Курсовая работа на тему «Метод наименьших квадратов»

Описание модели

Модель полезного сигнала имеет вид:

$$y(x) = \theta_0 + \theta_1 x + \ldots + \theta_m x^m. \tag{1}$$

Рассматривается модель наблюдений

$$y_k = \theta_0 + \theta_1 x_k + \ldots + \theta_m x_k^m + \varepsilon_k, \ k = \overline{1, n}.$$

где $\varepsilon_1,\ldots,\varepsilon_n$ – независимые и одинаково распределённые случайные величины.

Моделирование данных

Смоделировать два набора наблюдений на основе модели (2) для следующих случаев:

1 случай	2 случай	
$m=3, \varepsilon_k \sim \mathcal{N}(0, \sigma^2)$	$m = 2, \varepsilon_k \sim \mathcal{R}(-3\sigma, 3\sigma)$	
$x_k = -4 + k \cdot \frac{8}{n}, \ k = \overline{1, n}, \ n = 40.$		

Параметры задания определяются номером варианта (см. ниже).

Задание

Для обоих случаев выполнить по очереди следующие задания.

- 1. Подобрать порядок многочлена \hat{m} в модели (1), используя критерий Фишера, и вычислить оценки неизвестных параметров $(\theta_0, \dots, \theta_{\hat{m}})$ методом наименьших квадратов.
- 2. В предположении нормальности ошибок построить доверительные интервалы уровней надёжности $\alpha_1 = 0.95$ и $\alpha_2 = 0.99$ для параметров $(\theta_0, \dots, \theta_{\hat{m}})$.
- 3. В предположении нормальности ошибок построить доверительные интервалы уровней надёжности $\alpha_1=0.95$ и $\alpha_2=0.99$ для полезного сигнала (1).
- 4. Представить графически
 - истинный полезный сигнал,
 - набор наблюдений,
 - оценку полезного сигнала, полученную в шаге 1,
 - доверительные интервалы полезного сигнала, полученные в шаге 3.
- 5. По остаткам регрессии построить оценку плотности распределения случайной ошибки наблюдения в виде гистограммы.
- 6. Вычислить оценку дисперсии σ^2 случайной ошибки.
- 7. По остаткам регрессии с помощью χ^2 -критерия Пирсона на уровне значимости 0.05 проверить гипотезу о том, что закон распределения ошибки наблюдения является нормальным.

Варианты задания

Вариант 1	Вариант 2	Вариант 3
$\theta_1 = -1, \theta_2 = 6, \theta_3 = 0.01, \sigma^2 = 2.5$	$\theta_1 = -2, \theta_2 = 5, \theta_3 = -0.02, \sigma^2 = 2.4$	$\theta_1 = -3, \theta_2 = 4, \theta_3 = 0.03, \sigma^2 = 2.3$
Вариант 4	Вариант 5	Вариант 6
$\theta_1 = 4, \theta_2 = -3, \theta_3 = -0.04, \sigma^2 = 2.2$	$\theta_1 = 5, \theta_2 = -2, \theta_3 = 0.05, \sigma^2 = 2.1$	$\theta_1 = 6, \theta_2 = -1, \theta_3 = -0.05, \sigma^2 = 2.5$
Вариант 7	Вариант 8	Вариант 9
$\theta_1 = -1, \theta_2 = -5, \theta_3 = 0.04, \sigma^2 = 2.4$	$\theta_1 = -2, \theta_2 = -4, \theta_3 = -0.03, \sigma^2 = 2.3$	$\theta_1 = -3, \theta_2 = -2, \theta_3 = 0.02, \sigma^2 = 2.2$
Вариант 10	Вариант 11	Вариант 12
$\theta_1 = 4, \theta_2 = 1, \theta_3 = -0.01, \sigma^2 = 2.1$	$\theta_1 = 5, \theta_2 = 6, \theta_3 = 0.06, \sigma^2 = 2.5$	$\theta_1 = 6, \theta_2 = 5, \theta_3 = -0.07, \sigma^2 = 2.4$
Вариант 13	Вариант 14	Вариант 15
$\theta_1 = -1, \theta_2 = 4, \theta_3 = 0.08, \sigma^2 = 2.3$	$\theta_1 = -2, \theta_2 = 3, \theta_3 = -0.09, \sigma^2 = 2.2$	$\theta_1 = -3, \theta_2 = 1, \theta_3 = 0.10, \sigma^2 = 2.1$
Вариант 16	Вариант 17	Вариант 18
$\theta_1 = 4, \theta_2 = -6, \theta_3 = -0.10, \sigma^2 = 3.0$	$\theta_1 = 5, \theta_2 = -4, \theta_3 = 0.09, \sigma^2 = 2.9$	$\theta_1 = 6, \theta_2 = -3, \theta_3 = -0.08, \sigma^2 = 2.8$
Вариант 19	Вариант 20	Вариант 21
$\theta_1 = -1, \theta_2 = -3, \theta_3 = 0.07, \sigma^2 = 2.7$	$\theta_1 = -2, \theta_2 = -1, \theta_3 = -0.06, \sigma^2 = 2.6$	$\theta_1 = -3, \theta_2 = -6, \theta_3 = 0.11, \sigma^2 = 3.0$
Вариант 22	Вариант 23	Вариант 24
$\theta_1 = 4, \theta_2 = 5, \theta_3 = -0.12, \sigma^2 = 2.9$	$\theta_1 = 5, \theta_2 = 3, \theta_3 = 0.13, \sigma^2 = 2.8$	$\theta_1 = 6, \theta_2 = 2, \theta_3 = -0.14, \sigma^2 = 2.7$
Вариант 25	Вариант 26	Вариант 27
$\theta_1 = -1, \theta_2 = 2, \theta_3 = 0.15, \sigma^2 = 2.6$	$\theta_1 = -2, \theta_2 = 6, \theta_3 = -0.15, \sigma^2 = 3.0$	$\theta_1 = -3, \theta_2 = 5, \theta_3 = 0.14, \sigma^2 = 2.9$
Вариант 28	Вариант 29	Вариант 30
$\theta_1 = 4, \theta_2 = -2, \theta_3 = -0.13, \sigma^2 = 2.8$	$\theta_1 = 5, \theta_2 = -1, \theta_3 = 0.12, \sigma^2 = 2.7$	$\theta_1 = 6, \theta_2 = -4, \theta_3 = -0.11, \sigma^2 = 2.6$

 $\theta_0 = (-1)^N N$, где N – номер варианта