Srivatsan Sridhar

Email: <u>svatsan@stanford.edu</u> Webpage: ssrivatsan97.github.io

Research Interests: Blockchains, security, machine learning, information theory

EDUCATION

Stanford University	Stanford, CA
MS and PhD in Electrical Engineering	2019 - present
Indian Institute of Technology Bombay B.Tech. with honors in Electrical Engineering. (GPA: 9.85/10.0)	Mumbai, India 2015 – 2019
Minor in Computer Science and Engineering	2010 2010

AWARDS AND HONORS

• Edward W. Barnholdt graduate fellowship	2019
• President of India gold medal (ranked 1st by GPA in IIT Bombay)	2019
• Prof. K. C. Mukherjee Award (best B. Tech. project in EE, IIT Bombay)	2019
• Top 1% in National Standard Examination in Physics (NSEP, India)	2015
• KVPY Fellowship with all India rank 57 (Indian Institute of Science)	2013
• Silver medal in Dr. Homi Bhabha Young Scientist Competition	2012

Research Experience

Speeding up Proof-of-Stake Blockchains

Mar 2020 - present

Mentors: Prof. David Tse, Prof. Mert Pilanci (Stanford University)

- Applying novel tools from optimization and probability theory to speed up proof-of-stake
- Exploring alternate staking rules using VRFs and VDFs to increase throughput while retaining security

Optimization using Random Projections

Jan – May 2020

Mentors: Prof. Mert Pilanci, Prof. Ayfer Özgür (Stanford University)

- Proved new tight lower bounds for least squares optimization using Gaussian projections
- Proposed a near-optimal shrinkage estimator based on the James-Stein estimator

Compression for Genomic Data

Sep - Dec 2019

Mentor: Prof. Tsachy Weissman (Stanford University)

- Demonstrated lossless and lossy compression methods for Nanopore genome sequencing data
- Achieved 50% reduction in size with negligible impact on basecalling accuracy

Secure Multiparty Computation

Jul 2018 – Aug 2019

Mentors: Prof. Sibiraj Pillai, Prof. Manoj M. Prabhakaran (IIT Bombay),

Prof. Vinod M. Prabhakaran (TIFR, Mumbai)

- Studied communication and randomness lower bounds for secure multiparty computation
- Proved the optimality of a 25-year old protocol for secure computation of 2-bit AND
- Adjudged as the best B. Tech. project in EE, IIT Bombay for the year 2019

RF Fingerprinting for Bluetooth Receivers

May - Jul 2018

Mentor: Prof. Anantha P. Chandrakasan (Massachusetts Institute of Technology)

- Used RF Fingerprinting to classify and authenticate bluetooth transmitters using their raw signal
- Designed feature extraction and a neural network to achieve more than 90% classification accuracy

Onset Detection Methods for Piano Music

May 2017 - Feb 2018

Mentor: Prof. Preeti Rao (IIT Bombay)

- Presented a novel feature extraction method for piano note onset detection
- Achieved 95% successful note onset detection for monophonic piano music

Publications

- 1. Impact of Lossy Compression of Nanopore Raw Signal Data on Basecall and Consensus Accuracy Shubham Chandak, Kedar Tatwawadi, Srivatsan Sridhar, Tsachy Weissman Bioinformatics, Dec 2020
- Lower Bounds and a Near-Optimal Shrinkage Estimator for Least Squares using Random Projections
 Srivatsan Sridhar, Mert Pilanci, Ayfer Özgür
 IEEE Journal on Selected Areas in Information Theory (JSAIT) Estimation and Inference, Nov 2020
- 3. Optimality of a Protocol by Feige-Kilian-Naor for Three-Party Secure Computation Sibi Raj B. Pillai, Manoj Prabhakaran, Vinod M. Prabhakaran, Srivatsan Sridhar 20th International Conference on Cryptology in India, Hyderabad, India, Dec 2019
- 4. Energy-Weighted Multi-Band Novelty Functions for Onset Detection in Piano Music Krishna Subramani, Srivatsan Sridhar, Rohit M. A., and Preeti Rao Proc. of National Communications Conference 2018, Hyderabad, India.

OTHER PROJECTS

Sampling Arbitrary Latent Variable Distributions in an Autoencoder

Oct - Dec 2019

Course Project: Deep Generative Models (Stanford University)

- Proposed an architecture combining autoencoders with flow networks and adversarial learning
- Demonstrated improved sample quality and smaller Frechet distance scores

Digitally Programmable Analog Computer

Jan – Apr 2018

Course Project: Electronic Design Lab (IIT Bombay)

- Designed an analog computer to solve linear dynamical systems in real-time
- Fabricated a prototype used for hardware-in-loop simulations in the power electronics lab

TEACHING EXPERIENCE

Course Assistant – Internet-Scale Consensus in the Blockchain Era	$Jan-Mar\ 2021$
Instructor: Prof. David Tse (Stanford University)	
Course Assistant – Statistical Signal Processing	$Sep-Dec\ 2020$
Instructor: Prof. David Tse (Stanford University)	
Teaching Assistant – Linear Algebra	Jan - Feb 2017
Instructor: Prof. A. Ranjan (IIT Bombay)	
Teaching Assistant – Quantum Physics	Jul – Nov 2016
Instructor: Prof. S. Umasankar (IIT Bombay)	

SKILLS

Languages: English (professional proficiency), Hindi, Tamil (native)

Programming: Python, C++, Java, Tensorflow, Pytorch, VHDL, 8085 assembly

Software: MATLAB, Scilab, GNURadio, Eagle, Quartus

Hardware: Arduino, ATMega, 8085 microprocessor, analog circuits

Relevant Coursework

Graduate-level EE courses: Information Theory, Convex Optimization, Cryptography, Scaling Blockchains, Image Processing, Speech Processing, Computer Vision

CS courses: Data Structures and Algorithms, Machine Learning, Deep Generative Models, Computer Networks, Network Security and Cryptography, Advanced Computer Architecture

EXTRACURRICULARS

Music: 18 years of experience in Carnatic (south Indian) classical vocal and violin music

National Service Scheme: 80 hours of teaching underprivileged students in Mumbai

2004 – present
2015 – 2016

Yoga: Formal training from the Art of Living Foundation