Exercises for Chapter 4

- **4.2** Consider Sammon mapping of a dissimilarity matrix D^X .
 - a) For which values of q can Sammon mapping yield a q-dimensional representation of $Y \subset \mathbb{R}^q$ with zero error for Euclidean distances for any 4×4 dissimilarity matrix D^X ?

n=2 will yield 2 points with a distance $d_{12}=d_{21}$ which can be mapped with zero error in q=1 dimensions. For each additional point we may (or may not) need another dimension. So for n=4 we arrive at q=3 in the worst case. Any higher-dimensional representation with q>3 can be, for example, realized by adding dimensions with constant values. $\Rightarrow q \geq 3$

b) Sketch a Shepard diagram for such a mapping.

Zero error means that all points are on the main diagonal. n=4 yields $n \cdot (n-1)/2 = 4 \cdot 3/2 = 6$ pairwise dissimilarities, some may be equal. So, the Shepard diagram has a maximum of 6 unique points, all on the positive main diagonal.

c) Explain why this does not work for $D^X = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 3 \\ 1 & 1 & 3 & 0 \end{pmatrix}$.

We have $d_{34}^x>d_{31}^x+d_{14}^x$, so the triangle inequality does not hold. Hence, D^X is not Euclidean.

4.3 Consider an auto-encoder $X \to Y \to X'$, where $X, X' \in \mathbb{R}^2$, $Y \in \mathbb{R}$, with

$$y = f(x) = \tanh\left(\frac{x^{(1)} + x^{(2)}}{2}\right).$$

a) Find a suitable function x' = g(y).

 $X' \in \mathbb{R}^2$, so g must yield a two-dimensional vector. g should compensate the nonlinearity tanh in f, so we may use x' = (atanh y, atanh y)

b) Calculate the average quadratic error of the transformation $g \circ f$ for the data set $X = \{(0,0), (0,1), (1,0), (1,1)\}.$

data set
$$X = \{(0,0), (0,1), (1,0), (1,1)\}$$
.
 $y_1 = \tanh\left(\frac{0+0}{2}\right) = \tanh 0 = 0$
 $x_1' = (a \tanh 0, a \tanh 0) = (0,0)$
 $y_2 = \tanh\left(\frac{0+1}{2}\right) = \tanh\frac{1}{2}$
 $x_2' = (a \tanh \tanh\frac{1}{2}, a \tanh \tanh\frac{1}{2}) = (\frac{1}{2}, \frac{1}{2})$
 $y_3 = \tanh\left(\frac{1+0}{2}\right) = \tanh\frac{1}{2}$
 $x_3' = (a \tanh \tanh\frac{1}{2}, a \tanh \tanh\frac{1}{2}) = (\frac{1}{2}, \frac{1}{2})$
 $y_4 = \tanh\left(\frac{1+1}{2}\right) = \tanh 1$
 $x_4' = (a \tanh \tanh 1, a \tanh \tanh 1) = (1, 1)$
 $e = \frac{1}{4}\left(\|x_1 - x_1'\|^2 + \|x_2 - x_2'\|^2 + \|x_3 - x_3'\|^2 + \|x_4 - x_4'\|^2\right)$
 $= \frac{1}{4}\left((0 - 0)^2 + (0 - 0)^2 + (0 - \frac{1}{2})^2 + (1 - \frac{1}{2})^2 + (1 - \frac{1}{2})^2 + (0 - \frac{1}{2})^2 + (1 - 1)^2 + (1 - 1)^2\right) = \frac{1}{4} \cdot \frac{4}{4} = \frac{1}{4}$

c) Which other projection methods would for this data set X yield the same X'?

X' can be obtained by linear projection of X to the main diagonal. This can be achieved, for example, by one-dimensional PCA, but only if the 45° line is enforced as the main axis. For this data set, PCA may yield a line at any angle α as main axis, since for any α the variance is the same:

$$v = \frac{1}{n-1} \sum_{k=1}^{n} \|(x_k - \bar{x})(\cos \alpha, \sin \alpha)^T\|^2 = \frac{4}{3} \left(\frac{1}{2^2} \cos^2 \alpha + \frac{1}{2^2} \sin^2 \alpha\right) = \frac{1}{3}$$