VBC – Biologický inspirované výpočty – TASK 4 ZS 2021/2022

Petr Šemora, 192026

Definované úlohy:

- Rastrigin's Function: 2D, 5D, 10D, 50D, 100D
 - Funkce je pro 2D definována na intervalu [-5.12, 5.12]. Optimální minimum se nachází v bodě [0, 0] s funkční hodnotou 0.

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i)]$$

- Rosenbrock Function: 2D, 5D, 10D, 50D, 100D
 - Funkce je pro 2D definována na intervalu [-10, 10]. Optimální minimum se nachází v bodě [1, 1] s funkční hodnotou 0.

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

- Schwefel Function: 2D, 5D, 10D, 50D, 100D
 - Funkce je pro 2D definována na intervalu [-500, 500]. Optimální minimum se nachází v bodě [-420.9687, 420.9687] s funkční hodnotou 0.

Použité metaheuristiky:

Bat algorithm (Yang, 2010)

1) Bat Algorithm

Netopýří algoritmus je metaheuristický algoritmus pro globální optimalizaci. Byl inspirován echolokačním chováním netopýrů s různou rychlostí a hlasitostí vysílání pulzů. Tento algoritmus vyvinul Xin-She Yang v roce 2010.

Echolokace funguje jako druh sonaru: netopýři vydávají hlasité a krátké zvukové impulzy. Když narazí na nějaký objekt, během krátké doby se ozvěna vrátí zpět k jejich uším. Netopýr tímto způsobem přijímá a zjišťuje polohu kořisti. Tento orientační mechanismus navíc netopýrům umožňuje rozlišit překážku od kořisti a umožňuje jim lovit v úplné tmě.

V rámci experimentování s tímto algoritmem jsem pro všechny testovací funkce a jejich dimenze 2D, 5D, 10D, 50D, 100D měnil následující parametry:

NP - velikost populace

RUNs – počet běhů algoritmu

N gen – ukončovací limit dle počtu generací

A min – minimální hlasitost

A max – maximální hlasitost

F min – minimální frekvence

F max – maximální frekvence

dodParam – hodnoty byly nastaveny fixně podle definičních intervalů zadaných funkcí

Pro všechny zadané funkce byla spočítána maximální hodnota (MAX), minimální hodnota (MIN), průměrná hodnota (MEAN) a medián (MED). Vzhledem k vysokému počtu různých kombinací jsou do tabulek vypsány výsledky pouze pro vybrané parametry, které jsem získal kompromisem mezi přesností výsledků a výpočetní náročností.

Použité optimalizační parametry:

	2D	5D	10D	50D	100D
RUNs	20	20	20	10	10
NP	100	100	100	100	100
N_gen	200	500	1000	2000	2000
A_min	0.5	0.5	0.5	0.5	0.5
A_max	0.5	0.5	0.5	0.5	0.5
F_min	0.0	0.0	0.0	0.0	0.0
F_max	2.0	2.0	2.0	2.0	2.0

2D:

		Rastrigin	Schwefel	Rosenbrock
	MAX	0.667085	6.071376	0.155684
v	MIN	0.043113	0.141344	0.023375
Y	MEAN	0.271877	2.020371	0.056452
	MED	0.220466	2.194238	0.023375
t[s]	MAX	4.99	5.43	4.87
	MIN	2.16	2.06	2.34
	MEAN	2.83	3.10	2.67
	MED	2.65	2.69	2.50

5D:

		Rastrigin	Schwefel	Rosenbrock
	MAX	22.342953	664.493054	703.606801
v	MIN	8.684862	367.780544	121.762380
Y	MEAN	11.189051	390.141585	241.151042
	MED	10.034865	367.780544	121.762380
	MAX	5.37	4.94	6.51
4[-1	MIN	2.60	2.48	2.83
t[s]	MEAN	2.92	2.86	4.37
	MED	2.73	2.61	4.41

10D:

		Rastrigin	Schwefel	Rosenbrock
.,	MAX	86.879	2109.428	13158.645
	MIN	49.830	1646.681	13126.674
Υ	MEAN	59.522	1736.445	13137.525
	MED	58.355	1646.681	13134.544
t[s]	MAX	6.68	6.57	8.04
	MIN	3.71	3.59	3.99
	MEAN	4.47	4.13	4.44
	MED	4.24	3.73	4.13

50D:

		Rastrigin	Schwefel	Rosenbrock
	MAX	683.083	15615.236	3 662 353.488
Υ	MIN	624.301	14853.499	3 458 530.424
Y	MEAN	643.919	15168.163	3 525 328.125
	MED	631.895	15094.359	3 505 128.795
t[s]	MAX	65.90	51.61	84.52
	MIN	27.35	31.78	59.39
	MEAN	38.72	40.24	69.25
	MED	33.70	40.05	68.05

100D:

		Rastrigin	Schwefel	Rosenbrock
	MAX	657.335	15 820.38	3 857 242.21
v	MIN	620.759	14 769.88	3 737 126.99
Υ	MEAN	642.629	15 125.45	3 821 129.25
	MED	645.016	15 134.79	3 820 854.35
t[s]	MAX	36.98	85.72	47.03
	MIN	32.27	26.73	30.69
	MEAN	34.74	38.95	34.75
	MED	34.93	27.46	31.88

Pro všechny zadané 2D funkce bylo pomocí Bat algorithm nalezeno optimální minimum.

Pro Rastrigin Function bylo nalezeno optimální minimum v bodě:

X1 = 0.004532

X2 = - 0.000505

s hodnotou funkce Y = 0.004126

Pro Schwefel Function bylo nalezeno optimální minimum v bodě:

X1 = 420.296632

X2 = 420.664567

s hodnotou funkce Y = 0.025266

Pro Rosenbrock Function bylo nalezeno optimální minimum v bodě:

X1 = 0.997241

X2 = 0.987881

s hodnotou funkce Y = 0.004376

GRAFY

- 1) Průběh optimalizace pro jeden běh (RUN) programu:
- A) Rastrigin:

B) Schwefel:

C) Rosenbrock:

2) Nalezená minima pro 10 běhů programu (RUNs):

A) Rastrigin:

B) Schwefel:

C) Rosenbrock:

Závěr

Při výběru parametrů pro optimalizaci jsem prováděl kompromis mezi přesností nalezeného minima a výpočetní náročností experimentů. V případě 2D všech zadaných úloh jsou výsledky relativně blízké teoretické optimální hodnotě. Se zvyšující se dimenzí úloh přesnost výsledků výrazně klesá. Pokud bych optimalizoval parametry i pro problémy vyšších dimenzí bez ohledu na výpočetní náročnost, funkční hodnoty by pak byly mnohem přesnější. Tato možnost však k omezeným výpočetním a časovým možnostem nepřicházela v úvahu.