

Data Science Virtual Internship

Data Science :: Healthcare

Persistency of a Drug :: Final Project

Final Presentation

Ugur Selim Ozen 18-Dec-2021

Methodology

 Data Cleaning and Transformation Exploratory Data Analysis Feature Engineering Model Evaluation Interpreting Results

Utilized Technologies

Background – Healthcare :: Persistency of a Drug

- One of the challenge for all Pharmaceutical companies is to understand the persistency of drug as per the physician prescription. To solve this problem ABC pharma company approached an analytics company to automate this process of identification.
- Objective: With an objective to gather insights on the factors that are impacting the persistency, build a classification for the given dataset.

The analysis has been divided into 3 parts:

- Data-Business Understanding
- Finding key insights from dataset about features
- Recommendations for pharmaceutical companies

Data Cleaning and Transformation

Total features : 69

Total observations: 3424Null or Missing values: 0

Dataset size : 1.8 MB

Assumptions:

- By checking null values in all features, we can see there is **no null values** but now we need to focus on much more to observe any missing or unknown value assigned for null values.
- This is a classification problem so we can impute null or missing values generally with two approaches; first one is filling with most recurring value (mode) and second one is we can categorize the missing values with some value like 'Missing' or 'Unkown'.
- In this dataset **null or missing values were filled 'Unkown'** value therefore we can apply first method which is filling with mode.
- Filling with mode operation is made for only 4 columns; Race, Ethnicity, Region and Ntm_Speciality because in other columns, ratio of 'Unknown' is more than %50 that means 'Unknown' itself is mode in column so it can be meaningless and not correct operation for other columns.
- Generally, for the classification problems we can have imbalanced dataset in real-life, we can say that this dataset is imbalanced, so we need to apply oversampling or undersampling methods in model building step.

Total Drug Persistency Analysis

Total Drug Persistency Overview

As seen from this Pie Chart; The total **number of non-persistent drug** is approximately **1.7 times** that of **persistent drug**, so it means that dataset is imbalanced.

Change_T_Score

	Change_T_Score	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO	
3	Improved	66.0	94.0	70.212766	
2	Worsened	107.0	173.0	61.849711	
0	No change	701.0	1660.0	42.228916	
1	Unknown	415.0	1497.0	27.722111	

Change_T_Score vs. Persistency_Flag

Change_Risk_Segment

	Change_Risk_Segment	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
2	Worsened	73.0	121.0	60.330579
3	Improved	13.0	22.0	59.090909
1	No change	431.0	1052.0	40.969582
0	Unknown	772.0	2229.0	34.634365

Change_Risk_Segment vs. Persistency_Flag

Adherent_Flag

	Adherent_Flag	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1	Non-Adherent	106.0	173.0	61.271676
0	Adherent	1183.0	3251.0	36.388803

Adherent_Flag vs. Persistency_Flag

Dexa_Freq_During_Rx

Dexa_Freq_During_Rx PERSISTENCY_NUMBER TOTAL_CASE PERSISTENCY_RATIO 51.0 51.0 100.000000 94.117647 51.0 48.0 258.0 10 304.0 84.868421 79.040404 313.0 396.0 9 7.0 10.0 70.000000 6.0 9.0 66.666667 8.0 14.0 57.142857 25.0 50.0 50.000000 573.0 2488.0 23.030547 0 0.000000 0.0 51.0

Dexa_Freq_During_Rx vs. Persistency_Flag

Comorb_Long_Term_Current_Drug_Theraphy

	Comorb_Long_Term_Current_Drug_Thera	ару	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1		1	557.0	817.0	68.176255
0		0	732.0	2607.0	28.078251

Comorb_Long_Term_Current_Drug_Therapy vs. Persistency_Flag

Comorb_Other_Disorders_of_Bone_Density_and_Structure

	Comorb_Other_Disorders_Of_Bone_Density_And_Structure	e F	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1	1		342.0	518.0	66.023166
0	0)	947.0	2906.0	32.587749

Comorb_Other_Disorders_Of_Bone_Density_And_Structure vs. Persistency_Flag

Comorb_Gastro_Esophageal_Reflux_Disease

	Comorb_Gastro_esophageal_reflux_diseas	e	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1		1	379.0	630.0	60.158730
0		0	910.0	2794.0	32.569792

Comorb_Gastro_esophageal_reflux_disease vs. Persistency_Flag

Concom_Cephalosporins

	Concom_Cephalosporin	15	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1		1	367.0	603.0	60.862355
0		0	922.0	2821.0	32.683446

Concom_Cephalosporins vs. Persistency_Flag

Concom_Macrolides_and_Similar_Types

Co	oncom_Macrolides_And_Similar_Types	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1	1	352.0	571.0	61.646235
0	0	937.0	2853.0	32.842622

Concom_Macrolides_And_Similar_Types vs. Persistency_Flag

Concom_Broad_Spectrum_Penicillins

	Concom_Broad_Spectrum_Penicillins	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1	1	275.0	439.0	62.642369
0	0	1014.0	2985.0	33.969849

Concom_Broad_Spectrum_Penicillins vs. Persistency_Flag

Concom_Anaesthetics_General

Concom_Anaesthetics_Gen	eral	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
1	1	317.0	497.0	63.782696
0	0	972.0	2927.0	33.208063

Concom_Anaesthetics_General vs. Persistency_Flag

Concom_Viral_Vaccines

Concom_Viral_Vaccines		PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO	
1	1	245.0	353.0	69.405099	
0	0	1044.0	3071.0	33.995441	

Concom Viral Vaccines vs. Persistency Flag

Risk_Untreated_Chronic_Hyperthyroidism

	Risk_Untreated_Chronic_Hyperthyroidisr	m	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
0		0	1289.0	3422.0	37.66803
1		1	0.0	2.0	0.00000

Risk_Untreated_Chronic_Hyperthyroidism vs. Persistency_Flag

Risk_Immobilization

	Risk_Immobilization	PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO
0	0	1289.0	3410.0	37.800587
1	1	0.0	14.0	0.000000

Risk_Immobilization vs. Persistency_Flag

Count_of_Risks

	Count_Of_Risks	Count_Of_Risks PERSISTENCY_NUMBER T		PERSISTENCY_RATIO	
5	6	9.0	15.0		60.000000
6	5	4.0	8.0		50.000000
4	4	41.0	91.0		45.054945
3	3	138.0	317.0		43.533123
1	2	314.0	781.0		40.204866
2	1	471.0	1242.0		37.922705
0	0	312.0	970.0		32.164948

Count_Of_Risks vs. Persistency_Flag

Dexa_During_Rx

	Dexa_During_Rx		PERSISTENCY_NUMBER	TOTAL_CASE	PERSISTENCY_RATIO	
1		1	716.0	936.0		76.495726
0		0	573.0	2488.0		23.030547

Dexa_During_Rx vs. Persistency_Flag

Ntm_Speciality

8	9	4.0	4.0	100.000000
3	8	163.0	244.0	66.803279
6	7	8.0	13.0	61.538462
1	6	232.0	468.0	49.572650
7	5	6.0	14.0	42.857143
2	4	228.0	604.0	37.748344
0	3	632.0	1968.0	32.113821
5	2	13.0	49.0	26.530612
9	1	3.0	14.0	21.428571
4	0	0.0	46.0	0.000000

Ntm_Speciality PERSISTENCY_NUMBER TOTAL_CASE PERSISTENCY_RATIO

Final Recommendations-I

- 1. Following features are **certainly (%100) has PERSISTENT value** so if your case has following values you have **caught some** wanted cases;
- Ntm_Speciality = 9
- Dexa_Freq_During_Rx = 12
- 2. Following features are very likely (%80-%100) has PERSISTENT value so if your case has following values you may caught some wanted cases;
- Dexa_Freq_During_Rx = 10
- Dexa_Freq_During_Rx = 11
- **3.** Following features are **likely (%60-%80) has PERSISTENT value** so if your case has following values **it is possible that catching some wanted cases** ;
- Ntm Speciality = 7
- Ntm_Speciality = 8

Final Recommendations-II

- Dexa_During_Rx = 1 (Yes)
- Count_Of_Risks = 6
- Concom_Viral_Vaccines = 1 (Yes)
- Concom_Anaesthetics_General = 1 (Yes)
- Concom_Broad_Spectrum_Penicillins = 1 (Yes)
- Concom_Macrolides_And_Similar_Types = 1 (Yes)
- Concom_Cephalosporins = 1 (Yes)
- Comorb Gastro esophageal reflux disease = 1 (Yes)
- Comorb_Other_Disorders_Of_Bone_Density_And_Structure = 1 (Yes)
- Comorb_Long_Term_Current_Drug_Therapy = 1 (Yes)
- Dexa_Freq_During_Rx = 4
- Dexa_Freq_During_Rx = 8
- Dexa_Freq_During_Rx = 9
- Adherent_Flag = 'Non-Adherent'
- Change_Risk_Segment = 'Worsened'
- Change_T_Score = 'Improved'
- Change_T_Score = 'Worsened'

Final Recommendations-III

- **4.** Following features are **certainly (%100) has NON-PERSISTENT value** so if your case has following values there is **no need to focus on it anyway**;
- Ntm_Speciality = 0
- Risk_Immobilization = 1 (Yes)
- Risk_Untreated_Chronic_Hyperthyroidism = 1 (Yes)
- Dexa_Freq_During_Rx = 0

Correlation Heatmap

Recommended Modeling Technique

- For this dataset, modeling will be made with 67 features using OneHotEncoding and oversampling methods.
- 3 features (Count_Of_Risks , Ntm_Speciality , Dexa_Freq_During_Rx) have transformed in feature engineering step and any extra column has not derivated from dataset.
- I am planning to use following machine learning algorithms in dataset modelling step (train-validation-test);

- 1. Decision Tree Classifier
- 2. Random Forest Classifier
- 3. Logistic Regression
- 4. CatBoost Classifier

Model Prediction Test Results

Model Algorithm	Recall - 0	Recall - 1	F1 Score - 0	F1 Score - 1	5-Fold Cross Validation Recall	5-Fold Cross Validation F1 Score
Decision Tree Classifier	0.79	0.57	0.79	0.57	0.624	0.622
Random Forest Classifier	0.89	0.67	0.87	0.70	0.615	0.674
Logistic Regression	0.86	0.75	0.87	0.73	0.651	0.686
CatBoost Classifier	0.91	0.67	0.88	0.72	0.635	0.695

Feature Importance

ROC Curve

Interpreting Results

I have decided to use **Logistic Regression** model.It is very **fast and stable** according to CatBoost Classifier model also it's **Recall-1 score** is greater than CatBoost one. That means we can have **more gain** by catching **the true positive cases**.

Selected Model Confusion Matrix

Thank You

