1. Model-Agnostic Meta_learning for Fast Adaptation of Deep Networks

논문: https://arxiv.org/pdf/1703.03400.pdf

요약

- MAML의 첫번째 논문으로 gradient descent 기법으로 학습하는 모든 분야 classification, regression, reinforcement learning 에서 적용할 수 있는 optimization-based meta learning을 제안
- 적은양의 데이터와 적은 학습 횟수로 fine-tuning이 잘 될 수 있는 pre-train 모델의 파라미터를 학습하는 것이 목적
 pre-train에 사용하는 데이터는 많아도되고 적어도됨

ppt 4장으로 요약

1. $D_i = D_i^{train}, D_i^{test}$ 으로 분할

2. θ 와 D_i^{train} 를 이용하여 \emptyset_i 를 구함(모델 학습)

3. \emptyset_i 와 D_i^{test} 을 이용하여 θ update

$$\boldsymbol{\theta}' \longleftarrow \boldsymbol{\theta} - \beta \nabla_{\boldsymbol{\theta}} \sum L(\boldsymbol{\phi}_i, \boldsymbol{D}_i^{test}) \longleftarrow \text{Optimize } \boldsymbol{\phi}_1 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_1^{tr}) \\ = \sum_{D_1^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_2 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_2^{tr}) \\ = \sum_{D_2^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_2 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_2^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \text{Optimize } \boldsymbol{\phi}_3 \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr}) \\ = \sum_{D_3^{test}} \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{D}_3^{tr})$$

4. θ 를 이용하여 새로운 Task에 빠르게 학습(Adaptation)하는 과정

ex)5-way, 1-shot classification

New data : D_{train}^{new} , D_{test}^{new}

학습 형태 (그림 1, 알고리즘 1)

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3:
- for all \mathcal{T}_i do 4:
- Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples 5:
- Compute adapted parameters with gradient de-6: scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- end for 7:
- Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ 8:
- 9: end while
- pre-train의 1epoch 과정 순서 1. 전체 에피소드 중에서 I개 랜덤 샘플링
 - 2. 동일한 초기 파라미터 heta 를 가진 상태에서 episode에 대해 fine-tuning (1개 만큼의 모델이 생성됨) $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
 - 3. fine-tuning된 모델들로 i번째 Test 셋의 Loss를 계산해서 초기 파라미터를 업데이트

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$$

- fine-tuning 과정
 일반적인 fine-tuning 과정을 거침
 논문에서는 1~5 way learning이 학습이 잘된다라고 말함

Supervised Learning (알고리즘 2)

• 전체 클래스에 대한 데이터셋을 에피소드형태로 분리해서 MAML을 적용

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- Sample batch of tasks $T_i \sim p(T)$ 3:
- 4: for all \mathcal{T}_i do
- Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i 5:
- Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) 6:
- 7: Compute adapted parameters with gradient descent: $\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the 8: meta-update
- 9: end for
- Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3 10:
- 11: end while

Reinforcement Learning (알고리즘 3)

- 상태 x가 주워지고 초기 파라미터로 액션 a를 선택
 (식 4)Negative Reward R가 포함된 Loss로 Loss를 줄이는 쪽으로 fine-tuning
 fine-tuning 후 같은 상태를 입력, 액션에 대한 loss를 바탕으로 초기 파라미터 업데이트

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = -\mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t \sim f_{\phi}, q_{\mathcal{T}_i}} \left[\sum_{t=1}^{H} R_i(\mathbf{x}_t, \mathbf{a}_t) \right]. \tag{4}$$

Algorithm 3 MAML for Reinforcement Learning

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
  2: while not done do
             Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
  3:
  4:
             for all \mathcal{T}_i do
                  Sample K trajectories \mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\} using f_{\theta}
  5:
  6:
                  Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) using \mathcal{D} and \mathcal{L}_{\mathcal{T}_i} in Equation 4
                  Compute adapted parameters with gradient descent:
  7:
                  \theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
                  Sample trajectories \mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\} using f_{\theta'_i}
  8:
                  in \mathcal{T}_i
             end for
  9:
             Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) using each \mathcal{D}_i'
10:
             and \mathcal{L}_{\mathcal{T}_i} in Equation 4
11: end while
```

실험

- Omniglot 데이터셋 / Minilmagenet 데이터셋으로 기존기법과 성능비교 (표 1)
 - Omniglot

 - MAML에 1200개 문자 사용 사용하지 않은 423개 문자로 테스트
 - MinilmageNet
 - train : 64 종류의 이미지
 - validation : 12 종류의 이미지
- test: 24 종류의 이미지 일정 진폭과 위상을 가진 그래프를 regression / 기존학습기법과 제안기법의 성능비교 (그림 2)
 - 연두색: MAML update 전 초기 파라미터를 사용한 결과
 녹색: MAML update 후 파라미터를 사용한 결과 (10 epoch)

 - 빨간색 : 실제 값

 - 하늘색: pretrained model을 사용한 결과
 파랑색: fine-tuning 후 결과 (10 epoch)
 세모 표시: 학습에 사용한 데이터 포인트

 - MAML은 데이터포인트가 없어도 어느정도 예측하는 모습

Table 1. Few-shot classification on held-out Omniglot characters (top) and the MiniImagenet test set (bottom). MAML achieves results that are comparable to or outperform state-of-the-art convolutional and recurrent models. Siamese nets, matching nets, and the memory module approaches are all specific to classification, and are not directly applicable to regression or RL scenarios. The \pm shows 95% confidence intervals over tasks. Note that the Omniglot results may not be strictly comparable since the train/test splits used in the prior work were not available. The MiniImagenet evaluation of baseline methods and matching networks is from Ravi & Larochelle (2017).

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	-
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	-	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	${\bf 48.07 \pm 1.75\%}$	$63.15 \pm 0.91\%$	
MAML (ours)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$	

Figure 2. Few-shot adaptation for the simple regression task. Left: Note that MAML is able to estimate parts of the curve where there are no datapoints, indicating that the model has learned about the periodic structure of sine waves. Right: Fine-tuning of a model pretrained on the same distribution of tasks without MAML, with a tuned step size. Due to the often contradictory outputs on the pre-training tasks, this model is unable to recover a suitable representation and fails to extrapolate from the small number of test-time samples.