Department of Computer Science and Engineering (CSE) BRAC University

Lecture 9

CSE250 - Circuits and Electronics

THEVENIN'S AND NORTON'S THEOREM

Purbayan Das, Lecturer
Department of Computer Science and Engineering (CSE)
BRAC University

Norton's Theorem

• Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N , where I_N is the short-circuit current through the terminals and I_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

- Two circuits are said to be equivalent if they have the same I-V characteristics at their terminals.
- Let's find out what will make the two circuits equivalent!

I-V of Norton Equivalent

- We can derive the I-V characteristics of the Norton equivalent in a similar way as we did in for Thevenin.
- The configuration is a current source (I_N) in series with a resistor (R_N) . To determine the configuration's I-V characteristics, if applying a voltage V gives rise to a current i_{χ} through the resistor, we can write using KCL,

$$i_x = I_N + I$$

So, voltage across the resistor can be written as,

$$V = i_{x}R_{N} = (I_{N} + I)R_{N}$$
$$\Rightarrow I = \frac{1}{R_{N}}V - I_{N}$$

• The equation results in a linear I vs V plot that intersects the axes at $I_N R_N$ and $-I_N$

I-V of Actual Circuit

- The procedure to derive the I-V characteristics of the original circuit is exactly the same as done in the Thevenin part. This is described here again.
- To theoretically derive exactly the relation between I and V it is required to know the actual circuitry. As the circuit is linear, the I-V characteristic will be a straight line and the line can be drawn if minimum two points on the line are known.

- The two points we can get are the intersecting points of x and y axis.
- To get the intersecting location on the voltage axis, current (I) at the terminals should be made equal to 0. That is, the terminals a-b must be open circuited.
- Similarly, for the intersecting location on current axis, $V_{ab} = V = 0$. That is, the terminals a-b must be shorted.

OC Voltage & SC Current

• Let's denote V_{oc} be the voltage at the open terminals upon disconnecting the load and I_{sc} be the current through the shorted terminals upon short circuiting the load.

Open Circuited at the terminals

So, the I-V characteristic should be the straight line passing through the points $(V_{oc}, 0)$ and $(0, -I_{sc})$. The reason for the negative sign is that I_{sc} is opposite to the current (I) plotted along the y-axis.

Circuit Equivalence

• The original circuit and the reduced Norton equivalent circuit will be equivalent to each other if the I-V characteristics of the two are identical. They will indeed be identical if the

How to determine R_N?

Refer to the previous slides, Norton's conversion is valid if

i.
$$V_{oc} = I_N R_N \text{ or } I_N = \frac{V_{oc}}{R_N}$$

ii.
$$-I_N = -I_{SC}$$
 or $\frac{V_{OC}}{R_N} = I_{SC}$

- For the linear I-V characteristic, R_N is the inverse of the slope of the straight line passing through the points $(I_N R_N, 0)$ and $(0, -I_N)$. That is,
- Slope = $\frac{\Delta I}{\Delta V} = \frac{0 (-I_N)}{I_N R_N 0} = \frac{1}{R_N}$
- Thus, R_N may be found from the open circuit voltage V_{oc} and the Norton current I_N .
- The undefined scenario that occurs when determining R_{Th} when V_{Th} is zero (see here) also occurs when determining R_N when $I_{sc}=0$. In that situation, the Universal Rule used to derive R_{Th} applies exactly to R_N .

· Refer to the previous slides, Norton's conversion is valid if

i.
$$V_{oc} = I_N R_N \text{ or } I_N = \frac{V_{oc}}{R_N}$$

ii.
$$-I_N = -I_{sc}$$
 or $\frac{V_{oc}}{R_N} = I_{sc}$

• For the linear I-V characteristic, R_N is the inverse of the slope of the straight line passing through the points $(I_NR_N,\ 0)$ and $(0,\ -I_N)$. That is,

$$Slope = \frac{\Delta I}{\Delta V} = \frac{0 - (-I_N)}{I_N R_N - 0} = \frac{1}{R_N}$$

- Thus, R_N may be found from the open circuit voltage ${\cal V}_{oc}$ and the Norton current ${\cal I}_N$.
 - The undefined scenario that occurs when determining R_{Th} when V_{Th} is zero (see here) also occurs when determining R_N when $I_{sc}=0$. In that situation, the Universal Rule used to derive R_{Th} applies exactly to R_N .

Thevenin ↔ Norton

- As you may have already noticed, Norton equivalent of a circuit can be derived from the Thevenin equivalent (or vice versa) of the same circuit by performing a source transformation.
- The requirement is that the two must have the same I-V characteristics.
- From the conditions for which source transformation is valid (shown in slide 7 of Source Transformation) or by comparing the I-V characteristics of the two, it can be seen that the conversion is valid if and only if,

Methods in a nutshell

Methods to determine R_N

Method to determine I_N Short the load terminals Determine the current through the short circuit ($I_{SC} = I_N$)

Use Ohm's
Law to
calculate $R_N = \frac{v_0}{i_0}$ Calculate the current (i_0) supplied or voltage (v_0) across the voltage or
current source respectively.

Valid only if $I_N \neq 0$ Open the load terminals Determine the voltage at the open terminals (V_{oc})

Add a dummy voltage or current source to the load terminals

Yes Is there any dependent

Universal Rule

RBAYAN DAS

Kill all the

independent sources

Use series-parallel combinations of resistors to calculate $R_{ea} = R_N$

source(s)?

No

Example 4

• Obtain the Norton equivalent circuit at terminals a - b.

Ans: $R_N = 10 \Omega$; $I_N = 16.667 A$

Example 4: finding I_N

The 1st step is to disconnect the load and short the terminals.

Upon short circuiting the terminals a-b, the $10\,\Omega$ is shorted out. The whole circuit to the left of the dependent source is shorted with respect to it. As a result, the $0.5v_\chi$ current supplied by the dependent source will only flow through the short circuit.

Let's use nodal analysis to solve for the current i_x going towards the short circuit though the 2 Ω resistor.

KCL at v_x $\frac{v_x - 50}{3} + \frac{v_x}{6} + \frac{v_x}{2} = 0$ $\Rightarrow v_x = 16.667 V$

Now,

$$i_x = \frac{v_x - 0}{2} = 8.334 \, A$$

So,

$$I_N = i_x + 0.5v_x = 16.667 A$$

Example 4: finding RN

 R_N can be found by (i) determining V_{oc} and then using $R_N = \frac{V_{oc}}{I_N}$ (as $I_N \neq 0$) or (ii) first turning off all the independent sources and determining the R_{eq} at the terminals.

Let's employ the first method here.

Nodal analysis:

KCL at v_{γ} ,

10
$$\Omega$$
 v_{oc}
 $v_{v} = \frac{v_{x} - 50}{3} + \frac{v_{x}}{6} + \frac{v_{x} - V_{oc}}{2} = 0$
 $v_{v} = \frac{v_{x} - 50}{3} + \frac{v_{x}}{6} + \frac{v_{x} - V_{oc}}{2} = 0$
 $v_{v} = \frac{v_{v} - 3V_{oc}}{3} = 100 - - - - (i)$

KCL at V_{oc}

$$\frac{V_{oc} - v_x}{2} + \frac{V_{oc}}{10} = 0.5v_x$$

$$\Rightarrow 10v_x - 6V_{oc} = 0 ----(ii)$$

Solving (i) and (ii),

$$V_{oc} = 166.667 V$$
 $R_N = \frac{V_{oc}}{I_{sc}} = \frac{166.667}{16.667} = 10 \Omega$

Find the Norton equivalent circuit for the circuit at terminals a-b.

$$\Omega \mathbf{00} = {}_{N}\mathbf{A} : \mathbf{A} \mathbf{2} \cdot \mathbf{A} = {}_{N}\mathbf{I} : \underline{\mathsf{2}\mathsf{A}\mathsf{A}}$$

Solution to Problem 11

Finding I_N

Let's use mesh analysis to find the I_N From the circuit,

$$i_2 = I_N$$

Applying KVL at supermesh between 1 and 2,

$$-450 + 90i_1 + 90I_N = 0$$

$$\Rightarrow 90i_1 + 90I_N = 450 \dots (i)$$

Applying KCL at node a,

$$i_1 + 4 = I_N$$

 $i_1 - I_N = -4$ (ii)

Solving (i) and (ii),

$$i_1 = 0.5 A$$
$$I_N = 4.5 A$$

Finding R_N

first. let's deactivate all the Independent Sources. As there is no dependent sources, we simply use seriesparallel combination to find the equivalent resistance seen from the load terminal.

$$R_N = (90 + 90) || 180$$

 $\Rightarrow R_N = 180 || 180$
 $\Rightarrow R_N = \frac{180 \times 180}{180 + 180} = 90 \Omega$

terminals a–b

• Find the Norton equivalent circuit for the circuit at terminals (i) a-b and (ii) c-d.

$$\Omega \mathbf{Z} = {}_{N}\mathbf{A} : \mathbf{A} \mathbf{T} = {}_{N}\mathbf{I} (\mathbf{i}) : \underline{\mathsf{RMA}}$$

$$\Omega \mathbf{Z} = {}_{N}\mathbf{A} : \mathbf{A} \mathbf{T} = {}_{N}\mathbf{I} (\mathbf{i}\mathbf{i})$$

Solution to Problem 12

Finding $I_{N(a-b)}$ 6Ω

Let's use mesh analysis to find the I_N From the circuit,

$$i_2 = I_N$$

Applying KVL at mesh 1,

$$-120 + 6i_1 + 3(i_1 - I_N) = 0$$

$$\Rightarrow 120 + 6i_1 + 3i_1 - 3I_N = 0$$

$$\Rightarrow 9i_1 - 3I_N = 120$$
(i)

Applying KVL at supermesh (2 & 3),

$$3(I_N - i_1) + 2i_3 = 0$$

$$3I_N - 3i_1 + 2i_3 = 0$$

$$\Rightarrow -3i_1 + 3I_N + 2i_3 = 0$$
(ii)

Applying KCL at node a,

$$I_N + 6 = i_3$$

 $\Rightarrow I_N - i_3 = -6$ (iii)

Solving (i), (ii) and (iii),

$$i_1 = 15.67 A$$
 $I_N = 7 A$
 $i_3 = 13 A$

Finding $R_{N(a-b)}$

let's deactivate all the Independent Sources. As there is no dependent sources, we simply use seriesparallel combination to find the equivalent resistance seen from the load terminal.

PREPARED BY [PDS] PURBAYAN DAS

$$R_N = 4 || [(6 || 3) + 2]$$

$$\Rightarrow R_N = 4 \mid\mid [2+2]$$

$$\Rightarrow R_N = 2 \Omega$$

Norton equivalent circuit at terminals a-b

Try the terminal b-c yourself

• Obtain the Thevenin/Norton equivalent of the circuit to the left of terminals a-b. Use the result to find current i.

Let's use mesh analysis to find the I_N From the circuit,

$$i_2 = I_N$$

Applying KVL at mesh 1,

$$i_1 = 2A$$
(i)

Applying KVL at mesh 2,

$$4(I_N - i_1) + 6I_N + 12 = 0$$

$$\Rightarrow 4I_N - 4i_1 + 6I_N + 12 = 0$$

$$\Rightarrow -4i_1 + 10I_N = -12$$
(ii)

Solving (i) and (ii),

$$i_1 = 2 A$$

$$I_N = -0.4 A$$

Finding R_N

first. let's deactivate all Independent Sources. As there is no dependent sources, we simply use seriesparallel combination to find the equivalent resistance seen from the load terminal.

$$R_N = 6 + 10 = 10 \Omega$$

Norton equivalent circuit at terminals a-b

To find i, applying current divider law,

$$i = \frac{5 \mid \mid 10}{5} \times 3.6 = 2.4 A$$

• Find the Norton equivalent circuit for the circuit at terminals a-b.

Ans: $I_N = 10 A$; $R_N = 1 \Omega$

Solution to Problem 14

Finding I_N

Let's use mesh analysis to find the I_N From the circuit,

$$i_2 = I_N$$

 $v_x = 0$ (Since short circuit)

Applying KVL at supermesh (1 & 2)

$$6i_1 + 2v_r = 0$$

$$\Rightarrow 6i_1 + 0 = 0$$

$$\Rightarrow i_1 = 0$$
(i)

If i_1 is 0, then the 10 A current source contributes fully to I_N

$$I_N = 10 A$$

Finding R_N

At first, let's deactivate all the Independent Sources. As there is dependent source. We need to use a known voltage source across the terminal a-b and find out the current through the node a-b. Alternatively, we can use a known current source across the terminal a-b and find out the voltage across the terminal.

Let's do the second type and apply 1 A at terminal a-b

Solution to Problem 14 (Continued)

We need to find the voltage v

Let's use Nodal analysis to find the *v*

From the circuit,

$$V_2 = v_x = v$$

Applying KCL at supernode (1 & 2)

Applying KVL at supernode,

$$V_1 - v = 2v_x$$

$$\Rightarrow V_1 - v = 2v$$

$$\Rightarrow V_1 - 3v = 0$$
(iv)

Solving (iii) and (iv),

$$V_1 = 3 V$$
$$v = 1 V$$

So,

$$R_{Th} = \frac{v}{1.4} = \frac{1}{1} = 1.0$$

Norton equivalent circuit at terminals a–b

Obtain the Norton equivalent circuit with respect to terminals a and b.

Ans: $I_N = 1 A$; $R_N = 20 \Omega$

Solution to Problem 15

Finding $I_{N(a-b)}$

Let's use mesh analysis to find the I_N From the circuit,

$$i_3 = I_N$$
$$I_v = i_1 - i_2$$

Applying KVL at mesh 1,

$$i_1 = 1 A$$
(i)

Applying KVL at mesh 2,

$$20(i_2 - i_1) + 20(i_2 - I_N) + 20I_v = 0$$

$$\Rightarrow 20i_2 - 20i_1 + 20i_2 - 20I_N + 20(i_1 - i_2) = 0$$

$$\Rightarrow 20i_2 - 20i_1 + 20i_2 - 20I_N + 20(i_1 - i_2) = 0$$
$$\Rightarrow 20i_2 - 20I_N = 0 \quad(ii)$$

Applying KVL at mesh 3,

$$-20I_{v} + 20(I_{N} - i_{2}) = 0$$

$$\Rightarrow -20(i_{1} - i_{2}) + 20I_{N} - 20i_{2} = 0$$

$$\Rightarrow -20i_{1} + 20i_{2} + 20I_{N} - 20i_{2} = 0$$

$$\Rightarrow -20i_{1} + 20I_{N} = 0 \dots (iii)$$

Solving (i), (ii) and (iii),

$$i_1 = 1 A$$

$$I_N = 1 A$$

$$i_3 = 1 A$$

Finding R_N

At first, let's deactivate all the Independent Sources. As there is dependent source. We need to use a known voltage source across the terminal a-b and find out the current through the node a-b. Alternatively, we can use a known current source across the terminal a-b and find out the voltage across the terminal.

Let's do the second type and apply 1 A at terminal a-b

Solution to Problem 15 (Continued)

We need to find the voltage v

Let's use Nodal analysis to find the v

From the circuit,

$$V_1 = v$$

$$I_v = \frac{V_1}{20} = \frac{v}{20}$$

Applying KVL at node 1,

$$\frac{v}{20} + \frac{v - 20I_v}{20} - 1 = 0$$

$$\Rightarrow \frac{v}{20} + \frac{v}{20} - I_v - 1 = 0$$

$$\Rightarrow \frac{v}{20} + \frac{v}{20} - \frac{v}{20} - 1 = 0$$

$$\Rightarrow \frac{v}{20} = 1$$

$$\Rightarrow v = 20 V$$

So,

$$R_{Th} = \frac{v}{1 A} = \frac{20}{1} = 20 \Omega$$

Norton equivalent circuit at terminals a–b

Obtain the Thevenin/Norton equivalent of the circuit to the left of terminals a-b.

Ans: $V_{Th} = -2000 V$; $I_N = -20 mA$; $R_{Th} = R_N = 100 k\Omega$

Solution to Problem 16

Finding I_N

From the circuit,

$$V_{ab} = 0 V (Short circuit)$$

Applying KVL at the left portion,

$$-2 + 8I + 0.001V_{ab} = 0$$

$$\Rightarrow$$
 $-2 + 8I = 0$

$$\Rightarrow I = 0.25 \, mA$$

From the right portion,

$$80I = -I_N$$

$$\Rightarrow 80 \times 0.25 = -I_N$$

$$\Rightarrow I_N = -20 \ mA$$

Finding R_{Th}

At first, let's deactivate all the Independent Sources. As there is dependent source, we need to use a known current source across the terminal a-b and find out the voltage across the terminal.

Let's do the second type and apply $1\,A$ at terminal a-b

From the circuit,

$$V_{ab} = v$$

Applying KVL at the left portion,

$$8I + 0.001V_{ab} = 0$$

8I + 0.001v = 0(i)

Applying KCL at node a,

$$80I + \frac{v}{50} = 1$$
(ii)

Solving (i) and (ii),

$$I = -80 mA$$
$$v = 100 V$$

So,

$$R_{Th} = \frac{v}{1 mA} = \frac{100}{1} = 100 k\Omega$$

Norton equivalent circuit at terminals a–b

• Obtain the Norton equivalent circuit with respect to terminals a and b.

Ans: $I_N = 14 \, mA$; $R_N = 20 \, k\Omega$

Practice Problems

- Additional recommended practice problems: <u>here</u>
- Other suggested problems from the textbook: <u>here</u>

