

Luangwoon University M. Study neet*17 Machine Learning is **Extremely powerful**

But Tuning Machine Learning system is **Extremely non-intuitive**

https://playground.tensorflow.org/

Many Tunable parameters in Machine learning

Manual Search

Select hyperparameter manually with using prior knowledge and intuition

Manual Search

Problem

- 1. It doesn't guarantee that the solution is truly optimal.
- 2. As the number of hyperparameters increases, the problem becomes more complex

Grid Search

Select all hyperparameter within the certain section at regular intervals

Grid Search

Problem

- As the number of hyperparameters increases, the problem becomes more complex
- 2. There is no exploitation

Random Search

Select hyperparameter by random sampling

Advantage

- 1. Reduce the number of iteration
- 2. The values located between grids can also be stochastically searched

Random Search

Problem

- 1. As the number of hyperparameters increases, the problem becomes more complex
- 2. There is no exploitation

Exploration-Exploitation Dilemma

- 1. Random search or grid search
- 2. Expert defined grid search near "good" points
- 3. Refine domain and repeat steps "grad student descent"

Problem

- Expert intensive
- Computationally intensive
- Finds potentially local optima
- Does not fully exploit useful information

- 1. Optimize some Overall Evaluation Criterion (OEC)
 - Loss, Accuracy, Likelihood, Revenue
- 2. Given tunable parameters
 - Hyperparameters, feature parameters
- 3. In an efficient way
 - Sample function as few times as possible
 - Training on big data is expensive

Optimization

Find optimal solution x^* that maximize f(x)

Suggest Two essential element

Surrogate Model

$$(x_1, f(x_1)), ..., (x_t, f(x_t))$$

Probabilistic Estimation of Unknown Objective Function

Acquisition Function

Recommand x_{t+1}

Recommend candidate values to help you find the optimal input value

Optimization

Find optimal solution x^* that maximize f(x)

Suggest Two essential element

알고리즘 Bayesian Optimization

- 1: for t = 1, 2, ... do
- 2: 기존 입력값-함숫값 점들의 모음 $(x_1,f(x_1)),(x_2,f(x_2)),...,(x_t,f(x_t))$ 에 대한 Surrogate Model의 학문적 추정 결과를 바탕으로, Acquisition Function을 최대화하는 다음 입력값 후보 x_{t+1} 을 선정한다.
- 3: 입력값 후보 x_{t+1} 에 대한 함숫값 $f(x_{t+1})$ 을 계산한다.
- 4: 기존 입력값-함숫값 점들의 모음에 $(x_{i+1},f(x_{i+1}))$ 를 추가하고, Surrogate Model로 확률적 추정을 다시 수행한다.
- 5: end for

Pseudo-code for BO algorithm

Surrogate Model

Gaussian Processes(GP)

$$f(x) \sim GP(\mu(x), k(x, x'))$$

Gaussian process uses lazy learning and a measure of the similarity between points (the kernel function) to predict the value for an unseen point from training data

Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions

Surrogate Model

Gaussian Processes(GP)

black dotted line: Actual object function

Black line: Estimated avg function

Blue space : Estimated Standard deviation

Black dots: searched input-function output point

Acquisition Function

Trade-off
Exploitation vs Exploration

Acquisition Function

Expected Improvement (EI)

Acquisition Function

Expected Improvement (EI)

Define input, object function f and other setting values.

- Input: hyperparameters
- Objective function f(x)
- Others
 - Set lower/upper bound of x (a,b)
 - Determine N_{warmup} and N

 N_{warmup} : the number of based points $(x_i, f(x_i))$

N: the number of training iteration

Warmup Phase

select x_i with random sampling and calculate $f(x_i)$ (1<= $i < =N_{warmup}$)

Execute probabilistic modeling and estimation under the gaussian process model, conditioned on all the previous observations of $(x_i, f(x_i))$

Calculate Expected Improvement function based on $\sigma(x)$, $\mu(x)$, and select $x_{i+1} = argEI(x)$

Train DL model with x_{i+1} , and the performance of the result is considered $f(x_{i+1})$

Repeat Upper process until the number of iteration is equal to N

Select x^* that maximize $\mu(x)$ based on objective function

				GPGO 1-	Step	GPGO 2-Step
	EGO	RBF	DIRECT	Non-Periodic	Periodic	Non-Periodic
Br	0.943	0.960	0.958	0.980	_	_
C6	0.962	0.962	0.940	0.890	_	0.967
G-P	0.783	0.815	0.989	0.804	_	0.989
Н3	0.970	0.867	0.868	0.980	_	_
H6	0.837	0.701	0.689	0.999	_	
Sh5	0.218	0.092	0.090	0.485	_	_
Sh7	0.159	0.102	0.099	0.650		_
Sh10	0.135	0.100	0.100	0.591	_	
GK2	0.571	0.567	0.538	0.643	_	_
GK3	0.519	0.207	0.368	0.532	—	_
Shu	0.492	0.383	0.396	0.437	0.348	0.348
G2	0.979	1.000	0.981	1.000	1.000	_
G5	1.000	0.998	0.908	0.925	0.957	—
A2	0.347	0.703	0.675	0.606	0.612	0.781
A5	0.192	0.381	0.295	0.089	0.161	—
R	0.652	0.647	0.776	0.675	0.933	—
mean	0.610	0.593	0.604	0.705	_	_

BO works better than others in practice

SMBO

Sequential Model-Based Optimization

- 1. Build Gaussian Process (GP) with points
- 2. Optimize the fit of the GP (covariance
- 3. Find the point(s) of highest Expected Improvement within parameter domain
- 4. Return optimal next best point(s) to sample