USC Viterbi School of Engineering

A FINE-GRAINED ANALYSIS OF POST-STROKE MOTOR FUNCTION USING WEARABLE MOTION SENSORS

Mi Zhang¹, Belinda Lange², Chien-Yen Chang², and Alexander A. Sawchuk¹

Department of Electrical Engineering

Ming Hsieh

Introduction

Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles CA 90089

²Institute for Creative Technologies, University of Southern California, Playa Vista CA 90094

Background

- Stroke is a leading cause of motor deficit
- Every year, approximately 795,000 people experience a new or recurrent stroke in the US
- Motor function can be recovered through physical rehabilitation
- Traditional physical rehabilitation assessment has two major drawbacks
 - □ Assessment is based on the clinicians' subjective judgments
 - ☐ Standard clinical rating scales such as Fugl-Meyer Assessment (FMA)
 - and Wolf Motor Function Test (WMFT) can not provide the details of motor performance

Problem Statement

 Develop a quantitative method to automatically analyze and evaluate post-stroke motor function

Challenges

- Need a tool to precisely capture patients' physical motion
- Need to build a motion model that is able to capture the details of motor behavior

Our Method

- Wearable Motion Sensor
 - 3-axis accelerometer (± 6q), 3-axis gyroscope (± 500dps)
 - Sampling rate: 100 Hz
- · Fine-Grained Post-Stroke Motor Function Analysis Framework
 - Sliding Window
 - Feature Extraction
 - Pattern Recognition

Details

- Small Window Cell
 - Divide the streaming sensor data from each motor task segment into a sequence of fixed length window cells whose length is much smaller than the duration of the motor task (0.1 second)
- Feature Extraction
- · Extracted from each window cell to form a local feature vector
- · Features that capture the intrinsic characteristics of the motor behavior. Examples include:
 - $MI(t) = \sqrt{a_r(t)^2 + a_r(t)^2 + a_r(t)^2}$ ■ Motion Intensity (MI):
 - $SMA = \frac{1}{T} \left[\sum_{i=1}^{T} |a_{x}(t)| + \sum_{i=1}^{T} |a_{y}(t)| + \sum_{i=1}^{T} |a_{z}(t)| \right]$ □ Normalized Signal Magnitude Area (SMA):
 - ☐ Averaged Rotation Energy (ARE): The mean value of the energy over three gyroscope axes
- · Each motor task segment is then transformed into a sequence of local feature vectors, which forms a trajectory in the feature space
- Pattern Recognition
 - Extract pattern interesting to physical therapists

Data Collection

· Participants

 2 patients with limb hemiparesis from stroke are recruited at Precision Rehabilitation Center at Long Beach and Rancho Los Amigos National Rehabilitation Center at Downey

Motor Tasks

- . 5 upper limb motor tasks from the Fugl-Meyer Assessment (FMA) are performed
 - □ Flex Synergy
 - □ Hand Rehind Back
 - Shoulder Flexion to 90 degree
 - ☐ Shoulder Flexion from 90 to 180 degree
 - □ Pronation / Supination Elbow Flexed
- · Each participant performed each motor task 6 times
- Each task was assigned a score based on the FMA scale (0, 1, 2) by a physical therapist

Results

- Motor Task:
- Flexor Synergy Horizontal Axis:
- Time (Second)
- Vertical Axis:
- Motion Intensity
- Unaffected limb:
 - Red curve
 - FMA score: 12/12
- Affected limb: Blue curve
 - FMA score: 8/12
 - There exist two peaks for the unaffected limb which do not appear for

the affected limb

Elexor Synergy

Conclusion and Future Work

- Conclusion
 - We present a methodology for fine-grained assessments of post-stroke motion functionalities using wearable motion sensors
 - · Our approach provides quantitative evaluations on motor function based on sensor signals and acts as a significant complement to the standard clinical rating scales
- Future Work
 - . Build a large dataset to include more patients
 - Develop signal processing algorithms to automatically capture patterns that are important to physical therapists to track patients' progress during rehabilitation
 - Integrate with other sensing modalities, such as vision sensor (Microsoft Kinect)

Images from Kinect-based rehabilitation tool; Jewel Mine, developed at USC Institute for Creative Technologies