CyPSA

(<u>Cy</u>ber <u>Physical Situational Awareness</u>)
A rejected Blackhat talk.

CyPSA Project Aug 3, 2016

Project Team

Kate Davis

Robin Berthier

David Nicol

Edmond Rogers Rayala

Pete Sauer

Gabe Weaver

Mouna Bamba

Olivier Soubigou

Rakesh Bobba Panini

Patapanchala

Vishnu Priya

Saman Zonouz Luis Garcia

ARPA-E: Tim Heidel, Sameh Elsharkawy, Erik Derosiers

Challenges

How to ensure operational reliability given our increasing dependence on cyber systems?

How to understand the impact of cyber vulnerabilities on grid operations?

How to prioritize cyber security efforts in control networks and substations?

What is the Problem?

Traditional Contingency Analysis

Traditional Contingency Analysis

- Meant to be prepared for one outage ("N 1" criteria)
 - no violations when any one element (line, generator or major transformer) goes out of service
 - "N 1" criteria is reliability standard
- Is preparedness for one outage enough?
 - probability of multiple independent failures is considered small enough to accept the risk
- Cyber-assets are not considered
 - redundant provisioning
 - probability of multiple independent failures is considered small enough to accept the risk

Limitations with Current Practice

- With threat of cyber-attacks
 - multiple failures no longer unlikely
 - redundant provisioning alone not sufficient
- Prevention/protection mechanisms are not foolproof
- Power system needs to be reliable even in the face of cyberattacks
 - Need to deal with multiple outages ("N x")
 - Need to deal with failures of "cyber assets"

Challenges of multiple outages

- Size of the contingency list can grow very large*
 - For 1000 line system
 - N-1 means solving 1000 line outages
 - N-2 means solving 499500 line outages (1000 choose 2)!
 - WECC N-2 for transmission lines ~135M contingencies
 - ~15 days with super computer!
- Operating at "N x" reliability criterion can be expensive
 - limits flow capacity

^{*}Charles Davis, Thomas Overbye: Linear Analysis of Multiple Outage Interaction. HICSS 2009: 1-8

Collect and manage inventory data

Use Case: Asset Ranking

Description	Analyze all attack paths for a given set of assets
	 Rank based on both <i>impact</i> and <i>cyber exposure</i> <i>Impact</i>: power system performance index based on severity metrics <i>Cyber exposure</i>: metrics include the number of potential attack paths and ease of realizing at attack
Role	Manager
Inputs	 A model A source of vulnerability information A set of assets to be ranked
Outputs	 A list of attack paths annotated with and ordered by a ranking

CyPSA Control Panel

Use Case: Patching

Description	Select hosts or vulnerabilities to patch and recompute attack path rankings.
Role	IT Administrator Manager
Inputs	A modelA source of vulnerability informationA set of assets to be ranked
Outputs	A list of attack paths whose rankings have been updated based upon which assets were patched.

Mark devices patched then recalculate ranking

Rank assets and paths based on physical topology, impact, cyber connectivity, and vulnerabilities

Use Case: Aggregate Exposure

Description	Analyze all attack paths for a given grouping of assets, e.g. all paths through assets of a given type or with a given vulnerability that lead to another asset of a given type (i.e., breakers). Rank based on both <i>impact</i> and <i>cyber exposure</i>
Role	Manager
Inputs	 A model A source of vulnerability information A set of assets to be ranked
Outputs	 A list of attack paths annotated with and ordered by a ranking

Annotation, Vulnerability Information: Manager

Use Case: Cyber Incident Planning

Description	Devices are marked as compromised and asset rankings are re-computed.
Role	IT Administrator Manager Power Engineer
Inputs	 A model A source of vulnerability information A set of assets to be ranked
Outputs	A list of assets whose rankings have been updated based upon which assets were compromised.

Aggregate information and plan actions

Analyze cyber-physical dependencies

Cyber-Physical Security Assessment (CyPSA)

CyPSA Open Source Release : Armadillo

- Use high-fidelity modeling and simulation to assess the interdependency between cyber and physical infrastructure
- Co-utilize information from cyber and power network to determine the state of the cyber-physical system and provide a scalable approach to detecting reliability threats due to cyber threats

Physical Connections and Impact

Demo?

Running Armadillo

Start backend

```
C:\Windows\system32\cmd.exe - start_tornado.py

C:\armadillo\Demo\8bus\www\start_tornado.py

Starting server on port 8888
```

Launch control panel in browser

More than just power

 The CyPSA engine can be used on things other than the power grid

 The open source release have JSON templates for entering your own impact data

 This allows for the engine to be run stand alone to make a list of top Cyber/Physical contingencies

How do I do that shit?

In order to run offline mode manually, do the following steps:

- 1. Make sure the CPGenOutput.csv file is located in the project folder. You should also configure the location in the config.dat file under the tag "CP_GEN_OUTPUT_FILE".
- 2. When using runCypsa.bat, just add a 3rd command line option "offline". For example, to run the 8bus model, just call "runCypsa.bat 8bus 10.31.1.201 offline"

CYPSA

Cyber/Physical Situational Awareness

Thank You!

CyPSA Project – U. of Illinois

Kate Davis kate@kaedago.com

Edmond Rogers edmond@kaedago.com

www.github.com/bigezy/armadillo

http://publish.illinois.edu/iti-cypsa/

www.kaedago.com