Termodynamik - Slafs Aron Granberg, Daniel Kempe, Mårten Wiman

 $pV = \frac{2}{2}U$

Utvidgning

 $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T [Pa^{-1}]$ Isobar volymutvidgningskoefficient $\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_n [K^{-1}]$ Relativa volymändringen $\frac{dV}{V} = -\kappa \cdot dp + \alpha_V \cdot dT$

Kinetisk gasteori

m = massan per partikel [kg]Molara massan $M = mN_A$ $\nu R = Nk_B$ $n = \frac{N}{V}$ $v_p = \sqrt{2} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle v \rangle = \sqrt{\frac{8}{\pi}} \cdot \sqrt{\frac{k_B T}{m}}$ $\begin{aligned} v_{rms} &= \sqrt{\langle v^2 \rangle} = \sqrt{3} \cdot \sqrt{\frac{k_B T}{m}} \\ \langle E_k \rangle &= \frac{3k_B T}{2} \end{aligned}$ Ekvipartitionsprincipen $U = Nk_BT \cdot \frac{1}{2} \cdot (\#\text{frihetsgrader}) [J]$ Energi i enatomig gas $U = N \frac{m \langle v^2 \rangle}{2} = \frac{3}{2} N k_B T$ [J] Notera $N k_B T = p V$

Konstanter

Massenhet

Avogadros

Plancks

Boltzmanns

Gaskonstanten

Stefan-Boltzmanns

Medelfri väg $l = \frac{k_B T}{\sqrt{2\pi} d^2 p} = \frac{1}{n\sigma\sqrt{2}}$ Där d = partikelns diameterStottal $\nu^* = \frac{p}{\sqrt{2\pi m k_B T}} = \frac{1}{4} n \langle v \rangle \left[s^{-1} m^{-2} \right]$ Maxwell-Boltzmanns hastighetsfördelning $n(v) = \mathbf{K} \cdot v^2 \cdot e^{-\frac{mv^2}{2k_BT}}$ om $\int n(v) = \frac{N}{V}$, dvs om normaliserat

Värme

 mol^{-1}

 $\mathrm{J}\,\mathrm{K}^{-1}$

Js

 $\mathrm{m}\,\mathrm{s}^{-1}$

 $\rm J \, mol^{-1} \, K^{-1}$

 ${
m W}\,{
m m}^{-2}\,{
m K}^{-4}$

 $K = 4\pi n \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}}$

Energi för att förändra temp. $\Delta Q = mc\Delta T$ [J] Molar isokor värmekapacitet ideal gas $C_V = \frac{1}{\nu} \frac{dU}{dT} [\text{J mol}^{-1} \text{K}^{-1}]$ Enatomig ideal gas har $C_V = \frac{3}{2}\bar{R}$ Molar isobar värmekapacitet ideal gas $C_p = C_V + R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$ Molar värmekapacitet fast kropp $C_m = 3R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$

Adiabatiska processer

 C_n = isobara molara värmekapaciteten C_V = isokora molara värmekapaciteten $\gamma = \frac{C_p}{C_V} = \frac{c_p}{c_V}$

$pV^{\gamma} = \text{konst.}$
$Tp^{(1-\gamma)/\gamma} = \text{konst.}$
$TV^{\gamma-1} = \text{konst.}$
Adiabatiskt arbete på en gas
$W = -\int_0^1 p dV = \frac{p_1 V_1 - p_2 V_2}{1 - \gamma}$

Matematik

Sfär: $A = 4\pi r^2$; $V = \frac{4\pi r^3}{2}$

Värmetransport $\lambda = V$ ärmekonduktivitet

 $\alpha = {\it V\"{a}}{\it r}$ meövergångskoefficient $U = \frac{\lambda}{d} [W K^{-1} m^{-2}]$ Konvektion $U = \alpha \; [\mathrm{W} \, \mathrm{K}^{-1} \, \mathrm{m}^{-2}]$ Värmemotstånd $\frac{1}{U} = \sum \frac{1}{U_i}$ Värmeflöde $\Phi = UA (T_i - T_u)$ Kom ihåg: Vid jämvikt är värmeflödet konstant, och i t.ex en vägg är värmeflödet konstant genom hela väggen.

Första huvudsatsen

Arbete på en gas dW = -pdVEnergiutbyte med omgivningen dQ = dU + pdVDerivatan av inre energi dU = dQ + dW = dQ - pdV

Vid isokor process
$$dU = \nu C_V dT$$
 Arbete på en gas
$$W = -\int_1^2 p dV$$
 Isotermt kompressionsarbete på en gas
$$W_T = -\nu RT \ln \left(\frac{V_2}{V_1}\right)$$
 Isobart kompressionsarbete på en gas
$$W_p = -p_2(V_2 - V_1)$$
 Isokort arbete på en gas
$$W_V = 0$$

Andra huvudsatsen

Tillförs dQreversibelt till ett system så är

Reversibel process i slutet system $\Delta S = 0$ Irreversibel process i slutet system $\Delta S > 0$

Ovrigt om entropi

 $T = 0 \Rightarrow S = 0$

W =antal möjliga mikroskopiska tillstånd $S = k_B \ln W$

Om S_A är entropi för system A och S_B entropi för system B så har S_A och S_B sett som ett enda system entropin

$$S_{A \cup B} = S_A + S_B$$

Need proof $\Delta S = \nu C_V \cdot \ln \frac{T_2}{T_1} + \nu R \cdot \ln \frac{V_2}{V_1}$

Entalpi H = U + pV

$$\begin{split} dH &= dU + pdV + Vdp \\ \text{Fria energin (Helmholtz funktion)} \\ F &= U - TS \\ dF &= dU - TdS - SdT \\ \text{Fria entalpin (Gibbs funktion)} \\ G &= F + pV \\ \text{ska vi kunna detta?} \\ dG &= -SdT + Vdp + \mu N \end{split}$$

Vid isoterm process så är dW = dF

Vid fasövergång är H ej kontinuerlig (med avseende på temperatur), G är kontinuerlig men dess derivata är inte det

H = G + TS

Carnotprocesser

 $T_H \geq T_C$

Var noga med tecken

 Q_H Värme som reservoaren vid T_H avger Q_C Värme som reservoaren vid T_C avger W Arbete som tillförs processen

$$\begin{aligned} \frac{|Q_H|}{T_H} &= \frac{|Q_C|}{T_C} \\ -W &= Q_H + Q_C \text{ (termer kan vara negativa)} \\ |W| &= |Q_H| - |Q_C| \end{aligned}$$

 $\left(p + \frac{a_0}{v^2}\right) \cdot (v - b_0) = RT$

 $\varepsilon(\nu) + \rho(\nu) + \tau(\nu) = 1$

Van der Waals tillståndsekvation

Kirchoffs lag

Ljushastigheten

R

Vettiga värden									
Arbete vid sömn	1	$\rm Wkg^{-1}$							
Lätt arbete utvecklar vid 25% eff.	55-75	W							
Energibehov människa (3000 kcal)	12	${ m MJd^{-1}}$							
Jordens radie	$6.4 \cdot 10^{6}$	m							
Månens radie	$1.7 \cdot 10^{6}$	m							
Sveriges area	$4.5 \cdot 10^{11}$	m^2							
Värmekapacitet c_{luft}	1.007	${ m kJkg^{-1}K^{-1}}$							
Energidensitet Li-ion batteri	0.3 - 0.9	${ m MJkg^{-1}}$							
Energidensitet trä	16	${ m MJkg^{-1}}$							
Energidensitet kol	24	${ m MJkg^{-1}}$							
Energidensitet fett	37	${ m MJkg^{-1}}$							
Energidensitet bensin	44	${ m MJkg^{-1}}$							
Energidensitet uran	$8.1 \cdot 10^{7}$	${ m MJkg^{-1}}$							
Sveriges elkonsumption	$1.5 \cdot 10^{10}$	W							
Världens elkonsumption	$2.1 \cdot 10^{12}$	W							
Sveriges energikonsumption	$7.4 \cdot 10^{10}$	W							
Världens energikonsumption	$1.5 \cdot 10^{13}$	W							

 $1.66054 \cdot 10^{-27}$

 $6.02214 \cdot 10^{23}$

 $1.38065 \cdot 10^{-23}$

 $5.6704 \cdot 10^{-8}$

299 792 458

 $6.62607\cdot 10^{-34}$

8.3145

Kemi Atom	Ator	nnumr	ner	Substans	C_V/R	Ämne	γ
Kol	11001	111141111	6	He	1.52	 Luft	1.4
Kväve			7	H_2	2.44	H_2	1.4
Syre			8	N_2	2.49	CO_2	1.3
Neon			10	O_2	2.51	H_2O	1.3
Cläm	into	hont	0.44	CO	2.53		

Ämne Densitet $[kg m^{-3}]$ Kol 1050 1000 Vatten 7844 Järn Luft 1.275Helium 0.1785Väte 0.089960 Nysnö Packad snö 400

Glöm inte bort att

molekyler är flera atomer

Tillståndsekvationer för gaser

 $M = \text{molara massan } [\text{kg mol}^{-1}]; m = \text{totala massan i systemet } [\text{kg}]$ $\rho = \frac{m}{V}; p = \frac{\rho RT}{M} = \frac{N k_B T}{V} = \frac{\nu RT}{V}; \nu = \frac{m}{M}$ $b \approx \text{molekylens volym}; a \approx \text{växelverkan mellan partiklar}$ $p = \frac{Nk_BT}{V - Nb} - a\left(\frac{N}{V}\right)^2$ Van der Waals tillståndsekvation $b_0 = bN_A; a_0 = aN_A^2; v = \frac{V}{V}$

850

Strålning

 $\varepsilon = \text{emissivitet}; \alpha = \text{absorptionsfaktor}$ $\rho = \text{reflexionsfaktor}; \tau = \text{transmissionsfaktor}$ $\nu = \text{frekvens} = \frac{c}{\lambda}$ Svartkropp $\Rightarrow \varepsilon = 1$ $\sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3}$

 $\varepsilon(\nu) = \alpha(\nu)$ $\varphi = \varepsilon \sigma T^4 \, [W/m^2]$ Strålningstäthet $\Phi = A\varepsilon\sigma T^4 \text{ [W]}$ Strålningsintensitet $\frac{h\nu_{max}}{k_BT} = 2.821$ Wiens förskjutningslag frekvens $\frac{hc}{\lambda_{max}k_BT} = 4.965$ Wiens förskjutningslag våglängd skippa? $\lambda_{max}T = 2.898 \cdot 10^{-3} \text{m K}$ Wiens förskjutningslag våglängd

 $u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \cdot \frac{1}{\frac{h\nu}{c^{\frac{h\nu}{BPT}}}} [\mathrm{J}\,\mathrm{s}\,\mathrm{m}^{-3}]$ Planck-fördelningen $U(T) = V \frac{\pi^5}{15} \cdot \frac{8h}{c^3} \left(\frac{k_B T}{h}\right)^4 [J]$ Total energi hålrumsstrålning

 $\varphi = \frac{1}{4V}U(T)c = \sigma T^4$ Strålningstäthet hålrumsstrålning $E = h\nu = \frac{hc}{\lambda}$ [J] Fotonenergi