

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift [®] DE 196 32 911 A 1

PATENTAMT

196 32 911.6 Aktenzeichen: Anmeldetag: 16. 8.96 Offenlegungstag: 19. 2.98

(71) Anmelder:

Benkeser, Michael, 77886 Lauf, DE

(74) Vertreter:

Lichti und Kollegen, 76227 Karlsruhe

(72) Erfinder:

Antrag auf Nichtnennung

56 Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

JP 6-134207 A., In: Patents Abstracts of Japan, C-1238, Aug. 16, 1994, Vol. 18, No. 437;

Prüfungsantrag gem. § 44 PatG ist gestellt

- (5) Flüssigkeitsabscheider sowie in diesen einbaubare Separationsvorrichtung
- Ein Flüssigkeitsabscheider, insbesondere zum Trennen von Gemischen aus Wasser und spezifisch leichteren Flüssigkeiten wie Öl, Benzin oder dergleichen besitzt einen Abscheiderbehälter, der einen Einlauf und einen Auslauf aufweist, sowie einen Sammelbehälter, dem die abgeschiedene Leichtflüssigkeit über einen nahe dem sich im Abscheiderbehälter einstellenden Ruhewasserspiegel angeordneten Überlauf zuführbar ist. Um sicherzustellen, daß sich im Sammelbehälter im wesentlichen nur Leichtflüssigkeit ansammelt, ist zwischen dem Überlauf und dem Sammelbehälter eine Separationskammer angeordnet, die eine obere, zum Sammelbehälter führende Abflußöffnung für die Leichtflüssigkeit und eine untere Abflußöffnung für das Wasser aufweist. Dabei ist vorzugsweise in der Separationskammer ein Schwimmer angeordnet, der die obere, zu dem Sammelbehälter führende Abflußöffnung bis zum Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer verschlossen hält.

Darüber hinaus kann in der Separationskammer ein Schwimmer vorgesehen sein, der die untere Abflußöffnung bei Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer verschließt.

Beschreibung

Die Erfindung betrifft einen Flüssigkeitsabscheider insbesondere zum Trennen von Gemischen aus Wasser und spezifisch leichteren Flüssigkeiten wie Öl, Benzin oder dergleichen, mit einem Abscheiderbehälter, der einen Einlauf und einen Auslauf aufweist, und mit einem Sammelbehälter, dem die abgeschiedene Leichtflüssigkeit über einen nahe dem sich im Abscheiderbehälter einstellenden Ruhewasserspiegel angeordneten Überlauf zuführbar ist. Darüber hinaus betrifft die Erfindung eine Separationsvorrichtung zum Einbau in einen derartigen Flüssigkeitsabscheider.

Um den geltenden Abwasservorschriften genügen zu können, werden in Bereichen, in denen mit Leichtflüssigkeit, insbesondere Öl oder Benzin, verschmutzte Abwasser anfallen, Flüssigkeitsabscheider zum Trennen von Öl- oder Benzin-Wasser-Gemischen eingesetzt. Dabei wir durch die physikalische Vorgänge der Sedimentation sowie des Aufschwimmens bei sogenannten rei- 20 nen Schwerkraftabscheidern bzw. der Sedimentation, des Aufschwimmens, der Flotation, der Adsorption sowie aufgrund von Auftriebskräften in sogenannten Koaleszenzabscheidern, bei denen Koaleszenzfilter eingesetzt werden, erreicht, daß verunreinigte Abwässer gereinigt werden können. Bei der Reinigung von beispielsweise ölbelasteten Abwässern schwimmt das Öl in dem Abscheiderbehälter des Flüssigkeitsabscheiders zu einer oberen Schicht auf, während das gesäuberte Abwasser über einen Auslauf aus dem Abscheiderbehälter abfließen kann. Die Ölschicht, die sich im Laufe der Zeit an der Oberfläche der im Abscheiderbehälter befindlichen Flüssigkeit bildet, kann je nach Art des Flüssigkeitsabscheiders eine Dicke von mehreren Zentimetern oder gar Dezimetern erreichen.

Wenn die Ölschicht auf eine vorbestimmte Dicke angewachsen ist, ist es notwendig, das abgeschiedene Öl aus dem Flüssigkeitsabscheider zu entfernen. Zu diesem Zweck wurde früher das Öl mit Hilfe einer externen Saugvorrichtung, beispielsweise einem Saugwagen, zusammen mit der im Flüssigkeitsabscheider befindlichen Flüssigkeit vollständig abgesaugt. Das Absaugen des Öls ist sehr kostenintensiv und zeitaufwendig, wobei der Flüssigkeitsabscheider in dem Zeitraum zwischen dem Erreichen der vorbestimmten Dicke der Ölschicht und der Beendigung des Absaugens nicht genutzt werden kann, so daß relativ lange Totzeiten entstehen.

Um die Abführung bzw. Entsorgung der sich im Abscheiderbehälter ansammelnden Ölschicht zu verbessern, ist vorgeschlagen worden, das Öl permanent oder 50 periodisch in einen separaten Öl-Sammelbehälter abfließen zu lassen. Der Sammelbehälter kann dabei entweder innerhalb des Abscheiderbehälters (DE 26 11 685 A1) oder außerhalb von diesem angeordnet sein (DE 42 00 379 A1). In beiden Fällen ist in dem Abscheiderbehälter des Flüssigkeitsabscheiders genau in derjenigen Höhe, in der sich die Ölschicht einstellt bzw. theoretisch einstellen wird, ein Abfluß oder Überlauf vorgesehen, durch den das Öl in den Sammelbehälter abflie-Ben kann. Mit einem derartigen Überlauf ist jedoch der 60 Nachteil verbunden, daß eine relativ großen Menge an gereinigtem oder zu reinigendem Wasser ebenfalls in den Sammelbehälter fließt, wodurch einerseits der separate Sammelbehälter relativ schnell gefüllt ist und andererseits sich im Sammelbehälter ein Wasser-Öl-Gemisch ansammelt, das eine aufwendige Entsorgung oder Aufbereitung notwendig macht.

Obwohl aufgrund des eingesetzten Öl-Sammelbehäl-

ters gemäß der DE 26 11 685 A1 kein zusätzlicher Bauraum für den Flüssigkeitsabscheider notwendig ist, ist mit dieser Konstruktion der Nachteil verbunden, daß der Sammelbehälter bei einer Überstauung der Anlage, beispielsweise durch einen Kanalrückstau, eine Verstopfung des Abflußsystems oder durch einen hohen Grundwasserstand überflutet werden kann, wodurch im Sammelbehälter angesammelte, abgeschiedene Flüssigkeit aufsteigt und in das Kanalsystem gelangt.

Der Erfindung liegt die Aufgabe zugrunde, einen Flüssigkeitsabscheider der genannten Art zu schaffen, bei dem sichergestellt ist, daß sich im Sammelbehälter im wesentlichen nur Leichtflüssigkeit ansammelt. Darüber hinaus soll eine in einen Flüssigkeitsabscheider einbaubare Separationsvorrichtung geschaffen werden, mit der bestehende Flüssigkeitsabscheider zu dem genannten Zweck nachgerüstet werden können.

Diese Aufgabe wird erfindungsgemäß bei einem Flüssigkeitsabscheider dadurch gelöst, daß zwischen dem Überlauf und dem Sammelbehälter eine Separationskammer angeordnet ist, die eine obere, zum Sammelbehälter führende Abflußöffnung für die Leichtflüssigkeit und eine untere Abflußöffnung für das Wasser aufweist.

Auch bei dem erfindungsgemäßen Flüssigkeitsabscheider ist der Überlauf nahe dem sich im Abscheiderbehälter einstellenden Ruhewasserspiegel, d. h. derjenigen Höhe, in der sich die Leichtflüssigkeitsschicht einstellen wird, vorgesehen. Wenn der Flüssigkeitsspiegel im Abscheiderbehälter durch zulaufendes, verunreinigtes Abwasser kurzfristig ansteigt, kann die sich bereits angesammelte Leichtflüssigkeit in den Überlauf gelangen. Dabei kann neben der Leichtflüssigkeit auch ein gewisser Anteil an Wasser einfließen. Erfindungsgemäß wird die in den Überlauf eintretende Leichtflüssigkeit jedoch nicht direkt in den Sammelbehälter geleitet, sondern fließt zunächst in eine Separationskammer. In der Separationskammer erfolgt eine nochmalige Trennung der Leichtflüssigkeit von dem Wasser, wobei die Leichtflüssigkeit aufsteigt und sich innerhalb der Separationskammer an der Oberfläche ansammelt. Die Separationskammer besitzt zwei Abflußöffnungen. Eine obere Abflußöffnung, in die die Leichtflüssigkeit eintreten kann, führt zu dem Sammelbehälter. Über eine untere Abflußöffnung kann das Wasser in den normalen Strömungsverlauf zurückgeführt werden. Es hat sich gezeigt, daß durch die Anordnung der Separationskammer erreicht wird, daß sich im Sammelbehälter im wesentlichen nur Leichtflüssigkeit ansammelt, so daß sich diese in einfacher Weise weiterverarbeiten oder entsorgen läßt.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß in der Separationskammer ein Schwimmer angeordnet ist, der die obere, zu dem Sammelbehälter führende Abflußöffnung bis zum Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer verschlossen hält. Dies bringt insbesondere den Vorteil mit sich, daß in der Anfangsphase des Betriebs des Flüssigkeitsabscheiders, in der sich noch keine sehr starke Leichtflüssigkeitsschicht in der Separationskammer gebildet hat, kein Wasser in den Sammelbehälter einströmen kann. Erst wenn die Leichtflüssigkeitsschicht in der Separationskammer ausreichend stark ist, sinkt der Schwimmer ab und öffnet somit die obere Abslußöffnung, so daß die Leichtslüssigkeit in die obere Abflußöffnung eintreten und in den Sammelbehälter fließen kann. Wenn soviel Leichtflüssigkeit abgeflossen ist, daß die Dicke der Leichtflüssigkeitsschicht unter den vorbestimmten Wert sinkt, verschließt der Schwimmer die obere Abflußöffnung wie-

der, so daß die Leichtflüssigkeitsschicht wieder im Laufe der Zeit anwächst. Auf diese Weise ist sichergestellt, daß im Separationsbehälter immer eine ausreichende Leichtflüssigkeitsschicht vorhanden ist, wenn die obere Abflußöffnung geöffnet ist.

In Weiterbildung der Erfindung kann vorgesehen sein, daß in der Separationskammer ein Schwimmer angeordnet ist, der die untere Abflußöffnung bei Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer verschließt. Auf diese 10 Weise kann verhindert werden, daß Leichtflüssigkeit in die untere Abflußöffnung eintritt, wenn der Sammelbehälter überfüllt sein sollte und sich die Leichtflüssigkeit in die Separationskammer zurückstaut.

Bei dem Schwimmer für die obere und die untere 15 Abflußöffnung kann es sich um das gleiche Bauteil, d. h. einen einzigen Schwimmer handeln, alternativ ist es jedoch auch möglich, zwei separate Schwimmer vorzuse-

Die in den Überlauf eintretende Leichtflüssigkeit 20 fließt durch eine Zulaufleitung in die Separationskammer. Die Zulaufleitung verläuft dabei vorzugsweise von dem Ruhewasserspiegel im Abscheiderbehälter nach unten und mündet in der unteren Hälfte der Separationskammer. Auf diese Weise ist oberhalb der Mün- 25 raum praktisch keine Leichtflüssigkeit vorhanden ist. dung der Zulaufleitung in der Separationskammer noch ausreichend Raum vorhanden, in den sich die Leichtflüssigkeit ansammeln kann.

Gegebenenfalls kann in der Zulaufleitung ein Filter reinigungen zurückgehalten werden.

In Weiterbildung der Erfindung ist vorgesehen, daß in der Zulaufleitung eine untere, von der Flüssigkeit vor Eintritt in die Separationskammer zu unterströmende Schwelle angeordnet ist.

Das durch die untere Abflußöffnung der Separationskammer abfließende Wasser kann direkt in den Abscheiderbehälter zurückgeführt werden, wobei dies vorzugsweise im Bereich des Auslaufs des Flüssigkeitsabscheiders erfolgen sollte. In bevorzugter Ausgestaltung 40 der Erfindung ist jedoch vorgesehen, daß die untere Abflußöffnung über eine Abflußleitung direkt mit der Außenseite des Abscheiderbehälters verbunden ist. Da das durch die untere Abflußöffnung hindurchfließende Wasser bereits sehr gut von der Leichtflüssigkeit gerei- 45 nigt ist, kann es direkt aus dem Abscheiderbehälter entnommen werden. Dabei ist zu beachten, daß der Ruhewasserspiegel N2 in der Abflußleitung dem Ruhewasserspiegel in der Separationskammer und somit auch in deren Zulaufleitung entspricht. Es ist deshalb vorzugs- 50 gungsleistung gering ist. weise vorgesehen, daß der Ruhewasserspiegel N2 der Abflußleitung geringfügig tiefer als der Ruhewasserspiegel N₁ im Abscheiderbehälter liegt.

Es hat sich bewährt, in der Abflußleitung eine Ouerschnittsverengung auszubilden. Damit ist der Vorteil 55 verbunden, daß die Durchflußmenge in der Abflußleitung und somit auch in der Separationskammer sehr gering ist, so daß der Separationsvorgang nicht gestört ist und keine Leichtflüssigkeit in die Abflußleitung mitgerissen werden kann.

Die Separationskammer kann durch Trennwände innerhalb des Abscheiderbehälters ausgebildet sein. Vorzugsweise ist jedoch vorgesehen, daß die Separationskammer in einem eigenen, in den Abscheiderbehälter eingesetzten Separationsbehälter ausgebildet ist. Dies 65 zuverlässig abfließt. bringt unter anderem den Vorteil mit sich, daß der Separationsbehälter zum Zwecke der Wartung oder Reparatur leicht aus dem Flüssigkeitsabscheider entnommen

werden kann. Darüber hinaus ist die Separationskammer auf diese Weise unabhängig von dem eigentlichen Abscheidersystem und stellt ein eigenes Bauteil dar, mit dem bereits bestehende Flüssigkeitsabscheider jederzeit nachgerüstet werden können.

Erfindungsgemäß ist deshalb auch eine Separationsvorrichtung zum Einbau in einen Flüssigkeitsabscheider der genannten Art vorgeschlagen, wobei ein in den Abscheiderbehälter einsetzbarer Separationsbehälter mit einer inneren Separationskammer vorgesehen ist, die über eine Zulaufleitung mit dem Überlauf verbunden ist und eine obere, zum Sammelbehälter führende Abflußöffnung für die Leichtflüssigkeit und eine untere Abflußöffnung für das Wasser aufweist.

Weitere konstruktive Merkmale der Separationsvorrichtung ergeben sich aus der vorgenannten Beschreibung des Flüssigkeitsabscheiders.

Mit dem erfindungsgemäßen Flüssigkeitsabscheider bzw. der in diesen einbaubaren Separationsvorrichtung sind verschiedene weitere Vorteile gegeben. Zum einen stellt sich aufgrund des ständigen Abflusses von Leichtflüssigkeit durch den Überlauf im Abscheiderbehälter eine von Öl bzw. Leichtflüssigkeit nahezu freie Wasseroberfläche ein, d.h. daß im eigentlichen Abscheider-Auch wenn durch relativ scharfe Reiniger oder Reinigungsemulsionen verunreinigtes Abwasser in den Abscheiderbehälter einfließt, kann es somit nicht zu einem Emulgieren der bereits abgeschiedenen Leichtflüssigangeordnet sein, mit dem insbesondere gröbere Verun- 30 keit und einem damit verbundenen Heraus lösen von Kohlenwasserstoffen und Schwermetallen aus der Trennfläche Wasser/Leichtflüssigkeit kommen.

> Wie bereits erwähnt, ist erfindungsgemäß erreicht, daß sich im Sammelbehälter kein Wasser befindet, so 35 daß bei der Entleerung des Sammelbehälters nur Leichtflüssigkeit, insbesondere Öl zu entsorgen ist. Da sich im Abscheiderbehälter keine Leichtflüssigkeit befindet, braucht das dort befindliche Wasser nicht entsorgt zu werden, wodurch die Stillstandszeiten des Flüssigkeitsabscheiders bei der Entsorgung und deren Kosten sehr gering sind.

Die in den Flüssigkeitsabscheider einbaubare Separationsvorrichtung kann sehr kompakt und mit geringen Abmessungen ausgestaltet werden, so daß sie in Flüssigkeitsabscheider unterschiedlicher Bauart nachträglich in einfacher Weise eingebaut werden kann. Darüber hinaus ist es möglich, den Separationsbehälter in einem Bereich des Abscheiderbehälters anzuordnen, in der die Beeinflussung der eigentlichen Abscheide- bzw. Reini-

Die Separationsvorrichtung ist als Modul in ihrer Gesamtheit austauschbar und besitzt einen sehr einfachen konstruktiven Aufbau mit entsprechend hoher Funktionssicherheit. Sie ist darüber hinaus in Flüssigkeitsabscheidern unabhängig davon verwendbar, ob deren selbsttätige Verschlußvorrichtung am Ablauf oder am Zulauf angeordnet ist.

Es hat sich gezeigt, daß eine sehr gute Separation auch bereits bei sehr geringen Zuflüssen von Wasser oder Leichtflüssigkeit in den Flüssigkeitsabscheider zu erzielen ist. Dabei braucht der Durchfluß durch die Separationsvorrichtung nur sehr gering zu sein, damit an der Wasseroberfläche des Abscheiderbehälters schwimmende Leichtflüssigkeit in die Separationsvorrichtung

Die Ölseparationsvorrichtung kann auch bei einer hohen Wasserzuflußmenge im Flüssigkeitsabscheider nicht überlastet werden. Falls der Flüssigkeitsabschei-

5

der mehr Zufluß erhält, als er verarbeiten kann, so staut das Wasser lediglich auf. Die Separationsvorrichtung arbeitet auch in diesem Fall normal weiter. Darüber hinaus hat sich gezeigt, daß die Wirkungsweise der Separationsvorrichtung auch bei einem sehr geringen Höhenunterschied zwischen dem Einlauf und dem Auslauf des Flüssigkeitsabscheiders gesichert ist, wobei an sich einige Millimeter ausreichen, sich in der Praxis jedoch eine Vorgabe von 20 mm als zweckmäßig erwiesen hat.

Die nachrüstbare Separationsvorrichtung ist in ihren 10 Abmessungen von der Größe des Flüssigkeitsabscheiders, von dessen zu erwartender Durchflußmenge und dessen Aufstau im wesentlichen unabhängig und braucht nur auf den Ruhewasserspiegel des Flüssigkeitsabscheiders eingestellt zu werden.

Weitere Einzelheiten und Merkmale der Erfindung sind aus der folgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung ersichtlich. Es zeigen:

Fig. 1 eine schematische Schnittdarstellung durch einen Flüssigkeitsabscheider gemäß einem 1. Ausführungsbeispiel und

Fig. 2 eine gemäß Fig. 1 entsprechende Darstellung eines weiteren Ausführungsbeispiels.

Gemäß Fig. 1 weist ein Flüssigkeitsabscheider 1 einen 25 äußeren Abscheiderbehälter 14 auf, der auf seiner gemäß Fig. 1 linken Seite einen Einlauf 16 für ein zu reinigendes Öl- oder Benzin-Wasser-Gemisch besitzt. Dem Einlauf 16 ist eine vertikale, das zuströmende Flüssigkeitsgemisch in den unteren Bereich des Abscheiderbehälters 14 führende Leit- oder Tauchwand 2 zugeordnet.

Dem Einlauf 16 gegenüberliegend ist am Abscheiderbehälter 14 ein Auslauf 17 ausgebildet, dem ebenfalls in bekannter Weise eine Leit- oder Tauchwand 3 zugeordnet ist, so daß in den Auslauf 17 nur Wasser aus dem 35 unteren Bereich des Abscheiderbehälters 14 eintreten kann. Am Auslauf 17 ist eine Auslaufblende 15 angeordnet, die den Ruhewasserspiegel N₁ im Abscheiderbehälter 14 bestimmt

Wenn ein zu reinigendes Flüssigkeitsgemisch durch 40 den Einlauf 16 in den Abscheiderbehälter 14 einströmt, steigt die Leichtflüssigkeit auf und sammelt sich im Abscheiderbehälter an der Wasseroberfläche in Form einer Leichtflüssigkeitsschicht an, während das gereinigte Wasser zwischen der Leit- oder Tauchwand 3 und der 45 Wandung des Abscheiderbehälters 14 aufsteigt und über die Auslaufblende 15 hinweg in den Auslauf 17 strömt.

Im Abscheiderbehälter ist ein im wesentlichen allseitig geschlossener Separationsbehälter 21 angeordnet, 50 dessen Innenraum durch eine unterhalb des Ruhewasserspiegels N₁ angeordnete horizontale Trennwand 19 in eine untere Separationskammer 6 und eine darüber liegende wesentlich kleinere obere Kammer 24 unterteilt ist. In der Trennwand 19 ist eine obere Abflußöffnung 9 ausgebildet, die die Separationskammer 6 mit der oberen Kammer 24 verbindet. Die obere Kammer 24 ist über ein Entlüftungsrohr 22 und die Separationskammer 6 über ein Entlüftungsrohr 23 entlüftet.

In der unteren Hälfte bzw. dem unteren Drittel der 60 Separationskammer 6 mündet eine im wesentlichen vertikale Zulaufleitung 5, deren oberes Ende als offener Überlauf 4 ausgebildet ist, der in Höhe des Ruhewasserspiegels N₁ im Abscheiderbehälter 14 angeordnet ist. In der Zulaufleitung 5 ist ein Filter 20 zum Ausfiltern von 65 groben Verunreinigungen angeordnet.

An dem der oberen Abflußöffnung 9 entgegengesetzten unteren Ende der Separationskammer 6 ist eine untere Abflußöffnung 10 ausgebildet, an die sich eine als S-förmiges Steigrohr ausgebildete Abflußleitung 12 anschließt, die die Wandung des Abscheiderbehälters im Bereich des Auslaufs knapp unterhalb der Auslaufblende 15 durchdringt, so daß ihre Mündung 13 außerhalb des Abscheiderbehälters 14 liegt. Die Abflußleitung 12 bestimmt das Abflußniveau N2 das aufgrund der kommunizierenden Fluidverbindung dem Niveau in der Separationskammer 6 sowie dem Niveau in der Zulaufleitung 5 entspricht. Bei dem dargestellten Ausführungsbeispiel ist die Trennwand 19 in Höhe des Niveaus N2 angeordnet.

6

In der Ablaufleitung 12 ist ein Abschnitt mit einer Querschnittsverengung 12a ausgebildet, der sicherstellt, 15 daß die Durchflußmenge durch die Ablaufleitung 12 und somit die Separationskammer 6 sehr gering ist.

Die obere Kammer 24 steht über eine Sammelleitung 18 mit einem nicht näher dargestellten Sammelbehälter in Verbindung, der in dem Abscheiderbehälter 14 oder außerhalb von diesem angeordnet sein kann. Das Niveau N3 gibt an, welche Höhe die Leichtflüssigkeit in der oberen Kammer 24 erreicht haben muß, bis sie über die Sammelleitung 18 abfließt.

In der Separationskammer 6 ist ein Schwimmer 7 angeordnet, der ein oberes Ventilelement 18, das mit der oberen Abflußöffnung 9 zusammenwirkt, sowie ein unteres Ventilelement 11 aufweist, das mit der unteren Abflußöffnung 10 zusammenwirken kann. Der Schwimmer 7 ist so austariert, das er die obere Abflußöffnung 9 solang verschlossen hält, bis die sich in der Separationskammer 6 gebildete Leichtflüssigkeitsschicht eine ausreichende, vorbestimmte Dicke aufweist. Wenn die vorbestimmte Dicke der Leichtflüssigkeitsschicht überschritten ist, sinkt der Schwimmer 7 in der Separationskammer 6 herab und gibt somit die oberen Abflußöffnung 9 frei.

Wenn die Leichtslüssigkeit aufgrund einer Überfüllung des Sammelbehälters nicht mehr durch die Sammelleitung 18 absließen kann, staut sie sich in der Separationskammer 6 zurück, wodurch der Schwimmer 7 soweit absinkt, bis sein unteres Ventilelement mit der unteren Abslußöffnung 10 in Anlage kommt und diese verschließt.

Wenn ein zu reinigendes Flüssigkeitsgemisch durch den Einlauf 16 in den Abscheiderbehälter 14 einfließt, steigt der Wasserspiegel im Abscheiderbehälter 14 kurzzeitig über das Niveau des Ruhewasserspiegels N1 an. Dadurch kann einerseits gereinigtes Wasser die Auslaufblende 15 überströmen und in den Auslauf 17 eintreten, andererseits strömt Wasser mit der an der Oberfläche im Abscheiderbehälter 14 angesammelten Leichtflüssigkeit über den Überlauf 4 in die Zulaufleitung 5. Das Flüssigkeitsgemisch strömt in der Zulaufleitung 5 nach unten und dann in die Separationskammer 6 ein, wobei am unteren Ende der Zulaufleitung 5 eine von der Flüssigkeit zu unterströmende Schwelle 5a gebildet ist. In der Separationskammer 6 steigt die Leichtflüssigkeit auf und sammelt sich unterhalb der Trennwand 19 im Bereich der oberen Abflußöffnung 9 an, durch die sie zunächst jedoch noch nicht abfließen kann, da diese durch das oberen Ventilelement 8 des Schwimmers 7 verschlossen ist. Die in den Überlauf 4 eingetretenen Wasseranteile können durch die untere Ablauföffnung 10 und die Abflußleitung 12 abfließen.

Wenn die Leichtflüssigkeitsschicht in der Separationskammer 6 die vorbestimmte Dicke erreicht hat, sinkt der Schwimmer 7 nach unten und gibt die obere Abflußöffnung 9 frei. Aufgrund der Dichteunterschiede

zwischen dem Wasser und der Leichtflüssigkeit steigt die Leichtflüssigkeit durch die obere Abflußöffnung in die obere Kammer 24 bis über das Niveau N3 auf und fließt dann über die Sammelleitung 18 in den Sammelbehälter ab. Sobald die Leichtflüssigkeitsschicht in der Separationskammer 6 die vorbestimmte Dicke wieder unterschreitet, schließt der Schwimmer 7 die obere Abflußöffnung 9 mit seinem oberen Ventilelement 8. Auf diese Weise ist sichergestellt, daß nur Leichtflüssigkeit durch die oberen Abflußöffnung 9 hindurchfließt, so daß sich im Sammelbehälter nur Leichtflüssigkeit ansammelt.

Der Querschnitt der Zulausleitung 5 sollte relativ klein, so daß nur eine geringe Flüssigkeitsmenge durch die Separationskammer 6 sließt, unabhängig davon, ob der Zusluß des Abscheiderbehälters 14 am Einlauf 16 sehr groß oder sehr klein ist.

Fig. 2 zeigt ein weiteres Ausführungsbeispiel der Separationsvorrichtung in einem Flüssigkeitsabscheider, wobei sich diese von dem ersten Ausführungsbeispiel 20 nur dadurch unterscheidet, daß statt eines einzelnen Schwimmers nunmehr zwei Schwimmer 7a und 7b vorgesehen sind, wobei der Schwimmer 7a das obere Ventilelement 8 trägt, um die obere Abflußöffnung 9 solange verschlossen zu halten, bis die Leichtflüssigkeitsschicht in der Separationskammer 6 die vorbestimmte Dicke erreicht hat. Der weitere Schwimmer 7b trägt das untere Ventilelement 11, mittels dessen die untere Abflußöffnung 10 verschließbar ist, wenn die Leichtflüssigkeitsschicht in der Separationskammer 6 übermäßig an 30 wächst.

Patentansprüche

- 1. Flüssigkeitsabscheider, insbesondere zum Trennen von Gemischen aus Wasser und spezifisch leichteren Flüssigkeiten wie Öl, Benzin oder dergleichen, mit einem Abscheiderbehälter, der einen Einlauf und einen Auslauf aufweist, und mit einem Sammelbehälter, dem die abgeschiedene Leichtflüssigkeit über einen nahe dem sich im Abscheiderbehälter einstellenden Ruhewasserspiegel N₁ angeordneten Überlauf zuführbar ist, dadurch gekennzeichnet, daß zwischen dem Überlauf (4) und dem Sammelbehälter eine Separationskammer (6) as angeordnet ist, die eine obere, zum Sammelbehälter führende Abflußöffnung (9) für die Leichtflüssigkeit und eine untere Abflußöffnung (10) für das Wasser aufweist.
- 2. Flüssigkeitsabscheider nach Anspruch 1, dadurch 50 gekennzeichnet, daß in der Separationskammer (6) ein Schwimmer (7; 7a) angeordnet ist, der die obere, zu dem Sammelbehälter führende Abflußöffnung (9) bis zum Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separations- 55 kammer (6) verschlossen hält.
- 3. Flüssigkeitsabscheider nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Separationskammer (6) ein Schwimmer (7; 7b) angeordnet ist, der die untere Abflußöffnung (10) bei Erreichen 60 einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer (6) verschließt.
- 4. Flüssigkeitsabscheider nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sich vom Überlauf (4) eine Zulaufleitung (5) in die Separationskammer (6) erstreckt, die in der unteren Hälfte der Separationskammer (6) mündet.
- 5. Flüssigkeitsabscheider nach Anspruch 4, dadurch

- gekennzeichnet, daß in der Zulaufleitung (5) ein Filter (20) angeordnet ist.
- 6. Flüssigkeitsabscheider nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß in der Zulaufleitung (5) eine untere, von der Flüssigkeit vor Eintritt in die Separationskammer (6) zu unterströmende Schwelle (5a) angeordnet ist.
- 7. Flüssigkeitsabscheider nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die untere Abflußöffnung (10) über eine Abflußleitung (12) mit der Außenseite des Abscheiderbehälters (14) verbunden ist.
- 8. Flüssigkeitsabscheider nach Anspruch 7, dadurch gekennzeichnet, daß der Ruhewasserspiegel N₂ der Abflußleitung (12) geringfügig tiefer als der Ruhewasserspiegel N₁ im Abscheiderbehälter (14) liegt.
 9. Flüssigkeitsabscheider nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß in der Abflußleitung (12) eine Querschnittsverengung (12a) ausgebildet ist.
- 10. Flüssigkeitsabscheider nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Separationskammer (6) in einem eigenen, in den Abscheiderbehälter (14) eingesetzten Separationsbehälter (21) ausgebildet ist.
- 11. Flüssigkeitsabscheider nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Sammelbehälter in den Abscheiderbehälter (14) eingesetzt ist.
- 12. Separationsvorrichtung zum Einbau in einen Flüssigkeitsabscheider gemäß dem Oberbegriff des Anspruchs 1, mit einem in den Abscheiderbehälter (14) einsetzbaren Separationsbehälter (21) mit einer inneren Separationskammer (6), die über eine Zulaufleitung (5) mit dem Überlauf (4) verbunden ist und eine obere, zum Sammelbehälter führende Abflußöffnung (9) für die Leichtflüssigkeit und eine untere Abflußöffnung (10) für das Wasser aufweist. 13. Separationsvorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß in der Separationskammer (6) ein Schwimmer (7; 7a) angeordnet ist, der die obere, zu dem Sammelbehälter führende Abflußöffnung (9) bis zum Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer (6) verschlossen hält.
- 14. Separationsvorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß in der Separationskammer (6) ein Schwimmer (7;7b) angeordnet ist, der die untere Abflußöffnung (10) bei Erreichen einer vorbestimmten Dicke der Leichtflüssigkeitsschicht in der Separationskammer (6) verschließt.
- 15. Separationsvorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß sich vom Überlauf (4) eine Zulaufleitung (5) in die Separationskammer (6) erstreckt, die in der unteren Hälfte der Separationskammer (6) mündet.
- 16. Separationsvorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß in der Zulaufleitung (5) ein Filter (20) angeordnet ist.
- 17. Separationsvorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß in der Zulausleitung (5) eine untere, von der Flüssigkeit vor Eintritt in die Separationskammer (6) zu unterströmende Schwelle (5a) angeordnet ist.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 32 911 A1 C 02 F 1/40

19. Februar 1998

Nummer: Int. Cl.⁸: DE 196 32 911 A1 C 02 F 1/40

Offenlegungstag:

19. Februar 1998

