Tema 6

Gestió de Memòria

Índex

- Introducció
- Sistemes de Gestió de Memòria
 - Assignació contigua
 - Màquina nua
 - Monitor resident
 - Particions múltiples
 - De mida fixa
 - De mida variable
 - Assignació no contigua
 - Paginació
 - Segmentació
 - Sistemes Combinats

Introducció

Multiprogramació

Varis processos ubicats simultàniament en Memòria

Es necessari compartir la memòria física entre els diferents processos

Gestor de Memòria

Tasques del Gestor de Memòria

- Traducció d'adreces
- Reubicació
- Protecció
- Compartició

Traducció d'adreces

Traducció d'adreces lògiques a físiques.

- Adreces lògiques = relatives
- Adreces físiques = absolutes

Reubicació

L'espai d'adreces físiques associat a un programa s'ha de poder modificar (reubicar-se) en funció de la Memòria disponible i les necessitats del SO, sense afectar la seva execució.

 Reubicació: atén a quan es realitzen les traduccions d'adreces lògiques a físiques.

Tipus de reubicació

- Reubicació estàtica en temps de compilació.
 Les adreces físiques es generen en temps de compilació.
- Reubicació estàtica en temps de càrrega.
 Al carregar-se el procés en Memòria Principal, es realitza la traducció d'adreces lògiques a físiques.
- Reubicació dinàmica en temps d'execució.
 La traducció d'adreces lògiques a físiques es realitza en temps d'execució.

Reubicació. Exemple

Protecció

El sistema de gestió de Memòria té d'assegurar la protecció del codi i les dades dels processos contra accessos accidentals o malintencionats d'altres processos. També té que protegir el codi i les dades del SO.

 Totes les referències a memòria generades per un procés s'han de verificar en temps d'execució.

Compartició

Existeix àrees o zones dels programes (codi i dades) que poden ser compartides per varis processos, reduint-se d'aquesta forma les necessitats de Mem. Principal.

Índex

- Introducció
- Sistemes de Gestió de Memòria
 - Assignació contigua
 - Màquina nua
 - Monitor resident
 - Particions múltiples
 - De mida fixa
 - De mida variable
 - Assignació no contigua
 - Paginació
 - Segmentació
 - Sistemes Combinats

Sistemes de Gestió de Memòria

- Màquina nua
- Monitor resident
- Particions múltiples
 - De mida fixa
 - De mida variable
- Paginació
- Segmentació
- ■Sistemes combinats

Assignació contigua

Assignació no contigua

Màquina nua

- No existeix cap sistema de gestió de la Memòria ben definit.
- L'usuari té control absolut de tot l'espai de Memòria.
- L'espai d'adreçament lògic és igual a l'espai d'adreçament físic.

Àrea d'Usuari

Màquina nua: Característiques

- Avantatges:
 - Flexibilitat
 - Senzillesa
 - No necessita hardware/software específic
- Inconvenients:
 - Els processos i el kernel del SO comparteixen un mateix espai d'adreçament
 - No existeix protecció
 - Poc eficient.

Monitor resident

- Divideix la Memòria en dos seccions diferents:
 - Un àrea de memòria específica pel monitor resident (nucli) del S.O.
 - Es pot ubicar indistintament en la zona baixa/alta de la Memòria.
 - Una zona per l'usuari.
 - En aquest àrea sol es pot ubicar simultàniament un únic procés d'usuari
 - El procés d'usuari sol pot utilitzar adreces de Memòria que no pertanyin al monitor.

Hardware de protecció

Particions múltiples

- Memòria dividida en regions o particions. Cadascuna de les particions pot contenir un sol procés en execució.
- Quan un procés finalitza l'execució allibera la seva partició, la qual pot ser utilitzada per un altre procés de la cua de treballs.
- Existeixen dos variants d'aquest sistema:
 - Particions múltiples de mida fixa
 - Particions múltiples de mida variable

Particions de mida fixa

L'àrea d'usuari es divideix en diverses regions, iguals o diferents en mida.

0	
U	Nucli
	Regió 1 (200K)
	Regió 2 (200K)
	Regió 3 (200K)
1024 K	Regió 4 (200K)

Hardware de protecció de particions múltiples

Planificació de les particions

■ Tipus de planificadors de processos:

Vàries cues.

Una única cua.

Planificador amb vàries cues

Planificador amb una única cua

Polítiques de selecció de particions

- A l'hora de seleccionar la partició per un procés es pot utilitzar diverses polítiques:
 - First-Fit: Primera partició lliure. S'escull la primera partició amb prou espai per al procés.
 - Best-fit-only: Solament la que millor s'adequa. Es tria la partició que millor s'ajusta a la mida del procés. Si està ocupada, s'espera.
 - Best-available-fit: La disponible que millor s'adequa.

Fragmentació de Memòria

- Definició fragmentació: zona de Memòria no utilitzada degut al tipus de gestió de Memòria.
- 2 tipus de fragmentació:
 - Fragmentació interna

És la porció de Memòria d'una determinada partició que no s'utilitza degut a que el procés té uns requisits menors.

Fragmentació externa

Es produeix quan existeix suficient espai de Memòria lliure per satisfer un requeriment, però no es contigua i per tant no es pot utilitzar. Requereix tècniques de compactació de memòria.

Exemple de fragmentació

Fragmentació interna = 30K (Reg2) + 248K (Reg4) = 278K

Fragmentació externa = 64K (Reg1) + 256K (Reg3) = 320K

Inconvenients particions de mida fixa

- Fragmentació interna.
- Fragmentació externa.

Particions de mida variable

- A cada procés se li assigna exactament la memòria que necessita.
- Avantatges:
 - Millor aprofitament de la memòria.
 - Incrementa el número de processos en Memòria.
 - No té fragmentació interna.

Exemple de particions de mida variable

Fragmentació externa

<u>Índex</u>

- Introducció
- Sistemes de Gestió de Memòria
 - Assignació contigua
 - Màquina nua
 - Monitor resident
 - Particions múltiples
 - De mida fixa
 - De mida variable
 - Assignació no contigua
 - Paginació
 - Segmentació
 - Sistemes Combinats

Assignació de Memòria no contigua

Paginació

Segmentació

Sistemes combinats

Paginació

- 1. L'adreça lògica es descomposa en un número de pàgina (p) i desplaçament (d) dins de la pàgina.
- 2. El número de pàgina s'indexa en la taula de pàgines del procés (ubicada a partir de l'adreça emmagatzemada en el registre RBTP). RBTP: Registre Base Taula de Pàgines.
- 3. Es realitzen els controls d'accés a la pàgina.
- 4. Es calcula l'adreça física (a partir de l'índex de la cel·la física multiplicat per la mida de pàgina més el desplaçament).

Hardware de Paginació

Format d'una entrada de la Taula de Pàgines

```
Cel·la pàgina física V R W X M Ref
```

- V → Entrada vàlida.
- R → Permisos de lectura
- W → Permisos d'escriptura
- X → Permisos d'execució
- M → Pàgina en Memòria Principal
- Ref → Pàgina Referenciada

Exemple (I):

- Disposem d'un sistema de gestió de Memòria paginat amb els paràmetres següents:
 - Espai d'adreçament lògic dels processos: 2 MB.
 - Mida Memòria principal: 128 KB.
 - Mida pàgina (cel·la): 4 KB.
- Calcular:
 - a) Camps que composen l'adreça lògica i mida.
 - b) Camps que composen l'adreça física i mida.
 - c) Mida taula de pàgines.
 - d) Nombre de cel·les.

Solució exemple (I)

1. Adreça lògica:

```
pàgina desplaçament
(9 bits) (12 bits)
```

- desplaçament: mida pàgina = 2¹² --> 12 bits.
- pàgina: Número pàgines per procés= 2²¹ / 2^{12 =} 2⁹ --> 9 bits.
- 2. Adreça física:

```
cel·la desplaçament
(5 bits) (12 bits)
```

- cel·la: 2¹⁷ / 2¹² = 2⁵ --> 5 bits.
- 3. Mida taula de pàgines:

■ 2048 K / 4 K =
$$2^{21}$$
 / 2^{12} = 2^9 = 512 entrades

- 4. Nombre cel·les a Memòria:
 - 128 KB / 4 KB = 2^{17} / 2^{12} = 2^5 = 32 cel·les

Exemple (II)

- Pel sistema de paginació de l'exemple I, i donat el següent contingut de la taula de pàgines d'un procés:
- Doneu les adreça físiques de les adreces lògiques següents:
 - 015253H
 - 003204H
 - 0H
 - 017253H
 - 005100H
- Quines són adreces lògiques vàlides?

Característiques Paginació

Elimina la fragmentació externa però pot tenir fragmentació interna.

■ És totalment transparent a l'usuari.

Es necessita una taula de pàgines per procés.

Segmentació

- La segmentació divideix l'espai lògic del procés en unitats lògiques denominades segments (de mides diferents).
- Aquest esquema de gestió coincideix amb la visió que té l'usuari de la Memòria:

Espai d'adreçament lògic

Taula Segments

 Cada procés té associat una taula de segments on es descriuen les característiques (limit (mida), adreça base, mida, etc.) dels diferents segments del procés. Taula de Segments

Límit	Base	Drets		
200	0000H	- R -		
500	1000H	- R W		
100	2000H	X		

Les adreces lògiques dels processos es desglossen en segment i desplaçament dins del segment.

Adreça lògica:

Segment | Desplaçament

Adreça física:

Base + Desplaçament

Hardware de Segmentació

Característiques Segmentació

- La segmentació té bastanta semblança amb l'esquema de gestió de la Memòria mitjançant particions múltiples amb mida variable.
- Per tant té problemes similars:
 - Fragmentació externa: l'espai de memòria física d'un segment té que ser contigu, provocant d'aquesta forma fragmentació externa.
 - Es necessari implementar polítiques de selecció per ubicar els segments en memòria física: First-fit, Best-fit, Best-available-fit.
- I els mateixos avantatges: No té fragmentació interna
- A més la segmentació aporta: Màxima flexibilitat per protegir i compartir la memòria entre processos.

Segmentació Paginada

- La Segmentació Paginada vol reduir la fragmentació externa associada a la segmentació i millorar l'eficiència de gestió de memòria.
- Cadascun dels segments estan paginats, d'aquesta forma, la memòria física associada a un segment no té que ser contigua.
- Descomposició de l'adreça lògica:

Segment

| Desplacament |
| Pàgina | Desplaçament |
| Des

Hardware Segmentació Paginada

Exemple: Segmentació Paginada

- Dissenyar un sistema de segmentació paginada amb les característiques següents:
 - Memòria física: 8 MBytes.
 - Número màxim de segments per procés: 16.
 - Mida màxima de segments: 1 MByte.
 - Mida pàgines: 4 KBytes.
- Es demana:
 - Esquema de traducció d'adreces d'aquest sistema.
 - Definir la taula de segments per un procés amb els requisits següents:
 - Codi 128 Kbytes. Dades₁ 4 Kbytes. Dades₂ 256 Bytes. Pila 16 KBytes.
 - Sabent que el camp Base de les entrades de la taula de segmentes del procés anterior són 0h, 1000h, 2000h i 1500h, calcular l'adreça física per 1:01100h.

Exemple Segmentació Paginada

Paginació Segmentada

Resum Sistemes Gestió Memòria

Sistema de Gestió de Memòria	Avantatges	Inconvenients
Monitor	És el més senzill	No existeix protecció entre els processos d'usuari
resident	d'implementar	Orientat a sistemes monoprogramats
Particions fixes	Senzill d'implementar	Utilització ineficient de la memòria degut a la
	 Poca sobrecàrrega del SO 	fragmentació interna/externa
		 Número fixes de processos en Memòria
Particions variables	 No existeix fragmentació interna Ús més eficient de la Memòria Principal 	Ús ineficient del processador degut a la compactació per contrarestar la fragmentació externa
Paginació	 No té fragmentació externa És totalment transparent al procés 	Existeix fragmentació interna.
Segmentació	 No té fragmentació interna. Suporta la visió del programador de la Memòria 	Fragmentació externaNecessita compactació

