Audio Signal Processing

With Python

Require these module

import sounddevice as sd import soundfile as sf from scipy.io.wavfile import write import matplotlib.pyplot as plt import numpy as np

You can use the base environment too

ANACONDA NAVIGATOR

Do pip install

```
(testing) C:\Users\user>pip install soundfile
  (testing) C:\Users\user>pip install sounddevice
  (testing) C:\Users\user>pip install scipy
```

Plotting signal in time domain

script_01_plot_signal.py

Sound analysis

- Purpose is to experiment with simple technique to detect the presence of voice in a quiet enviornment
- script_02_run_sound_analysis_in_time_domain.py

Do audio recording

Record your own voice saying 4-5 words

```
#%% Do audio recording
# Parameter
filename = 'output.wav'
fs = 44100 # Sample rate
seconds = 3 # Duration of recording
```

```
myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=2)
sd.wait() # Wait until recording is finished
write(filename, fs, myrecording) # Save as WAV file
```

Sound playback

#%% Playback the recorded sound

```
filename = 'output.wav'

# Extract data and sampling rate from file
data, fs = sf.read(filename, dtype='float32')
sd.play(data, fs)
status = sd.wait() # Wait until file is done playing
```

```
#%% Display the recorded sound waveform (plot signal in time domain)
plt.figure(1)
sig1 = myrecording[:,1] # pick channel 1 of stereo audio stream
plt.plot(sig1)
print(" Total samples for {} secs recorded sound = {}
".format(seconds,len(sig1)))
# Show time in secs for x axis
T = 1/fs # sampling period
tvec = T * np.arange(len(sig1))
plt.figure(2)
plt.plot(tvec,sig1)
stringt = "Recorded sound of {} secs".format(seconds)
plt.title(stringt)
plt.show()
```

A waveform with with integer indexs (sample number)

Hear my recorded sound hello, hello, testing testing

• X axis in time

Play selected segment

```
#%% Plot only selected sound segment
t start = 1.0
t end = 3 # sec
n1 = int( np.floor(t_start/T) )
n2 = int( np.floor(t_end/T) )
sig1_sel = sig1[n1:n2+1] # include n2
numPt = len(sig1_sel)
tvec = T * np.arange(n1,n1+numPt)
plt.figure(3)
plt.plot(tvec,sig1 sel)
stringt = "Recorded sound of {} secs to {} secs".format(t_start, t_end)
plt.title(stringt)
plt.show()
# Play only selected segment
sd.play(sig1_sel, fs)
status = sd.wait() # Wait until file is done playing
```

Recorded sound of 1.0 secs to 3 secs

Challenge exercise for students

- Design a voice activity detector
- Write a program to monitor the sound of a quite room during an online test
- Print out an alert when a sound of somebody speaking is detected