#### **Contents**

Finite automata and regular languages



August 9, 2018

#### Section outline

- Finite automata and regular languages
  - A simple recogniser
  - Deterministic FA
  - Dead states
  - Regular languages
  - Practice example of DFA
  - Union of Regular Languages
  - Intersection of RLs
  - Concatenation of RLs
  - Non-deterministic FA
  - Example NFAs
  - NFA formalised
  - NFA to DFA
  - ε-closure and subset construction

- NFA recognisers
- Formalisation of L<sub>1</sub> ∘ L<sub>2</sub>
- Closure properties of RLs
- Practice example of NFA
- Regular expressions
- Practice problems of REs
- Representing FAs as RLs
- GNFA
- Linear grammars
- Non-RLs
- Existence of non-regular languages
- Pumping in FA
- L not regular by PL
- PL applications
- Practice problems of Pumping Lemma (RLs)
- Myhill-Nerode theorem
- Summary





• *Q* = {EE, EO, OE, OO}

EE 0: even, 1: even

OE 0: odd, 1: even

EO 0: even, 1: odd

00 0: odd, 1: odd







EE 0: even, 1: even

**OE** 0: odd, 1: even

EO 0: even, 1: odd

00 0: odd, 1: odd

• *Q* = {EE, EO, OE, OO}

•  $\Sigma = \{0, 1\}$ 





EE 0: even, 1: even

**OE** 0: odd, 1: even

EO 0: even, 1: odd

00 0: odd, 1: odd

$$\delta = \begin{cases}
\langle EE, 0 \rangle \mapsto OE, \\
\langle EE, 1 \rangle \mapsto EO, \\
\langle OE, 0 \rangle \mapsto EE, \\
\langle OE, 1 \rangle \mapsto OO, \\
\langle EO, 0 \rangle \mapsto OO, \\
\langle EO, 1 \rangle \mapsto EE, \\
\langle OO, 0 \rangle \mapsto EO, \\
\langle OO, 1 \rangle \mapsto OE
\end{cases}$$







EE 0: even, 1: even

**OE** 0: odd, 1: even

**EO** 0: even, 1: odd

00 0: odd, 1: odd

• *Q* = {EE, EO, OE, OO}

$$\delta = \left\{ \begin{array}{l} \langle \mathsf{OE}, \mathsf{0} \rangle \mapsto \mathsf{EE}, \\ \langle \mathsf{OE}, \mathsf{1} \rangle \mapsto \mathsf{OO}, \\ \langle \mathsf{EO}, \mathsf{0} \rangle \mapsto \mathsf{OO}, \\ \langle \mathsf{EO}, \mathsf{1} \rangle \mapsto \mathsf{EE}, \\ \langle \mathsf{OO}, \mathsf{0} \rangle \mapsto \mathsf{EO}, \\ \langle \mathsf{OO}, \mathsf{1} \rangle \mapsto \mathsf{OE} \end{array} \right.$$

q₁ = EE







EE 0: even, 1: even

**OE** 0: odd, 1: even

**EO** 0: even, 1: odd

00 0: odd, 1: odd

$$\bullet \ \Sigma = \{0,1\}$$

$$\delta = \left\{ \begin{array}{l} \langle \mathsf{EE}, \mathsf{0} \rangle \mapsto \mathsf{OE}, \\ \langle \mathsf{EE}, \mathsf{1} \rangle \mapsto \mathsf{EO}, \\ \langle \mathsf{OE}, \mathsf{0} \rangle \mapsto \mathsf{EE}, \\ \langle \mathsf{OE}, \mathsf{1} \rangle \mapsto \mathsf{OO}, \\ \langle \mathsf{EO}, \mathsf{0} \rangle \mapsto \mathsf{OO}, \\ \langle \mathsf{EO}, \mathsf{1} \rangle \mapsto \mathsf{EE}, \\ \langle \mathsf{OO}, \mathsf{1} \rangle \mapsto \mathsf{EO}, \\ \langle \mathsf{OO}, \mathsf{1} \rangle \mapsto \mathsf{OE} \end{array} \right.$$

- $q_I = EE$
- *F* = {EO}





#### **Deterministic FA**



EE 0: even, 1: even

**OE** 0: odd, 1: even

EO 0: even, 1: odd

00 0: odd, 1: odd

DFA  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , where

- Finite set of states
- Alphabet, finite set of symbols
- δ Transition function,  $δ: Q \times Σ \rightarrow Q$
- q<sub>1</sub> Starting or initial state
- F Set of accepting or final states,  $F \subset Q$





#### **Deterministic FA**



EE 0: even, 1: even

**OE** 0: odd, 1: even

EO 0: even, 1: odd

00 0: odd, 1: odd

DFA  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$ , where

- Q Finite set of states
- Σ Alphabet, finite set of symbols
- δ Transition function, δ : Q × Σ → Q
- q<sub>1</sub> Starting or initial state
- F Set of accepting or final states,  $F \subseteq Q$
- No transitions after input finishes





#### **Deterministic FA**



EE 0: even, 1: even

**OE** 0: odd, 1: even

**EO** 0: even, 1: odd

00 0: odd, 1: odd

DFA  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$ , where

- Q Finite set of states
- Alphabet, finite set of symbols
- δ Transition function,  $δ: Q \times Σ \rightarrow Q$
- q<sub>1</sub> Starting or initial state
- F Set of accepting or final states,  $F \subseteq Q$
- No transitions after input finishes
- Srings taking M to an accepted state is the language L<sub>M</sub> accepted by M



### Example of designing a FA

 $\bullet$   $\Sigma=\{0,1\},$  want to recognize any string that does  $\emph{contain}$  0011 in it



5 / 44

### Example of designing a FA

- $\Sigma = \{0, 1\}$ , want to recognize any string that does *contain* 0011 in it
- Consider m/c  $M_1$  that accepts any string containing 0011 ( $L_{M_1}$ )







# Example of designing a FA

- $\Sigma = \{0, 1\}$ , want to recognize any string that does *contain* 0011 in it
- ullet Consider m/c  $M_1$  that accepts any string containing 0011 ( $L_{M_1}$ )



• Next consider  $M_2$  obtained by interchanging the accepting and non-accepting states of  $M_1$ ;  $L_{M_2} = \overline{L_{M_1}}$ ?



#### **Dead states**



- Recognizes
   10,01,001,...,0+1
- What happens on 111 or 1010?



#### **Dead states**



- Recognizes
   10,01,001,...,0+1
- What happens on 111 or 1010?
- Introduce a dead state
- Let any missing transition lead to the dead state
- Often not shown, left implicit



• Let  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$ 



- Let  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$





- Let  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$
- *M* accepts *w* if there is a sequence of states  $s_0, s_1, \ldots, s_n, s_i \in Q$  such that  $s_0 = q_I$ ,  $\delta(s_i, w_{i+1}) = s_{i+1}$ , for  $1 \le i < n$  and  $s_n \in F$





- Let  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$
- *M* accepts *w* if there is a sequence of states  $s_0, s_1, \ldots, s_n, s_i \in Q$  such that  $s_0 = q_I$ ,  $\delta(s_i, w_{i+1}) = s_{i+1}$ , for  $1 \le i < n$  and  $s_n \in F$
- In other words w takes M starting from the intitial state to and accepting state





- Let  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$
- *M* accepts *w* if there is a sequence of states  $s_0, s_1, \ldots, s_n, s_i \in Q$  such that  $s_0 = q_I$ ,  $\delta(s_i, w_{i+1}) = s_{i+1}$ , for  $1 \le i < n$  and  $s_n \in F$
- In other words w takes M starting from the intitial state to and accepting state
- *M recognises* language *A* if  $A = \{w | M \text{ accepts } w\}$





- Let  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$
- *M* accepts *w* if there is a sequence of states  $s_0, s_1, \ldots, s_n, s_i \in Q$  such that  $s_0 = q_I$ ,  $\delta(s_i, w_{i+1}) = s_{i+1}$ , for  $1 \le i < n$  and  $s_n \in F$
- In other words w takes M starting from the intitial state to and accepting state
- M recognises language A if  $A = \{w | M$  accepts  $w\}$
- A language is a regular language if and only if it there is a finite automaton that recognises it





- Let  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$
- *M* accepts *w* if there is a sequence of states  $s_0, s_1, \ldots, s_n, s_i \in Q$  such that  $s_0 = q_I$ ,  $\delta(s_i, w_{i+1}) = s_{i+1}$ , for  $1 \le i < n$  and  $s_n \in F$
- In other words w takes M starting from the intitial state to and accepting state
- *M recognises* language *A* if  $A = \{w | M \text{ accepts } w\}$
- A language is a regular language if and only if it there is a finite automaton that recognises it
- Are there languages that are not regular?





- Let  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$
- Let  $w = w_1 w_2 \dots w_n$  be a string,  $w_i \in \Sigma$
- *M* accepts *w* if there is a sequence of states  $s_0, s_1, \ldots, s_n, s_i \in Q$  such that  $s_0 = q_I$ ,  $\delta(s_i, w_{i+1}) = s_{i+1}$ , for  $1 \le i < n$  and  $s_n \in F$
- In other words w takes M starting from the intitial state to and accepting state
- *M recognises* language *A* if  $A = \{w | M \text{ accepts } w\}$
- A language is a regular language if and only if it there is a finite automaton that recognises it
- Are there languages that are not regular?
- Intuitively, if the language requires us to keep track of an arbitrary amount of the input to determine acceptance, a FA is likely to fail because it has only a finite number of states at its disposal



7 / 44

### **FA** design practice

• FA for binary numbers that divisible by 3



#### Practice example of DFA

- Draw DFA which accepts binary numbers divisible by 3.
- ② Draw DFA for the given language. In all parts alphabet is  $\{a,b\}$ 
  - {w|w has even number of a's and each a is followed by at least one b}
  - $\emptyset$  { w | w is a string that does not contain exactly two a's }
  - ①  $\{w|n_a \mod (3) > n_b \mod (3) \text{ where } n_a, n_b \text{ are the numbers of a's and b's in string w respectively}\}$
  - \[
    \begin{aligned}
    \begin{
  - The empty set.
  - All strings except empty string.





• Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$ 



- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if any m/c accepts it





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if any m/c accepts it
- Is this arrangement a FA, if so what is its formal representation?





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if any m/c accepts it
- Is this arrangement a FA, if so what is its formal representation?



- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if any m/c accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $F = \{\langle q_1, ... \rangle | q_1 \in F_1\} \cup \{\langle ..., q_2 \rangle | q_2 \in F_2\}$





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$
- Can we build a FA to recognise L?
- Running  $M_1$  and, on failure, then  $M_2$ , is not an option because the input cannot be rewinded!
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if any m/c accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $\bullet \ \ Q = Q_1 \times Q_2, \ q_I = \langle q_{I_1}, q_{I_2} \rangle$
- $F = \{ \langle q_1, \_ \rangle | q_1 \in F_1 \} \cup \{ \langle \_, q_2 \rangle | q_2 \in F_2 \}$
- $\delta = \{ \langle \langle q_{1_a}, q_{2_c} \rangle, x \rangle \mapsto \langle q_{1_b}, q_{2_d} \rangle \} | \langle q_{1_a}, x \rangle \mapsto q_{1_b} \in \delta_1 \land \langle q_{1_c}, x \rangle \mapsto q_{1_d} \in \delta_2$



#### Intersection of RLs

• Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$ 



#### Intersection of RLs

- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it





August 9, 2018

- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it
- Is this arrangement a FA, if so what is its formal representation?





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $Q = Q_1 \times Q_2$ ,  $q_l = \langle q_{l_1}, q_{l_2} \rangle$



- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $F = \{ \langle q_1, q_2 \rangle | q_1 \in F_1, q_2 \in F_2 \}$



- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $F = \{\langle q_1, q_2 \rangle | q_1 \in F_1, q_2 \in F_2 \}$
- $\delta = \left\{ \left\langle \left\langle q_{1_a}, q_{2_c} \right\rangle, x \right\rangle \mapsto \left\langle q_{1_b}, q_{2_d} \right\rangle \right\} | \left\langle q_{1_a}, x \right\rangle \mapsto q_{1_b} \in \delta_1 \land \left\langle q_{1_c}, x \right\rangle \mapsto q_{1_d} \in \delta_2$





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $\bullet \ \ Q = Q_1 \times Q_2, \ q_I = \left\langle q_{I_1}, q_{I_2} \right\rangle$
- $F = \{\langle q_1, q_2 \rangle | q_1 \in F_1, q_2 \in F_2 \}$
- $\delta = \left\{ \left\langle \left\langle q_{1_a}, q_{2_c} \right\rangle, x \right\rangle \mapsto \left\langle q_{1_b}, q_{2_d} \right\rangle \right\} | \left\langle q_{1_a}, x \right\rangle \mapsto q_{1_b} \in \delta_1 \land \left\langle q_{1_c}, x \right\rangle \mapsto q_{1_d} \in \delta_2$
- Also,  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$
- Can we build a FA to recognise L?
- Clone the input sequence to apply to the two m/cs  $M_1$  and  $M_2$  and run them in tandem
- String is accepted if both m/cs accepts it
- Is this arrangement a FA, if so what is its formal representation?
- $F = \{\langle q_1, q_2 \rangle | q_1 \in F_1, q_2 \in F_2 \}$
- $\delta = \{\langle\langle q_{1_a}, q_{2_c}\rangle, x\rangle \mapsto \langle q_{1_b}, q_{2_d}\rangle\} | \langle q_{1_a}, x\rangle \mapsto q_{1_b} \in \delta_1 \land \langle q_{1_c}, x\rangle \mapsto q_{1_d} \in \delta_2$
- Also,  $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
- How to constuct m/c for  $\overline{\overline{L_1} \cup \overline{L_2}}$ , to be seen later



• Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$ 



August 9, 2018

- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise *L*?





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to  $M_1$ , and on acceptance by  $M_1$ , to  $M_2$





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to  $M_1$ , and on acceptance by  $M_1$ , to  $M_2$
- String is accepted if finally accepted by M<sub>2</sub>





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to  $M_1$ , and on acceptance by  $M_1$ , to  $M_2$
- String is accepted if finally accepted by M<sub>2</sub>
- This scheme has a problem though, the input may be splittable into w<sub>1</sub> w<sub>2</sub> and also w'<sub>1</sub> w'<sub>2</sub>





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to M<sub>1</sub>, and on acceptance by M<sub>1</sub>, to M<sub>2</sub>
- String is accepted if finally accepted by M<sub>2</sub>
- This scheme has a problem though, the input may be splittable into w<sub>1</sub> w<sub>2</sub> and also w'<sub>1</sub> w'<sub>2</sub>
- While both  $w_1$  and  $w_1'$  may be accepted by  $M_1$ , one of  $w_2$  and  $w_2'$  may not be accepted by  $M_2$ ; may other possibilities also





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to  $M_1$ , and on acceptance by  $M_1$ , to  $M_2$
- String is accepted if finally accepted by M<sub>2</sub>
- This scheme has a problem though, the input may be splittable into w<sub>1</sub> w<sub>2</sub> and also w'<sub>1</sub> w'<sub>2</sub>
- While both  $w_1$  and  $w'_1$  may be accepted by  $M_1$ , one of  $w_2$  and  $w'_2$  may not be accepted by  $M_2$ ; may other possibilities also
- Thus, various splitting options may have to be considered, through non-determinism





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to M<sub>1</sub>, and on acceptance by M<sub>1</sub>, to M<sub>2</sub>
- String is accepted if finally accepted by M<sub>2</sub>
- This scheme has a problem though, the input may be splittable into w<sub>1</sub> w<sub>2</sub> and also w'<sub>1</sub> w'<sub>2</sub>
- While both  $w_1$  and  $w'_1$  may be accepted by  $M_1$ , one of  $w_2$  and  $w'_2$  may not be accepted by  $M_2$ ; may other possibilities also
- Thus, various splitting options may have to be considered, through non-determinism
- A string w will be said to be  $L_1 \circ L_2$  if there exists a way to split w as  $w_1 w_2$  such that  $w_1 \in L_1$  and  $w_2 \in L_2$





- Consider  $L_1$  and  $L_2$  over a common  $\Sigma$ ,  $L = L_1 \circ L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$
- Can we build a FA to recognise L?
- A possibility is to demultiplex the input, feeding it first to  $M_1$ , and on acceptance by  $M_1$ , to  $M_2$
- String is accepted if finally accepted by M<sub>2</sub>
- This scheme has a problem though, the input may be splittable into w<sub>1</sub> w<sub>2</sub> and also w'<sub>1</sub> w'<sub>2</sub>
- While both  $w_1$  and  $w'_1$  may be accepted by  $M_1$ , one of  $w_2$  and  $w'_2$  may not be accepted by  $M_2$ ; may other possibilities also
- Thus, various splitting options may have to be considered, through non-determinism
- A string w will be said to be  $L_1 \circ L_2$  if there exists a way to split w as  $w_1 w_2$  such that  $w_1 \in L_1$  and  $w_2 \in L_2$
- For regular languages  $L_1$  and  $L_2$ , we shall seek to show that  $L_1 \circ L_2$  is also regular



 Unlike a DFA, there may be multiple next states on the same inputs



- Unlike a DFA, there may be multiple next states on the same inputs
- It is permissible to take any of the outgoing transitions



- Unlike a DFA, there may be multiple next states on the same inputs
- It is permissible to take any of the outgoing transitions
- $\bullet$   $\epsilon$ -transition from one state to another state without any input may also be permitted





- Unlike a DFA, there may be multiple next states on the same inputs
- It is permissible to take any of the outgoing transitions
- $\bullet$   $\epsilon$ -transition from one state to another state without any input may also be permitted
- Multiple ways to proceed on a given input



- Unlike a DFA, there may be multiple next states on the same inputs
- It is permissible to take any of the outgoing transitions
- $\bullet$   $\epsilon$ -transition from one state to another state without any input may also be permitted
- Multiple ways to proceed on a given input
- String is accepted if there is at least one way to proceed to an accepting step





- Unlike a DFA, there may be multiple next states on the same inputs
- It is permissible to take any of the outgoing transitions
- $\bullet$   $\epsilon$ -transition from one state to another state without any input may also be permitted
- Multiple ways to proceed on a given input
- String is accepted if there is at least one way to proceed to an accepting step
- Consider the behaviour on 0100011110101 of the following m/c which accepts strings containing 011111







- Unlike a DFA, there may be multiple next states on the same inputs
- It is permissible to take any of the outgoing transitions
- $\bullet$   $\epsilon$ -transition from one state to another state without any input may also be permitted
- Multiple ways to proceed on a given input
- String is accepted if there is at least one way to proceed to an accepting step
- Consider the behaviour on 0100011110101 of the following m/c which accepts strings containing 011111



Many "faulty" choices exist, but accepting state can be reached



Any binary string ending with 101





August 9, 2018

- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring





- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs





- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs
- NFA for the set of all binary strings that have either the number of 0's odd, or the number of 1's not a multiple of 3, or both



August 9, 2018

- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs
- NFA for the set of all binary strings that have either the number of 0's odd, or the number of 1's not a multiple of 3, or both
- NFAs make it easier to conceptually design machines, but how to realise those?





- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs
- NFA for the set of all binary strings that have either the number of 0's odd, or the number of 1's not a multiple of 3, or both
- NFAs make it easier to conceptually design machines, but how to realise those?
- One can construct a DFA from a given NFA!



- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs
- NFA for the set of all binary strings that have either the number of 0's odd, or the number of 1's not a multiple of 3, or both
- NFAs make it easier to conceptually design machines, but how to realise those?
- One can construct a DFA from a given NFA!
- So, NFAs are not more powerful recognisers than DFAs





- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs
- NFA for the set of all binary strings that have either the number of 0's odd, or the number of 1's not a multiple of 3, or both
- NFAs make it easier to conceptually design machines, but how to realise those?
- One can construct a DFA from a given NFA!
- So, NFAs are not more powerful recognisers than DFAs
- Key observation: could be at multiple NFA states at once





- Any binary string ending with 101
- Any binary string containing 00 or 11 as a substring
- NFA accepting zero or more 1's or zero or more 10 pairs
- NFA for the set of all binary strings that have either the number of 0's odd, or the number of 1's not a multiple of 3, or both
- NFAs make it easier to conceptually design machines, but how to realise those?
- One can construct a DFA from a given NFA!
- So, NFAs are not more powerful recognisers than DFAs
- Key observation: could be at multiple NFA states at once





### **NFA** formalised

- NFA  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$ , where
  - Q Finite set of states
  - $\Sigma$  Alphabet, finite set of symbols,  $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$
  - δ Transition function,  $δ : Q \times Σ_ε \to \mathcal{P}(Q)$  from a given state, on a given symbol or ε, transition is to a set of states
  - q<sub>1</sub> Starting or initial state
  - F Set of accepting or final states,  $F \subseteq Q$



#### **Theorem**

Every NFA M has an equivalent DFA M'

## **NFA to DFA**







## **NFA to DFA**



















































• NFA  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , construct DFA  $M' = \langle Q', \Sigma, \delta', q'_l, F' \rangle$ 



#### $\epsilon$ -closure and subset construction

• NFA  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , construct DFA  $M' = \langle Q', \Sigma, \delta', q'_l, F' \rangle$ 





• NFA  $\textit{M} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_\textit{I}, \textit{F} \rangle$ , construct DFA  $\textit{M}' = \left\langle \textit{Q}', \Sigma, \delta', \textit{q}'_\textit{I}, \textit{F}' \right\rangle$ 



• The  $\epsilon$ -closure of a given set of NFA states S is the set of states reachable by a sequence of zero or more  $\epsilon$ -transitions from the states in S, denote as E(S)





• NFA  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , construct DFA  $M' = \langle Q', \Sigma, \delta', q'_l, F' \rangle$ 



• The  $\epsilon$ -closure of a given set of NFA states S is the set of states reachable by a sequence of zero or more  $\epsilon$ -transitions from the states in S, denote as E(S)

$$E({B}) = {B, C}, E({C}) = {C}$$



• NFA  $\textit{M} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_\textit{I}, \textit{F} \rangle$ , construct DFA  $\textit{M}' = \left\langle \textit{Q}', \Sigma, \delta', \textit{q}'_\textit{I}, \textit{F}' \right\rangle$ 



• The  $\epsilon$ -closure of a given set of NFA states S is the set of states reachable by a sequence of zero or more  $\epsilon$ -transitions from the states in S, denote as E(S)

$$E({B}) = {B, C}, E({C}) = {C}$$

• The first subset introduced in Q' is  $q'_l = \mathbf{E}(\{q_l\}), q'_l \in Q'$ 





• NFA  $\textit{M} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_\textit{I}, \textit{F} \rangle$ , construct DFA  $\textit{M}' = \left\langle \textit{Q}', \Sigma, \delta', \textit{q}'_\textit{I}, \textit{F}' \right\rangle$ 



• The  $\epsilon$ -closure of a given set of NFA states S is the set of states reachable by a sequence of zero or more  $\epsilon$ -transitions from the states in S, denote as E(S)

$$\mathbf{E}(\{B\}) = \{B, C\}, \mathbf{E}(\{C\}) = \{C\}$$

- The first subset introduced in Q' is  $q'_l = \mathbf{E}(\{q_l\}), q'_l \in Q'$
- For  $q' \in \mathcal{Q}'$ ,  $\delta'(q',a) = \bigcup_{q \in q'} \mathbf{E}(\delta(q,a))$ ,  $\delta'(q',a) \in \mathcal{Q}'$



• NFA  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , construct DFA  $M' = \langle Q', \Sigma, \delta', q'_l, F' \rangle$ 



• The  $\epsilon$ -closure of a given set of NFA states S is the set of states reachable by a sequence of zero or more  $\epsilon$ -transitions from the states in S, denote as E(S)

$$E({B}) = {B, C}, E({C}) = {C}$$

- The first subset introduced in Q' is  $q'_l = \mathbf{E}(\{q_l\}), q'_l \in Q'$
- For  $q' \in Q'$ ,  $\delta'(q', a) = \bigcup_{q \in q'} \mathbf{E}(\delta(q, a))$ ,  $\delta'(q', a) \in Q'$
- Any state of Q' containing a final state of M is a final state of M':  $\forall q' \in Q'$ .  $[\exists f \in F. q' \cap f \neq \phi \Rightarrow q' \in F']$



•  $L_1 \circ L_2$ :







•  $L_1 \circ L_2$ :







•  $L_1 \circ L_2$ :



 $\bullet$  For  $\overline{L},$  convert the NFA to a DFA and then interchange accepting and non-accepting states



•  $L_1 \circ L_2$ :



- $\bullet$  For  $\overline{L},$  convert the NFA to a DFA and then interchange accepting and non-accepting states
- For  $L_1 \cap L_2$ , use recogniser for  $\overline{\overline{L_1} \cup \overline{L_2}}$



## NFA recogniser for Kleene star

$$L^* = \{x_1 x_2 \dots x_k | k \ge 0 \land x_i \in L\}$$
  
 
$$L : M = \langle Q, \Sigma, \delta, q_l, F \rangle \text{ for } L^* \text{ from } L_1 : M_1 = \langle Q_1, \Sigma, \delta_1, q_{l_1}, F_1 \rangle$$



- Initial state of M is  $q_I$ ,  $F = \{q_f\}$
- $Q = \{q_I, q_A, q_B, q_f\} \cup Q_1$
- $\begin{array}{ll} \bullet \ \ \mathsf{For} \ q \in Q, a \in \Sigma_{\epsilon}, \, \delta(q,a) = \\ \left\{ \begin{array}{ll} \delta_1(q,a) & q \in \left(Q_1 \cap \overline{F_1}\right) \\ \delta_1(q,a) \cup \{q_B\} & q \in F_1 \end{array} \right. \end{array}$

$$egin{aligned} ext{for } q \in Q, a \in \Sigma_{\epsilon}, \, \delta(q,a) = \ & \left\{ q_A, q_f 
ight\} \quad q = q_I, a = \epsilon \ & \left\{ q_A, q_f 
ight\} \quad q = q_B, a = \epsilon \ & \left\{ 
ight\} \quad q = q_I, a 
eq \epsilon \ & \left\{ 
ight\} \quad q = q_A, a 
eq \epsilon \ & \left\{ 
ight\} \quad q = q_B, a 
eq \epsilon \end{aligned}$$

### Formalisation of $L_1 \circ L_2$

• From  $L_1: M_1 = \langle Q_1, \Sigma, \delta_1, q_{l_1}, F_1 \rangle, L_2: M_2 = \langle Q_2, \Sigma, \delta_2, q_{l_2}, F_2 \rangle$ construct  $L = L_1 \circ L_2 : M = \langle Q, \Sigma, \delta, g_l, F \rangle$ 



- $Q = \{q_1, q_m, q_t\} \cup Q_1 \cup Q_2$
- For  $q \in Q$ ,  $a \in \Sigma_{\epsilon}$ ,  $\delta(q, a) =$  $\begin{cases} \{q_{l_1}\} & q=q_{l}, a=\epsilon \\ \{\} & q=q_{l}, a\neq\epsilon \end{cases} \qquad \begin{cases} \{q_{l_2}\} & q=q_{m}, a=\epsilon \\ \{\} & q=q_{m}, a\neq\epsilon \end{cases} \\ \delta_1(q,a) & q\in\left(Q_1\cap\overline{F_1}\right) \\ \delta_1(q,a)\cup\{q_m\} & q\in\overline{F_1} \end{cases} \qquad \begin{cases} \{q_{l_2}\} & q=q_{m}, a=\epsilon \\ \{\} & q=q_{m}, a\neq\epsilon \end{cases} \\ \delta_2(q,a) & q\in\left(Q_2\cap\overline{F_2}\right) \\ \delta_2(q,a)\cup\{q_f\} & q\in\overline{F_2} \end{cases}$
- Initial state of M is  $q_l$ ,  $F = \{q_t\}$

Formalise the other diagramatic constructions ...



## Closure properties of RLs

- Closed under complementation if  $L_1$  is a regular language, so is  $\overline{L_1}$
- Closed under union
   if L₁ and L₂ are regular languages, so is L₁ ∪ L₂
- Closed under concatenation
   if L₁ and L₂ are regular languages, so is L₁ ∘ L₂
- Closed under Kleene star
   if L<sub>1</sub> is a regular language, so is L<sub>1</sub>\*
- Closed under intersection
   if L₁ and L₂ are regular languages, so is L₁ ∩ L₂

Consider  $\Sigma = \{a, b, c, \dots, z\}$ ,  $L_1 = \{aa, b\}$ ,  $L_2 = \{x, yy\}$  to work out examples of above



### Practice example of NFA

- Give an NFA recognizing the language (01  $\cup$  001  $\cup$  010 )\*
  - Show that the class of regular languages are closed under complementation.
  - Show that the class of regular languages are closed under string reversal.
- 2 Let  $A/B = \{w | wx \in A \text{ for some } x \in B\}$ . Show that if A is regular and B is any language then A/B is regular.
- **3** For languages A and B, let the **shuffle** of A and B be the language  $\{w|w=a_1b_1\dots a_kb_k\}$ , where  $a_1\dots a_k\in A$  and  $b_1\dots b_k\in B$ , each  $a_i,b_i\in \Sigma^*$ . Show that the class of regular languages are closed under shuffle.





REs are recursively described over a given alphabet  $\Sigma$  as follows:

**Base clauses**  $a \in \Sigma$ ,  $\epsilon$  is the empty string

- a is a RE, denoting {a}
- $\epsilon$  is a RE, denoting  $\{\epsilon\}$
- Ø is a RE





REs are recursively described over a given alphabet  $\Sigma$  as follows:

**Base clauses**  $a \in \Sigma$ ,  $\epsilon$  is the empty string

- a is a RE, denoting {a}
- $\bullet$   $\epsilon$  is a RE, denoting  $\{\epsilon\}$
- Ø is a RE

**Inductive clauses** given REs  $R_1$  and  $R_2$  or R,

- $R_1 \circ R_2$  is a RE, representing concatenation
- $R_1|R_2$  is a RE, representing alternation (set union)
- R<sup>\*</sup> is a RE, representing the Kleene star of R
- (R) is a RE, for grouping, sometimes optional



REs are recursively described over a given alphabet  $\Sigma$  as follows:

**Base clauses**  $a \in \Sigma$ ,  $\epsilon$  is the empty string

- a is a RE, denoting {a}
- $\epsilon$  is a RE, denoting  $\{\epsilon\}$
- Ø is a RE

**Inductive clauses** given REs  $R_1$  and  $R_2$  or R,

- $R_1 \circ R_2$  is a RE, representing concatenation
- $R_1|R_2$  is a RE, representing alternation (set union)
- R<sup>\*</sup> is a RE, representing the Kleene star of R
- (R) is a RE, for grouping, sometimes optional

Binding priorities and associativity are as described below

- Kleene star has highest binding priority
- concatenation has intermediate binding priority
- alternation has lowest binding priority
- left associativity is used





REs are recursively described over a given alphabet  $\Sigma$  as follows:

**Base clauses**  $a \in \Sigma$ ,  $\epsilon$  is the empty string

- a is a RE, denoting {a}
- $\epsilon$  is a RE, denoting  $\{\epsilon\}$
- Ø is a RE

**Inductive clauses** given REs  $R_1$  and  $R_2$  or R,

- $R_1 \circ R_2$  is a RE, representing concatenation
- $R_1|R_2$  is a RE, representing alternation (set union)
- R<sup>\*</sup> is a RE, representing the Kleene star of R
- (R) is a RE, for grouping, sometimes optional

Binding priorities and associativity are as described below

- Kleene star has highest binding priority
- concatenation has intermediate binding priority
- alternation has lowest binding priority
- left associativity is used





REs are recursively described over a given alphabet  $\Sigma$  as follows:

**Base clauses**  $a \in \Sigma$ ,  $\epsilon$  is the empty string

- a is a RE, denoting {a}
- $\epsilon$  is a RE, denoting  $\{\epsilon\}$
- Ø is a RE

**Inductive clauses** given REs  $R_1$  and  $R_2$  or R,

- $R_1 \circ R_2$  is a RE, representing concatenation
- $R_1|R_2$  is a RE, representing alternation (set union)
- R<sup>\*</sup> is a RE, representing the Kleene star of R
- (R) is a RE, for grouping, sometimes optional

Binding priorities and associativity are as described below

- Kleene star has highest binding priority
- concatenation has intermediate binding priority
- alternation has lowest binding priority
- left associativity is used

**REs to simplify**  $a(b^*)$ , (ab)|c, a(b|c),  $aa^*$ ,  $aa^+$ ,  $a\epsilon$ ,  $a|\epsilon$ ,  $a\varnothing$ ,  $a|\varnothing$ 



Any language described by REs is regular, by earlier constructions

## **Practice problems of REs**

Write regular expressions for the following languages. In all parts alphabet is  $\{0,1\}$ .

- $\bullet$   $L = \{w | w \text{ does not contain the substring 110} \}.$
- 2  $L = \{w | w \text{ is any string except 11 and 111}\}.$
- $L = \{w | w \text{ contains at least two 0's or exactly two 1's} \}.$
- **5**  $L = \{w | \text{ every 1 in } w \text{ is either at the end of } w \text{ or is immediately followed by another 1}.$
- $L = \{w | w \text{ has equal number of 0's and 1's, such that no prefix has two more 0's than 1's, nor two more 1's than 0's \}.$
- **1**  $\mathbf{U} = \{ w | w \text{ is the binary representation of numbers divisible by 5 } \}.$

Find a regular expression that denotes all bit strings whose value, when interpreted as a binary integer, is greater than or equal to 40.





• Edges are labelled by REs, single start and end states, GNFA







- Edges are labelled by REs, single start and end states, GNFA
- Can we remove  $q_1$ ?





- Edges are labelled by REs, single start and end states, GNFA
- Can we remove q<sub>1</sub>? All nodes to q<sub>1</sub> should go to successors of q<sub>1</sub>







- Edges are labelled by REs, single start and end states, GNFA
- Can we remove q<sub>1</sub>? All nodes to q<sub>1</sub> should go to successors of q<sub>1</sub>
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^* 1$





- Edges are labelled by REs, single start and end states, GNFA
- Can we remove  $q_1$ ? All nodes to  $q_1$  should go to successors of  $q_1$
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^*1$ ;  $q_2$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ )







- Edges are labelled by REs, single start and end states, GNFA
- Can we remove q<sub>1</sub>? All nodes to q<sub>1</sub> should go to sucessors of q<sub>1</sub>
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^*1$ ;  $q_2$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ );  $q_4$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ )







- Edges are labelled by REs, single start and end states, GNFA
- Can we remove q<sub>1</sub>? All nodes to q<sub>1</sub> should go to successors of q<sub>1</sub>
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^*1$ ;  $q_2$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ );  $q_4$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ )
- Dropping  $q_3$ ,  $q_2$  to  $q_4$  on 1<sup>+</sup>0 and dropping  $q_5$ ,  $q_4$  to  $q_6$  on 1(0|1)\*







- Edges are labelled by REs, single start and end states, GNFA
- Can we remove  $q_1$ ? All nodes to  $q_1$  should go to successors of  $q_1$
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^*1$ ;  $q_2$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ );  $q_4$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ )
- Dropping  $q_3$ ,  $q_2$  to  $q_4$  on 1<sup>+</sup>0 and dropping  $q_5$ ,  $q_4$  to  $q_6$  on 1(0|1)\*







# Representing FAs as RLs



- Edges are labelled by REs, single start and end states, GNFA
- Can we remove  $q_1$ ? All nodes to  $q_1$  should go to successors of  $q_1$
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^*1$ ;  $q_2$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ );  $q_4$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ )
- Dropping  $q_3$ ,  $q_2$  to  $q_4$  on 1<sup>+</sup>0 and dropping  $q_5$ ,  $q_4$  to  $q_6$  on 1(0|1)\*



# Representing FAs as RLs



- Edges are labelled by REs, single start and end states, GNFA
- Can we remove q<sub>1</sub>? All nodes to q<sub>1</sub> should go to sucessors of q<sub>1</sub>
- $q_0$  to  $q_2$  on  $\epsilon \cdot 0^* \cdot 1 \equiv 0^*1$ ;  $q_2$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ );  $q_4$  to  $q_2$  on  $0 \cdot 0^* \cdot 1 \equiv 00^*1$  (also  $0^+1$ )
- Dropping  $q_3$ ,  $q_2$  to  $q_4$  on 1<sup>+</sup>0 and dropping  $q_5$ ,  $q_4$  to  $q_6$  on 1(0|1)\*



#### **GNFA**

A generalised non-deterministic finite automaton is the quintuple

$$M = \langle Q, \Sigma, \delta, q_I, q_F \rangle$$

- Q The set of states
- Σ The input alphabet
- q1 The initial state
- $q_F$  The accepting state Let R be the set of all regular expressions over the input alphabet  $\Sigma$ 
  - δ The transition function  $δ : (Q \setminus \{q_F\}) \times (Q \setminus \{q_I\}) \rightarrow R$





# **GNFA** algorithm

- Start with a DFA
- Introduce a new start and a new final state
- While intermediate states remain do
  - Pick any state  $s_x$  and eliminate by constructing direct edge from predecessor state  $s_a$  to successor state  $s_b$
  - If label on edge from  $s_a$  to  $s_x$  is  $L_a$ ,  $s_x$  to  $s_b$  is  $L_b$  and  $s_x$  to  $s_x$  is  $L_x$ , add label from  $s_a$  to  $s_b$  as  $L_a L_x^* L_b$  (no  $L_x^*$  if no loop on  $s_x$ )





## **GNFA** algorithm

- Start with a DFA
- Introduce a new start and a new final state
- While intermediate states remain do
  - Pick any state  $s_x$  and eliminate by constructing direct edge from predecessor state  $s_a$  to successor state  $s_b$
  - If label on edge from  $s_a$  to  $s_x$  is  $L_a$ ,  $s_x$  to  $s_b$  is  $L_b$  and  $s_x$  to  $s_x$  is  $L_x$ , add label from  $s_a$  to  $s_b$  as  $L_a L_x^* L_b$  (no  $L_x^*$  if no loop on  $s_x$ )

#### Lemma

If a language is described by a regular expression, then it is regular

#### Lemma

If a language is regular, then it can be described by a regular expression

#### **Theorem**

A language is regular iff it is described by a regular expression

### Linear grammar

#### **Definition (Linear grammar)**

A linear grammar is a context-free grammar that has at most one nonterminal in the right hand side of each of its productions

#### **Definition (Left linear grammar)**

Linear grammar where all nonterminals in right hand sides are at the left ends

#### **Definition (Right linear grammar)**

Linear grammar where all nonterminals in right hand sides are at the right ends





August 9, 2018

# Linear grammars from FA and vice versa

Given  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$ , proceed as follows to generate RL or LL grammars:

- Augment M with a new start state  $S[\delta(S, \epsilon) = q_I]$  and a new final state  $F[\forall q_F \in F, \delta(q_F, \epsilon) = F]$
- For transition  $\delta(A, a) = B$ 
  - to get RL grammar add production  $A \rightarrow aB$ Future of A is a followed by future of B
  - to get LL grammar add production  $B \rightarrow Aa$ Past of B is a preceded by past of B
- For the RL grammar, S is the start symbol, also add  $F \to \epsilon$  [the final state has no future]
- For the LL grammar, F is the start symbol, also add  $S \to \epsilon$  [the initial state has no past]

Following the reverse procedure, given a RL or LL grammar, the corresponding FA can be constructed



### Linear grammars from FA and vice versa (contd.)

#### Lemma

If a language is described by a linear grammar, then it is regular

#### Lemma

If a language is regular, then it can be described by a linear grammar

#### **Theorem**

A language is regular iff it is described by a linear grammar





A finite automaton can only remember finitely many things using its finite set of states





A finite automaton can only remember finitely many things using its finite set of states

What about the following languages?

 Strings having underlined text underlining is done using BS and \_







A finite automaton can only remember finitely many things using its finite set of states

- Strings having underlined text underlining is done using BS and \_
- B = {w|count("01")=count("10"} 001111001011101







A finite automaton can only remember finitely many things using its finite set of states

- Strings having underlined text underlining is done using BS and \_
- B = {w|count("01")=count("10"} 001111001011101
- C = {w|count("0")=count("1"} 001111001011101





A finite automaton can only remember finitely many things using its finite set of states

- Strings having underlined text underlining is done using BS and \_
- B = {w|count("01")=count("10"} 001111001011101
- C = {w|count("0")=count("1"} 001111001011101
- $D = \{0^n 1^n | n \ge 0\}$  0000000111111111111







### Existence of non-regular languages

- The set of all languages over  $\Sigma = \{0, 1\}$  is uncountable powerset of the  $\Sigma^*$
- The set of regular languages is countable can be enumerated using the DFA
- Follows from above





• All strings of the form  $xy^iz$ ,  $i \ge 0$  are accepted (are in the language) L



August 9, 2018



- All strings of the form  $xy^iz$ ,  $i \ge 0$  are accepted (are in the language) L
- For a regular language L there is a finite state recogniser say M with Q as its set of states, let p = |Q|





- All strings of the form  $xy^iz$ ,  $i \ge 0$  are accepted (are in the language) L
- For a regular language L there is a finite state recogniser say M with Q as its set of states, let p = |Q|
- A string  $s \in L$  with  $|s| \ge p$  must contain a cycle





- All strings of the form  $xy^iz$ ,  $i \ge 0$  are accepted (are in the language) L
- For a regular language L there is a finite state recogniser say M with Q as its set of states, let p = |Q|
- A string  $s \in L$  with  $|s| \ge p$  must contain a cycle
- A string  $s \in L$  containing a cycle y can be modified to s' by pumping in any number of copies of y so that  $s' \in L$



### **Pumping lemma**



#### Lemma

Let L be a regular language, then there exists an integer  $p \ge 1$  depending only on L such that every string  $w \in L$ ,  $|w| \ge p$  can be written as w = xyz, satisfying:

- $xy^iz \in L$  for any  $i \ge 0$
- |y| > 0 cycle has at least one edge in it
- $|xy| \le p$  cycle is seen before the string gets longer that p

## Pumping lemma (contd.)

#### Proof.

- Let p = |Q|, where  $M = \langle Q, \Sigma, \delta, q_I, F \rangle$  is a recogniser for L
- For  $s \in L$ ,  $|s| \ge p$ , let  $q_0$  be the start state and let  $q_1, \ldots, q_p$  be the sequence of the next p states visited as the string is recognised/generated
- By the pigeon hole principle let  $q_l$  be a state which is revisited
- Let y be the string from the first instance of q<sub>l</sub> to a repeated instance of q<sub>l</sub>
- Now *s* may be written as *xyz* such that:  $xy^iz \in L$  for any  $i \ge 0$ , |y| > 0 and  $|xy| \le p$





## L not regular by PL

#### Proof scheme for L not regular by PL

- Assume L is regular, with pumping length p
- Find a long enough string  $s \in L$ ,  $|s| \ge p$
- Express s in the form xyz
- All strings of the form xy<sup>i</sup>z must, therefore, be in L
- For some *i* show that  $xy^iz \notin L$  leading to a contradiction





# PL applications

#### $a^nb^n$ is not regular

- Consider  $L = \{a^n b^n | n \ge 0\}$  over  $\Sigma = \{a, b\}$
- Let  $s \in L$  be  $s = a^p b^p$ , clearly  $|s| \ge p$ , so by PL, s = xyz with  $|xy| \le p$  and  $|y| \ge 1$ , so  $xy^iz \in L, \forall i \ge 0$
- Using  $|xy| \le p$ , we know y only consists of instances of a
- As  $|y| \ge 1$ , it contains at least one a
- Now pump y as  $xy^2z$  has more of a's than b's (no b was added)
- Thus,  $xy^2z \notin L$  a contradiction
- Thus, the assumption that L is regular must be incorrect, hence L is not regular





## PL applications

#### $a^n b^n$ is not regular

- Consider  $L = \{a^n b^n | n \ge 0\}$  over  $\Sigma = \{a, b\}$
- Let  $s \in L$  be  $s = a^p b^p$ , clearly  $|s| \ge p$ , so by PL, s = xyz with  $|xy| \le p$  and  $|y| \ge 1$ , so  $xy^iz \in L$ ,  $\forall i \ge 0$
- Using  $|xy| \le p$ , we know y only consists of instances of a
- As  $|y| \ge 1$ , it contains at least one a
- Now pump y as  $xy^2z$  has more of a's than b's (no b was added)
- Thus,  $xy^2z \notin L$  a contradiction
- Thus, the assumption that L is regular must be incorrect, hence L is not regular
- Similarly, language of balanced parentheses is not regular
- Similarly, language of equal number of 0'1 and 1's is not regular



# **Practice problems of Pumping Lemma (RLs)**

Which of these languages are regular?

- 2  $L = \{0^m 1^n 0^{n+m} | m \ge 1 \text{ and } n \ge 1\}.$
- **1**  $L = \{010010001...0^{i}1|i \text{ is any positive integer}\}$
- **1**  $L = \{0^n | n \text{ is a prime}\}.$
- $L = \{w | w \text{ has equal number of 0 and 1} \}.$
- **1**  $L = \{1^k y | y \in \{0, 1\}^* \text{ and } y \text{ contains at most } k \text{ 1's, for } k \geq 1\}.$
- **9**  $L = \{a^i b^j c^k | i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}$





• For a language L and strings x and y over  $\Sigma$ , a string z is a distinguishing extension if either  $xz \in L$  or  $yz \in L$ 





- For a language L and strings x and y over  $\Sigma$ , a string z is a distinguishing extension if either  $xz \in L$  or  $yz \in L$
- For a language L over  $\Sigma$ , two words  $x, y \in \Sigma^*$  are L-equivalent  $(x \equiv_L y)$  iff for all words  $z \in \Sigma^*$ , we have  $xz \in L$  iff  $yz \in L$  no z exists to distinguish x and y





- For a language L and strings x and y over  $\Sigma$ , a string z is a distinguishing extension if either  $xz \in L$  or  $yz \in L$
- For a language L over  $\Sigma$ , two words  $x, y \in \Sigma^*$  are L-equivalent  $(x \equiv_L y)$  iff for all words  $z \in \Sigma^*$ , we have  $xz \in L$  iff  $yz \in L$  no z exists to distinguish x and y
- For a  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , two words  $x, y \in \Sigma^*$  are M-equivalent  $(x \equiv_M y)$  iff  $\delta^*(q_l, x) = \delta^*(q_l, x)$  both x and y take M from  $q_l$  to the same state





- For a language L and strings x and y over  $\Sigma$ , a string z is a distinguishing extension if either  $xz \in L$  or  $yz \in L$
- For a language L over  $\Sigma$ , two words  $x, y \in \Sigma^*$  are L-equivalent  $(x \equiv_L y)$  iff for all words  $z \in \Sigma^*$ , we have  $xz \in L$  iff  $yz \in L$  no z exists to distinguish x and y
- For a  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , two words  $x, y \in \Sigma^*$  are M-equivalent  $(x \equiv_M y)$  iff  $\delta^*(q_l, x) = \delta^*(q_l, x)$  both x and y take M from  $q_l$  to the same state
- Clearly,  $\equiv_L$  and  $\equiv_M$  are an equivalence relations





- For a language L and strings x and y over  $\Sigma$ , a string z is a distinguishing extension if either  $xz \in L$  or  $yz \in L$
- For a language L over  $\Sigma$ , two words  $x, y \in \Sigma^*$  are L-equivalent  $(x \equiv_L y)$  iff for all words  $z \in \Sigma^*$ , we have  $xz \in L$  iff  $yz \in L$  no z exists to distinguish x and y
- For a  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$ , two words  $x, y \in \Sigma^*$  are M-equivalent  $(x \equiv_M y)$  iff  $\delta^*(q_l, x) = \delta^*(q_l, x)$  both x and y take M from  $q_l$  to the same state
- Clearly,  $\equiv_L$  and  $\equiv_M$  are an equivalence relations
- Further,  $\equiv_M$  has only as many equivalence classes as |Q|





#### Lemma

If A = L(M) for a DFA M then for any  $x, y \in \Sigma^*$  if  $x \equiv_M y$  then  $x \equiv_A y$ 

#### Proof.

- Suppose that A = L(M), then  $w \in L \leftrightarrow \delta^*(q_l, w) \in F$
- Suppose also that  $x \equiv_M y$ , then  $\delta^*(q_l, x) = \delta^*(q_l, x)$
- Let  $z \in \Sigma^*$ , clearly  $\delta^*(q_l, xz) = \delta^*(q_l, xz)$ , therefore,  $xz \in A \Leftrightarrow \delta^*(q_l, xz) \in F \Leftrightarrow \delta^*(q_l, yz) \in F \Leftrightarrow yz \in A$
- Thus,  $x \equiv_A y$

#### **Observation**

Whenever two elements arrive at the same state of M they are in the same equivalence class of  $\equiv_A$ ; meaning that each equivalence class of  $\equiv_A$  is a union of equivalence classes of  $\equiv_M$ 

#### **Corollary**

If A is regular then  $\equiv_A$  has a finite number of equivalence classes

#### Proof.

Let M be a DFA such that  $A = \mathbf{L}(M)$ , the lemma shows that  $\equiv_A$  has at most as many equivalence classes as  $\equiv_M$ , which equals the number of states of M

#### **Theorem (Myhill-Nerode)**

L is regular if and only if  $\equiv_L$  has a finite number of equivalence classes (which also corresponds to the minimum number of states for a recogniser of L)

#### Proof.

Will show is that if  $\equiv_A$  has a finite number of equivalence classes then we can build a DFA  $M = \langle Q, \Sigma, \delta, q_l, F \rangle$  accepting A where there is one state in Q for each equivalence class of  $\equiv_A$ 

### (contd.)

• Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$ 

- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$



- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$
- Let  $q_I \in Q$  be the  $q_i$  such that  $\epsilon \in A_I$



- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$
- Let  $q_l \in Q$  be the  $q_i$  such that  $\epsilon \in A_l$
- Note that for any  $A_j$  and any  $a \in \Sigma$ , for every  $x, y \in A_j$ , xa and ya will both be contained in the same equivalence class of  $\equiv_A$



- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$
- Let  $q_l \in Q$  be the  $q_i$  such that  $\epsilon \in A_l$
- Note that for any  $A_j$  and any  $a \in \Sigma$ , for every  $x, y \in A_j$ , xa and ya will both be contained in the same equivalence class of  $\equiv_A$
- $\delta(q_i, a) = q_k$  such that for some  $x \in A_i$ ,  $xa \in A_k$



- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$
- Let  $q_I \in Q$  be the  $q_i$  such that  $\epsilon \in A_I$
- Note that for any  $A_j$  and any  $a \in \Sigma$ , for every  $x, y \in A_j$ , xa and ya will both be contained in the same equivalence class of  $\equiv_A$
- $\delta(q_j, a) = q_k$  such that for some  $x \in A_j$ ,  $xa \in A_k$
- Note that either  $A_j \subseteq A$  or  $A_j \cap A = \emptyset$ , therefore, let  $F = \{q_i | A_i \subseteq A\}$



- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$
- Let  $q_l \in Q$  be the  $q_i$  such that  $\epsilon \in A_l$
- Note that for any  $A_j$  and any  $a \in \Sigma$ , for every  $x, y \in A_j$ , xa and ya will both be contained in the same equivalence class of  $\equiv_A$
- $\delta(q_i, a) = q_k$  such that for some  $x \in A_i$ ,  $xa \in A_k$
- Note that either  $A_j \subseteq A$  or  $A_j \cap A = \emptyset$ , therefore, let  $F = \{q_i | A_i \subseteq A\}$
- Through induction, it is evident that  $\Sigma^*(q_l, x) = q_j \Leftrightarrow x \in A_j$



- Let  $A_1, \ldots, A_r$  be the equivalence classes of  $\equiv_A$
- Define  $Q = \{q_1, ..., q_r\}$
- Let  $q_I \in Q$  be the  $q_i$  such that  $\epsilon \in A_I$
- Note that for any  $A_j$  and any  $a \in \Sigma$ , for every  $x, y \in A_j$ , xa and ya will both be contained in the same equivalence class of  $\equiv_A$
- $\delta(q_j, a) = q_k$  such that for some  $x \in A_j$ ,  $xa \in A_k$
- Note that either  $A_j \subseteq A$  or  $A_j \cap A = \emptyset$ , therefore, let  $F = \{q_j | A_j \subseteq A\}$
- Through induction, it is evident that  $\Sigma^*(q_l, x) = q_j \Leftrightarrow x \in A_j$
- This, together with the choice of F ensures that L(M) = A



# $\{0^n1^n|n\geq 0\}$ is not regular

### $A = \{0^n 1^n | n \ge 0\}$ is not regular

- Consider the sequence of strings  $x_1, x_2, ...$  where  $x_i = 0^i$  for  $i \ge 1$
- We now see that no two of these are equivalent to each other with respect to  $\equiv_A$
- Consider  $x_i = 0^i$  and  $x_j = 0^j$  for  $i \neq j$
- Let  $z = 1^i$  and notice that  $x_i z = 0^i 1^i \in A$  but  $x_i z = 0^j 1^i \notin A$
- Thus, no two of these strings are equivalent to each other and thus A cannot be regular





# Summary

- The following are equally powerful as generators or recognisers
  - Deterministic finite automata
  - Non-deterministic finite automata
  - Regular expressions
  - Regular languages
  - Linear grammars
- Not all languages are regular
- Proving that a language is not regular
  - Pumping lemma
  - Myhill-Nerode theorem



