

Introduction

"It's impossible to make generalizations about the foundry industry."

— Individual recovering from failed startup,

December 2016

The Metal Casting Industry

- \$32 billion of castings sold in the US in 2014
- 12 million tons poured in 2014 in the US
- 90% of manufactured goods contain cast metal parts
- Rule of thumb: never more than 10ft from a casting

Why is it Interesting?

- Qualified process
- Diverse materials
- Well-understood constraints
- Few scale and geometry constraints
- More economically feasible than most metal printing technologies
- Widely distributed infrastructure

Goals

- Extract high level demographic information (who, what, where)
- Identify most popular value add engineering processes
- Identify most widely poured alloys
- Develop a model for classifying foundry processes based on alloys poured
- Apply classwork

Modeling Approach & Data

Data Source:

American Foundry Society membership index records

Modeling Approach:

- Geographic plotting
- Correlations across categorical variables
- Logistic regression across alloys to categorize foundry type

Data

Feature	Туре	Description
Name	String	Name of the company
Zip	Int, categorical	Zip code
State	String, categorical	State
Country	String, categorical	Country
Employees	Int	Number of employees
Casting Size (From)	Float	Smallest casting size serviced by foundry
Casting Size (To)	Float	Largest casting size serviced by foundry
Casting Processes	String, categorical	The different processes undertaken by the foundry
Metals	String, categorical	The different alloys poured by the foundry
Value Added Processes	String, categorical	Value add engineering processes offered by the foundry

High Level Insights

- Michigan hosts highest number of foundry workers
- Midwest closely behind
- Tracks Midwestern heavy industries (automotive mining, rail)
- Majority of industry is sand casting
- Most popular alloys are cast Ductile and Gray Iron

Foundry Workers by State

Process, Value Add Engineering, and Alloys: Insights

0.90

0.75

0.60

0.45

0.30

0.15

0.00

-0.15

0.30

alloy Other Nonferrous alloy_Red/Yellow Brass/Tin-Bronze alloy Superalloys alloy_Iitanium alloy_Zinc-Base

Process, Value Add Engineering, and Alloys: Insights

Casting process vs. value add engineering

Casting process vs. alloy

Value add engineering vs. alloy

Like vs. like

-0.30

0.75

0.60

0.45

0.15

0.00

alloy Other Nonferrous alloy_Red/Yellow Brass/Tin-Bronze alloy Superalloys alloy_Titanium alloy_Zinc-Base

Process, Value Add Engineering, and Alloys: Insights

Little correlation between casting process and value add engineering

0.60

0.45

0.15

0.00

-0.30

Some alloys are poured by a specific process.

Value add engineering vs. alloy

Like vs. like

Abrasion Resistant Iron Aluminum Copper (200 Series) Aluminum Magnesium (500 Series) Aluminum Silicon (300 Series) Aluminum Silicon (400 Series) Austempered Ductile Iron Carbon Steel Cobalt-Base Compacted Graphite Iron Corrosion Resistant Iron Corrosion Resistant Steel Ductile Iron Gray Iron Heat Resistant Iron Heat Resistant Steel High Copper Alloys Low Alloy Steel Magnesium Malleable Iron Manganese Steel Mn/Al-Si Bronze + Cu-Ni Alloys Nickel-Base Other Aluminum Other Cast Irons Other Cast Steel Other Copper-Base Alloys Other Nonferrous Red/Yellow Brass/Tin-Bronze Superalloys

Alloys: Insights

0.90
0.75
0.60
0.45
0.30
0.15
0.00

-0.15

-0.30

- Ferrous (Iron-based)
 alloys typically offered
 together
- Aluminum alloys offered together
- Iron foundries appear to specialize

Casting Processes: Insights

- Diecasting and sand casting have a modest negative correlation.
- Investment casting variants are typically found together.

Value Add Processes: Insights

- Few strong relationships
 many processes
 offered together
- If a foundry offers rough machining, they almost always offer finish machine too

Conclusions & Next Steps

Take Aways

- Not a great dataset for classification— logistic regression was noisy, dataset was small
- Some trends between processes and alloys
- Pronounced trends amongst alloys

Next Steps

- Source automotive, aerospace, labs-based turbine data
- Longitudinal data