

DFS Test Report

Report No.: RF171011E02A-2

FCC ID: UXX-S5A750A

Test Model: S5A750A

Received Date: Oct. 13, 2017

Test Date: Apr. 10 to 17, 2018

Issued Date: Apr. 24, 2018

Applicant: Cradlepoint, Inc.

Address: 1111 W. Jefferson Street, Suite 400, Boise, ID 83702 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF171011E02A-2 Page No. 1 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Table of Contents

Releas	se Control Record	3
1	Certificate of Conformity	4
2	EUT Information	5
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Operating Frequency Bands and Mode of EUT EUT Software and Firmware Version Description of Available Antennas to the EUT EUT Maximum and Minimum Conducted Power EUT Maximum and Minimum EIRP Power Transmit Power Control (TPC) Statement of Manufacturer	5 6 8 . 10
3.	U-NII DFS Rule Requirements	11
3.1 3.2	Working Modes and Required Test Items Test Limits and Radar Signal Parameters	
4.	Test & Support Equipment List	. 15
4.1 4.2	Test Instruments Description of Support Units	_
5.	Test Procedure	. 16
5.1 5.2 5.3 5.4	DFS Measurement System	. 17 . 17
6.	Test Results	. 19
6.2.4	2 U-NII Detection Bandwidth	. 20 . 20 . 25 . 32 . 34 . 64
7.	Information on the Testing Laboratories	
8.	Appendix -A	. 67

Release Control Record

Issue No.	Description	Date Issued
RF171011E02A-2	Original release.	Apr. 24, 2018

Report No.: RF171011E02A-2 Page No. 3 / 112 Report Format Version: 6.1.2

1 Certificate of Conformity

Product: WiFi Access Point

Brand: cradlepoint

Test Model: S5A750A

Sample Status: ENGINEERING SAMPLE

Applicant: Cradlepoint, Inc.

Test Date: Apr. 10 to 17, 2018

Standards: FCC Part 15, Subpart E (Section 15.407)

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : ______, Date: ______, Apr. 24, 2018

Mary Ko / Specialist

Approved by: // , Date: Apr. 24, 2018

May Chen / Manager

2 EUT Information

2.1 Operating Frequency Bands and Mode of EUT

Table 1: Operating Frequency Bands and Mode of EUT

Operational Mode	Operating Frequency Range		
Operational Mode	5250~5350MHz	5470~5725MHz	
Master	✓	✓	

2.2 EUT Software and Firmware Version

Table 2: The EUT Software/Firmware Version

No.	Product	Model No.	Software/Firmware Version
1	WiFi Access Point	S5A750A	V6.5.2

2.3 Description of Available Antennas to the EUT

Table 3: Antenna List

Antenna No.	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connecter Type
	5.19	2.4~2.4835		
1	4.81	5.15~5.25		
(Dadia 4 0)	5.91	5.25~5.35	PIFA	i-pex(MHF)
(Radio 1, 2)	4.90	5.47~5.725		
	6.69	5.725~5.85		
	3.04	2.4~2.4835		
2	7.37	5.15~5.25	PIFA	
	6.90	5.25~5.35		i-pex(MHF)
(Radio 1, 2)	6.65	5.47~5.725		
	6.89	5.725~5.85		
	3.89	2.4~2.4835		
3	6.58	5.15~5.25		
-	6.87	5.25~5.35	PIFA	i-pex(MHF)
(Radio 3)	6.27	5.47~5.725		, ,
	7.01	5.725~5.85		

Report No.: RF171011E02A-2 Page No. 5 / 112 Report Format Version: 6.1.2

2.4 EUT Maximum and Minimum Conducted Power

Table 4: The Measured Conducted Output Power

802.11a

CDD Mode

Frequency Band (MHz)	MAX. Power		MIN. Power	
	Output	Output	Output	Output
	Power(mW)	Power(dBm)	Power(mW)	Power(dBm)
5250~5350	137.577	21.39	34.594	15.39
5470~5725	104.487	20.19	26.242	14.19

802.11ac (VHT20)

CDD Mode

Frequency Band (MHz)	MAX. Power		MIN. Power	
	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	140.468	21.48	35.318	15.48
5470~5725	104.748	20.2	26.303	14.2

Beamforming Mode

Frequency Band (MHz)	MAX. F	MAX. Power		Power
	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	109.175	20.38	27.416	14.38
5470~5725	104.748	20.2	26.303	14.2

Report No.: RF171011E02A-2 Page No. 6 / 112 Report Format Version: 6.1.2

802.11ac (VHT40)

CDD Mode

Frequency Band (MHz)	MAX. Power		MIN. Power	
	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	187.485	22.73	47.098	16.73
5470~5725	196.249	22.93	49.317	16.93

Beamforming Mode

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	107.906	20.33	27.102	14.33
5470~5725	104.479	20.19	26.242	14.19

802.11ac (VHT80)

CDD Mode

Frequency Band (MHz)	MAX. Power		MIN. F	Power
	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	98.9	19.95	24.831	13.95
5470~5725	193.91	22.88	48.753	16.88

Beamforming Mode

Frequency Band	MAX. Power		MIN. Power	
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	98.9	19.95	24.831	13.95
5470~5725	98.08	19.92	24.66	13.92

Report No.: RF171011E02A-2 Reference No.: 171011E03 Page No. 7 / 112 Report Format Version: 6.1.2

2.5 EUT Maximum and Minimum EIRP Power

Table 5: The EIRP Output Power List

802.11a

CDD Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	673.823	28.29	169.434	22.29
5470~5725	483.128	26.84	121.339	20.84

802.11ac (VHT20)

CDD Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	687.983	28.38	172.982	22.38
5470~5725	484.335	26.85	121.619	20.85

Beamforming Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	957.466	29.81	240.436	23.81
5470~5725	800.103	29.03	200.909	23.03

Report No.: RF171011E02A-2 Page No. 8 / 112 Report Format Version: 6.1.2

802.11ac (VHT40)

CDD Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	918.262	29.63	230.675	23.63
5470~5725	907.418	29.58	228.034	23.58

Beamforming Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	946.337	29.76	237.684	23.76
5470~5725	798.048	29.02	200.447	23.02

802.11ac (VHT80)

CDD Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)
5250~5350	484.391	26.85	121.619	20.85
5470~5725	896.603	29.53	225.424	23.53

Beamforming Mode

Frequency Band	MAX. EIRP Power		MIN. EIR	P Power
(MHz)	Output	Output	Output	Output
	Power(mW)	Power(dBm)	Power(mW)	Power(dBm)
5250~5350	867.354	29.38	217.771	23.38
5470~5725	749.17	28.75	188.365	22.75

Report No.: RF171011E02A-2 Reference No.: 171011E03 Page No. 9 / 112 Report Format Version: 6.1.2

2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Applicable	EIRP	FCC 15.407 (h)(1)
V	>500mW	The TPC mechanism is required for system with an EIRP of above 500Mw
	<500mW	The TPC mechanism is not required for system with an EIRP of less 500mW

The UUT can adjust a transmitter's output power based on the signal level present at the receiver.TPC is auto controlled by software.

2.7 Statement of Manufacturer

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

Report No.: RF171011E02A-2 Page No. 10 / 112 Report Format Version: 6.1.2

3. U-NII DFS Rule Requirements

3.1 Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

Table 6: Applicability of DFS Requirements Prior to Use a Channel

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	✓	✓ note	✓	
DFS Detection Threshold	✓	Not required	✓	
Channel Availability Check Time	✓	Not required	Not required	
U-NII Detection Bandwidth	✓	Not required	✓	

Note: Per KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02 section (b)(5/6), If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear. An analyzer plot that contains a single 30-minute sweep on the original channel.

Table 7: Applicability of DFS Requirements during Normal Operation.

	Operational Mode		
Requirement	Master or Client with radar detection	Client without radar detection	
DFS Detection Threshold	✓	Not required	
Channel Closing Transmission Time	✓	✓	
Channel Move Time	✓	✓	
U-NII Detection Bandwidth	✓	Not required	

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Report No.: RF171011E02A-2 Page No. 11 / 112 Report Format Version: 6.1.2

3.2 Test Limits and Radar Signal Parameters

Detection Threshold Values

Table 8: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the	0.4 JD	
power spectral density requirement	-64 dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 9: DFS Response Requirement Values

Parameter	Value				
Non-occupancy period	Minimum 30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds See Note 1.				
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.				
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3				

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: RF171011E02A-2 Page No. 12 / 112 Report Format Version: 6.1.2

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 10: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066µ sec, with a minimum increment of 1µ sec, excluding PRI values selected in Test A	Roundup $ \begin{bmatrix} \frac{1}{360} \\ \frac{19 \cdot 10^6}{PRI_{\mu \text{ sec}}} \end{bmatrix} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Nata 4: Ob		regate (Radar Types 1	•	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Report No.: RF171011E02A-2 Page No. 13 / 112 Reference No.: 171011E03 Report Format Version: 6.1.2

Table 11: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses Per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ in where the Long Pulse Type 5 Signal is tuned in frequency.

- a) the Channel center frequency
- b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge of the UUT Occupied Bandwidth
- c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge of the UUT Occupied Bandwidth

It include 10 trails for every subset, the formula as below,

For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel.

For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2. The center frequency of the signal generator for each trial is calculated by:

 $FL+(0.4*Chirp\ Width\ [in\ MHz])$

For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3. The center frequency of the signal generator for each trial is calculated by:

FH-(0.4*Chirp Width [in MHz])

Table 12: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Report No.: RF171011E02A-2 Page No. 14 / 112 Report Format Version: 6.1.2

4. Test & Support Equipment List

Test Instruments 4.1

Table 13: Test Instruments List

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer Agilent	N9030A	MY553390160	Jan. 26, 2018	Jan. 25, 2019
Vector Signal Generator Agilent	E4438CK-403	ESG E4_010001	Oct. 11, 2017	Oct. 10, 2018
Horn_Antenna EMCO	1018G	0001	Nov 30, 2017	Nov. 29, 2018
DFS Control Box	BV-DFS-CB	001	Dec. 05, 2017	Dec. 04, 2018

Description of Support Units 4.2

Table 14: Support Unit Information

No.	Product	Brand	Model No.	FCC ID	Spec
1	Wireless LAN Unit	NEC	NP05LM	RRK-NECNP05LM	

NOTE: This device was functioned as a ☐Master ☐Slave device during the DFS test.

Table 15: Software/Firmware Information

No.	Product	Product Model No.				
1	Wireless LAN Unit	NP05LM	Driver Version:			
ı		INF OSLIVI	06/18/2014, 1026.12.606.2014			

Report No.: RF171011E02A-2 Reference No.: 171011E03 Page No. 15 / 112 Report Format Version: 6.1.2

5. Test Procedure

5.1 DFS Measurement System

A complete DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating system and (2) the Traffic Monitoring system. The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Radiated Setup Configuration of DFS Measurement System

Channel Loading

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

a)	The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.	
b)	Software to ping the client is permitted to simulate data transfer but must have random ping intervals.	
c)	Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.	✓
d)	Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.	

Report No.: RF171011E02A-2 Page No. 16 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

5.2 Calibration of DFS Detection Threshold Level

The measured channel is 5500MHz and 5510MHz and 5530MHz. The radar signal was the same as transmitted channels, and injected into the antenna of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

Radiated setup configuration of Calibration of DFS Detection Threshold Level

The calibrated conducted detection threshold level is set to -64dBm. The tested level is lower than required level hence it provides margin to the limit.

5.3 Deviation from Test Standard

No deviation.

Report No.: RF171011E02A-2 Page No. 17 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

5.4 Radiated Test Setup Configuration

Master mode

The EUT is a U-NII Device operating in Master mode. The radar test signals are injected into the Master Device.

Note: The UUT main beam of the antenna is directly toward the radar emitter during testing.

6. Test Results

6.1 Summary of Test Results

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Applicable	Pass
15.407	Channel Availability Check Time	Applicable	Pass
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	U-NII Detection Bandwidth	Applicable	Pass

This device can support access point mode and client mode. This report was recorded radio 2 - access point mode. For radio 3 - client mode was recorded in another test report.

6.2 Test Results

6.2.1 Test Mode: Device Operating In Master Mode.

The radar test waveforms are injected into the Master.

This test was investigated for different bandwidth (20MHz \(40MHz \) and 80MHz).

The following plots was done on 80MHz as a representative

DFS Detection Threshold

For detection threshold level of -64dBm, the tested level is lower than required level for 1dB, hence it provides margin to the limit.

Radar Signal 0

Radar Signal 1 (Test A)

Radar Signal 1 (Test B)

Radar Signal 2

Radar Signal 3

Single Burst of Radar Signal 4

Radar Signal 5

Radar Signal 6

6.2.2 U-NII Detection Bandwidth

802.11ac (VHT20)

U-NII 99% Channel bandwidth

802.11ac (VHT40)

U-NII 99% Channel bandwidth

802.11ac (VHT80)

U-NII 99% Channel bandwidth

Detection Bandwidth Test - 802.11ac (VHT20)

Radar Type 0

EUT Frequency: 5500MHz

EUT 99% Power bandwidth: 17.844MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 17.844MHz

Detection bandwidth (5509(FH) – 5491(FL)) : 18MHz Test Result : PASS

Test Result : PASS											
Radar				Trial N	Numbe	r / Det	ection				Detection
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5.491G(FL)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	90
5.492G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.493G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.494G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.495G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.496G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.497G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.498G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.499G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.500G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.501G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.502G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.503G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.504G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.505G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.506G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.507G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.508G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5.509G(FH)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	90

Report No.: RF171011E02A-2 Page No. 28 / 112 Report Format Version: 6.1.2

Detection Bandwidth Test - 802.11ac (VHT40)

Radar Type 0

EUT Frequency: 5510MHz

EUT 99% Power bandwidth: 37.129MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 37.129MHz

Detection bandwidth (5529(FH) – 5491(FL)) : 38MHz

Test Result : PASS

Radar Trial Number / Detection										Datastas	
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5491(FL)	Yes	100									
5492	Yes	100									
5493	Yes	100									
5494	Yes	100									
5495	Yes	100									
5496	Yes	100									
5497	Yes	100									
5498	Yes	100									
5499	Yes	100									
5500	Yes	100									
5501	Yes	100									
5502	Yes	100									
5503	Yes	100									
5504	Yes	100									
5505	Yes	100									
5506	Yes	100									
5507	Yes	100									
5508	Yes	100									
5509	Yes	100									
5510	Yes	100									
5511	Yes	100									
5512	Yes	100									
5513	Yes	100									
5514	Yes	100									
5515	Yes	100									
5516	Yes	100									
5517	Yes	100									
5518	Yes	100									
5519	Yes	100									
5520	Yes	100									
5521	Yes	100									
5522	Yes	100									
5523	Yes	100									
5524	Yes	100									
5525	Yes	100									
5526	Yes	100									
5527	Yes	100									
5528	Yes	100									
5529(FH)	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	90

Report No.: RF171011E02A-2 Page No. 29 / 112 Report Format Version: 6.1.2

Detection Bandwidth Test - 802.11ac (VHT80)

Radar Type 0

EUT Frequency: 5530MHz

EUT 99% Power bandwidth: 76.024MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 76.024MHz

Detection bandwidth (5568(FH) – 5492(FL)) : 78MHz Test Result : PASS

Test Result : PASS											
Radar				Trial 1	Numbe	r / Det	ection				Detection
Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Rate (%)
5491(FL)	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	90
5492	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5493	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5494	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5495	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5496	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5497	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5498	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5499	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5500	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5501	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5502	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5503	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5504	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5505	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5506	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5507	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5508	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5509	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5510	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5511	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5512	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5513	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5514	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5515	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5516	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5517	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5518	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5519	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5520	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5521	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5522	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5523	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5524	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5525	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5526	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5527	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5528	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5529	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5530	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5531	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5532	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5533	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5534	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100
5535	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	100

Report No.: RF171011E02A-2 Page No. 30 / 112 Report Format Version: 6.1.2

| 5536 | Yes | 100 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5537 | Yes | 100 |
| 5538 | Yes | 100 |
| 5539 | Yes | 100 |
| 5540 | Yes | 100 |
| 5541 | Yes | 100 |
| 5542 | Yes | 100 |
| 5543 | Yes | 100 |
| 5544 | Yes | 100 |
| 5545 | Yes | 100 |
| 5546 | Yes | 100 |
| 5547 | Yes | 100 |
| 5548 | Yes | 100 |
| 5549 | Yes | 100 |
| 5550 | Yes | 100 |
| 5551 | Yes | 100 |
| 5552 | Yes | 100 |
| 5553 | Yes | 100 |
| 5554 | Yes | 100 |
| 5555 | Yes | 100 |
| 5556 | Yes | 100 |
| 5557 | Yes | 100 |
| 5558 | Yes | 100 |
| 5559 | Yes | 100 |
| 5560 | Yes | 100 |
| 5561 | Yes | 100 |
| 5562 | Yes | 100 |
| 5563 | Yes | 100 |
| 5564 | Yes | 100 |
| 5565 | Yes | 100 |
| 5566 | Yes | 100 |
| 5567 | Yes | 100 |
| 5568 | Yes | 100 |
| 5569(FH) | Yes | 100 |

6.2.3 Channel Availability Check Time

If the EUT successfully detected the radar burst, it should be observed as the EUT has no transmissions occurred until the EUT starts transmitting on another channel.

T	Observation				
Timing of Radar Signal	EUT	Spectrum Analyzer			
Within 1 to 6 second	Detected	No transmissions			
Within 54 to 60 second	Detected	No transmissions			

Initial Channel Availability Check Time

NOTE: T1 denotes the end of power-up time period is 92.1th second. T2 denotes the end of Channel Availability Check time is 152.1th second. Channel Availability Check time is equal to (T2 – T1) 60 seconds

Radar Burst at the Beginning of the Channel Availability Check Time

NOTE: T1 denotes the end of power up time period is 92.1th second. T3 denotes 98.1th second and the radar burst was commenced within a 6 second window starting from the end of power-up sequence. T2 denotes the 152.1th second.

Report No.: RF171011E02A-2 Page No. 32 / 112 Report Format Version: 6.1.2

Radar Burst at the End of the Channel Availability Check Time

NOTE: T1 denotes the end of power up time period is 92.1th second.T3 denotes 146.1th second and the radar burst was commenced within 54th second to 60th second window starting from the end of power-up sequence. T2 denotes the 152.1th second.

6.2.4 Channel Closing Transmission and Channel Move Time

Wireless Traffic Loading

802.11ac (VHT20)

802.11ac (VHT40)

802.11ac (VHT80)

802.11ac (VHT20)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\left[\begin{array}{c} 1\\ \overline{360} \end{array}\right]$.			
1	Test B: 15 unique PRI values randomly selected within the range of 518~3066µ sec with a minimum of 1µ sec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{ sec}}} \right\} $	18	30	93.3
2	1-5	150-230	23-29	30	93.3
3	6-10	200-500	16-18	30	90
4	11-20	200-500	12-16	30	86.7
	Aggregate (Radar	Types 1-4)		120	90.8

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	90

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	90

Report Format Version: 6.1.2 Page No. 35 / 112

802.11ac (VHT40)

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected	Roundup $\left\{ \begin{array}{c} 1\\ 360 \end{array} \right\}$ $\left\{ 19 \cdot 10^6 \right\}$	18	30	90
1	within the range of 518~3066µ sec with a minimum of 1µ sec, excluding PRI values selected in Test A	PRI _{µ sec}	10	30	90
2	1-5	150-230	23-29	30	86.7
3	6-10	200-500	16-18	30	80
4	11-20	200-500	12-16	30	80
	Aggregate (Radar	Types 1-4)	-	120	84.2

Table 2: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	86.7

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	90

Table 1: Short Pulse Radar Test Waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Number of Trials(Times)	Percentage of Successful Detection (%)
	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\left[\frac{1}{360}\right]$.			
1	Test B: 15 unique PRI values randomly selected within the range of 518~3066µ sec with a minimum of 1µ sec, excluding PRI values selected in Test A	Roundup $ \begin{cases} 19 \cdot 10^6 \\ PRI_{\mu \text{ sec}} \end{cases} $	18	30	93.3
2	1-5	150-230	23-29	30	93.3
3	6-10	200-500	16-18	30	93.3
4	11-20	200-500	12-16	30	76.7
	Aggregate (Radar	Types 1-4)	-	120	89.2

Table 2: Long Pulse Radar Test Waveform

Rada Type	Width	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Number of Trials(Times)	Percentage of Successful Detection (%)
5	50-100	5-20	1000-2000	1-3	8-20	30	93.3

Table 3: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Number of Trials(Times)	Percentage of Successful Detection (%)
6	1	333	9	0.333	300	30	90

Report No.: RF171011E02A-2 Page No. 37 / 112 Report Format Version: 6.1.2

Reference No.: 171011E03

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

Туре	1 Radar Statis	stical Performances	3			
Trial	Test	Pulse Repetition	Pulse Repetition Frequency	Pulses per	Pulse Repetition	Detection
#	Frequency	Frequency	(Pulse per seconds)	Burst	Interval	
	(MHz)	Number (1 to 23)			(microseconds)	
1	5500	15	1253	67	798	Yes
2	5509	16	1223	65	818	Yes
3	5509	4	1730	92	578	Yes
4	5507	11	1393	74	718	Yes
5	5496	22	1066	57	938	Yes
6	5496	7	1567	83	638	No
7	5495	2	1859	99	538	Yes
8	5493	8	1520	81	658	Yes
9	5504	1	1931	102	518	Yes
10	5496	19	1139	61	878	Yes
11	5496	21	1089	58	918	Yes
12	5508	23	326.2	18	3066	Yes
13	5498	9	1475	78	678	Yes
14	5494	5	1672	89	598	Yes
15	5499	6	1618	86	618	Yes
16	5503		1111	59	900	Yes
17	5504		1024	55	977	Yes
18	5507		625.8	34	1598	No
19	5505		730.5	39	1369	Yes
20	5507		1181	63	847	Yes
21	5493		400.6	22	2496	Yes
22	5507		529.4	28	1889	Yes
23	5505		347.6	19	2877	Yes
24	5495		641.4	34	1559	Yes
25	5501		508.9	27	1965	Yes
26	5499		345.4	19	2895	Yes
27	5497		580.7	31	1722	Yes
28	5497		786.8	42	1271	Yes
29	5507		808.4	43	1237	Yes
30	5495		517.1	28	1934	Yes
					Detection Ra	ate: 93.3 %

Trial #	Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
	(MHz)	·	` ,		
1	5500	24	1.7	174	Yes
2	5503	27	3.8	176	Yes
3	5509	28	4	161	Yes
4	5504	28	4.3	226	Yes
5	5498	24	1.9	193	Yes
6	5495	23	1.1	230	Yes
7	5506	29	4.5	198	Yes
8	5502	26	2.9	227	Yes
9	5497	26	2.8	171	Yes
10	5494	27	3.6	221	Yes
11	5508	23	1.1	180	Yes
12	5492	23	1.3	189	Yes
13	5502	25	2.5	204	Yes
14	5502	29	4.5	203	Yes
15	5508	29	5	170	Yes
16	5505	26	3.1	201	Yes
17	5497	24	2.1	218	Yes
18	5504	25	2.6	208	Yes
19	5501	24	1.8	223	Yes
20	5507	23	1.2	220	Yes
21	5503	26	2.9	224	Yes
22	5501	28	4	160	Yes
23	5496	25	2.5	209	No
24	5505	23	1	205	Yes
25	5505	27	3.7	151	Yes
26	5497	25	2.5	186	Yes
27	5503	23	1.5	190	No
28	5502	23	1.3	185	Yes
29	5508	23	1.2	175	Yes
30	5495	24	1.7	216	Yes

Trial #	Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
	(MHz)	·	` ,	. ,	
1	5500	16	6.7	467	Yes
2	5500	18	8.8	304	Yes
3	5495	18	9	316	Yes
4	5497	18	9.3	439	Yes
5	5501	16	6.9	420	Yes
6	5495	16	6.1	249	No
7	5500	18	9.5	463	Yes
8	5502	17	7.9	258	Yes
9	5506	17	7.8	212	Yes
10	5506	17	8.6	236	Yes
11	5493	16	6.1	474	Yes
12	5497	16	6.3	461	Yes
13	5502	17	7.5	437	Yes
14	5506	18	9.5	287	Yes
15	5508	18	10	395	Yes
16	5496	17	8.1	322	Yes
17	5508	16	7.1	468	Yes
18	5505	17	7.6	255	Yes
19	5493	16	6.8	423	No
20	5508	16	6.2	456	Yes
21	5504	17	7.9	351	No
22	5493	18	9	411	Yes
23	5505	17	7.5	279	Yes
24	5505	16	6	431	Yes
25	5499	17	8.7	324	Yes
26	5503	17	7.5	419	Yes
27	5492	16	6.5	447	Yes
28	5505	16	6.3	481	Yes
29	5506	16	6.2	438	Yes
30	5502	16	6.7	270	Yes

Report No.: RF171011E02A-2 Page No. 45 / 112 Reference No.: 171011E03

Trial #	Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
	(MHz)	•	` ,	. ,	
1	5500	12	12.5	467	Yes
2	5497	15	17.2	304	Yes
3	5495	15	17.8	316	No
4	5496	16	18.5	439	Yes
5	5499	13	13.1	420	Yes
6	5507	12	11.3	249	Yes
7	5500	16	18.8	463	Yes
8	5499	14	15.3	258	Yes
9	5493	14	15.1	212	Yes
10	5506	15	16.9	236	Yes
11	5500	12	11.2	474	Yes
12	5496	12	11.7	461	No
13	5500	13	14.4	437	No
14	5506	16	18.9	287	Yes
15	5506	16	19.9	395	Yes
16	5507	14	15.7	322	Yes
17	5499	13	13.4	468	Yes
18	5497	13	14.5	255	Yes
19	5505	13	12.9	423	Yes
20	5496	12	11.5	456	Yes
21	5504	14	15.3	351	Yes
22	5493	15	17.8	411	Yes
23	5507	13	14.3	279	Yes
24	5494	12	11.1	431	Yes
25	5500	15	17	324	No
26	5506	13	14.5	419	Yes
27	5497	12	12.1	447	Yes
28	5504	12	11.7	481	Yes
29	5500	12	11.6	438	Yes
30	5504	12	12.7	270	Yes

Trial #	Minimum	Chirp Center	Test Signal Name	Detection
	Chirp Width(MHz)	Frequency(MHz)		
1	17	5500	LP_Signal_01	Yes
2	7	5500	LP_Signal_02	Yes
3	8	5500	LP_Signal_03	Yes
4	19	5500	LP_Signal_04	Yes
5	12	5500	LP_Signal_05	Yes
6	11	5500	LP_Signal_06	Yes
7	6	5500	LP_Signal_07	No
8	20	5500	LP_Signal_08	Yes
9	6	5500	LP_Signal_09	Yes
10	12	5500	LP_Signal_10	No
11	16	5497	LP_Signal_11	Yes
12	20	5499	LP_Signal_12	Yes
13	18	5498	LP_Signal_13	Yes
14	12	5496	LP_Signal_14	Yes
15	12	5496	LP_Signal_15	Yes
16	15	5497	LP_Signal_16	Yes
17	10	5495	LP_Signal_17	Yes
18	12	5496	LP_Signal_18	Yes
19	10	5495	LP_Signal_19	Yes
20	20	5499	LP_Signal_20	Yes
21	7	5506	LP_Signal_21	No
22	20	5501	LP_Signal_22	Yes
23	8	5506	LP_Signal_23	Yes
24	17	5502	LP_Signal_24	Yes
25	7	5506	LP_Signal_25	Yes
26	14	5503	LP_Signal_26	Yes
27	11	5505	LP_Signal_27	Yes
28	7	5506	LP_Signal_28	Yes
29	12	5504	LP_Signal_29	Yes
30	8	5506	LP_Signal_30	Yes

The Long Pulse Radar pattern shown in Appendix A.1

Trial #	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
1	9	1	333.3	Yes
2	9	1	333.3	No
3	9	1	333.3	Yes
4	9	1	333.3	Yes
5	9	1	333.3	Yes
6	9	1	333.3	Yes
7	9	1	333.3	Yes
8	9	1	333.3	Yes
9	9	1	333.3	Yes
10	9	1	333.3	Yes
11	9	1	333.3	No
12	9	1	333.3	Yes
13	9	1	333.3	Yes
14	9	1	333.3	Yes
15	9	1	333.3	Yes
16	9	1	333.3	Yes
17	9	1	333.3	Yes
18	9	1	333.3	Yes
19	9	1	333.3	Yes
20	9	1	333.3	Yes
21	9	1	333.3	No
22	9	1	333.3	Yes
23	9	1	333.3	Yes
24	9	1	333.3	Yes
25	9	1	333.3	Yes
26	9	1	333.3	Yes
27	9	1	333.3	Yes
28	9	1	333.3	Yes
29	9	1	333.3	Yes
30	9	1	333.3	Yes

Trial #	Hopping Frequency Sequence Name	Detection
1	HOP_FREQ_SEQ_01	Yes
2	HOP_FREQ_SEQ_02	No
3	HOP_FREQ_SEQ_03	Yes
4	HOP_FREQ_SEQ_04	Yes
5	HOP_FREQ_SEQ_05	Yes
6	HOP_FREQ_SEQ_06	Yes
7	HOP_FREQ_SEQ_07	Yes
8	HOP_FREQ_SEQ_08	Yes
9	HOP_FREQ_SEQ_09	Yes
10	HOP_FREQ_SEQ_10	Yes
11	HOP_FREQ_SEQ_11	No
12	HOP_FREQ_SEQ_12	Yes
13	HOP_FREQ_SEQ_13	Yes
14	HOP_FREQ_SEQ_14	Yes
15	HOP_FREQ_SEQ_15	Yes
16	HOP_FREQ_SEQ_16	Yes
17	HOP_FREQ_SEQ_17	Yes
18	HOP_FREQ_SEQ_18	Yes
19	HOP_FREQ_SEQ_19	Yes
20	HOP_FREQ_SEQ_20	Yes
21	HOP_FREQ_SEQ_21	No
22	HOP_FREQ_SEQ_22	Yes
23	HOP_FREQ_SEQ_23	Yes
24	HOP_FREQ_SEQ_24	Yes
25	HOP_FREQ_SEQ_25	Yes
26	HOP_FREQ_SEQ_26	Yes
27	HOP_FREQ_SEQ_27	Yes
28	HOP_FREQ_SEQ_28	Yes
29	HOP_FREQ_SEQ_29	Yes
30	HOP_FREQ_SEQ_30	Yes

The Frequency Hopping Radar pattern shown in Appendix A.2

Туре	1 Radar Statis	stical Performances	3			
Trial	Test	Pulse Repetition	Pulse Repetition Frequency	Pulses per	Pulse Repetition	Detection
#	Frequency	Frequency	(Pulse per seconds)	Burst	Interval	
	(MHz)	Number (1 to 23)			(microseconds)	
1	5510	15	1253	67	798	Yes
2	5520	16	1223	65	818	Yes
3	5500	4	1730	92	578	Yes
4	5512	11	1393	74	718	Yes
5	5506	22	1066	57	938	Yes
6	5509	7	1567	83	638	Yes
7	5503	2	1859	99	538	Yes
8	5519	8	1520	81	658	Yes
9	5511	1	1931	102	518	Yes
10	5492	19	1139	61	878	Yes
11	5498	21	1089	58	918	No
12	5503	23	326.2	18	3066	Yes
13	5511	9	1475	78	678	Yes
14	5521	5	1672	89	598	No
15	5513	6	1618	86	618	Yes
16	5524		1111	59	900	Yes
17	5515		1024	55	977	Yes
18	5518		625.8	34	1598	Yes
19	5494		730.5	39	1369	Yes
20	5498		1181	63	847	Yes
21	5513		400.6	22	2496	Yes
22	5526		529.4	28	1889	Yes
23	5505		347.6	19	2877	Yes
24	5495		641.4	34	1559	Yes
25	5513		508.9	27	1965	Yes
26	5524		345.4	19	2895	Yes
27	5492		580.7	31	1722	Yes
28	5504		786.8	42	1271	Yes
29	5498		808.4	43	1237	No
30	5506		517.1	28	1934	Yes
					Detection F	Rate: 90 %

Trial #	dar Statistical Perfor Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
	(MHz)	. a po. 2 a		(5.5)	
1	5510	24	1.7	174	Yes
2	5520	27	3.8	176	Yes
3	5500	28	4	161	Yes
4	5512	28	4.3	226	Yes
5	5508	24	1.9	193	Yes
6	5521	23	1.1	230	Yes
7	5498	29	4.5	198	No
8	5505	26	2.9	227	Yes
9	5492	26	2.8	171	Yes
10	5498	27	3.6	221	Yes
11	5497	23	1.1	180	Yes
12	5508	23	1.3	189	Yes
13	5492	25	2.5	204	Yes
14	5501	29	4.5	203	Yes
15	5494	29	5	170	Yes
16	5528	26	3.1	201	Yes
17	5521	24	2.1	218	Yes
18	5518	25	2.6	208	Yes
19	5499	24	1.8	223	Yes
20	5500	23	1.2	220	No
21	5493	26	2.9	224	No
22	5507	28	4	160	Yes
23	5524	25	2.5	209	Yes
24	5525	23	1	205	Yes
25	5517	27	3.7	151	Yes
26	5522	25	2.5	186	Yes
27	5509	23	1.5	190	Yes
28	5502	23	1.3	185	Yes
29	5515	23	1.2	175	No
30	5519	24	1.7	216	Yes

Report No.: RF171011E02A-2 Page No. 51 / 112 Report Format Version: 6.1.2

Trial #	dar Statistical Perfor Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
π π	(MHz)	1 discs per buist	r disc vvidiri(ds)	i iti(us)	Detection
1	5510	16	6.7	467	No
2	5520	18	8.8	304	No
3	5500	18	9	316	Yes
4	5523	18	9.3	439	Yes
5	5498	16	6.9	420	No
6	5527	16	6.1	249	Yes
7	5527	18	9.5	463	No
8	5499	17	7.9	258	Yes
9	5516	17	7.8	212	Yes
10	5500	17	8.6	236	No
11	5500	16	6.1	474	Yes
12	5528	16	6.3	461	Yes
13	5492	17	7.5	437	Yes
14	5515	18	9.5	287	Yes
15	5504	18	10	395	Yes
16	5522	17	8.1	322	Yes
17	5523	16	7.1	468	Yes
18	5516	17	7.6	255	Yes
19	5524	16	6.8	423	Yes
20	5499	16	6.2	456	Yes
21	5522	17	7.9	351	No
22	5507	18	9	411	Yes
23	5497	17	7.5	279	Yes
24	5505	16	6	431	Yes
25	5506	17	8.7	324	Yes
26	5503	17	7.5	419	Yes
27	5528	16	6.5	447	Yes
28	5506	16	6.3	481	Yes
29	5496	16	6.2	438	Yes
30	5495	16	6.7	270	Yes

Report No.: RF171011E02A-2 Reference No.: 171011E03 Page No. 52 / 112 Report Format Version: 6.1.2

Trial #	dar Statistical Perfor Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
mar n	(MHz)	l aloco por Barot	r dioo vvidin(do)	1111(40)	Dottoolion
1	5510	12	12.5	467	Yes
2	5520	15	17.2	304	Yes
3	5500	15	17.8	316	Yes
4	5509	16	18.5	439	Yes
5	5514	13	13.1	420	No
6	5526	12	11.3	249	Yes
7	5507	16	18.8	463	Yes
8	5492	14	15.3	258	Yes
9	5505	14	15.1	212	Yes
10	5516	15	16.9	236	Yes
11	5520	12	11.2	474	Yes
12	5498	12	11.7	461	Yes
13	5523	13	14.4	437	Yes
14	5506	16	18.9	287	Yes
15	5492	16	19.9	395	Yes
16	5509	14	15.7	322	Yes
17	5501	13	13.4	468	Yes
18	5501	13	14.5	255	No
19	5504	13	12.9	423	Yes
20	5507	12	11.5	456	Yes
21	5500	14	15.3	351	Yes
22	5501	15	17.8	411	Yes
23	5509	13	14.3	279	No
24	5492	12	11.1	431	Yes
25	5521	15	17	324	No
26	5514	13	14.5	419	Yes
27	5495	12	12.1	447	No
28	5497	12	11.7	481	Yes
29	5523	12	11.6	438	Yes
30	5511	12	12.7	270	No

Report No.: RF171011E02A-2 Page No. 53 / 112 Report Format Version: 6.1.2

Trial #	Minimum	Chirp Center	Test Signal Name	Detection
	Chirp Width(MHz)	Frequency(MHz)		
1	17	5510	LP_Signal_01	Yes
2	7	5510	LP_Signal_02	Yes
3	8	5510	LP_Signal_03	Yes
4	19	5510	LP_Signal_04	Yes
5	12	5510	LP_Signal_05	No
6	11	5510	LP_Signal_06	No
7	6	5510	LP_Signal_07	Yes
8	20	5510	LP_Signal_08	Yes
9	6	5510	LP_Signal_09	Yes
10	12	5510	LP_Signal_10	Yes
11	16	5497	LP_Signal_11	Yes
12	20	5499	LP_Signal_12	Yes
13	18	5498	LP_Signal_13	No
14	12	5496	LP_Signal_14	Yes
15	12	5496	LP_Signal_15	Yes
16	15	5497	LP_Signal_16	Yes
17	10	5495	LP_Signal_17	Yes
18	12	5496	LP_Signal_18	Yes
19	10	5495	LP_Signal_19	Yes
20	20	5499	LP_Signal_20	Yes
21	7	5526	LP_Signal_21	Yes
22	20	5521	LP_Signal_22	Yes
23	8	5526	LP_Signal_23	Yes
24	17	5522	LP_Signal_24	Yes
25	7	5526	LP_Signal_25	Yes
26	14	5523	LP_Signal_26	Yes
27	11	5525	LP_Signal_27	No
28	7	5526	LP_Signal_28	Yes
29	12	5524	LP_Signal_29	Yes
30	8	5526	LP_Signal_30	Yes

The Long Pulse Radar pattern shown in Appendix A.1

Report Format Version: 6.1.2

Trial #	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
1	9	1	333.3	Yes
2	9	1	333.3	Yes
3	9	1	333.3	Yes
4	9	1	333.3	Yes
5	9	1	333.3	Yes
6	9	1	333.3	Yes
7	9	1	333.3	Yes
8	9	1	333.3	Yes
9	9	1	333.3	Yes
10	9	1	333.3	Yes
11	9	1	333.3	Yes
12	9	1	333.3	Yes
13	9	1	333.3	No
14	9	1	333.3	Yes
15	9	1	333.3	Yes
16	9	1	333.3	Yes
17	9	1	333.3	Yes
18	9	1	333.3	Yes
19	9	1	333.3	Yes
20	9	1	333.3	Yes
21	9	1	333.3	No
22	9	1	333.3	Yes
23	9	1	333.3	Yes
24	9	1	333.3	Yes
25	9	1	333.3	Yes
26	9	1	333.3	Yes
27	9	1	333.3	No
28	9	1	333.3	Yes
29	9	1	333.3	Yes
30	9	1	333.3	Yes

Trial #	Hopping Frequency Sequence Name	Detection
1	HOP_FREQ_SEQ_01	Yes
2	HOP_FREQ_SEQ_02	Yes
3	HOP_FREQ_SEQ_03	Yes
4	HOP_FREQ_SEQ_04	Yes
5	HOP_FREQ_SEQ_05	Yes
6	HOP_FREQ_SEQ_06	Yes
7	HOP_FREQ_SEQ_07	Yes
8	HOP_FREQ_SEQ_08	Yes
9	HOP_FREQ_SEQ_09	Yes
10	HOP_FREQ_SEQ_10	Yes
11	HOP_FREQ_SEQ_11	Yes
12	HOP_FREQ_SEQ_12	Yes
13	HOP_FREQ_SEQ_13	No
14	HOP_FREQ_SEQ_14	Yes
15	HOP_FREQ_SEQ_15	Yes
16	HOP_FREQ_SEQ_16	Yes
17	HOP_FREQ_SEQ_17	Yes
18	HOP_FREQ_SEQ_18	Yes
19	HOP_FREQ_SEQ_19	Yes
20	HOP_FREQ_SEQ_20	Yes
21	HOP_FREQ_SEQ_21	No
22	HOP_FREQ_SEQ_22	Yes
23	HOP_FREQ_SEQ_23	Yes
24	HOP_FREQ_SEQ_24	Yes
25	HOP_FREQ_SEQ_25	Yes
26	HOP_FREQ_SEQ_26	Yes
27	HOP_FREQ_SEQ_27	No
28	HOP_FREQ_SEQ_28	Yes
29	HOP_FREQ_SEQ_29	Yes
30	HOP_FREQ_SEQ_30	Yes

The Frequency Hopping Radar pattern shown in Appendix A.2

Туре	1 Radar Statis	stical Performances	3			_
Trial	Test		Pulse Repetition Frequency	Pulses per	Pulse Repetition	Detection
#	Frequency	Frequency	(Pulse per seconds)	Burst	Interval	
	(MHz)	Number (1 to 23)			(microseconds)	
1	5530	15	1253	67	798	Yes
2	5540	16	1223	65	818	Yes
3	5560	4	1730	92	578	Yes
4	5520	11	1393	74	718	Yes
5	5500	22	1066	57	938	Yes
6	5559	7	1567	83	638	Yes
7	5557	2	1859	99	538	Yes
8	5522	8	1520	81	658	No
9	5564	1	1931	102	518	Yes
10	5518	19	1139	61	878	Yes
11	5549	21	1089	58	918	Yes
12	5553	23	326.2	18	3066	Yes
13	5507	9	1475	78	678	Yes
14	5492	5	1672	89	598	Yes
15	5502	6	1618	86	618	Yes
16	5543		1111	59	900	Yes
17	5542		1024	55	977	Yes
18	5563		625.8	34	1598	Yes
19	5505		730.5	39	1369	Yes
20	5523		1181	63	847	Yes
21	5516		400.6	22	2496	Yes
22	5523		529.4	28	1889	Yes
23	5545		347.6	19	2877	Yes
24	5530		641.4	34	1559	Yes
25	5509		508.9	27	1965	Yes
26	5540		345.4	19	2895	Yes
27	5496		580.7	31	1722	No
28	5525		786.8	42	1271	Yes
29	5498		808.4	43	1237	Yes
30	5541		517.1	28	1934	Yes
		1	<u>'</u>	ı .	Detection Ra	

Report No.: RF171011E02A-2 Page No. 57 / 112 Report Format Version: 6.1.2

Trial #	Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
	(MHz)	·	` ,	. ,	
1	5530	24	1.7	174	Yes
2	5540	27	3.8	176	Yes
3	5560	28	4	161	Yes
4	5520	28	4.3	226	Yes
5	5500	24	1.9	193	Yes
6	5494	23	1.1	230	Yes
7	5510	29	4.5	198	Yes
8	5537	26	2.9	227	Yes
9	5525	26	2.8	171	Yes
10	5547	27	3.6	221	No
11	5541	23	1.1	180	Yes
12	5541	23	1.3	189	Yes
13	5561	25	2.5	204	Yes
14	5504	29	4.5	203	Yes
15	5529	29	5	170	Yes
16	5510	26	3.1	201	Yes
17	5514	24	2.1	218	Yes
18	5497	25	2.6	208	Yes
19	5564	24	1.8	223	Yes
20	5560	23	1.2	220	Yes
21	5538	26	2.9	224	Yes
22	5497	28	4	160	Yes
23	5499	25	2.5	209	Yes
24	5564	23	1	205	Yes
25	5527	27	3.7	151	Yes
26	5495	25	2.5	186	Yes
27	5524	23	1.5	190	No
28	5561	23	1.3	185	Yes
29	5562	23	1.2	175	Yes
30	5504	24	1.7	216	Yes

Trial #	Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
1	(MHz) 5530	16	6.7	467	Yes
2	5540	18	8.8	304	Yes
3	5560	18	9	316	Yes
4	5520	18	9.3	439	No
5		16		420	Yes
	5500		6.9		
6	5563	16	6.1	249	Yes
7	5529	18	9.5	463	Yes
8	5537	17	7.9	258	Yes
9	5494	17	7.8	212	Yes
10	5506	17	8.6	236	Yes
11	5510	16	6.1	474	Yes
12	5544	16	6.3	461	Yes
13	5543	17	7.5	437	Yes
14	5534	18	9.5	287	Yes
15	5519	18	10	395	Yes
16	5568	17	8.1	322	Yes
17	5526	16	7.1	468	Yes
18	5543	17	7.6	255	Yes
19	5548	16	6.8	423	Yes
20	5521	16	6.2	456	Yes
21	5568	17	7.9	351	Yes
22	5559	18	9	411	Yes
23	5512	17	7.5	279	Yes
24	5508	16	6	431	Yes
25	5509	17	8.7	324	Yes
26	5557	17	7.5	419	Yes
27	5541	16	6.5	447	Yes
28	5506	16	6.3	481	Yes
29	5524	16	6.2	438	Yes
30	5560	16	6.7	270	No

Report No.: RF171011E02A-2 Reference No.: 171011E03

Page No. 59 / 112

Report Format Version: 6.1.2

Trial #	Test Frequency	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
	(MHz)	•	` ,	. ,	
1	5530	12	12.5	467	No
2	5540	15	17.2	304	Yes
3	5560	15	17.8	316	Yes
4	5520	16	18.5	439	Yes
5	5500	13	13.1	420	Yes
6	5516	12	11.3	249	Yes
7	5523	16	18.8	463	Yes
8	5544	14	15.3	258	No
9	5520	14	15.1	212	Yes
10	5499	15	16.9	236	Yes
11	5509	12	11.2	474	Yes
12	5495	12	11.7	461	No
13	5536	13	14.4	437	Yes
14	5559	16	18.9	287	Yes
15	5526	16	19.9	395	Yes
16	5537	14	15.7	322	Yes
17	5507	13	13.4	468	Yes
18	5550	13	14.5	255	Yes
19	5530	13	12.9	423	Yes
20	5504	12	11.5	456	Yes
21	5535	14	15.3	351	Yes
22	5531	15	17.8	411	Yes
23	5545	13	14.3	279	Yes
24	5499	12	11.1	431	No
25	5539	15	17	324	No
26	5504	13	14.5	419	No
27	5561	12	12.1	447	Yes
28	5560	12	11.7	481	No
29	5522	12	11.6	438	Yes
30	5565	12	12.7	270	Yes

Trial #	Minimum	Chirp Center	Test Signal Name	Detection
	Chirp Width(MHz)	Frequency(MHz)		
1	17	5530	LP_Signal_01	Yes
2	7	5530	LP_Signal_02	Yes
3	8	5530	LP_Signal_03	Yes
4	19	5530	LP_Signal_04	Yes
5	12	5530	LP_Signal_05	Yes
6	11	5530	LP_Signal_06	Yes
7	6	5530	LP_Signal_07	Yes
8	20	5530	LP_Signal_08	Yes
9	6	5530	LP_Signal_09	Yes
10	12	5530	LP_Signal_10	Yes
11	16	5497	LP_Signal_11	Yes
12	20	5499	LP_Signal_12	Yes
13	18	5498	LP_Signal_13	Yes
14	12	5496	LP_Signal_14	Yes
15	12	5496	LP_Signal_15	Yes
16	15	5497	LP_Signal_16	Yes
17	10	5495	LP_Signal_17	Yes
18	12	5496	LP_Signal_18	Yes
19	10	5495	LP_Signal_19	Yes
20	20	5499	LP_Signal_20	Yes
21	7	5566	LP_Signal_21	Yes
22	20	5561	LP_Signal_22	Yes
23	8	5566	LP_Signal_23	Yes
24	17	5562	LP_Signal_24	Yes
25	7	5566	LP_Signal_25	Yes
26	14	5563	LP_Signal_26	No
27	11	5565	LP_Signal_27	No
28	7	5566	LP_Signal_28	Yes
29	12	5564	LP_Signal_29	Yes
30	8	5566	LP_Signal_30	Yes

The Long Pulse Radar pattern shown in Appendix A.1

Page No. 61 / 112

Report Format Version: 6.1.2

Trial #	Pulses per Burst	Pulse Width(us)	PRI(us)	Detection
1	9	1	333.3	Yes
2	9	1	333.3	Yes
3	9	1	333.3	Yes
4	9	1	333.3	Yes
5	9	1	333.3	Yes
6	9	1	333.3	Yes
7	9	1	333.3	Yes
8	9	1	333.3	Yes
9	9	1	333.3	Yes
10	9	1	333.3	No
11	9	1	333.3	Yes
12	9	1	333.3	Yes
13	9	1	333.3	Yes
14	9	1	333.3	No
15	9	1	333.3	Yes
16	9	1	333.3	Yes
17	9	1	333.3	Yes
18	9	1	333.3	Yes
19	9	1	333.3	Yes
20	9	1	333.3	Yes
21	9	1	333.3	No
22	9	1	333.3	Yes
23	9	1	333.3	Yes
24	9	1	333.3	Yes
25	9	1	333.3	Yes
26	9	1	333.3	Yes
27	9	1	333.3	Yes
28	9	1	333.3	Yes
29	9	1	333.3	Yes
30	9	1	333.3	Yes

Report No.: RF171011E02A-2 Reference No.: 171011E03

1011E02A-2 Page No. 62 / 112

Trial #	Hopping Frequency Sequence Name	Detection
1	HOP_FREQ_SEQ_01	Yes
2	HOP_FREQ_SEQ_02	Yes
3	HOP_FREQ_SEQ_03	Yes
4	HOP_FREQ_SEQ_04	Yes
5	HOP_FREQ_SEQ_05	Yes
6	HOP_FREQ_SEQ_06	Yes
7	HOP_FREQ_SEQ_07	Yes
8	HOP_FREQ_SEQ_08	Yes
9	HOP_FREQ_SEQ_09	Yes
10	HOP_FREQ_SEQ_10	No
11	HOP_FREQ_SEQ_11	Yes
12	HOP_FREQ_SEQ_12	Yes
13	HOP_FREQ_SEQ_13	Yes
14	HOP_FREQ_SEQ_14	No
15	HOP_FREQ_SEQ_15	Yes
16	HOP_FREQ_SEQ_16	Yes
17	HOP_FREQ_SEQ_17	Yes
18	HOP_FREQ_SEQ_18	Yes
19	HOP_FREQ_SEQ_19	Yes
20	HOP_FREQ_SEQ_20	Yes
21	HOP_FREQ_SEQ_21	No
22	HOP_FREQ_SEQ_22	Yes
23	HOP_FREQ_SEQ_23	Yes
24	HOP_FREQ_SEQ_24	Yes
25	HOP_FREQ_SEQ_25	Yes
26	HOP_FREQ_SEQ_26	Yes
27	HOP_FREQ_SEQ_27	Yes
28	HOP_FREQ_SEQ_28	Yes
29	HOP_FREQ_SEQ_29	Yes
30	HOP_FREQ_SEQ_30	Yes

The Frequency Hopping Radar pattern shown in Appendix A.2

6.2.5 Non- Occupancy Period

1) Test results demonstrating an associated client link is established with the master on a test frequency.

EUT (master) links with Client on 5530MHz

2) The master and DFS-certified client device are associated, and system testing will be performed with channel-loading for a non-occupancy period test.

Client performed with channel-loading via master.

4) The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes;

Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;

5)An analyzer plot that contains a single 30-minute sweep on the original test frequency.

7. Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF/Telecom Lab:

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

Report No.: RF171011E02A-2 Page No. 66 / 112 Report Format Version: 6.1.2

Reference No.: 171011E03

8. Appendix -A **RADAR TEST SIGNAL**

A.1 The Long Pulse Radar Pattern

Long Pulse Radar Test Signal

Test Signal Name: LP_Signal_01

Number of Bursts in Trial: 18

Numi	ber of Bursts	s in Trial:	18			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	17	89.4	1750	1823	1091
2	1	17	57.6	1831	-	-
3	1	17	62.1	1839	-	-
4	3	17	94.8	1258	1771	1217
5	2	17	74.7	1246	1854	-
6	2	17	70.3	1286	1132	-
7	1	17	55.3	1409	-	-
8	3	17	99.3	1879	1810	1391
9	1	17	53.5	1673	-	-
10	2	17	74.6	1448	1969	-
11	3	17	85.5	1999	1087	1140
12	3	17	99.3	1602	1435	1376
13	3	17	91	1211	1374	1783
14	2	17	73.8	1924	1124	-
15	2	17	74.1	1641	1247	-
16	2	17	82.2	1904	1345	-
17	2	17	68.6	1168	1844	-
18	2	17	74.8	1444	1778	-
19						
20						

Report No.: RF171011E02A-2 Reference No.: 171011E03 Page No. 67 / 112 Report Format Version: 6.1.2

Test Signal Name: LP_Signal_02

Number of Bursts in Trial: 9

Numl	ber of Burst	s in Trial:	9			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	7	67.7	1691	1157	-
2	3	7	99.8	1097	1766	1178
3	1	7	56.9	1188	-	-
4	3	7	99.1	1208	1655	1974
5	1	7	60.8	1480	-	-
6	3	7	88.3	1272	1863	1474
7	1	7	57.5	1911	-	-
8	2	7	80.3	1455	1881	-
9	2	7	71.4	1137	1241	0
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_03
Number of Bursts in Trial: 11

Num	Number of Bursts in Trial: 11							
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	1	8	58.9	1295	-	-		
2	2	8	72.6	1375	1213	-		
3	1	8	60.7	1039	-	-		
4	2	8	70.8	1230	1064	-		
5	1	8	51.9	1025	-	1		
6	2	8	67.5	1895	1802	ı		
7	2	8	80.8	1550	1533	-		
8	2	8	68.6	1525	1221	ı		
9	3	8	92.4	1651	1985	1505		
10	3	8	87	1671	1451	1643		
11	2	8	70.9	1439	1724	1		
12								
13								
14								
15								
16								
17								
18								
19								
20								

Test Signal Name: LP_Signal_04
Number of Bursts in Trial: 19

Numl	per of Burst	s in Trial:	19			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	19	81.2	1922	1020	-
2	1	19	57.6	1677	-	-
3	3	19	84.9	1073	1244	1949
4	2	19	83.1	1935	1174	-
5	2	19	71.1	1542	1560	-
6	1	19	55.1	1790	-	-
7	1	19	54.4	1396	-	-
8	3	19	90.6	1035	1886	1980
9	3	19	92.2	1950	1759	1163
10	3	19	92.5	1108	1661	1358
11	2	19	79.5	1441	1957	-
12	2	19	76.3	1259	1876	-
13	1	19	65.7	1880	-	-
14	3	19	99.4	1971	1493	1004
15	3	19	89.5	1238	1700	1581
16	2	19	79.1	1906	1546	-
17	1	19	60	1019	-	-
18	3	19	90.3	1808	1034	1199
19	3	19	96.8	1869	1993	1967
20						

Test Signal Name: LP_Signal_05

Number of Bursts in Trial: 14

Num	ber of Burst	s in Trial:	14			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	12	73.8	1686	1255	-
2	3	12	87.2	1201	1621	1693
3	3	12	94.4	1503	1529	1431
4	3	12	99	1308	1366	1481
5	3	12	96.5	1318	1418	1452
6	2	12	76.6	1695	1170	-
7	3	12	92.8	1304	1113	1835
8	1	12	53.8	1068	-	-
9	3	12	83.6	1384	1593	1212
10	2	12	81.8	1395	1768	-
11	1	12	60.2	1129	-	-
12	1	12	55.1	1045	-	-
13	2	12	81.8	1984	1703	-
14	3	12	95.3	1992	1828	1932
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_06

Number of Bursts in Trial: 13

Num	Number of Bursts in Trial: 13							
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	3	11	97.7	1350	1354	1424		
2	3	11	93.6	1779	1273	1540		
3	1	11	60	1065	-	-		
4	1	11	64.8	1956	-	-		
5	2	11	73.9	1390	1794	-		
6	2	11	77.9	1670	1206	-		
7	1	11	55.7	1942	-	-		
8	3	11	83.9	1105	1853	1440		
9	2	11	66.9	1819	1281	-		
10	3	11	88.2	1734	1361	1371		
11	2	11	79	1400	1522	-		
12	2	11	79.4	1516	1031	-		
13	3	11	96.4	1328	1845	1833		
14								
15								
16								
17								
18								
19								
20								

Test Signal Name: LP_Signal_07

Number of Bursts in Trial: 9

Num	ber of Burst	s in Trial:	9			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	6	95.1	1436	1883	1146
2	2	6	71.5	1669	1952	-
3	1	6	62.5	1309	-	-
4	3	6	88.5	1797	1846	1528
5	2	6	70.7	1976	1714	1
6	2	6	78.3	1943	1873	ı
7	3	6	95.6	1763	1887	1977
8	1	6	63.1	1434	-	1
9	3	6	83.7	1069	1236	1277
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_08

Number of Bursts in Trial: 20

Num	ber of Burst	s in Trial:	20			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	20	86.9	1257	1010	1287
2	1	20	58.7	1628	-	-
3	3	20	88.4	1800	1214	1234
4	1	20	56.4	1340	-	-
5	2	20	78.4	1792	1243	-
6	1	20	51.3	1416	-	-
7	2	20	70.8	1645	1975	-
8	1	20	58.8	1755	-	-
9	2	20	82	1476	1356	-
10	3	20	87.3	1650	1941	1834
11	3	20	97.8	1898	1608	1523
12	2	20	81.1	1696	1870	-
13	2	20	68.1	1652	1323	-
14	1	20	55.7	1814	-	-
15	2	20	79.4	1078	1527	-
16	1	20	64.2	1667	-	-
17	3	20	86.2	1052	1038	1690
18	1	20	62.3	1494	-	-
19	3	20	91.1	1885	1460	1013
20	3	20	89.9	1603	1592	1239

Test Signal Name: LP_Signal_09

Number of Bursts in Trial: 8

Number of Bursts in Trial: 8							
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
1	2	6	70.2	1773	1471	-	
2	1	6	56.2	1180	-	-	
3	2	6	69.9	1042	1393	1	
4	2	6	67	1569	1594	-	
5	2	6	80.3	1292	1588	1	
6	3	6	97.8	1338	1678	1114	
7	2	6	82.3	1803	1185	ı	
8	2	6	71.1	1564	1164	ı	
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

Test Signal Name: LP_Signal_10

Number of Bursts in Trial: 14

Pulses per Chrip Pulse Burst PRI-1 (us) PRI-3 (us) PRI-2 (us) Burst (MHz) Width(us) 93.3 89.5 76.9 _ 86.2 82.1 63.9 56.7 51.3 76.5 67.4 99.6 54.4 63.1 58.1

Test Signal Name: LP_Signal_11

Number of Bursts in Trial: 17

inumi	Number of Bursts in Trial: 17								
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	1	16	56.2	1389	-	-			
2	3	16	91.7	1227	1497	1722			
3	2	16	81.7	1437	1561	-			
4	1	16	65.2	1001	-	-			
5	2	16	76.9	1649	1267	-			
6	1	16	65.7	1962	-	-			
7	2	16	83.1	1242	1536	-			
8	2	16	74.3	1972	1030	-			
9	3	16	84.6	1148	1675	1683			
10	1	16	66	1398	-	-			
11	1	16	54.4	1368	-	-			
12	2	16	73.2	1692	1156	-			
13	1	16	63.5	1508	-	-			
14	2	16	80.7	1506	1426	-			
15	3	16	88.8	1939	1738	1841			
16	2	16	71.3	1430	1705	-			
17	2	16	76.2	1182	1708	-			
18									
19									
20									

78.2

85.3

Test Signal Name: LP_Signal_12
Number of Bursts in Trial: 20

Pulses per Chrip Pulse Burst PRI-3 (us) PRI-1 (us) PRI-2 (us) Burst (MHz) Width(us) 80.6 -99.8 65.5 -92.5 60.4 -61.5 54.1 99.1 87.8 68.8 62.7 86.7 76.8

Test Signal Name: LP_Signal_13

Number of Bursts in Trial: 18

Numl	per of Burst	s in Trial:	18			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	18	65	1066	-	-
2	2	18	70.8	1929	1636	-
3	1	18	66.5	1094	-	-
4	3	18	88	1855	1252	1111
5	2	18	69	1290	1859	-
6	1	18	54.9	1551	-	-
7	1	18	60.8	2000	-	-
8	2	18	81.8	1585	1864	-
9	1	18	58.8	1130	-	-
10	1	18	50.4	1169	-	-
11	2	18	76	1325	1445	-
12	1	18	62.6	1530	-	-
13	1	18	55.1	1851	-	-
14	3	18	91.2	1181	1302	1966
15	2	18	68.9	1348	1355	-
16	3	18	85.4	1537	1758	1109
17	1	18	63.4	1011	-	-
18	3	18	92.7	1122	1333	1584
19						
20						

Test Signal Name: LP_Signal_14

Number of Bursts in Trial: 14

Numl	per of Burst	s in Trial:	14			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	12	63.7	1830	-	-
2	2	12	81.3	1110	1746	-
3	2	12	70.2	1334	1187	-
4	1	12	66.3	1587	-	-
5	2	12	72.8	1578	1745	-
6	2	12	66.7	1694	1931	-
7	1	12	55.1	1284	-	-
8	3	12	86.5	1089	1490	1762
9	1	12	65.7	1084	-	-
10	1	12	53.2	1268	-	-
11	2	12	67.8	1625	1411	-
12	3	12	96.5	1576	1799	1233
13	1	12	51.4	1373	-	-
14	2	12	80.7	1098	1849	-
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_15

Number of Bursts in Trial: 14

Numi	Number of Bursts in Trial: 14								
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	1	12	60.5	1668	-	-			
2	3	12	86	1786	1666	1266			
3	1	12	61.2	1228	-	-			
4	1	12	59.8	1204	-	-			
5	1	12	52.5	1021	-	-			
6	1	12	61.7	1634	-	-			
7	3	12	96.5	1741	1875	1296			
8	3	12	87.6	1093	1250	1172			
9	3	12	99.6	1215	1813	1820			
10	2	12	79.7	1327	1512	-			
11	3	12	90.2	1589	1145	1082			
12	1	12	53.7	1136	-	-			
13	2	12	73	1706	1526	-			
14	1	12	65.4	1420	-	-			
15									
16									
17									
18									
19									
20									

Test Signal Name: LP_Signal_16

Number of Bursts in Trial: 16

Num	per of Burst	s in Trial:	16			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	15	82.6	1347	1485	-
2	2	15	77.6	1312	1500	-
3	3	15	93.8	1062	1005	1749
4	1	15	51.3	1809	-	-
5	1	15	63.4	1699	-	-
6	2	15	69.4	1606	1219	-
7	3	15	86.3	1102	1878	1728
8	3	15	97	1192	1858	1772
9	1	15	65.1	1363	-	-
10	3	15	98.8	1083	1567	1961
11	3	15	98.1	1473	1271	1263
12	3	15	99.9	1780	1871	1249
13	2	15	82.9	1785	1081	-
14	2	15	82.5	1501	1921	-
15	3	15	89.2	1767	1357	1479
16	1	15	57.5	1891	-	-
17						
18						
19						
20						

Test Signal Name: LP_Signal_17 Number of Bursts in Trial: 12

Number of Bursts in Trial: 12								
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	1	10	63.9	1331	-	-		
2	1	10	62.4	1897	-	-		
3	3	10	99.1	1769	1832	1647		
4	3	10	95.4	1991	1085	1937		
5	1	10	52	1029	-	-		
6	2	10	69.1	1637	1611	-		
7	2	10	80	1447	1685	-		
8	1	10	59.1	1635	-	-		
9	2	10	82.8	1134	1080	-		
10	1	10	51.6	1138	-	-		
11	3	10	96.2	1165	1754	1269		
12	2	10	76.1	1406	1818	-		
13								
14								
15								
16								
17								
18								
19								
20								

Test Signal Name: LP_Signal_18

Number of Bursts in Trial: 14

Num	per of Burst	s in Trial:	14			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	12	81.7	1946	1868	-
2	3	12	90.5	1414	1453	1305
3	2	12	76.2	2000	1852	-
4	2	12	69.1	1351	1071	-
5	3	12	93.7	1865	1196	1782
6	3	12	89.7	1429	1948	1402
7	1	12	53.9	1070	-	-
8	3	12	88.2	1632	1940	1689
9	1	12	59.4	1733	-	-
10	1	12	66.4	1285	-	-
11	2	12	83	1321	1591	-
12	2	12	82	1912	1012	-
13	3	12	94.4	1698	1784	1303
14	1	12	63.6	1175	-	-
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_19

Number of Bursts in Trial: 12

Num	ber of Burst	s in Trial:	12			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	10	70.9	1736	1367	-
2	1	10	62.4	1193	-	-
3	1	10	61.8	1596	-	-
4	1	10	52.6	1646	-	-
5	2	10	78.9	1049	1639	-
6	1	10	63.9	1679	-	-
7	3	10	98.5	1627	1731	1442
8	3	10	92	1294	1547	1119
9	1	10	65.8	1386	-	-
10	2	10	77.7	1987	1964	-
11	1	10	54.6	1553	-	-
12	2	10	77.7	1171	1413	-
13						
14						
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_20
Number of Bursts in Trial: 20

Num	ber of Burst	s in Trial:	20			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	1	20	63.4	1899	-	-
2	1	20	63.5	1633	-	-
3	3	20	97.6	1815	1198	1488
4	3	20	84.7	1626	1026	1326
5	2	20	68.5	1469	1684	-
6	1	20	61.8	1408	-	-
7	2	20	73.2	1735	1125	-
8	1	20	60.2	1468	-	-
9	1	20	65.2	1519	-	-
10	2	20	74.6	1954	1654	-
11	2	20	72.6	1394	1096	-
12	2	20	78.9	1343	1843	-
13	1	20	56.2	1003	-	-
14	3	20	93.2	1433	1299	1324
15	2	20	78.6	1404	1539	-
16	1	20	50.9	1570	-	-
17	3	20	98.2	1346	1179	1510
18	3	20	97.5	1616	1360	1710
19	2	20	79.5	1822	1721	-
20	2	20	67	1554	1237	-

Test Signal Name: LP_Signal_21
Number of Bursts in Trial: 9

Num	Number of Bursts in Trial: 9							
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	1	7	51	1893	-	-		
2	3	7	88.5	1270	1664	1623		
3	3	7	98.2	1979	1826	1128		
4	2	7	67.5	1417	1586	-		
5	3	7	97.4	1642	1121	1770		
6	2	7	80.2	1816	1060	-		
7	2	7	72.8	1619	1203	-		
8	2	7	82.2	1499	1848	-		
9	2	7	77.6	1562	1573	ı		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Test Signal Name: LP_Signal_22

Number of Bursts in Trial: 20

Numi	Number of Bursts in Trial: 20								
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	3	20	89.8	1742	1968	1036			
2	2	20	74.7	1850	1306	-			
3	3	20	98.5	1123	1336	1791			
4	1	20	64.4	1740	-	-			
5	1	20	66	1000	-	-			
6	2	20	76.3	1521	1928	-			
7	3	20	90.4	1764	1383	1726			
8	3	20	90.6	1896	1653	1697			
9	2	20	74.8	1995	1938	-			
10	3	20	98	1251	1520	1725			
11	2	20	71.2	1775	1240	-			
12	1	20	58.8	1195	-	-			
13	3	20	84.1	1475	1472	1590			
14	3	20	98.4	1274	1282	1918			
15	3	20	96.4	1131	1739	1009			
16	3	20	89.9	1484	1283	1412			
17	2	20	82.9	1729	1571	-			
18	3	20	96.5	1978	1478	1555			
19	3	20	85.7	1872	1737	1847			
20	3	20	85.4	1387	1151	1531			

Test Signal Name: LP_Signal_23

Number of Bursts in Trial: 10

Pulses per Chrip Pulse Burst PRI-1 (us) PRI-2 (us) PRI-3 (us) Burst (MHz) Width(us) 97.6 93.9 -68.3 98.3 87.6 76.6 74.9 65.3 87.4

Test Signal Name: LP_Signal_24
Number of Bursts in Trial: 17

Num	Number of Bursts in Trial: 17								
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	3	17	88.4	1279	1317	1150			
2	3	17	89.1	1288	1660	1789			
3	3	17	91	1385	1988	1461			
4	2	17	82.6	1915	1059	-			
5	2	17	75.5	1662	1982	-			
6	3	17	99.9	1222	1796	1717			
7	2	17	74.1	1877	1917	-			
8	1	17	64.5	1380	-	-			
9	3	17	90.3	1032	1613	1191			
10	2	17	66.9	1158	1930	-			
11	3	17	88.2	1753	1399	1507			
12	1	17	60.4	1307	-	-			
13	2	17	73.3	1152	1543	-			
14	3	17	99.6	1207	1491	1297			
15	1	17	58.2	1024	-	-			
16	1	17	58.2	1925	-	-			
17	2	17	66.9	1994	1090	-			
18									
19									
20									

Test Signal Name: LP_Signal_25

Number of Bursts in Trial: 9

Num	ber of Burst	s in Trial:	9			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	3	7	90.1	1465	1459	1862
2	1	7	51.8	1730	-	-
3	2	7	77.7	1874	1388	-
4	1	7	64.4	1401	-	-
5	3	7	83.7	1517	1861	1612
6	3	7	87.1	1981	1161	1541
7	3	7	96.9	1143	1757	1115
8	2	7	80.1	1232	1574	-
9	3	7	95.9	1051	1202	1344
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_26
Number of Bursts in Trial: 15

Numi	Number of Bursts in Trial: 15								
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
1	1	14	56.4	1379	-	-			
2	1	14	50.2	1827	-	-			
3	2	14	76.8	1189	1788	-			
4	3	14	89.4	1713	1774	1743			
5	1	14	51.3	1926	-	-			
6	2	14	75	1958	1194	-			
7	1	14	60.5	1631	-	-			
8	3	14	87.5	1483	1825	1329			
9	1	14	59.6	1495	-	-			
10	2	14	82.2	1604	1421	-			
11	2	14	67.8	1139	1482	-			
12	1	14	51.5	1018	-	-			
13	2	14	72.9	1135	1332	-			
14	3	14	96.5	1116	1291	1665			
15	1	14	65.7	1256	-	-			
16									
17									
18									
19									
20									

Test Signal Name: LP_Signal_27
Number of Bursts in Trial: 13

Num	per or Burst	s in Triai:	13			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	11	68.4	1210	1254	-
2	1	11	56.2	1106	-	-
3	2	11	68.7	1989	1167	-
4	3	11	97.2	1963	1037	1860
5	3	11	87.1	1120	1335	1563
6	2	11	70.6	1298	1502	-
7	2	11	68.7	1747	1446	-
8	3	11	90	1315	1072	1226
9	2	11	79.4	1577	1311	-
10	1	11	59.6	1176	-	-
11	3	11	84.9	1027	1727	1260
12	1	11	63.5	1605	-	-
13	1	11	52.3	1702	-	-
14						
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_28

Number of Bursts in Trial: 10

Num	ber of Bursts	s in Trial:	10			
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1	2	7	72.9	1622	1104	-
2	1	7	54.6	1609	-	-
3	1	7	51.9	1707	-	-
4	3	7	94.2	1173	1515	1688
5	1	7	52.5	1077	-	-
6	2	7	79.6	1054	1245	-
7	3	7	93.5	1575	1141	1046
8	2	7	73.9	1718	1638	-
9	3	7	87.7	1126	1462	1310
10	1	7	50.8	1154	-	-
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Test Signal Name: LP_Signal_29
Number of Bursts in Trial: 13

Pulses per Chrip Pulse Burst PRI-2 (us) PRI-3 (us) PRI-1 (us) Burst (MHz) Width(us) 65.6 63.2 --99.9 85.8 76.1 -90.4 65.4 67.1 55.3 61.9 --96.1 77.5

Test Signal Name: LP_Signal_30

Number of Bursts in Trial: 10

Numbe	Number of Bursts in Trial: 10							
Burst	Pulses per Burst	Chrip (MHz)	Pulse Width(us)	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)		
1	2	8	68.4	1190	1907	-		
2	3	8	99.7	1996	1806	1079		
3	3	8	93	1777	1092	1337		
4	2	8	75.3	1548	1583	-		
5	3	8	87.7	1715	1889	1470		
6	1	8	60.2	1008	-	-		
7	3	8	97.5	1658	1514	1748		
8	2	8	79.7	1532	1793	-		
9	1	8	66.4	1014	-	-		
10	1	8	61.4	1322	-	-		
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

A.2 The Frequency Hopping Radar pattern

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_01							
Frequency (MHz)	0	1	2	3	4		
0	5436	5618	5502	5507	5674		
5	5429	5363	5362	5339	5615		
10	5432	5291	5566	5689	5400		
15	5658	5277	5656	5265	5588		
20	5643	5342	5449	5558	5600		
25	5557	5293	5478	5488	5560		
30	5331	5350	5559	5604	5505		
35	5251	5413	5292	5424	5703		
40	5596	5433	5266	5273	5548		
45	5437	5253	5447	5628	5286		
50	5340	5690	5302	5441	5439		
55	5421	5694	5417	5609	5576		
60	5305	5351	5288	5354	5335		
65	5620	5657	5686	5711	5663		
70	5610	5297	5634	5510	5426		
75	5357	5667	5370	5387	5281		
80	5585	5524	5338	5385	5673		
85	5464	5693	5455	5633	5712		
90	5679	5269	5607	5651	5352		
95	5358	5612	5289	5397	5402		

Ho	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_02							
Frequency (MHz)	0	1	2	3	4			
0	5691	5382	5438	5668	5419			
5	5471	5385	5437	5502	5347			
10	5363	5555	5607	5409	5421			
15	5649	5404	5284	5310	5305			
20	5554	5508	5370	5441	5531			
25	5488	5496	5582	5522	5602			
30	5317	5307	5299	5281	5325			
35	5390	5504	5563	5577	5714			
40	5435	5613	5679	5513	5642			
45	5587	5417	5336	5505	5681			
50	5648	5594	5391	5256	5530			
55	5262	5722	5387	5278	5614			
60	5580	5705	5470	5296	5595			
65	5655	5378	5443	5606	5625			
70	5446	5413	5466	5717	5275			
75	5711	5626	5339	5410	5424			
80	5566	5301	5448	5641	5293			
85	5573	5393	5367	5535	5515			
90	5350	5633	5459	5467	5297			
95	5279	5386	5715	5624	5403			

Report No.: RF171011E02A-2 Page No. 97 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_03							
Frequency (MHz)	0	1	2	3	4		
0	5471	5621	5374	5354	5261		
5	5513	5310	5512	5568	5651		
10	5672	5344	5648	5507	5442		
15	5262	5434	5290	5355	5497		
20	5562	5577	5408	5530	5504		
25	5279	5699	5308	5556	5266		
30	5681	5264	5514	5523	5432		
35	5595	5359	5255	5628	5274		
40	5696	5520	5278	5639	5516		
45	5397	5419	5563	5259	5438		
50	5470	5567	5307	5619	5463		
55	5666	5575	5707	5502	5433		
60	5551	5635	5338	5427	5481		
65	5324	5644	5555	5661	5350		
70	5691	5538	5703	5613	5687		
75	5585	5686	5547	5553	5461		
80	5422	5457	5636	5588	5367		
85	5377	5478	5445	5545	5684		
90	5610	5287	5462	5285	5323		
95	5597	5258	5420	5467	5698		

Ho	Hopping Frequency Sequence Name: HOP_FREQ_SEQ_04							
Frequency (MHz)	0	1	2	3	4			
0	5251	5385	5310	5515	5481			
5	5555	5332	5587	5256	5383			
10	5603	5705	5311	5702	5463			
15	5350	5561	5393	5400	5689			
20	5570	5268	5349	5522	5477			
25	5642	5685	5427	5412	5590			
30	5308	5696	5632	5682	5343			
35	5571	5686	5252	5505	5542			
40	5304	5458	5421	5636	5348			
45	5280	5502	5524	5312	5325			
50	5346	5358	5708	5286	5513			
55	5288	5661	5692	5488	5283			
60	5356	5404	5270	5370	5504			
65	5697	5717	5397	5707	5616			
70	5351	5663	5544	5655	5650			
75	5613	5625	5330	5678	5321			
80	5307	5316	5538	5637	5413			
85	5638	5485	5627	5291	5357			
90	5382	5437	5562	5451	5596			
95	5473	5366	5395	5509	5464			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_05								
Frequency (MHz)	0	1	2	3	4			
0	5506	5624	5721	5579	5323			
5	5694	5257	5662	5419	5590			
10	5437	5494	5352	5422	5484			
15	5438	5688	5496	5348	5406			
20	5578	5337	5290	5611	5547			
25	5433	5537	5533	5516	5350			
30	5556	5372	5456	5541	5710			
35	5302	5523	5658	5553	5524			
40	5387	5396	5661	5633	5277			
45	5260	5585	5582	5365	5697			
50	5444	5409	5584	5457	5379			
55	5615	5407	5546	5520	5490			
60	5703	5663	5705	5691	5668			
65	5550	5636	5320	5512	5675			
70	5304	5716	5639	5503	5527			
75	5295	5659	5606	5485	5681			
80	5459	5384	5648	5501	5378			
85	5689	5631	5305	5317	5297			
90	5294	5264	5454	5617	5435			
95	5452	5469	5690	5507	5562			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_06								
Frequency (MHz)	0	1	2	3	4			
0	5664	5388	5657	5265	5543			
5	5261	5279	5262	5582	5419			
10	5368	5283	5393	5617	5505			
15	5526	5340	5599	5598	5489			
20	5503	5328	5603	5520	5321			
25	5486	5620	5658	5445	5513			
30	5587	5705	5361	5277	5490			
35	5319	5336	5467	5363	5567			
40	5334	5426	5630	5584	5715			
45	5668	5640	5418	5477	5476			
50	5460	5508	5407	5304	5569			
55	5597	5268	5367	5649	5655			
60	5648	5495	5531	5259	5394			
65	5499	5672	5530	5307	5478			
70	5473	5719	5524	5615	5462			
75	5496	5415	5327	5694	5377			
80	5447	5301	5320	5572	5561			
85	5449	5721	5643	5404	5482			
90	5303	5488	5471	5392	5413			
95	5602	5299	5454	5351	5675			

Report No.: RF171011E02A-2 Page No. 100 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_07								
Frequency (MHz)	0	1	2	3	4			
0	5444	5627	5593	5426	5385			
5	5303	5679	5337	5648	5626			
10	5299	5547	5434	5526	5517			
15	5467	5702	5438	5412	5497			
20	5572	5269	5692	5493	5587			
25	5338	5464	5346	5531	5431			
30	5470	5327	5382	5656	5416			
35	5581	5590	5586	5381	5677			
40	5650	5272	5666	5724	5513			
45	5695	5276	5601	5374	5267			
50	5352	5321	5511	5597	5608			
55	5723	5280	5523	5312	5562			
60	5345	5690	5454	5680	5448			
65	5611	5362	5674	5281	5545			
70	5344	5373	5591	5421	5465			
75	5568	5514	5329	5496	5541			
80	5510	5298	5515	5551	5414			
85	5524	5641	5686	5652	5701			
90	5647	5406	5265	5500	5585			
95	5252	5387	5313	5675	5697			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_08								
Frequency (MHz)	0	1	2	3	4			
0	5699	5391	5529	5587	5605			
5	5442	5701	5412	5336	5358			
10	5608	5475	5435	5547	5497			
15	5708	5483	5604	5505	5263			
20	5685	5684	5466	5665	5667			
25	5450	5251	5573	5320	5427			
30	5445	5631	5379	5555	5672			
35	5264	5392	5516	5258	5334			
40	5721	5675	5359	5659	5629			
45	5703	5562	5686	5431	5570			
50	5468	5477	5502	5381	5309			
55	5432	5510	5635	5256	5280			
60	5626	5418	5397	5647	5572			
65	5469	5559	5714	5255	5347			
70	5600	5470	5380	5337	5558			
75	5549	5291	5439	5277	5670			
80	5673	5710	5454	5584	5261			
85	5554	5648	5425	5521	5299			
90	5288	5609	5602	5307	5484			
95	5285	5303	5317	5723	5444			

Report No.: RF171011E02A-2 Page No. 101 / 112 Report Format Version: 6.1.2

Report No.: RF171011E02A-2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_09								
Frequency (MHz)	0	1	2	3	4			
0	5479	5630	5465	5273	5447			
5	5484	5626	5487	5499	5662			
10	5539	5697	5516	5568	5693			
15	5624	5336	5431	5321	5416			
20	5429	5723	5298	5439	5363			
25	5614	5395	5554	5285	5712			
30	5684	5384	5660	5308	5674			
35	5694	5288	5279	5417	5306			
40	5452	5438	5623	5574	5718			
45	5274	5655	5442	5717	5480			
50	5419	5579	5673	5613	5397			
55	5254	5514	5656	5692	5578			
60	5658	5561	5675	5580	5563			
65	5678	5669	5716	5346	5683			
70	5404	5361	5265	5311	5449			
75	5446	5339	5659	5530	5543			
80	5533	5297	5258	5670	5430			
85	5454	5547	5453	5519	5602			
90	5719	5502	5418	5711	5548			
95	5619	5362	5468	5649	5406			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_10								
Frequency (MHz)	0	1	2	3	4			
0	5637	5394	5401	5434	5667			
5	5526	5648	5562	5662	5470			
10	5486	5557	5350	5589	5306			
15	5276	5439	5476	5513	5424			
20	5498	5664	5290	5412	5629			
25	5466	5501	5658	5319	5279			
30	5670	5341	5400	5397	5261			
35	5379	5550	5570	5695	5291			
40	5521	5464	5339	5715	5678			
45	5538	5525	5300	5533	5358			
50	5374	5552	5361	5369	5385			
55	5310	5593	5365	5395	5504			
60	5615	5442	5295	5622	5614			
65	5631	5543	5383	5324	5450			
70	5298	5422	5653	5323	5705			
75	5511	5320	5314	5461	5321			
80	5625	5357	5512	5607	5645			
85	5387	5349	5539	5270	5430			
90	5255	5636	5417	5549	5556			
95	5628	5509	5352	5410	5672			

Report No.: RF171011E02A-2 Page No. 102 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_11								
Frequency (MHz)	0	1	2	3	4			
0	5417	5633	5337	5595	5509			
5	5568	5670	5637	5253	5601			
10	5304	5275	5598	5545	5610			
15	5297	5403	5542	5521	5705			
20	5432	5664	5605	5379	5385			
25	5517	5415	5704	5287	5353			
30	5321	5559	5298	5615	5709			
35	5692	5400	5470	5443	5345			
40	5609	5604	5402	5482	5712			
45	5510	5518	5608	5261	5586			
50	5571	5550	5715	5575	5278			
55	5305	5460	5339	5500	5691			
60	5600	5722	5530	5567	5702			
65	5330	5561	5643	5719	5658			
70	5446	5426	5346	5552	5310			
75	5453	5622	5398	5257	5373			
80	5492	5475	5570	5625	5481			
85	5442	5260	5354	5265	5352			
90	5607	5597	5262	5357	5527			
95	5690	5364	5472	5533	5454			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_12								
Frequency (MHz)	0	1	2	3	4			
0	5672	5397	5273	5659	5254			
5	5707	5595	5712	5416	5430			
10	5710	5539	5261	5265	5631			
15	5385	5530	5645	5469	5422			
20	5343	5258	5643	5371	5358			
25	5308	5267	5432	5488	5387			
30	5460	5448	5255	5483	5415			
35	5658	5714	5498	5620	5444			
40	5687	5340	5722	5331	5439			
45	5691	5319	5639	5458	5585			
50	5251	5291	5664	5576	5627			
55	5648	5293	5690	5510	5571			
60	5376	5695	5512	5534	5253			
65	5507	5466	5668	5597	5656			
70	5318	5624	5296	5553	5374			
75	5494	5419	5473	5252	5685			
80	5351	5692	5544	5661	5637			
85	5260	5630	5457	5370	5557			
90	5522	5533	5716	5572	5292			
95	5527	5517	5352	5489	5618			

Report No.: RF171011E02A-2 Page No. 103 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_13								
Frequency (MHz)	0	1	2	3	4			
0	5452	5636	5684	5345	5571			
5	5274	5617	5312	5579	5637			
10	5544	5328	5302	5363	5652			
15	5473	5560	5651	5514	5614			
20	5351	5424	5584	5460	5331			
25	5671	5594	5635	5592	5421			
30	5502	5434	5687	5710	5581			
35	5510	5534	5380	5392	5278			
40	5487	5368	5478	5299	5377			
45	5692	5723	5364	5427	5342			
50	5399	5361	5722	5405	5707			
55	5445	5505	5385	5457	5463			
60	5554	5550	5667	5633	5488			
65	5588	5318	5379	5556	5698			
70	5253	5650	5586	5562	5454			
75	5504	5320	5607	5381	5561			
80	5357	5638	5610	5593	5552			
85	5660	5612	5618	5280	5539			
90	5275	5485	5309	5582	5598			
95	5347	5371	5721	5568	5358			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_14								
Frequency (MHz)	0	1	2	3	4			
0	5707	5400	5620	5506	5316			
5	5542	5387	5267	5369	5475			
10	5689	5343	5558	5673	5561			
15	5687	5279	5559	5331	5359			
20	5493	5525	5452	5304	5462			
25	5543	5363	5696	5358	5544			
30	5323	5644	5688	5409	5433			
35	5720	5365	5306	5426	5448			
40	5694	5691	5252	5325	5675			
45	5458	5382	5338	5648	5610			
50	5715	5603	5393	5464	5697			
55	5418	5549	5579	5595	5526			
60	5416	5634	5550	5499	5295			
65	5380	5496	5490	5566	5669			
70	5698	5480	5608	5390	5656			
75	5547	5704	5609	5335	5706			
80	5532	5281	5333	5388	5545			
85	5670	5552	5541	5556	5269			
90	5528	5663	5391	5575	5377			
95	5714	5594	5326	5637	5582			

Report No.: RF171011E02A-2 Page No. 104 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_15								
Frequency (MHz)	0	1	2	3	4			
0	5390	5639	5556	5667	5633			
5	5358	5564	5462	5333	5576			
10	5406	5478	5384	5278	5694			
15	5552	5339	5382	5604	5620			
20	5270	5659	5466	5541	5277			
25	5350	5395	5469	5325	5392			
30	5586	5687	5601	5428	5561			
35	5253	5456	5674	5579	5459			
40	5533	5558	5629	5322	5438			
45	5465	5396	5701	5400	5591			
50	5304	5444	5553	5520	5362			
55	5262	5310	5345	5387	5288			
60	5715	5602	5303	5442	5691			
65	5515	5608	5530	5275	5411			
70	5559	5351	5680	5568	5276			
75	5513	5443	5644	5709	5355			
80	5555	5272	5391	5616	5461			
85	5493	5617	5298	5542	5551			
90	5721	5596	5703	5343	5692			
95	5566	5618	5707	5452	5313			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_16								
Frequency (MHz)	0	1	2	3	4			
0	5645	5500	5492	5353	5378			
5	5497	5489	5537	5496	5405			
10	5715	5267	5425	5473	5640			
15	5466	5485	5552	5337	5278			
20	5253	5504	5533	5250	5616			
25	5344	5672	5526	5426	5673			
30	5558	5546	5335	5548	5523			
35	5547	5470	5257	5373	5372			
40	5263	5567	5635	5319	5436			
45	5321	5454	5279	5287	5467			
50	5480	5495	5642	5721	5684			
55	5450	5487	5542	5358	5320			
60	5389	5434	5604	5514	5464			
65	5644	5265	5545	5689	5631			
70	5284	5720	5656	5527	5273			
75	5374	5419	5494	5688	5553			
80	5301	5418	5564	5444	5708			
85	5579	5556	5361	5668	5412			
90	5593	5707	5654	5658	5381			
95	5457	5272	5647	5516	5686			

Report No.: RF171011E02A-2 Page No. 105 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_17								
Frequency (MHz)	0	1	2	3	4			
0	5425	5264	5428	5514	5695			
5	5539	5511	5612	5659	5646			
10	5531	5466	5668	5261	5253			
15	5496	5588	5597	5529	5286			
20	5419	5445	5622	5698	5504			
25	5671	5400	5630	5460	5292			
30	5562	5515	5487	5271	5565			
35	5260	5266	5507	5287	5686			
40	5346	5505	5316	5365	5301			
45	5631	5415	5332	5552	5721			
50	5656	5546	5256	5544	5628			
55	5638	5441	5593	5361	5707			
60	5449	5570	5334	5527	5431			
65	5715	5413	5583	5572	5437			
70	5492	5325	5420	5472	5632			
75	5486	5620	5494	5465	5475			
80	5566	5681	5481	5549	5284			
85	5347	5647	5639	5273	5326			
90	5660	5397	5692	5263	5349			
95	5474	5327	5414	5568	5658			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_18								
Frequency (MHz)	0	1	2	3	4			
0	5680	5503	5364	5675	5440			
5	5581	5436	5687	5347	5344			
10	5577	5320	5507	5291	5282			
15	5341	5623	5594	5642	5721			
20	5672	5585	5386	5614	5671			
25	5392	5523	5603	5259	5494			
30	5334	5548	5472	5501	5261			
35	5566	5704	5351	5634	5660			
40	5298	5622	5429	5346	5640			
45	5410	5294	5281	5714	5473			
50	5385	5439	5597	5357	5442			
55	5367	5475	5254	5395	5308			
60	5655	5678	5578	5260	5376			
65	5670	5353	5377	5441	5362			
70	5619	5307	5707	5295	5397			
75	5406	5387	5321	5608	5445			
80	5589	5456	5717	5676	5462			
85	5629	5544	5449	5479	5489			
90	5602	5368	5669	5673	5336			
95	5611	5465	5666	5361	5491			

Report No.: RF171011E02A-2 Page No. 106 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_19								
Frequency (MHz)	0	1	2	3	4			
0	5363	5267	5300	5361	5282			
5	5623	5458	5287	5510	5648			
10	5411	5681	5645	5486	5303			
15	5332	5275	5697	5687	5438			
20	5680	5654	5424	5703	5644			
25	5658	5472	5331	5528	5473			
30	5437	5429	5716	5413	5289			
35	5368	5442	5430	5338	5461			
40	5512	5284	5308	5407	5601			
45	5261	5322	5531	5704	5436			
50	5665	5419	5349	5498	5474			
55	5649	5707	5425	5321	5502			
60	5323	5264	5311	5655	5614			
65	5599	5573	5566	5392	5390			
70	5487	5404	5259	5494	5718			
75	5318	5446	5674	5250	5662			
80	5560	5634	5627	5584	5334			
85	5630	5672	5663	5405	5470			
90	5508	5696	5685	5389	5525			
95	5596	5292	5465	5720	5520			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_20								
Frequency (MHz)	0	1	2	3	4			
0	5618	5506	5711	5425	5502			
5	5287	5383	5362	5576	5380			
10	5342	5470	5686	5681	5324			
15	5420	5402	5325	5635	5630			
20	5688	5345	5365	5695	5617			
25	5546	5437	5564	5562	5515			
30	5326	5386	5359	5662	5584			
35	5410	5533	5701	5588	5601			
40	5300	5692	5697	5548	5404			
45	5530	5716	5405	5492	5394			
50	5591	5349	5612	5699	5620			
55	5391	5266	5303	5671	5361			
60	5687	5334	5577	5366	5465			
65	5260	5594	5279	5638	5378			
70	5393	5494	5463	5363	5430			
75	5282	5322	5418	5271	5499			
80	5385	5292	5443	5491	5250			
85	5270	5625	5277	5678	5357			
90	5532	5320	5579	5622	5680			
95	5408	5723	5417	5605	5639			

Report No.: RF171011E02A-2 Page No. 107 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_21								
Frequency (MHz)	0	1	2	3	4			
0	5398	5270	5647	5586	5344			
5	5329	5405	5437	5264	5587			
10	5273	5259	5252	5401	5345			
15	5508	5529	5428	5680	5347			
20	5599	5414	5306	5309	5590			
25	5337	5640	5668	5596	5557			
30	5312	5343	5574	5339	5307			
35	5549	5624	5594	5266	5612			
40	5614	5300	5635	5313	5362			
45	5696	5488	5550	5447	5381			
50	5603	5275	5709	5689	5685			
55	5257	5403	5490	5494	5393			
60	5377	5686	5641	5288	5684			
65	5630	5656	5664	5710	5461			
70	5493	5721	5439	5700	5302			
75	5402	5368	5399	5426	5434			
80	5280	5355	5440	5628	5372			
85	5370	5632	5605	5352	5485			
90	5634	5547	5591	5639	5578			
95	5387	5595	5543	5629	5282			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_22								
Frequency (MHz)	0	1	2	3	4			
0	5653	5509	5583	5272	5564			
5	5371	5330	5512	5427	5416			
10	5582	5523	5293	5499	5366			
15	5596	5559	5531	5250	5539			
20	5607	5580	5344	5301	5563			
25	5700	5600	5368	5297	5630			
30	5696	5676	5300	5314	5588			
35	5602	5688	5715	5390	5419			
40	5526	5550	5383	5573	5456			
45	5398	5291	5571	5608	5500			
50	5268	5479	5489	5326	5420			
55	5532	5686	5593	5309	5465			
60	5522	5542	5253	5570	5704			
65	5258	5633	5666	5391	5556			
70	5360	5404	5447	5496	5415			
75	5659	5271	5511	5380	5678			
80	5536	5713	5515	5437	5406			
85	5648	5335	5586	5378	5650			
90	5312	5668	5429	5656	5270			
95	5476	5269	5698	5266	5277			

Report No.: RF171011E02A-2 Page No. 108 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_23								
Frequency (MHz)	0	1	2	3	4			
0	5433	5273	5519	5406	5413			
5	5352	5587	5590	5623	5513			
10	5312	5334	5694	5387	5686			
15	5537	5673	5353	5615	5649			
20	5285	5390	5536	5491	5452			
25	5571	5401	5664	5263	5565			
30	5257	5529	5265	5422	5428			
35	5661	5669	5440	5389	5466			
40	5511	5696	5492	5695	5559			
45	5654	5569	5553	5533	5355			
50	5665	5377	5509	5335	5476			
55	5719	5640	5308	5506	5436			
60	5651	5707	5402	5627	5301			
65	5582	5605	5698	5351	5638			
70	5596	5419	5391	5618	5715			
75	5642	5557	5458	5455	5317			
80	5578	5434	5601	5531	5368			
85	5708	5659	5678	5637	5626			
90	5370	5340	5318	5689	5657			
95	5254	5374	5723	5326	5464			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_24								
Frequency (MHz)	0	1	2	3	4			
0	5591	5512	5455	5594	5626			
5	5552	5277	5662	5656	5355			
10	5347	5673	5375	5414	5408			
15	5675	5338	5640	5718	5545			
20	5526	5340	5701	5382	5509			
25	5379	5401	5299	5602	5698			
30	5305	5551	5689	5647	5514			
35	5620	5394	5519	5457	5451			
40	5703	5646	5449	5461	5489			
45	5527	5539	5359	5627	5606			
50	5420	5706	5366	5428	5598			
55	5536	5323	5335	5325	5407			
60	5397	5618	5709	5453	5722			
65	5513	5531	5641	5433	5441			
70	5645	5516	5599	5268	5367			
75	5577	5587	5287	5700	5439			
80	5707	5667	5573	5469	5334			
85	5321	5434	5685	5671	5376			
90	5643	5399	5568	5505	5324			
95	5639	5571	5346	5312	5712			

Report No.: RF171011E02A-2 Page No. 109 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_25								
Frequency (MHz)	0	1	2	3	4			
0	5371	5276	5391	5280	5468			
5	5594	5299	5262	5344	5659			
10	5278	5462	5416	5609	5429			
15	5288	5465	5268	5534	5409			
20	5264	5471	5482	5267	5253			
25	5405	5706	5257	5444	5440			
30	5646	5387	5666	5533	5610			
35	5350	5500	5365	5542	5254			
40	5290	5701	5486	5456	5519			
45	5442	5685	5485	5479	5687			
50	5359	5523	5548	5591	5619			
55	5281	5434	5562	5563	5541			
60	5376	5668	5714	5480	5580			
65	5265	5513	5622	5717	5502			
70	5699	5592	5721	5536	5556			
75	5310	5368	5420	5484	5680			
80	5354	5633	5704	5331	5613			
85	5337	5624	5256	5568	5511			
90	5642	5550	5388	5670	5427			
95	5576	5453	5455	5329	5292			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_26								
Frequency (MHz)	0	1	2	3	4			
0	5626	5515	5327	5441	5688			
5	5636	5699	5337	5507	5391			
10	5684	5251	5457	5329	5450			
15	5376	5592	5371	5333	5454			
20	5542	5575	5680	5463	5455			
25	5533	5677	5608	5335	5291			
30	5486	5426	5603	5602	5440			
35	5638	5672	5701	5621	5275			
40	5279	5381	5703	5369	5483			
45	5288	5499	5525	5646	5615			
50	5572	5361	5718	5530	5301			
55	5657	5589	5711	5405	5306			
60	5438	5252	5563	5605	5373			
65	5537	5429	5616	5475	5425			
70	5411	5488	5702	5344	5697			
75	5495	5428	5430	5414	5401			
80	5261	5315	5610	5322	5389			
85	5328	5466	5694	5663	5476			
90	5596	5323	5586	5360	5433			
95	5713	5564	5346	5347	5303			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_27								
Frequency (MHz)	0	1	2	3	4			
0	5406	5279	5263	5505	5530			
5	5678	5721	5412	5670	5598			
10	5518	5515	5595	5427	5471			
15	5367	5622	5474	5281	5646			
20	5453	5644	5621	5552	5428			
25	5421	5529	5336	5439	5325			
30	5528	5315	5560	5342	5592			
35	5458	5317	5417	5290	5517			
40	5641	5609	5480	5692	5479			
45	5608	5704	5668	5362	5712			
50	5419	5581	5487	5533	5424			
55	5359	5496	5635	5698	5550			
60	5302	5503	5657	5378	5652			
65	5307	5675	5703	5483	5705			
70	5673	5454	5397	5557	5382			
75	5416	5425	5391	5486	5452			
80	5715	5308	5380	5344	5647			
85	5571	5525	5547	5576	5363			
90	5402	5287	5538	5445	5500			
95	5590	5476	5252	5446	5432			

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_28								
Frequency (MHz)	0	1	2	3	4			
0	5564	5518	5674	5666	5275			
5	5342	5646	5487	5261	5427			
10	5449	5304	5636	5622	5492			
15	5455	5274	5480	5326	5363			
20	5461	5335	5659	5544	5401			
25	5687	5381	5539	5640	5359			
30	5570	5679	5517	5460	5366			
35	5656	5378	5505	5310	5581			
40	5631	5600	5579	5374	5574			
45	5621	5459	5691	5287	5721			
50	5724	5491	5595	5632	5576			
55	5681	5380	5612	5313	5686			
60	5454	5669	5582	5495	5609			
65	5426	5603	5561	5327	5591			
70	5470	5506	5652	5557	5330			
75	5649	5413	5269	5670	5668			
80	5438	5647	5553	5515	5322			
85	5723	5618	5722	5717	5475			
90	5309	5601	5344	5604	5690			
95	5445	5685	5457	5368	5436			

Нор	oping Freque	ncy Sequenc	e Name: HOP_FI	REQ_SEQ_2	9
Frequency (MHz)	0	1	2	3	4
0	5344	5282	5610	5352	5592
5	5384	5668	5562	5424	5634
10	5380	5665	5677	5342	5513
15	5543	5401	5583	5371	5555
20	5469	5501	5600	5633	5374
25	5575	5330	5267	5269	5393
30	5709	5474	5675	5518	5476
35	5517	5596	5581	5356	5593
40	5470	5683	5614	5571	5453
45	5299	5723	5514	5367	5296
50	5504	5324	5325	5273	5378
55	5272	5537	5441	5252	5549
60	5287	5276	5627	5349	5362
65	5309	5724	5333	5366	5625
70	5372	5713	5315	5271	5445
75	5548	5428	5717	5697	5443
80	5618	5564	5680	5667	5652
85	5615	5262	5494	5512	5334
90	5306	5421	5305	5522	5620
95	5413	5619	5284	5552	5714

Hopping Frequency Sequence Name: HOP_FREQ_SEQ_30								
Frequency (MHz)	0	1	2	3	4			
0	5599	5521	5546	5513	5337			
5	5426	5593	5637	5587	5366			
10	5689	5454	5718	5537	5534			
15	5631	5528	5686	5416	5272			
20	5380	5570	5541	5625	5347			
25	5657	5373	5427	5276	5554			
30	5431	5415	5292	5296	5656			
35	5687	5377	5509	5604	5309			
40	5291	5455	5282	5568	5382			
45	5322	5306	5352	5401	5472			
50	5259	5279	5327	5646	5696			
55	5591	5470	5514	5507	5437			
60	5482	5273	5553	5592	5585			
65	5700	5566	5559	5632	5490			
70	5321	5529	5433	5601	5331			
75	5338	5317	5325	5697	5658			
80	5684	5406	5263	5694	5260			
85	5503	5265	5384	5617	5606			
90	5365	5622	5545	5552	5522			
95	5511	5567	5336	5707	5663			

--- END ---

Report No.: RF171011E02A-2 Page No. 112 / 112 Report Format Version: 6.1.2 Reference No.: 171011E03