Lecture Notes of Multivariate Statistics

Luo Luo

School of Data Science, Fudan University

June 16, 2022

1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization

- 1. $r_{ij} \neq 0 \text{ for all } i = 1, ..., n$
- 2. $\|\mathbf{q}_i\|_2 = 1$ for all i = 1, ..., n
- 3. $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $i = 1, \dots, n$ and j < i.

Proof. Part 1: Since each \mathbf{q}_i is a linear combination of $\{\mathbf{a}_1, \dots, \mathbf{a}_i\}$, the entry r_{jj} is zero means

$$r_{jj} = \left\| \mathbf{a}_n - \sum_{i=1}^{n-1} r_{in} \mathbf{q}_i \right\|_2 = 0,$$

then \mathbf{a}_n must be a linear combination of $\{\mathbf{a}_1, \cdots, \mathbf{a}_{n-1}\}$, which validate the full rank assumption on \mathbf{A} .

Part 2: Just use the expression of r_{ij} .

Part 3: Recall that $r_{ij} = \mathbf{q}_i^{\mathsf{T}} \mathbf{a}_j$ for any $i \neq j$. We can verify

$$\mathbf{q}_{1}^{\top}\mathbf{q}_{2} = \frac{\mathbf{q}_{1}^{\top}(\mathbf{a}_{2} - r_{12}\mathbf{q}_{1})}{r_{22}} = \frac{\mathbf{q}_{1}^{\top}(\mathbf{a}_{2} - (\mathbf{q}_{1}^{\top}\mathbf{a}_{2})\mathbf{q}_{1})}{r_{22}} = \frac{\mathbf{q}_{1}^{\top}\mathbf{a}_{2} - (\mathbf{q}_{1}^{\top}\mathbf{a}_{2})\mathbf{q}_{1}^{\top}\mathbf{q}_{1}}{r_{22}} = 0$$

Suppose for $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $i = 1, \dots, n' - 1$ and j < i. Then for all $k = 1, 2, \dots, n' - 1$, we have

$$\mathbf{q}_{k}^{\top}\mathbf{q}_{n'} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - \sum_{i=1}^{n'-1} r_{in'}\mathbf{q}_{k}^{\top}\mathbf{q}_{i}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}\mathbf{q}_{k}^{\top}\mathbf{q}_{k}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}}{r_{n'n'}} = 0$$

Then we prove the result by induction.

Theorem 1.2. *Prove* $\|\mathbf{A}\|_{2} = \sigma_{1}$.

Proof. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ be full SVD of \mathbf{A} . Then

$$\left\|\mathbf{A}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{A}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2$$

Then let $\mathbf{y} = \mathbf{V}^{\top}\mathbf{x}$. Since \mathbf{V} is orthogonal matrix, we have $\|\mathbf{y}\|_2 = \|\mathbf{V}^{\top}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 = 1$. Hence,

$$\sup_{\|\mathbf{x}\|_2 = 1} \|\mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{x}\|_2 = \sup_{\|\mathbf{y}\|_2 = 1} \|\mathbf{\Sigma} \mathbf{y}\|_2 = \sup_{\|\mathbf{y}\|_2 = 1} \sqrt{\sum_{i=1}^r (\sigma_i y_i)^2} \le \sigma_1.$$

We attain the maximum by taking
$$\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 and the corresponding \mathbf{x} is $\mathbf{V} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has the decomposition of the form

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$$

where $\mathbf{L} \in \mathbb{R}^{\times n}$ is a lower triangular matrix with real and positive diagonal entries.

Proof. For n=1, it is trivial. Suppose it holds for n-1, then any $\widetilde{\mathbf{A}} \in \mathbb{R}^{(n-1)\times (n-1)}$ can be written as

$$\widetilde{\mathbf{A}} = \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\mathsf{T}}$$

where $\widetilde{\mathbf{L}} \in \mathbb{R}^{(n-1)\times (n-1)}$ is a lower triangular matrix with real and positive diagonal entries. Consider the case of n such that

$$\mathbf{A} = \begin{bmatrix} \widetilde{\mathbf{A}} & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{L}} \widetilde{\mathbf{L}}^\top & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad \text{where } \mathbf{a} \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R}.$$

Let

$$\mathbf{L}_1 = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

We have

$$\mathbf{L}_{1}^{-1}\mathbf{A}\mathbf{L}_{1}^{-\top} = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\top} & \mathbf{a} \\ \mathbf{a}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}^{-\top} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \triangleq \mathbf{B} \in \mathbb{R}^{n \times n} \quad \text{where } \mathbf{b} \in \widetilde{\mathbf{L}}^{-1}\mathbf{a} \in \mathbb{R}^{n-1}.$$

Let

$$\mathbf{L}_2 = egin{bmatrix} \mathbf{I} & \mathbf{0} \ -\mathbf{b}^ op & 1 \end{bmatrix} \in \mathbb{R}^{n imes n}.$$

Then

$$\mathbf{L}_2^{-1}\mathbf{B}\mathbf{L}_2^{-\top} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{b}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top}\mathbf{b} \end{bmatrix}.$$

Since A is positive-definite, we have

$$\alpha - \mathbf{b}^{\mathsf{T}} \mathbf{b} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{L}}^{-\mathsf{T}} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{L}}^{-\mathsf{T}} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{A}}^{-1} \mathbf{a} > 0.$$

Let $\alpha - \mathbf{b}^{\top} \mathbf{b} = \lambda^2$, where $\lambda > 0$. Hence, we have

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top} \mathbf{b} \end{bmatrix} = \mathbf{L}_3 \mathbf{L}_3^{\top}, \quad \text{where } \mathbf{L}_3 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \lambda \end{bmatrix}$$

which means $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top} \in \mathbb{R}^{n \times n}$ where $\mathbf{L} = \mathbf{L}_1\mathbf{L}_2\mathbf{L}_3 \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with real and positive diagonal entries.

Theorem 1.4. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, the solution of minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \triangleq \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

is $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}$, where $\mathbf{y} \in \mathbb{R}^n$

Proof. The Hessian of $f(\mathbf{x})$ is $\mathbf{A}^{\top} \mathbf{A} \succeq \mathbf{0}$, which means $f(\mathbf{x})$ is convex. Let $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^{\top}$ be the condense SVD, where r is the rank of \mathbf{A} . Since $\nabla f(\mathbf{x}) = \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b}$, we only needs to solve the linear system

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0}.$$

We denote the solution of $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b} = \mathbf{0}$ be

$$\mathcal{X} = \left\{ \mathbf{x} : \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0} \right\}.$$

We can verify that $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}$ is the solution of the linear system because

$$\begin{split} &\mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}} - \mathbf{A}^{\top}\mathbf{b} \\ =& \mathbf{A}^{\top}\mathbf{A}\left(\mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}\right) - \mathbf{A}^{\top}\mathbf{b} \\ =& \mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\dagger} - \mathbf{I})\mathbf{b} + \mathbf{A}^{\top}\mathbf{A}\left(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A}\right)\mathbf{y} \\ =& \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}(\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top} - \mathbf{I})\mathbf{b} + \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\left(\mathbf{I} - \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\right)\mathbf{y} \\ =& \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}(\mathbf{U}_{r}\mathbf{U}_{r}^{\top} - \mathbf{I})\mathbf{b} + \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{2}\mathbf{V}_{r}^{\top}\left(\mathbf{I} - \mathbf{V}_{r}\mathbf{V}_{r}^{\top}\right)\mathbf{y} \\ =& \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}(\mathbf{U}_{r}^{\top} - \mathbf{U}_{r}^{\top})\mathbf{b} + \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{2}\left(\mathbf{V}_{r}^{\top} - \mathbf{V}_{r}^{\top}\right)\mathbf{y} \\ =& \mathbf{0}. \end{split}$$

Hence, we have $\mathcal{X}_1 \subseteq \mathcal{X}$, where $\mathcal{X}_1 = \{\mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}, \mathbf{y} \in \mathbb{R}^n \}$. We also have

$$\mathbf{A}^{ op} \mathbf{A} \mathbf{x} - \mathbf{A}^{ op} \mathbf{b} = \mathbf{0}$$
 $\iff \mathbf{V}_r \mathbf{\Sigma}_r^2 \mathbf{V}_r^{ op} \mathbf{x} - \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^{ op} \mathbf{b} = \mathbf{0}$
 $\iff \mathbf{\Sigma}_r^2 \mathbf{V}_r^{ op} \mathbf{x} - \mathbf{\Sigma}_r \mathbf{U}_r^{ op} \mathbf{b} = \mathbf{0}$
 $\iff \mathbf{V}_r^{ op} \mathbf{x} = \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{ op} \mathbf{b}$
 $\iff \mathbf{V}_r \mathbf{V}_r^{ op} \mathbf{x} = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{ op} \mathbf{b}$
 $\iff \mathbf{x} - (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{ op}) \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b}$
 $\iff \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{ op}) \mathbf{x}$

Hence, we have $\mathcal{X} = \{\mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top}) \mathbf{x}\} \subseteq \mathcal{X}_1$. In conclusion, we have $\mathcal{X} = \mathcal{X}_1$.

2 The Multivariate Normal Distributions

Statistical Independence If F(x,y) = F(x)G(y), we have

$$\begin{split} f(x,y) = & \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{\partial^2 F(x) G(y)}{\partial x \partial y} \\ = & \frac{\mathrm{d} F(x)}{\mathrm{d} x} \frac{\mathrm{d} G(y)}{\mathrm{d} y} \\ = & f(x) g(y). \end{split}$$

If f(x,y) = f(x)g(y), we have

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u)g(v) du dv$$
$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv = \int_{-\infty}^{x} f(u) du \int_{-\infty}^{y} g(v) dv$$
$$= F(x)G(y).$$

Uncorrelated does not means independent Let $X \sim U(-1,1)$ and

$$Y = \begin{cases} X, & X > 0 \\ -X, & X \le 0 \end{cases}$$

Show X and Y are uncorrelated but they are NOT independent.

Conditional Distributions Let $y_1 = y$, $y_2 = y + \Delta$. Then for a continuous density, the mean value theorem implies

$$\int_{y}^{y+\Delta y} g(v) \, \mathrm{d}v = g(y^*) \Delta y,$$

where $y \leq y^* \leq y + \Delta y$. We also have

$$\int_{y}^{y+\Delta y} f(u,v) \, \mathrm{d}v = f(u,y^*(u)) \Delta y,$$

where $y \leq y^*(u) \leq y + \Delta y$. Connecting above results to

$$\Pr\{x_1 \le X \le x_2 \mid y_1 \le Y \le y_2\} = \frac{\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(u, v) \, dv \, du}{\int_{y_1}^{y_2} g(v) \, dv}$$

with $y_1 = y$ and $y_2 = y + \Delta y$, we have

$$\Pr\{x_{1} \leq X \leq x_{2} \mid y \leq Y \leq y + \Delta y\}
= \frac{\int_{x_{1}}^{x_{2}} \int_{y}^{y + \Delta y} f(u, v) \, dv \, du}{\int_{y}^{y + \Delta y} g(v) \, dv}
= \frac{\int_{x_{1}}^{x_{2}} f(u, y^{*}(u)) \Delta y \, du}{g(y^{*}) \Delta y}
= \int_{x_{1}}^{x_{2}} \frac{f(u, y^{*}(u))}{g(y^{*})} \, du.$$
(1)

For y such that g(y) > 0, we define $\Pr\{x_1 \le X \le x_2 \mid Y = y\}$, the probability that X lies between x_1 and x_2 , given that Y is y, as the limit of (1) as $\Delta y \to 0$. Thus

$$\Pr\{x_1 \le X \le x_2 \mid Y = y\} = \int_{x_1}^{x_2} \frac{f(u, y)}{g(y)} du = \int_{x_1}^{x_2} f(u \mid y) du.$$
 (2)

Transform of Variables Let the density of X_1, \ldots, X_p be $f(x_1, \ldots, x_p)$. Consider the p real-valued functions $\mathbf{u} : \mathbb{R}^p \to \mathbb{R}^p$ such that

$$y_i = u_i(x_1, \dots, x_p), \qquad i = 1, \dots, p.$$

Assume the transformation \mathbf{u} from the x-space to the y-space is one-to-one, then the inverse transformation is \mathbf{u}^{-1} such that

$$x_i = u_i^{-1}(y_1, \dots, y_p), \qquad i = 1, \dots, p.$$

Let the random variables Y_1, \ldots, Y_p be defined by

$$Y_i = u_i(X_1, \dots, X_p), \qquad i = 1, \dots, p,$$

then we have

$$\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y} = \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}, \tag{3}$$

and

$$f(\mathbf{x}) = g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|), \tag{4}$$

where the Jacobin matrix is

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \cdots & \frac{\partial u_1}{\partial x_p} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \cdots & \frac{\partial u_2}{\partial x_p} \\ \vdots & \vdots & & \vdots \\ \frac{\partial u_p}{\partial x_1} & \frac{\partial u_p}{\partial x_2} & \cdots & \frac{\partial u_p}{\partial x_p} \end{bmatrix}.$$

A roughly proof for above results:

- If $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathcal{S} \subset \mathbb{R}^p$ is a measurable set, then $m(\mathbf{A}\mathcal{S}) = |\det(\mathbf{A})|m(\mathcal{S})$. Let $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$ where \mathbf{U} and \mathbf{V} are orthogonal and $\mathbf{\Sigma}$ is diagonal with nonnegative entries. Multiplying by \mathbf{V}^{\top} doesn't change the measure of \mathcal{S} . Multiplying by $\mathbf{\Sigma}$ scales along each axis, so the measure gets multiplied by $|\det(\mathbf{\Sigma})| = |\det(\mathbf{A})|$. Multiplying by \mathbf{U} doesn't change the measure.
- We consider the probability of \mathbf{x} in Ω and \mathbf{y} in $\mathbf{u}(\Omega)$; and partition Ω into $\{\Omega_i\}_i$. Then

$$\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y}$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{u}(\Omega_{i}))$$

$$\approx \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{u}(\mathbf{x}_{i}) + \mathbf{J}(\mathbf{x}_{i})(\Omega_{i} - \mathbf{x}_{i}))$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{J}(\mathbf{x}_{i})\Omega_{i})$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) \operatorname{abs}(|\mathbf{J}(\mathbf{x}_{i})|) m(\Omega_{i})$$

$$\approx \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}.$$

• Consider notation Ω such that

$$\int_{\Omega} = \int_{x_1}^{x_1'} \cdots \int_{x_p}^{x_p'}$$

where $x_1 \leq x_1', x_2 \leq x_2', \dots, x_p \leq x_p'$. Then the notation $\mathbf{u}(\Omega)$ in the integral should consider the order

$$\int_{\mathbf{u}(\Omega)} = \int_{\min\{u_1(x_1), u_1(x_1')\}}^{\max\{u_1(x_1), u_1(x_1')\}} \cdots \int_{\min\{u_p(x_p), u_p(x_p')\}}^{\max\{u_p(x_p), u_p(x_p')\}}$$

By using even tinier subsets Ω_i , the approximation would be even better so we see by a limiting argument that we actually obtain (3). On the other hand, we have

$$\int_{\Omega} f(\mathbf{x}) \mathrm{d}\mathbf{x} = \int_{\mathbf{u}(\Omega)} g(\mathbf{y}) \mathrm{d}\mathbf{y} = \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \mathrm{abs}(|\mathbf{J}(\mathbf{x})|) \mathrm{d}\mathbf{x}.$$

Since it holds for any Ω , then

$$f(\mathbf{x}) = g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|).$$

Lemma 2.1. If **Z** is an $m \times n$ random matrix, **D** is an $l \times m$ real matrix, **E** is an $n \times q$ real matrix, and **F** is an $l \times q$ real matrix, then

$$\mathbb{E}[\mathbf{DZE} + \mathbf{F}] = \mathbf{D}\mathbb{E}[\mathbf{Z}]\mathbf{E} + \mathbf{F}.$$

Proof. The element in the *i*-th row and *j*-th column of $\mathbb{E}[\mathbf{DZE} + \mathbf{F}]$ is

$$\mathbb{E}\left[\sum_{h,g} d_{ih} z_{hg} e_{gj} + f_{ij}\right] = \sum_{h,g} d_{ih} \mathbb{E}[z_{hg}] e_{gj} + f_{ij}$$

which is the element in the *i*-th row and *j*-th column of $\mathbf{D}\mathbb{E}[\mathbf{Z}]\mathbf{E} + \mathbf{F}$.

Lemma 2.2. If $\mathbf{y} = \mathbf{D}\mathbf{x} + \mathbf{f} \in \mathbb{R}^l$, where \mathbf{D} is an $l \times m$ real matrix, $\mathbf{x} \in \mathbb{R}^m$ is a random vector, then

$$\mathbb{E}[\mathbf{y}] = \mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f} \quad and \quad \mathrm{Cov}[\mathbf{y}] = \mathbf{D}\mathrm{Cov}[\mathbf{x}]\mathbf{D}^{\top}.$$

Proof. We have

$$\begin{split} &\operatorname{Cov}(\mathbf{y}) \\ =& \mathbb{E}\left[(\mathbf{y} - \mathbb{E}[\mathbf{y}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\top} \right] \\ =& \mathbb{E}\left[(\mathbf{D}\mathbf{x} + \mathbf{f} - \mathbb{E}[\mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}])(\mathbf{D}\mathbf{x} + \mathbf{f} - \mathbb{E}[\mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}])^{\top} \right] \\ =& \mathbb{E}[(\mathbf{D}\mathbf{x} - \mathbf{D}\mathbb{E}[\mathbf{x}])(\mathbf{D}\mathbf{x} - \mathbf{D}\mathbb{E}[\mathbf{x}])^{\top}] \\ =& \mathbb{E}[\mathbf{D}(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}\mathbf{D}^{\top}] \\ =& \mathbf{D}\mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}]\mathbf{D}^{\top} \\ =& \mathbf{D}\operatorname{Cov}[\mathbf{x}]\mathbf{D}^{\top}. \end{split}$$

The Density Function of Multivariate Normal Distribution Let the spectral decomposition of A be $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{\top}$, then we take $\mathbf{C} = \mathbf{U}\Lambda^{-1/2}$ and it satisfies $\mathbf{C}^{\top}\mathbf{A}\mathbf{C} = \mathbf{I}$ and \mathbf{C} is non-singular. Define $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{b})$, then

$$K^{-1} = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{b})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{b})\right) dx_{1} \dots dx_{p}$$

$$= \frac{1}{\det(\mathbf{C}^{-1})} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{A}^{\frac{1}{2}}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_{p}^{2}\right) \dots \exp\left(-\frac{1}{2} y_{1}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{A}^{\frac{1}{2}}) (2\pi)^{\frac{p}{2}}.$$

The relation $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{b})$ means $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b}$ and $\mathbb{E}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}] + \mathbf{b}$. The transformation implies the density function of \mathbf{y} is

$$g(\mathbf{y}) = \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} K \exp\left(-\frac{1}{2}(\mathbf{C}\mathbf{y} + \mathbf{b} - \mathbf{b})^{\top} \mathbf{A}(\mathbf{C}\mathbf{y} + \mathbf{b} - \mathbf{b})\right) dy_1 \dots dy_p$$

$$= \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} K \exp\left(-\frac{1}{2}\mathbf{y}^{\top} \mathbf{C}^{\top} \mathbf{A} \mathbf{C} \mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= K \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\mathbf{y}^{\top} \mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \frac{\det(\mathbf{C})}{\sqrt{(2\pi)^{p} \det(\mathbf{A})}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) dy_{1} \dots dy_{p}.$$

Then for each $i = 1, \ldots, p$, we have

$$\mathbb{E}[y_i] = \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} \sum_{j=1}^p y_j^2\right) dy_1 \dots dy_p$$

$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \prod_{j=1, i \neq j}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_j^2\right) dy_j$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i = 0.$$

Thus $\mathbb{E}[\mathbf{y}] = \mathbf{0}$ and $\mathbb{E}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}] + \mathbf{b} = \boldsymbol{\mu}$ implies $\mathbf{b} = \boldsymbol{\mu}$. The relation $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b}$ means $\text{Cov}[\mathbf{x}] = \mathbf{C}\text{Cov}[\mathbf{y}]\mathbf{C}^{\top} = \mathbf{C}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{C}^{\top}$. For each $i \neq j$, we have

$$\mathbb{E}[y_i y_j]$$

$$= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_i y_j \exp\left(-\frac{1}{2} \sum_{h=1}^p y_h^2\right) dy_1 \dots dy_p
= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_j \exp\left(-\frac{1}{2} y_j^2\right) dy_j\right) \prod_{j=1, h \neq i, j}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_h^2\right) dy_h
= 0$$

We also have

$$\mathbb{E}[y_i^2]$$

$$= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2} \sum_{h=1}^p y_h^2\right) dy_1 \dots dy_p$$

$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \prod_{i=1}^p \prod_{h \neq i} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_h^2\right) dy_h = 1.$$

Hence, it holds that

$$\mathbb{E}[(y_i - \mathbb{E}[y_i])(y_j - \mathbb{E}[y_j])] = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

which implies $\Sigma = \text{Cov}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{C}^{\top} = \mathbf{C}\mathbf{C}^{\top}$. Since $\mathbf{C}^{\top}\mathbf{A}\mathbf{C} = \mathbf{I}$, we obtain $\mathbf{A}^{-1} = \mathbf{C}\mathbf{C}^{\top}$ and $\Sigma = \mathbf{A}^{-1} \succ \mathbf{0}$.

Theorem 2.1. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$ and $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^\top)$ for non-singular $\mathbf{C} \in \mathbb{R}^{p \times p}$.

Proof. Let f(x) be the density of **x** such that

$$f(\mathbf{x}) = n(\mu \mid \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

and $g(\mathbf{y})$ be the density function of \mathbf{y} . The relation $\mathbf{x} = \mathbf{C}^{-1}\mathbf{y}$ implies $g(\mathbf{y}) = f(\mathbf{u}^{-1}(\mathbf{y}))|\det(\mathbf{J}^{-1}(\mathbf{y}))|$ with $\mathbf{u}(\mathbf{x}) = \mathbf{C}\mathbf{x}$, $\mathbf{u}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}\mathbf{y}$ and $\mathbf{J}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}$. Hence, we have

$$g(\mathbf{y}) = f(\mathbf{C}^{-1}\mathbf{y})|\det(\mathbf{C}^{-1})|$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{C}^{-1}\mathbf{y} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{C}^{-1}\mathbf{y} - \boldsymbol{\mu})\right) |\det(\mathbf{C}^{-1})|$$

$$= \frac{|\det(\mathbf{C}^{-1})|}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})^{\top} \mathbf{C}^{-\top} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{-1}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top})}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})^{\top} (\mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top})^{-1} (\mathbf{y} - \mathbf{C}\boldsymbol{\mu})\right)$$

$$= n(\mathbf{C}\boldsymbol{\mu} \mid \mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top}),$$

where we use the fact

$$\frac{|\det(\mathbf{C}^{-1})|}{\sqrt{\det(\mathbf{\Sigma})}} = \frac{1}{\sqrt{|\det(\mathbf{C})|^2\det(\mathbf{\Sigma})}} = \frac{1}{\sqrt{|\det(\mathbf{C})|\det(\mathbf{\Sigma})|\det(\mathbf{C}^\top)|}} = \frac{1}{\sqrt{|\det(\mathbf{C}\mathbf{\Sigma}\mathbf{C}^\top)|}}.$$

Theorem 2.2. If $\mathbf{x} = [x_1, \dots, x_p]^{\top}$ have a joint normal distribution. Let

1.
$$\mathbf{x}^{(1)} = [x_1, \dots, x_q]^{\top}$$

$$2. \ \mathbf{x}^{(2)} = [x_{q+1}, \dots, x_p]^{\top}.$$

for q < p. A necessary and sufficient condition for $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ to be independent is that each covariance of a variable from $\mathbf{x}^{(1)}$ and a variable from $\mathbf{x}^{(2)}$ is 0.

Proof. Let

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad ext{where } \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \ ext{and } \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

such that

$$\bullet \ \boldsymbol{\mu}^{(1)} = \mathbb{E}\left[\mathbf{x}^{(1)}\right],$$

$$\bullet \ \boldsymbol{\mu}^{(2)} = \mathbb{E}\left[\mathbf{x}^{(2)}\right],$$

$$ullet$$
 $oldsymbol{\Sigma}_{11} = \mathbb{E}\left[\left(\mathbf{x}^{(1)} - oldsymbol{\mu}^{(1)}
ight)\left(\mathbf{x}^{(1)} - oldsymbol{\mu}^{(1)}
ight)^{ op}
ight]$

$$\bullet \ \boldsymbol{\Sigma}_{22} = \mathbb{E}\left[\left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)\left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)^{\top}\right],$$

$$\bullet \ \boldsymbol{\Sigma}_{12} = \boldsymbol{\Sigma}_{21}^\top = \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)}\right)\left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)^\top\right].$$

Sufficiency (uncorrelated \Longrightarrow independent): The random vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are uncorrelated means

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{bmatrix}$$
 and $\Sigma^{-1} = \begin{bmatrix} \Sigma_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22}^{-1} \end{bmatrix}$.

The quadratic form of $n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$\begin{split} & (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \\ &= \left[(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} \quad (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} \right] \begin{bmatrix} \boldsymbol{\Sigma}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)} \\ \mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \end{bmatrix} \\ &= & (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} \boldsymbol{\Sigma}_{11}^{-1} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)}) + (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}) \end{split}$$

and we have $\det(\Sigma) = \det(\Sigma_{11}) \det(\Sigma_{22})$. Then

$$n(\boldsymbol{\mu} \mid \boldsymbol{\Sigma})$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{(2\pi)^q \det(\boldsymbol{\Sigma}_{11})}} \exp\left(-\frac{1}{2}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})\right)$$

$$\cdot \frac{1}{\sqrt{(2\pi)^{p-q} \det(\boldsymbol{\Sigma}_{22})}} \exp\left(-\frac{1}{2}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^\top \boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right)$$

$$= n(\boldsymbol{\mu}^{(1)} \mid \boldsymbol{\Sigma}^{(1)}) n(\boldsymbol{\mu}^{(2)} \mid \boldsymbol{\Sigma}^{(2)}).$$

Thus the marginal distribution of $\mathbf{x}^{(1)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}_{11})$ and the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$. We have prove two variables are independent.

Necessity (independent \Longrightarrow uncorrelated): Let $1 \le i \le q$ and $q+1 \le j \le p$. The Independence means

$$\sigma_{ij} = \mathbb{E}\left[(x_i - \mu_i)(x_j - \mu_j) \right]$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_i - \mu_i)(x_j - \mu_j) f(x_1, \dots, x_p) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_p$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_i - \mu_i)(x_j - \mu_j) f(x_1, \dots, x_q) f(x_{q+1}, \dots, x_p) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_p$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_i - \mu_i) f(x_1, \dots, x_q) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_q \cdot \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_j - \mu_j) f(x_{q+1}, \dots, x_p) \, \mathrm{d}x_{q+1} \dots \, \mathrm{d}x_p$$

$$= 0$$

Theorem 2.3. If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} \succ \mathbf{0}$, the marginal distribution of any set of components of \mathbf{x} is multivariate normal with means, variances, and covariances obtained by taking the corresponding components of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively.

Proof. We shall make a non-singular linear transformation ${\bf B}$ to subvectors

$$\mathbf{y}^{(1)} = \mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}$$
$$\mathbf{y}^{(2)} = \mathbf{x}^{(2)}$$

leading to the components of $\mathbf{y}^{(1)}$ are uncorrelated with the ones of $\mathbf{y}^{(2)}$. The matrix \mathbf{B} should satisfy

is

$$\begin{split} &= \mathbb{E}\left[\left(\mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}\right]\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \mathbb{E}\left[\mathbf{x}^{(1)}\right] + \mathbf{B}\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \mathbb{E}\left[\mathbf{x}^{(1)}\right]\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] + \mathbf{B} \cdot \mathbb{E}\left[\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= \mathbf{\Sigma}_{12} + \mathbf{B}\mathbf{\Sigma}_{22}. \end{split}$$

Thus $\mathbf{B} = -\Sigma_{12}\Sigma_{22}^{-1}$ and $\mathbf{y}^{(1)} = \mathbf{x}^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{x}^{(2)}$. The vector

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}$$

is a non-singular transform of \mathbf{x} , and therefore has a normal distribution with

$$\mathbb{E}\begin{bmatrix}\mathbf{y}^{(1)}\\\mathbf{y}^{(2)}\end{bmatrix} = \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\mathbb{E}[\mathbf{x}] = \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\begin{bmatrix}\boldsymbol{\mu}^{(1)}\\\boldsymbol{\mu}^{(2)}\end{bmatrix} = \begin{bmatrix}\boldsymbol{\mu}^{(1)} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}^{(2)}\\\boldsymbol{\mu}^{(2)}\end{bmatrix} = \begin{bmatrix}\boldsymbol{\nu}^{(1)}\\\boldsymbol{\nu}^{(2)}\end{bmatrix}$$

Since the transform is non-singular, we have

$$\operatorname{Cov} \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{I} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{0} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{I} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} \end{bmatrix}$$

Thus $\mathbf{y}^{(1)}$ and $\mathbf{y}^{(2)}$ are independent, which implies the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$. Because the numbering of the components of \mathbf{x} is arbitrary, we have proved this theorem.

Theorem 2.4. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^\top)$ for any $\mathbf{D} \in \mathbb{R}^{q \times p}$.

Proof. It is easy to verify $\mathbb{E}[\mathbf{z}] = \mathbf{D}\boldsymbol{\mu}$ and $\text{Cov}[\mathbf{z}] = \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top}$. Hence, we only need to show \mathbf{z} follows normal distribution.

Since $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, it can be presented as

$$x = Ay + \lambda$$

where $\mathbf{A} \in \mathbb{R}^{p \times r}$, r is the rank of Σ and $\mathbf{y} \sim \mathcal{N}_r(\nu, \mathbf{T})$ with non-singular $\mathbf{T} \succ \mathbf{0}$. We can write

$$z = DAy + D\lambda$$
,

where $\mathbf{D}\mathbf{A} \in \mathbb{R}^{q \times r}$. If the rank of $\mathbf{D}\mathbf{A}$ is r, the formal definition of a normal distribution that includes the singular distribution implies \mathbf{z} follows normal distribution.

If the rank of **DA** is less than r, say s, then

$$\mathbf{E} = \mathrm{Cov}[\mathbf{z}] = \mathbf{D}\mathbf{A}\mathrm{Cov}[\mathbf{y}]\mathbf{A}^{\top}\mathbf{D}^{\top} = \mathbf{D}\mathbf{A}\mathbf{T}\mathbf{A}^{\top}\mathbf{D}^{\top} \in \mathbb{R}^{r \times r}$$

is rank of s. There is a non-singular matrix

$$\mathbf{F} = egin{bmatrix} \mathbf{F}_1 \ \mathbf{F}_2 \end{bmatrix} \in \mathbb{R}^{r imes r}$$

with $\mathbf{F}_1 \in \mathbb{R}^{s \times r}$ and $\mathbf{F}_2 \in \mathbb{R}^{(r-s) \times r}$ such that

$$\mathbf{F}\mathbf{E}\mathbf{F}^\top = \begin{bmatrix} \mathbf{F}_1\mathbf{E}\mathbf{F}_1^\top & \mathbf{F}_1\mathbf{E}\mathbf{F}_2^\top \\ \mathbf{F}_2\mathbf{E}\mathbf{F}_1^\top & \mathbf{F}_2\mathbf{E}\mathbf{F}_2^\top \end{bmatrix} \begin{bmatrix} (\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^\top & (\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_2\mathbf{D}\mathbf{A})^\top \\ (\mathbf{F}_2\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^\top & (\mathbf{F}_2\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_2\mathbf{D}\mathbf{A})^\top \end{bmatrix} = \begin{bmatrix} \mathbf{I}_s & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Thus $(\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^{\top} = \mathbf{I}_s$ means $\mathbf{F}_1\mathbf{D}\mathbf{A}$ is of rank s and the non-singularity of \mathbf{T} means $\mathbf{F}_2\mathbf{D}\mathbf{A} = \mathbf{0}$. Hence, we have

$$\mathbf{F}\mathbf{z}' = \mathbf{F}(\mathbf{D}\mathbf{A}\mathbf{y} + \mathbf{D}\boldsymbol{\lambda}) = egin{bmatrix} \mathbf{F}_1 \\ \mathbf{F}_2 \end{bmatrix} \mathbf{D}\mathbf{A}\mathbf{y} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda} = egin{bmatrix} \mathbf{F}_1\mathbf{D}\mathbf{A}\mathbf{y} \\ \mathbf{F}_2\mathbf{D}\mathbf{A}\mathbf{y} \end{bmatrix} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda} = egin{bmatrix} \mathbf{F}_1\mathbf{D}\mathbf{A}\mathbf{y} \\ \mathbf{0} \end{bmatrix} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda}.$$

Let $\mathbf{u}_1 = \mathbf{F}_1 \mathbf{D} \mathbf{A} \mathbf{y} \in \mathbb{R}^s$. Since $\mathbf{F}_1 \mathbf{D} \mathbf{A} \in \mathbb{R}^{s \times r}$ is of rank $s \leq r$, we conclude \mathbf{u}_1 has a non-singular normal distribution. Let $\mathbf{F}^{-1} = [\mathbf{G}_1, \mathbf{G}_2]$, where $\mathbf{G}_1 \in \mathbb{R}^{r \times s}$ and $\mathbf{G}_2 \in \mathbb{R}^{(r-s) \times s}$. Then

$$\mathbf{z} = \mathbf{F}^{-1} \left(egin{bmatrix} \mathbf{u}_1 \ \mathbf{0} \end{bmatrix} + \mathbf{F} \mathbf{D} oldsymbol{\lambda}
ight) = \left[\mathbf{G}_1, \mathbf{G}_2
ight] egin{bmatrix} \mathbf{u}_1 \ \mathbf{0} \end{bmatrix} + \mathbf{D} oldsymbol{\lambda} = \mathbf{G}_1 \mathbf{u}_1 + \mathbf{D} oldsymbol{\lambda}$$

which is of the form of the formal definition of normal distribution.

Theorem 2.5. For $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and every vector $\boldsymbol{\alpha} \in \mathbb{R}^{(p-q)}$, we have

$$\operatorname{Var}\left[x_i^{(11.2)}\right] \leq \operatorname{Var}\left[x_i - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right],$$

for i = 1, ..., q, where $x_i^{(11.2)}$ and x_i are the i-th entry of $\mathbf{x}^{(11.2)}$ and the i-th entry of \mathbf{x} respectively. Proof. We denote

$$\mathbf{B} = egin{bmatrix} oldsymbol{eta}_{(1)}^{ op} \ dots \ oldsymbol{eta}_{(q)}^{ op} \end{bmatrix}.$$

Since $\mathbf{x}^{(11.2)}$ is uncorrelated with $\mathbf{x}^{(2)}$ and

$$\mathbb{E}[\mathbf{x}^{(11.2)}] = \mathbb{E}[\mathbf{x}^{(1)} - (\boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}))] = \mathbb{E}[\mathbf{x}^{(1)}] - \boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbb{E}[\mathbf{x}^{(2)}] - \boldsymbol{\mu}^{(2)}) = \mathbf{0},$$

we have

$$\begin{aligned} & \operatorname{Var} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} \big] \\ = & \mathbb{E} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} - \mathbb{E} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} \big] \big]^{2} \\ = & \mathbb{E} \big[x_{i} - \mu_{i} - \boldsymbol{\alpha}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \mathbb{E} \big[x_{i}^{(11.2)} + \boldsymbol{\beta}_{(i)}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) - \boldsymbol{\alpha}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \mathbb{E} \big[x_{i}^{(11.2)} - \mathbb{E} \big[x_{i}^{(11.2)} \big] + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2} + \mathbb{E} \big[\big(x_{i}^{(11.2)} - \mathbb{E} \big[x_{i}^{(11.2)} \big] \big) \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big] + \mathbb{E} \big[\big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big)^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2} + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \mathbb{E} \big[\big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big)^{\top} \big] \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big) \\ = & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2} + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \operatorname{Cov} \big(\mathbf{x}^{(2)} \big) \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big) \\ \geq & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2}, \end{aligned}$$

where the quadratic form attains its minimum of 0 at $\beta_{(i)} = \alpha$.

Remark 2.1. Observe that

$$\mathbb{E}[x_i] = \mu_i + \boldsymbol{\alpha}^{\top} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$$

Hence, the second equality in the proof means $\mu_i + \beta_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$ is the best linear predictor of x_i in the sense that of all functions of $\mathbf{x}^{(2)}$ of the form $\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)} + c$, the mean squared error of the above is a minimum.

Theorem 2.6. Under the setting of Theorem 2.5, we have

$$\operatorname{Corr}\left(x_{i}, \boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right) \geq \operatorname{Corr}\left(x_{i}, \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right).$$

Proof. Since the correlation between two variables is unchanged when either or both is multiplied by a positive constant, we can assume that

$$\mathbb{E}\left[oldsymbol{lpha}^{ op}\mathbf{x}^{(2)}
ight]^2 = \mathbb{E}\left[oldsymbol{eta}_{(i)}^{ op}\mathbf{x}^{(2)}
ight]^2.$$

Using Theorem 2.5, we have

$$\operatorname{Var}\left[x_{i}^{(11.2)}\right] \leq \operatorname{Var}\left[x_{i} - \boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]$$

$$\iff \mathbb{E}\left[x_{i} - \mu_{i} - \boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]^{2} \leq \mathbb{E}\left[x_{i} - \mu_{i} - \boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]^{2}$$

$$\iff \operatorname{Var}\left[x_{i}\right] - \mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right] + \operatorname{Var}\left[\boldsymbol{\beta}_{(i)}^{\top}\mathbf{x}^{(2)}\right]$$

$$\leq \operatorname{Var}\left[x_{i}\right] - \mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right] + \operatorname{Var}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]$$

$$\iff \frac{\mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right)}} \leq \frac{\mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}}$$

$$\iff \frac{\operatorname{Cov}\left[x_{i}, \boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}} \leq \frac{\mathbb{E}\left[x_{i}, \boldsymbol{\beta}_{(i)}^{\top}\mathbf{x}^{(2)}\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}}$$

Theorem 2.7. Let $\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$. If $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are independent and $g(\mathbf{x}) = g^{(1)}(\mathbf{x}^{(1)})g^{(2)}(\mathbf{x}^{(2)})$, its characteristic function is

$$\mathbb{E}[g(\mathbf{x})] = \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})]\mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$$

Proof. Let $f(\mathbf{x}) = f^{(1)}(\mathbf{x}^{(1)})f^{(2)}(\mathbf{x}^{(2)})$ be the density of \mathbf{x} . If g(x) is real-valued, we have

$$\mathbb{E}[g(\mathbf{x})] = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g(\mathbf{x}) f(\mathbf{x}) \, dx_1 \dots \, dx_p
= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g^{(1)}(\mathbf{x}^{(1)}) g^{(2)}(\mathbf{x}^{(2)}) f^{(1)}(\mathbf{x}^{(1)}) f^{(2)}(\mathbf{x}^{(2)}) \, dx_1 \dots \, dx_p
= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g^{(1)}(\mathbf{x}^{(1)}) f^{(1)}(\mathbf{x}^{(1)}) \, dx_1 \dots \, dx_q \cdot \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g^{(2)}(\mathbf{x}^{(2)}) f^{(2)}(\mathbf{x}^{(2)}) \, dx_{q+1} \dots \, dx_p
= \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})] \mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$$

If g(x) is complex-valued, then we have

$$\begin{split} &g(\mathbf{x}) \\ &= \left[g_1^{(1)}(\mathbf{x}^{(1)}) + \mathrm{i}\,g_2^{(1)}(\mathbf{x}^{(1)})\right] \left[g_1^{(2)}(\mathbf{x}^{(2)}) + \mathrm{i}\,g_2^{(2)}(\mathbf{x}^{(2)})\right] \\ &= g_1^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)}) - g_2^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + \mathrm{i}\left[g_1^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + g_2^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\right] \end{split}$$

and

$$\begin{split} & \mathbb{E}\big[g(\mathbf{x})\big] \\ = & \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\big] - \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\,\mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + g_2^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\big] \end{split}$$

$$\begin{split} &= & \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] - \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] \\ &+ \mathrm{i}\, \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] \\ &= & \Big[\mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \Big] \Big[\mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] \Big] \\ &= & \mathbb{E}\big[g^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g^{(2)}(\mathbf{x}^{(2)})\big]. \end{split}$$

Theorem 2.8. The characteristic function of \mathbf{x} distributed according to $\mathcal{N}_p(\mu, \Sigma)$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right).$$

for every $\mathbf{t} \in \mathbb{R}^p$.

Proof. For standard normal distribution $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$, we have

$$\phi_{0}(\mathbf{t}) = \mathbb{E}\left[\exp\left(i\mathbf{t}^{\top}\mathbf{y}\right)\right]$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{\exp(i\mathbf{t}^{\top}\mathbf{y})}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}\mathbf{y}^{\top}\mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \prod_{j=1}^{p} \left(\int_{-\infty}^{+\infty} \frac{\exp(it_{j}y_{j})}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}y_{j}^{2}\right) dy_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}(y_{j} - it_{j})^{2} - \frac{1}{2}t_{j}^{2}\right) dy_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\exp\left(-\frac{1}{2}t_{j}^{2}\right) \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}z_{j}^{2}\right) dz_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\exp\left(-\frac{1}{2}t_{j}^{2}\right)\right) = \exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{t}\right).$$

For the general case of $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we can write $\mathbf{x} = \mathbf{A}\mathbf{y} + \boldsymbol{\mu}$ such that $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$. Then we have

$$\begin{aligned} \phi(\mathbf{t}) &= \mathbb{E} \left[\exp(i \, \mathbf{t}^{\top} \mathbf{x}) \right] \\ &= \mathbb{E} \left[\exp(i \, \mathbf{t}^{\top} (\mathbf{A} \mathbf{y} + \boldsymbol{\mu})) \right] \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \mathbb{E} \left[\exp(i \, (\mathbf{A}^{\top} \mathbf{t})^{\top} \mathbf{y}) \right] \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \phi_0 \left(\mathbf{A}^{\top} \mathbf{t} \right) \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \exp\left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{t}\right) \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \exp\left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{X} \mathbf{A}^{\top} \mathbf{t}\right) \end{aligned}$$

Remark 2.2. Denote the characteristic function of $\mathbf{x} \in \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as $\phi_{\mathbf{x}}(\mathbf{t}) = \exp\left(i\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right)$. For $\mathbf{z} = \mathbf{D}\mathbf{x}$, the characteristic function of \mathbf{z} is

$$\phi_{\mathbf{z}}(\mathbf{t}) = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{z})\right] = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{D}\mathbf{x})\right] = \mathbb{E}\left[\exp(\mathrm{i}\,(\mathbf{D}^{\top}\mathbf{t})^{\top}\mathbf{x})\right] = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}(\mathbf{D}\boldsymbol{\mu}) - \frac{1}{2}\mathbf{t}^{\top}(\mathbf{D}^{\top}\boldsymbol{\Sigma}\mathbf{D})\mathbf{t}\right)$$

which implies $\mathbf{z} \sim \mathcal{N}(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}^{\top}\boldsymbol{\Sigma}\mathbf{D})$ and we prove Theorem 2.4.

Theorem 2.9. If every linear combination of the components of a random vector \mathbf{y} is normally distributed, then \mathbf{y} is normally distributed.

Proof. Let \mathbf{y} is a random vector with $\mathbb{E}[\mathbf{y}] = \boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{y}] = \boldsymbol{\Sigma}$. Suppose the univariate random variable $\mathbf{u}^{\mathsf{T}}\mathbf{y}$ (linear combination of \mathbf{y}) is normal distributed for any $\mathbf{u} \in \mathbb{R}^p$. The characteristic function of $\mathbf{u}^{\mathsf{T}}\mathbf{y}$ is

$$\begin{split} \phi_{\mathbf{u}^{\top}\mathbf{y}}(t) = & \mathbb{E}\left[\exp(\mathrm{i}\,t\mathbf{u}^{\top}\mathbf{y})\right] \\ = & \exp\left(\mathrm{i}\,t\mathbb{E}[\mathbf{u}^{\top}\mathbf{y}] - \frac{1}{2}t^{2}\mathrm{Cov}(\mathbf{u}^{\top}\mathbf{y})\right) \\ = & \exp\left(\mathrm{i}\,t\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}t^{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right). \end{split}$$

Set t = 1, then we have

$$\mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{u}^{\top}\mathbf{y})\right] = \exp\left(\mathrm{i}\,\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right).$$

which implies the characteristic function of y is

$$\phi_{\mathbf{y}}(\mathbf{u}) = \exp\left(\mathrm{i}\,\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right)$$

that is, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

3 Estimation of the Mean Vector and the Covariance

Theorem 3.1. If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with p < N, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Proof. The logarithm of the likelihood function is

$$\ln L = -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\boldsymbol{\Sigma}) \right) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}).$$

We have

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &+ \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &\geq \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}), \end{split}$$

where the equality holds when $\mu = \bar{\mathbf{x}}$. Hence, the estimator of means should be $\hat{\mu} = \bar{\mathbf{x}}$. Now, we only need to study how to maximize

$$-\frac{pN}{2}\ln 2\pi - \frac{N}{2}\ln \left(\det(\mathbf{\Sigma})\right) - \frac{1}{2}\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}).$$

We let $\Psi = \mathbf{\Sigma}^{-1}$ and

$$l(\boldsymbol{\Psi}) = -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}^{-1}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})$$

$$= -\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \right)$$

$$= -\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} \right),$$

then

$$\frac{\partial l(\boldsymbol{\Psi})}{\partial \boldsymbol{\Psi}} = \frac{\partial}{\partial \boldsymbol{\Psi}} \left(-\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} \right) \right) \\
= \frac{N}{2} \boldsymbol{\Psi}^{-1} - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

We can verify $l(\Psi)$ is concave on the domain of symmetric positive definite matrices, which means the maximum is taken by $\frac{\partial f(\Psi)}{\partial \Psi} = \mathbf{0}$, that is,

$$\mathbf{\Sigma} = \mathbf{\Psi}^{-1} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Lemma 3.1. If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$f(\mathbf{G}) = -N \ln \det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$$

with respect to positive definite matrices **G** exists, occurs at $\mathbf{G} = \frac{1}{N}\mathbf{D}$.

Proof. Let $\mathbf{D} = \mathbf{E}\mathbf{E}^{\top}$ and $\mathbf{E}^{\top}\mathbf{G}^{-1}\mathbf{E} = \mathbf{H}$. Then we have $\mathbf{G} = \mathbf{E}\mathbf{H}^{-1}\mathbf{E}^{\top}$,

$$\det(\mathbf{G}) = \det(\mathbf{E}) \det(\mathbf{H}^{-1}) \det(\mathbf{E}^{\top}) = \det(\mathbf{E}\mathbf{E}^{\top}) \det(\mathbf{H}^{-1}) = \frac{\det(\mathbf{D})}{\det(\mathbf{H})}$$

and

$$\mathrm{tr}(\mathbf{G}^{-1}\mathbf{D}) = \mathrm{tr}(\mathbf{G}^{-1}\mathbf{E}\mathbf{E}^\top) = \mathrm{tr}(\mathbf{E}^\top\mathbf{G}^{-1}\mathbf{E}) = \mathrm{tr}(\mathbf{H}).$$

Then the function to be maximized (with respect to positive definite \mathbf{H}) is

$$q(\mathbf{H}) = -N \ln \det(\mathbf{D}) + N \ln \det(\mathbf{H}) - \operatorname{tr}(\mathbf{H}).$$

Let $\mathbf{H} = \mathbf{T}\mathbf{T}^{\top}$ here \mathbf{L} is lower triangular. Then the maximum of

$$g(\mathbf{H}) = -N \ln \det(\mathbf{D}) + N \ln \det(\mathbf{H}) - \operatorname{tr}(\mathbf{H})$$
$$= -N \ln \det(\mathbf{D}) + N \ln (\det(\mathbf{T}))^{2} - \operatorname{tr}(\mathbf{T}\mathbf{T}^{\top})$$

$$= -N \ln \det(\mathbf{D}) + N \ln \left(\prod_{i=1}^{p} t_{ii}^{2} \right) - \sum_{i \ge j} t_{ij}^{2}$$

$$= -N \ln \det(\mathbf{D}) + \sum_{i=1}^{p} \left(N \ln(t_{ii}^{2}) - t_{ii}^{2} \right) - \sum_{i > j} t_{ij}^{2}$$

occurs at $t_{ii}^2 = N$ and $t_{ij} = 0$ for $i \neq j$; that is $\mathbf{H} = N\mathbf{I}$. Then

$$\mathbf{G} = \frac{1}{N}\mathbf{D}.$$

Theorem 3.2. Let $f(\theta)$ be a real-valued function defined on a set S and let ϕ be a single-valued function, with a single-valued inverse, on S to a set S^* . Let

$$g(\theta^*) = f(\phi^{-1}(\theta^*)).$$

Then if $f(\theta)$ attains a maximum at $\theta = \theta_0$, then $g(\theta^*)$ attains a maximum at $\theta^* = \theta_0^* = \phi(\theta_0)$. If the maximum of $f(\theta)$ at θ_0 is unique, so is the maximum of $g(\theta^*)$ at θ_0^* .

Proof. By hypothesis $f(\theta_0) \geq f(\theta)$ for all $\theta \in \mathcal{S}$. Then for any $\theta^* \in \mathcal{S}^*$, we have

$$g(\theta^*) = f(\phi^{-1}(\theta^*)) = f(\theta) \le f(\theta_0) = g(\phi(\theta_0)) = g(\theta_0^*).$$

Thus $g(\theta^*)$ attains a maximum at $\theta_0^* = \phi(\theta_0)$. If the maximum of $f(\theta)$ at θ_0 is unique, there is strict inequality above for $\theta \neq \theta_0$, and the maximum of $g(\theta^*)$ is unique.

Corollary 3.1. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ constitutes a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let $\rho_{ij} = \sigma_{ij}/(\sigma_i \sigma_j)$. Then the maximum likelihood estimator of ρ_{ij} is

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}$$

Proof. The set of parameters $\mu_i = \mu_i$, $\sigma_i^2 = \sigma_{ii}$ and $\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}$ is a one-to-one transform of the set of parameters μ and Σ . Then the estimator of ρ is

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}.$$

Theorem 3.3. Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, where $\mathbf{x}_{\alpha} \sim \mathcal{N}_p(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma})$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$\mathbf{y}_{lpha} = \sum_{eta=1}^{N} c_{lphaeta} \mathbf{x}_{eta} \sim \mathcal{N}_p(oldsymbol{
u}_{lpha}, oldsymbol{\Sigma}),$$

where $\nu_{\alpha} = \sum_{\beta=1}^{N} c_{\alpha\beta} \mu_{\beta}$ for $\alpha = 1, ..., N$ and $\mathbf{y}_{1}, ..., \mathbf{y}_{N}$ are independent.

Proof. The set of vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ have a joint normal distribution, because the entire set of components is a set of linear combinations of the components of $\mathbf{x}_1, \dots, \mathbf{x}_N$, which have a joint normal distribution. The expected value of \mathbf{y}_{α} is

$$\mathbb{E}[\mathbf{y}_{\alpha}] = \mathbb{E}\left[\sum_{\beta=1}^{N} c_{\alpha\beta} \mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} c_{\alpha\beta} \mathbb{E}\left[\mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} c_{\alpha\beta} \boldsymbol{\mu}_{\beta}.$$

The covariance matrix between \mathbf{y}_{α} and \mathbf{y}_{γ} is

$$\begin{aligned} &\operatorname{Cov}[\mathbf{y}_{\alpha}, \mathbf{y}_{\gamma}] \\ &= \mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu}_{\alpha})(\mathbf{y}_{\gamma} - \boldsymbol{\nu}_{\gamma})^{\top}] \\ &= \mathbb{E}\left[\left(\sum_{\beta=1}^{N} c_{\alpha\beta}(\mathbf{x}_{\beta} - \boldsymbol{\mu}_{\beta})\right) \left(\sum_{\xi=1}^{N} c_{\gamma\xi}(\mathbf{x}_{\xi} - \boldsymbol{\mu}_{\xi})^{\top}\right)\right] \\ &= \sum_{\beta=1}^{N} \sum_{\xi=1}^{N} c_{\alpha\beta} c_{\gamma\xi} \mathbb{E}\left[(\mathbf{x}_{\beta} - \boldsymbol{\mu}_{\beta})(\mathbf{x}_{\xi} - \boldsymbol{\mu}_{\xi})^{\top}\right] \\ &= \sum_{\beta=1}^{N} \sum_{\xi=1}^{N} c_{\alpha\beta} c_{\gamma\xi} \delta_{\beta\xi} \boldsymbol{\Sigma} \\ &= \sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} \boldsymbol{\Sigma}, \end{aligned}$$

where

$$\delta_{\beta\xi} = \begin{cases} 1, & \text{if } \beta = \xi, \\ 0, & \text{if } \beta \neq \xi. \end{cases}$$

If $\alpha = \gamma$, we have $\sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} = \sum_{\beta=1}^{N} c_{\alpha\beta} c_{\alpha\beta} = 1$; otherwise, we have $\sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} = 0$. Hence, we have

$$Cov[\mathbf{y}_{\alpha}, \mathbf{y}_{\gamma}] = \sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} \mathbf{\Sigma} = \delta_{\alpha\gamma} \mathbf{\Sigma}.$$

The set of vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ have a joint normal distribution, we have proved $\text{Cov}[\mathbf{y}_{\alpha}] = \mathbf{\Sigma}$ for $\alpha = 1, \dots, N$ and $\mathbf{y}_1, \dots, \mathbf{y}_N$ are independent.

Lemma 3.2. If

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{p2} & \dots & c_{pp} \end{bmatrix} = \begin{bmatrix} c_1^\top \\ c_2^\top \\ \vdots \\ c_p^\top \end{bmatrix} \in \mathbb{R}^{p \times p}$$

is orthogonal, then $\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} = \sum_{\beta=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}$ where $\mathbf{y}_{\alpha} = \sum_{\beta=1}^{N} c_{\alpha\beta} \mathbf{x}_{\alpha}$ for $\alpha = 1, \dots, N$.

Proof. Let

$$\mathbf{X} = egin{bmatrix} \mathbf{x}_1^{ op} \ \mathbf{x}_2^{ op} \ dots \ \mathbf{x}_p^{ op} \end{bmatrix} \in \mathbb{R}^{p imes p}.$$

We have

$$\sum_{\alpha=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top} = \sum_{\beta=1}^{N} \mathbf{X}^{\top} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}^{\top} \mathbf{X} = \mathbf{X}^{\top} \left(\sum_{\beta=1}^{N} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}^{\top} \right) \mathbf{X} = \mathbf{X}^{\top} \left(\mathbf{C}^{\top} \mathbf{C} \right) \mathbf{X} = \mathbf{X}^{\top} \mathbf{X} = \sum_{\beta=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}.$$

Remark 3.1. We can also write $\mathbf{y}_{\alpha} = \mathbf{X}^{\top} \mathbf{c}_{\alpha}$ and $\mathbf{Y} = \mathbf{C} \mathbf{X}$ by defining \mathbf{Y} like \mathbf{X} .

Theorem 3.4. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be independent, each distributed according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then the mean of the sample

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}$$

is distributed according to $\mathcal{N}(\mu, \frac{1}{N}\Sigma)$ and independent of

$$\hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Additionally, we have $N\hat{\Sigma} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ for $\alpha = 1, ..., N$, and $\mathbf{z}_{1}, ..., \mathbf{z}_{N-1}$ are independent.

Proof. There exists an orthogonal matrix $\mathbf{B} \in \mathbb{R}^{p \times p}$ such that

$$\mathbf{B} = \begin{bmatrix} \times & \times & \dots & \times \\ \times & \times & \dots & \times \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \frac{1}{\sqrt{N}} & \dots & \frac{1}{\sqrt{N}} \end{bmatrix}$$

Let $\mathbf{A} = N\hat{\mathbf{\Sigma}}$ and let $\mathbf{z}_{\alpha} = \sum_{\beta=1}^{N} b_{\alpha\beta} \mathbf{x}_{\beta}$, then

$$\mathbf{z}_N = \sum_{\beta=1}^N b_{N\beta} \mathbf{x}_\beta = \sum_{\beta=1}^N \frac{\mathbf{x}_\beta}{\sqrt{N}} = \sqrt{N} \bar{\mathbf{x}}$$

By Lemma 3.2, we have

$$\mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \bar{\mathbf{x}}^{\top} - \sum_{\alpha=1}^{N} \bar{\mathbf{x}} \mathbf{x}_{\alpha}^{\top} + \sum_{\alpha=1}^{N} \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} - \mathbf{z}_{N} \mathbf{z}_{N}^{\top}$$

$$= \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

Lemma 3.2 also states \mathbf{z}_N is independent of $\mathbf{z}_1, \dots, \mathbf{z}_{N-1}$, then the mean vector $\bar{\mathbf{x}} = \frac{1}{\sqrt{N}} \mathbf{z}_N$ is independent of \mathbf{A} and $\hat{\mathbf{\Sigma}} = \frac{1}{N} \mathbf{A}$. Since $\bar{\mathbf{x}} = \frac{1}{\sqrt{N}} \mathbf{z}_n = \frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} b_{N\beta} \mathbf{x}_{\beta}$, Theorem 3.3 implies

$$\mathbb{E}[\bar{\mathbf{x}}] = \mathbb{E}\left[\frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} b_{N\beta} \mathbf{x}_{\beta}\right] = \frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} \frac{1}{\sqrt{N}} \boldsymbol{\mu} = \boldsymbol{\mu}, \quad \text{and} \quad \operatorname{Cov}[\bar{\mathbf{x}}] = \frac{1}{N} \operatorname{Cov}\left[\sum_{\beta=1}^{N} b_{N\beta} \mathbf{x}_{\beta}\right] = \frac{1}{N} \boldsymbol{\Sigma}.$$

Hence, we have $\bar{\mathbf{x}} \sim \mathcal{N}\left(\boldsymbol{\mu}, \frac{1}{N}\boldsymbol{\Sigma}\right)$. For $\alpha = 1, \dots, N-1$, we also have

$$\mathbb{E}[\mathbf{z}_{\alpha}] = \mathbb{E}\left[\sum_{\beta=1}^{N} b_{\alpha\beta} \mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} b_{\alpha\beta} \mathbb{E}\left[\mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} b_{\alpha\beta} \boldsymbol{\mu} = \sum_{\beta=1}^{N} b_{\alpha\beta} b_{N\beta} \sqrt{N} \boldsymbol{\mu} = \mathbf{0}.$$

and Theorem 3.3 implies $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.

Theorem 3.5. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be p-dimensional random vector and they are independent. Denote

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

If $\mathbb{E}[\mathbf{x}_1] = \cdots = \mathbb{E}[\mathbf{x}_N] = \boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{x}_1] = \cdots = \operatorname{Cov}[\mathbf{x}_N] = \boldsymbol{\Sigma}$, then we have

$$\mathbb{E}\big[\hat{\mathbf{\Sigma}}\big] = \frac{N-1}{N}\mathbf{\Sigma}.$$

Proof. We have

$$\boldsymbol{\Sigma} = \operatorname{Cov}[\mathbf{x}_{\alpha}] = \mathbb{E}\left[(\mathbf{x}_{\alpha} - \boldsymbol{\mu})(\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top}\right] = \mathbb{E}\left[\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top} - \mathbf{x}_{\alpha}\boldsymbol{\mu}^{\top} - \boldsymbol{\mu}\mathbf{x}_{\alpha}^{\top} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top}\right] = \mathbb{E}\left[\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top}\right] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

and

$$\frac{1}{n}\Sigma = \text{Cov}[\bar{\mathbf{x}}] = \text{Cov}[(\bar{\mathbf{x}} - \mathbb{E}[\bar{\mathbf{x}}])(\bar{\mathbf{x}} - \mathbb{E}[\bar{\mathbf{x}}])^{\top}] = \text{Cov}[\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}] - \mu\mu^{\top}.$$

Hence, we obtain

$$\mathbb{E}[\hat{\boldsymbol{\Sigma}}] = \mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}\right]$$

$$= \mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \bar{\mathbf{x}} \mathbf{x}_{\alpha}^{\top} - \mathbf{x}_{\alpha} \bar{\mathbf{x}}^{\top} + \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top})\right]$$

$$= \mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}\right]$$

$$= \mathbb{E}\left[\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}\right] - \mathbb{E}\left[\bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}\right]$$

$$= \mathbf{\Sigma} + \mu \mu^{\top} - \left(\frac{1}{n} \mathbf{\Sigma} + \mu \mu^{\top}\right)$$

$$= \frac{n-1}{n} \mathbf{\Sigma}.$$

Theorem 3.6. Using the notation of Theorem 3.1, if N > p, the probability is 1 of drawing a sample so that

$$\hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

is positive definite.

Proof. The proof of Theorem 3.1 shows that $\mathbf{A} = \widetilde{\mathbf{Z}}^{\top} \widetilde{\mathbf{Z}}$ where

$$\widetilde{\mathbf{Z}} = \begin{bmatrix} \mathbf{z}_1^{\top} \\ \vdots \\ \mathbf{z}_{N-1}^{\top} \end{bmatrix} \in \mathbb{R}^{(N-1) imes p},$$

which means $\operatorname{rank}(\hat{\Sigma}) = \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{Z})$. Then the probability is 1 of $\hat{\Sigma} \succ \mathbf{0}$ is equivalent to

$$\Pr\left(\operatorname{rank}(\widetilde{\mathbf{Z}}) = p\right) = 1.$$

Since appending rows at the end of $\widetilde{\mathbf{Z}}$ will not increase its rank, we only needs to consider the case of N = p + 1 $(N - 1 = p \text{ and } \widetilde{\mathbf{Z}} \in \mathbb{R}^{p \times p})$. We have

 $\begin{aligned} & \Pr(\mathbf{z}_1, \dots, \mathbf{z}_p \text{ are linearly dependent}) \\ & \leq \sum_{i=1}^p \Pr\left(\mathbf{z}_i \in \operatorname{span}\{\mathbf{z}_1, \dots, \mathbf{z}_{i-1}, \mathbf{z}_i, \dots, \mathbf{z}_p\}\right) \\ & = p \Pr\left(\mathbf{z}_1 \in \operatorname{span}\{\mathbf{z}_2, \dots, \mathbf{z}_p\}\right) \\ & = p \mathbb{E}\left[\Pr\left(\mathbf{z}_1 \in \operatorname{span}\{\mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_p\} \mid \mathbf{z}_2 = \boldsymbol{\alpha}_2, \dots, \mathbf{z}_p = \boldsymbol{\alpha}_p\right)\right] \\ & \leq p \mathbb{E}\left[\Pr\left(\text{there exists non-zero } \boldsymbol{\alpha} \in \mathbb{R}^p \text{ such that } \boldsymbol{\alpha}^\top \mathbf{z}_1 = \mathbf{0} \mid \mathbf{z}_2 = \boldsymbol{\alpha}_2, \dots, \mathbf{z}_p = \boldsymbol{\alpha}_p\right)\right] \\ & = p \mathbb{E}[0] = 0 \end{aligned}$

The second equality is obtained as follows

$$\Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\}\right)$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\}, \mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right) d\boldsymbol{\alpha}_{2} \dots d\boldsymbol{\alpha}_{p}$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\} \mid \mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right) \Pr\left(\mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right) d\boldsymbol{\alpha}_{2} \dots d\boldsymbol{\alpha}_{p}$$

$$= \mathbb{E}\left[\Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\} \mid \mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right)\right]$$

The second inequality is due to

$$\mathbf{z}_1 \in \operatorname{span}\{\mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_p\}$$

$$\Longrightarrow \text{there exists } \boldsymbol{\beta} \in \mathbb{R}^{p-1} \text{ such that } \mathbf{z}_1 = [\mathbf{z}_2, \dots, \mathbf{z}_p] \boldsymbol{\beta}$$

$$\Longrightarrow \text{there exists } \boldsymbol{\beta} \in \mathbb{R}^{p-1} \text{ and non-zero } \boldsymbol{\alpha} \in \mathbb{R}^p \text{ such that } \boldsymbol{\alpha}^\top \mathbf{z}_1 = \boldsymbol{\alpha}^\top [\mathbf{z}_2, \dots, \mathbf{z}_p] \boldsymbol{\beta} = 0$$

$$\text{(the columns of } [\mathbf{z}_2, \dots, \mathbf{z}_p]^\top \in \mathbb{R}^{(p-1) \times p} \text{ are linearly dependent means}$$

$$\text{there exists } \boldsymbol{\alpha} \neq \mathbf{0} \text{ such that } [\mathbf{z}_2, \dots, \mathbf{z}_p]^\top \boldsymbol{\alpha} = \mathbf{0}).$$

The third equality is due to $\boldsymbol{\alpha}^{\top} \mathbf{z}_1 \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma} \boldsymbol{\alpha})$ and $\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma} \boldsymbol{\alpha} > \mathbf{0}$ for any nonzero $\boldsymbol{\alpha}$ since $\boldsymbol{\Sigma} \succ \mathbf{0}$.

Theorem 3.7. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent observations from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then

- 1. $\bar{\mathbf{x}}$ and \mathbf{S} are sufficient for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$;
- 2. if $\boldsymbol{\mu}$ is given, $\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} \boldsymbol{\mu}) (\mathbf{x}_{\alpha} \boldsymbol{\mu})^{\top}$ is sufficient for $\boldsymbol{\Sigma}$;
- 3. if Σ is given, $\bar{\mathbf{x}}$ is sufficient for $\boldsymbol{\mu}$;

where

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \mathbf{S} = \frac{1}{N-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Proof. The density of $\mathbf{x}_1, \dots, \mathbf{x}_N$ is

$$\prod_{\alpha=1}^{M} n(\mathbf{x}_{\alpha} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\begin{split} &= (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \operatorname{tr} \left(\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right) \right) \\ &= (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right) \right) \\ &= (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \left(N(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + (N - 1) \operatorname{tr} \left(\boldsymbol{\Sigma}^{-1} \mathbf{S} \right) \right) \right) \end{split}$$

where the last step is due to

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &+ \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &= N(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + (N - 1) \mathrm{tr} \left(\boldsymbol{\Sigma}^{-1} \mathbf{S} \right). \end{split}$$

Hence, the density is a function of $\mathbf{t}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \{\bar{\mathbf{x}}, \mathbf{S}\}$ and $\boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$. If $\boldsymbol{\mu}$ is given, it is a function of $\mathbf{t}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top}$ and $\boldsymbol{\theta} = \boldsymbol{\Sigma}$. If $\boldsymbol{\Sigma}$ is given, it is a function of $\mathbf{t}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \bar{\mathbf{x}}$ (since \mathbf{S} can be viewed a function of \mathbf{t} for given)and $\boldsymbol{\theta} = \boldsymbol{\mu}$.

Theorem 3.8 (Theorem 3.4.2, Page 84). The sufficient set of statistics $\bar{\mathbf{x}}$, \mathbf{S} is complete for $\boldsymbol{\mu}$, $\boldsymbol{\Sigma}$ when the sample is drawn from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Proof. We introduce $\mathbf{z}_1, \dots, \mathbf{z}_N$ by following the proof of Theorem 3.4. For any function $g(\bar{\mathbf{x}}, n\mathbf{S})$, we have $0 \equiv \mathbb{E}[g(\bar{\mathbf{x}}, n\mathbf{S})]$

$$= \int \cdots \int K(\det(\mathbf{\Sigma}))^{-\frac{N}{2}} g\left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \exp\left(-\frac{1}{2} \left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{\top} \mathbf{\Sigma}^{-1} \mathbf{z}_{\alpha} + N(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu})\right)\right) d\mathbf{z}_{1} \dots d\mathbf{z}_{N-1} d\bar{\mathbf{x}}.$$

for any $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, where $K = \sqrt{N}(2\pi)^{-\frac{1}{2}pN}$. Let $\boldsymbol{\Sigma}^{-1} = \mathbf{I} - 2\boldsymbol{\Omega}$ such that symmetric $\boldsymbol{\Omega}$ and $\mathbf{I} - 2\boldsymbol{\Omega} \succ 0$. Let $\boldsymbol{\mu} = (\mathbf{I} - 2\boldsymbol{\Omega})^{-1}\mathbf{t} = \boldsymbol{\Sigma}\mathbf{t}$. Then, we have

$$0$$

$$\equiv \int \cdots \int K(\det(\mathbf{\Sigma}))^{-\frac{N}{2}} g\left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right)$$

$$\exp\left(-\frac{1}{2} \left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{\top} \mathbf{\Sigma}^{-1} \mathbf{z}_{\alpha} + N \bar{\mathbf{x}}^{\top} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}} - 2N \boldsymbol{\mu}^{\top} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}} + N \boldsymbol{\mu}^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) d\mathbf{z}_{1} \dots d\mathbf{z}_{N-1} d\bar{\mathbf{x}}$$

$$= \int \cdots \int K(\det(\mathbf{\Sigma}))^{-\frac{N}{2}} g\left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right)$$

$$\exp\left(-\frac{1}{2} \left(\sum_{\alpha=1}^{N-1} \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) + N \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}\right) - 2N \bar{\mathbf{t}}^{\top} \bar{\mathbf{x}} + N \mathbf{t}^{\top} \mathbf{\Sigma} \mathbf{t}\right)\right) d\mathbf{z}_{1} \dots d\mathbf{z}_{N-1} d\bar{\mathbf{x}}$$

$$= \int \cdots \int K(\det(\mathbf{I} - 2\mathbf{\Omega}))^{\frac{N}{2}} g\left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right)$$

$$\exp\left(-\frac{1}{2} \left(\operatorname{tr}\left((\mathbf{I} - 2\mathbf{\Omega}) \left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}\right)\right) - 2N \bar{\mathbf{t}}^{\top} \bar{\mathbf{x}} + N \mathbf{t}^{\top} (\mathbf{I} - 2\mathbf{\Omega})^{-1} \mathbf{t}\right)\right) d\mathbf{z}_{1} \dots d\mathbf{z}_{N-1} d\bar{\mathbf{x}}$$

$$= \left(\det(\mathbf{I} - 2\mathbf{\Omega})\right)^{\frac{N}{2}} \exp\left(-\frac{1}{2}N\mathbf{t}^{\top}(\mathbf{I} - 2\mathbf{\Omega})^{-1}\mathbf{t}\right)$$

$$\int \cdots \int g\left(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}\right) \exp\left(\operatorname{tr}(\mathbf{\Omega}\mathbf{B}) + \mathbf{t}^{\top}(N\bar{\mathbf{x}})\right) n\left(\bar{\mathbf{x}} \mid \mathbf{0}, \frac{1}{N}\mathbf{I}\right) \prod_{\alpha=1}^{N-1} n(\mathbf{z}_{\alpha} \mid \mathbf{0}, \mathbf{I}) d\mathbf{z}_{1} \dots d\mathbf{z}_{N-1} d\bar{\mathbf{x}}$$

$$= \left(\det(\mathbf{I} - 2\mathbf{\Omega})\right)^{\frac{N}{2}} \exp\left(-\frac{1}{2}N\mathbf{t}^{\top}(\mathbf{I} - 2\mathbf{\Omega})^{-1}\mathbf{t}\right)$$

$$\int g\left(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}\right) \exp\left(\operatorname{tr}(\mathbf{\Omega}\mathbf{B}) + \mathbf{t}^{\top}(N\bar{\mathbf{x}})\right) n\left(\bar{\mathbf{x}} \mid \mathbf{0}, \frac{1}{N}\mathbf{I}\right) d\bar{\mathbf{x}}$$

$$= \left(\det(\mathbf{I} - 2\mathbf{\Omega})\right)^{\frac{N}{2}} \exp\left(-\frac{1}{2}N\mathbf{t}^{\top}(\mathbf{I} - 2\mathbf{\Omega})^{-1}\mathbf{t}\right) \mathbb{E}\left[g\left(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}\right) \exp\left(\operatorname{tr}(\mathbf{\Omega}\mathbf{B}) + \mathbf{t}^{\top}(N\bar{\mathbf{x}})\right)\right].$$

where $\mathbf{B} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$. Thus

$$0 \equiv \mathbb{E} \left[g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\operatorname{tr}(\mathbf{\Omega} \mathbf{B}) + \mathbf{t}^{\top}(N \bar{\mathbf{x}}) \right) \right]$$
$$= \iint g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\operatorname{tr}(\mathbf{\Omega} \mathbf{B}) + \mathbf{t}^{\top}(N \bar{\mathbf{x}}) \right) h(\bar{\mathbf{x}}, \mathbf{B}) d\bar{\mathbf{x}} d\mathbf{B}$$

where $h(\bar{\mathbf{x}}, \mathbf{B})$ is the joint density of $\bar{\mathbf{x}}$ and \mathbf{B} . Consider that

$$\iint g\left(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}\right) \exp\left(\operatorname{tr}(\mathbf{\Omega}\mathbf{B}) + \mathbf{t}^{\top}(N\bar{\mathbf{x}})\right) h(\bar{\mathbf{x}}, \mathbf{B}) d\bar{\mathbf{x}} d\mathbf{B}$$

is the Laplace transform of $g(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}) h(\bar{\mathbf{x}}, \mathbf{B})$, then we have $g(\bar{\mathbf{x}}, n\mathbf{S}) = 0$ for almost everywhere. \square

Cramer-Rao Inequality We first give some lemmas. We denote the density of observation with parameter θ by $f(\mathbf{x}, \theta)$ and

$$\mathbf{s} = \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}.$$

where g is the density on N samples and $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}.$

Lemma 3.3. We have $\mathbb{E}[\mathbf{s}] = \mathbf{0}$.

Proof. We have

$$\mathbb{E}[s_j] = \int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_j} d\mathbf{X}$$

$$= \int g(\mathbf{X}, \boldsymbol{\theta}) \frac{1}{f(\mathbf{X}, \boldsymbol{\theta})} \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_j} d\mathbf{X}$$

$$= \int \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_j} d\mathbf{X}$$

$$= \frac{\partial}{\partial \theta_j} \int g(\mathbf{X}, \boldsymbol{\theta}) d\mathbf{X}$$

$$= \frac{\partial}{\partial \theta_j} 1 = 0.$$

Remark 3.2. Similarly, we also have

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0}.$$

Lemma 3.4. For unbiased estimator \mathbf{t} of $\boldsymbol{\theta}$, we have $Cov[\mathbf{t}, \mathbf{s}] = \mathbf{I}$.

Proof. We have

$$Cov[t_{j}s_{k}]$$

$$= \int (t_{j} - \theta_{j}) \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{k}} f(\mathbf{X}, \boldsymbol{\theta}) d\mathbf{X}$$

$$= \int (t_{j} - \theta_{j}) \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{k}} d\mathbf{X}$$

$$= -\int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial (t_{j} - \theta_{j})}{\partial \theta_{k}} d\mathbf{X} = \begin{cases} 1, & j = k, \\ 0, & j \neq k, \end{cases}$$

where the last line use the integrate by part

$$\int (t_j - \theta_j) \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_k} d\theta_k$$

$$= \int (t_j - \theta_j) dg(\mathbf{X}, \boldsymbol{\theta})$$

$$= (t_j - \theta_j) g(\mathbf{X}, \boldsymbol{\theta}) - \int g(\mathbf{X}, \boldsymbol{\theta}) d(t_j - \theta_j)$$

$$= (t_j - \theta_j) g(\mathbf{X}, \boldsymbol{\theta}) - \int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial (t_j - \theta_j)}{\partial \theta_k} d\theta_k$$

and $\mathbb{E}[t_j] = \theta_j$.

Theorem 3.9. Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$N\mathbb{E}\left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \succeq \left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] \right)^{-1},$$

where $\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}$ and $f(\mathbf{x}, \boldsymbol{\theta})$ is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.

Proof. For any nonzero $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$, consider the correlation of $\mathbf{a}^{\top}\mathbf{t}$ and $\mathbf{b}^{\top}\mathbf{s}$, we have

$$1 \geq \frac{\mathrm{Cov}[\mathbf{a}^{\top}\mathbf{t}, \mathbf{b}^{\top}\mathbf{s}]}{\sqrt{\mathrm{Var}[\mathbf{a}^{\top}\mathbf{t}]\mathrm{Var}[\mathbf{b}^{\top}\mathbf{s}]}} = \frac{\mathbf{a}^{\top}\mathrm{Cov}[\mathbf{t}, \mathbf{s}]\mathbf{b}}{\sqrt{\mathbf{a}^{\top}\mathrm{Var}[\mathbf{t}]\mathbf{a}}\sqrt{\mathbf{b}^{\top}\mathrm{Var}[\mathbf{s}]\mathbf{b}}} = \frac{\mathbf{a}^{\top}\mathbf{b}}{\sqrt{\mathbf{a}^{\top}\mathrm{Var}[\mathbf{t}]\mathbf{a}}\sqrt{\mathbf{b}^{\top}\mathrm{Var}[\mathbf{s}]\mathbf{b}}}$$

We let **b** which satisfies $\mathbf{b}^{\top} \text{Var}[\mathbf{s}]\mathbf{b} = 1$, then

$$1 \geq \frac{\mathbf{a}^{\top} \mathbf{b} \mathbf{b}^{\top} \mathbf{a}}{\mathbf{a}^{\top} \mathrm{Var}[\mathbf{t}] \mathbf{a}} \geq \frac{\mathbf{a}^{\top} \left(\mathrm{Var}[\mathbf{s}] \right)^{-1} \mathbf{a}}{\mathbf{a}^{\top} \mathrm{Var}[\mathbf{t}] \mathbf{a}},$$

which implies $\mathbf{a}^{\top} \operatorname{Var}[\mathbf{t}] \mathbf{a} \geq \mathbf{a}^{\top} (\operatorname{Var}[\mathbf{s}])^{-1} \mathbf{a}$ for any nonzero \mathbf{a} . Hence, we have

$$\mathbb{E}\left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top} \right] = \operatorname{Var}[\mathbf{t}] \succeq (\operatorname{Var}[\mathbf{s}])^{-1}$$

$$= \left(\operatorname{Var} \left[\frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] \right)^{-1} = \left(N \operatorname{Var} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] \right)^{-1} = \frac{1}{N} \left(\operatorname{Var} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] \right)^{-1}$$

$$= \frac{1}{N} \left(\mathbb{E} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] \right)^{-1}.$$

Theorem 3.10. Let p-component vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots$ be i.i.d with means $\mathbb{E}[\mathbf{y}_{\alpha}] = \boldsymbol{\nu}$ and covariance matrices $\mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu})(\mathbf{y}_{\alpha} - \boldsymbol{\nu})^{\top}] = \mathbf{T}$. Then the limiting distribution of

$$\frac{1}{\sqrt{n}}\sum_{\alpha=1}^{n}(\mathbf{y}_{\alpha}-\boldsymbol{\nu})$$

as $n \to +\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.

Proof. Let

$$\phi_n(\mathbf{t}, u) = \mathbb{E}\left[\exp\left(\mathrm{i}\,u\mathbf{t}^\top \frac{1}{\sqrt{n}} \sum_{\alpha=1}^n (\mathbf{y}_\alpha - \boldsymbol{\nu})\right)\right],$$

where $u \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^p$. For fixed \mathbf{t} , the function $\phi_n(\mathbf{t}, u)$ can be viewed as the characteristic function of

$$\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n} (\mathbf{t}^{\top} \mathbf{y}_{\alpha} - \mathbf{t}^{\top} \mathbb{E}[\mathbf{y}_{\alpha}]).$$

By the univariate central limit theorem, the limiting distribution is $\mathcal{N}(0, \mathbf{t}^{\top} \mathbf{T} \mathbf{t})$. Therefore, we have

$$\lim_{n \to \infty} \phi_n(\mathbf{t}, u) = \exp\left(-\frac{1}{2}u^2 \mathbf{t}^\top \mathbf{T} \mathbf{t}\right),$$

for any $u \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^p$. Let u = 1, we obtain

$$\phi_n(\mathbf{t}, 1) = \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^\top \frac{1}{\sqrt{n}} \sum_{\alpha=1}^n (\mathbf{y}_\alpha - \boldsymbol{\nu})\right)\right] = \exp\left(-\frac{1}{2}\mathbf{t}^\top \mathbf{T} \mathbf{t}\right)$$

for any $\mathbf{t} \in \mathbb{R}^p$. Since $\exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{T}\mathbf{t}\right)$ is continuous at $\mathbf{t} = \mathbf{0}$, the convergence is uniform in some neighborhood of $\mathbf{t} = \mathbf{0}$. The theorem follows.

Theorem 3.11. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independently distributed, each x_α according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and if $\boldsymbol{\mu}$ has an a prior distribution $\mathcal{N}(\boldsymbol{\nu}, \boldsymbol{\Psi})$, then the a posterior distribution of $\boldsymbol{\mu}$ given $\mathbf{x}_1, \dots, \mathbf{x}_N$ is normal with mean

$$oldsymbol{\Phi} \left(oldsymbol{\Phi} + rac{1}{N}oldsymbol{\Sigma}
ight)^{-1}ar{\mathbf{x}} + rac{1}{N}oldsymbol{\Sigma} \left(oldsymbol{\Phi} + rac{1}{N}oldsymbol{\Sigma}
ight)^{-1}oldsymbol{
u}$$

and covariance matrix

$$\mathbf{\Phi} - \mathbf{\Phi} \left(\mathbf{\Phi} + \frac{1}{N} \mathbf{\Sigma} \right)^{-1} \mathbf{\Phi}.$$

Proof. Since $\bar{\mathbf{x}}$ is sufficient for $\boldsymbol{\mu}$, we need only consider $\bar{\mathbf{x}}$, which has the distribution of $\boldsymbol{\mu} + \mathbf{v}$, where

$$\mathbf{v} \sim \mathcal{N}\left(\mathbf{0}, \frac{1}{N}\mathbf{\Sigma}\right)$$

and is independent of μ . Then we have

$$\bar{\mathbf{x}} = \begin{bmatrix} \mathbf{I} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{v} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{v} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\nu} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Phi} & \mathbf{0} \\ \mathbf{0} & \frac{1}{N} \boldsymbol{\Sigma} \end{bmatrix} \right)$$

which implies $\bar{\mathbf{x}} \sim \mathcal{N}\left(\boldsymbol{\nu}, \boldsymbol{\Phi} + \frac{1}{N}\boldsymbol{\Sigma}\right)$. Since we have

$$egin{bmatrix} m{\mu} \ ar{\mathbf{x}} \end{bmatrix} = egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{I} & \mathbf{I} \end{bmatrix} egin{bmatrix} m{\mu} \ \mathbf{v} \end{bmatrix},$$

then

$$\begin{bmatrix} \boldsymbol{\mu} \\ \bar{\mathbf{x}} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\nu} \\ \boldsymbol{\nu} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Phi} & \boldsymbol{\Phi} \\ \boldsymbol{\Phi} & \frac{1}{N} \boldsymbol{\Sigma} \end{bmatrix} \right).$$

Consider the conditional distribution of μ given $\bar{\mathbf{x}}$, we obtain the desired result.

Remark 3.3. Let

$$\mathbf{x} = egin{bmatrix} \mathbf{x}^{(1)} \ \mathbf{x}^{(2)} \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} oldsymbol{\mu}^{(1)} \ oldsymbol{\mu}^{(2)} \end{bmatrix}, egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}
ight).$$

The conditional density of $\mathbf{x}^{(1)}$ given that $\mathbf{x}^{(2)}$ is

$$f(\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)}) = \frac{1}{\sqrt{(2\pi)^q \det(\boldsymbol{\Sigma}_{11.2})}} \exp\left(-\frac{1}{2} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)^{\top} \boldsymbol{\Sigma}_{11.2}^{-1} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)\right)$$

where $\mathbf{x}^{(11.2)} = \mathbf{x}^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{x}^{(2)}$, $\boldsymbol{\mu}^{(11.2)} = \boldsymbol{\mu}^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}\boldsymbol{\mu}^{(2)}$ and $\Sigma_{11.2} = \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$.

Theorem 3.12. For $y \sim \chi^2(n)$, we have $\mathbb{E}[y] = n$ and Var[y] = 2n.

Proof. We can write

$$y = \sum_{i=1}^{n} x_i^2,$$

where x_1, \ldots, x_n are independent standard normal variables. Then, we have

$$\mathbb{E}[y] = \mathbb{E}\left[\sum_{i=1}^{n} x_i^2\right] = \sum_{i=1}^{n} \mathbb{E}\left[x_i^2\right] = \sum_{i=1}^{n} \operatorname{Var}\left[x_i^2\right] = n$$

and

$$\operatorname{Var}[y] = \operatorname{Var}\left[\sum_{i=1}^n x_i^2\right] = \sum_{i=1}^n \operatorname{Var}\left[x_i^2\right] = \sum_{i=1}^n \mathbb{E}\left[x_i^4 - \left(\mathbb{E}[x_i^2]\right)^2\right] = \sum_{i=1}^n \mathbb{E}\left[3 - 1\right] = 2n.$$

We use the fact $\mathbb{E}[x_i^4] = 3$ because of $\phi(t) = \exp(-\frac{1}{2}t^2)$ and

$$\mathbb{E}[x_i^4] = \frac{1}{\mathbf{i}^4} \frac{\mathrm{d}^4 \phi(t)}{\mathrm{d}t^4} \bigg|_{t=0} = (t^4 - 6t^2 + 3) \exp\left(-\frac{1}{2}t^2\right) \bigg|_{t=0} = 3.$$

Theorem 3.13. The density of $y \sim \chi^2(n)$ is

$$f(y; n) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2} - 1} \exp\left(-\frac{y}{2}\right), & y > 0, \\ 0, & otherwise \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} \exp(-t) \, \mathrm{d}t.$$

Proof. We first provide the following results:

1. We have $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, because

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty t^{-1/2} \exp(-t) dt$$

$$= \int_0^\infty \left(\frac{1}{2}x^2\right)^{-1/2} \exp\left(-\frac{1}{2}x^2\right) d\left(\frac{1}{2}x^2\right)$$

$$= \int_0^\infty \frac{\sqrt{2}}{x} \exp\left(-\frac{1}{2}x^2\right) x dx$$

$$= \sqrt{2} \int_0^\infty \exp\left(-\frac{1}{2}x^2\right) dx$$
$$= 2\sqrt{\pi} \int_0^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right) dx$$
$$= \sqrt{\pi}.$$

2. For $y_1 = x^2$ with $x \sim \mathcal{N}(0,1)$, the density function of y_1 is

$$\frac{1}{\sqrt{2\pi y_1}} \exp\left(-\frac{1}{2}y_1\right).$$

We define the positive random variable \hat{x} whose density function is

$$\frac{2}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}\hat{x}^2\right).$$

Then the transform $\hat{x} = \sqrt{y_1}$ is one to one and the density of y_1 is

$$\frac{2}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y_1\right) \frac{\mathrm{d}\sqrt{y_1}}{\mathrm{d}y_1} = \frac{1}{\sqrt{2\pi y_1}} \exp\left(-\frac{1}{2}y_1\right).$$

3. For beta function

$$B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt,$$

we have

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Consider that

$$\Gamma(\alpha)\Gamma(\beta)$$

$$= \int_0^\infty x^{\alpha - 1} \exp(-x) dx \int_0^\infty y^{\beta - 1} \exp(-y) dy$$

$$= \int_0^\infty \int_0^\infty x^{\alpha - 1} y^{\beta - 1} \exp(-(x + y)) dy dx.$$

Using the substitution x = uv and y = u(1 - v), then the Jacobian matrix of the transformation is

$$\mathbf{J} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} v & u \\ 1 - v & -u \end{bmatrix}$$

and $\det(\mathbf{J}) = -u$. Since u = x + y and v = x/(x + y), we have that the limits of integration for u are 0 to ∞ and the limits of integration for v are 0 to 1. Thus

$$\begin{split} \Gamma(\alpha)\Gamma(\beta) &= \int_0^\infty \int_0^\infty x^{\alpha-1} y^{\beta-1} \exp(-(x+y)) \,\mathrm{d}y \,\mathrm{d}x \\ &= \int_0^1 \int_0^\infty (uv)^{\alpha-1} (u(1-v))^{\beta-1} \exp(-(uv+u(1-v))) |-u| \,\mathrm{d}u \,\mathrm{d}v \\ &= \int_0^1 \int_0^\infty u^{\alpha+\beta-1} v^{\alpha-1} (1-v)^{\beta-1} \exp(-u) \,\mathrm{d}u \,\mathrm{d}v \\ &= \int_0^1 v^{\alpha-1} (1-v)^{\beta-1} \,\mathrm{d}v \int_0^\infty u^{\alpha+\beta-1} \exp(-u) \,\mathrm{d}u \\ &= B(\alpha,\beta)\Gamma(\alpha+\beta). \end{split}$$

4. If

$$F(z) = \int_{a(z)}^{b(z)} f(y, z) \, \mathrm{d}y,$$

then

$$F'(z) = \int_{a(z)}^{b(z)} \frac{\partial f(y, z)}{\partial z} dx + f(b(z), z)b'(z) - f(a(z), z)a'(z).$$

We prove the density of Chi-square distribution by induction. For n=1 and y>0, we have

$$f(y;1) = \frac{1}{\sqrt{2\pi y}} \exp\left(-\frac{1}{2}y\right) = \frac{1}{2^{\frac{1}{2}}\Gamma\left(\frac{1}{2}\right)} y^{\frac{1}{2}-1} \exp\left(-\frac{y}{2}\right).$$

Suppose the statement holds for n-1, that is

$$f(y; n-1) = \begin{cases} \frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} y^{\frac{n-1}{2}-1} \exp\left(-\frac{y}{2}\right), & y > 0, \\ 0, & \text{otherwise} \end{cases}$$

We consider $y_n = y_{n-1} + x_n^2$ such that $y_{n-1} \sim \chi^2(n-1)$ and $x_n \sim \mathcal{N}(0,1)$ are independent. Let F_1 be the corresponding cdf of f(y;1). Then the cfd of y_n is

$$\Pr(y_n \le z)$$

$$= \int_0^z \int_0^{z-y} f_{n-1}(y) f_1(x) \, dx \, dy$$

$$= \int_0^z (F_1(z-y) - F_1(0)) f_{n-1}(y) \, dx \, dy$$

$$= \int_0^z F_1(z-y) f_{n-1}(y) \, dy$$

and the pdf of y_n is (let y = tz)

$$\begin{split} & \int_0^z \frac{1}{2^{\frac{1}{2}}\Gamma\left(\frac{1}{2}\right)} (z-y)^{\frac{1}{2}-1} \exp\left(-\frac{z-y}{2}\right) \frac{1}{2^{\frac{n-1}{2}}\Gamma\left(\frac{n-1}{2}\right)} y^{\frac{n-1}{2}-1} \exp\left(-\frac{y}{2}\right) \, \mathrm{d}y \\ = & \frac{1}{2^{\frac{1}{2}}\Gamma\left(\frac{1}{2}\right)} \frac{1}{2^{\frac{n-1}{2}}\Gamma\left(\frac{n-1}{2}\right)} \int_0^z (z-y)^{\frac{1}{2}-1} y^{\frac{n-1}{2}-1} \exp\left(-\frac{z}{2}\right) \, \mathrm{d}y \\ = & \frac{\exp\left(-\frac{z}{2}\right) z^{\frac{n-1}{2}}}{2^{\frac{n}{2}}\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n-1}{2}\right)} \int_0^1 (1-t)^{\frac{1}{2}-1} t^{\frac{n-1}{2}-1} \, \mathrm{d}t \\ = & \frac{\exp\left(-\frac{z}{2}\right) z^{\frac{n}{2}-1}}{2^{\frac{n}{2}}\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n-1}{2}\right)} B\left(\frac{n-1}{2},\frac{1}{2}\right) \\ = & \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} z^{\frac{n}{2}-1} \exp\left(-\frac{z}{2}\right). \end{split}$$

Theorem 3.14. If the n-component vector \mathbf{y} is distributed according to $\mathcal{N}(\boldsymbol{\nu}, \mathbf{T})$ with $\mathbf{T} \succ \mathbf{0}$, then

$$\mathbf{y}^{\top} \mathbf{T}^{-1} \mathbf{y} \sim \chi_n^2 \left(\boldsymbol{\nu}^{\top} \mathbf{T}^{-1} \boldsymbol{\nu} \right).$$

If $\nu = 0$, the distribution is the central χ^2 -distribution.

Proof. Let \mathbf{C} be a non-singular matrix such that $\mathbf{C}\mathbf{T}\mathbf{C}^{\top} = \mathbf{I}$. Define $\mathbf{z} = \mathbf{C}\mathbf{y}$, then \mathbf{z} is normally distributed with mean

$$\mathbf{C}\mathbb{E}[\mathbf{y}] = \mathbf{C}oldsymbol{
u} riangleq oldsymbol{\lambda}$$

and covariance matrix

$$\mathbb{E}\left[(\mathbf{z} - \boldsymbol{\lambda})(\mathbf{z} - \boldsymbol{\lambda})^\top\right] = \mathbf{C}\mathbb{E}\left[(\mathbf{y} - \boldsymbol{\nu})(\mathbf{y} - \boldsymbol{\nu})^\top\right]\mathbf{C}^\top = \mathbf{C}\mathbf{T}\mathbf{C}^\top = \mathbf{I}.$$

Then we have

$$\mathbf{y}^{\top}\mathbf{T}^{-1}\mathbf{y} = \mathbf{z}^{\top}\mathbf{C}^{-\top}\mathbf{T}^{-1}\mathbf{C}^{-1}\mathbf{z} = \mathbf{z}^{\top}\left(\mathbf{C}\mathbf{T}\mathbf{C}^{\top}\right)^{-1}\mathbf{z} = \mathbf{z}^{\top}\mathbf{z},$$

which is the sum of squares of the components of \mathbf{z} . Similarly, we have $\boldsymbol{\nu}^{\top}\mathbf{T}^{-1}\boldsymbol{\nu} = \boldsymbol{\lambda}^{\top}\boldsymbol{\lambda}$. Thus, the random variable $\mathbf{y}^{\top}\mathbf{T}^{-1}\mathbf{y}$ is distributed as $\sum_{i=1}^{n}z_{i}^{2}$, where z_{1},\ldots,z_{n} are independently normally distributed with means $\lambda_{1},\ldots,\lambda_{n}$ respectively, and variances 1. By definition this is the noncentral χ^{2} -distribution with noncentrality parameter $\sum_{i=1}^{n}\lambda_{i}^{2}=\boldsymbol{\nu}^{\top}\mathbf{T}^{-1}\boldsymbol{\nu}$.

Theorem 3.15. The probability density function (pdf) for the noncentral F-distribution is

$$f(v; p, \tau^2) = \begin{cases} \frac{\exp\left(-\frac{1}{2}(\tau^2 + v)\right)v^{\frac{p}{2} - 1}}{2^{\frac{p}{2}}\sqrt{\pi}} \sum_{\beta = 0}^{\infty} \frac{\tau^{2\beta}v^{\beta}\Gamma\left(\beta + \frac{1}{2}\right)}{(2\beta)!\Gamma\left(\frac{p}{2} + \beta\right)} & v > 0, \\ 0, & otherwise \end{cases}$$

where $B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$.

Proof. Let **Q** be $p \times p$ orthogonal matrix with elements of the first row being

$$q_{i1} = \frac{\lambda_i}{\sqrt{(\boldsymbol{\lambda})^{\top} \boldsymbol{\lambda}}}$$

for i = 1, ..., p. Then $\mathbf{z} = \mathbf{Q}\mathbf{y}$ is distributed according to $\mathcal{N}(\boldsymbol{\tau}, \mathbf{I})$, where

$$m{ au} = egin{bmatrix} au \ 0 \ dots \ 0 \end{bmatrix},$$

where $\tau = \boldsymbol{\lambda}^{\top} \boldsymbol{\lambda}$. Let $\mathbf{v} = \mathbf{y}^{\top} \mathbf{y} = \mathbf{z}^{\top} \mathbf{z} = \sum_{i=1}^{p} z_i^2$. Then $w = \sum_{i=2}^{p} z_i^2$ has a χ^2 -distribution with p-1 degrees of freedom, and z_1 and w have as joint density

$$\begin{split} &\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(z_1 - \tau)^2\right) \frac{1}{2^{\frac{p-1}{2}} \Gamma\left(\frac{p-1}{2}\right)} w^{\frac{p-1}{2} - 1} \exp\left(-\frac{w}{2}\right) \\ = &C \exp\left(-\frac{1}{2}\left(\tau^2 + z_1^2 + w\right)\right) w^{\frac{p-3}{2}} \exp\left(\tau z\right) \\ = &C \exp\left(-\frac{1}{2}\left(\tau^2 + z_1^2 + w\right)\right) w^{\frac{p-3}{2}} \sum_{\alpha = 0}^{\infty} \frac{\tau^{\alpha} z_1^{\alpha}}{\alpha!} \end{split}$$

where $C^{-1} = 2^{\frac{p}{2}} \sqrt{\pi} \Gamma\left(\frac{p-1}{2}\right)$. The joint density of $v = w + z_1^2$ and z_1 is obtained by substituting $w = v - z_1^2$ (the Jacobian being 1):

$$C \exp\left(-\frac{1}{2}\left(\tau^2 + v\right)\right) \left(v - z_1^2\right)^{\frac{p-3}{2}} \sum_{\alpha=0}^{\infty} \frac{\tau^{\alpha} z_1^{\alpha}}{\alpha!}.$$

The joint density of v and $u = z_1/\sqrt{v}$ is $(dz_1 = \sqrt{v}du)$

$$C \exp\left(-\frac{1}{2}(\tau^2 + v)\right) v^{\frac{p-2}{2}} (1 - u^2)^{\frac{p-3}{2}} \sum_{\alpha=0}^{\infty} \frac{\tau^{\alpha} v^{\frac{\alpha}{2}} u^{\alpha}}{\alpha!}.$$

The admissible range of z given v is $-\sqrt{v}$ to \sqrt{v} , and the admissible range of u is -1 to 1. When we integrate above joint density with respect to u term by term, the terms for a odd integrate to 0, since such a term is an odd function of u. In the other integrations we substitute $u = \sqrt{s} (du = \frac{\sqrt{s}}{2} ds)$ to obtain

$$\int_{-1}^{1} (1 - u^2)^{\frac{p-3}{2}} u^{2\beta} du$$

$$= 2 \int_{0}^{1} (1 - u^2)^{\frac{p-3}{2}} u^{2\beta} du$$

$$= \int_{0}^{1} (1 - s)^{\frac{p-3}{2}} s^{\beta - \frac{1}{2}} ds$$

$$= B \left(\frac{p-1}{2}, \beta + \frac{1}{2} \right)$$

$$= \frac{\Gamma(\frac{p-1}{2})\Gamma(\beta + \frac{1}{2})}{\Gamma(\frac{p}{2} + \beta)}$$

by the usual properties of the beta and gamma functions. Thus the density of v is

$$\frac{1}{2^{\frac{p}{2}}\sqrt{\pi}}\exp\left(-\frac{1}{2}(\tau^2+v)\right)v^{\frac{p}{2}-1}\sum_{\beta=0}^{\infty}\frac{\tau^{2\beta}v^{\beta}\Gamma\left(\beta+\frac{1}{2}\right)}{(2\beta)!\,\Gamma\left(\frac{p}{2}+\beta\right)}$$

for v > 0.

4 T^2 -Statistic

Theorem 4.1. Define the likelihood ratio criterion as

$$\lambda = \frac{\max_{\boldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(\boldsymbol{\mu}_0, \boldsymbol{\Sigma})}{\max_{\boldsymbol{\mu} \in \mathbb{R}^p, \boldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})},$$

where

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right).$$

then we have

$$\lambda^{\frac{2}{N}} = \frac{1}{1 + T^2/(N-1)},$$

where $T^2 = N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top} \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)$.

Proof. The maximum likelihood estimators of μ and Σ are

$$\hat{\boldsymbol{\mu}}_{\Omega} = \bar{\mathbf{x}}$$
 and $\hat{\boldsymbol{\Sigma}}_{\Omega} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$

If we restrict $\mu = \mu_0$, the likelihood function is maximized at

$$\hat{\mathbf{\Sigma}}_{\omega} = rac{1}{N} \sum_{lpha=1}^{N} (\mathbf{x}_{lpha} - oldsymbol{\mu}_0) (\mathbf{x}_{lpha} - oldsymbol{\mu}_0)^{ op}.$$

Furthermore, we have

$$\max_{\boldsymbol{\mu} \in \mathbb{R}^p, \boldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}_{\Omega}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2} pN \right)$$

because of

$$\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}})^{\top} \hat{\boldsymbol{\Sigma}}_{\Omega}^{-1} (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}})$$

$$= \operatorname{tr} \left(\hat{\boldsymbol{\Sigma}}_{\Omega}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}}) (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}})^{\top} \right)$$

$$= \operatorname{tr} (n\mathbf{I}_{p}) = np.$$

Similarly, we also have

$$\max_{\mathbf{\Sigma} \in \mathbb{S}_p^{++}} L(\boldsymbol{\mu}_0, \mathbf{\Sigma}) = (2\pi)^{-\frac{pN}{2}} \left(\det(\mathbf{\Sigma}_{\omega}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2} pN \right).$$

Thus the likelihood ratio criterion is

$$\begin{split} \lambda = & \frac{(2\pi)^{-\frac{pN}{2}} \left(\det(\mathbf{\Sigma}_{\Omega}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2}pN \right)}{(2\pi)^{-\frac{pN}{2}} \left(\det(\mathbf{\Sigma}_{\omega}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2}pN \right)} = \frac{\left(\det(\mathbf{\Sigma}_{\omega}) \right)^{\frac{N}{2}}}{\left(\det(\mathbf{\Sigma}_{\Omega}) \right)^{\frac{N}{2}}} \\ = & \frac{\left(\det\left(\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \right) \right)^{\frac{N}{2}}}{\left(\det\left(\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}_{0}) (\mathbf{x}_{\alpha} - \boldsymbol{\mu}_{0})^{\top} \right) \right)^{\frac{N}{2}}} = \frac{\left(\det(\mathbf{A}) \right)^{\frac{N}{2}}}{\left(\det(\mathbf{A} + N(\bar{\mathbf{x}} - \boldsymbol{\mu}_{0})(\bar{\mathbf{x}} - \boldsymbol{\mu}_{0})^{\top} \right)^{\frac{N}{2}}} \end{split}$$

where $\mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} = (N-1)\mathbf{S}$. Hence, we obtain

$$\lambda^{\frac{2}{N}} = \frac{\det(\mathbf{A})}{\det(\mathbf{A} + (\sqrt{N}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0))(\sqrt{N}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top}))}$$
$$= \frac{1}{1 + N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top} \mathbf{A}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)}$$
$$= \frac{1}{1 + T^2/(N - 1)}$$

where $T^2 = N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top} \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0) = (N-1)N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top} \mathbf{A}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)$ and we use the property of Schur complement to obtain

$$\det \left(\begin{bmatrix} \mathbf{A} & \mathbf{u} \\ -\mathbf{u}^\top & 1 \end{bmatrix} \right) = \det \left(\mathbf{A} + \mathbf{u}\mathbf{u}^\top \right) = \det \left(\begin{bmatrix} 1 & -\mathbf{u}^\top \\ \mathbf{u} & \mathbf{A} \end{bmatrix} \right) = \det (\mathbf{A}) \left(1 + \mathbf{u}\mathbf{A}^{-1}\mathbf{u}^\top \right)$$

with $\mathbf{u} = \sqrt{N}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)$. Recall that The decomposition

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{D}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{D}^{-1}\mathbf{C} & \mathbf{I} \end{bmatrix}$$

means we have $det(\mathbf{M}) = det(\mathbf{D}) det(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})$.

Lemma 4.1. For any $p \times p$ non-singular matrices C and H and any vector k, we have

$$\mathbf{k}^{\top}\mathbf{H}^{-1}\mathbf{k} = (\mathbf{C}\mathbf{k})^{\top}(\mathbf{C}\mathbf{H}\mathbf{C}^{\top})^{-1}(\mathbf{C}\mathbf{k}).$$

Proof. We have
$$(\mathbf{C}\mathbf{k})^{\top}(\mathbf{C}\mathbf{H}\mathbf{C}^{\top})^{-1}(\mathbf{C}\mathbf{k}) = \mathbf{k}^{\top}\mathbf{C}^{\top}(\mathbf{C}^{\top})^{-1}(\mathbf{H})^{-1}\mathbf{C}^{-1}(\mathbf{C}\mathbf{k}) = \mathbf{k}^{\top}\mathbf{H}^{-1}\mathbf{k}$$
.

Remark 4.1. This lemma means

$$T^{*2} = N(\bar{\mathbf{x}}^* - \mathbf{0})^{\top} (\mathbf{S}^*)^{-1} (\bar{\mathbf{x}}^* - \mathbf{0}) = N(\mathbf{C}\bar{\mathbf{x}} - \mathbf{0})^{\top} (\mathbf{C}\mathbf{S}\mathbf{C})^{-1} (\mathbf{C}\bar{\mathbf{x}}^* - \mathbf{0}) = N(\bar{\mathbf{x}} - \mathbf{0})^{\top} \mathbf{S}^{-1} (\bar{\mathbf{x}}^* - \mathbf{0}) = T^2.$$

Theorem 4.2. Suppose $\mathbf{y}_1, \dots, \mathbf{y}_m$ are independent with \mathbf{y}_{α} distributed according to $\mathcal{N}(\mathbf{\Gamma}\mathbf{w}_{\alpha}, \mathbf{\Phi})$, where \mathbf{w}_{α} is an r-component vector. Let $\mathbf{H} = \sum_{\alpha=1}^{m} \mathbf{w}_{\alpha} \mathbf{w}_{\alpha}^{\top}$ assumed non-singular, $\mathbf{G} = \sum_{\alpha=1}^{m} \mathbf{y}_{\alpha} \mathbf{w}_{\alpha}^{\top} \mathbf{H}^{-1}$ and

$$\mathbf{C} = \sum_{lpha=1}^m (\mathbf{y}_lpha - \mathbf{G}\mathbf{w}_lpha) (\mathbf{y}_lpha - \mathbf{G}\mathbf{w}_lpha)^ op = \sum_{lpha=1}^m \mathbf{y}_lpha \mathbf{y}_lpha^ op - \mathbf{G}\mathbf{H}\mathbf{G}^ op.$$

Then C is distributed as

$$\sum_{\alpha=1}^{m-r} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$$

where $\mathbf{u}_1, \dots, \mathbf{u}_{m-r}$ are independently distributed according to $\mathcal{N}(\mathbf{0}, \mathbf{\Phi})$ independently of \mathbf{G} .

Proof. Theorem 4.3.3 of "Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons Inc; 3rd Edition." \Box

Theorem 4.3. Let $T^2 = \mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}$, where \mathbf{y} is distributed according to $\mathcal{N}_p(\boldsymbol{\nu}, \boldsymbol{\Sigma})$ and $n\mathbf{S}$ is independently distributed as $\sum_{\alpha=1}^n \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ with $\mathbf{z}_1, \ldots, \mathbf{z}_n$ independent, each with distribution $\mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma})$. Then the random variable

$$\frac{T^2}{n} \cdot \frac{n-p+1}{p}$$

is distributed as a noncentral F-distribution with p and n-p+1 degrees of freedom and noncentrality parameter $\boldsymbol{\nu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\nu}$. If $\boldsymbol{\nu} = \mathbf{0}$, the distribution is central F.

Proof. Let **D** be a non-singular matrix such that $\mathbf{D}\Sigma\mathbf{D}^{\top} = \mathbf{I}$, and define

$$\mathbf{v}^* = \mathbf{D}\mathbf{v}, \quad \mathbf{S}^* = \mathbf{D}\mathbf{S}\mathbf{D}^{\top}, \quad \boldsymbol{\nu}^* = \mathbf{D}\boldsymbol{\nu}.$$

Lemma 4.1 means

$$T^2 = (\mathbf{y}^*)^\top (\mathbf{S}^*)^{-1} \mathbf{y}^*$$

where \mathbf{y}^* is distributed according to $\mathcal{N}(\boldsymbol{\nu}^*, \mathbf{I})$ and

$$n\mathbf{S}^* = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^* (\mathbf{z}_{\alpha}^*)^{\top} = \sum_{\alpha=1}^{N-1} \mathbf{D} \mathbf{z}_{\alpha} (\mathbf{D} \mathbf{z}_{\alpha})^{\top}$$

with $\mathbf{z}_{\alpha}^* = \mathbf{D}\mathbf{z}_{\alpha}$ independent, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. We also have

$$\boldsymbol{\nu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\nu} = (\mathbf{D} \boldsymbol{\nu})^{\top} (\mathbf{D} \boldsymbol{\Sigma} \mathbf{D}^{\top})^{-1} (\mathbf{D} \boldsymbol{\nu}^*) = (\boldsymbol{\nu}^*)^{\top} \boldsymbol{\nu}^*.$$

Let the first row of a $p \times p$ orthogonal matrix **Q** be defined by

$$q_{i1} = \frac{y_i^*}{\sqrt{(\mathbf{y}^*)^\top \mathbf{y}^*}}$$

for i = 1, ..., p. Since **Q** depends on \mathbf{y}^* , it is a random matrix. Now let

$$\mathbf{u} = \mathbf{Q}\mathbf{y}^*$$
 and $\mathbf{B} = \mathbf{Q}(n\mathbf{S}^*)\mathbf{Q}^\top$,

where n = N - 1. The definition of **Q** means

$$u_1 = \sum_{i=1}^{p} q_{1i} y_i^* = \frac{\sum_{i=1}^{p} (y_i^*)^2}{\sqrt{(\mathbf{y}^*)^\top \mathbf{y}^*}} = \sqrt{(\mathbf{y}^*)^\top \mathbf{y}^*}$$

and

$$u_j = \sum_{i=1}^p q_{ji} y_i^* = \sqrt{(\mathbf{y}^*)^\top \mathbf{y}^*} \sum_{i=1}^p q_{ji} q_{1i} = 0$$

for $j = 2, \ldots, p$. Then

$$\frac{T^2}{n} = (\mathbf{y}^*)^\top (\mathbf{S}^*)^{-1} \mathbf{y}^* = (\mathbf{Q} \mathbf{u})^\top (\mathbf{Q}^\top \mathbf{B} \mathbf{Q})^{-1} \mathbf{Q}^\top \mathbf{u} = \mathbf{u}^\top \mathbf{Q}^\top \mathbf{Q}^\top \mathbf{B}^{-1} \mathbf{Q} \mathbf{Q}^\top \mathbf{u} = \mathbf{u}^\top \mathbf{B}^{-1} \mathbf{u}$$

$$= \begin{bmatrix} u_1 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} b_1^{11} & b_1^{12} & \dots & b_1^{1p} \\ b_2^{11} & b_2^{22} & \dots & b_2^{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_p^{11} & b_p^{12} & \dots & b_p^{pp} \end{bmatrix} \begin{bmatrix} u_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = u_1^2 b^{11}$$

where b^{ij} the entries of \mathbf{B}^{-1} . Using Schur Complement, we have

$$\frac{1}{b^{11}} = b_{11} - \mathbf{b}_{(1)}^{\top} \mathbf{B}_{22}^{-1} \mathbf{b}_{(1)} \triangleq b_{11.2,\dots,p}$$

where

$$\mathbf{B} = \begin{bmatrix} b_{11} & \mathbf{b}_{(1)}^{\top} \\ \mathbf{b}_{(1)} & \mathbf{B}_{22} \end{bmatrix}$$

and

$$\frac{T^2}{n} = \frac{u_1^2}{b_{11 \ 2 \dots n}} = \frac{(\mathbf{y}^*)^\top \mathbf{y}^*}{b_{11 \ 2 \dots n}}.$$

The conditional distribution of B given Q is that of

$$\mathbf{B} = \sum_{\alpha=1}^{n} \mathbf{Q} \mathbf{z}_{\alpha}^{*} (\mathbf{Q} \mathbf{z}_{\alpha}^{*})^{\top} = \sum_{\alpha=1}^{n} \mathbf{v}_{\alpha}^{*} (\mathbf{v}_{\alpha}^{*})^{\top},$$

where $\mathbf{v}_{\alpha} = \mathbf{Q}\mathbf{z}_{\alpha}^{*}$ are independent, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$ since $\mathbf{Q}\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top}\mathbf{Q}^{\top} = \mathbf{I}$. By Theorem 4.2, the random variable $b_{11.2,...,p}$ is conditionally distributed as

$$\sum_{\alpha=1}^{n-(p-1)} w_{\alpha}^2$$

where conditionally the w_{α}^2 are independent, each with the distribution $\mathcal{N}(0,1)$; that is, $b_{11,2,\ldots,p}$ is conditionally distributed as χ^2 with n-(p-1) degrees of freedom. Since the conditional distribution of $b_{11,2,\ldots,p}$ does not depend on \mathbf{Q} , it is unconditionally distributed as χ^2 . The quantity $\mathbf{y}^*\mathbf{y}^*$ has a noncentral χ^2 -distribution with p degrees of freedom and noncentrality parameter $(\boldsymbol{\nu}^*)^{\top}\boldsymbol{\nu}^* = \boldsymbol{\nu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\nu}^{\top}$ Then T is distributed as the ratio of a noncentral χ^2 and an independent χ^2 .

Theorem 4.4. Let u be distributed according to the χ^2 -distribution with a degrees of freedom and w be distributed according to the χ^2 -distribution with b degrees of freedom. The density of v = u/(u+w), when u and w are independent is

$$\frac{1}{B(\frac{a}{2}, \frac{b}{2})} v^{\frac{a}{2} - 1} (1 - v)^{\frac{b}{2} - 1}, \tag{5}$$

where $B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$.

Proof. Let

$$v = \frac{u}{u + w}$$
 and $z = u + w$.

Then u = vz, w = (1 - v)z and

$$\det(\mathbf{J}(v,z)) = \det\left(\begin{bmatrix} \frac{\partial u}{\partial v} & \frac{\partial u}{\partial z} \\ \frac{\partial w}{\partial v} & \frac{\partial w}{\partial z} \end{bmatrix}\right) = \det\left(\begin{bmatrix} z & v \\ -z & 1-v \end{bmatrix}\right) = z.$$

Since v and w are independent, the joint density of v and w is

$$f_{u,v}(u,w) = \frac{1}{2^{\frac{a}{2}}\Gamma\left(\frac{a}{2}\right)}u^{\frac{a}{2}-1}\exp\left(-\frac{u}{2}\right) \cdot \frac{1}{2^{\frac{b}{2}}\Gamma\left(\frac{b}{2}\right)}w^{\frac{b}{2}-1}\exp\left(-\frac{w}{2}\right)$$

and the joint density of v and z is

$$\begin{split} f_{v,z}(v,z) = & f_{u,v}(vz, (1-v)z) \det(\mathbf{J}(v,z)) \\ = & \frac{1}{2^{\frac{a}{2}} \Gamma\left(\frac{a}{2}\right)} (vz)^{\frac{a}{2}-1} \exp\left(-\frac{vz}{2}\right) \cdot \frac{1}{2^{\frac{b}{2}} \Gamma\left(\frac{b}{2}\right)} ((1-v)z)^{\frac{b}{2}-1} \exp\left(-\frac{(1-v)z}{2}\right) \cdot z \\ = & \frac{1}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)} v^{\frac{a}{2}-1} \cdot (1-v)^{\frac{b}{2}-1} z^{\frac{a+b}{2}-1} \exp\left(-\frac{z}{2}\right). \end{split}$$

Consider that the density of χ^2 -distribution with a+b degrees of freedom, we have

$$\int_{-\infty}^{\infty} \frac{1}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a+b}{2}\right)} z^{\frac{a+b}{2}-1} \exp\left(-\frac{z}{2}\right) dz = 1.$$

Hence,

$$\begin{split} f_z(z) &= \int_{-\infty}^{\infty} f_{v,z}(v,z) \, \mathrm{d}z \\ &= \frac{1}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)} v^{\frac{a}{2}-1} (1-v)^{\frac{b}{2}-1} \int_{-\infty}^{\infty} z^{\frac{a+b}{2}-1} \exp\left(-\frac{z}{2}\right) \, \mathrm{d}z \\ &= \frac{2^{\frac{a+b}{2}} \Gamma\left(\frac{a+b}{2}\right)}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)} v^{\frac{a}{2}-1} (1-v)^{\frac{b}{2}-1} \\ &= \frac{1}{B\left(\frac{a}{2} + \frac{b}{2}\right)} v^{\frac{a}{2}-1} (1-v)^{\frac{b}{2}-1}. \end{split}$$

Theorem 4.5. Let x_1, x_2, \ldots be a sequence of independently identically distributed random vectors with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Let

$$\hat{\mathbf{x}}_N = \frac{1}{N} \sum_{\alpha=1}^N \mathbf{x}_{\alpha}, \qquad \hat{\mathbf{S}}_N = \frac{1}{N-1} \sum_{\alpha=1}^N (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

and

$$T_N^2 = N(\bar{\mathbf{x}}_N - \boldsymbol{\mu}_0)^{\top} \mathbf{S}_N^{-1} (\bar{\mathbf{x}}_N - \boldsymbol{\mu}_0).$$

Then the limiting distribution of T_N^2 as $N \to \infty$ is the χ^2 -distribution with p degrees of freedom if $\mu = \mu_0$.

Proof. By the central limit theorem, the limiting distribution of $\sqrt{N}(\bar{\mathbf{x}}_N - \boldsymbol{\mu})$ is $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. The sample covariance matrix converges sarcastically to $\boldsymbol{\Sigma}$. Then the limiting distribution of T^2 is the distribution of

$$\mathbf{y}^{ op} \mathbf{\Sigma}^{-1} \mathbf{y}$$

where y has the distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. The theorem follows from Theorem 3.14.

Lemma 4.2. If \mathbf{v} is a vector of p components and if \mathbf{B} is a non-singular $p \times p$ matrix, then $\mathbf{v}^{\top} \mathbf{B}^{-1} \mathbf{v}$ is the nonzero root of

$$\det(\mathbf{v}\mathbf{v}^{\top} - \lambda \mathbf{B}) = 0.$$

Proof. The non-zero root λ_1 of $\det(\mathbf{v}\mathbf{v}^\top - \lambda \mathbf{B}) = 0$ associate with vector $\boldsymbol{\beta} \neq \mathbf{0}$ satisfying

$$(\mathbf{v}\mathbf{v}^{\top} - \lambda_1 \mathbf{B})\boldsymbol{\beta} = \mathbf{0} \Longrightarrow \mathbf{v}\mathbf{v}^{\top}\boldsymbol{\beta} = \lambda_1 \mathbf{B}\boldsymbol{\beta} \Longrightarrow (\mathbf{v}^{\top}\mathbf{B}^{-1}\mathbf{v}) \mathbf{v}^{\top}\boldsymbol{\beta} = \lambda_1 \mathbf{v}^{\top}\boldsymbol{\beta}.$$

We can obtain that $\mathbf{v}^{\top}\boldsymbol{\beta} \neq 0$, otherwise $(\mathbf{v}\mathbf{v}^{\top} - \lambda_1 \mathbf{B})\boldsymbol{\beta} = \mathbf{0}$ means $\mathbf{B}\boldsymbol{\beta} = \mathbf{0}$ which is impossible since \mathbf{B} is non-singular. Hence $\lambda_1 = \mathbf{v}^{\top}\mathbf{B}^{-1}\mathbf{v}$.

Remark 4.2. Using this lemma with $\mathbf{v} = \sqrt{N}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)$ and $\mathbf{B} = \mathbf{A}$, we can prove $T^2/(N-1)$ is the non-zero root of det $(N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^\top - \lambda \mathbf{A}) = 0$.

Lemma 4.3. For any positive definite matrix $\mathbf{S} \in \mathbb{R}^{p \times p}$ and $\mathbf{y}, \boldsymbol{\gamma} \in \mathbb{R}^p$, we have

$$(\boldsymbol{\gamma}^{\top} \mathbf{y})^2 \leq (\boldsymbol{\gamma}^{\top} \mathbf{S} \boldsymbol{\gamma}) (\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}).$$

Proof. For $\gamma = 0$, the result is trivial. Otherwise, let

$$b = \frac{\boldsymbol{\gamma}^{\top} \mathbf{y}}{\boldsymbol{\gamma}^{\top} \mathbf{S} \boldsymbol{\gamma}}.$$

Then we have

$$0 \le (\mathbf{y} - b\mathbf{S}\boldsymbol{\gamma})^{\top}\mathbf{S}^{-1}(\mathbf{y} - b\mathbf{S}\boldsymbol{\gamma})$$

$$= \mathbf{y}^{\top}\mathbf{S}^{-1}\mathbf{y} - b\mathbf{y}^{\top}\mathbf{S}^{-1}\mathbf{S}\boldsymbol{\gamma} - b\boldsymbol{\gamma}^{\top}\mathbf{S}\mathbf{S}^{-1}\mathbf{y} - b^{2}\boldsymbol{\gamma}^{\top}\mathbf{S}\mathbf{S}^{-1}\mathbf{S}\boldsymbol{\gamma}$$

$$= \mathbf{y}^{\top}\mathbf{S}^{-1}\mathbf{y} - 2b\mathbf{y}^{\top}\boldsymbol{\gamma} + b^{2}\boldsymbol{\gamma}^{\top}\mathbf{S}\boldsymbol{\gamma}$$

$$= \mathbf{y}^{\top}\mathbf{S}^{-1}\mathbf{y} - \frac{(\boldsymbol{\gamma}^{\top}\mathbf{y})^{2}}{\boldsymbol{\gamma}^{\top}\mathbf{S}\boldsymbol{\gamma}},$$

which implies the desired result.

Theorem 4.6. Let $\{\mathbf{x}_{\alpha}^{(i)}\}$ for $\alpha = 1, ..., N_i$, i = 1, ..., q be samples from $\mathcal{N}(\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma})$, i = 1, ..., q, respectively and suppose

$$\sum_{i=1}^q \beta_i \boldsymbol{\mu}^{(i)} = \boldsymbol{\mu}.$$

where β_1, \ldots, β_q are given scalars and μ is a given vector. Define the criterion

$$T^{2} = c \left(\sum_{i=1}^{q} \beta_{i} \bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu} \right) \mathbf{S}^{-1} \left(\sum_{i=1}^{q} \beta_{i} \bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu} \right)^{\top}$$

where

$$\bar{\mathbf{x}}^{(i)} = \frac{1}{N_i} \sum_{\alpha=1}^{N_i} \mathbf{x}_{\alpha}^{(i)}, \qquad \frac{1}{c} = \sum_{i=1}^{q} \frac{\beta_i^2}{N_i}$$

and

$$\left(\sum_{i=1}^{q} N_i - q\right) S = \sum_{i=1}^{q} \sum_{\alpha=1}^{N_i} \left(\mathbf{x}_{\alpha}^{(i)} - \bar{\mathbf{x}}^{(i)}\right) \left(\mathbf{x}_{\alpha}^{(i)} - \bar{\mathbf{x}}^{(i)}\right)^{\top}.$$

Then this T^2 has the T^2 -distribution with $\sum_{i=1}^q N_i - q$ degrees of freedom.

Proof. Since $\mathbf{x}_{\alpha}^{(i)} \sim \mathcal{N}(\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma})$, we have

$$\bar{\mathbf{x}}^{(i)} \sim \mathcal{N}\left(\boldsymbol{\mu}^{(i)}, \frac{1}{N_i} \boldsymbol{\Sigma}\right) \implies \beta_i \left(\bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu}_i\right) \sim \mathcal{N}\left(0, \frac{\beta_i^2}{N_i} \boldsymbol{\Sigma}\right).$$

and

$$\sum_{i=1}^{q} \beta_{i} \bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu} = \sum_{i=1}^{q} \beta_{i} \left(\bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu}^{(i)} \right) \sim \mathcal{N} \left(\mathbf{0}, \sum_{i=1}^{q} \frac{\beta_{i}^{2}}{N_{i}} \boldsymbol{\Sigma} \right) \Longrightarrow \sqrt{c} \left(\sum_{i=1}^{q} \beta_{i} \bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu} \right) \sim \mathcal{N} \left(\mathbf{0}, \boldsymbol{\Sigma} \right).$$

On the other hand, we can write

$$\sum_{i=1}^q \sum_{\alpha=1}^{N_i} \left(\mathbf{x}_{\alpha}^{(i)} - \bar{\mathbf{x}}^{(i)}\right) \left(\mathbf{x}_{\alpha}^{(i)} - \bar{\mathbf{x}}^{(i)}\right)^\top = \sum_{i=1}^q \sum_{\alpha=1}^{N_i-1} \mathbf{z}_{\alpha}^{(i)} (\mathbf{z}_{\alpha}^{(i)})^\top$$

where $\mathbf{z}_{\alpha}^{(i)}$ are independent and $\mathbf{z}_{\alpha}^{(i)} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$. Hence,

$$T^{2} = \sqrt{c} \left(\sum_{i=1}^{q} \beta_{i} \bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu} \right) \mathbf{S}^{-1} \left(\sqrt{c} \left(\sum_{i=1}^{q} \beta_{i} \bar{\mathbf{x}}^{(i)} - \boldsymbol{\mu} \right) \right)^{\top}$$

has the T^2 -distribution with $\sum_{i=1}^q N_i - q$ degrees of freedom.

Lemma 4.4. Let $\mathbf{x}_1, \ldots, \mathbf{x}_m$ be independent samples from $\mathcal{N}(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma}_{\alpha})$ for $i = 1, \ldots, m$. Define

$$\mathbf{z}_1 = \sum_{\alpha=1}^N a_{\alpha} \mathbf{x}_{\alpha} \quad and \quad \mathbf{z}_2 = \sum_{\alpha=1}^N b_{\alpha} \mathbf{x}_{\alpha},$$

then

$$\operatorname{Cov}(\mathbf{z}_1, \mathbf{z}_2) = \sum_{\alpha=1}^{N} a_{\alpha} b_{\alpha} \mathbf{\Sigma}_{\alpha}.$$

Proof. The definitions mean

$$\mathbf{z}_1 = \begin{bmatrix} a_1 \mathbf{I} & a_2 \mathbf{I} & \dots & a_N \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{bmatrix} \quad \text{and} \quad \mathbf{z}_2 = \begin{bmatrix} b_1 \mathbf{I} & b_2 \mathbf{I} & \dots & b_N \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{bmatrix},$$

then

$$Cov(\mathbf{z}_1, \mathbf{z}_2) = \begin{bmatrix} a_1 \mathbf{I} & a_2 \mathbf{I} & \dots & a_N \mathbf{I} \end{bmatrix} Cov \begin{pmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{bmatrix}, \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_N \end{bmatrix} \end{pmatrix} \begin{bmatrix} b_1 \mathbf{I} \\ b_2 \mathbf{I} \\ \vdots \\ b_N \mathbf{I} \end{bmatrix}$$

$$= \begin{bmatrix} a_1 \mathbf{I} & a_2 \mathbf{I} & \dots & a_N \mathbf{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2 & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \boldsymbol{\Sigma}_N \end{bmatrix} \begin{bmatrix} b_1 \mathbf{I} \\ b_2 \mathbf{I} \\ \vdots \\ b_N \mathbf{I} \end{bmatrix}$$
$$= \sum_{\alpha=1}^{N} a_{\alpha} b_{\alpha} \boldsymbol{\Sigma}_{\alpha}.$$

Lemma 4.5. Let $\{\mathbf{x}_{\alpha}^{(i)}\}$ for $\alpha = 1, \ldots, N_i$, $i = 1, \ldots, q$ be independent samples from $\mathcal{N}(\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}_i)$ for i = 1, 2, respectively. We suppose $N_1 < N_2$ and define

$$\mathbf{y}_{\alpha} = \mathbf{x}_{\alpha}^{(1)} - \sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)} + \frac{1}{\sqrt{N_{1}N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)} - \frac{1}{N_{2}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)},$$

for $\alpha = 1, ..., N_1$. Then we have

$$\bar{\mathbf{y}} = \frac{1}{N_1} \sum_{\alpha=1}^{N_1} \mathbf{y}_{\alpha} = \bar{\mathbf{x}}_{\alpha}^{(1)} - \bar{\mathbf{x}}_{\alpha}^{(2)}$$

and

$$Cov(\mathbf{y}_{\alpha}, \mathbf{y}_{\alpha'}) = \begin{cases} \mathbf{\Sigma}_1 + \frac{N_1}{N_2} \mathbf{\Sigma}_2, & \alpha = \alpha', \\ \mathbf{0}, & otherwise. \end{cases}$$

Proof. We have

$$\begin{split} &\bar{\mathbf{y}} = \frac{1}{N_1} \sum_{\alpha=1}^{N_1} \mathbf{y}_{\alpha} \\ &= \frac{1}{N_1} \sum_{\alpha=1}^{N_1} \left(\mathbf{x}_{\alpha}^{(1)} - \sqrt{\frac{N_1}{N_2}} \mathbf{x}_{\alpha}^{(2)} + \frac{1}{\sqrt{N_1 N_2}} \sum_{\beta=1}^{N_1} \mathbf{x}_{\beta}^{(2)} - \frac{1}{N_2} \sum_{\gamma=1}^{N_2} \mathbf{x}_{\gamma}^{(2)} \right) \\ &= \bar{\mathbf{x}}^{(1)} - \bar{\mathbf{x}}^{(2)} + \frac{1}{N_1} \sum_{\alpha=1}^{N_1} \left(\sqrt{\frac{N_1}{N_2}} \mathbf{x}_{\alpha}^{(2)} + \frac{1}{\sqrt{N_1 N_2}} \sum_{\beta=1}^{N_1} \mathbf{x}_{\beta}^{(2)} \right) \\ &= \bar{\mathbf{x}}^{(1)} - \bar{\mathbf{x}}^{(2)} + \frac{1}{N_1} \sum_{\alpha=1}^{N_1} \sqrt{\frac{N_1}{N_2}} \mathbf{x}_{\alpha}^{(2)} + \frac{1}{\sqrt{N_1 N_2}} \sum_{\beta=1}^{N_1} \mathbf{x}_{\beta}^{(2)} \\ &= \bar{\mathbf{x}}^{(1)} - \bar{\mathbf{x}}^{(2)}. \end{split}$$

For the covariance matrix, we only show the case of $\alpha = \alpha'$ and leave the other case as homework. The independence means the matrix $Cov(\mathbf{y}_{\alpha}, \mathbf{y}_{\alpha})$ has the form of

$$\begin{bmatrix} \boldsymbol{\Sigma}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \times \end{bmatrix},$$

which means we only needs to focus on the covariance matrix of

$$\begin{split} \mathbf{z}_{\alpha} &= -\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)} + \frac{1}{\sqrt{N_{1}N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)} - \frac{1}{N_{1}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)} \\ &= \sum_{\gamma=1}^{\alpha-1} \left(\frac{1}{N_{1}N_{2}} - \frac{1}{N_{2}} \right) \mathbf{x}_{\gamma}^{(2)} + \left(\frac{1}{N_{1}N_{2}} - \frac{1}{N_{2}} - \sqrt{\frac{N_{1}}{N_{2}}} \right) \mathbf{x}_{\alpha}^{(2)} \end{split}$$

$$+ \sum_{\gamma=\alpha+1}^{N_1} \left(\frac{1}{N_1 N_2} - \frac{1}{N_2} \right) \mathbf{x}_{\gamma}^{(2)} + \sum_{\gamma=N_1+1}^{N_2} \left(-\frac{1}{N_2} \right) \mathbf{x}_{\gamma}^{(2)}$$

Lemma 4.4 means

$$\operatorname{Cov}(\mathbf{z}_{\alpha}, \mathbf{z}_{\alpha}) = \left((\alpha - 1) \left(\frac{1}{N_{1} N_{2}} - \frac{1}{N_{2}} \right)^{2} + \left(\frac{1}{N_{1} N_{2}} - \frac{1}{N_{2}} - \sqrt{\frac{N_{1}}{N_{2}}} \right)^{2} + (N - \alpha) \left(\frac{1}{N_{1} N_{2}} - \frac{1}{N_{2}} \right)^{2} + (N_{2} - N_{1}) \sum_{\gamma = N_{1} + 1}^{N_{2}} \left(-\frac{1}{N_{2}} \right)^{2} \right) \mathbf{\Sigma}_{2} = \frac{N_{1}}{N_{2}} \mathbf{\Sigma}_{2},$$

which means $Cov(\mathbf{y}_{\alpha}, \mathbf{y}_{\alpha}) = \mathbf{\Sigma}_1 + \frac{N_1}{N_2} \mathbf{\Sigma}_2$.

5 Sample Correlation Coefficients

Lemma 5.1. If $y_1, ..., y_N$ are independently distributed, if

$$\mathbf{y}_{lpha} = egin{bmatrix} \mathbf{y}_{lpha}^{(1)} \ \mathbf{y}_{lpha}^{(2)} \end{bmatrix}$$

has the density $f(\mathbf{y}_{\alpha})$ and if the conditional density of $\mathbf{y}_{\alpha}^{(2)}$ given $\mathbf{y}_{\alpha}^{(1)}$ is $f(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)})$ for $\alpha = 1, \dots, n$. Then in the conditional distribution of $\mathbf{y}_{1}^{(2)}, \dots, \mathbf{y}_{N}^{(2)}$ given $\mathbf{y}_{1}^{(1)}, \dots, \mathbf{y}_{N}^{(1)}$, the random vectors $\mathbf{y}_{1}^{(1)}, \dots, \mathbf{y}_{N}^{(1)}$ are independent and the density of $\mathbf{y}_{\alpha}^{(2)}$ is $f(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)})$.

Proof. The marginal density of $\mathbf{y}_1^{(1)}, \dots, \mathbf{y}_N^{(1)}$ is

$$\prod_{\alpha=1}^{N} f_1(\mathbf{y}_{\alpha}^{(1)})$$

where $f_1(\mathbf{y}_{\alpha}^{(1)})$ is the marginal density of $\mathbf{y}_{\alpha}^{(1)}$, and the conditional density of $\mathbf{y}_1^{(2)}, \dots, \mathbf{y}_N^{(2)}$ given $\mathbf{y}_1^{(1)}, \dots, \mathbf{y}_N^{(1)}$ is

$$\frac{\prod_{\alpha=1}^{N} f(\mathbf{y}_{\alpha})}{\prod_{\alpha=1}^{N} f_{1}(\mathbf{y}_{\alpha}^{(1)})} = \prod_{\alpha=1}^{N} \frac{f(\mathbf{y}_{\alpha}^{(1)}, \mathbf{y}_{\alpha}^{(2)})}{f_{1}(\mathbf{y}_{\alpha}^{(1)})} = \prod_{\alpha=1}^{N} f(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)}).$$

Theorem 5.1. If the pairs $(z_{11}, z_{21}), \ldots, (z_{1n}, z_{2n})$ are independent and each pair are distributed according to

$$\begin{bmatrix} z_{1\alpha} \\ z_{2\alpha} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix} \right), \quad \text{where } \alpha = 1, \dots, n,$$

then given $z_{11}, z_{12}, \ldots, z_{1n}$, the conditional distributions of

$$b = \frac{\sum_{\alpha=1}^{n} z_{2\alpha} z_{1\alpha}}{\sum_{i=1}^{n} z_{1\alpha}^{2}} \quad and \quad \frac{u}{\sigma^{2}} = \sum_{\alpha=1}^{n} \frac{(z_{2\alpha} - bz_{1\alpha})^{2}}{\sigma^{2}}$$

are $\mathcal{N}\left(\beta, \sigma^2/c^2\right)$ and χ^2 -distribution with n-1 degrees of freedom, respectively; and b and u are independent, where

$$\beta = \frac{\rho \sigma_2}{\sigma_1}, \quad \sigma^2 = \sigma_2^2 (1 - \rho^2) \quad and \quad c^2 = \sum_{i=1}^n z_{1\alpha}^2.$$

Proof. The conditional distribution of $z_{2\alpha}$ given $z_{1\alpha}$ is $\mathcal{N}(\beta z_{1\alpha}, \sigma^2)$. Let $\mathbf{v}_i = [z_{i1}, \dots, z_{in}]^{\top}$ for i = 1, 2. Lemma 5.1 means the density of \mathbf{v}_2 given \mathbf{v}_1 is $\mathcal{N}(\beta \mathbf{v}_1, \sigma^2 \mathbf{I})$ since z_{21}, \dots, z_{2n} are independent. We also have

$$\mathbf{v}_1^{\top}(\mathbf{v}_2 - b\mathbf{v}_1) = \mathbf{v}_1^{\top} \left(\mathbf{v}_2 - \frac{\mathbf{v}_1^{\top} \mathbf{v}_2}{\mathbf{v}_1^{\top} \mathbf{v}_1} \mathbf{v}_1 \right) = 0$$

and

$$u = (\mathbf{v}_2 - b\mathbf{v}_1)^\top (\mathbf{v}_2 - b\mathbf{v}_1) = \mathbf{v}_2^\top \mathbf{v}_2 - 2b\mathbf{v}_1^\top \mathbf{v}_2 + b^2\mathbf{v}_2^\top = \mathbf{v}_2^\top \mathbf{v}_2 - b^2\mathbf{v}_1^\top \mathbf{v}_1.$$

Apply Theorem 3.3 with $x_{\alpha} = z_{2\alpha}$ and $y_{\alpha} = \sum_{\gamma=1}^{n} c_{\alpha\gamma} z_{2\gamma}$ for $\alpha = 1, ..., n$, where the first row of orthogonal matrix **C** is $(1/c)\mathbf{v}_{1}^{\top}$. Then $y_{1}, ..., y_{n}$ are independently normally distributed with variance σ^{2} and means

$$\mathbb{E}[y_1] = \sum_{\gamma=1}^n c_{1\gamma} \mathbb{E}[z_{2\gamma}] = \sum_{\gamma=1}^n c_{1\gamma} \beta z_{1\gamma} = \beta c,$$

and

$$\mathbb{E}[y_{\alpha}] = \sum_{\gamma=1}^{n} c_{\alpha\gamma} \mathbb{E}[z_{2\gamma}] = \sum_{\gamma=1}^{n} c_{\alpha\gamma} \beta z_{1\gamma} = 0.$$

Thus, we have

$$b = \frac{\sum_{\alpha=1}^{n} z_{2\alpha} z_{1\alpha}}{\sum_{i=1}^{n} z_{1\alpha}^{2}} = \frac{\sum_{\alpha=1}^{n} c z_{2\alpha} c_{1\alpha}}{c^{2}} = \frac{y_{1}}{c} \sim \mathcal{N}\left(\beta, \frac{\sigma^{2}}{c^{2}}\right).$$

and

$$u = \sum_{\alpha=1}^{n} z_{2\alpha}^{2} - b^{2} \sum_{\alpha=1}^{n} z_{1\alpha}^{2} = \sum_{\alpha=1}^{n} y_{\alpha}^{2} - y_{1}^{2} = \sum_{\alpha=2}^{n} y_{\alpha}^{2},$$

which is independent of b. Since we have $y_{\alpha} \sim \mathcal{N}(0, \sigma^2)$ for $\alpha = 2, ..., n$, the random variable u/σ^2 has a χ^2 -distribution with n-1 degrees of freedom.

Theorem 5.2. If x and y are independently distributed, x having the distribution $\mathcal{N}(0,1)$ and y having the χ^2 -distribution with m degrees of freedom, then $t = x/\sqrt{y/m}$ (has t-distribution with m degrees of freedom) has the density

$$\frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi}\Gamma(\frac{m}{2})}\left(1+\frac{t^2}{m}\right)^{-\frac{m+1}{2}}.$$

Proof. The joint density of x and y is

$$f_{x,y}(x,y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \cdot \frac{1}{2^{\frac{m}{2}} \Gamma(\frac{m}{2})} y^{\frac{m}{2}-1} \exp\left(-\frac{y}{2}\right).$$

The definition of t means $x = t\sqrt{y/m}$, then the joint density of t and y is

$$f_{t,y}(t,y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2 y}{2m}\right) \cdot \frac{1}{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} \exp\left(-\frac{y}{2}\right) \cdot \frac{\mathrm{d}t \sqrt{y/m}}{\mathrm{d}t}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2 y}{2m}\right) \cdot \frac{1}{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} \exp\left(-\frac{y}{2}\right) \cdot \left(\frac{y}{m}\right)^{\frac{1}{2}}$$

$$= \frac{1}{2^{\frac{m+1}{2}} \sqrt{m\pi} \Gamma\left(\frac{m}{2}\right)} \exp\left(-\left(\frac{t^2}{2m} + \frac{1}{2}\right) y\right) \cdot y^{\frac{m-1}{2}}.$$
(6)

The density of t can be obtained by integrating out y. Consider the expression of gamma function

$$\Gamma(\alpha) = \int_0^{+\infty} \tilde{t}^{\alpha - 1} \exp(-\tilde{t}) d\tilde{t}$$

$$= \int_0^{+\infty} \left(\frac{t^2}{2m} + \frac{1}{2}\right)^{\alpha - 1} y^{\alpha - 1} \exp\left(-\left(\frac{t^2}{2m} + \frac{1}{2}\right)y\right) \left(\frac{t^2}{2m} + \frac{1}{2}\right) dy$$

$$= \left(\frac{t^2}{2m} + \frac{1}{2}\right)^{\alpha} \int_0^{+\infty} y^{\alpha - 1} \exp\left(-\left(\frac{t^2}{2m} + \frac{1}{2}\right)y\right) dy$$
(7)

where we use the substitution

$$\tilde{t} = \left(\frac{t^2}{2m} + \frac{1}{2}\right)y.$$

Connecting (6) and (7) with $\alpha = \frac{m+1}{2}$, we have

$$f_{t}(t) = \int_{0}^{+\infty} f_{t,y}(t,y) \, \mathrm{d}y$$

$$= \frac{1}{2^{\frac{m}{2}} \sqrt{m\pi} \, \Gamma\left(\frac{m+1}{2}\right)} \int_{0}^{+\infty} \exp\left(-\left(\frac{t^{2}}{2m} + \frac{1}{2}\right)y\right) \cdot y^{\frac{m-1}{2}} \, \mathrm{d}y$$

$$= \frac{1}{2^{\frac{m}{2}} \sqrt{m\pi} \, \Gamma\left(\frac{m+1}{2}\right)} \left(\frac{t^{2}}{2m} + \frac{1}{2}\right)^{-\frac{m+1}{2}} \, \Gamma\left(\frac{m+1}{2}\right)$$

$$= \frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m\pi} \, \Gamma\left(\frac{m}{2}\right)} \left(\frac{t^{2}}{m} + 1\right)^{-\frac{m+1}{2}}.$$

Theorem 5.3. Let us consider the likelihood ratio test of the hypothesis that $\rho = \rho_0$ based on a sample $\mathbf{x}_1, \dots, \mathbf{x}_N$ from the bivariate normal distribution

$$\mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_1\sigma_2\rho \\ \sigma_1\sigma_2\rho & \sigma_2^2 \end{bmatrix}\right).$$

The set Ω consists of $\mu_1, \mu_2, \sigma_1, \sigma_2$ and ρ such that

$$\sigma_1 > 0$$
, $\sigma_2 > 0$ and $-1 < \rho < 1$

and the set ω is the subset for which $\rho = \rho_0$. The likelihood ratio criterion is

$$\frac{\sup_{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup_{\Omega} L(\mathbf{x}, \boldsymbol{\theta})} = \left(\frac{(1 - \rho_0^2)(1 - r^2)}{(1 - \rho_0 r)^2}\right)^{\frac{N}{2}},$$

where

$$r = \frac{a_{12}}{\sqrt{a_{11}}\sqrt{a_{22}}}, \quad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \quad and \quad \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}.$$

Proof. We have shown in the proof of Theorem 4.1 that the likelihood maximized in Ω is

$$\max_{\boldsymbol{\mu} \in \mathbb{R}^p, \boldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}_{\Omega}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2} pN \right)$$

where

$$\boldsymbol{\Sigma}_{\Omega} = \frac{1}{N} \mathbf{A} \quad \text{with} \quad \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}, \quad \mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{and} \quad p = 2.$$

Then we have

$$\det(\mathbf{\Sigma}_{\Omega}) = \frac{a_{11}a_{22} - a_{12}a_{21}}{N^2},$$

which implies

$$\max_{\boldsymbol{\mu} \in \mathbb{R}^p, \boldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{N^N \exp{(-N)}}{(2\pi)^N \left(a_{11}a_{22} - a_{12}a_{21}\right)^{\frac{N}{2}}} = \frac{N^N \exp{(-N)}}{(2\pi)^N (1 - r^2)^{\frac{N}{2}} a_{11}^{\frac{N}{2}} a_{22}^{\frac{N}{2}}}.$$

Let $\sigma^2 = \sigma_1 \sigma_2$ and $\tau = \sigma_1 / \sigma_2$, then the likelihood function under the null hypothesis $(\rho = \rho_0)$ is

$$\frac{1}{(2\pi)^N (1-\rho_0^2)^{\frac{N}{2}} (\sigma^2)^N} \exp\left(-\frac{a_{11}/\tau + \tau/a_{22} - 2\rho_0 a_{12}}{2\sigma^2 (1-\rho_0^2)}\right)$$
(8)

The maximum of (8) with respect to τ occurs at

$$\hat{\tau} = \sqrt{a_{11}/a_{22}},$$

then the concentrated likelihood is

$$\frac{1}{(2\pi)^N (1-\rho_0^2)^{\frac{N}{2}} (\sigma^2)^N} \exp\left(-\frac{\sqrt{a_{11}}\sqrt{a_{22}} (1-\rho_0 r)}{\sigma^2 (1-\rho_0^2)}\right). \tag{9}$$

The maximum of (9) occurs at

$$\hat{\sigma}^2 = \frac{\sqrt{a_{11}}\sqrt{a_{22}}(1-\rho_0 r)}{N(1-\rho_0^2)}.$$

The likelihood ratio criterion is, therefore,

$$\frac{\sup_{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup_{\Omega} L(\mathbf{x}, \boldsymbol{\theta})} = \left(\frac{(1 - \rho_0^2)(1 - r^2)}{(1 - \rho_0 r)^2}\right)^{\frac{N}{2}}.$$

Lemma 5.2. For random vector

 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$

where

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix} \quad and \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{pp} \end{bmatrix}.$$

Then $\mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)(x_k - \mu_k)] = 0$ and $\mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)(x_k - \mu_k)(x_l - \mu_l)] = \sigma_{ij}\sigma_{kl} + \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk}$.

Theorem 5.4. Let

$$\mathbf{A}(n) = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N})^{\top},$$

where $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independently distributed according to $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and n = N - 1. Then the limiting distribution of

$$\mathbf{B}(n) = \frac{1}{\sqrt{n}} (\mathbf{A}(n) - n\mathbf{\Sigma})$$

is normal with mean $\mathbf{0}$ and covariance $\mathbb{E}[b_{ij}(n)b_{kl}(n)] = \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk}$.

Proof. We have

$$\mathbf{A}(n) = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top},$$

where $\mathbf{z}_1, \dots, \mathbf{z}_n$ are distributed according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. We arrange the elements of $\mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ in a vector such as

$$\mathbf{y}_{lpha} = egin{bmatrix} z_{1lpha}^2 \ z_{1lpha}z_{2lpha} \ dots \ z_{2lpha}^2 \ dots \ z_{plpha}^2 \end{bmatrix}.$$

The second moments of \mathbf{y}_{α} can be deduced from the forth moments of \mathbf{z}_{α} by using Lemma 5.2, that is,

$$\mathbb{E}[z_{i\alpha}z_{j\alpha}] = \sigma_{ij}, \qquad \mathbb{E}[z_{i\alpha}z_{j\alpha}z_{k\alpha}z_{l\alpha}] = \sigma_{ij}\sigma_{kl} + \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk},$$

and

$$\mathbb{E}[(z_{i\alpha}z_{j\alpha} - \sigma_{ij})(z_{k\alpha}z_{l\alpha} - \sigma_{kl})] = \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk}. \tag{10}$$

Arranging the elements of Σ and $\mathbf{A}(n)$ as

$$\boldsymbol{\nu} = \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \vdots \\ \sigma_{22} \\ \vdots \\ \sigma_{pp} \end{bmatrix} \quad \text{and} \quad \mathbf{w}(n) = \begin{bmatrix} a_{11}(n) \\ a_{12}(n) \\ \vdots \\ a_{22}(n) \\ \vdots \\ a_{pp}(n) \end{bmatrix}$$

we obtain

$$\frac{1}{\sqrt{n}}(\mathbf{w}(n) - n\boldsymbol{\nu}) = \frac{1}{\sqrt{n}} \sum_{n=1}^{n} (\mathbf{y}_{\alpha} - \boldsymbol{\nu}).$$

Since $\mathbb{E}[\mathbf{y}_{\alpha}] = \boldsymbol{\mu}$ and covariance of \mathbf{y}_{α} satisfies (10), the multivariate central limit theorem implies the desired result.

Remark 5.1. In the analysis for the asymptotic distribution of sample correlation, we apply this theorem with

$$\mathbf{A}(n) = \mathbf{C}(n) \quad and \quad \mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}.$$

Then the covariance matrix of limiting distribution of the vector

$$\sqrt{n}(\mathbf{u}(n) - \mathbf{b}) = \frac{1}{\sqrt{n}} \left(\begin{bmatrix} c_{ii}(n) \\ c_{jj}(n) \\ c_{ij}(n) \end{bmatrix} - n\mathbf{b} \right)$$

is

$$\begin{bmatrix} \sigma_{11}\sigma_{11} + \sigma_{11}\sigma_{11} & \sigma_{12}\sigma_{12} + \sigma_{12}\sigma_{12} & \sigma_{11}\sigma_{12} + \sigma_{12}\sigma_{11} \\ \sigma_{12}\sigma_{12} + \sigma_{12}\sigma_{12} & \sigma_{22}\sigma_{22} + \sigma_{22}\sigma_{22} & \sigma_{21}\sigma_{22} + \sigma_{22}\sigma_{21} \\ \sigma_{11}\sigma_{12} + \sigma_{12}\sigma_{11} & \sigma_{21}\sigma_{22} + \sigma_{22}\sigma_{21} & \sigma_{11}\sigma_{22} + \sigma_{12}\sigma_{21} \end{bmatrix} = \begin{bmatrix} 2 & 2\rho^2 & 2\rho \\ 2\rho^2 & 2 & 2\rho \\ 2\rho & 2\rho & 1+\rho^2 \end{bmatrix}.$$

Theorem 5.5. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be a sample from $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and partition the variables as

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \quad and \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}.$$

Define $\mathbf{B} = \Sigma_{12}\Sigma_{22}^{-1}$, $\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$,

$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{\mathbf{x}}^{(1)} \\ \bar{\mathbf{x}}^{(2)} \end{bmatrix} = \frac{1}{N} \sum_{\alpha=1}^{N} \begin{bmatrix} \mathbf{x}_{\alpha}^{(1)} \\ \mathbf{x}_{\alpha}^{(2)} \end{bmatrix} \quad and \quad \mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Then the maximum likelihood estimators of $\mu^{(1)}$, $\mu^{(2)}$, B, $\Sigma_{11.2}$ and Σ_{22} are

$$\hat{\boldsymbol{\mu}}^{(1)} = \bar{\mathbf{x}}^{(1)}, \quad \hat{\boldsymbol{\mu}}^{(2)} = \bar{\mathbf{x}}^{(2)}, \quad \hat{\mathbf{B}} = \mathbf{A}_{12}\mathbf{A}_{22}^{-1},$$

$$\hat{\boldsymbol{\Sigma}}_{11.2} = \frac{1}{N}(\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21}) \quad and \quad \hat{\boldsymbol{\Sigma}}_{22} = \frac{1}{N}\mathbf{A}_{22}.$$

Proof. The correspondence between Σ and $(\Sigma_{11.2}, \mathbf{B}, \Sigma_{22})$ is one-by-one since

$$\Sigma_{12} = \mathbf{B}\Sigma_{22}$$
 and $\Sigma_{11} = \Sigma_{11.2} + \mathbf{B}\Sigma_{22}\mathbf{B}^{\top}$,

which implies the desired result.

6 The Wishart Distribution

Theorem 6.1. Let $\mathbf{z}_1, \ldots, \mathbf{z}_n$ be independently distributed, each according to $\mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, where $n \geq p$; let

$$\mathbf{A} = \sum_{lpha=1}^{n} \mathbf{z}_{lpha} \mathbf{z}_{lpha}^{ op} = \mathbf{T}^* \mathbf{T}^{* op},$$

where $t_{ij}^* = 0$ for i < j, and $t_{ii}^* > 0$ for i = 1, ..., p. Then the density of \mathbf{T}^* is

$$\frac{\prod_{i=1}^{p} t_{ii}^{*n-i} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{T}^{*} \mathbf{T}^{*\top}\right)\right)}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(n-1)}{4}} \left(\det(\boldsymbol{\Sigma}\right))^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)}.$$

Proof. Let \mathbf{C} be the lower triangular matrix $(c_{ij} = 0, i < j)$ such that $\mathbf{\Sigma} = \mathbf{C}\mathbf{C}^{\top}$ and $c_{ii} > 0$. Define $\mathbf{y}_{\alpha} = \mathbf{C}^{-1}\mathbf{z}_{\alpha}$ for $\alpha = 1, \dots, n$, which are be independently distributed, each according to $\mathcal{N}_{p}(\mathbf{0}, \mathbf{I})$. We have $\mathbf{T}^{*}\mathbf{T}^{*} = \sum_{\alpha=1}^{n} \mathbf{C}\mathbf{y}_{\alpha}\mathbf{y}_{\alpha}^{\top}\mathbf{C}^{\top} = \mathbf{C}\mathbf{T}\mathbf{T}^{\top}\mathbf{C}^{\top}$. Let $\mathbf{T} = \mathbf{C}^{-1}\mathbf{T}^{*}$, then the matrix \mathbf{T} is the lower triangular with $t_{ii} > 0$ and we have

$$\mathbf{T}\mathbf{T}^{\top} = \mathbf{C}^{-1}\mathbf{T}^{*}\mathbf{T}^{*^{\top}}\mathbf{C}^{-1} = \sum_{\alpha=1}^{n} \mathbf{C}^{-1}\mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\mathbf{C}^{-1} = \sum_{\alpha=1}^{n} \mathbf{y}_{\alpha}\mathbf{y}_{\alpha}^{\top}.$$

The lemma in slides have shown that random variables t_{i1}, \ldots, t_{ii-1} are independently distributed and t_{ij} is distributed according to $\mathcal{N}(0,1)$ for i > j; and t_{ii} has the χ^2 -distribution with n-i+1 degrees of freedom. Hence, the density of $w = t_{ii}^2$ is

$$\frac{1}{2^{\frac{1}{2}(n+1-i)}\Gamma\left(\frac{1}{2}(n+1-i)\right)}w^{\frac{1}{2}(n+1-i)-1}\exp\left(-\frac{w}{2}\right)$$

and the density of $t_{ii} = \sqrt{w}$ is (using $dw/dt_{ii} = 2t_{ii}$)

$$\frac{1}{2^{\frac{1}{2}(n+1-i)}\Gamma\left(\frac{1}{2}(n+1-i)\right)}(t_{ii}^2)^{\frac{1}{2}(n+1-i)-1}\exp\left(-\frac{t_{ii}^2}{2}\right)\cdot(2t_{ii}) = \frac{1}{2^{\frac{n-i-1}{2}}\Gamma\left(\frac{1}{2}(n+1-i)\right)}t_{ii}^{n-i}\exp\left(-\frac{t_{ii}^2}{2}\right)$$

Then the joint density of t_{ij} for j = 1, ..., i, i = 1, ..., p is

$$\begin{split} &\prod_{i=1}^{p} \prod_{j=1}^{i-1} \frac{\exp\left(-\frac{1}{2}t_{ij}^{2}\right)}{\sqrt{2\pi}} \cdot \prod_{i=1}^{p} \frac{t_{ii}^{n-i} \exp\left(-\frac{1}{2}t_{ii}^{2}\right)}{2^{\frac{n-i-1}{2}}} \Gamma\left(\frac{1}{2}(n+1-i)\right) \\ &= \prod_{i=1}^{p} \frac{\exp\left(-\frac{1}{2}\sum_{j=1}^{i-1}t_{ij}^{2}\right)}{(2\pi)^{\frac{i-1}{2}}} \cdot \prod_{i=1}^{p} \frac{t_{ii}^{n-i} \exp\left(-\frac{t_{ii}^{2}}{2}\right)}{2^{\frac{n-i-1}{2}}} \Gamma\left(\frac{1}{2}(n+1-i)\right) \\ &= \prod_{i=1}^{p} \frac{\exp\left(-\frac{1}{2}\sum_{j=1}^{i}t_{ij}^{2}\right)t_{ii}^{n-i}}{2^{\frac{n}{2}-1}\pi^{\frac{i-1}{2}}} \Gamma\left(\frac{1}{2}(n+1-i)\right) \\ &= \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^{p}\sum_{j=1}^{i}t_{ij}^{2}\right)\prod_{i=1}^{p}t_{ii}^{n-i}}{2^{\frac{n(n-2)}{2}}\pi^{\frac{p(p-1)}{4}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}. \end{split}$$

The Jacobian of the transformation from T to $T^* = CT$ can be written as

$$\begin{bmatrix} t_{11}^* \\ t_{21}^* \\ t_{22}^* \\ \vdots \\ t_{p1}^* \\ \vdots \\ t_{pp}^* \end{bmatrix} = \begin{bmatrix} c_{11} & 0 & 0 & \cdots & 0 & \cdots & 0 \\ \times & c_{22} & 0 & \cdots & 0 & \cdots & 0 \\ \times & \times & c_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ \times & \times & \times & \cdots & c_{pp} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \times & \times & \times & \times & \cdots & c_{pp} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \times & \times & \times & \times & \cdots & \times & \dots & c_{pp} \end{bmatrix} \begin{bmatrix} t_{11} \\ t_{21} \\ t_{22} \\ \vdots \\ t_{p1} \\ \vdots \\ t_{pp} \end{bmatrix} .$$

Since the matrix of the transformation is triangular, its determinant is the product of the diagonal elements, namely, $\prod_{i=1}^p c_{ii}^i$. The Jacobian of the transformation from **T** to **T*** is the reciprocal of the determinant. We also have $t_{ii} = t_{ii}^*/c_{ii}$, $\prod_{i=1}^p c_{ii}^2 = \det(\mathbf{C}) \det(\mathbf{C}^\top) = \det(\mathbf{\Sigma})$ and

$$\sum_{i=1}^{p} \sum_{j=1}^{i} t_{ij}^{2} = \operatorname{tr} \left(\mathbf{T} \mathbf{T}^{\top} \right) = \operatorname{tr} \left(\mathbf{C}^{-1} \mathbf{T}^{*} \mathbf{T}^{*^{\top}} \mathbf{C}^{-\top} \right)$$
$$= \operatorname{tr} \left(\mathbf{T}^{*} \mathbf{T}^{*^{\top}} \mathbf{C}^{-\top} \mathbf{C}^{-1} \right) = \operatorname{tr} \left(\mathbf{T}^{*} \mathbf{T}^{*^{\top}} \mathbf{\Sigma}^{-1} \right)$$

Then the density of \mathbf{T}^* is

$$\frac{\exp\left(-\frac{1}{2}\operatorname{tr}\left(\mathbf{T}^{*}\mathbf{T}^{*\top}\boldsymbol{\Sigma}^{-1}\right)\right)\prod_{i=1}^{p}(t_{ii}^{*}/c_{ii})^{n-i}}{2^{\frac{p(n-2)}{2}}\pi^{\frac{p(p-1)}{4}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}\cdot\left(\prod_{i=1}^{p}c_{ii}^{i}\right)^{-1}$$

$$=\frac{\exp\left(-\frac{1}{2}\operatorname{tr}\left(\mathbf{T}^{*}\mathbf{T}^{*\top}\boldsymbol{\Sigma}^{-1}\right)\right)\prod_{i=1}^{p}t_{ii}^{*}^{n-i}}{2^{\frac{p(n-2)}{2}}\pi^{\frac{p(p-1)}{4}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}\cdot\left(\prod_{i=1}^{p}c_{ii}\right)^{n}$$

$$=\frac{\exp\left(-\frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\mathbf{T}^{*}\mathbf{T}^{*\top}\right)\right)\prod_{i=1}^{p}t_{ii}^{*}^{*}^{n-i}}{2^{\frac{p(n-2)}{2}}\pi^{\frac{p(p-1)}{4}}\left(\det(\boldsymbol{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}.$$

Theorem 6.2. Let $\mathbf{z}_1, \dots, \mathbf{z}_n$ be independently distributed, each according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, where $n \geq p$. Then the density of $\mathbf{A} = \sum_{\alpha=1}^n \mathbf{z}_\alpha \mathbf{z}_\alpha^\top$ is

$$\frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}}\pi^{\frac{p(p-1)}{4}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}$$

for A positive definite, and 0 otherwise.

Proof. Following the proof of Theorem 6.1, we only needs to consider the transformation from \mathbf{T}^* to \mathbf{A} . The relation $\mathbf{A} = \mathbf{T}^* \mathbf{T}^{*\top}$ means we can write

$$a_{hi} = \sum_{j=1}^{i} t_{hj}^* t_{ij}^*$$
 for $h \ge i$.

Then we have

$$\frac{\partial a_{hi}}{\partial t_{kl}^*} = 0 \quad \text{for } k > i; \text{ or } k = h, l > i.$$

that is, $\partial a_{hi}/\partial t_{kl}^* = 0$ if k,l, is beyond h,i in the lexicographic ordering. The Jacobian matrix of the transformation from **A** to \mathbf{T}^* is a lower triangular matrix with diagonal elements

$$\frac{\partial a_{hh}}{\partial t_{hh}^*} = 2t_{hh}^* \quad \text{for } h = 1, \dots, p;$$

$$\frac{\partial a_{hi}}{\partial t_{hi}^*} = t_{ii}^* \quad \text{for } h > i;$$

The determinant of the Jacobian matrix is therefore

$$2^{p} \prod_{i=1}^{p} t_{ii}^{*p+1-i}$$

The Jacobian of the transformation from T^* to A is the reciprocal. Hence, the desnity of A is

$$\begin{split} &\frac{\prod_{i=1}^{p} t_{ii}^{*\,n-i} \exp\left(-\frac{1}{2} \text{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}} \left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2} (n+1-i)\right)} \cdot \left(2^{p} \prod_{i=1}^{p} t_{ii}^{*\,p+1-i}\right)^{-1} \\ &= \frac{\prod_{i=1}^{p} t_{ii}^{*\,n-p-1} \exp\left(-\frac{1}{2} \text{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{pn}{2}} \pi^{\frac{p(p-1)}{4}} \left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2} (n+1-i)\right)} \\ &= \frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}} \exp\left(-\frac{1}{2} \text{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{pn}{2}} \pi^{\frac{p(p-1)}{4}} \left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2} (n+1-i)\right)}. \end{split}$$

Corollary 6.1. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be independently distributed, each according to $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where N > p. Then the distribution of $\mathbf{S} = \frac{1}{n} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$ is $\mathcal{W}\left(\frac{1}{n}\boldsymbol{\Sigma}, n\right)$.

Proof. The matrix S has the distribution of

$$\mathbf{S} = \sum_{\alpha=1}^{n} \frac{\mathbf{z}_{\alpha}}{\sqrt{n}} \left(\frac{\mathbf{z}_{\alpha}}{\sqrt{n}} \right)^{\top},$$

where each $\frac{\mathbf{z}_1}{\sqrt{n}}, \dots, \frac{\mathbf{z}_n}{\sqrt{n}}$ are independently distributed, each according to $\mathcal{N}(\mathbf{0}, \frac{1}{n}\mathbf{I})$. Theorem 6.2 implies this corollary.

Lemma 6.1. Given **B** positive semidefinite and **A** positive definite, there exists a non-singular matrix **F** such that $\mathbf{F}^{\top}\mathbf{BF} = \mathbf{D}$ and $\mathbf{F}^{\top}\mathbf{AF} = \mathbf{I}$, where **D** is diagonal.

Proof. Let the spectral decomposition of \mathbf{A} be $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \boldsymbol{\Sigma}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^{\top}$ and $\mathbf{E} = \mathbf{U}_{\mathbf{A}} \boldsymbol{\Sigma}_{\mathbf{A}}^{-\frac{1}{2}}$, then $\mathbf{E}^{\top} \mathbf{A} \mathbf{E} = \mathbf{I}$. Let the spectral decomposition of $\mathbf{B}^* = \mathbf{E}^{\top} \mathbf{B} \mathbf{E}$ be $\mathbf{B}^* = \mathbf{U}_{\mathbf{B}^*} \boldsymbol{\Sigma}_{\mathbf{B}^*} \mathbf{U}_{\mathbf{B}^*}^{\top}$, then

$$\boldsymbol{\Sigma}_{\mathbf{B}^*} = \mathbf{U}_{\mathbf{B}^*}^\top \mathbf{B}^* \mathbf{U}_{\mathbf{B}^*} = \mathbf{U}_{\mathbf{B}^*}^\top \mathbf{E}^\top \mathbf{B} \mathbf{E} \mathbf{U}_{\mathbf{B}^*}.$$

Letting $\mathbf{F} = \mathbf{E}\mathbf{U}_{\mathbf{B}^*}$ and $\mathbf{D} = \mathbf{\Sigma}_{\mathbf{B}^*}$ proves this lemma.

Lemma 6.2. The characteristic function of chi-square distribution with the degree of freedom n is

$$\phi(t) = (1 - 2it)^{-\frac{n}{2}}.$$

Proof. Let x be distributed according to χ^2 -distribution with the degree of freedom n, then its density is

$$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2} - 1} \exp\left(-\frac{x}{2}\right).$$

We have (using the density of χ^2 -distribution with the degree of freedom 2k+n)

$$\begin{split} \phi(t) &= \mathbb{E} \left[\exp(\mathrm{i}tx) \right] \\ &= \int_0^{+\infty} \exp(\mathrm{i}tx) \cdot \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2} - 1} \exp\left(-\frac{x}{2}\right) \, \mathrm{d}x \\ &= \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \int_0^{+\infty} \left(\sum_{k=0}^{\infty} \frac{(\mathrm{i}tx)^k}{k!} \right) x^{\frac{n}{2} - 1} \exp\left(-\frac{x}{2}\right) \, \mathrm{d}x \\ &= \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \sum_{k=0}^{\infty} \frac{(\mathrm{i}t)^k}{k!} \int_0^{+\infty} x^{k + \frac{n}{2} - 1} \exp\left(-\frac{x}{2}\right) \, \mathrm{d}x \\ &= \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \sum_{k=0}^{\infty} \frac{(\mathrm{i}t)^k}{k!} \cdot 2^{k + \frac{n}{2}} \Gamma\left(k + \frac{n}{2}\right) \int_0^{+\infty} \frac{1}{2^{k + \frac{n}{2}} \Gamma\left(k + \frac{n}{2}\right)} x^{k + \frac{n}{2} - 1} \exp\left(-\frac{x}{2}\right) \, \mathrm{d}x \\ &= \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \sum_{k=0}^{\infty} \frac{(\mathrm{i}t)^k}{k!} \cdot 2^{k + \frac{n}{2}} \Gamma\left(k + \frac{n}{2}\right) \\ &= 1 + \sum_{k=1}^{\infty} \frac{(2\mathrm{i}t)^k}{k!} \cdot \prod_{j=0}^{k-1} \left(j + \frac{n}{2}\right) \\ &= (1 - 2\mathrm{i}t)^{-\frac{n}{2}}. \end{split}$$

Theorem 6.3. If $\mathbf{z}_1, \ldots, \mathbf{z}_n$ are independent, each with distribution $\mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, then the characteristic function of $a_{11}, \ldots, a_{pp}, 2a_{12}, \ldots, 2a_{p-1,p}$, where a_{ij} is the (i,j)-th element of

$$\mathbf{A} = \sum_{lpha=1}^n \mathbf{z}_lpha \mathbf{z}_lpha^ op$$

is given by $\mathbb{E}\left[\exp(\mathrm{i}\operatorname{tr}(\mathbf{A}\mathbf{\Theta}))\right] = \left(\det\left(\mathbf{I} - 2\mathrm{i}\mathbf{\Theta}\boldsymbol{\Sigma}\right)\right)^{-\frac{n}{2}}$, where $\mathbf{\Theta} \in \mathbb{R}^{p \times p}$ is symmetric.

Proof. The characteristic function of $a_{11}, \ldots, a_{pp}, 2a_{12}, \ldots, 2a_{p-1,p}$ is

$$\begin{split} & \mathbb{E}\left[\exp(\mathrm{i}\operatorname{tr}(\mathbf{A}\boldsymbol{\Theta}))\right] \\ = & \mathbb{E}\left[\exp\left(\mathrm{i}\operatorname{tr}\left(\sum_{\alpha=1}^{n}\mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\boldsymbol{\Theta}\right)\right)\right] \\ = & \mathbb{E}\left[\exp\left(\mathrm{i}\operatorname{tr}\left(\sum_{\alpha=1}^{n}\mathbf{z}_{\alpha}^{\top}\boldsymbol{\Theta}\mathbf{z}_{\alpha}\right)\right)\right] \\ = & \mathbb{E}\left[\exp\left(\mathrm{i}\sum_{\alpha=1}^{n}\mathbf{z}_{\alpha}^{\top}\boldsymbol{\Theta}\mathbf{z}_{\alpha}\right)\right] \\ = & \prod_{\alpha=1}^{n}\mathbb{E}\left[\exp\left(\mathrm{i}\mathbf{z}_{\alpha}^{\top}\boldsymbol{\Theta}\mathbf{z}_{\alpha}\right)\right] \end{split}$$

$$= (\mathbb{E} \left[\exp \left(i \mathbf{z}^{\top} \mathbf{\Theta} \mathbf{z} \right) \right] \right)^n,$$

where $\mathbf{z} \sim \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma})$. Lemma 6.1 means there exists non-singular matrix \mathbf{F} such that

$$\mathbf{F}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{F} = \mathbf{I} \quad \text{and} \quad \mathbf{F}^{\mathsf{T}} \mathbf{\Theta} \mathbf{F} = \mathbf{D},$$

where $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal. If we set $\mathbf{z} = \mathbf{F}\mathbf{y}$, then

$$\mathbb{E} \left[\exp \left(\mathbf{i} \, \mathbf{z}^{\top} \boldsymbol{\Theta} \mathbf{z} \right) \right]$$

$$= \mathbb{E} \left[\exp \left(\mathbf{i} \, \mathbf{y}^{\top} \mathbf{F}^{\top} \boldsymbol{\Theta} \mathbf{F} \mathbf{y} \right) \right]$$

$$= \mathbb{E} \left[\exp \left(\mathbf{i} \, \mathbf{y}^{\top} \mathbf{D} \mathbf{y} \right) \right]$$

$$= \mathbb{E} \left[\prod_{j=1}^{p} \exp \left(\mathbf{i} \, d_{jj} y_{j}^{2} \right) \right]$$

$$= \prod_{j=1}^{p} \mathbb{E} \left[\exp \left(\mathbf{i} \, d_{jj} y_{j}^{2} \right) \right].$$

Note that the term of $\mathbb{E}\left[\exp\left(\mathrm{i}\,d_{jj}y_j^2\right)\right]$ is the characteristic function of the χ^2 -distribution with one degree of freedom, namely $(1-2\mathrm{i}d_{jj})^{-\frac{1}{2}}$. Thus, we have

$$\mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{z}^{\top}\boldsymbol{\Theta}\mathbf{z}\right)\right] = \prod_{j=1}^{p} (1 - 2\mathrm{i}d_{jj})^{-\frac{1}{2}} = (\det(\mathbf{I} - 2\mathrm{i}\mathbf{D}))^{-\frac{1}{2}}.$$

We also have

$$\det(\mathbf{I} - 2i\mathbf{D})$$

$$= \det(\mathbf{F}^{\top} \mathbf{\Sigma}^{-1} \mathbf{F} - 2i\mathbf{F}^{\top} \mathbf{\Theta} \mathbf{F})$$

$$= \det(\mathbf{F}^{\top} (\mathbf{\Sigma}^{-1} - 2i\mathbf{\Theta}) \mathbf{F})$$

$$= (\det(\mathbf{F}))^{2} \det(\mathbf{\Sigma}^{-1} - 2i\mathbf{\Theta})$$

and $\mathbf{F}^{\top} \mathbf{\Sigma}^{-1} \mathbf{F} = \mathbf{I}$ means $\det(\mathbf{F}) = (\det(\mathbf{\Sigma}))^{\frac{1}{2}}$. Combing the above results, we obtain

$$\det(\mathbf{I} - 2i\mathbf{D}) = \det(\mathbf{\Sigma}) \det(\mathbf{\Sigma}^{-1} - 2i\mathbf{\Theta}) = \det(\mathbf{I} - 2i\mathbf{\Theta}\mathbf{\Sigma})$$

and

$$\mathbb{E}\left[\exp(\mathrm{i}\operatorname{tr}(\mathbf{A}\boldsymbol{\Theta}))\right] = \left(\det\left(\mathbf{I} - 2\mathrm{i}\boldsymbol{\Theta}\boldsymbol{\Sigma}\right)\right)^{-\frac{n}{2}}.$$

Theorem 6.4. Let **A** and Σ be partitioned into q and p-q rows and columns,

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \qquad \mathbf{\Sigma} = egin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}$$

If **A** is distributed according to $W(\Sigma, n)$, then **A**₁₁ is distributed according to $W(\Sigma_{11}, n)$.

Proof. The assumption means **A** is distributed as $\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where the \mathbf{z}_{α} are independent, each with the distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$. Partition \mathbf{z}_{α} into subvectors of q and p-q components such that

$$\mathbf{z}_{lpha} = egin{bmatrix} \mathbf{z}_{lpha}^{(1)} \ \mathbf{z}_{lpha}^{(2)} \end{bmatrix}.$$

Then $\mathbf{z}_1^{(1)}, \dots, \mathbf{z}_{\alpha}^{(n)}$ are independent, each with the distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{11})$, and \mathbf{A}_{11} is distributed as

$$\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha}^{(1)} \left(\mathbf{z}_{\alpha}^{(1)}\right)^{\top},$$

which has the distribution $\mathcal{W}(\Sigma_{11}, n)$.

Theorem 6.5. Let **A** and Σ be partitioned into p_1, \ldots, p_q rows and columns with $p = p_1, \ldots, p_q$,

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1q} \ dots & \ddots & dots \ \mathbf{A}_{q1} & \cdots & \mathbf{A}_{qq} \end{bmatrix}, \qquad \mathbf{\Sigma} = egin{bmatrix} \mathbf{\Sigma}_{11} & \cdots & \mathbf{\Sigma}_{1q} \ dots & \ddots & dots \ \mathbf{\Sigma}_{q1} & \cdots & \mathbf{\Sigma}_{qq} \end{bmatrix}$$

If $\Sigma = \mathbf{0}$ for $i \neq j$ and if $\mathbf{A} \sim \mathcal{W}(\Sigma, n)$, then $\mathbf{A}_{11}, \ldots, \mathbf{A}_{qq}$ are independently distributed and $\mathbf{A}_{jj} \sim \mathcal{W}(\Sigma_{jj}, n)$ for $j = 1, \ldots, q$.

Proof. The assumption means **A** is distributed as $\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where the \mathbf{z}_{α} are independent, each with the distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$. Partition \mathbf{z}_{α} into subvectors

$$\mathbf{z}_lpha = egin{bmatrix} \mathbf{z}_lpha^{(1)} \ dots \ \mathbf{z}_lpha^{(q)} \end{bmatrix}.$$

as \mathbf{A} and $\mathbf{\Sigma}$ be portioned. Since $\mathbf{\Sigma}_{ij} = \mathbf{0}$, the sets $\mathbf{z}_1^{(1)}, \dots, \mathbf{z}_n^{(1)}, \dots, \mathbf{z}_1^{(q)}, \dots, \mathbf{z}_n^{(q)}$ are independent. Then $\mathbf{A}_{11} = \sum_{\alpha=1}^n \mathbf{z}_{\alpha}^{(1)} \left(\mathbf{z}_{\alpha}^{(1)}\right)^{\top}, \dots, \mathbf{A}_{qq} = \sum_{\alpha=1}^n \mathbf{z}_{\alpha}^{(q)} \left(\mathbf{z}_{\alpha}^{(q)}\right)^{\top}$ are independent. The rest of the proof follows from Theorem 6.4.

Theorem 6.6. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, each with distribution $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & 0 & \cdots & 0 \\ 0 & \sigma_{22} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{pp} \end{bmatrix}$$

then the density of the sample correlation coefficients is given by

$$\frac{\left(\Gamma\left(\frac{n}{2}\right)\right)^{p}\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}.$$

where n = N - 1.

Proof. The density of \mathbf{A} is

$$\frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\sum_{i=1}^{p}\frac{a_{ii}}{\sigma_{ii}}\right)}{2^{\frac{np}{2}}\prod_{i=1}^{p}\sigma_{ii}^{\frac{n}{2}}\Gamma_{p}\left(\frac{n}{2}\right)}.$$

We consider the transformation

- 1. $a_{ij} = \sqrt{a_{ii}} \sqrt{a_{jj}} r_{ij}$ for i < j,
- 2. $a_{ii} = a_{ii}$ otherwise,

which is from

$$\{r_{i,j}: i < j, i, j = 1, \dots, p\} \cup \{a_{i,j}: i = 1, \dots, p\}$$

to

$${a_{ij} : i < j, i, j = 1, \dots, p} \cup {a_{ii} : i = 1, \dots, p}.$$

The determinant of Jacobian for this transformation is

$$\prod_{i=1}^{p} \prod_{j=1}^{i-1} \sqrt{a_{ii}} \sqrt{a_{jj}} = \prod_{i=1}^{p} a_{ii}^{\frac{p-1}{2}}.$$

The joint density of $\{r_{ij} : i < j, i, j = 1, ..., p\} \cup \{a_{ii} : i = 1, ..., p\}$ is

$$\begin{split} &\frac{\left(\det\left(\left[\sqrt{a_{ii}}\sqrt{a_{jj}}\,r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\sum_{i=1}^{p}\frac{a_{ii}}{\sigma_{ii}}\right)}{2^{\frac{np}{2}}\prod_{i=1}^{p}\sigma_{ii}^{\frac{n}{2}}\Gamma_{p}\left(\frac{n}{2}\right)}\cdot\prod_{i=1}^{p}a_{ii}^{\frac{p-1}{2}}\\ &=\frac{\left(\prod_{i=1}^{p}a_{ii}\right)^{\frac{n-p+1}{2}}\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\sum_{i=1}^{p}\frac{a_{ii}}{\sigma_{ii}}\right)}{2^{\frac{np}{2}}\prod_{i=1}^{p}\sigma_{ii}^{\frac{n}{2}}\Gamma_{p}\left(\frac{n}{2}\right)}\cdot\prod_{i=1}^{p}a_{ii}^{\frac{p-1}{2}}\\ &=\frac{\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}\cdot\prod_{i=1}^{p}\frac{a_{ii}^{\frac{n}{2}-1}\exp\left(-\frac{a_{ii}}{2\sigma_{ii}}\right)}{2^{\frac{n}{2}}\sigma_{ii}^{\frac{n}{2}}},\end{split}$$

where $r_{ii} = 1$. Let $u_i = a_{ii}/(2\sigma_{ii})$, then

$$\int_0^\infty \frac{a_{ii}^{\frac{n}{2}-1} \exp\left(-\frac{a_{ii}}{2\sigma_{ii}}\right)}{2^{\frac{n}{2}}\sigma_{ii}^{\frac{n}{2}}} da_{ii} = \int_0^\infty u_i^{\frac{n}{2}-1} \exp\left(-u_i\right) du_i = \Gamma\left(\frac{n}{2}\right).$$

Combing all above results proves this theorem.

Theorem 6.7. If **A** has the distribution $W(\Sigma, n)$ and Σ has the a prior distribution $W^{-1}(\Psi, m)$, then the conditional distribution of Σ given **A** is the inverted Wishart distribution $W^{-1}(\mathbf{A} + \Psi, n + m)$.

Proof. The joint density of **A** and Σ ,

$$f(\mathbf{A}, \mathbf{\Sigma}) = \frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{np}{2}} \left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} \cdot \frac{\left(\det(\mathbf{\Psi})\right)^{\frac{m}{2}} \left(\det(\mathbf{\Sigma})\right)^{-\frac{m+p+1}{2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Psi} \mathbf{\Sigma}^{-1}\right)\right)}{2^{\frac{mp}{2}} \Gamma_{p}\left(\frac{m}{2}\right)}$$

$$= \frac{\left(\det(\mathbf{\Psi})\right)^{\frac{m}{2}} \left(\det(\mathbf{\Sigma})\right)^{-\frac{n+m+p+1}{2}} \left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left((\mathbf{A} + \mathbf{\Psi}) \mathbf{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n)p}{2}} \Gamma_{p}\left(\frac{n}{2}\right) \Gamma_{p}\left(\frac{m}{2}\right)}$$

$$(11)$$

for ${\bf A}$ and ${\bf \Sigma}$ are positive definite. The marginal density of ${\bf A}$ is the integral of (11) over the set of ${\bf \Sigma}$ positive definite. Since

$$1 = \int w^{-1}(\mathbf{\Sigma} \mid \mathbf{A} + \mathbf{\Psi}, n + m) d\mathbf{\Sigma}$$

$$= \frac{\left(\det(\mathbf{A} + \mathbf{\Psi})\right)^{\frac{n+m}{2}} \left(\det(\mathbf{\Sigma})\right)^{-\frac{n+m+p+1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}\left((\mathbf{A} + \mathbf{\Psi})\mathbf{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n)p}{2}} \Gamma_{p}\left(\frac{n+m}{2}\right)},$$

we have

$$\begin{split} f(\mathbf{A}) &= \int f(\mathbf{A}, \mathbf{\Sigma}) \, \mathrm{d} \mathbf{\Sigma} \\ &= \frac{\left(\det(\mathbf{\Psi}) \right)^{\frac{m}{2}} \left(\det(\mathbf{A}) \right)^{\frac{n-p-1}{2}}}{\Gamma_p \left(\frac{n}{2} \right) \Gamma_p \left(\frac{m}{2} \right)} \int \frac{\left(\det(\mathbf{\Sigma}) \right)^{-\frac{n+m+p+1}{2}} \exp\left(-\frac{1}{2} \mathrm{tr} \left((\mathbf{A} + \mathbf{\Psi}) \mathbf{\Sigma}^{-1} \right) \right)}{2^{\frac{(m+n)p}{2}}} \mathrm{d} \mathbf{\Sigma} \\ &= \frac{\left(\det(\mathbf{\Psi}) \right)^{\frac{m}{2}} \left(\det(\mathbf{A}) \right)^{\frac{n-p-1}{2}}}{\Gamma_p \left(\frac{n}{2} \right) \Gamma_p \left(\frac{m}{2} \right)} \cdot \Gamma_p \left(\frac{n+m}{2} \right) \left(\det(\mathbf{A} + \mathbf{\Psi}) \right)^{-\frac{n+m}{2}}. \end{split}$$

Then

$$\begin{split} f(\mathbf{\Sigma} \mid \mathbf{A}) &= \frac{f(\mathbf{\Sigma}, \mathbf{A})}{f(\mathbf{A})} \\ &= \frac{\left(\det(\mathbf{A} + \mathbf{\Psi})\right)^{\frac{n+m}{2}} \left(\det(\mathbf{\Sigma})\right)^{-\frac{n+m+p+1}{2}} \exp\left(-\frac{1}{2}\mathrm{tr}\left((\mathbf{A} + \mathbf{\Psi})\mathbf{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n)p}{2}} \Gamma_p\left(\frac{n+m}{2}\right)} \\ &= w^{-1}(\mathbf{\Sigma} \mid \mathbf{A} + \mathbf{\Psi}, n+m). \end{split}$$

7 Multivariate Linear Regression

Lemma 7.1. If $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathbf{G} \in \mathbb{R}^{p \times p}$ are positive definite, then $\operatorname{tr}(\mathbf{F}\mathbf{A}\mathbf{F}^{\top}\mathbf{G}) > 0$ for non-zero $\mathbf{F} \in \mathbb{R}^{p \times p}$. Proof. Let $\mathbf{A} = \mathbf{H}\mathbf{H}^{\top}$ and $\mathbf{G} = \mathbf{K}\mathbf{K}^{\top}$, then

$$tr(\mathbf{F}\mathbf{A}\mathbf{F}^{\top}\mathbf{G})$$

$$=tr(\mathbf{F}\mathbf{H}\mathbf{H}^{\top}\mathbf{F}^{\top}\mathbf{K}\mathbf{K}^{\top})$$

$$=tr(\mathbf{H}^{\top}\mathbf{F}^{\top}\mathbf{K}\mathbf{K}^{\top}\mathbf{F}\mathbf{H})$$

$$=tr(\mathbf{H}^{\top}\mathbf{F}^{\top}\mathbf{G}\mathbf{F}\mathbf{H}) > 0.$$

Theorem 7.1. If \mathbf{x}_{α} is an observation from $\mathcal{N}_q(\mathbf{Bz}_{\alpha}, \mathbf{\Sigma})$ for $\alpha = 1, ..., N$, where $[\mathbf{z}_1, ..., \mathbf{z}_N] \in \mathbb{R}^{N \times q}$ of rank q is given, $\mathbf{\Sigma} \in \mathbb{R}^{q \times q}$, $\mathbf{B} \in \mathbb{R}^{p \times q}$ and $N \geq p + q$, the maximum likelihood estimator of \mathbf{B} is given by $\hat{\mathbf{B}} = \mathbf{C}\mathbf{A}^{-1}$ where

$$\mathbf{C} = \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \qquad and \qquad \mathbf{A} = \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}.$$

The maximum likelihood estimator of Σ is give by

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{B}} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \hat{\mathbf{B}} \mathbf{z}_{\alpha})^{\top}.$$

Proof. The likelihood function is

$$L = \frac{1}{(2\pi)^{\frac{N}{2}} (\det(\mathbf{\Sigma}))^{\frac{N}{2}}} \exp\left(-\frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})\right)$$

Recall that in the maximum likelihood estimation for normal distribution, we use the fact

$$\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) = \operatorname{tr} \left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \right)$$

and

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \\ &= \sum_{\alpha=1}^{N} \left((\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}}) (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}})^{\top} + (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}}) (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\top} + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu}) (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}})^{\top} + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu}) (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\top} \right) \\ &= \sum_{\alpha=1}^{N} \left((\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}}) (\mathbf{x}_{\alpha} - \bar{\boldsymbol{\mu}})^{\top} + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu}) (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\top} \right). \end{split}$$

We shall do the similar thing for the exponential in L. We have

$$\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha}) = \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top} \right);$$

and for any $\mathbf{H} \in \mathbb{R}^{p \times q}$, it holds that

$$\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top}$$

$$\begin{split} & = \sum_{\alpha=1}^{N} \Big((\mathbf{x}_{\alpha} - \mathbf{H} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \mathbf{H} \mathbf{z}_{\alpha})^{\top} + (\mathbf{x}_{\alpha} - \mathbf{H} \mathbf{z}_{\alpha}) (\mathbf{H} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})^{\top} + (\mathbf{H} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \mathbf{H} \mathbf{z}_{\alpha})^{\top} \\ & \quad + (\mathbf{H} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha}) (\mathbf{H} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})^{\top} \Big). \end{split}$$

We hope

$$\sum_{\alpha=1}^{N}(\mathbf{H}\mathbf{z}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha}-\mathbf{H}\mathbf{z}_{\alpha})^{\top}=\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha}-\mathbf{H}\mathbf{z}_{\alpha})(\mathbf{H}\mathbf{z}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})^{\top}=\mathbf{0}$$

Hence, we select $\mathbf{H} = \hat{\mathbf{H}}$ as follows

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha}) (\hat{\mathbf{H}} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})^{\top} = \mathbf{0} \\ & \Longleftrightarrow \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha}) \mathbf{z}_{\alpha}^{\top} (\hat{\mathbf{H}} - \mathbf{B})^{\top} = \mathbf{0} \\ & \Longleftrightarrow \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha}) \mathbf{z}_{\alpha}^{\top} = \mathbf{0} \\ & \Longleftrightarrow \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} = \hat{\mathbf{H}} \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \\ & \Longleftrightarrow \hat{\mathbf{H}} = \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \left(\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \right)^{-1}. \end{split}$$

Then we have

$$\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top} = \sum_{\alpha=1}^{N} \left((\mathbf{x}_{\alpha} - \hat{\mathbf{H}}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha} - \hat{\mathbf{H}}\mathbf{z}_{\alpha})^{\top} + (\hat{\mathbf{H}}\mathbf{z}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})(\hat{\mathbf{H}}\mathbf{z}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top} \right).$$

Lemma 7.1 means

$$\operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})^{\top} \right)$$

$$= \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{\alpha=1}^{N} \left((\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha})^{\top} + (\hat{\mathbf{H}} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha}) (\hat{\mathbf{H}} \mathbf{z}_{\alpha} - \mathbf{B} \mathbf{z}_{\alpha})^{\top} \right) \right)$$

$$\geq \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \hat{\mathbf{H}} \mathbf{z}_{\alpha})^{\top} \right),$$

where the equality holds by taking $\mathbf{B} = \hat{\mathbf{H}}$. Hence, the maximum likelihood estimator of \mathbf{B} is given by $\hat{\mathbf{B}} = \mathbf{C}\mathbf{A}^{-1}$. Using Lemma 3.1 with $\mathbf{G} = \mathbf{\Sigma}$ and

$$\mathbf{D} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{B}} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \hat{\mathbf{B}} \mathbf{z}_{\alpha})^{\top},$$

we obtain the the maximum likelihood estimator of Σ is $\hat{\Sigma} = \frac{1}{N} \mathbf{D}$.

Remark 7.1. Let

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_N^\top \end{bmatrix} \quad and \quad \mathbf{Z} = \begin{bmatrix} \mathbf{z}_1^\top \\ \vdots \\ \mathbf{z}_N^\top \end{bmatrix}.$$

We consider the least square problem.

$$\min_{\mathbf{B} \in \mathbb{R}^{p \times q}} f(\mathbf{B}) \triangleq \frac{1}{2} \left\| \mathbf{B} \mathbf{Z}^{\top} - \mathbf{X}^{\top} \right\|_{F}^{2},$$

Then, taking the gradient of f be zero means

$$\nabla f(\mathbf{B}) = \frac{\partial}{\partial \mathbf{B}} \operatorname{tr} \left(\frac{1}{2} \mathbf{B} \mathbf{Z}^{\top} \mathbf{Z} \mathbf{B}^{\top} - \mathbf{B} \mathbf{Z}^{\top} \mathbf{X} + \frac{1}{2} \mathbf{X}^{\top} \mathbf{X} \right) = \mathbf{B} \mathbf{Z} \mathbf{Z}^{\top} - \mathbf{X}^{\top} \mathbf{Z} = \mathbf{0}.$$

Hence, we have $\mathbf{B} = \mathbf{X}^{\top} \mathbf{Z} (\mathbf{Z} \mathbf{Z}^{\top})^{-1} = \mathbf{C} \mathbf{A}^{-1} = \hat{\mathbf{B}}.$

Remark 7.2. The proof means

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top} \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{B}}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha} - \hat{\mathbf{B}}\mathbf{z}_{\alpha})^{\top} + \sum_{\alpha=1}^{N} (\hat{\mathbf{B}}\mathbf{z}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})(\hat{\mathbf{B}}\mathbf{z}_{\alpha} - \mathbf{B}\mathbf{z}_{\alpha})^{\top} \\ &= N\hat{\boldsymbol{\Sigma}} + (\hat{\mathbf{B}} - \mathbf{B}) \left(\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\right) (\hat{\mathbf{B}} - \mathbf{B})^{\top} \\ &= N\hat{\boldsymbol{\Sigma}} + (\hat{\mathbf{B}} - \mathbf{B})\mathbf{A}(\hat{\mathbf{B}} - \mathbf{B})^{\top}. \end{split}$$

Hence, the joint density of $\mathbf{x}_1, \dots, \mathbf{x}_N$ can be written as

$$\begin{split} &\frac{1}{(2\pi)^{\frac{N}{2}}(\det(\mathbf{\Sigma}))^{\frac{N}{2}}}\exp\left(-\frac{1}{2}\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})\right)\\ =&\frac{1}{(2\pi)^{\frac{N}{2}}(\det(\mathbf{\Sigma}))^{\frac{N}{2}}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})^{\top}\right)\right)\\ =&\frac{1}{(2\pi)^{\frac{N}{2}}(\det(\mathbf{\Sigma}))^{\frac{N}{2}}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\left(N\hat{\mathbf{\Sigma}}+(\hat{\mathbf{B}}-\mathbf{B})\mathbf{A}(\hat{\mathbf{B}}-\mathbf{B})^{\top}\right)\right)\right), \end{split}$$

which implies $\hat{\mathbf{B}}$ and $\hat{\mathbf{\Sigma}}$ form a sufficient set statistics for \mathbf{B} and $\mathbf{\Sigma}$.

Theorem 7.2. The maximum likelihood estimator \mathbf{B} based on a set of N observations, the α -th from $\mathcal{N}(\mathbf{B}\mathbf{z}_{\alpha}, \mathbf{\Sigma})$, is normally distributed with mean \mathbf{B} , and the covariance matrix of the i-th and j-th rows of $\hat{\mathbf{B}}$ is $\sigma_{ij}\mathbf{A}^{-1}$, where $\mathbf{A} = \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}$. The maximum likelihood estimator $\hat{\mathbf{\Sigma}}$ multiplied by N is independently distributed according to $\mathcal{W}(\mathbf{\Sigma}, N-q)$, where q is the number of components of \mathbf{z}_{α} .

Proof. For the estimator $\hat{\mathbf{B}}$, we have

$$\mathbb{E}[\hat{\mathbf{B}}] = \mathbb{E}\left[\sum_{\alpha=1}^{N}\mathbf{x}_{\alpha}\mathbf{z}_{\alpha}^{\top}\mathbf{A}^{-1}\right] = \sum_{\alpha=1}^{N}\mathbf{B}\mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\mathbf{A}^{-1} = \mathbf{B}\left(\sum_{\alpha=1}^{N}\mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\right)\mathbf{A}^{-1} = \mathbf{B}$$

and

$$\mathbb{E}\left[(\hat{\boldsymbol{\beta}}_{i} - \boldsymbol{\beta}_{i})(\hat{\boldsymbol{\beta}}_{j} - \boldsymbol{\beta}_{j})^{\top}\right]$$

$$= \mathbf{A}^{-1} \mathbb{E}\left[\sum_{\alpha=1}^{N} \left(x_{i\alpha} - \mathbb{E}[x_{i\alpha}]\right) \mathbf{z}_{\alpha} \sum_{\gamma=1}^{N} \left(x_{j\gamma} - \mathbb{E}[x_{j\gamma}]\right) \mathbf{z}_{\gamma}^{\top}\right] \mathbf{A}^{-1}$$

$$= \mathbf{A}^{-1} \sum_{\alpha=1}^{N} \sum_{\gamma=1}^{N} \mathbb{E}\left[\left(x_{i\alpha} - \mathbb{E}[x_{i\alpha}]\right) \left(x_{j\gamma} - \mathbb{E}[x_{j\gamma}]\right)\right] \mathbf{z}_{\alpha} \mathbf{z}_{\gamma}^{\top} \mathbf{A}^{-1}$$

$$= \mathbf{A}^{-1} \sum_{\alpha=1}^{N} \sum_{\gamma=1}^{N} \delta_{\alpha\gamma} \sigma_{ij} \mathbf{z}_{\alpha} \mathbf{z}_{\gamma}^{\top} \mathbf{A}^{-1}$$

$$= \mathbf{A}^{-1} \sum_{\alpha=1}^{N} \sigma_{ij} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \mathbf{A}^{-1}$$

$$= \mathbf{A}^{-1} (\sigma_{ij} \mathbf{A} \mathbf{A}^{-1})$$

$$= \sigma_{ij} \mathbf{A}^{-1}.$$

From Theorem 4.2, it follows that

$$\begin{split} N\hat{\boldsymbol{\Sigma}} &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \hat{\mathbf{B}} \mathbf{z}_{\alpha}) (\mathbf{x}_{\alpha} - \hat{\mathbf{B}} \mathbf{z}_{\alpha})^{\top} \\ &= \sum_{\alpha=1}^{N} \left(\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top} - \hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{x}_{\alpha}^{\top} + \hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top} \right) \\ &= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top} - \sum_{\alpha=1}^{N} \hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{x}_{\alpha}^{\top} + \sum_{\alpha=1}^{N} \hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top} \\ &= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \hat{\mathbf{B}} \mathbf{A} \mathbf{B}^{\top} - \hat{\mathbf{B}} \mathbf{A} \mathbf{B}^{\top} + \hat{\mathbf{B}} \mathbf{A} \hat{\mathbf{B}}^{\top} \\ &= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \hat{\mathbf{B}} \mathbf{A} \hat{\mathbf{B}}^{\top}. \end{split}$$

is distributed according to $\mathcal{W}(\Sigma, N-q)$.

Theorem 7.3. The least squares estimator $\hat{\mathbf{B}}$ is the best linear unbiased estimator of \mathbf{B} . Proof. Let

$$\tilde{\beta}_{ig} = \sum_{\alpha=1}^{N} \sum_{j=1}^{p} f_{j\alpha} x_{j\alpha}$$

be arbitrary unbiased estimator of β_{ig} , which satisfied

$$\sum_{\alpha=1}^{N} f_{j\alpha} z_{h\alpha} = \begin{cases} 1, & j = i, h = g, \\ 0, & \text{otherwise.} \end{cases}$$

Let a^{hg} be the (h,g)-th element of \mathbf{A}^{-1} , then the least square estimator can be written as

$$\hat{\beta}_{ig} = \sum_{\alpha=1}^{N} \sum_{h=1}^{q} x_{i\alpha} z_{h\alpha} a^{hg},$$

where $\mathbf{A} = \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\mathsf{T}}$. Then we have

$$\mathbb{E}[(\tilde{\beta}_{ig} - \beta_{ig})^{2}]$$

$$= \mathbb{E}[(\hat{\beta}_{ig} - \beta_{ig} + (\tilde{\beta}_{ig} - \hat{\beta}_{ig}))^{2}]$$

$$= \mathbb{E}[(\hat{\beta}_{iq} - \beta_{iq})^{2}] + \mathbb{E}[(\hat{\beta}_{iq} - \beta_{iq})(\tilde{\beta}_{iq} - \hat{\beta}_{iq})] + \mathbb{E}[(\tilde{\beta}_{iq} - \hat{\beta}_{iq})^{2}]$$

Let $u_{i\alpha} = \mathbb{E}[x_{i\alpha}]$. Since both $\tilde{\beta}_{ig}$ and $\hat{\beta}_{ig}$ are unbiased estimator of β_{ig} , we have

$$\tilde{\beta}_{ig} - \beta_{ig} = \sum_{\alpha=1}^{N} \sum_{j=1}^{p} f_{j\alpha} u_{j\alpha}, \quad \hat{\beta}_{ig} - \beta_{ig} = \sum_{\alpha=1}^{N} \sum_{h=1}^{q} u_{i\alpha} z_{h\alpha} a^{hg},$$

and

$$\tilde{\beta}_{ig} - \hat{\beta}_{ig} = \sum_{\alpha=1}^{N} \sum_{j=1}^{p} \left(f_{j\alpha} - \delta_{ij} \sum_{h=1}^{q} z_{h\alpha} a^{hg} \right) u_{j\alpha},$$

where $\delta_{ii} = 1$ and $\delta_{ij} = 0$ for $i \neq j$. Then we have

$$\mathbb{E}\left[(\hat{\beta}_{ig} - \beta_{ig})(\tilde{\beta}_{ig} - \hat{\beta}_{ig}) \right] \\
= \mathbb{E}\left[\sum_{\alpha=1}^{N} \sum_{\gamma=1}^{N} \sum_{h=1}^{q} z_{h\alpha} a^{hg} u_{i\alpha} \sum_{j=1}^{p} \left(f_{j\gamma} - \delta_{ij} \sum_{h'=1}^{q} z_{h'\gamma} a^{h'g} \right) u_{j\gamma} \right] \\
= \sum_{\alpha=1}^{N} \sum_{h=1}^{q} \sum_{j=1}^{p} z_{h\alpha} a^{hg} \left(f_{j\alpha} - \delta_{ij} \sum_{h'=1}^{q} z_{h'\alpha} a^{h'g} \right) \sigma_{ij} \\
= \sigma_{ii} a^{gg} - \sigma_{ii} \sum_{h=1}^{q} \sum_{h'=1}^{q} a_{hh'} a^{hg} a^{h'g} \\
= \sigma_{ii} a^{gg} - \sigma_{ii} a^{gg} = 0.$$

Thus

$$\mathbb{E}\big[(\tilde{\beta}_{ig} - \beta_{ig})^2\big] \geq \mathbb{E}\big[(\hat{\beta}_{ig} - \beta_{ig})^2\big] + \mathbb{E}\big[(\tilde{\beta}_{ig} - \hat{\beta}_{ig})^2\big] \geq \mathbb{E}\big[(\hat{\beta}_{ig} - \beta_{ig})^2\big].$$

Theorem 7.4. The likelihood ratio criterion

$$\lambda = \frac{\left(\det\left(\hat{\mathbf{\Sigma}}_{\Omega}\right)\right)^{\frac{N}{2}}}{\left(\det\left(\hat{\mathbf{\Sigma}}_{\omega}\right)\right)^{\frac{N}{2}}}.$$

for testing the null hypothesis $\mathbf{B}_1 = \mathbf{0}$ is invariant with respect to transformations $\mathbf{x}_{\alpha}^* = \mathbf{D}\mathbf{x}_{\alpha}$ for $\alpha = 1, \dots, N$ and non-singular \mathbf{D} .

Proof. The estimators in terms of \mathbf{x}_{α}^{*} are

$$\begin{split} \hat{\mathbf{B}}^* &= & \mathbf{D}\mathbf{C}^{-1}\mathbf{A} = \mathbf{D}\hat{\mathbf{B}}, \\ \hat{\mathbf{\Sigma}}_{\Omega}^* &= & \frac{1}{N}\sum_{\alpha=1}^{N}(\mathbf{D}\mathbf{x}_{\alpha} - \mathbf{D}\hat{\mathbf{B}}\mathbf{z}_{\alpha})(\mathbf{D}\mathbf{x}_{\alpha} - \mathbf{D}\hat{\mathbf{B}}\mathbf{z}_{\alpha})^{\top} = \mathbf{D}\hat{\mathbf{\Sigma}}_{\Omega}\mathbf{D}^{\top}, \\ \hat{\mathbf{B}}_{2\omega}^* &= & \mathbf{D}\big(\mathbf{C}_2 - \mathbf{B}_1^*\mathbf{A}_{12}\big)\mathbf{A}_{22}^{-1} = \mathbf{D}\hat{\mathbf{B}}_{2\omega}, \\ \hat{\mathbf{\Sigma}}_{\omega}^* &= & \frac{1}{N}\sum_{\alpha=1}^{N}\big(\mathbf{D}\mathbf{y}_{\alpha} - \mathbf{D}\hat{\mathbf{B}}_{2\omega}\mathbf{z}_{\alpha}^{(2)}\big)\big(\mathbf{D}\mathbf{y}_{\alpha} - \mathbf{D}\hat{\mathbf{B}}_{2\omega}\mathbf{z}_{\alpha}^{(2)}\big)^{\top} = \mathbf{D}\hat{\mathbf{\Sigma}}_{\omega}\mathbf{D}^{\top}, \end{split}$$

then

$$\lambda^* = \frac{\left(\det\left(\hat{\Sigma}_{\Omega}^*\right)\right)^{\frac{N}{2}}}{\left(\det\left(\hat{\Sigma}_{\omega}^*\right)\right)^{\frac{N}{2}}} = \frac{\left(\det\left(\hat{\Sigma}_{\Omega}\right)\right)^{\frac{N}{2}}}{\left(\det\left(\hat{\Sigma}_{\omega}\right)\right)^{\frac{N}{2}}}.$$

Theorem 7.5. The statistic

$$V_1 = \frac{\prod_{g=1}^q (\det(\mathbf{A}_g))^{\frac{n_g}{2}}}{(\det(\mathbf{A}))^{\frac{n}{2}}}.$$

is invariant with respect to linear transformation

$$\mathbf{x}^{*(g)} = \mathbf{C}\mathbf{x}^{(g)} + \boldsymbol{\nu}^{(g)}.$$

Proof. We have

$$V_1^* = \frac{\prod_{g=1}^q (\det(\mathbf{A}_g^*))^{\frac{n_g}{2}}}{(\det(\mathbf{A}^*))^{\frac{n_g}{2}}} = \frac{\prod_{g=1}^q (\det(\mathbf{C}\mathbf{A}_g\mathbf{C}^\top))^{\frac{n_g}{2}}}{(\det(\mathbf{C}\mathbf{A}\mathbf{C}^\top))^{\frac{n_g}{2}}} = \frac{\prod_{g=1}^q (\det(\mathbf{A}_g))^{\frac{n_g}{2}}}{(\det(\mathbf{A}))^{\frac{n_g}{2}}} = V_1.$$

Theorem 7.6. Given a set of p-component observation vectors $\mathbf{x}_1, \dots, \mathbf{x}_N$ from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the likelihood ratio criterion for testing the hypothesis

$$\Sigma = \sigma_0^2 \Psi_0$$

where Ψ_0 is specified and σ^2 is not specified, is

$$\frac{(\det(\mathbf{A}\mathbf{\Psi}_0^{-1}))^{\frac{N}{2}}}{(\operatorname{tr}(\mathbf{A}\mathbf{\Psi}_0^{-1})/p)^{\frac{pN}{2}}}.$$

Proof. Let **C** be matrix such that

$$\mathbf{C}\mathbf{\Psi}_0\mathbf{C}^{\top} = \mathbf{I}.$$

and $\mathbf{x}_{\alpha}^* = \mathbf{C}\mathbf{x}$, $\boldsymbol{\mu}^* = \mathbf{C}\boldsymbol{\mu}$, $\boldsymbol{\Sigma}^* = \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top}$. Then we have

$$\operatorname{tr}(\mathbf{A}^*) = \operatorname{tr}\left(\sum_{\alpha=1}^N \left(\mathbf{x}_\alpha^* - \bar{\mathbf{x}}_\alpha^*\right) \left(\mathbf{x}_\alpha^* - \bar{\mathbf{x}}_\alpha^*\right)^\top\right) = \operatorname{tr}(\mathbf{C}\mathbf{A}\mathbf{C}^\top) = \operatorname{tr}(\mathbf{A}\mathbf{C}^\top\mathbf{C}) = \operatorname{tr}(\mathbf{A}\mathbf{\Psi}_0^{-1})$$

and

$$\det(\mathbf{A}^*) = \det(\mathbf{C}\mathbf{A}\mathbf{C}^\top) = \det(\mathbf{C}))^2 \det(\mathbf{A}) = (\det(\boldsymbol{\Psi}_0))^{-1} \det(\mathbf{A}) = \det(\mathbf{A}\boldsymbol{\Psi}_0^{-1}).$$

Thus

$$\frac{(\det(\mathbf{A}^*)^{\frac{N}{2}}}{(\operatorname{tr}(\mathbf{A}^*)/p)^{\frac{pN}{2}}} = \frac{(\det(\mathbf{A}\boldsymbol{\Psi}_0^{-1}))^{\frac{N}{2}}}{(\operatorname{tr}(\mathbf{A}\boldsymbol{\Psi}_0^{-1})/p)^{\frac{pN}{2}}}.$$

8 Principal Components

Theorem 8.1. Let $\Sigma \in \mathbb{R}^{p \times p}$ be positive definite. A vector $\boldsymbol{\beta}$ with $\|\boldsymbol{\beta}\|_2 = 1$ maximizing $\boldsymbol{\beta}^{\top} \Sigma \boldsymbol{\beta}$ must satisfy

$$(\mathbf{\Sigma} - \lambda_1 \mathbf{I})\boldsymbol{\beta} = \mathbf{0},$$

where λ_1 is the largest root of

$$\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0.$$

Proof. Let

$$\phi(\boldsymbol{\beta}, \lambda) = \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta} - \lambda (\boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 1),$$

where λ is a Lagrange multiplier. A vector $\boldsymbol{\beta}$ maximizing $\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}$ must satisfy

$$\mathbf{0} = rac{\partial \phi(oldsymbol{eta}, \lambda)}{\partial oldsymbol{eta}} = 2oldsymbol{\Sigma}oldsymbol{eta} - 2\lambdaoldsymbol{eta},$$

that is $(\Sigma - \lambda \mathbf{I})\beta = \mathbf{0}$. The constraint $\|\beta\|_2 = 1$ means $\Sigma - \lambda \mathbf{I}$ is singular. Then λ must satisfy

$$\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0.$$

We also have

$$\boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{\beta} = \lambda \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} = \lambda,$$

54

which implies our result.

Remark 8.1. For the second principle components β , we require

$$0 = \mathbb{E}[\boldsymbol{\beta}^{\top} \mathbf{x} \, {\boldsymbol{\beta}^{(1)}}^{\top} \mathbf{x}] = \mathbb{E}[\boldsymbol{\beta}^{\top} \mathbf{x} \mathbf{x}^{\top} \boldsymbol{\beta}^{(1)}] = \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)} = \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta}^{(1)}.$$

Let

$$\phi_2(\boldsymbol{\beta}, \lambda, \boldsymbol{\nu}) = \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta} - \lambda (\boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 1) - 2\nu \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)}.$$

We require

$$\mathbf{0} = \frac{\partial \phi_2(\boldsymbol{\beta}, \lambda)}{\partial \boldsymbol{\beta}} = 2\boldsymbol{\Sigma}\boldsymbol{\beta} - 2\lambda\boldsymbol{\beta} - 2\nu\boldsymbol{\Sigma}\boldsymbol{\beta}^{(1)}.$$

Multiplying on the left by $\boldsymbol{\beta}^{(1)}^{\top}$, we have

$$\mathbf{0} = 2\boldsymbol{\beta}^{(1)}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{(1)}^{\top} \boldsymbol{\beta} - 2\nu \boldsymbol{\beta}^{(1)}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)} = -2\nu \lambda_1.$$

Therefore $\nu = 0$ and $\boldsymbol{\beta}$ must satisfy $(\boldsymbol{\Sigma} - \lambda \mathbf{I})\boldsymbol{\beta} = \mathbf{0}$ and $\boldsymbol{\beta}^{\top}\boldsymbol{\beta}^{(1)} = 0$, where

$$\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0.$$

Hence, we should take λ by the second-largest root of $\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0$.

Remark 8.2. For the (r+1)-th step, we let

$$\phi_{r+1}(\boldsymbol{\beta}, \lambda, \boldsymbol{\nu}) = \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta} - \lambda (\boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 1) - 2 \sum_{i=1}^{r} \nu_{i} \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(i)}$$

and

$$\mathbf{0} = \frac{\partial \phi_{r+1}(\boldsymbol{\beta}, \lambda)}{\partial \boldsymbol{\beta}} = 2\boldsymbol{\Sigma}\boldsymbol{\beta} - 2\lambda\boldsymbol{\beta} - 2\sum_{i=1}^{r} \nu_{i}\boldsymbol{\Sigma}\boldsymbol{\beta}^{(i)}.$$

Similarly, we have $v_j = 0$ and $(\mathbf{\Sigma} - \lambda_j \mathbf{I})\boldsymbol{\beta}^{(j)} = \mathbf{0}$ and λ_j is the root of $\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0$

Remark 8.3. For the stationary point on surfaces $\mathbf{x}^{\top} \mathbf{\Sigma}^{-1} \mathbf{x} = C$, we let

$$\psi(\mathbf{x}, \lambda) = \mathbf{x}^{\top} \mathbf{x} - \lambda \mathbf{x}^{\top} \mathbf{\Sigma}^{-1} \mathbf{x}.$$

Then

$$\mathbf{0} = \frac{\partial \psi(\mathbf{x}, \lambda)}{\partial \mathbf{x}} = 2\mathbf{x} - 2\lambda \mathbf{\Sigma}^{-1} \mathbf{x},$$

that is $\Sigma \mathbf{x} = \lambda \mathbf{x}$. Thus the vectors $\boldsymbol{\beta}^{(1)}, \dots, \boldsymbol{\beta}^{(p)}$ give the principal axis of the ellipsoid. The transformation $\mathbf{u} = \mathbf{B}^{\top} \mathbf{x}$ is a rotation of the coordinate axes so that the new axes are in the direction of the principal axes of the ellipsoid. In the new coordinates, the ellipsoid is

$$\mathbf{u}^{\top} \mathbf{\Lambda}^{-1} \mathbf{u} = C.$$

Theorem 8.2. An orthogonal transformation $\mathbf{v} = \mathbf{C}\mathbf{x}$ of a random vector \mathbf{x} with $\mathbb{E}[\mathbf{x}] = \mathbf{0}$ leaves invariant the generalized variance and the sum of the variances of the components.

Proof. Let $\mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] = \mathbf{\Sigma}$. The generalized variance of \mathbf{v} is

$$\det(\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top}) = \det(\mathbf{C})\det(\boldsymbol{\Sigma})\det(\mathbf{C}^{\top}) = \det(\boldsymbol{\Sigma}).$$

The sum of the variances of the components of ${\bf v}$ is

$$\sum_{i=1}^p \mathbb{E}[v_i^2] = \operatorname{tr}(\mathbf{C} \mathbf{\Sigma} \mathbf{C}^\top) = \operatorname{tr}(\mathbf{\Sigma} \mathbf{C}^\top \mathbf{C}) = \operatorname{tr}(\mathbf{\Sigma}) = \sum_{i=1}^p \mathbb{E}[x_i^2].$$

Theorem 8.3. Let $\mathbf{x}_1, \ldots, \mathbf{x}_N$ be N observations from $\mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, where $\mathbf{\Sigma}$ has p different characteristic roots and N > p. Then maximum likelihood estimators of $\lambda_1, \ldots, \lambda_p$ and $\boldsymbol{\beta}^{(1)}, \ldots, \boldsymbol{\beta}^{(p)}$ consists of the roots $\lambda_1 > \cdots > \lambda_p$ of

$$\det(\hat{\mathbf{\Sigma}} - \lambda \mathbf{I}) = 0$$

and corresponding vectors $\hat{\boldsymbol{\beta}}^{(1)}, \dots, \hat{\boldsymbol{\beta}}^{(p)}$ satisfying $\|\hat{\boldsymbol{\beta}}^{(i)}\|_2 = 1$ and

$$(\hat{\mathbf{\Sigma}} - \lambda_i \mathbf{I})\hat{\boldsymbol{\beta}}^{(i)} = \mathbf{0}$$

for i = 1, ..., p, where $\hat{\Sigma}$ is the the maximum likelihood estimate of Σ .

Proof. When the roots of $\det(\Sigma - \lambda \mathbf{I})$ are different, each vector $\boldsymbol{\beta}^{(i)}$ uniquely defined except that it can be replaced by $-\boldsymbol{\beta}^{(i)}$. If we require that the first nonzero component of $-\boldsymbol{\beta}^{(i)}$ be positive, then $-\boldsymbol{\beta}^{(i)}$ is uniquely defined. Then the variables $\boldsymbol{\mu}$, $\boldsymbol{\Lambda}$ and \boldsymbol{B} is a is a single-valued function of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Hence, the set of maximum likelihood estimates of $\boldsymbol{\mu}$, $\boldsymbol{\Lambda}$ and \boldsymbol{B} is the same function of $\hat{\boldsymbol{\mu}}$ and $\boldsymbol{\Sigma}$ (restriction that the first nonzero component of $\boldsymbol{\beta}^{(i)}$ must be positive).

Remark 8.4. If Σ is non-singular, the probability is 1 that the roots of $\lambda_1, \ldots, \lambda_p$ are different. Please see Masashi Okamoto. "Distinctness of the eigenvalues of a quadratic form in a multivariate sample." The Annals of Statistics (1973): 763-765.

Theorem 8.4. Let $n\mathbf{S} \sim \mathcal{W}(\mathbf{\Sigma}, n)$ and $(\lambda_1, \boldsymbol{\beta}^{(1)})$, $(\lambda_p, \boldsymbol{\beta}^{(p)})$ be two distinct eigen-pairs of $\mathbf{\Sigma}$ with $\|\boldsymbol{\beta}^{(1)}\|_2 = \|\boldsymbol{\beta}^{(p)}\|_2 = 1$, then

$$\frac{n\boldsymbol{\beta}^{(1)}^{\top}\mathbf{S}\boldsymbol{\beta}^{(1)}}{\lambda_1}$$
 and $\frac{n\boldsymbol{\beta}^{(p)}^{\top}\mathbf{S}\boldsymbol{\beta}^{(p)}}{\lambda_p}$.

are independently distrusted as χ^2 -distribution with n degrees of freedom.

Proof. We have

$$n\mathbf{S} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top},$$

where \mathbf{z}_{α} are independently distributed as $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$. Then we have $\boldsymbol{\beta}^{(1)^{\top}} \mathbf{z}_{\alpha} \sim \mathcal{N}(0, \lambda_1)$, since $\boldsymbol{\beta}^{(1)^{\top}} \mathbf{\Sigma} \boldsymbol{\beta}^{(1)} = \lambda_1 \boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\beta}^{(1)} = \lambda_1$. Hence, it holds that

$$\frac{n\boldsymbol{\beta}^{(1)^{\top}}\mathbf{S}\boldsymbol{\beta}^{(1)}}{\lambda_{1}} = \sum_{\alpha=1}^{n} \frac{\boldsymbol{\beta}^{(1)^{\top}}\mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\boldsymbol{\beta}^{(1)}}{\lambda_{1}} = \sum_{\alpha=1}^{n} \left(\frac{\boldsymbol{\beta}^{(1)^{\top}}\mathbf{z}_{\alpha}}{\sqrt{\lambda_{1}}}\right)^{2} \sim \chi_{n}^{2}.$$

are distrusted as χ^2 -distribution with n degrees of freedom We also have the similar result for λ_p and $\boldsymbol{\beta}^{(p)}$. Consider that ${\boldsymbol{\beta}^{(1)}}^{\top} \mathbf{z}_{\alpha}$ and ${\boldsymbol{\beta}^{(p)}}^{\top} \mathbf{z}_{\alpha}$ are normal distributed with zero mean and

$$\mathbb{E}\left[\boldsymbol{\beta}^{(1)^{\top}}\mathbf{z}_{\alpha}\boldsymbol{\beta}^{(p)^{\top}}\mathbf{z}_{\alpha}\right] = \boldsymbol{\beta}^{(1)^{\top}}\mathbb{E}\left[\mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\right]\boldsymbol{\beta}^{(p)} = \boldsymbol{\beta}^{(1)^{\top}}\boldsymbol{\Sigma}\boldsymbol{\beta}^{(p)} = \lambda_{p}\boldsymbol{\beta}^{(1)^{\top}}\boldsymbol{\beta}^{(p)} = 0.$$

Hence, we have proved the desired independence.

Remark 8.5. Let l and u be two numbers such that

$$1 - \epsilon = \Pr\left\{nl \le \chi_n^2\right\} \Pr\left\{\chi_n^2 \le nu\right\}.$$

Then we have

$$1 - \epsilon = \Pr \left\{ nl \le \frac{n\beta^{(1)}^{\mathsf{T}} \mathbf{S}\beta^{(1)}}{\lambda_1}, \, \frac{n\beta^{(p)}^{\mathsf{T}} \mathbf{S}\beta^{(p)}}{\lambda_p} \le nu \right\}$$

$$= \Pr \left\{ \lambda_{1} \leq \frac{\boldsymbol{\beta}^{(1)}^{\top} \mathbf{S} \boldsymbol{\beta}^{(1)}}{l}, \frac{\boldsymbol{\beta}^{(p)}^{\top} \mathbf{S} \boldsymbol{\beta}^{(p)}}{u} \leq \lambda_{p} \right\}$$

$$\leq \Pr \left\{ \lambda_{1} \leq \frac{\max_{\|\mathbf{b}\|_{2}=1} \mathbf{b}^{\top} \mathbf{S} \mathbf{b}}{l}, \frac{\min_{\|\mathbf{b}\|_{2}=1} \mathbf{b}^{\top} \mathbf{S} \mathbf{b}}{u} \leq \lambda_{p} \right\}$$

$$= \Pr \left\{ \lambda_{1} \leq \frac{l_{1}}{l}, \frac{l_{p}}{u} \leq \lambda_{p} \right\} = \Pr \left\{ \frac{l_{p}}{u} \leq \lambda_{p} \leq \lambda_{1} \leq \frac{l_{1}}{l} \right\}.$$

9 Canonical Correlations

We consider the problem

$$\max_{\substack{\boldsymbol{\alpha}^{\top}\boldsymbol{\Sigma}_{11}\boldsymbol{\alpha}=1\\\boldsymbol{\gamma}^{\top}\boldsymbol{\Sigma}_{22}\boldsymbol{\gamma}=1}}\boldsymbol{\alpha}^{\top}\boldsymbol{\Sigma}_{12}\boldsymbol{\gamma},$$

where

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix} \succ oldsymbol{0}.$$

Let

$$\psi(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu) = \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma} - \frac{\lambda}{2} (\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} - 1) - \frac{\mu}{2} (\boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma} - 1).$$

The vectors of derivatives set equal to zero are

$$\begin{split} &\frac{\partial \psi(\boldsymbol{\alpha},\boldsymbol{\gamma},\boldsymbol{\lambda},\boldsymbol{\mu})}{\partial \boldsymbol{\alpha}} = \boldsymbol{\Sigma}_{12}\boldsymbol{\gamma} - \boldsymbol{\lambda}\boldsymbol{\Sigma}_{11}\boldsymbol{\alpha} = \boldsymbol{0}, \\ &\frac{\partial \psi(\boldsymbol{\alpha},\boldsymbol{\gamma},\boldsymbol{\lambda},\boldsymbol{\mu})}{\partial \boldsymbol{\gamma}} = \boldsymbol{\Sigma}_{12}^{\top}\boldsymbol{\alpha} - \boldsymbol{\mu}\boldsymbol{\Sigma}_{22}\boldsymbol{\gamma} = \boldsymbol{0}. \end{split}$$

Multiplication of above ones on the left by α^{\top} and γ^{\top} respectively, we have

$$oldsymbol{lpha}^{ op} oldsymbol{\Sigma}_{12} oldsymbol{\gamma} - \lambda oldsymbol{lpha}^{ op} oldsymbol{\Sigma}_{11} oldsymbol{lpha} = oldsymbol{0}, \ oldsymbol{\gamma}^{ op} oldsymbol{\Sigma}_{12}^{ op} oldsymbol{lpha} - \mu oldsymbol{\gamma}^{ op} oldsymbol{\Sigma}_{22} oldsymbol{\gamma} = oldsymbol{0}.$$

The constraint means $\lambda = \mu = \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}$. Setting derivatives be zero also can be written as

$$egin{bmatrix} -\lambda oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & -\lambda oldsymbol{\Sigma}_{22} \end{bmatrix} egin{bmatrix} oldsymbol{lpha} \ oldsymbol{\gamma} \end{bmatrix} = oldsymbol{0}.$$

The positive definiteness of Σ means $\alpha \neq 0$ and $\gamma \neq 0$, then

$$\det \left(\begin{bmatrix} -\lambda \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & -\lambda \mathbf{\Sigma}_{22} \end{bmatrix} \right) = 0.$$

Remark 9.1. Let

$$\boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \quad and \quad \mathbf{B} = \begin{bmatrix} \mathbf{0} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \mathbf{0} \end{bmatrix}.$$

We have the form of generalized eigenvalue decomposition

$$\mathbf{B}\boldsymbol{\xi} = \lambda \mathbf{A}\boldsymbol{\xi}$$
 and $\det(\mathbf{B} - \lambda \mathbf{A}) = 0$.

If $\mathbf{B} = \mathbf{I}$, it is eigenvalue decomposition. For $\mathbf{A} \succ \mathbf{0}$, we have

$$\mathbf{A}^{-1}\mathbf{B}\boldsymbol{\xi} = \lambda\boldsymbol{\xi} \quad and \quad \det(\mathbf{A}^{-1}\mathbf{B} - \lambda\mathbf{I}) = 0,$$

which corresponds to eigenvalue decomposition on $A^{-1}B$.

Remark 9.2. At (r+1)-th step, the uncorrelated conditions for $u = \boldsymbol{\alpha}^{\top} \mathbf{x}^{(1)}$ and $v = \boldsymbol{\gamma}^{\top} \mathbf{x}^{(2)}$ are

$$0 = \mathbb{E}[uu_i] = \mathbb{E}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(1)}\mathbf{x}^{(1)}^{\top}\boldsymbol{\alpha}^{(i)}\right] = \boldsymbol{\alpha}^{\top}\boldsymbol{\Sigma}_{11}\boldsymbol{\alpha}^{(i)},$$

$$0 = \mathbb{E}[vv_i] = \mathbb{E}\left[\boldsymbol{\gamma}^{\top}\mathbf{x}^{(2)}\mathbf{x}^{(2)}^{\top}\boldsymbol{\gamma}^{(i)}\right] = \boldsymbol{\gamma}^{\top}\boldsymbol{\Sigma}_{22}\boldsymbol{\gamma}^{(i)}.$$

for $i = 1, \ldots, r$. Then

$$\mathbb{E}[uv_i] = \mathbb{E}[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(1)} \mathbf{x}^{(2)}^{\top} \boldsymbol{\gamma}^{(i)}] = \boldsymbol{\alpha}^{\top} \mathbb{E}[\mathbf{x}^{(1)} \mathbf{x}^{(2)}^{\top}] \boldsymbol{\gamma}^{(i)} = \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}^{(i)} = \lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)} = 0.$$

$$\mathbb{E}[vu_i] = \mathbb{E}[\boldsymbol{\gamma}^{\top} \mathbf{x}^{(2)} \mathbf{x}^{(1)}^{\top} \boldsymbol{\alpha}^{(i)}] = \boldsymbol{\gamma}^{\top} \mathbb{E}[\mathbf{x}^{(2)} \mathbf{x}^{(1)}^{\top}] \boldsymbol{\alpha}^{(i)} = \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}^{(i)} = \lambda \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)} = 0.$$

We now maximize $\mathbb{E}[u_{r+1}v_{r+1}]$. Let

$$\psi_{r+1}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma} - \frac{\boldsymbol{\lambda}}{2} (\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} - 1) - \frac{\boldsymbol{\mu}}{2} (\boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma} - 1) - \sum_{i=1}^{r} \nu_{i} \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)} - \sum_{i=1}^{r} \theta_{i} \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)}.$$

The vectors of derivatives set equal to zero are

$$\frac{\partial \psi_{r+1}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu, \boldsymbol{\nu}, \boldsymbol{\theta})}{\partial \boldsymbol{\alpha}} = \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma} - \lambda \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} - \sum_{i=1}^{r} \nu_{i} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)} = \boldsymbol{0},$$
$$\frac{\partial \psi_{r+1}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu, \boldsymbol{\nu}, \boldsymbol{\theta})}{\partial \boldsymbol{\gamma}} = \boldsymbol{\Sigma}_{12}^{\top} \boldsymbol{\alpha} - \mu \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma} - \sum_{i=1}^{r} \theta_{i} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)} = \boldsymbol{0}.$$

Multiplication of above ones on the left by $\alpha^{(j)^{\top}}$ and $\gamma^{(j)^{\top}}$ for any $j \leq r$ respectively gives

$$0 = \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma} - \lambda \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} - \sum_{i=1}^{r} \nu_{i} \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)} = -\nu_{j} \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(j)},$$
$$0 = \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{12}^{\top} \boldsymbol{\alpha} - \mu \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma} - \sum_{i=1}^{r} \theta_{i} \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)} = -\theta_{j} \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(j)}.$$

Hence, we have $v_j = \theta_j = 0$. Then the condition of derivatives is

$$egin{bmatrix} -\lambda oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & -\lambda oldsymbol{\Sigma}_{22} \end{bmatrix} egin{bmatrix} oldsymbol{lpha} \ oldsymbol{\gamma} \end{bmatrix} = oldsymbol{0}.$$

where λ satisfies

$$\det\left(\begin{bmatrix} -\lambda \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & -\lambda \mathbf{\Sigma}_{22} \end{bmatrix}\right) = 0;$$

and α and γ satisfy

$$\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} = 1, \quad \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma} = 1, \quad \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}^{(i)} = 0, \quad and \quad \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}^{(i)} = 0.$$

Theorem 9.1. The canonical correlations are invariant with respect to transformations

$$\begin{cases} \mathbf{x}^{*(1)} = \mathbf{C}_1 \mathbf{x}^{(1)}, \\ \mathbf{x}^{*(2)} = \mathbf{C}_2 \mathbf{x}^{(2)}, \end{cases}$$

where C_1 and C_2 are non-singular. Additionally, any function of Σ that is invariant (under any such transformation) is a function of the canonical correlations.

Proof. The canonical correlations of $\mathbf{x}^{*(1)}$ and $\mathbf{x}^{*(2)}$ are the roots of

$$\begin{split} 0 &= \det \left(\begin{bmatrix} -\lambda \mathbf{C}_1 \boldsymbol{\Sigma}_{11} \mathbf{C}_1 & \mathbf{C}_1 \boldsymbol{\Sigma}_{12} \mathbf{C}_2^\top \\ \mathbf{C}_2 \boldsymbol{\Sigma}_{21} \mathbf{C}_1^\top & -\lambda \mathbf{C}_2 \boldsymbol{\Sigma}_{22} \mathbf{C}_2^\top \end{bmatrix} \right) \\ &= \det \left(\begin{bmatrix} \mathbf{C}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_2 \end{bmatrix} \right) \det \left(\begin{bmatrix} -\lambda \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & -\lambda \boldsymbol{\Sigma}_{22} \end{bmatrix} \right) \det \left(\begin{bmatrix} \mathbf{C}_1^\top & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_2^\top \end{bmatrix} \right), \end{split}$$

which are equivalent to the canonical correlations of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.

If $\mathbf{f}(\Sigma_{11}, \Sigma_{12}, \Sigma_{22})$ be a vector function such that $\mathbf{f}(\Sigma_{11}, \Sigma_{12}, \Sigma_{22}) = \mathbf{f}(\mathbf{C}_1 \Sigma_{11} \mathbf{C}_1^\top, \mathbf{C}_1 \Sigma_{12} \mathbf{C}_2^\top, \mathbf{C}_2 \Sigma_{22} \mathbf{C}_2^\top)$ for any non-singular \mathbf{C}_1 and \mathbf{C}_2 . Let $\mathbf{C}_1 = \mathbf{A}^\top$ and $\mathbf{C}_2 = \mathbf{\Gamma}^\top$, then $\mathbf{f}(\mathbf{C}_1 \Sigma_{11} \mathbf{C}_1^\top, \mathbf{C}_1 \Sigma_{12} \mathbf{C}_2^\top, \mathbf{C}_2 \Sigma_{22} \mathbf{C}_2^\top) = f(\mathbf{I}, \operatorname{diag}(\mathbf{\Lambda}, \mathbf{0}), \mathbf{I})$.

10 Factor Analysis and Probabilistic PCA

Theorem 10.1. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ and $\mathbf{y} \sim \mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ be independent, then

$$\mathbf{z} = \mathbf{x} + \mathbf{y} \sim \mathcal{N}_p(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2).$$

Proof. Let $\phi_{\mathbf{x}}$, $\phi_{\mathbf{y}}$ and $\phi_{\mathbf{z}}$ be the characteristic functions of \mathbf{x} , \mathbf{y} and \mathbf{z} . Then we have

$$\begin{aligned} & \boldsymbol{\phi}_{\mathbf{z}}(\mathbf{t}) \\ &= \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^{\top}(\mathbf{x} + \mathbf{y})\right)\right] \\ &= \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{x}\right)\right] \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{y}\right)\right] \\ &= \exp\left(-\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu}_{1} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}_{1}\mathbf{t}\right) \exp\left(-\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu}_{2} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}_{2}\mathbf{t}\right) \\ &= \exp\left(-\mathrm{i}\,\mathbf{t}^{\top}(\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2}) + \frac{1}{2}\mathbf{t}^{\top}(\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2})\mathbf{t}\right), \end{aligned}$$

which is the characteristic function of $\mathcal{N}_p(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$.

MLE for Probabilistic PCA The maximum likelihood estimators of μ is $\bar{\mathbf{t}}$, which can be observed by following MLE for normal distribution. By omitting the constant term, we focus on minimizing

$$f = \ln \det(\mathbf{C}) + \operatorname{tr}(\mathbf{C}^{-1}\hat{\mathbf{\Sigma}}),$$

where $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$. The gradient of \mathbf{W} is

$$\frac{\partial f}{\partial \mathbf{W}} = \mathbf{C}^{-1} \hat{\mathbf{\Sigma}} \mathbf{C}^{-1} \mathbf{W} - \mathbf{C}^{-1} \mathbf{W}.$$

Let $\mathbf{W} = \mathbf{U}\mathbf{L}\mathbf{V}^{\top}$ be condense SVD of \mathbf{W} , where $\mathbf{U} \in \mathbb{R}^{d \times q}$, $\mathbf{L} \in \mathbb{R}^{q \times q}$ and $\mathbf{V} \in \mathbb{R}^{q \times q}$. Denote \mathbf{U}_1 be the orthogonal complement of \mathbf{U} , then we have

$$\begin{split} \mathbf{C} = & \mathbf{U} \mathbf{L}^2 \mathbf{U}^\top + \sigma^2 \begin{bmatrix} \mathbf{U} & \mathbf{U}_1 \end{bmatrix} \begin{bmatrix} \mathbf{U} \\ \mathbf{U}_1 \end{bmatrix} \\ = & \begin{bmatrix} \mathbf{U}^\top & \mathbf{U}_1^\top \end{bmatrix} \begin{bmatrix} \mathbf{L}^2 + \sigma^2 \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \sigma^2 \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U}^\top \\ \mathbf{U}_1^\top \end{bmatrix} \end{split}$$

and

$$\mathbf{C}^{-1} = \begin{bmatrix} \mathbf{U}^{\top} & \mathbf{U}_{1}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{L} + \sigma^{2} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \sigma^{2} \mathbf{I} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{U}^{\top} \\ \mathbf{U}_{1}^{\top} \end{bmatrix}$$
$$= \mathbf{U}(\mathbf{L}^{2} + \sigma^{2} \mathbf{I})^{-1} \mathbf{U}^{\top} + \sigma^{-2} \mathbf{U}_{1} \mathbf{U}_{1}^{\top}.$$

Taking the gradient be zero, we have

$$\mathbf{C}^{-1}\hat{\mathbf{\Sigma}}\mathbf{C}^{-1}\mathbf{W} - \mathbf{C}^{-1}\mathbf{W} = \mathbf{0} \iff \hat{\mathbf{\Sigma}}\mathbf{C}^{-1}\mathbf{W} = \mathbf{W}.$$

The decomposing of C and C^{-1} implies

$$\begin{split} \hat{\boldsymbol{\Sigma}}\mathbf{C}^{-1}\mathbf{W} = & \hat{\boldsymbol{\Sigma}} \left(\mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I})^{-1} \mathbf{U}^\top + \sigma^{-2} \mathbf{U}_1 \mathbf{U}_1^\top \right) \mathbf{U} \mathbf{L} \mathbf{V}^\top \\ = & \hat{\boldsymbol{\Sigma}} \left(\mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I})^{-1} \mathbf{U}^\top \right) \mathbf{U} \mathbf{L} \mathbf{V}^\top \\ = & \hat{\boldsymbol{\Sigma}} \mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I})^{-1} \mathbf{L} \mathbf{V}^\top. \end{split}$$

Hence, we obtain

$$\begin{split} \hat{\boldsymbol{\Sigma}}\mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I})^{-1}\mathbf{L}\mathbf{V}^\top &= \mathbf{U}\mathbf{L}\mathbf{V}^\top \\ \iff &\hat{\boldsymbol{\Sigma}}\mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I})^{-1}\mathbf{L} = \mathbf{U}\mathbf{L} \\ \iff &\hat{\boldsymbol{\Sigma}}\mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I})^{-1} = \mathbf{U} \\ \iff &\hat{\boldsymbol{\Sigma}}\mathbf{U} = \mathbf{U}(\mathbf{L}^2 + \sigma^2 \mathbf{I}), \end{split}$$

where **U** and the diagonal matrix $\mathbf{L}^2 + \sigma^2 \mathbf{I}$ correspond to the eigenvalue decomposition of $\hat{\boldsymbol{\Sigma}}$. Hence, all potential solution of **W** has the form of

$$\mathbf{W} = \mathbf{U}_a (\mathbf{\Lambda}_a - \sigma^2 \mathbf{I})^{\frac{1}{2}} \mathbf{R} \tag{12}$$

where \mathbf{U}_q contains q eigenvectors of $\hat{\Sigma}$, Λ is diagonal matrix with corresponding eigenvalues and $\mathbf{R}^{q \times q}$ is any orthogonal matrix. Using the expression (12), we obtain

$$\begin{split} \mathbf{C} = & \mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I} \\ = & \mathbf{U}_{q} (\mathbf{\Lambda}_{q} - \sigma^{2} \mathbf{I}) \mathbf{U}_{q}^{\top} + \sigma^{2} \mathbf{I} \\ = & \mathbf{U}_{q} (\mathbf{\Lambda}_{q} - \sigma^{2} \mathbf{I}) \mathbf{U}_{q}^{\top} + \sigma^{2} (\mathbf{U}_{q} \mathbf{U}_{q}^{\top} + \mathbf{U}_{d-q} \mathbf{U}_{d-q}^{\top}) \\ = & [\mathbf{U}_{q} \quad \mathbf{U}_{d-q}] \begin{bmatrix} \mathbf{\Lambda}_{q} & \mathbf{0} \\ \mathbf{0} & \sigma^{2} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{q}^{\top} \\ \mathbf{U}_{d-q}^{\top} \end{bmatrix} \end{split}$$

and

$$\begin{split} \mathbf{C}^{-1}\hat{\boldsymbol{\Sigma}} &= \begin{bmatrix} \mathbf{U}_q & \mathbf{U}_{d-q} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Lambda}_q^{-1} & \mathbf{0} \\ \mathbf{0} & \sigma^{-2}\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U}_q^\top \\ \mathbf{U}_{d-q}^\top \end{bmatrix} \begin{bmatrix} \mathbf{U}_q & \mathbf{U}_{d-q} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Lambda}_q & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Lambda}_{d-q} \end{bmatrix} \begin{bmatrix} \mathbf{U}_q^\top \\ \mathbf{U}_{d-q}^\top \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{U}_q & \mathbf{U}_{d-q} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \sigma^{-2}\boldsymbol{\Lambda}_{d-q} \end{bmatrix} \begin{bmatrix} \mathbf{U}_q^\top \\ \mathbf{U}_{d-q}^\top \end{bmatrix}. \end{split}$$

Therefore, the function f can be written as

$$f = \ln \det(\mathbf{C}) + \operatorname{tr}(\mathbf{C}^{-1}\hat{\mathbf{\Sigma}})) = (d - q)\ln \sigma^2 + \sum_{i=1}^{q} \ln \lambda_i + q + \frac{1}{\sigma^2} \sum_{j=q+1}^{d} \lambda_j.$$

Minimizing f over σ^2 achieves

$$\sigma^2 = \frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_j.$$

So we have

$$f = (d - q) \ln \left(\frac{1}{d - q} \sum_{j=q+1}^{d} \lambda_j \right) + \sum_{i=1}^{q} \ln \lambda_i + d$$

$$= (d-q)\ln\left(\frac{1}{d-q}\sum_{j=q+1}^{d}\lambda_j\right) - \sum_{j=q+1}^{d}\ln\lambda_i + \sum_{i=1}^{d}\ln\lambda_i + d.$$

Since $\sum_{i=1}^d \ln \lambda_i = \operatorname{tr}(\hat{\Sigma})$ is fixed, we only need to select $\lambda_{q+1}, \dots, \lambda_d$ to minimize

$$\ln\left(\frac{1}{d-q}\sum_{j=q+1}^{d}\lambda_j\right) - \frac{1}{d-q}\sum_{j=q+1}^{d}\ln\lambda_i.$$

Suppose that $\lambda_{q+1} = \max_{j} {\{\lambda_j\}_{j=q+1}^d}$, then we have

$$\lambda_q \ge \frac{\lambda_{q+1} + \dots + \lambda_d}{d - 1 - q}.$$

We introduce the following function to determine λ_a :

$$g(x) = \ln\left(\frac{1}{d-q}\left(x + \sum_{j=q+2}^{d} \lambda_j\right)\right) - \frac{1}{d-q}\left(\ln x + \sum_{j=q+2}^{d} \ln \lambda_i\right).$$

Then we have

$$g'(x) = \frac{1}{x + \sum_{i=q+1}^{d-1} \lambda_i} - \frac{1}{(d-q)x} \ge 0$$

when $(x \text{ corresponds to } \lambda_{q+1} = \max_{j} \{\lambda_j\}_{j=q+1}^d)$

$$x \ge \frac{\lambda_{q+1} + \dots + \lambda_d}{d - 1 - q},$$

which implies g(x) is decreasing. Therefore, we should take $\lambda_{q+1}, \ldots, \lambda_d$ as the smallest d-q eigenvalues.

Optimality of MLE Estimator We show that the MLE estimator also minimize the Frobenius norm error

$$\left(\hat{\mathbf{W}}, \hat{\sigma}^2\right) = \operatorname*{arg\,min}_{\mathbf{W} \in \mathbb{R}^{d \times q}, \sigma^2 \in \mathbb{R}^+} \left\| \hat{\mathbf{\Sigma}} - \left(\mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I}\right) \right\|_F.$$

The following lemma comes from page 215 of book "Roger A. Horn and Charles R. Johnson. *Topics in Matrix Analysis, Vol. 2.* Cambridge University Press, 1991". We can find a proof in Appendix B of paper "Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, Tong Zhang. Robust Frequent Directions with Application in Online Learning. *Journal of Machine Learning Research*, 20(45):1-41, 2019."

Lemma 10.1. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ and $q = \min\{m, n\}$. Define the diagonal matrix $\mathbf{D}(\mathbf{A})$ whose (i, i)-th element is the i-th singular value of \mathbf{A} and the others are zero. We define $\mathbf{D}(\mathbf{A})$. Then we have

$$\|\mathbf{A} - \mathbf{B}\| \ge \|\mathbf{D}(\mathbf{A}) - \mathbf{D}(\mathbf{B})\|.$$

Based on above lemma, we have

$$\begin{aligned} & \left\| \hat{\mathbf{\Sigma}} - \left(\mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I} \right) \right\|_{F} \\ & \geq & \left\| \mathbf{D} (\hat{\mathbf{\Sigma}}) - \mathbf{D} \left(\mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I} \right) \right\|_{F} \\ & = \sum_{i=1}^{d} \left(\lambda_{i} - \lambda_{i} \left(\mathbf{W} \mathbf{W}^{\top} \right) - \sigma^{2} \right)^{2} \end{aligned}$$

$$\geq \sum_{i=q+1}^{d} (\lambda_i - \lambda_i (\mathbf{W} \mathbf{W}^{\top}) - \sigma^2)^2$$

$$= \sum_{i=q+1}^{d} (\lambda_i - \sigma^2)^2$$

$$\geq \sum_{i=q+1}^{d} (\lambda_i - \hat{\sigma}^2)^2,$$

where $\mathbf{W} = \hat{\mathbf{W}}$ and $\sigma^2 = \hat{\sigma}^2$ lead all equality hold.

The EM Algorithm for PPCA For the model

$$\mathbf{t}_{\alpha} = \mathbf{W}\mathbf{x}_{\alpha} + \boldsymbol{\mu} + \boldsymbol{\epsilon}_{\alpha},$$

where $\mathbf{x}_{\alpha} \sim \mathcal{N}_q(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\epsilon} \sim \mathcal{N}_d(\mathbf{0}, \sigma^2 \mathbf{I})$ are independent.

- 1. We consider $\{\mathbf{x}_{\alpha}\}_{\alpha=1}^{N}$ to be missing data and $\{\mathbf{x}_{\alpha}, \mathbf{t}_{\alpha}\}_{\alpha=1}^{N}$ to be the complete data.
- 2. The posterior of \mathbf{x} given \mathbf{t} is

$$\begin{aligned} & p(\mathbf{x} \mid \mathbf{t}) \\ & \propto p(\mathbf{t} \mid \mathbf{x}) p(\mathbf{x}) \\ &= n(\mathbf{t} \mid \mathbf{W} \mathbf{x} + \boldsymbol{\mu}, \sigma^2 \mathbf{I}) \, n(\mathbf{x} \mid \mathbf{0}, \mathbf{I}) \\ & \propto \exp\left(-\frac{\|\mathbf{t}_{\alpha} - \mathbf{W} \mathbf{x}_{\alpha} - \boldsymbol{\mu}\|_{2}^{2}}{2\sigma^{2}}\right) \exp\left(-\frac{\|\mathbf{x}_{\alpha}\|_{2}^{2}}{2}\right) \\ & \propto \exp\left(\frac{1}{2\sigma^{2}} \left(\mathbf{x}^{\top} \mathbf{W} \mathbf{W}^{\top} \mathbf{x} - 2(\mathbf{t} - \boldsymbol{\mu})^{\top} \mathbf{W} \mathbf{x} + \sigma^{2} \|\mathbf{x}\|_{2}^{2}\right)\right) \\ &= \exp\left(\frac{1}{2\sigma^{2}} \left(\mathbf{x}^{\top} \left(\mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I}\right) \mathbf{x} - 2(\mathbf{t} - \boldsymbol{\mu})^{\top} \mathbf{W} \left(\mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I}\right)^{-1} \left(\mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I}\right) \mathbf{x}\right)\right). \end{aligned}$$

Hence, it is normal distribution such that

$$\mathbf{x} \mid \mathbf{t} \sim \mathcal{N}\left(\mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{t} - \boldsymbol{\mu}), \sigma^2\mathbf{M}^{-1}\right)$$

where $\mathbf{M} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$.

3. The joint density of $\{\mathbf{x}_{\alpha}, \mathbf{t}_{\alpha}\}_{\alpha=1}^{N}$ is

$$\prod_{\alpha=1}^{N} n(\mathbf{t}_{\alpha} | \mathbf{W} \mathbf{x}_{\alpha} + \boldsymbol{\mu}, \sigma^{2} \mathbf{I}) n(\mathbf{x}_{\alpha} | \mathbf{0}, \mathbf{I}).$$

In E-step, we take the expectation of the log-likelihood with respect to the distributions $p(\mathbf{x}_{\alpha} | \mathbf{t}_{\alpha})$:

$$\begin{split} & l_{C} \\ = & \mathbb{E}\left[\ln\left(\prod_{\alpha=1}^{N}p(\mathbf{x}_{\alpha}\,|\,\mathbf{t}_{\alpha})\right)\right] \\ = & -\sum_{\alpha=1}^{N}\left(\frac{d}{2}\log\sigma^{2} + \frac{1}{2\sigma^{2}}(\mathbf{t}_{\alpha}-\boldsymbol{\mu})(\mathbf{t}_{\alpha}-\boldsymbol{\mu})^{\top} - \frac{1}{2\sigma^{2}}\langle\mathbf{x}_{\alpha}\rangle^{\top}\mathbf{W}^{\top}(\mathbf{t}_{\alpha}-\boldsymbol{\mu})^{\top} + \frac{1}{2\sigma^{2}}\mathrm{tr}\left(\mathbf{W}^{\top}\mathbf{W}\langle\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top}\rangle\right) + \frac{\langle\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top}\rangle}{2}\right) + C. \end{split}$$
 where $\langle\mathbf{x}_{\alpha}\rangle = \mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{t}_{\alpha}-\boldsymbol{\mu})$ and $\langle\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top}\rangle = \sigma^{2}\mathbf{M}^{-1} + \langle\mathbf{x}_{\alpha}\rangle\langle\mathbf{x}_{\alpha}\rangle^{\top}.$

In the M-step, the expectation l_C is maximised with respect to **W** and σ^2 giving new parameter

$$\begin{split} \tilde{\mathbf{W}} &= \left(\sum_{\alpha=1}^{N} (\mathbf{t}_{\alpha} - \boldsymbol{\mu}) \langle \mathbf{x}_{\alpha} \rangle^{\top} \right) \left(\sum_{\alpha=1}^{N} \langle \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} \rangle \right)^{-1} \\ &= \sum_{\alpha=1}^{N} \left((\mathbf{t}_{\alpha} - \boldsymbol{\mu}) (\mathbf{t}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{W} \mathbf{M}^{-1} \right) \left(N \sigma^{2} \mathbf{M}^{-1} + \sum_{\alpha=1}^{N} \mathbf{M}^{-1} \mathbf{W}^{\top} (\mathbf{t}_{\alpha} - \boldsymbol{\mu}) (\mathbf{t}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{W} \mathbf{M}^{-1} \right)^{-1} \\ &= \left(N \hat{\mathbf{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \right) \left(N \sigma^{2} \mathbf{M}^{-1} + N \mathbf{M}^{-1} \mathbf{W}^{\top} \hat{\mathbf{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \right)^{-1} \\ &= \hat{\mathbf{\Sigma}} \mathbf{W} \mathbf{M}^{-1} (\sigma^{2} \mathbf{M}^{-1} + \mathbf{M}^{-1} \mathbf{W}^{\top} \hat{\mathbf{\Sigma}} \mathbf{W} \mathbf{M}^{-1})^{-1} \\ &= \hat{\mathbf{\Sigma}} \mathbf{W} \left(\sigma^{2} \mathbf{I} + \mathbf{M}^{-1} \mathbf{W}^{\top} \hat{\mathbf{\Sigma}} \mathbf{W} \right)^{-1} \end{split}$$

and

$$\begin{split} \tilde{\sigma}^2 &= \frac{1}{Nd} \sum_{\alpha=1}^N \left(\| \mathbf{t}_{\alpha} - \boldsymbol{\mu} \|_2^2 - 2 \langle \mathbf{x}_{\alpha} \rangle^\top \tilde{\mathbf{W}}^\top (\mathbf{t}_{\alpha} - \boldsymbol{\mu}) + \operatorname{tr} \left(\langle \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^\top \rangle \tilde{\mathbf{W}}^\top \tilde{\mathbf{W}} \right) \right) \\ &= \frac{1}{d} \left(\operatorname{tr}(\hat{\boldsymbol{\Sigma}}) - \sum_{\alpha=1}^N 2 \operatorname{tr} \left((\mathbf{t}_{\alpha} - \boldsymbol{\mu}) (\mathbf{t}_{\alpha} - \boldsymbol{\mu})^\top \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top \right) \\ &+ \sum_{\alpha=1}^N \operatorname{tr} \left((\sigma^2 \mathbf{M}^{-1} + \mathbf{M}^{-1} \mathbf{W}^\top (\mathbf{t}_{\alpha} - \boldsymbol{\mu}) (\mathbf{t}_{\alpha} - \boldsymbol{\mu})^\top \mathbf{W} \mathbf{M}^{-1}) \tilde{\mathbf{W}}^\top \tilde{\mathbf{W}} \right) \right) \\ &= \frac{1}{d} \left(\operatorname{tr}(\hat{\boldsymbol{\Sigma}}) - 2 \operatorname{tr} (\hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top) + \operatorname{tr} \left((\sigma^2 \mathbf{M}^{-1} + \mathbf{M}^{-1} \mathbf{W}^\top \hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1}) \tilde{\mathbf{W}}^\top \tilde{\mathbf{W}} \right) \right) \\ &= \frac{1}{d} \left(\operatorname{tr}(\hat{\boldsymbol{\Sigma}}) - 2 \operatorname{tr} (\hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top) + \operatorname{tr} \left(\tilde{\mathbf{W}} \left(\sigma^2 \mathbf{M}^{-1} + \mathbf{M}^{-1} \mathbf{W}^\top \hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \right) \tilde{\mathbf{W}}^\top \right) \right) \\ &= \frac{1}{d} \left(\operatorname{tr}(\hat{\boldsymbol{\Sigma}}) - 2 \operatorname{tr} (\hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top) + \operatorname{tr} \left(\hat{\boldsymbol{\Sigma}} \mathbf{W} \left(\sigma^2 \mathbf{I} + \mathbf{M}^{-1} \mathbf{W}^\top \hat{\boldsymbol{\Sigma}} \mathbf{W} \right)^{-1} \left(\sigma^2 \mathbf{M}^{-1} + \mathbf{M}^{-1} \mathbf{W}^\top \hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \right) \tilde{\mathbf{W}}^\top \right) \right) \\ &= \frac{1}{d} \operatorname{tr} \left(\hat{\boldsymbol{\Sigma}} - 2 \operatorname{tr} (\hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top) + \operatorname{tr} \left(\hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top \right) \right) \\ &= \frac{1}{d} \operatorname{tr} \left(\hat{\boldsymbol{\Sigma}} - \hat{\boldsymbol{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \tilde{\mathbf{W}}^\top \right). \end{split}$$