Proof. Продолжим доказательство из прошлой лекции, докажем, $3 \Rightarrow 1$.

Рассмотрим секвенциально компактное K и пусть K — не ограничено. (случай ограниченного множества тривиален)

$$\exists x_n: ||x_n|| \to +\infty$$

Тогда в этой последовательности нет сходящейся последовательности, т.к. любая $x_{n_k} \to x_0 \in \mathbb{R}$ ограничена. Противоречие $\Rightarrow K$ — не компактно.

Таким образом, если K — секвенциально компактно, то K ограничено.

Докажем замкнутость K.

Пусть \exists предельная точка $x_0 \notin K$

$$\exists x_n \to x_0$$

По секвенциальности \exists подпоследовательность $x_{n_k} \to a \in K$.

Следствие. Принцип выбора Больцано-Вейерштрасса. Если в \mathbb{R}^m (x_n) — ограниченная последовательность, то у неё существует сходящаяся подпоследовательность.

Proof. x_n — orp. $\Rightarrow x_n$ содержится в замкнутом кубе. Так как куб секвенциально компактен, x_{n_k} сходится.

Примечание.
$$(x_n)$$
 — не огр. $\Rightarrow x_n \to \infty$, т.е. $||x_n|| \to +\infty$

Определение. X — метрическое пространство, (x_n) в X

 x_n — фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

Пемма 1. 1. $x_n - \phi y h \partial . \Rightarrow x_n - o p a h u u e h a$

2.
$$x_n - \phi$$
унд; $\exists x_{n_k} - \mathsf{сходящ}$. Тогда x_n сходится.

Proof. 1.
$$\varepsilon := 1 \ \exists N \ \forall m, n := N+1 > N \ \rho(x_m, x_{N+1}) < 1$$

$$R := \max(1; \rho(x_1, x_{N+1}), \dots, \rho(x_N, x_{N+1}))$$

$$\forall n \ x_n \in B(x_{N+1}, R) \Rightarrow x_n \text{ сходится.}$$

2.
$$\begin{cases} \varepsilon > 0 \ \exists K \ \forall k > K \ \rho(x_{n_k}, a) < \varepsilon \\ \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon \end{cases} \stackrel{?}{\Rightarrow} x_n \to a$$

orall arepsilon>0 $\exists ilde N:=\max(N,K)$ при k> ilde N выполняется k>K, значит $n_k\geq k>K\Rightarrow
ho(x_{n_k},a)<arepsilon.$

При
$$n > \tilde{N} \ge N$$
 $m := n_k > \tilde{N} \ge N \Rightarrow \rho(x_n, x_{n_k}) < \varepsilon$

Итого
$$\forall n > \tilde{N} \ \rho(x_n, a) \ge \rho(x_n, x_{n_k}) < 2\varepsilon$$

Теорема 1. 1. В любом метрическом пространстве $x_n - cxodящ. \Rightarrow x_n - \phi y h d$.

2.
$$B \mathbb{R}^m x_n - \phi y H \partial . \Rightarrow x_n - cxo \partial x H u$$
.

Proof. 1.
$$x_n \to a \quad \forall \varepsilon > 0 \ \exists N \ \forall n > N \ \rho(x_n, a) < \varepsilon$$

$$x_n \to a \quad \forall \varepsilon > 0 \ \exists N \ \forall n, m > N \rho(x_m, x_n) \ge \rho(x_n, a) + \rho(x_m, a) < 2\varepsilon$$

M3137y2019 November 11, 2019

2.
$$x_n - \phi$$
унд. $\Rightarrow x_n - o$ гр. $\stackrel{\text{Б.-В.}}{\Longrightarrow} \exists x_{n_k} - c$ ходящ.
$$\begin{cases} \exists x_{n_k} - c$$
ходящ.
$$x_n - \phi$$
унд.
$$\Rightarrow x_n - c$$
ходящ.

Определение. X — метрическое пространство называется полным, если в нём любая фундаментальная последовательность — сходящаяся.

Верно: x_n — вещ. посл.

$$\forall \varepsilon > 0 \; \exists N \; \forall n,m > N \; |x_n - x_m| < \varepsilon \Leftrightarrow \exists \;$$
конечн. $\lim_{n \to +\infty} x_n$

Это критерий Больцано-Коши.

$$f:D\subset X\to Y$$
, x_0 — предельная точка $D.$

$$\lim_{x \to \infty} f(x) = L$$

 $D_1 \subset D, x_0$ — предельная точка D_1 .

Определение. $f: D \subset X \to Y, D_1 \subset D, x_0$ — пред. точка D_1

Тогда предел по множеству D_1 в точке x_0 — это $\lim_{x \to x_0} f|_{D_1}(x)$

Определение. В \mathbb{R} одностор. = $\{$ левостор., правостор. $\}$

Левосторонний предел $\lim_{x \to x_0 - 0} f(x) = L$ - это $\lim f|_{D \cap (-\infty, x_0)}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0) \cap D \ |f(x) - L| < \varepsilon$$

Аналогично правосторонний.

Если
$$\lim_{x \to x_0 = 0} f = \lim_{x \to x_0 + 0} f = L \Rightarrow \lim_{x \to x_0} f = L$$

$$\lim_{x \to x_0 = 0} f \stackrel{\text{обозн.}}{=} f(x_0 - 0)$$

$$\lim_{t \to \infty} f = \lim_{t \to \infty} f$$

$$\lim_{x \to 0-0} f = \lim_{x \to -0} f$$

$$\lim_{x \to 0-0} f = \lim_{x \to -0} f$$

$$B \mathbb{R}^2 \lim_{(x_1, x_2) \to (a_1, a_2)} f$$

Предел вдоль прямой: $\lim_{r\to 0} f(a_1 + r\cos\alpha, a_2 + r\sin\alpha)$

Теорема 2. О пределе монотонной функции

$$f:D\subset\mathbb{R} o\mathbb{R}$$
, монотонная, $a\in\overline{\mathbb{R}}$

$$D_1:=D\cap (-\infty,a), a$$
 — пред. точка D_1 . Тогда:

1.
$$f$$
 — возрастает, огр. сверху D_1 . Тогда \exists конечный предел $\lim_{x \to a = 0} f(x)$

2.
$$f$$
 — убывает, огр. снизу D_1 . Тогда \exists конечный предел $\lim_{x \to a-0} f(x)$

Proof. 1.
$$L := \sup_{D_1} f \quad L \stackrel{?}{=} \lim_{x \to a-0} f(x)$$

$$orall arepsilon > 0 \;\; L - arepsilon -$$
 не верхн. граница для $\{f(x) : x \in D_1\} \;\; \exists x_1 : L_arepsilon < f(x_1).$

Тогда при
$$x \in (x_1,a) \cap D_1 \ L - \varepsilon < f(x_1) \le f(x) \le L$$

$$\exists \delta := |x_1 - a| \ \forall x : x \in (x_1, a) \ L_{\varepsilon} \le f(x) < L + \varepsilon$$

Аналогично доказывается пункт 2.

Критерий Больцано-Коши для отображений.

Теорема 3. $f:D\subset X\to Y, a-np$. точка D,Y-nолное метрическое пространство. Тогда

$$\exists \lim_{x \to a} f(x) \in Y \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D \ \rho(x_1, a) < \delta; \rho(x_2, a) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Proof. "⇒" как для последовательностей.

Докажем "⇐" по Гейне.

Заметим, что последовательность $f(x_n)$ — фундаментальная, т.е.

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(f(x_m), f(x_n)) < \varepsilon$$

$$x_n \to a \Rightarrow \exists N \ \forall n > N \ \rho(x_n, a) < \delta$$

$$\forall m, n > N \ \rho(x_n, a) < \delta; \rho(x_m, a) < \delta \xrightarrow{\text{Фунд.}} \rho(f(x_n), f(x_m)) < \varepsilon$$

Примечание. В $\mathbb R$ критерий Больцано-Коши для функций

 $f:D\subset\mathbb{R} o\mathbb{R},a$ — пред. точка D

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D \setminus \{a\} \ |x_1 - a| < \delta; |x_2 - a| < \delta$$

Для $\lim_{x \to x_0} f(x) = +\infty$ критерий Больцано-Коши:

$$\forall E \ \exists \delta > 0 \ \forall x_1, x_2 \in D \setminus \{a\} \ |x_1 - a| < \delta; |x_2 - a| < \delta \ f(x_1) > E; f(x_2) > E$$

неинтересно.

Для
$$\lim_{x \to +\infty} f(x) = L$$
:

$$\forall \varepsilon > 0 \ \exists \Delta \ \forall x_1, x_2 \in D \ x_1 > \Delta; x_2 > \Delta \ |f(x_1) - f(x_2)| < \varepsilon$$

1 Непрерывные отображения

Определение. $f:D\subset X\to Y$ $x_0\in D$

f — **непрерывное** в точке x_0 , если:

1.
$$\lim_{x \to x_0} f(x) = f(x_0)$$
, либо x_0 — изолированная точка D

2.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$$

3.
$$\forall U(f(x_0)) \exists V(x_0) \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$$

4. По Гейне
$$\forall (x_n): x_n \to x_0; x_n \in D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$$

Определение. Если $\exists \lim_{x \to x_0} f(x)$, либо $\exists \lim_{x \to x_0} f(x) \neq f(x_0) -$ точка разрыва.

Для
$$\mathbb{R}$$
 $\forall \varepsilon > 0$ $\exists \delta > 0$ $\forall x \in D$ $|x - x_0| < \delta$ $|f(x) - f(x_0)| < \varepsilon$

M3137y2019

Определение. Непр. слева и непр. справа f — непр. слева в x_0 , если $f|_{(-\infty,x_0]\cap D}$ — непрерывно в x_0

Если f непрерывно слева и непрерывно справа в x_0 , то f непрерывно в x_0 .

Определение. Пусть $\exists f(x_0-0), f(x_0+0)$ и не все 3 числа равны: $f(x_0-0), f(x_0), f(x_0+0)$. Это разрыв I рода *(скачок)*.

Остальные точки разрыва — разрыв II рода.

Примечание.

$$f(x_0 - 0) \Leftrightarrow \lim_{x \to x_0 - 0} f(x)$$

Пример. 1.
$$f(x) = sign(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$
 0 — разрыв I рода.

2.
$$f(x) = sin(\frac{1}{x}) 0$$
 — разрыв II рода.

Определение. Отображение **непрерывно** на множестве D = непрерывно в каждой точке множества D.

Теорема 4. Арифметические свойства непрерывных отображений

1.
$$f, g: D \subset X \to Y \ x_0 \in D \ (Y - \text{норм. пространство})$$
 $f, g - \text{непр. } g \ D; \lambda: D \to \mathbb{R}(\mathbb{C}) - \text{непр. } x_0$ Тогда $f \pm g, ||f||, \lambda f - \text{непр. } x_0$

2.
$$f,g:D\subset X o\mathbb{R}$$
 $x_0\in D$ f,g — непр. в x_0 T огда $f\pm g,|f|,fg$ — непр. в x_0 $g(x_0)\neq 0$, тогда $\frac{f}{g}$ — непр. x_0

M3137y2019 November 11, 2019