mpi\* - lycée montaigne informatique

# DM6 (éléments de réponses)

## **Exercice 1**

#### Question 1.

□ 1.1. On pourrait construire un DFA associé à l' $\varepsilon$ -NFA de l'énoncé en procédant par construction de sous-ensembles à partir d' $\varepsilon$ -fermetures. On peut également procéder par étapes en commençant par supprimer les transitions spontanées, ce qui élimine les états 1, 3, 4, 6. On obtient alors l'automate non déterministe représenté à gauche ci-dessous. On le déterminise alors par construction de sous-ensembles, ce qui donne la fonction de transition au centre ci-dessous, puis l'automate représenté à droite ci-dessous.



| $\delta_D$ | a   | b   |
|------------|-----|-----|
| 0          | 02  | 05  |
| 02         | 027 | 05  |
| 05         | 02  | 057 |
| 027        | 027 | 057 |
| 057        | 027 | 057 |
|            |     |     |



Enfin, on peut fusionner les deux états acceptants 027 et 057 en un état  $q_f$ .



□ 1.2. Les automates non déterministes avec ou sans transitions spontanées permettent la construction immédiate de l'expression régulière qui dénote le langage reconnu par ces automates :  $(a|b)^*(a^2|b^2)(a|b)^*$ .

### Question 2.

 $\square$  2.1. Le langage  $L_n$  est le langage dénoté par l'expression régulière  $0|1(0|1)^*$ . Ce langage est reconnu l'automate fini déterministe suivant.



#### **2.2**

- $\triangleright$  2.2.1.  $L_a$  est régulier car il s'agit du langage des mots binaires qui soit sont le mot vide soit finissent par 0: il est dénoté par l'expression régulière  $\varepsilon|(0|1)^*0$ .
- $\triangleright$  2.2.2. On a  $L_b=L_a\cap L_n$ . Or  $L_a$  et  $L_n$  sont réguliers. Donc  $L_b$  l'est aussi. On peut même exhiber une expression régulière qui le dénote :  $0|1(0|1)^*0$ .
- $\triangleright$  2.2.3. Ajouter un 0 ou un 1 à la fin d'un mot binaire de valeur numérique n le transforme en un mot de valeur numérique 2n+x où x est le chiffre affixé. Considérons les six combinaisons entre les trois cas possibles de la valeur numérique n modulo 3 et les deux cas possibles de la valeur de x.

| $n \pmod{3}$ | x | 2n + x | 2n + x [3] |
|--------------|---|--------|------------|
| 0            | 0 | 0      | 0          |
| 0            | 1 | 1      | 1          |
| 1            | 0 | 2      | 2          |
| 1            | 1 | 3      | 0          |
| 2            | 0 | 4      | 1          |
| 2            | 1 | 5      | 2          |

Ceci permet de définir un DFA dont les trois états correspondent aux trois valeurs possibles de n modulo 3, la transition  $n \to n'$  étiquetée par x correspond au passage de n à 2n + x modulo 3, c'est-à-dire :



mpi\* - lycée montaigne informatique

On a marqué l'état 0 comme initial car le mot vide a une valeur numérique congrue à 0 modulo 3 et seul 0 comme final car on veut reconnaître les multiples de 3. Ainsi, un automate reconnaît les multiples de 3. Donc  $L_c$  est régulier.

- $\triangleright$  2.2.4. Le langage  $L_d$  n'est pas régulier.
- $\rhd$ 2.2.5. Le langage  $L_e$  est régulier car il s'agit du langage dénoté par l'expression régulière  $0^*10^*.$

Question 3. Raisonnons par l'absurde en supposant que L soit régulier. D'après le lemme de l'étoile, il existe un facteur itérant  $k \in \mathbb{N}$  tel que tout mot de L de longueur supérieure à k se factorise sous la forme xyz avec  $|y| \geqslant 1$ ,  $|xy| \leqslant k$  et  $xy^*z \in L$ .

Soit p un nombre premier supérieur ou égal à k. Un tel nombre existe puisque l'ensemble des nombres premiers est infini. Le mot  $a^p$  appartient alors à L et se factorise comme indiqué précédemment. Posons |x|=m, |y|=n de sorte que |z|=p-m-n. Alors  $n\geqslant 1$  et pour tout entier naturel i,  $|xy^iz|=p+(i-1)n$  est premier. En particulier, pour i=p+1, on obtient que (n+1)p est premier. Ce qui est absurde. L n'est donc par régulier.