

# Statistische Modellierung III -Exponentialfamilien-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020



# **Definition von Exponentialfamilien**



#### Definition von Exponentialfamilien

#### **Definition - Exponentialfamilien**

Sei Y eine Zufallsvariable mit Werten in  $\mathbb{T} \subseteq \mathbb{R}$ , d.h.  $\mathbb{T}$  ist der Träger der Verteilungen von Y. Eine Exponentialfamilie ist eine Familie von Dichten bzw.

Wahrscheinlichkeitsfunktionen von Y mit der Gestalt

$$f(Y|\theta,\phi,\omega) = \exp\left\{\frac{Y\theta - b(\theta)}{\phi}\omega - c(Y,\phi,\omega)\right\},$$

wobei  $\omega \geq 0$  ein (uns bekanntes) **Gewicht**,  $\theta \in \Theta$  der (uns unbekannte) **kanonische** (oder natürliche) **Parameter**,  $\phi > 0$  der **Dispersionsparameter** (manchmal bekannt und gleich 1) und  $b:\Theta\mapsto \mathbb{R}$  eine mindestens dreimal stetig differenzierbare Funktion mit  $b''(\theta)>0$  für alle  $\theta\in\Theta$  ist.

Man beachte, dass die erste Ableitung b' stetig und streng wachsend ist



## **Definition von Exponentialfamilien**

#### Weitere Annahmen:

- b ist streng monoton wachsend
- $c: \mathbb{T} \times \mathbb{R} \mapsto \mathbb{R}$  sei messbar und im zweiten Argument zweimal stetig differenzierbar



#### **Exponentialfamilen - Bemerkungen**

- Man kann zeigen, dass  $E(Y) = \mu = b'(\theta)$  und  $Var(Y) = \phi b''(\theta)/\omega$
- Es ist  $\log f(Y|\theta,\phi,\omega) = \frac{Y\theta b(\theta)}{\phi}\omega c(Y,\phi,\omega)$
- Bei Daten von Einzelbeobachtungen ist typischerweise  $\omega=1$ ; bei gruppierten Daten ist  $\omega$  in der Regel gleich der Fallzahl in der Gruppe
- Die Funktion  $b:\Theta\longrightarrow\mathbb{R}$  bestimmt (über b') den Erwartungswert und (über b'') die Varianz von Y
- Der Dispersionsparameter bestimmt nur die Varianz von Y. Bei einigen Verteilungen (z.B. Binomialverteilung) ist  $\phi = 1$  bekannt



#### Exponentialfamilen - weitere Bemerkungen

- Beim GLM wird  $\mu$  und damit  $\theta$  mit unabhängigen Variablen  ${\bf x}$  verknüpft,  $\phi$  allerdings nicht
- $\phi$  ist damit nur von sekundärer Bedeutung und wird als "Störparameter" ("nuissance parameter") bezeichnet. Es wird zur Bestimmung von Var(Y) benötigt
- Da b' monoton wachsend ist, können wir den natürlichen Parameter  $\theta$  als Funktion des Erwartungswertes  $\mu$  schreiben:

$$\theta = \theta(\mu) = (b')^{-1}(\mu).$$

• Verwendet man  $\theta$  als linearen Prädiktor ( $\theta = \mathbf{x}_i \beta$ ), dann ist  $g = (b')^{-1}$  die Linkfunktion; sie wird als "natürlicher Link" bezeichnet



Varianzfunktion



#### Varianzfunktion

• Mit  $\theta = \theta(\mu) = (b')^{-1}(\mu)$  erhalten wir

$$f(Y|\mu,\phi,\omega) = \exp\left\{\frac{Y\theta(\mu) - b(\theta(\mu))}{\phi}\omega - c(Y,\phi,\omega)\right\},$$

also eine Parametrisierung in  $\mu$ 

• Für die Varianz gilt damit

$$Var(Y) = \phi \ v(\mu)/\omega \quad \text{mit} \quad v(\mu) = b''[\theta(\mu)] = b''[(b')^{-1}(\mu)]$$

• Man nennt v die "Varianzfunktion" der Exponentialfamilie. Sie ist bekannt.



#### Varianzfunktion - Eigenschaften

- Benötigen später (bei der Bestimmung der MLEs) die Ableitung der Funktion  $\theta(\mu)$  nach  $\mu$
- Es gilt

$$\frac{\partial \theta(\mu)}{\partial \mu} = \frac{\partial}{\partial \mu} (b')^{-1}(\mu) = 1/b''[(b')^{-1}(\mu)] = 1/\nu(\mu)$$

Zudem folgt aus der vorigen Folie

$$\phi = \frac{Var(Y)}{v(\mu)}\omega = E[\omega(Y - \mu)^2/v(\mu)]$$

 Man kann zeigen, dass die Exponentialfamilie eindeutig über die Varianzfunktion festgelegt ist



# Beispiele für Exponentialfamilien



#### Bernoulli-Verteilung

• Die Bernoulli-Verteilung hat die Wahrscheinlichkeiten

$$f(y|\pi) = P(Y = y) = \pi^{y}(1 - \pi)^{1-y},$$

wobei  $y \in \{0,1\} = \mathbb{T}$  das Ergebnis des Experiments (1 steht für "Erfolg" und 0 für "Misserfolg") und  $0 < \pi < 1$  die Erfolgswahrscheinlichkeit ist

Damit haben wir

$$\log\{f(y|\pi)\} = y \log \pi + (1-y) \log(1-\pi) = y \log \frac{\pi}{1-\pi} + \log(1-\pi)$$
  
=  $y \theta - \log(1+e^{\theta})$ ,

weil 
$$\log(1 - \pi) = \log(\frac{1}{1 + e^{\theta}}) = -\log(1 + e^{\theta})$$





#### Bernoulli-Verteilung

- Also  $f(y|\pi) = \exp\left\{y\,\theta \log(1+e^{ heta})\right\} = \exp\left\{rac{y\,\theta \log(1+e^{ heta})}{1}\cdot 1 0\right\}$
- Die Bernoulli-Verteilung bildet somit eine Exponentialfamilie mit  $\theta = \log \frac{\pi}{1-\pi}$  als kanonischen Parameter,  $\phi = \omega = 1$ ,  $b(\theta) = \log(1+e^{\theta})$  und  $c(y,\phi,\omega) = 0$
- Es ergeben sich die bekannten Momente

$$E(Y) = b'( heta) = rac{e^{ heta}}{1+e^{ heta}} = \pi$$

und

$$Var(Y) = b''( heta) = rac{e^{ heta}(1+e^{ heta})-e^{2 heta}}{(1+e^{ heta})^2} = rac{e^{ heta}}{1+e^{ heta}}rac{1}{1+e^{ heta}} = \pi(1-\pi)$$

• Für die Varianzfunktion gilt  $v(\pi) = Var(Y) = \pi(1 - \pi)$ , weil  $Var(Y) = \phi v(\mu)/\omega$  und  $\phi = \omega = 1$ .



## Weitere Beispiele

| Verteilung                 | $\theta$            | $b(\theta)$          | $\phi$     | $\omega$ | $-c(Y,\phi,\omega)$                               |
|----------------------------|---------------------|----------------------|------------|----------|---------------------------------------------------|
| $B(n,\pi)/n$               | $\log(\pi/(1-\pi))$ | $\log(1+e^{	heta})$  | 1          | n        | $\log \binom{n}{y}$                               |
| $NB(n,\pi)/n$              | $\log(1-\pi)$       | $-\log(1-e^{	heta})$ | 1          | n        | $\log {y+n-1 \choose y}$                          |
| $Pois(\lambda)$            | $\log(\lambda)$     | $e^{	heta}$          | 1          | 1        | $-\log(y!)$                                       |
| $N(\mu,\sigma^2)$          | $\mu$               | $\theta^2/2$         | $\sigma^2$ | 1        | $-y^2/(2\sigma^2) - 1/2\log(2\pi\sigma^2)$        |
| $\mathit{Gam}( u,\lambda)$ | $-\lambda/\nu$      | $-\log(-	heta)$      | 1/ u       | 1        | $ u \log  u + ( u - 1) \log y - \log \Gamma( u) $ |

Beispiele für Exponentialfamilien