

### UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE TECNOLOGIA ÁREA DE ELETRÔNICA

# Problema #2 - 2024.1

## **Barramento**

#### 1. Tema

Conversas entre Hardware e Software

# 2. Objetivos de Aprendizagem

Ao final da realização deste problema, o/a discente deverá ser capaz de:

- Aplicar conhecimentos de interação hardware-software;
- Compreender o mapeamento de memória em uma arquitetura ARM;
- Utilizar a interface de conexão entre HPS e FPGA da DE1-SoC:
- Programar em C para um processador com arquitetura ARM;
- Entender políticas de gerenciamento de sistema operacional Linux em arquitetura ARM;
- Compreender os princípios básicos da arquitetura da plataforma DE1-SoC.

### 3. Problema

O discente Gabriel Sá Barreto Alves em suas atividades de iniciação científica e em seu trabalho de conclusão de curso, projetou e implementou um Processador Gráfico que permite mover e controlar elementos em um monitor VGA com resolução de 640×480 *pixels*. Este processador permite desenhar dois tipos de polígonos convexos (Quadrado e Triângulo) e uma quantidade determinada de *sprites*. Durante o desenvolvimento, Gabriel utilizou como unidade de processamento principal o NIOS II. Ele foi embarcado na mesma FPGA que o Processador Gráfico. A figura 1 ilustra a arquitetura desenvolvida.



Figura 1: Arquitetura desenvolvida.

A plataforma DE1-SoC possui um processador ARM (HPS) que dispensa o uso do NIOS II. Essa "facilidade" resulta em um problema: Como o HPS "conversará" com o Processador Gráfico que está na FPGA?

Sua equipe está incubida de desenvolver módulos de Kernel no HPS para o Processador Gráfico. Visando facilitar a vida do programador, também será necessário desenvolver uma biblioteca em C. O trabalho de Conclusão de Curso de Gabriel pode ser acessado em: https://drive.google.com/file/d/1MIIIpB9TSnoPGEMkocr36EH9-CFz8psO/view

Observação: Compreender o Processador Gráfico é mandatório para este desenvolvimento.

### 4. Requisitos

O problema a ser desenvolvido no Kit de desenvolvimento DE1-SoC deve atender às seguintes restrições:

- 4.1. O código deve ser escrito em linguagem C;
- 4.2. A biblioteca deve conter no mínimo uma função para cada Instrução do Processador Gráfico;
- 4.3. A biblioteca deve seguir as recomendações descritas em: https://github.com/MaJerle/c-code-style

### 5. Produto

Todo o projeto deverá ser disponibilizado na plataforma GitHub. No prazo indicado no cronograma a seguir, cada equipe deverá apresentar:

- 5.1. Levantamento de requisitos;
- 5.2. Código
  - Código em linguagem C ilustrando todos os entes disponíveis no Processador Gráfico. A figura 2 contém um exemplo de como deve ser a imagem resultante deste código;



Figura 2: Exemplo de uso do Processador Gráfico.

- 5.2.2. Todos os códigos deverão estar detalhadamente comentados;
- 5.3. Script de compilação tipo Makefile para geração do código executável;
- 5.4. Documentação técnica escrita no arquivo READ.ME do projeto no GitHub, contendo, no mínimo:
  - 5.4.1. Detalhamento dos software usados no trabalho, incluindo softwares básicos:
  - 5.4.2. Arquitetura do Processador Gráfico;
  - 5.4.3. Descrição de instalação, configuração de ambiente e execução;
- 5.5. Descrição dos testes de funcionamento do sistema, bem como, análise dos resultados alcançados.

## 6. Cronograma

| Semana | Data        | Descrição                             |
|--------|-------------|---------------------------------------|
| 8      | ter 07/mai. | Problema 2 – Apresentação             |
|        | qui 09/mai. | Problema 1 – Entrega/Avaliação        |
| 9      | ter 14/mai. | Problema 2 – Seção Desenvolvimento #1 |
|        | qui 16/mai. | Problema 2 – Seção Tutorial #2        |
| 10     | ter 21/mai. | Problema 2 – Lab1                     |
|        | qui 23/mai. | Problema 2 – Seção Tutorial #3        |
| 11     | ter 28/mai. | Problema 2 – Seção Desenvolvimento #2 |
|        | qui 30/mai. | Feriado – Corpus Christi              |
| I 12   | ter 04/jun. | Problema 2 – Seção Desenvolvimento #3 |
|        | qui 06/jun. | Problema 2 – Seção Tutorial #4        |
| 13     | ter 11/jun. | Problema 3 – Apresentação             |
|        | qui 13/jun. | Problema 2 – Entrega/Avaliação        |

# 7. Avaliação

Para avaliar o envolvimento do grupo nas discussões e na apresentação, o tutor poderá fazer perguntas variadas a qualquer membro, tanto nas sessões tutoriais quanto na apresentação. O estudante que não comparecer, ou se atrasar, no dia da sessão de apresentação, terá automaticamente nota 0,0 (zero) no problema, excetuando-se as condições que permitem 2ª chamada de avaliações, conforme regulamento do curso.

A nota final será a composição de 3 (três) notas parciais:

| Critério                 | Critérios para a nota                                                                                                                                                                                       | Peso |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Desempenho<br>Individual | Participação individual nas sessões tutoriais, de acordo com o interesse e entendimento demonstrados pelo aluno, assim como sua assiduidade, pontualidade e contribuição nas discussões. Essa nota inclui o | 3    |

|              | desempenho do estudante na apresentação do problema no laboratório.                                                                                                                                                                                                          |   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Documentação | Documentação técnica de cada grupo, considerando qualidade da redação (ortografia e gramática), organização dos tópicos, definição do problema, descrição da solução, explicação dos experimentos, análise dos resultados, detalhando os itens não atendidos, se for o caso. | α |
| Códigos      | Qualidade do código fonte (organização e comentários), e execução correta dos códigos binários de acordo com testes de validação que explorem as situações de uso.                                                                                                           | 4 |