

A SAT-Based Approach For PSPACE Modal Logics

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and Valentin Montmirail

CRIL, Université d'Artois and CNRS, France

{lagniez, leberre, delima, montmirail}@cril.fr

MOTIVATION AND CONTRIBUTIONS

- Modal Logic K* Satisfiability Problems are PSPACE complete.
- MoSaiC already deal with modal logic K, but how to extend it to other modal logics?
- Contribution: MoSaiC is able to deal with many different modal logics.

SAT TRANSLATION

From Modal Logic to Propositional Logic

$$\operatorname{over}(\phi, n) = \operatorname{over}'(\operatorname{nnf}(\phi), 0, n)$$

$$\operatorname{over}'(p, i, n) = p_i \quad \operatorname{over}'(\neg p, i, n) = \neg p_i$$

$$\operatorname{over}'(\phi \land \psi, i, n) = \operatorname{over}'(\phi, i, n) \land \operatorname{over}'(\psi, i, n)$$

$$\operatorname{over}'(\phi \lor \psi), i, n) = \operatorname{over}'(\phi, i, n) \lor \operatorname{over}'(\psi, i, n)$$

$$\operatorname{over}'(\Box_a \phi, i, n) = \bigwedge_{j=0}^n (r_{i,j}^a \to \operatorname{over}'(\phi, j, n))$$

$$\operatorname{over}'(\diamondsuit_a \phi, i, n) = \bigvee_{j=0}^n (r_{i,j}^a \land \operatorname{over}'(\phi, j, n))$$

Translation of Axioms

$$\operatorname{over}((T), n) = \bigwedge_{a=0}^{m} \bigwedge_{i=0}^{n} (r_{i,i}^{a}) \quad \operatorname{over}((D), n) = \bigwedge_{a=0}^{m} \bigwedge_{i=0}^{n} \bigvee_{j=0}^{n} (r_{i,j}^{a}) \\
\operatorname{over}((B), n) = \bigwedge_{a=0}^{m} \bigwedge_{i=0}^{n} \bigwedge_{j=0}^{n} (r_{i,j}^{a} \to r_{j,i}^{a}) \\
\operatorname{over}((4), n) = \bigwedge_{a=0}^{m} \bigwedge_{i=0}^{n} \bigwedge_{j=0}^{n} \bigwedge_{k=0}^{n} ((r_{i,j}^{a} \wedge r_{j,k}^{a}) \to r_{i,k}^{a}) \\
\operatorname{over}((5), n) = \bigwedge_{a=0}^{m} \bigwedge_{i=0}^{n} \bigwedge_{j=0}^{n} \bigwedge_{k=0}^{n} ((r_{i,j}^{a} \wedge r_{i,k}^{a}) \to r_{j,k}^{a})$$

Experimental results: MoSaiC against state-of-the-art solvers

Solver #Instances	LWB $_K$ SAT 504	LWB $_K$ UNSAT 504	Total _K 1008	$\begin{array}{c c} \textbf{LWB}_{KT} \textbf{SAT} \\ 504 \end{array}$	LWB $_{KT}$ UNSAT 504	${f Total}_{KT} \ 1008$	LWB $_{S4}$ SAT 504	LWB $_{S4}$ UNSAT 504	$Total_{S4}$ 1008
Moloss	71 (0)	83 (0)	154 (0)	68 (0)	170 (0)	238 (0)	269 (0)	203 (0)	472 (0)
InKreSAT	192 (24)	247 (0)	439 (24)	155 (9)	193 (0)	348 (9)	248 (0)	304 (0)	552 (0)
BDDTab	248 (5)	277 (4)	525 (9)	_		_	211 (0)	270 (0)	481 (0)
FaCT++	264 (10)	284 (19)	548 (29)	184 (30)	226 (59)	410 (89)	298 (42)	338 (25)	636 (67)
MoSaiC	263 (241)	306 (198)	569 (439)	230 (251)	222 (253)	452 (504)	277 (229)	225 (277)	502 (506)
K _S P	249 (4)	328 (3)	577 (7)	130 (2)	93 (0)	223 (2)	223 (0)	205 (0)	428 (0)
Spartacus	331 (33)	320 (10)	651 (43)	207 (74)	251 (59)	458 (133)	273 (17)	350 (13)	623 (30)
VBS	340	328	668	230	251	481	277	352	629

EXPERIMENTAL SETTINGS

Tested on the LWB benchmarks for modal logic K, KT, and S4
Against many SOTA solvers for modal logic satisfiability problems
CentOS 6.0, bi-proc. XEON, 4 cores, 3.3 GHz, 32GB, 900 seconds.

CONCLUSION AND FUTURE WORK

- * MoSaiC is generic and able to deal with modal logic axioms
- * MoSaiC is competitive in K and KT.
- Improve ${
 m MoSaiC}$ to make it the most efficient approach