Oscillator Circuits

Analog Electronics Lab Experiment -8

Submitted by: Jash Shah BITS Id: 2018A8PS0507P

Lab Section: P5

Submitted to: Sambhavi Shukla, Teena Gakhar **Date**: 20/3/21

1. Objective

To study the sinusoidal and non-sinusoidal oscillators

1) RC phase shift oscillator

2) Wein Bridge Oscillator

Upload a single PDF file on Nalanda which includes

- 1) Circuit diagrams for all configurations.
- 2) Input and output waveforms
- 3)Compare your theoretical values with the practical ones.

2. RC Phase Shift Oscillator

1. Circuit Diagram:

2. Resultant Curve and simulation result

Simulated gain = We get the practical value of, (at Rf = 2.9 k-ohm) $f_0 = 6.475$ kHz

Hand Calculations

$$\mathbf{f_0} = 1/(2*pi*(6^0.5)*R*C) = \mathbf{6.5kHz}$$

3. Changing the value of C

C => 2C

<u>Practical frequency => 3.13 kHz</u> <u>Theoretical frequency => 3.25 kHz</u>

4. Changing the value of R

Serial Number	Resistor	Frequency
1	2	-
2	4	4.89
3	6	3.78
4	8	3.5
5	10	3.24

3. Wein Bridge Filter

1. Circuit Diagram:

2. Resultant analysis and simulated result

We get the practical value of, (at $R_F = 1.98$ k-ohm)

$$f_0 = 15.297 \text{ kHz}$$

Hand Calculations

The theoretical value of f_0 is:

$$f_0 = 1/(2*pi**R*C) = 16 \text{ kHz}$$

3. Changing the value of R

Serial Number	Resistor	Frequency
1	2	6.73
2	4	4.73
3	6	4.20
4	8	3.95
5	10	3.81