Titre: Espace de Bergman du disque unité

Recasages: 201,205,208,213,234,235,243,245

Thème: Intégration, analyse complexe, analyse hilbertienne.

Références : Charles, Mbekhta, Quéffélec (p. 124)

Théorème 1. On pose $\mathbb{D} = B(0,1[$ le disque unité complexe, et

$$H:=L^2(\mathbb{D})\cap\mathcal{H}(\mathbb{D})$$

L'espace de Bergman du disque unité (constitué par définitions des fonctions holomorphes de carré intégrable sur \mathbb{D}). Il s'agit d'un espace de Hilbert (pour le produit scalaire de $L^2(\mathbb{D})$), dont une base hilbertienne est donnée par

$$\left\{ e_n := \sqrt{\frac{n+1}{\pi}} z^n \mid n \in \mathbb{N} \right\}$$

On commence par montrer une inégalité 'inverse' entre norme infinie et norme L^2 : soit $f \in H$ et $z \in \mathbb{D}$, avec $d(z, \mathbb{D}^c) > r > 0$, on développe f en série entière autour de z:

$$f(w) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!} (w - z)^n$$

On obtient alors

$$\int_{B(z,r]} f(w)dw = \int_{B(z,r]} \sum_{n=0}^{\infty} \frac{f^{n}(z)}{n!} (w - z)^{n} dw$$

$$= \sum_{n=0}^{\infty} \frac{f^{n}(y)}{n!} \int_{0}^{r} \int_{0}^{2\pi} \rho^{n} e^{in\theta} \rho d\theta d\rho$$

$$= \sum_{n=0}^{\infty} \frac{f^{n}(y)}{n!} \int_{0}^{r} \rho^{n+1} d\rho \int_{0}^{2\pi} e^{in\theta} d\theta$$

$$= f(y) \frac{r^{2}}{2} \times 2\pi = r^{2} \pi f(y)$$

Donc pour $z \in \mathbb{D}$ tel que $d(z, \mathbb{D}^c) > r > 0$, on obtient (par Cauchy Schwarz)

$$f(z) \leqslant \frac{1}{r^2\pi} \int_{B(z,r]} |f(w)| dw \leqslant \frac{1}{r^2\pi} \left(\int_{B(z,r]} |f(w)|^2 dw \right)^{1/2} \left(\int_{B(z,r]} dw \right)^{1/2} \leqslant \frac{1}{r\sqrt{\pi}} \left\| f \right\|_2$$

Considérons maintenant $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans H (donc pour la norme $\|.\|_2$)), pour $K\subset\mathbb{D}$ un compact, il existe r>0 tel que $d(K,\mathbb{D}^c)>r$, on a alors, pour $z\in K$, $n,m\in\mathbb{N}$

$$|f_n(z) - f_m(z)| \le \frac{1}{r\sqrt{\pi}} \|f_n - f_m\|_2$$

Donc, comme (f_n) est de Cauchy pour $\|.\|_2$, la suite est uniformément de Cauchy sur K: elle converge uniformément vers une fonction continue f sur K. On obtient donc sur \mathbb{D} une limite f de la suite (f_n) holomorphe comme limite d'une suite convergeant uniformément sur tout compact.

Il faut encore montrer que $f \in L^2(\mathbb{D})$ et $(f_n) \to f$ dans $L^2(\mathbb{D})$: soit $\varepsilon > 0$, il existe par hypothèse $N \in \mathbb{N}$ tel que

$$\forall n, m \geqslant N, \int_{\mathbb{D}} |f_n - f_m|^2 d\lambda < \varepsilon^2$$

En laissant $m \to \infty$ et par le Lemme de Fatou, on obtient

$$\int_{\mathbb{D}} |f_n - f|^2 d\lambda \leqslant \liminf_{m \to \infty} \int_{\mathbb{D}} |f_n - f_m| d\lambda < \varepsilon^2$$

On obtient alors $f_n - f \in L^2(\mathbb{D})$, donc $f \in L^2(\mathbb{D})$ et de plus, $||f_n - f||_2 < \varepsilon$ pour $n \ge N$, d'où la convergence souhaitée : H est un espace de Hilbert.

On exhibe à présent une base hilbertienne de H: on pose

$$\forall n \in \mathbb{N}, a_n := \sqrt{\frac{n+1}{\pi}} \text{ et } e_n := a_n z^n$$

Commençons par montrer que $\{e_n \mid n \in \mathbb{N}\}$ forme une famille orthonormale de H: soient $p, q \in \mathbb{N}$, on a

$$(e_p|e_q) = a_p a_q \int_{\mathbb{D}} z^p \overline{z}^q dz =$$

$$= a_p a_q \int_0^1 \int_0^{2\pi} \rho^{p+q+1} e^{i(p-q)\theta} d\rho d\theta$$

$$= a_p a_q \int_0^1 \rho^{p+q+1} d\rho \int_0^{2\pi} e^{i(p-q)\theta} d\theta$$

Donc $(e_p|e_q) = 0$ si $p \neq q$, et dans le cas contraire

$$(e_p|e_p) = 2\pi a_p^2 \int_0^1 \rho^{2p+1} d\rho = 2(p+1) \frac{1}{2p+2} = 1$$

Il reste à montrer que cette famille est totale : on montre la formule de Parseval. Soit $f \in H$, on décompose f en série entière autour de $0: f(z) = \sum_{n=0}^{\infty} f_n z^n$, on a alors

$$||f||^2 = \int_{\mathbb{D}} |f(z)|^2 dz = \int_{0}^{1} \rho \int_{0}^{2\pi} |f(\rho e^{i\theta})|^2 d\theta d\rho$$

Fixons $\rho \in]0,1[$, on considère $S_n := \sum_{k=0}^n f_k z^k$ la n-ème somme partielle définissant f, on a alors

$$\int_0^{2\pi} \left| \sum_{k=0}^n f_k \rho^k e^{ik\theta} \right|^2 d\theta = \int_0^{2\pi} \sum_{k=0}^n |f_k|^2 \rho^{2k} d\theta$$

Car $e^{ik\theta}$ est d'intégrale non nulle sur $[0,2\pi]$ si et seulement si k est nul. Comme $\rho \in]0,1[$ est fixé, on peut utiliser le théorème de convergence dominée qui nous donne

$$\int_{0}^{2\pi} \left| \sum_{k=0}^{\infty} f_{k} \rho^{k} e^{ik\theta} \right|^{2} d\theta = \int_{0}^{2\pi} |f(\rho e^{i\theta})|^{2} d\theta = \int_{0}^{2\pi} \sum_{k=0}^{\infty} |f_{k}|^{2} \rho^{2k} d\theta$$

On a alors

$$||f||^2 = \int_0^1 \rho \int_0^{2\pi} \sum_{n=0}^\infty |f_n|^2 \rho^{2n} d\rho d\theta$$

$$= \sum_{n=0}^\infty \int_0^1 \rho \int_0^{2\pi} |f_n|^2 \rho^{2n} d\rho d\theta$$

$$= \sum_{n=0}^\infty 2\pi |f_n|^2 \int_0^1 \rho^{2n+1} d\rho$$

$$= \sum_{n=0}^\infty \frac{\pi}{n+1} |f_n|^2$$

En polarisant cette identité, on obtient, pour $g: z \mapsto = \sum_{n=0}^{\infty} g_n z^n \in H$,

$$(f|g) = \sum_{n=0}^{\infty} \frac{\pi}{n+1} f_n \overline{g_n}$$

En particulier, si $g = e_n$, on obtient $(f|e_n) = \frac{\pi}{n+1} f_n a_n = \sqrt{\frac{\pi}{n+1}} f_n$, d'où le résultat :

$$(f|g) = \sum_{n=0}^{\infty} (f|e_n)(e_n|g)$$

Et $\{e_n \mid n \in \mathbb{N}\}$ est bien une base hilbertienne.