

- 1	
	D let V=Vi, W1=W1j, W2=W2K
	Since, all three vectors, meet at right angles
AVIT	it can be understood that, they are orthogonal
	to each other aswell.
	Hence, Vold, Vish
	(x1+1+1) (1. V. wi = vi. w; = 0 = 7
	As the dot product of v and W, vector is zero.
	=> V & W, are orthogonal & Surfaces
(2)	1) Pac ? that
<u> </u>	A) 3x3 Matrix, projects vectors in R3 onto the z-axis
	P = m : 0 0
	001 950
	this motive will transform any vector in R3 by setting
	the x and y plane components to zero and leaving the z component unchanged, which is
	effectively projecting it onto the Z-axis
	3 10 of warming the war with about the world
	B) 3x3 matrix that project vectors in R3 onto the xyplane
	100 This matrix will transform any
	Pxy= 0 1 0 vector in R3 by keeping the x & y
	000 components the same and setting
	the z-component to zero, which is effectively projecting
	it onto the XY-plane.

Given
$$u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $v = \begin{pmatrix}$