Markov Chain Monte Carlo

Casey Sobecks

Contents

- Following "Group action Markov chain Monte Carlo for accelerated sampling of energy landscapes with discrete symmetries and energy barriers" by <u>Matthew Grasinger</u> (Apr 2022)
 - <u>arXiv:2205.00028</u> [cond-mat.stat-mech]
- Monte Carlo background
- Example
- Simple Harmonic Oscillator (SHO)
- Double Well
- Conclusion

Monte Carlo Differences

Regular Monte Carlo (MC)

- Uniform Random Sampling
 - Good for finding area of a circle

Markov Chain Monte Carlo (MCMC)

- Next data point depends on previous data point
 - Correlated data
- Works better on complicated objects or functions
 - difficult to sample directly
- Some burn in time necessary

Markov Chain Example

- Rosenbrock function $f(x,y) = (a-x)^2 + b(y-x^2)^2$
- Difficult function to sample via MC
- MCMC can find path to minimum

Markov Chain Example

- Rosenbrock function $f(x,y) = (a-x)^2 + b(y-x^2)^2$
- Difficult function to sample via MC
- MCMC can find path to minimum

MCMC and Feynman Path Integrals

- In QM, transition amplitude
 - Probability amplitude for particle to go from x_i at t_i to x_f at t_f
 - $\langle x_f(t_f) | x_i(t_i) \rangle$
- Path Integral
 - Transition amplitude connected to classical action, S
 - $-S = \int L(x, \dot{x}) dt$
 - This can be the criteria for MCMC updates

MCMC SHO

$$\bullet S = \int d\tau \left(\frac{m\dot{x}^2}{2} + \frac{m\omega^2 x^2}{2} \right)$$

- Consider lattice
- Change in action given by

$$\delta S_{L} = \frac{\widehat{m}}{2} \sum_{n=0}^{N_{\tau}-1} \left\{ (\widehat{x}_{n+1} - \widehat{x}_{n}^{new})^{2} - (\widehat{x}_{n+1} - \widehat{x}_{n})^{2} + \frac{\widehat{\omega}^{2}}{4} (\widehat{x}_{n+1} + \widehat{x}_{n}^{new})^{2} - \frac{\widehat{\omega}^{2}}{4} (\widehat{x}_{n+1} + \widehat{x}_{n})^{2} \right\}$$

SHO Implementation

$$\delta S_{L} = \frac{\widehat{m}}{2} \sum_{n=0}^{N_{\tau}-1} \left\{ (\widehat{x}_{n+1} - \widehat{x}_{n}^{new})^{2} - (\widehat{x}_{n+1} - \widehat{x}_{n})^{2} + \frac{\widehat{\omega}^{2}}{4} (\widehat{x}_{n+1} + \widehat{x}_{n}^{new})^{2} - \frac{\widehat{\omega}^{2}}{4} (\widehat{x}_{n+1} + \widehat{x}_{n})^{2} \right\}$$

Change in action

```
dS=(pow((site[tau+1]-new_site[tau]),2.0)
    +0.25*omega*omega*pow((site[tau+1]+new_site[tau]),2.0))
    -(pow((site[tau+1]-old_site[tau]),2.0)
    +0.25*omega*omega*pow((site[tau+1]+old_site[tau]),2.0));
dS=(m/2.0)*dS;
```

Metropolis Update

```
u=drand48();
if(u<exp(-dS)){
    site[tau]=new_site[tau];
}
else{
    site[tau]=old_site[tau];
}</pre>
```

Burn in Time:

```
//begin thermalization MC sweeps
for(int i=1; i<=THERM; i++){
   //amount of random shift for position at tau
   shift=2.0*DELTA*(drand48()-0.5);</pre>
```


SHO Results

$$\omega = 2$$
 and $m = 10$

$\omega = 100$ and m = 0.5

Double Well

•
$$U = ax^{4} - bx^{2} - fx$$
$$-a = 1$$
$$-b = 8$$
$$-U^{*} = \frac{b^{2}}{4a}$$

Use this as new potential in path integral

Double Well Implementation

Change in action:

Burn in time:

```
//begin thermalization MC sweeps
for(int i=1; i<=THERM; i++){
   //amount of random shift for position at tau
   shift=2.0*DELTA*(drand48()-0.5);</pre>
```

Metropolis Update:

```
u=drand48();
if(u<exp(-dS)){
    site[tau]=new_site[tau];
}
else{
    site[tau]=old_site[tau];
}</pre>
```


Double Well Results

Symmetric Well, f = 0

Asymmetric Well, f = 2

Paper Results

- Comparing results
- MCMC is not perfect
 - Different ways to optimize

Conclusion

- MCMC can describe difficult functions
 - More efficient than regular MC
- Not perfect, so lots of room for research
- Current research tool at UTK
 - At least in Condensed Matter

Thank you

