

Московский авиационный институт (национальный исследовательский институт)

Институт №8 "Компьютерные науки и прикладная математика"

Кафедра №806 "Вычислительные математика и программирование"

Выпускная квалификационная работа на тему:

«Фильтрация двумерного траекторного сигнала для формирования радиолокационных изображений на беспилотных аппаратах»

Студент: Велесов Даниил Игоревич

Группа: М8О-408Б-20

Руководитель проекта: Гаврилов Константин Юрьевич – Доктор

технических наук, профессор кафедры 806 МАИ

Актуальность выпускной работы

ВКР (б) студента Велесова Даниила Игоревича

Цель и задачи выпускной работы

Цель - Создание алгоритмов и программ для формирования РЛИ, позволяющих существенно ускорить процедуру формирования синтезированного изображения.

Задачи:

- Разработка алгоритма фильтрации и реализация его в виде программы.
- Выявление факторов характеристики фильтров, размер сцены и разрешающая способность, влияющих на конечное качество изображения.
- Разработка программы моделирования радиолокационных сигналов и преобразования их в радиолокационные изображения.

Постановка задачи

Дано: Модель двумерной сцены в виде множества точечных отражателей.

Необходимо: С сформировать преобразовав троизображение.

С помощью разработанных программ радиолокационное изображение, траекторный сигнал в синтезируемое

Основные этапы выпускной работы

- Разработка алгоритма и программы формирования траекторного сигнала.
- Разработка алгоритма фильтрации сигнала и синтезирования изображения.
- Разработка программы синтезирования РЛИ с применением множественной фильтрации.
- Анализ эффективности применяемых алгоритмов фильтрации траекторных сигналов.

Стек технологий

В частности был использован модуль Signal Processing

Процесс формирования радиолокационного изображения

Формирование сигнала с радара

Фильтрация с помощью БПФ

Формирование траекторного сигнала

- А точечный отражатель на земной поверхности;
- h высота полета ЛА;
- О' линия полета ЛА;
- R0 Наклонная дальность до точки А;
- L интервал синтезирования апертуры (область видимости точки A);
- хі координата;
- xi = V * ti, V <u>скорос</u>ть ΛΑ;
- $R_i = \sqrt{R_0^2 + x_i^2} = \sqrt{R_0^2 + (Vt_i)^2}$ Дальность до і-ой точки

Применение Быстрого преобразования Фурье для согласованной фильтрации сигнала

1. Двумерное Быстрое преобразование Фурье

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)},$$

$$F(x,y) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(u,v) e^{i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}.$$

2. Формирование импульсной характеристики согласованного фильтра в частотной области

$$h_{c\Phi}(n,m) \to h_{\text{сигн}}(N-n,M-m) \to \text{Б}\Pi\Phi \to H_{c\Phi}$$

3. Фильтрация в частотной области

$$f_{\rm p,u} = F_2^{-1}\{\dot{F} \oplus \dot{H}\}$$

MAU

Множественный фильтр

Использование одного фильтра

Использование двух фильтров (Нижняя точка стала более читаемой)

Множественный фильтр

Наложение нескольких фильтров на одной точке

Описание программной разработки

Пример полученных изображений

Образ букв "М", "А", "І" полученный на трёх фильтрах (величина фильтра - 10 метров)

Изображение траекторного сигнала

Синтезированное радиолокационное изображение

Пример полученных изображений

Образ самолета, полученный на 10 фильтрах (величина фильтра - 10 метров)

Изображение траекторного сигнала

Синтезированное радиолокационное изображение

Заключение

- Разработана программа для создания РЛИ.
- Оптимальная ширина полосы фильтра приблизительно 10 метров.
- Фильтры должны плотно покрывать весь диапазон обзора, при этом не перекрывая друг друга.
- Дальнейшее развитие данной работы может быть полезно в различных областях, таких как: разведка, исследование, мониторинг территории.
- Возможна реализация данного алгоритма с применением отечественного/открытого ПО.