实验四: 平板边界层流动测量

姓名: 组别:第1组 时间:2021.11.25(12.2)13:30-14:00

摘要

边界层是 1904 年普朗特(L. Prandtl)提出的概念,普朗特认为,黏度比较小的流体(空气、水)绕过物体流动时,黏性切应力对流动的影响仅仅局限在物体表面的薄层内,而在此薄层以外,流体的黏性影响很小,流体可视为理想流体,流动可视为无旋流动(势流)。本实验通过对零攻角平板表面速度分布的测量,最终找到边界层及分析边界层内速度分布,不仅是对测压管测风速的复习,更要我们深入理解平板边界层模型。

实验目的

- 1) 在距平板前缘不同位置两点处测量边界层内速度分布并确定边界层厚度;
- 2) 比较层流边界层和紊流边界层速度分布的区别;
- 3)验证雷诺数对边界层厚度的影响;
- 4) 掌握平板边界层特性,熟悉平板边界层流动模型。

实验原理

1) 边界层

实际流体绕流物体时,由于粘性作用,在物体壁面附近存在一流体薄层,从壁面上速度为零逐渐增大到外流速度,该流体薄层称为边界层,又称附面层。实验气体绕平板作定常流动时,边界层沿流动方向的变化如图(1)所示。

图 1: 平板边界层流动模型

第1页共12页

边界层沿平板逐渐增厚,开始是层流,经过一段时间后转变成湍流 Re 数不太大时,保持层次分明的流动,各层之间互不掺混,为层流边界层; Re 数逐渐增大时,保持不了层次分明的流动,不但有向前运动,还有横向的混乱运动,形成湍流边界层。物体壁面附近的边界层可能全部是层流边界层,可能全部是湍流边界层,也可能存在混合边界层,即前一段是层流边界层,而后一段已转捩为湍流边界层。转捩取决于临界雷诺数,临界雷诺数与来流湍流度、物体形状以及物体表面粗糙度有关。

对同一平板流动模型而言,流态转变由当地雷诺数 Re 决定

$$Re_{x} = \frac{\rho ux}{\mu}, \tag{1}$$

其中 μ 为粘性系数,可结合大气条件通过查表得到,u 为气流速度, ρ 为大气密度,取决于大气压强 p_{α} 和大气温度 T_{α} ,按气体状态方程:

$$\rho = \frac{p_{\alpha}}{287(273 + T_{\alpha})},\tag{2}$$

当雷诺数较小时,整个平板附面层都是层流;随着雷诺数的增大,平板前 部形成层流边界层,随后转捩为湍流边界层,转捩区虽短,但流动复杂,为实 用方便简化转捩区中点(坐标为 x_T)为转捩点。转捩雷诺数由多种因素决定,如 来流湍流度、壁面粗糙度等,因此转换雷诺数值有一定的范围。平板临界雷诺数

$$Re_c = \frac{\rho U x_T}{\mu}, \qquad (3)$$

来流湍流度愈低,壁面愈光滑, Re_c 愈高;来流湍流度愈高,壁面愈粗糙, Re_c 愈低; $Re_x < Re_c$ 为层流; $Re_x > Re_c$ 为湍流。

2) 边界层厚度

边界层是一个薄层,它有一定厚度。对于固定的位置 x,随着壁面距离 y 的增大,流体速度从壁面上速度为零逐渐增大到外流速度 V,这种增大具有渐近性,难以明确划分。边界层厚度 δ (名义厚度)定义为达到外流速度 99%的高度,即当 $y=\delta$ 时,u=0.99V。显然实验测量所得边界层厚度取决于测量速度剖面的精度。

图 2: 边界层厚度示意图

对层流边界层,从布拉修斯解可以看出,当 $\frac{u}{v}=0.99$ 时, $y\sqrt{\frac{v}{vx}}=5.0$,因此,附面层厚度为

$$\delta = 5.0 \sqrt{\frac{\text{vx}}{\text{U}}} = 5.0 \frac{\text{x}}{\sqrt{\text{Re}_{\text{x}}}},\tag{4}$$

另外,假定附面层速度分布为二次曲线时,由动量积分得到近似解

$$\delta = \frac{5.48 \,\mathrm{x}}{\sqrt{\mathrm{Re}_{\mathrm{x}}}},\tag{5}$$

而由实验得到的附面层厚度计算公式为

$$\delta = 5.83 \text{ x}/\sqrt{\text{Re}_{\text{x}}} , \qquad (6)$$

对于湍流附面层,采用1/7次方的速度剖面,附面层厚度可由

$$\delta = 0.37 \text{ x}/\sqrt[5]{\text{Re}_{x}} , \qquad (7)$$

给出。

边界层厚度都随离前缘距离增加而增大,层流边界层厚度与 x1/2 成正比,湍流边界层厚度与 x4/5 成正比;湍流边界层厚度的增长比层流快得多,是因为湍流中流体微团剧烈的横向运动所造成。同一位置处,Re 数越大,边界层越薄。

3) 边界层内速度分布

在不可压流场中,每一点处总压等于该点处静压和动压之和,即

$$p_0 = p + 1/2 \rho v^2,$$
 (8)

 p_0 为各测点总压,p为各测点静压,p为流体密度,则流速

$$\mathbf{v} = \sqrt{\frac{2(\mathbf{p}_0 - \mathbf{p})}{\rho}},\tag{9}$$

因此只需要测量出边界层内各点的静压p和总压 p_0 ,就可以计算出各点的速度。但考虑到垂直平板方向的静压梯度等于零(即 $\frac{\partial p}{\partial y}=0$),只需要在平板表面开一个静压孔,该点静压即等于该点所在平板法线方向各点的静压。这样一来要测量边界层内速度分布只需测量出平板法线上各点总压即可。在实验中,由于条件限制,我们用入口处静压p代替各测点静压,通过计算机读出p和 p_i ,可直接通过

$$v = \sqrt{\frac{2}{\rho} \cdot 9.81 \cdot (p_i - p)},\tag{10}$$

求得各测点速度,其中 9.81 是压力单位转换系数[1 $mmH_2O = 9.81N/m^2$]。 在边界层上,我们可通过入口处静压读数 l_{δ} ,测出边界层速度

$$\mathbf{v}_{\delta} = \sqrt{\frac{2}{\rho} \cdot 9.81 \cdot \mathbf{p}_{\delta}},\tag{11}$$

定义无量纲量 $\frac{y}{\delta}$ 和 $\frac{v}{v_{\delta}}$,则有无量纲速度分布曲线

$$\frac{\mathbf{v}}{\mathbf{v}_{\delta}} = \mathbf{f}(\frac{\mathbf{y}}{\delta}),\tag{12}$$

对于层流边界层,无量纲速度分布曲线与距前缘距离 x 无关,具有相似解,可用二次曲线逼近

$$\frac{u_y}{u_\delta} = 2 \frac{y}{\delta} - \left(\frac{y}{\delta}\right)^2, \tag{13}$$

对于湍流边界层,无量纲速度分布可用指数曲线近似。湍流边界层内存在很强的湍流掺混,各层之间的动量交换较大,从而使离壁面不远处速度就迅速增大,并使速度剖面拉平。

$$\frac{u_{y}}{u_{\delta}} = \left(\frac{y}{\delta}\right)^{n} \tag{14}$$

Re =
$$1.1 \times 10^5$$
, $n = \frac{1}{7}$;
Re = 3.2×10^6 , $n = \frac{1}{10}$
Re = 10^7 , $n = \frac{1}{110}$

实验装置

- 1) 长、宽分别 160mm, 厚 8mm 的光滑平板和粗糙平板;
- 2) 游标卡尺;
- 3) 带微座标器的总压探针;
- 4) 吸入式风洞, 颈缩口面积比9:1;
- 5) 温度计等。

图 3: 实验装置图

实验步骤

- 1) 正确把平板安装到风洞测试段中,让平板与来流方向平行,对平板安装处进行修补处理,避免测试段漏风;
- 2) 安装总压探针,调整探头位置,是总压孔对准来流方向、测孔轴线与平板平行;
- 3) 将总压探针和风洞入口静压探针与计算机连接, 初始示数调零;
- 4)调节微座标器使总压探针探头刚好接触平板,必须数次反复调节以找到最佳位置,此时探针测压孔距平板高度为d/2,记录微座标器初始读数;
- 5) 启动风洞,调节风速到50%;
- 6) 记录微压计读数和入口静压读数,由于测压管道比较细长,压力平衡需要一定时间,待稳定后再读数;
- 7)转动微座标器,改变测点的 y 坐标,待示数稳定后,记录微压计读数 l_i 和 v_i ;
- 8) 重复步骤(7),继续调节探针,直到多次测量后微压计读数不在变化, 这是表明微压计已经到达边界层以外区域;
- 9) 风洞停车,记录大气条件:
- 10) 换粗糙平板, 重复步骤(1) 到(9) 得到第二组数据。

实验数据记录

1) 光滑平板

表 1: 光滑平板基本条件

d/mm	T/°C	P/kpa	颈缩比
1.28	19.5	102.0	9: 1

表 2: 光滑平板测量数据

	X	<i>x</i> =58mm			x=60mm		
	$1/\mathrm{mm}$	$-p/\mathrm{mm}$	-pO/mm	y/mm	$-p/\mathrm{mm}$	-pO/mm	
•	0.00	12.4	4.6	0.0	12.6	6.9	
	0.25	12.4	3.9	0.3	11.8	4.7	
	0.50	12.3	2.7	0.5	12.1	2.6	
	0.75	12.7	1.8	0.6	12.8	2.0	
	1.00	12.4	1.5	0.7	12.4	1.5	
	1.25	12.6	1.3	0.8	12.1	1.2	
	1.50	12.8	1. 1	1.0	12.7	1.2	

2.00	12.7	1.0	1.3	13.0	1.0
2.50	11.7	1.1	1.5	12.2	1.0

2) 粗糙平板

表 3: 粗糙平板基本条件

d/mm	T/°C	P/kpa	颈缩比
1.28	18.9	102.1	9 : 1

表 4: 粗糙平板测量数据

	x=60mm x=97mm					
		0/	/			
1/mm	-p/mm	-p0/mm	y/mm	-p/mm	-p0/mm	
0.00	13.5	6. 2	0.0	13. 1	7.6	
0.10	13.3	5.9	0. 1	13.3	7.4	
0.20	13. 1	5. 5	0.3	13. 3	7. 3	
0.30	12.9	5. 1	0. 5	13. 5	6. 5	
0.50	12.7	4.9	0.7	13.4	5. 7	
0.60	13.1	4.3	0.9	12. 9	5. 3	
0.70	12.9	4.3	1.0	13.4	4. 9	
0.80	13.0	4. 1	1.5	13.3	4.0	
0.90	13.0	4.0	2.0	13. 4	3. 3	
1.00	12.9	3. 7	2. 5	13.4	2.6	
1.10	12.8	3.6	3. 0	13.2	2.0	
1.20	13.0	3.4	3. 1	13.1	1.9	
1.30	12.8	3. 1	3. 2	13.0	1.8	
1.40	12.9	3. 0	3. 3	13.1	1.7	
1.50	12.8	2.8	3. 4	13.6	1.6	
1.70	12.7	2.6	3.5	13.4	1.6	
2.00	12.9	2. 3	3.6	13.5	1.6	
2.20	13. 1	2. 1	4.0	13.2	1.5	
2.40	13.3	1.9				
2.60	13.0	1.6				
2.80	13.0	1.5				
2.90	13.3	1.5				
3.00	13. 1	1.3				
3. 50	13.0	1.3				

(其中 d 为探头直径,T 为环境温度,P 为大气压强,x 为探头到平板前缘位置,1 为探头底部距平板位置,p 为测点静压,p0 为测点总压。)

数据处理

1) 结合大气条件,根据式(2) 计算出大气密度ρ

表 5: 空气密度

组别	T/℃	P/kpa	ρ (kg/m ³)
光滑	19.5	102.0	1. 21504512
粗糙	18.9	102. 1	1. 21873631

2) 记 $\Delta p = p_0 - p$,根据式(10)计算出各测点速度 v,同时通过 y = l - d/2 计算出 y

表 6: 光滑平板表面速度分布

The state of the s						
	x=58mm			x=75mm		
y/mm	$\Delta \mathrm{p/mm}$	$v\left(m/s\right)$	y/mm	$\Delta \mathrm{p/mm}$	v(m/s)	
0.64	7.8	11. 223	0.64	5. 7	9. 594	
0.89	8.5	11.716	0.89	7. 1	10.707	
1.14	9.6	12.451	1.14	9.5	12. 386	
1.39	10.9	13. 267	1.24	10.8	13. 206	
1.64	10.9	13. 267	1. 34	10.9	13. 267	
1.89	11.3	13.508	1. 39	10.9	13. 267	
2.14	11.7	13.745	1.64	11.5	13.627	
2.64	11.7	13.745	1.89	12.0	13.920	
3. 14	10.6	13.083	2. 14	11. 2	13. 448	

表 7: 粗糙平板表面速度分布

水 · 恒便 队水面延及从 **						
	x=60mm			x=97mm		
y/mm	$\Delta \mathrm{p/mm}$	v(m/s)	y/mm	$\Delta \mathrm{p/mm}$	v(m/s)	
0.64	7. 3	10.841	0.64	5.5	9.410	
0.74	7.4	10. 915	0.74	5.9	9.746	
0.84	7.6	11.061	0.94	6.0	9.828	
0.94	7.8	11. 206	1.14	7.0	10.616	
1.14	7.8	11. 206	1.34	7.7	11.134	
1.24	8.8	11.902	1.54	7.6	11.061	
1. 34	8.6	11.766	1.64	8.5	11.698	
1. 44	8. 9	11.970	2.14	9.3	12. 236	
1. 54	9.0	12.037	2.64	10.1	12.751	
1.64	9. 2	12.170	3. 14	10.8	13. 186	
1.74	9.2	12.170	3.64	11.2	13. 428	
1.84	9.6	12.432	3. 74	11.2	13.428	
1.94	9.7	12.496	3.84	11.2	13.428	
2.04	9.9	12.624	3.94	11.4	13. 547	
2.14	10.0	12.688	4.04	12.0	13.899	
2.34	10.1	12.751	4.14	11.8	13. 783	
2.64	10.6	13.063	4. 24	11.9	13.841	
2.84	11.0	13. 307	4.64	11.7	13.724	
3.04	11.4	13. 547				
3. 24	11.4	13. 547				
3. 44	11.5	13.606				

3.54	11.8	13.783
3.64	11.8	13.783
4.14	11.7	13, 724

做出 y-v 曲线:

图表 1: 光滑平板表面速度分布

图表 2: 粗糙平板表面速度分布

对散点进行多项式逼近,考虑实验误差,图表中速度值最终都趋于收敛,故可得到以下定性结论:

a) 取抛物线顶点处近似边界层位置,则

表 8: 边界层厚度初步结论

/	δ/r	nm
x/mm	光滑平板	粗糙平板
58	2.30	
60		4.53
75	2.40	
97		4.43

第8页共12页

- b) 平板越粗糙, 边界层越厚:
- c) 在边界层之内离平板越远, 速度越大。

对粗糙平板而言,x 越大边界层越薄明显存在问题,故不能通过 y-v 曲线直接 找到边界层。而且这样近似由于精度问题,无法进一步确定所在流域为层流或 湍流。

3)为准确测得边界层厚度,先由颈缩比和静压 p,结合式(11)计算来流速度 u,即 v_δ 。在本实验中,我们都把风洞来流速度调到 50%,故可计算出各点并取众数来近似风速。

		2 7 7 VI VIII 20 13	_	
u(m/s)	光滑平板		粗糙平板	
	14. 150	14. 742	14. 522	14.633
	14. 150	14.633	14.633	14. 467
	14.093	14. 522	14. 633	14. 467
	14.320	14.411	14. 742	14. 633
	14. 150	14. 299	14.687	14. 522
	14. 264	14. 522	14. 411	14. 467
	14. 377	14. 411	14.687	
	14.320	14. 467	14. 633	
₩, †□	13.745	14. 467	14. 687	
数据	14. 264	14. 411	14.687	
	13.804	14. 355	14. 577	
	13. 978	14. 467	14. 522	
	14. 377	14. 355	14.467	
	14. 150	14. 411	14. 522	
	13. 978	14. 355	14.797	
	14. 320	14. 299	14.687	
	14. 489	14.411	14.742	
	14. 036	14. 522	14. 577	
众数	14. 150		14. 411	

表 9: 来流速度

根据气温查表可得大气粘度,从而可计算出各x位置雷诺数,进而计算出各x位置边界层厚度。

T/°C $\mu \ (\times 10^{-5})$ u(m/s) $Re(\times 10^5)$ δ(mm) X (mm)5.52 4.55 58 19.50 14. 150 1.8065 75 7.14 5.18 4.58 5.84 60 19.00 14.411 1.8040 9.44 5.82

表 10: 边界层厚度计算值

这里的边界层厚度和前面直接从图上看出的相差较大,特别是对光滑平板的实验,初步推测为实验误差,但不难得出以下结论:

- a) 在距平板前缘相同位置处, 平板表面越粗糙, 雷诺数越大;
- b) 离平板前缘越远, 雷诺数越大, 边界层越厚。
- 4)无量纲速度分布: 计算出 y/δ ; 并计算出 v/v_δ ; 绘制无量纲二者曲线并进行拟合。

表 11:无量纲速度分布 (光滑平板)

农工,况重有起及为"(九切)"					
X=58	3mm	X=75r	nm		
y/δ	v/v_{δ}	y/δ	v/v_{δ}		
0.141	0.793	0.124	0.678		
0.196	0.828	0.172	0.757		
0.251	0.88	0.22	0.875		
0.305	0.938	0.239	0.933		
0.360	0.938	0.259	0.938		
0.415	0.955	0.268	0.938		
0.470	0.971	0.317	0.963		
0.580	0.971	0.365	0.984		
0.690	0.925	0.413	0.95		

表 12: 无量纲速度分布 (粗糙平板)

X=60mm		X=97	X=97mm	
y/δ	v/v_{δ}	y/δ	v/v_{δ}	
0. 140	0. 752	0.110	0.653	
0.162	0. 757	0. 127	0.676	
0. 183	0. 768	0.162	0.682	
0. 205	0. 778	0.196	0.737	
0. 249	0.778	0.230	0.773	
0. 271	0.826	0. 265	0.768	
0. 293	0.816	0.282	0.812	
0.314	0.831	0.368	0.849	
0. 336	0.835	0.454	0.885	
0.358	0.844	0.540	0.915	
0.380	0.844	0.625	0.932	
0.402	0.863	0.643	0.932	
0.424	0.867	0.660	0.932	
0.445	0.876	0.677	0.940	
0.467	0.880	0.694	0.964	
0.511	0.885	0.711	0.956	
0. 576	0.906	0.729	0.960	
0.620	0.923	0.797	0.952	
0.664	0.940			
0.707	0.940			
0.751	0.944			
0.773	0.956			
0. 795	0.956			

图表 3: 光滑平板边界层内无量纲速度分布

图表 4: 粗糙平板边界层内无量纲速度分布

结论

数据分析过程中已经验证了一些定性关系,这里对无量纲速度分布进行分析。首先针对光滑平板, x=58mm 和 x=75mm 分别用多项式和指数函数逼近,相关性均较差,舍去末尾几个点,x=75mm 可用二次多项式逼近且相关性不错,故可判断此时处于平流层,转捩点在 75mm 之后; 对粗糙平板而言, x=60mm 和 x=97mm 时都可用指数函数逼近且有较强相关性,故二者均位于湍流区。

实验同时还验证了边界层具有以下两个基本特征: 1) 边界层厚度 要比流场流动的特征尺寸 L 小的多,即 8<1; 2) 边界层内的粘性力与惯性力量级相同。这是因为边界层内速度梯度很大,即使流体的粘度很小,但作为速度梯度与粘度的乘积-粘性力仍然不可忽略。

思考与讨论

- 1) 实验中的不足:
- a) 用风洞测试段入口处静压近似平板表面静压过程中, 平板前 缘 离 静 压测试点太近, 静压测量受一定影响;
- b)未提前对实验有完整规划,前期缺乏理论推导,选取数据代表性较差 且误差严重;
- c)为找到一个比较精确的边界层厚度计算方法,导致整个实验 数 据 处 理 比较麻烦。
- 2)除了对无量纲速度分布拟合,还可以怎么判断层流和湍流区?

层流边界层比紊流边界层压强低,可通过边界层压强大小来区分层流和紊流,同时也可以通过边界层压强突变来找到转捩点。