Normality and Homoscedasticity Assumptions Influential Observations

Contents

- 1. The Assumptions of Normality and Homoscedasticity
- 2. Residual v/s Predicted Plot in R
- 3. Q-Q plot of residuals
- 4. Shapiro Wilk test to assess Normality of Errors
- 5. Absence of Normality Remedial Measure
- 6. Box cox Transformation in R
- 7. Influential Observations

Normality and Homoscedasticity

- The errors in Multiple Linear Regression are assumed to follow Normal Distribution.
- If Normality of Errors is not true then statistical tests and associated P values based on F and t distribution are not reliable.
- Homoscedasticity describes a situation in which variance of error term is same across all values of the independent variables.
- In the absence of Homoscedasticity (Or presence of Heteroscedasticity) the standard errors of parameter estimates are incorrect.

Assumption of Homoscedasticity

• Variance of error term must be constant across the independent variables (defined by X values)

$$Vig(e_i/\chi_iig) = \sigma^2$$
 indicates homoscedasticity
$$Vig(e_i/\chi_iig) = \sigma_i^2 \ indicates \ heteroscedasticity$$

Homoscedastic Errors

Heteroscedastic Errors

Residual Analysis

Observed Value – Predicted value = Residual

Residual Analysis for Performance Index Data

Continuing with the "Performance Index " data,

- Model job performance index (jpi) based on aptitude score (aptitude), test
 of language (tol), technical knowledge (technical) and general information
 (general)
- Get fitted values and residuals.
- Analyse the distribution of residuals

Residual v/s Predicted Plot in Python

#Importing the Data, Fitting Linear Model and Calculating Fitted Values and Residuals

```
import pandas as pd
perindex= pd.read_csv("Performance Index.csv")

import statsmodels.formula.api as smf
jpimodel = smf.ols('jpi ~ tol + aptitude + technical +general',
data=perindex).fit()

perindex = perindex.assign(pred=pd.Series(jpimodel.fittedvalues))
perindex = perindex.assign(res=pd.Series(jpimodel.resid))
```

- ols() fits a linear regression.
- □ fittedvalues() and resid() fetch fitted values and residuals

```
#Residuals v/s Predicted Plot
```

```
perindex.plot.scatter(x='pred', y='res')

.plot.scatter() is used to obtain scatter plot of predicted values
against residuals.
```

Residual v/s Predicted Plot in Python

Output

Interpretation:

Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

Residual v/s Independent variables Plot in Python

Interpretation:

Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

QQ Plot

- The Quantile-Quantile (QQ) Plot is a powerful graphical tool for assessing normality.
- Quantiles are calculated using sample data and plotted against expected quantiles under Normal distribution.

High Correlation between Sample Quantiles and Theoretical Quantiles

Normalit

y

• If the data are truly sampled from a Gaussian (Normal) distribution, the QQ plot will be linear.

QQ Plot in Python

#QQ Plot

```
import statsmodels.api as sm
fig = sm.graphics.qqplot(perindex.res, line='45', fit=True)
```

- qqplot() produces a plot with theoretical quantiles on x axis against the sample quantiles on y axis. Column for which normality is being tested is specified in the first argument.
- □ line= is an argument that adds reference line to the qqplot. Here it adds a 45-degree line
- □ fit=True indicates, parameters are fit using the distribution's fit() method.

QQ Plot in Python

Interpretation:

Most of these points are close to the line except few values indicating no serious deviation from Normality.

Shapiro Wilk Test

Objective

To **correlate**, sample ordered values with expected Normal scores in order **to test normality of the sample**

Null Hypothesis (H_0): Sample is drawn from Normal Population Alternate Hypothesis (H_1): Not H_0

Test Statistic	
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Shapiro Wilk Test in Python

```
# Shapiro Wilk Test

import scipy as sp
sp.stats.shapiro(perindex.res)

# Output

(0.9498621821403503, 0.1318102478981018)

Interpretation:
p-value>0.05, Do not reject H<sub>o</sub>. Normality can be assumed.
```

Absence of Normality – Remedial Measure

Mathematical Transformation of the dependent variable is used as a remedial measure in case of serious departure from Normality.

Typically Log Transformation is used. However, there is general transformation called as Box Cox Transformation given as:

Box Cox transformation

$$Y^* = rac{Y^{\lambda} - 1}{\lambda}$$
 $\lambda \neq 0$
= $\log Y$ $\lambda = 0$
Where Y is the response variable

• R can automatically detect the optimum λ using **boxcox()** in package **MASS**

Influential Observation

• An **influential observation** is an observation whose deletion from the dataset would noticeably change the result of the calculation.

• In particular, in regression analysis an influential point is one whose deletion has a large effect on the parameter estimates.

Cook's Distance Method

Cook's distance measures the effect of deleting a given observation.

Let Di be the Cook's distance for observation i.

$$D_{i} = \frac{\sum_{j=1}^{n} (\widehat{Y}_{j} - \widehat{Y}_{j(i)})^{2}}{p MSE}$$

 \widehat{Y}_{i} = prediction from the full regression model for observation j

 $\hat{Y}_{i(i)}$ = prediction of jth observation from a refitted model after removing ith observation

MSE =mean square error of the regression model

p = number of fitted parameters in the model

Cut off to indicate influential observation,

- Simple operational guideline D_i>1 Alternative D_i >4/n, where n is the number of observations

DFBETAS

Cut off to indicate influential observation,

- general cut off value recommended is 2
- size adjusted cut off is taken to be 2/√n

Finding Influential Observations in Python

#Importing the Data import pandas as pd perindex=pd.read_csv("Performance Index.csv") import statsmodels.formula.api as smf jpimodel=smf.ols('jpi ~ aptitude + tol + technical +general', data=perindex).fit() #Finding Influential Observations influence = jpimodel.get_influence() influence.summary frame() *Influence is an object calling the method get_influence() which in turn allows* us to call various measures of influence. summary_frame() calls a dataframe of 6 influence measures - Cook's Distance, Standardized residuals, dffits, dfbetas among others.

Finding Influential Observations in Python

Output

	d Clare Track a second	d Cl	J.Cl. 4-1	JCh to do d	d Cl			had diaa	100:4- into1		100:4-
	dfb_Intercept	dfb_aptitude	_	dfb_technical	dfb_general	_	standard_resid	_ 0	_	-	dffits
0	0.122740655	-0.148903135	0.12930015	0.111295503	-0.231928116	0.027053557	1.070156154	0.105636531	0.367787693	1.073046027	0.368780874
1	-0.06974523	0.116652494	0.133587819	0.02982789	-0.09548941	0.010912673	-0.364255404	0.291400351	-0.233588024	-0.358542217	-0.229924297
2	0.007297141	-0.008657864	0.004774056	0.014949118	-0.026376846	0.000463024	-0.206575027	0.051460374	-0.048115671	-0.203007405	-0.047284697
3	-0.156960588	0.094733386	-0.173852663	0.214043541	-0.081100685	0.018150707	-0.899495717	0.100854509	-0.301253273	-0.896332474	-0.30019386
4	0.053857876	-0.010940236	0.00867167	-0.040889003	0.003662146	0.001250165	0.323269275	0.056438877	0.079062145	0.31803818	0.077782773
5	0.244563668	-0.167648781	-0.058829828	0.006424002	-0.120351526	0.0247544	0.95727578	0.118994501	0.351812453	0.9557968	0.351268907
6	-0.02187633	-0.017309924	0.012271264	0.006428915	0.013869655	0.000302058	-0.06455514	0.266006198	-0.03886248	-0.063396607	-0.038165038
7	-0.168200899	0.013234244	0.04743142	0.175275244	-0.069100347	0.01545173	0.918453917	0.083902352	0.277954402	0.915804589	0.277152627
8	-0.00893895	0.000748261	0.010029123	-0.012775933	0.020594356	0.000259695	0.13315947	0.068233348	0.03603436	0.130801426	0.035396249
9	0.112048775	-0.224748965	0.240141498	-0.17548137	0.078322088	0.023475703	-0.842281862	0.141964282	-0.342605483	-0.837785996	-0.340776751
10	-0.180550626	0.079534465	0.074017536	0.120829488	-0.057492908	0.01106923	-0.644822905	0.117472155	-0.235257629	-0.63795804	-0.232753046
11	-0.340527019	0.322925945	-0.062977416	0.148776604	0.044546954	0.044366369	1.221464622	0.129438005	0.470990281	1.232747401	0.475340861
12	-0.002789222	0.152126452	0.050719785	-0.020241173	-0.060819239	0.009463569	0.461241654	0.181948526	0.217526652	0.454660862	0.214423078
13	0.035353405	-0.027136734	0.033243364	0.016690271	-0.055540496	0.001256856	0.156009829	0.20521207	0.079273454	0.153265238	0.077878842
14	-0.060996651	1.62E-05	-0.079422031	-0.034363374	0.147870676	0.008619132	0.603984002	0.105654499	0.207594942	0.597002274	0.205195257
15	-0.026013807	-0.056282646	0.145739562	-0.191264061	0.222520013	0.020491421	0.791281772	0.140624982	0.320089214	0.78585952	0.317895805
16	0.005763587	0.05225852	-0.223037193	-0.045632185	0.148853441	0.018578284	0.85294471	0.113226147	0.30478094	0.848673035	0.303254552
17	-0.470812698	0.716128082	-0.106108271	-0.101654484	0.324161247	0.172591001	1.78156995	0.213764291	0.928953715	1.8579384	0.968774074
18	-0.002557978	-0.004065261	0.008450592	0.005075285	-0.005409883	4.13E-05	0.044548271	0.094144224	0.014361446	0.043747084	0.01410316
19	-0.052126913	-0.182788497	0.123094282	7.18E-05	0.058590983	0.01661995	-0.969160992	0.081281261	-0.288270271	-0.968072934	-0.287946635
20	-0.097589025	0.108404591	-0.09966008	0.077516309	-0.005991789	0.004816919	-0.272865	0.244414631	-0.155192119	-0.268305076	-0.152598659

Interpretation

One can use the threshold of 4/n where n is sample size and check cases with Cook's distance greater than the threshold.

Finding Influential Observations in Python

#Influence Plot

```
from statsmodels.graphics.regressionplots import *
influence_plot(jpimodel, criterion = 'Cooks')
```

□influence_plot() creates a "bubble" plot of Studentized residuals by hat values, with the areas of the circles representing the observations proportional to criteria specified (in this case Cook's distance).

Influence Plot in Python

Output

Interpretation:

The data points 28,31 and 32 are detected as influential observations.

Quick Recap

Normality Assumption	•Error terms should be normally distributed
Homoscedasticity	•Errors should have constant variance across X values
Residual v/s Predicted Plot	· Ideally, residuals should be randomly distributed
Residual v/s Independent variables Plot	· Ideally,residuals should be randomly distributed
QQ Plot	Used to check if errors follow Normal distribution
Shapiro Wilk Test	•Test for Normality assessment of errors

Quick Recap

Box Cox Transformation

Transforming non normal response to normal

Influential Observations in Python

- **get_influence()** produces object giving influential observations by different measures
- Influence_plot() creates a "bubble" plot of Studentized residuals by hat values, with the areas of the circles representing the observations proportional to Cook's distances