

SEARCH FOR
SPATIALLY
EXTENDED
fermi-LAT
SOURCES USING
TWO YEARS OF
FLIGHT DATA

Joshua Lande SLAC/Stanford joshualande@gmail.com

August 25, 2011

Overview

- ► Category II Paper
- ► Contact Authors: J. Lande, M. Ackermann, S. Funk
- Internal Referees: Marianne Lemoine-Goumard and Johann Cohen-Tanugi
- ► Target Journal: ApJ
- Currently submitted to internal referees
- Feedback welcome

Paper Outline

- ► Description of a new method (pointlike) for analyzing extended sources.
- Monte Carlo calculation of false detection rate for extended sources.
- Calculation of the LAT's detection threshold to spatially extended sources
- Presentation of a new search for spatially extended sources:
 - Reanalyzing extension of 12 extended sources in 2FGL
 - Test AGN from 2LAC for extension to validate the analysis
 - Present 9 extended sources not in 2FGL

Topics relevant to catalog

- ► Monte Carlo study of false detection rate
- ▶ LAT's detection threshold to extension
- ► Reanalysis of extended sources in 2FGL
- ► Testing AGN for extension
- ► (See presentation at Galactic splinter for rest of paper)

Fig. 3: Monte Carlo Study of false Detection rate

- Simulate point sources
- ▶ One year simulation
- Against EGRET isotropic BG
- Vary flux, spectral index
- ► ~30,000 sims per spectral model
- ► Test for extension
- ► Compare CDF of TS_{ext} to $\chi_1^2/2$
- Good agreement with Wilks' Theorem

Fig. 4: Detection Threshold

- Detetion threshold to extension
- ► 2 years + isotropic bg
- ► Definition: $\langle \mathsf{TS}_{\mathsf{ext}} \rangle = 16$
- ► Little sensitivity to small+soft sources
- ► Little improvement using 100 MeV to 1 GeV photons

Fig. 5: Threshold vs background

FIG. 6: THRESHOLD VS TIME

- ► Calculate 10 year detection threshold
 - With MC simulationn
 - Projected from
 2 years by
 √time and time
- ► Sensitivity > √time for small extended sources

Fig. 6: TS_{EXT} for 2LAC AGN

- ► 885 clean AGN in 2LAC
- ► Test 783 of these (with TS > 25) for extension
- ► Compare CDF of TS_{ext} to $\chi_1^2/2$
- Don't find AGN to be extended

Table. 3: Reanalyze 12 sources in 2FGL

Name	$_{(\mathrm{deg.})}^{\mathrm{GLON}}$	GLAT (deg.)	σ (deg.)	TS	$\mathrm{TS}_{\mathrm{ext}}$	Pos Err (deg.)	$\mathrm{Flux}^{(a)} \\ \mathrm{(ph\ cm^{-2}s^{-1})}$	Index		
E>1 GeV										
SMC	302.68	-44.81	$1.75 \pm 0.07 \pm 0.02$	94.8	67.4	0.12	3.3 ± 0.4	2.41 ± 0.17		
LMC	279.10	-32.61	$1.74 \pm 0.05 \pm 0.13$	1101.3	860.5	0.05	15.5 ± 0.6	2.48 ± 0.06		
IC443	189.05	3.04	$0.36 \pm 0.01 \pm 0.04$	10719.8	510.4	0.01	64.8 ± 1.2	2.23 ± 0.02		
Vela X	263.34	-3.11	0.88							
Centarus A	309.52	19.42	~ 10							
W28	6.50	-0.27	$0.43 \pm 0.02 \pm 0.03$	1324.8	177.4	0.01	58.0 ± 1.8	2.63 ± 0.03		
W30	8.61	-0.20	$0.36 \pm 0.02 \pm 0.02$	465.4	73.3	0.02	30.7 ± 1.6	2.59 ± 0.04		
W44	34.69	-0.38	$0.36 \pm 0.01 \pm 0.02$	1903.3	217.7	0.01	73.6 ± 1.8	2.68 ± 0.02		
W51C	49.13	-0.45	$0.28 \pm 0.02 \pm 0.05$	1819.5	115.7	0.01	39.3 ± 1.3	2.35 ± 0.03		
Cygnus Loop	74.22	-8.46	$1.72 \pm 0.05 \pm 0.07$	356.5	356.5	0.06	11.1 ± 0.7	2.53 ± 0.11		
E>10 GeV										
MSH 15-52	320.38	-1.22	$0.20 \pm 0.04 \pm 0.03$	76.2	6.5	0.03	0.6 ± 0.7	2.27 ± 0.73		
${\rm HESSJ1825\!-\!137}$	17.56	-0.46	$0.65 \pm 0.03 \pm 0.01$	83.6	55.9	0.05	1.8 ± 0.2	1.74 ± 0.19		

- ► Test 12 2FGL sources for extension
- Assume radially symmetric disk spatial model
- ► Improved models could be included in future catalog

Table. 4: 9 more extended sources

Name	GLON (deg.)	GLAT (deg.)	σ (deg.)	TS	$\mathrm{TS}_{\mathrm{ext}}$	Pos Err (deg.)	$Flux^{(a)}$ (ph cm ⁻² s ⁻¹)	Index	Counterpart		
E>1 GeV											
2FGL J0823.0-4246	260.32	-3.28	$0.37 \pm 0.03 \pm 0.02$	320.9	46.3	0.02	8.5 ± 0.7	2.20 ± 0.09	Puppis A		
$2 {\rm FGL} J1627.0 {-} 2425 {\rm c}$	353.08	16.78	$0.41 \pm 0.05 \pm 0.02$	144.5	31.1	0.04	6.5 ± 0.6	2.49 ± 0.14	Ophiuchus		
$2 {\rm FGL} J1712.4 {-} 3941$	347.25	-0.54	$0.56 \pm 0.04 \pm 0.01$	75.0	39.6	0.05	4.2 ± 0.9	1.47 ± 0.12	${\rm RXJ1713.7\!-\!3946}$		
E>10 GeV											
2FGL J0851.7-4635	266.29	-1.43	$1.13 \pm 0.08 \pm 0.05$	116.1	87.2	0.07	1.3 ± 0.2	1.76 ± 0.21	Vela Jr.		
$2 {\rm FGL} {\rm J}1615.0 {-}5051$	332.38	-0.14	$0.33 \pm 0.04 \pm 0.01$	53.4	16.3	0.04	1.1 ± 0.2	2.24 ± 0.28	${ m HESSJ1616}{-508}$		
$2 {\rm FGL} {\rm J}1615.2 {-}5138$	331.66	-0.66	$0.42 \pm 0.03 \pm 0.01$	76.6	48.0	0.05	1.2 ± 0.2	1.77 ± 0.24	${ m HESSJ1614}{-518}$		
$\rm 2FGLJ1632.4\!-\!4753c$	336.41	0.22	$0.44 \pm 0.04 \pm 0.03$	127.8	64.5	0.04	1.9 ± 0.2	2.29 ± 0.21	${\rm HESSJ1632{-}478}$		
$\rm 2FGLJ1837.3\!-\!0700c$	25.08	0.13	$0.35 \pm 0.08 \pm 0.03$	46.2	18.8	0.07	1.0 ± 0.2	1.63 ± 0.29	${ m HESSJ1837-069}$		
${\rm 2FGL\ J2021.5}{+}4026$	78.18	2.19	$0.59 \pm 0.03 \pm 0.02$	222.2	116.4	0.04	1.8 ± 0.2	2.31 ± 0.19	$\gamma\text{-Cygni}$		

Extended sources could be included in future catalog