Readme

The VTK version installed is 9.1.0

Prequirements

1. Python3.9

Setup Environment

The following commands are based on Windows 10.

- 1. Clone the project. git clone https://github.com/ziyunxiao/mm804_assignment2.git
- 2. cd project folder cd mm804_assignment2
- 3. Create virtual environment Python -m venv .venv
- 4. Activate virtual environment . .venv/bin/
- 5. Upgrade pip install --upgrade pip
- 6. Install required library pip install -r requirements.txt

Run the code

- 1. run python mm804_assignmet2.ipynb .
- 2. You can then use mouse to rotate the model and watch it from different angle.
- 3. You can zoom in and out with the mouse middle wheel.
- 4. You need close the popup window in order to end the program.

View the report

please read mm804_assignmet2.pdf or from the output of mm804_assignmet2.ipynb

2/14/22, 3:52 PM mm804 assignmet2

1. detail info about the model

The model is dolphin, from Microsoft Pain3d free library.

The file name is dolphin.stl.

The file size is 776,584 bytes

Number Of Points: 7767 Number Of Cells: 15530

2. Information of each part

Original Data: Nubmer of Cells:15530 Number of Points 7767 clipped data: Nubmer of Cells:6658 Number of Points 7889 Rest Data: Nubmer of Cells:9116 Number of Points 7889

3. Screenshots

2/14/22, 3:52 PM mm804_assignmet2

4. Source code

The source is under this section.

In []:

```
## Install vtk

# Install VTK to virtual environment as needed

# windows
! pip install https://www.vtk.org/files/release/9.1/vtk-9.1.0-cp39-cp39-win_amd64.whl

# Linux
# ! pip install https://www.vtk.org/files/release/9.1/vtk-9.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.wh
```

```
Collecting vtk==9.1.0
  Using cached https://www.vtk.org/files/release/9.1/vtk-9.1.0-cp39-cp39-win amd64.whl (44.7 MB)
Requirement already satisfied: matplotlib>=2.0.0 in c:\java\python39\lib\site-packages (from vtk==9.1.0) (3.5.1)
Requirement already satisfied: wslink>=1.0.4 in c:\java\python39\lib\site-packages (from vtk==9.1.0) (1.3.1)
Requirement already satisfied: numpy>=1.17 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.1.0)
(1.22.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.
1.0) (4.28.5)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.
1.0) (1.3.2)
Requirement already satisfied: pyparsing>=2.2.1 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.
1.0) (3.0.6)
Requirement already satisfied: pillow>=6.2.0 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.1.0)
(9.0.0)
Requirement already satisfied: packaging>=20.0 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.1.
0) (21.3)
Requirement already satisfied: cycler>=0.10 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk==9.1.0)
(0.11.0)
Requirement already satisfied: python-dateutil>=2.7 in c:\java\python39\lib\site-packages (from matplotlib>=2.0.0->vtk=
=9.1.0) (2.8.2)
Requirement already satisfied: aiohttp in c:\java\python39\lib\site-packages (from wslink>=1.0.4->vtk==9.1.0) (3.8.1)
Requirement already satisfied: six>=1.5 in c:\java\python39\lib\site-packages (from python-dateutil>=2.7->matplotlib>=
2.0.0->vtk==9.1.0) (1.16.0)
Requirement already satisfied: charset-normalizer<3.0,>=2.0 in c:\java\python39\lib\site-packages (from aiohttp->wslink
>=1.0.4->vtk==9.1.0) (2.0.10)
Requirement already satisfied: multidict<7.0,>=4.5 in c:\java\python39\lib\site-packages (from aiohttp->wslink>=1.0.4->
vtk==9.1.0) (5.2.0)
Requirement already satisfied: aiosignal>=1.1.2 in c:\java\python39\lib\site-packages (from aiohttp->wslink>=1.0.4->vtk
==9.1.0) (1.2.0)
Requirement already satisfied: attrs>=17.3.0 in c:\java\python39\lib\site-packages (from aiohttp->wslink>=1.0.4->vtk==
9.1.0) (21.4.0)
Requirement already satisfied: frozenlist>=1.1.1 in c:\java\python39\lib\site-packages (from aiohttp->wslink>=1.0.4->vt
k=9.1.0) (1.2.0)
Requirement already satisfied: yarl<2.0,>=1.0 in c:\java\python39\lib\site-packages (from aiohttp->wslink>=1.0.4->vtk==
9.1.0) (1.7.2)
Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in c:\java\python39\lib\site-packages (from aiohttp->wslink>
=1.0.4 - vtk = 9.1.0) (4.0.2)
Requirement already satisfied: idna>=2.0 in c:\java\python39\lib\site-packages (from yarl<2.0,>=1.0->aiohttp->wslink>=
1.0.4 - vtk = 9.1.0) (3.3)
import vtk
import sys
 print(f"Python Version: {sys.version}")
```

print(vtk.vtkVersion().GetVTKSourceVersion())

In []:

Python Version: 3.9.9 (tags/v3.9.9:ccb0e6a, Nov 15 2021, 18:08:50) [MSC v.1929 64 bit (AMD64)] vtk version 9.1.0

```
In [ ]:
         ## Code for assginment2
         from matplotlib.pyplot import plot date
         import numpy as np
         import vtk
         from vtk.util.colors import brown ochre, tomato, banana
         from vtkmodules.vtkInteractionStyle import vtkInteractorStyleTrackballCamera
         # 1. Read model
         reader = vtk.vtkSTLReader()
         reader.SetFileName("dolphin.stl")
         reader.Update()
         poly_data = reader.GetOutput()
         normals = vtk.vtkPolyDataNormals()
         # normals.SetInputConnection(reader.GetOutputPort())
         normals.AddInputData(poly data)
         # 2. set Plane center to model center
         center = poly data.GetCenter()
         plane = vtk.vtkPlane()
         # plane.SetOrigin(0, 0, 0)
         plane.SetOrigin(center)
         plane.SetNormal(-1, 0, 0.2)
         clipper = vtk.vtkClipPolyData()
         clipper.SetInputConnection(normals.GetOutputPort())
         clipper.SetClipFunction(plane)
         clipper.GenerateClipScalarsOn()
         clipper.GenerateClippedOutputOn()
         # 3. set clipper value
         clipper.SetValue(0)
         clipMapper = vtk.vtkPolyDataMapper()
         clip data = clipper.GetOutput()
         clipMapper.SetInputData(clip data)
         clipMapper.SetInputConnection(clipper.GetOutputPort())
```

```
clipMapper.ScalarVisibilityOff()
backProp = vtk.vtkProperty()
backProp.SetDiffuseColor(tomato)
clipActor = vtk.vtkActor()
clipActor.SetMapper(clipMapper)
clipActor.GetProperty().SetColor(brown ochre)
clipActor.SetBackfaceProperty(backProp)
# 4 cutter
cutEdges = vtk.vtkCutter()
cutEdges.SetInputConnection(normals.GetOutputPort())
cutEdges.SetCutFunction(plane)
cutEdges.GenerateCutScalarsOn()
cutEdges.SetValue(0, 0)
cutStrips = vtk.vtkStripper()
cutStrips.SetInputConnection(cutEdges.GetOutputPort())
cutStrips.Update()
cutPoly = vtk.vtkPolyData()
cutPoly.SetPoints(cutStrips.GetOutput().GetPoints())
cutPoly.SetPolys(cutStrips.GetOutput().GetLines())
cutTriangles = vtk.vtkTriangleFilter()
cutTriangles.SetInputData(cutPoly)
cutMapper = vtk.vtkPolyDataMapper()
cutMapper.SetInputData(cutPoly)
cutMapper.SetInputConnection(cutTriangles.GetOutputPort())
cutActor = vtk.vtkActor()
cutActor.SetMapper(cutMapper)
cutActor.GetProperty().SetColor(banana)
cutActor.VisibilityOn()
restMapper = vtk.vtkPolyDataMapper()
rest data = clipper.GetClippedOutput()
# restMapper.SetInputData(rest data)
restMapper.SetInputData(clipper.GetClippedOutput())
restMapper.ScalarVisibilityOff()
restActor = vtk.vtkActor()
restActor.SetMapper(restMapper)
restActor.GetProperty().SetRepresentationToWireframe()
#create renderers and add actors of plane and cube
```

file:///C:/Java/uofa/mm804 assignment2/mm804 assignmet2.html

```
ren = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
renWin.SetSize(800, 600)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
style = vtkInteractorStyleTrackballCamera()
iren.SetInteractorStyle(style)
# 5. display plane
#Sample the plane
sampler = vtk.vtkSampleFunction()
sampler.SetImplicitFunction(plane)
#Set the bounds to be slightly larger
meshBounds = poly_data.GetBounds()
planeBounds = [0, 0, 0, 0, 0, 0]
for i in range(0,3):
    length = 1.2*(meshBounds[2*i+1] - center[i])
    planeBounds[2*i] = center[i] - length
    planeBounds[2*i+1] = center[i] + length
sampler.SetModelBounds(planeBounds)
sampler.ComputeNormalsOff()
sampler.Update()
#Extract the isosurface at 0
contour = vtk.vtkContourFilter()
contour.SetInputData(sampler.GetOutput())
contour.SetValue(0,0.)
contour.Update()
planeMapper = vtk.vtkPolyDataMapper()
planeMapper.SetInputConnection(contour.GetOutputPort())
planeActor = vtk.vtkActor()
planeActor.SetMapper(planeMapper)
planeActor.GetProperty().SetColor(banana)
planeActor.VisibilityOn()
# display data
ren.AddActor(clipActor)
ren.AddActor(cutActor)
```

```
ren.AddActor(restActor)
ren.AddActor(planeActor)

iren.Initialize()
renWin.Render()

# output data
n1 = poly_data.GetNumberOfCells()
n2 = poly_data.GetNumberOfPoints()
print(f"Original Data: Nubmer of Cells:{n1} Number of Points {n2}")

n3 = clip_data.GetNumberOfCells()
n4 = clip_data.GetNumberOfPoints()
print(f"clipped data: Nubmer of Cells:{n3} Number of Points {n4}")

n5 = rest_data.GetNumberOfCells()
n6 = rest_data.GetNumberOfCells()
print(f"Rest Data: Nubmer of Cells:{n5} Number of Points {n6}")

iren.Start()
```

Original Data: Nubmer of Cells:15530 Number of Points 7767 clipped data: Nubmer of Cells:6673 Number of Points 7890 Rest Data: Nubmer of Cells:9103 Number of Points 7890