Efficient Visual Tracking with Exemplar Transformer

Philippe Blatter, Menelaos Kanakis, Martin Danelljan, Luc Van Gool, ETH Zurich, KU Leuven WACV 2023

이채원, 임채연, 김도완 2024-02-21

Visual Tracking in Deep Neural Network

Deeper Network

More accurate Bounding Boxes

Transformers

Example of Bounding Box

Their development requires greater costs

Visual Tracking in Deep Neural Network

Increase in demand

little attention

- Autonomous Driving
- Robotics

efficient deep tracking architectures

Need visual tracker capable of real-time operation

ETTrack's Tracking Speed

Visual Tracking in Transformer

Excellent performance in images and videos

High cost and increased tracking time

Aims to improve tracking performance without compromising runtime

Hypothesis with Exemplar Attention

1. Explanatory power of a single Global Query value

2. Shared memory role of a small set of Exemplar values

Captures target object information more effectively than A Standard attention module

DataSet

DataSet	Explanation
LaSOT	Large-scale single object tracking, Variety of sizes and shapes, Generalization performance evaluation
OTB-100	100 test sequences, Tracking performance evaluation in various scenarios
UAV-123	Tracking objects captured by unmanned aerial vehicles
NFS	Object tracking in high-speed video
Tracking Net	Large-scale online object tracking
VOT-ST2020	Short-term tracking performance evaluation

Tracking Image

Efficient Tracking Architectures

- 1. Low Rank/ Kernel Methods
- 2. Memory/ Downsampling Methods
- 3. Fixed/ Factorized/ Random Patterns
- 4. Learnable Patterns

Efficient Transformers: A Survey

1. Low Rank/ Kernel Methods

• Low Rank: low-rank approximation

• Kernel Methods: using a kernel function to compute similarity in a specific feature space

Assuming and using a simplified version of the self-attention matrix

2. Memory/ Downsampling Methods

- Memory: Transformer multitasking information from various positions
- Downsampling: Shortening the sequence

Training extra memory for multitoken access or shortening sequences

3. Fixed/ Factorized/ Random Patterns

- Fixed: self-attention mechanism with predefined distinctive structure or weights
- Factorized: Breaking down a weight matrix into smaller matrices
- Random: Defining self-attention matrix patterns randomly

(b) Sparse Transformer

Limited field of view of the Self-Attention

4. Learnable Patterns

Learnable Patterns: Model uses trainable weight patterns

Switching from fixed to dynamic patterns in the standard Transformer

Intersection Memory/Downsampling and Fixed/Factorized/RandomPatterns

Pooling Query(Downsampling) + Independency Key(Fixed)

Siamese Tracker

- Neural Network architecture
- Frequently used in visual tracking
- Contains one or more identical networks
- Sharing weight
- Same the parameters and weights
- Learning a distance function

Bounding Box

- Rectangular shapes
- Define the location and size of an object
- Commonly used as object detection and tracking
- Identifying and localizing objects
- Bounding box regression
- Precise object localization

Evaluation indicators

- https://lilianweng.github.io/posts/2017-12-31-object-recognition-part-3/
- https://velog.io/@qsdcfd/Theory-of-object-detection

Transformer in Tracking

- Neural Network architecture
- Frequently used in NLP
- Successfully applied to computer vision tasks
- Utilize self-attention mechanisms
- ViTs are a specific variant of transformers designed
- ViTs have a hierarchical structure

Transformer in Tracking

Light Tracker(Mobile)

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search

Light Tracker(Mobile)

- Exemplar Transformer's operation = Convolution's operation
- Eliminate the need for retrain the backbone on ImageNet

Light Tracker(Mobile)

Search pipeline of the proposed LightTrack

Cross-Correlation


```
def forward(self, z, x):
   z11 = z[0] # kernel (template)
   # print(z11.size())
   x11 = x[0] # search
   # print(x11.size())
   '''pixel-wise correlation'''
   '''2020.09.16 Matrix Mul Version'''
   if self.matrix:
       re11 = pixel_corr_mat(z11, x11)
       re11 = pixel_corr(z11, x11)
  if self.CA:
       '''channel attention'''
       s = self.CA_layer(re11)
       if self.cat:
           return torch.cat([s,x11],dim=1)
       else:
           return s
       return re11
```

Calculate correlation through Dot product

이채원, 임채연, 김도완

Self Attention

StandardTransformer

Machine Translation

 Every feature represents a specific word or token

Vision

 Adjacent spatial representation often correspond to the same object

What about use only one Query(Global Query)?

$$\operatorname{softmax}\left(\underbrace{\frac{f_{Q}(x)}{(\Psi_{S}(X)W_{Q})}\underbrace{(\hat{W}_{K}^{T})}_{f_{V}(x)}}^{f_{K}(\cdot)}\right)\underbrace{\frac{f_{V}(x)}{(W_{V}\circledast X)}}_{\operatorname{constant}}$$

$$\Psi_S(X)$$
 : AvgPooling + Flatten

$$Q = \Psi_S(X)W_Q \in \mathbb{R}^{S^2 \times D_{QK}}$$

One global Query

Compressed Representation X ($\Psi_S(X)$) -> Identify the object(W_Q)

One Global Query -> Decreasing the Complexity

```
self.global pooling = nn.AdaptiveAvgPool2d(seq red)
                                                                       # (B, 256, 1, 1)
self.flatten = nn.Flatten(start_dim = 2)
                                                                        # (B, 256, 1)
self.fc1 = nn.Linear(c_dim, hidden_dim)
                                                               # permute(0, 2, 1) \rightarrow (B, 1, 128)
                                     128
                         256
self.act = nn.ReLU(inplace=False)
                                                                        # (B, 1, 128)
```

Input shape = (B, 256, 16, 16)

Key & Value capture Object information

* E = 4

$$K = \hat{W}_K \in \mathbb{R}^{E \times D_{QK}}$$

* E = 4

$$V = W_V \circledast X \in \mathbb{R}^{E \times H \times W \times D_V}$$

Independent of the Input

(Can be applied to various inputs)

• Use Convolutional Operation

(Good for visual pattern identification)

Depth-wise Conv

```
# apply convolution
x = F.conv2d(
    x, dw_weight, bias=None, stride=self.dw_stride, padding=self.dw_padding,
    groups=self.dw_groups * B)

x = x.permute([1, 0, 2, 3]).view(B, self.out_channels, x.shape[-2], x.shape[-1])
x = self.dw_bn(x)  # Normalization
x = self.dw_act(x)  # ReLu
```

Point-wise Conv

```
# apply convolution
x = F.conv2d(
    x, pw_weight, bias=None, stride=self.pw_stride, padding=self.pw_padding,
    groups=self.pw_groups * B)

x = x.permute([1, 0, 2, 3]).view(B, self.out_channels, x.shape[-2], x.shape[-1])
x = self.pw_bn(x)  # Normalization
x = self.pw_act(x)  # ReLu
```


이채원, 임채연, 김도완

$$A(x) = \operatorname{softmax} \left(\underbrace{\frac{f_Q(x)}{(\Psi_S(X)W_Q)} \underbrace{(\hat{W}_K^T)}_{f_K(x)}}_{f_Q(x)} \right) \underbrace{\frac{f_V(x)}{(W_V \circledast X)}}_{f_V(x)},$$

$$A(x) = \left[\operatorname{softmax} \left(\frac{(\Psi_S(X) W_Q) (\hat{W}_K^T)}{\sqrt{d_k}} \right) W_V \right] \circledast X.$$

Classification & Regression

Total Loss: $\mathcal{L} = \mathcal{L}_{reg} + \lambda_1 \mathcal{L}_r$

Training

Hyper Parameter	Value
Optimizer	SGD(momentum=0.9)
Epoch	50 (first 10 epoch backbone parameters frozen)
Weight Decay	1e-4(0.0001)[L2 regulation]
LR Scheduler	Increasing 2e-2(0.02) -> 1e-1(0.1) first 5 epoch / Decreasing 1e-1(0.1) -> 2e-4(0.0002)

Training

DataSet	Sampling range
LaSOT	Select 2 frames within 100 range of frames
TrackingNet	Select 2 frames within 100 range of frames
GOT10k	Select 2 frames within 30 range of frames
COCO	Select 1 frame within 1 range of frame

Training

Training

	non-realtime								realtime			
	ATOM	SiamRPN++	DiMP-50	PrDiMP-50	SiamR-CNN	TransT	TrDiMP	TrSiam	STARK-ST50	ECO	LT-Mobile	E.T.Track
	[10]	[30]	[5]	[12]	[46]	[8]	[48]	[48]	[53]	[11]	[54]	(Ours)
NFS	58.4	50.2	62	63.5	63.9	65.7	66.5	65.8	66.4	46.6	55.3	59.0
UAV-123	64.2	61.3	65.3	68	64.9	69.4	67.5	67.4	68.8	51.3	62.5	62.3
OTB-100	66.9	69.6	68.4	69.6	70.1	69.1	71.1	70.8	67.3	64.3	66.2	67.8
CPU Speed	20	15	15	15	15	5	6	6	9	25	47	47

Scores of NFS, UAV-123, OTB-100

Conv	Att	FFN	T-Cond.	NFS	OTB-100	LaSOT
√				55.3	66.2	52.1
	\checkmark			55.3 56.6	66.2 65.8	53.6
	√	√		58	67.3	59.1
	√	√	√	59.0	66.9	57.9

Configuration of example transformer

Use Examplar Attention + FFN

	Conv	1-Ex	4-Ex	16-Ex
NFS	55.3	57.6	58.0	58.0
OTB-100	66.2	66.5	67.3	66.1
LaSOT	52.1	57.2	59.1	57.4

Performance difference of Examplar Transformer number

	S=1	S=2	S=4
NFS	59.0	46.6	46.7
OTB-100	67.8	55.5	57.5
LaSOT	59.1	43.7	42.6

Performance difference of Q number

	ShuffleNet [60]		MobileNetV3 [22]		ResNet-18 [20]		LT-Mobile [54]	
Conv	✓		✓		✓		✓	
E.T. (Ours)		✓		✓		✓		√
NFS	54.9	56.2	56.8	56.8	55.8	57.3	55.3	59.0
OTB-100	61.3	61.8	64.5	65.3	65.3	65.7	66.2	67.8
LaSOT	48.6	49.8	52.1	52.7	55.9	56.5	52.1	59.1

Comparison of Convolution and Examplar Transformer

The performance of Examplar is better than that of Conv

		Other Transformer					Examplar Transforme		
	Conv [54]	Standard [45]	Clustered [47]	Linear [26]	Local [38]	Swin [33]	E.T.Track (Ours)		
NFS OTB-100 LaSOT	55.3 66.2 52.1	55.3 65.3 54.2	57.5 67.5 56.5	55.8 65.4 53.5	55.8 64.8 53.4	55.4 64.2 56.9	59.0 67.8 59.1		

Examplar Transformer has good performance

Conclusion

Exemplar transformer

• Single-object visual tracking performance enhancement

E.T.Track

Real-time tracking suitability

Progress

Evaluated the learned model using the pytracking library(UAV-123 DataSet)

Windows compatibility issue with Python's multiprocessing

이채원, 임채연, 김도완

Progress (UAV-123)

Pytracking/run_webcam.py

```
def run webcam(tracker name, tracker param, debug=None, visdom info=None):
    """Run the tracker on your webcam.
       tracker name: Name of tracking method.
       tracker_param: Name of parameter file.
       debug: Debug level.
       visdom_info: Dict optionally containing 'use_visdom', 'server' and 'port' for Visdom visualization.
   visdom_info = {} if visdom_info is None else visdom_info
   tracker = Tracker(tracker name, tracker param)
   tracker.run_webcam(debug, visdom_info)
def main():
   parser = argparse.ArgumentParser(description='Run the tracker on your webcam.')
   # parser.add_argument('tracker_name', type=str, help='Name of tracking method.')
   # parser.add argument('tracker param', type=str, help='Name of parameter file.')
   parser.add_argument('--debug', type=int, default=0, help='Debug level.')
   parser.add_argument('--use_visdom', type=bool, default=True, help='Flag to enable visdom')
   parser.add_argument('--visdom_server', type=str, default='127.0.0.1', help='Server for visdom')
   parser.add_argument('--visdom_port', type=int, default=8097, help='Port for visdom')
   args = parser.parse args()
   visdom_info = {'use_visdom': args.use_visdom, 'server': args.visdom_server, 'port': args.visdom_port}
   # run_webcam(args.tracker_name, args.tracker_param, args.debug, visdom_info)
   # 실행하면 바로 et tracker 실행되게
   run_webcam('et_tracker', 'et_tracker', args.debug, visdom_info)
```

WebCam tracking use ET-Track

Pytracking/evalution/tracker.py

Pytracking/tracker/et_tracker.py

```
if debug:
    target_pos, target_sz, _, cls_score = self.update(x_crop, target_pos, target_sz * scale_z,
                                                    window, scale z, p, debug=debug, writer=writer)
    state['cls_score'] = cls_score
    target_pos, target_sz, _ = self.update(x_crop, target_pos, target_sz * scale_z,
                                                                                                               Predict next position & object size
                                         window, scale_z, p, debug=debug, writer=writer)
target_pos[0] = max(0, min(state['im_w'], target_pos[0]))
target_pos[1] = max(0, min(state['im_h'], target_pos[1]))
target_sz[0] = max(10, min(state['im_w'], target_sz[0]))
target_sz[1] = max(10, min(state['im_h'], target_sz[1]))
#print("cropped x shape: ", x_crop.shape)
#print("target pos shape: ", target pos.shape)
#print("target size shape: ", target_sz.shape)
#print("target size: ", target sz)
# TODO: compute appropriate bounding box in x.v.w,h format (?) and return it
location = cxy wh 2 rect(target pos, target sz)
                                                                                                                   Calculate bounding box (x,y,w,h)
```


Tracking environment

Tracking Result

감사합니다!

질문이 있으신가요?