$\mathbf{\acute{U}vod}$

Tento text vznikl za účelem sestavení přehledného souhrnu znalostí pro magisterské státnice oboru Fyzika povrchů a ionizovaných prostředí na MFF UK. Text byl sepisován kolektivem současných studentů.

Obsah

Ι	\mathbf{Sp}	oolečné požadavky	5	
1	Kvantová mechanika a elektronika			
	1.1	Postuláty	6	
	1.2	Schrödingerova rovnice, energetická spektra	7	
	1.3	Systémy více částic, jednočásticové přiblížení, periodický systém prvků	8	
	1.4	Přibližné metody QT, poruchový počet	9	
	1.5	Potenciálová jáma, potenciálový val, vázané stavy	10	
	1.6	Moment hybnosti, spin	11	
2	Ter	modynamika a statistická fyzika	12	
	2.1	Hlavní věty termodynamické	12	
	2.2	Termodynamické potenciály	13	
	2.3	Vztah termodynamických a statistických veličin	14	
	2.4	Statistická rozdělení	15	
	2.5	Entropie ve statistické termodynamice	16	
	2.6	Aplikace TD a stat. fyziky: (ne)ideální plyn, měrné teplo	17	
3	Teorie pevných látek			
	3.1	Krystalografie a struktura pevných látek (PL)	18	
	3.2	Typy vazeb, struktura prvků a sloučenin, RTG difrakce	19	
	3.3	Kmity krystalové mříže, interakce EM záření s krystalovou mříží .	20	
	3.4	Sommerfeldův model kovu	21	
	3.5	Elektronová struktura PL, pásová teorie	22	
	3.6	Vlastní a příměsové polovodiče, P-N přechod	23	
	3.7	Fotoelektrické vlastnosti polovodičů	24	
	3.8	Pohyb nosičů náboje v PL	25	
4	Vak	cuová fyzika	26	
	4.1	Kinetická teorie zředěného plynu	26	
	4.2	Transportní jevy při nízkých tlacích	27	
	4.3	Reálné plyny, tenze par, vypařování a kondenzace	28	
	4.4	Interakce plynu s pevnou látkou na jejím povrchu a v objemu	29	
	4.5	Vakuový systém a jeho parametry, teorie čerpacího procesu	30	
	4.6	Proudění plynu, režimy proudění, vakuová vodivost	31	
	4.7	Fyzikální principy metod získávání nízkých tlaků	32	
	4.8	Fyzikální principy měření nízkých tlaků, totální a parciální tlak	33	

5	\mathbf{Exp}	erimentální a počítačové metody	34			
	5.1	Metody sběru dat a řízení fyzikálních experimentů	34			
	5.2	Číslicové zpracování signálů, aplikace mikroprocesorů	35			
	5.3	Potlačování šumu, lock-in detekce	36			
	5.4	Základy regulace, regulátory PID	37			
	5.5	Základy numerické matematiky	38			
	5.6	Počítačové modelování: částicové, spojité a hybridní	39			
	5.7	Metoda Monte Carlo, metoda molekulární dynamiky				
		(Zdeněk Turek)	40			
		5.7.1 Metoda Monte Carlo	40			
		5.7.2 Metoda molekulární dynamiky	40			
	5.8	Principy zpracování obrazu (algoritmy nízké a vysoké úrovně)	41			
6	Fyzi	ika plazmatu	42			
	6.1	Definice, základní parametry a druhy plazmatu	42			
	6.2	Kinetický popis plazmatu	43			
	6.3	Debyeova stínící vzdálenost	44			
	6.4	Hydrodynamický popis plazmatu	45			
	6.5	Srážkové procesy	46			
	6.6	Ionizace, excitace, deexcitace	47			
	6.7	Záření v plazmatu	48			
	6.8	Rekombinace, reakce iontů	49			
	6.9	Chemické reakce v plazmatu	50			
		Generace plazmatu, výboje v plynech (typy výbojů)	51			
		Principy termonukleární fúze	52			
		Aplikace plazmatu v technologiích a laserech	53			
7	Fyzika tenkých vrstev a povrchů 5					
	7.1	Povrch pevné látky	54			
	7.2	Vytváření definovaných povrchů a tenkých vrstev	55			
	7.3	Elektronová struktura povrchu, výstupní práce	56			
	7.4	Interakce částic a záření s pevnou látkou	57			
	7.5	Emise elektronů a iontů, povrchová ionizace	58			
	7.6	Přehled diagnostických metod povrchů a tenkých vrstev	59			
II	ΤT	žší zaměření	60			
1	-	ka plazmatu a ionizovaných prostředí	61			
	1.1	Kinetický popis plazmatu	61			
	1.2	Elementární procesy v plazmatu	62			
	1.3	Zákony zachování, rovnovážné stavy, drift, difúze	63			
	1.4	Interakce plazmatu s vysokofrekvenčním polem	64			
	1.5	Výboje v plynech (typy a vlastnosti)	65			
	1.6	Kosmické plazma a plazma ve sluneční soustavě	66			
	1.7	Interakce slunečního větru s překážkami	67			
	1.8	Vlny v plazmatu	68			
	1.9	Horké plazma, základy magneto-hydrodynamiky	69			
	1.10	Problematika fúze, magnetické nádoby	70			

	1.11	Přehled diagnostických metod	71
	1.12	Metody měření používané v kosmickém prostoru	72
	1.13	Základy modelování fyzikálních procesů v plazmatu	73
2	Fyzi	ka povrchů a rozhraní	74
	2.1	Ideální a reálný povrch, struktura povrchu	74
	2.2	Příprava čistých povrchů a tenkých vrstev – fyzikální metody	75
	2.3	Vytváření a růst tenké vrstvy	76
	2.4	Elektronová struktura povrchů	77
	2.5	Teorie emise elektronů a iontů	78
	2.6	Interakce záření a částic s povrchem – excitace, rozptyl	79
	2.7	Adsorpce molekul na povrchu	80
	2.8	Reakce na povrchu	81
	2.9	Diag. metody krystalografické struktury P/TV	82
	2.10	Diag. metody složení a elektronové struktury P/TV	83

Část I Společné požadavky

Kapitola 1

Kvantová mechanika a elektronika

1.1 Postuláty kvantové mechaniky, relace neurčitosti (Zdeněk Turek)

V přípravě

1.2 Časová a bezčasová Schrödingerova rovnice, typy energetických spekter

1.3 Systémy více částic, jednočásticové přiblížení, periodický systém prvků

1.4 Přibližné metody kvantové teorie, poruchový počet (stacionární a nestacionární)

1.5 Potenciálová jáma, potenciálový val, vázané stavy

1.6 Moment hybnosti (skládání momentů hybnosti) a spin (spin soustavy dvou elektronů)

Kapitola 2

Termodynamika a statistická fyzika

2.1 Hlavní věty termodynamické

2.2 Termodynamické potenciály

2.3 Vztah termodynamických a statistických veličin

2.4 Statistická rozdělení (mikrokanonický, kanonický a grandkanonický soubor pro klasické a kvantové systémy)

2.5 Entropie ve statistické termodynamice

2.6 Aplikace termodynamiky a statistické fyziky na fyzikální systémy: ideální a neideální plyn, měrná teplota

Kapitola 3

Teorie pevných látek

3.1 Krystalografie a struktura pevných látek (PL)

3.2 Typy vazeb, struktura prvků a jednoduchých sloučenin, rtg difrakce

3.3 Kmity krystalové mříže, optické a akustické fonony, interakce elektromagnetického záření s krystalovou mřížkou

3.4 Sommerfeldův model kovu, elektronový plyn, hustota stavů, Fermiho energie

3.5 Elektronová struktura PL, pásová teorie

3.6 Vlastní a příměsové polovodiče, P-N přechod 3.7 Fotoelektrické vlastnosti polovodičů

3.8 Pohyb nosičů náboje v PL

Kapitola 4

Vakuová fyzika

4.1 Kinetická teorie zředěného plynu

4.2 Transportní jevy při nízkých tlacích

4.3 Reálné plyny, tenze par, vypařování a kondenzace

4.4 Interakce plynu s pevnou látkou na jejím povrchu a v objemu

4.5 Vakuový systém a jeho parametry, teorie čerpacího procesu

4.6 Proudění plynu, režimy proudění, vakuová vodivost

4.7 Fyzikální principy metod získávání nízkých tlaků

4.8 Fyzikální principy měření nízkých tlaků, totální a parciální tlak

Kapitola 5

Experimentální a počítačové metody

5.1 Metody sběru dat a řízení fyzikálních experimentů, převodníky fyzikálních veličin, základy analogového zpracování signálů

5.2 Číslicové zpracování signálů, aplikace mikroprocesorů

5.3 Potlačování šumu, lock-in detekce

5.4 Základy regulace, regulátory PID

5.5 Základy numerické matematiky (chyby numerických výpočtů, aproximace, numerická integrace, řešení algebraických a transcendentních rovnic, řešení obyčejných a parciálních diferenciálních rovnic)

5.6 Počítačové modelování: částicové, spojité a hybridní

5.7 Metoda Monte Carlo, metoda molekulární dynamiky

(Zdeněk Turek)

5.7.1 Metoda Monte Carlo

Metoda Monte Carlo spočívá ve statistickém zpracování sady náhodných čísel podle připraveného modelu. Základní myšlenku celé metody lze shrnout do několika kroků:

- 1. Generování náhodných čísel ξ_i
- 2. Transformace náhodných čísel $\xi_i \to \gamma_i$
- 3. Dosazení do modelu
- 4. Statistické vyhodnocení

5.7.2 Metoda molekulární dynamiky

Metoda molekulární dynamiky spočívá v počítání trajektorií částic na základě pohybových rovnic s dosazením vnějších sil a vzájemných sil působících mezi částicemi navzájem. Podle způsobu řešení pohybových rovnic rozlišujeme tři hlavní postupy:

- Eulerův algoritmus
- Verletův rychlostní algoritmus
- Leap-Frog algoritmus

5.8 Principy zpracování obrazu (algoritmy nízké a vysoké úrovně)

Kapitola 6

Fyzika plazmatu (pro zaměření Fyzika povrchů a rozhraní)

6.1 Definice, základní parametry a druhy plazmatu (vysokoteplotní a nízkoteplotní, izotermické a neizotermické)

6.2 Kinetický popis plazmatu (základy kinetické teorie: Boltzmannova rovnice, rozdělovací funkce)

6.3 Debyeova stínící vzdálenost

6.4 Hydrodynamický popis plazmatu (magnetohydrodynamické přiblížení, zobecněný Ohmův zákon) 6.5 Srážkové procesy (typy srážek, srážkové průřezy, srážková frekvence)

6.6 Ionizace, excitace, deexcitace

6.7 Záření v plazmatu

6.8 Rekombinace, reakce iontů

6.9 Chemické reakce v plazmatu

6.10 Generace plazmatu, výboje v plynech (typy výbojů)

6.11 Principy termonukleární fúze, fúzní reaktor, magnetické a inerciální udržení plazmatu

6.12 Aplikace plazmatu v technologiích a laserech

Kapitola 7

Fyzika tenkých vrstev a povrchů (pro zaměření Fyzika plazmatu a ionizovaných prostředí)

Povrch pevné látky: atomární čistota, krys-7.1 talická struktura, jevy rekonstrukce a relaxace

7.2 Vytváření definovaných povrchů a tenkých vrstev: základní metody, mechanizmy růstu, relaxační jevy

7.3 Elektronová struktura povrchu (rozdíly mezi kovy a polovodiči, povrchové stavy, ohyb pásů), výstupní práce

7.4 Interakce částic a záření s pevnou látkou, pružný a nepružný rozptyl, difrakce

7.5 Emise elektronů a iontů, povrchová ionizace

7.6 Přehled diagnostických metod povrchů a tenkých vrstev

Část II Užší zaměření

Kapitola 1

Fyzika plazmatu a ionizovaných prostředí

1.1 Kinetický popis plazmatu

1.2 Elementární procesy v plazmatu

1.3 Zákony zachování, rovnovážné stavy (Maxwellovo rozdělení), drift ve vnějších elektrických a magnetických polích, difúze a ambipolární difúze 1.4 Interakce plazmatu s vysokofrekvenčním polem, šíření a generace mikrovln 1.5 Výboje v plynech (typy a vlastnosti)

1.6 Kosmické plazma a plazma ve sluneční soustavě 1.7 Interakce slunečního větru s překážkami

1.8 Vlny v plazmatu

1.9	Horké plazma, základy magneto-hydrodynamiky

1.10 Problematika fúze, magnetické nádoby, inerciální systémy, ohřev plazmatu, Lawsonovo kritérium, magnetohydrodynamické přiblížení, zobecněný Ohmův zákon

1.11 Přehled diagnostických metod (metody sondové, mikrovlnné, optické, spektroskopické)

1.12 Metody měření používané v kosmickém prostoru

1.13 Základy modelování fyzikálních procesů v plazmatu (modelování objemu plazmatu - EEDF, modelování chemické kinetiky v plazmochemii, modelování interakce plazma - pevná látka, modelování ve vysokoteplotním plazmatu)

Kapitola 2

Fyzika povrchů a rozhraní

2.1 Ideální a reálný povrch, struktura povrchu, rekonstrukce a relaxace, povrchové stavy

2.2 Příprava čistých povrchů a tenkých vrstev – fyzikální metody

2.3 Vytváření a růst tenké vrstvy, růstové procesy, módy růstu, teoretický popis

2.4 Elektronová struktura povrchů, jevy na rozhraní povrchů dvou pevných látek, transport náboje rozhraním a tenkou vrstvou

2.5 Teorie emise elektronů a iontů

2.7 Adsorpce molekul na povrchu, adsorpční izotermy, kinetický model adsorpce, potenciálová teorie adsorpce

2.8 Reakce na povrchu a metody založené na interakci povrchu s molekulami plynů

2.9 Diagnostické metody krystalografické struktury povrchů a tenkých vrstev (mikroskopické metody, elektronová difrakce)

2.10 Diagnostické metody složení a elektronové struktury povrchů a tenkých vrstev (elektronové a iontové spektroskopie)