Lezione 04 Meccanica Razionale

Federico De Sisti2025-03-07

Ripasso sui sistemi differenziali ad un grado 1 di libertà

$$\begin{cases} \dot{z} = g(z) \\ z(0) = z_0 \end{cases}$$

 $g: \Omega \to \mathbb{R}^n \mid lomega \subseteq \mathbb{R}^n \text{ aperto } n \in \mathbb{N}$

 $z_0 \in \Omega$ $t \to z(t)$ $r \in R \subseteq \mathbb{R}$ intorno di O definiamo questo con (SDO1)

 $g = 0, c \in \mathbb{R}, z$ soluzione globale

 $g=z^2,\frac{1}{z}$ soluzione locale

Sono soluzioni uniche

Esercizio 4 foglio 1

$$\begin{cases} = \sqrt{|z|} \\ z(0) = z_0 \end{cases}$$

 $z_0 = 0$ z(t) = 0 soluzione stazionaria—

 $z_0 \neq 0 \ z_0 > 0$

$$t(z) = \int_{z_0}^{z} \frac{dy}{\sqrt{y}} \quad z > 0.$$

$$t(z) = 2\sqrt{z} - 2\sqrt{z_0}$$

$$z(t) = (\sqrt{z_0} + \frac{t}{2})^2$$

$$\begin{array}{l} t(z)=2\sqrt{z}-2\sqrt{z_0}\\ z(t)=(\sqrt{z_0}+\frac{t}{2})^2\\ t>-2\sqrt{z_0} \quad I=(-2\sqrt{z_0},+\infty) \end{array}$$

Osservazione

per $z_0 = 0$ ha più soluzioni

- 1) $\exists \text{ per } z_0 \in \mathbb{R}$
- 2) $\exists ! \text{ per } z_0 \neq 0$

Osservazione

Lontano dei punti singoli costruiamo una soluzione unica

Metodo "separazione variabili"

 $g \in C(\Omega)$

 $I_0 \times \Omega_0$ intorno di $(0, z_0)$

 $g(z_0) \neq 0$ Possiamo assicurare

 $g|_{\Omega} \neq 0$

$$\frac{dz}{dt} = g(z) \quad dt = \frac{dz}{g(z)} \quad t(z) = \int_{z_0}^{z} \frac{dy}{g(y)} \quad z \in \Omega_0.$$

La soluzione unica di (SDO1) è l'inversa di t(z)

$$A(t, z(t)) := t - \int_{z_0}^{z(t)} \frac{dy}{g(t)}.$$

Il problema è equivalente a

$$\begin{cases} \dot{A} = 1 - \frac{\dot{z}(t)}{g(z(t))} = 0\\ A(0, z_0) = 0 \end{cases}.$$

Per il teorema della funzione implicita

$$A(t, z(t)) = 0.$$

Esercizio 3 foglio 1

$$\begin{cases} \dot{z} = z^2 - 1 \\ z(0) = z_0 \qquad z \in \mathbb{R} \end{cases}.$$

 $1)z_0 \in \mathbb{R}$ t.c. soluzione stazionaria

 $(2)z_0 \in \mathbb{R}$ tale che soluzione limitata

1)
$$z_0 = \pm 1$$
 p.t singolari

1)
$$z_0 = \pm 1$$
 p.t singolari
2) $z_0 \neq \pm 1$ $t(z) = \int_{z_0}^z \frac{dy}{y-1}$

$$t(z) = \frac{1}{2} \int_{z_0}^{z} \left(\frac{1}{y-1} - \frac{1}{y_1} \right) dy = \frac{1}{2} \log \frac{z-1}{z+1} \cdot \frac{z_0+1}{z_0-1}.$$

$$\frac{z-1}{z+1}\alpha_0 = e^{2t}$$

$$z(t) = \frac{\alpha_0 + e^{2t}}{\alpha_0 - e^{2t}} = 1 + \frac{2e^{2t}}{\alpha_0 - e^{2t}}$$

Se $z_0 \in (-1, 1)$ $\alpha_0 < 0$

Se
$$z_0 \in (-1,1)$$
 $\alpha_0 < 0$

la soluzione è globale e limitata

Per $z_0 \in [-1, 1]$ soluzione è limitata.

Negli altri casi la soluzione diverge.

Esercizio 2

 $t \to z(t)$ periodica

 $z(t) = \varphi_t(z_0)$ (evoluto al tempo t)

$$\exists T > 0 \quad \varphi_T(z_0) = z_0$$

$$y_0 = \varphi_s(z_0) \quad s \in \mathbb{R}$$

$$\varphi_T(y_0) = \varphi_T \varphi_s(z_0) = \varphi_{T+s}(z_0) = \varphi_s(z_0) = y_0$$

Procedura soluzione SDO1

autonomo per n=1

Passo 1

Punti singolari di g=0

Se z_0 singolare $z(t) = z_0$ $\forall t$ soluzione stazionaria

Passo 2

 z_0 tale che $g(z_0) \neq 0$

 Ω_0 intorno di z_0 massimale tale che $g|_{\Omega} \neq 0$

$$\Omega_0 \subseteq \Omega$$
 $\Omega = domg$

$$\Omega_0 = (z_0, z_1)$$

Per $z \in \Omega_0$, calcoliamo

$$t(z) = \int_{z_0}^z \frac{dy}{g(y)}.$$

tempo di raggiungimento di z (da z_0)

Passo 3

Invertiamo la funzione $z \to t(z)$ (monotonia)

Troviamo $t \to z(t) \in \Omega_0$

 $t \in I_0$ intorno di zero

Soluzione locale unica di (SDO1)

$$\left(z(t) = \frac{1}{t'(z)|_{z(t)}} = g(z(t)), \quad z(0) = z(t(z_0)) = z_0\right).$$

Teorema della funzione implicita \Rightarrow unicità

Passo 4

Estremi.

$$t_{+} := \int_{z_{0}(t_{0})}^{z_{t}(z_{0})} \frac{dy}{gy}.$$

$$t :=$$

 $|t_{\pm}|=\bar{i}nfty$ oppure $|t_{\pm}=<\infty$ $\begin{cases} \text{soluzione non globale }(z_{\pm}\in\partial\Omega) \\ \text{perdita di unicità }(z_{\pm} \text{ punto singolare di g }) \end{cases}$

2.1 Equilibri

SDO1 autonomi $g \in C^1(\Omega, \mathbb{R}^n)$

Definizione 1

z t.c. g(z) = 0 punto singolare

Anche detto punto di equilibrio di SDO1. Nel caso meccanico

$$0 = g(z) = (v, f(x, v)).$$

(x,0) t.c. f(x,0) = 0 stato di equilibrio x è detta configurazione di equilibrio

Definizione 2 (Classificazione degli equilibri)

Un punto di equilibrio z_{eq} del SDO1 è:

- 1) stabile se $\forall \varepsilon > 0$ $\bar{B}_{\varepsilon}(z_{eq}) \subset \Omega$, $\exists \delta > 0$ t.c. $\forall z_0 \in B_{\delta}(z_{eq}), z(t) \in B_{\varepsilon}(z_{eq})$
- 2) as intoticamente stabile se inoltre $\exists \delta' > 0 \ t.c. \ \forall z_0 \in B_{\delta'}(z_{eq}), \ \lim_{t \to \infty} z(t) = z_{eq}$
- 3) instabile se non è stabile