

Chương I: Đại số logic

1.1. Logic mệnh đề

- 1.1.1. Khái niệm mệnh đề
- 1.1.2. Các phép toán logic và bit
- 1.1.3. Tương đương logic

1.2. Logic vị từ

- 1.2.1. Hàm mệnh đề
- 1.2.2. lượng từ

1.3. Các phương pháp suy luận toán học

- 1.3.1. Các quy tắc suy luận
- 1.3.2. Các phương pháp chứng minh định lý
- 1.3.3. Tính đúng đắn của chương trình

Nội dung bài học:

1.1. Logic mệnh đề

- 1.1.1. Khái niệm mệnh đề
- 1.1.2. Các phép toán logic và bit
- 1.1.3. Tương đương logic

1.1.1 Khái niệm mệnh đề

Khái niệm

Mệnh đề là câu khẳng định hoặc đúng hoặc sai chứ không có thể vừa đúng vừa sai

```
Mệnh đề đúng (T): * "Hà Nội là thủ đô của Việt Nam" 
* "1+1=2"
```

Mệnh đề sai (F): * "Băng Cốc là thủ đô của Lào" * "2+2=3"

Không phải mệnh đề:

- Bây giờ là mấy giờ?
- Hãy đọc bài này cho kỹ!
- -x+1=2
- X+Y=Z

* Phép toán "Phủ định":

Giả sử P là một mệnh đề.

Câu nói: "Không phải P" là một mệnh đề phủ định của P

Ký hiệu: phủ định của mệnh đề P là \overline{P} (hoặc $\neg P$)

Bảng chân lý:

Р	\overline{P}
Т	F
F	Т

Ví dụ:

P="Hôm nay là thứ Tư"

P="Hôm nay không phải là thứ Tư

* Phép toán "Và" (Hội):.

Giả sử P và Q là hai mệnh đề

Mệnh đề "P và Q" được ký hiệu P∧Q (còn được gọi là hội của P và Q) đúng khi cả hai đều đúng, sai trong các trường hợp khác

Bảng chân lý:

Р	Q	P \ Q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Ví dụ:

p: "Hôm nay là thứ Tư"

q: "Hôm nay trời mưa"

p∧q: "Hôm nay là thứ Tư và trời mưa"

* Phép toán "**Hoặc**"(Tuyển):

Giả sử P và Q là hai mệnh đề.

Mệnh đề "P hoặc Q" được ký hiệu PvQ (còn gọi là tuyển của P và Q) sai khi cả hai đều sai, đúng trong các trường hợp còn lại.

Bảng chân lý:

Ví dụ:

P="Hôm nay là thứ 6"

Q="Hôm nay trời mưa"

Р	Q	PvQ
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

PvQ: "Hôm nay là thứ 6 hoặc trời mưa"

* Phép toán "Hoặc phủ định" (Tuyển chọn):

Giả sử P và Q là hai mệnh đề.

Mệnh đề "P tuyển loại Q" ký hiệu P⊕Q đúng khi P, Q có giá trị khác nhau, sai trong các trường hợp còn lại

Bảng chân lý:

Р	Q	P⊕Q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

* Phép toán "**Kéo theo**":

Giả sử p và q là hai mệnh đề

Mệnh đề p kéo theo q được ký hiệu p→q sai khi p là T, q là F, đúng trong các trường hợp còn lại

Bảng chân lý:

Chú ý: Trong suy luận toán học sử dụng nhiều thuật ngữ diễn đạt kéo theo

- Nếu P thì Q
- P kéo theo Q
- Q được suy ra từ P
- P là điều kiện đủ của Q
- Q là điều kiện cần của P

Р	Q	P →Q
T	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Ví dụ:

- "nếu hôm nay là thứ 6 thì 2+3=5".
 - Mệnh đề là T (đúng) vì kết luận luôn T
- "nếu hôm nay là thứ 6 thì 2+3=6".
 - Mệnh đề là T trừ hôm nay đúng là ngày thứ 6
- Trong ngôn ngữ lập trình chứa các câu lệnh nếu P thì Q:

if P then Q

với P là *mệnh đề*, Q là *các câu lệnh*

Ví dụ:

Xác định giá trị của mệnh đề sau:

if (2+2=4) then x:=x+1

nếu trước câu lệnh x:=0

Р	Q	P →Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

* Phép toán "Tương đương"

Cho P và Q là hai mệnh đề.

Mệnh đề tương đương của P và Q ký hiệu P↔Q chỉ đúng khi P và Q có cùng giá trị chân lý và sai trong trường hợp còn lại.

Bảng chân lý

Một số cách diễn đạt khác:

- "P nếu và chỉ nếu Q"
- "P là cần và đủ đối với Q"
- "nếu P thì Q và ngược lại"

Р	Q	P↔Q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

1.1.2. Các phép toán logic và bit

- -Binary digit (Bit) số nhị phân. Dùng số 0 và 1
- -Bit dùng biểu diễn chân lý vì chân lý có hai giá trị T (true) và F (false), người ta dùng bit 1 biểu diễn giá trị T, bít 0 biểu diễn giá trị F
- -Phép toán bit trong máy tính sẽ thay giá trị logic T bằng 1, F bằng 0 trong bảng giá trị chân lý. Với các toán tử thì sử dụng ký hiệu AND, OR, XOR, NOT thay cho ∧, ∨, ⊕, ¬
- Thông tin thường biểu diễn bởi các xâu bit đó là dãy 0-1

1.1.3 Tương đương logic

Định nghĩa 1

- Một mệnh đề phức hợp mà luôn luôn đúng bất kế các giá trị chân lý của các mệnh đề thành phần của nó gọi là hằng đúng.
- Một mệnh đề phức hợp mà luôn luôn sai bất kế các giá trị chân lý của các mệnh đề thành phần của nó gọi là mâu thuẫn
- Một mệnh đề không phải hằng đúng cũng không phải mâu thuẫn thì gọi là tiếp liên

Ví dụ:

- $P \vee \overline{P}$: Là hằng đúng

- P∧P: Là mâu thuẫn

Р	P	$P \vee \overline{P}$	$P \wedge \overline{P}$
Т	F	Т	F
F	Т	Т	F

Định nghĩa 2

Các mệnh đề phức hợp luôn có cùng giá trị chân lý được gọi là tương đương logic

Ký hiệu: P⇔Q

Ví dụ 1:

Chứng minh: $\overline{P} \lor \overline{Q}$ và $\overline{P} \land \overline{Q}$ là tương đương logic

Р	Q	P∨Q	$\overline{P \lor Q}$	P	$\overline{\mathbf{Q}}$	$\overline{P} \wedge \overline{Q}$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

Bảng tương đương logic

Một số tương đương tiện ích

- 1. $P \vee \overline{P} \Leftrightarrow T$
- 2. $P \wedge \overline{P} \Leftrightarrow F$
- 3. $P \rightarrow Q \Leftrightarrow \overline{P} \vee Q$

STT	Tương đương	Tên gọi
1	P∨F ⇔ P P∧T ⇔ P	Luật đồng nhất
2	P∨T ⇔ T P∧F ⇔ F	Luật nuốt
3	$ \begin{array}{c} P \lor P \Leftrightarrow P \\ P \land P \Leftrightarrow P \end{array} $	Luật luỹ đẳng
4	$\overline{\overline{P}} \Leftrightarrow P$	Luật phủ định kép
5	$\begin{array}{c} P \mathord{\vee} Q \Leftrightarrow Q \mathord{\vee} P \\ P \mathord{\wedge} Q \Leftrightarrow Q \mathord{\wedge} P \end{array}$	Luật giao hoán
6	$(P\lor Q)\lor R \Leftrightarrow P\lor (Q\lor R)$ $(P\land Q)\land R \Leftrightarrow P\land (Q\land R)$	Luật kết hợp
7	$\begin{array}{c} P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R) \\ P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R) \end{array}$	Luật phân phối
8	$ \overline{\overline{P} \lor Q} \Leftrightarrow \overline{P} \land \overline{Q} \overline{P} \land Q \Leftrightarrow \overline{P} \lor \overline{Q} $	Luật DeMorgan

Ví dụ:

Chứng minh hằng đúng

$$(p \land q) \rightarrow (p \lor q)$$

Cách 1: Sử dụng bảng chân lý

Cách 2: Dùng bảng các tương đương logic

Р	Q	P∧Q	P√Q	$P \land Q \rightarrow P \lor Q$
1	1	1	1	1
1	0	0	1	1
0	1	0	1	1
0	0	0	0	1

Cách 2: Dùng bảng các tương đương logic

$$(p \land q) \rightarrow (p \lor q)$$
 (*)

Một số tương đương tiện ích

- 1. $P \vee \overline{P} \Leftrightarrow T$
- 2. $P \wedge P \Leftrightarrow F$
- 3. $P \rightarrow Q \Leftrightarrow \overline{P} \lor Q$

Sử dụng tiện ích 3: (*)
$$\Leftrightarrow$$
 $(\overline{p} \wedge \overline{q}) \vee (p \vee q)$ (**)

Sử dụng luật DeMorgan: (**)
$$\Leftrightarrow$$
 $(\overline{p} \vee \overline{q}) \vee (p \vee q)$ (***)

Sử dụng luật Giao hoán: (***)
$$\Leftrightarrow$$
 $(\overline{p} \lor p) \lor (\overline{q} \lor q)$ (****)

Sử dụng tiện ích 1: (****)
$$\Leftrightarrow$$
 $(\overline{p} \lor p) \lor (\overline{q} \lor q) \Leftrightarrow T \lor T$

Sử dụng Luật luỹ đẳng: T∨T ⇔ T

Bài tập

1. Chứng minh mệnh đề sau là mâu thuẫn:

$$((\overline{r \vee q) \wedge q} \vee \overline{p}) \wedge ((\overline{p} \vee \overline{q}) \rightarrow (p \wedge q \wedge r))$$

Trước hết có thể chứng minh kết quả sau (Luật hấp thụ) $(A \lor B) \land A) \Leftrightarrow A$ hoặc $(A \land B) \lor A) \Leftrightarrow A$

Α	В	A∨B	(A∨B)∧A
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	0

Α	В	A∧B	(A∧B)vA
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

Hướng dẫn

Để chứng mình $((r \lor q) \land q \lor \overline{p}) \land ((\overline{p} \lor \overline{q}) \rightarrow (p \land q \land r))$ là mâu thuẫr Ta đặt X= $(r \vee \overline{q}) \wedge \overline{q} \vee \overline{p}$ và Y= $((\overline{p} \vee \overline{q}) \rightarrow (p \wedge q \wedge r))$ Thì mênh đề đã cho có dạng X∧Y Biến đổi $X = (r \lor q) \land q \lor p$ $= ((\overline{r \vee q}) \vee \overline{q}) \vee \overline{p}$ Theo DeMorgan $= ((\overline{r} \wedge \overline{q}) \vee \overline{q}) \vee \overline{p}$ Theo DeMorgan $= \overline{q} \vee \overline{p}$ Theo nhận xét (A v B)∧A) ⇔ A $= \overline{p \wedge q} (*)$ Theo DeMorgan Biến đổi Y $= (\overline{p} \vee \overline{q}) \rightarrow (p \wedge q \wedge r)$ $= (\overline{p} \vee \overline{q}) \vee (p \wedge q \wedge r)$ Theo $P \rightarrow Q \Leftrightarrow \overline{P} \vee Q$

Từ (*) và (**) thì X ∧Y là mâu thuẫn

Bài tập

2. Chứng minh mệnh đề sau là mâu thuẫn :

$$\overline{p} \land (\overline{p} \land \overline{q}) \land \overline{p} \land \overline{r}) \land ((\overline{q} \rightarrow r) \lor \overline{q} \lor (r \land s) \lor (r \land \overline{s})) \land p)$$

Đặt
$$X = \overline{p} \wedge (\overline{p \wedge q}) \wedge p \wedge \overline{r})$$
 và $Y = (\overline{q} \rightarrow r) \vee q \vee (r \wedge s) \vee (r \wedge \overline{s}) \wedge p$

Thì mệnh đề đã cho có dạng X∧Y

Biến đổi X =
$$\overline{p} \wedge (\overline{p} \vee \overline{q}) \wedge (\overline{p} \vee r)$$
 Theo DeMorgan
= \overline{p} (*) Theo nhận xét (A v B) \wedge A) \Leftrightarrow A

Biến đổi Y =
$$\overline{p} \wedge (\overline{p} \vee \overline{q}) \wedge (\overline{p} \vee r)$$

= $p (**)$ Tương tự

Từ (*) và (**) thì X ∧Y là mâu thuẫn