Pontificia Universidade Católica do Rio de Janeiro, RJ, Brasil Departamento de Engenharia Civil e Ambiental, Geotecnia

LISTA Nº 3

Karen Ninanya

(1812565)

Professor	
DisciplinaC	CIV 2532 - Métoddos Numéricos em Engenharia Civil
Data	5 de Outobro, 2018

Questão

Considere uma camada de argila saturada ($c_v = 10^{-2} cm^2/s$) de espessura H = 200 cm sob acréscimo de carregamento $\Delta q = 100 kPa$ gerado por um aterro aplicado na superficie do solo em uma grande área.

Determine numericamente pelo método dos elementos finitos os excessos de poropressão u_e no tempo t=18,5 días (correspondente a um fator tempo $T=\frac{c_vt}{H^2}=0,4$) nos nós de uma malha formada por 4 elementos quadráticos de 3 nós com igual comprimento L=50 cm. Utilize o método das diferenças finitas centrais ($\theta=1/2$) no dominio do tempo.

Considere no minimo 10 intervalos de tempo $\triangle t$ iguais para a obtenção da solução aproximada deste problema. Compare seus resultados com a solução gráfica da figura ou valores da tabela abaixo, calculados analiticamente.

Figura 1: Esquema geral do problema

aterro		$\Delta q = 100 \text{ kPa}$
		NA – nível da água
areia		
argila		
rocha impermeá	vel	

Solução

A camada de argila do problema foi discretizando em 4 elementos lineares quadráticos , como pode ser observado na seguinte figura.

Figura 2: Vista global da coluna com 3 elementos

Método das diferenças finitas centrais

• Formulação variacional

Na seguinte equação é mostrada a formulação variacional.

$$\Omega = \int_{V} \left[\frac{1}{2} c_{v} \left(\frac{\partial u_{e}}{\partial z} \right)^{2} + \frac{\partial u_{e}}{\partial t} u_{e} \right] dV - \int_{z_{1}}^{z_{2}} \bar{p} u_{e} dz$$
(1)

onde o escesso de pressão neutra u_e depende da matriz das funções de interpolação [N] (elementos quadráticos) e o vetor [q].

$$u_e = [N][q] \tag{2}$$

$$[q] = \begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \end{bmatrix} \tag{3}$$

$$[N] = [N_1 \quad N_2 \quad N_3] = \begin{bmatrix} \frac{1}{2}\xi(\xi - 1) & \frac{1}{2}\xi(\xi + 1) & (1 - \xi^2) \end{bmatrix}$$
 (4)

Logo, a derivada do excesso de pressão neutra respeito à profundidade é mostrada a continuação.

$$\frac{\partial u_e}{\partial z} = \frac{\partial}{\partial z} [N][q]$$

$$\frac{\partial u_e}{\partial z} = \frac{\partial}{\partial \xi} \begin{bmatrix} \frac{1}{2} \xi(\xi - 1) & \frac{1}{2} \xi(\xi + 1) & (1 - \xi^2) \end{bmatrix} \cdot \frac{\partial \xi}{\partial z} \cdot [q]$$

$$\frac{\partial u_e}{\partial z} = \frac{1}{L} \begin{bmatrix} 2\xi - 1 & 2\xi + 1 & -4\xi \end{bmatrix} [q] \tag{5}$$

sendo a matriz [B]:

$$[B] = \frac{1}{L} \begin{bmatrix} 2\xi - 1 & 2\xi + 1 & -4\xi \end{bmatrix} \tag{6}$$

Além, a derivada do excesso de pressão neutra respeito ao tempo é expressada na equação 7.

$$\frac{\partial u_e}{\partial t} = \frac{\partial}{\partial t} [N][q]$$

$$\frac{\partial u_e}{\partial t} = [N][\dot{q}] \tag{7}$$

Ao reemplazar os valores de $\frac{\partial u_e}{\partial z}$ e $\frac{\partial u_e}{\partial t}$ e obtida a seguinte equação.

$$\Omega = \frac{A}{2} \int_{-1}^{+1} [q]^T [B]^T [R] [B] [q] \cdot \frac{L}{2} \cdot d\xi + A \int_{-1}^{+1} [q]^T [N]^T [N] [\dot{q}] \cdot \frac{L}{2} \cdot d\xi - \int_{-1}^{+1} [q]^T [N]^T \cdot \bar{p} \cdot \frac{L}{2} \cdot d\xi$$
(9)

$$\frac{\partial \Omega}{\partial [q]} = 0 = \left[\frac{AL}{2} \int_{-1}^{+1} [B]^T [R] [B] d\xi \right] [q] + \left[\frac{AL}{2} \int_{-1}^{+1} [N]^T [N] d\xi \right] [\dot{q}] = \frac{\bar{p}L}{2} \int_{-1}^{+1} [N]^T d\xi \tag{10}$$

Agrupando.

$$[k'][q] + [k^*][\bar{p}] = [Q'] \tag{11}$$

• Matriz elemental [k']

A matriz [k'] depende de $[R] = c_v$.

$$[k'] = \frac{L}{2} \int_{-1}^{+1} [B]^T [R] [B] d\xi$$

$$[k'] = \frac{c_v}{2L} \int_{-1}^{+1} \begin{bmatrix} 2\xi - 1 \\ 2\xi + 1 \\ -4\xi \end{bmatrix} [2\xi - 1 \quad 2\xi + 1 \quad -4\xi] d\xi$$

$$[k'] = \frac{c_v}{2L} \int_{+1}^{-1} \begin{bmatrix} 4\xi^2 - 4\xi + 1 & 4\xi^2 - 1 & -8\xi^2 + 4\xi \\ 4\xi^2 - 1 & 4\xi^2 + 4\xi + 1 & -8\xi^2 - 4\xi \\ -8\xi^2 + 4\xi & -8\xi^2 - 4\xi & 16\xi^2 \end{bmatrix} d\xi$$

$$[k'] = \frac{c_v}{2L} \begin{bmatrix} 4\xi^3/3 - 2\xi^2 + \xi & 4\xi^3/3 - \xi & -8\xi^3/3 + 2\xi^2 \\ 4\xi^3/3 - \xi & 4\xi^3/3 + 2\xi^2 + \xi & -8\xi^3/3 - 2\xi^2 \\ -8\xi^3/3 + 2\xi^2 & -8\xi^3/3 - 2\xi^2 & 16\xi^3/3 \end{bmatrix} \Big|_{-1}^{+1}$$

$$[k'] = \frac{c_v}{6L} \begin{bmatrix} 14 & 2 & -16 \\ 2 & 14 & -16 \\ -16 & -16 & 32 \end{bmatrix} = \frac{c_v}{2L} [A]$$

$$(12)$$

• Matriz elemental $[k^*]$

A matriz $[k^*]$ de acordo a equação 10 e a seguinte.

$$[k^*] = \frac{L}{2} \int_{-1}^{+1} [N]^T [N] d\xi$$

$$[k^*] = \frac{L}{2} \int_{-1}^{+1} \begin{bmatrix} \frac{1}{2} \xi(\xi - 1) \\ \frac{1}{2} \xi(\xi + 1) \\ (1 - \xi^2) \end{bmatrix} \begin{bmatrix} \frac{1}{2} \xi(\xi - 1) & \frac{1}{2} \xi(\xi + 1) & (1 - \xi^2) \end{bmatrix} d\xi$$

$$[k^*] = \frac{L}{2} \int_{-1}^{+1} \begin{bmatrix} \frac{\xi^4}{4} - \frac{\xi^3}{2} + \frac{\xi^2}{4} & \frac{\xi^4}{4} - \frac{\xi^2}{4} & -\frac{\xi^4}{2} + \frac{\xi^3}{2} + \frac{\xi^2}{2} - \frac{\xi}{2} \\ \frac{\xi^4}{4} - \frac{\xi^2}{4} & \frac{\xi^4}{4} + \frac{\xi^3}{2} + \frac{\xi^2}{4} & -\frac{\xi^4}{2} - \frac{\xi^3}{2} + \frac{\xi^2}{2} + \frac{\xi}{2} \end{bmatrix} d\xi$$

$$[k^*] = \frac{L}{2} \begin{bmatrix} \frac{\xi^5}{20} - \frac{\xi^4}{8} + \frac{\xi^3}{12} & \frac{\xi^5}{20} - \frac{\xi^3}{12} & -\frac{\xi^5}{10} + \frac{\xi^4}{8} + \frac{\xi^3}{6} - \frac{\xi^2}{4} \\ \frac{\xi^5}{20} - \frac{\xi^3}{12} & \frac{\xi^5}{20} + \frac{\xi^4}{8} + \frac{\xi^3}{8} + \frac{\xi^3}{12} & -\frac{\xi^5}{10} - \frac{\xi^4}{8} + \frac{\xi^3}{6} + \frac{\xi^2}{4} \\ -\frac{\xi^5}{10} + \frac{\xi^4}{8} + \frac{\xi^3}{6} - \frac{\xi^2}{4} & -\frac{\xi^5}{20} - \frac{\xi^4}{8} + \frac{\xi^3}{6} + \frac{\xi^2}{4} & \frac{\xi^5}{5} - \frac{2\xi^3}{3} + \xi \end{bmatrix} \Big|_{-1}^{+1}$$

$$[k^*] = \frac{L}{30} \begin{bmatrix} 4 & -1 & 2 \\ -1 & 4 & 2 \\ 2 & 2 & 16 \end{bmatrix} = \frac{L}{30} [B]$$

$$(13)$$

• Vetor elemental [Q']

Logo, a matriz [Q'] de acordo a equação 10 e a seguinte.

$$[Q'] = \frac{\bar{p}L}{2} \int_{-1}^{+1} [N]^T d\xi$$

$$[Q'] = \frac{\bar{p}L}{2} \int_{-1}^{+1} \begin{bmatrix} \frac{1}{2}\xi(\xi - 1) \\ \frac{1}{2}\xi(\xi + 1) \\ (1 - \xi^2) \end{bmatrix} d\xi$$

$$[Q'] = \frac{\bar{p}L}{4} \begin{bmatrix} \frac{\xi^3}{3} - \frac{\xi^2}{2} \\ \frac{\xi^3}{3} + \frac{\xi^2}{2} \\ 2\xi - \frac{2\xi^3}{3} \end{bmatrix} \Big|_{-1}^{+1}$$

$$[Q'] = \frac{\bar{p}L}{12} \begin{bmatrix} 2 \\ 2 \\ 8 \end{bmatrix} = \frac{\bar{p}L}{12} [C]$$
(14)

• Discretização temporal no dominio do tempo - Diferença finita central

Considerando o método das diferenças centrais ($\theta = 1/2$) temos a seguinte formulação.

$$\left([k^*] + \frac{\triangle t}{2} [k'] \right) [q]_{(t)} = \left([k^*] - \frac{\triangle t}{2} [k'] \right) [q]_{(t-\triangle t)} + \frac{\triangle t}{2} \left([Q']_{(t-\triangle t)} + [Q']_{(t)} \right) \tag{15}$$

Ao reemplazar os valores correspondentes e dividir entre L, temos:

$$\left(\frac{1}{30}[B] + \frac{c_v \triangle t}{12L^2}[A]\right)[q]_{(t)} = \left(\frac{1}{30}[B] + \frac{c_v \triangle t}{12L^2}[A]\right)[q]_{(t-\triangle t)} + \frac{\triangle t}{2} \left(\frac{\bar{p}L}{12}[C]_{(t-\triangle t)} + \frac{\bar{p}L}{12}[C]_{(t)}\right)$$

Para o presente problema o valor da pressão neutra prescrita equivale a zero $\dot{p}=0$ e reemplazando o fator tempo na equação, temos:

$$\left(\frac{1}{30}[B] + \frac{\Delta T}{12}[A]\right)[q]_{(t)} = \left(\frac{1}{30}[B] + \frac{\Delta T}{12}[A]\right)[q]_{(t-\Delta t)}$$
(16)

onde a equação 16 tem a forma da seguinte equação.

$$[k][q]_t = [Q] \tag{17}$$

• Matriz local [k]

$$[k] = \frac{1}{30} \begin{bmatrix} 4 & -1 & 2 \\ -1 & 4 & 2 \\ 2 & 2 & 16 \end{bmatrix} + \frac{\Delta T}{12} \begin{bmatrix} 14 & 2 & -16 \\ 2 & 14 & -16 \\ -16 & -16 & 32 \end{bmatrix}$$
(18)

• Vetor local [Q]

$$[Q] = \begin{bmatrix} \frac{1}{30} \begin{bmatrix} 4 & -1 & 2\\ -1 & 4 & 2\\ 2 & 2 & 16 \end{bmatrix} + \frac{\triangle T}{12} \begin{bmatrix} 14 & 2 & -16\\ 2 & 14 & -16\\ -16 & -16 & 32 \end{bmatrix} \Big] [q]_{(t-\triangle t)}$$
$$+ \frac{\triangle t}{2} \begin{bmatrix} \frac{\bar{p}L}{12} \begin{bmatrix} 2\\ 2\\ 8 \end{bmatrix}_{(t-\triangle t)} + \frac{\bar{p}L}{12} \begin{bmatrix} 2\\ 2\\ 8 \end{bmatrix}_{(t)} \Big]$$
(19)

• Condições de contorno

$$u_e(0,t) = 0; \quad t > 0$$
 (20)

$$u_e(2,t) = 0; \quad t > 0$$
 (21)

• Condição inicial

$$u_e(z,t) = 100kPa; \quad 0 \le z \le 2$$
 (22)

• Matriz de correspondencia Global-local

Global	Local					
Global	$\overline{\mathbb{A}}$	<u> </u>	<u> </u>	4		
1	1	-	-	_		
2	3	-	-	-		
3	2	2 1 -		-		
4	-	3	-	-		
5	-	2	1	-		
6	-	-	3	-		
7	-	-	2	1		
8	-	-	-	3		
9	-	-	-	2		

• Montagem da matriz global

$$\begin{bmatrix} 4 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & 8 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 8 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 8 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 4 \end{bmatrix}$$

$$+\frac{\Delta T}{12}\begin{bmatrix} 14 & -16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -16 & 32 & -16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & -16 & 28 & -16 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -16 & 32 & -16 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & -16 & 28 & -16 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -16 & 32 & -16 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -16 & 28 & -16 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & -16 & 32 & -16 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & -16 & 14 \end{bmatrix} \begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^2 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\$$

$$= \begin{bmatrix} 4 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & 8 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 8 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 8 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 4 \end{bmatrix}$$

$$-\frac{\triangle T}{12}\begin{bmatrix} 14 & -16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -16 & 32 & -16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & -16 & 28 & -16 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -16 & 32 & -16 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & -16 & 28 & -16 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -16 & 32 & -16 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -16 & 28 & -16 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & -16 & 32 & -16 \\ 0 & 0 & 0 & 0 & 0 & 0 & -16 & 32 & -16 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & -16 & 14 \end{bmatrix} \end{bmatrix} \begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\ u_e^9 \\ (t-\triangle t) \end{bmatrix}$$

Neste problema serão considerado 10 intervalos de tempo com um $\Delta t = 1,85$ días, o que significa variações de fatores tempo iguais a $\Delta T = 1998/3125$.

Por tanto a matriz global ficaria da seguinte forma.

$$\frac{10^{-5}}{3} \begin{bmatrix} 263776 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_1^1 \\ u_e^1 \\ u_e^2 \\ u_e^1 \\ u_e^2 \\ u_e^1 \\ u_e^2 \\ u_e^$$

$$=\frac{10^{-5}}{3}\begin{bmatrix} -183776 & 275744 & -41968 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 275744 & -351488 & 275744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -41968 & 275744 & -367552 & 275744 & -41968 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 275744 & -351488 & 275744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -41968 & 275744 & -367552 & 275744 & -41968 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 275744 & -351488 & 275744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 275744 & -351488 & 275744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -41968 & 275744 & -367552 & 275744 & -41968 \\ 0 & 0 & 0 & 0 & 0 & 0 & 275744 & -351488 & 275744 & -41968 \\ 0 & 0 & 0 & 0 & 0 & 0 & 275744 & -351488 & 275744 & -41968 \\ 0 & 0 & 0 & 0 & 0 & 0 & -41968 & 275744 & -351488 & 275744 \\ 0 & 0 & 0 & 0 & 0 & 0 & -41968 & 275744 & -183776 \end{bmatrix} \begin{bmatrix} u_1^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \end{bmatrix}_{(t-\triangle t)}$$

• Paso 1 : $t_1 = t_0 + \triangle t = 1,85$ días,

No tempo t=0 temos: $u_e^1=u_e^2=u_e^3=u_e^4=u_e^5=u_e^6=u_e^7=u_e^8=100kPa$

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 671488 & -235744 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^8 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{(t=t_1)} = 10^6 \begin{bmatrix} 20 \\ 10 \\ 20 \\ 10 \\ 20 \\ 5 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os escessos de pressão neutra nodais, os quais são

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^6 \\ u_e^6 \\ u_e^8 \\ u_e^8 \\ u_e^9 \end{bmatrix}_{t=t_1=1,85 dias} = \begin{bmatrix} 0 \\ 58,8200 \\ 82,7037 \\ 92,8765 \\ 97,0059 \\ 98,7617 \\ 99,4671 \\ 99,4671 \\ 99,7501 \\ 99,8210 \end{bmatrix} kPa$$

$$(23)$$

• Paso 2: $t_2 = t_1 + \triangle t = 3,7$ días,

Os excessos de pressão neutra do tempo $t=t_1$ forem calculados no paso 1, ver equação 23.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^2 \\ u_e^4 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{(t=t_2)} = \begin{bmatrix} 2130525 \\ 7360346 \\ 16908869 \\ 9543027 \\ 19462699 \\ 9918675 \\ 19891535 \\ 4986352 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os escessos de pressão neutra nodais, os quais são mostrados no seguinte vetor.

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^8 \\ u_e^9 \\ u_e^8 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ u_e^{-3.7 dias} \end{bmatrix} = \begin{bmatrix} 0,0000 \\ 21,9125 \\ 53,3776 \\ 74,4070 \\ 86,8361 \\ 93,4213 \\ 96,7046 \\ 98,1926 \\ 98,1926 \\ 98,6074 \end{bmatrix} kPa$$

$$(24)$$

• Paso 3 : $t_3 = t_2 + \triangle t = 5,55$ días,

Os excessos de pressão neutra do tempo $t=t_2$ forem calculados no paso 2, ver equação 24.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^7 \\ u_e^8 \\ u_e^9 \end{bmatrix}_{(t=t_3)} = \begin{bmatrix} 7016572 \\ 3296143 \\ 12509919 \\ 8062215 \\ 17773781 \\ 9509721 \\ 19342592 \\ 4895848 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os escessos de pressão neutra nodais, os quais são

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^6 \\ u_e^8 \\ u_e^8 \\ u_e^8 \\ u_e^9 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{t=t_3=5,55dias} = \begin{bmatrix} 0,0000 \\ 24,6352 \\ 40,4067 \\ 58,6676 \\ 73,6350 \\ 84,1212 \\ 90,5796 \\ 93,9532 \\ 94,9855 \end{bmatrix} kPa \tag{25}$$

• Paso 4: $t_4 = t_3 + \triangle t = 7, 4$ días,

Os excessos de pressão neutra do tempo $t=t_3$ forem calculados no paso 3, ver equação 25.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e$$

Ao resolver a matriz com o MatLab forem obtidos os escessos de pressão neutra nodais, os quais são mostrados no seguinte vetor.

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^8 \\ u_e^9 \\ u_$$

• Paso 5 : $t_5 = t_4 + \triangle t = 9,25$ días,

Os excessos de pressão neutra do tempo $t=t_4$ forem calculados no paso 4, ver equação 26.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^7 \\ u_e^8 \\ u_e^9 \end{bmatrix}_{(t=t_5)} = \begin{bmatrix} 4439551 \\ 2464269 \\ 9940082 \\ 6234813 \\ 14244996 \\ 7929037 \\ 16612441 \\ 4276838 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os esxessos de pressão neutra nodais, os quais são

$$\begin{bmatrix} u_{e}^{1} \\ u_{e}^{2} \\ u_{e}^{3} \\ u_{e}^{4} \\ u_{e}^{4} \\ u_{e}^{5} \\ u_{e}^{6} \\ u_{e}^{6} \\ u_{e}^{7} \\ u_{e}^{8} \\ u_{e}^{8} \\ u_{e}^{9} \\ u_{e}^{9} \end{bmatrix}_{t=t_{5}=9,25dias} = \begin{bmatrix} 0,0000 \\ 17,343 \\ 30,5674 \\ 46,0547 \\ 58,4491 \\ 68,1584 \\ 75,2661 \\ 79,6459 \\ 81,1273 \end{bmatrix} kPa$$

$$(27)$$

• Paso 6: $t_6 = t_5 + \triangle t = 11, 1$ días,

Os excessos de pressão neutra do tempo $t=t_5$ forem calculados no paso 5, ver equação 27.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e$$

Ao resolver a matriz com o MatLab forem obtidos os esxessos de pressão neutra nodais, os quais são mostrados no seguinte vetor.

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ u_e^9 \\ t=t_0-11 \ ldice \end{bmatrix} = \begin{bmatrix} 0,0000 \\ 13,8868 \\ 29,6590 \\ 41,2834 \\ 52,4776 \\ 61,6662 \\ 68,3899 \\ 72,4610 \\ 73,8267 \end{bmatrix} kPa$$

$$(28)$$

• Paso 7: $t_7 = t_6 + \triangle t = 12,95$ días,

Os excessos de pressão neutra do tempo $t=t_6$ forem calculados no paso 6, ver equação 28.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 527552 & -235744 & 21968 & 0 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 & 0 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^3 \\ u_e^6 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\$$

Ao resolver a matriz com o MatLab forem obtidos os esxessos de pressão neutra nodais, os quais são

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{t=t_7=12.95 dias} = \begin{bmatrix} 0,0000 \\ 13,6525 \\ 24,9009 \\ 37,5549 \\ 47,5490 \\ 47,5490 \\ 55,8013 \\ 61,9610 \\ 65,7622 \\ 67,0448 \end{bmatrix} kPa$$

$$(29)$$

• Paso 8 : $t_8 = t_7 + \triangle t = 14, 8$ días,

Os excessos de pressão neutra do tempo $t=t_7$ forem calculados no paso 7, ver equação 29.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^2 \\ u_e^4 \\ u_e^4 \\ u_e^4 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{(t=t_8)} = \begin{bmatrix} 2719554 \\ 2067584 \\ 2972221 \\ 6777529 \\ 4620262 \\ 10583238 \\ 5937244 \\ 12457951 \\ 3211928 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os esxessos de pressão neutra nodais, os quais são mostrados no seguinte vetor.

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^6 \\ u_e^8 \\ u_e^8 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{t=t_8=14,8dias} = \begin{bmatrix} 0,0000 \\ 11,5120 \\ 24,0202 \\ 33,6461 \\ 43,0672 \\ 50,6056 \\ 56,1838 \\ 59,6151 \\ 60,7772 \end{bmatrix} kPa$$

$$(30)$$

• Paso 9 : $t_9 = t_8 + \triangle t = 16,65$ días,

Os excessos de pressão neutra do tempo $t=t_8$ forem calculados no paso 8, ver equação 30.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^2 \\ u_e^4 \\ u_e^7 \\ u_e^8 \\ u_e^9 \end{bmatrix}_{(t=t_9)} = \begin{bmatrix} 2577096 \\ 1815958 \\ 6672748 \\ 4036464 \\ 9580607 \\ 5384087 \\ 11297302 \\ 2911194 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os esxessos de pressão neutra nodais, os quais são

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^6 \\ u_e^8 \\ u_e^8 \\ u_e^8 \\ u_e^9 \end{bmatrix}_{t=t_9=16,65dias} = \begin{bmatrix} 0,0000 \\ 11,0420 \\ 20,5200 \\ 30,8005 \\ 38,9063 \\ 45,7982 \\ 50,9043 \\ 54,0370 \\ 55,0915 \end{bmatrix} kPa$$

$$(31)$$

• Paso $10: t_10 = t_9 + \triangle t = 18,5 \text{ días},$

Os excessos de pressão neutra do tempo $t=t_9$ forem calculados no paso 9, ver equação 31.

Além disso, o valor de $(u_e^1 = 0)$.

$$\begin{bmatrix} 671488 & -235744 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -235744 & 527552 & -235744 & 21968 & 0 & 0 & 0 & 0 & 0 \\ 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 & 0 & 0 \\ 0 & 21968 & -235744 & 527552 & -235744 & 21968 & 0 & 0 \\ 0 & 0 & 0 & -235744 & 671488 & -235744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21968 & -235744 & 527552 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 & 21968 \\ 0 & 0 & 0 & 0 & 0 & -235744 & 671488 & -235744 \\ 0 & 0 & 0 & 0 & 0 & 21968 & -235744 & 263776 \end{bmatrix} \begin{bmatrix} u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{(t=t_10)} = \begin{bmatrix} 1777136 \\ 2362832 \\ 5560440 \\ 3824009 \\ 8667216 \\ 4874080 \\ 10234349 \\ 2639531 \end{bmatrix}$$

Ao resolver a matriz com o MatLab forem obtidos os esxessos de pressão neutra nodais, os quais são mostrados no seguinte vetor.

$$\begin{bmatrix} u_e^1 \\ u_e^2 \\ u_e^3 \\ u_e^4 \\ u_e^5 \\ u_e^6 \\ u_e^7 \\ u_e^8 \\ u_e^9 \\ u_e^9 \end{bmatrix}_{t=t_{10}=18,5dias} = \begin{bmatrix} 0,0000 \\ 9,5229 \\ 19,5865 \\ 27,5835 \\ 35,3950 \\ 41,5259 \\ 46,1213 \\ 48,9601 \\ 49,9226 \end{bmatrix} kPa$$

$$(32)$$

• Resumen

O resumen dos resultados das pressões neutras nódais (u_e) são nostradas na seguinte tabela e a Fig. 3.

Tabela 1: Excesso de pressão neutra noda
i $\left(u_{e}\right)$ respeito do tempo

Nós	t (días)									
1105	1,85	3,7	5,55	7,4	9,25	11,1	12,95	14,8	16,65	18,5
1	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	58,8200	21,9125	24,6352	16,9236	17,3430	13,8868	13,6525	11,5120	11,0420	$9,\!5229$
3	82,7037	53,3776	40,4067	37,6726	30,5674	29,6590	24,9009	24,0202	20,5200	19,5865
4	$92,\!8765$	74,4070	58,6676	52,0867	46,0547	41,2834	37,5549	33,6461	30,8005	27,5835
8	97,0059	86,8361	73,6350	64,7700	58,4491	$52,\!4776$	47,5490	43,0672	38,9063	35,3950
6	98,7617	93,4213	84,1212	75,1837	$68,\!1584$	61,6662	55,8013	50,6056	45,7982	41,5259
7	99,4671	96,7046	90,5796	82,7261	$75,\!2661$	68,3899	61,9610	56,1838	50,9043	46,1213
8	99,7501	98,1926	93,9532	87,1934	79,6459	72,4610	65,7622	59,6151	54,037	48,9601
9	$99,\!8210$	$98,\!6074$	$94,\!9855$	88,6643	$81,\!1273$	$73,\!8267$	67,0448	60,7772	55,0915	49,9226

Figura 3: Evolução de u_e nodais ao longo do tempo (até t=18,5 días)

Finalmente, uma comparação dos resultados analíticos e numéricos de excessos de pressão neutra nodais no tempo t=18,5 días pode ser observada na Fig. 4

Figura 4: Evolução de u_e ao longo do tempo (até t=18,5 días)

