Linear Models with Stan

Ben Goodrich April 06, 2022

Basic Matrix Algebra

- A vector can be a column vector (vertical) or row vector (horizontal)
- · I use boldface for vectors and matrices and \top for transposition
- · A row vector multiplied by a column vector of the same size is a scalar, i.e.

$$\mathbf{x}^ op oldsymbol{eta} = \sum_{k=1}^K x_k eta_k$$

• A matrix multiplied by a column vector is a column vector that is obtained by treating each row of the matrix as a row vector, i.e.

$$\mu = \alpha + \mathbf{X}\boldsymbol{\beta}$$

Differentiating the Log Posterior Kernel

· Stan always works with log-PDFs or really log-kernels (in $oldsymbol{ heta}$)

$$\ln f(\boldsymbol{\theta} \mid \mathbf{y}, \ldots) = \ln f(\boldsymbol{\theta} \mid \ldots) + \ln L(\boldsymbol{\theta}; \mathbf{y}) - \ln f(\mathbf{y} \mid \ldots)$$

The gradient of the log posterior PDF is the gradient of the log-kernel

$$\mathbf{\nabla} \ln f(\boldsymbol{\theta} \mid \mathbf{y}, \ldots) = \mathbf{\nabla} \ln f(\boldsymbol{\theta} \mid \ldots) + \mathbf{\nabla} \ln L(\boldsymbol{\theta}; \mathbf{y}) + \mathbf{0}$$

 This gradient is basically exact, and the chain rule can be executed by a C++ compiler without the user having to compute any derivatives

Hamiltonian Monte Carlo

- · Stan pairs the J "position" variables $m{ heta}$ with J "momentum" variables $m{\phi}$ and draws from the joint posterior distribution of $m{ heta}$ and $m{\phi}$
- · Since the likelihood is NOT a function of ϕ_j , the posterior distribution of ϕ_j is the same as its prior, which is normal with a "tuned" standard deviation. So, at the s-th MCMC iteration, we just draw each $\widetilde{\phi}_j$ from its normal distribution.
- Using physics, the realizations of each $\widetilde{\phi}_j$ at iteration s "push" $\boldsymbol{\theta}$ from iteration s-1 for a random amount of time through the parameter space whose topology is defined by the (negated) log-kernel of the posterior distribution
- · Although the ODEs must be solved numerically, the integral in "time" is onedimensional and there are very good customized numerical integrators

Hamiltonian Monte Carlo

Instead of simply drawing from the posterior distribution whose PDF is $f(\boldsymbol{\theta}|\,\mathbf{y}\ldots)\propto f(\boldsymbol{\theta})\,L\left(\boldsymbol{\theta};\mathbf{y}\right)$ Stan augments the "position" variables $\boldsymbol{\theta}$ with an equivalent number of "momentum" variables $\boldsymbol{\phi}$ and draws from

$$f\left(oldsymbol{ heta} \mid \mathbf{y} \ldots
ight) \propto \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{k=1}^{K} rac{1}{\sigma_{k} \sqrt{2\pi}} e^{-rac{1}{2} \left(rac{\phi_{k}}{\sigma_{k}}
ight)^{2}} f\left(oldsymbol{ heta}
ight) L\left(oldsymbol{ heta}; \mathbf{y}
ight) d\phi_{1} \ldots d\phi_{K}$$

- Since the likelihood is NOT a function of ϕ_k , the posterior distribution of ϕ_k is the same as its prior, which is normal with a "tuned" standard deviation. So, at the s-th MCMC iteration, we just draw each $\widetilde{\phi}_k$ from its normal distribution.
- Using physics, the realizations of each $\widetilde{\phi}_k$ at iteration s "push" $\pmb{\theta}$ from iteration s-1 through the parameter space whose topology is defined by the negated log-kernel of the posterior distribution: $-\ln f(\pmb{\theta}) \ln L(\pmb{\theta}; \mathbf{y})$
- See HMC.R demo and next slide

Demo of Hamiltonian Monte Carlo

Reverse Play Slower Faster Reset

1.00

No U-Turn Sampling (NUTS)

- The location of $m{ heta}$ moving according to Hamiltonian physics at any instant would be a valid draw from the posterior distribution
- · But (in the absence of friction) $oldsymbol{ heta}$ moves indefinitely so when do you stop?
- Hoffman and Gelman (2014) proposed stopping when there is a "U-turn" in the sense the footprints turn around and start to head in the direction they just came from. Hence, the name No U-Turn Sampling.
- · After the U-Turn, one footprint is selected with probability proportional to the posterior kernel to be the realization of $m{ heta}$ on iteration s and the process repeates itself
- NUTS discretizes a continuous-time Hamiltonian process in order to solve a system of Ordinary Differential Equations (ODEs), which requires a stepsize that is also tuned during the warmup phase
- Video and R code

Using Stan via R

- 1. Write the program in a (text) .stan file w/ R-like syntax that ultimately defines a posterior log-kernel. Stan's parser, rstan::stanc, does two things:
 - checks that program is syntactically valid and tells you if not
 - writes a conceptually equivalent C++ source file to disk
- 2. C++ compiler creates a binary file from the C++ source
- 3. Execute the binary from R (can be concurrent with 2)
- 4. Analyze the resulting samples from the posterior
 - Posterior predictive checks
 - Model comparison
 - Decision

A Better Model for Vaccine Effectiveness

```
#include quantile functions.stan
data { /* these are known and passed as a named list from R */
  int<lower = 0> n; // number of people in clinical trial
  int<lower = 0, upper = n> y; // number of positives among vaccinated
  real m;
  real<lower = 0> IOR;
  real<lower = -1, upper = 1> asymmetry;
  real<lower = 0, upper = 1> steepness;
parameters { /* these are unknowns whose posterior distribution is sought */
  real<lower = 0, upper = 1> p; // CDF of vaccine effectiveness
transformed parameters { /* deterministic unknowns that get stored in RAM */
  real VE = gld gf(p, m, IQR, asymmetry, steepness); // theta = (VE - 1) / (VE - 2)
} // this function ^^^ is defined in the quantile functions.stan file
model { /* log-kernel of Bayes' Rule that essentially returns "target" */
 target += binomial lpmf(y | n, (VE - 1) / (VE - 2)); // log-likelihood
} // implicit: p ~ uniform(0, 1) <=> VE ~ gld(m, IOR, asymmetry, steepness)
```

Drawing from a Posterior Distribution with NUTS

```
source(file.path("..", "Week2", "GLD helpers.R"))
a s <- GLD solver LBFGS(lower quartile = 0.15, median = 0.3, upper quartile = 0.55,
                       other quantile = -0.5, alpha = 0.01)
post <- stan(file.path("..", "Week2", "coronavirus.stan"),</pre>
            data = list(n = 94, y = 8, m = 0.3, IQR = 0.4,
                        asymmetry = a s[1], steepness = a s[2]),
            seed = 12345, control = list(adapt delta = .95))
post
## Inference for Stan model: coronavirus.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
                       sd 2.5% 25% 50% 75% 97.5% n eff Rhat
##
        mean se mean
     0.86 0.00 0.01 0.84 0.85 0.86 0.86 0.87 690 1.00
## p
## VE 0.89 0.00 0.04 0.79 0.87 0.89 0.92 0.95 740 1.00
## lp -4.61 0.03 0.81 -6.99 -4.76 -4.30 -4.11 -4.05 576 1.01
##
## Samples were drawn using NUTS(diag e) at Wed Apr 6 11:48:03 2022.
## For each parameter, n eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

Warnings You Should Be Aware Of

- 1. Divergent Transitions: This means the tuned stepsize ended up too big relative to the curvature of the log-kernel. Increase $adapt_delta$ above its default value (0.8) and / or use more informative priors
- 2. Hitting the maximum treedepth: This means the tuned stepsize ended up so small that it could not get all the way around the parameter space in one iteration. Increase $\max_{treedepth}$ beyond its default value of 10 but each increment will double the wall time, so only do so if you hit the max a lot
- 3. Bulk / Tail Effective Sample Size too low: This means the tuned stepsize ended up so small that adjacent draws have too much dependence. Increase the number of iterations or chains
- 4. $\widehat{R}>1.01$: This means the chains have not converged. You could try running the chains longer, but there is probably a deeper problem.
- 5. Low Bayesian Fraction of Information: This means that you posterior distribution has really extreme tails. You could try running the chains longer, but there is probably a deeper problem.

Data on 2020 Trump Vote and 2022 Vaccination

```
library(readr); library(dplyr)
# https://docs.google.com/spreadsheets/d/100BFc0VppVL8CIhaNh5ZiTFGBNCnGBdYzfqISAWxln8/
Gabba <- read csv("Gabba.csv", col types = c("ccccddddddddddd"), skip = 1, col names =
                                                     c("FIPS", "ST", "State", "County", "Trump#", "Votes#", "Trump", "Pop",
                                                           "Vaccinated#", "Vaccinated", "Death1", "Death2", "Death3", "Death4"))
Gabba <- filter(Gabba, Vaccinated < 100) # some data points were messed up
select(Gabba, State:Vaccinated) %>%
     glimpse # each row is a county
## Rows: 3,125
## Columns: 8
                                                  <chr> "Alabama", 
## $ State
                                                  <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Blount", "Bullock", "But...
## $ County
## $ `Trump#`
                                                  <dbl> 19838, 83544, 5622, 7525, 24711, 1146, 5458, 35101, 8753, 10583, 1...
                                                  <dbl> 27770, 109679, 10518, 9595, 27588, 4613, 9488, 50983, 15284, 12301...
## $ `Votes#`
## $ Trump
                                                  <dbl> 71.44, 76.17, 53.45, 78.43, 89.57, 24.84, 57.53, 68.85, 57.27, 86....
                                                  <dbl> 58805, 231767, 25223, 22293, 59134, 10357, 19051, 116441, 34772, 2...
## $ Pop
## $ `Vaccinated#` <dbl> 24395, 112300, 11070, 7728, 18162, 5305, 7613, 52780, 10354, 7964,...
## $ Vaccinated
                                                  <dbl> 41.48, 48.45, 43.89, 34.67, 30.71, 51.22, 39.96, 45.33, 29.78, 31....
```

Thinking About Priors

- It is usually a good idea to center all predictors so that the intercept can be interpreted as the expected outcome for a unit with "average" predictors
- · What are your beliefs about the expected covid vaccination percentage as of March 2022 in a county with an average percentage of Trump voters in 2020?
- What are your beliefs about the expected covid vaccination percentage in a county with 1% more Trump voters than average?
- What are your beliefs about the error standard deviation when predicting vaccination percentage with Trump vote percentage only?
- Do it, using source(file.path("..", "Week2", "GLD_helpers.R"))

Prior Hyperparameters

Primitive Object Types in Stan

- In Stan / C++, variables must declared with types
- In Stan / C++, statements are terminated with semi-colons
- Primitive scalar types: real x; or int K;
 - Unknowns cannot be int because no derivatives and hence no HMC
 - Can condition on integer data because no derivatives are needed
- Implicitly real vector[K] z; or row_vector[K] z;
- Implicitly real matrix[N,K] X; can have 1 column / row
- Arrays are just holders of any other homogenous objects
 - real x[N] is similar to vector[N] x; but lacks linear algebra functions
 - vector[N] X[K]; and row_vector[K] X[N] are similar to matrix[N,K]
 X; but lack linear algebra functionality, although they have uses in loops
- Vectors and matrices cannot store integers, so instead use possibly multidimensional integer arrays int y[N]; or int Y[N,P];

The **lookup** Function in rstan

- · Can input the name of an R function, in which case it will try to find an analagous Stan function
- Can input a regular expression, in which case it will find matching Stan functions that match

lookup("^inv.*[^gf]\$") # functions starting with inv but not ending with g or f

```
StanFunction Arguments ReturnType
#
# 216 inv chi square
                                 real
# 219
           inverse (matrix A) matrix
# 220
       inverse spd (matrix A) matrix
# 225
         inv gamma
                                 real
         inv logit (T x)
# 227
                                   R
          inv_phi (T x)
# 228
# 229
          inv sqrt (T x)
# 230
        inv square (T x)
       inv wishart
# 233
                                real
```

Optional functions Block of .stan Programs

- Stan permits users to define and use their own functions, which is what we
 did with #include quantile_functions.stan
- If used, must be defined in a leading functions block
- Can only validate constraints inside user-defined functions
- Very useful for several reasons:
 - Easier to reuse across different .stan programs
 - Makes subsequent chunks of code more readable
 - Enables posteriors with Ordinary Differential Equations, algebraic equations, and integrals
 - Can be exported to R via expose_stan_functions()
- · All functions, whether user-defined or build-in, must be called by argument position rather than by argument name, and there are no default arguments
- User-defined functions cannot have the same name as existing functions or keywords and are case-sensitive

Constrained Object Declarations in Stan

Outside of the functions block, any primitive object can have bounds:

- int<lower = 1> K; real<lower = -1, upper = 1> rho;
- vector<lower = 0>[K] alpha; and similarly for a matrix
- A vector (but not a row_vector) can be further specialized:
 - unit_vector[K] x; implies $\sum_{k=1}^K x_k^2 = 1$
 - simplex[K] x; implies $x_k \geq 0 \ orall k$ and $\sum_{k=1}^K x_k = 1$
 - ordered[K] x; implies $x_j < x_k \ \forall j < k$
 - positive_ordered[K] x; implies $0 < x_j < x_k \, orall j < k$
- · A matrix can be specialized to enforce constraints:
 - cov_matrix[K] Sigma; or better cholesky_factor_cov[K, K] L;
 - corr_matrix[K] Lambda; or cholesky_factor_corr[K] C;

"Required" data Block of .stan Programs

- · All knowns passed from R to Stan as a NAMED list, such as outcomes (y), covariates (X), constants (K), and / or known hyperparameters
- · Basically, everything posterior distribution conditions on
- Can have comments in C++ style (// or /* ... */)
- Whitespace is essentially irrelevant, except after keywords

```
data {
  int<lower = 0> N; // number of observations
  int<lower = 0> K; // number of predictors
  matrix[N, K] X; // matrix of predictors
  vector[N] y; // outcomes
  int<lower = 0, upper = 1> prior_only; // ignore data?
  vector[K + 2] m; // prior medians
  vector<lower = 0>[K + 2] r; // prior IQRs
  vector<lower = -1, upper = 1>[K + 2] a; // prior asymmetry
  vector<lower = 0, upper = 1>[K + 2] s; // prior steepness
}
```

"Required" parameters Block of .stan Programs

- Declare exogenous unknowns whose posterior distribution is sought
- · Cannot declare any integer parameters, only real parameters
- Must specify the parameter space but lower and upper bounds are implicitly $\pm \infty$ if unspecified

```
parameters {
  vector<lower = 0, upper = 1>[K + 2] p; // CDF values
}
```

 The change-of-variables adjustment due to the transformation from an unconstrained parameter space to the constrained space is handled automatically and added to target

Optional transformed parameters Block

- Comes after the parameters block but before the model block
- Need to declare objects before they are assigned
- Calculate endogenous unknowns that are deterministic functions of things declared in earlier blocks
- Used to create interesting intermediate inputs to the log-kernel
- Declared constraints are validated and samples are stored

```
transformed parameters { vector[K] beta; // as yet undefined real alpha = GLD_qf(p[K + 1], m[K + 1], r[K + 1], a[K + 1], s[K + 1]); real<lower = 0> sigma = GLD_qf(p[K + 2], m[K + 2], r[K + 2], a[K + 2], s[K + 2]); for (k in 1:K) beta[k] = GLD_qf(p[k], m[k], r[k], a[k], s[k]); // now defined }
```

"Required" model Block of .stan Programs

- · Can declare endogenous unknowns, assign to them, and use them
- · Constraints cannot be declared / validated and samples not stored
- · The model block must define (something proportional to) target = $\log(f(\boldsymbol{\theta}) \times f(\mathbf{y}|\boldsymbol{\theta}, \cdot)) = \log f(\boldsymbol{\theta}) + \log f(\mathbf{y}|\boldsymbol{\theta}, \cdot)$
- There is an internal reserved symbol called target that is initialized to zero (before change-of-variable adjustments) you increment by target += ...;
- Functions ending _lpdf or _lpmf return scalars even if some of their arguments are vectors or one-dimensional arrays, in which case it sums the log density/mass over the presumed conditionally independent elements

```
model { // log likelihood, equivalent to target += normal_lpdf(y | alpha + X * beta, sigma)
  if (!prior_only) target += normal_id_glm_lpdf(y | X, alpha, beta, sigma);
} // implicit: p ~ uniform(0, 1)
```

Entire Stan Program

```
#include quantile functions.stan
data {
  int<lower = 0> N; // number of observations
  int<lower = 0> K; // number of predictors
  matrix[N, K] X; // matrix of predictors
  vector[N] y; // outcomes
  int<lower = 0, upper = 1> prior only; // ignore data?
  vector[K + 2] m;
                                         // prior medians
  vector < lower = 0 > [K + 2] r;
                                         // prior IQRs
  vector<lower = -1, upper = 1>[K + 2] a; // prior asymmetry
  vector<lower = 0, upper = 1>[K + 2] s; // prior steepness
parameters {
  vector<lower = 0, upper = 1>[K + 2] p; // CDF values
transformed parameters {
  real alpha = qld qf(p[K + 1], m[K + 1], r[K + 1], a[K + 1], s[K + 1]);
  vector[K] beta; // as yet undefined
  real<lower = 0> sigma = gld qf(p[K + 2], m[K + 2], r[K + 2], a[K + 2], s[K + 2]);
  for (k \text{ in } 1:K) \text{ beta}[k] = \text{gld } \text{qf}(p[k], m[k], r[k], a[k], s[k]); // \text{ now defined}
model { // log likelihood, equivalent to target += normal lpdf(y | alpha + X * beta, sigma)
  if (!prior only) target += normal id glm lpdf(y | X, alpha, beta, sigma);
} // implicit: p ~ uniform(0, 1)
```

Calling the stan Function

```
post <- stan("linear.stan", data = list(N = nrow(Gabba), K = 1, y = Gabba$Vaccinated,
                                    X = as.matrix(Gabba$Trump - mean(Gabba$Trump)),
                                    prior only = FALSE, m = m, r = r, a = a, s = s)
post
## Inference for Stan model: linear.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                   2.5%
                                             25%
                                                      50%
                                                               75%
                                                                      97.5% n eff
              mean se mean
                            sd
              0.48
                     0.00 0.01
                                   0.46
                                            0.47
                                                     0.48
                                                              0.49
                                                                       0.51 4540
## p[1]
## p[2]
              0.53
                     0.00 0.00
                                   0.52
                                        0.53
                                                     0.53
                                                              0.53
                                                                       0.54 4677
## p[3]
              0.43
                     0.000.01
                               0.42
                                        0.42
                                                     0.43 0.43
                                                                       0.44 4924
## alpha
             51.19
                     0.00 0.16
                                  50.89
                                           51.08
                                                    51.19
                                                             51.29
                                                                      51.49 4677
                               -0.53
                                                             -0.51
## beta[1]
            -0.51
                     0.000.01
                                           -0.52
                                                    -0.51
                                                                      -0.49 4542
## sigma
              8.52
                     0.000.11
                               8.31
                                            8.45
                                                     8.52
                                                              8.59
                                                                       8.73
                                                                             4924
                     0.03 1.24 -11134.59 -11132.10 -11131.21 -11130.56 -11130.07
## lp
          -11131.50
                                                                             1949
##
         Rhat
## p[1]
## p[2]
## p[3]
## alpha
```

Working with the Marginal Posterior Draws

```
draws <- as.data.frame(post) %>% select(-starts_with("p")) # has 4000 rows
quantile(draws$`beta[1]`, probs = c(.05, .95)) # what people mistake confidence intervals for

## 5% 95%
## -0.5286308 -0.4974997

mean(draws$`beta[1]` > -0.5) # what people mistake p-values for

## [1] 0.0855
```

Working with Posterior Predictive Distributions

```
x <- Gabba$Trump - mean(Gabba$Trump)</pre>
mu <- draws\alpha + t(sapply(draws \rightarrow beta[1]), FUN = function(beta) x * beta))
y <- matrix(rnorm(length(mu), mean = mu, sd = draws$sigma), nrow(mu), ncol(mu))</pre>
dim(y ) # draws from the posterior predictive distribution that INCLUDES the posterior noise
## [1] 4000 3125
lower <- apply(y_, MARGIN = 2, FUN = quantile, probs = 0.25)
upper \leftarrow apply(y , MARGIN = 2, FUN = quantile, probs = 0.75)
with(Gabba, c(too low = mean(Vaccinated < lower), too high = mean(Vaccinated > upper),
              just right = mean( (Vaccinated > lower) & (Vaccinated < upper))))</pre>
                too high just right
##
      too low
      0.21024
                0.22560
                             0.56416
##
```

· Ideally, the last line would be .25 .25 .50 but this is not too bad. The model is not quite making extreme enough predictions.

Republican Governors

```
Gabba <- mutate(Gabba, # Virginia is somewhat ambiguous due to the 2021 election

GOP_gov = !(ST %in% c("CA", "CO", "CT", "DE", "HI", "IL", "KS", "KY", "LA",

"ME", "MI", "MN", "NV", "NJ", "NM", "NY", "NC", "OR",

"PA", "RI", "VA", "WA", "WI", "DC")))
```

 What are your beliefs about the effect of a state having a Republican governor, conditional on the county's Trump vote percentage?

```
m <- append(m, values = -5, after = 1)
r <- append(r, values = 4, after = 1)
a <- append(a, values = 0, after = 1) # symmetric
s <- append(s, values = 0.5, after = 1) # logistic tails</pre>
```

Here is a good way to make a centered matrix of predictors in R

```
X \leftarrow model.matrix(Vaccinated \sim Trump + GOP\_gov, data = Gabba)[, -1] # drop column of 1s 
 <math>X \leftarrow sweep(X, MARGIN = 2, STATS = colMeans(X), FUN = `-`) # center each column
```

Calling the stan Function

```
post <- stan("linear.stan", data = list(N = nrow(Gabba), K = ncol(X), y = Gabba$Vaccinated,
                                      X = X, prior only = 0, m = m, r = r, a = a, s = s)
print(post, pars = c("p", "lp "), include = FALSE)
## Inference for Stan model: linear.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                          sd 2.5% 25% 50% 75% 97.5% n eff Rhat
           mean se mean
## alpha
          51.19
                   0.00 0.15 50.89 51.08 51.19 51.30 51.47 4342
                                                                   1
## beta[1] -0.49 0.00 0.01 -0.50 -0.49 -0.49 -0.48 -0.47 3951
                                                                   1
## beta[2] -3.60 0.01 0.31 -4.22 -3.80 -3.60 -3.40 -2.98 3693
                                                                   1
## sigma
         8.34 0.00 0.11 8.14 8.27 8.34 8.41 8.55 3615
                                                                   1
##
## Samples were drawn using NUTS(diag e) at Wed Apr 6 18:45:00 2022.
## For each parameter, n eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

Posterior Planes

pairs(post, pars = "p", include = FALSE) # this all looks fine in this case

ShinyStan

```
library(shinystan)
launch_shinystan(post) # opens in a web browser
```

Utility Function for Predictions of Future Data

- For Bayesians, the log predictive PDF is the most appropriate utility function
- · Choose the model that maximizes the expectation of this over FUTURE data

$$egin{aligned} \operatorname{ELPD} &= \mathbb{E}_Y \ln f\left(y_{N+1}, y_{N+2}, \ldots, y_{2N} \mid y_1, y_2, \ldots, y_N
ight) = \ \ln \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(y_{N+1}, y_{N+2}, \ldots, y_{2N} \mid \mathbf{y}
ight) dy_{N+1} dy_{N+2} \ldots dy_{2N} pprox \ \sum_{n=1}^{N} \ln f\left(y_n \mid \mathbf{y}_{-n}
ight) = \sum_{n=1}^{N} \ln \int_{\Theta} f\left(y_n \mid oldsymbol{ heta}
ight) f\left(oldsymbol{ heta} \mid \mathbf{y}_{-n}
ight) d heta_1 d heta_2 \ldots d heta_K \end{aligned}$$

- · $f(y_n \mid \boldsymbol{\theta})$ is just the n-th likelihood contribution, but can we somehow obtain $f(\boldsymbol{\theta} \mid \mathbf{y}_{-n})$ from $f(\boldsymbol{\theta} \mid \mathbf{y})$?
- · Yes, assuming y_n does not have an outsized influence on the posterior

Optional generated quantities Block

- · Can declare more endogenous knowns, assign to them, and use them
- Samples are stored
- Can reference anything except stuff in the model block
- · Can also do this in R afterward, but primarily used for
 - Interesting functions of posterior that don't involve likelihood
 - Posterior predictive distributions and / or functions thereof
 - The log-likelihood for each observation to pass to **loo**

Utilizing Stand-Alone Generated Quantities

```
data {
                   // saved as "generated quantities.stan"
 int<lower = 0> N; // number of observations
 int<lower = 0> K; // number of predictors
 matrix[N, K] X; // matrix of predictors
 vector[N] v; // outcomes
 /* prior hyperparameters are not needed anymore */
parameters {
  real alpha;
 vector[K] beta;
  real<lower = 0> sigma;
generated quantities {
 vector[N] log lik;
  { // mu is not stored because it is in this local block
   vector[N] mu = alpha + X * beta;
   for (n in 1:N) log lik[n] = normal lpdf(y[n] | mu[n], sigma);
```

Calling Stand-Alone Generated Quantities

```
mod <- stan model("generated quantities.stan")</pre>
log lik <- ggs(mod, draws = as.matrix(post),</pre>
              data = list(N = nrow(Gabba), K = ncol(X), y = Gabba$Vaccinated, X = X)
loo(log lik)
##
## Computed from 4000 by 3125 log-likelihood matrix
##
##
           Estimate SE
## elpd loo -11066.7 66.1
## p_loo 6.4 0.8
## looic 22133.3 132.3
## ----
## Monte Carlo SE of elpd loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
```

What about the States?

- Suppose we wanted to include an intercept for each state, rather than merely an indicator for whether the state has a Republican governor
- · We could include 50 dummy variables in ${\bf X}$ and specify priors on those coefficients, but McElreath prefers the following approach

```
X <- as.matrix(Gabba$Trump - mean(Gabba$Trump))
group <- as.factor(Gabba$State)
nlevels(group) # size N but only 51 unique values
## [1] 51</pre>
```

 We can also utilize normal priors if we prefer with means and standard deviations as

```
m <- c(beta = -0.5, alpha = 50, sigma = 10)
scale <- c(beta = 0.25, alpha = 10, sigma = 3)
```

```
data {
       // saved as "groups.stan"
 int<lower = 0> N; // number of observations
 int<lower = 0> K; // number of predictors
 matrix[N, K] X; // matrix of predictors
 vector[N] y; // outcomes
 int<lower = 1> J; // number of groups
 int<lower = 1, upper = J> group[N]; // group membership
 int<lower = 0, upper = 1> prior only; // ignore data?
 vector[K + 2] m;
                                      // prior means
 vector<lower = 0>[K + 2] scale;  // prior scales
parameters {
 vector[K] beta;
 vector[J] alpha;
  real<lower = 0> sigma;
model {
 if (!prior only) target += normal id glm lpdf(y | X, alpha[group], beta, sigma);
 target += normal lpdf(beta | m[1:K], scale[1:K]); // ^ important
 target += normal lpdf(alpha | m[K + 1], scale[K + 1]);
 target += normal lpdf(sigma | m[K + 2], scale[K + 2]); // actually half normal
generated quantities {
 vector[N] log lik;
   vector[N] mu = alpha[group] + X * beta;
```

Calling stan for the grouped model

Inference for Stan model: groups.

```
states <- stan("groups.stan", data = list(N = nrow(Gabba), K = ncol(X), y = Gabba$Vaccinated, X = X, J = nlevels(group), group = as.integer(group) prior_only = \mathbf{0}, m = m, scale = scale)) # ^ important
```

states # only 6 states could fit on the screen but all 51 intercepts were estimated

```
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                      sd
                                              2.5%
                                                         25%
                                                                    50%
                                                                              75%
                                                                                      97.5%
                      mean se mean
                                                                            -0.46
## beta[1]
                     -0.46
                              0.00 0.01
                                             -0.48
                                                        -0.47
                                                                  -0.46
                                                                                       -0.44
## alpha[1]
                     42.92
                              0.01 0.89
                                             41.21
                                                       42.31
                                                                  42.90
                                                                            43.53
                                                                                      44.57
## alpha[2]
                     55.20
                             0.02 1.42
                                             52.46
                                                       54.24
                                                                  55.18
                                                                            56.16
                                                                                      57.99
## alpha[3]
                     57.27
                              0.03 2.06
                                             53.20
                                                       55.86
                                                                  57.26
                                                                            58.64
                                                                                      61.35
                     48.18
                                             46.46
                                                       47.61
                                                                  48.19
                                                                            48.77
                                                                                      49.90
## alpha[4]
                              0.01 0.87
                                             49.43
                                                       50.69
                                                                  51.39
                                                                            52.05
                                                                                      53.29
## alpha[5]
                     51.37
                              0.01 1.00
## alpha[6]
                     51.58
                              0.01 0.96
                                             49.68
                                                       50.93
                                                                  51.58
                                                                            52.24
                                                                                      53.44
## alpha[7]
                     62.77
                              0.03 2.65
                                             57.76
                                                       60.96
                                                                  62.74
                                                                            64.63
                                                                                      67.95
                                                       49.75
                                                                                      60.36
## alpha[8]
                     52.55
                              0.05 4.07
                                             44.68
                                                                  52.60
                                                                            55.31
                                                                                      60.11
## alpha[9]
                     48.53
                              0.07 5.88
                                             37.12
                                                       44.48
                                                                  48.61
                                                                            52.44
## alpha[10]
                     53.13
                              0.01 0.93
                                             51.27
                                                       52.49
                                                                  53.12
                                                                            53.77
                                                                                      54.94
## alpha[11]
                               0.01 0.62
                                                                  42.94
                                                                                      44.13
                     42.94
                                             41.72
                                                       42.53
                                                                            43.36
```

Model Comparison

Leverage Diagnostic Plot

plot(loo(states), label_points = TRUE) # not too bad, 318 is D.C.

Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic')

PSIS diagnostic plot

