Cyber Physical Systems - Discrete Models Exercise Sheet 5 Solution

Alper Ari aa508@uni-freiburg.edu Onur Sahin os141@uni-freiburg.de

November 21, 2023

Exercise 1: Synchronization

Given two transition systems $T=(S,Act,\longrightarrow,S_0,AP,L)$ and $T_0'=(S',Act',\longrightarrow',S_0,AP',L')$

- (a) Give a set Syn such that T||T'| and $T||_{Syn}T'|$ are always equivalent: $Syn = Act \cap Act'$
- (b) Give a set Syn such that T|||T'| and $T||_{Syn}T'$ are always equivalent: $Syn = \emptyset$

Exercise 2: Coffee Machine and Transition System

(a) Transition system of corresponding program graph

Figure 1: Transition system of coffee machine

And some example transitions whose existence can be justified by SOS rule:

i Transition 1:

$$\frac{\text{brewing} \xrightarrow{\text{coffee} < 4: \text{brew}} \text{brewing} \land \{\text{coffee} = 0, \text{power} = 1\} \models (\text{coffee} < 4)}{\langle \text{brewing}, \{\text{coffee} = 0, \text{power} = 1\}\rangle} \xrightarrow{\text{brew}} \langle \text{brewing}, \{\text{coffee} = 1, \text{power} = 1\}\rangle$$

ii Transition 2:

$$\frac{\text{heating } \xrightarrow{\text{coffee}>0:\text{drink}} \text{ heating } \land \{\text{coffee}=4, \text{power}=1\} \models (\text{coffee}>0)}{\langle \text{heating}, \{\text{coffee}=4, \text{power}=1\} \rangle \xrightarrow{\text{drink}} \langle \text{heating}, \{\text{coffee}=3, \text{power}=1\} \rangle}$$

iii Transition 3:

And the reason why the given transitions are not valid can be explained:

i Invalid transition 1:

$$\langle \text{off}, \{\text{coffee} = 0, \text{power} = 0\} \rangle \xrightarrow{\text{heat}} \langle \text{heating}, \{\text{coffee} = 0, \text{power} = 0\} \rangle$$

Reason: The condition for action heat is **coffee** = 0, which is $\mathbf{0}$ in the current given state. So, this transition cannot happen as it does not satisfy condition.

ii Invalid transition 2:

$$\langle \text{brewing}, \{ \text{coffee} = 4, \text{power} = 1 \} \rangle \xrightarrow{\text{brew}} \langle \text{brewing}, \{ \text{coffee} = 5, \text{power} = 1 \} \rangle$$

Reason: The condition for action brew is coffee < 4, which is 4 in the current given state. So, this transition cannot happen as it does not satisfy condition.

(b) The given statements and their correctness:

- i If the machine is turned off (power = 0), it contains no coffee (coffee = 0). [T]
- ii If there are two cups of coffee (coffee = 2), there are either three or four cups of coffee in the next step (coffee = 3, coffee = 4). [F]
- iii There are always at most four cups of coffee (coffee \leq 4). [T]
- iv The coffee machine will be turned off (i.e., in location off) infinitely often. [F]
- v If there is no coffee (coffee = 0), there will be coffee after at most three steps. [T]

And we add labels to the transition system with proper atomic propositions:

Figure 2: Transition system of coffee machine, with labels

Exercise 3: Executions, Paths and Traces

(a) Some execution and execution fragment examples:

Execution: A sequence of consecutive transactions, starting from initial state, ending in a final state or in an infinite loop.

Execution Fragment: Some part of an execution.

• An execution fragment that is neither initial nor maximal

$$s_2 \xrightarrow{Y} s_3 \xrightarrow{Y} s_4$$

• An initial execution fragment that is not maximal

$$s_0 \xrightarrow{\alpha} s_1 \xrightarrow{\alpha} s_1$$

• A maximal execution fragment that is not initial

$$s_1 \xrightarrow{\alpha} s_1 \xrightarrow{\alpha} s_1 \dots$$

• An initial and maximal execution fragment (i.e. an execution)

$$s_0 \xrightarrow{\alpha} s_1 \xrightarrow{\alpha} s_1 \dots$$

(b) How many executions does the transition system have?

Because of two loops next to each other, $(s_2 \text{ on itself and the one between } s_2 \text{ and } s_3)$, there can be infinitely many execution combinations created.

(c) Provide a path of the transition system. How many are there in total?

There are infinitely many paths in the system. Here are some examples:

$$s_0, s_1, s_1, s_1...$$

$$s_0,s_2,s_2,s_2...$$

$$s_0, s_2, s_3, s_2, s_3...$$

$$s_0, s_2, s_2, s_3, s_2, s_2, s_3...$$

(d) How many traces does the transition system have?

There are 2 traces of this system:

$$\emptyset, a, a, \dots = {\emptyset}{a}^{\omega}$$

$$\emptyset, b, b, \dots = \{\emptyset\}\{b\}^{\omega}$$

(e) Bonus: Is it possible to have a transition system with infinitely many executions and finitely many paths?

Yes, it is possible.

