Kamil Świerad

Rozwiązywanie układów równań metodami bezpośrednimi MOwNiT 2

Program własny? Używano bibliotek?

Do obliczeń użyłem języka c++, na systemie operacyjnym Ubuntu kompilując przy użyciu g++. Procesor komputer to Intel® Core™ i5-6300HQ CPU @ 2.30GHz × 4, a ilość pamięci RAM to 16GB.

1) Rozwiązałem zadany układ przy użycia eliminacji Gaussa

$$\begin{cases} a_{1j}=1\\ a_{ij}=\frac{1}{i+j-1} & dla \ i\neq 1 \end{cases} \qquad i,j=1,\ldots,n$$

Rozwiązując układ m równań liniowych z n niewiadomymi metodą Gaussa należy, za pomocą operacji elementarnych wyłącznie na wierszach, sprowadzić macierz rozszerzoną układu równań liniowych do postaci schodkowej. Następnie, idąc od ostatniego wiersza obliczamy po kolei niewiadome, rozwiązując już proste równania.

Wykonałem pomiary dla różnych precyzji liczb w macierzy A (float oraz double).

Eksperyment przeprowadziłem dla wszystkich wielkości macierzy od 5x5 do 20x20, do tabeli wstawiając niektóre z tych wartości.

Błędy są liczone jako norma euklidesowa oraz maximum z różnicy X wzorcowego i X obliczonego.

Tabela 1.1. Błędy dla macierzy z podpunktu a) liczone metodą Gaussa dla pojedynczej precyzji(float).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum
5	0.0028726	0.0020243
6	0.10627	0.072698
7	1.9569	1.3562
8	5.3831	3.555

9	2.6423	1.7631
10	5.7229	3.1709
11	10.828	7.0935
15	34.558	19.535
20	25.87	13.031

Tabela 1.2. Błędy dla macierzy z podpunktu a) liczone metodą Gaussa przy podwójnej precyzji(double).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum
5	4.3715e-12	3.0569e-12
8	6.0279e-08	3.9887e-08
10	1.0367e-05	6.5557e-06
12	0.040418	0.023927
14	0.45911	0.30381
15	0.82034	0.51014
16	1.6373	1.0044
17	1.8019	0.89507
18	4.863	3.2627
20	8.8221	4.7124

Dla małej precyzji (float), błędy zaczynając być znaczące już przy rozmiarze macierzy ok. 7, pokazując jak źle jest uwarunkowana ta macierz. Zwiększając precyzję (double), dochodzimy do rozmiaru macierzy ok rozmiaru 15, ale błędy dalej także znacząco rosną.

2) Drugie zadanie polegało na tym samym, jednak dla inaczej zdefiniowanej macierzy:

$$\begin{cases} a_{ij} = \frac{2i}{j} & dla \quad j \ge i \\ a_{ij} = a_{ji} & dla \quad j < i \end{cases}$$

$$i, j = 1, \dots, n$$

Liczymy tak samo, jak dla macierzy pierwszej.

Błędy są liczone jako norma euklidesowa oraz maximum z różnicy X wzorcowego i X obliczonego.

Eksperyment przeprowadziłem dla wielkości macierzy {5,10,25,50,100,150,250,500,1000,2500,10000}, do tabeli wstawiając niektóre z tych wartości.

Tabela 2.1. Błędy dla macierzy z podpunktu b) liczone metodą Gaussa przy pojedynczej precyzji(float).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum	
5	1.7881e-07	1.1921e-07	
10	4.1982e-06	2.9206e-06	
25	1.9676e-05	9.2983e-06	
50	0.00010236	4.3869e-05	
100	0.0007012	0.00019872	
500	0.039356	0.0084233	
1000	0.1999	0.027664	
2500	2.0635	0.20666	

Tabela 2.2. Błędy dla macierzy z podpunktu b) liczone metodą Gaussa przy podwójnej precyzji (double).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum	
5	3.1402e-16	2.2204e-16	
10	5.8252e-15	4.4409e-15	
25	3.1334e-14	1.4877e-14	
50	1.653e-13	8.8152e-14	
100	1.5554e-12	5.4934e-13	
1000	4.1791e-10	6.2519e-11	
2500	4.1298e-09	4.5704e-10	
10000	1.287e-07	7.7717e-09	

W macierzy z podpunktu b) wszystkie wyniki mają małe błędy, dopiero przy macierzy o rozmiarze ponad 1000, wyniki przy małej precyzji zaczynają mijać się z prawdą(ale nadal nie o duże wartości, jak to było w przypadku macierzy z podpunktu a)), dla większej precyzji nawet dla macierzy o rozmiarze 10000 błędy są znikomo małe. Wynika to z uwarunkowania macierzy.

Pokażemy to licząc wskaźnik uwarunkowania obu macierzy, który jest równy iloczynowi normy macierzy oraz macierzy odwrotnej.

Jak odwracano

macierz?

Tabela 2.4. Uwarunkowanie macierzy z podpunktu a) i b)

Rozmiar macierzy	wskaźnik uwarunkowania macierzy a)	wskaźnik uwarunkowania macierzy b)
2	14.096	3
3	482.92	6.6633
4	17033	12.206
5	5.9226e+05	19.655
10	1.0442e+09	86.389

Jak widać pierwsza macierz ma wyraźnie większy wskaźnik uwarunkowania i rośnie o wiele szybciej niż dla drugiej macierzy. Dlatego widzieliśmy wyraźne błędy przy eksperymentach w poprzednich podpunktach. W jej przypadku mała zmiana wartości współczynników znacząco wpływa na wynik.

3) Rozwiązanie trzeciej macierzy na dwa sposoby:

$$\begin{cases} a_{i,i} = 3 \\ a_{i,i+1} = \frac{1}{i+5} \\ a_{i,i-1} = \frac{3}{i+5+1} & dla \ i > 1 \\ a_{i,j} = 0 & dla \ j < i-1 \ oraz \ j > i+1 \end{cases}$$

Błędy są liczone jako norma euklidesowa oraz maximum z różnicy X wzorcowego i X obliczonego.

Eksperyment przeprowadziłem dla wszystkich wielkości macierzy {5,10,15,25,50,100,150,250,1000,1500,2500,5000}, do tabeli wstawiając niektóre z tych wartości.

Tabela 3.1 Błędy oraz czas wykonania dla macierzy z podpunktu c) liczone metodą Gaussa przy pojedynczej precyzji(float).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum	Czas wykonania [ms]
5	1.6859e-07	1.1921e-07	0.023
10	2.3842e-07	1.1921e-07	0.042
25	3.5263e-07	1.1921e-07	0.308
100	5.5596e-07	1.1921e-07	13.905
500	1.041e-06	1.1921e-07	432.618
1500	1.7951e-06	1.1921e-07	10971.432
5000	3.1982e-06	1.1921e-07	441961.891

Tabela 3.2 Błędy i czas wykonania dla macierzy z podpunktu c) liczone metodą Gaussa przy podwójnej precyzji (double).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum	Czas wykonania [ms]
5	2.4825e-16	2.2204e-16	0.018
10	2.9374e-16	2.2204e-16	0.044
25	3.8459e-16	2.2204e-16	0.343
100	1.0474e-15	2.2204e-16	4.376
500	2.0502e-15	2.2204e-16	460.39
1500	3.5091e-15	2.2204e-16	11048.78
5000	6.2627e-15	2.2204e-16	436292.497

W przypadku trzeciej macierzy błędy są bardzo małe (w przypadku macierzy o rozmiarze 5, nawet zbyt małe i są przybliżane do 0).

W związku z faktem że zadana macierz jest macierzą trójdiagonalną, to do rozwiązania jej można użyć metody Thomasa:

Zgodnie z algorytmem (https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm) najpierw wyliczamy wartości:

$$c_i' = \left\{ egin{array}{ll} rac{c_i}{b_i} & ; & i = 1 \ & & & \ rac{c_i}{b_i - a_i c_{i-1}'} & ; & i = 2, 3, \ldots, n-1 \end{array}
ight.$$

co to sa a,b,c,d?

and

pojedynczej precyzji(float).

$$d_i' = \left\{ egin{array}{ll} rac{d_i}{b_i} & ; & i=1 \ & & \ rac{d_i - a_i d_{i-1}'}{b_i - a_i c_{i-1}'} & ; & i=2,3,\ldots,n. \end{array}
ight.$$

następnie podstawiamy pod wzór otrzymując rozwiązanie:

$$x_n = d_n' \ x_i = d_i' - c_i' x_{i+1} \ \ \ ; \ i = n-1, n-2, \dots, 1.$$

jakie macierze wykorzystano w metodzie?

Błędy są liczone jako norma euklidesowa oraz maximum z różnicy X wzorcowego i X obliczonego.

Dla tej metody wykonałem analogiczny eksperyment jak dla metody Gaussa: Tabela 3.3 Błędy i czas wykonania dla macierzy z podpunktu c) liczone metodą Thomasa przy

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum	Czas wykonania [ms]
5	1.6859e-07	1.1921e-07	0.018
10	2.3842e-07	1.1921e-07	0.023
25	3.9984e-07	1.1921e-07	0.031
100	6.0198e-07	1.1921e-07	0.057
500	1.198e-06	1.1921e-07	0.045
1500	2.0178e-06	1.1921e-07	0.137
5000	3.7423e-06	1.1921e-07	0.414

Tabela 3.4 Błędy i czas wykonania dla macierzy z podpunktu c) liczone metodą Thomasa przy podwójnej precyzji(double).

Rozmiar macierzy	Norma Euklidesowa	Norma Maximum	Czas wykonania [ms]
5	3.1402e-16	2.2204e-16	0.019
10	4.5776e-16	2.2204e-16	0.025
25	5.7689e-16	2.2204e-16	0.03
100	1.143e-15	2.2204e-16	0.019
500	2.2288e-15	2.2204e-16	0.051
1500	3.9315e-15	2.2204e-16	0.12
5000	6.9378e-15	2.2204e-16	0.421

Błędy są całkowicie znikome (ich wielkość wynika tylko i wyłącznie z możliwości odpowiednio floata albo double'a).

Prędkość przy metodzie Thomasa jest nieporównywalnie większa(i stosunek czasów ciąglę się zwiększa poprzen liniowość algorytmu Thomasa, a wielomianowej złożoności algorytmu Gaussa).

styl?

Ponadto korzystając z metody Thomasa przechowujemy tylko 3 tablice jednowymiarowe o rozmiarze n, a w metodzie Gaussa całą tablicę dwuwymiarową n x n, co oznacza o wiele większe wykorzystanie pamięci przy dużych rozmiarach macierzy. Jest ona zatem lepsza jeśli nasz układ da się rozwiązać metodą Thomasa i zależy nam na pamięci oraz szybkości algorytmu.

Macierze były reprezentowane w programie jako tablice o rozmiarze n x n+1 (ostatnia kolumna reprezentowała macierz b). Do funkcji rozwiązującej układ metodą Thomasa przekazaliśmy tylko 3 diagonale - trzeba było zatem uzyskać je z macierzy przed przekazaniem do funkcji.