- 1. Find ℓ [$t \sin \beta t$] using the known transform of $\sin \beta t$, where ℓ is the Laplace transform. (5%)
- 2. For the s-domain function below,

$$F(s) = \frac{3s^3 + 9s^2 + 5s + 16}{s(s+1)(s^2+9)}$$

evaluate $f(0^+)$ and $f'(0^+)$ given $f(0^-) = 3$. (5%)

And evaluate $f(\infty)$ or indicate the reason why the final value doesn't exist. (5%)

- 3. For the circuit shown in Fig.1 with $v_s(t) = 10$ V for t < 0, $v_s(t) = 0$ V for $t \ge 0$, and $\beta = 9$,
 - (a) find the initial values for inductor current, $i_L(0^-)$, and capacitor voltage, $v_C(0^-)$. (5%)
 - (b) use mesh analysis to determine the inductor current in s-domain $I_L(s)$. (10%)
 - (c) obtain the zero-input response of the inductor current in time domain, $i_L(t)$. (10%)

Fig. 1

4. Draw the asymptotic Bode plot of the gain and phase for

$$H(s) = \frac{-2000s^2}{(s+50)(s+200)(s+400)}$$

Then add the dB corrections to find the maximum value of $a(\omega)$ and the ω_l and ω_u at which the gain drops 3dB below the maximum. Please mark these values on the plot. (15%)

5. The load impedance Z_L for the circuit shown in Fig. 2 is adjusted until maximum average power is delivered to Z_L . Find the load impedance Z_L that draws the maximum average power and calculate the resulting value of P_{max} . (15%)

6. Please use mesh analysis to find I_2 shown in Fig. 3 (15%)

7. The second-order equation of the series LRC circuit shown in Fig. 4 can be expressed as: $i_L^{"}(t) + Ai_L^{"}(t) + Bi_L(t) = Cv_S^{"}(t)$. Please a) determine the values of A, B, and C. (5%) b) find the transient inductor

current $i_L(t)$ for t > 0, where $v_s(t) = 30$ V, t < 0; and $v_s(t) = 0$ V, $t \ge 0$. (10%)

Fig. 4

TABLE 13.1 Laplace Transform Properties

Operation	Time Function	Laplace Transform
Linear combination	Af(t) + Bg(t)	AF(s) + BG(s)
Multiplication by e^{-at}	$e^{-at}f(t)$	F(s + a)
Multiplication by t	tf(t)	-dF(s)/ds
Time delay	$f(t-t_0)u(t-t_0)$	$e^{-st}{}_{0}F(s)$
Differentiation	f'(t)	$sF(s) - f(0^-)$
	f''(t)	$s^2F(s) - sf(0^-) - f'(0^-)$
Integration	$\int_{0^{-}}^{\prime} f(\lambda) \ d\lambda$	$\frac{1}{s} F(s)$

TABLE 13.2 Laplace Transform Pairs

f(t)	F(s)
	$\frac{A}{s}$
u(t) - u(t - D)	$\frac{1-e^{-sI}}{s}$
<i>t</i>	$\frac{1}{s^2}$
t^r	$\frac{r!}{s^{r+1}}$
e^{-at}	$\frac{1}{s+a}$
te^{-at}	$\frac{1}{(s+a)^2}$
$t^r e^{-at}$	$\frac{r!}{(s+a)^{r+1}}$
$\sin \beta t$	$\frac{\beta}{s^2 + \beta^2}$
$\cos (\beta t + \phi)$	$\frac{s \cos \phi - \beta \sin \phi}{s^2 + \beta^2}$
$e^{-at}\cos(\beta t + \phi)$	$\frac{(s+a)\cos\phi-\beta\sin\phi}{(s+a)^2+\beta^2}$