Norme sur un espace vectoriel

Feuille d'exercices #02

Exercice 1 — Montrer qu'une boule d'un espace vectoriel réel normé est convexe.

Exercice 2 — Soient E un espace vectoriel normé. Si A est une partie bornée non vide de E, on appelle diamètre de A le réel $\delta(A) = \sup \|x - y\|$.

- 1. Justifier l'existence de $\delta(A)$.
- 2. Soient *A* et *B* sont deux parties bornées de *E* d'intersection non vide.
 - a) Montrer que : $A \subset B \Longrightarrow \delta(A) \leq \delta(B)$.
 - b) Montrer que $\delta(A \cup B) \leq \delta(A) + \delta(B)$.
- Exercice 3 Inégalités de Hölder et de Minkowski Soit $n \in \mathbb{N}^*$. On pose, pour tout réel p > 1 et pour tout $x = (x_1, ..., x_n) \in \mathbb{K}^n$,

$$\|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$

Soient $x = (x_1, ..., x_n) \in \mathbb{K}^n$, $y = (y_1, ..., y_n) \in \mathbb{K}^n$ et p, q > 1 tels que $\frac{1}{p} + \frac{1}{q} = 1$.

- 1. a) Montrer que pour tous réels positifs α et β , $\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}$.
 - b) En déduire l'inégalité de Hölder : $\sum_{k=1}^{n} |x_k y_k| \le ||x||_p \cdot ||y||_q$.

On commencera par traiter le cas $||x||_p = ||y||_q = 1$.

- 2. a) Établir que $\sum_{k=1}^{n} |x_k + y_k|^p \le \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k|^{p-1}$.
 - b) En déduire l'inégalité de Minkowski : $||x + y||_p \le ||x||_p + ||y||_p$.
- 3. Montrer que pour tout $p \ge 1$, $\|\cdot\|_p$ est une norme sur \mathbb{K}^n .
- 4. Montrer que pour tout $x \in \mathbb{K}^n$, $||x||_p \xrightarrow[p \to +\infty]{} ||x||_{\infty}$.

Exercice 4 — Soit $(E, (\cdot | \cdot))$ un espace préhilbertien. Montrer que pour tout $x \in E$,

$$||x|| = \sup_{\substack{y \in E \\ ||y|| \le 1}} |(x|y)|$$

Exercice 5 — Soient N_1 et N_2 deux normes sur un espace vectoriel E et B_1 et B_2 les boules unités fermées associées. Montrer que $B_1 = B_2$ si, et seulement si, $N_1 = N_2$.

Exercice 6 — On note E le \mathbb{R} -espace vectoriel des suites bornées. Pour toute suite $u \in E$, on pose :

$$\|u\|_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$
 et $\|u\|'_{\infty} = \sup_{n \in \mathbb{N}} (|u_n| + |u_{2n}|)$

Montrer que l'on définit ainsi deux normes équivalentes sur E.

Exercice 7 — Soit $E = \mathbb{C}[X]$. Pour tout $P = \sum_{k=0}^{+\infty} a_k X^k$, on pose :

$$N_1(P) = \sum_{k=0}^{+\infty} |a_k|; \quad N_2(P) = \int_0^1 |P(t)| \, \mathrm{d}t; \quad N_3(P) = \sup_{t \in [0,1]} |P(t)|$$

- 1. Montrer que N_1 , N_2 et N_3 sont des normes sur E.
- 2. Donner des inégalités optimales entre N_1 , N_2 et N_3 .
- 3. Sont-elles équivalentes?

Exercice 8 — Soient $E = \mathcal{C}([0,1], \mathbb{R})$ et,

$$\forall f \in E, \quad ||f|| = \int_0^1 e^t |f(t)| dt$$

Montrer que $\|\cdot\|$ définit une norme sur E. Est-elle équivalente à $\|\cdot\|_{\infty}$?

Exercice 9 — Soit $a \in \mathbb{R}$. On pose, pour $P \in \mathbb{R}[X]$,

$$N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt$$

- 1. Montrer que pour tout $a \in \mathbb{R}$, N_a est une norme.
- 2. Montrer que N_0 et N_1 sont équivalentes puis, plus généralement, que pour tous $a,b \in [0,1]$, N_a et N_b sont équivalentes.
- 3. a) On pose, pour $n \in \mathbb{N}$, $P_n = X^n/2^n$. Déterminer pour quelles normes N_a la suite $(P_n)_{n \in \mathbb{N}}$ converge et préciser dans ce cas sa limite.
 - b) Établir que pour $0 \le a < b$ et b > 1, N_a et N_b ne sont pas équivalentes.

Exercice 10 — Soient $E = \mathcal{C}^1([0,1],\mathbb{R})$ et,

$$\forall f \in E$$
, $N(f) = \sup_{[0,1]} (|f| + |f'|)$ et $N'(f) = \sup_{[0,1]} |f| + \sup_{[0,1]} |f'|$

Montrer que N et N' sont deux normes équivalentes sur E.

Exercice 11 — On définit sur $E = \mathcal{C}^1([0,1],\mathbb{R})$ l'application N par :

$$N(f) = \sqrt{f(0)^2 + \int_0^1 f'(t)^2 dt}$$

Montrer que N est une norme puis que $\|\cdot\|_{\infty} \leq \sqrt{2}N$. Sont-elles équivalentes?

Exercice 12 — Soit $E = \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2\}.$

- 1. Montrer que E est un \mathbb{Q} -espace vectoriel de dimension 2.
- 2. Montrer que les applications $a + b\sqrt{2} \mapsto |a| + |b|$ et $a + b\sqrt{2} \mapsto |a + b\sqrt{2}|$ définissent deux normes sur E.
- 3. À l'aide de $u_n = (1 + \sqrt{2})^n$, montrer qu'elles ne sont pas équivalentes.

Exercice 13 — Soit $E = \mathcal{C}([0,2\pi],\mathbb{C})$ muni de la norme de la convergence uniforme. On considère la suite de fonctions définies par $f_n : x \mapsto e^{inx}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $f_n \in \overline{B(0,1)}$.
- 2. En calculant $||f_n f_p||_{\infty}$, montrer que la suite $(f_n)_{n \in \mathbb{N}}$ n'admet pas de soussuite convergente.

Exercice 14 — Soit $(E, \|\cdot\|)$ un espace vectoriel normé. On dit qu'une suite (u_n) d'éléments de E est de Cauchy si et seulement si :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n, p \ge N, \quad ||u_n - u_n|| \le \varepsilon$$

Montrer l'équivalence entre les propriétés suivantes :

- 1. toute suite de Cauchy d'éléments de *E* converge;
- 2. pour toute suite (u_n) d'éléments de E, la convergence de la série $\sum ||u_n||$ implique la convergence de la série $\sum u_n$.

Exercice 15 — Autour de la convergence simple

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni d'une norme $\|\cdot\|$. On considère la propriété (*) suivante :

$$\forall f \in E, \quad \forall (f_n) \in E^{\mathbb{N}}, \quad \|f - f_n\| \xrightarrow[n \to +\infty]{} 0 \quad \Longleftrightarrow \quad \forall t \in E, \quad f_n(t) \xrightarrow[n \to +\infty]{} f(t)$$

- 1. Montrer qu'il n'existe aucune norme $\|\cdot\|$ vérifiant la propriété (*). On construira une suite de fonctions affines par morceaux de support $[0, \frac{1}{n}]$.
- 2. Soient F l'espace vectoriel des fonctions polynomiales de degré au plus k définies sur [0,1] et $\alpha_0, \ldots, \alpha_k \in [0,1]$ distincts.
 - a) Montrer que $||P|| = \sum_{i=0}^{k} |P(\alpha_i)|$ définit une norme sur F.
 - b) À l'aide des polynômes interpolateurs de Lagrange, montrer que la propriété (*) est vérifiée dans *F*.

Exercice 16 — Autour des normes matricielles

On considère les trois applications définies sur $E = \mathcal{M}_n(\mathbb{R})$ par :

$$\|M\|_1 = \sup_{1 \leq i \leq n} \sum_{j=1}^n |m_{i,j}| \, ; \quad \|M\|_2 = \sqrt{\sum_{1 \leq i,j \leq n} m_{i,j}^2} \, ; \quad \|M\|_\infty = \sup_{1 \leq i,j \leq n} |m_{i,j}|$$

- 1. Montrer que ces applications sont des normes sur *E*.
- 2. a) Montrer qu'elles vérifient de plus, pour les deux premières :

$$\forall M, N \in \mathcal{M}_n(\mathbb{R}), \quad ||MN|| \leq ||M|| \cdot ||N||$$

b) Prouver que pour toute norme $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{R})$, il existe $c\in\mathbb{R}$ tel que :

$$\forall M,N\in\mathcal{M}_n(\mathbb{R}),\quad \|MN\|\leq c\cdot \|M\|\cdot \|N\|$$

№ Exercice 17 — Norme subordonnée

On considère la norme définie sur $\mathcal{M}_{n,1}(\mathbb{R})$ par $||X|| = \max_{1 \le i \le n} |x_i|$ et on note \mathscr{S} l'ensemble des vecteurs colonnes unitaires. On pose alors, pour tout $A \in \mathcal{M}_n(\mathbb{R})$,

$$N(A) = \sup_{X \in \mathcal{S}} \|AX\|$$

- 1. Justifier que N est bien définie.
- 2. Montrer que pour tous $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et $A \in \mathcal{M}_n(\mathbb{R})$, $||AX|| \leq N(A)||X||$.
- 3. En déduire que N est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- 4. Justifier que N est en fait la norme $\|\cdot\|_1$ définie dans l'exercice précédent.