従来の暗号の問題点(1)

あらかじめ秘密に伝えないといけない

従来の暗号の問題点(2)

A _____B

ユーザ数=2の場合、 鍵の数=1

ユーザ数n人では、鍵の数は _nC₂となる(1ユーザ当りn-1の 鍵を秘密に管理する必要あり)

公開鍵暗号

- 1976年、DiffieとHellmanによりその概念が示された
- 公開鍵暗号方式の特徴:
 - 鍵の配送が容易
 - 秘密に保持する鍵の種類が少ない
 - 認証機能がある
- RSA方式が最もひろく使用されている方式
- WWWや電子メールの暗号、認証を行うために広く用いられている

公開鍵暗号とは

公開鍵暗号の利点

あらかじめ安全な通信チャンネル を用いて、鍵を共有する必要なし

ユーザ数が多くなっても、 各ユーザが秘密に管理する 鍵は、自分の秘密鍵のみ。

→不特定多数の相手と通信をするネットワーク社会では 必要不可欠な技術

公開鍵暗号の数学的原理

一方向性関数の利用 $y \leftarrow f(x)$ の計算は容易だが、 $f^{-1}(y) \rightarrow x$ の計算は非常に困難

公開鍵暗号を作るには、 「落し戸付き」一方向性関数が必要 f¹(y)→xの計算は非常に困難だが ある情報を知っている者には簡単