STATIC ELECTRICITY PROTECTION CIRCUIT

Publication number: JP2001127663

Publication date:

2001-05-11

Inventor:

HAYAKAWA TOSHITAKA

Applicant:

NGK SPARK PLUG CO

Classification:

- international:

H05F3/02; H04B1/04; H04B1/18; H04B1/40; H05F3/02;

H04B1/04; H04B1/18; H04B1/40; (IPC1-7): H04B1/40;

H05F3/02

- European:

Application number: JP19990308079 19991029 Priority number(s): JP19990308079 19991029

Report a data error here

Abstract of JP2001127663

PROBLEM TO BE SOLVED: To provide a static electricity protection circuit that can protect a circuit network in a circuit module from static electricity without affecting adversely miniaturization and weight reduction of a mobile communication unit. SOLUTION: In an antenna switch 20 to which the static electricity protection circuit 20 is applied, the static electricity protection circuit 20a built in the antenna switch 20 comprises a capacitor C0 that is connected between an antenna terminal ANT, to which an antenna is electrically connected, and an input output terminal J of a switch circuit 20b and of an inductor L0 connected between the antenna terminal of the capacitor C0 and a case grounding FG. The inductor L0 and the capacitor C0 block intrusion of AC and DC components of at least a frequency lower than a communication frequency of the mobile phone. Since the static electricity intruding from the antenna escapes to the case grounding FG at the pre-stage of the switch circuit 20b, the static electricity can be blocked against the switch circuit 20b.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

1

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-127663

(P2001 - 127663A)

(43)公開日 平成13年5月11日(2001.5.11)

(51) Int.Cl. ⁷		識別記号	FΙ		;	テーマコート*(参考)
H 0 4 B	1/40		H04B	1/40		5G067
	1/04			1/04	N	5 K 0 1 1
	1/18			1/18	G	5 K 0 6 0
H05F	3/02		H05F	3/02	ĸ	5 K 0 6 2

審査請求 未請求 請求項の数4 OL (全 12 頁)

(21) 出願番号 特願平11-308079

(22) 出願日 平成11年10月29日(1999.10.29)

(71)出願人 000004547

日本特殊陶業株式会社

愛知県名古屋市瑞穂区高辻町14番18号

(72)発明者 早川 俊高

名古屋市瑞穂区高辻町14番18号 日本特殊

陶業株式会社内

(74)代理人 100095795

弁理士 田下 明人 (外1名)

Fターム(参考) 50067 AA53 DA02 DA40

5K011 DA02 DA22 DA27 JA01 KA11 5K060 BB02 CC04 CC12 DD04 HH11

HH39 JJ03 JJ04 JJ23

5K062 AB15 AC01 AE04 BA03 BB03

BB09 BC03

(54) 【発明の名称】 静電気保護回路

(57)【要約】

【課題】 移動体通信機の小型軽量化を妨げるととなく して、回路モジュール内の回路網を静電気から保護し得 る静電気保護回路を提供する。

【解決手段】 静電気保護回路20aを適用したアンテナスイッチ20によると、アンテナスイッチ20に内蔵される静電気保護回路20aは、アンテナが電気的に接続されるアンテナ端子ANTとスイッチ回路20bの入出力端子Jとの間に接続されるコンデンサC0と、このコンデンサC0のアンテナ端子ANT側に一端側と筐体接地FGとの間に接続されるインダクタL0と、から構成されており、インダクタL0およびコンデンサC0により、携帯電話機の通信周波数よりも少なくとも低い周波数の交流成分および直流成分の通過を阻止する。これにより、アンテナ側から侵入した静電気を、スイッチ回路20bに侵入する静電気を阻止できる。

【特許請求の範囲】

【請求項1】 移動体通信機のアンテナに接続される回 路モジュール内の回路網を静電気から保護する静電気保 護回路であって、

1

前記回路モジュールに前記アンテナが接続されるアンテ ナ接続側と前記回路網に通信信号が入力または出力され る信号入出力端子との間に接続され、前記回路モジュー ルに内蔵されるコンデンサと、

前記アンテナ接続側に接続される前記コンデンサの一端 側と接地との間に接続され、前記回路モジュールに内蔵 10 されるインダクタとを備え、

前記インダクタおよび前記コンデンサにより、前記移動 体通信機の通信周波数よりも少なくとも低い周波数の交 流成分および直流成分の通過を阻止することを特徴とす る静電気保護回路。

【請求項2】 前記接地は、前記回路網の接地と直流的 に絶縁されていることを特徴とする請求項1記載の静電 気保護回路。

【請求項3】 前記インダクタおよび前記コンデンサ は、

前記移動体通信機の通信信号の通過を許容するバンドバ スフィルタの少なくとも一部を構成することを特徴とす る請求項1または2記載の静電気保護回路。

【請求項4】 前記回路モジュールは、多層基板により 構成され、

前記インダクタまたは前記コンデンサの少なくとも一方 は、前記多層基板による積層構造により構成されること を特徴とする請求項1~3のいずれか一項に記載の静電 気保護回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、移動体通信機、例 えば携帯電話機、簡易型携帯電話機等のアンテナに接続 される回路モジュールを静電気から保護する静電気保護 回路に関するものである。

[0002]

【従来の技術】近年、携帯電話機や簡易型携帯電話機 (いわゆるPHS)を代表とする移動体通信機器の軽薄 短小化はめざましく、その多くは衣服等のポケットに入 れて持ち歩いても違和感を感じないほどに向上してい る。そのため、携帯電話機等を衣服のポケットやハンド バック等の中に入れて持ち歩くスタイルは、その利用者 にとっては日常化しており、上着の内ポケットやハンド バックから携帯電話機等を取り出して電話をかける風景 はよく見かけるところである。

【0003】ところで、合成繊維と乾燥した雰囲気とが 結びつくと静電気が発生しやすいことから、特に、空気 の乾燥しやすい季節(秋、冬)に衣類等が互いに擦れ合 う場合や自動車の座席から降りる場合等に静電気が起き るということが日常的な経験により知られている。この 50 【0009】さらに、請求項3の静電気保護回路では、

ような場合に発生する静電気の電圧は十数kVにも達す るため、衣服等のボケットに入れた携帯電話機等のアン テナに直接、静電気が飛び込むと、携帯電話機等の故障 原因につながるおそれがある。即ち、アンテナから携帯 電話機等内に侵入した静電気が、内部の回路モジュール の性能を劣化させ得るのである。

2

【0004】そのため、このような問題を解決するもの として、特開平6-112850号公報に開示される静 電気保護回路がある。との静電気保護回路では、アンテ ナと回路モジュール(送信用高周波増幅回路)との間に 使用周波数の (1/4)波長共振器を挿入することで、この (1/4)波長共振器は使用周波数の信号に対してはインピ ーダンスがほば無限大で回路モジュールには影響を与え ず、一方、直流に対してはインピーダンスがほぼ0であ ることから、アンテナに静電気による高電圧が印加され ても、その電荷は (1/4)波長共振器を通って接地側へ流 れ、回路モジュールの破損を免れるというものである。 [0005]

【発明が解決しようとする課題】しかしながら、前述し 20 た特開平6-112850号公報に開示される静電気保 護回路によると、 (1/4)波長共振器は、無損失分布定数 線路(例えばマイクロストリップライン)と、これに並 列接続された可変コンデンサとから構成される。そのた め、これらから構成される (1/4)波長共振器を設けるた めのスペースを確保する必要が生ずることから、静電気 保護回路を構成する回路部品の大きさ自体が前述した携 帯電話機等の小型軽量化を妨げるという問題がある。

【0006】本発明は、上述した課題を解決するために なされたものであり、その目的とするところは、移動体 30 通信機の小型軽量化を妨げることなくして、回路モジュ ール内の回路網を静電気から保護し得る静電気保護回路 を提供することにある。

[0007]

【課題を解決するための手段】上記目的を達成するた め、請求項1の静電気保護回路では、移動体通信機のア ンテナに接続される回路モジュール内の回路網を静電気 から保護する静電気保護回路であって、前記回路モジュ ールに前記アンテナが接続されるアンテナ接続側と前記 回路網に通信信号が入力または出力される信号入出力端 子との間に接続され、前記回路モジュールに内蔵される コンデンサと、前記アンテナ接続側に接続される前記コ ンデンサの一端側と接地との間に接続され、前記回路モ ジュールに内蔵されるインダクタとを備え、前記インダ クタおよび前記コンデンサにより、前記移動体通信機の 通信周波数よりも少なくとも低い周波数の交流成分およ び直流成分の通過を阻止することを技術的特徴とする。

【0008】また、請求項2の静電気保護回路では、請 求項1において、前記接地は、前記回路網の接地と直流 的に絶縁されていることを技術的特徴とする。

10

請求項1または2において、前記インダクタおよび前記 コンデンサは、前記移動体通信機の通信信号の通過を許 容するバンドパスフィルタの少なくとも一部を構成する ことを技術的特徴とする。

【0010】さらにまた、請求項4の静電気保護回路で は、請求項1~3のいずれか一項において、前記回路モ ジュールは、多層基板により構成され、前記インダクタ または前記コンデンサの少なくとも一方は、前記多層基 板による積層構造により構成されることを技術的特徴と

【0011】請求項1の発明では、移動体通信機のアン テナに接続される回路モジュールのアンテナ接続側とこ の回路モジュール内の回路網の信号入出力端子との間に 接続されるコンデンサと、このコンデンサのアンテナ接 続側の一端側と接地との間に接続されるインダクタとを 回路モジュールに内蔵し、これらのインダクタおよびコ ンデンサにより、移動体通信機の通信周波数よりも少な くとも低い周波数の交流成分および直流成分の通過を阻 止する。即ち、回路モジュールに内蔵するインダクタお よびコンデンサによって通信周波数よりも少なくとも低 20 い周波数の交流成分および直流成分の通過を阻止するハ イパスフィルタを構成する。これにより、アンテナから 回路モジュール内に静電気が侵入しても、静電気の直流 成分および通信周波数よりも低い周波数の交流成分を、 インダクタにより接地側に逃がすとともにコンデンサに より回路モジュールの回路網側への侵入を阻止すること ができる。

【0012】請求項2の発明では、インダクタの接続さ れる接地は、回路網の接地と直流的に絶縁されていると とから、インダクタを通して逃げた静電気の直流成分お 30 よび通信周波数よりも低い周波数の交流成分が、回路網 の接地を介して回路網側に回り込むことを防止すること ができる。

【0013】請求項3の発明では、回路モジュールに内 蔵されるインダクタおよびコンデンサは、少なくとも移 動体通信機の通信信号の通過を許容するバンドパスフィ ルタの一部を構成することから、このバンドパスフィル タによって通信周波数よりも高い周波数の交流成分の通 過をも阻止することができる。

【0014】請求項4の発明では、回路モジュールに内 40 蔵されるインダクタまたはコンデンサの少なくとも一方 は、回路モジュールを構成する多層基板の積層構造によ り構成されることから、これらのインダクタおよびコン デンサを追加したことによる回路モジュール自体の大型 化を抑制することができる。

[0015]

【発明の実施の形態】以下、本発明の静電気保護回路を 携帯電話機のアンテナスイッチに適用した一実施形態に ついて図1~図12を参照して説明する。まず、アンテ づいて説明する。図2に示す携帯電話機は、通信周波数 に880~915MHz帯を使用し、その無線部は、主 に、送信部60、受信部70、アンテナ80、アンテナ スイッチ20等から構成される。なお、図2には示さな いが、携帯電話機はとの無線部の他に、マイクロコンビ ュータを中心としたディジタル回路により構成される制 御部や、二次電池、電源回路等から構成される電源部等 を有する。

【0016】送信部60は、無線送信周波数(880~ 915MHz帯)の高周波を発生可能な電圧制御型発振器 (以下「送信用VCO」という。) 62、この送信用V CO62から発生した高周波信号と変調器等から入力さ れた源信号と混合し出力するミキサ63、このミキサ出 力を電力増幅する送信アンプ66、この送信アンプ66 の出力から無線送信周波数(915MHz帯)よりも高い 周波数成分を除去する低域通過フィルタ(以下「LP F」という。) 68、および、入出力を平衡線路とする 送信アンプ66に対し平衡・不平衡の入出力変換を行う バラン64から構成される。送信部60から出力された 高周波信号は、アンテナスイッチ20を介してアンテナ 80側に振り分けられアンテナ80から空間に放射され る。

【0017】受信部70は、アンテナ80により受信し た高周波信号をアンテナスイッチ20を介して取り込み 必要な周波数成分の通過を許容する帯域通過フィルタ (以下「BPF」という。) 71、BPF71の出力信 号を増幅する受信アンプ73、この受信アンプ73の出 力から無線受信周波数(925~960MHz帯)より所 定周波数だけシフトした高周波を発生可能な電圧制御型 発振器(以下「受信用VCO」という。) 76、この受 信用VCO76から発生した髙周波信号と受信アンプ7 3の出力とを混合し所定周波数の信号波を復調器に出力 するミキサ78、および、入出力を平衡線路とするミキ サ78に対し平衡・不平衡の入出力変換を行うバラン7 4から構成される。受信部70によって所定周波数に変 換された信号波は、復調器等に入力されて音声帯域信 号、ディジタル信号等に復調される。

【0018】このように本実施形態に係る静電気保護回 路を内蔵したアンテナスイッチ20は、アンテナ80に より受信した髙周波信号を送信部60側に与えることな く、受信部70側に送り込む一方で、送信部60により 送信する髙周波信号を受信部70側に与えることなく、 アンテナ80に送り出して空中に放射するという、伝送 路を通過する高周波信号の振り分けを行う機能を有する ものである。

【0019】次にアンテナスイッチ20の構成を図1、 図3~図5等に基づいて説明する。図1に示すように、 アンテナスイッチ20は、静電気保護回路20aとスイ ッチ回路20bとから構成されている。静電気保護回路 ナスイッチ20を適用した携帯電話機の構成を図2に基 50 20 a は、アンテナ80 が電気的に接続されるアンテナ

6

端子ANT (アンテナ接続側) とスイッチ回路20bの 入出力端子Jとの間に接続されるコンデンサC0と、C のコンデンサCo のアンテナ端子ANT側に一端側と筐 体接地FGとの間に接続されるインダクタL0と、から 構成されており、アンテナ80側から侵入した静電気 を、回路網としてのスイッチ回路20bの前段で筐体接 地FG側に逃がし、スイッチ回路20bに侵入すること を阻止しようとするものである。

【0020】つまり、静電気の周波数成分はその大部分 が直流成分あるいは比較的周波数の低い交流成分である 10 ことが知られているため、インダクタLOとコンデンサ Coとにより高域通過フィルタ(以下「HPF」とい う。)を構成することで、後段のスイッチ回路20bに まで静電気が侵入することを阻止するのである。ここ で、インダクタLOは、コンデンサCOよりもアンテナ8 0側に位置させることにより、アンテナ80側から侵入 した静電気をコンデンサC0よりもアンテナ80側で筐 体接地FG側に逃がす構成を採る。これにより、コンデ ンサC0をインダクタL0よりもアンテナ80側に位置さ デンサ〇0に蓄えられることがないため、静電気による コンデンサCoの破壊を防ぐことができる。また、この 筐体接地FGは、後述するスイッチ回路20bの接地、 即ち信号接地SGと直流的に絶縁されている。とれによ り、インダクタLOを通して逃げた静電気が、静電気保 護回路20aの筺体接地FGを介してスイッチ回路20 b側に回り込むことを防止することができる。したがっ て、アンテナスイッチ20内のスイッチ回路20bを静 電気からより確実に保護し得る効果もある。

【0021】また、インダクタL0とコンデンサC0とか ら構成されるHPFによる減衰量が3dBに達する周波 数(以下「低域遮断周波数」という。)fCLは、例えば 携帯電話機の通信周波数が915MHzのときには、90 MHz前後に設定される(図10(A)参照)。 このように HPFによる低域遮断周波数 f CLを通信周波数の半分以 下、あるいは1/10以下に設定することによって、設 計時または製品試作時にHPF、即ち静電気保護回路2 O a の低域遮断周波数 f CLを設定すれば、製品量産時に 個々に当該周波数の調整を行う必要がない。これによ り、調整可能な機構を有する部品、例えば可変コンデン サ等をコンデンサCo に用いる必要がないので、静電気 保護回路20aによるアンテナスイッチ20の大型化を 抑制するとともに調整箇所の増加を防ぐことができる。 したがって、携帯電話機の小型軽量化を妨げることな く、しかも調整工数の増加を招来せずにスイッチ回路2 Obを静電気から保護し得る効果がある。

【0022】図1に示すように、スイッチ回路20b は、結合コンデンサC1、C3、C4、バイパスコンデ ンサC2、チョークコイルL1、インダクタL2、髙周 波スイッチングダイオード D1 、 D2 の回路素子から構 50 結合コンデンサ C3 、 インダクタ L2 および結合コンテ

成されている。つまり、送信部70に接続される端子T Xと静電気保護回路20aに接続される端子」との間の 伝送経路については、端子VCNT に制御電圧を加えると とによって、端子TXに接続される結合コンデンサC1 から端子」に接続される結合コンデンサC3 までが髙周 波スイッチングダイオード D1 を介して交流的に確立さ れるとともに、結合コンデンサC3 に接続されるインダ クタL2 の高周波スイッチングダイオードD2 側が交流 的にも低インピーダンスになるように、結合コンデンサ C1、C3、インダクタL2、髙周波スイッチングダイ オードD1、D2の回路素子が接続される。一方、受信 部60に接続される端子RXと静電気保護回路20aに 接続される端子Jとの間の伝送経路については、端子V ONT に印加される制御電圧が断たれることによって、結 合コンデンサC3 に接続されるインダクタL2 の高周波 スイッチングダイオードD2 側が高インピーダンスにな るため、結合コンデンサC3からインダクタL2を介し て端子RXに接続される結合コンデンサC4までが交流 的に確立されるとともに、結合コンデンサC1から結合 せて構成したHPFに較べて、静電気エネルギーがコン 20 コンデンサC3 までの伝送経路が高周波スイッチングダ イオードD1 により遮断されるように、結合コンデンサ C1、C3、C4、インダクタL2、 髙周波スイッチン グダイオードD1、D2の回路素子が接続される。な お、チョークコイルL1 は端子VOVT 側に高周波信号が 流れ込まないように阻止するインダクタで、バイパスコ ンデンサC2 は端子VONT 側に飛び込んだ髙周波信号を 信号接地SGに逃がすためのコンデンサである。

> 【0023】このようにスイッチ回路20bを構成する ことによって、端子VONT に制御電圧が印加されると、 30 チョークコイルL1 を介して高周波スイッチングダイオ ードD1、D2 に順方向電圧が印加されるところ、端子 TXから結合コンデンサC1、高周波スイッチングダイ オードD1、結合コンデンサC3までの伝送経路が交流 的に確立されるとともに、高周波スイッチングダイオー ドD2 側のインダクタL2 の一端が交流的にも信号接地 SGに接続されるので、端子TXから入力れた送信部6 0による高周波信号は、端子RX側に導かれることなく 結合コンデンサC3 および静電気保護回路20aを介し てアンテナ端子ANTに接続されたアンテナ80から空 間に放射される。

【0024】一方、端子VCNT に印加されていた制御電 圧が切断されると、チョークコイルL1を介して印加さ れていた高周波スイッチングダイオードD1、D2の順 方向電圧が断たれるところ、端子TXから結合コンデン サC1、高周波スイッチングダイオードD1、結合コン デンサC3 までの伝送経路が交流的に遮断されるととも に、高周波スイッチングダイオードD2側のインダクタ L2 の一端が高インピーダンスになるので、端子Jから 入力された受信信号は、端子TX側に導かれることなく

ンサC4を介して端子RXに接続された受信部60に伝 送される。

【0025】したがって、端子TXから端子Jまでの伝 送経路および端子Jから端子RXまでの伝送経路を確立 または遮断する髙周波スイッチングダイオードD1、D 2 がスイッチ回路20bの要となるが、高周波スイッチ ングダイオード D1 、 D2 は半導体により構成される。 そのため、静電気による十数kVの高電圧には極めて弱 く、静電気の印加によって、逆方向特性の劣化や素子自 体の破壊につながるととが多い。そこで、前述した静電 10 気保護回路20aをスイッチ回路20bのアンテナ端子 ANT側前段に位置させることによって、携帯電話機の アンテナ80から飛び込んだ静電気がアンテナ端子AN Tを経由してアンテナスイッチ20に侵入しても、静電 気の直流成分および所定周波数以下の交流成分を、静電 気保護回路20aのインダクタLぴこより筐体接地FG 側に逃がすとともにコンデンサCoによりスイッチ回路 20 b 側への侵入を阻止することができる。したがっ て、本実施形態においては、携帯電話機の小型軽量化を 妨げることなくして、アンテナスイッチ20内のスイッ チ回路20bを静電気から保護し得る効果がある。

【0026】ととで、アンテナスイッチ20を多層基板 に実装した一例を図3~図5に基づいて説明する。図3 に示すように、アンテナスイッチ20は、例えば14層 のガラスセラミック基板(以下「基板」という。)2 2, 23, 24, 25, 26, 27, 28, 29, 3 0、31、32、33、34、35を積層したセラミッ ク積層構造からなり、例えば誘電体セラミックシートを 積層し、低温焼結することにより形成される。なお、図 4 および図5 には、積層構造を展開した様子が示されて いる。

【0027】図4および図5に示すように、アンテナス イッチ20を構成する基板は、コンデンサC1、C3、 C4、インダクタL0、L1等の部品が実装される面側 から順に配線パターン22a、アースパターン22b、 22cを形成する基板22が位置し、その下に基板22 からのバイアホール41、42、43、44、45、4 6、47、48、49、50、51を形成する基板2 3、24がそれぞれ位置する。またこの基板24の下に ベタアースのパターン25 aを形成する基板25が位置 40 し、その下に基板22、23、24、25からのバイア ホール41、42、43、44、45、46、47、4 8、49、51を形成する基板26、さらにはインダク タL2 のパターン27a、28aをもそれぞれ形成する 基板27、28が、それぞれ位置する。そして、基板2 8の下に基板22、23、24、25、26、27、2 8からのバイアホール41、42、43、44、45、 46、47、48、49、51、52、53等を形成す る基板29、30、31、32、さらにコンデンサC0

タアースのパターン34aをそれぞれ形成する基板3 3、34がそれぞれ位置し、最下層に基板35が位置す る。なお、基板22、23、24、25、26、27、 28、29、30、31、32、33、34、35に形 成されるバイアホール41、42、43、44、45、 46、47、48、49、50、51、52、53は図 4 および図5 において黒丸と破線により示されている。 【0028】最下層に位置する基板35には、アンテナ スイッチ20を携帯電話機を構成する基板に実装する必 要から、電極部35a、35b、35c、35d、35 e、35f、35g、35h、35i、35jが設けら れており、平面周囲の形状が凹凸に形成されている。そ して、電極部35aは端子TX、電極部35b、35 d、35f、35h、35i、35jは信号接地SGま たは筐体接地FG、電極部35cは端子RX、電極部3 5 e は端子VCNT、電極部35gはアンテナ端子ANT にそれぞれに対応する。また基板32、33、34の平 面形状は、基板35の平面形状に適合させることによ り、これらの電極部35a~35jに接続される内部配 線23a、30a、32a、32c、32d、32f、 32g、32h、32i、32j等を可能にしている。 【0029】なお、図4および図5に示すように、イン ダクタL2 およびコンデンサC2 は多層基板による積層 構造によって構成されるが、インダクタLO やコンデン サC0 においてもインダクタL2 およびコンデンサC2 と同様に、多層基板により積層して構成しても良い。と れにより、インダクタLO およびコンデンサCO を追加 したことによるアンテナスイッチ20自体の大型化を抑 制することができる。したがって、携帯電話機の小型軽 量化を妨げるととなくして、スイッチ回路20bを静電 気から保護し得る効果がある。また、アンテナスイッチ 20の積層構造は、低温焼成からなるガラスセラミック 基板であるから、比較的低い温度で焼成できる。これに より、導体抵抗の低い銀、銅等をパターンに使用するこ とができる。したがって、導体抵抗の低き、しかも高温 に耐えうるパラジウム、タングステン等を用いる必要が ないため、アンテナスイッチ20の製造コストをも削減 し得る効果がある。

【0030】次に、静電気試験器による静電気をアンテ ナスイッチ20のアンテナ端子ANTに印加したときの 測定結果等を図1、図6~図8に基づいて説明する。図 6に示すように、アンテナスイッチ20への静電気の印 加は、IEC1000-4-2:1995 (静電気放電 イミュニティ試験基本EMC刊行物)に準拠する測定系 100により行っている。つまり、大地アースGに接続 されたグランドプレーン101に1ΜΩの抵抗103を 介してプレーン102を接続し、そのプレーン102の 上にアンテナスイッチ20を取り付けた治具110を載 置して入力端子110aに静電気ガン105で±16k の電極バターン33aとその対向電極の役割も果たすべ 50 Vの静電気を所定回数印加している。なお、ブレーン1

02は携帯電話機の筺体接地FGに相当し、抵抗103 は人体に相当するものである。また治具110に取り付 けられたアンテナスイッチ20のアンテナ端子ANT は、治具110の入力端子110aに接続され、端子T Xまたは端子RXは治具110の出力端子110bに接 続されている。

【0031】まず、アンテナスイッチ20のアンテナ端 子ANTに静電気を印加したときに端子TXまたは端子 RXに漏れ出る電圧を測定した。つまり、測定系100 において、治具110の入力端子110aの先端と静電 10 気ガン105との間で±16kVの静電気による気中放 電を約30回行い、そのときに出力端子110bから漏 れ出る電圧をオシロスコープ等によって測定した(サン ブル数は28個)。

【0032】その結果、端子TXまたは端子RXから漏 れ出る電圧の平均値は、静電気保護回路20 aを備える もので128Vであるのに対し、静電気保護回路20a を備えないものでは288Vであることがわかった。こ れにより、静電気保護回路20aを備えたアンテナスイ ッチ20では、静電気保護回路20aによりアンテナ端 20 子ANTに侵入した静電気の一部を筐体接地FG側に逃 がすことができるため端子TX等に漏れ出た電圧が一般 的な半導体が静電気破壊され得る最小電圧150 V以下 に抑えられていることが確認された。一方、静電気保護 回路20aを備えないものではそれが288Vであるこ とから、アンテナスイッチ内の髙周波スイッチングダイ オード等の半導体や端子TXや端子RXの後段に接続さ れ得る他の回路モジュール内の半導体等を静電気によっ て破壊し得ることも判明した。

【0033】また、図7および図8に示すように、この ような静電気の印加がアンテナスイッチ20の通過特性 にどのような影響を与えるかに確認した。即ち、前述し た静電気印加前後のアンテナスイッチ20等の挿入損失 900MHzを中心にスペクトラムアナライザで測定し た。なお、図7および図8において、(A) は静電気印加 前のもの、図8(B) は静電気印加後のもので、測定範囲 は800MHz~1000MHzである。図7(A)、(B)か らわかるように、静電気保護回路20aを備えたアンテ ナスイッチ20では、静電気の印加前後を問わず挿入損 失は変化していない。これに対し、図8(A)、(B)か ら、静電気保護回路20aを備えないアンテナスイッチ では、静電気の印加前よりも静電気印加後の方が0.2 6dB程度の挿入損失が増加していることがわかる。こ れは、前述したように静電気保護回路20aを備えない ものではアンテナ端子ANTから印加された静電気によ って、アンテナスイッチ内の高周波スイッチングダイオ ードの破壊あるいは逆方向特性の劣化が生じたためであ ると推測される。これにより、静電気保護回路20aを 備えるアンテナスイッチ20では、静電気保護回路20 aがアンテナスイッチ20内の高周波スイッチングダイ 50 aあるいは静電気保護回路40aを介することなく、直

オードD1、D2を保護していることが確認された。 【0034】続いてアンテナスイッチ20を構成する静 電気保護回路20 a の変形例を図9に基づいて、また静 電気保護回路20aに静電気を500回印加した場合に おける静電気信号レベルの周波数分布特性とを図10~ 図12に基づいて説明する。図9に示すように、静電気 保護回路20aの一変形例として、静電気保護回路20 aのインダクタL0 およびコンデンサC0 が携帯電話機 の通信周波数の通過を許容するBPFの少なくとも一部 を構成する静電気保護回路40aが挙げられる。つま り、静電気保護回路40aを構成するインダクタL21お よびコンデンサC20が静電気保護回路20aを構成する インダクタL0およびコンデンサC0にそれぞれ対応する ことでHPFを形成し、その後段にコンデンサC21、C 23、インダクタし20により形成するLPFを付加するこ とによって、全体としてBPFを構成している。これに より、このBPFによって通信周波数よりも高い周波数 の交流成分の通過をも阻止することができる。したがっ て、携帯電話機の小型軽量化を妨げることなくして、通 信周波数よりも高い周波数の交流成分を持つ静電気から もアンテナスイッチ20内のスイッチ回路20bを保護 し得る効果がある。

10

【0035】との静電気保護回路40aによるBPFの 低域遮断周波数 f CLは、例えば携帯電話機の通信周波数 が915MHzのときには、90MHz前後に設定され、ま たLPFによる減衰量が3dBに達する周波数(以下 「髙域遮断周波数」という。) f CHは1. 3 GHz前後に 設定される(図10(B)参照)。このようにBPFによ る低域遮断周波数 f CLと高域遮断周波数 f CHとを通信周 波数帯幅よりも余裕をもって設定することにより、設計 時または製品試作時に静電気保護回路40aの低域遮断 周波数 f CLおよび高域遮断周波数 f CHを設定すれば、製 品量産時に個々に当該周波数の調整を行う必要がない。 とれにより、調整可能な機構を有する部品、例えば可変 コンデンサ等をコンデンサC20、C21、C23に用いる必 要がないので、静電気保護回路20aと同様、静電気保 護回路40aによるアンテナスイッチ40の大型化を抑 制するとともに調整箇所の増加を防ぐことができる。

【0036】このように構成された静電気保護回路40 aの静電気阻止能力を静電気保護回路20aと比較する ため、静電気保護回路20a、40aに静電気を500 回印加した場合における静電気信号レベルの周波数分布 特性を測定した。この測定は、スペクトラムアナライザ に40dB減衰器を介して静電気保護回路20a、40 aを接続し、静電気保護回路20aまたは40aのアン テナ端子ANTに+3kVの静電気による気中放電を5 00回繰り返すことにより行い、図11、12に示す結 果は、それをスペクトラムアナライザで蓄積記録したも のである。なお、両図とも(B) は、静電気保護回路20 接、+3kVの静電気による気中放電を行ったものであ る。

【0037】図11(A) に示す測定結果は、静電気保護 回路20a単体に静電気を印加した場合における静電気 信号レベルの周波数分布特性である。これと図11(B) とを比較すると、 O Hz付近、即ち直流成分および数百Hz の交流成分が40dB程度減衰していることに加え、5 OMHz前後までの交流成分が10dB程度減衰している ことがわかる。つまり、静電気保護回路20aによるH PFの効果が現れていることが、この測定においても確 10 認された。また、図12(A) に示す測定結果は、静電気 保護回路40a単体に静電気を印加した場合における静 電気信号レベルの周波数分布特性である。これと図12 (B) とを比較すると、静電気保護回路20aによる結果 (図11(A)) と同様、直流成分および数百Hzの交流成 分が40dB程度減衰している。またこの静電気保護回 路40aによると、2MHz~300MHzまで周波数の交 流成分においても静電気保護回路20aによる結果(図 11(A)) に較べて減衰していることがわかる。これ は、静電気保護回路40aによるBPFの方が、静電気(20)ルタの一部を構成することから、このバンドパスフィル 保護回路20aによるHPFよりも挿入損失が大きいこ との現れであり、その分、静電気の通過を阻止できると とが確認された。

【0038】以上説明したように、本実施形態に係る静 電気保護回路20aを適用したアンテナスイッチ20に よると、アンテナスイッチ20に内蔵される静電気保護 回路20 aは、アンテナ80が電気的に接続されるアン テナ端子ANT(アンテナ接続側)とスイッチ回路20 bの入出力端子Jとの間に接続されるコンデンサCO と、このコンデンサC0のアンテナ端子ANT側に一端 30 側と筐体接地FGとの間に接続されるインダクタLO と、から構成されており、インダクタLOおよびコンデ ンサ C 0により、携帯電話機の通信周波数よりも少なく とも低い周波数の交流成分および直流成分の通過を阻止 する。これにより、アンテナ80側から侵入した静電気 を、スイッチ回路20bの前段で筺体接地FG側に逃が 素ことができるので、スイッチ回路20bに侵入する静 電気を阻止し得る効果がある。

[0039]

【発明の効果】請求項1の発明では、移動体通信機のア ンテナに接続される回路モジュールのアンテナ接続側と この回路モジュール内の回路網の信号入出力端子との間 に接続されるコンデンサと、このコンデンサのアンテナ 接続側の一端側と接地との間に接続されるインダクタと を回路モジュールに内蔵し、これらのインダクタおよび コンデンサにより、移動体通信機の通信周波数よりも少 なくとも低い周波数の交流成分および直流成分の通過を 阻止する。即ち、回路モジュールに内蔵するインダクタ およびコンデンサによって通信周波数よりも少なくとも 低い周波数の交流成分および直流成分の通過を阻止する 50

ハイパスフィルタを構成する。これにより、アンテナか ら回路モジュール内に静電気が侵入しても、静電気の直 流成分および通信周波数よりも低い周波数の交流成分 を、インダクタにより接地側に逃がすとともにコンデン サにより回路モジュールの回路網側への侵入を阻止す る。したがって、移動体通信機の小型軽量化を妨げると となくして、回路モジュール内の回路網を静電気から保

【0040】請求項2の発明では、インダクタの接続さ れる接地は、回路網の接地と直流的に絶縁されていると とから、インダクタを通して逃げた静電気の直流成分お よび通信周波数よりも低い周波数の交流成分が、回路網 の接地を介して回路網側に回り込むことを防止すること ができる。したがって、移動体通信機の小型軽量化を妨 げることなくして、回路モジュール内の回路網を静電気 からより確実に保護し得る効果がある。

【0041】請求項3の発明では、回路モジュールに内 蔵されるインダクタおよびコンデンサは、少なくとも移 動体通信機の通信信号の通過を許容するバンドパスフィ タによって通信周波数よりも高い周波数の交流成分の通 過をも阻止することができる。したがって、移動体通信 機の小型軽量化を妨げることなくして、通信周波数より も高い周波数の交流成分を持つ静電気からも回路モジュ ール内の回路網を保護し得る効果がある。

【0042】請求項4の発明では、回路モジュールに内 蔵されるインダクタまたはコンデンサの少なくとも一方 は、回路モジュールを構成する多層基板の積層構造によ り構成されることから、これらのインダクタおよびコン デンサを追加したことによる回路モジュール自体の大型 化を抑制することができる。したがって、移動体通信機 の小型軽量化を妨げることなくして、回路モジュール内 の回路網を静電気から保護し得る効果がある。

【図面の簡単な説明】

護し得る効果がある。

【図1】本発明の一実施形態に係る静電気保護回路を適 用したアンテナスイッチの回路図である。

【図2】本実施形態に係るアンテナスイッチを用いる携 帯電話機の回路構成を示すブロック図である。

【図3】本実施形態に係るアンテナスイッチの積層状態 を示す模式的断面図である。

【図4】本実施形態に係るアンテナスイッチの各層展開 状態を示す斜視図である。

【図5】本実施形態に係るアンテナスイッチの各層展開 状態を示す斜視図である。

【図6】本実施形態に係るアンテナスイッチに静電気を 印加したときの測定系を示す模式図である。

【図7】本実施形態に係るアンテナスイッチの通過特性 を示す特性図で、図7(A) は静電気印加前のもの、図7 (B) は静電気印加後のものである。

【図8】静電気保護回路を備えないアンテナスイッチの

通過特性を示す特性図で、図8(A)は静電気印加前のもの、図8(B)は静電気印加後のものである。

【図9】本実施形態に係る静電気保護回路の変形例で、 BPFを構成した場合の回路図である。

【図10】本実施形態に係る静電気保護回路の通過特性を示す特性図で、図10(A)はHPFのもの、図10(B)BPFのものである。

【図11】本実施形態に係る静電気保護回路に静電気を40印加した場合における静電気信号レベルの周波数分布特60性をスペクトラムアナライザで測定した特性図で、図1 10 701(A) はHPFのもの、図11(B) 直結(HPFなし)80のものである。L0

【図12】本実施形態に係る静電気保護回路に静電気を 印加した場合における静電気信号レベルの周波数分布特性をスペクトラムアナライザで測定した特性図で、図1 2(A) はBPFのもの、図12(B) 直結(BPFなし) のものである。

*【符号の説明】

20 アンテナスイッチ(回路モジュール)

20a 静電気保護回路(HPF)

20b スイッチ回路(回路網)

21、22、23、24、25、26、27、28、2 9、30、31、32、33、34 ガラスセラミック 基板(多層基板)

40a 静電気保護回路(BPF)

60 送信部

70 受信部

80 アンテナ

LO インダクタ

Co コンデンサ

ANT アンテナ端子

J 端子(信号入出力端子)

FG 筐体接地(接地)

SG 信号接地(回路網の接地)

【図1】

【図3】

【図6】

【図2】

【図4】

【図5】

【図11】

【図12】

