

Examen numerieke methoden Maandag 19 juni 2017 08.30-11.30

- Dit is een gesloten boek examen.
- Elke vraag dient beantwoord te worden op het voorziene blad.
- Het examen bestaat uit 6 vragen met een totaal van 60 punten
- Schrijf het antwoord ordelijk en in pen neer.
- Denk eraan de antwoorden grondig te motiveren: niet alleen het juiste resultaat telt!
- Duur van het examen: 3 uur

Veel succes!

Naam:						
Voornaan	n:					
Opleiding	:					
Vraag 1:	Vraag 2:	Vraag 3:	Vraag 4:	Vraag 5:	Vraag 6:	Σ :

Vraag 1	10 Punten

Bewijs de onderstaande proposities.

a) Zij $L \in \mathbb{R}^{n \times n}$ bovendriehoekig (d.w.z. $l_{ij} = 0$ als j < i en inverteerbaar. Dan is L^{-1} tevens bovendriehoekig.

b) Zij $L_1, L_2 \in \mathbb{R}^{n \times n}$ bovendriehoekig. Dan is het product L_1L_2 een bovendriehoekige matrix.

Zij $x_i \in [a, b], i = 0, ..., n$, onderling verschillend en $f : [a, b] \to \mathbb{R}$ tweemaal continu differentieerbaar. Beschouw het polynoom

$$H_{2n+1}(x) = \sum_{i=0}^{n} f(x_i)a_i(x) + \sum_{i=0}^{n} f'(x_i)b_i(x)$$

met

$$a_i(x) := [1 - 2\ell'_i(x_i)(x - x_i)]\ell_i(x)^2,$$

 $b_i(x) := (x - x_i)\ell_i(x)^2$

en $\ell_i(x)$ de standaard Lagrange veeltermen

$$\ell_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}.$$

a) Toon aan dat $H_{2n+1}(x)$ zowel de functie f(x) als zijn afgeleide f'(x) interpoleert in de punten x_i voor $i=0,\ldots,n$.

b) Geef een bewijs uit het ongerijmde dat de interpolerende veelterm $H_{2n+1}(x)$ van graac $2n+1$, z.d. aan de eigenschappen in a) wordt voldaan, uniek is.	ł

c) Bewijs dat de interpolatiefout gegeven wordt door

$$E_n(x) = f(x) - H_{2n+1}(x) = \frac{f^{2n+2}(\xi)}{(2n+2)!} \prod_{j=1}^{n} (x - x_j)^2.$$

Vraag 3: (Eindige differenties)

10 Punten

Zij $f \in C^3(\mathbb{R})$. Toon aan dat

$$f_0'' = \frac{f_1 - 2f_0 + f_{-1}}{h^2} + \mathcal{O}(h^2).$$

Hierbij hanteren we de gebruikelijke notatie $f_k = f(x_k)$, met $x_k = x_0 + kh$ en h > 0 de stapgrootte.

Bewijs de kwadratuurformule (met integratie fout)

$$\int_{a}^{b} f(x) \ dx = (b-a)f(b) - \frac{(b-a)^{2}}{2}f'(\xi), \qquad \xi \in (a,b).$$

Vraag 5: (Newton-Raphson methode)

Zij \sqrt{a} het positieve nulpunt van de vergelijking

$$f(x) = x^2 - a, \qquad f: [0, \infty] \mapsto \mathbb{R}.$$

Neem aan dat $x_0 > 0$ met $x_0 \neq \sqrt{a}$.

a) Gebruik de methode van Newton om aan te tonen dat

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right).$$

b) Toon aan dat

$$x_{k+1}^2 - a = \left(\frac{x_k^2 - a}{2x_k}\right)^2, \qquad k \ge 0.$$

c)	Toon aan dat de rij x_k strikt dalend is voor $k \ge 1$.
- \	
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij \boldsymbol{x}_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.
d)	Concludeer dat de rij x_k een uniek limiet heeft. Bepaal vervolgens het limiet.

Vraag 6: (Vaste-punt iteratie)

10 Punten

Toon aan dat de substitutie methode

$$x_{k+1} = \frac{1}{1 + x_k^2}, \qquad k \ge 0,$$

voor elke startwaarde x_0 convergeert naar een uniek vast punt x^* .