Обучение с подкреплением

Offline RL

Напоминание: Обучение по демонстрациям

Предположим, что существует эксперт, который умеет решать задачу и может продемонстрировать несколько решений

Более формально:

Есть набор данных, содержащий траектории из окружения, полученные благодаря эксперту. Каждая траектория - последовательность переходов в среде, включающая состояние, действие и награду.

Эбучение с подкреплением 2/48

Напоминание: Behavioral Cloning

Наивное решение:

Используем любой алгоритм классификации/регрессии для того, чтобы как можно лучше приблизить действия эксперта по набору данных

Проблема:

Эбучение с подкреплением

Напоминание: DQfD

Идея: будем обучать DQN по данным из демонстраций эксперта

Проблема:

Обучение с подкреплением 4/48

Offline Reinforcement Learning

Обучение с подкреплением 5/48

Задача Offline RL

Цель формулируется также, как и в случае обучения с подкреплением: максимизировать суммарную дисконтированную награду

Однако теперь предполагаем, что нет возможности взаимодействовать с окружением, но зато есть набор данных, которые можем использовать для обучения

Также теперь считаем, что данные могут быть субоптимальными, т.е. недостаточно просто скопировать поведение эксперта

Обучение с подкреплением

Подходы к Offline RL

Основные подходы делятся на три типа:

- Importance Sampling в Policy Gradient методах
 - Importance Sampling часто приводит к неточной оценке
- Off-policy Reinforcement Learning
 - Также, как и в случае с DQfD, присутствует проблема ошибки в оценке Qfunction для пар (состояние, действие), которых нет в датасете
- Model-based Reinforcement Learning
 - о Ошибки в построении модели могут привести к тому, что оптимальная политика с точки зрения модели не будет оптимальной в реальной среде
 - Для пар (состояние, действие), которых нет в датасете, можем также неверно предсказывать награду или следующее состояние

Обучение с подкреплением 7/48

Policy Constraints

Идея: если итоговая политика не сильно отличается от экспертной политики, то ошибка будет небольшой

В частности, предлагается решать задачу:

$$\pi = \arg \max_{\pi} Q_{\pi}(s, a) \text{ s.t. } D_{\mathrm{KL}}(\pi, \pi_{\mathrm{expert}}) \leq \epsilon$$

Подойти к ее решению можно двумя способами:

- 1. Использовать регуляризацию дивергенции вместо жесткого ограничения
- 1. Аналитически решить задачу нахождения оптимальной политики для текущего приближения Q с учетом KL-дивергенции:

$$\hat{\pi} = \frac{1}{\epsilon} \pi_{\text{expert}}(a|s) \exp(Q_{\pi}(s, a))$$

А затем найти такую политику, $\mathcal{D}_{\mathrm{KL}}^{\mathrm{TO}}(\pi,\hat{\pi}) \to \min$

Эбучение с подкреплением

Conservative Q-learning

Идея: "Раньше было лучше"

Поскольку основная проблема политики заключается в переоценке Q-function для действий не из набора данных, регуляризуем Q-function. Например, так:

$$\phi = \mathbb{E}_s \mathbb{E}_{a \sim \mu} Q_{\pi}(s, a)$$

Где
$$\mu = \arg \max \mathbb{E}[Q_{\pi}(s, a) + \mathcal{H}(\mu)(.|s)]$$

Причем, нам даже не нужно обучать adversarial политику, т.к. есть аналитическое решение:

$$\phi = \mathbb{E}_s \log \sum_{a} \exp Q_{\pi}(s, a)$$

Однако, чтобы избежать излишне консервативной функции (что приведет к lower bound оценке), мы можем преобразовать регуляризацию следующим образом:

$$\phi = \mathbb{E}_s [\mathbb{E}_{a \sim \mu} Q_{\pi}(s, a) - \mathbb{E}_{a \sim \pi_{\text{expert}}} Q_{\pi}(s, a)]$$

бучение с подкреплением

Model-based Reinforcement Learning

Эбучение с подкреплением 10/48

Model-based RL

Обучение с подкреплением 11/48

World Model

At each time step, our agent receives an **observation** from the environment.

World Model

The Vision Model (V) encodes the high-dimensional observation into a low-dimensional latent vector.

The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

A small Controller (C) uses the representations from both V and M to select good actions.

The agent performs **actions** that go back and affect the environment.

12/48

World Model

Эбучение с подкреплением 13/48

World Model: Car Racing

Эбучение с подкреплением 14/48

World Model: Car Racing

Эбучение с подкреплением

World Model: VizDoom

Temperature	Score in Virtual Environment	Score in Actual Environment
0.10	2086 ± 140	193 ± 58
0.50	2060 ± 277	196 ± 50
1.00	1145 ± 690	868 ± 511
1.15	918 ± 546	1092 ± 556
1.30	732 ± 269	753 ± 139
Random Policy Baseline	N/A	210 ± 108
Gym Leaderboard [34]	N/A	820 ± 58

бучение с подкреплением 16/48

World Model: VizDoom

Обучение с подкреплением 17/48

PlaNet

Перейдем к задаче POMDP (т.е., агент не видит полное состояние среды) Дискретное время t , состояние s_t , действие a_t , наблюдение a_t , награда a_t

Тогда:

```
Стратегия агента - a_t \sim p(a_t|o_{\leq t},a_{< t}) Функция награды - r_t \sim p(r_t|s_t) Наблюдение - o_t \sim p(o_t|s_t) Функция перехода - s_t \sim p(s_t|s_{t-1},a_{t-1})
```

Эбучение с подкреплением 18/48

PlaNet

Что учит PlaNet:

$$egin{aligned} p(s_t|s_{t-1},a_{t-1}) \ p(o_t|s_t) \ p(r_t|s_t) \end{aligned}$$

 $q(s_t|o_{\leq t},a_{< t})$ (на самом деле $q(s_t|s_{t-1},o_t,a_t)$)

Важно: состояние здесь не обязательно такое же, как на самом деле в среде

 \tilde{o}_3 õ, 0, 0, 03 0,

Данные для обучения собираются итеративно.

Эбучение с подкреплением 19/48

PlaNet

Используем MPC (популяционный подход) для планирования траектории с использованием CEM:

- Инициализировать распределение стандартным нормальным распределением
- 2. Повторяем в течении γ итераций:
 - 3. Получить K последовательностей действий из распределения $a_{t:t+T} \sim N(\mu_{t:t+T}, \sigma_{t:t+T}^2)$
 - Выбрать лучшую последовательность, максимизировать ее вероятность

бучение с подкреплением 20/48

PlaNet: RSSM

(a) Deterministic model (RNN)

(b) Stochastic model (SSM)

(c) Recurrent state-space model (RSSM)

Обучение с подкреплением

PlaNet: RSSM

Обучение с подкреплением 22/48

PlaNet: Latent Overshooting

(a) Standard variational bound

(b) Observation overshooting

(c) Latent overshooting

Обучение с подкреплением

PlaNet: Latent Overshooting

Обычная функция потерь:

$$\sum_{t=1}^{T} \left(\frac{\mathbf{E}_{q(s_t \mid o_{\leqslant t}, a_{< t})} [\ln p(o_t \mid s_t)]}{\text{reconstruction}} \leftarrow \mathbf{E} \left[\mathbf{KL} [q(s_t \mid o_{\leqslant t}, a_{< t}) \parallel p(s_t \mid s_{t-1}, a_{t-1})] \right] \right)$$

$$\frac{q(s_{t-1} \mid o_{\leqslant t-1}, a_{< t-1})}{\text{complexity}}$$

Latent Overshooting:

$$\sum_{t=1}^{T} \left(\frac{\mathbf{E}_{q(s_t|o_{\leqslant t})}[\ln p(o_t \mid s_t)]}{\text{reconstruction}} \leftarrow \frac{1}{D} \sum_{d=1}^{D} \beta_d \mathbf{E} \left[KL[q(s_t \mid o_{\leqslant t}) \parallel p(s_t \mid s_{t-1})] \right] \right).$$

$$\frac{1}{\text{latent overshooting}}$$

Обучение с подкреплением 24/48

PlaNet: Latent Overshooting

бучение с подкреплением 25/48

PlaNet: Results

Method	Modality	Episodes	Cartpole Balance	Cartpole Swingup	Finger Spin	Cheetah Run	Ball in cup Catch	Walker Walk
A3C	proprioceptive	100,000	952	558	129	214	105	311
D4PG	pixels	100,000	993	862	985	524	980	968
PlaNet (ours)	pixels	2,000	986	831	744	650	914	890
CEM + true simulator	simulator state	0	998	850	825	656	993	994
Data efficiency gain PlaNet over D4PG (factor)			100	180	16	50+	20	11

Обучение с подкреплением 26/48

(a) Learn dynamics from experience

(b) Learn behavior in imagination

(c) Act in the environment

Обучение с подкреплением 27/48

В Dreamer'e модель мира обучается так же, как в PlaNet, но вместо планирования используется агент

$$V_{R}(s_{\tau}) \doteq E_{q_{\theta}, q_{\phi}} \left(\sum_{n=\tau}^{t+H} r_{n} \right), \tag{4}$$

$$V_{N}^{k}(s_{\tau}) \doteq E_{q_{\theta},q_{\phi}}\left(\sum_{n=\tau}^{h-1} \gamma^{n-\tau} r_{n} + \gamma^{h-\tau} v_{\psi}(s_{h})\right) \quad \text{with} \quad h = \min(\tau + k, t + H), \tag{5}$$

$$V_{\lambda}(s_{\tau}) \doteq (1 - \lambda) \sum_{n=1}^{H-1} \lambda^{n-1} V_{N}^{n}(s_{\tau}) + \lambda^{H-1} V_{N}^{H}(s_{\tau}), \tag{6}$$

В итоге хотим:

$$\max_{\phi} \mathbf{E}_{q_{\theta}, q_{\phi}} \left(\sum_{\tau=t}^{t+H} \mathbf{V}_{\lambda}(s_{\tau}) \right), \ \min_{\psi} \mathbf{E}_{q_{\theta}, q_{\phi}} \left(\sum_{\tau=t}^{t+H} \frac{1}{2} \left\| v_{\psi}(s_{\tau}) - \mathbf{V}_{\lambda}(s_{\tau}) \right) \right\|^{2} \right)$$

Эбучение с подкреплением 28/48

Обучение с подкреплением

Эбучение с подкреплением

Dreamer v2

Algorithm 2: KL Balancing with Automatic Differentiation

Эбучение с подкреплением 31/48

Dreamer v2

Эбучение с подкреплением 32/48

Идея:

Использовать желаемое наблюдение как цель и научить агента его достигать

Проблема 1:

Как исследовать среду, если нет набора заранее заданных целей?

Проблема 2:

Как задать функцию награды для обучения агента?

Unsupervised Interaction

Zero-Shot Evaluation

Эбучение с подкреплением 33/48

Эбучение с подкреплением

Explorer

- Пытается найти состояния, которые повышают information gain
- Для этого вместе с моделью мира обучает ансамбль моделей, предсказывающих стохастическую часть состояния на следующем шаге: $p(z_{t+1} \mid s_t)$
- Variance предсказаний ансамбля используется в качестве функции награды для обучения агента, исследующего мир

Achiever

- Пытается минимизировать расстояние между целью и состоянием в латентном пространстве
- Расстояние в латентном пространстве может быть задано как cosine distance или как temporal distance
- В случае temporal distance необходимо обучить нейронную сеть, которая будет предсказывать среднее количество шагов между состояниями

Эбучение с подкреплением 35/48

Обучение с подкреплением 36/48

Model-based RL without reconstruction

With contrastive learning

Without contrastive learning

Эбучение с подкреплением 37/48

Model-based RL with contrastive learning

Идея: используем contrastive learning для получения представления состояния

В оригинальной статье уже пытались, но ничего не получилось

Чтобы это исправить, используем overshooting:

- 1. Закодируем последовательность переходов в среде
- 1. Сгенерируем последовательность переходов из того же начального состояния
- 1. Будем сдвигать соответствующие эмбеддинги друг к другу

бучение с подкреплением 38/48

Model-based RL without contrastive learning

Идея: используем алгоритм SwAV, который строит представления состояний на основе прототипов

Отличие в том, что теперь мы будем решать задачу классификации

- 1. Обучаем encoder f, который учит представления для каждого изображения
- 1. Используем momentum encoder, который является геометрическим средним encoder'a, для определения меток класса
- 1. State representation обучается таким образом, чтобы после линейной проекции решать задачу классификации

бучение с подкреплением 39/48

Model-Based Offline Reinforcement Learning

Идея: в случае, если модель выходит за пределы известной динамики среды, будем переводить модель в особое состояние (HALT) и давать минимальную возможную награду

Алгоритм:

- 1. Построить модель, приближающую динамику среды
- 1. Построить множество USAD, которое определяет, находится ли состояние в пределах известной динамики среды
- 1. Построить пессимистичный МDР
- 2. Использовать MDP для оптимизации политики или планирования

Обучение с подкреплением 40/48

Model-Based Offline Reinforcement Learning

Определим USAD:

$$U^{\alpha}(s,a) = \begin{cases} \textit{FALSE (i.e. Known)} & \text{if } D_{TV}\left(\hat{P}(\cdot|s,a), P(\cdot|s,a)\right) \leq \alpha \ \textit{can be guaranteed} \\ \textit{TRUE (i.e. Unknown)} & \textit{otherwise} \end{cases}$$

Однако, поскольку на практике мы не знаем распределения P(.|s, a), вместо этого будем использовать оценку неопределенности с помощью ансамбля моделей:

$$U_{\text{practical}}(s, a) = \begin{cases} \text{FALSE (i.e. Known)} & \text{if } \operatorname{disc}(s, a) \leq \operatorname{threshold} \\ \text{TRUE (i.e. Unknown)} & \text{if } \operatorname{disc}(s, a) > \operatorname{threshold} \end{cases}$$

бучение с подкреплением 41/48

Sim-to-Real Transfer

Обучение с подкреплением 42/48

Sim2Real via Transfer

Эбучение с подкреплением 43/48

Sim2Real via Sim2Sim

Идея: рандомизировать окружение и использовать генератор, чтобы приводить картинку к стандартному виду

Эбучение с подкреплением 44/48

Sim2Real via Sim2Sim

(a) Randomized-to-canonical samples.

(b) Real-to-canonical samples.

Эбучение с подкреплением 45/48

Sim2Real via Sim2Sim

Эбучение с подкреплением 46/48

Sim2Real for control adaptation

Эбучение с подкреплением 47/48

Sim2Real for control adaptation

48/48