5CCS2OSD Coursework (due: 30/11/17)

Stage 1 Tasks (Requirements):

- Requirements elicitation (including Ambiguous/incomplete requirements, scope)
- Use Case diagrams (documenting system functionalities)
- Class Diagrams (Classes, Attributes, Visibility, Associations)

Stage 2 Tasks (Design):

- Architecture diagram (whole system)
- Use Case Steps & Use Case Description
- Detailed definition of operations
- Pseudocode for operations/use cases

Stage 3 Tasks (Implementation and Testing):

- Functioning GUI in Java (implementations for operations/classes)
 - Code Listing & Test cases with results

Report – put everything together and describe team members roles/contributions to project

Investment Analysis System

An investor may purchase bonds.

A bond has the following:

- **term** (number of years to expiry)
- **coupon** (percentage of investment, paid to investor at regular intervals)
- frequency of payments
- name (E.g. "UK government bond")
- purchase date
- **price** (paid on top of investment)

Assume frequency = 1 per year, investment = 100

Investors **receive back invested sum (100)** at end of term, along with the **final coupon payment**.

- Example; invest £100 in bond b paying 10% coupon annually for 5 years. 4 payments of £10, one of £110.

System enables new bonds to be defined and added to investor's portfolio.

System should compute and display the pay-out of all bonds: sum of payments.

- £150 in the example above.

System should **compute and display bond values**: sum of **discounted** payments, using **inflation rate** r:

X pounds after N years of inflation r is: $X \over (1+r)^N$

E.g. £10 in 1 years' time, with 5% inflation, would be worth 10/1.05 = £9.52.

System computes discount for each payment, and hence value of bond.

- In the example before, a pay-out of £150 at the end of 5 years would only be worth £121.65 for an inflation rate r = 0.05.
- Calculation:
 - o £10 in 1 years' time = £9.52
 - o £10 in 2 years' time = £9.07
 - o £10 in 3 years' time = £8.64
 - o £10 in 4 years' time = £8.23
 - £110 in 5 years' time = £86.19
 - Sum of discounted pay-outs = £121.65

For each bond, system should calculate and display its Macaulay duration for rate r:

- Sum of discount payment * corresponding N years
- Sum of the discounted pay-outs

$$\frac{\displaystyle\sum_{p} \left(\frac{p}{(1+r)^{N}}\right)N}{\displaystyle\sum_{p} \left(\frac{p}{(1+r)^{N}}\right)}$$

- p is the payment made that year.
- N is the corresponding year to the payment.
- r is the inflation rate.

In example mentioned before, **Macaulay duration** = 517.45 / 121.65 = 4.25 years; r = 0.05.

- Calculation:
 - Sum of discount payment * corresponding N years
 - **9.52**
 - **18.14**
 - **25.92**
 - **32.92**
 - **430.95**
 - **=** = 517.45
 - Sum of the discounted pay-outs
 - **9.52**
 - **9.07**
 - **8.64**
 - **8.23**
 - **86.19**
 - **=** 121.65

For each bond, system should compute and show its **internal rate of return**: the r such that:

$$\sum_{p} \left(\frac{p}{(1+r)^N} \right) = \frac{\text{Discounted}}{\text{bond value}}$$

In other words, given the output (bond value), the term, and the coupon (percentage), calculate the value of r (inflation rate).

This final use case is quite challenging to implement

Summary of implementation operations/use cases:

- Define new bonds
- Purchase bonds (added to investor's portfolio)
- View Investor's portfolio
- Compute and display the pay-out of all bonds (bond value)
- Compute and display the bond value taking inflation into account
- Calculate and display a bond's Macaulay duration
- Compute and show its internal rate of return

Potential GUI Screens:

- 1) Menu
- 2) Define new bonds
- 3) Purchase bonds (added to investor's portfolio)
- 4) View Investor's portfolio
 - a. Compute and display the pay-out of all bonds (bond value)
 - b. Compute and display the bond value taking inflation into account
 - c. Calculate and display a bond's Macaulay duration
- 5) Compute and show its internal rate of return

Potential Actors:

- Investor
- Admin
- Bonds database

Examples:

Use Case Diagram

Use Case Description

	•	
Use case name	Create a new Blog Account	
Related requirements	Requirement A.1	
Goal in context	A new or existing author requests a new blog account from the Administrator	
Preconditions	The system is limited to recognised authors and so the author needs to have appropriate proof of identity	
Successful end condition	A new blog account is created for the author	
Failed end condition	The application for the new blog is rejected	
Primary actors	Administrator	
Secondary actors	Author Credentials Database	
Trigger	The Administrator asks the CMS to create a new blog account	

Use Case Steps

Use case name	Create a new Blog Account	
Main Flow	Step	Action
	1	The Administrator asks the system to create a new blog account
	2	The Administrator selects an account type
	3	The Administrator enters the author's details
	4	The author's details are verified using the Author Credentials Database
	5	A new blog account is created
	6	A summary of the new blog account's details are emailed to the author
Extensions	Step	Branching Action
	4.1	The Author Credentials Database does not verify the author's detail
	4.2	The new blog account application is rejected

Architecture Diagram

Class Diagrams

