

烙爾濱工業大學

第5章随机变量的数字特征与极限定理

第28讲中心极限定理

中心极限定理

- \bullet 本讲我们来研究独立随机变量和 $\sum_{i=1}^{n} X_i \leq n \to \infty$ 时的分布问题.
- 在什么条件下极限分布会是正态的呢?
- ◆ 在概率论中,习惯于把和的分布收敛于正态分布这一类定理都叫做中心极限定理.

独立同分布下的中心极限定理

定理1 设 X_1,X_2,\cdots 是独立同分布的随机变量序列,且

$$E(X_i) = \mu, D(X_i) = \sigma^2 > 0$$
 $(i = 1, 2, \cdots)$ 存在,则对充分大的 n ,有

$$\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$$

注意

$$E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i}) = n\mu,$$

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i}) = n\sigma^{2}.$$

独立同分布下的中心极限定理

$$\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$$

$$P(a < \sum_{i=1}^{n} X_i \le b) \approx \Phi(\frac{b - n\mu}{\sqrt{n\sigma}}) - \Phi(\frac{a - n\mu}{\sqrt{n\sigma}}).$$

此定理也称为林德伯格-莱维(Lindeberg-Levi)中心极限定理.

中心极限定理的客观背景

 $X_1 \sim U(0,1)$,概率密度为f(x)

 X_1, X_2, X_3 独立同分布于U(0,1).

 $X_1+X_2+X_3$ 的概率密度h(x)

例:20个0-1分布的和的分布

中心极限定理的客观背景

$$X_1, X_2, X_3$$
独立同分布于 $U(0,1)$.

 $X_1+X_2+X_3$ 的概率密度h(x)

应用

例1 计算机在进行加法时,对每个被加数取整(取为最接近 它的整数),设所有的取整误差是相互独立的,且它们均在 (-0.5, 0.5) 上服从均匀分布. 若将1500个数相加, 问误差总 和的绝对值不超过15的概率是多少? 解 设 X_i 为第i个数的误差($i=1,2,\dots,1500$), 则 $X_i \sim U(-0.5, 0.5)$ 且 X_1, \dots, X_{1500} 独立, 令 $Z=X_1+\cdots+X_{1500}$ 则 $Z \sim N(E(Z),D(Z)).$

应用

$$\begin{array}{ccc} \overline{X} & X_i \sim U(-0.5, 0.5), E(X_i) = 0, D(X_i) = 1/12 \\ & E(Z) = E\left(\sum_{i=1}^{1500} X_i\right) = 1500E(X_i) = 0, \\ & D(Z) = D\left(\sum_{i=1}^{1500} X_i\right) = 1500D(X_i) = 1500/12 = 125, \end{array}$$

所求概率

$$P(|Z| \le 15) = P(-15 \le Z \le 15) = \Phi(\frac{15}{\sqrt{125}}) - \Phi(\frac{-15}{\sqrt{125}})$$

= $2\Phi(1.34) - 1 = 0.8198$.

棣莫佛一拉普拉斯定理

定理2 设随机变量 Y_n 服从参数n, p(0 的二项分布,则对充分大的<math>n,有

$$Y_n \sim N(np, npq), \quad (q=1-p).$$

即

$$P(a < Y_n \le b) \approx \Phi(\frac{b - np}{\sqrt{npq}}) - \Phi(\frac{a - np}{\sqrt{npq}}).$$

在实际中, 0.1 , <math>npq > 9时, 用正态近似; 当 $p \le 0.1$ (或 $p \ge 0.9$) 且 $n \ge 10$ 时,用泊松近似.

棣莫佛一拉普拉斯定理

例2 某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求 $P(14 \le X \le 30)$.

 $\mathbf{P} X \sim B(100, 0.2),$

$$P(14 \le X \le 30) \approx \Phi(\frac{30 - 100 \times 0.2}{\sqrt{100 \times 0.2 \times 0.8}}) - \Phi(\frac{14 - 100 \times 0.2}{\sqrt{100 \times 0.2 \times 0.8}})$$

$$= \Phi(2.5) - \Phi(-1.5)$$

$$= 0.9938 + \Phi(1.5) - 1$$

$$= 0.9938 + 0.9332 - 1 = 0.927.$$

谢 谢!