Discrete Models in Applied Mathematics

AMATH 343

Edward R. Vrscay

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of AMATH 343 during Fall 2021 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Contents

Preface			
1	Intr	oduction	3
	1.1	Radioactive Decay	3
	1.2	Population growth	4

Introduction

Discrete models are used to analyze or predict properties of a system over discrete time units t_k , k = 1, 2, ..., as opposed to analyzing it over a continuous time variable $t \in \mathbb{R}$.

In a simple example, where we model the population of a particular species of perennial plant in a given ecosystem, we can let p(n) be the number of plants in this system n years past this year, where $n \ge 0$. We can also use p_n for simplicity. Then the populations p_n may be viewed as elements of a sequence $\mathbf{p} = \{p_0, p_1, \ldots\}$.

1.1 Radioactive Decay

Imagine a rock containing a radioactive element "X". We denote $T_{1/2}$ the radioactive "half-life" of X. Then we have

If our sample contains a units of X at some time t, then only one-half the original amount, $\frac{1}{2}a$ units are present at time $t + T_{1/2}$.

We let x_k be the amount of X in our sample at $t_k = kT_{1/2}$, for k = 0, 1, 2, ...

The half-life property gives us

$$x_k = \frac{1}{2}x_{k-1}, \qquad k = 1, 2, 3, \dots$$
 (1.1)

(1.1) is an example of a **difference equation** in the variables x_k , k = 0, 1, 2, ... We abbreviate as "**d.e.**" in this course.

The expression $x_k = (1/2)^k x_0$ is the solution to (1.1) with initial condition x_0 .

We often interested in the **long-term** or **asymptotic** behavior of the sequence, i.e., $\{x_k\}$ with $k \to \infty$.

If now we assume x(t) is continuous, then x_k is the result of sampling at times t_k . In this and other applications, the sampling can be viewed as a "stroboscopic" examination of a certain physical property x(t) of a physical or biological system that evolves over time. Here we can use the true "radioactive decay low", i.e.,

[Rate of decay] proportional to [amount of radioactive substance present]

This leads to differential equation with decay constant k > 0 specific to X:

$$\frac{dx}{dt} = -kx,$$

and the solution to this DE satisfying the initial condition $x(0) = x_0$ is $x(t) = x_0 e^{-kt}$.

1.2 Population growth

The model of "Malthusian growth" is as follows:

[Rate of population growth] is proportional to [population at time t]

This yields the following DE

$$\frac{dx}{dt} = ax, \qquad a > 0$$

The solution to this DE satisfying the initial condition $x(0) = x_0$ is

$$x(t) = x_0 e^{at}$$
.

This DE represents a continuous dynamical model of population evolution.

The propagation of annual plants is better described by discrete models:

$$x_{n+1} = cx_n$$
,

for *c* some constant.

General questions regarding discrete mathematical models

Q1 Given $x_0, ..., x_n$ for some n > 0, can we determine x_{n+1} uniquely? How many of previous values do we need?

The simplest type of model is $x_n = f(x_{n-1})$ for n = 1, 2, ... We typically require f not only continuous in x but also increasing in x (for population model). Also we need f(0) = 0. This leads to the simplest case f(x) = cx.

Later in this course, the term discrete dynamical system will be used to refer to such models.

Q2 What's the behavior of the sequence $\{x_n\}$ as $n \to \infty$?

So here we analyze the asymptotic behavior of sequences $x_n = cx_{n-1}$, $n \ge 1$. The solution to DE with initial condition x_0 is $x_n = c^n x_0$, $n \ge 0$.

Case 1: c > 1, population grows monotonically without bound.

Case 2: c = 1, population remains constant.

Case 3: 0 < c < 1, population decreases monotonically with limit 0.

Index

D	discrete dynamical system 4
difference equation	