Discrete Stage Biasing: MOSFET

- Almost universally biased using 4-Resistor Bias
- Significantly more complicated than BJT biasing, since there is no quick estimate
- Also, body effect and CLM complicate matters

• No $I_G \Rightarrow R_1$ - R_2 combination provides a perfect voltage division

$$\Rightarrow V_{G} = \frac{R_{2}}{R_{1} + R_{2}} V_{DD}$$

•
$$V_S = I_D R_S$$
 and $V_D = V_{DD} - I_D R_D$

$$\Rightarrow I_{D} = \frac{k_{N}}{2} (V_{G} - I_{D}R_{S} - V_{TN})^{2} \times$$

$$\left(1 + \lambda \left[V_{DD} - I_{D}(R_{S} + R_{D})\right]\right)$$

• Also:

$$V_{TN} = V_{TN0} + \gamma \left(\sqrt{2\phi_F + I_D R_S - V_B} - \sqrt{2\phi_F} \right)$$

- Extremely intimidating!
- I_D equation becomes cubic!
- Thus, bias calculation including all higher order effects is pretty tedious, and almost impossible for hand analysis
- Need to make approximations!

• Assume $\lambda V_{DS} < 0.1$:

$$\Rightarrow I_{D} = \frac{k_{N}}{2} (V_{G} - I_{D}R_{S} - V_{TN})^{2}$$

- Even then it's quite complicated, since V_{TN} has a square root dependence on I_D
- Tie B and S together \Rightarrow $V_{SB} = 0$ and $V_{TN} = V_{TN0}$
 - > Note that it can't be done always!

$$\Rightarrow I_{D} = \frac{k_{N}}{2} (V_{G} - I_{D}R_{S} - V_{TN0})^{2}$$

- Even now, it's a quadratic equation in I_D
- However, much easier to solve than earlier cases
- No further simplification possible!
- Solving, we will get 2 values of I_D : one will be the correct one, while the other one will be unphysical
- 2 values of I_D will give 2 different values of V_{GS} : one > V_{TN0} and the other < V_{TN0}

- Obviously, I_D for $V_{GS} < V_{TN0}$ is completely meaningless, since the device is off under that condition
- Compute $V_{DS} = [V_{DD} I_D(R_S + R_D)]$
 - \gt Should be $\gt V_{GT}$ (saturation mode)
 - \succ For BB, $V_{DS} = V_{DD}/3$
- $P_D = V_{DD} \times (I_D + I_1)$ $[I_1 = V_{DD}/(R_1 + R_2)]$
- Here, no constraints on R_1 and R_2 , and they can be made as large as physically possible to reduce I_1 , and thus P_D

IC Stage Biasing

- Avoids resistors as much as possible
 - > Resistors take up very large area on IC chips, which is at a premium
- Uses transistors as biasing elements
 - ➤ Much more compact than resistors, and area consumption is almost negligible as compared to resistors
- Also known as *active biasing*

• Parameters:

- \triangleright Output Current I_0
 - As per specification
- \triangleright Output Resistance R_0
 - $R_0 = \Delta V_0 / \Delta I_0 = dV_0 / dI_0 = v_0 / i_0 (ac)$
 - As large as possible ideally infinite
- ➤ Minimum Allowed Output Voltage V_{0,min}
 - As small as possible ideally zero
 - Dictated by:
 - ***** For BJT: $V_{CE}(min) = V_{CE}(SS) = 0.2 \text{ V}$
 - ***** For MOSFET: $V_{DS}(min) = V_{GT}(min) = 80 \text{ mV}$