

Kamerový systém a zpracování obrazu

Strojové vidění a zpracování obrazu (BI-SVZ)

Motivace

Motivace

Motivace

Obsah přednášky

- Kamerový systém
- Osvětlení
 - Kritéria výběru
 - Druhy osvětlení pro strojové vidění
- Případová studie měření dílů
 - Výběr kamery
 - Výběr objektivu

Kamerový systém (řetězec)

- Kamerový systém (CCTV)
 - Closed Circuit Television
 - uzavřený televizní okruh

 Užití kamer ke sledování prostor, k zobrazování záběrů z kamer na monitorech a archivaci natočených záběrů.

https://cs.wikipedia.org/wiki/Kamerový_systém

Kamerový systém – průmysl

Kamerový systém – průmysl

Osvětlení – cíle výběru

- Maximalizace kontrastu u oblastí zájmu
- Minimalizace kontrastu pozadí
- Robustnost, opakovatelnost výsledků měření (stálé podmínky)
 - Odstranění nežádoucích faktorů
 - Okolní osvětlení

Osvětlení – cíle výběru

- Volba osvětlení vždy závisí na konkrétní úloze
- Výběr kamery a objektivu je "jednoduchý"
- Výběr osvětlení je "alchymie"

Osvětlení – jak vybrat

Tvar objektu

- Plochý / prostorový
- Rozdílné osvětlení blízkých a vzdálených částí

Barva objektu

- Stejná barva osvětlení zvýrazní Komplementární barva "kryje"
- UV, IR

Povrch objektu

- Matný
- Reflexní
- Průhledný
- Texturovaný

Velikost, umístění, pohyb objektu

- Velikost a vzdálenost od světla
- Integrace do stísněného prostoru
- Rychlost pohybu, zastavení

Osvětlení – parametry výběru

- Geometrie osvětlení
 - Jasné pole (Bright field)
 - Temné pole (Dark field)
 - Koaxiální (Coaxial)
 - Zadní (Back)
 - Bodové (Spot)
- Zdroj osvětlení
 - o LED
 - Halogen
 - Fluor
- Vlnová délka

Osvětlení – geometrie

Osvětlení – zdroj světla

- Barevnost objektu
- Spektrální citlivost kamery
- Životnost a stálost
- Emise tepla

Osvětlení – zdroj světla

- Nejčastěji využívaný zdroj jsou LED světla
- LED nejsou přirozeným zdrojem bílého světla
- Způsoby vytvoření bílého LED světla
 - Kombinace RGB LED (červená, zelená, modrá) → výsledkem je bílé světlo
 - Modrá nebo UV LED + žlutý fosforový povlak -> směs modré a žluté dává bílé světlo
 - Tento způsob je **nejběžnější** nabízí **vyšší účinnost** a **lepší podání barev**
 - Barevnou teplotu lze měnit úpravou vlnové délky LED, složením a tloušťkou fosforu

- Polychromatické
 - Přirozené pro člověka
 - Vhodné pro barevné kamery
 - Přítomnost barevných vad optiky (aberace)
 - Dražší objektivy pro korekci barevných vad optiky
- Monochromatické
 - Úzké pásmo vlnových délek
 - Zvýšení kontrastu
 - Eliminace barevné vady optiky

- Světlo může být materiálem:
 - o odraženo a/nebo
 - o **propouštěno** a/nebo
 - o pohlceno (absorbováno)

- Lom světla a vliv vlnové délky
 - Při přechodu mezi různými médii se světlo láme → mění směr (refrakce)
 - Kratší vlnové délky (uv, modrá) se více lámou a rozptylují
 - Delší vlnové délky (červená) se méně odchylují a šíří rovněji
- Praktické dopady ve strojovém vidění
 - Modré světlo → zvýrazňuje povrchové vady (škrábance, jemné textury)
 - Červené světlo → lépe vykresluje obrysy průhledných materiálů
 - O Volba vhodné vlnové délky pomáhá zdůraznit požadované rysy a omezit šum

- Vztah mezi vlnovou délkou a barvou objektu
 - Barva světla (vlnová délka) ovlivňuje, jak se objekt jeví na snímači
 - Světlo stejné barvy jako objekt → zvýrazní ho (je jasnější)
 - Světlo komplementární barvy → potlačí ho (je tmavší)

Osvětlení – jaká barva byla použita?

Osvětlení – směrové nebo difúzní

- Směrové
 - Intenzivní přímé nasvícení
 - Materiál s matným povrchem
 - Zvýraznění prostorového uspořádání

- Difúzní
 - Homogenní nepřímé nasvícení
 - Materiál s lesklým i matným povrchem
 - Skrytí prostorových prvků

Osvětlení – vyzařovací úhel

Osvětlení – přímé (ring)

Osvětlení – přímé (bar, flat)

Osvětlení – defekty povrchů

Osvětlení – inspekce potisků

Osvětlení – inspekce pinů

Osvětlení – inspekce plošných spojů

Osvětlení – zadní (back)

Osvětlení – zadní (telecentrické)

Osvětlení - odělení od pozadí

Zadní telecentrické

Zadní ne-telecentrické

Osvětlení – kopulové (dome)

Osvětlení – flat dome

Osvětlení – lesklé povrchy (zaoblené)

Osvětlení – lesklé povrchy (obaly)

Osvětlení – koaxiální (doal)

DOAL = Diffused On Axis Light

Osvětlení – reliéfy a hladké povrchy

Osvětlení – temné pole (dark field)

Osvětlení – zvýraznění reliéfu

Osvětlení – plošné spoje

Osvětlení – reliéfy v transparentních materiálech

Osvětlení – kombinace

Osvětlení – detekce vad

Případová studie: Měření dílů

Modelové zadání

Plastový výlisek, rozměry

• Měření rozměrů s přesností

• Umístění kamery ve vzdálenosti

55 x 35 mm

0,05 mm

100 - 400 mm

• Objekt se pod kamerou může zastavit

Pozn. Dále závisí na barvě objektu, barvě pozadí, rychlosti pohybu dílu a mnoho dalších.

Výběr kamery – parametry výběru

- Závisí na úloze, která diktuje
 - Snímané spektrum UV, IR, Mono, Multispektrální (barevné), Hyperspektrální
 - Typ senzoru (Maticový/Řádkový)
 - FPS/frekvence snímání řádku
 - Typ závěrky u maticových kamer
 - Rozlišení snímače
 - Komunikační rozhraní
 - Závisí na datovém toku
 - Kolik potřebujeme světla (velikost senzoru a pixelů)
 - Vysoká snímkovací frekvence -> málo světla -> větší pixely -> vyšší senzitivita
 - Rozpočet (cena kamery)
 - Mnoho dalších...
- Jak porovnat kamery* -> EMVA 1288 data uváděné výrobcem

*Pozn. Není dostačující porovnávat pouze snímač!

Výběr kamery – odhad rozlišení snímače

$$rozlišení [px] = \frac{1,1 \cdot FOV[mm]}{\frac{p \check{r}esnost [mm]}{Nyquist \mathring{u}v faktor [px]}}$$

- FOV
 - Velikost delší strany v milimetrech
- Přesnost
 - Přesnost měření / velikost nejmenší zájmové oblasti (škrábanec apod.)
- Nyquistův faktor
 - Vyplývá z <u>Nyquistova-Shanonova</u> teorému o vzorkování signálu
 - Typické hodnoty jsou 2,3,4 a víc
 - Uvádí kolik pixelů má zabírat nejmenší zájmová oblast

Výběr kamery – odhad rozlišení snímače

$$roz lišeni [px] = \frac{1,1.55 mm}{\frac{0,05 mm}{2 px}} = 2420 px$$

- FOV = 55 mm
- Přesah 10%
- Přesnost = 0,05 mm
- Nyquistův faktor = 2 px

Snímač musí mít alespoň 2420 px

Výběr kamery – konkrétní typy

Lucid Triton TRI051S-MC

- Sony IMX547 CMOS
- Globalní
- 8.8 mm (Type 1/1.8")
- 2448 x 2048 px, 5.0 MP
- 2.74 μm (H) x 2.74 μm (V)
- 22 FPS (24 FPS) @ 5 MP
- C-Mount
- GigE
- 530€

Lucid Triton TRI050S-MC

- Sony IMX264 CMOS
- Globalní
- 11.1 mm (Type 2/3")
- 2448 x 2048 px, 5.0 MP
- 3.45 μm (H) x 3.45 μm (V)
- 22 FPS (24 FPS) @ 5 MP
- C-Mount
- GigE
- 535€

Lucid Triton TRI064S-MC

- Sony IMX178 CMOS
- Rolling
- 8.92 mm (Type 1/1.8")
- 3072 x 2048 px, 6.3 MP
- 2.40 μm (H) x 2.40 μm (V)
- 17.7 FPS (19.5 FPS) @ 6.3 MP
- C-Mount
- GigE
- 390€

Výběr kamery – EMVA 1288

Lucid Triton TRI051S-MC

MONO EMVA 1288 RESULTS		
Dynamic Range	69.9 dB	
SNR (Max)	39.8 dB	
Saturation Capacity	9608 e-	
Absolute Sensitivity Threshold (Measured at 527.5nm)	4.29 γ	
Temporal Dark Noise	2.48 e-	
Gain	0.41 DN / e-	
Dark Current	0.94 e- / s	
Dark Signal Non-Uniformity	0.37 e-	
Photo Response Non- Uniformity	0.36 %	
Linearity Error Max/Min	0.11/-0.23 %	

Lucid Triton TRI050S-MC

MONO EMVA 1288 RESULTS		
Dynamic Range	71.61 dB	
SNR (Max)	40.23 dB	
Saturation Capacity	10540 e-	
Absolute Sensitivity Threshold (Measured at 527.5nm)	3.99 γ	
Temporal Dark Noise	2.13 e-	
Gain	0.37 DN / e-	
Dark Current	3.15 e- / s	
Dark Signal Non-Uniformity	0.63 e-	
Photo Response Non- Uniformity	0.64 %	
Linearity Error Max/Min	0.25 / -0.46 %	

Lucid Triton TRI064S-MC

MONO EMVA 1288 RESULTS		
Dynamic Range	71.93 dB	
SNR (Max)	41.61 dB	
Saturation Capacity	14475 e-	
Absolute Sensitivity Threshold (Measured at 527.5nm)	4.57 γ	
Temporal Dark Noise	2.98 e-	
Gain	0.27 DN / e-	
Dark Current	0.35 e- / s	
Dark Signal Non-Uniformity	0.19 e-	
Photo Response Non- Uniformity	0.41 %	
Linearity Error Max/Min	0.13/-0.25 %	

Výběr kamery – TRIO51S-MC

Lucid Triton TRI051S-MC

- Sony IMX547 CMOS
- Globalní
- 8.8 mm (Type 1/1.8")
- 2448 x 2048 px, 5.0 MP
- 2.74 μm (H) x 2.74 μm (V)
- 22 FPS (24 FPS) @ 5 MP
- C-Mount
- GigE
- 530€

MONO EMVA 1288 RESULTS	
Dynamic Range	69.9 dB
SNR (Max)	39.8 dB
Saturation Capacity	9608 e-
Absolute Sensitivity Threshold (Measured at 527.5nm)	4.29 γ
Temporal Dark Noise	2.48 e-
Gain	0.41 DN / e-
Dark Current	0.94 e-/s
Dark Signal Non-Uniformity	0.37 e-
Photo Response Non- Uniformity	0.36 %
Linearity Error Max/Min	0.11/-0.23 %

Výběr kamery – TRI050S-MC

Lucid Triton TRI050S-MC

- Sony IMX264 CMOS
- Globalní
- 11.1 mm (Type 2/3")
- 2448 x 2048 px, 5.0 MP
- 3.45 μm (H) x 3.45 μm (V)
- 22 FPS (24 FPS) @ 5 MP
- C-Mount
- GigE
- 535€

MONO EMVA 1288 RESULTS	
Dynamic Range	71.61 dB
SNR (Max)	40.23 dB
Saturation Capacity	10540 e-
Absolute Sensitivity Threshold (Measured at 527.5nm)	3.99 γ
Temporal Dark Noise	2.13 e-
Gain	0.37 DN / e-
Dark Current	3.15 e-/s
Dark Signal Non-Uniformity	0.63 e-
Photo Response Non- Uniformity	0.64 %
Linearity Error Max/Min	0.25 / -0.46 %

Výběr kamery – TRI064S-MC

Lucid Triton TRI064S-MC

- Sony IMX178 CMOS
- Rolling
- 8.92 mm (Type 1/1.8")
- 3072 x 2048 px, 6.3 MP
- 2.40 μm (H) x 2.40 μm (V)
- 17.7 FPS (19.5 FPS) @ 6.3 MP
- C-Mount
- GigE
- 390€

MONO EMVA 1288 RESULTS	
Dynamic Range	71.93 dB
SNR (Max)	41.61 dB
Saturation Capacity	14475 e-
Absolute Sensitivity Threshold (Measured at 527.5nm)	4.57 γ
Temporal Dark Noise	2.98 e-
Gain	0.27 DN / e-
Dark Current	0.35 e-/s
Dark Signal Non-Uniformity	0.19 e-
Photo Response Non- Uniformity	0.41 %
Linearity Error Max/Min	0.13/-0.25 %

Výběr kamery – verdikt

Lucid Triton TRI051S-MC

- Sony IMX547 CMOS
- Globalní
- 8.8 mm (Type 1/1.8")
- 2448 x 2048 px, 5.0 MP
- 2.74 μm (H) x 2.74 μm (V)
- 22 FPS (24 FPS) @ 5 MP
- C-Mount
- GigE
- 530€

Lucid Triton TRI050S-MC

- Sony IMX264 CMOS
- Globalní
- 11.1 mm (Type 2/3")
- 2448 x 2048 px, 5.0 MP
- 3.45 μm (H) x 3.45 μm (V)
- 22 FPS (24 FPS) @ 5 MP
- C-Mount
- GigE
- 535€

Lucid Triton TRI064S-MC

- Sony IMX178 CMOS
- Rolling
- 8.92 mm (Type 1/1.8")
- 3072 x 2048 px, 6.3 MP
- 2.40 μm (H) x 2.40 μm (V)
- 17.7 FPS (19.5 FPS) @ 6.3 MP
- C-Mount
- GigE
- 390€

Výběr kamery – zdůvodnění

Lucid Triton

TRI064S-MC

- Sony IMX178 CMOS
- Rolling
- 8.92 mm (Type 1/1.8")
- 3072 x 2048 px, 6.3 MP
- 2.40 μm (H) x 2.40 μm (V)
- 17.7 FPS (19.5 FPS) @ 6.3 MP
- C-Mount
- GigE
- 390€

- Na úlohu není potřeba globální závěrka
- Menší pixely, ale!
 - vyšší SNR, dynamický rozsah, saturační kapacita
- Vysoká QE pro modrou (pro 470nm 83,38%)
- Menší cena

Pozn. Pokud by byla nutná globální závěrka, je lepší volba TRI050S-MC

BI-SVZ

BI-SVZ

Výběr kamery – teoretická přesnost

- Velikost objektu na pixel
 - $velikost\ objektu\ na\ pixel = \frac{1,1\cdot 55\ mm}{3072\ px} = \frac{60,5\ mm}{3072\ px} = \mathbf{0}, \mathbf{0197}\ mm \cdot px^{-1}$
- Přesnost
 - Nyquistův faktor [px] · velikost objektu na pixel $[mm \cdot px^{-1}]$
 - $2 px \cdot 0.0197 mm \cdot px^{-1} = 0.0393 mm$
 - Jedná se o teoreticky dosažitelné hodnoty, dále ovlivněny
 - Výběrem optiky aberace, difrakce, distorze, ...

Případová studie: Zadání měření dílů

Modelové zadání

Plastový výlisek, rozměry

• Měření rozměrů s přesností

• Umístění kamery ve vzdálenosti

55 x 35 mm

0,05 mm

100 - 400 mm

• Objekt se pod kamerou může zastavit

Pozn. Dále závisí na barvě objektu, barvě pozadí, rychlosti pohybu dílu a mnoho dalších.

Výběr optiky – parametry výběru

- Typ objektivu
 - Entocentrický
 - Telecentrický
 - Mnoho dalších...
- Ohnisková vzdálenost
- Pracovní vzdálenost
- Clonové číslé
 - Potřebná hloubka ostrosti
 - Množství světla
- Závit
- Velikost snímače/velikost pixelů
- Snímané spektrum
- Typ snímače
 - Maticový/Řádkový

Výběr optiky – volba pracovní vzdálenosti

- Chceme: Maximalizovat obrazovou kvalitu při minimalizaci ceny objektivu
- Vždy je potřeba respektovat minimální pracovní vzdálenost objektivu!
- Často diktuje samotná úloha
- Nepsané pravidlo <u>Edmund Optics</u> pro pracovní vzdálenost
 - Poměr pracovní vzdáleností a velikostí objektu jsou v poměru 4:1 (2:1)
 - ullet Mějme ohniskovou vzdálenost f
 - Objektiv s výrazně menší ohniskovou vzdáleností bude dražší
 - Jsme moc blízko => Je složitější vyrobit objektiv bez vad optiky
 - Objektiv s výrazně větší ohniskovou vzdáleností bude dražší
 - Jsme moc daleko => Máme méně světla apod.

Výběr optiky – odhad ohniskové vzdálenosti

Thin lens rovnice

$$\bullet \ \frac{1}{f} = \frac{1}{L} + \frac{1}{L'}$$

- f a L' jsou neznámé
- Musíme zjistit zvětšení (magnifikaci)

•
$$M = -\frac{L'}{L} = \frac{Y'}{Y}$$

Pozn. Reálný objektiv obsahuje několik optických prvků

Výběr optiky – odhad ohniskové vzdálenosti

Po odvození dostáváme

•
$$f = L \cdot \frac{Y'}{Y'+Y}$$

- Bereme že Y' je pozitivní
- Pozor f = L', jen když $L = \infty$

Pozn. Reálný objektiv obsahuje několik optických prvků

Výběr optiky – odhad ohniskové vzdálenosti

Po odvození dostáváme

•
$$f = L \cdot \frac{Y'}{Y'+Y}$$

- Bereme že Y' je pozitivní
- Pozor f = L', jen když $L = \infty$

$$L = (4 \cdot 55) = 220 \, mm$$

 $f = (4 \cdot 55) \frac{8,92}{8,92 + 55} = 30,701 \, mm$

$$L = (2 \cdot 55) = 110 \, mm$$

 $f = (2 \cdot 55) \frac{8,92}{8,92 + 55} = 15,3505 \, mm$

Pozn. Viz předchozí slidy: $\frac{L}{Y'} = \frac{4}{1}$ až $\frac{2}{1}$

Výběr optiky – konkrétní typy

Edmund Optics

UC Series #33-304

- C-mount
- 1/1,8"
- F/# 1,8 11
- f 16 mm
- 200 ∞
- 299 \$

Edmund Optics

<u>UC Series #33-305</u>

- C-mount
- 1/1,8"
- F/# 1,85 16
- f 25 mm
- 200 ∞
- 299\$

Edmund Optics

UC Series #33-306

- C-mount
- 1/1,8"
- F/# 1,85 16
- f 35 mm
- 200 ∞
- 299\$

Pozn. Pro robustní měření bychom měli volit telecentrický objektiv

Výběr optiky – reálná pracovní vzdálenost

$$f = L \cdot \frac{Y'}{Y' + Y} \longrightarrow Y = \frac{LY' - fY'}{f}$$

- Pozor! Platí min $WD \neq L$
- Nerespektujeme fyzické rozměry objektivu
- Pro objektiv <u>UC Series #33-306</u>, f = 35 mm, $H_o = 49,24 \text{ } mm$

$$Y = \frac{LY' - fY'}{f} = \frac{(\min WD + H_o)Y' - fY'}{f}$$
$$= \frac{(200 + 49,24) \cdot 8,92 - 35 \cdot 8,92}{35} = 54,6 \text{ mm}$$

- Volbou vyšší než $\min WD = 200 \ mm$ dokážeme zachytit celý objekt (55 mm)
- Vždy chceme zachytit trošku větší plochu $1, 1 \cdot 55 = 60, 5 \ mm$
- Ověřte, co se stane pro objektivy $f = 16 \ mm \ a \ f = 25 \ mm$

Edmund Optics

UC Series #33-306

- C-mount
- 1/1,8"
- F/# 1,85 16
- f 35 mm
- 200 ∞
- 299\$

Pozn. H_o je vzdálenost od okraje objektivu ke středu čočky (Object Space Principal Plane) – uvedeno výrobcem

Případová studie: Zadání měření dílů

Výsledek

	/	I• I	v
Plastový	\/\/	lisek	rozmerv
I lastovy	vy		102111CI y

• Měření rozměrů s přesností

Umístění kamery ve vzdálenosti

55 x 35 mm

0,05 *mm*

100 až 400 mm

 Umístění kamery ve vzdálenosti (Pracovní vzdálenost)

$$274,24 - 49,24 = 225 \, mm$$

Pozn.: Při výběru objektivů je vhodné porovnat jejich MTF křivky, zejména pokud uživatel vybírá mezi podobnými objektivy a potřebuje vybrat ten s nejlepší optickou kvalitou.