

Self introduction

☐ Background and contact information

Background

- 2001-2004: Boeung Trabek High School
- 2004-2010: Bachelor's degree in Computer Science at GIC, ITC
 - 2004-2007: Technician's degree (DUT)
 - 2007-2010: Bachelor's degree (Engineer)
- 2010-2012: Master's degree in Computer Engineering at Chung-Ang University (CAU), Seoul, South Korea
- 2017-2021: Doctoral degree in Computer Engineering at University of Mons, Belgium

Contact

■ Email: <u>kongphutphalla@gmail.com</u>

• Office: F-307

Outline

- Introduction to course description
- Outcomes and objectives of the course
- Overall lectures
- Required knowledge
- Assessment methods

Course Description

- The course of "Image Processing" aims to
 - ✓ Introduce students a basic understanding of data structure and color of images
 - ✓ Learn concepts of lossless compression
 - ✓ Understand about how to segment image and how effect from luminance
- Image Processing course is an image-based concept with the
 - operation, edition, and implementation for making an ideal objective

Objectives

- Provide a set of basic skills, concepts and implementation for
 - Image acquisition
 - Image operation

- To give knowledge and experience about
 - Color channel conversion
 - **Edge detection** algorithm and implementation
 - Histogram equalization algorithm and implementation

Outcomes

- Students will be able to
 - ✓ Explain on data structure of image
 - ✓ Describe about color channel differences
 - ✓ Understand about lossless compression methods
 - ✓ Be able to segment images in different ways
 - ✓ Explain the effect of luminance
 - ✓ Implement some operations (color changes, histogram equalization)

Lecture overview

☐ Overall lectures

- 1. Introduction to Image Processing
- 2. Data Structure and Color of Images
- 3. Ms. Visual Studio 2008 and OpenCV
- 4. Introduction to Multimedia Systems
- 5. Introduction to Video and Lossless Compression
- 6. Huffman Coding
- 7. LZ77
- 8. LZ78
- 9. LZW
- 10. Sampling
- 11. Image Segmentation part1
- 12. Image Segmentation part2
- 13. Luminance and Histogram Equalization

Teaching methods

- Activity
- Lecture
- Homework
- Assignment/Project
- Quiz
- Mid-term exam
- Final exam

Scoring method

Activities

- Attendance = 10%
- Class activity participation = 15%
- Homework/Assignment = 15%
- Assessment = 60%
 - Quiz/Project = 20%
 - Mid-term exam = 20%
 - Final exam = 20%

■ **Remark**: If you are absent during a midterm or final exam, you will be considered as fail even the total percentage between midterm and final exam is 40%.

Class management

- ☐ Time
- Be on time

- Late case
 - In 15mn:
 - Mark as Late (L)
 - 2L = 1 absence
 - Late > 15mn

- Mark as Absence (A)
- Microsoft Team
 - For homework, assignment, and project submissions

Resources

- ☐ Books and Documents
- "Digital Image Processing" par W. K. Pratt, John Wiley & Sons, inc.inc., Third Edition, 2001
- "Digital Image Processing" par Gonzalez et Woods, Prentice Hall, Second Edition, 2002
- http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm
- http://www.dai.ed.ac.uk/CVonline/transf.htm

Prerequisite

- Prerequisite
- Basic knowledge in software development,
- Graphic design,
- Analysis concepts

Positive Thinking

General Knowledge

General questions

- 1. How do you deal with stress? How do you define stress?
- 2. What do you usually do when you are bored? Is it help? Good consequences?
- 3. Have you already defined your future goal?
- 4. What do you want to become?

To know about yourself, you should be able to answer all of these questions.