

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE - 411043

Department of Electronics & Telecommunication

CLASS: F.E.(COMMON) SUBJECT: BXE

EXPT. NO.: 3 DATE :15/06/2021

NAME: Prathamesh Mitkar Roll.No.: 10469

Batch: C04

TITLE : OPAMP Application Circuits (Inverting and Non Inverting

Amplifier)

OBJECTIVE:

a. To verify pin configuration of an Op-AMP amp(such as LM741)

b. To Verify the function of Inverting and Non Inverting Amplifier

APPARATUS :

- 1. Op-Amp IC-741,
- 2. Digital multimeter
- 3. Resistors
- 4. Connecting wires/Patch cord
- 5. Breadboard
- 6. Virtual Lab environment with Login

Credentials

Note: This experiment is to be carried out using Virtual Labs as explained.

CITCUIT DIAGRAMS:

Draw the Circuit Diagram of Inverting Amplifier

Draw the Circuit Diagram of Non Inverting Amplifier

Note: Perform the experiment through virtual Labs, Take the reading for the output. Draw the wave forms for output and input signals for one set of reading for both the amplifiers.

Wave forms:

Inverting Amplifier

Non Inverting Amplifier

CALCULATION:

A: Inverting Amplifier

Sr.No	V _{in}	R _{in}	R _f	$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$
1	-10	500	500	10
2	-10	250	500	15(saturation)
3	-10	500	250	5
4	10	500	500	-10
5	10	250	500	-15(saturation)
6	10	500	250	-5

B. Non Inverting Amplifier

Sr.No	Vin	Rin	R _f	$V_{out} = V_{in} \left(1 + \frac{R_f}{R_{in}} \right)$
1	-10	500	500	-20
2	-10	250	500	-15(saturation)
3	-10	500	250	-15
4	10	500	500	15(saturation)
5	10	250	500	15(saturation)
6	10	500	250	15

CONCLUSION :

- 1. An inverting amplifier is a type of operational amplifier circuit which produces an output which is out of phase with respect to its output by 180o.
 - 2. The gain of inverting amplifier is -Rf/Ri
- 3. Non-inverting amplifier that produces an amplified signal at the output Having similar phase as that of the applied input.
 - 4. In Non-inverting amplifier the gain is 1+Rf/Ri

Teacher Sign with Date

Remark

REFFRENCE:

- 1. Linear integrated circuits by Ramakant Gaikwad
- 2. Electronics Devices & circuits by L. Floyd

Assignment Questions: Answer the questions with detailed solution

1. Find the value of feedback resistor, R_f that will produce the closed-loop gain of 100.

2. How long does it take the output voltage of an OpAmp to go from -10V to +10V if the slew rate is 0.75V/usec

+100	ir the siew rate is 0.75V/µsec
(2)	Given,
	Slew rate > 0.75 v/wee
	AUD => (10-(-10)) => 20V
	Slew cate >> Ovo
	O [†]
	Dt = <u>Dvo</u>
	Ot = 20
	0.75
	It = 26-usec
	0t = 20 0.75 1t = 26 usec

3. Find the value of feedback resistor, R_f which will produce the closed-loop gain of -300.

(3)	Given, Ri = loks.
	Au = -300
	2t = 9
	toe investing operational amplifier
	AV = ORTIR:
	-300 = - RF
	104
	3 x106= Pf
	Rt = 3000 K2
The same of	