Exercise 5.1

Step 1: ϵ Rules

 $S \to \epsilon$ is the only occurrence of ϵ and S never occurs on the right-hand side. We don't have to do anything here.

Step 2: Chain Rules

Since the CMS (WHAT DO YOU MEAN BY THAT??? \rightarrow CNF?) can only have a terminal or **two** Variables on the right-hand side, we have to eliminate every Rule that has only a single Variable on the right.

Chains in G:

$$S \to Z \to bb$$
 $S \to Z \to Za$ $X \to Y \to bY$ $Y \to X \to aZb$

We eliminate the chains by linking the end result of the chain directly with the first Variable. Since $X \to Y$ and $Y \to X$, we can just write them together as X that points to the results of X and Y.

$$S
ightarrow bb \mid Za \mid XX$$
 $Z
ightarrow bb \mid Za$ $X
ightarrow aZb \mid bX$

Step 3: Order

Now we have to eliminate all the rules that have terminals **and** Variables on the right-hand side. We do so by adding a new Variable for each terminal and having each new Variable point to exactly one terminal.

So we create the new rules:

$$A \to a$$
 and $B \to b$

and can now rewrite the Rules above to:

$$S \rightarrow BB \mid ZA \mid XX$$
 $Z \rightarrow BB \mid ZA$ $X \rightarrow AZB \mid BX$

Step 4: Shorten

To get our CNF we have to shorten the right-hand side to exactly two variables per rule. Since $X \to AZB$ is too long, we add $V \to ZB$ and get our final Grammar $G' = \langle \{S, V, X, Z\}, \{a, b\}, P, S \rangle$ with the following rules in P:

$$S o BB \mid ZA \mid XX$$
 $Z o BB \mid ZA$ $X o AV \mid BX$ $V o ZB$
$$A o a \qquad B o b$$

Exercise 5.2

Proof. Length of Derivations in Chomsky Normal Form:

In the case |w|=1 we can only have one terminal Rule $S\to a$ because $S\to AB$ would be replaced by at least two terminal rules and therefore be $|w|\geq 2$.

With $S \to AB$ we can generate any word w with $|w| \ge 2$ in the language G by replacing the A and (NOT SURE IF OR WAS CORRECT!) B.

$$S \to AB \xrightarrow{(B \to CD)} ACD \xrightarrow{(D \to EF)} ACEF \to \cdots \to X_1 \dots X_n$$

By the definition of the Chomsky Normal Form, the Grammar has either a terminal or two Variables on the right-hand side. Therefore with every Step, exactly one Variable can be added. So to generate $X_1 \dots X_n$ exactly n-1 steps are needed.

Now we have to replace every Variable X with a terminal symbol. By definition we can only replace one X at a time and therefore need n more steps to generate our final word w.

In total we need exactly 2n-1 steps and since n=|w| the statement is true.

Exercise 5.3

(b)

	Σ read input	step	Stack status
(a)	ϵ	$q_0 \rightarrow q_1$	#
	\mathbf{a}	$q_1 \rightarrow q_1$	#X
	ϵ	$q_1 \rightarrow q_2$	#X
	\mathbf{a}	$q_2 \rightarrow q_2$	#XY
	\mathbf{a}	$q_2 \rightarrow q_2$	#XYY
	d	$q_2 \rightarrow q_3$	#XYY
	b	$q_3 \rightarrow q_4$	#XYY
	\mathbf{a}	$q_4 \rightarrow q_3$	#XY
	b	$q_3 \rightarrow q_4$	#XY
	\mathbf{a}	$q_4 \rightarrow q_3$	#X
	ϵ	$q_3 o q_5$	#X
	$^{\mathrm{c}}$	$q_5 \rightarrow q_6$	#X
	$^{\mathrm{c}}$	$q_6 o q_5$	#
	ϵ	$q_5 ightarrow q_7$	ϵ

This PDA accepts the following language: $w = \{ a^x \ d \ (ba)^y \ (cc)^z \ | \ a = y + z, \quad x, y, z \in \mathbb{N}_0 \}$ The self-loops q_1 and q_2 stack a's. Then follows a single d and the loop $q_3 \to q_4 \to q_3$ (ab) which removes anything stacked by q_1 followed by the loop $q_5 \to q_6 \to q_5$ (cc) which removes anything stacked by q_2 . So in the end the visits of $q_1 + q_2$ have to equal the visits of $q_3 + q_5$.

Exercise 5.4