Operacijska istraživanja

13. predavanje: Rješavanje velikih problema

Kontekst predavanja

- Veliki problemi
- Generiranje stupaca
- Generiranje redaka (rezajuće plohe!)
- Problem optimalnog rezanja

- Predavanje bazirano na:
 - Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, Athena Scientific (1997) – potpoglavlja 6.1. - 6.3

Veliki problemi

- Matrica A ne stane u memoriju!
 - Čak niti uz revidiranu simpleksnu metodu

- Kupiti još memorije?
 - U nekim problemima broj redaka i stupaca skalira eksponencijalno

Veliki problemi – retci (ograničenja)

- Skaliranje redaka eksponencijalno
 - -Eksponencijalni broj ograničenja
 - -Primjer: **TSP**
 - Postoji Miller–Tucker–Zemlin (MTZ) formulacija koja ima slabu relaksaciju
 - Naivni zapis problema u kvalitetnoj formulaciji
 - -Optimalno rješenje se potencijalno sastoji od odvojenih podruta!
 - Dodaju se ograničenja koja eliminiraju podrute
 - Eksponencijalni broj takvih ograničenja

Veliki problemi – stupci (varijable)

- Skaliranje stupaca eksponencijalno
 - Eksponencijalni broj varijabli (npr. pretraživanje powerseta)
 - -Primjer: **Optimalno rezanje**
- Dual ovog problema ima problem sa retcima! (A se transponira)

Motivirajući primjer – optimalno rezanje*

 Slastičarna Vincek proizvodi rolade standardne duljine 20cm, čiji je proizvodni trošak 1\$ po komadu. Specijalne narudžbe kolijenata zahtijevaju različite duljine rolada koje se dobivaju rezanjem standardnih rolada u kraće duljine. Dnevne narudžbe su dane ispod. Treba zadovoljiti potražnju uz što manji trošak.

Order	Desired Width (cm)	
A	5	150
В	7	200
C	9	300

*Prilagođeno iz [1]

Optimalno rezanje - detalji

 Rezač je giljotina sa noževima podešenima na različite duljine. Postoje različiti načini na koje se može rezati standardne rolade za ispunjavanje narudžbi.

Uzorci rezanja, preuzeto iz [1]

Optimalno rezanje - formulacija

- Varijable koliko puta se koristi koji uzorak
- Ograničenja zadovoljenje narudžbi
- Fja cilja minimizirati broj komada korištenih standardnih rolada

$$\min_{x} c^{T} x$$
s.†. $Ax \ge b$,
$$x \ge 0, x \text{ integer}$$

Optimalno rezanje - formulacija

```
\min_{x} c^{T} x
s.†. Ax \ge b,
x \ge 0, x \text{ integer}
```

- x komponenta za svaki mogući uzorak (uz razbijanje simetrije)
- c vektor jedinica iste dimenzionalnosti kao x
- b vektor sa zahtijevanim količinama rolada različitih duljina
- A po stupcima konverzije uzoraka u komade spec. rolada

Optimalno rezanje – ograničeni uzorci

$$\min_{\mathbf{x}} x_A + x_B + x_C$$
s.t.
$$2x_B + 2x_C \ge 150$$

$$x_A + x_B \ge 200$$

$$x_A + x_C \ge 300$$

$$x \ge 0, x \text{ integer}$$

	Order	Desired Width (cm)	
Obj* = 300	A	5	150
Obj = 300	В	7	200
	C	9	300

17. siječnja 2022.

Optimalno rezanje – arbitrarni uzorci

Koji su svi mogući uzorci?

- Kombinatorika!
 - Sa parametrima problema eksponencijalno raste broj uzoraka
 - Parametri:
 - Duljina standarda
 - Broj različitih spec. duljina

Kako riješiti taj problem čak i kada je izvan dohvata memorije?

Generiranje stupaca

Problem u standardnoj formi

$$\min_{x} c^{T} x$$

$$Ax = b$$

$$x \ge 0$$

- $A \in \mathbb{R}^{m \times n}$
 - m mali broj redaka
 - n ogromni broj stupaca
- Treba nam samo m bazičnih stupaca (+ još pokoji...)

Generiranje stupaca

Problem u standardnoj formi

$$\min_{x} c^{T} x$$

$$Ax = b$$

$$x \ge 0$$

- Ignoriramo skoro sve stupce osim bazičnih i **ulazeće** nebazične varijable
- PROBLEM: faktori redukcije za nebazične!
 - Treba nam za odrediti ulazeću nebazičnu varijablu!
 - Negativni faktor redukcije

Generiranje stupaca

- Koji stupac?
- PROBLEM pronalazak ulazećih nebazičnih varijabli bez generiranja svih stupaca

$$\min_{i} \overline{c_i} \tag{1}$$

- Nekad, prikladna struktura problema
 - Optimalno rezanje knapsack problem!
- Ako je minimum (1) ≥0 -> OPTIMUM
 - Inače, index i označava ulaznu nebazičnu varijablu

Generiranje stupaca – optimalno rezanje

- Složimo (master) model sa malom jezgrom uzoraka
- Dobijemo faktore redukcije za uzorke unutar model (u retku fje cilja)
- Iz dualnih vrijednosti p možemo izračunati faktore redukcije za svaki drugi uzorak!!
- Faktor redukcije za uzorak ${\it j}$ (slijedi iz simpleksa), $A_{\rm j}$ je j-ti stupac (def.uzorka) $\overline{c_{\it j}}=1-p^TA_{\it j}$
- Trebamo gledati SAMO valjane uzorke, koji stanu na standardnu duljinu W
 - Ako je \mathbf{w} vektor specijalnih duljina, valjani uzorak zadovoljava $w^TA_j \leq W$

Generiranje stupaca – optimalno rezanje

• Dakle, pomoćni problem za pronalazak ulazeće nebazične varijable:

$$\min_{\substack{A_j \\ W^T A_j \le W}} 1 - p^T A_j$$

$$w^T A_j \le W$$

$$A_j \ge 0, A_j \text{ integer}$$

- Knapsack problem koji slaže optimalan uzorak! (sa najmanjim faktorom redukcije)
- Može se riješiti sa ILP, DP i sl.

Optimalno rezanje – CG algoritam

- 1. Generirati uzorke za prvo bazično rješenje
 - Npr. pohlepni nezavisni uzorci
 - Ili ortogonalnu bazu uzorci (rasipni)
- 2. Ponavljaj dok ima novih uzoraka (nova ulazna nebazična varijabla)
 - 1. Dodaj nove uzorke u master problem
 - 2. Riješi relaksirani master problem (sa trenutnim uzorcima)
 - 3. Izvuci dualne vrijednosti za ograničenja master problema
 - 4. Riješi potproblem (knapsack)
 - 1. Ako je optimalno rješenje $<_{\epsilon} 0$, optimum potproblema čini novi uzorak, vrati uzorak
 - 2. Inače, vrati prazan uzorak
- 3. Riješi cjelobrojni master problem

Optimalno rezanje – CG efekti

- Originalni problem je relativno mali
 - W=20cm, vrste narudžbi [5,7,9]
 - 15 mogućih uzoraka, generira se 1-3 uzorka (ovisno o inicijalizaciji)

- Veći problem
 - W=200cm, vrste narudžbi [4,5,7,9,12]
 - 276120 mogućih uzoraka, generira se 6 uzoraka

Generiranje redaka (rezajuće plohe)

- Metoda rezajućih ploha ili odgođeno generiranje ograničenja
- Koristimo samo podskup svih ograničenja
- Detekcija nezadovoljenih ograničenja
 - Uvođenje u LP
- Uklanjanje neaktivnih ograničenja

 Ekvivalentno, u određenim uvjetima, odgođenom generiranju stupaca na dualu

Reference

- [1] A cutting stock problem PuLP portal
- [2] PuLP examples <u>link</u>
- [3] Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, Athena Scientific (1997)