Tesi di Laurea in Analisi Multivariata Avanzata

Algoritmi di Feature Selection per modelli ordinali: un'analisi sulla percezione degli eventi sismici

Università degli Studi di Napoli Federico II

Laurea Magistrale in Scienze Statistiche per le Decisioni

27 marzo 2024

Relatore:

Ch.mo Prof. Alfonso Iodice D'Enza Correlatrice:

Ch.ma Prof.ssa Maria Iannario

Candidato: Rosario Urso M10000392

Indice

- Introduzione
- Modelli Ordinali
- Metodi di Feature Selection
- Implementazione degli algoritmi
- 6 Conclusioni
- 6 Bibliografia

Introduzione

- In un contesto in cui le informazioni a disposizione aumentano in misura esponenziale, risulta necessario adottare un criterio che ci consenta di determinare le informazioni più utili.
- Il seguente lavoro di tesi è stato stilato allo scopo di presentare differenti approcci per la feature selection applicati a modelli appartenenti alla classe dei GLM (in particolare ai modelli ELMO), quali:
 - Proportional Odds Model
 - Adjacent Category Model
 - Continuation Ratio Model
- Gli algoritmi di feature selection (applicati in riferimento alla percezione degli eventi sismici) si riferiscono ad approcci differenti: subset selection, metodi di shrinkage e dimensionality reduction.

Proportional Odds Model

Alla base di tali modelli, si suppone ci sia una variabile latente \mathbf{Y}^* non direttamente osservabile che, essendo definita un un supporto continuo, viene suddivisa attraverso dei *thresholds*:

$$-\infty = \tau_0 < \tau_1 < \dots < \tau_m = +\infty$$

Dato un set di variabili esplicative, nel caso in cui la variabile dipendente assuma *m* modalità di risposta ordinate, si ottiene:

$$\log \operatorname{it}[P(Y \le j)] = \log \frac{P(Y \le j|x)}{1 - P(Y \le j|x)}$$

$$= \log \frac{\pi_1(x) + \pi_1(x) + \dots + \pi_j(x)}{\pi_{j+1}(x) + \pi_{j+2}(x) + \dots + \pi_m(x)}, \quad j = 1, \dots, m-1.$$

Sotto la struttura della variabile latente, applicando G^{-1} :

$$logit[P(Y \le j|x)] = \tau_i - \beta' x$$

Adjacent Category Model/Continuation Ratio Model

Nell'**Adjacent Category Model**, si considera la probabilità che la Y sia esattamente uguale alla *j-esima* categoria rispetto alla probabilità che la Y sia uguale alla categoria immediatamente successiva:

$$logit[P(Y = j | Y = j + 1, \boldsymbol{x})] = log \frac{\pi_j(x)}{\pi_{j+1}(x)} = \tau_j - \boldsymbol{\beta}' \boldsymbol{x}, \quad j = 1, ..., m-1.$$

Nel **Continuation Ratio Model**, invece, si considera la probabilità che la Y ricada nella j-esima categoria rispetto alla probabilità che la risposta ricada nelle categorie precedenti o in quelle successive.

$$logit[P(Y = j \mid Y \le j, x)] = log \frac{\pi_j}{\pi_j + \pi_{j+1} + ... + \pi_{m-1}} = \tau_j - \beta' x, \quad j = 1, ..., m-1$$

Proportional Assumption

I modelli specificati fino ad ora considerano il medesimo effetto delle covariate sulla Y. Per verificare sia rispettata l'assunzione di proporzionalità ci si avvale del test di Brant.

Considerando un *Proportional Odds Model*, in caso di rifiuto dell'ipotesi H_0 di assunzione di proporzionalità, verrà considerata la sua forma non proporzionale o semi proporzionale:

Non Proportional Odds Model:

$$logit[P(Y \le j|x)] = \tau_j - \beta'_j x$$
 $j = 1, 2, ..., m-1$

• Partial Proportional Odds Model:

$$logit[P(Y \le j|x)] = \tau_j - \beta' x - \gamma'_j u, \quad j = 1, 2 \dots, m-1$$

Subset Selection

Negli approcci di **Subset Selection**, partendo dai p predittori considerati inizialmente, viene scelta una combinazione di un numero q < p di variabili esplicative. I metodi utilizzati sono:

- Backward Selection
- Forward Selection
 - Con questo criterio vengono stimati $1 + \frac{p(p+1)}{2}$ modelli e, partendo rispettivamento dal modello \mathcal{M}_p ed \mathcal{M}_0 , ad ogni passo, viene aggiunta/rimossa la variabile che apporta il maggior/minor contributo, in questo caso di accuracy, alla stima del modello.
- Al termine, saranno stati selezionati p+1 modelli con la relativa accuracy e tra questi verrà selezionato il modello migliore.

Un ulteriore approccio di feature selection è rappresentato dai **metodi di regolarizzazione**, che rappresentano una tecnica in grado di forzare e *regolarizzare* le stime dei coefficienti ad essere 0. I metodi utilizzati sono:

- Penalizzazione Elastic Net
- Penalizzazione Ridge
- Penalizzazione Lasso

Tali metodi sono applicabili ai modelli della classe *ELMO*, il quale sono composti da due funzioni:

- la prima funzione (MO) determina la famiglia del modello, ritenendo valida o meno l'assunzione di proporzionalità;
- la seconda funzione (EL) determina la funzione legame.

Tale classe di modelli presenta la seguente forma:

$$g(p) = (g_{EL} \circ g_{MO})(p)$$

Penalizzazione Elastic Net

Tale penalizzazione rappresenta una somma pesata tra la penalizzazione ridge e penalizzazione *lasso*, in cui vi sono parametri definiti $0 < \alpha < 1$ e $\lambda > 0$. Le funzioni obiettivo sono le seguenti:

Forma parallela:

$$\mathcal{M}(c,b;\alpha,\lambda) = -\frac{1}{N_{+}}\ell(c,b) + \lambda \sum_{j=1}^{p} \left(\alpha |b_{j}| + \frac{1}{2}(1-\alpha)b_{j}^{2}\right)$$

Forma non parallela:

$$\mathcal{M}(c, B; \alpha, \lambda) = -\frac{1}{N_{+}} \ell(c, B) + \lambda \sum_{j=1}^{p} \sum_{k=1}^{K} \left(\alpha |B_{jk}| + \frac{1}{2} (1 - \alpha) B_{jk}^{2} \right)$$

Forma semi parallela:

$$\mathcal{M}(c, b, B; \alpha, \lambda, \rho) = -\frac{1}{N_{+}} \ell(c, b, B) +$$

$$+ \lambda \left(\rho \sum_{j=1}^{p} \left(\alpha |b_{j}| + \frac{1}{2} (1 - \alpha) b_{j}^{2} \right) + \sum_{j=1}^{p} \sum_{k=1}^{K} \left(\alpha |B_{jk}| + \frac{1}{2} (1 - \alpha) B_{jk}^{2} \right) \right)$$

Coordinate Descent Algorithm

L'algoritmo applicato per l'ottimizzazione della funzione obiettivo è il Coordinate Descent Algorithm, che prevede due cicli: uno esterno ed uno interno.

Il ciclo esterno costruisce una approssimazione quadratica della funzione di log-verosimiglianza $\ell(\beta)$ come somma ponderata della funzione presentata di seguito, ottenuta grazie al polinomio di Taylor del secondo ordine:

$$\ell^{(r)}(\beta) = -\frac{1}{2} (z^{(r)} - X\beta)^{\mathsf{T}} W^{(r)} (z^{(r)} - X\beta)$$

Il ciclo interno invece aggiorna le stime di coefficienti mediante la funzione di verosimiglianza marginale $\mathcal{M}^{(r)}$, aggiornando ognuno con il valore che ottimizza la funzione obiettivo approssimata:

$$\mathcal{M}_{j}^{(r,s)}(t) = \mathcal{M}^{(r)}\left(\hat{\beta}_{1}^{(r,s+1)}, \dots, \hat{\beta}_{j-1}^{(r,s+1)}, t, \hat{\beta}_{j+1}^{(r,s)}, \dots, \hat{\beta}_{Q}^{(r,s)}\right)$$

Dimensionality Reduction

L'analisi delle corrispondenze ha come scopo «quello di individuare dimensioni soggiacenti alla struttura dei dati, dimensioni intese a riassumere l'intreccio di relazioni di interdipendenza tra le variabili originarie».

In riferimento all'analisi delle corrispondenze, si definisce:

$$\mathbf{F} = \mathbf{Z}_Y'\mathbf{Z}_X$$

dove \mathbf{Z}_Y e \mathbf{Z}_X sono matrici di dimensioni $n \times k$ ed $n \times Q$. Le coordinate degli scores identificati sono date da:

$$\mathbf{W} = \sqrt{\frac{n}{p}} \mathbf{M} \mathbf{Z}_X \mathbf{D}_X^{-\frac{1}{2}} \mathbf{B}^*$$

Determinati gli scores, si procederà (considerando un Proportional Odds Model) alla stima del modello:

$$logit[P(Y \le j|x)] = \tau_i - \beta' w, \quad j = 1, \dots, m-1$$

Modelli Ordinali Metodi di Feature Selection Implementazione degli algoritmi Conclusioni Bibliografia
OOO OOOO ●OOOO OO

Struttura del dataset

Il dataset oggetto di analisi consta di **433** osservazioni ed è composto da **33** variabili. La variabile dipendente utilizzata è rappresentata da **paura**, così rappresentata:

Figura 1: Distribuzione della variabile dipendente

Obiettivo dell'indagine è comprendere quali sono e in che misura impattano le variabili sulla *paura* in relazione agli eventi sismici della zona dei **Campi Flegrei**.

Modelli Ordinali Metodi di Feature Selection Implementazione degli algoritmi Conclusioni Bibliografia

Subset Selection

Con la Subset Selection, sono stati stimati, considerato il numero di variabili, **529** modelli, dove per ogni modello con $1, 2, \ldots, p$ covariate viene considerato il set di variabili che restituisce l'accuracy più elevata.

Selezione	Modello	n	bic	accuracy
Backward Selection	Adjacent Category Model	31	698.2795	0.7431
	Continuation Ratio Model	20	700.3701	0.7339
	Proportional Odds Model	31	695.7759	0.7339
	Adjacent Category Model	21	699.0172	0.7339
Forward Selection	Continuation Ratio Model	24	667.1201	0.7431
	Proportional Odds Model	22	666.0391	0.7339

Tabella 1: Confronto tra modelli acat, cratio e pom in relazione alla subset selection

Il modello migliore, considerata l'accuracy, è il Continuation Ratio Model (24).

Metodi di Shrinkage

Relativamente ai metodi di shrinkage, sono stati stimati **60903** modelli ed il tuning dei parametri è stato effettuato con la tecnica della **Grid Search**. I risultati sono presentati di seguito:

alpha	lambda	family	n	aic	bic	loglik	accuracy
0.70	0.01	acat	27	679.9519	562.7489	-250.3744	0.7523
0.71	0.01	acat	27	679.9962	562.7932	-250.3966	0.7523
0.72	0.01	acat	27	680.0412	562.8382	-250.4191	0.7523
0.12	0.07	cratio	27	715.4220	598.2189	-268.1095	0.7523
0.13	0.07	cratio	27	715.8659	598.6629	-268.3314	0.7523

Tabella 2: Tuning degli iperparametri α e λ nell'elastic net per acat, cratio e pom

dove emerge che il modello migliore è l'**Adjacent Category Model** con α = 0.70 e λ = 0.01.

Dimensionality Reduction

Per quanto riguardo l'applicazione dell'AC, è stato opportuno procedere al tuning del numero di componenti \pmb{k} .

family	componenti	aic	bic	loglik	accuracy
acat	2 (84.88%)	673.7963	696.4808	-330.8982	0.4954
	1 (57.84%)	671.8789	690.7827	-330.9395	0.4862
	3 (94.73%)	671.1958	697.661	-328.5979	0.4862
	4 (100%)	673.1253	703.3712	-328.5626	0.4862
	-	982.0407	997.1637	-487.0203	0.3761
cratio	3 (94.73%)	664.8875	691.3527	-325.4437	0.5505
	4 (100%)	666.8826	697.1285	-325.4413	0.5505
	1 (57.84%)	664.215	683.1187	-327.1075	0.5229
	2 (84.88%)	665.5479	688.2323	-326.7739	0.5229
	-	982.0407	997.1637	-487.0203	0.3761
pom	3 (94.73%)	664.8429	691.3081	-325.4214	0.5321
	4 (100%)	666.8342	697.0802	-325.4171	0.5321
	1 (57.84%)	664.6927	683.5964	-327.3464	0.5138
	2 (84.88%)	666.1235	688.8079	-327.0617	0.5046
	-	982.0407	997.1637	-487.0203	0.3761

Tabella 3: Dimensionality reduction applicata a modelli ordinali.

Modelli Ordinali Metodi di Feature Selection **Implementazione degli algoritmi** Conclusioni Bibliografia
OOO OOOO OOOO OOOO

Risultati

Allo scopo di valutare le **performance** dei diversi algoritmi di *feature selection*, è riportato il seguente grafico contenente le accuracy.

Figura 2: Accuracy su modelli acat, cratio e pom per metodi di shrinkage, subset selection e dimensionality reduction.

Modelli Ordinali Metodi di Feature Selection Implementazione degli algoritmi Conclusioni
OOO OOOO COOOO COOOOO

Conclusioni

In conclusione, il modello migliore risulta l'**Adjacent Category Model** con penalizzazione **elastic net** con *accuracy* pari a 0.7523.

Tuttavia, data la penalizzazione applicata, non è possibile dare una *interpretazione* numerica alle stime dei coefficienti.

Riportando solo alcune considerazioni:

- → la probabilità di passare ad un livello superiore di paura aumenta all'aumentare dell'età, per i single, per chi non lavora e per chi ha difficoltà ad arrivare a fine mese;
- → la probabilità di passare ad un livello superiore di paura diminuisce per coloro che conoscono i punti di prima accoglienza, per coloro che vivono in una casa di proprietà e per le persone che risiedono in un appartamento.

[9]

[14]

[15]

[16]

[18]

Bibliografia

[1]	Alan Agresti. Analysis of ordinal		
	categorical data. Vol. 656. John		
	Wiley & Sons, 2010.		

- [2] Alan Agresti. Categorical data analysis. Vol. 792. John Wiley & Sons. 2012.
- [3] Rollin Brant. «Assessing proportionality in the proportional odds model for ordinal logistic regression». In: *Biometrics* (1990), pp. 1171–1178.
- [4] Jerome Friedman, Trevor Hastie e Rob Tibshirani. «Regularization paths for generalized linear models via coordinate descent.». In: Journal of statistical software 33.1 (2010), p. 1.
- Michael Greenacre e Jorg Blasius.
 Multiple correspondence analysis and related methods. CRC press, 2006.
- [6] Michael J Greenacre. Biplots in practice. Fundacion BBVA, 2010.
- [7] Michael J Greenacre. «Theory and applications of correspondence analysis». In: (No Title) (1984).

[8] Gareth James et al. An introduction to statistical learning. Vol. 112. Springer, 2013.

Stuart R Lipsitz.

- Garrett M Fitzmaurice e
 Geert Molenberghs.

 «Goodness-of-fit tests for ordinal
 response regression models». In:
 Journal of the Royal Statistical
 Society Series C: Applied Statistics
 45.2 (1996), pp. 175–190.

 Peter McCullagh. «Regression
- models for ordinal data». In:

 Journal of the Royal Statistical
 Society: Series B (Methodological)
 42.2 (1980), pp. 109–127.

 11] D. Piccolo. Statistica. Strumenti / il
- D. Piccolo. Statistica. Strumenti / il Mulino. Il Mulino, 2010.
 Robert Tibshirani. «Regression
- shrinkage and selection via the lasso». In: Journal of the Royal Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.
 - Gerhard Tutz e Jan Gertheiss.

 ≪Regularized regression for categorical data≫. In: Statistical Modelling 16.3 (2016), pp. 161–200.

- Michel Van de Velden, A Iodice D'Enza e Francesco Palumbo. ≪Cluster correspondence analysis≫. In: Psychometrika 82 (2017), pp. 158–185.
- Tong Tong Wu e Kenneth Lange. «Coordinate descent algorithms for lasso penalized regression». In: (2008).
- Michael J Wurm, Paul J Rathouz e Bret M Hanlon. ≪Regularized ordinal regression and the ordinalNet R package≫. In: Journal of Statistical Software 99.6 (2021).
- Faisal M Zahid e Shahla Ramzan. «Ordinal ridge regression with categorical predictors». In: *Journal of Applied Statistics* 39.1 (2012), pp. 161–171.
- Hui Zou e Trevor Hastie.

 «Regularization and variable
 selection via the elastic net». In:
 Journal of the Royal Statistical
 Society Series B: Statistical
 Methodology 67.2 (2005),
 pp. 301–320.