CLAIM AMENDMENTS

IN THE CLAIMS

This listing of the claims will replace all prior versions, and listing, of claims in the application or previous response to office action:

- 1. (Currently Amended) A power semiconductor module comprising a plurality of semiconductor components situated on a-substrate regions, wherein
- the substrate is divided into a plurality of separate each substrate regions region has a top surface and side faces, wherein in between side faces of two adjacent substrate regions an area being coplanar with said adjacent substrate regions is defined face each other; and
- <u>between each two adjacent substrate regions one or</u> a plurality of connecting <u>element are is</u> arranged <u>in said coplanar area such that the connecting element is adjoining the side faces of the two adjacent substrates</u>, wherein said connecting elements are designed to prevent a deformation of one substrate region to continue to an adjacent substrate region.
- 2. (Previously Presented) The power semiconductor module as claimed in claim 1, wherein
- the connecting elements are formed by recesses in a module housing enclosing said substrate regions.
 - 3. (Original) The power semiconductor module as claimed in claim 2, wherein
 - the material recesses are slotted.
- 4. (Currently Amended) The power semiconductor module as claimed in claim 1, wherein
 - the substrate regions is a are ceramic.

- 5. (Currently Amended) The power semiconductor module as claimed in claim 2, wherein
 - the substrate regions is nare ceramic.
 - 6. (Canceled)
 - 7. (Canceled)
- 8. (Previously Presented) The power semiconductor module as claimed in claim 2, wherein
- the module housing, at least in the regions of the substrate regions, is such that it acts on the substrate regions with a spring force.
- 9. (Previously Presented) The power semiconductor module as claimed in claim 3, wherein
- the module housing, at least in the regions of the substrate regions, is such that it acts on the substrate regions with a spring force.
 - 10. (Canceled)
- 11. (Original) The power semiconductor module as claimed in claim 5, wherein the housing, at least in the regions of the substrate regions, is such that it acts on the substrate regions with a spring force.
- 12. (Currently Amended) The power semiconductor module as claimed in claim 2, wherein
- the <u>module</u> housing, at least in the regions of the substrate regions, is such that it acts on the substrate regions with a spring force.
- 13. (Currently Amended) The power semiconductor module as claimed in claim 1, wherein

4

- the power semiconductor module has a housing, which, in **thean coplanar** area between the substrate regions, has action points for a mechanical pressure application of the connecting elements, and
- the housing applies pressure to the individual substrate regions.

- 14. (Currently Amended) A power semiconductor module comprising
- a plurality of substrate elements having top and bottom surface and side walls, each substrate element comprising a semiconductor component arranged on the top surface of a substrate element;
- one or a plurality of connecting elements arranged adjacent adjoining opposing side walls of two adjacent substrate elements, wherein said connecting elements are designed to prevent a deformation of one substrate region to continue to an adjacent substrate region.
- 15. (Previously Presented) The power semiconductor module as claimed in claim 14, further comprising a module housing enclosing said plurality of substrate elements.
- 16. (Previously Presented) The power semiconductor module as claimed in claim 15, wherein
 - the connecting elements are formed by recesses in the module housing.
- 17. (Previously Presented) The power semiconductor module as claimed in claim 16, wherein
 - the material recesses are slotted.
- 18. (Previously Presented) The power semiconductor module as claimed in claim 14, wherein
 - the substrate is a ceramic.
- 19. (Previously Presented) The power semiconductor module as claimed in claim 15, wherein
- the module housing, at least in the regions of the substrate elements, is such that it acts on the substrate elements with a spring force.

- 20. (Previously Presented) The power semiconductor module as claimed in claim 14, further comprising
- a heat sink having a flat surface, wherein a bottom surface of the plurality of substrate elements and said plurality of connecting regions are arranged on said flat surface.
- 21. (Previously Presented) The power semiconductor module as claimed in claim 15, wherein
- the module housing in a region between the substrate elements comprises action points for a mechanical pressure application of the connecting elements, and
- the housing applies pressure to the individual substrate elements.
- 22. (Previously Presented) The power semiconductor module as claimed in claim 1, further comprising
- a heat sink having a flat surface, wherein the bottom surface of the plurality of substrate elements and said plurality of connecting elements are arranged on said flat surface.
 - 23. (Previously Presented) A power semiconductor module comprising:
 - a heat sink having a flat surface,
 - a plurality of substrates arranged on the flat surface of the heat sink;
 - a plurality of semiconductor components arranged on the substrates,
- one or a plurality of connecting regions arranged directly on the flat surface of the heat sink between adjacent substrate regions, wherein the connecting regions are designed to prevent a deformation of one substrate region to continue to an adjacent substrate region.