Cryptanalysis in real life

周立平 等研究團隊

Do u understand real hackers?

綱目

第一章 緒論

第二章 Mifare Classic Card介紹

第三章 Mifare Classic Card現有

攻擊方式

第四章 二代卡的特性

第五章 自然人憑證

第一章 緒論 攻擊背景

第一章 緒論 攻擊手段

第一章 緒論 現狀

新/舊卡	改良方式 成本??
新卡	用 3DES etc
舊卡	改善弱點 增加金鑰長度 etc

0.8美元/張,全球已發行約10億張

第二章 Mifare Classic Card介紹

第一節 Mifare Classic Card規格 與結構

第二節 Mifare Classic Card認證 協定

第三節 Crypto-1加密演算法

第四節 Mifare Classic Card弱點

規格與特性

1. 操作頻率: 13.56 MHz。

2. 傳輸速度: 106 Kbps。

3. 傳輸距離: 10cm。

資料儲存結構

Sector	Block 0	Block 1	Block 2	Block 3
0	Manufacturer Code	Data Block	Data Block	Key A, Access Conditions, Key B
1	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
2	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
3	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
4	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
5	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
6	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
7	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
8	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
9	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
10	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
11	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
12	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
13	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
14	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B
15	Data Block	Data Block	Data Block	Key A, Access Conditions, Key B

記憶體儲存結構

通訊流程

一、Mifare Classic卡認證流程

二、通訊範例

Step	發送者	Hex(16進位內容)	ISO 14443 指令	註解
0	RD	26	REQUEST	Hi, I am Reader, Is any card here ?
1	TAG	04 00	AWAKE	Hello, I am here.
2	RD	93 20	Polling	Who are you ?
3	TAG	9C 59 9B 32 6C	UID	I am 9C 59 9B 32 6C
4	RD	93 70 9C 59 9B 32 6C 6B 30	ANTI COLL	OK, I want to talk to you 9C 59 9B 32 6C
5	TAG	08 B6 DD	TAG TYPE	Ok. My card type is Mifare Classic 1K
6	RD	60 00 F5 7B	AUTH	開始認證 ,請問 00 Block
7	TAG	82 A4 16 6C	Nt	明文 Nt
8	RD	EF EA 1C DA 8D 65 73 4B	Nr + Nt'	密文 {Nr} + {Ar}
9	TAG	9A 42 7B 20	Nt"	密文 {At}

一、LFSR (Linear Feedback Shift Registers) 線性反饋位移暫存器

n個位元的LFSR,變化周期最大為2n-1種

二、PRNG(Pseudo-random Number Generator)偽亂數產生器

L
$$(x_0x_1...x_{15}) := x_0 \oplus x_2 \oplus x_3 \oplus x_5$$

 $suc(x_0x_1...x_{31}) := x_1x_2...x_{31}L (x_{16}x_{17}...x_{31})$

三、Filter Function

四、同位元(Parity Bit)

五、Crypto-1演算法加密過程

(一)Crypto-1初始狀態設定

五、Crypto-1演算法加密過程

(二) Nr加密

五、Crypto-1演算法加密過程

(三)Tag產生Ar、At前的Crypto-1狀態

五、Crypto-1演算法加密過程

(四)Reader產生Ar、Tag產生At的密文

一、密鑰串流之取得

Reader

UID · Nt · {Ar} · {At} · {Halt} · {Nack}

二、LFSR Rollback

$$R(x_1x_2...x_{47} L(x_0x_1...x_{47})) = x_0$$

三、Inputs to Filter Function

四、Parity Bit

五、Nested Authentications

Nt: 216-1種的變化

第三章 Mifare Classic Card 現有攻擊方式

竊聽攻擊法 {Nr}差分攻擊法

Tag

真的卡片

真的讀卡機

Reader

- 1. 使用Nt、{At}、{Halt}、{Ar}計算ks3、ks2
- 2. 使用 {Nr} 來計算ks1、Nr。
- 3. 使用Nr來回推state。
- 4. 使用UID、Nt來回推Key。

第三章 Mifare Classic Card現有攻擊 {Nr}差分攻擊法

1. CRYPT01 lib

```
主要是針對CRYPT01加密演算
法寫的程式,經由此程式,
我們可以解出Key的內容。
UID = 0x9c599b32;
Nt = 0x82a4166c;
\{Nr\} = 0xa1e458ce;
\{Ar\} = 0x6eea41e0;
\{At\} = 0x5cadf439;
計算出Key為fffffffffff。
```

```
MING W32:/d/new.crapto1
?x?T???b??.txt
???????k?k?B???A?????S?O???B??.txt
?s?L???0
????.txt
user@ROPOLO-NB /d
$ cd new.crapto1
user@ROPOLO-NB /d/new craptol
$ ls
         craptol.c cryptol.c readme test2.exe
Makefile craptol h graptol
                                test2.c test5.c
user@RQPOLO-NB /d/new.crapto1
$ test2
nt': 8d65734b
ks2: e38f32ab
ks3: c6ef8f19
Found Key: [ff ff ff ff ff ff]
user@RQPOLO-NB /d/new.crapto1
```

2. MFCUK: Mifare Classic Universal toolkit

此軟體工具包含相關的範例及各種使用在Libnfc和Crapto-l的工具,該軟體是針對Mifare Classic卡的弱點並參考WirelesslyPickpocketing a Mifare Classic Card及THE DARKSIDE OF SECURITY BYOBSCURITY這二篇論文的攻擊方式去寫的程式。

3.MfOC(Mifare Classic Offline Cracker)

此軟體是NFC的工具軟體之一它可以還原Mifare Classic 卡片的密鑰,利用的原理是 Nested Authentication來還 原密鑰,只要能知道某一個 Sector的密鑰及Nt,它就可 以把其他Sector的密鑰還原。

```
🔊 🗐 📵 user@ubuntu: ~
 檔案(F) 編輯(E) 檢視(V) 搜尋(S) 終端機(T) 求助(H)
Using sector 00 as an exploit sector
Sector: 1, type A, probe 0, distance 19263 .....
Sector: 1, type A, probe 1, distance 19263 .....
Found Key: A [010411300002]
Sector: 2, type A, probe 0, distance 19261 .....
Found Key: A [0000000000001]
Sector: 0, type B, probe 0, distance 19261 .....
Sector: 0, type B, probe 1, distance 19259 .....
Found Key: B [fffffffffff8]
Sector: 3, type B, probe 0, distance 19261 .....
Sector: 3, type B, probe 1, distance 19263 .....
Sector: 3, type B, probe 2, distance 19263 .....
Sector: 3, type B, probe 3, distance 19261 .....
Found Key: B [fffffffffff]
Sector: 4, type B
Found Key: B [fffffffffff]
Sector: 5, type B
Found Key: B [fffffffffff]
Auth with all sectors succeeded, dumping keys to a file!
```

4. Libnfc[NFC10]

此軟體讓NFC的設備可以做相關的模擬,它可以模擬 Mifare Classic卡片認證的 過程,軟體為一自由軟體, 開放程式碼,可以人員依其 需求做修改。

```
_ 🗆 🗴
Microsoft Windows Server 2008 DEBUG Build Environment
C:\libnfc-1.3.4-winsdk\win32>nfc-anticol
 onnected to NFC reader: ACS ACR122 0 / ACR122U206 - PN532 v1.4 (0x07)
 26 (7 bits)
     dØ 53 f9 8c
    70 f6 d0 53 f9 8c 29 0c
 : 50 00 57 cd
Found tag with UID: f6d053f9
C:\libnfc-1.3.4-winsdk\win32>_
                       防碰撞
```

5. Proxmark 3

可以使用在任何類型的低頻率 (125 KHz)或高頻率 (13.56 MHz)的RFID設備。它可以模擬成卡片或讀卡機和卡片它可以竊聽讀卡機和卡片之間的通訊過程。它可以分析接收在空中的訊號作。

使用ISO 14443的標準的讀卡機。

第三章 Mifare Classic Card現有攻擊 Mifare Classic模擬

卡片記憶體說明

- 1. Sector 0:卡片基本資料(卡片 UID)。
- 2. Sector 1:卡片認證及管理的資料。
- 3. Sector 2:卡片的餘額。
- 4. Sector 3:最近2次交易的紀錄。
- 5. Sector 4: 最近6次使用紀錄1-3。
- 6. Sector 5: 最近6次使用紀錄4-6。
- 7. Sector 6: 公車使用紀錄。
- 8. Sector 7:最後進出站紀錄。
- 9. Sector 14: 大學學生資料。
- 10. Sector 15: 小額付款每日花費最大金額。
- 11. Sector 8-13:空白(保留)。

	I		
Sector	Block	Data	
15	60-63	小額付款每日花費最大金額	
14	56-59	XX 大學學生資料	
13	52-55	空白	
12	48-51	空白	
11	44-47	空白	
10	40-43	空白	
9	36-39	空白	
8	32-35	空白	
7	28-31	最後進出站紀錄	
6	24-27	公車使用紀錄	
5	20-23	最近6次使用紀錄4-6	
4	16-19	最近6次使用紀錄1-3	
3	12-15	最近2次交易的紀錄	
2	8-11	卡片的餘額	
1	4-7	卡片認證及管理的資料	
0	0-3	卡片基本資料(卡片UID)	

第三章 Mifare Classic Card現有攻擊 Mifare Classic模擬

模擬流程

第三章 Mifare Classic Card現有攻擊 Mifare Classic模擬

學生證模擬

- 1. 透過proxmark3設備竊聽(snoop)學生證與學校讀卡機 之間溝通的訊息,發現學校門禁讀卡機是讀Sector 14 的資料,
- 2. 用libnfc讀卡機模擬讀卡機與真的卡片測試
- 3. 再libnfc讀卡機與proxmark3做測試。
- 4. 最後proxmark3再與學校討論小間讀卡機做實驗。

讀卡機與卡片溝通流程(學生證)

Proxmark3竊聽的內容

設備	Hex	說明
Reader	26	
TAG	04 00	
Reader	93 20	
TAG	4c d9 ff 7c 16	
Reader	93 70 4c d9 ff 7c 16 b5 84	
TAG	08 <u>b6</u> dd	
Reader	60 <mark>38</mark> 3e c6	Auth block 38
TAG	3c 32 65 f1	Nt
Reader	bb 22 10 d6 c5 f1 be 05	${Nr}{Ar}$
TAG	99! 38 Oc! 3d!	{At}
Reader	aa 15 31 f6	{read}
TAG	ad 6c! 83! 2d f2 c2! 73 74! 4a c3 7c b2 d9! 48 d3 b7 9b 73!	{data}
Reader	14 bc 6b 62	{halt}

Proxmark3運作時設備會亮橋燈

Proxmark3測試

第三章 Mifare Classic Card現有攻擊 Mifare Classic模擬

四、XXCard模擬(利用餘額查詢機查詢餘額)

- 1. 透過proxmark3設備竊聽(snoop)學生證與XX查詢機之間溝通的訊息,發現XX查詢機讀卡機是主要先讀Sector 0的資料(卡片基本資料),再讀Sector 2(餘額)、Sector 4(最近6次使用紀錄前3筆)、Sector 5(最近6次使用紀錄後3筆)。
- 2. 我們寫程式讓libnfc讀卡機可以讀這些Sector的資料。
- 3. 之後libnfc讀卡機再與proxmark3做測試。
- 4. 最後proxmark3與XX查詢機做實驗。

讀卡機與卡片溝通流程(XXcard)

第四章 二代卡的特性

第一節 與一代卡不同處 第二節 目前的攻擊手法

第四章 二代卡的特性 與一代卡不同處

- Nt 的出現比較不會重覆
 - □ New PRNG are different from old ones
- Old NACK (0101) ← 舊攻擊的利用重點
 - Parity is correct, Ar is wrong
- 01d NACK (0100) ← post authentication
 - □ Parity is correct, Command is wrong
- New NACK (0000)
 - □ Always send new NACK (0000 is not sure!)
 - New NACK does not reflect the parity status

第四章 二代卡的特性目前的攻擊手法

- 0 sector: 可用舊的 keystream recovery 攻擊
- 其他 sector: 舊攻擊無效
 - □ {Nr} differential attack
 - 01d $\{NACK\}$ → $\{0101\}$
 - Nested authentication
 - Nt should be predictable

第四章 二代卡的特性目前的攻擊手法

- Now we can try following
 - □ Can we allow those random Nt?
 - Yes! But we allow some patterns in pairs
 - We can count the differential Nts based on some little modified states
 - We can construct algebra formulas to represent states and relations
 - □ Solve them by some existing tools
 - SAT, SMT solver

第五章 自然人憑證

- "「自然人憑證」是可以在網路上作資料交換時,如同網路身分證辨識雙方身分。大家都知道網路很方便。但過去政府無法在網路上為人民服務。主要有以下兩個原因:
 - □ 在網路上每個人的身分都是很難確認的(假冒者可能會冒名辨土地權狀轉移而造成他人損失)
 - □ 在網路上傳資料,並不是絕對安全的(例如存在著 許多惡意駭客的違法行為)

第五章 自然人憑證

- 就像簽章一樣,只不過是數位的
 - □方法:做出"兩把數學上有相關性的金鑰,具有下列特性:其中一把金鑰可用來做訊息加密,而此加密訊息只有另一把可以解密。就算知道其中一把金鑰要找出另一把金鑰是不可行的。(從計算的角度而言)"
- 怎麼取得我的公開金鑰?
 - □ "公開金鑰皆須(一般以數位憑證的形式)公開可得"
 - 重點!自然人憑證最重要的目的就是把自然人跟他 的公開金鑰綁在一起!

第五章 自然人憑證

■ 目前最普遍的方法: RSA (1978年發明)

第五章 RSA演算法細節

- (N, e): 公開金鑰
- (N, d): 私密金鑰
- 其中公開金鑰和私密金鑰滿足:
 - 1. N = pq且p和q皆為質數
 - 2. $de = 1 \mod (p 1)(q 1)$
- 金鑰生成:
 - 1. 隨機生成差不多大的數,直到生成出質數p,q
 - 2. e和(p-1)(q-1)互質且e < (p-1)(q-1)
 - 3. d 可由演算法得到

第五章

RSA加解密

- c: 待簽署文件
- m: 數位簽章
- 簽章

 $m = c^d \mod N$

■驗章

 $c = m^e \mod N$

第五章 RSA安全性與質因數分解

- 很明顯的,如果公開金鑰N被分解了,我們就可以找到對應的私密金鑰p和q
- ■目前RSA數質因數分解紀錄
 - K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zimmermann.

 "Factorization of a 768-bit RSA modulus."
 February 18, 2010.

第五章 自然人憑證使用的RSA

- 約226萬把1024-bit RSA公開金鑰
- 約36萬把2048-bit RSA公開金鑰
- 以過去的RSA數質因數分解的進度估計,在 2020年左右,利用一台超級電腦應該可以在一 年內分解一把1024-bit RSA公開金鑰
 - □ 好像還蠻安全的

But!

- A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. "Ron was wrong, Whit is right." February 17, 2012.
- "We performed a sanity check of public keys collected on the web."
- "... two out of every one thousand RSA moduli that we collected offer no security."

哪裡出錯了?

- 金鑰生成:
 - 1. 隨機生成差不多大的數,直到生成出質數p,q
 - N=pq
 - 3. e和(p-1)(q-1)互質,接著求出d
- $N_1 = p_1 q \cdot N_2 = p_2 q \rightarrow q = gcd(N_1, N_2)$
 - □ 蝦密,原來國中學的最大公因數真的有用喔!

檢驗自然人憑證

- 約226萬把1024-bit RSA公開金鑰
 - □ 約有100多把被分解
 - □ 分解比例比Lenstra的結果低
 - 所用的智慧卡品質尚可,不算太差
- 約36萬把2048-bit RSA公開金鑰
 - □ 全部安全
 - 這是應該的,好嗎?

修補方法

- 廢止已被分解之自然人憑證
 - □ 別懷疑!如果你被通知去換卡,那就是你啦!
- 建立資料庫,檢驗新產生之公開金鑰
- 加強資訊安全教育
 - □如亂數產生器之重要性等等

```
int getRandomNumber()
{

return 4; // chosen by fair dice roll.

// guaranteed to be random.
}
```

結語

We must know We will know

David Hilbert