PHẦN I: XÁC SUẤT

1. Biến cố ngẫu nhiên & xác suất của biến cố:

- 1.1. Công thức cộng xác suất:
 - 1.1.1. p(A+B)=p(A)+p(B) (2 biến cố xung khắc)
 - 1.1.2. $p(A+B)=p(A)+p(B)-p(A.B) \rightarrow p(A+B+C)=p(A)+p(B)+p(C)-$ [p(AB)+p(AC)+p(BC)]+p(ABC)
- 1.2. Công thức nhân xác suất:
 - 1.2.1. p(A.B)=p(A).p(B) (2 biến cố độc lập)
 - 1.2.2. $p(A.B)=p(A).p(B/A) \rightarrow p(A_1A_2...A_n) = p(A_1).p(A_2/A_1)...p(A_n/A_1A_2...A_{n-1})$
- 1.3. Công thức Bernoulli: cho 2 biến cố A và \overline{A}

1.3.1.
$$p_n(x) = C_n^x p^x q^{n-x}$$
, p=p(A), q=1-p

1.4. Công thức xác suất đầy đủ:

$$p(F) = p(A_1).p(F/A_1) + p(A_2).p(F/A_2) + ... + p(A_n).p(F/A_n)$$

1.5. Công thức Bayes:
$$p(A_i / F) = \frac{p(A_i . F)}{p(F)} = \frac{p(A_i) . p(F / A_i)}{p(F)}$$

2. Biến ngẫu nhiên:

- **2.1.** Bảng phân phối xác suất (biến ngẫu nhiên rời rac)
- **2.2.** Hàm mật độ xác suất (f(x)) (biễn ngẫu nhiên liên tục)

2.2.1.
$$f(x) \ge 0$$

2.2.2.
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

2.2.2.
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
2.2.3.
$$p(a \le x \le b) = \int_{a}^{b} f(x)dx$$

2.3. Hàm phân phối xác suất (F(x)) (dùng cho cả 2 loại biến-thường là biến ngẫu nhiên liên tuc)

2.3.1.
$$F(x) = p(F < x)$$

2.3.2.
$$F'(x) = f(x)$$

2.3.3.
$$F(x) = \int_{-\infty}^{x} f(t)dt$$

2.4.Kỳ vong

2.4.1.
$$E(x) = x_1 p_1 + x_2 p_2 + ... + x_n p_n$$
 (từ bảng phân phối xác suất)

2.4.2.
$$E(x) = \int_{-\infty}^{+\infty} x f(x) dx$$

2.5.Phương sai:

2.5.1.
$$V(x) = E(x^2) - [E(x)]^2$$

2.5.2.
$$V(x) = \int_{-\infty}^{+\infty} x^2 f(x) dx - [\int_{-\infty}^{+\infty} x f(x) dx]^2$$

3. Một số phân phối xác suất thông dụng:

3.1.Phân phối chuẩn tổng quát: $X \sim N(\mu; \sigma^2)$

3.1.1.
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

3.1.2.
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

3.1.3.
$$ModX = MedX = \mu$$
; $E(x) = \mu$, $V(x) = \sigma^2$

3.1.4.
$$p(a \le x \le b) = \varphi(\frac{b-\mu}{\sigma}) - \varphi(\frac{a-\varphi}{\sigma})$$

3.1.5. Phân phối chuẩn tắc
$$\mu = 0, \sigma^2 = 1$$

3.1.5.1.
$$T \sim N(0,1)$$

3.1.5.2.
$$f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

3.1.5.3. Đổi biến
$$T = \frac{X - \mu}{\sigma}$$

3.1.5.4.
$$p(a \le x \le b) = \varphi(b) - \varphi(a)$$

3.2. Phân phối Poisson: $X \sim P(\lambda), \lambda > 0$

3.2.1.
$$p(\lambda = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

3.2.2.
$$E(x) = V(x) = \lambda$$

3.3.*Phân phối nhị thức:* $X \sim B(n, p)$

3.3.1.
$$p(X = k) = p_n(k) = C_n^k p^k q^{n-k}, p+q=1$$

3.3.2.
$$\sum_{k=0}^{n} p(X=k) = 1$$

3.3.3.
$$E(x) = np$$
, $ModX = x_0, np - q \le x_0 \le np + q$

3.3.4. Khi n=1:
$$X \sim B(1, p)$$
:phân phối không-một

3.3.4.1.
$$E(x) = p, E(x^2) = p, V(x) = pq$$

3.3.5. Xấp xỉ phân phối nhị thức:

3.3.5.1. Bằng phân phối Poisson:
$$n > 50$$
, $p < 0.1$; $X \sim B(n, p) \approx X \sim P(\lambda)$, $\lambda = np$.

$$p(x=k) = C_n^k p^k q^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

3.3.5.2. Bằng phân phối chuẩn:

$$np \ge 0.5, nq \ge 0.5, \mu = np, \sigma = \sqrt{npq} \cdot X \sim B(n, p) \approx X \sim N(np, npq)$$
$$p(x = k) = \frac{1}{\sigma} f(\frac{k - \mu}{\sigma}); p(k_1 < X < k_2) = \varphi(\frac{k_2 - \mu}{\sigma}) - \varphi(\frac{k_1 - \mu}{\sigma})$$

3.4. *Phân phối siêu bội:* $X \sim H(N, N_A, n)$ [N:tổng số phần tử, N_A : Số phần tử có tính chất A trong N, n: số phần tử lấy ngẫu nhiên]. Goi X là số phần tử có tính chất A trong n.

$$p(X = k) = \frac{C_{N_A}^k . C_{N-N_A}^{n-k}}{C_{N}^n}$$

3.4.1.
$$E(X) = np, p = \frac{N_A}{N}; V(X) = npq. \frac{N-n}{N-1}, q = 1-p$$

3.4.2. Xấp xỉ phân phối siêu bội bằng phân phối nhị thức:

$$n \le 0.05N \Longrightarrow X \sim B(n, p)$$
; $p(X = k) = C_n^k p^k q^{n-k}$, $p = \frac{N_A}{N}$

- **3.5.**Biến ngẫu nhiên 2 chiều: X và Y độc lập $\Leftrightarrow P_{ij} = p(x_i).q(y_j)$ với mọi i,j
- 3.6. Hiệp phương sai và hệ số tương quan:
 - **3.6.1.** Hiệp phương sai(cov): cov(X,Y) = E(XY) E(X)E(Y)
 - **3.6.2.** Hệ số tương quan $\rho_{X,Y}$: $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)}$

PHẦN 2: THỐNG KÊ

- 1. Tổng thể và mẫu
 - 1.1. Thực hành tính toán trên mẫu:
 - 1.1.1. Tính trung bình $(\overline{X_n})$: $\overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - 1.1.2. Tính tỷ lệ mẫu: (f_n) ; $f_n = \frac{m_A}{n} (m_A : số phần tử mang tính chất A; n: kích thước mẫu)$
 - 1.1.3. Tính phương sai mẫu: $S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{k} n_i x_i^2 n(\overline{X})^2 \right]$
 - 1.2. Ước lượng tham số của tổng thể:
 - 1.2.1. Ước lượng điểm: $E(X_n) = \mu$, $E(f_n) = p$, $E(S^2) = \sigma^2$
 - 1.2.2. Ước lượng khoảng:
 - 1.2.2.1. Ước lượng khoảng cho trung bình: Với độ tin cậy 1- α cho trước, 1 mẫu kích thước n.

$n \ge 30, \sigma^2$ biết	$n \ge 30, \sigma^2$ chưa biết
\overline{X} , σ	\overline{X} ,s
$\mu_1 = \overline{X} - \varepsilon, \mu_2 = \overline{X} + \varepsilon$	$\mu_1 = \overline{X} - \varepsilon, \mu_2 = \overline{X} + \varepsilon$

$\varepsilon = u_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	$\varepsilon = u_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$
$(1-\alpha \to 0.5 - \frac{\alpha}{2} \to u_{\frac{\alpha}{2}})$	$(1-\alpha \to 0.5 - \frac{\alpha}{2} \to u_{\frac{\alpha}{2}})$
$n < 30, \sigma^2$ biết	$n < 30, \sigma^2$ chưa biết
Như TH1	\overline{X} ,s
	$\mu_1 = \overline{X} - \varepsilon, \mu_2 = \overline{X} + \varepsilon$
	$\varepsilon = t_{(n-1,\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}}$

1.2.2.2. Ước lượng khoảng cho tỷ lệ: tổng thể có tỷ lệ p chưa biết, với độ tin cậy $1-\alpha$ cho trước, với 1 mẫu kích thước n, tỷ lệ mẫu f_n . Tìm 2 số p_1, p_2 thoả:

$$p(p_1 \le p \le p_2) = 1 - \alpha$$
, $p_{1,2} = f_n \mp \varepsilon$ Công thức: $\varepsilon = u_{\frac{\alpha}{2}} \sqrt{\frac{f(1-f)}{n}}$

1.2.2.3. Ước lượng khoảng cho phương sai: Giả sử tổng thể có σ^2 chưa biết. Dựa vào 1 mẫu kích thước n, với độ tin cậy 1- α cho trước.

TH1:
$$\mu$$
 chưa biết, biết S^2 . Khi đó ta có $\sigma^2 \in [\frac{(n-1)S^2}{\chi_1^2}, \frac{(n-1)S^2}{\chi_2^2}]$ trong đó

$$\chi_1^2 = \chi^2(n-1,\frac{\alpha}{2}), \chi_2^2 = \chi^2(n-1,1-\frac{\alpha}{2})$$

TH2:
$$\mu$$
 biết. Khi đó $\sigma^2 \in [\frac{\sum n_i(x_i - \mu)}{\chi_1^2}, \frac{\sum n_i(x_i - \mu)}{\chi_2^2}]$, trong đó

$$\chi_1^2 = \chi^2(n, \frac{\alpha}{2}), \chi_2^2 = \chi^2(n, 1 - \frac{\alpha}{2})$$

- 1.2.3. Kiểm định giả thuyết thống kê:
 - 1.2.3.1. Kiểm định giả thuyết thống kê cho μ

$1.2.3.1.1.\text{TH1: }\sigma^2\text{ biết}$

Giả thuyết thống kê	W_{α} : σ^2 biết (miền bác bỏ H_0)
$H_0: \mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}, u > u_{\frac{\alpha}{2}} \}$
$H_1: \mu \neq \mu_0$	$W_{\alpha} - \{u - \frac{1}{\sigma} \sqrt{n}, u > u_{\frac{\alpha}{2}}\}$
$H_0: \mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}, u < u_{\alpha} \}$
$H_1: \mu < \mu_0$	$W_{\alpha} - \{u - \frac{1}{\sigma} \forall n, u - u_{\alpha}\}$
H_0 : $\mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}, u > u_{\alpha} \}$
$H_1: \mu > \mu_0$	$w_{\alpha} - \{u - \frac{1}{\sigma} \forall n, u \geq u_{\alpha}\}$

1.2.3.1.2.TH2: $n \ge 30$, σ^2 không biết

Giả thuyết thống kê	W_{lpha} (miền bác bỏ H_0)
H_0 : $\mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, u > u_{\frac{\alpha}{2}} \}$
$H_1: \mu \neq \mu_0$	$W_{\alpha} - \{u - \frac{1}{S}, u > u_{\frac{\alpha}{2}}\}$
H_0 : $\mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\varsigma} \sqrt{n}, u < u_{\alpha} \}$
$H_1: \mu < \mu_0$	$W_{\alpha} - \{u - \frac{1}{S}, u < u_{\alpha}\}$
$H_0: \mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\varsigma} \sqrt{n}, u > u_{\alpha} \}$
$H_1: \mu > \mu_0$	$v_{\alpha} - \{u - \frac{1}{S}, u > u_{\alpha}\}$

1.2.3.1.3.TH3: n < 30, σ^2 không biết

Giả thuyết thống kê	W_{lpha} (miền bác bỏ H_0)
$H_0: \mu = \mu_0 \ H_1: \mu eq \mu_0$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, \left t \right > t_{(n-1, \frac{\alpha}{2})} \right\}$
$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$	$W_{\alpha} = \{ t = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, t < t_{(n-1,\frac{\alpha}{2})} \}$
$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	$W_{\alpha} = \left\{t = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, \ t > t_{(n-1,\frac{\alpha}{2})}\right\}$

1.2.3.2. Kiểm đinh giả thuyết thống kê cho tỷ lê:

Giả thuyết thống kê	W_{α} (miền bác bỏ H_0)
$H_{0:}p = p_0$ $H_{1:}p \neq p_0$	$W_{\alpha} = \{ u = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, u > u_{\frac{\alpha}{2}} \}$
	$W_{\alpha} = \{ u = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, u < u_{\alpha} \}$
$H_{0:}p = p_0$ $H_{1:}p > p_0$	$W_{\alpha} = \{ u = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, u > u_{\alpha} \}$

1.2.3.3. Kiểm định giả thuyết thống kê cho phương sai:

1.2.3.3.1.TH1: μ chưa biết

Giả thuyết thống kê	W_{α} (miền bác bỏ H_0)
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$W_{\alpha} = \{ \chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \chi^2 < \chi_1^2 \text{ hoặc } \chi^2 > \chi_2^2 $
	$\chi_1^2 = \chi_{(n-1,1-rac{lpha}{2})}^2, \chi_2^2 = \chi_{(n-1,rac{lpha}{2})}^2$

$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$W_{\alpha} = \{\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \chi^2 < \chi^2_{(n-1,1-\alpha)}$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$W_{\alpha} = \{\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \chi^2 > \chi^2_{(n-1,\alpha)}$

1.2.3.3.2.TH2: μ biết.

Giả thuyết thống kê	W_{α} (miền bác bỏ H_0)
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$W_{\alpha} = \{ \chi^2 = \frac{\sum n_i (x_i - \mu)^2}{\sigma_0^2}, \chi^2 < \chi_1^2 \text{ hoặc } \chi^2 > \chi_2^2 $
	$\chi_{1}^{2}=\chi_{(n,1-rac{lpha}{2})}^{2},\chi_{2}^{2}=\chi_{(n,rac{lpha}{2})}^{2}$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$W_{\alpha} = \{ \chi^{2} = \frac{\sum n_{i}(x_{i} - \mu)^{2}}{\sigma_{0}^{2}}, \chi^{2} < \chi^{2}_{(n, 1 - \alpha)} $
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$W_{\alpha} = \{ \chi^{2} = \frac{\sum n_{i}(x_{i} - \mu)^{2}}{\sigma_{0}^{2}}, \chi^{2} > \chi^{2}_{(n,\alpha)} $

1.2.4. So sánh 2 tham số của tổng thể:

1.2.4.1. So sánh 2 số trung bình:

1.2.4.1.1.TH1: $m \ge 30, n \ge 30, \sigma_1^2, \sigma_2^2$ biết

GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u > u_{\frac{\alpha}{2}} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}}; u < -u_{\alpha} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}}; u > u_{\alpha} \right\}$

$1.2.4.1.2.\text{TH2:}\,m\!<\!\!30,n\!<\!\!30,\sigma_{\!_1}^2,\sigma_{\!_2}^2\,\text{biết},\,\mathbf{X},\mathbf{Y}$ có phân phối chuẩn

GTTK

$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u > u_{\frac{\alpha}{2}} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u < -u_{\alpha} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u > u_{\alpha} \right\}$

1.2.4.1.3.TH3: $m \ge 30$, $n \ge 30$, σ_1^2 , σ_2^2 không biết

GTTK	W_{α}
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; u > u_{\frac{\alpha}{2}} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; u < -u_{\alpha} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; u > u_{\alpha} \right\}$

1.2.4.1.4.TH4: m < 30, n < 30, X,Y có phân phối chuẩn, $\sigma_1^2 = \sigma_2^2$ không biết

GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \overline{Y}}{\sqrt{s^{2} \left(\frac{1}{m} + \frac{1}{n}\right)}}; t > t_{\binom{m+n-2, \frac{\alpha}{2}}{2}} \right\} s^{2} = \frac{(m-1)s_{1}^{2} + (n-1)s_{2}^{2}}{m+n-2}$

$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \overline{Y}}{\sqrt{s^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}; t < -t_{(m+n-2,\alpha)} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \overline{Y}}{\sqrt{s^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}; t > t_{(m+n-2,\alpha)} \right\}$

1.2.4.1.5.TH5: m < 30, n < 30, X,Y có phân phối chuẩn, $\sigma_1^2 \neq \sigma_2^2$ chưa biết

	1 <u> </u>
GTTK	W_{lpha}
H_0 : $\mu_1 = \mu_2$	
$H_1: \mu_1 \neq \mu_2$	$ W_{\alpha} = \left\{ g = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_{1}^{2}}{m} + \frac{s_{2}^{2}}{n}}}; g > t; t_{1} = t_{\left(m-1, \frac{\alpha}{2}\right)}, t_{2} = t_{\left(n-1, \frac{\alpha}{2}\right)}; v_{1} = \frac{s_{1}^{2}}{m}, v_{2} = \frac{s_{2}^{2}}{n}; t = \frac{t_{1}v_{1} + t_{2}v_{2}}{v_{1} + v_{2}} \right\} $
	(\m n
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ g = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; g < -t; t_1 = t_{(m-1,\alpha)}, t_2 = t_{(n-1,\alpha)} \right\}$
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ g = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; g > t \right\}$

1.2.4.2. So sánh 2 tỷ lệ:

1.2.7.2. 50 Saiii 2 ty iç.	
GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{m} + \frac{1}{n}\right)}}; u > u_{\frac{\alpha}{2}}; f_1 = \frac{k_1}{m}, f_2 = \frac{k_2}{n} \right\}$
$H_0: \mu_1=\mu_2$	
$H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{m} + \frac{1}{n}\right)}}; u < -u_{\alpha} \right\}$

$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{m} + \frac{1}{n}\right)}}; u > u_{\alpha} \right\}$

1.2.4.3. So sánh 2 phương sai:

GTTK	W_{lpha}
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$W_{\alpha} = \left\{ g = \frac{s_{1}^{2}}{s_{2}^{2}}, g < \overline{f}hayg > f; f = f_{\frac{\alpha}{2}}(m-1, n-1), \overline{f} = \frac{1}{f_{\frac{\alpha}{2}}(n-1, m-1)} \right\}$
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	$W_{\alpha} = \left\{ g = \frac{s_1^2}{s_2^2}, g > f_{\alpha}(m-1, n-1) \right\}$

Tóm tắt công thức Xác Suất - Thống Kê

- I. Phần Xác Suất
 - Xác suất cổ điển
 - Công thức cộng xác suất: P(A+B)=P(A)+P(B)-P(AB).
 - $A_1, A_2, ..., A_n$ xung khắc từng đôi $\Leftrightarrow P(A_1+A_2+...+A_n)=P(A_1)+P(A_2)+...+P(A_n)$.
 - Ta có
 - o A, B xung khắc \Leftrightarrow P(A+B)=P(A)+P(B).
 - o A, B, C xung khắc từng đôi \Leftrightarrow P(A+B+C)=P(A)+P(B)+P(C).
 - $\circ P(\overline{A}) = 1 P(A)$.
 - Công thức xác suất có điều kiện: $P(A/B) = \frac{P(AB)}{P(B)}$, $P(B/A) = \frac{P(AB)}{P(A)}$.
 - Công thức nhân xác suất: P(AB)=P(A).P(B/A)=P(B).P(A/B).
 - $A_1, A_2, ..., A_n$ độc lập với nhau $\Leftrightarrow P(A_1.A_2....A_n) = P(A_1).P(A_2)....P(A_n)$.
 - Ta có
 - o A, B độc lập \Leftrightarrow P(AB)=P(A).P(B).
 - o A, B, C độc lập với nhau \Leftrightarrow P(A.B.C)=P(A).P(B).P(C).
 - Công thức Bernoulli: $B(k;n;p) = C_n^k p^k q^{n-k}$, với p=P(A): xác suất để biến cố A xảy ra ở mỗi phép thử và q=1-p.
 - Công thức xác suất đầy đủ Công thức Bayes
 - \circ Hệ biến cố gồm n phần tử $A_1, A_2, ..., A_n$ được gọi là một phép phân

hoạch của
$$\Omega \iff \begin{cases} A_i.A_j = \Phi, \, \forall i \neq j; i,j \in \overline{1,n} \\ A_1 + A_2 + ... + A_n = \Omega \end{cases}$$

Công thức xác suất đầy đủ:

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B \mid A_i) = P(A_1) \cdot P(B \mid A_1) + P(A_2) \cdot P(B \mid A_2) + \dots + P(A_n) \cdot P(B \mid A_n)$$

o Công thức Bayes:

$$P(A_i / B) = \frac{P(A_i).P(B / A_i)}{P(B)}$$

với
$$P(B) = P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + ... + P(A_n).P(B/A_n)$$

- 2. Biến ngẫu nhiên
 - a. Biến ngẫu nhiên rời rạc
 - Luât phân phối xác suất

X	\mathbf{x}_1	\mathbf{x}_2	•••	Xn
P	p_1	p_2		p_n

với
$$p_i = P(X = x_i), i = \overline{1, n}.$$

Ta có:

$$\sum_{i=1}^{n} p_i = 1 \text{ và } P\{a \le f(X) \le b\} = \sum_{a \le f(x_i) \le b} p_i$$

Hàm phân phối xác suất

$$F_X(x) = P(X < x) = \sum_{x_i < x} p_i$$

$$ModX = x_0 \Leftrightarrow p_0 = max\{p_i : i = \overline{1, n}\}$$

Median

$$MedX = x_e \Leftrightarrow \begin{cases} P(X < x_e) \le 0.5 \\ P(X > x_e) \le 0.5 \end{cases} \Leftrightarrow \begin{cases} \sum_{x_i < x_e} p_i \le 0.5 \\ \sum_{x_i > x_e} p_i \le 0.5 \end{cases}$$

Kỳ vọng

$$EX = \sum_{i=1}^{n} (x_i \cdot p_i) = x_1 \cdot p_1 + x_2 \cdot p_2 + \dots + x_n \cdot p_n$$

$$E(\varphi(X)) = \sum_{i=1}^{n} (\varphi(x_i).p_i) = \varphi(x_1).p_1 + \varphi(x_2).p_2 + ... + \varphi(x_n).p_n$$

Phương sai

$$VarX = E(X^2) - (EX)^2$$

với
$$E(X^2) = \sum_{i=1}^{n} (x_i^2 . p_i) = x_1^2 . p_1 + x_2^2 . p_2 + ... + x_n^2 . p_n$$

- b. Biến ngẫu nhiên liên tục.
 - f(x) là hàm mật độ xác suất của $X \Rightarrow \int_{-\infty}^{+\infty} f(x)dx = 1$,

$$P\{a \le X \le b\} = \int_{a}^{b} f(x).dx$$

• Hàm phân phối xác suất

$$F_X(x) = P(X < x) = \int_{-\infty}^{x} f(t)dt$$

 $ModX = x_0 \Leftrightarrow \text{Hàm mật độ xác suất } f(x) \text{ của } X \text{ đạt cực đại tại } x_0.$

Median

$$MedX = x_e \Leftrightarrow F_X(x_e) = \frac{1}{2} \Leftrightarrow \int_{-\infty}^{x_e} f(x)dx = \frac{1}{2}.$$

Kỳ vọng

$$EX = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

$$EX = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

$$E(\varphi(X)) = \int_{-\infty}^{+\infty} \varphi(x) \cdot f(x) dx$$

• Phương sai

$$VarX = E(X^2) - (EX)^2$$
 với $EX^2 = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$.

- c. Tính chất
 - -E(C) = C, Var(C) = 0, C là một hằng số.
 - $-E(kX) = kEX, Var(kX) = k^2 VarX$
 - -E(aX + bY) = aEX + bEY
 - Nếu X, Y độc lập thì $E(XY) = EX.EY, Var(aX + bY) = a^2VarX + b^2VarY$
 - $-\sigma(X) = \sqrt{VarX}$: Độ lệch chuẩn của X, có cùng thứ nguyên với X và EX.
- 3. Luật phân phối xác suất
 - a. Phân phối Chuẩn $(X \sim N(\mu; \sigma^2))$
 - $X(\Omega) = \mathbb{R}$, EX=ModX=MedX= μ , $VarX = \sigma^2$
 - Hàm mđxs $f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \Rightarrow V \acute{\sigma} i \ \mu = 0, \sigma = 1$:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 (Hàm Gauss)

- $P(a \le X \le b) = \varphi(\frac{b-\mu}{\sigma}) \varphi(\frac{a-\mu}{\sigma})$ với $\varphi(x) = \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ (Hàm Laplace)
- Cách sử dụng máy tính bỏ túi để tính giá trị hàm Laplace, hàm phân phối xác suất của phân phối chuẩn chuẩn tắc

Auc saut caa phan phot chaan chaan tac			
Tác vụ	Máy CASIO 570MS	Máy CASIO 570ES	
Khởi động gói Thống kê	Mode(tìm)SD	Mode(tim)STAT 1-Var	
Tính $\varphi(x) = \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$	Shift 3 2 x) =	Shift 1 7 2 x) =	
$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$	Shift 3 1 x) =	Shift 1 7 1 x) =	
Thoát khỏi gói Thống kê	Mode 1	Mode 1	

Luu ý:
$$F(x) = 0.5 + \varphi(x)$$

- b. Phân phối Poisson $(X \sim P(\lambda))$
 - $X(\Omega) = \mathbb{N}$, $EX = VarX = \lambda$. $ModX=k \Leftrightarrow \lambda-1 \leq k \leq \lambda$
 - $P(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}, k \in \mathbb{N}$

- c. Phân phối Nhị thức $(X \sim B(n; p))$
 - $X(\Omega) = \{0..n\}$, EX=np, VarX=npq, ModX=k \Leftrightarrow $(n+1)p-1 \le k \le (n+1)p$
 - $P(X=k)=C_n^k.p^k.q^{n-k}, q=1-p, 0 \le k \le n, k \in \mathbb{N}$
 - Nếu $(n \ge 30; 0, 1 thì <math>X \sim B(n; p) \approx N(\mu; \sigma^2)$ với $\mu = n.p, \sigma = \sqrt{npq}$
 - $P(X=k) \approx \frac{1}{\sigma} f(\frac{k-\mu}{\sigma}), \ 0 \le k \le n, \ k \in \mathbb{N}$
 - $P(a \le X < b) \approx \varphi(\frac{b-\mu}{\sigma}) \varphi(\frac{a-\mu}{\sigma})$
 - Nếu $(n \ge 30, p \le 0, 1, np < 5)$ thì $X \sim B(n; p) \approx P(\lambda)$ với $\lambda = np$
 - $P(X=k) \approx e^{-\lambda} \frac{\lambda^k}{k!}, \ k \in \mathbb{N}$
 - Nếu $(n \ge 30, p \ge 0.9, nq < 5)$

$$P(X=k) \approx e^{-\lambda} \frac{\lambda^{n-k}}{(n-k)!}, k \in \mathbb{R} \text{ v\'oi } \lambda = nq$$

- d. Phân phối Siêu bội $(X \sim H(N; N_A; n))$
 - $X(\Omega) = \{ \max\{0; n (N N_A)\} ... \min\{n; N_A\} \}$
 - EX=np, VarX=npq $\frac{N-n}{N-1}$ với $p = \frac{N_A}{N}$, q=1-p.
 - $ModX = k \Leftrightarrow \frac{(N_A + 1)(n + 1) + 2}{N + 2} 1 \le k \le \frac{(N_A + 1)(n + 1) + 2}{N + 2}$.
 - $P(X=k) = \frac{C_{N_A}^k C_{N-N_A}^{n-k}}{C_N^n}, \ k \in X(\Omega)$
 - $$\begin{split} \bullet \quad & \text{N\'eu} \ \frac{N}{n} > 20 \ \text{thì} \ X \sim H(N; N_A; n) \approx B(n; p) \ \text{v\'oi} \ \ p = \frac{N_A}{N} \,. \\ & P(X = k) \approx \mathbf{C}_n^k. p^k. q^{n-k} \,, \ k \in X(\Omega), \ q = 1 p \,. \end{split}$$

Sơ đồ tóm tắt các dạng phân phối xác suất thông dụng:

- 5 - XSTK

II. Phần Thống Kê.

1. Lý thuyết mẫu.

a. Các công thức cơ bản.

un eur teng unit te eum			
Các giá trị đặc trưng	Mẫu ngẫu nhiên	Mẫu cụ thể	
Giá trị trung bình	$\overline{X} = \frac{X_1 + \dots + X_n}{n}$	$\overline{x} = \frac{x_1 + \dots + x_n}{n}$	
Phương sai không hiệu chỉnh	$\hat{S}_X^2 = \frac{(X_1 - \overline{X})^2 + + (X_n - \overline{X})^2}{n}$	$\hat{s}_{x}^{2} = \frac{(x_{1} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n}$	
Phương sai hiệu chỉnh	$S_X^2 = \frac{(X_1 - \overline{X})^2 + + (X_n - \overline{X})^2}{n-1}$	$s_x^2 = \frac{(x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}$	

b. Để dễ xử lý ta viết số liệu của mẫu cụ thể dưới dạng tần số như sau:

\mathcal{X}_{i}	x_1	x_2	•••	\mathcal{X}_k
n_{i}	$n_{\scriptscriptstyle 1}$	n_2	•••	n_{k}

Khi đó

TXIII GO	
Các giá trị đặc trưng	Mẫu cụ thể
Giá trị trung bình	$\overline{x} = \frac{x_1 n_1 + \dots + x_k n_k}{n}$
Phương sai không hiệu chỉnh	$\hat{s}_{}^{2} = \frac{(x_{1} - \overline{x})^{2} n_{1} + + (x_{k} - \overline{x})^{2} n_{k}}{n_{1} + + (x_{k} - \overline{x})^{2} n_{k}}$
	n
Phương sai hiệu chỉnh	$s_x^2 = \frac{(x_1 - \overline{x})^2 n_1 + \dots + (x_k - \overline{x})^2 n_k}{n - 1}$

- c. Cách sử dụng máy tính bỏ túi để tính các giá trị đặc trưng mẫu
- Nếu số liệu thống kê thu thập theo miền [a;b) hay (a;b] thì ta sử dụng giá trị đại diện cho miền đó là $\frac{a+b}{2}$ để tính toán.

Tác vụ	Dòng CASIO MS	Dòng CASIO ES	
Bật chế độ nhập tần số	Không cần	Shift Mode ↓ 4 1	
Khởi động gói Thống kê	Mode(tim)SD	Mode(tim)STAT 1-Va	
Nhập số liệu	x_1 Shift, n_1 M+		
	:	X	FREQ
	x_k Shift, n_k M+	$x_1 =$	$n_1 =$
		:	:
	Nếu $n_i = 1$ thì chỉ cần	$x_k =$	$n_k =$
	nhấn		
	x_i M+		

Xóa màn hình hiển thị	AC	AC
Xác định: • Kích thước mẫu (n)	Shift 1 3 =	Shift 1 5 1 =
• Giá trị trung bình (\bar{x})	Shift 2 1 =	Shift 1 5 2 =
• Độ lệch chuẩn không hiệu chỉnh (\hat{s}_x)	Shift 2 2 =	Shift 1 5 3 =
• Độ lệch chuẩn hiệu chỉnh (s_x)	Shift 2 3 =	Shift 1 5 4 =
Thoát khỏi gói Thống kê	Mode 1	Mode 1

2. Ước lượng khoảng.

a) Khoảng tin cậy cho giá trị trung bình.

Trường hợp 1. (σ đã biết)

Ước lượng đối xứng.

$$\varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} \to z_{\underline{\alpha}} \Longrightarrow \varepsilon = z_{\underline{\alpha}} \cdot \frac{\sigma}{\sqrt{n}} \Longrightarrow (\overline{x} - \varepsilon; \overline{x} + \varepsilon)$$

• Ước lượng chệch trái.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \to z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \Rightarrow (-\infty; \overline{x} + \varepsilon)$$

• Ước lượng chệch phải.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; +\infty)$$

Trường hợp 2. (σ chưa biết, $n \ge 30$)

Ước lượng đối xứng.

$$\varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} \to z_{\underline{\alpha}} \Longrightarrow \varepsilon = z_{\underline{\alpha}} \cdot \frac{s}{\sqrt{n}} \Longrightarrow (\overline{x} - \varepsilon; \overline{x} + \varepsilon)$$

• Ước lượng chệch trái.

$$\varphi(z_{\alpha}) = 0.5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{s}{\sqrt{n}} \Rightarrow (-\infty; \overline{x} + \varepsilon)$$

• Ước lượng chệch phải.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \to z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; +\infty)$$

Trường hợp 3. (σ chưa biết, n<30)

Ước lượng đối xứng.

$$1-\alpha \to \frac{\alpha}{2} \to t_{(n-1;\frac{\alpha}{2})} \Rightarrow \varepsilon = t_{(n-1;\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; \overline{x} + \varepsilon)$$

• Ước lượng chệch trái.

$$1-\alpha \to \alpha \to t_{(n-1;\alpha)} \Longrightarrow \varepsilon = t_{(n-1;\alpha)} \cdot \frac{s}{\sqrt{n}} \Longrightarrow (-\infty; \overline{x} + \varepsilon)$$

• Ước lượng chệch phải.

$$1-\alpha \to \alpha \to t_{(n-1;\alpha)} \Rightarrow \varepsilon = t_{(n-1;\alpha)} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; +\infty)$$

- b) Khoảng tin cậy cho tỉ lệ.
 - Ước lượng đối xứng.

$$\varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} \to z_{\underline{\alpha}} \Rightarrow \varepsilon = z_{\underline{\alpha}} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (f-\varepsilon; f+\varepsilon)$$

• Ước lượng chệch trái.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \to z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (0; f + \varepsilon)$$

• Ước lượng chệch phải.

$$\varphi(z_{\alpha}) = 0.5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (f - \varepsilon; 1)$$

c) Khoảng tin cậy cho phương sai.

<u>Trường hợp 1</u>. (μ chưa biết)

- Nếu đề bài chưa cho s mà cho mẫu cụ thể thì phải xác định s (bằng máy tính).
 - Ước lượng không chệch.

$$\begin{split} &1-\alpha \to \frac{\alpha}{2} \to \chi_2 = \chi^2_{(n-1;\frac{\alpha}{2})}, \ 1-\alpha \to 1-\frac{\alpha}{2} \to \chi_1 = \chi^2_{(n-1;1-\frac{\alpha}{2})} \\ & \Rightarrow (\frac{(n-1)s^2}{\chi_2};\frac{(n-1)s^2}{\chi_1}) \end{split}$$

• Uớc lượng chệch trái.

$$1 - \alpha \rightarrow \chi_1 = \chi^2_{(n-1;1-\alpha)} \Rightarrow (0; \frac{(n-1)s^2}{\chi_1})$$

• Ước lượng chệch phải.

$$1-\alpha \to \alpha \to \chi_2 = \chi^2_{(n-1;\alpha)} \Rightarrow (\frac{(n-1)s^2}{\chi_2}; +\infty)$$

Trường hợp 2. (µ đã biết)

- Tính
$$(n-1)s^2 = \sum_{i=1}^k n_i \cdot (x_i - \mu)^2$$

• Uớc lượng không chệch.

$$1-\alpha \to \frac{\alpha}{2} \to \chi_2 = \chi^2_{(n;\frac{\alpha}{2})}, 1-\alpha \to 1-\frac{\alpha}{2} \to \chi_1 = \chi^2_{(n;1-\frac{\alpha}{2})}$$

$$\Rightarrow (\frac{(n-1)s^2}{\chi_2}; \frac{(n-1)s^2}{\chi_1})$$

• Ước lượng chệch trái.

$$1 - \alpha \rightarrow \chi_1 = \chi^2_{(n;1-\alpha)} \Rightarrow (0; \frac{(n-1)s^2}{\chi_1})$$

• Ước lượng chệch phải.

$$1-\alpha \to \alpha \to \chi_2 = \chi^2_{(n;\alpha)} \Longrightarrow (\frac{(n-1)s^2}{\chi_2}; +\infty)$$

- 3. Kiểm định tham số.
 - a) Kiểm định giá trị trung bình.

Trường hợp 1. (σ đã biết)

•
$$H_o: \mu = \mu_o, H_1: \mu \neq \mu_o$$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, z = \frac{\overline{x} - \mu_o}{\sigma}.\sqrt{n}$$

- Nếu
$$|z| > z_{\frac{\alpha}{2}}$$
: Bác bỏ H_o, chấp nhận H₁.

- Nếu
$$|z| \le z_{\frac{\alpha}{2}}$$
: Chấp nhận H_o .

•
$$H_o: \mu = \mu_o, H_1: \mu < \mu_o$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x} - \mu_o}{\sigma}.\sqrt{n}$$

- Nếu
$$z < -z_{\alpha}$$
: Bác bỏ H_{o} , chấp nhận H_{1} .

- Nếu
$$z \ge -z_{\alpha}$$
: Chấp nhận H_o.

•
$$H_o: \mu = \mu_o, H_1: \mu > \mu_o$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x} - \mu_o}{\sigma}.\sqrt{n}$$

- Nếu
$$z > z_{\alpha}$$
: Bác bỏ H_o, chấp nhận H₁.

- Nếu
$$z \le z_{\alpha}$$
: Chấp nhận H_o.

Trường hợp 2. (σ chưa biết, $n \ge 30$)

•
$$H_o: \mu = \mu_o, H_1: \mu \neq \mu_o$$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, z = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$$

- Nếu
$$\left|z\right|>z_{\frac{\alpha}{2}}$$
: Bác bỏ H_o, chấp nhận H₁.

- Nếu
$$|z| \le z_{\frac{\alpha}{2}}$$
: Chấp nhận H_o.

•
$$H_o: \mu = \mu_o, H_1: \mu < \mu_o$$

 $\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$

- Nếu $z < -z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.
- Nếu $z \ge -z_{\alpha}$: Chấp nhận H_o.
- $H_o: \mu = \mu_o, H_1: \mu > \mu_o$ $\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$
 - Nếu $\,z>z_{\alpha}\,$: Bác bỏ $\,H_{\rm o},\,$ chấp nhận $\,H_{\rm 1}.\,$
 - Nếu $z \le z_{\alpha}$: Chấp nhận H_o.

Trường hợp 3. (σ chưa biết, n<30)

- $H_o: \mu = \mu_o, H_1: \mu \neq \mu_o$ $\alpha \rightarrow \frac{\alpha}{2} \rightarrow t_{(n-1;\frac{\alpha}{2})}, t = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$
 - Nếu $\left|t\right| > t$: Bác bỏ H_o , chấp nhận H_1 .
 - Nếu $\left|t\right| \leq t_{(n-1;\frac{\alpha}{2})}$: Chấp nhận H_o .
- $H_o: \mu = \mu_o, H_1: \mu < \mu_o$ $\alpha \to t_{(n-1;\alpha)}, t = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$
 - Nếu $t < -t_{(n-1;\alpha)}$: Bác bỏ Ho, chấp nhận H₁.
 - Nếu $t \ge -t_{(n-1;\alpha)}$: Chấp nhận H_o.
- $H_o: \mu = \mu_o, H_1: \mu > \mu_o$ $\alpha \to t_{(n-1;\alpha)}, t = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$
 - Nếu $t > t_{(n-1;\alpha)}$: Bác bỏ H_o , chấp nhận H_1 .
 - Nếu $t \le t_{(n-1;\alpha)}$: Chấp nhận H_o.
- b) Kiểm định tỉ lệ.
 - $\begin{aligned} \bullet & \quad H_o: p = p_o, H_1: p \neq p_o \\ \varphi(z_{\underline{\alpha}}) &= \frac{1-\alpha}{2} \rightarrow z_{\underline{\alpha}}, f = \frac{k}{n}, z = \frac{f p_o}{\sqrt{p_o(1 p_o)}}.\sqrt{n} \end{aligned}$
 - Nếu $|z| > z_{\frac{\alpha}{2}}$: Bác bỏ H_o, chấp nhận H₁.
 - Nếu $|z| \le z_{\frac{\alpha}{2}}$: Chấp nhận H_o .
 - $\begin{aligned} \bullet & \quad H_o: p = p_o, H_1: p < p_o \\ \varphi(z_\alpha) &= 0, 5 \alpha \rightarrow z_\alpha, f = \frac{k}{n}, z = \frac{f p_o}{\sqrt{p_o(1 p_o)}}.\sqrt{n} \end{aligned}$

- Nếu $z < -z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.
- Nếu $z \ge -z_{\alpha}$: Chấp nhận H_o.
- $H_o: p = p_o, H_1: p > p_o$ $\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, f = \frac{k}{n}, z = \frac{f - p_o}{\sqrt{p_o(1 - p_o)}}.\sqrt{n}$
 - Nếu $z>z_{\alpha}$: Bác bỏ H_{o} , chấp nhận H_{1} .
 - Nếu $z \le z_{\alpha}$: Chấp nhận H_{o} .
- c) Kiểm định phương sai.

<u>Trường hợp 1</u>. (μ chưa biết)

 Nếu đề chưa cho s mà cho mẫu cụ thể thì phải sử dụng máy tính để xác định s.

$$\begin{split} \bullet &\quad H_o: \sigma^2 = \sigma_o^2, H_1: \sigma^2 \neq \sigma_o^2 \\ &\quad \alpha \rightarrow 1 - \frac{\alpha}{2} \rightarrow \chi_1^2 = \chi^2_{(n-1;1-\frac{\alpha}{2})}, \; \alpha \rightarrow \frac{\alpha}{2} \rightarrow \chi_2^2 = \chi^2_{(n-1;\frac{\alpha}{2})}, \; \chi^2 = \frac{(n-1)s^2}{\sigma_o^2} \\ &\quad - \text{N\'eu} \begin{bmatrix} \chi^2 > \chi_2^2 \\ \chi^2 < \chi_1^2 \end{bmatrix}: \text{B\'ac b\'o } H_0, \text{ chấp nhận } H_1. \end{split}$$

- Nếu
$$\chi_1^2 \le \chi^2 \le \chi_2^2$$
: Chấp nhận H_o .

$$\begin{aligned} \bullet & \quad H_o: \sigma^2 = \sigma_o^2, H_1: \sigma^2 < \sigma_o^2 \\ \alpha \rightarrow 1 - \alpha \rightarrow \chi_1^2 = \chi^2_{(n-1;1-\alpha)}, \ \chi^2 = \frac{(n-1)s^2}{\sigma_o^2} \end{aligned}$$

- Nếu $\,\chi^2 < \chi_1^2$: Bác bỏ $H_0,$ chấp nhận $H_1.$
- Nếu $\chi^2 \ge \chi_1^2$: Chấp nhận H_0 .

•
$$H_o: \sigma^2 = \sigma_o^2, H_1: \sigma^2 > \sigma_o^2$$

 $\alpha \to \chi_2^2 = \chi_{(n-1;\alpha)}^2, \ \chi^2 = \frac{(n-1)s^2}{\sigma_o^2}$

- Nếu $\chi^2 > \chi_2^2$: Bác bỏ H_0 , chấp nhận H_1 .
- Nếu $\chi^2 \leq \chi_2^2$: Chấp nhận H_o .
- 4. Kiểm định so sánh tham số.
 - a) Kiểm định so sánh giá trị trung bình.

<u>Trường hợp 1</u>. $(\sigma_1, \sigma_2 \text{ dã biết})$

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 11 -

- Nếu
$$z > z_{\frac{\alpha}{2}}$$
: Bác bỏ H_o, chấp nhận H₁.

- Nếu
$$\left|z\right| \le z_{\frac{\alpha}{2}}$$
: Chấp nhận H_o.

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Nếu $z < -z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.

- Nếu
$$z \ge -z_{\alpha}$$
: Chấp nhận H_o.

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Nếu $z > z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.

- Nếu $z \le z_{\alpha}$: Chấp nhận H_o.

<u>Trường hợp 2</u>. $(\sigma_1, \sigma_2 \text{ chưa biết}, n_1, n_2 \ge 30)$

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

$$\varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} \to z_{\underline{\alpha}}, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Nếu $|z| > z_{\frac{\alpha}{2}}$: Bác bỏ H_o, chấp nhận H₁.

- Nếu
$$|z| \le z_{\frac{\alpha}{2}}$$
: Chấp nhận H_o .

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Nếu $\,z < -z_{\alpha}$: Bác bỏ $\,H_{o},\,$ chấp nhận $\,H_{1}.\,$

- Nếu
$$z \ge -z_{\alpha}$$
: Chấp nhận H_o.

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Nếu $z > z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.
- Nếu $z \le z_{\alpha}$: Chấp nhận H_0 .

<u>Trường họp 3</u>. ($\sigma_1 = \sigma_2$ chưa biết, $n_1, n_2 < 30$)

• $H_o: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$

$$\alpha \to \frac{\alpha}{2} \to t_{(n_1+n_2-2;\frac{\alpha}{2})}, t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ v\'oi } s^2 = \frac{(n_1-1).s_1^2 + (n_2-1).s_2^2}{n_1 + n_2 - 2}$$

- Nếu $\left|t\right| > t_{(n_1+n_2-2;\frac{\alpha}{2})}$: Bác bỏ H_o, chấp nhận H₁.
- Nếu $\left|t\right| \leq t_{(n_1+n_2-2;\frac{\alpha}{2})}$: Chấp nhận H_o .
- $H_o: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$

$$\alpha \to t_{(n_1+n_2-2;\alpha)}, t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ v\'oi } s^2 = \frac{(n_1 - 1).s_1^2 + (n_2 - 1).s_2^2}{n_1 + n_2 - 2}$$

- Nếu t < -t $\underbrace{(n_1 + n_2 2; \frac{\alpha}{2})}_{(n_1 + n_2 2; \frac{\alpha}{2})}$: Bác bỏ H_0 , chấp nhận H_1 .
- Nếu $t \ge -t$ $(n_1+n_2-2;\frac{\alpha}{2})$: Chấp nhận H_0 .
- $H_o: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$

$$\alpha \to t_{(n_1+n_2-2;\alpha)}, t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ v\'oi } s^2 = \frac{(n_1 - 1).s_1^2 + (n_2 - 1).s_2^2}{n_1 + n_2 - 2}$$

- Nếu t > t $(n_1 + n_2 2; \frac{\alpha}{2})$: Bác bỏ H_0 , chấp nhận H_1 .
- Nếu $t \leq t \choose (n_1+n_2-2;\frac{\alpha}{2})$: Chấp nhận \mathbf{H}_{o} .
- b) Kiểm định so sánh tỉ lệ.

$$f_1 = \frac{k_1}{n_1}, f_2 = \frac{k_2}{n_2}, f = \frac{k_1 + k_2}{n_1 + n_2}$$

• $H_o: p_1 = p_2, H_1: p_1 \neq p_2$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, \quad z = \frac{f_1 - f_2}{\sqrt{f(1-f).(\frac{1}{n_1} + \frac{1}{n_2})}}$$

- Nếu $|z|>z_{\underline{\alpha}}$: Bác bỏ H_{o} , chấp nhận H_{1} .
- Nếu $|z| \le z_{\frac{\alpha}{2}}$: Chấp nhận $H_{o.}$

•
$$H_o: p_1 = p_2, H_1: p_1 < p_2$$

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha}, z = \frac{f_1 - f_2}{\sqrt{f(1 - f).(\frac{1}{n_1} + \frac{1}{n_2})}}$$

- Nếu $z < -z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.

- Nếu $z \ge -z_{\alpha}$: Chấp nhận H_o.

•
$$H_o: p_1 = p_2, H_1: p_1 > p_2$$

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha}, z = \frac{f_1 - f_2}{\sqrt{f(1 - f).(\frac{1}{n_1} + \frac{1}{n_2})}}$$

- Nếu $z > z_{\alpha}$: Bác bỏ H_o, chấp nhận H₁.
- Nếu $z \le z_{\alpha}$: Chấp nhận H_0 .
- c. Kiểm định so sánh phương sai.
 - μ_1, μ_2 chưa biết nên tính s_1 và s_2 từ mẫu (sử dụng máy tính) nếu đề bài chưa cho.

$$\begin{split} \bullet & \quad H_o: \sigma_1^{\ 2} = \sigma_2^2, H_1: \sigma_1^{\ 2} \neq \sigma_2^2 \\ - & \quad f = \frac{s_1^2}{s_2^2}, f_1 = f\left(n_1 - 1; n_2 - 1; 1 - \frac{\alpha}{2}\right), f_2 = f\left(n_1 - 1; n_2 - 1; \frac{\alpha}{2}\right) \\ - & \quad \text{N\'eu} \left[\begin{array}{c} f < f_1 \\ f > f_2 \end{array} \right] \text{: Bác bỏ H_o, chấp nhận H_1.} \end{split}$$

- Nếu
$$f_1 \le f \le f_2$$
: Chấp nhận H_o .

•
$$H_o: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 < \sigma_2^2$$

- $f = \frac{s_1^2}{s_2^2}, f_1 = f(n_1 - 1; n_2 - 1; 1 - \alpha)$

- Nếu $f < f_1$: Bác bỏ H_0 , chấp nhận H_1 .
- Nếu $f_1 \le f$: Chấp nhận H_0

•
$$H_o: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$$

- $f = \frac{s_1^2}{s_2^2}, f_2 = f(n_1 - 1; n_2 - 1; \alpha)$

- Nếu $f > f_2$: Bác bỏ H_0 , chấp nhận H_1 .
- Nếu $f \le f_2$: Chấp nhận H_o .
- 5. Hệ số tương quan mẫu và phương trình hồi quy tuyến tính mẫu.

a. Hệ số tương quan mẫu:
$$r = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sqrt{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \sqrt{n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}}$$

Phương trình hồi quy tuyến tính mẫu: $\overline{y_x} = A + Bx \text{ với}$

$$B = \frac{n \displaystyle\sum_{i=1}^{n} x_{i} y_{i} - \displaystyle\sum_{i=1}^{n} x_{i} \displaystyle\sum_{i=1}^{n} y_{i}}{n \displaystyle\sum_{i=1}^{n} x_{i}^{2} - (\displaystyle\sum_{i=1}^{n} x_{i})^{2}} \ v \grave{a} \ A = \frac{\displaystyle\sum_{i=1}^{n} y_{i} - B. \displaystyle\sum_{i=1}^{n} x_{i}}{n} \,.$$

b. Trong trường hợp sử dụng bảng tần số:

\mathcal{X}_{i}	x_1	x_2	• • •	\mathcal{X}_k
y_i	y_1	y_2	•••	\mathcal{Y}_k
n_i	n_1	n_2	•••	n_{k}

Ta tính theo công thức thu gọn như sau:

$$\text{Hệ số tương quan mẫu: } r = \frac{n \displaystyle \sum_{i=1}^k n_i x_i y_i - \sum_{i=1}^k n_i x_i \sum_{i=1}^k n_i y_i}{\sqrt{n \displaystyle \sum_{i=1}^k n_i x_i^2 - (\sum_{i=1}^k n_i x_i)^2} \sqrt{n \displaystyle \sum_{i=1}^k n_i y_i^2 - (\sum_{i=1}^k n_i y_i)^2} }$$

Phương trình hồi quy tuyến tính mẫu: $\overline{y_x} = A + Bx$ với

$$B = \frac{n{\sum_{i=1}^k n_i x_i y_i - \sum_{i=1}^k n_i x_i \sum_{i=1}^k n_i y_i}}{n{\sum_{i=1}^k n_i x_i^2 - (\sum_{i=1}^k n_i x_i)^2}} \ va \ A = \frac{\sum_{i=1}^k n_i y_i - B.\sum_{i=1}^k n_i x_i}{n}.$$

c. Sử dụng máy tính bỏ túi để tính hệ số tương quan mẫu và phương trình hồi quy tuyến tính mẫu:

Tác vụ	Dòng CASIO MS	Dòng CASIO ES		
Bật chế độ nhập tần số	Không cần	Shift Mode ↓ 4 1		
Khởi động gói Hồi quy	Mode(tìm)REG	Mode(tìm)STAT		
tuyến tính	Lin	A+BX		
	x_1 , y_1 Shift, n_1 M+			
	:	X Y FREQ		
	x_k , y_k Shift, n_k M+	$ x_1 = y_1 = n_1 = $		
Nhập số liệu	, and a second s			
	$n_i = 1$ thì chỉ cần nhấn	$x_k = y_k = n_k = 0$		
	x_i , y_i M+			
Xóa màn hình hiển thị	AC	AC		
Xác định:				
 Hệ số tương quan 	Shift $2 \longrightarrow 3 =$	Shift 1 7 3 =		
mẫu (r)				
Hệ số hằng: A	Shift $2 \longrightarrow 1 =$	Shift 1 7 1 =		
 Hệ số ẩn (x): B 	Shift $2 \longrightarrow 2 =$	Shift 1 7 2 =		
	35.1.1			
Thoát khỏi gói Hồi quy	Mode 1	Mode 1		

 $\textit{Lwu}\ \acute{y}$: Máy ES nếu đã kích hoạt chế độ nhập tần số ở phần Lý thuyết mẫu rồi thì không cần kích hoạt nữa.

.....