

The work is performed by 4th year DSBA student Aksenov Nikita Supervisor
Denis Bogutskiy
HSE Lab "Artificial Intelligence in mathematical finance"

Transfer Learning for Optimal Market Making in Synthetical Markets

Moscow

Content

- 1. Introduction
- 2. Agent Based Simulator
- 3. Feature engineering
- 4. Classification

- 5. RL Models architecture
- 6. RL Models performance
- 7. Conclusion

Introduction & Research goal

Goal

Research Goal

The research studies how Transfer Learning affects training time and performance of Reinforcement Learning models in context of optimal Market Making

Relevance

Usage of **RL algorithms in Market Making** is a new way of constructing Market Making algorithms. However, the approach requires a lot of data for a complicated Neural Network to converge and to show decent results. We believe that this problem can be solved by applying transfer learning to the Reinforcement learning AI model.

Problem statement

The problem statement is to compare the convergence speed of a RL model and a model with transfer learning, applied to solving the Market Making task on a synthetic market.

Tasks

- 1. Study properties of the simulated data
- 2. Generate features to increase classification accuracy

Tasks

- 3. Train and test classification models
- 4. Build environment for RL model training
- 5. Train RL models in several configurations (with and without transfer learning)
- 6. Assess the performance of RL models with different configurations and training time

Agent Based Simulator

Data

Agent Based Simulator

Agents:

- Random
- Chartist
- Fundamentalist
- Market Maker

Assets:

Stock

Exchange

Iterative cycle:

- 1. Agents are called in random order
 - a. Called Agent observes current market information
 - b. Called Agent places orders
 - c. Order book is cleaned
- 2. Dividends are updated
- 3. The cycle repeats

Simulator setup settings:

Asset price - 200, risk free rate - 5%, dividend yield - 5%.

Chartists, Fundamentalists, Random traders - 40 each. 1 Market Maker if present.

Feature extraction

Feature generation

- Bid-ask volume imbalance
- Signed transaction volume
- Previous dividends
- Returns
- Fundamental value

Feature generation

Lag or depth dependent features:

- Bid-Ask Volume Imbalance (1, 3, 5, 10 depth)
- Signed transaction volume (1, 5, 10, 20 lags)
- Returns (1, 5, 10, 20 lags)

Other features:

- Last dividends difference from the risk free returns
- Fundamental price
- Bid-Ask spread

Classification accuracy

Log regression/XGBoost

Classification Accuracy

	Lag 1 (~40 000 observations)		Lag 5 (~8000 observations)		Lag 10 (~4000 observations)	
	Train	Test	Train	Test	Train	Test
XGBoost	0.63	0.61	0.67	0.59	0.73	0.59
Log regression	0.56	0.57	0.52	0.52	0.53	0.50

Confusion matrices of XGBoost

Lag 1 Test (~8000 observations)

Lag 5 Test (~1600 observations) Lag 10 Test (~800 observations)

NN models

Classification Accuracy

Model	Dataset	Lag 1 (test)	Lag 5 (test)	
Multilayer perceptron	Presence of Market Maker	0.6	0.62	
Multilayer perceptron	Absence of Market Maker	0.6	0.54	
LSTM	Presence of Market Maker	0.33	0.55	
LSTM	Absence of Market Maker	0.33	0.5	

Confusion matrices of MLP

Classification MLP NN architecture

Reinforcement Learning models

Reinforcement Learning setup

State space

16 Features + Inventory

All features are normalized to be in range of [-1; 1]

Action Space

Limit orders (Q, P)

Q - quantity in order (0, 10,.. 90)

P - deviation from the best price [-5; 10]

Reward function

 $Reward = (MIN(Q_executed_{bid}, Q_executed_{ask}) * (P_executed_{ask} - P_executed_{bid}) / a) - |Assets| / Inventory_Restriction$

PPO - Proximal Policy Optimization (Default configuration)

Feature extraction network

Action Network

Value Network

64

1

PPO - Transfer Learning architecture

Feature extraction network

PPO - Proximal Policy Optimization

Default PPO

PPO with Transfer Learning (Lag 1)

PPO with Transfer Learning (Lag 5)

Extractor Network:

[17, 64]

Extractor Network:

Classification MLP (Lag 1)

[11, 64]

Extractor Network:

Classification MLP (Lag 5)

[11, 64]

Action Network:

[64, 52]

Action Network:

[64, 52]

Action Network:

[64, 52]

Value Network:

[64, 1]

Value Network:

[64, 1]

Value Network:

[64, 1]

Results

Performance comparison by loss

cash

Performance comparison by assets and

Test setup

The models were trained for 40000 iterations.

Model weights are saved and tested after 5000, 10000, 20000 and 40000 training iterations.

Each model is tested in 20 independent simulations, 250 iterations each.

Comparison is made by agent equity - agent cash + current value of the position

Performance comparison by equity

Performance comparison by equity

Training iterations Model	5000	10000	20000	40000
Default PPO	84.8 (134.2)	155.5 (82)	138.9 (108.6)	82 (91)
Transfer Learning lag 5	-7.6 (132.8)	-16 (145.9)	47 (106.6)	46.9 (102.6)
Transfer Learning lag 1	248.8 (103)	151.7 (118.8)	205.7 (105)	154.3 (121.1)

Conclusion

Research conclusion

In the research we studied effectiveness of Transfer Learning approach used for training Reinforcement Learning agent for solving optimal Market Making problem.

It is shown that for Agent Based market simulators, applying Transfer Learning resulted into the best performing model, which required the least amount of training.

Compared to Default PPO model, usage of **Transfer Learning** that utilizes MLP classification of 1 step price movement model resulted into **60% better performance** with **50% less training iterations**

Thanks for attention

