Rozkład jednostajny dyskretny, $c, n \in \mathbb{Z}; n > 0$

•
$$P(X = 0) = \frac{1}{n}$$
,
 $k = c, c + 1, \dots, c + n - 1$

•
$$\varphi(t) = \frac{e^{ict}(1-e^{int})}{n(1-e^{it})}$$

• dla n = 1 to rozkład jednopunktowy

$$\bullet \ \mathbb{E}X = c + \frac{n-1}{2}$$

• $D^2X = \frac{n^2-1}{12}$

Rozkład zero-jedynkowy

$$P(X = 0) = q$$

$$P(X = 1) = p$$

$$q = 1 - p$$

•
$$\mathbb{E}X = p$$

$$D^2X = pq$$

Rozkład dwumianowy, $p \in (0, 1)$

•
$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

 $q = 1 - p$
 $k = 0, 1, \dots, n$

 \bullet X - liczba sukcesów w n próbach Bernoulliego (patrz przybliżenie Poissona)

• $D^2X = npq$

• $\mathbb{E} = np$

Rozkład geometryczny, $p \in (0, 1)$

•
$$P(X = k) = pq^k$$

 $q = 1 - p$
 $k = 0, 1, ...$

•
$$\varphi(t) = \frac{p}{1 - qe^{it}}$$

ullet X - liczba prób Bernoulliego poprzedzających pierwszy sukces

•
$$\mathbb{E}X = \frac{q}{p}$$

$$D^2X = \frac{q}{p^2}$$

Rozkład Poissona, $\lambda > 0$

•
$$P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

• Dla $\lambda > 9$ rozkład można przybliżać rozkładem $\mathcal{N}\left(\lambda,\sqrt{\lambda}\right)$, zachodzi

$$P(X=k) \approx \Phi\left(\frac{k+\frac{1}{2}-\lambda}{\sqrt{\lambda}}\right)$$
, gdzie Φ - dystrybuanta rozkładu $\mathcal{N}(0,1)$

• Przybliżenie Poissona (n - duże, p - małe) $\binom{n}{k} p^k q^{n-k} \approx \frac{\lambda}{k!} e^{-\lambda}, \lambda = np$

•
$$\varphi(t) = e^{\lambda(e^{it}-1)} = \exp(\lambda(e^{it}-1))$$

•
$$\mathbb{E}X = \lambda$$

•
$$D^2X = \lambda$$

Rozkład jednostajny ciągły, $a, b \in \mathbb{R}, a < b$

•
$$f(x) = \begin{cases} \frac{1}{b-a} & , x \in (a,b) \\ 0 & , x \notin (a,b) \end{cases}$$
 • $\mathbb{E}X = \frac{a+b}{2}$

•
$$\mathbb{E}X = \frac{a+b}{2}$$

•
$$\varphi(t) = \frac{e^{ibt} - e^{iat}}{i(b-a)t}$$

•
$$D^2X = \frac{(b-a)^2}{12}$$

Rozkład normalny, $m \in \mathbb{R}, \sigma \in (0, +\infty)$

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x-m}{2\sigma^2}}, x \in \mathbb{R}$$

$$\bullet \ \varphi(t) = e^{imt - \frac{\sigma^2 t^2}{2}}$$

•
$$X \sim \mathcal{N}(m, \sigma) \Rightarrow Y = \frac{X - m}{\sigma} \sim$$

• $\mathcal{E}X = m$
• $D^2X = \sigma$

$$D^2 X = \sigma^2$$

Rozkład wykładniczy, $a \in (0, +\infty)$

$$\bullet \ f(x) = \left\{ \begin{array}{ll} ae^{-ax} & , x > 0 \\ 0 & , x \leqslant 0 \end{array} \right.$$

•
$$\varphi(t) = \frac{a}{a - it}$$

•
$$\mathbb{E}X = \frac{1}{a}$$

• $D^2X = \frac{1}{a}$

Rozkład gamma, $p, \lambda \in (0, +\infty)$

•
$$f(x) = \begin{cases} \frac{x^{p-1}e^{-\frac{x}{\lambda}}}{\lambda^{p}\Gamma(p)} &, \lambda > 0\\ 0 &, \lambda \leq 0 \end{cases}$$

• $\varphi(t) = \left(\frac{1}{1-it\lambda}\right)^{p}$
• $\mathbb{E}X = \lambda p$

•
$$\varphi(t) = \left(\frac{1-it}{1-it}\right)$$

• Dla p = 1 jest to rozkład wykładniczy o parametrze $a = \frac{1}{3}$

Rozkład Pareto, $\alpha, x_0 \in (0, +\infty)$

•
$$f(x) = \begin{cases} \frac{\alpha}{x_0} \left(\frac{x_0}{x}\right)^{\alpha+1} & , x > x_0 \\ 0 & , x \leqslant x_0 \end{cases}$$
 • $\mathbb{E}X = \frac{\alpha}{\alpha-1}x_0 \text{ dla } \alpha > 1$
• $D^2X = \frac{\alpha-x_0^2}{(\alpha-1)^2(\alpha-2)} \text{ dla } \alpha = 2$

•
$$\mathbb{E}X = \frac{\alpha}{\alpha - 1} x_0 \text{ dla } \alpha > 1$$

•
$$D^2X = \frac{\alpha - x_0^2}{(\alpha - 1)^2(\alpha - 2)}$$
 dla $\alpha = 2$

Rozkład Erlanga, $a \in (0, +\infty), m \in \mathbb{N}$

$$\bullet \ f(x) = \left\{ \begin{array}{ll} \frac{a^m}{(m-1)!} x^{m-1} e^{-ax} &, x>0 \\ 0 &, x\leqslant 0 \end{array} \right. \quad \bullet \ \text{Suma} \ m \ \text{niezależnych zmiennych losowych o rozkładzie wynowych}$$

- Szczególny przypadek rozkładu gamma
- Dla m = 1 jest to rozkład wy-

kładniczy

Rozkład $\chi^2, n \in \mathbb{N}$

•
$$f(y) = \begin{cases} \frac{y^{\frac{n}{2} - 1}e^{-\frac{y}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, y > 0\\ 0, y \leq 0 \end{cases}$$

- $Y_n = X_1^2 + \cdots + X_n^2$ X_1, \dots, X_n niezależne zmienne losowe o rozkładzie $\mathcal{N}(0,1)$
- $P(Y_n \geqslant k) = \alpha$

kładniczym z parametrem a ma rozkład Erlanga

•
$$\varphi(t) = \left(\frac{a}{a-it}\right)^m$$

•
$$\mathbb{E}X = \frac{m}{a}$$

$$D^2X = \frac{m}{a^2}$$

• Dla n > 30, $\sqrt{2Y_n} \sim \mathcal{N}(\sqrt{2n-1}, 1)$

•
$$\varphi(t) = \left(\frac{1}{1-2it}\right)^{\frac{n}{2}}$$

•
$$\mathbb{E}X = m$$

$$D^2X = 2n$$

Rozkład Studenta, $n \in \mathbb{N}$

•
$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{n}{2}\right)\sqrt{n}\left(1+\frac{t^2}{n}\right)^{\frac{n+1}{2}}},$$

• $\mathbb{E}X = 0$ dla n > 1

 $t \in \mathbb{R}, \alpha > 1$

• $D^2X = \frac{n}{n-2}$ dla n > 2Uwaga:

•
$$T_n = \frac{X}{\sqrt{Y}}\sqrt{n}$$

 X, Y_n - niezależne
 $X \sim \mathcal{N}(0, 1), Y_n \sim \chi_n^2$

 $T_n \xrightarrow{n \to \infty} \mathcal{N}(0, 1)$

Rozkład F-Snedecore'a, $n \in \mathbb{N}$

•
$$f(x) = \begin{cases} \frac{\Gamma(\frac{n_1+n_2}{2})(\frac{n_1}{n_2})^{\frac{n_1}{2}}x^{\frac{n_1-2}{2}}(1+\frac{n_1}{n_2}x)^{-\frac{n_1+n_2}{2}}}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} &, x > 0\\ 0 &, x \leqslant 0 \end{cases}$$

 $\bullet \ F_{n_1,n_2} = \frac{\frac{1}{n_1}Y_{n_1}}{\frac{1}{n_2}Y_{n_2}}$

 Y_{n_1}, Y_{n_2} - niezależne zmienne losowe o jednakowym rozkładzie χ^2

•
$$\frac{F_{n_1,n_2} - \frac{n_1 - n_2}{2n_1n_2}}{\frac{n_1 + n_2}{2n_1n_2}} \sim \mathcal{N}(0,1) \text{ dla } n_1, n_2 > 30$$

Rozkład hipergeometryczny, $N, m, n \in \mathbb{N}$

•
$$P(X = k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$$

• $\mathbb{E}X = \frac{nm}{N}$

•
$$D^2X = n\left(\frac{m}{N}\right)\left(\frac{1-m}{N}\right)\left(\frac{N-n}{N-1}\right)$$

Rozkład Cauchy'ego, $x_0 \in \mathbb{R}, \gamma > 0$

•
$$f_X(x) = \frac{1}{\pi\gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}$$

 $\bullet \ \varphi(t) = e^{x_0 i t - \gamma |t|}$