Talking to satellites with open silicon

Thomas Parry

Fully open source amateur radio satellite transceiver.

Designed with open-source tools, in the SKY130 open-source PDK and all design files freely available on GitHub.

Targeting the QO-100 and future satellites.

Designed for the 2.4, 5.8 and 10.2 GHz bands.

Single chip solution RF-to-bits.

RF processing, data converters and digital baseband planned.

Typical Hetrodyne

System Architecture

The transceiver architecture consists of common functional blocks.

10-Bit 100 Msps Differential DAC

Current steering topology for high speed Dynamic element matching $306 \times 530 \ \mu m$

10-Bit 100 Msps Differential DAC

Current steering topology for high speed

Dynamic element matching

 $306 \times 530 \, \mu m$

Unit cell layout

Transimpedance quadrature upconverter.

Current mode inputs from DAC.

Baseband to L band conversion.

Single pole low pass filter.

Transimpedance quadrature upconverter.

Current mode inputs from DAC.

Baseband to L band conversion.

Single pole low pass filter.

Phase Locked Loop

Fractional-N with dithered noise shaping

Phase Locked Loop

Fractional-N with dithered noise shaping

Phase Locked Loop

Fractional-N with dithered noise shaping

LC VCO

8 GHz Colpitts topology

Simple RF Driver

External Resonant Circuit

Simple RF Driver

External Resonant Circuit

Bandgap Reference

Less than ±0.2% variation from −40 ∘ to 125 ∘

That's all.

Thanks for listening.

- yrrapt@gmail.com
- @yrrapt
- in Thomas Parry