Max. Marks: 100

Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN					

Second Semester B.E Degree Examination

Mathematics-II for CIVIL ENGINEERING STREAM -BMATC201

Note:

TIME: 03 Hours

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	M	L	С
Q.01	a	Evaluate $\int_0^a \int_0^{\sqrt{a^2 - x^2}} \int_0^{\sqrt{a^2 - x^2 - y^2}} \frac{1}{\sqrt{a^2 - x^2 - y^2 - z^2}} dz dy dx$	7	L3	CO1
	b	Evaluate $\int_0^{4a} \int_{2\sqrt{ax}}^{\frac{x^2}{4a}} xy dy dx$ by changing the order of integration	7	L3	CO1
	С	Define beta and gamma functions. Show that $\gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	6	L2	C01
		OR			
Q.02	a	Evaluate $\int_0^a \int_y^a \left(\frac{x^2}{(x^2+y^2)^{3/2}}\right) dxdy$ by changing into polar coordinates	7	L3	CO1
	b	Using double integration find the area enclosed between the parabola $y = x^2$ and the line $y = x$	7	L3	CO1
	С	Write a modern mathematical program to evaluate the integral $\int_0^3 \int_0^{3-x} \int_0^{3-x-y} (xyz) dz dy dx$	6	L3	CO5
		Module-2			
Q. 03	a	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ show that	7	L2	CO2
		$(i)\nabla \cdot \vec{r} = 3 \ (ii)\nabla \times \vec{r} = \vec{0} \ and \ (iii)\nabla r^n = nr^{n-2}\vec{r}$			
	b	If $\vec{F} = \nabla(xy^3z^2)$ find $div \vec{F}$ and $curl \vec{F}$ at the point $(1, -1, 1)$.	7	L2	CO2
	С	Define an irrotational vector. Find the constants a , b and c such that $\vec{A} = (axy - z^3) + (bx^2 + z)j + (bxz^2 + cy)k$ is irrotational.	6	L2	CO2
		OR			
Q.04	a	Evaluate $\int (5xy - 6x^2)dx + (2y - 4x)dy$, over the curve $y = x^3$ in the xy -plane from the point $(1, 1)$ to $(2, 8)$	7	L2	CO2
	b	Use Stoke's theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x^2 + y^2)\hat{\imath} - 2xy\hat{\jmath}$ and C is bounded by $x = \pm a$, $y = b$	7	L3	CO2

	С	Write a modern mathematical tool program to evaluate	6	L3	CO5
		$\oint_C [(xy+y^2)dx + x^2dy]$, where c is the closed curve bounded by			
		$y = x$ and $y = x^2$ by using Green's theorem.			
	1	Module-3			1
Q. 05	a	Form the partial differential equation by eliminating the arbitrary function from the relation $lx + my + nz = f(x^2 + y^2 + z^2)$	7	L2	CO3
	b	Solve $\frac{\partial^2 z}{\partial x^2} = xy$, subject to the conditions $\frac{\partial z}{\partial x} = \log(1+y)$, when $x = 1$ and $z = 0$, when $x = 0$.	7	L3	CO3
	С	With usual notations derive a one-dimensional heat equation	6	L2	CO3
		OR			
Q. 06	a	Form the partial differential equation by eliminating the arbitrary constants from $(x - a)^2 + (y - b)^2 + z^2 = 4$	7	L2	CO3
	b	Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that when $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$	7	L3	CO3
	С	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$	6	L3	CO3
	ı	Module-4			
Q. 07	a	By Newton's-Raphson method find the root of $x \sin x + \cos x = 0$ which is near to $x = \pi$	7	L3	CO4
	b	Using Lagrange's interpolation formula, fit a polynomial which passes through the points $(-1, 0)$, $(1, 2)$, $(2, 9)$ and $(3, 8)$ and hence estimate the value of y when $x = 2.2$	7	L3	CO4
	С	Evaluate $\int_4^{5.2} \log x dx$ using Simpson's (3/8)th rule by taking 7 ordinates	6	L3	CO4
	l .	OR			1
Q. 08	a	Find an approximate value of the root of the equation $xe^x = 3$, using the method of false position, carry out four iterations.	7	L3	C04
	b	The population of a town is given by the following table: Year 1951 1961 1971 1981 1991 Population 19.6 39.65 58.81 72.21 94.61 Using Newton's forward and backward interpolation formula, calculate the increase in population between the years 1955 and 1985.	7	L3	CO4
	С	Evaluate $\int_0^{0.3} (1 - 8x^3)^{\frac{1}{2}} dx$ by using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule, by taking	6	L3	CO4
		3 equal intervals.			
		Module-5			1
Q. 09	a	Use Taylor's series method to find $y(0.2)$ from $\frac{dy}{dx} = x^2y - 1$, with $y(0) = 1$	7	L3	CO4
	b	Using Runge-Kutta method of order 4, find y at x = 0.1, given that $\frac{dy}{dx} = 3e^x + 2y, y(0) = 1$	7	L3	CO4

	С	Applying Milne's Predictor-Corrector method , find y(0.8), from $\frac{dy}{dx} = x^3 + y$, given that $y(0) = 2$, $y(0.2) = 2.073$, $y(0.4) = 2.452$, $y(0.6) = 3.023$	6	L3	CO4
		OR			
Q. 10	а	Solve by Using Modified Euler's method, $y' = log_{10}(x + y)$, $y(0) = 2$ at $x = 0.2$ and $x = 0.4$	7	L3	CO4
	b	Find the value of y(0.5) using the Runge-Kutta method of fourth order, for the given equation $(x + y) \frac{dy}{dx} = 1$; $y(0.4) = 1$	7	L3	CO4
	С	Write a modern mathematical tool program to solve $y' + 4y = x^2$ with initial conditions $y(0) = 1$ using Taylor's series method at $x = 0.1$, 0.2	6	L3	CO5

	Lower-order thinking skills							
Bloom's	Remembering	Understanding	Applying					
Taxonomy	(knowledge): L_1	(Comprehension): L ₂	(Application): L ₃					
Levels		Higher-order thinking skills						
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆					

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN					

Second Semester B.E Degree Examination

Mathematics-II for CIVIL ENGINEERING STREAM -BMATC201 TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
- 2. VTU Formula Hand Book is permitted.
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	M	L	C
Q.01	a	Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x dz dx dy$	7	L3	CO1
	b	Evaluate $\int_0^a \int_y^a \frac{x}{x^2+y^2} dx dy$ by changing the order of integration	7	L3	CO1
	С	Derive the relation $\beta(m,n) = \frac{\gamma(m)\gamma(n)}{\gamma(m+n)}$	6	L2	CO1
		OR			•
Q.02	a	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates	7	L3	CO1
	b	Using double integration find the area of a plate in the form of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	7	L3	CO1
	С	Write a modern mathematical tool program to evaluate the double integral $\int_0^1 \int_0^x (x^2 + y^2) dy dx$	6	L3	CO5
		Module-2		•	•
Q. 03	a	Find the directional derivative of $\varphi = x^2yz + 4xz^2$ at the point (1, -2, 1) in the direction of the vector $2\hat{\imath} - \hat{\jmath} - 2\hat{k}$	7	L2	CO2
	b	Evaluate $Curl(Curl\vec{F})$ and $div(curl\vec{F})$, If $\vec{F} = x^2y \hat{\imath} + y^2z \hat{\jmath} + z^2x \hat{k}$	7	L3	CO2
	С	Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x) \hat{\imath} + (3xz + 2xy) \hat{\jmath} + (3xy - 2xz + 2z) \hat{k}$ is both solenoidal and irrotational	6	L2	CO2
		OR			
Q.04	a	Find the work done in moving a particle in the force field $\vec{F} = 3x^2 \hat{\imath} + (2xz - y) \hat{\jmath} + z \hat{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$	7	L2	CO2
	b	Using Green's theorem, Evaluate $\oint [(3x - 8y^2)dx + (4y - 6xy) dy]$ over the boundary of the region $x = 0$, $y = 0$, and $x + y = 1$	7	L3	CO2
	С	Write a modern mathematical tool program to find the gradient of $\varphi = x^2y + 2xz - 4$	6	L3	CO5
	1	Module-3		.	
Q. 05	a	Form the partial differential equation from the relation $z = f(x + at) + g(x - at)$	7	L2	CO3

	b	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$ and $z = 0$	7	L3	CO3
		when y is an odd multiple of $\frac{\pi}{2}$.			
	С	Solve $x(y^2 - z^2)p + y(z^2 - x^2)q - z(x^2 - y^2) = 0$	6	L3	CO3
		OR		'	•
Q. 06	a	7	L2	CO3	
	b	$f(x+y+z, x^2+y^2+z^2) = 0$	7	L3	C03
	b	Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x} - 4z = 0$, given that when $x = 0$, $z = 1$ and $\frac{\partial z}{\partial x} = y$,	F2	LUS
	С	With usual notations, derive one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	6	L2	CO3
		Module-4			
Q. 07	a	Find a real root of $x^3 - 9x + 1 = 0$ in (2, 3) by the Regula-Falsi	7	L3	CO4
Q. 07	"	method in four iterations.	,		
	b	Using Newton's forward interpolation find y at $x = 5$ from the data	7	L3	CO4
		x 4 6 8 10			
		y 1 3 8 16			
	С	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta$ by taking 7 ordinates using Simpson's $\left(\frac{1}{3}\right)^{rd}$	6	L3	CO4
		rule			
Q. 08	а	OR Find the real root of the equation $\cos x = xe^x$, which is nearer to	7	L3	C04
Q. 00	a	x = 0.5 by the Newton-Raphson method, correct to four decimal	,	по	COT
		places.			
	b	Determine $f(x)$ as a polynomial in x for the data given below by	7	L3	C04
		using Newton's divided difference formula			
		x 2 4 5 6 8 10			
		f(x) 10 96 196 350 868 1746			
	c	Evaluate $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ by taking seven ordinates, using	6	L3	CO4
		Simpson's $\left(\frac{3}{8}\right)^{th}$ rule.			
Q. 09	1	Module-5	7	L3	CO4
Q. 09	a	Find an approximate value of y when $x = 0.1$, if $\frac{dy}{dx} = x - y^2$ and $y = 1$	′	ГЭ	L04
	b	at $x = 0$ using Taylor's series method.	7	L3	CO4
		Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with the initial condition $y = 1$ when $x = 0$. Find	'	נם	104
		approximately y for $x = 0.1$ by Modified Euler's method. Carry out three modifications.			
			<u> </u>		

	С	Given $\frac{dy}{dx} = xy + y^2$, $y(0) = 1$, $y(0.1) = 1.1169$, $y(0.2) = 1.2773$, $y(0.3) = 1.5049$, compute $y(0.4)$ using Milne's Predictor-Corrector method.	6	L3	CO4
	<u> </u>	OR			
Q. 10	a	Using modified Euler's formula, compute y(1.1) correct to three decimal places given that $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and $y = 1$ at $x = 1$.	7	L3	CO4
	b	Using the Runge-Kutta method of fourth order solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$	7	L3	CO4
	С	Write a modern mathematical tool program to solve $\frac{dy}{dx} = 2x + y$, $y(1) = 2$ by the Runge-Kutta 4 th order method.	6	L3	CO5

	Lower-order thinking skills							
Bloom's	Remembering	Understanding	Applying					
Taxonomy	(knowledge): L_1	(Comprehension): L ₂	(Application): L ₃					
Levels		Higher-order thinking skills						
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆					