

L10 ANSWER 1 OF 4 USPATFULL on STN
AN 2004:120135 USPATFULL
TI Solid matrix therapeutic compositions
IN Unger, Evan C., Tucson, AZ, UNITED STATES
PI US 2004091541 A1 20040513
AI US 2003-622027 A1 20030716 (10)
RLI Continuation of Ser. No. US 2001-828762, filed on 9 Apr 2001, ABANDONED
Division of Ser. No. US 1998-75477, filed on 11 May 1998, ABANDONED
PRAI US 1997-46379P 19970513 (60)
DT Utility
FS APPLICATION
LREP REED & EBERLE LLP, 800 MENLO AVENUE, SUITE 210, MENLO PARK, CA, 94025
CLMN Number of Claims: 38
ECL Exemplary Claim: 1
DRWN 1 Drawing Page(s)
LN.CNT 4909

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention is directed to a solid porous matrix comprising a surfactant in combination with a bioactive agent. The solid porous matrix may be prepared by combining a surfactant and a therapeutic, together with a solvent, to form an emulsion containing random aggregates of the surfactant and the therapeutic, and processing the emulsion by controlled drying, or controlled agitation and controlled drying to form the solid porous matrix.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 2 OF 4 USPATFULL on STN
AN 2002:72457 USPATFULL
TI SOLID POROUS MATRICES AND METHODS OF MAKING AND USING THE SAME
IN UNGER, EVAN C., TUCSON, AZ, UNITED STATES
PI US 2002039594 A1 20020404
AI US 1998-75477 A1 19980511 (9)
PRAI US 1997-46379P 19970513 (60)
DT Utility
FS APPLICATION
LREP WOODCOCK WASHBURN KURTZ, MACKIEWICZ AND NORRIS, ONE LIBERTY PLACE 46TH FLOOR, PHILADELPHIA, PA, 19103
CLMN Number of Claims: 106
ECL Exemplary Claim: 1
DRWN 1 Drawing Page(s)
LN.CNT 5207

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention is directed to a solid porous matrix comprising a solvent and a surfactant in combination with a bioactive agent. The solvent and the surfactant may, if desired, form vesicles, an agglomeration of which comprises the matrix. The composition optionally comprises a gas or a gaseous precursor. The emulsion may be dried, and subsequently reconstituted in an aqueous or organic solution.

The present invention is also directed to a method of preparing a solid porous matrix comprising combining a solvent, a surfactant, and a therapeutic to form an emulsion; and processing the emulsion by controlled drying, or controlled agitation and controlled drying to form a solid porous matrix. The resulting solid porous matrix may also comprise a gas or gaseous precursor and be added to a resuspending medium.

A method for the controlled delivery of a targeted therapeutic to a region of a patient is another embodiment of the present invention. The method comprises administering to the patient a composition having a solid porous matrix comprising a solvent, a surfactant, a therapeutic, and a gas or gaseous precursor, monitoring the composition using energy

to determine the presence of the composition in the region; and releasing the therapeutic from the composition in the region using energy.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 3 OF 4 USPATFULL on STN
AN 2001:144937 USPATFULL
TI Solid matrix therapeutic compositions
IN Unger, Evan C., Tucson, AZ, United States
PA ImaRx Therapeutics, Inc. (U.S. corporation)
PI US 2001018072 A1 20010830
AI US 2001-828762 A1 20010409 (9)
RLI Division of Ser. No. US 1998-75477, filed on 11 May 1998, PENDING
PRAI US 1997-46379P 19970513 (60)
DT Utility
FS APPLICATION
LREP Mackiewicz & Norris LLP, One Liberty Place - 46th Floor, Philadelphia, PA, 19103
CLMN Number of Claims: 38
ECL Exemplary Claim: 1
DRWN 1 Drawing Page(s)
LN.CNT 4899

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention is directed to a solid porous matrix comprising a surfactant in combination with a bioactive agent. The solid porous matrix may be prepared by combining a surfactant and a therapeutic, together with a solvent, to form an emulsion containing random aggregates of the surfactant and the therapeutic, and processing the emulsion by controlled drying, or controlled agitation and controlled drying to form the solid porous matrix.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 4 OF 4 USPATFULL on STN
AN 1998:19285 USPATFULL
TI Process for recovering sulfur hexafluoride
IN Yates, Stephen Frederic, Arlington Heights, IL, United States
Gaita, Romulus, Morton Grove, IL, United States
Ramachandra, Amar, Bensenville, IL, United States
Morrell, Robert, Des Plaines, IL, United States
PA AlliedSignal Inc., Morristown, NJ, United States (U.S. corporation)
PI US 5720797 19980224
AI US 1996-769022 19961218 (8)
DT Utility
FS Granted
EXNAM Primary Examiner: Spitzer, Robert
LREP Gianneschi, Lois A.
CLMN Number of Claims: 25
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 505

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention relates to a process for recovering sulfur hexafluoride ("SF₆"). More specifically, the invention provides a pressure swing adsorption--desorption process for recovering SF₆ from a gas stream using **zeolites**, activated carbons, or silicalites to **adsorb** the SF₆.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L13 ANSWER 10 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1
 AN 2001:816601 CAPLUS
 DN 135:346144
 TI Adsorptive method for purification of tetrafluoromethane and its use
 IN Ohno, Hiromoto; Ohi, Toshio
 PA Showa Denko K. K., Japan
 SO PCT Int. Appl., 20 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001083412	A2	20011108	WO 2001-JP3664	20010426
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	JP 2001302566	A2	20011031	JP 2000-128681	20000428
	AU 2001052617	A5	20011112	AU 2001-52617	20010426
	RU 2215730	C2	20031110	RU 2002-101934	20010426
PRAI	JP 2000-128681	A	20000428		
	US 2000-230704P	P	20000907		
	WO 2001-JP3664	W	20010426		
AB	Tetrafluoromethane, containing ethylene compds., hydrocarbon compds., carbon monoxide, and/or carbon dioxide, is purified by contacting it with zeolites having an average pore size of 3.4-11 Å and a Si/Al ratio of ≤1.5 and/or a carbonaceous adsorbent having an average pore size of 3.4-11 Å.				

use. The compositions may comprise a lipid, a protein, polymer and/or surfactant, and a gas, in combination with a targeting ligand. In preferred embodiments, the targeting ligand targets coagula, including emboli and/or thrombi, particularly in patients suffering from an arrhythmic disorder. The contrast media can be used in conjunction with diagnostic imaging, such as ultrasound, as well as therapeutic applications, such as therapeutic ultrasound.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L13 ANSWER 14 OF 14 USPATFULL on STN
AN 1999:3743 USPATFULL
TI Process and system for separation and recovery of perfluorocompound gases
IN Li, Yao-En, Buffalo Grove, IL, United States
Paganessi, Joseph E., Burr Ridge, IL, United States
Vassallo, David, Glenview, IL, United States
Fleming, Gregory K., Wilmington, DE, United States
PA American Air Liquide, Walnut Creek, CA, United States (U.S. corporation)
PI US 5858065 19990112
AI US 1997-783949 19970116 (8)
RLI Continuation-in-part of Ser. No. US 1996-665142, filed on 14 Jun 1996
DT Utility
FS Granted
EXNAM Primary Examiner: Spitzer, Robert
LREP Burns, Doane, Swecker & Mathis, L.L.P.
CLMN Number of Claims: 77
ECL Exemplary Claim: 1
DRWN 15 Drawing Figure(s); 13 Drawing Page(s)
LN.CNT 1681
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB Processes and systems to recover at least one perfluorocompound gas from a gas mixture are provided. In one embodiment the inventive process comprises providing a gas mixture comprising at least one perfluorocompound gas and at least one carrier gas, the gas mixture being at a predetermined pressure; providing at least one size selective membrane having a feed side and a permeate side; contacting the feed side of the at least one membrane with the gas mixture; withdrawing from the feed side of the membrane as a non-permeate stream at a pressure which is substantially equal to the predetermined pressure a concentrated gas mixture comprising essentially the at least one perfluorocompound gas; and withdrawing from the permeate side of the membrane as a permeate stream a depleted gas mixture comprising essentially the at least one carrier gas.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L17 ANSWER 2 OF 3 USPATFULL on STN

AN 2000:9374 USPATFULL

TI Method of processing semiconductor manufacturing exhaust gases

IN Ji, Wenchang, Doylestown, PA, United States

Shen, Dongmin, Chatham, NJ, United States

Jain, Ravi, Bridgewater, NJ, United States

Shirley, Arthur I., Piscataway, NJ, United States

Athalye, Atul M., Chatham, NJ, United States

Sadkowski, Piotr J., Bridgewater, NJ, United States

PA The BOC Group, Inc., New Providence, NJ, United States (U.S. corporation)

PI US 6017382 20000125

AI US 1998-50259 19980330 (9)

DT Utility

FS Granted

EXNAM Primary Examiner: Spitzer, Robert

LREP Rosenblum, David M., Pace, Salvatore P.

CLMN Number of Claims: 13

ECL Exemplary Claim: 1

DRWN 2 Drawing Figure(s); 1 Drawing Page(s)

LN.CNT 452

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A method of processing semiconductor manufacturing exhaust gases for recovering at least hexafluoroethane in which a feed stream composed of the exhaust gases is passed through an **adsorbent** bed selected to **adsorb** oxygen, and also nitrogen if present, but not to appreciably **adsorb** the hexafluoroethane. As a result, a product stream, discharged from the **adsorbent** bed, has a higher concentration of hexafluoroethane than in the feed stream. In one embodiment, only a single **adsorbent** such as carbon molecular sieve is provided to **adsorb** the oxygen or a modified 4A **zeolite** could be used to **adsorb** both oxygen and nitrogen. When nitrogen is a potential constituent, layers of carbon molecular sieve and **zeolite** are provided to **adsorb** the oxygen and then the nitrogen, respectively. A third **adsorbent**, preferably 5A **zeolite** may be provided in addition to the foregoing two **adsorbents** to also **adsorb** any carbon tetrafluoride produced as a by-product.

L21 ANSWER 6 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3

AN 1996:365345 CAPLUS

DN 125:33156

TI Purification of tetrafluoromethane

IN Oono, Hiromoto; Nakajo, Tetsuo; Ooi, Toshio

PA Showa Denko Kk, Japan

SO Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 08081399	A2	19960326	JP 1994-214861	19940908
	JP 2924660	B2	19990726		

PRAI JP 1994-214861 19940908

AB CF₃-containing CF₄ is purified by treating with **zeolites** or carbonaceous adsorbents having **pore size** 3.5-11 Å.

A cylinder containing **zeolites** having **pore size**

4 Å was treated with 12,000 ppm CF₃-containing CF₄ at room temperature for 20 h to recover <10 ppm CF₃-containing CF₄.

L21 ANSWER 7 OF 9 USPATFULL on STN

AN 91:98193 USPATFULL

TI Method of refining nitrogen trifluoride gas

IN Suenaga, Takashi, Yamaguchi, Japan

Fujii, Tukasa, Ube, Japan

Kobayashi, Yoshiyuki, Ube, Japan

PA Central Glass Company, Limited, Ube, Japan (non-U.S. corporation)

PI US 5069887 19911203

AI US 1991-639541 19910110 (7)

PRAI JP 1990-3112 19900110

DT Utility

FS Granted

EXNAM Primary Examiner: Lewis, Michael; Assistant Examiner: Bolam, Brian M.

LREP Fleit, Jacobson, Cohn, Price, Holman & Stern

CLMN Number of Claims: 7

ECL Exemplary Claim: 1

DRWN 1 Drawing Figure(s); 1 Drawing Page(s)

LN.CNT 249

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention provides a selective adsorption method for refining NF.₃ gas containing CF₄ as impurity. At a temperature not higher than 10° C. the NF.₃ gas is brought into contact with a crystalline and porous synthetic **zeolite**, which is substantially uniform in **pore size** and about 4.9 Å in effective **pore size** and is commercialized under the name of molecular sieve 5A, on condition that the content of water of crystallinity in the synthetic **zeolite** is 1-10 weight %, and preferably 6-10 weight %. The synthetic **zeolite** efficiently adsorbs NF.₃ with little adsorption of CF₄.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

(FILE 'HOME' ENTERED AT 13:47:48 ON 09 NOV 2004)

FILE 'REGISTRY' ENTERED AT 13:48:12 ON 09 NOV 2004

L1 1 S TETRAFLUOROMETHANE/CN

FILE 'CAPLUS, USPATFULL, CA, CAOLD' ENTERED AT 13:49:07 ON 09 NOV 2004

L2 25773 S L1

L3 294 S L2 AND ZEOLITE

L4 0 S L3 AND PORE SIXE

L5 39 S L3 AND PORE SIZE

L6 27 S L5 AND CARBON ?OXIDE

L7 22 S L6 AND ADSORB?

L8 4 S L7 AND IMPURIT?

L9 4 S L8 AND PURIF?

L10 4 DUP REM L9 (0 DUPLICATES REMOVED)

L11 18 S L7 NOT L10

L12 15 S L11 AND PURIF?

L13 14 DUP REM L12 (1 DUPLICATE REMOVED)

L14 0 S L13 AND IMPURIT?

L15 7 S L7 NOT L12

L16 3 S L15 NOT L10

L17 3 DUP REM L16 (0 DUPLICATES REMOVED)

L18 5 S L6 NOT L7

L19 5 DUP REM L18 (0 DUPLICATES REMOVED)

L20 12 S L5 NOT L6

L21 9 DUP REM L20 (3 DUPLICATES REMOVED)