

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Haiora Seuger! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Análise combinatória

Marcelo Gorges

Fatorial

Dado um número natural n, define-se fatorial do número natural n ou n fatorial, como sendo o produto de todos os números naturais consecutivos de n até 1. Da seguinte forma:

$$n! = n \cdot (n - 1) \cdot (n - 2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$
 para todo $n > 1$.

Por definição temos que:
$$\begin{cases} 0! = 1 \\ 1! = 1 \end{cases}$$

Exemplos:

- 1. Calcule os fatoriais:
 - a) 3! = 3.2.1 = 6

b)
$$6! = 6.5.4.3.2.1 = 720$$

c)
$$9! = 9.8! = 9.8.7! = 9.8.7.6! = 504.720 = 362.880$$

2. Vamos calcular os fatoriais:

a)
$$\frac{8!}{3! \cdot 5!} = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 1 \cdot 5!} = \frac{336}{6} = 56$$

b)
$$\frac{8!}{3!+5!} = \frac{8.7.6.5.4.3.2.1}{3.2.1+5.4.3.2.1} = \frac{40320}{6+120} = \frac{40320}{126} = 336$$

3. Simplifique a expressão $\frac{(n+2)!}{n!}$.

Solução:

$$\frac{(n+2)!}{n!} = \frac{(n+2) \cdot (n+1) \cdot n}{n} = (n+2) \cdot (n+1) = n^2 + 3n + 2$$

Exercícios

- 1. Simplificar as expressões abaixo:
 - a) <u>6!</u> 3!
 - b) $\frac{10!}{7! \cdot 3!}$
 - c) $\frac{n!}{(n-1)!}$
 - d) $\frac{(n+1)!}{(n-1)!}$
 - e) $\frac{(n-1)!}{n!} \cdot \frac{(n+1)!}{(n-2)!}$
- 2. Calcular o valor das expressões:
 - a) $\frac{5! + 2!}{3!}$
 - b) $\frac{6! 4!}{2! + 0!}$
 - c) $\frac{200! + 201!}{199!}$

■ Permutação simples

Seja um conjunto com n elementos distintos. Uma permutação simples dos n elementos desse conjunto é uma sequência desses n elementos, de modo que a mudança de ordem desses n elementos determina permutações diferentes.

Utilizando o princípio fundamental da contagem podemos determinar o número de permutações da seguinte forma:

$$P_n = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$

Ou ainda utilizando fatoriais temos:

$$P_n = n!$$

Exemplos:

- 1. Calcule:
 - a) P_6 $P_6 = 6! = 6.5.4.3.2.1 = 720$
 - P₆ = 6! = 6 . 5 . 4 . 3 . 2 . 1 = 720 b) P₃ + 2 . P₅ P₃ = 3! = 3 . 2 . 1 = 6 P₅ = 5! = 5 . 4 . 3 . 2 . 1 = 120 Portanto: P₃ + 2 . P₅ = 6 + 2 . 120 = 246
- 2. Quantos números de 4 algarismos distintos podemos formar com os algarismos 1, 2, 3 e 4?

Solução:

$$P_4 = 4! = 4 . 3 . 2 . 1$$

 $P_4 = 24$

Resposta: Podemos formar 24 números diferentes.

3. Quantos anagramas tem a palavra MANTO?

Solução:

Como a palavra MANTO tem 5 letras, temos:

$$P_5 = 5! = 5.4.3.2.1$$

$$P_5 = 120$$

Resposta: 120 anagramas.

■ Permutação com repetição

Vamos analisar a seguinte situação:

Quantos anagramas podemos formar com a palavra MARCA?

Neste caso, perceba que a palavra MARCA, possui duas letras repetidas, e quando permutamos duas letras iguais, o anagrama não se altera. Desta forma de-

vemos considerar uma *permutação com repetição*, assim devemos proceder da seguinte maneira:

Calculamos a permutação com as 5 letras que possui a palavra marca e, em seguida, calculamos a permutação da quantidade de letras repetidas. O resultado será a divisão entre as permutações, ou seja a permutação de 5 elementos com 2 repetidos.

$$P_5^2 = \frac{5!}{2!} = \frac{5 \cdot 4 \cdot 3 \cdot 2!}{2!} = 60$$

Portanto a palavra MARCA, possui 60 anagramas diferentes.

Exemplo:

Numa prateleira existem 5 livros diferentes de Matemática, 4 livros diferentes de Português e 3 livros diferentes de Inglês.

a) De quantos modos diferentes podemos arrumá-los?

Solução:

$$P_{12} = 12! = 12 . 11 . 10 . 9 . 8 . 7 . 6 . 5 . 4 . 3 . 2 . 1$$

 $P_{12} = 479 001 600$

Resposta: Podemos arrumar de 479 001 600 modos diferentes.

b) De quantos modos diferentes podemos arrumá-los de maneira que os livros de cada matéria fiquem sempre juntos?

Solução:

Como podemos variar a posição dos três tipos de matéria (Matemática, Português e Inglês) e cada matéria variarem os livros entre si, então temos:

$$P_3 \cdot P_5 \cdot P_4 \cdot P_3 = 3! \cdot 5! \cdot 4! \cdot 3! = 103 680$$

Resposta: Podemos arrumar de 103 680 modos diferentes.

c) De quantos modos diferentes podemos arrumá-los de modo que os livros de Inglês fiquem sempre juntos?

Se considerarmos os livros de inglês juntos e com posições sempre fixas, eles podem ser considerados como um único elemento. Sendo assim somando-se às outras 9 posições ocupadas pelos outros livros, obtemos 10 posições e o número de possibilidades é dado por P_{10} . Como as posições dos livros de inglês não são fixas, devemos multiplicar P_{10} por P_3 . Assim temos que:

$$P_{10} \cdot P_{3} = 10! \cdot 3! = 21772800$$

Resposta: Podemos arrumar de 21 772 800 modos diferentes.

Exercícios

- 3. Calcular:
 - a) P₇

b)
$$P_8 - 3.P_6$$

- **4.** Quantos números de 5 algarismos distintos podemos formar com os algarismos 2, 3, 4, 8 e 9?
- **5.** Quantos anagramas tem a palavra CAMELO?
- 6. Quantos anagramas da palavra CAMELO, começam com a letra M?
- 7. Quantos anagramas possui a palavra MATEMÁTICA?

Arranjo simples

Um arranjo simples de p elementos distintos, tirados de um conjunto com n elementos distintos (p menor ou igual a n), é uma sequência desses p elementos, de modo que a mudança de ordem desses p elementos determina arranjos diferentes.

Indica-se:

$$A_{n,p}$$
 ou A_n^p com $p \in IN$ e $p \le n$.

Fórmula do número de arranjos:

$$A_n^p = \frac{n!}{(n-p)!}$$

Exemplos:

1. Calcule:

a)
$$A_5^3$$

 $A_5^3 = \frac{5!}{(5-3)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2!}{2!} = 60$

a)
$$A_8^2 - A_6^3$$

 $A_8^2 = \frac{8!}{(8-2)!} = \frac{8 \cdot 7 \cdot 6!}{6!} = 56$
 $A_6^3 = \frac{6!}{(6-3)!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3!} = 120$

Portanto:
$$A_o^2 - A_s^3 = 56 - 120 = -64$$

2. Quantos números de quatro algarismos distintos podemos formar com os algarismos 1, 2, 3, 4, 5, 6 e 7?

Solução:

$$A_7^4 = \frac{7!}{(7-4)!} = \frac{7.6.5.4.3!}{3!} = 840$$

Resposta: Podemos formar 840 números diferentes.

3. Quantos múltiplos de 3, formados por quatro algarismos distintos, podem ser formados com os algarismos 2, 3, 4, 6 e 9?

Solução:

Um número é múltiplo de 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3.

Desta forma, com os algarismos 2, 3, 4, 6 e 9 podemos ter os possíveis grupos de quatro algarismos, que formarão múltiplos de 3:

- \blacksquare 2, 3, 4 e 6, pois 2 + 3 + 4 + 6 = 15 e 15 é divisível por 3;
- \blacksquare 2, 3, 4 e 9, pois 2 + 3 + 4 + 9 = 18 e 18 é divisível por 3;
- \blacksquare 2, 4, 6 e 9, pois 2 + 4 + 6 + 9 = 21 e 21 é divisível por 3.

Perceba que todos os grupos possuem 4 elementos que formarão os múltiplos de 3 com quatro algarismos, ou seja, temos três grupos de números com esta possibilidade variando os números entre si.

Assim:

$$A_4^4 = \frac{4!}{(4-4)!} = \frac{4 \cdot 3 \cdot 2 \cdot 1!}{0!} = \frac{24}{1} = 24$$

Como tem três grupos, o total de números formados é:

$$3.A_4^4 = 3.24 = 72$$

Resposta: O total de múltiplos de 3 distintos é 72.

4. O código secreto do cartão magnético do cliente de um banco é formado por cinco algarismos diferentes que devem ser digitados numa determinada sequência. Qual é o número máximo de códigos diferentes que se pode formar nesse caso?

Solução:

$$A_{10}^{5} = \frac{10!}{(10-5)!} = \frac{10.9.8.7.6.5!}{5!} = 30.240$$

Resposta: Podemos formar 30 240 códigos diferentes.

Exercícios

- 8. Calcular:
 - a) A_{80}^2
 - b) $2.A_9^2 + A_8^3$
- **9.** Quantos números de 3 algarismos distintos podemos formar com os algarismos 1, 2, 4, 8 e 9?

10. 8 pessoas pretendem utilizar um sofá de 5 lugares. De quantas maneiras diferentes podem sentar-se no sofá?

11. Quantos números, entre 1 000 e 6 000, podemos formar com os algarismos ímpares, sem os repetir?

Combinação simples

Uma combinação simples de p elementos distintos, tirados de um conjunto de n elementos distintos, considerando que p é menor ou igual a n, é qualquer subconjunto de p elementos desse conjunto, desde que a mudança de ordem desses elementos determine a mesma combinação.

Indica-se:

$$C_{n,p}$$
 ou C_n^p com $p (p \le n)$

Fórmula do número de combinações:

$$C_n^p = \frac{n!}{p! (n-p)!}$$

Exemplos:

1. Calcule:

a)
$$C_6^2$$

 $C_6^2 = \frac{6!}{2!(6-2)!} = \frac{6.5 \cdot 4!}{2 \cdot 1 \cdot 4!} = \frac{30}{2} = 15$
b) $C_9^4 - C_7^3$
 $C_9^4 = \frac{9!}{4!(9-4)!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 5!} = \frac{3024}{24} = 126$
 $C_7^3 = \frac{7!}{3!(7-3)!} = \frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 1 \cdot 4!} = \frac{210}{6} = 35$
Portanto: $C_9^4 - C_7^3 = 126 - 35 = 91$

2. Quantas comissões constituídas de 4 pessoas podem ser formadas a partir de um grupo de 8 pessoas?

Solução:

$$C_8^4 = \frac{8!}{4!(8-4)!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 4!} = \frac{1680}{24} = 70$$

Resposta: Podemos formar 70 comissões diferentes.

3. Ao final de uma reunião com 15 participantes, todos cumprimentam-se um a um uma única vez. Quantos cumprimentos são trocados?

Solução:

$$C_{15}^2 = \frac{15!}{2!(15-2)!} = \frac{15.14.13!}{2.1.13!} = \frac{210}{24} = 105$$

Resposta: Serão trocados 105 cumprimentos.

- **4.** De um grupo de dez pessoas sendo seis homens e quatro mulheres, é sorteado um grupo de quatro pessoas. Determine quantos grupos diferentes podem ser formados se:
 - a) O grupo é formado unicamente por homens;

Solução:

$$C_6^4 = \frac{6!}{4!(6-4)!} = \frac{6.5.4!}{2.1.4!} = \frac{30}{2} = 15$$

Resposta: Poderão ser formados 15 grupos diferentes.

b) O grupo é formado por dois homens e duas mulheres.

Solução:

$$C_6^2$$
, $C_4^2 = \frac{6!}{2!(6-2)!}$, $\frac{4!}{2!(4-2)!} = \frac{6.5.4!}{2.1.4!}$, $\frac{4.3.2!}{2.1.2!} = \frac{30}{2}$, $\frac{12}{2} = \frac{360}{4} = 90$

Resposta: Poderão ser formados 90 grupos diferentes.

Exercícios

12. Calcular:

a)
$$C_{12]}^{8}$$

b)
$$3.C_5^4 + 2.C_{10}^3$$

13.	Quantas comissões constituídas de 6 pessoas podem ser formadas a partir de
	um grupo composto por 10 pessoas?

14. Determinar o número de subconjuntos com 3 elementos que podem ser formados, a partir do conjunto dos divisores positivos de 12.

15. Uma empresa é formada por 4 sócios argentinos, 3 sócios chilenos e 5 sócios brasileiros. De quantos modos podemos formar uma diretoria de 6 sócios, sendo 2 argentinos, 1 chileno e 3 brasileiros?

Gabarito

Análise combinatória

1.

a)
$$\frac{6!}{3!} = \frac{6.5.4.3!}{3!} = 120$$

b)
$$\frac{10!}{7! \cdot 3!} = \frac{10 \cdot 9 \cdot 8 \cdot 7!}{3 \cdot 2 \cdot 1 \cdot 7!} = \frac{720}{6} = 120$$

c)
$$\frac{n!}{(n-1)!} = \frac{n \cdot (n-1)!}{(n-1)!} = n$$

d)
$$\frac{(n+1)!}{(n-1)!} = \frac{(n+1) \cdot n \cdot (n-1)!}{(n-1)!} =$$

= $(n+1) \cdot n = n^2 + n$

e)
$$\frac{(n-1)!}{n!} \cdot \frac{(n+1)!}{(n-2)!} = \frac{(n-1) \cdot (n-2)!}{n!} \cdot \frac{(n+1) \cdot n!}{(n-2)!} = (n-1) \cdot (n+1) = n^2 - 1$$

2.

a)
$$\frac{5! + 2!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot + 2 \cdot 1}{3 \cdot 2 \cdot 1} = \frac{120 + 2}{6} = \frac{122}{6} = \frac{61}{3}$$

b)
$$\frac{6! - 4!}{2! + 0!} =$$

$$= \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 - 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 + 1} =$$

$$= \frac{720 - 24}{2 + 1} = \frac{696}{3} = 232$$

c)
$$\frac{200! + 201!}{199!} =$$

$$= \frac{200.199! + 201.200.199!}{199!} =$$

$$= \frac{(200 + 201.200).199!}{199!} =$$

$$= 200 + 201 \cdot 200 = 200 +$$

$$+40200 = 40400$$

3.

a)
$$P_7 = 7.6.5.4.3.2.1 = 5040$$

b)
$$P_8 - 3 \cdot P_6$$

 $P_8 = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320$
 $P_6 = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$
 $P_8 - 3 \cdot P_6 = 40320 - 3 \cdot 720 = 40$
 $320 - 2160 = 38160$

4.
$$P_5 = 5.4.3.2.1 = 120$$

5.
$$P_6 = 6.5.4.3.2.1 = 720$$

6.
$$P_5 = 5.4.3.2.1 = 120$$

7. A palavra MATEMÁTICA, possui 3 letras "A", 2 letras "M" e 2 letras "T" repetidas, assim:

$$P_{10}^{3,2,2} = \frac{10!}{3! \cdot 2! \cdot 2!} =$$

$$= \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{2 \cdot 1 \cdot 2 \cdot 1 \cdot 3!} =$$

$$= \frac{604 \cdot 800}{4} = 15 \cdot 1200$$

8.

a)
$$A_{80}^2 = \frac{80!}{(80-2)!} = \frac{80.79.78!}{78!} = 6320$$

b)
$$2.A_9^2 + A_8^3$$

 $A_9^2 = \frac{9!}{(9-2)!} = \frac{9.8.7!}{7!} = 72$
 $A_8^3 = \frac{8!}{(8-3)!} = \frac{8.7.6.5!}{5!} = 336$

Portanto: 2 .
$$A_o^2 + A_s^3 = 2 . 72 + 336 = 480$$

9.
$$A_5^3 = \frac{5!}{(5-3)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2!}{2!} = 60$$

10.
$$A_8^5 = \frac{8!}{(8-5)!} = \frac{8.7.6.5.4.3!}{3!} = 6720$$

11. Os algarismos ímpares são: 1, 3, 5, 7 e 9.

Desta forma, entre 1 000 e 6 000, temos:

Começados por 1, A₄³

Começados por 3, A₄³

Começados por 5, A₄³

Como
$$A_4^3 = \frac{4!}{(4-3)!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{1!} = \frac{24}{1} = 24$$

Assim, o número total é de 3. $A_4^3 = 3.24 = 72$

12.

$$C_{12}^{8} = \frac{12!}{8!(12-8)!} = \frac{12.11.10.9.8!}{8!.4.3.2.1} = \frac{11.880}{24} = 495$$

b)
$$3.C_5^4 + 2.C_{10}^3$$

$$C_5^4 = \frac{5!}{4!(5-4)!} = \frac{5 \cdot 4!}{4! \cdot 1} = \frac{5}{1} = 5$$

$$C_{10}^{3} = \frac{10!}{3!(10-3)!} = \frac{10.9.8.7!}{3.2.1.7!} = \frac{720}{6} = 120$$

Portanto: $3 \cdot C_5^4 + 2 \cdot C_{10}^3 = 3 \cdot 5 + 2 \cdot 120 = 255$

13.
$$C_{10}^6 = \frac{10!}{6!(10-6)!} = \frac{10.9.8.7.6!}{4.3.2.1.6!} = \frac{5040}{24} = 210$$

14.
$$D(12) = \{1, 2, 3, 4, 6, 12\}$$

 $C_6^3 = \frac{6!}{3!(6-3)!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3 \cdot 2 \cdot 1 \cdot 3!} = \frac{120}{6} = 20 \text{ subconjuntos.}$

Argentinos:
$$C_4^2 = \frac{4!}{2!(4-2)!} = \frac{4 \cdot 3 \cdot 2!}{2 \cdot 1 \cdot 2!} = \frac{12}{2} = 6$$

Chilenos:
$$C_3^1 = \frac{3!}{1!(3-1)!} = \frac{3 \cdot 2!}{1 \cdot 2!} = 3$$

Brasileiros:
$$C_5^3 = \frac{5!}{3!(5-3)!} = \frac{5 \cdot 4 \cdot 3!}{3! \cdot 2 \cdot 1} = \frac{20}{2} = 10$$

Portanto, pelo princípio fundamental	
da contagem, o número de diretorias	
$c_4, c_3, c_5 = 0.3.10 = 100$	
	Portanto, pelo princípio fundamental da contagem, o número de diretorias que podemos formar é: $C_4^2 \cdot C_3^1 \cdot C_5^3 = 6 \cdot 3 \cdot 10 = 180$

 -

Matemática Elementar II: situações de matemática do ensino médio no dia a dia