

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Построение множества достижимости»

Студент 315 группы А. Т. Айтеев

Руководитель курсовой работы к.ф.-м.н., доцент П.А. Точилин

Содержание

1	Формулировка задачи	3
2	Теоретические выкладки 2.1 Принцип максимума Понтрягина	4
3	Алгоритм решения	6

1 Формулировка задачи

Задано обыкновенное дифференциальное уравнение:

$$\ddot{x} - x + 2x^2 + 3\arctan(x^3) + 2\dot{x}^2 = u \tag{1}$$

где $x \in \mathbb{R}, u \in \mathbb{R}$. На возможные значения управляющего параметра u наложено ограничение: $u \in [-1,1]$. Задан начальный момент времени $t_0=0$ и начальная позиция $x(t_0)=\dot{x}(t_0)=0$. Необходимо построить множество достижимости $X(t,t_0,x(t_0),\dot{x}(t_0))$ (множество пар $(x(t),\dot{x}(t)))$ в классе программных управлений в заданный момент времени $t \geq t_0$

- 1) Необходимо написать в среде MatLab функцию reachset (t), которая по заданному параметру $t \geq t_0$ рассчитывает приближенно множество $X(t,t_0,x(t_0),\dot{x}(t_0))$. На выходе функции два массива X,Y с у порядоченными координатами точек многоу гольника, образующего границу искомого множества. Точки в этих массивах должны быть упоря дочены так, чтобы результаты работы функции без дополнительной обработки можно было подавать на вход функция м визуализации (например, plot). Предусмотреть такой режим работы функции, при котором она возврашает также коорди наты линий перекл ючения оптимального управлен ия (с возможностью их визуализации).
- 2) Необходимо реализовать функцию reachsetdyn(t1,t2, N, filename), которая, используя функцию reachset (t), строит множества достижимости для моментов времени $\tau_i = t_1 + \frac{(t_2 t_1)i}{N}, i = 0, 1, \dots, N$. Здесь $t_2 \geq t_1 \geq t_0, N-$ натуральное число. Для каждого момента времени τ_i функция должна отобразить многоугольник, аппроксимирующий границу множества достижимости. Результат работы функции и должен быть сохранен в виде видео-файла filename.avi. Необходимо также предусмотреть вариант работы функции (при отсутствии параметра filename) без сохранения в файл, с выводом непосредственно на экран. Как частный случай, функция должна иметь возможность строить границу множества достижимости в один фиксированный момент времени (при $t_2 = t_1$).
- 3) В соответствующем заданию отчете необходимо привести все теоретические выкладки, сделанные в ходе построения множества достижимости, описать схему алгоритма построения множества достижимости программой, привести примеры построенных множеств достижимости (с иллюстрациями). Все вспомогательные утверждения (за) исключением принципа максимума Понтрягина), указанные в отчете, должны быть доказаны,

2 Теоретические выкладки

2.1 Принцип максимума Понтрягина

Рассмотрим задачу быстродействия

$$\begin{cases}
\dot{x} = f(x(t), u(t)) \\
u \in \mathcal{P}, t \in [t_0; t_1] \\
x(t_0) = x^0, x(t_1) = x^1 \\
t_1 - t_0 \to \min
\end{cases} \tag{2}$$

где управления $u=u(\cdot)\in\mathbb{R}^m$ предполагаются кусочно-непрерывными функциями на $[t_0;t_1], f(x,u)=\left(f^1(x,u),\ldots,f^n(x,u)\right)'\in\mathbb{R}^n$. Будем предполагать, что $f^j(x,u),$ $f^j_x(x,u),j=\overline{1,n}$ непрерывны по совокупности аргументов $(x,u)\in\mathbb{R}^n\times\mathbb{R}^m$.

Введем вспомогательные переменные $\psi = (\psi_1, \dots, \psi_n) \in \mathbb{R}^n$ и определим функцию

$$H(x, u, \psi) = \langle \psi, f(x, u) \rangle \tag{3}$$

называемую функцией Гамильтона-Понтрягина. Обозначим

$$\sup_{u \in \mathcal{P}} H(x(t), u(t), \psi(t)) = M(x(t), \psi(t)) \tag{4}$$

Паре (u(t), x(t)), $t \in [t_0; t_1]$ поставим в соответствие следущую систему дифференциальных уравнений:

$$\dot{\psi}_i(t) = -\frac{\partial H(x(t), u(t), \psi(t))}{\partial x^i} = -\sum_{j=1}^n \psi_j(t) \frac{\partial f^j(x(t), u(t))}{\partial x^i}, i = \overline{1, n}$$
 (5)

Систему (4) называют сопряженной системой, соответствующей паре $(u(t),x(t)),t\in[t_0;t_1]$

Определение 2.1. Множество достижимости $X(t, t_0, x^0)$ — множество концов траектории системы

$$\begin{cases} \dot{x}(t) = f(t, x(t), u(t)) \\ u(t) \in U(t) \\ x(t_0) = x^0 \end{cases}$$

при любом допустимом управлении.

Теорема 2.1. (Принцип максимума Понтрягина) Рассмотрим систему:

$$\dot{x} = f(x, u)$$

которая задана в \mathbb{R}^n , где f(x,u), $\frac{\partial f}{\partial x}(x,u)$ — непрерывные функции, определенные на \mathbb{R}^{n+m} . Пусть U— множество допустимых управлений на интервале $0 \le t \le T$, удовлетворяющих ограничению $u(t) \in \mathcal{P} \in \mathbb{R}^m$. Пусть некоторому допустимому управлению $u^*(t) \in U$ соответствует решение $x^*(t)$ с концом $x^*(T)$, лежсащим на границе множества достижимости. Тогда существует ненулевое сопряженное решение $\psi^*(t)$ системы

$$\dot{\psi} = -\left\langle \psi, \frac{\partial f}{\partial x} \left(x^*, u^* \right) \right\rangle$$

такое, что почти всюду выполняется приниип максимума:

$$H(\psi, u^*, x^*) = \sup_{u \in \mathcal{P}} H(\psi, u, x)$$

Если управление $u^*(t)$ ограничено, то:

$$\sup_{u\in\mathcal{P}}H(\psi,u,x)=\text{ const }\geq 0,\text{ для n.в. }t\in [0,T]$$

Для полученной системы функция Гамильтона-Понтрягина принимает следующий вид:

$$H(\psi, u, x) = \psi_1 x_2 + \psi_2 (u + x_1 - 2x_1^2 - 3 \arctan x_1^3 - 2x_2^2)$$

Тогда запишем сопряженную систему:

$$\begin{cases} \dot{\psi}_1 = \psi_2(-1 + 4x_1 + 9x_1^2 * \frac{1}{1 + x_1^6}) \\ \dot{\psi}_2 = -\psi_1 - 4\psi_2 x_2 \end{cases}$$

Поэтому, если точка принадлежит границе множества достижимости, то она удовлетворяет принципу максимума Понтрягина. Для построения границы множества достижимости построим все траектории, удовлетворяющие принципу максимума.

Из принципа максимума следует, что $u^*(t) = \text{sign}(\psi_2(t))$, а переключения происходят в момент времени $\psi_2(t) = 0$. Сформулируем две теоремы о нулях $\psi_2(t)$:

Теорема 2.2. (О конечном числе нулей) Пусть u(t)— оптимальное управление для исходной системы, тогда $\psi_2(t)$ имеет конечное число нулей на отрезке [0,T].

Доказательство. Пусть на конечном интервале времени $\psi_2(t)$ имеет бесконечное число нулей, тогда (так как интервал времени конечен) существует такой момент времени t^* (точка "накопления"), в который $\psi_2(t^*) = 0$ и $\dot{\psi}_2(t^*) = 0$. Тогда $\dot{\psi}_1(t^*) = 0$ и $\psi_1(t^*) = 0$, что противоречит тому, что вектор $\psi(t)$ ненулевой.

Теорема 2.3. (О чередовании нулей) Пусть $(x(\cdot), u(\cdot))$ — оптимальная пара с временем быстродействия $T, \psi(\cdot) = (\psi_1(\cdot), \psi_2(\cdot))$ — решение сопряженной системы. Тогда $\forall \tau_1, \tau_2 : 0 < \tau_1 < \tau_2 < T$ справедливы следующие утверждения:

- 1. Если $\psi_2(\tau_1) = \psi_2(\tau_2) = 0$ и $x_2(\tau_1) = 0$, тогда $x_2(\tau_2) = 0$
- 2. $Ecnu \ \psi_2(\tau_1) = \psi_2(\tau_2) = 0 \ u \ x_2(\tau_1) \neq 0, \ no \ \exists \tilde{\tau} \in [\tau_1, \tau_2] : x_2(\tilde{\tau}) = 0$
- 3. Если $x_2(\tau_1) = x_2(\tau_2) = 0, x_2(\tau) \neq 0, \forall \tau \in (\tau_1, \tau_2)$ и $\psi_2(\tau_1) = 0, mor \partial a \psi_2(\tau_2) = 0$.
- 4. Если $x_2\left(\tau_1\right)=x_2\left(\tau_2\right)=0, x_2(\tau)\neq 0, \forall \tau\in (\tau_1,\tau_2)\ u\ \psi_2\left(\tau_1\right)\neq 0,\ mor\partial a\ \psi_2\left(\tau_2\right)\neq 0,\ nor\partial t_1, \tau_2:\psi_2(\tilde{\tau})=0$

Доказательство. Докажем четыре утверждения:

- 1. Применим (7) для моментов времени τ_1, τ_2 , получим $\psi_1(\tau_1) x_2(\tau_1) = \psi_1(\tau_2) x_2(\tau_2) . x_2(\tau_1) = 0 \Rightarrow \psi_1(\tau_2) x_2(\tau_2) = 0, \psi_2(\tau_2)$ по условию равно 0, а так как вектор $\psi(\cdot)$ ненулевой, то $\psi_1(\tau_2) \neq 0 \Rightarrow x_2(\tau_2) = 0$
- $2.\ \psi_{1}\left(au_{1}\right)x_{2}\left(au_{1}\right)=\psi_{1}\left(au_{2}\right)x_{2}\left(au_{2}\right)$. Так как $x_{2}\left(au_{1}\right)\neq0,\psi_{1}\left(au_{1}\right)\psi_{1}\left(au_{2}\right)<0$, то $x_{2}\left(au_{1}\right)x_{2}\left(au_{2}\right)<0$ что значит, что $x_{2}\left(au\right)$ имеет единственный корень на $\left[au_{1}, au_{2}\right]- ilde{ au}$.

3. Из пункта 1 имеем, что $\psi_2(\tau) \neq 0, \tau \in (\tau_1, \tau_2)$. Тогда:

$$\frac{d}{dt} \left(x_2 \psi_1 + \dot{x}_2 \dot{\psi}_2 \right) = 0 = \dot{x}_2 \psi_1 + x_2 \frac{\partial f}{\partial x_1} \psi_2 + \ddot{x}_2 \psi_2 + \dot{x}_2 \left(-\psi_1 + \psi_2 \frac{\partial f}{\partial x_2} \right) \dot{x}_2 \left(\tau_1 \right) \psi_2 \left(\tau_1 \right) = \dot{x}_2 \left(\tau_2 \right) \psi_2 \left(\tau_2 \right)$$

Так как $\psi_2(\tau_1) = 0$, а $x_2(\tau_2) \neq 0$ (иначе система имела бы только тривиальное решение). Поэтому $\psi(\tau_2) = 0$.

4. Так как $\psi_2(\tau_1) \neq 0$, то $\psi_2(\tau_2) \neq 0$. Если $\psi_2(\tau)$ не обращается в ноль на $[\tau_1, \tau_2]$, то $\dot{x}_2(\tau_1) \dot{x}_2(\tau_2) > 0$, что противоречит тому, что τ_1, τ_2 — последовательные корни $x_2 \Rightarrow \exists \tilde{\tau} \in [\tau_1, \tau_2] : \psi_2(\tilde{\tau}) = 0$

Из теоремы следует, что либо нули x_2 и ψ_2 совпадают, либо они чередуются. Разобьем систему (2) на две:

$$S_{+}: \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = 1 + x_{1} - 2x_{1}^{2} - 3 \arctan x_{1}^{3} - 2x_{2}^{2} \end{cases}$$

$$S_{-}: \left\{ \begin{array}{l} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -1 + x_{1} - 2x_{1}^{2} - 3 \arctan x_{1}^{3} - 2x_{2}^{2} \end{array} \right.$$

Система S_+ отвечает управлению 1, система S_- – 1. Пусть сначала управление равно 1, тогда решаем систему S_+ и находим момент времени $t^*: x_2(t^*) = 0$. Построим траекторию, соответствующую системе S_+ до момента времени t^* . Из теорем (3) мы знаем, что нули ψ_2 чередуются с нулями x_2 . Организуем перебор по равномерной сетке на отрезке $[0;t^*]$ времени переключения \hat{t} . В момент переключения \hat{t} управление станет равно -1. Тогда будем строить траекторию из точки $(x_1(\hat{t}),x_2(\hat{t}))$, соответствующую системе S_- до нового момента переключения, который находится из решения сопряженной системы с начальными условиями:

$$\begin{cases} \psi_1(\hat{t}) = 1\\ \psi_2(\hat{t}) = 0 \end{cases}$$

Такой выбор начальных условий связан с нормировкой вектора ψ . Процесс продолжается $(u=\alpha)$ меняется на $(u=-\alpha)$ пока t< T. Для системы с начальным управлением $-\alpha$ процесс полностью аналогичен.

3 Алгоритм решения

- 1. Решить систему S_{+} , получить момент времени $t^{*}: x_{2}\left(t^{*}\right)=0$.
- 2. Сделать перебор по времени переключения на отрезке $[0; t^*]$.
- 3. Решить сопряженную систему с начальными условиями (14) и систему S_- , найти момент времени $t:\psi_2(t)=0$.
- 4. Если t < T сделать переключение и решать систему S_+ , а сопряженную систему с условиями [-1;0].
 - 5. Повторять до t > T.
 - 6. Аналогично поступить с системой S_{-} при начальном $u = -\alpha$.
- 7. Объединить полученную кривую в общее целое, которое и является границей множества достижимости.

8. При построении каждой траектории координаты точек переключения добавляются в специальный массив, а затем объединяются в кривую переключений.

Рис. 1: Аппроксимация множества достижимости при t=0.1

Рис. 2: Аппроксимация множества достижимости при t=0.2

Рис. 3: Аппроксимация множества достижимости при t=0.3

Рис. 4: Аппроксимация множества достижимости при ${
m t}=0.4$

Рис. 5: Аппроксимация множества достижимости при $t=0.5\,$