Computational Modelling for Biomedical Imaging

Daniel Alexander
D.Alexander@ucl.ac.uk

Course aims

- Practical introduction to the computational tools underlying modeling and indirect estimation.
- Framed within the application of biomedical imaging.
- Learn about some interesting imaging and image analysis techniques.

CMBI: Daniel Alexande

Learning outcomes

- Practical modelling and estimation techniques:
 - Experience with fitting algorithms and common models
 - · How to handle real-world data
- Common aims in imaging science
- Some specific imaging techniques
- · Some matlab programming

CMBI: Daniel Alexander

Related courses

- Inverse problems in imaging GV08
 - Simon Arridge
- · Machine vision GI14
 - Gabriel Brostow
- Medical imaging MPHYGB10 and MPHYGB11
 - Various
- Information processing in medical imaging MPHYGB06
 - Sebastien Ourselin

CMBI: Daniel Alexand

Prerequisites

- · Engineering mathematics
 - Probability
 - Linear algebra
 - Statistics
 - Calculus
- · Mathematical programming
 - Matlab

CMBI: Daniel Alexand

Course components

- Danny Alexander: fundamentals of parameter estimation.
- Gary Zhang: advanced models statistical inference and ill-posed problems.
- Ivana Drobnjak: practical modelling and estimation.

CMBI: Daniel Alexande

Week starting	Monday 15-18	Friday 14-16	Milestones
12/1/15	Danny		CW1 set
19/1/15	Danny		
26/1/15	Danny		
2/2/15	Gary		CW2 set
9/2/15	Gary		CW1 deadline (Monday noon)
16/2/15	Reading week: no lectures of	or lab classes	
23/2/15	Danny 1h/ Gary 2h		
2/3/15	Gary		
9/3/15	Ivana		CW2 deadline (Monday noon)
16/3/15	Ivana (Gary 1h)		
23/3/15	Ivana	Project	Project deadline after

Assessment

- Three courseworks:
- CW1: Fundamentals of modelling and estimation
- CW2: Multi-scale and non-parametric models
 - Gary 15%
- Group and individual projects
 - Ivana 50%
- Collaboration vs plagiarism.

Lecture support

- Lab classes

 - Fridays 14-16
 Lab demonstrators: Andrada lanus and Alexandra Young.
 CS Accounts required
- · Project leaders
 - Enrico Kaden, Andrew Melbourne, Jamie McClelland
- Moodle site
 Lecture slides, supporting material, coursework information.
- Pen and paper!

Part 1

- · Parameter estimation
- Uncertainty
- · Model selection
- Experiment design

Recommended reading: www.causascientia.org/math_stat/Tutorial.pdf

Indirect measurement

- Evaluate a quantity we cannot measure directly.
- We can measure something else sensitive to that quantity.
- We need a model to relate the quantity we want to what we can measure.

Example: exoplanets Star Planet Light curve

What is noise?

• Noise is any influence on the data not explained by the model.

Types of noise

- Measurement error
- · Quantization or truncation error
- Modelling error
- · Catastrophic failure
- E.g. for additive noise $A(y) = S(x; y) + \eta(z)$

CMBI: Daniel Alexande

What can we do with a model?

- · Learn about the world
 - By studying its behaviour
- · Estimate parameters
 - By fitting the model to data
- Make predictions
 - By propagating its behaviour into the future

aniel Alexander

Where do they come from?

- Models themselves come from deep understanding of a system.
- The course focuses on tools for exploiting models once we have them.
- That knowledge is helpful in designing models themselves, but only a small component!

MBI: Daniel Alexander

22