Course		Course	Course		Cou	rse		_	Generic Elective Course									С					
Code	UMS20G01T	Name	DISCRETE MATH	EMATICAL STRUCTURES	Cate			G			Gen	eric	Elec	tive	Cou	rse				3	1	0	4
	equisite Irses		Co-requisite Courses	Nil		Prog Co	ress	1	Vil	>		Ì											
Course	Offering Departm	ent <i>Mathe</i>	matics and Statistics	Data Book / Codes/Sta	ndards \	Vil				Ţ	þ		¥										
Course I (CLR):	Learning Rational	The pu	rpose o <mark>f learni</mark> ng this cour	rse is to:		Lea	rnin	g			Ę	Pro	gran	n Le	arnir	ng O	utco	mes	(PL	0)			
CLR-1:	To provide a stro	ng foundat	ons in discrete mathemati	ics	1100	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: To apply mathematical techniques for solving real life problems CLR-3: Apply Boolean algebra, truth table, logic gates, in computer science and communication. CLR-4: To enable the use of logical, graphical and algebraic techniques wherever relevant.									ge			arch	2		ability		¥						
CLR-5 :	Understanding of computer science through the applications of Discrete						ciency (%)	nment (%)	Knowledge	sis	lopment	n, Resear	Jsage	ıre	Sustainability		Team Work	_	Finance	ing			
CLR-6:	To provide a stro	ng foundat	ons in <mark>discret</mark> e mathemati	ics		fThinking	Profi	d Attai	100	>	& Deve	s, Desig	Tool L	& Cultu	ment 8		Ø	Communicatio	Mgt. &	ng Learn		20.000	
Course I (CLO):	Learning Outcome	At the	end of t <mark>his cour</mark> se, learner	rs will be able to:		Level o	Expected	Expecte	Fundamental	Problem	Design	Analysis,	Modern	Society	Environment	Ethics	Individual	Commi	Project Mgt.	Life Long	PSO - 1	PSO - 2	PSO – 3
CLO-1:	Problem solving using elementary		relations. Gaining knowle	edge, solving the simple prob	olems	3	85	80	М	М	L	М	L	-1	228	-	L	м	Н	М	2	-	-
CLO-2:	Understand the o	oncepts of	Graphs terminology Sub (graphs, Acyclic, Euler path, Har	miltonian	3	80	75	М	М	М	М	М		-	-	М	м	Н	м	-	-	-
CLO-3: Logical knowledge through the Statements, connectives, arguments, validity of arguments and Normal forms using truth tables					3	85	80	Н	Н	М	Н	М	-		-	М	М	Н	н		27.0	3075.0	
CLO-4: Gain the knowledge about Trees , Labeled Trees, Binary trees ,Rooted Trees , Spanning Trees Minimal Spanning Trees					3	85	80	М	Н	М	Н	М	31	-	-	М	М	Н	Н	-	-	-	
Apply the concepts of Boolean Algebra in real world problems related to Computer						3	85	80	М	М	М	М	М		-	-	М	М	Н	М	-	-	:: - .*
CLO-6 :	Gaining knowledge in Boolean arithmetic to solve problems using logic gates							80	М	М	м	М	М	-	-	-	м	М	Н	М	-	-	-

Duration		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5				
	our)	12	12	12	12	12				
S-1	SLO-1	Introduction to Sets – simple examples.	Logic	Graphs and Their Representation-	Trees	Sets concepts				
	SLO-2	Properties of sets Types of sets	Basic explanation	Basic Graph terminology	Basic Definitions	Partition of a set				
NO SERVICE	SLO-1	Venn diagram.	Statements- simple compound	Simple Problems	Basic properties of Trees	Relation concepts				
5-2	SLO-2	Problems using Venn diagrams	Symbolic representation	Drawings of Graphs	properties of Trees	matrix representation of relation				
	SLO-1	Relation definitions	Connectives explanation .	Special Families of Graphs	Labeled Trees	Simple problems				
S-3	SLO-2	Problems on Relations	conjunction, disjunction, negation	Simple Problems	Labeled Trees	Hasse diagrams for partial				
c 4	SLO-1	Types of relation	Simple problems	Incidence graphs	Problems based on the concepts	More problems using Hasse diagrams				
S 4	SLO-2	Problems on relations	Problems using Truth Tables	Simple Problems	Undirected Trees	Lattices as posets				
SLO-1 S-5		Equivalence relation-basic explanation	Tautology, contradiction	Adjacency Matrices	Simple Problems	Lattices as posets				
3-3	SLO-2	Simple problems	Problems using Truth tables	Problems using Adjacency Matrices	Binary trees	Definition of Lattices-				
	SLO-1	Reflexive basic explanation	logical equivalence,	vertex Degrees matrices	Rooted Trees and Branches	Properties of Lattices				
S 6	SLO-2	Simple problems	Simple truth table problems	Isomorphism of Graphs	Rooted Trees and Branches	Introduction to Boolean Algebra- basic definitions.				
S-7	SLO-1	Symmetric, Transitive basic explanation	Tautological implications	Simple Problems	Spanning Trees	Axiomatic definition of boolean Algebra, logic gates.				
	SLO-2	Simple problems	Simple problems	Sub graphs	Simple problems	Postulates of Boolean algebra.				
	SLO-1	Function	Arguments- validity of arguments	Acyclic Graphs	Spanning Trees	Postulates of Boolean algebra.				
SLO-2		Comparison of Relation and functions	Simple problems	Simple Problems	Simple problems	Problems using the postulates of Boolean Algebra				
S -9	SLO-1	Types of functions	Normal forms	Digraphs	Minimal Spanning Trees	Problems using the basic concepts				

	SLO-2	Simple problems	Minterms and maxterms	Problems using Digraphs	Simple Problems	Properties of Boolean algebra
SLO-1 one to many, functions with SLO-2 Simple problem SLO-1 Composite of to SLO-2 Simple problem SLO-2 Simple problem SLO-2 Simple problem	One- one, injective, surjective, one to many, many to one functions with example	Maxterms with examples	Euler path and circuits	Problems based on Minimal Spanning Trees	Simple Boolean algebra problems	
	Simple problems	Problems using Truth tables	Eulerian cycles	Kruskal's Algorithm	Expression of a Boolean function By Truth table method.	
SLO-1 composite	composite of two functions	Principal disjunctive normal form	Euler path and Circuits	Rooted Tree	Boolean function in canonical form by Truth table method.	
	Simple problems	Problems using Truth tables	Hamiltonian Path and Circuits.	binary Tree and Simple Problems	DNF by Truth table method	
S-12	SLO-2 Simple prob SLO-1 composite of SLO-1 composit	composite of three functions	mposite of three functions form		Expression of Trees	CNF by Truth table method
	SLO-2	Simple problems	Problems using Truth tables	Simple Problems	Simple Problems	Simple problems

Learning Resources	Theory: 1. Discrete Mathematics with Graph Theory and Combinatorics by T.Veerajan, McGraw Hill Education(India) Pvt Limited, 20 <mark>07</mark> 2. Dr. A. Singaravelu, Allied Mathe <mark>matics, 7th edition, A. R. Publications, 2015</mark> .
	A LEAP-LEAD

Learning As	sessment									90					
Blo	oom's			Final Examination (50%											
Level of Thinking		CLA - 1	1 (10%)	CLA – 2	2 (10%)	CLA – 3	3 (20%)	CLA – 4	# (10%)	weightage)					
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	30%		30%		30%		30%		30%					
	Understand	30%		30%		30%		30%		30%					
Level 2	Apply	40%		40%		40%		40%		40%					
	Analyze	40%		40%		40%		40%		40%					

Level 3	Evaluate Create	30%		30%		30%		30%		30%	3
	Total	100 %		100	0 %	100) %	100	0 %	100%	

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers	
Experts from Academic	Internal Experts
1.Dr.M.A.Baskar, Professor & Head, Dept. Of Mathematics, Loyola college, Chennai	1. L.Sivakami, SRMIST
2. Dr.P.Dhanavanthan, Professor & Head, Dept. Of statistics, Pondicherry University	2. S.Suruthi, SRMIST

Course Code UCS2	0501J	Course Name	ADVANCED E	XCEL	Cou			s	27			Skill	Enha	ance	mer	nt				L 1	T 0	P 1	C 2
					No.	1			1			ţ											
Pre-requisite Nil			Co-requisite Nil		P	rogr	ressi	ve N	il														
Course Offering D)enartme	nt Computer S	CASTO TOUR LA CAMPARA	Data Book / Codes/Star	ndards N	100000000000000000000000000000000000000	ırses	>				F		+									
course offering b	- Сранине	compater o		zata zook / coacs/otal							,		7										
										7	1	Y											
Course Learning F (CLR):	Rationale	The purpose	e of learning this course is to,			Lea	rnin	g				Pr	ogra	m Le	earni	ing C)utc	ome	s (PL	.0)			
			7	TEARN - J	LEA	D.	Т		AΤ	1				7									
CLR-1 : Categoriz	e data in	an easy-to-nav	igate manner			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10									ď	,	+						Vork		ь				
CLR-3: Turn lots	of data ir	nto helpful grap	hics and charts.			2	ر ا	≝	7	5	nent		a				>		anc				
CLR-4: Analyze d	ata and r	make forecastin	g predictions		<u></u>		Attainme		Knowle		elopm	į _`	sage	re	1000		Team	_	Fin	ng			
CLR-5 : Create, b	uild, and	edit pixilated in	nages		hinking	1	1 1	Ē	K	l o	- >	sign	\supset	Ita	t &	,	Te	tior	∞	L.			
CLR-6: easily cre	Co-requisite Nil Courses Nil Courses Data Book / Codes/Standa		ulu			1	p	0 2		שוי	00	S	ien		8	nication	Mgt.	Le					
		**			10	70	0 0	ט ט	a.	1 8	00		4 [8	מעל		lua	n		ng	Н	2	3
Course Learning (CLO):	Outcomes	At the end o	of this course, learners will be	able to:	evel	(Bloom)		cxbeci	Fngineering	Droblem	Design	naly	Modern	Society	Enviro	Ethics	Individual	Comm	Project	Life Lo	PSO -	: - OSd	-05d
CLO-1 : Construct		s, including the	use of built-in functions, and	relative and absolute			85	28	Н	U Section		10 10 10 10 10 10 10 10 10 10 10 10 10 1			-		М	-		-	Н	30 50 30 30 30 U	Н