

Table of Content

- Description of Drug Benefits Dataset and Problems
- N
 - Pre-processing of Dataset
- o
- **Explanation of Analysis**
- <u>lılı.</u>
- Outcomes from the Drug Dataset
- **/**

Actionable Recommendations

Drug Dataset Description

Comprehensive Drug Comments Collection

- Over 4,000 comments from the FDA
- Insights into patient experiences and sentiments

Detailed Record Structure

- Includes drug name, rating, and treated condition
- Reviews on benefits and side effects

Analysis of Patient Perspectives

- Focus on benefitsReview column for trends
- Understanding consumer reactions to drugs

Key Colum	Key Columns in the Drug Dataset							
ID	Drug Name	Rating	Condition	Benefits Review	Side Effects Review	Comments Review		
Record ID	Name of the drug	Patient rating	Condition treated	Review of benefits	Description of side effects	Additional comments		

FDA Comments and Columns

Column Name	Description
id	Record ID
drugName	Name of the drug
rating	Patient rating of the drug
condition	Condition treated by the drug
benefitsReview	Review of the drug's benefits by the patient
sideEffectsReview	Review of side effects experienced by the patient
commentsReview	Additional comments or reviews by the patient

Problems with Drug Dataset

Data Quality Concerns:

Missing values, noise, inconsistencies, Capitalization, punctuation, and misspellings issues

Text Preprocessing

Necessities:

tokenization, stemming, lemmatization, and stop word

Subjectivity in Patient Reviews: Reviews influenced by personal experiences and biases

Analysis Interpretation Difficulties

Topic Extraction Complexities

Time Consuming Data Analysis

Dataset Integrity Issues

Missing Crucial Data

Steps for Pre-Processing 'benefitsReview' Text Data

Step	Action	Purpose	
1	Convert to lowercase	Ensure consistency	
2	Remove noise elements	Clean data	
3	Tokenize text	Prepare for analysis	
4	Lemmatize words	Normalize data	
5	Remove stop words	Focus on valuable words	
6	Handle missing data	Maintain data integrity	

Preprocessing Steps for Analysis

Consistency in Text Data

Convert text to lowercase to avoid case-sensitive duplication

Cleaning Text Content

Remove URLs, special characters, numbers, and punctuation

Tokenization

Split text into individual words for analysis

Normalization

Lemmatize words to their base form

Stop Words Removal

• Eliminate common words that add little value

Data Integrity

Handle missing data by dropping incomplete rows

Analysis

- Text Analysis
- Sentiment Analysis
- N-gram Analysis
- Topic Analysis
- Word Frequency and Visualization

Top Words in Identified Topics				
Topic Number	Top Words			
1	Word1, Word2, Word3,, Word10			
2	Word1, Word2, Word3,, Word10			
3	Word1, Word2, Word3,, Word10			
4	Word1, Word2, Word3,, Word10			
5	Word1, Word2, Word3,, Word10			
6	Word1, Word2, Word3,, Word10			

Text Mining Analysis

- Text Mining Techniques
 - Utilization of CountVectorizer for token matrix
 - Employment of LDA for theme identification
- Insights from 'benefitsReview'
 - Top 10 words for 6 topics reveal dominant themes

• Textual analysis

• Top 25 words

• Textual analysis

After excluding top 10 to get your MiddleGroup

Sentiment Classification

Review Sentiment Classification

- Utilized TextBlob library to calculate polarity scores
- Categorized reviews based on sentiment polarity

Sentiment Distribution Visualization

- Displayed using a bar chart
- Provided an overview of drug sentiment

Data Export for In-Depth Analysis

• Positive and negative reviews saved in separate CSV files

Sentiment analysis

- Positive Sentiment Reinforcement
 - Utilize drugs with the most positive reviews in marketing
 - Incorporate patient testimonials showcasing benefits
 - Employ promotional materials that highlight effectiveness

N-gram and Topic Analysis

N-gram Analysis:

- The code performs n-gram analysis using both sci-kit-learn's Count Vectorizer and NLTK (Natural Language Toolkit) libraries.
- It extracts the most frequent 2-gram and 3-gram phrases, providing insights into common word combinations discussed in the reviews.

Topic Analysis:

- Conducted topic modeling to identify common themes in the benefits reviews.
- This helped us understand the main topics discussed by consumers.

Intuitive Visualizations

Visual Data Analysis in Drug Reviews

Word clouds showcase frequently mentioned terms Frequency plots highlight common phrases

Consumer Feedback Interpretation

Visualizations offer intuitive topic comprehension Themes in reviews are easily identified

Word Frequency and Visualizations

Visual Analysis of Drug Reviews

- Word clouds and frequency plots used for visualization
- Highlighting most-used words and phrases

Intuitive Understanding of Consumer Discussions

• Visualizations reveal prominent topics and themes

Justifiable and Actionable Recommendations

Positive Sentiment Reinforcement Negative Sentiment Mitigation

Continuous Monitoring Proactive Safety Measures

Consumer Insight Surveys

Utilization of NLP Tools

Improved Drug Communication

Enhanced Feedback Mechanisms Personalized Medicine Campaigns Strengthened Post-Market Surveillance

Patient Education and Support Targeted Product Development

