MC-Cons 2.0

Gabriel Parent

introduction

introduction 2/19

I work with 2D structures

pdbid:2TRA, tRNA-ASP Westhoff, Acta Crystallographica,1988

introduction 3/19

one RNA has many structures

introduction 4/19

softwares predict structure

- MC-Fold (Parisien, Major, Nature, 2008)
- Mfold (Zuker, NAR, 2003)
- many others

introduction 5/19

RNA families

RFam (Nawrocki, NAR, 2014)

introduction 6/19

what has been done

- MC-Cons (Parisien, Major, Nature 2008)
- uses fold then align strategy (Gardner, Giegerich, BMC Bioinfo, 2003)
- suitable for small and similar structures

introduction 7/19

MC-Cons 2.0

MC-Cons 2.0 8/19

RNA consensus

MC-Cons 2.0 9/19

computational approach

	A	В	O	D
A	0	5	3	4
В		0	3	4
С			0	2
D				0

score = 42

MC-Cons 2.0 10/19

it is very hard!

- result is the solution to max-clique
- exponential growth on input size

MC-Cons 2.0 11/19

heuristic approach

- genetic algorithm (Barricelli, Methodos, 1954)
- local search

MC-Cons 2.0 12/19

results

results 13/19

Iron Response Elements

results 14/19

microRNAs

results 15/19

conclusion

conclusion 16/19

summary

- MC-Cons was slow, now its fast enough
- Useful for exploration of RNA families with computational tools
- It is easily extensible
- Still some tweaking to do with the workflow

conclusion 17/19

future work

- Devise and implement better distance functions
- Multi-objective optimization to explore those distance functions (NSGA2)
- Implement relevance feedback to score consensus

conclusion 18/19

questions

conclusion 19/19