

AI – Using a Large Language Model (LLM) together with Retrieval-Augmented Generation (RAG) for answering questions on custom data

University of Vienna | Faculty of Computer Science | Bachelor Thesis Presentation

Abstract

This bachelor's thesis focuses on the development of a chatbot application that integrates a large language model (LLM) with Retrieval-Augmented Generation (RAG) to provide accurate and contextually appropriate responses based on custom datasets. The objective is to develop a chatbot that can efficiently retrieve relevant information from uploaded documents and websites and use this data to generate accurate responses.

Motivation and Problem Statement

Context:

- Use of large language models has advanced beyond generic Q&A into specialized fields.
- Standard LLMs often struggle with custom, domain-specific, or newly updated info.

Retrieval-Augmented Generation (RAG):

- Integrates LLMs with a retrieval mechanism to fetch relevant context from specific datasets.
- Addresses limitations of standard LLMs, which cannot easily adapt to new information in real time.

Local LLM Focus:

- Avoids ongoing cloud costs.
- Enhanced privacy data stays local.

Project Goals

- Primary Goal: Implement a chatbot with a local LLM + RAG for domain-specific Q&A.
- Key Metrics:
 - Accuracy: Generate factually correct answers using external context.
 - Efficiency: Handle large datasets with minimal latency.
 - Adaptability: No continual retraining required to handle new or updated data.
- Scope:
 - RAG retrieves specific doc segments.
 - Not designed for complex tasks like extensive summarization or multi-step reasoning.

Process and Methods

- RAG Pipeline:
 - Uses vector database to fetch relevant context.
 - LLM uses that context to craft final response.
- ReActAgent:
 - Dynamically decides how to solve query.
 - Possible tools: web search, RAG-based doc retrieval, math solver.
- Streamlit UI:
 - Upload documents, clean db, and query the chatbot.

Related Work

- Existing Guides/Tutorials:
 - Mostly illustrate basic usage or toy demos.
- Issues Observed:
 - Insufficient accuracy on large or domain-specific data.
 - Lack of robust GUIs or multi-dataset integration.
 - Overly simplistic usage of LlamaIndex or default prompts.
- Core Reasons:
 - Inefficient doc parsing or suboptimal embeddings.
 - Poor similarity search methods.

Retrieval-Augmented Generation (RAG)

- RAG = LLM + document-retrieval component.
- Steps:
 - 1. Retrieve relevant context from data store.
 - Provide context to the LLM for a more accurate response.

Figure: RAG workflow

Large Language Models (LLMs)

• Examples: Llama, GPT, etc.

Focus here: Llama 3.1 + LlamaIndex ReAct agent.

Agent-based approach:

• Calls external tools for tasks like web search or math solver.

Ollama

- Open-source platform for running LLMs locally.
- Benefits:
 - Free, minimal license issues.
 - Full control over data, offline usage.
 - Simplifies local LLM integration.

Embeddings & Vector Database

Embeddings:

- High-dimensional vectors capturing semantic context, this project uses bge-base-en-v1.5.
- Enable efficient similarity search for text, images, or audio.

Vector Database:

- Stores and queries these high-dimensional vectors.
- ChromaDB:
 - Used for storing embeddings + metadata.
 - Key for text-based similarity search in LLMs.

Ingestion

Data Preparation

- Uploaded PDFs:
 - PyPDFLoader for text extraction.
 - RecursiveCharacterTextSplitter for chunking.
- Webpages:
 - $\circ\,$ requests + Beautiful Soup for parsing.
- Embeddings in Chroma:
 - Each chunk vectorized and stored for fast retrieval.

University of Vienna

Implementation Overview

- UI (Streamlit) for user interaction.
- LlamaIndex ReActAgent for orchestration.
- Document Parsing & Vector DB for retrieval.

UI (Streamlit)

- Web-based interface:
 - Upload documents, input URLs.
 - Interact with chatbot Q&A.
 - Clear or update database.

LlamaIndex ReActAgent

- Process:
 - 1. User Query
- 2. Agent decides whether to:
 - Retrieve from local docs.
 - Use web search.
 - Use math solver.
- 3. Synthesizes final answer.

Document Retrieval and Storage

- Embeddings stored in Chroma.
- Agent queries top matching chunks for local context.
- Chunks inserted into LLM prompt for context-aware answers.

Data Ingestion Pipeline

1. Parse Documents: PDFs or web sources.

Split Text: RecursiveCharacterTextSplitter.

3. Store Embeddings: \rightarrow vector DB (Chroma).

Repository

- Full implementation with RAG + local LLM.
- Detailed README for setup.

Ref: https://github.com/grippvh/ragChat

Test Coverage

- Focus on verifying correct retrieval + context usage.
- Challenge: LLM outputs can vary in wording.
- Strategy:
 - $\circ~$ Ask the model, then re-ask it to validate its answer against expected response.
 - Negative test cases ensure incorrect answers are flagged.
- No 100% determinism: LLM variability can produce different valid answers.

Observations

- Combining LLM + RAG can be tricky (embedding quality, chunking).
- Naive RAG:
 - Works on small docs.
 - · Degrades with larger, complex data if not optimized.
- Key Factor:
 - Embeddings heavily influence retrieval quality.
 - Prompt design also matters.

Performance Example

- Without RAG: Llama 31 returned irrelevant facts
- With RAG: Correctly retrieved exact text from the doc.
- **Conclusion:** RAG essential for domain-specific or fresh content not in LLM training.

TODO: split with screenshots

Summary of Findings

- Accuracy: Increases when relevant context is retrieved.
- Limits: Not ideal for broad tasks like full summarization.
- Potential: Additional modules (knowledge graphs, rerankers) could improve coverage.

Lessons Learned

- Better embeddings significantly improve retrieval accuracy.
- **RAG** is best for factual queries, less so for deeper or multi-doc comprehension.

Future Improvements

- · Smarter query rewriting and rerankers.
- Integrating knowledge graphs.
- Multi-agent approaches for more complex tasks.

University of Vienna

Conclusion

- Local LLM + RAG: Real-time adaptivity, data privacy, better domain Q&A.
- Even simple RAG significantly improves domain-specific Q&A.
- Fine-tuning not always necessary; data retrieval is often enough.