

OSI modell Ethernet, ARP

ARP: Somogyi Viktor

UNIVERSITAS SCIENTIARUM SZE

Referencia modellek

OSI Model

TCP/IP

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Ethernet

- Helyi hálózatokat leíró de facto szabvány
- A hálózati szabványokat az IEEE bizottságok kezelik
- Ezekről nevezik el őket
- Az Ethernet így kapta a 802.3 nevet

Eszközeink

- Végeszközök (end devices)
- Switch-ek
- Forgalomirányítók/router-ek

Hálózatok felépítése

- A teljes rendszert nevezzük hálózatnak, avagy topológiának
- A router-ből kiinduló ágakat nevezzük alhálózatoknak

UNIVERSITAS SCIENTIARUM SZE

Címfeloldás ezerrel...

- Azt eddig tudjuk, hogy egy alhálózaton belül switch-ekkel oldjuk meg a "forgalomirányítást".
- Mi van, ha másik alhálózatra kell menni?

De előbb MAC címek...

- Media Access Control, magyarul közeghozzáférés-vezérlési cím
- Ez egy fizikai cím, amely magát az eszközt azonosítja
- Minden Ethernet eszköznek egyedi címe van, és a gyárban adják neki
- Ezzel azonosítják a hálózaton
- Az Ethernet üzenetkeret része, minden üzenetben meg van adva a forrás és cél eszköz fizikai címe

Miért nem elég csak a MAC cím?

- Gondoljunk bele, hogy milyen nehéz lenne ha valakit csak a neve alapján kellene megkeresnünk a világban!
- Ezért lettek IP címek, illetve hierarchikusan felépített hálózatok...

A hierarchia rétegei

- Hozzáférési réteg
 - Helyi Ethernet hálózatokon az állomásoknak biztosít kapcsolódást (switchek, hubok)
 - Gyakorlatilag: fizikai és adatkapcsolati (OSI)
- Elosztási réteg
 - Kisebb helyi hálózatokat kapcsol össze (routerek)
 - Gyakorlatilag: Hálózati réteg (OSI)
- Központi réteg
 - Nagy sebességű kapcsolatot teremt az elosztási réteg hálózatai között

A rétegek képen

Y OF SZEGED ware Engineering

UNIVERSITAS SCIENTIARUM SZEGEDI UNIVERSITAS SCIENTIARUM SZEGEDI Operartmeni

2017.02.13. M2M Statusreport 10

Hubok

- Hozzáférési rétegben helyezkedik el
- Hostok kapcsolódását valósítja meg
- ▶ A fogadott csomagot nem értelmezi → mindenkinek továbbítja
- Ütközéseket nem veszi észre hibás csomagot is továbbít
- Egy ütközési tartományt alkot → gépek számával növekszik az ütközés esélye

Switch

- Feldolgozza a csomagot a 2. OSI rétegig
 - Kiolvassa a MAC címet
 - Csak arra továbbítja, amerre kell
 - Gép párok között alakít ki ütközési tartományt
- MAC cím táblát tart fent
 - Ha benne van a címzett, akkor arra küldi
 - Ha nincs, mindenki megkapja, majd figyel
 - Automatikusan tölti fel a táblát

Logikai címzés

- Itt köszönnek be az IP címek
- A hierarchikus felépítést valósítják meg
- Az IP cím részletes felépítésébe még nem megyünk bele, ez lesz egy későbbi gyakorlaton
- Ha a MAC cím egy személy neve, akkor az IP cím lehet az emberkénk lakcíme

Logikai címzés képen

Üzenetszórás (broadcast)

- Helyi hálózaton belül gyakran használt
- Egy Ethernet üzenet csak egy cél MAC címet tartalmazhat
- Emiatt egy ún. szórásos MAC címet használnak: FFFF.FFFF.FFFF (hex)
- Ezt minden címzett a sajátjaként ismeri fel
- Nem szabad túl nagy alhálózatokat csinálni, mert ez nagy forgalmat generál

Forgalomirányítók (Routerek)

- Hálózatokat kötnek össze egymással
 - Nem gépeket, arra ott van a switch
- Már belenéznek a 3. rétegbe is, kiolvassák az IP címet, majd eldönti, hogy
 - Helyben marad a csomag
 - Másik porton lévő hálózatba megy
 - Másik routernek adja (mert messzebb megy)
- A továbbítás irányát ARP valamint irányítási táblából nézi ki

MAC és IP

- Egy helyi hálózatban egy gép csak akkor fogadja a keretet, ha az üzenet MAC címe megegyezik a sajátjáéval (vagy broadcast, de ezzel most nem foglalkozunk)
- Mi van akkor, ha a célállomásnak csak a logikai (IP) címét ismerjük?
- Hogyan határozzuk meg a MAC címet?
- És erre használjuk az ARP-t...

Végre ARP ©

- Ha egy állomásnak tehát csak az IP-je ismert, akkor a következő módon határozzuk meg az ARP-t:
 - A küldő állomás létrehoz egy keretet egy broadcast (szórásos) fizikai címre, ez egy speciális üzenet mellett tartalmazza a célállomás IP címét is
 - Az összes állomás a hálózaton megkapja az előbbi üzenetet, de csak az válaszol, amelyiknek a fenti IP címe van
 - A küldő állomás megkapja a választ, és letárolja az IP-MAC párt

ARP csomag szerkezete

	0-7 bitek	8 – 15 bitek	16 – 23 bitek	24 – 31 bitek	
	Fizikai hálózat típus		Protokoll típus		
	Fizikai hálózat címhossz (bájt)	Protokoll címhossz (bájt)	Művele	eti kód	
	Forrás fizikai cím				
Forrás IP címe					
	Címzett fizikai cím				
E	Címzett IP cím				

2017.02.13. M2M Statusreport 19

ARP műveletek Windows alatt

ARP tábla listázása

Bejegyzés törlése

Bejegyzés hozzáadása kézzel

A teljes ARP tábla ürítése

netsh interface ip delete arpcache

2017.02.13. M2M Statusreport 20

Fájlok beadása

- **▶ NEM TÖMÖRÍTVE!!!**
- Az összes fájl neve: EHA_CSOP.kitkit ∈ {doc, docx, pkt}
 - PI.: JAZTACT_SZE_A.doc

zipmama