(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-141902 (P2004-141902A)

(43) 公開日 平成16年5月20日(2004.5.20)

(51) Int.C1. ⁷	F I		テーマコード(参考)
B30B 15/14	B30B 15/14	В	4E089
B30B 1/18	B30B 1/18	A	4E090

審査請求 未請求 請求項の数 3 〇L (全9頁)

(21) 出願番号 特願2002-307935 (P2002-307935) (71) 出願人 000154794 (22) 出願日 平成14年10月23日 (2002.10.23) 株式会社放電精密加工研究所			
神奈川県厚木市飯山3110番地			
(74) 代理人 100074848			
弁理士 森田 寬			
(72) 発明者 二村 昭二			
神奈川県厚木市飯山3110番地	株式会		
社放電精密加工研究所内			
(72) 発明者 海野 敬三			
神奈川県厚木市飯山3110番地	株式会		
社放電精密加工研究所內	社放電精密加工研究所内		
F ターム (参考) 4E089 EA01 EB02 EB03 EB05	EC03		
ED02 EE01 EE03 FA08	FA09		
FC03			
4E090 AA01 AB01 BA02 CC04	EBO1		
GAO6 HAO1			

(54) 【発明の名称】プレス成形方法

(57)【要約】

【課題】プレス機でワークを加圧成形する際に、スライド板の水平を維持しながら速い速度で加圧成形ができるプレス成形方法を提供する。

【解決手段】サーボモータによって駆動する複数の駆動源によってスライド板を押し圧するプレス機を用いている。複数の駆動源のうち一つの速度を本番成形における目標速度として、駆動源の速度とそれに掛かる荷重とで遅れを表す関数を用い、それに別途求めた荷重を使って、駆動源間の遅れをなくすことができるように駆動源それぞれの速度を求める。このようにして求めた速度をもとにして試行成形を繰り返して、スライド板の水平を維持しながら速り速度で加圧成形ができる条件を出す。

【選択図】 図4

20

30

40

50

【特許請求の範囲】

【請求項1】

固定板と、前記固定板と対向して配置されているとともに、前記固定板に対して動くことができるスライド板と、スライド板を駆動するためのサーボモータを用いた複数の駆動源とを有し、加圧面を作るようにスライド板上に配置した複数の係合個所それぞれを各駆動源が加圧するプレス機を用いて、スライド板を降下変位させてワークを加圧成形する間の各変位における各駆動源に掛かる荷重を求め、

各変位における荷重と、その変位における前記複数の駆動源のすち1個の駆動源(「基準駆動源」という)の本番成形における目標速度とを用いて、基準駆動源に対する各駆動源の遅れをなくすのに必要な各駆動源の速度(「補償速度」という)を、速度と荷重とで指示変位からの遅れを表す関数に基づいて求め、

前記補償速度に基づいて各駆動源を動かしてワークを試行成形し、

その試行成形の間に各駆動源の遅れを測定し、

基準駆動源に対する他の駆動源の遅れが所定の値以下となるまで前記補償速度を修正して 試行成形をすることを繰り返し、

基準駆動源に対する他の駆動源の遅れが所定の値以下となれば、上で定めた各駆動源の速度で本番のプレス成形を行うことを特徴とするプレス成形方法。

【請求項2】

前記基準駆動源は、複数の駆動源のすちその変位において最小の荷重が掛かる駆動源であることを特徴とする請求項1記載のプレス成形方法。

【請求項3】

ある駆動源(n)についての前記補償速度(Vn)をVf+ ΔVn(ここで、Vf:基準駆動源の目標速度、ΔVn:速度と荷重とで遅れを表す関数に基づいて求めた補償速度の、基準駆動源の目標速度 Vf からの増分)と表したときに、計算で求めた増分の50~90%を用いて各駆動源を動かして試行成形をすることを特徴とする請求項1あるいは2記載のプレス成形方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は複数の駆動源(例えば、サーボモータ)によってスライド板(加圧板)を駆動して、加圧成形するプレス機を用いてスライド板を水平に保ちながら行うプレス成形方法に関するものである。

[0002]

【従来の技術】

ワークを加圧成形するのに用いられるプレス機は、固定板とスライド板とを対向させて配置し、それらの間で固定板上に固定金型を、固定板と対向するスライド板に可動金型を設け、スライド板を固定板に対して動かして、可動金型を固定金型に対して開閉させる構造をしている。小さなプレス機では1個の駆動源がスライド板中央に取り付けられている。スライド板が大きいときには、1個の駆動源をスライド板中央に取り付けただけでは、スライド板を一様に加圧できない。そのためにスライド板に均一な力を加えることができるように複数個の駆動源を用い、加圧面を作るように駆動源されずれがスライド板上に配置された係合個所されずれを押し圧するようになっている。複数の駆動源として、4個、6個の例がある。

[0003]

【発明が解決しようとする課題】

スライド板を固定板に対して降下させて、可動金型を固定金型に対して閉じて加圧を加えていくと、被成形板を介して可動金型に作用する荷重の大きさが変化するとともに、その作用する位置も変わってくる。そのためにスライド板に作用する荷重の不均衡が生じる。荷重がスライド板に作用する位置からそれぞれの駆動源までの距離も変わってくる。そこで各駆動源に作用する荷重モーメントの不均衡が生じる。

20

30

50

[0004]

駆動源としてサーボモータを用いると、駆動源に作用する荷重によってサーボモータの回転が遅れる。そこで大きな荷重が作用した駆動源は、小さな荷重が作用した駆動源よりも進みが遅くなるので、スライド板が固定板に対して傾く。スライド板の傾きは金型の傾きを生じるので、金型に損傷を生じさせることが多い。傾きが小さい場合には、金型の損傷を生じないが、それでもワークの成形精度を低下させることがある。

[00005]

せこで、成形の進行とともに、スライド板の傾きを検出、測定して、スライド板の傾きをなくすように各駆動源へ供給する駆動信号を変化させて調節を行い、スライド板の傾きを修正することが行われている。かかるフィードバック制御をしながら成形すれば、成形の間に生じるスライド板の傾きを防ぐことができる。

[00006]

しかし、フィードバック制御をしてスライド板の傾きを無くしながら成形すると、一回の成形当たりの時間が長く掛かる。ワークをプレス成形するときには、同じ種類のワークを繰り返し成形して、数多くのワークを成形することが普通に行われている。成形サイクルー回当たりの時間が長いと、多数のワークを製造するには極めて長い時間が掛かるという問題がある。

[00007]

せこで本発明では、スライド板の水平を維持しながら量産に適した速い成形速度で加圧成形ができる成形方法を提供することを目的としている。

[00008]

【課題を解決するための手段】

本発明は、成形途中におけるスライド板の遅れがスライド板に掛かるワークからの荷重の 関数であることを発見し、それに基づいてなされたものである。

[0009]

本発明のプレス成形方法は、固定板と、前記固定板と対向して配置されているとともに、前記固定板に対して動くことができるスライド板と、スライド板を駆動するためのサーボモータを用いた複数の駆動源とを有し、加圧面を作るようにスライド板上に配置した複数の係合個所やれぞれを各駆動源が加圧するプレス機を用いて、

スライド板を降下変位させてワークを加圧成形する間の各変位における各駆動源に掛かる荷重を求め、

各変位における荷重と、その変位における前記複数の駆動源のうち1個の駆動源(「基準駆動源」という)の本番成形における目標速度とを用いて、基準駆動源に対する各駆動源の遅れをなくすのに必要な各駆動源の速度(「補償速度」という)を、速度と荷重とで指示変位からの遅れを表す関数に基づいて求め、

前記補償速度に基づいて各駆動源を動かしてワークを試行成形し、

その試行成形の間に各駆動源の遅れを測定し、

基準駆動源に対する他の駆動源の遅れが所定の値以下となるまで前記補償速度を修正して 試行成形をすることを繰り返し、

基準駆動源に対する他の駆動源の遅れが所定の値以下となれば、上で定めた各駆動源の速 40度で本番のプレス成形を行うことを特徴とする。

[0010]

上記において、前記基準駆動源は、複数の駆動源のすちその変位において最小の荷重が掛かる駆動源であることが好ましい。

[0011]

また上記プレス成形方法において、ある駆動源(n)についての前記補償速度(Vn)を Vf+ Δ Vn(ここで、Vf: 基準駆動源の目標速度、 Δ Vn: 速度と荷重とで遅れを表す関数に基づいて求めた補償速度の、基準駆動源の目標速度 Vf からの増分)と表したと きに、計算で求めた増分の 5 0 ~ 9 0 %を用いて各駆動源を動かして試行成形をすること が好ましい。

20

30

40

50

[0012]

前記本発明のプレス成形方法で、各駆動源へ作用する荷重を求めには、試行成形をしてその間に測定し、あるいはシミュレーションによって求めることができる。

[0013]

【発明の実施の形態】

まず図1、2を参照して本発明に用いることのできるプレス機の一例を説明する。図1はプレス機の正面図で、図2はそのプレス機の平面図である。図2において上部支持板を一部取り除いて示している。プレス機は下部支持台10が床面上に固定されていて、下部支持台に立てられた支柱20によって上部支持板30が保持されている。下部支持台10と上部支持板30の間に支柱20に沿って往復動することができるスライド板40が設けられており、スライド板と下部支持台との間に成形空間がある。この成形空間では、下部支持台上にプレス用の固定金型(下型)81、スライド板の下面に固定金型に対応する可動金型(上型)82が取り付けられており、これら両金型の間に例えば被成形板を入れて成形するようになっている。

[0014]

上部支持板30には駆動源60α、60b、60c、60dとしてサーボモータと減速機構を組み合わせたものが4個取り付けられている。各駆動源から下方向に延びている駆動軸61α、61b、61c、61dは上部支持板30に開けられた通孔を通ってスライド板40の上面で各係合部62α、62b、62c、62dと係合している。駆動軸のところに例えばボールねじが付けられていて、回転を上下動に変換するようになっており、サーボモータの回転によってスライド板を上下動する。各駆動源と駆動軸と係合部とで駆動機構を構成している。

[0015]

複数の駆動源60丸、60b、60c、60dによるスライド板への押し圧力が、スライド面上に加圧面を形成して、スライド板上に均等に分布するようにごれら駆動源が配置されていることが好ましい。また、これらの駆動源は互いに同じ大きさの押し圧力を生じる、すなわち出力が同じであることが好ましい。

[0016]

各係合部 6 2 a . 6 2 b 、 6 2 c 、 6 2 d は図 2 の平面図から明らかなように成形空間の 成形領域に設けられている。そして各係合部62の、626、62c、62んの近くには 各変位測定器50a、50b、50c、50dが設けられている。変位測定器50a、5 0 b 、 5 0 c 、 5 0 d として磁気目盛の付けられた磁気スケール 5 1 と、その磁気スケー ルに対して小さな間隙を持って対向して設けられた磁気へッドなどの磁気センサー52と を有するものを用いることができる。固定した磁気スケール51に対して、磁気センサー 52を相対移動させることで、その絶対位置及び変位速度などを測定することができる。 このような変位測定器はリニア磁気エンコータ゚として当業者によく知られたものなのでこ れ以上の説明は省略する。変位測定器として、光あるりは音波によって位置を測定するも のを用いることもできる。変位測定器50丸、50b、50c、50丸の磁気スケール5 1 は 基 準 プ レ ー ト 7 0 に 取 り 付 け ら れ て い て 、 変 位 測 定 器 の 磁 気 セ ン サ ー 5 2 は 各 係 合 部 620、626、62c、62dC取り付けられた支柱53で支持されている。ここで基 準プレート70はスライド板40の位置に関係なく同じ位置に保持されている。そのため に、スライド板40が駆動源60α、60b、60c、60dによって駆動させられたと き に 、 変 位 測 定 器 5 0 a 、 5 0 b 、 5 0 c 、 5 0 d に よ っ て 各 係 合 部 の 変 位 を 測 定 す る こ とができる。

[0017]

基準プレート70は図1では上部支持板30の下に間隙をおいて設けられ、支柱20間に渡されて固定されているとともに、各駆動軸61α、61b、61c、61dが通されている部分には十分余裕のある径をした通孔71を有していて、駆動軸及びスライド板の変形によって基準プレートに影響を与えないようになっている。

[0018]

各係合部62の、626、62と、62dには荷重測定器55の、556、55と、55dがスライド板40との間に設けられており、スライド板に掛かった荷重を各係合部のところで測定できるようになっている。

[0019]

プレス機の制御系統図を図るに示している。成形する前に、あらかじめ入力手段91から制御手段92に例えば成形する品名や、各駆動源の速度などを必要に応じて入力する。制御手段92はCPUを有しており、制御手段92からインターフェース94を介して駆動信号が駆動源60α、60b、60c、60dに送られて、各駆動源を駆動して成形する。変位測定器50α、50b、50c、50dからスライド板の変位信号が制御手段92に送られる。そして、各荷重測定器55α、55b、55c、55dで測定したスライド板に掛かった荷重が制御手段92に送られる。

[0020]

図4に本発明の一実施例によるプレス成形方法をフローチャートで示している。フローチャートのステップ1ではワークの試行成形を行い、その間にスライド板40に取り付けられている各駆動源600、606、600、600に掛かる荷重を測定してスライド板の各変位における駆動源に掛かる荷重を求めている。

[0021]

すなわち、各駆動源60α、60 b、60 c、60 dに駆動信号を供給してサーボモータを回転させて、スライド板40を降下させる。金型が、被成形板に接触し始めるとスライド板に掛かる荷重が変わってくる。そのためにスライド板40が傾こうとする。スライド板の降下する変位を駆動源の近くに取り付けられている変位測定器50α、50 b、50 c、50 d で測定していると、各駆動源の進行状況が分かるので、進行の遅れている駆動源の進みを速くする。スライド板の各駆動源が取り付けられている場所での進みを同じにしてスライド板を水平にする。そのようにしながらスライド板全体を降下させる。これを繰り返して成形の終了までスライド板を降下させて、成形が終了したらスライド板を元の位置まで引き上げて、試行成形の1サイクルを終了する。

[0022]

[0023]

【表 1 】

変位	荷重				
	駆動源 60a	駆動源 60b	駆動源 60c	駆動源 60d	
I_1	Pal	P_{b1}	P _{c1}	P _{d1}	
I_2	P _{a2}	P_{b2}	P_{c2}	P_{d2}	
:	:	:	•	:	
$I_{ m m}$	Pam	P_{bm}	P _{cm}	P _{dm}	
:	•	;	:	:	

40

10

20

30

[0024]

20

30

40

50

各駆動源に掛かる荷重は、例えば変位 I_1 においては $P_{a,1}$ が最大で $P_{d,1}$ が最小、変位 I_2 においては $P_{b,2}$ が最大で $P_{d,2}$ が最小というように、変位とともに荷重の大きさと、荷重の掛かる位置が変わってくる。変位 I_m では $P_{a,m}$ < $P_{d,m}$ < $P_{b,m}$ < $P_{c,m}$ であったとする。

[0025]

ここでは試行成形をして、各駆動源に掛かる荷重を測定した。ワークを試行成形せずに、 シミュレーションで各変位における荷重を求めることもできる。

[0026]

変位 I_m における各駆動源に掛かる荷重 P_a m 、 P_b m 、 P_c m によって、スライド板上の駆動源 60 c 、 60 b 、 60 c 、 60 d は図 5 に示すように、駆動源 60 c の 進みが最も遅れてその遅れは δ c 、 駆動源 60 c の の遅れが最も 小で遅れは δ c 、 駆動源 60 c の の遅れが最も 小で遅れは δ c である。図 δ では 縦軸は 指示 変位、 横軸は それぞれの 駆動源の付近に あける スライド 板の 実 変位 の 指示 変位 からの遅れ δ を 示す。 指示 変位 I_m I_m で は 相対 遅れが 無く なって いる。 変位 I_m に あいては 駆動源に掛かる 荷重のうち 駆動源 δ 0 c の 荷重が最も 小さく、 変位の 遅れも 最小なので、この 駆動源を 基準 駆動源とする。

[0027]

 l_{m-1} から l_{m+1} の変位における駆動源されざれの最大遅れる $_a$. δ_a . δ_c . δ_a のうち δ_a が最小なので δ_m in δ_a に また l_{m-1} から l_{m+1} の間における荷重が最も小であった駆動源 δ_a 0 δ_a (基準駆動源)の目標速度を δ_a で δ_a 目標速度は、本番 成形における δ_a の駆動源の速度である。 ステップ δ_a では δ_a を駆動源 δ_a 0 δ_a 0

[0028]

一般に荷重Pの作用する部分の指示変位からの遅れるはその速度Vと荷重Pとの関数で表されるので、 $\delta=f$ (V、P)である。駆動源60 のが速度Vfで駆動させられた際に、駆動源nの遅れ δ_n が駆動源60 のの遅れ δ m i n と同じになる駆動源の速度 V_n は次により求められる。

[0029]

すなわち、 $\delta_n - \delta_m$ i n = 0 から、 $f(V_n, P_{nm}) = f(V_f, P_{nm})$ なので V_n (n = b, c, d) を求めることができる。

[0030]

このようにして求めた各駆動源の速度を用いてステップ3でワークの試行成形を行う。しかし、各駆動源のの速度 V_n を V_f (基準駆動源の目標速度)+ ΔV_n として、この増分 ΔV_n を上の計算で求めた値の $50\sim 90$ %とすることが好ましい。これは $V_n=1$ から $V_n=1$ の間に一様な遅れがあったとして、上の計算で求めた速度 $V_n=1$ がらっているので、計算で求めた速度 $V_n=1$ がらしているのである。更にまた、ここで速度の増分を計算で求めているので、されをそのままプレス機に適用するには危険があるので、少し小さな値を用いるのがよい。上の説明で基準駆動源として最もでは危険があるので、少し小さな値を用いるのがよい。上の説明で基準駆動源として最もで重の小さな駆動源を用いているが、他の駆動源を基準とすることもできる。他の駆動源を基準とすると、増分 ΔV_n が負になることがあるのでされを注意すればよい。

[0031]

ステップ 3 の試行成形の間に各駆動源の遅れを測定し、ステップ 4 で各駆動源 n の遅れの最大値 δ_n を求めそのうち最小の値を δ_n に n とする。ステップ δ_n で各駆動源 n の最大遅れ δ_n のうち最小の値 δ_n に n とを比較してその差が所定の値 δ_n よりも大きい場合には、ステップ δ_n で上の補償増分 δ_n を修正し、ステップ δ_n と δ_n と

```
[0032]
```

ステップ5で各駆動源内の最大遅れるnと最大遅れのうち最小の遅れ値るminとを比較 して、その差が所定の値αよりも小さいか同じの場合は、ステップ7に行って前サイクル で求めた各駆動源の速度を用いてワークの本番成形を行えばよい。

[0033]

【発明の効果】

フィードバック制御によってスライド板の水平を保ちながらワークをプレス成形するとプ レス成形の1サイクルに時間が掛かる。しかし本発明のようにスライド板の水平を保って とができるように各駆動源の速度を決めて、本番成形をすると、本番成形に適した早り降 下速度を用いることができるので、成形の間スライド板を水平に維持しながら短時間での 成形ができる。

【図面の簡単な説明】

- 【図1】本発明に用いることができるプレス機の正面図である。
- 【図2】図1のプレス機を上部固定板の一部を切り欠りて示す平面図である。
- 【図3】本発明に用いることができるプレス機の制御系統図である。
- 【図4】本発明の一実施例のプレス成形方法を示すフローチャートである。
- 【図5】変位と遅れの関係の一例を示すグラフである。

9 4

【符号の説明】		
1 0	下 部 支 持 台	
2 0	支 柱	20
3 0	上部支持台	
4 0	スライド 板	
50a, 50b, 50c, 50	<i>d.</i> 变 位 測 定 器	
5 1	磁 気 ス ケ ー ル	
5 2	磁 気 センサー	
5 3	支 柱	
55a, 55b, 55c, 55	<i>d</i> . 荷 重 測 定 器	
60a,60b,60c,60	d 駆動源	
61a, 61b, 61c, 61	ん 駆動軸	
62a, 62b, 62c, 62	· d· · · · · · · · · · · · · · · · · ·	30
7 0	基準プレート	
7 1	通 扎	
8 1	固定金型	
8 2	可 勭 金 型	
9 1	入力手段	
9 2	制 御 手 段	
9 3	記 檍 装 置	

インターフェース

【図5】

PRESS FORMING METHOD

Publication number: JP2004141902

Publication date:

2004-05-20

Inventor:

FUTAMURA SHOJI: UNNO KEIZO

Applicant:

INST TECH PRECISION ELECT

Classification:

- international:

B30B1/18; B30B15/14; B30B15/24; B30B1/00; B30B15/14; B30B15/16; (IPC1-7): B30B15/14:

B30B1/18

- european:

B30B1/18; B30B15/14; B30B15/24

Application number: JP20020307935 20021023 Priority number(s): JP20020307935 20021023 Also published as:

EP1555117 (A1) WO2004037531 (A1) US2005235844 (A1) CN1694800 (A) CA2495920 (A1)

Report a data error here

Abstract of JP2004141902

PROBLEM TO BE SOLVED: To provide a press forming method that enables press forming to be performed at high speed while a slide plate is horizontally maintained, in press-forming a workpiece by a press.

SOLUTION: There is used a press which pressurizes the slide plate by a plurality of driving sources driven by servo motors. The speed of each driving source is acquired, for the purpose of eliminating delay among the driving sources. by taking one of the speeds of the plurality of driving sources as a target speed in the actual forming, adopting a function that indicates the delay with the driving source speed and its load, and using the load separately obtained. Then, trial forming is repeated on the basis of the speed thus acquired, and the conditions that enable press forming to be performed at high speed while the slide plate is horizontally maintained are derived.

COPYRIGHT: (C)2004,JPO

