Il processo di sviluppo del software

Dal nulla al modello "a cascata"

- All'inizio (e talvolta anche ora) si procedeva senza un modello di riferimento
 - -"Code & fix"
- Con la nascita dell'ingegneria del software, negli anni 70 si è proposto (e tuttora si usa) il ciclo di vita a cascata (waterfall)
 - -Identifica fasi e attività predefinite
 - -Forza una progressione lineare tra una fase e la successiva attraverso decisioni **go/no-go**
 - -Niente ritorni all'indietro (considerati pericolosi perchè stravolgono le stime e lo sviluppo ordinato)

Modello a cascata (Royce, 1970)

Studio di fattibilità Analisi e specifica dei requisiti Progettazione Implementazione e test di unità Integrazione e test di sistema Messa in opera Manutenzione

Ricorda qualcosa?

Studio di fattibilità

- Obiettivo: decisione go/no-go
 - –Si deve fare il progetto?
 - -Buy or make?
 - Analisi costi/benefici
- Alternative possibili, costi associati e risorse necessarie
- Produce il documento "Studio di Fattibilità"
 - -Descrizione preliminare del problema
 - -Scenari che descrivono le possibili soluzioni
 - -Costi e tempi previsti per ogni alternativa

Analisi e specifica dei requisiti

- Analizza il dominio in cui l'applicazione si colloca
- Identifica i requisiti
- Deriva una specifica per il software
 - -Necessaria una comprensione del dominio
 - -Necessaria l'interazione con gli "stakeholders"
- Produce il documento "Analisi e Specifica dei Requisiti"

Progettazione

- Definisce l'architettura del software
 - -Componenti (moduli)
 - Come vedremo, da "sottosistemi" a singoli "sottoprogrammi"
 - -Relazioni tra componenti
- Goal: supportare lo sviluppo concorrente, definendo le diverse responsabilità per le diverse parti
- Produce il documento "Progetto del Sistema"

Implementazione e test di unità

- Ogni modulo elementare viene implementato mediante il linguaggio di programmazione prescelto
- Ogni modulo viene testato dallo sviluppatore mentre viene sviluppato
- I programmi includono la loro documentazione

Integrazione e test di sistema

- I moduli sono integrati in (sotto)sistemi e ciascun sottosistema integrato viene testato
- La fase può essere integrata con la precedente in uno schema di implementazione incrementale
- Il sistema completo viene testato alla fine per verificare proprietà complessive (es. tempi di risposta) che non avrebbero senso sui singoli componenti
- Talvolta si effettuano "alpha test" (in "casa" dello sviluppatore) e "beta test" (presso utenti "selezionati")

Distribuzione degli sforzi

- Regola "iper-grossolana"
 - -40% requisiti e progettazione
 - -30% implementazione
 - -30% testing
- Variazioni molto forti possibili

Deployment e manutenzione

- Il deployment ha l'obiettivo di distribuire l'applicazione e gestire le diverse installazioni e configurazioni presso i clienti
- La manutenzione copre i cambiamenti successivi alla fine del proceso di sviluppo ("post-delivery")
- Termine infelice: il software non si deteriora
 - -Se sorge un malfunzionamento, la causa dello stesso è presente fin dall'inizio
- Supera il 50% dei costi complessivi
 - -Survey di imprese Europee: 80% del budget IT

Correzione o evoluzione?

- Correzione necessaria a fronte di un'implementazione che non rispetta la specifica
- La specifica potrebbe far riferimento a requisiti "sbagliati", di cui il committente non si è accorto
- Ciò diventa particolarmente problematico se la specifica dei requisiti è fatta male (incompleta, imprecisa)

Perchè il software evolve?

- Cambiamenti nel contesto
 - -Introduzione dell'EURO
 - -Cambiamenti normativi
- Cambiamenti nei requisiti
 - L'introduzione di una nuova versione del sistema genera nuova domanda
 - Secondo un survey delle aziende Europee, il 20% dei requisiti utente è obsoleto dopo I anno
- Requisiti non noti inizialmente

Verifica e convalida

- Talvolta si distingue tra l'attività di **verifica** (nel nostro caso, via testing) con la quale si effettua un controllo che il software rispetti le specifiche
- Rispetto alla convalida con la quale si verifica che il software soddisfi le aspettative del committente
- Se le specifiche catturano le aspettative del committente, non esiste differenza tra i due concetti!

Costo delle correzioni ritardate (Boehm, 1981)

Gli errori di
comprensione dei
requisiti hanno un
effetto potenziale
elevato sui costi, poichè
molte decisione
dipendono da essi

Come fronteggiare il cambiamento?

- Anticiparlo, non subirlo
- Il ciclo di vita a cascata non offre certamente un buon punto di partenza!
- Vedremo qualche alternativa
- Vedremo come progettare il software per favorirne il cambiamento in maniera economica e affidabile

Il ciclo a cascata è "black box"

Problemi del ciclo a cascata

- Adatto alle situazioni in cui il dominio è perfettamente noto e i requisiti sono noti e stabili
- Ciò accade raramente
- In pratica sono spesso necessarie iterazioni successive per arrivare progressivamente al prodotto desiderato

Cicli di vita "agili"

- Vedi http://agilemanifesto.org/
- Si adattano ai cambiamenti
- Procedono in maniera incrementale, per successivi rilasci
- Esistono in varie forme
- Le più note
 - -SCRUM
 - –Extreme Programming (XP)

SCRUM

- Metodologia iterativa e incrementale
- Parte dal riconoscimento che i committenti possono cambiare idea e che il processo a cascata non è in grado di reggere a questa "turbolenza"
- Nata in Giappone al di fuori dell'industria del software
- Nome basato su analogia rugbystica relativa a un attacco coordinato all'avversario basato su avanzamento per fasi

Caratteristiche salienti (I)

- Ruoli
 - -Scrum Master
 - Responsabile del processo
 - -Product Owner
 - Rappresenta gli stakeholders
 - -Team
 - Gruppo di circa 7 persone responsabili dell'analisi, progetto, implementazione, testing, ...

Caratteristiche salienti (II)

- Organizzazione del progetto in sprint
 - -Periodo da 4 a 7 settimane (durata decisa dal team) nella quale si crea un incremento di prodotto rilasciabile
- Funzionalità dello sprint
 - -Scelte da un product **backlog** del progetto nel quale le funzionalità sono marcate da una priorità dei relativi requisiti che esse devono soddisfare
- Durante lo sprint il backlog **non** può essere cambiato
 - -Requisiti congelati durante lo sprint
- Al termine dello sprint (durata predefinita!)
 - -I requisiti non soddisfatti tornano nel backlog

Extreme programming (XP)

- Si basa sull'analogia dell'extreme climbing
- Ha per obiettivo la risposta a requisiti stringenti di ridotto "time to market"
- Si basa su una premessa cha ha un senso ma che non può essere generalizzata
 - -Il sw è **impossible** da prespecificare
 - -... è come guidare: anche se si ha in mente un piano, occorre un continuo riaggiustamento

Caratteristiche fondamentali

- Come SCRUM rivendica la centralità del codice rispetto ad altri artefatti
 - -Con il conseguente pericolo di ricadere nel code-and-fix...
- Integra il testing nel processo come attività centrale
 - -**Test first**: prima di iniziare a codificare, si definiscono i casi di test che dovranno essere superati
- Pair programming
 - -...ogni lavoro di implementazione è fatto da due programmatori appaiati
- Refactoring continuo

Prototipazione rapida

- Talvolta nel processo di sviluppo del software si possono realizzare prototipi
 - -Per meglio capire ciò che si dovrà poi realizzare
 - -Ciò è relativamente comune in altri processi produttivi
 - Il prototipo può differire dal prodotto per diverse caratteristiche
- Nel caso del software il prototipo può essere
 - -Throw-away
 - -Evolutivo

Conclusioni

- Esistono diversi tipi di cicli di vita
 - -Abbiamo visto i due estremi (a cascata, XP)
- Basati su diverse tipologie di prodotti e per diverse organizzazioni
 - -Per esempio, secondo uno dei proponenti di XP
- XP is a lightweight methodology for small-to-medium-sized teams developing software in the face of vague or rapidly changing requirements (K. Beck, 2000)
 - Applicazioni critiche richiedono un approccio molto più strutturato
- In generale, il ciclo di vita va progettato in funzione del caso specifico

Processo e prodotto

Processo e prodotto

- Il nostro obiettivo è produrre prodotti di qualità
- Il processo (vedi anche ciclo di vita) è come ciò avviene
- Entrambi sono importanti
- Entrambi hanno qualità

Qualità di prodotto: correttezza

- Un software è corretto se soddisfa le sue specifiche
- Se le specifiche sono espresse in maniera formale, la verifica della correttezza può essere definita formalmente (matematicamente)
 - -Può essere dimostrata come teorema o falsificata da controesempi attraverso il testing
- Definita in maniera assoluta (SI/NO)
 - -Non esiste, anche se sarebbe utile, un concetto di "grado di correttezza"

Affidabilità, robustezza

Affidabilità

- -Informalmente, "l'utente si può fidare"
- -Definibile matematicamente come "probabilità dell'assenza di un malfunzionamento per un certo periodo di tempo"

Robustezza

-Il software si comporta "ragionevolmente" anche in circostanze inattese (e.g., input scorretti, malfunzionamenti hardware)

Prestazioni

- Uso efficiente delle risorse
 - -...memoria, processori, banda di rete, ...
- Può essere verificata mediante
 - Analisi di complessità
 - Performance evaluation (su modelli, via simulazione)
- Le prestazioni hanno effetto sulla "scalabilità"
 - La soluzione funziona anche a scale diverse di alcune caratteristiche
 - -...piccola rete locale rispetto a Internet
- Le prestazioni possono aver effetto sull'usabilità

Usabilità

- Gli utenti attesi trovano il software facile da usare
- Importante definire gli utenti attesi
 - ...per l'utente installatore la procedura di installazione deve essere di uso facile
- Altri termini: ergonomico, user friendly
 - Largamente dovuta all'interfaccia utente
 - -...testuale vs grafica
- Qualità largamente soggettiva e difficile da valutare

Altre qualità

- Manutenibilità
- Riusabilità
 - -Simile alla precedente, ma si applica a "componenti"
- Portabilità
 - -Adattamento a diversi ambienti target
- Interoperabilità
 - -Coesiste e coopera con altre applicazioni

Qualità di processo: produttività

- Produttività
 - -...come si definisce e misura?
 - Quantità prodotta per unità di lavoro (effort)
- Unità di lavoro: mese persona
 - Attenzione: persone e mesi non sono interscambiabili
- Quantità prodotta
 - -Linee di codice (e variazioni)
 - -Punti funzione
- Alcuni di voi lo vedranno ad Ingegneria del Software II...