Reinforcement Learning Primer

Markov Decision Process (informally): agent taking actions $\in \{a_i\}$ in an environment while observing states $\in \{s_i\}$ and receiving rewards $\{r_i\}$, and seeking to maximize cumulative reward $r(\tau) = \sum_i r_i$ along trajectories $\{(s_i, a_i, r_i)\}$ that evolve probabilistically: $p(s_{i+1}|s_i, a_i)$.

Deep) Reinforcement Learning: agent learns a policy $a=\pi_{\theta}(s)$ so as to maximize its expected cumulative reward:

$$J(heta) = \mathop{\mathbb{E}}_{ au \sim \pi_ heta} r(au) = \int \pi_ heta(au) r(au) d au$$

$$abla_{ heta} J(heta) = \int
abla_{ heta} \pi_{ heta} r(au) d au = \int \pi_{ heta}
abla_{ heta} \log \pi_{ heta} r(au) d au = \mathop{\mathbb{E}}_{ au \sim \pi_{ heta}} r(au)
abla_{ heta} \log \pi_{ heta}$$

'REINFORCE': follow policy π_{θ} recording $r(\tau)$ then update θ using $\nabla_{\theta}J(\theta)$. Note: $\nabla_{\theta}\log \pi_{\theta} = \sum_{i}\nabla_{\theta}\pi(a_{i}|s_{i})$, and available if π_{θ} is a NN.

Gautam Shroff Meta-learning Spring 2021 34 / 50

Hormul RL

$$\mathcal{T}_{\Phi}(s) = \{(a_i)\}$$

MAML for RI

Sample MDP

initiation To=w

act away to T = 2 = R(e)

VJ

Meta-learning for Reinforcement Learning

Since REINFORCE is based on gradient-based optimization of $J(\theta)$, both MAML-like and Model-based Meta-learning methods apply *directly*, as also demonstrated in those papers.

Reference - Learning to Reinforcement Learn and - RL^2 Fast Reinforcement Learning via Slow Reinforcement Learning RL tasks are sampled from a distribution over MDPs, and are presented as sequences, as in model-based meta-learning. Instead of y_{i-1} , here a_{i-1}, r_{i-1} are passed along with s_i . First paper uses advantage AAC and second uses TRPO, to train an RNN as the deep-RL network; otherwise similar. Hidden state is re-set every time a new episode starts (first paper) / when a new MDP is sampled (second paper, better).

Continued Lewing

Forgetij J Neg. Ranhand Frtv J

Continual Learning: Definition, & Gated Linear Networks

Continual learning: (a) avoid "forgetting" previously learned tasks, and also (b) improve as new tasks are learned. Online: single pass over data/tasks.

References - Gated Linear Networks and A Combinatorial Perspective on Transfer Learning

GLNs: Each neuron predicts the target directly, i.e., no back-propagation, via a **geometric mixture** of probabilities obtained from the previous layer. Lowest layer can be *random*, with say K_0 neurons. Each neuron in layer K_j has 2^d weight vectors w_{ikc} (of size K_{j-1}). Which weight vector to use is determined by a hash $c_{ik}(z)$ ('half-space gating') of the input z.

Outputs are: $p_{ik}(z) = \sigma(w_{ikc_{ik}(z)}^T \cdot \sigma^{-1}(p_{i-1}(z))))$ & updated as: $\Delta w_{ikc_{ik}(z)} = \eta(p_{ik} - y)\sigma^{-1}(p_{i-a})$ Note: $\sigma(x) = \frac{1}{1+e^{-x}}$ and $\sigma^{-1}(x) = \log \frac{x}{1-x}$

Layer 3

Layer 5

Layer 7

Layer 7

Layer 7

Layer 8

Layer 9

Lay

Gautam Shroff

Meta-learning

ing 2021 36 / 56

Continual Learning: Supermasks in Superposition

References - Supermasks in Superposition and What's Hidden in a Randomly Weighted Neural Network?

top k% scores as above; network outputs $p = f(x, W \odot M)$.

For future tasks adapt a mixture of masks by gradient descent on **entropy**: i.e., update $p(\alpha) = f\left(W \bigodot \sum_i \alpha_i M^i\right)$ via $\alpha \leftarrow \alpha - \eta \nabla_\alpha \mathcal{H}(p(\alpha))$, so low entropy, i.e., less 'confused' masks are preferred.

Meta-learning for Continual Learning

Let $A_i^k =$ training accuracy on task k after encountering i tasks, and T_i^k the 'time' to 'learn' task k. Then $CF = \sum_{i>N} \sum_{k< N} (A_k^k - A_i^k)$ is a measure of

"forgetting"; and $FT = \sum_{t < N} \sum_{s > N} (T^t_t - T^s_s)$ measures "forward transfer".

In a meta-learning setup for continual learning, each task has a train and test set. The first N tasks are considered meta-training and the rest meta-testing. During meta-training, all tasks are available; in meta-testing, only the most recent task is available. If \hat{T}_i^k the time to learn on the test-set for task k after seeing i tasks, then $CT_i = \sum_{k < n} (\hat{T}_i^k - \hat{T}_k^k)$ for i > N also measures 'forgetting'. Further, if \hat{A}_k^k is the **test**-set accuracy $G = \sum_{k > N} \hat{A}_N^k$ for k > N measures generalization from meta-learning. Often, continual learning $trajectories\ CT_i,\ CF_i = \sum_{k < N} (A_k^k - A_i^k),\ FT_i = \sum_{t < N} (T_t^t - T_i^t)$ and \hat{A}_N^i , for i > N are measured.