Clase 06 Análisis de varianza

Curso Introducción al Análisis de datos con R para la Acuicultura.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

22 July 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es un análisis de varianza?.
- Modelos lineales en Anova.
- Hipótesis y supuestos.
- Interpretar resultados de análisis de varianza con R.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas de hipótesis: Anova y posteriores.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar reporte dinámico en formato html.

ANOVA

¿Qué es el análisis de varianza?

Herramienta básica para analizar el efecto de uno o más factores (cada uno con dos o más niveles) en un experimento.

PROBLEMA DE LAS COMPARACIONES MÚLTIPLES

¿Por qué preferir anova y no múltiples t-test?

Porque con una t-test normal al aumentar el número de comparaciones múltiples se incrementa la tasa de error tipo I.

Fuente[1]: [1]:doi:10.21037/jtd.2017.05.34

ANOVA: MODELOS LINENALES

Una forma muy conveniente de representar una ANOVA es mediante un modelo lineal.

Modelo lineal para ANOVA de una vía

$$y \sim \mu + \alpha + \epsilon$$

Modelo lineal para ANOVA de dos vías

$$y \sim \mu + \alpha + \beta + \epsilon$$

Modelo lineal para ANOVA de dos vías con interacción

$$y \sim \mu + \alpha + \beta + \alpha * \beta + \epsilon$$

ANOVA: HIPÓTESIS

Hipótesis factor 1

 $\mathbf{H_0}: \alpha_{1.1} = \alpha_{1.2} = \alpha_{1.3}$

Hipótesis factor 2

 $\mathbf{H_0}:\,\beta_{2.1}=\beta_{2.2}=\beta_{2.3}$

Hipótesis interacción

 $\mathbf{H_0}: \alpha^*\beta = 0$

Hipótesis Alternativa

 H_A : No todas las medias son iguales

ANOVA PARA COMPARAR MEDIAS

Si el test compara medias ¿Por qué se llama ANOVA?

Por que el estadístico **F** es un cociente de varianzas.

$$\mathbf{F} = rac{\sigma_{entregrupos}^2}{\sigma_{dentrogrupos}^2}$$

Mientras mayor es el estadístico **F**, más es la diferencia de medias entre grupos.

SUPUESTOS DE UNA ANOVA

- 1. Independencia de las observaciones.
- 2. Normalidad.
- 3. Homocedasticidad: homogeneidad de las varianzas.

TEST POSTERIORES (PRUEBAS A POSTERIORI)

¿Para qué sirven?

Para identificar que pares de niveles de uno o más factores son significativamente distintos entre sí.

¿Cuando usarlos?

Sólo cuando se rechaza H_0 del ANOVA.

Tukey test

Es uno de los más usados, similar al *t-test*, pero corrige la tasa de error por el número de comparaciones.

ESTUDIO DE CASO: TRUCHA ARCOIRIS

ANOVA DE UNA VÍA

```
res.aov <- lm(Peso ~ Dietas, data = my data)
anova(res.aov)
## Analysis of Variance Table
##
## Response: Peso
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Dietas 2 3.7663 1.8832 4.8461 0.01591 *
## Residuals 27 10.4921 0.3886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

COMPARACIONES MULTIPLES

```
fit_anova <- aov(res.aov)
tk <- TukeyHSD(fit_anova)</pre>
```

Table 1: Prueba de Tukey.

Trat.	Contraste	H0	Diferencia	IC-bajo	IC-alto	p-ajustado
Dietas	trt1-ctrl	0	-0.37	-1.06	0.32	0.39
Dietas	trt2-ctrl	0	0.49	-0.20	1.19	0.20
Dietas	trt2-trt1	0	0.86	0.17	1.56	0.01

ESTUDIO DE CASO: TILAPIA

ANOVA DOS VIAS CON INTERACCIÓN

```
res.aov2 <- Im(Peso ~ Temperatura * Salinidad, data =
my_data1)
anova(res.aov2)
```

Analysis of Variance Table

```
Response: Peso
```

```
Df Sum Sq Mean Sq F value Pr(>F)
                     2 2426.43 1213.22 92.000 < 2.2e-16 ***
Temperatura
Salinidad
                  1 205.35 205.35 15.572 0.0002312 ***
Temperatura:Salinidad 2 108.32 54.16 4.107 0.0218603 *
Residuals
                    54 712.11 13.19
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

PRÁCTICA ANÁLISIS DE DATOS

► El trabajo práctico se realiza en Rstudio.cloud. **Guía 06 Anova y posteriores**

RESUMEN DE LA CLASE

- Elaborar hipótesis de anova.
- Realizar análisis de varianza.
 - ▶ 1 factor.
 - 2 factores.
 - pruebas a posteriori.
- Realizar gráficas avanzadas con ggplot2