Группы и алгебры Ли II

Лекция 12. Представления полупростых алгебр Ли

Классификация конечномерных неприводимых представлений

С прошлой лекции мы помним, что всякое представление старшего веса μ это фактор модуля Верма M_{μ}/W для некоторого $W \subset M_{\mu}$.

Пемма 1. Представление M_{μ}/W неприводимо тогда и только тогда, когда W максимальное собственное подпредставление (то есть подпредставление, которое не содержится ни в каком другом собственном подпредставлении)

Доказательство. В самом деле, допустим, M_{μ}/W неприводимо, а W не является максимальным собственным подпредставлением. Тогда существует такое собственное подпредставление W', что $W \subset W' \subset M_{\mu}$, а значит $W'/W \subset M_{\mu}/W$, что противоречит неприводимости. В другую сторону, допустим, W - максимальный собственный подмодуль, а M_{μ}/W приводимо. Тогда найдется подпредставление в факторе: $V \subset M_{\mu}/W$. Рассмотрим подпространство V + W в M_{λ} , где V рассматривается как множество представителей в M_{μ} . Оно является и подпредставлением, поскольку $\mathfrak{g}.(V+W) \subset V+W$. Но $W \subset V+W$, значит W не было максимальным.

Теорема 1. Для любого $\mu \in \mathfrak{h}^*$ существует единственное (с точностью до изоморфизма) неприводимое представление старшего веса μ . Будем обозначать его L_{μ} .

Доказательство. Всякое собственное подпредставление $W \subset M_{\mu}$ допускает весовое разложение $W = \bigoplus W[\lambda], \ W[\lambda] = W \cap M_{\mu}[\lambda],$ причем $W[\mu] = 0$, иначе $W = M_{\mu}$. Пусть W_{μ} - сумма всех собственных подпредставлений. Поскольку $W_{\mu}[\mu] = 0$, оно все еще собственное, а поскольку содержит все собственные подпредставления, то оно максимально. Тогда $L_{\mu} = M_{\mu}/W_{\mu}$ неприводимое, причем единственность следует из единственности максимального собственного подпредставления (которая следует из максимальности).

Следствие. Для всякого неприводимого конечномерного представления V существует $\lambda \in \mathfrak{h}^*$ такой, что $V \cong L_{\lambda}$.

Доказательство. Всякое неприводимое конечномерное представление является представлением старшего веса, а значит является фактором модуля Верма M_{λ} (по теореме с прошлой лекции) по максимальному собственному подмодулю (по лемме 1).

Определение. Вес μ называется доминантным интегральным, если $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}_{+}$ для всех $\alpha \in R_{+}$. Множество всех доминантных интегральных весов назовем P_{+}

Лемма 2. $P_+ = P \cap \overline{C}_+$

Доказательство. Сразу следует из определения.

Теорема 2. Неприводимое представление старшего веса L_{μ} конечномерно тогда и только тогда, когда $\mu \in P_{+}$.

Доказательство. Сперва докажем, что если L_{μ} конечномерно, то $\mu \in P_{+}$. Для этого рассмотрим L_{μ} как представление $(\mathfrak{sl}_{2})_{i}$, образованной $\{e_{\alpha_{i}},h_{\alpha_{i}},f_{\alpha_{i}}\}$. Тогда $e_{\alpha_{i}}.v_{\mu}=0$, $h_{\alpha_{i}}.v_{\mu}=\langle \alpha_{i},\mu\rangle v_{\mu}$. Тогда из конечномерности L_{μ} как представления $(\mathfrak{sl}_{2})_{i}$ следует, что $\langle \alpha_{i},\mu\rangle \in \mathbb{Z}_{+}$. Повторяя рассуждения для всех простых корней, получаем требуемое.

Теперь докажем, что если $\mu \in P_+$, то L_μ конечномерно. Пусть $n_i = \langle \alpha_i^\vee, \mu \rangle$. Рассмотрим $v_{s_i,\mu} = f_i^{n_i+1}.v_\mu$, где $s_i.\mu = \mu - (n_i+1)\alpha_i$. Заметим, что тут мы по-новому определяем действие группы Вейля: мы рассмариваем не вес $\mu - n_i\alpha_i$, симметричный старшему относительно стенки L_{α_i} , а следующий после него в соответствующем $(\mathfrak{sl}_2)_i$ -подмодуле Верма.

Заметим теперь, что все $v_{s_i,\mu}$ - сингулярные, то есть для любых j $e_j.v_{s_i,\mu}=0$. В самом деле, если $i\neq j$, то $[e_j,f_i]=0$ и $e_j.v_\mu=0$. А $e_i.v_{s_i,\mu}=0$ следует из теории представлений $(\mathfrak{sl}_2)_i$: $(\mathfrak{sl}_2)_i$ -подмодуль Верма имеет старший вес n_i .

Теперь рассмотрим подпредставление $M_i \subset M_\mu$, порожденное $v_{s_i,\mu}$. Оно не содержит старший вес, так что является собственным. Значит, $\sum M_i$ собственное. Рассмотрим $\tilde{L}_\mu = M_\mu / \sum M_i$.

Предложение. \tilde{L}_{μ} конечномерно.

Представление L_{μ} - фактор по максимальному собственному подмодулю, значит является фактором \tilde{L}_{μ} , а потому тоже конечномерно.

Подводя итог, мы имеем

Следствие. Для каждого $\mu \in P_+$ представление L_μ неприводимо, такие представления попарно неизоморфны и всякое неприводимое конечномерное представление изомофорно одному из них.

БГГ-резольвента

В доказательстве последней теоремы мы ввели подпредставления $M_i \subset M_\mu$, порожденные сингулярными векторами $v_{s_i,\mu}$.

Пемма 3. Пусть $v \in M_{\mu}[\lambda]$ сингулярный, то есть такой, что $\mathfrak{n}_+.v = 0$. Тогда подпредставление M', порожденное v, изоморфно модулю Верма M_{λ} .

Представление M' является представлением старшего веса λ , а значит по теореме с прошлой лекции имеется сюръективный морфизм $U\mathfrak{n}_- \to M'$. Значит, нам достаточно проверить, что этот морфизм инъективен. Предположим, нашелся $u \in U\mathfrak{n}_-$ такой, что uv = 0. Но мы знаем, что существует $u' \in U\mathfrak{n}_-$ такой, что $u'.v_\mu = v$. Таким образом, $uu'.v_\mu = 0$. $M_\mu \cong U\mathfrak{n}_-$, поэтому это значит, что uu' = 0, чего в $U\mathfrak{n}_-$ не бывает

Теорема 3. В предыдущих условиях

1. $M_i \cong M_{s_i,\mu}$, где $M_{s_i,\mu}$ - модуль Верма со старшим вектором $v_{s_i,\mu} = f_i^{n_i+1}.v_\mu$, $n_i = \langle \alpha_i^\vee, \mu \rangle$.

2.
$$L_{\mu} = M_{\mu} / \sum M_i$$

Доказательство. Первое утверждение сразу следует из предыдущей леммы.

Рассмотрим $\tilde{L}_{\mu} = M_{\mu}/\sum M_{i}$. Это представление вполне приводимо, то есть $\tilde{L}_{\mu} = \bigoplus_{\lambda = \mu - \sum n_{i}\alpha_{i}} n_{\lambda}L_{\lambda}$. Поскольку $\dim \tilde{L}_{\mu}[\mu] = \dim L_{\mu}[\mu]$, $\tilde{L}_{\mu} = L_{\mu} \oplus \bigoplus_{\lambda \neq \mu} n_{\lambda}L_{\lambda}$. То есть старший вектор \tilde{L}_{μ} лежит в L_{μ} , а значит $\tilde{L}_{\mu} \subset L_{\mu}$, значит $\tilde{L}_{\mu} = L_{\mu}$.

Нам хочется научиться считать размерности весовых подпространств в L_{μ} . Размерности весовых подпространств в M_{μ} и M_{i} мы можем посчитать по теореме PBW. Однако есть проблема: $\sum M_{i}$ - не прямая сумма, поскольку эти подмодули пересекаются. Мы имеем следующую точную последовательность:

$$\bigoplus M_{s_i,\mu} \to M_{\mu} \to L_{\mu} \to 0, \tag{1}$$

которая не является короткой точной, потому что первая стрелка не является инъективным морфизмом (опять же потому, что M_i пересекаются). Однако можно написать длинную точную последовательность, в которой эти модули участвуют. Для этого определим новое действие группы Вейля по формуле $w.\lambda = w(\lambda + \rho) - \rho$, где $\rho = \frac{1}{2} \sum_{\alpha \in B_+} \alpha$.

Пемма 4. Такое действие - это то же действие, которое было задано в доказательстве теоремы 2

Доказательство. Достаточно проверить, что
$$s_i.\lambda = \lambda - (\langle \alpha_i^{\vee}, \lambda \rangle + 1)\alpha_i$$

Теорема 4. (Резольвента Бернштейна-Гельфанда-Гельфанда) Пусть $\lambda \in P_+$. Тогда

$$0 \to M_{w_0,\mu} \to \dots \to \bigoplus_{w \in W, l(w) = k} M_{w,\mu} \to \dots \to \bigoplus_{i=1,\dots,r} M_{s_i,\mu} \to M_{\mu} \to L_{\mu} \to 0$$
 (2)

Пример. Рассмотрим \mathfrak{sl}_2 . Тогда $\mathfrak{h}^*\cong\mathbb{C}$ с изоморфизмом, заданным формулой $\lambda\mapsto\langle h,\lambda\rangle$. Тогда $\alpha\mapsto 2$. Решетка весов определяется соотношением $\frac{2(\alpha,\lambda)}{(\alpha,\alpha)}=1/2\alpha\lambda=\lambda\in\mathbb{Z}$. Это соответствует нашему знанию о том, что неприводимые конечномерные представления нумеруются неотрицательными целыми числами.

Заметим, что $\rho=1/2\alpha=1$. Тогда $s.\lambda=s(\lambda+1)-1=-(\lambda+1)-1=-\lambda-2$, и в случае $\mu\in\mathbb{Z}_+$ ВГГ-резольвента имеет вид

$$0 \to M_{-\mu-2} \to M_{\mu} \to L_{\mu} \to 0, \tag{3}$$

 $u L_{\mu} = M_{\mu}/M_{-\mu-2}.$

Пример. Рассмотрим \mathfrak{sl}_3 . В этом случае БГГ-резольвента имеет вид

$$0 \to M_{s_1 s_2 s_1 \cdot \mu} \xrightarrow{\phi_2} M_{s_1 s_2 \cdot \mu} \oplus M_{s_2 s_1 \cdot \mu} \xrightarrow{\phi_3} M_{s_1 \cdot \mu} \oplus M_{s_2 \cdot \mu} \xrightarrow{\phi_4} M_{\mu} \xrightarrow{\phi_5} L_{\mu} \to 0$$
 (4)

Для тривиального представления вложения соответствующих модулей Верма в M_0 показаны на рисунке. Сингулярные вектора имеют вид

$$v_1 = v_{s_1.0} = f_1.v_0$$

$$v_2 = v_{s_2.0} = f_2v_0$$

$$v_3 = v_{s_1s_2.0} = f_1^2 f_2 v_0$$

$$v_4 = v_{s_2s_1.0} = f_2^2 f_1 v_0$$

$$v_5 = v_{s_1s_2s_1.0} = f_1 f_2^2 f_1 v_0 = f_2 f_1^2 f_2 v_0$$

Рис. 1: Подмодули M_0 , участвующие в БГГ резольвенте тривиального представления \mathfrak{sl}_3

Морфизмы устроены так: $\phi_2: v_5 \mapsto (v_5, -v_5), \ \phi_3: (v_3, v_4) \mapsto (v_3 + v_4, -v_3 - v_4), \ \phi_4: (v_1, v_2) \mapsto v_1 + v_2$.

Единственное, что остается понять и что не очевидно из картинки, это как вложен модуль Верма, порожденный v_1 , и как вложен модуль Верма, порожденный v_1 , и как вложен модуль Верма, порожденный v_2 . Это можно сделать с помощью соотношений Серра: $[f_1, [f_1, f_2]] = 0$ и $[f_2, [f_2, f_1]] = 0$. Тогда $v_3 = f_1^2 f_2 v_0 = (2f_1 f_2 - f_2 f_1) f_1 v_0 = (2f_1 f_2 - f_2 f_1) v_1$, $v_4 = f_2^2 f_1 v_0 = (2f_2 f_1 - f_1 f_2) f_2 v_0 = (2f_2 f_1 - f_1 f_2) v_2$.