Atividades Integradas em Data Science

Seu Nome ou Instituição

4 de fevereiro de 2025

Sumário

1	Atividade 1 – Introdução à Data Science com o Dataset Titanic	3
2	Atividade 2 – Análise Exploratória Básica com o Dataset Wine Quality	3
3	Atividade 3 – Detecção e Visualização de Outliers	3
4	Atividade 4 – Manipulação e Transformação de Dados com pandas e numpy	4
5	Atividade 5 – Limpeza e Tratamento de Dados	4
6	Atividade 6 – Estatística I: Medidas de Tendência Central e Dispersão	4
7	Atividade 7 – Estatística II: Correlação e Visualização com Heatmaps	5
8	Atividade 8 – Introdução à Machine Learning: Divisão de Dados	5
9	Atividade 9 – Aprendizado Supervisionado: Classificação com Regressão Logística	5
10	Atividade 10 – Aprendizado Não Supervisionado: Clusterização com K -Means	6
11	Atividade 11 – Separação de Bases e Pré-processamento para Modelos	6
12	Atividade 12 – Cross Validation: Validação Cruzada de Modelos	6
13	Atividade 13 – Análise Exploratória Avançada com Dataset Financeiro	7
14	Atividade 14 – Feature Engineering e Criação de Novas Variáveis	7
15	Atividade 15 – Estatística Aplicada à Modelagem e Interpretação	7
16	Atividade 16 – Construção de um Pipeline de Machine Learning	8
17	Atividade 17 – Avaliação Avançada de Modelos e Métricas	8
18	Atividade 18 – Introdução ao Uso do Orange3 para Data Mining	8
19	Atividade 19 – Projeto Integrado: Mini Pipeline de Análise de Dados	9

$20~{ m Atividade}~20-{ m Desafio}~{ m Final:}~{ m Project}$	to Completo e Avançado de Data Science
--	--

1 Atividade 1 – Introdução à Data Science com o Dataset Titanic

Objetivo: Familiarizar os alunos com o ambiente Python e a leitura de dados.

Dataset: Titanic Dataset (Kaggle)

Descrição:

- Importar o dataset utilizando pandas com pd.read_csv().
- Usar numpy para verificar os tipos de dados e contagem de registros (ex.: np.unique()).
- Exibir as 5 primeiras linhas com DataFrame.head() e gerar um sumário descritivo com DataFrame.describe().
- Criar um gráfico simples com matplotlib (por exemplo, gráfico de barras para a distribuição de sobreviventes).

2 Atividade 2 – Análise Exploratória Básica com o Dataset Wine Quality

Objetivo: Desenvolver uma análise inicial para entender as variáveis e suas distribuições.

Dataset: Wine Quality Dataset (Kaggle)

Descrição:

- Carregar os dados utilizando pandas.
- Calcular estatísticas básicas (média, mediana, variância) para cada variável utilizando numpy.
- Gerar histogramas e gráficos de dispersão com matplotlib para visualizar a distribuição das notas de qualidade dos vinhos e relacioná-las com variáveis como pH e acidez.

3 Atividade 3 – Detecção e Visualização de Outliers

Objetivo: Ensinar técnicas para identificar e analisar outliers.

Dataset: Mall Customers Dataset (Kaggle)

- Carregar os dados com pandas e utilizar descrições estatísticas para detectar possíveis outliers.
- Criar boxplots com matplotlib para visualizar outliers em variáveis numéricas.
- Aplicar filtros com numpy (por exemplo, valores acima de um determinado desvio padrão) e discutir estratégias de tratamento.

4 Atividade 4 – Manipulação e Transformação de Dados com pandas e numpy

Objetivo: Trabalhar com operações básicas e avançadas de manipulação de dados.

Dataset: Iris Dataset (Kaggle)

Descrição:

- Criar e manipular DataFrames com pandas: reorganização de colunas, filtragem e agrupamento de dados.
- Realizar operações matemáticas com numpy (operações vetoriais, cálculos de médias) aplicadas a arrays extraídos do DataFrame.
- Converter dados entre DataFrame e arrays do numpy e discutir as vantagens de cada estrutura.

5 Atividade 5 – Limpeza e Tratamento de Dados

Objetivo: Desenvolver habilidades para a preparação dos dados para análise.

Dataset: Heart Disease Dataset (Kaggle)

Descrição:

- Importar o dataset com pandas e identificar dados faltantes, duplicados e inconsistências utilizando funções como isnull(), drop_duplicates() e fillna().
- Usar numpy para converter colunas em arrays e aplicar normalizações ou padronizações.
- Documentar as alterações e justificar as escolhas de tratamento dos dados.

6 Atividade 6 – Estatística I: Medidas de Tendência Central e Dispersão

Objetivo: Calcular e interpretar medidas estatísticas dos dados.

Dataset: Titanic Dataset (Kaggle)

- Calcular média, mediana, moda e desvio padrão utilizando métodos do pandas e funções do numpy.
- Apresentar os resultados em tabelas e discutir a relevância de cada medida.
- Criar gráficos com matplotlib para ilustrar a distribuição dos dados e as medidas calculadas.

7 Atividade 7 – Estatística II: Correlação e Visualização com Heatmaps

Objetivo: Explorar relações entre variáveis utilizando medidas de correlação.

Dataset: House Prices Dataset (Kaggle)

Descrição:

- Calcular a matriz de correlação com o método DataFrame.corr() do pandas.
- Gerar um heatmap com matplotlib para visualizar as correlações, destacando variáveis com relações fortes ou fracas.
- Analisar quais variáveis podem impactar a variável alvo (ex.: preço) e discutir implicações para a modelagem.

8 Atividade 8 – Introdução à Machine Learning: Divisão de Dados

Objetivo: Introduzir a separação de dados para treinamento e teste.

Dataset: Breast Cancer Wisconsin Dataset (Kaggle)

Descrição:

- Carregar os dados utilizando pandas.
- Utilizar o método train_test_split do scikit-learn para dividir o dataset (por exemplo, 70% treinamento e 30% teste).
- Utilizar numpy para validar a integridade dos dados após a divisão e discutir a importância da separação para evitar overfitting.

9 Atividade 9 – Aprendizado Supervisionado: Classificação com Regressão Logística

Objetivo: Implementar um modelo de classificação supervisionada.

Dataset: Iris Dataset (Kaggle)

- Realizar o pré-processamento dos dados (codificação de labels, normalização se necessário) com pandas e numpy.
- Dividir os dados com train_test_split do scikit-learn.
- Implementar uma regressão logística utilizando a classe LogisticRegression do scikit-learn e treinar o modelo.
- Plotar a acurácia do modelo ao longo de diferentes iterações utilizando matplotlib e discutir os resultados.

10 Atividade 10 – Aprendizado Não Supervisionado: Clusterização com K-Means

Objetivo: Aplicar técnicas de clusterização para identificar padrões.

Dataset: Mall Customers Dataset (Kaggle)

Descrição:

- Carregar e explorar os dados com pandas.
- Pré-processar os dados (normalização de variáveis numéricas) utilizando numpy.
- Aplicar o algoritmo K-Means do scikit-learn para criar clusters.
- Gerar gráficos com matplotlib para visualizar os clusters e discutir a escolha do número ótimo de clusters (por exemplo, método do cotovelo).

11 Atividade 11 – Separação de Bases e Pré-processamento para Modelos

Objetivo: Reforçar a importância de uma correta divisão dos dados.

Dataset: House Prices Dataset (Kaggle)

Descrição:

- Importar os dados com pandas e verificar dados ausentes com isnull().
- Dividir o dataset em treino e teste com train_test_split do scikit-learn.
- Realizar normalização ou padronização dos dados utilizando funções do numpy ou o StandardScaler do scikit-learn.
- Discutir a importância de evitar o vazamento de informações (data leakage).

12 Atividade 12 – Cross Validation: Validação Cruzada de Modelos

Objetivo: Implementar a técnica de validação cruzada para uma avaliação robusta.

Dataset: Wine Quality Dataset (Kaggle)

- Dividir os dados (mantendo uma reserva para teste final) e aplicar train_test_split.
- Utilizar cross_val_score do scikit-learn para realizar k-fold cross validation (por exemplo, k=5) em um modelo (como regressão linear ou árvore de decisão).
- Calcular médias e desvios das métricas com numpy e gerar gráficos comparativos com matplotlib.

13 Atividade 13 – Análise Exploratória Avançada com Dataset Financeiro

Objetivo: Aprofundar a análise exploratória em um dataset mais complexo.

Dataset: Stock Market Data (Kaggle)

Descrição:

- Importar o dataset com pandas e realizar a limpeza dos dados (remoção de outliers, tratamento de datas).
- Calcular indicadores financeiros simples (médias móveis, variações percentuais) utilizando numpy.
- Criar gráficos de linhas, scatter plots e barras com matplotlib para visualizar tendências e sazonalidades.
- Analisar correlações entre os indicadores e discutir possíveis relações.

14 Atividade 14 – Feature Engineering e Criação de Novas Variáveis

Objetivo: Aprimorar o dataset por meio da criação de novas features para melhorar a modelagem.

Dataset: Airbnb New User Bookings (Kaggle)

Descrição:

- Analisar o dataset com pandas e identificar colunas que podem ser transformadas ou combinadas (ex.: extração de mês e dia a partir de datas).
- Utilizar numpy para aplicar transformações matemáticas ou estatísticas que resultem em novas variáveis.
- Documentar o processo de engenharia de features e discutir como elas podem impactar a performance dos modelos.

15 Atividade 15 – Estatística Aplicada à Modelagem e Interpretação

Objetivo: Integrar conceitos estatísticos na interpretação de modelos de machine learning.

Dataset: Titanic Dataset (Kaggle)

- Calcular estatísticas descritivas e de dispersão utilizando pandas e numpy.
- Criar gráficos (dispersão, histogramas) com matplotlib para visualizar os dados.
- Discutir como essas análises podem indicar quais variáveis possuem maior potencial preditivo.

16 Atividade 16 – Construção de um Pipeline de Machine Learning

Objetivo: Automatizar o fluxo de trabalho integrando pré-processamento, modelagem e validação.

Dataset: Breast Cancer Wisconsin Dataset (Kaggle)

Descrição:

- Construir um pipeline utilizando a classe Pipeline do scikit-learn que inclua:
 - Pré-processamento (tratamento de dados com pandas e normalização com StandardScaler).
 - Criação de novas features (usando transformações com numpy).
 - Treinamento de um modelo (por exemplo, SVM ou árvore de decisão).
- Executar validação cruzada integrada no pipeline e gerar gráficos comparativos de performance com matplotlib.

17 Atividade 17 – Avaliação Avançada de Modelos e Métricas

Objetivo: Implementar métricas avançadas para avaliação de modelos de classificação.

Dataset: Breast Cancer Wisconsin Dataset (Kaggle)

Descrição:

- Treinar um modelo de classificação (por exemplo, árvore de decisão ou regressão logística) utilizando o scikit-learn.
- Calcular métricas como precisão, recall, F1-score e ROC-AUC.
- Plotar a curva ROC e a matriz de confusão com matplotlib e discutir a interpretação de cada métrica.

18 Atividade 18 – Introdução ao Uso do Orange3 para Data Mining

Objetivo: Integrar uma ferramenta visual de análise de dados e comparar resultados com abordagens em código.

Dataset: Mall Customers Dataset (Kaggle)

- Importar o dataset no Orange3 e configurar um fluxo de trabalho visual para realizar análise exploratória, pré-processamento e clusterização.
- Comparar os resultados do clusteramento (por exemplo, K-Means) realizados no Orange3 com os obtidos via scikit-learn.
- Discutir vantagens e limitações do uso de ferramentas visuais versus a programação em Python.

19 Atividade 19 – Projeto Integrado: Mini Pipeline de Análise de Dados

Objetivo: Consolidar os conhecimentos integrando diversas etapas do processo de Data Science.

Dataset: House Prices Dataset (Kaggle)

Descrição:

- Importar os dados e realizar uma análise exploratória completa utilizando pandas, numpy e matplotlib.
- Executar o tratamento dos dados e aplicar técnicas de feature engineering.
- Construir um pipeline completo de machine learning com o scikit-learn, incluindo pré-processamento, treinamento e validação (utilizando cross validation).
- Comparar os resultados obtidos e discutir os desafios encontrados.

20 Atividade 20 – Desafio Final: Projeto Completo e Avançado de Data Science

Objetivo: Desenvolver um projeto final que integre todas as competências adquiridas.

Dataset: COVID-19 Dataset (Kaggle) ou outro dataset complexo e atual de sua escolha.

- Importação e Limpeza: Importar os dados com pandas, tratar valores ausentes, inconsistências e formatar datas. Utilizar numpy para normalização.
- Análise Exploratória: Realizar uma análise descritiva e explorar tendências com pandas e numpy. Gerar visualizações (histogramas, scatter plots, heatmaps) com matplotlib.
- Engenharia de Features: Desenvolver novas variáveis que possam potencializar a modelagem e documentar o processo.
- Modelagem: Implementar modelos supervisionados (regressão, classificação) e não supervisionados (clusterização) utilizando o scikit-learn. Dividir os dados em conjuntos de treinamento e teste e aplicar validação cruzada.
- Comparação com Orange3: Opcionalmente, reproduzir parte da análise utilizando o Orange3 para comparar os resultados.
- Relatório Final: Consolidar todos os resultados, insights e desafios em um relatório detalhado.