LECTURE 8 DISTANCE MEASURES FOR QUANTUM STATES AND QUANTUM CRYPTOGRAPHY

INF587 Quantum computer science and applications

Thomas Debris-Alazard

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

Introduction to quantum cryptography!

Security relies on:

- ► No-cloning theorem
- Measuring modifies quantum states
- Incapacity to distinguish non-orthogonal quantum states

Distance between quantum states: essential tool for ensuring the security of quantum cryptography (what is possible or not, what can be done at best to distinguish, etc..)

→ As usual: we need first to understand where these concepts come from: classical world!

COURSE OUTLINE

- 1. Distances over distributions
- 2. Distance between quantum states
- 3. Bit commitment
- 4. Quantum Key Distribution

Information theory: modelize an information source as a random variable

 \longrightarrow Our aim: meaning of "two information sources are similar to one another, or not" similar \approx undistinguishable ; not-similar \approx distinguishable

English and French texts

May be modelling as a sequence of random variables over the Roman alphabet:

- ► English: "th" most frequent pair of letters
- French: "es" most frequent pair of letters

→ To distinguish English and French: look the output distribution of letters
How to "quantify" that they are different? Are they as different as French and Hungarian?

→ Define a distance between sources of information/distributions

CONSEQUENCE

Distance between distributions/random variables:

- Quantifying the minimum amount of operations to distinguish them
- ▶ Difference of behaviours of an algorithm when changing some internal distribution

Extremely useful tool for cryptography, study of algorithms, etc...

Application case: f depends of some secret and g not but distance (f,g)=arepsilon

 \longrightarrow Owning f does not help to recover the secret...

Distance between quantum states: enough to look at the distance between measurement outputs?

→ No! But let us see first the classical case...

DISTANCES OVER DISTRIBUTIONS

DISTRIBUTIONS VERSUS RANDOM VARIABLES

${\mathcal X}$ be a finite set

- $f: \mathcal{X} \to \mathbb{R}$ such that $\begin{cases} f \ge 0 \\ \sum_{x \in \mathcal{X}} f(x) = 1 \end{cases}$ is called a distribution
- A random variable X taking its values in \mathcal{X} is defined via $\mathbb{P}(X = x)$ for all $x \in \mathcal{X}$

Distributions \iff Random variables

- From f: X be such that $\mathbb{P}(X = X) \stackrel{\text{def}}{=} f(X)$
- From X: f be such that $f(x) \stackrel{\text{def}}{=} \mathbb{P}(X = x)$
 - → In what follows: we identify random variables and their associated distributions

DISTANCE BETWEEN DISTRIBUTIONS

Many "distances" (α -divergences) between distributions f and g:

Statistical/Total-Variational/Trance distance:

$$\Delta(f,g) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{x \in \mathcal{X}} |f(x) - g(x)|$$

► Hellinger distance:

$$H(f,g) \stackrel{\text{def}}{=} \sqrt{1 - \sum_{x \in \mathcal{X}} \sqrt{f(x)} \sqrt{g(x)}}$$

► Kullback-Leibler divergence:

$$D_{KL}(f||g) \stackrel{\text{def}}{=} -\sum_{x \in \mathcal{X}} f(x) \log_2 \left(\frac{g(x)}{f(x)} \right)$$

► etc...

In what follows

Focus on statistical distance

STATISTICAL DISTANCE

Statistical distance

The statistical distance between two distributions f,g over a finite set \mathcal{X} :

$$\Delta(f,g) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{x \in \mathcal{X}} |f(x) - g(x)|$$

- The factor 1/2 ensures that $\Delta(f,g) \in [0,1]$
- $\Delta(f,g) = 0 \iff f = g$
- $\Delta(\cdot, \cdot)$ defines a metric for distributions

PROPERTY(I)

Given
$$S \subseteq \mathcal{X}$$
:

 $\sum_{x \in S} f(x)$ is the probability that an event S occurs when picking x according to f

An important property

$$\Delta(f,g) = \max_{S \text{ event}} |f(S) - g(S)| = \max_{S \text{ event}} \left| \sum_{x \in S} f(x) - \sum_{x \in S} g(x) \right|$$

Consequence

Let S_0 be the event reaching the maximum. This event S_0 is optimal to distinguish f and g

 \longrightarrow $\Delta(f,g)$ is the quantity giving how well it is possible (using S_0) to distinguish f and g... (in practice S_0 is hard to compute)

To take away: (proof in exercise session)

Given f or g but you don't know which one:

at least $\frac{1}{\Delta(f,g)}$ calls to the given random variable to take the good decision with probability \approx 1.

PROPERTY(II)

One could imagine: applying a physical process, algorithm to the random variables X_f given by g and X_g given by g could help to distinguish them?

PROPERTY(II)

One could imagine: applying a physical process, algorithm to the random variables X_f given by f and X_g given by g could help to distinguish them?

--- No! Statistical distance can only decrease

An important property: data processing inequality

Given any function/algorithm F, then $F(X_f)$ and $F(X_g)$ are still random variables and

$$\Delta(F(X_f), F(X_g)) \leq \Delta(X_f, X_g)$$

F can be randomized, but its internal randomness has to be independent from X_f and X_g .

Concrete consequence:

 $\boldsymbol{\mathcal{A}}$ be an algorithm such that

$$arepsilon \stackrel{\mathrm{def}}{=} \mathbb{P} \left(\mathcal{A}(\mathbf{X}) = \mathrm{"success"} \right)$$

where "success" could mean: find the secret key from a public key output by X, factorise a number output by X, etc...

Then.

$$\varepsilon - \Delta(X, Y) \leq \mathbb{P}(A(Y) = \text{"success"}) \leq \varepsilon + \Delta(X, Y)$$

→ Extremely useful in cryptography...

The statistical distance between two distributions:

- cannot increase after applying an algorithm, physical process (data processing inequality),
- minimum amount of resources to distinguish distributions: at least $\frac{1}{\Delta(f,g)}$ queries to distinguish f and g

In many scenarii this lower-bound is optimistic...

 \longrightarrow Sometimes necessarily: $\frac{1}{\Delta(f,g)^2}\gg \frac{1}{\Delta(f,g)}$ calls to be able to distinguish

Statistical distance: quantify how close are distributions

But how to quantify how close are quantum states?

Define a distance between quantum states why verify:

- ► Cannot increase after "quantum" operations (data processing inequality)
- ▶ Quantify the "minimum amount of resources" to distinguish

More about the distances can be found in (particularly proofs omitted here): Nielsen and Chuang, *Quantum computation and quantum information*, Chapter 9

TRACE DISTANCE

Trace distance

Let ρ , σ be two density operators, their trace distance is defined as

$$\Delta(\rho,\sigma) = |\rho - \sigma|_{\mathrm{tr}} \quad \text{where} \ |\mathbf{M}|_{\mathrm{tr}} \stackrel{\mathrm{def}}{=} \mathrm{tr} \left(\sqrt{\mathbf{M}^{\dagger} \mathbf{M}} \right)$$

Be careful:
$$\Delta(\rho, \sigma) \neq \operatorname{tr}(\rho - \sigma)$$

 $\Delta(\cdot, \cdot)$ is a metric over density operators

- $\Delta(\rho, \sigma) = 0 \iff \rho = \sigma$
- $\Delta(\rho, \sigma) \in [0, 1]$
- $\Delta(\rho, \sigma) = \Delta(\sigma, \rho)$ (symmetry)
- $\Delta(\rho, \tau) \leq \Delta(\rho, \sigma) + \Delta(\sigma, \tau)$ (triangle inequality)

EXAMPLE OF TRACE DISTANCES

• If ρ and σ are co-diagonalizable ($\iff \rho \sigma = \sigma \rho$), in an orthonormal basis ($|e_i\rangle$)_i:

$$\rho = \sum_i p_i \, |e_i\rangle\langle e_i| \quad \text{and} \quad \sigma = \sum_i q_i \, |e_i\rangle\langle e_i|$$
 where $p \stackrel{\text{def}}{=} (p_i)_i$ and $q \stackrel{\text{def}}{=} (q_i)_i$ are distributions.

$$\Delta(\rho, \sigma) = \frac{1}{2} \sum_{i} |p_i - q_i| = \Delta(\rho, q)$$

→ We recover the classical statistical distance!

• If ρ and σ are pure states, $\rho=|\psi\rangle\langle\psi|$ and $\sigma=|\varphi\rangle\langle\varphi|$, then:

$$\Delta(\rho,\sigma) = \sqrt{1 - |\langle \psi | \varphi \rangle|^2}$$

→ If quantum states are orthogonal, their trace distance is maximal!

Is it intuitive?

EXAMPLE OF TRACE DISTANCES

• If ρ and σ are co-diagonalizable ($\iff \rho\sigma = \sigma\rho$), in an orthonormal basis $(|e_i\rangle)_i$:

$$ho = \sum_i p_i \, |e_i
angle \! \langle e_i | \quad ext{and} \quad \sigma = \sum_i q_i \, |e_i
angle \! \langle e_i |$$

where $p \stackrel{\text{def}}{=} (p_i)_i$ and $q \stackrel{\text{def}}{=} (q_i)_i$ are distributions.

$$\Delta(\rho, \sigma) = \frac{1}{2} \sum_{i} |p_i - q_i| = \Delta(\rho, q)$$

→ We recover the classical statistical distance!

• If ρ and σ are pure states, $\rho=|\psi\rangle\langle\psi|$ and $\sigma=|\varphi\rangle\langle\varphi|$, then:

$$\Delta(\rho, \sigma) = \sqrt{1 - |\langle \psi | \varphi \rangle|^2}$$

→ If quantum states are orthogonal, their trace distance is maximal!

Is it intuitive?

→ Yes! Orthogonal pure states are perfectly distinguishable... (see Lecture 2)

AN INTERPRETATION OF THE TRACE DISTANCE

Let ρ_0 and ρ_1 be two known density operators

- Alice has a bit $b \in \{0, 1\}$ unknown to Bob
- Suppose that Alice send ρ_b to Bob

What is the best probability for Bob to guess b?

Proposition (see Exercise Session)

$$\max_{\text{{strategy}}} \mathbb{P} (\text{Bob guesses } b) = \frac{1}{2} + \frac{\Delta(\rho_0, \rho_1)}{2}$$

→ The trace distance gives how well quantum states can be distinguished

Be careful: we know the strategy which reaches the maximum, but in most cases it is non-effective and it modifies the given state

TRACE DISTANCE AND UNITARY EVOLUTIONS

One could imagine: applying a unitary evolution to quantum states help to distinguish? $\it i.e., increase \ \Delta(\rho,\sigma)$

TRACE DISTANCE AND UNITARY EVOLUTIONS

One could imagine: applying a unitary evolution to quantum states help to distinguish?

i.e., increase
$$\Delta(\rho, \sigma)$$
 \longrightarrow No!

Invariance under unitary evolutions

TRACE DISTANCE AND MEASUREMENTS

Given ρ and σ : can we detect a difference when measuring? How to quantify it?

Given ρ and σ : can we detect a difference when measuring? How to quantify it?

$$\Delta(\rho,\sigma) = \max_{\mathsf{P} < \mathsf{I} \text{ projector}} \mathsf{tr} \left(\mathsf{P}(\rho - \sigma) \right)$$

Theorem (admitted)

Let $\{E_m\}$ be a POVM with $p \stackrel{\text{def}}{=} (\operatorname{tr}(E_m \rho))_m$ and $q \stackrel{\text{def}}{=} (\operatorname{tr}(E_m \sigma))_m$ be the distributions of outcomes m. Then,

$$\Delta(\rho, \sigma) = \max_{\{E_m\}} \Delta(p, q)$$

In particular, whatever is the measurement

$$\Delta(p,q) \leq \Delta(\rho,\sigma)$$

Concrete consequence

One needs at least $\geq \frac{1}{\Delta(\rho,\sigma)}$ measures to distinguish ρ and σ with probability \approx 1.

TRACE DISTANCE AND GENERAL QUANTUM OPERATIONS

And what about more general "quantum operations" like the depolarizing channel?

Definition

A quantum operation Φ is defined from a collection of matrices A_1,\cdots,A_k such that

$$\sum_{i=1}^k \mathsf{A}_i \mathsf{A}_i^\dagger = \mathsf{I}$$
 and $\Phi(
ho) = \sum_{i=1}^k \mathsf{A}_i
ho \mathsf{A}_i^\dagger$

→ Most general "quantum operation"

It captures: measurements, unitary, tracing out, noisy channel, etc...

Example: depolarizing channel

Quantum operation defined from (1-p)I, $\frac{p}{3}X$, $\frac{p}{3}Y$ and $\frac{p}{3}Z$.

Quantum data processing inequality

For any quantum operation Φ ,

$$\Delta(\Phi(\rho), \Phi(\sigma)) \le \Delta(\rho, \sigma)$$

Another important "distance" in the quantum world:

Fidelity

Let ho,σ be two density operators, their fidelity is defined as

$$F(\rho, \sigma) = \operatorname{Tr} \sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}$$

Following properties

- $F(\sigma, \rho) = 1 \iff \sigma = \rho$
- $F(\sigma, \rho) \in [0, 1]$
- $F(\sigma, \rho) = F(\rho, \sigma)$ (symmetry)

Be careful: fidelity not a metric (triangular inequality not verified)

EXAMPLE OF FIDELITIES

• If ρ and σ are co-diagonalizable ($\iff \rho\sigma = \sigma\rho$), in an orthonormal basis $(|e_i\rangle)_i$:

$$ho = \sum_i p_i \, |e_i \rangle \! \langle e_i | \quad ext{and} \quad \sigma = \sum_i q_i \, |e_i \rangle \! \langle e_i |$$

where $p \stackrel{\text{def}}{=} (p_i)_i$ and $q \stackrel{\text{def}}{=} (q_i)_i$ are distributions.

$$F(\rho, \sigma) = \sum_{i} \sqrt{p_i} \sqrt{q_i} = 1 - H(p, q)^2$$
 ($H(\cdot, \cdot)$ Hellinger distance)

- \longrightarrow We recover 1 $H(p,q)^2$ known classically as the fidelity/Bhattacharyya coefficient.
- If ρ and σ are pure states, $\rho=|\psi\rangle\langle\psi|$ and $\sigma=|\varphi\rangle\langle\varphi|$, then:

$$F(\rho, \sigma) = |\langle \psi | \varphi \rangle|$$

In particular: $F(\rho, \sigma) = 0$ when ρ, σ are orthogonal pure states

FIDELITY AND UNITARY EVOLUTIONS

Invariance under unitary evolutions

$$F(U\rho U^{\dagger}, U\sigma U^{\dagger}) = F(\rho, \sigma), \quad for any unitary U$$

PURIFICATIONS AND UHLMANN'S THEOREM

Recall: trace distance is "invariant" by projection

$$\Delta(\rho,\sigma) = \max_{\mathsf{P} < \mathsf{I} \text{ projector}} \mathsf{tr} \left(\mathsf{P}(\rho - \sigma) \right)$$

---- "Dual" operation for the fidelity: purification

Uhlmann's theorem (admitted)

For any two density operators ρ , σ ,

$$F(\rho, \sigma) = \max_{|\psi\rangle} |\langle \psi | \varphi \rangle|$$

where the maximum is taken over purifications $|\psi\rangle$ of ρ , and a fixed purification $|\varphi\rangle$ of σ .

→ Useful characterization involved in many proofs concerning the fidelity

Example

Let $ho\stackrel{\text{def}}{=}\frac{1}{2}\,|0\rangle\langle 0|+\frac{1}{2}\,|1\rangle\langle 1|$ and $\sigma\stackrel{\text{def}}{=}\frac{3}{4}\,|0\rangle\langle 0|+\frac{1}{4}\,|1\rangle\langle 1|$: diagonalizable in the same basis

$$F(\rho, \sigma) = \sqrt{\frac{1}{2}} \sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}} \sqrt{\frac{1}{4}} = \sqrt{\frac{3}{8}} + \sqrt{\frac{1}{8}}$$

 $|\psi\rangle\stackrel{\text{def}}{=}\frac{|00\rangle}{\sqrt{2}}+\frac{|11\rangle}{\sqrt{2}}$ and $|\varphi\rangle\stackrel{\text{def}}{=}\sqrt{\frac{3}{4}}\,|00\rangle+\sqrt{\frac{1}{4}}\,|11\rangle$ are purifications which are optimal with regards to Uhlmann's theorem.

Quantum trace distance could be related to the classical trace distance via measurements \longrightarrow The same holds for the fidelity

Theorem (admitted)

Let $\{E_m\}$ be a POVM with $p \stackrel{\text{def}}{=} (\operatorname{tr}(E_m \rho))_m$ and $q \stackrel{\text{def}}{=} (\operatorname{tr}(E_m \sigma))_m$ be the distributions of outcomes m. Then,

$$F(\rho,\sigma) = \min_{\{E_m\}} F(p,q)$$
 where $F(p,q) = \sum_m \sqrt{p_m} \sqrt{q_m}$ (classical fidelity)

In particular, whatever is the measurement

$$F(\rho, \sigma) \le F(p, q)$$

FIDELITY AND QUANTUM OPERATIONS

Trace distance: cannot increase after a quantum operation

 $\longrightarrow {\sf Fidelity\; cannot\; decrease}$

Quantum data processing inequality

For any quantum operation Φ ,

$$F(\rho, \sigma) \leq F(\Phi(\rho), \Phi(\sigma))$$

TURN THE FIDELITY INTO DISTANCE: ANGLE

Uhlmann's theorem: fidelity is equal to the maximum inner product between to quantum states (purification)

It suggests: angle between states (density operators) ρ and σ as

$$A(\rho, \sigma) \stackrel{\text{def}}{=} \arccos F(\rho, \sigma)$$

Proposition (admitted, but proof uses Uhlmann's theorem)

 $A(\cdot, \cdot)$ is a metric for density operators.

FUCHS - VAN DE GRAAF INEQUALITIES

A priori: only quantum trace distance matters, why did we introduce the quantum fidelity?

FUCHS - VAN DE GRAAF INEQUALITIES

A priori: only quantum trace distance matters, why did we introduce the quantum fidelity?

 \longrightarrow We can relate them

Fuchs - Van de Graaf inequalities

$$1 - \textit{F}(\rho, \sigma) \leq \Delta(\rho, \sigma) \leq \sqrt{1 - \textit{F}(\rho, \sigma)^2}, \text{ or conversely } 1 - \Delta(\rho, \sigma) \leq \textit{F}(\rho, \sigma) \leq \sqrt{1 - \Delta(\rho, \sigma)^2}$$

But is the fidelity useful?

FUCHS - VAN DE GRAAF INEQUALITIES

A priori: only quantum trace distance matters, why did we introduce the quantum fidelity?

—— We can relate them

Fuchs - Van de Graaf inequalities

$$1 - \mathit{F}(\rho, \sigma) \leq \Delta(\rho, \sigma) \leq \sqrt{1 - \mathit{F}(\rho, \sigma)^2}, \text{ or conversely } 1 - \Delta(\rho, \sigma) \leq \mathit{F}(\rho, \sigma) \leq \sqrt{1 - \Delta(\rho, \sigma)^2}$$

But is the fidelity useful? Yes!

Proposition (admitted)

$$\Delta(\rho^{\otimes k}, \sigma^{\otimes k}) \le k \ \Delta(\rho, \sigma)$$
 and $F(\rho^{\otimes k}, \sigma^{\otimes k}) = F(\rho, \sigma)^k$

--- The strength of the fidelity comes from the above equality

Let's play the following game: if you ask, Alice gives to you

$$\rho_0 \stackrel{\mathrm{def}}{=} \left(\frac{1}{2} - \varepsilon\right) |0\rangle\langle 0| + \left(\frac{1}{2} + \varepsilon\right) |1\rangle\langle 1| \quad \text{or} \quad \rho_1 \stackrel{\mathrm{def}}{=} \left(\frac{1}{2} + \varepsilon\right) |0\rangle\langle 0| + \left(\frac{1}{2} - \varepsilon\right) |1\rangle\langle 1|$$

 \longrightarrow But once Alice made a first random choice, she will always make the same choice! Your aim: find with probability ≈ 1 if Alice choose ρ_0 or ρ_1 Let's play the following game: if you ask, Alice gives to you

$$\rho_0 \stackrel{\mathrm{def}}{=} \left(\frac{1}{2} - \varepsilon\right) |0\rangle\langle 0| + \left(\frac{1}{2} + \varepsilon\right) |1\rangle\langle 1| \quad \text{or} \quad \rho_1 \stackrel{\mathrm{def}}{=} \left(\frac{1}{2} + \varepsilon\right) |0\rangle\langle 0| + \left(\frac{1}{2} - \varepsilon\right) |1\rangle\langle 1|$$

 \longrightarrow But once Alice made a first random choice, she will always make the same choice!

Your aim: find with probability ≈ 1 if Alice choose ρ_0 or ρ_1

How to proceed

Make k queries to Alice, measure each time in the ($|0\rangle$, $|1\rangle$) basis

But how many queries k are needed to make the good decision (with high probability)?

• $\Delta(\rho_0, \rho_1) = \frac{\varepsilon}{2}$, therefore with k queries:

$$\Delta\left(\rho_0^{\otimes k},\rho_1^{\otimes k}\right) \leq k\frac{\varepsilon}{2} \Longrightarrow \text{Necessarily: } \frac{k \geq \frac{2}{\varepsilon}}{\varepsilon} \text{ to ensure } \Delta\left(\rho_0^{\otimes k},\rho_1^{\otimes k}\right) \text{ not too small }$$

Is it optimal?

Let's play the following game: if you ask, Alice gives to you

$$\rho_0 \stackrel{\mathrm{def}}{=} \left(\frac{1}{2} - \varepsilon\right) |0\rangle\langle 0| + \left(\frac{1}{2} + \varepsilon\right) |1\rangle\langle 1| \quad \text{or} \quad \rho_1 \stackrel{\mathrm{def}}{=} \left(\frac{1}{2} + \varepsilon\right) |0\rangle\langle 0| + \left(\frac{1}{2} - \varepsilon\right) |1\rangle\langle 1|$$

 \longrightarrow But once Alice made a first random choice, she will always make the same choice!

Your aim: find with probability ≈ 1 if Alice choose ρ_0 or ρ_1

How to proceed

Make k queries to Alice, measure each time in the ($|0\rangle$, $|1\rangle$) basis

But how many queries k are needed to make the good decision (with high probability)?

• $\Delta(\rho_0, \rho_1) = \frac{\varepsilon}{2}$, therefore with k queries:

$$\Delta\left(\rho_0^{\otimes k},\rho_1^{\otimes k}\right) \leq k\frac{\varepsilon}{2} \Longrightarrow \text{Necessarily: } \frac{k \geq \frac{2}{\varepsilon}}{\varepsilon} \text{ to ensure } \Delta\left(\rho_0^{\otimes k},\rho_1^{\otimes k}\right) \text{ not too small }$$

Is it optimal? No! It turns out that $\Delta\left(\rho_0^{\otimes k}, \rho_1^{\otimes k}\right) \leq k\frac{\varepsilon}{2}$ is not-tight.

•
$$F(\rho_0, \rho_1) = 2\sqrt{\frac{1}{4} - \varepsilon^2} \approx 1 - 2\varepsilon^2$$
 and $F(\rho_1^{\otimes k}, \rho_2^{\otimes k}) = F(\rho_1, \rho_2)^k \approx 1 - 2k\varepsilon^2$

 $2k\varepsilon^2 \approx 1 - F(\rho_0^{\otimes k}, \rho_1^{\otimes k}) \leq \Delta\left(\rho_0^{\otimes k}, \rho_1^{\otimes k}\right) \Longrightarrow \text{Choose: } k \geq \frac{2}{\varepsilon^2} \text{ to ensure } \Delta\left(\rho_0^{\otimes k}, \rho_1^{\otimes k}\right) \text{ not small } k = \frac{2}{\varepsilon^2}$

 $\rightarrow k \approx \frac{1}{\epsilon^2}$ is the optimal number of queries to make the good decision (with high probability)

COMMITMENT WITH A SAFE

- Commit phase:
 - Alice writes x on a piece of paper
 - Alice puts the paper in a safe. She is the only one to have the key of the safe
 - Alice sends the safe to Bob

- Reveal phase:
 - Alice reveals x and the key to unlock the safe
 - Bob opens the safe to check x

Our aim:

Use "quantum computation" to build a commitment scheme

→ Is the quantum world will offer to us an unconditionally secure commitment? (Spoiler: no...)

UNCONDITIONALLY SECURE QUANTUM BIT COMMITMENT PROTOCOL?

$$S_0 \stackrel{\text{def}}{=} \{ |0\rangle, |1\rangle \}$$
 and $S_1 \stackrel{\text{def}}{=} \{ |+\rangle, |-\rangle \}$

 \longrightarrow Alice wants to commit a bit $b \in \{0,1\}$ to Bob!

Exercise

Describe a commitment protocol using S₀ and S₁ enabling Alice to commit her bit

(Hint: we don't want Bob "to have any information about the committed bit")

UNCONDITIONALLY SECURE QUANTUM BIT COMMITMENT PROTOCOL?

$$S_0 \stackrel{\text{def}}{=} \{|0\rangle, |1\rangle\}$$
 and $S_1 \stackrel{\text{def}}{=} \{|+\rangle, |-\rangle\}$

Alice wants to commit b:

- 1. Commit phase: Alice chooses $|\psi\rangle \in S_b$ uniformly at random and send $|\psi\rangle$ to Bob
- 2. Reveal phase: Alice reveals $ab \in \{0,1\}^2$ to Bob where ab description of $|\psi\rangle$

$$00 \leftrightarrow |0\rangle$$
, $10 \leftrightarrow |1\rangle$, $01 \leftrightarrow |+\rangle$ and $11 \leftrightarrow |-\rangle$

3. Verification phase: Bob measures $|\psi\rangle$ in the basis S_b (b known from ab)

Exercise

Is Bob can guess the committed bit?

Bob can only guess the committed bit with probability 1/2...

• If Alice committed 0, Bob has

$$\rho_0 = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1|$$

• If Alice committed 1, Bob has

$$\rho_1 = \frac{1}{2} |+\rangle \langle +| + \frac{1}{2} |-\rangle \langle -|$$

 \longrightarrow But: $\rho_0 = \rho_1 = \frac{1}{2}$: they are indistinguishable (in particular, $\Delta(\rho_0, \rho_1) = 0$)

But, is the commitment scheme secure?

Exercise

Give a cheating strategy for Alice: she chooses the committed bit after the commit phase...

Alice chooses her committed value after the commit phase...

- 1. Alice starts with an EPR-pair $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$
- Alice gives the second qubit to Bob and pretends this is her commitment (up to now Alice did not make a choice)
- 3. If ultimately Alice wants to reveal b = 0: Alice measures her qubit $|x\rangle$ and gives to Bob x0.
- 4. If ultimately Alice wants to reveal b=1: Alice first performs an Hadamard gate on her qubit, the state becomes

$$\frac{|+0\rangle + |-1\rangle}{\sqrt{2}} = \frac{|0+\rangle + |1-\rangle}{\sqrt{2}}$$

Alice measures her qubit and she reveals 01 if she measured $|0\rangle$, otherwise she reveals 11.

When Bob measures, everything is fine for him while Alice has chosen her commit after the commit phase...

IS A SAFE COMMITMENT SCHEME ACHIEVABLE?

One may wonder: maybe our approach with S_0 and S_1 is flawed?

→ No! But to understand this let us being more "generic"...

Remark

In what follows: a particular (but general) generic approach cannot work.

 \longrightarrow It turns out that any "non-interactive" bit commitment scheme can be written in the ongoing formalism

▶ Impossibility to build an unconditionally secure bit commitment from quantum computation:

https://arxiv.org/pdf/quant-ph/9712023.pdf

BIT COMMITMENT SCHEME: FORMAL DEFINITION

Definition: bit commitment scheme

Protocol between two parties Alice and Bob, denoted hereafter A and B. A bit commitment scheme consists of two phases: a commit phase (Alice commits a bit b) and a reveal phase (Alice reveals to Bob her bit).

- ▶ Alice's aim: Bob cannot gain any information on her committed bit b
- ▶ Bob's aim: once Alice has made her commit, she cannot change her mind

Security requirements:

- ► Completeness: If both players are honest, the protocol should succeed with probability 1.
- ▶ Hiding property: If Alice is honest and Bob is dishonest, his optimal cheating probability is

$$P_{\mathrm{B}}^{\star} \stackrel{\mathrm{def}}{=} \max_{\mathrm{strategy}} \mathbb{P}$$
 (Bob guesses b after the commit phase)

▶ Binding property: If Alice is dishonest and Bob is honest, her optimal cheating probability is

$$P_{A}^{\star} = \max_{\text{strategy}} \frac{1}{2} \left(\mathbb{P} \left(\text{Alice successfully reveals } b = 0 \right) + \mathbb{P} \left(\text{Alice successfully reveals } b = 1 \right) \right)$$

 \longrightarrow Alice optimal possibility to reveal both b=0 and b=1 successfully (for a same random commit).

GENERIC EXAMPLE OF COMMITMENT SCHEMES

$$|\psi^0_{
m AB}
angle$$
 and $|\psi^1_{
m AB}
angle$ be two (publicly known) quantum bipartite states

- lacktriangle Commit phase: Alice wants to commit b. She creates $\left|\psi_{\mathsf{AB}}^{b}\right>$ and sends the B-part to Bob.
 - \longrightarrow After the commit phase, Bob has $\mathsf{tr}_\mathsf{A}\left(\left|\psi_\mathsf{AB}^\mathsf{b}\right.
 ight)$
- **Reveal phase**: Alice sends the A part of the quantum state $\left|\psi_{
 m AB}^b
 ight.$ as well as b.
 - \longrightarrow Bob checks that he has $\left|\psi_{\mathsf{AB}}^{\mathsf{b}}\right>$ by projecting his (joint) state to $\left|\psi_{\mathsf{AB}}^{\mathsf{b}}\right>$

CHEATING STRATEGIES

Sadly, this generic quantum bit commitment scheme cannot be made secure-efficient...

There is a strategy for Alice and Bob such that

$$P_{\rm A}^{\star} + P_{\rm B}^{\star} \geq \frac{3}{2} \quad \text{in particular, } \max \left(P_{\rm A}^{\star}, P_{\rm B}^{\star}\right) \geq \frac{3}{4}$$

In our instantiation

We have described a bit commitment scheme where $P_{\rm A}^{\star}=1$ and $P_{\rm B}^{\star}=\frac{1}{2}$.

Bob has before the commit phase:

$$ho_0=\mathrm{tr}_\mathrm{A}\left(\left|\psi_\mathrm{AB}^{0}
ight.
ight)$$
 or $ho_\mathrm{1}=\mathrm{tr}_\mathrm{A}\left(\left|\psi_\mathrm{AB}^{1}
ight.
ight)$

Bob's optimal cheating probability

The optimal probability of Bob to guess b is

$$P_{\mathrm{B}}^{\star} = \frac{1}{2} + \frac{\Delta(\rho_{0}, \rho_{1})}{2}$$

 \longrightarrow Choose ρ_0 and ρ_1 such that $\Delta(\rho_0, \rho_1)$ is small

▶ Remark: the perfect secure situation is $P_B^* = \frac{1}{2}$, Bob has nothing to do better than choosing *b* randomly.

But how is the optimal Alice's strategy to cheat?

CHEATING ALICE

Alice's optimal cheating probability

The optimal cheating probability of Alice (revealing the commit of her choice after the commit phase) is

$$P_{\rm A}^{\star} = \frac{1}{2} + \frac{F(\rho_0, \rho_1)}{2}$$

Proof

Fix a cheating strategy for Alice, σ be the state that Bob has after the commit phase. During the reveal phase:

- b = 0: Alice sends qubits such that Bob has a pure state $|\varphi_0\rangle$.
- b=1: Alice sends qubits such that Bob has a pure state $|\varphi_1\rangle$.

$$\mathbb{P}\left(\text{Bob accepts}\mid b=0\right) = \left|\left\langle \varphi_0 \left| \psi_{\text{AB}}^0 \right\rangle \right|^2 \quad \text{and} \quad \mathbb{P}\left(\text{Bob accepts}\mid b=1\right) = \left|\left\langle \varphi_1 \middle| \psi_{\text{AB}}^1 \right\rangle \right|^2$$

By definition of the protocol: $\sigma = \operatorname{tr}_{A}(|\varphi_{0}\rangle) = \operatorname{tr}_{A}(|\varphi_{1}\rangle)$. Therefore, by Uhlmann's theorem

$$\max_{\left|\varphi_{0}\right\rangle}\left|\left\langle\varphi_{0}\left|\psi_{\mathrm{AB}}^{0}\right\rangle\right|^{2}=F(\sigma,\rho_{0})^{2}\quad\text{and}\quad\max_{\left|\varphi_{1}\right\rangle}\left|\left\langle\varphi_{1}\left|\psi_{\mathrm{AB}}^{1}\right\rangle\right|^{2}=F(\sigma,\rho_{1})^{2}$$

Therefore, if Alice chooses correctly σ and its purifications $|\varphi_0\rangle$ and $|\varphi_1\rangle$, her probability of cheating becomes:

$$\frac{1}{2}\left(F(\sigma,\rho_0)^2+F(\sigma,\rho_1)^1\right)$$

To conclude: see exercise session.

Bob has before the commit phase:

$$ho_0={
m tr}_{
m A}\left(\left|\psi_{
m AB}^{0}
ight>
ight)$$
 or $ho_1={
m tr}_{
m A}\left(\left|\psi_{
m AB}^{1}
ight>
ight)$

$$P_{A}^{\star} = \frac{1}{2} + \frac{F(\rho_{0}, \rho_{1})}{2}$$
 and $P_{B}^{\star} = \frac{1}{2} + \frac{\Delta(\rho_{0}, \rho_{1})}{2}$

Fuchs-Van de Graaf inequalities: $F(\rho_0, \rho_1) \ge 1 - \Delta(\rho_0, \rho_1)$, therefore

$$P_{\rm A}^{\star} + P_{\rm B}^{\star} \geq \frac{3}{2} \quad \text{in particular, } \max \left(P_{\rm A}^{\star}, P_{\rm B}^{\star}\right) \geq \frac{3}{4}$$

There is always a strategy for Bob or Alice to cheat with probability $\geq \frac{3}{4}$...

→ The presented bit commitment scheme cannot be unconditionally secure...

But can we build some unconditionally secure cryptography with quantum computation?

---- Yes! Quantum Key Distribution (QKD) but under some computational assumption

MOTIVATION: ONE-TIME-PAD AND SECRET KEY CRYPTOGRAPHY

Alice and Bob want to share privately a message. How to proceed?

One-time Pad

- Alice and Bob share a secret key $K \in \{0,1\}^n$ which has been chosen uniformly at random
- Alice wishes to send $M \in \{0, 1\}^n$ to Bob. She sends:

$$C(M) = M \oplus K$$

• Bob receives C(M) and computes $C(M) \oplus K = M$

Security aim: anyone that intercepts C(M) without knowing K "cannot recover" M.

One-time pad: perfectly secure, even with unbounded computation impossibility to recover M

Given two possibly send messages
$$(M_1,M_2)\!\colon \mathbb{P}_K(C(M_1)=D)=\mathbb{P}_K(C(M_2)=D)$$

→ Be careful: once a key is used, don't use it again... Otherwise:

MOTIVATION: ONE-TIME-PAD AND SECRET KEY CRYPTOGRAPHY

Alice and Bob want to share privately a message. How to proceed?

One-time Pad

- Alice and Bob share a secret key $K \in \{0,1\}^n$ which has been chosen uniformly at random
- Alice wishes to send $M \in \{0, 1\}^n$ to Bob. She sends:

$$C(M) = M \oplus K$$

• Bob receives C(M) and computes $C(M) \oplus K = M$

Security aim: anyone that intercepts C(M) without knowing K "cannot recover" M.

One-time pad: perfectly secure, even with unbounded computation impossibility to recover ${\tt M}$

Given two possibly send messages
$$(M_1, M_2)$$
: $\mathbb{P}_K(C(M_1) = D) = \mathbb{P}_K(C(M_2) = D)$

→ Be careful: once a key is used, don't use it again... Otherwise:

From : $C(M_1)$ and $C(M_2)$, compute $C(M_1) \oplus C(M_2) = M_1 \oplus M_2$ (information about M_1 and M_2)

Drawback of the one-time pad

- 1. Message length \leq key length and one send message per key...
- 2. How Alice and Bob can privately share a secret key "the snake biting its tail..."

DRAWBACK OF THE ONE-TIME PAD

- 1. Message length ≤ key length and one send message per key...
- 2. Alice and Bob need first to share a secret key

To overcome these issues:

- Advanced Encryption Scheme (AES): Alice and Bob share a secret key of 128 bits (at least 2¹²⁸ classical operations to recover the key, considered to be secure)
 - → Many other encryption scheme with short keys: field known as symmetric-key cryptography

Security: the community tries to break (cryptanalyse) proposed schemes

But the problem remains, how to share privately secret keys?

Key-exchange protocol: use public-key cryptography, such as trapdoor one-way functions or Diffie-Hellman protocol (1976)

TRAPDOOR ONE-WAY FUNCTIONS

Public-key cryptography relies on the use of

- Alice publicly reveals f for which she knows the trapdoor
- Bob computes f(K) and he sends it to Alice
- Alice receives f(K) and computes $K = f^{-1}(f(K))$ with the trapdoor (f is supposed injective).
- \longrightarrow Alice and Bob shared a secret key **K** under the assumption that Alice is the only one to be able to invert f efficiently

TRAPDOOR ONE-WAY FUNCTIONS

How to build trapdoor one-way functions?

- 1. RSA: hardness to factorise an integer
- 2. Code and Lattice-based cryptography: hardness to decode a random code and a random lattice
- 3. etc...

Moral to build trapdoor one-way functions: find a mathematical hard problem but for which there

exists trapdoors

→ Usually: difficult to find hard problems to solve such that with some quantity (the trapdoor) the problem becomes easy...

Diffie-Hellman protocol

Public data: \mathbb{G} generated by g

Alice: computes $(q^b)^a = q^{ab}$ q^b

Bob: generates b

Bob: computes $(g^a)^b = g^{ab}$

- ullet Alice and Bob shared g^{ab}
- Security: hard to compute q^{ab} from the knowledge of q^a and q^b (discrete logarithm problem)

Is there a key-exchange protocol using quantum computation?

→ Yes! Since the seminal work of BB84 (Bennett & Brassard, 1984)

(Quantum Key Distribution)

QUANTUM KEY DISTRIBUTION

Key distribution

- Alice and Bob communicate over a public and authenticated channel
- At the end of the scheme, they agree on a key $K \in \{0, 1\}^n$.
- Any adversary eavesdropping and tampering the channel cannot gain, or vanishingly little, information about K (hard to define properly).
- Quantum Key Distribution (QKD): public channels are quantum channels

Be careful (see Exercise Session)

If the public channel is not-authenticated, there is an attack (man in the middle)

→ The channels have to be authenticated, even in the quantum setting...

But how to authenticate a channel?

Use for instance RSA-based cryptography... If you're unhappy (because broken in the quantum computing model), use post-quantum cryptography

A (BIG) WARNING

Key distribution, quantum or not

Still need: an authenticated channel and

The only way: use a problem that is conputationally hard.

→ Sentences like: "QKD is secure because laws of physic" are false...

True sentence: "QKD is secure because laws of physic and we know problems hard even in the quantum computing model"

QKD security relies on

- Authenticated channel
- · No-cloning theorem
- · Measurements modify quantum states

Alice has a key string $\mathbf{K} = k_1, \dots, k_n$ she would like to transmit to Bob

→ Alice will first perform an encoding into non-orthogonal quantum states

BB84 encoding of a bit k_i

Pick a random $b_i \in \{0, 1\}$, then

• If $b_i = 0$, build

$$|k_i\rangle^0\stackrel{\mathrm{def}}{=}|k_i\rangle$$

• If $b_i = 1$, build

$$|k_i\rangle^1 \stackrel{\text{def}}{=} H |k_i\rangle = \frac{|0\rangle + (-1)^{k_i} |1\rangle}{\sqrt{2}}$$

ki	bi	$ k_i\rangle^{b_i}$
0	0	0>
0	1	$ +\rangle$
1	0	1>
1	1	$ -\rangle$

Why does it seems necessary to encode bits into non-orthogonal quantum states?

Alice has a key string $\mathbf{K}=k_1,\cdots,k_n$ she would like to transmit to Bob

 \longrightarrow Alice will first perform an encoding into non-orthogonal quantum states

BB84 encoding of a bit k_i

Pick a random $b_i \in \{0, 1\}$, then

• If $b_i = 0$, build

$$|k_i\rangle^0 \stackrel{\text{def}}{=} |k_i\rangle$$

• If $b_i = 1$, build

$$|k_i\rangle^1 \stackrel{\text{def}}{=} \mathbf{H} |k_i\rangle = \frac{|0\rangle + (-1)^{k_i} |1\rangle}{\sqrt{2}}$$

k _i	bi	$ k_i\rangle^{b_i}$
0	0	0>
0	1	$ +\rangle$
1	0	1>
1	1	$ -\rangle$

Why does it seems necessary to encode bits into non-orthogonal quantum states?

--- Non-orthogonal quantum states cannot be perfectly distinguished

THE BB84 PROTOCOL

- Alice picks a random initial raw key $K = k_1, \dots, k_n$ uniformly at random.
- ► For each $i \in \{1, ..., n\}$, Alice picks a random $b_i \in \{0, 1\}$, and sends $|k_i\rangle^{b_i}$ to Bob.
- ▶ Bob picks some random basis $b'_1, \ldots, b'_n \in \{0, 1\}$ and measures each qubit $|k_i\rangle^{b_i}$ in the basis $\{|0\rangle, |1\rangle\}$ if $b'_i = 0$, otherwise in the basis $\{|+\rangle, |-\rangle\}$. Let c_i measurement outcome.

THE BB84 PROTOCOL

- Alice picks a random initial raw key $K = k_1, \dots, k_n$ uniformly at random.
- ▶ For each $i \in \{1, ..., n\}$, Alice picks a random $b_i \in \{0, 1\}$, and sends $|k_i\rangle^{b_i}$ to Bob.
- ▶ Bob picks some random basis $b'_1, \ldots, b'_n \in \{0, 1\}$ and measures each qubit $|k_i\rangle^{b_i}$ in the basis $\{|0\rangle, |1\rangle\}$ if $b'_i = 0$, otherwise in the basis $\{|+\rangle, |-\rangle\}$. Let c_i measurement outcome.
- ▶ Bob sends to Alice b'_1, \ldots, b'_n he used for his measurements by using a public **authenticated** channel. Alice sends back the subset $\mathcal{I} = \{i : b_i = b'_i\}$ to Bob.
- ▶ Alice picks a random $\mathcal{J} \subseteq \mathcal{I}$ of size $\frac{\sharp \mathcal{I}}{2}$ and sends $\mathcal{J}, \{k_j : j \in \mathcal{J}\}$ to Bob.
- ▶ For each $j \in \mathcal{J}$, Bob checks that $k_j = c_j$. If one of these checks fail, he aborts.
- $\blacktriangleright \ \mathcal{L} = \mathcal{I} \setminus \mathcal{J} \text{ be the subset of indices used for the final key: } K_A = (k_\ell)_{\ell \in \mathcal{L}} \text{ and } K_B = (c_\ell)_{\ell \in \mathcal{L}}.$
- ightharpoonup Alice and Bob perform key reconciliation to agree on a key K_f .
- They perform privacy amplification to ensure that anyone has no information about the key: shared key $h(\mathbf{K}_f)$ for some "cryptographic" hash function h.

An eavesdropper has access to:

$$|k_i\rangle^0$$
 or $|k_i\rangle^1$ for $1 \le i \le n$

But what happens if an eavesdropper performs a measurement to guess k_i ?

$$\longrightarrow$$
 It can modify $|k_i\rangle^b$!

For instance:

Suppose that Alice sent $|\psi\rangle = |0\rangle^1 = |+\rangle$ and an eavesdropper looks at it.

- 1. If an attacker measures in the basis $\{|+\rangle\,, |-\rangle\}$ then the state is not modified
- 2. If an attacker measures in the basis $\{|0\rangle\,, |1\rangle\}$ then the state collapses to:
 - $|0\rangle$ with probability 1/2 $\,$ or $\,$ $|1\rangle$ with probability 1/2 $\,$

In that case, if Bob measures the received quantum state in the basis $\{|+\rangle , |-\rangle \}$ (the same basis than Alice), he will measure $|+\rangle$ with probability 1/2

→ The eavesdropper will be detected with probability 1/4

But: $|k_i\rangle^0$ and $|k_i\rangle^1$ are non-orthogonal

→ They cannot be perfectly distinguished! At best with probability

$$\frac{1+\Delta(|+\rangle,|1\rangle)}{2} = \frac{1+\Delta(|-\rangle,|1\rangle)}{2} = \cdots = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.85$$

$$K_A = (k_\ell)_{\ell \in \mathcal{L}}$$
 and $K_B = (c_\ell)_{\ell \in \mathcal{L}}$ may be different at the end of the protocol

- An eavesdropper only intercepted a small number of qubits (so is not caught with some constant probability)
- Hardware imperfection in the signal transmission or in the measurement create some inconsistency.

Key reconciliation

Alice chooses an error correcting code \mathcal{C} , such $K_A \in \mathcal{C}$, and she publicly reveals \mathcal{C} .

Hoping that not too much bits between K_A and K_B are different, Bob decodes K_B in $\mathcal C$ to recover K_A .

- Security proof of BB84 can be found here (it uses many tools of quantum information theory) https://arxiv.org/pdf/1506.08458.pdf
- ► Many other QKD protocols exist, see for instance

Nielsen and Chuang, Quantum computation and quantum information, Chapter 12

Don't forget

The QKD's also need "classical cryptography" to be secure...

