ВОПРОСЫ ЭКЗАМЕНАЦИОННЫХ БИЛЕТОВ ПО РАЗДЕЛУ «ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ» 2024/25 уч. г.

- 1. Электрические заряды и электрическое поле. Закон сохранения заряда, элементарный заряд. Напряжённость электрического поля. Закон Кулона. Гауссова система единиц (СГС) и система СИ. Принцип суперпозиции. Электрическое поле диполя.
- 2. Теорема Гаусса для электрического поля в вакууме в интегральной и дифференциальной формах. Её применение для нахождения электростатических полей.
- 3. Потенциальный характер электростатического поля. Теорема о циркуляции электростатического поля. Потенциал и разность потенциалов. Связь напряжённости поля с градиентом потенциала. Граничные условия для вектора E.
- 4. Уравнения Пуассона и Лапласа. Проводники в электрическом поле. Граничные условия на поверхности проводника. Единственность решения электростатической задачи. Метод изображений. Изображение точечного заряда в проводящих плоскости и сфере.
- 5. Электрическое поле в веществе. Поляризация диэлектриков. Свободные и связанные заряды. Вектор поляризации и вектор электрической индукции. Поляризуемость частиц среды. Диэлектрическая проницаемость среды. Теорема Гаусса в диэлектриках. Граничные условия на границе двух диэлектриков.
- 6. Электрическая ёмкость. Конденсаторы. Вычисление ёмкостей плоского, сферического и цилиндрического конденсаторов. Энергия электрического поля и её локализация в пространстве. Объёмная плотность энергии. Взаимная энергия зарядов. Энергия в системе заряженных проводников.
- 7. Энергия электрического поля в веществе. Энергия диполя во внешнем поле (жесткий и упругий диполи). Силы, действующие на диполь в неоднородном электрическом поле. Энергетический метод вычисления сил (метод виртуальных перемещений), вычисление сил при постоянных зарядах и при постоянных потенциалах.
- 8. Постоянный ток. Сила тока, объёмная и поверхностная плотности тока. Закон Ома в интегральной и локальной формах. Уравнение непрерывности для плотности заряда. Закон Джоуля—Ленца в интегральной и локальной формах. Токи в неограниченных средах.
- 9. Постоянный ток в замкнутых электрических цепях. Электродвижущая сила. Закон Ома для участка цепи. Правила Кирхгофа. Работа и мощность постоянного тока.
- 10. Магнитное поле постоянного тока в вакууме. Вектор магнитной индукции. Сила Лоренца. Сила Ампера. Закон Био—Савара. Теорема о циркуляции магнитного поля в вакууме. Теорема Гаусса для магнитного поля. Магнитное поле прямого провода, соленоида, тороидальной катушки.
- 11. Магнитный момент тока. Точечный магнитный диполь. Сила и момент сил, действующие на виток с током в магнитном поле. Эквивалентность витка с током и магнитного диполя.
- 12. Магнитное поле в веществе. Магнитная индукция и напряжённость поля. Вектор намагниченности. Токи проводимости и молекулярные токи. Теорема о циркуляции магнитного поля в веществе. Граничные условия на границе двух магнетиков. Постоянные магниты.
- 13. Электромагнитная индукция. Поток магнитного поля. ЭДС индукции в движущихся и неподвижных проводниках. Вихревое электрическое поле. Правило Ленца. Закон электромагнитной индукции в интегральной и дифференциальной формах. Фарадеевская и максвелловская трактовка явления электромагнитной индукции.
- 14. Коэффициенты само- и взаимоиндукции. Теорема взаимности. Взаимная индуктивность двух катушек на общем магнитопроводе. Взаимная энергия токов. Локализация магнитной энергии в пространстве, объёмная плотность магнитной энергии.
- 15. Энергетический метод вычисления сил в магнитном поле. Вычисление сил при постоянном токе и потоке магнитного поля. Магнитные цепи. Подъёмная сила электромагнита.
- Магнитные свойства вещества. Качественные представления о механизме намагничивания пара- и диамагнетиков. Качественные представления о ферромагнетиках. Ферромагнитный гистерезис.
- 17. Магнитные свойства сверхпроводников І рода, эффект Мейсснера. Сверхпроводящий шар в магнитном поле. Метод изображений для сверхпроводников.
- 18. Относительный характер электрического и магнитного полей. Сила Лоренца. Преобразование \vec{E} и \vec{B} при смене системы отсчёта (при $v \ll c$). Поле равномерно движущегося точечного заряда.

- 19. Движение заряженных частиц в электрических и магнитных полях. Циклотронная частота и ларморовский радиус. Дрейф в скрещенных однородных полях.
- 20. Эффект Холла, влияние магнитного поля на проводящие свойства сред.
- 21. Магнитное действие переменного электрического поля. Ток смещения.
- 22. Система уравнений Максвелла в интегральной и дифференциальной форме. Граничные условия. Материальные уравнения.
- 23. Энергия переменного электромагнитного поля. Поток электромагнитной энергии, теорема Пойнтинга. Примеры применения теоремы Пойнтинга.
- 24. Квазистационарные электрические цепи, условие квазистационарности. Зарядка и разрядка конденсатора. Установление тока в катушке индуктивности. Интегрирующие и дифференцирующие цепочки.
- 25. Свободные колебания в линейных системах. Колебательный *RLC*-контур. Коэффициент затухания, логарифмический декремент и добротность. Энергетический смысл добротности.
- 26. Вынужденные колебания под действием синусоидальной силы. Амплитудная и фазовая характеристики. Резонанс. Ширина резонанса и ее связь с добротностью. Процесс установления вынужденных колебаний, биения.
- 27. Установившиеся колебания в цепи переменного тока. Комплексная форма представления колебаний. Векторные диаграммы. Комплексное сопротивление (импеданс). Правила Кирхгофа для переменных токов. Работа и мощность переменного тока.
- 28. Спектральное разложение электрических сигналов. Спектр одиночного прямоугольного импульса и периодической последовательности импульсов. Вынужденные колебания под действием произвольной силы. Соотношение неопределённостей.
- 29. Спектральный анализ линейных систем. Частотная характеристика и импульсный отклик системы. Колебательный контур как спектральный прибор. Интегрирующая и дифференцирующая цепочки как высокочастотный и низкочастотный фильтры.
- 30. Модуляция и детектирование сигналов. Амплитудная и фазовая модуляции. Спектры гармонически модулированных по фазе и амплитуде сигналов. Квадратичное детектирование сигналов.
- 31. Электрические флуктуации. Тепловой шум. Тепловые флуктуации в колебательном контуре. Интенсивность теплового шума, формула Найквиста.
- 32. Электрические флуктуации. Дробовой шум. Интенсивность дробового шума, закон \sqrt{N} , формула Шоттки.
- 33. Параметрическое возбуждение колебаний. Условие параметрического резонанса.
- 34. Автоколебания в электрических цепях. Положительная обратная связь. Условие самовозбуждения.
- 35. Волновое уравнение как следствие уравнений Максвелла. Электромагнитные волны в однородном диэлектрике, их поперечность и скорость распространения.
- 36. Монохроматические волны. Комплексная амплитуда волны. Плоская электромагнитная волна. Приближение сферической волны. Связь полей E и B в плоской электромагнитной волне. Стоячие и бегущие волны. Отражение волн от идеального проводника.
- 37. Поток энергии в электромагнитной волне. Давление излучения. Электромагнитный импульс.
- 38. Электромагнитные волны на границе раздела двух диэлектриков. Формулы Френеля. Явление Брюстера. Полное внутреннее отражение.
- 39. Излучение электромагнитных волн. Зависимость интенсивности дипольного излучения от частоты, диаграмма направленности.
- 40. Линии передачи энергии. Двухпроводная линия, коаксиальны кабель. Скорость волны, волновое сопротивление. Коэффициент стоячей волны. Согласованная нагрузка.
- 41. Электромагнитные волны в прямоугольном волноводе. Простейшие типы волн в волноводе прямоугольного сечения. Дисперсионное уравнение, критическая частота, длина волны и фазовая скорость волны в волноводе. Объёмные электромагнитные резонаторы.
- 42. Квазистационарное проникновение электрического и магнитного полей в проводящую среду. Скин-эффект. Глубина скин-слоя для постоянного и переменного полей.
- 43. Плазма. Дебаевский радиус экранирования. Плазменные колебания, плазменная частота.
- 44. Диэлектрическая проницаемость холодной плазмы. Проникновение электромагнитных волн в плазму.