Unidad 3. RLS: Inferencia

Erika R. Badillo erika.badilloen@unaula.edu.co

Facultad de Economía

Universidad Autónoma Latinoamericana

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 1/24

En este tema

- Pruebas de hipótesis
- Intervalos de confianza

Lecturas

- Wooldridge, Jeffrey (2013). Introducción a la econometría. 5a edición, Cengage Learning. Cap. 4
- Gujarati, D. y Porter, D. (2010). Econometría. 5a edición, Mc Graw Hill.
 Cap. 5

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 3 / 24

El modelo de RLS presenta la siguiente estructura:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

En la estimación de los parámetros del modelo tenemos

Parámetro	Estimador	Varianza estimada
eta_0	$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$	$Var(\widehat{\beta}_0) = \widehat{\sigma}_{\widehat{\beta}_0}^2 = \frac{\widehat{\sigma}_u^2 \sum X_i^2}{n \sum x_i^2}$
eta_1	$\widehat{\beta}_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} = \frac{\sum x_i y_i}{\sum x_i^2}$	$Var(\widehat{\beta}_1) = \widehat{\sigma}_{\widehat{\beta}_1}^2 = \frac{\widehat{\sigma}_u^2}{\sum x_i^2}$
σ_u^2	$\widehat{\sigma}_u^2 = \frac{\sum \widehat{u}^2}{n-2}$	-

 σ_u^2 o σ^2 es la varianza del error y $\sqrt{\sigma_u^2}=\sigma$ es llamada la desviación estándar del error

E(Y/X) =? y Var(Y/X) =? Demuestre.

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 4 / 24

- El método estadístico intenta decir cosas sobre los parámetros poblacionales con base en los estimadores
- En el caso del modelo de RLS, consiste en decir algo acerca de β_0 y β_1 con base en $\widehat{\beta}_0$ y $\widehat{\beta}_1$
- \bullet Lo anterior implica construir intervalos de confianza y pruebas de hipótesis para β_0 y β_1

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 5 / 24

- Para hacer inferencia estadística clásica se requiere un estadístico con distribución muestral conocida, con sólo un parámetro desconocido, justo aquel sobre el cual se hará la inferencia
- Recordando las propiedades de $\widehat{\beta}_1$:
 - es lineal en u_i : $\widehat{\beta}_1 = \beta_1 + \sum C_i u_i$ con $C_i = \frac{x_i}{\sum x_i^2}$
 - es un estimador insesgado $E(\widehat{\beta}_1)=\beta_1$
 - es eficiente: $\hat{\sigma}_{\widehat{eta}_1}^2 = rac{\hat{\sigma}_u^2}{\sum x_i^2}$ es la mínima posible
 - Si $u_i \sim NID(0,\sigma_u^2)$, al ser $\widehat{\beta}_1$ una combinación lineal de normales, es inmediato decir que

$$\widehat{\beta}_1 \sim NID(\beta_1, \sigma_{\widehat{\beta}_1}^2)$$

- Sin embargo, con la anterior distribución no es posible hacer inferencia estadística clásica acerca de β_1 pues se desconoce $\sigma_{\widehat{\beta}_1}^2$ ($\sigma_{\widehat{\beta}_1}^2 = \frac{\sigma_u^2}{\sum x^2}$ y se desconoce σ_u^2)
- Para resolver esto y tener distribución muestral conocida se recurre al cálculo de la distribución t-student, la cual resulta de dividir una distribución normal estándar por la raíz cuadrada del cociente de chi-cuadrado y sus grados de libertad

(ロトイラトイラト ラ シ ペンへ Erika R. Badillo - UNAULA Econometría I Facultad de Economía 6/24

Se tiene que

$$\frac{\hat{\beta}_1 - \beta_1}{\sigma_{\hat{\beta}_1}} \sim N(0, 1)$$

• Se parte del hecho que:

$$\frac{\sum \widehat{u}_i^2}{\sigma_u^2} \sim \chi_{N-2}^2 \ \mathrm{gdl}$$

ullet Se tiene también que un estimador insesgado de σ_u^2 es:

$$\hat{\sigma}_u^2 = \frac{\sum \hat{u}_i^2}{N-2}$$

• Ahora, despejando $\sum \widehat{u}_i^2$, se tiene

$$\sum \widehat{u}_i^2 = \widehat{\sigma}_u^2 (N - 2)$$

Por tanto,

$$\frac{\hat{\sigma}_u^2(N-2)}{\sigma_u^2} \sim \chi_{N-2}^2 \ \mathrm{gdl}$$

Lo que se pretende es construir:

$$\frac{N(0,1)}{\sqrt{\frac{\chi_{N-2}^2}{N-2}}} \sim t_{N-2}$$

Entonces reemplazando:

$$\frac{\frac{\widehat{\beta}_1 - \beta_1}{\sigma \widehat{\beta}_1}}{\sqrt{\frac{\widehat{\sigma}_u^2(N-2)}{\sigma_u^2(N-2)}}} = \frac{\frac{\widehat{\beta}_1 - \beta_1}{\sigma_u/\sqrt{\sum x_i^2}}}{\sqrt{\frac{\widehat{\sigma}_u^2(N-2)}{\sigma_u^2(N-2)}}} = \frac{\widehat{\beta}_1 - \beta_1}{\widehat{\sigma}_u/\sqrt{\sum x_i^2}} = \frac{\widehat{\beta}_1 - \beta_1}{\widehat{\sigma}\widehat{\beta}_1} \sim t_{N-2} \text{ gdl}$$

Esta distribución de probabilidad si es una distribución muestral, ya que la única incógnita es β_1 , el parámetro al cual se pretende hacer la inferencia

• En conclusión se tiene un estadístico $\frac{\widehat{\beta}_1-\beta_1}{\widehat{\sigma}_{\widehat{\beta}_1}}$ con una distribución muestral conocida (la t-student de N-2 gdl) y que cumple el requisito de sólo tener β_1 como desconocido, $\widehat{\beta}_1$ y $\widehat{\sigma}_{\widehat{\beta}_1}$ se obtienen de la muestra

◆ロ → ◆団 → ◆ 豆 → ◆ 豆 ・ 夕 Q (*)

- Ahora se quiere verificar estadísticamente una afirmación como la siguiente: $\beta_1 = \beta_{1o}$, esto es, verificar la hipótesis nula (H_o) : H_o : $\theta_1 = \theta_{1o}$
- En estadística las hipótesis se rechazan o no se rechazan
- Lo importante en la inferencia estadística es:
 - ullet suponer que H_o es cierta
 - ullet encontrar la distribución muestral bajo H_o
 - ullet observar la realidad bajo el supuesto de H_o cierta
 - ullet si lo observado es poco probable \Longrightarrow rechazar H_o si lo observado es probable \Longrightarrow no rechazar H_o
- La decisión se toma con base en el valor del estadístico de prueba obtenido con los datos disponibles
- ullet En consecuencia, las hipótesis nulas (H_o) que se verifican son del tipo "igualdad a", ya que es bajo este supuesto que se dan las distribuciones muestrales conocidas
- ullet Cuando se esta bajo hipótesis nulas del tipo >, < o eq se tienen otras distribuciones

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 9 / 24

Tenemos que el método estadístico de toma de decisiones implica:

Formular una hipótesis nula (en términos de igualdad) y una hipótesis alternativa

$$H_o: \beta_1 = \beta_{1o}$$

$$H_A: \beta_1 < \beta_{1o} \text{ ó}$$

$$\beta_1 \neq \beta_{1o} \text{ ó}$$

$$\beta_1 > \beta_{1o}$$

 \bullet Hay que encontrar la distribución muestral del estadístico apropiado, bajo H_o

Bajo
$$H_o$$
 $\frac{\widehat{eta}_1 - eta_{1o}}{\widehat{\sigma}_{\widehat{eta}_1}} \sim t_{N-2}$ gdl

ullet Dado esto se define el nivel de significancia aceptable en la prueba (lpha)

- 4 □ ト 4 圖 ト 4 圖 ト · ■ · · · り Q @

10 / 24

Erika R. Badillo - UNAULA Econometría I Facultad de Economía

 No se debe olvidar que cualquier decisión que se tome se hace en condiciones de incertidumbre:

H_o Realidad				
Decisión	Cierta	Falsa		
Rechaza	Error tipo I	Decisión correcta		
No rechaza	Decisión correcta	Error tipo II		

- $Prob(\mathsf{Cometer\ error\ tipo\ I}) = \alpha \Longrightarrow \mathsf{Nivel\ de\ significancia}$
- ullet $1 Prob(\mathsf{Cometer\ error\ tipo\ II}) \Longrightarrow \mathsf{Potencia\ de\ la\ prueba}$

Erika R. Badillo - UNAULA Economéría I Facultad de Economía 11 / 24

La mecánica es

Se formula el contraste o hipótesis

$$H_o: \beta_1 = \beta_{1o}$$
 $H_A: \beta_1 < \beta_{1o}$ ó
 $\beta_1 \neq \beta_{1o}$ ó
 $\beta_1 > \beta_{1o}$

Bajo H_o cierto, el estadístico de prueba:

$$\frac{\widehat{eta}_1-eta_{1o}}{\widehat{\sigma}_{\widehat{eta}_1}}\sim t_{N-2}~{\rm gdl}$$

- \bullet Se establece una regla de decisión en función de $H_o\colon$
 - $\bullet \ \ \text{si} \ H_A: \beta_1 < \beta_{1o} \Longrightarrow t_o = \frac{\widehat{\beta}_1 \beta_{1o}}{\widehat{\sigma}_{\widehat{\beta}_1}} < -t_{(N-2),\alpha} \Longrightarrow \mathsf{Rechazo} \ H_o$
 - si $H_A: \beta_1 \neq \beta_{1o} \Longrightarrow |t_o| = \frac{\widehat{\beta_1} \beta_{1o}}{\widehat{\sigma}_{\widehat{\beta}_1}} > t_{(N-2),\alpha/2} \Longrightarrow \mathsf{Rechazo}\ H_o$
 - si $H_A: eta_1>eta_{1o}\Longrightarrow t_o=rac{\widehat{eta}_1-eta_{1o}}{\widehat{\sigma}_{\widehat{eta}_1}}>t_{(N-2),lpha}\Longrightarrow$ Rechazo H_o

Erika R. Badillo - UNAULA

- ullet p-value: la probabilidad del límite derecho de H_o bajo el supuesto de que es cierta. En otras palabras, nivel de significancia más bajo al cual puede rechazarse una hipótesis nula
- ullet La regla es rechazar H_o si

p-value< α

Gráficamente sería:

Nivel de significancia= α =0.05

Nivel de significancia= α =0.01

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 13 / 24

- Antiguamente se popularizaron dos números mágicos: el 5 % y el 1 %. Hoy día se precisa tener en cuenta de nuevo la naturaleza de los datos
- ullet Se postula una regla de decisión. Lo usual ha sido hacerlo de acuerdo a la H_A
- Si es del tipo $\beta_1 < \beta_{1o}$, se trata de una cola situada a la izquierda

Regla de decisión: rechazar H_o al nivel de significancia α si $t_o < -t_{(N-2),\alpha}$ $con t_o = \frac{\hat{\beta}_1 - \beta_{1o}}{\hat{\sigma}_{\hat{o}}}$

• Hoy día cada vez se generaliza el uso del p-value:

$$p$$
-value = $\int_{-\infty}^{t_o} t_{N-2} dt$

Esto es exactamente el nivel marginal de significancia en el cual se puede rechazar H_o . La regla de decisión sería:

Rechazar H_o si p-value $< \alpha$

Frika R Badillo - ΠΝΔΙΙΙ Δ 14 / 24 Econometría I Facultad de Economía

• Si la hipótesis alternativa es del tipo $\beta_1 \neq \beta_{1o}$, se tiene un ensayo de dos colas

Regla de decisión: rechazar H_o al nivel

de significancia α si $|t_o| > t_{(N-2),\alpha/2}$ con $t_o = \frac{\hat{\beta}_1 - \beta_{1o}}{\hat{\sigma}_{\widehat{\alpha}}}$

• En términos del p-value:

p-value =
$$2\int_{t_o}^{\infty}t_{N-2}dt$$

La regla de decisión sería:

Rechazar H_o si p-value< α

Erika R. Badillo - UNAULA

• Si el ensayo es del tipo $\beta_1 > \beta_{1o}$, se tiene una prueba con una cola a la derecha

Regla de decisión: rechazar H_o al nivel

de significancia α si $t_o > t_{(N-2),\alpha}$ con $t_o = \frac{\hat{\beta}_1 - \beta_{1o}}{\hat{\sigma}_{\hat{\beta}_1}}$

• En términos del p-value:

$$p$$
-value = $\int_{t_0}^{\infty} t_{N-2} dt$

La regla de decisión sería:

Rechazar H_o si p-value< α

16 / 24

Erika R. Badillo - UNAULA Econometría I Facultad de Economía

Ejemplo - Stata

Se tiene datos de corte transversal de 526 trabajadores correspondientes a 1976: wage (salario en dólares por hora), educ (años de escolaridad), exper (años de experiencia laboral), female (mujer, indicador del género), y married (casado, indicador del estado marital).

reg wage educ

Source	SS	df	MS	Numb			526
							103.36
Model	1179.73204		1179.7320				0.0000
Residual	5980.68225		11.413515	B R-sq			0.1648
					R-square		0.1632
Total	7160.41429		13.638884				3.3784
wage	Coef.	Std. Err.			[95%	Conf.	
educ	.5413593	.053248	10.17	0.000	.4367	534	.6459651
cons	9048516	.6849678	-1.32	0.187	-2.250	472	.4407687

Se va a contrastar las siguientes pruebas de hipótesis:

$$H_o: \beta_0 = 0 \ H_o: \beta_1 = 0$$

$$H_A: \beta_0 \neq 0 \ H_A: \beta_1 \neq 0$$

La regla de decisión es rechazar $H_{\mathcal{O}}$ si

$$|t_o| => t_{(N-2),\alpha/2}$$
 o

* Calculando to scalar to_B0 = (coef[1,2] - 0)/sqrt(var_B0) dis to_B0 -1.3210133

scalar to_B1 = (coef[1,1] - 0)/sqrt(var_B1)

- dis to B1 10.166746
- * Calculando t de la tabla, con 526-2=524 gdl y nivel
- * de significancia alpha=0.05
- scalar ttabla = invttail(524, .025)

dis ttabla 1.9645015

* A partir de la regla p-value<alpha scalar pvalue_B0 = 2*ttail(524,abs(to_B0)) dis pvalue_B0 _18707349

scalar pvalue_B1 = 2*ttail(524,t0_B1)
dis pvalue_B1

- dis pvalue_B1 2.783e-22
- * Conclusión: |to_B0|<ttabla (1.3210133<1.9645015) o pvalue>alpha
- * (.18707349>0.05) lo que indica que a un nivel de significancia
- * de 0.05 no se rechaza Ho: BO=0. Para B1 |to_B1|>ttabla
- * (10.166746>1.9645015) o pvalue<alpha ((2.783e-22)<0.05) lo que
- * indica que se rechaza Ho: B1=0 a un nivel de significancia
- * de 0.05

Ejemplo - Stata

reg wage educ

Source	SS	df	MS	Number of	obs =	526
						103.36
Model	1179.73204		1179.73204			0.0000
Residual	5980.68225		11.4135158	R-squared		0.1648
				Adj R-squ		
Total	7160.41429		13.6388844			3.3784
wage	Coef.	Std. Err.		P> t [9	5% Conf.	
educ	.5413593	.053248	10.17	0.000 .4	367534	.6459651
_cons	9048516	.6849678		0.187 -2.	250472	.4407687

Se va a contrastar la siguiente prueba de hipótesis:

$$H_o: \beta_1 = 0.6$$

 $H_A: \beta_1 \neq 0.6$

La regla de decisión es rechazar ${\cal H}_o$ si

$$|t_0|>t_{(N-2),\alpha/2}$$
 o p-value< $lpha$

* Calculando to scalar to = (coef[1,1] - 0.6)/sqrt(var_B1)

dis to -1.101275

- * Calculando t de la tabla, con 526-2=524 gdl y nivel * de significancia alpha=0.05 scalar ttabla = invttail(524, .025)
- dis ttabla
- * A partir de la regla p-value<alpha scalar pvalue = 2*ttail(524,abs(to)) dis pvalue
- dis pvalue 0.2712825
- * Conclusión: A un nivel de significancia del 5% no
- $\boldsymbol{*}$ podemos rechazar la hipótesis que nuestros datos son
- * compatibles con B1=0.6

Intervalos de confianza

Definición

- Es la probabilidad de que dos valores extremos contengan el parámetro desconocido
- Son unos límites probabilísticos que contienen al verdadero parámetro (en este caso β_1) con una probabilidad de $1-\alpha$ (nivel de confianza)
- Para construir un intervalo de confianza para β_1 se parte de la distribución muestral

$$rac{\widehat{eta}_1-eta_1}{\widehat{\sigma}_{\widehat{eta}_1}}\sim t_{N-2}$$
 gdl

Gráficamente lo que la distribución dice es:

Facultad de Economía

Intervalos de confianza

Lo que esta gráfica dice es:

$$Prob\left[-t_{(N-2),\alpha/2} \leq \frac{\widehat{\beta}_1 - \beta_1}{\widehat{\sigma}_{\widehat{\beta}_1}} \leq t_{(N-2),\alpha/2}\right] = 1 - \alpha$$

20 / 24

Erika R. Badillo - UNAULA Econometría I Facultad de Economía

Se despeja lo desconocido:

$$Prob\left[-t_{(N-2),\alpha/2} \le \frac{\widehat{\beta}_1 - \beta_1}{\widehat{\sigma}_{\widehat{\beta}_1}} \le t_{(N-2),\alpha/2}\right] = 1 - \alpha$$

$$Prob\left[\widehat{\beta}_1 - \widehat{\sigma}_{\widehat{\beta}_1} t_{(N-2),\alpha/2} \le \beta_1 \le \widehat{\beta}_1 + \widehat{\sigma}_{\widehat{\beta}_1} t_{(N-2),\alpha/2}\right] = 1 - \alpha$$

Interpretación:

- La probabilidad de que el intervalo que va desde $\widehat{\beta}_1 \widehat{\sigma}_{\widehat{\beta}_1} t_{(N-2),\alpha/2}$ hasta $\widehat{\beta}_1 + \widehat{\sigma}_{\widehat{\delta}_1} t_{(N-2),\alpha/2}$ contenga el verdadero valor de β_1 es 1α
- El intervalo de confianza $\widehat{\beta}_1\pm\widehat{\sigma}_{\widehat{\beta}_1}t_{(N-2),\alpha/2}$ contiene a β con una probabilidad de $1-\alpha$
- ullet En el $(1-lpha)\,\%$ de los casos el intervalo contendrá el parámetro eta_1

$$\begin{split} IC_{(1-\alpha)}(\beta_1) &= \widehat{\beta}_1 \pm \widehat{\sigma}_{\widehat{\beta}_1} t_{(N-2),\alpha/2} \\ &= \mathsf{Estimador} \pm \mathsf{Error} \; \mathsf{de} \; \mathsf{estimaci\'{o}n} \; \mathsf{x} \; \mathsf{(Valor} \; \mathsf{t\text{-student}}) \end{split}$$

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 21 / 24

Intervalos de confianza

El valor crítico

Por lo general se ha fijado un valor crítico de $\alpha=0.05$, esto es la masa de probabilidad en las colas de la distribución, con $\alpha/2=0.025$ en cada cola

Intervalos de confianza

Ejemplo - Stata

reg wage educ

Source	SS	df	MS	Numb			52€
							103.3€
Model	1179.73204		1179.7320				0.0000
Residual	5980.68225		11.4135158	R-sq			0.1648
					R-square		0.1632
Total	7160.41429		13.638884				3.3784
wage	Coef.	Std. Err.			[95%	Conf.	Interval]
educ	.5413593	.053248	10.17	0.000	.4367	534	.6459651
cons	9048516	.6849678	-1.32	0.187	-2.250	472	.4407687

- * Generando el intervalo de confianza para BO, inferior scalar IC_inf_BO = coef[1,2] - sqrt(var_BO)*invttail(524, .025) dis IC_inf_BO *-2.250472
- scalar IC_sup_B0 = coef[1,2] + sqrt(var_B0)*invttail(524, .025)
 dis IC_sup_B0
 * 0.4407687
- * Generando el intervalo de confianza para B1, inferior scalar IC_inf_B1 = coef[1,1] - sqrt(var_B1)*invttail(524, .025) dis IC_inf_B1 * 0.4367534
- * Generando el intervalo de confianza para B1, superior scalar IC_sup_B1 = coef[1,1] + sqrt(var_B1)*invttail(524, .025) dis IC_sup_B1 *0.6459651

La estrecha relación entre los intervalos de confianza y las pruebas de hipótesis

Note que se rechaza H_o cuando

$$-t_{(N-2),\alpha/2} < t_0 < t_{(N-2),\alpha/2}$$

o cuando

$$-t_{(N-2),\alpha/2}<\frac{\widehat{\beta}_1-\beta_1}{\widehat{\sigma}_{\widehat{\beta}_1}}< t_{(N-2),\alpha/2}$$

o cuando

$$\widehat{\beta}_1 - \widehat{\sigma}_{\widehat{\beta}_1} t_{(N-2),\alpha/2} < \beta_1 < \widehat{\beta}_1 + \widehat{\sigma}_{\widehat{\beta}_1(N-2),\alpha/2}$$

- Los valores extremos de este intervalo son idénticos a los valores extremos del intervalo de confianza que se dedujo en la diapositiva 20
- Se rechaza la hipótesis nula $H_o: \beta_1 = \beta_{1o}$ a un nivel de significancia α , cuando β_{1o} cae por fuera del correspondiente $100(1-\alpha)\,\%$ intervalo de confianza
- En nuestro ejemplo wage-educ, $\beta_{1o}=0$ no cae dentro del intervalo de confianza del 95% (0.436, 0.645), y por tanto, usando este enfoque, nosotros de nuevo rechazamos $H_o: \beta_1=0$ a un nivel de significancia del 5%
- ullet De hecho, se rechaza cualquier hipótesis nula donde eta_{1o} no esta contenido en el intervalo de confianza (0.436, 0.645)

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥Q♥

24 / 24

• Por otro lado, si el IC(95%) contiene el cero, β_1 no es significativo al 5%