

Deep Learning, um subcampo da inteligência artificial (IA), utiliza redes neurais artificiais para modelar e resolver problemas complexos. Esta tecnologia está por trás de avanços significativos em diversas áreas, como reconhecimento de imagem, processamento de linguagem natural e jogos. Vamos explorar os princípios fundamentais do Deep Learning e ver exemplos práticos em Python.

Redes Neurais Artificiais

As redes neurais são a base do Deep Learning. Elas são compostas por camadas de neurônios artificiais que se inspiram na estrutura do cérebro humano.

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
```

Treinamento de Modelos

O treinamento de modelos envolve a alimentação de dados e a ajustagem dos pesos dos neurônios através de um processo chamado backpropagation.

```
# Dados fictícios para exemplo import numpy as np
```

```
# 1000 amostras, cada uma com 100 características
```

Treinando o modelo model.fit(X_train, y_train, epochs=10, batch_size=32)

X train = np.random.rand(1000, 100)

^{# 1000} rótulos binários

y_train = np.random.randint(2, size=1000)

Regularização para Evitar Overfitting

Dropout(0.5), # 50% dos neurônios serão desativados aleatoriamente

model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])

durante o treinamento

Dropout(0.5).

Dense(64, activation='relu'),

Dense(1, activation='sigmoid')

ajusta dados. novos ajudar a mitigar isso. from tensorflow.keras.layers import Dropout # Adicionando Dropout ao modelo para regularização model = Sequential([Dense(64, activation='relu', input shape=(100,)),

Overfitting ocorre quando um modelo se demais aos dados de treinamento e não generaliza bem para Técnicas de regularização, como dropout, podem

Redes Convolucionais (CNNs)

Redes Convolucionais são especialmente eficazes para tarefas de visão computacional, como reconhecimento de imagens.

Redes Recorrentes (RNNs)

Redes Recorrentes são adequadas para dados sequenciais, como séries temporais ou texto.

rnn model.compile(optimizer='adam', loss='binary crossentropy',

from tensorflow.keras.layers import SimpleRNN

metrics=['accuracy'])

