

b 5,10
07jul04 15:53:38 User208737 Session D513.2
\$0.00 0.078 DialUnits File410
\$0.00 Estimated cost File410
\$0.02 TELNET
\$0.02 Estimated cost this search
\$0.32 Estimated total session cost 0.163 DialUnits

SYSTEM:OS - DIALOG OneSearch
File 5:Biosis Previews(R) 1969-2004/Jul W1
(c) 2004 BIOSIS
File 10:AGRICOLA 70-2004/May
(c) format only 2004 The Dialog Corporation

Set	Items	Description
? s	high and oleic and stearic and oil and seed	
	1469805	HIGH
	16565	OLEIC
	7262	STEARIC
	128053	OIL
	185797	SEED
S1	122	HIGH AND OLEIC AND STEARIC AND OIL AND SEED
? s	s1 and sn	
	122	S1
	15644	SN
S2	3	S1 AND SN
? t	2/3/1-3	

2/3/1 (Item 1 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2004 BIOSIS. All rts. reserv.

0011653110 BIOSIS NO.: 199800447357
Influence of lipase-catalyzed interesterification on the oxidative stability of melon **seed oil** triacylglycerols
AUTHOR: Moussata Charment O; Akoh Casimir C (Reprint)
AUTHOR ADDRESS: Dep. Food Science and Technol., Food Science Building, Room 211, Univ. Ga., Athens, GA 30602-7610, USA**USA
JOURNAL: Journal of the American Oil Chemists' Society 75 (9): p1155-1159 Sept., 1998 1998
MEDIUM: print
ISSN: 0003-021X
DOCUMENT TYPE: Article
RECORD TYPE: Abstract
LANGUAGE: English

2/3/2 (Item 2 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2004 BIOSIS. All rts. reserv.

0011098925 BIOSIS NO.: 199799732985
Characterization of polar and nonpolar **seed** lipid classes from highly saturated fatty acid sunflower mutants
AUTHOR: Alvarez-Ortega Rosario; Cantisan Sara; Martinez-Force Enrique; Garces Rafael (Reprint)
AUTHOR ADDRESS: Inst. de la Grasa, CSIC, Apartado 1078, 41080 Sevilla, Spain**Spain
JOURNAL: Lipids 32 (8): p833-837 1997 1997
ISSN: 0024-4201
DOCUMENT TYPE: Article

RECORD TYPE: Abstract

LANGUAGE: English

2/3/3 (Item 3 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2004 BIOSIS. All rts. reserv.

0008256063 BIOSIS NO.: 199293098954
POSITIONAL ANALYSIS AND DETERMINATION OF TRIACYLGLYCEROL STRUCTURE OF
ARGANIA-SPINOSA SEED OIL
AUTHOR: MAURIN R (Reprint); FELLAT-ZARROUCK K; KSIR M
AUTHOR ADDRESS: LAB CHIMIE ORGANIQUE SYNTHESE, UNIV PROVENCE, CASE 541, AV
NORMANDIE-NIEMAN, 13397 MARSEILLE CEDEX 13, FR**FRANCE
JOURNAL: Journal of the American Oil Chemists' Society 69 (2): p141-145
1992
ISSN: 0003-021X
DOCUMENT TYPE: Article
RECORD TYPE: Abstract
LANGUAGE: ENGLISH
? t 2/5/1-3

2/5/1 (Item 1 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2004 BIOSIS. All rts. reserv.

0011653110 BIOSIS NO.: 199800447357
Influence of lipase-catalyzed interesterification on the oxidative
stability of melon seed oil triacylglycerols
AUTHOR: Moussata Charment O; Akoh Casimir C (Reprint)
AUTHOR ADDRESS: Dep. Food Science and Technol., Food Science Building, Room
211, Univ. Ga., Athens, GA 30602-7610, USA**USA
JOURNAL: Journal of the American Oil Chemists' Society 75 (9): p1155-1159
Sept., 1998 1998
MEDIUM: print
ISSN: 0003-021X
DOCUMENT TYPE: Article
RECORD TYPE: Abstract
LANGUAGE: English

ABSTRACT: Melon seeds are rich in ***oil*** . However, the stability of
melon seed oil (MSO) is low because of its **high** content
of the essential fatty acid, linoleic acid (18:2n-6). MSO was physically
blended or enzymatically interesterified with **high-oleic**
sunflower ***oil*** (HOSO). The fatty acid composition of MSO was
remarkably changed after interesterification. Palmitic (16:0),
stearic (18:0), and **oleic** (18:1 n-9) acid contents increased
at the **sn-2** position of triacylglycerols, whereas 18:2 n-6
decreased due to interesterification. The oxidative stability of the
physical and Pseudomonas sp. (PS30) lipase-interesterified blends was
assessed with the Oxidative Stability Instrument, peroxide value, and
conjugated diene methods. The stability of MSO increased with increased
proportions of HOSO, which was the source of 18:1 n-9 in the blends. The
ratio of 1 8:1 n-9/18:2n-6 improved from 0.18 in MSO to 1.47 in the
enzymatically interesterified blend. Calculated oxidizability and the
results of oxidation tests of the blends confirmed the improvement in MSO
stability by both physical blending and enzymatic interesterification.

REGISTRY NUMBERS: 60-33-3: linoleic acid; 112-80-1: **oleic** acid;
57-10-3: palmitic acid; 57-11-4: **stearic** acid

DESCRIPTORS:

MAJOR CONCEPTS: Foods

CHEMICALS & BIOCHEMICALS: linoleic acid--**seed oil**
constituent; **oleic acid**--**seed oil** constituent;
palmitic acid--**seed oil** constituent; **stearic acid**--
seed oil constituent; triacylglycerols--**seed**
oil constituent

METHODS & EQUIPMENT: lipase-catalyzed interesterification--biochemical
method

MISCELLANEOUS TERMS: **high-oleic** sunflower **oil**--fats
and oils; melon **seed oil**--fats and oils, oxidative
stability

CONCEPT CODES:

13502 Food technology - General and methods

10060 Biochemistry studies - General

10802 Enzymes - General and comparative studies: coenzymes

2/5/2 (Item 2 from file: 5)

DIALOG(R)File 5:Biosis Previews(R)

(c) 2004 BIOSIS. All rts. reserv.

0011098925 BIOSIS NO.: 199799732985

Characterization of polar and nonpolar **seed** lipid classes from highly
saturated fatty acid sunflower mutants

AUTHOR: Alvarez-Ortega Rosario; Cantisan Sara; Martinez-Force Enrique;
Garces Rafael (Reprint)

AUTHOR ADDRESS: Inst. de la Grasa, CSIC, Apartado 1078, 41080 Sevilla,
Spain**Spain

JOURNAL: Lipids 32 (8): p833-837 1997 1997

ISSN: 0024-4201

DOCUMENT TYPE: Article

RECORD TYPE: Abstract

LANGUAGE: English

ABSTRACT: The **seed** lipids from five sunflower mutants, two with
high palmitic acid contents, one of them in **high oleic**
background, and three with **high stearic** acid contents, have
been characterized. All lipid classes of these mutant seeds have
increased saturated fatty acid content although triacylglycerols had the
highest levels. The increase in saturated fatty acids was mainly at the
expense of **oleic** acid while linoleic acid levels remained
unchanged. No difference between mutants and standard sunflower lines
used as controls was found in minor fatty acids: linolenic, arachidic,
and behenic. In the ***high*** -palmitic mutants palmitoleic acid (16:1
n-7) and some palmitolinoleic acid (16:2n-7, 16:2n-4) also appeared.
Phosphatidylinositoi, the lipid with the highest palmitic acid content in
controls, also had the highest content of palmitic or **stearic**
acids, depending on the mutant type, suggesting that saturated fatty
acids are needed for its physiological function. Positional analysis
showed that mutant oils have very low content of saturated fatty acids in
the **sn-2** position of triacylglycerols, between the content of olive
oil and cocoa butter.

REGISTRY NUMBERS: 57-10-3: PALMITIC ACIDS; 57-11-4: **STEARIC** ACID;
112-80-1: **OLEIC** ACID; 60-33-3: LINOLEIC ACID; 112-85-6: BEHENIC
ACID; 506-30-9: ARACHIDIC ACID; 373-49-9: PALMITOLEIC ACID; 463-40-1:
LINOLENIC ACID

DESCRIPTORS:

MAJOR CONCEPTS: Biochemistry and Molecular Biophysics

BIOSYSTEMATIC NAMES: Compositae--Dicotyledones, Angiospermae,
Spermatophyta, Plantae

ORGANISMS: sunflower (Compositae); Helianthus annuus (Compositae)

COMMON TAXONOMIC TERMS: Angiosperms; Dicots; Plants; Spermatophytes;

Vascular Plants

CHEMICALS & BIOCHEMICALS: PALMITIC ACIDS; **STEARIC** ACID;
OLEIC ACID; LINOLEIC ACID; BEHENIC ACID; ARACHIDIC ACID;
PALMITOLEIC ACID; PALMITOLINOLEIC ACID; LINOLENIC ACID
MISCELLANEOUS TERMS: ARACHIDIC ACID; BEHENIC ACID; BIOCHEMISTRY AND
BIOPHYSICS; HIGHLY SATURATED FATTY ACID MUTANT; LINOLEIC ACID;
LINOLENIC ACID; **OLEIC** ACID; PALMITIC ACIDS; PALMITOLEIC ACID;
PALMITOLINOLEIC ACID; PHOSPHATIDYLINOSITOL; **STEARIC** ACID;
TRIACYLGLYCEROL

CONCEPT CODES:

10066 Biochemistry studies - Lipids
51522 Plant physiology - Chemical constituents

BIOSYSTEMATIC CODES:

25840 Compositae

2/5/3 (Item 3 from file: 5)

DIALOG(R) File 5:Biosis Previews(R)

(c) 2004 BIOSIS. All rts. reserv.

0008256063 BIOSIS NO.: 199293098954

POSITIONAL ANALYSIS AND DETERMINATION OF TRIACYLGLYCEROL STRUCTURE OF
ARGANIA-SPINOSA SEED OIL

AUTHOR: MAURIN R (Reprint); FELLAT-ZARROUCK K; KSIR M

AUTHOR ADDRESS: LAB CHIMIE ORGANIQUE SYNTHESE, UNIV PROVENCE, CASE 541, AV
NORMANDIE-NIEMAN, 13397 MARSEILLE CEDEX 13, FR**FRANCE

JOURNAL: Journal of the American Oil Chemists' Society 69 (2): p141-145
1992

ISSN: 0003-021X

DOCUMENT TYPE: Article

RECORD TYPE: Abstract

LANGUAGE: ENGLISH

ABSTRACT: The distribution of fatty acids between the **sn**-1, and **sn**-2 and **sn**-3 positions of triacylglycerols from Argania spinosa ***seed*** ***oil*** of Morocco has been determined. Saturated fatty acids showed preference for external positions. The *****sn***** -1 position contained slightly more palmitic acid than the **sn**-3 position, whereas **stearic** acid was preferentially esterified at the *****sn***** -3 position. Linoleic acid occurred predominantly in the *****sn***** -2 position with lesser amount evenly distributed between the **sn**-1 and the *****sn***** -3 positions, as generally found in vegetable oils. **Oleic** acid was distributed with a slight preference shown for the internal position, whereas the distribution between the external positions revealed a slight preference for the *****sn***** -1 position. The distribution of the triacylglycerols determined from **high** -performance liquid chromatography (HPLC) is at variance with that calculated from the 1-random 2-random 3-random distribution theory. This is particularly true for trioleoyl and trilinoleoylglycerols. In contrast, the agreement between theory and experiment is good for triacylglycerols containing two oleoyl and one linoleoyl chains, one oleoyl, one linoleoyl and one palmitoyl chains or one oleoyl, one palmitoyl, and one stearoyl chains.

DESCRIPTORS: FATTY ACIDS FATS AND OILS

DESCRIPTORS:

MAJOR CONCEPTS: Biochemistry and Molecular Biophysics; Foods
BIOSYSTEMATIC NAMES: Sapotaceae--Dicotyledones, Angiospermae,
Spermatophyta, Plantae

COMMON TAXONOMIC TERMS: Angiosperms; Dicots; Plants; Spermatophytes;
Vascular Plants

CONCEPT CODES:

10066 Biochemistry studies - Lipids

13514 Food technology - Fats and oils

13530 Food technology - Evaluations of physical and chemical properties

51522 Plant physiology - Chemical constituents

BIOSYSTEMATIC CODES:

26715 Sapotaceae

?