

A Report On

Assignment -2

by

Dinesh Joshi (JVL202215)

FOR THE COURSE

ELP736

Physical Design Laboratory IIT Delhi Apr 6, 2022

1. Problem Statement

Read this paper. Then do PD(Physical Design) flow. Assume any clock frequency like (10MHz or 20MHz).

As the GENUS part is done in Assignment-I, use the generated gate-level Netlist and SDC file.

Submission:

Report containing the snapshots of each step of PD flow.

Mail your submission to: een202498@iitd.ac.in, een202501@iitd.ac.in, jvl202216@iitd.ac.in.

2. Working Directory

Annexures:

a. Work area path:

/afs/iitd.ac.in/user/j/jv/jvl202215/elp736/assignments/assignment2

b. GitHub ID:

https://github.com/DJ-dineshjoshi/async_fifo/tree/main/assignment2

c. The floorplan is located at below path. Also it has been uploaded onto github.

/afs/iitd.ac.in/user/j/jv/jvl202215/elp736/assignments/assignment2/apr/fifo_floorplan

Frequencies used:

Read clock frequency: 30MHz.

Write clock frequency: 10MHz.

3. Steps for RTL to GDSII flow

a. Import design

- a. Launch innovus using below commands:% load_module innovus20; load_module encounter% innovus &
- b. Go to File > Design Import and add the Verilog file path, the lef file path and the power pins as per below figure

Figure: Loading Design into innovus

- c. In the MMMC View Definition file, click on Create Analysis Configuration.
 - i. In the MMMC Browser window, add the library sets for max and min timing libraries.

Library sets -> Name: max_timing_library -> Add under Timing Library Files ->

Add file

/afs/iitd.ac.in/service/tools/public/asiclib/umcoa/L65/libraries/UMC65LLSC/synopsys/ccs/uk65lscllmvbbr_090c125_wc_ccs.lib

Library sets -> Name: min_timing_library -> Add under Timing Library Files ->

Add file

/afs/iitd.ac.in/service/tools/public/asiclib/umcoa/L65/libraries/UMC65LLSC/synopsys/ccs/uk65lscllmvbbr_110c-40_bc_ccs.lib

- ii. Update the RC Corner RC Corner -> Name: Default_rc_corner -> QRC Tech file: Add /afs/iitd.ac.in/service/tools/public/asiclib/umcoa /L65/process/UMK65FDKLLC00000OA_B11/Rule Decks/QRC/RCmin/qrcTechFile
- iii. Update the Delay corners for wcs and bcs Add Delay Corner -> Name: max_delay_corner -> RC Corner: Default_rc_corner -> Library set: max_timing _library Add Delay Corner -> Name: min_delay_corner -> RC Corner: Default_rc_corner -> Library set: min_timing _library

- iv. Create constraint modes for worst_case and
 best_case corners
 Constraints Mode -> Name: fifo_constraints ->
 fifo.sdc
- v. Create Analysis views
 Analysis View -> Name: worst_case -> Delay corner: max_delay
 Analysis View -> Name: best_case -> Delay corner: min_delay
 Setup Analysis -> Analysis view: worst_case
 Hold Analysis -> Analysis view: best_case
- vi. Save&Close Default.view
- vii. Save the file as Default.globals for directly loading for further cases.

Figure: Providing the inputs to the Ifsr.view file

b. Click on OK, the innovus terminal shows below message after design import:

```
*** Summary of all messages that are not suppressed in this session:
                            Count Summary
1 Pin '%s' in macro '%s' has no ANTENNAGAT...
Severity ID
WARNING
          IMPLF-200
                              1 There is no overlap layer defined in any...
2154 Pin '%s' of cell '%s' is defined in LEF ...
          IMPLF-108
WARNING
          IMPVL-159
WARNING
                                20 No function defined for cell '%s'. The c...
WARNING
          TECHLIB-302
                                20 Attribute '%s' on '%s' pin '%s' of cell ...
WARNING
          TECHLIB-436
WARNING TECHLIB-1365
                                20 The %s vector group for %s has a duplica...
*** Message Summary: 2216 warning(s), 0 error(s)
innovus 1>
```

Figure: Innovus messages after design import

c. Review the layout screen after design import. A box with rows will appear as below

Figure: Layout after loading the files:

b. Partitioning

a. For partitioning, go to Partition > Specify Partition. In the editor window, add any hierarchical instance name. Multiple instances can also be added. The equivalent command for script/nongui usage is: definePartition -hinst fifomem -coreSpacing 0.0 0.0 0.0 0.0 -railWidth 0.0 -minPitchLeft 2 -minPitchRight 2 -minPitchTop 2 -minPitchBottom 2 -reservedLayer { 1 2 3 4 5 6 7} -pinLayerTop { 2 4 6} -pinLayerLeft { 3 5 7} -pinLayerBottom { 2 4 6} -pinLayerRight { 3 5 7} -placementHalo 0.0 0.0 0.0 0.0 -routingHalo 0.0 -routingHaloTopLayer 7 - routingHaloBottomLayer 1

Figure: Adding partition by writing the instance name and clicking on Add/Replace

b. On clicking on OK, the partition becomes visible as a block adjacent.

Figure: Selecting fifomem as the partition

c. This shows a placed layout. To see the floorplan with partition indicated, go to Amoeba view.

Figure: Partitioning view indicating fifomem partition

This completes the Partitioning part.

c. Floorplan Specification

d. Provide below settings for specifying floorplan:

Figure: Floorplan specifications

e. Clicking on OK loads the layout with the floorplan with a box between the core and the die as shown in below figure.

Figure: Floorplan layout

d. Power Planning:

f. Add VDD and VSS rings by going to

Figure: Adding power supply rings

g. Layout after adding rings appears as below

Figure: Layout after ring addition

h. Add stripes as per the below specifications

Figure: Stripes addition specifications

i. Layout after stripes addition appears as shown in next figure:

Figure: Layout after stripes addition

j. Add special routes as shown per below specifications:

Figure: Special route addition

e. Allocating pin orientations:

a. Edit pin directions. First select all the input pins and then allocate them to the left on metal layer 3.

Figure: Editing input pin properties for pin orientation

b. Do the same for the output pins and allocate them to the right.

Figure: Editing output pin properties

c. Layout after edit pin directions allocation appears as shown in below figure

Figure: Layout after pin placment

f. Standard Cell placement:

- a. Place standard cells. For this, go to Place > Place Standard Cells.
- b. Click on Run Full Placement and include pre-place optimization.

Figure: Specifications for standard cell placement

c. On clicking on OK, the layout appears as shown in next figure.

Figure: Layout after standard cell placement

- d. Run placement optimization. Run below command in innovus terminal place_opt_design
- e. The layout after placement optimization, appears as shown in next figure:

Figure: Layout after placement optimization

g. preCTS Timing Analysis:

Timing analysis:

a. PreCTS: Check preCTS timing analysis

Figure: preCTS timing report generation

b. On clicking on OK, the terminal shows the timing report as shown below:

Density: 70.746%

Routing Overflow: 0.00% H and 0.00% V

......

Reported timing to dir timingReports

Total CPU time: 0.66 sec Total Real time: 1.0 sec

Total Memory Usage: 2041.40625 Mbytes

innovus 3>

Figure: preCTS setup timing with no violation

c. Now, check hold analysis

Figure: Hold analysis having 169 violations

h. <u>CTS:</u>

innovus 3>

Total CPU time: 0.65 sec Total Real time: 1.0 sec

Total Memory Usage: 2010.710938 Mbytes

k. Run below commands for Clock Tree Synthesis on innovus terminal:

```
create_ccopt_clock_tree_spec
ccopt_design
```

I. These commands build the Clock Tre and the second one optimizes post CTS.

i. postCTS Timing Analysis:

- m. PostCTS, first check timing report with same staep as done in preCTS.
- n. The setup report is clean with 0 violations

```
timeDesign Summary
```

Setup views included: worst case

Setup mode	all	reg2reg	default
WNS (ths: 0	30.902	30.803
TNS (0.000	0.000
Violating Pa		0	0
All Pa		286	326

DRVs	Real		Total	
	Nr nets(terms)	Worst Vio	Nr nets(terms)	
max_cap max_tran max_fanout max_length	0 (0) 0 (0) 0 (0) 0 (0)	0.000 0.000 0	0 (0) 0 (0) 0 (0) 0 (0)	

Density: 71.602%

Routing Overflow: 2.20% H and 0.00% V

Reported timing to dir timingReports

Total CPU time: 0.28 sec Total Real time: 0.0 sec

Total Memory Usage: 2087.445312 Mbytes

innovus 5>

Figure: postCTS setup timing report

o. Now, we go to hold summary report.

Figure: postCTS hold timing summary report

p. Since slack is -ve, we try optimization for hold. The post Optimization postCTS timing report indicates Ons hold slack which indicates that hold is marginal after postCTS optimization.

```
optDesign Final Summary
Setup views included:
 worst case
Hold views included:
 best case
   Setup mode | all | reg2reg | default |
      WNS (ns): 30.803 | 30.902 | 30.803

TNS (ns): 0.000 | 0.000 | 0.000

Violating Paths: 0 | 0 | 0

All Paths: 464 | 286 | 326
   Hold mode | all | reg2reg | default |
      WNS (ns): | 0.000 | 0.071 | 0.000

TNS (ns): | 0.000 | 0.000 | 0.000

Violating Paths: | 0 | 0 | 0

All Paths: | 464 | 286 | 326
                      | Nr nets(terms) | Worst Vio | Nr nets(terms)

    max_cap
    0 (0)
    0.000
    0 (0)

    max_tran
    0 (0)
    0.000
    0 (0)

    max_fanout
    0 (0)
    0 (0)
    0 (0)

    max_length
    0 (0)
    0 (0)

Density: 71.803%
Routing Overflow: 2.20% H and 0.00% V
**optDesign ... cpu = 0:00:12, real = 0:00:14, mem = 2145.9M, totSessionCpu=0:06:37 **
*** Finished optDesign ***
innovus 5>
```

Figure: Optimization after postCTS timing

j. Route:

q. Now we go for routing. Go to Route > NanoRoute:

Figure: Specifications for NanoRoute

r. The layout post nanoroute appears as below:

Figure: Layout after NanoRoute

k. postRoute Timing Analysis:

s. Before running post route timing analysis, we need to consider OCVs in our analysis, hence below command is required to be run.

setAnalysisMode -analysisType onChipVariation

t. Running timing report by Timing > Report Timing > postRoute we get report as below. There is no setup violation.

timeDesign	Summary			
Setup views included: worst_case				
Setup mode	all	reg2reg	default	,
WNS (ns): TNS (ns): Violating Paths: All Paths:	0.000 0	30.747 0.000 0 286	30.772 0.000 0 326	
<u>+</u>			· 	
DRVs +	r nets(terr	Real ns) Wors	st Vio	Total Nr nets(term

Density: 71.803%

Total number of glitch violations: 0

.....

 max_cap
 0 (0)
 0.000
 0 (0)

 max_tran
 1 (21)
 -0.024
 1 (21)

 max_fanout
 0 (0)
 0 (0)
 0 (0)

 max_length
 0 (0)
 0 (0)
 0 (0)

Reported timing to dir timingReports

Total CPU time: 28.59 sec Total Real time: 33.0 sec

Total Memory Usage: 2111.65625 Mbytes

Reset AAE Options

innovus 6>

Figure: postRoute setup timing

u. Now, we go for hold analysis after postRoute

		,
	timeDesign Summary	
Hold	views included:	

Hold views included: best_case

++		+	++
Hold mode	all	reg2reg	default
++		+	++
WNS (ns):	-0.045	0.030	-0.045
TNS (ns):	-3.507	0.000	-3.507
Violating Paths:	128	Θ	128
All Paths:	464	286	326
+			

Density: 71.803%

Reported timing to dir timingReports

Total CPU time: 1.13 sec Total Real time: 1.0 sec

Total Memory Usage: 2077.140625 Mbytes

Reset AAE Options

innovus 6>

Figure: hold analysis postRoute

v. Since still the slack is -ve, we try for postRoute optimization.

Figure: Optimization over postRoute timing analysis

w.Now, the setup and hold both are clean with margins in WNS for both setup and hold.

l. Extracting RC:

x. Go to Timing > Extract RC and save the spef and spf files as shown in figure below.

Figure: Extracting spef and spf files

m. <u>Verify</u>

a. Verify Geometry:

- a. Click on Verify > Verify Geometry to report if any errors or not.
- b. The logs indicate **0 violations**

```
innovus 6> *** Starting Verify Geometry (MEM: 2440.9) ***
**WARN: (IMPVFG-257): verifyGeometry command is replaced by verify_drc command.
  VERIFY GEOMETRY ..... Starting Verification
  VERIFY GEOMETRY ..... Initializing
  VERIFY GEOMETRY ..... Deleting Existing Violations
  VERIFY GEOMETRY ..... Creating Sub-Areas
  VERIFY GEOMETRY ..... bin size: 2880
VERIFY GEOMETRY ..... SubArea : 1 of 1
  VERIFY GEOMETRY ..... Cells
                                      : 0 Viols.
  VERIFY GEOMETRY ..... SameNet
                                        : 0 Viols.
  VERIFY GEOMETRY ..... Wiring
  VERIFY GEOMETRY ..... Antenna
  VERIFY GEOMETRY ..... Sub-Area : 1 complete 0 Viols. 0 Wrngs.
VG: elapsed time: 1.00
Begin Summary ...
  Cells
  SameNet
  Wiring
  Antenna
  Short
  Overlap
End Summary
  Verification Complete: 0 Viols. 0 Wrngs.
*********End: VERIFY GEOMETRY*******
 *** verify geometry (CPU: 0:00:00.4 MEM: 0.0M)
innovus 6>
```

Figure: Verify Geometry Logfile Snippet

b. Verify DRC:

- a. Click on Verify > Verify DRC to report if any errors or not.
- b. The logs indicate **0 violations**

Figure: Verify DRC Logfile Snippet

c. Verify Connectivity:

- a. Click on Verify > Verify Connectivity to report if any errors or not.
- b. The logs indicate **0 violations**

Verify Connectivity:

```
VERIFY_CONNECTIVITY use new engine.
****** Start: VERIFY CONNECTIVITY ******
Start Time: Thu Apr 7 04:24:35 2022
Design Name: fifo
Database Units: 2000
Design Boundary: (0.0000, 0.0000) (62.6000, 59.6000)
Error Limit = 1000; Warning Limit = 50
Check all nets
Begin Summary
 Found no problems or warnings.
End Summary
End Time: Thu Apr 7 04:24:35 2022
Time Elapsed: 0:00:00.0
****** End: VERIFY CONNECTIVITY ******
 Verification Complete: 0 Viols. 0 Wrngs.
 (CPU Time: 0:00:00.0 MEM: 0.000M)
innovus 6>
```

Figure: Verify Connectivity Logfile Snippet

d. **Verify LVS:** The Spectre tool license availability is an issue. Hence LVS cannot be checked.

4. Final Layout:

The final Layout appears as below:

Figure: Final Layout

5. **Summary and Conclusion:**

- a. The complete RTL to GDSII workflow till the final nanoroute state has been performed.
- b. All the timing violations have been cleaned up.
- c. The DRC, Connectivity and Geometry checks have been performed and there is no violation therein.