Chapitre 12. Suites réelles et complexes

Convergence

1.1 Définition

Définition 1.1. Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite réelle.

- * Soit $l \in \mathbb{R}$. On dit que u converge (ou <u>tend</u>) vers l si $\forall \varepsilon > 0$, $\exists N \in \mathbb{N} : \forall n \geq N$, $|u_n l| \leq \varepsilon$ Dans ce cas, on note $u_n \xrightarrow[n \to +\infty]{} l$ ou $u \to l$ ou $\lim_{n \to +\infty} u_n = l$
- * On dit que u diverge si elle ne converge vers aucun $l \in \mathbb{R}$

1.2 Premières propriétés

Proposition 1.2 (Unicité de la limite). Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
. Soit $l, l' \in \mathbb{R}$ tels que
$$\begin{cases} u_n \xrightarrow[n \to +\infty]{} l \\ u_n \xrightarrow[n \to +\infty]{} l' \end{cases}$$
 Alors $l = l'$

Proposition 1.3. Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
 et $l \in \mathbb{R}$
On a $u_n \xrightarrow[n \to +\infty]{} l \iff |u_n - l| \xrightarrow[n \to \infty]{} 0$

Proposition 1.4. Toute suite convergente est bornée.

Lemme 1.5. Toute suite bornée à partir d'un certain rang (àpcr) est bornée.

Proposition 1.6 (Caractère asymptotique de la limite).

La convergence d'une suite ne dépend pas de ses premiers termes.

Plus précisément, soit $u, v \in \mathbb{R}^{\mathbb{N}}$ égales àpcr.

Alors u converge si et seulement si v converge. Si c'est le cas, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$

1.3 Limites et inégalités

Théorème 1.7 (Passage à la limite dans les inégalités larges).

Soit
$$u, v \in \mathbb{R}^{\mathbb{N}}$$
 et $l, l' \in \mathbb{R}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$ et $v_n \xrightarrow[n \to +\infty]{} l'$. On suppose $\forall n \in \mathbb{N}, u_n \leq v_n$ Alors $l \leq l'$

Théorème 1.8 (\mathbb{R}_+^* est ouvert). Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} l > 0$ Alors u est strictement positive àper, càd $\exists N \in \mathbb{N} : \forall n \geq N, u_n > 0$

1.4 Limite infinie

Définition 1.9. Soit $u \in \mathbb{R}^{\mathbb{N}}$

- * On dit que u tend (ou diverge) vers $+\infty$ si $\forall A \in \mathbb{R}$, $\exists N \in \mathbb{N} : \forall n \geq N$, $u_n \geq A$ Dans ce cas, on note $u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $u \to +\infty$ ou $\lim_{n \to +\infty} u_n = +\infty$ * On dit que u tend (ou diverge) vers $-\infty$ si $\forall A \in \mathbb{R}$, $\exists N \in \mathbb{N} : \forall n \geq N$, $u_n \leq A$

Définition 1.10. La droite numérique achevée est l'ensemble $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty; +\infty\}$

Proposition 1.11 (Unicité de la limite dans $\overline{\mathbb{R}}$). Soit $n \in \mathbb{R}^{\mathbb{N}}$ et $l, l' \in \overline{\mathbb{R}}$ tels que $u_n \xrightarrow[n \to +\infty]{} l$ et $u_n \xrightarrow[n \to +\infty]{} l'$ Alors l = l'

1

Théorèmes de convergence 2

2.1 **Opérations**

On munit $\overline{\mathbb{R}}$ d'une addition et d'une multiplication "partielles", càd qu'elles ne sont pas définies pour tous les couples d'éléments de $\overline{\mathbb{R}}$

+	$-\infty$	$b \in \mathbb{R}$	+∞
$-\infty$	-∞	$-\infty$	X
$a \in \mathbb{R}$	$-\infty$	a+b	+∞
+∞	X	+∞	+∞

×	$-\infty$	$b \in \mathbb{R}_{-}^{*}$	0	$b \in \mathbb{R}_+^*$	+∞
$-\infty$	+∞	+∞	X	-∞	$-\infty$
$a \in \mathbb{R}_{-}^{*}$	+∞	ab	0	ab	$-\infty$
0	X	0	0	0	X
$a \in \mathbb{R}_+^*$	$-\infty$	ab	0	ab	+∞
	$-\infty$	$-\infty$	Х	+∞	+∞

Théorème 2.1. Soit
$$u,v\in\mathbb{R}^{\mathbb{N}}$$
 telles que $\begin{cases} u_n\to l_1\in\overline{\mathbb{R}} \\ v_n\to l_2\in\overline{\mathbb{R}} \end{cases}$ et $\lambda\in\mathbb{R}$

- * On a $|u_n| \xrightarrow[n \to +\infty]{} |l_1|$ * Si $\lambda \in \mathbb{R}^*$, $\lambda u_n \xrightarrow[n \to +\infty]{} \lambda l_1$ * Si $l_1 + l_2$ est bien définie, $u_n + v_n \xrightarrow[n \to +\infty]{} l_1 + l_2$
- * Si $l_1 l_2$ est bien définie, $u_n v_n \xrightarrow[n \to +\infty]{n} l_1 l_2$

Lemme 2.2. Soit
$$u, v \in \mathbb{R}^{\mathbb{N}}$$
 telles que
$$\begin{cases} u \text{ born\'ee} \\ v_n \xrightarrow[n \to +\infty]{} +\infty \end{cases}$$
 Alors $u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$

Lemme 2.3. Soit
$$u, v \in \mathbb{R}^{\mathbb{N}}$$
 telles que
$$\begin{cases} u \text{ born\'ee} \\ v_n \xrightarrow[x \to +\infty]{} 0 \end{cases}$$
 Alors $u_n v_n \xrightarrow[n \to +\infty]{} 0$

Théorème 2.4. Soit $u \in \mathbb{R}^{\mathbb{N}}$ qui ne s'annule pas.

- * Si $u_n \xrightarrow[n \to +\infty]{} l \in \mathbb{R}^*$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{l}$
- * Si $u_n \xrightarrow[n \to +\infty]{n \to +\infty} \pm \infty$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{n \to +\infty} 0$ * Si $u_n \xrightarrow[n \to +\infty]{n \to +\infty} 0$ et que $\forall n \in \mathbb{N}$, $u_n > 0$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{n \to +\infty} +\infty$

2.2 Théorème de la limite monotone