S/IC-ILL

From:

Sent:

Afremova, Vera Tuesday, February 20, 2001 4:04 PM STIC-ILL

To: Subject:

09/445,796

Please, could I have this reference:

1. Igarashi et al. Bifidus. 1994. 7:139-147.

Vera Afremova au 1651 308-9351 CM1 11E13

CAINIZ

139

ピフィズス 7: 139-147, 1994

報文

ビフィズス菌およびラクチュロースの卵巣摘出骨粗鬆症 モデルラットの大腿骨に対する骨強度増強効果

五十嵐 稔¹*, 飯山百合子¹, 加藤 良¹ 冨田 守¹, 麻見 直美², 江澤 郁子²

1*森永乳業納食品総合研究所 ⁸日本女子大学食物学科

Effect of Bifidobacterium longum and Lactulose on the Strength of Bone in Ovariectomized Osteoporosis Model Rats

Minoru IGARASHI, 1* Yuriko IIYAMA, 1 Ryo KATO, 1 Mamoru Tomita, 1
Naomi Omi 2 and Ikuko Ezawa 2

1*Food Research & Development Laboratory, Morinaga Milk Industry Co., Ltd.

2Department of Food and Nutrition, Japan Women's University

要 旨 本研究では、卵巣を摘出し低カルシウム食で飼育し作成した骨粗鬆症モデルラットを用いビフィズス菌 (Bifidobacterium longum) およびラクチュロースがカルシウムの吸収にどのような影響を与えるか検討した。SD 系雌ラット 29 匹を卵巣摘出後カルシウム 0.01%、リン 0.3% を含む低カルシウム食で 31 日間飼育した。この骨粗鬆症モデルラットをカルシウム 0.3% (乳清カルシウム)、リン 0.3% を含む基本食と飲水の代りに 1% 脱脂粉乳溶液を投与した①群,基本食とビフィズス菌末懸濁液 (1% 脱脂粉乳溶液にビフィズス菌末懸濁液を投与した②群に分けそれぞれの試験食でさらに 31 日間飼育した。その結果、糞便中のビフィズス菌末 脳濁液を投与した③群に分けそれぞれの試験食でさらに 31 日間飼育した。その結果、糞便中のビフィズス 菌放はラクチュロースを添加した③群が有意に増加した。また自腸内容物の pH は糞便中のビフィズス 菌数はラクチュロースを添加した③群が有意に増加した。また自腸内容物の pH は糞便中のビフィズス 菌数はラクチュロースを添加した③群が有意に増加した。また大腿骨破断特性である破断エネルギー、破断応力は①群に比べ②③群とも高くビフィズス菌、ラクチュロースを摂取した③群が①群に対して有意に高かった。一方 Microdensitometry 法により求めた大腿骨の骨密度関連パラメーターのうち をGS、GSmax は有意な差はなかったが、①群に比べ②③群とも高い傾向がみられた。をGS/D は①群に対して②3群が有意に高かった。これらのことからビフィズス菌、ラクチュロースの摂取は腸内環境を改善することなどによりカルシウムの吸収を促進し大腿骨の破断特性である破断エネルギー、破断応力の増強および骨密度の増加をもたらすものと考えられる。

Abstract In the present study an ovariectomized osteoporosis model rat was used to investigate the effect of Bifidobacterium and undigestible lactulose on whey calcium absorption and bone fracture properties. Ovariectomized rats received a diet containing 0.01% Ca for 31 days. Thereafter, the rats were divided into three groups fed the following 3 diets for 31 days: a diet containing whey calcium (group 1), a diet containing whey calcium and Bifidobacterium culture suspended in drinking water (group 2), and a diet containing whey calcium and lactulose, and Bifidobacterium culture suspended in drinking water (group 3).

¹⁹⁹³ 年 9 月 13 日受付

^{•〒228} 座間市東原 5-1-83 Higashihara, Zama 228, Japan

The experiment yielded the following results. The number of bifidobacteria in the feces was significantly increased by administration of lactulose. The pH of the cecal contents was reduced concomitantly with increasing numbers of bifidobacteria in the feces, and the concentration of acetic acid in the cecal contents was significantly higher in group 3. The femur fracture properties (breaking energy and breaking force) in groups 2 and 3 were increased in comparison with animals fed only the whey calcium diet (group 1). There was no significant difference in the values of the microdensitometry parameters Σ GS and GS_{max} among the 3 groups, but Σ GS/D was higher following administration of Bifidobacterium and lactulose as compared to group 1. This was a significant difference. GS_{min} in group 2 was statistically higher than that in group 1. These results suggest that administration of Bifidobacterium and lactulose promotes whey calcium absorption, and thereby increases the strength of bone.

Key words: lactulose, Bifidobacterium, whey calcium, ovariectomized rat

わが国におけるカルシウムの国民栄養所要盤は成人で一日 600 mg と設定されているが平成 3年度の国民栄養調査結果では平均摂取量は所要量の90%程度であり(18)、この数年横ばい状態にある。この間にも寿命の伸びに伴う高齢化の波は着実に押し寄せており、カルシウム不足などに起因する骨粗鬆症の合併症である骨折の増加が深刻な社会問題になりつつある。骨折の危険性は peak bone mass にかなり依存している。そこで peak bone mass を高めることおよびその骨量を維持するため生涯にわたり十分なカルシウムを摂取する必要があると指摘されている。

カルシウムの吸収は生体の生理学的条件によって大きく左右され特に閉経後の女性ではカルシウムの吸収能が著しく低下するといわれている。この原因は主に高齢化による能動輸送の低下,エストロゲン(女性ホルモン)やカルシトニン等と深い関係を持っている。能動輸送の低下が加齢に伴う生理的なものとすれば、カルシウムの吸収を補うには単純拡散輸送を強化すること、すなわち吸収・生体利用性の優れたカルシウムの濃度を高める必要がある。

このような背景のもとに各種のカルシウムを強化した食品が飲料を初めとして数多く市場に出回っている。これらカルシウムのうち牛乳中のカルシウム (乳清カルシウムを含む) は吸収・生体利用性が優れているといわれ多く報告がなされている (13, 16). これは, カゼイン (カゼインホスホペプチド) (20, 25), 乳糖 (2,3) などにより説明されているが, いまだ詳細なメカニズムは不明であれているが, いまだ詳細なメカニズムは不明である. 江澤らは前回, カルシウム源として炭酸カルシウムおよび乳清カルシウムとそれぞれにラクチ

ュロースを加えた4種類の飼料を卵巣摘出骨粗鬆症モデルラットに摂取させ大腿骨の骨強度・骨密度等を比較した。その結果、炭酸カルシウムよりも乳清カルシウムの吸収・生体利用性がすぐれ、ラクチュロースを添加するとそれぞれ単独よりもさらに良好な結果が得られることを確認している(12).

本報では乳酸・酢酸を産生し腸内環境を整える 等の働きをもち腸内において特に有用な腸内細菌 として知られている (11,27) ピフィズス菌および ピフィズス菌の増殖促進作用を有するラクチュロ ースをラットに与え、ピフィズス菌およびラクチュロ ースをラットに与え、ピフィズス菌およびラクチュロースが乳清カルシウムの吸収・生体利用性に どのような影響を与えるかについて既報の卵巣摘 出骨粗鬆症モデルラット (6) を用いて検討した.

材料と方法

- 1) 飼料原料等の調製:本実験に用いた乳清カルシウムおよび粗ラクチュロース粉末 (ラクチュロース 粉末 (ラクチュロースを 40% 含有) の調製は既報 (12) によった. ピフィズス菌 (Bifidobacterium longum) 末は, グルコース濃度を 2% とした GAM 培地 (日水製薬)に培養後, 菌体を遠心分離し生理食塩水にて洗浄し、濃縮菌液に 蔗糖 2%, グルタミン酸ソーダ 1% を加えて凍結乾燥したものを使用した.
- 2) 実験動物および飼育条件: 実験動物には体 重約 90 g の SD 系雌ラット (日本クレア) 29 匹を 使用した.

飼料組成は Table 1 に示した. 動物は卵巣摘出 (17) 後カルシウム 0.01%, リン 0.3% を含む低カルシウム食で 31 日間飼育した. この骨粗鬆症モデルラットをカルシウム 0.3% (乳清カルシウム),

五十嵐 稔ほか:ビフィズス菌およびラクチュロースの骨強度増強効果

Table 1. Composition of experimental diet

Compound	(0.01 % Ca) (0.3 % P)	Whey Ca *(Group 1)	Whey Ca+ B. longum *(Group 2)	Whey Ca + lactulose 3%+ B. longum *(Group 3)
			0.3% Ca, 0.3% P	
Glucose monohydrate	65.3	65.0	65.0	57.5
Vitamin-free casein	18.0	18.0	18.0	18.0
Cystine	0.2	0.2	0.2	0.2
Cotton seed oil	10.0	10.0	10.0	10.0
CaCO ₈	0.023			
Equimolar mixture of				
KH ₂ PO ₄ and K ₂ HPO ₄	0.9	0.1	0.1	0.1
Cellulose powder	3.0	3.0	3.0	3.0
Choline chloride	0.2	0.2	0.2	0.2
Water-solubleg				
vitamin mixture	0.1	0.1	0.1	0.1
Ca and P free ^b				
salt mixture	2.0	2.0	2.0	2.0
Fat soluble vitamine	0.0104	0.0104	0.0104	0.0104
Whey calcium powder		1.2	1.2	1.2
Lactulose powder			-	7.5
	- Amazina propriesta -	1% skim milk	1% skim milk	1% skim mil
Drinking water			+B. longum	+B. longum
	Low calcium diet	E	experimental diet	

The water-soluble vitamin mixture consisted of 0.5% thiamine hydrochloride, 0.5% riboflavine, 0.5% pyridoxine, 2.8% calcium pantothenate, 2.0% nicotinamide, 20.0% inositol, 0.02% folic acid, 0.002% vitamin B₁₂, 0.01% biotin and 73.7% glucose monohydrate.

^b The Ca- and P-free salt mixture contained 57.7% KCl, 20.9% NaCl, 17.9% MgSO₄, 3.22% FeSO₄ · 7H₂O, 0.078% CuSO₄ · 5H₂O, 0.113% NaF, 0.004% CoCl₂ · 6H₂O, 0.01% Kl, 0.04% MnSO₄ · H₂O, 0.44% ZnSO₄ · 7H₂O and 0.005% (NH₄)₆ MoSO₄ · 4H₂O.

⁶ The fat-soluble vitamin mixture consisted of 0.67% β -carotene, 1.01% 2-methyl-1-4-naphthoquinone, 8.43% α -tocopherol and 89.88% vitamin D₃ (53600 IU/g).

* Group 1: n=10; Group 2: n=10; Group 3: n=9.

リン 0.3% を含む基本食と飲水の代りに 1% 脱脂粉乳溶液の投与群 (①群:10匹), 基本食とピフィズス菌末 懸濁液 (1% 脱脂粉乳溶液にピフィズス菌を 10×10⁷/ml 懸濁させたもの) (28) の投与群 (②群:10匹) および粗ラクチュロース粉末7.5% を添加した基本食とピフィズス菌末懸濁液の投与群 (③群:9匹) に分けそれぞれの試験食でさらに 31 日間飼育した. なお飼育は室温 22±1°C, 湿度 50±5%, 12 時間ごとの明暗サイクル(明期 8:00 a.m.~8:00 p.m., 暗期 8:00 p.m.~8:00 a.m.) の環境下で行った. 試験食は自由摂取させたが飲水としては滅菌イオン交換水を10:00 a.m.~5:00 p.m., 1% 脱脂粉乳溶液また

はビフィズス菌末懸濁液 40 ml を 5:00 p.m.~翌 10:00 a.m. の時間帯に投与した(滅菌イオン交換水を与える 10:00 a.m. までには①②③群の各ラットとも1%脱脂粉乳溶液またはビフィズス菌末懸濁液を飲み終っていた. なおビフィズス菌末 懸濁液のビフィズス菌数は投与時間中にはほとんど変わらないことを確認した). 飼育期間中週 2回, 体重および飼料摂取量を測定した.

3) **糞便中のピフィズス菌数**: 各群より 5 匹ず カランダムに抽出しそれぞれの糞便中のピフィズ ス菌数を計測した. 試験食投与前 1 回, 投与中 2 回(投与開始後 16 日目および 23 日目) の糞便を 10 倍段階希釈法により希釈し 0.1 ml を コンラー ジ権にて塩化リチウム 3 mg/ml とペニシリン G カリウム 0.02 unit/ml を添加した MGLP 寒天培地 (30) および BL 培地 (栄研化学) (22) に 塗抹し培養した。培養は嫌気条件 (平沢製作所アナエロ・ボックス、ガス組成:N2 80%・CO2 10%・H2 10%) 下、 37°C、72 時間とした。なお、投与したピフィズス菌とラット由来のピフィズス菌はMGLP、BL 寒天平板上のコロニー性状および菌形態の違いから判別し計測した <math>(21).

- 4) 血清生化学検査および剖検: 動物は 解剖前に一晩絶食させ、ネンブタール麻酔下で下大動脈より採血した. 血清中のカルシウムは OCPC 法(24), リンは p-Methylaminophenol 還元法(5), クレアチニンは Folin-Wu 法(24), 総タンパク質は Biuret 法により測定した(8). なお採血終了後速やかに肉眼的に器官・組織を観察した.
- 5) 盲腸内容物のpH および有機酸分析:開腹時,盲腸内容物の全量をとりだし内容物重量を計量後,pH メーター (HORIBA, Twin pH B-112)によりpH を測定した。有機酸は井村らの方法(14)に従いカルボン酸分析システムにより分別定量した。
- 6) 大腿骨の破断試験および骨密度の測定:既報 (12) に従い破断特性測定装置 Fig. 1 (飯尾電機 DYN-1255)によりプランジャースピード 100 cm/min,フルスケール 50 kg, チャートスピード 120 cm/min の条件で大腿骨の中央部分を破断し,破断エネルギーおよび破断応力を測定した。骨密度の測定は右大腿骨の周囲の軟部組織を除去後,アルミニウムステップウェッジとともに SOFRON M-40 (SOFRON 社) で転 X 線写真を撮影し,これを Microdensitometry (MD) 法 (19) に供し,Fig. 2 に示すパラメーターを求めた。
- 7) 統計処理:各データの有意差検定には Student の t 検定を用い 5% 以下の危険率で有意差が認められた場合に,群間の平均値に差があると判定した.

成 績

体重增加

各群間における体重増加については有意な差は 認められなかった、また、実験期間を通じいずれ の群においても試験食投与に起因したと考えられる一般状態の変化はなかった.

糞便中のビフィズス菌数

試験食投与前1回,投与中2回(投与開始後16日目および23日目)の糞便のいずれにも①群には107倍希釈ではピフィズス菌が検出されなかった.しかし,②群には投与開始後23日目そして③群には投与開始後16,23日目とも109倍希釈でもピフィズス菌が検出された(Table 2).

血清生化学検査および剖検時における肉眼的 所見

Table 3 に血清中のカルシウム, リン, クレア

Fig. 1. A diagrammatic presentation of "Dynagraph" (Bone fracture properties measuring system).

1, plunger; 2, sample (femur); 3, sampleholder; 4, load-cell; 5, amplifier; 6, recorder.

Densitometer pattern (aluminum conversion value)

Fig. 2. Densitometer pattern and characteristics of x-ray microdensitometry (MD) analysis.
 Parameter: GSmin·GSmax (peak height),
 ΣGS (area), ΣGS/D (average height).

143

五十嵐 稔ほか:ビフィズス菌およびラクチュロースの骨強度増強効果

Table 2. Changes of number of Bifidobacterium in feces before and during administration of B. longum.

Group	Supplement	No. of rats	Before administration	During administration	
				day 16	day 23
ï	Whey Ca	5	ND*	ND	ND
2	Whey Ca+ B. longum	5	ND	ND	8.0** (20)***
3	Whey Ca+ lactulose 3%+ B. longum	5	ND	9.2±0.3 (80)	9.1±0.3 (100)

^{*} Not detected.

Table 3. Levels of serum Ca, P, creatinine and total protein.

Group	Supplement	No. of rats	Ca (mg/dl)	P (mg/dl)	Creatinine (mg/dl)	Total proteir (g/dl)
l	Whey Ca	10	10.38±0.13ª	7.66±0.32a	0.75±0.02°	6.09±0.14a
2	Whey Ca+ B. longum	10	10.03±0.14	7.04±0.38	0.79±0.02	6.19±0.30
3	Whey Ca+ lactulose 3%+ B. longum	9	10.14±0.23	7.08±0.35	0.77±0.02	6.30±0.23

a Mean±SE.

Table 4. pH and organic acids (mg/g-feces) in the cecal content.

:	Whey Ca n=10	Whey Ca+ B. longum n=10	Whey Ca+ lactulose 3%+ B. longum n=9	
pН	7.09±0.06 ^a	7.05±0.05	6.11±0.12*	
Lactic acid	0.26 ± 0.03^a	0.23 ± 0.01	$0.96 \pm 0.20 *$	
Acetic acid	0.59 ± 0.05	0.62 ± 0.07	1.14 ± 0.16 *	
Propionic acid	0.33 ± 0.03	0.29 ± 0.03	0.40 ± 0.06	
Citric acid	0.03 ± 0.01	0.03 ± 0.01	0.06 ± 0.01 *	
Butyric acid	0.23 ± 0.03	0.21 ± 0.03	$0.49 \pm 0.09 *$	
Succinic acid	0.02 ± 0.01	0.02 ± 0.01	$0.09 \pm 0.02*$	
Valeric acid	ND**	0.02 ± 0.01	0.03 ± 0.01	

a Mean ± SE.

チニンおよび総タンパク質濃度を示した、これらの血清生化学値には各群間に有意差はみとめられず、データはすべて正常範囲にあった。また肉眼的に器官・組織を観察したところ、ラクチュロースを与えた③群の盲腸は他の群のそれに比しやや肥大の傾向を示していた。その他は特に差を認めなかった。

盲腸内容物の pH および各有機酸濃度の比較

盲腸内容物の pH は①群と比べ②群はわずかに低く③群は有意に低かった。また、盲腸内容物の有機酸は①群に対して②群は酢酸濃度がわずかに高く③群は酢酸濃度、乳酸濃度とも有意に高かった (Table 4).

^{**} Values are expressed as Bifidobacterium counts (log No./g-feces).

^{***} Frequency of occurrence (%).

^{*} Significant difference from whey Ca diet group (p < 0.05).

^{**} Not detected.

大腿骨の破断力エネルギー, 破断応力および骨 密度

大腿骨の破断力エネルギー、破断応力とも①<②<③群の順に高く、ビフィズス菌およびラクチュロースを飼料に添加した③群が①群に対して有意に高かった。また右大腿骨の MD 法における骨密度関連パラメーターのうち、 ZGS、GSmax については有意な差は認められなかったが、②③群

Fig. 3. Breaking energy of femur.

- 1: Mean ±SE.
- *: Significant difference from whey Ca diet group (p<0.05).

Fig. 4. Breaking force of femur.

- 2: Mean ± SE.
- *: Significant difference from whey Ca diet group (p < 0.05).

とも①群に対し高い傾向にあった. ŽGS/D は② ③群とも①群に対して有意に高く,また GSmin は①群に対し②③群とも高く,特に②群は①群よ り有意に高かった (Fig. 3~8).

考 察

本研究では、骨粗鬆症モデルラットを基本食と 飲水の代りに1%脱脂粉乳溶液を投与した①群, 基本食とピフィズス菌末懸濁液(1%脱脂粉乳溶 液にピフィズス菌末を懸濁させたもの)を投与し

Fig. 5. ΣGS of femur. *: Mean±SE.

Fig. 6. GS_{max} of femur.

a: Mean±SE.

Fig. 7. ZGS/D of femur.

- 1: Mean ± SE.
- *: Significant difference from whey Ca diet group (ρ <0.05)

Fig. 8. GSmin of femur.

- *: Mean ± SE.
- Significant difference from whey Ca diet group (p<0.05).

た②群およびラクチュロースを添加した基本食と ビフィズス菌末懸濁液を投与した③群に分け飼育 し比較を行った。その結果,糞便中のビフィズス 菌の増加は、ラクチュロースを添加した群は特に 著しかった、投与したビフィズス菌はヒト由来の 菌種 (Bifidobacterium longum) であったが,糞便中 に検出されたビフィズス菌は②③とも投与菌と異 なりラット由来のものであった。この現象は体外から摂取されたピフィズス菌にラットの腸内常在ピフィズス菌が触発され生育・増殖が活発となったことが考えられる (29).

また,盲腸内容物の pH は糞便中にビフィズス 菌が多く検出された群ほど低く、盲腸内容物の pH と養便中のピフィズス菌数には相関が認めら れた.さらに盲腸内容物の有機酸のうちビフィズ ス菌の増殖状況の目安となる酢酸濃度も①<②< ③群の順に高かった、この事獎はピフィズス菌お よびラクチュロース投与群の盲腸内におけるビフ ィズス菌の著しい増殖を裏づけるものである.ヒ トにおけるカルシウムの吸収は十二指腸部位では 能動輸送により、回腸部位では拡散輸送によると されている (7).しかしラットでは 盲腸部位にお いても吸収されるといわれている (9,26). これ らの報告によればカルシウムの拡散輸送による吸 収は同時に摂取した乳糖等の糖質が代謝され生成 した乳酸・酢酸等により pH が低下しその結果, 促進されるとしている. 現在一部研究者の間では ヒトの場合もカルシウムの拡散輸送は小腸下部か ら大腸で行われていると考えられている(1,23). カルシウムの吸収性は管腔内の溶解性,小腸粘膜 の通過性,食物中の共存物質との結合性(10)の 三つの要因に依存するといわれており (25), した がってその吸収には腸内細菌および摂取した食物 も大きく関与していると考えられる、ラットを使 用した in vitro の実験ではラクチュロースは小腸 および盲腸(大腸)で分解されるという(15). ま たヒトにラクチュロースを与えた場合、小腸下部 の pH は 7.5 から 7.05 に低下したとの報告があ る (4),

ビフィズス菌は大腸だけでなく小腸下部である回腸部位においても 10⁷/g 程度の菌数で存在し、この部位では腸内細菌が少なく相対的にピフィズス菌が優勢なことがヒトにおいて知られており(21)、したがって、体外よりヒトの常在細菌として知られるビフィズス菌およびラクチュロースを投与すれば、体内のビフィズス菌の活性化を促し回腸部位のpHの低下によりカルシウムの可溶化が進み拡散輸送による吸収が促進されると考えられる。また同様なことがビフィズス菌濃度の高い

大腸部位においても考えられる.

以上の推察は総合的な骨強度の指標となる破断エネルギーおよび破断応力も①群に比べ②③群とも高く、とくに①群にくらべ③群は有意に高かったこと、骨密度関連パラメーターである Σ GS, GS_{max} には有意な差は認められなかったが①群に比べ②③群とも高値を示したこと、また Σ GS/Dは①群に比べ②③群とも有意に高く、 GS_{min} については①群に対して②群が有意に高かったことからも示唆される.

また,①群と②群を比較すると糞便中のビフィズス菌数には差がみられたが、盲腸内容物中の有機酸濃度およびそのpHの差はわずかであった。それにもかかわらず骨強度の指標となる破断エネルギー・破断応力および骨密度には明らかな差があった。このことは投与したビフィズス菌および/または増殖したビフィズス菌による腸内pH低下作用以外の生物活性作用が骨強度・骨密度に影響を及ぼしている可能性を示している。

骨強度の増強・骨密度の増加からビフィズス菌 およびラクチュロースの摂取は腸内環境の改善等 によりカルシウムの吸収を高め骨代謝に効果的で あることが示唆された.

引用文献

- (1) 足立 達. 1966. 乳糖の生化学的作用. 乳技協資料 16:3-14.
- (2) Allen, L.H. 1982. Calcium bioavailability and absorption. Am. J. Clin. Nutr. 35: 783-803.
- (3) Armbrecht, H.J., and R.H. Wasserman. 1976. Enhancement of Ca uptake by lactose in the rat small intestine. J. Nutr. 106: 1265-1271.
- (4) Bown, R.L., J.A. Gibson, G.E. Sladen, B. Hicks, and A.M. Dawson. 1974. Effects of lactulose and other laxatives on ileal and colonic pH as measured by a radiotelemetry device. Gut 15: 999-1004.
- (5) Drewes, P.A. 1972. Direct colorimetric determination of phosphorus in serum and urine. Clin. Chim. Acta 39: 81-88.
- (6) 江澤郁子 1980. 去勢雌ラットの大腿骨骨折に及ぼ す食事中カルシウムの影響. 日本家政学会誌 31: 712-715.
- (7) 藤田拓男、1992、オステオポローシス一診断と治 寮一、飼育粗鬆症財団、東京、
- (8) Gornal, A.G., C.J. Bardawill, and M.M. David. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177: 751-776.

- (9) 五島孜郎, 関 博麿. 1964. 無機質代謝におよぼす 乳糖の影響(第1報). 日本栄養・食糧学会誌 17: 188-191.
- (10) Heaney, R.P., R.R. Recker, and C.M. Weaver. 1991. Absorbability of calcium sources: the limited role of solubility. Calcif. Tissue Int. 46: 300-304.
- (11) 本間 道, 光岡知足. 1987. ビフィズス菌、㈱ヤクルト本社, 東京.
- (12) 五十嵐千恵, 江澤郁子. 1991. 卵巣摘出骨粗鬆症モデルラットの大腿骨に対する Whey Calcium および Lactulose の骨強度増強効果. 応用薬理 42: 245-253.
- (13) 五十嵐千恵, 江澤郁子, 尾形悦郎. 1990. 卵巣協出 骨粗鬆症モデルラットの骨塩減少に対する乳清カ ルシウムの抑制効果. 日本栄養・食糧学会誌 43: 437-443.
- (14) 井村総一, 誤月俊太郎, 高田昌亮. 1981. 人工栄養 の低出生体重児における便の性状と腸内菌嚢につ いて. 小児科臨床 34: 59-66
- (15) 井上陽一, 熊倉豊秋, 相川 清. 1973. ラットにおけるラクツロースの吸収, 分布, 排泄, 分解. 薬剤学 33: 79-85.
- (16) 兼松重幸. 1953. 成人における各種食品中のカルシウムの利用並びにカルシウム所要量. 日本栄養・食糧学会誌 6:47-59.
- (17) 小林洋四郎, 井上 正. 1981. 図説動物実験の手技 手法(別冊). 蛋白質 核酸 酵素 24: 25-42.
- (18) 厚生省保健医療局健康増進栄養課監修、1993. 平成3年国民栄養調査成績、国民栄養の現状 p. 29-30.
- (19) 串田一博, 井上哲郎, 山下源太郎. 1989. 手部X線による microdensitometry 法. 骨ミネラル測定と骨粗鬆症, p. 33-41. メディカルビュー社, 東京.
- (20) Lee, Y.S., T. Noguchi, and H. Naito. 1983. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br. J. Nutr. 49: 67-76.
- (21) 光岡知足、1980、腸内菌の世界、叢文社、東京、
- (22) Mitsuoka, T., T. Sega, and S. Yamamoto. 1965. Eine verbesserte Methodik der qualitativen und quantitativen analyse der Darmflora von Menschen und Tieren. Zentralbl. Bakteriol. I. Abt. Orig. 195: 455-469.
- (23) 内藤 博、1990. カルシウムと健康、牛乳栄養学術研究会第5回学術フォーラム報告書, p. 80-97. 独全国牛乳普及協会,東京.
- (24) 野本昭三. 1983. 臨床化学検査. 臨床検査法堤要, p. 397-532. 金原出版, 東京.
- (25) 李 連淑, 朴 真我, 内藤 博. 1992. 成長期にあるラットのカルシウム 出納に及ぼすカゼインホスホペプチド(CPP)の効果. 日本栄養・食糧学会誌45: 333-338.
- (26) 鈴木和春, 遠藤幸江, 上原万里子, 山田英明, 五島 孜郎, 今村美喜郎, 塩津 晋. 1985. ミネラル吸収, 腸内フローラにおよぼす乳糖, ラクツロース, ソル ビトールの影響. 日本栄養・食糧学会誌 38:39-42.

- (27) 田中隆一郎. 1985 乳酸菌製剤の整腸作用. 治療学 14: 613-617.
- (28) 田中隆一郎, 管 辰彦, 手嶋 人, 黒島敏方, 小平晋士, 鈴木振一, 寺島経男, 務台方彦, 1980, Bifido-bacterium の Implantation に関する研究, 小児科臨床 33: 2483-2492.
- (29) 田中隆一郎, 遠山 消, 諸宮正己, 高山博夫, 南野 邑信, 黒島敏方, 務台方彦, 1981, 乳酸産生菌の
- Implantation—腸内腐敗生産物の抑制. 光岡知足編, 腸内フローラと発癌—理研腸内フローラシンポジ ウム【一. 学会出版センター, 東京.
- (30) 寺口 進,川島拓司, 久保山盛雄. 1982. わが国の乳製品および生菌製剤から検出される Bifidobacterium 生菌数の簡易測定法. 食品衛生学雑誌 23: 39-44.