Distribuição eletrônica de ânions:

Ânion

Partículas que, ao receber elétrons, tornam-se íons negativos

Os elétrons recebidos entram no subnível incompleto do átomo neutro.

Devemos obedecer a seguinte sequência.

- 1°) Distribuir os elétrons em ordem de energia (átomo neutro)
- 2°) Adicionar os elétrons recebidos ao subnível incompleto do átomo neutro.
- 2) Distribuição eletrônica de cátions:

Cátions

Partículas que, ao perder elétrons, tornam-se íons positivos

Os elétrons perdidos são retirados da última camada.

Devemos obedecer à seguinte sequência:

- 1°) Distribuir os elétrons em ordem de energia (átomo neutro)
- 2°) Colocar os elétrons em ordem de camadas (átomo neutro)
- 3°) Retirar os elétrons inicialmente da última camada (e depois, da penúltima, se necessário).

3) Exceções do Diagrama

1)
$$ns^2(n-1)d^4$$

2)
$$ns^2(n-1)d^9$$

Por que ocorrem estas exceções?

Justificam-se estas exceções do diagrama, ao se aceitar que o subnível "d", quando semipreenchido (com 5 elétrons) ou totalmente preenchido (com 10 elétrons) adquire maior estabilidade.

$$\underbrace{ns^{2}(n-1)d^{4}}_{\text{menos estável}} \rightarrow \underbrace{ns^{1}(n-1)d^{5}}_{\text{mais estável}}$$

$$\underbrace{\mathsf{ns}^2 \, (\mathsf{n} - 1) \, \mathsf{d}^9}_{\mathsf{menos} \, \mathsf{est} \mathsf{avel}} \, \rightarrow \, \underbrace{\mathsf{ns}^1 \, (\mathsf{n} - 1) \, \mathsf{d}^{10}}_{\mathsf{mais} \, \mathsf{est} \mathsf{avel}}$$