

#### Background

- ▷ In 2018:
  - Over 200,00 breached accounts
  - Merchants lost \$2.94 for every \$1 in fraud
- Credit card fraud affects:
  - Customer
  - Merchant
  - Issuing bank



# Understanding the problem

|              |              | Predicted label                                                             |                                                                             |  |  |  |  |  |
|--------------|--------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
|              |              | Negative (o)                                                                | Positive (1)                                                                |  |  |  |  |  |
| Actual label | Negative (o) | True negative: The transaction is predicted as valid and is actually valid  | False positive: The transaction is predicted as fraud but is actually valid |  |  |  |  |  |
|              | Positive (1) | False negative: The transaction is predicted as valid but is actually fraud | True positive: The transaction is predicted as fraud and is actually fraud  |  |  |  |  |  |

# Metrics

#### **Precision** of fraud class



#### **Recall** of fraud class



f1-score of fraud class

### Key results

Model: XGBoost

Precision: 85%

Recall: 81%

**f1-score**: 83%



# The Data

#### Simulated credit card transaction dataset from Kaggle

| Transaction Date/Time | Credit Card<br>Number | Merchant                     | Category      | Amount   |       | is_fraud |
|-----------------------|-----------------------|------------------------------|---------------|----------|-------|----------|
| 2019-01-01 00:00:18   | 27031                 | Rippin, Kub and<br>Mann      | misc_net      | \$4.97   |       | 0        |
| 2019-01-01 00:00:44   | 63042                 | Heller, Gutmann and<br>Zieme | grocery_pos   | \$107.23 | • • • | 0        |
| 2019-01-01 00:00:51   | 38859                 | Lind-Buckridge               | entertainment | \$220.11 |       | 0        |
| 2019-01-03 22:58:44   | 49227                 | Mosciski Group               | travel        | \$4.50   |       | 1        |
|                       | •••                   |                              |               |          | •••   |          |

# DATA EXPLORATION

Imbalanced classes Transaction Date/Time Amount

Category

**Imbalanced classes** 

Transaction Date/Time

Amount

Category

|       | Number of Transactions | Percentage |
|-------|------------------------|------------|
| VALID | 1,842,592              | 99.479%    |
| FRAUD | 9,651                  | 0.521%     |

Imbalanced classes

**Transaction Date/Time** 

**Amount** 

Category

# Hour of day





Imbalanced classes

**Transaction Date/Time** 

**Amount** 

Category

#### **Transaction Counts**







Imbalanced classes

Transaction Date/Time

**Amount** 

Category



|       | Mean amount |
|-------|-------------|
| VALID | \$66.88     |
| FRAUD | \$530.66    |

Imbalanced classes

Transaction Date/Time

**Amount** 

**Category** 





#### **Top categories for fraud:**

- grocery\_pos
- shopping\_net
- misc\_net
- shopping\_pos
- gas\_transport

# MODELING

Modeling Overview

Class Balancing and Algorithms

Comparisons

**Best Model** 

# Modeling

Modeling overview

Class Balancing and Algorithms

**Comparisons** 

**Best Model** 



### **Modeling**

Modeling overview

Class Balancing and Algorithms

**Comparisons** 

**Best Model** 

#### Class Balancing Techniques

- Random undersampling
- Random oversampling
- SMOTE
- Balancing class\_weight parameter in algorithm

#### Classification Algorithms

- Logistic Regression
- Random Forest
- XGBoost

# Top three models

# Modeling

Modeling overview

Class Balancing and Algorithms

Comparisons

Best Mode

| Algorithm        | Class<br>Balancing     | Valid class |        |      | Fraud class |        |      |
|------------------|------------------------|-------------|--------|------|-------------|--------|------|
|                  |                        | Precision   | Recall | f1   | Precision   | Recall | f1   |
| Random<br>Forest | Random<br>oversampling | 1.00        | 1.00   | 1.00 | 0.93        | 0.71   | 0.80 |
| Random<br>Forest | SMOTE                  | 1.00        | 1.00   | 1.00 | 0.77        | 0.80   | 0.79 |
| XGBoost          | SMOTE                  | 1.00        | 1.00   | 1.00 | 0.85        | 0.81   | 0.83 |

#### Best model

# Modeling

Modeling overview

Class Balancing and Algorithms

Comparisons

**Best Model** 

| Algorithm        | Class<br>Balancing     | Valid class |        |      | Fraud class |        |      |
|------------------|------------------------|-------------|--------|------|-------------|--------|------|
|                  |                        | Precision   | Recall | f1   | Precision   | Recall | f1   |
| Random<br>Forest | Random<br>oversampling | 1.00        | 1.00   | 1.00 | 0.93        | 0.71   | 0.80 |
| Random<br>Forest | SMOTE                  | 1.00        | 1.00   | 1.00 | 0.77        | 0.80   | 0.79 |
| XGBoost          | SMOTE                  | 1.00        | 1.00   | 1.00 | 0.85        | 0.81   | 0.83 |

### Modeling

Modeling overview

Class Balancing and Algorithms

Comparisons

**Best Model** 

#### Confusion matrix



# Feature impact



#### Future work

- Engineer 'jobs' and 'state' columns
- Alternative resampling methods
- Explore cost of false negative vs false positive
- Explore predicted probabilities of fraud



### Recommendations

 Create probability thresholds to categorize transactions



70% -----

Requires further inspection

30% ----

0% ----

Most likely valid

Most likely fraud

### Recommendations

- Create probability thresholds to categorize transactions
- 2. Inspect further if amount is greater than \$190



### Recommendations

- Create probability thresholds to categorize transactions
- Inspect further if amount is greater than \$190
- 3. Inspect further if transaction takes place during abnormal hours



