

APR 14, 2023

OPEN ACCESS

יוסם

dx.doi.org/10.17504/protocol s.io.14egn2qo6g5d/v1

Protocol Citation: creative-biogene 2023. Protocol for Generating Stably Expressed Mammalian Cell Lines Using Lentivirus. **protocols.io** https://dx.doi.org/10.17504/protocols.io.14egn2qo6g5d/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Apr 14, 2023

Last Modified: Apr 14, 2023

PROTOCOL integer ID:

80503

Protocol for Generating Stably Expressed Mammalian Cell Lines Using Lentivirus

creative-biogene1

¹Creative Biogene

creative-biogene

ABSTRACT

Stable cell lines generated using lentivirus exhibit long term protein expression and the system is highly reproducible. In this protocol, we describe the use of the 3rd generation lentiviral system which uses three different plasmids for generating stable cell lines.

MATERIALS

- 1. 10 cm²tissue culture treated plates
- 2. Low protein binding 0.45 µm PDVF filters
- 3. 10 ml plastic syringes sterile
- 4. Sterile Glass jar
- 5. Disposable plastic pipettes (5 ml and 10 ml)
- 6. Sterile 1.5 ml tubes
- 7. Pasteur pipettes
- 8. HEK293T (293T)
- 9. Target cell line (any human cancer cell line)
- 10. Xtreme gene 9 transfection reagents
- 11. Packaging plasmids: pCMV delta R8.2 and pCMV-VSV-G and your plasmid of interest
- 12. 10% bleach
- 13. Polybrene solution: 8 mg/ml in water filter sterilized, made fresh every time
- 14. Opti-MEM reduced serum medium
- 15. DMEM complete medium with 10% FBS and pen-strep
- 16. Selection antibiotic
- 17. Dry ice or liquid nitrogen
- 18. DMSO
- 19. Liquid nitrogen

Experiment Summary

Stable cell lines generated using lentivirus exhibit long term protein expression and the system is

1

highly reproducible. In this protocol, we describe the use of the 3rd generation lentiviral system which uses three different plasmids for generating stable cell lines. First plasmid contains your gene of interest usually flanked by Long Terminal Repeat (LTR) sequences, that are integrated into the host genome. Second is the pCMV Delta R8.2 plasmid that encodes all components necessary for packaging the lentivirus viz. HIV-1 Gag, Pol, Tat and Rev. Third and the final plasmid is the pCMV VSVG that encodes the viral envelope protein.

2

Equipment

- **3** 1. Cell culture incubators (37 °C, 5% CO₂ and 32 °C, 5% CO₂)
 - 2. Hemocytometer (Standard)
 - 3. Laminar hood BSL-2 type
 - 4. 37 °C water bath
 - 5. Autoclave
 - 6. Micropipettes (1,000 μl, 200 μl)
 - 7. -80 °C freezer

Procedure

- 4 A. Preparation of lentivirus in HEK293T cells
 - 1. Day 0: Seed about 2-3 million HEK293T cells in a 10 cm²plate.
 - 2. Day 1: HEK293T cells should be about 70-80% confluent. If for some reason they seem less you may wait for another 8-10 h.
 - 3. Prepare transfection mix using the following proportions in a sterile 1.5 ml Eppendorf tube as per manufacturer's instructions: