```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/new_modified_dataset.csv')
# List of columns to scale
columns_to_scale = ['Grad', 'HSC', 'SSC']

# Divide each column by 2 to scale from 20 to 10
df[columns_to_scale] = df[columns_to_scale] / 2

# Optional: Round the values to eliminate any floating-point issues
df[columns_to_scale] = df[columns_to_scale].round(2)

df.head()
```

```
<del>_</del>
                                                Base
         Base
                  Job Role
                                     Skills
                                                 Pay
                                                       sex age Mother_education Father_education Mother_job Father_job studytime
           Pay
                                               Range
                                     Subject
                                  Knowledge,
                                              30000-
                                                                                     2
      0 72000
                    Teacher
                                                       Male
                                                              27
                                                                                                           1
                                                                                                                    Health
                                                                                                                                   Public
                                                                                                                                                    2
                             Communication,
                                               40000
                                Patience, Cr...
                              Communication,
                                  Negotiation,
                                              20000-
      1 50000 Salesperson
                                                       Male
                                                              20
                                                                                     1
                                                                                                           0
                                                                                                                     Public
                                                                                                                                   Health
                                                                                                                                                    4
                                    Customer
                                               30000
                                   Service. ...
                              Communication,
                                  Negotiation,
                                              20000-
     2 38000 Salesperson
                                                                                     3
                                                                                                          0
                                                                                                                   Teacher
                                                                                                                                                    3
                                                       Male
                                                              24
                                                                                                                                 Teacher
                                    Customer
                                               30000
                                   Service, ...
                              Technical Skills.
                                Mathematics,
                                              40000-
     3 72000
                                                                                     0
                                                                                                           2
                                                                                                                    Health
                                                                                                                                   Public
                                                                                                                                                    3
                   Engineer
                                                       Male
                                                              26
                                      Project
                                               50000
                                 Managem...
                              Technical Skills
                                Mathematics,
                                              40000-
      4 65000
                   Engineer
                                                       Male
                                                              26
                                                                                     0
                                                                                                                     Public
                                                                                                                                   Health
                                      Project
                                               50000
                                  Managem...
```

```
job_role_categories = pd.Categorical(df['Job Role'])
job_role_codes = job_role_categories.codes
job_role_names = job_role_categories.categories
# Create the scatter plot using job role codes for color mapping
scatter = plt.scatter(x=df['SSC'], y=df['HSC'],
                      c=job_role_codes,
                      cmap='viridis'
                      s=32, alpha=.8)
# Customize plot appearance
plt.gca().spines[['top', 'right']].set_visible(False)
plt.xlabel('SSC')
plt.ylabel('HSC')
plt.title('Scatter Plot of SSC vs. HSC by Job Role')
for role_code, role_name in enumerate(job_role_names):
   plt.scatter([], [], color=scatter.cmap(scatter.norm(role_code)), label=role_name)
plt.legend(title='Job Role', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout(rect=[0, 0, 0.85, 1])
# Show plot
plt.show()
```



```
df['Base Pay'].hist(bins=20, edgecolor='black')
plt.title('Distribution of Base Pay')
plt.xlabel('Base Pay')
plt.ylabel('Frequency')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.boxplot(data=df, x='Job Role', y='Base Pay', palette='viridis')
plt.title('Base Pay Distribution by Job Role')
plt.show()
```

<ipython-input-5-81334bad51fb>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.boxplot(data=df, x='Job Role', y='Base Pay', palette='viridis')


```
plt.figure(figsize=(10, 6))
sns.violinplot(data=df, x='Job Role', y='HSC', palette='viridis')
plt.title('HSC Distribution by Job Role')
plt.show()
```

→ <ipython-input-6-b37f067712f2>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.violinplot(data=df, x='Job Role', y='HSC', palette='viridis')


```
sns.pairplot(df[['SSC', 'HSC', 'Base Pay']], diag_kind='kde')
plt.title('Pairwise Relationships')
plt.show()
```


plt.figure(figsize=(10, 6))
sns.barplot(data=df, x='Job Role', y='Base Pay', palette='viridis')
plt.title('Average Base Pay by Job Role')
plt.show()

<ipython-input-8-1bdf2e4f01df>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.barplot(data=df, x='Job Role', y='Base Pay', palette='viridis')

₹

df.columns

```
'studytime', 'backlogs', 'tuition', 'pursue_higher_studies', 'Internet_usage', 'absences', 'SSC', 'HSC', 'Grad'],
         dtype='object')
study_time_groups = df.groupby('studytime')['backlogs'].mean()
plt.figure(figsize=(10, 6))
plt.bar(study_time_groups.index, study_time_groups.values)
plt.xlabel('Study Time')
plt.ylabel('Average Class Failures')
_ = plt.title('Class Failures vs. Study Time')
```


df.boxplot(column='Base Pay', by='Job Role') plt.xlabel('Job Role') plt.ylabel('Base Pay')

_ = plt.title('Distribution of Base Pay by Job Role')

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 dtyp	Base Pay Job Role Skills Base Pay Range sex age Mother_education Father_education Mother_job Father_job studytime backlogs tuition pursue_higher_studies Internet_usage absences SSC HSC Grad es: float64(3), int64(7	2000 non-null	int64 object object object int64 int64 object int64 object int64 object object int64 float64 float64 float64		
memory usage: 297.0+ KB					

df.describe()

₹		Base Pay	age	Mother_education	Father_education	studytime	backlogs	absences	ssc	HS
	count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.00000
	mean	56594.500000	25.849000	1.407500	1.451000	2.133000	0.475500	6.365500	6.619750	6.63125
	std	17880.350198	2.426962	1.041627	0.937571	1.000906	0.508457	3.563602	1.099723	0.96507
	min	23000.000000	20.000000	0.000000	0.000000	1.000000	0.000000	0.000000	4.500000	4.50000
	25%	42000.000000	24.000000	1.000000	1.000000	1.000000	0.000000	3.000000	6.000000	5.50000
	50%	55000.000000	26.000000	1.000000	1.000000	2.000000	0.000000	6.000000	6.500000	7.00000
	75%	70000.000000	28.000000	2.000000	2.000000	3.000000	1.000000	9.000000	7.000000	7.50000
	max	96000.000000	31.000000	3.000000	3.000000	4.000000	2.000000	15.000000	9.500000	8.50000

df.isnull().sum()

13114 (() 134111 ()	
	0
Base Pay	0
Job Role	0
Skills	0
Base Pay Range	0
sex	0
age	0
Mother_education	0
Father_education	0
Mother_job	0
Father_job	0
studytime	0
backlogs	0
tuition	0
pursue_higher_studies	0
Internet_usage	0
absences	0
SSC	0
HSC	0
Grad	0

dtype: int64

```
# from sklearn.preprocessing import LabelEncoder
# label_encoder = LabelEncoder()

# for column in df.columns:
# if df[column].dtype == 'object': # Check if the column is categorical
# df[column] = label_encoder.fit_transform(df[column])

# df.head()

numerical_df = df.select_dtypes(include=np.number)

# Calculate correlation matrix
corr_matrix = numerical_df.corr()

# Create heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()
```


df.duplicated().value_counts()

dtype: int64

df['Job Role'].value_counts()

→		count
	Job Role	
	Engineer	472
	Salesperson	460
	Manager	449
	Doctor	425
	Teacher	108
	Technician	49
	Clerk	37

dtype: int64

df['Base Pay Range'].value_counts()

₹		count
	Base Pay Range	
	40000-50000	472
	20000-30000	460
	70000-90000	449
	60000-80000	425
	30000-40000	108
	10000-20000	49
	10000-15000	37

dtype: int64

plt.hist(df['age'])

```
(array([ 84., 107., 151., 291., 233., 277., 315., 219., 216., 107.]),
array([20., 21.1, 22.2, 23.3, 24.4, 25.5, 26.6, 27.7, 28.8, 29.9, 31. ]),
<BarContainer object of 10 artists>)
```


sns.kdeplot(df['age'])

sns.countplot(data=df, x="backlogs", hue="sex")

sns.countplot(data=df, x="sex")

sns.countplot(data=df, x="tuition", hue="sex")

df.columns

sns.countplot(data=df, x="pursue_higher_studies", hue="sex")

sns.countplot(data=df, x="studytime", hue="sex")

plt.figure(figsize=(12, 6))

Create the countplot
sns.countplot(data=df, x="tuition", hue="Job Role")

Show the plot
plt.show()

sns.countplot(data=df, x="Job Role", hue="Skills")

<Axes: xlabel='Job Role', ylabel='count'>

sns.countplot(data=df, x="tuition", hue="absences")


```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Job Role'] = le.fit_transform(df['Job Role'])

label_encoder = LabelEncoder()

for column in df.columns:
   if df[column].dtype == 'object': # Check if the column is categorical
        df[column] = label_encoder.fit_transform(df[column])
```

PREDICTING JOB ROLE BASED ON STUDENT DEMOGRAPHICS

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

X = df.drop(columns=['Job Role'])
y = df['Job Role']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

```
# Initialize the Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100)
# Train the model
rf_classifier.fit(X_train, y_train)
    ▼ RandomForestClassifier
    RandomForestClassifier()
# Predict on the test set
y_pred = rf_classifier.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
# Classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
# Confusion matrix
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
→ Accuracy: 1.00
    Classification Report:
                               recall f1-score
                                                 support
                  precision
                       1.00
               0
                                 1.00
                                           1.00
               1
                       1.00
                                 1.00
                                           1.00
                                                       82
               2
                       1.00
                                 1.00
                                           1.00
                                                       79
               3
                       1.00
                                 1.00
                                           1.00
                                                       93
               4
                       1.00
                                 1.00
                                           1.00
                                                       96
               5
                       1.00
                                 1.00
                                           1.00
                                                       29
               6
                       1.00
                                 1.00
                                           1.00
                                                       12
                                           1.00
                                                      400
        accuracy
                       1.00
                                 1.00
                                           1.00
                                                      400
       macro avg
    weighted avg
                       1.00
                                 1.00
                                           1.00
                                                      400
    Confusion Matrix:
    [[ 9 0 0 0 0
     [ 0 82 0
                0
                   0
                     0
                         0]
     [0 0 79 0 0 0 0]
     [ 0
          0 0 93 0 0 0]
     [00009600]
          0 0 0 0 29 0]
     [ 0
     [ 0
          0
             0 0
                   0 0 12]]
corr_matrix = df.corr()
# Create heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()
```


df.shape

→ (2000, 19)

PREDICTING THE MONTHLY INCOME BASED ON VARIOUS STUDENT DEMOGRAPHIES

```
df.columns
```

```
# Initialize the Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100)
# Train the model
rf_classifier.fit(X_train1, y_train1)
     ▼ RandomForestClassifier
     RandomForestClassifier()
# Predict on the test set
# Initialize the Random Forest Classifier
rf classifier = RandomForestClassifier(n estimators=100)
# Train the model
rf_classifier.fit(X_train1, y_train1)
# Evaluate the model
accuracy = accuracy_score(y_test1, y_pred1)
print(f'Accuracy: {accuracy:.2f}')
# Classification report
print("\nClassification Report:")
print(classification_report(y_test1, y_pred1))
# Confusion matrix
print("\nConfusion Matrix:")
print(confusion_matrix(y_test1, y_pred1))
→ Accuracy: 1.00
     Classification Report:
                   precision
                                 recall f1-score
                                                    support
                0
                        1.00
                                   1.00
                                             1.00
                                                          10
                        1.00
                                   1.00
                                             1.00
                1
                2
                        1.00
                                   1.00
                                             1.00
                                                          85
                3
                        1.00
                                   1.00
                                             1.00
                                                          15
                4
                        1.00
                                   1.00
                                             1.00
                                                         100
                5
                        1.00
                                   1.00
                                             1.00
                                                          92
                        1.00
                                   1.00
                                             1.00
                                                          91
                                             1.00
                                                         400
        accuracy
                        1.00
                                   1.00
                                             1.00
       macro avg
    weighted avg
                        1.00
                                             1.00
                                                         400
    Confusion Matrix:
     [[ 10
             0
                 0
                     0
                             0
                                  01
        0
                 a
                     0
                         0
                             a
                                  01
        0
             0
                85
                     0
                         0
                             0
                                  0]
        0
             0
                 0
                    15
                         0
                             0
                                  0]
        0
             0
                 0
                     0
                       100
                             0
                                  0]
        0
             0
                 0
                     0
                         0
                            92
                                  0]
```

PREDICTING GRADUATION MARKS

Job Role

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Recalculate VIF after ensuring data is clean and numeric
vif_data = pd.DataFrame()
vif_data["Feature"] = df.columns
vif_data["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.shape[1])]
print(vif_data.sort_values(by="VIF", ascending=False))
\overline{\mathbf{T}}
                        Feature
    18
                                 242.578630
                           Grad
    17
                                210.758367
                           HSC
    5
                                  95.155822
                            age
    16
                            SSC
                                  84.359774
        pursue_higher_studies
                                  39,498286
    13
    0
                      Base Pay
                                  22.294241
    3
                Base Pay Range
                                  17.866512
    14
                Internet_usage
                                  15.111155
    10
                     studytime
                                  13.044033
    15
                                   9.681854
                      absences
    8
                    Mother_job
                                   9.511199
              Father_education
                                   9.180028
```

8.365285

```
6.842893
6
         Mother_education
12
                               6.028220
                   tuition
9
                               5.543742
                {\tt Father\_job}
2
11
                    Skills
                                4.751360
                  backlogs
                                3.045521
4
                        sex
                               2.810284
```

```
corr_matrix = df.corr()
# Create heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(corr_matrix[['Grad']], annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap with Grad')
plt.show()
```



```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

X2 = df[['backlogs', 'pursue_higher_studies', 'absences', 'SSC', 'HSC']]
y2 = df['Grad']

# Split the data into training and testing sets
X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2, test_size=0.2)

# Initialize and train the model
model = LinearRegression()
model.fit(X_train2, y_train2)

# Make predictions
y_pred2 = model.predict(X_test2)

# Evaluate the model
mse = mean_squared_error(y_test2, y_pred2)
rmse = np.sqrt(mse)

Inferences from the Data Analysis:
```

Correlation Between SSC and HSC Performance:

Inference: Students who perform well in SSC tend to also perform well in HSC, indicating that early academic success is a strong predictor of future academic performance. This correlation suggests that consistent academic diligence from early education stages can influence career trajectories positively.

Salary Distribution Across Job Roles:

Inference: The majority of jobs have a salary below ₹50,000, with the exception of the doctor profession, which is the highest-paying, typically earning above ₹90,000. This highlights the financial benefits of pursuing a career in medicine.

Impact of Study Time on Academic Success: