

Introduction

Table of Contents

Dataset & Exploratory Data Analysis

Modelling & Model Evaluation

Live Demo

Conclusions & Next Steps

Introduction

Understanding the Problem

DIGITAL INTERACTION

Increase in humanmachine interaction

WORK FROM HOME

WFH is more common in "new normal"

• •

POSTURE RECOGNITION

Growing needs for sitting posture recognition

Postures

Statistics At-a-Glance

One in four American adults spend more than eight hours a day sitting

On top of usual 9-5 hours, **43**% of the US population use a computer for **2** hours per day or more. This amounted to a minimum of **10** hours per day

A survey of 8,500 participants showed that 41% of chairs were set at wrong height (too low)

A survey of 8,500 participants showed that **51%** of monitors were set at unoptimized height (**too low**)

Common Effects of Bad Sitting Posture

Spine Curvature

Headache

Poor Sleep

Disrupted Digestion

Back Pain

Neck Pain

Lack of motivation

Productivity Decrease

3.5 Billions per year

Healthcare cost estimation by Workplace Safety and Health (WSH) Singapore

posture classification

There are myriad cost and effects due to unmonitored bad sitting posture during work

Develop Machine Learning Model to accurately predict multiclass sitting posture classification

Evaluation Criteria:

- High test accuracy score of above 90% on validation set
- High F1-score of above 90% on validation set

02

Dataset & Exploratory Data Analysis

Initial Dataset Overview

Webcam

- Taken ownself through webcam
- Consist of 33 feature landmarks (xyz and v coordinates)

FEATURES

DESCRIPTION

133 columns

Posture

1720 rows

132 coordinates (4 * 33 landmarks)

Tools to Get There

- Google Open Source framework
- Accurate Pose Estimation for media processing
- Cross-platform friendly. It runs on Android, iOS, web and Youtube servers
- Combination of Face mesh, Pose classification, object detection, selfie segmentation etc.

Tools to Get There

Extract & Export

Record Body Landmarks

Convert Landmarks to Coordinates

Export as CSV

Feature Engineering

Eye Distance to Camera

- Important to determine eye closeness to screen
- When people slouch, their eyes are usually closer to the screen
- Ideal distance to screen is usually one's arm length

The Posture Classification

Straight

Slouched

Slouched + Roundshoulder

Uneven shoulder

The Webcam Dataset

X1: x-coordinate of nose **Y1**: y-coordinate of nose

Z1: z-coordinate of nose

V1: Likelihood of nose in the frame

- 0. nose
- 1. left_eye_inner
- 2. left_eye
- 3. left_eye_outer
- 4. right_eye_inner
- 5. right_eye
- 6. right_eye_outer
- 7. left_ear
- 8. right_ear
- 9. mouth_left
- 10. mouth_right
- 11. left_shoulder
- 12. right_shoulder
- 13. left_elbow
- 14. right_elbow
- 15. left_wrist
- 16. right_wrist

- 17. left_pinky
- 18. right_pinky
- 19. left_index
- right_index
 left_thumb
- 22. right_thumb
- 23. left_hip
- 24. right_hip
- 24. right_nif
- 25. left_knee
- 26. right_knee 27. left_ankle
- 28. right_ankle
- 29. left_heel
- 30. right_heel
- 31. left_foot_index
- 32. right_foot_index

	posture	distance	x1	y1	z1	v1	x2	y2	z2	v2	x 3	у3	z 3	v 3	x4	y4	z4	v4	x5	у5	z 5	v 5
0	straight	54.482725	0.540115	0.643918	-1.082978	0.999611	0.560545	0.597951	-0.987799	0.999653	0.574086	0.600362	-0.988065	0.999710	0.587434	0.603645	-0.988064	0.999675	0.515215	0.599925	-0.991564	0.999585
1	straight	52.867762	0.545043	0.646108	-1.093874	0.999447	0.562441	0.598812	-1.000388	0.999513	0.575351	0.601176	-1.000781	0.999584	0.588243	0.604396	-1.000806	0.999543	0.517219	0.600766	-1.003278	0.999428
2	straight	53.642567	0.544261	0.646108	-1.052980	0.999187	0.561833	0.599122	-0.964017	0.999303	0.575026	0.601721	-0.964510	0.999398	0.587783	0.605226	-0.964558	0.999354	0.515784	0.600763	-0.960265	0.999193
3	straight	52.867762	0.544072	0.646125	-1.001081	0.999030	0.561759	0.599375	-0.912840	0.999171	0.575022	0.602080	-0.913346	0.999263	0.587767	0.605714	-0.913323	0.999211	0.515045	0.600840	-0.912368	0.999065
4	straight	53.683076	0.542942	0.649676	-1.015812	0.998835	0.561096	0.602478	-0.920225	0.998980	0.574674	0.605388	-0.920551	0.999103	0.587378	0.609061	-0.920404	0.999041	0.513867	0.603527	-0.927293	0.998854

Initial Dataset Overview

Sidecam

- Taken ownself through sidecam (left, right, diagonal right, diagonal left)
- Consist of 17 feature landmarks (xy-coordinates and s)

FEATURES

52 columns

5498 rows

DESCRIPTION

Posture

51 coordinates (3 * 17 landmarks)

Tools to Get There

- Google Open Source framework from Tensorflow
- Latest release in 2021 of Accurate Pose Estimation for media processing library
- Good prediction for covered joint areas

The Difference

Tensorflow Movenet

MediaPipe requires an initial pose alignment and dataset to where either the whole person is visible or where hips and shoulders keypoints can be confidently annotated.

Feature Engineering

Neck Inclination

- When people hunched, neck inclination angle is larger
- Measured by using cross product of 2 vectors between shoulder (P1), ear (P2) and imaginary point (P3)

<u>Left Hip Angle, Left Bicep Angle, Right Hip</u> <u>Angle, Right Bicep Angle</u>

 Key angles for determining posture differences

The Sidecam Dataset

X1: x-coordinate of nose

Y1: y-coordinate of nose

\$1: Confidence score of nose in the frame

- 0. Nose
- Left Eye
- . Right Eye
- 3. Left Ear
- 1. Right Ear
- 5. Left Shoulder
- 6. Right Shoulder
- 7. Left Elbow
- 8. Right Elbow
- 9. Left Wrist
- 10. Right Wrist
- 11. Left Hip
- 12. Right Hip
- 13. Left Knee
- 14. Right Knee
- 15. Left Ankle 16. Right Ankle
- class neck_inclination left_hip_angle left_bicep_angle right_hip_angle right_bicep_angle s17 0 straight 18.148982 88.293295 110.395569 82.380660 1 straight 16.296187 112,163444 113,258047 86.573638 0.096807 0.779168 0.430096 0.473967 0.854644 0.569576 0.060822 110.157745 112.501603 2 straight 15,440235 86.183511 0.633484 0.154357 ... 0.112910 0.777814 0.429936 0.462543 0.911040 0.455521 0.594332 0.075562 3 straight 14.636403 113,576665 114.833703 86.478473 4 straight 14.121881 111.263034 113.958558 87.001686 99.058500 0.182014 0.598116 0.651450 0.137654 ... 0.103613 0.775958 0.429372 0.552059 0.910851 0.485200 0.025875 0.881896 0.554634

Eye closeness to screen distribution (Webcam)

Eye Distance to Webcam distribution differs from each posture

For straight posture, data is more distributed around 50cm which is the average human hand length. Thus, this is the correct sitting posture distance

For slouch, slouch_roundshoulder and uneven_shoulder, data centers around a closer distance to webcam

For lieback posture, eye distance to camera is usually further away from the webcam

Mouth Distance to Shoulder by Postures (Webcam)

There is a trend observed from straight posture to slouch_roundshoulder posture. This is due to the nature of slouching in which the mouth is closer to shoulder and it is even closer when people have roundshoulder

For uneven shoulder and lieback posture, mouth closeness to shoulder is not as severe as slouching. However, noted that distance is still closer as compared to a straight posture

Shoulder Parallelism (Webcam)

For uneven shoulder, shoulder is indeed not parallel while other postures are relatively parallel

Neck Inclination Angle Distribution (Sidecam)

- Straight and lieback posture neck inclination angle is the lowest
- Hunched and hunched_roundshoulder postures have the largest neck inclination angle

Arm and Torso Angle Correlation (Sidecam)

- Generally all postures have similar correlation
- Hunched_roundshoulder has datapoints trained at very low bicep angle and hip angle
- Lieback has datapoints trained at higher bicep angle

Shoulder relativity to frame (Left POV) (Sidecam)

Hunched_roundshoulder has a more forward shoulder than other posture

03

Modelling & Model Evaluation

Modelling

Logistic Regression

Fits data on a sigmoid curve to classify 2 categories

Ridge Classifier

Similar to ridge regression, only converts target data into [-1,1] and solve with ridge regression method

Gradient Boosting Classifier

Combines weak classifiers into a strong classifier by taking a subset of data in each iteration and learning through mistakes

Random Forest Classifier

Ensemble of decision trees to vote on the predicted class. Predicted class is decided through majority outcome from each decision tree

Adaptive Boosting Classifier (ADA)

Combines weak classifiers into a strong classifier by learning through mistakes

Decision Tree Classifier

Single Decision tree outcome prediction

Modelling

Webcam

Models	Validation Accuracy	Mean F1 Score of 5 Postures				
Logistic Regression	99.8%	99.8%				
Ridge Classification	97.2%	97.2%				
Random Forest Classifier	99.6%	99.6%				
Gradient Boosting Classifier	99.6%	99.5%				
Adaptive Boosting (ADA) Classifier	53.2%	45.1%				
Decision Tree Classifier	98.6%	98.6%				

Logistic Regression, Random Forest and Gradient Boosting Classifier have relatively high validation accuracy score and F1 score

Feature importance to classify a posture (Webcam)

Above is the top 3 key predictors for the model to classify a posture:

- Distance
- y13 (Right Shoulder)
- y12 (Left Shoulder)

Modelling

Sidecam

Models	Validation Accuracy	Mean F1 Score of 5 Postures				
Logistic Regression	98.8%	98.8%				
Ridge Classification	95.2%	94.5%				
Random Forest Classifier	99.6%	99.1%				
Gradient Boosting Classifier	99.5%	99%				
Adaptive Boosting (ADA) Classifier	59.4%	57.7%				
Decision Tree Classifier	97.4%	97%				

Logistic Regression, Random Forest and Gradient Boosting Classifier have relatively high validation accuracy score and F1 score

Feature importance to classify a posture (Sidecam)

Above is the top 3 key predictors for the model to classify a posture:

- Neck inclination
- y2 (Left Eye)
- Y6 (Left Shoulder)

Webcam Video Prediction

Sidecam Video Prediction

Sidecam Video Prediction

04

Live Demo

05

Conclusions & Next Steps

Conclusions

Best Model: Random Forest Classifier

- Achieved 99.6% validation score on both webcam & side cam
- Achieved ~99% F1 score on both webcam & side cam
- Computer Vision Live Prediction score can be further enhanced with more training datasets through different camera angles and camera placements
- However, model is able to capture postures relatively well and are able to capture landmarks & features

Challenges/Limitations

- Models are only able to predict straight, slouched/hunched, slouched/hunched + roundshoulder, uneven shoulder and lieback.
- In real life, there are other postures affecting ergonomics (cross legs, butterfly sit posture, knee angle detection, etc)
- Models are too sensitive to camera angle and placements. Thus, moving the camera to train improved the computer vision accuracy. However, more coverage area is needed for training.

Next Steps

- More complex postures specifically legs joints as these body parts also affect sitting ergonomics.
- Utilize more cameras to cover all camera angles/placements for model training. Thus, it
 will be able to create a much robust model at different placements when deployed to
 offices/homes.
- Train more models to cater for 2 or more people in a frame.
- Explore deep learning models (CNN or RNN) for possibly improve predictive power.
- Use of object detection models such as Mask R-CNN or YOLO to detect monitors, chairs and tables to ultimately give recommendations for best alignments/placements and heights for each workstation.
- Use Tkinter to develop GUI app for posture record and recommendations to correct postures.

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

Please keep this slide for attribution

MediaPipe vs MoveNet

MediaPipe

Top-Down Models

MoveNet

Bottom-Up Models

MoveNet: Architecture Based on 4 Predictor Heads

MediaPipe vs MoveNet

MediaPipe MoveNet

The input to the model is 256X256X3 which gets reduced to 8X8X192 through a bunch of convolution blocks then the encoder output is upsampled along with skip connections.

The output of the encoder-decoder is 64X64X32 which is passed to the coordinate regression network and another convolution layer that produces heatmap and offset map of output 64X64X99.

Since there are 33 key points we can say for every keypoint it predicts 3 images.

Coordinate regression network predicts the key points and visibility of key points. The network itself has backpropagation but has a stop gradient connection with the encoder.

Intuitively, we can say that the coordinate regression network has no control over the encoder and decoder but leverages its information for predicting keypoints. The output of the Coordinate regression network is 33X3 which is for each keypoints we have x_coordinate, y_coordinate, and visibility.

Four prediction heads are attached to the feature extractor:

- 1. Person center heatmap to predict geometric center of person instances
- 2. Keypoint regression field to predict full set of keypoints for a person to group keypoints into instances.
- 3. Person keypoint heatmap to predict location of all keypoints irrespective of person instances
- 4. 2D per-keypoint offset field to predict local offsets from each output feature map pixel to the precise sub-pixel location of each keypoint.

PyCaret Model

Webcam

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
qda	Quadratic Discriminant Analysis	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0050
et	Extra Trees Classifier	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0490
rf	Random Forest Classifier	0.9983	1.0000	0.9984	0.9984	0.9983	0.9979	0.9979	0.0770
gbc	Gradient Boosting Classifier	0.9975	1.0000	0.9975	0.9976	0.9975	0.9969	0.9969	0.6540
Ir	Logistic Regression	0.9967	1.0000	0.9968	0.9968	0.9967	0.9958	0.9958	0.6950
svm	SVM - Linear Kernel	0.9967	0.0000	0.9966	0.9968	0.9966	0.9958	0.9958	0.0070
lda	Linear Discriminant Analysis	0.9967	1.0000	0.9970	0.9969	0.9967	0.9958	0.9959	0.0040
lightgbm	Light Gradient Boosting Machine	0.9967	1.0000	0.9968	0.9969	0.9967	0.9958	0.9959	0.4520
xgboost	Extreme Gradient Boosting	0.9959	1.0000	0.9961	0.9961	0.9959	0.9948	0.9948	0.1950
knn	K Neighbors Classifier	0.9917	1.0000	0.9911	0.9921	0.9916	0.9895	0.9896	0.2390
dt	Decision Tree Classifier	0.9909	0.9942	0.9904	0.9914	0.9907	0.9885	0.9887	0.0060
ridge	Ridge Classifier	0.9668	0.0000	0.9707	0.9703	0.9668	0.9581	0.9591	0.0040
nb	Naive Bayes	0.9385	0.9937	0.9424	0.9405	0.9381	0.9224	0.9231	0.0040
ada	Ada Boost Classifier	0.7024	0.8656	0.6937	0.5996	0.6239	0.6213	0.6736	0.0460
dummy	Dummy Classifier	0.2544	0.5000	0.2000	0.0647	0.1032	0.0000	0.0000	0.0040

Sidecam

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
et	Extra Trees Classifier	0.9992	1.0000	0.9993	0.9992	0.9992	0.9990	0.9990	0.0820
lightgbm	Light Gradient Boosting Machine	0.9971	1.0000	0.9973	0.9972	0.9971	0.9962	0.9962	0.8090
rf	Random Forest Classifier	0.9966	1.0000	0.9968	0.9967	0.9966	0.9955	0.9955	0.2210
knn	K Neighbors Classifier	0.9964	0.9998	0.9966	0.9964	0.9964	0.9951	0.9952	0.2550
xgboost	Extreme Gradient Boosting	0.9961	1.0000	0.9962	0.9962	0.9961	0.9948	0.9948	1.0850
gbc	Gradient Boosting Classifier	0.9953	0.9999	0.9955	0.9954	0.9953	0.9937	0.9938	3.2200
qda	Quadratic Discriminant Analysis	0.9940	0.9999	0.9941	0.9941	0.9940	0.9920	0.9920	0.0110
Ir	Logistic Regression	0.9891	0.9994	0.9894	0.9893	0.9891	0.9854	0.9855	0.7140
svm	SVM - Linear Kernel	0.9808	0.0000	0.9809	0.9810	0.9808	0.9743	0.9743	0.0170
dt	Decision Tree Classifier	0.9769	0.9845	0.9768	0.9773	0.9768	0.9691	0.9693	0.0270
lda	Linear Discriminant Analysis	0.9673	0.9976	0.9675	0.9679	0.9672	0.9562	0.9565	0.0140
ridge	Ridge Classifier	0.9527	0.0000	0.9517	0.9532	0.9523	0.9367	0.9372	0.0060
nb	Naive Bayes	0.8454	0.9698	0.8471	0.8493	0.8465	0.7933	0.7938	0.0070
ada	Ada Boost Classifier	0.6640	0.8693	0.6606	0.6856	0.6548	0.5503	0.5603	0.1870
dummy	Dummy Classifier	0.2817	0.5000	0.2500	0.0794	0.1238	0.0000	0.0000	0.0070

PyCaret Model

Sidecam (extra trees classifier)

Confusion matrix (Random Forest)

