Examen Physique 2

Exercice 1: (07.50)

Une charge $(q_A = -q)$ est placée en $x_A = -a$ et une charge $(q_B = +q)$ est placée en $x_B = +a$ (voir figure cicontre).

- 1. Déterminer le potentiel électrique V(M) en un point M de l'axe (OX), tel que OM = x > a;
- 2. En utilisant la relation $\vec{E} = -\overline{grad}V = -dV/dx \vec{i}$, déterminer l'expression du champ électrique $\vec{E}(M)$ au point M;
- 3. En déduire les expressions du champ et du potentiel électriques lorsque $x \gg a$ $(a/x \ll 1 \Rightarrow 1 \pm a/x \approx 1)$;
- **4.** On fixe au point M une charge ponctuelle $q_M = 2q$. Déduire la résultante des forces électriques $\vec{F}(M)$ qui s'exerce sur elle et son énergie potentielle électrique $E_p(M)$ (utiliser les résultats obtenus dans les questions 1 et 2). Calculer l'énergie interne U du système de charges (q_A, q_B, q_M) .

Exercice 2: (07.50 points)

Soit une sphère de rayon R chargée en volume avec une densité uniforme $\rho > 0$ (voir figure ci-contre).

- 1. Donner l'expression de la charge totale $(Q_R = \rho V_R)$ portée par cette sphère en fonction de R, où V_R est le volume de cette sphère ;
- 2. Quelle est la charge totale $(Q_r = \rho V_r)$ portée par une sphère de rayon r inférieur à R, où V_r est le volume de cette sphère ;
- 3. En utilisant le théorème de Gauss, déterminer le champ électrique à l'intérieur (r < R) et à l'extérieur de la sphère (r > R);
- **4.** En utilisant la relation $V = -\int \vec{E} \cdot d\vec{l} + C = -\int E dr + C$, où C est une constante, en déduire le potentiel électrique crée dans les deux régions précédentes.

e, en

Traiter au choix soit l'exercice 3 soit l'exercice 4.

Exercice 3: (05 points)

- 1. Citer deux propriétés des conducteurs en équilibre électrostatique ;
- 2. On considère deux sphères conductrices, de centres O_1 et O_2 et de rayons $R_1=2$ cm et $R_2=3$ cm, très éloignées l'une de l'autre. Elles portent les charges électriques positives $Q_1=10$ μC et $Q_2=15$ μC , respectivement. On relie les deux sphères avec un fil conducteur très fin. Si on néglige la charge portée par le fil et à l'équilibre :
- **a.** Calculer les nouvelles charges Q'_1 et Q'_2 des deux sphères ;
- **b.** Calculer la quantité de charge positive qui a traversé le fil et dans quel sens. Commenter le résultat.

Exercice 4: (05 points)

Compléter le tableau suivant, où P et P_i sont les positions des charges ou des éléments de charges :

	Champ électrique $\vec{E}(M)$	Potentiel électrique $V(M)$
Charge ponctuelle (q, P)		
Distribution discrète		
$\{q_i, P_i, i = 1 \dots n\}$		
Distribution continue linéique de densité $\lambda(P)$		
Distribution continue surfacique de densité $\sigma(P)$		
Distribution continue volumique de densité $\rho(P)$	$\vec{E}(M) = K \int_{(V)} \frac{\rho dV}{r^2} \vec{u}$	

On pose : $\vec{r} = \overrightarrow{PM}$; $\vec{u} = \vec{r}/r$; $\vec{r}_i = \overrightarrow{P_iM}$; $\vec{u}_i = \vec{r}_i/r_i$

Année universitaire 2018/2019 Session normale Durée : 02 heures

Corrigé de l'examen de Physique 2

Exercice 1: (07.50)

$$AM = x + a \ (\mathbf{0.5}); BM = x - a \ (\mathbf{0.5})$$

$$V(M) = V_A(M) + V_B(M) = K \frac{q_A}{AM} + K \frac{q_B}{BM} \ (\mathbf{0.5}) = Kq \left(\frac{1}{x - a} - \frac{1}{x + a}\right) = K \frac{2qa}{x^2 - a^2} \ (\mathbf{0.5})$$

$$\vec{E}(M) = -\overline{grad}V(M) = -\frac{\partial V}{\partial x}\vec{i} \ (\mathbf{0.5}) = K \frac{4qax}{(x^2 - a^2)^2}\vec{i} \ (\mathbf{0.5})$$

$$x \gg a \Rightarrow \frac{a}{x} \ll 1 \Rightarrow 1 - \frac{a}{x} \approx 1 \Rightarrow x^2 - a^2 = x^2 \left(1 - \frac{a^2}{x^2}\right) \approx x^2 \ (\mathbf{0.5}) \Rightarrow \begin{cases} V(M) = K \frac{2qa}{x^2} \ (\mathbf{0.5}) \\ \vec{E}(M) = K \frac{4qa}{x^3}\vec{i} \ (\mathbf{0.5}) \end{cases}$$

$$\vec{F}(M) = q_M \vec{E}(M) \ (\mathbf{0.5}) = K \frac{8q^2ax}{(x^2 - a^2)^2}\vec{i} \ (\mathbf{0.5})$$

$$E_p(M) = q_M V(M) \ (\mathbf{0.5}) = K \frac{4q^2a}{x^2 - a^2} \ (\mathbf{0.5})$$

$$U = K \frac{q_A q_B}{AB} + K \frac{q_A q_M}{AM} + K \frac{q_B q_M}{BM} \ (\mathbf{0.5}) = Kq^2 \left(-\frac{1}{2a} - \frac{2}{x + a} + \frac{2}{x - a}\right) \ (\mathbf{0.5})$$

Exercice 2: (07.50)

$$Q_R = \rho V_R = \rho \left(\frac{4}{3}\pi R^3\right) \ (\mathbf{0.25}); \ Q_r = \rho V_r = \rho \left(\frac{4}{3}\pi r^3\right) \ (\mathbf{0.25})$$

Symétrie sphérique (champ radial) : $\vec{E}(M) = E(r)\vec{e}_r$ (0.5)

Surface de Gauss : sphère de centre O et de rayon r = OM(0.5)

Flux:

$$\Phi = \iint_{(S_G)} \vec{E} \cdot \overrightarrow{dS} \quad (\mathbf{0}.\mathbf{5}) = \iint_{(S_G)} (E\vec{e}_r) \cdot (dS\vec{n}) = \iint_{(S_G)} (EdS)(\vec{e}_r \cdot \vec{n}) = \iint_{(S_G)} EdS = E \iint_{(S_G)} dS = ES_G \quad (\mathbf{0}.\mathbf{5})$$

$$= E(4\pi r^2) \quad (\mathbf{0}.\mathbf{5})$$

Théorème de Gauss :

$$\Phi = \bigoplus_{(S_G)} \vec{E} \cdot \vec{dS} = \frac{Q_{int}}{\varepsilon_0} \quad (\mathbf{0}.\mathbf{5}) \Rightarrow E = \frac{Q_{int}}{4\pi\varepsilon_0 r^2} \quad (\mathbf{0}.\mathbf{5})$$

$$r < R \Rightarrow Q_{int} = Q_r = \rho \left(\frac{4}{3}\pi r^3\right) \quad (\mathbf{0}.\mathbf{5}) \Rightarrow E = \frac{\rho r}{3\varepsilon_0} \quad (\mathbf{0}.\mathbf{5})$$

$$r > R \Rightarrow Q_{int} = Q_R = \rho \left(\frac{4}{3}\pi R^3\right) \quad (\mathbf{0}.\mathbf{5}) \Rightarrow E = \frac{\rho R^3}{3\varepsilon_0 r^2} \quad (\mathbf{0}.\mathbf{5})$$

$$r < R \Rightarrow V = -\int E dr + C = -\int \frac{\rho r}{3\varepsilon_0} dr + C = -\frac{\rho r^2}{6\varepsilon_0} + C \quad (\mathbf{0}.\mathbf{5})$$

$$r > R \Rightarrow V = -\int E dr + C = -\int \frac{\rho R^3}{3\varepsilon_0 r^2} dr + C = \frac{\rho R^3}{3\varepsilon_0 r} + C \quad (0.5)$$

Exercice 3: (05 points)

Les propriétés des conducteurs en équilibre électrostatique :

- Le champ électrique à l'intérieur du conducteur en équilibre électrostatique est nul (0.5);
- Le potentiel électrique à l'intérieur du conducteur en équilibre électrostatique est constant (0.5);
- La charge d'un conducteur en équilibre électrostatique se répartie sur sa surface avec une densité σ ;
- Le champ au voisinage immédiat du conducteur en équilibre électrostatique est :

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{n}$$

$$\begin{cases} V_1 = V_2 \\ Q_1 + Q_2 = Q_1' + Q_2' \end{cases} \Rightarrow \begin{cases} K \frac{Q_1'}{R_1} = K \frac{Q_2'}{R_2} \\ Q_1 + Q_2 = Q_1' + Q_2' \end{cases} \Rightarrow \begin{cases} \frac{Q_1'}{R_1} = \frac{Q_2'}{R_2} \ (\mathbf{0}.\mathbf{5}) \end{cases} \Rightarrow Q_2'$$

$$= \frac{R_2}{R_1} Q_1' \ (\mathbf{0}.\mathbf{5})$$

$$\Rightarrow \begin{cases} Q_1' = \left(\frac{R_1}{R_1 + R_2}\right) (Q_1 + Q_2) = 10 \ \mu C \ (\mathbf{0}.\mathbf{5}) \end{cases}$$

$$\Rightarrow \begin{cases} Q_2' = \left(\frac{R_2}{R_1 + R_2}\right) (Q_1 + Q_2) = 15 \ \mu C \ (\mathbf{0}.\mathbf{5}) \end{cases}$$

On a $Q_1' = Q_1$ et $Q_2' = Q_2$ (0.5). Ce qui implique qu'il n'y a pas eu de transfert de charges (0.5). Ceci s'explique par le fait que les deux sphères avaient le même potentiel avant la connexion (0.5):

$$V_1 = K \frac{Q_1}{R_1} = V_2 = K \frac{Q_2}{R_2} = V_1' = V_2'$$

Après connexion, elles gardent les mêmes potentiels et par conséquent le même état d'équilibre.

Exercice 4: (05 points)

	·	
	Champ électrique $\vec{E}(M)$	Potentiel électrique $V(M)$
Charge ponctuelle (q, P)	$\vec{E}(M) = K \frac{q}{r^2} \vec{u} \ (0.5)$	$V(M) = K\frac{q}{r} \ (0.5)$
Distribution discrète	\rightarrow $\sum_{i=1}^{n} q_{i}$	$\sum_{i=1}^{n} q_{i}$
$\{q_i, P_i, i = 1 \dots n\}$	$\vec{E}(M) = \sum_{i=1}^{\infty} K \frac{q_i}{r_i^2} \vec{u}_i \ (0.5)$	$V(M) = \sum_{i=1}^{n} K \frac{q_i}{r_i} $ (0.5)
Distribution continue linéique de densité $\lambda(P)$	$\vec{E}(M) = K \int \frac{\lambda dl}{r^2} \vec{u} \ (0.5)$	$V(M) = K \int \frac{\lambda dl}{r} \ (0.5)$
	$\sum_{(L)} \frac{E(M) - K}{r^2} \frac{1}{u} \left(0.3 \right)$	$V(M) = K \int_{(L)} \frac{1}{r} (0.3)$
Distribution continue surfacique de densité $\sigma(P)$	\rightarrow $\int \sigma dS$	ſ σdS
	$\vec{E}(M) = K \int_{(S)} \frac{\sigma dS}{r^2} \vec{u} (0.5)$	$V(M) = K \int_{(S)} \frac{1}{r} (0.5)$
	⇒ cos cos pdV _ cos	ſρdV
Densité continue volumique de densité $\rho(P)$	$\vec{E}(M) = K \int_{(V)} \frac{\rho dV}{r^2} \vec{u} (0.5)$	$V(M) = K \int_{(V)} \frac{r}{r} (0.5)$