# EBU7240 Computer Vision

- Tracking: Image Alignment -

Semester 1, 2021

**Changjae Oh** 

#### Content

- Motion Estimation (Review of EBU6230 content)
- Image Alignment
- Kanade-Lucas-Tomasi (KLT) Tracking
- Mean-shift Tracking

## Objectives

- To review Lucas-Kanade optical flow in EBU6230
- To understand Lucas-Kanade image alignment
- To understand the relationship between Lucas-Kanade optical flow and im age alignment
- To understand Kanade-Lucas-Tomasi tracker

#### Content

- Motion Estimation (Review of EBU6230 content)
- Image Alignment
- Kanade-Lucas-Tomasi (KLT) Tracking
- Mean-shift Tracking

#### Motion Estimation: Gradient method

Brightness consistency constraint

$$H(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

- small motion:  $(\Delta x \text{ and } \Delta y \text{ are less than 1 pixel})$ 
  - suppose we take the Taylor series expansion of *I*:

$$I(x + \Delta, y + \Delta y, t + \Delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t$$
+ higher order terms

$$I(x + \Delta, y + \Delta y, t + \Delta t) \approx I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t$$

#### **Gradient method**

• Spatio-temporal constraint

$$\frac{\partial I}{\partial x}V_x + \frac{\partial I}{\partial y}V_y + \frac{\partial I}{\partial t} = 0$$

- This equation introduces one constraint only
  - Where the motion vector of a pixel has 2 components (parameters)
  - A second constraints is necessary to solve the system

#### Aperture problem

#### The aperture problem

- stems from the need to solve one equation with two unknowns,
   which are the two components of optical flow
- it is not possible to estimate both components of the optical flow from the local spatial and temporal derivatives

#### By applying a constraint

 the optical flow field changes smoothly in a small neighborhood it is possible to estimate both components of the optical flow if the spatial and temporal derivatives of the image intensity are available

#### Solving the aperture problem

- How to get more equations for a pixel?
- By applying a constraint
  - the optical flow field changes smoothly in a small neighborhood it is possible to estimate both components of the optical flow if the spatial and temporal derivatives of the image intensity are available
- Lucas–Kanade method

#### **Gradient method**

 The Lucas–Kanade method assumes that the displacement of the image contents between two nearby instants (frames) is small

$$\begin{split} I_{x}(q_{1})V_{x} + I_{y}(q_{1})V_{y} &= -I_{t}(q_{1}) \\ I_{x}(q_{2})V_{x} + I_{y}(q_{2})V_{y} &= -I_{t}(q_{2}) \\ ... \\ I_{x}(q_{n})V_{x} + I_{y}(q_{n})V_{y} &= -I_{t}(q_{n}) \end{split}$$

Matrix form

$$A = \begin{bmatrix} I_{x}(q_{1}) & I_{y}(q_{1}) \\ I_{x}(q_{2}) & I_{y}(q_{2}) \\ \dots & \dots \\ I_{x}(q_{n}) & I_{y}(q_{n}) \end{bmatrix} \qquad v = \begin{bmatrix} V_{x} \\ V_{y} \end{bmatrix} \qquad b = \begin{bmatrix} -I_{t}(q_{1}) \\ -I_{t}(q_{2}) \\ \dots \\ -I_{t}(q_{n}) \end{bmatrix}$$

#### **Gradient method**

Prob: we have more equations than unknowns

Solution: solve least squares problem

$$(A^T A)v = A^T b$$

minimum least squares solution given by solution of:

$$\begin{bmatrix}
\sum_{i=1}^{N} I_{x} I_{x} & \sum_{i=1}^{N} I_{x} I_{y} \\
\sum_{i=1}^{N} I_{y} I_{y}
\end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \end{bmatrix} = -\begin{bmatrix} \sum_{i=1}^{N} I_{x} I_{t} \\
\sum_{i=1}^{N} I_{y} I_{t}
\end{bmatrix}$$

- The summations are over all n pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)

#### Lucas-Kanade flow

$$\begin{bmatrix}
\sum_{i=1}^{T} I_{x} I_{x} & \sum_{i=1}^{T} I_{x} I_{y} \\
\sum_{i=1}^{T} I_{x} I_{y} & \sum_{i=1}^{T} I_{y} I_{y}
\end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \end{bmatrix} = -\begin{bmatrix} \sum_{i=1}^{T} I_{x} I_{t} \\ \sum_{i=1}^{T} I_{y} I_{t} \end{bmatrix}$$

$$A^{T} A \qquad A^{T} b$$

- When is this solvable?
  - A<sup>T</sup>A should be invertible
  - A<sup>T</sup>A should not be too small due to noise
    - eigenvalues  $\lambda_1$  and  $\lambda_2$  of **A<sup>T</sup>A** should not be too small
  - A<sup>T</sup>A should be well-conditioned
    - $-\lambda_1/\lambda_2$  should not be too large ( $\lambda_1$  = larger eigenvalue)
- Recall the Harris corner detector:  $M = A^T A$  is the second moment matrix

#### Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:



#### Uniform region



- gradients have small magnitude
- small  $\lambda_1$ , small  $\lambda_2$
- system is ill-conditioned

#### Edge



- gradients have one dominant direction
- large  $\lambda_1$ , small  $\lambda_2$
- system is ill-conditioned

#### High-texture or corner region



- gradients have different directions, large magnitudes
- large  $\lambda_1$ , large  $\lambda_2$
- system is well-conditioned

#### Content

- Motion Estimation (Review of EBU6230 content)
- Image Alignment
- Kanade-Lucas-Tomasi (KLT) Tracking
- Mean-shift Tracking





How can I find



in the image?



## Idea #1: Template Matching



Slow, global solution

## Idea #2: Pyramid Template Matching







Faster, locally optimal

## Idea #3: Model refinement

(when you have a good initial solution)



Fastest, locally optimal

## Some notation before we get into the math...

2D image transformation  $\mathbf{W}(m{x};m{p})$ 

2D image coordinate

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

Parameters of the transformation

$$\boldsymbol{p} = \{p_1, \dots, p_N\}$$

Warped image

$$I(oldsymbol{x'}) = I(\mathbf{W}(oldsymbol{x}; oldsymbol{p}))$$
Pixel value at a coordinate

Translation 
$$\mathbf{W}(m{x};m{p}) = \left[egin{array}{c} x+p_1 \ y+p_2 \end{array}
ight] = \left[egin{array}{c} 1 & 0 & p_1 \ 0 & 1 & p_2 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight] = \mathrm{transform}$$

can be written in matrix form when linear affine warp matrix can also be 3x3 when last row is [0 o 1]

Problem definition

$$\min_{m{p}} \sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) \right]^2$$

Find the warp parameters **p** such that the SSD is minimized

Find the warp parameters **p** such that the SSD is minimized



Problem definition

$$\min_{m{p}} \sum_{m{x}} \left[ I(m{W}(m{x};m{p})) - T(m{x}) 
ight]^2$$
warped image template image

Find the warp parameters **p** such that the SSD is minimized

How could you find a solution to this problem?

This is a non-linear (quadratic) function of a non-parametric function!

(Function I is non-parametric)

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Hard to optimize

What can you do to make it easier to solve?

assume good initialization, linearized objective and update incrementally

(pretty strong assumption) —

If you have a good initial guess p...

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

can be written as ...

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

(a small incremental adjustment) (this is what we are solving for now)

This is **still** a non-linear (quadratic) function of a non-parametric function!

(Function I is non-parametric)

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

How can we linearize the function  $\mathbf{I}$  for a really small perturbation of  $\mathbf{p}$ ?

Taylor series approximation!

Multivariable Taylor Series Expansion (First order approximation)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

$$I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p}+\Delta\boldsymbol{p})) \approx I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \frac{\partial I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}$$
 
$$\mathsf{chain\,rule} \ = I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \frac{\partial I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})}{\partial \boldsymbol{x}'} \frac{\partial \mathbf{W}(\boldsymbol{x};\boldsymbol{p})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}$$
 
$$\mathsf{short\text{-}hand} = I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}$$

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

By linear approximation,

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Now, the function is a linear function of the unknowns

## The Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

$$\partial \mathbf{W} = \left[ egin{array}{c} W_x(x,y) \ W_y(x,y) \end{array} 
ight]$$

$$rac{\partial \mathbf{W}}{\partial oldsymbol{p}} = \left[ egin{array}{cccc} rac{\partial W_x}{\partial p_1} & rac{\partial W_x}{\partial p_2} & \cdots & rac{\partial W_x}{\partial p_N} \ & & & & & \ rac{\partial W_y}{\partial p_1} & rac{\partial W_y}{\partial p_2} & \cdots & rac{\partial W_y}{\partial p_N} \end{array} 
ight]$$

Rate of change of the warp

#### Affine transform

$$\mathbf{W}(oldsymbol{x};oldsymbol{p}) = \left[egin{array}{c} p_1x + p_3y + p_5 \ p_2x + p_4y + p_6 \end{array}
ight]$$

$$\frac{\partial W_x}{\partial p_1} = x \qquad \frac{\partial W_x}{\partial p_2} = 0 \qquad \cdots$$

$$\frac{\partial W_y}{\partial p_1} = 0 \qquad \cdots$$

$$rac{\partial \mathbf{W}}{\partial oldsymbol{p}} = \left[ egin{array}{ccccc} x & 0 & y & 0 & 1 & 0 \ 0 & x & 0 & y & 0 & 1 \end{array} 
ight]$$



## Summary: Lucas-Kanade alignment

#### **Problem:**

$$\min_{m{p}} \sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) 
ight]^2$$
 warped image template image

Difficult non-linear optimization problem

#### **Strategy:**

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

<u>Assume</u> known approximate solution Solve for increment

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Taylor series approximation Linearize

then solve for  $\Delta oldsymbol{p}$ 

## Lucas-Kanade alignment - Solver

OK, so how do we solve this?

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

#### Lucas-Kanade alignment - Solver

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

(moving terms around)

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \left\{ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right\} \right]^2$$
vector of vector of vector of variables variables

Have you seen this form of optimization problem before?

#### Lucas-Kanade alignment - Solver

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2$$

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \{T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p}))\} \right]^2$$
 Looks like 
$$\mathbf{A} \mathbf{X} - \mathbf{b}$$

How do you solve this?

#### Lucas-Kanade alignment - Solver

Least squares approximation

$$\hat{x} = rg \min_x ||Ax - b||^2$$
 is solved by  $x = (A^ op A)^{-1} A^ op b$ 

Applied to our tasks:

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \{ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \} \right]^{2}$$

is optimized when

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right] \qquad \overset{\text{after applying}}{x} = (A^{\top} A)^{-1} A^{\top} b$$

where 
$$H = \sum_{\boldsymbol{m}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]$$
  $A^{\top} A$ 

## Lucas-Kanade alignment - Solver

#### Solve:

$$\min_{m{p}} \sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) 
ight]^2$$
 warped image template image

Difficult non-linear optimization problem

#### Strategy:

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Assume known approximate solution Solve for increment

$$\sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) + 
abla I rac{\partial \mathbf{W}}{\partial m{p}} \Delta m{p} - T(m{x}) 
ight]^2$$
 Taylor series approximation Linearize

#### **Solution:**

$$\Delta m{p} = H^{-1} \sum_{m{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]^{ op} \left[ T(m{x}) - I(\mathbf{W}(m{x};m{p})) 
ight] \quad rac{\mathsf{Solution}}{\mathsf{s app}}$$

Solution to least square s approximation

$$H = \sum_{m{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]^ op \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]$$

Hessian

Called Gauss-Newton gradient decent non-linear optimization!

#### Lucas-Kanade alignment - Algorithm

- 1. Warp image  $I(\mathbf{W}(x; p))$
- 2. Compute error image  $[T(x) I(\mathbf{W}(x; p))]$
- 3. Compute gradient  $\nabla I(x')$  x': coordinates of the warped image (gradients of the warped image)
- 4. Evaluate Jacobian  $\frac{\partial \mathbf{W}}{\partial p}$
- 5. Compute Hessian  ${\it H}$
- 6.Compute  $\Delta p$

- $H = \sum_{m{x}} \left[ 
  abla I rac{\partial \mathbf{W}}{\partial m{p}} 
  ight]^{ op} \left[ 
  abla I rac{\partial \mathbf{W}}{\partial m{p}} 
  ight]^{ op}$
- $\Delta oldsymbol{p} = H^{-1} \sum_{oldsymbol{x}} \left[ 
  abla I rac{\partial \mathbf{W}}{\partial oldsymbol{p}} 
  ight]^{ op} \left[ T(oldsymbol{x}) I(\mathbf{W}(oldsymbol{x}; oldsymbol{p})) 
  ight]$
- 7.Update parameters  $oldsymbol{p} \leftarrow oldsymbol{p} + \Delta oldsymbol{p}$

## Lucas-Kanade alignment - Algorithm

- 1. Warp image  $I(\mathbf{W}(x; p))$
- 2. Compute error image  $[T(x) I(\mathbf{W}(x; p))]$
- 3.Compute gradient  $\nabla I(\boldsymbol{x}')$
- 4. Evaluate Jacobian  $\frac{\partial \mathbf{W}}{\partial p}$
- 5. Compute Hessian H
- 6.Compute  $\Delta p$
- 7.Update parameters  $oldsymbol{p} \leftarrow oldsymbol{p} + \Delta oldsymbol{p}$









$$H = \sum_{m{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]^{ op} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]$$

$$\Delta oldsymbol{p} = H^{-1} \sum_{oldsymbol{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial oldsymbol{p}} 
ight]^{ op} \left[ T(oldsymbol{x}) - I(\mathbf{W}(oldsymbol{x}; oldsymbol{p})) 
ight]$$



#### L-K motion estimation vs L-K image alignment?

#### Relationships

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

 Lucas-Kanade motion estimation (what we learned in EBU6230) can be seen as a spec ial case of the Lucas-Kanade image alignment with a translational warp model

Translation 
$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} x+p_1 \\ y+p_2 \end{bmatrix}$$
 
$$= \begin{bmatrix} 1 & 0 & p_1 \\ 0 & 1 & p_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 coordinate 
$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} p_1x+p_2y+p_3 \\ p_4x+p_5y+p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 affine transform coordinate

Affine 
$$\mathbf{W}(m{x};m{p}) = \left[egin{array}{c} p_1x + p_2y + p_3 \ p_4x + p_5y + p_6 \end{array}
ight] = \left[egin{array}{c} p_1 & p_2 & p_3 \ p_4 & p_5 & p_6 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight]_{ ext{coordinate}}$$

#### Content

- Motion Estimation (Review of EBU6230 content)
- Image Alignment
- Kanade-Lucas-Tomasi (KLT) Tracking
- Mean-shift Tracking



https://www.youtube.com/watch?v=rwljkECpY0M

#### Feature-based tracking

- Up to now, we've been aligning entire images
  - but we can also track just small image regions too

- Questions to solve tracking
  - How should we select features?
  - How should we track them from frame to frame?

## **KLT-tracker:** history





An Iterative Image Registration Technique with an Application to Stereo Vision.

1981



Detection and Tracking of Feature Points.

1991





The original KLT algorithm Good Features to Track.

1994

## **KLT-tracker:** history

#### Kanade-Lucas-Tomasi



How should we track them from frame to frame?

#### Lucas-Kanade

Method for aligning (tracking) an image patch

How should we select features?

#### Tomasi-Kanade

Method for choosing the best feature (image patch) for tracking

#### What are good features for tracking?

Intuitively, we want to avoid smooth regions and edges.

But is there a more principled way to define good features?

What are good features for tracking?

Can be derived from the tracking algorithm

'A feature is good if it can be tracked well'

## Recall: Lucas-Kanade image alignment

error function (SSD) 
$$\sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) 
ight]^2$$

incremental update

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

linearize

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Gradient update

$$\Delta oldsymbol{p} = H^{-1} \sum_{oldsymbol{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial oldsymbol{p}} 
ight]^{ op} \left[ T(oldsymbol{x}) - I(\mathbf{W}(oldsymbol{x}; oldsymbol{p})) 
ight]$$

$$H = \sum_{m{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]^{ op} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]$$

Update

$$oldsymbol{p} \leftarrow oldsymbol{p} + \Delta oldsymbol{p}$$

#### Hessian matrix

Stability of gradient decent iterations depends on ...

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

Inverting the Hessian

$$H = \sum_{m{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]^{ op} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]$$

#### When does the inversion fail?

H is singular. But what does that mean?

#### **Hessian matrix**

#### Above the noise level

$$\lambda_1 \gg 0$$

$$\lambda_2 \gg 0$$

both Eigenvalues are large

Well-conditioned

both Eigenvalues have similar magnitude

#### Hessian matrix

Concrete example: Consider translation model

$$\mathbf{W}(oldsymbol{x};oldsymbol{p}) = \left[egin{array}{c} x+p_1 \ y+p_2 \end{array}
ight] \qquad \qquad rac{\mathbf{W}}{\partial oldsymbol{p}} = \left[egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Hessian

$$H = \sum_{m{x}} egin{bmatrix} 
abla I & rac{\partial \mathbf{W}}{\partial m{p}} \end{bmatrix}^{ op} egin{bmatrix} 
abla I & rac{\partial \mathbf{W}}{\partial m{p}} \end{bmatrix} \\ &= \sum_{m{x}} egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} I_x \ I_y \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \\ &= egin{bmatrix} 
abla x & I_x I_x \ \sum_{m{x}} I_y I_y \ \sum_{m{x}} I_y I_y \end{bmatrix} & \leftarrow \textit{when is this singular?} \end{cases}$$

How are the eigenvalues related to image content?

# Interpreting eigenvalues



# Interpreting eigenvalues



# Interpreting eigenvalues



#### What are good features for tracking?

$$\min(\lambda_1, \lambda_2) > \lambda$$

'big Eigenvalues means good for tracking'

## **KLT algorithm**

- 1. Find corners satisfying  $\min(\lambda_1, \lambda_2) > \lambda$
- 2. For each corner compute displacement to next frame using the Lucas-Kanade method
- 3. Store displacement of each corner, update corner position
- 4. (optional) Add more corner points every M frames using 1
- 5. Repeat 2 to 3 (4)
- 6. Returns long trajectories for each corner point

# EBU7240 Computer Vision

- Mean-shift tracking -

Semester 1, 2021

**Changjae Oh** 

#### Content

- Motion Estimation (Review of EBU6230 content)
- Image Alignment
- Kanade-Lucas-Tomasi (KLT) Tracking
- Mean-shift Tracking



A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

Find the region of highest density

A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

Pick a point

A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

#### Draw a window



A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

Compute the (weighted) **mean** 



A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

#### **Shift** the window



A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

#### Compute the **mean**























A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)













Initialize  $oldsymbol{x}$ 

place we start

While  $v({m x}) > \epsilon$ 

shift values becomes really small

1. Compute mean-shift

$$m(oldsymbol{x}) = rac{\sum_s K(oldsymbol{x}, oldsymbol{x}_s) oldsymbol{x}_s}{\sum_s K(oldsymbol{x}, oldsymbol{x}_s)}$$

compute the 'mean'

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

compute the 'shift'

2. Update  $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$ 

update the point

### **Mean-Shift Tracking**

Given a set of points:

$$\{oldsymbol{x}_s\}_{s=1}^S \qquad oldsymbol{x}_s \in \mathcal{R}^d$$

and a kernel:

$$K(\mathbf{x}, \mathbf{x}_{S}) = g\left(\frac{\|\mathbf{x} - \mathbf{x}_{S}\|^{2}}{h}\right)$$

Find the mean sample point:

 $\boldsymbol{x}$ 

Initialize  $oldsymbol{x}$ 

place we start

While  $v(\boldsymbol{x}) > \epsilon$ 

shift values beco

#### Gaussian Noise Removal: Bilateral Filtering

- · Bilateral filter for grayscale image
- One of the most popular filters with various applications
- Considers both spatial and intensity distances

$$O(i,j) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)I(i+s,j+t)$$

$$\begin{split} w(s,t) &= \frac{1}{W(i,j)} \exp\left(-\frac{s^2}{2\sigma_s^2} - \frac{t^2}{2\sigma_t^2}\right) \exp\left(-\frac{(I(i,j) - I(i+s,j+t))^2}{2\sigma_r^2}\right) \\ W(i,j) &= \sum_{m=-a} \sum_{n=-b} \exp\left(-\frac{m^2}{2\sigma_s^2} - \frac{n^2}{2\sigma_t^2}\right) \exp\left(-\frac{(I(i,j) - I(i+m,j+n))^2}{2\sigma_r^2}\right) \end{split}$$



This can be rewritten as:

$$O_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in N_{\mathbf{p}}} G_{\sigma_{\mathbf{s}}}(|\mathbf{p} - \mathbf{q}|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

$$W_{\mathbf{p}} = \sum_{\mathbf{q} \in N_{\mathbf{p}}} G_{\sigma_{\mathbf{s}}}(|\mathbf{p} - \mathbf{q}|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$$

l. Compute mean-shift

$$m(oldsymbol{x}) = rac{\sum_s K(oldsymbol{x}, oldsymbol{x}_s) oldsymbol{x}_s}{\sum_s K(oldsymbol{x}, oldsymbol{x}_s)}$$

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update  $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$ 

compute the 'mean'

compute the 'shift'

update the point

Everything up to now has been about distributions over samples...

# **Dealing with Images**

Pixels for a lattice, spatial density is the same everywhere!



What can we do?

### **Dealing with Images**

Consider a set of points: 
$$\{m{x}_s\}_{s=1}^S$$
  $m{x}_s \in \mathcal{R}^d$ 

Associated weights: 
$$w({m x}_s)$$

Sample mean: 
$$m(\boldsymbol{x}) = \frac{\sum_s K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_s K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s)}$$

Mean shift: 
$$m(oldsymbol{x}) - oldsymbol{x}$$

### Mean-Shift Algorithm (for images)

Initialize  $oldsymbol{x}$ 

While 
$$v(\boldsymbol{x}) > \epsilon$$

1. Compute mean-shift

$$m(\boldsymbol{x}) = rac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) \boldsymbol{w}(\boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) \boldsymbol{w}(\boldsymbol{x}_s)}$$

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update  $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$ 





























### Mean-Shift procedure

#### Simple Mean Shift procedure:

- Compute mean shift vector
- Translate the Kernel window by m(x)

Initialize 
$$oldsymbol{x}$$

While 
$$v(\boldsymbol{x}) > \epsilon$$

1. Compute mean-shift

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s)}$$

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update 
$$\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$$



Finally... mean shift tracking in video!

### Mean shift tracking in video

Goal: find the best candidate location in frame 2



Frame 1 Frame 2

Use the mean shift algorithm to find the best candidate location

# Non-rigid object tracking



hand tracking

### Non-rigid object tracking

Compute a descriptor for the target



Target

# Non-rigid object tracking

Search for similar descriptor in neighborhood in next frame



## Non-rigid object tracking

Compute a descriptor for the new target



Target

### Non-rigid object tracking

Search for similar descriptor in neighborhood in next frame



How do we model the target and candidate regions?

### Modelling the target



M-dimensional target descriptor

$$oldsymbol{q} = \{q_1, \dots, q_M\}$$

(centered at target center)

a 'fancy' (confusing) way to write a weighted histogram





### Modelling the candidate

M-dimensional candidate descriptor

$$p(y) = \{p_1(y), ..., p_M(y)\}$$

(centered at location y)

a weighted histogram at y

$$p_m = C_h \sum_n k \left( \left\| rac{oldsymbol{y} - oldsymbol{x}_n}{h} 
ight\|^2 
ight) \delta[b(oldsymbol{x}_n) - m]$$



### Similarity between the target and candidate

$$d(\boldsymbol{y}) = \sqrt{1 - \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]}$$

$$ho(y) \equiv 
ho[oldsymbol{p}(oldsymbol{y}), oldsymbol{q}] = \sum_{m} \sqrt{p_m(oldsymbol{y})q_u}$$

Just the Cosine distance between two unit vectors

$$\rho(\boldsymbol{y}) = \cos \theta \boldsymbol{y} = \frac{\boldsymbol{p}(\boldsymbol{y})^{\top} \boldsymbol{q}}{\|\boldsymbol{p}\| \|\boldsymbol{q}\|} = \sum_{m} \sqrt{p_m(\boldsymbol{y})q_m}$$



Now we can compute the similarity between a target and multiple candidate regions







target

we want to find this peak



image



similarity over image

### **Objective function**

$$\min_{m{y}} d(m{y})$$
 same as  $\max_{m{y}} 
ho[m{p}(m{y}),m{q}]$ 

Assuming a good initial guess

$$ho[oldsymbol{p}(oldsymbol{y}_0+oldsymbol{y}),oldsymbol{q}]$$

Linearize around the initial guess (Taylor series expansion)

$$ho[m{p}(m{y}),m{q}]pprox rac{1}{2}\sum_{m{m}}\sqrt{p_m(m{y}_0)q_m}+rac{1}{2}\sum_{m{m}}p_m(m{y})\sqrt{rac{q_m}{p_m(m{y}_0)}}$$

118

### **Objective function**

#### Linearized objective

$$ho[m{p}(m{y}),m{q}]pprox rac{1}{2}\sum_{m{m}}\sqrt{p_m(m{y}_0)q_m}+rac{1}{2}\sum_{m{m}}p_m(m{y})\sqrt{rac{q_m}{p_m(m{y}_0)}}$$
 $p_m=C_h\sum_{m{n}}k\left(\left\|rac{m{y}-m{x}_n}{h}
ight\|^2
ight)\delta[b(m{x}_n)-m]$  Remember definition of this?

Fully expanded

$$\rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k \left( \left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

### **Objective function**

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k \left( \left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

Moving terms around...

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left( \left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

Does not depend on unknown y

Weighted kernel density estimate

where 
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(m{y}_0)}} \delta[b(m{x}_n) - m]$$

Weight is bigger when  $q_m > p_m(\boldsymbol{y}_0)$ 

OK, why are we doing all this math?

#### We want to maximize this

$$\max_{m{y}} 
ho[m{p}(m{y}), m{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0) q_m} + \frac{C_h}{2} \sum_{n} w_n k \left( \left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

where 
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(oldsymbol{y}_0)}} \delta[b(oldsymbol{x}_n) - m]$$

#### We want to maximize this

$$\max_{oldsymbol{y}} 
ho[oldsymbol{p}(oldsymbol{y}), oldsymbol{q}]$$

only need to maximize this!

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0) q_m} + \frac{C_h}{2} \sum_{n} w_n k \left( \left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where 
$$w_n = \sum_m \sqrt{rac{q_m}{p_m(oldsymbol{y}_0)}} \delta[b(oldsymbol{x}_n) - m]$$

#### We want to maximize this

$$\max_{m{y}} 
ho[m{p}(m{y}),m{q}]$$

only need to maximize this!

Fully expanded linearized objective

$$ho[oldsymbol{p}(oldsymbol{y}),oldsymbol{q}]pproxrac{1}{2}\sum_{m}\sqrt{p_{m}(oldsymbol{y}_{0})q_{m}}+rac{C_{h}}{2}\sum_{n}w_{n}k\left(\left\|rac{oldsymbol{y}-oldsymbol{x}_{n}}{h}
ight\|^{2}
ight)$$

doesn't depend on unknown y

where 
$$w_n = \sum_m \sqrt{rac{q_m}{p_m(m{y}_0)}} \delta[b(m{x}_n) - m]$$

what can we use to solve this weighted KDE?

#### **Mean Shift Algorithm!**

$$\frac{C_h}{2} \sum_n w_n k \left( \left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

the new sample of mean of this KDE is

$$oldsymbol{y}_1 = rac{\sum_{oldsymbol{n}} oldsymbol{x}_n w_n g\left(\left\|rac{oldsymbol{y}_0 - oldsymbol{x}_n}{oldsymbol{h}}
ight\|^2
ight)}{\sum_{oldsymbol{n}} w_n g\left(\left\|rac{oldsymbol{y}_0 - oldsymbol{x}_n}{oldsymbol{h}}
ight\|^2
ight)}$$
 (this was derived earlier location)

### **Mean-Shift Object Tracking**

#### For each frame:

- 1. Initialize location  $oldsymbol{y}_0$ Compute  $oldsymbol{q}$ Compute  $oldsymbol{p}(oldsymbol{y}_0)$
- 2. Derive weights  $w_n$
- 3. Shift to new candidate location (mean shift)  $oldsymbol{y}_1$
- 4. Compute  $p(\boldsymbol{y}_1)$
- 5. If  $\| m{y}_0 m{y}_1 \| < \epsilon$  return
  Otherwise  $m{y}_0 \leftarrow m{y}_1$  and go back to 2

Compute a descriptor for the target



Target

 $oldsymbol{q}$ 

Search for similar descriptor in neighborhood in next frame



Compute a descriptor for the new target



Target

 $oldsymbol{q}$ 

Search for similar descriptor in neighborhood in next frame



# Examples









### **Modern trackers**

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

### From Mid-level to High-level?

