

Imitation learning for part-of-speech tagging

1	can	fly
Pronoun	Modal	Verb

Task loss: Hamming loss: number of incorrectly predicted tags

Transition system: Tag each token left-to-right

Expert policy: Return the next tag from the gold standard

Gold standard in search space

- Three actions to complete the output
- Expert policy replicates the gold standard

Training a classifier with structure features

label	features
Pronoun	token=I,, prev= NULL
Modal	token=can,, prev= Pronoun
Verb	token=fly,, prev= Modal

With logistic regression and k previous tags: training a kth-order Maximum Entropy Markov Model (McCallum et al., 2000 (http://people.csail.mit.edu/mcollins/6864/slides/memm.pdf))

Exposure bias

We had seen:	label	features	
	Verb	token=fly,, prev= Modal	

but not:	label	features	
	Verb	token=fly,, prev= Verb	

Addressing exposure

Allow the classifier to guide the learning

(https://www.pinterest.com/explore/affordable-driving-school/)

- 1st iteration: **roll-in** through the data with the expert
- 2nd onwards: mix expert and classifier to expose the classifier to its own actions

DAgger algorithm

```
Input: D_{train} = \{(\mathbf{x}^1, \mathbf{y}^1)...(\mathbf{x}^M, \mathbf{y}^M)\}, expert \pi^*, loss function L

Output: classifier H

training examples \mathcal{E} = \emptyset, expert probability \beta = 1

while termination condition not reached \mathbf{do}

set rollin policy \pi^{in} = \beta H + (1 - \beta)\pi^*

for (\mathbf{x}, \mathbf{y}) \in D_{train} \mathbf{do}

rollin to predict \hat{\alpha}_1 ... \hat{\alpha}_T = \pi^{in}(\mathbf{x}, \mathbf{y})

for \hat{\alpha}_t \in \hat{\alpha}_1 ... \hat{\alpha}_T \mathbf{do}

ask expert for best action \alpha^* = \pi^*(\mathbf{x}, S_{t-1})

extract features = \phi(\mathbf{x}, S_{t-1})

\mathcal{E} = \mathcal{E} \cup (features, \alpha^*)

learn H from \mathcal{E}

decrease \beta
```

DAgger algorithm

Proposed by Ross et al. (2011) (http://www.cs.cmu.edu/~sross1/publications/Ross-AlStats11-NoRegret.pdf) motivated by robotics

- first iteration is standard classification training
- task loss and gold standard are implicitly considered via the expert
- DAgger: the Datasets in each it eration are Aggregated

So far we looked at how to overcome previous errors. What about anticipating (and avoiding) the future ones?

Training labels as costs

Pronoun	Modal	Verb	Noun	features
0	1	1	1	token=I, prev= NULL
1	0	1	1	token=can, prev= Pronoun
1	1	0	1	token=fly, prev= Modal

Cost break down

- roll-in to a point in the sentence
- try each possible label and **rollout** till the end
- evaluate the complete output with the task loss
- If roll-out with expert only, correct action has 0 cost, incorrect 1.

Mixed roll-outs

Rolling out with the classifier allows us to see future mistak es

Pronoun	Modal	Verb	Noun	features
1	0	2	1	token=can, prev= Pronoun

DAgger with roll-outs

```
Input: D_{train} = \{(\mathbf{x}^1, \mathbf{y}^1)...(\mathbf{x}^M, \mathbf{y}^M)\}, \text{ expert } \pi^*, \text{ loss function } L
Output: classifier H
training examples \mathcal{E} = \emptyset, expert probability \beta = 1
while termination condition not reached do
    set rollin/out policy \pi^{in/out} = \beta H + (1 - \beta)\pi^*
     for (\mathbf{x}, \mathbf{y}) \in D_{train} do
         rollin to predict \hat{\alpha}_1 \dots \hat{\alpha}_T = \pi^{in/out}(\mathbf{x}, \mathbf{y})
         for \hat{\alpha}_t \in \hat{\alpha}_1 \dots \hat{\alpha}_T do
              for \alpha \in \mathcal{A} do
                   rollout S_{final} = \pi^{in/out}(S_{t-1}, \alpha, \mathbf{x})
                   cost \ c_{\alpha} = L(S_{final}, \mathbf{y})
              extract features = \phi(\mathbf{x}, S_{t-1})
              \mathcal{E} = \mathcal{E} \cup (features, \mathbf{c})
     learn H from \mathcal{E}
     decrease \beta
```

Roll-outs

- can learn with non-decomposable losses
- can learn with sub-optimal experts
- expensive when there are many actions and long sequences to complete outputs

Some history:

- first proposed in SEARN (<u>Daumé III et al., 2009</u> (<u>http://hunch.net/~il/projects/reductions/searn/searn.pdf</u>)
- used to hybridise DAgger by <u>Vlachos and Clark</u> (http://www.aclweb.org/anthology/Q14-1042), referred to later as V-DAgger (Goodman et al. 2016 (http://aclweb.org/anthology/P16-1001)
- also proposed as look-aheads (<u>Tsuruoka et al. 2011</u> (<u>http://www.anthology.aclweb.org/W/W11/W11-0328.pdf</u>))

LoLS

Locally Optimal Learning to Search (<u>Chang et al., 2015</u> (<u>https://arxiv.org/pdf/1502.02206.pdf</u>))

- rollin always with the classifier
- each rollout uses either the expert or the classifier exclusively

Generic imitation learning

```
Input: D_{train} = \{(\mathbf{x}^1, \mathbf{y}^1)...(\mathbf{x}^M, \mathbf{y}^M)\}, expert \pi^*, loss function L

Output: classifier H

training examples \mathcal{E} = \emptyset

while termination condition not reached do

set rollin policy \pi^{in} = mix(H, \pi^*)

set rollout policy \pi^{out} = mix(H, \pi^*)

for (\mathbf{x}, \mathbf{y}) \in D_{train} do

rollin to predict \hat{\alpha}_1 ... \hat{\alpha}_T = \pi^{in}(\mathbf{x}, \mathbf{y})

for \hat{\alpha}_t \in \hat{\alpha}_1 ... \hat{\alpha}_T do

rollout to obtain costs c for all possible actions using L

extract features f = \phi(\mathbf{x}, S_{t-1})

\mathcal{E} = \mathcal{E} \cup (f, c)

learn H from \mathcal{E}
```

Summary so far

- basic intuition behind IL
- rollin and the DAgger algorithm
- rollouts and V-DAgger and LoLS
- generic imitation learning recipe