MEE 3017 System Modelling and Analysis

L01 Mechanical Systems

L02 Mechanical Systems

Mechanical Systems

Mechanical systems, machines and devices usually consist of:

- masses (point masses, rigid bodies);
- connecting elements (bars, beams, springs, belts, dampers);
- machine elements (bearings, gears, guidances, cylinders with pistons).

From system dynamics point of view all these components are classified in three groups:

- -Compliant elements which can be specified as Springs
- -Dissipitaitive elements –which can be specified as dampers
- -Inertial elements which can be specified as masses

Translational Mechanical System Components

Mechanical translational systems are comprised of a group of mechanical elements that only translate. In one dimensional analysis mostly "x" is selected as motion axis.

Springs

Any mechanical element that undergoes a change in shape (size) when subjected to a force can be characterized as a spring.

Ability to change in shape according to applied force is generally described as compliance and its reciprocal is called as stiffness.

The parameter that determines the ratio between applied force and change in size is the spring constant K.

Dr. Levent ÇETİN

L02 Mechanical Systems

Translational Mechanical System Components-Springs

If the force applied to an element is an algebraic function of the displacement across the element, the element is represented by a spring.

The constitutive law describing the force applied to the spring is

$$f(t) = K(x_2(t) - x_1(t)) = K\Delta x(t)$$

Spring elements are mechanical potential energy storage elements

$$U = E_p = \frac{1}{2}K(\Delta x)^2$$

K–spring stiffness, spring constant (N/m) d_o –unstretched spring length (m)

Translational Mechanical System Components-Masses

Mass is a property of a physical system or body, observable and measurable as a resistance to being accelerated by a force.(therefore they are classified as inertial elements.)

The constitutive law describing the force applied to mass is

$$f(t) = M \frac{d^2x(t)}{dt^2}$$

Mass elements are mechanical kinetic energy storage elements

$$T = E_k = \frac{1}{2}Mv^2$$

In many common situations, mass can be thought of as representing the quantity of matter in an object M–mass (kg)

Dr. Levent ÇETİN

L02 Mechanical Systems

Translational Mechanical System Components-Frictional elements

Forces that are algebraic functions of velocity are frictional forces. They always acts against the direction of the motion. Due to the friction, some energy of the system is lost in frictional elements. Therefore they are called dissipative elements.

 $\begin{array}{c} v_{2}(t) \\ \\ M \\$

The constitutive law describing the force applied to the damper is

$$f(t) = B(v_2(t) - v_1(t)) = B\Delta V(t)$$

Virtual vork done by

$$\delta w = -Bv\delta x$$

C,B-viscous friction coefficient (N/(m/s))

Translational Mechanical System Components-Frictional elements

Dr. Levent ÇETİN

L02 Mechanical Systems

Translational Mechanical System Analysis-Free Body diagrams

A schematic isolating an object (or part of an object) from its environment for the purpose of revealing all external forces and moments acting on the object. Free body diagrams are helpful in applying Newton's 2nd Law of motion to objects.

- 1.Isolate all the masses in the system.
- 2. Identify the forces acting to each specific mass
- 3. Assume that the inertial force. (It is always opposite to the positive direction convention.)
- 4. Apply that sum of the forces are zero.

Translational Mechanical System Analysis-FBD examples 2DoF

- 1.Isolate all the masses in the system.
- 2. Identify the forces acting to each specific mass
- 3. Assume that the inertial force. (It is always opposite to the positive direction convention.)
- 4. Apply that sum of the forces are zero.

Dr. Levent ÇETİN

L02 Mechanical Systems

Translational Mechanical System Analysis-FBD examples: Position input

- 1.Isolate all the masses in the system.
- 2. Identify the forces acting to each specific mass.
- 3. Assume that the inertial force. (It is always opposite to the positive direction convention.)
- 4. Apply that sum of the forces are zero.

5

Translational Mechanical System Analysis-FBD examples: Relative coordinates

- 1.Isolate all the masses in the system.
- 2. Identify the forces acting to each specific mass.
- 3. Assume that the inertial force. (It is always opposite to the positive direction convention.)
- 4. Apply that sum of the forces are zero.

Dr. Levent ÇETİN

L02 Mechanical Systems

Translational Mechanical System Analysis-FBD examples: Parallel Springs

When two (or more) spring or friction elements are in parallel (i.e., such that both ends of the elements are connected), their values add

$$\mathbf{k}_{\mathsf{eq}} = \mathbf{k}_{\mathsf{1}} + \mathbf{k}_{\mathsf{2}} + \dots \qquad \qquad \mathbf{b}_{\mathsf{eq}} = \mathbf{b}_{\mathsf{1}} + \mathbf{b}_{\mathsf{2}} + \dots$$

When two (or more) spring or friction elements are in series (such that they have one end in common, with nothing else attached at that node), the inverse of the values add.

Rotational Mechanical System Components

The quantities used in rotating systems are very similar to those in translating systems. The table below lists the analogous quantities for rotating and translating systems.

Rotating Systems		Translating Systems		
Quantity	Unit		Quantity	Unit
Moment of Inertia - J	kg-m²		Mass - m	kg
Torque - τ	N-m		Force - f	N
Angle - θ	rad		Length - I	m
Angular velocity - $\dot{\theta} = \omega$	rad/sec		Velocity - $\dot{X} = V$	m/s
Angular acceleration - $\ddot{\theta} = \alpha$	rad/sec²		Acceleration - $\ddot{x} = a$	m/s²
Spring Constant - K _r	N-m/rad		Spring Constant - k	N/m
Friction Coefficient - B _r	N-m-s/rad		Friction Coefficient - g	N-s/m

Dr. Levent ÇETİN

L02 Mechanical Systems

Rotational Mechanical System Components-Inertia Element

In rotating mechanical systems, the inertia elements are masses that rotate and are characterized by moment of inertia.

Applying Newton's Second Law to differential mass dm and integrating over the entire body, the time rate of change of the angular momentum is equal to the summation of the applied torques

$$\frac{d}{dt}(Jw(t)) = \sum T(t)$$

If the inertia is constant

$$J\frac{d^2\theta}{dt^2} = \sum T(t)$$

Inertial elements are energy storage elements

$$T = E_{K} = \frac{1}{2}J\omega^{2}$$

J – moment of inertia (kg⋅m²)

 ΣT – summation of applied torques (N·m)

Shape	lmage	Moment of Inertia, J
Cylinder, radius=r, mass=m Rotating about center axis		$\frac{1}{2}\mathrm{mr}^2$
Solid Sphere. radius=r, mess-m Rotating about center	0	2/5 mr ²
Uniform Rod. length=f, mass-m Rotating about end	Č .	$\frac{1}{3}m\ell^2$
Uniform Rod, length=f, mass=m Rotating about center	→ ($\frac{1}{12}$ m ℓ^2
Mass at end of massless rod. length=f, mass=m Rotating about end	c ·	m/²

Rotational Mechanical System Components-Inertia Element

Calculation of moment of inertia

For rotations not about the center of mass, use the Parallel Axis Theorem

$$J = J_o + ma^2$$

a – distance between axis of rotation and axis through center of mass (m) J_o – moment of inertia about axis through center of mass (kg·m²)

Dr. Levent ÇETİN

L02 Mechanical Systems

Rotational Mechanical System Components-Spring Element

A rotational spring is an element that is deformed (wound or unwound) in direct proportion to the amount of torque applied. Therefore the torque applied to an element is an algebraic function of the angular displacement across the element

Constitutive law describing the torque applied to the spring is

$$\tau(t) = K \Big[\theta_2(t) - \theta_1(t) \Big] = K \Delta \theta(t)$$

Spring elements are energy storage elements

$$U = E_p = \frac{1}{2}K(\Delta\theta)^2$$

K – spring stiffness, spring constant (N·m/rad)

Rotational Mechanical System Components-Dissipitative Element

Torques that are algebraic functions of rotational velocity are frictional torques.

Constitutive law describing the torque applied to the spring is

$$\tau(t) = B[\omega_2(t) - \omega_1(t)] = B\Delta\omega(t)$$

Dissipitative elements do virtual work on the system.

$$\delta w = -Bw\delta\theta$$

Dr. Levent ÇETİN

L02 Mechanical Systems

Rotational Mechanical System Components- Example Free Body Diagram

Rotational Mechanical System Components- Transmissions

Dr. Levent ÇETİN

L02 Mechanical Systems

Rotational Mechanical System Components- Example Gears

The rolling motion

Rotational Motion of Wheel

Motion of wheel is sum of rotational and translational motion.

When the wheel is in contact with the ground, its bottom part is at rest with respect to the ground. This implies that besides a rotational motion the wheel experiences a linear motion with a velocity equal to $+v_{\rm cm}$.

It is clear that the top of the wheel moves twice as fast as the center and the bottom of the wheel does not move at all.

$$T = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I_{cm}\omega^2$$

Dr. Levent ÇETİN

L02 Mechanical Systems

Rotational Mechanical System Components- Translating and rotating systems

If x_1 changes while x_2 remains constant, then $r \cdot \theta = x_1$ If x_2 changes while x_1 remains constant, then $r \cdot \theta = -x_2$ Therefore, by superposition

 $r \cdot \theta = x_1 - x_2$

Mechanical System Analysis

Translational Rotational

Fundamental Quantities	SI unit	Fundamental Quantities	SI unit
Time - t	second (s)	Time - t	second (s)
Mass - m	kilogram (kg)	Moment of Inertia - J	kilogram (kg-m□)
Length - I	meter (m)	Angle - θ	radians (rad)
Force - f	Newton (N)	Torque - τ	Newton (N-m)
Energy - w	Joule (J) [W-s, N-m]	Energy - w	Joule (J) [W-s, N-m]
Power - p	Watt (W) [J/s]	Power - p	Watt (W) [J/s]
Spring Constant - k	(N/m)	Spring Constant - K _r	(N-m/rad)
Friction Coefficient - b	(N-s/m)	Friction Coefficient - B _r	(N-m-s/rad)

Dr. Levent ÇETİN

L02 Mechanical Systems

References

These slides are heavily adapted from the <u>Prof Erik Cheever's</u> excelent website http://lpsa.swarthmore.edu/ and from the lecture notes of Dr. Robert G. Landers http://web.mst.edu/~landersr/