

Europäisches Patentamt

European Patent Office

Office européen des brevets

① Veröffentlichungsnummer: 0 589 313 A1

12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93114620.3

2 Anmeldetag: 11.09.93

(a) Int. Cl.5: **C07C** 233/65, C07D 213/82, C07D 327/06, C07D 333/38,

C07D 231/14, C07D 277/56, C07D 335/02, C07D 309/28,

C07D 307/68, A01N 43/40, A01N 43/50, A01N 43/78,

A01N 43/84, A01N 37/22

3 Priorität: 21.09.92 DE 4231519

Weröffentlichungstag der Anmeldung: 30.03.94 Patentblatt 94/13

Benannte Vertragsstaaten:
 AT BE CH DE DK ES FR GB GR IE IT LI NL PT
 SE

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-67063 Ludwigshafen(DE) ② Erfinder: Eicken, Karl, Dr.

Am Huettenwingert 12 D-6706 Wachenheim(DE)

Erfinder: Ammermann, Eberhard, Dr.

Von-Gagern-Strasse 2 D-6148 Heppenheim(DE) Erfinder: Lorenz, Gisela, Dr.

Erlenweg 13

D-6730 Neustadt(DE)

- (S) Cyclohex(en)ylcarbonsäureamide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen.
- N-Cyclohex(en)ylcarbonsäureamide der Formel I

in der die Substituenten die folgende Bedeutung haben:

- R ggf. subst. Alkyl, Alkoxy, Alkenyl, Alkenyloxy, Alkinyl, Alkinyloxy, Cycloalkyl, Cycloalkenyl, Cycloalkyloxy, Cycloalkenyloxy, Phenyl oder Benzyl;
- Z CH_2CH_2 oder CH = CH;
- A einer der Reste A1 bis A7:

Verfahren zu ihrer Herstellung, sowie sie enthaltende Mittel und deren Verwendung zur Bekämpfung von Schadpilzen.

Die vorliegende Erfindung betrifft N-Cyclohex(en)ylcarbonsäureamide der Formel I

$$Z \longrightarrow NH \longrightarrow CO \longrightarrow A$$

in der die Substituenten die folgende Bedeutung haben:

5

10

15

40

45

R C₂-C₁₂-Alkyl, C₂-C₁₂-Alkoxy, C₃-C₁₂-Alkenyl, C₃-C₁₂-Alkenyloxy, C₃-C₆-Alki-

nyl, C_3 - C_6 -Alkinyloxy, wobei diese Gruppen partiell oder vollständig halogeniert sein können; C_3 - C_7 -Cycloalkyl, C_4 - C_7 -Cycloalkenyl, C_3 - C_7 -Cycloalkenyloxy oder C_4 - C_7 -Cycloalkenyloxy, wobei diese Ringe ein bis drei C_1 - C_4 -Alkylgruppen tragen können; Phenyl oder Benzyl, wobei die Phenylringe jeweils ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: C_1 -

 $C_4\text{-}Alkyl,\ C_1\text{-}C_4\text{-}Halogenalkyl,\ C_1\text{-}C_4\text{-}Alkoxy,\ C_1\text{-}C_4\text{-}Halogenalkoxy,\ C_1\text{-}C_4\text{-}Alkoxy,\ C_1\text{-}C_4\text{-}A$

kylthio oder C₁-C₄-Halogenalkylthio;

Z $CH_2 CH_2 oder CH = CH;$

A ein cyclischer Rest aus der Gruppe der Formeln A1 bis A7

 $(R^3) = \begin{pmatrix} R^4 & R^6 & R^6 & R^7 \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

in denen die Substituenten die folgende Bedeutung haben:

X -CH₂-, -S-, -SO- oder SO₂-;

Y -O- oder -S-;

R¹, R², R⁴, R⁵ und R⁷ Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;

R³ und R⁵ Wasserstoff, Halogen oder C₁-C₄-Alkyl;

n 1 oder 2, wobei die Reste R³ verschieden sein können, wenn der Wert von n 2 beträgt.

Außerdem betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel und Verfahren zu deren Verwendung zur Bekämpfung von Schadpilzen.

Aus der Literatur N-Cyclohexyl-carbonsäuresäureamide mit fungiziden Eigenschaften bekannt (z.B. N-(2-Methylcyclohexyl)-2-chlornicotinsäureamid aus DE-A 24 17 216; N-Cyclohexyl-2-methylbenzoesäureamid, N-Cyclohexyl-3-methylthiophen-2-carbonsäureamid, N-Cyclohexyl-2,5-dimethylfuran-3-carbonsäureamid, N-Cyclohexyl-2-methyl-5,6-dihydro-1,4-oxathiin-3-carbonsäureamid aus Pestic. Biochem. Physiol., 34, 255 (1989)).

Aufgabe der vorliegenden Erfindung waren neue fungizid wirksame Verbindungen mit verbessertem Wirkungsspektrum, insbesondere gegen Botrytis.

Demgemäß wurden die eingangs definierten Verbindungen I gefunden. Außerdem wurden Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel und Verfahren zu deren Verwendung zur Bekämpfung von Schadpilzen gefunden.

Man erhält die Verbindungen I im allgemeinen dadurch, daß man ein Carbonsäurehalogenid der Formel II in an sich bekannter Weise (z.B. J. March, Advanced Organic Chemistry, 2nd Ed., 382 f, McGraw-Hill,

1977) in Gegenwart einer Base mit einem Cyclohexylamin der Formel III umsetzt.

Hal-CO-A +
$$\frac{Z}{R}$$
 NH₂ $\frac{Z}{R}$ NH—CO—A

Der Rest Hal in der Formel II steht für ein Halogenatom wie Chlor, Brom und Jod, insbesondere Chlor oder Brom.

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von -20 °C bis 100 °C, vorzugsweise 0 °C bis 50 °C.

Geeignete Lösungsmittel sind:

15

25

45

55

Aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m-und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol sowie Dimethylsulfoxid und Dimethylformamid, besonders bevorzugt Toluol, Xylol und Methylenchlorid.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, und metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriumethanolat, Natriumethanolat, Kaliumethanolat, Kalium-tert.-Butanolat und Dimethoxymagnesium außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht.

Besonders bevorzugt werden Triethylamin und Pyridin.

Die Basen werden im allgemeinen in äquimolarem Mengen bezogen auf die Verbindung II eingesetzt. Sie können aber auch in einem Über schuß von 5 mol-% bis 30 mol-%, vorzugsweise 5 mol-% bis 10 mol-%, oder - im Falle der Verwendung von tertiären Aminen - gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, II in einem Überschuß von 1 mol-% bis 20 mol-%, vorzugsweise 1 mol-% bis 10 mol-%, bezogen auf III einzusetzen.

Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe der Formel III sind in der Literatur bekannt (Tetrahedron Lett., Vol. 32, 1695 (1991); Houben Weyl, Methoden der org. Chemie, Bd. 11/1, S. 382 f. & 611 f.; J. Chem. Soc. C. 10, 1805 (1971); J. Org. Chem. <u>53</u>, 4852 (1988); Tetrahedron 23, 2421 (1967); Tetrahedron 47, 3075 (1991)) oder können gemäß der zitierten Literatur hergestellt werden. Die bei der Reaktion z.T. anfallenden cis/trans Gemische der Verbindungen III können im allgemeinen destillativ getrennt werden.

Im Hinblick auf ihre Verwendung in fungiziden Mitteln kommen Verbindungen der Formel I in Betracht, in der die Substituenten die folgende Bedeutung haben:

R

C₂-C₁₂-Alkyl wie Ethyl und geradkettiges oder verzweigtes Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl und Dodecyl, besonders geradkettiges oder verzweigtes C₃-C₁₀-Alkyl wie Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methpentyl, 2-Methylpentyl, 3-Methylpentyl, 3-Methyl

.

tyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-3-methylpropyl, n-Heptyl, 1-Methylhexyl, 1-Ethylpentyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl, 1-Methylheptyl, 2-Methylheptyl, 1-Ethylhexyl, 2-Ethylhexyl, 1-Propylpentyl, 2-Propylpentyl, Nonyl, 1-Methyloctyl, 2-Methyloctyl, 1-Ethylheptyl, 2-Ethylheptyl, 1-Propylhexyl, 2-Propylhexyl, Decyl, 1-Methylnonyl, 2-Methylnonyl, 1-Ethyloctyl, 2-Ethyloctyl, 1-Propylheptyl und 2-Propylheptyl, insbesondere Propyl, 1-Methylethyl, Butyl, 1-Methylbutyl, 2-Methylbutyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, Hexyl, Heptyl und 1-Methylheptyl, wobei diese Gruppen partiell oder vollständig halogeniert sein können, d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch Halogenatome wie Fluor, Chlor und Brom, insbesondere Fluor und Chlor ersetzt sein. beispielsweise Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2, 2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl:

C₂-C₁₂-Alkoxy wie Ethoxy und geradkettiges oder verzweigtes Propyloxy, Butyloxy, Pentyloxy, Hexyloxy, Heptyloxy, Octyloxy, Nonyloxy, Decyloxy, Undecyloxy und Dodecyloxy, besonders geradkettiges oder verzweigtes C2-C10-Alkoxy wie Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, n-Pentyloxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,2-Dimethylpropoxy, 1-Ethylpropoxy, n-Hexyloxy, 1-Methylpentyloxy, 2-Methylpentyloxy, 4-Methylpentyloxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,3-Dimethylbutoxy, 1,2-Dimethylbutoxy, 2,2-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1-Ethyl-2-methylpropoxy, n-Heptyloxy, 1-Methylhexyloxy, 2-Methylhexyloxy, 3-Methylhexyloxy, 4-Methylhexyloxy, 5-Methylhexyloxy, 1-Ethylpentyloxy, 2-Ethylpentyloxy, 1-Propylbutoxy, Octyloxy, 1-Methylheptyloxy, 2-Methylheptyloxy, 1-Ethylhexyloxy, 2-Ethylhexyloxy, 1-Propylpentyloxy, 2-Propylpentyloxy, Nonyloxy, 1-Methyloctyloxy, 2-Methyloctyloxy, 1-Ethylheptyloxy, 2-Ethylheptyloxy, 1-Propylhexyloxy, 2-Propylhexyloxy, Decyloxy, 1-Methylnonyloxy, 2-Methylnonyloxy, 1-Ethyloctyloxy, 2-Ethyloctyloxy, 1-Propylheptyloxy und 2-Propylheptyloxy, insbesondere Ethoxy, Propyloxy, 1-Methylethoxy, Butyloxy, 1-Methylpropyloxy, 2-Methylpropyloxy, 1,1-Dimethylethoxy, Pentyloxy, Hexyloxy und 2-Ethylhexyloxy, wobei diese Gruppen partiell oder vollständig halogeniert sein können, d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch Halogenatome wie Fluor, Chlor und Brom, insbesondere Fluor und Chlor ersetzt sein, beispielsweise Halogenalkoxy wie Chlormethyloxy, Dichlormethyloxy, Trichlormethyloxy, Fluormethyloxy, Difluormethyloxy, Trifluormethyloxy, Chlorfluormethyloxy, Dichlorfluormethyloxy, Chlordifluormethyloxy, 1-Fluorethyloxy, 2-Fluorethyloxy, 2,2-Difluorethyloxy, 2,2,2-Trifluorethyloxy, 2-Chlor-2fluorethyloxy, 2-Chlor-2,2-difluorethyloxy, 2,2-Dichlor-2-fluorethyloxy, 2,2,2-Trichlorethyloxy und Pentafluorethyloxy,

C₃-C₁₂-Alkenyl wie geradkettiges oder verzweigtes Propenyl, Butenyl, Pentenyl, Hexenyl, Heptenyl, Octenyl, Nonenyl, Decenyl, Undecenyl und Dodecenyl, besonders gradkettiges oder verzweigtes C₃-C₁₀-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 3-Hexenyl, 3-Hexenyl, 3-Hexenyl, 3-Hexenyl, 2-Methyl-3-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 1-Ethyl-2-pentenyl, 2-Ethyl-2-pentenyl, 1-Ethyl-3-pentenyl, 2-Methyl-2-hexenyl, 1-Methyl-3-heptenyl, 2-Methyl-2-hexenyl, 2-Methyl-2-hexenyl, 1-Methyl-3-heptenyl, 2-Ethyl-2-hexenyl, 2-Ethyl-2-hexenyl

55

5

10

15

20

25

30

35

40

45

nyl, 1-Ethyl-3-hexenyl, 2-Ethyl-3-hexenyl, 1-Methyl-2-octenyl, 2-Methyl-2-octenyl, 1-Methyl-3-octenyl, 2-Ethyl-3-octenyl, 1-Ethyl-2-heptenyl, 2-Ethyl-3-heptenyl, 1-Ethyl-2-octenyl, 2-Ethyl-2-octenyl, 1-Ethyl-3-octenyl und 2-Ethyl-3-octenyl, insbesondere 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Ethyl-2-propenyl, 1-Methyl-2-butenyl, 1-Ethyl-2-butenyl, 1-(1-Methylethyl)-2-butenyl, 1-Butyl-2-butenyl, 1-Methyl-2-pentenyl und 1,4-Dimethyl-2-pentenyl, wobei diese Gruppen partiell oder vollständig halogeniert sein können, d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch Halogenatome wie Fluor, Chlor und Brom, insbesondere Fluor und Chlor ersetzt sein, insbesondere 3-Chlor-2-propenyl, 2,3-Dichlor-2-propenyl und 2,3,3-Trichlor-2-propenyl;

C₃-C₁₂-Alkenyloxy wie geradkettiges oder verzweigtes Propenyloxy, Butenyloxy, Pentenyloxy, Hexenyloxy, Heptenyloxy, Octenyloxy, Nonenyloxy, Decenyloxy, Undecenyloxy und Dodecenyloxy, besonders gradkettiges oder verzweigtes C₃-C₁₀-Alkenyloxy wie 2-Propenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy, 1-Methyl-3-butenyloxy, 2-Methyl-3-butenyloxy, 3-Methyl-3-butenyloxy, 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy, 4-Methyl-2-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 3-methyl-3pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Methyl-4-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-2-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,2-Dimethyl-3-butenyloxy, 2,3-Dimethyl-2-butenyloxy, 2,3-Dimethyl-3-butenyloxy, 1-Ethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenlyoxy, 1-Ethyl-1-methyl-2-propenyloxy, 1-Ethyl-2-methyl-2-propenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 1-Methyl-2-hexenyloxy, 2-Methyl-2-hexenyloxy, 1-Methyl-3-hexenyloxy, 2-Methyl-3-hexenyloxy, 1-Ethyl-2-pentenyloxy, 2-Ethyl-2-pentenyloxy, 1-Ethyl-3-pentenyloxy, 2-Ethyl-3pentenyloxy, 1-Methyl-2-heptenyloxy, 2-Methyl-2-heptenyloxy, 1-Methyl-3-heptenyloxy, 2-Methyl-3-heptenyloxy, 1-Ethyl-2-hexenyloxy, 2-Ethyl-2-hexenyloxy, 1-Ethyl-3-hexenyloxy, 2-Ethyl-3-hexenyloxy, 1-Methyl-2-octenyloxy, 2-Methyl-2-octenyloxy, 1-Methyl-3-octenyloxy, 2-Methyl-3-octenyloxy, 1-Ethyl-2-heptenyloxy, 2-Ethyl-2-heptenyloxy, 1-Ethyl-3-heptenyloxy, 2-Ethyl-3-heptenyloxy, 1-Ethyl-2-octenyloxy, 2-Ethyl-2-octenyloxy, 1-Ethyl-3-octenyloxy und 2-Ethyl-3octenyloxy, insbesondere 2-Propenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2propenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 1-Methyl-2-butenyloxy und 1-Methyl-2-pentenyloxy, wobei diese Gruppen partiell oder vollständig halogeniert sein können, d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch Halogenatome wie Fluor, Chlor und Brom, insbesondere Fluor und Chlor ersetzt sein, insbesondere 3-Chlor-2-propenyloxy, 2,3-Dichlor-2-propenyloxy und 2,3,3-Trichlor-2-propenyloxy;

C₃-C₆-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,2-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, insbesondere 2-Propinyl, 2-Butinyl und 3-Butinyl, wobei diese Gruppen partiell oder vollständig halogeniert sein können, d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch Halogenatome wie Fluor, Chlor und Brom, insbesondere Fluor und

10

15

20

25

30

35

40

45

50

Chlor ersetzt sein, beispielsweise 3-Chlor-2-propinyl, 3-Chlor-2-butinyl und 4-Chlor-3-butinyl;

C₃-C₆-Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 1-Methyl-2-butinyloxy, 1,1-Dimethyl-2-propinyloxy, 1-Ethyl-2-propinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Alkinyloxy, 5-Hexinyloxy, 1-Methyl-2-pentinyloxy, 1-Methyl-3-pentinyloxy, 1-Methyl-4-pentinyloxy, 2-Methyl-3-pentinyloxy, 2-Methyl-4-pentinyloxy, 3-Methyl-4-pentinyloxy, 4-Methyl-3pentinyloxy, 1,1-Dimethyl-2-butinyloxy, 1,1-Dimethyl-3-butinyloxy, 1,2-Dimethyl-3-butinyloxy, 2,2-Dimethyl-3-butinyloxy, 1-Ethyl-2-butinyloxy, 1-Ethyl-3-butinyloxy, 2-Ethyl-3-butinyloxy und 1-Ethyl-1-methyl-2-propinyloxy, vorzugsweise 2-Propinyloxy, 2-Butinyloxy, 1-Methyl-2-propinyloxy und 1-Methyl-2-butinyloxy, 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy und 1-Methyl-2-propinyloxy, wobei diese Gruppen partiell oder vollständig halogeniert sein können, d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch Halogenatome wie Fluor, Chlor und Brom, insbesondere Fluor und Chlor ersetzt sein, beispielsweise 3-Chlor-2-propinyloxy, 3-Chlor-2-butinyloxy und 4-Chlor-3-butinyloxy;

C₃-C₇-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl, wobei diese Ringe ein bis drei C₁-C₄-Alkylgruppen wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl tragen können;

C₄-C₇-Cycloalkenyl wie Cyclobutenyl, Cyclopentenyl, Cyclohexenyl und Cycloheptenyl, wobei diese Ringe ein bis drei C₁-C₄-Alkylgruppen wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl tragen können;

 C_3 - C_7 -Cycloalkyloxy wie Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy und Cycloheptyloxy, wobei diese Ringe ein bis drei C_1 - C_4 -Alkylgruppen wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl tragen können;

oder C_4 - C_7 -Cycloalkenyloxy wie 1-Cyclobutenyloxy, 2-Cyclobutenyloxy, 1-Cyclopentenyloxy, 2-Cyclopentenyloxy, 3-Cyclopentenyloxy, 1-Cyclohexenyloxy, 2-Cyclohexenyloxy, 3-Cyclohexenyloxy, 1-Cycloheptenyloxy, 2-Cycloheptenyloxy, 3-Cycloheptenyloxy und 4-Cycloheptenyloxy, wobei diese Ringe ein bis drei C_1 - C_4 -Alkylgruppen wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl tragen können;

Phenyl, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom und Jod, insbesondere Fluor, Chlor und Brom, und/oder ein bis drei der folgenden Reste tragen kann:

C₁-C₄-Alkyl wie vorstehend genannt;

C₁-C₄-Halogenalkyl wie vorstehend genannt;

C₁-C₄-Alkoxy wie vorstehend genannt;

C₁-C₄-Halogenalkoxy wie vorstehend genannt;

C₁-C₄-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio;

oder C_1 - C_4 -Halogenalkylthio, besonders C_1 - C_2 -Halogenalkylthio wie Chlormethylthio, Dichlormethylthio, Trichlormethylthio, Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlorfluormethylthio, Dichlorfluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2-fluorethylthio, 2,2,2-Trichlorethylthio und Pentafluorethylthio;

steht für einen cyclischen Rest aus der Gruppe der Formeln A1 bis A7

Α

55

5

10

15

20

25

30

35

40

45

5
$$R^1$$
 N R^2 CH_3 R^3 $A4$

10 R^3 R^4 R^6 R^5 R^6 R^7

A5 $A6$ $A7$

in denen die Substituenten die folgende Bedeutung haben:

20 X -CH₂-, -S-, -SO- oder -SO₂-;

Y -O- oder -S-;

25

35

40

45

50

R¹, R², R⁴, R₅ und R⁷ unabhängig voneinander Halogen wie Fluor, Chlor und Brom, C₁-C₄-Alkyl wie

vorstehend genannt, oder C₁-C₄-Halogenalkyl wie vorstehend genannt;

R³ und R⁶ unabhängig voneinander Wasserstoff, Halogen wie Fluor, Chlor und Brom oder

C₁-C₄-Alkyl wie vorstehend genannt;

n 1 oder 2, wobei die Reste R³ verschieden sein können, wenn der Wert von n 2

beträgt.

Im Hinblick auf die biologische Wirkung besonders bevorzugte Verbindungen der Formel I sind solche, in denen R die vorstehend gegebene Bedeutung hat und A für einen cyclischen Rest aus der Gruppe der Formeln A1 bis A7 steht, wobei X und Y die vorstehend gegebene Bedeutung und die Substituenten für die folgenden Reste stehen:

- Halogen wie Fluor, Chlor und Brom Methyl oder C₁-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl und Chlordifluormethyl;
- R² Halogen wie Fluor, Chlor und Brom oder C₁-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl und Chlordifluormethyl;
- R³ Wasserstoff oder Methyl;
- n 1 oder 2, wobei die Reste R³ verschieden sein können, wenn der Wert von n 2 beträgt;
- R⁴ Halogen wie Fluor, Chlor und Brom oder Methyl;
 - R⁵ Methyl oder C₁-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl und Chlordifluormethyl;
 - R⁶ Wasserstoff, Halogen wie Fluor, Chlor und Brom oder Methyl;
 - R⁷ Halogen wie Fluor, Chlor und Brom Methyl oder C₁-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl und Chlordifluormethyl.

Insbesondere sind solche Verbindungen der Formel I bevorzugt, in denen der R die vorstehend gegebene Bedeutung hat und A für einen cyclischen Rest aus der Gruppe der Formeln A1 bis A7 steht, wobei X und Y die vorstehend gegebene Bedeutung und die Substituenten für die folgenden Gruppen stehen:

- R¹ Chlor, Brom, Jod, Methyl oder Trifluormethyl;
- R² Chlor oder Trifluormethyl;
- R³ Wasserstoff oder Methyl;
- n 1 oder 2, wobei die Reste R³ verschieden sein können, wenn der Wert von n 2 beträgt;
- 55 R⁴ Chlor oder Methyl;
 - R⁵ Methyl, Difluormethyl oder Trifluormethyl;
 - R⁶ Wasserstoff, Chlor oder Methyl;
 - R7 Chlor, Methyl oder Trifluormethyl.

Im Hinblick auf die biologische Wirkung sind insbesondere auch solche Verbindungen 1 bevorzugt, in denen die Gruppen R und NHCOA trans zueinander angeordnet sind.

Besonders bevorzugte Verbindungen der Formel I sind:

- Verbindungen I, in denen

5

10

15

20

25

30

40

45

R für Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sek.-Butyl, 2-Ethylbutyl, Cyclopentyl, Cyclohexyl, Cyclopent-2-en-1-yl, Cyclohexen-1-yl, Phenyl oder Benzyl steht, wobei die Phenylreste jeweils noch eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkoxy und C₁-C₄-Alkylthio,

vorzugsweise Verbindungen I, in denen

R für Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sek.-Butyl, Cyclohexyl, Cyclohexen-1-yl, Phenyl oder Benzyl steht, wobei die Phenylreste jeweils noch eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy und C₁-C₂-Alkylthio,

insbesondere Verbindungen I, in denen

- R für Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sek.-Butyl, Cyclohexyl, Cyclohexen-1-yl, Phenyl oder Benzyl steht, wobei die Phenylreste jeweils noch eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Alkoxy und C₁-C₂-Halogenalkoxy.
- · Verbindungen I, in denen
- A für A1, A2, A3, A4, A6 oder A7 steht,

vorzugsweise Verbindungen I, in denen

A für A1, A2, A3, A4 (Y = O), A6 oder A7 steht.

Verbindungen I, in denen

A für A1 steht.

vorzugsweise Verbindungen I, in denen

A für A1 steht und

R1 für Chlor, Brom, Methyl und Trifluormethyl steht und

insbesondere Verbindungen I, in denen

A für A1 steht und

R¹ für Brom, Methyl und Trifluormethyl steht und

R für sek.-Butyl, Cyclopent-2-en-1-yl und Phenyl steht.

- Verbindungen I, in denen

A für A2 steht,

vorzugsweise Verbindungen I, in denen

35 A für A2 und

R² für Chlor steht und

insbesondere Verbindungen I, in denen

A für A2,

R² für Chlor,

Z für CH₂CH₂ und

R für Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sek.-Butyl, Cyclohexyl, Cyclohexen-1-yl, Phenyl oder Benzyl steht, wobei die Phenylreste jeweils noch eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und C₁-C₄-Alkoxy.

Verbindungen I, in denen

A für A3 steht,

vorzugsweise Verbindungen I, in denen

A für A3

X für Sauerstoff und Schwefel und

Z für CH2CH2 steht.

50 insbesondere Verbindungen I, in denen

A für A3,

X für Sauerstoff und Schwefel,

Z für CH2 CH2 und

R für sek.-Butyl steht.

55 - Verbindungen I, in denen

A für A4 und

Y f
ür Sauerstoff steht,

vorzugsweise Verbindungen I, in denen

	A für A4 und
	Y für Sauerstoff und
	R ³ für Methyl steht.
	insbesondere Verbindungen I, in denen
5	A für A4,
	Y für Sauerstoff,
	R ³ für Methyl,
	Z für CH ₂ CH ₂ und
	R für sekButyl und Cyclohexen-1-yl steht.
10	- Verbindungen I, in denen
	A für A6 steht,
	vorzugsweise Verbindungen I, in denen
	A für A6 und
	R ⁵ und R ⁶ für Methyl stehen,
15	insbesondere Verbindungen I, in denen
	A für A6,
	R⁵ und R⁶ für Methyl,
	Z für CH ₂ CH ₂ und
	R für Cyclohexen-1-yl steht.
20	- Verbindungen I, in denen
	A für A7 steht,
	vorzugsweise Verbindungen I, in denen
	A für A7 und
	R ⁶ und R ⁷ unabhängig voneinander für Methyl und Trifluormethyl stehen,
25	insbesondere Verbindungen I, in denen
	A für A7 und
	R ⁶ und R ⁷ unabhängig voneinander für Methyl und Trifluormethyl,
	Z für CH ₂ CH ₂ und
	R für Propyl, Butyl, sekButyl, Cyclohexyl, Cyclohexen-1-yl, Phenyl oder Benzyl steht,
30	wobei die Phenylreste jeweils noch eine bis drei der folgenden Gruppen tragen
	können: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy.
	Besonders bevorzugte Verbindungen der Formel I sind in den folgenden Tabellen A bis G zusammen-
	gestellt.
35	
40	
45	
50	

Tabelle A

R ¹	R	Z
CF ₃	C ₂ H ₅	CH ₂ CH ₂
CF ₃	i-C ₃ H ₇	CH ₂ CH ₂
CF ₃	n-C ₃ H ₇	CH ₂ CH ₂
CF ₃	n-C ₄ H ₉	CH ₂ CH ₂
CF ₃	secC ₄ H ₉	CH ₂ CH ₂
CF ₃	i-C ₄ H ₉	CH ₂ CH ₂
CF ₃	tertC ₄ H ₉	CH ₂ CH ₂
CF ₃	n-C ₅ H ₁₁	CH ₂ CH ₂
CF ₃	secC ₅ H ₁₁	CH ₂ CH ₂
CF ₃	n-C ₆ H ₁₃	CH ₂ CH ₂
CF ₃	n-C ₇ H ₁₅	CH ₂ CH ₂
CF ₃	secC7H15	CH ₂ CH ₂
CF ₃	1-Methylvinyl	CH ₂ CH ₂
CF ₃	2-Methylvinyl	CH ₂ CH ₂
CF ₃	Allyl	CH ₂ CH ₂
CF ₃	2-Methylallyl	CH ₂ CH ₂
CF ₃	2-Ethylallyl	CH ₂ CH ₂
CF ₃	1-Methylallyl	CH ₂ CH ₂
CF ₃	1-Ethylallyl	CH ₂ CH ₂
CF ₃	1-Methyl-2-butenyl	CH ₂ CH ₂
CF ₃	1-Ethyl-2-butenyl	CH ₂ CH ₂
CF ₃	Cyclopropyl	CH ₂ CH ₂
CF ₃	Cyclobutyl	CH ₂ CH ₂
CF ₃	Cyclopentyl	CH ₂ CH ₂
CF ₃	Cyclohexyl	CH ₂ CH ₂
CF ₃	2-Cyclopentenyl	CH ₂ CH ₂
CF ₃	1-Cyclopentenyl	CH ₂ CH ₂
CF ₃	2-Cyclohexenyl	CH ₂ CH ₂
CF ₃	1-Cyclohexenyl	CH ₂ CH ₂
CF ₃	Phenyl	CH ₂ CH ₂
CH ₃	C ₂ H ₅	CH ₂ CH ₂
CH ₃	i-C ₃ H ₇	CH ₂ CH ₂

İ	R^1	R	Z
	CH3	n-C ₃ H ₇	CH ₂ CH ₂
_	CH ₃	n-C ₄ H ₉	CH ₂ CH ₂
5	CH ₃	secC ₄ H ₉	CH ₂ CH ₂
	CH ₃	i-C ₄ H ₉	CH ₂ CH ₂
	CH ₃	tertC ₄ H ₉	CH ₂ CH ₂
10	CH ₃	n-C ₅ H ₁₁	CH ₂ CH ₂
10	CH ₃	secC ₅ H ₁₁	CH ₂ CH ₂
	CH ₃	n-C ₆ H ₁₃	CH ₂ CH ₂
	CH ₃	n-C ₇ H ₁₅	CH ₂ CH ₂
15	CH ₃	secC ₇ H ₁₅	CH ₂ CH ₂
10	CH ₃	1-Methylvinyl	CH ₂ CH ₂
	CH ₃	2-Methylvinyl	CH ₂ CH ₂ -
	CH ₃	Allyl	CH ₂ CH ₂
20	CH ₃	2-Methylallyl	CH ₂ CH ₂
20	CH ₃	2-Ethylallyl	CH ₂ CH ₂
	CH ₃	1-Methylallyl	CH ₂ CH ₂
	CH ₃	1-Ethylallyl	CH ₂ CH ₂
25	CH ₃	1-Methyl-2-butenyl	CH ₂ CH ₂
20	CH ₃	1-Ethyl-2-butenyl	CH ₂ CH ₂
	CH ₃	Cyclopropyl	CH ₂ CH ₂
	CH ₃	Cyclobutyl	CH ₂ CH ₂
30	CH ₃	Cyclopentyl	CH ₂ CH ₂
50	CH ₃	Cyclohexyl	CH ₂ CH ₂
	CH ₃	2-Cyclopentenyl	CH ₂ CH ₂
	CH ₃	1-Cyclopentenyl	CH ₂ CH ₂
35	CH ₃	2-Cyclohexenyl	CH ₂ CH ₂
00	CH ₃	1-Cyclohexenyl	CH ₂ CH ₂
	CH ₃	Phenyl	CH ₂ CH ₂
	Br	C ₂ H ₅	CH ₂ CH ₂
40	Br	i-C ₃ H ₇	CH ₂ CH ₂
70	Br	n-C ₃ H ₇	CH ₂ CH ₂
	Br	n-C ₄ H ₉	CH ₂ CH ₂
	Br	secC ₄ H ₉	CH ₂ CH ₂
45	Br	i-C ₄ H ₉	CH ₂ CH ₂
	Br	tertC ₄ H ₉	CH ₂ CH ₂
	Br	n-C ₅ H ₁₁	CH ₂ CH ₂
	Br	secC ₅ H ₁₁	CH ₂ CH ₂
50	Br	n-C ₆ H ₁₃	CH ₂ CH ₂
	Br	n-C7H15	CH ₂ CH ₂

	\mathbb{R}^1	R	Z
	Br	secC ₇ H ₁₅	CH ₂ CH ₂
6	Br	1-Methylvinyl	CH ₂ CH ₂
5	Br	2-Methylvinyl	CH ₂ CH ₂
	Br	Allyl	CH ₂ CH ₂
	Br	2-Methylallyl	CH ₂ CH ₂
10	Br	2-Ethylallyl	CH ₂ CH ₂
IU	Br	1-Methylallyl	CH ₂ CH ₂
	Br	1-Ethylallyl	CH ₂ CH ₂
	Br	1-Methyl-2-butenyl	CH ₂ CH ₂
15	Br	1-Ethyl-2-butenyl	CH ₂ CH ₂
,,,	Br	Cyclopropyl	CH ₂ CH ₂
	Br	Cyclobutyl	CH ₂ CH ₂
	Br	Cyclopentyl	CH ₂ CH ₂
20	Br	Cyclohexyl	CH ₂ CH ₂
	Br	2-Cyclopentenyl	CH ₂ CH ₂
	Br	1-Cyclopentenyl	CH ₂ CH ₂
	Br	2-Cyclohexenyl	CH ₂ CH ₂
25	Br	1-Cyclohexenyl	CH ₂ CH ₂
-	Br	Phenyl	CH ₂ CH ₂
	CF ₃	C ₂ H ₅ .	CH=CH
	CF ₃	i-C ₃ H ₇	СН=СН
30	CF ₃	n-C ₃ H ₇	CH=CH
-	CF ₃	n-C ₄ H ₉	CH=CH
	CF ₃	secC ₄ H ₉	CH=CH
	CF ₃	i-C ₄ H ₉	CH=CH
35	CF ₃	tertC ₄ H ₉	CH=CH
	CF ₃	n-C ₅ H ₁₁	CH=CH
	CF ₃	secC ₅ H ₁₁	CH=CH
	CF ₃	n-C ₆ H ₁₃	CH=CH
40	CF ₃	n-C ₇ H ₁₅	CH=CH
	CF ₃	secC ₇ H ₁₅	CH=CH
	CF ₃	1-Methylvinyl	CH=CH
	CF ₃	2-Methylvinyl	CH=CH
45	CF ₃	Allyl	CH=CH
	CF ₃	2-Methylallyl	CH=CH
	CF ₃	2-Ethylallyl	CH=CH
	CF ₃	1-Methylallyl	CH=CH
50	CF ₃	1-Ethylallyl	CH=CH
	CF ₃	1-Methyl-2-butenyl	CH=CH

	-1		2
	R ¹	R	Z
	CF ₃	1-Ethyl-2-butenyl	CH=CH
5	CF ₃	Cyclopropyl	CH=CH
	CF ₃	Cyclobutyl	CH=CH
	CF ₃	Cyclopentyl	CH=CH
	CF ₃	Cyclohexyl	СН=СН
10	CF ₃	2-Cyclopentenyl	CH=CH
	CF ₃	1-Cyclopentenyl	CH=CH
	CF ₃	2-Cyclohexenyl	CH=CH
	CF ₃	1-Cyclohexenyl	CH=CH
15	CF ₃	Phenyl	СН=СН
	CH ₃	C ₂ H ₅	CH=CH
	CH ₃	i-C ₃ H ₇	CH=CH -
	CH ₃	n-C ₃ H ₇	СН=СН
20	CH ₃	n-C ₄ H ₉	СН=СН
	CH ₃	secC ₄ H ₉	СН=СН
	CH ₃	i-C ₄ H ₉	СН=СН
	CH ₃	tertC ₄ H ₉	CH=CH
25	CH ₃	n-C ₅ H ₁₁	СН=СН
20	CH ₃	secC ₅ H ₁₁	CH=CH
	CH ₃	n-C ₆ H ₁₃	Сн=Сн
	CH ₃	n-C ₇ H ₁₅	СН=СН
30	CH ₃	secC ₇ H ₁₅	CH=CH
30	CH3.	1-Methylvinyl	CH=CH
	CH ₃	2-Methylvinyl	СН=СН
	CH ₃	Allyl	CH=CH
95	CH ₃	2-Methylallyl	CH=CH
35	CH ₃	2-Ethylallyl	СН≕СН
	CH ₃	1-Methylallyl	CH=CH
	CH ₃	1-Ethylallyl	СН=СН
40	CH ₃	1-Methyl-2-butenyl	СН=СН
40	CH ₃	1-Ethyl-2-butenyl	СН-СН
	CH ₃	Cyclopropyl	СН=СН
	CH ₃	Cyclobutyl	CH=CH
45	CH ₃	Cyclopentyl	CH=CH
45	CH ₃	Cyclohexyl	СН=СН
	CH ₃	2-Cyclopentenyl	СН=СН
	CH ₃	1-Cyclopentenyl	СН=СН
50	CH ₃	2-Cyclohexenyl	CH=CH
50	CH ₃	1-Cyclohexenyl	CH=CH
		<u> </u>	

	R^1	R	Z
	CH ₃	Phenyl	CH=CH
5	Br	C ₂ H ₅	CH=CH
J	Br	i-C ₃ H ₇	CH=CH
	Br	n-C ₃ H ₇	CH=CH
	Br	n-C ₄ H ₉	СН=СН
10	Br	secC ₄ H ₉	CH=CH
	Br	i-C ₄ H ₉	CH=CH
	Br	tertC ₄ H ₉	CH=CH
15	Br	n-C ₅ H ₁₁	CH=CH
	Br	secC ₅ H ₁₁	CH=CH
	Br	n-C ₆ H ₁₃	CH=CH
	Br	n-C ₇ H ₁₅	CH=CH
20	Br	secC ₇ H ₁₅	CH=CH
	Br	1-Methylvinyl	CH=CH
	Br	2-Methylvinyl	СН=СН
25	Br	Allyl	CH=CH
	Br	2-Methylallyl	CH=CH
	Br	2-Ethylallyl	CH=CH
	Br	1-Methylallyl	CH=CH
30	Br	1-Ethylallyl	CH=CH
	Br	1-Methyl-2-butenyl	СН=СН
	Br	1-Ethyl-2-butenyl	CH=CH
35	Br	Cyclopropyl	СН=СН
	Br	Cyclobutyl	СН=СН
	Br	Cyclopentyl	СН=СН
	Br .	Cyclohexyl	СН=СН
40	Br	2-Cyclopentenyl	СН=СН
	Br	1-Cyclopentenyl	CH=CH
	Br	2-Cyclohexenyl	CH=CH
45	Br	1-Cyclohexenyl	CH=CH
	Br	Phenyl	CH=CH

Tabelle B

Z NH CO NH CO

R ²	R	Z
Cl	С ₂ н ₅	CH ₂ CH ₂
Cl	i-C ₃ H ₇	CH ₂ CH ₂
Cl	n-C ₃ H ₇	CH ₂ CH ₂
Cl	n-C ₄ H ₉	CH ₂ CH ₂
Cl	secC ₄ H ₉	CH ₂ CH ₂
Cl	i-C ₄ H ₉	CH ₂ CH ₂
Cl	tertC ₄ H ₉	CH ₂ CH ₂
Cl	n-C ₅ H ₁₁	CH ₂ CH ₂
Cl	secC ₅ H ₁₁	CH ₂ CH ₂
Cl	n-C ₆ H ₁₃	CH ₂ CH ₂
Cl	n-C ₇ H ₁₅	CH ₂ CH ₂
Cl	secC7H15	CH ₂ CH ₂
Cl	1-Methylvinyl	CH ₂ CH ₂
Cl	2-Methylvinyl	CH ₂ CH ₂
Cl	Allyl	CH ₂ CH ₂
Cl	2-Methylallyl	CH ₂ CH ₂
Cl	2-Ethylallyl	CH ₂ CH ₂
Cl	1-Methylallyl	CH ₂ CH ₂
Cl	1-Ethylallyl	CH ₂ CH ₂
Cl	1-Methyl-2-butenyl	CH ₂ CH ₂
Cl	1-Ethyl-2-butenyl	CH ₂ CH ₂
Cl	Cyclopropyl	CH ₂ CH ₂
Cl	Cyclobutyl	CH ₂ CH ₂
Cl	Cyclopentyl	CH ₂ CH ₂
Cl	Cyclohexyl	CH ₂ CH ₂
Cl	2-Cyclopentenyl	CH ₂ CH ₂
Cl	1-Cyclopentenyl	CH ₂ CH ₂
Cl	2-Cyclohexenyl	CH ₂ CH ₂
Cl	1-Cyclohexenyl	CH ₂ CH ₂
Cl	Phenyl	CH ₂ CH ₂
Cl	C ₂ H ₅	CH=CH

	R ²	R	Z
-	Cl	i-C ₃ H ₇	Сн=Сн
5	Cl	n-C ₃ H ₇	CH=CH
	Cl	n-C ₄ H ₉	CH=CH
	Cl	secC ₄ H ₉	CH=CH
10	Cl	i-C ₄ H ₉	CH=CH
	Cl	tertC ₄ H ₉	CH=CH
	Cl	n-C ₅ H ₁₁	CH=CH
	Cl	secC ₅ H ₁₁	CH=CH
15	Cl	n-C ₆ H ₁₃	CH=CH
	Cl	n-C ₇ H ₁₅	CH=CH
	Cl	secC ₇ H ₁₅	CH=CH
20	Cl	1-Methylvinyl	CH=CH
	Cl	2-Methylvinyl	CH=CH
	Cl	Allyl	CH=CH
	Cl	2-Methylallyl	CH=CH
25	Cl	2-Ethylallyl	CH=CH
	Cl	1-Methylallyl	CH=CH
	Cl	1-Ethylallyl	CH=CH
30	Cl	1-Methyl-2-butenyl	CH=CH
	Cl	1-Ethyl-2-butenyl	CH=CH
Γ	Cl	Cyclopropyl	СН=СН
	Cl	Cyclobutyl	· CH=CH
35	Cl	Cyclopentyl	СН=СН
	Cl	Cyclohexyl	CH=CH
	Cl	2-Cyclopentenyl	СН=СН
40	Cl	1-Cyclopentenyl	CH=CH
	Cl	2-Cyclohexenyl	CH=CH
	Cl	1-Cyclohexenyl	CH=CH
45	Cl	Phenyl	CH=CH

Tabelle C

х	R	Z
CH ₂	C ₂ H ₅	CH ₂ CH ₂
CH ₂	i-C ₃ H ₇	CH ₂ CH ₂
CH ₂	n-C ₃ H ₇	CH ₂ CH ₂
CH ₂	n-C ₄ H ₉	CH ₂ CH ₂
CH ₂	secC ₄ H ₉	CH ₂ CH ₂
CH ₂	i-C ₄ H ₉	CH ₂ CH ₂
CH ₂	tertC ₄ H ₉	CH ₂ CH ₂
CH ₂	n-C ₅ H ₁₁	CH ₂ CH ₂
CH ₂	secC ₅ H ₁₁	CH ₂ CH ₂
CH ₂	n-C ₆ H ₁₃	CH ₂ CH ₂
CH ₂	n-C ₇ H ₁₅	CH ₂ CH ₂
CH ₂	secC7H15	CH ₂ CH ₂
CH ₂	1-Methylvinyl	CH ₂ CH ₂
CH ₂	2-Methylvinyl	CH ₂ CH ₂
CH ₂	Allyl	CH ₂ CH ₂
CH ₂	2-Methylallyl	CH ₂ CH ₂
CH ₂	2-Ethylallyl	CH ₂ CH ₂
CH ₂	1-Methylallyl	CH ₂ CH ₂
CH ₂	1-Ethylallyl	CH ₂ CH ₂
CH ₂	1-Methyl-2-butenyl	CH ₂ CH ₂
CH ₂	1-Ethyl-2-butenyl	CH ₂ CH ₂
CH ₂	Cyclopropyl	CH ₂ CH ₂
CH ₂	Cyclobutyl	CH ₂ CH ₂
CH ₂	Cyclopentyl	CH ₂ CH ₂
CH ₂	Cyclohexyl	CH ₂ CH ₂
CH ₂	2-Cyclopentenyl	CH ₂ CH ₂
CH ₂	1-Cyclopentenyl	CH ₂ CH ₂
CH ₂	2-Cyclohexenyl	CH ₂ CH ₂
CH ₂	1-Cyclohexenyl	CH ₂ CH ₂
CH ₂	Phenyl	CH ₂ CH ₂

\$ C2H5	1	X	R	Z
\$ 1-C ₃ H ₇ CH ₂ CH ₂ \$ n-C ₃ H ₇ CH ₂ CH ₂ \$ n-C ₄ H ₈ CH ₂ CH ₂ \$ S n-C ₄ H ₉ CH ₂ CH ₂ \$ S secC ₄ H ₉ CH ₂ CH ₂ \$ s t-C ₄ H ₉ CH ₂ CH ₂ \$ s t-C ₄ H ₉ CH ₂ CH ₂ \$ n-C ₅ H ₁₁ CH ₂ CH ₂ \$ s n-C ₅ H ₁₁ CH ₂ CH ₂ \$ n-C ₆ H ₁₃ CH ₂ CH ₂ \$ n-C ₆ H ₁₃ CH ₂ CH ₂ \$ s n-C ₇ H ₁₅ CH ₂ CH ₂ \$ s n-C ₇ H ₁₅ CH ₂ CH ₂ \$ s n-Methylvinyl CH ₂ CH ₂ \$ s n-Methylvinyl CH ₂ CH ₂ \$ s n-Methylallyl CH ₂ CH ₂ \$ 2-Methylallyl CH ₂ CH ₂ \$ 2-Methylallyl CH ₂ CH ₂ \$ s n-Methylallyl SH ₂ CH ₂ \$ s n-Methylallyl SH ₂ CH ₂			C ₂ H ₅	CH ₂ CH ₂
S	_			
S	5			
S				CH ₂ CH ₂
S		S	secC ₄ H ₉	CH ₂ CH ₂
S	10	S	i-C ₄ H ₉	CH ₂ CH ₂
S Sec C ₅ H ₁₁ CH ₂ CH ₂	10	S	tertC ₄ H ₉	CH ₂ CH ₂
S		S	n-C ₅ H ₁₁	CH ₂ CH ₂
S		S	secC ₅ H ₁₁	CH ₂ CH ₂
S	15	S	n-C ₆ H ₁₃	CH ₂ CH ₂
S	,,	S	n-C ₇ H ₁₅	CH ₂ CH ₂
S		S	secC ₇ H ₁₅	CH ₂ CH ₂
S		S	1-Methylvinyl	
S	20	S	2-Methylvinyl	CH ₂ CH ₂
S 2-Ethylallyl CH2CH2	20	S	L	CH ₂ CH ₂
S		S	2-Methylallyl	CH ₂ CH ₂
S		S		CH ₂ CH ₂
S	25	S		
S		S		
S		S		
S Cyclobutyl CH ₂ CH ₂ S Cyclopentyl CH ₂ CH ₂ S Cyclopentyl CH ₂ CH ₂ S Cyclopentenyl CH ₂ CH ₂ S 2-Cyclopentenyl CH ₂ CH ₂ S 1-Cyclopentenyl CH ₂ CH ₂ S 2-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S Phenyl CH ₂ CH ₂ S Phenyl CH ₂ CH ₂ O C ₂ H ₅ CH ₂ CH ₂ O i-C ₃ H ₇ CH ₂ CH ₂ O n-C ₃ H ₇ CH ₂ CH ₂ O n-C ₄ H ₉ CH ₂ CH ₂ O secC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂ O n-C ₅ H ₁₁ CH ₂ CH ₂		S		
S Cyclobutyl CH ₂ CH ₂ S Cyclopentyl CH ₂ CH ₂ S Cyclohexyl CH ₂ CH ₂ S 2-Cyclopentenyl CH ₂ CH ₂ S 1-Cyclopentenyl CH ₂ CH ₂ S 2-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ O C ₂ H ₅ CH ₂ CH ₂ O i-C ₃ H ₇ CH ₂ CH ₂ O n-C ₃ H ₇ CH ₂ CH ₂ O n-C ₄ H ₉ CH ₂ CH ₂ O secC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂	30	S		
S Cyclohexyl CH ₂ CH ₂ S 2-Cyclopentenyl CH ₂ CH ₂ S 1-Cyclopentenyl CH ₂ CH ₂ S 2-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S Phenyl CH ₂ CH ₂ O C ₂ H ₅ O CH ₂ CH ₂ O n-C ₃ H ₇ CH ₂ CH ₂ O n-C ₄ H ₉ CH ₂ CH ₂ O secC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂	-			
S 2-Cyclopentenyl CH2CH2		S		l
S 1-Cyclopentenyl CH ₂ CH ₂ S 2-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S Phenyl CH ₂ CH ₂ O C ₂ H ₅ CH ₂ CH ₂ O i-C ₃ H ₇ CH ₂ CH ₂ O n-C ₃ H ₇ CH ₂ CH ₂ O n-C ₄ H ₉ CH ₂ CH ₂ O secC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂				
S 1-Cyclopentenyl CH ₂ CH ₂ S 2-Cyclohexenyl CH ₂ CH ₂ S 1-Cyclohexenyl CH ₂ CH ₂ S Phenyl CH ₂ CH ₂ O C ₂ H ₅ CH ₂ CH ₂ O i-C ₃ H ₇ CH ₂ CH ₂ O n-C ₃ H ₇ CH ₂ CH ₂ O n-C ₄ H ₉ CH ₂ CH ₂ O secC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂ O tertC ₄ H ₉ CH ₂ CH ₂	35			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	S		<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				i———
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u></u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45			
O tert C_4H_9 CH_2CH_2 O $n-C_5H_{11}$ CH_2CH_2		0	secC ₄ H ₉	
O n-C ₅ H ₁₁ CH ₂ CH ₂		0		
50		0	tertC ₄ H ₉	<u> </u>
O $\operatorname{secC_5H_{11}}$ $\operatorname{CH_2CH_2}$	50	0		
		0	secC ₅ H ₁₁	CH ₂ CH ₂

Х	R	Z
0	n-C ₆ H ₁₃	CH ₂ CH ₂
0	n-C ₇ H ₁₅	CH ₂ CH ₂
0	secC ₇ H ₁₅	CH ₂ CH ₂
0	1-Methylvinyl	CH ₂ CH ₂
0	2-Methylvinyl	CH ₂ CH ₂
0	Allyl	CH ₂ CH ₂
0	2-Methylallyl	CH ₂ CH ₂
0	2-Ethylallyl	CH ₂ CH ₂
0	1-Methylallyl	CH ₂ CH ₂
0	1-Ethylallyl	CH ₂ CH ₂
0	1-Methyl-2-butenyl	CH ₂ CH ₂
0	1-Ethyl-2-butenyl	CH2CH2 -
0	Cyclopropyl	CH ₂ CH ₂
0	Cyclobutyl	CH ₂ CH ₂
0	Cyclopentyl	CH ₂ CH ₂
0	Cyclohexyl	CH ₂ CH ₂
0	2-Cyclopentenyl	CH ₂ CH ₂
0	1-Cyclopentenyl	CH ₂ CH ₂
0	2-Cyclohexenyl	CH ₂ CH ₂
0	1-Cyclohexenyl	CH ₂ CH ₂
0	Phenyl	CH ₂ CH ₂
CH ₂	C ₂ H ₅	CH=CH
CH ₂	i-C ₃ H ₇	CH=CH
CH ₂	n-C ₃ H ₇	Сн=Сн
CH ₂	n-C ₄ H ₉	CH=CH
CH ₂	secC ₄ H ₉	CH=CH
CH ₂	i-C ₄ H ₉	CH=CH
CH ₂	tertC ₄ H ₉	CH=CH
CH ₂	n-C ₅ H ₁₁	CH=CH
CH ₂	secC ₅ H ₁₁	CH=CH
CH ₂	n-C ₆ H ₁₃	CH=CH
CH ₂	n-C ₇ H ₁₅	CH=CH
CH ₂	secC7H15	CH=CH
CH ₂	1-Methylvinyl	СН=СН
CH ₂	2-Methylvinyl	СН=СН
CH ₂	Allyl	CH=CH
CH ₂	2-Methylallyl	CH=CH
CH ₂	2-Ethylallyl	CH=CH
CH ₂	1-Methylallyl	CH=CH

CH2		Х	R	Z
CH2			1-Ethylallyl	Сн=Сн
CH2	5		1-Methyl-2-butenyl	CH=CH
CH2	·		1-Ethyl-2-butenyl	CH=CH
CH2			Cyclopropyl	CH=CH
CH2		CH ₂	Cyclobutyl	CH=CH
CH2	10	CH ₂	Cyclopentyl	Сн-Сн
CH2		CH ₂	Cyclohexyl	Сн=Сн
CH2 2-Cyclohexeny1 CH=CH		CH ₂	2-Cyclopentenyl	CH=CH
CH2		CH ₂	1-Cyclopentenyl	CH=CH
CH2	15	CH ₂	2-Cyclohexenyl	CH=CH
S		CH ₂	1-Cyclohexenyl	CH=CH
S		CH ₂	Phenyl	CH=CH -
S		S	C ₂ H ₅	CH=CH
S	20	S	i-C ₃ H ₇	Сн-Сн
S SecC4H9 CH=CH	_	S	n-C ₃ H ₇	CH=CH
S		S	n-C ₄ H ₉	CH=CH
S		S	secC ₄ H ₉	CH=CH
S	25	S	i-C ₄ H ₉	CH=CH
S Sec C ₅ H ₁₁		S	tertC ₄ H ₉	СН=СН
S		S	n-C ₅ H ₁₁	
S		S	secC ₅ H ₁₁	
S	30	S	n-C ₆ H ₁₃	
S		S	n-C ₇ H ₁₅	
S 2-Methylvinyl CH=CH		S	secC ₇ H ₁₅	
S		. S	1-Methylvinyl	
S	35	S	2-Methylvinyl	<u> </u>
S 2-Ethylallyl CH=CH		S	Allyl	1
S		S		
S		S	2-Ethylallyl	
S	40	S		
S		S	1-Ethylallyl	
S Cyclopropyl CH=CH		S		
S		S	1-Ethyl-2-butenyl	
S Cyclopentyl CH=CH	45	S	Cyclopropyl	
S Cyclohexyl CH=CH S 2-Cyclopentenyl CH=CH		S	Cyclobutyl	
S 2-Cyclopentenyl CH=CH		S	Cyclopentyl	
50		S		
S 1-Cyclopentenyl CH=CH	50	S		
		S	1-Cyclopentenyl	CH=CH

	Х	R	Z
	S	2-Cyclohexenyl	CH=CH
5	S	1-Cyclohexenyl	CH=CH
	S	Phenyl	CH=CH
	0	C ₂ H ₅	CH=CH
-	0	i-C ₃ H ₇	CH=CH
10	0	n-C ₃ H ₇	СН=СН
	0	n-C ₄ H ₉	CH=CH
	0	secC ₄ H ₉	CH=CH
15	0	i-C ₄ H ₉	CH=CH
	0	tertC ₄ H ₉	CH=CH
	0	n-C ₅ H ₁₁	CH=CH
00	0	secC ₅ H ₁₁	CH=CH -
20	0	n-C ₆ H ₁₃	CH=CH
	0	n-C ₇ H ₁₅	CH=CH
	0	secC ₇ H ₁₅	CH=CH
25	0	1-Methylvinyl	СН=СН
	0	2-Methylvinyl	CH=CH
	0	Allyl	CH=CH
30	0	2-Methylallyl	CH=CH
00	0	2-Ethylallyl	CH=CH
	0	1-Methylallyl	CH=CH
	0	1-Ethylallyl	CH=CH
35	0	1-Methyl-2-butenyl	CH=CH
	0	1-Ethyl-2-butenyl	СН=СН
	0	Cyclopropyl	CH=CH
40	0	Cyclobutyl	CH=CH
	Ö	Cyclopentyl	CH=CH
	0	Cyclohexyl	CH=CH
	0	2-Cyclopentenyl	CH=CH
45	0 .	1-Cyclopentenyl	CH=CH
	0	2-Cyclohexenyl	CH=CH
	0	1-Cyclohexenyl	СН=СН
50	0	Phenyl	CH=CH

Tabelle D

 $Z \longrightarrow CH_3$ Y R $CO \longrightarrow Y$ T : 4

C ₂ H ₅ i-C ₃ H ₇ n-C ₃ H ₇	S S S	CH ₂ CH ₂ CH ₂ CH ₂
	S	CH ₂ CH ₂
n-C1H7		
537		CH ₂ CH ₂
n-C ₄ H ₉	S	CH ₂ CH ₂
secC ₄ H ₉	S	CH ₂ CH ₂
i-C ₄ H ₉	S	CH ₂ CH ₂
tertC ₄ H ₉	S	CH ₂ CH ₂
n-C ₅ H ₁₁	S	CH ₂ CH ₂
secC ₅ H ₁₁	S	CH ₂ CH ₂
n-C ₆ H ₁₃	S	CH ₂ CH ₂
n-C ₇ H ₁₅	S	CH ₂ CH ₂
secC ₇ H ₁₅	S	CH ₂ CH ₂
1-Methylvinyl	S	CH ₂ CH ₂
2-Methylvinyl	S	CH ₂ CH ₂
Allyl	S	CH ₂ CH ₂
2-Methylallyl	S	CH ₂ CH ₂
2-Ethylallyl	S	CH₂CH₂
1-Methylallyl	S	CH ₂ CH ₂
1-Ethylallyl	S	CH ₂ CH ₂
1-Methyl-2-butenyl	S	CH ₂ CH ₂
1-Ethyl-2-butenyl	S	CH ₂ CH ₂
Cyclopropyl	S	CH ₂ CH ₂
Cyclobutyl	S	CH ₂ CH ₂
Cyclopentyl	S	CH ₂ CH ₂
Cyclohexyl	S	CH ₂ CH ₂
2-Cyclopentenyl	S	CH ₂ CH ₂
1-Cyclopentenyl	S	CH ₂ CH ₂
2-Cyclohexenyl	S	CH ₂ CH ₂
1-Cyclohexenyl	S	CH ₂ CH ₂
Phenyl	S	CH ₂ CH ₂

R	Y	Z
C ₂ H ₅	0	CH ₂ CH
i-C ₃ H ₇	0	CH ₂ CH
n-C ₃ H ₇	0	CH ₂ CH
n-C ₄ H ₉	0	CH ₂ CH
secC ₄ H ₉	0	CH ₂ CH
i-C ₄ H ₉	0	CH ₂ CH
tertC ₄ H ₉	. 0	CH ₂ CH
n-C ₅ H ₁₁	0	CH ₂ CH
secC ₅ H ₁₁	0	CH ₂ CH
n-C ₆ H ₁₃	0	CH ₂ CH
n-C ₇ H ₁₅	0	CH ₂ CH
secC ₇ H ₁₅	0	CH ₂ CH
1-Methylvinyl	0	CH ₂ CH
2-Methylvinyl	0	CH ₂ CH
Allyl	0	CH ₂ CH
2-Methylallyl	0	CH ₂ CH
2-Ethylallyl	0	CH ₂ CH
1-Methylallyl	O	CH ₂ CH
1-Ethylallyl	0	CH ₂ CH
1-Methyl-2-butenyl	. 0	CH ₂ CH
1-Ethyl-2-butenyl	0	CH ₂ CH
Cyclopropyl	0	CH ₂ CH
Cyclobutyl	0	CH ₂ CH
Cyclopentyl	0	CH ₂ CH
Cyclohexyl	0	CH ₂ CF
2-Cyclopentenyl	0	CH ₂ CH
1-Cyclopentenyl	0	CH ₂ CI
2-Cyclohexenyl	0	CH ₂ CI
1-Cyclohexenyl	0	CH ₂ CI
Phenyl	0	CH ₂ CI
C ₂ H ₅	S	CH=C
i-C ₃ H ₇	S	CH=C
n-C ₃ H ₇	S	CH=C
n-C ₄ H ₉	S	CH=C
secC ₄ H ₉	S	CH=C
i-C ₄ H ₉	S	CH=C
tertC ₄ H ₉	S	CH=C
n-C ₅ H ₁₁	S	CH=C
secC5H11	s	CH=C

	R	Y	Z
	n-C ₆ H ₁₃	S	CH=CH
c	n-C ₇ H ₁₅	S	СН=СН
5	secC ₇ H ₁₅	S	Сн=Сн
	1-Methylvinyl	S	СН=СН
	2-Methylvinyl	S	СН=СН
10	Allyl	S	СН=СН
7.0	2-Methylallyl	S	СН=СН
	2-Ethylallyl	S	Сн=Сн
	1-Methylallyl	Ş	Сн-Сн
15	1-Ethylallyl	S	Сн=Сн
. •	1-Methyl-2-butenyl	S	CH=CH
	1-Ethyl-2-butenyl	S	CH=CH -
	Cyclopropyl	S	CH=CH
20	Cyclobutyl	S	СН=СН
	Cyclopentyl	S	CH=CH
	Cyclohexyl	S	CH=CH
	2-Cyclopentenyl	S	CH=CH
25	1-Cyclopentenyl	S	CH=CH
	2-Cyclohexenyl	S	CH=CH
	1-Cyclohexenyl	S	СН=СН
	Phenyl	S	CH=CH
30	C ₂ H ₅	0	СН=СН
	i-C ₃ H ₇	0	CH=CH
	n-C ₃ H ₇	0	CH=CH
	n-C ₄ H ₉	0	CH=CH
35	secC ₄ H ₉	0	СН=СН
	i-C ₄ H ₉	0	CH=CH
	tertC ₄ H ₉	0	CH=CH
	n-C ₅ H ₁₁	0	CH=CH
40	secC ₅ H ₁₁	0	CH=CH
	n-C ₆ H ₁₃	0	CH=CH
	n-C ₇ H ₁₅	0	CH=CH
	secC ₇ H ₁₅	0	CH=CH
45	1-Methylvinyl	0	CH=CH
	2-Methylvinyl	0	CH=CH
	Allyl	0	CH=CH
	2-Methylallyl	0	CH=CH
50	2-Ethylallyl	0	CH=CH
	1-Methylallyl	0	CH=CH

R	Y	Z
l-Ethylallyl	0	CH=CH
1-Methyl-2-butenyl	0	CH=CH
1-Ethyl-2-butenyl	0	CH=CH
Cyclopropyl	0	CH=CH
Cyclobutyl	0	CH=CH
Cyclopentyl	0	CH=CH
Cyclohexyl	0	CH=CH
2-Cyclopentenyl	0	СН=СН
1-Cyclopentenyl	0	СН=СН
2-Cyclohexenyl	0	CH=CH
1-Cyclohexenyl	0	CH=CH
Phenyl	0	СН=СН

Tabelle E

R ⁴	R	Y	Z
CH ₃	i-C ₃ H ₇	0	CH ₂ CH ₂
CH ₃	n-C ₃ H ₇	0	CH ₂ CH ₂
CH ₃	n-C ₄ H ₉	· 0	CH ₂ CH ₂
CH ₃	secC ₄ H ₉	. 0	CH ₂ CH ₂
CH ₃	i-C ₄ H ₉	0	CH ₂ CH ₂
CH ₃	tertC ₄ H ₉	0	CH ₂ CH ₂
CH ₃	n-C ₅ H ₁₁	0	CH ₂ CH ₂
CH ₃	secC ₅ H ₁₁	0	CH ₂ CH ₂
CH ₃	n-C ₆ H ₁₃	0	CH ₂ CH ₂
CH ₃	n-C ₇ H ₁₅	0	CH ₂ CH ₂
CH ₃	secC ₇ H ₁₅	0	CH ₂ CH ₂
CH ₃	Ethoxy	0	CH ₂ CH ₂
CH ₃	Ргороху	0	CH ₂ CH ₂
CH ₃	1-Methylethoxy	0	CH ₂ CH ₂
CH ₃	n-Butoxy	0	CH ₂ CH ₂
CH ₃	1-Methylpropoxy	0	CH ₂ CH ₂
CH ₃	2-Methylpropoxy	0	CH ₂ CH ₂
CH ₃	1,1-Dimethylethoxy	0	CH ₂ CH ₂
CH ₃	n-Pentyloxy	0	CH2CH2
CH ₃	n-Hexyloxy	0	CH ₂ CH ₂
CH ₃	Cyclopentyl	0	CH ₂ CH ₂
CH ₃	Cyclopentenyl	0	CH ₂ CH ₂
CH ₃	i-C ₃ H ₇	S	CH ₂ CH ₂
CH ₃	n-C ₃ H ₇	S	CH ₂ CH ₂
CH ₃	n-C ₄ H ₉	S	CH ₂ CH ₂
CH ₃	secC ₄ H ₉	S	CH ₂ CH ₂
CH ₃	i-C ₄ H ₉	S	CH ₂ CH ₂
CH ₃	tertC ₄ H ₉	S	CH ₂ CH ₂
CH ₃	n-C ₅ H ₁₁	S	CH ₂ CH ₂

	R ⁴	R	Y	Z
ŀ	СН3	secC ₅ H ₁₁	s	CH ₂ CH ₂
ľ	CH ₃	n-C ₆ H ₁₃	S	CH ₂ CH ₂
Ì	CH ₃	n-C ₇ H ₁₅	S	CH ₂ CH ₂
ľ	CH ₃	secC ₇ H ₁₅	S	CH ₂ CH ₂
Ī	CH ₃	Ethoxy	S	CH ₂ CH ₂
<u> </u>	CH ₃	Ргороху	S	CH ₂ CH ₂
<u> </u>	CH ₃	1-Methylethoxy	S	CH ₂ CH ₂
Ī	CH ₃	n-Butoxy	S	CH ₂ CH ₂
Ī	CH ₃	1-Methylpropoxy	S	CH ₂ CH ₂
ļ	CH ₃	2-Methylpropoxy	S	CH ₂ CH ₂
ļ	CH ₃	1,1-Dimethylethoxy	S	CH ₂ CH ₂
ľ	CH ₃	n-Pentyloxy	S	CH ₂ CH ₂
İ	CH ₃	n-Hexyloxy	· S	CH ₂ CH ₂
	CH ₃	Cyclopentyl	S	CH ₂ CH ₂
Ī	CH ₃	Cyclopentenyl	S	CH ₂ CH ₂
Ī	CH ₃	i-C ₃ H ₇	0	CH=CH
	CH ₃	n-C ₃ H ₇	0	СН=СН
	CH ₃	n-C ₄ H ₉	0	CH=CH
	CH ₃	secC ₄ H ₉	0	CH=CH
	CH ₃	i-C ₄ H ₉	0	CH=CH
	CH ₃	tertC ₄ H ₉	0	CH=CH
	CH ₃	n-C ₅ H ₁₁	0	CH=CH
	CH ₃	secC ₅ H ₁₁	0	CH=CH
	CH ₃	n-C ₆ H ₁₃	0	CH=CH
	CH ₃	n-C ₇ H ₁₅	0	CH=CH
	CH ₃	secC7H ₁₅	0	CH=CH
	CH ₃	Ethoxy	0	CH=CH
	CH ₃	Propoxy	0	CH=CH
	CH ₃	1-Methylethoxy	0	CH=CH
	CH ₃	n-Butoxy	0	CH=CH
	CH ₃	1-Methylpropoxy	0	CH=CH
	CH ₃	2-Methylpropoxy	0	CH=CH
	CH ₃	1,1-Dimethylethoxy	0	СН-СН
	CH ₃	n-Pentyloxy	0	CH=CH
	CH ₃	n-Hexyloxy	0	СН=СН
	CH ₃	Cyclopentyl	0	Сн≃Сн
	CH ₃	Cyclopentenyl	0	CH=CH
	CH ₃	i-C ₃ H ₇	S	CH=CH
U.				

	R ⁴	R	Y	Z
	CH ₃	n-C ₃ H ₇	S	CH=CH
5	CH ₃	n-C ₄ H ₉	s	СН=СН
	CH ₃	secC ₄ H ₉	S	CH=CH
	CH ₃	i-C ₄ H ₉	S	CH=CH
10	CH ₃	tertC ₄ H ₉	S	CH=CH
	CH ₃	n-C ₅ H ₁₁	S	CH=CH
	CH ₃	secC ₅ H ₁₁	S	CH=CH
	CH ₃	n-C ₆ H ₁₃	S	CH=CH
15	CH ₃	n-C ₇ H ₁₅	S	CH=CH
	CH ₃	secC7H ₁₅	S	CH=CH
	CH ₃	Ethoxy	S	CH=CH
20	CH ₃	Ргороху	S	CH=CH
	CH ₃	1-Methylethoxy	S	СН=СН
	CH ₃	n-Butoxy	S	CH=CH
•	CH ₃	1-Methylpropoxy	S	CH=CH
25	CH ₃	2-Methylpropoxy	S	CH=CH
	CH ₃	1,1-Dimethylethoxy	S	CH=CH
	CH ₃	n-Pentyloxy	S	CH=CH
30	CH ₃	n-Hexyloxy	S	CH=CH
	CH ₃	Cyclopentyl	S	CH=CH
	CH ₃	Cyclopentenyl	S	CH=CH

Tabelle F

Z NH CO NH CO N CH

trans

R ⁵	R ⁶	R	Z
CH ₃	Н	C ₂ H ₅	CH ₂ CH ₂
CH ₃	Н	i-C ₃ H ₇	CH ₂ CH ₂
CH ₃	Н	n-C ₃ H ₇	CH ₂ CH ₂
CH ₃	Н	n-C ₄ H ₉	CH ₂ CH ₂
CH ₃	Н	secC ₄ H ₉	CH ₂ CH ₂
CH ₃	Н	i-C ₄ H ₉	CH ₂ CH ₂
CH ₃	Н	tertC ₄ H ₉	CH ₂ CH ₂
CH ₃	H	n-C ₅ H ₁₁	CH ₂ CH ₂
CH ₃	Н	secC ₅ H ₁₁	CH ₂ CH ₂
CH ₃	н	n-C ₆ H ₁₃	CH ₂ CH ₂
CH ₃	Н	n-C7H15	CH ₂ CH ₂
CH ₃	Н	secC7H15	CH ₂ CH ₂
CH ₃	Н	1-Methylvinyl	CH ₂ CH ₂
CH ₃	Н	2-Methylvinyl	CH ₂ CH ₂
CH ₃	Н	Allyl	CH ₂ CH ₂
CH ₃	Н	2-Methylallyl	CH ₂ CH ₂
CH ₃	н	2-Ethylallyl	CH ₂ CH ₂
CH ₃	Н	1-Methylallyl	CH ₂ CH ₂
CH ₃	Н	1-Ethylallyl	CH ₂ CH ₂
CH ₃	н	1-Methyl-2-butenyl	CH ₂ CH ₂
CH ₃	Н	1-Ethyl-2-butenyl	CH ₂ CH ₂
CH ₃	Н	Cyclopropyl	CH ₂ CH ₂
CH ₃	Н	Cyclobutyl	CH ₂ CH ₂
CH ₃	н	Cyclopentyl	CH ₂ CH ₂
CH ₃	Н	Cyclohexyl	CH ₂ CH ₂
CH ₃	Н	2-Cyclopentenyl	CH ₂ CH ₂
CH ₃	Н	1-Cyclopentenyl	CH ₂ CH ₂
CH ₃	Н	2-Cyclohexenyl	CH ₂ CH ₂
CH ₃	н	1-Cyclohexenyl	CH ₂ CH ₂
CH ₃	Н	Phenyl	CH ₂ CH ₂

Γ	R ⁵ ·	R ⁶	R	Z
ŀ	CF ₃	н	C ₂ H ₅	CH ₂ CH ₂
}	CF ₃	н	i-C ₃ H ₇	CH ₂ CH ₂
ļ	CF ₃	Н	n-C ₃ H ₇	CH ₂ CH ₂
Ì	CF ₃	Н	n-C ₄ H ₉	CH ₂ CH ₂
<u> </u>	CF ₃	Н	secC ₄ H ₉	CH ₂ CH ₂
Ì	CF ₃	Н	i-C ₄ H ₉	CH ₂ CH ₂
Ì	CF ₃	Н	tertC ₄ H ₉	CH ₂ CH ₂
	CF ₃	Н	n-C ₅ H ₁₁	CH ₂ CH ₂
	CF ₃	Н	secC ₅ H ₁₁	CH ₂ CH ₂
ľ	CF ₃	Н	n-C ₆ H ₁₃	CH ₂ CH ₂
	CF ₃	Н	n-C7H15	CH ₂ CH ₂
	CF ₃	Н	secC7H ₁₅	CH ₂ CH ₂
	CF ₃	Н	1-Methylvinyl	CH ₂ CH ₂
	CF ₃	Н	2-Methylvinyl	CH ₂ CH ₂
	CF ₃	Н	Allyl	CH ₂ CH ₂
	CF ₃	Н	2-Methylallyl	CH ₂ CH ₂
	CF ₃	Н	2-Ethylallyl	CH ₂ CH ₂
	CF ₃	н	1-Methylallyl	CH ₂ CH ₂
	CF ₃	н	1-Ethylallyl	CH ₂ CH ₂
	CF ₃	H	1-Methyl-2-butenyl	CH ₂ CH ₂
	CF ₃	Н	1-Ethyl-2-butenyl	CH ₂ CH ₂
	CF ₃	н	Cyclopropyl	CH ₂ CH ₂
	CF ₃	Н	Cyclobutyl	CH ₂ CH ₂
	CF ₃	Н	Cyclopentyl	CH ₂ CH ₂
	CF ₃	Н	Cyclohexyl	CH ₂ CH ₂
	CF ₃	Н	2-Cyclopentenyl	CH ₂ CH ₂
	CF ₃	Н	1-Cyclopentenyl	CH ₂ CH ₂
	CF ₃	Н	2-Cyclohexenyl	CH ₂ CH ₂
	CF ₃	Н	1-Cyclohexenyl	CH ₂ CH ₂
	CF ₃	н	Phenyl	CH ₂ CH ₂
	CH ₃	Н	C ₂ H ₅	CH=CH
	CH ₃	Н	i-C ₃ H ₇	CH=CH
	CH ₃	Н	n-C ₃ H ₇	CH=CH
	CH ₃	Н	n-C ₄ H ₉	CH=CH
	CH ₃	Н	secC ₄ H ₉	СН=СН
	CH ₃	Н	i-C ₄ H ₉	CH=CH
	CH ₃	Н	tertC ₄ H ₉	CH=CH
	CH ₃	Н	n-C ₅ H ₁₁	CH=CH
	CH ₃	Н	secC ₅ H ₁₁	CH=CH
				-

	R ⁵	R ⁶	R	Z
Î	CH ₃	Н	n-C ₆ H ₁₃	Сн-Сн
5	CH ₃	Н	n-C7H15	Сн=Сн
	CH ₃	Н	secC7H15	CH=CH
	CH ₃	Н	1-Methylvinyl	CH=CH
I	CH ₃	Н	2-Methylvinyl	CH=CH
10	CH ₃	Н	Allyl	Сн=Сн
	CH ₃	Н	2-Methylallyl	СН=СН
	CH ₃	Н	2-Ethylallyl	CH=CH
	CH ₃	Н	1-Methylallyl	СН=СН
15	CH ₃	Н	1-Ethylallyl	CH=CH
,,	CH ₃	н	1-Methyl-2-butenyl	CH=CH
	CH ₃	H	1-Ethyl-2-butenyl	CH=CH .
	CH ₃	Н	Cyclopropyl	CH=CH
20	CH ₃	н	Cyclobutyl	CH=CH
20	CH ₃	н	Cyclopentyl	CH=CH
	CH ₃	н	Cyclohexyl	CH=CH
	CH ₃	н	2-Cyclopentenyl	СН=СН
25	CH ₃	н	1-Cyclopentenyl	CH=CH
	CH ₃	Н	2-Cyclohexenyl	CH=CH
	CH ₃	Н	1-Cyclohexenyl	CH=CH
	CH ₃	Н	Phenyl	CH=CH
00	CF ₃	Н	C ₂ H ₅	CH=CH
30	CF ₃	Н	i-C ₃ H ₇	CH=CH
	CF ₃	Н	n-C ₃ H ₇	CH=CH
	CF ₃	н	n-C ₄ H ₉	CH=CH
05	CF ₃	Н	secC ₄ H ₉	CH=CH
35	CF ₃	H	i-C ₄ H ₉	CH=CH
	CF ₃	Н	tertC ₄ H ₉	CH=CH
	CF ₃	Н	n-C ₅ H ₁₁	CH=CH
	CF ₃	н	secC ₅ H ₁₁	CH=CH
40	CF ₃	Н	n-C ₆ H ₁₃	CH=CH
	CF ₃	Н	n-C7H15	CH=CH
	CF ₃	Н	secC7H15	Сн=Сн
	CF ₃	Н	1-Methylvinyl	CH=CH
45	CF ₃	Н	2-Methylvinyl	СН=СН
	CF ₃	Н	Allyl	CH=CH
	CF ₃	Н	2-Methylallyl	СН=СН
	CF ₃	Н	2-Ethylallyl	СН=СН
50	CF ₃	Н	1-Methylallyl	CH=CH
	<u> </u>	-		

	R ⁵	R ⁶	R	Z
Ī	CF ₃	Н	1-Ethylallyl	CH=CH
5	CF ₃	Н	1-Methyl-2-butenyl	CH=CH
	CF ₃	Н	1-Ethyl-2-butenyl	CH=CH
	CF ₃	Н	Cyclopropyl	CH=CH
10	CF ₃	Н	Cyclobutyl	СН=СН
	CF ₃	Н	Cyclopentyl	CH=CH
Ī	CF ₃	Н	Cyclohexyl	CH=CH
	CF ₃	Н	2-Cyclopentenyl	CH=CH
15	CF ₃	Н	1-Cyclopentenyl	CH=CH
	CF ₃	Н	2-Cyclohexenyl	CH=CH
	CF ₃	Н	1-Cyclohexenyl	CH=CH
20	CF ₃	Н	Phenyl	CH=CH -

Tabelle G

trans

R ⁷	R ⁶	R	Z
CF ₃	CH ₃	C ₂ H ₅	CH ₂ CH ₂
CF ₃	CH ₃	i-C ₃ H ₇	CH ₂ CH ₂
CF ₃	CH ₃	n-C ₃ H ₇	CH ₂ CH ₂
CF ₃	CH ₃	n-C ₄ H ₉	CH ₂ CH ₂
CF ₃	CH ₃	secC ₄ H ₉	CH ₂ CH ₂
CF ₃	CH ₃	i-C ₄ H ₉	CH ₂ CH ₂
CF ₃	СН3	tertC ₄ H ₉	CH ₂ CH ₂
CF ₃	CH ₃	n-C ₅ H ₁₁	CH ₂ CH ₂
CF ₃	CH ₃	secC ₅ H ₁₁	CH ₂ CH ₂
CF ₃	CH ₃	n-C ₆ H ₁₃	CH ₂ CH ₂
CF ₃	CH ₃	n-C ₇ H ₁₅	CH ₂ CH ₂
CF ₃	CH ₃	secC ₇ H ₁₅	CH ₂ CH ₂
CF ₃	CH ₃	1-Methylvinyl	CH ₂ CH ₂
CF ₃	CH ₃	2-Methylvinyl	CH ₂ CH ₂
CF ₃	CH ₃	Allyl	CH ₂ CH ₂
CF ₃	CH ₃	2-Methylallyl	CH ₂ CH ₂
CF ₃	CH ₃	2-Ethylallyl	CH ₂ CH ₂
CF ₃	CH ₃	1-Methylallyl	CH ₂ CH ₂
CF ₃	CH ₃	1-Ethylallyl	CH ₂ CH ₂
CF ₃	CH ₃	1-Methyl-2-butenyl	CH ₂ CH ₂
CF _{3.}	CH ₃	1-Ethyl-2-butenyl	CH ₂ CH ₂
CF ₃	CH ₃	Cyclopropyl	CH ₂ CH ₂
CF ₃	CH ₃	Cyclobutyl	CH ₂ CH ₂
CF ₃	. CH ₃	Cyclopentyl	CH ₂ CH ₂
CF ₃	CH ₃	Cyclohexyl	CH ₂ CH ₂
CF ₃	CH ₃	2-Cyclopentenyl	CH ₂ CH ₂
CF ₃	CH ₃	1-Cyclopentenyl	CH ₂ CH ₂
CF ₃	CH ₃	2-Cyclohexenyl	CH ₂ CH ₂
CF ₃	CH ₃	1-Cyclohexenyl	CH2CH2
CF ₃	CH ₃	Phenyl	CH ₂ CH ₂

	R ⁷ .	R ⁶	R	Z
5	CH ₃	CH ₃	C ₂ H ₅	CH ₂ CH ₂
	CH ₃	CH ₃	i-C ₃ H ₇	CH ₂ CH ₂
	CH ₃	CH₃	n-C ₃ H ₇	CH ₂ CH ₂
	CH ₃	CH ₃	n-C ₄ H ₉	CH ₂ CH ₂
	CH ₃	CH ₃	secC ₄ H ₉	CH ₂ CH ₂
10	CH ₃	CH ₃	i-C ₄ H ₉	CH ₂ CH ₂
10	CH ₃	CH ₃	tertC ₄ H ₉	CH ₂ CH ₂
	CH ₃	CH ₃	n-C ₅ H ₁₁	CH ₂ CH ₂
15	CH ₃	CH ₃	secC ₅ H ₁₁	CH ₂ CH ₂
	CH ₃	CH ₃	n-C ₆ H ₁₃	CH ₂ CH ₂
	CH ₃	CH ₃	n-C7H15	CH ₂ CH ₂
	CH ₃	CH ₃	secC7H ₁₅	CH ₂ CH ₂
	CH ₃	CH ₃	1-Methylvinyl	CH ₂ CH ₂
20	CH ₃	CH ₃	2-Methylvinyl	CH ₂ CH ₂
20	CH ₃	CH ₃	Allyl	CH ₂ CH ₂
	CH ₃	CH ₃	2-Methylallyl	CH ₂ CH ₂
25	CH ₃	CH ₃	2-Ethylallyl	CH ₂ CH ₂
	CH ₃	CH ₃	1-Methylallyl	CH ₂ CH ₂
	CH ₃	CH ₃	1-Ethylallyl	CH ₂ CH ₂
	CH ₃	CH ₃	1-Methyl-2-butenyl	CH ₂ CH ₂
	CH ₃	CH ₃	1-Ethyl-2-butenyl	CH ₂ CH ₂
	CH ₃	CH ₃	Cyclopropyl	CH ₂ CH ₂
30	CH ₃	CH ₃	Cyclobutyl	CH ₂ CH ₂
	CH ₃	CH ₃	Cyclopentyl	CH ₂ CH ₂
35	CH ₃	CH ₃	Cyclohexyl	CH ₂ CH ₂
	CH ₃	CH ₃	2-Cyclopentenyl	CH ₂ CH ₂
	CH ₃	CH ₃	1-Cyclopentenyl	CH ₂ CH ₂
	CH ₃	CH ₃	2-Cyclohexenyl	CH ₂ CH ₂
40	CH ₃	CH ₃	1-Cyclohexenyl	CH ₂ CH ₂
	CH ₃	CH ₃	Phenyl	CH ₂ CH ₂
	CF ₃	CH ₃	C ₂ H ₅	CH=CH
	CF ₃	CH ₃	i-C ₃ H ₇	CH=CH
45	CF ₃	CH ₃	n-C ₃ H ₇	CH=CH
	CF ₃	CH ₃	n-C ₄ H ₉	СН=СН
	CF ₃	CH ₃	secC ₄ H ₉	CH=CH
	CF ₃	CH ₃	i-C ₄ H ₉	Сн=Сн
	CF ₃	CH ₃	tertC ₄ H ₉	CH=CH
50	CF ₃	CH ₃	n-C ₅ H ₁₁	CH=CH
	CF ₃	CH ₃	secC ₅ H ₁₁	CH=CH

			<u></u> .	
•	R ⁷	R ⁶	R	Z
5	CF ₃	CH ₃	n-C ₆ H ₁₃	СН=СН
	CF ₃	CH ₃	n-C ₇ H ₁₅	CH=CH
	CF ₃	CH ₃	secC7H ₁₅	CH=CH
	CF ₃	CH ₃	1-Methylvinyl	CH=CH
10	CF ₃	CH ₃	2-Methylvinyl	CH=CH
	CF ₃	CH ₃	Allyl	CH=CH
	CF ₃	CH ₃	2-Methylallyl	Сн=Сн
	CF ₃	CH ₃	2-Ethylallyl	Сн=Сн
15	CF ₃	CH ₃	1-Methylallyl	CH=CH
	CF ₃	CH ₃	1-Ethylallyl	CH=CH
	CF ₃	CH ₃	1-Methyl-2-butenyl	CH=CH
	CF ₃	CH ₃	1-Ethyl-2-butenyl	CH=CH
	CF ₃	CH ₃	Cyclopropyl	CH=CH
20	CF ₃	CH ₃	Cyclobutyl	CH=CH
20	CF ₃	CH ₃	Cyclopentyl	СН=СН
	CF ₃	CH ₃	Cyclohexyl	CH=CH
25	CF ₃	CH ₃	2-Cyclopentenyl	CH=CH
	CF ₃	CH ₃	1-Cyclopentenyl	СН=СН
	CF ₃	CH ₃	2-Cyclohexenyl	CH=CH
	CF ₃	CH ₃	1-Cyclohexenyl	СН=СН
	CF ₃	CH ₃	Phenyl	Сн=Сн
30	CH ₃	CH ₃	C ₂ H ₅	Сн=Сн
30	CH ₃	CH ₃	i-C ₃ H ₇	Сн-Сн
	. CH ₃	CH ₃	n-C ₃ H ₇	CH=CH
	CH ₃	CH ₃	n-C ₄ H ₉	СН=СН
25	CH ₃	CH ₃	secC ₄ H ₉	CH=CH
35	CH ₃	CH ₃	i-C ₄ H ₉	CH=CH
	CH ₃	CH ₃	tertC ₄ H ₉	CH=CH
40	CH ₃	CH ₃	n-C ₅ H ₁₁	CH=CH
	CH ₃	CH ₃	secC ₅ H ₁₁	CH=CH
	CH ₃	CH ₃	n-C ₆ H ₁₃	CH=CH
	CH ₃	CH ₃	n-C7H15	CH=CH
	CH ₃	CH ₃	secC7H15	СН=СН
45	CH ₃	CH ₃	1-Methylvinyl	CH=CH
	CH ₃	CH ₃	2-Methylvinyl	CH=CH
	CH ₃	CH ₃	Allyl	CH=CH
50	CH ₃	CH ₃	2-Methylallyl	CH=CH
	CH ₃	CH ₃	2-Ethylallyl	CH=CH
	CH ₃	CH ₃	1-Methylallyl	CH=CH

1			
R ⁷	R ⁶	R	Z
CH ₃	CH ₃	1-Ethylallyl	CH=CH
CH ₃	CH ₃	1-Methyl-2-butenyl	CH=CH
CH ₃	CH ₃	1-Ethyl-2-butenyl	СН=СН
CH ₃	CH ₃	Cyclopropyl	СН=СН
CH ₃	CH ₃	Cyclobutyl	CH=CH
CH ₃	CH ₃	Cyclopentyl	CH=CH
CH ₃	CH ₃	Cyclohexyl	CH=CH
CH ₃	CH ₃	2-Cyclopentenyl	CH=CH
CH ₃	CH ₃	1-Cyclopentenyl	CH=CH
CH ₃	CH ₃	2-Cyclohexenyl	CH=CH
CH ₃	CH ₃	1-Cyclohexenyl	CH=CH
CH ₃	CH ₃	Phenyl	CH=CH .

20

30

5

10

15

Die neuen Wirkstoffe eignen sich besonders zum Schutz von verschiedenen Materialien gegen den Abbau bzw. die Zerstörung durch Bakterien oder Pilze oder gegen den Befall und Bewuchs durch Mikroorganismen. Materialien, die mit den neuen Wirkstoffen konserviert bzw. mikrozid ausgerüstet werden können, sind beispielsweise Leime und Klebstoffe, Stärkelösungen, Wachsemulsionen, Tonemulsionen, Schlichten, Appreturen, Spinnbäder, Gelatinezubereitungen, Fensterkitt, Fugendichtungsmassen, Kühlschmierstoffe, Bohröle, Treibstoffe, Kunststoffdispersionen, Dispersionsfarben, Textilien, Leder, Rohhäute und Kosmetika. Weiterhin sind die Verbindungen als Schleimbekämpfungsmittel in der Papierindustrie, in Rückkühlwerken und in Luftbefeuchtungsanlagen geeignet.

Des weiteren eignen sich die Verbindungen I zum Schutz folgender Pflanzenarten vor dem Befall durch Mikroorganismen:

Getreide (z.B. Weizen, Gerste, Roggen, Hafer, Reis, Sorhum und Verwandte); Rüben (z.B. Zucker- und Futterrüben); Kern-, Stein- und Beerenobst (z.B. Äpfel, Birnen, Pflaumen, Pfirsiche, Mandeln, Kirschen, Erdbeeren, Himbeeren und Brombeeren); Hülsenfrüchte (z.B. Bohnen, Linsen, Erbsen, Soja); Ölkulturen (z.B. Raps, Senf, Mohn, Oliven, Sonnenblumen, Kokos, Rizinus, Kakao, Erdnüsse); Gurkengewächse (z.B. Kürbis, Gurken, Melonen); Fasergewächse (z.B. Baumwolle, Flachs, Hanf, Jute); Citrusfrüchte (z.B. Orangen, Zitronen, Pampelmusen, Mandarinen); Gemüsesorten (z.B. Spinat, Kopfsalat, Spargel, Kohlarten, Möhren, Zwiebeln, Tomaten, Kartoffeln, Paprika); Lorbeergewächse (z.B. Avocado, Cinnamonum, Kampfer) oder Pflanzen wie Mais, Tabak, Nüsse, Kaffee, Zuckerrohr, Tee, Weintrauben, Hopfen, Bananen- und Naturkautschukgewächse. Pflanzen seien im Rahmen vorliegender Erfindung aber auch alle Arten von sonstigen Grünbewachsungen, seien es Zierpflanzen (Compositen), Grasflächen, Böschungen oder allgemeine niedrige Bodenbedeckungen (cover corps).

Folgende Mikroorganismen lassen sich beispielsweise mit den neuen Verbindungen I bekämpfen: Straphylococcus aureus, Escherichia coli, Klebsielle pneumoniae, Citrobacter freundii, Proteus vulgaris, Pseudomonas aeruginosa, Desulfovibrio desulfuricans, Streptoverticillium rubrireticuli, Aspergillus niger, Aspergillus versicolor, Penicillium funiculosum, Penicillium expansum, Penicillium glaucum, Paecilomyces variotii, Trichoderma viride, Chaetomium globosum, Aspergillus amstelodami, Phoma pigmentovora, Phoma violacea, Aureobasidium pullulans, Saccharomyces cerevisiae, Alternaria tenuis, Stemphylium macrosporoideum, Cladosporium herbarum, Cladosporium resinae, Candida albicans, Trichophyton mentagrophytes, Geotrichum candidans, Monilia sitophila, Scenedesmus quadricauda, Chlorella vulgaris, Nostoc muscorium, Oscillatoria limosa und Anabaena constricta.

Die neuen Substanzen können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollen in jedem Fall eine feine und gleichmäßige Verteilung der wirksamen Substanzen gewährleisten. Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle der Benutzung von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als

Hilfsstoffe kommen dafür im wesentlichen in Frage: Lösungsmittel wie Aromaten (z.B. Xylol, Benzol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser, Trägerstoffe wie natürliche Gesteinsmehle, z.B. Kaoline, Tonerden, Talkum, Kreide und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate), Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR/HPLC/GC-Spektrum) eingesetzt.

Als übliche Anwendungskonzentration wählt man - bezogen auf das Gewicht des zu schützenden Materials - 0,001 bis 5 Gew.-%, bevorzugt 0,01 bis 2 Gew.-% an Wirkstoff; beim Einsatz zur Wasserbehandlung, bei der Erdölförderung, in Bohr- und Schneidölen, Treibstoffen, in Schwimmbädern, Rückkühlwerken, Luftbefeuchtungsanlagen oder in der Papierindustrie sind Wirkstoffmengen von 5 bis 500 ppm ausreichend. Gebrauchsfertige Desinfektionsmittellösungen enthalten z.B. 0,5 bis 10 Gew.-% an Wirkstoff.

Beispiele für solche Zubereitungen sind:

10

15

20

25

30

35

40

45

50

I. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 3 und 10 Gew.-Teilen N-Methyl- α -pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;

II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 5, 80 Gew.-Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes und 40 Mol Ethylenoxid an 1 Mol Ricinusöl. Durch feines Verteilen des Gemisches in 100 000 Gew.-Teilen Wasser erhält man eine Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

III. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 2, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl. Die Mischung dieser Dispersion mit 100 000 Gewichtsteilen Wasser enthält 0,02 Gew.-% des Wirkstoffes.

IV. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 4, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl. Die Mischung dieser Dispersion mit 100 000 Gew.-Teilen Wasser enthält 0,02 % des Wirkstoffes;

V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 1, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphtalin-α-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel. Durch feines Verteilen der Mischung in 20 000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält;

VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 6 und 97 Gew.-Teilen feinteiligem Kaolin. Dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;

VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 9, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde. Diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;

VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 7, 10 Gew.-Teilen des Natriumsalzes eines Phenosulfonsäure harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann:

IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 8, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehydKondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls;

X. eine in einer Hammermühle vermahlene Mischung aus 10 Gew.-Teilen der Verbindung Nr. 10, 4 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 20 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge, 38 Gew.-Teilen Kieselsäuregel und 38 Gew.-Teilen Kaolin. Durch feines Verteilen der Mischung in 10 000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

Die Wirkstoffe wirken für sich allein als schaumarme Biozide. Eine bedeutende Steigerung der Wirkung dieser Verbindungen enthaltender biozider Zubereitungen wird erzielt, wenn man ihnen noch Tri- C_6 - bis C_{12} -alkylmethylammoniumsalze, vorzugsweise in Mengen von 20 bis 40 Gew.-%, bezogen auf das Gewicht der Verbindungen der allgemeinen Formel I, zusetzt.

Die Wirkstoffe können auch mit anderen bekannten Mikrobiziden gemischt werden. In vielen Fällen erhält man dabei einen synergistischen Effekt, d.h. die mikrobizide Wirksamkeit der Mischung ist größer als

EP 0 589 313 A1

die der (addierten) Wirksamkeiten der Einzelkomponenten.

Die Zumischung der bekannten Mikrobizide zu den neuen Substanzen kann in einem Gewichtsverhältnis von 1:100 bis 100:1 erfolgen.

5 Solche Wirkstoffe sind beispielsweise:

2-(Thiocyanomethylthio)-benzthiazol

1-[2-(2,4-Dichlorphenyl)-2-(2-propenyl-oxy)-ethyl]-1H-imidazol

2,4,5,6-Tetrachlor-isophthalodinitril

10 Methylenbisthiocyanat

Tributylzinnoxid, -naphthenat, -benzoat, -salicylat

Mercaptobenzthiazol

1,2-Benzisothiazolon und seine Alkalisalze

Alkaliverbindungen des N'-Hydroxy-N-cyclohexyl-diazeniumoxids

15 2-(Methoxy-carbonylamino)-benzimidazol

2-Methyl-3-oxo-5-chlor-thiazolin-3-on

Trihydroxymethyl-nitro-methan

Glutardialdehyd

Chloracetamid

20 Polyhexamethylenbisguanide

5-Chlor-2-methyl-4-isothiazolin-3-on + Magnesiumsalze

3,5-Dimethyltetrahydro-1,3,5-2H-thiadiazin-2-thion

Hexahydrotriazin

N,N-Methylolchloracetamid

25 2-n-Octyl-4-isothiazol-in-3-on

Oxazolidine

Bisoxazolidine

2,5-Dihydro-2,5-dialkoxy-2,5-dialkylfurane

Diethyl-dodecyl-benzyl-ammoniumchlorid

30 Dimethyl-octadecyl-dimethylbenzyl-ammoniumchlorid

Dimethyl-didecyl-ammoniumchlorid

Dimethyl-didodecyl-ammoniumchlorid

Trimethyl-tetradecylammoniumchlorid

Benzyl-dimethyl-alkyl-(C₁₂-C₁₈)-ammoniumchlorid

35 Dichlorbenzyl-dimethyl-dodecyl-ammoniumchlorid

Cetylpyridiniumchlorid

Cetylpyridiniumbromid

Cetyl-trimethyl-ammoniumchlorid

Laurylpyridiniumchlorid

40 Laurylpyridiniumbisulfat

Benzyl-dodecyl-di(beta-oxyethyl)-ammoniumchlorid

Dodecylbenzyl-trimethyl-ammoniumchlorid

n-Alkyl-dimethyl-benzyl-ammoniumchlorid

(Alkylrest: 40 % C₁₂, 50 % C₁₄, 10 % C₁₆)

45 Lauryl-dimethyl-ethyl-ammoniumethylsulfat

n-Alkyl-dimethyl-(1-naphthylmethyl)-ammoniumchlorid

(Alkylrest: 98 % C₁₂, 2 % C₁₄)

Cetyldimethylbenzylammoniumchlorid

Lauryldimethylbenzylammoniumchlorid

50

Weitere mögliche Mischungspartner sind beispielsweise:

1,3-Dimethylol-5,5-dimethylhydantoin

Dimethylolharnstoff

55 Tetramethylolacetylendiharnstoff

Dimethylolglyoxalmonourein

Hexamethylentetramin

Glyoxal

Glutardialdehyd

N-Methylol-chloracetamid

1-(Hydroxymethyl)-5,5-dimethyl-hydantoin

1,3-Bis-(hydroxymethyl)-5,5-dimethylhydantoin

Imidazolidinylharnstoff

1-(3-Chlorallyl)-3,5,7-triaza-1-azonia-adamantan-chlorid

1,3-Bis-(\$-ethylhexyl)-5-methyl-5-amino-hexahydropyrimidin

1,3,5-Tris-(hydroxyethyl)-1,3,5-hexahydrotriazin

1,2-Dibrom-2,4-dicyanobutan

5-Brom-5-nitro-1,3-dioxan

2-Brom-2-nitropropandiol

1,1'-Hexamethylen-bis-[5-(4-chlorphenyl)-biguanid]

4.4-Diaminodiphenoxypropan

2-Brom-2-nitro-propan-1,3-diol

15 Sorbinsäure und ihre Salze

p-Hydroxybenzoesäure und ihre Ester und Salze

Zink-2-pyridinethiol-N-oxid

2-[(Hydroxylmethyl)amino]-ethanol

Dithio-2,2'-bis(benzmethyl-amid)

5-Chlor-2-(2,4-dichlorphenoxy)-phenol

Thio-bis-(4-chlorphenol)

o-Phenyl-phenol

Chlormethyl-dijodmethylsulfon

p-Chlorphenyl-3-jodpropargyl-formal

25

Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I genutzt. Die so erhaltenen Verbindungen sind in den anschließenden Tabellen mit physikalischen Daten aufgeführt.

1. N-[2-(1-Methylpropyl)-cyclohexyl]-2-methyl-4-trifluormethyl-thiazol-5-carbonsäureamid

35

40

Zu einer Lösung 2,3 g trans-2-sec.-Butylcyclohexylamin und 1,5 g Triethylamin in 15 ml Tetrahydrofuran werden bei 0°C 3,4 g 2-Methyl-4-trifluormethylthiazol-5-carbonsäurechlorid zugetropft und 2 Stunden bei 25°C nachgerührt. Nach Verdünnen des Ansatzes mit 300 ml Wasser und zweimaligem Extrahieren mit tert.-Butylmethylether, Trocknen und Verdampfen des Lösungsmittels und Anteigen des Rückstands mit wenig n-Pentan isoliert man 2,3 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäure-trans-2-sec-butylcyclohexylamid vom Fp. 112 - 113°C.

50

Tabelle 1

10

F HN—CO—A

	Nr.	R	Α	Fp. (°C)
15	1.01	CH (CH ₃) CH ₂ CH ₃	2-CF ₃ -C ₆ H ₄	117-119
13	1.02	CH (CH ₃) CH ₂ CH ₃	2-CH ₃ -C ₆ H ₄	113-116
	1.03	CH (CH ₃) CH ₂ CH ₃	2-Br-C ₆ H ₄	122-124
	1.04	CH ₂ CH ₃	2-Cl-pyridin-3-yl	190-191
20	1.05	CH (CH ₃) ₂	2-Cl-pyridin-3-yl	134-136
20	1.06	CH (CH ₃) CH ₂ CH ₃	2-Cl-pyridin-3-yl	Öl
	1.07	CH (CH ₃) CH ₂ CH ₃	2-CH ₃ -5,6-dihydro-[4H]-	
			pyran-3-yl	128-130
05	1.08	CH (CH ₃) CH ₂ CH ₃	3-CH ₃ -5, 6-dihydro-1, 4-	
25			oxathiin-2-yl	94- 98
	1.09.	CH (CH ₃) CH ₂ CH ₃	3-CH ₃ -furan-3-yl	102-104
	1.10	CH (CH ₃) CH ₂ CH ₃	$3-CH_3$, $4-CF_3-thiazol-5-yl$	112-113
	1.11	CH (CH ₃) CH ₂ CH ₃	$2,4-(CH_3)_2$ -thiazol-5-yl	89- 92
30	1.12	CH ₂ CH ₂ CH ₃	2-Cl-pyridin-3-yl	145-147
	1.13	CH ₂ CH ₂ CH ₃	$2,4-(CH_3)_2-thiazol-5-yl$	126-127
	1.14	CH ₂ CH ₂ CH ₃	$3-CH_3$, $4-CF_3-thiazol-5-yl$	147-148
05	1.15	CH2CH2CH2CH3	2-Cl-pyridin-3-yl	126-129
35	1.16	CH ₂ CH ₂ CH ₂ CH ₃	$2,4-(CH_3)_2-thiazol-5-yl$	115-117
	1.17	CH ₂ CH ₂ CH ₂ CH ₃	$3-CH_3$, $4-CF_3-thiazol-5-yl$	123-125
	1.18	Cyclohexyl	2-Cl-pyridin-3-yl	126-128
	1.19	Cyclohexyl	$2,4-(CH_3)_2-thiazol-5-yl$	138-142
40	1.20	Cyclohexyl	$3-CH_3$, $4-CF_3-thiazol-5-yl$	167-171
	1.21	CH ₂ CH (CH ₃) ₂	2-Cl-pyridin-3-yl	148-150
	1.22	Cyclohexen-1-yl	2-Cl-pyridin-3-yl	130-131
	1.23	Cyclohexen-1-yl	2-CF ₃ -C ₆ H ₄	130-133
45	1.24	Cyclohexen-1-yl	2-CH ₃ -furan-3-yl	114-119
	1.25	Cyclohexen-1-yl	$3-CH_3$, $4-CF_3-thiazol-5-yl$	120-121
	1.26	Cyclohexen-1-yl	$2,4-(CH_3)_2$ -thiazol-5-yl	110-112
	1.27	Cyclohexen-1-yl	$1,3-(CH_3)_2-pyrazol-4-yl$	174-177
50	1.28	CH ₂ C ₆ H ₅	2-Cl-pyridin-3-yl	161-162

	Nr.	R ·	A	Fp. (°C)
_	1.29	CH ₂ C ₆ H ₅	2,4-(CH ₃) ₂ -thiazol-5-yl	177-178
5	1.30	CH ₂ C ₆ H ₅	3-CH ₃ , 4-CF ₃ -thiazol-5-yl	178-179
	1.31	C ₆ H ₅	2-Cl-pyridin-3-yl	143-144
	1.32	C ₆ H ₅	$2,4-(CH_3)_2-thiazol-5-yl$	142-144
	1.33	C ₆ H ₅	3-CH ₃ , 4-CF ₃ -thiazol-5-yl	136-137
10	1.34	$4-F-C_6H_4$	2-Cl-pyridin-3-yl	145-150
	1.35	$4-F-C_6H_4$	$2,4-(CH_3)_2-thiazol-5-yl$	174-175
	1.36	$4-F-C_6H_4$	3-CH ₃ , 4-CF ₃ -thiazol-5-yl	152-153
	1.37	$4-OCH_3-C_6H_4$	2-Cl-pyridin-3-yl	111-113
15	1.38	$4-OCH_3-C_6H_4$	3-CH ₃ , 4-CF ₃ -thiazol-5-yl	132-134

Tabelle 2

20 R IB
HN—CO—A

	Nr.	R	A	Fp. (°C)
30	2.01	C ₆ H ₅	2-Cl-pyridin-3-yl	157-160
	2.02	C ₆ H ₅	$2,4-(CH_3)_2$ -thiazol-5-yl	131-133
	2.03	C ₆ H ₅	$3-CH_3$, $4-CF_3-thiazol-5-yl$	112-114

Beispiele zur biologischen Wirkung:

Wirksamkeit gegen Botrytis cinerea

Scheiben von grünen Paprikaschoten wurden mit einer wäßrigen Suspension [80 % Wirkstoff / 20 % Emulgator in der Trockenmasse] des Wirkstoffs tropfnaß gespritzt. Nach dem Abtrocknen des Spritzbelags wurden die Scheiben mit einer Sporensuspension [1,7•10⁵ Sporen pro ml; 2 % Biomalz; Wasser] des Pilzes Botrytis cinerea besprüht und anschließend 4 Tage bei 18°C und hoher Luftfeuchtigkeit aufbewahrt.

Nach dieser Zeit wiesen die nicht mit Wirkstoff vorbehandelten Kontrollen einen Pilzbefall von 90 % auf, während die mit jeweils 500 ppm der Verbindungen Nr. 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 19, 24, 25, 26, 27 und 32 behandelten Paprika-Scheiben maximal zu 15 % befallen waren.

Bei einer Aufwandmenge von 1000 ppm der Verbindungen Nr. 4, 5 und 6 wiesen die behandelten Paprika-Scheiben maximal 15 % Befall auf, während Paprika-Scheiben, die mit 1000 ppm N-(2-Methylcy-clohexyl)-2-chlornicotinsäureamid behandelt waren, einen Befall von 40 % aufwiesen.

Patentansprüche

1. N-Cyclohex(en)ylcarbonsäureamide der Formel I

55

35

$$Z \longrightarrow NH \longrightarrow CO \longrightarrow A$$
 I

in der die Substituenten die folgende Bedeutung haben:

5

10

15

20

30

35

40

45

50

55

Χ

n

C2-C12-Alkyl, C2-C12-Alkoxy, C3-C12-Alkenyl, C3-C12-Alkenyloxy, C3-C6-

Alkinyl, C₃-C₆-Alkinyloxy, wobei diese Gruppen partiell oder vollständig halogeniert sein können; C₃-C₇-Cycloalkyl, C₄-C₇-Cycloalkenyl, C₃-C₇-Cycloalkyloxy oder C₄-C₇-Cycloalkenyloxy, wobei diese Ringe ein bis drei C1-C4-Alkylgruppen tragen können; Phenyl oder Benzyl, wobei die Phenylringe jeweils ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Halogenalkylt-

hio;

Z CH₂CH₂ oder CH = CH;

Α ein cyclischer Rest aus der Gruppe der Formeln A1 bis A7

25 **A2 A3 A4** A1

in denen die Substituenten die folgende Bedeutung haben:

1 oder 2, wobei die Reste R3 verschieden sein können, wenn der Wert

-CH2-, -S-, -SO- oder -SO2-;

-O- oder -S-:

R1, R2, R4, R5 und R7 Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;

R3 und R6 Wasserstoff, Halogen oder C₁-C₄-Alkyl;

von n 2 beträgt.

2. N-Cyclohex(en)ylcarbonsäureamide der Formel I, gemäß Anspruch 1, in der R die in Anspruch 1 gegebene Bedeutung hat und A für einen cyclischen Rest aus der Gruppe der Formeln A1 bis A7 steht, in denen X und Y die in Anspruch 1 gegebene Bedeutung und die Substituenten die folgende Bedeutung haben:

R١ Halogen, Methyl oder C1-Halogenalkyl;

 \mathbb{R}^2 Halogen oder C₁-Halogenalkyl;

 R^3 Wasserstoff oder Methyl;

1 oder 2, wobei die Reste R³ verschieden sein können, wenn der Wert von n 2 beträgt; n

R4 Halogen, oder Methyl;

R5 Methyl oder C₁-Halogenalkyl;

Rб Wasserstoff, Halogen oder Methyl;

R7 Halogen, Methyl oder C₁-Halogenalkyl.

EP 0 589 313 A1

- 3. N-Cyclohex(en)ylcarbonsäureamide der Formel I, gemäß Anspruch 1, in der R die in Anspruch 1 gegebene Bedeutung hat und A für einen cyclischen Rest aus der Gruppe der Formeln A1 bis A7 steht, in denen X und Y die in Anspruch 1 gegebene Bedeutung und die Substituenten die folgende Bedeutung haben:
 - R¹ Chlor, Brom, Jod, Methyl oder Trifluormethyl;
 - R² Chlor oder Trifluormethyl;
 - R³ Wasserstoff oder Methyl;
 - n 1 oder 2, wobei die Reste R³ verschieden sein können, wenn der Wert von n 2 beträgt;
 - R⁴ Chlor oder Methyl;
 - R⁵ Methyl, Difluormethyl oder Trifluormethyl;
 - R⁶ Wasserstoff, Chlor oder Methyl;
 - R⁷ Chlor, Methyl oder Trifluormethyl.
- 4. N-Cyclohex(en)ylcarbonsäureamide der Formel I, gemäß Anspruch 1, in denen die Reste R und NHCOA trans zueinander stehen.
 - 5. Verfahren zur Herstellung der Verbindungen I gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Carbonsäurehalogenid der Formel II
- 20 Hal-CO-A II

5

10

25

30

35

45

in der Hal für ein Halogenatom steht, in an sich bekannter Weise in Gegenwart einer Base mit einem Cyclohexylamin der Formel III

$$\mathbb{Z}$$
 $\mathbb{N}\mathbb{H}_2$
 $\mathbb{I}\mathbb{I}$

umsetzt.

- 6. Mittel zur Bekämpfung von Schadpilzen, enthaltend eine fungizide Menge einer Verbindung der Formel I gemäß Anspruch 1, 2, 3 oder 4 und inerte Zusatzstoffe.
- 7. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man die Schadpilze, ihren Lebensraum und/oder die von Schadpilzen freizuhaltenden Pflanzen oder Materialien mit einer fungizid wirksamen Menge einer Verbindung der Formel I gemäß Anspruch 1, 2, 3 oder 4 behandelt.
- 40 8. Verwendung der Verbindungen I gemäß Anspruch 1, 2, 3 oder 4 zur Bekämpfung von Schadpilzen.
 - 9. Verwendung der Verbindungen I gemäß Anspruch 1, 2, 3 oder 4 zur Bekämpfung von Botrytis.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 93 11 4620

ENGESELLSCHAFT) TIENGESELLSCHAFT) TIENGESELLSCHAFT) LTH SCIENTIFIC RGANIZATION) INC.) LING 30* ERNATIONALE .) * ATES RUBBER KA ET AL) ANILIN UND D PHYSIOLOGY , NEW YORK	1-3,6-9	C07D277/56 C07D335/02 C07D309/28 C07D307/68 A01N43/40 A01N43/50 A01N43/78 A01N43/84 A01N37/22 RECHERCHIERTE SACHGEBIETE (Int.Cl.5) C07C C07D
TIENGESELLSCHAFT) LTH SCIENTIFIC RGANIZATION) INC.) ung 30* ERNATIONALE .) * ATES RUBBER KA ET AL) ANILIN UND D PHYSIOLOGY	1-3,6-9 1-3,6-9 1-3,6-9 1-3,6-9	C07D213/82 C07D327/06 C07D333/38 C07D231/14 C07D277/56 C07D335/02 C07D309/28 C07D307/68 A01N43/40 A01N43/50 A01N43/78 A01N43/78 A01N43/84 A01N37/22 RECHERCHIERTE SACHGEBIETE (Int.Cl.5) C07C C07D
RGANIZATION) INC.) LING 30* ERNATIONALE .) * ATES RUBBER KA ET AL) ANILIN UND D PHYSIOLOGY	1-3,6-9 1-3,6-9 1-3,6-9	C07D231/14 C07D277/56 C07D335/02 C07D309/28 C07D307/68 A01N43/40 A01N43/50 A01N43/78 A01N43/84 A01N37/22 RECHERCHIERTE SACHGEBIETE (Int.Cl.5) C07C C07D
ERNATIONALE .) * ATES RUBBER KA ET AL) ANILIN UND D PHYSIOLOGY	1-3,6-9 1-3,6-9 1-3,6-9	A01N43/40 A01N43/50 A01N43/78 A01N43/84 A01N37/22 RECHERCHIERTE SACHGEBIETE (Int.Cl.5) C07C C07D
.) * ATES RUBBER KA ET AL) ANILIN UND D PHYSIOLOGY	1-3,6-9 1-3,6-9 1-3,6-9	RECHERCHIERTE SACHGERIETE (Int.C.5
KA ET AL) ANILIN UND D PHYSIOLOGY	1-3,6-9	RECHERCHIERTE SACHGEBIETE (Int.Cl.5 CO7C CO7D
ANILIN UND D PHYSIOLOGY	1-3,6-9	CO7C CO7D
D PHYSIOLOGY		C07D
	1-3,6-9	
structurally		
-/		
Patentansprüche erstellt	1	
Abichidation for Rechards 17. Dezember 199	93 Ha	nry, J
TE T : der Erfindung :	zporunde ilevende	e Theorien oder Grundsätze loch erst am oder
	17. Dezember 19	AbechitGérium der Recherche 17. Dezember 1993 He

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: 7 wischenliteratur
- P: Zwischenliterstur

- T: der Erfindung zugrunde liegende Theorien oder Grundsitze E: alteres Patentiokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 93 11 4620

		E DOKUMENTE	· · · · · · · · · · · · · · · · · · ·		
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlic ben Teile	h, Betr Ansp		KLASSIFIKATION DER ANMELDUNG (Int.CL5)
X	CHEMICAL ABSTRACTS, 27. Februar 1989, Cabstract no. 75301x Seite 631; * Zusammenfassung * & PL-A-142 442 (POL 31. Oktober 1987	olumbus, Ohio, US;	(A)	В	
X	abstract no. 115750 ABDEL-LATEEF ET AL chemotherapeutic fu activity-chemical s some 4-methyl-5-thi	Columbus, Ohio, US; i, 'Systemic and ingicidal itructure relation of azolecarboxylic acid ory screening tests	d	3	
	Seiten 269 - 282				RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
				Control of the Contro	
Der w	ortiegende Recherchenbericht wur Recherchenet	de für alle Patentansprüche erstell Abeitstöstun der Rocherch			Préfe
	DEN HAAG	17. Dezember		Hen	ry, J
X: vor Y: vor and A: tec O: nic	KATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung leren Veröffentlichung derselben Kate hnologischer Hintergrund htschriftliche Offenbarung ischenliteratur	DOKUMENTE T: der Erfin E: literes P nach den g mit einer D: in der Ai gorie L: ans ande	dung zugrunde il stentdokument, d a Anneidedatum mueldung angefül en Gründen ange der gleichen Pat	igende i as jedoc verbifen artes Do ührtes i	Theorien oder Grundsätze th erst am oder tilicht worden ist skument

INTERNATIONAL SEARCH REPORT

International Application No CT/EP2004/013834

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO7D231/16 CO7D C07D409/12 C07D2O7/34 A01N43/10 A01N43/56 A01N43/36 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) CO7D IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category X WO 03/010149 A1 (BAYER AKTIENGESELLSCHAFT, 1-8 GERMANY) 6 February 2003 (2003-02-06) cited in the application page 2, lines 21-26; claims 1-20; examples I-21, I-41, I-44 X WO 02/38542 A1 (SYNGENTA PARTICIPATIONS 1-8 A.-G., SWITZ.) 16 May 2002 (2002-05-16) cited in the application page 2, paragraph 4; claim 1; examples 2,3; tables 1,3,6 χ EP 0 737 682 A (MITSUI TOATSU CHEMICALS, 1-8 INCORPORATED, JAPAN) 16 October 1996 (1996-10-16) examples 1.2,1.166; tables 1,5 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to 'L' document which may throw doubts on priority claim(s) or which is clied to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25/04/2005 13 April 2005 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NI. - 2280 HV RESMIK Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Schuemacher, A

INTERNATIONAL SEARCH REPORT

International Application No CT/EP2004/013834

0.40	AL IN DOCUMENTO CONCINENTS TO BE SELECTED.	QC1/EP2004/013834
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Tanana.
Calegory .	Onation of coordinatit, Will indication, whole appropriate, of the relevant passages	Relevant to claim No.
Ρ,Χ	WO 2004/005242 A1 (BAYER CROPSCIENCE AG, GERMANY) 15 January 2004 (2004-01-15) cited in the application the whole document	1-8
	·	
	·	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No CT/EP2004/013834

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03010149	A1	06-02-2003	DE	10136065 A1	13-02-2003
			BR	0211482 A	17-08-2004
			CN	1533380 A	29-09-2004
			EP	1414803 A1	06-05-2004
			HU	0401478 A2	29-11-2004
			JP	2005501044 T	13-01-2005
			MX	PA04000622 A	20-04-2004
			US	2004204470 A1	14-10-2004
WO 0238542	A1	16-05-2002	AU	2366802 A	21-05-2002
			BR	0115200 A	17-02-2004
			CA	2426033 A1	16-05-2002
			CN	1484637 A	24-03-2004
			EG	23122 A	28-04-2004
			ĒΡ	1341757 A1	10-09-2003
			HU	0302471 A2	28-11-2003
			JP	2004513163 T	30-04-2004
			PL	362930 A1	02-11-2004
	* 		ZA	200303012 A	20-05-2004
EP 0737682	Α	16-10-1996	CA	2173788 A1	12-10-1996
			CN	1146993 A ,C	09-04-1997
			DE	69618370 D1	14-02-2002
			DE	69618370 T2	26-09-2002
		·	ΕP	0737682 A1	16-10-1996
			ES	2169773 T3	16-07-2002
			JP	3164762 B2	08-05-2001
			JP	9235282 A	09-09-1997
			JP	3385264 B2	10-03-2003
			JP	2001151770 A	05-06-2001
			KR	201426 B1	15-06-1999
			US 	5747518 A	05-05-1998
WO 2004005242	A1	15-01-2004	DE	10229595 A1	15-01-2004
			AU	2003245975 A1	23-01-2004
			EP	1519913 A1	06-04-2005