CMPE 180-92

Data Structures and Algorithms in C++

November 30 Class Meeting

Department of Computer Engineering San Jose State University

Fall 2017 Instructor: Ron Mak

Assignment #12: Extra Credit

Modify file SortTests.cpp to record the sorting statistics in instances of this struct:

```
struct Stats
{
    long move_count;
    long compare_count;
    long elapsed_ms;
};
```


Assignment #12: Extra Credit, cont'd

Store the struct instances in a "three dimensional map":

```
typedef map<string, map<int, map<string, Stats>>> StatsMap;
```

Data generator name

"Unsorted random"

"Already sorted"

"Reverse sorted"

"All zeros"

Data size

Sorting algorithm name

"Selection sort"

"Insertion sort"

"Shellsort suboptimal"

"Shellsort optimal"

"Quicksort suboptimal"

"Quicksort optimal"

"Mergesort"

```
Stats stats;
StatsMap stats_map;
...
stats_map[generator_name][n][sorter->name()] = stats;
```


Assignment #12: Extra Credit, cont'd

- □ Run the sorting algorithms with data size
 N = 10,000 to 100,000 by increments of 10,000.
- Output the stored stats as comma-separated values (CSV) and copy into text file stats.csv with column headers. Open the file with Excel.

Moves: Unsorted random
N,Selection,Insertion,Shell Sub,Shell Opt,Quick Sub,Quick Opt, Merge
10000,19980,24743369,209775,208781,91704,104618,150526
20000,39978,99248464,496880,512315,190888,218234,320901
30000,59986,223662787,745760,792562,293236,334760,498479
40000,79982,402835573,1160168,1099597,400818,454202,681667
50000,99970,627376797,1559713,1493082,509092,572150,868016
60000,119986,902496559,1760544,2068466,620352,695636,1057385
70000,139976,1221025827,2192555,2372181,724066,818264,1248891
80000,159974,1603609322,2729890,2543970,846812,943912,1443544
90000,179984,2021919155,3182741,3208782,960306,1073462,1639240
100000,199980,2502725426,3806995,3505466,1056514,1194464,1836312

How to Chart with Excel

- In Excel, select the values you want to graph and use the main menu: Insert → Chart → X Y (Scatter)
- Right-click the graph: Select Data ...
- Click on a dot and right-click: Add Trendline
 - Select Polynomial with order 2 (or higher).
- Save the spreadsheet as an Excel Workbook with suffix .xlsx
 - Otherwise, you lose the graphs.

Assignment #13 Part 1 Solution

□ Case 1 (outside left-left):

Rebalance with a single right rotation.

Figure 4.31 Single rotation to fix case 1


```
/**
 * Case 1 (outside left-left): Rebalance with a single right rotation.
 * Update heights and return the new root node.
 * @param k2 pointer to the node to rotate.
 * @return pointer to the new root node.
 */
BinaryNode *AvlTree::singleRightRotation(BinaryNode *k2)
    BinaryNode *k1 = k2->left;
    // Rotate.
    k2->left = k1->right;
    k1->right = k2;
                                     Figure 4.31 Single rotation to fix case 1
    // Recompute node heights.
    k2->height = (max(height(k2->left), height(k2->right)) + 1);
    k1->height = (max(height(k1->left), k2->height) + 1);
    return k1;
```


□ Case 4 (outside right-right):

Rebalance with a single left rotation.

Figure 4.33 Single rotation fixes case 4

```
/**
 * Case 4 (outside right-right): Rebalance with a single left rotation.
 * Update heights and return the new root node.
 * @param k2 pointer to the node to rotate.
 * @return pointer to the new root node.
 */
BinaryNode *AvlTree::singleLeftRotation(BinaryNode *k1)
{
    BinaryNode *k2 = k1->right;
    // Rotate.
    k1->right = k2->left;
    k2->left = k1:
                                     Figure 4.33 Single rotation fixes case 4
    // Recompute node heights.
    k1->height = (max(height(k1->left), height(k1->right)) + 1);
    k2->height = (max(height(k2->right), k1->height) + 1);
    return k2;
```


□ Case 2 (inside left-right):

Rebalance with a double left-right rotation.

Figure 4.35 Left-right double rotation to fix case 2


```
/**
  * Case 2 (inside left-right): Rebalance with a double left-right rotation.
  * @param k3 pointer to the node to rotate.
  * @return pointer to the new root node.
  */
BinaryNode *AvlTree::doubleLeftRightRotation(BinaryNode *k3)
{
    k3->left = singleLeftRotation(k3->left);
    return singleRightRotation(k3);
}
```


Figure 4.35 Left-right double rotation to fix case 2

□ Case 3 (inside right-left):

Rebalance with a double right-left rotation.

Figure 4.36 Right–left double rotation to fix case 3


```
/**
  * Case 3 (inside right-left): Rebalance with a double left rotation.
  * @param k1 pointer to the node to rotate.
  * @return pointer to the new root node.
  */
BinaryNode *AvlTree::doubleRightLeftRotation(BinaryNode *k1)
{
    k1->right = singleRightRotation(k1->right);
    return singleLeftRotation(k1);
}
```


Figure 4.36 Right–left double rotation to fix case 3

Assignment #13 Part 2 Solution

Graphs

A graph is one of the most versatile data structures in computer science.

Uses of Graphs

- Model <u>connectivity</u> in computer and communications networks.
- Represent a <u>map</u> of locations and distances between them.
- Model <u>flow capacities</u> in transportation networks.
- Find a path from a starting condition to a goal condition.
- Model <u>state transitions</u> in computer algorithms.
- Model an <u>order</u> for finishing subtasks in a complex activity.
- Model <u>relationships</u> such as family trees, business and military organizations, and scientific taxonomies.

Graph Terms

- □ A graph G = (V, E) is a set of vertices V and a set of edges (arcs) E.
- \square An edge is a pair (v, w), where v and w are in V.
- If the pair is ordered, the graph is directed and is called a digraph.

- Vertex w is adjacent to vertex v if and only if (v, w) is in E.
- In an undirected graph, both (v, w) and (w, v) are in E.
 - \mathbf{v} is adjacent to \mathbf{w} , and \mathbf{w} is adjacent to \mathbf{v} .
- An edge can have a weight or cost component.

Graph Examples

FIGURE 12-3 Various undirected graphs

FIGURE 12-4 Various directed graphs

Data Structures Using C++ by D.S. Malik
Course Technology, 2010

- □ A path is a sequence of vertices w_1 , w_2 , w_3 , ..., w_N where (w_i, w_{i+1}) is in E, for $1 \le i < N$.
- The length of the path is the number of edges on the path.
- A simple path has all distinct vertices, except that the first and last can be the same.

- □ A cycle in a directed graph is a path of length ≥ 1 where $w_1 = w_N$.
- A directed graph with no cycles is acyclic.
- A DAG is a directed acyclic graph.

Figure 9.4 An acyclic graph

Data Structures and Algorithm

□ The indegree of a vertex v is the number of incoming edges (u, v).

Graph Representation

Represent a directed graph with an adjacency list.

For each vertex, keep a list of all adjacent vertices.

1 2, 4, 3
2 4, 5
3 6
4 6, 7, 3
5 4, 7
6 (empty)
7 6

Figure 9.2 An adjacency list representation of a graph

Data Structures and Algorithm

Figure 9.1 A directed graph

Topological Sort

- We can use a graph to represent the <u>prerequisites</u> in a course of study.
 - A directed edge from Course A to Course B means that Course A is a prerequisite for Course B.

Figure 9.3 An acyclic graph representing course prerequisite structure

Topological Sort, cont'd

- of a directed graph is an ordering of the vertices such that if there is a path from v_i to v_j , then v_i comes before v_j in the ordering.
 - The order is not necessarily unique.

Figure 9.3 An acyclic graph representing course prerequisite structure

Topological Sort, cont'd

- Topological sort example using a queue.
 - Start with vertex v₁.
 - On each pass, remove the vertices with indegree = 0.
 - Subtract 1 from the indegree of the adjacent vertices.

Figure 9.4 An acyclic graph

The topological sort is the order in which the vertices dequeue.

		Indegree Before Dequeue #						
Vertex	1	2	3	4	5	6	7	
ν ₁	0	0	0	0	0	0	0	
v_2	1	0	0	0	0	0	0	
ν ₃	2	1	1	1	0	0	0	
ν4	3	2	1	0	0	0	0	
ν ₅	1	1	0	0	0	0	0	
ν ₆	3	3	3	3	2	1	0	
ν ₇	2	2	2	1	0	0	0	
Enqueue	ν_1	ν_2	ν ₅	ν4	v_3, v_7		ν ₆	
Dequeue	ν_1	ν_2	v_5	v_4	v_3	V7	ν ₆	

Figure 9.6 Result of applying topological sort to the graph in Figure 9.4

Topological Sort, cont'd

- Pseudocode to perform a topological sort.
 - O(|E| + |V|) time

```
void topsort() throws CycleFoundException
    Queue<Vertex> q = new Queue<Vertex>( );
    int counter = 0;
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );
    while( !q.isEmpty( ) )
        Vertex v = q.dequeue();
        v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
                q.enqueue( w );
    if( counter != NUM VERTICES )
        throw new CycleFoundException();
```

Figure 9.7 Pseudocode to perform topological sort

Shortest Path Algorithms

- Assume there is a cost associated with each edge.
 - The cost of a path is the sum of the cost of each edge on the path.
- Find the least-cost path from a "distinguished" vertex s to every other vertex in the graph.

Figure 9.8 A directed graph G

Shortest Path Algorithms, cont'd

□ A negative cost results in a negative-cost cycle.

Figure 9.9 A graph with a negative-cost cycle

Make a path's cost <u>arbitrarily small</u> by looping.

Unweighted Shortest Path

- Minimize the lengths of paths.
 - Assign a weight of 1 to each edge.

Figure 9.10 An unweighted directed graph G

In this example, let the distinguished vertex s be v_3 .

The path from s to itself has length (cost) 0.

Figure 9.11 Graph after marking the start node as reachable in zero edges

□ Find vertices v_1 and v_6 that are distance 1 from v_3 :

Figure 9.12 Graph after finding all vertices whose path length from s is 1

- \square Find all vertices that are distance 2 from v_3 .
 - Begin with the vertices adjacent to v_1 and v_6 .

Figure 9.13 Graph after finding all vertices whose shortest path is 2

- \square Find all vertices that are distance 3 from v_3 .
 - Begin with the vertices adjacent to v_2 and v_4 .

Figure 9.14 Final shortest paths

Now we have the <u>shortest paths</u> from v_3 to every other vertex.

Computer Engineering Dept.

Fall 2017: November 30

Unweighted Shortest Path, cont'd

ν	known	d_{ν}	p_{ν}
v ₁	F	∞	0
v ₂	F	∞	0
ν ₃	F	0	0
V4	F	∞	0
V5	F	∞	0
ν ₆	F	∞	0
V7	F	∞	0

- \square Keep the tentative distance from vertex v_3 to another vertex in the d_v column.
- \square Keep track of the path in the p_{ν} column.
- A vertex becomes known after it has been processed.
 - Don't reprocess a known vertex.
 - No cheaper path can be found.
- □ Set all $d_v = \infty$.
- Enqueue the distinquished vertex s and set $d_s = 0$.
- □ During each iteration, <u>dequeue</u> a vertex *v*.
 - Mark v as known.
 - For each vertex w adjacent to v whose $d_w = \infty$
 - \Box Set its distance d_w to $d_v + 1$
 - \square Set its path p_w to v.
 - □ Enqueue w.

Unweighted Shortest Path, cont'd

Figure 9.14 Final shortest paths

	Initia	al State	:	v ₃ De	equeu	ed	v ₁ D	equeue	ed	ν ₆ De	equeue	ed
ν	known	d,	p_{ν}	known	d,	p_{ν}	known	d_{ν}	p_{ν}	known	d,	p√
ν1	F	∞	0	F	1	ν3	T	1	ν3	T	1	ν3
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
v_3	F	0	0	T	0	0	T	0	0	T	0	0
V4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
ν ₅	F	∞	0	F	∞	0	F	∞	0	F	∞	0
ν ₆	F	∞	0	F	1	ν_3	F	1	v_3	T	1	v_3
v7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
Q:		ν ₃		ν	1, ^V 6		ν ₆	v_{2}, v_{4}		ν	2,74	

	ν ₂ De	queue	d	v ₄ De	equeu	ed	v ₅ D	equeu	ed	ν ₇ De	equeu	:d
ν	known	d,	p_{ν}	known	d.,	p_{ν}	known	d_{ν}	p_{ν}	known	d_{ν}	рv
v_1	T	1	ν3	T	1	ν3	T	1	ν3	T	1	ν3
v_2	T	2	v_1	T	2	v_1	T	2	v_1	T	2	v_1
v_3	T	0	0	T	0	0	T	0	0	T	0	0
ν4	F	2	v_1	T	2	v_1	T	2	v_1	T	2	v_1
ν ₅	F	3	v_2	F	3	ν_2	T	3	v_2	T	3	ν_2
v_6	T	1	v_3	T	1	v_3	T	1	v_3	T	1	v_3
ν7	F	∞	0	F	3	ν4	F	3	V4	T	3	ν4
Q:	ν ₄	, V ₅		ν	5, V ₇			v ₇		eı	mpty	

Data Structures and Algorithm Analysis in C++, 4th ed. by Mark Allen Weiss Pearson Education, Inc., 2014

Unweighted Shortest Path, cont'd

```
void unweighted( Vertex s )
    Queue<Vertex> q = new Queue<Vertex>( );
    for each Vertex v
        v.dist = INFINITY;
    s.dist = 0;
    q.enqueue(s);
    while(!q.isEmpty())
        Vertex v = q.dequeue( );
        for each Vertex w adjacent to v
            if( w.dist == INFINITY )
                w.dist = v.dist + 1;
                w.path = v;
               q.enqueue( w );
```


Figure 9.18 Pseudocode for unweighted shortest-path algorithm

Break

Weighted Least Cost Path

- Dijkstra's Algorithm
 - Example of a greedy algorithm.
- Greedy algorithm
 - At each stage, do what appears to be the best at that stage.
 - A greedy algorithm may not always work.
- Keep the same information for each vertex:
 - Either known or unknown
 - **Tentative distance** d_v
 - Path information p_v

Dijkstra's Algorithm

At each stage:

- Select an unknown vertex v that has the smallest d_v .
- Declare that the shortest path from s to v is known.
- For each vertex w adjacent to v:
 - \square Set its distance d_w to the d_v + cost_{v,w}
 - \square Set its path p_{w} to v.

Figure 9.20 The directed graph G (again)

ν	known	d_{ν}	p _v
$\overline{v_1}$	F	0	0
v_2	F	∞	0
v ₃	F	∞	0
V4	F	∞	0
V5	F	∞	0
v ₆	F	∞	0
ν7	F	∞	0

Figure 9.20 The directed graph G (again)

Start with $s = v_1$

Figure 9.21 Initial configuration of table used in Dijkstra's algorithm

ν	known	d,	p_{ν}
$\overline{v_1}$	Т	0	0
ν2	F	2	v_1
ν3	F	∞	0
ν4	F	1	v_1
V5	F	∞	0
٧6	F	∞	0
ν ₇	F	∞	0

Figure 9.20 The directed graph G (again)

Set v_1 to known.

 v_2 and v_4 are unknown and adjacent to v_1 :

- Set d_2 and d_4 to their costs + cost of v_1
- Set p_2 and p_4 to v_1 .

Figure 9.22 After v_1 is declared known

Data Structures and Algorithm

ν	known	ďν	р _v
v ₁	Т	0	0
v_2	F	2	v_1
v ₃	F	3	v_4
ν4	T	1	v_1
ν ₅	F	3	ν4
v_6	F	9	v_4
v7	F	5	74

Figure 9.20 The directed graph G (again)

 d_4 was the smallest unknown. Set v_4 to known. v_3 , v_5 , v_6 , and v_7 are unknown and adjacent to v_4 :

- Set their d_w to their costs + cost of v_4
- Set their p_w to v_4 .

© R. Mak

Figure 9.23 After v4 is declared known

ν	known	d_{ν}	p_{v}
v ₁	Т	0	0
ν2	T	2	v_1
ν3	F	3	ν4
V4	T	1	ν1
V5	F	3	ν4
ν ₆	F	9	ν4
ν7	F	5	ν4

Figure 9.20 The directed graph G (again)

 d_2 was the smallest unknown. Set v_2 to known. v_5 is unknown and adjacent:

• d_5 is already 3 which is less than 2+10=12, so do not change v_5

Figure 9.24 After v2 is declared known

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v ₂	T	2	v_1
ν3	T	3	ν4
V4	T	1	v_1
V5	T	3	ν4
ν ₆	F	8	ν3
ν7	F	5	ν4

Figure 9.20 The directed graph G (again)

Set v_5 to known. v_7 is unknown and adjacent.

• Do not adjust since 5 < 3+6.

Set v_3 to known. v_6 is unknown and adjacent.

- Change d_6 to 3+5=8 which is less than its previous value of 9.
- Change p_6 to v_3 .

Figure 9.25 After v_5 and then v_3 are declared known

ν	known	ďν	р _v
v_1	T	0	0
v ₂	T	2	v_1
ν3	T	3	ν4
ν4	T	1	v_1
ν ₅	T	3	ν4
v ₆	F	6	v ₇
ν7	T	5	74

Figure 9.20 The directed graph G (again)

Set v_7 to known. v_6 is unknown and adjacent.

- Change d_6 to 5+1=6 which is less than its previous value of 8.
- Change p_6 to v_7 .

Figure 9.26 After v7 is declared known

ν	known	ďν	p _v
v ₁	Т	0	0
ν2	T	2	v_1
ν3	T	3	74
V4	T	1	v_1
٧5	T	3	74
V6	T	6	77
V7	T	5	74

Figure 9.20 The directed graph G (again)

Set v_6 to known. The algorithm terminates.

Figure 9.27 After v_6 is declared known and algorithm terminates

Figure 9.29 Vertex class for Dijkstra's algorithm


```
/*
 * Print shortest path to v after dijkstra has run.
 * Assume that the path exists.
 */
void printPath( Vertex v )
{
   if( v.path != null )
   {
      printPath( v.path );
      System.out.print( " to " );
   }
   System.out.print( v );
}
```

Figure 9.30 Routine to print the actual shortest path


```
void dijkstra( Vertex s )
    for each Vertex v
        v.dist = INFINITY;
        v.known = false;
    s.dist = 0;
    while( there is an unknown distance vertex )
        Vertex v = smallest unknown distance vertex;
        v.known = true;
        for each Vertex w adjacent to v
            if( !w.known )
                DistType cvw = cost of edge from v to w;
                if( v.dist + cvw < w.dist )
                    // Update w
                    decrease( w.dist to v.dist + cvw );
                    w.path = v;
```

Figure 9.31 Pseudocode for Dijkstra's algorithm

Minimum Spanning Tree (MST)

- Suppose you're wiring a new house.
 - What's the <u>minimum length of wire</u> you need to purchase?
- Represent the house as an undirected graph.
 - Each electrical outlet is a vertex.
 - The wires between the outlets are the edges.
 - The cost of each edge is the length of the wire.

Minimum Spanning Tree (MST), cont'd

Create a tree formed from the edges of an undirected graph that connects all the vertices at the lowest total cost.

Minimum Spanning Tree (MST), cont'd

Figure 9.50 A graph G and its minimum spanning tree

The MST

- Is an acyclic tree.
- Spans (includes) every vertex.
- \blacksquare Has |V|-1 edges.
- Has minimum total cost.

Minimum Spanning Tree (MST), cont'd

Figure 9.50 A graph G and its minimum spanning tree

- Add each edge to an MST in such a way that:
 - It does not create a cycle.
 - Is the least cost addition.
- A greedy algorithm!

Prim's Algorithm for MST

- Rediscovered by Robert C. Prim in 1957 to solve connection network problems.
 - First discovered in 1930 by Czech mathematician Vojtěch Jarník.
- At any point during the algorithm, some vertices are in the MST and others are not.
- Choose one vertex to start.

- At each stage, add another vertex to the tree.
- Choose a vertex such that:
 - The edge (u, v) has the lowest cost among all the edges.
 - u is already in the tree and v is not.
- Similar to Dijkstra's algorithm for shortest paths.
 - Maintain whether or not a vertex is known, and its d_v and p_v values.

Figure 9.51 Prim's algorithm after each stage

ν	known	d_{ν}	p_{ν}
v ₁	F	0	0
v_2	F	∞	0
٧3	F	∞	0
V4	F	∞	0
V ₅	F	∞	0
V ₆	F	∞	0
ν7	F	∞	0

Figure 9.52 Initial configuration of table used in Prim's algorithm

ν	known	d_{ν}	p _v
$\overline{v_1}$	Т	0	0
v_2	F	2	v_1
v_3	F	4	v_1
V4	F	1	v_1
V5	F	∞	0
ν ₆	F	∞	0
ν7	F	∞	0

Figure 9.53 The table after v_1 is declared known

Choose v_1 to start. Declare it known. Set the d_v and p_v of v_1 's neighbors.

γ	known	$d_{\mathbf{v}}$	p_{ν}
$\overline{v_1}$	T	0	0
v_2	F	2	v_1
ν3	F	2	ν4
ν4	T	1	v_1
V5	F	7	ν4
ν ₆	F	8	ν4
v ₇	F	4	ν4

Figure 9.54 The table after v4 is declared known

Choose v_4 and declare it known. Set the d_v and p_v of v_4 's neighbors that are still unknown: v_3 , v_5 , v_6 , and v_7 . Don't do v_2 because $d_2 = 2 < 3$.

ν	known	d_{v}	p_{ν}
ν1	T	0	0
ν2	T	2	v_1
ν3	T	2	ν4
٧4	T	1	v_1
٧5	F	7	ν4
ν ₆	F	5	v_3
ν ₇	F	4	ν4

Figure 9.55 The table after v_2 and then v_3 are declared known

Choose v_2 and declare it known. No changes to the table.

Choose v_3 and declare it known. Set the d_v and p_v of v_3 's neighbors that still unknown: v_6 . Set $d_6 = 5 <$ its previous value 8.

ν	known	d_{ν}	p_{ν}
v ₁	Т	0	0
ν2	T	2	v_1
ν3	T	2	v_4
٧4	T	1	v_1
٧5	F	6	77
ν ₆	F	1	77
ν7	Т	4	74

Figure 9.56 The table after v_7 is declared known

Choose v_7 and declare it known. Set the d_v and p_v of v_4 's neighbors that still unknown: v_5 and v_6 . Set $d_5 = 6 <$ its previous value 7. Set $d_6 = 1 <$ its previous value 5.

ν	known	d_{ν}	p_{ν}
$\overline{v_1}$	Т	0	0
ν2	T	2	v_1
٧3	T	2	ν4
٧4	T	1	v_1
V ₅	T	6	77
V6	T	1	77
ν7	T	4	74

Figure 9.57 The table after v_6 and v_5 are selected (Prim's algorithm terminates)

Choose v_6 and declare it known. No changes to the table.

Choose v_5 and declare it known. No changes to the table.

Graph Traversal Algorithms

- Graph traversal is similar to tree traversal.
 - Visit each vertex of a graph in a particular order.
- Special problems for graphs:
 - It may not be possible to reach all vertices from the start vertex.
 - The graph may contain cycles.
 - Don't go into an infinite loop.
 - "Mark" each vertex after a visit.
 - Don't revisit marked vertices.

You're Lost in a Maze

- You have a bag of bread crumbs.
- As you go down each path, you drop bread crumbs to <u>mark your path</u>.
- Whenever you come to a dead end, you retrace your path by following your bread crumbs.
- You continue retracing your path ("backtracking") until you come to an intersection with an unmarked path.
- You (recursively) go down the unmarked path.

Depth-First Search

- Represent the maze as a graph.
 - Each path is an edge.
 - Each intersection is a vertex.
- You are doing a depth-first search of the graph.

Depth-First Search

```
void dfs(Vertex v)
{
    v.visited = true; // mark

    for each Vertex w adjacent to v {
        if (!w.visited) {
            dfs(w); // recursively visit w
        }
    }
}
```

- Visits each vertex once.
- Processes each edge once in a directed graph.
- Processes each edge from both directions in an undirected graph.
- \Box Therefore, O(|V| + |E|).

Depth-First Search

Depth-First Search and Games

- Depth-first search is used by game-playing programs.
 - Example: IBM's "Deep Blue" chess playing program.
- Use a graph to represent the possible moves from the present situation into the future.
- Each vertex is a <u>decision point</u> for either you or your opponent.

71

Depth-First Search and Games, cont'd

- Perform a depth-first search to look at possible move outcomes of both you and your opponent.
- Each edge would have the cost of going down that path.
- Backtrack if a path is a dead end or its cost is not beneficial.
- How deeply your program can search depends on the computer's memory and the allowed search time.

Find a Lost Child in a Large Building

- Start in the room where the child was last seen.
- Search each room <u>adjacent</u> to the first room.
 - Put a tag on the door to mark a room you've already searched.
- Then search each room adjacent to the rooms you've already searched.
- Repeatedly search all the rooms adjacent to rooms you've already searched before moving farther out from the first room.

Breadth-First Search

- Represent the building as a graph.
 - Each room is a vertex.
 - Each hallway between rooms is an edge.
- You are doing a breadth-first search of the graph.

Breadth-First Search

```
void bfs(Vertex s)
{
    Queue<Vertex> q = new Queue<>();
    q.enqueue(s);
    s.visited = true;
    while (!q.empty()) {
        Vertex v = q.dequeue();
        for each Vertex w adjacent to v {
            if (!w.visited) {
                w.visited = true;
                q.enqueue(w);
```


Breadth-First Search

