Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського" Фізико-технічний інститут

Лабораторна робота № 4 з предмету «Криптографія»

«Вивчення криптосистеми RSA та алгоритму електронного підпису; ознайомлення з методами генерації параметрів для асиметричних криптосистем»

Виконали: Студенти 3 курсу, ФТІ, групи ФБ-92 Дорош Анастасія, Шатковська Діана **Мета:** Ознайомлення з тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу RSA; практичне ознайомлення з системою захисту інформації на основі криптосхеми RSA, організація з використанням цієї системи засекреченого зв'язку й електронного підпису, вивчення протоколу розсилання ключів.

Постановка задачі:

- 1. Написати функцію пошуку випадкового простого числа з заданого інтервалу або заданої довжини, використовуючи датчик випадкових чисел та тести перевірки на простоту. В якості датчика випадкових чисел використовуйте вбудований генератор псевдовипадкових чисел вашої мови програмування. В якості тесту перевірки на простоту рекомендовано використовувати тест Міллера-Рабіна із попередніми пробними діленнями. Тести необхідно реалізовувати власноруч, використання готових реалізацій тестів не дозволяється.
- 2. За допомогою цієї функції згенерувати дві пари простих чисел p, q i p1, q1 довжини щонайменше 256 біт. При цьому пари чисел беруться так, щоб p*q<=p1*q1; p i q − прості числа для побудови ключів абонента A, p1 i q1 − абонента B.
- 3. Написати функцію генерації ключових пар для RSA. Після генерування функція повинна повертати та/або зберігати секретний ключ (d, p,q) та відкритий ключ (n,e). За допомогою цієї функції побудувати схеми RSA для абонентів A і B тобто, створити та зберегти для подальшого використання відкриті ключі (e,n), (e1,n1) та секретні d i d1.
- 4. Написати програму шифрування, розшифрування і створення повідомлення з цифровим підписом для абонентів А і В. Кожна з операцій (шифрування, розшифрування, створення цифрового підпису, перевірка цифрового підпису) повинна бути реалізована окремою процедурою, на вхід до якої повинні подаватись лише ті ключові дані, які необхідні для її виконання. За допомогою датчика випадкових чисел вибрати відкрите повідомлення М і знайти криптограму для абонентів А и В, перевірити правильність розшифрування. Скласти для А і В повідомлення з цифровим підписом і перевірити його.
- 5. За допомогою раніше написаних на попередніх етапах програм організувати роботу протоколу конфіденційного розсилання ключів з

підтвердженням справжності по відкритому каналу за допомогою алгоритму RSA. Протоколи роботи кожного учасника (відправника та приймаючого) повинні бути реалізовані у вигляді окремих процедур, на вхід до яких повинні подаватись лише ті ключові дані, які необхідні для виконання. Перевірити роботу програм для випадково обраного ключа 0 < k < n.

Хід роботи

Для виконання даної лабораторної роботи було використано функцію знаходження НСД із ЛР №3.

Щоб зсимулювати реальні умови обміну середовища, основні функції, що були необхідні для правильної роботи алгоритму RSA, були вміщені у окремий клас користувача User. У програмі спочатку створюється користувач-отримувач і публікує свій відкритий ключ, далі створюється користувач-надсилач, що на основі отриманих відкритих ключів генерує власні ключові параметри (перегенеровує параметри р, q доки не буде виконуватись умова nВ >= nA) та надсилає шифроване повідомлення.

Найскладнішим у виконанні лабораторної роботи стала реалізація тесту на простоту числа Міллера-Рабіна, адже за методичними вказівками було досить важко реалізувати алгоритм, через це тест набагато частіше, ніж очікувалось, пропускав непрості числа. Згодом це було виправлено.

Результати роботи

Параметри користувача В(отримувач):

p	1860772351373062974527316338451166611402642666051650022558129166879 55249724053
q	1496570300611300882733017180344390713832483623759651383677152113868 60924489903
n	2784776637263582048666783580467140429684588471238682218689690994267 6216009310657245141144273991408820721938705543946235766953296318743 573260229310534736859
phi(n)	2784776637263582048666783580467140429684588471238682218689690994267 6216009310321510875945837605682787370059149811422723137972166178120 045132154494360522904
e	7781832147346625246986890200667992274599037156132794466839771017304 7196464659285600763260008696278626433053520067351157400341365815324 50496092658280940053

d	1053965431993982861551456515420422607413202649608923848419604810415 6268497888510583805022884949739596315525337874152149908470128158357 742080361191496144901
	/42080361191496144901

Параметри користувача А:

- Tup unit i p	и корпетува и 71.
p1	2116028368441093797555493189263554743889673142182738891457550552435 40877220417
q1	1394890414279567325574146920168655434548015117030001692101679301693 61857175827
n1	2951627687482114253689116266532659891087010914892383955482166763906 5399012332453480517344559637472372396536908866837899412696216286538 946574883253403259859
phi(n)	2951627687482114253689116266532659891087010914892383955482166763906 5399012332102388639072493525159408385593687848994130586774942228183 023589470350668863616
e1	1202964036044231337328397988554303854990891187223624232908779429114 2114752964662599528158462698627989094975946100553620681952598436423 755572244657129882097
d1	1635340368628974334950619681451889304986786015027882789932497943857 9772154288129667132534507025930409517491149380541571330683033733577 418077662360178100753

k	Hi there! 1335740755872052307233
k1	6258591563711430493246744841861444062420770826470738821667992 1934597404363229847925640831529341230385912965677619836881941 45272774127609241492751959697137
S	2537121773185310048439428997805409119407782489704069481267698 1136952989999829204182548928119874541859344769998867255759001 422026450337058418084504900914285

Результати роботи програми:

Received message: Hi there

```
29516276874821142536891162665326598910870109148923839554821667639065399012332453480517344559637472372396536908866837899412696216286538946574883253403259859
----B(receiver)----
p: 186077235137306297452731633845116661140264266605165002255812916687955249724053
  149657030061130088273301718034439071383248362375965138367715211386860924489903
27847766372635820486667835804671404296845884712386822186896909942676216009310657245
141144273991408820721938705543946235766953296318743573260229310534736859
875945837605682787370059149811422723137972166178120045132154494360522904
e:
77818321473466252469868902006679922745990371561327944668397710173047196464659285600
10539654319939828615514565154204226074132026496089238484196048104156268497888510583
805022884949739596315525337874152149908470128158357742080361191496144901
----A(sender)----
p: 211602836844109379755549318926355474388967314218273889145755055243540877220417
  139489041427956732557414692016865543454801511703000169210167930169361857175827
29516276874821142536891162665326598910870109148923839554821667639065399012332453480
517344559637472372396536908866837899412696216286538946574883253403259859
phi(n):
29516276874821142536891162665326598910870109148923839554821667639065399012332102388
639072493525159408385593687848994130586774942228183023589470350668863616
528158462698627989094975946100553620681952598436423755572244657129882097\\
132534507025930409517491149380541571330683033733577418077662360178100753
----Sending message----
Message: 1335740755872052307233
Encrypted message:
62585915637114304932467448418614440624207708264707388216679921934597404363229847925\\
548928119874541859344769998867255759001422026450337058418084504900914285\\
----Receiving message----
```

Перевіримо розшифрування повідомлення Одержувачем на сайті:

Як бачимо, розшифроване повідомлення повністю збігається з десятковим значенням початкового повідомлення.

Висновки: При виконанні лабораторної роботи ми мали змогу ознайомитись з різними тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу RSA; також ознайомились з системою захисту інформації на основі криптосхеми RSA на практиці, організували з використанням цієї системи засекреченого зв'язку й електронного підпису та вивчили принципи протоколу розсилання ключів.