オフィスビルにおける空調設定スケジュールの 進化型多目的最適化

- 電気通信大学 情報学専攻
- 三菱電機株式会社 情報技術総合研究所 監視メディアシステム技術部 空間管理制御技術グループ

太田 恵大

背景:空調設定スケジュール最適化

- オフィスビルでは空調のエネルギー消費が全体の3割
 - ⇒ 空調運用における省エネと快適性向上が重要
- エネルギー消費量・室内快適性を左右する要素■ 空調設定, 気象条件, 利用者数, 機器利用率等

背景:空調設定スケジュール最適化

- オフィスビルでは空調のエネルギー消費が全体の3割
 - ⇒ 空調運用における省エネと快適性向上が重要
- エネルギー消費量・室内快適性を左右する要素
 - **■空調設定**,気象条件,利用者数,機器利用率等

関連研究と本研究

関連研究

単一目的最適化 [Xiao+,'17], [Alhaider+,'15]

- <課題>
- ■一度の探索で解を1つ獲得
- ■意思決定者は複数の解候補 から比較検討ができない

<u>本研究</u>

- ■一度の探索で複数のパ レート最適解を探索
- ■問題に対する事前知識

関連研究と本研究

関連研究

単一目的最適化 [Xiao+,'17], [Alhaider+,'15]

- <課題>
- ■一度の探索で解を1つ獲得
- ■意思決定者は複数の解候補 から比較検討ができない

数理モデルの利用 [Zhang+,'14]

- <課題>
- 日射,部屋間の熱移動,温度 以外の室内環境は考慮しない
- ビル全体のモデリングは困難

本研究

進化計算による 多目的最適化

シミュレーションを 用いた多目的最適化

- <課題A>
- ■適した最適化法が不明

シミュレータの利用

- <課題C>
- ■解評価に時間を要する
- ■精度の低い予報利用
 - →最適性も低くなる

<課題B>

予報誤差の影響

本研究の全体像

5章 ロバスト最適化

予報誤差に対応

ロバスト性評価

課題B:

外気温予報誤差 の影響を受ける

6章 サロゲート最適化

最適化の高速化

_____ 、最適化時間

0.5H[©]

、LSTMによる代理評価

最適化時間

課題C:

最適化に時間がかかる

- →精度の低い予報利用
- →最適性も低くなる

<u>4章 シミュレーション最適化</u>

研究の対象: オフィスビル

課題A:

大規模ビル空調最適化に有効な 多目的最適化手法が不明

本研究の全体像

研究目的

• 空調設定最適化における課題A~Cを解決する 方法論を構築すること

本研究の位置付け

- 従来の空調設定スケジュール最適化
 - ■単一目的最適化を利用
 - ■対象が小規模であり、評価に数理モデルを利用

課題A

大規模ビル空調最適化に有効な多目的最適化手法が不明

本研究の位置付け

■ オフィスの空調設定最適化における発展的な課題

本研究の位置付け

■ オフィスの空調設定最適化における発展的な課題

オフィス空調設定スケジュール最適化問題 のモデル化

シミュレーションによる空調設定スケジュールの評価

高玉先生, 庄野先生のご指摘

- 設定温度スケジュールを解(設計変数)とする
- 快適性・エネルギー消費量データをシミュレータが出力
- ■出力データから目的関数・制約を算出

解(設計変数)

- ■1時間ごとの空調の設定温度
- ■1日(5:00~24:00)が最適化する対象時刻
- 設計変数の数:20

第1目的:室内快適性

- PMV(Predicted Mean Vote) [Fanger+, '73] を採用
 - 室内の平均的な温冷感を表すISOの指標
 - 欧州や日本で室内快適性の指標として広く採用
 - 部屋の平均温度,湿度,風速,輻射温度,代謝量,着衣量から算出
- 空調設定スケジュールxの室内快適性の評価
 - 評価対象時刻は、オフィスワーカーが在室する7:00~21:00

Minimize
$$f_1(x, A) = \frac{1}{|T_1|} \sum_{t \in T_1} |PMV(x, A, t)|$$

 $T_1 = \{7: 00, 7: 10, \dots, 20: 50, 21: 00\}$

A: 1日の各時刻の外気温

制約条件

- ISOが推奨する室内快適性の範囲
 - Subject to $g_t(\mathbf{x}, A) = |PMV(\mathbf{x}, A, t)| \le 0.5 \quad (t \in T_1)$
- 制約違反量
 - $v(x, A) = \sum_{t \in T_1} \max\{0, |PMV(x, A, t)| 0.5\}$
 - 各時刻でISOの推奨範囲を超えたPMVの合計
 - オフィスワーカーが在室する時間T₁ = {7:00, ..., 21:00}が対象

第2目的: エネルギー消費量

- 1日のエネルギー消費量の合計値を採用
 - 評価対象時刻は, 0:00-24:00

Minimize
$$f_2(\mathbf{x}, A) = \sum_{t \in T_2} P(\mathbf{x}, A, t)$$

■ P(x,A,t) は空調の設定温度スケジュールxと、外気温が Aのときの時刻tにおけるエネルギー消費量

 $T_2 = \{0:00,0:10,...,23:50,24:00\}$

A: 1日の各時刻の外気温

空調スケジュール最適化の利用シナリオ

大須賀先生のご指摘

- 運用開始時間までに1日分の空調スケジュールを最適化
- 運用時間内は,得られた空調スケジュールを利用

本研究の全体像

5章 ロバスト最適化

予報誤差に対応

ロバスト性評価

課題B:

外気温予報誤差の影響を受ける

| A : Air temperature | A : Air temperature

6章 サロゲート最適化

最適化の高速化

、最適化時間

LSTMによる代理評価

課題C:

|最適化に時間がかかる |→精度の低い予報利用

→ 相接の低い了報利用

最適性も低くなる

4章 シミュレーション最適化

研究の対象: オフィスビル

課題A:

大規模ビル空調最適化に 有効な多目的最適化手法 が不明確

シミュレーション最適化

- 解(設計変数)*x*は,空調の設定温度スケジュール
- 解評価部は,2つの目的関数値(室内快適性 f_1 , エネルギー消費量 f_2)を出力
- 解評価部は、ビルエネルギーシミュレータEnergyPlusを採用

シミュレーション最適化の検証内容

(1) 多目的進化計算手法の決定

- 代表的4手法を比較
- 空調スケジュール最適化に適した手法の検証
- 得られた結果から問題の特徴を分析

(2) OMOPSOの各構成要素の効果を分析

- 各構成要素を除去したアルゴリズムの性能を比較
- OMOPSOの各構成要素の貢献度を分析

(3) 改良OMOPSOの提案

- アルゴリズム性能を向上する手法を提案
- 空調スケジュール最適化に対する効果を検証

数値実験(1) 多目的進化計算手法の決定

- 代表的4手法による探索性能を比較
- ■比較対象アルゴリズム
 - NSGA-II [Deb+, '02]
 - → 遺伝的アルゴリズム [Holland, '75]
 - NSGA-III [Deb+, '14]
 - → 遺伝的アルゴリズム [Holland, '75]
 - MOEA/D [Li+, '09]
 - → 差分進化 [Storn+, '97]
 - OMOPSO [Sierra+, '05]
 - → 粒子群最適化 [Kennedy+, '95]

詳細は割愛

多目的最適化手法

OMOPSO [Sierra+, '05]

- 解を粒子として変異させる粒子群最適化ベースのアルゴリズム
- 各粒子の位置と速度を,以前の速度,リーダー方向へのベクトルおよびパーソナルベストへのベクトルによって変異する

$$v^{g+1} = wv^g + c_1r_1(x_{pbest} - x^g) + c_2r_2(x_{leader} - x^g)$$

 $x^{g+1} = x^g + v^{g+1}$

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

■ アルゴリズムの流れ

- ① 初期粒子群Pを生成する
- ② 粒子群Pの各粒子x^gを解評価部で評価する
- ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
- ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
- ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
- ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

アルゴリズムの流れ

- ① 初期粒子群Pを生成する
- ② 粒子群Pの各粒子xgを解評価部で評価する
- ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
- ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
- ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
- ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

■ アルゴリズムの流れ

- ① 初期粒子群Pを生成する
- ② 粒子群Pの各粒子xgを解評価部で評価する
- ③ 非劣解をアーカイブEに格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
- ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
- ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
- ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブEに格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブEに格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

- アルゴリズムの流れ
 - ① 初期粒子群Pを生成する
 - ② 粒子群Pの各粒子xgを解評価部で評価する
 - ③ 非劣解をアーカイブE に格納し、アーカイブから混雑距離でリーダー粒子群Lを抽出する
 - ④ リーダー粒子群Lからバイナリトーナメントで選択したリーダー方向に粒子を変異する
 - ⑤ 粒子群PをQ, R, Sの3つに分割し、一様突然変異/非一様突然変異で変異する
 - ⑥ 3つの粒子群Q, R, Sを1つに結合し、次世代の粒子群Pとする

|制約条件の取り扱い:制約支配[Deb+, '02]

- 以下のいずれかを満たすとき、解xは解yより良いと判断
 - -x1とy1が両方実行可能で,目的関数値でx3がy3を支配する
 - **x2**が実行可能, y2が実行不可能である
 - x3とy3が両方実行不可能で,x3の制約違反量がy3より小さい

■ 制約支配による解の順序関係により、実行可能な非劣解のみがアーカイブ粒子群に抽出される

数値実験(1)多目的進化計算手法の決定

- ■比較対象アルゴリズム
 - NSGA-II, NSGA-III, MOEA/D, OMOPSO
- 対象問題
 - 空調設定スケジュールの最適化問題
 - ■冷房条件(2006/8/21)
- 問題設定
 - _2目的
 - 1制約
 - 20変数
- 評価尺度
 - Hypervolume (HV)

|数値実験(1) 多目的進化計算手法の決定

■ アルゴリズムのパラメータ

大須賀先生のご指摘

各アルゴリズムの推奨値を使用

共通

個体数	50
世代数	500

NSGA-II[Deb+, '02] NSGA-III[Deb+, '14]

	- '	
交叉	手法	SBX
	分布度 η_c	30
	交叉率 p_c	0.9
突然 変異	手法	PM
	分布度 η_m	20
	変異確率 p_m	1/n

OMOPSO[Sierra+, '05] MOEA/D [Li+, '09]

リーダーサイズ	100
アーカイブサイズ	制限なし
突然変異確率	1/n
重みw	[0.1, 0.5)
重み c_1, c_2	[1.5, 2.0)
突然変異係数b	5

手法	DE(rand/1/bin)
スケーリング係数F	0.5
交叉率 C_r	1.0
手法	PM
分布度 η_m	20
変異確率 p_m	1/n
近傍サイズ <i>T</i>	5
f 傍選択確率 δ	0.9
最大更新数 <i>n</i>	2
	スケーリング係数 F 交叉率 C_r 手法 分布度 η_m 変異確率 p_m 近傍サイズ T

評価尺度:Hypervolume(HV) [Zitzler, '99]

- 獲得した解集合が目的関数空間に作る超体積
- パレートフロントの近似度合いを評価する指標
 - 解の収束性
 - 解の多様性
 - 解の数
 - 解分布の一様さ

数値実験結果(1) 多目的進化計算手法の決定

- 制約を満たし快適性とエネルギーのトレードオフを表す解集合を獲得
- 4手法のそれぞれが異なる傾向の解集合を獲得
- OMOPSOは,トレードオフを最も広域に近似可能で最も高いHV値
 - ➡ 今後, OMOPSOを使用

	OMOPSO	NSGA-II	NSGA-III	MOEA/D
HV値	0.643	0.621	0.628	0.589
高い 1. 1.8 1.7 1.6 1.7 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	9 5 8 7 7 5 6 5 7 探索方向	3的関数空 0.2 0.3 f ₁ :室内快適性	0.4	• OMOPSO × NSGA-II * NSGA-III + MOEA/D

数値実験結果(1) 多目的進化計算手法の決定

- 制約を満たし快適性とエネルギーのトレードオフを表す解集合を獲得
- 4手法のそれぞれが異なる傾向の解集合を獲得
- OMOPSOは、トレードオフを最も広域に近似可能で最も高いHV値
 - ➡ 今後, OMOPSOを使用

	OMOPSO	NSGA-II	NSGA-III	MOEA/D
HV値	0.643	0.621	0.628	0.589
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.9 ×10 ¹⁰ .8 .8 .75 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	0.2 0.3 f ₁ :室内快適性	0.4	· OMOPSO × NSGA-II * NSGA-III + MOEA/D

数値実験結果(1) 問題の特徴分析

庄野先生のご指摘

- パレートフロントは線形に近い形状
- 一部に間隙があり、解の獲得が困難な部位が存在
- 快適性の制約により $f_1 \geq 0.4$ の範囲は,解の獲得が困難

数値実験結果(1) 問題の特徴分析

庄野先生のご指摘

- OMOPSOで獲得したスケジュールを比較
- $f_1 \ge 0.3$ では、スケジュールが類似
- $f_1 \leq 0.1$ では,スケジュールが多様
 - → 多峰性を持つ関数である可能性

局所最適解

多峰性を持つ関数

|数値実験結果(1) 問題の特徴分析

庄野先生のご指摘

- OMOPSOで獲得したスケジュールを比較
- $f_1 \geq 0.3$ では,スケジュールが類似
- $f_1 \leq 0.1$ では、スケジュールが多様
 - → 多峰性を持つ関数である可能性

数値実験結果(2) OMOPSOの各要素の効果

高玉先生, 大須賀先生, 庄野先生, 高橋先生のご指摘

■ OMOPSOに内在する特徴的な3要素の探索効果を検証

(A)無限アーカイブ:あらゆる非劣解を保持

(B) リーダー粒子群:アーカイブから良い親粒子を選択

(C) 突然変異:解の多様性の導入

数値実験結果(2) OMOPSOの各要素の効果 高玉先生、大須賀先生、庄野先生、高橋先生のご指摘

比較対象アルゴリズム

方法	(A)無限アーカイブ	(B)リーダー粒子群	(C)突然変異
方法1 (OMOPSO)	0	0	0
方法2	×	\circ	\bigcirc
方法3	0	×	\circ
方法4	0	\circ	×

- 対象問題
 - 空調設定スケジュール最適化問題
 - 冷房条件(2006/8/21)
- 問題設定
 - 2目的
 - 1制約
 - 20変数

r目的関数

室内快適性 $f_1(x)$ エネルギー消費 $f_2(x)$

- 評価方法
 - 20回試行の平均HV

44

数値実験結果(2) OMOPSOの各要素の効果 高玉先生、大須賀先生、庄野先生、高橋先生のご指摘

OMOPSOの各要素が探索性能向上に貢献

世代数g

無限アーカイブ>突然変異>リーダー粒子群の順に効果が大きい

方法	(A)無限アーカイブ	(B)リーダー粒子群	(C)突然変異	HV値
方法1 (OMOPSO)	0	0	0	0.6480
方法2	×	\bigcirc	\bigcirc	0.6379
方法3	0	×	\bigcirc	0.6470
方法4	\circ	\bigcirc	×	0.6400

リーダーの選択方法を改良したOMOPSOの提案

高橋先生のご指摘

- 従来手法:OMOPSO
 - リーダーはリーダー粒子群から バイナリトーナメントで選択
 - →リーダーの位置よっては 良好な解を発見しにくい

- 提案手法: DOMOPSO D: Directional
 - リーダーはリーダー粒子群のうち 変異対象粒子を優越する範囲から 選択する

リーダーの選択方法を改良したOMOPSOの提案

高橋先生のご指摘

46

- 従来手法:OMOPSO
 - リーダーはリーダー粒子群から バイナリトーナメントで選択
 - →リーダーの位置よっては 良好な解を発見しにくい

提案手法: DOMOPSO D: Directional

リーダーはリーダー粒子群のうち 変異対象粒子を優越する範囲から 選択する

数値実験結果(3) 改良OMOPSOの提案 高玉先生、大須賀先生、庄野先生、高橋先生のご指摘

リーダー選択方法の改良により探索性能が向上

方法	(A)無限アーカイブ	(B)リーダー粒子群	(C)突然変異	HV値	
方法1 (OMOPSO)	0	0	0	0.6480	
方法2	×	\circ	\bigcirc	0.6379	
方法3	0	×	\bigcirc	0.6470	
方法4	\circ	\circ	×	0.6400	
方法5 (DOMOPSO)	0	優越範囲から選択	\bigcirc	0.6482	

方法5:提案手法(DOMOPSO)

方法1:通常のOMOPSO

▶方法3:リーダー粒子群なし

▶方法4:突然変異なし

方法2:無限アーカイブなし

数値実験結果(3) 改良OMOPSOの提案 高玉先生、大須賀先生、庄野先生、高橋先生のご指摘

リーダー選択方法の改良により探索性能が向上

方法	(A)無限アーカイブ	(B)リーダー粒子群	(C)突然変異	HV値
方法1 (OMOPSO)	0	0	0	0.6480
方法2	×	\bigcirc	\bigcirc	0.6379
方法3	0	×	\circ	0.6470
方法4	\circ	\bigcirc	×	0.6400
方法5 (DOMOPSO)	0	優越範囲から選択	\circ	0.6482

方法5:提案手法(DOMOPSO)

方法1:通常のOMOPSO

▶方法3:リーダー粒子群なし

方法4:突然変異なし

方法2:無限アーカイブなし

方法5:提案手法(DOMOPSO)

・方法1:通常のOMOPSO

▶方法3:リーダー粒子群なし

数値実験結果(3) ~OMOPSOの改良~

高橋先生のご指摘

- DOMOPSOは,広い範囲に分布する良好な解集合を獲得
- OMOPSOよりパレートフロントへの収束性が改善

本研究の全体像

5章 ロバスト最適化

予報誤差に対応

ロバスト性評価

課題B:

外気温予報誤差の影響を受ける

6章 サロゲート最適化

最適化の高速化

最適化時間

LSTMによる代理評価

課題C

|最適化に時間がかかる

→精度の低い予報利用

→最適性も低くなる

4章 シミュレーション最適化

研究の対象: オフィスビル

課題A

大規模ビル空調最適化に 有効な多目的最適化手法 が不明

本研究の位置付け

■ 空調設定スケジュール最適化の発展的な研究を2つ実施

- 従来の課題 [Zhang+, '14]
 - 多数回の評価が必要
 - ロバストでない解は提示不可能

- 提案法(5章): 予報誤差による ロバスト性の目的関数を追加
- ▶少ない評価回数でロバスト性評価
- ロバストでない解も提示可能
- →ロバストな解の探索性能を検証

気象予報誤差に対するロバスト最適化

- 解評価部は, f_1, f_2 とそれぞれのロバスト性 f_3, f_4 の4つの目的関数値を出力
- 解評価部は、外気温Aとその誤差 $\pm 2\sigma$ を含むシミュレーションを実行

第3,第4目的:ロバスト性

- 外気温の予報値A, 上方予報誤差を含む気温 $A^{+2\sigma}$, 下方予報誤差を含む気温 $A^{-2\sigma}$ についてシミュレーションを実行
- 室内快適性とエネルギー消費量に対し、誤差の有無による目的 関数値の差の最大値を最小化
- 第3目的:室内快適性のロバスト性 Minimize $f_3(x) = \max\{|f_1(x, A^{+2\sigma}) f_1(x, A)|, |f_1(x, A^{-2\sigma}) f_1(x, A)|\}$
- 第4目的:エネルギー消費量のロバスト性 Minimize $f_4(x) = \max\{|f_2(x, A^{+2\sigma}) f_2(x, A)|, |f_2(x, A^{-2\sigma}) f_2(x, A)|\}$

- 比較対象アルゴリズム
 - OMOPSO (2目的, ロバスト性考慮しない)
 - OMOPSO (4目的,ロバスト性考慮)
- 対象問題
 - 空調設定スケジュール最適化問題
 - 冷房条件(2006/8/21)
- 問題設定
 - 1制約
 - _ 20変数
- 評価尺度
 - 獲得したパレート解分布
 - ■時系列データの比較

目的関数

室内快適性 $f_1(x)$ エネルギー消費 $f_2(x)$ 快適性のロバスト性 $f_3(x)$ エネルギのロバスト性 $f_4(x)$

- lacksquare 赤の2目的最適化のスケジュールは, f_1 - f_2 目的関数空間で良好な値
- 黒の4目的最適化の結果は、 f_1 - f_2 目的関数空間で赤と同程度の解を含み、 f_3 - f_4 目的関数空間では赤を支配する良好な値

「スト性を考慮しない(2目的)

55

- lacksquare 赤の2目的最適化のスケジュールは, f_1 - f_2 目的関数空間で良好な値
- 黒の4目的最適化の結果は、 f_1 - f_2 目的関数空間で赤と同程度の解を含み、 f_3 - f_4 目的関数空間では赤を支配する良好な値

(スト性を考慮しない(2目的)

設定温度スケジュール

エネルギー消費量

室内快適性

設定温度スケジュール

エネルギー消費量

室内快適性

数値実験結果(2)他の予報誤差に対するロバスト性

高橋先生のご指摘

- 獲得したスケジュールの,様々な気温誤差に対する ロバスト性を検証
 - 気温予報誤差を10パターン生成しロバスト性 f_3 , f_4 を評価
 - 最高気温予報に上方誤差がある場合:5パターン
 - 最高気温予報に下方誤差がある場合:5パターン

 $\mathcal{A}^{+2\sigma}$:上方誤差を含む外気温 \mathcal{A}

: 生成した上方誤差パターン

■A :外気温の予報値

: 生成した下方誤差パターン

A^{-2σ}:下方誤差を含む外気温A

数値実験結果(2)他の予報誤差に対するロバスト性

高橋先生のご指摘

- 10パターンのうち4パターンを抜粋
- lacksquare 黒の4目的最適化の結果は, f_3 - f_4 目的関数空間では赤を支配する
- 4目的最適化で得たスケジュールは様々な予報誤差パターンに対してもロバスト

上方誤差がある場合

下方誤差がある場合

・ロバスト性を考慮した手法(4目的) 〇 ロバスト性を考慮しない(2目的)

本研究の全体像

5章 ロバスト最適化

予報誤差に対応

コバスト性評価

課題B:

外気温予報誤差の影響を受ける

6章 サロゲート最適化

最適化の高速化

最適化時間

0.5H[©]

、LSTMによる代理評価

課題C:

最適化に時間がかかる

→精度の低い予報利用

最適化時間→最適性も低くなる

4章 シミュレーション最適化

研究の対象: オフィスビル

課題A

大規模ビル空調最適化に 有効な多目的最適化手法 が不明

シミュレーション最適化の計算時間

- 最適化全体に1日弱の時間が必要
- 空調運用の1日以上前の精度の低い気象予報を利用 →最適性も低くなる

	シミュレーション最適化 (OMOPSO, 8並列の解評価)
1つの解の評価	37.3秒
最適化全体	23.4時間

■ シミュレーションによる解評価を近似して高速化 →最適化全体の時間を短縮

本研究の位置付け

■ オフィスの空調設定最適化における発展的な課題

		課題B:外気温予報に 対するロバスト性			
		未考慮	考慮		
課題Ci計算	なし	[Pan+, '16] [Bingham+, '17]	[Zhang+, '14] 本研究 5章		
の高速化	あり	[Tresidder+, '12] 本研 6章	T 究 章		

- 従来の課題 [Tresidder+, '12]
 - 変数の数が多いと性能が悪化
 - 非線形関数は予測が困難

- 提案法(6章): NNによる近似
 - 多変数データの近似が可能
 - シミュレータ出力の時系列データを予測するため非線形な制約 も予測可

サロゲート評価モデルを用いた検証

(1) サロゲート評価モデルによる最適化

- ■最適化結果の妥当性の確認
- サロゲート評価モデルによる高速化効果の検証

(2) 改良OMOPSOによる最適化性能の評価

- ■HVとパレートフロント形状から解探索性能を検証
- ■最適化結果の妥当性の確認

(3) サロゲートモデルを用いたロバスト最適化

■最適化結果の妥当性の確認

サロゲート最適化

- 解,目的関数,最適化部は,シミュレーション最適化と同様
- 解評価部は, ビルシミュレータを代替するサロゲートモデルを使用
- 時系列データを取扱うためにLSTM [Gers+, '00]を採用

| サロゲート評価モデルの学習

- 設定温度スケジュールxをランダム生成
- ビルシミュレータで教師データを作成

学習のパラメータ
- ミニバッチサイズ 200
- 学習回数 2000
- ユニット数 250
- 最適化手法 Adam
- 学習率α 0.001
- 勾配減衰率 β_1,β_2 0.9, 0.999

数値実験(1) サロゲート最適化

- アルゴリズム
 - OMOPSO
- 対象問題
 - 空調設定スケジュール最適化問題

室内快適性 $f_1(x)$

エネルギー消費 $f_2(x)$

同的関数

- 冷房条件(2006/8/21)
- ■問題設定
 - 20変数
 - _ 2目的
 - 1制約
 - サロゲートモデルでの評価
- 評価
 - 獲得したパレート解の分布
 - 時系列データのシミュレータとの比較

数値実験結果(1) ~サロゲート最適化~

- サロゲート評価モデルに対してOMOPSOを用いた 多目的最適化の結果
 - トレードオフを示すスケジュール集合を獲得

|数値実験結果(1) ~サロゲート最適化~

- 獲得したスケジュールの時系列データ
 - サロゲート最適化のスケジュールはシミュレーション結果に類似
 - 朝の時間帯のシミュレーションとLSTMによる値の誤差が大きい
 - → 設定温度変化が特に大きい時間は誤差が大きくなる

数値実験結果(1) ~サロゲート最適化~

- ■最適化時間
 - サロゲート最適化により、最適化時間を30分以内に短縮
 - ■運用開始直前の高精度な気象予報値が利用可能

	サロゲート無し (4章の方法)	サロゲート有り (6章の提案法)
1つの解の評価	37.3秒 1/3	10 0.120秒
最適化全体	23.4時間 1/4	7 29.6分

数値実験(2) ~OMOPSOの改良~

- 比較対象アルゴリズム
 - 提案手法: DOMOPSO
 - 従来手法:OMOPSO, NSGA-II/-III, MOEA/D
- 対象問題
 - 空調設定スケジュール最適化問題

室内快適性 $f_1(x)$

- 冷房条件(2006/8/21)
- 問題設定「目的関数
 - _ 2目的
 - 1制約
 - 20変数
 - サロゲートモデルでの評価
- 評価尺度
 - Hypervolume (HV) (21試行の平均)

|数値実験結果(2) ~OMOPSOの改良~

- 提案法(DOMOPSO)が最も良いHVを獲得
- OMOPSOの500世代のHVと同様の値を467世代で獲得
 - →従来より6.7%探索時間を短縮可能

|数値実験結果(2) ~OMOPSOの改良~

- 提案法(DOMOPSO)が最も良いHVを獲得
- OMOPSOの500世代のHVと同様の値を467世代で獲得
 - →従来より6.7%探索時間を短縮可能

サロゲートモデルを用いたロバスト最適化

- サロゲートモデルは外気温と空調設定から時系列を算出 →外気温予報誤差がある場合の予測も可能
- サロゲートモデルを用いてロバスト性の目的関数f3-f4を計算し最適化

数値実験(3)〜サロゲートロバスト最適化〜

- アルゴリズム
 - OMOPSO (2目的,ロバスト性考慮しない)
 - OMOPSO (4目的,ロバスト性考慮)
- 対象問題
 - 空調設定スケジュール最適化問題
 - 冷房条件(2006/8/21)
- 問題設定
 - 20変数
 - 4目的
 - 1制約
 - サロゲートモデルでの評価
- 評価
 - 獲得したパレート解の分布
 - 時系列データのシミュレータとの比較

目的関数

室内快適性 $f_1(x)$ エネルギー消費 $f_2(x)$ 快適性のロバスト性 $f_3(x)$ エネルギのロバスト性 $f_4(x)$

| 数値実験(3)〜サロゲートロバスト最適化〜

- シミュレーションによるロバスト最適化と同様の傾向
 - 黒の4目的最適化の結果は、 f_3 - f_4 目的関数空間では赤を支配
- サロゲート評価モデルを用いてもロバストな解を探索し意思 決定者へ提示可能

結論

■ オフィスビルにおける空調設定スケジュールを 多目的最適化する方法論を提案

シミュレーション最適化

- ■(1)適した多目的進化計算手法:OMOPSO
- ■(2)OMOPSOアルゴリズムの各構成要素が最適化に貢献
- ■(3)リーダー選択を改良したDOMOPSOが性能向上

■ロバスト最適化

▶予報誤差の影響を目的関数に加えることで,気象変動に ロバストな空調設定スケジュールを獲得可能

■サロゲート最適化

- ■(1)サロゲート評価器による最適化結果を検証 シミュレーションと同様の解集合を30分で獲得
- ■(2)改良したDOMOPSOはサロゲート評価器でも探索性能向上
- ■(3)サロゲート評価器でもロバストなスケジュールを獲得

今後の課題と展望

- ■短期的な課題
 - **異なるビルモデルにおける検証**高玉先生,大須賀先生のご指摘
 - ■冬期(暖房)条件のビルモデルでの性能検証
 - ■オフィス以外(病院,学校等)のビルへの適用
 - 目的関数を削減した場合との比較検証
 - ■他の単一目的最適化手法
 - ■ロバスト最適化へのε制約法の適用
 - サロゲートモデルの検証
 - ■LSTMの学習方法改善による精度向上
 - ■他のサロゲートモデル(NN, SVR等)との比較
 - 最適化アルゴリズムの性能検証と改善_{高橋先生のご指摘}
 - ■他の最適化問題における改良OMOPSO(DOMOPSO)の性能検証
 - パーソナルベストの取扱いの改善
 - ■適応的なパラメータ調整の仕組みの検討

今後の課題と展望

- ■長期的な展望
 - 問題の拡張 高玉先生のご指摘
 - ■温度以外の設定の考慮(風量, ON/OFF, 冷温水温度設定など)
 - ■空調以外の設備の対応(照明,換気,給湯,昇降機など)
 - ロバスト性向上と動的最適化の検討 _{高玉先生・庄野先生のご指摘}
 - ■気温以外の予報誤差(湿度,日射等)や部屋使用率変動への対応
 - ■リアルタイム制御に対応するための最適化の高速化
 - ■意思決定手法の検討
 - ■自己組織化マップ(SOM)等による解分類・表示法
 - ■並行座標プロットを使った対話型意思決定法

ご清聴ありがとうございました