

TI – Traitement d'Images Semaine 10 : Détection de contours (2) Olivier Losson

Master Informatique : http://www.fil.univ-lille1.fr Spécialité IVI : http://master-ivi.univ-lille1.fr

Plan du cours

- 1 Approches par dérivées secondes
 - Justification de l'approche par dérivées secondes
 - Dérivée seconde directionnelle et Laplacien
 - Approximations discrètes
- 2 Utilisation du Laplacien
 - Réduction de la sensibilité au bruit
 - Comparaison des approches de 1^{er} et 2^{ème} ordre
 - Détection de contours multi-échelles
- 3 Post-traitements sur les contours
 - Généralités
 - Fermeture de contour
 - Codage
- Sélection de références

Justification de l'approche par dérivées secondes

- Critique des approches par dérivées premières
 - Nécessitent une détection des maxima dans la direction du gradient, car l'épaisseur du « contour » dépend de la largeur de transition.
 - **Difficulté de localiser le contour avec précision.**
- Utilisation de la dérivée seconde
 - La dérivée seconde d'une fonction mesure sa courbure locale.
 - Utilisation dans la détection des contours :
 - Aux points contours, la dérivée seconde est nulle.
 - Plus précisément, les points contours sont caractérisés par un passage par zéro (ang. « zero crossing ») de la dérivée seconde.

Dérivée seconde directionnelle et Laplacien (1/4)

- Calcul de la dérivée seconde directionnelle
 - \bullet Dérivée première directionnelle dans la direction α (rappel):

$$f'_{\alpha} := \frac{df}{d\alpha} \approx \cos\alpha \frac{\partial f}{\partial x} + \sin\alpha \frac{\partial f}{\partial y} = \vec{\alpha} \cdot \vec{\nabla} f$$

Dérivée seconde directionnelle dans la direction α:

$$f''_{\alpha}(x,y) := \frac{d^2 f}{d \alpha^2}(x,y) := \lim_{h \to 0} \frac{f'_{\alpha}(x + h \cos \alpha, y + h \sin \alpha) - f'_{\alpha}(x,y)}{h}$$

Or, en appliquant la formule de Taylor,

$$f'_{\alpha}(x + h\cos\alpha, y + h\sin\alpha) = f'_{\alpha}(x, y) + h\cos\alpha\frac{\partial f'_{\alpha}}{\partial x}(x, y) + h\sin\alpha\frac{\partial f'_{\alpha}}{\partial y}(x, y) + O(h^{2})$$

D'où

$$\frac{d^2 f}{d\alpha^2} \approx \cos\alpha \frac{\partial}{\partial x} \left(\cos\alpha \frac{\partial f}{\partial x} + \sin\alpha \frac{\partial f}{\partial y} \right) + \sin\alpha \frac{\partial}{\partial y} \left(\cos\alpha \frac{\partial f}{\partial x} + \sin\alpha \frac{\partial f}{\partial y} \right)$$

$$\approx \cos^2\alpha \frac{\partial^2 f}{\partial x^2} + 2\cos\alpha \sin\alpha \frac{\partial^2 f}{\partial x \partial y} + \sin^2\alpha \frac{\partial^2 f}{\partial y^2}$$

Dérivée seconde directionnelle et Laplacien (2/4)

- Détection des points contours
 - On cherche les passages par zéro de la dérivée seconde directionnelle, soit

$$\cos^2 \alpha_0 \frac{\partial^2 f}{\partial x^2} + 2\cos \alpha_0 \sin \alpha_0 \frac{\partial^2 f}{\partial x \partial y} + \sin^2 \alpha_0 \frac{\partial^2 f}{\partial y^2} = 0$$

- Définition du Laplacien
 - **→** Pour simplifier l'évaluation de la concavité locale de la fonction image f, exprimée par sa dérivée seconde, on fait appel à l'opérateur Laplacien, défini par :

 $\Delta f := \frac{\partial^2 f}{\partial \alpha^2} + \frac{\partial^2 f}{\partial \alpha^2}$ où α et α_1 sont 2 directions orthogonales quelconques.

* Remarque : le Laplacien est un opérateur scalaire et isotrope (invariant

par rotation)

Dérivée seconde directionnelle et Laplacien (3/4)

- Utilisation du Laplacien pour la détection des points contours
 - Les passages par zéro de la dérivée seconde directionnelle f''_{α} coïncident généralement avec ceux du Laplacien ($\Delta f = 0$).

En particulier, avec $\alpha \equiv Ox$ et $\alpha_1 \equiv Oy : P(x_0, y_0)$ est point contour si

$$\Delta f(x_{0,}y_{0}) := \frac{\partial^{2} f}{\partial x^{2}}(x_{0,}y_{0}) + \frac{\partial^{2} f}{\partial y^{2}}(x_{0,}y_{0}) = 0$$

- Correspondance avec le gradient :
 - Cas particulier où $\alpha \equiv \theta$, direction du gradient (normale au contour) et $\alpha_{\perp} \equiv \theta_{\perp}$ (tangente).

$$\Delta f := \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial \theta^2}$$

- Dans les zones de faible courbure, $\frac{\partial^2 f}{\partial \theta_{\perp}^2} \approx 0$.
- Un passage par zéro du Laplacien correspond donc à une dérivée seconde directionnelle nulle dans la direction du gradient.

Dérivée seconde directionnelle et Laplacien (4/4)

- Interprétation du Laplacien.
 - Pour $\alpha = Ox$ et $\alpha_{\perp} = Oy$, le Laplacien s'écrit $\Delta f = \overrightarrow{\nabla} f \cdot \overrightarrow{\nabla} f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
 - Sauf dans le cas d'un « point de selle », le Laplacien représente fidèlement la concavité de la surface au point considéré :

Approximations discrètes (1/2)

- Dérivées premières discrètes (rappel)
 - Masques de Roberts

$$\frac{\partial f}{\partial x}(x_{0}, y_{0}) \approx f(x_{0}+1, y_{0}) - f(x_{0}, y_{0})$$
ou
$$\approx f(x_{0}, y_{0}) - f(x_{0}-1, y_{0})$$

Masques de Roberts2

$$\frac{\partial f}{\partial x}(x_0, y_0) \approx \frac{f(x_0 + 1, y_0) - f(x_0 - 1, y_0)}{2}$$
Dérivées secondes discrètes

$$\frac{1}{2}$$
 $+1$ 0 -1

, puis

- - Meilleure approximation au centre : appliquer

$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0}, y_{0}) \approx \frac{\partial f}{\partial x}(x_{0}+1, y_{0}) - \frac{\partial f}{\partial x}(x_{0}, y_{0})$$

$$\approx \left[f(x_{0}+1, y_{0}) - f(x_{0}, y_{0}) \right] - \left[f(x_{0}, y_{0}) - f(x_{0}-1, y_{0}) \right]$$

$$\approx f(x_{0}+1, y_{0}) - 2f(x_{0}, y_{0}) + f(x_{0}-1, y_{0})$$

Masque associé à la dérivée seconde selon x:

Approximations discrètes (2/2)

Dérivées secondes discrètes (suite)

Perivees secondes discretes (suite)

• De même,
$$\frac{\partial^2 f}{\partial y^2}(x_{0,}y_0) \approx f(x_{0,}y_0+1) - 2f(x_{0,}y_0) + f(x_{0,}y_0-1)$$

-2

+1

D'où l'approximation discrète du Laplacien :

$$\Delta f(x_{0,}y_{0}) \approx f(x_{0}+1,y_{0}) + f(x_{0}-1,y_{0}) + f(x_{0,}y_{0}+1) + f(x_{0,}y_{0}-1) - 4f(x_{0,}y_{0})$$

masque de convolution:

Autres approximations possibles du Laplacien :

+1	0	+1		
0	-4	0		
+1	0	+1		

+1	+1	+1		
+1	-8	+1		
+1	+1	+1		

+1	+2	+1
+2	-12	+2
+1	+2	+1

+1	+4	+1		
+4	-20	+4		
+1	+4	+1		

Introduction

Prérequis pour l'utilisation du Laplacien

- Les points contours correspondent aux passages par 0 de Δf .
- Problème : l'approximation de Δf est fortement bruitée (cf. diapos suivantes).
- On va donc :
 - détecter les points où Δf change de signe plutôt que ceux où $\Delta f(x,y)=0$;
 - imposer un seuil
 - et/ou pré-lisser l'image pour en réduire le bruit avant de calculer le Laplacien.

Exemple d'algorithme

- Principe : seuil sur les valeurs locales minimum et maximum du Laplacien
- Paramètres d'entrée : Laplacien de l'image Δf , seuil S_{Δ} .
- En chaque pixel,
 - considérer un voisinage (ex. 3x3) centré ;
 - calculer $m := \min(\Delta f)$ et $M := \max(\Delta f)$ dans ce voisinage;
 - le pixel est considéré comme point contour si $m < -S_{\Delta}$ et $M > S_{\Delta}$.

Autre critère possible : m < 0 et M > 0 et $M - m > S_{\Lambda}$.

Réduction de la sensibilité au bruit (1/4)

Réduction de la sensibilité au bruit (2/4)

- Opérateur LoG (Laplacian of Gaussian)
 - Du fait de la double dérivation, le Laplacien est très sensible au bruit.
 - Nécessité de lisser l'image en la pré-filtrant avec un noyau gaussien

$$g_{\sigma}(x, y) := \frac{1}{2\pi \sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

avant d'utiliser le Laplacien pour détecter les points contours.

Possibilité de réaliser ces deux opérations en une seule :

Justification:
$$\frac{\partial}{\partial x}(h*f)(x,y) = \frac{\partial}{\partial x}\iint_{r}h(x-u,y-v)f(u,v)du\,dv$$

$$= \iint_{r}\frac{\partial h}{\partial x}(x-u,y-v)f(u,v)\,du\,dv$$

$$= \left(\frac{\partial h}{\partial x}*f\right)(x,y)$$
iversité

Réduction de la sensibilité au bruit (3/4)

Expression et masque de l'opérateur LoG

$$\frac{\partial g_{\sigma}}{\partial x}(x,y) = -\frac{x}{2\pi\sigma^4} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

$$\frac{\partial^2 g_{\sigma}}{\partial x^2}(x,y) = -\frac{1}{2\pi\sigma^4} \left(1 - \frac{x^2}{\sigma^2}\right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

d'où

$$LoG_{\sigma}(x, y) := \Delta g_{\sigma}(x, y) = -\frac{1}{\pi \sigma^{4}} \left(1 - \frac{x^{2} + y^{2}}{2 \sigma^{2}} \right) exp \left(-\frac{x^{2} + y^{2}}{2 \sigma^{2}} \right)$$

Approx.
discrète
de taille
9x9
pour
σ=1,4

•	0	+1	+1	+2	+2	+2	+1	+1	0
	+1	+2	+4	+5	+5	+5	+4	+2	+1
	+1	+4	+5	+3	0	+3	+5	+4	+1
	+2	+5	+3	-12	-24	-12	+3	+5	+2
	+2	+5	0	-24	-40	-24	0	+5	+2
	+2	+5	+3	-12	-24	-12	+3	+5	+2
	+1	+4	+5	+3	0	+3	+5	+4	+1
	+1	+2	+4	+5	+5	+5	+4	+2	+1
	0	+1	+1	+2	+2	+2	+1	+1	0

Réduction de la sensibilité au bruit (4/4)

- Approximation de LoG par différence de gaussiennes (DoG)
 - Le filtre LoG peut être approché par la différence de deux gaussiennes d'écarts-types proches :

$$\begin{aligned} & \operatorname{LoG}_{\sigma_{1}}(x,y) \approx \operatorname{DoG}_{\sigma_{1},\sigma_{2}}(x,y) := g_{\sigma 2}(x,y) - g_{\sigma 1}(x,y) \\ & \operatorname{avec} \ \sigma_{2} = \sigma_{1} + \delta \ , \ \delta \ll \sigma_{1} \end{aligned}$$

Démonstration en 1D :

Considérons
$$f_x(\sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

dont le développement de Taylor en σ_1 est $f_x(\sigma_1 + \delta) = f_x(\sigma_1) + \delta \frac{d f_x}{d \sigma}(\sigma_1) + O(\delta^2)$

Alors
$$\operatorname{DoG}_{\sigma_1,\sigma_2}(x) = g_{\sigma_1+\delta}(x) - g_{\sigma_1}(x) = f_x(\sigma_1+\delta) - f_x(\sigma_1)$$

$$\approx \delta \frac{d f_x}{d \sigma}(\sigma_1) = \frac{\delta}{\sqrt{2\pi}} \left(-\frac{1}{\sigma_1^2} - \frac{1}{\sigma_1} \cdot \left(-\frac{x^2}{\sigma_1^3} \right) \right) \exp\left(-\frac{x^2}{2\sigma_1^2} \right)$$

$$\approx -\frac{\delta}{\sigma_1^2 \sqrt{2\pi}} \left(1 - \frac{x^2}{\sigma_1^2} \right) \exp\left(-\frac{x^2}{2\sigma_1^2} \right) = \delta \sigma_1 \frac{d^2 g_{\sigma_1}}{dx^2}(x)$$
iversité

Utilisation de l'opérateur LoG

Détecteur de contours de Marr-Hildreth

- Principe: localiser les contours aux passages par 0 de $LoG_{\sigma} * f$.
- Justifications
 - Nécessité de lisser l'image avant d'appliquer le Laplacien.
 - Le lissage gaussien réalise le meilleur compromis entre détection et localisation.

Algorithme

- Convolution de l'image avec LoG_{σ} (approché par un masque de taille $n \times n$). Autre possibilité : utiliser $DoG_{\sigma 1, \sigma 2}$ (avantage : filtres gaussiens séparables).
- Détection des passages par 0 de l'image résultante.
- (Éventuellement :) Seuillage des passages par 0.
 - Avantage : prise en compte des seuls passages par 0 significatifs.
 - Inconvénient : on perd la propriété de fermeture présentée par les lignes de passages par 0 du Laplacien.

Limites:

• pour σ élevé, localisation médiocre et points d'intérêt saillants « perdus ».

Approche multi-échelles (1/2)

Principe: Détecter des contours plus ou moins significatifs, en pré-lissant plus ou moins fortement l'image grâce au filtre gaussien (σ est l'« échelle »).

Laplacien (32 bits) 🚣 _Laplacien (sig=1.4) 200x172 pixels; 32-bit; 134K

Polarité

Passages par 0

On obtient différents niveaux de détails pour les objets

$$\sigma$$
=3,0

Approche multi-échelles (2/2)

Avantages et limites de l'approche

- deux contours peuvent « fusionner » lorsque σ augmente
- $\$ un contour ne peut *pas* être divisé lorsque σ augmente
- s'applique aussi avec le gradient (⇒ détecteur de Canny)
- \P la position du contour peut varier lorsque σ augmente (médiocre localisation)

Comparaison Gradient / Laplacien (1/3)

Résumé des approches vues pour la détection des points contours

- Gradient (ex. Canny)
 - Calcul des dérivées partielles (lissées)
 - Calcul de la norme et de la direction du gradient
 - Suppression des non-maxima locaux de la norme du gradient dans sa direction
 - Seuillage par hystérésis des maxima locaux de la norme du gradient

- Laplacien
 - (lissage de l'image)Calcul du LaplacienLoG, DoG
 - Détection des passages par 0 du Laplacien
 - Seuillage des passages par 0 du Laplacien
- Approches combinées Laplacien-gradient
 - Principe: utilisation de $||\nabla G||$ pour seuiller les passages par 0 de Δf .
 - Calcul du Laplacien (après lissage)
 - Calcul de la norme du gradient
 - Détection des passages par 0 de Δ (\Rightarrow masque I_z) à partir de l'image de polarité I_p
 - Application du masque binaire I, à l'image de la norme du gradient
 - Seuillage de l'image résultante (simple, par hystérésis, ...)

Comparaison Gradient / Laplacien (2/3)

Gradient

- **→** Avantages 🖫
 - Fournit l'orientation du contour
 - Bonne localisation malgré le lissage
 - La suppression des non-maxima locaux fournit des contours fins
- Inconvénients \$\forall^2\$
 - Assez sensible au bruit⇒ nécessite un lissage
 - Le seuillage fournit des contours non fermés.

Laplacien

- 🔹 Avantages 🕏
 - Proche du système visuel humain
 - La détection des passages par 0 fournit des réseaux de lignes fermées

Inconvénients 🦃

- Grande sensibilité au bruit
 - ⇒ nécessite un lissage fort
 - ⇒ affecte la localisation
- Pas d'info sur l'orientation du contour
- Le seuillage des passages par 0 crée des lacunes (« ouvertures ») dans les contours

Les deux approches

- \P nécessitent l'ajustement de paramètres (σ et S_{Δ} , S_{b} et S_{h})
- permettent une interpolation subpixellique

Comparaison Gradient / Laplacien (3/3)

Exemples de détection des points contours

Conclusion

- Pas d'opérateur parfait pour détecter les contours
- On obtient en pratique des contours incomplets (ouverts)
 - **détection** incorrecte : pixels superflus, pixels manquants
 - localisation incorrecte : erreurs dans la position des points contours, l'orientation
- La détection des points contours n'est que la première étape dans la chaîne de segmentation

Généralités sur les post-traitements (1/2)

La détection des points contours fournit

- une carte binaire des points contours ;
- souvent, des contours ouverts (composantes de l'image non séparées en objets topologiquement distincts). Causes :
 - bruit
 - faible contraste
 - occultations

Nécessité de fermer les contours

- Pour obtenir des régions fermées
 - définies comme des composantes connexes maximales n'incluant pas de points contours;
 - interprétables comme projections des objets de la scène.
- Très important pour l'exploitation en segmentation d'image.

Généralités sur les post-traitements (2/2)

 Fermeture des contours par extrapolation

Ajout de points non détectés

- Suppression des contours non fermés / non significatifs
- Suppression des « branches pendantes » des contours fermés (ébarbulage)

Rejet de points détectés par erreur

Codage ou chaînage des contours

Fermeture des contours (1/4)

- Principe
 - Prolonger les extrémités des chaînes de points contours vers d'autres chaînes de points contours.
- Techniques d'exploration de graphes
 - Principe: exploration de l'espace des chemins solutions,
 - chaque pixel étant un nœud du graphe,
 - chaque connexion d'un pixel à l'un de ses voisins étant un arc du graphe.

- Avantage: méthodes aux bases solides, fournissant les meilleurs résultats.
- Inconvénient : coût élevé (explosion combinatoire)

Fermeture des contours (2/4)

• Exploration de graphes : détails (1/2)

Approche générale

- recherche des extrémités des composantes connexes de points contours
- sélection de points candidats à la prolongation du contour (X)

prolongation suivant critère (minimum d'une fonction de coût)

Implémentation simpliste

- fonction de coût : inverse de la norme du gradient
- mais la sélection sur un niveau atteint rapidement ses limites :
 - \Rightarrow utiliser plusieurs niveaux, ex. 2 :
- le coût sur *n* niveaux est la somme du coût en chaque pixel candidat.

Fermeture des contours (3/4)

- Exploration de graphes : détails (2/2)
 - Implémentation avec retour sur trace (ang. « backtracking »)
 - Utilise un arbre de recherche dont les nœuds sont les bifurcations possibles dans la chaîne de fermeture, et dont les branches sont les points contours candidats.
 - A chaque itération (niveau), on garde tous les candidats auxquels la norme du gradient est supérieure à un seuil, et on les classe par coût croissant.
 - Échec d'un chemin si
 - aucun candidat de norme > au seuil (Es)
 - création d'une chaîne bouclée (**Eb**)
 - ⇒ remontée au nœud précédent
 - Fin de recherche si
 - rencontre d'un point contour (succès **S**)
 - tous les chemins mènent à un échec (fermeture impossible)
 - (nombre max. d'itérations atteint)

Source: J. Desachy

Fermeture des contours (4/4)

- Autres méthodes
 - Dilatation D / Réduction topologique R

- Contraintes de R : préserve la topologie et les points contour initiaux
- cf. détails sur http://dpt-info.u-strasbg.fr/~cronse/TIDOC/ATG/fermcont.html
- Méthodes neuromimétiques (réseaux de neurones)
- Les contours actifs (ang. « snakes ») évitent l'étape de fermeture
 - Courbe 2D déformable qui épouse progressivement les contours des objets
 - cf. http://imagejdocu.tudor.lu/doku.php?id=plugin:segmentation:active_contour:start

Codage/chaînage des contours

- Principe
 - Décrire un contour au moyen d'une structure de donnée.
- Exemple simple : codage de Freeman
 - On code les changements de direction d'un pixel de contour à son voisin.
 - La séquence des codes locaux constitue le codage du contour. *Ex.* à partir de *P* : { 6, 0, 7, 0, 2, 0, 1, 1, 2, 2, 4, 2, 4, 5, 6, 4, 6, 4, 5 }
 - Réduction de la chaîne de contour
- Autres approches possibles

- Exemple : transformée de Hough (détection de contours continus en classes de formes : lignes, mais aussi cercles et ellipses).
- \Rightarrow cf. cours de Reconnaissance de Formes!

Sélection de références

- Livre
 - → W. Burger, M.J. Burge, *Digital Image Processing An Algorithmic Introduction Using Java*, Springer 2008.
- Sites web
 - Cours de J.-H. Thomas (Université du Maine)

http://www.optique-ingenieur.org/fr/cours/ OPI_fr_M04_C05/co/Grain_OPI_fr_M04_C05.html

- Image Processing Learning ressources Explore with Java
 - Ex. filtre LoG: http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
- Using Laplacian for Edge Detection (R. Wang)
 - http://fourier.eng.hmc.edu/e161/lectures/gradient/node9.html
- Image Filtering & Edge Detection (N. Vasconcelos)

http://www.svcl.ucsd.edu/courses/ece161c/handouts/EdgesAndInterpolation.pdf

