Real-World Population Growth Analysis Using UN Dataset & Logistic Simulation

	\sim			•	
	()	h	ect	117	Δ
ш	\mathbf{v}	viv	LU	.I V	L

To analyze historical population growth of **Pakistan** using actual UN-provided population data, and **compare it** with a **theoretical simulation** based on the **logistic growth model**, using NumPy, Pandas, and Matplotlib.

□ Dataset Details

- Filename: population.csv
- Source: UN World Population Data
- Columns in CSV:
 - o Country Name
 - o Country Code
 - o Year
 - o Value (Population in that year)
- **Time Range:** 1960 to most recent available year
- Target Country: Pakistan

☐ Tools & Libraries Used

- Python Libraries:
 - o pandas: Data loading, filtering, and processing
 - o numpy: Simulation of logistic growth (mathematical modeling)
 - o matplotlib.pyplot: Data visualization
 - o seaborn: Improved styling of plots
- **Environment:** Jupyter Notebook
- **Platform:** Local (Anaconda, Windows 10)

☐ Project Steps (Jupyter Notebook Flow)

Step 1: Load and Inspect Dataset

- Loaded population.csv with pandas.read csv()
- Inspected columns and values using .head(), .info(), .describe()

Step 2: Filter Data for Pakistan

- Selected rows where Country Name == 'Pakistan'
- Created a DataFrame pak_data with two columns:
 - o Year
 - o Population

Step 3: Visualize Real Population Growth

- Used matplotlib to plot real growth over time
- Title: "☐ Pakistan Population Growth (1960 Present)"

Step 4: Simulate Logistic Growth

• Used the **logistic growth model**:

```
P(t) = K1 + (K - P0P0)e - rtP(t) = \frac{K}{1 + \left(\frac{K - P_0}{P_0}\right) \cdot right)e^{-rt}} P(t) = 1 + (P0K - P0)e - rtK
```

Where:

- o POP_OPO: Initial population (1960)
- o rrr: Growth rate (chosen value, e.g., 0.03)
- o KKK: Carrying capacity (e.g., 400 million)
- o ttt: Time (years)
- Used numpy to apply this formula and generate simulated values

Step 5: Compare Real vs Simulated Growth

- Plotted **both curves** on the same graph:
 - o Real data (blue)
 - Simulated logistic growth (orange)
- Added legends, titles, and axis labels

☐ Key Outputs

- A line plot showing real growth trend of Pakistan's population (from 1960 onward)
- A **simulated curve** that predicts future growth, slowing as it nears carrying capacity
- A **comparison chart** that shows how real-world data aligns or differs from the model

☐ Insights Gained

- Pakistan's actual population growth is **exponential** up to recent years
- Logistic model helps **predict a saturation point** where growth slows
- Combining real data and simulation gives more **realistic forecasting tools**

☐ File Structure

- population.csv \rightarrow The source dataset
- real_population_analysis.ipynb \rightarrow Your full working notebook
- Population_Growth_Project_Summary.pdf → Summary export (optional)