

SÍNTESIS DE REDES ACTIVAS

Trabajo Practico de Laboratorio N°3 Diseño de amplificadores

Profesor Titular: Dr. Ing. Ferreyra Pablo

Profesor Adjunto: Ing. Reale Cesar

Ayudante alumno: Lucas Heraldo Duarte

Alumnos: Alaniz Franco

Ferraris Domingo

Año Académico: 2021

Repositorio de GitHub: https://github.com/DarioAlaniz/repoSistesisDeRedes

${\rm \acute{I}ndice}$

1.	Obj	etivo		2
2.	Con	signas		2
3.	Desarrollo			4
	3.1.	VFA-	VFA	4
		3.1.1.	Diseño	4
		3.1.2.	Ancho de banda potencial, frecuencia del polo de la	
			función de transferencia y ancho de banda a -3dB	8
		3.1.3.	Medición del ancho de banda a -3 dB	9
		3.1.4.	Estimación del margen de fase obtenido en base a la	
			respuesta al escalón del amplificador compuesto	10
	3.2.	VFA-C	CFA	11
		3.2.1.	Diseño	11
		3.2.2.	Ancho de banda potencial, frecuencia del polo de la	
			función de transferencia y ancho de banda a -3dB $$	13
		3.2.3.	Medición del ancho de banda a -3 dB	14
		3.2.4.	Estimación del margen de fase obtenido en base a la	
			respuesta al escalón del amplificador compuesto	16
	3.3.	VFA-C	CFA II	18
		3.3.1.	Diseño	18
		3.3.2.	Medición del ancho de banda a -3 dB	20
		3.3.3.	Estimación del margen de fase obtenido en base a la	
			respuesta al escalón del amplificador compuesto	21

1. Objetivo

Diseñar amplificadores utilizando tecnologías VFA y CFA, aplicando conceptos de compensación.

2. Consignas

1. Circuito 1

La Figura 1 muestran un amplificador compuesto que deberá ser diseñado para obtener una ganancia global Avf = 20dB, compensándolo para obtener una máxima planicidad de módulo (Mf = 65° Qp = 0.707).

Figura 1: Esquema del Amplificador compuesto, circuito I

1.1 **VFA - VFA**

Utilizando tecnologías VFA + VFA. Como amplificador VFA se utilizará un LM324, de 2(dos) polos ($Ad_0 = 100$ dB, FT = 1MHz, F1 = 10Hz y F2 = 5,06MHz).

- 1.1.1 Diseñar el amplificador compuesto VFA + VFA.
- 1.1.2 Calcular el ancho de banda potencial, la frecuencia del polo de la función de transferencia a lazo cerrado y ancho de banda a -3dB.
- 1.1.3 Medir el ancho de banda a -3dB.
- 1.1.4 Estimar el margen de fase obtenido en base a la respuesta al escalón del amplificador compuesto.

1.2 **VFA-CFA**

Utilizando tecnologías VFA + CFA. Se sugiere como amplificador VFA un LM324, de 2(dos) polos (Ad_0 = 100dB, FT = 1MHz, F1 = 10Hz y F2 = 5,06MHz) y como CFA un LM6181 con RT = 2,37M, CT = 4,8pF, cuya transimpedancia ZT presenta también 2(dos) polos (F1 = 14KHz, F2 = 82,3MHz).

- 1.2.1 Diseñar el amplificador compuesto VFA + CFA para máxima planicidad de módulo y que además cumpla con un ancho de banda potencial aproximado de fg = 2MHz. Tener en cuenta la presencia del segundo polo del VFA.
- 1.2.2 Calcular el ancho de banda potencial, la frecuencia del polo de la función de transferencia a lazo cerrado y ancho de banda a -3dB.
- 1.2.3 Medir el ancho de banda a -3dB.
- 1.2.4 Estimar el margen de fase obtenido en base a la respuesta al escalón del amplificador compuesto.

1.3 VFA-CFA II

Insertar en la configuración anterior una red de compensación cero – polo (a la salida del VFA) de tal modo que el cero de la red cancele el segundo polo del VFA. Ubicar el polo de la red a una octava de su cero. Retocar la ganancia del CFA realimentado para compensar la atenuación introducida por la red. Constatar la mejora del margen de fase a través de la respuesta al escalón.

- 1.3.1 Calcular y medir el margen de fase, el ancho de banda potencial, la frecuencia del polo de la función de transferencia a lazo cerrado y ancho de banda a -3dB.
- 1.3.2 Calcular el ancho de banda potencial, la frecuencia del polo de la función de transferencia a lazo cerrado y ancho de banda a -3dB.
- 1.3.3 Medir el ancho de banda a -3dB.
- 1.3.4 Estimar el margen de fase obtenido en base a la respuesta al escalón del amplificador compuesto.

3. Desarrollo

3.1. VFA-VFA

3.1.1. Diseño

Se tiene las siguientes funciones de transferencia para cada uno de los amplificadores:

$$Ad_1(S) = \frac{Ad_1(0)}{\left(1 + \frac{S}{2\pi f_{11}}\right) \cdot \left(1 + \frac{S}{2\pi f_{12}}\right)} = \frac{100000 \ v/v}{\left(1 + \frac{S}{2\pi 10 \ Hz}\right) \cdot \left(1 + \frac{S}{2\pi 5,06 \ Mhz}\right)}$$

Para el segundo amplificador consideramos una ganancia en continua ideal de un amplificador no inversor:

$$Ad_2(0) = \frac{1}{K_2} = \frac{1}{(1 + \frac{R_2}{R_1})} ; K_2 = \frac{R_1}{R_1 + R_2}$$

$$Ad_2(S) = \frac{1/K_2}{\left(1 + \frac{S}{2\pi f_{21}}\right) \cdot \left(1 + \frac{S}{2\pi f_{22}}\right)} = \frac{1/K_2}{\left(1 + \frac{S}{2\pi f_{21}}\right) \cdot \left(1 + \frac{S}{2\pi 5,06 \ Mhz}\right)}$$

Como simplificación se considera que el segundo amplificador se comporta como un amplificador de primer orden siempre que:

$$f_{21} = f_2 = f1 \cdot (1 - T(0)) \ll 5.06 \ Mhz$$

podemos definir ahora:

$$f_{11} = f_1 = 10 \ Hz$$

 $f_{12} = f_{22} = 5.06 \ Mhz$

La función de transferencia del lazo general sera una combinación las ganancias de los amplificadores:

$$T(S) = -K1 \cdot \frac{100000 \ v/v}{\left(1 + \frac{S}{2\pi 10 \ Hz}\right) \cdot \left(1 + \frac{S}{2\pi 5,06 \ Mhz}\right)} \cdot \frac{1/K_2}{\left(1 + \frac{S}{2\pi f_2}\right) \cdot \left(1 + \frac{S}{2\pi 5,06 \ Mhz}\right)}$$

Siendo:

$$K_1 = \frac{1}{A_{vf}} = \frac{R_i}{R_i + R_f}$$

El margen de fase para máxima planicidad de modulo es:

$$M_{\varphi} = 180 - \arctan\left(\frac{f_g}{f_1}\right) - \arctan\left(\frac{f_g}{f_2}\right) - 2 \cdot \arctan\left(\frac{f_g}{f_3}\right) = 65$$

Como $f_1 \ll f_g$ y despreciando el efecto que produce el polo doble (luego se tendrá en cuenta para comprobar):

$$M_{\varphi} = 180^{\circ} - 90^{\circ} - \arctan\left(\frac{f_g}{f_2}\right) = 65^{\circ}$$
$$25^{\circ} = \arctan\left(\frac{f_g}{f_2}\right)$$
$$f_g = \tan(25^{\circ}) \cdot f_2$$
$$f_g = 0,466 \cdot f_2$$

Observando el diagrama de bode Figura 2 y tomando el producto ganancia por ancho de banda tenemos:

$$A_{vf} \cdot f_g = A_d(0) \cdot f_1 \cdot A_{vf2}$$

$$A_{vf} \cdot (0,466) f_2 = f_T \cdot A_{vf2}$$

$$A_{vf} \cdot (0,466) f_2 = A_{vf2} \cdot f_2 \cdot A_{vf2}$$

$$A_{vf} \cdot (0,466) = A_{vf2}^2$$

Resultando:

$$A_{vf2} = \sqrt{0.466 \cdot A_{vf}} = \sqrt{0.466 \cdot 10} = 2.16$$

Del producto ganancia por ancho de banda:

$$\omega_2 = \frac{\omega_T}{A_{vf2}} = \frac{2\pi 1 \ MHz}{2,16} = 2\pi \cdot 463 \ kHz$$

El cual no da un f_g :

$$f_g = 0.466 \cdot f_2 = 215.9 \ kHz$$

Si ahora tenemos en cuenta el polo doblo para notar si este afecta significativamente en el margen de fase, tenemos:

$$M_{\varphi} = 180 - 90 - \arctan\left(\frac{215,9}{463}\right) - 2 \cdot \arctan\left(\frac{215,9}{5,06 \ kHz}\right) = 60,11^{\circ}$$

El efecto que tiene el polo doble en el margen de fase son $\approx 5^{\circ}$. Para mejorar esto debemos modificar la relación (f_g/f_2) de modo que sea menor, tomando:

$$f_g = 0.4f_2$$

$$A_{vf2} = \sqrt{0.4 \cdot 10} = 2$$

$$f_2 = \frac{f_T}{A_{vf2}} = \frac{1 \ MHz}{2} = 500 \ kHz$$

$$f_g = 0.4 \cdot 500 \ kHz = 200 \ kHz$$

$$M_{\varphi} = 63.7^{\circ}$$

Representando un error del %2. Por lo que se usaran estos valores obtenidos para los demás cálculos de los componentes pasivos.

Figura 2

Calculo de resistencias para el segundo amplificador:

$$A_{vf2} = \frac{R2}{R1} + 1 = 2$$
$$R2 = R1 = 10 \ k\Omega$$

Calculo de resistencias para el primer amplificador:

$$A_{vf} = \frac{Rf}{Ri} + 1 = 10$$

$$Rf = 9Ri$$

$$Ri = 10 \ k\Omega$$

$$Rf = 90 \ k\Omega$$

Figura 3: Circuito final

Simulando a lazo abierto y viendo en la intersección con la ganancia ideal $A_{vf}=20~dB$ tenemos un valor de fg=210,8~kHz, como se aprecia en Figura 4.

Figura 4: Medición de fg

El valor calculado era de fg=215,9~kHz, por lo que se tiene un error del $2.36\,\%$ menor al $10\,\%$.

3.1.2. Ancho de banda potencial, frecuencia del polo de la función de transferencia y ancho de banda a -3dB

La frecuencia del polo a lazo cerrado es:

$$f_2 = \frac{f_T}{A_{vf2}} = \frac{1 \ MHz}{2} = 500 \ kHz$$

El ancho de banda a 3dB para la condición de MPM:

$$f_g = 0.644 \cdot f_h$$

$$f_h = \frac{200 \ kHz}{0.644} = 310 \ kHz$$

3.1.3. Medición del ancho de banda a -3 dB

Figura 5: Ancho de banda a -3 dB

Se observa en la figura 5 que se tiene un $f_h = 363~kHz$ representando un error del 17 %, una de las causas seria que el f_T en el modelo no corresponda a 1 Mhz que utilizamos para los cálculos.

3.1.4. Estimación del margen de fase obtenido en base a la respuesta al escalón del amplificador compuesto.

Realizando una simulación con una entrada escalón de 10 mV, tenemos la siguiente respuesta:

Figura 6: Respuesta al escalón

Tenemos un sobrepasamiento de:

$$SO = \frac{103,26 - 97,59}{97,59} = 0,011$$

Considerando la respuesta como la de un sistema de segundo orden tene-

mos un factor de amortiguamiento de:

$$\xi = \sqrt{\frac{(\ln SO)^2}{\pi^2 + (\ln SO)^2}} = 0.82$$

$$0 < \xi < 1 \Rightarrow$$
 subamortiguado

El factor de calidad sera:

$$Q = \frac{1}{2 * \xi} = 0.61$$

Esto no es igual a Q=0.707 para un $M_{\varphi}=65^{\circ}$ (considerando un sistema de un solo polo sin tener en cuenta el polo doble), ya que en nuestro caso tenemos un $M_{\varphi}=63,7^{\circ}$ y además la medición del sobrepasamiento es gráfica suponiendo un sistema de segundo orden. Pero como vemos un valor de 0.61 es muy suficientemente cercano para este diseño.

3.2. VFA-CFA

3.2.1. Diseño

Partimos de las siguientes funciones de transferencia para cada uno de los amplificadores:

$$Ad_1(S) = \frac{Ad_1(0)}{\left(1 + \frac{S}{2\pi f_1}\right) \cdot \left(1 + \frac{S}{2\pi f_3}\right)} = \frac{100000 \ v/v}{\left(1 + \frac{S}{2\pi 10 \ Hz}\right) \cdot \left(1 + \frac{S}{2\pi 5,06 \ Mhz}\right)}$$

Para el segundo amplificador lo consideramos de un solo polo, despreciando la influencia del polo en $82,3\ MHz.$

$$Ad_2(S) = \frac{1/K_2}{(1 + SC_T R_2)} = \frac{1/K_2}{\left(1 + \frac{S}{2\pi \frac{1}{C_T R_2}}\right)}$$
$$K_2 = \frac{R_2}{R_p} \; ; \; f_2 = \frac{1}{2\pi C_T R_2}$$

El margen de fase para máxima planicidad de modulo es:

$$M_{\varphi} = 180 - \arctan\left(\frac{f_g}{f_1}\right) - \arctan\left(\frac{f_g}{f_2}\right) - \arctan\left(\frac{f_g}{f_3}\right) = 65,5^{\circ}$$

$$65.5^{\circ} = 180 - 90 - \arctan\left(\frac{2\ MHz}{f_2}\right) - \arctan\left(\frac{2}{5.06}\right)$$

Despejando f_2 , tenemos:

$$f_2 = \frac{2 \ MHz}{\tan(2.93)} = 39 \ MHz$$

Si bien esta frecuencia no se encuentra a menos de una decada del polo en $82,3\ MHz$ pero al tener el CFA realimentado este se desplazara mucho mas arriba por lo que podríamos considerarlo que no influye. Por lo tanto:

$$\omega_{pCFA} = \frac{1}{C_T R_2} \Rightarrow R_2 = \frac{1}{2\pi 4.8 \ pF39 \ MHz} = 850, 2 \ \Omega$$

De las relaciones de ganancia por ancho de banda obtenemos:

$$A_{vf} \cdot f_g = A_d(0) \cdot f_1 \cdot A_{vfCFA}$$

$$A_{vfCFA} = \frac{A_{vf} \cdot f_g}{A_d(0) \cdot f_1}$$

$$A_{vfCFA} = \frac{10 \cdot 2 \ MHz}{100000 \cdot 10} = 20 = 26 \ dB$$

$$A_{vfCFA} = \frac{R2}{R1} + 1 \Rightarrow R1 = \frac{850.2}{19} = 44.45 \ \Omega$$

Los valores de Ri y Rf se mantienen como el caso anterior. El circuito obtenido es el siguiente:

Figura 7

3.2.2. Ancho de banda potencial, frecuencia del polo de la función de transferencia y ancho de banda a -3dB

La frecuencia del polo a lazo cerrado es:

$$f_{pCFA} = 39 \ MHz$$

El ancho de banda a 3dB para la condición de MPM:

$$f_g = 0.644 \cdot f_h$$

$$f_h = \frac{2 \ MHz}{0.644} = 3.1 \ MHz$$

V(vo) 30dB 20dB 10dByfa_cfa × 0dB-Cursor 1 V(vo) -10dB Freq: 195.39304KHz Mag: 20.058149dB • Phase -5.6462517° -20dB Group Delay: 81.440394ns Cursor 2 -30dB V(vo) Freq: 2.5703958MHz Mag: 16.845482dB -40dB-Phase: -133.42958° -50dB 107.24838ns Group Delay: Ratio (Cursor2 / Cursor1) -60dB Freq: 2.3750027MHz Mag: -3.2126667dB Phase: -127.78332° -70dB 25.807981ns Group Delay: -80dB -90dB -100dB--110dB -120dB-1Hz 10Hz 100Hz 1KHz 10KHz 100KHz 1MHz 10MHz 100MHz 1GHz 100mHz

3.2.3. Medición del ancho de banda a -3 dB

Figura 8: Ancho de banda a -3 dB

Como se aprecia en la Figura 8 se tiene un sobrepico en la frecuencia de corte y esto se debe a la influencia del polo en 82,3 MHz que consideramos despreciable. Esto igual nos dice que la resistencia R2 obtenida representa un valor de $-Z_T|=20\log_{10}(R2)=58dB$ y observando en la hoja de datos de componente Figura 9, tenemos una frecuencia potencia cerca de 30 Mhz siendo menor a una decada respecto de 82,3 MHz, por lo tanto una influencia de este polo.

Figure 19. Transimpedance vs Frequency $V_S = \pm 15V R_L = 100\Omega$

Figura 9: Transimpedance vs Frequency $VS = \pm 15V \ RL = 100 \Omega$

Para mejorar esto podríamos cambiar el $f_g=1\ Mhz$ manteniendo MPM, entonces:

$$f_2 = \frac{1 \ MHz}{\tan(2.93)} = 19.5 \ MHz$$

$$R_2 = \frac{1}{2\pi 4.8 \ pF19.5 \ MHz} = 1.7 \ k\Omega$$

Lo que resulta en:

$$|Z_T| = 20 \log_{10}(R2) = 64,6dB$$

Teniendo mayor separación entre los polos y lograr una mejor respuesta en la frecuencia de corte:

Figura 10: Ancho de banda a -3 dB

3.2.4. Estimación del margen de fase obtenido en base a la respuesta al escalón del amplificador compuesto.

Generando una entrada escalon de amplitud 10 mV tenemos las siguientes respuestas para los caso $f_g=2\ MHz$ y $f_g=1\ MHz$:

Figura 11: Respuesta al escalón

Se observa una de las respuesta tiene un comportamiento mas subamortiguado, mientras que la otra disminuye debido a que la influencia del polo en $82,3\ MHz$ es insignificante.

Analizando los sobrepasamiento para el caso de $f_g = 1 \ MHz$ ya tiene mejor respuesta:

$$SO = \frac{105 - 97,92}{97,92} = 0,07$$

Considerando la respuesta como la de un sistema de segundo orden tenemos un factor de amortiguamiento de:

$$\xi = \sqrt{\frac{(\ln SO)^2}{\pi^2 + (\ln SO)^2}} = 0.64$$

El factor de calidad sera:

$$Q = \frac{1}{2 * \xi} = 0.77$$

3.3. VFA-CFA II

3.3.1. Diseño

La red de compensación debe cancelar el polo en 5,06Mhz del VFA, teniendo un lazo de realimentacion:

$$T(s) = \frac{-KK_cA_d(0)(1 + \frac{s}{\omega_{ZC}})}{(1 + \frac{s}{\omega_1})(1 + \frac{s}{\omega_2})(1 + \frac{s}{\omega_{PC}})}$$
$$T(s) = \frac{-KK_cA_d(0)}{(1 + \frac{s}{\omega_1})(1 + \frac{s}{\omega_{PC}})}$$

El ω_{PC} se colocora a una octava del cero para que influya:

$$\omega_{PC} = 2\omega_{ZC} = 2\omega_2 = 2\pi 10{,}15~MHz$$

Red de compensación:

$$\frac{R_x}{R_y} = \frac{\omega_{PC}}{\omega_{ZC}} - 1 = 2 - 1 = 1$$

$$R_x = R_y = 1 \ k\Omega$$

$$C_x = \frac{1}{2\pi \ 5.06 \ MHz \ 1 \ k\Omega} = 31.45 \ pF$$

En continua la salida del VFA se atenúa debido al divisor resistivo que agrega la red de la misma compensación, pero al ubicar la red en una zona donde no carga a ninguna de las etapas amplificadoras la ganancia global sigue siendo la relación entre Ri y Rf.

El margen de fase ahora es:

$$M_{\varphi} = 180 - \arctan\left(\frac{f_g}{f_1}\right) - \arctan\left(\frac{f_g}{f_{PC}}\right) =$$

$$M_{\varphi} = 90 - \arctan\left(\frac{2}{10.15}\right) = 78,8^{\circ}$$

Teniendo un mayor margen de fase cuando $f_g=2\ MHz$ respecto al circuito anterior sin compensar.

El circuito resultante se tiene en Figura 12.

Figura 12

Cuya respuesta se observa en Figura 13:

Figura 13

Se tiene respuestas sin sobre picos para los casos estudiados anteriormente ($f_g = 1 \ Mhz \ y \ f_g = 2 \ Mhz$)

3.3.2. Medición del ancho de banda a -3 dB

Como para el valor de R2 previamente calculo (850.2 Ω) no se consiguió el ancho de banda requerido se hizo un barrido de R2 por medio de Ltspice hasta encontrar un valor que nos de un ancho de banda de 2 Mhz, se observa en la Figura 14 para un $R2 = 1,65 \ k\Omega$.

Figura 14: Ancho de banda a -3 dB

3.3.3. Estimación del margen de fase obtenido en base a la respuesta al escalón del amplificador compuesto

Generando una entrad de 10 mV se tiene:

Figura 15: Respuesta al escalón

Analizando los sobrepasamiento:

$$SO = \frac{101,85 - 97,77}{97,77} = 0,041$$

Considerando la respuesta como la de un sistema de segundo orden tenemos un factor de amortiguamiento de:

$$\xi = \sqrt{\frac{(\ln SO)^2}{\pi^2 + (\ln SO)^2}} = 0.51$$

El factor de calidad sera:

$$Q = \frac{1}{2 * \xi} = 0.98$$

Siendo mayor a 0.707 ya que el margen de fase es mayor a $78,8^{\circ} > 65,5^{\circ}$.