

SC4024/CZ4124 Data Visualization

Assistant Professor WANG Yong

yong-wang@ntu.edu.sg
CCDS, Nanyang Technological University

1

Chapter 9.2 Time-series Data Visualization

Δ

Outline

- Time-series data
- Time representation
- Time-series patterns
- Time-series data visualization with special requirements
- Interactive techniques for time-series data visualization

5

Time-series Data

- Time series data, also referred to as time-stamped data, is a sequence of data points indexed in time order.
- Examples
 - Stock price
 - Temperature
 - Economic indicators
 - Patient health evolution metrics (e.g., ECG data)
 - Sensor data

Large volume, high dimensional, multivariate, widely used

Linear Time • Present time data as a 2D line graph - Time on x-axis - The other variable on y-axis - The most common way to represent a timeline

Personal Data Visualization, by Stephen Wolfram - The x-axis and y-axis represent the year and daily timeslot respectively, and each dot represent an email - It shows the time of over 1 million emails since 1989

http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/scales and the state of the control of the control

9

Radial Time

- Data distributed along the spiral
- It is appropriate for presenting the periodic nature of time, such as natural cycles of people, weather systems, etc.

Example: Nightingale Rose Charts:

- It shows the causes of mortality in the army in the East and was created by Florence Nightingale
- It indicates the annual rate of mortality per 1,000 in each month that occurred from preventable diseases (in blue), wounds (in red), and other causes (in black).

 $\underline{https://en.m.wikipedia.org/wiki/File:Nightingale-mortality.jpg}$

11

Radial Time

Example: Historic creative's daily routines

https://infowetrust.com/project/routines

Grid Time

- Grid representations such as the standard Month-Week-Day calendar are ubiquitous.
- However, grid representations are only appropriate for timelines that reflect these granularities of time.

Example: Dow Jones stock price from 2006 to 2009

http://mbostock.github.io/d3/talk/20111018/calendar.html

13

Spiral Time

• Spiral representations are dense, space-filling shapes that radiate to or from a centre point.

• Spiral timelines are aesthetically appealing and appropriate for presenting many events within a single dense display

Example: Ross Spiral Curriculum

Ross spiral curriculum, 2015. https://spiral

15

Arbitrary Time

• Arbitrary timeline representations may appear visually similar to connected scatterplots and time curves

• Like spiral representations, arbitrary representations can be useful for presenting many events within a single dense display and improve the memorability of a time-series data

Example: Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

Time Representation

• Taxonomy

• Among the above four types, <u>linear time representation</u> <u>is more popular</u>

Brehmer, Matthew, et al. "Timelines revisited: A design space and considerations for expressive storytelling." TVCG 23.9 (2016): 2151-2164.

19

What will you learn from this lesson?

- Time-series data
- Time representation
- Time-series data patterns
- Time-series data visualization with special requirements
- Interactive techniques for time-series data visualization

20

Time-series data patterns

- Trend
- Rate of change
- Co-variation
- Cycles
- Exceptions

21

Time-series Patterns: Trend

• The overall or general direction of change in a series of time-series values is called the trend, which is often displayed in a graph as a trend line.

Time-series Patterns: Trend

• Example: Visitors from China is in increasing trend and visitor from Japan is in decreasing trend

23

Time-series Patterns: Rate of change Technology UNIVERSITY TO CHANGE

• The percentage difference between one value to the next value.

Time-series Patterns: Cycles • Cycles are patterns that repeat at regular intervals.

Time-series Patterns: Co-variation

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

• When two time series relate to one another so that changes in one are reflected as changes in the other, either immediately or later.

Without Co-variation

Time-series Patterns: Exceptions

• Values that fall outside the norm.

27

What will you learn from this lesson? What will you learn from this lesson?

- Time-series data
- Time representation
- Time-series data patterns
- Time-series data visualization with special requirements
- Interactive techniques for time-series data visualization

28

Massive Time-series Data

- Classic line chart
- When there are massive time-series data, serious visual clutters will occur

29

Massive Time-series Data

• Horizon graph is designed to mitigate the visual clutter issues when there are massive time-series data

https://www.perceptualedge.com/blog/?p=3

Distribution Over Time

• Interpreting Candlestick Chart

Decreasing:

Part-Whole Relationships

• To show values that combine to form a whole comparison to one another and the whole change through time

Region	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
East	64,162	70,172	93,657	55,056	63,631	53,040	51,974	63,272	54,110	112,284	69,697	27,437
Central	125,392	80,851	87,645	52,996	107,159	80,349	19,907	70,431	92,568	72,961	49,881	85,084
West	67,364	63,742	83,856	92,412	120,284	116,618	66,692	49,671	92,920	65,971	31,516	99,000
South	94,572	63,234	79,491	68,963	65,868	56,659	97,101	126,879	73,240	102,589	73,044	177,943
Total	\$351,490	\$277,998	\$344,649	\$269,425	\$356,942	\$306,666	\$235,674	\$310,254	\$312,839	\$353,805	\$224,139	\$389,465

What will you learn from this lesson? KANYANG SINGAPOR

- Time-series data
- Time representation
- Time-series data patterns
- Time-series data visualization with special requirements
- Interactive techniques for time-series data visualization

Interactivity

- Select: mark something as interesting
- Explore: show me something else
- Reconfigure: show me a different arrangement
- Encode: show me a different representation
- Abstract/Elaborate: show me more or less details
- Filter: show me something conditionally
- Connect: show me related items

41

Summary

- Time representation
 <u>Linear</u>, radial, grid, spiral, arbitrary
- Time-series data patterns

 Trend, rate of change, co-variation, cycles, exceptions
- Interactive techniques for time-series data visualization

45

Questions?

Thank You!

Reference

- Introduction to Cycle Plots
 (http://www.perceptualedge.com/articles/guests/intro_to_cycle_plots.pd_f)
- Slopegraph
 - Slopegraphs for comparing gradients: Slopegraph theory and practice (http://www.edwardtufte.com/bboard/q-and-a-fetchmsg?msg_id=0003nk)
 - In praise of slopegraphs
 (http://visualisingdata.com/index.php/2013/12/in-praise-of-slopegraphs/)
 - Displaying Change Between Two Points in Time
 (http://www.perceptualedge.com/articles/visual business intelligen ce/di splaying change between two points in time.pdf)
 - Edward Tufte's "Slopegraphs" (http://charliepark.org/slopegraphs/)
 - A Slopegraph Update (http://charliepark.org/a-slopegraph-update/)

49

Reference

- Slopegraphs are your Friend. Tables secretly hate you. (http://makeapowerfulpoint.com/2014/01/30/slopegraphs-are-your-friend-tables-secretly-hate-you/)
- Communicating changes in rank over time: bumps charts and slopegraphs (http://datatodisplay.com/blog/chart-design/communicating-changes-rank-time/)
- Tableau Tip Tuesday: How to Create Slopegraphs (http://vizwiz.blogspot.sg/2015/01/slopegraphs.html)
- How to make a slope chart in Tableau (http://gravyanecdote.com/tableau/how-to-make-a-slope-chart-in-tableau/)
- <u>Slopegraphs in Tableau</u> (http://dataremixed.com/2013/12/slopegraphs-in-tableau/)

50

Reference

- Horizon graph
 - The Development of the Horizon Graph (http://www.stonesc.com/Vis08_Workshop/DVD/Reijner_submission.pdf)
 - Time on the Horizon
 (http://www.perceptualedge.com/articles/visual_business_intelligence/time_on_the_horizon.pdf)
 - Horizon Graphs Revisited (http://www.perceptualedge.com/blog/?p=390)
 - Sizing the Horizon: The Effects of Chart Size and Layering on the Graphical Perception of Time Series Visualizations (http://vis.stanford.edu/files/2009-TimeSeries-CHI.pdf)
 - Interactive Horizon Graphs (http://hal.archivesouvertes.fr/docs/00/78/13/90/PDF/IHG.pdf)
 - Horizon charts in Tableau (http://www.tableau.com/learn/tutorials/on-demand/horizon-charts)

51

51

Reference

- Animated Bubble Plot (Motion Chart)
 - Wiki (http://en.wikipedia.org/wiki/Motion_chart)
 - Visualizing Change: An Introduction in Time-Series Analysis
 (http://www.perceptualedge.com/articles/visual_business_intelligence/visual_izing

change.pdf)