ارماء كارعبراللم فبروك

Alexandria University
Faculty of Engineering
Comp. & Comm. Engineering
CC471: Database Systems
Spring 2021

جامعة الاسكندرية كلية الهندسة برنامج هندسة الحاسب والاتصالات مادة نظم قواعد البيانات ربيع ٢٠٢١

Sheet8 Transaction Processing & Concurrency Control

- 1) Which of the following schedules is (conflict) serializable? For each serializable schedule, determine the equivalent serial schedules.
 - a) $r_1(X)$; $r_3(X)$; $w_3(X)$; $w_1(X)$; $r_2(X)$
 - b) $r_3(X)$; $r_2(X)$; $w_3(X)$; $r_1(X)$; $w_1(X)$
- 2) How many serial schedules exist for the three transactions in the Figure below? What are they? What is the total number of possible schedules?

Transaction T	Transaction T ₂	Transaction T
read_item(X).	read item(Z).	read dem Y).
write_item(X):	read_item(Y);	read den Z).
read_item(Y);	write_item(Y);	write iten (Y):
write_item(Y),	read_item(X);	write tem Zi;
	write_item(X)	

- 3) Determine which of the following schedules are recoverable, which are cascadeless, and which are strict.
 - a) S_1 : $r_1(X)$; $w_1(X)$; $r_1(Y)$; $w_1(Y)$; C_1 ; $r_2(X)$; $w_2(X)$; C_2 ;
 - b) S_3 : $r_1(X)$; $w_1(X)$; $r_1(Y)$; $w_1(Y)$; $r_2(X)$; $w_2(X)$; C_1 ; C_2 ;
 - c) S_4 : $r_1(X)$; $w_1(X)$; $r_1(Y)$; $w_1(Y)$; $r_2(X)$; $w_2(X)$; C_2 ; C_1 ;
 - d) S₇: $r_1(X)$; $w_1(X)$; $r_1(Y)$; $r_2(X)$; $w_1(Y)$; $w_2(X)$; C_2 ; C_1 ;
 - e) S_8 : $r_1(X)$; $w_1(X)$; $r_1(Y)$; $r_2(X)$; $w_2(X)$; $w_1(Y)$; C_1 ; C_2 ;
 - f) S₉: $r_1(X)$; $w_1(X)$; $r_1(Y)$; $r_2(X)$; $w_2(X)$; $w_1(Y)$; C_2 ; C_1 ;
 - g) S_{21} : $r_1(X)$; $r_2(X)$; $w_1(X)$; $r_1(Y)$; $w_1(Y)$; C_1 ; $w_2(X)$; C_2 ;
 - h) S_{26} : $r_1(X)$; $r_2(X)$; $w_1(X)$; $r_1(Y)$; $w_2(X)$; C_2 ; $w_1(Y)$; C_1 ;
 - i) S_{27} : $r_1(X)$; $r_2(X)$; $w_1(X)$; $w_2(X)$; $r_1(Y)$; $w_1(Y)$; C_1 ; C_2 ;
 - j) S_{36} : $r_2(X)$; $r_1(X)$; $w_1(X)$; $r_1(Y)$; $w_1(Y)$; C_1 ; $w_2(X)$; C_2 ;
- 4) Prove that strict two-phase locking guarantees strict schedules.
- 5) No more questions are provided for concurrency control. It means that most exam questions on this part are review questions (اکتب مذکر ات جغر افیة عن علل).

How to submit the homework assignments?

- Solve the sheet individually without looking up the solution on the Internet. The sheet is to practice; it is a learning tool not an exam.
- Assignments are to be handwritten.
- Papers are to be scanned (I like camscanner app). Put all images in a pdf file (camscanner does that for you)

- Data base Sheet (3): Transaction Processing & concurrency Control Name: Asmaa Gamal Abdel-Halem Malsrouk Nagy Course: Audiance course DBMS., Department: Communications & Electronics 1) Using "Precedence graph, method, if the graph is acyclic the schedule is Conflict Serializable for @: (x) --> W(x) 5 (x) --> W3 (x) -> : Conflict serializable schedule - Equivalent serial schedule by topological sort ·= ((x); w(x); 3(x); w(x); 2(x) $r_3(x) \longrightarrow w_3(x)$ $r_2(x)$ $r_3(x) \longrightarrow w_3(x)$ $r_3(x) \longrightarrow w_3(x)$ = equi Valent topological (3(x); (2(x); (x); w(x); w, (x)) 2) of serial scheduciles = # orderings # serial scheduciles = # orderings To for each scheduale: # possible = 5 41. = 24 for T.

Scheduales = 5! = 120

41. = 24

Table 13 :. # Possible ordering of transactions = 6 = n Pr = 3P3 = 6 () Ly: # serial scheduals = 6 x 24 x 120 x 24 = 414,720 shedules

		Re Coverable	Cascadeless	Strict
a	5,	×	×	×
Ь	53	/	×	×
C	5 ₄	X	×	X
d	57	~	~	
е	28	V	~	~
P_	Sg	×	×	×
9)	521	×	×	×
2)	526	*	×	×
	S27 S36		×	×
		X	to show that straict (2PL) applies in	×

to prove : we need to show that strictness Popety applies.

and Stict (2pl) applies in the Growing phase.

Proof:

Proof:

***assume: atransact tron T reads/writes by uncommitted transaction.

To read/write data item that To modified

****According to Strict 2pl:

To exclusive lack x (during growing phase)

To only Lock x (is Shrinking is)

***** but: To accesses X (modified by To)

To be took X before To release it

To violate the Strict 2pl Protocol

false assumption

Strict 2pl Protocol guarntees Strict scheduales.