

从 Greenplum 到 Databend,

万全网络数据库平台架构演进

主讲人: 代城

Senior software Engineer

- 从事大数据相关技术研发工作 7+ 年
- 关注开源和云技术发展
- 目前全面负责万全网络数据平台的研发工作

目录

CONTENTS

- **)** 迁移背景
- > 规划和准备

- > 迁移过程
- > 总结和展望

迁移背景

迁移背景-万全数据中台架构

	数据开发	数据服务				
应用	数据中台	Rocket-API	万全商城	SFA	Grafana	
//13		帆软	掌上万全	大屏	Dingtalk	
		No.				监控/预警
		Nginx			Feishu	
接入	W. ITABLE I	通用网关				
	数据路由	缓存	限流	日志	短信	
)
计算	Spark		Flink			
					Dolphinsched	调度
存储	HDFS	Delta	Delta MySQL Redis Kafka uler			
	Hudi	Hive	SQLServe r	Greenplu > Datebend		
				``		J

用户反馈查询体验不佳

Greenplum 行存堆表无法满足陡增业务需求

Greenplum 物化视图过多会增加对存储性能的依赖

Greenplum 读写任务都在同一个集群,读写任务都需要占用大量计算资源

Greenplum vacuum 耗时久,所有表都需要定期 full vacuum ,产生额外工作

规划和准备

规划和准备-原则

复用现有资源

优化历史数据架构中存在的问题

降低维护成本 (服务维护 + 数据维护)

易伸缩

复用现有 资源

存储使用现有大数据平台 hdfs 集群

读写分离 多租户

减少写对读的影响

降低维护 成本

运维、开发

优化历史数据架构中存在的问题

将在 Greenplum 中无法避免的依赖问题使用 overwrite 机制得以完美解决。

迁移过程

数据库架构

」迁移过程-离线数据

T+1

复制原同步到 Greenplum 任务修改下游目标表

全量重写

全量重写不清空历史数据

」迁移过程-准实时数据

迁移过程-踩坑

○ 查询系统表很慢

meta 节点存储使用 ssd 挂载

◯З 导入数据 query node oom

设置查询并发使用线程数

● The state of the state

优化 nginx 代理配置

02 查询 Not found node

调整 meta heartbeat_interval 参数

○4 使用中经常提示存储错误

storage.type webhdfs 连接方式替换为 hdfs

● flink + Databend-jdbc 中文乱码

设置系统 locale 为 LANG=zh_CN.UTF-8

迁移过程-其他

O 应对 Databend 存储增长

调整 hdfs namenode 堆大小

03 提升查询性能

开启 query cache 对应挂载路径使用 SSD 挂载

○5 查询条件关联优化

关联条件左右两边类型不同无法进行 where 下推,我们进行了参数预处理,将其转换为对应类型进行关联

02 控制 Databend 数据存储目录下小文件数量

定期执行 OPTIMIZE 合并快照文件

□4 查询优化

根据表大多数场景 where 条件或关联条件选取合适的列进行创建 cluster key

维度	指标	Greenplum	Databend	提升
查询响应时间	平均查询响应时间 (秒)	4.49	1.21	3.7x
数据导入性能	相同的表CATS执行耗时	136s	88s	1.5x
数据导出速度	平均每秒导出数据量	80w/s	200w/s	2.5x
存储效率	数据存储占用比例			2.0x
schema维护开销	整个过程耗时	1人/天	1 <u>人</u> /2h	4.0x

指标类别	具体指标	评估结果
性能指标	查询性能	查询响应时间较旧系统有明显改善(对比最慢的查询有接近13倍提升)
	并发处理能力	高并发场景下系统表现良好
	吞吐量	满足业务需求,保持稳定性
稳定性和可靠性	系统稳定性	长时间运行期间未发生崩溃或停机
	故障恢复时间	故障后快速有效地从中恢复
用户体验	用户满意度	用户反馈整体满意,少数使用问题
	应用程序性能	应用程序与新数据库交互良好
成本效益	资源利用率	资源得到有效利用, 无过度浪费
	运维成本	迁移后的运维成本相对较低

总结和展望

┛ 总结和展望-总结

迁移进度: 100%

增效: 维护、参数配置

总结和展望-展望

逐步迁移数仓 ods 层,使用多集群方式进行部署

将 hdfs 存储进行独立部署,减少资源竞争,提升性能

持续跟进 **Databend** 版本发布,解锁更多使用技巧,助力公司业务

回馈社区,让 **Databend** 不断完善,让更多的企业享受到开源带来的普惠

THANKS!

