ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова Департамент электронной инженерии

Курс: Теория электрических цепей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Резонанс напряжений»

Ефремов Виктор Васильевич БИТ-203 Бригада 1

$$C=0.1\,{
m mk\Phi}, L=10\,{
m m\Gamma h}, R_1=50\,{
m Om}, R_2=200\,{
m Om}, R_L=28\,{
m Om}$$

Посчитаем теоретические значения разлиных характеристик (резонанстная частота, характерестическое сопротивление, добротность, частоты максимумов напряжений на индуктивности и ёмкости):

$$\begin{split} f_p &= \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2*3.1415926*\sqrt{10^{-2}*10^{-7}}} \approx 5032.92121045 \ \Gamma\text{ц} \\ \rho &= \sqrt{\frac{L}{C}} = \sqrt{\frac{10^{-2}}{10^{-7}}} \approx 316.227766017 \ \text{Ом} \\ Q &= \frac{\rho}{R} \\ Q_1 &= \frac{316.227766017}{50} \approx 6.32455532034 \\ Q_2 &= \frac{316.227766017}{200} \approx 15.8113883009 \\ f_C &= f_p \sqrt{\frac{2Q^2-1}{2Q^2}} \\ f_L &= f_p \sqrt{\frac{2Q^2}{2Q^2-1}} \\ f_{C1} &= 5032.92136038* \sqrt{\frac{2*6.32455532034^2-1}{2*6.32455532034^2}} \approx 5001.36668342 \ \Gamma\text{ц} \\ f_{C2} &= 5032.92136038* \sqrt{\frac{2*15.8113883009^2-1}{2*15.8113883009^2}} \approx 5027.88592004 \ \Gamma\text{ц} \\ f_{L1} &= 5032.92136038* \sqrt{\frac{2*6.32455532034^2-1}{2*6.32455532034^2-1}} \approx 5064.67512245 \ \Gamma\text{ц} \\ f_{L2} &= 5032.92136038* \sqrt{\frac{2*15.8113883009^2-1}{2*15.8113883009^2-1}} \approx 5037.96184373 \ \Gamma\text{ц} \\ \end{split}$$

Схема смоделированная в LTSpice

f,кГц	V1,B	V2,B	V3,B	А1,мА	phi	Z (эксп)	x_c	X_L	Z (уст)	погр,%	cos(phi)
2	1.0	5.8	4.9		-73	620.25		125.66	671.97	8	0.29
3	2.5	7.1	4.8	13.5	-68	355.56	530.52	188.50	345.66	3	0.37
3.5	3.8	8.1	4.7	17.3	-65	271.68	454.73	219.91	240.08	12	0.42
4	5.4	9.4	4.5	21.6	-60	208.33	397.89	251.33	154.85	26	0.50
4.2	6.2	9.8	4.3	23.6	-58	182.20	378.94	263.89	125.44	31	0.53
4.4	7.2	10.1	4.2	25.6	-54	164.06	361.72	276.46	98.84	40	0.59
4.5	7.7	10.3	4.1	26.6	-52	154.14	353.68	282.74	86.79	44	0.62
4.6	8.1	10.4	4.1	27.6	-41	148.55	345.99	289.03	75.79	49	0.75
4.8	8.8	10.6	3.9	29.7	-65	131.31	331.57	301.59	58.30	56	0.42
5	9.3	10.8	3.7	31.5	-48	117.46	318.31	314.16	50.17	57	0.67
5.2	9.9	10.8	3.5	33.8	-42	103.55	306.07	326.73	54.10	48	0.74
5.4	10.5	10.9	3.3	35.9	-35	91.92	294.73	339.29	66.97	27	0.82
5.5	10.8	10.9	3.3	36.3	-20	90.91	289.37	345.58	75.22	17	0.94
5.6	10.9	10.8	3.2	36.1	-10	88.64	284.21	351.86	84.12	5	0.98
5.8	11.1	10.3	3.4	33.7	25	100.89	274.41	364.42	102.97	2	0.91
6	10.8	8.4	3.8	29.3	44	129.69	265.26	376.99	122.41	6	0.72
6.5	9.2	5.4	4.4	22.3	59	197.31	244.85	408.41	171.03	13	0.52
7	8.3	4.0	4.6	18.4	63	250.00	227.36	439.82	218.26	13	0.45
7.5	7.7	3.2	4.7	15.9	67	295.60	212.21	471.24	263.81	11	0.39
8	7.3	2.7	4.7	14.0	67	335.71	198.94	502.65	307.80	8	0.39
9	6.7	2.0	4.8	11.3	71	424.78	176.84	565.49	391.85	8	0.33
10	6.3	1.5	4.9	9.5	70	515.79	159.15	628.32	471.82	9	0.34
12	5.9	1.0	4.9	7.0	70	700.00	132.63	753.98	623.36	11	0.34
14	5.6	0.7	4.9	5.5	69	890.91	113.68	879.65	767.59	14	0.36
16	5.5	0.6	5.0	4.4	66	1136.36	99.47	1005.31	907.22	20	0.41
18	5.4	0.4	5.0	3.6	64	1388.89	88.42	1130.97	1043.75	25	0.44
20	5.3	0.4	5.0	3.0	58	1666.67	79.58	1256.64	1178.12	29	0.53

R = 50 Om

f,кГц	V1,B	V2,B	V3,B	А1,мА	phi	Z (эксп)	X_C	X_L	Z (уст)	погр,%	cos(phi)
2	0.9	5.5	4.9	7.8	-58	628.21	795.77	125.66	699.32	11	0.53
3	2.2	6.0	4.7	12.3	-50	382.11	530.52	188.50	396.20	4	0.64
3.5	3.0	6.2	4.5	14.6	-41	308.22	454.73	219.91	308.45	0	0.75
4	4.0	6.2	4.3	16.7	-30	257.49	397.89	251.33	247.95	4	0.87
4.2	4.3	6.2	4.3	17.4	-25	247.13	378.94	263.89	230.73	7	0.91
4.4	4.7	6.1	4.2	18.0	-20	233.33	361.72	276.46	217.41	7	0.94
4.5	4.9	6.0	4.2	18.2	-17	230.77	353.68	282.74	212.21	8	0.96
4.6	5.0	5.9	4.1	18.4	-15	222.83	345.99	289.03	207.95	7	0.97
4.8	5.3	5.7	4.1	18.6	-7	220.43	331.57	301.59	202.23	8	0.99
5	5.5	5.5	4.1	18.6	0	220.43	318.31	314.16	200.04	9	1.00
5.2	5.7	5.2	4.1	18.5	-5	221.62	306.07	326.73	201.06	9	1.00
5.4	5.9	4.9	4.2	18.2	11	230.77	294.73	339.29	204.90	11	0.98
5.5	5.9	4.7	4.2	17.9	14	234.64	289.37	345.58	207.75	11	0.97
5.6	6.0	4.6	4.2	17.6	16	238.64	284.21	351.86	211.13	12	0.96
5.8	6.0	4.3	4.2	17.3	21	242.77	274.41	364.42	219.33	10	0.93
6	6.0	4.0	4.3	16.7	25	257.49	265.26	376.99	229.09	11	0.91
6.5	6.1	3.4	4.4	15.5	33	283.87	244.85	408.41	258.36	9	0.84
7	6.0	2.9	4.5	14.2	39	316.90	227.36	439.82	291.79	8	0.78
7.5	6.0	2.5	4.6	13.0	43	353.85	212.21	471.24	327.26	8	0.73
8	5.9	2.2	4.9	12.0	46	408.33	198.94	502.65	363.65	11	0.69
9	5.8	1.7	4.7	10.3	51	456.31	176.84	565.49	437.09	4	0.63
10	5.6	1.4	4.8	9.0	54	533.33	159.15	628.32	510.01	4	0.59
12	5.5	1.0	4.9	7.0	56	700.00	132.63	753.98	652.75	7	0.56
14	5.4	0.7	4.9	5.7	56	859.65	113.68	879.65	791.64	8	0.56
16	5.3	0.5	4.9	4.7	55	1042.55	99.47	1005.31	927.65	11	0.57
18	5.2	0.4	4.9	3.9	50	1256.41	88.42	1130.97	1061.56	16	0.64
20	5.2	0.3	5.0	3.3	45	1515.15	79.58	1256.64	1193.93	21	0.71

 $R = 200 \, \text{Ом}$

Графики. Все зависимости от f (частоты).

 $R = 50 \, \text{Ом}$

V1/V3(f) - зеленый, V2/V3(f) - синий, A1*R/V3(f) - красный, $arphi_U - arphi_I(f)$ - фиолетовый

График из моделирования в LTSpice

$R = 200 \, \text{Om}$

V1/V3(f) - зеленый, V2/V3(f) - синий, A1*R/V3(f) - красный, $\varphi_U - \varphi_I(f)$ - фиолетовый

График из моделирования в LTSpice

Также если построить графики A1*R/V3(f) для обоих сопротивлений на одной плоскости, то видно что при большей добротности пик выше.

График в амперах

ИвмА

