Übungen zur Numerik und Modellierung, Wintersemester 2013/14

7. Serie, 13.12.13

Aufgabe 26

Bestimmen Sie für m = 0, 1, 2, 3, 4, 5

- a) die Cebysev-Polynome $C_m(x)$,
- b) die normierten Cebysev-Polynome $T_m(x)$,
- c) die Cebysev-Approximationen $\pi_m T_m(x)$ für π_m in Π_{m-1} ,

verifizieren Sie für die in c) gefundenen Bestapproximationen den Alternantensatz und geben Sie die Approximationskonstanden $E_{\Pi_{m-1}}(\pi_m)$ an.

Aufgabe 27

- a) Berechnen Sie die Cebysev-Approximation zu $f:[-1,1]\to \mathbb{R}, f(x):=2x^4-x^3+12x-1$ im Unterraum Π_3 .
- b) Beweisen Sie, dass die Cebysev-Polynome $C_m(x), m \in \mathbb{N}_0$ die Differentialgleichung

$$(1 - x^2)C_m''(x) - xC_m'(x) + m^2C_m(x) = 0$$

erfüllen.

c) Beweisen Sie, dass die Cebysev-Polynome $C_m(x), m \in \mathbb{N}_0$ ein Orthogonalsystem bezüglich des Skalarproduktes

$$< f, g > := \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1 - x^2}} dx$$

bilden.

Hausaufgabe

Aufgabe 28

- a) Beweisen Sie, dass die Cebysev-Polynome $C_k(x), k = 0, 1, ..., m$ eine Basis des Polynomraumes Π_m bilden.
- b) Stellen Sie für m=0,1,2,3,4,5 die Polynome π_m als Linearkombination der Cebysev-Polynome $C_0,...,C_5$ dar.