Dr. Denton Bobeldyk

CIS 365 Artificial Intelligence

Error Reporting

Week in Review

Blackboard Check-in

Delivery Methods

Lecture

Videos

Lab Time

Small Groups

Methods of Error Reporting

- * Accuracy
- * Precision, Recall
- * ROC Curve
- * AUC
- * Precision-Recall Curve
- Mean Absolute Error and Mean Squared Error
- Cross Entropy Loss
- * Top-k Accuracy
- * Confusion Matrix

Accuracy

Calculate the ratio of correct predictions to the total number of predictions.

predictedCorrectly totalPredictions truePositive + trueNegative totalPredictions

Accuracy Example

Predicted Blue

5 predicted correctly

1 predicted incorrectly

Predicted Red

3 predicted correctly

1 predicted incorrectly

Accuracy Example

Predicted Blue

5 predicted correctly

1 predicted incorrectly

$$\frac{5+3}{10} = \frac{8}{10} = .8$$

Predicted Red

3 predicted correctly

1 predicted incorrectly

Accuracy Example - Alternative

Predicted Blue

5 true positives

1 false positive

Can frame the problem as:

Is this square blue?

If we frame it this way, we can have true positives and true negatives

Predicted Not Blue

3 true negatives

1 false negative

$$\frac{5+3}{10} = \frac{8}{10} = .8$$

Accuracy Binary Example

Predicted Blue

5 predicted correctly

1 predicted incorrectly

$$\frac{5+3}{10} = \frac{8}{10} = .8$$

Predicted Not Blue

3 predicted correctly

1 predicted incorrectly

Accuracy Multi-class Example

Predicted Blue

5 predicted correctly

1 predicted incorrectly

Predicted Green

4 predicted correctly

2 predicted incorrectly

Predicted Red

3 predicted correctly

1 predicted incorrectly

$$\frac{5+3+4}{\frac{16}{16}} = \frac{12}{16} = .75$$

Predicted Blue

5 predicted correctly

1 predicted incorrectly

Predicted Red

3 predicted correctly

1 predicted incorrectly

- A = number of data points from class ω_1 that were correctly classified as ω_1
- B = number of data points from class ω_1 that were incorrectly classified as ω_2
- C = number of data points from class ω_2 that were incorrectly classified as ω_1
- D = number of data points from class ω_2 that were correctly classified as ω_2

Predicted Red

Predicted Red

Predicted Red

The numbers on the diagonal are the correct predictions and for a system that is performing well, we expect those numbers to be the highest

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Confusion Matrix Multi-ClassExample

	predi	icted 0 predi	icted 1 predi	icted 2 predi	icted 3 predi	icted 4 predi	icted 5	ncted 6 predi	icted 7 predi	icted 8
actual 0	954	0	0	7	1	10	6	3	7	3
actual 1	0	1031	4	3	1	4	1	2	16	2
actual 2	12	21	852	18	11	8	14	20	29	5
actual 3	2	5	9	899	1	71	0	12	23	7
actual 4	2	8	2	2	861	7	7	1	4	89
actual 5	7	5	9	24	3	833	12	8	12	2
actual 6	11	6	2	0	6	31	902	0	8	1
actual 7	3	10	5	3	7	7	1	1041	0	14
actual 8	2	28	4	29	2	31	1	9	882	21
actual 9	7	3	1	7	10	11	1	44	4	873

Confusion Matrix Multi-ClassExample

	.odi	ncted 0 predi	cted 1 predi	cted 2	icted 3 predi	icted 4 predi	icted 5	icted 6 predi	icted 7 predi	icted 8
	bles	bles	bles	bles	bles	bles	bles	bles	bles	ble
actual 0	954	0	0	7	1	10	6	3	7	3
actual 1	0	1031	4	3	1	4	1	2	16	2
actual 2	12	21	852	18	11	8	14	20	29	5
actual 3	2	5	9	899	1	71	0	12	23	7
actual 4	2	8	2	2	861	7	7	1	4	89
actual 5	7	5	9	24	3	833	12	8	12	2
actual 6	11	6	2	0	6	31	902	0	8	1
actual 7	3	10	5	3	7	7	1	1041	0	14
actual 8	2	28	4	29	2	31	1	9	882	21
actual 9	7	3	1	7	10	11	1	44	4	873

What information does this confusion matrix tell us?

In Class Exercise

Confusion Matrix Worksheet

End