Problem 1.

A block of mass M is on a horizontal table. There is a hole in the table, through which a bullet is shot into the block. The bullet is stopped completely and becomes embedded in the block. The bullet has mass m and speed v_1 . You can assume that the penetration occurs quickly.

- a) Determine the speed of the block immediately after the collision.
- b) How far above the table does the block-and-bullet system travel?

Problem 2.

A particle with mass m = 10.0 kg has at time t = 0 s a velocity of $v_0 = 10.0$ m/s. The particle is affected by a time-dependent force F, shown in the figure below.

What is the particle's speed at time t = 10 s?

- A) The speed is v = 7.50 m/s
- B) The speed is v = 10.0 m/s
- C) The speed is v = 15.0 m/s
- D) The speed is v = 17.5 m/s
- E) The speed is v = 20.0 m/s
- F) The speed is v = 32.0 m/s
- G) Do not know

Problem 3.

Two blocks with masses M (small block) and 2M (large block) are at rest on a smooth, horizontal table. The two blocks are connected to a compressed spring. Now, the spring expands and accelerates the two blocks.

Which of the following statements are correct?

- A) The two blocks receive the same amount of momentum from the spring
- B) The large block receives a larger amount of momentum from the spring than the small block.
- C) The small block receives a larger amount of momentum from the spring than the large block.
- D) The two blocks receive the same kinetic energy from the spring.
- E) The small block receives more kinetic energy from the spring than the large block.
- F) The large block receives more kinetic energy from the spring than the small block.
- G) Do not know

Problem 4.

A ball collides with a stationary wall as shown in the figure. The ball's mass is 0.1 kg, and it arrives with a speed of v = 10 m/s. The collision is elastic, and there is no force of friction between the ball and the wall. A high-speed-camera measures the contact between the ball and the wall to last $\Delta t = 1.0 \cdot 10^{-3}$ s.

What is the magnitude of the average force, F_{av} on the ball from the wall in this time-frame?

- A) $F_{av} = 5.0 \cdot 10^2 \text{ N}$
- B) $F_{av} \approx 8.7 \cdot 10^3 \text{ N}$
- C) $F_{av} = 1.0 \cdot 10^3 \text{ N}$
- D) $F_{av} \approx 1.7 \cdot 10^3 \text{ N}$
- E) $F_{av} = 2.0 \cdot 10^3 \text{ N}$
- F) Do not know

Problem 5.

Two blocks A and B move towards each other in a straight line on a smooth table. The blocks have the same speed u. Block A has mass m and moves to the right (positive direction), while block B has mass 4m and moves to the left. There is Velcro at the front of each block, ensuring that the blocks undergo a completely inelastic collision.

- a) Determine the speed of the blocks after the collision.
- b) The total kinetic energy of the blocks after the collision is the following fraction of the total kinetic energy of the blocks before the collision:
- A) 0
- B) $\frac{9}{25}$
- C) 1
- D) $\frac{1}{4}$ E) $\frac{9}{10}$
- F) Do not know

Problem 6.

Two blocks with masses M_1 and M_2 lie on a horizontal, smooth table. A bullet with speed v and mass m passes completely through block M_1 . Immediately after, the bullet impacts block M_2 and thereafter travels with M_2 . After perforating M_1 , the bullet has a speed of v_1 . After the collisions, M_1 and the body consisting of M_2 and m both have a speed of v_2 .

a) Find an expression for v_1 and v_2 .

Problem 7.

Two cars crash into each other on a road. After the collision, they stick together and move as a single body. The first car has mass 1500 kg and drives to the east with speed 25.0 m/s before the collision. The second car has mass 2500 kg and drives northwards with speed 20.0 m/s before the collision.

a) Determine the magnitude and direction of the velocity of the cars after the collision.

Problem 8.

Two blocks A and B move towards each other in a straight line on a smooth table. The blocks have the same speed u. Block A has mass m and moves to the right (positive direction), while block B has mass 4m and moves to the left. On the front of each block is a spring, which ensures that the blocks undergo an elastic collision.

The velocities of the blocks $v_{\rm A}$ and $v_{\rm B}$ after the collision are

A)
$$v_{A} = -\frac{11}{5}u$$
 and $v_{B} = -\frac{1}{5}u$

B)
$$v_A = 0$$
 and $v_B = 0$

C)
$$v_{A} = -\frac{23}{17}u$$
 and $v_{A} = -\frac{7}{17}u$

D)
$$v_A = -u$$
 and $v_B = u$

Problem 9.

Three blocks, A, B and C can slide along a horizontal, smooth surface. The blocks have mass *m*, 2*m*, and *m*, respectively. Block A moves towards block B with a speed of 9.0 m/s and undergoes a central, elastic collision with B. Afterwards, B undergoes a central, completely inelastic collision with C.

What is the final speed of block C?

- A) 1.0 m/s
- B) 2.0 m/s
- C) 3.0 m/s
- D) 4.0 m/s
- E) 5.0 m/s
- F) 6.0 m/s
- G) 7.0 m/s
- H) 8.0 m/s
- I) Do not know