A Computational Analysis of a Set Parameter Beta-Type Stirling Engine and Flywheel Design Optimization

Abstract

The effectiveness of an energy conversion system is often defined by its losses: what causes them, how significant they are, and how they can be reduced to improve overall system performance. For Beta-type Stirling engines, we examine work generation in real versus ideal conditions, torque balance across the cycle, crankshaft speed fluctuation, and phase angle sensitivity. We also size a flywheel to meet a target coefficient of fluctuation given material and geometric constraints.

1 Introduction

Stirling engines provide a straightforward yet effective method of converting heat into mechanical work. To evaluate performance, we analyze each phase of the cycle versus crank angle θ , comparing pressure, volume, work, and torque distributions. Beyond the thermodynamic cycle, the flywheel must supply sufficient inertia to maintain near-constant angular velocity without overloading the system.

2 Given Parameters

Key parameters used throughout the analysis are summarized below.

Table 1: Initial engine and operating parameters (given).

Parameter	Symbol	Value	Units
Power piston crank length	r_p	0.025	m
Power piston connecting rod	ℓ_p	0.075	m
Displacer crank length	r_d	0.02	m
Displacer connecting rod	ℓ_d	0.14	m
Displacer volume	V_d	4.0×10^{-5}	m^3
Cylinder bore diameter	D	0.05	m
Phase shift	ϕ	$\pi/2$	rad
Compression ratio	CR	1.7	_
Hot temperature	T_h	900	K
Cold temperature	T_c	300	K
Gas pressure at BDC	P_{BDC}	500	kPa (abs)
Atmospheric pressure	$P_{\rm atm}$	101.3	kPa (abs)
Regenerator dead volume	V_{reg}	2.0×10^{-5}	m^3
Flywheel width	w	0.025	m
Flywheel rim thickness	t	0.05	m
Flywheel material density	ρ	8000	${ m kg/m^3}$
Coefficient of fluctuation	C_f	0.003	
Average rotational speed	$\overline{\Omega}$	650	rpm

3 Stirling Engine Overview

Figure 1 shows the Beta-type Stirling engine schematic used in this study.

Figure 1: Stirling engine diagram.

4 Methodology

We discretize the crank angle as $\theta \in [0, 2\pi)$ with 360 evenly spaced points. With equal bore diameters, the cross-sectional area is $A = \pi D^2/4$.

4.1 Slider-Crank Kinematics

Piston/displacer positions follow the slider–crank with rod obliquity. For a crank radius r and rod length ℓ :

$$\beta(\theta) = \arcsin\left(\frac{r}{\ell}\sin\theta\right),\tag{1}$$

$$x(\theta) = \ell \cos \beta(\theta) - r \cos \theta. \tag{2}$$

We use $x_p(\theta)$ for the power piston and $x_d(\theta + \phi)$ for the displacer (phase shifted by ϕ).

4.2 Cold/Hot Volumes

Cold height is the separation between displacer and power piston minus fixed offsets; hot height is measured from the top space above the displacer:

$$h_c(\theta) = \left[x_d(\theta + \phi) - x_p(\theta) \right] - h_{\text{pin}} - \frac{1}{2}h_d, \tag{3}$$

$$h_h(\theta) = H_{\text{tot}} - \frac{1}{2}h_d - x_d(\theta + \phi), \tag{4}$$

with volumes

$$V_c(\theta) = A h_c(\theta), \qquad V_h(\theta) = A h_h(\theta), \qquad V_r = \text{const.}$$
 (5)

4.3 Schmidt Analysis and Mass from BDC

Let T_c, T_h, T_r be cold, hot, and regenerator temperatures and R the specific gas constant. Total mass is fixed and determined at BDC ($\theta = 0$) using the known absolute pressure P_{BDC} :

$$m = \frac{P_{\text{BDC}}}{R} \left(\frac{V_c(0)}{T_c} + \frac{V_r}{T_r} + \frac{V_h(0)}{T_h} \right).$$
 (6)

Instantaneous absolute pressure then follows the Schmidt relation

$$P(\theta) = \frac{mR}{\frac{V_c(\theta)}{T_c} + \frac{V_r}{T_r} + \frac{V_h(\theta)}{T_h}}.$$
 (7)

Cycle work is evaluated numerically as

$$W = \oint P \, dV \approx \sum_{k} P(\theta_k) \, \Delta V(\theta_k) \quad \text{(trapezoidal rule)}. \tag{8}$$

4.4 Torque with Rod Obliquity

Net axial force on the power piston is $F_p(\theta) = (P(\theta) - P_{\text{atm}}) A$. With β from Eq. (1) and crank radius r_p , the torque is

$$\tau(\theta) = -F_p(\theta) \frac{r_p \sin \theta}{\cos \beta(\theta)}.$$
 (9)

The displacer contributes zero torque (equal pressure both sides, zero rod area).

4.5 Flywheel Sizing

Let ω_{avg} be the average angular speed and C_f the target coefficient of fluctuation. From the torque deviation about its mean, compute the cumulative energy variation and define the energy fluctuation ΔE as the peak-to-peak of that signal. The required inertia is

$$I_{\text{req}} = \frac{\Delta E}{C_f \,\omega_{\text{avg}}^2}.\tag{10}$$

Using a rim-dominant ring of width w, thickness t, density ρ , and outer radius R, the moment of inertia is

$$I_{\text{rim}}(R) = \frac{1}{2} M(R) \left(R^2 + R_{\text{in}}^2 \right), \quad M(R) = \rho \pi w \left(R^2 - R_{\text{in}}^2 \right), \quad R_{\text{in}} = R - t.$$
 (11)

We solve $I_{\text{rim}}(R) = I_{\text{req}}$ with a short fixed-point update. Start from a ring-based guess $R^{(0)} = \sqrt{I_{\text{req}}/(\pi \rho w t)} + t/2$. At each step, evaluate $I_{\text{act}} = I_{\text{rim}}(R^{(k)})$, form $\eta = I_{\text{req}}/I_{\text{act}}$, and rescale

$$R^{(k+1)} = R^{(k)} \eta^{1/3}, \qquad R_{\rm in} = R^{(k+1)} - t.$$
 (12)

Stop when the relative error $|I_{\text{act}} - I_{\text{req}}|/I_{\text{req}}$ drops below a tolerance (or after a max iteration count). Why cube root? For a rim-dominant geometry, inertia scales approximately like R^3 , so scaling R by $\eta^{1/3}$ moves directly toward the required inertia with stable, fast convergence. Finally, set diameters $D_{\text{out}} = 2R$, $D_{\text{in}} = 2R_{\text{in}}$ and mass M(R), checking against any maximum diameter constraint.

4.6 Energy-Based Dynamics

With load torque equal to mean engine torque, the net torque drives angular acceleration $\alpha = T_{\rm net}/I$. Using the work–energy theorem over angle increments with cumulative work $W_{\rm net}(\theta)$, we update speed via

$$\Omega^{2}(\theta) = \Omega_{\text{avg}}^{2} + \frac{2W_{\text{net}}(\theta)}{I}, \qquad \Omega(\theta) = \max(0.1\,\Omega_{\text{avg}},\,\sqrt{\Omega^{2}(\theta)}), \tag{13}$$

then normalizes Ω to recover the target average.

4.7 Phase Optimization

We perform a three-stage search over ϕ : a coarse scan from 30° to 150° in 2° steps; a medium scan within ± 6 ° of the coarse best at 0.1° resolution; and a fine scan within ± 0.5 ° at 0.01°

resolution. Mean torque is integrated over θ , power is $\bar{\tau} \omega_{avg}$, and the best ϕ maximizes power.

5 Results

Results include p-V work, torque versus crank angle, phase sensitivity, and flywheel size meeting the specified coefficient of fluctuation. Plots are omitted here.

6 Discussion

The analysis highlights sensitivity to phase shift and clearance volumes. Idealized assumptions (Schmidt analysis, isothermal zones) tend to overpredict work; incorporating losses would reduce predicted performance.

7 Conclusion

We reproduced a codified analysis of a Beta-type Stirling engine, sized a flywheel to achieve a target fluctuation coefficient, and identified an optimal phase shift to maximize cycle work. Future work should incorporate non-ideal heat transfer and frictional losses.