2.6

CYLINDERS and QUADRIC SURFACES

Planes in 3D

General equation of a plane:

$$ax + by + cz + d = \mathbf{0}$$

if a, b and c are not all zero, $\langle a,b,c\rangle$ is a normal vector to the plane

Spheres

Standard equation of a sphere:

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

Center: (h,k,l)

Radius: 1

General equation

The graph in three-dimensional space of

$$x^2 + y^2 + z^2 + Ax + By + Cz + D = 0$$

is either a sphere, a point or the empty set.

Example. Identify the graph of the given equation.

1.
$$x^2 + 2x + y^2 - 2y + z^2 - 4z - 3 = 0$$

2.
$$x^2 + 2x + y^2 + z^2 - 4z + 5 = 0$$

3.
$$x^2 + y^2 - 2y + z^2 + 4z + 7 = 0$$

1.
$$x^2 + 2x + y^2 - 2y + z^2 - 4z - 3 = 0$$
Solution:

$$(x^{2} + 2x) + (y^{2} - 2y) + (z^{2} - 4z) = 3$$

$$\Rightarrow (x^{2} + 2x + 1) + (y^{2} - 2y + 1) + (z^{2} - 4z + 4) = 3 + 6$$

$$\Rightarrow (x + 1)^{2} + (y - 1)^{2} + (z - 2)^{2} = 9$$

Solution (continued)

$$(x+1)^2 + (y-1)^2 + (z-2)^2 = 9$$

is the sphere centered at (-1,1,2) of radius 3.

2.
$$x^2 + 2x + y^2 + z^2 - 4z + 5 = 0$$

Solution:

$$(x^{2} + 2x) + y^{2} + (z^{2} - 4z) = -5$$

$$\Rightarrow (x^{2} + 2x + 1) + y^{2} + (z^{2} - 4z + 4) = -5 + 5$$

$$\Rightarrow (x + 1)^{2} + y^{2} + (z - 2)^{2} = 0$$

Solution (continued)

$$(x+1)^2 + y^2 + (z-2)^2 = 0$$

is the point $(-1,0,2)$

3.
$$x^2 + y^2 - 2y + z^2 + 4z + 7 = 0$$

$$x^{2} + (y^{2} - 2y) + (z^{2} + 4z) = -7$$

$$\Rightarrow x^{2} + (y^{2} - 2y + 1) + (z^{2} + 4z + 4) = -7 + 5$$

$$\Rightarrow x^{2} + (y - 1)^{2} + (z + 2)^{2} = -2$$

Solution (continued)

The graph of
$$x^2 + (y-1)^2 + (z+2)^2 = -2$$
 is empty.

Cylinder

A cylinder is a surface generated by a line (generator) moving along a given plane curve in such a way that it is always parallel to a fixed line (directrix) not lying in the plane of the given curve.

Illustration

Remark

In the three-dimensional space, the graph of an equation in two of the three variables x, y and z is a cylinder.

Example.

 $x^2 + y^2 = 25$ is a cylinder in **R**³.

Plane curve: on the xy-plane

Directrix: z-axis

Example.

z = siny is a cylinder in R^3 .

Plane curve: on the yz-plane

Directrix: x-axis

 $y = \sin x$

Example.

 $z = x^2 - 4$ is a cylinder in R^3 .

Plane curve: on the xz-plane

Directrix: y-axis

 $z = e^x$

Quadric surfaces

The graph of the second-degree equation

$$Ax^{2} + By^{2} + Cz^{2}$$

$$+ Dxy + Eyz + Fxz$$

$$+ Gx + Hy + Iz + J = 0$$

is a quadric surface.

Restrictions

Equations that will be considered:

$$Ax^2 + By^2 + Cz^2$$
$$+ Gx + Hy + Iz + J = 0$$

These are expressed in standard forms.

Graphs

To graph quadric surfaces, obtain traces on the following:

$$xy$$
-plane $z = 0$

$$yz$$
-plane $x = 0$

$$xz$$
-plane $y = 0$

Level curves (cross-sections) on particular values of z can also be used.

Standard forms

Surface # 1.

Traces

$$xz$$
-plane: $x^2 = 1$

Surface # 1.

Standard forms

Elliptic hyperboloid of one sheet

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1$$

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$$

$$-\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$$

Standard forms

Elliptic hyperboloid of one sheet

Surface # 2.

Traces

Surface # 2.

Standard forms

Elliptic hyperboloid of two sheets

$$-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$$

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1$$

$$-\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1$$

Standard forms

Elliptic hyperboloid of two sheets

Surface # 3.

Traces

races xy-plane: $x^2 - \frac{y^2}{4} = 1$ yz-plane: $-\frac{y^2}{4} - \frac{z^2}{9} = 1$ x = 0 x = 0

xz-plane: $x^2 - \frac{z^2}{9} = 1$

Standard forms

Elliptic cone

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 0$$

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 0$$

$$-\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 0$$

Standard forms

Elliptic cone

Surface # 4.

Traces

$$xy$$
-plane: $-x^2 + y^2 = 0$

yz-plane:
$$y^2 + \frac{z^2}{9} = 0$$

 $x = 0$
 $x = 0$

$$xz$$
-plane: $-x^2 + \frac{z^2}{9} = 0$

Surface #4.

Standard forms

Elliptic paraboloid

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z}{c} = 0$$

$$\frac{x^{2}}{a^{2}} - \frac{y}{b} + \frac{z^{2}}{c^{2}} = 0$$

$$-\frac{x}{a} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 0$$

Standard forms

Elliptic paraboloid

Example: Sketch the graph of

solution:

By definition, the graph is an *elliptic paraboloid*.

If x = 0, we obtain the cross section of the graph in the yz-plane which is the parabola given by

 $\frac{\mathbf{y}^2}{9} = \mathbf{z}$

$$\frac{x^2}{4} + \frac{y^2}{9} = z$$

If y = 0, we obtain the cross section of the graph in the xz-plane which is the parabola given by

$$\frac{x^2}{4} + \frac{y^2}{9} =$$

If z=0, we obtain the cross section of the graph in the xy-plane which is the origin given by

$$\frac{x^2}{4} + \frac{y^2}{9} = 0$$

Standard forms

Hyperbolic paraboloid

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} - \frac{z}{c} = 1$$

$$\frac{x^{2}}{a^{2}} - \frac{y}{b} - \frac{z^{2}}{c^{2}} = 1$$

$$-\frac{x}{a} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1$$

Example. Sketch the graph of

solution:

By definition, the graph is a hyperbolic paraboloid.

If x = 0, we obtain the cross section of the graph in the yz-plane which is the parabola given by

$$\frac{-y^2}{Q} = z$$

$$\frac{x^2}{4} - \frac{y^2}{9} = z$$

If y = 0, we obtain the cross section of the graph in the xz-plane which is the parabola given by

$$\frac{x^2}{4} = z$$

$$\frac{x^2}{4} - \frac{y^2}{9} =$$

If z = 0, we obtain the cross section of the graph in the xy-plane which is the union of 2 lines given by

$$\frac{x^2}{4} - \frac{y^2}{9} = 0$$

SUMMARY

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Elliptic hyperboloid

of one sheet
$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1$$

Elliptic hyperboloid of two sheets

$$\frac{1}{-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$$

Elliptic paraboloid

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$$

Hyperbolic paraboloid

Elliptic cone

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c} \qquad \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

