New PCT National Phase Application
Docket No. 12480-000102/US
10/526470
IN THE CLAIMS PT01 Rec'd PCT/PTC 0 3 MAR 2005

This is a complete and current listing of the claims, marked with status identifiers in parentheses. The following listing of claims will replace all prior versions and listings of claims in the application.

- 1. (Previously Presented) A field-effect transistor, comprising:
- a ferromagnetic layer, having a film thickness of 50 nm or less, which is made of a Ba-Mn oxide showing ferromagnetism at 0°C or higher;
- a dielectric layer made of a dielectric material or a ferroelectric material, said ferromagnetic layer and said dielectric layer being bonded to each other, wherein

the field-effect transistor has a bottom-gate structure.

- 2. (Original) The field-effect transistor as set forth in claim 1, wherein the ferromagnetic layer is made of a Ba-Mn oxide whose composition is represented by $(La_{1-x}Ba_x)$ MnO₃ where x satisfies 0.05<x<0.3.
- 3. (Original) The field-effect transistor as set forth in claim 1, wherein the ferromagnetic layer is made of a Ba-Mn oxide whose composition is represented by ($La_{1-x}Ba_x$) MnO₃ where x satisfies 0.10<x<0.3.

- 4. (Currently Amended) The field-effect transistor as set forth in claim 1, 2, or 3, wherein the dielectric material or the ferroelectric material is BaTiO₃, SrTiO₃, (Ba_{1-y}Sr_y) TiO₃, PbTiO₃, Pb (Zr1-zTiz) TiO₃, or Al₂O₃, where y satisfies 0<y<1 and z satisfies 0<z<1.
- 5. (Currently Amended) The field-effect transistor as set forth in claim 1, 2, or 3, wherein the dielectric material or the ferroelectric material is BaTiO₃, SrTiO₃, (Ba_{1-y}Sr_y) TiO₃, PbTiO₃, or Al₂O₃, where y satisfies 0 < y < 1.

6. (Cancelled)

- 7. (New) The field-effect transistor as set forth in claim 2, wherein the dielectric material or the ferroelectric material is BaTiO₃, SrTiO₃, (Ba_{1-y}Sr_y) TiO₃, PbTiO₃, Pb (Zr1-zTiz) TiO₃, or Al₂O₃, where y satisfies 0 < y < 1 and z satisfies 0 < z < 1.
- 8. (New) The field-effect transistor as set forth in claim 2, wherein the dielectric material or the ferroelectric material is $BaTiO_3$, $SrTiO_3$, $(Ba_{1-y}Sr_y)$ TiO_3 , $PbTiO_3$, or Al_2O_3 , where y satisfies 0 < y < 1.
- 9. (New) The field-effect transistor as set forth in claim 3, wherein the dielectric material or the ferroelectric material is

BaTiO₃, SrTiO₃, (Ba $_{\frac{1}{3}}$ -ySry) TiO₃, PbTiO₃, Pb (Zr1-zTiz) TiO₃, or Al $_2$ O₃, where y satisfies 0<y<1 and z satisfies 0<z<1.

10. (New) The field-effect transistor as set forth in claim 3, wherein the dielectric material or the ferroelectric material is $BaTiO_3$, $SrTiO_3$, $(Ba_{1-y}Sr_y)$ TiO_3 , $PbTiO_3$, or Al_2O_3 , where y satisfies 0 < y < 1.