H=
$$c \vec{p} \cdot \vec{x} + \beta m$$
 $\int c = s/s_{\vec{p}} \text{ for CMP}$

Clifford algebra.

 $d(x) \cdot \vec{s} \cdot \vec{r} = 0$ $f \cdot \vec{s} \cdot \vec{s}$

Reduction of dirac H for 2D into 2 eff-spin characterized Consider H= va a:p + Bm $\mathcal{H}\begin{pmatrix} f \\ o \\ g \end{pmatrix}$, where f = f for π hole $f = \mathcal{H}\begin{pmatrix} f \\ g \end{pmatrix}$ $\Rightarrow \sqrt{q} \overrightarrow{r} \overrightarrow{p} = \sqrt{q} + m \times (f) = E(f) - 0$ $\mathcal{O}+\mathcal{O}$, $\mathcal{V} = \mathcal{P} + \mathcal{O} + \mathcal{O} = \mathcal{E}(f)$ in Let (f) = g, then the effective η_{spm} hornizonion h, (x)= v -. p + moz [valid in 20, 310] Similarly, for $\gamma = (o f g o)^T$ $h_{\downarrow}(x) = (\sqrt{2}P_{x} - \sqrt{2}\sigma_{y}P_{y} + m\sigma_{z})(f) = E(f)$ Opposite -> Derivation $V \overrightarrow{\sigma} \cdot \overrightarrow{P} \begin{pmatrix} g \\ o \end{pmatrix} + m \begin{pmatrix} o \\ f \end{pmatrix} = E \begin{pmatrix} o \\ f \end{pmatrix} - A$

At B,
$$V \overrightarrow{r}, \overrightarrow{p} (g) - m \sigma_{\overline{z}}(g) = E(g)$$

But we want spinor to home (f) structure so well smultiply by

 $(V \overrightarrow{r}, \overrightarrow{p}) \cdot \sigma_{\overline{z}} \cdot (f) - m \sigma_{\overline{z}} \sigma_{\overline{z}} \cdot (f) = E \sigma_{\overline{z}} \cdot (f)$
 $\Rightarrow \sigma_{\overline{z}} \cdot (V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} \cdot (f) + m \sigma_{\overline{z}} \cdot (f) = E(f)$
 $\therefore h_{V} = \sigma_{\overline{z}} \cdot (V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = E(f)$
 $\therefore h_{V} = \sigma_{\overline{z}} \cdot (V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{p}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}, \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}} + m \sigma_{\overline{z}} \cdot (f) = f$
 $(V \overrightarrow{r}) \sigma_{\overline{z}}$

$$h_{1} = v(p^{2}, \sigma^{2}) + m\sigma_{2} = v(\beta_{x}\sigma_{x} + \beta_{y}\sigma_{y} + \beta_{z}\sigma_{z}) + m\sigma_{z}$$

$$h_{1} = \sigma_{x}(vp^{2}, \sigma^{2})\sigma_{x} + m\sigma_{z} = v\beta_{x}\sigma_{x} - \beta_{y}\sigma_{y} - \beta_{z}\sigma_{z}$$

$$+ m\sigma_{z}$$

$$+ m\sigma_{z}$$

$$+ m\sigma_{z}$$

$$+ m\sigma_{z}$$

$$+ m\sigma_{z}$$

Helicity?

"projection of spin along direction of motion" - not on "intrinsic" foroperty in 4x4 > [(7.5 0) 131

Chivality: - conjured to tabulate all "convariant" forms of coveres consistent with dozentz towns. F (4×4) H cohore {3x 32} = 29 42 85 = 18° 318223 Define $y^{2} = \beta = 8^{2} = 1 \ 2 \ 8^{0} = 8^{0}$ 32 = -32 Chirality can be thought of as "inherent" trait of all the farticles, while helicity depends on the momentum of the farticle." > you can change frame (dozentz boost) & change chirality $2 \left[P_3, H7 = 2m \left(0 - 2 \right) \right]$ f 83,8Kg=0 .. good quantum no. if m=0 "Physical interpret of" -> some ashelicity operator when m=0P_= (1-75) -- left forejector Chirality is of interest

\[\frac{2}{2} \]

\[\frac{1+75}{2} \]

\[\frac{1+75

Dirac ego in marsless limit

DE
$$(3^{H}P_{\mu}-m)$$
 $t=0$

set $t=(4)$ or $(2,(p))$
 $(2,$

$$P^{0}u_{\gamma} = \overrightarrow{o} \cdot \overrightarrow{P} u_{\gamma}$$

$$P^{0}u_{l} = -\overrightarrow{o} \cdot \overrightarrow{P} u_{l}$$

oe/disp.

Solution:-
$$po^{2}u_{re} = (\vec{p}, \vec{p}) u_{re}$$

$$\therefore \text{ for non-trivial sol}^{n} / po^{2} = \vec{p}, \vec{p}$$

for
$$p^e$$
: $+|p^e|$ (: not ontiferations)

 $\overrightarrow{p}^* \cdot \overrightarrow{p}^* \cdot u_x = + u_y$
 $\overrightarrow{p}^* \cdot \overrightarrow{p}^* \cdot u_z = -u_z$
 $p^* \cdot \overrightarrow{p}^* \cdot u_x = + u_y$
 $p^* \cdot \overrightarrow{p}^* \cdot u_z = -u_z$
 $p^* \cdot \overrightarrow{p}^* \cdot u_x = + u_y$
 $p^* \cdot \overrightarrow{p}^* \cdot u_z = -u_z$
 $p^* \cdot \overrightarrow{p}^* \cdot u_x = + u_y$
 $p^* \cdot \overrightarrow{p}^* \cdot u_z = -u_z$
 $p^* \cdot \overrightarrow{p}^* \cdot u_x = + u_y$
 $p^* \cdot u_x = -u_z$
 $p^* \cdot \overrightarrow{p}^* \cdot u_x = -u_z$
 $p^* \cdot y^* \cdot u_x = -u_z$
 $p^* \cdot u_x = -u_x$
 $p^* \cdot u_x = -u_x$