UNIVERSIDADE DE CAXIAS DO SUL - UCS CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA – CCET DEPARTAMENTO DE INFORMÁTICA - DEIN PROFA. MÁRCIA RODRIGUES NOTARE

Lista de Exercícios 3 – Álgebra de Conjuntos

1. Suponha o conjunto universo S = { p, q, r, s, t, u, v, w } bem como os seguintes conjuntos:

 $A = \{ p, q, r, s \}$

 $B = \{ r, t, v \}$

 $C = \{ p, s, t, u \}$

Então, determine:

a) B ∩ C

b) $A \cup C$

c) ~C

d) $A \cap B \cap C$

e) B - C

f) \sim (A \cup B)

g) $A \times B$

h) (A \cup B) \cap ~C

2. Suponha o conjunto universo $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ bem como os seguintes conjuntos:

 $A = \{ 2, 4, 5, 6, 8 \}$

 $B = \{ 1, 4, 5, 9 \}$

 $C = \{ x \mid x \in Z \land 2 \le x < 5 \}$

Então, determine:

a) $A \cup B$

b) $A \cap B$

c) $A \cap C$

d) $B \cup C$

e) A - B

f) ~A

g) $A \cap \sim A$

h) \sim (A \cap B)

i) C - B

j) (C \cap B) \cup \sim A

 $k) \sim (B - A) \cap (A - B)$

1) ~(~C ∪ B)

m) $B \times C$

3. Encontre P(S) para $S = \{1, 2, 3, 4\}$. Quantos elementos você espera que este conjunto tenha?

4. Encontre P(S) para $S = \{\emptyset\}$.

5. O que pode ser dito sobre A se $P(A) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}$?

6. Quais das sentenças a seguir são verdadeiras para quaisquer conjuntos A, B e C?

a) $A \cup A = A$

b) $B \cap B = B$ c) $\sim (A \cap B) = \sim A \cap \sim B$

d) $\sim (\sim A) = A$

e) $A - B = \sim (B - A)$

 $(A - B) \cap (B - A) = \emptyset$

g) Se $A \cap B = \emptyset$ então $A \subset B$

h) $B \times A = A \times B$

i) $\emptyset \times A = \emptyset$

i) $\emptyset \cap \{\emptyset\} = \emptyset$

k) $(A-B) \cup (B-C) = A-C$

1) $(A - C) \cap (A - B) = A - (B \cup C)$

7. Prove as seguintes propriedades da operação de união (suponha os conjuntos A, B e C):

a) Elemento Neutro.

$$A \cup \emptyset = \emptyset \cup A = A$$

b) Idempotência.

$$A \cup A = A$$

c) Comutatividade.

$$A \cup B = B \cup A$$

8. Considere o Teorema – Associatividade da União. Observe que o caso 1 e o caso 2 são análogos, trocando o sentido da implicação. Seria possível reduzir essa prova a um único caso, usando equivalências? Nesse caso, como ficaria a prova?

- 9. Prove as seguintes propriedades da operação de intersecção (suponha o conjunto universo U e os conjuntos A, B e C):
- a) Elemento Neutro.

$$A \cap U = U \cap A = A$$

b) Idempotência.

$$A \cap A = A$$

c) Comutatividade.

$$A \cap B = B \cap A$$

d) Associatividade.

$$A \cap (B \cap C) = (A \cap B) \cap C$$

10. Prove a distributividade da união sobre a intersecção, ou seja, que (suponha os conjuntos A, B e C):

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- 11. Considere a propriedade de *DeMorgan*, relacionada com a operação de complemento e que envolve as operações de união e de intersecção. Prove que a intersecção (respectivamente, a união) pode ser calculada em termos das operações de complemento e da união (respectivamente, da intersecção), ou seja que:
- a) $A \cap B = \sim (\sim A \cup \sim B)$
- b) $A \cup B = \sim (\sim A \cap \sim B)$
- 12. Prove que (suponha os conjuntos A, B e C):
- a) $(A \cup B) \cap \sim A = B \cap \sim A$
- b) $(A \cap B) \cup A = A$
- c) $A \cup (\sim A \cap B) = A \cup B$
- d) $A \cap (\sim A \cup B) = A \cap B$
- e) \sim ((A \cap B) \cup (\sim A \cap \sim B)) = (\sim A \cap B) \cup (A \cap \sim B)