Sorting and Divide and Conquer

Diego Useche - dh.useche@uniandes.edu.co

Metodos Computacionales II

Physics Department, Universidad de los Andes, Bogotá

Sorting problem

Given a set find an efficient algorithm that sorts the set.

8 6 3 11 5 7 7 5

• Scroll through the whole list, find the minimum in the list move the minimum to the first position.

• Complexity O(n^2)

Naive algorithm Pseudo Code

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in descending order

- 1. for $i \leftarrow 1$ to n 1
- 2. min $\leftarrow i$
- 3. for $j \leftarrow i + 1$ to n {Find the *i th* smallest element.}
- 4. if A[j] < A[min] then
- 5. $\min \leftarrow j$
- 6. end for
- 7. if min $\neq i$ then interchange A[i] and A[min]
- 8. end for

Other algorithms for sorting

Method	Average Complexity
Bubble Sort	O(n^2)
Selection Sort	O(n^2)
Insertion Sort	O(n^2)
Heap Sort	O(n log (n))
Quick Sort	O(n log (n))
Radix Sort	O(n)
Merge Sort	O(n log (n))

Other algorithms for sorting

	Insertior
	Heap So
	Quick S
	Radix S
	Merge S

Method	Average Complexity
Bubble Sort	O(n^2)
Selection Sort	O(n^2)
Insertion Sort	O(n^2)
Heap Sort	O(n log (n))
Quick Sort	O(n log (n))
Radix Sort	O(n)
Merge Sort	O(n log (n))

Other algorithms for sorting

Method	Average Complexity
Bubble Sort	O(n^2)
Selection Sort	O(n^2)
Insertion Sort	O(n^2)
Heap Sort	O(n log (n))
Quick Sort	O(n log (n))
Radix Sort	O(n)
Merge Sort	O(n log (n))

Merge Sort (Divide and Conquer Algorithm)

 Divide the problems into subproblems, solve iteratively the subproblems.

Divide and Conquer Algorithm Applications

- Binary Search
- Merge Sort
- Quick Sort
- Closest Pair of Points
- Strassen's Multiplication
- Karatsuba Algorithm
- Cooley-Tukey Algorithm
- Fast Fourier Transform

Sorting problem

Given a set find an efficient algorithm that sorts the set.

Divide the problem into subproblems

• Divide the problem into subproblems

• Divide the problem into subproblems

• Divide the problem into subproblems

8 6 3 11 5 7 5

6 8 3 11 5

Divide the problem into subproblems

Divide the problem into subproblems

$O(n \log(n))$

https://www.101computing.net/merge-sort-algorithm/

Merge Sort Pseudo Code

```
MERGE-SORT(A, p, r)
   if p < r
      q = |(p+r)/2|
       MERGE-SORT(A, p, q)
      MERGE-SORT(A, q + 1, r)
       MERGE(A, p, q, r)
```

References

https://www.includehelp.com/algorithms/divide-and-conquer-paradigm.aspx

https://dragonball.fandom.com/es/wiki/Raditz

https://www.101computing.net/merge-sort-algorithm/