Notes on Exercises 5

Exercise 1

The cdf of the standard logistic distribution is given by $F(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$.

- (a) What are the properties of a cdf? Explain why F fulfills these.
- (b) Calculate the pdf f(x).
- (c) Use the R function rlogis to generate pseudo-random numbers for the logistic distribution. (The standard logistic has location=0 and scale=1.) Simulate samples from the standard logistic distribution and illustrate that its expectation is 0 and the variance equals $\frac{\pi^2}{2}$.

- · monotomously increasing (strictly if distribution is
- · domain of the cdf: X ∈ R

(b)
$$colf: F(x)$$
 } $f(x) = F(x)$

$$pdf: f(x)$$
 {

(F is an auticlerivative of f)

$$f(x) = F(x)$$

=)
$$f(x) = \frac{e^x}{(4+e^x)^2}$$

=) $f(x) = \frac{e^x}{(1+e^x)^2}$ Symmetric around 0 (Kind of similar to the

Gaussian (wormal poll)

Exucise 5/2

See R code: colfs of logistic and mormal

distributions are very close if

the dishibutions are rescaled

according by

⇒ you cannot compare Coefficients
of logit and probit models
directly but you would also
to compare them in rescaled
wey

but in general: results of logit and probit models are similar

pros & cous:

logit: $F(x) = \frac{1}{1+e^{-x}}$ is more simple to calculate than ϕ

(but are smooth and differentiable)

probit: has the advantage that it could be easier generalized to multidimensional dependent variables/ Sys.lems of regenion equations

=> when using legist or probit take care to use the relevant inverse link function For ϕ when doing a prediction