Introduction to Mathematical Programming IE406

Lecture 10

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 4.1-4.3

Duality Theory: Motivation

Consider the following minimization problem

$$\min x^2 + y^2$$

$$s.t. \ x + y = 1$$

- How could we solve this problem?
- Idea: Consider the function

$$L(x, y, p) = x^{2} + y^{2} + p(1 - x - y)$$

• What can we do with this?

Lagrange Multipliers

- The idea is not to strictly enforce the constraints.
- We associate a Lagrange multiplier, or *price*, with each constraint.
- Then we allow the constraint to be violated *for a price*.
- Consider an LP in standard form.
- Using Lagrange multipliers, we can formulate an alternative LP:

$$\min c^{\top} x + p^{\top} (b - Ax)$$

$$s.t. \quad x \ge 0$$

How does the optimal solution of this compare to the original optimum?

Lagrange Multipliers

 Because we haven't changed the cost of feasible solutions to the original problem, this new problem gives a lower bound.

$$g(p) = \min_{x>0} \left[c^{\top} x + p^{\top} (b - Ax) \right] \le c^{\top} x^* + p^{\top} (b - Ax^*) = c^{\top} x^*$$

- Since each value of p gives a lower bound, we consider maximizing g(p).
- Think of this as finding the best lower bound.
- This is known as the dual problem.

Simplifying

• In linear programming, we can obtain an explicit form for the dual.

$$g(p) = \min_{x \ge 0} \left[c^{\top} x + p^{\top} (b - Ax) \right]$$
$$= p^{\top} b + \min_{x \ge 0} (c^{\top} - p^{\top} A) x$$

Note that

$$min_{x\geq 0}(c^{\top} - p^{\top}A)x = \begin{cases} 0, & \text{if } c^{\top} - p^{\top}A \geq \mathbf{0}^{\top}, \\ -\infty, & \text{otherwise,} \end{cases}$$

Hence, we can show that the dual is equivalent to

$$\max p^{\top} b$$

$$s.t. \quad p^{\top} A \le c^{\top}$$

Inequality Form

- Suppose our feasible region is $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \geq b, x \geq 0\}$.
- We can add slack variables and convert to standard form with constraints

$$[A|-I] \left[\begin{array}{c} x \\ s \end{array} \right] = b$$

This leads to dual constraints

$$p^{\top} [A|-I] \leq \left[c^{\top}|\mathbf{0}^{\top}\right]$$

Hence, we get the dual

$$\max p^{\top} b$$

$$s.t. \quad p^{\top} A \le c^{\top}$$

$$p \ge 0$$

From the Primal to the Dual

We can dualize general LPs as follows

PRIMAL	minimize	maximize	DUAL
constraints		≥ 0 ≤ 0 free	variables
variables	$\stackrel{\geq}{\sim} 0 \ \text{free}$	$ \leq c_j \\ \geq c_j \\ = c_j $	constraints

Properties of the Dual

- All equivalent forms of the primal give equivalent forms of the dual.
- The dual of the dual is the primal.
- Weak Duality: If x is a feasible solution to the primal and p is a feasible solution to the dual, then

$$p^{\top}b \leq c^{\top}x$$

• Corollaries:

- If the optimal cost of the primal is $-\infty$, then the dual is infeasible.
- If the optimal cost of the dual is $+\infty$, then the primal is infeasible.
- If x is a feasible primal solution and p is a feasible dual solution such that $c^{\top}x = p^{\top}b$, then both x and p are optimal.

Relationship of the Primal and the Dual

The following are the possible relationships between the primal and the dual:

	Finite Optimum	Unbounded	Infeasible
Finite Optimum	Possible	Impossible	Impossible
Unbounded	Impossible	Impossible	Possible
Infeasible	Impossible	Possible	Possible

Strong Duality

Proposition 1. (Strong Duality) If a linear programming problem has an optimal solution, so does its dual, and the respective optimal costs are equal.

Proof:

IE406 Lecture 10 111

More About the Dual

- When we interpret the quantity $c_B^{\top}B^{-1}$ as the vector of dual prices, the reduced costs are then the slack in the constraints of the dual.
- The condition that all the reduced costs be nonnegative is then equivalent to dual feasibility.
- Hence, the simplex algorithm can be interpreted as maintaining primal feasibility while trying to achieve dual feasibility.
- We will shortly see an alternative algorithm which maintains dual feasibility while trying to achieve primal feasibility.

Complementary Slackness

Proposition 2. If x and p are feasible primal and dual solutions to a general linear program with constraint matrix $A \in \mathbb{R}^{m \times n}$ and right-hand side vector $b \in \mathbb{R}^m$, then x and p are optimal if and only if

$$p^{\top}(Ax - b) = 0,$$

$$(c^{\top} - p^{\top}A)x = 0.$$

Proof:

Optimality Without Simplex

Let's consider an LP in standard form. We have now shown that the optimality conditions for (nondegenerate) x are

- 1. Ax = b (primal feasibility)
- 2. $x \ge 0$ (primal feasibility)
- 3. $x_i = 0$ if $p^{\top} a_i \neq c_i$ (complementary slackness)
- 4. $p^{\top}A \leq c$ (dual feasibility)
- In standard form, the complementary slackness condition is simply $x^{\top}\bar{c}=0$.
- This condition is always satisfied during the simplex algorithm, since the reduced costs of the basic variables are zero.