

Trabalho laboratorial

Instrumentação e Medidas Elétricas

Trabalho realizado pelos alunos:

Marta Pereira Nº 63195

Rafael Silva Nº 62966

Tiago Neves Nº 63327

Tomás Fernandes Nº 63426

Licenciatura em Engenharia Eletrotécnica e de Computadores

Ano Letivo 2023/24

Índice

1.	Introdução	3
2.	Solução Proposta	4
	2.1 – Dimensionamento e Condicionamento de Sinais	4
	2.2 – Funcionamento do Transdutor	5
	2.3 – ESP32 e Tratamento do Sinal Digital	7
	2.4 – Cálculos	8
3.	Resultados e Análise	9
4. C	Conclusão e Trabalhos Futuros	10
5. B	Bibliografia	11

1. Introdução

No contexto da Unidade Curricular de Instrumentação e Medidas Elétricas, este trabalho laboratorial teve como objetivo principal o desenvolvimento de um **sistema automático de medição de consumo de energia elétrica** para uma carga monofásica. Este sistema é capaz de operar de forma autônoma, sem a necessidade de intervenção do usuário para a definição de parâmetros, oferecendo uma solução eficiente e prática para o monitoramento energético.

O sistema desenvolvido realiza medições precisas e contínuas dos principais parâmetros elétricos, tais como o valor eficaz e a frequência da tensão e corrente elétrica, a potência ativa, a potência aparente e o fator de potência. Essas medições foram essenciais para uma análise detalhada do comportamento da carga elétrica e para a implementação de estratégias de otimização do consumo de energia.

Além das medições, o sistema permite a visualização remota dos resultados através da plataforma ThingSpeak, possibilitando o acompanhamento em tempo real dos dados coletados. A capacidade de armazenamento dos dados para análises posteriores também é um requisito fundamental, garantindo que informações históricas possam ser avaliadas para fins de diagnóstico e melhoria contínua.

Este trabalho não só propiciou uma compreensão prática dos conceitos teóricos abordados na disciplina, como também desenvolveu competências em instrumentação, automação e análise de dados. Através da implementação deste sistema, adquirimos habilidades valiosas para o desenvolvimento de soluções tecnológicas aplicadas à gestão eficiente de energia elétrica.

Lista de Material: *Breadboard*, resistências elétricas, circuitos integrados LM741, fonte de alimentação, caixa de transdutores com LEM LV 25-P (tensão) e YHDC Current Transformer SCT-013 20A/1V (corrente), e microcontrolador ESP32.

2. Solução Proposta

Nesta secção, iremos apresentar a solução proposta para este trabalho.

2.1 – Dimensionamento e Condicionamento de Sinais

Começamos este projeto por dimensionar as resistências para os amplificadores operacionais responsáveis pelo condicionamento dos sinais de tensão e corrente. Utilizamos resistências de $1k\Omega$ e $10k\Omega$, bem como dois amplificadores operacionais LM741.

Condicionamento dos Sinais de Entrada

Analisando os sinais de entrada, tanto o sinal de corrente quanto o sinal de tensão precisavam de um offset de 1,5V para garantir que todos os valores fossem superiores a zero. Além disso, o sinal de tensão necessitava de uma atenuação para metade da sua amplitude, uma vez que a placa utilizada no projeto aceita apenas tensões entre 0V e 3,3V.

Equação de Condicionamento

Para o condicionamento de cada sinal, optamos por uma montagem somadora, cuja equação:

$$u_0 = -\frac{R_3}{R_1} \times u_1 - \frac{R_3}{R_2} \times u_2$$

Dimensionamento dos Componentes

Assumindo $R_3=1k\,\Omega$, para obter um offset de 1.5 V, foi necessário aplicar uma tensão de -15V na entrada u_2 , utilizando $R_2=10k\,\Omega$.

- Condicionamento do Sinal de Corrente: Não requer atenuação. Portanto, definimos $R_1=R_3=1$ k Ω .
- Condicionamento do Sinal de Tensão: Requer uma atenuação para metade da amplitude do sinal de entrada. Assim, estabelecemos $R_1=2\times R_3=2k\,\Omega.$

A montagem realizada em laboratório está ilustrada na figura 1:

Figura 1 – Montagens somadoras para os condicionamentos de sinais de corrente e de tensão feitas em laboratório

Os esquemáticos resultantes deste dimensionamento são apresentados na figura
 2:

Figura 2 – Montagem somadora para o condicionamento de sinal de corrente (na esquerda) e montagem somadora para o condicionamento de sinal de tensão (na direita).

2.2 - Funcionamento do Transdutor

O **transdutor de tensão LV 25-P** desempenha a função de condicionar sinais e converter um sinal de corrente em um sinal de tensão equivalente. Este transdutor pode

medir tensões na faixa de 10 V a 500 V e operar em temperaturas de 0°C a 70°C. Para funcionar corretamente, ele requer uma alimentação de +15 V e -15 V.

Esquema de Funcionamento

O transdutor tem o seguinte esquema de funcionamento:

Figura 3 – Montagem do transdutor de tensão LV 25-P.

A relação entre os enrolamentos do primário e do secundário do transdutor é dada por:

$$\frac{N_p}{N_a} = \frac{2500}{1000} = 2.5$$

Isto implica que o sensor apresenta um comportamento linear com um fator de 2,5 na relação entre I_p e I_s . Especificamente, a corrente em R_M é 2.5 vezes maior que a corrente em R_1 .

Dado que $R_M=100~\Omega$ e $R_1=33k~\Omega$, o sinal de saída do transdutor é:

$$\frac{V_0}{R_M} = \frac{N_p}{N_s} \times \frac{V_i}{R_1} \iff$$

$$\iff V_0 = 2.5 \times \frac{100}{33000} \times V_i$$

Condicionamento do Sinal de Corrente

Para o sinal de corrente, a relação fornecida para a tensão de saída em função da corrente de entrada é:

$$V_0(x) = \frac{1}{20}x$$

Onde:

- $V_0(x)$ é o sinal de tensão de saída do transdutor;
- x é p sinal de corrente de entrada;

Resumo do Funcionamento

- 1. Alimentação: O transdutor é alimentado com +15V e -15V.
- 2. **Medição de Tensão:** Mede tensões entre 10V e 500V, operando de 0°C a 70°C.
- 3. **Relação de Enrolamentos:** A relação $\frac{N_p}{N_a}=2.5$ resulta numa corrente I_s que é 2.5 vezes maior que I_p .
- 4. Saída de Tensão para Entrada de Corrente: Para uma resistência $R_M=100~\Omega$ e $R_1=33k~\Omega$, a saída do transdutor é 2.5 vezes a razão de R_M sobre R_1 multiplicada pelo sinal de entrada V_i .
- 5. **Equação de Condicionamento de Corrente:** A tensão de saída do transdutor para uma corrente de entrada x é $V_0(x) = \frac{1}{20}x$.

2.3 - ESP32 e Tratamento do Sinal Digital

Nesta fase, desenvolvemos o código em Arduíno para o microcontrolador ESP32, com o objetivo de ler e processar os sinais analógicos.

Leitura e Conversão dos Sinais Analógicos

Os valores analógicos de tensão e corrente foram lidos através das portas 34 e 35 do ESP32, respetivamente.

Os bits recebidos foram convertidos em valores de tensão e corrente digitais utilizando a fórmula:

$$V_{LSB} = \frac{V_{ref}}{2^N}$$
 , onde $V_{ref} = 3.3V$ e $N = 12$ bits.

Tratamento do Sinal de Tensão

- 1. **Remoção da Atenuação:** Multiplicamos o valor digital da tensão por 2 para remover a atenuação aplicada durante o condicionamento do sinal.
- 2. **Reversão dos Efeitos do Transdutor:** Multiplicamos o valor obtido por 132 (que corresponde a $\frac{1}{2.5} \times \frac{33000}{100}$) para reverter os efeitos do transdutor de tensão.

Esta abordagem detalhada que aplicamos no nosso trabalho garantiu a compreensão clara do processo de leitura e tratamento dos sinais, e como cada etapa contribui para a recuperação dos sinais originais de tensão e corrente.

2.4 - Cálculos

A potência aparente foi determinada utilizando os valores eficazes da corrente e da tensão previamente obtidos, através da multiplicação desses valores. A fórmula utilizada foi:

$$S = U_{ef} \times I_{ef}[VA]$$

De seguida, para calcular o fator de potência, primeiro determinamos a potência instantânea para cada amostra e depois calculamos a média dessas amostras, que corresponde ao valor da potência ativa. O fator de potência foi então obtido dividindo a potência ativa pela potência aparente:

Fator de Potência =
$$\frac{P_{ativa}}{S}$$

Como a potência ativa é dada pela multiplicação:

$$P_{ativa} = S \times \cos(\phi) [W]$$

3. Resultados e Análise

No nosso trabalho, fazemos uma medição a cada 200 microssegundos e calculamos a média de 1000 dessas medições para obtermos cada dado, garantindo assim a fiabilidade dos dados. Através dos gráficos, conseguimos perceber que todos os valores deram o esperado, validando a precisão do nosso sistema de medição. Conseguimos observar claramente o momento em que aumentamos a potência do aparelho.

Os resultados das medições são visualizados na plataforma *ThingSpeak*, permitindo o acompanhamento em tempo real e a análise posterior dos dados. Nos gráficos obtidos, foram monitorizados o valor e a frequência da tensão e da corrente, a potência ativa, a potência aparente e o fator de potência.

Os gráficos mostram que, ao aumentar a potência do aparelho, houve um aumento proporcional nos valores de corrente e potência, enquanto a tensão e a frequência permaneceram estáveis.

created_at	entry_id	field1	field2	field3	field4	field5	field6	field7
2024-06-04T11:18:16+00:00	1	222.49297	4.76952	1058.08044	1061.18542	0.99707	50.00000	50.00000
2024-06-04T11:19:17+00:00	2	223.46805	4.78692	1066.40601	1069.72400	0.99690	50.00000	50.00000
2024-06-04T11:20:18+00:00	3	222.73564	4.76484	1058.09351	1061.29883	0.99698	50.00000	51.02041
2024-06-04T11:21:19+00:00	4	223.81491	4.79034	1068.87659	1072.15063	0.99695	50.00000	50.00000
2024-06-04T11:23:25+00:00	5	221.32164	8.40458	1853.99304	1860.11523	0.99671	50.00000	50.00000
2024-06-04T11:24:26+00:00	6	220.98650	8.38167	1846.15674	1852.23584	0.99672	50.00000	50.00000
2024-06-04T11:25:27+00:00	7	220.45023	8.36346	1837.51624	1843.72656	0.99663	51.02041	50.00000
2024-06-04T11:26:27+00:00	8	220.95088	8.38943	1847.40125	1853.65234	0.99663	50.00000	51.02041

4. Conclusão e Trabalhos Futuros

Este projeto de desenvolvimento de um sistema automático de medição de consumo de energia elétrica para uma carga monofásica atendeu a todos os objetivos propostos, demonstrando a eficácia e a precisão do sistema implementado. Através da utilização de componentes como o ESP32, transdutores e amplificadores operacionais, conseguimos realizar medições precisas e contínuas de parâmetros elétricos essenciais como a tensão, corrente, potência ativa, potência aparente e fator de potência.

O método adotado para coleta de dados, realizando medições a cada 200 microssegundos e calculando a média de 1000 medições, garantiu a fiabilidade dos resultados obtidos.

A análise dos gráficos confirmou o comportamento esperado do sistema, com a observação clara dos momentos de aumento de potência do aparelho e a resposta correspondente dos valores de corrente e potência. Estes resultados validam a nossa abordagem e destacam a precisão do sistema de medição desenvolvido.

5. Bibliografia

- PowerPoints da disciplina de Instrumentação e Medidas Elétricas;
- Documentos disponibilizados pelo professor: Lv_25-p.pdf, SBC-NodeMCU-ESP32-Manual-20200320.pdf, LM741.pdf