Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aTS 1577

Summary of Cotton Fiber and Processing Test Results

CROP of

U.S. DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Cotton Division, May 1973

CONTENTS

	Page
Introduction	3
Sampling procedures	3
Map: Distribution of production areas	4
	'
Laboratory procedures	5
Test Results	6
Table 1 - Area and U. S. summary	
Table 2 - State summary	
Table 3 - Grade and Staple summary	18
Table 4 - Variety and state summary	
Table 5 - Short staple results	
Table 6 - Medium staple results	
Table 7 - Long staple results	
Table 8 - Extra long staple results, American upland	
Table 9 - Extra long staple results, American Pima	
	17
Simple Correlations	
Table 10 - Results for short staple	76
Table 11 - Results for medium staple	
Table 12 - Results for long staple	
Table 12 Repairs for fong bompiessessessessessessessessessessessessess	00
Multiple Correlations	
Table 13 - Grade, staple, mike, "O" gage, unif short staple	83
Table 14 - Color, nonlint, 2.5% length, mike - short staple	
Table 15 - 2.50 length mike $1/8$ " gage unif clong - short staple	07 87
Table 15 - 2.5% length, mike, 1/8" gage, unif., elong short staple. Table 16 - Grade, staple, mike, "O" gage, unif medium staple	07
mable 17 Color poplint 0 Ed langth with modium staple	89
Table 17 - Color, nonlint, 2.5% length, mike - medium staple	91
Table 18 - 2.5% length, mike, 1/8" gage, unif., elong medium staple.	93
Table 19 - Grade, staple, mike, "O" gage, unif long staple,	
carded yarns	95
Table 20 - Color, nonlint, 2.5% length, mike, - long staple	
carded yarns	97
Table 21 - 2.5% length, mike, $1/8$ " gage, unif., elong long staple	
carded yarns	99
Table 22 - Grade, staple, mike, "O" gage, unif long staple	
combed yarns	101
Table 23 - Color, nonlint, 2.5% length, mike - long staple	
combed yarns	103
Table 24 - 2.5% length, mike, 1/8" gage, unif., elong long staple	
combed yarns	105
Measures used in statistical analysis	107
Basis for interpretation:	111

SUMMARY OF COTTON FIBER AND PROCESSING TEST RESULTS CROP OF 1972

INTRODUCTION

This report contains information on the fiber properties and spinning performance of cotton from major commercial production areas of the United States. Similar reports have been published annually since 1946. 1/ These reports summarize and add supplemental information to the data published in biweekly reports which were titled "Cotton Fiber and Processing Test Results, Crop of 1972" and numbered 1 through 14.

The results of fiber and spinning tests made in connection with these annual surveys provide data for studies of the relationships between fiber properties, processing performance and product quality. The data are used to measure the effectiveness of the standards to be sure that they continue to reflect differences in spinning utility. Publication of the bi-weekly reports enables merchants and manufacturers to use the results to locate sources of cotton to meet their specific requirements. Farmers and breeders may also use the data as a source of quality information regarding the various varieties of cottons produced under commercial growing conditions.

SAMPLING PROCEDURES

The procedure for selecting samples for the 1972 survey was designed to provide test lots representing all major varieties in each of the territories served by Cotton Division classing offices. Variety selections were based on the predominant varieties planted in each classing office territory as reported by the Cotton Division in "Cotton Varieties Planted, 1968-1972". A production area was selected to represent the leading variety and one to represent each of the other varieties with an expected production of 10,000 bales or more in each classing office territory. Additional areas were selected for those varieties with a production of over 125,000 bales. One additional production area was selected for each 125,000 bales or portion thereof in excess of the first 125,000 bales. Production areas with at least 70 percent of one variety were designated as that variety with no attempt made to maintain the purity of the variety except by selection of representative production areas. However, in some cases, where there was unusual interest in a particular variety and a low percentage was planted in the area, the classing offices selected lots representing 100 percent of the variety. The locations of the production areas selected for the 1972 survey are shown on figure 1.

^{1/} Copies of past summary reports may be obtained from the Standardization Section, Cotton Division, AMS, USDA, P. O. Box 17723, Memphis, Tennessee 38117 until supplies are exhausted.

Test lots were collected from each production area at intervals of three weeks during the harvest season. Lots were selected to represent the predominant grade and staple being classed at the time of collection. For the most part, these areas produce the specified qualities in quantities large enough to enable buyers to obtain lots of even-running grade and staple. Obviously, other qualities of cotton are available in each area as a result of normal seasonal, soil, harvesting and other variations. Most production areas also produce cotton of varieties other than those included in the tests.

Each spinning lot used in this study was made up of 20 to 30 samples of the same grade and staple length from bales classed for growers under the Smith-Doxey Act. These even-running lots of samples were then tested at Cotton Division fiber and spinning laboratories. While this method of collecting samples does not provide data for all qualities in the crop, it does provide average test results for those qualities in largest supply during each three-week period.

LABORATORY PROCEDURES

As in previous years, all tests in this study were performed in the Cotton Division laboratories at College Station, Texas and Clemson, South Carolina. Fiber and spinning tests on all long and extra long staple lots and on medium staple lots from Missouri and states east of the Mississippi River were performed at the Clemson laboratory. Fiber and spinning tests on all short staple lots and on medium staple lots from states west of the Mississippi River, except Missouri, were performed at the College Station laboratory. Chemical finishing tests on all lots were performed at the Clemson laboratory.

Fiber, spinning, and chemical finishing tests were performed under standardized laboratory procedures. Most of the fiber tests were performed in the standard atmospheric conditions of 65 percent relative humidity at a temperature of 70 degrees F. Standard test procedures as outlined by the American Society for Testing and Materials were used in making tests. Tests not covered by ASTM were performed using commonly accepted procedures as recommended by the instrument manufacturer. Five subsamples were taken at random from each spinning lot to provide representative specimens for the fiber tests.

Yarn processing or spinning tests were performed by a technique developed in the Cotton Division laboratories for processing small lots of cotton on standard-type textile machines. The samples in each lot were thoroughly composited by hand-mixing before being fed to the first process picker. This hand-mixing is similar to the machine mixing normally obtained in cotton textile opening equipment. Observations were made at each process to measure processing behavior and the yarns produced were tested to measure product quality.

On the basis of average past performance, cottons were grouped according to the expected staple length for the specified variety. All cottons of the specified variety were spun in the same manner regardless of differences in staple length. This was done so that direct comparisons of different lots of cotton within a specified variety could be made. These samples were carded at specified production rates and spun into numbers that reflect the manufacturing values of the varieties tested. In general, the rates of carding and yarn numbers spun from the 1972 crop are as follows:

- Group 1.--Short staple cottons, carded at 12-1/2 pounds per hour and spun into carded 8s and 22s yarns with a twist multiplier of 4.40 plus a carded yarn spinning potential test for all lots. This includes varieties which normally produce staple lengths 31/32 and shorter.
- Group 2.--Medium staple cottons, carded at 9-1/2 pounds per hour and spun into carded 22s and 50s yarns with a twist multiplier of 4.00 plus a carded yarn spinning potential test for all lots. This group includes varieties which normally produce cottons from 1 inch through 1-3/32 inches in staple length.
- Group 3.--Long staple cottons, carded at 6-1/2 pounds per hour and spun into both carded and combed 22s and 50s yarns with a twist multiplier of 3.80 plus a carded yarn spinning potential test for all lots. This group includes upland varieties which normally produce cottons from 1-1/8 inches through 1-1/4 inches in staple length.
- Group 4.--Extra long staple cottons, carded at 4-1/2 pounds per hour and spun into combed 50s and 80s yarns with a twist multiplier of 3.60. This group includes all American Pima and American upland extra long staple varieties, which are usually 1-5/16 inches or longer in staple length.

Skeins of yarn from each spinning test lot were bleached and dyed by a technique developed in the Cotton Division laboratories for small scale finishing tests. Color tests were made on gray and chemically finished skeins of yarn as measures of the bleaching and dyeing behavior.

TEST RESULTS

Group 1.--Short Staple Cottons

A total of 57 short staple American upland spinning lots was tested for the 1972 crop compared to 68 in 1971. Average results showed the 1972 cottons to be longer, coarser and stronger at 1/8" gage fiber strength than the 1971 cottons. Both Shirley Analyzer nonlint content and picker and card waste were lower. Yarns from these short staple samples were stronger

with higher appearance grades and fewer imperfections than the 1971 crop. Average spinning potential yarn number was higher in 1972. (Table 1).

Group 2.--Medium Staple Cottons

The Southeastern production area includes the states of Virginia, North Carolina, South Carolina, Georgia, Florida and Alabama. A total of 61 medium staple spinning lots was tested from this area in 1972 compared to 68 the previous year. Average results in 1972 showed these cottons to be finer and stronger than the previous year. Both Shirley Analyzer and picker and card waste were lower for the 1972 crop. Yarns spun from these samples were stronger with lower appearance grades and fewer imperfections. Average spinning potential yarn number was higher.

The South Central production area includes the states of Tennessee, Missouri, Mississippi, Arkansas and Louisiana. A total of 168 medium staple lots was tested in 1972 compared to 141 lots from the 1971 crop. Average results in 1972 showed these cottons to be shorter, more uniform and stronger at both zero and 1/8" gage fiber strength than in 1971. Shirley Analyzer nonlint content was lower and total picker and card waste was higher for 1972. Yarns spun from these samples were weaker, with lower appearance grades and slightly fewer imperfections. Average spinning potential yarn number was higher.

The Southwestern production area consists of the states of Oklahoma and Texas except far west Texas (served by the Pecos and El Paso classing offices). A total of 51 medium staple American upland spinning lots was tested from the Southwestern area from the 1972 crop compared to 48 in 1971. Average results showed the 1972 cottons to be longer, coarser and weaker at zero gage fiber strength than the 1971 cottons. Shirley Analyzer nonlint content was lower. Picker and card waste was slightly more for the 1972 crop. Yarns spun from these samples were weaker, with higher appearance grades and fewer imperfections. Average spinning potential yarn number was higher in 1972.

The Western production area consists of the states of California, Arizona, New Mexico and far west Texas. A total of 60 medium staple spinning lots was tested from this area in 1972 compared with a like number for the 1971 crop. Average results from these medium staple samples show the 1972 cottons to be shorter, coarser, and weaker than the 1971 crop. Shirley Analyzer nonlint content was slightly less while picker and card waste was higher than in 1971. Yarns spun from these samples were weaker, with slightly better appearance grades and fewer imperfections than the 1971 crop. Average spinning potential yarn number was lower.

A total of 340 medium staple American upland spinning lots was tested from the 1972 crop compared to 317 from the 1971 crop. Average fiber properties for the 1972 cottons tested show these cottons to be slightly shorter, more uniform and stronger at zero gage fiber strength than the 1971 cottons.

Shirley Analyzer nonlint content was less in 1972, however, picker and card waste was slightly more. Yarns spun from these samples in 1972 were weaker, with lower appearance grades and fewer imperfections. Average spinning potential yarn number was higher.

Group 3.--Long Staple Cottons

A total of 19 long staple American upland spinning lots from the Southeastern area was tested in 1972 compared to 16 lots in 1971. Average results in 1972 showed these cottons to be shorter and stronger at both zero and 1/8" gage fiber strength than in 1971. Shirley Analyzer nonlint content and picker and card waste were both lower in 1972 cottons. Yarns spun from these samples were stronger, with lower appearance grades, but showed more imperfections. Average spinning potential yarn number was higher.

A total of four long staple American upland spinning lots from the South Central area in 1972 compared to three lots in 1971. Average results showed the 1972 cottons to be shorter, more uniform and finer than the 1971 cottons. The 1972 cottons were stronger at zero gage than in 1971. Both Shirley Analyzer nonlint content and picker and card waste were lower in 1972. Yarns spun from these samples were stronger, with lower appearance grades and a higher average spinning potential yarn number.

A total of 15 long staple American upland spinning lots was tested in 1972 from the Western area. This compares to 21 (including 6 lots of roller ginned cotton) lots tested in 1971 crop. Average results from these long staple lots showed the 1972 cottons to be slightly longer and weaker at 1/8" gage fiber strength than in 1971. Both Shirley Analyzer nonlint content and picker and card waste were lower. Yarns spun from these samples were weaker with lower appearance grades and fewer imperfections. Average spinning potential yarn number was higher.

A total of 38 long staple American upland spinning lots was tested in 1972, only two less than in 1971. Average results showed the 1972 cottons to be shorter, coarser and stronger at zero gage fiber strength than the 1971 cottons. Both Shirley Ahalyzer nonlint content and picker and card waste were lower in 1972 cotton. Yarns spun from these samples were weaker, with lower appearance grades. The 1972 cotton showed fewer imperfections than in 1971. Average spinning potential yarn number was higher in 1972.

U. S. Average - Upland Cotton

Average fiber properties for 1972 cottons tested totaling 435 short, medium and long staple American upland spinning lots, show about the same Fibrograph length and fiber fineness as cottons tested from the 1971 crop. Fiber length, uniformity and strength for the 1972 cottons were slightly higher than the 1971 cottons. Shirley Analyzer nonlint content and picker and card waste

were both less for the 1972 crop. Yarns spun from these cottons were stronger with lower appearance grades and fewer yarn imperfections. Average spinning potential yarn number was higher than for the 1971 crop.

Group 4.--Extra Long Staple Cottons

A total of 21 extra long staple American Pima spinning lots was tested from the Western area in 1972. This compares with 25 lots tested in 1971. Average results showed the 1972 extra long staple cottons to be shorter, more uniform, finer and weaker than the 1971 cottons. Shirley Analyzer nonlint content remained about the same in 1972, while picker and card waste was less. Comber waste was higher than in 1971. Yarns spun from these samples were weaker with higher appearance grades than in 1971.

Table 1.--Cotton: Average results of classification, fiber and processing tests from selected gin points, crops of 1971 and 1972 $\underline{1}/$

	Spin. Potent.	No.	38		61 66	6 2	60	70	62 64
results	Yarn imperf. 22s	No.	0.4 0.5 8.6		20	2 0 19	35 88	2 ¹ 4	23
ing test	Appear- ance 22s	Index	112		109	112	114	120	. 113
Processing	Skein st r ength 22s	Lbs.	98 98		99	103 10 2	102	121	105
	Picker & Card waste	Pct.	7.1		6.6 6.8	5.9	6.6	7.7. 5.7.3	6.0
	Total non- lint	Pet.	4.3		3.0	0 0. 0.0	w w & r	2.0	3.0
ults	Strength ero 1/8"	G/tex	20		22	22	22	25	53 53
test results	Stre Zero gage	Mpsi	79		79	81 84	87 8 2	9 8	83
Fiber te	Mike	Rdg.	3.8		4.4	4.4	μ.0 μ.1	7.7	4.4
E	graph 50/2.5 unif.	Pet.	45		1,5 1,5 1,5	5t1 t1t1	†† ††	45	44
	Fibro 2.5% span	In	0.95		1.08	1.10	1.04	1.12	1.09
	Staple	32d in	w w	Land	34.4	34.8 34.4	32.7 33.4	35.3 34.8	34.5 34.3
	Grade	Index	an uple 86 89	American upland	888	92	88 06	97	90
	Lots tested	No	American upland 68 86 30 57 89 31	Ameri	68	ral 141 168	48 51	09	317 340
	Area and Crop Year		SHORT STAPLE - Southwest 1971	MEDIUM STAPLE -	Southeast 1971 1972	South Central 1971 14 1972 16	Southwest 1971 1972	West 1971 1972	Average 1971 1972

1/ Based on a limited number of samples of modal quality

eq
nne
ti
Con
5
:
e]
b1
Tal

					-11-				
	Spin. Potent.	No.		200	C 84 88	72 76	59 629	Comber Waste 17.5	- - -
results	Yarn imperf. 22s	N	85	,	0 0 0	56 54 78	26 21	Yarn 3)
ng test	Appear- ance 22s	Index	109	107	86	102	112	Combed 112	
Processing test	Skein strength 22s	Lbs.	102	113 113	127 126	116	103	50's 65)
	Picker & Card waste	Pct.		0 0, a	0.0	4.0	6.5	8.5	-
	Total non. lint	Pct.		υ 1/2- ο ω α	i aa	2. E.	3.4	2.7	- : !
1ts	ngth 1/8" gage	G/tex	25	₹ ₹ ₹	58 5	たさ	23	33)
t results	Strength Zero 1/8 gage gage	Mpsi	79	0 8 g	8 16	88	83 84	99	-
er test	Mike	Rdg.	4 - 6 0	, 4 = 4 = 4 = 4 = 4	, ww	4.0	. r.	w w & v	
Fiber	graph 50/2.5 unif.	Pct.	t ₃	£ 4.5	# ##	##	44	ray 31)
	Fibrograph 2.5% 50/2.	In.	1.14	1.22	1.16	1.16	1.07	Array 1.45 31 1.44 32	
	Staple	32d in	nd 35.4	37.0	36.9	36.3	34.0 34.0	n Pima 44.4 44.0	
	Grade	Index 32d	n upla 85	85		92	83	merica 4 4	
	Lots	No.	- American upland	19 1tra1 3	21 <u>2</u> / 15	40 38	AVG. 425 435	APLE - A 25 21	
	Area and Crop Year		LONG STAPLE - Southeast 1971	South Central 1971	West 1971 1972	Average 1971 1972	U. S. UPLAND A 1971 1972	EXTRA LONG STAPLE - American Pima West 1971 25 4 44.4 1972 21 4 44.0	

2/ Includes 6 lots of roller ginned cotton

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1972 and 1972

	Spinning Potential	No.	61 64	60 65	6 2 70	65 72	₹%	75 99	59 76	68 76	65	999	61 67	63 62
Picker	& card waste	Pet.	5.0	6.7	7.1	7.7	10.0	9.8 5.8	9.6	10.0	5.7	5.7	6.3	5.4 6.1
stock	Com- posite	Index	£8	93	28	8 6	88	98	85 97	98	88	53	99	01 8
of raw st	Yellow- ness	No.	ოო	നന	ભા ભા	ณฑ	mm	ოო	೯೫	m m	ma	ოო	ოო	നന
Color	Gray- ness	No.	au m	ოო	ოო	υ¢	ოო	ოო	υ¢	ოო	ณฑ	ณ ๓	ભ ભ	al m
Shirley	nialyzer non- lint	Pct.	<u>લ</u> લ જ.જ	3.5	4.1 6.4	3.8	4.4 4.8	3.7	8.9	7.7	ო რ ო რ	3.0	8.9 9.9	2.5
Elon-	gation 1/8"	Pet.	6.5	0.99	6.1	6.9	5.8	4.9 9.9	6.5	6.5		6.9	6.6	6.6
strength	1/8" gage	G/tex	55 55 55 55 55 55 55 55 55 55 55 55 55	21 23	22 54	25 77 57	ଷ୍ଟଶ	55 54	19 24	55 54 54	83 83	22	52	22
Fiber st	Zero	Mpsi	79 88	78 85	81	78 85	81 85	87.8	76 85	79 48	83 85	88	85	79
	Micro- naire	Rdg.	4.4	٦.٦. ١٦.	4.0	2.4	44 7.0	44.00	4.1	8.6 4.0	r.4 7.4	4.2	4.5	4.1 3.9
length	50/2.5 unif.	Pet.	5 ⁴	45 45	9 1 1	‡9	2† 2†	†††	T†	25 14 15	45	45 45	7.	# #
Fiber		ᆁ	1.08	1.06	1.06	1.12	1.16	1.13	1.13	1.16	1.11	1.09	1.10	1.09
Classification	Staple	32d in.	34.2 33.9	34.1 33.8	34.7 35.0	3 5.2 34.9	35.8 34.2	34.9 34.7	36.0 35.0	35.8 35.0	35.1 34.2	34.4 34.5	34.9 34.6	34.9 33.8
Classif	Grade	Index	8,8	87 90	86 87	88 88	48 87	87 90	8 8	86 85	88	93	8.8	まる
Sminning	lots	No.	330	17	11	9 9	40	7	1 8	<i>ਤ</i> ੜ	39 47	22 82	52.49	13
Area	state and crop year	SOUTHEAST Medium staple:	Alabama 1971 1972	<u>Georgia</u> 1971 1972	North Carolina 1971 1972	South Carolina 1971 1972	Long staple: Alabana 1971 1972	<u>Georgia</u> 1971 1972	North Carolina 1971 1972	South Carolina 1971 1972	SOUTH CENTRAL Medium staple: Arkansas 1971 1972	Louisiana 1971 1972	Mississippi 1971 1972	Missouri 1971 1972

led yarn Color 22s dyed yarn	Com- Reflect- posite ance	Index Rd	104 26. 6 99 27.9	103 27.1 99 28.0	102 26.7 100 27.1	104 27.0 102 27.0	103 26.7 103 28.3	103 26.8 96 27.6	97 25.9 98 26.3	104 27.4 102 27.2	104 26.4 101 27.7	104 26.8 104 27.9	105 26.6 104 27.3	105 26.2 102 27.3
Color 22s bleached yarn	Reflect- Yellow- ance ness	Rd Tp	84.5 2.9 83.5 3.7	84.4 3.1 83.5 3.7	83.6 3.0 83.0 3.1	84.6 2.9 84.1 3.4	84.1 3.0 84.9 3.4	84.5 3.2 83.1 4.1	83.3 4.0 84.1 4.3	84.5 2.8 84.1 3.2	84.5 83.4 3.2	84.2 84.3 2.9	84.5 2.7 84.4 2.9	84.9 3.0 83.7 3.2
Yarn imprfctns	22s or Second 27 tex number	No. No.	20 16 17 13	18 16 14 12	21 16 19 14	24 20 · 18 15	22 16 18 15	21 19 28 15	18 16 23 15	25 21 24 13	23 16 18 13	27 20 20 14	18 15 19 15	17 15 23 20
Yarn appearance	22s or Second 27 tex number	Index Index	108 83 10 2 79	113 86 108 84	110 87 100 85	106 85 10 2 80	110 8 2 105 80	110 87 101 86	120 90 105 90	102 82 92 78	119 94 121 95	117 90 121 92	105 83 10 2 79	110 88 95 69
Yarn elongation	22s or Second 27 tex number	Pet. Pet. 50's	6.5 5.0 6.3	6.3 4.9 6.2 4.6	6.4 5.0 6.6 5.2	6.6 6.7 5.2	6.1 6.0 4.5	6.4 5.2 6.1 4.7	6.1 4.5 6.6 5.4	6.7 6.6 5.4	7.4 t.7 2.8 7.8 4.7	6.3 4.4	6.6 6.5 4.8	7.0 5.4 6.9
Yarn strength	22s or Second 27 tex number	<u>Lbs.</u> <u>Lbs.</u> 50's	97 34 101 35	97 33 103 35	101 35 112 40	103 37 114 42	103 37 98 3 2	102 36 107 39	88 29 114 44	106 38 114 42	109 10 2 38	103 36 101 37	101 35 106 37	104 36 98 33
Spinning	lots	· 양	30	17 17	II t	10	20	7	г 8	크크	39 7.4	21 22	53 64	133
Area	state and crop year	SOUTHEAST Medium staple:	Alabama 1971 1972	Georgia 1971 1972	North Carolina 1971 1972	South Carolina 1971 1972	Long staple: Alabama 1971	Georgia 1971 1972	North Carolina 1971 1972	South Carolina 1971 1972	SOUTH CENTRAL Medium staple: Arkansas 1971 1972	Louisiana 1971 1972	Mississippi 1971 1972	Missouri 1971 1972

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1971 and 1972--Continued

	Spinning Potential	No.	63	70	7 7 7 7	37 47	37 45	25 74 74	57 63	85 62 62	51 55	75 74 75 75 75 75 75 75 75 75 75 75 75 75 75	59
	Ficker & card waste	Pct.	6.3	9.6	5.7	5.5	7.5	6.0	6.0 6.0	5.4	7.7	9.6	5.9
s+00k	Com- posite	Index	99	97	916	88	88	まる	92 95	88	. 88	825	100
7 A B B B B B B B B B B B B B B B B B B	Yellow-	No.	mm	ma	<i>ವ</i> ನ	44	44	4 m	mm	mm	4 K	mΦ	ma
10°	25 ag	No.	a m	ณ ๓	₽	4 6	mm	mm	ma	m ณ	mm	w r -	a a
Shirley	Analyzer non- lint	Pet.	3.1	5.3 \$.3	લ . હ	3.6	4.6 3.9	3.6 9.9	3.0	93.0 9.0	8.4	6.9	2.6
	Elon- gation 1/8"	Pct.	6.6	5.9	7.0	6.7	7.3	7.4	6.6 8.4	9.9	7.2	6.4	7.1
strongth	1/8" gage	G/tex	ដេដ	なな	ର ର	% %	20	8 8	22 22	8 8	8 8	25 25 25	នន
T. Por		Mpsi	79	88 88	77	81 86	77	8 8	98 1 8	85 84	80	8033	8 8 78
	Micro- naire	Rdg.	t. t	4.5	4.9. 4.4	5.0	3.6 9.6	3.8	9.4. 4.4	44.5	w.w.	ળ ળ જ.જ.	4.7
, t	50/2.5 unif.	Pet.	44 44	†† †† †	£ £	45 45	7† 7†	45 45	4 4 49	5† ††	45	45	44
\$ 	2.5% 50/2. span unif	퇴	1.06	1.22	0.95	0.97	\$.0 9.0	96.0	1.05	1.12	1.01	0.92	1.11
mlessification	Staple	32d in.	34.1	37.0 36.8	30.3 31.3	30.3 31.3	30.2 31.3	30.9 32.0	33.0 33.7	34.3 34.1	31.9 32.8	29.5	34.8 34.4
7.000F	Grade	Index	18	85 87	87 89	88	88	89	84	93	48 48	80	97
	Spinning lots tested	No.	15 22	κa	നന	18	32 33	0 W	20	26	21	νm	12 15
	Area state and crop year	SOUTH CENTRAL (Continued) Medium staple:	<u>Tennessee</u> 1971 1972	Long staple: Mississippi 1971 1972	SOUTHWEST Short staple: South Texas 1971 1972	Central Texas 1971 1972	Northwest Texas 1971 1972	<u>Oklahoma</u> 1971 1972	Medium staple: South Texas 1971 1972	Central Texas 1971 1972	Northwest Texas 1971 1972	WEST Short staple: New Mexico 1971 1972	Medium staple: Arizona 1971

red yarn	Com- posite	Index		113	112		108	110	104 107	105		109	108	103		101		106
Color 22s dyed yarn	Blue- ness	위		27.8 26.6	27.8		27.2 27.4	27.4 26.8	26.5	26.4 27.0		27.1 26.9	27.2 26.9	26.2		25.9 26.4		26.8
Col	Reflect- ance	뀖		26.1 27.3	26.7 27.4		27.3	27.0 27.1	27.6 26.7	27.4 27.0		26.9 27.0	27.2 27.0	28.0		28.1 25.6		27.5
ned yarn	Com- posite	Index		105	104 103		101	103	00.8%	8,8		101	104 105	100		103		104 106
Color 22s bleached yarn	Yellow- ness	위		3.50	8.0°		3.4.	3.5	3.9	4.4		3.1	9.9 3.1	3.7		0.0		9.9
Color 2	Reflect- ance	묎		84.6 83.9	84.3 84.1		83.8 86.0	84.1 85.1	84.4 83.6	83.1 83.1		83.4 85.9	84.4 85.0	84.0 84.1		85.5 85.5		84.1 85.0
Yarn imprfctns	Second	No.	50.8	17,7	84 41	8.8	36	33	76 51	45 28	50's	14 17	15	70 30	8	⁵ 28	50.8	18
Yarn i	22s on 27 tex	<u>§</u>		16	ର୍ଷ		25 34	26 19	47 31	27 16		19	19	39		65 55		24 16
Yarn appearance	Second	Index	5018	91	83 75	8 8	126 123	126 125	117	1 22 130	501s	88	833	80	818	112	50's	93
Yarn ap	22s or 27 tex	Index		11½ 103	107		120 110	120	107	117		123 120	117	104 107		108		119
Yarn elongation	Second	Pet.	50.8	5.1	4.0.	8.8	7.3	6.7	7.5	7.4 7.4	50's	3.7	4.5	9.4	818	6.7	50 s	£.4 4.4
Yarn el	22s or 27 tex	Pct.		6.6	6.0		5.6	9.6	6.5	6.5		5.4	6.1	4.9		6.9		6.1
Yarn strength	Second	Lbs.	50.8	333	8 7 7 7	8.8	292 284	286 312	294 305	305 310	50's	333	37 36	34	8.8	295 334	50,8	35
Yarn s	22s or 27 tex	Ibs.		97	113		88 85	38	986	£8		101	108	101		87 10 2		105
Spinning	lots	. N	2	15 22	μ		mm	18 15	33	0 M		20 18	2 6	22		9 6		12 15
Area	state and crop year	beimitheon I (Continue)	Medium staple:	1971 1972	Long staple: Mississippi 1971 1972	SOUTHWEST Short staple:	1971	Central Texas 1971 1972	Northwest Texas 1971 1972	Oklahoma 1971 1972	Medium staple:	1971 1972	Central Texas 1971 1972	Northwest Texas 1971 1972	WEST Short staple: New Mexico	1971 1972	Medium staple:	1972

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1972 and 1972--Continued

١	h0							
	Spinning	Potentia	No.		74 71	56	78	83
	Picker	waste	Pct.		5.5	4.9	9.1	9.1
	ock	Com- posite	Index		888	95	102	102
	Color of raw stock	Yellow- ness	No.		നന	mm	mm	mm
	Color	Gray- ness	No.		ч а	m m	чч	ч о
	Shirley Analyzer	non- lint	Pct.		2.5	3.8	9.9.	2.6
	Elon-	gation 1/8"	Pet.		5.6	7.5	7.5	6.3
		1/8" gage	7/+px		27	21	25	25
	Fiber strength	Zero	Manai	Tedla	97	78	189	88 88
	;	Micro- naire		Had 8	7. 7. 7.	0.4	9.6	3.7
	Fiber length	50/2.5		Fet.	9 [†] 1	†††	45 44	##
	Fiber	2.5%	Transfer and the second of the	ij	1.13	1.09	1.17	1.16
	ication	Q v2		32d in.	35.5	34.5 33.4	37.2 36.9	36.8
	Classifi			Index	83	91 93	8,8	828
	Spinning lots tested (No.	42 36	96	129	90
		Area state and	crop year	WEST (Continued)	Medium staple: California 1971	West Texas 1971 1972	Long staple: New Mexico 1971 1972	West Texas 1971

red yarn	Com- posite	Index		111	105	109	110
Color 22s dyed yarn	Blue- ness	위		27.3	26.6	27.0	27.2 26.4
Col	Reflect- ance	Rd		26.1 26.7	27.7	26.6	26.4 27.1
ed yarn	Com- posite	Index		101	100	103	104
Color 22s bleached yarn	Yellow- ness	위		3.0	3.4	3.5 G.E.	0.0
Color 8	Reflect- ance	뗾		83.4 83.9	83.6	87.48 87.8	84.8 84.0
Yarn imprfctns	Second	No.	5018	17	22	800	25 18
Yarn in	22s or 27 tex	<u>%</u>		23 15	31	833	30
Yarn appearance	Second	Index	50's	9 2 97	9 2 87	73	73
Yarn ap	22s or 27 tex	Index		121 123	117 114	88	100
Yarn elongation	Second	Pct.	50's	† † † †	†*** †***	5.4.	5.5
Yarn eld	22s or 27 tex	Pet.		5.6	6.3	6.9	6.8
Yarn strength	Second	Lbs.	50's	24 24	34 33	49 52	74 74
Yarn s	22s or P7 tex	Lbs.		128 120	100	129 128	125 124
Spinning	lots	No.		4 2 36	96	12 9	99
Area	state and crop year	WEST (Continued)	Medium staple:	1971 1972	West Texas 1971 1972	Long staple: New Mexico 1971 1972	West Texas 1971 1972

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1972

Spinning	Poten- tial	No.		77	94	45	43 47 55		6999	5.5	59 67 7 2	1 99	58	55 61 66	57	63	6.72	79
Picker	& card waste	Pet.		5.6	0.9	9.9	7.1 6.5 5.9		5.7. 6.15	5.6	4 6.8	5.6	0.9	6.5	5.5	6.3	7.3	9.9
stock	Com- posite	Index		100	88	86	488		28%	82	888	96	ま	288	. 88	97	32	8
of raw	Yellow- ness	No.		7	4	m	444		ოოო	۴3	๓๓ฒ	നന	ю	તા તા તા	7	mm	r.a	٣
Color	Gray-	No.		α	α	ત	നനന		તા તા તા	೬ಇ	ოოო	a a	ю	ታታ M	Q	ณ ณ	m m	4
Shirley	Analyzer non- lint	Pet.		2.7	3.4	8.8	 		લ લ લ હત્યું	9.0 3.0	0.00	0.9 7.	2.5	9.8.8 7.8.9.9	2.3	3.3	3.6	0.4
Elon-	gation 1/8"	Pet.		4.9	7.2	6.8	7.3 6.9 6.7		7.0 7.2 7.1	4°9	6.8 7.3 6.6	7.3 7.4	6.8	6.8 6.7 7.0	6.5	6.8	9.9	6.8
strength	1/8" gage	G/tex		ଷ	51	80	8 5 8		3338	22	\$ \$2 17 \$ \$5 17	ଷଷ	23	ର ଖ ଟ	21	8 8	22 23	83
Fiber s	Zero	Mpsi		718	83	92	76 78 83		78 78 83	88° 80°	82 81 87	83 44	82	77 83 84	83	83 79	88	48
	Micro- naire	Rdg.		4.2	4.1	3.8	0.4.e.		3.4.5 3.4.5	4.4 4.3	4.44 1.34	4.5	4.3	444 300	8.4	4.4	9.6	7.4
Fiber length	50/2.5 unif.	Pet.		45	94	45	45 45 45		4 4 4 7 2 4	‡ ‡	44 44 46 47	45 45	†‡	44 47 42	45	4 4 4 7 7	7 7	45
Fiber	2.5% span	In.		.95	76.	%	.96		1.04 1.08 1.10	1.03	1.04 1.11 1.12	1.08	1.05	1.08	1.03	1.08	1.03	1.09
Spinning	lots	No.		ä	<i>‡</i>	7	9 9 9		10 7	7 5	7 9 12	36 14	2	6 19	4	11 5	N/0	9
	taple	32d in.		31	32	31	33 33 33		33 34 35	33 34	33 34 35	34 35	*	33 34 35	32	34 35	34,8	34
Staple group,	area, grade and staple	Code	GROUP	31	32	Ţή	42	GROUP	Ľη	75	51	31 41	42	51	32	14	42	57
Stapl	grade	Name	SHORT STAPLE	Southwest	M Lt Sp	SIM	SIM Lt Sp	MEDIUM STAPLE GROUP	Southeast SIM	SLM Lt Sp	IIM	South Central	SLM Lt Sp	WI	Southwest M Lt Sp	NIS	SLM Lt Sp	MI.

red yarn	Com-	Index		107	011	011	105 107 108		106 108 106	99	101	108	102	99 101 105	109	109	105	105
Color 22s dyed yarn	Blue- ness	위		9.6	27.4	27.1	% % % % % %		26.7 27.0 26.7	25.5	86.9 85.9 86.2	27.0	26.1	25.3 25.9 26.7	27.0	27.2	7.92 7.92	26.4
[0]	Reflect- ance	찖		26.7	7.92	56.0	26.9 26.9		27.3 27.0 27.0	28.4 27.3	28.3 28.4 27.8	27.1 26.8	28.2	28.3 28.1 27.8	56.6	86.9	27.3 27.4	27.5
ed yarn	Com- posite	Index		102	102	100	8889		100	28	8,00	104 106	100	95 104 104	106	105	102 104	103
Color 22s bleached yarn	Yellow- ness	위		3.4	3.6	3.4	4 E.E.			4.8 4.4	33.5 7.4.6.	3. 1.8	3.5	ა. 4. თ. დ.	3.3	3.5	3.6	3.2
Color	Reflect- ance	쮩		84.5	84.8	83.7	83.8 83.6 84.1		83.8 84.5 84.5	82.6 83.5	83.2 83.2 83.2	84.6 84.9	83.8	81.4 83.1 84.1	85.4	85.2 85.5	84.5	94.6
Yarn imprfetns	Second	No.		33 33	‡	74	52 35 35		50's 10 13	47	192 193	17 71 71	13	19 16 15	15	18 24	25	15
Yarn i	22s on 27 tex	9		19	92	27	883		12 18 19	21.21	13 18 17	17	15	75 13 13 13	17	31	31 32	72
Yarn appearance	Second	Index		8 122	125	122	120 121 120		20.1s 80.8 80.1s	828	48 78 81	85 85	82	70 83 85	88	93 88	98 88	95
Yarn ap	22s or 27 tex	Index		120	120	120	111		105 107 103	105	106 98 102	110	102	102 109 107	128	118 116	11 2 011	122
Yarn elongation	Second	Pet.		8 <u>8</u> 2	7.3	9.7	7.7		50's 5.0 5.1	4.1 4.8	444 6.00	4.7	4.3	4.4	4.8	5.1	4.8 5.1	4.8
Yarn el	22s or 27 tex	Pct.		0.9	6.3	4.9	6.6 4.6 6.3		6.6.8	6.5	6.6	6.5	6.1	6.59	6.2	6.3	6.4	4.9
Yarn strength	Second	Ibs.		30 <u>6</u>	308	312	293 304 326		50's 30 40	34.8	39 75 75 75 75 75 75 75 75 75 75 75 75 75	36	31	28 34 37	34	38	35 37	38
Yarn s	22s or 27 tex	Iba.		98	%	ま	10,48		94 107 109	88	92 103 115	103	95	88 98 105	6	103	97	105
Spinning	lots	No.		7	1	7	9 24 8		10 7	45	7 8 21	36 46	2	6 19	7	11 5	50	9
	۸.	32d in.		35	35	31	33 33	0.	33	34,33	32 33	35	34	35 33	32	34	32	34
onb,	taple	i i	ROUP	31	35	Ţή	42	GROUE	141	42	13	13 141	42	51	32	47	42	51
Staple group,	grade and staple	Name Code	SHORT STAPLE GROUP	Southwest M	M Lt Sp	SIM	SIM Lt Sp	MEDIUM STAPLE GROUP	Southeast	SLM Lt Sp	MI	South Central	SIM Lt Sp	MI	Southwest M Lt Sp	SIM	SIM Lt Sp	IM

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1972--(Continued)

Spinning	Poten- tial	No.			55 70 74	57 75	71		75	89	6 2 75	85	883
Picker	& card waste	Pct.			7.7.7 5.0.3	5.7. 5.7.8	0.9		7.3	8.2	8.6 9.1	ф . 9	7.7 7.4
ock	Com- posite	Index			101 102 101	288	87		76	83	88	103	100
Color of raw stock	Yellow- ness	\ <u>№</u>			ოოო	ณฅณ	α		m	ধ	ოო	က	ოო
Color	Gray- ness	No.				a, a, a,	4		Q	ю	നന	1	ત્ય ત્ય
Shirley	Analyzer non- lint	Pct.			0 m 0.	89.00 9.00 7.00	3.1		2.6	0.4	۳. د. د.	1.9	2.3
Elon-	gation 1/8"	Pct.			9 17 9 01 80 01	7.0 5.5	5.3		7.2	7.0	6.9	6.5	6.0
Fiber strength	1/8" gage	G/tex			883	8.48	. 27		દ્ય	5₫	8,4 <u>9</u>	%	25 25
Fiber s	Zero gage	Mpsi			<i>\$</i> 24	888	93		88	84	86. 85	88	88
	Micro- naire	Rdg.			8.4.4 8.4.4	4.44 6.4	4.3		4.5	14.7	4.0	3.9	3.5
Fiber length	50/2.5 unif.	Pct.			74 74 74	4 45 53	94		777	45	64 64	54	64 64
Fiber	2.5% span	ū			1.08	1.08	1.11		1.14	1.14	1.08	1.18	1.16
Spinning	lots	No.	(q)		10 5	9 11 01	ю		m	ħ	4 5	m	mæ
	aple	32d in.	(Continue		34 35 36	34 35 36	35		35	35	34 35	37	36 37
Staple group,	area, grade and staple	Code	E GROUP		31	11	17	GROUP	14.	3p 42	덗	31	¹ +1
Stap	grad	Name	MEDIUM STAPLE GROUP (Continued)	West	М	SIM	ITM	LONG STAPLE GROUP	Southeast	SIM Lt Sp	LM	West	SIM

ur	Com- posite	ex		50.4	4 70 B	1,		Ø,	2	00	0.	ğ Q
dyed ya	Com- posit	Index		105 110 114	104 105 108	101		108	107	100	110	102
Color 22s dyed yarn	Blue- ness	위		26.6 27.2 27.6	26.4 26.4 26.7	25.7		26.7	26.6	26.9	27.3	25.7
S	Reflect- ance	踞		27.7 26.2 25.1	27.8 27.3 26.6	28.2		56.6	27.8	29.0	7.98	27.6
ned yarn	Com- posite	Index		105 104 104	105 103 102	66		100	%	101	106	101
Color 22s bleached yarn	Yellow- ness	위		ଷ ୯ ଷ ଷ ୦ ଷ	0.00 1.1.	3.3		0.4	4.2	3.5	3.0	3.1
Color 2	Reflect- ance	찖		84.6 84.2 84.1	84.8 84.2 83.8	83.0		4.48	83.0	7. 18 7. 18	85.4	83.2 84.7
Yarn imprfetns	Second	No.		10011	13 10 10	15		12	15	17 16	18	14 22
Yarn in	22s or 27 tex	No.		544 24	18 17 14	23		32	27	15	52	88
Yarn appearance	Second	Index		828	98	97		87	8.	90 76	70	77
Yarn ap	22s or 27 tex	Index		120 123 122	122 123 123	123		100	105	105 94	8	100
elongation	Second	Pet.		0.08.	444	4.5		5.1	5.0	4.6 5.8	5.3	5.3
Yarn el	22s or 27 tex	Pet.			0.000	5.8		6.5	6.2	6.1	6.3	6.79
Yarn strength	Second	Lbs.		33 448 149	34 175 176	841		142	39	34	20	146 52
Yarn s	22s or 2 7 tex	Lbs.		98 121 123	97 110 122	119		114	108	100	130	120
Spinning	lots	<u>i</u>	ntinued)	4 10 5	610	m		m	†1	40	т	mΦ
	le	32d in.	UP (Cor	323	35	35		35	35	34	37	36
group,	sa, stap]	Code	E GROU	31	141	51	GROUP	141	3p 42	51	31	141
Staple group,	area, grade and staple	Name	MEDIUM STAPLE GROUP (Continued)	West M	SIM	IM	LONG STAPLE GROUP	Southeast	SIM Lt Sp 42	MI	West	SIM

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1972

, ro	Potential	No.	94	51 47	†††		74	17	62	09	50 70 70	61	47 77	62	65 70 61 61
Picker	& card waste	Pet.	6.9	6.1 6.4	7.1		5.4	5.7	6.2	6.3	7.6.9	2.9	6.5	7.1	v.v.o.v.v v.o.a.v.v.
stock	Com- posite	Index	76	まな	8		66	100	ま	95	888	8	まま		2888£
of raw	Yellow- ness	No.	4	44	m		m	m	m	m	m m Q1	m	am	m	വ വ വ വ ന
Color	Gray- ness	No.	લ	mm	m		αı	Q	m	CV	നവവ	QI	mm	αı	നവവവ
Shirley	non- lint	Pet.	4.2	3.t	3.9		2.5	2.6	2.6	8.8	1.0.6 0.0.0	3.7	2.7 3.4	3.9	
Elon-	gation 1/8"	Pet.	8.1	9.9	8.1		5.5	5.8	7.1	5.9	5.8 6.6 7.0	7.1	6.4 6.7	7.4	7.8 7.7 7.0 7.5
strength	1/8" gage	G/tex	50	22	50		98	98	55	21	જ્ઞ તૃંદ્ધ	55	25	55	4 82 4 8 G
Fiber st	Zero gage	Mpsi	71	80 88	74		%	95	8	88	8883	77	888	75	38888
Mi oro	naire	Rdg.	3.1	44.88.	4.2		4.3	7.7	3.9	4.3	9.7.7	3.3	4.0	3.2	यसम्बन् एवं वं रूपं
Fiber length	50/2.5 unif.	Pct.	71	74 74 72	45		91	47	77	94	42 47 46	04	54 44	75	22442
Fiber	2.5% span	'n.	1.00	1.01	0.98		1.11	1.08	1.06	1.10	1.03	1.13	1.14 1.12	1.09	1.10
Classification	Staple	32d in.	31.7	32.0 32.0	31.0		35.6	35.0	33.8	34.3	33.0 33.7 34.9	34.7	35.0 35.0	34.3	\$\$\$\$\$ 9.66 6.66
Classif	Grade	Index	92	22	88		%	86	8	16	828	85	87 83	8	88888
Spinning	lots	No.	ĸ	99	m		21	m	4	ĸ	amr	m	4 m	m	55 55 54 E
Processing group,	variety, and state	SHORT STAPLE	Lankart 57 Northwest Texas	Lankart LX-571 Central Texas Northwest Texas	Lankart 611 Northwest Texas	MEDIUM STAPLE	Acala SJ-1 California	Acala 4-42 California	Auburn M Missouri	Brycot #4 Arkansas	Coker 201 Alabama Georgia South Carolina	Coker 312 Northwest Texas	Coker 417 Alabama South Carolina	Coker 5110 Northwest Texas	Deltapine 16 Arkansas Louisiana Mississippi Arizona West Texas

dyed yarn	Com- posite	Index	106	106 104	103		108	108	106	107	104 108 109	011	98	107	104 104 108 106 105
Color 22s dy	Blue- ness	위	26.5	26.6 26.4	25.8		8.98	56.9	26.7	26.8	26.3 26.7 27.1	27.0	25.4 25.8	26.7	26.3 26.6 27.1 26.7 26.7
CoJ	Reflect- ance	服	56.9	27.2	27.0		26.5	9.92	27.4	26.7	27.6 26.4 26.8	26.2	28.5 27.5	26.9	27.4 28.1 27.3 27.6 27.6
ed yarn	Com- posite	Index	101	10 2 95	91		103	102	102	103	102 99 104	102	28	102	102 104 105 105
Color 22s bleached yarn	Yellow- ness	위	3.9	3.6	4.7		3.0	3.0	3.4	2.9	www 0.4∙a	4.ε	3.6	3°3	
Color 2	Reflect- ance	鯣	7.48	85.0 82.5	81.9		0.48	83.7	84.2	84.0	83.6 83.3 84.6	84.5	82.9 83.7	84.1	83.88 8.09.48 8.4.89 8.4.89
Yarn imprfctns	Second	શ્ર	8s 72	35 36	148		50s 10	0/	80	15	10 15 15	36	13 14	742	12 15 16 16
Yarn in	22s or 27 tex	No.		22	31		14	13	23	8	12 16 18	45	24 18	53	21 19 16 16 17
Yarn appearance	Second	Index	8s 113	122 125	120		50s 98	100	72	8	8 8 81	77	75	73	84688
Yarn ap	22s or 27 tex	Index	100	120	117		123	127	102	120	110 110 104	100	98	93	122 101 101 120 120
elongation	Second	Pet.	88.9	7.0	7.9		50s 4.5	4.5	4.8	3.9	4.0 7.1	5.3	4.8 5.2	5.5	747.8
Yarn el	22s or 27 tex	Pet.	7.6	6.1	9.9		5.6	5.8	9.9	5.4	6.63	7.0	6.3	7.1	9996
Yarn strength	Second	Lbs.	88 299	318 306	298		50s 49	84	34	34	26 11 11	39	74 74	38	34 63 6
Yarn s	22s or 27 tex	Lbs.	91	98	8		122	123	8	26	84 109 110	103	116 123	66	109 105 110 99
Spinning	lots	No.	m	99	m		21	m	4	m	a m t-	m	⊅ €	m	13 10 12 3
Processing group.	variety, and state	SHORT STAPLE	Lankart 57 Northwest Texas	Lankart IX-571 Central Texas Northwest Texas	Lankart 611 Northwest Texas	MEDIUM STAPLE	Acala SJ-1 California	Acala 4-42 California	Auburn M Missouri	Brycot #4 Arkansas	Coker 201 Alabama Georgia South Carolina	Coker 312 Northwest Texas	Coker 417 Alabama South Carolina	Coker 5110 Northwest Texas	Deltapine 16 Arkansas Louisiana Mississippi Arizona West Texas

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1972--Continued

Qui noi no	Sprinting Potential	No.		79	57	71	55	57 47	20	73	2932	873.000 873.000	75		8	85
		Pct.		7.0	6.2	7.3	7.3	8.6	7.8	7.6	7.0 6.8 5.6	66666 6466 7466 7466 7466	5.8		4.7	4.9
stock	Com- posite	Index		76	98	93	91	88	93	. 08	288	<i>&&&</i> \$\$\$	ц		101	103
of raw	Yellow- ness	No.		m	m	т	m	বব	α	m	๛๛๛	m m a m a m	4		m	m
Color	Gray- ness	No.		Q	4	т	m	۳.	m	9	maa	4 mma4 a	m		П	1
Shirley	non- lint	Pct.		3.4	2.9	3.7	3.9	3.5	4.3	0.4	4 6.8 4.8 4.9		3.5		2.8	1.9
Elon-	gation 1/8"	Pct.		6.7	0.9	5.8	5.8	6.6	7.6	4.3	0 8 6 0 8 6	7,000,00 0,000,00 0,000,00	5.2		4.9	6.3
strength	1/8" gage	G/tex		55	21	25	23	22	42	22	22 22	ଅ ଷ୍ଟ ଅଷ୍ଟ ଅ	21		25	%
Fiber s	Zero gage	Mpsi		75	48	ż	88	81 79	81	\$	æ33 æ	77 883 87 77 75	80		88	8
Micro-	naire	Rdg.		3.9	4.6	7.7	4.8	 	0.4	4.7	2.4 5.1 5.1	4444ww 6677000	3.9		3.6	3.4
length	50/2.5 unif.	Pet.		45	45	91	94	7††	91	94	444	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45		45	· £4
Fiber	2.5% span	티		1.07	1.01	1.05	1.04	1.05	1.10	76.0	1.09	1.08	1.06		1.18	1.17
Classification	Staple	32d in.		35.0	33.2	34.7	32.7	32.2 31.7	35.0	31.5	34.7 34.3 33.7	&\$\$\$\$ 6 6 6 6 7 6 7 7 7 7	34.0		37.0	36.7
Classif	Grade	Index		85	87	85	85	88	87	78	824	88 88 88 84 84 84	89		ま	100
Spinning	lots	No.		П	4	m	m	96	4	α	ოოო	ω <u>7</u> 1 ω81 4 ω	m		9	m
Processing group,	variety, and state		MEDIUM STAPLE (Continued)	Deltapine 45A Missouri	Dixie King II Georgia	Dixie King III Mississippi	Lockett EXL Northwest Texas	Lockett 4789A Northwest Texas West Texas	McNair 511 North Carolina	Quapaw Arkansas	Stoneville 7A Arkansas Mississippi Central Texas	Stoneville 213 Alabama Arkansas Louisiana Mississippi Missouri West Texas	<u>TPSA 1633</u> South Texas	LONG STAPLE	Acala 1517-V New Mexico	Acala 1517-70 New Mexico

		Varn	Varn strenoth	Yarn elongation	noation	Yarn appearance	earance	Yarn imprfctus	orfetus	Color 23	Color 22s bleached varn	d varn	Colc	Color 22s dved varn	d varn	
Processing group,	Spinning	1971	or crise our	1		dd										
variety, and state	lots	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	Reflect- ance	Yellow- ness	Com- posite	Reflect- ance	Blue- ness	Com- posite	
MEDIUM STAPLE (Continued)	No.	Lbs.	Ibs.	Pct.	Pct.	Index	Index	No.	No.	R	위	Index	Rd	위	Index	
Deltapine 45A Missouri	ч	66	35	6.8	5.3	8	70	ήZ	174	84.2	2.9	101	0.98	27.2	111	
Dixie King II Georgia	4	8	58	5.6	0.4	118	8	10	ω	82.8	2.4	95	28.9	25.9	100	
Dixie King III Mississippi	m	112	04	5.8	7.1	103	80	21	14	83.3	3.0	102	27.3	8.98	106	
Lockett EXL Northwest Texas	m	103	37	5.8	4.3	123	76	o _u	13	83.3	3.2	101	27.7	4.92	104	
Lockett 4789A Northwest Texas West Texas	9 8	100	36 29	5.8	4.8	115 103	88	30 42	24 33	84.5 84.8	 	102	27.3 27.6	26.6	105	
McNair 511 North Carolina	4	112	04	9.9	5.2	100	85	19	14	83.0	3.1	100	27.0	26.5	901	
Quapaw Arkansas	α	93	59	9.4	3.2	120	100	16	12	78.9	9.4	78	29.5	2 ^h .0	91	
Stoneville 7A Arkansas Mississippi Central Texas	m m m	99	35 31	5.3	4.1 3.9	117 100 127	81.78	19 11 18	44 13 13	84.4 84.3 84.7	3.1 3.1	104 104 104	27.0 27.3 26.4	27.0 26.9 27.4	108 107 111	
Stoneville 213 Alabama Arkansas Louisiana Mississippi Missouri West Texas	15 13 3 4 4	91 100 100 100 91	3334333	4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 4 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	121 120 99 120 120	884384	18 22 24 21	15 12 15 17 15	83.68 82.0 82.0 87.8		99 102 103 99 107	27.7 27.6 27.9 27.6 27.0	888 86.39 86.39 86.39 86.39	104 104 105 106 108	
TPSA 1633 South Texas	m	66	36	6.3	6.4	117	93	56	19	86.5	3.7	106	28.2	26.2	103	
LONG STAPLE																
Acala 1517V New Mexico	9	127	53	6.5	7.5	88	70	28	55	84.7	3.1	104	27.0	26.4	106	
Acala 1517-70 New Mexico	т	130	50	6.3	5.3	87	29	23	17	85.2	3.1	105	56.9	26.8	107	

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1972--Continued

	Spinning Potential		No.		9955 5		
Diokon	& card	waste	Pet.		9.00.00	8.3	7.4 7.1
ock		Com- posite	Index		なみなかめ	66	88 88 88
Color of raw stock	10	Yellow- ness	No.		ഗന കുന്ന	QI	49
10[0]	10101	Gray- ness	No.		m m ณ m m	α	ন ব
Shirley	Analyzer	non- lint	Pet.		ww.a.t.t.	2.5	2.6 1.8
	Elon-	1/8"	Pet.		6.77.86	5.8	7.6
-	rength	1/8" gage	G/tex		あるあるあ	33	33 32
	Fiber strength	Zero gage	Mpsi		86 86 87 88 88	104	82
	ength Micro-		Rdg.		4444 60000	0.4	w w & o,
	16.		Pet.		44 44 45 44 44 44 44 44 44 44 44 44 44 4	Array 32	33
	Fiber length	2.5% span	i		1.07	1.40	1.45
-	Classification	Staple	32d in.		34.3 35.0 35.0 35.0	0.04	n Pima 44.0
	Classif	Grade	Index		88888	46	American Pima th th
-	Spinning	1	No.		かれなる	m	ma
				LONG STAPLE (Continued)	Coker 310 Alabama Georgia North Carolina South Carolina Mississippi	Del Cerro Arizona	Pima S-4 Arizona West Texas

Processing group.	Spinning	Yarn strength	rength	Yarn elongation	ngation	Yarn appearance	earance	Yarn im	Yarn imprfctns	Color 2	Color 22s bleached yarn	ed yarn	Col	Color 22s dyed yarn	d yarn	
variety, and state	lots	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	22s on 27 tex	Second	Reflect- ance	Yellow- ness	Com- posite	Reflect- ance	Blue- ness	Com- posite	
	ig ig	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	N	뛢	₽	Index	띪	위	Index	
LONG STAPLE (Continued)																
Coker 310 Alabama Georgia North Carolina South Carolina Mississippi	たたいしょ	97 107 114 114	33 44 45 45 45 45 45 45 45 45 45 45 45 45	66.6618	ななけれる	100 104 105 98	7.8887.	88848	18 15 13 14	84.8 83.1 84.1 84.1 84.1	644 66 6466	103 98 108 103	28.5 27.6 26.3 27.2	26.2 25.9 27.0 27.0	102 103 106 107	
EXTRA LONG STAPLE							Combed Yarns	Yarns								
Del Cerro Arizona	m	50s 64	80s 36	50s 4.7	80s 4.2	50s 100	80s 100	50s	808	84.2	2.7	105	28.3	27.4	107	
Pima S-4 Arizona West Texas	m a	79 79	35	5.5° 8.5°	4.8	12 3 105	120 110	ผผ	Ц 0	84.2 83.5	9. c. 4.4	83	27.5	26.2	104	

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1972

	rd rd e	,	.1															
_	Picker & Card waste		Pct.		6.4 7.1 6.7		4.6 5.0 5.9		6.4 6.4 7.0		5.0 5.0 5.0		4.0 4.0 0.0		ν. • • • • • • • • • • • • • • • • • • •		7.1	
ock	Composite		Index		92 91 90		102 100 98		97 91 90		99 100 96		97 95 93		46 66 66		88 91 91	
or of raw stock	Yellow-	2	No.		444		444		W 4 4		W 4 4		444		444		M M 4	
Color	Gray-	2	No.		m 4 4		1 5 5 5 5		m44		226		N m m		m N m		4 M W	
Shirley Analyzer	Total		Pct.		3.1 3.7 2.8		2 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3.0 9.0 8.0		2.5 3.2 2.2		2.2 3.0 2.8		3.5 3.5 8.8		44 m	
Shirley	Visible	223	Pct.		2.2 2.7 1.9		1.5 1.5 1.4		2.6 2.0 2.7		1.7		1.6 2.1 1.8		2.2 1.6 2.6		2°3 2°8 2°5	
	Elon- gation 1/8") +	Pct.	_	7.3	F	6.1 6.6 6.6	_	6.9 6.0 6.0	_	6.8 7.0 6.2	_	6.8 7.3 7.1	*	6.5	_	888	
strength	1/8"	3 9	G/tex	95 PERCENT	20 20 20	99 PERCENT	21 20 19	100 PERCENT	21 20 20	99 PERCENT	20 20 20	87 PERCENT	22 20 20	100 PERCENT*	22 21 21	100 PERCENT	20 21 20	
Fiber	Zero	3 2 2 2 3	Mpsi	v	81 73 76	0.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	88 98 86	0	88 87 90	w	8 8 3 8 3 8 0	10	8 8 8 8 3 5 8	74	72 42 42	e di c
	Micro- naire	\dashv	Rdg.		4°0 4°0 4°0		444		644 800 800		64.0 84.0 84.0		4.5 4.6 4.7		4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		4 4 • 1 4 • 3 4 • 3	percent in the
rograph	50/2.5	· IIIII	Pct.		45		44 44 46	571	7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		44 44 44		45 45 45	571	46 46 46		444 400 70	-
Digital Fibrogra	2.5% span	דבוות פוון	In.	LANKART 611	0.94 0.94 0.95	LANKART 57	0.95 0.97 0.91	LANKART LX 5	0.98 0.97 0.96	LANKART 57	0.94 0.93 0.95	LANKART 57	0.99 1.01 0.99	LANKART LX 5	1.03 1.06 1.04	LANKART 611	0.97 0.99 0.99	tests, less than 100
Area,	pling ion	Staple	32d in.	LAN	32 31 31	LAP	30 31 30	LA	32 31 30	LA	31 30 30	LAP	32 32 32	LA	3333 3333	LAP	31 31 31	
State, Production Area,	Chronological sampling and Classification	Grade	Name Code	SOUTH WEST SOUTH TEXAS TAFT	SLM LT SP 42 SL# LT SP 42 SLM LT SP 42	CENTRAL TEXAS FORNEY	M 31 M LT SP 32	ITASCA	M LT SP 32 SLM LT SP 42 SLM LT SP 42	MCK INNEY	M 31 K 31 SLM 41	TEMPLE	SLM 41 SLM LT SP 42 SLM LT SP 42	WACO	SLW LT SP 42 SLM 41 SLM LT SP 42	NORTHWEST TEXAS ANSON	LM 51 SLM LT SP 42 SLM LT SP 42	percen-

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1972--Continued

120	n str	Yarn elongation Yarn	pearance 22s or	or impr	Spin- ning Poten-	Color -	22s gray ya	yarn Color- m- Reflct	.22s	blchd.yarn	Color - 2 Reflct-Bl	22s dyed yarn Blue- Com-
120 47 120 49 40 40 11.0 40 40 40 40 40 40 40	Staple 74 tex 27 tex 74 tex 27 tex 71	t tex	27 tex	os or 225 or 74 tex		ance		-	nes			
95 PERCENT 120	in. Ibs. Ibs. Pct. Pct. Index	21	·		No.	Rd 			위	Index		
120 47 32 46 65.6 11.1 90 86.0 3.3 105 26.0 27.6 1100 60 40 40 40 66.3 11.7 90 86.0 3.3 106 26.6 26.7 1100 60 40 40 40 40 40 40	LANKART 611		5									
99 PERCENT 120 29 17 43 69.7 13.1 103 87.0 3.4 108 26.3 27.4 1 120 29 17 43 69.7 12.1 103 87.0 3.4 108 26.3 27.0 27.1 1 120 29 14 56.0 12.1 91 84.3 3.5 102 27.2 26.9 1 120 28 18 44 64.6 12.3 91 84.0 3.7 100 28.2 25.9 27.2 1 120 39 24.9 67.1 13.2 98 86.9 3.5 108 25.9 27.2 1 120 27 20 44 69.3 12.3 91 84.0 3.7 100 28.2 25.9 1 120 27 20 44 69.3 12.2 99 85.1 3.3 104 26.5 25.7 1 120 27 20 44 69.3 12.2 99 85.1 3.3 104 26.5 25.7 1 120 39 25 40 67.4 12.9 102 85.4 3.6 104 26.5 25.7 1 120 38 25 49 67.4 12.6 97 86.5 3.4 107 27.3 27.5 1 120 38 25 49 67.4 12.6 97 86.5 3.4 107 27.3 27.5 1 120 31 18 59 69.0 12.7 98 84.4 3.5 102 27.2 26.9 1 120 31 18 59 69.0 12.5 99 85.4 3.8 103 26.7 27.3 27.5 1 120 31 18 59 69.0 12.5 99 85.4 3.8 103 26.7 27.3 26.9 1 120 31 18 59 69.0 12.5 99 85.4 3.8 205 26.9 26.5 27.3 1 120 46 32 46 66.4 11.3 89 82.6 4.3 99 27.6 25.5 1 120 46 32 46 66.4 11.3 89 82.6 4.3 99 27.6 25.5 1 120 46 32 46 66.4 11.1 89 81.7 5.0 89 26.9 26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	32 296 88 7.5 6.5 13 31 281 83 7.5 6.5 12 31 274 84 7.1 6.1 12	8210		W 4 W	979	66.5	11.6 11.7 11.9	00 00 00	20 %	105 106 106	0.00	920
120 29 17 43 69.7 13.1 103 87.0 3.4 108 26.3 27.4 1 1 1 1 1 1 1 1 1	LANKART 57		5	9 PERCEN								
120 PERCENT 120 28 18 44 64.6 12.1 88 84.0 3.5 108 25.9 27.2 120 28 12 26.3 120 33 23 44 65.6 12.1 88 84.0 3.7 100 28.2 26.3 120 33 23 44 65.6 12.3 91 84.0 3.6 100 28.1 25.9 120 28 18 27 20 42 69.3 12.2 99 85.1 3.3 104 27.2 27.5 130 27 20 42 69.3 12.2 99 85.1 3.3 104 27.2 27.5 130 27 20 42 69.3 12.2 99 85.7 3.4 107 27.2 27.5 120 32 25 49 67.4 11.8 99 85.7 3.4 107 27.3 27.5 120 38 25 49 67.4 12.6 97 86.5 3.4 107 27.3 27.2 120 38 25 49 67.4 12.6 97 86.5 3.4 107 27.3 27.2 120 38 25 49 67.4 12.5 99 85.7 3.4 107 27.3 27.2 120 29 17 20 17 12.3 101 85.7 3.5 102 26.9 12.0 29 12.4 3.8 103 26.7 27.2 26.9 120 29 17 20 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 29 17.5 26.9 12.0 20.0 12.5 29 20.0 12.5 29 20.0 12.5 29 20.0 12.5 29 20.0 12.5 29 20.0 12.5 29 20.0 12.5 29 20.0 12.5 29 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 20.0 27.0 27	30 305 95 6.8 5.9 130 31 313 95 6.7 6.1 130 30 286 89 6.3 5.5 120	J			43 38	69.7 69.2 66.0	22.	60 00 00	9.0	108 102 102	602	416
120	LANKART LX 571		01									
99 PERCENT 39	32 317 99 6.8 6.1 120 31 288 88 6.3 5.8 130 30 289 90 6.3 5.7 120	000	120 120 120	9 1 2	\$ ‡ ‡ ‡	67.1 64.6 65.6	200	8 80 50		108 100 100	15.9	3 1 1 6
39 24 44 69.4 12.9 102 85.4 3.6 104 26.5 25.7 23 27.5 23 12.2 99 85.1 3.3 104 27.2 27.5 27.5 23 12.2 99 85.1 3.3 104 27.2 27.5 27.5 27.5 23 12.2 99 85.1 3.3 104 27.2 27.5 27.5 27.5 27.5 27.5 27.5 27.5	LANKART 57		S.	9 PERC								
32 18 51 68.9 12.4 99 85.7 3.4 105 26.8 27.0 1 38 25 49 67.4 12.6 97 86.5 3.4 107 27.3 27.2 1 39 21 48 68.0 12.7 98 84.4 3.5 102 27.2 26.9 1 100 PERCENT * 100 PERCENT 100 PERCENT 100 PERCENT 100 PERCENT 100 PERCENT 101 85.7 3.8 103 26.7 27.3 1 12.5 99 85.4 3.8 103 26.7 27.3 1 13. 18 59 69.0 12.5 99 85.4 3.8 103 26.7 27.3 1 13. 18 59 69.0 12.5 99 83.7 3.8 99 26.9 26.9 26.9 1 100 PERCENT 100 PERCENT	31 312 95 7.0 6.1 120 30 301 90 8.9 5.8 130 30 302 93 6.5 5.5 130	001	120 120 130	1 2 2	44 41 41	69.4 69.3 67.4	0 7 8	8 8 8	๛ํ๛ํ๛ํ	104	500	~ ~ ~
32 18 51 68.9 12.4 99 85.7 3.4 105 26.8 27.0 1 39 25 49 67.4 12.6 97 86.5 3.4 107 27.3 27.2 1 100 PERCENT* 100 PERCENT 31 18 59 69.0 12.5 99 85.4 3.8 103 26.7 27.8 1 29 17 57 70.1 12.5 99 85.4 3.8 103 26.7 27.3 1 29 17 57 70.1 12.5 99 85.4 3.8 103 26.7 27.3 1 29 17 57 69.1 12.5 99 85.4 3.8 103 26.7 27.8 1 20 PERCENT 100 PERCENT 58 33 45 66.4 11.3 89 82.6 4.3 94 26.6 25.5 1 46 32 44 66.8 11.1 89 81.7 5.0 89 26.9 26.9 26.2 1 41 29 44 67.2 11.0 90 81.4 4.8 90 27.6 25.8 1	LANKART 57		3									
100 PERCENT* 20 31 18 59 69.0 12.5 99 85.4 3.8 103 26.7 27.3 1 20 29 17 57 70.1 12.5 99 85.4 3.8 103 26.7 27.3 1 20 38 20 54 69.1 12.5 99 83.7 3.8 99 27.6 26.6 1 100 PERCENT 10 58 33 45 66.4 11.3 89 82.6 4.3 94 26.6 25.5 1 20 46 32 44 66.8 11.1 89 81.7 5.0 89 26.9 26.2 1 20 41 29 44 67.2 11.0 90 81.4 4.8 90 27.6 25.8 1	32 326 103 7.2 6.5 130 32 318 99 7.0 6.3 130 32 308 96 7.2 6.2 120	000	120 120 120	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	51 49 48	68.9 67.4 68.0	225	0 0 0	ค ์ ค่ ค่	105 107 102	8 m N	920
120 31 18 59 69.0 12.5 99 85.4 3.8 103 26.7 27.3 1 1 1 1 2 2 6 9.1 12.3 101 85.7 3.5 105 26.9 26.3 1 1 1 2 0 3 8 20 54 69.1 12.5 99 83.7 3.8 99 27.6 26.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LANKART LX 571		10	PERCENT								
100 PERCENT 110 58 33 45 66.4 11.3 89 82.6 4.3 94 26.6 25.5 1 120 46 32 44 66.8 11.1 89 81.7 5.0 89 26.9 26.2 1 120 41 29 44 67.2 11.0 90 81.4 4.8 90 27.6 25.8 1	33 347 107 7.5 6.3 120 33 335 105 7.3 6.3 120 33 332 102 7.8 6.5 120	00		7 7 7	57	69.0 70.1 69.1	25.5	80 80	4 3.	103 105 99	r 6 9	633
110 58 33 45 66.4 11.3 89 82.6 4.3 94 26.6 25.5 1 120 46 32 44 66.8 11.1 89 81.7 5.0 89 26.9 26.2 1 120 41 29 44 67.2 11.0 90 81.4 4.8 90 27.6 25.8 1	LANKART 611		01	٥								
	31 296 91 7.8 6.3 12 31 296 89 8.0 6.9 12 31 301 91 8.0 6.7 12	_0		w # 2	44	66.4 66.8 67.2	1:	9 82 9 81 0 81	4.0.4	94 89 90	969	5.5 1 6.2 1 5.8 1

* 100 percent selected for tests, less than 100 percent in the area

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1972--Continued

	ьф																
	Picker & Card waste		Pct.		5.7 6.1 6.1		5.0 6.0 0.0		5.9 6.9 6.9		9.6		8.0 8.1 7.8		6.6 6.0 7.7		6.9
stock	Composite		Index		100		99 94		98 86 87		93 87 83		83 77		96		066
Color of raw st	Yellow- ness		No.		ммм		4 11 4		444		4100		922				444
Color	Gray-		No.		222		226		044		w 4 rv		0 0 0		222		444
alyzer	Total waste		Pct.		2.9		4.1 4.8		3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		4.1 6.3 7.4		4.9		2.8 3.4		3.0 3.6
Shirley Analyzer	Visible waste		Pct.		1.6 1.6 1.5		2.5 3.1		1.9 2.1 1.6		2.6 4.9 5.8		7.0 7.0 8.0 8.0 8.0		1.8 1.5 2.1		2.0 1.6 1.8
	Elon- gation 1/8"	,	Pct.		5.9	ale.	8.0 7.8 8.6		7.0		8 6 9		7.2 7.0 7.4		7.5 7.3 6.6		7.3 6.9 6.9
strength	1/8" Gage	,	G/tex	90 PERCENT	20 20 20	D PERCENT*	21 19 20	O PERCENT	21 21 22	80 PERCENT	20 20 21	5 PERCENT	22 22 22	80 PERCENT	21 21 20	90 PERCENT	20 22 21
Fiber s	Zero Gage)	Mpsi	6	80 77 78	100	74 71 69	100	86 81 80	Ď	78 74 76	75	82 76 77	ã	77 76 73	ō	75 79 27
	Micro- naire		Rdg.		4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3.2 3.5 2.7		5.1 5.0 5.0		3.2 2.9 3.0		33.0		3.4 3.7 3.8		444
Fibrograph	50/2.5 unif.		Pet.	RMPROFF	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		44 43 43	571	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		46 43 46		4 4 4		4 4 4 9 4 6
Digital Fi	2.5% span length	,	In.	WESTERN STORMPR	0.94 0.96 0.97	LANKART 57	1.02 1.01 0.96	LANKART LX	0.97 0.97 0.99	STRIPPER 31	0.90 0.97 0.92	RILCOT 90	0.89 0.91 0.94	STRIPPER 31	0.94 0.97 0.95	LANKART 57	1.01
Area,	ling on	Staple	32d in.	W	31 31 31	LAI	32 32 31	LA	32 31 32	ST	31 32 32	RII	30 30	STI	31 31 31	LAI	32 33
Production Area,	Chronological sampling and Classification	Grade	Code	TEXAS NG	31 41	0-	SP 32 SP 42 SP 42	ETT	SP 32 SP 42 SP 42	ENTER	SP 42 53 53		53 44 44		41 41 41		SP 42 SP 42 SP 42
State,	Chronol and C	Gr	Name	SOUTH WEST NORTHWEST T BIG SPRING	SLY	BROWNF IEL	M LT S SLM LT S SLM LT S	BURKBURNETT	SLM LT S	COTTON CENTER	SLM LT S 1/LM SP 1/LM SP	LARIAT	LM SP SLM TG SLM TG	LOCKNEY	SL# SL# SL#	P ADUCAH	SLW LT SLW LT SLM LT

* 100 percent selected for tests, less than 100 percent in the area $\underline{1}/$ reduced from $\mathbb{I}3$ because of bark

Table 5a. -- Cotton, American upland short staple: Quality characteristics by production areas, crop of 1972 -- Continued

arn	t te	Index														
dyed yarn	Com- posite	Inc		107 109 111		109 107 102		115 100 99		113 114 107		109 108 106		108 110 112		1111 108
- 22s	Blue-	위		26.6 27.0 27.1		27.0 26.7 25.9		28.1 26.0 25.2		27.4 27.3 26.0		26.3 26.3 26.4		27.1 27.0 27.1		27.6 26.6 27.0
Color	Reflct- ance	R _d		26.9 26.4 25.6		26.3 26.7 27.7		25.5 28.8 28.1		25.5 24.6 25.6		25.2 25.8 26.7		27.0 26.0 25.2		26.8 26.4 25.7
Color-22s blchd.yarn	Com- posite	Index		102 102 100		100 100 102		102 95 90		101 103 96		102 101 102		101 102 99		96 97 99
22s blo	Yellow	₽		3.2		4.5		3.3 3.9 4.2		4.0 4.9		9.6 4.4		3.5		4.1 3.9 3.7
	Reflct- ance	Fd.		84.0 83.9 83.2		85.0 83.8 85.2		84.0 82.2 80.4		85.0 85.8 84.2		84.5 85.6 86.0		84.0 84.8 82.7		83.2 83.4 83.4
gray yarn	Com- posite	Index		9 6 6		99		4 9 8 8 5 8		94 87 87		83 75 73		100		86 89 91
- 22s gr	Yellow- ness	위		11.1		12.2 11.5 12.4		11.9		13.4 13.7 13.3		13.6 14.1 14.0		11.6 11.6 11.0		11.0
Color -	Reflct- ance	R _d		69.7 69.2 68.4		69.2 68.6 66.9		67.6 64.8 64.1		64.9 62.0 62.7		59.9 54.9 52.7		70.5 71.1 69.1		64.9 66.1 66.9
Spin-	ning Poten- tial	No.		42 43 45		48		;;;		42 40 37		£ 4 4 4		447		52 52 51
rfctns.	22s or 27 tex	No.	=	21 19 22	*	34 41 67	=	24 20 20	=	36 50 46	=	42 52 41	E	33 . 30 22	=	28 21 33
Yarn imprfctns.	8s or 74 tex	No.	PERCENT	31 34 33	PERCENT*	59	PERCENT	42 38 29	PERCENT	64 94 65	PERCENT	65 90 63	PERCENT	53 64 39	PERCENT	58 36 50
	s or tex	Index	90	120 120 120	100	120 110 70 1	100	120 120 120	80	120 90 110	75	110 90 110	80	120 120 120	90	120 120 120
Yarn appearance	or 22st tex 27															
Yarn	8s o 74 t	Index		120 120 130		120 120 100		130 130 130		120 100 120		120 110 110		120 120 120		120 120 120
ngation	22s or 27 tex	Pct.	.0FF	5.9		7.2		50 00 00 00 00 00 00 00 00 00 00 00 00 0		6.6		4.0		400		6.2
Yarn elongation	8s or 74 tex	Pct.	STORMPROFF	7.1	57	8.3 9.6	LX 571	7.0 7.1 6.7	31	7.9 8.4 8.1	06	7.5	31	7.5 8.1 7.9	57	7.2
ength	22s or 27 tex	Lbs.	WESTERN	90	LANKART	93 92. 87	LANKART	95 94 91	TRIPPER	92 96 93	RILCOT 9	93	STRIPPER	94 96 92	LANKART	95 94 91
Yarn strength	8s or 74 tex	Lbs.	3	301 298 304	٠	300	ت	306 299 294	ST	309 324 313	~	336 314 310	S	310 320 312	نہ	302 298 299
Area	L	d in.		31 31		32 32 31		32 31 32		31 32 32		30		31 31		33
tion	ricati St	de 32d	TEXA S	31 41	٥	P 32 P 42 P 42	±	SP 32 SP 42 SP 42	NTER	P 42 53		53		417		SP 42 SP 42 SP 42
State, Production Area	Chronological sampling and Classification Grade Staple	Name Code	SOUTH WEST NORTHWEST TEXAS BIG SPRING	SLM	BROWNFIEL	M LT SP SLM LT SP SLM LT SP	BURKBURNETI	M LT SP SLM LT SP SLM LT SP	COTTON CENTER	SLM LT SP 1/LM SP 1/LM SP	LARIAT	LN SP SLM TG SLM TG	LOCKNEY	SLM SLM SLM	PADUCAH	SLM LT S SLM LT S SLM LT S

 * 100 percent selected for tests, less than 100 percent in the area 1/ reduced from 43 because of bark

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1972--Continued

1	L m	1												
.;	& Card		Pet.		5.7 6.7 6.2		5.8 7.3 6.9		6.4 7.9 7.1		5.0 5.0 5.0			10.2 10.1 9.8
ock	Composite		Index		96 90 91		36 96 96		94 82 86		58 93 92			75 76 74
Color of raw stock	Yellow- ness		No.		m 4 m		4 10 10		m 4 4		ታ ጠጠ	≯ m ጣ		ထာ ထာ ထာ
Color	Gray- ness		No.		ጠቁጠ		ттт		w n 4		N m m			L 0 L
nalyzer	Total waste		Pct.		4.0 3.5 3.2		3 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3.6 5.1 4.0		2.6 2.6 3.4			7.7 6.6 6.6
Shirley Analyzer	Visible waste		Pct.		3.1 2.0 1.7		2.0		2.5 3.3 2.2		1.2			6.1 5.1 5.0
	Elon- gation 1/8"		Pct.		6.5		9.9		7.2 7.1 6.9		7.3 6.6 7.0			7.6 7.1 7.2
strength	1/8" Gage	,	G/tex	100 PERCENT	22 22 21	80 PERCENT		90 PERCENT	21 20 21	97 PERCENT	21 20 20		90 PERCENT	22 21 22
Fiber	Zero Gage)	Mpsi	10	79 78 78	w			76 78 76	G.	83 81 75		5	81 79 79
	Micro- naire		Rdg.		4 4 4 0 0 0		444 0		4.4 4.2 3.1		4 4 4 6 5 7 4 4 6 5 7 4 6 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			3.1 2.7 2.7
rograph	50/2.5		Pct.	571	4 4 4 N N 4		41	LANKART 57	44 45		4 4 9 4 5 4 5			44 42 42 42 42 42 42 42 42 42 42 42 42 4
Digital Fibrograph	2.5% span		In.	LANKART LX 5	1.06	STRIPPER 31	0.97 0.97 0.94		1.00 0.98 0.99	LANKART 57	0.92 0.97 1.01	993	GREGG 35	0.95 0.92 0.90
Area,	pling ion	Staple	32d in.	LA	33 32 32	ST	32 32 31	ΓA	30 31	ΓA	32 32 32		GR	31 30 30
State, Production Area,	Chronological sampling and Classification	Grade	Code	T TEXAS	41 SP 42 SP 42	w	SP 42 SP 42 SP 42		SP 42 SP 52 SP 52		SP 32 41 SP 42		00	4 4 4 4 4 4
State,	Chronc		Name	SOUTH WEST NORTHWEST RULE	SLM SLM LT SLM LT	SEMINOLE	SLM LT SLM LT SLM LT	WINTERS	SLM LT 1/LM LT LP LT	OKLAHGMA ALTUS	SLM LT SLM LT		WEST NEW MEXICO CAUSEY	SLM TG SLM TG SLM TG

Table 51. -- Cotton, American upland short staple: Quality characteristics by production areas, crop of 1972 -- Continued

yarn	e e	×		e		n = 0		10 P M		~ 8 5			
dyed ya	Com- posite	Index		111 98 103		111		105 97 98		108			114
22s	Blue- ness	위		27.6 25.2 26.1		27.7 27.3 25.5		25.9 25.1 25.2		27.1 27.1 26.7			27.4 25.9 26.0
Color -	Reflct- ance	R _d		26.9 28.3 27.7		25.9 26.3 28.4		26.2 28.7 28.4		27.7 27.1 26.3			24.6 25.6 26.6
blchd.yarn	Com- posite	Index		100 92 92		100 100 98		102 92 89		99 96 100			98 98 101
s blch	Yellow-	위		3.6 4.8 4.3		3.6 3.6 3.6		6.4 8.8 4.8		3.6 3.5			5.2
Color-22s	Reflet-Y	집		84.0 82.6 81.8		84.0 83.9 82.9		84.4 82.5 82.0		83.3 82.4 83.6			85.4 85.4 85.4
yarn Co	Com- Re posite a	Index		95 89 86		97		94 85 85		96			72 73
22s gray		위		11.5		12.4 11.9 11.2		12.2 11.9 11.9		11.9 10.9 11.2			14.2
Color -	Reflct-Yellow- ance ness	R _d		68.7 65.8		68.2 68.1 68.2		67.1 63.4 63.3		68.5 67.1 67.2			51.7 51.6 52.8
Spin-	ning Poten- tial	No.		52 4 4 6 4 8		64.4 6.6 6.6 6.6		41 43		4 4 4 8 2 8			6 4 4 4 0 4 0
imprfctns.	22s or F 27 tex	No.	Ä	23 27 19	80 PERCENT	22 28 27	90 PERCENT	24 32 28	, L	17 14 16		M	68 51 47
Yarn impr	8s or 74 tex	No.	100 PERCENT	34 43 30		3.6 3.9 3.9		41 55 46	97 PERCENT	25 29 29		PERCENT	118 95 74
appearance Y	22s or 27 tex	Index	10	120 120 120		120 120 120		120 120 120	6	120 130 120		96	90 120 90
Yarn appe	8s or 74 tex	Index		120 120 120		130 120 120		120 120 120		130 130 130			110 120 110
no	22s or 27 tex	Pct.		6.1 6.3 6.1		6.5		400.0		6.0			6.8
Yarn elongati	8s or 74 tex	Pct.	LX 571	7.3	31	7.5	57	4.7.	57	7.1 7.2 7.8	- '		8.1 7.9 8.0
	22s or 27 tex	Lbs.	LANKART LX 571	100 95 95	STRIPPER 31	94 91 91	LANKART	96 78 78	LANKART	946		GREGG 35	105 103 97
Yarn strength	8s or 74 tex	Lbs.	-	328 304 305	•	307 307 299		315 291 284	_	310 311 310		G	353 335 315
		in.		33 32 32		32 32 31		30 31 30		32 32 32			31 30
on Ar	ation Staple	32d in.	EXAS	417		455 457 457		42 52 52		32 41 42			4 4 4
ucti	ific	Code	# # #	S S	ш	SP		SPS		S P		8	
State, Production Area	unronological Samplification Grade Stap	Name C	SOUTH WEST NORTHWEST TEXAS RULE	SLM SLM LT SLM LT	SEMINOLE	SLM LT SLM LT SLM LT	WINTERS	SLM LT	OKLAHCMA ALTUS	SLM LT	WEST	NEW MEXICO	SLM TG SLM TG SLM TG

1/ reduced from 42 because of bark

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 -Continued

Dioker	& Card waste		Pct.			57 57 50 80 50 50 80 50				5.8 5.8 6		40.9		6.0 6.1 6.6		5.3 5.0 5.1		6.6 7.0
ck	Composite color		Index			100 96 92		96 91 95 93		97 96 95		87 87 91		95 95 90		93		91 93 90
of raw stock	Yellow- ness		No.			ммм		8888		ммм		44 M		ታ ጠጠ	•	ታ ጠጠ		4 m m
Color	Gray- ness		No.			226		ุณฑฑฑ				446		604		m m m		4 11 4
alyzer	Total waste		Pct.			1.7 1.7 3.2		25.92		1.7		3.3 3.4 2.1		2.8		1.8 3.1 1.8		2.6
Shirley Analyzer	Visible waste		Pct.			1.1 1.0 2.0		1.2 2.1 1.5 1.8		1.0		2.3 2.4 1.7		1.7 2.0 1.6		1.0		1.9 2.3 1.5
- ac [#	gation 1/8"		Pct.			8.5 8.6 7.3		6.3 6.6 6.0		5.1		8.3 7.6 6.7		7.2 7.9 7.1		7.9		7.2 7.1 7.2
strength	1/8" Gage		G/tex	85 PERCENT	22 22 22	O PERCENT	26 25 24 24	00 PERCENT	22 21 22	3 PERCENT	21 21 20	5 PERCENT	21 20 20	92 PERCENT	21 21 21	O PERCENT	22 21 21	
Fiber a	Zero Gage		Mpsi		60	74 79 79	100	8 8 8 8 8 8 6 4	10	87 85 81	6	77 80 80	7	82 78 77	6	84 79 83	100	78 75 78
	Micro- naire		Rdg.			4.1 4.3 4.1		44.8 9.0 4.0 8.0 9.0		4 4 4 0 4 6		4.5 4.2 4.1		4.5		3.9		4 4 4 5 5 7 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Fibrograph	50/2.5 unif.		Pct.		16	44 43		4 4 4 4 2 9 6 4		7 4 4 7 4 9	213	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	LEAF	4 4 4 4 4 8	1.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	213	4 4 4 0 70 4
Digital F	2.5% span length	length	In.	DELTAPINE	1.08 1.10 1.13	COKER 417	1.16 1.14 1.14 1.12	COKER 201	1.02 1.03 1.03	STONEVILLE	1.08 1.08 1.05	X SMOOTH LEA	1.08	DIXIE KING	1.04 1.05 1.05	STONEVILLE	1.10	
Area,	ling, on	Staple	32d in.		90	3 3 4 3 4 4	3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3	3333	ST	34 34 33	REX	34 34	10	33 33	ST	33
State, Production Area,	Chronological sampling, and Classification	Grade	opoo Code	41 51 51	ш	41 51 51 51		41 41 SP 42		SP 42 SP 42 51	/ILLE	SP 42 51 SP 42		SP 42 41 SP 42		51 51		
State,	Chronold and Cl	Gr	Name	SOUTH EAST	CHEROKEE	SLM LP	DEATSVILLE	SL L L L L L L L	GERALDINE	SLM SLM SLM T	JEFF	SLM LT S SLM LT S LM	MEREDIANVILLE	SLM LT S LM SLM LT S	TONEY	SLM LT S SLM SLM LT S	TUSCUMBIA	555

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

l a	d)	1														
22s dyed yarn	Com- posite	Index		109 110 105		104 101 95 91		109 107 101		105 102 98		104 105 102		101 104 99		104 108 100
- 22s d	Blue- ness	위		27.2 27.2 26.2		26.2 25.9 25.1 24.3		27.1 26.9 25.7		26.4 26.0 25.7		26.0 26.4 26.0		25.8 26.2 25.3		26.2 26.9 25.7
Color	Reflct- ance	뀖		27.0 26.5 27.0		27.3 28.5 29.5 30.1		26.7 27.2 28.0		27.2 27.9 29.5		26.8 27.5 28.0		27.9 27.5 27.9		27.5 26.9 28.6
blchd. yarn	Com- posite	Index		106 99 102		100 100 101 91		100		96 96 102		93 98 91		91 97 91		97 101 99
	Yellow- ness	위 _.		3.2 3.3		2 9 M 9 0		3.2 .3.1 2.8		9 4 8		5.1 4.2 5.4		5.3		4 0 0 0 0 4
Color-22s	Reflct- ance	紹		85.2 82.7 84.0		84.1 83.7 83.7 80.1		83.2 84.5 82.8		84.1 83.5 84.0		83.2 84.1 83.0		82.8 83.9 82.1		83.8 84.2 83.1
yarn	Com- posite	Index		93 85 85		87 85 85 82		85 88		88 8 4 8		88 85		80 80 80 70 80 45		87 84 84
22s gray	Yellow- ness	위		10.6 10.2 10.2		111.1 111.0 10.3 9.7		10.6 10.9 10.4		12.4 11.6 10.5		11.7 10.7 10.9		11.7 111.0 10.7		11.6 10.9 10.5
Color -	Reflct- ance	쬐		69.2 65.9 65.4		65.6 65.6 65.6 65.6		65.4 66.1 67.1		64.5 63.4 65.2		65.0 66.7 64.5		63.8 66.4 64.4		64.9 65.9 64.9
Spin-	ning Poten- tial	હ્ય		6 9 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		57 75 07		58 48 51		65 62 61		64 49		60 53 52		64 61 54
imprfctns.	50s or 12 tex	No.	¥	15 16 28	\$	14 14 13	L N	141 6	NT.	23 12 8	F	27 9 9	NT TN	11 8 18	L N	15 10 19
Yarn im	22s or 27 tex	일	5 PERCENT	28 17 28	PERCENT	30 28 20 16	PERCENT	10 15 9	PERCENT	24 17 8	PERCENT	24 12 6	PERCENT	1118	PERCENT	22 12 21
arance	50s or 12 tex	Index	80	020	100	80 70 70 70	100	80 06	66	80 20 10	75	8 8 8 80 0	92	00 00 00 00 00 00 00 00 00 00 00 00 00	100	900
Yarn appearance	22s or 9	Index		100 100 90		100 100 100 90		100 100 120		110 100 100		100 110 110		90 110 90		100
-	50s or 12 tex	Pet.		6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5.0		3.4 9.6		0 4 4 0 0 0		6.4		0 4 4 0 4 4		5.1 4.6 4.3
Yarn elongatio	22s or 27 tex	Pet.	91	7.2		6.6 6.3 6.2		5.55 5.25 5.25	E 213	6.8 6.4 6.1	SMOOTH LEAF	6.8 6.8	KING II	6.1	E 213	6.7 6.3 6.2
\vdash	50s or 2	Ibs.	DELTAPINE 16	35	COKER 417	44 44 41 41	COKER 201	27 25 <u>1</u> / 27	STONEVILLE	37 32 30		336	DIXIE KIN	31 31 30	STONEVILLE	32 30 28
Yarn strength	22s or 5	<u>Ibs.</u>	DE	99 101 98	00	118 116 119 111	00	91 84 85	ST	102 94 93	REX	101 96 95	10	* 9 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ST	96 90 87
oxdot		32d In.		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		332 332 332		8 8 8 8 8 8		446		4 6 6		888		4- W W
tion Ar	sampin ication Sta			41 51 51	ш	5112		41 41 SP 42		SP 42 SP 42 51	TLLE	SP 42 51 SP 42		SP 42 41 SP 42		51 51 51
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH EAST ALABAMA CHEROKEE	SLA	DEATSVILLE	N M M M	GERALDINE	SLM SLM SLM LT S	JEFF	SLW LT S SLM LT S LM	MEREDIANVILLE	SLM LT S LM SLM LT S	TONEY	SLM LT S SLM SLM LT S	TUSCUMBIA	

 \perp End breakage too high to spin 50s yarn. Why yarn spun and strength adjusted to equivalent of 50s

Table 6 .- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972-Continued

State, Production Area,	ion Area,	Digital Fibrograph	ibrograph		Fiber s	Fiber strength	F. O.D.	Shirley Analyzer	Analyzer	Colo	Color of raw stock	ock	Dioker
Chronological Sampling, and Classification	sampiing, cation	2.5% span	50/2.5 unif.	Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card
Grade	Staple	,)	,							
Name Code	32d in.	ul	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pet.	Pct.	No.	No.	Index	Pct.
SOUTH EAST ALABAMA TUSKEGEE		DELTAPINE	16		ŏ	99 PERCENT							
SLM 41 SLM 41 LM 51 LM 51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.12 1.09 1.10	444 W W 44	4444	80 81 80 80	25 25 25 25 25	88.0 8.5 0.0	11. 1.53 1.43 1.43	1.9 1.9 2.0 2.5	2242	4 10 10 10	97 99 95	6.0 7.0 0.0
TYLER	J	COKER 201			85	5 PERCENT							
LH 51 LM 51 LM 51	35 35 35 35	1.10 1.11 1.12 1.10	4444 9648	4444 0000	88 88 80	26 25 22 22	0.00	2.4 1.8 2.6 1.9	2 3 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ጠጠቀረ	m N N N	91 95 88 98	5.6 5.4 6.2
GEORGIA BOSTWICK		DIXIE KING	11		100) PERCENT							
SLM LT SP 42 LM LT SP 42 LM T SP 42	**************************************	1.04 1.02 1.00 0.97	4444 9904	4444	82 89 85	22 21 20 . 20	6.4 5.1 5.0	2.5 2.6 1.5 2.0	3.2 2.6 2.4	mm44	ታ ጠጠረ!	9 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.1 6.5 6.2 6.1
COLBERT	J	COKER 201			100	D PERCENT							
SLM 41 SLM 41 LM 51	**************************************	1.07	7	044	84 87 88	23 24 25	7.0	2.1 2.0 2.5	2.7	282	mma	100 94 96	6.6 6.1 6.1
еспен	Ū	COKER 201			85	5 PERCENT							
SLM 41 SLM 41 LM 51 LM 51	****	1.07 1.05 1.10	# 9 4 9 # 4 4 4	4444 000w	87 88 84 87	23 23 23	, o o o o o	2.3 2.5 9.5 9.5	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	m4		101 100 93 86	5.8 5.7 7.6
P INEHURST	Ü	COKER 417			7	5 PERCENT							
SLM 41 LP 51 LM 51	*****	1.09	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.1 4.3	85 79	22 23	6.9	2.7	3.7	0 m m	MEN	100 96 94	5.2

Table 6a. -- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 -- Continued

l un	1	e e	 %I												
dyed yarn	Com-	posite	Index		108 105 100 89		108 104 106 106		108 105 95 91		115 107 103		105 110 105 90		108 102 105
- 22s		ness	위		26.8 26.8 26.1 23.9		26.9 26.6 26.9 26.3		27.0 26.9 25.1 24.7		28.0 26.5 25.7		26.6 27.4 26.6 24.1		26.9 26.2 27.0
yarn Color	Reflct-	ance	Rd		26.7 27.9 29.0 30.4		26.9 28.4 27.6 27.7		26.8 28.2 29.9 30.7		25.7 26.6 27.0		27.6 26.9 27.9 30.3		26.7 28.6 28.4
	Com-	posite	Index		103 104 103 99		102 104 99 100		97 100 93 90		103 99 96		106 102 103 93		107 106 102
2s blchd.	Yellow	ness	위		3.2 3.1 3.0		3.0 2.7 3.1 2.9		4.9		3.1 3.6 3.6		3.0		3.1 3.1
Color-2	Reflct-	ance	낊		84.4 84.6 84.0 82.5		83.5 84.0 82.6 82.7		83.6 84.0 82.6 81.0		84.4 83.5 82.0		85.5 83.7 84.4 81.0		85.9 85.5 84.1
gray yarn Color-22s	Com-	posite	Index		92 91 83 87		89 81 89		9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		96 85 89		100 93 86 80		99 89 87
22s gra		ness	위		11.1 10.4 10.1 9.6		10.9 10.1 9.7 9.9		11.5 10.7 10.8 9.8		11.0 10.7 10.2		11.3 11.0 10.5 9.8		11.4 10.4 10.3
Color -	Reflet-	ance	Rd		67.9 68.5 64.5 67.9		66.9 66.3 64.1 68.4		67.5 68.8 64.7 65.0		70.1 65.3 67.9		71.7 68.3 66.0 63.2		70.9 67.7 66.9
Spin.	ning Poten-	tial	No.		68 70 71 64		73 64 62		63 52 54		74 73 59		65 63 71 60		72 69 76
rfctns.	50s or	12 tex	No.	5	11 9 8 13	5	8 15 10 8	Į,	6 8 8 F	ţ.	8 14 15	7	15 10 16 9	5	22 18 18
Yarn appearance Yarn imprfctns.	22s or	27 tex	No.	PERCENT	19 14 10 15	PERCENT	15 16 12 15	100 PERCENT	11 12 9 9	PERCENT	12 18 18	PERCENT	16 8 18 13	PERCENT	19 16 23
earance	50s or	12 tex	Index	66	80 80 80	85	80 90 80	100	90 80 100 90	100	06	85	0 6 8 8 9 9 9	75	70 70 70
Yarn app	22s or	cex	Index		110 110 100 110		110 100 100 120		120 120 120 110		120 100 110		110 120 100 100		100 90 90
gation	50s or	12 tex	Pct.		5.5 5.3 5.4 5.0 7.0		5.1 4.9 4.9 4.8		4°6 3°4 9°8		5.0 4.6		4.8 4.2 5.1 3.9		5.2 5.2 5.1
Yarn elonga	22s or	27 tex	Pct.	16	6.00 6.00 7.00 7.00 7.00		6.2	KING II	60.00 60.00 60.00 60.00		6.7		6.4 6.1 5.6 5.6		6.8 6.7 6.5
-	-		Lbs.	DELTAPINE 16	40 339 32	ER 201	43 40 41 35		33 28 25 25	ER 201	33	ER 201	334	ER 417	42 41 40
Yarn strength			Ibs.]	DEL	110 107 105 100	COKER	115 110 113 104	DIXIE	99 93 89 81	COKER	1111 1110 106	COKER	107 99 114 98	COKER	1111 109 107
	1 ca	.e 27 tex							4666						444
Area	pling	Staple	32d In.		34 1 34 1 34		98 1 35 1 35 1 35		mmmm		1 34 1 34 1 33		1 34 1 34 1 34		m m m
ction	l sam		Code		41 51 51		51 41 51 51		SP 42 51 SP 42 51		41 41 51		41 41 51 51	—	41 51 51
State, Production Area,	Chronological sampling, and Classification	Grade	Name Co	SOUTH EAST ALABAMA TUSKEGEE	S S C W	TYLER	N N N N N N N N N N N N N N N N N N N	GEORGIA BOSTWICK	SLM LT S LM LT S LM LT S	CCLBERT	SL# SL#	нэпоэ	SCH	P INEHURST	SL# L##

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

	Composite & Card		Index Pct.		98 5.9 97 5.6 95 5.8		99 7.4 96 7.2 90 9.0 86 7.5		93 8.2 96 7.2 91 7.5		98 6.1 99 5.8 97 6.6 97 6.3		95 6°4 94 6°3 94 6°7		98 5°7 99 5°7 97 5°7 5°7 5°7 5°7 5°7 5°7 5°7 5°7 5°7 5°
of raw stock	Yellow- Co		No.		m m m		3555		777		m m w m				E 2 2 2
Color	Gray-		No.		226		00m4		828		2222		ммм		0004
Analyzer	Total		Pct.		2.5		WW 0 4 0 0 0 0 0 0 0 0		N4W N40		2 m m m s		₩ ₩ • • •		200
Shirley Analyzer	Visible		Pct.		1.5 1.6 1.8		2.2.6 3.5.6 4.5.6 8.5.6		4.0 3.6 3.1		3.0 2.7 2.7 1.9		2.9 2.8 2.2		11.8
E	gation 1/8"		Pct.	5	7.2	Ļ	7.8 7.7 7.6	,	7.0		7.7 7.3 7.5	<u> </u>	6.6 7.3 6.3	Į,	7 8 . r 7 . c
strength	1/8" Gage)	G/tex	80 PERCENT	23	100 PERCENT	24 23 23 23	100 PERCENT	23	100 PERCENT	22 23 23 23	100 PERCENT	25 26 25	100 PERCENT	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Fiber	Zero)	Mpsi		86 87 84	-	80 84 81 78	1	90 85 86	1	84 83 81 80	1	93 86 86		9 89 80 4 72 51 72
	Micro- naire		Rdg.		444		444 0		4.2 4.2 4.1		4.5 3.8 1.8		3.7		4444
Fibrograph	50/2.5	$\overline{}$	Pct.	91	44 74 70		4 4 4 4 0 8 0 0		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 0 8 N N		4 4 4 0 4 0	16	7 4 4 4 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6
Digital Fi	2.5% span length		In	DEL TAPINE 16	1.05 1.05 1.06	MCNAIR 511	1.07 1.10 1.12 1.10	COKER 201	1.11	COKER 201	1.08 1.10 1.07 1.13	COKER 417	1.11 1.13 1.12	DELTAPINE	1.12
Area,	on on	Staple	32d in.	۵	33 33	I	9 9 9 9 9 9 9 9	J	35 35 35	J	34 35 35	J	35 35 35	0	3 2 2 6
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	⊢ 7	4111	ROLINA	41 50 51 SP 52	ROLINA FALLS	51 51 51	HEWS	4 4 4 4		51 51 SP 52	ITRAL ER	444
State,	cnrono	9	Name	SOUTH EAST GECRGIA SHELLMAN	SLM	NORTH CAROLINA LAURINBERG	SLM LP+ LH LT	SOUTH CAROLINA CALPOUN FALLS	555	ST MATTHEWS	SLM SLM SLM	YORK	t EEE	SOUTH CENTRAL ARKANSAS ALTHEIMER	SLA SLA

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

La	1	l												
dyed yarn	Com- posite	Index		104 104 93		113 109 103 99		110 107 106		112 108 110 108		104 103 100		112 110 102 95
22s dy	Blue- ness	립		26.2 26.5 24.4		27.9 27.1 25.9 25.2		27.2 27.0 26.6		27.6 27.1 27.3 27.0		26.0 26.2 25.3		27.7 26.8 26.1 25.3
Color -	Reflct- ance	₽ <mark>q</mark>		27.6 27.8 29.5		26.5 26.5 27.2 28.0		26.3 27.3 27.2		26.4 27.0 26.4 26.4		26.9 28.1 27.4		26.4 25.8 28.1 29.9
. yarn	Com- posite	Index		96		106 105 100 91		102 100 101		106 106 108 103		100 100 96		106 104 103 98
2s blchd	Yellow-	위		4.0		2.9 2.8 3.1 3.6		3.2 3.4 3.1		3.1 2.9 3.2		3.6		2.9 3.0 3.0
Color-22s	eflct-	뫼		82.7 83.7 82.3		85.0 84.4 82.8 80.0		84.1 83.4 83.4		85.9 85.3 86.0 84.3		84.1 84.0 83.1		85.0 84.6 84.0
yarn	Com- R posite	Index		99 91 88		92 91 88 77		92 92 87		97 93 93 89		91 92 88		93 94 91 80
22s gray	(ellow-	위		11.5		10.4 10.3 10.3 10.1		10.6 10.5 10.4		11.7 10.6 10.6 10.7		11.1 10.9 11.1		10.4 9.9 10.2 9.1
Color -	Reflct-	Rd		70.6 67.7 66.7		68.9 68.8 67.2 61.0		68.6 69.0 66.6		69.0 69.1 69.1 67.0		67.6 68.0 66.2		69.7 70.6 68.8 64.3
Spin-	ning Poten- tial	No.		66 63		71 74 70 63		75 73 69		69 70 69 68		35 87 87		77 72 69 62
imprfctns.	50s or 12 tex	No.	Ľ.	10	TN	16 17 12 12	LN.	13 9 17	TNE	22 15 13	IN	14 9 19	LN:	12 12 12 21
Yarn im	22s or 27 tex	No.) PERCENT	20 10 8	PERCENT	19 22 16 18) PERCENT	16 12 20	PERCENT	24 22 12 22	PERCENT	18 13 23) PERCENT	20 17 19 27
appearance	50s or 12 tex	Index	80	80 70 90	100	70 80 90 100	100	90	100	80 80 70	100	70 80 80	100	100 100 90 90
Yarn app	22s or 27 tex	Index		100 110 110		90 100 110		110 100 100		110 100 110 100		100 100 90		130 120 120 120
ngation	50s or 12 tex	Pet.		4.8 5.1 4.7		5.0 5.0 5.0		5.2		~~~~~ ~~~~~		5.3		7.44 6.00 7.40 8.00
Yarn elongati	22s or 27 tex	Pct.	E 16	6.2 6.4 6.7	511	6.6 6.6 6.5 7.0	11	6.6	10	6 6 6 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	417	6.9	E 16	6 6 6 6 6 6 7 4 7 4
ength	50s or 12 tex	Lbs.	DELTAPINE 16	3 3 8 8 3 5	MCNAIR	41 42 40 38	COKER 201	43 41 42	COKER 201	0 4 4 6 0 4 0 0 4 0 0 0 4 0 0 0 0 0 0 0	COKER 41	44 45	DELTAPINE 16	3446
Yarn strength	22s or 27 tex	Lbs.	٥	107 105 102	Σ	114 1113 1111 109	J	116	J	109 105 105 108	3	124 123 121	0	113 116 110 111
		32d In.		334		3322		35 35		888 888 888 888 888		35		332
tion Ar	sampling,	1		41	DL INA	41 50 51 SP 52	DLINA	51 51	EWS	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		51 51 SP 52	AAL A	41 41 11 11
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH EAST GEORGIA SHELLMAN	SLM SLM SLM	NORTH CAROLINA LAURINBERG	SLM LM+ LM LT S	SOUTH CAROLINA CALHOUN FALLS	555	ST MATTHEWS	SLM SLM SLM	YORK	LM LM LT	SOUTH CENTRAL ARKANSAS ALTHEIMER	SCA

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972-Continued

1	i p		۱.																									
ř	& Card		Pct.			7.0	9.9	0 • 9		5.3	0.0	5.4		4.9	5.9			5.5	5.2	6.2		6.2	9.9	9.9		5.3	5.8	6.8
stock	Composite		Index			95	8 3	11		76	0 K	60		103	96 94			97	86	87		86 96	200			96	93	86
Color of raw st	Yellow-		No			m	e 6	7		m	ብ ሲ	7 7		3	2 6			2 6	v 4	5		2 5	2 2	2		en en	'n	5
Colo	Gray-		No.			w r	v 4	9		7 (V 4	+ 4+		1	~ m	•		7	4	*		4 0	ın	4		24	r m	4
nalyzer	Total waste		Pet.			4.2	3.6 9.0	4.2		2.9	7.7	3.4		2.4	2°8 8°8			2.6	3.5	2.6		10 e 4	0.4	4.8		2.7	2.5	3.4
Shirley Analyzer	Visible		Pct.			3.4	2.5	2.4		2.0	9 0	2.4		1.4	1.7	}		1.8	2.2	1,5		2.7	2.6	3,3		1.8	1.6	1.9
E C	gation 1/8"		Pct.		-	7.0	7 • 1 5 • 8	6.1	-	6.5	0 u	6.2	L	8.2	7.1		_	7.2	7.0	7.5	_	7.6	6.1	7.2	-	6.5	5.7	6.3
strength	1/8" Gage		G/tex		98 PERCENT	24	77	21	100 PERCENT	23	22	21	100 PERCENT	25	23		90 PERCENI	24	4 6 6	23	00 PERCENT	23	22	21	100 PERCENT	23	22	50
Fiber	Zero	þ	Mpsi		Ū.	85	9 6	83	1	40	20 cs	89 33	1	87	85			06	8 0 2 0	8 4	1	80 50	8 2	81	1	80 0	8 40	80
	Micro- naire		Rdg.			0.4	4.1	4•3		5.2	1 0 7	4 . 5		4.3	4.2	}		9.4	* 4 • 0 • 0 • 0	3.9		4.6	4.6	4.4		6.4	4 - 4	4.4
ibrograph	50/2.5		Pet.		213	4	4 4 4	45	213	45	4 0 4	4 4	16	44	4 4 ሊ ሊ		9	4 .	4 4 C 4	43	213	44	47	44	213	46	+ 4 - v	43
Digital Fibrograp	2.5% span		In.		STONEVILLE	1.10	1.07	1.06	STONEVILLE	1.09	1.12	1.11	DELTAPINE 16	1.09	1.10		DELIAPINE	11.11	1,09	1.09	STONEVILLE	1.10	1.10	11.11	STONEVILLE	1.06	1.06	1.06
Area,	jon jon	Staple	32d in.		S	35	34	34	S	35	35	34	0	35	35		2	35	4 4	34	S	35	34	34	S	34	4	* *
State, Production Area,	ronological sampling and Classification	Grade	Code	TRAL		20	21	61		41	4 4	51	FRENCHMANSBAYOU	31	41 SP 42	;		41	1 t	51		51	51	51		41	41	51
State,	and	O	Name	SOUTH CENTRAL	8AY	LN+	ì	260	DUMAS	SLM	Z - Z	, T	FRENCHM	Œ	SLM		GRADY	SLM	E I	5	HELENA	ž.:	: ±	<u>.</u>	HUGHES	SLM	E N	į

Table 61.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

yarn	Com- posite	Index		11 98 96 88		13 09 00		12 01 02		F0 9 9		08 07 07		14 00 95 88
dyed		1		2 2 0 0		9 1 1 9 1 9 1 1 9		8 1 8		4 107 5 110 6 106 3 96		0 10 5 10 8 10 8 9		9 11 9 10 0 9 8 8
- 22s	- Blue-	위		27.		27. 26. 26.		27.		26. 27. 26. 25.		27. 26. 26.		27. 25. 25. 23.
Color	Reflct	Rd		26.6 26.8 28.8 30.9		25.9 26.3 27.5 28.7		26.4 28.4 27.7		26.3 27.1 27.2 29.6		26.9 26.4 27.2 30.1		25.9 28.7 29.5 30.8
ıd. yarn	Com- posite	Index		104 98 94 93		104 103 100 103		1100		107 104 101 97		101 104 104 99		104 98 101 98
2s blchd.	Yellow- ness	위		3.1 3.7 3.7		3.1 2.9 3.1 2.9		2.8 3.3		2.8 3.0 3.2		3.3 2.6 3.0		3.0 3.7 3.1 3.2
Color-22s	eflct- ance	찙		84.7 83.2 81.5		84.8 83.8 83.0		86.5 83.3 83.3		85.4 84.3 83.1 82.0		83.6 83.6 84.4 82.5		84.3 83.3 82.4
gray yarn	Com- R posite	Index		100 78 76		92 96 83 84		97 86 86		92 93 85 84		86 90 88 81		98 86 86 82
22s gray	ellow- ness p	₽		111.7 9.9 9.4 8.6		10.7 10.5 10.0		10.5 9.9 10.4		10.3 10.1 10.0 9.3		10.3 9.9 9.8 9.2		111.5 10.3 10.4 9.4
Color -	herlet-N	Rd		70.9 61.7 61.0		68.6 70.7 64.8 66.0		71.4 66.8 65.8		69.2 70.0 65.7 66.0		66.0 68.8 67.7 64.4		70.0 64.7 66.3 65.0
Spin-	ning Poten- tial	No.		67 63 55 51		64 62 60 59		61 63 67		63 61 69 65		63 63 59		61 61 55 50
rfctns.	50s or 12 tex	No.	5	15 12 17 15	<u> </u>	10 6 11 13	<u> </u>	11 10 16	ENT	16 12 13 14	=	12 14 10	-	12 14 12
Yarn imprfetns	22s or 27 tex	No.	PERCENT	21 15 22 18	PERCENT	15 11 15 18	PERCENT	15 13 20	PERC	21 17 21 17	PERCENT	16 18 16 18	PERCENT	15 21 15 24
appearance	50s or 12 tex	Index	86	100 100 90	100	1000	100	90 100 90	90	90 90 90	100	100 90 100 90	100	100 90 100 80
Yarn appe	22s or 27 tex	Index		120 130 110 120		120 130 120 120		120 120 120		120 120 120 120		120 120 130 120		120 120 120 120
ution)s or 21	Pct.		33.45 3.43.88		- 4 - 4 - 4 - 4		50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		44.0		4410		4.3 4.0 4.1
Yarn elen	22s or 27 tex	Pct.	.E 213	5.6 5.4 5.2	.E 213	5.9 5.5 6.0	16	6.4 5.9 6.2	16	6.2 6.0 6.1 6.1	.E 213	5.9 6.2 5.6	.E 213	5 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3
	50s or 12 tex	Lbs.	STONEVILLE	45 34 27	STONEVILL	36 36 35	DELTAPINE	43 40 40	DELTAPINE	41 41 38	STONEVILLE	37 38 35	STONEVILLE	334 29
Yarn strength	22s or 27 tex	Lbs.	TS.	112 99 97 91	SI	103 102 94 101	30	113 106 107	90	108 109 105 109	ST	103 100 100 102	SI	103 102 93 90
L		32d In.		344		35 34 34	_	35 35 35		344		344		3 4 4 4
ion Ar	sampli cation Sta	1	ب	50 51 51 61		41 41 51	BAYOU	31 41 42		41 41 51		51 51 51		41 51 41 51
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL ARKANSAS BAY	S C C K A	DUMAS	SLA	FRENCHMANSBAYDU	SLM LT SP	GRADY	SLA	HELENA	T T T T	HUGHES	SLM SLM SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

Straptor	State, Production Area,	tion Area,	Digital Fibrograph	brograph		Fiber a	strength	- מיין ניי	Shirley Analyzer	nalyzer	Color	of raw	stock	Dioker
STONE STON	onological nd Classif	sampling, ication	2.5% span length		Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card
STONEVILLE 213 100 PERCENT	Grade	Staple		_			,							
STONEVILLE 213 100 PERCENT 11 34 1.07				Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
STONEVILLE 213 100 PERCENT 11 34 1.07														
STONEVILLE 213 100 PERCENT 1 1 1 2 2 6 6 9 6 9 9 1 9 9 9 9 9 9 9	SOUTH CENTRAL													
11 34 1.07 446 4.5 83 23 7.1 1.8 2.6 2.6 3.8 4 2 3 8 8 8 8 8 8 8 8 8	LEACHVILLE		STONEVILLE	213		ĭ	O PERCENT	_						
11 35	SLM 41 LM 51 LM 51		1.07 1.07 1.07	9 4 4 4 4 4	4 4 4 6 0 0 0	8 8 4 8 5	23 23	7.1 7.3 6.3	1.8 2.1 2.6	3°6 3°8 8°8	N 4 4	8 B B	96 88 89	5.6 6.2 6.6
41 35 1-11 47 4-5 89 22 6-1 1-6 2-4 2 9-0 97 51 34 1.00 46 4-2 86 21 6-2 2-2 3-0 3 97 51 35 1-10 46 4-3 86 21 6-2 2-2 3-0 3 97 51 35 1-08 44 4-1 84 21 5-8 24 3-8 3-8 2 3 97 51 34 1.07 44 4-1 84 21 5-8 21 3-8 3-1 3-2 3-9 3-1 3-8 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1	LEACHVILLE		BRYCOT #4			ĭ		L						
STONEVILLE 7A 51 35 1.08	SLM 41 SLM 41 LM 51		1.11 1.09 1.10	7 4 4 4 4 4 9 6 9 1	444	88 88 96	22 21 21	6.1 6.2 5.4	1.6 2.2 1.8	2°4 3°0 3°0	228	w e 2	97 97 92	5.9
51 35 1.08 44 4.1 86 22 6.4 4.5 5.4 3.8 2 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	OSCEOLA		STONEVILLE			7		_						
S1 34 1.07 46 4.4 88 21 6.8 1.8 2.7 5 3 83 51 34 1.007 46 4.4 82 22 6.2 2.4 3.7 5 3 84 51 34 1.006 43 4.4 82 21 6.2 2.4 3.7 5 2 3 84 51 34 1.006 43 4.4 82 20 5.6 3.0 4.5 5 2 83 DELTAPINE 16 QUAPAW OLLYAPINE 16 DELTAPINE 16 100 PERCENT OLLYAPINE 16 100 PERCENT 100 PERCEN	LM 51		1.08 1.12 1.07	4 4 4 4 0 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	86 84 83	22 21 21	6.4 5.8 5.7	4.5 2.4 2.1	3.8 3.8 2.8	w N 4	m N m	92 95 84	8 6 6 6 6 7
51 34 1.07 46 4.4 88 21 6.8 1.8 2.7 5 3 83 51 34 1.06 43 44.4 88 22 6.2 2.4 3.7 5 9 3 84 51 34 1.06 43 44.4 88 22 6.2 2.4 3.6 3.6 9.8 9.7 41 34 1.09 45 4.1 88 24 8.2 2.6 3.6 3.6 2 9.6 9.4 51 34 1.09 45 4.1 88 24 8.2 2.6 3.6 3.6 2 9.6 9.7 51 32 0.97 47 4.7 98 22 4.5 1.9 3.8 4 2 97 71 31 0.97 45 4.7 98 22 4.5 1.9 3.8 4 9.5 51 34 1.07 45 4.5 88 24 7.6 1.6 1.6 2.6 4.2 7 51 34 1.07 45 4.5 88 22 7.6 1.6 2.6 4.2 7 51 34 1.07 45 4.5 83 22 8.1 2.6 4.1 2.6 4.1 3 95 51 34 1.07 45 4.5 83 22 8.1 2.6 4.1 4.1 4.2 98 51 34 1.07 45 4.5 83 22 8.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 4.1 4.1 2.6 4.1 2.6	Z		REX SL-66			_		_						
41 34 1.00 PERCENT 41 34 1.00 47 4.6 85 24 8.2 2.6 3.6 2.9 3.3 4 2 2 87 51 34 1.00 47 4.6 8.7 4.0 2.0 3.3 4 2 2 87 51 34 1.00 44 3.8 8 24 8.4 1.8 3.3 4 2 2 8.1 81 34 1.00 PERCENT 81 32 4.5 4.5 4.7 98 22 4.5 1.9 3.8 4 3.8 4 3 3 8 5 71 31 0.97 4.7 98 21 4.5 4.1 2.0 4.2 7 3 3 3.8 4 4 3 3 7 4 4 5 81 34 1.07 4.5 83 23 7.6 3.7 4.5 8.1 2.0 4.1 4.1 2.0 4.1 4.1 2.0 4.1 4.1 2.0 4.1 4.1 2.0 4.1 4.1 2.0 4.1 4.1 2.0 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 2.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	51 51 51		1.07 1.06 1.07	44 45 45	444	88 82 44	21 22 20	6.8 6.2 5.6	1.8 2.4 3.0	2.7 3.7 4.5	יט וט וט	m m N	88 83 83	5.4 7.9 7.0
41 34 1.008 47 4.66 85 24 8.2 2.66 3.66 2 3 3 97 51 34 10.09 45 4.1 88 24 8.4 1.08 3.3 4 2 89 N QUAPAM 100 PERCENT 100 PERCENT 101 DERCENT 102 PERCENT 103 2 0.97 47 4.7 98 22 4.5 1.9 3.8 4 3 3 95 104 34 1.07 44 4.4 83 22 8.1 2.6 4.1 4.1 4.1 5.6 4.1 4.1 5.6 4.1 4.1 5.6 4.1 4.1 5.6 4.1 4.1 5.6 4.1 4.1 5.6 4.1 4.1 5.6 4.1 4.1 5.6 4.1 5.6 4.1 4.1 5.6 4.1 5.6 4.1 5.6 4.1 5.6 4.1 5.6 4.1 5.6 4.1 5.6 4.1 5.6 4.1 5.6 5.6 4.1 5.6 5.6 4.1 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	WILSON			16		1		_						
51 32 0.97 47 4.7 98 22 4.5 1.9 3.8 4 3 85 7.8 71 31 0.97 45 4.7 90 21 4.1 2.6 4.2 7 3 85 7.8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8	SLM 41 LM 51 LM 51		1.08 1.09 1.10	44 44	3.0 3.8 8.1	88 88 85	24	8.2 8.4 7.0	2.6 1.8 2.0	9 6 6	N44	622	97 89	5.9
51 32 0.97 47 4.7 98 22 4.5 1.9 3.8 4 3 85 7. 71 31 0.97 45 4.7 90 21 4.1 2.6 4.2 7 3 75 8. DELTAPINE 16 100 PERCENT 100 PERCENT 7.8 1.6 2.8 3 7 4 2 90 6. 51 34 1.07 44 4.4 83 23 7.8 2.4 3.7 4 2 90 6. 51 34 1.07 44 4.5 83 22 8.1 2.6 4.1 4 2 85 6.	MILSCN		QUAPAW			7		_						
DELTAPINE 16 41 34 1.07 45 4.5 86 24 7.6 1.6 2.8 3 3 95 5. 51 34 1.07 44 4.4 83 23 7.8 2.4 3.7 4 2 90 6. 51 34 1.07 44 4.5 83 22 8.1 2.6 4.1 4 2 85 6.	LM 51		0.97 0.97	47	• •	98	22 21	4.5	1.9	3.8	41	m m	85 75	7.2
41 34 1.07 45 4.5 86 24 7.6 1.6 2.8 3 3 95 5. 51 34 1.07 44 4.4 83 23 7.8 2.4 3.7 4 2 90 6. 51 34 1.07 44 4.5 83 22 8.1 2.6 4.1 4 2 85 6.	1111			16		1		_						
	SLM 41 LM 51 LM 51		1.07	44	444	86 83 83	24 23 22	7.6 7.8 8.1	1.6 2.4 2.6	2.8 3.7 4.1	ጠቁቁ	622	95 90 85	6 6 5 5

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

yarn	ø,	XI															
dyed ys	Com- posite	Index		115 105 98		113 107 102		111 106 107		102 103 97		115 105 100		95		110 98 96	
- 22s c	Blue-	위		27.7 26.0 25.7		27.8 26.4 26.1		27.5 26.7 26.7		26.3 26.0 25.1		27.9 26.0 25.8		24.9 23.1		27.1 25.2 25.0	
Color	Reflct- ance	Rd		24.9 26.6 29.2		25.9 26.3 28.0		26.5 27.6 26.9		28.4 27.6 28.9		25.1 26.6 28.6		29.2		26.3 28.5 29.0	
d. yarn	Com- posite	Index		105 104 103		105 103 102		105 104 102		95 97 96		107		92		106 97 93	
2s blchd.	Yellow- ness	위		3.0		3.0		3.0 3.1 3.2		3.5		2.9 3.5 3.1		4.1 5.0		2.9 3.6 3.7	
Color-22s	Reflct- ance	찙		84.9 84.6 84.4		84.8 83.8 83.3		84.8 84.5 83.8		82.1 82.3 82.3		85.4 83.2 82.9		81.2		85.1 82.4 81.1	
y yarn	Com- , posite	Index		101 85 85		98 90 85		98 90 81		80 83 79		99 85 84		84		96 84 80	
22s gray	Yellow-	위		11.7		10.9 10.2 9.9		11.2 9.8 9.7		10.0 10.3 9.5		11.4 9.6 9.6		10.3		11.3 9.5 9.0	
Color -	Reflct- ance	Rd		71.5 65.0 65.8		71.0 68.6 66.2		70.7 68.9 64.1		63.0 64.2 62.7		71.0 66.7 65.8		65.2		69.5 65.9 64.4	
Spin-	ning Poten- tial	No.		65 63 56		64 61 55		62 61 54		63 60 58		72 65 63		46		62 57 61	
imprfctns.	50s or 12 tex	No.	E	13 11 18	_	14 16 16	E	15 14 14	F	9 113 14	FN.	10 8 10	-	11	E	17 10 12	
arn imp	22s or 27 tex	No.	PERCENT	22 119 27	PERCENT	21 18 22	PERCENT	20 19 18	PERCENT	12 18 19	PERCEN	13 15 14	PERCENT	111 20	PERCENT	26 15 16	
rance	or	Index	100	100	100	900	100	060	80	000	100	000	100	110	100	1000	
Yarn appearance Yarn	s or 50s tex 12	Index		120 120 120		120 1 120 120		110 120 120		120 1 120 1 120 1		130 1 120 120 1		120 1		120 1 120 1 130 1	
on Yan	or 22s ex 27 t	1															
ongati	50s o	Pet.		5.0		3.0		4.4		W W W W W W W W W W W W W W W W W W W		5.4 4.8 4.1		3.5		4.3	
Yarn elongati	22s or 27 tex	Pct.	LE 213	6.2 6.0 6.1	5 #	5.3	LE 7A	, , , , , , , , , , , , , , , , , , ,	9	5.1 5.1 5.1	E 16	6.0 6.0 6.3		4.5	E 16	6.6 5.9 6.9	
ength	50s or 12 tex	Ibs.	STONEVILLE 213	39 37 35	BRYCOT #	37 34 31	STONEVILLE	34 32	REX SL-66	34 33 31	DELTAPINE 16	41 41 39	QUAPAW	31 <u>1</u> / 27	DELTAPINE 16	37 34 36	
Yarn strength	22s or 27 tex	Ibs.	S	109 103 97	8	105 97 89	S	100 104 93	2	99	90	112 112 106	ŏ	93	ō	106 100 104	
		E I		34 34		35 34 34		35		34 34		34 34		32 31		34 34	
on Ar	ampli ation Sta	32d		41 51 51		41 41 51		51 51		51 51 51		41 51 51		51		41 51 51	
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL ARKANSAS LEACHVILLE	SLM LM LM	LEACHVILLE	SLM	OSCEOLA	555	PARKIN	355	WILSON	S E W	WIL SON	LM 2/50	MANNE	SLA	

End breakage too high to spin 50s yarn. 44s yarn spun and strength adjusted to equivalent of 50s. Reduced from 61 because of bark LIGI

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

1																	
. ?	& Card		Pct.		5.8		5.4 6.4 6.1		5.0		5.1 6.1 5.2		5.6 6.1 5.9		5.0 5.0 6.0		5.5
stock	Composite		Index		95 97 89		97 97 89		94 96 88		96		92 94 87		96 96 96		98 96 92
of raw	Yellow-		No.		m 01 4		m 2 2		m m N		mmN		mm4		m N N N		222
Color	Gray-		No.		m 0.4		004		m 01 4		204		ጠጠታ		0000		226
nalyzer	Total waste		Pet.		2.0 2.0 3.4		3.6 3.6 3.6		2.4 3.5 5.5		2.6 2.6 3.3		2.0 2.8 2.6		2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2.5 3.1
Shirley Analyzer	Visible		Pet.		1.2 0.9 2.0		2.0 3.1 2.5		1.2 1.2 1.9		2.0 1.8 1.4		1.2		11001		1.7
[A	gation 1/8"		Pct.	_	5.4 5.4	_	6.8 6.1 6.2	_	7.9 6.4 6.7	_	7.1 6.0 6.4	_	7.0	_	8.1 7.0 7.7		8.6 7.5
strength	1/8" Gage		G/tex	90 PERCENT	21 23 21	100 PERCENT	23	100 PERCENT	23 24	75 PERCENT	24 22 22	95 PERCENT	21 22 20	100 PERCENT	23 23 23	100 PERCENT	25 23 23
Fiber	Zero Gage	b	Mpsi		84 87 80	ī	82 83 83	Ā	88 48 64		82 87 83		82 83 79	Ā	84 86 79 81	ā	8 8 5 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Micro- naire		Rdg.		4°04 4°07 4°17		4.°4		4.5 3.9		4 4 4 6 6 4		4.5		4.3 4.0 4.1 3.8		44° 94° 94°
ibrograph	50/2.5 unif.		Pet.	213	94 44 49	213	7 4 4 4 4	16	4 4 4 2 2 2	213	4 4 4 5 5 6 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	45A	44 40 40 40	16	4444 W4WW	16	44 94 94
Digital Fibrograp	2.5% span length		In.	STONEVILLE	1.07 1.10 1.07	STONEVILLE	1.06 1.10 1.06	DELTAPINE	1.06 1.10 1.10	STONEVILLE	1.12 1.06 1.08	DELTAPINE	1.09	DELTAPINE	1.12 1.09 1.12 1.10	DELTAPINE	1.11
n Area,	upting, tion	Staple	32d in.	S	35 34	S	35 34 34	٥	35 34	S	35 34 34	0	34 33		3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		35 35 35
State, Production Area,	ronological sampling and Classification	Grade	Code	ITRAL JA TE	41 41 . SP 42	PROV IDENCE	144		. SP 42 41 51	NO.	41 51 51	AS	41 41 . SP 42	ORT	4 4 4 1 1 1 1 1 1 1	100F	41 41 51
State	and		Name	SOUTH CENTRAL LOUISIANA LAFAYETTE	SLM SLM LT S	LAKE PR	SLM	MONROE	SLM LT SLM LM	NEWELLTON	SLM	OPELOUSAS	SLM SLM SLM	SHREVEPORT	SLM SLM SLM SLM	WATERPROOF	SLM SLM LM

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

La	ı	ł														
dyed yarn	Com- posite	Index		109 107 101		109 105 101		105 104 98		109 103 98		108 108 102		108 105 101 95		115 106 103
22s dy	Blue- ness	위		27.4 26.7 26.0		27.2 26.9 25.9		26.9 26.6 25.4		27.3 26.5 25.2		26.9 26.9 26.2		27.2 26.8 25.9 25.2		28.1 27.3 26.2
Color -	Reflct- ance	Rd		27.2 26.8 28.6		26.9 28.4 28.4		28.2 28.1 28.6		26.9 28.7 28.5		26.8 26.9 28.3		27.2 28.3 28.5 29.8		25.7 28.6 27.8
yarn	Com- posite	Index		105 104 99		107 104 105		101 106 99		108 104 103		101 106 103		109 104 105 99		106 104 102
s blchd.	Yellow-	위		3.0 2.9 3.1		3.1 2.9 2.7		3.3 2.6 2.9		3.0 3.1 3.0		3.4 2.7 2.8		2.6 3.0 2.7 2.9		2.7 2.7 3.1
Color-22s	Gflct-Y	뀖		84.8 84.3 82.5		86.0 84.3 84.6		83.6 84.5 82.1		86.0 84.5 84.0		84.1 84.9 83.8		85.8 84.5 82.4		84.9 84.1 84.0
yarn	Com- Re	Index		86 91 84		93 91 88		86 86 85		92 92 86		83 84 84		94 95 88 89		96 91 88
22s gray	ellow-C	귀		10.7 10.3 10.1		10.7 10.2 10.0		10.9 10.0 9.4		10.8 10.7 9.6		10.3 10.1 10.5		11.0 10.2 9.7		10.2 10.2 9.5
Color - 2	eflct-Ye	Rd		ν) α ν) - 0 α ν)		69.1 69.0 67.7		65.2 66.4 66.8		68.5 68.5 67.3		64.2 67.8 64.4		69.0 70.9 68.0		71.5 68.9 68.4
Spin- Cc	1.15	No.		57 6		62 63 56 6		57 6 36 6 59 6		70 6 57 6 60 6		62 6 60 6 59 6		65 63 7 62 61 61		63 7 60 6 67 6
 .	r s s			010		2 - 4		w 4 rv		11 15 16		878		86.25		23.1
imprfctns	or 50s ex 12 t	No.	PERCENT		PERCENT		ERCENT	2	PERCENT		PERCENT		RCENT		PERCENT	
e Yarn	22s 27 t	<u>용</u>	90 PE	15	100 PE	20 22 24	100 PE	19 17 38	75 PE	21 19 21	95 PE	20 17 20	100 PER	16 14 19 25	00	17 19 23
appearance	50s or 12 tex	Index		90 90 100	-	100 100 80		100 100 80		90 100 90		100 90 90		80 100 80 80	-	100 90 100
Yarn ap	22s or 27 tex	Index		120 120 120		120 120 120		130 120 120		120 120 120		130 120 120		120 130 120 110		130 120 120
gation	50s or 12 tex	Pct.		4.3 3.6		5.0 4.5 4.1		4.9		5.5 4.0 4.6		4.5 4.3 4.1		44.0.4		5.7 4.4 5.1
Yarn elongation	22s or 27 tex	Pct.	E 213	5 5 5 5 5	E 213	5.0	16	5.8 6.2 5.9	E 213	5.2	45 A	5.9	16	666 600 600 600	16	6.9 4.9
\vdash	50s or 22		STONEVILLE	32 32 29	STONEVILLE	37 44 35	DELTAPINE 16	3.4 3.6	STONEVILLE 21	44 34 38	DELTAPINE 45A	34 34 31	DELTAPINE 16	38	DELTAPINE 16	46 41 43
Yarn strength		Ibs	STON		STON		DELT		STON		DELI		DELI		DELT	
Yarn	22s or 27 tex	Lbs		93		98 111 96		102 103 99		112 99 102		98 95 90		103 102 100 103		118 107 111
rea,	pling, ion Staple	32d In.		35	щ	35		35		35		34 34 33		9999		35
tion A	ronological samplinand Classification Grade Stal		SAL ::	41 41 SP 42	LAKE PROVIDENCE	41 41 51		SP 42 41 51	7	41 51 51	S	41 41 SP 42	T.	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0F	41 41 51
coduc	gical assif	Code	ENTE	5	PRO		Ē	5	LTO		JUSA	7	VE PO		PROC	
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name	SOUTH CENTRAL LOUISIANA LAFAYETTE	SLM SLM SLM	LAKE	SLM	MONROE	SLM	NEWELLTON	SLM	OPELOUSAS	SLM	SHREVEPORT	SLM SLM SLM SLM	WATERPROOF	SLA
ç3	0	Z	0,													

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 --Continued

	rd e		.,		2230		0.50.0		0.010		0.5.10		a				•
Diokon			Pet		9 - 0 - 0		5.9 7.2 6.4		5.9 7.2 7.9		5.9 7.5 5.5		6.2 6.1 7.3 7.1		5.8		6.9
stock	Composite		Index		, 97 100 97 83		98 100 95 97		98 96 86		101 96 99		99 97 98 92		99		100 101 97
of raw	Yellow-		No.		8222		4 10 10 10		m m N		888		4 10 10 10		m m		ммм
Color	Gray-		No.		2225		2312		224		1 2 2		2226		2		2 1 2
nalyzer	Total		Pct.		9.00 4.00 9.00 9.00		2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	*	2.1 3.5 3.0		2.4 2.1 1.6		3.2 2.8 3.7		2.1		3.0 2.0 2.0
Shirley Analyzer	Visible		Pct.		2.5 1.8 2.8 3.4		1.5 1.8 2.3 2.3		1.6 2.7 2.6		1.8 1.1 1.1		2.6 2.2 1.6 2.4		1.2		2.4 2.1 1.4
Elon-	gation 1/8"		Pct.	-	7.9 7.7 8.3	_	7.5	-	6 6 6 8 6 5	-	7.5	_	6.9 6.9 6.9	_	7.8 7.7	-	7.4 7.3 6.1
strength	1/8" Gage	0	G/tex	100 PERCENT	26 25 23	90 PERCENT	22 22 22 22 21	100 PERCENT	23 23	85 PERCENT	23 23 23	100 PERCENT	24 22 23	100 PERCENT	25	100 PERCENT	24 23 22
Fiber	Zero		Mpsi	1	8 8 8 8 8 8 4 4		85 83 80 78	-	88 83 83		85 83	1	89 86 86 81	-	82 81	1	8 8 8 8 2
	Micro- naire		Rdg.		444W N N D W		4.1 4.2 4.7 3.9		4°50 4°50		4 4 4 9 3 3 4 4		4 4 4 8 9 4 6 4 6 4 6 9 4 6 9 6 9 6 9 6 9 6 9 6		4 4 . 8 8 . 5 . 5 . 5		4.1 3.9 4.0
Fibrograph	50/2.5		Pct.	16	46 45 41 41 41	213	4444 R R D D R	: 213	7 7 7 7 9 7	213	44 45	213	4444 9220	16	47	16	43 45 45
Digital F	2.5% span		In.	DELTAPINE	1.09 1.12 1.08 1.10	STONEVILLE	1.08 1.09 1.12 1.07	STONEVILLE	1.07 1.10 1.08	STONEVILLE	1.08 1.10 1.10	STONEVILLE	1.08 1.06 1.04 1.08	DELTAPINE	1.10	DELTAPINE	1.09
n Area,	cion	Staple	32d in.	۵	8 8 8 8 8 8 9 9	S	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	v	35 34 34	S	35 35 35	o,	######################################	٥	35 35	8	34 34
State, Production Area, Chronological sampling.	and Classification	de	Code	AL I	41 41 51 61		41 41 51	uų.	41 51 51		41 41 41		41 41 51		41		41 41 SP 42
State, I	and Cl	Grade	Name	SOUTH CENTRAL MISSISSIPPI BELZONI	SLA SLA SGO	BRUCE	SSI	CLARKSDALE	S K M	EDWARDS	SLM	GREENWOOD	SLA SLA SLA	GUNNISON	SLM	HERNANDO	SLM SLM SLM LT S

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

+	ı														
Com- posite	Index		115 110 103 102		110 115 112 100		108 112 101		114 108 109		109 1113 104 98		113		106 109 100
Blue- ness	위		28.3 27.7 26.4 26.1		27.3 28.4 27.9 25.2		27.2 27.9 25.9		27.8 27.4 27.5		26.9 28.0 27.0 25.7		27.8		26.8 27.2 25.6
Reflct- ance	Rd		26.0 27.5 28.3 28.4		26.6 26.3 27.0 27.3		27.3 27.0 28.4		25.8 27.9 27.5		26.1 26.5 28.8 29.6		26.0		27.5 27.0 28.3
	Index		108 107 105 99		105 107 107 99		106 105 103		106 104 106		101 105 103 101		105		107 108 104
Yellow- ness	위		3.0 2.4 3.3		3.3 2.7 3.2		2.8 2.7 2.6		3.0 2.8 2.7		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2.9		3.0 2.3 2.9
Reflct- ance			86.2 84.6 83.9 82.7		85.3 85.4 85.4 82.6		85.2 84.2 83.4		85.3 84.3 84.7		83.7 84.8 84.0 83.4		84.9		85.8 85.2 84.5
Com-	Index		97 93 89 79		96 94 93 89		96 93 85		101 89 93		100 93 94 82		92		95 95 91
ellow- ness	위		11.3 9.8 9.7 9.5		111.7 10.5 10.5 9.8		10.8 10.8 10.4		11.9 10.6 10.2		11.8 10.2 10.3 9.4		10.9		10.6 10.5 10.4
	Rd		9.7 10.7 8.9		9.9		0.0 8.7 5.2		1.1 7.4 9.7		70.7 9.7 10.3 55.1		0.80		70.0 70.2 68.7
	No.		70 6 73 1 72 6 70 6		68 65 68 63		65 1 62 6 64 6		66 69 67 11		62 7 66 6 60 7 55 6		63 6		72 62 7 59 6
tex	No.	_	111 9 7 39		17 14 7 25		10 9 21		10	_	27 13 12 41	_	16 25	_	15 12 12
or	.00	ERCEN	1266	RCE	9 7 2 8 2 8	ERCEN	L 4 L	O	21.6	ERCEN	164	ERC	80 ED	FRCEN	16 15 14
or ex		100 P		9 0 P		100 P		85 P		100 P		100		100	
50s	Inde		900		900		900		906		980		2,0		70 70 70
22s or 27 tex	Index		120 110 110 70		100 100 110 90		110 100 90		120 120 110		90 100 106 70		100		100 100 90
50s o r 12 tex	Pct.		4 2 2 2 4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		7.0 4.0 4.4		5.1 4.8 4.9		4.8 4.1 4.2		4.9		5.0 5.1 4.5
	set.	16	0 & 0 4	213	8 2 4 1	213	ww	213	0 4 W	213	4007	16	4.5	16	7.0 6.9 6.3
		P I NE		VILLE		VILLE		VILLE		VILLE		PINE		PINE	
50s 12 t	Ips	DELTA	41 41 39 36	STONE	40 37 32	STONE	33	STONE	39	STONE	326	DELTA	35	DELTA	99 98 98
22s or 27 tex	Lbs.		116 114 111 103		1113 105 104 95		105 99 94		110 106 107		106 105 100 94		108		110 110 98
	d In		352		4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		35		35 35		34 34 34		35		34 35
samplicatio		H _	41 41 51 61		41 41 51	ш	41 51 51		41		41 41 51		41		41 41 SP 42
gical assif de	Cod	SIPP				SDAL		DS		MOOD		SON		OGN	5
and Cl	Name	MISSIS BELZCI	SLM SLM LM SGD	BRUCE	SLM	CLARK	SLM	EDWAR	SLM SLM SLM	GREEN	SLM SLM SLM	GUNNI	SLM	HERNA	SLM SLM SLM
	22s or 50s or 22s or 50s or Poten. Reflet-Yellow-Com- Reflet-Yellow-Com- Reflet-Blue-27 tex 12 tex 13 ance ness posite ance ness pos	Ordegical sampling, 22s or 50s or or 60s	A cological sampling 22s or 20s or 22s o	Stable 22s or 50s or 22s or 22 tex 12 tex 1	### Sign 225 or 505 o		Start Star		Harden Fig. Fig.		National 1.5		Sequence Sequence		

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

Diologi	k Card waste		Pet.			6.7 5.7 7.0		7.7 6.0 8.1		6.8 7.2 6.7		7.0 7.0 6.0 6.0		5.00		5.8 5.9 7.1		0.9
,	Composite		Index			101		95		94 97 100		99 98 93 93		100 99 96		101 101 101 96		86
of raw stock	Yellow-		No.			622		m m N		ጠጠጠ		8888		m m m		1523		m
Color	Gray- ness		No.			H 2 H		ммм		223		N 0 4 m		325		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		2.0
Analyzer	Total waste		Pct.			3.1 3.2 2.4		3.6 3.4		3.9 3.7 2.8		4 9 9 2 6 9 9 5 5		25.2		2.5 2.2 3.3 3.3		2.7
Shirley Ana	Visible waste		Pct.			2.0 2.5 1.8		3.00 2.4 3.00		3.1 2.6 2.0		1.7 2.4 2.0 3.0		1.5		1.07 1.05 1.01 1.08		1.8
			Pct.			7.8 8.1 7.6		5.9 6.1		46.0		6.5 7.0 6.6 7.2		7.7 8.7 7.6		8.0 8.0 7.7 7.4		7.1
strength	1/8" Gage		G/tex		100 PERCENT	26 25 25	O PERCENT	25 25 24	O PERCENT	24 23 24	00 PERCENT	24 23 23	8 PERCENT	23	O PERCENT	23 23 23	95 PERCENT	23
Fiber s	Zero Gage		Mpsi		10	92 84 83	100	95 92 96	100	89 89 85	10	88 88 88 8 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6	87 84 83	100	86 87 86 81	6	84
	Micro- naire		Rdg.			0.4		4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 4 0 0		84 8 8 8 8 8 8 8 8 8 8 8 8		4 4 . 5 . 5 . 1 . 1 . 1		4444 000 000		4.8
Fibrograph	50/2.5 unif.		Pct.		16	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1111	4 4 4 5 6 6	213	4 4 4 4 7	213	4 4 4 4 4 4 4 5 6 4 1 4 5 6 4 1 4 5 6 4 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	16	44 44 45 45	16	7 4 4 4 7 4 4 8	213	46
Digital Fi	2.5% span length	,	ij		DELTAPINE	1.09 1.09 1.12	DIXIE KING	1.06	STONEVILLE	1.11	STONEVILLE	1.10 1.09 1.07	DELTAPINE	1.10 1.10 1.09	DELTAPINE	1.10 1.12 1.13 1.13	STONEVILLE	11.11
Area,	piing, ion	Staple	32d in.		٥	35 34 34	0	35 34 34	S	35 34 34	S	3 4 4 4 5	0	34 34 34	0	9 9 9 9 2 2 2 2	S	35
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	RAL P I	4	41 41 41	4	511		511		41 51 12 12		41 41 SP 42	BURN	51111		41
State,	chronold and Cl	Gra	Name	SOUTH CENTRAL MISSISSIPPI	I ND I ANOL	SLM SLM SLM	INDIANOLA	EEE	LELAND	SLA	LYON	NE EE	MORTON	SLM . SLM . SLM LT	P ANTHER	N N N N N N N N N N N N N N N N N N N	SARDIS	SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972-Continued

u.		l														
dyed yarn	Com- posite	Index		114 109 111		106 108 105		113 107 111		110 115 105 93		114 107 100		114 108 110 98		111 110 104
- 22s d	Blue- ness	위		27.7 27.1 27.4		26.5 27.2 26.6		27.9 27.1 27.8		27.5 28.5 26.6 24.1		27.7 27.4 25.8		27.9 27.5 27.6 25.3		27.8 27.6 26.7
Color	Reflct- ance	Rd		25.6 26.7 26.5		27.1 27.3 27.5		26.4 27.9 26.9		26.9 26.6 27.5 28.9		25.4 28.3 28.7		25.9 27.8 27.4 28.6		27.0 27.4 28.2
l. yarn	Com- posite	Index		107 104 105		105 103 97		103 105 104		107 103 101 98		107 105 105		106 108 108 102		106 102 105
2s blchd	Yellow- ness	위		3.1 2.5 2.6		3.1 2.9 2.9		3.2 2.8 2.9		2.9		2.8 3.0 3.0		2.6 2.4 2.4 3.1		2.9
Color-22s	Reflet-	뀖		85.8 83.5 84.1		84.9 83.7 81.3		84.6 84.7 84.2		85.1 83.7 83.3		85.3 85.0 85.1		84.6 85.2 85.1 84.0		85.3 84.5 84.4
yarn	Com- posite	Index		93		89 87 84		93 92 96		96 96 83 85		99		99 96 94 87		94 94 84
22s gray	Yellow- ness I	위		11.3 10.1 9.9		110.4		11.7		10.8 111.1 10.2 9.3		11.1		10.6 9.6 9.9 9.1		10.5 10.8 10.1
Color -	Reflct-	Rd		71.4 69.8 70.8		66.9 66.8 64.9		67.4 68.8 69.7		70.0 69.7 64.4 67.1		71.3 69.8 66.2		72.4 72.4 70.9 68.4		5.9
	ning Poten- tial	No.		71 70 6 71 71		73 6		68 66 63 63		62 7 60 6 64 6 62 6		71 7 69 69 6		73 75 75 77 6		70 6 68 6 66 6
fctns.	50s or 1	No.	_	18 10 8	_	13 12 17		14 8 8		9 10 26 29		8 6 16	_	8 9 115 118	_	11 11 18
Yarn imprfctns.	22s or 5	No.	PERCENT	22 11 12	PERCENT	19 22 21	PERCENT	17 8 9	PERCENT	17 10 30 31	PERCENT	16 10 19	PERCENT	11 9 14 27	PERCENT	19 12 12
appearance Ya	or	Index	100	066	100	900	100	060	100	90 70 60	9.6	90	100	90 80 70	95	70 80 80
	or 50			100 120 100		000		0000		110 100 90 100		200		120 100 90 100		100 100 110
n Yarn	22s 27	Index														
Yarn elongation	50s or 12 tex	Pet.		5.0 0.0 8.0 8.0		4 4 4		4 4 4 0 0 0 0		4444		7.5 4.8 4.6		0004 4046		4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Yarn el	22s or 27 tex	Pet.	E 16	6.8	KING III	5.0	LE 213	6.5	LE 213	6 6 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	E 16	7.3 6.3 6.3	E 16	6.8 6.8 6.5	LE 213	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ength	50s or 12 tex	Lbs.	DELTAPINE 16	44 41 40	DIXIE KI	4 3 3 8 8	STONEVILLE	39 37 34	STONEVILLE	34 35 35 35	DELTAPINE	38 34 34	DELTAPINE 16	4 4 4 4 5 5 5 1 4 4 4 1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	STONEVILLE	37 35 34
Yarn strength	22s or 27 tex	Lbs.	90	119 112 110	10	116 111 110	ST	110 107 103	ST	101 94 103 101	90	108 99 100	90	114 113 115 111	S	105 101 98
		In.		35 34 34		35 35		35		344		35 34 34		332 322 323 323 323 323 323 323 323 323		35 34 34
tion A	ication Sta	le 32d	AL T	411		51 51 51		51 51 41		41 51 51		41 41 SP 42	8 URN	41 41 51		41 51 51
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL MISSISSIPPI INDIANOLA	SLM SLM SLM	I ND I ANOLA	EEE.	LELAND	LM	LYON	SLM	MORTCN	SLW SLM SLM LT S	P ANTHER 8	SLM	SARDIS	SLM

Table 6 .- - Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 -- Continued

1.																
Diobox	& Card		Pct.			0.00		4.9 5.0 6.2		6.8		6.1 6.1 6.0		6.00 6.00 6.00 6.00		6 2 6 6 0
stock	Composite		Index			100 102 92 95		103 100 101		102 99 95		98 96 100 92		99 101 102 95		995 88 87
of raw	Yellow- ness		No.			1223		523		m m N		4800		# N N N		mm N N
Color	Gray- ness		No.			2315				3 5 11		~ ~ ~ ~		3115		त्यक्
Analyzer	Total		Pct.			2.6 2.6 3.6		2.4		3.5° 3.5° 3.5° 3.5°		2°6 2°5 3°5 3°5		2.6 2.8 3.0		2.3 2.7 2.7 3.0
Shirley A	Visible waste		Pct.			1.8 1.7 1.4 2.5		1.7		2.8 1.5 2.7		1.5 2.3 1.5 1.7		1.8 1.3 2.0		1.5
표] On -	gation 1/8"		Pct.		_	8.3 8.0 8.2	-	7.9	-	5.0	-	7.5 7.6 7.6	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	8.0 6.6 6.7
strength	1/8" Gage)	G/tex		100 PERCENI	25 23 23	100 PERCENT	26 24 25	100 PERCENT	23 23 21	100 PERCENT	23 23 23 25 25 25	95 PERCENT	23 24 22 21	100 PERCENT	20 21 20 19
Fiber	Zero Gage)	Mpsi	•	-	87 82 80 77	1	86 86 87	1	96 87 97	1	82 83 85 81		84 82 76 76	1	42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43
	Micro- naire		Rdg			4 4 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0		4.8		5.1 4.0 4.1		4444		444 w		4.0 3.9 3.7
Digital Fibrograph	n 50/2.5		Pct.	;	16	4444	16	47	E 7A	443	E 213	4444 444 444 444	16	4 4 4 4 4 5 4 5 4 5 4 5 6 5 6 6 6 6 6 6	E 213	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Digital	2.5% span length		In.		DELIAPINE 16	1.14 1.13 1.10 1.12	DELTAPINE 16	1.12	STONEVILLE	1.09	STONEVILLE	1.09 1.09 1.10	DELTAPINE	1.10	STONEVILLE	1.05 1.08 1.03 1.05
Area,	on on	Staple	32d in			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		35 35 35		34		32 32 32 32		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		4 4 M M
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	RAL P I		41 51 51		41 41 41		41 41 51		41 51 51	VALLEY	411 411 511	>	41 51 51
State,	chrono.	Gı	Name	SOUTH CENTRAL	SCOIL	SLM SLM LM	TRALAKE	SLM SLM SLM	TRIBETT	SLM SLM SLM	TUNICA	SLM SLM SLM	WATER VA	SLM SLW SLV	MISSCURI BELL CITY	25.22.2

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

rn	a u	J.,												
dyed yarn	Com- posite	Index		111 108 102 101		111 108 106		111 104 106		108 105 105 94		112 111 109 100		110 106 102 99
22s	Blue- ness	위		27.5 27.2 26.5 26.5		27.1 27.3 26.9		27.3 26.6 26.9		27.0 26.8 26.5 24.9		27.6 27.6 27.4 25.3		27.4 26.4 25.5 25.6
Color -	Reflct- ance	묎		26.3 27.5 28.8 28.7		25.7 27.4 27.7		25.9 28.1 27.9		26.8 28.0 27.4 29.8		26.1 26.7 27.5 27.8		26.8 26.9 27.1 28.6
l. yarn	Com- posite	Index		106 107 106 101		105 105 105		104 106 101		106 104 101 103		106 110 106 98		102 103 97 94
s blchd.		위		2.9 2.4 2.9		3.0 2.7 2.7		2.9 3.1 3.1		3.1 2.9 3.0 2.9		2.5		3.4 3.4 3.1
Color-22s	Reflct-Yellow- ance ness	뀙		85.0 85.3 84.4 83.0		85.1 84.5 84.3		84.3 85.4 83.3		85.3 84.4 83.4 83.7		84.9 86.1 84.8 82.9		84.5 84.0 82.2 80.3
yarn	Com- F	Index		95 94 86 87		98 90 92		102 91 88		97 93 90 85		94 96 96 91		87 80 82 78
22s gray	ellow- ness p	위		10.5 9.7 9.8 8.7		11.1 9.9 10.1		11.7		11.5 10.8 10.1		10.5 10.1 10.1 9.9		10.7 10.2 9.7 9.1
Color -	Reflct-Y	묎		70.2 71.2 66.6 69.1		71.1 68.8 69.7		71.9 68.6 67.2		69.7 68.9 68.8 66.0		70.0 71.7 71.5 69.3		65.9 62.6 64.7 62.9
Spin-		<u>8</u>		75 74 69 64		71 67 75		62 65 61		65 62 67 57		71 69 69 63		61 60 59 49
_	or			11 12 25 26		9 22		18 14 13		18 12 10 21		20 9 31		13 34 27 15
imprfctns.	or 50s	읾	PERCENT		PERCENT		PERCENT		PERCENT		PERCENT	.,	PERCENT	
Yarn	22s or 27 tex	읾	100 PEF	25 13 28 32	OO PE	11 8 25	100 PE	18 12 13	00 PE	25 14 13 25	95 PE	20 19 11 38	100 PE	14 39 22 22
appearance	50s or 12 tex	Index	ĭ	70 80 70 70	Ä	100 90 70	ā	90 70 70	Ā	80 70 70		90 70 80 60	1	70 60 80
Yarn ap	22s or 27 tex	Index		100 100 90 90		130 120 90		110 100 90		100 100 100 90		100 100 110 90		90 70 100 100
gation	50s or 12 tex	Pct.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0.0 4.0 4.0		4.1 4.5 3.8		0 0 0 0		0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4444 0 0 0 0 0
Yarn elongation	22s or 27 tex	Pct.	16	66.9	16	7.0	E 7A	5.5	E 213	6.3 5.5 5.5	16	7.4	LE 213	6.6 6.3 6.3
-	50s or 2	Lbs.	DELTAPINE 16	41 40 36 37	DELTAPINE 16	43 39 41	STONEVILLE	33 30	STONEVILLE	36 31 36 28	DELTAPINE 16	41 37 32	STONEVILLE	33 31 29 28
Yarn strength	22s or 5	Ibs.	DEI	1114 1111 104	DE	118 108 114	ST	104 102 96	ST	102 95 101 88	DE.	1111 104 106 96	ST	94 92 89
—		In. I		3336		35		34 4		3222		332		3334
Production Area,	ation Staple	32d	r	41 41 51 51		144		41 41 51		511 25 21 25	ΕY	411		41 51 51
oducti	ical s ssific	Code	SIPPI		(E		TT		a		VALLEY		RICITY	
State, Pro	Chronological sampling, and Classification Grade Staple	Name	SOUTH CENTRAL MISSISSIPPI SCOTT	SLM	TRALAKE	SLM SLM SLM	TRIBETT	SLA	TUNICA	SLM SLM LM	WATER	SLM	MISSCURI BELL CITY	SL T T T T T T T T T T T T T T T T T T T

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

			ı																							
Diobos	& Card		Pct.			1.9	4.9	6.1			4.0	5.6		7.0		6.3	9.9	7.2		50.0		5.1	6.2		5.5	6.4
stock	Composite		Index			100	96	95			707	100		76		92	95	91		93		91	94		100	91
of raw	Yellow- ness		No.			4	· m	m ~		•	ሳ ጥ	m N		es.		(4)	, m	m ~		ммм		446	n m		mm	. ~
Color	Gray- ness		No.			^	ı m	64			7	3.2		2		CF.	. m :	w 4		๛๛ ๛		4 10 11	n m		2 2	ın
Analyzer	Total waste		Pct.			2.6	2.5	2°2 3°0			1.1	1.8		3.4		2.0	3.1	3.1		2.3		25.3	2.1		3.1	2.9
Shirley A	Visible waste		Pet.			9.0	1.7	1.3		ć	1.1	1.8 1.1		2.4		1,3	2.1	1.7		1.5		1.5	1.2		2.2	1.9
F. 10n-	gation 1/8"		Pct.		F	7.7	7.5	6.8	TN	ć	8°2 8°3	8°7 7°8	L.	4.7	L Z	8,3	7.2	0°6 9°9	F	6.8 6.3	LN.	4.7	6.0	LN.	7.0	4.9
strength	1/8" Gage		G/tex		100 PERCENT	22	22	22 21	75 PERCENT	č	55 22	22 21	100 PERCENT	22	85 PERCENT	22	21	21 20	85 PERCENT	20 21 19	70 PERCENT	20	50	90 PERCENT	22	21
Fiber	Zero Gage		Mpsi			0	80	81 79			85 82	92 78		75		18	79	75		79 77 80		81 82 82	92		84	80
	Micro- naire		Rdg.			0.4	4	3.6 4.0			4.0 4.1	4.1 3.8		3.9		4.4	4.3	4 4		4 4 4 6 0 0		4.4	4.		4.4	3.9
Fibrograph	50/2.5 unif.		Pet.			4.5	44	43	16	,	42	44 45	45A	45	213	46	4.5	4 4	11	44 47 74		4 4 4 6 4	43	LEAF	45	44
Digital Fi	2.5% span length		In.		AUBURN M	1.09	1.04	1.06	DELTAPINE		1.09	1.08	DELTAPINE	1.07	STONEVILLE	1,10	1.05	1.03	DIXIE KING	1.04	HANCOCK	1.03	1.00	REX SMOOTH LEAF	1.09	1.09
n Area,	upilits, tion	Staple	32d in.		q	36	34	34 33	0	ì	4 4 4 4	34 33	J	35	O,	34	34	34 33	J	344		333	33		35	34
State, Production Area,	ronological sampling and Classification	de	Code	RAL		4.1	41	51 51		ě	41	41 51		15		14	41	21	9 8	41 51	ILLE	SP 42 SP 42		NO	14 14	51
State, I	and Cl	Grade	Name	SOUTH CENTRAL	MISSCURI	7	SLM	35	SENATH	2	SLM	SCR	SIKESTON	ž	TENNESSEE BOL IVAR	¥	SLM	33	CLARKSBUR	SLM	FAYETTEVILLE	555		MILLINGTON	SLM	E

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 -- Continued

.yarn	t e	%														
dyed .y	Com-	Index		116 106 104 98		1113 108 108 96		111		108 108 102 93		112 107 98		104 106 104 105		116 108 106
- 22s	Blue	위		28.2 26.7 26.7 25.2		27.7 27.2 27.4 27.4		27.2		26.9 27.4 26.4 24.4		27.5 26.4 25.4		26.1 26.8 26.3 26.4		28.3 27.1 26.7
Color	Reflct- ance	湿		25.4 27.2 28.6 28.5		25.9 27.4 27.7 28.5		26.0		26.8 27.6 28.6 29.4		26.2 26.4 28.9		27.0 27.5 27.7 27.5		25°7 27°4 27°4
d. yarn	Com- posite	Index		106 104 104 94		107 110 105 90		104		101 103 101 97		105 101 100		93		106 101 96
2s blchd	Yellow- ness	₽		m m O so		3.2 2.7 2.7 3.5		2.9		33.64		33.00		99.00		3.6 3.6
Color-22s	Reflet-Yellow ance ness	묎		85.7 85.0 84.7 81.5		86.3 86.5 79.4		84.2		84.5 84.9 83.8		85.9 84.2 83.6		883.6 83.2 83.5 92.9		85.5 84.3 82.3
yarn	Com- posite	Index		99 86 87 87		99 68 69 6		92 6		91 91 80 82 82		8 8 8 8 8 8 8 8 8 8 8 8 8		87 89 85 87		99 8
22s gray	Yellow- ness p	위		11.6 10.6 10.5 9.2		11.3 10.4 10.1 9.2		10.8		10.9 10.9 10.2		10.8 10.7 10.4		11.7 11.8 10.6		11.5 10.8 10.1
Color -	Reflct-	찕		70.4 65.8 66.5 63.0		71.1 67.4 68.3 62.7		5.1		65.2 67.9 63.1 64.4		5.1		5.1		0.9 5.5
$\overline{}$	ning Poten- tial	No.		65 7 63 6 63 6 59 6		70 7 70 6 66 6 59 6		9 49		65 63 63 59 65 65		63 6		63 6 60 6 52 6 52 6		65 7 65 6 61 6
imprfctns.	50s or 12 tex	No.		29 17 14 18		20 16 15 23		14		111 9 116 118		7 12 7		22 12 13 15		14 13 16
Yarn imp	22s or 527 tex 3	No.	PERCENT	37 19 15 21	FRCENT	วีเก่เก้จั	ERCENT	4	PERCENT	23 24 23	ERCENT	0 10 11	ERCENT	027.2	PERCENT	م بر س
	or	1	100 P		75 P	3115	100 P	2	85 P		85 P		70 P	N	90 6	
appearance	508	Index		80 70 70 70		70 70 60		70		80 70 80 80		100 90 90		70 80 70		100 90 80
Yarn s	22s or 27 tex	Index		100 100 110		100 90 100		90		110 100 90 110		110 120 110		1000		120 120 100
ngation	50s or 12 tex	Pet.		N444 W Q 44		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		5.3		46.04		4.2 4.1 3.8		7 4 4 4 7 4 W 4		5.2
Yarn elon	22s or 27 tex	Pct.		6.9 7.0 6.6	16	7.1 6.9 7.1 5.9	45A	8 • 9	E 213	6.7 6.5 5.4	KING II	6.1 6.2 5.8		6.9 5.3 5.3	H LEAF	6.5 6.3 6.1
strength	50s or 12 tex	Lbs.	AUBURN M	3 3 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DELTAPINE 16	42 35 30	DELTAPINE	35	STONEVILLE 21	34 35 25	DIXIE KIN	31 31 27	HANCOCK	34 31 29 29	EX SMOOTH LEAF	38 36 31
Yarn str	22s or 27 tex	Lbs.	AU	103 99 100 93	DE	115 105 103 92	DE	66	ST	99 93 79	10	94 93 88	H	100 94 93 87	R	108 103 93
rea,		32d In.		4446		4446		35		3 3 4 4 6 6 9 3 9 4 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		34		3343		35
Production Area,	ificatio	Code 32	tAL	41 51 51		31 51 51		51		41 41 51 51	8 6	41 41 51	ILLE	SP 42 SP 42 SP 42 51	NO	41 41 51
State, Produ	Chronological sampling, and Classification Grade Staple	Name Co	SOUTH CENTRAL MISSCURI SENATH	L S S S S S S S S S S S S S S S S S S S	SENATH	SLA	SIKESTON	r.	TENNESSEE 80LIVAR	SCH	CLARKSBURG	SLW	FAYETTEVILLE	SLP LT SLM LT SL	MILLINGTON	SCA

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

	Picker & Card waste		Pet.		4400 0040		6.1 6.1 6.1		5.7		6.2 5.9 6.6		5.3 5.3		6.5		5.4 8.3 8.3
ck	Composite		Index		100 101 95 95		96 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		92 97 94		999		98 97 98		96 66 88		96
Color of raw stock	Yellow-		No.		660 0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		446				N 4 4		m m m		m v m
Color	Gray- ness		No.		1 1 8 2		2226		พพพ		004		000		222		พคค
alyzer	Total waste		Pct.		1.8 1.7 1.7 2.4		2.1 2.5 1.9 2.4		3.12.4		2.8 2.9 3.4		2.0 1.7 2.3		8 9 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2°8 4°0 8°0 8°0
Shirley Analyzer	Visible waste		Pct.		1.00		1.2 1.8 1.2 1.8		1.9 3.8 3.8		2.2		1.4 1.5 1.5		2.4		3 9 ° 0 9 ° 6 8 ° 6
- ao [#	gation 1/8"		Pct.		88 88 6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7.9 8.0 8.0 7.6		6.5		5.3 7.4 6.6		6.0 6.0 4.0		6.4 6.7		40.9
strength	1/8" Gage		G/tex	98 PERCENT	23 21 22	98 PERCENT	22 23 22 21	94 PERCENT	20 23 24	90 PERCENT	22 24 21	70 PERCENT	21 23 21	90 PERCENT	22 23 24	5 PERCENT	22 23 22
Fiber s	Zero Gage		Mpsi	6	80 77 78	6	83 81 79 79	•	81 82 82	6	92 82 83	7	883	6	84 84 84	6	8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Micro- naire		Rdg.		4.0 4.0 3.0 7.0		4466		4°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5		. 4 N 0 8 D		5.2 5.3		4 4 4 4 5 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		44. 20.0
lbrograph	50/2.5 unif.		Pct.	91	4444 4880	91	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	213	44 44 44	213	4 4 4 6 8 10	7A	L 9 4 4 4 4	91	4 4 4 4 8 9	7.A	44 46 46
Digital Fi	2.5% span length		In.	DELTAPINE	1.12 1.10 1.08 1.11	DELTAPINE	1.07 1.06 1.07 1.05	STONEVILLE	1.06 1.04 1.08	STONEVILLE	1.04	STONEVILLE	1.03 1.02 1.01	OEL T AP INE	1.07	STONEVILLE	1.06
Area,	on o	Staple	32d in.	ă	35 35 34 34 34	90	4 4 4 4 6 6 6 6	S	3 4 4 4	S1	3 4 4	S	32 32 32	0	3 3 3 4	S	34 44
State, Production Area, Chronological sampling.	and Classification	Grade	Code	TRAL	41 41 51	.LE	41 41 41 51	CAS	SP 42 41 51		41 41 51	CHRISTI	SP 32 SP 32 SP 32	(2)	41 41 SP 42	Z	41 51 SP 52
State,	and (G	Name	SOUTH CENTRAL TENNESSEE RIOGELY	SLM SLM SLM	SOMERVILLE	SLM	SOUTH WEST SOUTH TEXAS ALAMO	SLM LT SLM LM	AUSTWELL	SLM	CORPUS	111	DANEVANG	SLM SLM SLM LT	HARLINGEN	SLM LM LM LT

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 --Continued

rn	1 .	υ	_U ,														
dyed, yarn	Com-	Tsod	Index		114 114 108 101		108 108 105 95		109 113 106		109 113 108		110		112 116 107		107 106 100
- 22s d	Blue-	ממטו	위		27.9 28.1 27.4 25.3		27.0 27.0 26.6 24.5		27.1 27.8 26.2		27.2 27.8 27.2		27.3 26.7 27.3		27.7 28.1 26.2		27.2 26.5 25.7
Color	Reflet-	anice	Rd		25.9 26.3 27.6 27.0		26.8 27.2 27.7 28.5		26.9 26.3 26.6		26.8 26.1 27.4		26.5 26.7 26.3		26.6 25.4 26.0		27.8 26.9 28.5
d. yarn	Com-		Index		105 108 103 97		101 101 106 97		103 106 106		105 104 105		107 104 106		109 109 106		107 109 105
2s blchd	Yellow-	2	위		3.0 2.8 2.9 3.1		3.6 2.8 3.7		3.1 3.1		3.3 3.1		3.2 3.2 3.1		3.1 3.1		33.4
Color-22s	Reflet-		윋		85.0 85.8 84.0 81.6		84.4 84.3 84.9		85.1 85.7 86.5		85.3 84.7 85.2		85.9 84.7 85.4		86.7 86.7 85.3		86.1 87.3 85.7
yarn	Com-		Index		94 94 85		87 90 90 86		89 100 95		99		86 66 68		96		95 96 91
ZZS gray	Yellow-		위		10.5 10.5 9.4 9.5		10.7 10.7 9.9 9.6		11.8 11.6 11.3		11.0		12.1 12.1 12.2		11.0		10.9 11.6
COTOL -	Reflct-		Rd		69.8 69.9 66.9		66.1 67.9 68.7 67.0		65.6 71.1 69.1		71.6 69.0 68.0		9.9		71.1 71.2 68.0		9.4
	ning Poten-	tial	No.		75 6 71 6 70 6		66 64 74 62 6		61 6		57 7 664 661 6		60 6 56 6 57 6		69 7 74 7 72 6		65 6 64 6 61 6
umbrictus.	50s or 12	,	No.	_	10 20 15 23		111 13 15	_	18 11 32	_	20 14 14		12 13 11		15 16 18		14 15 31
Yarn mapr	or	5	No.	PERCENT	19 19 34	PERCENT	11 17 18 26	PERCENT	22 15 41	PERCENT	22 21 20	PERCENT	14 14	PERCENT	22 24 22	PERCENT	18 19 40
	s or 22s	3	Index	88	80 70 70 60	98 6	070	96	900	9 06	888	70 6	000	9 06	000	95 6	000
appearance	or 50s								20 20 10 00		20 10 20 10 30 10		30 10 30 10 30 10		20 9 20 10 20 10		0 10 0
n rarn	or 22s	ī	Index		110 90 90 90		100 110 100 100		12 12 10		12 12 13		13 13		12 12 12 12		12 12 11
elongation	508 0) (Pct.		5.52		4.0		5.2		4.04		444		5.2		7.00
Yarn el	22s or	470	Pet.	E 16	7.6 7.2 6.9 6.4	E 16	6.6	LE 213	6.3	LE 213	5.9	LE 7A	6.0 5.9 5.6	E 16	6.6 7.1 6.4	LE 7A	6.5 7.0 4.4
ength	50s or	ccv	Lbs.	OELTAPINE 16	39 36 36	DELTAPINE 16	33 33 30	STONEVILLE 21	35 37 41	STONEVILLE 213	35 40 34	STONEVILLE	36 34 31	DELTAPINE 16	41 47 42	STONEVILLE	41 41 40
Yarn strength	22s or		Lbs.	06	107 102 102 101	90	103 100 106 92	ST	100 102 107	ST	103 105 98	ST	101 98 94	90	109 117 108	S	109 109 103
		Staple	II.		335		3334		34		34		32 32		35 35		34
on W	atio	St	32d		41 41 51		41 41 51		42 41 51		41 41 51	ISTI	32 32 32		41 41 42		41 51 52
Producti	Chronological sampling, and Classification	Grade	Code	SOUTH CENTRAL TENNESSEE RIDGELY		SOMERVILLE		WEST TEXAS O	LT SP	WELL		US CHRI	LT SP LT SP LT SP	VANG	LT SP	HARL INGEN	LT SP
State, Production Area,	Chronol and C	Gr	Name	SOUTH CENTR TENNESSEE RIDGELY	SLA	SOME	SLM	SOUTH WEST SOUTH TEXAS ALAMO	SLM	AUSTWELL	SLM	CORPUS	LEX	OANEVANG	SLA	HARL	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

); oker	& Card		Pct.		8.00 8.00 9.00 9.00		5.6		5.5 6.5		6.1 5.0		8.1 9.1 0.1		8.8 7.0 9.6		7.°0 4.8 4.8
	Composite &		Index		90 5		94 5		96 99 94 6		98 5 98 5		97 8 97 9 96 10		94 8 98 7 94 9		99 6
of raw stock	Yellow- Cor		No.		444		ጠቁቁ		228		๓๓๓		4 N W	٠	ммм		m m 4
Color	Gray		No.		ммм		Nww		228		222		228		คพค		2 1 2
Analyzer	Total waste		Pct.		N W W 0 0 0 0 0 0		2.0		9.0 9.0 2.2		2.6 2.6 2.1		6.2 4.4 7.1		N W A		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Shirley	Visible waste		Pct.		2°0 2°0 8°0		1.5		2.1 1.9 2.0		2.0 1.5 1.2		4.0°0 0.0°0		3.8 2.1 4.6		2.2 2.2 2.2 3.4
Elon-	gation 1/8"		Pct.	*	5.2 5.6 5.6		6.9 6.8 7.4		7.2 8.3 7.1		5.2 6.1 6.3		6.9		6.8 7.0 6.6	*	7.52
strength	1/8" Gage)	G/tex	PERCENT*	20 21 21	PERCENT	22 23 22	PERCENT	21 22 22	PERCENT	21 21 20	PERCENT	19 20 20	PERCENT	23 22 20	PERCENT*	22 22 22
Fiber s	Zero Gage	,	Mpsi	100	77 80 83	85	84 82 84	95	84 81 78	100	90 85	70	74 76 78	70	83 76 77	100	77 75 79 area
	Micro- naire		Rdg		3.6 4.2		4 4 4 0 m 0		7 4 4 C 0 4		5.1		3.3 2.6		3.1 3.6 2.7		3.4 3.4 3.1 percent in the
brograph	50/2.5 unif.	$\overline{}$	Pct.		44 45 45	213	44 44	.0	44 43 63	7.A	44 44 47	2	44 44 3	=	44 45 41		40 40 40 100 perc
Digital Fib	2.5% span length	,	In.	TPSA 1633	1.05 1.07 1.07	STONEVILLE 2	1.09 1.09 1.07	DELTAPINE 16	1.10	STONEVILLE 7	1.05 1.10 1.06	LOCKETT 4789	0.96 0.98 0.97	PAYMASTER II	1.02 1.00 0.93	COKER 312	1.12 40 1.15 40 1.11 40 5, less than 100 1, k
Area,	on.	Staple	32d in.	4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ST	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DE	34 35 35	ST	34	9	31 32 32	PA	32 32 32	9	34 35 35 . for tests use of bar use of bar
State, Production Area,	and Classification	Grade	Name Code	SOUTH WEST SOUTH TEXAS SAN JUAN	SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	CENTRAL TEXAS 8ATESVILLE	SLM 41 SLM 41 SLM 41	NAVASOTA	SLM 41 SLM 41 SLM LT SP 42	NEEDVILLE	SLM 41 SLM 41 SLM 41	NORTHWEST TEXAS ACKERLY	1/ SLM LT SP 42 SLM LT SP 42 2/ LM LT SP 52	LAMESA	3/ LM 51 SLM 41 2/ LM LT SP 52	LUBBOCK	SLM 41 34 35 15 2KM 41 35 35 15 16 2KM LT SP 42 35 17 84 18 18 18 18 18 18 18 18 18 18 18 18 18

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

		ļ.									- 1				- 1			- 1	
State, Production Area,	Area,	_1	Yarn strength	Yarn ele	Yarn elongation	Yarn ap	appearance	Yarn	imprictns.	Spin-	Color -	22s gray	yarn	Color-22s	2s blchd	ı. yarn	Color -	55s	dyed.yarn
Chronological sampling, and Classification Grade Staple	joing, ion Staple	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	ning Poten- tial	Reflct- ance	Yellow- ness	Com- F	Reflet-	rellow- ness	Com- posite	Reflct- ance	Blue- ness	Com- posite
Name Code	32d In	. Ibs.	Lbs.	Pct.	Pet.	Index	Index	No.	No.	હ્ય	찙	위	Index	駋	위	Index	R	위	Index
SOUTH WEST SOUTH TEXAS SAN JUAN			TPSA 1633	33			100	O PERCENT*	*										
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	344	98 99	36 37	6.3	5.0	120 110 120	100 90 90	33	18 23 16	67	67.1 67.5 67.9	11.6 12.0 12.1	95	86.2 86.7 86.5	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	106 106 106	28.4 27.9 28.2	26.2 26.4 26.1	102 104 102
CENTRAL TEXAS BATESVILLE			STONEVI	STONEVILLE 213			æ	5 PERCENT	L										
SLM 41 SLM 41 SLM 41	34	113 110 100	43	6.0 6.9	50 5	120 120 120	90 100 90	20 26 26	18 20 22	966	71.0	11.8	96	85.8 85.6 86.2	999 999 999	105 105 106	25.9 27.9 28.2	27.2 26.6 26.5	1111 105 104
NAVASOTA			DELTAPINE 16	NE 16			6	5 PERCEN	ENT										
SLM 41 SLM 51 SLM LT SP 42	35	97 105 99	34	5.9	4 2 4 5 2 5 5 5 5 5 5	120 120 120	066	15 17 18	14 12 15	65	67.4 71.0 67.0	11.0 10.4 10.7	06	84.6	3.1 2.7 2.8	104 105 104	27.9 26.5 27.6	26.8 26.1 26.9	105 105 106
NEEDVILLE			STONEVILL	LLE 7A			100	PERC	ENT										
SLM 41 SLM 41 SLM 41	33	94 95 96	31 29 32	5.4	6.64 0.9	130 130 120	100 100 90	22 18 15	711	57	71.6 71.3 72.0	11.4	100 98 100	85.3 84.8 84.1	3.1 3.0	106 104 103	26.7 26.7 25.8	27.1 27.3 27.8	109 110 114
NORTHWEST TEXAS ACKERLY	15		LOCKETT	4189			70	PERC	ENT										
1/SLH LT SP 42 SLM LT SP 42 3/LM LT SP 52	32 32 32	80 85 93	28 29 29 32 32	6.5	4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	120 110 100	900	31 31 64	22 27 45	500	69.4 69.8 66.7	11.4 12.2 12.7	96 100 95	8 5 5 6 8 5 5 6 8 5 5 6 8 8 5 6 8 8 5 6 8 8 6 8 8 6 8 8 6 8 8 8 6 8 8 6 8 8 6 8	3.5	103 104 101	26.3 26.0 26.0	26.7 26.9 26.2	108 110 107
LAMESA			PAYMASTER III	ER 111			7	O PERCEN	ENT										
14 LM 51 SLM 41 3/LM LT SP 52	1 32 1 32 2 32	99 97 78	2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.9	4 % % % % % % % % % % % % % % % % % % %	90 110 80	70 80 70	62 37 61	45 28 56	56 56 25 5/	70.0 70.3 67.4	11.3 11.7 12.0	66	83.9 84.5	4.95	100 102 99	27.5 26.9 27.0	26.3 26.8 25.8	104 107 103
LUBBOCK			COKER 312	112			100	PERC	ENT*										
	1 34 1 35 2 35 lected	102 105 101 for tes 1se of b		7.0 7.1 3n 100	55.4 cent		80 80 70 rea	684 474 748 748	28 43 48	63 61 59	68.7 70.1 66.7	11.8 11.0 12.3	9666	84.9 84.6 84.1	3.04	103	26.2 26.3 26.1	27.1 27.3 26.7	110 111 109
form organized from 42 because of bark Reduced from 41 because of bark Reduced from 41 because of bark This is an estimated value below the range of the	2 becar	use of tase tase of ta	ark	range of	test	or england		3		3									

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

, ror	& Card waste	Pct.		9 9 9		987		4 L W		110		225		e ታ ci		m v +	
Pfoker		1		6.4 7.1 7.9		6.9 6.5 7.7		7.7		7.0 7.1		000		6.0		W . W . W	
stock	Composite color	Index		100 100 97		90 92 93		100 100 95		92 91 89		89 84 92		96 86 80 80		100 98 100	
Color of raw st	Yellow- ness	No.		m m 4		 ቀቀጠ		4 M 4		m 04 m		m m N		000		400	
Color	Gray- ness	No.		222		4 M M		226		m m +		4 N W		226		222	
Analyzer	Total waste	Pct.		3.6 3.2 4.8		9 ° ° 4 ° 6 ° 4 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 °		3.2 3.1 3.0		6 6 4 6 6 6		4.5		2.0 3.8 3.8		45.4 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	
Shirley A	Visible waste	Pet.		2.1 2.1 3.5		2.1 2.7 2.8		1.6 1.7 2.2		000 000 004		2°5 3°5 3°5		2.0 1.3 2.7		1.3	
۳) اس	gation 1/8"	Pet.	*_	7.5		6.59.9	-	7.2 7.9 7.1	-	5.7 5.5 6.1	<u>.</u>	7.4		6.1 6.8 6.7	_	6 6 6 8 9 9 5	
strength	1/8" Gage	G/tex	100 PERCENT*	22 22 21	00 PERCENT	23 23 23	100 PERCENT	20 22 22	100 PERCENT	22 24 23	95 PERCENT	24 23 24	100 PERCENT	24 23	94 PERCENT	23 25 23	
Fiber	Zero Gage	Mpsi	11	75	7	87 88 88	7	76 75 76	=	88 90 87	,	88 80 81	7	8 8 8 9 9 9		88 87 86	area
	Micro- naire	Rdg.		3.5		444		3.3 2.8 2.9		4 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		7 · · · · · · · · · · · · · · · · · · ·		5.1 4.9 4.3		4 4 6 8 0 1 0 0 1	percent in the area
ibrograph	50/2.5 unif.	Pet.		44 43 40	4-88-A	44 45 45	4-687+	42 41 43	_	444 50 70 70	16	944	16	44 43 63	16 "		
Digital Fibrogr	2.5% span length	in.	COKER 5110	1.10	LOCKETT 47	1.03	LOCKETT 47	1.05 1.05 1.03	LOCKETT BXL	1.02 1.05 1.06	DELTAPINE	1.08	DELTAPINE	1.13	DELTAPINE	1.08	selected for tests. less than 100
Area,	ion Staple	32d in.	បី	35 34 34	ū	32 33 33	1	32 32 32		33 33	٥	3 4 4 4 4 4 4	۵	3 4 4	0	4 4 4 4 4 4	od for test
State, Production Area,	Chronological sampling, and Classification Grade Sta	Code	T TEXAS	41 41 SP 42		SP 42 SP 42 SP 42	LLE	SP 32 SP 42 SP 42		51 51 51	FALLS	51 51		41 41 51		31 41 41	pent, selecte
State,	Chron	Name	SOUTH WEST NORTHWEST LUBBOCK	SLM SLM SLM LT	RAYLAND	SLM LT SLM LT SLM LT	ROPESVILLE	SLM LT SLM LT SLM LT	VERNON	EEE	OKLAHCMA WEBBER FALLS	555	WEST ARIZCNA BUCKEYE	SLA	PARKER	SLW	* 100 percent.

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

	3 mm			,						200									
Chronological Sampling and Classification Grade Stay	g,	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	Poten- tial	Reflct- ance	Yellow-	Com- posite	Reflct- ance	Yellow- ness	Com- posite	Reflct- ance	Blue- ness	Com- posite
ode	32d In.	Lbs.	Lbs.	Pct.	Pet.	Index	Index	No.	No.	No.	찕	위	Index	낊	위	Index	Rd	위	Index
SOUTH WEST NORTHWEST TEXAS LUBBOCK			COKER 5110	110			100	O PERCENT*	*										
41 41 LT SP 42	35 34 34	98 100 98	38 39	7.5	4	110 100 70	80 80 90	444	35 31 59	66 61 58	71.6 69.6 67.7	11.3	100 97 93	84.9 84.7 82.8	3.1 3.2 3.7	105 104 97	26.6 26.9 27.2	26.6 27.3 26.3	107 109 105
RAYLAND			LOCKETT	4789-A			100	PERC	ENT										
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	32 33	99 104 103	34 36	5.6 5.9	4.4	120 120 120	100 90 100	20 20 26	16 17 20	53 57 60	68.7 68.0 68.0	11.4	95 93 92	83.6 83.3	3.5	101 100 103	27.2 27.0 26.9	27.4 26.7 27.3	109 107 109
ROPESVILLE			LOCKETT	4-6874			100	PERC	ENT										
LT SP 32 LT SP 42 LT SP 42	32 32	95 98 101	35 36	7.27	5.6	120 100 110	900	27 46 38	23 37 29	55 59 59	68.7 67.7 65.4	10.6 12.2 12.2	92 96 90	85.8 85.3 84.8	3.6 3.8	105 102 102	26.7 27.7 28.5	26.9 25.9 25.1	108 102 97
VERNON			LOCKETT	BXL			100	O PERCE	ENT										
22.23	332	99 104 106	34	5.7	444	120 130 120	90 100 100	17 24 20	11 16 12	54 55 57	66.0 68.7 67.9	11.1 10.7 10.3	98 92 89	84.0 83.2 82.6	3.2	102 100 100	27.4 27.9 27.8	26.4 26.6 26.1	105 105 103
OKLAHOMA WEBBER FALLS			OELTAPINE	NE 16			6	5 PERCE	ENT										
51 51 51	34	108 103 106	39	6.1 6.3 6.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	120 130 130	100	14 17 13	12 9	63 63	66.6 64.5 68.4	10.4	87 82 88	83.4 83.2 82.1	3.4	100 101 99	27.5 28.2 28.4	26.4 25.9 26.1	105 101 102
EST AR IZCNA BUCKEYE			OELTAPINE 16	NE 16			100	PERC	ENT										
SLM 41 SLM 41 LM 51	34	107 108 99	9 4 4 9 4 4	6.0 5.9 5.7	4.0 9.3 8.8	120 130 120	100 100 90	111171	100	63 64 58	71.1 70.9 72.8	10.0	95 95 98	84.8 85.2 84.0	2.6 2.8 2.9	106 106 103	26.1 26.5 28.8	27.9 27.1 25.9	113 109 100
PARKER			DELTAPINE 16	NE 16			76	PERC	ENT										
M 31 SLM 41 SLM 41	344	95 106 102	31 35	5.7	6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	120 120 120	06 06	20 14 18	111	57 63 59	71.6 71.2 72.4	11.1 10.2 10.4	96 98 98	84.9 85.2 85.8	2.6	105 107 108	28.0 27.2 27.2	26.5 26.6 25.9	104 106 103

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972 -- Continued

State, Production Area,	on Area,	Digital Fi	Fibrograph		Fiber :	strength	2010	Shirley Analyzer	nalyzer	Color	of raw stock	ck	
CHRONOLOGICAL SAMPLING, and Classification	ation	2.5% span	50/2.5	Micro- naire	Zero	1/8"	gation 1/8"	Visible	Total	Gray-	Yellow-	Composite	Picker & Card
Grade	Staple	Tengon			වසිත	D 28 5) /+	D 2 2 3 4 8	w descre	na sa	ness	coror	D 20 20 20 20 20 20 20 20 20 20 20 20 20
Name Code	32d in.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
WEST ARIZCNA SAFFORD	90	DELTAPINE 16	.0		100) PERCENT*	*						
M 31 SLM 41 SLM 41	36 35	1.09 1.11 1.07	44 43 43	4.3 4.0 4.1	80 77 75	22 21 21	8.6 7.8 8.1	1.0	1.7 2.9 3.0	66	ოოო	102 95 94	6.5 6.5 5.3
STANFIELD	90	DELTAPINE 16	.0		100	DERCENT							
H LT GR 36 SLM 41 SLM 41	34 34 34	1.10 1.07 1.05	44 43 43	4 4 4 0 8 8	83 86 84	23 23	7.1 6.9 6.3	1.3	2.9 3.4 2.6	rv 2/3	222	84 96 97	5.9
YUMA	90	DELTAPINE 16	.0		100) PERCENT							
M 31 SLM 41 LM 51	35 34 34	1.11 1.06 1.09	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.1 4.5 5.5	90 86 84	23 24 24	7.2 6.5 6.3	1.0	2.0 2.6 3.3	124	888	103 97 85	4.8 6.0 6.1
CALIFORNIA Bakersfield	AC	ACALA SJ-1			100) PERCENT							
M 31 SLM 41 SLM 41	35 36 36	1.10 1.13 1.13	45	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	95 97 96	27 27 27	6.2 5.7 5.2	1.2 2.4 1.5	N 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2 2	ммм	102 99 99	5.1 5.6 5.3
BAKERSFIELD	AC	ACALA SJ-1			100) PERCENT							
K 31 SLM 41 SLM 41	36 36 36	1.14 1.17 1.12	44 46 46	4 4 4 6 5 2	102 94 94	28 25 26	6.4 5.9 5.8	1.4 2.0 1.6	2°4 3°0 3°0	7 7 7	622	101 101 99	5.0 5.0 6.0 6.0
BRAWLEY	90	DELTAPINE SA	SMOOTH LEAF	AF	70	PERCENT							
31 31 31	3 3 4 3 4 4 4 4	1.08 1.06 1.08	44 44 52	4.4 4.0 4.0	86 86 86	23 24 23	6.2 6.4 6.4	1.0 0.8 0.9	2.0 1.9 1.9		мме	102 101 102	4 4 . 5 . 5
CHOWCHILLA	AC	ACALA SJ-1			100	PERCENT							
P 31 SLM 41 SLM 41	36 36 36	1.11	46	4 4 4 4 W W	97 96 91	27 26 27	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.3	2.0 2.7 2.7	1 2 3 3	คณต	101 99 95	5.0
100 percent selected for tests, less than 100	ed for tests	, less than		percent in the area	rea								

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

SLM 41 SLM 41 SLM 41 STANFIELD SLM 41 SLM 41 YUMA SLM 31 CALIFORNIA BAKERSFIELD CALM 31	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	DELTAPINE DELTAPINE 08	DELTAPINE 16 40 7.0 36 7.1 31 6.1 DELTAPINE 16 30 5.2 30 5.3	A		12 ts 1		*	990 000 000	108 108 108 108 108 108 108 108 108 108		. 0 ×1	A			24. 27. 28. 28. 27. 27. 29. 29. 28. 28. 28. 28. 28. 28. 28. 28. 26. 26. 26. 26. 26. 26. 26. 26. 26. 26	28. 26. 26. 26. 26. 26. 26. 26. 26. 26. 26	Com- Posite 106 104 106 106 106 94 102 102
SLM 41 36 124 BAKERSFIELD SLM 41 36 125 SLM 41 36 126 SLM 41 36 126 CHOWCHILLA SLM 31 34 98 CHOWCHILLA SLM 31 36 131 SLM 41 36 122 SLM 41 36 123	WW WWW WWW WWW	50 55 50 55 51 55 46 66 DELTAPINE 32 5 37 5 31 5 ACALA SJ-1 53 5 66 66	50 5.7 50 5.9 ACALA SJ-1 51 5.7 46 6.1 DELTAPINE SMOOTH 32 5.4 37 5.7 31 5.1 ACALA SJ-1 5.3	44 444 7 W44 44	130 120 120 120 120 120 120 120	100 100 100 90 90 100 90 100	10 11 10 10 10 10 10 10 10 10 10 10 11 10 11 10 11 10 11 10 11 10 10	ENT 10 17 12 12 11 11 11 12 11 11 11 11 11 11 11	75 77 77 77 73 73	71.8 71.8 71.8 71.7 71.3 73.3	10.1 10.1 11.0 10.4 10.4 10.8 10.8	95 99 99 99 99	883.0 893.0 895.0 895.0 895.0 895.0	22 23. 22. 23. 24. 25. 26. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27	103 103 100 100 100 107 104	26.9 26.9 26.9 26.0 26.0 26.1 26.1 26.9 27.0	26.4 26.4 27.3 27.5 27.5 27.5 27.5 27.5	106 106 111 107 109 110 110 100 100

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

State. Pr	State. Production Area.	Area.	Digital Fib	Fibrograph		Fiber s	strength		Shirley Analyzer	nalyzer	Color	of raw stock	ock	
Chronolog	Chronological sampling,	pling,			Mi oro-		, _	Elon-						Picker
and Cle	and Classification	ion	2.5% span length	50/2.5 unif.	naire	Zero	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite color	& Card waste
Grade	Je.	Staple))							
Name	Code	32d in.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
WEST CALIFORNIA		Ā	ACALA S.I-1			2	100 PERCENT							
			1 2 1 1	7.7	*		2.2		,	2.1	-	r	102	ď
SLM	41	38 8 2	1.11	0 1 1 1 1	* * * * * • • • •	988	26 25	5.1 6.2	103	2.3.5	7 7 7	2 2 2	100	000
DOS PALOS		⋖	ACALA SJ-1			10	100 PERCENT							
SLM	31 41 41	36 35 35	1.11 1.08 1.09	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444	96 98 98	27 25 26	0.04 40.00	1.2 1.3 1.0	1.9 2.4 2.2	3 1	m m m	102 95 97	4 72 72 0 0 0 0 0
EARLIMART		A	ACALA SJ-1			10	100 PERCENT							
SLM	31 41 41	35 35 35	1.08 1.12 1.07	4 4 4 4 5 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5	4.2	101 95 98	27 27 26	6.9 5.8 5.1	1.3	2.2	162	ммм	101 95 97	5.7
HANFORD		4	ACALA SJ-1			6	98 PERCENT	_						
SLM	31 41 51	36 36 35	1.12 1.11 1.12	45	4 4 4 6 4 4	94 101 94	26 26 27	5.1 5.2 5.2	1.0	1.9 2.8 3.0	1 2 4	666	101 99 88	5.0 5.7 5.7
HURCN		4	ACALA SJ-1			σ.	99 PERCENT	_						
Err	31 31 51	32 32 32	1.09 1.08 1.12	45 45 45	4 4 9 9 9	90 97 91	25 26 27	5.5 5.5 5.5	1.5	2.5	4	mmN	102 101 89	5.2 5.7 6.6
VISALIA		A	ACALA 4-42			σ.	95 PERCENT	_						
SLM	31 41 51	322	1.10 1.08 1.09	94 44 46	4 4 8 4 4 8	96	27 25 26	5.6 5.2 5.1	0.9 1.0 1.8	1.9 2.4 2.9	- e c		103 94 83	4.1 4.7 5.8
WASCO		4	ACALA 4-42			10	100 PERCENT*	*						
EE 3	31	33.53	1.08	L4 L4 7	4 4 4 N N U	93	26 26 36	5°8	1.6	2.5	120	w 4 c	102	5.9
* 100 percen	+1	100 percent selected for tests,	s, less than	100 perce	less than 100 percent in the area	area	67	•	•	 .	7	J	0,	•

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

dyed yarn	Com-	2012	Index		1113 109 103		113 109 102		109 101 100		112 105 102		1111 109 101		1111 106 99		112
22s dyed	Blue- C		인		27.6 26.8 25.7		27.4 1 26.9 1 26.0 1		27.0 1 25.8 1 25.7 1		27.2 1 26.4 1 25.9 1		27.2 26.9 25.9		26.9 1 26.6 1 25.4		27.7
Color -	Reflet-		집		25.9 26.1 26.9		25.4 26.3 27.9		26.4 27.9 28.4		25.2 27.2 27.8		25.7 26.2 28.3		25.4 27.0 28.4		26.3
. yarn	Com-		Index		105 101 100		103 103 104		103 104 98		102 99 99		102 103 100		103 101 99		101
2s blchd	(ellow-	200	위		2.9 3.1 3.2		3.0		3.0 2.9 3.6		2.9 3.4 3.2		3.0 3.0		2.8 3.1 3.6		3.0
Color-22s	Reflet-		뀖		84.7 83.2 83.1		83.4 84.2 84.8		84.1 84.2 82.8		83.4 82.9 82.8		83.6 84.2 83.0		83.9 83.4 83.2		83.5
yarn	Com-R		Index		99		98		97 93 94		97 100 84		966		98 90 80		98
22s gray	Yellow-	n	위		10.7		11.2 10.6 11.4		11.1 10.9 10.6		11.0 11.3 9.8		11.5 10.9 9.9		10.9 10.3 10.0		11.0
Color -	Reflet-	2	P. I.		72.5 69.4 68.9		70.6 68.0 68.5		70.6 68.7 69.5		70.2 71.9 65.6		70°4 71°6 65°5		71.1 68.5 63.2		71.2
Spin-		tial	No.		72 79 70		78 77 73		61 62 61		72 71 70		62 65 70		80 75		70
rfctns.	50s or 1	V 20 -	No.	۲	6 14 14	12	9 8 12	Į.	14 16 14	L Z	15 13 13	¥.	15 8 12	ENT	111 9 20	* L N	10
Yarn imprfctns.	22s or	_	No.) PERCENT	10 17 17	PERCENT	11 14 17	PERCENT	20 22 19	9 PERCENT	15 18 18	PERCENT	20 11 18	PERC	15 12 28	PERCENT*	===
appearance	50s or	Ϋ́ V	Index	100	100 100 100	100	100	100	06 80 60	98	90 90 100	66	90 100 100	95	100 100 90	100	100
Yarn appe	22s or	ţ Ų	Index		120 120 130		120 120 130		120 110 120		120 120 120		120 130 130		120 130 120		120
-	50s or 6	Į.	Pct.		4 4 0		4 4 4 4 70 70		4.1		4.6		w 4 4 w w w		4 4 4 0 4 6 0 4 6		4 4 4 6 9 3
Yarn elongation	22s or		Pct.	7	5.50 5.50 5.50	-1	5.5	-1	5.0	-1	5.2	-1	200	42	5.6	45	5.5
	50s or	-	Lbs.	ACALA SJ-1	4 4 4 6 4 6	ACALA SJ-1	51 48 49	ACALA SJ-1	444 888	ACALA SJ-1	0 4 4 4	ACALA SJ-1	44	ACALA 4-42	4 4 8 0 4 9 8 0	ACALA 4-42	500
Yarn strength	or		Lbs.	AC	128 122 116	AC	126 118 119	AC	114 113 113	AC	125 116 120	AC	114 118 117	AC	128 120 121	AC	126
		Staple	I In.		35 35		3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		35 35 35		36 35		335		35 35		
on Aı	ation	St	32d		31 41 41		31 41 41		31 41 41		31 41 51		31 31 51		31 41 51		31
State, Production Area,	Chronological sampling, and Classification	Grade	Name Code	WEST CALIFORNIA CORCORAN	SLA	DOS PALOS	SLM	EARLIMART	SLM	HANFORD	SLY	HURCN	EEE	VISALIA	SLM	MASCO	223

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

1	Ficker & Card waste		Pct.			7 + 0 7 • 0 4 • 0		7.3 6.6 6.9		4.8 5.1 6.0		5.0 6.0 6.1
	7											
ock	Composite		Index			103 101 97		90		97 98 97		98 97 101
Color of raw stock	Yellow-		No.			m m N		444		4 W W		460
Colo	Gray-		No.			7 1 7		444		6 7 7		122
nalyzer	Total		Pct.			2.5		3.6 4.2		2.2 2.5 3.4		2°9 3°0 3°2
Shirley Analyzer	Visible		Pct.			1.0		2.0 1.7 2.4		1.6		1.5 1.8 2.0
<u> </u>	gation 1/8"		Pct.		-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*	6.6 6.7 6.7	*_	7.6 7.7 7.2	*1	9.0 7.4 8.4
Fiber strength	1/8" Gage		G/tex		100 PERCENT	26 26 26	100 PERCENT*	222	100 PERCENT*	21 22 19	100 PERCENT*	22 21 21
Fiber	Zero	þ	Mpsi		-	96 96 6	Ä	82 79 77	Ä	78 80 78	-	77 76 73
	Micro- naire		Rdg.			3.9 4.2 4.0		3.9 3.9		4°9 8°9 9°9		4.1 3.2 3.2
brograph	50/2.5		Pct.			44 42 42	A-6	45 41 41	9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	213	43 46 41
Digital Fibrograph	2.5% span)	In.		ACALA SJ-1	1.08	LOCKETT 4789-A	1.02 0.99 1.02	DELTAPINE 16	1.11	STONEVILLE 213	1.10
Area,	ion	Staple	32d in.		AC	38 36	3	32 31	90	35 34	S	34
State, Production Area,	Chronological Sampling, and Classification	Grade	Code		٩	31	SITY	SP 42 SP 42 SP 42		LT SP 32 41 41		SP 32 41 41
State,	and C	Gr	Name	- 0 0	CALIFORNIA WASCO	SLM	WEST TEXAS GARDEN CITY	SLM LT SLM LT SLM LT	PECOS	SLM LT S	P ECOS	M LT SP 32 SLM 41 SLM 41

* 100 percent selected for tests, less than 100 percent in the area

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1972--Continued

P. L.	44		[월	\vdash	Yarn app	earance	8 -	rfctns.		Color -	22s gra	y yarn	color-2	2s blch	gray yarn Color-22s blchd. yarn Color	Color -		22s dyed yarn
22s or 50s or 22s or 50s 27 tex 12 tex 27 tex 12	22s or 27 tex		12	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex		Reflct-	Reflet-Yellow-Com- ance ness posite	0	Reflet-Yellow- Com- ance ness posit	Yellow- ness	Com- posite	Reflct- ance	Blue- ness	Com- posite
Ibs. Ibs. Pct. Pc	Pct.		욊	Pct.	Index	Index	No.	No.	No.	. 말	41	Index	湿	위	Index	뀙	쉬	Index
ACALA SJ-1	LA SJ-1	ī				100	100 PERCENT	5										
129 52 5.8 5.2 124 50 6.1 4.7 120 48 5.8 4.6	5.00 5.00 8.10 8.10		5.2		120 120 120	100	444	110	78 75	72.3 71.3 72.2	10.8 11.2 10.2	99	84.8 84.1 84.6	3.1 3.1	104 103 104	26.0 26.5 26.2	27.6 27.1 27.0	112 109 110
LOCKETT 4789-A	KETT 4789-A	789-A				100	PERCENT*	*										
85 28 1/6.1 4.1 86 29 5.7 4.6 83 31 5.6 4.8	5.5		1 4 4 4		90 120 100	04 80 80	43 43	32 26 40	8 4 4 8 6 E	67.0 67.1 66.9	11.8 11.8 12.0	93	84.9 84.5 85.0	3.8	102 101 102	27.9 27.6 27.2	25.9 25.9 26.3	102 102 105
DELTAPINE 16	TAPINE 16	. 16				100	100 PERCENT*	* 17										
97 36 6.3 5.3 98 36 6.4 4.6 90 30 6.0 4.1	6.9		5.3 4.6 4.1		120 120 120	100 90 90	19 22 22	12 15 20	65 61 65	67.7 69.0 71.6	11.8 11.0 11.3	94	84.9 85.0 84.0	3.6	104	26.5 27.4 27.9	26.3 26.3 26.3	108 104 103
STONEVILLE 213	NEVILLE 213	.E 213				100	PERCENT*	* -										
96 35 6.9 5.7 95 35 6.4 4.7 94 34 7.1 5.0	6.9		5.0		110 130 120	80 100 90	20 16 28	15 10 19	65 59	68.1 70.0 73.2	11.4 11.0 10.4	94 96 100	87.5 86.2 83.6	3.5 2.6	109 108 104	26.2 26.4 28.3	27.3 27.3 26.4	111 110 103

 \ast 100 percent selected for tests, less than 100 percent in the area $\underline{1}/$ End breakage too high to spin 50s yarn. Why yarn spun and strength adjusted to equivalent of 50s

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1972--Continued

	Ficker & Card	D O O O	Pet.		9.1 9.4 8.2		8.4 8.6 7.6		7.5 6.9 8.1		8.6 8.6 8.2 10.0		7.6		99.69
ck	Composite	TOTOS	Index		96 86 92		93		97 96 95		97 93 87 92		99		95 98 93 95
of raw stock	Yellow-	n n n	No.		ታ ጠጠ		ተ ጠጠ		m m N		ቀጠጠጠ		m 4		mmm N
Color	Gray-	200	No.		ጠቁጠ		m 014		0 0 m		01 M 47 M		3.2		ฅ๛ฅฅ
Analyzer	Total	n S S S S S S S S S S S S S S S S S S S	Pct.		4.2 3.1 2.6		2		3.1 2.0 3.3		4 W 4 4		2.7 3.1		4446 2511
Shirley Analyzer	Visible	D 00 00 00 00 00 00 00 00 00 00 00 00 00	Pet.		3.9 2.3 1.6		3.1 2.4 1.1		2°.4 2°.5 4°.5		2 3 3 5 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2.0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Elon- gation	0/1	Pct.		7.3		7.4 7.1 5.8		7.3		7.5 6.3 7.0		8.0 7.3		7.5
strength	1/8"	28g	G/tex	100 PERCENT	25 24 24	O PERCENT	23 22 25	100 PERCENT	24 24 24	100 PERCENT	23 24 24 24	100 PERCENT	23	100 PERCENT	23 25 25 26
Fiber s	Zero	D S S S S S S S S S S	Mpsi	10	88 80 80 80 80 80 80 80 80 80 80 80 80 8	6	84 84 81	10	98 88 88	10	8 8 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10	83	10	00 00 00 4 72 40 72
	Micro- naire		Rdg.		4.9 4.9 4.4		4 W 4 . W 4		444		5.1 4.7 4.7		4 4 8 2		444w ••••• ••••
ibrograph	50/2.5	. 11110	Pct.		44 41 43		41 43 45		4 4 4 w 2 4		4 4 4 4 0 4 6 4		44		444 4181
Digital Fibrograph	2.5% span	повин	ų i	COKER 310	1.11 1.07 1.04	COKER 310	1.09 1.09 1.03	COKER 310	1.14 1.14 1.09	COKER 310	1.11 1.14 1.13 1.12	COKER 310	1.13	COKER 310	1.14 1.16 1.17 1.14
Area,	pling	Staple	32d in.	5	9 9 9 9 4 4	ວັ	***	ช	34.53	ប័	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ŏ	35	5	9 9 9 9 9 9 9 9
State, Production Area,	Chronological sampling and Classification	Grade	Code		51 41	-	51 51 SP 42	111E	41 41 51		SP 42 SP 42 SP 42 SP 42	OLINA	41 SP 42	OLINA	51 51 51
State,	Chronol and C	Gr	Name	SOUTH EAST ALABAMA ORVILLE	LM LM SLM	SULLIGENT	LM LM SLP LT	GEORGIA DANIELSVILLE	SLM SLM SLM	MADISON	SLM LT SLM LT SLM LT SLM LT	NORTH CAROLINA FALLSTON	SLM SLM LT	SOUTH CAROLINA RIDGE SPRINGS	5555

Table 7a.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1972--Continued

State, Production Area,	Area,		Yarn strength		Yarn elongation	Yarn ap	Yarn appearance Yarn imprfctns.	Yarn im	prfctns.	Spin-	Color -	22s	gray yarn	Color-2	Color-22s blchd. yarn	1. yern	Color -		22s dyed yarn	1
Chronological sampling, and Classification	mpling; tion		-	+	508	1	50s or	22s or	50s or	ning Poten-	Reflct-			()	-Yellow-	Com-	Reflet	Blue-	Com-	1
Grade	Staple	27 tex	x 12 tex	ex 27 tex		2/ tex	12 tex	Z/ tex	Iz tex	tial	ance	ness	posice	anice	200	postre	ance	n n	posite	
Name Code	32d In	Libs.	Ibs.	Pet	Pet.	Index	Index	No.	No.	No.	뀙	[]	Index	묎	₽	Index	괴	위	Index	1
SOUTH EAST ALABAMA ORVILLE			COKER	310			100	O PERCENT	LN:											
SER	51 35 51 34 41 34	114	t 40 1 29 7 25	6.1 5.5 5.8	4 * * * * * * * * * * * * * * * * * * *	100 100 100	70 80 70	30 112 119	29 14 10	73 52 54	68.3 64.6 66.9	11.7 10.8 10.3	95 85 87	85.6 84.2 84.6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	105 102 103	26.1 29.0 30.4	27.6 26.1 24.9	1112 100 93	
SULLIGENT			COKER	310			5	90 PERCENT	LN:											
LM LM SLM LT SP	51 34 51 34 42 34	108	3 38 9 33 1 28	6.5 5.8 8	5.0 4.8 4.1	100 110 120	80 80 100	21 9 15	16 10 12	71 66 56	66.6 68.1 65.1	11.9 10.5 10.8	92 90 85	85.2 85.4 84.1	0 % 0 %	102 105 103	27.1 28.7 28.6	27.1 26.4 25.9	108 102 100	
GECRGIA DANIELSVILLE	ш		COKER 310	310			100	O PERCENT	L N											
SLM	41 35 41 35 51 34	1116	3 40	6.6 6.1 5.8	5.2 4.6 4.3	100 100 110	80 80 80	19 53 18	17 17	76 74 57	67.0 66.5 67.9	11.1 10.9 10.1	90 88 89	84.2 84.3 82.7	4.0	99 101 96	25.9 27.4 31.2	27.0 25.9 24.3	110 103 89	
MADISON			COKER	310			100	O PERCENT	IN											
SLW LT SP SLW LT	42 35 42 35 42 35 42 35	104 106 108 108	38 34	6.00 0.00 0.00 0.00	5 4 4 4 4 5 7	110 100 100 110	900	21 12 51 24	12 10 19 22	64 65 63	67.2 65.9 62.8 65.3	11.4 11.2 11.0 10.6	92 88 82 85	83.1 83.5 81.9 81.8	8 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	98 97 91	26.0 27.7 27.4 27.4	27.7 26.6 25.1 24.9	113 105 100 99	
NORTH CAROLINA FALLSTON	A Z		COKER 310	310			10	100 PERCENT	i z											
SLM LT SP	41 35 42 35	5 114	444	6.5	5.6 5.0	100	06	23	12	75	69.5	11.0	95	84.7	4.3	96	26.6	27.3	110	
SOUTH CAROLINA RIDGE SPRINGS	A N		COKER 310	310			100	O PERCENT	L											
2272	51 35 51 35 51 35 51 35	5 1113 5 1112 5 1115 6 1114	4 4 4 4 4 4 4 5 5 5 3 4 4 5 5 5 5 5 5 5	6 6 6 8 8 8 7 5 5 5 5 8 8 9 5 5 8 8 9 5 5 5 8 9 8 9 9 9 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	100 90 90 90	90 70 70 80	33 20 17 27	11 14 13	72 78 77	67.1 69.1 67.7 68.3	10.7 10.7 10.5 9.8	89 93 89	83.7 84.8 83.5	8888 8040	101 105 100 104	26.5 26.9 27.4 28.0	27.3 27.3 26.8 25.6	110 109 106	

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1972--Continued

Soft-5 State-0 1/6" Gration Visible Fortal Gray- Gold	State, Production Area, Chronological sampling	ion Area, sampling	Digital Fi	Fibrograph	,	<i>.</i>	strength	Elon-	Shirley	Analyzer	Color	of raw	stock	Picker
COKER 310 COKE	and Classifi Grade	cation	2.5% span length	50/2.5 unif.	Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite color	& Card waste
COKER 310 COKER 310 Loop Percent Loop Per		32d		Pet.	Rdg	Mpsi	G/tex	Pet.	Pet.	Pet.	No.	No.	Index	Pet.
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	CENTRAL ISSIPPI GAN CITY	3	COKER 310			10		F						
ACALA 1517-70 ACALA		37 37 36	1.15 1.18 1.17 1.13	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	88 91 89 83	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6.1 6.6 6.7 6.6	2 2 2	4 4 4 6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 m 0 4	m N N N	100 95 97 87	@ @ o o
ACALA 1517-70 31 37 1.15 45 37 38 38 37 1.15 47 39 27 6.3 1.0 1.0 1.0 1.1 37 1.1 37 1.1 41 37 1.1 41 37 1.1 41 37 1.1 41 37 1.1 41 37 1.1 41 37 1.1 42 43 44 37 41 37 41 37 41 41 37 41 41 42 43 44 44 45 46 47 48 48 48 48 48 48 48 48 48														
31 37 1.15 45 3.7 93 27 6.3 1.00 1.7 1 3 ACALA 1517-V 41 37 1.18 45 3.7 91 25 6.9 1.0 1.0 1.7 1 3 ACALA 1517-V ACALA 1517-V ACALA 1517-V ACALA 1517-V ACALA 1517-V ACALA 1517-C	MEX ICO ES I A		4CALA 1517-	.70		1	DO PERCENT	*						
41 37 1-18 45 4.0 94 27 6.3 2.0 3.0 2 3 99 41 37 1-19 43 3.5 90 25 6.5 1.6 2.5 1.6 2.5 1 101 ACALA 1517-V 41 37 1-19 43 3.5 90 25 6.5 1.6 2.3 3.0 1 3 101 ACALA 1517-C ACALA 1517-C ACALA 1517-C ACALA 1517-C ACALA 1517-T		37 37 36	1.15 1.21 1.14	45 44 41	3.7	93 91 91	27 25 25	6.9 5.9 8.8	1.0 1.0	1.7		ммм	103 104 103	999
41 37 1.18 45 4.0 94 27 6.3 2.0 3.0 2 9.9 99 6.5 1.6 2.5 11.6 2.5 1 3 99 99 99 99 99 99 99 99 99 99 99 99 9	ERMAN	4	4CALA 1517-	>		ä		*						
41 37 1.17 45 3.4 84 25 6.6 2.3 3.0 1 3 102 41 37 1.18 46 3.4 88 24 6.4 2.4 3.0 1 2 102 41 37 1.18 46 4.2 92 27 6.2 1.0 2.3 1 3 102 41 36 1.19 43 3.9 93 25 6.0 1.0 2.3 2.9 1 2 101 ACALA 1517-70 41 37 1.16 44 4.0 99 25 6.4 2.1 2.9 2 2 3 100 41 37 1.16 44 3.4 4.0 99 25 6.4 6.0 2.0 3.2 3 100 41 37 1.16 44 3.4 4.0 99 25 6.4 6.0 2.0 3.2 3 100 41 37 1.16 44 3.4 4.0 99 25 6.4 6.0 3.2 3 100		37 37	1.18 1.19 1.17	4 4 4 7 6 4	3.5	94 90 89	27 25 26	6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0 1.6 2.4	3.0 3.5 3.5	212	ммм	99 101 99	
41 37 1.17 45 3.4 84 25 6.6 2.3 3.0 1 3 102 41 37 1.021 45 3.7 85 25 6.9 1.2 2.1 1 2 102 41 37 1.018 46 3.4 88 24 6.4 2.4 3.0 1 2 2 102 31 37 1.018 46 4.2 92 27 6.2 1.2 2.2 1 3 102 41 36 1.019 43 3.9 93 25 6.0 1.0 2.3 2 3 99 41 36 1.014 41 3.2 90 24 6.0 1.8 2.9 1 2 101 ACALA 1517-70 41 37 1.016 44 4.0 99 25 6.4 6.0 2.0 3.0 3.9 2 41 37 1.016 44 4.0 99 25 6.4 6.0 3.0 3.0 3.9 3 41 37 1.016 44 4.0 99 25 6.4 6.0 3.0 3.0 3.9 3 41 37 1.016 44 3.4 86 24 7.0 2.0 3.0 3.0 3.9 3 41 37 1.016 44 3.4 86 24 7.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	Ŧ	7	4CALA 1517-	>	ò	ī		*						
ACALA 1517—C 31 37 1.18 46 4.2 92 27 6.2 1.2 2.2 1 3 102 41 36 1.19 43 3.9 93 25 6.0 1.0 2.3 2 3 99 41 36 1.14 41 3.2 90 24 6.0 1.8 2.9 1 2 101 ACALA 1517—70 41 37 1.15 44 4.0 99 25 6.4 2.1 2.9 2 3 100 41 37 1.15 44 3.4 86 24 6.0 2.0 3.2 2 3 99		37 37 37	1.17 1.21 1.18	N 10 40	3.4 4.4 4.4	88 88 88	25 25 24	6.9 4.4	2.3 1.2 2.4	3.0 2.1 3.0		553	102 102 102	7 9 8
31 37 1.18 46 4.2 92 27 6.2 1.2 2.2 1 3 102 41 36 1.19 43 3.9 93 25 6.0 1.0 2.3 2 3 99 41 36 1.14 41 3.2 90 24 6.0 1.8 2.9 1 2 101 ACALA 1517-70 41 37 1.15 44 4.0 99 25 6.4 2.1 2.9 2 3 100 41 37 1.15 44 3.4 86 24 7.2 1.0 1.9 2.9 2 3 99	TEXAS PASO	,	ACALA 1517-	ပ္			r.	F						
41 37 1-16 44 4.0 99 25 6.4 2.1 2.9 2 3 100 41 37 1-15 44 3.4 86 24 7.0 2.0 3.0 3.2 3 99 41 34 1.15 44 3.4 86 24 6.0 2.0 3.2 3 99		37 36 36	1.18 1.19 1.14	46 43 41	3°5 3°5 3°5	92 93 90	27 25 24	6.0	1.2 1.0 1.8	2.2	1 2 1	`mmN	102 99	9 - 1
41 37 1.16 44 4.0 99 25 6.4 2.1 2.9 2 3 100 41 37 1.13 43 3.7 95 24 7.2 1.0 1.9 2 3 99 41 34 1.15 44 3.4 86 24 6.0 2.0 3.2 2 3 99	PASO		ACALA 1517-	.70				_						
		37	1.16 1.13	4 # 4 4 # 4	9.4	99	25	7.2	2.1	2.9	222	m m m	100	

Table 7a. -- Cotton, American upland long staple: Quality characteristics by production areas, crop of 1972--Continued

dyed yarn	Com- posite	Index		111 108 107 102		108 111 102		107 106 108		107 107 100		112 109 99		109 107 98
22s dye	Blue- ness	위		27.7 27.3 27.1 26.0		27.1 27.4 25.8		26.9 26.2 26.7		26.6 26.7 25.5		27.5 27.0 25.0		27.0 26.7 25.2
Color -	Reflct- ance	묎		26.8 27.4 27.5 27.5		27.1 26.1 27.6		27.1 26.6 26.2		26.9 27.0 28.0		26.1 26.7 27.7		26.7 26.9 28.3
yarn	Com- R posite	Index		105 106 104 98		106 106 102		102 103 103		105 106 106		106 106 98		103 105 99
Color-22s blchd.	-Yellow-	 ₽		3.1 2.8 2.9 3.0		3.1 3.1 3.2		3.3 3.1 3.2		3.2 2.8 2.8		2.7 2.8 3.1		3.2 3.1 3.3
olor-22	Reflct-Ke	잗		85.2 85.0 84.3 81.9		85.7 85.7 84.1		84.3 84.1 84.3		85.2 85.0 85.1		84.7 84.8 82.0		84.2 85.2 82.9
gray yarn c	Com- Re	Index		98 91 88 81		99 97 98		92 96 96		95 96 98		96 93 93		93
22s gray	ellow- (위		11.2 10.4 9.7 9.5		11.3		11.0 10.8 10.8		10.8 10.4 11.0		10.9 10.6 10.3		11.3 10.7 11.0
Color -	Reflct-Ye ance	집		70.7 68.7 68.1 64.4		70.9 70.6 71.0		68.2 70.4 70.5		69.9 70.8 71.3		69.9 69.1 69.5		68.2 69.3 69.6
	ning Poten- R tial	No.		77 78 70 87		79 90 85		944		85 93		86 86 78		8 8 5 4 8 5
fctns.	50s or 12 tex	No.	Ė.	14 13 20	*	14 19 18	* 1	24 34 15	*1	11 28 17	Ļ.	20 20 8	ENT	20 24 15
appearance Yarn imprfctus	22s or 9	No.	OO PERCENT	15 17 31	PERCENT*	15 25 28	PERCENT*	26 49 29	PERCENT*	14 28 21	PERCENT	26 44 8	PERC	35 35 14
arance Y	50s or 2	Index	100	90 70 60 60	100	02 09	100	222	100	80 70	75	288	91	70 70 70
Yarn appe	22s or 56	Index		120 90 100 90		90		100 80 90		100 80 80		90 100 110		066
uo.	50s or 23	Pet.		4 0 4 4 0 0 0 8		5.1		5.3		5 5 6 B		5.0		0.04
Yarn elongati	22s or 5	Pct.		50 50 50 50 50 50 50 50 50 50 50 50 50 5	7-70	6.5	7-7	4 6 6 6	7- 2	6.7 6.6	7-C	6.1 6.3 6.1	1517-70	6.3
\neg	50s or 22 12 tex 27	Lbs. P	COKER 310	4444	ACALA 1517-70	52 64	ACALA 1517-V	52 48 50	ACALA 1517-V	51 49 67	ACALA 1517-C	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ACALA 151	4 4 8 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Yarn strength	22s or 50 27 tex 12		Ö	118 116 118 110	AC.	133 132 126	AC.	130 127 125	AC.	131 128 122	AC.	126 123 118	AC,	128 127 120
		ı. Ibs.		37 37 36		37 36		37		37		37		37
n Are	tion	32d In.	, .	41 51 51		31		1111		1111		31		141
State, Frontcilon Area, Chronological sampling.	and Classification Grade Stap	Name Code	SOUTH CENTRAL MISSISSIPPI MORGAN CITY	N I W I	WEST NEW MEXICO ARTESIA	III	HAGERMAN	SLM	НАТСН	SLA	WEST TEXAS EL PASO	SLM	EL PASO	SL# SL# SL#

Table 7b.--Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1972

	2	b	×													
Varn immonfootions	ir eccion	50s or	12 te	No		16 9 5		10		976		138		91		N 40 40 80
yan; arey	Idrii Imp	22s or	27 tex	No.		17 8 5		21 5 5		3 7 13		9 10 14		10		13 6 6 11
900	100	Average	9	Index		95 100 105		110 110 110		110 105 105		120 115 110 110		115 105		105 100 90 105
Varn annearance	dan appeara	50s or	12 tex	Index		0666		100		100 100 90		110 100 100		110		100 90 80 90
		22s or	27 tex	Index		100 110 120		120 120 120		120 110 120		130 130 120 120		120 120		110 110 100 120
Varn elongation	ougasta.	50s or	12 tex	Pet.		5.1 5.0 5.0	_	w w 4 • • • w ∽ w		2 4 4		5.2 5.1 5.0 4.8		5.7	_	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Yarn el		22s or	27 tex	Pet.	100 PERCENT	6.6 5.1 6.7	90 PERCENT	6.4	100 PERCENT	6.5 6.4 6.1	100 PERCENT	0 0 0 0 0 4 4 E	100 PERCENT	6.8	100 PERCENT	9 0 6 6
ength	1000	Average Break	Factor	No.		2641 2196 2124		2514 2254 2055		2630 2572 2417		2489 2456 2514 2373		2724 2633		2572 2644 2699 2666
arn skein strength		50s or	12 tex	Lbs.		48 39 37		4 4 6 3 6 9		44 44 43		4444 0000		50		7 4 4 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6
Ya		22s or	Z/ rex	Lbs.		131 111 109		124 1114 105		130 127 122		124 121 124 118		134 128		127 129 134 131
		Comber		Pet.	COKER 310	19.1 20.0 21.2	COKER 310	17.8 17.8 18.8	COKER 310	15.0 14.9 17.9	COKER 310	17.9 15.4 15.6 17.2	COKER 310	13.5	COKER 310	15.8 16.9 14.6 16.5
	, b	φ	Staple	32d in.	Ō	35 34 34	00	34 4	8	35 34	00	3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5	35 35	8	35 35 35
State Production Area	State, Hounderson Alex Chronological Sampling	and Classification		Code		51 51 41	T1	51 51 SP 42	/ILLE	41 41 51		SP 42 SP 42 SP 42 SP 42	SOL INA	41 SP 42	ROL INA	51 51 51
A+a+8	Chronolog	and Cl	Grade	Name	SOUTH EAST ALABAMA ORVILLE	SCC	SULLIGENT	LM SLM LT	GEORGIA DANIELSVILLE	SCE	MAD I SCN	SLM LT SLM LT SLM LT SLM LT	NORTH CAROLINA FALLSTON	SLM LT SLM LT	SOUTH CAROLINA RIDGE SPRINGS	3353

Table 7b.--Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1972

ons	or	12 tex	ان												
imperfections	508	12	No.		7 7 6 13		9 113 112		12 21 10		111		∞ ∞ v		12 13 10
Yarn i	22s or	27 tex	No.		10 9 6 19		10 14 12		15 23 9		6 15 11		11 6 4		16 17 19
nce	Average	age rave	Index		110 100 100 90		85 80 80		90 75 95		100 85 95		85 95 100		95
Yarn appearance	50s or	12 tex	Index		100 90 90 80		70 70 70		80 70 90		90 70 80		9 6 6 9 6 6		000
	22s or	27 tex	Index		120 110 110 100		100 90 90		100 80 100		110 100 110		90 100 110		110 100 110
ngation	50s or	12 tex	Pct.	;	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	ທູນ ທູນ ທູນ ທູນ	17	N N N 0 N 4	17	5.9	5	5.0	5	N N N
Yarn elongation	22s or	27 tex	Pct.	100 PERCENT	4.0 6.0 9.0 9.0	100 PERCENT	6.7 7.1 6.4	100 PERCENT	6.5	100 PERCENT	7.0 6.6 7.1	75 PERCENT	4	91 PERCENT	0 9 9 9 9 9
ngth	Average Ereak	Factor	No.		2716 2727 2760 2536		3122 3078 3031		3078 2923 2959		2981 2962 2948		2926 2879 2793		3138 2959 2854
Yarn skein strength	50s or	12 tex	Lbs.		51 51 51 46		58 58 57		5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		50 50 50 50 50 50		55		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Yar	22s or	27 te x	Lbs.		131 132 135 126	70	152 148 146	>	148 143 144	>	146 142 143	v	141 139 138	70	158 144 139
	Comber		Pet.	COKER 310	15.0 16.4 15.5 17.2	ACALA 1517-70	15.9 15.1 17.8	ACALA 1517-V	14.5 15.2 14.7	ACALA 1517-V	13.3 15.6 14.9	ACALA 1517-C	15.4 15.1 17.7	ACALA 1517-70	16.5
ea,	Эu	Staple	32d in.	ដ	37 37 36	¥	37 37 36	AC	37 37 37	AC	37 37 37	Ā	37 36 36	A	37 37 36
uction Ar	ronological Samplinand Classification		Code	-	41 51 51		31 31		4 4 4		4 1 1		411		411
State, Production Area,	Chronological Sampling and Classification	Grade	Name	SOUTH CENTRAL MISSISSIPPI MORGAN CITY	r r r r r	WEST NEW PEXICO ARTESIA		HAGERMAN	S S S S S S S S S S S S S S S S S S S	НАТСН	SLR	WEST TEXAS EL PASO	SLT	EL PASO	SL SL SL

Table β .--Cotton: American upland extra long staple: Quality characteristics by production areas, crop of 1972

Table 8,--Cotton: American upland extra long staple: Quality characteristics by production areas, crop of 1972--(Continued)

Color - 50s dyed yarn	COM-	DO TOO	Index				106
lo r - 50s	Blue-	200	위				27.3 28.3 26.6
	Reflect Blue-	D	찖				28.6 27.3 29.1
hed yarn	Com-	201	Index				105
Color-50s bleached yarn	Reflect. Yellow- Com-	2	₽Ι				0, 0, 0, 0, 1, 0,
Color-5	Reflect.	3	Rd				84.6 84.3 83.7
y yarn	Com-	2	Index				888
50s gray	Yellow-		₽Ι			100 Percent	10.3
Color - 50s gray yarn	50s or 80s or Reflect Yellow Com-	3	Rd			100	69.5 73.2 72.0
prfctns	80s or		No.				セク た
Yarn im	50s or		No.				27.5
earance	s or 80s or	,	Index				100
Yarn app	50s or	4	Index				100
ongation	80s or		Pct.			Del Cerro	7.0.c.
Yarn el	50s or		Pct.			De	4.7 4.7
Yarn strength Yarn elongation Yarn appearance Yarn imprfctns	50s or 80s or 50s or 80s or 50s or 12 tex 7 h tex 12 tex		Lbs.				37 35 35
Yarn s	50s or	450	Lbs.				79 19 49
n Area,		Staple	32d in. Lbs.				04 10 10
oductio	ronological Sampliand Classification	4	Code			ಥ್ರ	444
State, Production Area,	Chronological Sampling and Classification	Grade	Nаme	WEST	Arizona	Aguila	SIM SIM SIM

Table 9.--, Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1972

	Comber		Pct.			16.6 19.6 18.4		19.3		16.4 18.9 16.2		16.7 16.9 15.2		17.5 18.5 17.4		17.7 18.3 18.5 18.1		17.6	
	Picker & card	*ab ca	Pct.			0.6.8		7.5 8.0 8.5		7.1 8.0 7.0		8.7 7.5		8.2 7.6 8.4		6.6 8.7 8.8 8.8		7.0	
stock	Com- posite		Index			\$ 8 5		83 84 87		2884		88 88 93 88		87 86 86		98 98 82 84		84.	
Color of raw	Yellow-		No.			たなみ		ろろう		###		020		0 IN IN		0000		99	
Colo	Gray-		No.			nnn		ででは		444		ろなる		444		ろろろろ		7 5	
halyzer	Total		Pct.			გ. თ. თ. დ. დ. ბ.		a നേന്		4.0.4. 0.4.		4 00 0 1.4 0 1.4 0		3.7		3.00		1.5	
Shirley Analyzer	Visible		Pct.	70 D	7.04110	1.5	Percent	1.2 1.3 1.3	Percent	1.3	Percent	8.1 9.1 9.1	Percent	111.5	rcent	00011	Percent*	00	
	Elon- gation	0/1	Pet.	6	2	7.1 6.9 6.7	90 Pe	8.8 8.3 7.3	100 Pe	7.8	95 Pe	0,80 0,00	98 Pe	0.68	99 Percent	8.88.86 9.86.74.7	100 Pe	8.5	
strength	1/8"	0	G/tex			34 33 32		31 34 31		35 37 35 35		29 33 31		31 32 32		333333333333333333333333333333333333333		33	
Fiber s	Zero	200	Mpsi			93		100 100 91		ま器ま		828		100 96 100		103 97 100 91		93	70 10 14
	Micro- naire		Rdg.	C 2 C 4 F F F F F F F F F F F F F F F F F F	7 2 2	33.00	1 S-4	4.0 9.0 9.0	1 S-4	8.8. 9.0.	Pima S-4		Pima S-4	33.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00	1 S-4		1 S-4	4.0 3.8	it in the area
length	Coeff.		Pet.	ř		28 32 32	. Pima	33 31 34	Pima	32 34 34	Pim	33.33	Pim	33 33	Pima	33 34 38	Pima	32	100 percer
Array length	Upper Chartile	200	il			1.48		1.47		1.39		1.46 1.43 1.42		1.52 1.48 1.43		1.50 1.47 1.43 1.35		1.38	ess than
, a		Staple	32d in.			4 44		†† ††		-		7 7 7		77 77		4444		1 1	r tests.]
ction Are	l Samplin fication																		elected fo
State, Production Area,	Chronological Sampling and Classification	Grade		WEST ARIZONA	Casa di ange	られれ	Safford	NNN	Wenden	ユ ケ オ	NEW MEXICO	いけい	WEST TEXAS El Paso	<i>ਜ</i> ਜ ਜ	El Paso	Nttw	Pecos	K.4	* 100 percent selected for tests. less than 100 percent in

100 percent selected for tests, less than 100 percent in the area

Table 9.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1972--(Continued)

1	1									-75	5-								
	dyed yarn	Com- posite	Index			99 100 109		102 · 97 107		98 93 106		105 99 104		109 104 100		111 109 103 107		107	
	Color - 50s	Blue- ness	위			25.6 26.1 27.2		26.4 25.4 26.8		25.6 24.2 26.8		25.5 25.5 26.5 26.5		26.6 25.4 25.6		88.5 8.0 7.5 7.5		27.1	
	S	Reflect ance	묎			28.8 29.0 27.0		28.6 29.1 27.3		29.0 29.0 27.7		27.3 28.3 27.5		25.9 27.9 28.3		26.6 26.4 27.7 26.7		27.6	
	Color-50s bleached yarn	Com- posite	Index			104		100 101 <i>97</i>		103 103 97		98 76		888		32863		826	
	Os bleac	Yellow- ness	위			3.4.5		0.4.0.		3.5		5.3 4.1 4.6		444		4.004		†. †	
	Color-5	Reflect- ance	찖			83.1 85.0 84.3		84.5 84.1 83.1		84.6 84.9 83.2		83.5 83.5 84.2		83.8 83.8 82.6		84.0 83.5 4.882.0		83.9	
	yarn	Com- posite	Index			888		87 92 98		882		8588		888 8		86 84 87 86		88 89	
	50s gray yarn	Yellow- ness	위		빔	12.9 4.21 12.5	tl	13.3 13.3 13.0	tl	13.0	lat T	13.1 13.3 13.3	lt	13.4 13.2 13.5	tl	13.4 13.2 13.5 13.3	nt*	13.7	
	Color -	Reflect- ance	묎		70 Percent	65.6 68.4 67.3	90 Percent	62.7 64.0 64.7	100 Percent	66.8 67.1 68.1	95 Percent	61.9 65.2 65.0	98 Percent	61.8 62.3 64.7	99 Percent	61.8 61.3 62.4 61.9	100 Percent*	62.3	
	prfctns	80s or 7.4 tex	No.			ннч		H 01 01		нчч		211		мчч		4 ろろろ		Q 1 Q1	
	Yarn imprfctns	50s or 12 tex	No.			ааг		004		ณ ๓ ณ		તા તા તા		N m a		N FW F		ma	
	appearance	80s or 7.4 tex	Index			120 120 120		110 120 120		120 120 120		100		130 110 110		120 110 8		120	
	Yarn app	50 s or 12 te x	Index		out.	120 130 110		110 120 110		120 130 120	-÷1	110 120 120	+1	120	+1	01100000	+1	110	
:	Yarn elongation	80s or 7.4 tex	Pct.		Pima S-2	4.9	Pima S-4	5.0	Pima S-4	4.10	Pima S-4	4.5.5	Pima S-4	4.0.24	Pima S-4	5.1 4.8 4.7	Pima S-4	5.0	
	Yarn el	50s or 12 tex	Pct.			4.6.6		5.5		5.7		,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6.1		7.7.7.6		5.3	
	Yarn strength	80s or 7.4 tex	Lbs.			37 36		35 35 35		35 35 35		36 35 35		35		35 35 35		35	ı
	Yarn st	50s or 12 t ex	Lbs.			4 4 8 8		63 64 63		65 65 65		63 65		63 63		63 62 63		63	
	n Area,	- Tan	32d in.			###		11 11 11 11 11 11 11 11 11 11 11 11 11		444		444		7,7,7		444 4		†††	
	State, Production Area,	Chronological Sampling and Classification Grade Staple		WEST ARIZONA	Casa Grande	トナン	Safford	ろろろ	Wenden	☆ ♥ ★	NEW MEXICO	トトン	WEST TEXAS	<i>ਜਜ</i> ਜ	El Paso	M T T W	Peros	r.4	

* 100 percent selected for tests, less than 100 percent in the area

Table 10.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 57 short staple samples collected at twiweekly intervals from selected gin points, crop of 1972

							-1	76-								
	Spinning Potential	No. 45.6 4.3	+.184 +.669	+.753 +.034 +.234	+.138 +.311 +.045	225	149 177 +.188	369		4.62. 4.60.+	064	+,104 +,235	205	+.254 154 +.279	+.089 144 +.123	+.027 +.217 +.131
	Picker & card waste	Pet. 6.75 1.27	835	382 +.076 682	448 +.148 +.298	+.854+	+.787 +.660 803		369	+.181 +.001	+.456	628	+.820 +.824	788 +.511 763	+.053 +.617 247	340 278 030
stock	Com- posite	Index 92.0 6.9	+.924 +.268	+.228 +.034 +.459	+.261 403 227	712	97 ⁴	803	+.188	145	231 284	+,439	634	+.923	+.032 712 +.365	+.080 +.407 +.238
of raw st	Yellow- ness	No. 4.2 1.3	673	420 +.184 586	+.120 +.442 +.124	+.705	+.771	+.660	177	+.405	+.188	408	+ . 649 + . 628	878 +.851 698	+.426 +.483 +.100	328 118 +.067
Color	Gray- ness	No. 3.3 1.3	888	213 +.060 +.438	212 +.408 +.185	+.717	+.771 974	+.787	149	+.152	+.193 +.244	1.458	+.635	909 +.521 903	+.041 +.639 278	107
alyzer	Total waste	Ret. 3.71 1.28	836	287 +.147 697	323 +.283 +.313	+.970	+.783 +.712 787	4.904	266	+,344	+.448 +.548	616	+.798 +.814	768 +.610 698	+.127 +.642 207	341
Shirley Analyzer	Visible waste	Pet. 2.41 1.11	774	292 +.237 643	212 +.256 +.274	0.6.+	+.717 +.705 712	+.854	225	+,416	+.391	552	+.756	609 609	+.227 +.551 087	385
	gation 1/8"	Pct. 6.95	291 014	+.015	521	+.274 +.313	+.185 +.124 227	+.298	+.045	+.008	+.654	413	+.527	158 +.083.	+.345	067
strength	1/8" gage	G/tex 20.7	340	+.173 +.096 187	+.077	+.256 +.283	+,408	+.148	+.311	+,480	+.065	105	+.170 +.170	381 +.346 305	+.054	122
Fiber st	Zero gage	Mpsi 79.5 5.1	+.370	103 +.312 +.406	+.077	212	212 +.120 +.261	-,448	+,138	+.244 +.372	+.616	+,481	467	+.124 +.227 +.262	+.251	+.132 +.241 +.099
	Micro- naire	Rdg. 4.08	+.562	+.330	+.406 187 373	643 697	438 586 +.459	682	+.234	306	623	+.677	780	542 629 +.387	342 446 054	+.431 +.168 083
ength	50/2.5 unif.	Pet. 45.1 1.2	940	098	+.312 +.096 026	+.237 +.147	+.060 +.184 034	+.076	1 .03 ^μ	+.363	087	+.153 +.109	006	157 +.244 064	+.104 062 +.108	103 +.184 +.155
Fiber length	2.5% span	n .97	+.200	098	103 +.173 +.015	292	213 420 +.228	382	+.753	360.+	026	+.083	311	+.382	251 +.013 218	+.224 016 115
	Staple	32d in. 31.3	+.195	+.699 040 +.263	029 +.155 014	159 189	247 320 +.268	280	699*+	+.263	+.040 +.118	+.127 +.189	223	+.394	096 131 016	012 +.249 +.180
	Grade	Index 89.3 7.3	+.195	+.200 046 +.562	+.370 340 291	77 ⁴ 836	888 673 +.924	835	+.184	229	363	+.530	691	+.834 543 +.820	033 660 +.291	+.189 +.361 +.157
	Item	Sample Distribution: Mean. Standard deviation (±) Correlation Coff. for:	Gradeindex Staple32d inches Fiber length	2.5% spaninches 50/2.5pct Microhirereading Fiber etheneth.	Zero gage. Zero gage. 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8s (74 tex)pounds 22s (27 tex)pounds Yarn elongation.	8s (74 tex)pct 22s (27 tex)pct Yarn Amparance:	8s (74 tex)index 22s (27 tex)index Yarn imperfections:	8s (74 tex)	ReflectanceRd Yellownesstb Compositeindex	ReflectanceRd Yellownesstb Compositeindex Color - 22s dved varn:	ReflectanceRd Bluenessb Compositeindex

							-7	7-								
varn	Com- posite	Index 107.2 4.4	+.157	115 +.155 083	+.099 002 041	+.061	178 +.067 +.238	030	+.131	+.309	+.094	+.044	+.139	+.070 +.207 +.180	+.502 419 +.577	820 +.914
22s dved varn	- s	26.7 8.	+.361	016 +.184 +.168	+.241 098 096	164	344 118 +.407	278	+.217	+.184	054	+.225	096	+.254 +.031 +.334	+.423	527
Color - (4	Rd 26.7 1.0	+.189	+.224 103 +.431	+.132	385	107 328 +.080	340	+.027	416	272	+.231	455	+.226 414 +.101	478 +.111 422	- 527
		10dex 99.8 4.6	+.291 016	218 +.108 054	+.342 123 128	087	278 +.100 +.365	247	+.123	+.219	062	+.010	+.005	+.170 +.388 +.396	+.875	422 +.574 +.577
bleache	Yellow-	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	660	+.013	305 +.330 +.345	+.551	+.639 +.483 712	+.617	144	+.085	+.302	392	+.513	619 +.263 653	280	+.111 543 419
Color-22s bleached yarn	Reflect-	Rd 84.2 1.5	033	251 +.104 342	+.251 +.054 +.068	+.227	+.041 +.426 +.032	+.053	+.089	+.331	+.123 +.246	229	+.334	161 +.678 +.114	280	478 +.423 +.502
y yarn	Com- posite	Index 91.3 7.6	+.820	+.293 064 +.387	+.262 305 153	609	903	763	+.279	047	161	+.378	579	+.938	+.114	+.101 +.334 +.180
22s gray yarn	Yellow- ness	12.1 .9	543	437 +.244 629	+.227 +.346 +.083	+.640	+.521 +.851 501	+.511	154	+.504	+.194	-,424	+.595	665	+.678 +.263 +.388	414 +.031 +.207
Color -	Reflect- ance	Rd. 65.8 4.7	+.834	+.382	+.124 381 158	708	909 878 +.923	788	+.254	235	263	+.452	680	665	161	+.226 +.254 +.070
rfctns	Fine 1	No. 28.6 12.5	696	325	511 +.170 +.562	+.771	+.634 +.628 629	+.824	251	+.193	+.655	7 ⁴ 3 822	+.965	658 +.559 570	+.306 +.506 012	153
Yarn imprfctns	Coarse 8s	No. 47.2 20.7	691	311 006 780	467 +.170 +.527	+.756	+.635 +.649 634	+.820	205	+.276	+.606 +.698	747	+.965	680 +.595 579	+.334 +.513 +.005	455
rance	Fine C	Index 116.0 10.7	+.527	+.285 +.109 +.602	+.400	560	489	612	+.235	096	561	+.755	783	+.503 488 +.416	360	+.263 +.111 047
Yarn appearance	Coarse 8s	Index 121.4 6.9	+.530	+.083 +.153 +.677	+.481 105 413	552	458 408 +.439	628	+.104	165	556	+.755	747	+.452 424 +.378	229 392 +.010	+.231 +.225 +.044
	Fine 22s	Pet. 6.4 .5	445	+.012 049 680	643 +.076 +.653	+.516	+.244 +.270 284	+.545	026	+.239 +.080	+.822	670	+.698	269 +.309 196	+.246 +.316 +.032	334 091 +.085
Yarn elongation	Coarse	Pet. 7.5	363	026	+.616 +.065 +.654	+.391 +.448	+.193 +.188 231	+.456	-,064	+.184	+.822	556	+.606	203 +.194 161	+.123	272 054 +.094
	Fine C	1.bs. 93.9 5.0	111	+.266 +.367 136	+.372	+.251	+.076	+.001	+.604	+, 928	006	020	+.095	152 +.420 +.028	+.286 +.046 +.197	258 +.158 +.214
Yarn strength	Coarse	10s. 307.8 15.6	229 +.263	+.092	+.244 +.480 +.008	+,416	+.152 +.405145	+,181	+.462	+.928	+.184	165	+.276	235 +.504 047	+.331 +.085 +.219	416 +.184 +.309
	Item	Sample Distribution: Mean. Standard deviation(±) Correlation Coef. for	Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronairereading	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible Wastepct Total Wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8 (74 tex)pounds 22s (27 tex)pounds Varn alongstion.	8s (74 tex)pct	So (74 tex)index 228 (27 tex)index Varn immerforms.	228 (74 tex)No.	ReflectanceRd Yellowness+b Compositeindex	ReflectanceRd Yellownesstb Compositeth	ReflectanceRd Bluenessbd Compositeindex

-78-

Table 11.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 340 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1972

									-7	78 -								
		Potential	No.	63.8	+.253	+.651 +.300 +.041	+.355 +.610 +.151	110 247	351 133 +.363	304		+.808 +.766	+.376	007	282	+.263 +.002 +.204	+.182 262 +.267	328 +.336 +.356
	Picker	& card	Pct.	6.10	608	285 185 344	242 069	+.742	+.372 080 377		304	293	003	342 248	+.458	301 +.017 233	230 +.211 266	+.190
	ock	Com- posite	Index	95.0	+.755	+.264 +.054 +.040	+.168 +.333 +.193	300	947 +.124	377	+.363	+.393	+.329	900°+	121	+.791 +.354 +.777	+.518 386 +.587	536 +.604 +.616
	Color of raw stock	Yellow- ness	No.	2.8	+.226	306 +.091 +.050	092 185 063	037	036 +.124	080	133	12 ⁴ 092	+.108 +.150	+.021	+.151	+.007 +.724 +.266	+.307 +.357 +.069	321 +.238 +.289
	Color	Gray- Y	No.	2.6	728	281 067 076	187 349 171	+.294	936	+.372	351	405	286	036	+.148	796 273 744	489 +.441 574	+.520 578 598
	nalyzer	Total waste	Pet.	2.95	579 243	177 072 318	136	+.919	+.375	+.759	247	152 11 ⁴	036	090	+.415	212 +.025 152	167 +.186 208	+.125 227 203
	Snirley Analyzer	Visible waste	Pct.	1.94	546	125 +.024 240	116 103 071	+.919	+.294 037 300	+.7 ⁴ 2	+.110	068	+.080	153	+.350	163 +.088 090	080 +.147 124	+.034 103 080
	Elon-	gation 1/8"	Pet.	6.84 .92	970°+	+.211 273 213	579 194	071	171 063 +.193	690	+.151	084	+.696	292	+.081	+.081 097 +.013	+.211 094 +.196	074 +.193 +.154
1,7	rengrn	1/8" gage	G/tex	1.8	+.317	+.498 +.364 +.171	+.710	103	349 185 +.333	242	+.610	+.852	032	+.211 +.244	199	+.369 019 +.298	+.056	291 +.222 +.266
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Fiber strength	Zero gage	Mpsi	84.4 5.7	+.256 +.381	+.202 +.431 +.339	+.710	116	187	205	+.355	+.630	468 273	+.366	345	+.252 +.040 +.239	092 173 +.028	176 +.123 +.147
	M: 0.0.	naire	Rdg.	94.3	+.247	+.095	+.339 +.171 213	240 318	076	344	+.041	+.063	378	+.452	622	+.164 011 +.134	+.011 226 +.116	136 +.289 +.242
4	ng cu	50/2.5 unif.	Pct.	1.6 1.6	+.161	+.103	+.431 +.364 273	+.024 072	+.091	185	+.300	+.394	169	+.509	418	+,118 +,141 +,140	+.073	315 +.309 +.332
1:10	Floer Lengun	2.5% span	In.	1.08	+.202 +.736	+.103	+.202 +.498 +.211	125	281 306 +.264	285	+.651	4.607	+.271	+.064	163 194	+.273 198 +.121	+.203	138 +.255 +.233
-	I	Staple	32d in.	34.2	+.303	+.736 +.239 +.131	+.381 +.580 +.046	175 243	380 282 +.350	348	+*663	+.665	+.132 +.248	+.109	289	+.331	+.162 436 +.316	239 +.304 +.299
		Grade	Index	90.5	+.303	+.202 +.161 +.247	+.256 +.317 +.074	546	728 +.226 +.755	608	+.253	+.336	+.082 +.228	+.294 +.249	255	+.674 +.327 +.679	+.478 324 +.528	502 +.561 +.571
	i	Item	Sample Distribution:	Meanstandard deviation (±) Correlation Coef. for: Classification:	Grading Stable Stable Stable Fiber Length:	2.5% spaninches 50/2.5. Micromairereading Fiber stremeth:	Zero gage	Visible wastepct Total wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elonation:	22s (27 tex) pct 50s (12 tex) pct	larn Appearance: 22s (27 tex)index 50s (12 tex)index Yarn imperfections:	228 (27 tex)No. 50s (12 tex)No. 60lor - 22s grav varn:	ReflectanceRd Yellownessth Compositeindex	ReflectanceRd Yellowness+b Compositeindex	ReflectanceRd Bluenessb Compositeindex

								- 79	-								
yarn	Com- posite	Index	105.6	+.571	+.233 +.332 +.242	+.147	080	598 +.289 +.616	226	+.356	+.366	+.300	+.104	132	+.585 +.463 +.651	+.600 +.636 +.636	+.961
22s dyed yarn	Blue-	위	26.6	+.561	+.255 +.309 +.289	+,123 +,222 +,193	103	578 +.238 +.604	220	+.336	+.324	+.319	+.080	-,182	+.605	+.706	712
Color - 2	Reflect- ance	Rd	27.4	502	138 315 136	176 291 074	+.034	+.520 321 536	+.190	328	376	225	130	+.026	481 509 589	428 +.196 443	712
_	Com- Re	Index	102.4	+.528	+.304 +.123 +.116	+.028 +.210 +.196	124 208	57 ⁴ +.069 +.587	266	+.267	+.249	+.318	+.136	062	+.657 +.241 +.628	+.857	443 +.685 +.636
bleache	Yellow-	위	3.5	324	40h 100 226	173 364 094	+.147	+.441 +.357 386	+.211	262	305	061	151	+.193	492 +.306 300	310	+.196 394 351
Color-22s bleached yarn	Reflect Ye	Rd	84.1	+.478	+.203 +.073 +.011	092 +.056 +.211	080	489 +.307 +.518	230	+.182	+.130 +.211	+.390	+.064	+.032	+.569	310	428 +.706 +.600
-	Com- Re posite a	Index	91.1	+.679	+.121 +.140 +.134	+.239 +.298 +.013	090	7 ⁴ 4 +.266 +.7777	233	+.204	+.326	+.167	+.242 +.229	009	+.923	+.624 300 +.628	589 +.617 +.651
22s gray yarn	Yellow C	위	10.6	+.327	198 +.141. 011	+.040 019 097	+.088	273 +.724 +.354	+.017	+,002	+.043	+.161	+,040	+.202	+.302	+.509 +.306 +.241	509 +.390 +.463
Color - 22	Reflect Ye	Rd.	2.7	+.674	+.273 +.118 +.164	+.252 +.369 +.081	-,163	796 +.007 +.791	301	+.263	+.370	+.154	+.238 +.204	116	+.302	+.569	481 +.605 +.585
-	Fine Re 50s a	No.	15.0	252	194 485 652	363 255 +.075	+.335	+.122 +.143 099	+.459	309	279	+.208 +.189	468	+.930	123 +.211 014	+.039 +.208 065	+.035
Yarn imprfctns	Coarse F	No.	19.7	255	163 418 622	345 199 +.081	+.350	+.148 +.151 121	+.458	282	238	+.192 +.199	420	+.930	116 +.202 009	+.032+.193	+.026 182 132
-	Fine Co 50s	Index	86.3	+.249 +.149	+.058 +.509 +.458	+.417 +.244 367	035	027 +.062 006	248	+,022	+.256	380	+.827	420	+.204 +.101 +.229	+.057 112 +.114	187 +.147 +.175
Yarn appearance	Coarse 22s	Index	12.9	+.294	+.064	+.366 +.211 292	153	036 +.021 +.004	345	007	+.198 +.244	391	+.827	420	+.238 +.040 +.242	+.064 151 +.136	130 +.080 +.104
-	Fine Co	Pct.	7.4	+.228 +.248	+.336 018 319	273 +.165 +.587	+.080	383 +.150 +.417	+.086	4.459	+.386 +.436	+.840	204	4.199	+.301 +.261 +.328	+.490	385 +.427 +.438
Yarn elongation	Coarse 22s	Pct.	e.9.	+.082	+.271 169 378	468 032 +.696	+.080	286 +.108 +.329	003	+.376	+.188	+.840	391	+.192 +.208	+.154 +.161 +.167	+.390 061 +.318	225 +.319 +.300
	Fine Co	Lbs.	37.2	+.356	+.606	+.567 +.819 101	061	391 092 +.385	284	+.766	+.957	+.187	+.244	131	+.389 +.101 +.354	+.211 288 +.292	402 +.306 +.367
Yarn strength	Coarse 22s	Lbs.	103.8	+.336	+.607 +.394 +.063	+.630 +.852 084	068	405 124 +.393	293	+.808	+.957	+.188	+.198	238	+.370	+.130	376 +.324 +.366
	Item	Sample Distribution:	Mean	Gradeindex Staple32d inches Fiber length.	2.5% spaninches 50/2.5pct Micromainereading Fiber strength.	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct	lain Appearance. 25s (27 tex)index 50s (12 tex)index Varn imperfections.	228 (27 tex)No. 50s (12 tex)No. Color = 228s gray varn.	ReflectanceRd Yellowness+b Compositeh	ReflectanceRd Yellowness+b Compositehc	ReflectanceRd Bluenessb Compositeindex

Table 12.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 38 long staple samples, collected at triweekly intervals from selected gin points, crop of 1972

							-8	80-								
	Spinning Potential	No. 76.0 11.07	+.554	+.843 +.132 597	+.463 +.468 249	289	702	487		+.90\ +.912	+.515	634	+.295	+.720 +.137 +.706	+.311	579 +.318 +.456
	Picker & card waste	Pct. 8.05 1.00	818	346 344 +.237	426 448 +.250	+.818	+.619		487	570	325	+.247 +.112	280	483 348 565	359 +.155 295	+.277 158 240
	Com- posite	Index 96.8 4.6	+.725	+.619 +.253 451	532 +.403 185	501	949	652	4.749	+.807	+.564	366	+.000	+.919 +.214 +.913	+.481	399 +.307 +.384
Color of raw stock	Yellow- ness	No. 2.9 .6	+.048	209 +.116 +.397	101 022 +.172	03 ⁴	+.104	115	104	114 210	+.183 +.024	+.279 +.287	+.117.	186 +.810 +.111	+.169 +.411 120	425 +.406 +.447
Color	Gray- Y	No. 2.3	729	593 179 +.475	467 321 +.143	+.516	+.104	+.619	702	736	534	+.404 +.402	+,001	862 138 835	416 +.403 475	+.355 224 315
alyzer	Total waste	3.25 .95	80 4 308	129 243 +.262	425 399 +.273	+.957	+.558 076 555	+.853	303	360	137	+.133	117	458 253 503	403 +.239 361	+.033
Shirley Analyzer	Visible waste	Pct. 2.31 .92	800	105 155 +.318	403 407 +.316	+.957	+.516 034 501	+.818	289	319	011 +.029	+.118 +.166	109	402 151 422	266 +.250 286	011 +.077 +.038
	Elon- gation 1/8"	Pet 58	349	085 185 +.430	332	+.316 +.273	+.143 +.172 185	+.250	249	249	+.403	+.040 +.166	108	186 018 188	+.046+.367	099 +.227 +.184
strength	1/8" gage	<u>g/tex</u> 24.4 1.1	+.562 +.586	+.379 +:330 287	+.488	407	321 022 +.403	844	+,468	+.558	055	263	+.065	+.378 +.118 +.400	+.199 362 +.311	226 +.175 +.210
Fiber st	Zero	Mps1 87.6 4.0	+.522	+.362 +.033 285	+,488	403	467 101 532	426	+,463	+.590	013	328 401	+.223 +.315	+.459 +.110 +.474	+.295	230 +.220 +.251
	Micro- naire	Rdg. 4.03	320	358	285 287 +.430	+.318 +.262	+.475 +.397 451	+.237	597	543	062	+.554 +.675	024	530 +.296 292	108 +.591 377	067 +.236 +.183
ngth	50/2.5 unif.	Pct. 43.7 1.6	+.319	+.248 +.346	+.033 +.330 185	155 243	179 +.116 +.253	344	+.132	+.214 +.259	+.180 +.118	+.182 +.291	+.123 +.122	+.107 +.322 +.199	+.118 +.102 +.002	21 ⁴ +.177 +.218
Fiber length	2.5% span	1.14 1.04	+.373	+.248	+.362 +.379 085	105	593 209 +.619	346	+.843	+.838 +.811	+.512	538	+.262	+.556 +.019 +.511	+.186 297 +.268	591 +.380 +.501
	Staple	32d in. 35.7 1.2	+,562	+.770 +.315 497	+.600 +.586 373	298	656	438	+.812	+.871	+.269 +.526	521	+.158	+.67 ¹ 4 029 +.622	+.318 575 +.503	448 +.358 +.428
	Grade	Index 91.0 5.0	+.562	+.373 +.319 320	+.522 +.562 349	800 804	729 +.048 +.725	818	+.554	+.598 +.531	182	304	+.170 +.176	+.580 +.283 +.635	+.260 197 256	285 +.058 +.177
	Item	Sample Distribution: Mean. Standard deviation (±) Correlation Coef. for:	Grade	2.5% spannoches 50/2.5pct Mcronairereading Fiber strencth:	Zero gageMpsi 1/8" gagegrams/tex Blongation (1/8")pct Shirley Analyzer.	Visible Wastepct Total wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 29s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct Yarn Abbearance:	22s (27 tex)index 50s (12 tex)index Yarn imperfections:	22s (27 tex)No. 50s (12 tex)No. Color - 25s gray varn:	Reflectance Rd Yellowness +b Composite index	ReflectanceRd Yellowness+b Compositehd Color - 298 dyed warn.	ReflectanceRd Bluenessbc

1								-01									
l yarn	Com- posite	Index	105.2	+.177	+.501 +.218 +.183	+.251 +.210 +.184	+.038	315 +.447 +.384	240	+.456	+.500	+.543	112 +.014	+.141	+.289 +.476 +.442	+.470 141 +.372	+.952
22s dyed yarn	Blue- ness	۱۹	26.5	+.058	+.380 +.177 +.236	+.220 +.175 +.227	+.077	224 +.406 +.307	158	+.318	+.381	+.505	058	+.033	+.279 +.410 +.402	+.584	736
Color -	Reflect- ance	띪	27.3	285 448	591 214 067	230	011	+.355	+.277	579	576	502	+.176	311 249	243 476 404	230 +.001 148	736
ed yarn	Com- posite	Index	3.9	256	+.268 +.002 377	+.371 +.311 162	286	475 120 +.522	295	+.428	+.414	+.321	372	086	+.657 018 +.590	+.873	148 +.484 +.372
Color-22s bleached yarn	Yellow- ness	위	3.4	197	+.102 +.591	329 362 +.367	+.250	+.403 +.411 424	+.155	044	386	060	+.500	+.080	580 +.357 410	472	+.001 224 141
Color-2	Reflect-	踞	84.2	+.260	+.186 +.118 108	+.295 +.199 +.046	266	416 +.169 +.481	359	+.311	+.343	+.466	243 179	086 +.076	+.565 +.305 +.605	472	230 +.584 +.470
y yarn	Com- posite	Index	91.6	+.635	+.511 +.199 292	+.474 +.400 +.188	422	835 +.111 +.913	565	+.706	+.723	+.558	388	070	+.935	+.605 410 +.590	- 100t + 1005 + 1705
22s gray yarn	Yellow- ness	₽	10.8	+.283	+.019 +.322 +.296	+.110 +.118 018	151	138 +.810 +.214	348	+.137	+.154	+.339	+.113 +.261	+.051	+.405	+.305 +.357 018	476 +.410 +.476
Color -	Reflect-	뗾:	68.2	+.580 +.674	+.556 +.107 530	+.459	402	862 186 +.919	483	+.720	+.719	+.507	-,459	110	+.069	+.565	243 +.279 +.289
rfctns	Fine 50s	No.	16.4	+.176	+.340 +.122 239	+.315 +.368 240	216	144 +.103 +.182	219	+,405	+.377	092	409 436	+.622	+.161 +.135 +.218	+.076 126 +.109	249 +.033 +.137
Yarn imprfctns	Coarse 22s	No.	24.3 11.1	+.170	+.262 +.123 024	+.223	109	+.001 +.117 +.000	280	+.295	+.259	049	318	+.622	110 +.051 070	086 080 086	311 015 +.141
arance	Fine 50s	Index	77.1	264	372 +.291 +.675	401	+.166	+.402 +.287 356	+,112	500	473	226	+.748	059	464 +.261 348	179 +.500 378	+.001 +.016 +.014
Yarn appearance	Coarse 22s	Index	97.4	304	538 +.182 +.554	328 263 +.040	+.118	+.404 +.279366	+.247	634	565	211 465	+.748	318 409	459 +.113 388	243 +.409 372	+.176
Yarn elongation	Fine 50s	Pet.	5.0	+.226	+.767 +.118 280	+.109 +.151 +.309	+.029	523 +.024 +.576	297	+.730	+.732	+.781	465	+.147	+.513 +.158 +.524	+.357 159 +.306	+.508 +.606
Yarn elo	Coarse 22s	Pet.	6.8	182	+.512 +.180 062	013	011	534 +.183 +.564	325	+.515	+.504	+.781	211	049	+.507	+,466	502 +.505 +.543
ength	Fine 50s	Ibs.	43.1 7.8	+.531	+.811 +.259 549	+.472	232	693 210 +.739	-,436	+.912	÷	+.515	617	+.200	+.705 +.146 +.699	+.307 384 +.388	478 +.258 +.375
Yarn strength	Coarse 22s	Lbs.	115.3	+.598	+.838 +.214 543	+.590	319	736 114 +.807	570	4.904	+.888	+.504	565	+.259	+.719 +.154 +.723	+.343 386 +.414	576 +.381 +.500
	Item	C	Mean	Classification: Gradeindex Staple32d inches	1.06r Leugun: 2.5% spaninches 50/2.5pct Micronairereading	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct	CALOR OI raw stock: CraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds		22s (27 tex)index 50s (12 tex)index	22s (27 tex)No. 50s (12 tex)No. 60lor - 20s grant warn.		ReflectanceRd Yellownesstb Compositeth	ReflectanceRd Bluenessb Compositeindex

Table 12a--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on combed yarns from 38 long staple samples from selected gin points, crop of 1972

	J.S	508	No.	3.8 3.8		+.185	+.340 096	-,409	+.382 595 305	178	138 +.040 +.182	129	+,412	+.035	+.405	084 +.068	667	+.841
	Yarn imperfections	26	X	∞ m								ř	+	+	+ +	i i	11	÷
	Yarn	22s	No.	10.9		+.035 +.240	+.262	268	+.221 584 050	023 +.009	043 +.125 +.120	056	+.355	+.008	+.338	+.034 +.191	437	+.841
	appearance	50s	Index	88.9		453	372	+.746	460 +.188 +.345	+,438	+.463 +.286 470	+.407	59	+.088	650	088	+.813	+.428
Combed Yarn Values	Yarn app	228	Index	109.5		452 612	532	+.636	499 092 +.371	+.408 +.416	478 +.116 472	+.433	0.49	+.220	633	034	+.813	437 667
Combed	ngation	50s	Pet.	5.3 4.		+.346	+.670 +.130	298	+.172 +.564 +.320	035	616 001 +.650	374	+.704	615	+.687 +.697	+.728	353	+.191 +.068
	Yarn elongation	228	Pct.	6.6		+.068 +.240	+.377	070	064 092 +.430	+.166	367 +.128 +.410	110	4 -,414	346	+.358	+.728	+.034	+.034
<u> </u>	ength	508	Lbs.	49.6 5.9		+.624 +.878	+.843 +.192	536	+.627 +.564 257	323	7 ⁴ 3 128 +.811	538	+.908	049*-	+.974	+.334	919	+.334 +.391
	Yarn strength	228	Lbs.	132.6 1 2. 3		+.613 +.854	+.773	552	+.684 +.557 254	314	732 125 +.801	531	+.875	591	+.97h	+.358 +.687	633	+.338 +.405
	Comber		Pet.	16.34		339	756 426	₹0°+	139 257 026	+.049 +.117	+.451 +.138 475	320	659		591	346	+.220 +.088	+.008
Picker	& Card	Waste	Pet.	8.05		818 438	346	+.237	426 448 +.250	+.818 +.853	+.619 115 652		486	+.320	+.531 +.538	110	+.433	056
	Statistical Items		Sample Distribution:	MeanStandard deviation (±)	Correlation Coeff. for	Classification: Gradeindex Staple32d inches	2.5% spaninches 50/2.5 unifpct	Micronairereading	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Comber wastepct	22s (27 tex)pounds 50s (12 tex)pounds Combed vern ellometion		Combed yain appearance: 22s (27 tex)index 50s (12 tex)index	

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 57short staple samples, collected at triweekly intervals from selected gin points, crop of 1972 Table 13. -- Cotton:

						-83-									
	yarn	Dyed	Index 107 89 89 31.3 4.1 79 4.5	4.4 7.3 91 5.1	+ + 18 - 18 - 10 - 15	.22	+.13	+.13*	+76.59	+ + .4 4.32	.33	+.24 +.20 25	* * * * * * * * * * * * * * * * * * * *	+68.79	+ + + 17
	Color of 22s yarn	Bleached	Index 100 89 31.3 4.1 79 45	4.6 7.3 .91 .68 5.1	+ +	.30	+ 30	+.31*	+94.57	+ + + + + + + 39	.39	+.39	+.47	to.58+	+ .30 -2.13
	S	Gray	Index 91 89 31.3 4.1 79 45	7.6 7.3 .91 .68	4 + + + + + + 98 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ή8.	+.82	+.78	-34.01	+.80 +1.71 4.05	.85	+.81 +.39 24	. + + 86 - 16*	-41.13	+.89
		Spinning Potential	No. 46 89 31.3 4.1 79 45	4.3 7.3 68 5.1		29*		*90*+	-55.71	+3.14 3.22	29.	+.04	+.03*	-54.56	+3.11
	Yarn imperfections	Fine 22s	No. 29 89 31.3 4.1 79	12.5 7.3 .91 .68 5.1	51	.70	68	68	+174.23	-1.15 -1.37 8.86	.83	63	38 01*	+133.48	65 -17 -10.15 6 80
, a	Yarn impe	Coarse 8s	No. 47 89 31.3 4.1	20.7 7.3 .91 .68 5.1	69 78 47	02.	68	*60	+282.51	-1.90 -2.09 14.85	#8.	49	37	+212,14	-1.04
Dependent Variables	earance	Fine 22s	Index 116 89 31.3 4.1 79 45	10.7 7.3 .91 .68 5.1	+ + . 19	.53	+.51	+.51	+16.79	+27t +1.05 9.02	49.	+ + + + + + + + + + + 3	**55. +*05. +*47.	+44.85	+ + 4
Depend	Yarn appearance	Coarse 8s	Index 121 89 31.3 4.1 79 45	6.9 7.3 68 1.2	+ + + 53 + + 68 + + 15	.53	+.52	+.52	+71.17	+.50 +.19 5.88	.70	+.25	+.22*	+94.55	+ - 5 - 50 17.82
	elongation	Fine 22s	Pet. 6.4 89 31.3 4.1 79 45	.51 7.3 .91 .68 5.1	1. 1. 1. 1. 68 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	64.	+.23	+.21*	+5.65	03 + 14	.75	-11t +143 -65	+.32	+3.54	+ 1.18
	Yarn el	Coarse 8s	Pet. 7.5 89 31.3 4.1 79 45	64 7.3 .91 5.1	. +	.38	38	39	+7.96	. 59	99.	04 +.27 58	03* 66	+5.44	1 + 1
	strength	Fine 22s	108. 94 89 31.3 4.1 79	7.0 7.3 68 5.1	- 11 - 35 - 114 - 137 + 37	04.	+.38	+.39	+38.34	13 +2.14 4.61	.43	07 +.41 18	*08* +.42 20*	+32.34	+2.31 -1.49 -1.49
	Yarn skein strength	Coarse 8s	108. 308 89 31.3 4.1 79 45	15.6 7.3 .91 .68 5.1	23 - 31 - 34 - 36 - 36	.39	+.32	29* +.32*	+191.98	62 +5.46 14.34	. 48	*.10 *.38	11* +.37 34*	+160.29	+6.40 -7.89 13.66
	To to to	& card	6.8 6.8 89 31.3 4.1 79	1.27 7.3 .68 5.1	1 1 1 1 + 8 8 7 7 8 9 3 4 4 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	₹8.	83	81	+24.68	14	. 88	75 15 44	65	+22.45	11
	Statistical Items		Mean Values for: Dependent variable. Grade index. Staple length. Micronaire. Fiber strength (0 gage). Uniformity ratio.	Dependent variable. Grade index. Staple length Micronaire. Fiber strength (0 gage). Uniformity ratio	Grade index. Staple length Micronaire. Fiber strength (0 gage). Uniformity ratio.	DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH Multiple Cor. Coef.	Grade index	Grade index. Staple length	Constant (a) Regression Coef. for:	Crade index. Staple length. Standard error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MYRROWLEDE	Multiple Cor. Coef Partial Cor. Coef. for:	Grade index. Staple length. Micronaire. Beta Coefficients for	Crade index. Staple length. Micromaire. Regression Foustion.	Constant (a) Regression Coef. for:	Grade index. Staple length. Micronaire. Standard Error (z).

						Depend	Dependent Variable	les					
Statistical Items	Diokor	Yarn skein strength	strength	Yarn e	elongation	Yarn api	Yarn appearance		Yarn imperfections		Color	or of 22s yarn	ırn
	& card	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH	Pct.	Lbs.	Ibs.	Pet.	Pet.	Index	Index	№	No.	No.	Index	Index	Index
(O GAGE) Multiple Cor. Coef	88.	69•	.70	92.	.83	.73	99•	.85	.85	69.	.85	.51	.35
Grade index Staple length Micronaire Fiber str. (0 gage)	74 18 39	1 + 1 + 4 4 4 7 7 7 7 9 4 9 9 9 9 9 9 9 9 9 9 9	+ 57 +	+ + + . 22	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + 138 118	91			+ + .39 + .03 + .03	+ + + + +	+ + - + 42.22 42.44
Grade index. Staple length. Micronaire Fiber Str. (0 gage)	63 09* 11*	1+1+	50 +.52 +.41 +.63	+.04* +.16* 53	* * * * * * * * * * * * * * * * * * *	+.16* +.50 +.20	+.22* +.04* +.39	34 02* 53		**00. +.08 +.10. +.16*	+ .85 + .16* + .02*	+ 1.19* + 0.3* + 1.43*	+ + + + + + + + + + + + + + + + + + +
Constant (a)	+24.82	+68.53	-2.20	96.6+	46.97	+71.91	+21.41	+254.15	+171.20	-63.22	-42.44	+68.74	461.06
Crade index. Staple length Micronaire. Fiber str. (0 gage). Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH,	11.1.1.00	-1.04 -7.89 -12.05 -1.69 11.32	13.02 13.02 13.02 1.62 1.62	++11.0	. + . 1. 1.15 1.00 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	+ - 25 21.2.4 22.4.4 27.4	4 + 5 5 2 2 2 2 2 3 2 2 3 2 3 2 3 2 3 3 3 3 3	96 46 -16.28 51	-58 -9.04 -45 -145	3.23 3.14 3.16	+ .88 + .95 + .03 3 .93		+.11 -2.27 -2.27 +.13 +.15
(O GAGE), UNIFORMITY RATIO Multiple Cor. Coef	68.	٠74	.75	77.	48.	.73	99.	.85	.85	69.	.85	.52	04.
Grade index. Staple length. Micronaire. Fiber str. (0 gage) Uniformity ratio. Beta Coefficients for	+ 1 1 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 + 1 + 1 34 34 34 34 34 34 34 34 34 34 34 34 34	+ + + + + + + + + + + + + + + + + + + +		+ 1 - + 158	+ + + + + + + + + + + + + + + + + + +			1.15 1.15 1.15	. + ; + . . 18	+ + + + + + + + + + + + + + + + + + +	++-++	- + + + + + + + + + + + + + + + + + + +
Grade index Staple length Micronaire Fiber str. (0 gage) Uniformity ratio	+ 1 . 1 . 60 + 1 . 1 64 + 1 . 1 64	+	* 44 + + 4	++.07*	*20. *27. *1.60 *1.18*	+ 03* + . 20* + . 04*	. 23* 		**************************************		. + + . 85 - 16* - 108*	* * * * * * * * * * * * * * * * * * *	* 53. - + + + - 23. 37. 08. 08.
Constant (a)Regression Coef. for:	+19.23	-103.20	-50.80	46.95	+3.89	+63.54	+10.90	+ 185.39	+135.91	-65.27	-45.60	+55.96	+29.48
	10 51 54 04 +.13 58 * Statisti	1078 13 +7.97 +2.8 51 -12.94 -3.1 04 +1.36 +1.3 +1.3 +3.88 +1.1 .58 10.42 3.3	27 +2.88 -3.27 +.53 +1.10 3.34	10.++.1.5 11+ 1.0.0 1.4.	. +	+ + 1.16 + 2.07 + 2.07 + 1.27 + 2.07	8.4.+ 8.33 8.03	89 -16.66 65 65 10.90	- 55 - 9.23 - 55 - 55 - 55 - 50 - 50	3.16 3.16 3.16 3.16	4.1.1.4 1.00 1.00 1.00 1.00	3.14 3.02 3.4 3.94	+ 16 + 112 - 2.143 - 4.07 + .70 + .06

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 57 short staple samples, collected at triweekly intervals from selected gin points, crop of 1972

rable 14. -- Cotton:

-85-.97 +.50* 8.18 .37 +.33 *94.+ Dyed yarn -1.89 +1.74 4.12 +,17* Index 107 +106.22 +.29 -2.21 +1.59 +105.78 Color of 22s yarn Bleached -.22 +.55 -.87 3.62 Index 100 -. 21* 98.25 98.80 42.99 7.6 1.3 1.3 68 Index 91 82228 *00.--.80 8:-Gray yarn +.03* +108.30 Spinning Potential -.15* -.15 -.18 -.27 +.75 -.02 -.03* +48.06 +.18* -.05* -.10 -.37* -.03 +48.99 Yarn imperfections +.37* ÷.30 +.28 43.46 43.35 9.24 12.5 +3.21 -2.48 t.63 20.7 1.3 1.3 1.3 1.3 1.3 +.20* Coarse +3.56 45.18 15.13 *80.-+.20 -1.30 +3.25 -5.13 88 Dependent Variables -.25* 3.7 10.7 -.22 +133.37 -2.03 -2.57 9.06 -.17* Yarn appearance +136,48 Index 22s 116 -.3% -.10 *†0°+ -.68 +130.59 Coarse Index 121 +133,33 Yarn elongation +,08* +.20* -.05* +5.91 +5.64 Fine Coarse +,12* +6.80 +7.10 +.05 88 +.06 +.80 +.67 -1.73 +2.72 4.49 188.30 Yarn skein strength +.39 +.39 -88.00 Fine 22s *04.-15.6 1.3 1.3 68 3.7 +.34 +.71 -4.64 +8.64 13.67 +.60 +.41* -7.44 +7.29 +5.03 -287.24 +283.48 -.63 Coarse Picker & card waste +.13* 3.7 +.58 +.69 -·07* 44.02 +.66 +.13 -.78 +3.46 +.24 Dependent variable...... 2.5% span length.... Micronaire Micronaire.... Yellowness.... Yellowness.... 2.5% span length..... Yellowness.... Grayness.... Nonlint content (S.A.).... Dependent variable..... Grayness.... Yellowness Nonlint content (S.A.).... 2.5% span length..... Grayness Yellowness.... Nonlint content (S.A.).... Yellowness.... Yellowness.... Nonlint (S.A.).... Yellowness.... Standard Deviation (±) for: Grayness.... Yellowness.... Multiple Cor. Coef Grayness Multiple Cor. Coef Grayness.... Partial Cor. Coef. for: rayness.... Partial Cor. Coef. for: Nonlint (S.A.).... Regression Coef. for: Grayness.... Regression Coef. for: Grayness.... Micronaire.... Beta Coefficients for: Beta Coefficients for: Constant (a) Multiple Cor. Data for: DEPENDENT VARIABLE with DEPENDENT VARIABLE with Standard Error (±) GRAYNESS, YELLOWNESS, GRAYNESS, YELLOWNESS Regression Equation: Regression Equation: Statistical Items Nonlint (S.A.) NONLINT (S.A.) Mean Values for: Constant (a

						Depen	Dependent Variables							
Statistical Items	Picker	Yarn skein strength	strength	Yarn el	elongation	Yarn ar	Yarn appearance	Yarn impe	Yarn imperfections		ပ	Color of 22s yarn	yarn	
	& card waste	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed	
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN FANCYH	Pct.	Lbs.	<u>Ibs</u> .	Pet.	Pet.	Index	Index	No.	ᆁ	No.	Index	Index	Index	
Multiple Cor. Coef	.93	.65	69.	.53	.65	.62	.61	.81	.82	.80	.91	.59	.38	
Grayness Yellowness Nonlint (S.A.). 2.5% span length Reta Coefficients for	+.42 27 39	++++ +++53 ++++	40 +.162 +.15	22 +.50 +.11	- + + + 60 - 42.	+.04 01 47 12	+ · · · · · · · · · · · · · · · · · · ·	06 + +.16 07	+ .05 + .63 12		++++	44 +.47 16	36 	
Grayness Yellowness Wonlint (S.A.). 2.5% span length. Repression Enubtion:	+.32 *.18* +.74	+ + + + . 45 + + . 47*	+1.02 +1.02 +1.19*		44* +.07* +.97 +.21*	+.05* 02* 69	+.01* 12* 48* +.10*	07* +.17* +.71 05*	*90°- *60°+ *71°-	- 24* + 45 + 85 + 84	94 + . 05 + . 13 * . 13	74 +.76 22* 11*	66* +.16* 02*	
Constant (a)Regression Coef. for:	+8.92	+121.26	+15.06	+5.17	+3.00	+151.51	4,111,48	+19.03	+21.00	-37.42	484.67	+111.53	+107.91	
Grayness. Yellowness. Nonlint (S.A.) 2.5% span length Standard Error (‡). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN LENGTH, MICRONATRE	+ - + - 18 1.18 2.73 7.47	-7.05 +10.29 +5.76 +149.88 11.79	4.39 4.73 68.73 3.63	17 03 + . 41 + . 53 54 54	- 17 - 17 - 138 - 14 - 38 - 38	+.27 10 -3.75 -17.17 5.41	+.07 +.04 +.04 8.44 8.44	-1.07 +2.79 +11.53 -23.21 12.19	52 +.35 +7.52 -22.69 7.11	78 1.57 1.84 1.84 1.71 2.61	-5.34 +.38 +.27 +22.37 3.12	-2.56 +2.75 -2.80 -12.08 3.73	-2.20 +1.55 +5.57 -2.02 4.10	-86-
Multiple Cor. Coef	ま・	.65	.70	69.	.76	.73	99•	.86	.87	.80	.91	•59	.38	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length Micronaire. Beta Coefficients for:		. + + + + . 53 . 68 . 68	+ + + + + + + 159	01 22 +.18 +.17 +.17		1.17 1.15 1.18 1.18	. + . + + 90.11.98.	+ + 15	+.14	. 18 + . 37 21 + . 78	+	+ - + - 17 117 117 112	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire Regression Equation:	+,41 25* +.59 +.59 17		+1.08 +1.08 +.33* +.58 +1.18*	02* 31* 14* 68	13* 15* +.4.7* 62		* * * * * * * * * * * * * * * * * * *	* 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	+.15* +.44* 06*	* * * * * * * * * * * * * * * * * * *		1.69 1.73 1.29* 1.11*	*4.19 *4.19 *4.19 *4.03 *4.03	
Constant (a)Regression Coef. for:	+10.61	+110.98	+8.61	+8.31	+5.23	+121.91	+81.63	+88.02	+58.93	-36.78	+85.48	4114.49	+106.95	
Grayness. Yellowness. Nonlint (S.A.) 2.5% span length. Micronaire. Standard Error (±).	+.40 25 -5.05 -5.05 -35 -45	+.40 -7.59 -2.5 25 +10.70 +4.2 +.59 +6.65 +1.2 -5.05 +148.23 +67.7 35 +2.12 +1.3 45 11.76 3.5 Statistically insignificant	-2.54 44.25 41.29 467.70 41.33 3.58	10.1 21.1 41.1 40.0 54.	+ 4 20 20 33 33 83	-1.25 -1.18 -21.90 +6.09	-1.44 -1.52 -1.46 -1.917 -1.613 -1.913	42.41 4.04 -12.20 -14.15 10.48	+1.39 -1.66 -16.65 -7.77	1.15 1.19 1.89 1.81 1.13	-5.29 +.35 +.20 +22.50 17 3.12	-2.40 +2.63 -1.05 -11.61 -61	-2.25 +1.59 +65 -2.17 +2.20 4.10	
	2	במודה ליווסוב	Surrroallo											

Table 15.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 57 short staple samples, collected at triweekly intervals from selected gin points, crop of 1972

																-87	-																	
	yarn	Dyed	Index	107	4.1	23 L5	7.0	7.4	7.89	φ.	.57	12	80.1	+.15	i		.12	60	05	-10*		+118.33	-10.06	4.40		.12	60	05		*01	+.01+	+117.77	-10.23	4.63
	Color of 22s	Bleached	Index	100	.97 4.1	21 15	7.0	4.6	± %	φ.ς	.57	22	05	11.+	. T.		.22	21	+.02	*55*	30.	+122.45	-23.89	4.50		.23	19	88)	*00	*60	+130.70	-21.39	1,48
	ည	Gray	Index	91	4.1	21 45	7.0	7.6	9.89	ω,ς	.57	+.29	+.39	90	(T.		54٠	+.19	+.32	+,18*		+45.05	+32.28	6.84		.51	+.27	+.25	1 1	* * 5/4 +	31*	+91.43	+46.36	-2.72
		Spinning Potential	No.	94	.97	2J 15	7.0	£.4	± %.	φ.ς	.57	+.75	+.23	+ 03	-		•75	+2.74	02	92.+	70.	-28.05	+76.14	2.86		.78	+.72	+ +) (* 40.+	+.20*	-45.09	+25.4	+1.00
	Yarn imperfections	Fine 22s		29	4.1	21 15	7.0	12.5	÷ %	∞ د	.57	33	+.17	+ 103	?		.77	1.12	±77	*80	•	+106.73	-22.91	7.89		.78	13	73) •	*60	+.05+	+64.55	-26.61	+.71
les	Yarn impe	Coarse 8s	S	74	.9/ 4.1	27 45	7.0	20.7	÷ %.	φ.ς	.57	31	78 +.17	01	·		.78	60	•.76	*90	•	+170.00	-28.66	12.89		.78	10	72.+) i	07	*†0.+	+152,49	-33.97	+1.03
Dependent Variables	appearance	Fine 22s	Index	116	4.1	21 1,5	7.0	10.7	÷ %	φ,	75.	+.28	+.60	+.11	t •		.61	+.11	+.56	+.10*		+56.16	+23.79	8.46		.61	+.12	±. ₹	- d	+.11*	*†00	+64.01	+26.17	46 8.45
Depend	Yarn api	Coarse 8s	Index	121	, y,	21 45	7.0	6.9	5.89.	φ.ς	.57	+.08	 11	+.15	÷		69.	20	69*+	16*		+115.54	-25.24	5.00		.70	22	69.+		I'/* +. 75	*200+	+106,46	-27.99	+ 53
	elongation	Fine 22s	Pet.	4.9	4.1	21 45	7.0	15.	9.89	ر ش ر	75.	+.01	. + . 08	1.05			.72	+*34	72	+.27*	•	+5.67	+3.11	.35		.73	+.37	73		* 08° + - 8° -	13*	+6.95	+3.50	07
	Yarn el	Coarse 8s	Pet.	7.5	4.1	21 45	7.0	49.	÷ %	∞ ر	75.	03	62 +.07	• + 65 65			-65	+.24	65	+.20*		+7.25	42.99	 64.		99.	+.27	66 41.	- (+.23*	-,11*	+8.66	+3.42	08
	strength	Fine 22s	Lbs.	ま	4.1	12 12	7.0	5.0	¥.%.	∞ د	.57	+.27	14 +.52	+.37			•36	+.33	25	+.35*	:	+62.00	+40.57	4.69		.56	ф г. +	41.+		+.23*	+.46	+15.66	+26.50	+2.72 4.15
	Yarn skein strength	Coarse	Lbs.	308	4.1	27 42	7.0	15.6	÷.%	∞ ر	.57	60	31 +.48	%; + +	•		.37	+.22	36	+.22*		+267.25	+78.10	41.		45.	+.12	28 + .4°		*TT*	+.41	+138.53	+39.04	+7.55
	Dicker	& card	Pet.	6.8	4.1	21 45	7.0	1.27		φ, ς	.57	38	+.15	+ + + +			.70	23	±9°-	18*	. ,	+16.59	-5.20	71.17 19.		.70	23	61 +.09		*61	*4.00+	+14.83	-5.73	+.11
	Statistical Items		Mean Values for:	Dependent variable	K:7% span length	Fiber str. (1/8" gage)	Elongation (1/8" gage)	Dependent variable	Micronaire	Fiber str. (1/8" gage)	Elongation (1/8" gage)	2.5% span length	Micronaire Fiber str. (1/8" gage)	Uniformity ratio	Multiple Cor. Data for:	DEFENDENT VARIABLE With 2.5% SPAN IENGTH, MICRONAIRE	Multiple Cor. Coef	2.5% span length	Micromalre Beta Coefficients for:	2.5% span length	Regression Equation:	Constant (a)Regression Coef. for:	2.5% Span Length.	Standard Error (±)	DEFENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIBER STW (1/8", CACE)	Multiple Cor. Coef	2.5% span length	Micronaire Fiber str. (1/8" gage)	Beta Coefficients for:	Micronaire	Fiber str. (1/8" gage)	Constant (a)	2.5% span length	Fiber str. (1/8" gage). Standard Error (±)

						Depend	Dependent Variables	Les					
Statistical Items	Picker	Yarn skein strength	strength	Yarn el	elongation	Yarn appearance	earance	Yarn imperfections	rfections		Color	of 22s	yarn
	& card waste	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIBER STR. (1/8" GAGE), INTRORMITY RATIO	Pct.	<u>lbs</u> .	Lbs.	Pct.	Pct.	Index	Index	No.	 	No.	Index	Index	Index
Multiple Cor. Coef	.72	99.	.68	99.	t/7.	.70	.61	62.	.78	.78	.52	.26	.20
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio	23 63 +. 06 +. 19	+ + - 39 + - 39 + + 45	+ + +	+.27 65 14 +.05	+ .38	+ + .08 + .08 + .05	+.13 +.53 +.07	09 74 +.04 +.13	- 12 - 72 + + 06 + 08	4.4.4. 20.4.4.4.26	+.e7 a5 05	17 03 10 +.10	08 02 +.16
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio.	18* 64 +.04* +.14*	+ 1 - 19 + 1 - 35 - 34 - 39	+ 31* + - 39	+.23* 12* +.04*	+ + 14* + . 10*	17* +.74 +.06* +.04*	+ + 11. + + . 55. + 05*	***************************************	***************************************	+ + + + + + + 09*	+.27*	19* 03* 11* 10*	***************************************
Constant (a)	+8.98	-81.92	-54.19	47.79	+5.26	+97.85	444.22	464.02	+73.01	-58.45	+102.09	+114.411+	+93.72
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Standard Error (±). DEPENDEW VARIABLE with 2.5% SPAN LENGTH, MCRONAIRE FIBER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION	75.20 1.20 1.4.07 1.4.14	46.28 -8.16 -8.16 -29 -4.1.99 -7.11	+36.25 -1.58 -1.59 -1.59 3.70	4. 1. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	& 800 40 ± .	-27.35 +7.56 + .48 + .21 + .97	+27.65 +8.64 -5.8 + + 4.8 8.43 8.43	-29.39 -23.50 +.67 -1.41 12.76	-24.95 -13.66 +.58 7.84	+72.83 +.11 +.92 +.30 2.72	45.61 +2.81 -2.65 -1.26 6.47	-20.12 -1.19 +.39 4.45	-8. 1. 4. 4. 1. 1. 3. 3. 3. 3. 4. 3.
(1/8" GAGE) Multiple Cor. Coef	.72	29•	69.	.78	.83	.71	.68	.83	48.	.78	.52	•30	.21
E. 5% span length	- 24 57 		+ + + 33 142 142 147	+ . 20 55 06 + . 01 + . 56	+ 67 67 	+ + .04 + .04 + .07	+ + 23 + 33 - 13 - 10 - 37	- 19 - 19 - 113 - 114 - 114		+ + .71 + .06 + .12 + .12 + .09	+ + 58 1.19 1.32 1.04	41 90 11.13	
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage) Begrassion Engation	* * * * * * * * * * * * * * * * * * * *	+ .22* 42 + .32* 13*	1.4.35	+ 1.14 + .04 + .01 + .46	***************************************	***************************************	1.18 1.108 1.108 1.1.108	* * * * * * * * * * * * * * * * * * *	1.16* ++.10* +.36*	+.71 +.105* +.108* +.06*			
Constant (a)	69*4+	-58.28	-43.93	+4.21	+2.71	04,111+	+86.00	+18.86	+19.61+	-61.59	+110.51	+123.80	+98.26
2.5% span length Micronaire	84 90	79.75 -4.5.89 11.5.11 13.51	440.49 -2.20 -2.20 -2.14 -1.52 -1.52 3.62	2.08 4.1.4.4 5.003 4.503	40	+ + + + + + + + + + + + + + + + + + +	+44.06 +6.16 -1.28 +.69 -6.11	-59.00 -19.04 11.04 11.01 11.45	-45.96 -10.49 -1.48 -4.26 -4.82 -7.82	+71.53 + .98 + .29 + .47 47	+48.91 -2.32 -2.79 -2.79 -1.23 6.44	-16.4 -1.75 -1.37 -1.37	-6.59
	* Statist	Statistically insignificant	nificant										

-89-

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 340 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1972 Table 16. -- Cotton:

																	89-																			
	yarn	Dyed	Index	106	34.5	8t. 3	45	5.6	5.1	3.3	5.7	+ 57	- %·+	+.24	+.33		C	66.	+.53	+ 53	* 17.*+	+25.22	i i	+ .83	4.51		.59	+.50	+.15	7. I.C	+.51	+.10*	+23.52	+.55	4.79	1 1.8
	Color of 22s	Bleached	Index	102	34.3	£.48	45	4.2	5.1	 	5.7	+ 53	4.32	+.12 +.03	+.12		r.	3	+.48	+ h.8	+.17	+40.91		+ 33	3.48		.55	+.47	+.19	20.1	+,48	*50	+41.24	4.39	+ .78	3 47
	Col	Gray	1	۲8					5.1		5.7	+	₹.	+. t3.	†1°+		48	3	99:-	+ 68	*00:-	+19.18		88.	14.47		.68	99.+	+ 00.+	0:1	69.+	* 70	+19.83	+,81	+.01	1 1
		Spinning Potential	No.	₫8	34°-	F. 48	45	7.7	5.1	94.	5.7	+ 0 u	99.+	+ + 04	÷.		9	3	+9.4	*90"+	+.65	-126.63	-	+.09	5.73		.67	+.09	+ + + + + + + + + + + + + + + + + + +	•	+ + 07*	*90-	-125.18	+,11	+5.36	5.71
	Yarn imperfections	Fine 50s	읾	51.8	%±-	8. 48	45	7.6	5.1		5.7	1 20 70		1.65	- 48		37	· .	17	17	28	+114.68	Ĺ	-2.26	7.03		.70	₽0	 . 3	1	*.03*	19:-	+128.80	40°-	1.95	5.42
les	Yarn imp	Coarse 22s	왕	ଷ ଚ	%.45. €.43.	84.3	45	9.3	5.1	.53	1.6	78	29	62	- 42		18 T	•	18 23	-,18	23	+130.32	ć		8.79		99.	90	7.5	20.	.05*	58	+146.91	60	1.98	7,03
Dependent Variables	Yarn appearance	Fine 50s	Index	% &	34.3	r. † ₹	45	11.5	5.1	.4.	5.7	+ %	+ 15	+ + 57.	+.51		Ж		+ + . + .08	+.22	*80°+	+6.43	4		11.16		. 48	+.14	90°+ 10°+	U + -	**JO*+	+.42	-8.26	+.29	+.68	10.09
Depen	Yarn ap	Coarse 22s	Index	1 8	34.3	r. 48	145	12.9	5,1	.4.	5.7	+) 	+.45	+.40		06	•	+ + - 02 + - 02	+.29	**05*	+35.50	1	+ +	12.35		64.	+.20	- 00 + -	+	8.50	04.+	+19.58	64.4	- 05	11.27
	elongation	Fine 50s	Pet.	7.4	%. €.4.	£. 48	45	.55	5,1		5.7	+	+.25	32	02		00	•	+.17 +.19	+.17	+.20	93	4	+.12	.52		.50	+.27	† c+ + c+	4	+ + % %		2 ⁴	+.03	+ 13	148
	Yarn e	Coarse 22s	Pet.	۰. 8 و	34.3	8. 18	45	.55	5.1	3.3	5.7	+ 08	+.13	38	17		41.	į	4°.4	+*02*	+.12*	+3.31	5	±0.+	.55		∄.	+.15	+.15	ų t	+.15*	43	70.4+	+.02	+ 00	.50
	strength	Fine 50s	Lbs.	34	34.3	. 48 4.8	45	5.7	5.1	3.	1.6	4.36	÷.	02 +.57	+.36		99		+ + + 60	+,18*	+.58*	-104.18	4	. +	4.29		.68	+.26	+.61	27.	+ 50	15	-101.50	+.24	+3.66	4.21
	Yarn skein strength	Coarse 22s	Lbs.	^추 8	34.3	84.3	45	9.8	5.1	.3:	7.5	η _ς +	+	• • •	+.39		69	}	+.19 +.62	+,15	+.62	-146.62	4	4.56	7.21		.68	+.20	+ 63	3	91. + +	*90	-144.86	+,31	7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	7.19
	Diokov	& card	Pet.	6.1	34.3	84.3	45	.88	5.1	. 23	5.7	61	-35	 21	18		.63		56	55	18	+20.56	0.	-17	99.		99.	53			51	- 20	+21.09	60	16	.66
	Statistical Items		Mean Values for:	Dependent variable	Staple length	Fiber strength (O gage)	Uniformity ratio	Dependent variable	Grade index	Micronaire	Fiber strength (O gage) Uniformity ratio	Simple Correlation Coef. for:	Staple length	Micronalre Fiber strength (O gage)	Uniformity ratio	Multiple Cor. Data for: DEPENDENT VARIABLE with	Multiple Cor. Coef	Partial Cor. Coef. for:	Grade indexStaple length	Grade index	Staple length	Constant (a)	Regression Coef. for:	Staple length.	DEPENDENT VARIABLE with	GRADE INDEX, STAPLE LENGTH, MICRONAIRE	Multiple Cor. Coef	Grade index	Staple length	Beta Coefficients for:	Staple length	Micromaire	Constant (a)	Grade index	Staple length	Standard Error (*)

						Depen	Dependent Variables	les					
Statistical Items	Picker	Yarn skei	Yarn skein strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		Co	Color of 22s yarn	rarn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH	Pet.	Lbs.	Lbs.	Pct.	Pet.	Index	Index	No.	임	No.	Index	Index	Index
Multiple Cor. Coef.	99•	.80	.78	.65	.59	.53	.5 ⁴	99•		.68	69•	.58	09.
Grade index. Staple length Micronaire. Fiber str. (0 gage)	54 22 +.08	+ + · + + + + + + + + + + + + + + + + +	+++++++55	++.35		+ .18 + .35 + .24	+ - + 04 + . 35 + . 29			+.05 +.59 13	+.63	. + . + . . 03.5 . 21	+ + .51 + .18 10
Grade index Staple length. Micronaire. Fiber str. (0 ggg)	52 19 07*	+.04* +.47 19 +.49	* • • • • • • • • • • • • • • • • • • •	+ + .32 28 54	+.32 +.34 31	+.16 +.34 +.24	**************************************	04* 17 56 08*		+.04* +.60 10* +.14*	+.03* +.10*	+ + + + + 03*	+ + .52 + .16 + .12*
Constant (a)	+21.19	-127.19	-89.91	+3.61	70	+24.68	-2.53	+145.57	Ŧ	-121.47	+21.97	+38.48	+22.28
Grade index Staple length Micronaire. Fiber str. (0 gage). Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIBER STRENGTH,	6611.1.6	7.85 7.85 7.85 7.85 7.85	+ 4	+ + - 1 20 20 20 20 20 20 20 20 20 20 20 20 20		+ 42 -1-09 -49.60 10.95 10.95	+ • • • • • • • • • • • • • • • • • • •	07 -1.73 -11.48 13	03 	+ + + .06 - 1.17 - 1.77 - 5.63	+	+.43 -1.06 +.27 15 3.40	+ + + 1.1.51 1.51 4.4.55
(O GAGE), UNIFORMITY RATIO Multiple Cor. Coef	99•	.83	.81	99•	49.	.55	09•	99.	.71	.70	69•	.58	4.
Grade index. Staple length Micronaire. Fiber str. (0 gage) Uniformity ratio. Heta Caefficients for:	24 25 25 05		. + . 16 . 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	+ + + + 37	+++	+ . 19 + . 19 + . 19 1. 15	+ + + + + + 29				+ · · · · + · · · · · · · · · · · · · ·		+.54 +.15 01 17
Grade index. Staple length Micronaire. Fiber str. (0 gage) Uniformity ratio. Regression Fonation:		* + + + + + + + + + + + + + + + + + + +	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	++11+	+ + + + .34 + 45 + 5	+	+.11. +.20 +.21 +.31	04* 17 54 07*	**************************************	**************************************	**************************************		+.54 +.13* 01* 16
Constant (a)Regression Coef. for:	450.49	-170.34	-118.73	+1.94	-3.42	-11.50	-62.62	+153.41	+143.40		+16.88	+31.98	-5.45
Grade index Staple length Micronaire Fiber str. (0 gage) Uniformity retio. Standard Error (±).	09 19 146 146 +.01 +.03 * .66	09 +.12 +.12 19 +4.70 +2.62 46 -6.59 -5.07 01 +.74 +.38 03 -1.52 +1.30 66 5.52 +1.30 5.52 +1.30 5.53 +1.30 5.53 +1.30 5.54 +1.30 5.55 +1.30	+.12 +2.62 -5.07 +.38 +1.00 3.34 ignificant	+ + + 1 + + + + + + + + + + + + + + + +	40.+ 10.19 40 10.10 40	+ . 44 -1.32 +7.48 +7.44 +1.44 10.82	+ + + + + + + + + + + + + + + + + + +	-1.68 -11.02 -1.11 -1.11 -28 6.99	1.04 -1.66 -8.89 57 57	+.09 +.81 -3.41 +.12 +1.06 5.47	+.78 -1.11 +.09 +.18	+,43 +,102 -,102 +,23	+ + 59 + 1.79 1.10 1.27

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests on 317 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1972 Table 17. -- Cotton:

						Donoug	Denondent Meriahles							
47 (00) 440		Yarn skein strength	strength	Yarn el	elongation	Yarn api	appearance	Yarn impe	Yarn imperfections		9	Color of 22s y	yarn	
Describercal region	Picker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed	
Mean Values for:	Pet.	Lbs.	.sq:	Pet.	Pet.	Index	Index		읾	No.	Index	Index	Index	
Dependent variable	6.1	104	37	6.2	4.7	111	98	20	15	49	91	102	106	
Grayness	നന	നന	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	m	
Nonlint content (S.A.)	0.6	0.0	0,0	0.0	0.6	0.0	0.0	0,0	0°0	0°	0.6	o. v. e.	3.0	
2.5% span length	1.08 4.3	1.08 4.3	L.08	1.0g	1.08 4.3	1.08	1.08	1.08	1.08	1.08	1.08	1.08	4.3	
Standard Deviation (±) for:	a	0	ı	·	·		, L		ı)				
Grayness	1.0	0.0	1.0	رد. 1	رد. 1	12.9	1.0	1.0	1.0	7.7	0.01	4.1 0.0	9.0	
Yellowness	<u>~</u> «	∵ ∝	r. «	Ŀα	۲. «	<u>-</u> α	<u>-</u> α	- α	- α	L- a	2.	L-0	2.	
2.5% span length	す.	. ₹.	. ₹.	ਰ <u>ੇ</u>	. さ.	. ₹.	す。	o. 3.	o đ	o. 40.	o. 75.	∘ ₹	∘.40.	
Micronaire	94.	94.	94.	94.	94.	94.	94.	94.	94.	94.	3.	94.	94.	
Grayness	+.37	-,41	-39	29	.38	40	03	+.15	+,12	35	4Z	57	09	
Nonlint content (S.A.)	92.+		09	크. + .	 구우	20. + -	÷.0	+ + -15	†1.+ • +	13	+.27	+.07	62°+	
2.5% span length	29	19.+	+.61	+.27	+.34	+ · · ·	90.+	16	-19	+ 65	+ 12	98.	+ 53	
Multiple Cor. Data for:	÷0	99.	20	05.1	35	4.4	4.40	20	۲۰۰۰	+0.+	+•13	+, 12	+.24	
DEFENDENT VARIABLE with GRAYNESS, YELLOWNESS														-9
Multiple Cor. Coef	•38	.43	14.	.30	.41	η0.	20.	.21	.19	.38	.78	.58	99.	91-
Grayness	+.37	-,41	04	+ - 28	38	₹0°-	02	+.15	+.13	36	92	57	61	
Beta Coefficients for:	2			•	}	-	3		(T.	O ∓ .	9.30	÷	4.33	
GraynessYellowness	+.37	-,47	40	28 +.10*	38 +.14	*70.+	*30.+	+.15*	+.13*	36	t2.+	+.05*	+.27	
Constant (a)	+5.53	+119.53	+45.38	+6.36	4.9	+111.52	484.09	+10.09	+8.03	+75.26	+96.25	+107.52	+107.70+	
Grayness	+*35	-3.96	-2.22	15	8	-,45	.28	+1.41	† +	-2.68	45.4-	क्ट द	13.00	
Yellowness Standard Error (±)	09 82	8.88	5.23	+.08 .53	1.11	+.37	+1.05	+2.17 9.12	41.66	7.10	3.75	3.41	4.22	
GRAYNESS, YELLOWNESS,														
Multiple Cor. Coef	92.	.43	.41	.31	.43	60.	20.	54.	44.	04.	.80	.58	99.	
Grayness.	+.15	+.38	38	-30	04	00*-	03	01	03	29	LL	55	09	
Yellowness Nonlint (S.A.)	+.72	01	+.03	+.09	+.16 +.14	+.01	+.05	+.20	+.19	17	+.38	90.+	+.34	
Grayness	+.10	-,41	41	32	43	*00	*03*	*10	*03*	30	- 80	- 58	09	
Yellowness	02*	14 01*	10*	+,10*	+,15*	+*01* -*00*	*10°+	+.18	+-17	15*	+.25	+.05*	+.27 +.04*	
Constant (a)	+3.75	+119.81	+444.87	+6.22	44.69	+114.72	+83.77	-1.23	%	+78.39	+93.46	+107.38	+107.07	
Trayness	+ - 03	-3.92 -2.04	-2.29	+.09	+ - 123	+.27	1.06	+2.52	- t- 5	-2.28	14.70	-2. 36 +.31	-3.30 +2.24	
	.57	8.88	5.23	53	+ 0.00	-L-35	+.13	44.70	+3.00	-1.32 7.00	71.18	+.06 درا د	+.28	

Fig. 189		Picker & card waste	Yarn skein strength Coarse Fine 22s 50s	r strength Fine 50s	Yarn elc Coarse 22s	Yarn elongation arse Fine 22s 50s	Depend Yarn app Coarse 22s	Dependent Variables Yarn appearance oarse Fine 22s 50s		Yarn imperfections Coarse Fine 22s 50s	Spinning Potential	Gray	Color of 22s Bleached	yarn Dyed yarn
1. 1. 1. 1. 1. 1. 1. 1.	Pet.		Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index
1.	.78		99.	99*	04.	.53	11.	.10	54.	44.	89•	8.	09.	.68
1. 1. 1. 1. 1. 1. 1. 1.	+.09 12 +.72 24		+.05 +.06 +.55	23 +.10 +.56	20 +.20 +.12 +.27	+ + + + 18 + 18 + 35	+ + - + - 08 - 06	+ + + + 00.29 0.29 0.39	02 + +.17 04	06 +.15 09	+.05 10 +.60	- + + + + +	- 46 + 13 + 22 + 22	5. + + + + . 239
4 +1.16 -1.50 +88.35 +91.26 +11.10 +21.36 -71.14 +92.90 +81.15 7 -1.16 +2.21 +0.16 +0.13 -1.06 44.73 +7.10 -2.09 +81.15 8 +1.16 +2.16 +1.57 +2.34 +1.61 +1.48 +2.23 +7.00 8 +1.16 +2.16 +2.16 +1.61 +1.48 +2.23 +7.00 8 +1.16 +2.16 +2.16 +2.16 +2.14 +2.23 +7.01 1 +1.17 +2.25 +2.24 +1.61 +1.48 +2.23 +7.01 1 +1.17 +2.25 +2.21 +2.71 +2.23 +3.73 +3.73 1 +2.24 +2.25 +2.27 +2.25 +2.24 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16 +1.16	+.06* 08* +.70 17		23 +.04* +.05* +.55	21 +.08* +.09* +.57	22 +.19 +.12*	29 +.26 +.17 +.35	**************************************	* * * * * * * * * * * * * * * * * * *	02* +.17 +.43 04*	06* +.14* +.41 09*	+ +	80 +.25 +.17	51 +.11.* +.03.*	- 54 + + + .33 + .19
6 -12 -12 -13 -13 -1.06 -4.70 -2.09 7 +16 <td>+8.50</td> <td></td> <td>-55.18</td> <td>-60.84</td> <td>+1.16</td> <td>-1.50</td> <td>+88.35</td> <td>+51.26</td> <td>+11.10</td> <td>+21.38</td> <td>-71.14</td> <td>+92.90</td> <td>+81.15</td> <td>+73.22</td>	+8.50		-55.18	-60.84	+1.16	-1.50	+88.35	+51.26	+11.10	+21.38	-71.14	+92.90	+81.15	+73.22
3 19 28 02 04 +.02 02 04 +.02 02 16 76 19 16 +.29 +.29 +.06 +.36 +.13 +.19 10 02 04 +.02 02 06 +.26 +.26 +.26 +.13 +.19 +.13 +.10 +.03 +.18 +.29 +.27 +.26 +.	+ .06 -1.00 -4.08 -55		-2.18 +.57 +.56 +149.10 7.41	-1.17 +.69 +.62 +89.92 4.31	1. + + + 4 2.30 2.30 2.30		+.23 +.67 -1.25 +22.47 12.85	+.01 +1.55 +.26 +27.69 11.45	18 +2.34 +4.73 -10.51 8.32	- 43 +1.61 +3.71 -19.08 6.77	-1.06 +.48 74 +128.01 5.63	12.23 42.23 11.18 1.447 3.63	-2.09 + 7.0 +22.34 3.33	-2.94 +2.75 + .41 +28.79 +.09
1.19 28 02 04 +.02 02 +.06 +.36 +.36 +.36 +.36 +.01 +.07 +.25 +.25 +.22 +.06 +.36 +.03 +.07 +.25 +.25 +.25 +.06 +.36 +.13 +.06 +.07 +.25 +.25 +.06 +.26 +.06 +.26 +.06 +.26 +.06 +.06 +.06 +.06 +.06 +.06 +.06 +.20 +.20 +.06 +.20	62.		99.	99.	.58	49.	94.	64.	69.	.71	89.	.81	.61	.71
9* 27 02* 04* +.02* 02* 01* +.02* 02* 02* 02* 02* +.18 +.02* +.18 +.02* +.18 +.02* +.21 +.01* +.11* 7* 03* +.05* +.06* +.20 +.22 08* +.21 +.05* 8 +.31 +.38 +.07* +.05* 08* +.21 +.05* 8 +.31 +.47 +.51 55 08* +.19 +.07* 8 +.34 +.47 +.51 55 59 06* +.19 +.07* 3 +.24 +.47 +.483 +52.25 +56.79 -67.28 +86.81 +78.84 +.67* 2 10 11 +.18 12 -1.03 +1.78.84 +.68.81 +78.84	+ .10 + .69 23			23 +.11 +.08 +.57 10	1.19 1.03 1.4.1.4.1.9	28 2 + + 24 24 24 24	+ + + + + + + + + + + + + + + + + + + +		+ + + 25 - 25 - 29 - 29	. + +	1.4.1.6	+ +	+++++	
3 +3.12 +1.15 +39.79 +4,83 +52.25 +56.79 -67.28 +86.81 +78.84 2 +.13 +.21 -,41 +,18 -,12 -1,03 -4,76 -2.11 4 02 +.13 +2.52 +2.73 +1.94 +51 +2.18 +68 4 02 +.03 +1.11 +2.52 +2.73 +1.94 +51 +2.18 +68 3 +4.78 +5.66 +10.52 +1.16.26 39 -10.37 +128.95 -1.03 +2.77 4 54 45 +13.31 +12.73 -11.27 -9.69 -1.05 +1.67 +63 94 45 -1.33 +12.73 -11.27 -9.69 -1.05 +1.67 +63 45 45 -1.33 -10.05 6.75 5.32 5.61 3.56 3.32	+.07* 07* +.67 16				+	. + + + +	02* +.01* +.07* +.03*	04* +.06* +.18 +.05* +.51	+.02* +.20 +.25 00*		1.05* 1.05* 1.06*	81 +.24 +.21 +.21 +.21 +.13	- + + + + + 1.05 * + 1.05 * + .005 * + .005 * + .007 * .007 *	55 +.32 +.13* +.17
210142141 +.1812 -1.03 -4.76 -2.11 4 1.8 +.23 +.20 +1.11 +2.73 +1.94 +.51 +2.18 +.68 402 +.03 +1.11 +2.73 +1.9993 +1.48 +.27 3 +4.78 +5.66 +10.52 +16.2639 -10.37 +128.95 -1.03 +21.77 55445 +13.31 +12.73 -11.27 -9.69 -1.05 +1.67 +.63 64545 11.50 10.05 6.75 5.32 5.61 3.56	+9.26		-55.50	-57.13	+3.12	+.15	+39.79	+4.83	+52.25	+56.79	-67.28	+86.81	+78.87+	00.49+
	+.06 10 +.70 -3.89 21 .54 Statistic		-2.18 +.57 +.58 +149.02 +.09 7.41 ally insigni	-1.13 +.72 +.44 +90.83 -1.02 4.29 ificant	01 4.18 4.78 1.54	11.++23 25.66 24.03	+.20 +.20 +1.11 +10.52 +13.31 11.50	41 +1.11 +2.52 +16.26 +12.73 10.05	+.18 +2.73 +2.73 39 -11.27 6.75	12 +1.94 +1.99 -10.37 -9.69 5.32	-1.03 +.51 +28.95 -1.05 5.61	4.76 4.12.18 1.1.19 1.67 3.56	-2.11 +.68 +.27 +21.77 +63 3.32	23.03 4.26.52 4.86.52 3.94 3.94

Results of multiple correlation analyses for the relationship of selected fiber test measurement with processing tests performed on 317 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1972 Table 18. -- Cotton:

						-93-									
	yarn	Dyed	Index 106 1.08 1.3 23 4.5 6.8	5.6 .04 .46 .1.8 .1.6	+++++	.32	+ + 53	+.22	+59.13	+32.30 +2.71 5.27	.35	+.12	+.13*	+61.77	+19.92 +2.45 +.52 5.21
	Color of 22s	Bleached	Index 102 1.08 4.3 23 4.5 6.8	40	+ + + + + + + + 20	38	60.++	+ + 30	+62.42	+33.74 +.80 3.96	.32	+ + + 000.	+ + + * 00 * * 00 * * 00	+63.19	+30.15 +.73 +.15 3.95
	CO	Gray	Index 91 1.08 4.3 23 4.5 6.8	6.0 40 1.8 1.8 1.6	+,12 +,13 +,30 +,14 +,01	.17	+.11	+.11*	+64.58	+18.02 +1.63 5.92	.31	+.09	0¼* +.07* +.30	+69.73	-6.17 +1.13 +1.01 5.71
		Spinning Potential	No. 64 1.08 4.3 4.5 6.8	7.7	++.65	.65	+.65	+.65	-83.48	+137.52	.73	+.51	+,46	-74.93	+97.42 -1.18 +1.68 5.22
	Yarn imperfections	Fine 50s	No. 15.08 1.08 1.08 1.53 6.8	7.6. 40	- 1.05 - 1.05 - 1.08	.67	17	13	+90.10	-27.61 -10.57 5.64	.67	64	08* 63	+87.80	-16.80 -10.35 45 5.60
les	Yarn impe	Coarse 22s	00 00 1 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.3 40. 10. 1.8 1.6	1. 1. 62 1. 1. 4. 21 1. 4. 21 1. 4. 21	.63	13	11*	+102.27	-26.92 -12.50 7.25	.63	61	**90.1	+100.76	-19.83 -12.35 30 7.23
Dependent Variables	appearance	Fine 50s	Index 86 1.08 4.3 23 4.5 6.8	11.5 404 1.6 1.8		94.	- 1.05 + + 1.46	**************************************	+31.98	+4.76 +11.50 10.23	.50	+ + + + + 21	+ + . 43 + . 22	+39.02	-28.29 +10.82 +1.38 10.01
Deper	Yarn ap	Coarse 22s	Index 111 1.08 4.3 23 4.5 6.8	12.9 40. 1.6 1.8	+ + + + + 1.06 1.4.5.1	54.	+.02	+.02*	+48.92	+7.39 +12.73 11.53	84.	06 +.43 +.16	+.43	+55.08	-21.53 +12.14 +1.21 11.38
	elongation	Fine 50s	Pet. 1.08 1.08 4.3 23 45 6.8		+ .34 17 02 + .59	64.	+.39	+.37	+.50	+5.55 42 .48	64.	+.38	+.34	+.59	+5.14 43 +.02
	Yarn e	Coarse 22s	Pet. 6.2 1.08 4.3 23 45 6.8	. 55 . 004 . 46 . 18 1. 6	+ .27	64.	+.33	+.31	+3.21	44.70 94	.51	+.36	+.39	+2.96	+5.87 47 05 .48
	Yarn skein strength	Fine 50s	1.08 1.08 4.3 23 4.5 6.8	5.7 40. 1.8 1.8 1.6	+ +	.61	+.61	+.61	-62.57	+96.25 -1.02 4.53	.87	+.42	+.26 17 +.72	-50.91	+41.50 -2.14 +2.29 2.85
	Yarn skei	Coarse 22s	104 1.08 1.08 4.3 4.5 6.8	9.8	. + + +	.61	+.61	+.61	-73.71	+163.60 +.12 7.81	88	+.41	+.24 09 +.75	-52.88	+65.82 -1.89 +4.10 4.64
	Picker	& card waste	Pet. 6.1 1.08 4.3 23 4.5 6.8		- 29 - 34 - 24 - 18	٤4٠	27	25	+15.41	-6.16 62 .80	.43	08.00	21	+15.20	-5.19 60 04 .79
	Statistical Items		Mean Values for: Dependent variable. 2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage).	Dependent variable. 2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Simple Correlation Coef. for:	Affective and the second structure of the second se	DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE MULTIPLE COT. Coef	2.5% span length Micronaire Beta Coefficients for:	2.5% span length Micronaire Regression Equation:	Constant (a)Regression Coef. for:	2.5% span length Micronaire Standard Error (±) DEPENDEN VARABLE with 2.5% SPAN LENGTH MICROMAIRE	FIBER STR. (1/8" GAGE) Multiple Cor. Coef	2.5% span length	2.5% span length. Microraire. Fiber str. (1/8" gage). Berrassion Fonstion	Constart (a)	2.5% span length. Micronaire. Fiber str. (1/8" gage). Standard Error (+)

						Depen	Dependent Variables	les					
Statistical Items	Diolog	Yarn skei	Yarn skein strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn impe	Yarn imperfections		Co	Color of 22s yarn	rarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE).	Pct.	<u>lbs</u> .	Lbs.	Pet.	Pet.	Index	Index	N	N	.cN	Index	Index	Index
UNIFORMITY RATIO Multiple Cor. Coef	ᡮ.	8.	- 89	.51	.51	.50	• 56	†9 .	89•	92.	.31	.32	04.
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Bata Capffidents for	- 21 - 30 - 05 - 05	+47	+ - + + + + + + + + + + + + + + + + + +	+ - 1 + + .09	+.29 41 01	09 +.31 +.10	- 14 + 26 + 30	06 52 03 10	06 53 17	+ + + + + + + + + + + + + + + + + + + +	. + + . 	+ + + + 0.05 0.4	+ + + + 20 88 88
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio. Regression Foustion:	23 34 10* +.06*	+ - + + + + + + + + + + + + + + + + + +		+ .36 43 + .19 + .10*	+46 + .01*	+ + + + 13* + 11* + 18*	14* +.26 +.10* +.33	* 06*	05* 05* 16	+ 4.47 - 19 + 31 + 24	03* 31 02*	+ + + + + + + + + + + + + + + + + + +	**************************************
Constant (a)Regression Coef. for:	+14.57	-102.39	-83.07	+2.38	81	+24.91	-15.03	+112.30	+103.58	-111.59	+71.26	+60.73	+43.56
E.5% span length. Micronaire Fiber str. (1/8" gage). Uniformity ratio. Standard Error (±). DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE). UNIFORMITY RATIO, ELONGATION (1/8" CACE).	-5.48 05 79	+72.03 -4.37 +3.67 +2.41 +2.27	4.5.70 -3.75 -2.02 -4.91 2.60	+ 1.55 1.06 1.03 1.48	1.57 1.55 1.00 1.00 1.00	-33. 49.64 4.11 11.13 11.23	47.44.74 46.65 4.66 4.59 9.54	-14.70 -11.36 -13 57 7.20	-10.76 -9.05 23 74 5.52	+99.63 -3.16 +1.34 +1.13 5.02	-5.50 +1.26 +1.04 07 5.71	+29.07 +.52 +.11 +.12 3.95	+13.70 +1.01 +.27 +.82 5.11
Multiple Cor. Coef	54.	8.	.89	.77	.73	.52	09.	49.	69.	.77	•33	.38	74.
E.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Beta Coefficients for:		14. + + + + + + + + + + + + + + + + + + +	4	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +		₹₹888 ••••••			3		+ + + + + + + + + + + 06	- + + + + 22.03
2.5% span length Micronaire Fiber Str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Regression Equation:	17* 35 14* 13*	+ + + + + + + + + + + + + + + + + + +	+ + .30 45 04*	+.08* +.02* +.18 +.18	+ + + + + + + + + + + + + + + + + + +		. + + +	**************************************	*.01* 56 08* 17	+ .41 17 + .37 + .26		+ + + + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * *
or:	+14.94	-102.90	-81.99	+1.27	-1.89	+32.65	-5.47	+114.25	+105.96	-117.05	+68.83	+57.70	+38.24
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Standard Error (±).	-4.12 68 07 +.02 12 12 Statist	.12 +70.79 +48.35 .68 -4.34 -3.81 .07 +3.69 +1.97 .02 +1.42 +.89 .12 +1.226 .79 4.2726 .75 4.2726 .75 4.2726 .75 4.2726 .75 4.2726 .75 4.2726 .75 4.2726 .75 4.2726 .75 4.2726	+48.35 -3.81 +1.97 + + 89 -1.89	+1.15 -4.1 +.0.1 +.39 -36	+ + + + + + + + + + + + + + + + + + + +	-5.99 +9.00 +1.25 -2.52	-12.25 +5.90 +1.17 +2.16 -3.00	-7.60 -11.53 23 61 65	-2.34 -9.25 36 77 5.48	485.26 -2.81 +1.57 +1.23 +1.41 +.88	-14.31 +1.47 +1.17 02 +.80 5.67	+18.06 +.77 +.28 +.19 +1.00 3.86	4.72 +1.43 +.55 +1.69
			SHILLING										

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 38 long staple samples, carded yarns, collected at triweekly intervals from selected gin points, crop of 1972 Table 19. -- Cotton:

						Deper	Dependent Variables	les					
Statistical Items	Diolog	Yarn skei	Yarn skein strength	Yarn e	Yarn elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		Col	Color of 22s yarn	arn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
Mean Values for:	Pct.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index
Dependent variable	8.1	115	43	8.9	5.0	76	77	₹ 5	918	92	87.5	102	105
Staple length	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7
Micronaire	0.40	0.40	0.4	7 0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
fiber strength (0 gage) Uniformity ratio	8 🕏	8 7	8∄	84	84	8∄	90 11	8 7	8 7	88 14	84	84	84
Standard Deviation (#) for		0	0	č	-	1	c	;	ı		-		1
Grade index	2.00	5.0	5.0	5.0	5.0	10.3	0.0	5.0	v v v o	11.1 5.0	ۍ ٥. ٥	n n	n n
Staple length	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
Fiber strength (O gage)	. 4 0, 0.	4.00	4.0	4.00	 	4.00	4.00	.50	4.50	4.50	4.00	4.0	.50
Uniformity ratio	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Grade index.	82	4.60	+.53	+.18	+.23	30	26	+.17	+,18	+.55	+.63	+.26	+.18
Micronaire	† †) 1.54	55	90.	28	+.55	+ .68	+ To	4 4	1.60	+.62	. + 3,8%	+ +
Fiber strength (O gage)	43	+.59	+.47	01	1.1.		04	+.22	+.31	94.+	+.47	+.37	+.25
Multiple Cor. Data for: DEPENDENT VARIABLE with	‡.	†• ZT	0Z.+	0T.+	•	OT.+	£	ZT*+	. T.	+• T3	02°+	90°+	+
GRADE INDEX, STAPLE LENGTH													-95
Multiple Cor. Coef	.82	. 88	-88	.27	.53	.52	84.	•19	.32	.82	.71	.50	-
Grade indexStaple length	+.05	+.27 +.81	+.15	+.04	10	02 44	+.01	+.10 +.08	01	+.20	+ .+ .+ .+ .+ .+ .+ .+ .+ .+ .+ .+ .+ .+	+.45	60 -+
Seta Coefficients for:	84	+,16*	+,11*	+.05*	*01-	**05-	+01*	+.12	**01*	+,14*	+-,42*	* 40-	*60
Staple length	+.03*	+.78	+.76	+.24*	+.58	51	*67	+00	+.33*	+.73	+.39*	+.52	+ .4
Constant (a)	+22.30	-201.08	-152.18	+3.43	-1.89	+262.00	+222,41	-31.17	-41.65	-200.74	+2.61	+41.16	+33.92
Regression Coef. for:	-,17	+ 38	+ 17	+	5	00	+	yo +	5	+	4	S	C
Staple length Standard Error (±). DEPENDENT VARIABLE with	+.03	+7.91	45.05	+.07	+.21	8.81	-4.13 8.62	10.95	+1.65 5.58	6.33	41.52 3.22	+1.78 3.41	+2.26 4.93
GRADE INDEX, STAPLE LENGTH MICROWAIRE													
Multiple Cor. Coef	.82	-89	ħ8°	.28	.53	.62	.70	.20	.33	.85	.72	.53	.63
Grade index	77	+.26	+.14	40.+	10	+.01	+.05	+.10	+ .01	+ +	14°+	+ 27	07 + F.7
Micronaire	03	25	28	60°+	- 03	04.+	+.57	4.07	10	- 38	11	17	+ 20
Grade index	†8 +	+,15*	+,10*	+*02*	*01	+.01*	+.05*	+,12*	*10-	+.13*	+,41*	*-05*	*90
Micronaire	***************************************	14*	-19*	*01.+	**20	+.33%	+.59	+• T3* +•08*	+.20*	+.62*	*.80	+.44*	+ + 52
Regression Equation: Constant (a)	+22.74	-163.25	-118.44	+2.65	-1.59	+167.63	+89.04	-51.77	-27.01	+136.08	+12,02	+56.96	-32.74
Regression Coef. for:	7.5	,	L r		: 6		(
Staple length	+ .02 02	+ 7.26 - 7.26	74.44	98.5	i 4.	10.4 + .01	+.09	+ 5.5.7	- 05 - 17 - 17 - 17	+ + + + + + + + + + + + + + +	+1+36	+1.51	+3.39
Standard Error (±).	.57	5.39	4.28	.33	.36	8.08	7.05	10.93	5.56	-5.55 5.86	3.20	-1.36 3.36	4.26

						Deper	Dependent Variables	les					
Statistical Items	D: 010	Yarn skein	n strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		Ço.	Color of 22s yarn	yarn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH	Pct.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	.82	.89	48.	.38	.59	-62	.72	,2 ⁴	.37	.85	.72	.54	.63
Grade index Staple length Micronaire. Fiber str. (0 gage)	7.76 40.4 50.1 20.3	+ + - + - +	+ + + 1.1 288 1.065	+ + + 31 - + - 131 26	1 + 1 - 29	4 1 + 1	+.12 09 +.60 27	+ + + + + .03 + .13		+ . 21 + . 64 37 09	++.4.30	+08 +19 + .13	+ + .54 55 03
Grade index. Staple length. Micronaire. Fiber str. (O gage).	**************************************	+ +	+ + .11* + .69 18*	+,17*	***************************************	***************************************	+.11.* 10.* +.60 25*	+.08* +.04* +.07*	07* +.17* 12* +.22*	* + + . 14 * . 65 *	+.40* +.32* 09* +.05*	+.15* +.15*	05* +.74 +.53 04*
Constant (a)	+22.76	-164.25	-118.04	+2.80	-1.41	+168.49	+93.37	-54.30	-28.76	-135.35	411.76	+56.16	-32.51
Grade index Staple length Micronaire Fiber str. (0 gage) Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE IENGTH, MICRONAIRE, FIBER STRENGTH, (0 GAGE). INTERPRETTO	1.04	+ + + - 3.46 -3.46 -3.40 -3.53	+ 17 +4,62 -2,84 - 08 1,27		+	# + + + + + + + + + + + + + + + + + + +	+ .21 +11.85 62 6.79	+ + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + +	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.26 -1.45 -1.45 3.33	. t. t
Multiple Cor. Coef	.83	-89	48.	.38	09.	99•	th7.	.25	24.	.85	.72	45.	69.
Grade index Staple length Micronaire Fiber str. (O gage) Uniformity ratio. Beta Coefficients for:	+ + 1.15 + 1.13 - 1.11	+ + - + + + + + + + + + + + + + + + + +	+ + · + · · · · · · · · · · · · · · · ·	+ + + + 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	+ + + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.4.4.	+ 1 + 1 + 1 + 19	2000 0000 0000 0000 0000 0000 0000 000	1.14 1.23 1.25 1.25		44.14.	. + . +	
Grade index. Staple length Micronaire Fiber str. (O gage). Uniformity ratio. Regression Equation:	109*	1.12* + + + + + + + + + + + + + + + + + +	+.05* +.57 30* +.02*	* 17* 1.51* 1.36* 1.09*	* * * * * * * * * * * * * * * * * * *	**************************************	+ + + 0 + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	+.17* +.70 19* 09*	* * * * * * * * * * * * * * * * * * * *	**************************************	+11.04 +12.04 +182 +182 +120*
Constant (a).	+23.28	-164.65	-121.56	45.89	-1.15	+159.63	+87.71	-58.35	-33.65	-133.24	+11.73	+56.87	-26.34
Grade index. Staple length. Micromaire. Fiber str. (0 gage). Uniformity ratio. Standard Error (±).	15 +.14 +.23 02 12 .56 * Statisti	+.15 +.29 +.07 +.14 +6.78 +3.82 +.23 -3.61 -4.71 12 +.10 +.84 16 5.35 +.10 +.84 .56 5.35 4.19	+.07 +3.82 -4.71 +.05 +.84 4.19 mificant	+ + .01 + .15 + .13 03 02	+ + + + 01 28.13 40.04 13.34 13.34	-18 -4.61 +3.61 +2.06 7.78	+.08 -1.99 -49.07 -1.24 -1.24 6.67	+		+ 46.63 4.31 4.31 1.32 1.33 1.33 1.33 1.33 1.33 1.33 1		05 -1.42 -1.08 12 3.32	+ + + + + + + + + + + + + + + + + + +

Table 20. --Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 38 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1971

						Depend	Dependent Variables	les						
Statistical Items	Diologa	Yarn skein strength	strength	Yarn el	elongation	Yarn appearance	pearance	Yarn impe	imperfections		ည	Color of 22s y	yarn	
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed	
Mean Values for: Dependent variable. Grayness.	Pct. 8.1 2	<u>Lbs.</u> 115	Lbs.	Pct. 6.2 2	Pct. 5.0	Index 97 2	Index 77 2	No.	16 16	No. 76	Index 92 2	Index 102 2	Index 105 2	
Yellowness	a m m	യ ന ന	04 00 00	w m	a en en	ი ო ო	n m	a m m	ი რ ო რ	ი ო	0. m m	ou m m	23	
2.5% span length	1.14	1.14	1.14	41.1	1.14	1.14	1.14	1.0	1.14	1.14	1.14 0.4	41.0.4	4. c. 4	
Standard Deviation (±) for: Dependent variable	1.00	11.8	8,7	7,8	143	10.3	8,0	11.11	ō	רינו	7 7	0	r. r.	
Grayness	90,4	0,4	. o. n	بُون	بار		0,00	100	, 0,0	100	, 0,0	, ,	, 0,(
Nonlint content (S.A.)	ن ن م ر	o oʻg	ن ن م ز	ن م زو	o oʻg		ن م ز	o oʻg	o oʻg	000	هٔ م ن	٥٥٥	٥٥٥	
Micronaire	.50	.50	.50	50.	.50	.50	.50	.50	.50	.50	5.05	5.0	.50	
Grayness	+.62	47	69	53	52	04.+	04.+	00.+	41	70	₩	84	32	
Nonlint content (S.A.)	+ 1.87	1 %:	188	97:	N 60	. + . 13	+ + 21.3	1,12	21		5	36	÷	
2.5% span Length	 4	#. .	+.81	- . 57	+.77	+.55	37 +.68	% . % .	たさ. ・・・・	₩. • • • •	+.51	+.27	+ +	
Multiple Cor. Data for: DEPENDENT VARIABLE with														
Multiple Cor. Coef	• 65	47.	.77	.59	.53	74.	74.	.12	.19	.70	98.	84.	.58	-97-
Grayness	+.64	73	69	57 + 98	1.53	+ +	+.39	10	-16	70	86	74	14	
Beta Coefficients for:	3	•	(1.	2.) ·) > •	77.	71.	•	4.30	00.	16.1	
Grayness	+.64	73	68	56 +.24*	+.08*	+.38*	+.38*	01* +.12*	16*	70	+.20*	*L*	37*	
Constant (a)	74.7+	+138.15	+61.23	+6.28	+5.35	+75.30	+55.68	+17.73	414.96	+96.26	+96.22	+107.65	+96.19	
Crayness Yellowness Standard Error (±)	+.67	-9.09 79 7.97	-5.56 -1.93 5.51	+.15	+24 +.06 .36	4 4.11 9.11	+3.90 +4.36 8.68	13 +2.36 11.07	+1.26	-8.15 62 7.87	-4.13 +1.64 2.34	-1.94	-2.11 +4.75 4.47	
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINF (S.A.)														
Multiple Cor. Coef	.87	٠74	.72	.63	.63	74.	84.	.17	.23	.71	.86	.50	.63	
Grayness Yellowness Nonlint (S.A.) Pats Coefficients for	+.35	#0:+ 80:+	66	+.23 +.29	63 +.17 +.40	+.37 +.25 08	+.37 +.25 09	+.06 +.10 12	05 +.10 14	67	1.36	33	49 +.55 +.30	
Grames. Yellowness. Nonlint (S.A.)	+.23* 08* +.72	77	76 12* +.14*	**54. **88. **88. **88.	77 +.14* +.41*	+,43*	+.43*	+.08*	06* +.10* 17*	77	+.20*	38*	+.53	
Regression Equation: Constant (a)	+5.47	+135.90	+58.24	46.00	+4.85	+77.86	+58.30	+22.41	+17.79	+92.36	04.96+	+109.37	+91.59	
Grayness	+.24	-9.58	-6.21	26	35	+4.67	+4.14	+.88	36	9.00	-1,.09	-1.57	-3.11	
Standard Error (+)	6η·	7.98	41.14 5.44	+.10	+.19	9.08	-1.00 8.64	-1.78	-1.08	41.49	07 2.34	3.42	+1.75 4.26	

						Depen	Dependent Variables	bles					
Statistical Items	Di olio	Yarn skei	Yarn skein strength	Yarn e	elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		ည	Color of 22s	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
DEPENDENT VARIABLE with GRAINESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN LENGTH	Pet.	<u>rbs</u> .	Lbs.	Pet.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	.89	8.	.85	.67	.81	.57	64.	444.	94.	888	.86	.50	.76
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length.	+.10 23 +.81 37	61 +.10 19 +.75	53 09 +.67	+++.38	29 +.33 +.67	+.21 +.21 +.03 37	+.30 +.24 05	+.22 +.17 25 +.41	+.12 +.17 27 +.41	+.55 +.13 10 +.75	76 +.37 06 +.12	30 10 +.01	- + + + + . 18 + . 18
Grayness Fallowness Wonlint (S.A.). 2.5% span length.	+.07* 11* +.78 24*	47 +.05* 11* +.66	45 05* 03*	+ + + + + .32* + .31*	27* +.21* +.23* +.68	+.24* +.18* +.03* 43*	+.37* +.22* 06*	+.27* +.16* +.53*	+ 1.14* + 1.15* + 53*	**************************************	81 +.21* 04* +.08*	37* 09* 16* +.01*	20* +.59 +.15* +.57
Constant (a)	+12.22	-83.90	-76.36	+3.06	-3.55	+201.45	+96.20	-142.63	-68.45	-123.24	+85.24	+108.51	+2.66
Grayness Yellowness Yellowness Nonlint (S.A), 2.5% span length Standard Error (±) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A), 2.5% SPAN	+ 1 + 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.81 +.98 -1.39 +187.41 5.25	-3.72 71 23 +114.40 4.05	 + 1.2.51 2.55	-1.12 +1.10 +7.00 72.05	+2.63 +3.30 +2.29 -105.53 8.44	+3.87 +3.85 -32.42 8.58	+3.18 +3.14 -3.48 +141.79 10.02	+.85 +1.63 -1.97 +74.08 5.23	-1,.97 +1.26 71 +183.17 5.17	-3.91 1.70 1.18 2.19 2.33	-1.55 -1.66 3.42 3.42	-1.17 +5.78 +.85 +74.99 3.53
Multiple Cor. Coef	-89	.92	. 88	69.	.82	99.	.70	777.	.52	.93	8.	.52	.79
Grayness Yellowness Yonlint (S.A.). 2.5% span length Micronaire Beta Coefficients for:	+.12 18 37 09	. +	+ 4 + 69 37	1 + + + + 138	1 + + + 1	+ + + + + + + .04	+.1 ⁴ +.00 12 10 +.57	+ + . 23 25 4.1 05	+ + · + · · · · · · · · · · · · · · · ·	. + . +	73 +.39 05 +.12	24 03 00 00	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Regression Equation:	*00.+ .09.* .79 .24.*	1.38 1.13* 1.09* 1.65	37* +.03* 01* +.60 24*	64 +.26* +.19* +.32*	* * * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	+.003* +.101* +.140*	++.00* +1.11* +.11* +.61		**************************************	+ 1.09 + 1.03 + .03 + .67	+.24* +.03* +.08*		* * * * * * * * * * * * * * * * * * *
Constant (a)Regression Coef. for:	+12.58	-64.28	-63.67	+2.68	-3.31	+172.55	+55.19	-138.01	-57.00	-96.18	+88.58	+113.45	-7.22
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Standard Error (±).	+.09	+.09 -4.68 -3.0 16 +2.80 +4.4 +.83 -1.14 -0.0 -5.73 +183.04 +111.5 -10 -5.78 -3.7 -10 -5.78 -3.7	-3.00 +4.47 07 +111.58 -3.74 3.76			+ .95 + .61 -99.09 +8.53	+1.49 +.04 -1.14 -23.29 +12.10	+3.45 +3.57 -3.42 +140.76 -1.37	+1.52 +2.70 -1.82 +71.52 -3.38 5.05	-3.43 +3.77 -36 +177.15 -7.97	-3.74 +1.98 -1.14 +8.53 87	-1.27 -1.19 -1.46 -1.46	-1.72 +4.86 +.72 +77.19 +2.90
	Det CISCI	Cally insign	niiicant										

-99-

5.5 Dyed yarn +.65 Index ٥٠4 +85.02 +4.55 4.23 +.62 6.7 10.26 +.58 18.11 4.74 +.48 +.48 +.20 0.2 た 古 Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 38 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1972 Color of 22s yarn Bleached 3.9 .04 .50 1.13 102 1.14 4.0 24 44 +.15* +.19* Index +.15 *60.+ 95.59 3.61 6.7 +8.62 +.68 +.68 84.63 4.6 1.13 5.6 5.8 92 1.14 4.0 24 14 +.43* +.36* 4.53 +33.80 Index 6.7 H47.27 +46.58 -2.20 3.80 +.37 +.83 +.83 Gray Spinning Potential 1.14 4.0 44 44 6.7 -7.05 +1.15 4.66 -112,18 191.24 -130.73 181.45 imperfections 1.14 4.0 44 44 5.9 +.28 +.29* 54.09 +.21* +.86* +.86* 41.08 -1.60 5.50 46.49 +29.25 -1.06 +1.38 5.31 6.7 8.6% Coarse 1.14 4.0 24 44 6.7 *.29* +.08* +.30*+ 71.18 Yarn 8.-8.-70.-11.-+.27 +1.78 +1.78 10.73 -.03* 76.99 79.53 +1.68 -.26 -.02 22s .27 F.07 Dependent Variables 1.14 4.0 44 44 9.8 .04 .50 .1.13 .58 +.63 +.62 +.68 +.39 +.29 +.17 467.87 -35.11 +12.25 7.12 -21.25 +11.62 -1.62 6.93 Index 11.-Yarn appearance 6.7 10.3 .04 .50 1.13 1.6 1.14 4.0 24 24 44 +.42* *00.+ Index 48.76 -96.41 Coarse -172.66 6.7 +172.05 elongation 5.0 +.76 -.17* Fine 50s .43 .04 .50 .11 .13 .58 -3.97 +7.85 -.01 +.82 -2.92 14.84 - 06 +.74 +.76 Coarse 6.2 1.14 4.0 4.0 4.0 +.56 +.66 +.56 +.09 -.29 +.65 +.09* 15.00 45.27 +.06 -.08 \$\displays \text{1.17} \displays \displays \text{1.17} \displays \displays \text{1.17} \displays \dinfty \din \text{1.17} \displays \displays \displays \displays \din \text + - 8 2 8 1 3 3 3 +.53 Pet -.30 6.7 strength +125.97 -4.38 +.62 3.97 4.3 1.14 4.0 4.0 4.0 4.0 -131.24 -4.62 4.02 7.8 +.79 -.30 88.22 98.21 Fine 50s Lbs. + .81 6.7 Yarn skein Coarse +186.80 -5.59 +2.50 5.04 115 1.14 4.0 24 14 +.66 -.24* +.24* .04 -6.57 +.81 22s 11.8 208.19 -136.57 Picker & card **-.**30* +.13* +.07* -4-43 +.14 -.32 waste 8.1 1.14 4.0 24 44 44 +.13 +15.16 -7.15 +.26 .93 +.07 1.13 +20.31 2.5% SPAN LENGTH, MICRONAIRE Micronaire..... Fiber str. (1/8" gage)..... Micronaire..... Fiber str. (1/8" gage)..... Uniformity ratio...... Elongation (1/8" gage)..... lean Values for:
Dependent variable..... Simple Correlation Coef. for: 2.5% span length..... Micronaire.....Fiber str. (1/8" gage)..... 2.5% span length.... Uniformity ratio..... Standard Error (±)..... Dependent variable...... Micronaire.... 2.5% SPAN LENGTH, MICRONAIRE, FIBER SIR. (1/8" GAGE) Uniformity ratio...

Elongation (1/8" gage)...

Standard Deviation (±) for: 2.5% span length.... 2.5% span length.... Micronaire.... Regression Equation: Constant (a)...... Regression Coef. for: Micronaire.... Elongation (1/8" gage) 2.5% span length.... Micronaire.... Fiber str. (1/8" gage) 2.5% span length..... Beta Coefficients for: 2.5% span length..... fultiple Cor. Data for: DEPENDENT VARIABLE with DEPENDENT VARIABLE with Regression Coef. for: Partial Cor. Coef. for: Constant (a)..... Multiple Cor. Coef Statistical Items Beta Coefficients for: Regression Equation: Standard Error (±) Pable 21. -- Cotton:

les	Yarn imperfections Color of 22s yarn	Coarse Fine Spinning Gray Bleached Dyed 22s 50s Potential yarn yarn yarn	No. No. No. Index Index Index	44. 16. 16. 44.	+.17 +.81 +.26 +.07 09542925	04 +.23 +.19 +.14 +.17 +.16 +.02 +.04 +.05 +.10 +.18 +.05 +.29	+,28 + +,08 +,08	+.25* +.10* +.13* +.18* +.02* +.06* +.13* +.03*	-46.79 -135.66 +31.26 +84.52	+71.83 +27.55 +177.45 +30.26 +7.31 +93.24 +1.02 -1.22 -7.76 -2.83 -2.40 +5.94 45 +1.34 +.94 +.55 +.64 +.84	+.09 +.40 +.55 +.07 5.31 4.64 3.64 3.54	73. 94, 29. 16. 44. 67.	+.26 +.17 +.78 +.19 +.00 +.55 +.36 +.36 +.36 +.36 +.36 +.36 +.36 +.36	+.38* +.22* +.65 +.21* +.00* +.65* +.14* +.46* +.46* +.46* +.46* +.46* +.21* +.26* +.21* +.26* +.21* +.21* +.21* +.21* +.21* +.15*25*06* +.05* +.17* +.18* +.15*	-28.79 -41.78 -144.04 +19.89 +74.69 -27.45	+100.05 -30.94 +173.25 +22.94 +.35 +85.48 +3.9685 -8.31 -3.66 -3.14 +5.09 -1.55 +1.20 +1.14 +.85 +.92 +1.15 -1.7 +.02 +.50 +.70 +.2152 -1.7760 +.89 +1.33 +1.20 +1.38 10.54 5.30 4.62 3.60 3.51 4.08
Dependent Variables	Yarn appearance	Coarse Fine 22s 50s	Index Index	th. 89.		09 34 +.23 +.31	.1.	08* 08* +.22* +.28*	+171.16 +93.09	-126.19 -57.43 +6.00 +8.50 72 -2.54		.77	3612 +.37 +.53 2044 +.14 +.21 2532	-,40* -,11* +,43* +,59 -,20* -,43* +,14* +,19* -,26* -,30*	-208.91 +135.06	-98.57 -26.69 +3.89 +11.72 +3.74 +5.92 +1.17 -4.68 -5.21 7.28 6.24
	Yarn elongation	Coarse Fine 22s 50s	Pct. Pct.	.78		3221 +.1203			-2.97	+4.52 +8.61 - +.0102 1006	.27	.72	+.24 +.59 2744 06 +.17 +.31 +.25 +.51 +.67	+.27* +.55 30*34* 06* +.11* +.31* +.16* +.59 +.60*	-6.17	
	Yarn skein strength	Coarse Fine C	Lbs. Lbs.	.91	+.81 +.71 4658	00° +	+.65 +.57	*10.1+	-149.21 -108.08	+107.07 -6.70 -07.0-	+.66 +1.32 μ.97 3.63	.91	+.78 +.65 4958 +.43 +.07 +.22 +.43 +.21 +.17	+.62 +.53 3549 +.26 +.04* +.13* +.30* +.12*	-175.74 -122.04	.20 +173.54 +98.86 + .65 -8.36 -7.67 -7.67 .29 .24 +.96 +1.50 +1.50 .22 +2.60 +1.58 .3.57 .3.57
		& card (waste	Pet.	.56	+ .23	- 53	* * * 90. +	23*	+21.53 -149	-1.00	. 83.	.56	+.01 +.25 25		+23.46 -175	*
	Statistical Items		DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), INTEORMITY RAPIO	Multiple Cor. Coef	2.5% span length	Fiber str. (1/8" gage) Uniformity ratio Beta Coefficients for:	2.5% span length	Fiber str. (1/8" gage) Uniformity ratio Regression Equation:	Constant (a) Regression Coef. for:	2.5% span length	Uniformity ratio. Standard Error (±). DEFENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION	(1/6 GAGE) Multiple Cor. Coef Partial Cor. Coef. for:	Air or	2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Recression Equation:	Constant (a)Regression Coef. for:	2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Standard Error (±)

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 38 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1972 Table 22. -- Cotton:

			Dependent Variables					
4	Yarn skei	skein strength	Yarn el	Yarn elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections
vaste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Pct.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.
16.3	133	920	91.6	5.3	109	89	115	ο,[
35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7	35.7
88 7†	88 44	88	88	88	888	88	88 3	· * 88 <u>-</u>
Ē	(((:	:	,	ŧ	† †	‡
5.0	18.3 5.0	v.v.	5.0	5.0	11.6 5.0	10.1	4.0	w .c.
1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
, 5,	4.	. 4 .	.4.	.4.	7.00.4	0.4	0.4	4.00
1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
34	+.61	+ + 88	+ +	+.35	45	45	+.03	+,18
+	555		, 50°-	30	†9°+	+.75	+.24	+.34
L4 43	+ + 1.16	+.63	+.14	+.17	.50	94.1	+.22	+ 38
				1	0		01:-	OT -
.57	.87	.89	.25	.52	.63	.63	.27	•34
03	+.31	+ + + 83	90.1	+ - 08	16	71	12	01
	<u> </u>	1	† 7	7.	04	04.	+• \(\sigma\)	+.29
03*	+.19*	+,19*	10* +.29*	*4.08*	16*	16*	15*	+.35*
+46.18	-191.01	-110.17	+44.50	29	+328.78	+298.56	-24.83	-31.64
01	+,48	+	[0]	5+	Ċ	ì	i,	
81 1.41	+7.85	+3.90	+.07 +.28	41.4	9.06	-4.97 8.66	+1.37 4.78	3.60
.61	. 88	8.	.26	.52	.73	.8	.32	44.
05	+,31	+ 33	08	+*08	16	17	14	03
	+.73	+.78	+.24 +.05	+.37	†8°+	18.+	+ 1	+.17
*70	*0[+	*8" +	*	, O	, F)	1	- 63
79	19.+	+.71	+.32*	+.45* +.45*	- T3**	- 13* - 135*	16* +.22*	*********
25*	16*	12*	*90*+	*50	+*#3*	+.58	21*	32*
+56.23	-145.47	-93.33	+4.10	+.12	+211.26	+148.35	-1.03	-3.19
02	+,46	+.22	-,01	+.01	۲۶'-	000	71	C
	+7.07	+3.61	+.08	41°+	+3.21	-2.41	+ .97	99.

			Depe	Dependent Variables					
Statical Ttems		Yarn skein	skein strength	Yarn elongation	ngation	Yarn appearance	earance	Yarn imperfections	rfections
	Comber waste	2 2 s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEFENDENT VARIABLE with GRADE INDEX, STAFLE LENGTH, MICROMAIRE, FIBER STRENGTH	Pet.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.
(U GAGE) Multiple Cor. Coef	19.	8.	8.	•36	• 56	•75	.81	.36	.51
Grade index Staple length Micronaire	15 62 31	+ + + . 20	+ + 26 + - 26	10.4.4.	+ + . 14 + . 43 03		10 20 +.66	. +	11 +.03
Fiber str. (O gage) Beta Coefficients for:	+.37	0†*+	+.21	26	23	25	25	+.16	+.29
Grade index. Staple length. Micronaire. Fiber str. (0 gage). Rerression Equation:	1.14* 1.85 1.88* 1.38*	+.11* +.55 +.18* +.25*	+ + 15* + 15* + 13*	++.00* +09*	+.15* 03*	- 07* - 1.21* - 1.45 - 22*	07* 17* 59	* * * * * * * * * * * * * * * * * * *	12* +.04* 35* +.34*
Constant (a)	+55.22	-148.21	40-46-	+4.22	† 7. 5∤	+213.71	+149.57	-2.48	-5.12
Grade index Staple length Micronaire Fiber str. (0 gage) Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMAIDE ENDER, STAPLE LENGTH,	05 -1.25 97 16 1.27	+ + .28 + .5.80 + .76 + .76 5.35	. + .3 .3.31 . 1.56 . 1.8 . 54		+ .01 +1.7 02 02	16 -2.14 +10.50 63	17 -1.62 +13.19 47 6.46	21 +.55 -2.20 +.24 t.63	-2.65 -2.65 -2.65 -2.65 -3.30 -3.30
MILCHOWAIRE, FIREM SIREMULII, (O GAGE), UNIFORMITY RATIO Multiple Cor. Coef	89•	8.	8.	•36	.57	.75	.81	.36	.51
Grade index. Staple length Micronaire Fiber str. (0 gage) Uniformity ratio	1. 1. 4. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	+ 18	+ . 27 +	- + + + · · ·				. + . + . + . +	1.13 1.29 1.29 1.02
Grade index	*12*	+11*	+-17*	**00*+	+.21*	*10*	*60	*21*	15*
Micronaire. Fiber str. (O gage). Uniformity ratio.	* * * * 30. * * * * 10. * * * * * * * * * * * * * * * * * * *	+	+ + + + + + + + + + + + + + + + + + +	**************************************	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	+ + + + + + 65 + + 65 - + 20*	*50* + + - +	**************************************
Regression Equation: Constant (a) Regression Coef. for:	+55.50	-148.40	-93.32	+4.28	24.+	+211.13	+151.59	-2.51	-6.12
Grade index.	40	+.27	+ 5 - 5 - 5	00.4	to.+	- 23	1:1	۲ د	.11
Micronaire.	. + . 8 	. + 	-1-15 -1-15	7.8	70.+	4.04 4.08	+14-36	. 4. 5. 5. 2. 5.	-3.15
Uniformity ratio	196	. + . 	· • 6	.03		; + ;			÷ ÷ ;
	* Statistica	7.57 Statistically insignificant) ;	62.	J.9° J.	## * •9	4.63	3.29

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 38 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1972 Table 23. -- Cotton:

			Depe	Dependent Variables						
Statistical Items		Yarn skei	Yarn skein strength	Yarn el	Yarn elongation	Yarn appearance	earance	Yarn imperfections	rfections	
ממוס די	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s o r 27 tex	50s or 12 tex	ı
Mana United Power	Pct.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	ı
Dependent variable	16.3	133	50	9.9	5.3	109	89	11	0,	
Grayness	QI (OJ (OJ (CV (OI (CV (α (OJ (CV (
Nonlint content (S.A.)	m er	m er	m q	m ee	m m	, w	א נא	m m	m m	
2.5% span length	1.14	1.14	1.14	†r.	41.	17,	4	1.14	1.14	
Micronalre	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	4.0	
Dependent variable	1.71	12.3	5.9	.29	.35	11.6	10.1	4.9	3.8	
Grayness	60.	6,6	0.0	o. 0 %	6,6	60,0	6,0	60.	6.9	
Nonlint content (S.A.)	60.	60.	60.	60.	60.	60.	60.	60.	60.	
2.5% span length	40.	. O.t	40.	40.	40.	40.	40.	± €	40.	
Simple Correlation Coef. for:								?		
Grayness.	+ + + + + + + + + + + + + + + + + + + +	73	42	37	62	8 [†] . +	94.+	†0°-	- 14 	
Nonlint content (S.A.)	+.12	35	35	60.+	1.12	5†.+ + +	+ +	+.01 +.01	- 15	
2.5% span length	92	+.77	±8.+	+.38	+.67	53	50	+.20	+.25	
Multiple Cor. Data for:	60°+	55	54	-°02	30	†9 . +	+.75	27	-,41	
DEPENDENT VARIABLE with										-10
GRAINESS, IELLOWNESS Multiple Cor. Coef	94.	.73	47.	04.	.62	84.	.52	41.	.15	03-
Partial Cor. Coef. for:										
Grayness Yellowness Beta Coefficients for:	+.44 +.10	73	70°-	+.18	62 +-08	+.47 +.08	+.45	06 +.13	-,1 ⁴ +,06	
Grayness	*777*+	73	7 ⁴	38*	**0.+	+,47	††·+	*90*-	* 177*	
				1	•	•	17.		•	
Constant (a)Regression Coef. for:	+13.73	+156.94	+61.52	09.9+	+5.73	+92.40	+63.55	+8.27	+8.76	
Grayness Yellowness Standard Error (±).	+ .80	-9.40 -1.07 8.35	- 1.58 - 53	- + - 00 - 60 - 60 - 60 - 60 - 60 - 60 - 60	- 533 + 0.04	+5.77 +1.39	+5.12	+1.16	1388	
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS						- - - - - - - - - -		1		
Multiple Cor. Coef	84.	.7 ¹ 4	.75	.56	.68	.52	.57	.15	.17	
Grayness	+.45	68	02	±5	68	+•31	+.26	80	90	
Nonlint (S.A.)	+.07 17	90.+	+.11	+.43	+.15	+.11 +.22	+.32	+.14	40°+	
Grayness	+.55	77	62.1	- 66	- 82	*TC +	+. 97*	*0[-	*800	
Yellowness Nonlint (S.A.)	+.07*	* * * 80.+	*40.+	+ + . + . + . + . + . + . + . + . + . +	+.11*	**************************************	*88.++	+10.+	+,04*	
Constant (a)Regression Coef. for:	+14.60	+154.26	+60.03+	+6.22	+5.39	+87,84	+54.78	+7.24	49.97	
Grayness Yellowness	+ +	-9.98	-4.91	08.1	31	+4,12	+3.21	55.	32	
Monlint (S.A.)	33	+1.02	+.56	+.15 +.15	+.07 +.13	+2.88 +2.88	+3.34	+1.25)†* 9†*-	

			Deper	Dependent Variables					
		Yarn skein	skein strength	Yarn elongation	ngation	Yarn app	Yarn appearance	Yarn imperfections	rfections
Statistical Items	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN	Pct.	Lbs.	Ibs.	Pct.	Pct.	Index	Index	No.	No.
Multiple Cor. Coef	92.	.85	8.	.58	92.	1 9.	.65	.28	.32
Grayness	+,16	- 59	62	74	53	ήτ .	11.+	+.03	+ +
rellowness Nonlint (S.A.) 2.5% span length	+ 1	† ; +	+ - + 1.16	+ + + 23.86. 23.86.	. + + 26.4 74.53	+ + + 1 135 143	. + + . 98 98) T • • • • • • • • • • • • • • • • • •	+.00 17 +.27
Beta Coefficients for:	ò.	3 0	<u>.</u>	3	î.	·	<u>.</u>		
Grayness	+.15*	+ .52	84 - -	58	 58 +.16*	+.15*	+.11*	+.03*	* *80° + +
Nonlint (S.A.)	+.03*	07* +.55	*60.+	+,43*	*******	+.37* 49*	***************************************	01* +.31*	+.35*
Regression Equation: Constant (a)Regression Coef. for:	+51.62	-35.46	-48.71	98.4+	+1,04	4242.49	+185.14	-35.49	-27.35
Grayness	+.27	-6.79	-2.98	18	21	+1.81	+1.29	+.18	+.25
Yellowness	90:+	+ .52 80	+.37	+ + 13	+ +	+ 1	9.4.4	+1.55	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
2.5% span length	-31.40	+168.88	492.60	71.1+	+3.68	-135.21	-111.78	+36.50	+31.97
Standard Error (±) DEPENDENT VARIABLE with	1.12	6.53	2.59	†₹.		₹.°	8.39	4.76	3.63
GRAYNESS, YELLOWNESS,									
LENGTH, MICRONAIRE									
Multiple Cor. Coef.	62.	.87	36.	• 58	.76	.78	• 83	54.	•53
Grayness	4.26	52	57	94	50	70	16	+.15	+.21
Yellowness	+ +	 08	+.25	+ +	+.23	21 +.37	T 1. + +	+ + .02 + .02	+.27
2.5% span length	69	†9°+	+.77	+.16	+.45	- 48	94	+.23	+.27
MicronaireBeta Coefficients for:	33	04	41	+.05	05	+.58	89.+	37	45
Grayness	+.25*	43	04	*09	56	*90*-	-,13*	+.20*	*56*
Yellowness	*40.+	+,12*	*11* +	*+2.+	+.17*	15*	*10°+	+°33*	* 2.5.+
Nonlint (S.A.)	*.05* 78	05* +.53	*/0°- +9°+	+•43*	*****	+.32*	* * * * * * * * * * * * * * * * * * *	* *8 + +	+.35* +.32*
Micronaire	26*	*56*	*- 55*	*50*+	*10.+	+.55	1 9.+	*††1•-	53*
Constant (a)	-54.70	-13.51	-39.71	44.76	-1.14	+199.06	+136.97	-20.68	-13.50
Regression Coef. for:	4	u u	t i	o r	6	ğ	ר מ	7	7
Yellowness	+.23		+1.21	10 +.12	+. 11.	-3.13	+.12	+2.93 +2.93	1.83 1.83
Nonlint (S.A.)	60.+	19	43	+.13	60.+	ま。ま	90.4	+.15	99
2.5% span length	-32.08	+156.99	9.06+	+1,19	99. £ +	-125.52	-101.04	+33.20	+58.88 -7
Standard Error (±)	1.06	5.99	2.36 2.36			7.31	47. 6.14	4.43	3.24
	* Statistical	Statistically insignificant	•						

Table 24.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 38 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1972

				Dependent Variables					
Statistical Items		Yarn skein	skein strength	Yarn elc	Yarn elongation	Yarn appearance	earance	Yarn imperfections	fections
	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for:	Pet.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.
Dependent variable	16.3 1.14	133 1.14	50 1.14	6.6 1.14	5.3 1.14	109 1.14	89	11,14	9
Micronaire	0. 4.5 75	4.0 24	o. 42	0.4 24.	0.4 24	0.4	0.4	0.4	1 7 7
Uniformity ratio. Elongation (1/8" gage)	1 ^{††}	44	44	44 6.7	44	44	44.	44,	444
Dependent variable	1.71	12.3	5.9	.29	.35	11.6	10.1	0 7	· α
2.5% span length	70.	40.6	40.	40.	70.	70.	70.	, † (i	o. do .
Fiber str. (1/8" gage)	1.1	1.1			1.1	٠:١.	. i.	2.1.1	1.1
Elongation (1/8" gage)	.58	.58	.58	.58	.58	.58	.58	.58	1.6
2.5% span length	92	+.77	+.84	+.38	4.67	53	50	+.20	+.25
Fiber str. (1/8" gage)	60.	+.56	+.56	70 60	30 +.19	+.64 +.58	+.75	27	+ - 41
Uniformity ratio		+.16	+.19	+.1 ⁴ .+	+.13	+.10	+ +	1001-	01.
Multiple Cor. Data for: DEPENDENT VARIABLE with 2 5% SPAN LENGTH MICEONAIDE)	1	•			05°-
Multiple Cor. Coef	.78	.83	. 88	.38	.67	.71	62.	.29	24.
2.5% span length.	78	47.+	+.83	+.38	+ 63	24.	- 38	+.11	+,13
Beta Coefficients for: 2.5% span length	, c	99 +	- L	- 0		• 30	0).+	200.	1.35
Micronaire Regression Equation:	*50.	- 32	+.75	*01°+	+.65	+.51	+.65	+.12*	+.12*
Constant (a)Regression Coef. for:	+57.91	-57.82	-58.02	+3.24	72	+172.34	+112.30	+4.20	+6.87
2.5% span length	-33.96	+194.03	+105.42	45.79	+5.45	-96.92	-71.33	+13.82	+11.33
Standard Error (±). DEPENDENT VARIABLE with	1.07	6.89	-3.17 2.81	+.04 27	05 26	+11.88 8.13	+14.43	-2.24	3.47
2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE)									
Multiple Cor. Coef	.78	98.	.91	94.	.68	.79	98.	.29	84.
2.5% span length	76	+.71	+.82	†††*+	+.63	32	25	+,10	70°+
Fiber str. (1/8" gage)	00:-	+,42	74.+	+.03	10	+ - 59	+.72	+.02	+.25
2.5% span length	- 83	+ 58	+.67	*67*+	89.+	23*	15*	+,11*	*†10°+
Fiber str (1/8" gage)Regression Equation:	*00	* * 92.+	+ 253*	27*	**60:-	+.45	+.59	+.02*	32*
Constant (a)Regression Coef. for:	+57.92	-103.87	-78.83	+4.35	25	+233.73	+171.37	+5 . 44	-6.90
2.5% span length	-33.95	+169.73	44.46+	+3.38	+5.70	-64.52	-40.15	+12.89	90.4
Fiber str. (1/8" gage)	1.07	+2.8±	+1.29	20.	8 8 %	+10.40 -3.79	+13.01 -3.65	-2.20 +.11	-2. 46 +.85

Statistical Items	Comber	Yarn skeir 22s or 27 tex	Deperment Nature Skein strength Par Skein strength Par 50s or 7 tex 12 tex	Dependent Variables Yarn elongation 22s or 50s 27 tex 12	ongation 50s or 12 tex	Yarn apj 22s or 27 tex	Yarn appearance or 50s or tex 12 tex	Yarn imperfections 22s or 50s 27 tex 12 t	rfections 50s or 12 tex
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1,8" GAGE),	Pet.	Lbs.	Libs.	Pct.	Pct.	Index	Index	No.	No.
Multiple Cor. Coef.	8.	98.	.91	24.	89.	8.	98•	•30	64.
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio.		+ - + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ 1 1 + + 0.30 	+ 54 11 54	1 + 1	+ + . 54. 54.	+ 12 + 1 + 05	+ .10 21 28
Beta Coefficients for: 2.5% span length. Micronaire Fiber str. (1/8" gage). Uniformity ratio.	*50°. *50°. *50°. *50°.	75. 75. 75. 75. 75. 75. 75. 75. 75.	, + + + + + + + + + + + + + + + + + + +	****** ******** **********************	+.04 10* 11* 04*	 	8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.07 1.17* 1.06*	si. +
Regression Equation: Constant (a)Remession Coef for:	+58.10	-108,48	-81.88	Lt. 4+	23	+22h . 02	+167.53	+2. 65	-6.57
2.5% span length	-28.38 21 +.14 27 1.02	+167.28 -7.18 +2.68 +3.31 6.24	494.08 -2.92 -1.21 -41.4 -1.8	+2.67 03 08 03 03	+5.51 07 03 +.01	-86.68 -7.82 -4.1.56 -6.91	-48.20 +12.05 -3.93 +2.54 5.70	+18.72 -1.70 +.26 +.29	110.45 -1.90 1.02 32
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORNITY RATIO, ELONGATION (1/8" GAGE)									
Multiple Cor. Coef	.81	.87	.91	.67	98.	.80	.87	.31	5.
2.5% span length. Micronaire Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage) Beta Coefficients for:	60 +.00 +.05 33	49 44			 37. 33. 38. 97. 97.	. + ; + ; 98 5 8 8 5 98 5 8 8 5	. +	+ • • • • • • • • • • • • • • • • • • •	+ 1.12 + 1.15 + 1.13 - 07
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage) Regression Equation:	49 400 400 400 400		*08. *08. *72. *++. **40. *+.	+.07* .43* .37* .69	+.31* +.251 +.233* +.27*	1 + 1 30 * 1 1 9 4 5 1	09* 51 51 24*	*:1:	+.15* 20* +.26* 16*
Constant (a)Regression Coef. for:	+60.86	-137.14	-91.53	+1.86	-3.80	+229.03	+208.10	69.4-	-1.62
2.5% span length Micronaire. Fiber str. (1/8" gage) Uniformity ratio Elongation (1/8" gage) Standard Error (±).	-26.37 +.06 +.06 +.06 31 34 1.01 * Statistical	+.00 +.00 +.06 +.36 31 31 +.65 34 +.55 34 +.55 34 +.65 34 +.50 1.01 6.12 Statistically insignificant	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	+ 1	4 · · · · · · · · · · · · · · · · · · ·	-83.65 +8.17 +4.69 -57 -57	-23.98 -114.99 -4.99 -4.02 5.39	+13.37 -2.26 + .47 + .47 + .91 + .72	+14.02 -1.53 +.88 39 61 3.33

MEASURES USED IN STATISTICAL ANALYSIS

Some of the statistical concepts used in this study may be unfamiliar to many who will find the information in this report useful. Results reported in this study include the means, standard deviations, simple and multiple correlation coefficients, beta values, partial correlation coefficients and regression equations for each cotton quality measurement. Formulas of each of these results may be found in any good textbook on statistical correlation. However, for those not familiar with these concepts the following common language explanation is given for each item as it is used in this report:

- (1) Mean Value is the simple arithmetical average of each measured property for the spinning lots included in the study.
- (2) Standard deviation is a measure of dispersion around the mean value, expressed in the same terms as the variable. For a normal distribution, approximately 68 percent of the values will be within plus or minus one standard deviation of the mean, 95 percent within plus or minus two standard deviations, and nearly all values will be within plus or minus three standard deviations.

Example: (from Table 16, column 1, page 89) The mean or average value for picker and card waste, the dependent variable, is 6.1 percent and the standard deviation is .88 percent. This indicates that 68 percent of the lots tested in the medium staple group should contain between 5.2 and 7.0 percent waste $(6.1 \pm .88)$. Ninety five percent of the lots tested would have from 4.3 to 7.9 percent waste (6.1 ± 1.76) and nearly all of the test lots would show waste values between 3.5 and 8.7 percent (6.1 ± 2.64) .

(3) Simple correlation coefficient (r) is a measure of the linear relationship between two variables, ie. how one variable is associated with the other. A correlation coefficient of O indicates no relationship, and 1.0 indicates a perfect relationship. A plus sign before the correlation coefficient indicates that the values for both variables change in the same direction, whereas a minus sign indicates that they change in opposite directions.

Example: (from Table 16, column 1, page 89)
The simple correlation coefficient (r) of grade index with picker and card waste is -.61. This indicates that grade index and picker and card waste are related. It further indicates by the - sign that as one goes up or down the other goes in the opposite direction.

(4) Multiple correlation coefficient (R) is a measure of the linear relationship between one dependent variable and two or more independent variables. It has no plus or minus sign because one independent variable may contribute positively, and another negatively, in explaining the variation in the dependent variable. The multiple R may fall between 0 and 1.0, with 0 indicating no relationship and 1.0 a perfect relationship.

Example: (from Table 16, column 1, page 89)
The multiple R for the dependent variable of picker and card waste with independent variables of grade index, staple length and micronaire is .66. This indicates that the combination of grade index, staple length and micronaire shows a definite relationship to picker and card waste. It does not explain, however, whether grade index, staple length and micronaire contribute positively or negatively to picker and card waste or which of the three is most important.

(5) Although the coefficient of determination $(R^2, or r^2)$ is not given, it may be easily obtained by squaring the simple r's or multiple R's and multiplying by 100. This gives the percentage of variation explained, a measure of the amount of variation in the dependent variable which is explained by variation in the independent variables.

Example:

The multiple R in the example above is .66. When this is squared and multiplied by 100 the result is 43.6. This means that 43.6 percent of the variation in picker and card waste is explained by grade index, staple length and micronaire. The remaining 56.4 percent of the variation is unexplained.

(6) Partial correlation coefficient (r) in a multiple analysis is similar to a simple correlation coefficient. The simple r indicates the statistical relationship between two variables without any control of other variables. In a multiple analysis, the partial correlation coefficient is one measure of the net relationship between one independent variable and the dependent variable while the influence of the other independent variables are statistically removed.

Example: (from Table 16, column 1, page 89)
The partial correlation coefficients (r) for picker and card waste with grade index, staple length and micronaire are: -.53 for grade index, -.21 for staple length and -.24 for micronaire. This shows that picker and card waste is related to grade index and that when one goes up or down the other goes in the opposite direction. It further shows that staple length and micronaire have less affect on picker and card waste than grade index since the values for these two variables are much smaller.

(7) Beta coefficients (B) in a multiple correlation are sometimes preferred over use of partial r's. A Beta coefficient is another measure of the relative importance of a variable in a multiple correlation, with the influence of the other variables removed. Quite often, only one of these measures (Beta or partial r) is used for interpretation; both are included in this report. An asterisk beside the Beta value indicates that the result is statistically insignificant (less than three times its standard error).

The Beta (B) coefficients in the above example are -.51 for grade index, -.17 for staple length and -.20 for micronaire. This shows the same relative results as the partial correlation coefficients (r) and further indicates that grade index is the most important property in predicting picker and card waste and that staple length has the least influence.

(8) Regression equation or estimating equation is used to predict changes in the dependent variable which will result from changes in the independent variable or variables. It is written:

$$Y = a + b_1 X_1 + b_2 X_2 + ... b_N X_N$$

where Y is the dependent variable and the X's are independent variables.

The constant "a" indicates the starting point or height of the regression line when it is to be plotted on a graph or to be used in calculating changes in the dependent variable. The regression coefficient "b" indicates the change in the dependent variable that is associated with each unit change in the independent variable. The spread or scatter of the data around the regression line is measured by the standard error. The standard error has the same relationship to the regression line as the standard deviation has to the mean value. (see paragraph (2) above)

Example: (from Table 16, column 1, page 89)

Regression equation for picker and card waste:

Constant (a)	+21.09
Regression coefficients (b)	
Grade index	09
Staple length	16
Micronaire	 38
Standard error	±.66

With regression coefficients (b) of -.09 for grade index, -.16 for staple length and -.38 for micronaire reading the following average conditions should exist:

- 1. With any unit change in grade index, picker and card waste percentage should change .09 in the opposite direction.
- 2. With any unit change (32nd) in staple length, picker and card waste percentage should change .16 in the opposite direction.
- 3. With any unit change (1.0) in micronaire reading, picker and card waste percentage should change .38 in the opposite direction.

Expressing this equation algebraically we have:

Estimated picker and card waste (percent) = 21.09 - .09 (grade index) -.16 (staple length) -.38 (micronaire)

Thus if we wished to predict the amount of picker and card waste from a bale of cotton of Strict Low Middling (94 index), a staple length of 1-1/16 inches (34 32ds) and a micronaire of 4.4, the equation would be:

Estimated picker and card waste = 21.09 - .09(94) - .16(34) - .38(4.4)

Estimated picker and card waste = 5.52%

The standard error of the equation of ±.66 indicates that the actual picker and card waste obtained from this kind of cotton would be within plus or minus .66 percent (between 4.86 and 6.18) 68 times in 100.

A check on the accuracy of this figure can be made from the average results for SLM grade, 1-1/16 inch staple, in Table 3 for the different Areas.

Regression equations are given in the tables for multiple relationships only. Equations for simple relationships may be calculated by using the formula:

$$Y = a + bX$$
where $a = Mean Y - b(Mean X)$

$$b = r \frac{Std. Dev. Y}{Std. Dev. X}$$

INTERPRETING STATISTICAL DATA

In referring to the data presented in the tables of this report, it is well to keep in mind several factors which influence the results and could lead to erroneous conclusions.

Correlation values are significantly influenced by the specific variables included, and by their number. This is due to the interrelationships of fiber properties. As interrelated properties are added to a correlation, the specific contribution of a given property may decrease sharply while at the same time the overall correlation will increase. For example, a correlation of staple length with yarn strength usually shows a good relationship, with a large amount of the variation in yarn strength explainable by differences in staple length. But, as other measures are taken into consideration, particularly fiber strength at 1/8-inch gage, the importance of staple length in explaining the total variation in yarn strength decreases rather sharply, even though the total variation explained is increased. This situation occurs because fiber strength is more closely related to yarn strength than is staple length. Yet, when fiber strength is not included in the correlation, some of the effects of strength are evidenced through the interrelation of strength and staple length.

Perhaps the most important fact to be kept in mind is that the use of only one statistic, such as a multiple R, a partial r, or a Beta value, can lead to erroneous conclusions. In order to determine the importance of any variable, all of the statistical items for each study should be considered.

BASIS FOR INTERPRETATION

The following explanation of the data published in Tables 1 through 9 of this report may be helpful in the interpretation of test results:

Classification

Classification was made in accordance with the official Cotton Standards for grade and staple length. These results are presented under the usual terms for the individual lots but the grade values were converted to an index for averaging in the summary tables.

Grade index, as reported in the summary tables is designed to reflect differences in market value and provides a method for averaging the grade for a number of individual lots. Middling grade is used as the basis of 100, and higher or lower index numbers reflect higher or lower average market values, respectively. Index values for white, spotted, tinged and gray grades of upland cotton are shown below:

	:_				ade Inde	х		
Grade	:	707		Light			Light	
Name	Code:	Plus (0)	: White: S : (1) :	portection (2)	: (3)	(4)	Gray (5)	: Gray : (6)
Good Middling	(1):		105	103	101	94	99	93
Strict Middling	(2):		104	102	99	91	98	91
Middling	(3):	102	100	97	93	82	92	84
Strict Low Middling	(4):	97	94	89	83	75	85	75
Low Middling	(5):	90	85	80	75	68		
Strict Good Ordinary	(6):	81	76					
Good Ordinary	(7):	73	70					
Below Grade	(8):		60					

The grade of cotton is obtained by evaluating color, leaf and preparation in relation to the official standards. Grade provides an indication of fiber color and the waste content of a sample of cotton. Experience has shown the average relationship between picker and card waste and various grades of upland cotton to be approximately as given in the tabulation shown in the

subsequent section on manufacturing waste. In comparing these average grade figures with the picker and card waste data, it should be understood that variations from the averages for individual samples are attributable to the nature of the extraneous material present in the cotton, the characteristics of the fiber, and whether the grade designation was low because of poor color.

Staple length is the length of a typical portion of the fibers in the samples as determined by the classer in comparison with official standards. Uniformity of fiber length, as well as other fiber properties, influence to some extent the classer's selection of the typical portion of the fibers on which the staple length designation is based. In general, there is a fairly close relationship between the staple length as designated by the classer and the fineness and strength of the yarn that can be manufactured from the cotton. These relationships, however, are also influenced by other fiber properties, the measurements of which will be discussed in the paragraphs which follow.

Fiber Tests

Fiber length data were obtained by the Digital Fibrograph method for the short, medium and long staple American upland samples and by the array method for the extra long American Pima and upland samples. Briefly, the Digital Fibrograph method consists of placing representative specimens of cotton weighing approximately 30 centigrams at random on a pair of combs, parallelizing the beards of cotton extending from one side of the combs, and scanning these beards photoelectrically on the instrument at 3 length intervals beginning at 0.15 inch from the teeth of the combs and ending near the outer fringe. The 2.5 percent span length and the 50/2.5 uniformity ratio values reported for each lot are based on five specimens tested by each of two technicians.

The Digital Fibrograph 2.5 percent span length values reported indicate the length which will be spanned by 2.5 percent of the fibers when they are parallel and randomly distributed. It is also the length where the amount of fibers indicated by the instrument is 2.5 percent of the amount at the starting point of 0.15 inch. The Digital Fibrograph 2.5 percent span length values are closely related to staple length designations.

The Digital Fibrograph 50/2.5 uniformity ratio values reported indicate the relative uniformity of fiber length in the samples. They represent the ratios between the 50 percent span length and the 2.5 percent span length, expressed as percentages. Larger values indicate more uniform fiber length distribution. Unusually low fiber length uniformity tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. The following adjective descriptions will serve to classify cottons from the standpoint of 2.5 percent span length and fiber length uniformity:

2.5 percent span length 50/2.5 uniformity ratio Below 1.00 Short Below 42 Very low 1.00 - 1.14 Medium 42 - 43 Low 1.15 - 1.29 Long 44 - 45 Average Above 1.29 46 - 47 Extra-long High Above 47 Very high

Data source - 1575 American upland lots tested from the crops of 1966-68.

Array tests for the extra long staple American Pima and upland samples were performed on the Suter-Webb fiber sorter. Briefly, this method consists of parallelizing the fibers in a representative 75-milligram specimen of cotton through a series of combs, separating the fibers into length groups at 1/8-inch intervals, and weighing the fibers in each length group. The upper quartile length and coefficient of variation values reported are based on one specimen tested by each of two technicians.

The array upper quartile length values reported indicate the length which is exceeded by 25 percent of the weight of the fibers in the samples. They are closely related to and longer than both the Fibrograph and the classer's staple designations. This relationship may vary, however, because the methods measure different fiber length characteristics.

The array coefficient of length variation values reported indicate the relative variability of fiber length in the samples. They represent the standard deviation of the weight-length frequencies expressed as a percentage of the mean length. Smaller values indicate more uniform fiber length distributions. Excessive fiber length variation tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. It is, therefore, considered desirable for a cotton to have a low coefficient of variation. The following adjective descriptions will serve to classify cottons from the standpoint of upper quartile length and fiber length variation:

Upper Quartile	Length	Coefficient of F	iber Length Variation
Below 1.10 1.10 - 1.24 1.25 - 1.39 Above 1.39	Short Medium Long Extra Long	Below 26 26 - 29 30 - 33 34 - 37 Above 37	Very low variation Low variation Average variation High variation Very high variation

Data source - 830 American upland lots tested from the crops of 1958-60 (more recent data not available).

Fiber fineness and maturity in combination were determined by the micronaire test. This is an instrument test which measures the resistance of a plug of cotton to air flow. A representative standard weight of cotton fibers is placed in the instrument specimen holder and compressed to a fixed

volume. Air at a known pressure is forced through the specimen and the amount of flow is indicated by a direct reading scale. Readings obtained are relative measures of either the weight per unit length, or the cross sectional size of the fibers. Because the instrument measures may differ from the actual weight per inch, depending upon the fiber characteristics of the sample, the results are reported in terms of "micronaire reading" instead of micrograms per inch. These readings are taken from the curvilinear scale adopted in 1950, and now in international use. Fiber fineness contributes to yarn strength, particularly when fine numbers are spun, but it also tends to increase neppiness and to require a reduced rate of processing.

Fiber maturity, also an important factor affecting the appearance of yarns and fabrics, is a desirable characteristic from the standpoint of low picker and card waste. Immature fibers are susceptible to the formation of neps, and contribute to lower yarn appearance grades. The desirability of micronaire reading, therefore, depends on the specific end product or use of the cotton.

Several instruments, including the Micronaire, Fibronaire, and Port-Ar, may be used for these tests. All instruments now use the same scale and report results in the same terms, i.e. "micronaire reading". The micronaire reading is now a part of the official standards for upland cotton along with grade and staple length.

Fiber strength is an important factor in determining yarn strength. Cottons with good fiber strength usually give less trouble in the manufacturing processes than the weak fibered cottons. Tests for fiber strength were made without a space between the clamp jaws (0 gage) using the Pressley flat bundle tester, and with a 1/8-inch spacer between the clamp jaws (1/8-inch gage) using the Stelometer. Strength results from both the Pressley and the Stelometer were controlled at the same level by use of standard calibration cottons. Use of the Stelometer also provides a measure of fiber elongation. Comparative tests have shown that the results of the 1/8-inch gage tests are more highly correlated with yarn strength than the results of the zero gage tests. Results for both methods are reported, however, because the zero gage tests are widely used by the cotton industry.

The results for the Pressley zero gage test are reported in terms of thousand pounds per square inch, as calculated by the use of Formula 1. These results may be converted to other methods of expressing fiber strength by use of Formulas 2, 3, and 4:

(1) Thousand pounds per square inch (Mpsi) =

breaking load in 1b x 10.81 bundle weight in mg

(2) Grams per tex $(gm/tex) = Mpsi \times 0.496$

- (3) Strength-weight ratio = Mpsi : 10.81
- (4) Strength-weight ratio = gm/tex : 5.36

The results of the 1/8-inch gage tests are reported in terms of grams per tex in accordance with the recommendations of the American Society for Testing and Materials (ASTM), and the International Standards Organization (ISO). A tex unit is equal to the weight in grams of 1000 meters of the material. There is a correlation between the 1/8-inch gage strength test results and fiber length. Cottons with short lengths tend to have lower average strength values than long staple cottons. Results for 1/8-inch gage tests are calculated by use of Formula 5. Stelometer results are adjusted to Pressley level by use of calibration cottons.

(5) Grams per tex = $\frac{\text{breaking load (kg)} \times 15}{\text{bundle weight in mg}}$

The following descriptive terms may be applied to the data shown in this report:

Staple length group and descriptive designation	Zero gage strength (thousand psi)	1/8-inch gage strength (grams per tex)
Short staple: Low Average High	70 - 75 76 - 81 82 - 87	18 - 19 20 - 21 22 - 23
Medium staple: Low Average High	74 - 80 81 - 87 88 - 94	20 - 21 22 - 23 24 - 25
Long staple: Low Average High	85 - 88 89 - 92 93 - 96	23 - 24 25 - 26 27 - 28
Extra-long staple: Low Average High	93 - 96 97 - 100 101 - 104	31 - 32 33 - 34 35 - 36

Data source - 291 short staple, 1206 medium staple, 78 long staple, and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Fiber elongation results were obtained in connection with the 1/8-inch gage fiber strength tests by using the Stelometer instrument. The following adjective ratings will assist in the interpretation of the fiber elongation results reported:

Descriptive designation	Fiber elongation (percent)
Very low	5.3 and below
Low	5.4 - 6.2
Average	6.3 - 7.1
High	7.2 - 8.0
Very high	8.1 and above

Data source - 1575 American upland lots tested from the crops of 1966 - 68.

Color measurements were made on samples of raw stock from each lot by using the Nickerson-Hunter Colorimeter. The basic color values reported are in terms of grayness and yellowness scales designed especially for cotton. The grayness scale ranges from 0 for the brightest samples (no gray) through 9 for the darkest color. The yellowness scale ranges from 0 for the lightest color (no yellow) to 9 for the yellowest color. In other words, the larger the number reported the darker or yellower the cotton becomes. The relationship of these new cotton color scales to Rd and +b values and to the color of the Universal Grade Standards for upland cotton is shown in Figure 2 and for American Pima cotton in Figure 3.

The color of raw cotton is also reported as a single index number. The relationship of the index number to Rd and +b and the color of the Universal Grade Standards for upland cotton is shown in Figure 4.

Fig. 2--Colorimeter diagram for upland cotton

Fig. 3--Colorimeter diagram for American Pima cotton

Fig. 4--Conversion diagram for converting raw cotton color to color index

Nonlint content for the various lots was determined by the use of the Shirley Analyzer which separates the lint from the foreign matter. The total nonlint values reported include both visible and invisible loss. These results are distinguished from total picker and card waste in that practically no fiber is included, whereas textile mill wastes include appreciable amounts of fiber. Tests performed in previous years show the following average relationship of Shirley Analyzer nonlint to grade:

American upland grade	Code	Average nonline content (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	1.8 2.3 3.0 4.2 5.5 6.7

Data source - 5561 American upland lots tested from crops of 1966-68.

The following scale has been developed to represent the average nonlint content for grades of American Pima cotton:

grade	content (percent)
_	
1	2.0
2	2.5
3	3.0
4	4.1
5	5.4
6	6.3
7	8.4
8	9.9
9	12.2
3 4 5	2.5 3.0 4.1 5.4 6.3 8.4 9.9

Data source - 431 American Pima lots tested from the crops of 1966-68.

Differences between results obtained for individual lots and the average percentages shown for the grades may be caused by: (1) Grade is a combination of color, leaf and preparation; any one of which may be the limiting factor, (2) there is a range of trash allowable within each specific grade and (3) these data are based on weight and do not take into consideration the nature of the trash, which may be as important as weight in determining the final grade.

Yarn Processing Tests

The results of yarn processing tests reported in this summary were obtained by procedures adopted in 1962 which include heavier weights for laps, slivers and rovings than those used in previous years. These procedures also include spinning from single roving instead of double roving for the two standard yarn numbers and the spinning of a third yarn number on all the samples to provide a small-scale measure of spinning end-breakage or spinning performance. In 1965, metallic card clothing was installed on the carding machines to replace the conventional fillet clothing used previously, and in 1966, crusher rolls were installed on the card machines. These changes reflect similar changes that have taken place in the cotton textile industry including increased emphasis on running quality since the Mid-1940's when long-draft systems were adopted for both the roving and spinning processes in the routine laboratory spinning test procedures. These changes were designed to bring the laboratory processing procedures more in line with current textile mill practices and thus make the processing evaluations more applicable to present day mill operations.

The card production rate employed and the yarn numbers spun for each cotton were selected on the basis of the staple length expected in the specified area of growth as described in the earlier section on test procedures. Four different length groupings were used to cover the range of cottons grown in this country and to approach commercial practices in processing these cottons. The spinning twist multipliers were selected to provide maximum yarn strength on the basis of staple length. Details of the spinning test procedures are shown at the end of this section of the report (Table 25). Results of previous tests show that decreasing the card production rate results in fewer neps, improved yarn appearance grades, and removal of more waste at the card. Results of tests on the various lots should therefore be compared directly for only those lots in the same length group which were processed in a comparable manner.

Manufacturing waste reported for a sample of cotton is important because excessive waste increases the cost of cotton products. The percentage of waste extracted by the picking and carding processes in performing a spinning test provides a measure of manufacturing waste. There is an average relationship between this waste and grade as discussed in the previous section on the grade of cotton. The rate at which the cotton is carded, however, affects the picker and card waste values because the more thorough carding action obtained when the carding rate is decreased extracts a larger quantity of waste. The longer staple cottons are generally carded at a lower rate than the shorter cottons in order to obtain acceptable yarn quality. Tests performed in recent years show the following average relationship of picker and card waste to grade:

American upland grade	Code	Average picker and card waste (percent)	American Pima	Average picker and card waste (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	4.7 5.1 5.7 6.7 7.8 8.9	1 2 3 4 5 6 7 8	7.5 7.9 8.4 9.5 10.8 11.7 13.7 15.2

Data source - 5561 samples of American upland cotton and 431 samples of American Pima cotton tested for Shirley Analyzer nonlint content from the crops of 1966-68 and picker and card waste calculated from its relationship to Shirley Analyzer nonlint content.

The percentage of waste removed by the comber is reported in addition to the picker and card waste for cottons processed into combed yarn. The shorter staple cottons are processed through the comber with a closer setting than for the longer staple cottons because smaller comber waste percentages are usually extracted from this cotton in commercial practice.

Yarn strength is perhaps the most important and reliable test of yarn quality. Yarn strength not only determines the range of usefulness of a given cotton, but is also an indication of spinning and weaving performance. Yarn strength is reported in terms of skein strength since studies have shown that such strength values are more closely related to fabric strength as well as to fiber properties than single strand yarn strength. Skein strength data for the two numbers spun are reported for each lot. There is an average relationship between yarn strength and staple length but it varies for the individual cottons because of differences in other characteristics of the fiber.

The following descriptive terms may be of help in determining the relative level of yarn strength in this report:

Kind of yarn, staple length group and description	Yarn skein str in pounds for specified yarn	the
Carded yarns: Short staple group: Low Average High	8s 265 - 290 291 - 316 317 - 342	22s 78 - 86 87 - 95 96 - 104
Medium staple group:	22s	50s
Low	95 - 104	30 - 35
Average	105 - 114	36 - 41
High	115 - 125	42 - 47
Long staple group:	22s	50s
Low	125 - 131	45 - 48
Average	132 - 138	49 - 52
High	139 - 145	53 - 56
Combed yarns: Long staple group: Low Average High	22s 142 - 149 150 - 157 158 - 165	50s 52 - 55 56 - 59 60 - 63
Extra-long staple group:	<u>50s</u>	80s
Low	66 - 68	36 - 37
Average	69 - 71	38 - 39
High	72 - 74	40 - 41

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn elongation results were obtained in connection with yarn skein strength tests. Elongation in the yarn is highly correlated with fiber elongation. Yarns with high elongation give less end breakage in weaving than yarns with low elongation.

The following descriptive terms may be of some help in determining the relative levels of yarn elongation:

Kind of yarn, staple length group, and description	Yarn elonga in percent f specified yarn	or the
Carded yarns: Short staple group: Low Average High	8s 6.5 - 7.3 7.4 - 8.1 8.2 - 9.0	22s 5.5 - 6.2 6.3 - 7.0 7.1 - 7.8
Medium staple group: Low Average High	22s 5.4 - 5.9 6.0 - 6.5 6.6 - 7.1	50s 4.0 - 4.5 4.6 - 5.1 5.2 - 5.7
Long staple group: Low Average High	22s 6.2 - 6.5 6.6 - 6.9 7.0 - 7.3	50s 5.2 - 5.4 5.5 - 5.7 5.8 - 6.0
Combed yarns: Long staple group: Low Average High	22s 6.6 - 6.9 7.0 - 7.3 7.4 - 7.7	50s 5.5 - 5.7 5.8 - 6.0 6.1 - 6.3
Extra-long staple group: Low Average High	50s 5.6 - 5.8 5.9 - 6.1 6.2 - 6.4	80s 4.6 - 4.8 4.9 - 5.1 5.2 - 5.4

Data source - 291 short staple, 1206 medium staple and 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance refers to the relative evenness, smoothness and freedom from foreign material of the yarn as evaluated by a visual comparison of the yarn with the latest standards adopted by the American Society for Testing and Materials. Since appearance is very important in many types of cotton products, high yarn appearance grades are desirable. The following descriptive terms may be of help in determining the relative levels of yarn appearance in this report.

Kind of yarn, staple length group, and description	Yarn appear for t specified ya	he
Carded yarns: Short staple group: Low Average High	$\frac{8s}{105 - 113}$ $114 - 122$ $123 - 130$	22s 92 - 104 105 - 117 118 - 130
Medium staple group: Low Average High	22s 93 - 105 106 - 118 119 - 130	<u>50s</u> 77 - 87 88 - 98 99 - 109
Long staple group: Low Average High	22s 71 - 86 87 - 102 103 - 118	<u>50s</u> 65 - 78 79 - 92 93 - 106
Combed yarns: Long staple group: Low Average High	22s 81 - 97 98 - 114 115 - 130	50s 70 - 85 86 - 101 102 - 117
Extra-long staple group: Low Average High	50s 102 - 111 112 - 121 122 - 130	80s 98 - 106 107 - 115 116 - 124

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance Grades

Grade	Index
А	130
B+	120
В	110
C+	100
C	90
D+	80
D	70
Below D	60

Yarn imperfections are reported for the two yarn numbers spun for each lot of cotton. These results were obtained on "Neptel" instruments which electronically count the abrupt changes in the silhouette of the yarn while passing it through a beam of light. They are expressed as the number of imperfections per 50 yards of yarn and are based on the average of 10 determinations. This value is an instrument measure of product quality which is associated with the characteristics of the cotton. It is more highly correlated with fiber properties than either neps in card web or yarn appearance grade. The following descriptive terms may be of help in determining the relative level of yarn imperfections in this report:

Kind of yarn, staple length group,	Yarn imperf for th	
and description	specified yar	n numbers
Carded yarns: Short staple group: Low Average High	8s 6 - 31 32 - 57 58 - 83	22s 6 - 21 22 - 37 38 - 53
Medium staple group: Low Average High	22s 3 - 15 16 - 28 29 - 41	50s 2 - 11 12 - 21 22 - 31
Long staple group: Low Average High	<u>22s</u> 7 - 22 23 - 38 39 - 54	50s 6 - 17 18 - 29 30 - 41
Combed yarns: Long staple group: Low Average High	22s 0 - 8 9 - 20 21 - 32	<u>50s</u> 0 - 6 7 - 16 17 - 26
Extra-long staple group: Low Average High	50s 0 - 1 2 - 3 4 - 5	80s 0 - 1 2 - 3 4 - 5

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Spinning potential yarn number indicates the finest yarn number that can be spun from a cotton sample without any end-breakage when using specific processing procedures. In performing these tests, new travelers, draft gears, and twist gears are installed for the selected yarn number and it is spun for a 15-minute trial period. The yarn number selected is considered acceptable if there is an end-breakage involving 5 to 15 of the 96 spindles employed during the trial run. If end-breakages occur on less than 5 or more than 15 of the 96 spindles during the trial period, a different yarn number is selected to be spun for another 15-minute trial period until the acceptable end-breakage rate is obtained. The acceptable trial period is also used for a warm-up period which is followed by a 1-hour test period. The spinning potential yarn number is calculated from the deviation of the actual yarn number spun from the desired yarn number and the number of spindles with endbreakages during the 1-hour test run. The following descriptive terms may be of help in determining the relative level of spinning potential yarn numbers in this report:

Spinning Potential (SPY No.)

	Short staple group	Medium staple group	Long staple group
Low	31 - 39	55 - 63	77 - 83
Average	40 - 48	64 - 72	84 - 90
High	49 - 57	73 - 81	91 - 97

Data source - 123 short staple, 688 medium staple and 48 long staple lots of cotton tested from the crops of 1967-68.

Chemical Finishing Tests

Information with respect to the bleaching and dyeing properties of different varieties and growths of cotton is of particular significance to textile manufacturers from the standpoint of providing a basis for avoiding problems that may result from blending different varieties and growths having different dyeing properties. Data with respect to the chemical finishing properties of the principal varieties and growths of cotton as herein reported may thus be used as a basis for selecting cottons of similar finishing properties. Details of the chemical finishing tests are described in Agricultural Information Bulletin No. 167 - "Bleaching, Dyeing, and Mercerizing Test Results on Some Varieties of Cotton Grown by Selected Cotton Improvement Groups, Crop of 1955".

Color measurements of cotton yarn samples were made on a Gardner Automatic Color Difference Meter. These values are reported in terms of Rd and b, two of the three scales on the instrument. The $R_{\rm d}$ scale measures percentages of diffuse reflectance from 0 to 100. The b scale provides a measure of yellowness in the direction of +b and of blueness in the direction of -b. The degree of either yellowness or blueness increases as the scale numbers increase. These data when plotted with $R_{\rm d}$ on the vertical ordinate and with

b on the horizontal ordinate are similar to the color values for raw cotton when plotted in relation to the official grade standards as described in the earlier section on color of raw stock.

While the color factors R_d and b are not independent of each other and should be considered together in any overall interpretation, for many purposes it would be convenient in evaluating results to have them in terms of a single number. For raw cotton the grade index provides one way to do this in a straightforward manner. A similar method has been followed in developing conversion formulae and diagrams for each form of cotton measured for color as a part of the chemical finishing studies of the Cotton Division. In each, the index for Middling is held at 100 and that for Good Ordinary is held close to 70. By use of such indices the color measurements of raw stock, gray yarns, bleached yarns, and bleached and dyed yarns may be converted to a single number specification. For details see "Grade and Color Indexes Developed for Evaluating Results of USDA Cotton Finishing Tests", (AMS-245, June 1958).

Table 25 .-- Cotton: Standard machine settings and specifications for processing specified staple length groupings

	Process	Staple length groups			
		Short	Medium	Long	Extra long
1.	PICKER Standard atmospheric conditions: Temperaturedegrees F. Relative humiditypercent Each test lot is processed through a finisher type	75 60	75 60	75 60	75 60
	picker twice to produce the specified weight of lapounces per yard Type of beater	14 Kirschner 1,000	14 Kirschner 1,000	14 Kirschner 1,000	ll Kirschner 1,000
	Feed roll to beaterinches Grids to beater, topinches Grids to beater, bottominches	3/16 5/16 11/16	3/16 5/16 11/16	3/16 5/16 11/16	3/8 9/16 11/16
2.	CARP Standard atmospheric conditions: Temperature	75 60 14 50 12-1/2 11 165 2-7/8 435	75 60 14 50 9-1/2 8 165 2-7/8 435	75 60 14 50 6-1/2 6 165 2-7/8 435	75 60 11 40 4-1/2 165 2-7/8
	Clothing: Cylinder, Hollingsworth metallic	35 29 110 0.010 .012 .010 .029 .017 .007 .009 .029 .034 .029 .034 .007 .029	35 29 110 0.010 .012 .010 .029 .017 .007 .009 .029 .034 .009 .029 .034 .009 .029	25 29 130 0.010 .012 .010 .029 .017 .007 .009 .034 .029 .034 .029 .034 .029	25 29 130 0.017 .012 .010 .029 .017 .007 .009 .034 .029 .034 .029 .034 .029
3.	Standard atmospheric conditions: Temperature	 	:: ::	75 60 50 595 46	75 60 40 525 46
	Roll settings (center to center): First to secondinches plus fiber length 1/ Second to thirdinches plus fiber length 1/			5/16 9/16	5/16 9/16

^{1/} Allowances listed are in addition to fiber lengths in terms of "pulls" made on card sliver. These pulls are estimated from Fibrograph length tests except for extra long staple cottons.

Table 25 .--Cotton: Standard machine settings and specifications for processing specified staple length groupings--Continued

	Process	Staple length groups			
	Process	Short	Medium	Long	Extra long
4.	RIBBON LAPPER (combed only)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	60
	Laps fed, 4grains per yard Laps deliveredgrains per yard			595 610	525
	Speedyards per minute			47	610 47
	Roll settings (center to center):			71	41
	First to secondinches plus fiber length 1/			4/16	4/16
	Second to thirdinches plus fiber length 1/1 Third to fourthinches plus fiber length 1/1			7/16	7/16
	initia to four themself in their fength if			10/16	10/16
5.	COMBER (Model D-4)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent Laps fed, 8 eachgrains per yard			60 610	60 610
	Sliver deliveredgrains per yard			50	40
	Production per hourpounds			<u>16</u>	13
	Setting of cushion plate to detaching rollinches			.48	•54
	Nominal wastepercent			16 to 17	16 to 17
6.	DRAWING FRAME (synthetic top rolls) Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent First process:	60	60	60	60
	Sliver fed, 6 eachgrains per yard	50	50	50	40
	Sliver deliveredgrains per yard	60	53	53	42
	Second process: Sliver fed, 6 eachgrains per yard	60	53	52	42
	Sliver deliveredgrains per yard	70	55	53 55	44
	Speedyards per minute	36	<u>3</u> 6	36	36
	Roll settings (center to center):				
	First to secondinches plus fiber length 1/	4/16	4/16	4/16	4/16
	Second to thirdinches plus fiber length $\frac{1}{2}$ / Third to fourthinches plus fiber length $\frac{1}{2}$ /	7/16 10/16	7/16 10/16	7/16 10/16	7/16 10/16
		10/10	10/10	10/10	10/10
7.	LONG DRAFT ROVING (8 x 4, 2 apron type)				
	Standard atmospheric conditions: Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Sliver fedgrains per yard	70	55	55	1414
	Roving deliveredhank	1.10	1.80	1.80	4.25
	Spindle speed	1235	1235	1235	1235
	First to second, standardinches	2-1/4	2-1/4	2-1/4	2-1/4
	Third to fourthinches plus fiber length 1/	1/4	1/4	1/4	1/4
8.	LONG DRAFT SPINNING (2 apron type)				
	Standard atmospheric conditions: Temperaturedegrees F.	75	75	75	75
	Relative humidity	65	65	65	65
	Roving fed singlehank	1.10	1.80	1.80	4.25
	Twist multipliernumber	4.4	4.0	3.8	3.6
	Carded yarnsnumber 2/	8s & 22s	22s & 50s	22s & 50s	FO: 90-
	Combed yarnsnumber Spindle speed	9000	9000	22s & 50s 9000	50s & 80s 9000
	Roll settings (center to center):	3000	9000	3000	3000
	First to second, standardinches	2-1/16	2-1/16	2-1/16	2-1/16
	Second to third, standardinches	1-3/4	1-3/4	1-3/4	1-3/4

^{2/} Additional yarn is spun on a 96 spindle wide gage frame at 9,000 r.p.m. spindle speed to determine the spinning potential yarn number or the finest yarn number that can be spun without end-breakage.

^{3/} All standard yarn numbers are spun on narrow gage frames with spindle speeds of 9,000 r.p.m. except for 8s, which are spun on a wide gage frame with spindle speed of 5,500 r.p.m.

