Unidad V: Relaciones

Relaciones: definiciones y relaciones de equivalencia.

Clase 13 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Sean A y B dos conjuntos.

El producto cartesiano $A \times B$ se define como:

$$A \times B = \{(a, b) \mid a \in A \ y \ b \in B\}.$$

Ejemplo:

Si
$$A = \{1, 2\}$$
 y $B = \{1, 2, 4\}$, entonces:

$$A \times B = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4)\}$$

Sean A y B dos conjuntos.

El producto cartesiano $A \times B$ se define como:

$$A \times B = \{(a, b) \mid a \in A \setminus b \in B\}.$$

Comentarios:

- (a, b) es un par ordenado.
- La igualdad de pares ordenados es coordenada a coordenada:

$$(a,b)=(c,d)\iff a=c \land b=d$$

Sean A_1, \ldots, A_n conjuntos.

El producto cartesiano $A_1 \times \cdots \times A_n$ se define como:

$$A_1 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1, \ldots, a_n \in A_n\}.$$

Ejemplo:

Si
$$A_1$$
 = $\{1,2\}$, A_2 = $\{1,2,4\}$ y A_3 = $\{3,5\}$ entonces:

$$A_1 \times A_2 \times A_3 = \{(1,1,3), (1,1,5), (1,2,3), (1,2,5), (1,4,3), (1,4,5), \\ (2,1,3), (2,1,5), (2,2,3), (2,2,5), (2,4,3), (2,4,5)\}$$

Sean A_1, \ldots, A_n conjuntos.

El producto cartesiano $A_1 \times \cdots \times A_n$ se define como:

$$A_1 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1, \ldots, a_n \in A_n\}.$$

Comentarios:

- (a_1, \ldots, a_n) es una **tupla ordenada** (o simplemente **tupla**).
- La igualdad de tuplas ordenadas es coordenada a coordenada:

$$(a_1,\ldots,a_n)=(b_1,\ldots,b_n)\iff a_1=b_1\wedge\cdots\wedge a_n=b_n$$

Relaciones binarias

Sean A y B dos conjuntos.

Definición:

R es una relación binaria de A en B si $R \subseteq A \times B$.

Ejemplo:

Si
$$A = \{1, 2\}$$
 y $B = \{1, 2, 4\}$, entonces:

$$A \times B = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4)\}$$

Posibles relaciones binarias de A en B:

- $R_1 = \{(1,2), (1,4), (2,2)\}$
- $R_2 = \emptyset$
- $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4)\}$

Relaciones binarias sobre un conjunto

Sea A un conjunto.

Definición:

R es una relación binaria sobre A, si R es una relación de A en A. Es decir, si $R \subseteq A \times A$.

Ejemplo:

Sea $A = \mathbb{N}$ las siguientes son posibles relaciones binarias sobre A:

- $R_1 = \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i = j\}$
- $R_2 = \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i < j\}$

Relaciones n-arias sobre un conjunto

Sea A un conjunto y $n \ge 1$.

Notación:

 A^n denota el producto cartesiano $A \times \cdots \times A$, donde A se repite n veces.

Definición:

R es una relación n-aria sobre A, si $R \subseteq A^n$.

Ejemplo:

Sea $A = \mathbb{N}$ las siguientes son posibles relaciones 3-aria y 4-aria sobre A:

- $\blacksquare R_1 = \{(i,j,k) \in \mathbb{N} \times \mathbb{N} \mid k = i + j\}$
- $R_2 = \{(i,j,k,\ell) \in \mathbb{N} \times \mathbb{N} \mid i+j < k+\ell \}$

En lo que viene nos enfocaremos en relaciones binarias sobre un conjunto A. Le llamaremos simplemente **relaciones sobre** A.

Relaciones sobre un conjunto: notación

Sea R una relación sobre A y sean $a, b \in A$.

Para indicar que $(a, b) \in R$ también usaremos la siguiente notación:

- R(a,b)
- a R b

Propiedades de relaciones

Definición:

Una relación R sobre A es:

■ Refleja:

Para cada $a \in A$, se cumple R(a, a).

■ Irrefleja (o antirefleja):

Para cada $a \in A$, **no** se cumple R(a, a).

Ejercicio:

- $lue{}$ De ejemplo de relaciones reflejas e irreflejas sobre \mathbb{N} .
- ¿Y sobre el conjunto de personas?

Propiedades de relaciones

Definición:

Una relación R sobre A es:

■ Simétrica:

Para cada $a, b \in A$, si R(a, b) entonces R(b, a).

Asimétrica:

Para cada $a, b \in A$, si R(a, b) entonces **no** se cumple R(b, a).

■ Antisimétrica:

Para cada $a, b \in A$, si R(a, b) y R(b, a) entonces a = b.

Ejercicio:

- De ejemplo de relaciones simétrica e asimétrica sobre N.
- ¿Y sobre el conjunto de personas?

Propiedades de relaciones

Definición:

Una relación R sobre A es:

■ Transitiva:

Para cada $a, b, c \in A$, si R(a, b) y R(b, c), entonces R(a, c).

■ Conexa:

Para cada $a, b \in A$, si tiene que R(a, b) o R(b, a).

Ejercicio:

- De ejemplo de relaciones transitivas y conexas sobre \mathbb{N} .
- ¿Y sobre el conjunto de personas?

Ejercicios

- De un ejemplo de una relación refleja, simétrica y no transitiva sobre N.
- De un ejemplo de una relación refleja, transitiva y no simétrica sobre N.
- De un ejemplo de una relación simétrica, transitiva y no refleja sobre N.

Relaciones de equivalencia

Definición:

Una relación *R* sobre *A* es una relación de equivalencia si es refleja, simétrica y transitiva.

Ejemplos:

- La relación $\{(i,i) \mid i \in \mathbb{N}\}$ sobre \mathbb{N} .
- La relación equivalencia lógica sobre L(P). (recordar que L(P) denota el conjunto de fórmulas proposicionales sobre P.)

Relaciones de equivalencia: dos ejemplos fundamentales

Sea $n \ge 2$ un natural.

Definimos la relación \equiv_n (equivalencia modulo n) sobre \mathbb{Z} como:

$$a \equiv_n b \iff (a-b)$$
 es divisible por n

Recordatorio: m es divisible por n si existe $k \in \mathbb{Z}$ tal que $m = k \cdot n$.

Proposición:

 \equiv_n es una relación de equivalencia sobre \mathbb{Z} .

Ejercicio: Demuestre la proposición.

Relaciones de equivalencia: dos ejemplos fundamentales

Definimos la relación ~ sobre $\mathbb{N} \times \mathbb{N}$ como:

$$(a,b) \sim (c,d) \iff a+d=c+b$$

Observación: $(a,b) \sim (c,d) \iff a-b=c-d$

Proposición:

 \sim es una relación de equivalencia sobre $\mathbb{N} \times \mathbb{N}$.

Ejercicio: Demuestre la proposición.

Definición:

Sea R una relación de equivalencia sobre A y $a \in A$ un elemento.

La clase de equivalencia de a bajo R se define como:

$$[a]_R = \{b \in A \mid R(a,b)\}.$$

Ejemplos:

- ¿Cómo se van las clases de equivalencia bajo \equiv_n sobre \mathbb{Z} ?
- ¿Qué pasa para ~ sobre $\mathbb{N} \times \mathbb{N}$?

El siguiente resultado nos dice que las clases de equivalencia particionan al conjunto A.

Proposición:

Sea ~ una relación de equivalencia sobre A. Se cumple lo siguiente:

- Para cada $a \in A$, se tiene $[a]_{\sim} \neq \emptyset$.
- Para cada $a, b \in A$, si $a \sim b$ entonces $[a]_{\sim} = [b]_{\sim}$.
- Para cada $a, b \in A$, si $a \sim b$ no se cumple, entonces $[a]_{\sim} \cap [b]_{\sim} = \emptyset$.

Ejercicio: Demuestre la proposición.

Proposición:

Sea ~ una relación de equivalencia sobre A. Se cumple lo siguiente:

- Para cada $a \in A$, se tiene $[a]_{\sim} \neq \emptyset$.
- Para cada $a, b \in A$, si $a \sim b$ entonces $[a]_{\sim} = [b]_{\sim}$.
- Para cada $a, b \in A$, si $a \sim b$ no se cumple, entonces $[a]_{\sim} \cap [b]_{\sim} = \emptyset$.

Demostración:

Item (1):

Sea $a \in A$. Como \sim es refleja se tiene $a \sim a$.

Concluimos que $a \in [a]_{\sim}$, y entonces, $[a]_{\sim} \neq \emptyset$.

Proposición:

Sea ~ una relación de equivalencia sobre A. Se cumple lo siguiente:

- Para cada $a \in A$, se tiene $[a]_{\sim} \neq \emptyset$.
- Para cada $a, b \in A$, si $a \sim b$ entonces $[a]_{\sim} = [b]_{\sim}$.
- Para cada $a, b \in A$, si $a \sim b$ no se cumple, entonces $[a]_{\sim} \cap [b]_{\sim} = \emptyset$.

Demostración:

Item (2):

Sean $a, b \in A$ tal que $a \sim b$.

Veamos que $[a]_{\sim} \subseteq [b]_{\sim}$. (la dirección $[b]_{\sim} \subseteq [a]_{\sim}$ es análoga.)

Sea $c \in [a]_{\sim}$. Por definición de clase de equivalencia, se tiene que $a \sim c$.

Por hipótesis, sabemos que $a \sim b$ y como \sim es simétrica, tenemos que $b \sim a$.

Tenemos que $b \sim a$ y $a \sim c$, luego por transitividad de \sim , deducimos que $b \sim c$.

Concluimos que $c \in [b]_{\sim}$.

Proposición:

Sea ~ una relación de equivalencia sobre A. Se cumple lo siguiente:

- Para cada $a \in A$, se tiene $[a]_{\sim} \neq \emptyset$.
- Para cada $a, b \in A$, si $a \sim b$ entonces $[a]_{\sim} = [b]_{\sim}$.
- Para cada $a, b \in A$, si $a \sim b$ no se cumple, entonces $[a]_{\sim} \cap [b]_{\sim} = \emptyset$.

Demostración:

Item (3):

Sean $a, b \in A$ tal que $a \sim b$ no se cumple.

Por contradicción, supongamos que $[a]_{\sim} \cap [b]_{\sim} \neq \emptyset$.

Es decir, existe un elemento $c \in A$ tal que $c \in [a]_{\sim} \cap [b]_{\sim}$.

Por definición de clases de equivalencia, se tiene que $a \sim c$ y $b \sim c$.

Por simetría de \sim , obtenemos que $c \sim b$.

Por transitividad de \sim , concluimos que $a \sim b$.

Esto es una contradicción.

Particiones y clases de equivalencia

Sea A un conjunto y $S \subseteq \mathcal{P}(A)$ (un conjunto de subconjuntos de A).

Definición:

Decimos que S es una partición de A si:

- Para cada $X \in \mathcal{S}$, se tiene que $X \neq \emptyset$. (cada X en \mathcal{S} es no vacío.)
- X = A. (la unión de todos los X en S es A.) XES
- Para cada $X, Y \in \mathcal{S}$, con $X \neq Y$, se tiene que $X \cap Y = \emptyset$. (los conjuntos en S son disjuntos par a par.)

Eiemplos:

Sea $A = \{1, 2, 3, 4, 5, 6\}$, ¿Cuáles son particiones?

- **4** { 1, 3}, {2, 5}, {4, 6}
- **4** { 1, 2, 3}, {4, 5}, {3, 6}
- **4** { 1}, {2}, {3}, {4}, {5}, {6}
- **4** { 1, 2, 3}, {4, 5}

Particiones y clases de equivalencia

Sea \sim una relación de equivalencia sobre A.

La proposición anterior nos dice que las clases de equivalencia bajo \sim , forman una partición de A.

Clases de equivalencia: ejemplos

Considere ≡₄, ¿Cuáles son sus clases de equivalencia?

$$a \equiv_4 b \iff (a-b) \text{ es divisible por } 4 \iff \exists k \in \mathbb{Z}, (a-b) = 4 \cdot k$$

$$[0]_{\equiv_4} = \{0,4,8,12,\ldots,-4,-8,-12,\ldots\}$$

$$[1]_{\equiv_4} = \{1,5,9,13,\ldots,-3,-7,-11,\ldots\}$$

$$[2]_{\equiv_4} = \{2,6,10,14,\ldots,-2,-6,-10,\ldots\}$$

$$[3]_{\equiv_4} = \{3,7,11,15,\ldots,-1,-5,-9,\ldots\}$$

$$[4]_{\equiv_4} = [0]_{\equiv_4}$$

$$[5]_{\equiv_4} = [1]_{\equiv_4}$$

$$\vdots$$

Clases de equivalencia: ejemplos

Considere ≡₄, ¿Cuáles son sus clases de equivalencia?

... -4 -3 -2 -1 0 1 2

$$a \equiv_4 b \iff (a-b)$$
 es divisible por $4 \iff \exists k \in \mathbb{Z}, (a-b) = 4 \cdot k$

$$[0]_{\equiv_4} = \{0,4,8,12,\ldots,-4,-8,-12,\ldots\}$$

$$[1]_{\equiv_4} = \{1,5,9,13,\ldots,-3,-7,-11,\ldots\}$$

$$[2]_{\equiv_4} = \{2,6,10,14,\ldots,-2,-6,-10,\ldots\}$$

$$[3]_{\equiv_4} = \{3,7,11,15,\ldots,-1,-5,-9,\ldots\}$$

$$[4]_{\equiv_4} = [0]_{\equiv_4}$$

$$[5]_{\equiv_4} = [1]_{\equiv_4}$$

$$\vdots$$

3 4 5

Conjunto cuociente

Definición:

Sea ~ una relación de equivalencia sobre A.

El conjunto cuociente de A dado ~ se define como:

$$A/\sim = \{[a]_{\sim} \mid a \in A\}.$$

Comentarios:

- El conjunto cuociente es una partición de A.
- Muchas construcciones comunes se basan ele conjunto cuociente, por ejemplo, $\mathbb Z$ y $\mathbb Q$.

La construcción de Z

Recuerde la relación de equivalencia ~ sobre $\mathbb{N} \times \mathbb{N}$:

$$(a,b) \sim (c,d) \iff a+d=c+b$$

Definimos:

$$\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim = \{[(a,b)]_{\sim} \mid (a,b) \in \mathbb{N} \times \mathbb{N}\}.$$

Para $n \in \mathbb{N}$:

- n es representado por $[(n,0)]_{\sim}$.
- -n es representado por $[(0,n)]_{\sim}$.

La construcción de \mathbb{Z} : operaciones

Definamos la suma sobre \mathbb{Z} :

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} = [(a+c,b+d)]_{\sim}$$

Debemos asegurarnos de que la suma está bien definida:

Si
$$[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$$
 y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} + [(c_1,d_1)]_{\sim} = [(a_2,b_2)]_{\sim} + [(c_2,d_2)]_{\sim}$.

Ejercicio: Demuestre que la suma está bien definida.

La construcción de \mathbb{Z} : operaciones

Definamos la multiplicación sobre \mathbb{Z} :

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} = [(ac+bd,ad+bc)]_{\sim}$$

Debemos asegurarnos de que la multiplicación está bien definida:

Si
$$[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$$
 y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} \cdot [(c_1,d_1)]_{\sim} = [(a_2,b_2)]_{\sim} \cdot [(c_2,d_2)]_{\sim}$.

Ejercicio: Demuestre que la multiplicación está bien definida.

La construcción de Z: relaciones

Definamos la relación < sobre \mathbb{Z} :

$$[(a,b)]_{\sim} < [(c,d)]_{\sim} \iff a+d < c+b$$

Debemos asegurarnos de la relación < está bien definida:

Si
$$[(a_1, b_1)]_{\sim} = [(a_2, b_2)]_{\sim}$$
 y $[(c_1, d_1)]_{\sim} = [(c_2, d_2)]_{\sim}$, entonces $[(a_1, b_1)]_{\sim} < [(c_1, d_1)]_{\sim}$ si y sólo si $[(a_2, b_2)]_{\sim} < [(c_2, d_2)]_{\sim}$.

Ejercicio: Demuestre que < está bien definida.

Ejercicios finales

- Defina Q a partir de Z usando una relación de equivalencia y el espacio cuociente.
- Defina las operaciones suma y multiplicación sobre $\mathbb Q$ y demuestre que están bien definidas.