BROWN REPRESENTABILITY AND CW-SPECTRA

NILAY KUMAR

Outline:

- (1) Generalized (reduced) cohomology theory, from Ω -spectra
- (2) Brown representability
- (3) every spectrum is weak equivalent to an omega-spectrum (?)
- (4) are these categories equivalent?
- (5) properties of CW spectra
- (6) smash products, axiomatically, ring spectra?

Note that I will write h instead of \tilde{h} , etc. – all cohomology theories will be reduced.

Last time Sean defined the CW-spectra category and its associated homotopy category, the stable homotopy category. The main goal for today is to understand the relation between CW-spectra and generalized cohomology theories. Let us first recall the definitions.

Definition 1. A (reduced) generalized cohomology theory is a functor h^{\bullet} : $CW_* \to AB^{\mathbb{Z}}$ from pointed CW-complexes to graded abelian groups together with natural isomorphisms

$$h^{\bullet} \xrightarrow{\sim} h^{\bullet+1} \circ \Sigma$$
,

called suspension isomorphisms, such that

- (1) if $f, g: X \to Y$ are homotopic then $f^* = g^*: h^{\bullet}Y \to h^{\bullet}X$;
- (2) for $\iota:A\to X$ an inclusion and $j:X\to C\iota$ the induced mapping cone, we have an exact sequence

$$h^{\bullet}(C\iota) \longrightarrow h^{\bullet}X \longrightarrow h^{\bullet}A;$$

(3) for a wedge sum $\bigvee_{\alpha} X_{\alpha}$, the inclusions $\iota_{\alpha}: X_{\alpha} \hookrightarrow \bigvee_{\alpha} X_{\alpha}$ induce an isomorphism

$$h^{\bullet}(\bigvee_{\alpha} X_{\alpha}) \longrightarrow \prod_{\alpha} h^{\bullet} X_{\alpha}.$$

The examples we've seen so far of such gadgets are ordinary (singular) cohomology and K-theory. A few more examples are cohomotopy and cobordism. Note that in general a generalized cohomology theory need not be multiplicative. Let us now recall the category of CW-spectra.

Definition 2. A CW-spectrum E is a sequence of pointed CW-complexes $\{E_n\}_{n\in\mathbb{N}}$ together with structure maps $\varepsilon_i: \Sigma E_n \to E_{n+1}$ such that ΣE_n is mapped isomorphically (as a CW-complex) onto a subcomplex of E_{n+1} . A subspectrum $A \subset E$ is a CW-spectrum for which each A_n is a subcomplex of E_n . A morphism $E \to F$ of

Date: March 4, 2016.

CW-spectra is an equivalence class of maps $A_n \to F_n$ (commuting with structure maps) of cofinal subspectra $A \subset E$.

The prototypical example is the suspension spectrum $\Sigma^{\infty}X$ of a CW-complex X, which is given $E_n = \Sigma^n X$ with the obvious structure maps. The sphere spectrum, for instance, is $\mathbb{S} \equiv \Sigma^{\infty} S^0$. Another important class of CW-spectra is that of Ω -spectra, CW-spectra for which the adjoint structure maps $\hat{\varepsilon}_n : X_n \to \Omega X_{n+1}$ are weak-equivalences.

We have in fact already seen two Ω -spectra, as Sean pointed out. The first is the Eilenberg-Maclane spectrum, given $H\mathbb{Z}_n = K(\mathbb{Z}, n)$. That this yields an Ω -spectrum is clear from the path-fibration over $K(\mathbb{Z}, n)$. The Eilenberg-Maclane spaces have the important property that they represent cohomology, i.e. there is a natural isomorphism

$$H^{\bullet}X \cong [X, K(n, \mathbb{Z})].$$

Another example we've seen is the K-theory spectrum $BU \times \mathbb{Z}$. Recall that $K^0(X)$ is the group completion of the monoid of complex vector bundles over (a compact space) X and $K^{-1}(X)$ is defined to be $K^0(\Sigma X)$. The fact that rank n vector bundles given by homotopy classes of maps to BU(n) yields

$$K^0(X) \cong [X, BU \times \mathbb{Z}].$$

It follows from loops-suspension adjunction that

$$K^{-1}(X) \cong [X, \Omega(BU \times \mathbb{Z})] \cong [X, \Omega BU] \cong [X, U],$$

where the last isomorphism comes from the homotopy equivalence $\Omega BU \simeq U$. Moving further down, $K^{-2}(X) = K^0(\Sigma^2 X)$, but Bott periodicity tells us that $\Omega U \simeq BU \times \mathbb{Z}$. Hence we obtain a 2-periodic sequence of spaces $\{BU \times \mathbb{Z}, \Omega BU, BU \times \mathbb{Z}, \ldots\}$ that obviously form an Ω -spectrum.

It is natural to ask, now, whether every generalized cohomology theory is representable by an Ω -spectrum. This is Brown's representability theorem. Before we prove this, however, let us consider the converse question, which is easier: does every Ω -spectrum yield a generalized cohomology theory?

Proposition 3. Let E be an Ω -spectrum. Then $E^{\bullet} \equiv [-, E_{\bullet}]$ is a generalized cohomology theory.

Proof. For X a CW-complex, the homotopy classes of maps $[X, E_{\bullet}]$ forms an abelian group. finish

That E^{\bullet} is homotopy-invariant is clear: pullback by f is given by precomposition by f so if $f \sim g$ then $f^*\phi \sim g^*\phi$. The suspension isomorphism follows immediately from the fact that E is an Ω -spectrum:

$$E^{n+1}(\Sigma X) = [\Sigma X, E^{n+1}]$$

$$\cong [X, \Omega E^{n+1}]$$

$$\cong [X, E^n]$$

$$= E^n X$$

The wedge axiom is also straightforward: maps $[\bigvee_{\alpha} X_{\alpha}, E_{\bullet}]$ are in natural bijection with the product $\prod_{\alpha} [X_{\alpha}, E_{\bullet}]$.

¹Sean explained what this means, as well as the notion of homotopy but we won't need these precise definition today.