

诺基亚NB-IoT功能介绍-LTE3071

- 黄川
- 2017-09-06

NB-IoT功能简介

NB-IoT是在LTE系统上新增加的一个无线技术,它的主要产品特点是:

- 最大的耦合损耗要比正常的LTE网络多20dB,即MCL = 164dB
- 可以采用In-band,Guard-band,Stand-alone三种方式来部署NB-IoT小区
- · 200 kHz 的带宽
- 需要达到下行26 kbps 上行 62 kbps 的持续吞吐量
- · NB-IoT终端的电池寿命需达到10年以上
- FL16A上的LTE3033功能支持基本的NB-IoT功能,但仅依赖于诺基亚与英特尔 私有的接口规范,主要是用于概念的验证。
- FL17SP上的LTE3071功能是基于3GPP标准化接口,但只适合实验室试验。它是基于标准的LTE覆盖(MCL = 144 dB),在FSMF系统模块上实现In-band的操作模式。
- FL17A上对LTE3071功能进行了升级,并且开始支持更多的功能:
 - LTE3668: Coverage enhancements (MCL = 164 dB)
 - LTE3509: Airscale support
 - LTE3819: Co-existence with LTE-M

Feature id	Release	Contents
LTE3033	FL16A	Pre-standard version of NB-IoT
LTE3071	FL17SP	Trial version of NB-IoT
LTE3071	FL17A	Live network version of NB-IoT, basic functionality
LTE3509	FL17A	AirScale support (without baseband pooling)
LTE3819	FL17A	Co-existence with LTE-M
LTE3668	FL17A	NB-IoT coverage enhancements compared to FL17SP version
LTE3071, LTE3688, LTE3819	FL17A SP	Flexi Zone Micro support
LTE3669	FL17A SP	Paging
LTE3125	FL17A SP	Support of Idle eDRX
LTE3543	FL17A SP	Standalone mode
LTE3571	FL18	Various enhancements
LTE3722	FL18	Support 4Tx4Rx and 1Tx
LTE3667	FL18	Airscale with baseband pooling
LTE3840	FL18	Multiple coverage levels
LTE3730	FL18SP	Various enhancements
LTE3721	FL18SP	Multi-tone transmission in uplink
LTE3570	FL18SP	Guard band operation

LTE 3071 - NB-IoT 概述

- LTE 3071 支持 3GPP Rel. 13 的 in-band NB-loT 功能.
- 对于LTE小区来说会有一些新概念及部署要求:
 - FDD 模式, 使用半双工模式, 上下行均支持200 kHz的射频带宽
 - 下行:15 kHz的子载波间隔, 2 Tx 的发射分集, QPSK调制
 - 上行:15 kHz 的single tone 传输, 2 RX 的最大比合并接收, 支持BPSK, QPSK
- FSMF 部署, 在LTE 3071 中不支持覆盖增强功能
- 在SRB上进行数据传输 (data over NAS),也就是说仅支持控制面的优化方案
- LTE 3071可在5/10/15/20 MHz的FDD 2x2的小区上配置,但仅支持配置一个NB-IoT载波,并且NB-IoT小区的PCI必须与主小区一样
- 基于3GPP协议的规定,LTE3071 NB-IoT可采用非对称的上下行PRB载波配置
- NB-IoT和LTE的PRB共享eNB的功率,并且可以针对NB-IoT的功率进行提升(dIPwrBoost:↓ 0...6 dB, step 0.1 dB)
- 在LTE3071中会有针对NB-IoT UE专用的RRC连接限制(maxNumRrcNB: 0...420, step 1)

FL17SP LTE3071

LNCEL: nbloTMode

3 - ©L2**TE30F4**不支持paging,所以目前基站只能处理用户主动发起的请求

LTE 3071 – In band操作下的NB PRB选择

- 基于3GPP协议规定的NB-IoT载波中心频率选择:
 - NB-IoT UE 遵循100Khz的 channel raster 规则
 - NB-IoT 载波是UE用来做初始同步的, 这就是为什么频率误差需要最小化, 所以下行PRB的选择需要保证最低的频率偏移量(+/-7.5 or 2.5 kHz)。被选择的PRB我们称之为锚载波,由参数 (NBIOT_FDD: inbandPRBIndexDL)定义. LTE中心的6个PRB由于已经被LTE同步和广播信道占用,所以不能被定义为NB-IoT的锚载波。

LTE system bandwidth	5 MHz	10 MHz	15 MHz	20 MHz
DL PRB indices	2, 7, 17, 22	4, 9, 14, 19, 30, 35 40, 45	2, 7, 12, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72	4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95

带宽为N个PRB数的系统中,如果N为偶数,则NB-IoT可以选择所有PRB号为N/2-1-5i和N/2+5i(i=1,...9)的PRB,并将其频率向两边偏移2.5KHz;如果N为奇数,则NB-IoT可以选择所有PRB号为(N-1)/2±5i(i=1,...7)的PRB,并将其频率向中心偏移7.5KHz。

- NB-IoT 上行 PRB可以任意选择,由参数(NBIOT_FDD: inbandPRBIndexUL)定义,但是不能与PRACH和PUCCH信道重叠
- 如果上行NB-IoT PRB位于PUSCH区域的中间部位,将PUSCH分为两块区域,那么将会导致传统LTE只能分配其中的一块PUSCH资源给UE,称为PUSCH碎片。

In-band部署对传统LTE的影响

PDSCH 的 3 种资源分配类型: Type 0、 Type 1 和 Type 2

子集 0 (p=0)	RBG0	RBG2	RBG4	RBG6	RBG8	RBG10	RBG12
子集 1 (p=1)	RBG1	RBG3	RBG5	RBG7	RBG9	RBG11	

	RBG 0	RBG 1	RBG 2	RBG 3	RBG 4	RBG 5	RBG 6	RBG 7	RBG 8	RBG 9	RBG 10	RBG 11	RBG 12
VRB	3 0, VRB 1	VRB 2, VRB 3	VRB 4, VRB 5	VRB 6, VRB 7	VRB 8, VRB 9	VRB 10, VRB 11	VRB 12, VRB 13	VRB 14, VRB 15	VRB 16, VRB 17	VRB 18, VRB 19	VRB 20, VRB 21	VRB 22, VRB 23	VRB 24

- 目前诺基亚使用的是Type 0这种类型
- RBG (Resource Block Group, 资源块组)是一组连续的集中式 VRB (localized VRB)。 RBG 的大小 (P, 即每个 RBG 中包含的 VRB 数。最后一个 RBG 包含的 VRB 数可能小于 P)与下行系统带宽 DL N RB 相关,对应关系见 36.213的 Table 7.1.6.1-1
- · 在诺基亚实现方案中,与NB-IoT PRB冲突的整个RBG都不能使用,即便NB-IoT小区中 没有业务;导致LTE容量下降;

System Bandwidth	RBG Size
$N_{ m RB}^{ m DL}$	(<i>P</i>)
≤10	1
11 – 26	2
27 – 63	3
64 – 110	4

LTE BW [MHz]	5 MHz	10 MHz	15 MHz	20 MHz
RBG Size [PRB]	2	3	4	4
DL Capacity loss	8%	6%	5%	4%

K

In-band部署对传统LTE的影响

- NB-IoT In-band部署时,传统LTE网络中没有配置NB-IoT的小区在上下行PRB中需要空出一些位置,避免其与网络中NB-IoT PRB间干扰
- LTE944 PUSCH Masking
 - · 为部署了NB-IoT的网络中的非NB-IoT小区定义了禁用的PUSCH PRB,以避免其与NB-IoT小区产生干扰。
- LTE1800 Downlink interference shaping
 - 在LTE载波l边缘的一段PRB需要被空出来
 - 有shaping和blanking两种模式

无论是上行Masking 还是下行 Blanking,禁用的PRB会进一步造成容量的下降

Shaping

allocations only in preferred area (gray). The size of preferred area adapts itself to the

unallocated RBG

allocated RBG

Preferred area

Blanked zone

Blanking

(light blue) – no allocations are possible here at all

Shaping会优先在首选区域分配RBG,blanking区域无法分配资源,当shaping和blanking一起激活的时候,首选区域有可能会延伸到禁止区域,这个时候数据只能在buffer中等待了,不能使用禁止区域的资源。

actDllntShaping – LTE1800功能开关 actDllsh – 干扰整形功能子开关 amountBlankedRes – 资源留空数量 blankingPosition – 资源留空位置

LTE3071-NB-IoT小区的上行PRB选择

- In-band部署时,NB-IoT上行PRB号可以与其下行PRB号不同,即采用非对称的上下行PRB
- 如果上行NB-IoT PRB位于PUSCH区域的中间部位,将PUSCH分为两块区域,那么将会导致传统LTE只能分配其中一块的 PUSCH资源给UE,称为PUSCH碎片。

动态PUCCH未激活的情况下, inbandPRBIndexUL该如何设置?

LTE3071-NB-IoT power boosting

- NB-IoT PRB下行功率可以Boost最多6dB,由参数**dIPwrBoost** 定义
- 这些功率都是从传统LTE PRB中获取
- 对传统LTE PRB功率会有少量影响

Power_{DLNB-loT}

= $Power_{HostLTE} - 10 \cdot log(N_{PRBHost})$

 $= 43 - 10 \cdot log(50) = 26 dBm(0.4W)$

RBG Size				
PRB Total				
DL PowerTotal				
PowerperPRB				

NB-loT PowerBoost
NB-1oT PRB Power
Unused PRB within RBG
Unused DL Power
PowerDeficit

Legacy CellPRB to rem ove PowerDeficit
Legacy CellPowerReduction perPRB
Legacy CellPowerReduction perPRB

				_
5M Hz	10M Hz	15M Hz	20M Hz	
2	3	4	4	PRB
25	50	75	100	PRB
20	20	20	20	Watts
8.0	0.4	0.27	0.2	Watts

				_
6	6	6	6	
3.18	1.59	1.06	0.8	Watts
1	2	3	3	PRB
0.8	0.8	8.0	0.6	Watts
1.58	0.39	0	0	Watts
23	47	71	96	PRB
0.07	0.01	0	0	watts
0.4	0.1	0	0	dB

10M Hz exam ple: without NB-IoT

DLPowerTotal= 20 W

LTE 3071 - NB-IoT 上下行信道

- 下行信道
 - NPSS/NSSS 时间与频率同步, 检测PCI与NPBCH
 - NRS 仅支持2天线端口的传输方案
 - NPBCH 传输MIB-NB
 - NPDCCH 传送NB-loT的下行控制信息(DCI)
 - NPDSCH 承载来自高层的数据、系统消息、随机接入响应等
- 上行信道
 - NPRACH 发送随机接入过程的Preamble
 - NPUSCH 上行没有PUCCH, ACK/NACK通过NPUSCH格式2传送, 没有CQI/RI/PMI上报, 不支持SR

3GPP定义了几个NPUSCH传输选项(single-tone, multi-tone, 15 or 3.75 kHz subcarrier spacing),但是在FL17SP

LTE3071中,NPUSCH只支持15 kHz single-tone,12个子载波均可用。

NPSS

NPBCH

下行使用OFDMA, 15 kHz子载波间隔, 1个NB-IoT载波有12个子

NSSS

载波,信道频率必须是100KHz的整数倍(Channel raster is 100 kHz)

NPDCCH / NPDSCH

6

LTE 3071 – NPSS & NPSS

- NPSS在每10ms帧的子帧5的后11个符号上发送,频域上占用11个子载波。
- NPSS用于第一帧和子帧的同步,通过NPSS UE可以确定帧边界。
- NPSS频域映射11位的Zadoff-Chu序列,时域使用11位的S(I)序列加扰,序列都是固定的,因此不携带小区ID信息。
- NSSS每20ms在偶数帧的子帧9的12个子载波的后11个符号上发送
- NSSS指示PCID信息,以及完成80ms同步,用于解调NPBCH,在LTE3071中PCID与Host LTE小区的PCI要一样
- NSSS序列使用长度为131的的ZC码,并用Hadamard序列加扰,在一共12*11=132个RE中发送
- NSS在80ms周期的4次发送中分别使用{0,33,66,99}的时域循环位移(time-domain cyclic shifts)
- NRS用于下行信道估计与测量
- 由于NB-IoT在LTE3071中只支持2个天线端口,所以缩主小区配置只能固定在2个天线端口上。
- 小区中NRS RE的频率偏移由NPCI模6决定
- NPSS与NSSS中不包含NRS
- NRS的功率可以boost 6dB, 功率偏置在SIB中显示。
- NPBCH在每个帧的子帧0的后11个符号中传送
- NPBCH在80ms中包含了8个子帧,传送MIB-NB消息
- NPBCH 80ms重复8次,每个80ms块都可以独立解码, 640ms周期内不变

LTE 3071 – MIB-NB

- NB-IoT的系统消息有:
 - MIB-NB: 系统相关的基本信息 (640ms)
 - SIBType1-NB: 小区接入和选择, SIB调度 (2560ms)
 - SIBType2-NB: 无线资源分配信息
 - SIBType3-NB: 小区重选信息
 - SIBType4-NB: Intra-frequency的邻近Cell相关信息
 - SIBType5-NB: Inter-frequency的邻近Cell相关信息
 - SIBType14-NB:接入禁止(Access Barring)
 - SIBType16-NB: GPS和UTC时钟
- FL17SP LTE 3071 仅支持MIB-NB\SIB1-NB\SIB2-NB
- MIB-NB的调度:
 - NPBCH在80ms中包含了8个子帧,传送MIB-NB消息,并且重复8次,每个80ms块都可以独立解码,640ms周期内不变。

	11010		0120 (5110)	10210 01 11H 311102 HP 73
SFN			4	Lhan an CENIGHI CD XII A
HyperSFN			2 —	 Hyper SFN的LSB部分
NB-SIB1 scheduling i	nfo		4 —	一 SIB1-NB的大小和重复信
System info value ta	g		5 —	一 指示系统信息是否改变
Access barring info			1	
Operation mode			2	在LTE3071中是不支
Based on operation mo	ode			─ 持access barring的,
(1) in-band with same	CRS and PRB info	5	\	该值默认为'FALSE'
(2) in-band with	Num of LTE CRS ports	1		∖操作模式 (在LTE3071中为In-band
different PCI	Raster offset	2	5	
	Spare	2		在LTE3071中,只有当LT
(2) guard band	Raster offset	2		小区为2TX并且actNBIoT
(3) guard-band	Spare	3]	= 'INBAND'的时候才会广
(4) stand-alone	Spare	5		播该信息
Spare			11	
CRC			16	
Total Size			50	

Field

Size (bits)

				640	ms			
	80 ms	80 ms	80 ms	80 ms	80 ms	80 ms	80 ms	80 ms
SFN	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31	32 33 34 35 36 37 38 39	40 41 42 43 44 45 46 47	48 49 50 51 52 53 54 55	56 57 58 59 60 61 62 63
					NPBCH block			

	SFN 32	SFN 33	SFN 34	SFN 35	SFN 36	SFN 37	SFN 38	SFN 39
	10 ms	10 ms	10 ms	10 ms	10 ms	10 ms	10 ms	10 ms
Subframe 0 1 2 3	8 4 <mark>5</mark> 6 7 8 9	0 1 2 3 4 <mark>5</mark> 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 <mark>5</mark> 6 7 8 9	0 1 2 3 4 5 6 7 8 9

10Bit SFN的MSB部分

LTE 3071 – SIB1-NB

- SIB1-NB的调度:
 - SIB1-NB由MIB-NB调度
 - SIB1-NB的一个TB在连续16个帧的8个互相 间隔的帧的子帧4上传送
 - SIB1-NB的起始帧位置由MIB-NB中的4bit 的schedulingInfoSIB1字段对应的重复次数(4/8/16,由参数numSib1RepNB控制)以及PCI模4或2的结果共同决定; TBS大小也是由该字段给出。

Value of schedulin gInfoSIB1- NB-r13	Number of NPDSCH repetition s	SIB1-NB TBS
0	4	208
1	8	208
2	16	208
3	4	328
4	8	328
5	16	328
6	4	440
7	8	440
8	16	440
9	4	680
10	8	680
11	16	680
12~15	Reserved	Reserved

	R _{NB-SIB1}	PCID	Starting radio frame number for NB-SIB1 repetitions
		$PCID \ mod \ 4 = 0$	$SFN \ mod \ 256 = 0$
	4	$PCID \ mod \ 4 = 1$	$SFN \ mod \ 256 = 16$
	4	$PCID \ mod \ 4 = 2$	$SFN \ mod \ 256 = 32$
Ш		$PCID \ mod \ 4 = 3$	$SFN \ mod \ 256 = 48$
	8	$PCID \ mod \ 2 = 0$	$SFN \ mod \ 256 = 0$
Ш	0	$PCID \ mod \ 2 = 1$	$SFN \ mod \ 256 = 16$
	16	$PCID \ mod \ 2 = 0$	$SFN \ mod \ 256 = 0$
	10	$PCID \ mod \ 2 = 1$	$SFN \ mod \ 256 = 1$

NBIOTPR: numSib1RepNB

Number of repetition of SIB1-NB in periodicity 2560ms

4 repetitions

RNB-SIB1		SFN\SF#4	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4	PCI mod 4 = 0	4	r0,t0		r0,t1		r0,t2		r0,t3		r0,t4		r0,t5		r0,t6		r0,t7

8 frames sequence, repetition #0

LTE 3071 – SIB2-NB

SIB1-NB中的SI调度信息(SIB2-NB):

- si-Periodicity-r13: 定义SIB2序列的传输 周期, **sib2PeriodicityNB**
- si-RepetitionPattern-r13: 定义SIB2的重 复发送间隔, sib2RepPatternNB
- si-TB-r13: 定义了TBS池 {b56, b120, b208, b256, b328, b440, b552, b680}, eNB会从池中选择足够发送SIB消息内容的最小TBS
- si-WindowLength-r13: 定义SI消息的重复窗口, siWindowLenNB
- si-RadioFrameOffset-r13: 定义了在无线 帧中的偏置,用于确定SI窗口的开始位置, siRadioFrameOffNB

LTE 3071 – NPDCCH

- NPDCCH:

- 由NCCE构成,频域对应一个PRB上下分别6个子载波,时域对应一个子帧,在LTE3071中NPDCCH起始位置只能在符号3;
- NPDCCH支持2种聚合度: 1个CCE(AL1)或2个CCE(AL2),在LTE3071中NPDCCH仅支持聚合度为2的格式;
- NPDCCH支持重复发送,最大重复次数2048次,在LTE3071中NPDCCH固定为2次重复发送,不可调整;
- 支持QPSK和TM2:

DCI格式:

- Format N0 (23bit), 传送UL Grant, 上行NPUSCH调度;
- Format N1 (23bit), 下行NPDSCH调度、NPDCCH Order触发的随机接入;
- Format N2 (15bit), 承载Paging的NPDSCH调度,系统消息更新直接指示,在LTE3071中NPDCCH不支持DCI Format N2;

LTE 3071 – NPDCCH

N0 (NPUSCH scheduling)		N1 (NPDSCH scheduling)		
Field	Size (bits)	Field	Size (bits)	
Flag for N0/N1 differentiation	1	Flag for N0/N1 differentiation	1	LTE2074 中应达不去快
Subcarrier indication	6	NPDCCH order indicator ———	1	LTE3071中应该不支持 NPDCCH触发的随机接入
Resource assignment	3	Scheduling delay	3	NPDCCH融及的随机每八
Scheduling delay	2	Resource assignment	3	
MCS	4	MCS	4	—— LTE3071中调度时延固定为0
RV	1	Repetition number	4	
Repetition number	3 —	NDI	1	LTE3071不支持
NDI	1	HARQ-ACK resource	4	NPUSCH/NPDSCH的重复发
DCI subframe repetition number	2	DCI subframe repetition number -	2	送
CRC	16	CRC	16	LTE3071中NPDCCH子帧重复
Total	39	Total	39	次数固定为2

NPDCCH搜索空间的Rmax由参数*npdcchMaxNumRepRa*定义,且该参数的设定需满足如下规则:

如果NPDCCH重复次数固定为2的话,那么npdcchMaxNumRepRa只能取值2、4、8、16,分别对应的R值为00,01,01,00; G=2,Rmax=4,T=8

	FN						0												1										2											3					
	SFN	0	1	2	3	4	ļ	5	6	7	8	9	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	L	2	3	4	5	6	7	8	9	
I	Excluded	MIB				SIB	31 F	PSS				S	SS N	ИB					PSS					MIB				SIB	1 PSS				SSS	MI	3					PSS					j
Se	arch space																																												
14	CCH occasion	\times	1	2	1	\rightarrow		\times	2	\times	1			\langle	2	1	2	\times	\times	1	2	1	2	\times	1	2	\times	\times	\bigvee	1	2	1	\times	\nearrow	2	2	1	2	1	\times	2	1	2		6
10	© ZUTT NUK	ıa																																								-	1 44	7/1	J.

[&]quot;npdcchMaxNumRepRa" must be equal to one of the values from "iniNpdcchNumRepRa" multiple with {1, 2, 4 or 8}

LTE 3071 – NPDSCH

- 对于Stand-alone和Guard-band模式,起始位置在符号0;对于In-band模式,SIB1-NB子帧中的起始位置在符号3,其它子帧中的 起始位置由SIB1-NB中的eutranControlRegionSize字段决定,**LTE3071中起始位置固定为3**;
- 由连续的{1,2,3,4,5,6,8,10}个子帧构成,**LTE3071中只支持4个连续子帧**,使用咬尾卷积编码,**QPSK**调制(**MCS0~10**),最大 TBS为680Bit,只支持TM2,**没有链路自适应**;
- 使用单HARQ进程,使用异步自适应重传:
- LTE3071不支持NPDSCH重复发送,除非是携带SIB消息;

Table 16.4.1.5.1-1: Transport block size (TBS) table.

$I_{\mathtt{TBS}}$				I	SF			
- 185	0	1	2	3	4	5	6	7
0	16	32	56	88	120	152	208	256
1	24	56	88	144	176	208	256	344
2	32	72	144	176	208	256	328	424
3	40	104	176	208	256	328	440	568
4	56	120	208	256	328	408	552	680
5	72	144	224	328	424	504	680	
6	88	176	256	392	504	600		
7	104	224	328	472	584	680		
8	120	256	392	536	680			
9	136	296	456	616				
10	144	328	504	680				
11	176	376	584					
12	208	440	680					

*ceil[(2 ms (2xNPDCCH) + 4 ms + 4 ms (NPDSCH) + 12ms + 2ms(NPUSCH fortmat 1) + 3 ms)/16]*16 = 32 ms

MIB

LTE3071中的下行速率计算:

Peak DL throughput: 680bits/4ms=170kbps

Sustained DL throughput: 680bits/32ms=21.5kbps 考虑到PBCH、SIBx、PSS、SSS的开销,速率会更低

4 5
SIB1 PSS

LTE 3071 – PRACH

- 采用3.75kHz子载波间隔,Single-tone发送:
- 支持两种Preamble Format
 - Format 0: CP长度为66.7us,对应10km的小区覆盖
 - Format 1: CP长度为266.7us,对应35km的小区覆盖
- LTE3071目前仅支持Format 1的Preamble
- 一组NPRACH资源的时域位置由下面参数决定
 - nprachPeriod: NPRACH的发送周期,取值 {40,80,160,240,320,640,1280,2560}
 - nprachStartTime: NPRACH在周期中的开始时间,取值 {8, 16, 32, 64, 128, 256, 512, 1024}
 - nprachNumRepPreamble: NPRACH在周期中的重复次数,取值 {1, 2, 4, 8, 16, 32, 64, 128}
- 频域上NPRACH有48个子载波资源,具体如何选择,不再赘述。
- 注:为了简单起见,LTE3071中所有48个子载波都是可用的,所以子载波

LTE 3071 - 随机接入

- NB-IoT的随机接入过程与LTE类似,下面是基于竞争的随机接入过程:
- UF基于NPRACH format 1发送Preamble,为防止发送不成功,由参数 nprachMaxNumPreambleCE设置重发次数(default 5)
- eNB根据收到的Preamble的第一个无线帧号计算RA-RNTI=1+SFN+id/4
- eNB在收到Preamble对应的最后一个子帧加4个子帧开始的长度为raRespWinSizeNB的窗口 中,在NPDCCH上通过DCI N1发送RAR调度信息。该DCI通过RA-RNTI进行加扰,UE可以据 此识别
- RAR消息在DCI N1指定时间通过NPDSCH下发,包括:收到的Preamble id, TA指令,TC-RNTI和上行资源指配调度信息。UE在RAR接收窗口中接收RAR消息,如果Preamble_id(即 Preamble子载波位置)与之前发送的一致的话则通过第一步的冲突检测
- UE调整TA,在NPUSCH上发送RRCConnectionRequest-NB(msg3)消息,带有UE_ID
- eNB收到以后,通过NPDCCH发送DCI N1调度NPDSCH,并在相应的NPDSCH上发送 RRCConnectionSetup-NB消息,msq4带有UE Contention Resolution Identity(包含了UE-ID),并将TCRNTI确认为C-RNTI。UE如果在竞争解决时间raContResoTimNB内收到该消 息,并确认UE-ID一致,则完成第二次冲突检测
- 如果在该时间内无法收到msg4, UE会重新尝试RACH随机接入过程,直到最大尝试次数 7. nprachMaxNumPreambleCE
- 发送完msq4以后, eNB会发送DCI N0来调度NPUSCH, UE在该NPUSCH上发送 RRCConnectionSetupComplete-NB (msg5), 进入RRC_Connected模式

随机接入时长

随机接入过程如右图所示,其耗时:

$$T_{RACH} = t_{SR} + t_{NPRACH} + t_{RAR} + t_{Msg3} + t_{Msg4}$$

- 其中:
 - t_{sR} 为 SR 等 待 上 行 调 度 的 时 间 , 由 参 数 logicalChanSrProhibitTimerNB 设 定 , 取 值 为 {2.8,32,128,512,1024,2048}**个**NPDCCH**周期**
 - 当参数设置为8个NPDCCH周期、NPDCCH周期为16ms时, 该时长为128ms
 - t_{NPRACH}为等待NPRACH机会的时间,平均来说等于NPRACH周期 的一半
 - 当NPRACH周期为320ms时,平均时长为160ms
 - trap为RAR下行调度的时长,至少为32ms,有时为48或64ms
 - t_{Msg3}为Msg3上行传送的时长, Msg3由RAR消息直接调度, 而不 需要NPDCCH提供,根据规范,该时长至少13ms
 - t_{Mse4}为Msg4下行调度的时长,至少为32ms,通常为64ms
- 在没有重复的情况下, T_{RACH} = t_{SR} + t_{NPRACH} + (100~140ms)

LTE 3071 –NPUSCH

- NPUSCH有两种格式: format 1 带有UL-SCH数据, format 2 带有上行控制信息UCI
- 对于format1,支持Turbo,支持两种RV版本(RV0、RV2)
- 使用单HARQ进程,使用异步自适应重传
- 在LTE3071中format1仅支持固定4个15 kHz single-tone RU (4*8ms=32 ms), format2 仅支持1个15 kHz single-tone RU(2 ms),

Table 16.5.1.2-2: Transport block size (TBS) table for NPUSCH.

Impa					$I_{\mathtt{RU}}$			
- 158	0	1	2	3	4	5	6	7
0	16	32	56	88	120	152	208	256
1	24	56	88	144	176	208	256	344
2	32	72	144	176	208	256	328	424
3	40	104	176	208	256	328	440	568
4	56	120	208	256	328	408	552	680
5	72	144	224	328	424	504	680	872
6	88	176	256	392	504	600	808	1000
7	104	224	328	472	584	712	1000	
8	120	256	392	536	680	808		
9	136	296	456	616	776	936		
10	144	328	504	680	872	1000		
11	176	376	584	776	1000			
12	208	440	680	1000				
	1 2 3 4 5 6 7 8 9	0 16 1 24 2 32 3 40 4 56 5 72 6 88 7 104 8 120 9 136 10 144 11 176	0 16 32 1 24 56 2 32 72 3 40 104 4 56 120 5 72 144 6 88 176 7 104 224 8 120 256 9 136 296 10 144 328 11 176 376	0 16 32 56 1 24 56 88 2 32 72 144 3 40 104 176 4 56 120 208 5 72 144 224 6 88 176 256 7 104 224 328 8 120 256 392 9 136 296 456 10 144 328 504 11 176 376 584	O 1 2 3 0 16 32 56 88 1 24 56 88 144 2 32 72 144 176 3 40 104 176 208 4 56 120 208 256 5 72 144 224 328 6 88 176 256 392 7 104 224 328 472 8 120 256 392 536 9 136 296 456 616 10 144 328 504 680 11 176 376 584 776	0 16 32 56 88 120 1 24 56 88 144 176 2 32 72 144 176 208 3 40 104 176 208 256 4 56 120 208 256 328 5 72 144 224 328 424 6 88 176 256 392 504 7 104 224 328 472 584 8 120 256 392 536 680 9 136 296 456 616 776 10 144 328 504 680 872 11 176 376 584 776 1000	O 1 2 3 4 5 0 16 32 56 88 120 152 1 24 56 88 144 176 208 2 32 72 144 176 208 256 3 40 104 176 208 256 328 408 4 56 120 208 256 328 408 5 72 144 224 328 424 504 6 88 176 256 392 504 600 7 104 224 328 472 584 712 8 120 256 392 536 680 808 9 136 296 456 616 776 936 10 144 328 504 680 872 1000 11 176 376 584	O 1 2 3 4 5 6 0 16 32 56 88 120 152 208 1 24 56 88 144 176 208 256 2 32 72 144 176 208 256 328 3 40 104 176 208 256 328 440 4 56 120 208 256 328 408 552 5 72 144 224 328 424 504 680 6 88 176 256 392 504 600 808 7 104 224 328 472 584 712 1000 8 120 256 392 536 680 808 9 9 136 296 456 616 776 936 10 144 328

一个TB可以映射到{1,2,3,4,5,6,8,10}个RU上

Single-tone的最大ITBS为10

如果考虑NPRACH的开消,速率会更低

I NPDCC

PING过程

- PING过程
 - PING的过程相当于传送一个上行NAS/RRC包+一个下行NAS/RRC包
 - 具体数据传送流程参见UDP下载和UDP上传页说明
 - 从RRC IDLE态开始的PING还会带有NAS Service建立/RRC建立过程,耗时T_{RRCCon} = T_{RACH} + 2 * T_{UL} + T_{DL}
 - 此时, PING和PING Echo消息可以带在RRCConSetupCmp消息中上传, 带在ServiceAccept消息中下发
- RRC连接态下的PING小包时延T_{PING} = T_{RACH} + 2*T_{UL} + T_{DL}(下行Status和下行RLC数据在一个TBS中传送)
- RRC IDLE态下的PING小包时延T_{PING} = T_{RACH} + 3*T_{UL} + 2*T_{DL}

	Time	Message	SuperSubFN	DCITimeDiffMs	DCIGrantDirection	RLC PDU TYPE 1	NASRRCMessage	ApplicationLayerMessage
	0:19:05.279	MSG1	7688				Control Plane service request Msg / UL_CCCH_NB / RRCConnectionRequest	PING
-	0:19:05.320	MSG2	7721	33				
	0:19:05.320	MSG3	7734	13				
	0:19:05.385	MSG4	7786	52			DL_CCCH_NB / RRCConnectionSetup	
	0:19:05.949	DCI	7808	22	UL	ULData	UL_DCCH_NB / RRCConnectionSetupComplete	
	0:19:05.949	DCI	7856	48	UL	ULData		
16	0:19:05.949	DČÍ VI	7906	ND50_T	DL	DLStatus		
	0:19:05.949	DCI	7936	30	DL	DLData	Service accept Msg	PING ECHO
Inte	0.19.05.949	DCI	8032	96	UL	ULStatus		

LTE 3071 -NB-IoT信道与LTE的对比

NB-IoT	物理信道/信号	说明	与LTE的比较
		• NPSS序列在一个PRB内传输,且占用整个PRB	• PSS序列在中心的6个PRB内传输,且只占用该子帧的一个
		• 所有NB-IoT小区使用相同的NPSS序列	OFDM符号;
	NPSS		• LTE中使用3个PSS序列
		• NSSS使用ZC序列;	• SSS使用M序列;
		• NSSS序列在一个PRB内传输,且占用整个PRB;	• SSS序列在中心的6个PRB内传输,且只占用该子帧的一个
		● 小区ID(共504个值)在NSSS中指示	OFDM符号;
	NSSS		• SSS携带168个值
下行	NPBCH	• 使用640ms TTI	• PBCH使用40ms TTI
1.11	NPDCCH	在频域上占用1个PRB,在时域上可能跨多个子帧传输	PDCCH在频域上跨越多个PRB,在时域上位于1个子帧内
		• 使用TBCC编码并只使用一个冗余版 (rv 0);	PDSCH:
		● 只使用QPSK调制;	• 使用Turbo Code 并使用多个冗余版本;
		• 最大TBS为680比特;	● 可使用QPSK/16QAM/64QAM等调制;
		• 只支持单层传输(单天线端口或传输分集SFBC)	• 在非空分复用下,最大TBS可达到75376比特;
			• 可支持多层传输(单天线端口/传输分集/波束赋形/空分
	NPDSCH		复用)
		注:与LTE相比,NB-IoT在下行不存在类似于PCF	
		• 基于单子载波跳频且使用3.75kHz子载波间距的新	PRACH在频域上占用6个PRB,使用multi-tone传输和1.25kHz
	NPRACH	preamble结构	子载波间距
		• 分配给UE的带宽可以小于一个PRB;	PUSCH
			• 分配给UE的最小带宽为一个PRB;
1 /-		• single-tone传输使用BPSK或QPSK调制; muti-tone传输使	
上行		用QPSK调制;	• 使用标准的QPSK调制或更高阶的16QAM/64QAM调制;
	WDWG GW G	• 最大TBS为1000比特;	• 在非空分复用下,最大TBS可达到75376比特;
	NPUSCH format1	◆ 只支持单层传输(单天线端口) - 佐田 - 付款供給四 - 禾包四	• 可支持多层传输(支持多天线传输)
	NDUCCH C 11	• 使用一种新的编码: 重复码;	不存在与NPUSCH format 2 对应的物理信道
	NPUSCH format1	• 使用single-tone传输 注:与LTE相比,NB-IoT在上行不存在类	(A) I DUCCH to to 用 存 送

LTE 3071 - 功率控制

- 下行eNodeB使用静态的功率分配
- NB-IoT下行功率提升参数(dlPwrBoost)在inband的NB-IoT PRB中使用
- 上行支持开环功率控制
- 在RRC连接的整个过程中,使用RACH preamble过程的初始功率水平

对于所配置的最低重复等级以外的其他重复等级, NPRACH 设置为 $P_{CMAX,c}(i)$

对于所配置的最低重复等级, PNPRACH 根据以下公式确定

功率余量PHR的计算:

NB-PHR是UE最大发射功率与折算到15Hz Single-tone的NPUSCH数据 发送时所需功率的差值(与实际发射时使用的子载波数以及功率无关)

 $PH(i) = PCMAX, c(i)-\{PO_NPUSCH, c(1) + \alpha c(1) PLc\}$

Reported value	Measured quantity value (dB)
POWER_HEADROOM_0	[-23] ≤ PH < [<u>5</u>]
POWER_HEADROOM_1	[<u>5</u>] ≤ PH < [<u>8</u>]
POWER_HEADROOM_2	[<u>8</u>] ≤ PH < [<u>11</u>]
POWER_HEADROOM_3	PH ≥ [<u>11</u>]

LTE3071 - PRACH: (非协议规定)

- W/o repetition: preambleInitialReceivedTargetPower + powerRampingStep
- W/ repetition: Pmax

 $P_{\text{NPRACH}} = \min\{P_{\text{CMAX.c}}(i), \text{ NARROWBAND_PREAMBLE_RECEIVED_TARGET_POWER} + PL_c\}_{\text{[dBm]}}$

对于NPUSCH,当重传次数大于2时,满功率发射,否则为

$$P_{\text{NPUSCH,c}}(i) = \min \begin{cases} P_{\text{CMAX},c}(i), \\ 10\log_{10}(M_{\text{NPUSCH,c}}(i)) + P_{\text{O_NPUSCH,c}}(j) + \alpha_{c}(j) \cdot PL_{c} \end{cases}$$

LTE3071 - PUSCH: (重传固定为1,只支持开环)

Open loop power control

LTE 3071 – 无线资源管理(RRM)

Uplink

- 频域: NPUSCH采用15 kHz single tone, 12个子载波; NPRACH采用 3.75 kHz single tone, 48个子载波;
- NPUSCH format 1 传送数据: 使用 4 个 RU(占用32 个子帧 32ms)
- NPUSCH format 2 传送ACK/NACK: 使用 1 个 RU(占用2 个子帧 2ms)
- 当NPUSCH占用一个子帧进行传输时NPRACH不能使用该子帧,也就是 说不支持NPRACH和NPUSCH在同一个TTI复用
- 支持开环功率控制
- 不支持链路自适应,只能静态的配置上行MCS, QPSK MCS 0 10
- · 上行eNB支持同时最大11个用户在进行传输

Scheduler

- 没有channel aware调度算法
- 没有QoS 或 保证比特(GBR)
- 移动性管理目前只有基于UE Idle状态的小区选择
- 单HARQ进程,异步自适应重传

Downlink

- · 频域:有12个子载波,间隔为15 kHz
- NPDSCH的TTI固定为4个子帧长度
- NPDSCH只能在除NB-PBCH, NB-PSS/SSSS, NB-SIBs以外的子帧发送, 如果在下行链路中与公共通道发生冲突, 传输将会跳过并顺延
- · NPDCCH的聚合等级固定为2个CCE, DCI占用1个子帧
- · 支持NPDCCH的UE专属搜索空间和公共搜索空间(用于RAR/Msg3 重传/Msg4)
- 静态的配置功率水平
- · 不支持链路自适应,只能静态的配置上行MCS,QPSK MCS 0 10
- 下行每个TTI只支持一个用户

LTE3071-Link Adaptation

- LTE3071不支持链路自适应功能,对于每个小区只配置上下行的初始的MCS (NBIOTPR: iniMcsDI, NBIOTPR: iniMcsUI).
- 在LTE3071中,NB-IoT的下行与上行的MCS范围为0-10(3GPP规定,下行MCS 11、12用于 standalone/guardband NB-IoT; 上行MCS 11、12用于multi-tone QPSK)
- 在NPDSCH上的message 2 固定采用 pi/2 BPSK的调制方式

	Number of
1	resource
I _{TBS}	units
	4
0	88
1	144
2	176
3	208
4	256
5	328
6	392
7	472
8	536
9	616
10	680

MCS Index I _{MCS}	Modulation Order	TBS Index I _{TBS}
0	1	0
1	1	2
2	2	1
3	2	3
4	2	4
5	2	5
6	2	6
7	2	7
8	2	8
9	2	9
10	2	10

LTE3071-HARQ

- 上下行使用单HARQ进程,降低UE实现的复杂度。上行ACK/NACK通过NPDCCH DCI format N0中的新数据指示(NDI)来传输
- 上行使用异步自适应重传:
 - 没有PHICH,上行PUSCH的ACK/NACK并不发送,只是在下一个DCI N0中通过NDI是否翻转来表明要求上行新发还是重发
 - 当翻转时, UE删除HARQ Buffer、发一个新数据
 - 不翻转时,UE用下一个RV版本重发HARQ Buffer中的老数据

- 下行使用异步自适应重传:
 - 没有PUCCH,下行NPDSCH的ACK/NACK通过NPUSCH Format2 (UCI) 发送
 - 其时延K0及子载波位置由调度NPDSCH时的DCI N1给出

INPDCCH	NPDSCH	INPDCCH
		4 1
I		NPUSCH (A/N)

N1 (NPDSCH scheduling)	
Field	Size (bits)
Flag for N0/N1 differentiation	1
NPDCCH order indicator	1
Scheduling delay	3
Resource assignment	3
MCS	4
Repetition number	4
NDI	1
HARQ-ACK resource	4
DCI subframe repetition number	2

13 13 13 13 61 -	,
(PUSCH scheduling)	
Field	Size (bits)
ag for N0/N1 fferentiation	1
ubcarrier indication	6
esource assignment	3
cheduling delay	2
cs	4
V	1
epetition number	3
DI	1
CI subframe repetition imber	2
RC	16
otal	39

NOKIALAGE

LTE3071-承载管理

- 对于LTE3071 eNB 仅支持控制面的传输方案。用户面数据需要封装在控制面消息SRB1bis中进行传输,目前不能使用数据无线承载DRB进行传输。
- 上行非接入层(NAS)信令或者携带数据的上行NAS消息在上行RRC消息中传送(例如: MSG5 RRC Connection Setup Complete 消息),如果数据量过大, RRC不能完成全部传输,将使用DLInformationTransfer和ULInformationTransfer消息继续传送
- 数据传输绕过PDCP层,没有使用安全性检查
- 目前不支持RRC的重配置与RRC重建,当RLC重传次数达到最大,RRC连接将被释放。

LTE3071-不激活定时器

- LTE3071包含两个不激活定时器,用于监控NB-IoT连接的活动情况。
- 基于UL/DL SRB Buffer data的SRB不激活定时器: srbInactivityTimerNB
 - 该定时器在上下行SRB Buffer均为空的时候启动,当定时器超时的时候,UE状态报告将会收到不激活指示('SRB inactive').的通知消息。当有新数据到达buffer的时候停止定时器.
- 基于S1接口NAS PDU的C-Plane 不激活定时器: cplnactivityTimerNB
 - 定时器用于决定何时释放S1连接。该计时器在S1AP接口监视与UE相关的S1逻辑连接。计时器在与UE相关的S1逻辑连接建立的时候启动,并且在接收或发送S1AP消息时重新启动,其中包含NAS PDU IE。
 - 当cpInactivityTimerNB超时的时候,C-Plane就会去检查SRB的状态。如果SRB的状态是"SRB active",基站不会有任何动作。如果状态被置为"SRB inactive",那么基站会发送S1AP: UE CONTEXT RELEASE REQUEST消息给MME,携带的原因值为"User Inactivity,RRC连接被释放。

Timer	Start	Restart	At expiry
cpInactivity TimerNB	Reception of: S1AP: DOWNLINK NAS TRANSPORT or S1AP: CONNECTION ESTABLISHMENT INDICATION	Reception of: S1AP: DOWNLINK NAS TRANSPORT or S1AP: UPLINK NAS TRANSPORT	If the SRB status is set to "SRB inactive" (srbInactivityTimerNB expires), the eNB sends S1AP: UE CONTEXT RELEASE REQUEST to MME with Cause value set to "User Inactivity".

LTE3071-不激活定时器

- 不激活定时器的设置是更少RRC同时在线数目与更高RRC信令负荷(short inactivity timer)或更多RRC同时在线数目与更少的RRC信令负荷(short inactivity timer)之间的妥协过程。
- 所以不激活定时器的设置需要基于流量分析:
 - 如果流量配置场景只考虑单个消息的时候(比如智能抄表),那么更小的不激活定时器可以保证RRC连接态的时间会更少,以减少总的RRC连接用户数。
 - 当有连续的消息需要进行交互,那么需要设置更高的不激活定时器,以节约频繁的信令连接释放与建立的开销

Example:
Connected UEs vs
inactivity timer
Assumptions: Connected
state time: 1s
transmission + inactivity.
60s Mean inter-arrival
time

LTE3071-功能依赖关系

部署In-band NB-IoT以后,下面功能在传统LTE小区上需要被关闭:

- MBSFNCEL: mbsfnCelld, actMBMS, eMBMS需要被关闭,即在LNCEL中不配置MBSFNCEL Object
- LNBTS: actCRAN=false ,如果一个eNB中配置了NB-IoT小区的话,该eNB将不能支持CRAN
- ULCOMP: ulCoMpCellList, actUlCoMp, NB-IoT小区及其LTE施主小区不能进入上行CoMP小区列表中
- LNCEL: actEicic=false, NB-IoT会对elCIC ABS子帧产生干扰
- LNCEL: actMicroDtx=false, MicroDTX会影响NB-IoT
- LNCEL: actOtdoa=false, OTDOA PRS与NB-IoT见会互相干扰
- LNCEL: csgType=openAccess, NB-IoT的LTE施主小区不能设置为CSG小区
- LNCEL_FDD: actCatM=false, NB-IoT和Cat-M不能在同一个小区中激活
- LNCEL_FDD: actCombSuperCell=false, Combined Supercell需要特别的DSP部署
- LNCEL_FDD: actLiquidCell=false, LNCEL_FDD: actSuperCell=false, Super Cell和Liquid cell需要特别的DSP部署;

LTE3071-功能支持情况汇总

3GPP规范	LTE3071支持情况	stand-abne目前支持情况
In-band, guard-band and standalone 三种部署方式	仅支持h-band模式	standa lone
NB-bT可以使用多个PRB	NB-bT仅支持一个PRB	
上行支持: 15 KHz single tone; 3, 6, 12 m ultitones; 3.75 kHz single tone	NPUSCH仅支持15kHz single tone	
空闲态支持小区重选	仅支持小区选择	支持小区重选
覆盖等级可达到164dB M CL	仅支持第一覆盖等级 (144 M CL), 不支持增强覆盖	己支持覆盖增强,及PRACH的三个覆盖等级
各种传输和接收方案	仅支持2T2R	支持下行单端口的数据发送
每TBS支持各种子帧配置	NPD SCH 固定子帧, NPU SCH 固定RU	
可配置下行与上行传输的时间差距	固定的上下行传输时间差,不支持上下行传输 GAP	
动态的TA对齐	仅支持初始的TA对齐	
动态的下行功率控制	静态的下行功率	
动态的上行功率控制	仅支持上行开环功率控制	
数据传输可基于DRB和SRB	仅支持SRB的数据传输	
支持NPRACH form at 0 (CP length = 67 us) and form at 1 (CP length = 267 us)	仅支持NPRACH form at 1 (小区覆盖距离 35km)	支持NPRACH form at 0/1
支持NPRACH, NPDSCH, NPDCCH, NPUSCH的 重复发送	NPD SCH和NPU SCH不支持重复发送,NPRACH最大32次重复发送,NPD CCH固定两次重复发送	
同时支持主叫功被叫(paging)的Call	不支持寻呼(目前已支持)	支持寻呼
支持所有的NB系统消息	仅支持SB1-NB和SB2-NB	支持SB3\4\5\14\16
通过paging更新系统消息	不支持通过paging更新系统消息	
空闲态的DRX	空间态的eDRX功能不支持	支持eDRX
NPDCCH可以使用1个CCE	不支持NPDCCH使用1个CCE(2个)	支持AL=1
NPRACH和NPUSCH可以在一个TTI上复用	不支持NPRACH和NPUSCH的TT復用	支持NPRACH和NPUSCH复用
支持有效子帧配置	不支持有效子帧配置	
链路自适应	不支持链路自适应	支持链路自适应

NOKIALAGE