

Vincent TAUFFLIEB Daniel BUTSANETS

Tutor: Ruxandra TAPU

#### Table of contents

- I. Recap of our project
- II. Progress since mid-defense
  - Observation from last defense
  - Emotion recognition from video
  - Emotion recognition from audio
- III. Results obtained and demo
- IV. Difficulties encountered



#### Goal



#### I. Recap of our project: Face Detection

→ The Proposal Network (P-Net)



→ The Refine Network (R-Net)



→ The Output Network (O-Net)



#### I. Recap of our project : Creating the dataset

→ FER: 33k images, 48x48 pixels, grayscale, centered on the face, 7 labels.

 $\rightarrow$  FER+ : 8 labels.

7 basic discrete emotions : Anger, Disgust, Fear, Happiness, Neutral, Sadness, Surprise Additional emotion : contempt



Based upon : https://github.com/microsoft/FERPlus

# I. Recap of our project: Architecture of the CNN



Made using: http://alexlenail.me/NN-SVG/AlexNet.html

Based upon: https://github.com/isseu/emotion-recognition-neural-networks/blob/master/paper/Report\_NN.pdf

# I. Recap of our project : Reshaping the dataset

| Emotion                  | Anger | Happiness | Neutral | Sadeness | Surprise |
|--------------------------|-------|-----------|---------|----------|----------|
| # of images training set | 2466  | 2466      | 2466    | 2466     | 2466     |
| # of images test set     | 325   | 325       | 325     | 325      | 325      |

Structure of the reduced dataset

## I. Recap of our project

Predictions with the current dataset

- → Very good results for happiness
- → Good results for anger, neutral and surprise
- → Slightly worse results for sadness



- 0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

#### Table of contents

- I. Recap of our project
- II. Progress since mid-defense
  - Observation from last defense
  - Emotion recognition from video
  - Emotion recognition from audio
- III. Results obtained and demo
- IV. Difficulties encountered



#### II. Observation from last defense: Use of focal loss

- Used to compensate the imbalanced classes
- Allows better prediction for under represented
   Classes
- In our case : Fear, Disgust, Contempt



#### Based upon:

Focal Loss for Dense Object Detection, 7 August 2017

Authors: Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Poitr Dollár

Code from: <a href="https://github.com/mkocabas/focal-loss-keras/blob/master/focal\_loss.py">https://github.com/mkocabas/focal-loss-keras/blob/master/focal\_loss.py</a>

#### II. Observation from last defense: Use of focal loss





Confusion Matrix for the initial dataset WITHOUT Focal Loss

Confusion Matrix for the initial dataset WITH Focal Loss

#### II. Observation from last defense: Use of focal loss

Previously, disgust and contempt not detected → now detected (~ +10%)

Very good results for surprise (+ 13%)

Better results for classes with average predictions: fear and sadness (~ +5%)

Slightly worse results for happiness and anger (~ -2%)

#### Table of contents

- I. Recap of our project
- II. Progress since mid-defense
  - Observation from last defense
  - Emotion recognition from video
  - Emotion recognition from audio
- III. Results obtained and demo
- IV. Difficulties encountered



# II. Emotion recognition from video: Adapting the dataset

| Emotion                  | Anger | Disgust | Fear | Happiness | Neutral | Sadeness | Surprise |
|--------------------------|-------|---------|------|-----------|---------|----------|----------|
| # of images training set | 2466  | 191     | 652  | 2466      | 2466    | 2466     | 2466     |
| # of images test set     | 325   | 23      | 93   | 325       | 325     | 325      | 325      |

Going back to more classes now that we have a good model

# II. Emotion recognition from video: Enhancing the dataset

| Emotion                  | Anger | Disgust | Fear | Happiness | Neutral | Sadeness | Surprise |
|--------------------------|-------|---------|------|-----------|---------|----------|----------|
| # of images training set | 2466  | 550     | 998  | 2466      | 2466    | 2466     | 2466     |
| # of images test set     | 325   | 23      | 93   | 325       | 325     | 325      | 325      |

#### II. Emotion recognition from video: CREMA-D

→ Use CREMA-D : speech and video clips

6 emotions: Anger, Disgust, Fear, Happiness, Neutral, Sadness

91 actors performing emotions with different intensity levels

→ Focus on disgust and fear

→ Over 16,5k images retrieved that need to be sorted



# II. Emotion recognition from video: Example of image added

Images are quite different in the 2 datasets

• Different pose, lighting, actors...









CREMA-D

FER+

#### II. Emotion recognition from video: Enhancing the dataset



Confusion Matrix for 7 classes WITHOUT enhancement

Confusion Matrix for 7 classes WITH enhancement

#### II. Emotion recognition from video: Enhancing the dataset





Training is very fast since we load the weights from the previous model

#### II. Emotion recognition from video: Time distributed model



- Need a new dataset : CREMA-D → 6 emotions : Anger, Disgust, Fear, Happiness, Neutral, Sadness
- Need to adapt the data to our model

#### II. Emotion recognition from video: Work on CREMA-D



Videos are in color, not the right size and have a wide angle

#### II. Emotion recognition from video: Work on CREMA-D



Transform dataset before usage: face detection, resize, convert to grayscale

## II. Emotion recognition from video: Work on CREMA-D



Reform the videos to feed it to the network





































How to choose the sequences fed to the network?

→ use a sliding generator that provides time related sequences fit for keras

Downloaded from: https://pypi.org/project/keras-video-generators/



How to choose the sequences fed to the network?

ightarrow use a sliding generator that provides time related sequences fit for keras

Downloaded from: https://pypi.org/project/keras-video-generators/



How to choose the sequences fed to the network?

ightarrow use a sliding generator that provides time related sequences fit for keras

Downloaded from: https://pypi.org/project/keras-video-generators/

#### II. Emotion recognition from video: Example of sequences

anger anger

sadness sadness





Good results for happiness

 Average/Low results for anger, disgust and neutral

Very bad results for fear and sadness



#### Table of contents

- I. Recap of our project
- II. Progress since mid-defense
  - Observation from last defense
  - Emotion recognition from video
  - Emotion recognition from audio
- III. Results obtained and demo
- IV. Difficulties encountered



#### II. Emotion recognition from audio: Audio dataset

 $\rightarrow$  7441 audio clips

→ Balanced Data

→https://github.com/GorillaBus/urban-audio-c lassifier





#### II. Emotion recognition from audio: The dataset

→ 12 sentences: "It's eleven o'clock", "Don't forget your jacket"

 $\rightarrow$  6 emotions

→ Different intensities: Low, Medium, High, Unspecified

 $\rightarrow$  1001\_DFA\_ANG\_XX



 $\rightarrow$  1001\_IEO\_HAP\_LO



#### II. Emotion recognition from audio: Data Augmentation

 $\rightarrow$  Noise

→ Time Stretching

→ Pitch Shifting

 $\rightarrow$  59533 files





# II. Emotion recognition from audio: Sound features

 $\rightarrow$  STFT

 $\rightarrow$  MFCC

→ Mel-Scaled Spectrogram





#### II. Emotion recognition from audio: Use of a CNN model

→ Use features as images

→ Zero- padding

→ Better performances than ANN

→ Simple architecture

| Layer (type)                 | Output |     |      |     | Param # |
|------------------------------|--------|-----|------|-----|---------|
| conv2d_4 (Conv2D)            | (None, |     |      |     | 320     |
| leaky_re_lu_4 (LeakyReLU)    | (None, | 38, | 214, | 32) | 0       |
| batch_normalization_4 (Batch | (None, | 38, | 214, | 32) | 128     |
| spatial_dropout2d_3 (Spatial | (None, | 38, | 214, | 32) | 0       |
| conv2d_5 (Conv2D)            | (None, | 36, | 212, | 32) | 9248    |
| leaky_re_lu_5 (LeakyReLU)    | (None, | 36, | 212, | 32) | 0       |
| batch_normalization_5 (Batch | (None, | 36, | 212, | 32) | 128     |
| max_pooling2d_1 (MaxPooling2 | (None, | 18, | 106, | 32) | 0       |
| spatial_dropout2d_4 (Spatial | (None, | 18, | 106, | 32) | 0       |
| conv2d_6 (Conv2D)            | (None, | 16, | 104, | 64) | 18496   |
| leaky_re_lu_6 (LeakyReLU)    | (None, | 16, | 104, | 64) | 0       |
| batch_normalization_6 (Batch | (None, | 16, | 104, | 64) | 256     |
| spatial_dropout2d_5 (Spatial | (None, | 16, | 104, | 64) | 0       |
| conv2d_7 (Conv2D)            | (None, | 14, | 102, | 64) | 36928   |
| leaky_re_lu_7 (LeakyReLU)    | (None, | 14, | 102, | 64) | 0       |
| batch_normalization_7 (Batch | (None, | 14, | 102, | 64) | 256     |
| global_average_pooling2d_1 ( | (None, | 64) |      |     | 0       |
| dense 1 (Dense)              | (None, | 6)  |      |     | 390     |

Total params: 66,150 Trainable params: 65,766 Non-trainable params: 384

# II. Emotion recognition from audio: Results

| Training comp      | oleted in time<br>LOSS |        | :54.924485<br>JRACY |
|--------------------|------------------------|--------|---------------------|
| Training:<br>Test: | 1.1044<br>1.1009       |        | . 2622<br>. 9785    |
|                    | precision              | recall | f1-score            |
| Anger              | 0.58                   | 0.74   | 0.65                |
| Disgust            | 0.29                   | 0.05   | 0.08                |
| Fear               | 0.70                   | 0.10   | 0.17                |
| Happiness          | 0.63                   | 0.14   | 0.22                |
| Neutral            | 0.67                   | 0.94   | 0.78                |
| Sad                | 0.67                   | 0.03   | 0.06                |

# II. Emotion recognition from audio: Training curves



#### Table of contents

- I. Recap of our project
- II. Progress since mid-defense
  - Observation from last defense
  - Fine-tuning and time distributed model
  - Sound model
- III. Results obtained and demo
- IV. Difficulties encountered



#### III. Results obtained and demo

| Model    | CNN | CNN after fine tuning | Time<br>distributed<br>model | Sound<br>descriptors<br>CNN |
|----------|-----|-----------------------|------------------------------|-----------------------------|
| Accuracy | 74% | 69%                   | 51%                          | 64%                         |

Good results for the CNN model and the sound descriptors CNN model

Time distributed model is not good

Watch out: CNN model may not be as accurate on videos as on images Various success compared to already existing models

### III. Results obtained and demo: Audio test

Sentence: 'I like cats'

 $\rightarrow \text{Anger}$ 





Anger

 $\rightarrow$  Happiness





Fear

 $\rightarrow$  Fear





Disgust

I'm really a good actor!

### III. Results obtained and demo: Video CNN model



Batch of 10 images to have stable predictions

We keep the most represented emotion on each batch

## III. Results obtained and demo: Video CNN model



Predicted emotion: Happiness

GT: Happiness



Predicted emotion: Neutral

GT: Fear

## III. Results obtained and demo: Video CNN model









Predicted emotion : Anger

GT: Disgust

#### Table of contents

- I. Recap of our project
- II. Progress since mid-defense
  - Observation from last defense
  - Fine-tuning and time distributed model
  - Sound model
- III. Results obtained and demo
- IV. Difficulties encountered



#### IV. Difficulties encountered

 Hard to work with video: handle sequences of frames instead of images, hard to use generator from someone else

 Hard to work with audio: Use of descriptors we are less used to in the shape of images

 Problem of batch size for prediction, problems with corrupted frames, too slow to do live stream

# IV. Difficulties encountered : how to improve ?

Change CNN architecture (ResNet)

Do more DA for FER (small rotation) and for videos of CREMA-D

Create own video generator for keras

Use transformer?

# Thank you for your attention

Special thanks to Ruxandra for supervising our project

# Annexe: Fine Tuning





### **Annexe: Time Distributed Model**



