- 2017-2018 -

# Math. - ES 1 - S1 - Algèbre

mardi 9 janvier 2018 - Durée 3 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

#### Exercice 1

Démontrer, en justifiant, que la matrice  $A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$  est semblable à la matrice  $T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ .

On précisera une matrice de passage à coefficients entiers, que l'on notera P, et on calculera  $P^{-1}$ .

#### Exercice 2

On cherche à calculer :

$$I = \inf_{(a,b) \in \mathbb{R}^2} \left\{ \int_0^1 \left( e^{-t} - at - b \right)^2 dt \right\}$$

Pour cela, on munit  $\mathcal{C}([0,1],\mathbb{R})$  du produit scalaire :

$$(f|g) = \int_0^1 f(g)g(t)dt$$

1. Montrer que

$$I = d(\varphi, F)^2$$

où  $d(\varphi, F)$  est la distance de  $\varphi \in \mathcal{C}([0, 1], \mathbb{R})$  à un sous-espace vectoriel F de  $\mathcal{C}([0, 1], \mathbb{R})$ , tous deux à préciser.

- **2.** Déterminer le projeté orthogonal de  $\varphi$  sur F.
- **3.** En déduire I.

#### Exercice 3

Soit  $n \in \mathbb{N}^*$ .  $I_n$  désigne la matrice identité d'ordre n. Pour une matrice  $A \in M_n(\mathbb{R})$ , on note  ${}^tA$  sa matrice transposée et  $\operatorname{tr}(A)$  sa trace.

## Partie 1

Soit A une matrice de  $M_n(\mathbb{R})$ . On suppose qu'il existe deux matrices U, V de  $M_n(\mathbb{R})$  et deux réels  $\lambda$  et  $\mu$  tels que  $\lambda \mu \neq 0$  et  $\lambda \neq \mu$  vérifiant :

$$A = \lambda U + \mu V \tag{1}$$

$$A^2 = \lambda^2 U + \mu^2 V \tag{2}$$

$$A^3 = \lambda^3 U + \mu^3 V \tag{3}$$

1. Exprimer U et V en fonction de A et  $A^2$ .

En déduire que :

$$A^3 = (\lambda + \mu)A^2 - \lambda \mu A$$

**2.** Montrer que, pour tout entier  $p \ge 1$ ,

$$A^p = \lambda^p U + \mu^p V$$

3. Soit f l'endomorphisme canoniquement associé à A.

Pour  $p \in \mathbb{N}$  et  $p \geq 2$ , on note  $f^p = f \circ \cdots \circ f$  la  $p^{\text{ème}}$  composée de f.

a. Montrer que

$$Ker(f) \subset Ker(f^p)$$

**b.** Montrer que pour tout  $x \in \mathbb{R}^n$ :

$$\lambda \mu f^{p-1}(x) = (\lambda + \mu) f^p(x) - f^{p+1}(x)$$

c. En déduire que

$$\operatorname{Ker}(f^p) \subset \operatorname{Ker}(f)$$

d. Montrer que

$$rg(A) = rg(A^p)$$

#### Partie 2

Soient U,V deux matrices colonnes définies par

$$U = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \quad \text{et} \quad V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

On suppose U et V non nulles. Soit  $a \in \mathbb{R}$  et A la matrice définie par :

$$A = aI_n + U^{t}V$$

- 1. Montrer que  ${}^{t}V$  U est un réel que l'on exprimera en fonction des coefficients  $u_{i}$  et  $v_{i}$ .
- **2.** Montrer qu'il existe un réel k tel que

$$(U^{t}V)^2 = k(U^{t}V)$$

En déduire qu'il existe deux réels  $\alpha$  et  $\beta$  tels que

$$A^2 = \alpha A + \beta I_n$$

**3.** On note  $A = (a_{ij})_{1 \le i,j \le n}$ . Donner l'expression de  $a_{ij}$  en fonction de a et des coefficients de U et V. En déduire que

$$tr(A) = na + {}^tV U$$

- **4.** Exprimer  $\alpha$  et  $\beta$  en fonction de a et de tr(A).
- 5. Soit  $\lambda$  une valeur propre de A. Montrer que  $\lambda^2$  est une valeur propre de  $A^2$ . En déduire que  $\lambda$  vérifie l'équation

$$\lambda^2 - \alpha\lambda - \beta = 0$$

- **6.** Montrer que les seules valeurs propres possibles de A sont  $\lambda_1 = a$  et  $\lambda_2 = \operatorname{tr}(A) (n-1)a$ .
- 7. On suppose que  $\operatorname{tr}(U^{t}V) \neq 0$  et on considère les sous-espaces vectoriels  $E_1$  et  $E_2$  définis par

$$E_i = \{ X \in M_{n,1}(\mathbb{R}), AX = \lambda_i X \}$$

a. Montrer que

$$E_1 \cap E_2 = \{0\}$$

- **b.** Montrer par analyse-synthèse que, pour tout vecteur colonne X, il existe  $X_1 \in E_1$  et  $X_2 \in E_2$  tels que  $X = X_1 + X_2$ .
- $\mathbf{c}$ . Montrer que la matrice A est diagonalisable.

### Fin de l'énoncé d'algèbre