Chapitre Lycée (1): Résolution d'inéquation

I. Inéquations

1) <u>Définitions</u>

 \rightarrow Une inégalité compare deux nombres à l'aide des symboles : < , > , \leq et \geq .

Ex: 0,5 < 1 est une inégalité dans laquelle on compare 0,5 et 1.

→ Une inéquation à une inconnue est une inégalité dans laquelle un nombre inconnu est désigné par une lettre.

Ex: $3 \times + 12 < 3$ est une inéquation.

 $3 \times + 12$ est le membre de gauche et 3 est le membre de droite.

 \rightarrow **Résoudre une inéquation** d'inconnue x, revient à trouver toutes les valeurs possibles du nombre x qui vérifient l'inégalité.

Chacun de ces valeurs est appelés solution de l'inéquation.

2) Tester si un nombre est solution d'une inéquation

Une solution d'une inéquation est un nombre pour lequel l'inéquation est vraie.

Ex: - 2 est solution-il de l'inéquation $3 \times + 5 < -2 \times - 8$?

On remplace chaque membre de l'inégalité en remplaçant x par -2.

D'une part,

Pour
$$x = -2$$
,

Pour
$$x = -2$$
,

$$3 \times + 5 = 3 \times (-2) + 5$$

= -6 + 5

$$-2 \times -8 = -2 \times (-2) - 8$$

=4 - 8

-1 > -4 donc - 2 n'est pas solution de l'inéquation $3 \times + 5 < -2 \times - 8$.

3) Représenter les solutions sur une droite graduée

Dans la représentation des solutions sur une droite graduée,

- si un crochet est tourné vers les solutions alors le nombre correspondant fait partie des solutions
- si le crochet est tourné vers l'extérieur alors le nombre correspondant ne fait pas partie des solutions.

Exemples:

- a) Sur cette droite graduée sont représentés les nombres solutions de l'inéquation x > 3.
- b) Sur cette droite graduée sont représentés les nombres solutions de l'inéquation $x \le 2$.

On prend alors toutes les valeurs plus grandes que 3, 3 exclu.

A vous de jouer!

Le crochet n'est pas tourné vers les solutions car le nombre 3 n'est pas une solution de l'inéquation.

Le crochet est tourné vers les solutions car 2 est une solution.

Exercice d'application :

Représenter les solutions des inéquations suivantes sur une droite graduée :

II. Résolution d'inéquation du premier degré à une inconnue

1) Exemple 1 : Résoudre l'inéquation - 3x - 1 > 5 et représenter les solutions sur la droite graduée.

- 3 x - 1 + 1 > 5 + 1	On ajoute 1 dans chaque membre
$-3 \times > 6$	On réduit.
$\frac{-3x}{-3} < \frac{6}{-3}$	On divise par - 3 chaque membre (3 étant un nombre négatif, on change le sens de l'inégalité).
x < - 2	On réduit.
Les solutions sont tous les nombres inférieurs strictement à 2.	On conclut et on représente les solutions sur une droite graduée.

2) Exemple 2 : Résoudre l'inéquation $-7 \times -3 \ge 2 \times -1$ et représenter les solutions sur la droite graduée.

$-7 x - 3 - 2 x \ge 2 x - 1 - 2 x$	On soustrait $2 \times \hat{a}$ chaque membre.
$-9x-3 \ge -1$	On réduit.
$-9x-3+3 \ge -1+3$	On ajoute 3 dans chaque membre.
$-9 x \ge 2$	On réduit.
$\frac{-9x}{-9} \le \frac{2}{-9}$	On divise par -9 chaque membre. -9 étant un nombre négatif, on change le sens de l'inégalité.
$x \leq \frac{2}{-9}$	On réduit.
Les solutions sont tous les nombres inférieurs ou égaux à $\frac{2}{-9}$.	On conclut et on représente les solutions sur une droite graduée.

3) A vous de jouer!

Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$x - 2 \le 0$$

2)
$$x + 4 > 0$$

3)
$$2x + 7 > 0$$

$$4) \ \frac{1-3x}{4} \geqslant 0$$

5)
$$3x - 3 < 1 - 2x$$

6)
$$2(x-3) \ge 8-3x$$

7)
$$2(x+1) < 3+2x$$

8)
$$\frac{x-2}{3} - \frac{1-x}{2} \ge 0$$

$$9) \ \frac{x}{2} - \frac{4 - x}{4} > 5$$

Correction:

1)
$$x-2 \le 0$$

 $x \le 0+2$
 $x \le 2$

2)
$$x+4>0$$

 $x>0-4$
 $x>-4$

3)
$$2x + 7 > 0$$

 $2x > 0 - 7$
 $2x > -7$
 $x > \frac{-7}{2}$

4)
$$\frac{1-3x}{4} \ge 0$$

 $1-3x \ge 0$
 $-3x \ge -1$
 $x \le \frac{1}{3}$

5)
$$3x-3 < 1-2x$$

 $3x+2x < 1+3$
 $5x < 4$
 $x < \frac{4}{5}$

6)
$$2(x-3) \ge 8-3x$$

 $2x-6 \ge 8-3x$
 $2x+3x \ge 8+6$
 $5x \ge 14$
 $x \ge \frac{14}{5}$

7)
$$2(x+1) < 3 + 2x$$

 $2x + 2 < 3 + 2x$
 $2x - 2x < 3 - 2$
 $0x < 1$
(aucune solution)

8)
$$\frac{\frac{x-2}{3} - \frac{1-x}{2} \ge 0}{\frac{2(x-2)}{6} - \frac{3(1-x)}{6} \ge 0}$$
$$\frac{\frac{2(x-2)-3(1-x)}{6} \ge 0}{2(x-2) - 3(1-x) \ge 0}$$
$$2x - 4 - 3 + 3x \ge 0$$
$$5x - 7 \ge 0$$
$$5x \ge 7$$
$$x \ge \frac{7}{5}$$

9)
$$\frac{\frac{x}{2} - \frac{4-x}{4} > 5}{\frac{2x}{4} - \frac{4-x}{4} - 5 > 0}$$
$$\frac{\frac{2x}{4} - \frac{4-x}{4} - \frac{20}{4} > 0}{\frac{2x-4-x-20}{4} > 0}$$
$$2x - 4 - x - 20 > 0$$
$$x - 24 > 0$$
$$x > 24$$

4) Exemple de résolution d'un problème

Enoncé: Un cinéma propose deux formules d'abonnement différentes:

- Tarif A: 15 € d'abonnement puis 4 € par film;

- Tarif B: 35 € d'abonnement puis 2 € par film.

Déterminer le nombre de films à partir duquel le tarif B est le plus intéressant.

Résolution :

- Choix de l'inconnue : On pose x : le nombre de film que l'on va voir.
- Traduction de l'énoncé par une inéquation :

Tarif
$$A : 15 + 4x$$
 Tarif $B : 35 + 2x$

On veut savoir quand le tarif B est inférieur au tarif A.

- Résolution de l'inéquation :

$$B < A$$

$$35 + 2x < 15 + 4x$$

$$2x - 4x < 15 - 35$$

$$-2x < -20$$

$$\frac{-2x}{-2x} > \frac{-20}{-2x}$$

$$x > 10$$

- Réponse au problème posé :

Le tarif B est le plus intéressant à partir de 11 films.

- Vérifications:

Pour 11 films, le tarif B =
$$35 + 2 \times 11 = 35 + 22 = 57$$
.
Le tarif $A = 15 + 4 \times 11 = 15 + 44 = 59$
Or $57 < 59$. Donc le tarif B < tarif A.