Yakeen NEET 2.0 2026

Practice Sheet

Physical Chemistry By Amit Mahajan Sir

Thermodynamics and Thermochemistry

- Q1 The species which by definition has zero standard molar enthalpy of formation at 298 K is:
 - (A) $Br_2(g)$
- (B) $Cl_2(q)$
- (C) $H_2O(g)$
- (D) $CH_4(g)$
- **Q2** Which of the following is a state function?
 - (A)q

- (B) q-w
- (C) $\frac{q}{w}$
- (D) q+w
- Q3 Select the path function among the following:
 - (A) temperature
 - (B) entropy
 - (C) work
 - (D) enthalpy
- Q4 For a process to be in equilibrium, it is necessary that:
 - (A) $\Delta S_{system} = \Delta S_{surr.}$
 - (B) $\Delta S_{sustem} = -\Delta S_{surr.}$
 - (C) $\Delta S_{system} = 0$
 - (D) $\Delta S_{surr.} = 0$
- Q5 Entropy change in reversible adiabatic process is:
 - (A) Infinite
 - (B) Zero
 - (C) Equal to $C_V \Delta T$
 - (D) Equal to $nR \, \ln \left(\frac{V_2}{V_1} \right)$
- **Q6** The enthalpy of a reaction does not depend upon:
 - (A) the intermediate reaction steps
 - (B) the temperature of initial and final state of the reaction
 - (C) the physical states of reactants and products
 - (D) use of different reactants for the formation of the same product

- Q7 $(\Delta H \Delta U)$ for the formation of carbon monoxide (CO) from its element at 298 K is: (R = 8.314 J K⁻¹ mol⁻¹).
 - (A) -1238.78 J mol⁻¹
 - (B) 1238.78 J mol⁻¹
 - (C) -2477.57 J mol⁻¹
 - (D) 2477.57 J mol⁻¹
- Q8 Match the physical changes in List-I with their relations given in List-II:

List-I		List II	
A.	ΔG	(i)	$\Delta U + P \Delta V$
В.	ΔH	(ii)	-nFE
C.	ΔS^o	(iii)	$-RT \log_e K$
D.	ΔG^o	(iv)	$nR\log_e\left(rac{V_1}{V_2} ight)$

- (A) A-(ii), B-(i), C-(iv), D-(iii)
- (B) A-(i), B-(ii), C-(iii), D-(iv)
- (C) A-(iv), B-(iii), C-(ii), D-(i)
- (D) A-(i), B-(ii), C-(iv), D-(iii)
- **Q9** 4.48 L of an ideal gas at S.T.P requires 12 calories to raise its temperature by 15° C at constant volume. The C_P of the gas is:
 - (A) 3 cal
- (B) 4 cal
- (C) 7 cal
- (D) 6 cal
- Q10 In which of the following pairs, both properties are intensive?
 - (A) Internal energy, temperature
 - (B) Density, volume
 - (C) Temperature, density
 - (D) Pressure, volume
- Q11 For a phase change;

$$H_{2}O\left(\mathrm{l}
ight) \mathop{
ightlefthat{rightleft}}_{0^{o}C,1bar}H_{2}O\left(s
ight)$$

- (A) $\Delta G = 0$
- (B) $\Delta S=0$
- (C) $\Delta H = 0$
- (D) $\Delta U = 0$
- Q12 $A \rightarrow B$; $\Delta U = 40kJ \ mol^{-1}$

If the system goes from A to B by a reversible path and returns to state A by an irreversible path, what would be the net change in internal energy?

- (A) More than 40 kJ
- (B) Zero
- (C) Less than 40 kJ
- (D) 40 kJ
- Q13 Although the dissolution of ammonium chloride (NH_4Cl) in water is an endothermic reaction, even then it is spontaneous because:
 - (A) $\Delta S = -ve$
 - (B) $\Delta S = zero$
 - (C) $T \Delta S < \Delta H$
 - (D) $\Delta S = +ve$ and $\Delta H < T \Delta S$
- **Q14** Given that, bond energies of H H and Cl Cl are 430 kJ/mol and 240 kJ/mol respectively. ΔH_f for HCl is - 90 kJ/mol. Bond enthalpy of HCl is:
 - (A) 380 kJ mol⁻¹
- (B) 425 kJ mol⁻¹
- (C) 245 kJ mol⁻¹
- (D) 290 kJ mol⁻¹
- Q15 Combustion of octane takes place in an automobile engine. The homogeneous equation of combustion is:

$$C_8H_{18}ig(gig)+rac{25}{2}O_2ig(gig)
ightarrow 8CO_2ig(gig)$$

$$+9H_2O(g)$$

The signs of ΔH , ΔS and ΔG for the reaction will be:

- (A) +ve, -ve, +ve
- (B) -ve, +ve, -ve
- (C) -ve, +ve, +ve
- (D) +ve, +ve, -ve
- Q16 The amount of heat released, when 20 mL of 0.5 M NaOH is mixed with 100 mL of 0.1 M HCl, is x kJ. The heat of neutralization (in kJ mol⁻¹) is:
 - (A) -100 x
- (B) -50 x
- (C) +100 x
- (D) +50 x

- Q17 The entropy of a perfectly crystalline substance at absolute zero on the basis of third law of thermodynamics should be taken as:
 - (A) 100
 - (B)50
 - (C) Zero
 - (D) different for different substances
- Q18 A process in which the system does not exchange heat with the surroundings is known
 - (A) isothermal
- (B) isobaric
- (C) isochoric
- (D) adiabatic
- Q19 Assertion (A): The enthalpy of formation of gaseous oxygen molecules at 298 K and under a pressure of one atm is zero.

Reason (R): The entropy of formation of gaseous oxygen molecules under the same condition is

- (A) If both (A) and (R) are correct and (R) is the correct reason for (A).
- (B) If both (A) and (R) are correct but (R) is not the correct explanation for (A).
- (C) If (A) is true but (R) is false.
- (D) If both (A) and (R) are false.
- Q20 In which reaction, there will be increase in

(A)
$$Naig(sig) + H_2Oig(lig) o NaOHig(aqig)$$

$$+\frac{1}{2}H_2(g)\uparrow$$

(B)
$$Ag^{+}ig(aqig) + Cl^{-}ig(aqig)
ightarrow AgClig(sig)$$

(C)
$$H_2ig(gig)+rac{1}{2}O_2ig(gig)
ightarrow H_2Oig(lig)$$

(D)
$$Cu^{2+}ig(aqig)+4NH_3ig(gig)$$

$$ightarrow \left[Cu(NH_3)_4
ight]^{2+} \Big(aq \Big)$$

- **Q21** If the internal energy of an ideal gas decreases by the same amount as the work done by the system, the process is:
 - (A) Cyclic
- (B) Isothermal
- (C) Adiabatic
- (D) Isolated
- **Q22** For which of these processes is the value of ΔS negative?

- I. Sugar is dissolved in water.
- II. Steam condenses on a surface.
- III. CaCO₃ is decomposed into CaO and CO₂.
- (A) I only
- (B) II only
- (C) I and III only
- (D) II and III only
- Q23 Assertion (A): For a particular reaction, heat of combustion at constant pressure (q_P) is always greater than that at constant volume (q_V) . Assertion (R): Combustion reactions are

invariably accomplished by increase in number of

- (A) If both (A) and (R) are correct and (R) is the correct reason for (A).
- (B) If both (A) and (R) are correct but (R) is not the correct explanation for (A).
- (C) If (A) is true but (R) is false.
- (D) If both (A) and (R) are false.
- Q24 The lattice energy of solid NaCl is 180 kcal per mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1 kcal per mol. If the solvation energies of Na⁺ and Cl⁻ ions are in the ratio 6:5, what is the enthalpy of hydration of sodium ion?
 - (A) 85.6 kcal/mol
 - (B) 97.5 kcal/mol
 - (C) 82.6 kcal/mol
 - (D) +100 kcal/mol
- **Q25** An ideal gas expands in volume from 1×10^{-3} ${
 m m}^3$ to $1 imes 10^{-2} {
 m m}^3$ at 300 K against a constant pressure of 1×10^5 Nm⁻². The work done is:
 - (A) -900 J
- (B) $-900 \ kJ$
- (C) $270 \ kJ$
- (D) $+900 \ kJ$
- **Q26** The standard enthalpy of formation of NH₃ is -46 kJ mol⁻¹. If the enthalpy of formation of H₂ from its atoms is -436 kJ mol⁻¹ and that of N_2 is -712 kJ mol⁻¹, the average bond enthalpy of N—H bond in NH₃ is:
 - (A) + 1056 kJ mol^{-1}
 - (B) 1102 kJ mol⁻¹

- (C) 964 kJ mol⁻¹
- (D) + 352 kJ mol^{-1}
- Reaction of silica with mineral acids may be given Q27

$$SiO_2 + 4HF
ightarrow SiF_4 + 2H_2O; \quad \Delta H = \ -10.17 \; kcal$$

$$SiO_2 + 4HCl
ightarrow SiCl_4 + 2H_2O; \quad \Delta H = \ +36.7 \; kcal$$

Which among the following is correct?

- (A) HF and HCl both will react with silica
- (B) Only HF will react with silica
- (C) Only HCl will react with silica
- (D) Neither HF nor HCl will react with silica
- **Q28** For vaporisation of water at 1 atmospheric pressure, the values of ΔH and ΔS are 40.63 kJ mol⁻¹ and 108.8 J K⁻¹ mol⁻¹ respectively. The temperature when gibbs free energy change (Δ
 - G) for transformation will be zero, is:
 - (A) 273.4 K
- (B) 393.4 K
- (C) 373.4 K
- (D) 293.4 K
- **Q29** Predict the sign of ΔS for each of the following processes, which occur at constant temperature:
 - I. The volume of 2 mol of $O_2(g)$ increases from 44L to 54L.
 - II. The pressure of 2 mol of $O_2(g)$ increases from 1 atm to 1.2 atm.

ratin to iiz atini		
	ı	Ш
(1)	$\Delta S =$	$\Delta S = -ve$
(1)	-ve	D B — 66
(2)	$\Delta S =$	$\Delta S = +ve$
	-ve	
(3)	$\Delta S =$	$\Delta S = -ve$
	+ve	
(4)	$\Delta S =$	$\Delta S = +ve$
	+ve	, ,
(A)	1	(B) 2

(C) 3

(D) 4

Q30 The enthalpy and entropy changes for the

$$Br_2\Big(\mathrm{l}\Big) + Cl_2\Big(g\Big)
ightleftharpoons 2BrCl\Big(g\Big)$$

are 30 kJ mol⁻¹ and 105 J K⁻¹ mol⁻¹ respectively. The temperature at which the reaction will be in equilibrium is:

- (A) 285.7 K
- (B) 273 K
- (C) 450 K
- (D) 300 K
- Q31 Assertion (A): Enthalpy of graphite is lower than that of diamond.

Reason (R): Entropy of graphite is lower than that of diamond.

- (A) If both (A) and (R) are correct and (R) is the correct reason for (A).
- (B) If both (A) and (R) are correct but (R) is not the correct explanation for (A).
- (C) If (A) is true but (R) is false.
- (D) If both (A) and (R) are false.
- Q32 A 1 g sample of substance A at 100°C is added to 100 mL of H₂O at 25°C. Using separate 100 mL portion of H₂O, the procedure is repeated with substance B and then with substance C. How will the final temperatures of the water compare?

Substance Specific heat 0.6 J q⁻¹ °C⁻¹ 0.4 J g⁻¹ °C⁻¹ 0.2 J g⁻¹ °C⁻¹ C

- (A) $T_C > T_B > T_A$
- (B) $T_B > T_A > T_C$
- (C) $T_A > T_B > T_C$
- (D) $T_A = T_B = T_C$
- Q33 Standard entropy of X2, Y2 and XY3 are 60, 40 and 50 JK⁻¹ mol⁻¹ respectively.

For the reaction:

$$rac{1}{2}X_2+rac{3}{2}Y_2
ightarrow XY_3,~~\Delta H=-30~kJ$$

to be at equilibrium, the temperature will be:

- (A) 1000 K
- (B) 1250 K
- (C) 500 K
- (D) 750 K
- Q34 Statement-1: There is no exchange in internal energy in a cyclic process.

Statement-2: In a cyclic process, the system returns to original state in a number of steps.

(A) Statement-1 is true; statcment-2 is true; statement-2 is a correct explanation for statement-1.

- (B) Statement-1 is true; statement-2 is true; statement-2 is not a correct explanation for statement-1.
- (C) Statement-1 is true; statement-2 is false.
- (D) Statement-1 is false; statement-2 is true.
- Q35 Two mole of an ideal gas is expanded isothermally and reversibly from 1 litre to 10 litre at 300 K. The enthalpy change (in kJ) for the process is:
 - (A) 11.4 kJ
- (B) -11.4 kJ
- (C) 0 kJ
- (D) 4.8 kJ
- Q36 Which among the following represents the standard reaction of formation of the product?

(A)
$$C_{(diamond)} + O_2ig(gig) o CO_2ig(gig)$$

- (B) $S_{(monoclinic)} + O_2ig(gig) o SO_2ig(gig)$
- (C) $2N_2(q)+O_2(q) \rightarrow 2N_2O(q)$
- (D) None of the above
- Q37 Assertion (A): Decrease in free energy causes spontaneous reaction.

Reason (R): Spontaneous reactions are invariably exothermic.

- (A) If both (A) and (R) are correct and (R) is the correct reason for (A).
- (B) If both (A) and (R) are correct but (R) is not the correct explanation for (A).
- (C) If (A) is true but (R) is false.
- (D) If both (A) and (R) are false.
- Q38 Considering entropy(s) as a thermodynamic parameter, the criterion for the spontaneity of any process is:

(A)
$$\Delta S_{system} + \Delta S_{surrounding} > 0$$

- (B) $\Delta S_{system} \Delta S_{surrounding} > 0$
- (C) $\Delta S_{sustem} > 0$ only
- (D) $\Delta S_{surrounding} > 0$ only
- **Statement-1:** Most of the combustion reactions Q39 are exothermic.

Statement 2: Products are more stable than reactants in exothermic process.

Statement-1 is true; statement-2 is true; statement-2 is a correct explanation for statement-1.

- (B) Statement-1 is true; statement-2 is true; statement-2 is not a correct explanation for statement-1.
- (C) Statement-1 is true; statement-2 is false.
- (D) Statement-1 is false; statement-2 is true.
- **Q40** Which one of the following statements is false?
 - (A) Work is a state function.
 - (B) Temperature is a state function.
 - (C) Work appears at the boundary of the system.
 - (D) Change in the state is completely defined when the initial and final states are specified
- Q41 Consider this equation and the associated value for ΔH^o :

$$egin{aligned} 2H_2ig(g) + 2Cl_2ig(g) &
ightarrow 4HClig(g); \qquad \Delta H^o \ = -92.3 \; kJ \end{aligned}$$

Which statement about this information is incorrect?

- (A) If the equation is reversed, the ΔH° value equals + 92.3 kJ
- (B) The four HCI bonds are stronger than four bonds in H₂ and Cl₂
- (C) The ΔH° value will be 92.3 kJ if HCl is produced as a liquid
- (D) 23.1 kJ of heat will be evolved when 1 mole of HCl(g) is produced
- **Q42** On the basis of following thermochemical data:

$$egin{aligned} H_2O\left(ext{l}
ight) & o H^+\left(aq
ight) + OH^-\left(aq
ight); \; \Delta H \ &= 57.32 \; kJ \ H_2ig(gig) + rac{1}{2}O_2ig(gig) o H_2Oig(ext{l}ig) \quad ; \; \Delta H = \ &-286.2 \, kJ \end{aligned}$$

The value of enthalpy of formation of OH⁻ ion at 25°C is:

- (A) -22.88 kJ
- (B) -228.88 kJ
- (C) +228.88 kJ
- (D) -343.52 kJ
- Q43 Statement-1: Heat of solution is positive when $Na_2SO_4 \cdot 10H_2O$ is dissolved in water but it is negative when anhydrous CuSO₄ is dissolved in

water.

Statement-2: Molar masses of Na₂SO₄.10H₂O and CuSO₄ are same

- (A) Statement-1 is true; statcmcnt-2 is true; statement-2 is a correct explanation for statement-1.
- (B) Statement-1 is true; statement-2 is true; statement-2 is not a correct explanation for statement-1.
- (C) Statement-1 is true; statement-2 is false.
- (D) Statement-1 is false; statement-2 is true.
- Q44 For the reaction,

$$2H_{2}\left(g
ight) +O_{2}\left(g
ight)
ightarrow 2H_{2}O\left(g
ight) ;\ \ \Delta H^{o}=-573.2\ kJ$$

The heat of decomposition of water per mol is:

- (A) 286.6 kJ
- (B) 573.2 kJ
- (C) -28.66 kJ
- (D) Zero
- **Q45** The value of ΔH and ΔS for the reaction, $C(graphite) \, + \, CO_2(g) \, o \, 2CO(g)$ are 170 kJ and 170 J/K respectively. This reaction will be spontaneous at:
 - (A) 510 K
- (B) 710 K
- (C) 910 K
- (D) 1110 K

Answer Key

Q1	(B)	
Q2	(D)	
Q3	(C)	
Q4	(B)	
Q5	(B)	
Q6	(A)	
Q7	(B)	
Q8	(A)	
Q9	(D)	
Q10	(C)	
Q11	(A)	
Q12	(B)	
Q13	(D)	
Q14	(B)	
Q15	(B)	
Q16	(A)	
Q17	(C)	
Q18	(D)	
Q19	(C)	

Q20 (A)

Q21 (C)

Q22 (B)

Q23 (D)

ver ney				
Q24	(B)			
Q25	(A)			
Q26	(D)			
Q27	(B)			
Q28	(C)			
Q29	(C)			
Q30	(A)			
Q31	(C)			
Q32	(C)			
Q33	(D)			
Q34	(A)			
Q35	(C)			
Q36	(D)			
Q37	(C)			
Q38	(A)			
Q39	(A)			
Q40	(A)			
Q41	(C)			
Q42	(B)			
Q43	(C)			
Q44	(A)			
Q45	(D)			
	Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43			

Android App | iOS App | PW Website