Biased opinion dynamics: when the devil is in the details

Based on

Aris Anagnostopoulos (a) - **Luca Becchetti** (a) - Emilio Cruciani (b) - Francesco Pasquale (c) - Sara Rizzo. Biased opinion dynamics: when the devil is in the details. Proc. of IJCAI 2020

Luca Becchetti (a), Vincenzo Bonifaci (d), Emilio Cruciani (b), Francesco Pasquale (c). On a Voter Model with Context-Dependent Opinion Adoption. Proc. of IJCAI 2023

(a) Sapienza University of Rome, Italy - (b) University of Salzburg - (c) Tor Vergata University of Rome, Italy - (d) University of Roma tre, Italy

Motivation and summary

1970's

Technological status quo: typewriters

1970's

Technological status quo: typewriters

1980's

1970's

Technological status quo: typewriters

1980's

1970's

Technological status quo: typewriters

1980's

1970's

Technological status quo: typewriters

How does the combination of network structure and opinion dynamics affect convergence to *global adoption* of a *superior alternative*?

Qualitatively speaking: any recurring patterns?

Summary

- Goal: investigate interplay between
 - Network structure
 - Opinion dynamics
 - Bias
- Main message(s)
 - First part
 - Different opinion dynamics can result in radically different behavior
 - Also *qualitatively* speaking and in very simple settings
 - Second part
 - Seemingly minor changes to opinion update rule can greatly affect behavior
 - May require adoption of different techniques of analysis

Part 1: as simple as it can be

Model

In every round:

- node v sampled u.a.r.
- v updates its opinion

Each node has an opinion 0/1

Model

Each node has an opinion 0/1

In every round t:

node v sampled u.a.r.

v updates its opinion

<u>HEADS</u> (prob. α)

$$x_v^{(t)} = 1$$

 \underline{TAILS} (prob. 1 - α)

$$x_v^{(t)} = f_G(v, \mathbf{x})$$

function of the *opinions* of v's *neighbors* in the previous round

This paper: Majority

Voter

Pros and cons

Cons

- Simplistic model ⇒ 0 is "doomed" from the start
- More sophisticated models proposed (few analyzed)
 - E.g., [Montanari, Saberi 2010]: best-response dynamics, payoff depends on degree of agreement, bias present

Pros

- Bias decoupled from opinion dynamics
- Highlight interplay between opinion dynamics and network structure
- Plug & play: plug in a new opinion dynamics, analyze resulting biased model
 - Benchmark to investigate interplay between network structure and opinion dynamics in the presence of bias
- Still rich enough to highlight interesting phenomena (some in accordance with previous work)

Biased Majority

Each node has an opinion 0/1

In every round:

node v sampled u.a.r.

v updates its opinion

<u>HEADS</u> (prob. α)

$$x_v^{(t)} = 1$$

TAILS (prob. 1 - α)

Most frequent opinion among v's neighbors in the previous round, TIES broken u.a.r.

$$N_{\nu} = \{ \bullet \bullet \bullet \bullet \}$$

$$x_{v}^{(t)} = 0$$

Biased Voter

Each node has an opinion 0/1

In every round:
node v sampled u.a.r.
v updates its opinion
HEADS (prob. α)

 $x_{v}^{(t)} = 1$

TAILS (prob. 1 - α)

Copy opinion of neighbor sampled u.a.r.

$$x_{\nu}^{(t)} = x_{\mu}^{(t-1)} = 0$$

Majority vs Voter

X-axis: fraction of neighbors with given opinion

Y-axis: probability of adoption

The process is a Markov Chain with a *single absorbing state* corresponding to consensus on the 1 opinion

Questions

- What is the expected time to reach the absorbing state (consensus on 1)?
- High probability (?)
- How does expected time to consensus depend on network structure and bias?

Overview of results

Biased majority

Lower bound on absorption time τ

$$\mathbb{E}[\tau] = \Omega(e^{\epsilon^2 \delta_{\min}}/n) \text{ for } \alpha \le (1-\epsilon)/2$$

Note that $\delta_{\min} = \omega(\log n) \Rightarrow \mathbb{E}[\tau] = n^{\omega(1)}$

Biased majority

Upper bounds for specific graph families

Cycles: $\tau = O(\alpha^{-1} n \log n)$ w.h.p.

 $O(\log n)$ -degree trees: $\mathbb{E}[\tau] = O(n^c)$

 $O(\log n)$ disc. cliques: $\mathbb{E}[\tau] = O(n^c)$

Biased majority

Upper bound on absorption time τ

 $\tau = O(n \log n)$ w.h.p.

Holds for $\alpha \geq 1/2$ and $\delta_{\min} = \omega(\log n)$

Phase transition for $\alpha = 1/2$

Biased voter

Upper bound on absorption time τ

$$\tau = O(\alpha^{-1} n \log n)$$
 w.h.p.

Note that $\alpha = \Theta(n^{-s}) \Rightarrow \tau = O(n^{s+1} \log n)$

Majority: Lower bound (1)

Consider first time $\hat{\tau}$ in which $\exists v \in V$ with at least half of its neighbors in state 1

 $\hat{ au}$ is a stopping time

Lower bound on $\hat{ au}$ implies lower bound on au

Majority **never** applies for $t < \hat{\tau}$

TAILS (probability $1 - \alpha$):

$$x_{v}^{(t)} = \mathbf{0}$$

Majority of N_{v} is always in state 0

Majority: Lower bound (2)

Known result on Birth-and-Death Markov Chains:

$$\Pr(\tau_n < \tau_0) \le (p/q)^{n-k}$$

where τ_i is the first time such that the chain is in state i

Majority: Lower bound (3)

Number of neighbors k in state 1 for node v

Majority: Lower bound (3)

Number of neighbors k in state 1 for node v

Before stopping time $\hat{\tau}$

Majority: Lower bound (3)

Number of neighbors k in state 1 for node v

$$\forall v \text{ and } \forall k \geq d_v / (2 + \varepsilon)$$

$$\frac{p_k(v)}{q_k(v)} \leq 1 - \varepsilon$$
 since $\alpha \leq (1 - \varepsilon)/2$

Majority: Lower bound (4)

Consider k in the range $(d_v/(2+\varepsilon), d_v/2)$

Majority: Lower bound (5)

Consider k in the range $(d_v/(2+\varepsilon), d_v/2)$

Application of the known result from Birth-and-Death Markov Chains:

$$\Pr(\tau_n < \tau_0) \le (p/q)^{n-k} \implies \left(\Pr(\tau_{d_v/2} < \tau_{d_v/(2+\varepsilon)}) = O(e^{-\varepsilon^2 \delta_{\min}})\right)$$

Majority: Lower bound (6)

Consider k in the range $(d_v/(2+\varepsilon), d_v/2)$

Application of the known result from Birth-and-Death Markov Chains:

$$\Pr(\tau_n < \tau_0) \le (p/q)^{n-k} \implies \left(\Pr(\tau_{d_v/2} < \tau_{d_v/(2+\varepsilon)}) = O(e^{-\varepsilon^2 \delta_{\min}})\right)$$

Note that this implies $E[\tau] = \Omega(e^{\epsilon^2 \delta_{\min}}/n) = n^{\omega(1)}$ when $\delta_{\min} = \omega(\log n)$

Biased majority – a closer look

- Dense networks (min-degree = ω(log n))
 - Expected convergence time becomes super-polynomial when $\alpha < \frac{1}{2} \epsilon$
 - It is O(nlogn) for $\alpha > \frac{1}{2} + \epsilon$
 - Phase transition for $\alpha = \frac{1}{2}$
- Special case of more general phenomenon
 - Simulations show non-obvious dependence of expected absorption time from mindegree and bias
 - Q.[Anagnostopoulos et al. 2020]: does "low" degree afford polynomial convergence?
 [Lesfari et al. IJCAI 2022] proved exponential convergence for classes of regular graphs of constant degree, thus negatively answering the above question we posed

Biased majority: Upper bound for cycles (1)

Figure 1: Categories of a node v in C_n ; node v is black and its left and right neighbors are white.

Structural lemma $|B_0| + \frac{|S_0|}{2} = |B_1| + \frac{|S_1|}{2}$

Figure 2: The cycle binary configuration graph H_C .

Biased majority: Upper bound for cycles (2)

 $X_t = # 1$'s \Rightarrow Birth – death chain with

$$p_{k} = \alpha \frac{n - k}{n} + (1 - \alpha) \left(\frac{|B_{0}|}{n} + \frac{1}{2} \frac{|S_{0}|}{n} \right)$$

$$q_{k} = (1 - \alpha) \left(\frac{|B_{1}|}{n} + \frac{1}{2} \frac{|S_{1}|}{n} \right)$$

$$r_{k} = 1 - p_{k} - q_{k}$$

$$\mathbb{E}[X_t \mid X_{t-1} = k] = k + \alpha \frac{n-k}{n} + \frac{1-\alpha}{n} \left(|B_0| + \frac{|S_0|}{2} - |B_1| - \frac{|S_1|}{2} \right) = k + \alpha \frac{n-k}{n}$$

This implies $\mathbb{E}[n-X_t \leq \frac{1}{n}]$ for $t \geq \frac{2}{n}n \ln n \Rightarrow \text{whp}$

Voter model: upper bound (1)

$$\mathbb{E}[\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)} = \mathbf{x}] = \frac{\alpha}{n} + \frac{1}{n} ((1-\alpha)P + (n-1)I)\mathbf{x}.$$

- $P = D^{-1}A$ is (possibly weighted) graph's transition matrix
- Above implies:

$$\mathbb{E}[\mathbf{1} - \mathbf{x}^{(t)}] = \frac{1}{n} \left((1 - \alpha)P + (n - 1)I \right) \mathbb{E}[\mathbf{1} - \mathbf{x}^{(t-1)}]$$

Voter model: upper bound (2)

$$\mathbb{E}[\mathbf{1} - \mathbf{x}^{(t)}] = \left(1 - \frac{\alpha}{n}\right) \hat{P}\mathbb{E}[\mathbf{1} - \mathbf{x}^{(t-1)}],$$
with $\hat{P} = \frac{n-1}{n-\alpha} \left(\left(\frac{1-\alpha}{n-1}\right)P + I\right)$ stochastic

- Main eigenvalue of $(1 \alpha/n)\hat{P}$ is $1 \alpha/n \Rightarrow$
 - $O(n/\alpha)$ in expectation
 - $O((n/\alpha)\log n)$ whp
- High probability follows from Markov's inequality

Summary

α	Majority	Voter
≥ 1/2	Fast absorption on $dense\ graphs$ $\delta_{\min} = \omega(\log n)$	Fast absorption on <i>every topology</i>
< 1/2	Slow absorption on dense graphs $\delta_{\min} = \omega(\log n)$ Fast absorption on some sparse topologies with bounded degree $\delta_{\max} = O(\log n)$	Fast absorption on <i>every topology</i>

Part 2: voter model and evolutionary dynamics on graphs

Voter and models of natural selection

- Voter model well characterized
 - Continuous time
 - Discrete time, asynchronous case (considered here)
 - Discrete time, synchronous case
 - In each round, all nodes update using voter rule
 - [Hassin & Peleg, '99 and 2001], [Aldous' & Fill's book], [Oliveira 2012] ...
 - Main ingredient: connection to coalescing random walks
- Wright-Fisher model without drift (all nodes have same fitness)
 - On graphs: this is the synchronous voter model
 - Classical Wright-Fisher (no mutations): clique with self-loops
 - Not the topic of this talk

Biased voter

Each node has an opinion 0/1

In every round t: node v sampled u.a.r. v updates its opinion

1. Sample neighbor u.a.r.

$$u \leftarrow sample(\mathcal{N}(v))$$

$$x_v^{(t)} = c \text{ and } x_u^{(t)} = c'$$

2. Opinion update

$\Pr(x_u^{(t+1)} = c' v \text{ is sampled})$	$x_v^{(t)} = 0$	$x_v^{(t)} = 1$
$x_u^{(t)} = 0$	1 (wlog)	α_{01}
$x_u^{(t)} = 1$	$lpha_{10}$	1 (wlog)

Biased voter

Each node has an opinion 0/1

Obviously **voter model** when $\alpha_{cc} = 1$

In every round t: node v sampled u.a.r. v updates its opinion

1. Sample neighbor u.a.r.

$$u \leftarrow sample(\mathcal{N}(v))$$

 $x_v^{(t)} = c \text{ and } x_u^{(t)} = c'$

2. Opinion update

$\Pr(x_u^{(t+1)} = c' v \text{ is sampled})$	$x_v^{(t)} = 0$	$x_v^{(t)} = 1$
$x_u^{(t)} = 0$	1 (wlog)	α_{01}
$x_u^{(t)} = 1$	α_{10}	1 (wlog)

Biased voter

- This time, corresponding Markov chain has two absorbing states
- Similar to model considered in [Berenbrink et al., ICALP 2016], but not quite the same
- Questions
 - Absorption/fixation probability: probability of consensus in either state given initial configuration
 - (Expected) number of rounds to consensus

Each node has a **type 0/1**Non-mutants have fitness 1
Mutants have fitness r > 1At t = 0: k mutants

In every round t:

- 1. One node v sampled for reproduction proportionally to its fitness
- 2. v chooses neighbor u u.a.r. for replacement

Discrete Moran process

[Lieberman et al. Nature 2005] [Diaz et al. RSA, 2016] [Diaz and Mitsche, Elsevier CSR 2021]

 $f_v^{(t)}: v$'s fitness at t $k^{(t)}: \# \text{ mutants at } t$

Each node has a **type 0/1**Non-mutants have fitness 1
Mutants have fitness r > 0
At t = 0: k mutants

In every round t:

1. Node sampled for reproduction

$$\mathbb{P}[v \ sampled] = \frac{f_v^{(t-1)}}{rk^{(t-1)} + n - k^{(t-1)}}$$

2.1 v chooses neighbor u u.a.r. for replacement

 $\underbrace{2.2.}_{x_{u}^{(t)}} = x_{v}^{(t-1)}$

 $f_v^{(t)}: v$'s fitness at t $k^{(t)}: \# \text{ mutants at } t$

This is a **push** model (Biased) voter is a **pull** model

In every round t:

1. Node sampled for reproduction

$$\mathbb{P}[v \ sampled] = \frac{f_v^{(t-1)}}{rk^{(t-1)} + n - k^{(t-1)}}$$

2.1 v chooses neighbor u u.a.r. for replacement

<u>2.2.</u>

$$x_u^{(t)} = x_v^{(t-1)}$$

- Questions:
 - Absorption: Prob. mutants take over (fixation)
 - (Expected) time to absorption
- Problem well studied
 - Fixation probability well-known for class of graphs that includes regular graphs
 [Lieberman et al. 2005]

$$\mathbb{P}[fixation] = \frac{1 - r^{-k}}{1 - r^{-n}} \text{ with } k \text{ initial mutants}$$

$$\mathbb{P}[fixation] \to \frac{k}{n} \text{ as } r \to 1$$

- In other cases simple closed-form not possible but bounds available
- Bounds on expected time to fixation also known
- [Lieberman et al. Nature 2005], [Diaz et al., Algorithmica 2014], [Diaz et al. RSA, 2016],
 [Diaz and Mitsche, Elsevier CSR 2021], [Goldberg et al., RSA, 2020] ...

Biased voter – symmetric case

- In this case: $\alpha_{01} = \alpha_{10}$
- Voter vs Moran process with neutral drift (r = 1)

$$\mathbb{E}_{Voter}[x_u^{(t+1)} \mid \mathbf{x}^{(t)}] = \left(1 - \frac{\alpha}{n}\right) x_u^{(t)} + \frac{\alpha}{n} \sum_{v \sim u} \frac{x_v^{(t)}}{d_u}$$

$$\mathbb{E}_{Moran}[x_u^{(t+1)} \mid \mathbf{x}^{(t)}] = \left(1 - \frac{1}{n}\right) x_u^{(t)} + \frac{1}{n} \sum_{v \in \mathcal{U}} \frac{x_v^{(t)}}{d_v}$$

Biased voter – symmetric case

- In this case: $\alpha_{01} = \alpha_{10}$
- Voter vs Moran process with neutral drift (r = 1)
- On regular graphs

$$\mathbb{E}_{Voter}[x_u^{(t+1)} \mid \mathbf{x}^{(t)}] = \left(1 - \frac{\alpha}{n}\right) x_u^{(t)} + \frac{\alpha}{n} \sum_{v \sim u} \frac{x_v^{(t)}}{d_u}$$

$$\mathbb{E}_{Moran}[x_u^{(t+1)} \mid \mathbf{x}^{(t)}] = \left(1 - \frac{1}{n}\right) x_u^{(t)} + \frac{1}{n} \sum_{v \sim u} \frac{x_v^{(t)}}{du}$$

Biased voter – symmetric case

- In this case: $\alpha_{01} = \alpha_{10}$
- Voter vs Moran process with neutral drift (r = 1)
- On regular graphs

$$\mathbb{E}_{Voter}[x_u^{(t+1)} \mid \mathbf{x}^{(t)}] = \left(1 - \frac{\alpha}{n}\right) x_u^{(t)} + \frac{\alpha}{n} \sum_{v \sim u} \frac{x_v^{(t)}}{d_u}$$

$$\mathbb{E}_{Moran}[x_u^{(t+1)} \mid \mathbf{x}^{(t)}] = \left(1 - \frac{1}{n}\right) x_u^{(t)} + \frac{1}{n} \sum_{v \sim u} \frac{x_v^{(t)}}{du}$$

- Models related in this case
- Can reuse results for one model to analyze the other

Biased voter - symmetric case – connected graphs

- This boils down to known results
 - Process equivalent to a lazy asynchronous voter model
 - Voter models studied through the lens of coalescing random walks [Hassin & Peleg 1999, Aldous' and Fill's book, Oliveira 2012]
- Alternatively: look at expected evolution of the process

$$\mathbb{E}[\mathbf{x}^{(t+1)}] = \left(\left(1 - \frac{\alpha}{n} \right) I + \frac{\alpha}{n} P \right) \mathbb{E}[\mathbf{x}^{(t)}], P \text{ random walk matrix of } G$$

• Either way: $\mathbb{P}[\mathbf{x}^{(\infty)} = \mathbf{1}] = \frac{k}{n} \text{ with } k \text{ initial mutants}$ $\text{Convergence of } \mathbb{E}[\mathbf{x}^{(t)}] \text{ depends on } \lambda_2(P)$

Biased voter - general case $(\alpha_{01} \neq \alpha_{10})$

- Problem becomes considerably harder
 - Probabilities of updating now depend on which nodes hold which opinion
 - For regular graphs
 - Processes are no longer equivalent
 - Still related in more subtle way

Biased voter – general case - regular graphs

- Assume set S of nodes with opinion 1
- Probability p_s of transition to a state with |S| + 1 nodes with opinion 1

$$p_S = \sum_{u \notin S} \mathbb{P}[u \ sampled] \mathbb{P}[x_u \leftarrow x_v, v \in S] = \sum_{u \notin S} \frac{1}{n} \frac{|N_u \cap S|}{d} \alpha_{01} = \frac{\alpha_{01}}{nd} |\partial(S)|$$

d is degree, N_u is set of u's neighbors, $\partial(S)$ cut through S

Push:
$$p_S = \sum_{u \in S} \mathbb{P}[u \ sampled] \mathbb{P}[x_u \to x_v, v \in V - S] = \sum_{u \notin S} \frac{\alpha_{01}}{n} \frac{|N_u \cap V - S|}{d}$$

$$=\frac{\alpha_{01}}{nd}|\partial(S)|, \ u \text{ sampled with prob. } \alpha_{01}/n$$

Regular graphs

- Assume set S of nodes with opinion 1
- Probability p_s of transition to a state with |S| + 1 nodes with opinion 1

$$p_S = \sum_{u \notin S} \mathbb{P}[u \ sampled] \mathbb{P}[x_u \leftarrow x_v, v \in S] = \sum_{u \notin S} \frac{1}{n} \frac{|N_u \cap S|}{d} \alpha_{01} = \frac{\alpha_{01}}{nd} |\partial(S)|$$

d is degree, N_u is set of u's neighbors, $\partial(S)$ cut through S

Probability q_s of transition to state with |S| - 1 nodes with opinion 1

$$q_S = \frac{\alpha_{10}}{nd} |\partial(S)|$$
$$p_S/q_S = \alpha_{01}/\alpha_{10} \doteq r$$

Regular graphs

- Absorption probabilities
 - Trace back to birth-death chain with constant ratio p_k/q_k
 - See Thm. 1 in [Lieberman et al., Nature 2005] $\mathbb{P}[fixation] = \frac{1-r^{-k}}{1-r^{-n}}$ with k initial mutants

```
\mathbb{P}[fixation] = rac{1-r^{-k}}{1-r^{-n}} 	ext{ with } k 	ext{ initial mutants} \mathbb{P}[fixation] 	o rac{k}{n} 	ext{ as } r 	o 1
```

- Absorption time
 - Cannot directly use same trick (not even for regular graphs)
 - Reason: # 1's may not change in a step
 - Probability of change depends on subset of vertices holding opinion 1
 - In the clique: $\Theta(nlogn)$ for constant α_{01}/α_{10} , $\alpha_{01} > \alpha_{10}$

Outlook

- More results for synchronous variant in our IJCAI 2023 paper
- Synchronous case harder
- Analysis in [Berenbrink et al. 2016] when initial number k of nodes with popular opinion is at least c log n.
 - We consider case where k is arbitrary
 - Fixation probability at least k/n in clique
 - Absorption time at most linear, depending on α_{01} α_{10}
- Q.: what can we say about more general topologies?
- Each round of the process is described by a Markov chain, but depend on current state and are thus correlated

THANK YOU