1:	For each possible security demand k , sort all substrate nodes in a candidate
	node queue $queue(k)$ in descending order of heuristic value $H.$
2:	For all nodes $m \in G_i^S$, initialize their state by setting $Occupied(m) =$
	FALSE.
3:	repeat
4:	Get an unmapped node n randomly from G_i^V .
5:	$k = dem^V(n).$
6:	if \exists node $m \in queue(k)$ s.t. $Occupied(m) = FALSE$ and $dem^S(m) \le$
	$lev^V(n)$ and $cpu^S(m) \ge cpu^V(n)$ then
7:	Occupied(m) = TRUE.
8:	Map the virtual node n onto the substrate node m .
9:	else
10:	Release all resources occupied by G_i^V .
11:	return MAP_FAILED.
12:	${\bf until}$ all nodes in G^V_i are mapped successfully.
13:	return NODE_MAP_SUCCESS.