SCC-540 Bases de Dados

Moacir Ponti Jr

Material da Profa. Elaine Parros Machado de Sousa

Tópicos da Aula

- Evolução dos Sistemas de Banco de Dados
 - arquiteturas cliente/servidor
- Desenvolvimento de Sistemas de Banco de Dados
 - Three-Schema Architecture
 - Ciclo de Vida
- Modelagem de Dados

Tópicos da Aula

- Evolução dos Sistemas de Banco de Dados
 - arquiteturas cliente/servidor
- Desenvolvimento de Sistemas de Banco de Dados
 - Three-Schema Architecture
 - Ciclo de Vida
- Modelagem de Dados

Evolução dos Sistemas de Bases de Dados

Bancos de Dados Centralizados

Evolução dos Sistemas de Bases de Dados

Arquitetura Cliente/Servidor com Servidor de Arquivos

Evolução dos Sistemas de Bases de Dados

Arquitetura Cliente/Servidor com Servidor de Bancos de Dados

• Duas camadas ("two-tiers")

Dados e Regras

SGBD

Servidor

BD + parte (pequena) da lógica de negócio

Aplicações

Cliente

Interface + maior parte da lógica de negócio

Três camadas ("three-tiers")

negócio

Aplicações-Cliente Cliente

Interface + parte específica da lógica de negócio

Quatro camadas

Tópicos da Aula

- Evolução dos Sistemas de Banco de Dados
 - arquiteturas cliente/servidor
- Desenvolvimento de Sistemas de Banco de Dados
 - Three-Schema Architecture
 - Ciclo de Vida
- Modelagem de Dados

Esquema e Instância

Banco de dados:

Esquema

- Definição
- Estático (ou quase!)

Instância

- Manipulação
- Dinâmica

Esquema e Instância

Esquema pode ser definido em 3 níveis

Arquitetura de Três Esquemas

- Three-Schema Architecture (ou arquitetura ANSI/SPARC)
 - realização e visualização de características importantes da filosofia de bases de dados
 - □ independência de dados
 - múltiplas visões para os usuários
 - armazenamento da descrição da base de dados (esquema) em diferentes níveis de abstração

- Nível Interno esquema físico
 - descreve <u>estrutura física</u> de armazenamento da base de dados
 - como os dados estão armazenados

- Nível Conceitual esquema conceitual e/ou lógico
 - descreve a estrutura da base de dados sem detalhes de estrutura de armazenamento físico
 - quais dados estão armazenados e como estão relacionados
 - o descrição do esquema conceitual/lógico:
 - modelo conceitual (ex: MER)
 - modelo de implementação (ex: Modelo Relacional)

Nível Externo - sub-esquemas

- define as <u>visões dos usuários</u>
 - descreve a parte da base de dados em que cada grupo de usuários tem interesse
- descrição de sub-esquemas:
 - modelo conceitual (ex: MER)
 - modelo de implementação (ex: Modelo Relacional)

 Visualização de níveis de esquema em sistemas de banco de dados ⇒

ABSTRAÇÃO

- escondendo detalhes e complexidade nos diferentes níveis
- visão mais geral ou mais específica

Recordando....

- Three-Schema Architecture (ou arquitetura ANSI/SPARC)
 - realização e visualização de características importantes da filosofia de bases de dados
 - 🖊 🛚 independência de dados
 - múltiplas visões para os usuários OK!!!!!
 - armazenamento da descrição da base de dados (**esquema**) em diferentes níveis de **abstração**

- Independência de dados na arquitetura de três esquemas ⇒ capacidade de modificar o esquema em determinado nível sem afetar o esquema do nível superior
- SGBD pode suportar:
 - o independência física
 - o independência lógica

Independência física de dados

- modificações no esquema interno não provocam alterações nos esquemas lógico e externo
- o por que modificar esquema interno?
- quando os esquemas em níveis superiores teriam que ser alterados?

Independência lógica de dados

- modificações no esquema lógico não provocam alterações nos esquemas externos
 - aplicativos não precisam ser reescritos
- o por que modificar esquema lógico?
- quando os esquemas em níveis superiores teriam que ser alterados?

Níveis de Abstração

Projeto conceitual

- esquema conceitual para a base de dados
 - níveis conceitual/lógico e externo
 - Daseado nos <u>requisitos de dados</u>
 - objetivos:
 - estrutura da base de dados
 - semântica
 - relacionamentos
 - restrições

- Projeto conceitual (cont.)
 - independente do SGBD
 - pode incluir especificação em alto nível de:
 - aplicações
 - características funcionais das transações
 - omodelo conceitual ex: MER

Projeto lógico

- <u>esquema lógico</u>
 - níveis conceitual/lógico e externo
- mapeamento do modelo conceitual para o modelo do SGBD
 - ex: Modelo Relacional

- Projeto lógico (cont.)
 - Passo1 mapeamento <u>independente</u>
 de um SGBD específico
 - mas... dependente do "paradigma" (relacional, OO, relacional-objeto)
 - Passo 2 ajustes de acordo com as características e restrições do modelo implementado por um SGBD específico

- Projeto físico
 - esquema físico
 - nível interno
 - estruturas físicas de armazenamento
 - organização de registros físicos
 - Índices
 - o critérios:
 - tempo de resposta
 - espaço utilizado
 - número de transações

Tópicos da Aula

- Evolução dos Sistemas de Banco de Dados
 - arquiteturas cliente/servidor
- Desenvolvimento de Sistemas de Banco de Dados
 - Three-Schema Architecture
 - ° Ciclo de Vida
- Modelagem de Dados

Modelagem de dados O Três Reinos - **Abstração**

- Por que modelar?
 - ° se
 - projetistas se apóiam pouco em metodologias sistemáticas para conduzir o projeto da base de dados...
 - o então
 - li tempo e recursos são subestimados
 - resultado não atende às necessidades das aplicações
 - documentação é limitada
 - manutenção custosa

- Por que modelar?
 - para obter melhor compreensão sobre a informação a ser armazenada e manipulada:
 - Dados
 - Domínio do Problema (<u>Negócio</u>)

- Por que modelar?
 - ° se
 - projeto é feito direto em termos de estruturas de armazenamento...
 - o então
 - considera limitações da estrutura escolhida;
 - inclui "macetes" para bom desempenho e representação da informação;
 - ... (continua)

- Por que modelar? (cont...)
 - então
 - []
 - convívio com a inadequação da estrutura escolhida
 - dificulta o diálogo com o usuário
 - com o tempo... esquece-se o que é percepção da realidade e o que é necessidade de implementação

Modelos de Dados

 Modelo de dados – "definição abstrata, autônoma e lógica dos objetos, operadores e outros elementos que, juntos, constituem a máquina abstrata com a qual os usuários interagem". (Date)

- objetos estrutura dos dados
- operadores comportamento dos dados

Modelos de Dados

- Modelos de dados (Elmasri)
 - Conceituais
 - Modelo Entidade Relacionamento (MER)
 - Modelo de Objetos da ODMG (Object Model)
 - de Implementação :
 - Ex: Rede, Hierárquico, Relacional

Modelos Conceituais

Objetivo:

- descrição do conteúdo da base de dados
 - NÃO considera estruturas de armazenamento

Enfoque:

- compreensão e descrição da realidade (informação)
- compreensão e seleção das propriedades relevantes da informação
- compreensão e descrição das restrições sobre os dados
- diálogo com o usuário

Sistemas de Banco de Dados

Modelagem Conceitual

- Entrada: Requisitos de Dados
- Processo:
 - modelagem representação conceitual
 - modelo conceitual (Ex: MER)
- Resultado: Esquema Conceitual
 - descrição sucinta (diagramas e texto)
 - clara, concisa, sem ambigüidades, sem contradições
 - padronizada

Modelagem Conceitual

• Exemplos:

- SDM (Semantic Data Model) [McLeod-81]
- SAM (Semantic Association Model) [Su-86]
- IFO [Abiteboul-87]
- ME-R (Modelo Entidade-Relacionamento) [Chen-76]
- Modelos Orientados a Objetos
 - Object Model (ODMG), UML, OMT, OOAD, BOOCH

Modelagem Conceitual – Exemplo usando MER:

- Seguem o paradigma de um SGBD
 - "mais próximos" da implementação
- Ex:
 - Modelo de Redes
 - Modelo Hierárquico
 - Modelo Relacional

Projeto Lógico

Sistemas de Banco de Dados

Modelo em Rede:

- dados representados por um conjunto de registros
- relações entre registros representadas por links
- registros organizados no BD por um conjunto de **grafos**

- Modelo Hierárquico
 - o similar ao Modelo em Rede
 - dados e relações representados por registros e links
 - diferença: no Modelo Hierárquico os registros estão organizados em árvores
 - Sistema IMS (IBM)

Modelo Relacional

- difere por não usar links
- relaciona os registros por meio de valores
- possibilidade do desenvolvimento de fundamentos matemáticos para sua definição
 - Cálculo Relacional e Álgebra Relacional
- Sistema R (IBM)

Sugestão de leitura

 Capítulos introdutórios dos livros citados na bibliografia principal da disciplina