МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 6.10.4 Ядерный магнитный резонанс

Салтыкова Дарья Б04-105 **Цель работы:** вычислить магнитные моменты протона, дейтрона и ядра фтора на основе измерения их g-факторов методом ядерного магнитного резонанса (ЯМР).

1 Основные формулы

Фактор Ланде:

$$g_{\scriptscriptstyle \mathrm{H}} = \frac{hf_0}{\mu_{\scriptscriptstyle \mathrm{H}} B_0}.$$

Магнитный момент ядра:

$$\mu = g_{\scriptscriptstyle \rm H} \mu_{\scriptscriptstyle \rm H} I.$$

Ядерный магнетон:

$$\mu_{\text{\tiny H}} = \frac{e\hbar}{2m_p c} \approx 5,05 \cdot 10^{-27} \text{Дж} \cdot \text{Тл}^{-1}.$$

2 Экспериментальная установка

Рис. 1: Схема установки для изучения ядерного магнитного резонанса

В магнитном поле ядерные уровни расщепляются и под действием внешнего высокочастотного поля могут происходить электромагнитные переходы между компонентами расщепившегося уровня, это явление носит резонансный характер и потому называется ядерным магнитным резонансом. Различие по энергии между этими двумя соседними компонентами определяется формулой

$$\Delta E = g_{\mathrm{f}} \mu_{\mathrm{f}} B_0$$

$$f_0 = \frac{\Delta E}{h} = \frac{g_{\mathrm{f}} \mu_{\mathrm{f}} B_0}{h}$$

Схема экспериментальной установки представлена на рис. 1. Детектирование сигнала ЯМР осуществляется с помощью промышленного прибора. Модуляция магнитного поля осуществляется с помощью небольшой катушки, частота модуляции $\approx 50~\Gamma$ ц. В зазоре электромагнита

устанавливается холловский измеритель магнитного поля, а измерения ЯМР проводятся на резине (измеряется ЯМР на протонах), тефлоне (в состав входит фтор) и тяжелой воде.

3 Результаты измерений

Результаты измерений резонансной частоты и вычислений g-факторов и магнитных моментов представлены в таблице 1, а полученные осциллограммы на рис. 2.

Рис. 2: Осциллограммы

Тефлон (ЯМР на ядрах фтора)

Образец	f_0 , М Γ ц	B_0 , мТл	$g_{\scriptscriptstyle \mathrm{H}}$	I	μ , ед. $\mu_{\scriptscriptstyle \mathrm{H}}$	$\mu_{ ext{табл}}, ext{ед.}\mu_{ ext{s}}$
Вода	9,913	229	5,687	1/2	2,843	2,79
Резина	9,816	231	5,596	1/2	2,798	2,79
Тефлон	9,200	246	4,917	1/2	2,459	2,62
Дейтерий	3,317	526	0,829	1	0,829	0,857

Таблица 1: Результаты

Дейтерий (ЯМР на дейтронах)

4 Вывод

В ходе работы были методом ЯМР определены g-факторы и магнитные моменты протона, дейтрона и ядра фтора. Полученные данные согласуются с табличными. Заметим, что g-факторы

протона и ядра фтора близки, так как спин ядра фтора $1/2$. Это объясняется тем, что у фтора уровень $2s_{1/2}$ заполняется раньше.