MAC 414 – Linguagens Formais e Autômatos

4^{a} Lista de Exercícios (06/10/2011) – Entregar 20/10/2011

Obs.: Entregue para nota apenas os exercícios que estão pontuados. (Total de pontos: 23)

- 1. Seja $L \subseteq \Sigma^*$ uma linguagem reconhecível. Mostre que cada uma das linguagens a seguir é reconhecível, apresentando, para cada uma delas, um método para construir um autômato finito a partir de um autômato finito determinístico que reconhece L.
 - (a) $\{0^{|x|}: x \in L\}$
 - (b) (3.0 pontos) $L^R = \{x^R : x \in L\}$
 - (c) (2.0 pontos) $\operatorname{Pref}(L) = \{x \in \Sigma^* : \text{ existe } y \in \Sigma^* \text{ tal que } xy \in L \}$
 - (d) (2.0 pontos) Suf(L) = $\{x \in \Sigma^* : \text{ existe } y \in \Sigma^* \text{ tal que } yx \in L \}$
 - (e) (2.0 pontos) $\operatorname{Max}(L) = \{x \in L : \text{ não existe } y \in \Sigma^+ \text{ tal que } xy \in L \}$
 - (f) (3.0 pontos) Subpal $(L) = \{x \in \Sigma^* : \text{ existe } y \in L \text{ tal que } x \text{ é uma subpalavra de } y \}$ Sejam x e y em Σ^* . Dizemos que x é uma **subpalavra** de y se existe uma fatoração de y da forma $y = u_0 x_1 u_1 x_2 u_2 \cdots x_n u_n$ (com u_i e x_j em Σ^* , para $0 \le i \le n$ e $1 \le j \le n$) tal que $x = x_1 x_2 \cdots x_n$. Ou seja, x pode ser obtida de y apagando-se zero ou mais símbolos.
 - (g) (3.0 pontos) $\operatorname{Rem}(L) = \{xy : x\sigma y \in L, \text{ onde } x, y \in \Sigma^* \text{ e } \sigma \in \Sigma\}.$ A linguagem $\operatorname{Rem}(L)$ contém todas as palavras que podem ser obtidas pela remoção de um símbolo de uma palavra em L.
 - (h) (3.0 pontos) $L/A=\{x\in \Sigma^*: \text{ existe }y\in A \text{ tal que }xy\in L \}, \text{ onde }A\subseteq \Sigma^*$ é uma linguagem reconhecível.

A linguagem L/A é conhecida como quociente à direita de L por A.

2. (3.0 pontos) Considere o alfabeto

$$\Sigma_3 = \left\{ \left[egin{array}{c} 0 \\ 0 \\ 0 \end{array}
ight], \left[egin{array}{c} 0 \\ 1 \\ 1 \end{array}
ight], \left[egin{array}{c} 1 \\ 1 \\ 0 \end{array}
ight], \cdots, \left[egin{array}{c} 1 \\ 1 \\ 1 \end{array}
ight]
ight\} \;\;.$$

 Σ_3 contém todas as colunas de tamanho 3 formadas de 0s e 1s. Uma palavra de símbolos de Σ_3 é composta de 3 linhas de 0s e 1s. Considere cada linha como um número binário e seja

 $L = \{x \in \Sigma_3^* : \text{ a última linha de } x \text{ é a soma das suas duas primeiras linhas } \}$.

Por exemplo,

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in L, \quad \text{mas} \quad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \not\in L \ .$$

Mostre que L é uma linguagem reconhecível. (Sugestão: trabalhar com L^R é mais fácil. Você pode utilizar o resultado do exercício 1.(b).)

- 3. Resolva os exercícios a seguir do livro de Lewis e Papadimitriou, mas utilize as notações, construções, algoritmos e resultados como vistos em aula.
 - Exercícios 2.2.6 a 2.2.10 da seção 2.2.
 - Exercícios 2.3.1, 2.3.4 e 2.3.7 da seção 2.3.
 - Exercício 2.4.1 da seção 2.4.
- 4. Determine, passo a passo, as classes de equivalência da relação ~, e construa o autômato reduzido equivalente a cada um dos autômatos finitos determinísticos a seguir. Determine também uma expressão regular para a linguagem correspondente a cada um dos autômatos construídos.
 - (a) $\mathcal{A} = (Q, \Sigma, \delta, s, F)$, onde $Q = \{1, 2, 3, 4, 5, 6, 7\}$, s = 1, $F = \{2, 4, 6\}$, $\Sigma = \{a, b\}$ e a função de transição δ é dada pela tabela abaixo:

q	1	2	3	4	5	6	7
$\delta(q,a)$	1	6	5	6	1	2	5
$\delta(q,b)$	3	3	7	1	7	7	3

(b) $\mathcal{A}=(Q,\Sigma,\delta,s,F)$, onde $Q=\{1,2,3,4,5,6,7,8\}$, s=1, $F=\{1,2\}$, $\Sigma=\{a,b\}$ e a função de transição δ é dada pela tabela abaixo:

q	1	2	3	4	5	6	7	8
$\delta(q,a)$	6	7	2	1	2	3	5	4
$\delta(q,b)$	4	5	8	8	6	1	2	2

(c) $\mathcal{A}=(Q,\,\Sigma,\,\delta,\,s,\,F)$, onde $Q=\{\,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\,\}$, $s=1,\quad F=\{\,5,10,13,15\,\}$, $\Sigma=\{\,a,b\,\}$ e a função de transição δ é dada pela tabela abaixo:

q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\delta(q,a)$	2	8	4	5	6	7	12	9	10	6	7	4	11	1	6
$\delta(q,b)$	7	1	8	2	13	2	6	12	7	5	7	3	10	8	5

(d) $\mathcal{A}=(Q,\Sigma,\delta,s,F)$, onde $Q=\{1,2,3,4,5,6,7,8\}$, s=1, $F=\{1,3,7\}$, $\Sigma=\{a,b\}$ e a função de transição δ é dada pela tabela abaixo:

q	1	2	3	4	5	6	7	8
$\delta(q,a)$	2	5	2	1	5	3	6	7
$\delta(q,b)$	4	3	6	5	5	5	8	3

(e) $\mathcal{A}=(Q,\Sigma,\delta,s,F)$, onde $Q=\{1,2,3,4,5,6,7,8\}$, s=1, $F=\{5,6,7\}$, $\Sigma=\{a,b\}$ e a função de transição δ é dada pela tabela abaixo:

q	1	2	3	4	5	6	7	8
$\delta(q,a)$	2	1	3	3	1	2	8	8
$\delta(q,b)$	3	4	5	6	7	7	7	6

5. (2.0 pontos) Para cada n > 0, considere o autômato $\mathcal{A}_n = (Q, \Sigma, \delta, s, F)$, onde $Q = \{1, 2, \dots, n\}, \ s = 1, \ F = \{n\}$ e a função de transição $\delta : Q \times \Sigma \to Q$ é definida por: $\delta(i, \sigma) = \min(i+1, n)$. Mostre que esse autômato é reduzido.