From Collisions to Chosen-Prefix Collisions Application to Full SHA-1

Gaëtan Leurent Thomas Peyrin

Inria, France

NTU, Singapour

Eurocrypt 2019

Hash functions

- ▶ Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Hash function should behave like a random function
 - Hard to find collisions, preimages
 - Hash can be used as fingerprint, identifier
- Used in many different contexts
 - Signature: hash-and-sign
 - MAC: hash-and-PRF
 - Blockchain: Proof-of-work, ...

Eurocrypt 2019

SHA-1

- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- ▶ Standardized by NIST, ISO, IETF, ... Widely used until quite recently
- State size: n = 160
 - Expected collision security 2⁸⁰
- Iterative structure: Merkle-Damgård construction

- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- Standardized by NIST, ISO, IETF, ... Widely used until quite recently
- State size: n = 160

Introduction 00000000

- Expected collision security 2⁸⁰
- Iterative structure: Merkle-Damgård construction
- Block cipher-based compression function: Davies-Meyer

SHA-1 Cryptanalysis

2005-02 Theoretical collision with 2⁶⁹ operations [Wang & al., Crypto'05]

... Several unpublished collision attacks in the range $2^{51} - 2^{63}$

2010-11 Theoretical collision with 2⁶¹ operations

[Stevens, EC'13]

2015-10 Practical freestart collision (on GPU)

[Stevens, Karpman & Peyrin, Crypto'15]

2017-02 Practical collision with 2^{64.7} operations (on GPU)

[Stevens & al., Crypto'17]

SHAttered attack: Colliding PDFs

Pierre Karpman

Varik Markov

SHA-1 =

SHA-1 today

- Modern web browsers reject SHA-1 certificates since 2017
- SHA-1 certificates still exists

SHA-1 SSL certificate using

- SHA-1 certificates still accepted by modern non-browser TLS clients

► SHA-1 also used in Git, TLS 1.2 handshake, ...

SHA-1 today

- Modern web browsers reject SHA-1 certificates since 2017
- SHA-1 certificates still exists
 - CAs still sell legacy SHA-1 certificates

SHA-1 SSL certificate using Symantec's Private CA technology...

- SHA-1 certificates still accepted by modern non-browser TLS clients
 - Until a few week ago, a mailserver in TU Darmsdtat used a SHA-1 certificate
 - Windows 10 "Mail" app connects without error

```
$ sslscan mail.sim.informatik.tu-darmstadt.de:993
[\ldots]
  SSI. Certificate:
```

Signature Algorithm: shalWithRSAEncryption

SHA-1 also used in Git, TLS 1.2 handshake, ...

Exploiting collisions

Collision attack

Introduction 00000000

- Start from IV
- ► C₁ and C₂ collide

Adding prefix and suffix

- Add identical prefix and suffix using iterative structure
- Usually same difficulty (just a different IV)
- ► Issue: C₁ and C₂ look random (not controlled)
 - ► Solution: hide in some ignored sections of the file (e.g. comment)
- Issue: collision is not meaningful

$$M_1 = \text{"if } (C_1 == C_1) \text{ good } \text{ else } \{ \text{ evil } \}$$
 $M_2 = \text{"if } (C_2 == C_1) \text{ good } \text{ else } \{ \text{ evil } \}$ "

Exploiting collisions

Collision attack

Introduction 00000000

- Start from IV
- ► C₁ and C₂ collide

Adding prefix and suffix

- Add identical prefix and suffix using iterative structure
- Usually same difficulty (just a different IV)
- ▶ Issue: C₁ and C₂ look random (not controlled)
 - ► Solution: hide in some ignored sections of the file (e.g. comment)
- Issue: collision is not meaningful
 - Solution: many file formats (e.g. PDF) allow conditional branches

$$M_1 = \text{"if } (C_1 == C_1) \text{ good } \text{ else } \{ \text{ evil } \}$$

$$M_2 = \text{"if } (C_2 == C_1) \text{ good } \text{ else } \{ \text{ evil } \}$$
suffix

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Even with a prefix and prefix, many protocol seem unaffected by collision attacks

Identical-prefix collision

Introduction 00000000

> ▶ Given IV, find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Breaks signatures (in theory)

▶ Given P_1 , P_2 , find $M_1 \neq M_2$ s. t.

- ▶ Breaks TLS, IKE, SSH

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

▶ Even with a prefix and prefix, many protocol seem unaffected by collision attacks

Identical-prefix collision

▶ Given IV, find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Breaks signatures (in theory)

Chosen-prefix collision

• Given P_1 , P_2 , find $M_1 \neq M_2$ s. t. $H(P_1 || M_1) = H(P_2 || M_2)$

- Breaks certificates [Stevens & al, Crypto'09]
- Breaks TLS, IKE, SSH [Bhargavan & L, NDSS'16]

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Ask PKI to sign
- Certificate proves ID

- Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- \square Bob asks CA to certify his key k_B
- Bob copies the signature to k_A, impersonates Alice

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- ► Ask PKI to sign
- Certificate proves ID

- Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- \square Bob asks CA to certify his key k_B
- Bob copies the signature to k_A, impersonates Alice

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Ask PKI to sign
- Certificate proves ID

- 1 Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- 2 Bob asks CA to certify his key k_B
- \blacksquare Bob copies the signature to k_A , impersonates Alice

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Ask PKI to sign
- Certificate proves ID

- 1 Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- 2 Bob asks CA to certify his key k_B
- Bob copies the signature to k_A, impersonates Alice

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Ask PKI to sign
- Certificate proves ID

- Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- Bob asks CA to certify his key k_B
- Bob copies the signature to k_A , impersonates Alice

Outline

- ► Chosen-prefix collisions are more dangerous than identical-prefix collisions
 - Creation of a rogue CA with MD5 CPC

[SSALMO, Crypto'09]

- Abused in the wild: Flame malware (MD5 CPC)
- ► Generic attacks require 2^{n/2} operations in both cases
- Cryptanalytic attack harder for chosen-prefix collisions

	Identical-Prefix Collisions	Chosen-Prefix Collisions
MD5	2 ¹⁶ [SSALMO C'09]	2 ^{39.1} [SSALMO C'09]
SHA-1	2 ^{64.7} [Stevens EC'13, SBKAM C'17]	2 ^{77.1} [Stevens EC'13]

Goal of this work

- ▶ Improve SHA-1 chosen-prefix collision attacks
- ▶ Reduce the gap between Identical-Prefix and Chosen-Prefix Collisions

- Differential cryptanalysis
 - Find a high probability trail $0 \rightarrow 0$
 - ▶ Find a conforming message

- Differential cryptanalysis
 - Find a high probability trail $0 \rightarrow 0$
 - ▶ Find a conforming message
- Linearized trails

[Chabaud & Joux, C'98]

- Linear combinations of local collisions
- High probability, but non-zero input / output diff.

- Differential cryptanalysis
 - Find a high probability trail $0 \rightarrow 0$
 - ▶ Find a conforming message
- Linearized trails

[Chabaud & Joux, C'98]

- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

[BC04, WYY05]

- Satisfy first rounds without paying probability

- Differential cryptanalysis
 - Find a high probability trail $0 \rightarrow 0$
 - ▶ Find a conforming message
- Linearized trails

[Chabaud & Joux, C'98]

- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

[BC04, WYY05]

- Satisfy first rounds without paying probability
- 4 Non-linear trails

[Wang & al., C'05]

- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference ⇒ near-collision

- Differential cryptanalysis
 - Find a high probability trail $0 \rightarrow 0$
 - ▶ Find a conforming message
- Linearized trails

[Chabaud & Joux, C'98]

- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

[BC04, WYY05]

- Satisfy first rounds without paying probability
- 4 Non-linear trails

[Wang & al., C'05]

- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference ⇒ near-collision
- 5 Multi-block technique

[CJ98, WYY05]

▶ Two trails with same linear core: $0 \rightarrow \delta$ and $\delta \rightarrow \delta$ ⇒ collision

[Wang & al.]

- Multi-block technique
 - Start from a good core linear trail $\delta_I \rightarrow \delta_O$
 - ▶ Build two non-linear trails $0 \to \delta_1$, $\delta_0 \to -\delta_1$
 - Differences cancel due to feed-forward

Chosen-prefix collision attack

[Stevens, Lenstra & de Weger, EC'07]

Main idea

Find a set of "nice" chaining value differences ${\cal S}$

Birthday phase

- ► Find m₁,m'₁ such that $H(P_1 \parallel m_1) - H(P_2 \parallel m_1') \in S$
- Complexity about $\sqrt{2^n/|S|}$

Near-collision phase

- Adjust non-linear trail
- Erase the state difference, using near-collision blocks

How to build S: *previous works*

MD5 [SLW07]

- Family of core trails, output on different bits
- Several near-collision blocks, erase differences bit by bit
- Very structured set S

SHA-1 [S13]

- Single core trail, vary the last rounds
- ► Single near-collision block
- ightharpoonup Small set S, no structure

Our work

- ► The bottleneck of the SHA-1 attack is the birthday phase
 - Complexity around $\sqrt{2^n/|S|}$
 - \blacktriangleright We need a larger set ${\cal S}$
- ► Can we combine those ideas and improve them?

New chosen-prefix collision techniques

New techniques

- Larger set of output differences for the compression function
- Multi-block technique using a single core trail
- Dynamic selection of near-collision targets (clustering)

 $(192 \to 8768)$

 $|S \approx 2^{30}|$

Relaxing the final rounds

- Start from a core linear trail
- Modify last rounds to reach new difference
- Previous work: [Stevens, EC'13]192 differences with optimal probability
- Our work: 8768 differences with non-optimal probability
- Reduce the complexity from 2^{77.1} to 2^{74.3}

Multi-block technique with unstructured set

- ightharpoonup Assume we reach a set of output differences \mathcal{D} with one block
- With two blocks, we can reach a set of output differences:

$$\mathcal{S} := \{\delta_1 + \delta_2 \mid \delta_1, \delta_2 \in \mathcal{D}\}$$

With n blocks:

$$\mathcal{S} := \{\delta_1 + \delta_2 + \cdots \delta_n \mid \delta_1, \delta_2, \dots \delta_n \in \mathcal{D}\}\$$

Reduce the complexity from $2^{74.3}$ to $2^{68.6}$

Clustering

Observation

A value in *S* can be reached in many different ways $\delta_1 + \delta_2 + \delta_3 = \delta_1 + \delta_3 + \delta_2 = \delta_2 + \delta_1 + \delta_3 = \cdots$

- ▶ Near-collision block search:
 - **1** Choice of δ gives message conditions
 - 2 Search for message reaching δ
- ▶ Target δ values with same conditions simultaneously!
 - **Eg.** half work with two δ with similar cost
- With weights: $w_N = \min \left\{ \left(1 + \sum (w_j/c_j^{\beta}) \right) / \sum (1/c_j^{\beta}) \right\}$
- Reduce the complexity from 2^{68.6} to 2^{66.9}

Graph G: transitions in SEx: $\mathcal{D} := \{-2\alpha, -\alpha, \alpha, 2\alpha\}$

Clustering

Observation

A value in *S* can be reached in many different ways $\delta_1 + \delta_2 + \delta_3 = \delta_1 + \delta_3 + \delta_2 = \delta_2 + \delta_1 + \delta_3 = \cdots$

- Near-collision block search:
 - 1 Choice of δ gives message conditions
 - 2 Search for message reaching δ
- ▶ Target δ values with same conditions simultaneously!
 - **Eg.** half work with two δ with similar cost
- With weights: $w_N = \min \left\{ \left(1 + \sum (w_j/c_j^{\beta}) \right) / \sum (1/c_j^{\beta}) \right\}$
- ► Reduce the complexity from 2^{68.6} to 2^{66.9}

Graph G: transitions in SEx: $\mathcal{D} := \{-2\alpha, -\alpha, \alpha, 2\alpha\}$

Clustering

New chosen-prefix collision techniques

Observation

A value in S can be reached in many different ways $\delta_1 + \delta_2 + \delta_3 = \delta_1 + \delta_2 + \delta_2 = \delta_2 + \delta_1 + \delta_3 = \cdots$

- Near-collision block search:
 - 1 Choice of δ gives message conditions
 - 2 Search for message reaching δ
- ▶ Target δ values with same conditions simultaneously!
 - Eg. half work with two δ with similar cost
- With weights: $w_N = \min \left\{ \left(1 + \sum (w_j/c_j^\beta) \right) / \sum (1/c_j^\beta) \right\}$
- ► Reduce the complexity from 2^{68.6} to 2^{66.9}

Graph \mathcal{G} : transitions in \mathcal{S} Ex: $\mathcal{D} := \{-2\alpha, -\alpha, \alpha, 2\alpha\}$

Application to SHA-1: low-level details

- Start from the SHAttered collision attack
 - Proven to work
 - Complexity 2^{64.7} on GPU
 - Relax the last rounds
 - 8768 possible output differences
 - Assume that we can build trails in the first rounds

New chosen-prefix collision techniques

- More constrained than IPC attack
- ► C_{block} between 2^{64.7} (optimistic) and 2^{67.7} (conservative), depending on degrees of freedom
- **b** Build set $\mathcal S$ and graph $\mathcal G$
 - Large computational effort
 - ▶ $|S| = 2^{33.7}$, iterations for clustering

Attack parameters

Set ${\mathcal S}$			Birthday parameters				
Max cost	Size	Mask	Proba	# coll.	Ch. len.	# chain	Attack cost
$2.0 \cdot C_{block}$	2 ^{24.66}	106 bits	0.71	230.83	2 ³⁴	2 ^{34.74}	$2^{68.74} + 2^{65.83} + 2.0 \cdot C_{block}$
$2.5 \cdot C_{block}$				$2^{31.03}$	2^{32}	$2^{34.84}$	$2^{66.84} + 2^{64.03} + 2.5 \cdot C_{block}$
$3.0 \cdot C_{block}$	$2^{30.95}$	98 bits	0.76	$2^{32.44}$	2^{31}	$2^{34.55}$	$2^{65.55} + 2^{64.44} + 3.0 \cdot C_{block}$
$3.5 \cdot C_{block}$	$2^{32.70}$	98 bits	0.76	$2^{30.70}$	2^{30}	$2^{34.68}$	$2^{64.68} + 2^{61.70} + 3.5 \cdot C_{block}$
$4.0 \cdot C_{block}$	$2^{33.48}$	98 bits	0.74	$2^{29.95}$	2^{30}	$2^{34.30}$	$2^{64.30} + 2^{60.95} + 4.0 \cdot C_{block}$
$4.5 \cdot C_{block}$	2 ^{33.66}	98 bits	0.74	$2^{29.77}$	2 ³⁰	2 ^{34.21}	$2^{64.21} + 2^{60.77} + 4.5 \cdot C_{block}$

Optimal parameters

► Optimistic estimate: 2^{66.9}

► Conservative estimate: 2^{69.4}

$$(C_{block} = 2^{64.7}, \text{ max cost of } 3.5 \cdot C_{block})$$

$$(C_{block} = 2^{67.7}, \text{ max cost of } 2.5 \cdot C_{block})$$

Results

Generic framework to turn collision attacks into chosen-prefix collision attacks

Function	Collision type	Complexity (GPU)	Ref.
SHA-1	collision		2 ⁶⁹ 2 ^{64.7}	[Wang & al., C'05] [Stevens, EC'13], [Stevens & al., C'17]*
	chosen-prefix collision	2 ^{66.9} —	2 ^{77.1} 2 ^{69.4}	[Stevens, EC'13] New
MD5	collision		2 ⁴⁰ 2 ¹⁶	[Wang & al., EC'05] [Stevens & al., C'09]
	chosen-prefix collisio	(3 blocks) (1 block)	2 ^{39.1} 2 ⁴⁹ 2 ^{53.2} 2 ^{46.3}	[Stevens & al., C'09] [Stevens & al., C'09] [Stevens & al., C'09] New

- ▶ Small gap between SHA-1 Identical-Prefix and Chosen-Prefix collisions ($\times 4.6 \times 26$)
- Improvement for MD5 CPC limited to two blocks

^{*}The attack has a complexity of 2⁶¹ on CPU, and 2^{64.7} on GPU

Attack cost and future work

- ▶ We are now looking more closely at the low-level details
 - We believe we can keep two boomerangs
 - ► This gives $C_{block} = 2^{65.1}$, and the total cost is around $2^{67.2}$
- Cost estimation by renting GPUs:
 - ► About 2.6M\$ on Amazon's AWS (using spot p3.16xlarge instances @7.5\$/hr)
 - Around 540 000\$ renting GPU (former mining farms?)
 - Affordable for state-level adversaries
- Security advice: retire SHA-1 NOW!

On-going work

- ▶ New ideas for small improvements of various parts of attacks
- ► Get the cost below 100 000\$
- ▶ We hope to build a practical chosen-prefix collision in 2019...

Attack cost and future work

- ▶ We are now looking more closely at the low-level details
 - We believe we can keep two boomerangs
 - ► This gives $C_{block} = 2^{65.1}$, and the total cost is around $2^{67.2}$
- Cost estimation by renting GPUs:
 - ► About 2.6M\$ on Amazon's AWS (using spot p3.16xlarge instances @7.5\$/hr)
 - Around 540 000\$ renting GPU (former mining farms?)
 - Affordable for state-level adversaries
- Security advice: retire SHA-1 NOW!

On-going work

- ▶ New ideas for small improvements of various parts of attacks
- Get the cost below 100 000\$
- ▶ We hope to build a practical chosen-prefix collision in 2019...

Attack cost and future work

- ▶ We are now looking more closely at the low-level details
 - We believe we can keep two boomerangs
 - ► This gives $C_{block} = 2^{65.1}$, and the total cost is around $2^{67.2}$
- Cost estimation by renting GPUs:
 - ► About 2.6M\$ on Amazon's AWS (using spot p3.16xlarge instances @7.5\$/hr)
 - Around 540 000\$ renting GPU (former mining farms?)
 - Affordable for state-level adversaries
- Security advice: retire SHA-1 NOW!

On-going work

- ▶ New ideas for small improvements of various parts of attacks
- Get the cost below 100 000\$
- ▶ We hope to build a practical chosen-prefix collision in 2019...