— 11 —

Continuité

I. Continuité d'une fonction réelle

Définition 1 : Continuité

Soient f une fonction définie sur un intervalle I et $a \in I$.

- On dit que f est continue en a si f admet en a une limite à gauche $\lim_{x\to a^-} f(x)$, une limite à droite $\lim_{x\to a^+} f(x)$ et que $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = f(a)$.
- On dit que f est continue sur I si f est continue en tout réel de I.

Propriété 1 : (Admise)

Toutes les fonctions **usuelles** vues au lycée sont continues sur leur domaine de définition respectif : fonctions polynômes, quotients de polynômes, exponentielle, logarithme, racine carrée, sinus, cosinus...

Exemple :

On considère la fonction f dont la courbe représentative \mathcal{C}_f est donnée ci-dessous.

On remarque que

- $\lim_{x \to (-2)^-} f(x) = 3;$
- $\lim_{x \to (-2)^+} f(x) = 5.$

Ces deux valeurs sont différentes, la fonction f n'est pas continue en 2.

Graphiquement, on voit que la courbe de la fonction fait un "saut" en x = -2.

🔔 Remarque :

Une façon visuelle de dire qu'une fonction est continue est de dire que l'on peut tracer sa courbe représentative sans lever le stylo.

Année 2024/2025 Page 1/5

$\mathbf{/\!/}$ Exemple :

On considère la fonction $f: x \mapsto \begin{cases} 2x+9 & \text{si } x < -2 \\ x^2+1 & \text{si } -2 \leqslant x < 3 \end{cases}$ définie sur \mathbb{R} . $4x-4 & \text{si } x \geqslant 3$

La fonction f est continue sur $]-\infty;-2[,]-2;3[$ et $]3;+\infty[$.

Il faut maintenant étudier la continuité aux bords de chaque intervalle.

Continuité en -2

Ainsi, f est continue en -2.

Continuité en 3

• $f(-2) = (-2)^2 + 1 = 5$; • $f(3) = 4 \times 3 - 4 = 8$; • $\lim_{x \to (-2)^-} f(x) = 2 \times (-2) + 9 = 5$; • $\lim_{x \to 3^-} f(x) = 3^2 + 1 = 10$. • $\lim_{x \to 3^-} f(x) = (-2)^2 + 1 = 5$. On a $\lim_{x \to 3^-} f(x) \neq f(3)$. Ainsi, f est n'est pas continue en 3.

Propriété 2 : (Admise)

Si elles sont bien définies, la somme, le produit, le quotient et la composition de fonctions continues sur un intervalle I sont des fonctions continues sur I.

Exemple :

La fonction $x \mapsto \cos(x)(x^2 + 3\sqrt{x}) - \sin(x)e^x$ est continue sur \mathbb{R}_+ .

Théorème 1 : (Admis)

Soit f une fonction définie sur un intervalle I. Si f est dérivable sur I, alors f est également continue sur I.

! Remarque:

La réciproque est fausse. La fonction $x \mapsto |x|$ est continue sur \mathbb{R} mais n'est pas dérivable en 0.

Théorème des valeurs intermédiaires II.

Cas général 1.

Théorème 2 : Théorème des valeurs intermédiaires

Soit f une fonction **continue** sur un intervalle [a;b] et k un réel compris entre f(a)et f(b).

Alors il existe (au moins) un réel c dans [a;b] tel que f(c)=k.

Illustration : On représente une fonction f ci-dessous.

Pour tout réel k compris entre f(a) et f(b), k possède au moins un antécédent par f. Cependant, le théorème ne donne aucune information sur le nombre d'antécédents; dans cet exemple, il y en a trois. Le nom de ce théorème se justifie ainsi : une fonction continue qui passe d'une valeur f(a) à une valeur f(b) passe forcément au moins une fois par toutes les valeurs intermédiaires.

Exemple :

On considère la fonction $f: x \mapsto x^3 - 3x - 1$, définie sur \mathbb{R} . La fonction f est une fonction polynomiale, elle est donc continue. De plus, f(-2) = -1 et f(2) = 3.

Or, $0 \in [-1; 3]$. Ainsi, d'après le théorème des valeurs intermédiaires, il existe (au moins) un réel $c \in [-2; 2]$ tel que f(c) = 0.

Il existe aussi une version « étendue » de ce théorème :

Théorème 3 : Théorème des valeurs intermédiaires étendu

Soit f une fonction **continue** sur un intervalle a; b telle que $\lim_{x \to a^+}$ et $\lim_{x \to b^-} f(x)$ existent. Soit k un réel strictement compris entre ces deux limites.

Alors il existe (au moins) un réel c dans a; b tel que f(c) = k.

Exemple :

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Ainsi, d'après le théorème précédent, pour tout $b \in \mathbb{R}$, il existe $a \in \mathbb{R}$ tel que f(a) = b.

2. Fonctions strictement monotones

Théorème 4

Soit f une fonction **continue** et **strictement monotone** sur un intervalle [a;b]. Soit k un réel strictement compris entre f(a) et f(b).

Alors il existe un **unique** réel $c \in]a; b[$ tel que f(c) = k.

Année 2024/2025 Page 3/5

! Remarque :

On peut encore donner une version étendue de ce théorème faisant appel aux limites.

Méthode :

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 - 1$. Quel est le nombre de solutions de l'équation $f(x) = 4 \text{ sur } \mathbb{R}$?

- 1. On détermine f' et son signe : Pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 6x = 3x(x-2)$.
- 2. On dresse le tableau de variation de f.

x	$-\infty$	0		2		$+\infty$
f'(x)		+ 0	_	0	+	
f	$-\infty$	1		_5	<i></i> *	+∞

- 3. On se sert des extremums pour localiser les intervalles ou peuvent se trouver les solutions, et on applique le théorème de la valeur intermédiaire sur ces intervalles:
 - Sur $]-\infty;2]$, le maximum de f vaut -1 donc f(x)=4 n'a pas de solution sur cet intervalle.
 - Sur $[2; +\infty[$, f est continue et strictement croissante. $4 \in [-5; +\infty[$ donc, d'après le TVI, il existe un unique $\alpha \in [2; +\infty[$ tel que $f(\alpha) = 4$.

Donc l'équation f(x) = 4 n'admet qu'une solution sur \mathbb{R} .

Application à l'étude des suites III.

Propriété 3 : Image d'une suite convergente

Soient I un intervalle et (u_n) une suite telle que pour tout $n \in \mathbb{N}$, on a $u_n \in I$. Soit q une fonction définie sur l'intervalle I.

Si la suite (u_n) converge vers $\ell \in I$ et si g est **continue** en ℓ , alors $\lim_{n \to +\infty} g(u_n) = g(\ell)$. En d'autres termes, $\lim_{n\to+\infty} g(u_n) = g(\lim_{n\to+\infty} u_n)$.

Exemple :

Pour tout entier naturel non nul n, on note $u_n = \sqrt{9 + \frac{1}{n}}$. On a $\lim_{n \to +\infty} \left(9 + \frac{1}{n}\right) = 9$. Or, la fonction $x \mapsto \sqrt{x}$ est continue en 9. Ainsi, $\lim_{n \to +\infty} u_n = \sqrt{9} = 3$.

Année 2024/2025 Page 4/5

A Remarque:

L'hypothèse de continuité est primordiale! Pour tout réel x, notons $\lfloor x \rfloor$ la partie entière du réel x, c'est-à-dire le plus grand entier qui soit plus petit que x. Par exemple, $\lfloor 1, 3 \rfloor = 1$. Pour tout entier naturel non nul n, on note $u_n = 1 - \frac{1}{10^n}$.

On a ainsi $u_0 = 0$, $u_1 = 0$, $u_2 = 0$, $u_3 = 0$,

- Pour tout entier naturel non nul, $\lfloor u_n \rfloor = 0$. On a alors $\lim_{n \to +\infty} \lfloor u_n \rfloor = 0$;
- La suite (u_n) est convergente et on a $\lim_{n\to+\infty} u_n = 1$. Ainsi, $\lfloor \lim_{n\to+\infty} u_n \rfloor = \lfloor 1 \rfloor = 1$;
- On a donc $\lim_{n\to+\infty} \lfloor u_n \rfloor \neq \lfloor \lim_{n\to+\infty} u_n \rfloor$. Ceci est dû au fait que la fonction $x\mapsto |x|$ n'est pas continue en 1.

Définition 2

Soit f une fonction définie sur un intervalle I, on appelle point fixe de I tout réel $\alpha \in I$ tel que $f(\alpha) = \alpha$.

Théorème 5 : Théorème du point fixe

Soient I un intervalle, g une fonction définie et continue sur I, et (u_n) une suite telle que pour tout entier naturel n, $u_n \in I$ et $u_{n+1} = g(u_n)$.

Si la suite (u_n) converge vers $\ell \in I$, alors ℓ est un point fixe de g.

Preuve. On se place dans le contexte de la propriété. On suppose que (u_n) converge et on note $\ell = \lim_{n \to +\infty} u_n$. De plus, on admet que si $u_n \xrightarrow[n \to +\infty]{} \ell$, alors $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$. Or $\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} g(u_n) = g(\lim_{n \to +\infty} u_n) = g(\ell)$ car g est continue. Finalement : $\ell = g(\ell)$.

Exemple :

On définit la suite (u_n) par $u_0=2$ et, pour tout entier naturel $n, u_{n+1}=\sqrt{3u_n+4}$. On admet que (u_n) est croissante et que pour tout $n\in\mathbb{N}$, on a $2\leq u_n\leq 4$. (Ce qui se montre très bien par récurrence). On en déduit qu'elle converge et on note ℓ sa limite. On pose $g: x\mapsto \sqrt{3x+4}$ continue sur $\left]\frac{-4}{3}, +\infty\right[$ et puisque $\ell\in[2,4]$, alors on peut appliquer le théorème du point fixe. On a donc que $f(\ell)=\ell$, que l'on peut résoudre :

$$f(\ell) = \ell \iff \sqrt{3\ell + 4} = \ell \iff 3\ell + 4 = \ell^2 \iff \ell^2 - 3\ell - 4 = 0$$

On a donc une équation du second degré dont les solutions sont -1 et 4. Puisqu'on sait que $\ell \in [2,4]$, alors nécessairement que $\ell = 4$. Finalement $\lim_{n \to +\infty} u_n = 4$.

Année 2024/2025 Page 5/5