

INT354 Machine Learning Foundations

Lecture #4.0
Data Pre-processing

Data

- Machine learning depends largely on test data.
- A large amount of data is required for ML.

Different types of data in ML

Data can be categorized into 4 basic types:

- Numerical Data
- Categorical Data
- Time Series Data
- Text

Numerical Data	Categorical Data
Time Series Data	Text

Numerical Data

Categorical Data

Population Bins

0 - 10 million, 10 - 100 million, 100 - 500 million, > 500 million

Ordinal Data

Time-Series Data

Text Data

© LPU :: INT247 Machine Learning Foundations

Data Preparation Process

- The process of data preparation comprises the following:
 - Data Selection
 - Data Pre-processing
 - Data Transformation

Data Selection

Steps involved in Data Selection involves:

- Selecting only a subset of available data.
- The selected sample must be an accurate representation of the entire population.
- Some data can be derived or simulated from the available data if required.
- Data not relevant to the problem at hand can be excluded.

Feature Engineering

 Transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data.

Framework of Feature Engineering

Frame your problem:

- Can you frame your problem in a way that machine learning could be useful. Eg: prediction.
- Understand your data:
 - What data will be most helpful to understand and generate a better understanding of the problem.
- Frame your feature goals:
 - What are you optimizing for?
 - Iteration speed
 - Model performance
- Test, Iterate, Test Again:
 - Check your choices for robustness.
 - Validate

Aspects of Feature Engineering

- Feature Selection
- Feature Extraction
- Feature Addition
- Feature Filtering

Example: flight date time vs status

 Status of flight depends on the hour of the day, not on the date-time.

	Date_Time_Combined	Status		Hour_Of_Day	
0	2018-02-14 20:40	Delayed	0	20	
1	2018-02-15 10:30	On Time	1	10	
2	2018-02-14 07:40	On Time	2	7	
3	2018-02-15 18:10	Delayed	3	18	
4	2018-02-14 10:20	On Time	4	10	

Creating new feature "Hour_of_Day" is the feature engineering.

Feature Selection vs Feature Extraction vs Feature Engineering

- Feature selection is essential for creating the dataset.
- Feature extraction applies automatic methods like
 PCA for constructing new features.
- Feature engineering deals with the manual construction of features from raw data.

