CS 225A: Experimental Robotics Homework 0

Name: Abhyudit Singh Manhas SUID: 06645995

Problem 1

(a) We have:

$${}^{2}P_{4} = \begin{bmatrix} L_{4}\cos(90^{\circ} + \theta_{3}) \\ 0 \\ L_{4}\sin(90^{\circ} + \theta_{3}) \end{bmatrix} = \begin{bmatrix} -L_{4}\sin\theta_{3} \\ 0 \\ L_{4}\cos(\theta_{3}) \end{bmatrix}$$
(1)

Also:

$${}^{1}P_{4} = {}^{1}P_{2} + {}^{2}P_{4}$$

$$\implies {}^{1}P_{4} = \begin{bmatrix} 0\\0\\d \end{bmatrix} + \begin{bmatrix} -L_{4}\sin\theta_{3}\\0\\L_{1}\cos(\theta_{1}) \end{bmatrix} = \begin{bmatrix} -L_{4}\sin\theta_{3}\\0\\d + L_{2}\cos(\theta_{1}) \end{bmatrix}$$

$$(2)$$

Finally, we get:

$${}^{0}P_{4} = {}^{0}_{1}R^{1}P_{4}$$

$$\implies {}^{0}P_{4} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -L_{4}\sin\theta_{3}\\ 0\\ d_{2} + L_{4}\cos(\theta_{3}) \end{bmatrix}$$

$$\implies {}^{0}P_{4} = \begin{bmatrix} -L_{4}\cos\theta_{1}\sin\theta_{3}\\ -L_{4}\sin\theta_{1}\sin\theta_{3}\\ d_{2} + L_{4}\cos(\theta_{3}) \end{bmatrix}$$
(3)

(b) The matrix ${}_{4}^{2}R$ is given by:

$${}^{2}_{4}R = \begin{bmatrix} X_{4} \cdot X_{2} & Y_{4} \cdot X_{2} & Z_{4} \cdot X_{2} \\ X_{4} \cdot Y_{2} & Y_{4} \cdot Y_{2} & Z_{4} \cdot Y_{2} \\ X_{4} \cdot Z_{2} & Y_{4} \cdot Z_{2} & Z_{4} \cdot Z_{2} \end{bmatrix} = \begin{bmatrix} \cos \theta_{3} & -\sin \theta_{3} & 0 \\ 0 & 0 & -1 \\ \sin \theta_{3} & \cos \theta_{3} & 0 \end{bmatrix}$$
(4)

Noting that ${}_{2}^{1}R = I_{3\times 3}$, we have:

$${}^{0}_{4}R = {}^{0}_{1}R) {}^{1}_{2}R) {}^{2}_{4}R)$$

$$\Longrightarrow {}^{0}_{4}R = {}^{0}_{1}R) {}^{2}_{4}R) = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 \\ 0 & 0 & -1 \\ \sin\theta_{3} & \cos\theta_{3} & 0 \end{bmatrix}$$

$$\Longrightarrow {}^{0}_{4}R = \begin{bmatrix} \cos\theta_{1}\cos\theta_{3} & -\cos\theta_{1}\sin\theta_{3} & \sin\theta_{1} \\ \sin\theta_{1}\cos\theta_{3} & -\sin\theta_{1}\sin\theta_{3} & -\cos\theta_{1} \\ \sin\theta_{3} & \cos\theta_{3} & 0 \end{bmatrix}$$

$$(5)$$

(c) From 3, we have

$$x = -L_4 \cos \theta_1 \sin \theta_3$$

$$y = -L_4 \sin \theta_1 \sin \theta_3$$

$$z = d_2 + L_4 \cos(\theta_3)$$
(6)

The linear Jacobian of the end-effector is then given by:

$${}^{0}J_{v} = \begin{bmatrix} \frac{\partial x}{\partial \theta_{1}} & \frac{\partial x}{\partial d_{2}} & \frac{\partial x}{\partial \theta_{3}} \\ \frac{\partial y}{\partial \theta_{1}} & \frac{\partial y}{\partial d_{2}} & \frac{\partial y}{\partial \theta_{3}} \\ \frac{\partial z}{\partial \theta_{1}} & \frac{\partial z}{\partial d_{2}} & \frac{\partial z}{\partial \theta_{3}} \end{bmatrix}$$

$$\implies {}^{0}J_{v} = \begin{bmatrix} L_{4}\sin\theta_{1}\sin\theta_{3} & 0 & -L_{4}\cos\theta_{1}\cos\theta_{3} \\ -L_{4}\cos\theta_{1}\sin\theta_{3} & 0 & -L_{4}\sin\theta_{1}\cos\theta_{3} \\ 0 & 1 & -L_{4}\sin\theta_{3} \end{bmatrix}$$
(7)

(d) The angular Jacobian of the end-effector is given by:

$$^{0}J_{\omega} = \begin{bmatrix} \bar{\epsilon_{1}}^{0}Z_{1} & \bar{\epsilon_{2}}^{0}Z_{2} & \bar{\epsilon_{3}}^{0}Z_{3} \end{bmatrix}$$

$$\implies {}^{0}J_{\omega} = \begin{bmatrix} {}^{0}Z_{1} & 0 & {}^{0}Z_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \sin\theta_{1} \\ 0 & 0 & -\cos\theta_{1} \\ 1 & 0 & 0 \end{bmatrix}$$
 (8)

where ${}^{0}Z_{3} = {}^{0}Z_{4}$ is the last column of ${}^{0}_{4}R$ given by 5.

(e) The linear singularities of the robot are at $\theta_3 = -90^{\circ}$, 0° , and 90° . The robot for $\theta_3 = -90^{\circ}$ is shown below. The singular direction is Y_4 .

Figure 1: Singular configuration corresponding to $\theta_3=-90^\circ$

The robot for $\theta_3 = 0^{\circ}$ is shown below. The singular direction is \mathbb{Z}_4 .

Figure 2: Singular configuration corresponding to $\theta_3=0^\circ$

The robot for $\theta_3=90^\circ$ is shown below. The singular direction is Y_4 .

Figure 3: Singular configuration corresponding to $\theta_3 = 90^{\circ}$

(f) For $\theta_3 = -90^{\circ}$, we have:

$${}^{0}J_{v}(\theta_{3} = -90^{\circ}) = \begin{bmatrix} -L_{4}\sin\theta_{1} & 0 & 0\\ L_{4}\cos\theta_{1} & 0 & 0\\ 0 & 1 & L_{4} \end{bmatrix}$$

$$\tag{9}$$

This is a singularity because the end-effector cannot move along the Y_4 direction. For $\theta_1=0^\circ$, ${}^0Y_4=X_0=\begin{bmatrix}1&0&0\end{bmatrix}^T$, and for $\theta_1=90^\circ$, ${}^0Y_4=Y_0=\begin{bmatrix}0&1&0\end{bmatrix}^T$. For $\theta_3=0^\circ$, we have:

$${}^{0}J_{v}(\theta_{3}=0^{\circ}) = \begin{bmatrix} 0 & 0 & -L_{4}\cos\theta_{1} \\ 0 & 0 & -L_{4}\sin\theta_{1} \\ 0 & 1 & 0 \end{bmatrix}$$
 (10)

This is a singularity because the end-effector cannot move along the Z_4 direction. For $\theta_1=0^\circ$, ${}^0Z_4=Y_0=\begin{bmatrix}0&1&0\end{bmatrix}^T$, and for $\theta_1=90^\circ$, ${}^0Z_4=X_0=\begin{bmatrix}1&0&0\end{bmatrix}^T$. For $\theta_3=90^\circ$, we have:

$${}^{0}J_{v}(\theta_{3} = 90^{\circ}) = \begin{bmatrix} L_{4}\sin\theta_{1} & 0 & 0\\ -L_{4}\cos\theta_{1} & 0 & 0\\ 0 & 1 & -L_{4} \end{bmatrix}$$

$$(11)$$

This is a singularity because the end-effector cannot move along the Y_4 direction. For $\theta_1=0^\circ,\ ^0Y_4=X_0=\begin{bmatrix}1&0&0\end{bmatrix}^T,$ and for $\theta_1=90^\circ,\ ^0Y_4=Y_0=\begin{bmatrix}0&1&0\end{bmatrix}^T.$

(g) Since the robot is massless except for the end-effector, the mass matrix is given by:

$$M = m_4 J_v^T J_v$$

$$\implies M = m_4 \begin{bmatrix} L_4 \sin \theta_1 \sin \theta_3 & -L_4 \cos \theta_1 \sin \theta_3 & 0 \\ 0 & 0 & 1 \\ -L_4 \cos \theta_1 \cos \theta_3 & -L_4 \sin \theta_1 \cos \theta_3 & -L_4 \sin \theta_3 \end{bmatrix} \begin{bmatrix} L_4 \sin \theta_1 \sin \theta_3 & 0 & -L_4 \cos \theta_1 \cos \theta_3 \\ -L_4 \cos \theta_1 \sin \theta_3 & 0 & -L_4 \sin \theta_1 \cos \theta_3 \\ 0 & 1 & -L_4 \sin \theta_3 \end{bmatrix}$$

$$\implies M = \begin{bmatrix} m_4 L_4^2 \sin^2 \theta_3 & 0 & 0 \\ 0 & m_4 & -m_4 L_4 \sin \theta_3 \\ 0 & -m_4 L_4 \sin \theta_3 & m_4 L_4^2 \end{bmatrix}$$
(12)

(h) The gravity vector is given by:

$$G = -m_4 J_v^T g = -m_4 \begin{bmatrix} L_4 \sin \theta_1 \sin \theta_3 & -L_4 \cos \theta_1 \sin \theta_3 & 0 \\ 0 & 0 & 1 \\ -L_4 \cos \theta_1 \cos \theta_3 & -L_4 \sin \theta_1 \cos \theta_3 & -L_4 \sin \theta_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix}$$

$$\implies G = \begin{bmatrix} 0 \\ m_4 g \\ m_4 g L_4 \sin \theta_1 \end{bmatrix}$$

$$(13)$$

Problem 2

(a) The schematic along with the frames that correspond to the model described by the urdf file is shown below.

Figure 4: Frames as per the model described by the urdf

(b) The position of the end-effector in frame {3} is:

$${}^{3}P_{4} = \begin{bmatrix} 0\\0\\L_{4} \end{bmatrix} \tag{14}$$

(c) The results from SAI are:

(i) $\theta_1 = 0^{\circ}$, $d_2 = 1.5 \text{ m}$, $\theta_3 = -90^{\circ}$ For this, from 1 (a) (equation 3), we get

$${}^{0}P_{4} = \begin{bmatrix} -L_{4}\cos\theta_{1}\sin\theta_{3} \\ -L_{4}\sin\theta_{1}\sin\theta_{3} \\ d_{2} + L_{4}\cos(\theta_{3}) \end{bmatrix} = \begin{bmatrix} L_{4} \\ 0 \\ d_{2} \end{bmatrix} = \begin{bmatrix} 2.5 \\ 0 \\ 1.5 \end{bmatrix}$$
(15)

We observe that the result from SAI is not consistent with our expression from 1 (a). This is because frame $\{0\}$ in question 1 is rotated with respect to frame $\{0\}$ in figure 4 by 90° about Z_0 . Keeping this in mind, the result from SAI can then be obtained by

$${}^{0}P_{4} = R_{Z}(\theta = 90^{\circ}) \begin{bmatrix} 2.5 \\ 0 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2.5 \\ 0 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 0 \\ 2.5 \\ 1.5 \end{bmatrix}$$
(16)

(ii) $\theta_1 = 90^{\circ}$, $d_2 = 1.5 \text{ m}$, $\theta_3 = -90^{\circ}$ For this, from 1 (a) (equation 3), we get

$${}^{0}P_{4} = \begin{bmatrix} -L_{4}\cos\theta_{1}\sin\theta_{3} \\ -L_{4}\sin\theta_{1}\sin\theta_{3} \\ d_{2} + L_{4}\cos(\theta_{3}) \end{bmatrix} = \begin{bmatrix} 0 \\ L_{4} \\ d_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 2.5 \\ 1.5 \end{bmatrix}$$
(17)

We observe that the result from SAI is again not consistent with our expression from 1 (a). This is again explained by the fact that frame $\{0\}$ in question 1 is rotated with respect to frame $\{0\}$ in figure 4 by 90° about Z_0 . The result from SAI can then be obtained by

$${}^{0}P_{4} = R_{Z}(\theta = 90^{\circ}) \begin{bmatrix} 0 \\ 2.5 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2.5 \\ 1.5 \end{bmatrix} = \begin{bmatrix} -2.5 \\ 0 \\ 1.5 \end{bmatrix}$$
(18)

(d) The results from SAI are:

(i) $\theta_1 = 0^{\circ}$, $d_2 = 1.5 \text{ m}$, $\theta_3 = -90^{\circ}$ For this, from 1 (c) (equation 7), we get

$${}^{0}J_{v} = \begin{bmatrix} L_{4}\sin\theta_{1}\sin\theta_{3} & 0 & -L_{4}\cos\theta_{1}\cos\theta_{3} \\ -L_{4}\cos\theta_{1}\sin\theta_{3} & 0 & -L_{4}\sin\theta_{1}\cos\theta_{3} \\ 0 & 1 & -L_{4}\sin\theta_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ L_{4} & 0 & 0 \\ 0 & 1 & L_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 2.5 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix}$$
(19)

We observe that the result from SAI is not consistent with our expression from 1 (c). This is because frame $\{0\}$ in question 1 is rotated with respect to frame $\{0\}$ in figure 4 by 90° about Z_0 . Keeping this in mind, the result from SAI can then be obtained by the transformation:

$${}^{0}J_{v} = R_{Z}(90^{\circ}) \begin{bmatrix} 0 & 0 & 0 \\ 2.5 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 2.5 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix} = \begin{bmatrix} -2.5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix}$$
(20)

(ii) $\theta_1 = 90^{\circ}$, $d_2 = 1.5 \text{ m}$, $\theta_3 = -90^{\circ}$ For this, from 1 (c) (equation 7), we get

$${}^{0}J_{v} = \begin{bmatrix} L_{4}\sin\theta_{1}\sin\theta_{3} & 0 & -L_{4}\cos\theta_{1}\cos\theta_{3} \\ -L_{4}\cos\theta_{1}\sin\theta_{3} & 0 & -L_{4}\sin\theta_{1}\cos\theta_{3} \\ 0 & 1 & -L_{4}\sin\theta_{3} \end{bmatrix} = \begin{bmatrix} -L_{4} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & L_{4} \end{bmatrix} = \begin{bmatrix} -2.5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix}$$
(21)

We observe that the result from SAI is again not consistent with our expression from 1 (c). This is again explained by the fact that frame $\{0\}$ in question 1 is rotated with respect to frame $\{0\}$ in figure 4 by 90° about Z_0 . The result from SAI can then be obtained by

$${}^{0}J_{v} = R_{Z}(90^{\circ}) \begin{bmatrix} -2.5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2.5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -2.5 & 0 & 0 \\ 0 & 1 & 2.5 \end{bmatrix}$$
(22)

(e) We have from 1 (g) (equation 12)

$$m_{11} = m_4 L_4^2 \sin^2 \theta_3, \quad m_{22} = m_4, \quad m_{33} = m_4 L_4^2$$
 (23)

(i) $\theta_1=0^\circ$, $d_2=1.5$ m, and θ_3 varies from -90° to 90° . For this case, the plot of m_{11} , m_{22} and m_{33} versus θ_3 is shown below.

Figure 5: Plot of m_{11} , m_{22} and m_{33} versus θ_3

We observe that the plots agree with 23. That is, m_{11} varies sinusoidally (starts at $m_4L_4^2 = 12.5$, decreases to 0, and then increases back to $m_4L_4^2 = 12.5$), m_{22} remains constant and equal to 2 (= m_4), and m_{33} remains constant and equal to 12.5 (= $m_4L_4^2$).

(ii) $\theta_1 = 0^{\circ}$, $\theta_3 = 0^{\circ}$, and d_2 varies from 0 to 2 m. For this case, the plot of m_{11} , m_{22} and m_{33} versus d_2 is shown below.

Figure 6: Plot of m_{11} , m_{22} and m_{33} versus d_2

We again observe that the plots agree with 23. Since m_{11} does not depend on d_2 , it remains constant and equal to 0 (since $\theta_3 = 0^{\circ}$). Furthermore, m_{22} remains constant and equal to 2, and m_{33} remains constant and equal to 12.5.

(f) We have from 1 (h) (equation 13)

$$G_1 = 0, \quad G_2 = m_4 g, \quad G_3 = -m_4 g L_4 \sin \theta_3$$
 (24)

(i) $\theta_1 = 0^{\circ}$, $d_2 = 1.5$ m, and θ_3 varies from -90° to 90° . For this case, the plot of G_1 , G_2 and G_3 versus θ_3 is shown below.

Figure 7: Plot of G_1 , G_2 and G_3 versus θ_3

We observe that the plots agree with 24. That is, G_3 varies sinusoidally from $m_4gL_4=49$ to -49, G_1 remains constant and equal to 0, and G_2 remains constant and equal to $19.6 (= m_4g)$.

(ii) $\theta_1=0^\circ$, $\theta_3=0^\circ$, and d_2 varies from 0 to 2 m. For this case, the plot of G_1 , G_2 and G_3 versus d_2 is shown below.

Figure 8: Plot of G_1 , G_2 and G_3 versus d_2

We again observe that the plots agree with 24. Since G_3 does not depend on d_2 , it remains constant and equal to 0 (since $\theta_3 = 0^{\circ}$). Furthermore, G_1 remains constant and equal to 0, and G_2 remains constant and equal to 19.6.

(g) The gravity vector for the RPRP robot becomes:

$$G_1 = 0, \quad G_2 = m_4 g, \quad G_3 = -m_4 g d_4 \sin \theta_3, \quad G_4 = m_4 g \cos \theta_3$$
 (25)

We now look at the case where $\theta_1 = 0^{\circ}$, $d_2 = 1.5$ m, $\theta_3 = 45^{\circ}$ and d_4 varies from 0 to 2 m. For this, the plot of G_1 , G_2 , G_3 and G_4 versus d_4 is shown below.

Figure 9: Plot of G_1 , G_2 , G_3 and G_4 versus d_4

We observe that the plots agree with 25. G_1 and G_2 remain constant and equal to 0 and 19.6 respectively. G_3 decreases linearly (as d_4 is varied) from 0 to -27.72 (= $-m_4g(2\sin 45^\circ)$). Since G_4 does not depend on d_4 , it stays constant and equal to 13.86 (= $m_4g\cos 45^\circ$).