# October-2021-Exam

## Christophoros Spyretos

# Exercise 1 Derivations and comparing posterior distributions

Task a,b and c is a hand written solution

### Task d

```
set.seed(1)
LogPost <- function(theta, n, sumx){</pre>
  LogLik \leftarrow sumx*log(theta) - n*theta
  LogPrior <- 2*log(theta) - 0.5*theta</pre>
  return(LogLik + LogPrior)
theta <- seq(3,7,0.01)
n <- 15
sumx <- 75
posterior <- LogPost(theta, n, sumx)</pre>
posterior_dens <- exp(posterior)</pre>
norm_posterior <- posterior_dens/(0.01*sum(posterior_dens))</pre>
df_posterior <- data.frame("theta" = theta, "dens" = norm_posterior)</pre>
ggplot(df_posterior) +
  geom_line(aes(x=theta,y=dens), color = "navy") +
  ggtitle("Posterior Distribution of theta") +
  ylab("Density") +
  theme_classic()
```

# Posterior Distribution of theta



## Task e



The posterior approximation is very accurate, however the exact posterior distribution is slightly skewed to the right.

theta

#### Task f

```
set.seed(12345)

N <- 1000
T_x_rep <- matrix(NA, nrow = N,ncol = 1)

for (i in 1:N) {
    theta <- rgamma(1, shape = 3 + sumx, rate = n + 0.5)
    x_rep <- rpois(n,theta)
    T_x_rep[i,1] <- max(x_rep)
}

prob <- mean(T_x_rep > 14)
```

The posterior predictive p-value is 0.002. It is not reasonable to think that the maximum value of 14 from Gunnar originates from the Poisson distribution in this problem, because the probability is low.

## Exercise 2

```
source("ExamData.R")
```

### Task a

```
set.seed(12345)

mu_0 <- rep(0,3)
sigma_0 <- 16*diag(3)
nIter <- 10000

#BayesLogitReg <- function(y, X, mu_0, Sigma_0, nIter)
PosteriorDraws <- BayesLogitReg(y,X,mu_0,sigma_0,nIter)

betas <- PosteriorDraws$betaSample

interval <- quantile(betas[,2], probs =c(0.05,0.95))

df_interval <- data.frame("lower_bound" = interval[1], "upper_bound" = interval[2])
colnames(df_interval) <- c("lower bound", "upper bound")
rownames(df_interval) <- c("90% Equal Tail Credible Interval")
knitr::kable(df_interval)</pre>
```

|                                  | lower bound | upper bound |
|----------------------------------|-------------|-------------|
| 90% Equal Tail Credible Interval | 0.1905025   | 1.891257    |

It is 90 % posterior probability that beta\_1 is on the interval (0.19,1.89).

#### Task b

```
prob <- mean(betas[,3] > 0)
```

The posterior probability that  $\beta_2 > 0$  approximately equals 0.88, the probability shows that  $x_2$  has a positive effect on  $p_i$  when  $x_2$  changes from 0 to 1.

## Task c

```
prob_joint <- mean(betas[,2] + betas[,3]> 0)
```

The joint posterior probability that both  $\beta_1 > 0$  and  $\beta_2 > 0$  is approximately 0.96.

#### Task d

```
p_j <- exp(betas[,1])/(1 + exp(betas[,1]))

p_j_dens <- density(p_j)

df_p_j <- data.frame("x" = p_j_dens$x, "y" = p_j_dens$y)

ggplot(df_p_j) +
    geom_line(aes(x=x, y=y), color = "navy") +
    ggtitle("Posterior Distribution of p_j") +
    xlab("") +
    ylab("Density") +
    theme_classic()</pre>
```

# Posterior Distribution of p\_j



```
x1_grid \leftarrow seq(min(X[,2]), max(X[,2]), 0.01)
p_k <- matrix(NA, nrow = length(x1_grid), ncol = 1)</pre>
intervals <- matrix(NA, nrow = length(x1_grid), ncol = 2)</pre>
for (i in 1:length(x1_grid)){
  pred <- betas %*% c(1,x1_grid[i],1)</pre>
  p_k \leftarrow \exp(pred)/(1 + \exp(pred))
  intervals[i,] \leftarrow quantile(p_k, probs = c(0.025,0.975))
}
df_intervals <- as.data.frame(intervals)</pre>
colnames(df_intervals) <- c("low", "upper")</pre>
df_intervals$x1 <- x1_grid</pre>
ggplot(df_intervals) +
  geom_line(aes(x=x1, y=low), color = "navy") +
  geom_line(aes(x=x1, y=upper), color = "navy") +
  ggtitle("95% Posterior Probability Intervals as a Function of x1") +
  ylab("") +
  theme_classic()
```





## Exercise 3

Task a is a hand written solution

### Task b

```
set.seed(12345)

N <- 1000
x_pred <- matrix(NA, nrow = N, ncol = 1)

for (i in 1:N){
    mu <- rnorm(1, mean = 92, sd = 2)
    x_pred[i,1] <- rnorm(1, mean = mu, sd = sqrt(50))
}

x_pred_dens <- density(x_pred)

df_x_pred_dens <- data.frame("x" = x_pred_dens$x, "y" = x_pred_dens$y)

ggplot(df_x_pred_dens) +
    geom_line(aes(x=x,y=y), color = "navy") +
    ggtitle("Posterior Distribution of x_{n+1}") +
    xlab("x_{n+1}") +
    ylab("Density") +
    theme_classic()</pre>
```



## Task c

```
set.seed(12345)
utility_functiom <- function(c, mu){
  res \leftarrow 60 + sqrt(c) * mean(log(mu)) - c
  return(res)
}
c \leftarrow seq(1,7,0.01)
N <- 10000
expected_utility <- matrix(NA, nrow = length(c), ncol = 1)</pre>
count <- 0
mu \leftarrow rnorm(10000, mean = 92, sd = 2)
for (i in c){
  count <- count + 1</pre>
  expected_utility[count] <- utility_functiom(i,mu)</pre>
}
optimal_c <- c[which.max(expected_utility)]</pre>
plot(c,expected_utility, col = "navy", type = "1")
points(optimal_c,utility_functiom(c=optimal_c,mu), col = "red",pch=19)
```



A company should spend 5.11 MSEK on advertisements.