Optimization

1. (10 pts) Consider the function

$$f(x_1, x_2) = x_1 + \frac{3x_2}{x_1}$$

and the point $\boldsymbol{x}^{(0)} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$. Use Taylor's theorem to construct

- (i) (5 pts) a linear approximation, $l(x_1, x_2)$, of $f(x_1, x_2)$ at $\boldsymbol{x}^{(0)}$;
- (ii) (5 pts) a quadratic approximation, $q(x_1, x_2)$, of $f(x_1, x_2)$ at $x^{(0)}$.
- **2.** (10 pts) Is $d = \begin{bmatrix} -2 & 1 \end{bmatrix}^{T}$ a direction of descent of

$$f(x_1, x_2) = x_1 + \frac{3x_2}{x_1}$$

at the point $\boldsymbol{x}^{(0)} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathsf{T}}$ or not? Justify your answer.

3. (30 pts) Convert the following optimization problem into a linear programming problem and solve it,

maximize
$$-|x_1| - |x_2| - |x_3|$$

subject to

Write in Exam Book Only

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

4. (15 pts) Consider the following primal problem:

maximize
$$x_1 + 2x_2$$

subject to $-2x_1 + x_2 + x_3 = 2$
 $-x_1 + 2x_2 + x_4 = 7$
 $x_1 + x_5 = 3$
 $x_i \ge 0, \quad i = 1, 2, 3, 4, 5.$

- (i) (5 pts) Construct the dual problem corresponding to the above primal problem.
- (ii) (10 pts) It is known that the solution to the above primal is $x^* = \begin{bmatrix} 3 & 5 & 3 & 0 & 0 \end{bmatrix}^{\top}$. Find the solution to the dual.
- 5. (20 pts) Solve the optimization problem,

optimize
$$-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{p}^{\top} \boldsymbol{x} + 2\pi$$

subject to $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$,

where $Q = Q^{\top} > 0$, $p \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, m < n, rank A = m. Is the obtained solution a minimizer or maximizer? Justify your answer.

6. (15 pts) Use the Lagrange's conditions to solve the optimization problem,

optimize
$$x_1x_2$$
 subject to $x_1 + x_2 + x_3 = 1$ $x_1 + x_2 - x_3 = 0.$

(Warning: Other approaches will not be graded.)