A New Dimension-Reduction Method for Complex Dynamical Networks

SIAM

Edward Laurence

July 12, 2018

Département de physique, de génie physique, et d'optique Université Laval, Ouébec, Canada

Dynamical complex networks

Nodes

Activity $x_i(t)$

Edges

Weights $A = \{a_{ij}\}$

Dynamics

$$\dot{x}_i = F(x_i) + \sum_{j=1}^N a_{ij} G(x_i, x_j)$$

1-dimensional reduction

Red node activity = Weighted average activity

$$\langle x \rangle_w = \sum_{i=1}^N w_i x_i$$

w must be the **dominant eigenvector** of A.

Gao et al. (2016) reduction is found as an approximation.

Star networks

Star networks

Structural parameter

Modular networks | A combined method

Predicting breakdowns

The combined method predicts accurately the critical edges.

FURTHERMORE

Predicting global state using a low dimensional representation of dynamical complex networks *arXiv*

- Many dynamics : SIS, Neuronal, Lotka-Voltera, Gene
- Critical transition of scale-free networks
- Error estimations

Take home message

- Systematic method
- Based on spectral properties of networks

COLLABORATORS

Louis J. Dubé

Patrick Desrosiers

Nicolas Doyon

dynamica.phy.ulaval.ca edwardlaurence.me

