Bewertung Nachklausur

Statistische Verfahren in der Geographie

Till Straube <straube@geo.uni-frankfurt.de>
Institut für Humangeographie
Goethe-Universität Frankfurt

Aufgabe 1

Teil	Antwort	Punkte	Teil	Antwort	Punkte	Teil	Antwort	Punkte
a)	N	1	f)	falsch	1	k)	2	1
b)	1	1	g)	falsch	1	l)	1	1
c)	N	1	h)	falsch	1	m)	3	1
d)	0	1	i)	richtig	1	n)	4	1
e)	I	1	j)	richtig	1	o)	1/5	1

Aufgabe 2

Teil	Leistung	Punkte
	$\sum_{i=1}^{n} x_i$	
a)	Formel: $\bar{x} = \frac{\overline{i=1}}{n}$	1
	Eingesetzt: $\bar{x} = \frac{505,5}{6}$	0,5
	Ergebnis: $\bar{x}=84.25$	1
	Eingesetzt: $\bar{y} = \frac{498.6}{6}$	0,5
	Ergebnis: $\bar{y}=83.1$	1
	Antwortsatz: Arithmetisches Mittel Albert-Schweizer-Spital ist größer.	1
	Formel: $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sum_{i=1}^{n-1} n-1}$	
b)	Formel: $s^2 = \frac{i-1}{n-1}$	1
	Formel: $s = \sqrt{s^2}$	1
	Eingesetzt: $s_x = \sqrt{\frac{19,215}{5}}$	0,5
	Ergebnis: $s_x \approx 1.96$	0,5
	Eingesetzt: $s_y = \sqrt{rac{417,69}{5}}$	0,5
	Ergebnis: $s_y \approx 9.14$	0,5
	Antwortsatz: Standardabweichung Bartholdy-Klinik ist größer.	1
c)	Formel: $Md = x_{\left(\frac{n+1}{2}\right)}$ (oder geordnete Liste, auch implizit)	2
	Ergebnis: $Md = 84,75$	1
	Ergebnis: $Q_1 = 81.7$	1
	Ergebnis: $Q_2 = 86,05$	1

Stand: 9. Oktober 2018 1/2

Aufgabe 3

Teil	Leistung	Punkte
a)	Formel: $b = \frac{s_{xy}}{s_z^2}$	0,5
	Formel: $b=\frac{s_{xy}}{s_x^2}$ Eingesetzt: $b=\frac{19,09}{317.7}$	0,5
	Ergebnis: $b = 0.06$	0,5
	Formel: $a = \bar{y} - b\bar{x}$	0,5
	Eingesetzt: $a=37-0.06\cdot 54.1$	0,5
	Ergebnis: $a \approx 33{,}75$	0,5
	Formel: $y = a + bx$	1
	Ergebnis: $y = 33,75 + 0.06x$	1
b)	Formel: $\hat{y} = a + bx$ (auch implizit)	1
	Umgestellt: $x=rac{\hat{y}-a}{b}$ (auch implizit)	1
	Eingesetzt: $x = \frac{35 - 33,75}{0.06}$	1
	Ergebnis: $x = 20.8$	1
	Antwortsatz: "20/21 Patient*innen"	1
c)	Formel: $e_i = y_i - \hat{y}$	2,5
	Ergebnisse: -0,77 / -0,91 / -1,09 / 1,41 / 0,23	2,5 (anteilig)

Aufgabe 4

Schritt	Leistung	Punkte
1)	Explizit: z-Test	2
2)	$H_0: \mu = \mu_0$	1
	$H_1: \mu \neq \mu_0$	1
3)	$\alpha = 0.05$	1
4)	$z \leq z_{lpha/2} \cup z \geq z_{(1-lpha/2)}$ (auch implizit)	1 (anteilig)
	$z \leq z_{2,5\%} \cup z \geq z_{97,5\%}$ (auch implizit)	1 (anteilig)
	$z \le -1,96 \cup z \ge 1,96$	2 (anteilig)
5)	$z = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma}$	1
	$z = \sqrt{6} \cdot \frac{18.5 - 22}{5.5}$	2
	z = -1,56	1
6)	Keine signifikante Abweichung in der Pendelzeit.	2

Stand: 9. Oktober 2018 2/2