COMP/EECE 7/8740 Neural Networks

Topics:

- Linear Classifiers
- Loss Functions
- Logistic regression

Md Zahangir Alom Department of Computer Science University of Memphis, TN

Linear Classification Approaches

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Algebraic Viewpoint

$$f(x,W) = Wx$$

Interpreting a Linear Classifier

Interpreting a Linear Classifier: <u>Visual Viewpoint</u>

Interpreting a Linear Classifier: <u>Geometric Viewpoint</u>

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

Plot created using Wolfram Cloud

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Loss Functions

How Good is a Network?

What is an appropriate loss?

- Compare training class to output class
- Zero-one loss (per class)

$$L(\hat{y}, y) = I(\hat{y} \neq y),$$

• Is it good?

What is an appropriate loss?

- Compare training class to output class
- Zero-one loss (per class)

$$L(\hat{y}, y) = I(\hat{y} \neq y),$$

- Is it good?
 - Nope it's a step function.
 - I need to compute the gradient of the loss.
 - This loss is not differentiable, and 'flips' easily.

So far: Defined a (linear) score function

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

$$f(x,W) = Wx + b$$

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

So far: Defined a (linear) score function

TODO:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

- 1. Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

-	
1	

cat **3.2**

1.3

2.2

car

5.1 **4.9**

2.5

frog -1.7

2.0

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

		A	
			ı
	N.		
1			
		7	e

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

cat

3.2

1.3

2.2

car

5.1

4.9

frog

-1.7

2.0

-3.1

2.5
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

score

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

car

frog

Losses:

3.2

5.1

2.9

1.3

4.9

2.0

2.5

2.2

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

cat **3.2**

car

5.1

frog -1.7

Losses: 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1)$$

$$+ \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

$$= 0$$

3.2

-1.7

cat

1.3

car

5.1

frog

2.9 Losses:

4.9

2.0

2.2

2.5

-3.1

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.27**

cat **3.2**

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car image scores change a bit?

cat **3.2**

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

12.9

Losses:

2.9

0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what is the min/max possible loss?

cat

1.3

2.2

car

5.1

3.2

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

= 0

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0$$

With W twice as large:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1) = \max(0, -6.2) + \max(0, -4.8) = 0 + 0 - 0$$

Softmax layer as the output layer

Ordinary Layer

 In general, the output of network can be any value.

May not be easy to interpret

Softmax layer as the output layer

Probability:

- $1 > y_i > 0$
 - $\blacksquare \sum_i y_i = 1$

Softmax Layer

Want to interpret raw classifier scores as **probabilities**

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

 $P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Probabilities must be >= 0

cat
$$3.2$$
 \xrightarrow{exp} 164.0 frog -1.7 0.18 unnormalized probabilities

$$s=f(x_i;W)$$

$$\left|P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}
ight|$$
 Softmax Function

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

0.00

probabilities

car

frog

Unnormalized log-

probabilities / logits

0.18

unnormalized

probabilities

probabilities / logits

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

probabilities

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

the observed data

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function $L_i = -\log P(Y=y_i|X=x_i)$

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$
 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$

Putting it all together:
$$p_i = -\log(\frac{e^{sy_i}}{e^{sy_i}})$$

cat 3.2

5.1 car

-1.7 frog

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Q: What is the min/max possible loss L_i?

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Q: What is the min/max possible loss L_i? A: min 0, max infinity

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Q2: At initialization all s will be approximately equal; what is the loss?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Q2: At initialization all s will be approximately equal; what is the loss? A: $\log(C)$, eg $\log(10) \approx 2.3$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0,s_j-s_{y_i}+1)$

Cross-entropy loss function

Negative log-likelihood

$$L(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j}|\mathbf{x})$$

- Is it a good loss?
 - Differentiable
 - Cost decreases as probability increases

Examples

ground truth
$$= y$$
, prediction $= \hat{y}$

Mean Squared Error Loss

$$L = \frac{1}{m} \sum_{i} (y_i - \hat{y}_i)^2$$
$$L = (y - \hat{y})^2$$

Binary Cross-entropy Loss

$$L = -\frac{1}{m} \sum_{i} [y_i \ln(\hat{y}_i) + (1 - y_i) \ln(1 - \hat{y}_i)]$$
$$L = y \ln(\hat{y}) + (1 - y) \ln(1 - \hat{y})$$

Examples

Examples

Different Cross-Entropy Losses

- Categorical Cross-Entropy Loss
- Binary Cross-Entropy Loss
- Focal Loss and
- All those confusing names

Categorical Cross-Entropy Loss

- Also called Softmax Loss. It is a Softmax activation plus a Cross-Entropy loss
- We use this loss when we train a DNN or CNN to output a probability over the C classes for each image (multi-class classification).

Binary Cross-Entropy Loss

- Also called Sigmoid Cross-Entropy loss. It is a Sigmoid activation plus a Cross-Entropy loss.
- It's called **Binary Cross-Entropy Loss** because it sets up a binary classification problem between C'=2 classes for every class in C.

Focal Loss

- Focal Loss was introduced by Lin et al., from Facebook. They claim to improve one-stage object detectors using Focal Loss to train a detector named "RetinaNet".
- Focal loss is a Cross-Entropy Loss that weights the contribution of each sample to the loss based in the classification error.
- Focal loss could also be considered a Binary Cross-Entropy Loss (Sigmoid activations + Cross-Entropy Loss)

$$FL = -\sum_{i=1}^{C=2} (1 - s_i)^{\gamma} t_i log(s_i) \qquad \gamma > = 0$$

 γ =0, Focal Loss is equivalent to Binary Cross Entropy Loss.

Summary

- Linear classifiers
- Loss functions: Hinge and Softmax
- Different loss functions
- Examples?
- What's next?
 - Convolutional operations
 - Convolutional Neural Networks (CNN)