

8085 TIMING DIAGRAMS OF INSTRUCTIONS

Special Note:

Any operation performed INSIDE the microprocessor does not require a machine cycle and hence will not be shown in timing diagrams.

1) MVI B, 25H

B ← 25 H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	25	3
		Total	7

2) LXI B, 2000H

BC ← 2000 H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00	3
Memory Read	PC + 2	20	3
		Total	10

3) LDA 2000H

A ← [2000H]

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Read	2000	[2000]	3
		Total	13

4) STA 3000H

A → [3000H]

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	30 (W)	3
Memory Write	3000	Α	3
		Total	13

5) LDAX B

 $A \leftarrow [BC]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	BC	[BC]	3
		Total	7

6) STAX D

 $A \rightarrow [DE]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Write	DE	Α	3
		Total	7

7) LHLD 2000H

L ← [2000H], H ← [2001H]

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Read	2000	[2000]	3
Memory Read	2001	[2001]	3
		Total	16

8) SHLD 5140H

 $L \rightarrow [5140H], H \rightarrow [5141H]$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	40 (Z)	3
Memory Read	PC + 2	51 (W)	3
Memory Write	5140	L	3
Memory Write	5141	Н	3
		Total	16

9) MOV B,C

 $B \leftarrow C$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
		Total	4

10) PCHL

PC ← HL

6T Opcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
	_	Total	6

11) SPHL

SP ← HL

6T Opcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
		Total	6

12) ADD B (all 8 bit arithmetic operations using register addressing mode)

 $A \leftarrow A + B$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
		Total	4

13) INR B

 $B \leftarrow B + 1$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
		Total	4

14) INX B

6T Opcode Fetch

BC ← BC + 1

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
		Total	6

Special Note:

- If you are learning this by piracy, then you are not my student.
- You are simply a thief! #PoorUpbringing

INSTRUCTIONS INVOLVING M - MEMORY POINTER

Special Note:

- Instructions involving M must be examined more carefully.
- Remember M is not a register. M is a MEMORY LOCATION pointed by HL pair.
- Taking data from M will need a Memory Read cycle.
- Putting data in M will need a Memory Write cycle.

15) MVI B, 25H

B ← B + 1

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	25	3
Memory Write	HL	25	3
		Total	10

16) MOV B, M

 $B \leftarrow M$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	HL	М	3
		Total	7

17) MOV M, B

 $M \leftarrow B$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Write	HL	В	3
		Total	7

18) INR M (Very Important)

 $M \leftarrow M + 1$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	HL	М	3
Memory Write	HL	M + 1	3
		Total	10

19) ADD M

 $A \leftarrow A + M$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	HL	М	3
		Total	7

STACK OPERATIONS

20) PUSH B

 $SP \leftarrow SP - 1$... internal operation $[SP] \leftarrow B$... memory write $SP \leftarrow SP - 1$... internal operation $[SP] \leftarrow C$... memory write

6T Opcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Write	SP - 1	В	3
Memory Write	SP - 2	С	3
		Total	12

21) POP B

 $\begin{array}{lll} \textbf{C} \leftarrow [\textbf{SP}] & \dots & \text{memory read} \\ \textbf{SP} \leftarrow \textbf{SP} + 1 & \dots & \text{internal operation} \\ \textbf{B} \leftarrow [\textbf{SP}] & \dots & \text{memory read} \\ \textbf{SP} \leftarrow \textbf{SP} + 1 & \dots & \text{internal operation} \end{array}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	SP	[SP]	3
Memory Read	SP +1	[SP + 1]	3
		Total	10

BRANCH INSTRUCTIONS

22) JMP 2000H

PC ← 2000 H

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
		Total	10

23) JC 2000H

If CF = 1 then condition is true hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
		Total	10

If CF = 0 then condition is false hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read (Idle)			3
Total			7

24) Call 2000H

6T Opcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Write	SP - 1	PCH	3
Memory Write	SP - 2	PCL	3
		Total	18

25) CC 2000H

If CF=1 then condition is true hence,

6T Opcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read	PC + 1	00 (Z)	3
Memory Read	PC + 2	20 (W)	3
Memory Write	SP - 1	PCH	3
Memory Write	SP – 2	PCL	3
		Total	18

If CF = 0 then condition is false hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read (Idle)			3
		Total	9

26) RET

 $PCL \leftarrow [SP]$... Memory Read $SP \leftarrow SP + 1$... internal operation $PCH \leftarrow [SP]$... Memory Read $SP \leftarrow SP + 1$... internal operation

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	SP	[SP]	3
Memory Read	SP + 1	[SP + 1]	3
		Total	12

27) RC

If CF = 1 then condition is true hence,

 $PCL \leftarrow [SP]$... Memory Read $SP \leftarrow SP + 1$... internal operation $PCH \leftarrow [SP]$... Memory Read $SP \leftarrow SP + 1$... internal operation

6T Opcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Read	SP	[SP]	3
Memory Read	SP + 1	[SP + 1]	3
		Total	12

If CF = 0 then condition is false hence,

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Total			9

28) RSTn

 $\begin{array}{llll} \text{SP} \leftarrow \text{SP} - 1 & \dots & \text{internal operation} \\ [\text{SP}] \leftarrow \text{PCH} & \dots & \text{Memory Write} \\ \text{SP} \leftarrow \text{SP} - 1 & \dots & \text{internal operation} \\ [\text{SP}] \leftarrow \text{PCL} & \dots & \text{Memory Write} \\ \text{PC} \leftarrow (\text{n x 8}) & \dots & \text{internal operation} \end{array}$

6TOpcode Fetch

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	6
Memory Write	SP - 1	PCH	3
Memory Write	SP - 2	PCL	3
		Total	12

I/O OPERATIONS

29) IN 80H

A ← [80]_{I/O}

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	80	3
I/O Read	80	[80]	3
		Total	10

30) OUT 80H

 $A \rightarrow [80]_{I/O}$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	PC + 1	80	3
I/O Write	80	А	3
		Total	10

ADDITIONAL INSTRUCTIONS

31) DAD D

HL ← HL + DE

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Bus Idle			3
Bus Idle			3
		Total	10

32) HLT

Halt F/F ← 1

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4T +1T
		Total	5

33) XTHL

$$\begin{split} Z \leftarrow [SP] & \dots & \text{Memory Read} \\ W \leftarrow [SP+1] & \dots & \text{Memory Read} \\ [SP+1] \leftarrow H & \dots & \text{Memory Write} \\ [SP] \leftarrow L & \dots & \text{Memory Write} \\ HL \leftarrow WZ & \dots & \text{internal operation} \end{split}$$

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
Memory Read	SP	[SP]	3
Memory Read	SP + 1	[SP + 1]	3
Memory Write	SP + 1	Н	3
Memory Write	SP	L	3
		Total	16

34) XCHG

DE ←→ HL ... internal operation

Machine Cycle	Address Bus	Data Bus	T-States
Opcode Fetch	PC	Opcode (Eg: 3E)	4
	_	Total	4

Timing Diagram for Call 2000 H

Bharat Acharya Education

Learn...

8085 | 8086 | 80386 | Pentium | 8051 | ARM7 | COA

Fees: 1199/- | Duration: 6 months | Activation: Immediate | Certification: Yes

Free: PDFs of Theory explanation, VIVA questions and answers, Multiple-Choice Questions

Start Learning... NOW!

www.BharatAcharyaEducation.com

Order our Books here...

8086 Microprocessor

Link: https://amzn.to/3qHDpJH

8051 Microcontroller

Link: https://amzn.to/3aFQkXc

Official WhatsApp number:

+91 9136428051