CC0288 - Inferência Estatística I

Lista Especial 1 - 26/04/2023.

Prof. Maurício

Vamos fazer uma lista com as questões de Inferência que caíram na prova de Seleção do Mestrado do IME-USP

1. (Novembro de 2015) Seja X variável aleatória com função densidade de probabilidade

$$f(x|\theta) = \frac{2x}{\theta^2}, \quad 0 \le x \le \theta,$$

em que $\theta > 0$ é um parâmetro desconhecido. Seja $(X_1, ..., X_n)$ uma amostra aleatória de X.

- (a) Encontre o estimador do método dos momentos de θ .
- (b) Encontre o estimador de máxima verossimilhança de θ .
- (c) Algum dos dois estimadores obtidos nos itens acima pode fornecer estimativas não plausíveis para θ ?
- (d) Calcule os vícios dos dois estimadores. São não-viciados?
- 2. (Fevereiro 2016) Seja $(X_1,...,X_n)$ uma amostra aleatória de uma distribuição Normal de média zero e variância $\sigma^2 > 0$ desconhecida.
 - (a) Mostre que a distribuição de $(X_1, ..., X_n)$ faz parte da família exponencial unidimensional e mostre que a $\sum_{i=1}^{n} X_i^2$ é uma estatística suficiente para σ^2 .
 - (b) Construa um intervalo de confiança para σ^2 com coeficiente de confiança γ ($0 < \gamma < 1$) que dependa dos dados apenas através da estatística suficiente $\sum_{i=1}^{n} X_i^2$.
- 3. (Fevereiro 2016) Seja X variável aleatória com função densidade de probabilidade

$$f(x|\theta) = \frac{\theta}{x^2}, \quad \theta \le x < \infty,$$

em que $\theta > 0$ é um parâmetro desconhecido. Seja $(X_1, ..., X_n)$ uma amostra aleatória de X.

- (a) Encontre o estimador de máxima verossimilhança para θ .
- (b) Obtenha o viés do estimador de máxima verossimilhança. Este estimador é não-viciado?
- 4. (Novembro 2016) Seja $X=(X_1,\ldots,X_{n_1})$ uma amostra aleatória de tamanho n_1 da variável aleatória $X\sim N(\mu,\sigma^2)$ e seja $Y=(Y_1,\ldots,Y_{n_2})$ uma amostra aleatória de tamanho n_2 da variável aleatória $Y\sim N(\mu,\frac{\sigma^2}{4})$ sendo X e Y independentes.

Se o interesse é estimar μ (admitindo σ^2 conhecido) responda:

(a) Qual deve ser a relação entre os tamanhos das amostras n_1 e n_2 para que os estimadores

$$\bar{X}_{n_1} = \frac{\sum_{i=1}^{n_1} X_i}{n_1} e \bar{Y}_{n_2} = \frac{\sum_{i=1}^{n_2} Y_i}{n_2}$$

tenham a mesma variância?

- (b) Sendo $n_1 = n_2 = n$, obtenha o estimador de máxima verossimilhança de μ baseado na amostra completa, com 2n observações.
- (c) Sendo $n_1 = n_2 = n$, compare o estimador de máxima verossimilhança $(\hat{\mu}_1)$ e o estimador

$$\hat{\mu}_2 = \frac{\bar{Y}_n + \bar{X}_n}{2},$$

sob o ponto de vista de viés e erro quadrático médio. Qual dos dois estimadores é mais indicado? Justifique.

5. (Novembro 2016) Seja $(X_1,...,X_n)$ uma amostra aleatória de X com função densidade de probabilidade

$$f(x \theta) = \frac{1}{\theta} x^{-(1/\theta+1)}, \quad x > 1, \ \theta > 0.$$

- (a) Mostre que a distribuição de X pertence a uma família exponencial unidimensional e mostre que $\sum_{i=1}^n \log X_i$ é uma estatística suficiente para θ .
- (b) Mostre que a

$$\frac{\sum_{i=1}^{n} \log X_i}{\theta},$$

é uma quantidade pivotal e utilize esta quantidade pivotal para construir um intervalo de confiança para θ com coeficiente de confiança γ , $(0 < \gamma < 1)$.

- 6. (Fevereiro 2017)
 - (a) Dê a definição de **estatística suficiente**. Interprete do ponto de vista de inferência estatística. Justifique bem sua resposta.
 - (b) Considere o problema de se fazer inferência sobre p, a probabilidade desconhecida de ocorrência de cara de uma moeda. Um experimento é realizado da seguinte forma: a moeda é lançada até o aparecimento da primeira cara e conta-se o número de coroas obtidas; repete-se o procedimento independentemente n vezes. Seja X_i o número de coroas observadas na i-ésima repetição. A partir da **definição de estatística suficiente**, mostre que $\sum_{i=1}^{n} X_i$ é suficiente.
- 7. (Fevereiro 2017) Seja $\mathbf{X}=(X_1,...,X_n)$ uma amostra aleatória de tamanho n da variável aleatória X que tem distribuição de Rayleigh com função densidade de probabilidade

$$f(x\ ;\sigma^2)=\frac{x}{\sigma^2}\ exp\{-\frac{x^2}{2\sigma^2}\},\quad x>0,$$

em que $\sigma^2 > 0$ é desconhecido.

(Obs.
$$E(X) = \sigma \sqrt{\pi/2}$$
, $Var(X) = \sigma^2(4-\pi)/2$, $e \ Var(X^2) = 4\sigma^4$.)

- (a) Encontre o estimador de máxima verossimilhança e o estimador de método dos momentos (baseado na média de X) de σ^2 e verifique se são não viciados.
- (b) Usando aproximação normal para o estimador de máxima verossimilhança, obtenha um intervalo de confiança para σ^2 com coeficiente de confiança aproximado de 95%.
- 8. (Novembro 2017) Suponha que n componentes eletrônicos serão colocados em teste e seja T_i o tempo de vida do componente i, para $i=1,2\ldots,n$, Admita que $T1_1,T_2\ldots,T_n$ sejam independentes e que T_i tenha uma distribuição exponencial de média c_i λ , em que $\lambda>0$ é desconhecido e $c_i>0$, para $i=1,2,\ldots,n$, são números
 - (a) Mostre que a distribuição de $(T1, T_2, \dots, T_n$ faz parte da família exponencial unidimensional.
 - (b) A estatística

fixados (conhecidos)

$$\sum_{i=1}^{n} \frac{T_I}{c_i}$$

é suficiente? Justifique.

- (c) Encontre o estimador de máxima verossimilhança de λ e mostre que é não viciado.
- **OBS.** Dizemos que uma variável aleatória X tem distribuição exponencial de média $\theta > 0$, se sua função densidade de probabilidade é da forma

$$f(x;\theta) = (1/\theta) \exp(-x/\theta)$$
, para $x > 0$.

9. (Novembro 2017) A distribuição de uma variável aleatória X, que depende do parâmetro θ é dada pela tabela

temos a amostra $x_1 = 0, x_2 = 2$.

- (a) Qual é o espaço paramétrico mais amplo possível para esse problema?
- (b) Encontre estimativa $\hat{\theta}^{ML}$ pelo método de máxima verossimilhança.
- (c) Encontre estimativa $\hat{\theta}^{MM}$ pelo método dos momentos.
- 10. (Fevereiro 2018) Sejam $X, Y \in Z$ variáveis aleatórias independentes com distribuição de Bernoulli, com parâmetros θ_1, θ_2 e $\frac{\theta_1 + \theta_2}{2}$. Para estimar $\gamma = \frac{\theta_1 + \theta_2}{2}$ dois procedimentos foram propostos:

- (i) selecionar uma amostra aleatória X_1, \ldots, X_n de tamanho n de X e calcular $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Selecionar uma amostra aleatória Y_1, \ldots, Y_n de tamanho n de Y e calcular $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$. Usar $\frac{\bar{X} + \bar{Y}}{2}$ para estimar γ .
- (ii) selecionar uma amostra aleatória Z_1, \ldots, Z_{2n} de tamanho 2n de Z e calcular $\bar{Z}=\frac{1}{2n}\sum_{i=1}^{2n}Z_i$. Usar \bar{Z} para estimar γ .
- a. Verifique que os estimadores propostos em (i) e (ii) são não viciados.
- b. Baseando-se no erro quadrático médio, determine qual dos dois estimadores é mais indicado para estimar γ . Por quê?
- 11. (Fevereiro 2018) Seja X_1, \dots, X_n uma amostra da variável aleatória X com função densidade de probabilidade

$$f(x;\theta) = \exp(-(x-\theta)), \ \theta < x < \infty; \ \theta > 0.$$

- a Defina **quantidade pivotal**. Verifique se $Q = X_1 \theta$ é uma quantidade pivotal, sendo $X_1 = \min(X_1, \dots, X_n)$.
- b Utilize a quantidade pivotal Q, e mostre que qualquer intervalo da forma $(X_1 b, X_1 a)$ com 0 < a < b satisfazendo $\exp(-na) \exp(-nb) = 1 \alpha$ é um intervalo de confiança para θ com coeficiente de confiança 1α , $0 < \alpha < 1$.
- c Use (b) para mostrar que

$$\left(X_1 + \frac{\log(\alpha/2)}{n}, X_1 + \frac{\log(1 - \alpha/2)}{n}\right),\,$$

é um intervalo de confiança para θ com coeficiente de confiança $1-\alpha$, $0 < \alpha < 1/2$.

- 12. (Novembro 2018) Sejam n variáveis aleatórias Y_1, \ldots, Y_n independentes tais que Y_i tem distribuição Normal com média βx_i , em que $\beta \in (-\infty, \infty)$ e x_i , $i = 1, 2, \ldots, n$, são valores conhecidos e não aleatórios., e variância conhecida $\sigma^2 = 1$ para $i = 1, 2, \ldots, n$.
 - a) Obtenha o estimador de máxima verossimilhança para β . Calcule seu viés e erro quadrático médio.
 - b) Apresente condições para as quais o estimador seja consistente. Construa o intervalo de confiança de 95% para o parâmetro β .
- 13. (Novembro 2018) Sejam X_1, \ldots, X_n variáveis aleatórias independentes e identicamente distribuídas tais que

$$X_1 \sim Poisson(\theta), \ \theta > 0.$$

Defina

$$S = \mathbb{I}_{\{0\}} (X_1) \quad e \quad T = \sum_{i=1}^{n} X_i.$$

- a Verifique se T é uma estatística suficiente para o modelo estatístico em questão.(utilize a definição de estatística suficiente)
- b Encontre $T_1 = \mathbb{E}_{\theta}(S|T)$ e verifique de T_1 é um estimador eficiente.
- c Mostre que $Var_{\theta}(T) \leq Var_{\theta}(S)$ e calcule

$$\lim_{n\to\infty} n \ Var_{\theta}(T_1).$$

14. (Novembro 2019) Seja X_1, X_2, \ldots, X_n amostra aleatória de X cuja função densidade de probabilidade é $f_{\theta}(x)$, em que θ é um parâmetro desconhecido.

 $T(X_1, X_2, ..., X_n)$ é uma função da amostra $X_1, X_2, ..., X_n$ que será usada para estimar θ . Defina em termos matemáticos o que significa cada termo abaixo:

- a) $T(X_1, X_2, \dots, X_n)$ é um estimador não viesado de θ .
- b) $T(X_1, X_2, \dots, X_n)$ é um estimador consistente de θ .
- c) $T(X_1, X_2, \dots, X_n)$ é uma estatística suficiente para o modelo estatístico em questão.
- 15. (Novembro 2019) Seja (X_1, X_2, \dots, X_n) uma amostra aleatória de X cuja função de probabilidade é dada por

$$P_{\theta}(X=x) = \frac{(x+1) \theta^2}{(\theta+1)^{x+2}} I_N(x), \theta > 0,$$

em que θ é um parâmetro desconhecido do modelo estatístico.

- (a) Mostre que $P_{\theta}(X=x)$ é de fato uma função de probabilidade para cada $\theta > 0$.
- (b) Obtenha $T: \mathbb{N}^n \to \mathbb{N}$ suficiente para o modelo estatístico acima.
- (c) Encontre o estimador de máxima verossimilhança para $g(\theta) = P_{\theta}(X = 0)$.
- 16. (Fevereiro 2020) Uma caixa contém 10 bolas, das quais θ são brancas e 10θ são verdes, $\theta \in \{0, 1, 2, \dots, 10\}$.

Duas bolas são extraídas, uma a uma, sem reposição, da urna.

Seja $X_i = 1$ se a i-ésima bola retirada da urna é branca e $X_i = 0$ se verde , i = 1, 2.

- (a) Obtenha o estimador de máxima verossimilhança para θ .
- (b) Verifique se o estimador obtido em (a) é não viciado para θ .
- 17. (Fevereiro 2020) Sejam X_1, X_2 e X_3 variáveis aleatórias tais que

$$X_1 \sim Poi(\theta), \ \theta > 0, \ \ X_2 | X_1 = x_1 \sim Poi(\theta(1+x_1)) \ \ e \ \ \ X_3 | X_1 = x_1, X_2 = x_2 \sim Poi(\theta(1+x_2)).$$

- (a) Mostre que $\sum_{i=1}^3 X_i$ não é suficiente para θ .
- (b) Exiba $T: \mathbb{N}^3 \to \mathbb{N}^2$ suficiente para θ .
- (c) Obtenha o estimador de máxima verossimilhança para $\theta.$