Effective Energy Consumption Routing Protocol in WSN for IoT Devices

ABSTRACT:

Our focus of research is mainly on the field of Internet of Things (IoT) devices. Poor IoT device management, insecure interfaces, insufficient data protection, and weak update methods are some of the key research challenges of IoT. We address the issue of energy wastage in wireless sensor networks (WSN). Wastage of energy cannot help the sensor nodes to work efficiently especially in large scale applications like IoT and can lead to division of network and can make WSN ineffective for the IoT application. To increase the lifespan of WSN, our goal is to decrease energy consumption in each node in WSN and find the shortest path between nodes in routing protocol. The available routing protocols use metrics such as number of hops for selecting a path from source to destination node. However, these metrics will result in frequent broken paths as and consumes more energy and thus decreasing the lifetime of IoT devices. One of the methods we can overcome the drawback is to implement cross-layering in WSN. The solution proposed in our paper is to use a cross layer variant of the AD Hoc On-demand Distance Vector (AODV) by using inputs like link quality index(LQI) and collision count(CC) known as energy efficient AODV (EEAODV) instead of using hop count metric.

Method proposed in our base paper is implemented in IEEE 802.15.4 in NS-2 platform. A detailed comparative analysis is done between the proposed method and the existing routing protocols as well as a graph is provided to indicate the result of the proposed routing protocol consuming lesser energy compared to the existing routing protocol.

Keywords — cross-layer, AODV, EEAODV, LQI, CC, WSN, IoT

1. Introduction:

Wireless sensor networks (WSN) have a wide range of applications in the modern world, even different intelligent Internet of Things (IoT) applications and are growing rapidly in academics. The advancement of communication and computing technology has made it possible to design sensor nodes that are more compact, less expensive, and resource-efficient (like battery, processing power and memory). These sensor nodes can build WSN as necessary using peer-to-peer topology.

Sensor nodes, which may be installed everywhere and are used to measure phenomena, are utilized in WSNs. But the resource constrained WSN nodes run on batteries with limited capacity. Replacing batteries is not an option as getting physical access of sensor node is difficult after deployment and applications must use methods that does not waste energy. Wasting energy results into partition of the network and makes WSN useless for the application, and therefore applications cannot reach it's full potential.

Researchers have provided various energy efficient solutions to solve this issue. One such method is to address each layer of protocol stack. However, the level of energy efficiency achieved using this method is restricted, and other solutions create hindrance for energy efficiency to a greater extent. By obliterating boundaries of the logical layers, information for one layer from other layers is being used to improve energy efficiency, also known as cross-layer design and without cross layering in wireless networks, loss of performance has been observed. During route discovery process, flooding of packets consumes lots of sensory energy while receiving and sending packets. Thus, the routing protocol being used for WSNs negatively impacts lifetime of the IoT applications.

Routing protocols of WSNs also uses shortest path like criteria for the selection of path from source node to a destination node. Shortest path routing metric and other of that sort selects unstable path having longer delay, depleted nodes' battery and more collisions. Depletion of energy on many nodes affects the topology and need route maintenance by exchanging more packets to re-establish the broken routes. Broken pathways initiate the route recovery process, which uses extra energy as a result.

For the WSNs, route recovery is an overhead. We should put off route recovery in order to improve energy efficiency or extend the life of the network. The topology is affected when multiple nodes lose energy, and the broken paths must be restored by exchanging more packets.

Broken pathways initiate the route recovery process, which uses extra energy as a result. For the WSNs, route recovery is a burden. We should put off route recovery in order to improve energy efficiency or extend network lifetime.

Routing protocol should select a path which is more stable and does not require selecting or re-establishing another path for the longer duration. After a path has been constructed, it is stable for a longer period of time, which lowers the overhead for the underlying routing protocol.

The method suggested in this study is a variation on the AODV protocol that takes collisions and energy into account while choosing a route. The method suggested in this research retrieves data from the physical and MAC levels, which are the bottom two layers, and is used by the network layer to choose the route.

The suggested solution retrieves collision count from MAC layer and connection quality information from PHY to create a path and assist network layer in making routing decisions. The suggested route metric selects an efficient and reliable routing path using these criteria.

The LQI values and collision detection at the PHY and MAC layers are likewise altered by the routing protocol. The method presented in this research is implemented in the well-known network simulator NS-2 by making the required modifications to the physical, MAC, and AODV protocols. The proposed solution provides LQI measurements to the MAC layer through the physical layer. LQI value is used by MAC layer to identify potential collisions. If a collision occurs, the collision count value is updated at the MAC layer. The proposed approach communicates collision count and LQI value to the network layer. The network layer intelligently chooses a stable short path using these variables.

2. Related Work

- In paper [1], the main objective is to present a new strategy for selecting an ideal way between the hubs for information transmission in portable network for improving communication between sensors. The algorithm brings changes to the AODV protocol such as reduced start to finish delay time and lower directing overhead. This research work can be extended further by considering various parameters like trust, remaining energy, transmission capacity, sign to commotion proportion in choosing the ideal way among various courses and another drawback is the security provided by sending information packets in various ways will make it difficult for malicious hubs to differentiate the true information being communicated by the source.
- In paper [2] the key objective is to increase throughput performance and improve overall lifetime of the cognitive radio based WSN. The proposed EAQ-AODV uses Q-learning based reward mechanism for cluster head selection and AODV enabled routing protocol based on different parameters such as Residual Energy, Common Channel and Trust Factor to establish the routing path. The routing protocol achieves an improved performance in terms of average end-to-end delay, average energy consumption and network lifetime when compared with the existing techniques. The drawback of the research is the research work only deals with static nodes and must be extended mobile nodes as well.
- In paper [3], the research work focuses on improving WSN security by developing an efficient algorithm which would detect security breaches and harmful nodes in sensors. A Trust-Aware Dynamic Routing algorithm based on Extended AODV protocol for secure communications in the WSN (TADR-EAODV) is developed considering factors such as trust, energy rate to measure the distributed safety among various section of nodes during routing. We use the AODV protocol for multiroute routing approach. A centralized ensemble clustering for node grouping is included in the proposed algorithm, to enable clustering-based routing to enhance

WSN performance. TADR-EAODV can detect anomalous behaviour of attackers and has improved the average packet transfer significantly in comparison to existing trust aware algorithms. However, this research work is not effective for multiple mobile links.

- In paper [4], this research work focuses on selects an effective route for the creating
 a structured multicast tree and selecting a unique group leader in the multicast
 group to share and exchange information among group members. ECA-MAODV
 performs better than other routing protocols with higher network lifetime, better
 throughput, lesser data packet loss ratio, average latency, and an average number of
 events processed.
- In paper [5], our goal is to enhance energy consumption in WSN and finds the shortest path between nodes in routing protocol. The method Implemented is the cross-layering variant of the AD Hoc On-demand Distance Vector (AODV) by using link quality index and collision count instead of using hop count metric parameter. The drawback is WSN complexity due to cross layering is not taken into consideration.
- In paper [6], the objective is to enhance FANET (flying Ad-hoc network) performance with regard to providing more connectivity and reliability to the network. An algorithm namely CLEA_AODV is developed, which reached much higher PSR (packet success ratio) rate when compared with other protocols like AODV, SOC-GSO, and EENFC.

				T			
Algorithm	Objective	Methodolo	Input	Requireme	Achieved	Simulator	Limitations
& Year of		gy	Metrics for	nt	enhancemen	/	
publicatio			making	/Assumptio	ts	Machine	
n			decision	n		learning	
						concept	
Q-learning	achieve an	the solution	Residual	every	achieves an	MATLAB	The
based	improved	uses	Energy,	sensor node	improved	tool and	research
reward	performance	combined	Common	knows its	performance	NS-2	only deals
mechanis	in terms of	cognitive	Channel,	own	regarding		with static
m for	average end-	radio as	Number of	location,	average end-		nodes and
cluster	to-end delay,	well as	Hops,	residual	to-end delay,		must be
head	average	sensor	Licensed	energy, and	average		extended
selection	energy	network	Channel,	it's	energy		mobile
and AODV	consumption	method.	Communicati	neighbour's	consumption		nodes as
enabled	and network	Combined	on Range	information	and network		well
routing	lifetime.	reinforcem	and Trust	such as its	lifetime		
protocol		ent learning	Factor to	location,			
		and AODV	establish the	energy, and			
Published		protocol for	routing path.	available			
in 2022		cognitive		channels.			
		radio					
		sensor					
		networks is					
		also used.					
Trust	To improve	а	direct trust,	In energy	Increases	MATLAB	More
Aware	WSN security	centralized	recommende	model	packet	R2022a	research
dynamic	by developing	ensemble	d trust,	assume size	delivery rate	simulator	needs to be
routing	an efficient	clustering	connectivity	of control	and identifies		done on
algorithm,	algorithm	for node	strength,	packets as	malicious		multiple
	which would	grouping	energy rate	25 bits and	nodes, hence		mobile links
Published	detect security		and	initial	leading to		
in 2022	breaches and		worthiness	energy (E0)	more secure		
	harmful nodes		score	of all nodes	communicati		
	in sensors			is assumed	on and		
				to be	reduces		
				uniform	energy		
				and set to	consumption.		
				0.5 J			

			1				
ECA-MODV	The ECA-	ECA-based	Inputs such	When the	ECA-MAODV	NS-3	
(Event	MADOV	path	as hop count,	transmitted	performs		
Condition	protocol	selection	energy level,	packet is	better than		
Action)	selects an	consists of	processor	not	other routing		
based	effective route	blocks like	speed,	received by	protocols		
Multicast	for creating a	routing	bandwidth,	the	with regards		
Ad hoc On-	structured	metrics,	throughput,	member of	to lifespan of		
demand	multicast tree	logic, route	buffer	the	the network,		
Distance	and selecting a	rating,	occupancy,	multicast	better		
Vector	unique group	inference	battery	group in a	throughput,		
	leader in the	module,	capacity	given time,	lesser data		
Published	multicast	and optimal		we assume	packet loss		
in 2022	group to share	route to		that packet	ratio,		
	and exchange	perform		is a lost	average		
	information	certain		packet.	latency, and		
	among group	functions			an average		
	members	like creating			number of		
	using	a multicast			events		
	Computational	routing			processed.		
	Intelligence	control					
	(CI)	packet,					
	method	enabling					
		hello packet					
Cross-	To improve	Uses cross	Parameters	The source	CLEA_AODV	Mainly	
Layer and	FANET (flying	layering	which effects	node is	reached	NS-2 tool,	
Energy-	Ad-hoc	approach	FANET	fixed, and	much higher	along with	
Aware Ad-	network)	and the	routing	the	PSR (packet	C++ and	
hoc On-	performance	proposed	process are	destination	success ratio)	tcl scripts	
demand	with regard to	protocol	threshold	node is	rate when	to execute	
Distance	providing	was	values,	dynamic.	compared	energy	
Vector	more	constructed	fitness		with other	aware	
(CLEA-	connectivity	based on	calculation		protocols like	FANET	
AODV)	and reliability	the	bandwidth,		AODV, SOC-		
routing	to the network	combined	hop count,		GSO, and	AWK	
protocol		СН	energy		EENFC.	language	
		selection	consumption			is used to	
Published		and a	, and delay			analyze	
in 2022		cooperative				results of	
		MAC				simulation	
		model.					

Multiple	presents a	Two	Depends on	Any source	The	NS-2 re-	This
Metric	new strategy	courses are	various	node and	algorithm	enactmen	research
based	for selecting	found	parameters	destination	brings	t	work can be
Twofold	an ideal way	between	like	node must	changes to	apparatus	extended
Route	between the	the source	separating	be fixed	the AODV	is used.	further by
Selection	hubs for	and	space		protocol such	Re-	considering
AODV	information	objective	between the		as reduced	enactmen	various
Routing	transmission	and	hubs,		start to finish	t climate is	parameters
protocol	in portable	afterward	bounces		delay time	when	like trust,
(MMBTRS_	network for	by	check, trust		and lower	more than	remaining
AODV)	improving	considering	esteems,		directing	1000 m *	energy,
	communicatio	the	leftover		overhead.	1000 m	transmissio
Published	n between	separation	energy, delay			network	n capacity,
in 2020	sensors.	metric ideal	signal quality			size is	sign to
		course is				used along	commotion
		chosen for				with 50	proportion
		information				portable	in choosing
		transmissio				hubs.	the ideal
		n between					way among
		the hubs.					various
							courses.
EEAODV	Enhance	cross layer	Uses Link	Must	Energy	NS-2	WSN
(Energy	energy	variant of	quality Index	receive	consumption		complexity
efficient	consumption	the AD Hoc	(LQI) and	minimum	is reduced		due to cross
AODV)	in WSN and	On-demand	collision	transmissio	compared to		layering is
Routing	checks for the	Distance	count (CC) as	n power	other routing		not
protocol	shortest path	Vector	routing	requiremen	protocols		considered
	between	(AODV) by	metric inputs	t from all			
Published	nodes in	using link		neighbourin			
in 2022	routing	quality		g nodes			
	protocol	index and					
		collision					
		count					
		known as					
		energy					
		efficient					
		AODV					
		(EEAODV)					

3. Proposed Methodology

In these algorithms, we implement queues to reduce collision and decrease the packets from dropping. When a packet is sent, it is stored in the queue and comes out in the order of First In First Out. Collisions cause a lot of energy wastage and decrease the throughput. With the implementation of queues, we attempt on getting better throughput and energy conservations.

We also use Collision Count in an advanced form in the implementation of the algorithms to give us better result. We use Z-Score in the algorithms.

$$ZScore = \frac{CCi - \mu}{\sigma}$$

Here, σ is the standard deviation and equals 5.567 and μ is the mean of all Collision Counts.

The ZScore was never implemented in the original paper. It was ideated and never used. We try to use the ZScore in the algorithms. By trial and error method we figured out that if ZScore is above 2.27 for a node, causing a delay while sending the ACK packet is better, otherwise there will be more chances of a collision occurring and a packet getting dropped.

The queue in the algorithm also betters the throughput as the threshold of packets is increased.

Extension of the Ad-hoc On-Demand Distance Vector (AODV) routing protocol is the method suggested in this study. Hop count is a routing measure used by AODV.

For WSNs with limited resources, using the shortest way results in issues including unstable paths, excessive energy usage, lower QoS, and shorter lifespans.

In the current paper, they've only played with concepts of Link Quality Indicator, Collision Count and Time To Live, but never delved deep in the concepts of ZScore and it's implications and benefits of using it in the algorithms.

The following is the path selection procedure from source node to destination node: The suggested solution employs a routing measure at the network layer that combines collision count and LQI. It is necessary to first normalise the values of link quality indicator and collision count before giving them equivalent weights in the calculation of the routing measure. The maximum link quality indicator value, 255, is used to normalise link quality indicator numbers, and the ZScore normalisation procedure is used to normalise collision count statistics.

The best path is chosen upon the final ZScore. And it is calculated multiple times. The aforementioned algorithm has been put into practise and integrated into the well-known and respected network simulator NS-2 in order to test and validate the suggested methodology. The first sub-part of this section contains a list of the simulation parameters. The findings for the proposed method's validation are derived from trace files produced following simulation runs.

4. Simulation and Analysis

The aforementioned algorithm has been put into practise and integrated into the well-known and respected network simulator NS-2 in order to test and validate the suggested methodology. The first sub-part of this section contains a list of the simulation parameters. The findings for the proposed method's validation are derived from trace files produced following simulation runs.

We have calculated results of the first 10 intervals of 3 seconds each and compared the residual energy of the given algorithm with our improvements. Ultimately, we have also compared the final residual energy remaining.

The fundamental goal of the suggested strategy is energy efficiency. Network longevity is increased through energy efficiency. According to the literature, the period between the start of the simulation and the moment when any one of the nodes in the WSN reaches full energy depletion defines the network's lifetime.

The graph above shows an end-to-end delay analysis using the suggested approach and EEAODV methodologies from the base paper for residual energy.

The final residual energy is increased by 9.16% after the entire simulation.

The graph above shows an end-to-end delay analysis using the suggested approach and EEAODV methodologies from the base paper for throughput.

The throughput is increased by 3.22% in the modified code.

The graph above shows an end-to-end delay analysis using the suggested approach and EEAODV methodologies from the base paper for PDR.

The throughput is increased by 3.22% in the modified algorithm.

5. Conclusion and Future Work:

Battery replacement for Internet of Things applications is challenging despite the fact that batteries are not always efficient. Energy consumption on each node and longevity of the total network is a genuine challenge for the uninterrupted and long-term operation of WSN and IoT applications, which has been solved by the solution presented in this research. The method described in the study decreases energy consumption per node, extending the lifespan of WSN.

Conventional routing techniques and non-cross-layer routing will frequently result in broken pathways, consuming more energy on each node and shortening the network lifetime. The suggested solution uses a mix of connection quality and collision count to replace traditional metrics like hop count.

Our approach, which is implemented in the Network Simulator NS-2, substitutes traditional metrics like hop count with a mix of connection quality and collision count. Future WSN

complexity can be reduced by the suggested method since cross-layer design would use data from all levels while making judgments. One of our techniques (CLB) chooses less frequently used nodes when choosing a route. However, the CLB does not attain energy efficiency for each correctly sent bit using this kind of selection approach.

6. References:

- [1] M. Anand, K. Thinakara, N. Kalyana Sundaram, M. Anbarasan, "Multiple metric based Twofold Route Selection AODV routing protocol for improved communications on MANET for industrial automation"
- [2] Ranjita Joon, Parul Tomar, "Energy Aware Q-learning AODV (EAQ-AODV) routing for cognitive radio sensor networks"
- [3] Zhe Yang, Lingzhi Li, Fei Gu, Xinghong Ling, Maryam Hajiee, "TADR-EAODV: A trust-aware dynamic routing algorithm based on extended AODV protocol for secure communications in wireless sensor networks"
- [4] Chandrashekhar Pomu Chavan, Pallapa Venkataram, "Design and implementation of event-based multicast AODV routing protocol for ubiquitous network"
- [5] Nilesh Kumar R. Patel , Shishir Kumar , and Sanjay Kumar Singh (Senior Member, IEEE) , "Energy and Collision Aware WSN Routing Protocol for Sustainable and Intelligent IoT Applications"
- [6] Hassnen Shakir Mansour, Mohammed Hasan Mutar, Izzatdin Abdul Aziz, Salama A. Mostafa, Hairulnizam Mahdin, Ali Hashim Abbas, Mustafa Hamid Hassan, Nejood Faisal Abdulsattar and Mohammed Ahmed Jubair, "Cross-Layer and Energy-Aware AODV Routing Protocol for Flying Ad-Hoc Networks"