集成学习之XGBoost & LightGBM

Boosting

• 个体学习器之间存在强依赖关系、训练时必须是串行生成的序列化方法。

GBDT (Gradient Boosting Decision Tree, Boosting 的一种)

- 由多棵回归树组成的森林,后一棵树以前面树林的结果与真实结果的残差为拟合目标
- 最终通过分类器组合加权的方式,进一步减小误差

$$C(x) = \sum_{m=1}^M w_m C_m(x)$$

XGBoost: A Scalable Tree Boosting System, 2016

XGBoost 是陈天奇等人开发的一个开源机器学习项目,高效地实现了 GBDT 算法并进行了算法和工程上的许多改进。

算法层面

损失函数分析

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}^{(t-1)} + C_t(x_i)) + \gamma T + \frac{1}{2} \lambda \|\mathbf{w}\|^2$$
泰勒二阶展开 $\simeq \sum_{i=1}^{n} [l(y_i, \hat{y}^{(t-1)}) + g_i C_t(x_i) + \frac{1}{2} h_i C_t^2(x_i)] + \gamma T + \frac{1}{2} \lambda \|\mathbf{w}\|^2$
去除常数项得 $\tilde{\mathcal{L}}^{(t)} = \sum_{i=1}^{n} [g_i C_t(x_i) + \frac{1}{2} h_i C_t^2(x_i)] + \gamma T + \frac{1}{2} \lambda \|\mathbf{w}\|^2$
决策树只有只有叶子节点才有最终样本分布,以叶节点 j 为例, I_j 为该节点上的分布样本
$$= \sum_{j=1}^{T} \left[\left(\sum_{i \in I_j} g_i \right) w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 \right] + \gamma T$$
损失函数二元一次方程最值点在 $w_j^* = -\frac{\sum_{i \in I_j} g_i}{\sum_{i \in I_j} h_i + \lambda}$ 取得,即
$$\tilde{\mathcal{L}}^{(t)}(q) = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{i \in I_j} g_i \right)^2}{\sum_{i \in I_j} h_i + \lambda} + \gamma T$$

t: 迭代轮次数; n: 样本数; T: 树节点数; q: 树结构

 g_i :一阶导数; h_i :二阶导数。展开到二阶的原因: 损失函数的一元二次方程最大值容易求得

蓝色字体为正则化项

候选点划分信息增益指标

$$\mathcal{L}_{split} = \mathcal{L}_{after_split} - \mathcal{L}_{before_split}$$

$$= \frac{1}{2} \left[\frac{(\sum_{i \in I_L} g_i)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{(\sum_{i \in I_R} g_i)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{(\sum_{i \in I} g_i)^2}{\sum_{i \in I} h_i + \lambda} \right] + \gamma$$
(2)

split findling: pre-sorted algorithm

遍历每个划分点进行划分

Algorithm 1: Exact Greedy Algorithm for Split Finding Input: I, instance set of current node Input: d, feature dimension $gain \leftarrow 0$ $G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i$ for k = 1 to m do $G_L \leftarrow 0, H_L \leftarrow 0$ for j in $sorted(I, by \mathbf{x}_{jk})$ do $G_L \leftarrow G_L + g_j, H_L \leftarrow H_L + h_j$ $G_R \leftarrow G - G_L, H_R \leftarrow H - H_L$ $G_R \leftarrow G - G_L, H_R \leftarrow H - H_L$ $G_R \leftarrow G - G_L$ end end Output: Split with max score

- 1. 对于每个特征,依据特征值对每个样本进行升序排序
- 2. 遍历每个特征值,选择最大信息增益值对应的划分点

排序加遍历复杂度: $O(\#data * \log \#data + \#data * \#feature)$

split findling: histogram-based algorithm

将耗时的遍历算法转化为分位数近似算法,寻找划分点

Algorithm 2: Approximate Algorithm for Split Finding for k = 1 to m do Propose $S_k = \{s_{k1}, s_{k2}, \cdots s_{kl}\}$ by percentiles on feature k. Proposal can be done per tree (global), or per split(local). end for k = 1 to m do $G_{kv} \leftarrow = \sum_{j \in \{j \mid s_k, v \geq \mathbf{x}_{jk} > s_k, v-1\}} g_j$ $H_{kv} \leftarrow = \sum_{j \in \{j \mid s_k, v \geq \mathbf{x}_{jk} > s_k, v-1\}} h_j$ end Follow same step as in previous section to find max score only among proposed splits.

1. 对于每个特征,根据特征值对每个样本进行升序排序,并计算截至每个特征值的分位数,即

$$r_k(z) = rac{\sum_{(x,h) \in D_k, x < z} h}{\sum_{(x,h) \in D_k} h}$$
 (3)

选择 h 计算分位数 $\underline{\ (1)}$ 式中单位二元一次方程的系数为 h ,因此可对应于权重

2. 将样本放入等分的直方图中 $\{s_{k1},s_{k2},\ldots,s_{kl}\}, s_{k1}=\min_{i\in[1,n]}x_{ik},s_{kl}=\max_{i\in[1,n]}x_{ik}$,要求

$$|r_k(s_{k,j}) - r_k(s_{k,j+1})| < \epsilon$$

3. 遍历直方图每个 bin 边界,选择最大信息增益值对应的划分点

排序加遍历复杂度: $O(\#data * \log \#data + \#bin * \#feature)$

sparsity-aware split algorithm

训练过程中输入特征稀疏, 存在很多0值, 造成稀疏性原因有

1. 在统计时词的"重要性"较低, 最终被舍弃

```
Algorithm 3: Sparsity-aware Split Finding
 Input: I, instance set of current node
 Input: I_k = \{i \in I | x_{ik} \neq \text{missing}\}
 Input: d, feature dimension
 Also applies to the approximate setting, only collect
 statistics of non-missing entries into buckets
 gain \leftarrow 0
 G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i
 for k = 1 to m do
      // enumerate missing value goto right
      G_L \leftarrow 0, \ H_L \leftarrow 0
      for j in sorted(I_k, ascent order by \mathbf{x}_{jk}) do
           G_L \leftarrow G_L + g_j, \ H_L \leftarrow H_L + h_j
           G_R \leftarrow G - G_L, \ H_R \leftarrow H - H_L
           score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
      // enumerate missing value goto left
      G_R \leftarrow 0, \ H_R \leftarrow 0
      for j in sorted(I_k, descent order by \mathbf{x}_{jk}) do
           G_R \leftarrow G_R + g_j, \ H_R \leftarrow H_R + h_j
          G_L \leftarrow G - G_R, \ H_L \leftarrow H - H_R

score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
      end
 \mathbf{end}
 Output: Split and default directions with max gain
```

- 1. 对于每个特征,根据特征值对每个值非0样本进行升序排序
- 2. 按照 pre-sorted 或 histogram-based 方法进行遍历,分别计算把 0 值样本全划分至左叶和右叶的信息增益
- 3. 选择最大信息增益对应的划分点

复杂度减小,相应的 $O(\#data) o O(\#not_none_data)$

性能展示

分类/排序性能 & 训练速度

Table 3: Comparison of Exact Greedy Methods with 500 trees on Higgs-1M data.

Method	Time per Tree (sec)	Test AUC
XGBoost	0.6841	0.8304
XGBoost (colsample=0.5)	0.6401	0.8245
scikit-learn	28.51	0.8302
R.gbm	1.032	0.6224

Table 4: Comparison of Learning to Rank with 500 trees on Yahoo! LTRC Dataset

Method	Time per Tree (sec)	NDCG@10
XGBoost	0.826	0.7892
XGBoost (colsample=0.5)	0.506	0.7913
pGBRT [22]	2.576	0.7915

LightGBM: A Highly Efficient Gradient Boosting Decision Tree, 2017

LightGBM (Light Gradient Boosting Machine) 是<u>柯国霖</u>所在微软团队开发的一款开源机器学习项目,在 XGBoost 的基础上进一步做了许多改进:

• 每次划分时不需要遍历每个样本、每个特征值,在不几乎不损伤准确率的情况下进一步加速训练

算法层面

候选点信息增益指标

$$V_{j|O}(d) = \frac{1}{n_O} \left(\frac{\left(\sum_{\{x_i \in O: x_{ij} \le d\}} g_i\right)^2}{n_{l|O}^j(d)} + \frac{\left(\sum_{\{x_i \in O: x_{ij} > d\}} g_i\right)^2}{n_{r|O}^j(d)} \right)$$

信息增益指标为梯度的方差

连续特征值离散化

```
Algorithm 1: Histogram-based Algorithm
Input: I: training data, d: max depth
Input: m: feature dimension
nodeSet \leftarrow \{0\} \triangleright tree nodes in current level
rowSet \leftarrow \{\{0,1,2,...\}\} \triangleright data indices in tree nodes
for i = 1 to d do
      for node in nodeSet do
            usedRows \leftarrow rowSet[node]
            for k=1 to m do
                 H \leftarrow \text{new Histogram}()
                 ▶ Build histogram
                 for j in usedRows do
                 \begin{array}{c} \text{bin} \leftarrow I.\text{f[k][j].bin} \\ H[\text{bin}].\text{y} \leftarrow H[\text{bin}].\text{y} + I.\text{y[j]} \\ H[\text{bin}].\text{n} \leftarrow H[\text{bin}].\text{n} + 1 \end{array}
                  Find the best split on histogram H.
      Update rowSet and nodeSet according to the best
      split points.
```

- 1. 与 XGBoost 的 histogram-based 算法不同的是,数据的值已经离散化为 bin 的边界,训练过程中不再连续化,因此不需要索引样本数据
- 2. 只在最初的时候记录 bin 的梯度值之和 g ,样本个数 n 用于信息增益计算
- 3. 划分后不用重新遍历, H(right)=H(parent)-H(right)

复杂度减小,相应的 $O(\#data*\#feature) \rightarrow O(\#bin*\#feature)$

GOSS: Gradient-based One-Side Sampling

基于信息增益指标,直觉上来讲绝对值大的梯度对该值的影响较大,因此提出了GOSS减少#data

Algorithm 2: Gradient-based One-Side Sampling

Input: *I*: training data, *d*: iterations

Input: a: sampling ratio of large gradient data **Input**: b: sampling ratio of small gradient data

Input: *loss*: loss function, *L*: weak learner

1 .

```
models \leftarrow {}, fact \leftarrow \frac{1-a}{b} topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)

for i=1 to d do

preds \leftarrow models.predict(I)

g \leftarrow loss(I, preds), w \leftarrow {1,1,...}

sorted \leftarrow GetSortedIndices(abs(g))

topSet \leftarrow sorted[1:topN]

randSet \leftarrow RandomPick(sorted[topN:len(I)], randN)

usedSet \leftarrow topSet + randSet

w[randSet] \times = fact \triangleright Assign weight fact to the small gradient data.

newModel \leftarrow L(I[usedSet], - g[usedSet], w[usedSet])

models.append(newModel)
```

- 1. 基于上一轮模型计算所有样本的梯度值
- 2. 保留大梯度值样本 topSet , 占总比 a%
- 3. 随机采样小梯度值样本,采样量占总训练样本 b%

此时信息增益计算方法为

$$\tilde{V}_{j}(d) = \frac{1}{n} \left(\frac{\left(\sum_{x_{i} \in A_{l}} g_{i} + \frac{1-a}{b} \sum_{x_{i} \in B_{l}} g_{i}\right)^{2}}{n_{l}^{j}(d)} + \frac{\left(\sum_{x_{i} \in A_{r}} g_{i} + \frac{1-a}{b} \sum_{x_{i} \in B_{r}} g_{i}\right)^{2}}{n_{r}^{j}(d)} \right)$$

4. 基于 topSet + randSet 训练新一轮迭代模型

复杂度减小,相应的 $O(\#data) o O(\#top_data + \#rand_data)$

EFB: Exclusive Feature Bundling

高维特征非常稀疏,捆绑多个互相独立的特征为一个特征能加快模型训练,提出 EFB 减小#feature

```
Algorithm 3: Greedy Bundling
```

```
Input: F: features, K: max conflict count

Construct graph G

searchOrder \leftarrow G.sortByDegree()

bundles \leftarrow \{\}, bundlesConflict \leftarrow \{\}

for i in searchOrder do

needNew \leftarrow True

for j=1 to len(bundles) do

cnt \leftarrow ConflictCnt(bundles[j],F[i])

if cnt + bundlesConflict[i] \leq K then

bundles[j].add(F[i]), needNew \leftarrow False

break

if needNew then

Add F[i] as a new bundle to bundles
```

Algo 3: 收集(误差容许范围内)互相独立的特征

Algorithm 4: Merge Exclusive Features

Input: numData: number of data

Input: F: One bundle of exclusive features

binRanges $\leftarrow \{0\}$, totalBin $\leftarrow 0$ for f in F do

totalBin += f.numBin

binRanges.append(totalBin)

newBin \leftarrow new Bin(numData)

for i=1 to numData do

newBin[i] $\leftarrow 0$ for j=1 to len(F) do

if $F[j].bin[i] \neq 0$ then

newBin[i] $\leftarrow F[j].bin[i] + binRanges[j]$

Output: newBin, binRanges

- 1. 构建无向图,顶点为特征(K个),边的权值为遍历样本后特征间不互相独立 (同时为 0)的次数
- 2. 根据顶点的度逆序排序

Output: bundles

3. 遍历已有的 bundles ,

- a. 在误差容许范围内,加入相应 bundle,
- b. 不在误差容许范围内,新建 bundle 并放入
- 4. 返回捆绑特征集合

Algo 4: 合并互相独立特征中的集合为单个特征

- 1. 若一个特征需要被合并,则根据取值范围增加合并特征偏移量,得到被合并后的特征值
- 2. 最终分布在不同的 bin 中

复杂度减小,相应的 $O(\#data*\#feature) \rightarrow O(\#data*\#bundle)$

性能展示

训练速度

Table 2: Overall training time cost comparison. LightGBM is lgb_baseline with GOSS and EFB. EFB_only is lgb_baseline with EFB. The values in the table are the average time cost (seconds) for training one iteration.

	xgb_exa	xgb_his	lgb_baseline	EFB_only	LightGBM
Allstate	10.85	2.63	6.07	0.71	0.28
Flight Delay	5.94	1.05	1.39	0.27	0.22
LETOR	5.55	0.63	0.49	0.46	0.31
KDD10	108.27	OOM	39.85	6.33	2.85
KDD12	191.99	OOM	168.26	20.23	12.67

映射连续值至离散值较遍历训练集、GOSS、EFB能加快训练时间并加速

分类/排序性能

Table 3: Overall accuracy comparison on test datasets. Use AUC for classification task and NDCG@10 for ranking task. SGB is lgb_baseline with Stochastic Gradient Boosting, and its sampling ratio is the same as LightGBM.

	xgb_exa	xgb_his	lgb_baseline	SGB	LightGBM
Allstate	0.6070	0.6089	0.6093	$0.6064 \pm 7e-4$	$0.6093 \pm 9e-5$
Flight Delay	0.7601	0.7840	0.7847	$0.7780 \pm 8e-4$	$0.7846 \pm 4e ext{-}5$
LETOR	0.4977	0.4982	0.5277	$0.5239 \pm 6e-4$	$0.5275 \pm 5\text{e-4}$
KDD10	0.7796	OOM	0.78735	$0.7759 \pm 3e-4$	$0.78732 \pm 1\text{e-4}$
KDD12	0.7029	OOM	0.7049	$0.6989 \pm 8e-4$	$0.7051 \pm 5\text{e-}5$

LightGBM 性能较 XGBoost 要表现得稍好

常见的缓解过拟合操作

- column subsampling: 训练特征部分采样, 类似于 dropout
- shrinkage:分类器权重衰减,类似于 lr,即 $C(x) = \sum_{m=1}^M w_m C_m(x)$ 中随着迭代轮次增加,模型权重越小
- regularization: 正则化项,如 $\gamma T + rac{1}{2} \|w\|^2$
- GOSS
- min_data_in_leaf
- max_depth

MISC

CHI

CHI (CHI-square) 即卡方,用于筛选出和类别相关性强的特征词,去除或降低噪声特征

$$\chi^2(t_k,c_i) = rac{N_d*(A*D-C*B)^2}{(A+C)*(B+D)}*rac{1}{(A+B)*(C+D)}$$

 t_k :特征词

 c_i :目标类别

 N_d : 总样本数

A:属于 c_i 类 and 含特征词 t_k 的样本数

B: 不属于 c_i 类 and 含特征词 t_k 的样本数

C:属于 c_i 类 and 不含有特征词 t_k 的样本数

D: 不属于 c_i 类 and 不含特征词 t_k 的样本数

- 单个特征词的卡方值数目=类别数,选取chi值的方式有以下方法
 - 。 max , 更具有代表性, 更能表达出一个特征对分类的决定性
 - o avg
 - o tgt , 选取正例的chi值作为最终chi值
- A*D-C*B 的值表示特征词与类别的相关性
 - 。 >0 值越大, 特征词对类别判定越重要
 - <0 值越小,特征词对类别判定越不重要由于进行了平方,平方后的值反而为大正数,可遏制此现象,比如置为0

能够一定程度上增加模型的精度,可作为一个调参对象

xgb 是宽度树,即 level-wise,而 lgb 是深度树,即 leaf-wise

- 【务实基础】LightGBM 知乎 (zhihu.com)
- 机器学习 | 无痛看懂 LightGBM 源论文(附中英 PDF 版本下载) 知乎 (zhihu.com)