Fall 2018 STSCI 5080 Discussion 5 (9/28)

Problems

- 1. (Rice 3.8.67) A card contains n chips and has an error-correcting mechanism such that the card still functions if a single chip fails but does not function if two or more chips fail. If each chip has a lifetime that is an independent exponential with parameter λ , find the density function of the card's lifetime.
- 2. (Rice 3.8.69) Find the density of the minimum of n independent Weibull random variables, each of which has the density

$$f(t) = \beta \alpha^{-\beta} t^{\beta - 1} e^{-(t/\alpha)^{\beta}}, \ t \ge 0.$$

3. (Rice 3.8.72) Let X_1, \ldots, X_n be independent continuous random variables each with cumulative distribution function F. Show that the joint cdf of $X_{(1)} = \min_{1 \le i \le n} X_i$ and $X_{(n)} = \max_{1 \le i \le n} X_i$ is

$$F(x,y) = F(y)^n - \{F(y) - F(x)\}^n, \ x \le y.$$

- 4. (Rice 4.7.2) If X is a discrete random variable such that P(X = 1/k) = 1/n for k = 1, ..., n, then find E(X).
- 5. (Rice 4.7.5) Let X be a continuous random variable with pdf

$$f(x) = \frac{1 + \alpha x}{2}, -1 \le x \le 1,$$

where $-1 \le \alpha \le 1$. Find E(X).

6. (Rice 4.7.8) Show that if X is a discrete random variable taking values in the positive integers, then $E(X) = \sum_{k=1}^{\infty} P(X \ge k)$.

Solutions

1. (Rice 3.8.67) Let T_i denote the lifetime of the *i*-th chip. Then the card's lifetime is $T_{(2)}$ (second minimum among X_1, \ldots, X_n), whose pdf is given by

$$f_{T_{(2)}}(t) = \frac{n!}{(n-2)!} f_T(t) F_T(t) \{1 - F_T(t)\}^{n-2}.$$

Since $f_T(t) = \lambda e^{-\lambda t}$ and $F_T(t) = 1 - e^{-\lambda t}$ for $t \ge 0$, we conclude that

$$f_{T_{(2)}}(t) = n(n-1)\lambda e^{-(n-1)\lambda t}(1 - e^{-\lambda t}), \ t \ge 0.$$

2. (Rice 3.8.69) Let $T_1, \ldots, T_n \sim f$ i.i.d. Then the pdf of $X_{(1)}$ is

$$f_{T_{(1)}}(t) = nf(t)\{1 - F(t)\}^{n-1}.$$

Since $F(t) = 1 - e^{-(t/\alpha)^{\beta}}$ for $t \ge 0$, we conclude that

$$f_{T_{(1)}}(t) = n\beta\alpha^{-\beta}t^{\beta-1}e^{-n(t/\alpha)^{\beta}}, \ t \ge 0.$$

3. (Rice 3.8.72) Fix $x \leq y$. We will first evaluate

$$P(X_{(1)} > x, X_{(n)} \le y).$$

We note that

$$X_{(1)} > x$$
 and $X_{(n)} \le y \Leftrightarrow x < X_i \le y$, for all $i = 1, ..., n$,

so that

$$P(X_{(1)} > x, X_{(n)} \le y) = P(x < X_i \le y, \text{ for all } i = 1, \dots, n)$$
$$= \prod_{i=1}^{n} P(x < X_i \le y) = \{F(y) - F(x)\}^n,$$

where the second equality follows from independence of X_1, \ldots, X_n .

Next, recall the decomposition

$$B = (B \cap A) \cup (B \cap A^c),$$

where the two events on RHS are disjoint, so that

$$P(B) = P(B \cap A) + P(B \cap A^c).$$

Setting $A = \{X_{(1)} \le x\}$ and $B = \{X_{(n)} \le y\}$, we have

$$P(X_{(n)} \le y) = P(X_{(1)} \le x, X_{(n)} \le y) + P(X_{(1)} > x, X_{(n)} \le y).$$

Since $P(X_{(n)} \leq y) = F(y)^n$, we conclude that

$$F(x,y) = P(X_{(n)} \le y) - P(X_{(1)} \le x, X_{(n)} \le y) = F(y)^n - \{F(y) - F(x)\}^n.$$

4. (**Rice 4.7.2**) By definition,

$$E(X) = \sum_{k=1}^{n} k P(X = k) = \frac{1}{n} \sum_{k=1}^{n} k = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

5. (**Rice 4.7.5**) By definition,

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-1}^{1} x f(x) dx = \frac{1}{2} \int_{-1}^{1} (x + \alpha x^{2}) dx = \frac{1}{2} \left[\frac{x^{2}}{2} + \alpha \frac{x^{3}}{3} \right]_{-1}^{1} = \frac{\alpha}{3}.$$

6. (Rice 4.7.8) Since X takes values in the positive integers,

$$P(X \ge k) = \sum_{j=k}^{\infty} p(j),$$

so that

$$\sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} p(j) = \sum_{j=1}^{\infty} \sum_{k=1}^{j} p(j) = \sum_{j=1}^{\infty} jp(j) = E(X).$$

See also the following:

$$k = 1: p(1) p(2) p(3) \cdots$$

 $k = 2: p(2) p(3) \cdots$
 $k = 3: p(3) \cdots$

$$k=2:$$
 $p(2)$ $p(3)$ ···

$$k=3:$$
 $p(3) \cdots$