Supplementary Material for HYDRAFloods Module 2

Optical Water Indices

SERVIR Science Coordination Office Curriculum Development Team Micky Maganini

Contact: mrm0065@uah.edu

Prepared for "Observing and Modelling Surface Water in a Changing World" at ITC Quartile 3 2022-2023

In the below table...

- "Red" represents radiance/reflectance in the red band
- "Green" represents radiance/reflectance in the green band
- "Blue" represents radiance/reflectance in the blue band
- "NIR" represents radiance/reflectance in the Near infrared band (0.85 0.88 microns on Landsat 8)
- "Swir1" represents radiance/reflectance in the first shortwave infrared band (1.57-1.65 microns on Landsat 8)
- "Swir2" represents radiance/reflectance in the second shortwave infrared band (2.11-2.99 microns on Landsat 8)

Index Name	Formula	HYDRAFloods Code	Reference
Modified Normalized Water Index (MNDWI)	green — swir1 green + swir1	Python hf.mndwi	https://doi.org/10.108 0/0143116060058917 9
New Water Index (NWI)	$\frac{blue - (nir + swir1 + swir2)}{blue + (nir + swir1 + swir2)}$	Python hf.nwi	https://www.mdpi.com /2073-4441/13/12/164 7
General Water Index (GWI)	(green + red) - (nir + swir1)	Python hf.gwi	https://github.com/Ser vir-Mekong/hydra-floo ds/blob/master/hydrafl oods/indices.py
Automated Water	4.0 * (green - swir1) - ((0.25 * nir) + (2.75 * swir2)		https://doi.org10.1016

Extraction Index No Shadow		Python hf.aewinsh	/j.rse.2013.08.029
Automated Water Extraction Index with Shadow	blue + 2.5 * green - 1.5 * (nir + swir1) - 0.25 * swir2	Python hf.aewish	https://doi.org/10.101 6/j.rse.2013.08.029
Land Surface Water Index	$\frac{(nir - swir1)}{(nir + swir1)}$	Python hf.lswi	https://doi.org/10.108 0/0143116080257265 3
Water Ratio Index	$\frac{(green + red)}{(nir + swir1)}$	Python hf.wri	https://doi.org/10.1109 /GEOINFORMATICS. 2010.5567762
Multi Band Water Index	(3 * green) – red – nir – swir1 – swir2	Python hf.mbwi	https://doi.org/10.1016/ j.jag.2018.01.018

Modified Water	1 — (NDVI — MNDWI)	Python	https://ieeexplore.ieee.
Index		hf.mwi	org/document/9011209