TRINITY COLLEGE DUBLIN THE UNIVERSITY OF DUBLIN

Faculty of Engineering, Mathematics and Science

School of Computer Science & Statistics

Integrated Engineering Year 3 Annual Examinations

Trinity Term 2015

3D2 Microprocessor Systems 2

Thursday 30 April 2015

Sports Centre

09:30 - 11:30

Dr Mike Brady

Instructions to Candidates:

Attempt **two** questions. All questions carry equal marks. Each question is scored out of a total of 20 marks.

You may not start this examination until you are instructed to do so by the Invigilator.

Materials permitted for this examination:

A two-page document, entitled "Pthread Types and Function Prototypes" accompanies this examination paper.

Non-programmable calculators are permitted for this examination — please indicate the make and model of your calculator on each answer book used.

- (a) Give an account of pipelining and how it can improve the performance of a
 processor. In your answer, explain how and why the full potential of pipelines is
 not always achievable. [10 marks]
 - (b) Explain how a cache works. Give a worked example of how cache would speed up the execution of a program loop designed to calculate the average of 1,000 integers stored sequentially in memory, given 10 ns memory access time, cache with an idealised access time of 0 ns and a processor that can execute a complete instruction every 1 ns, provided the instruction and data are in cache. [10 marks]

- 2. (a) Compare and contrast polled and interrupt-driven I/O. In your answer, highlight the advantages and drawbacks of each approach. For example, given that polling is so simple, why is it not used all the time, and given that interrupt handling is so processor efficient, why is it not used all the time? [8 marks]
 - (b) A system has four push-button switches S1, S2, S3 and S4 and four light-emitting diodes (LEDs) L1, L2, L3 and L4, much as you would have seen on the ARM boards. Write a fragment of ARM assembly language, complete with any equates and memory reservations needed, so that whenever a switch is pressed, the state of the corresponding LED should toggle, that is, it should change state if it was lit it should go dim, and if it was dim it should be lit.

Assume the switches are connected to location 0xE0040002 in bit positions 0, 1, 2 and 3 respectively such that the a bit is 1 if its switch is pressed and 0 otherwise, with no switch bounce.

Assume that the LEDs are connected to location 0xE0040004 in bit positions 0, 1, 2 and 3 respectively. To light a LED, set its bit to 1; to make it dim, set its bit to 0. Assume the other four bits in that location are "don't cares" — i.e. it doesn't matter what values you set them to. Assume that 0xE0040004 is write-only, i.e. that you can't read back values from it, and explain why this assumption is important. [12 marks]

- 3. (a) What is the purpose of different modes of operation of a processor, such as the different modes that are provided on the ARM processor? What are the extra registers for?
 [4 marks]
 - (b) What are desirable properties of an interrupt handler and why are they desirable?

 [4 marks]
 - (c) Write an interrupt handler which is called every 1 ms and which provides a debounced version of a push button switch's input. When pressed or release, the switch's output may bounce between its initial value and its final value for up to 7 ms. The switch is connected to bit 0 of location 0xE0040006 and the debounced version of it should be maintained at bit 0 of a location in RAM labelled CLEANSWITCH. [12 marks]

ASCII Code

	Colun	ın Numt	er					
Row Number	000	001	010	011	100	101	110	111
0000	NUL	DLE	\Diamond	0	@	P		p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	11	2	В	R	Ъ	r
0011	ETX	DC3	#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	\mathbf{E}	U	e	u
0110	ACK	SYN	&	6	F	V	${f f}$	v
0111	BELL	ETB	•	7	\mathbf{G}	W	g	W
1000	BS	CAN	(8	\mathbf{H}	X	h	X
1001	HT	EM)	9	Ι	Y	i	у
1010	LF	SUB	*	•	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS	•	>	N	٨	n	~
1111	SI	US	/	?	0	_	O	DEL

The ASCII code of a character is found by combining its Column Number (given in 3-bit binary)

with its Row Number (given in 4-bit binary).
The Column Number forms bits 6, 5 and 4 of the ASCII, and the Row Number forms bits 3, 2, 1 and 0 of the ASCII.

Example of use: to get ASCII code for letter "n", locate it in Column 110, Row 1110. Hence its ASCII code is 1101110.

The Control Code mnemonics are given in italics above; e.g. CR for Carriage Return, LF for Line Feed, BELL for the Bell, DEL for Delete.

The Space is ASCII 0100000, and is shown as ◊ here.

ARM® Instruction Set Quick Reference Card

Key to Tables	
{cond}	Refer to Table Condition Field. Omit for unconditional execution.
<operand2></operand2>	Refer to Table Flexible Operand 2. Shift and rotate are only available as part of Operand2.
<fields></fields>	Refer to Table PSR fields.
<psr></psr>	Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register)
(s)	Updates condition flags if S present.
C*, V*	Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later.
ю	Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR.
GE	Four Greater than or Equal flags. Always updated by parallel adds and subtracts.
×,y	B meaning half-register [15:0], or T meaning [31:16].
<immed_8r></immed_8r>	A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.
(<u>x</u>)	RsX is Rs rotated 16 bits if X present. Otherwise, RsX is Rs.
<prefix></prefix>	Refer to Table Prefixes for Parallel instructions
<p_mode></p_mode>	Refer to Table Processor Modes
R13m	R13 for the processor mode specified by <p_mode></p_mode>

	{endianness}	Can be BE (Big Endian) or LE (Little Endian).
or unconditional execution.	<a_mode2></a_mode2>	Refer to Table Addressing Mode 2.
ift and rotate are only available as part of Operand2.	<a_mode2p></a_mode2p>	Refer to Table Addressing Mode 2 (Post-indexed only).
	<a_mode3></a_mode3>	Refer to Table Addressing Mode 3.
egister) or SPSR (Saved Processor Status Register)	<a_mode4l></a_mode4l>	Refer to Table Addressing Mode 4 (Block load or Stack pop).
	<a_mode45></a_mode45>	Refer to Table Addressing Mode 4 (Block store or Stack push).
nd earlier, unchanged in Architecture v5 and later.	<a_mode5></a_mode5>	Refer to Table Addressing Mode 5.
(no S option). Read and reset using MRS and MSR.	<reglist></reglist>	A comma-separated list of registers, enclosed in braces { and }.
updated by parallel adds and subtracts.	<reglist-pc></reglist-pc>	As <reglist>, must not include the PC.</reglist>
ing [31:16].	<reglist+pc></reglist+pc>	As <reglist>, including the PC.</reglist>
g an 8-bit value by an even number of bits.	{:}	Updates base register after data transfer if ! present.
herwise, RsX is Rs.	+/-	+ or -, (+ may be omitted.)
structions	ωn	Refer to Table ARM architecture versions.
	<iflags></iflags>	Interrupt flags. One or more of a, i, f (abort, interrupt, fast interrupt).
<p_mode></p_mode>	{R}	Rounds result to nearest if R present, otherwise truncates result.

Operation		§ Assembler	Supdates	۵	Action
Arithmetic Add		_	NZCV		Rd := Rn + Operand2
	with carry	Rd, Rn,			Rd := Rn + Operand2 + Carry
		SE QADD{cond} Rd, Rm, Rn		0	
	urating			Q.	Rd := SAT(Rm + SAT(Rn * 2))
	Subtract	SUB{cond}{S} Rd, Rn, <operand2></operand2>	NZCV		Rd := Rn − Operand2
	with carry	SBC(cond)(S) Rd, Rn, <operand2></operand2>	2		Rd := Rn Operand2 NOT(Carry)
	reverse subtract	RSB{cond}{S} Rd, Rn, <operand2></operand2>			Rd := Operand2 - Rn
	reverse subtract with carry	RSC(cond)(S) Rd, Rn, <operand2></operand2>			Rd := Operand2 Rn NOT(Carry)
	saturating	5E QSUB{cond} Rd, Rm, Rn		0	Rd := SAT(Rm - Rn)
	urating	5E QDSUB(cond) Rd, Rm, Rn		0	Rd := SAT(Rm - SAT(Rn * 2))
	Multiply	2 MUL(cond)(S) Rd, Rm, Rs	N 2 C*		Rd := (Rm * Rs)[31:0]
-	and accumulate	2 MLA(cond)(S) Rd, Rm, Rs, Rn	N Z C*		Rd := ((Rm * Rs) + Rn)[31:0]
	unsigned long	M UMULL {cond} {S} RdLo, RdHi, Rm, Rs	N Z C* V*		RdHi,RdLo := unsigned(Rm * Rs)
	unsigned accumulate long	M UMLAL {cond} {S} RdLo, RdHi, Rm, Rs			RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)
	unsigned double accumulate long	6 UMAAL (cond) RdLo, RdHi, Rm, Rs			RdHi,RdLo := unsigncd(RdHi + RdLo + Rm * Rs)
	Signed multiply long	M SMULL(cond) [S] RdLo, RdHi, Rm, Rs	N Z C* V*		RdHi,RdLo := signed(Rm * Rs)
	and accumulate long	M SMLAL (cond) {S} RGLo, RGHi, Rm, Rs	N Z C* V*		$RdHi_{*}RdLo := signed(RdHi_{*}RdLo + Rm * Rs)$
		5E SMULxy{cond} Rd, Rm, Rs			Rd := Rm[x] * Rs[y]
		SE SMULWy (cond) Rd, Rm, Rs			Rd := (Rm * Rs[y])[47:16]
	16 * 16 bit and accumulate	5E SMLAxy{cond} Rd, Rm, Rs, Rn		Q	Rd := Rn + Rm[x] * Rs[y]
	32 * 16 bit and accumulate	5E SMLAWy{cond} Rd, Rm, Rs, Rn		Ø	Rd := Rn + (Rm * Rs[y])[47:16]
	16 * 16 bit and accumulate long	5E SMLALKY (cond) RdLo, RdHi, Rm, Rs			RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]
	Dual signed multiply, add	6 SMUAD(X)(cond) Rd, Rm, Rs		0	Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]
	and accumulate	6 SMLAD{X}{cond} Rd, Rm, Rs, Rn		0	Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]
	and accumulate long	6 SMLALD{X}{cond} RdHi, RdLo, Rm, Rs		0	RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]
	Dual signed multiply, subtract	6 SMUSD{X}{cond} Rd, Rm, Rs		0	Rd := Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]
	and accomulate	6 SMLSD(X)(cond) Rd, Rm, Rs, Rn		0	Rd := Rn + Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]
	and accumulate long	6 SMLSLD{X}{cond} RdHi, RdLo, Rm, Rs		0	RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]
	Signed most significant word multiply	6 SMMUL(R)(cond) Rd, Rm, Rs			Rd := (Rm * Rs)[63:32]
	and accumulate	6 SMMLA(R)(cond) Rd, Rm, Rs, Rn			Rd := Rn + (Rm * Rs)[63:32]
	and subtract	6 SMMLS{R}{cond} Rd, Rm, Rs, Rn			Rd := Rn - (Rm * Rs)[63:32]
	Multiply with internal 40-bit accumulate XS	XS MIA {cond} Ac, Rm, Rs			Ac := Ac + Rm * Rs
	packed halfword	XS MIAPH (cond) Ac, Rm, Rs			Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]
	halfword	XS MIAxy {cond} Ac, Rm, Rs			Ac := Ac + Rm[x] * Rs[y]
	Count leading zeroes	5 CLZ{cond} Rd, Rm			Rd := number of leading zeroes in Rm
			•	Ì	

ARM Addressing Modes Quick Reference Card

Operation Parallel	Halfword-wise addition	ر الم الم	Assembler <pre>cprefix>ADD16(cond) Rd, Rn, Rm</pre>	S updates Q GE Action	<u>ما</u>	GE Action GE Rdf31:161 := Rnf31:161 + Rmf31:161. Rdf15:01 := Rnf15:01 + Rmf15:01
arithmetic	Halfword-wise subtraction		Rd, Rn,			GE $Rd[31:16] = Rn[31:16] - Rm[31:16], Rd[15:0] := Rn[15:0] - Rm[15:0]$
	Byte-wise addition	<u>^</u>	<pre><prefix>ADD8{cond} Rd, Rn, Rm</prefix></pre>		_	GE $Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16], Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]$
	Byte-wise subtraction	0	<pre><prefix>SUB8{cond} Rd, Rn, Rm</prefix></pre>		Œ	
	Halfword-wise exchange, add, subtract	δ.	<pre><prefix>ADDSUBX{cond} Rd, Rn, Rm</prefix></pre>		0	GE Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] - Rm[31:16]
	Halfword-wise exchange, subtract, add	Δ.	<pre><prefix>SUBADDX{cond} Rd, Rn, Rm</prefix></pre>		_	GE Rd[31:16] := Rn[31:16] - Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16]
	Unsigned sum of absolute differences	6	USAD8{cond} Rd, Rm, Rs			Rd := Abs(Rm[31:24] - Rs[31:24]) + Abs(Rm[23:16] - Rs[23:16]) + Abs(Rm[15:8] - Rs[15:8]) + Abs(Rm[7:0] - Rs[7:0])
	and accumulate	6 U	USADA8 {cond} Rd, Rm, Rs, Rn			Rd := Rn + Abs(Rm[31:24] - Rs[31:24]) + Abs(Rm[23:16] - Rs[23:16]) + Abs(Rm[15:8] - Rs[15:8]) + Abs(Rm[7:0] - Rs[7:0])
Моче	Move	33	MOV{cond}{S} Rd, <operand2></operand2>	NZC		Rd := Operand2
	NOT	3	<operand2></operand2>	NZC		Rd := 0xFFFFFFFF EOR Operand2
•	PSR to register	ω 3	MRS{cond} Rd, <psr></psr>			.Rd := PSR
	register to PSR	ري 3	MSR{cond} <psr>_<fields>, Rm</fields></psr>			PSR := Rm (selected bytes only)
	immediate to PSR	<u>س</u>	MSR{cond} <psr>_<fields>, #<immed_br></immed_br></fields></psr>			PSR := immed_8r (selected bytes only)
	40-bit accumulator to register	X X				RdLo := Ac[31:0], RdHi := Ac[39:32]
	register to 40-bit accumulator	X X	XS MAR {cond} Ac, RdLo, RdHi			Ac[31:0] := RdLo, Ac[39:32] := RdHi
	Сору	6 0				Rd := Operand2
Logical	Test	Ŧ	TST{cond} Rn, <operand2></operand2>	NZC		Update CPSR flags on Rn AND Operand2
	Test equivalence	н	TEQ{cond} Rn, <operand2></operand2>	NZC		Update CPSR flags on Rn EOR Operand2
	AND	⊳	AND{cond}{S} Rd, Rn, <operand2></operand2>		_	Rd := Rn AND Operand2
	EOR	E	EOR{cond}{S} Rd, Rn, <operand2></operand2>	NZC	_	Rd := Rn EOR Operand2
	ORR	_	ORR{cond}{S} Rd, Rn, <operand2></operand2>	NZC		Rd := Rn OR Operand2
	Bit Clear	В	BIC{cond}{S} Rd, Rn, <operand2></operand2>	NZC		Rd := Rn AND NOT Operand2
Compare	Compare	n	CMP{cond} Rn, <operand2></operand2>	NZCV		Update CPSR flags on Rn - Operand2
	negative	a	CMN{cond} Rn, <operand2></operand2>	NZCV		Update CPSR flags on Rn + Operand2
Saturate	Signed saturate word, right shift	8	SSAT(cond) Rd, # <sat>, Rm(, ASR <sh>)</sh></sat>		D	Rd := SignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-32.</sh></sat>
	left shift	(a	SSAT{cond} Rd, # <sat>, Rm{, LSL <sh>}</sh></sat>		Q	Rd := SignedSat((Rm LSL sh), sat). < sat > range 0-31, < sh > range 0-31.
	Signed saturate two halfwords	6	SSAT16{cond} Rd, # <sat>, Rm</sat>		Q	Rd[31:16] := SignedSat(Rm[31:16], sat), Rd[15:0] := SignedSat(Rm[15:0], sat). <sat> range 0-15.</sat>
	Unsigned saturate word, right shift	6	USAT{cond} Rd, # <sat>, Rm{, ASR <sh>}</sh></sat>		Q	Rd := UnsignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-32.</sh></sat>
	left shift	d	USAT(cond) Rd, # <sat>, Rm{, LSL <sh>}</sh></sat>		Q	Rd := UnsignedSat((Rm LSL sh), sat). <sat> range 0-31, <sh> range 0-31.</sh></sat>
	Unsigned saturate two halfwords	9	USAT16{cond} Rd, # <sat>, Rm</sat>		0	Rd[31:16] := UnsignedSat(Rm[31:16], sat),
		ŀ			F	- and acred a company and an all

ARM Instruction Set Quick Reference Card

Dool- half			the test that the test of the	
Pack man	Pack halfword top + bottom	6		Rd[3]:16] := Rn[3]:16], Rd[15:0] := (Rm ASR sh)[15:0]. sh 1-32.
Signed Halfword to word	d to word	6	Rm(, ROR # <sh>)</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
	Two bytes to halfwords		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Rd[31:16] := SignExtend((Rm ROR (8 * sh))[73:16]), Rd[15:0] := SignExtend((Rm ROR (8 * sh))[7:0]), sh 0-3.
Byte to word	word	φ.	SXTB{cond} Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
Unsigned Halfword to word	d to word	_	Rm(, ROR # <sh>)</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
	Two bytes to halfwords		d, Rm{, ROR # <sh>}</sh>	Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]), sh 0-3.
Byte to word	word	6	UXTB{cond} Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
Signed Halfword	Halfword to word, add	_	, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
extend Two byte	Two bytes to halfwords, add	6	<u>~</u>	Rd[31:16] := Rn[31:16] + SignExtend((Rm ROR (8 * sh))[7:16]), Rd[15:0] := Rn[15:0] + SignExtend((Rm ROR (8 * sh))[7:0]), sh 0-3.
Byte to word, add	vord, add	6	SXTAB(cond) Rd, Rn, Rm[, ROR # <sh>} I</sh>	
Unsigned Halfword	Halfword to word, add	_	Rn, Rm{, ROR # <sh>}</sh>	
	Two bytes to halfwords, add	6	<u>*</u>	
Byte to word, add	word, add	6	UXTAB(cond) Rd, Rn, Rm(, ROR # <sh>)</sh>	
Reverse In word		9	m	Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24]
In both halfwords	alfwords	6	REV16(cond) Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24]
In low ha	In low halfword, sign extend	6	REVSH{cond} Rd, Rm 1	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF
Select Select bytes	/tes	6	SEL{cond} Rd, Rn, Rm	Rd[7:0] := Rn[7:0] if $GE[0] = 1$, else $Rd[7:0] := Rm[7:0]Bits[15:8], [23:16], [31:24] selected similarly by GE[1], GE[2], GE[3]$
Branch Branch		1	B{cond} label	R15 ≔ label
with link	link		BL{cond} label	R14 := address of next instruction, R15 := label
and e			Rm	
with	with link and exchange (1)	517	BLX label	R.14:= address of next instruction, $R.15:=$ label, Change to Thumb
with)	with link and exchange (2)	5	BLX{cond} Rm	R14 := address of next instruction, R15 := $Rm[31:1]$ Change to Thumb if $Rm[0]$ is 1
and c	and change to Java state	5J, 6 I	BXJ{cond} Rm	Change to Java state
essor Cha	Change processor state		{, # <p_mode>}</p_mode>	Disable specified interrups, optional change mode.
			{, # <p_mode>}</p_mode>	Enable specified interrups, optional change mode.
Change p	Change processor mode			
Set endianness	unness	9	SETEND <endianness></endianness>	Sets endianness for loads and saves.
Store return state	um state	<u>ه</u>	SRS <a mode4s=""> #{!}	[R13m] := R14, [R13m + 4] := CP\$R
Return fr	Return from exception			PC := [Rn], CPSR := [Rn + 4]
Breakpoint	int	5		Prefetch abort or enter debug state.
Software Software interrupt	Software interrupt	70	SWI{cond} <immed_24></immed_24>	Software interrupt processor exception.
No Op No operation	ition	S	NOP	None

ARM Addressing Modes Quick Reference Card

Operation Load Load multiple	hange)	SE 4 4]] is 1)]] ss 2) sss] ess[]	Notes Rd must not be R15.
	Doubleword Pop, or Block data load return (and exchange)	5E*	}, <reglist-pc> }, <reglist+pc></reglist+pc></reglist-pc>	Rd := [address], R(d+1) := [address + 4] Load list of registers from [Rn] Load registers, R15 := [address][31:1] (§ 5T: Change to Thumb if [address][0] is 1)	
Soft preload Load exclusive	and restore CPSR User mode registers Soft preload Memory system hint Load exclusive Semaphore operation	5E*	<pre>LDM(cond)<a_mode4l> Rn{:}, <reglist+pc>^ LDM(cond)<a_mode4l> Rn, <reglist-pc>^ SE* PLD <a_mode2> 6 LDREX(cond) Rd, [Rn]</a_mode2></reglist-pc></a_mode4l></reglist+pc></a_mode4l></pre>	Load registers, branch (§ 5T: and exchange), CPSR := SPSR Load list of User mode registers from [Rn] Memory may prepare to load from address Rd := [Rn], tag address as exclusive access Outstanding tag set if not shared address	Use from exception modes only. Use from privileged modes only. Cannot be conditional. Rd, Rn must not be R15.
Store	Word User mode privilege Byte		STR(cond) Rd, <a_mode2> STR(cond)T Rd, <a_mode2p> STR(cond)B Rd, <a_mode2></a_mode2></a_mode2p></a_mode2>	[address] := Rd [address] := Rd [address] := Rd[7:0]	
	User mode privilege Halfword Doubleword	4 5E*	STR{cond}BT Rd, <a_mode2p> 4 STR{cond}H Rd, <a_mode3> 5E* STR{cond}D Rd, <a_mode3></a_mode3></a_mode3></a_mode2p>	$\{address [7:0] := Rd[7:0] \}$ $\{address [15:0] := Rd[15:0] \}$ $\{address := Rd, \{address + 4] := R(d+1) \}$	Rd must be even, and not R14.
Store multiple Store exclusive	Store multiple Push, or Block data store User mode registers Store exclusive Semaphore operation	6	}, <reglist> }, <reglist>^</reglist></reglist>	Store list of registers to [Rn] Store list of User mode registers to [Rn] [Rn] := Rm if allowed, Rd := 0 if successful, else 1	Use from privileged modes only. Rd, Rm, Rn must not be R15.
Swap	Word Byte	3 3	SWP{cond} Rd, Rm, [Rn] SWP{cond}B Rd, Rm, [Rn]	emp := [Rn], [Rn] := Rm, Rd := temp temp := ZeroExtend([Rn][7:0]), [Rn][7:0] := Rm[7:0], Rd := temp	

Quick Reference Card ARM Addressing Modes

Addressing	Mode 2 - Word and I	Addressing Mode 2 - Word and Unsigned Byte Data Transfer	
Pre-indexed	Immediate offset	[Rn, #+/- <immed_12>]{!}</immed_12>	
	Zero offset	[Rn]	Equivalent to [Rn,#0]
	Register offset	[Rn, +/-Rm] {1}	
	Scaled register offset	{Rn, +/-Rm, LSL # <shift>] {!} Allowed shifts 0-31</shift>	Allowed shifts 0-31
		[Rn, +/-Rm, LSR # <shift>] [1] Allowed shifts 1-32</shift>	Allowed shifts 1-32
		[Rn, +/-Rm, ASR # <shift>] {!} Allowed shifts 1-32</shift>	Allowed shifts 1-32
		[Rn, +/-Rm, ROR # <shift>] {!} Allowed shifts 1-31</shift>	Allowed shifts 1-31
		[Rn, +/-Rm, RRX] {1}	
Post-indexed	Immediate offset	[Rn], #+/- <immed 12=""></immed>	
	Register offset	[Rn], +/-Rm	
	Scaled register offset	[Rn], +/-Rm, LSL # <shift></shift>	Allowed shifts 0-31
		[Rn], +/-Rm, LSR # <shift></shift>	Allowed shifts 1-32
		[Rn], +/-Rm, ASR # <shift></shift>	Allowed shifts 1-32
		[Rn], +/-Rm, ROR # <shift></shift>	Allowed shifts 1-31
		[Rn], +/-Rm, RRX	

Post-indexed	Post-indexed Immediate offset	[Rn] ,	[Rn], #+/- <immed_12></immed_12>	med_12>		
	Zero offset	B			Equivalent to [Rn],#0	[Rn],#0
	Register offset	[Rn] ,	+/-Rm			
	Scaled register offset	[Rn],	+/-Rm,	[Rn], +/-Rm, LSL # <shift></shift>	:> Allowed shifts 0-31	is 0-31
		[Rn],	+/-Rm,	+/-Rm, LSR # <shift></shift>	:> Allowed shifts 1-32	is 1-32
		[Rn] ,	+/-Rm,	+/-Rm, ASR # <shift></shift>	:> Allowed shifts 1-32	is 1-32
		[Rm],	+/-Rm,	+/-Rm, ROR # <shift></shift>	:> Allowed shifts 1-31	ts 1-31
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[Rn], +/-Rm, RRX	RRX		

Addressing Mode 3 - Halfword, Signed Byte, and Doubleword Data Transfer

[Rn, #+/-<immed_8>]{!}

Addressing	Addressing Mode 2 (Post-indexed only	id only)				
Post-indexed	Post-indexed Immediate offset	[Rn],	[Rn], #+/- <immed_12></immed_12>	med	12>	
	Zero offset	Rn				Equivalent to [Rn],#0
	Register offset	[Rn],	[Rn], +/-Rm			
	Scaled register offset [Rn] , +/-Rm, LSL # <shift></shift>	[Rn],	+/-Rm,	TST	# <shift></shift>	Allowed shifts 0-31
		[Rn]	+/-Rm,	LSR	[Rn], +/-Rm, LSR # <shift></shift>	Allowed shifts 1-32
		[Rn] ,	+/-Rm,	ASR	+/-Rm, ASR # <shift></shift>	Allowed shifts 1-32
		[Rn]	+/-Rm,	ROR	[Rn], +/-Rm, ROR # <shift></shift>	Allowed shifts 1-31
		[Rm] ,	[Rn], +/-Rm, RRX	RRX		

Addressing	Addressing Mode 2 (Post-indexed only	ed only)				
ost-indexed	Post-indexed Immediate offset	[Rn],	[Rn], #+/- <immed_12></immed_12>	med_1	12>	
	Zero offset	Rn				Equivalent to [Rn],#0
	Register offset	[Rn] ,	[Rn], +/-Rm			
	Scaled register offset [Rn], +/-Rm, LSL # <shift:< td=""><td>[Rn],</td><td>+/-Rm,</td><td>TST #</td><td><shift></shift></td><td>Allowed shifts 0-31</td></shift:<>	[Rn],	+/-Rm,	TST #	<shift></shift>	Allowed shifts 0-31
		[Rn],	+/-Rm,	LSR ‡	[Rn], +/-Rm, LSR # <shift></shift>	Allowed shifts 1-32
		[Rn] ,	+/-Rm,	ASR #	[Rn], +/-Rm, ASR # <shift></shift>	Allowed shifts 1-32
		[Rm],	+/-Rm,	ROR #	[Rn], +/-Rm, ROR # <shift></shift>	Allowed shifts 1-31
		[R]	[Rn], +/-Rm, RRX	RRX		

lressing l	Iressing Mode 2 (Post-indexed only indexed Immediate offset [Rn], Zero offset [Rn] Register offset [Rn],	ed only) [Rn], [Rn], [Rn],	donly) [Rn], #+/- <immed_12> [Rn] [Rn], +/-Rm</immed_12>	12>	Equivalent to [Rn],#0	Logical shift right reg Arithmetic shift right Rotate right register	[2] 日 真
	Register offset	[Rn]	+/-Rm	# 1015.4+	Allowed shifts 0.31	DCD #75/45	
	Scaled register offset [Rn] , +/-Rm, LSL # <shift:< th=""><th>[Rn],</th><th>+/-Rm, LSL</th><th>#<shift></shift></th><th>Allowed shifts 0-31</th><th>PSR fields</th><th></th></shift:<>	[Rn],	+/-Rm, LSL	# <shift></shift>	Allowed shifts 0-31	PSR fields	
		[Rm],	[Rn], +/-Rm, LSR # <shift:< th=""><th>#<shift></shift></th><th>Allowed shifts 1-32</th><th>Suffix</th><th></th></shift:<>	# <shift></shift>	Allowed shifts 1-32	Suffix	
		[Rn],	[Rn], +/-Rm, ASR # <shift:< th=""><th>#<shift></shift></th><th>Allowed shifts 1-32</th><th>C</th><th></th></shift:<>	# <shift></shift>	Allowed shifts 1-32	C	
		[Rm],	[Rn], +/-Rm, ROR # <shift:< th=""><th>#<shift></shift></th><th>Allowed shifts 1-31</th><th>Ħ</th><th></th></shift:<>	# <shift></shift>	Allowed shifts 1-31	Ħ	
		[Rm],	[Rn], +/-Rm, RRX			ro.	
						•	

ARM architecture versions	ure versions					
п	ARM architecture version n and above	ion n :	nd ab	OVC.		
nT, nJ	T or J variants of ARM architecture version n and above	[archi	lecture	version n and above	ņ	
×	ARM architecture version 3M, and 4 and above, except xM variants.	ion 31	f, and	4 and above, except	xM variants.	
пE	All E variants of ARM architecture version n and above	archit	ecture	version n and above	,,,	
nE*	E variants of ARM architecture version n and above, except xP variants.	hitectu	ге үег	sion n and above, ex	cept xP variants.	
XS	XScale coprocessor instruction	structio	ĬĬ			L
	•					
Tanadiata salaa						
	, `	1 4	47.1			
Logical shut left immediate	immediate	XIII,	100	tSt # <sdift></sdift>	Allowed Shirts U-31	
Logical shift right immediate	nt immediate	Rm,	LSR	LSR # <shift></shift>	Allowed shifts 1-32	
Arithmetic shift right immediate	right immediate	Rm,	ASR	ASR # <shift></shift>	Allowed shifts 1-32	
Rotate right immediate	rediate	'n,	ROR	ROR # <shift></shift>	Allowed shifts 1-31	
Register		R				
Rotate right extended	nded	Rm,	RRX			
Logical shift left register	register	Rm,	$_{1ST}$	Rs		
Logical shift right register	nt register	Rm,	LSR	Rs		
Arithmetic shift right register	right register	Rm,	ASR	Rs		
		ī				

Condition Field		
Mnemonic	Description	Description (VFP)
ŌŒ	Equal	Equal
NE	Not equal	Not equal, or unordered
CS / HS	Carry Set / Unsigned higher or same	Greater than or equal, or unordered
CC / LO	Carry Clear / Unsigned lower	Less than
IM	Negative	Less than
Tđ	Positive or zero	Greater than or equal, or unordered
SA	Overflow	Unordered (at least one NaN operand)
VC	No overflow	Not unordered
Ħ	Unsigned higher	Greater than, or unordered
ST	Unsigned lower or same	Less than or equal
GE	Signed greater than or equal	Greater than or equal
LI	Signed less than	Less than, or unordered
GI	Signed greater than	Greater than
H.	Signed less than or equal	Less than or equal, or unordered
ΑL	Always (normally omitted)	Always (normally omitted)

Addressing Mode 4 - Multiple Data Transfer
Block load Stack pop

DA DA

Increment Before Increment After

ED FA EA

Block store

Decrement Before Decrement After

Stack push

Post-indexed

Register Immediate offset

[Rn, +/-Rm] {!}
[Rn], #+/-<immed_8>
[Rn], +/-Rm

Pre-indexed

Immediate offset Zero offset

[RE]

Equivalent to [Rn,#0]

Addressing	Addressing Mode 5 - Coprocessor Data Transfer	sor Data Transfer	
Pre-indexed	Pre-indexed Immediate offset	[Rn, #+/- <immed_8*4>](1)</immed_8*4>	
	Zero offset	[Rn]	Equivalent to [Rn,#0]
Post-indexed	Post-indexed Immediate offset	[Rn], #+/- <immed_8*4></immed_8*4>	
Unindexed	T	[Rn], {8-bit copro. option}	

IA IB DA DB

Decrement Before Decrement After Increment Before Increment After

EA ED ED

Empty Descending Full Descending Full Ascending Empty Ascending Empty Ascending Full Ascending Empty Descending Full Descending

		System	<u></u>
 Unsigned arithmetic, halving results 	g	Undefined	27
Unsigned saturating arithmetic	g	Abort	23
Unsigned arithmetic modulo 28 or 216, sets CPSR GE bits	๘	Supervisor	19
	HS	IRQ Interrupt	18
Signed saturating arithmetic	Ö	FIQ Fast Interrupt	17
Signed arithmetic modulo 28 or 216, sets CPSR GE bits	ß	User	16
Prefixes for Parallel Instructions	P	les	Processor Modes

Control field mask byte
Flags field mask byte
Status field mask byte
Extension field mask byte

PSR[7:0] PSR[31:24] PSR[23:16] PSR[15:8]

(use at least one suffix)

Meaning

Rm,

ROR Rs

Quick Reference Card ARM Addressing Modes

Coprocessor operations	æ	§ Assembler	Action	Notes
Data operations	2	2 CDP(cond) <copr>, <op1>, CRd, CRn, CRm{, <op2>}</op2></op1></copr>	Coprocessor dependent	
Alternative data operations	υ	CDP2 <copr>, <op1>, CRd, CRn, CRm(, <op2>}</op2></op1></copr>	Coprocessor dependent	Cannot be conditional.
Move to ARM register from coprocessor	2	MRC(cond) <copr>, <op1>, Rd, CRn, CRm(, <op2>)</op2></op1></copr>	Coprocessor dependent	
Alternative move	S	5 MRC2 <copr>, <opl>, Rd, CRn, CRm{, <op2>}</op2></opl></copr>	Coprocessor dependent	Cannot be conditional.
Two ARM register move	5E*	5E* MRRC(cond) <copr>, <opl>, Rd, Rn, CRm</opl></copr>	Coprocessor dependent	
Alternative two ARM register move	6	MRRC2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>	Coprocessor dependent	Cannot be conditional.
Move to coproc from ARM reg	22	MCR(cond) <copr>, <opl>, Rd, CRn, CRm{, <op2>}</op2></opl></copr>	Coprocessor dependent	
Alternative move	υ	5 MCR2 <copr>, <opl>, Rd, CRn, CRm{, <opl>)</opl></opl></copr>	Coprocessor dependent	Cannot be conditional.
Two ARM register move	£¥	SE* MCRR{cond} <copr>, <cpl>, Rd, Rn, CRm</cpl></copr>	Coprocessor dependent	
Alternative two ARM register move	6	MCRR2 <copr>, <opl>, Rd, Rn, CRm</opl></copr>	Coprocessor dependent	Cannot be conditional.
Load	2	IDC(cond) <copr>, CRd, <a_mode5></a_mode5></copr>	Coprocessor dependent	
Alternative loads	Ŋ		Coprocessor dependent	Cannot be conditional.
Store	2	STC(cond) <copr>, CRd, <a_mode5></a_mode5></copr>	Coprocessor dependent	
Alternative stores	5	5 STC2 <copr>, CRd, <a_mode5></a_mode5></copr>	Coprocessor dependent	Cannot be conditional.

Proprietary Notice

Words and logos marked with $^{\oplus}$ or m are registered trademarks or trademarks owned by ARM Limited. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

Document Number

ARM QRC 0001H

D	C	В	A	Issue	Change
Oct 199	Nov 19	Sept 19	June 19	Date	Log

June 1995 Sept 1996 Nov 1998 Oct 1999 Oct 2000 Sept 2001 Jan 2003 Oct 2003 CKS CKS BIH BIH Change
First Release
Second Release
Third Release
Fourth Release
Fifth Release
Sixth Release
Sixth Release
Syventh Release

жотп