Name: Ashwin Kale

Roll : 625 Div : F2 import numpy as np
import pandas as pd

all_data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/1686715083343_all_data.csv")
all_data.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176559.0	Bose SoundSport Headphones	1.0	99.99	04-07-2019 22:30	682 Chestnut St, Boston, MA 02215
1	176560.0	Google Phone	1.0	600.00	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001
2	176560.0	Wired Headphones	1.0	11.99	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001

#FIND MAN

nan_df = all_data[all_data.isna().any(axis = 1)]

display(nan_df.head)

all_data.shape

all_data = all_data.dropna(how = 'all')

all_data.head()

	und method ress	NDFrame.head	of	Order	ID Product	Quantity	Ordered P	rice Each	Order Date Purchase
36	NaN	NaN		NaN	NaN	Na	N	NaN	
51	NaN	NaN		NaN	NaN	Na	N	NaN>	
	Order ID		Product		Quantity Ordered	Price Each	Order D	ate	Purchase Address
0	176559.0		oundSport adphones		1.0	99.99	04-07-2 22	019 68 2:30	2 Chestnut St, Boston, MA 02215
1	176560.0	Goog	gle Phone		1.0	600.00	04-12-2 14	019 66 4:38	69 Spruce St, Los Angeles, CA 90001
2	176560.0	Wired He	adphones		1.0	11.99	04-12-2	019 66 เ.วล	69 Spruce St, Los Angeles,

all_data = all_data[all_data['Order Date'].str[0:2]!='Or']
print(all_data)

	Order ID	Product	Quantity Ordered	Price Each	١
0	176559.0	Bose SoundSport Headphones	1.0	99.99	
1	176560.0	Google Phone	1.0	600.00	
2	176560.0	Wired Headphones	1.0	11.99	
3	176561.0	Wired Headphones	1.0	11.99	
4	176562.0	USB-C Charging Cable	1.0	11.95	
64	259329.0	Lightning Charging Cable	1.0	14.95	
65	259330.0	AA Batteries (4-pack)	2.0	3.84	
66	259331.0	Apple Airpods Headphones	1.0	150.00	
67	259332.0	Apple Airpods Headphones	1.0	150.00	
68	259333.0	Bose SoundSport Headphones	1.0	99.99	

```
Order Date
                                          Purchase Address
  04-07-2019 22:30
                         682 Chestnut St, Boston, MA 02215
0
   04-12-2019 14:38
                     669 Spruce St, Los Angeles, CA 90001
2
   04-12-2019 14:38 669 Spruce St, Los Angeles, CA 90001
      05/30/19 9:27
                         333 8th St, Los Angeles, CA 90001
     04/29/19 13:03 381 Wilson St, San Francisco, CA 94016
64 09-05-2019 19:00
                         480 Lincoln St, Atlanta, GA 30301
65
   09/25/19 22:01
                     763 Washington St, Seattle, WA 98101
                      770 4th St, New York City, NY 10001
66
      09/29/19 7:00
67
     09/16/19 19:21
                            782 Lake St, Atlanta, GA 30301
     09/19/19 18:03 347 Ridge St, San Francisco, CA 94016
```

[67 rows x 6 columns]

```
all_data['Quantity Ordered'] = pd.to_numeric(all_data['Quantity Ordered'])
all_data['Price Each'] = pd.to_numeric(all_data['Price Each'])
```

```
all_data['Month'] = pd.to_datetime(all_data['Order Date']).dt.month
all_data.head()
```

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month
0	176559.0	Bose SoundSport Headphones	1.0	99.99	04-07-2019 22:30	682 Chestnut St, Boston, MA 02215	4
1	176560,0	Google Phone	1.0	600.00	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4

Add City Column

```
def get_city(address):
    return address.split(",")[1].strip(" ")

def get_state(address):
    return address.split(",")[2].strip(" ")[1]

all_data['City'] = all_data['Purchase Address'].apply(lambda x: f"{get_city(x)} ({get_state(x)})")
all_data.head()
```

₽	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	City
	0 176559.0	Bose SoundSport Headphones	1.0	99.99	04-07-2019 22:30	682 Chestnut St, Boston, MA 02215	4	Boston (A)
	1 176560.0	Google Phone	1.0	600.00	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (A)
	2 176560.0	Wired Headphones	1.0	11.99	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (A)

→ Data Exploration

Question 1 - What was the best month for sales and how much was earned in that month?

```
all_data['Sales'] = all_data['Quantity Ordered'].astype('int')*all_data['Price Each'].astype("float")
all_data.groupby(['Month']).sum()
```

<ipython-input-12-dce0a735c05d>:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a fut all_data.groupby(['Month']).sum()

				1 to 8 of 8 entries Filter 🛚 ?
Month	Order ID	Quantity Ordered	Price Each	Sales
4	7335546.0	123.0	885.8	1210.76
5	353124.0	2.0	111.9799999999999	111.97999999999999
6	184076.0	1.0	14.95	14.95
8	726962.0	9.0	23.92	50.83
9	2378802.0	17.0	591.439999999999	616.62
10	550924.0	11.0	10.67	39.69
11	740314.0	19.0	13.66	65.31
12	550635.0	17.0	8.97	50.83000000000005

Show 25 ✓ per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

Question 2 - Which city sold the most product?

```
Dummycity = all_data.groupby(['City'])
print(Dummycity)
#city_max = all_data.groupby(['City']).sum()
#print(max(city_max))
```

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7fe2ce0137f0>

Q 4 Which products are most often sold together?

```
df = all_data[all_data['Order ID'].duplicated(keep=False)]
#Referenced: https://stackoverflow.com/questions/27298178/concatenate-strings-from-severa
df['Grouped']= df.groupby('Order ID')['Product']. transform(lambda x: ','.join(x))
df2=df[['Order ID', 'Grouped']].drop_duplicates()
print(df['Grouped'])
          Google Phone, Wired Headphones
          Google Phone, Wired Headphones
     Name: Grouped, dtype: object
     <ipython-input-17-7305ebdbe5d9>:4: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu:
       df['Grouped']= df.groupby('Order ID')['Product']. transform(lambda x: ','.join(x))
from itertools import combinations
from collections import Counter
count = Counter()
for row in df2['Grouped']:
 row list = row.split(',')
 count.update(Counter(combinations (row_list, 2)))
for key, value in count.most common (10): print(key, value)
     ('Google Phone', 'Wired Headphones') 1
```

Q 3 which products sold the mosts? Why do u think it sold the most?

```
product_group = all_data.groupby('Product')
quantity_ordered = product_group.sum()['Quantity Ordered']
print (quantity_ordered)
     Product
     AA Batteries (4-pack)
                                    64.0
     AAA Batteries (4-pack)
                                   109.0
     Apple Airpods Headphones
                                     3.0
     Bose SoundSport Headphones
                                     3.0
     Google Phone
                                     1.0
     Lightning Charging Cable
                                     4.0
     USB-C Charging Cable
                                     8.0
     Wired Headphones
                                     7.0
     Name: Quantity Ordered, dtype: float64
     <ipython-input-20-ddc2ef51f24b>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a fut
       quantity_ordered = product_group.sum()['Quantity Ordered']
    - 4 ■
print(quantity_ordered)
     Product
                                    64.0
     AA Batteries (4-pack)
     AAA Batteries (4-pack)
                                   109.0
     Apple Airpods Headphones
                                     3.0
     Bose SoundSport Headphones
                                     3.0
     Google Phone
                                     1.0
     Lightning Charging Cable
                                     4.0
     USB-C Charging Cable
                                     8.0
     Wired Headphones
                                     7.0
     Name: Quantity Ordered, dtype: float64
prices = all_data.groupby('Product').mean()['Price Each']
print(prices)
     Product
     AA Batteries (4-pack)
                                     3.84
     AAA Batteries (4-pack)
                                     2,99
     Apple Airpods Headphones
                                   150.00
     Bose SoundSport Headphones
                                    99.99
     Google Phone
                                   600.00
     Lightning Charging Cable
                                    14.95
     USB-C Charging Cable
                                    11.95
     Wired Headphones
                                    11.99
     Name: Price Each, dtype: float64
     <ipython-input-22-ff49c55915e9>:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a fι
       prices = all_data.groupby('Product').mean()['Price Each']
```

Colab paid products - Cancel contracts here

✓ 0s completed at 2:41 PM