

Lecture 2: Vectors and the Geometry of Space.

MA2032 Vector Calculus

Lecturer: Larissa Serdukova

School of Computing and Mathematical Science University of Leicester

September 25, 2022

Vectors

In this section we show how to represent things that have both **magnitude and direction** in the plane or in space.

Definition:

The vector represented by the directed line segment \overrightarrow{AB} has initial point **A** and terminal point **B** and its length is denoted by $|\overrightarrow{AB}|$. Two vectors are equal if they have the same length and direction, regardless of the initial point.

Figure 4: (left) The directed line segment \overrightarrow{AB} is called a vector; (middle/right) Velocity vector v at a specific location for a particle moving along a path in the plane/space.

Component Form of Vectors

Definition:

If v is a **two-dimensional** vector in the plane equal to the vector with initial point at the origin (vector in **standard position**) and terminal point (v_1, v_2) , then the **component form** of v is $v = \langle v_1, v_2 \rangle$.

If v is a **three-dimensional** vector equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3) , then the **component form** of v is $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$.

Figure 5: A vector \overrightarrow{PQ} in standard position has its initial point at the origin. The directed line segments \overrightarrow{PQ} and v are parallel and have the same length.

Given the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, the standard position vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ equal to \overrightarrow{PQ} is $\mathbf{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$.

Component Form of Vectors

Two vectors are **equal** if and only if their standard position vectors are identical. Thus $\langle u_1, u_2, u_3 \rangle$ and $\langle v_1, v_2, v_3 \rangle$ are equal if and only if $u_1 = v_1$, $u_2 = v_2$, and $u_3 = v_3$.

Definition:

The **magnitude** or **length** of the vector $v = \overrightarrow{PQ}$ is the nonnegative number

$$||v|| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

The only vector with length 0 is the **zero vector** $0 = \langle 0, 0 \rangle$ or $0 = \langle 0, 0, 0 \rangle$. This vector is also the **only vector with no specific direction**.

Example

Find the (a) component form and (b) length of the vector with initial point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution:

(a) The standard position vector v representing \overrightarrow{PQ} has components $v_1=x_2-x_1=-5-(-3)=-2,\ v_2=y_2-y_1=2-4=-2,$ and $v_3=z_2-z_1=2-1=1.$ The component form of \overrightarrow{PQ} is $v=\langle -2,-2,1\rangle.$

(b) The length or magnitude of $v = \overrightarrow{PQ}$ is $||v|| = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{9} = 3$.

Vector Algebra Operations

Definitions:

Let $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$ be vectors with κ a scalar.

Addition: $u + v = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ Scalar multiplication: $\kappa u = \langle \kappa u_1, \kappa u_2, \kappa u_3 \rangle$

Difference: $u - v = \langle u_1 + (-1)v_1, u_2 + (-1)v_2, u_3 + (-1)v_3 \rangle$

Figure 6: (Left) Geometric interpretation of the vector sum. (Right) The parallelogram law of vector addition in which both vectors are in standard position.

Vector Algebra Operations

Vector operations have many of the properties of ordinary arithmetic.

Properties of Vector Operations

Let u. v. w be vectors and a, b be scalars.

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = u$$

4.
$$u + (-u) = 0$$

5.
$$0 \times u = 0$$

6.
$$1 \times u = u$$

7.
$$a \times (bu) = (ab) \times u$$

7.
$$a \times (bu) = (ab) \times u$$
 8. $a \times (u + v) = au + av$

$$9. (a+b) \times u = au + bu$$

When three or more space vectors lie in the same plane, we say they are coplanar vectors.

For **example**, the vectors u, v, and u + v are always coplanar.

Unit Vectors

A vector v of length 1 is called a **unit vector**.

The **standard unit vectors** are $i = \langle 1, 0, 0 \rangle$, $j = \langle 0, 1, 0 \rangle$, $k = \langle 0, 0, 1 \rangle$.

Any vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ can be written as a **linear combination** of the standard unit vectors as follows:

$$v = \langle v_1, v_2, v_3 \rangle = \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle = \langle v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle = \langle v_1 i + v_2 j + v_3 k.$$

(University of Leicester)

Unit Vectors

If $v \neq 0$, then its length ||v|| is not zero and $\left\|\frac{1}{||v||}v\right\| = \frac{1}{||v||}||v|| = 1$.

That is, $\frac{v}{||v||}$ is a unit vector in the direction of v, called the **direction** of the nonzero vector v.

We can express any nonzero vector v in terms of its two important features, **length** and **direction**, by writing $v = ||v|| \frac{v}{||v||}$.

Example: If v = 3i - 4j is a velocity vector, express v as a product of its speed times its direction of motion.

Solution: Speed is the magnitude (length) of v:

$$||v|| = \sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = 5.$$

The unit vector v/||v|| is the direction of v:

$$\frac{v}{||v||} = \frac{3}{5}i - \frac{4}{5}j$$

So $v = 3i - 4j = 5(\frac{3}{5}i - \frac{4}{5}j)$.

40) 40) 45) 45) 5 900

Midpoint of a Line Segment

The midpoint M of the line segment

joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is the point

$$(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}).$$

To see why, observe Figure at the right that

$$\overrightarrow{OM} = \overrightarrow{OP_1} + \frac{1}{2}(\overrightarrow{P_1P_2}) = \overrightarrow{OP_1} + \frac{1}{2}(\overrightarrow{OP_2} - \overrightarrow{OP_1}) = \frac{1}{2}(\overrightarrow{OP_1} + \overrightarrow{OP_2}) = \frac{x_1 + x_2}{2}i + \frac{y_1 + y_2}{2}j + \frac{z_1 + z_2}{2}k.$$

Applications

An important application of vectors occurs in navigation.

Example

A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph tailwind blowing in the direction 60° north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new **ground speed** and **direction**. What are they?

Solution:

If u is the velocity of the airplane alone and v is the velocity of the tailwind, then |u|=500 and |v|=70. The velocity of the airplane with respect to the ground is given by the magnitude and direction of the resultant vector $\mathbf{u}+\mathbf{v}$.

Solution

If we let the positive x-axis represent east and the positive y-axis represent north, then the component forms of u and v are $u=\langle 500,0\rangle$ and $v=\langle 70\cos 60^\circ,70\sin 60^\circ\rangle=\langle 35,35\sqrt{3}\rangle.$

Therefore,

$$u + v = \langle 535, 35\sqrt{3} \rangle = 535i + 35\sqrt{3}j$$

 $|u + v| = \sqrt{535^2 + (35\sqrt{3})^2} \approx 538.4$

and

$$\theta=\tan^{-1}\frac{35\sqrt{3}}{535}\approx 6.5^{\circ}.$$

The new ground speed of the airplane is about 538.4 mph, and its new direction is about 6.5° north of east.