12ML:: BASICS

Data

 $\mathcal{X} \subseteq \mathbb{R}^p$: p-dimensional **feature space** / input space Categorical features are encoded suitably, e.g., one-hot encoding

 \mathcal{Y} : target space

e.g.: $\mathcal{Y}=\mathbb{R}$ for regression, $\mathcal{Y}=\{0,1\}$ or $\mathcal{Y}=\{-1,+1\}$ for binary classification, $\mathcal{Y}=\{1,\ldots,g\}$ for multi-class classification with g classes

 $\mathbf{x} = (x_1, \dots, x_p)^T \in \mathcal{X}$: **feature vector** / covariate vector

 $y \in \mathcal{Y}$: target variable / output variable Concrete variable samples are called labels

 $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{X} \times \mathcal{Y} : i$ -th observation or instance

 $\mathbb{D} = \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets

 $\mathbb{D}_n = (\mathcal{X} \times \mathcal{Y})^n \subseteq \mathbb{D}$: set of all finite data sets of size n

 $\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})) \in \mathbb{D}_n$: **data set** with n observations. This is an n-tuple, i.e., a family indexed by $\{1, \dots, n\}$. We write \mathcal{D}_n if we want to emphasize the size of the data set

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subseteq \mathcal{D}$: data for training and testing (often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \ \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$)

 $o_k^{(i)} = (0,0,...,\mathbf{1},0,0,...) \in \{0,1\}^n$: one-hot encoding for *i*-th observation, belonging to class k (egtl. ja ne matrix?)

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} imes \mathcal{Y}$

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate: $\pi = \mathbb{P}(y = 1)$.

Model and Learner

Model / Hypothesis: $f: \mathcal{X} \to \mathbb{R}^g$, $\mathbf{x} \mapsto f(\mathbf{x})$ is a function that maps feature vectors to predictions, often parametrized by $\boldsymbol{\theta} \in \Theta$ (then we write $f_{\boldsymbol{\theta}}$, or, equivalently, $f_{\boldsymbol{\theta}}(\mathbf{x}|\boldsymbol{\theta})$).

 $\Theta \subseteq \mathbb{R}^d$: parameter space

 $\theta = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameters** vector Some models may traditionally use different symbols.

 $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R}^g \mid f \text{ belongs to a certain functional family} \}$: **Hypothesis space** – set of functions to which we restrict learning

Learner / Inducer $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ takes a training set $\mathcal{D}_{\mathsf{train}} \in \mathbb{D}$, produces model $f: \mathcal{X} \to \mathbb{R}^g$, with hyperparam. configuration $\lambda \in \Lambda$. For a parametrized model this can be adapted to $\mathcal{I}: \mathbb{D} \times \Lambda \to \Theta$ Alternative notation: $\mathcal{I}_{\lambda}: \mathbb{D} \to \Theta$

 $\Lambda = \Lambda_1 \times \Lambda_2 \times ... \times \Lambda_\ell \subseteq \mathbb{R}^\ell$: hyperparameter space Λ_j can e.g., be \mathbb{R} , intervals in \mathbb{R} or intervals in \mathbb{N}

 $oldsymbol{\lambda} = (\lambda_1, \lambda_2, ..., \lambda_\ell) \in oldsymbol{\Lambda}$: hyperparameter configuration

 $\pi_k(\mathbf{x}): \mathcal{X} \to [0,1]$ probability prediction for class k, shall approximate $\mathbb{P}(y=k\mid \mathbf{x})$ (in a binary case we might abbreviate to $\pi(\mathbf{x})$, approximating $\mathbb{P}(y=1\mid \mathbf{x})$).

 $f_k(\mathbf{x}): \mathcal{X} \to \mathbb{R}^p$: **discriminant functions** for class k (in a binary case we might abbreviate to $f(\mathbf{x}) = f_1(\mathbf{x}) - f_2(\mathbf{x})$)

 $h(\mathbf{x}): \mathbb{R}^g \to \mathcal{Y}:$ hard label function for classification that maps class scores / posterior probabilities to discrete classes. Typically created by $h(\mathbf{x}) = \arg\max_{k \in \{1, ..., g\}} f_k(\mathbf{x})$ or $h(\mathbf{x}) = \arg\max_{k \in \{1, ..., g\}} \pi_k(\mathbf{x})$

 $\epsilon = y - f(\mathbf{x})$ or $\epsilon^{(i)} = y^{(i)} - f(\mathbf{x}^{(i)})$: (i-th) **residual** in regression

 $yf(\mathbf{x})$ or $y^{(i)}f(\mathbf{x}^{(i)})$: margin for (i-th) observation in binary classification

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(\mathbf{x})$, $\hat{\pi}(\mathbf{x})$ and $\hat{m{ heta}}$

The hat symbol denotes **learned** functions and parameters.

Loss and Risk

 $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}_0^+:$ loss function: Quantifies "quality" $L(y, f(\mathbf{x}))$ of prediction $f(\mathbf{x})$ (or $L(y, \pi(\mathbf{x}))$ of prediction $\pi_k(\mathbf{x})$) for single \mathbf{x} .

 $\mathcal{R}_{\mathsf{emp}}: \mathcal{H} o \mathbb{R}:$ empirical risk

The ability of a model f to reproduce the association between \mathbf{x} and \mathbf{y} that is present in the data \mathcal{D} can be measured by the summed loss:

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Learning then amounts to **empirical risk minimization** – figuring out which model \hat{f} has the smallest summed loss.

Since f is usually defined by **parameters** θ , this becomes:

$$\hat{m{ heta}} = \mathop{\mathrm{arg\,min}}_{m{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(m{ heta})) = \mathop{\mathrm{arg\,min}}_{m{ heta} \in \Theta} \sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid m{ heta}
ight)
ight),$$
 where $\mathcal{R}_{\mathsf{emp}} : \Theta o \mathbb{R}$.

Regression Losses

L2 loss / squared error:

- ► $L(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$ or $L(y, f(\mathbf{x})) = 0.5(y f(\mathbf{x}))^2$
- ► Convex and differentiable
- ► Tries to reduce large residuals (loss scaling quadratically)
- ► Optimal constant model: $\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} = \bar{y}$
- ▶ Optimal model for unrestricted \mathcal{H} : $\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(y^{(i)} | \mathbf{x}^{(i)})$

L1 loss / absolute error:

- $ightharpoonup L(y, f(\mathbf{x})) = |y f(\mathbf{x})|$
- ► Convex and more robust
- Non-differentiable for $y = f(\mathbf{x})$, optimization becomes harder
- ▶ Optimal constant model: $\hat{f}(\mathbf{x}) = \text{med}(y^{(i)})$
- ▶ Optimal model for unrestricted \mathcal{H} : $\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \text{med}(y^{(i)} | \mathbf{x}^{(i)})$

Classification Losses

Brier score (binary case)

$$L(y, \pi(\mathbf{x})) = (\pi(\mathbf{x}) - y)^2$$
 for $\mathcal{Y} = \{0, 1\}$

Log-loss / Bernoulli loss / binomial loss (binary case)

For $\mathcal{Y}=\{0,1\}$: $L(y,\pi(\mathbf{x}))=-y\log(\pi(\mathbf{x}))-(1-y)\log(1-\pi(\mathbf{x}))$ For $\mathcal{Y}=\{-1,+1\}$: $L(y,\pi(\mathbf{x}))=\log(1+(\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})})^{-y})$

Assuming a logit-link $\pi(\mathbf{x}) = \exp(f(\mathbf{x}))/(1 + \exp(f(\mathbf{x})))$:

For $\mathcal{Y}=\{0,1\}$: $L(y,f(\mathbf{x}))=-y\cdot f(\mathbf{x})+\log(1+\exp(f(\mathbf{x})))$ For $\mathcal{Y}=\{-1,+1\}$: $L(y,f(\mathbf{x}))=\log(1+\exp(-y\cdot f(\mathbf{x})))$

0-1-loss (binary case)

 $L(y, h(\mathbf{x})) = I(y \neq h(\mathbf{x}))$

Brier score (multi-class case)

 $L(y, \pi(\mathbf{x})) = \sum_{k=1}^{g} (\pi_k(\mathbf{x}) - o_k)^2$

Log-loss (multi-class case)

$$L(y, \pi(\mathbf{x})) = -\sum_{k=1}^{g} o_k \log(\pi_k(\mathbf{x}))$$

Components of Learning

Learning = Hypothesis space + Risk + Optimization = $\mathcal{H} + \mathcal{R}_{emp}(\theta) + \arg\min_{\theta \in \Theta} \mathcal{R}_{emp}(\theta)$