Database Management System

Two types:

Structured and unstructured

Basic operation: CRUD Operations

Create - row based Update - row based

Read, - can be done for row and table

Delete - can be done for row and table

PRIMARY KEY - non editable and mandatory, table specific

FOREIGN KEY -

Unlike other languages python which are general purpose, SQL is domain specific

Groupby Having Orderby Limit Offset

When to use AND vs OR:

- Use **AND** when all conditions must be true for the same row.
- Use **0R** when any one of multiple combinations is acceptable.

Absolutely! Let's break down this SQL query line by line so you understand **exactly what it's doing**:

Query:

SELECT winner, subject FROM nobel WHERE yr = 1984 ORDER BY subject IN ('Chemistry', 'Physics'), subject, winner;

Line-by-line Explanation:

- 1. SELECT winner, subject
 - You're selecting two columns from the nobel table: winner and subject.
- 2. FROM nobel
 - You're querying the data from the nobel table.
- 3. WHERE yr = 1984
 - You're filtering the data to include only the winners from the year 1984.
- 4. ORDER BY subject IN ('Chemistry', 'Physics'), subject, winner
 - This is the most interesting part. Let's break it down:
- How ORDER BY subject IN ('Chemistry', 'Physics') Works:
 - The expression subject IN ('Chemistry', 'Physics') returns:
 - TRUE (which is treated as 1) if the subject is Chemistry or Physics
 - FALSE (which is treated as θ) for other subjects

So this ordering puts Chemistry and Physics at the end, because:

 SQL sorts in ascending order by default → 0 (others) comes before 1 (Chemistry, Physics)

Full Sort Order Explained:

- First, rows where subject is **not** Chemistry or Physics (i.e., IN (...) is 0)
- Then, within those, sort by subject alphabetically
- Then, if subjects match, sort by winner alphabetically

Example:

subject	winner	IN
		('Chemistry','Physics
		')
Literature	Alice Munro	0
Peace	John Smith	0
Chemistry	Jane Doe	1
Physics	Albert Einstein	1

Sorted Result:

- 1. Literature Alice Munro
- 2. Peace John Smith
- 3. Chemistry Jane Doe
- 4. Physics Albert Einstein

Purpose: Combine rows from two or more tables based on a related column.

Example:

SELECT orders.order_id, customers.customer_name

FROM orders

JOIN customers ON orders.customer_id = customers.customer_id;

Use case: Get customer names for each order by matching customer_id.

Purpose: Group rows with the same values in specified columns and perform aggregate functions like COUNT, SUM, AVG.

Example:

SELECT customer_id, COUNT(*) AS total_orders

FROM orders

GROUP BY customer_id;

Use case: Count how many orders each customer placed.

🔀 WINDOW FUNCTIONS

Purpose: Perform calculations across a "window" of rows related to the current row without collapsing them into one (like GROUP BY does).

Example:

SELECT

customer id,

order_id,

COUNT(*) OVER (PARTITION BY customer_id) AS total_orders_per_customer

FROM orders;

In data science, you often work with data from different formats:

Source	Tool / Function	Example
CSV File	pandas.read_csv()	pd.read_csv("data.csv")
Excel File	<pre>pandas.read_excel()</pre>	<pre>pd.read_excel("data.xlsx")</pre>
JSON File	pandas.read_json()	<pre>pd.read_json("data.json")</pre>
SQL DB	pandas.read_sql()	<pre>pd.read_sql(query, connection)</pre>
Web API	<pre>requests + json or pandas.read_json(url)</pre>	
Python List / Array	<pre>np.array() or pd.DataFrame()</pre>	np.array([1,2,3]), pd.DataFrame([[1,2],[3,4]])

■ Data Structures Explained

Туре	Library	Description	Example
Array	NumPy	Basic data structure for numerical data (fixed size, homogeneous)	np.array([1, 2, 3])

Series	Pandas	1D labeled array (like a column in Excel)	pd.Series([10, 20, 30])
DataFram e	Pandas	2D table with rows and columns (like a spreadsheet)	<pre>pd.DataFrame({"A":[1,2], "B":[3,4]})</pre>
Vector	Often NumPy or SciPy	A 1D array used in linear algebra or ML	np.array([5, 10, 15])

Key Differences

- Array: Efficient numerical operations (good for math-heavy tasks)
- Series: Like a single column in Excel with row labels
- DataFrame: Like a full Excel table with rows and columns
- Vector: Mathematically treated as direction & magnitude (but stored as arrays)

Data Ingestion and Its Workflow

Data Ingestion is the process of collecting raw data from various sources and transferring it to a storage or processing system like a data lake, warehouse, or analytics engine.

Data Ingestion Workflow

- 1. **Source**: Databases, APIs, IoT devices, logs, etc.
- 2. **Ingestion Layer**: Batch or streaming tool (e.g., Kafka, NiFi, Airflow)
- 3. **Processing Layer**: Transform data (cleaning, enriching)
- 4. **Storage Layer**: Data lake or warehouse (e.g., S3, BigQuery, Snowflake)

5. Analytics Layer: Reporting, dashboards, ML models

Types of Ingestion Systems

Definition: Data is collected over a time interval (e.g., hourly, daily) and processed all at once.

Characteristics:

- High throughput
- Cost-efficient
- Easier to manage

X Limitations:

- High latency (not real-time)
- Not suitable for instant decision-making

a Tools:

- Apache Hadoop
- Apache NiFi
- AWS Glue
- Apache Airflow (for orchestration)

Architecture:

Data Source → Ingestion Tool (Airflow) → Processing Engine (Spark) → Data Warehouse

Example:

Generating daily sales reports by reading a day's worth of data at midnight.

2. Freal-Time Streaming

Definition: Data is ingested and processed instantly as it is generated.

Characteristics:

- Low latency (real-time updates)
- Supports event-driven processing
- Ideal for monitoring, fraud detection, etc.

X Limitations:

- Higher complexity
- Requires fault-tolerant infrastructure
- Can be costly

a Tools:

- Apache Kafka (most popular)
- Apache Flink
- Spark Structured Streaming
- Amazon Kinesis

Kafka Architecture:

 $\mathsf{Producer} \to \mathsf{Kafka} \; \mathsf{Topic} \to \mathsf{Consumer} \; (\mathsf{Stream} \; \mathsf{Processor}) \to \mathsf{Data} \; \mathsf{Sink}$

Example:

Live processing of transaction data to detect fraud instantly.

Definition: A hybrid model where small batches of data are collected and processed frequently (e.g., every few seconds or minutes).

Characteristics:

- Near real-time
- Easier to implement than full streaming
- Better resource utilization

X Limitations:

- Slight delay compared to true real-time
- Requires buffering logic

Tools:

- Spark Structured Streaming
- Kafka Streams
- Azure Stream Analytics
- Google Dataflow (with windowing)

Architecture:

 $\mathsf{Data}\;\mathsf{Source}\to\mathsf{Kafka}\to\mathsf{Spark}\;\mathsf{Micro}\text{-}\mathsf{Batches}\to\mathsf{Data}\;\mathsf{Warehouse}$

Example:

Monitoring website activity with updates every 10 seconds for dashboards.

Comparison Table

Feature Batch Micro-Batching Real-Time Streaming

Latency	High (minutes to hours)	Low (seconds to minutes)	Very Low (ms to seconds)
Data Handling	Large chunks	Small frequent chunks	Per event/message
Complexity	Low	Medium	High
Cost	Low	Medium	High
Use Case	Reports, backups	Dashboards, alerts	Fraud detection, IoT data
Tools	Airflow, Glue, Hadoop	Spark Structured Streaming	Kafka, Flink, Kinesis

We performed an ETL process on earthquake data to prepare it for analysis:

Extract: We began with a raw CSV dataset containing global earthquake records.

Transform: We converted time columns, removed incomplete records, filtered for significant earthquakes (magnitude & 4.0), and added additional fields like day of the

Load: We saved the cleaned data and summary statistics into both CSV files and a SQLite database for further querying and analysis.

Insight:
Most of the high-magnitude earthquakes (& 4.0) with deeper epicenters were observed more frequently on Wednesdays and Fridays, suggesting a pattern worth investigating.

```
# -*- coding: utf-8 -*-
"""SQL practice.ipynb
Automatically generated by Colab.
Original file is located at
    https://colab.research.google.com/drive/1yafoBpjUgAfo-rNcXAQ6sV1PvENiUycy
!pip install Faker
"""Libraries"""
import sqlite3
import pandas as pd
import random
from faker import Faker #to create fake data
"""Initialize"""
conn = sqlite3.connect('ICTAcademy.db')
fake = Faker()
random.seed()
cursor = conn.cursor()
"""# DB Operations
Creating DB
#drop tables if they already exists
#this helps us to build table with the schema of our own
cursor.execute("DROP TABLE IF EXISTS Departments")
cursor.execute("DROP TABLE IF EXISTS Trainer")
cursor.execute("DROP TABLE IF EXISTS Courses")
cursor.execute("DROP TABLE IF EXISTS Students")
cursor.execute("DROP TABLE IF EXISTS Enrollment")
#Creating a table
create_q1 = """CREATE TABLE Departments (
    department_id INTEGER PRIMARY KEY,
    d_name TEXT NOT NULL)""" #(cant keep it null)
create_q2 = """CREATE TABLE Trainer (
    trainer_id INTEGER PRIMARY KEY,
    t_name TEXT NOT NULL,
    department_id INTEGER,
    FOREIGN KEY (department_id) REFERENCES Departments(department_id))"""
create_q3 = """CREATE TABLE Courses (
    course_id INTEGER PRIMARY KEY,
    c_name TEXT NOT NULL,
    department_id INTEGER,
    trainer_id INTEGER,
    credits INTEGER,
    FOREIGN KEY (department_id) REFERENCES Departments(department_id),
    FOREIGN KEY (trainer_id) REFERENCES Trainer(trainer_id))"""
create_q4 = """CREATE TABLE Students (
```

```
student_id INTEGER PRIMARY KEY,
    s_name TEXT NOT NULL,
    gender TEXT,
    age INTEGER)"""
create_q4 = """CREATE TABLE Enrollment (
    enrollment_id INTEGER PRIMARY KEY,
    student_id INTEGER,
    course_id INTEGER,
    batch INTEGER,
    score INTEGER,
    eligibilty BOOLEAN,
    FOREIGN KEY (student_id) REFERENCES Students(student_id),
    FOREIGN KEY (course_id) REFERENCES Courses(course_id))"""
#executing queries to create tables
cursor.execute(create_q1)
cursor.execute(create_q2)
cursor.execute(create_q3)
cursor.execute(create_q4)
# prompt: give code for printing schema
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
for table in tables:
  print(f"Table: {table[0]}")
  cursor.execute(f"PRAGMA table_info({table[0]});")
  schema = cursor.fetchall()
  for col in schema:
    print(f" Column: {col[1]} | Type: {col[2]} | NOT NULL: {col[3]} | Primary Key:
{col[5]}")
"""Populating the database"""
departments = ["DSA", "Cybersecurity", "full stack", "digital marketting", "AIML"]
#filling departments
for department in departments:
  cursor.execute("INSERT INTO Departments (d_name) VALUES (?)", (department,))
#filling trainers
for i in range(1,11):
  cursor.execute("INSERT INTO Trainer (t_name, department_id) VALUES (?, ?)",
(fake.name(), random.randint(1,len(departments))))
#filling courses
for i in range(1,11):
  cursor.execute("INSERT INTO Courses (c_name, department_id, trainer_id, credits)
VALUES (?, ?, ?, ?)", (fake.word(), random))
"""storing the data that is read into dataframw to display it"""
cursor.execute("SELECT * FROM Departments")
df = pd.read_sql_query("SELECT * FROM Departments", conn)
df#should only run it once
cursor.execute("SELECT * FROM Trainer")
df = pd.read_sql_query("SELECT * FROM Trainer", conn)
df#should only run it once
```

```
#edit a value
q1= """UPDATE Trainer SET department_id = 100 WHERE trainer_id = 2"""
cursor.execute(q1)

cursor.execute("SELECT * FROM Trainer")
df = pd.read_sql_query("SELECT * FROM Trainer", conn)
df
```