Generative Models for Classification

Introduction to Artificial Intelligence with Mathematics
Lecture Notes

Ganguk Hwang

Department of Mathematical Sciences KAIST

Consider a pair (\mathbf{x}, y) with an input \mathbf{x} and its label y.

- Generative models vs. Discriminative models ~ for Classication
- Generative models
 - Assume some function forms for p(y) and $p(\mathbf{x}|y)$. $\rightarrow p(\mathbf{x}|y)$.
 - Estimate the parameters of p(y) and $p(\mathbf{x}|y)$ from the training data.
 - Compute $p(y|\mathbf{x})$ by Bayes Theorem.

$$p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$

- Discriminative models
- Assume some function form for $p(y|\mathbf{x})$. Is described by permeters Estimate the party
 - Estimate the parameters of $p(y|\mathbf{x})$ from the training data.

La lireally compute

In a generative model, we classify ${\bf x}$ based on

$$\operatorname{argmax}_y p(y|\mathbf{x}) = \operatorname{argmax}_y \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})} = \operatorname{argmax}_y p(\mathbf{x}|y)p(y).$$

We will study two popular models.

- Naive Bayes Classifier
- Gaussian Discriminative Analysis (Gaussian Bayes Classifier)

Naive Bayes Classifier

Let $\mathbf{x}=(x_1,x_2,\cdots,x_d)$. We assume that all features $x_j,1\leq i\leq d$, are conditionally independent given y, which is called the Naive Bayes (NB) assumption. $(\mathbf{x}|y) = \mathbf{x}(x_j|y)$

For example, x denotes an email and x_j denote words in x.

- Note that Naive Bayes Classifier does not assume a particular Cowline distribution.
 - Even though the Naive Bayes assumption is an extremely strong assumption, the resulting algorithm works well on many problems.

The estimation of probabilities of interest

For a data set
$$\{(\mathbf{x}^{(k)}, y^{(k)}), 1 \leq k \leq N\}$$
 with $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, \cdots, x_d^{(k)})$
$$p(x_j = l | y = i) = \frac{\sum_{k=1}^N I\{x_j^{(k)} = l, y^{(k)} = i\}}{\sum_{k=1}^N I\{y^{(k)} = i\}}, \ 1 \leq l \leq L$$

$$p(y = i) = \frac{\sum_{k=1}^N I\{y^{(k)} = i\}}{N}, \ 1 \leq i \leq C.$$

Decision Rule

The decision rule is given by $\hat{y} = \operatorname{argmax}_y \prod_{j=1}^d p(x_j|y) p(y)$

Laplacian Correction

no late point feeture Xi pin training detaret

When there exists some feature x_i with $p(x_i|y) = 0$, even though there is a high probability that x is classified as y, the resulting probability becomes 0.

To resolve this problem we use Laplacian correction as follows:
$$p(x_j=l|y=i) = \frac{\sum_{k=1}^N I\{x_j^{(k)}=l,y^{(k)}=i\}+1}{\sum_{k=1}^N I\{y^{(k)}=i\}+L}, 1 \leq l \leq L$$

The idea behind it is that the resulting probability is not changed much by adding one (virtual) data to each type of feature x_i .

Gaussian Naive Bayes Classifier

Assume distribution

Gaussian Naive Bayes Classifier assumes that the likelihood functions are Gaussian, i.e.,

$$p(x_j|y=i)=\frac{1}{\sqrt{2\pi}\sigma_{ij}}\exp\left(-\frac{(x_j-\mu_{ij})^2}{2\sigma_{ij}^2}\right) \qquad \text{(ord. plane)}$$

where μ_{ij} and σ_{ij}^2 are estimated by

$$\mu_{ij} = \frac{\sum_{k=1}^{N} I\{y^{(k)} = i\} x_{j}^{(k)}}{\sum_{k=1}^{N} I\{y^{(k)} = i\}},$$

$$\sigma_{ij}^{2} = \frac{\sum_{k=1}^{N} I\{y^{(k)} = i\} x_{j}^{(k)}}{\sum_{k=1}^{N} I\{y^{(k)} = i\}}$$

Gaussian Discriminative Analysis

Gaussian Discriminative Analysis in its general form assumes that $p(\mathbf{x}|y)$ is distributed according to a multivariate normal distribution

$$p(\mathbf{x}|y=i) = \frac{1}{\sqrt{(2\pi)^d \mathsf{det}(\boldsymbol{\Sigma}_i)}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^\top \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)}.$$

- ullet Each class i has associated mean vector $oldsymbol{\mu}_i$ and covariance matrix $oldsymbol{\Sigma}_i.$
- We usually assume that all classes share a single covariance matrix Σ , i.e., $\Sigma = \Sigma_1 = \dots = \Sigma_C$

For a given data set $\{(\mathbf{x}^{(k)}, y^{(k)}), 1 \leq k \leq N\}$ with $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, \cdots, x_d^{(k)})$, we have the following estimation: $p(y=i) = \frac{\sum_{k=1}^N I\{y^{(k)}=i\}}{N}, 1 \leq i \leq C, \qquad \text{of labely}$ $\mu_{ij} = \frac{\sum_{k=1}^N I\{y^{(k)}=i\}x_j^{(k)}}{\sum_{k=1}^N I\{y^{(k)}=i\}}, 1 \leq j \leq d,$ $\mu_i = (\mu_{i1}, \mu_{i2}, \cdots, \mu_{id})^\top,$

$$\boldsymbol{\Sigma} = \frac{1}{N} \sum_{k=1}^{N} (\mathbf{x}^{(k)} - \boldsymbol{\mu}_{\boldsymbol{y}^{(k)}}) (\mathbf{x}^{(k)} - \boldsymbol{\mu}_{\boldsymbol{y}^{(k)}})^{\top}. \qquad \text{coverigive}$$

Decision Rule

The decision rule is given by

n by
$$\hat{y} = \operatorname{argmax}_y p(\mathbf{x}|y) p(y)$$

Gaussian Discriminative Analysis vs Logistic Regression

For a binary classification, it is easy to show that, for $\phi=p(y=1)$

$$p(y=1|\mathbf{x};\boldsymbol{\mu}_0,\boldsymbol{\mu}_1,\boldsymbol{\Sigma},\phi) = \frac{1}{1+\exp(-\mathbf{w}^{\top}\mathbf{x})}$$

for some \mathbf{w} , which is exactly the same form as logistic regression.

Discussions

- If $p(\mathbf{x}|y)$ is multivariate normal, $p(y|\mathbf{x})$ becomes a logistic function.
- However, the converse is not true, which means GDA makes stronger assumptions than logistic regression.
- If the Gaussian assumptions are correct, then GDA performs well.
- On the other hand, logistic regression is more robust and less sensitive to incorrect modeling assumptions.

Example: Concentric Circles

We can generate data by using make_circles function. It makes two circles whose centers are the same. We use Gaussian naive Bayes classifier for binary classification.

Figure: Randomly generated data (N = 300)

for Cassification

Decision boundary by Gaussian naive Bayes classifier is given below.

Figure: Decision boundary by Gaussian naive Bayes classifier

different decision boundaries

Comparison with different training sets

