Comparison Tables: BBOB 2015 Testbed in 3-D

The BBOBies

July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015, see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

testbed algorithm short	paper	reference
name	pupor	rotoronoo
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
- 20	Box Optimization of Separable Continuous Functions	[0]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

Table 2: 03-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	3.6	8.0	8.0	8.0	8.0	8.0	8.0	15/15
BSifeg	1.5 ₍₁₎	1.8(0.3)	1.9(0.2)	2.0 (0.2)	2.1(0.3)	2.1 (0.2)	2.1 (0.2)	15/15
BSif	1.5 ₍₁₎	1.8(0.3)	1.9(0.3)	2.0 (0.2)	2.1(0.2)	2.1 (0.3)	2.1 (0.3)	15/15
BSqi	1.5(1)	1.8(0.2)	1.9(0.3)	2.0 (0.2)	2.1(0.2)	2.1 (0.3)	2.1 (0.3)	15/15
BSrr	1.5(1)	1.8(0.3)	1.9(0.2)	2.0 (0.2)	2.1(0.3)	2.1 (0.3)	2.1 (0.3)	15/15
CMA-CSA	5.6(4)	6.1(5)	13(5)	18(5)	24(3)	36(3)	46(4)	15/15
CMA-MSR	2.4(2)	5.8(7)	16(6)	27(6)	38(8)	57(6)	74(7)	15/15
CMA-TPA	3.4(2)	7.9(5)	14(4)	19(4)	23(6)	37(15)	49(18)	15/15
GP1-CMAES	3.2(2)	4.4(3)	7.3(2)	10(2)	13(2)	19(4)	27(5)	15/15
GP5-CMAES	2.8(1)	2.7 (0.8)	3.7(0.8)	4.6(0.7)	5.6(1)	7.7(1)	25(19)	15/15
IPOPCMAv3p	2.8(2)	6.5(4)	12(3)	18(5)	23(6)	34(4)	46(3)	15/15
LHD-10xDef	3.6(4)	9.3(3)	10(0.2)	12(1)	13(0.9)	66(98)	∞ 150	0/15
LHD-2xDefa	2.2(2)	2.4 (0.3)	3.2(0.6)	4.7(0.8)	6.3(2)	∞	∞ 150	0/15
RAND-2xDef	2.3 (2)	2.5 (0.3)	3.6(0.9)	5.0(1)	6.5(0.3)	276(239)	∞ 150	0/15
RF1-CMAES	2.3(2)	4.8(2)	8.4(2)	14(5)	21(10)	60(14)	102(127)	10/15
RF5-CMAES	11(2)	22(39)	94(147)	306(461)	1331(968)	∞	∞ 753	0/15
Sifeg	1.5 (1)	1.9(0.3)	2.4 (0.3)	3.5(0.4)	4.2(0.8)	5.8(0.9)	6.8(0.4)	15/15
Sif	1.5(2)	1.9(0.2)	2.4 (0.2)	3.7(0.9)	4.7(0.9)	5.9(0.4)	6.8(0.4)	15/15
Srr	1.5 (2)	1.9(0.2)	2.4 (0.2)	3.1(0.2)	3.7(0.2)	5.0(0.2)	6.2(0.3)	15/15

Table 3: 03-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	38	42	43	44	45	47	48	15/15
BSifeg	0.65 (0.1)	0.69(0.2)	0.76 (0.3)	0.84(0.2)	0.98(0.1)	1.0(0.1)	1.2(0.2)	15/15
BSif	0.66 (0.1)	0.73(0.2)	0.79 (0.3)		0.99 (0.2)		1.2(0.2) 1.2(0.1)	15/15
BSqi		0.19 (0.2) 0.59 (0.1)		0.66 (0.1)			*3 0.96 (0.2)	
	0.60 (0.0)	, ,	0.60(0.1)		` ,	, ,	` '	
BSrr	0.66 (0.2)	0.68(0.2)	0.71(0.1)	0.79 (0.2)	$0.92_{(0.1)}$	1.0(0.2)	1.2(0.2)	15/15
CMA-CSA	9.3(3)	12(3)	13(3)	14(2)	15(2)	16(2)	17(1)	15/15
CMA-MSR	10(2)	12(3)	13(3)	15(2)	16(3)	18(3)	21(2)	15/15
CMA-TPA	8.4(5)	12(4)	13(3)	14(3)	15(3)	17(3)	18(2)	15/15
GP1-CMAES	8.0(4)	10(5)	12(3)	13(2)	14(5)	16(9)	28(24)	8/15
GP5-CMAES	3.4(0.8)	4.1(1)	4.6(0.8)	5.0(2)	5.3(2)	5.6(0.8)	13(12)	11/15
IPOPCMAv3p	13(9)	25(8)	41(90)	64(69)	∞	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	279(393)	261(267)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	1.1(0.2)	1.1(0.4)	1.2(0.2)	1.3(0.3)	1.4(0.2)	1.4(0.1)	1.6(0.2)	15/15
Sif	1.1(0.2)	1.1(0.2)	1.2(0.2)	1.2(0.2)	1.3(0.2)	1.4(0.2)	1.5(0.2)	15/15
Srr	1.0(0.2)	1.0(0.1)	1.1(0.1)	1.2(0.1)	1.3(0.1)	1.4(0.1)	1.6(0.1)	15/15

Table 4: 03-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	38	822	830	835	842	847	853	15/15
BSifeg	0.80(0.5)	0.12 (0.0)	0.18(0.0)	0.18(0.1)	0.18(0.1)	0.18(0.0)	0.18(0.1)	15/15
BSif	0.83 (0.7)	0.12 (0.0)	0.18(0.0)	0.18(0.1)	0.18(0.1)	0.18(0.1)	0.18(0.1)	15/15
BSqi	0.80(0.6)	0.12 (0.0)	0.17(0.1)	0.17 (0.1)	0.17(0.1)	0.17(0.1)	0.17 (0.0)	15/15
BSrr	0.74(0.5)	0.12 (0.0)	0.16(0.0)	0.17 (0.1)	0.17(0.0)	0.17(0.1)	0.18(0.1)	15/15
CMA-CSA	8.1(13)	2.9(4)	8.7(5)	9.4(6)	10(5)	10(8)	10(8)	15/15
CMA-MSR	8.0(10)	3.5(3)	10(8)	11(5)	11(18)	12(16)	13(7)	15/15
CMA-TPA	3.5(4)	2.9 (2)	13(6)	13(10)	13(9)	14(10)	14(9)	15/15
GP1-CMAES	4.7(6)	1.6 (2)	4.3(4)	6.4(4)	6.5(6)	6.5(5)	13(17)	1/15
GP5-CMAES	2.4 (2)	13(16)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	5.1(2)	4.1(2)	13(19)	13(15)	13(24)	13(15)	13(11)	1/15
LHD-10xDef	5.1(7)	2.7 (3)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.1 (0.7)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	3.0(2)	2.7 (1)	2.7 (4)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.5(18)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	26(26)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	0.98(0.4)	0.14(0.0)	0.18(0.1)	0.19 (0.1)	0.21 (0.0)	0.23 (0.0)	0.23 (0.0)	15/15
Sif	0.99 (0.5)	0.15 (0.1)	0.18(0.1)	0.19 (0.0)	0.21 (0.0)	0.23 (0.0)	0.23 (0.0)	15/15
Srr	0.99 (0.5)	0.12 (0.0)	0.17 (0.1)	0.18(0.0)	0.19 (0.0)	0.22 (0.0)	0.23 (0.0)	15/15

Table 5: 03-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	40	808	866	921	952	1015	1044	15/15
BSifeg	1.4(0.5)	0.18(0.1) 0.28 (0.2	2) 0.27	(0.2) 0.2	7 (0.1) 0.27 (0.1) 0.31(0.1	15/15
BSif	1.4(0.6)	0.18(0.1) 0.29 (0.1	(1) 0.28	(0.1) 0.2 8	8(0.1) 0.28 (0.1) 0.31(0.1	15/15
BSqi	1.4(0.6)	0.20 (0.1) 0.26 (0.1	() 0.25	(0.1) 0.2	5 (0.1) 0.25 (0.1) 0.31(0.1	15/15
BSrr	1.4(0.4)	0.18(0.0) 0.23 (0.1	() 0.22	(0.1) 0.2 3	3(0.1) 0.26 (0.1) 0.34(0.1	15/15
CMA-CSA	5.7(7)	359(572)	4871(5997)	4579(555	58) 4431(59	32) 4157(5492	2) 4043(3894)	1/15
CMA-MSR	8.5(10)	632(874)	∞	∞	∞	∞	$\propto 3e5$	0/15
CMA-TPA	7.2(3)	269(390)	5064(8878)	∞	∞	∞	$\propto 3e5$	0/15
GP1-CMAES	8.2(12)	∞	∞	∞	∞	∞	∞ 751	0/15
GP5-CMAES	8.3(7)	∞	∞	∞	∞	∞	∞ 755	0/15
IPOPCMAv3p	11(10)	14(12)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	11(7)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	18(30)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	7.6(8)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	124(144)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	267(140)	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	1.2(0.5)	0.26 (0.1) 0.44 (0.2	2) 0.55	(0.2) 0.7 0	0 (0.2) 0.99 (0.2) 1.0 (0.2)	15/15
Sif	1.2(0.5)	0.26(0.1	0.47(0.2	2) 0.58	(0.2) 0.7 2	2(0.2) 0.97 (0.2) 1.0 (0.2)	15/15
Srr	1.2 (0.3)	0.26 (0.1) 0.41 (0.2	2) 0.52	(0.2) 0.6	4 (0.1) 0.96 ((0.2) 1.1 (0.2)	15/15

Table 6: 03-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	6.6	6.6	6.6	6.6	6.6	6.6	6.6	15/15
BSifeg	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.1)	15/15
BSif	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSrr	1.4(0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.1)	1.4(0.2)	15/15
CMA-CSA	3.0(2)	5.1(4)	5.5(4)	5.5(2)	5.5(2)	5.5(2)	5.5(2)	15/15
CMA-MSR	2.8 (1)	4.9(2)	4.9(2)	4.9(3)	4.9(3)	4.9(1)	4.9(2)	15/15
CMA-TPA	2.5 (2)	3.7(2)	3.9(2)	3.9(1)	3.9(1)	3.9(2)	3.9(2)	15/15
GP1-CMAES	2.4(2)	17(14)	24(8)	24(32)	24(60)	24(10)	24(57)	14/15
GP5-CMAES	2.2 (1)	3.8(2)	4.6(4)	4.7(4)	4.7(1)	4.7(2)	4.7(4)	15/15
IPOPCMAv3p	4.1(7)	7.9(10)	10(10)	10(8)	10(8)	10(11)	10(10)	15/15
LHD-10xDef	10(4)	12(0.2)	13(0.4)	13(0.4)	13(0.4)	13(0.4)	13(0.4)	15/15
LHD-2xDefa	2.5 ₍₀₎	2.9 (0.4)	3.1(0.8)	3.1(0.8)	3.1(0.8)	3.1(0.8)	3.1(0.8)	15/15
RAND-2xDef	2.6 (0)	2.9 (0.1)	3.1(0.8)	3.1(0.4)	3.1(0.2)	3.1(0.4)	3.1(0.8)	15/15
RF1-CMAES	2.9 (2)	18(28)	19(40)	19(40)	19(40)	19(31)	19(22)	15/15
RF5-CMAES	16(35)	101(192)	150(232)	150(167)	150(181)	150(123)	150(257)	7/15
Sifeg	1.4(0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Sif	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	1.4 (0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

Table 7: 03-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	34	56	90	117	149	215	265	15/15
BSifeg	146(334)	413(407)	562(810)	1057(744)	1339(1627)	∞	∞ 3e4	0/15
BSif	209(149)	609(573)	768(1013)	1729(2219)	∞	∞	∞ 3e4	0/15
BSqi	231(650)	329(1004)	342(358)	486(535)	672(341)	∞	∞ 3e4	0/15
BSrr	114(322)	504(381)	574(386)	811(787)	1387(1449)	∞	∞ 3e4	0/15
CMA-CSA	1.5(0.6)	2.6 (0.7)	2.3 (0.5)	2.6 (0.7)	2.7 (0.6)	2.7 (0.4)	2.9 (0.5)	15/15
CMA-MSR	2.8(1)	3.8(2)	3.5(0.9)	3.7(1)	3.7(1)	3.7(0.5)	3.9(0.3)	15/15
CMA-TPA	3.1(1)	3.5 (1)	3.1 (0.6)	3.2(0.7)	3.1(0.7)	2.9 (0.5)	3.0(0.6)	15/15
GP1-CMAES	2.7(2)	4.9(9)	14(10)	97(195)	∞	∞	∞ 751	0/15
GP5-CMAES	2.5 (3)	15(20)	124(109)	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	2.8 (2)	3.7 (1)	3.4(1)	3.5(0.9)	3.3(0.8)	3.6 (2)	∞ 751	0/15
LHD-10xDef	4.2(5)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	4.8(4)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	3.1(2)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	13(14)	58(67)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	42(39)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	81(172)	293(459)	456(270)	598(246)	847(547)	1979(2668)	∞ 3e4	0/15
Sif	106(32)	325(189)	1006(1749)	1688(2500)	∞	∞	∞ 3e4	0/15
Srr	75(68)	188(161)	418(575)	528(508)	578(859)	1820(2334)	∞ 3e4	0/15

Table 8: 03-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID (CII)	ac ar irac	, a ~, a	CIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f7	11	65	342	464	482	482	535	15/15
BSifeg	49(45)	302(621)	131(298)	201(457)	901(986)	901(469)	812(1268)	1/15
BSif	61(273)	315(496)	199(517)	425(325)	∞	∞	$\propto 3e4$	0/15
BSqi	167(1)	280(365)	206(244)	285(334)	442(520)	442(602)	398(595)	2/15
BSrr	131(708)	317(364)	197(148)	442(601)	∞	∞	$\propto 3e4$	0/15
CMA-CSA	2.8 (2)	1.8(0.8)	0.75 (0.8)	0.75 (0.6)	0.93 (0.6)	0.93 (0.6)	0.91 (0.4)	15/15
CMA-MSR	3.5(3)	1.7(0.8)	1.2(0.9)	1.3 (1)	1.3(1)	1.3 (1)	1.4 (1)	15/15
CMA-TPA	3.8(4)	3.0(3)	1.0(0.8)	0.87 (0.5)	0.99 (0.7)	0.99 (0.7)	1.0(0.5)	15/15
GP1-CMAES	2.0(2)	1.2 (1)	0.89 (0.8)	0.98(1)	1.4(0.9)	1.4(2)	1.7(0.5)	9/15
GP5-CMAES	2.0(2)	0.96 (0.8)	0.49(0.2)	0.69 (0.6)	1.2(1)	1.2(0.6)	1.6(2)	9/15
IPOPCMAv3p	4.9(2)	2.8 (2)	1.2(2)	1.1(2)	1.1(0.9)	1.1(0.6)	1.2(0.3)	12/15
LHD-10xDef	3.7(3)	2.5 (0.7)	3.2(4)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.9 ₍₁₎	1.7 (3)	1.8 (3)	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.4 (1)	1.2(0.5)	3.2(2)	4.7(4)	4.5(7)	4.5(3)	∞ 150	0/15
RF1-CMAES	7.5(16)	4.2(8)	2.9 ₍₂₎	7.5(5)	11(8)	11(28)	21(10)	1/15
RF5-CMAES	10(9)	26(37)	∞	∞	∞	∞	∞ 755	0/15
Sifeg	37(134)	165(442)	132(152)	205(358)	417(313)	417(626)	376(972)	2/15
Sif	61(269)	204(349)	115(81)	276(184)	419(579)	419(452)	378(266)	2/15
Srr	97(359)	249(564)	116(119)	286(266)	∞	∞	$\propto 3e4$	0/15

Table 9: 03-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	27	45	152	179	188	198	208	15/15
BSifeg	7.4(0.7)	99(211)	398(268)	1164(990)	2257(2220)	∞	∞ 3e4	0/15
BSif	5.7(12)	114(150)	266(301)	∞	∞	∞	∞ 3e4	0/15
BSqi	6.3(14)	178(223)	789(928)	2198(2090)	∞	∞	$\propto 3e4$	0/15
BSrr	3.7(2)	210(390)	595(607)	716(797)	1048(1364)	∞	$\propto 3e4$	0/15
CMA-CSA	3.3(2)	6.3 (4)	3.3 (0.6)	3.5 (1)	3.7 (0.9)	4.0 (1)	4.3(0.6)	15/15
CMA-MSR	3.2(2)	10(4)	4.5(3)	4.5 (3)	4.7 (2)	5.1 (2)	5.5 (2)	15/15
CMA-TPA	3.7(3)	8.3(5)	3.7 (4)	3.9 (2)	4.1 (1)	4.5(2)	4.7(2)	15/15
GP1-CMAES	2.6(2)	13(17)	13(8)	19(19)	28(37)	28(28)	53(81)	1/15
GP5-CMAES	2.2(1)	6.5 (16)	4.4(3)	8.9(11)	18(11)	26(29)	25(33)	2/15
IPOPCMAv3p	3.4(1)	7.9(6)	5.5(5)	6.1(4)	7.9(7)	19(17)	27(24)	2/15
LHD-10xDef	8.8(11)	50(64)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.7(2)	12(12)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.7(4)	9.0(7)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.3(15)	113(167)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	31(56)	238(190)	∞	∞	∞	∞	∞ 753	0/15
Sifeg	1.2(0.6)	67(78)	123(68)	254(119)	∞	∞	∞ 3e4	0/15
Sif	1.4(1)	156(331)	261(200)	2121(1139)	2017(2925)	∞	$\propto 3e4$	0/15
Srr	1.2(1)	123(288)	211(278)	655(730)	1959(3566)	∞	∞ 3e4	0/15

Table 10: 03-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

 COLL CLIED FOIL	are arrive		III OII OII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	21	65	127	149	159	169	178	15/15
BSifeg	14(5)	152(96)	∞	∞	∞	∞	∞ 3e4	0/15
BSif	12(21)	947(860)	3287(6988)	∞	∞	∞	∞ 3e4	0/15
BSqi	8.5(11)	107(97)	1510(1681)	1291(1421)	2519(4021)	∞	∞ 3e4	0/15
BSrr	8.0(9)	109(115)	3044(5576)	∞	∞	∞	∞ 3e4	0/15
CMA-CSA	3.8(2)	4.8(4)	4.0 (3)	4.2(2)	4.5(2)	4.8(1)	5.1 (2)	15/15
CMA-MSR	5.8(3)	8.5(7)	6.1(3)	6.0 (3)	5.9 (2)	6.3 (3)	7.0 (3)	15/15
CMA-TPA	4.3(2)	6.9(6)	5.4 (3)	5.4 (3)	5.5 (2)	5.8 (2)	6.1 (2)	15/15
GP1-CMAES	3.5(2)	15(7)	26(17)	36(22)	33(54)	64(68)	61(61)	1/15
GP5-CMAES	2.4(1)	5.3 (9)	8.8(11)	12(19)	21(27)	20(18)	19(21)	3/15
IPOPCMAv3p	3.5(3)	4.7(2)	5.1 (3)	8.3(6)	13(10)	16(15)	31(26)	2/15
LHD-10xDef	10(9)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.5 (0.5)	17(18)	18(8)	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.6 (0.8)	11(10)	18(16)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.1(12)	35(52)	84(78)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	37(47)	77(101)	∞	∞	∞	∞	∞ 753	0/15
Sifeg	1.9 (0.6)	75(91)	1591(1466)	∞	∞	∞	∞ 3e4	0/15
Sif	1.8(1)	152(343)	3106(4404)	∞	∞	∞	∞ 3e4	0/15
Srr	1.5 (1)	116(735)	905(636)	∞	∞	∞	∞ 2e4	0/15

Table 11: 03-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES 1 COL	ac arriac	a ~, am	IIOI OIII					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f10	114	152	168	180	194	218	242	15/15
BSifeg	806(845)	1211(1521)	1156(1333)	1075(1088)	∞	∞	∞ 1e4	0/15
BSif	784(799)	1253(3056)	∞	∞	∞	∞	∞ 1e4	0/15
BSqi	442(487)	725(1620)	∞	∞	∞	∞	∞ 2e4	0/15
BSrr	733(603)	1155(1080)	∞	∞	∞	∞	∞ 1e4	0/15
CMA-CSA	3.3 (1)	3.0 (1)	3.0 (0.9)	3.2 (0.6)	3.3(0.4)	3.3(0.7)	3.4(0.3)	15/15
CMA-MSR	3.8(1)	3.4(1)	3.5(0.9)	3.7(0.9)	3.8(0.9)	4.0(0.9)	4.4(0.9)	15/15
CMA-TPA	3.3(1)	3.1(0.7)	3.4(0.6)	3.5(0.4)	3.5(0.6)	3.5(0.6)	3.5(0.4)	15/15
GP1-CMAES	2.5 (1)	2.8 (0.8)	3.1 (0.6)	3.1 (0.3)	3.3 (2)	3.8(1)	4.9(3)	9/15
GP5-CMAES	1.2(0.3)*	2 1.1 (0.3)	1.2(0.2)	1.3(0.4)	1.2(0.3)	1.2(0.4)	1.9 (1)	14/15
IPOPCMAv3p	3.9(3)	4.4(3)	6.1(5)	10(13)	19(21)	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	47(28)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	286(264)	467(531)	∞	∞	∞	∞	∞ 4486	0/15
Sif	285(272)	482(489)	∞	∞	∞	∞	∞ 4482	0/15
Srr	161(135)	194(327)	414(463)	∞	∞	∞	∞ 3648	0/15

Table 12: 03-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	67	105	227	263	277	302	327	15/15
BSifeg	124(270)	400(373)	∞	∞	∞	∞	∞ 1e4	0/15
BSif	163(158)	420(920)	879(1096)	∞	∞	∞	∞ 1e4	0/15
BSqi	218(410)	1149(764)	∞	∞	∞	∞	∞ 2e4	0/15
BSrr	147(250)	537(857)	810(1127)	∞	∞	∞	∞ 1e4	0/15
CMA-CSA	4.6(2)	4.5 (1)	2.5 (0.5)	2.3 (0.5)	2.3 (0.4)	2.5 (0.4)	2.5 (0.4)	15/15
CMA-MSR	5.8(4)	4.6(0.9)	2.5 (0.4)	2.4 (0.3)	2.5 (0.5)	2.8(0.5)	3.1(0.3)	15/15
CMA-TPA	4.8(3)	4.5(1)	2.5 (0.4)	2.4(0.5)	2.5 (0.5)	2.6(0.3)	2.6(0.2)	15/15
GP1-CMAES	4.8(3)	4.3(0.9)	2.3 (0.4)	2.2 (0.6)	2.4 (0.9)	3.1(1)	5.5(5)	6/15
GP5-CMAES	2.1(0.6)	1.8(0.3)	0.95 (0.2)	0.90 (0.4)	0.91 (0.2)	0.92 (0.3)	1.6 (1)	12/15
IPOPCMAv3p	8.8(8)	12(9)	16(12)	42(19)	40(68)	∞	∞ 751	0/15
LHD-10xDef	33(42)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	16(22)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	11(7)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	46(84)	100(116)	46(36)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	34(48)	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	51(110)	358(320)	∞	∞	∞	∞	∞ 7533	0/15
Sif	76(102)	364(528)	∞	∞	∞	∞	∞ 7579	0/15
Srr	68(187)	306(288)	227(458)	∞	∞	∞	∞ 6563	0/15
	•							

Table 13: 03-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	65	168	338	401	445	696	790	15/15
BSifeg	59(25)	48(27)	75(173)	171(236)	332(369)	∞	∞ 8987	0/15
BSif	62(169)	80(54)	108(108)	381(444)	∞	∞	$\infty 9690$	0/15
BSqi	70(40)	71(98)	107(67)	488(1280)	440(315)	∞	∞ 1e4	0/15
BSrr	61(283)	46(68)	44(119)	152(106)	∞	∞	∞ 7634	0/15
CMA-CSA	6.7 (3)	5.1(3)	3.8 (5)	4.0(4)	4.0(4)	3.7 (5)	3.8(7)	15/15
CMA-MSR	10(4)	6.7(7)	4.6(2)	4.6 (3)	4.7 (1)	3.9(2)	4.0(4)	15/15
CMA-TPA	7.6 (6)	5.0(7)	3.2 (2)	3.0 (0.6)	3.0 (2)	2.4(2)	2.7 (1.0)	15/15
GP1-CMAES	5.8 (2)	4.3(3)	3.4 (2)	5.2(6)	8.2(11)	∞	∞ 751	0/15
GP5-CMAES	7.7(15)	4.9 (5)	6.7(11)	8.1(11)	12(10)	∞	∞ 753	0/15
IPOPCMAv3p	7.7(8)	5.9(7)	15(13)	28(28)	∞	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	11(7)	13(15)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	11(10)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	14(17)	20(15)	33(46)	28(44)	25(26)	∞	∞ 751	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	8.4(18)	20(69)	36(34)	132(184)	∞	∞	∞ 3495	0/15
Sif	10(47)	20(62)	26(51)	∞	∞	∞	∞ 3248	0/15
Srr	14(25)	19(22)	35(45)	62(34)	112(205)	∞	∞ 3419	0/15

Table 14: 03-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES 1 COL	ac ar race	· a ~ , a	CIIDICII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	49	85	108	136	215	281	365	15/15
BSifeg	291(273)	554(408)	1551(1340)	∞	∞	∞	∞ 3e4	0/15
BSif	300(394)	706(627)	1552(2828)	2703(2600)	∞	∞	∞ 3e4	0/15
BSqi	183(81)	407(673)	1052(672)	2770(3413)	∞	∞	$\propto 3e4$	0/15
BSrr	170(431)	662(787)	1568(1938)	1261(1323)	∞	∞	$\infty~2e4$	0/15
CMA-CSA	4.5(3)	4.5(2)	4.4 (1)	4.2(0.8)	3.1(0.8)	3.4(0.4)	3.2(0.4)	15/15
CMA-MSR	4.0(0.9)	4.2 (1)	4.7(1)	4.8(0.6)	3.6 (0.6)	3.7(0.5)	3.6(0.4)	15/15
CMA-TPA	3.5(1)	3.6(0.8)	4.3(0.8)	4.6(0.3)	3.6(0.5)	3.5(0.3)	3.4(0.9)	15/15
GP1-CMAES	5.1(5)	5.7(6)	11(7)	18(13)	51(31)	∞	∞ 751	0/15
GP5-CMAES	1.2(0.4)	2.6 (3)	3.4 (1)	3.4(2)	4.0(6)	∞	∞ 753	0/15
IPOPCMAv3p	7.3(14)	6.7(8)	8.6(5)	11(10)	13(10)	∞	∞ 751	0/15
LHD-10xDef	4.0(3)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.7 (2)	4.6(4)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.8 (3)	26(25)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	12(12)	60(60)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	39(55)	126(76)	∞	∞	∞	∞	∞ 760	0/15
Sifeg	217(436)	479(862)	1445(1754)	2428(1905)	∞	∞	∞ 2e4	0/15
Sif	140(318)	776(1278)	1351(1177)	2339(1854)	∞	∞	∞ 2e4	0/15
Srr	131(220)	633(773)	924(1264)	1200(1416)	∞	∞	∞ 2e4	0/15

Table 15: 03-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	2.2	17	28	43	71	110	194	15/15
BSifeg	1.8(2)	4.7(5)	4.3(4)	32(20)	1324(3102)	∞	$\propto 3e4$	0/15
BSif	1.8(2)	5.3(11)	4.9(5)	187(232)	6262(1e4)	∞	$\propto 3e4$	0/15
BSqi	1.8(2)	3.9(4)	3.3(7)	15(18)	1018(851)	∞	$\propto 3e4$	0/15
BSrr	1.8(2)	5.4(10)	4.5(3)	28(40)	776(638)	∞	$\propto 3e4$	0/15
CMA-CSA	3.8(3)	2.3 (2)	3.7(2)	4.1(2)	4.4(1)	5.1(0.7)	4.2(0.5)	15/15
CMA-MSR	2.5(2)	3.1(2)	4.4(2)	5.8(1)	5.1(0.7)	5.6(0.8)	4.5(0.8)	15/15
CMA-TPA	4.4(4)	3.4(4)	4.4(0.8)	4.2(2)	3.9(0.7)	4.9 (1.0)	4.1(0.6)	15/15
GP1-CMAES	3.9(2)	2.5 ₍₁₎	2.7 (1)	3.5 (1)	6.2(2)	23(47)	∞ 751	0/15
GP5-CMAES	3.3(3)	1.8(2)	1.8(0.4)	2.2 (0.9)	3.6 (2)	31(70)	∞ 753	0/15
IPOPCMAv3p	2.2 (0.7)	3.1(2)	3.5(1)	3.9(0.7)	4.3(1)	8.9(6)	∞ 751	0/15
LHD-10xDef	1.5(2)	4.1(2)	3.8(0.5)	8.2(9)	∞	∞	∞ 150	0/15
LHD-2xDefa	1.9 (0.9)	1.4(0.4)	1.7(0.4)	24(30)	∞	∞	∞ 150	0/15
RAND-2xDef	2.3 (3)	1.4(0.4)	1.9 (1)	12(10)	∞	∞	∞ 150	0/15
RF1-CMAES	2.9(4)	7.6(8)	14(13)	24(41)	70(153)	∞	∞ 751	0/15
RF5-CMAES	1.9 (1)	24(41)	40(37)	71(44)	150(326)	∞	∞ 753	0/15
Sifeg	1.8(2)	1.6(0.7)	2.1(2)	12(13)	616(1029)	∞	$\propto 3e4$	0/15
Sif	1.8 (1)	1.6 (1)	2.4(2)	21(45)	2761(4211)	∞	∞ 3e4	0/15
Srr	1.8(1)	1.4(0.5)	1.6(0.8)	12(12)	1289(1363)	∞	∞ 3e4	0/15

Table 16: 03-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f15	121	1372	6285	8282	8429	8787	9041	15/15
BSifeg	50(85)	84(72)	30(25)	23(20)	23(30)	22(29)	46(78)	1/15
BSif	62(106)	291(178)	∞	∞	∞	∞	∞ 3e4	0/15
BSqi	84(96)	60(61)	63(53)	48(62)	47(76)	45(24)	45(85)	1/15
BSrr	80(141)	47(46)	31(36)	23(30)	23(23)	22(22)	22(22)	2/15
CMA-CSA	1.2(0.7)	1.3(1)	0.83 (0.8)	0.64(0.5)	0.65 (0.6)	0.65 (0.5)	0.66 (0.5)	15/15
CMA-MSR	2.7 (5)	1.8(2)	0.72 (0.8)	0.56 (0.4)	0.57 (0.3)	0.58 (0.3)	0.60 (0.4)	15/15
CMA-TPA	0.99 (0.6)	1.6 (1)	1.1(0.4)	0.91 (0.5)	0.91 (0.4)	0.91 (0.5)	0.92 (0.3)	15/15
GP1-CMAES	2.1(0.5)	1.7(2)	1.7(2)	1.3(0.9)	1.3(1)	1.3(1)	1.2(1.0)	1/15
GP5-CMAES	0.74(0.5)	3.8(3)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	0.97 (0.2)	1.4 (1)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	1.6 (1)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.1(0.6)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	0.72 (0.7)	1.6(2)	0.35 (0.5)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	1.0(0.3)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	4.7(8)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	32(62)	41(24)	21(17)	16(8)	16(25)	24(22)	47(47)	1/15
Sif	51(103)	88(124)	∞	∞	∞	∞	∞ 3e4	0/15
Srr	25(40)	33(15)	∞	∞	∞	∞	∞ 3e4	0/15

Table 17: 03-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	41	319	582	789	1864	3204	3361	15/15
BSifeg	1.6 (1)	20(55)	74(114)	163(219)	108(126)	∞	$\propto 3e4$	0/15
BSif	2.0(2)	24(35)	57(54)	168(238)	∞	∞	$\propto 3e4$	0/15
BSqi	2.0(1)	26(56)	63(141)	164(250)	217(215)	∞	$\propto 3e4$	0/15
BSrr	1.5(2)	19(33)	144(173)	161(141)	107(112)	∞	$\propto 3e4$	0/15
CMA-CSA	1.7(2)	3.1(1)	3.5 (4)	2.7 (3)	1.2(1)	0.74(0.8)	0.75 (0.6)	15/15
CMA-MSR	6.7(19)	7.1(14)	5.3(4)	4.4(2)	3.0(4)	1.9(2)	1.9(0.4)	15/15
CMA-TPA	3.2(5)	4.8(10)	3.6(3)	3.9 (7)	1.7 (1)	1.1(2)	1.1 (1)	15/15
GP1-CMAES	1.3(0.6)	3.1(5)	3.2 (6)	6.6(5)	2.8(2)	1.7 ₍₁₎	∞ 751	0/15
GP5-CMAES	0.78(0.4)	3.6(4)	4.1(4)	4.4(9)	2.9 (6)	3.4(3)	∞ 760	0/15
IPOPCMAv3p	1.6 (2)	1.7 (1)	1.8(2)	2.0(4)	1.1(2)	0.66 (0.3)	1.1(0.9)	3/15
LHD-10xDef	0.99(1)	1.2(0.8)	3.8(2)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.0(0.8)	1.00(1)	3.7(4)	∞	∞	∞	∞ 150	0/15
RAND-2xDef	1.4 (1)	1.0(1)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	1.1(1.0)	3.5(2)	4.0(7)	4.3(7)	∞	∞	∞ 751	0/15
RF5-CMAES	2.8 (8)	4.6(13)	9.1(11)	∞	∞	∞	∞ 760	0/15
Sifeg	1.1(0.6)	10(17)	28(34)	265(246)	112(71)	∞	$\propto 3e4$	0/15
Sif	1.0 (0.6)	12(34)	36(51)	91(86)	111(181)	∞	∞ 3e4	0/15
Srr	1.2(1.0)	19(31)	47(70)	257(399)	∞	∞	$\propto 3e4$	0/15

Table 18: 03-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f17	3.6	78	282	491	1134	2347	3469	15/15
BSifeg	3.6(7)	47(275)	304(478)	879(1188)	384(212)	∞	∞ 3e4	0/15
BSif	2.9 (2)	54(147)	143(192)	267(163)	385(441)	∞	∞ 3e4	0/15
BSqi	3.0 (7)	69(115)	73(82)	180(223)	187(152)	∞	∞ 3e4	0/15
BSrr	5.2(2)	52(3)	116(193)	248(181)	374(325)	∞	∞ 3e4	0/15
CMA-CSA	2.3 (3)	1.2(0.5)	0.94 (0.2)	1.3(0.6)	0.78(0.9)	0.86(0.4)	0.81(0.5)	15/15
CMA-MSR	3.1(2)	3.3(4)	2.4(2)	1.9 (1)	0.97 (0.6)	1.1(0.4)	1.0(0.6)	15/15
CMA-TPA	4.5(8)	1.4(0.4)	0.85 (0.2)	0.78 (0.3)	0.77 (0.6)	1.2(1)	1.2(0.8)	15/15
GP1-CMAES	2.3(5)	2.4 (3)	1.5(2)	3.0(2)	3.2(3)	∞	∞ 751	0/15
GP5-CMAES	3.2(3)	4.2(6)	3.5(3)	22(32)	∞	∞	∞ 753	0/15
IPOPCMAv3p	5.4(7)	1.6(0.8)	0.94 (0.2)	0.92 (0.6)	0.74 (0.6)	4.8(5)	∞ 751	0/15
LHD-10xDef	2.8(4)	1.7(0.6)	8.0(13)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.4(2)	1.4(0.9)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.6 (2)	1.0(0.3)	2.6 (2)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	4.1(4)	6.2(9)	8.2(13)	22(10)	∞	∞	∞ 751	0/15
RF5-CMAES	22(35)	12(18)	40(46)	∞	∞	∞	∞ 760	0/15
Sifeg	3.8(7)	47(124)	48(36)	193(220)	∞	∞	∞ 3e4	0/15
Sif	4.7(2)	29(105)	69(47)	268(233)	∞	∞	∞ 3e4	0/15
Srr	3.7(2)	15(20)	51(175)	184(186)	378(238)	∞	∞ 3e4	0/15

Table 19: 03-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	40	145	1289	3084	3523	4738	5527	15/15
BSifeg	1.6 (1)	132(207)	324(202)	∞	∞	∞	$\propto 3e4$	0/15
BSif	1.3 (3)	210(264)	149(251)	∞	∞	∞	$\propto 3e4$	0/15
BSqi	1.1(0.4)	127(146)	332(229)	∞	∞	∞	$\propto 3e4$	0/15
BSrr	17(118)	72(89)	151(232)	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	1.4(0.9)	3.1 (9)	1.2(1)	0.71 (0.6)	0.81(0.7)	0.85 (0.5)	0.95 (0.5)	15/15
CMA-MSR	1.4(0.7)	5.1(14)	1.1(1)	0.73 (0.6)	0.96(1)	0.96 (0.8)	1.0(0.5)	15/15
CMA-TPA	1.7 (0.9)	4.2(7)	1.0(0.9)	0.55 (0.5)	0.75 (0.6)	0.85 (0.5)	0.93 (0.4)	15/15
GP1-CMAES	1.3 (1)	3.7(5)	2.6 (3)	3.6(2)	∞	∞	∞ 751	0/15
GP5-CMAES	5.6(5)	3.3(4)	2.5 (3)	3.5(6)	∞	∞	∞ 760	0/15
IPOPCMAv3p	1.7(1)	4.2(4)	2.0 (3)	1.2(1)	1.6 (2)	∞	∞ 751	0/15
LHD-10xDef	2.1(0.7)	15(15)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	0.93 (0.7)	2.4 (3)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	0.97 (0.4)	2.7 (3)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	7.7(23)	12(22)	4.1(7)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	5.1(7)	16(13)	∞	∞	∞	∞	∞ 760	0/15
Sifeg	1.5(2)	74(96)	93(165)	∞	∞	∞	∞ 3e4	0/15
Sif	3.7(2)	110(115)	142(191)	∞	∞	∞	∞ 3e4	0/15
Srr	1.2(2)	90(100)	93(105)	∞	∞	∞	$\propto 3e4$	0/15

Table 20: 03-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	109	6764	7367	7399	7441	15/15
BSifeg	8.3(6)	220(292)	17 (30)	61(84)	∞	∞	∞ 3e4	0/15
BSif	8.3(7)	242(374)	36(38)	30(40)	57(117)	∞	$\propto 3e4$	0/15
BSqi	8.3(6)	253(216)	45(83)	10 (9)	55(113)	∞	$\propto 3e4$	0/15
BSrr	8.3(6)	237(109)	33(28)	66(40)	∞	∞	$\propto 3e4$	0/15
CMA-CSA	11(6)	352(550)	39(29)	2.1 (3)	2.4(2)	2.5 (2)	2.5 (1)	15/15
CMA-MSR	8.8(7)	251(339)	96(103)	46(33)	94(151)	122(160)	122(103)	4/15
CMA-TPA	8.7(6)	172(383)	41(55)	2.3 (3)	2.8 (4)	2.9 (4)	2.9(4)	15/15
GP1-CMAES	6.1 (8)	154(191)	48(48)	∞	∞	∞	∞ 753	0/15
GP5-CMAES	10(11)	282(468)	104(142)	∞	∞	∞	∞ 762	0/15
IPOPCMAv3p	9.4(10)	189(395)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	8.9(8)	522(528)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	8.1(8)	229(126)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	8.3(13)	455(675)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	10(10)	210(242)	24(18)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	8.1(9)	456(378)	∞	∞	∞	∞	∞ 755	0/15
Sifeg	8.7(7)	289(466)	19(14)	63(62)	59(19)	∞	∞ 3e4	0/15
Sif	8.7(5)	338(282)	36(48)	63(70)	∞	∞	∞ 3e4	0/15
Srr	8.7(8)	433(128)	21 (8)	19(22)	∞	∞	$\propto 3e4$	0/15

Table 21: 03-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

 CCCII CIIID (CII	are arrive		11101101011	•				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	8.3	385	2291	2398	2481	2573	2776	15/15
BSifeg	4.9(2)	13(5)	17(22)	16(13)	16(12)	16(29)	18 (7)	7/15
BSif	3.8(1)	17(17)	87(80)	84(177)	81(89)	80(51)	76(82)	2/15
BSqi	3.0(4)	11(16)	31(31)	30(53)	29(34)	37(29)	35(41)	4/15
BSrr	2.3 (1)	14(13)	19(13)	19(19)	18(10)	24(25)	23(35)	6/15
CMA-CSA	2.3 (2)	4.5(5)	3.6(4)	3.7(4)	3.6 (4)	3.7 (2)	3.5 (2)	15/15
CMA-MSR	2.8(2)	13(19)	151(261)	269(230)	261(267)	253(192)	235(160)	5/15
CMA-TPA	3.8(3)	7.6(6)	10 (4)	10 (10)	10 (7)	10 (16)	10 (5)	15/15
GP1-CMAES	2.7 (3)	3.7 (6)	∞	∞	∞	∞	∞ 751	0/15
GP5-CMAES	1.7 ₍₁₎	2.0 (0.7)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	3.5(2)	4.5(4)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	4.2(4)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.1(1)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.0(1)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.4(19)	5.9(9)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	38(20)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	2.9 (2)	7.3(21)	19(31)	18(25)	17(19)	21(23)	25(56)	5/15
Sif	3.2(2)	10(26)	20(20)	20(32)	19(17)	22(21)	26(23)	5/15
Srr	2.6 (1)	9.0(35)	17(20)	16(18)	16 (15)	15(17)	20(21)	6/15

Table 22: 03-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	5.9	184	425	439	458	469	482	15/15
BSifeg	1.6 (1.0)	106(226)	55(92)	55(44)	60(14)	74(77)	148(121)	5/15
BSif	1.6 (1)	104(144)	114(165)	145(107)	143(113)	192(257)	265(202)	3/15
BSqi	1.6 (2)	167(286)	120(54)	118(182)	114(100)	142(157)	188(441)	4/15
BSrr	1.6 (2)	141(171)	145(177)	142(136)	137(173)	141(156)	268(553)	3/15
CMA-CSA	1.3 (1)	6.7(9)	5.9(2)	6.5(8)	6.8(10)	7.0 (12)	7.1 (8)	15/15
CMA-MSR	2.1 (1)	17(39)	154(143)	251(355)	240(490)	235(322)	229(154)	11/15
CMA-TPA	1.6 (2)	2.1(2)	17(2)	20(51)	20(19)	59(34)	58(159)	14/15
GP1-CMAES	0.93(1)	17(29)	25(28)	24(22)	23(25)	23(24)	∞ 751	0/15
GP5-CMAES	1.4(0.8)	4.0(8)	5.6(5)	5.5(8)	5.3(8)	7.2(2)	22(35)	1/15
IPOPCMAv3p	1.9(2)	4.4(5)	7.2(8)	11(21)	11(10)	11(12)	11 (13)	2/15
LHD-10xDef	1.7(2)	0.75 (0.6)	0.66 (0.3)	1.2(0.6)	1.6(2)	4.8(6)	∞ 150	0/15
LHD-2xDefa	1.3(1.0)	1.2(0.8)	1.7(1)	2.5(2)	4.9 (3)	∞	∞ 150	0/15
RAND-2xDef	1.2(0.3)	1.0(0.9)	1.2(0.9)	2.5(2)	∞	∞	∞ 150	0/15
RF1-CMAES	2.1(2)	5.0(7)	5.0(7)	5.0(6)	5.0 (3)	6.8 (7)	7.1(5)	3/15
RF5-CMAES	1.9 (1)	8.0(10)	13(19)	26(27)	∞	∞	∞ 760	0/15
Sifeg	1.9(2)	111(135)	77(156)	76(84)	74(62)	113(157)	159(221)	5/15
Sif	2.1(2)	106(186)	142(141)	138(87)	134(165)	147(164)	258(295)	3/15
Srr	1.9(2)	163(233)	195(265)	190(292)	183(345)	184(160)	408(421)	2/15

Table 23: 03-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	18	170	354	362	384	401	414	15/15
BSifeg	7.6(6)	87(143)	73(65)	144(290)	240(220)	335(812)	1079(2735)	1/15
BSif	10(8)	219(227)	245(229)	373(474)	1094(854)	1047(688)	1019(956)	1/15
BSqi	4.8(7)	130(80)	108(67)	210(165)	359(491)	526(772)	∞ 3e4	0/15
BSrr	3.9(11)	146(183)	187(180)	344(907)	525(430)	1068(3017)	1058(1808)	1/15
CMA-CSA	1.4(0.9)	11(6)	227(199)	363(386)	399(407)	704(744)	682(873)	7/15
CMA-MSR	2.0 (3)	5.9(8)	36(11)	107(295)	207(190)	198(542)	193(193)	12/15
CMA-TPA	1.8(3)	19(13)	267(524)	305(305)	424(604)	645(1186)	1334(2798)	5/15
GP1-CMAES	1.7(2)	3.8(5)	4.6(2)	6.4(4)	6.2 (7)	8.9(22)	13 (23)	2/15
GP5-CMAES	4.2(2)	10(16)	10(18)	10 (9)	9.2(12)	27(23)	26 (32)	1/15
IPOPCMAv3p	2.1(2)	10(7)	15(12)	14 (7)	14 (19)	13 (16)	13 (14)	2/15
LHD-10xDef	1.7(1)	0.88(0.7	(3) 3.0 (3)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.4 (0.6)	2.2(2)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	0.97(0.7	1.1 (0.6)	3.1 (6)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	1.7(1)	5.5(10)	14(14)	29(47)	28(16)	27 (17)	∞ 751	0/15
RF5-CMAES	6.9(17)	11(12)	15(24)	31(29)	∞	∞	∞ 753	0/15
Sifeg	1.8(3)	61(32)	77(110)	105(122)	192(156)	1058(1496)	∞ 3e4	0/15
Sif	3.2(2)	67(91)	181(112)	377(318)	1100(800)	1117(784)	∞ 3e4	0/15
Srr	1.5(0.7)	66(86)	50(46)	84(177)	243(235)	526(715)	∞ 3e4	0/15

Table 24: 03-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	2.6	407	906	1215	2214	2293	2393	15/15
BSifeg	3.8(5)	1.5 (1)	220(224)	∞	∞	∞	$\propto 3e4$	0/15
BSif	3.8(4)	2.1 (1)	158(173)	∞	∞	∞	$\propto 3e4$	0/15
BSqi	3.7(5)	2.1(2)	56(113)	∞	∞	∞	$\propto 3e4$	0/15
BSrr	3.9(5)	1.6 (2)	486(265)	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	3.3 (9)	6.2(4)	14(55)	11 (11)	6.1 (6)	6.1(14)	6.0 (6)	15/15
CMA-MSR	2.6(2)	4.2(6)	3.3 (3)	2.7 (2)	1.6 (1)	1.7(0.9)	1.8(1)	15/15
CMA-TPA	4.2(3)	9.4(6)	13 (31)	11 (8)	5.9 (15)	5.9 (3)	5.9(24)	15/15
GP1-CMAES	3.3 (4)	13(21)	∞	∞	∞	∞	∞ 753	0/15
GP5-CMAES	5.7(6)	1.1(0.9)	2.7 (3)	∞	∞	∞	∞ 753	0/15
IPOPCMAv3p	4.3(3)	6.3(7)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	6.4(8)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	4.0(4)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	4.5(6)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	5.1(5)	∞	∞	∞	∞	∞	∞ 753	0/15
RF5-CMAES	3.5(4)	8.1(17)	∞	∞	∞	∞	∞ 762	0/15
Sifeg	3.7(4)	2.5 (1.0)	146(180)	∞	∞	∞	∞ 3e4	0/15
Sif	3.7(4)	2.7 (2)	111(119)	∞	∞	∞	∞ 3e4	0/15
Srr	3.7(2)	1.9 (1)	493(415)	∞	∞	∞	∞ 3e4	0/15

Table 25: 03-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	97	10391	1.0e5	3.6e5	3.6e5	3.6e5	3.6e5	2/15
BSifeg	4.1(5)	39(37)	∞	∞	∞	∞	∞ 3e4	0/15
BSif	4.5(6)	12 (9)	∞	∞	∞	∞	$\propto 3e4$	0/15
BSqi	5.0(6)	39(33)	∞	∞	∞	∞	$\propto 3e4$	0/15
BSrr	3.0(3)	18(35)	∞	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	1.8 (3)	116(224)	∞	∞	∞	∞	$\propto 3e5$	0/15
CMA-MSR	2.4 (4)	45(109)	19 (29)	∞	∞	∞	$\propto 3e5$	0/15
CMA-TPA	2.5 (1)	117(95)	∞	∞	∞	∞	$\propto 3e5$	0/15
GP1-CMAES	1.5(1)	∞	∞	∞	∞	∞	∞ 751	0/15
GP5-CMAES	1.5(2)	1.0(2)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	2.0(2)	∞	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	11(11)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	3.5(3)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	11(14)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	2.6 (5)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	6.1(7)	∞	∞	∞	∞	∞	∞ 755	0/15
Sifeg	2.3 (0.3)	8.9(10)	∞	∞	∞	∞	$\propto 3e4$	0/15
Sif	2.4 (2)	18(23)	∞	∞	∞	∞	∞ 3e4	0/15
Srr	1.8 (3)	39(23)	3.9 (4)	∞	∞	∞	$\propto 3e4$	0/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.