CS 107, Probability, Spring 2020 Lecture 20

Michael Poghosyan mpoghosyan@aua.am

AUA

11 March 2020

Content

- The Cumulative Distribution Function
- Discrete Random Variables

Last Lecture ReCap

- RVs are functions from Ω , the Sample Space of an Experiment, to \mathbb{R} , i.e., some numerical quantities associated with the outcome of the Experiment;
- The general problem we want to solve concerning Random Variables is to be able to calculate the Probabilities $\mathbb{P}(X \in A)$, where X is the RV, and $A \subset \mathbb{R}$.
- Example: Let X be the number of goals in the upcoming (concrete) football game. What is the Probability that X will be less than 3, i.e. what is $\mathbb{P}(X < 3)$?
- It turns out that, to calculate Probabilities $\mathbb{P}(X \in A)$, it is enough to be able to calculate the Probabilities $\mathbb{P}(X \le x)$ for any x, and we define the CDF of X to be

$$F(x) = F_X(x) = \mathbb{P}(X < x), \quad x \in \mathbb{R}.$$

Properties of the CDF

Assume F(x) is the CDF of the r.v. X:

$$F(x) = F_X(x) = \mathbb{P}(X \le x), \qquad x \in \mathbb{R},$$

Then:

Properties of CDF

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+)=F(x_0)$ at any $x_0\in\mathbb{R}$

Characterization of the CDF

Now we want to answer the inverse question: which functions F can serve as CDFs for some r.v.? It turns out that the above properties **completely characterize CDFs**:

Characterization of CDFs

Assume $F: \mathbb{R} \to \mathbb{R}$ is a function satisfying

- $0 \le F(x) \le 1$, for any $x \in \mathbb{R}$;
- $F(-\infty) = 0$ and $F(+\infty) = 1$;
- F is an increasing function, i.e., if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- F is right-continuous at every point, i.e. $F(x_0+)=F(x_0)$ at any $x_0\in\mathbb{R}$

Then there exists an Experiment with a Sample Space Ω , Probability Measure $\mathbb P$ and a r.v. $X:\Omega\to\mathbb R$ such that F(x) is the CDF of X: $F(x)=F_X(x),\qquad x\in\mathbb R.$

Graphical Example of a CDF

Figure: CDF of some r.v. X

Examples

Example: Which of the following functions define a CDF of some Random Variable:

- $F(x) = x^2$, $x \in \mathbb{R}$;
- $F(x) = \sqrt{x}, x \ge 0;$
- $F(x) = \frac{1}{1+x^2}, x \in \mathbb{R};$
- F(x) = 0, if $x \le 0$ and F(x) = 1, if x > 0;
- F(x) = 0, if x < 0 and F(x) = 1, if $x \ge 0$;
- F(x) = 0, if $x \le 0$ and $F(x) = 1 e^{-x}$, if x > 0;
- $\sigma(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$, $x \in \mathbb{R}$.

Solution: OTB

Examples

Example: Assume we are tossing a fair coin 2 times, and let X be the number of Heads in that Experiment. Find the CDF of X analytically and draw the graph of that CDF.

Solution: OTB

Using CDFs to calculate Probabilities

Now recall that our general Problem was to be able to calculate the Probabilities of the type $\mathbb{P}(X \in A)$, where X is a rv. and $A \subset \mathbb{R}$. The following Proposition is helping us to calculate these Probabilities. Assume X is a r.v., and F(x) is its CDF. Then:

Probabilities through CDF

- $\mathbb{P}(X = a) = F(a) F(a-);$
- $\mathbb{P}(a < X \le b) = F(b) F(a);$
- $\mathbb{P}(a \le X \le b) = F(b) F(a-);$
- $\mathbb{P}(a \le X < b) = F(b-) F(a-);$
- $\mathbb{P}(a < X < b) = F(b-) F(a);$

Here it is possible that $a=-\infty$ or/and $b=+\infty$

Reading Probabilities from the graph of CDF

Problem: Is the following a CDF of some r.v. X? If yes, calculate $\mathbb{P}(X=2)$, $\mathbb{P}(2.5 < X \le 5)$, $\mathbb{P}(X \le 5)$, $\mathbb{P}(X > 0)$:

Figure: CDF of some r.v. X