CSE100: Design and Analysis of Algorithms Lecture 19 – Weighted Graphs

Apr 5th 2022

Dijkstra and Bellman-Ford

Today

What if the graphs are weighted?

- Part A: Dijkstra!
 - This will take most of today's class
- Part B: Bellman-Ford!
 - Real quick at the end!
 - We'll come back to Bellman-Ford in more detail, so today is just a taste.

Shortest path from COB1 to Pavilion?

Shortest path from COB1 to the Pavilion?

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
 - the cost of a path is the sum of the weights along that path
 - The shortest path is the one with the minimum cost.

- The **distance** d(u,v) between two vertices u and v is the cost of the shortest path between u and v.
- For this lecture **all graphs are directed**, but to save on notation I'm just going to draw undirected edges.

Warm-up

CSE 100 L19 9

• A sub-path of a shortest path is also a shortest path.

Single-source shortest-path problem

• I want to know the shortest path from one vertex (COB1) to all other vertices.

Destination	Cost	To get there
COB2	1	COB2
Kolligian	2	COB2-Kolligian
Annex	2	Annex
North Bowl	9	North Bowl
Pavilion	7	COB2-Kolligian-Pavilion
SE2	3	SE2
Lake Lot	16	COB2-Lake Lot

(Not necessarily stored as a table – how this information is represented will depend on the application)

Example

- "what is the shortest path from Palo Alto to [anywhere else]" using BART, Caltrain, lightrail, MUNI, bus, Amtrak, bike, walking, uber/lyft.
- Edge weights have something to do with time, money, hassle.

Example

Network routing

- I send information over the internet, from my computer to to all over the world.
- Each path has a cost which depends on link length, traffic, other costs, etc..
- How should we send packets?

traceroute to www.ethz.ch (129.132.19.216), 30 hops max, 60 byte page 1 169.236.151.2 (169.236.151.2) [AS22323] 0.339 ms 0.330 ms 0.32 10.7.1.177 (10.7.1.177) [*] 0.346 ms 0.307 ms 0.303 ms 3 10.7.2.2 (10.7.2.2) [*] 0.861 ms 0.883 ms 0.859 ms 4 10.7.2.18 (10.7.2.18) [*] 1.143 ms 1.067 ms 1.132 ms 5 10.7.1.226 (10.7.1.226) [*] 11.272 ms 11.308 ms 11.338 ms 6 hpr-tri-hpr3--ucm-10ge.cenic.net (137.164.27.113) [AS2152] 6.347 hpr-riv-hpr3--tri-hpr3-100g.cenic.net (137.164.25.93) [AS2152] 8 137.164.25.86 (137.164.25.86) [AS2152] 16.999 ms 17.022 ms 17.99 hpr-lax-hpr3--sdg-hpr3-100ge.cenic.net (137.164.25.90) [AS2152] 10 hpr-i2--lax-hpr3-r-and-e.cenic.net (137.164.26.201) [AS2152] 11 ae-5.4079.rtsw.wash.net.internet2.edu (162.252.70.158) [AS11537] internet2-gw.mx1.lon.uk.geant.net (62.40.124.44) [AS21320/AS2096]

ae6.mx1.lon2.uk.geant.net (62.40.98.37) [AS21320/AS20965] ae5.mx1.par.fr.geant.net (62.40.98.179) [AS21320/AS20965]

ae5.mx1.gen.ch.geant.net (62.40.98.182) [AS21320/AS20965]

swiBE3-100GE-0-1-0-1.switch.ch (130.59.37.145) [AS559]

swiBF1-100GE-0-0-0-1.switch.ch (130.59.39.78) [AS559]

swice1-100ge-0-3-0-1.switch.ch (62.40.124.22) [AS21320/AS20965] swiCE4-100GE-0-0-0-0.switch.ch (130.59.36.6) [AS559] 166.912 ms

swiEZ3-100GE-0-1-0-0.switch.ch (130.59.37.6) [AS559] 170.685 ms

rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) [AS559] 170.6 rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) [AS559] 170.666 ms 176

www.ethz.ch (129.132.19.216) [AS559] 170.325 ms 170.305 ms 17

169.068

Aside: These are difficult problems

- Costs may change
 - If it's raining the cost of biking is higher
 - If a link is congested, the cost of routing a packet along it is higher
- The network might not be known
 - My computer doesn't store a map of the internet
- We want to do these tasks really quickly
 - I have time to bike to Savemart, but not to think about whether I should bike to Savemart...

 This is a joke.
 - More seriously, the Internet.

But let's ignore them for now.

Dijkstra's algorithm

 Finds shortest paths from COB1 to everywhere else.

A vertex is done when it's not on the ground anymore.

YOINK! COB2 COB2 Kolligian Lake Union Lot

YOINK!

This creates a tree!

The shortest paths are the lengths along this tree.

How do we actually implement this?

Without string and gravity?

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

Initialize $d[v] = \infty$ for all non-starting vertices v, and d[COB1] = 0

 Pick the not-sure node u with the smallest estimate d[u].

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

Current node u

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate

Current node u

- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as **Sure**.
- Repeat

COB2 has three neighbors. What happens when we update them?

COB1 ∞ Kolligian COB₂ 15 **Pavilion** 10 Lake Lot

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate

Current node u

- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as **Sure**.
- Repeat

COB2 has three neighbors. What happens when we update them? COB₂

> 10 Lake Lot

15

COB1

Kolligian

Pavilion

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

Current node u

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from COB1?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(COB1,v).

Current node u

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

CSE 100 L19 37

Dijkstra by example

How far is a node from COB1?

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat
- After all nodes are sure, say that d(COB1, v) = d[v] for all v

Dijkstra's algorithm

Dijkstra(G,s):

- Set all vertices to not-sure
- d[v] = ∞ for all v in V
- d[s] = 0
- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - For v in u.neighbors:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
- Now d(s, v) = d[v]

As usual

- Does it work?
 - Yes.

- Is it fast?
 - Depends on how you implement it.

Why does this work?

Theorem:

- Suppose we run Dijkstra on G =(V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

• Proof outline:

Let's rename "COB1" to "s", our starting vertex.

- Claim 1: For all v, d[v] ≥ d(s,v).
- Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

Claims 1 and 2 imply the theorem.

Claim 2

When v is marked sure, d[v] = d(s,v).

- Claim 1 + def of algorithm
- $d[v] \ge d(s,v)$ and never increases, so after v is sure, d[v] stops changing.
- This implies that at any time after v is marked sure, d[v] = d(s,v).
 - All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Next let's prove the claims!

Claim 1 $d[v] \ge d(s,v)$ for all v.

Informally:

Every time we update d[v], we have a path in mind:

$$d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$$

Whatever path we had in mind before

The shortest path to u, and then the edge from u to v.

- d[v] = length of the path we have in mind
 - ≥ length of shortest path
 - = d(s,v)

Formally:

We should prove this by induction.

(See next slide or do it yourself)

CSE 100 L19 42

Claim 1 $d[v] \ge d(s,v)$ for all v.

- Inductive hypothesis.
 - After t iterations of Dijkstra,
 d[v] ≥ d(s,v) for all v.
- Base case:
 - At step 0, d(s, s) = 0, and $d(s, v) \le \infty$
- Inductive step: say hypothesis holds for t.
 - At step t+1:
 - Pick **u**; for each neighbor **v**:

So the inductive hypothesis holds for t+1, and Claim 1 follows.

Claim 2

When a vertex u is marked sure, d[u] = d(s,u)

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = d(s,v).
- Base case:
 - The first vertex marked sure is s, and d[s] = d(s,s) = 0. that the edge weights are non-negative, so there's no

(Note: we are assuming here that the edge weights are non-negative, so there's no way to sneakily get from s to s with cost less than zero!)

- Inductive step:
 - Suppose that we are about to add u to the sure list.
 - That is, we picked u in the first line here:
 - Pick the not-sure node u with the smallest estimate d[u].
 - Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
 - Repeat
 - Assume by induction that every v already marked sure has d[v] = d(s,v).
 - Want to show that d[u] = d(s,u).

Intuition

When a vertex u is marked sure, d[u] = d(s,u)

• The first path that lifts **u** off the ground is the shortest one.

But we should actually prove it.

YOINK!

Temporary definition:

v is "good" means that d[v] = d(s,v)

Claim 2 Inductive step

may or may not be sure.

CSE 100 L19 46

- Want to show that u is good.
- Consider a true shortest path from s to u:

True shortest path.

CSE 100 L19 47

Temporary definition:

v is "good" means that d[v] = d(s,v)

means not good

"by way of contradiction"

- Want to show that u is good. BWOC, suppose u isn't good.
- Say z is the last good vertex before u.
- z' is the vertex after z.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are

shortest paths. AND, also that $d(z,u) \ge 0$, since all of the edge-weights are non-negative!

Temporary definition:

v is "good" means that d[v] = d(s,v)

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are shortest paths.

Claim 1

• If d[z] = d[u], then u is good.

But u is not good!

• So d[z] < d[u], so z is **sure.**

We chose u so that d[u] was smallest of the unsure vertices.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

• Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are shortest paths.

Claim 1

• If d[z] = d[u], then u is good.

But u is not good!

• So d[z] < d[u], so z is **sure.**

We chose u so that d[u] was smallest of the unsure vertices.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

- Want to show that u is good. BWOC, suppose u isn't good.

• If z is sure then we've already updated z': $\frac{d[z'] \leftarrow min\{ \ d[z'], d[z] + w(z, z') \}}{d[z']}$

• $d[z'] \le d[z] + w(z,z')$ def of update

$$= d(s,z) + w(z,z')$$
 By induction when z was added to the sure list it had $d(s,z) = d[z]$

That is, the value of =d(S,Z') sub-paths of shortest paths are shortest paths d[z] when z was marked sure...

$$\leq d[z']$$
 Claim 1

So
$$d(s,z') = d[z']$$
 and so z' is good.

So u is good!

Claim 2

Back to this slide

When a vertex u is marked sure, d[u] = d(s,u)

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = dist(s,v).
- Base case:
 - The first vertex marked sure is s, and d[s] = d(s,s) = 0.
- Inductive step:
 - Suppose that we are about to add u to the sure list.
 - That is, we picked u in the first line here:
 - Pick the not-sure node u with the smallest estimate d[u].
 - Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
 - Repeat
 - Assume by induction that every v already marked sure has d[v] = d(s,v).
 - Want to show that d[u] = d(s,u).

Why does this work?

• Theorem:

- Run Dijkstra on G = (V,E) starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Proof outline:

- Claim 1: For all v, $d[v] \ge d(s,v)$.
- Claim 2: When a vertex is marked sure, d[v] = d(s,v).
- Claims 1 and 2 imply the theorem.

What have we learned?

 Dijkstra's algorithm finds shortest paths in weighted graphs with non-negative edge weights.

 Along the way, it constructs a nice tree.

- We could post this tree in COB1!
- Then people would know how to get places quickly.

