

	Skylab (1)	
Aufgabennummer: B_063		
Technologieeinsatz:	möglich □	erforderlich 🗵

In der US-amerikanischen Weltraumstation *Skylab* wurde in den 1970er-Jahren eine Reihe von naturwissenschaftlichen Experimenten durchgeführt.

Im Weltraum ist ein Objekt schwerelos, seine Masse bleibt aber unverändert. Die Masse kann im Weltraumlabor mithilfe einer frei aufgehängten Feder bestimmt werden. Hängt man ein Objekt an die Feder, so hängt die Schwingungsfrequenz des Federpendels von der Masse ab.

$$T = \frac{1}{f} \qquad T = 2\pi \cdot \sqrt{\frac{m}{k}}$$

T... Schwingungsdauer in Sekunden (s)

f... Frequenz in Hertz (Sekunden⁻¹ (s⁻¹))

m ... Pendelmasse in Kilogramm (kg)

k ... Federkonstante in Newton pro Meter (N/m)

- a) Stellen Sie die Abhängigkeit der Masse m von der Frequenz f im Intervall [0,4; 3,4] jeweils für die Federkonstanten k_1 = 600 N/m und k_2 = 300 N/m in einem Koordinatensystem dar.
 - Beschreiben Sie die Eigenschaften der Potenzfunktionen.
 - Interpretieren Sie den Einfluss der Federkonstanten k auf die Schwingungsfrequenz f unter der Voraussetzung, dass m konstant bleibt.
- b) In der Weltraumstation *Skylab* wurde unter anderem auch die Masse eines Astronauten bestimmt.

Die Frequenz der Feder mit angehängter Masse m_1 , aber ohne Astronaut betrug f_1 . Die Frequenz der Feder, an die zusätzlich zur Masse m_1 der Astronaut gehängt wurde, betrug f_2 .

– Dokumentieren Sie in Worten, wie man mithilfe der oben angegebenen physikalischen Zusammenhänge ausgehend von den gemessenen Frequenzen f_1 und f_2 eine Formel für die Masse des Astronauten ermitteln kann.

Skylab (1)

c) In einem Experiment zur Teilchenphysik wurde die Neutronenflussdichte ϕ in der Weltraumstation mithilfe von mehreren Neutronendetektoren gemessen.

Man kann davon ausgehen, dass die Neutronenflussdichte in der Raumstation normalverteilt ist mit den Parametern $\mu = 52$ cm⁻²s⁻¹ und $\sigma = 3$ cm⁻²s⁻¹.

(Die Neutronenflussdichte ϕ ist die Anzahl der pro Zeiteinheit t durch eine Flächeneinheit hindurchtretenden Neutronen. Ihre übliche Maßeinheit ist Neutronen pro Quadratzentimeter und Sekunde (cm⁻²s⁻¹).)

- Interpretieren Sie die in der obigen Gauß'schen Glockenkurve schraffierte Fläche, indem Sie das zugehörige Ereignis in Worten beschreiben.
- Berechnen Sie die Wahrscheinlichkeit dieses Ereignisses.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Skylab (1)

Möglicher Lösungsweg

a)
$$k_1 = 600 \text{ N/m}$$
: $m_1(f) = \frac{150}{\pi^2 f^2}$
 $k_2 = 300 \text{ N/m}$: $m_2(f) = \frac{75}{\pi^2 f^2}$

Es handelt sich um Potenzfunktionen mit geraden, negativen Exponenten. Ihre Graphen sind Hyperbeln.

Bei gleicher Masse ist die Schwingungsfrequenz f bei kleinerer Federkonstante geringer.

b) Ausgehend von der Formel $\frac{1}{f}=2\pi\cdot\sqrt{\frac{m}{k}}$ stellt man die Formeln für die Massen m_1 und m_2 auf:

Masse ohne Astronaut: $m_1 = k \cdot \left(\frac{1}{2\pi \cdot f_1}\right)^2$

Masse mit Astronaut: $m_2 = k \cdot \left(\frac{1}{2\pi \cdot f_2}\right)^2$

Aus der Differenz lässt sich die Formel für die Astronautenmasse berechnen:

$$m = m_2 - m_1 = \frac{k}{4\pi^2} \cdot \left(\frac{1}{f_2^2} - \frac{1}{f_1^2}\right)$$

c) Es handelt sich um das Ereignis, dass die an einem zufälligen Ort gemessene Neutronendichte in der Raumstation zwischen 50 cm⁻²s⁻¹ und 55 cm⁻²s⁻¹ liegt.

$$P(50 < X < 55) = \phi(55) - \phi(50) = 0.8413... - 0.2524... = 0.5888... \approx 58.9 \%$$

Skylab (1) 4

Klassifikation

Klassilikation		
☐ Teil A ☑ Teil B Wesentlicher Bereich der Inhaltsdimension:		
a) 3 Funktionale Zusammenhängeb) 2 Algebra und Geometriec) 5 Stochastik		
Nebeninhaltsdimension:		
a) — b) — c) —		
Wesentlicher Bereich der Handlungsdimension:		
a) C Interpretieren und Dokumentierenb) B Operieren und Technologieeinsatzc) C Interpretieren und Dokumentieren		
Nebenhandlungsdimension:		
a) A Modellieren und Transferieren, B Operieren und Technologieeinsatzb) A Modellieren und Transferierenc) B Operieren und Technologieeinsatz		
Schwierigkeitsgrad: Punkteanzahl:		
a) mittel b) mittel c) mittel c) 2 c) 2		
Thema: Physik		
Quelle: http://history.nasa.gov/SP-401/sp401.htm		