Arrows for Parallel Computations

Submission ID xxxxxx

Abstract

Arrows are a general interface for computation and therefore form an alternative to Monads for API design. We express parallelism using this concept in a novel way: We define an arrows-based language for parallelism and implement it using multiple parallel Haskells. In this manner we are able to bridge across various parallel Haskells.

Additionally, our way of writing parallel programs has the benefit of being portable across multiple parallel Haskell implementations. Furthermore, as each parallel computation is an arrow, which means that they can be readily composed and transformed as such. We introduce some syntactic sugar to provide parallelism-aware arrow combinators.

To show that our arrow-based language has similar expressiveness to existing parallel languages, we also define several parallel skeletons with our framework. Benchmarks show that our framework does not induce too much overhead performance-wise. Summarize conclusions

Jedes Kapitel soll einmal ins Abstract. Conclusions sollen mit ins Abstract

Contents

1	Intr	2	
2	Bac	kground	3
	2.1	Arrows	3
	2.2	Short introduction to parallel Haskells	5
3	Rela	ated Work	8
4	Para	allel Arrows	9
	4.1	The ArrowParallel typeclass	9
	4.2	ArrowParallel instances	10
	4.3	Extending the Interface	12
5	Futi	ures	13
6	Map	o-based Skeletons	14
7	Top	ological Skeletons	16
	7.1	Parallel pipe	17
	7.2	Ring skeleton	18
	7.3	Torus skeleton	19
8	Performance results		
	8.1	Hardware	22
	8.2	Test programs	23
	8.3	What parallel Haskells run where	23
	8.4	Effect of hyperthreading	24
	8.5	Benchmark results	24

2

Submission ID xxxxxx

9	Conclusion	
	9.1 Future Work	30
Re	30	
A	Utility Arrows	34
В	Omitted Function Definitions	35
C	Syntactic Sugar	37

Contents

1 Introduction

One particular reason for this is the ease of introducing new sophisticated language concepts. Parallel functional languages have a long history of being used for experimenting with novel parallel programming paradigms including the expression of parallelism. Haskell, which we focus on in this paper, has several mature implementations. We regard here in-depth the Multicore Haskell (a SMP implementation of GpH language), the Par Monad, and Eden, a distributed memory parallel Haskell. These languages represent orthogonal approaches. Some use a monad, even if only for the internal representation. Some introduce additional language constructs. A key novelty here is to use Arrows to represent parallel computations. They seem a natural fit as they are a generalization of the function \rightarrow and serve as general interface to computations.

We provide an Arrows-based typeclass and implementations for three parallel Haskells. Instead of introducing a new low-level parallel backend in order to implement our Arrowsbased interface, we define a shallow-embedded DSL for Arrows. This DSL is defined as a common interface and varying implementations in existing parallel Haskells: Multicore Haskell, Par Monad, and Eden. Thus, we not only define a parallel programming interface in a novel manner - we tame the zoo of parallel Haskells. We provide a common quantify, e.g. less than 10 %, very low-penalty programming interface that allows to switch the parallel Haskell backends at will. Further backends based on HdpH or a Frege implementation (on the Java Virtual Machine) are viable, too.

Contributions We propose a new Arrow-based encoding for parallelism based on a new Arrow combinator $parEvalN :: [arr\ a\ b] \to arr\ [a]\ [b]$, which converts a list of Arrows into a new parallel Arrow. Because of this, we do not lose any benefits of using Arrows as the parallelism is encapsulated as another combinator instead of a different type. The resulting Arrow can be used in the same way as a potential serial version.

This is a big advantage as we do not introduce any new types as Monad solutions like the Par Monad do. We can just plug in parallel parts into sequential Arrow-based programs and libraries without having to change integral parts of the code. mention Functions here? We have everything Eden has, but more.

We host this functionality in the ArrowParallel typeclass, which abstracts all parallel implementation logic in a way that the backend easily be swapped. This means it is possible

```
class Arrow\ arr\ where arr: (a \rightarrow b) \rightarrow arr\ a\ b (>>>):: arr\ a\ b \rightarrow arr\ b\ c \rightarrow arr\ a\ c first:: arr\ a\ b \rightarrow arr\ (a,c)\ (b,c) instance Arrow\ (\rightarrow) where arr\ f = f f>>>> g = g\circ f first\ f = \lambda(a,c) \rightarrow (f\ a,c) data Kleisli\ m\ a\ b = Kleisli\ \{run:: a \rightarrow m\ b\} instance Monad\ m \Rightarrow Arrow\ (Kleisli\ m) where arr\ f = Kleisli\ (return\circ f) f>>>> g = Kleisli\ (\lambda a \rightarrow f\ a>= g) first\ f = Kleisli\ (\lambda(a,c) \rightarrow f\ a>= \lambda\ b \rightarrow return\ (b,c))
```

Fig. 1. The definition of Arrow type class and its two most typical instances.

Fig. 2. Schematic depiction of Arrow (left) and its basic combinators arr, >>> and first (right).

to write code against the interface of a common typeclass without being bound to any specific backend. So as an example, during development, we can run the program in a simple GHC-compiled variant using a GpH backend and afterwards deploy it on a cluster by converting it into an Eden program, by just replacing the *ArrowParallel* instance.

We also show that it is possible to define algorithmic skeletons with Arrows (Sections 6, 7) and finally demonstrate that Arrow Parallelism is a viable alternative to existing approaches and prove that only low overhead is introduced, i.e. less than x% fix this after benchmarks are finally done as shown in Section 8.

Mention Future work here?

2 Background

2.1 Arrows

Arrows were introduced by HughesArrows as a general interface for computation. An Arrow $arr\ a\ b$ represents a computation that converts an input a to an output b. This is

defined in the *Arrow* type class shown in Fig. 1. Its *arr* operation is used to lift an ordinary function to the specified arrow type, similarly to the monadic *return*. The >>> operator is analogous to the monadic composition >>= and combines two arrows *arr* a b and *arr* b c by "wiring" the outputs of the first to the inputs to the second to get a new arrow *arr* a c. Lastly, the *first* operator takes the input arrow from b to c and converts it into an arrow on pairs with the second argument untouched. It allows us to to save input across arrows. Figure 2 shows a graphical representation of the basic Arrow combinators. The most prominent instances of this interface are regular functions (\rightarrow) and the Kleisli type (Fig. 1).

Fig. 3. Visual depiction of syntactic sugar for Arrows.

With this typeclass in place, Hughes also defined some syntactic sugar (Fig. 3): The combinators *second*, *** and &&&. The combinator *second* is the mirrored version of *first* (Appendix A). The *** function combines *first* and *second* to handle two inputs in one arrow, is defined as

```
(***)::Arrow arr \Rightarrow arr\ a\ b \rightarrow arr\ c\ d \rightarrow arr\ (a,c)\ (b,d)
f *** g = first\ f >>> second\ g
```

while the &&& combinator, that constructs an arrow which outputs two different values like ***, but takes only one input, is:

```
(&&&)::Arrow arr \Rightarrow arr\ a\ b \rightarrow arr\ a\ c \rightarrow a\ a\ (b,c)
f &&& g = arr\ (\lambda a \rightarrow (a,a)) >>> (f***g)
```

A first short example given by Hughes on how to use arrows is addition with arrows:

```
add:: Arrow arr \Rightarrow arr \ a \ Int \rightarrow arr \ a \ Int \rightarrow arr \ a \ Int
add \ f \ g = (f \&\&\& \ g) >>> arr \ (\lambda(u,v) \rightarrow u + v)
```

The more restrictive interface of Arrows allows for more elaborate composition and transformation combinators—a Monad can be *anything*, an Arrow is a process of doing something, a *computation*. One of the major problems in parallel computing is, however, composition of parallel processes.

2.2 Short introduction to parallel Haskells

There are already several ways to write parallel programs in Haskell:

Arrows for Parallel Computations

Table 1. Overview over some parallel Haskells

Name Memory setting Concepts used
GpH shared & distributed par/pseq "hints"

Par Monadshared deterministic parallel Monad

Eden shared & distributed special compiler, pure & monadic interface
HdpH shared? & distributed parallel Monad, Template Haskell

LVish shared parallel Monad, parallel data-structures

Fig. 4. Schematic illustration of parEvalN.

As we base our parallel Arrows on existing parallel Haskells, we will now give a short introduction to the ones we use as backends in this paper.

In its purest form, parallel computation (on functions) can be looked at as the execution of some functions $a \to b$ in parallel or $parEvalN :: [a \to b] \to [a] \to [b]$, as also Figure 4 symbolically shows. We implement this non-Arrow version here which will later in this paper be adapted for usage in our Arrow based parallel Haskell. Furthermore, the implementation of parEvalN serves as a short demonstration of how the used parallel Haskell backends work.

2.2.1 Multicore Haskell

Multicore Haskell (Marlow *et al.*, 2009; Trinder *et al.*, 1998) is one of the simplest ways to do parallel processing found in standard GHC.¹ Besides some basic primitives it ships with parallel evaluation strategies for several types which can be applied with $using :: a \rightarrow Strategy \ a \rightarrow a$, which is exactly what is required for an implementation of parEvalN.

```
parEvalN :: (NFData\ b) \Rightarrow [a \rightarrow b] \rightarrow [a] \rightarrow [b]

parEvalN\ fs\ as = \mathbf{let}\ bs = zipWith\ (\$)\ fs\ as

\mathbf{in}\ bs\ `using\ `parList\ rdeepseq
```

In the above definition of parEvalN we just apply the list of functions $[a \rightarrow b]$ to the list of inputs [a] by zipping them with the application operator \$. We then evaluate this lazy list [b] according to a Strategy[b] with the $using::a \rightarrow Strategy[a \rightarrow a]$ operator. We construct this strategy with $parList::Strategy[a] \rightarrow Strategy[a]$ and $rdeepseq::NFData[a] \rightarrow Strategy[a]$ where the latter is a strategy which evalutes to normal form. Fig. 5 shows a visual representation of this code.

¹ Multicore Haskell on Hackage is available under https://hackage.haskell.org/package/parallel-3.2.1.0, compiler support is integrated in the stock GHC.

6

Submission ID xxxxxx

Fig. 5. Dataflow of the Multicore Haskell parEvalN version.

2.2.2 Par Monad

The *Par* Monad² introduced by par-monad, is a Monad designed for composition of parallel programs. Let:

```
parEvalN :: (NFData\ b) \Rightarrow [a \rightarrow b] \rightarrow [a] \rightarrow [b]

parEvalN\ fs\ as = runPar\

(sequenceA\ map\ (spawnP)\ sipWith\ (s)\ fs\ as) > mapM\ get
```

The Par Monad version of our parallel evaluation function parEvalN is defined by zipping the list of $[a \rightarrow b]$ with the list of inputs [a] with the application operator partsigned just like with Multicore Haskell. Then, we map over this not yet evaluated lazy list of results [b] with partsigned with partsigned in partsigned with partsigned in partsigned with partsigned in partsigned with partsigned with partsigned in partsigned with partsigned in partsigned with partsigned w

2.2.3 Eden

Eden (Loogen *et al.*, 2005; Loogen, 2012) is a parallel Haskell for distributed memory and comes with a MPI and a PVM backends.³ It is targeted towards clusters, but also functions well in a shared-memory setting with a further simple backend. However, in contrast to many other parallel Haskells, in Eden each process has its own heap. This seems to be a waste of memory, but with distributed programming paradigm and individual GC per process, Eden yields good performance results also on multicores (Berthold *et al.*, 2009a; Aswad *et al.*, 2009).

While Eden also comes with a Monad *PA* for parallel evaluation, it also ships with a completely functional interface that includes a spawnF:: $(Trans\ a, Trans\ b) \Rightarrow [a \rightarrow b] \rightarrow [a] \rightarrow [b]$ function that allows us to define parEvalN directly:

$$parEvalN :: (Trans\ a, Trans\ b) \Rightarrow [a \rightarrow b] \rightarrow [a] \rightarrow [b]$$

 $parEvalN = spawnF$

and

It can be found in the monad-par package on hackage under https://hackage.haskell.org/package/monad-par-0.3.4.8/.

See also http://www.mathematik.uni-marburg.de/ eden/ https://hackage.haskell.org/package/edenmodules-1.2.0.0/.

Fig. 6. Dataflow of the Par Monad parEvalN version.

Eden TraceViewer. To comprehend the efficiency and the lack thereof in a parallel program, an inspection of its execution is extremely helpful. While some large-scale solutions exist (Geimer *et al.*, 2010), the parallel Haskell community mainly utilises the tools Threadscope (Wheeler & Thain, 2009) and Eden TraceViewer⁴ (Berthold & Loogen, 2007). In the next sections we will present some *trace visualizations*, the post-mortem process diagrams of Eden processes and their activity.

The trace visualizations are color-coded. In such a visualization (Fig. 13), the *x* axis shows the time, the *y* axis enumerates the machines and processes. The visualization shows a running process in green, a blocked process is red. If the process is runnable, it may run, but does not, it is yellow. The typical reason for thus is GC. An inactive machine, where no processes are started yet, or all are already terminated, shows as a blue bar. A comminication from one process to another is represented with a black arrow. A stream of communications, a transmitted list is shows as a dark shading between sender and receiver processes.

3 Related Work

Parallel Haskells. Of course, the three parallel Haskell flavours we have presented above: the GpH (Trinder *et al.*, 1996; Trinder *et al.*, 1998) parallel Haskell dialect and its multicore version (Marlow *et al.*, 2009), the *Par* Monad (Marlow *et al.*, 2011; Foltzer *et al.*, 2012),

⁴ See http://hackage.haskell.org/package/edenty on Hackage for the last available version of Eden TraceViewer.

and Eden (Loogen *et al.*, 2005; Loogen, 2012) are related to this work. We use these languages as backends: our DSL can switch from one to other at user's command.

HdpH (Maier *et al.*, 2014; Stewart *et al.*, 2016) is an extension of *Par* Monad to heterogeneous clusters. LVish (Kuper *et al.*, 2014) is a communication-centred extension of *Par* Monad. Further parallel Haskell approaches include pH (Nikhil & Arvind, 2001), research work done on distributed variants of GpH (Trinder *et al.*, 1996; Aljabri *et al.*, 2014; Aljabri *et al.*, 2015), and low-level Eden implementation (Berthold, 2008; Berthold *et al.*, 2016). Skeleton composition (Dieterle *et al.*, 2016), communication (Dieterle *et al.*, 2010a), and generation of process networks (Horstmeyer & Loogen, 2013) are recent in-focus research topics in Eden. This also includes the definitions of new skeletons (Hammond *et al.*, 2003; Berthold & Loogen, 2006; Berthold *et al.*, 2009b; Berthold *et al.*, 2009c; Dieterle *et al.*, 2010b; de la Encina *et al.*, 2011; Dieterle *et al.*, 2013; Janjic *et al.*, 2013).

More different approaches include data parallelism (Chakravarty *et al.*, 2007; Keller *et al.*, 2010), GPU-based approaches (Mainland & Morrisett, 2010; Svensson, 2011), software transactional memory (Harris *et al.*, 2005; Perfumo *et al.*, 2008). The Haskell–GPU bridge Accelerate (Chakravarty *et al.*, 2011; Clifton-Everest *et al.*, 2014; McDonell *et al.*, 2015) deserves a special mention. Accelerate is completely orthogonal to our approach. marlow2013parallel authored a recent book in marlow2013parallel on parallel Haskells.

Algorithmic skeletons. Algorithmic skeletons were introduced by Cole1989. Early publications on this topic include (Darlington *et al.*, 1993; Botorog & Kuchen, 1996; Danelutto *et al.*, 1997; Gorlatch, 1998; Lengauer *et al.*, 1997). SkeletonBook consolidated early reports on high-level programming approaches. The effort is ongoing, including topological skeletons (Berthold & Loogen, 2006), special-purpose skeletons for computer algebra (Berthold *et al.*, 2009c; Lobachev, 2011; Lobachev, 2012; Janjic *et al.*, 2013), iteration skeletons (Dieterle *et al.*, 2013). The idea of scscp is to use a parallel Haskell to orchestrate further software systems to run in parallel. dieterle *horstmeyer100genberthold2*016comparethecomposition of skeleton

Arrows. Arrows were introduced by HughesArrows, basically they are a generalised function arrow →. Hughes2005 presents a tutorial on Arrows. Some theoretical details on Arrows (Jacobs et al., 2009; Lindley et al., 2011; Atkey, 2011) are viable. Paterson: 2001: NNA: 507669.507664 introduced a new notation for Arrows. Arrows have applications in information flow research (Li & Zdancewic, 2006; Li & Zdancewic, 2010; Russo et al., 2008), invertible programming (Alimarine et al., 2005), and quantum computer simulation (Vizzotto et al., 2006). But probably most prominent application of Arrows is Arrow-based functional reactive programming, AFRP (Nilsson et al., 2002; Hudak et al., 2003; Czaplicki & Chong, 2013). Liu:2009:CCA:1631687.1596559 formally define a more special kind of Arrows that capsule the computation more than regular arrows do and thus enable optimizations. Their approach would allow parallel composition, as their special Arrows would not interfere with each other in concurrent execution. In contrast, we capture a whole parallel computation as a single entity: our main instantiation function parEvalN makes a single (parallel) Arrow out of list of Arrows. Huang 2007 utilise Arrows for parallelism, but strikingly different from our approach. They basically use Arrows to orchestrate several tasks in robotics. We, however, propose a general interface for parallel programming, while remaining completely in Haskell.

in the implementation of a distributed system.

Other languages. Although this work is centred on Haskell implementation of arrows, it is applicable to any functional programming language where parallel evaluation and arrows can be defined. Experiments with our approach in Frege language⁵ (which is basically Haskell on the JVM) were quite successful. However, it is beyond the scope of this work. achten2004arrows,achten2007arrow use an arrow implementation in Clean for better handling of typical GUI tasks. Dagand:2009:ORD:1481861.1481870 used arrows in OCaml

4 Parallel Arrows

Arrows are a general interface to computation. Here we introduce special Arrows as general interface to *parallel computations*. First, we present the interface and explain the reasonings behind it. Then, we discuss some implementations using existing parallel Haskells. Finally, we explain why using Arrows for expressing parallelism is beneficial.

4.1 The ArrowParallel typeclass

A parallel computation (on functions) in its purest form can be seen as execution of some functions $a \to b$ in parallel, as our parEvalN prototype shows (Sec. 2.2). Translating this into arrow terms gives us a new operator parEvalN that lifts a list of arrows $[arr\ a\ b]$ to a parallel arrow $arr\ [a]\ [b]$. This combinator is similar to our utility function listApp from Appendix A, but does parallel instead of serial evaluation.

```
parEvalN :: (Arrow arr) \Rightarrow [arr \ a \ b] \rightarrow arr \ [a] \ [b]
```

With this definition of *parEvalN*, parallel execution is yet another arrow combinator. But as the implementation may differ depending on the actual type of the arrow *arr* and we want this to be an interface for different backends, we introduce a new typeclass *ArrowParallel arr a b*:

```
class Arrow \ arr \Rightarrow ArrowParallel \ arr \ a \ b where parEvalN :: [arr \ a \ b] \rightarrow arr \ [a] \ [b]
```

Sometimes parallel Haskells require or allow for additional configuration parameters, an information about the execution environment or the level of evaluation (weak head normal form vs. normal form). For this reason we also introduce an additional *conf* parameter to the function. We also do not want *conf* to be a fixed type, as the configuration parameters can differ for different instances of *ArrowParallel*.

```
class Arrow \ arr \Rightarrow Arrow Parallel \ arr \ a \ b \ conf where parEvalN :: conf \rightarrow [arr \ a \ b] \rightarrow arr \ [a] \ [b]
```

We do not require the *conf* parameter in every implementation. If it is not needed, we usually just default the *conf* type parameter to () and even blank it out in the parameter list of the implemented *parEvalN*.

⁵ GitHub project page at https://github.com/Frege/frege

```
data Conf a = Conf (Strategy a)

instance (NFData b, ArrowApply arr, ArrowChoice arr) \Rightarrow ArrowParallel arr a b () where

parEvalN \_fs =

listApp\ fs >>>

arr\ (withStrategy\ (parList\ rdeepseq))
```

Fig. 7. Fully evaluating ArrowParallel instance for the Multicore Haskell backend.

```
instance (NFData b,ArrowApply arr,ArrowChoice arr) ⇒
ArrowParallel arr a b (Conf b) where
parEvalN (Conf strat) fs =
  listApp fs>>>
  arr (withStrategy (parList strat)) && arr id>>>>
  arr (uncurry pseq)
```

Fig. 8. Configurable ArrowParallel instance for the Multicore Haskell backend.

4.2 ArrowParallel instances

4.2.1 Multicore Haskell

The Multicore Haskell implementation of ArrowParallel is implemented in a straightforward manner by using listApp (Appendix A) combined with the $withStrategy::Strategy a \rightarrow a \rightarrow a$ combinators from Multicore Haskell, where withStrategy is the same as $using::a \rightarrow Strategy a \rightarrow a$, but with flipped parameters. For most cases a fully evaluating version like in Fig. 7 would probably suffice, but as the Multicore Haskell interface allows the user to specify the level of evaluation to be done via the Strategy interface, our DSL should allow for this. We therefore introduce the Conf a data-type that simply wraps a Strategy a. With this definition in place, we can provide a delegating version of the non-configurable instance. We show this in Fig. B 1.

4.2.2 Par Monad

introduce a newcommand for par-monad, "arrows", "parrows" and replace all mentions to them to ensure uniform typesetting , we write Arrows. also "Monad"? The Par Monad implementation (Fig. 9) makes use of Haskells laziness and Par Monad's $spawnP::NFData\ a \Rightarrow a \rightarrow Par\ (IVar\ a)$ function. The latter forks away the computation of a value and returns an IVar containing the result in the Par Monad.

We therefore apply each function to its corresponding input value with and then fork the computation away with $arr\ spawnP$ inside a zipWithArr (Fig. A 3) call. This yields a list $[Par\ (IVar\ b)]$, which we then convert into $Par\ [IVar\ b]$ with $arr\ sequenceA$. In order to wait for the computation to finish, we map over the IVars inside the $Par\ Monad$ with $arr\ (>= mapM\ get)$. The result of this operation is a $Par\ [b]$ from which we can finally remove the Monad again by running $arr\ runPar$ to get our output of [b].

```
instance (NFData b,ArrowApply arr,ArrowChoice arr) \Rightarrow ArrowParallel arr a b conf where parEvalN _fs = (arr $\lambda as \rightarrow (fs, as)) >>> zipWithArr (app >>> arr spawnP) >>> arr sequenceA >>> arr (>>=mapM get) >>> arr runPar
```

Fig. 9. ArrowParallel instance for the Par Monad backend.

4.2.3 Eden

For both the Multicore Haskell and *Par* Monad implementations we could use general instances of *ArrowParallel* that just require the *ArrowApply* and *ArrowChoice* typeclasses. With Eden this is not the case as we can only spawn a list of functions and we cannot extract simple functions out of arrows. While we could still manage to have only one class in the module by introducing a typeclass:

```
class (Arrow arr) \Rightarrow Arrow Unwrap arr where <math>arr \ a \ b \rightarrow (a \rightarrow b)
```

However, we avoid doing so for aesthetic resons. For now, we just implement *ArrowParallel* for normal functions:

```
instance (Trans\ a, Trans\ b) \Rightarrow ArrowParallel\ (\rightarrow)\ a\ b\ conf\ where parEvalN\ \_fs\ as = spawnF\ fs\ as and the Kleisli type: 

instance (Monad\ m, Trans\ a, Trans\ b, Trans\ (m\ b)) \Rightarrow ArrowParallel\ (Kleisli\ m)\ a\ b\ conf\ where parEvalN\ conf\ fs = (arr\ parEvalN\ conf\ (map\ (\lambda(Kleisli\ f) \to f)\ fs)) >>> (Kleisli\ \$\ sequence)
```

4.3 Extending the Interface

With the *ArrowParallel* typeclass in place and implemented, we can now implement some further basic parallel interface functions. These are algorithmic skeletons that, however, mostly serve as a foundation to further, more specific algorithmic skeletons.

```
4.3.1 Lazy parEvalN
```

The function parEvalN is 100% strict, which means that it fully evaluates all passed arrows. Sometimes this might not be feasible, as it will not work on infinite lists of functions like e.g. $map\ (arr\circ(+))\ [1..]$ or just because we need the arrows evaluated in chunks. parEvalNLazy (Figs. 10, 11) fixes this. It works by first chunking the input from [a] to [[a]] with the given ChunkSize in $arr\ (chunkSof\ chunkSize)$. These chunks are then fed into a

Submission ID xxxxxx

Fig. 10. Schematic depiction of parEvalNLazy.

```
parEvalNLazy :: (ArrowParallel \ arr \ a \ b \ conf \ , ArrowChoice \ arr \ , ArrowApply \ arr) \Rightarrow \\ conf \rightarrow ChunkSize \rightarrow [arr \ a \ b] \rightarrow (arr \ [a] \ [b]) \\ parEvalNLazy \ conf \ chunkSize \ fs = \\ arr \ (chunksOf \ chunkSize) >>> \\ listApp \ fchunks >>> \\ arr \ concat \\ \textbf{where} \ fchunks = map \ (parEvalN \ conf) \ \ \ chunksOf \ chunkSize \ fs
```

Fig. 11. Definition of parEvalNLazy.

list [arr [a] [b]] of parallel arrows created by feeding chunks of the passed *ChunkSize* into the regular parEvalN by using *listApp*. The resulting [[b]] is lastly converted into [b] with arr concat.

4.3.2 Heterogenous tasks

We have only talked about the paralellization arrows of the same type until now. But sometimes we want to paralellize heterogenous types as well. However, we can implement such a parEval2 combinator (Figs. 12, B 12) which combines two arrows $arr\ a\ b$ and $arr\ c\ d$ into a new parallel arrow $arr\ (a,c)\ (b,d)$ quite easily with the help of the ArrowChoice typeclass. The idea is to use the +++ combinator which combines two arrows $arr\ a\ b$ and $arr\ c\ d$ and transforms them into $arr\ (Either\ a\ c)\ (Either\ b\ d)$ to get a common arrow type that we can then feed into parEvalN.

5 Futures

Consider a mock-up parallel arrow combinator:

```
someCombinator :: (Arrow \ arr) \Rightarrow [arr \ a \ b] \rightarrow [arr \ b \ c] \rightarrow arr \ [a] \ [c]
someCombinator \ fs1 \ fs2 = parEvalN \ () \ fs1 >>> rightRotate >>> parEvalN \ () \ fs2
```

In a distributed environment, a resulting arrow of this combinator first evaluates all $[arr\ a\ b]$ in parallel, sends the results back to the master node, rotates the input once and then evaluates the $[arr\ b\ c]$ in parallel to then gather the input once again on the master

Fig. 12. Schematic depiction of parEval2.

20:21

While the above example could be rewritten into only one parEvalN call by directly wiring the arrows properly together, it illustrates an important problem. When using a ArrowParallel backend that resides on multiple computers, all communication between the nodes is done via the master node, as shown in the Eden trace in Figure 13. This can become a serious bottleneck for larger amount of data and number of processes [as [showcases]Berthold2009-fft.

Fig. 13. Communication between 4 Eden processes without Futures. All communication goes through the master node. Each bar represents one process. Black lines between processes represent communication. Colors: blue $\hat{=}$ idle, green $\hat{=}$ running, red $\hat{=}$ blocked, yellow $\hat{=}$ suspended.

more practical and heavy-weight example! fft (I have the code)?

Depends... Are the communications easy to read in such an example?

Keep the description for the different colours, or link to the EdenTV description in 2.2.3 ok as is use the fft example (when it works)?

We should allow the nodes to communicate directly with each other. Eden already ships with "remote data" that enable this (Alt & Gorlatch, 2003; Dieterle et al., 2010a). But as we want code with our DSL to be implementation agnostic, we have to wrap this context. We do this with the *Future* typeclass (Fig. 14). Since *RD* is only a type synonym for a

```
class Future fut a \mid a \rightarrow fut where
   put :: (Arrow \ arr) \Rightarrow arr \ a \ (fut \ a)
   get :: (Arrow \ arr) \Rightarrow arr \ (fut \ a) \ a
```

Fig. 14. Definition of the Future typeclass.

communication type that Eden uses internally, we have to use some wrapper classes to fit that definition, though, as Fig. B 6 shows. Technical details are in Appendix, in Section B.

For our Par Monad and Multicore Haskell backends, we can simply use BasicFutures (Fig. 15) which are just simple wrappers around the actual data, as in a shared memory setting we do not require Eden's sophisticated communication channels.

```
data BasicFuture\ a = BF\ a

instance (NFData\ a) \Rightarrow NFData\ (BasicFuture\ a) where

rnf\ (BF\ a) = rnf\ a

instance (NFData\ a) \Rightarrow Future\ BasicFuture\ a where

put = arr\ BF

get = arr\ (\lambda(BF\ a) \rightarrow a)
```

Fig. 15. The *BasicFuture* type and its *Future* instance for the *Par* Monad and Multicore Haskell backends.

In our communication example we can use this *Future* concept for direct communications between the nodes as shown in Fig. 16. In a distributed environment, this gives us a

```
someCombinator :: (Arrow \ arr) \Rightarrow [arr \ a \ b] \rightarrow [arr \ b \ c] \rightarrow arr \ [a] \ [c] someCombinator \ fs1 \ fs2 = parEvalN \ () \ (map \ (>>>put) \ fs1) >>> rightRotate >>> parEvalN \ () \ (map \ (get>>>>) \ fs2)
```

Fig. 16. The mock-up combinator in parallel.

communication scheme with messages going through the master node only if it is needed—similar to what is shown in the trace visualization in Fig. 17.Fig. is not really clear. Do Figs with a lot of load? — fft?

Fig. 17. Communication between 4 Eden processes with Futures. Other than in Fig. 13, processes communicate directly (black lines between the bars) instead of always going through the master node (bottom bar).

6 Map-based Skeletons

Now we have developed Parallel Arrows far enough to define some useful algorithmic skeletons that abstract typical parallel computations.

Parallel *map* **and laziness.** The *parMap* skeleton (Figs. B 2, B 3) is probably the most common skeleton for parallel programs. We can implement it with *ArrowParallel* by repeating an arrow *arr a b* and then passing it into *parEvalN* to obtain an arrow *arr* [*a*] [*b*]. Just like *parEvalN*, *parMap* is 100% strict. As *parMap* is 100% strict it has the same restrictions as *parEvalN* compared to *parEvalNLazy*. So it makes sense to also have a *parMapStream* (Figs. B 4, B 5) which behaves like *parMap*, but uses *parEvalNLazy* instead of *parEvalN*. The code is quite straightforward, we show it in Appendix.

Fig. 18. Schematic depiction of a farm, a statically load-balanced parMap.

```
\begin{array}{l} \textit{farm} :: (ArrowParallel\ arr\ a\ b\ conf,} \\ \textit{ArrowParallel\ arr}\ [a]\ [b]\ conf, ArrowChoice\ arr) \Rightarrow \\ \textit{conf} \rightarrow \textit{NumCores} \rightarrow \textit{arr}\ a\ b \rightarrow \textit{arr}\ [a]\ [b] \\ \textit{farm\ conf\ numCores}\ f = \\ \textit{unshuffle\ numCores} >>> \\ \textit{parEvalN\ conf\ (repeat\ (mapArr\ f))} >>> \\ \textit{shuffle} \end{array}
```


Fig. 20. Schematic depiction of farmChunk.

Statically load-balancing parallel *map.* Our *parMap* spawns every single computation in a new thread (at least for the instances of *ArrowParallel* we gave in this paper). This can be quite wasteful and a statically load-balancing *farm* (Figs. 18, 19) that equally distributes the workload over *numCores* workers seems useful. The definitions of the helper functions *unshuffle*, *takeEach*, *shuffle* (Fig. B 7) originate from an Eden skeleton⁶.

Since a *farm* is basically just *parMap* with a different work distribution, it is, again, 100% strict. So we can define *farmChunk* (Figs. 20, B 10) which uses *parEvalNLazy* instead of *parEvalN*. It is basically the same definition as for *farm*, with *parEvalN* replaced with *parEvalNLazy*.

7 Topological Skeletons

Even though many algorithms can be expressed by parallel maps, some problems require more sophisticated skeletons. The Eden library leverages this problem and already comes

Available on Hackage under https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/src/Control-Parallel-Eden-Map.html.

with more predefined skeletons⁷, among them a *pipe*, a *ring*, and a *torus* implementations Eden:SkeletonBookChapter02. These seem like reasonable candidates to be ported to our Arrow-based parallel Haskell. We aim to showcase that we can express more sophisticated skeletons with Parallel Arrows as well.

If we used the original definition of *parEvalN*, however, these skeletons would produce an infinite loop with the Multicore and Par Monad backends which during runtime would result in the program crashing. This materializes with the usage of *loop* of the *ArrowLoop* typeclass and is probably due to the way their respective parallelism engines work internally. okay so? As these skeletons probably do not make any practical sense besides for testing with these backends anyways (because of the shared memory between the threads), we create an extra abstraction layer for the original *parEvalN* in these skeletons called *evalN* in the *FutureEval* typeclass. This allows us for selective enabling and disabling of parallelism.

```
class ArrowParallel arr a b conf \Rightarrow FutureEval arr a b conf where evalN :: (ArrowParallel \ arr \ a \ b \ conf) \Rightarrow conf \rightarrow [arr \ a \ b] \rightarrow arr \ [a] \ [b]
```

As Eden has no problems with the looping skeletons, we declare a delegating instance:

```
instance ArrowParallel arr a b conf \Rightarrow FutureEval arr a b conf where evalN = parEvalN
```

The Par Monad and Multicore backends have parallelism disabled in their instance of *FutureEval*. This way the skeletons can still run without errors on shared-memory machines and still be used to test programs locally.

```
instance (Arrow arr, ArrowChoice arr, ArrowApply arr,
ArrowParallel arr a b conf) \Rightarrow FutureEval arr a b conf where
evalN \_= listApp
```

7.1 Parallel pipe

The parallel *pipe* skeleton is semantically equivalent to folding over a list $[arr\ a\ a]$ of arrows with >>>, but does this in parallel, meaning that the arrows do not have to reside on the same thread/machine. We implement this skeleton using the ArrowLoop typeclass which gives us the $loop::arr\ (a,b)\ (c,b) \to arr\ a\ c$ combinator which allows us to express recursive fix-point computations in which output values are fed back as input. For example

```
loop (arr (\lambda(a,b) \rightarrow (b,a:b)))
```

which is the same as

```
loop (arr snd &&& arr (uncurry (:)))
```

defines an arrow that takes its input a and converts it into an infinite stream [a] of it. Using this to our advantage gives us a first draft of a pipe implementation (Fig. 21) by plugging

Available on Hackage: https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html.

```
pipeSimple :: (ArrowLoop\ arr, FutureEval\ arr\ a\ a\ conf) \Rightarrow conf \rightarrow [arr\ a\ a] \rightarrow arr\ a\ a
pipeSimple\ conf\ fs = loop\ (arr\ snd\ \&\& (arr\ (uncurry\ (:) >>> lazy) >>> evalN\ conf\ fs)) >>> arr\ last
```

Fig. 21. A first implementation of the *pipe* skeleton expressed with Parallel Arrows. Note that the use of *lazy* (Fig. B 8) is essential as without it programs using this definition would never halt. We need to enforce that the evaluation of the input [a] terminates before passing it into *evalN*.

```
pipe :: (ArrowLoop arr, FutureEval arr (fut a) (fut a) conf, Future fut a) \Rightarrow conf \rightarrow [arr a a] \rightarrow arr a a pipe conf fs = unliftFut (pipeSimple conf (map liftFut fs))
```

Fig. 22. Final definition of the *pipe* skeleton with Futures.

```
\begin{aligned} &\textit{pipe2} :: (\textit{ArrowLoop} \ arr, \textit{ArrowChoice} \ arr, \textit{Future} \ fut \ (([a],[b]),[c]), \\ &\textit{FutureEval} \ arr \ (\textit{fut} \ (([a],[b]),[c])) \ (\textit{fut} \ (([a],[b]),[c])) \ \textit{conf}) \Rightarrow \\ &\textit{conf} \rightarrow \textit{arr} \ a \ b \rightarrow \textit{arr} \ b \ c \rightarrow \textit{arr} \ a \ c \\ &\textit{pipe2} \ \textit{conf} \ f \ g = \\ &\textit{(arr return \&\&\& arr \ (const \ [])) \&\&\& arr \ (const \ [])} >>> \\ &\textit{pipe conf} \ (\textit{replicate} \ 2 \ (\textit{unify} \ f \ g)) >>> \\ &\textit{arr snd} >>> \textit{arr head} \ \textbf{where} \\ &\textit{unify} :: (\textit{ArrowChoice} \ arr) \Rightarrow \textit{arr} \ a \ b \rightarrow \textit{arr} \ b \ c \rightarrow \textit{arr} \ (([a],[b]),[c]) \ (([a],[b]),[c]) \\ &\textit{unify} \ f \ g = \\ &\textit{(mapArr } f *** \textit{mapArr } g) *** \textit{arr} \ (\backslash\_ \rightarrow []) >>> \\ &\textit{arr} \ (\lambda((a,b),c) \rightarrow ((c,a),b)) \\ (|>>>|) :: (\textit{ArrowLoop} \ arr, \textit{ArrowChoice} \ arr, \textit{Future} \ \textit{fut} \ (([a],[b]),[c]), \\ &\textit{FutureEval} \ \textit{arr} \ (\textit{fut} \ (([a],[b]),[c])) \ (\textit{fut} \ (([a],[b]),[c])) \ ()) \Rightarrow \\ &\textit{arr} \ a \ b \rightarrow \textit{arr} \ b \ c \rightarrow \textit{arr} \ a \ c \\ (|>>>|) = \textit{pipe2} \ () \end{aligned}
```

Fig. 23. Definition of *pipe2* and a parallel >>>.

in the parallel evaluation call *evalN* conf fs inside the second argument of &&& and then only picking the first element of the resulting list with *arr last*.

However, using this definition directly will make the master node a potential bottleneck in distributed environments as described in Section 5. Therefore, we introduce a more sophisticated version that internally uses Futures and obtain the final definition of *pipe* in Fig. 22.

Sometimes, this *pipe* definition can be a bit inconvenient, especially if we want to pipe arrows of mixed types together, i.e. *arr* a b and *arr* b c. By wrapping these two arrows inside a common type we obtain *pipe2* (Fig. 23).

Note that extensive use of *pipe2* over *pipe* with a hand-written combination data type will probably result in worse performance because of more communication overhead from the many calls to *parEvalN* inside of *evalN*. Nonetheless, we can define a version of parallel piping operator |>>>|, which is semantically equivalent to >>> similarly to other parallel syntactic sugar from Appendix C.

Another version of >>> is:

Fig. 24. Schematic depiction of the ring skeleton.

$$f \mid >>> \mid g = (f \circ put) >>> (get \circ g)$$

It does not launch both arrows f and g in parallel, but allows for more smooth data communication between them. Basically, it is a *Future*-lifted *sequential* >>>, a way to compose parallel Arrows efficiently.

7.2 Ring skeleton

Eden comes with a ring skeleton⁸ (Fig. 24) implementation that allows the computation of a function $[i] \rightarrow [o]$ with a ring of nodes that communicate in a ring topology with each other. Its input is a node function $i \rightarrow r \rightarrow (o,r)$ in which r serves as the intermediary output that gets send to the neighbour of each node. This data is sent over direct communication channels, the so called remote data. We depict it in Appendix, Fig. B 11.

We can rewrite this functionality easily with the use of *loop* as the definition of the node function, arr(i,r)(o,r), after being transformed into an arrow, already fits quite neatly into the *loop*'s $arr(a,b)(c,b) \rightarrow arr\ a\ c$. In each iteration we start by rotating the intermediary input from the nodes $[fut\ r]$ with $second\ (rightRotate >>> lazy)$ (Fig. B 8). Similarly to the pipe from Section 7.1 (Fig. 21), we have to feed the intermediary input into our lazy (Fig. B 8) arrow here, or the evaluation would fail to terminate. The reasoning is explained by Loogen2012 as a demand problem.

Next, we zip the resulting $([i],[fut\,r])$ to $[(i,fut\,r)]$ with $arr\,(uncurry\,zip)$ so we can feed that into a our input arrow $arr\,(i,r)\,(o,r)$, which we transform into $arr\,(i,fut\,r)\,(o,fut\,r)$ before lifting it to $arr\,[(i,fut\,r)]\,[(o,fut\,r)]$ to get a list $[(o,fut\,r)]$. Finally we unzip this list into $([o],[fut\,r])$. Plugging this arrow $arr\,([i],[fut\,r])\,([o],fut\,r)$ into the definition of loop from earlier gives us $arr\,[i]\,[o]$, our ring arrow (Fig. 25). This combinator can, for example, be used to calculate the shortest paths in a graph using Warshall's algorithm.

7.3 Torus skeleton

If we take the concept of a *ring* from Section 7.2 one dimension further, we obtain a *torus* skeleton (Fig. 26, 27). Every node sends ands receives data from horizontal and vertical

⁸ Available on Hackage: https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html

Arrows for Parallel Computations

```
ring:: (ArrowLoop arr, Future fut r, FutureEval arr (i,fut r) (o,fut r) conf) \Rightarrow conf \rightarrow arr (i,r) (o,r) \rightarrow arr [i] [o] ring conf f = loop (second (rightRotate >>> lazy) >>> arr (uncurry zip) >>> evalN conf (repeat (second get >>> f >>> second put)) >>> arr unzip)
```

Fig. 25. Final definition of the ring skeleton.

Fig. 26. Schematic depiction of the torus skeleton.

neighbours in each communication round. With our Parallel Arrows we re-implement the *torus* combinator⁹ from Eden—yet again with the help of the *ArrowLoop* typeclass.

Similar to the *ring*, we once again start by rotating the input (Fig. B 8), but this time not only in one direction, but in two. This means that the intermediary input from the neighbour nodes has to be stored in a tuple ([[fut a]], [[fut b]]) in the second argument (loop only allows for two arguments) of our looped arrow arr([[c]], ([[fut a]], [[fut b]])) and our rotation arrow becomes

```
second ((mapArr rightRotate >>> lazy) *** (arr rightRotate >>> lazy))
```

instead of the singular rotation in the ring as we rotate $[[fut \ a]]$ horizontally and $[[fut \ b]]$ vertically. Then, we once again zip the inputs for the input arrow with

```
arr (uncurry3 zipWith3 lazyzip3)
```

from $([[c]], ([[fut\ a]], [[fut\ b]]))$ to $[[(c, fut\ a, fut\ b)]],$ which we then feed into our parallel execution.

This action is, however, more complicated than in the ring case as we have one more dimension of inputs to be transformed. We first have to *shuffle* all the inputs to then pass it into $evalN\ conf\ (repeat\ (ptorus\ f))$ which yields $[(d,fut\ a,fut\ b)]$. We can then unpack this shuffled list back to its original ordering by feeding it into the specific unshuffle arrow we created one step earlier with $arr\ length >>> arr\ unshuffle$ with the use of $app::arr\ (arr\ a\ b,a)\ c$ from the ArrowApply typeclass. Finally, we unpack this matrix $[[[(d,fut\ a,fut\ b)]]$ with $arr\ (map\ unzip3) >>> arr\ unzip3 >>>> threetotwo\ to\ get\ ([[d]],([[fut\ a]],[[fut\ b]])).$

As an example of using this skeleton Eden: Skeleton Book Chapter 02 showed the matrix multiplication using the Gentleman algorithm (Gentleman 1978). An adapted version can

⁹ Available on Hackage: https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html.

```
torus:: (ArrowLoop\ arr, ArrowChoice\ arr, ArrowApply\ arr, Future\ fut\ a, Future\ fut\ b,
FutureEval\ arr\ (c,fut\ a,fut\ b)\ (d,fut\ a,fut\ b)\ conf)\Rightarrow
conf\rightarrow arr\ (c,a,b)\ (d,a,b)\rightarrow arr\ [[c]]\ [[d]]
torus\ conf\ f=
loop\ (second\ ((mapArr\ rightRotate>>> lazy)****(arr\ rightRotate>>> lazy))>>>
arr\ (uncurry3\ (zipWith3\ lazyzip3))>>>
(arr\ length>>> arr\ unshuffle)\ \&\&\&\ (shuffle>>> evalN\ conf\ (repeat\ (ptorus\ f))>>> app>>>
arr\ (map\ unzip3)>>> arr\ unzip3>>> threetotwo)
ptorus:: (Arrow\ arr, Future\ fut\ a, Future\ fut\ b)\Rightarrow
arr\ (c,a,b)\ (d,a,b)\rightarrow arr\ (c,fut\ a,fut\ b)\ (d,fut\ a,fut\ b)
ptorus\ f=arr\ (\lambda\sim(c,a,b)\rightarrow(c,get\ a,get\ b))>>> f>>> arr\ (\lambda\sim(d,a,b)\rightarrow(d,put\ a,put\ b))
```

Fig. 27. Definition of the *torus* skeleton. The definitions of *lazyzip3*, *uncurry3* and *threetotwo* have been omitted and can be found in Fig. B 9

```
type Matrix = [[Int]]

prMM_torus :: Int → Int → Matrix → Matrix → Matrix

prMM_torus numCores problemSizeVal m1 m2 =

combine $ torus () (mult torusSize) $ zipWith (zipWith (,)) (split m1) (split m2)

where torusSize = (floor ∘ sqrt) $ fromIntegral numCores

combine = concat ∘ (map (foldr (zipWith (++)) (repeat [])))

split = splitMatrix (problemSizeVal 'div' torusSize)

-- Function performed by each worker

mult :: Int → ((Matrix, Matrix), [Matrix], [Matrix]) → (Matrix, [Matrix], [Matrix])

mult size ((sm1, sm2), sm1s, sm2s) = (result, toRight, toBottom)

where toRight = take (size − 1) (sm1: sm1s)

toBottom = take (size − 1) (sm2': sm2s)

sm2' = transpose sm2

sms = zipWith prMMTr (sm1: sm1s) (sm2': sm2s)

result = foldl1' matAdd sms
```

Fig. 28. Adapted matrix multiplication in Eden using a the *torus* skeleton. $prMM_torus$ is the parallel matrix multiplication. mult is the function performed by each worker. prMMTr calculates AB^T and is used for the (sequential) calculation in the chunks. splitMatrix splits the Matrix into chunks. matAdd calculates A + B. Omitted definitions can be found in B 13.

be found in Fig. 28. If we compare the trace from a call using our arrow definition of the torus (Fig. 29) with the Eden version (Fig. 30) we can see that the behaviour of the arrow version and execution times are comparable. We discuss further examples on larger clusters and in a more detail in the next section.

8 Performance results

8.1 Hardware

We have tested our parallel DSL and algorithmic skeletons implemented in it. Benchmarks were conducted both in a shared and in a distributed memory setting. All benchmarks were done on the "Glasgow grid", consisting of 16 machines with 2 Intel[®] Xeon[®] E5-2640 v2 and 64 GB of DDR3 RAM each. Each processor has 8 cores and 16 (hyperthreaded)

Fig. 29. Matrix Multiplication with torus (PArrows).

Fig. 30. Matrix Multiplication with torus (Eden).

threads with a base frequency of 2 GHz and a turbo frequency of 2.50 GHz. This results in a total of 256 cores and 512 threads for the whole cluster. The operating system was Ubuntu 14.04 LTS with Kernel 3.19.0-33. Non-surprisingly, we found that hyperthreaded 32 cores do not behave in the same manner as real 16 cores (numbers here for a single machine). We disregarded the hyperthreading ability in most of the cases.

We used a single node with 16 real cores as a shared memory testbed and the whole grid with 256 real cores as a device to test our distributed memory software.

8.2 Test programs

We used multiple tests that originated from different sources. Most of them are parallel mathematical computations, initially implemented in Eden. Table 2 summarizes.

22

main

Submission ID xxxxxx

Table 2. The benchmarks we use in this paper.

Name	Area	Type	Origin	Citation
Rabin-Miller test	Mathematics	parMap + reduce	Eden	Lobachev2012
Jacobi sum test	Mathematics	workpool + reduce	Eden	Lobachev2012
Gentleman	Mathematics	torus	Eden	Eden:SkeletonBookChapter02
Sudoku	Puzzle	parMap	Par Monad	par-monad ¹⁰

Rabin–Miller testis a probabilistic primality test that iterates multiple (32–256 here) "subtests". Should a subtest fail, the input is definitely not a prime. If all n subtest pass, the input is composite with the probability of $1/4^n$.

Jacobi sum test or APRCL is also a primality test, that however, guarantees the correctness of the result. It is probabilistic in the sense that its run time is not certain. Unlike Rabin–Miller test, the subtests of Jacobi sum test have very different durations. lobachev-phd discuss some optimisations of parallel APRCL. Generic parallel implementation of Rabin–Miller testand APRCL were presented in Lobachev2012.

"Gentleman" is a standard Eden test program, developed for their *torus* skeleton. It implements a parallel matrix multiplication Gentleman1978. We ported an Eden based version Eden:SkeletonBookChapter02 to PArrows.

A parallel Sudoku solver was used by par-monad to compare *Par* Monad to Multicore Haskell. We ported it to PArrows.

8.3 What parallel Haskells run where

The *Par* monad and Multicore Haskell can be executed on a shared memory machines only. Although GpH is available on distributed memory clusters, and newer distributed memory Haskells such as HdpH exist, current support of distributed memory in PArrows is limited to Eden. We used the MPI backend of Eden in a distributed memory setting. However, for shared memory Eden features a "CP" backend that merely copies the memory blocks between distributed heaps. In this mode Eden still operates in the "nothing shared" setting, but is adapted better to multicore machines. We label this version of Eden in the plots as "Eden CP".

8.4 Effect of hyperthreading

The PArrows version of Rabin–Miller teston a single node of the Glasgow grid showed almost linear speedup (Fig. 31). The speedup of 64-task PArrows/Eden at 16 real cores version was 13.65, the efficiency was 85.3%. However, if we increase the number of requested cores to be 32—if we use hyperthreading on 16 real cores—the speedup does not increase that well. It is merely 15.99 for 32 tasks with PArrows/Eden. It is worse for other backends. As for 64 tasks, we obtain the speedup of 16.12 with PArrows/Eden at 32 hyperthreaded cores and only 13.55 with PArrows/Multicore Haskell. Efficiency is 50.4%

¹⁰ actual code from: http://community.haskell.org/ simonmar/par-tutorial.pdf and https://github.com/simonmar/parconc-examples

and 42.3%, respectively. The Eden version used here was Eden CP, the "share nothing" SMP build.

In the distributed memory setting the same effect ensues. We obtain plummeting speedup of 124.31 at 512 hyperthreaded cores, whereas it was 213.172 for 256 real cores. Apparently, hyperthreading in the Glasgow grid fails to execute two parallel Haskell processes with full-fledged parallelism. For this reason, we did not regard hyperthreaded cores in our speedup plots in Figs. 31-35.

8.5 Benchmark results

The difference between, say, PArrows with *Par* Monad backend and a genuine *Par* Monad benchmark is very small. To give an example, it is 0.4s in favour of PArrows for 16 cores (10.8s vs. 11.2s) and -0.8s in favour of the *Par* monad for 8 cores (16.1s vs. 16.9s) for the Sudoku benchmark in the shared memory setting. It is almost invisible in speedup and (non shown) run time plots. We thus show only the results for the PArrows-enabled versions.

To show that PArrows induce very small overhead in a distributed context as well, we compare the original Eden versions of the benchmark to its PArrows-enabled counterpart in the Rabin–Miller test, Gentlemanand Jacobi sum testbenchmarks. We plot execution time differences between measurements for PArrows and the corresponding backend in a separate plot (Figs. 32, 34, 33). As an example, the differences range in about 0.5 seconds for the execution time of 46 seconds on 256 cores for distributed Rabin–Miller testwith PArrows and Eden. For these comparisons, the plots show absolute time differences that are not relative the total execution time. Furthermore, the error bars ends were computed from pointwise maximum of both standard deviations from both measurements for PArrows and non-PArrows versions. These are the values provided by the *bench* package that we used for benchmarking. We call a difference between two versions significant when the border of the error bar of absolute time difference is above or below zero. In other words: the time difference is significant if it is above measurement error.

8.5.1 Rabin-Miller test

THE ACTUAL TEXT IS MISSING. What do we see in the plots? Why is it good? The multicore version of our parallel Rabin–Miller testbenchmark is depicted in Figure 31. We executed the test with 32 and 64 tasks. The plot shows the PArrows-enabled versions with corresponding backends. The performance of PArrows/Eden CP in shared memory is slightly better than for SMP variants such as PArrows/Multicore Haskell and PArrows/Par Monad but most of the time the performance is still comparable with the Multicore backend performing slightly worse than the other two in terms of speedup. In particular, the speedups for 16 cores fall behind quite noticeably with 11.69 for 32 tasks as Eden and the Par Monad both score 13.05 for 32 tasks. While the Multicore backend scores a bit better in the 64 tasks benchmark, its speedup of 12.70 is still behind the 13.65 and 13.33 of Eden and Par Monad, respectively.

Comparing the PArrows version of the Rabin–Miller testwith the original from Eden with the MPI backend in a distributed memory setting, we see an almost linear speedup of Rabin–Miller testwith 256 tasks and input $2^{444497} - 1$ in both versions. The sequential

Threads

Fig. 31. Relative speedup of Rabin–Miller teston a multicore machine. We used the same PArrows-based implementation with different backends on the same hardware. Measurements were performed on a single node of the Glasgow grid; it has 16 real cores. Input was $2^{11213} - 1$, we used 32 (left) or 64 (right) tasks. The closer to linear speedup the better.

run time was computed as the mean of three consecutive executions on a single core—the single run took two hours 43 minutes. The zero difference between PArrows/Eden and Eden almost always lies on the error bar of the measurement. The only exception, where the PArrows and Eden versions differ and it was it was significant, was for 64 cores, where it performed 0.49s better. This corresponds to 0.30% relative time difference. Otherwise, PArrows was 0.23s (or 0.0007%) slower for 32 cores, 0.26s (or 0.0030%) slower for 128 cores, and 0.09s faster (or 0.0019%) faster for 256 cores.

8.5.2 Jacobi sum test

Continuing, the results of the Jacobi sum testin 33 are as follows:

FIXME: redo this test with 2⁴⁴⁴⁹⁷

8.5.3 Gentleman

Next is the Gentlemanbenchmark. The results of the comparison of vanilla Eden to our PArrows-based version can be found in 34. While we do not see too much speedup for more than 16 cores, we can prove that the difference between the Eden and PArrows version are again marginal. The difference between PArrows and Eden is only significant for 16 and 64 cores where it ran 1.7% and 2.7% slower which corresponds to a real-time difference of 0.12s and 0.13s. For 256 cores PArrows performed 0.2% slower which corresponds to 0.01s overhead.

8.5.4 Sudoku

As the last Benchmark in this paper we present the Sudokuin 35 running in a shared memory setting. Here we see all three SM backends performing similarly again like in the

ZU064-05-FPR

Arrows for Parallel Computations

Speedup of Rabin-Miller test"256"

Run time differences for Rabin–Miller test"256"

Fig. 32. Parallel performance of Rabin–Miller teston the Glasgow grid consisting of 256 cores. Input was $2^{44497}-1$, we used 256 tasks. The top plot shows absolute speedup in a distributed memory setting. The closer to linear speedup the better. Time (and hence speedup) measurements for PArrows with Eden backend and Eden almost coincide. Hence, bottom plot shows absolute time differences for this benchmark. The higher the value, the better for PArrowsCHECKME.

benchmark missing. in the works benchmark missing. in the works

Fig. 33. Parallel performance of Rabin–Miller teston the Glasgow grid consisting of 256 cores. Input was $2^{1279} - 1$, we used 256 tasks. The top plot shows absolute speedup in a distributed memory setting. The closer to linear speedup the better. Time (and hence speedup) measurements for PArrows with Eden backend and Eden almost coincide. Hence, bottom plot shows absolute time differences for this benchmark. The higher the value, the better for PArrowsCHECKME.

benchmark missing. in the works benchmark missing. in the works

Fig. 34. Parallel performance of Gentlemanon the Glasgow grid consisting of 256 cores. Input was a matrix size of 1024. The top plot shows absolute speedup in a distributed memory setting. The closer to linear speedup the better. Time (and hence speedup) measurements for PArrows with Eden backend and Eden almost coincide. Hence, bottom plot shows absolute time differences for this benchmark. The higher the value, the better for PArrowsCHECKME.

Rabin–Miller testSM benchmarks in Figs. 35-36. However, we notice that the Multicore backend seems to choke on a bigger input 36. This is due to the benchmark only using *parMap* instead of a chunking variant (however we did not change that for simplicity's sake) and is reflected by debug output which shows, that of 16000 sparks being created (one for each sudoku) only 8365 were converted (executed) with the rest (7635) overflowing the runtime spark pool. Another remarkable finding is that the Eden backend seems to lack behind for ≤16 threads, but manages to pull ahead noticeably with all 32 threads of the system in use.

9 Conclusion

Arrows are a generic concept that allows for powerful composition combinators. To our knowledge we are first to represent *parallel* computation with Arrows. Arrows turn out to be a useful tool for composing in parallel programs. We do not have to introduce new monadic types that wrap the computation. Instead, we use Arrows in the same manner

Fig. 35. Relative speedup of Sudokuon a multicore machine. We used the same PArrows-based implementation with different backends on the same hardware and the *parMap* version from the *Par* Monad examples. Measurements were performed on a single node of the Glasgow grid; it has 16 real cores and 32 threads. Input was a file of 1000 Sudokus. The closer to linear speedup the better.

20:21

Fig. 36. Relative speedup of Sudokuon a multicore machine. We used the same PArrows-based implementation with different backends on the same hardware and the parMap version from the Par Monad examples. Measurements were performed on a single node of the Glasgow grid; it has 16 real cores and 32 threads. Input was a file of 16000 Sudokus. The closer to linear speedup the better. The Multicore version shows signs of choking with too many sparks being created.

one uses sequential pure functions. This work features multiple parallel backends: the already available parallel Haskell flavours. Parallel Arrows, as presented here, feature an implementation of the ArrowParallel typeclass for Multicore Haskell, Par Monad, and Eden. With our approach parallel programs can be ported across these flavours with little to no effort. It is quite straightforward to add further backends. Performance-wise, Parallel Arrows are on par with existing parallel Haskells, as they do not introduce any notable overhead. The benefit is, however, the greatly increased portability of parallel programs.

9.1 Future Work

Our PArrows DSL can be expanded to further parallel Haskells. More specifically we target HdpH (Maier et al., 2014) for this future extension. HdpH is a modern distributed Haskell that would benefit from our Arrows notation. Further Future-aware versions of Arrow combinators can be defined. Existing combinators could also be improved. We would look into more transparency of our DSL, basically it should infuse as little overhead as possible.

More experiences with seamless porting of parallel PArrows-based programs across the backends are welcome. Of course, we are working ourselves on expanding both our skeleton library and the number of skeleton-based parallel programs that use our DSL to be portable across flavours of parallel Haskells. It would also be interesting to see a hybrid of PArrows and Accelerate (McDonell et al., 2015). Ports of our approach to other languages like Frege or Java directly are in an early development stage.

References

Alimarine, Artem, Smetsers, Sjaak, van Weelden, Arjen, van Eekelen, Marko, & Plasmeijer, Rinus. (2005). There and back again: Arrows for invertible programming. Pages 86–97 of: Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell. Haskell '05. ACM.

- Aljabri, Malak, Loidl, Hans-Wolfgang, & Trinder, Phil W. (2014). The design and implementation of GUMSMP: A multilevel parallel haskell implementation. *Pages 37:37–37:48 of: Proceedings of the 25Symposium on Implementation and Application of Functional Languages*. IFL '13. ACM.
- Aljabri, Malak, Loidl, Hans-Wolfgang, & Trinder, Phil. (2015). *Balancing shared and distributed heaps on NUMA architectures*. Springer. Pages 1–17.
- Alt, Martin, & Gorlatch, Sergei. (2003). Future-Based RMI: Optimizing compositions of remote method calls on the Grid. *Pages 682–693 of:* Kosch, Harald, Böszörményi, László, & Hellwagner, Hermann (eds), *Euro-Par 2003*. LNCS 2790. Springer-Verlag.
- Aswad, Mustafa, Trinder, Phil, Al Zain, Abdallah, Michaelson, Greg, & Berthold, Jost. (2009). Low pain vs no pain multi-core Haskells. *Pages 49–64 of: Trends in Functional Programming*.
- Atkey, Robert. (2011). What is a categorical model of arrows? *Electronic notes in theoretical computer science*, **229**(5), 19–37.
- Berthold, Jost. (2008). Explicit and implicit parallel functional programming concepts and implementation. Ph.D. thesis, Philipps-Universität Marburg.
- Berthold, Jost, & Loogen, Rita. (2006). Skeletons for recursively unfolding process topologies. Joubert, Gerhard R., Nagel, Wolfgang E., Peters, Frans J., Plata, Oscar G., Tirado, P., & Zapata, Emilio L. (eds), *Parallel Computing: Current & Future Issues of High-End Computing, ParCo 2005, Malaga, Spain.* NIC Series 33. Central Institute for Applied Mathematics, Jülich, Germany.
- Berthold, Jost, & Loogen, Rita. (2007). Visualizing Parallel Functional Program Executions: Case Studies with the Eden Trace Viewer. *ParCo '07. Parallel Computing: Architectures, Algorithms and Applications*. IOS Press.
- Berthold, Jost, Dieterle, Mischa, Lobachev, Oleg, & Loogen, Rita. (2009a). Distributed Memory Programming on Many-Cores A Case Study Using Eden Divide-&-Conquer Skeletons. *Pages 47–55 of:* Großpitsch, K.-E., Henkersdorf, A., Uhrig, S., Ungerer, T., & Hähner, J. (eds), *Workshop on Many-Cores at ARCS '09 22International Conference on Architecture of Computing Systems 2009*. VDE-Verlag.
- Berthold, Jost, Dieterle, Mischa, & Loogen, Rita. (2009b). Implementing parallel Google mapreduce in Eden. *Pages 990–1002 of:* Sips, Henk, Epema, Dick, & Lin, Hai-Xiang (eds), *Euro-Par 2009 Parallel Processing*. LNCS 5704. Springer Berlin Heidelberg.
- Berthold, Jost, Dieterle, Mischa, Lobachev, Oleg, & Loogen, Rita. (2009c). *Parallel FFT with Eden skeletons*. PaCT '09. Springer. Pages 73–83.
- Berthold, Jost, Loidl, Hans-Wolfgang, & Hammond, Kevin. (2016). PAEAN: Portable and scalable runtime support for parallel Haskell dialects. *Journal of functional programming*, **26**.
- Botorog, G. H., & Kuchen, H. (1996). *Euro-Par'96 Parallel Processing*. LNCS 1123. Springer-Verlag. Chap. Efficient parallel programming with algorithmic skeletons, pages 718–731.
- Chakravarty, Manuel M. T., Leshchinskiy, Roman, Peyton Jones, Simon L., Keller, Gabriele, & Marlow, Simon. (2007). Data Parallel Haskell: a status report. *Pages 10–18 of: DAMP '07*. ACM Press.
- Chakravarty, Manuel M.T., Keller, Gabriele, Lee, Sean, McDonell, Trevor L., & Grover, Vinod. (2011). Accelerating Haskell array codes with multicore GPUs. *Pages 3–14 of: Proceedings of the 6Workshop on Declarative Aspects of Multicore Programming*. DAMP '11. ACM.
- Clifton-Everest, Robert, McDonell, Trevor L, Chakravarty, Manuel M T, & Keller, Gabriele. (2014).
 Embedding Foreign Code. PADL '14: The 16th International Symposium on Practical Aspects of Declarative Languages. LNCS. Springer-Verlag.
- Czaplicki, Evan, & Chong, Stephen. (2013). Asynchronous functional reactive programming for guis. Sigplan not., 48(6), 411–422.
- Danelutto, M., Pasqualetti, F., & Pelagatti, S. (1997). Skeletons for Data Parallelism in P³L. *Pages* 619–628 of: Lengauer, C., Griebl, M., & Gorlatch, S. (eds), *Euro-Par'97*. LNCS 1300. Springer-Verlag.

- Darlington, J., Field, AJ, Harrison, PG, Kelly, PHJ, Sharp, DWN, Wu, Q., & While, RL. (1993).
 Parallel programming using skeleton functions. Pages 146–160 of: Parallel architectures and languages Europe. Springer-Verlag.
- de la Encina, Alberto, Hidalgo-Herrero, Mercedes, Rabanal, Pablo, & Rubio, Fernando. (2011). *A parallel skeleton for genetic algorithms*. IWANN '11. Springer. Pages 388–395.
- Dieterle, M., Horstmeyer, T., & Loogen, R. (2010a). Skeleton composition using remote data. *Pages 73–87 of:* Carro, M., & Peña, R. (eds), *12International Symposium on Practical Aspects of Declarative Languages*. PADL '10, vol. 5937. Springer-Verlag.
- Dieterle, M., Horstmeyer, T., Loogen, R., & Berthold, J. (2016). Skeleton composition versus stable process systems in Eden. *Journal of functional programming*, **26**.
- Dieterle, Mischa, Berthold, Jost, & Loogen, Rita. (2010b). A skeleton for distributed work pools in Eden. FLOPS '10. Springer. Pages 337–353.
- Dieterle, Mischa, Horstmeyer, Thomas, Berthold, Jost, & Loogen, Rita. (2013). *Iterating skeletons*. IFL '12. Springer. Pages 18–36.
- Foltzer, Adam, Kulkarni, Abhishek, Swords, Rebecca, Sasidharan, Sajith, Jiang, Eric, & Newton, Ryan. (2012). A meta-scheduler for the Par-monad: Composable scheduling for the heterogeneous cloud. Sigplan not., 47(9), 235–246.
- Geimer, M., Wolf, F., Wylie, B. J. N., Ábrahám, E., Becker, D., & Mohr, B. (2010). The Scalasca performance toolset architecture. *Concurrency and computation: Practice and experience*, **22**(6).
- Gorlatch, Sergei. (1998). Programming with divide-and-conquer skeletons: A case study of FFT. Journal of supercomputing, 12(1-2), 85–97.
- Gorlatch, Sergei, & Bischof, Holger. (1998). A generic MPI implementation for a data-parallel skeleton: Formal derivation and application to FFT. *Parallel processing letters*, **8**(4).
- Hammond, Kevin, Berthold, Jost, & Loogen, Rita. (2003). Automatic skeletons in Template Haskell. *Parallel processing letters*, **13**(03), 413–424.
- Harris, Tim, Marlow, Simon, Peyton Jones, Simon, & Herlihy, Maurice. (2005). Composable memory transactions. *Pages 48–60 of: Proceedings of the 10ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming*. PPoPP '05. ACM.
- Horstmeyer, Thomas, & Loogen, Rita. (2013). Graph-based communication in Eden. *Higher-order and symbolic computation*, **26**(1), 3–28.
- Hudak, Paul, Courtney, Antony, Nilsson, Henrik, & Peterson, John. (2003). Arrows, robots, and functional reactive programming. Springer. Pages 159–187.
- Hughes, John. (2005). Programming with arrows. Berlin, Heidelberg: Springer Berlin Heidelberg. Pages 73–129.
- Jacobs, Bart, Heunen, Chris, & Hasuo, Ichiro. (2009). Categorical semantics for arrows. *Journal of functional programming*, 19(3-4), 403–438.
- Janjic, Vladimir, Brown, Christopher Mark, Neunhoeffer, Max, Hammond, Kevin, Linton, Stephen Alexander, & Loidl, Hans-Wolfgang. (2013). Space exploration using parallel orbits: a study in parallel symbolic computing. *Parallel computing*.
- Keller, Gabriele, Chakravarty, Manuel M.T., Leshchinskiy, Roman, Peyton Jones, Simon, & Lippmeier, Ben. (2010). Regular, shape-polymorphic, parallel arrays in haskell. Sigplan not., 45(9), 261–272.
- Kuper, Lindsey, Todd, Aaron, Tobin-Hochstadt, Sam, & Newton, Ryan R. (2014). Taming the parallel effect zoo: Extensible deterministic parallelism with LVish. Sigplan not., 49(6), 2–14.
- Lengauer, Christian, Gorlatch, Sergei, & Herrmann, Christoph. (1997). The static parallelization of loops and recursions. *The journal of supercomputing*, **11**(4), 333–353.
- Li, Peng, & Zdancewic, S. (2006). Encoding information flow in Haskell. *Pages 12–16 of: 19IEEE Computer Security Foundations Workshop*. CSFW '06.

- Li, Peng, & Zdancewic, Steve. (2010). Arrows for secure information flow. Theoretical computer science, 411(19), 1974–1994.
- Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2011). Idioms are oblivious, arrows are meticulous, monads are promiscuous. Electronic notes in theoretical computer science, 229(5), 97–117.
- Lobachev, Oleg. (2011). *Implementation and evaluation of algorithmic skeletons: Parallelisation of computer algebra algorithms.* Ph.D. thesis, Philipps-Universität Marburg.
- Lobachev, Oleg. (2012). Parallel computation skeletons with premature termination property. FLOPS 2012. Springer. Pages 197–212.
- Loogen, Rita. (2012). Eden parallel functional programming with Haskell. Springer. Pages 142–206.
- Loogen, Rita, Ortega-Mallén, Yolanda, & Peña-Marí, Ricardo. (2005). Parallel Functional Programming in Eden. *Journal of Functional Programming*, 15(3), 431–475. Special Issue on Functional Approaches to High-Performance Parallel Programming.
- Maier, Patrick, Stewart, Robert, & Trinder, Phil. (2014). The HdpH DSLs for scalable reliable computation. *Sigplan not.*, **49**(12), 65–76.
- Mainland, Geoffrey, & Morrisett, Greg. (2010). Nikola: Embedding compiled GPU functions in Haskell. *Sigplan not.*, **45**(11), 67–78.
- Marlow, S., Peyton Jones, S., & Singh, S. (2009). Runtime support for multicore Haskell. Acm sigplan notices, 44(9), 65–78.
- Marlow, Simon, Newton, Ryan, & Peyton Jones, Simon. (2011). A monad for deterministic parallelism. Sigplan not., 46(12), 71–82.
- McDonell, Trevor L., Chakravarty, Manuel M. T., Grover, Vinod, & Newton, Ryan R. (2015). Type-safe runtime code generation: Accelerate to LLVM. *Sigplan not.*, **50**(12), 201–212.
- Nikhil, R., & Arvind, L. A. (2001). Implicit parallel programming in pH. Morgan Kaufmann.
- Nilsson, Henrik, Courtney, Antony, & Peterson, John. (2002). Functional reactive programming, continued. Pages 51–64 of: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. Haskell '02. New York, NY, USA: ACM.
- Perfumo, Cristian, Sönmez, Nehir, Stipic, Srdjan, Unsal, Osman, Cristal, Adrián, Harris, Tim, & Valero, Mateo. (2008). The limits of software transactional memory (STM): Dissecting Haskell STM applications on a many-core environment. Pages 67–78 of: Proceedings of the 5Conference on Computing Frontiers. CF '08. ACM.
- Russo, Alejandro, Claessen, Koen, & Hughes, John. (2008). A library for light-weight informationflow security in Haskell. *Pages 13–24 of: Proceedings of the 1ACM SIGPLAN Symposium on Haskell*. Haskell '08. ACM.
- Stewart, Robert, Maier, Patrick, & Trinder, Phil. (2016). Transparent fault tolerance for scalable functional computation. *Journal of functional programming*, **26**.
- Svensson, Joel. (2011). Obsidian: Gpu kernel programming in haskell. Ph.D. thesis, Chalmers University of Technology.
- Trinder, Phil W., Hammond, Kevin, Mattson Jr., James S., Partridge, Andrew S., & Peyton Jones, Simon L. (1996). GUM: a Portable Parallel Implementation of Haskell. *PLDI'96*. ACM Press.
- Trinder, P.W., Hammond, K., Loidl, H-W., & Peyton Jones, S. (1998). Algorithm + Strategy = Parallelism. *Journal of functional programming*, 8(1), 23–60.
- Vizzotto, Juliana, Altenkirch, Thorsten, & Sabry, Amr. (2006). Structuring quantum effects: superoperators as arrows. *Mathematical structures in computer science*, **16**(3), 453–468.
- Wheeler, K. B., & Thain, D. (2009). Visualizing massively multithreaded applications with ThreadScope. Concurrency and computation: Practice and experience, 22(1), 45–67.

A Utility Arrows

Following are definitions of some utility Arrows used in this paper that have been lef out for brevity. We start with the *second* combinator from HughesArrows, which is a mirrored version of *first*, which is for example used in the definition of ***:

```
second::Arrow arr \Rightarrow arr \ a \ b \rightarrow arr \ (c,a) \ (c,b)
second f = arr \ swap >>> first \ f >>> arr \ swap
where swap \ (x,y) = (y,x)
```

Next, we also define map, foldl and zip With on Arrows. The mapArr combinator (Fig. A 1) lifts any arrow $arr\ a\ b$ to an arrow $arr\ [a]\ [b]$ (Hughes, 2005b). Similarly, we can also define foldlArr (Fig. A 2) that lifts any arrow $arr\ (b,a)\ b$ with a neutral element b to $arr\ [a]\ b$.

```
mapArr::ArrowChoice\ arr \Rightarrow arr\ a\ b \rightarrow arr\ [a]\ [b]
mapArr\ f =
arr\ listcase>>>
arr\ (const\ [])\ |||\ (f***mapArr\ f>>> arr\ (uncurry\ (:)))
listcase\ []=Left\ ()
listcase\ (x:xs)=Right\ (x,xs)
```

Fig. A 1. The definition of map over Arrows and the listcase helper function.

```
foldlArr:: (ArrowChoice arr, ArrowApply arr) \Rightarrow arr (b,a) b \rightarrow b \rightarrow arr [a] b foldlArr f b = arr listcase >>> arr (const\ b) \parallel || (first\ (arr\ (\lambda a \rightarrow (b,a)) >>>> f >>> arr\ (foldlArr\ f)) >>>> app) Fig. A 2. The definition of foldl over Arrows.
```

Finally, with the help of mapArr (Fig. A 1), we can define zipWithArr (Fig. A 3) that lifts any arrow arr(a,b)c to an arrow arr([a],[b])[c].

```
zipWithArr::ArrowChoice\ arr \Rightarrow arr\ (a,b)\ c \to arr\ ([a],[b])\ [c] zipWithArrf = (arr \$ \lambda(as,bs) \to zipWith\ (,)\ as\ bs) >>> mapArrf Fig. A 3. zipWith\ over\ arrows.
```

These combinators make use of the ArrowChoice type class which provides the $\parallel \parallel$ combinator. It takes two arrows $arr\ a\ c$ and $arr\ b\ c$ and combines them into a new arrow $arr\ (Either\ a\ b)\ c$ which pipes all $Left\ a$'s to the first arrow and all $Right\ b$'s to the second arrow:

```
(\parallel)::ArrowChoice arr a c \rightarrow arr b c \rightarrow arr (Either a b) c
```

With the zipWithArr combinator we can also write a combinator listApp, that lifts a list of arrows $[arr\ a\ b]$ to an arrow $arr\ [a]\ [b]$.

```
 \begin{array}{l} \textbf{instance} \ (\textit{NFData} \ b, \textit{ArrowApply} \ \textit{arr}, \textit{ArrowChoice} \ \textit{arr}) \Rightarrow \textit{ArrowParallel} \ \textit{arr} \ a \ b \ () \ \textbf{where} \\ \textit{parEvalN} \ \_\textit{fs} = \textit{parEvalN} \ (\textit{hack} \ \textit{fs}) \ \textit{fs} \\ \textbf{where} \\ \textit{hack} :: (\textit{NFData} \ b) \Rightarrow [\textit{arr} \ a \ b] \rightarrow \textit{Conf} \ b \\ \textit{hack} \ \_ = \textit{Conf} \ \textit{rdeepseq} \\ \end{array}
```

Fig. B 1. The actual default implementation of Multicore's ArrowParallel.

```
listApp :: (ArrowChoice\ arr, ArrowApply\ arr) \Rightarrow [arr\ a\ b] \rightarrow arr\ [a]\ [b]
listApp\ fs = (arr\ \lambda as \rightarrow (fs, as)) >>> zipWithArr\ app
```

Note that this additionally makes use of the ArrowApply typeclass that allows us to evaluate arrows with $app :: arr(arr \ a \ b, a) \ c$.

B Omitted Function Definitions

We have omitted some function definitions in the main text for brevity, and redeem this here.

To begin with, we give the actual implementation of the non-configurable instance of the *ArrowParallel* instance:

Next, we warp Eden's build-in Futures in PArrows as in Figure B 6, where *rd* is the accessor function for the *RD* wrapped inside *RemoteData*. Furthermore, in order for these *Future* types to fit with the *ArrowParallel* instances we gave earlier, we have to give the necessary *NFData* and *Trans* instances, the latter are only needed in Eden. The *Trans* instance does not have any functions declared as the default implementation suffices here. Furthermore, because *MVar* already ships with a *NFData* instance, we only have to supply a simple delegating *NFData* instance for our *RemoteData* type, where *rd* simply unwraps *RD*. The *Trans* instance does not have any functions declared as the default implementation suffices:

```
instance NFData (RemoteData a) where rnf = rnf \circ rd instance Trans (RemoteData a)
```

Figures B 2–B 5 show the definitions and a visualizations of two parallel *map* variants, defined using *parEvalN* and its lazy counterpart.

Arrow versions of Eden's *shuffle*, *unshuffle* and the definition of *takeEach* are in Figure B 7. Similarly, Figure B 8 contains the definition of arrow versions of Eden's *lazy* and *rightRotate* utility functions. Fig. B 9 contains Eden's definition of *lazyzip3* together with the utility functions *uncurry3* and *threetotwo*. The full definition of *farmChunk* is in Figure B 10. Eden definition of *ring* skeleton is in Figure B 11. It follows Loogen2012.

The *parEval2* skeleton is defined in Figure B 12. We start by transforming the (a,c) input into a two-element list [*Either a c*] by first tagging the two inputs with *Left* and *Right* and wrapping the right element in a singleton list with *return* so that we can combine them with arr (uncurry (:)). Next, we feed this list into a parallel arrow running on two instances of f + ++ g as described above. After the calculation is finished, we convert the resulting [*Either b d*] into ([b], [d]) with arr partitionEithers. The two lists in this tuple

Arrows for Parallel Computations

Fig. B 2. Schematic depiction of parMap.

 $parMap :: (ArrowParallel \ arr \ a \ b \ conf) \Rightarrow conf \rightarrow (arr \ a \ b) \rightarrow (arr \ [a] \ [b])$ $parMap \ conf \ f = parEvalN \ conf \ (repeatf)$

Fig. B 4. Schematic depiction of parMapStream.

```
parMapStream :: (ArrowParallel \ arr \ a \ b \ conf \ , ArrowChoice \ arr \ , ArrowApply \ arr) \Rightarrow conf \rightarrow ChunkSize \rightarrow arr \ a \ b \rightarrow arr \ [a] \ [b] 
parMapStream \ conf \ chunkSize \ f = parEvalNLazy \ conf \ chunkSize \ (repeat \ f)
```

Fig. B 5. Definition of parMapStream.

```
data RemoteData a = RD \{ rd :: RD \ a \}

instance (Trans \ a) \Rightarrow Future \ RemoteData \ a \ where

put = arr \ (\lambda a \rightarrow RD \{ rd = release \ a \})

get = arr \ rd >>> arr \ fetch
```

Fig. B 6. RD-based RemoteData version of Future for the Eden backend.

contain only one element each by construction, so we can finally just convert the tuple to (b,d) in the last step. Furthermore, Fig. B 13 contains the ommitted definitions of prMMTr, - which calculates AB^T for two matrices A and B, splitMatrix - which splits the a matrix into chunks, and lastly matAdd, that calculates A+B for two matrices A and B.

C Syntactic Sugar

Finally, we also give the definitions for some syntactic sugar for PArrows, namely *** and &&&. For basic arrows, we have the *** combinator (Fig. 3) which allows us to combine two arrows $arr\ a\ b$ and $arr\ c\ d$ into an arrow $arr\ (a,c)\ (b,d)$ which does both computations at once. This can easily be translated into a parallel version *** with the use of parEval2, but for this we require a backend which has an implementation that does not require any configuration (hence the () as the conf parameter):

```
(|***|):: (ArrowChoice\ arr, ArrowParallel\ arr\ (Either\ a\ c)\ (Either\ b\ d)\ ())) \Rightarrow arr\ a\ b \to arr\ c\ d \to arr\ (a,c)\ (b,d) (|***|) = parEval2\ ()
```

We define the parallel &&& in a similar manner to its sequential pendant &&& (Fig. 3):

34

main

Submission ID xxxxxx

```
shuffle :: (Arrow arr) \Rightarrow arr [[a]] [a]
\mathit{shuffle} = \mathit{arr}\left(\mathit{concat} \circ \mathit{transpose}\right)
unshuffle :: (Arrow \ arr) \Rightarrow Int \rightarrow arr \ [a] \ [[a]]
unshuffle n = arr(\lambda xs \rightarrow [takeEach \ n \ (drop \ i \ xs) \ | \ i \leftarrow [0..n-1]])
takeEach :: Int \rightarrow [a] \rightarrow [a]
takeEach n[] = []
takeEach\ n\ (x:xs) = x:takeEach\ n\ (drop\ (n-1)\ xs)
```

Fig. B 7. Definitions of shuffle, unshuffle, takeEach.

```
lazy :: (Arrow arr) \Rightarrow arr [a] [a]
lazy = arr (\lambda \sim (x:xs) \rightarrow x: lazy xs)
rightRotate :: (Arrow arr) \Rightarrow arr [a] [a]
rightRotate = arr \$ \lambda list \rightarrow \mathbf{case} \ list \ \mathbf{of}
    [] \rightarrow []
    xs \rightarrow last \ xs: init xs
```

Fig. B 8. Definitions of lazy and rightRotate.

```
(|\&\&\&|) :: (ArrowChoice\ arr, ArrowParallel\ arr\ (Either\ a\ a)\ (Either\ b\ c)\ ()) \Rightarrow
   arr\ a\ b \rightarrow arr\ a\ c \rightarrow arr\ a\ (b,c)
(|\&\&\&|)fg = (arr \$ \lambda a \rightarrow (a,a)) >>> f |***|g
```

Arrows for Parallel Computations

```
\begin{aligned} & lazyzip3 :: [a] \rightarrow [b] \rightarrow [c] \rightarrow [(a,b,c)] \\ & lazyzip3 \ as \ bs \ cs = zip3 \ as \ (lazy \ bs) \ (lazy \ cs) \\ & uncurry3 :: (a \rightarrow b \rightarrow c \rightarrow d) \rightarrow (a,(b,c)) \rightarrow d \\ & uncurry3 \ f \ (a,(b,c)) = f \ a \ b \ c \\ & threetotwo :: (Arrow \ arr) \Rightarrow arr \ (a,b,c) \ (a,(b,c)) \\ & threetotwo = arr \$ \lambda \sim (a,b,c) \rightarrow (a,(b,c)) \end{aligned}
```

Fig. B 9. Definitions of lazyzip3, uncurry3 and threetotwo.

```
farmChunk :: (ArrowParallel\ arr\ a\ b\ conf\ , ArrowParallel\ arr\ [a]\ [b]\ conf\ , \\ ArrowChoice\ arr\ , ArrowApply\ arr) \Rightarrow \\ conf \to ChunkSize\ \to NumCores\ \to\ arr\ a\ b\to arr\ [a]\ [b]\ farmChunk\ conf\ chunkSize\ numCores\ f = \\ unshuffle\ numCores\ >>> \\ parEvalNLazy\ conf\ chunkSize\ (repeat\ (mapArr\ f))\ >>> \\ shuffle
```

Fig. B 10. Definition of farmChunk.

```
\begin{array}{l} \textit{ringSimple} :: (\textit{Trans } i, \textit{Trans } o, \textit{Trans } r) \Rightarrow (i \rightarrow r \rightarrow (o, r)) \rightarrow [i] \rightarrow [o] \\ \textit{ringSimple } f \textit{ is} = os \\ \textbf{where} \textit{ } (os, \textit{ringOuts}) = \textit{unzip } \textit{ } (\textit{parMap } \textit{ } (\textit{toRD} \$ \textit{uncurry } f) \textit{ } (\textit{zip } \textit{is} \$ \textit{lazy ringIns})) \\ \textit{ringIns} = \textit{rightRotate ringOuts} \\ \textit{toRD} :: (\textit{Trans } i, \textit{Trans } o, \textit{Trans } r) \Rightarrow ((i, r) \rightarrow (o, r)) \rightarrow ((i, RD \ r) \rightarrow (o, RD \ r)) \\ \textit{toRD} \textit{ } f \textit{ } (i, \textit{ringIn}) = (o, \textit{release ringOut}) \\ \textbf{where} \textit{ } (o, \textit{ringOut}) = f \textit{ } (i, \textit{fetch ringIn}) \\ \textit{rightRotate} :: [a] \rightarrow [a] \\ \textit{rightRotate } xs = \textit{last } xs : \textit{init } xs \\ \textit{lazy} :: [a] \rightarrow [a] \\ \textit{lazy} \sim (x : xs) = x : \textit{lazy } xs \\ \end{array}
```

Fig. B 11. Eden's definition of the ring skeleton.

```
parEval2 :: (ArrowChoice\ arr, \\ ArrowParallel\ arr\ (Either\ a\ c)\ (Either\ b\ d)\ conf) \Rightarrow \\ conf \rightarrow arr\ a\ b \rightarrow arr\ c\ d \rightarrow arr\ (a,c)\ (b,d) \\ parEval2\ conf\ f\ g = \\ arr\ Left *** (arr\ Right >>> arr\ return) >>> \\ arr\ (uncurry\ (:)) >>> \\ parEvalN\ conf\ (replicate\ 2\ (f+++g)) >>> \\ arr\ partitionEithers >>> \\ arr\ head *** arr\ head
```

Fig. B 12. Definition of parEval2.

36

main

Submission ID xxxxxx

```
prMMTr\ m1\ m2 = [[sum\ (zipWith\ (*)\ row\ col)\ |\ col \leftarrow m2\ ]\ |\ row \leftarrow m1\ ]
splitMatrix :: Int \rightarrow Matrix \rightarrow [[Matrix]]
splitMatrix\ size\ matrix = map\ (transpose \circ map\ (chunksOf\ size))\ \ chunksOf\ size\ \ matrix
\mathit{matAdd} = \mathit{chunksOf} \; (\mathit{dimX} \; \mathit{x}) \, \$ \, \mathit{zipWith} \; (+) \; (\mathit{concat} \; \mathit{x}) \; (\mathit{concat} \; \mathit{y})
```

Fig. B 13. Definition of *prMMTr*, *splitMatrix* and *matAdd*.