Chapitre 5

Opérations sur les tenseurs

Sommaire

5.1	Introduction	18
5.2	Addition et multiplication par un scalaire	18
5.3	Produit tensoriel	18
5.4	Contraction	18
5.5	Produit Contracté	19
5.6	Tenseur symétrique et anti-symétrique	19

5.1 Introduction

On peut définir des opérations entre les tenseurs qui donnent comme résultat un tenseur. D'une manière pratique, on retrouve en physique une signification à ces opérations.

Remarque : Dans toutes les démonstrations, on utilise des tenseurs d'ordre 2 par simplicité et on fait un choix arbitraire de composantes contravariantes.

5.2 Addition et multiplication par un scalaire

Soit T et V, 2 tenseurs et $\alpha \in \mathbb{R}$, on obtient :

$$\alpha.\left(T + V\right) = \alpha.\left(T^{ij} + V^{ij}\right) \overrightarrow{e_i} \otimes \overrightarrow{e_j}$$

5.3 Produit tensoriel

Il a déjà été étudié dans les paragraphes précédents mais on montre que :

$$\underset{\sim}{T} \otimes \underset{\sim}{V} = \underset{\sim}{W} = T^{ij} V^{kl} \overrightarrow{e_i} \otimes \overrightarrow{e_j} \otimes \overrightarrow{e_k} \otimes \overrightarrow{e_l}$$

ou

$$\underset{\sim}{T} \otimes \underset{\sim}{V} = \underset{\sim}{W} = W^{ijkl} \overrightarrow{e_i} \otimes \overrightarrow{e_j} \otimes \overrightarrow{e_k} \otimes \overrightarrow{e_l}$$

où T et V appartiennent à l'espace des tenseurs d'ordre 2 et W appartient à l'espace des tenseurs d'ordre 4.

5.4 Contraction

 1^{er} exemple Soit un tenseur d'ordre $4\,A^{lm..}_{..rs}$ dans un espace vectoriel de dimension 3. La contraction par rapport au 1^{er} indice et dernier indice consiste à définir un nouveau tenseur en prenant 1 = s, soit $A^{lm..}_{..rl}$. Cette opération conduit à supprimer 2 indices et donnent un tenseur d'ordre 2, B tel que :

$$B_{..r}^{m..} = A_{..rl}^{lm..} = A_{..r1}^{1m..} + A_{..r2}^{2m..} + A_{..r3}^{3m..}$$
(5.1)

 $2^{\grave{e}me}$ exemple Soit un tenseur du $2^{\grave{e}me}$ ordre : $S = S_r^m \overrightarrow{e_m} \otimes \overrightarrow{e^r}$. La contraction par rapport à l'indice m et r donne :

 $S_m^m = S_1^1 + S_2^2 + S_3^3 = \text{scalaire appelé trace du tenseur.}$

$$S_m^m = trace\left(S\right) \tag{5.2}$$

Puisque $trace\left(S\right)$ est un scalaire, il ne dépend pas du système d'axe choisi : on dit que cette grandeur est un invariant.

5.5 Produit Contracté

Le produit contracté est un produit de tenseur dans lequel on contracte également les indices.

 1^{er} exemple : cas des vecteurs (produit scalaire) : $\overrightarrow{x} \cdot \overrightarrow{y} = x^i y_i \longrightarrow \text{produit } 1$ fois contracté de vecteurs.

 $2^{\hat{e}me}$ exemple : cas des tenseurs d'ordre 2 :

– On admet que le produit 1 fois contracté de tenseurs du $2^{\grave{e}me}$ ordre donne : S.T=W tel que :

$$\begin{cases} W^{ij} &= S^{il}T_l^j = S^{i1}T_1^j + S^{i2}T_2^j + S^{i3}T_3^j = S_l^i T^{lj} \\ ou \\ W_i^j &= S_i^l T_l^j = S_i^l T^{lj} \\ ou \\ W_{ij} &= S_i^l T_j^l = S_i^l T_{lj} \end{cases}$$

Par contre, on a : $S.T \neq T.S$ que l'on peut « pré-sentir » par le fait que la multiplication entre matrices n'est pas commutative.

 On admet que le produit 2 fois contracté de tenseurs du 2^{ème} ordre correspond à un produit scalaire. On a 2 définitions possibles, suivant la notation utilisée :

En général : $T^{ij}S_{ij} \neq T^{ij}S_{ji}$

Remarque : Grâce au produit contracté, on peut définir un tenseur d'ordre 2 comme un opérateur linéaire sur les vecteurs. Par exemple, on peut définir un tenseur T tel que :

$$\forall \overrightarrow{x} \in E, \exists \quad T \quad | : \overrightarrow{x} \longrightarrow \overrightarrow{y} = T.\overrightarrow{x}$$

$$y^i = T^{ij}x_j$$

Ce produit 1 fois contracté permet de passer d'un vecteur \overrightarrow{x} à un autre vecteur \overrightarrow{y} .

5.6 Tenseur symétrique et anti-symétrique

- Tenseur symétrique du 2^{ème} ordre

$$T \ est \ symetrique \iff \left\{ egin{array}{ll} T^{ij} &=& T^{ji} \\ & ou \\ T^{i.}_{.j} &=& T^{j.}_{.i} &=& T^{.j}_{i.} \\ & ou \\ T_{ij} &=& T_{ji} \end{array} \right.$$

- Tenseur anti-symétrique du 2^{ème} ordre :

$$T \quad est \quad anti-symetrique \iff \begin{cases} T^{ij} = -T^{ji} \\ ou \\ T^{i}_{.j} = -T^{j}_{.i} \\ ou \\ T_{ij} = -T_{ji} \end{cases}$$

 Cas d'un tenseur d'ordre > 2 Un tenseur peut être symétrique ou anti-symétrique par rapport à une paire d'indice :

 $T^{ijk} = T^{kji}$ (symétrie par au 1^{er} indice et $3^{\grave{e}me}$ indice).