1.

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

AMENDMENT TO THE CLAIMS

Please amend the claims as follows:

cancelled

2. (currently amended) The method of claim 11 4, wherein the

electromagnetic radiation fluorescently emitted by the compound is in the ultraviolet-

visible wavelength ranges.

- 3. cancelled
- 4. cancelled
- 5. (currently amended) The method of claim 11 4, wherein the step of detecting comprises quantifying the electromagnetic radiation fluorescently emitted by the compound.
- 6. cancelled
- 7. cancelled
- 8. cancelled
- 9. cancelled
- 10. cancelled

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

11. (currently amended) <u>A method of using a fluorescent cannabinoid</u> compound comprising:

physiologically acceptable salt thereof, wherein the compound has an endogenous fluorescent property; The method of claim 6 wherein the compound comprises compound formula II, and physiologically acceptable salts thereof,

$$\begin{array}{c|c}
R_1 \\
X \\
X \\
S \\
C \\
T \\
B \\
B \\
A \\
S \\
Z
\end{array}$$

$$\begin{array}{c|c}
R_2 \\
C \\
T \\
T \\
S \\
S \\
C \\
T \\
R_3 \\
R_5 \\
R_5 \\
R_5 \\
R_5 \\
R_6 \\
R_7 \\
R_7 \\
R_8 \\
R_9 \\
R$$

wherein:

W is C = O; Z is O; X is selected from C and CH; Y is selected from NH, N-alkyl, and N = N;

 R_1 is any possible member selected from H, halogen, N_3 , NCS, CN, NO₂, NQ₁Q₂, OQ₃, OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂, alkyl and alkyl substituted in any possible position with at least one substituent group,

 Q_1 and Q_2 are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members.

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

 R_2 is selected from H_7 OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₄Q₂, COOQ₃, OQ₃, alcohol, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, CONQ₄Q₂, NH-COalkyl-T₄, NH-CO-T₄, O-alkyl-T₁[[,]] and O-T₁, NH-alkyl-T₄, NH-T₄, SO₃alkyl and SO₂NQ₄Q₂,

 T_1 is in any possible position and is selected from PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ_1Q_2 ,

 T_1 is optionally may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring and a heteroaromatic ring,

Q₁ and Q₂ are each independently selected from H and alkyl, or

Q₁ and Q₂ together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members,

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

 R_3 is selected from H, OH, halogen, C(halogen)₃, CN, N_3 , NCS, NQ_1Q_2 and C1 to C4 alkyl,

 Q_1 and Q_2 are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

R₄ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and C1 to C4 alkyl;

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$.

D₁, if present, is selected from alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino and NH,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino and NH,

 T_2 is selected from, in any possible position, a substituent group and -CO- T_4 ,

T₃ is an alkyl group having from 0 to about 9 carbon atoms,

T₄ is selected from H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, a heterocyclic ring and a heteroaromatic ring

exciting the cannabinoid compound with electromagnetic radiation; and detecting the electromagnetic radiation fluorescently emitted by the cannabinoid compound.

12. cancelled

13. (<u>currently amended</u>) The method of claim 11 wherein R₁ is any possible member selected from H, halogen, OH, an alkyl group having 1 to about 5 carbon atoms and an

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member selected from OH, CHO, COOH, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H and SO₃alkyl.

14. (previously presented) The method of claim 11 wherein R_5 is selected from -D₁-D₂-T₂ and -D₂-T₂,

D₁, if present, is selected from alkyl, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

D₂ is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl-T₃, 2-adamantyl-T₃, adamantan-1-ylmethyl-T₃, adamantan-2-ylidenemethyl-T₃, alkylamino, di-alkylamino and NH

T₂ is selected from, in any possible position, a substituent group and -CO-T₄,

T₃ is an alkyl group having from 0 to about 9 carbon atoms, and

T₄ is selected from alkyl, a heterocyclic ring and a heteroaromatic ring.

15. (<u>currently amended</u>) The method of claim 11 wherein:

W-is C=O:

X is C;

Y is selected from O, S, NH, N-alkyl, N=N, C=C and C≡C;

R₁ is selected from methyl, OH, CH₂OH, halogen and C(halogen)₃;

 R_2 is selected from H_7 OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, NQ₄Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₄, NH-CO-T₄, O-alkyl-T₁[[,]] and O-T₁, NH-alkyl-T₄, NH-T₄, SO₃alkyl, SO₂NQ₄Q₂ and CONQ₄Q₂,

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

 T_1 is in any possible position and is selected from PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ_1Q_2 ,

T₁ is optionally may be substituted in any possible position with at least one member selected from a substituent group, OPO₃H₂, OSO₃H, PO₃H₂, a heterocyclic ring and a heteroaromatic ring,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from Q_2 N and Q_3 or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members.

 Q_3 is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

R₃ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$,

 D_1 , if present, is selected from a carbocyclic ring, a heterocyclic ring, alkylamino and NH,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , adamantan-2-ylidenemethyl- T_3 , alkylamino, dialkylamino and NH,

 T_2 is selected from, in any possible position, a substituent group and -CO- T_4 ,

T₃ is an alkyl group having from 0 to about 9 carbon atoms,

T₄ is selected from H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, alkylamino, di-alkylamino, a heterocyclic ring and a heteroaromatic ring.

(<u>currently amended</u>) The method of claim 11 wherein:
 W is C=O;

X is C;

Y is selected from O, S, NH, N-alkyl, N=N, C=C-and C≡C;

R₁ is selected from methyl, OH and CH₂OH;

 R_2 is selected from H_7 OH, OCH $_3$, OPO $_3H_2$, OSO $_3H$, PO_3H_2 , SO $_3H$, halogen, $C(halogen)_3$, alcohol, NQ_4Q_2 , $COOQ_3$, OQ_3 , OQ_3 , OQ_3 , OQ_3 , OQ_3 , OQ_3 , OQ_4 , O

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

 T_1 is in any possible position and is selected from PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ_1Q_2 ,

T₁ is optionally may be substituted in any possible position with at least one member selected from a substituent group, OPO₃H₂, OSO₃H, PO₃H₂, a heterocyclic ring and a heteroaromatic ring,

Q₁-and Q₂ are each independently selected from H and alkyl, or

Q₁-and Q₂ together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁-and Q₂ together comprise part of an imide ring having about 5 to about 6 members.

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

R₃ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

 Q_1 and Q_2 are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$,

D₁, if present, is selected from an alkyl, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, alkylamino, d-alkylamino, NH, a bicyclic ring, a tricyclic terpine, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 and adamantan-2-ylidenemethyl- T_3 ,

T₂ is selected from, in any possible position, a substituent group and -CO-T₄,

T₃ is an alkyl group having from 0 to about 9 carbon atoms, and

T₄ is selected from alkyl, C(halogen)₃ aminoalkyl, di-aminoalkyl, NH2, a heterocyclic ring and a heteroaromatic ring.

- 17. (currently amended) The method of claim 11 4 comprising the step of combining the compound with a test sample.
- 18. (currently amended) The method of claim 11 4 comprising the step of interacting the compound with a cannabinoid receptor.
- 19. (currently amended) The method of claim 11 4 comprising the step of selectively interacting the compound with predominately one type of cannabinoid receptor.

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

20. (currently amended) A test kit for detecting a fluorescent property comprising a cannabimimetic compound having an endogenous fluorescent property and the structural formula

$$\begin{array}{c|c}
R_1 \\
X_3 \\
X_4 \\
X_5 \\
X_6 \\
X_7 \\
X_8 \\
X_9 \\
X_$$

wherein:

Y is selected from O, S, NH, N-alkyl, [[N-substituted alkyl,]] and N=N[[,]] C=C and C=C:

Z is O; X is selected from C and CH; and
W is C=O and the C ring has a double bond in the 6a-10 position; or
R1 is =O and the C ring has a double bond in the 10-10a position; or
W is C=O and the C ring is aromatic[[.]];

 R_1 is any possible member selected from halogen, N_3 , NCS, CN, NO_2 , NQ_1Q_2 , OQ_3 , OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, $COOQ_3$, PO_3H_2 , SO_3H , SO_3 alkyl, $SO_2NQ_1Q_2$, $CONQ_1Q_2$, alkyl and alkyl substituted in any possible position with at least one substituent group,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members,

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

 R_2 is selected from OH, OCH₃, OPO₃H₂, OSO₃H, OQ₃, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, O-alkyl-T₁ and O-T₁,

 T_1 is in any possible position and is selected from PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ_1Q_2 ,

 $\underline{T_1}$ is optionally substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring and a heteroaromatic ring,

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

R₃ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and C1 to C4 alkyl,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members;

 R_4 is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and C1 to C4 alkyl;

Q₁ and Q₂ are each independently selected from H and alkyl, or

Q₁ and Q₂ together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$,

 $\underline{D_1}$, if present, is selected from alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino and NH,

<u>D₂ is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl-T₃, 2-adamantyl-T₃, adamantan-1-ylmethyl-T₃, or adamantan-2-ylidenemethyl-T₃, alkylamino, di-alkylamino and NH,</u>

 $\underline{T_2}$ is selected from, in any possible position, a substituent group and -CO- $\underline{T_4}$

 T_3 is an alkyl group having from 0 to about 9 carbon atoms, T_4 is selected from H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, a heterocyclic ring and a heteroaromatic ring.

- 21. cancelled
- 22. cancelled
- 23. cancelled
- 24. cancelled
- 25. cancelled

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

26. (<u>currently amended</u>) <u>A</u> The compound of formula II, and physiologically acceptable salts thereof,

wherein:

W is selected from C=O and C=S;

X is selected from C and CH;

Y is selected from O, S, NH, N-alkyl[[,]] and N=N[[,]] C=C and C≡C;

Z is O;

 R_1 is any possible member selected from H_1 , halogen, N_3 , NCS, CN, NO_2 , NQ_1Q_2 , OQ_3 , OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO_3H , SO_3 alkyl, $SO_2NQ_1Q_2$, CONQ₁Q₂, alkyl and alkyl substituted in any possible position with at least one substituent group,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members,

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

 R_2 is selected from H_7 OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₄Q₂, COOQ₃, OQ₃, alkyl-hydroxyl, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, SO₂NQ₄Q₂, CONQ₄Q₂, NH-COalkyl-T₄, NH-CO-T₄, O-alkyl-T₁[[,]] and O-T1, NH-alkyl-T₄, NH-T₄, SO₃alkyl and SO₂NQ₄Q₂,

 T_1 is in any possible position and is selected from PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ_1Q_2 ,

 T_1 is optionally may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring and a heteroaromatic ring,

Q₁ and Q₂ are each independently selected from H and alkyl, or

Q₁-and Q₂-together comprise part of a heterocyclic ring having about 4 to about 7-ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members.

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

R₃ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and C1 to C4 alkyl,

 Q_1 and Q_2 are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

R₄ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and C1 to C4 alkyl;

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$.

D₁, if present, is selected from alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino and NH,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino and NH,

 T_2 is selected from, in any possible position, a substituent group and -CO- T_4 ,

T₃ is an alkyl group having from 0 to about 9 carbon atoms,

T₄ is selected from H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, a heterocyclic ring and a heteroaromatic ring

but if W is C=O and Y is O then R₅ is not CH2COOH or CH2COOEt.

27. cancelled

28. (currently amended) The compound of claim 26 wherein R_1 is any possible member selected from H_1 , halogen, $C(halogen)_3$, alkyl amino, di-alkylamino, NH_2 , OH, an alkyl group having 1 to about 5 carbon atoms and an alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

selected from OH, CHO, COOH, C(halogen) $_3$, N $_3$, NCS, CN, PO $_3$ H $_2$, SO $_3$ H and SO $_3$ alkyl.

29. (previously presented) The compound of claim 26 wherein R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$,

D₁, if present, is selected from alkyl, a carbocyclic ring having 4 to 6 ring members and a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic terpine, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino and NH

T₂ is selected from, in any possible position, a substituent group and -CO-T₄,

 T_3 is an alkyl group having from 0 to about 9 carbon atoms, and T_4 is selected from alkyl, a heterocyclic ring and a heteroaromatic ring.

30. (<u>currently amended</u>) The compound of claim 26 wherein: W is C=O:

X is C;

R₁ is selected from methyl, OH, CH₂OH, halogen and C(halogen)₃;

 $R_2 \text{ is selected from H, OH, OCH}_3, OPO_3H_2, OSO_3H, PO_3H_2, SO_3H, halogen, $C(halogen)_3$, alcohol, NQ_4Q_2, $COOQ_3$, OQ_3, $NH-COalkyl, $NH-CO-aryl, $O-COalkyl, O-COalkyl-T_1$, $O-CO-T_1$, $NH-COalkyl-T_4$, $NH-CO-T_4$, $O-alkyl-T_1[[,]]$ and $O-T_1$, $NH-alkyl-T_4$, $NH-T_4$, $SO_3alkyl, $SO_2NQ_4Q_2$ and $CONQ_4Q_2$,$

 T_1 is in any possible position and is selected from PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ_1Q_2 ,

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

 T_1 is optionally may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring and a heteroaromatic ring,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from Q_1 and Q_2 or

Q₁-and Q₂ together comprise part of an imide ring having about 5 to about 6 members.

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

R₃ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

 Q_1 and Q_2 are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$,

D₁, if present, is selected from alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino and NH,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , adamantan-2-ylidenemethyl- T_3 , alkylamino, dialkylamino and NH,

 T_2 is selected from, in any possible position, a substituent group and -CO- T_4 ,

 T_3 is an alkyl group having from 0 to about 9 carbon atoms,

T₄ is selected from H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, alkylamino, di-alkylamino, a heterocyclic ring and a heteroaromatic ring.

31. (<u>currently amended</u>) The compound of claim 26 wherein: W is C=O:

X is C;

R₁ is selected from methyl, OH and CH₂OH;

 R_2 is selected from H_7 OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₄Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₄, NH-CO-T₄, O-alkyl-T₁[[,]] and O-T₁, NH-alkyl-T₄, NH-T₄, SO₃alkyl, SO₂NQ₄Q₂ and CONQ₄Q₂,

T₁ is in any possible position and is selected from PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring and NQ₁Q₂,

T₁ is optionally may be substituted in any possible position with at least one member selected from a substituent group, OPO₃H₂, OSO₃H, PO₃H₂, a

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

heterocyclic ring and a heteroaromatic ring,

Q₁ and Q₂ are each independently selected from H and alkyl, or

Q₁ and Q₂ together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S. or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members.

Q₃ is selected from H, alkyl, alcohol and alkyl-NQ₁Q₂;

R₃ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ is selected from H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ and an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ are each independently selected from H and alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N and S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 is selected from $-D_1-D_2-T_2$ and $-D_2-T_2$,

D₁, if present, is selected from alkyl, a carbocyclic ring having 4 to 6 ring

Response to Office communication dated: 6/6/2005

Attorney Docket: UCONEN/207/US

members and a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 is selected from an alkyl group having from one to about sixteen carbon atoms, alkylamino, di-alkylamino, NH, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , adamantyl- T_3 , adamantan-1-ylmethyl- T_3 and adamantan-2-ylidenemethyl- T_3 ,

T₂ is selected from, in any possible position, a substituent group and -CO-T₄,

T₃ is an alkyl group having from 0 to about 9 carbon atoms, and

T₄ is selected from alkyl, C(halogen)₃ aminoalkyl, di-aminoalkyl, NH2, a heterocyclic ring and a heteroaromatic ring.

Claims 32-40. cancelled

41. cancelled

42. (<u>previously presented</u>) A pharmaceutical composition comprising a therapeutically effective amount of at least one compound from claim 26 or a physiologically acceptable salt thereof.

43. cancelled

44. (currently amended) A method of stimulating a <u>at least one of the CB1 and CB2</u> cannabinoid <u>receptors</u> receptor in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound from claim 26 or a physiologically acceptable salt thereof.