

TO USE CASTIGLIANO'S METHOD ALL LOADS NEED TO BE KNOWN. THUS MO NEEDS TO BE SOLVED Fer Pirsi.

Symmetry IS USED TO SIMPLIFY THIS PROBLEM.

ONLY BENDING AND TORSION ARE CONSIDERED.

From @

$$M_{ma} = \frac{\rho_{y}}{z}$$

Tmn = Mo

From (3)

$$M_{lm} = -M_o + \frac{\rho_x}{z} = \frac{\rho_x}{z} - m_o$$

THE TOTAL STRAIN ENERGY THAT RESULTS FROM THESE LCHOS (TAKING Stmmethy Into Account)

$$U = 2 \cdot \int \frac{M_{gm}^2}{2 \cdot EI} dx + 2 \cdot \int \frac{M_{mn}^2}{2 \cdot EI} dy$$

$$= \int_{0}^{\infty} \frac{\left(\frac{Px}{E} - m_{o}\right)^{2}}{\left(\frac{Px}{E} - m_{o}\right)^{2}} dx + \int_{0}^{\infty} \frac{P^{2}y^{2}}{4 \cdot EI} \cdot dy + \frac{m_{o}^{2} \cdot \alpha}{GK}$$

$$= \frac{1}{EI} \int_{0}^{\infty} (\frac{Px}{Z} - m_{o})^{2} dx + \frac{p^{2}}{4EI} \int_{0}^{\infty} y^{2} dy + \frac{M_{o}^{2} \cdot \alpha}{GK}$$

$$= \frac{1}{ET} \int_{0}^{2} \left(\frac{p^{2}x^{2}}{4} - m_{0} \cdot P_{1} x + m_{0}^{2} \right) dx + \frac{p^{2}}{4ET} \int_{0}^{2} \frac{q^{2}}{2} dy + \frac{m_{0}^{2} \cdot a}{GK}$$

$$= \frac{1}{ET} \left[\frac{\rho^2 b^3}{96} - \frac{m_0 \cdot \rho \cdot b}{9} + \frac{m_0^2 \cdot b}{7} \right] + \frac{\rho^2 a^3}{12ET} + \frac{m_0^2 a}{6K}$$

$$U = \frac{\rho^2 \cdot b^3}{96EI} - \frac{m_o \cdot \rho \cdot b^2}{8EI} + \frac{m_o^2 \cdot b}{2EI} + \frac{\rho^2 \cdot \alpha^3}{12EI} + \frac{m_o^2 \cdot \alpha}{GK}$$
$$= \left(\frac{b}{2EI} + \frac{a}{GK}\right) \cdot m_o^2 - \frac{\rho \cdot b^2}{2EEI} \cdot m_o + \frac{a^2}{42EI} \cdot \rho^2$$

THE ROTATIONAL DEPLECTION DUE TO ME CAN NOW BE FOUND AND SET TO O

$$\int_{m_0} = 0 = \frac{\partial U}{\partial m_0} = 2 \cdot \left(\frac{b}{2EI} + \frac{Q}{GK}\right) \cdot m_0 - \frac{p \cdot b^2}{8EI}$$

$$m_0 = \frac{\frac{p \cdot b^2}{2EI}}{2\left(\frac{b}{2EI} + \frac{Q}{GK}\right)} = \frac{\frac{p \cdot b^2}{2EI}}{2EIGK} = \frac{\frac{p \cdot b^2}{2EIGK}}{2EIGK} \cdot \frac{\frac{2EIGK}{2EIGK}}{2EIGK}$$

$$\int_{m_0} = \frac{b^2 \cdot G \cdot K}{8(b \cdot G \cdot K + 2\alpha \cdot E \cdot I)} \cdot P = A \cdot P \qquad \text{where} \qquad A = \frac{b^2 \cdot G \cdot K}{8(b \cdot G \cdot K + 2\alpha \cdot E \cdot I)}$$

SUBSTITUTING THIS RESULT FOR MO INTO THE TOTAL ENERGY EXPRESSION

$$U = \left(\frac{b}{2EI} + \frac{a}{GK}\right) \cdot A^2 p^2 - \frac{p^2 b^2 A}{8EI} + \frac{a^2}{12EI} \cdot p^2$$

$$= \left(\frac{b \cdot A^2}{2EI} + \frac{a \cdot A^2}{GK} - \frac{b \cdot A}{2EI} + \frac{a^2}{12EI}\right) p^2$$

THE DEPLECTION THAT RESULTS FROM P, AT THE LOCATION OF P, AND IN THE DIRECTION OF P CAN NOW BE FOUND BY TAKING THE DENIMATIVE OF THE STRAIN ENERGY WITH RESPECT TO P

$$\frac{\partial U}{\partial P} = \int_{P} = 2\left(\frac{b \cdot A^{2}}{2ET} + \frac{C \cdot A^{2}}{GK} - \frac{b^{2}}{8ET} + \frac{C^{2}}{12ET}\right)P$$

$$= \left(\frac{b \cdot A^{2}}{ET} - \frac{b^{2} \cdot A}{4ET} + \frac{C^{2}}{6ET} + 2 \cdot \frac{C \cdot A^{2}}{GK}\right)P$$