

XC2C256 CoolRunner-II CPLD

DS094 (v3.2) March 8, 2007

Product Specification

Features

- · Optimized for 1.8V systems
 - As fast as 5.7 ns pin-to-pin delays
 - As low as 13 μA quiescent current
- Industry's best 0.18 micron CMOS CPLD
 - Optimized architecture for effective logic synthesis.
 Refer to the CoolRunner™-II family data sheet for architecture description.
 - Multi-voltage I/O operation 1.5V to 3.3V
- Available in multiple package options
 - 100-pin VQFP with 80 user I/O
 - 144-pin TQFP with 118 user I/O
 - 132-ball CP (0.5mm) BGA with 106 user I/O
 - 208-pin PQFP with 173 user I/O
 - 256-ball FT (1.0mm) BGA with 184 user I/O
 - Pb-free available for all packages
- Advanced system features
 - Fastest in system programming
 - 1.8V ISP using IEEE 1532 (JTAG) interface
 - IEEE1149.1 JTAG Boundary Scan Test
 - Optional Schmitt-trigger input (per pin)
 - Unsurpassed low power management
 - DataGATE enable (DGE) signal control
 - Two separate I/O banks
 - RealDigital 100% CMOS product term generation
 - Flexible clocking modes
 - Optional DualEDGE triggered registers
 - · Clock divider (divide by 2,4,6,8,10,12,14,16)
 - CoolCLOCK
 - Global signal options with macrocell control
 - Multiple global clocks with phase selection per macrocell
 - · Multiple global output enables
 - · Global set/reset
 - Advanced design security
 - PLA architecture
 - · Superior pinout retention
 - 100% product term routability across function block
 - Open-drain output option for Wired-OR and LED drive
 - Optional bus-hold, 3-state or weak pull-up on selected I/O pins
 - Optional configurable grounds on unused I/Os
 - Mixed I/O voltages compatible with 1.5V, 1.8V,
 2.5V, and 3.3V logic levels
 - SSTL2-1, SSTL3-1, and HSTL-1 I/O compatibility
 - Hot pluggable

Description

The CoolRunner™-II 256-macrocell device is designed for both high performance and low power applications. This lends power savings to high-end communication equipment and high speed to battery operated devices. Due to the low power stand-by and dynamic operation, overall system reliability is improved

This device consists of sixteen Function Blocks inter-connected by a low power Advanced Interconnect Matrix (AIM). The AIM feeds 40 true and complement inputs to each Function Block. The Function Blocks consist of a 40 by 56 P-term PLA and 16 macrocells which contain numerous configuration bits that allow for combinational or registered modes of operation.

Additionally, these registers can be globally reset or preset and configured as a D or T flip-flop or as a D latch. There are also multiple clock signals, both global and local product term types, configured on a per macrocell basis. Output pin configurations include slew rate limit, bus hold, pull-up, open drain and programmable grounds. A Schmitt-trigger input is available on a per input pin basis. In addition to storing macrocell output states, the macrocell registers may be configured as "direct input" registers to store signals directly from input pins.

Clocking is available on a global or Function Block basis. Three global clocks are available for all Function Blocks as a synchronous clock source. Macrocell registers can be individually configured to power up to the zero or one state. A global set/reset control line is also available to asynchronously set or reset selected registers during operation. Additional local clock, synchronous clock-enable, asynchronous set/reset and output enable signals can be formed using product terms on a per-macrocell or per-Function Block basis.

A DualEDGE flip-flop feature is also available on a per macrocell basis. This feature allows high performance synchronous operation based on lower frequency clocking to help reduce the total power consumption of the device.

Circuitry has also been included to divide one externally supplied global clock (GCK2) by eight different selections. This yields divide by even and odd clock frequencies.

The use of the clock divide (division by 2) and DualEDGE flip-flop gives the resultant CoolCLOCK feature.

DataGATE is a method to selectively disable inputs of the CPLD that are not of interest during certain points in time.

By mapping a signal to the DataGATE function, lower power can be achieved due to reduction in signal switching.

Another feature that eases voltage translation is I/O banking. Two I/O banks are available on the CoolRunner-II 256 macrocell device that permit easy interfacing to 3.3V, 2.5V, 1.8V, and 1.5V devices.

The CoolRunner-II 256 macrocell CPLD is I/O compatible with various I/O standards (see Table 1). This device is also 1.5V I/O compatible with the use of Schmitt-trigger inputs.

RealDigital Design Technology

Xilinx CoolRunner-II CPLDs are fabricated on a 0.18 micron process technology which is derived from leading edge FPGA product development. CoolRunner-II CPLDs employ RealDigital, a design technique that makes use of CMOS technology in both the fabrication and design methodology. RealDigital design technology employs a cascade of CMOS gates to implement sum of products instead of traditional sense amplifier methodology. Due to this technology, Xilinx CoolRunner-II CPLDs achieve both high-performance and low power operation.

Supported I/O Standards

The CoolRunner-II 256 macrocell features LVCMOS, LVTTL, SSTL and HSTL I/O implementations. See Table 1

for I/O standard voltages. The LVTTL I/O standard is a general purpose EIA/JEDEC standard for 3.3V applications that use an LVTTL input buffer and Push-Pull output buffer. The LVCMOS standard is used in 3.3V, 2.5V, 1.8V applications. Both HSTL and SSTL I/O standards make use of a V_{REF} pin for JEDEC compliance. CoolRunner-II CPLDs are also 1.5V I/O compatible with the use of Schmitt-trigger inputs

Table 1: I/O Standards for XC2C256(1)

IOSTANDARD Attribute	Output V _{CCIO}	Input V _{CCIO}	Input V _{REF}	Board Termination Voltage V _{TT}
LVTTL	3.3	3.3	N/A	N/A
LVCMOS33	3.3	3.3	N/A	N/A
LVCMOS25	2.5	2.5	N/A	N/A
LVCMOS18	1.8	1.8	N/A	N/A
LVCMOS15 (2)	1.5	1.5	N/A	N/A
HSTL_1	1.5	1.5	0.75	0.75
SSTL2_1	2.5	2.5	1.25	1.25
SSTL3_1	3.3	3.3	1.5	1.5

(1)For information on Vref, see XAPP399.

(2) LVCMOS15 requires Schmitt-trigger inputs.

Figure 1: I_{CC} vs Frequency

Table 2: I_{CC} vs Frequency (LVCMOS 1.8V $T_A = 25^{\circ}C$)⁽¹⁾

		Frequency (MHz)									
	0	30	50	70	100	120	150	170	190	220	240
Typical I _{CC} (mA)	0.021	11.68	19.40	27.01	38.18	45.54	56.32	63.37	70.40	80.90	88.03

Notes:

2

16-bit up/down, resettable binary counter (one counter per function block).

Absolute Maximum Ratings

Symbol	Description	Value	Units
V_{CC}	Supply voltage relative to ground	-0.5 to 2.0	V
V _{CCIO}	Supply voltage for output drivers	-0.5 to 4.0	V
V _{JTAG} ⁽²⁾	JTAG input voltage limits	-0.5 to 4.0	V
V _{CCAUX}	JTAG input supply voltage	-0.5 to 4.0	V
V _{IN} ⁽¹⁾	Input voltage relative to ground	-0.5 to 4.0	V
V _{TS} ⁽¹⁾	Voltage applied to 3-state output	-0.5 to 4.0	V
T _{STG} ⁽³⁾	Storage Temperature (ambient)	-65 to +150	°C
T _J	Junction Temperature	+150	°C

Notes:

- 1. Maximum DC undershoot below GND must be limited to either 0.5V or 10 mA, whichever is easiest to achieve. During transitions, the device pins may undershoot to -2.0v or overshoot to +4.5V, provided this over or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.
- 2. Valid over commercial temperature range.
- 3. For soldering guidelines and thermal considerations, see the <u>Device Packaging</u> information on the Xilinx website. For Pb free packages, see <u>XAPP427</u>.

Recommended Operating Conditions

Symbol	Paran	Min	Max	Units	
V_{CC}	Supply voltage for internal logic	Commercial T _A = 0°C to +70°C	1.7	1.9	V
	and input buffers	Industrial T _A = -40°C to +85°C	1.7	1.9	V
V _{CCIO}	Supply voltage for output drivers @ 3.3V operation		3.0	3.6	V
	Supply voltage for output drivers @	2.5V operation	2.3	2.7	V
	Supply voltage for output drivers @	1.8V operation	1.7	1.9	V
	Supply voltage for output drivers @	1.4	1.6	V	
V_{CCAUX}	JTAG programming		1.7	3.6	V

DC Electrical Characteristics (Over Recommended Operating Conditions)

Symbol	Parameter	Test Conditions	Typical	Max.	Units
I _{CCSB}	Standby current Commercial	V_{CC} = 1.9V, V_{CCIO} = 3.6V	33	150	μΑ
I _{CCSB}	Standby current Industrial	V _{CC} = 1.9V, V _{CCIO} = 3.6V	54	300	μΑ
I _{CC}	Dynamic current	f = 1 MHz	-	410	μΑ
		f = 50 MHz	-	27	mA
C _{JTAG}	JTAG input capacitance	f = 1 MHz	-	10	pF
C _{CLK}	Global clock input capacitance	f = 1 MHz	-	12	pF
C _{IO}	I/O capacitance	f = 1 MHz	-	10	pF
I _{IL} ⁽²⁾	Input leakage current	V_{IN} = 0V or V_{CCIO} to 3.9V	-	+/–1	μΑ
I _{IH} ⁽²⁾	I/O High-Z leakage	V_{IN} = 0V or V_{CCIO} to 3.9V	-	+/–1	μΑ

- 1. 16-bit up/down, resettable binary counter (one counter per function block) tested at V_{CC} = V_{CCIO} = 1.9 V_{CCIO}
- 2. See Quality and Reliability section of the CoolRunner-II family data sheet

LVCMOS 3.3V and LVTTL 3.3V DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{CCIO}	Input source voltage	-	3.0	3.6	V
V _{IH}	High level input voltage	-	2	3.9	V
V _{IL}	Low level input voltage	-	-0.3	0.8	V
V _{OH}	High level output voltage	I_{OH} = -8 mA, V_{CCIO} = $3V$	V _{CCIO} – 0.4V	-	V
		$I_{OH} = -0.1 \text{ mA}, V_{CCIO} = 3V$	V _{CCIO} – 0.2V	-	V
V _{OL}	Low level output voltage	I_{OL} = 8 mA, V_{CCIO} = 3V	-	0.4	V
		I_{OL} = 0.1 mA, V_{CCIO} = 3V	-	0.2	V

LVCMOS 2.5V DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{CCIO}	Input source voltage	-	2.3	2.7	V
V _{IH}	High level input voltage	-	1.7	$V_{\rm CCIO} + 0.3^{(1)}$	V
V _{IL}	Low level input voltage	-	-0.3	0.7	V
V _{OH}	High level output voltage	$I_{OH} = -8 \text{ mA}, V_{CCIO} = 2.3V$	V _{CCIO} -0.4V	-	V
		$I_{OH} = -0.1 \text{ mA}, V_{CCIO} = 2.3V$	V _{CCIO} -0.2V	-	V
V _{OL}	Low level output voltage	I _{OL} = 8 mA, V _{CCIO} = 2.3V	-	0.4	V
		I_{OL} = 0.1 mA, V_{CCIO} = 2.3V	-	0.2	V

⁽¹⁾ The V_{IH} Max value represents the JEDEC specification for LVCMOS25. The CoolRunner-II input buffer can tolerate up to 3.9V without physical damage.

LVCMOS 1.8V DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{CCIO}	Input source voltage	-	1.7	1.9	V
V _{IH}	High level input voltage	-	0.65 x V _{CCIO}	$V_{\rm CCIO} + 0.3^{(1)}$	V
V _{IL}	Low level input voltage	-	-0.3	0.35 x V _{CCIO}	V
V _{OH}	High level output voltage	I_{OH} = -8 mA, V_{CCIO} = 1.7V	V _{CCIO} - 0.45	-	V
		$I_{OH} = -0.1 \text{ mA}, V_{CCIO} = 1.7V$	V _{CCIO} – 0.2	-	V
V _{OL}	Low level output voltage	I _{OL} = 8 mA, V _{CCIO} = 1.7V	-	0.45	V
		I _{OL} = 0.1 mA, V _{CCIO} = 1.7V	-	0.2	V

⁽¹⁾ The V_{IH} Max value represents the JEDEC specification for LVCMOS18. The CoolRunner-II input buffer can tolerate up to 3.9V without physical damage.

LVCMOS 1.5V DC Voltage Specifications⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{CCIO}	Input source voltage	-	1.4	1.6	V
V _{T+}	Input hysteresis threshold voltage	-	0.5 x V _{CCIO}	0.8 x V _{CCIO}	V
V _{T-}		-	0.2 x V _{CCIO}	0.5 x V _{CCIO}	V

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{OH}	High level output voltage	$I_{OH} = -8 \text{ mA}, V_{CCIO} = 1.4 \text{V}$	V _{CCIO} – 0.45	-	V
		$I_{OH} = -0.1 \text{ mA}, V_{CCIO} = 1.4V$	V _{CCIO} - 0.2	-	V
V _{OL}	Low level output voltage	I _{OL} = 8 mA, V _{CCIO} = 1.4V	-	0.4	V
		I _{OL} = 0.1 mA, V _{CCIO} = 1.4V	-	0.2	V

Notes:

Schmitt Trigger Input DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{CCIO}	Input source voltage	-	1.4	3.9	V
V _{T+}	Input hysteresis threshold voltage	-	0.5 x V _{CCIO}	0.8 x V _{CCIO}	V
V _{T-}		-	0.2 x V _{CCIO}	0.5 x V _{CCIO}	V

SSTL2-1 DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Тур	Max.	Units
V _{CCIO}	Input source voltage	-	2.3	2.5	2.7	V
V _{REF} ⁽¹⁾	Input reference voltage	-	1.15	1.25	1.35	V
$V_{TT}^{(2)}$	Termination voltage	-	V _{REF} – 0.04	1.25	V _{REF} + 0.04	V
V _{IH}	High level input voltage	-	V _{REF} + 0.18	-	3.9	V
V _{IL}	Low level input voltage	-	-0.3	-	V _{REF} – 0.18	V
V _{OH}	High level output voltage	$I_{OH} = -8 \text{ mA}, V_{CCIO} = 2.3V$	V _{CCIO} – 0.62	-	-	V
V _{OL}	Low level output voltage	I_{OL} = 8 mA, V_{CCIO} = 2.3V	-	-	0.54	V

- 1. V_{REF} should track the variations in V_{CCIO} , also peak to peak AC noise on V_{REF} may not exceed \pm 2% V_{REF}
- 2. V_{TT} of transmitting device must track V_{REF} of receiving devices

^{1.} Hysteresis used on 1.5V inputs.

SSTL3-1 DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Тур	Max.	Units
V _{CCIO}	Input source voltage	-	3.0	3.3	3.6	V
V _{REF} ⁽¹⁾	Input reference voltage	-	1.3	1.5	1.7	V
V _{TT} ⁽²⁾	Termination voltage	-	V _{REF} – 0.05	1.5	V _{REF} + 0.05	V
V _{IH}	High level input voltage	-	V _{REF} + 0.2	-	V _{CCIO} + 0.3	V
V _{IL}	Low level input voltage	-	-0.3	-	V _{REF} – 0.2	V
V _{OH}	High level output voltage	I_{OH} = -8 mA, V_{CCIO} = 3V	V _{CCIO} - 1.1	-	-	V
V _{OL}	Low level output voltage	I_{OL} = 8 mA, V_{CCIO} = 3V	-	-	0.7	V

Notes:

- 1. V_{REF} should track the variations in V_{CCIO} , also peak to peak AC noise on V_{REF} may not exceed \pm 2% V_{REF}
- 2. V_{TT} of transmitting device must track V_{REF} of receiving devices

HSTL1 DC Voltage Specifications

Symbol	Parameter	Test Conditions	Min.	Тур	Max.	Units
V _{CCIO}	Input source voltage	-	1.4	1.5	1.6	V
V _{REF} ⁽¹⁾	Input reference voltage	-	0.68	0.75	0.90	V
V _{TT} ⁽²⁾	Termination voltage	-	-	V _{CCIO} x 0.5	-	V
V _{IH}	High level input voltage	-	V _{REF} + 0.1	-	1.9	V
V _{IL}	Low level input voltage	-	-0.3	-	V _{REF} – 0.1	V
V _{OH}	High level output voltage	$I_{OH} = -8 \text{ mA}, V_{CCIO} = 1.7V$	V _{CCIO} - 0.4	-	-	V
V _{OL}	Low level output voltage	I _{OL} = 8 mA, V _{CCIO} = 1.7V	-	-	0.4	V

Notes

- 1. V_{REF} should track the variations in V_{CCIO} , also peak-to-peak AC noise on V_{REF} may not exceed ± 2% V_{REF}
- 2. V_{TT} of transmitting device must track V_{REF} of receiving devices

AC Electrical Characteristics Over Recommended Operating Conditions

		-6		5 -7		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
T _{PD1}	Propagation delay single p-term	-	5.7	-	6.7	ns
T _{PD2}	Propagation delay OR array	-	6.0	-	7.5	ns
T _{SUD}	Direct input register clock setup time	2.6	-	3.0	-	ns
T _{SU1}	Setup time (single p-term)	2.4	-	2.8	-	ns
T _{SU2}	Setup time (OR array)	2.7	-	3.3	-	ns
T _{HD}	Direct input register hold time	0	-	0	-	ns
T _H	P-term hold time	0	-	0	-	ns
T _{CO}	Clock to output	-	4.5	-	6.0	ns
F _{TOGGLE} ⁽¹⁾	Internal toggle rate	-	450	-	300	MHz
F _{SYSTEM1} ⁽²⁾	Maximum system frequency	-	256	-	152	MHz
F _{SYSTEM2} ⁽²⁾	Maximum system frequency	-	238	-	141	MHz
F _{EXT1} ⁽³⁾	Maximum external frequency	-	145	-	114	MHz
F _{EXT2} ⁽³⁾	Maximum external frequency	-	139	-	108	MHz
T _{PSUD}	Direct input register p-term clock setup time	1.3	-	1.7	-	ns

			-6	-7		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
T _{PSU1}	P-term clock setup time (single p-term)	1.2	-	1.5	-	ns
T _{PSU2}	P-term clock setup time (OR array)	1.5	-	2.0	-	ns
T _{PHD}	Direct input register p-term clock hold time	1.1	-	1.2	-	ns
T _{PH}	P-term clock hold	1.0	-	1.0	-	ns
T _{PCO}	P-term clock to output	-	6.5	-	7.3	ns
T _{OE} /T _{OD}	Global OE to output enable/disable	-	5.6	-	7.0	ns
T _{POE} /T _{POD}	P-term OE to output enable/disable	-	7.3	-	8.0	ns
T _{MOE} /T _{MOD}	Macrocell driven OE to output enable/disable	-	7.4	-	9.9	ns
T _{PAO}	P-term set/reset to output valid	-	7.5	-	8.1	ns
T _{AO}	Global set/reset to output valid	-	5.7	-	7.6	ns
T _{SUEC}	Register clock enable setup time	2.8	-	3.1	-	ns
T _{HEC}	Register clock enable hold time	0	-	0	-	ns
T _{CW}	Global clock pulse width High or Low	1.1	-	1.6	-	ns
T _{PCW}	P-term pulse width High or Low	6.0	-	7.5	-	ns
T _{APRPW}	Asynchronous preset/reset pulse width (High or Low)	6.0	-	7.5	-	ns
T _{DGSU}	Set-up before DataGATE latch assertion	0	-	0	-	ns
T _{DGH}	Hold to DataGATE latch assertion	4.0	-	6.0	-	ns
T _{DGR}	DataGATE recovery to new data	-	8.2	-	9.0	ns
T _{DGW}	DataGATE low pulse width	2.5	-	3.5	-	ns
T _{CDRSU}	CDRST setup time before falling edge GCLK2	1.6	-	2.0	-	ns
T _{CDRH}	Hold time CDRST after falling edge GCLK2	0	-	0	-	ns
T _{CONFIG} ⁽⁴⁾	Configuration time	-	150	-	150	μs

- F_{TOGGLE} is the maximum clock frequency to which a T-Flip Flop can reliably toggle (see the CoolRunner-II family data sheet for more information). 1.
- $F_{SYSTEM1}$ (1/ T_{CYCLE}) is the internal operating frequency for a device fully populated with one 16-bit counter through one p-term per macrocell while $F_{SYSTEM2}$ is through the OR array. F_{EXT1} (1/ T_{SU1} + T_{CO}) is the maximum external frequency using one p-term while F_{EXT2} is through the OR array. Typical configuration current during T_{CONFIG} is approximately 7.7 mA.

Internal Timing Parameters

			-6		-7	
Symbol	Parameter ⁽²⁾	Min.	Max.	Min.	Max.	Units
Buffer Delays	3	<u> </u>			,	
T _{IN}	Input buffer delay	-	2.4	-	2.6	ns
T _{DIN}	Direct data register input delay	-	3.1	-	3.9	ns
T _{GCK}	Global Clock buffer delay	-	1.8	-	2.7	ns
T _{GSR}	Global set/reset buffer delay	-	2.0	-	3.5	ns
T _{GTS}	Global 3-state buffer delay	-	2.1	-	3.0	ns
T _{OUT}	Output buffer delay	-	2.3	-	2.6	ns
T _{EN}	Output buffer enable/disable delay	-	3.5	-	4.0	ns
P-term Delays	s					
T _{CT}	Control term delay	-	1.1	-	1.4	ns
T _{LOGI1}	Single P-term delay adder	-	0.5	-	1.1	ns
T _{LOGI2}	Multiple P-term delay adder	-	0.3	-	0.5	ns
Macrocell De	lay		1			
T _{PDI}	Input to output valid	-	0.5	-	0.7	ns
T _{SUI}	Setup before clock	1.3	-	1.8	-	ns
T _{HI}	Hold after clock	0	-	0	-	ns
T _{ECSU}	Enable clock setup time	0.8	-	1.8	-	ns
T _{ECHO}	Enable clock hold time	0	-	0	-	ns
T _{COI}	Clock to output valid	-	0.4	-	0.7	ns
T _{AOI}	Set/reset to output valid	-	1.4	-	1.5	ns
T _{CDBL}	Clock doubler delay	-	0	-	0	ns
Feedback De	lays					
T _F	Feedback delay	-	1.7	-	3.0	ns
T _{OEM}	Macrocell to global OE delay	-	1.7	-	2.5	ns
I/O Standard	Time Adder Delays 1.5V CMOS		П	1	J.	
T _{HYS15}	Hysteresis input adder	-	3.0	-	4.0	ns
T _{OUT15}	Output adder	-	0.8	-	1.0	ns
T _{SLEW15}	Output slew rate adder	-	4.0	-	5.0	ns
I/O Standard	Time Adder Delays 1.8V CMOS		1	1	1	-
T _{HYS18}	Hysteresis input adder	-	2.0	-	3.0	ns
T _{OUT18}	Output adder	-	0	-	0	ns
T _{SLEW}	Output slew rate adder	-	2.0	-	4.0	ns

Internal Timing Parameters (Continued)

			-6			
Symbol	Parameter ⁽²⁾	Min.	Max.	Min.	Max.	Units
I/O Standard Ti	me Adder Delays 2.5V CMOS					
T _{IN25}	Standard input adder	-	0.6	-	0.7	ns
T _{HYS25}	Hysteresis input adder	-	1.5	-	3.0	ns
T _{OUT25}	Output adder	-	0.8	-	1.0	ns
T _{SLEW25}	Output slew rate adder	-	3.0	-	4.0	ns
I/O Standard Ti	me Adder Delays 3.3V CMOS/TTL		1		•	
T _{IN33}	Standard input adder	-	0.5	-	0.7	ns
T _{HYS33}	Hysteresis input adder	-	1.2	-	3.0	ns
T _{OUT33}	Output adder	-	1.2	-	1.6	ns
T _{SLEW33}	Output slew rate adder	-	3.0	-	4.0	ns
I/O Standard Ti	me Adder Delays HSTL, SSTL				•	
SSTL2-1	Input adder to T _{IN} , T _{DIN} , T _{GCK} , T _{GSR} , T _{GTS}	-	0.4	-	1.0	ns
	Output adder to T _{OUT}	-	-0.5	-	0.0	ns
SSTL3-1	Input adder to T _{IN} , T _{DIN} , T _{GCK} , T _{GSR} , T _{GTS}	-	0.4	-	1.0	ns
	Output adder to T _{OUT}	-	-0.5	-	0.0	ns
HSTL-1	Input adder to T _{IN} , T _{DIN} , T _{GCK} , T _{GSR} , T _{GTS}	-	0.6	-	1.0	ns
	Output adder to T _{OUT}	-	0	-	0	ns

Notes:

Switching Characteristics

Figure 2: Derating Curve for T_{PD}

AC Test Circuit

Output Type	R ₁	R ₂	CL
LVTTL33	268Ω	235Ω	35 pF
LVCMOS33	275Ω	275Ω	35 pF
LVCMOS25	188Ω	188Ω	35pF
LVCMOS18	112.5Ω	112.5Ω	35pF
LVCMOS15	150Ω	150Ω	35pF

C_L includes test fixtures and probe capacitance.

DS ACT 08 14 02

Figure 3: AC Load Circuit

^{1. 1.5} ns input pin signal rise/fall.

^{1.5} nsec maximum rise/fall times on inputs.

Typical I/V Output Curves

The I/V curve illustrates the nominal amount of current that an I/O can source/sink at different voltage levels.

Figure 4: Typical I/V Curve for XC2C256

Pin Descriptions

Function Block	Macro- cell	VQ100	CP132	TQ144	PQ208	FT256	I/O Bank
1	1	-	-	-	2	В3	2
1	2	-	-	-	208	B4	2
1(GSR)	3	99	A3	143	206	C4	2
1	4	-	-	142	205	A2	2
1	5	-	-	-	203	А3	2
1	6	97	B4	140	202	A4	2
1	7	-	-	-	-	-	-
1	8	-			-	-	-
1	9	-			-	-	-
1	10	-	ı	ı	-	ı	ı
1	11	-	-	-	-	-	1
1	12	96		139	201	B5	2
1	13	95	-	138	200	A5	2
1	14	94	A4	137	199	E8	2
1	15	-	-	-	198	В6	2
1	16	-	C5	-	197	C7	2
2(GTS2)	1	1	A1	2	3	D3	2
2	2	-	-		4	C3	2
2(GTS3)	3	2	B2	3	5	E3	2
2	4	-	B1	4	6	B2	2
2(GTS0)	5	3	C3	5	7	D4	2
2	6	-	-		8	D2	2
2	7	-			-	-	-
2	8	-			-	-	-
2	9	-	-	-	-	-	-
2	10	-	-	-	-	-	-
2	11	-	-	-	-	-	-
2(GTS1)	12	4	C2	6	9	E5	2
2	13	-	C1	7	10	B1	2
2	14	6	D2	9	12	E4	2
2	15	7	-	10	14	C1	2
2	16	-	D1	-	-	E2	2

Pin Descriptions (Continued)

	_					r	
Function Block	Macro- cell	VQ100	CP132	TQ144	PQ208	FT256	I/O Bank
3	1	-	-	136	196	A6	2
3	2	-	B5	135	195	D7	2
3	3	-	-	134	194	В7	2
3	4	-	A5	-	193	E9	2
3	5	93	-	133	192	A7	2
3	6		C6		191	D8	2
3	7	-	-	-	-	-	-
3	8	-	-	-	-	-	-
3	9	-	-	-	-	-	-
3	10	-	-	-	-	-	-
3	11	-	-	-	-	-	-
3	12	92	-	-	189	B8	2
3	13	-	В6	-	188	C8	2
3	14	91	A6	132	187	A8	2
3	15	-	C7	-	186	E11	2
3	16	90	В7	131	185	E10	2
4	1	8	E3	11	15	F2	2
4	2	9	-	12	16	F3	2
4	3	10	E2	13	17	G4	2
4	4	-	E1	14	18	G3	2
4	5	11	F3	15	19	F5	2
4	6	12	F2	16	20	G5	2
4	7	-	-	-	-	-	-
4	8	-	-	-	-	-	-
4	9	-	-	-	-	-	-
4	10	-	-	-	-	-	-
4	11	-	-	-	-	-	-
4	12	-	F1	17	21	H2	2
4	13	13	G1	-	22	H4	2
4	14	-	-	18	23	НЗ	2
4	15	-	-	-	-	H1	2
4	16	-	-	-	25	H5	2

Pin Descriptions (Continued)

Function	Macro-		(00				I/O
Block	cell	VQ100	CP132	TQ144	PQ208	FT256	Bank
5	1	-	L3	-	49	R1	1
5	2	-	-	33	48	N4	1
5	3	-	-	-	47	N2	1
5(GCK1)	4	23	L2	32	46	МЗ	1
5	5		L1	31	45	P1	1
5(GCK0)	6	22	K3	30	44	M2	1
5	7	-	-	-	-	-	1
5	8	-	-	-	-	-	1
5	9	-	-	-	-	-	1
5	10	-	-	-	-	-	1
5	11	-	-	-	-	-	1
5	12	-	-	1	43	L3	1
5	13	-	-	-	41	N1	1
5	14	-	-	28	40	L4	1
5	15	-	-	-	39	M1	1
5	16	-	K1	-	38	L5	1
6	1	-	M1	34	50	N3	1
6 (CDRST)	2	24	M2	35	51	P2	1
6	3	-	-	1	54	P4	1
6(GCK2)	4	27	N2	38	55	P5	1
6	5	-	-	-	56	R2	1
6	6	-	-	1	57	T1	1
6	7	-	-	-	-	-	1
6	8	-	-	-	-	-	ı
6	9	-	-	-	-	-	-
6	10	-	-	-	-	-	-
6	11	-	-	-	-	-	-
6(DGE)	12	28	P2	39	58	T2	1
6	13	-	МЗ	40	60	N5	1
6	14	29	N3	41	61	R4	1
6	15	-	P3	42	62	M5	1
6	16	30	M4	43	63	R5	1

Pin Descriptions (Continued)

Function Block	Macro- cell	VQ100	CP132	TQ144	PQ208	FT256	I/O Bank
7	1	-	-	-	37	K4	1
7	2	-	-	-	36	L2	1
7	3	-	-	-	35	K3	1
7	4	-	-		34	L1	1
7	5	19	J2	26	32	K5	1
7	6	18	J1	25	31	K2	1
7	7	-	-	-	-	-	-
7	8	-	-		-	-	ı
7	9	-	-		-	-	-
7	10	-	-	-	-	-	-
7	11	17	НЗ	24	30	J4	1
7	12	16	H2	23	29	K1	1
7	13	15	H1	22	28	J3	1
7	14	14	G3	21	27	J2	1
7	15	-	G2	20	-	J5	1
7	16	-	-	19	-	J1	1
8	1	-	N4	44	64	R6	1
8	2	-	-	45	65	N6	1
8	3	-	-	46	66	R3	1
8	4	-	-	-	67	M6	1
8	5	-	-	48	69	T3	1
8	6	32	-	49	70	P6	1
8	7	-	-	-	-	-	-
8	8	-	-	-	-	-	1
8	9	-	-	-	-	-	-
8	10	-	-		-	-	ı
8	11	33	M5	50	71	T4	1
8	12	34	N5	51	72	P7	1
8	13	35	P5	52	73	T5	1
8	14	36	M6	-	74	N7	1
8	15	37	N6	-	75	R7	1
8	16	-	-	-	76	M7	1

Pin Descriptions (Continued)

Function	Macro-		•				I/O
Block	cell	VQ100	CP132	TQ144	PQ208	FT256	Bank
9	1	78	C12	112	160	B13	2
9	2	79	B12	113	161	B14	2
9	3	-	-	-	162	C13	2
9	4	80	A12	114	163	A15	2
9	5				164	C12	2
9	6	81	C11	115	165	B12	2
9	7	-	-	-	-	-	-
9	8	-	-	ı	-	-	1
9	9	-	-	-	-	-	-
9	10	-	-	-	-	-	-
9	11	-	-	-	166	D13	2
9	12	82	B11	116	167	A14	2
9	13	-	-	117	168	E13	2
9	14	-	A11	118	169	A13	2
9	15	-	-	119	170	C11	2
9	16	-	C10		171	A12	2
10	1	77	A13	111	159	A16	2
10	2	76	B13	110	158	B15	2
10	3	74	C13	107	155	C14	2
10	4	73	C14	106	154	G11	2
10	5	72	D12	105	153	B16	2
10	6	71	D13	104	152	D15	2
10	7	-	-		-	-	-
10	8	-	-	-	-	-	-
10	9	-	-		-	-	-
10	10	-	-	-	-	-	-
10	11				151	E14	2
10	12	70	D14	103	150	C16	2
10	13	-	-	-	149	F14	2
10	14	-	E12	102	148	F13	2
10	15	-	-	-	147	E15	2
10	16	-	E13	101	146	G13	2

Pin Descriptions (Continued)

Eupotion	Maara						I/O
Function Block	Macro- cell	VQ100	CP132	TQ144	PQ208	FT256	Bank
11	1	-	B10	-	-	B11	2
11	2	-		-	173	D11	2
11	3	-	A10	-	174	A11	2
11	4	-	-	-	175	D10	2
11	5	-	C9	120	-	B10	2
11	6	-	-	121	-	E12	2
11	7	-	-	-	-	-	-
11	8	-	-	-	-	-	-
11	9	-	-	-	-	-	-
11	10	-	-	-	-	-	-
11	11	85	A8	124	178	F12	2
11	12	86	B8	125	179	В9	2
11	13	87	C8	126	180	C9	2
11	14	89	-	128	182	C10	2
11	15	-	-	129	183	A9	2
11	16	-	-	130	184	D9	2
12	1	-	-	-	145	F15	2
12	2	-	-	100	144	G14	2
12	3	-	-	-	143	E16	2
12	4	-	-	-	142	H12	2
12	5	-	F12	-	140	F16	2
12	6	-	F13	-	139	H16	2
12	7	-	-	-	-	-	-
12	8	-	-	-	-	-	-
12	9	-	-	-	-	-	-
12	10	-	-	-	-	-	-
12	11	68	F14	98	138	G15	2
12	12	-	G12	97	137	H13	2
12	13	67	G13	96	136	G16	2
12	14	66	-	95	135	H14	2
12	15	65	-	94	134	H15	2
12	16	-	-	-	-	J12	2

Pin Descriptions (Continued)

Function Block	Macro- cell	VQ100	CP132	TQ144	PQ208	FT256	I/O Bank
13	1	-	N13	75	107	R15	1
13	2	53	N14	76	108	T16	1
13	3	-	M12	77	109	N14	1
13	4	54	-	-	110	R16	1
13	5	-	M13	78	111	N15	1
13	6	55	-	79	112	M15	1
13	7	-	-	-	-	-	-
13	8	-	-	-	-	-	-
13	9	-	-	-	-	-	-
13	10	-	-	-	-	-	-
13	11	-	-	-	-	-	-
13	12	-	M14	80	113	M13	1
13	13	56	-	81	114	P16	1
13	14	-	L12	82	115	N16	1
13	15	-	-	-	116	L14	1
13	16	-	L13	-	117	M14	1
14	1	52	P14	74	106	P15	1
14	2	-	-	71	103	P14	1
14	3	50	P12	70	102	P13	1
14	4	-	M11	69	101	R13	1
14	5	49	N11	-	100	N13	1
14	6	-	P11	68	-	R14	1
14	7	-	-	-	-	-	-
14	8	-	-	-	-	-	-
14	9	-	-	-	-	-	-
14	10	-	-	-	-	-	-
14	11	-	-	-	-	-	-
14	12	-	-	-	99	T15	1
14	13	-	-	66	97	R12	1
14	14	46	P10	64	95	N11	1
14	15	44	-	-	-	M11	1
14	16	-	P9	61	91	N10	1

Pin Descriptions (Continued)

	-	<u> </u>		<u> </u>			
Function Block	Macro- cell	VQ100	CP132	TQ144	PQ208	FT256	I/O Bank
15	1	-	-	-	118	L15	1
15	2	-	L14	83	119	L13	1
15	3	-	-	-	120	M12	1
15	4	-	-	-	121	M16	1
15	5	-	-	-	122	K14	1
15	6	-	-	-	123	L16	1
15	7	-	-	-	-	-	-
15	8	-	-	-	-	-	ı
15	9	-	-	-	-	-	-
15	10	-	-	-	-	-	ı
15	11	58	K13	85	125	K15	1
15	12	59	K14	86	126	L12	1
15	13	60	J12	87	127	K16	1
15	14	61	J13	88	128	J14	1
15	15	63	H13	91	-	J15	1
15	16	64	H12	92	131	J13	1
16	1	-	-	-	90	P10	1
16	2	-	-	-	89	R10	1
16	3	-	M8	-	88	T10	1
16	4	-	-	-	87	R9	1
16	5	43	N8	60	86	N9	1
16	6	42	-	59	85	M8	1
16	7	-	-	-	-	-	-
16	8	-	-	-	-	-	-
16	9	-	-	-	-	-	-
16	10	-	-	-	-	-	-
16	11	41	P8	58	84	T8	1
16	12	40	M7	57	83	P8	1
16	13	39	N7	56	82	R8	1
16	14	-	-	-	80	T7	1
16	15	-	-	54	78	N8	1
16	16	-	P6	53	77	T6	1
Notes:							

- GTS = global output enable, GSR = global reset/set, GCK = global clock, CDRST = clock divide reset, DGE = DataGATE enable.
- 2. GTS, GSR and GCK pins can be used for general purpose I/O.

XC2C256 JTAG, Power/Ground, No Connect Pins and Total User I/O

Pin Type	VQ100	CP132	TQ144	PQ208	FT256
TCK	48	M10	67	98	P12
TDI	45	M9	63	94	R11
TDO	83	B9	122	176	A10
TMS	47	N10	65	96	N12
V _{CCAUX} (JTAG supply voltage)	5	D3	8	11	F4
Power internal (V _{CC})	26, 57	P1, K12, A2	1, 37, 84	1, 53, 124	P3, K13, D12, D5
Power Bank 1 I/O (V _{CCIO1})	20, 38, 51	J3, P7, G14, P13	27, 55, 73, 93	33, 59, 79, 92, 105, 132	J6, K6, L7, L8, J11, K11, L10, L9
Power Bank 2 I/O (V _{CCIO2})	88, 98	A14, C4, A7	109, 127, 141	26, 133, 157, 172, 181, 204	F7, F8, G6, H6, F10, F9, H11
Ground	21, 25, 31, 62, 69, 75, 84, 100	K2, N1, P4, N9, N12, J14, H14, E14, B14, A9, B3	29, 36, 47, 62, 72, 89, 90, 99, 108, 123, 144	13, 24, 42, 52, 68, 81, 93, 104, 129, 130, 141, 156, 177, 190, 207	F11, F6, G10, G7, G8, G9, H10, H7, H8, H9, J10, J7, J8, J9, K10, K7, K8, K9, L11, L6
No connects	-	-	-	-	A1, C2, E6, D1, E1, G2, F1, G1, M4, T9, P9, M9, M10, T11, T12, T13, P11, T14, J16, K12, D16, G12, C15, D14, D6, C6, E7, C5
Total user I/O	80	106	118	173	184

Ordering Information

							Commercia I (C)
Part Number	Pin/Ball Spacing	θ _{JA} (C/Watt)	θ _{JC} (C/Watt)	Package Type	Package Body Dimensions	I/O	Industrial (I) ⁽¹⁾
XC2C256-6VQ100C	0.5mm	43.1	10.9	Very Thin Quad Flat Pack	14mm x 14mm	80	С
XC2C256-7VQ100C	0.5mm	43.1	10.9	Very Thin Quad Flat Pack	14mm x 14mm	80	С
XC2C256-6CP132C	0.5mm	65.0	15.0	Chip Scale Package	8mm x 8mm	106	С
XC2C256-7CP132C	0.5mm	65.0	15.0	Chip Scale Package	8mm x 8mm	106	С
XC2C256-6TQ144C	0.5mm	37.2	7.2	Thin Quad Flat Pack	20mm x 20mm	118	С
XC2C256-7TQ144C	0.5mm	37.2	7.2	Thin Quad Flat Pack	20mm x 20mm	118	С
XC2C256-6PQ208C	0.5mm	36.9	9.7	Plastic Quad Flat Pack	28mm x 28mm	173	С
XC2C256-7PQ208C	0.5mm	36.9	9.7	Plastic Quad Flat Pack	28mm x 28mm	173	С
XC2C256-6FT256C	1.0mm	34.6	6.1	Fine Pitch Thin BGA	17mm x 17mm	184	С
XC2C256-7FT256C	1.0mm	34.6	6.1	Fine Pitch Thin BGA	17mm x 17mm	184	С
XC2C256-6VQG100C	0.5mm	43.1	10.9	Very Thin Quad Flat Pack; Pb-free	14mm x 14mm	80	С
XC2C256-7VQG100C	0.5mm	43.1	10.9	Very Thin Quad Flat Pack; Pb-free	14mm x 14mm	80	С
XC2C256-6CPG132C	0.5mm	65.0	15.0	Chip Scale Package; Pb-free	8mm x 8mm	106	С
XC2C256-7CPG132C	0.5mm	65.0	15.0	Chip Scale Package; Pb-free	8mm x 8mm	106	С
XC2C256-6TQG144C	0.5mm	37.2	7.2	Thin Quad Flat Pack; Pb-free	20mm x 20mm	118	С
XC2C256-7TQG144C	0.5mm	37.2	7.2	Thin Quad Flat Pack; Pb-free	20mm x 20mm	118	С
XC2C256-6PQG208C	0.5mm	36.9	9.7	Plastic Quad Flat Pack; Pb-free	28mm x 28mm	173	С
XC2C256-7PQG208C	0.5mm	36.9	9.7	Plastic Quad Flat Pack; Pb-free	28mm x 28mm	173	С
XC2C256-6FTG256C	1.0mm	34.6	6.1	Fine Pitch Thin BGA; Pb-free	17mm x 17mm	184	С
XC2C256-7FTG256C	1.0mm	34.6	6.1	Fine Pitch Thin BGA; Pb-free	17mm x 17mm	184	С
XC2C256-7VQ100I	0.5mm	43.1	10.9	Very Thin Quad Flat Pack	14mm x 14mm	80	I
XC2C256-7CP132I	0.5mm	65.0	15.0	Chip Scale Package	8mm x 8mm	106	I
XC2C256-7TQ144I	0.5mm	37.2	7.2	Thin Quad Flat Pack	20mm x 20mm	118	I
XC2C256-7PQ208I	0.5mm	36.9	9.7	Plastic Quad Flat Pack	28mm x 28mm	173	I
XC2C256-7FT256I	1.0mm	34.6	6.1	Fine Pitch Thin BGA	17mm x 17mm	184	I

16

							Commercia I (C)
Part Number	Pin/Ball Spacing	θ _{JA} (C/Watt)	θ _{JC} (C/Watt)	Package Type	Package Body Dimensions	I/O	Industrial (I) ⁽¹⁾
XC2C256-7VQG100I	0.5mm	43.1	10.9	Very Thin Quad Flat Pack; Pb-free	14mm x 14mm	80	I
XC2C256-7CPG132I	0.5mm	65.0	15.0	Chip Scale Package; Pb-free	8mm x 8mm	106	I
XC2C256-7TQG144I	0.5mm	37.2	7.2	Thin Quad Flat Pack; Pb-free	20mm x 20mm	118	I
XC2C256-7PQG208I	0.5mm	36.9	9.7	Plastic Quad Flat Pack; Pb-free	28mm x 28mm	173	I
XC2C256-7FTG256I	1.0mm	34.6	6.1	Fine Pitch Thin BGA; Pb-free	17mm x 17mm	184	I

Notes:

1. C = Commercial (T_A = 0°C to +70°C); I = Industrial (T_A = -40°C to +85°C).

Device Part Marking

Figure 5: Sample Package with Part Marking

Note: Due to the small size of chip scale packages, the complete ordering part number cannot be included on the package marking. Part marking on chip scale packages by line are:

- Line 1 = X (Xilinx logo) then truncated part number
- Line 2 = Not related to device part number
- Line 3 = Not related to device part number
- 1. Line 4 = Package code, speed, operating temperature, three digits not related to device part number. Package codes: C5 = CP132, C6 = CPG132.

Figure 6: VQ100 Very Thin Quad Flat Pack

- (1) Global Output Enable
- (2) Global Clock
- (3) Global Set/Reset
- (4) Clock Divide Reset
- (5) DataGATE Enable

Figure 7: CP132 Chip Scale Package

- (1) Global Output Enable
- (2) Global Clock
- (3) Global Set/Reset
- (4) Clock Divide Reset
- (5) DataGATE Enable

Figure 8: TQ144 Thin Quad Flat Pack

- (2) Global Clock
- (3) Global Set/Reset
- (4) Clock Divide Reset
- (5) DataGATE Enable

Figure 9: PQ208 Quad Flat Package

FT256 Bottom View

- (1) Global Output Enable
- (2) Global Clock
- (3) Global Set/Reset
- (4) Clock Divide Reset
- (5) DataGATE Enable

Figure 10: FT256 Fine Pitch Thin BGA

Warranty Disclaimer

THESE PRODUCTS ARE SUBJECT TO THE TERMS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF THE PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED ON THE THEN-CURRENT XILINX DATA SHEET FOR THE PRODUCTS. PRODUCTS ARE NOT DESIGNED TO BE FAIL-SAFE AND ARE NOT WARRANTED FOR USE IN APPLICATIONS THAT POSE A RISK OF PHYSICAL HARM OR LOSS OF LIFE. USE OF PRODUCTS IN SUCH APPLICATIONS IS FULLY AT THE RISK OF CUSTOMER SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

Additional Information

Additional information is available for the following CoolRunner-II topics:

XAPP784: Bulletproof CPLD Design Practices

XAPP375: Timing Model

XAPP376: Logic Engine

XAPP378: Advanced Features

XAPP382: I/O Characteristics

XAPP389: Powering CoolRunner-II

XAPP399: Assigning VREF Pins

To access these and all application notes with their associated reference designs, click the following link and scroll down the page until you find the document you want:

CoolRunner-II Data Sheets and Application Notes

Device Packages

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
05/09/02	1.0	Initial Xilinx release.
05/13/02	1.1	Updated AC Electrical Characteristics and added new parameters.
10/31/02	1.2	Corrected package user I/O, added Voltage Referenced DC tables.
03/17/03	2.0	Added Characterization numbers for product release and device part marking
04/02/03	2.1	Updated T_{SOL} max from 260 to 220. Changed I_{CCSB} units from mA to μA .
01/26/04	2.2	Updated Device Part Marking. Updated links and Tsol.
02/26/04	2.3	Corrected Theta JC value on XC2C256-7TQ144.
08/03/04	2.4	Pb-free documentation
08/19/04	2.5	Changes to I _{CCSB} maximum specifications in DC Electrical Characteristics table, on page 3.
10/01/04	2.6	Add Asynchronous Preset/Reset Pulse Width specification to AC Electrical Characteristics.
03/07/05	2.7	Removed -5 speed grade. Changes to Table 1, I/O Standards.
06/28/05	2.8	Move to Product Specification. Change to T_{IN25} , T_{OUT25} , T_{IN33} , and T_{OUT33} for -7 speed grade.
03/20/06	2.9	Add Warranty Disclaimer. Add note to Pin Description table that GTS, GSR and GCK pins can be used for general purpose I/O.
5/20/06	3.0	Moved T _{CONFIG} specification values from MIN column to MAX column, page 7.
02/15/07	3.1	Corrections to timing parameters t_{AOI} , t_{PSUD} , t_{PSU1} , t_{PSU2} , t_{PHD} , t_{PCO} , t_{POE} , t_{PAO} , t_{AO} , t_{SUEC} , t_{CW} , t_{CDRSU} , and t_{CDRSU} for the -7 speed grade. Values now match the software. There were no changes to silicon or characterization. Change to V_{IH} specification for 2.5V and 1.8V LVCMOS.
03/08/07	3.2	Fixed typo in note for $V_{\rm IL}$ for LVCMOS18; removed note for $V_{\rm IL}$ for LVCMOS33.