Data storage - OHDFS 2 HBose · pata processing + Analytics - Batch - map reduce - spork - Hive · Online streaming process - storm · Spark · Data shording - pata partitioned into groups 4 stored on different machines ex. Hofs NO SQL DBDS - concurrent processing of data on different machines

- Speed up processing time.

Distributed Algorithms Set of collaborative tasks which might run concurrently to process data on different machines.
Example - Hadoop Map reduce Distributed ML
framework to execute - Hadoop YARN

HOFS uses data sharding to create
blocks of clota 4then it is distributed

parta es-ordinator = Namenode
shard manager = parta node.

- · Namenode Responsibility
 - 1. metadata
 - tree structure
 - directory metadata
 - files metaderta
 - 2. location of each block

stores in this way

- Namespace img files
fsimage - Latest checkpoint

Doutanode Responsibility

- . preserve the assigned blocks on its Local disk
- · Forh block is identified using blockpool id + block id
- . Management of assigned blocks.

HDFS Availability

- large cluster = High chances of failure failure = datanode crash, datablock on that datanode is not available
- . If namenode crosh HDFs unavailable for client

Two types of redundancy

- 1 Block
- @ Namenode

1 Block -

- · Replicas are persisted on different m/c
- . Number of block replicas are configurable with HPFS-site.xml
- · client can read from any copy
- · client write to all copies

2 Namenode Redundancy

1 Additional secondary namenade can be implemented

primary croshed secoundary takes over

Two types of namenode fail-over

- 1) Pre-release 2 namenade fail
 - @ Release 2 nomenade failorers.

Hodoop YARN

· As YARN uses distributed algorithm

It is implemented as YARN ApplaMaster.

once node manager selected, resource manager will ask the node manager to

- a start container
- @ Run Application Moster con container
 - * YARN Job Scheduling
 - 1) FIFO schedules
 - @ Capacity schedules
 - B) fair scheduler

perferm aggregate operations on each

· Join two files with a given join key.

Two phases

- 1 Map phase
- Petrieve data form local redistribute the local data
- 2 reduce phone

Apply analytical logic to the data coming form other

