# Solutions to the book: $Neukirch,\ J\ddot{u}rgen,\ Algebraic\ Number$ Theory

Meng-Gen Tsai plover@gmail.com

July 12, 2021

## Contents

| Chapter I: Algebraic Integers | 2 |
|-------------------------------|---|
| 1.1. The Gaussian Integers    | 2 |
| Exercise 1                    | 2 |

### Chapter I: Algebraic Integers

#### 1.1. The Gaussian Integers

#### Exercise 1.

 $\alpha \in \mathbb{Z}[i]$  is a unit if and only if  $N(\alpha) = 1$ .

Proof.

- (1) Show that for all  $\alpha, \beta \in \mathbb{Z}[i]$ ,  $N(\alpha\beta) = N(\alpha)N(\beta)$ , either by direct computation or using the fact that N(a+bi) = (a+bi)(a-bi). Conclude that if  $\alpha \mid \gamma$  in  $\mathbb{Z}[i]$ , then  $N(\alpha) \mid N(\gamma)$  in  $\mathbb{Z}$ .
- (2) (Direct computation.) Write  $\alpha = a + bi, \beta = c + di$  where  $a, b, c, d \in \mathbb{Z}$ . Thus,

$$\begin{split} N(\alpha\beta) &= N((a+bi)(c+di)) \\ &= N((ac-bd) + (ad+bc)i) \\ &= (ac-bd)^2 + (ad+bc)^2 \\ &= (a^2c^2 - 2abcd + b^2d^2) + (a^2d^2 + 2abcd + b^2c^2) \\ &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2, \\ N(\alpha)N(\beta) &= N(a+bi)N(c+di) \\ &= (a^2+b^2)(c^2+d^2) \\ &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2. \end{split}$$

Therefore,  $N(\alpha\beta) = N(\alpha)N(\beta)$ . (Note that we also get the identity  $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$ .)

(3) (Using the fact that N(a+bi)=(a+bi)(a-bi), or  $N(\alpha)=\alpha\overline{\alpha}$  for any  $\alpha\in\mathbb{Z}[i]$ .)

$$N(\alpha\beta) = \alpha\beta\overline{\alpha}\overline{\beta}$$
$$= \alpha\beta\overline{\alpha}\overline{\beta}$$
$$= \alpha\overline{\alpha}\beta\overline{\beta}$$
$$= N(\alpha)N(\beta).$$

- (4) Show that if  $\alpha \mid \gamma$  in  $\mathbb{Z}[i]$ , then  $N(\alpha) \mid N(\gamma)$  in  $\mathbb{Z}$ . Write  $\gamma = \alpha\beta$  for some  $\beta \in \mathbb{Z}[i]$ . So  $N(\gamma) = N(\alpha)N(\beta) \in \mathbb{Z}$ , or  $N(\alpha) \mid N(\gamma)$  in  $\mathbb{Z}$ .
- (5)  $(\Longrightarrow)$  Since  $\alpha$  is a unit, there is  $\beta \in \mathbb{Z}[i]$  such that  $\alpha\beta = 1$ . By (1),  $N(\alpha\beta) = N(1)$ , or  $N(\alpha)N(\beta) = 1$ . Since the image of N is nonnegative integers,  $N(\alpha) = 1$ .

- (6) ( $\iff$ ) By (1),  $N(\alpha) = \alpha \overline{\alpha}$ , or  $1 = \alpha \overline{\alpha}$  since  $N(\alpha) = 1$ . That is,  $\overline{\alpha} \in \mathbb{Z}[i]$  is the inverse of  $\alpha \in \mathbb{Z}[i]$ . (Or we solve the equation  $N(\alpha) = a^2 + b^2 = 1$ , and show that all four solutions ( $\pm 1$  and  $\pm i$ ) are unit.)
- (7) Conclusion: a unit  $\alpha = a + bi$  of  $\mathbb{Z}[i]$  is satisfying the equation  $N(\alpha) = a^2 + b^2 = 1$  by (5)(6). That is, the only unit of  $\mathbb{Z}[i]$  are  $\pm 1$  and  $\pm i$ .