Programme n°20

MECANIQUE

M3 Bases de la dynamique newtonienne

Cours et exercices

M4 Approche énergétique du mouvement d'un point matériel (Cours et exercices sur le programme 19)

- Condition de stabilité Problème unidimensionnel
 - Mouvement au voisinage d'une position d'équilibre stable
- Analyse du mouvement à l'aide du graphe d'énergie potentielle
- Analyse qualitative
- En résumé

- Les portraits de phases
- Rappels
- Propriétés des portraits de phase
- Obtention du portrait de phase
- Exemple le pendule simple

Ma	l I
Mouvement conservatif à une dimension.	Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
	Expliquer qualitativement le lien entre le profil d'énergie potentielle et le portrait de phase.
Positions d'équilibre. Stabilité.	Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre, et la nature stable ou instable de ces positions.
Petits mouvements au voisinage d'une position d'équilibre stable, approximation locale par un puits de potentiel harmonique.	Identifier cette situation au modèle de l'oscillateur harmonique.
· ·	Approche numérique : utiliser les résultats fournis
	par une méthode numérique pour mettre en évidence des effets non linéaires.
Barrière de potentiel.	Évaluer l'énergie minimale nécessaire pour franchir la barrière.

M5 Mouvement d'une particule chargée dans un champ électrique ou magnétique (Cours uniquement)

- Généralités
- Validité du modèle
- Force de Lorentz
- Ordre de grandeur et comparaison avec le poids
- Puissance de la force de Lorentz
- Mouvement dans \vec{E} uniforme La vitesse initiale est parallèle au champ
 - La vitesse initiale n'est pas parallèle au champ
 - Bilan énergétique
- → Introduction du potentiel électrique
- → Conservation de l'énergie mécanique
- Application
- 3. Mouvement de particules chargées dans des champs électrique et magnétique, uniformes et stationnaires

Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Savoir qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur-accélération constant.
	Effectuer un bilan énergétique pour calculer la vitesse d'une particule chargée accélérée par une différence de potentiel.
	Citer une application.

SOLUTIONS AQUEUSES AQ1 Réactions acide- base en solution aqueuse

Cours et exercices

Les dosages

Cours et analyse de courbes de dosages

<u>TP</u>
Propriétés des quelques éléments de la classification périodique
Dosage du coca-cola : principe d'un dosage pH métrique, le pH d'un ampholyte.