Tic Tac Toe

Introduction:

This is a detailed report of the Implementation of the Tic Tac Toe game. It is assumed that the player will play optimally. While referring cases consider symmetric moves as well.

Case1) Player plays First(X), Computer second(O).

Player plays odd moves, Computer even.

Move 2-

About Hard-coded Moves-The decisions have been taken after a thorough study of the cases to avoid a fork by the player.

The possible ways the player may have played are-

- a) Centre b) Corner c)Edge
- a)**For Centre**-Playing an edge can lead to a sure-shot loss. The Player can create a fork as shown.

?OX ?23

?XX ?15

O?? 4??

So play any one corner. A Random corner is selected using function-getRandomCorner()

b) **For Corner**- Playing an edge leads to similar fork as shown above. Playing a corner can lead to fork as well.

O?X 2?1 XOX 341

?XX ?53 ??? ???

??O ??4 O?X 2?5

So play Centre.

c) For Edge- Play any one among 2 corners adjacent to the 1st move. Other moves will lead to fork.

OXX	413	413	OXX
?X?	?5?	?52	?XO
??O	??2	???	???

Move 4, Move 6, Move 8-

- Use minimax algorithm to find best possible move. A depth level value of recursion is subtracted/added to find shortest win move.
- Also in minimize part of minimax algorithm, since the user decides the input, if worst-case scenario is draw then the best case move (winning moves if possible) is selected.

It is demonstrated as follows-

If game moves are as follows-

??X ??1

XOO 524

??X ??3

Place 1,7 draw the game for sure. Also if user plays correctly then only Place 2,8 give a draw.

Thus worst case is draw and best case is win at Place 2,8 if user plays incorrect.

Thus the output is-

?OX ?61

XOO 524

??X ??3

Author

Rajvaibhav Rahane