Низкочастотные Процессы В Твердотельном лазере

Учебные заведения: ННГУ им. Лобачевского, ИПФ РАН Работу выполняли: Соловьёв И.А., .Чернова Н.Е., Курников Г.А. (2 курс) Научный руководитель: Хандохин. П.А.

2019 год, осенний семестр

УСТРОЙСТВО

ТИПЫ ЛАЗЕРОВ

ГАЗОВЫЙ

ТВЕРДОТЕЛЬНЫЙ

НА КРАСИТЕЛЯХ

ХИМИЧЕСКИЙ

ТИПЫ ЛАЗЕРОВ

ПОЛУПРОВОДНИКОВЫЙ

НА СВОБОДНЫХ ЭЛЕКТРОНАХ

НА ЦЕНТРАХ ОКРАСКИ

РЕНТГЕНОВСКИЙ

ТИПЫ РЕЗОНАТОРОВ

ПЛОСКОПАРАЛЛЕЛЬНЫЙ

КОЛЬЦЕВОЙ

МОДА РЕЗОНАТОРА

ФУНДАМЕНТАЛЬНЫЕ ЯВЛЕНИЯ

ПРИНЦИП РАБОТЫ ЛАЗЕРА

ТРЁХУРОВНЕВАЯ СХЕМА

ЧЕТЫРЁХУРОВНЕВАЯ СХЕМА

РЕЛАКСАЦИОННЫЕ КОЛЕБАНИЯ

Балансные уравнения в одномодовом режиме

$$\frac{dI}{d\tau} = GI(N_0 - 1)$$

$$\frac{dN_0}{d\tau} = A - (1 + I)N_0$$

d au Нетривиальное стационарное состояние

$$\bar{I} = A - 1$$
 $\bar{N}_0 = 1$

I – Интенсивность излучения

 N_0 – Инверсия населённостей

$$A = \frac{P_{\text{нак}}}{P_{\text{пор}}} -$$
Параметр накачки

$$G = \frac{T_1}{T_C}$$

Решение уравнения

$$I = \overline{I} + \varepsilon \qquad N_0 = \overline{N}_0 + \eta$$

$$\frac{d\varepsilon}{d\tau} = G(A - 1)\eta \qquad \frac{d\eta}{d\tau} = A\eta - \varepsilon$$

$$\varepsilon = \varepsilon_0 \exp(\lambda \tau) \qquad \eta = \eta_0 \exp(\lambda \tau)$$

$$\lambda^2 + \lambda A + G(A - 1) = 0$$

$$\lambda_{1,2} = -\frac{A}{2} \pm \sqrt{\frac{A^2}{4} - G(A - 1)}$$

$$\lambda_{1,2} \approx -\frac{A}{2} \pm i\sqrt{G(A - 1)}$$

Частота затухающих колебаний

$$\Omega_{\rm R} = \sqrt{{\rm G}({\rm A}-1)}$$

Декремент

$$\Theta_R = -A/2$$

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

A(P)	1,032	1,185	1,229	1,452	1,535	1,592	2,083	2,293
$\mathbf{\Omega}\cdot\mathbf{10^2}$, рад	1,39	2,80	3,38	4,51	5,20	5,46	5,67	5,78
$oldsymbol{\Omega}^2$, рад 2	1,93	7,86	11,44	20,33	27,07	29,84	32,09	33,41
G · 10 ⁵	6,02	4,25	4,99	4,50	5,06	5,04	2,96	2,58

$$A = \frac{P_{\text{HaK}}}{P_{\text{nop}}}$$
 $G(A-1) = \Omega^2$ $\Omega = 2\pi \nu T_1$ $T_1 = 0.23 \text{ Mc } T_c = T_1/G$

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Расчёт произведения коэффициентов отражения по интенсивности зеркал резонатора

$$T_c^{cp} = 0.462 \text{ Hc}$$
 $G_{cp} = 4.98 \cdot 10^5 \text{ L} = \text{nl}$

$$\delta f = 0.344 \Gamma \Gamma \mu$$
 $\delta f = 1/2\pi T_c$ $\delta f_{\text{Teop}} = \frac{-c \ln \sqrt{R_1 R_2}}{2\pi L}$

$$R_1 R_2 = \exp\left(\frac{-4\pi^2 L^2 \delta f^2}{c^2}\right) \quad R_1 R_2 = 0,9984$$

ВЫВОДЫ

- Изучили устройство лазера
- Резонатор
- 🥥 Активная среда
- Устройство накачки

● Прове∧и эксперимент

 Познакомились с релаксационными колебаниями

$$\Omega_{\rm R} = \sqrt{G(A-1)}$$

 Произвели оценку пропускания зеркала

$$R_1R_2 = 0,9984$$

СПИСОК ЛИТЕРАТУРЫ

- "Принципы лазеров", О.Звелто
- "Оптические квантовые генераторы", Е.Ф.Ищенко, Ю.М.Климов
- "Введение в физику лазеров", Ф.Качмарек

Методическое пособие к лабораторной работе "Низкочастотные процессы в многомодовом твердотельном лазере", П.А.Хандохин, И.В.Корюкин, Е.А.Овчинников

СПАСИБО ЗА ВНИМАНИЕ

