PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

ÁLGEBRA CONMUTATIVA

Semestre académico 2020-2

Tarea 1

Resuelva 10 de los siguientes ejercicios.

- 1. Sea A un anillo conmutativo distinto de zero. Pruebe que el conjunto de ideales primos de A tiene elementos minimales con respecto de la inclusión.
- 2. Sea $I \neq (1)$ un ideal de un anillo conmutativo A. Demuestre que $I = \sqrt{I}$ si y sólo si I es la intersección de los ideales primos que contienen a I.
- 3. Demuestre que los ideales primos de $\mathbb{Z}[x]$ son:
 - (1) (0),
 - (II) (p), para $p \in \mathbb{Z}$ primo,
 - (III) ideales principales de la forma (f), donde $f \in \mathbb{Z}[x]$ es un polinomio irreducible sobre \mathbb{Q} cuyos coefficientes tienen máximo común divisor 1, e
 - (IV) ideales maximales de la forma (p, f), donde $p \in \mathbb{Z}$ es primo y $f \in \mathbb{Z}[x]$ es un polinomio mónico cuya reducción mód p es irreducible.
- 4. Sea R un anillo conmutativo. Para cada $f \in R$, denotemos por X_f el complemento de V(f) en $X = \operatorname{Spec}(R)$. Muestre que los conjuntos X_f son abiertos en la topología de Zariski de X. Demuestre también que los X_f 's forman una base para la topología de Zariski en X. Además, demuestre que:
 - $a) X_f \cap X_g = X_{fg},$
 - b) $X_f = \emptyset \Leftrightarrow f$ es nilpotente,
 - c) $X_f = X \Leftrightarrow f$ es invertible,
 - $d) X_f = X_g \Leftrightarrow \sqrt{(f)} = \sqrt{(g)},$
 - e) X es casi-compacto (i.e. todo recubrimiento abierto de X tiene una subcubrimiento finito),
 - f) X_f es casi-compacto,
 - g) Un subconjunto abierto de X es casi-compacto si y sólo si es una unión finita de subconjuntos de la forma X_f .

Nota: Los conjuntos X_f son llamados abiertos básicos de $X = \operatorname{Spec}(R)$.

- 5. Sea x un punto de $\operatorname{Spec}(R)$. Cuando se necesita enfatizar que x representa un ideal de R, se suele usar la notación \mathfrak{p}_x (obviamente, son lo mismo). Demuestre lo siguiente:
 - a) el subconjunto $\{x\}$ es cerrado en $X = \operatorname{Spec}(R)$ (y decimos que x es un "punto cerrado") si y sólo si \mathfrak{p}_x es maximal.
 - $b) \ \overline{\{x\}} = V(\mathfrak{p}_x),$
 - $c) \ y \in \overline{\{x\}} \Leftrightarrow \mathfrak{p}_x \subseteq \mathfrak{p}_y,$
 - d) X es un espacio T_0 (esto es, si x e y son puntos distintos de X, entonces o bien existe una vecindad de x que no contiene a y, o bien una vecindad de y que no contiene a x).

- 6. Un espacio topológico X se llama irreducible si $X \neq \emptyset$ y todo par de subconjuntos abiertos de X se intersecan; equivalentemente, todo subconjunto abierto no vacío de X es denso en X. Demuestre que $\operatorname{Spec}(R)$ es irreducible si y sólo si el nilradical de R es un ideal primo.
- 7. Pruebe que las componentes irreducibles de $X = \operatorname{Spec}(R)$ son los subconjuntos cerrados $V(\mathfrak{p})$, donde \mathfrak{p} es un ideal primo minimal de R.
- 8. Sea $\phi:A\to B$ un homomorfismo de anillos. Sean $X=\operatorname{Spec}(A)$ e $Y=\operatorname{Spec}(B)$. Denotemos por $\phi^*:Y\to X$ la función inducida por ϕ . Demuestre lo siguiente:
 - a) Si $f \in A$, entonces $\phi^{-1}(X_f) = Y_{\phi(f)}$, y por tanto ϕ^* es continua.
 - b) Si \mathfrak{a} es un ideal de A, entonces $\phi^{*-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$, donde \mathfrak{a}^e es el ideal $Bf(\mathfrak{a})$ generado por $f(\mathfrak{a})$ en B.
 - c) Si \mathfrak{b} es un ideal de B, entonces $\overline{\phi^*(V(\mathfrak{b}))} = V(\phi^{-1}(\mathfrak{b}))$
 - d) Si ϕ es sobreyectiva, entonces ϕ^* es un homeomorfismo de Y en el subconjunto cerrado $V(\operatorname{Ker}(\phi))$ de X. En particular, $\operatorname{Spec}(A)$ y $\operatorname{Spec}(A/\mathfrak{N})$, donde \mathfrak{N} es el nilradical de A, son naturalmente isomorfos.
 - e) Si ϕ es inyectiva, entonces $\phi^*(Y)$ es denso en X. Para ser más precisos, muestre que $\phi^*(Y)$ es denso en X si y sólo si $\mathrm{Ker}(\phi) \subset \mathfrak{N}$.
- 9. Sea R un anillo conmutativo. Supongamos $1 \neq 0$ en R. Sea S un conjunto multiplicativo de R que no contiene a 0. Sea I un elemento maximal en el conjunto de ideales de R cuya intersección con S es vacía. Muestre que I es un ideal primo.
- 10. Sea R un dominio de ideales principales y sea S un conjunto multiplicativo de R tal que $0 \notin S$. Muestre que $S^{-1}R$ es un dominio de ideales principales.
- 11. Muestre que $\mathbb{Z}[i]$, donde $i = \sqrt{-1}$, es un dominio de ideales principales. ¿ Es dominio de factorización única? Halle las unidades de este anillo.
- 12. Sea A un anillo conmutativo con unidad. Sea N el ideal nilradical de A. Muestre que las siguientes afirmaciones son equivalentes.
 - a) A tiene sólo un ideal primo.
 - b) todo elemento de A es una unidad o nilpotente.
 - c) A/N es un cuerpo.
- 13. Sea R un anillo conmutativo. Sea $I \subset R$ un ideal. Considere el conjunto multiplicativo S = 1 + I. Muestre que $S^{-1}I$ está contenido en el radical de Jacobson de $S^{-1}R$.

Fecha de entrega: Lunes 28 de setiembre de 2020, a las 23:59.

Profesor: Richard Gonzales Vilcarromero