- 1. Escrever as somas de Darboux superiores e inferiores da função $f(x) = \sqrt{r^2 x^2}$ (r > 0) relativamente ao intervalo [-r, r]. Será esta função integrável no intervalo considerado?
- 2. Calcular as somas de Darboux superiores e inferiores da função d(x) = 1, para x racional e d(x) = 0 para x irracional, relativamente a um intervalo [a, b] (a < b). Conclusões?
- 3. Determine as primitivas das seguintes funções.

a)
$$\frac{2}{\sqrt{x}} + \frac{1}{x^2} - 3\sqrt[5]{x^2}$$
 b) $\frac{x^3 - 2x^2 + 3}{\sqrt{x}}$ c) $x\sqrt[4]{(x^2 - 1)^3}$
d) $x^3(x^2 + 1)^3$ e) a^x $(a > 0)$ f) $\frac{x^2}{\sqrt{a^2 + x^3}}$
g) $\frac{x^3}{1 + x^4}$ h) $\frac{x}{1 + x^4}$ i) $e^x\sqrt{2 - e^x}$ j) $\frac{1}{a^2 + x^2}$
k) $\frac{1}{\sqrt{1 - 3x^2}}$ l) $\frac{1}{\sqrt{a^2 - x^2}}$ m) $\frac{1}{4 + (x - 3)^2}$
n) $\frac{\arcsin(x)}{\sqrt{1 - x^2}}$ o) $\frac{e^{x+2}}{1 + e^x}$ p) $\frac{\ln(x)}{x(1 - \ln^2 x)}$
q) $(e^{2\cos(x)} + 1)\sin(x)$ r) $\frac{\sin(x)}{2 + 3\cos(x)}$ s) $\cot^2 x$

- 4. Primitive $\sin(ax)\cos(bx)$, $\sin(ax)\sin(bx)$ e $\cos(ax)\cos(bx)$ com base nos desenvolvimentos de $\sin(ax\pm bx)$ e $\cos(ax\pm bx)$.
- 5. Usando primitivação por partes, calcular as primitivas das seguintes funções:

$$a) \quad x\cos(x) \qquad b) \quad x^2\sin(x) \qquad c) \quad x^2e^x \qquad d) \quad x\arctan(x)$$

$$e)$$
 $\arctan(x)$ $f)$ $\arcsin(x)$ $g)$ $x\arcsin\left(\frac{1}{x}\right)$

h)
$$x^2 a^x$$
 $(a > 0)$ i) $\sec^3(x)$ h) $\csc^3(x)$