6.6 Sequence Alignment: Ripasso Esercizi

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty δ ; mismatch penalty α_{pq} (you may assume α_{pp} =0). Cost = sum of gap and mismatch penalties.

Esempio:

$$\delta = 3$$

 $\alpha_{AT} = \alpha_{CG} = 3$; gli altri mismatch penalità =1 (tranne $\alpha_{pp} = 0$).

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA} = 5$$

$$2\delta + \alpha_{CA} = 7$$

String Similarity: example.....

How similar are two strings?

ocurrance occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

Esempio:

$$\delta = 2$$

costo mismatch fra vocali differenti=1 costo mismatch fra consonanti differenti=1 costo mismatch fra vocale e consonante=3

O mismatches, 3 gaps

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 ... x_m$ and $Y = y_1 y_2 ... y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and $x_{i'}-y_{j'}$ cross if i < i', but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched } j: y_j \text{ unmatched}}_{\text{gap}} \delta$$

Ex: CTACCG VS TACATG.

Sol:
$$M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$$

 X_1 X_2 X_3 X_4 X_5

Sotto-problemi

Il problema di allineare due stringhe di lunghezza m ed n si riconduce al problema di allineare due stringhe, di cui almeno una è più corta.

In generale, il sotto-problema che ci troveremo a dover risolvere è quello di allineare due prefissi delle stringhe di partenza, di lunghezza qualsiasi:

$$X_1 X_2 \dots X_i$$

 $Y_1 Y_2 \dots Y_j$

Il generico sotto-problema sarà definito dagli indici i e j.

I casi base si avranno quando una (almeno) delle due stringhe è vuota; in tal caso per i simboli dell'altra stringa si potranno avere solo gap

Soluzione ottimale OPT

Consideriamo un allineamento ottimale OPT delle stringhe

$$x_1 x_2 \dots x_i$$
 e $y_1 y_2 \dots y_j$

Guardiamo l'allineamento in OPT degli ultimi caratteri x_i e y_j .

Sono possibili 2 casi: x_i e y_j sono in corrispondenza oppure no; nel secondo caso almeno uno dei 2 è in corrispondenza di uno spazio vuoto (altrimenti crossing).

CASO 1:
$$x_i$$
 e y_j sono in corrispondenza: $x_1 x_2 ... x_{i-1} x_i$

$$y_1 y_2 ... y_{j-1} y_j$$

Caso 2a: x_i non corrisponde a nessun carattere:

$$x_1 x_2 \dots x_{i-1} x_i$$

 $y_1 y_2 \dots y_j$

Caso 2b: y_i non corrisponde a nessun carattere:

$$x_1 x_2 \dots x_i$$
 - $y_1 y_2 \dots y_{j-1} y_j$

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_i$.

Case 1: OPT matches x_i-y_i . pay mismatch for x_i - y_i + min cost of aligning two strings $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$

Case 2a: OPT leaves x_i unmatched.

pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$

Case 2b: OPT leaves y unmatched.

pay gap for y_j and min cost of aligning $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_{i-1}$

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT(i-1, j-1) \\ \delta + OPT(i-1, j) & \text{otherwise} \\ \delta + OPT(i, j-1) \\ i\delta & \text{if } j = 0 \end{cases}$$

Implementazione con algoritmo iterativo

Uso una tabella M per contenere OPT(i,j) per i=0,1,...m, j=0,1,...,n. Comincio con l'inserire i valori dei casi base, i=0 e j=0, una riga e una colonna.

Scorro tutte le altre celle della tabella in modo che quando devo riempire la cella M[i,j], i valori necessari al calcolo siano già inseriti nelle corrispondenti celle. I valori necessari sono M[i-1,j-1], M[i,j-1] e M[i-1,j]. Posso scorrere per righe da 1 a m e per colonne da 1 a n.

La soluzione al problema di allineare X e Y sarà in M[m,n], che restituisco alla fine.

Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for j = 0 to n
     M[0,i] = i\delta
   for i = 0 to m
     M[i,0] = i\delta
   for i = 1 to m
       for j = 1 to n
           M[i,j] = min(\alpha[x_{i,}y_{i}] + M[i-1,j-1],
                            \delta + M[i-1,j],
                             \delta + M[i,j-1]
   return M[m, n]
}
```

Analysis. $\Theta(mn)$ time and space.

Esempio

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \\ \min \begin{cases} \alpha_{x_iy_j} + OPT(i-1,j-1) \\ \\ \delta + OPT(i-1,j) \\ \\ \delta + OPT(i,j-1) \end{cases} & \text{otherwise} \\ i\delta & \text{if } j = 0 \end{cases}$$

Esempio: X = mean, Y= name

$$\delta$$
 = 2

costo mismatch fra vocali differenti=1 costo mismatch fra consonanti differenti=1 costo mismatch fra vocale e consonante=3

$$M[0,0]=0, M[0,1]=2, M[0,2]=4, \\ M[1,0]=2, M[2,0]=4, \\ M[1,1]=\min\{\alpha_{m\,n}+M[0,0],\delta+M[0,1],\delta+M[1,0]\}=3 a \\ = \min\{1+0,2+2,2+2\}=1 \\ M[1,2]=\min\{\alpha_{m\,a}+M[0,1],\delta+M[0,2],\delta+M[1,1]\}=\\ = \min\{3+2,2+4,2+1\}=3 \\ M[1,3]=\min\{\alpha_{m\,m}+M[0,2],\delta+M[0,3],\delta+M[1,2]\}=\\ = \min\{0+4,2+6,2+3\}=4 \\ \dots \\ M[1,2]=\min\{\alpha_{m\,m}+M[0,2],\delta+M[0,3],\delta+M[1,2]\}=0 \\ -n a m e \\ 0 1 2 3 4 \\ -n a m e \\ 0 1 3 4 \\ -n a m e \\ 0 1 3$$

 $M[4,4] = min\{\alpha_{ne} + M[3,3], \delta + M[3,4], \delta + M[4,3]\}$ = min { 3+ 5, 2+5, 2+4} = 6

Figure 6.18 The OPT values for the problem of aligning the words *mean* to *name*.

Ricostruzione dell'allineamento

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0 \\ \\ \min \begin{cases} \alpha_{x_iy_j} + OPT(i-1,j-1) \\ \\ \delta + OPT(i-1,j) \\ \\ \delta + OPT(i,j-1) \end{cases} & \text{otherwise} \\ i\delta & \text{if } j = 0 \end{cases}$$

Esempio:
$$X = mean$$
, $Y = name$
 $\delta = 2$
costo mismatch fra vocali differenti=1
costo mismatch fra consonanti differenti=1

costo mismatch fra vocale e consonante=3

La freccia nella casella (i,j) proviene dalla casella usata per ottenere il minimo

$$M[4,4] =$$
= min{ $\alpha_{ne}+M[3,3], \delta + M[3,4], \delta + M[4,3]$ } =
= min { 3+ 5, 2+5, 2+4} = 6

Inserisco freccia da $M[4,3] \rightarrow M[4,4]$

Per ricostruire l'allineamento seguiamo il percorso all'indietro nella matrice

Figure 6.18 The OPT values for the problem of aligning the words *mean* to *name*.

Ricostruzione soluzione ottimale

Per ricostruire un allineamento ottimale seguiamo il percorso all'indietro nella matrice

Figure 6.18 The OPT values for the problem of aligning the words *mean* to *name*.

M[4,4]= min{
$$\alpha_{n e}$$
 + M[3,3], δ + M[3,4], δ +M[4,3]}= = min { 3+ 5, 2+5, **2+4**} = **6**

Una visione grafica del problema del sequence alignment

Ad $X = x_1 x_2 x_3$ e $Y = y_1 y_2 y_3 y_4$ associamo il grafo G_{XY} seguente:

nodo (i,j) in corrispondenza di x_i e y_j costi archi orizzontali e verticali = δ costo arco diagonale verso (i,j) = $\alpha_{xi,yj}$

Figure 6.17 A graph-based picture of sequence alignment.

Un esempio

costi archi orizzontali e verticali = δ costo arco diagonale verso (i,j) = $\alpha_{xi, yj}$

 $\delta = 2$ costo mismatch fra vocali differenti=1 costo mismatch fra consonanti differenti=1 costo mismatch fra vocale e consonante=3

Figure 6.17 A graph-based picture of sequence alignment.

Un allineamento di costo minimo fra X e Y può essere ottenuto da un cammino di costo minimo in G_{XY} dal nodo in basso a sinistra a quello in alto a destra. Prova per induzione (fare)

Studieremo algoritmi per la ricerca di cammini di costo minimo in un grafo, ma non apporteranno miglioramenti al tempo di esecuzione.

Esercizio (da slide precedente)

Provare per induzione che:

Un allineamento di costo minimo fra X e Y può essere ottenuto da un cammino di costo minimo in G_{XY} dal nodo in basso a sinistra a quello in alto a destra.

Sequence Alignment: Linear Space

Analysis. $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000. Then, 10 billions ops OK, but 10GB array?

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time. Compute OPT(i, ·) from OPT(i-1, ·).

No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975]

Optimal alignment in O(m + n) space and O(mn) time.

Clever combination of divide-and-conquer and dynamic programming. Inspired by idea of Savitch from complexity theory.

Programmazione dinamica (pseudocodice) (svolto)

Si supponga che la soluzione ad un certo problema (a noi ignoto) sia data, per un certo intero n positivo, dal massimo fra i valori OPT(n,R) e OPT(n,B) definiti ricorsivamente come segue (R sta per Rosso e B sta per Blu):

OPT(1, R) = 2

OPT(1, B) = 1

OPT(i, R) = OPT(i -1, B) + 1, se i > 1

OPT(i, B) = max
$$\{OPT(i, R) - 1, OPT(i -1, R)\}$$
, se i > 1

- a) Calcolare i valori di OPT(i, R) e OPT(i, B) per ogni i=1, 2, ..., 5, organizzandoli in una **tabella**.
- b) Scrivere lo pseudocodice di un algoritmo **ricorsivo** per il calcolo della soluzione al problema.
- c) Scrivere lo pseudocodice di un algoritmo di **programmazione dinamica** per il calcolo della soluzione al problema. Analizzarne la complessità di **tempo** e di **spazio**, giustificando la risposta.

Appello 22 febbraio 2016

3)

Si considerino le stringhe

$$X = x_1 x_2 x_3 x_4 x_5 = \text{mamma e } Y = y_1 y_2 y_3 = \text{mia.}$$

Se il costo di un gap è 5, il costo di un mismatch fra due vocali differenti è 3, fra due consonanti differenti è 4 e fra vocale e consonante è 7, allora il costo dell'allineamento x_1-y_1 , x_3-y_2 , x_5-y_3 è:

A. 7

B. 14

C. 17

D. Nessuna delle risposte precedenti

Esercizio

Si considerino le stringhe

$$X = x_1 x_2 x_3 x_4 x_5 = \text{mamma e } Y = y_1 y_2 y_3 = \text{mia.}$$

Si supponga che il costo di un *gap* sia 5, il costo di un *mismatch* fra due vocali differenti sia 3, fra due consonanti differenti è 4 e fra vocale e consonante è 7.

Calcolare il costo minimo di un allineamento delle stringhe X e Y, applicando l'algoritmo studiato.

Appello 24 gennaio 2017

Quesito 1 (24 punti)

Si consideri la seguente funzione c(i,j) definita per $1 \le i,j \le n$ da:

```
\begin{array}{lll} c(1,j)=1 \text{ per ogni } 1 \leq j \leq n, & c(i,1)=3 \text{ per ogni } 2 \leq i \leq n, \\ c(2,j)=2 \text{ per ogni } 2 \leq j \leq n, & c(i,2)=4 \text{ per ogni } 3 \leq i \leq n, \\ c(i,j)=\max \left\{ 3 \times c(i-2,j), \, c(i,j-1)-2 \right\} \text{ per ogni } 3 \leq i, \, j \leq n. \end{array}
```

- a) Disegnare la matrice c per n=4
- Scrivere lo pseudocodice di un algoritmo ricorsivo per il calcolo di c(n,n) e indicarne la complessità di tempo (non è necessaria una analisi dettagliata).
- Scrivere lo pseudocodice di un algoritmo di programmazione dinamica per il calcolo di c(n,n) ed analizzarne la complessità. E' necessario giustificare la risposta.

Prima prova intercorso 2017/18

Quesito 3 (16 punti)

Si consideri il problema dello scheduling di intervalli pesato.

Ricostruire uno *scheduling* ottimale per il problema dato su un insieme di intervalli $S=\{1, 2, ..., 6\}$ ordinato secondo il tempo di fine crescente degli intervalli (cioè $f_1 \le f_2 \le ... \le f_6$), sapendo che i pesi degli intervalli sono rispettivamente $w_1 = 12$, $w_2 = 2$, $w_3 = 8$, $w_4 = 9$, $w_5 = 3$, $w_6 = 10$, che i valori della funzione p sono p(1)=0, p(2)=0, p(3)=2, p(4)=0, p(5)=1, p(6)=4 e l'array M calcolato dall'algoritmo di programmazione dinamica studiato è M[0...6] = [0, 12, 12, 20, 20, 20, 30]. E' necessario giustificare la risposta.

Si noti che non occorre conoscere i valori dei tempi di inizio e di fine degli intervalli per ricostruire la soluzione.

Giornata di seminari (PD)

Vi state occupando di organizzare una giornata di seminari nell'Aula Magna della vostra università. Avete avuto la disponibilità di vari relatori a tenere un loro intervento; ognuno ha specificato da che ora a che ora si terrebbe il suo seminario. Purtroppo, non riuscite ad organizzare la giornata in modo da inserire tutti i relatori. Dovete perciò scegliere alcuni fra i relatori in modo che i loro seminari possano essere svolti nell'aula senza sovrapposizioni di orario. Volete inoltre fare in modo che sia massimo il **tempo** totale di utilizzo effettivo dell'aula.

- a) Definire il problema computazionale, specificandone i dati in ingresso e in uscita.
- b) Indicare se si tratta di un problema studiato e, se sì, quale.
- c) Progettare un algoritmo di programmazione dinamica che risolve il problema e valutarne la complessità. Si potrà ottenere il massimo della votazione solo se l'algoritmo è descritto tramite pseudo-codice ed è discussa la sua correttezza.