Nom: Prénom:

EXAMEN ECRIT MATHÉMATIQUES APPLIQUEES 1 B. LE BAILLY

Bachelier en Informatique et Systèmes, Première Année

08/01/2024, Durée : 3h00 Tous appareils électroniques interdits

Q1 /10	Q2 /15	Q3 /15	Q4 /25	Q5 /30	Q6 /25	Q7 /40	Total / 160	Total /20

Question 1 (10 points)

En supposant qu'elles soient bien définies, démontrer les égalités suivantes :

a)
$$\left(\sqrt{x} \, \sqrt[5]{x^8}\right)^4 = x^5 \, \sqrt[10]{x^2}$$

b)
$$\frac{5^{(a^2)}}{25^a}$$
: $\frac{(5^{2a})^{(a-1)}}{(5^a)^a} = 1$

Question 2 (15 points)

a) Représenter ci-dessous la relation binaire R définie de l'ensemble A vers l'ensemble B par « est la racine carrée de » :

b) Compléter, en justifiant, le tableau suivant :

La relation R est-elle	
surjective ?	
partout définie ?	
injective ?	
fonctionnelle ?	
bijective ?	

Question 3 (15 points) Soit le triangle ABC représenté ci-dessous :

a) Représenter la droite parallèle à l'axe Ox passant par le point B. Donner son équation.

Prénom:

- b) Calculer la pente de la droite d passant par les points B et C.
- c) Donner l'équation cartésienne de la droite d₁ perpendiculaire à la droite d au point C. Représenter cette droite.
- d) Donner l'équation cartésienne de la droite d₂ parallèle à la droite d passant par le point A. Représenter cette droite.
- e) Calculer graphiquement et analytiquement le point de concours des droites d_1 et d_2 .

Prénom:

Question 4 (25 points)

a) Soit $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = x^2 - 2x - 3$. Compléter les caractéristiques cette parabole et tracer son graphique dans le repère orthonormé ci-dessous :

Axe de symétrie?

Sommet?

Concavité?

Intersection axe Oy?

Intersection(s) axe Ox?

Image de x=-2?

b) Cette parabole admet-elle une fonction réciproque, Si oui, représenter cette fonction dans le repère orthonormé ci-dessus en expliquant la(les) manipulation(s) graphique(s) effectuée(s). Si non, expliquer pourquoi.

c) Effectuer, dans le repère orthonormé ci-dessus, une translation de deux unités vers le bas de cette parabole et donner l'équation de la parabole ainsi obtenue.

d) Représenter, également dans le repère orthonormé ci-dessus, le graphique de la fonction y = |f(x)| en expliquant la(les) manipulation(s) graphique(s) effectuée(s).

e) Résoudre dans \mathbb{R} l'inéquation $\frac{x^2-2x-3}{4-2x} \ge 0$.

Question 5 (30 points)

a) Représenter sur le cercle trigonométrique ci-dessous un angle α du deuxième quadrant orienté positivement dont la tangente vaut $-\frac{3}{4}$. Représenter et calculer les valeurs exactes des autres nombres trigonométriques de cet angle α .

b) Calculer à l'aide du cercle trigonométrique

 $\cot (480^{\circ}) = \qquad \qquad \operatorname{tg}\left(\frac{3\pi}{2}\right) = \\ \arcsin\left(-\frac{1}{2}\right) = \qquad \qquad \cos\left(\frac{13\pi}{4}\right) =$

c) Vrai ou faux. Justifier

$$\bullet \quad \frac{\sin(30^\circ)}{\cos(\frac{11\pi}{6})} = \frac{\sqrt{3}}{3} ?$$

- Un angle au centre d'un cercle de rayon 3 cm interceptant sur ce cercle un arc de longueur $\frac{\pi}{2}$ cm mesure 30°?
- L'ensemble des solutions réelles de l'équation tg(3x) = -1 est $S = \left\{ x = \frac{\pi}{4} + \frac{2k\pi}{3}, k \in \mathbb{Z} \right\}$?
- L'échelle que le couvreur va utiliser pour monter sur le toit de la maison mesure 5 mètres ?

d) Résoudre dans \mathbb{R} l'équation trigonométrique $2\cos^2 x = 5\cos x + 3$.

Prénom:

e) Soient les fonctions $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x)$ et $g: \mathbb{R} \to \mathbb{R}$; $x \sim y = g(x)$ représentées cidessous. Compléter le tableau ci-dessous **en justifiant**.

	Expression analytique ?	Parité ?	Période ?	Surjective ?	Application ?
y = f(x)					
y = g(x)					

7

Prénom:

Question 6 (25 points)

a) Soit $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = 3^x$. Compléter le tableau de valeurs et représenter f(x) dans le repère orthonormé ci-dessous.

x	y = f(x)
-1	
0	
1/2	
1	
2	

Expliquer pourquoi la fonction f(x) admet une fonction réciproque $f^{-1}(x)$ et la représenter, dans le même repère, en expliquant la(les) manipulation(s) graphique(s) effectuée(s) pour passer du graphe de f(x) au graphe de $f^{-1}(x)$. Donner l'expression analytique de $f^{-1}(x)$.

- b) Vrai ou Faux. Justifier.
 - Le domaine de définition de la fonction $f: \mathbb{R} \to \mathbb{R}; x \sim y = f(x) = \frac{1}{\sqrt{1-\ln x}}$ est]0, e[?]
 - L'image de x = 0 par la fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = \log_4\left(\frac{4^{x+3}}{4^x}\right)$ est 1?

- x = 100 est racine de la fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = \sqrt{2 \log x}$?
- Une population de bactéries initialement évaluée à 20 000 individus et qui diminue de moitié tous les 3 jours sera inférieure à 1000 individus après 15 jours ?
- c) Evaluer les expressions suivantes :

•
$$3 log_8 2 =$$

•
$$log_{1/2}3 - log_{1/2}6 =$$

$$\bullet \quad e^{\ln 5 + \ln \frac{1}{5}} =$$

d) Résoudre dans $\mathbb R$ les équations suivantes :

$$\bullet \quad 3e^{2x} - 2e^x - 1 = 0$$

•
$$2 \log_4 x + \log_4 2 = \log_4 (x+1)$$

Prénom:

Question 7 (40 points)

Soient les matrices A, B, C, D, E et F suivantes : $A = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 \\ -1 & -2 \end{pmatrix}$, $C \in \mathbb{R}^{2 \times 2}$ où $c_{ij} = j - i + 1$, $D = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 3 \end{pmatrix}$, $E = \begin{pmatrix} 0 & 2 \\ -2 & 0 \\ 0 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 3 \\ 0 & 2 & -1 \end{pmatrix}$.

Calculer à l'aide du calcul matriciel, si cela est possible (sinon, justifier pourquoi cela est impossible), chacune des expressions suivantes :

a) $(A+C) B^{T} - 2C$

- b) $ED + C^{-1}$
- c) B²
- d) $det(D^T)$
- e) le mineur de f₂₁
- f) le cofacteur de f₂₃

Prénom:

g) F⁻¹

h) la matrice Y telle que YF = D

i) l'inconnue z du système de 3 équations à 3 inconnues suivant : $\begin{cases} x+2y+z=4\\ 2x-y+3z=0\\ 2y-z=-1 \end{cases}$

j) la matrice X telle que $-2 X + F E = D^T$

Nom: Prénom: