Rouche's Theorem

Theorem: Cauchy

Let $f(z) = \sum_{k=0}^n a_k z^k$ where $a_k \in \mathbb{R}$. All of the zeros of f(z) are enclosed in the circle:

$$|z| = 1 + \max\{|a_k| \mid 0 \le k \le n\}$$

Example

Let
$$f(z) = z^4 - z^2 - 2z + 2 = (z - 1)^2(z + 1 \pm i)$$

 $|z| = 1 + \max\{1, 2\} = 1 + 2 = 3$
 $|1| = 1 < 3$
 $|-1 \pm i| = \sqrt{2} < 3$

But, we can do better with Rouche's Theorem:

Theorem

Let f(z) and g(z) be analytic on \overline{D} with boundary γ such that |g(z)| < |f(z)| on γ . The number of zeros of (f+g)(z) in γ equals the number of zeros of f(z) in γ .

<u>Proof</u>

Let
$$F(z) = \frac{g(z)}{f(z)}$$

On γ : $|F(z)| = \frac{|g(z)|}{|f(z)|} < 1$
 $g(z) = f(z)F(z)$

Let $N_1=$ the number of zeros of (f+g) inside γ Let $N_2=$ the number of zeros of f inside γ

$$N_{1} - N_{2} = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) + g'(z)}{f(z) + g(z)} dz - \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{f' + g'}{f + g} - \frac{f'}{f} \right] dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{f' + (fF)'}{f + fF} - \frac{f'}{f} \right] dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{f' + f'F + fF'}{f + fF} - \frac{f'}{f} \right] dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{f'(1 + F) + fF'}{f(1 + F)} - \frac{f'}{f} \right] dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{f'}{f} + \frac{F'}{1 + F} - \frac{f'}{f} \right] dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[\frac{F'}{1+F} \right] dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} \left[F(z)' \sum_{n=0}^{\infty} (-1)^n [F(z)]^n \right] dz$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} (-1)^n \int_{\gamma} [F(z)]^n F'(z) dz$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} (-1)^n \frac{[F(z)]^{n+1}}{n+1} |_{\gamma}$$

But γ is closed, so $N_1 - N_2 = 0$ $\therefore N_1 = N_2$

Example

Let a>e and $h(z)=e^z-az^n$ Show that h(z) has n zeros inside |z|=1

Let
$$f(z) = -az^n$$
 and $g(z) = e^z$ On $|z| = 1$:
$$|f(z)| = |-az^n| = a\,|z|^n = a(1^n) = a$$

$$|g(z)| = |e^z| = e^x\,|e^{iy}| = e^x(1) = e^x \le e^1 = e$$
 So $|g(z)| < |f(z)|$ on $|z| = 1$

 $f(z)=-az^n$ has n repeated zeros at z=0, which is inside |z|=1 $\therefore h(z)=(f+g)(z)$ has n zeros inside |z|=1

Example

Let
$$h(z) = z^7 - 5z^3 + 12$$

Show that h(z) has 7 zeros between $\vert z \vert = 1$ and $\vert z \vert = 2$

First, let
$$f(z) = z^7$$
 and $g(z) = 12 - 5z^3$

On
$$|z| = 2$$
:

$$\frac{|g(z)|}{|f(z)|} = \frac{|12 - 5z^3|}{|z^7|} \le \frac{12 + 5|z|^3}{|z|^7} = \frac{12 + 5(8)}{128} = \frac{52}{128} < 1$$

So
$$|g(x)| < |f(x)|$$
 on $|z| = 2$

But $f(z) = x^7$ has 7 repeated zeros at z = 0, which is inside |z| = 2 $\therefore h(x) = (f + g)(x)$ has 7 zeros inside |z| = 2

Now, let
$$f(z) = 12$$
 and $g(z) = z^7 - 5z^3$

On |z| = 1:

$$\frac{|g(z)|}{|f(z)|} = \frac{|z^7 - 5z^3|}{|12|} \le \frac{|z|^7 + 5|z|^3}{12} = \frac{1+5}{12} = \frac{1}{2} < 1$$

So |g(x)| < |f(x)| on |z| = 1

But f(z) = 12 has no zeros inside |z| = 1

 $\therefore h(x) = (f+g)(x)$ has no zeros inside |z|=1

 $\therefore h(z)$ has 7 zeros between |z| = 1 and |z| = 2

Theorem: Enestome

Let $p(z) = \sum_{k=0}^n a_k z^k$ such that $a_k \in \mathbb{R}$ and $0 < a_{k-1} < a_k < a_n$. All of the zeros of p(z) are inside |z| = 1.

Proof

Let $0 < \lambda_k < 1$ such that $\lambda_k a_k > a_{k-1}$

Let
$$\lambda = \max\{\lambda_k \mid 0 \le k \le n\}$$

Let
$$\lambda = \max\{\lambda_k \mid 0 \le k \le n\}$$

 $(\lambda - z)p(z) = (\lambda - z)\sum_{k=0}^{n} a_k z^k = \sum_{k=0}^{n} (\lambda a_k z^k - a_k z^{n+1}) = \lambda a_0 + \sum_{k=1}^{n} (\lambda a_k - a_{k-1})z^k - a_n z^{n+1}$
 $(\lambda - z)p(z) + a_k z^{n+1} = \lambda a_0 + \sum_{k=1}^{n} (\lambda a_k - a_{k-1})z^k$

Let
$$f(z) = -a_n z^{n+1}$$
 and $g(z) = (\lambda - z)p(z) + a_n z^{n+1}$

On |z| = 1:

$$|f(z)| = |-a_n z^{n+1}| = a_n |z|^{n+1} = a_n$$

$$\begin{aligned} |(\lambda - z)p(z) + a_n z^{n+1}| &= \left| \lambda a_0 + \sum_{k=1}^n (\lambda a_k - a_{k-1}) z^k \right| \\ &\leq \left| \lambda a_0 \right| + \left| \sum_{k=1}^n (\lambda a_k - a_{k-1}) z^k \right| \\ &\leq \lambda a_0 + \sum_{k=1}^n \left| (\lambda a_k - a_{k-1}) z^k \right| \\ &= \lambda a_0 + \sum_{k=1}^n (\lambda a_k - a_{k-1}) |z|^k \\ &\leq \lambda a_0 + \sum_{k=1}^n (\lambda a_k - a_{k-1}) \\ &= \sum_{k=0}^{n-1} (1 - \lambda) a_k + \lambda a_n \end{aligned}$$

But $(\lambda - 1) < 0$ and $\lambda a_n > 0$, so:

$$\left| (\lambda - z)p(z) + a_k z^{n+1} \right| \le \lambda a_n < a_n$$

So,
$$|gz|<|f(z)|$$
 on $|z|=1$
But $f(z)$ has $(n+1)$ repeated zeros at $z=0$, which is inside $|z|=1$
So, $(f+g)(z)=(\lambda-z)p(z)$ has $(n+1)$ zeros inside $|z|=1$

Therefore p(z) has n zeros inside |z| = 1.

Theorem: Rouche Alternate Form

Let f(z) and g(z) be analytic on \overline{D} with boundary γ such that |f(z) - g(z)| < |f(z)| on γ . The number of zeros of f(z) in γ equals the number of zeros of g(z) in γ .

Proof

$$\begin{aligned} & \text{Let } h(z) = (g-f)(z) \\ & |h(z)| = |g(z) - f(z)| = |f(z) - g(z)| < |f(z)| \\ & N_f = N_{f+h} = N_{f+(g-f)} = N_g \end{aligned}$$

Example

Show that $g(z) = z + 3 + 2e^z$

Show that g(z) has exactly one zero in the left-hand plane.

$$|f - g| = |-2e^z| = |-2| |e^z| = 2e^x$$

On
$$C_u$$
, $x = 0$, so $|f - q| = 2$

On
$$C_r$$
, $x \le 0$, so $|f - g| < 2$

Therefore, on $C_y \cup C_r$, $|f - g| \le 2$

So, on
$$C_y \cup C_r$$
, $|f(z) - g(z)| < |f(z)|$

But f(z) has only one zero at x=-3 inside $C_y \cup C_r$

Therefore, g(z) has only one zero inside $C_y \cup C_r$

Now let $r \to \infty$

g(z) has only one zero in the left-hand plane.

Let
$$f(z) = z + 3$$

On C_y :

$$|f(z)| = |z+3| = |3+iy| \ge 3$$

 ${\it Assume}\ r>5$

On C_r :

$$|f(z)| = |z+3| \ge |z| - |3| > 5 - 3 = 2$$

Therefore, on $C_u \cup C_r$, |f(z)| > 2