Type I Improper Integrals

$$\int^{\infty} = f(x) dx = \lim_{b \to \infty} \int_{a^b} f(x) dx$$

$$\int_{-\infty} = f(x) dx = \lim_{a \to -\infty} \int_{a^b} f(x) dx$$

Convergent if limit exists Divergent if limit is $\pm \infty$ or undefined

Type II Improper Integrals

$$\int_{a^b} = f(x) dx = \lim_{c \to a^+} \int_{c^b} f(x) dx$$
If $f(x)$ is discontinuous at a

$$\int_{a^b} = f(x) dx = \lim_{c \to b^-} \int_{a^c} f(x) dx$$
If(x) is discontinuous at b

Mixed Improper Integrals

Simply split up the integral to do one from 0-1 and the other from $1-\infty$

P-Integrals

Type I Integrals: (# to infinity)

Divergent if	P ≤ 1
Convergent if	P > 1

Type II Integrals:

Divergent if	P ≥ 1
Convergent if	P < 1

Telescopic Sums

Repeatedly add and subtract terms, cancelling each other out, and leaving us with only a few terms at the start/end.

Geometric Sums

$$\sum ar^{i} = a(1-R^{n})/(1-R)$$

Common Series Converge/Diverge

 $\sum 1/n^2$ Converges

 $\sum 1/n$ Diverges

 $\sum \tan^{-}(n)/n$ Diverges

Sequences

"indexed, ordered, infinite set of values"

$$a_n = 2n-1$$

$$\{a_n\}_{n=1}^{\infty}$$
 "Explicit Expressions"

For a recursively defined sequence, we need both initial values and recurrence relation (pattern).

Convergence of Sequences

 $\lim_{n\to\infty} a_n$ If exists: Convergent

If ∞/DNE: Divergent

Squeeze Theorem

If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} C_n = k$

And if $a_n \le b_n \le C_n$ then;

 $\lim_{n\to\infty} b_n = k$

Special Cases

1)
$$\lim_{n\to\infty} r^n \quad \infty \text{ if } r>1$$
 DNE if $r \le -1$
1 if $r=1$ 0 if $-1 < r < 1$

Alternating Sequences

Convergent iff $b_n = 0$

 $\lim_{n\to\infty} (-1)^n b_n$

Recursively Defined Sequences and Limits

If bounded above and increasing: Conv. If bounded below and decreasing: Conv.

Proof by induction:

- 1. Find base case that shows the sequence starts $(a_1 > 0)$
- 2. Induction step proving what you want

Series

"A series is an infinite sum"

- Telescopic series go to infinity so look at the first few terms.
- Geometric series either converge or diverge based on the value of R.

The Divergence Test

If $\lim_{n\to\infty} a_n \neq 0$ \sum a_n series diverges

Integral Comparison

If $\sum a_n$, $a_n \ge 0$ and $f(n) = a_n$

Where f(x) is positive, cont, decreasing If $\int f(x) dx$ converges >> $\sum a_n$ converges

P-Series

Divergent if	P ≤ 1
Convergent if	P > 1

Series Comparison Test

Literally compare shit that you don't know to other shit that you do know

Limit Comparison Test

 $\lim of a_n/b_n$ tells you their relationship.

0 <k<∞< th=""><th>Both converge / diverge</th></k<∞<>	Both converge / diverge
k = 0	$b_n >> a_n$ for n large
k = ∞	a _n >> b _n for n large
DNE	no info

Alternating Series Test

If $\sum (-1)n b_n$, $|b_n| > 0$ then if

- 1) b_n is decreasing
- 2) $\lim_{n \to 0} b_n = 0$
- \sum converges

Alternating Series Error Estimates

$$\left|S_{\infty} - S_m\right| \leq b_{m+1}$$

 $|b_n|$ < error solve for n, subtract 1

The Three Possibilities

- 1) Absolute Convergence $\sum |a_n|$ converges and a_n converges
- 2) Conditional Convergence $\sum |a_n|$ diverges but a_n converges
- 3) $\sum a_n$ diverges

Ratio Test

 $\sum a_n look at lim |a_{n+1}/a_n|$

k > 1	diverges
k < 1	converges
k = 1	no info

Ratio test is blind to polynomials, rational functions, and n^p expressions.

Root Test

 $\sum a_n$ consider $\lim_{n \to \infty} \sqrt[n]{|a_n|}$

k > 1	diverges
k < 1	converges
k = 1	no info

Only use when $a_n = ()^n$

Power Series

Basically Ratio Test it. If $\lim < 1$: $R = \inf$ If $\lim > 1$: R = 0

MacLawrin Series

$$F(x) = \sum_{0}^{\infty} C_{n} x^{n}$$

$$F^{n}(0) = n!C_{n}$$

Theorem:
$$F(x) = \sum \frac{F^n(0)}{n!} x^n$$

(make a table)

Taylor Series

$$F(x) = \sum_{0}^{\infty} \frac{F^{n}(a)}{n!} (x - a)^{n}$$
 (make a table)

Special MacLawrin Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\cos(x) = \sum_{0}^{\infty} (-1)^{n} (\frac{x^{2n}}{(2n)!})$$

$$\sin(x) = \sum_{0}^{\infty} (-1)^{n} \left(\frac{x^{2n+1}}{(2n+1)!} \right)$$

Taylor Polynomials

$$F(x) = \sum_{0}^{\infty} \frac{F^{n}(a)}{n!} (x - a)^{n} = T_{m}(x)$$

 $T_m(x)$ approximates F(x) better and better over a larger region. T_m is the best fit m^{th} order polynomial about x=a. (Make a table)

Taylor Remainder Theorem

$$|F(x) - T_m(x)| = R_m(x) \le \frac{M|x - a|^{m+1}}{(m+1)!}$$

Binomial Series

$$(a+b)^{m} = a^{m} + {\binom{m-1}{1}}(a^{m-1}b) + {\binom{m-2}{2}}(a^{m-2}b) \dots$$
$${\binom{m}{r}} = \frac{m!}{r! (m-r)!}$$

Integration and Interaction

Surface Area of Revolution

$$SA = \int_{a}^{b} 2\pi F(x) \sqrt{1 + F'(x)^2} dx$$

$$SA = \int 2\pi r ds$$

Rotating around y-axis but calculating in x: exchange r for x

Hydrostatics and Pressure

$$P = pgh$$
 $F = PA$
 $p = fluid density$

Force on sides:

$$F = \int_{top}^{bottom} pgwh \Delta h$$

Differential Equations

Ordinary – Only have one independent Differential – Includes derivatives Equation – An expression

Order of ODE depends on highest order

Basic Case

Either directly integrate or use $y = ce^{rx}$

$$Y'' + w^2y = 0$$
 $y = Acos(wt) + Bsin(wt)$

Seperable ODE

$$y' = f(x)g(y)$$

$$\frac{1}{g(y)}\frac{dy}{dx} = f(x)$$

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

Result: If
$$y' = ky$$
 $y = ce^{kx}$

Orthogonal Trajectory

$$y'_{new} = -\frac{1}{y'_{old}}$$

If $y = kx^2$, integrate and solve for $k = y/x^2$ then plug in the new k in the y' equation. This gets you the old y'.

Exponential Growth and Decay

$$y = Ae^{kt}$$
 $y' = rate of change$

Half Life:
$$y(x) = \frac{1}{2}y(0) = y(0)e^{kx}$$

Newton's Law of Cooling

$$T = T_{env} + Ae^{kt}$$

First Order Linear ODE

Eg:
$$y' + P(x)y = Q(x)$$

$$y = \frac{1}{I(x)} \int I(x) Q(x) \ dx$$

$$I(x) = Ce^{\int P(x)}$$

Parametric Curves

$$(x,y) = (f(t), g(t))$$

$$x = t \quad y = t^2 : y = x^2$$

Methods:

1. Go back to x,y representation

Eg:
$$x = ln(t) >> t = e^x$$

 $y = t^2+t >> y = e^{2x} + e^x$

2. Graph [x vs t] and [y vs t] and brute force it approximately.

Calculus on Parametric Curves

$$m = \frac{y'}{x'}$$
 with respect to t

If 0, there's a horizontal tangent. To find vertical tangent, solve separately.

Second Derivatives and Concavity

$$\frac{d^2y}{d^2x} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\left(\frac{dx}{dt}\right)}$$

Area and Integration

Parametric Area =
$$\int_{t_0}^{t_1} y(t)x' dt$$

Parametric Arc Length =
$$\int_{t_0}^{t_1} \sqrt{(x')^2 + (y')^2} dt$$

Parametric Surface Area: Use old formula with new ds (arc length).

Test #2 Ends Here

Polar Coordinates and Polar Graphs

$$r = g(\emptyset)$$

$$r^2 = x^2 + y^2$$

$$tan(\emptyset) = y/x \quad \emptyset = angle to the x-axis$$

eg.
$$(1,1) >> (r, \tan(1/1)) >> (\sqrt{2}, \pi/4)$$

Remember, if the r is in the negatives, add a π .

Method

- 1. Write $r = g(\emptyset)$
- 2. Sketch [r vs \emptyset] > r vertical, \emptyset horizontal
- 3. Use above graph to sketch between "interesting points" and make polar graph

Derivatives of Polar Curves

$$\frac{dy}{dx} = \frac{r'\sin\emptyset + r\cos\emptyset}{r'\cos\emptyset - r\sin\emptyset}$$

The Third Dimension

 \rightarrow Z is dependant, x/y are independent

Domain: Region in x,y plane at which

f(x,y) can be evaluated Range: Subset of Z interval

Level Sets and Multivariable Functions

The set of all points in the domain such that Z=K, K constant real number.

- 1) Level sets are *always* in our domain
- 2) If Z = f(x,y) is a functions (passes VLT) then no level sets can cross/intersect!

Limits and Continuity

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Usual Suspects:

Cos, Sin, All Trig, Polynomials, Rational, Ln/Log, ax, ex {All continuous on domain}

- 1) Check for 0/0
- 2) Check common failure directions and powers
- 3) Squeeze it if you think limit exists

Derivatives in Rn

Partial Derivatives

$$\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

"Partial Derivative of Z with respect to Y"

Mixed Partials (2nd derivative mixed type)

Clairout's Theorem: If the 2^{nd} partial derivatives are continuous, $f_{xy} = f_{yx}$

Tangents in Multivariable Problems

Planes: $Z = m_1x + m_2y + C$ Plug in a point to get C

$$m_1 = f_x$$
 $m_2 = f_y$

Linearization

$$L(X,Y) = m_1(X-X_0) + m_2(Y-Y_0) + Z_0$$

Differential Linearization

$$\partial Z = f_x(x, y)\partial x + f_y(x, y)\partial y$$

Tree Chain Rule: March 24 Note

Implicit Differentiation

$$\frac{\partial y}{\partial x} = \frac{-F_x(x, y)}{F_y(x, y)}$$

$$\frac{\partial z}{\partial x} = \frac{-F_x(x, y, z)}{F_z(x, y, z)}$$

$$\frac{\partial z}{\partial y} = \frac{-F_y(x, y, z)}{F_z(x, y, z)}$$

Gradient and Directional Derivative

Directional Derivative:

$$D_{\vec{u}}f(x,y) = \lim_{h \to 0} \frac{f(\vec{x}, h\vec{u}) - f(\vec{x})}{h}$$

U = unit vector x = (x,y)h = ||delta x||

$$D_{\vec{u}}f(x,y)=(f_x,f_y)\cdot\vec{u}$$

$$D_{\overrightarrow{u}}f(x,y) = \left| \left| f_x, f_y \right| \right| \cos \theta$$

 ∇f is always orthogonal to level sets

 ∇f is pointing in "direction of steepest ascent"