Anisotropic Elasticity

Atul JAIN IITKgp

Matrix in terms of Elastic constants

Graphic representation of the engineering constants

Orthotropic materials under plane stress

- Applies to thin orthotropic plies or laminae
- If (1-2) is orthotropy plane, state of plane stress means

$$\sigma_3 = \sigma_4 = \sigma_5 = 0$$

Stress-strain relations reduce to

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_6 \end{pmatrix} = \begin{pmatrix} \frac{1}{E_1} & \frac{-v_{12}}{E_1} & 0 \\ \frac{-v_{12}}{E_1} & \frac{1}{E_2} & 0 \\ 0 & 0 & \frac{1}{G_{12}} \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{pmatrix}$$

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_6 \end{pmatrix}$$

$$Q_{11} = \frac{E_1}{\left(1 - v_{12}^2 E_2 / E_1\right)} \quad Q_{22} = \frac{E_2}{\left(1 - v_{12}^2 E_2 / E_1\right)}$$

$$Q_{12} = \frac{v_{12}E_2}{\left(1 - v_{12}^2 E_2 / E_1\right)} \quad Q_{66} = G_{12}$$

Stress-strain relations for orthotropic ply of arbitrary orientation

- Goal: write stress-strain relation in coordinate system (x-y) other than orthotropy axis (1-2)
- Angle between x and 1 is θ

Tensor transformation laws yield

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} T_{\sigma} \\ \sigma_y \\ \sigma_{xy} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} T_{\sigma} \end{bmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{pmatrix} \qquad \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ 2\varepsilon_{12} \end{pmatrix} = \begin{bmatrix} T_{\varepsilon} \end{bmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ 2\varepsilon_{xy} \end{pmatrix}$$

$$[T_{\sigma}] = \begin{pmatrix} m^2 & n^2 & 2mn \\ n^2 & m^2 & -2mn \\ -mn & mn & (m^2 - n^2) \end{pmatrix} \quad [T_{\varepsilon}] = \begin{pmatrix} m^2 & n^2 & mn \\ n^2 & m^2 & -mn \\ -2mn & 2mn & (m^2 - n^2) \end{pmatrix}$$

$$m = \cos \theta$$
 $n = \sin \theta$

Stress-strain relations arbitrary orientation

• In the (x-y) system, Hooke's law reads

$$\begin{pmatrix}
\varepsilon_{x} \\
\varepsilon_{y} \\
2\varepsilon_{xy}
\end{pmatrix} = \begin{pmatrix}
S_{xx} & S_{xy} & S_{xs} \\
S_{xy} & S_{yy} & S_{ys} \\
S_{xs} & S_{ys} & S_{ss}
\end{pmatrix} \begin{pmatrix}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{xy}
\end{pmatrix}$$

Where
$$[\bar{S}] = [T_{\epsilon}]^{-1} [S][T_{\sigma}]$$

Algebra yields :

$$S_{xx} = m^4 S_{11} + m^2 n^2 (2S_{12} + S_{66}) + n^4 S_{22}$$

$$S_{xy} = m^2 n^2 (S_{11} + S_{22} - S_{66}) + S_{12} (m^4 + n^4)$$

$$S_{yy} = n^4 S_{11} + m^2 n^2 (2S_{12} + S_{66}) + m^4 S_{22}$$

$$S_{xs} = 2m^3 n (S_{11} - S_{12}) + 2mn^3 (S_{12} - S_{22}) - mn (m^2 - n^2) S_{66}$$

$$S_{ys} = 2mn^3 (S_{11} - S_{12}) + 2m^3 n (S_{12} - S_{22}) + mn (m^2 - n^2) S_{66}$$

$$S_{ss} = 4m^2 n^2 (S_{11} - S_{12}) - 4m^2 n^2 (S_{12} - S_{22}) + (m^2 - n^2)^2 S_{66}$$
with $m = \cos \theta$, $n = \sin \theta$

Contd.

• In the (x-y) system, Hooke's law reads

$$\begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{xy} \end{pmatrix} = \begin{pmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{xy} & Q_{yy} & Q_{ys} \\ Q_{xs} & Q_{ys} & Q_{ss} \end{pmatrix} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ 2\varepsilon_{xy} \end{pmatrix}$$

Where
$$[\overline{Q}] = [T_{\sigma}]^{-1}[Q][T_{\epsilon}]$$

• Algebra yields : $Q_{xx} = m^4 Q_{11} + 2m^2 n^2 (Q_{12} + 2Q_{66}) + n^4 Q_{22}$ $Q_{xy} = m^2 n^2 (Q_{11} + Q_{22} - 4Q_{66}) + Q_{12} (m^4 + n^4)$ $Q_{yy} = n^4 Q_{11} + 2m^2 n^2 (Q_{12} + 2Q_{66}) + m^4 Q_{22}$ $Q_{xs} = m^3 n (Q_{11} - Q_{12}) + mn^3 (Q_{12} - Q_{22}) - 2mn (m^2 - n^2) Q_{66}$ $Q_{ys} = mn^3 (Q_{11} - Q_{12}) + m^3 n (Q_{12} - Q_{22}) + 2mn (m^2 - n^2) Q_{66}$ $Q_{ss} = m^2 n^2 (Q_{11} + Q_{22} - 2Q_{12}) + (m^2 - n^2)^2 Q_{66}$ with $m = \cos \theta$, $n = \sin \theta$

• Shear-extension coupling occurs if (x-y) is different from (1-2)

Coefficient of shear coupling coefficient

Simple shear σxy yields

$$\varepsilon_x = S_{xs}\sigma_{xy}$$
 $\varepsilon_y = S_{ys}\sigma_{xy}$ $2\varepsilon_{xy} = S_{ss}\sigma_{xy}$

• This defines the different apparent engineering constants :

$$G_{xy} = \frac{\sigma_{xy}}{2\varepsilon_{xy}} = \frac{1}{S_{ss}}$$

$$\eta_{x,xy} = \frac{\varepsilon_x}{2\varepsilon_{xy}} = \frac{S_{xs}}{S_{ss}} \quad \eta_{y,xy} = \frac{\varepsilon_y}{2\varepsilon_{xy}} = \frac{S_{ys}}{S_{ss}}$$

• The coupling coefficients satisfy the following relations:

$$\frac{\eta_{xy,x}}{E_x} = \frac{\eta_{x,xy}}{G_{xy}} \quad \frac{\eta_{xy,y}}{E_y} = \frac{\eta_{y,xy}}{G_{xy}}$$

• In terms of apparent engineering constants, Hooke's law reads

$$\begin{pmatrix}
\varepsilon_{x} \\
\varepsilon_{y} \\
2\varepsilon_{xy}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{E_{x}} & \frac{-v_{xy}}{E_{x}} & \frac{\eta_{xy,x}}{E_{x}} \\
\frac{-v_{xy}}{E_{x}} & \frac{1}{E_{y}} & \frac{\eta_{xy,y}}{E_{y}} \\
\frac{\eta_{xy,x}}{E_{x}} & \frac{\eta_{xy,y}}{E_{y}} & \frac{1}{G_{xy}}
\end{pmatrix} \begin{pmatrix}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{xy}
\end{pmatrix}$$

14-2-2020

• Directional dependence of apparent engineering constants :

$$\begin{split} &\frac{1}{E_x} = m^4 \frac{1}{E_1} + m^2 n^2 \left(\frac{1}{G_{12}} - \frac{2v_{12}}{E_1} \right) + n^4 \frac{1}{E_2} \\ &v_{xy} = E_x \left[\frac{v_{12}}{E_1} \left(m^4 + n^4 \right) - m^2 n^2 \left(\frac{1}{E_1} + \frac{1}{E_2} - \frac{1}{G_{12}} \right) \right] \\ &\frac{1}{E_y} = n^4 \frac{1}{E_1} + m^2 n^2 \left(\frac{1}{G_{12}} - \frac{2v_{12}}{E_1} \right) + m^4 \frac{1}{E_2} \\ &\eta_{xy,x} = E_x \left[m^3 n \left(\frac{2}{E_1} + \frac{2v_{12}}{E_1} - \frac{1}{G_{12}} \right) - mn^3 \left(\frac{2}{E_2} + \frac{2v_{12}}{E_1} - \frac{1}{G_{12}} \right) \right] \\ &\eta_{xy,y} = E_y \left[mn^3 \left(\frac{2}{E_1} + \frac{2v_{12}}{E_1} - \frac{1}{G_{12}} \right) - m^3 n \left(\frac{2}{E_2} + \frac{2v_{12}}{E_1} - \frac{1}{G_{12}} \right) \right] \\ &\frac{1}{G_{xy}} = 4m^2 n^2 \left(\frac{1}{E_1} + \frac{1}{E_2} + \frac{2v_{12}}{E_1} \right) + \left(m^2 - n^2 \right)^2 \frac{1}{G_{12}} \end{split}$$

14-2-2020

• Illustration : Variation of engineering constants as a function of the loading angle $\boldsymbol{\theta}$

For glass-epoxy

Comparison with experiments

0.60 0.50 0.400.30 0.20 Test 0.10 Theory 0.0 60.0 75.0 45.0 90.0 15.0 30.0 0.0

 $\nu_{xy} \\$

Aramid/Epoxy Off-Axis Poisson's Ratio: Theory and Experiment

Cutting lamina at different angle

Problem 1

• Calculate the engineering constants of the 0° and 90° orientations of the glass fabric composite, $v_f = 40.9$

1. Fibre properties			
Ef//	71	GPa	
Ef^	71	GPa	
v_{12}	0.25		
Gf	28.50	GPa	

2. matrix properties			
E	3.1	GPa	
V	0.2		
G	1.29	GPa	

$$E_{/\!/} = E_f V_f + E_m V_m$$

$$E_{\perp} = \frac{E_f E_m}{E_f V_m + E_m V_f}$$

$$v_{12} = v_f V_f + v_m V_m$$

$$G_{12} = \frac{G_f G_m}{G_f V_m + G_m V_f}$$

Solution

Use rules of mixtures to calculate engineering constants

Expansional (Hygrothermal) Strains

All materials are sensitive to the environment in which they operate.

Expansional strains (volume changes in the absence of surface tractions) in composites are caused by:

- 1. Changes in temperature
- 2. Absorption of swelling agents (e.g. water, solvents)
- 3. Expansion of dissolved gases

In addition to inducing residual stresses (internal self-equilibrating stresses which exist in the absence of surface tractions), these factors may also affect the gross response of a structure, such as natural vibrational frequencies and buckling loads.

The Generalised Hooke's Law must therefore be amended to take expansional strains into account:

$$[\varepsilon] = [S][\sigma] + [\varepsilon]^T + [\varepsilon]^H + \dots$$

where $[\varepsilon]^T$ and $[\varepsilon]^H$ represent thermal and hygroscopic strains, respectively.

Expansional (Hygrothermal) Strains (cont.)

In Eqn. (2.25), the thermal and hygroscopic strains are given by:

$$\varepsilon_i^T = \alpha_i \, \Delta T$$
$$\varepsilon_i^H = \beta_i \, \Delta C$$

Where α_i and ΔT denote thermal expansion coefficients and change in temperature, and where β_i and ΔC denote hygroscopic expansion coefficients and change in concentration of a swelling agent.

The inverted (stiffness) form yields:

$$[\sigma] = [C]\{[\varepsilon] - [\varepsilon]^T - [\varepsilon]^H\}$$

For orthotropic materials, free expansion produces only normal strains (i.e. $\varepsilon_4^{T,H} = \varepsilon_5^{T,H} = \varepsilon_6^{T,H} = 0$).

For a material which is transversely isotropic in the 1-2 plane, $\varepsilon_2^{T,H} = \varepsilon_3^{T,H}$.

Plane Stress Constit. Eqn. w. Expansional Strains

For plane stress in the 1-2 plane, become:

$$\begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{6} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{6} \end{bmatrix} + \Delta T \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ 0 \end{bmatrix} + \Delta C \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{6} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & O_{C6} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} - \alpha_{1} \Delta T - \beta_{1} \Delta C \\ \varepsilon_{2} - \alpha_{2} \Delta T - \beta_{2} \Delta C \end{bmatrix}$$

and

For rotations, expansional strains rotate, resulting in:

$$\varepsilon_{1}^{T} = m^{2} \varepsilon_{x}^{T} + n^{2} \varepsilon_{y}^{T}$$

$$\varepsilon_{2}^{T} = n^{2} \varepsilon_{x}^{T} + m^{2} \varepsilon_{y}^{T}$$

$$0 = 2mn \left(\varepsilon_{y}^{T} - \varepsilon_{x}^{T}\right) + (m^{2} - n^{2}) \gamma_{xy}^{T}$$

Rotated Plane Stress Equations

For the rotated plane stress equation, with expansional strains:

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x - \Delta T \ \alpha_x - \Delta C \ \beta_x \\ \varepsilon_y - \Delta T \ \alpha_y - \Delta C \ \beta_y \\ \gamma_{xy} - \Delta T \ \alpha_{xy} - \Delta C \ \beta_{xy} \end{bmatrix}$$

It can also be shown that:

$$\alpha_{x} = \frac{\varepsilon_{x}^{T}}{\Delta_{T}} = m^{2}\alpha_{1} + n^{2}\alpha_{2}$$

$$\alpha_{y} = \frac{\varepsilon_{y}^{T}}{\Delta_{T}} = n^{2}\alpha_{1} + m^{2}\alpha_{2}$$

$$\alpha_{xy} = \frac{\gamma_{xy}^{T}}{\Delta_{T}} = 2(\alpha_{1} - \alpha_{2})mn$$

Temperature and moisture dependence

• Stiffness coefficients must be determined at the correct T and c

How much reinforcement?

Weight fraction

Used in manufacture.

May refer to fibre or resin - 'GRP' manufacturers will specify a *glass* content of (e.g.) 25 wt%; a prepreg supplier might give a *resin* content of 34 wt%.

Volume fraction

Used in design to calculate composite properties. Almost always refers to *fibre* content.

Weight fraction ↔ volume fraction conversion

For the special case of a two-component composite (eg fibre and matrix):

$$V_{f} = \frac{W_{f} / \rho_{f}}{W_{f} / \rho_{f} + (1 - W_{f}) / \rho_{m}}$$

$$W_f = \frac{\rho_f V_f}{\rho_f V_f + \rho_m (1 - V_f)}$$

How much fibre?

Commercial reinforcements are characterised by their *areal weight* (A_w). This is simply the weight (usually given in g) of 1 m² of the reinforcement. A_w depends on many factors - fibre density, tow or bundle size, weave style, etc.

A_w may range from 50 g/m² or less (for lightweight surfacing tissues), up to more than 2000 g/m² for some heavyweight non-crimp fabrics.

Laminate thickness

Two laminates, both containing 5 plies of reinforcement:

high matrix content

low fibre content

= thick laminate

low matrix content high fibre content

= thin laminate

Laminate thickness

Fibre volume fraction is thus inversely proportional to laminate thickness.

If the fibre content and laminate thickness are defined, we can calculate the fibre volume fraction:

If the fibre content and volume fraction are defined, we can calculate the laminate thickness:

$$V_f = \frac{nA_w}{\rho_f t}$$

$$t = \frac{nA_{w}}{\rho_{f}V_{f}}$$

Example calculations

- 1. What will be the thickness of a laminate consisting of 2 layers of 450 g/m² chopped strand mat if a resin to glass ratio (by weight) of 2:1 is used? Density of fibre and matrix is 2 g/cm3 and 1gm/cm3 respectively.
- **2.** What fibre volume fraction is achieved if 3 layers of 800 g/m² glass woven roving are compression-moulded to a thickness of 2 mm?