

Universidad Simón Bolívar Decanato de Estudios Profesionales Coordinación de Ingeniería de Electrónica

Diseño y Simulación de Procesadores Cuánticos que Implementen Algoritmos Cuánticos de Búsqueda

Por:

Miguel Casanova Realizado con la asesoría de: Enrique Castro y Sttiwuer Diaz

PROYECTO DE GRADO

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero Electrónico

Sartenejas, noviembre de 2018

Índice general

Ín	Índice de Figuras Lista de Tablas		
Li			
1.	Intr	oducción	9
	1.1.	JUSTIFICACION	14
	1.2.	OBJETIVOS	16
		1.2.1. Objetivo General:	16
		1.2.2. Objetivos Específicos:	16
		1.2.3. Fases del Proyecto	16
		1.2.4. REFERENCIAS	17
2.	Info	rmación cuántica	20
	2.1.	Función de onda	20
	2.2.	Espacio de Hilbert	21
	2.3.	Delta de Kronecker	22
	2.4.	Operadores hermíticos	23
	2.5.	Operadores unitarios	23
	2.6.	Notación de Dirac	23
	2.7.	Producto tensorial	25
	2.8.	Postulados de la mecánica cuántica	27
	2.9.	Matriz densidad	28
	2.10.	Traza parcial	30
		2.10.1. Comparación con el producto tensorial	31
	2.11.	Entrelazamiento	31
	2.12.	Computación cuántica	32
		2.12.1. Qubits	32
		2.12.2. Esfera de Bloch	33
		2.12.3. Conmutador y anticonmutador	33
		2.12.3.1. Conmutador	34
		2.12.3.2. Anticonmutador	34
		2.12.4. Matrices de Pauli	34
		2.12.5. Circuitos cuánticos	35
		2.12.6. Compuertas cuánticas de un qubit	37
		2 12 6 1 Compuerta identidad	37

<u>ÍNDICE GENERAL</u> 2

		2.12.6.2. Compuerta X	8
		2.12.6.3. Compuerta Z	8
		2.12.6.4. Compuerta Y	9
		2.12.6.5. Compuerta de Hadamard	0
		2.12.6.6. Compuerta S	0
		2.12.6.7. Compuerta T	1
		2.12.6.8. Compuerta de cambio de fase	1
		2.12.6.9. Compuertas de rotación	2
		2.12.7. Compuertas multiqubit	3
		2.12.7.1. Compuerta CNOT	3
		2.12.7.2. Compuerta SWAP	4
		2.12.7.3. Compuerta $\sqrt{\text{SWAP}}$	5
		2.12.7.4. Compuerta de Ising	
		2.12.7.5. Compuerta de Toffoli	
		2.12.7.6. Compuerta de Deutsch	
		2.12.8. Conjuntos universales de compuertas cuánticas	
		2.12.9. Criterios de DiVincenzo	
	2.13.	Fidelidad	
		. Medidas proyectivas	
3 .	Sup	erconductividad 50	0
	3.1.	Cuantización macroscópica y superconductividad	0
	3.2.	La teoría BCS	2
	3.3.	Cuantización del flujo magnético y efecto tunel Giaver 60	0
	3.4.	Efecto Josephson	6
	3.5.	Componentes de la corriente en las junciones de Josephson 7	1
	3.6.	Qubits superconductores	2
	3.7.		3
		3.7.1. Qubit de carga	3
		3.7.2. Qubit de flujo	4
		3.7.3. Qubit de fase	4
	3.8.	Transmones	4
	3.9.	Hamiltonianos multiqubit de transmones	5
		3.9.1. Acoplamiento capacitivo	5
		3.9.2. Acoplamiento por el resonador	5
		3.9.3. Acoplamiento de JJ	6
		3.9.4. Acoplamiento afinable/calibrable	6
	3.10.	. Compuertas cuánticas en transmones	6
		3.10.1. El operador de evolución temporal	6
		3.10.2. Pulsos de microondas	7
		3.10.3. Régimen rotacional del pulso	7
		3.10.4. Efecto del pulso sobre el qubit	7
		3.10.5. Régimen dispersivo	8
		3.10.6. Rotaciones X-Y	8

ÍNDICE GENERAL 3

		3.10.7. Compuerta de entrelazamiento	7 9
		3.10.8. Compuertas compuestas	7 9
1	Fl c	imulador	80
4.		Parámetros de los sistemas simulados	81
	4.2.	Compuertas simples	
	4.9	4.2.2. iSWAP	84 85
	4.3.	Compuertas compuestas	85
			85
		4.3.2. Y	85
		4.3.4. Z	86
		4.3.5. H	86
		4.3.6. CNOT	86
		4.3.7. SWAP	86
		4.3.8. Compuertas condicionales generales	87
		4.3.9. CP	88
5.	Alge	oritmo de Grover	92
	5.1.	El algoritmo	97
	5.2.	Variaciones y generalizaciones del algoritmo de Grover	98
		5.2.1. Algoritmo de amplificación de amplitud	98
		5.2.2. Algoritmo de Grover en un paso	
	5.3.	Simulaciones	101
		5.3.1. Algoritmo de Grover	101
		5.3.2. Amplificación de amplitud	103
		5.3.3. Optimización del algoritmo de Grover	
6.			102
	6.1.		
	6.2.	Estimación de fase	
	6.3.	Estimación de orden	
	6.4.	Expansión en fracciones contínuas	
	6.5.	Algoritmo de factorización de Shor	
	6.6.	Simulaciones	
		6.6.1. Factorización del número 15	
		6.6.2. Factorización del número 8	115
7.	God	ogle PageRank	117
	7.1.	El algoritmo de remiendo (parcheo) general	
	7.2.	Interpretación como una caminata aleatoria	
	7.3.	Cuantizando las caminatas aleatorias	
	7.4.	Caminata cuántica de Szegedy	
	7.5.	PageRank cuántico	

ÍNDICE GENERAL 4

	7.6. 7.7.	Circuitos de las caminatas cuánticas de Szegedy Simulaciones 7.7.1. Grafo estrella 7.7.2. Grafo corona 7.7.3. Grafo árbol 7.7.4. Grafo aleatorio	. 129 . 129 . 133 . 134
Α.	Cálo	culos de Hamiltonianos	139
		Hamiltoniano de Jaynes-Cummings	139
		Hamiltoniano multiquibit	
	A.3.	Pulsos de microondas	139
	A.4.	Régimen rotacional del pulso	. 140
	A.5.	Efecto del pulso sobre el qubit	. 144
	A.6.	Régimen dispersivo	. 145
	A.7.	Rotaciones X-Y	. 148
	A.8.	Compuerta de entrelazamiento	. 149
В.	Cálo	culos de matrices de adyacencia	150
C.	Circ	cuitos cuánticos	151
D.	Cód	ligos del simulador	160
		Wolfram Mathematica	
		Python	
E .		ligos de la simulación del algoritmo de Grover	180
		Wolfram Mathematica	
	E.2.	Python	. 182
F	Cód	ligos de la simulación del algoritmo de Shor	184
٠.		Wolfram Mathematica	
		Python	
	- ·-·	- J	. 100
G.	Cód	ligos de la simulación del algotirmo de PageRank	192
	G.1.	Wolfram Mathematica	. 192
	G_2	Python	192

Índice de figuras

2.1.	Estera de Bloch	33
2.2.	Compuerta I en la esfera de Bloch	38
2.3.	Compuerta X en la esfera de Bloch	38
2.4.	Compuerta Z en la esfera de Bloch	39
2.5.	Compuerta Y en la esfera de Bloch	39
2.6.	Compuerta H en la esfera de Bloch	40
2.7.	Compuerta S en la esfera de Bloch	41
2.8.	Compuerta T en la esfera de Bloch	41
2.9.	Compuerta P en la esfera de Bloch	42
2.10.	Compuertas Rx, Ry y Rz en la esfera de Bloch	43
3.1.	Diagrama de Feynman de la interacción electrón-fonón-electrón	56
3.2.	Construcción geométrica de los posibles electrones candidatos para	
	1 /	57
3.3.	v	62
3.4.	•	64
3.5.		65
3.6.	v 1	66
3.7.	Curva característica de una unión Josephson	7 0
4.1.		83
4.2.		83
4.3.	Rotaciones en X e Y de $\frac{\pi}{2}$	83
4.4.	Compuertas iSWAP y \sqrt{iSWAP} aplicadas a $ 00\rangle$	84
4.5.		84
4.6.	Compuertas iSWAP y \sqrt{iSWAP} aplicadas a $\frac{ 00\rangle+ 11\rangle}{\sqrt{2}}$	84
4.7.		84
5.1.	Circuito del algoritmo de Grover, k_{max} desconocido	95
5.2.	Interpretación geométrica del operador difusión	97
5.3.	Circuito del algoritmo de Grover.	97
5.4.	Evolución de las probabilidades en el algoritmo de Grover sin rela-	റാ
F F	v	02
5.5.	Evolución de las probabilidades en el algoritmo de Grover con relajación	02

6.1.	Distribución de probabilidad en la estimación de fase del algoritmo	
	de Shor sin pérdidas	13
6.2.	Distribución de probabilidad en la estimación de fase del algoritmo	
	de Shor sin pérdidas	15
7.1.	Transformación de un grafo al crear la matriz de Google con $\alpha = \frac{1}{2}$ 12	21
7.2.	Operador de permutación	
7.3.	Circuito de Loke para las caminatas cuánticas de Szegedy	
7.4.	Circuito de K_i	
7.5.	Grafo estrella	
7.6.	Circuito de K_1 para el grafo estrella	
7.7.	Circuito de K_2 para el grafo estrella	
7.8.	K_b del grafo estrella	
7.9.	T del grafo estrella	
	Preparación del estado inicial para la caminata en el grafo estrella . 13	
	Circuito del PageRank cuántico del grafo estrella	
	PageRank cuántico instantáneo del grafo estrella sin pérdidas 13	
	PageRank cuántico promedio del grafo estrella sin pérdidas 13	
	Grafo corona	
7.15.	PageRank cuántico instantáneo del grafo corona sin pérdidas 13	34
	PageRank cuántico promedio del grafo corona sin pérdidas 13	
	Grafo árbol	
7.18.	PageRank cuántico instantáneo del grafo árbol sin pérdidas 13	35
7.19.	PageRank cuántico promedio del grafo árbol sin pérdidas 13	36
7.20.	PageRank cuántico instantaneo del grafo árbol con y sin pérdidas . 13	36
7.21.	PageRank cuántico promedio del grafo árbol con y sin pérdidas 13	36
7.22.	Grafo aleatorio	37
7.23.	PageRank cuántico instantáneo del grafo aleatorio sin pérdidas 13	37
	PageRank cuántico promedio del grafo aleatorio sin pérdidas 13	
7.25.	PageRank cuántico instantaneo del grafo aleatorio con y sin pérdidas 13	38
	PageRank cuántico promedio del grafo aleatorio con v sin pérdidas. 13	

Índice de cuadros

Capítulo 5

Algoritmo de Grover

El algoritmo de Grover es un AC que realiza una búsqueda en una secuencia no ordenada de datos con $N=2^n$ entradas. Clásicamente esta búsqueda tendría un orden de complejidad de O(N), pues, como los datos no están ordenados, la cantidad promedio de evaluaciones que se deben realizar crece linealmente con la cantidad de entradas. En el caso del algoritmo de Grover, la complejidad de la búsqueda es de $O(\sqrt{N})$, pues se requieren aproximadamente $\frac{\pi\sqrt{N}}{4}$ iteraciones para hallar la entrada deseada. En cuanto a la cantidad de qubits requeridos, se necesitan $O(\log_2 N)$ qubits, pues se debe realizar un estado superpuesto donde cada componente de la superposición represente una entrada de la secuencia de datos.

Supongamos que la secuencia de datos no ordenada tiene la siguiente función asociada:

$$f(x) = \begin{cases} 1 & \text{si } x = \omega \\ 0 & \text{si } x \neq \omega \end{cases}$$
 (5.1)

Donde ω es el dato que se desea encontrar. Esta función devuelve 1 si se evalua la entrada que almacena el dato deseado y 0 en cualquier otro caso.

El algoritmo de Grover se basa en la disponibilidad de un operador cuántico, llamado oráculo, tal que se introduzca un fase global de π si $f(x_0) = 1$ y deje el estado del sistema intacto si $f(x_0) = 0$. Es decir, el oráculo realiza una reflexión alrededor de $|\omega\rangle$.

$$U_{\omega} |x\rangle = (-1)^{f(x)} |x\rangle = \begin{cases} |x\rangle & \text{si } x \neq \omega \\ -|x\rangle & \text{si } x = \omega \end{cases}$$
 (5.2)

$$U_{\omega} = 1 - 2 |\omega\rangle\langle\omega| \tag{5.3}$$

Además de éste, se necesita otro operador de reflexión, U_s , el cual realiza una reflexión alrededor del estado de superposición uniforme $|s\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$. Así, por el hecho de la geometría plana elemental de que el producto de dos reflexiones es una rotación, se logra aproximar el estado del sistema al estado asociado a la entrada deseada.

$$U_s = 2|s\rangle\langle s| - 1 \tag{5.4}$$

Veamos lo que sucede al aplicar esta secuencia de rotaciones sobre el estado $|s\rangle$:

$$U_{\omega} |s\rangle = (\mathbb{1} - 2 |\omega\rangle\langle\omega|) |s\rangle$$

$$= |s\rangle - 2 |\omega\rangle\langle\omega| |s\rangle$$

$$= |s\rangle - \frac{2}{\sqrt{N}} |\omega\rangle\langle\omega| \sum_{x=0}^{N-1} |x\rangle$$

$$= |s\rangle - \frac{2}{\sqrt{N}} |\omega\rangle$$

$$U_{s}(|s\rangle - \frac{2}{\sqrt{N}} |\omega\rangle) = (2|s\rangle\langle s| - 1)(|s\rangle - \frac{2}{\sqrt{N}} |\omega\rangle)$$

$$= 2(|s\rangle - \frac{4}{N} |s\rangle) - (|s\rangle - \frac{2}{\sqrt{N}} |\omega\rangle)$$

$$= |s\rangle - \frac{4}{N} |s\rangle + \frac{2}{\sqrt{N}} |\omega\rangle$$

$$= \frac{N-4}{N} |s\rangle + \frac{2}{\sqrt{N}} |\omega\rangle$$

Ahora veamos lo que sucede al aplicar esta secuencia de rotaciones sobre el estado $|\omega\rangle$:

$$U_{\omega} |\omega\rangle = (\mathbb{1} - 2 |\omega\rangle\langle\omega| |\omega\rangle$$
$$= |\omega\rangle - 2 |\omega\rangle$$
$$= - |\omega\rangle$$

$$U_s(-|\omega\rangle) = (2|s\rangle\langle s| - 1)(-|\omega\rangle)$$
$$= -\frac{2}{\sqrt{N}}|s\rangle + |\omega\rangle$$

Se observa que al aplicar U_sU_ω sobre $|s\rangle$, se amplifica la componente de $|\omega\rangle$ en la superposición de $\frac{1}{\sqrt{N}}$ a $\frac{3N-4}{N\sqrt{N}}$. Es decir que la probabilidad de medir el valor deseado crece de $\frac{1}{N}$ a $9(1-\frac{4}{3N})\frac{1}{N}$.

$$\langle \omega | U_s U_\omega | s \rangle = \frac{N-4}{N} \frac{1}{\sqrt{N}} + \frac{2}{\sqrt{N}}$$
$$= \frac{3N-4}{N\sqrt{N}}$$

$$|\langle \omega | U_s U_\omega | s \rangle|^2 = \frac{(3N - 4)^2}{N^3}$$

= $9(1 - \frac{4}{3N}) \frac{1}{N}$

Por otro lado, se observa que al aplicar U_sU_ω sobre $|\omega\rangle$, aparece una componente de $|s\rangle$, así que en ese caso, la probabilidad de medir el valor deseado disminuye. Por lo que debe existir una cantidad de iteraciones k_{max} tras las cuales se alcanza la probabilidad máxima de medir $|\omega\rangle$, partiendo de $|s\rangle$ y a partir de donde esta probabilidad empieza a disminuir.

De esta manera, el algoritmo de Grover consiste en aplicar k_{max} veces U_sU_{ω} , partiendo del estado $|s\rangle$, es decir rotar este estado hasta que se aproxime lo más posible a $|\omega\rangle$.

FIGURA 5.1: Circuito del algoritmo de Grover, k_{max} desconocido.

Para hallar k_{max} , veamos el ángulo que se rota con cada aplicación de U_sU_{ω} . Primero definamos el estado $|s'\rangle$ como la superposición uniforme de todos los estados de la base computacional excepto $|\omega\rangle$, es decir:

$$|s'\rangle = \frac{1}{N-1} \sum_{x \neq \omega} |x\rangle \tag{5.5}$$

$$= \frac{\sqrt{N}}{\sqrt{N-1}} |s\rangle - \frac{1}{\sqrt{N-1}} |\omega\rangle \tag{5.6}$$

Los estados $|s'\rangle$ y $|\omega\rangle$ son ortonormales, $\langle s'|\omega\rangle = 0$, por lo que generan un espacio bidimensional de Hilbert. Este espacio contiene a $|s\rangle$, pues:

$$|s\rangle = \frac{\sqrt{N-1}}{\sqrt{N}} |s'\rangle + \frac{1}{\sqrt{N}} |\omega\rangle$$
 (5.7)

Además, se ha visto que $U_sU_\omega|s\rangle$ y $U_sU_\omega|\omega\rangle$ se escriben en función de sólo $|s\rangle$ y $|\omega\rangle$. Así que podemos inducir que $(U_sU_\omega)^k|s\rangle$ pertenece al espacio generado por $\{|s'\rangle, |\omega\rangle\}$, donde $k \in \{0, 1, 2, ...\}$. Esto indica que este espacio contiene al plano en el que se realizan las rotaciones U_sU_ω .

Ahora que conocemos una base del plano de rotación, podemos hayar el ángulo que se rota con cada aplicación de U_sU_ω .

$$U_{\omega} |\psi\rangle = (\mathbb{1} - 2 |\omega\rangle\langle\omega|)(\alpha |s'\rangle + \beta |\omega\rangle)$$
$$= \alpha |s'\rangle - \beta |\omega\rangle$$

$$U_{s}(\alpha | s'\rangle - \beta | \omega\rangle) = (2 | s\rangle\langle s| - 1)(\alpha | s'\rangle - \beta | \omega\rangle)$$

$$= \alpha \left(2\frac{\sqrt{N-1}}{\sqrt{N}} | s\rangle - | s'\rangle\right) - \beta \left(\frac{2}{\sqrt{N}} | s\rangle - | \omega\rangle\right)$$

$$= \alpha \left((2\frac{N-1}{N} - 1) | s'\rangle + 2\frac{\sqrt{N-1}}{N} | \omega\rangle\right)$$

$$- \beta \left(\frac{2\sqrt{N-1}}{N} | s'\rangle + (\frac{2}{N} - 1) | \omega\rangle\right)$$

$$= (\alpha \frac{N-2}{N} - \beta \frac{2\sqrt{N-1}}{N}) | s'\rangle$$

$$+ (\alpha 2\frac{\sqrt{N-1}}{N} + \beta \frac{N-2}{N}) | \omega\rangle$$

De aquí se deduce que $\cos(\Delta\theta) = \frac{N-2}{N}$ y que $\sin(\Delta\theta) = 2\frac{\sqrt{N-1}}{N}$. De hecho, se comprueba que:

$$\cos^2(\Delta\theta) + \sin^2(\Delta\theta) = \frac{(N-2)^2}{N^2} + 4\frac{N-1}{N^2} = \frac{N^2 - 4N + 4}{N^2} + 4\frac{N-1}{N^2} = 1$$

Ahora escribimos las componentes de $|s\rangle$ en función del ángulo inicial θ_0 :

$$\cos(\theta_0) = \frac{\sqrt{N-1}}{\sqrt{N}} \tag{5.8}$$

$$\sin(\theta_0) = \frac{1}{\sqrt{N}} \tag{5.9}$$

Finalmente, lo que se quiere es que:

$$\theta_0 + k\Delta\theta \to \frac{\pi}{2} \tag{5.10}$$

Es decir, que:

$$\cos^{-1}(\frac{\sqrt{N-1}}{\sqrt{N}}) + k \cos^{-1}(\frac{N-2}{N}) \to \frac{\pi}{2}$$
 (5.11)

$$\sin^{-1}(\frac{1}{\sqrt{N}}) + k \sin^{-1}(2\frac{\sqrt{N-1}}{N}) \to \frac{\pi}{2}$$
 (5.12)

Si tomamos $N \gg 1$ en (4.12), tenemos que:

$$2k\frac{1}{\sqrt{N}} \to \frac{\pi}{2} \tag{5.13}$$

$$k_{max} \approx \frac{\pi\sqrt{N}}{4} \tag{5.14}$$

FIGURA 5.2: Interpretación geométrica del operador difusión

5.1. El algoritmo

FIGURA 5.3: Circuito del algoritmo de Grover.

- 1. Preparar el estado fiducial.
- 2. Aplicar la transformada de Walsh-Hadamard.
- 3. Realizar la iteración de Grover $\lfloor \frac{\pi}{4} \sqrt{N} \rfloor$ veces.

- a) Aplicar U_{α} .
- b) Aplicar U_s .
- 4. Realizar la medida Ω .

5.2. Variaciones y generalizaciones del algoritmo de Grover

A continuación estudiaremos el algoritmo de amplificación de amplitud, el cual es una generalización del algoritmo de Grover para bases de datos con cualquier cantidad de estados objetivos, y el algoritmo de Grover en un paso, el cual es una variación del algoritmo de Grover en la que se mide en cada iteración.

5.2.1. Algoritmo de amplificación de amplitud

Esta generalización fue desarrollada independientemente por Brassar y Høyer en 1997 [ref] y por Grover en 1998 [ref]. Con este algoritmo se pueden utilizar funciones oráculo que marquen 1 para más de una entrada de la base de datos en la cual se realizará la búsqueda. Entonces, sea \mathcal{W} el conjunto de entradas a encontrar, tenemos la función oráculo:

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathcal{W} \\ 0 & \text{si } x \notin \mathcal{W} \end{cases}$$
 (5.15)

Ahora sea el proyector $\Pi_{\mathcal{W}}$ tal que proyecte los estados del espacio de Hilbert \mathcal{H} asociado a la base de datos en el espacio de Hilbert generado por los estados objetivos $\mathcal{H}_{\mathcal{W}}$:

$$\Pi_{\mathcal{W}} = \sum_{k} |\omega_k\rangle\!\langle\omega_k| \tag{5.16}$$

Donde los estados $|\omega_k\rangle$ son los estados asociados a las entradas de la base de datos pertenecientes a W.

Sea el estado inicial:

$$|\psi\rangle = \sin(\theta) |\psi_1\rangle + \cos(\theta) |\psi_0\rangle$$
 (5.17)

Donde $|\psi_1\rangle = \frac{\Pi_{\mathcal{W}}|\psi\rangle}{\sin(\theta)}$ y $\sin(\theta) = \langle \psi | \Pi_{\mathcal{W}} | \psi \rangle$. De aquí podemos hallar que $|\psi_0\rangle = \frac{(\mathbb{1} - \Pi_{\mathcal{W}})|\psi\rangle}{\cos(\theta)}$ y que $\cos(\theta) = \langle \psi | (\mathbb{1} - \Pi_{\mathcal{W}}) | \psi \rangle$.

Ahora definamos los siguientes operadores de reflexión $U_{\psi} = (2 |\psi\rangle\langle\psi| \text{ y } U_{\mathcal{W}} = \mathbb{1})(\mathbb{1} - 2\Pi_{\mathcal{W}})$, estos son las generalizaciones de U_s y U_{ω} , del algoritmo de Grover, respectivamente. El producto de ellos, $U_{\psi}U_{\mathcal{W}}$ es un operador de rotación en el plano generado por $|\psi_0\rangle$ y $|\psi_1\rangle$, de la misma manera que U_sU_{ω} es un operador de rotación en el plano generado por $|s'\rangle$ y $|\omega\rangle$. Ahora veamos el efecto de $U_{\psi}U_{\mathcal{W}}$ y el ángulo que rota este operador:

$$U_{\psi}U_{\mathcal{W}}|\psi\rangle = (2|\psi\rangle\langle\psi| - 1)(1 - 2\Pi_{\mathcal{W}})|\psi\rangle = (2|\psi\rangle\langle\psi| - 1)[(1 - \Pi_{\mathcal{W}}) - \Pi_{\mathcal{W}}]|\psi\rangle$$

$$= (2|\psi\rangle\langle\psi| - 1)(\cos(\theta)|\psi_{0}\rangle - \sin(\theta)|\psi_{1}\rangle) = (2|\psi\rangle\langle\psi| - 1)(|\psi\rangle - 2\sin(\theta)|\psi_{1}\rangle)$$

$$= |\psi\rangle + (-4\sin^{2}(\theta)|\psi\rangle + 2\sin(\theta)|\psi_{1}\rangle) = (3 - 4\sin^{2}(\theta))\sin(\theta)|\psi_{1}\rangle + (1 - 4\sin^{2}(\theta))\cos(\theta)|\psi_{0}\rangle$$

$$= \sin(3\theta)|\psi_{1}\rangle + \cos(3\theta)|\psi_{0}\rangle \quad (5.18)$$

Como se puede ver, el operador $U_{\psi}U_{\mathcal{W}}$ rota un ángulo de 2θ . Por lo que si se aplica k veces a $|\psi\rangle$, tendremos:

$$(U_{\psi}U_{\mathcal{W}})^{k}|\psi\rangle = \sin((2k+1)\theta)|\psi_{1}\rangle + \cos((2k+1)\theta)|\psi_{0}\rangle$$
 (5.19)

De esta manera, el $k = k_m ax$ para el cual se obtiene la probabilidad máxima de medir un elemento de $\mathcal{H}_{\mathcal{W}}$, es decir, el k que maximiza la amplitud de probabilidad de la componente $|\psi_1\rangle$ de $|\psi\rangle$, es $\lfloor \frac{\pi}{4\theta} \rfloor$. Así:

$$(U_{\psi}U_{\mathcal{W}})^{k_{max}}|\psi\rangle = \sin\left(\left(2\lfloor\frac{\pi}{4\theta}\rfloor + 1\right)\theta\right)|\psi_{1}\rangle + \cos\left(\left(2\lfloor\frac{\pi}{4\theta}\rfloor + 1\right)\theta\right)|\psi_{0}\rangle$$

$$\approx \sin\left(\frac{\pi}{2}\right)|\psi_{1}\rangle + \cos\left(\frac{\pi}{2}\right)|\psi_{0}\rangle = |\psi_{1}\rangle \quad (5.20)$$

Mientras menor sea θ , más tenderá $(U_{\psi}U_{\mathcal{W}})^{k_{max}}|\psi\rangle$ a $|\psi_1\rangle$, pero mayor será k_{max} .

Como se puede ver, el algoritmo de amplificación de amplitud se puede utilizar como algoritmo de búsqueda con una cantidad arbitraria de estados objetivos

y un estado inicial arbitrario, no sólo $|s\rangle$ como en el algoritmo de Grover. Sin embargo, este no es sólo un algoritmo de búsqueda, sino tambien un algoritmo de optimización. En este sentido, la amplificación de amplitud también se puede utilizar como subrutina para mejorar el resultado de otros algoritmos. Sea U_A el operador asociado a un algoritmo cuántico A, entonces, tal que, partiendo del estado fiducial, retorne el estado $|\psi\rangle$. Es decir, $U_A |0\rangle = |\psi\rangle$, entonces, podemos reescribir U_{ψ} de la siguiente manera:

$$U_{\psi} = (2 |\psi\rangle\langle\psi| - 1) = (2U_{\mathcal{A}} |0\rangle\langle0| U_{\mathcal{A}}^{\dagger} - 1) = U_{\mathcal{A}}(2 |0\rangle\langle0| - 1)U_{\mathcal{A}}^{\dagger} = U_{\mathcal{A}}U_{0}U_{\mathcal{A}}^{\dagger}$$
 (5.21)

De esta manera, a cualquier algoritmo, que actúe sobre un espacio de Hilbert \mathcal{H} que se pueda descomponer un espacio de estados buenos $\mathcal{H}_{\mathcal{W}}$ y un espacio de estados malos $\mathcal{H} \setminus \mathcal{H}_{\mathcal{W}}$, se le puede aplicar la amplificación de amplitud para mejorar su resultado.

Ahora consideremos el caso en el que $U_A = H^{\otimes n}$, es decir, el caso en el que $|\psi\rangle = |s\rangle$. Este seria el caso particular del algoritmo de amplificación de amplitud en el que se utiliza el mismo estado inicial del algoritmo de Grover.

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i} |i\rangle = \frac{1}{\sqrt{N}} \sum_{i \in \mathcal{W}} |i\rangle + \frac{1}{\sqrt{N}} \sum_{i \notin \mathcal{W}} |j\rangle$$
 (5.22)

$$|\psi_1\rangle = \frac{1}{\sqrt{W}} \sum_{i \in W} |i\rangle \tag{5.23}$$

$$\sin \theta = \sqrt{\frac{W}{N}} \tag{5.24}$$

$$|\psi_0\rangle = \frac{1}{\sqrt{N-W}} \sum_{j \notin \mathcal{W}} |j\rangle \tag{5.25}$$

$$\cos \theta = \sqrt{\frac{N - W}{N}} \tag{5.26}$$

Si tomamos $N\gg W$, tendríamos que $\theta\approx\sqrt{\frac{W}{N}}$, entonces $k_{max}\approx\frac{\pi}{4}\sqrt{\frac{N}{W}}$. Es interesante notar que mientras más estados buenos haya, menos iteraciones se necesitan. Pero a cambio, para hallar todos esos estados buenos, se debe ejecutar el algoritmo más veces. En caso de que W sea de dimensión 1, se recuperaría exactamente el algoritmo de Grover.

5.2.2. Algoritmo de Grover en un paso

5.3. Simulaciones

5.3.1. Algoritmo de Grover

Se han realizado simulaciones del algoritmo de Grover en Wolfram Mathematica implementando U_{ω} , U_s y la transformada de Hadamard, directamente, de manera matricial, de acuerdo a las definiciones dadas anteriormente. Por otro lado, se ha realizado una simulación del algoritmo de Grover en Python definiendo todas las operaciones y transformaciones en base a sus construcciones circuitales, a partir de las compuertas nativas de los transmones, resolviendo la ecuación maestra del sistema al aplicar cada compuerta nativa. A la primera la llamaremos la simulación matemática, y a la segunda, simulación circuital. El código de ambas simulaciones se encuentra en el apéndice E.

En el caso de la simulación matemática, sólo se ha simulado el caso sin relajación. Por otro lado, en el caso de la simulación circuital, se ha simulado el sistema tanto sin relajación, como con relajación. En el caso del sistema con relajación, se ha utilizado la ecuación maestra de Lindblad con los operadores de colapso σ_{-i} y tasa de relajación $\gamma = 25KHz$. Primero compararemos las dos simulaciones sin relajación para analizar la precisión del solucionador de ecuaciones maestras.

Como el espacio de Hilbert del sistema en el que sea ejecutado el algoritmo es de 16 dimensiones, ya que es de cuatro qubits, se necesitan $\lfloor \frac{\pi\sqrt{16}}{4} \rfloor = 3$ iteraciones para tener la máxima probabilidad de medir el estado deseado. Sin embargo, la simulación se ha realizado con 7 iteraciones, para apreciar la naturaleza oscilatoria de este algoritmo. Recordemos que este algoritmo consiste en rotaciones en el espacio 2D generado por $|\omega\rangle$ y $|s'\rangle$, es decir, que si se aplican más de 3 rotaciones, la probabilidad de éxito debería disminuir, hasta que el estado del sistema se alinee con $-|s'\rangle$, volver a aumentar hasta llegar a $-|\omega\rangle$, disminuir hasta pasar por $|s'\rangle$, pasar de nuevo por el estado inicial $|s\rangle$ y repetirse el ciclo. La hipotesis es que veremos aproximadamente un período de sinusoide muestreada, con alrededor de seis muestras por período, en la gráfica de la evolución de la probabilidad de medir $|\omega\rangle$, ya que si luego de tres iteraciones se llega al punto de probabilidad máxima, alrededor de la sexta iteración se debe llegar al punto de probabilidad mínima y en la séptima volvería a aumentar.

En la figura 5.4 se puede observar la gráfica de la evolución de la probabilidad de medir cada estado en cada iteración del algoritmo de Grover con $|\omega\rangle=|1111\rangle$. Como se puede observar, ambas figuras son bastante similares. La fidelidad entre los estados finales de ambas simulaciones es 0.999875. Además, se ha confirmado la hipotesis de que la evolución de la probabilidad de medir $|1111\rangle$ tiene forma sinusoidal.

FIGURA 5.4: Evolución de las probabilidades en el algoritmo de Grover sin relajación

Ahora, compararemos los resultados de la simulación circuital con y sin relajación. Como se puede ver en la figura 5.5, en el caso con relajación, los estados que no contienen el valor deseado dejan de tener todos la misma probabilidad. Los estados que involucran el estado base ganan probabilidad debido a la relajación de los qubits. La fidelidad entre los estados resultantes de los casos con y sin relajación es de 0.250818.

FIGURA 5.5: Evolución de las probabilidades en el algoritmo de Grover con relajación

Incluir resultados del algoritmo de Grover con $|\omega\rangle=|0\rangle$ y $|\omega\rangle=|0101\rangle$ para comparar los efectos de la relajación en distintos casos.

5.3.2. Amplificación de amplitud

5.3.3. Optimización del algoritmo de Grover

Bibliografía

- [1] Adriano Barenco, Charles H. Bennet, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, Jhon A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. *Physical Review A*, 1995.
- [2] Sttiwuer Díaz-Solórzano. Esquemas de medidas. QIC, 2014.
- [3] Rudolf Gross and Achim Marx. Applied superconductivity: Josephson effect and superconducting electronics. Walther-Meißner-Institut, 2005.
- [4] Onnes H.K. Further experiments with liquid helium. g. on the electrical resistance of pure metals, etc. vi. on the sudden change in the rate at which the resistance of mercury disappears. *Springer*, *Dordrecht*, 1911.
- [5] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature*, 525:73–76, 2015.
- [6] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Physical Review Journals Archive, 1957.
- [7] Herbert Fröhlich. Theory of the superconducting state. Unknown, 1950.
- [8] M Cyrot. Ginzburg-landau theory for superconductors. Reports on Progress in Physics, 36(2):103, 1973.
- [9] Jr. Bascom S. Deaver and William M. Fairbank. Experimental evidence for quantized flux in superconducting cylinders. *Physical Review Letters*, 1961.
- [10] B.D. Josephson. Possible new effects in superconductive tunnelling. *Physics Letters*, 1(7):251-253, 1962.
- [11] P. W. Anderson and J. M. Rowell. Probable observation of the josephson superconducting tunneling effect. *Phys. Rev. Lett.*, 10:230–232, Mar 1963.

BIBLIOGRAFÍA 194

[12] Sidney Shapiro. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. *Phys. Rev. Lett.*, 11:80–82, Jul 1963.

- [13] G. Wendin. Quantum information processing with superconducting circuits: a review. *IOP Science*, 2017.
- [14] Alexandre Blais, Jay Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, , and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. *Physical Review A*, 2007.
- [15] Norbert Schuch and Jens Siewert. Natural two-qubit gate for quantum computation using the xy interaction. *Physical Review A*, 2003.
- [16] T. Loke and J.B. Wang. Efficient quantum circuits for szegedy quantum walks. *Annals of Physics*, 382:64 84, 2017.