1.(a)

Nulová hypotéza: druh kriminality a nejvyšší dosažené vzdělání jsou nezávislé náhodné veličíny

Alternativní: druh kriminality a nejvyšší dosažené vzdělání jsou závislé náhodné veličíny

Vytvořme textový soubor s daty jako

Kriminalita.txt

48 31 22

10911

43 29 27

109 77 58

1087

696

> mosaicplot(Kriminalita)

L, 29L, 77L, 8L, 9L, 22L, 11L, 27L, 58L, 7L, 6L), .Dim = c(6L

b)

> chisq.test(Kriminalita)

Pearson's Chi-squared test

data: Kriminalita

X-squared = 5.9465, df = 10, p-value = 0.8197

P-hodnota je velmi vysoká 0.8197. Nezamítáme nulovou hypotézu. Na hladině významnosti menší než 0.8197 bychom ještě zamítali nulovou hypotézu.

c) Předpoklady: chisq je pouze asymptotický test,potřebujeme mít dostatečný počet teotetických četností. Teoretické četnosti musí být alespoň 5 v 80% případů, jinak staší aby byly větší než 1. R vyhazuje warning pokud alespoň jedna s těch teotetickýchčetností je méně než 5

2. a)

- > cesta<-"C:/Users/Serhii/Documents/Aplikovana_statistika_+_R/mladata.txt
- > mladata<-read.table(cesta, header = TRUE)
- > summary(mladata)

matka dite

Min. :45.95 Min. :2.490

1st Qu.:56.22 1st Qu.:3.027

Median: 59.94 Median: 3.410

Mean :60.46 Mean :3.483

3rd Qu.:64.92 3rd Qu.:3.777

Max. :74.96 Max. :5.660

> plot(mladata)

L, 29L, 77L, 8L, 9L, 22L, 11L, 27L, 58L, 7L, 6L), .Dim = c(6L

> cor(mladata, method = "pearson")

matka dite

matka 1.0000000 0.1617939

dite 0.1617939 1.0000000

> cor(mladata, method = "spearman")

matka dite

matka 1.0000000 0.1507756

dite 0.1507756 1.0000000

```
> cor(mladata, method = "kendall")
matka
       dite
matka 1.0000000 0.1140486
dite 0.1140486 1.0000000
Korelační koeficient je kladný, vztah je spíš korespondující - to znanená, že ANO vyšší vaha matky
způsobuje vyšší vahu dítě a naopak
Nulová hypotéza: váha dítěte nezávisle na hmotě matky
Alternativní: váha dítěte přímo závisí na váze matky, čím větší váha matky, tím větší váha dítěte
> lregrese<-lm(mladata$dite~mladata$matka)
> Iregrese
Call:
Im(formula = mladata$dite ~ mladata$matka)
Coefficients:
(Intercept) mladata$matka
   2.49921
              0.01626
> summary(Iregrese)
Call:
Im(formula = mladata$dite ~ mladata$matka)
Residuals:
  Min
         1Q Median
                         3Q Max
-0.99989 -0.45360 -0.05815 0.28639 2.21744
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.49921 0.60902 4.104 8.42e-05 ***
mladata$matka 0.01626 0.01002 1.623 0.108
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.6164 on 98 degrees of freedom
Multiple R-squared: 0.02618, Adjusted R-squared: 0.01624
F-statistic: 2.634 on 1 and 98 DF, p-value: 0.1078
```

0.01626 -> rostoucí lineární funkce

1 2	3	4	5	6	7 8	9			
-0.54604542 <u>!</u> 0.267666240			.2904774	465 0.29	06825620	-0.2687	31942 0	.370196695	0.076052011
10	11	12	13	14	15	16	17	18	
-0.101912063 0.112629824			.0701295	524 -0.82	28788555	1.1378	74337 0.	813982116	2.217437346 -
19	20	21	22	23	24	25	26	27	
0.443443987 0.488894590			.212170:	188 -0.33	35322003	3 -0.4394	78010 0	.166187117	-0.797273774
28	29	30	31	32	33	34	35	36	
0.531194461 0.288384926			1014307	'06 0.15	1683169	-0.23010	00294 -0.	684648767	-0.070319554
37	38	39	40	41	42	43	44	45	
0.18325869 ⁴ 0.112495483			.1560633	333 -0.04	15978254	-0.3192	42530 -0	.857947010	-0.148131538
46	47	48	49	50	51	52	53	54	
-0.140919193 0.521519756			.1734277	768 0.94	0706518	0.41309	96046 -0	.623561185	0.285721054
55	56	57	58	59	60	61	62	63	
-0.005322003 0.052406592			.4925409	933 0.12	6113520	0.05448	37043 -0.	393538540	-0.204323471
64	65	66	67	68	69	70	71	72	
-0.160964484 0.081587692			.2589909	991 -0.68	37577190	0.5724	73762 0	.626438815	-0.471121470
73	74	75	76	77	78	79	80	81	
0.088872869 1.831912987			.4477617	717 -0.09	92472838	3 1.3225	62813 0	.563258694	-0.098799113
82	83	84	85	86	87	88	89	90	
0.032187331 0.989035357			.8468084	477 -0.86	57296420	-0.0091	08189 -0	.590986364	0.035513881
91	92	93	94	95	96	97	98	99	
-0.150313893 0.174834060			.5273409	945 0.59	94840645	0.16604	46349 0.	237112051	0.509618936 -
100									

-0.127229249

> residuals(Iregrese)

> abline(lregrese,col="red", lwd = 2)

podminky pro regresni model jsou

- 1.nulova stredni hodnota rezidui:
- > barplot(residuals(lregrese), main="residuals")

Kolísaji kolem nuly

ostatni podminky na rezidua: nekorelovanost jednotlivych rezidui a stejny rozptyl.

- > qqnorm(residuals(lregrese))
- > qqline(residuals(lregrese),col="red", lwd = 2)

Normal Q-Q Plot

Kromě konečků vypadá víceméně dobře

Navic potrebujeme normalitu rezidui

> shapiro.test(residuals(lregrese))

Shapiro-Wilk normality test

data: residuals(Iregrese)

W = 0.94993, p-value = 0.0008203

Malé p-value znamená, že nemáme normalitu rezidui

Nemuzeme sestavit PAS SPOLEHLIVOSTI A PREDIKCNI PAS

> summary(Iregrese)

Call:

Im(formula = mladata\$dite ~ mladata\$matka)

Residuals:

Min 1Q Median 3Q Max

-0.99989 -0.45360 -0.05815 0.28639 2.21744

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.49921 0.60902 **4.104 8.42e-05** ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 0.6164 on 98 degrees of freedom

Multiple R-squared: 0.02618, Adjusted R-squared: 0.01624

F-statistic: 2.634 on 1 and 98 DF, p-value: 0.1078

4.104 8.42e-05 - je velmi malá pravděpodobnost, že koeficient, který je tam přítomen, bude zanedbatelný resp se bude rovnat nule

0.108 = 10,8% - hodnota, při které by byla stále zamítnuta nulová hypotéza, při které by tento prediktor nevstupoval do modelu této závislé proměnné

- d) 10,8%
- e) Ano, dá se předpokládat, že velká váha matky povede spíše k vyšší váze dítěte než k váze nižší.