The Price of Data

Simone Galperti UC San Diego Aleksandr Levkun UC San Diego Jacopo Perego Columbia University

October 2020

Motivation introduction

Data has become essential input in modern economies

Few formal markets for data; often data collected "for free" (Posner-Weyl '18)

Question: what is the individual value of a datapoint? \rightarrow price

- ► value that **each** datapoint in database **individually** generates for its owner? ¬¬→ WTP for additional datapoint
- drivers of prices?
- effects of privacy concerns?
- compensating data sources for their data?

This Paper introduction

Simple insight:

- data pricing problem intimately related to how owner uses data, given objective
 - combine data as inputs to produce actionable information
 - to make own decisions or to influence others' decisions
 - ⇒ data usage: mechanism/information design problem
- when carefully formulated, pricing and usage problems are in a special mathematical relationship: duals

Goals for today

- 1. formalize data usage-pricing relationship + novel interpretation
- 2. (preliminary) characterization of price determinants and properties
- 3. showcase properties through examples

This Paper

- Mechanism Design. Myerson ('82, '83) ... formulation of data usage
- Information Design. Kamenica & Gentzkow subclass of data usage ('11), Bergemann & Morris ('16,'19) ...
- Duality & Correlated Equilibrium. Nau & McCardle ('90), Nau ('92), Hart & Schmeidler ('89), Myerson ('97)
- Duality & Bayesian Persuasion. Kolotilin ('18), Dworczak & Martini ('19), Dizdar & Kovac ('19), Dworczak & Kolotilin ('19)
- Markets for Information. Bergemann & Bonatti ('15), Bergmann, Bonatti, Smolin ('18), Posner & Weyl ('18), Bergemann & Bonatti ('19)
- Information Privacy. Acquisti, Taylor, Wagman ('16), Ali, Lewis, Vasserman ('20), Bergemann, Bonatti, Gan ('20), Acemoglu, Makhdoumi, Malekian, Ozdaglar, ('20)

- duality to characterize CE
- $-% \left(-\right) =\left(-\right) \left(-\right) \left($
- dual not as a solution method, but as focus of analysis
- independent economic question
- games, mechanisms
- individual prices of data

 formal method for assessing effects of privacy on value of data

Internet platform owns data (cookies) about each potential buyer of product of monopolistic seller (MC=0)

Database: big list (continuum) of datapoints = buyer ID and valuation

- share μ of datapoints has valuation $\omega_0 = 1$
- ▶ share 1μ of datapoints has valuation $\omega_0 = 2$

Platform mediates interaction between each buyer and seller:

- ▶ bins buyers into market segments (information production)
- ightharpoonup discloses segments to seller for setting price a
- objective: maximize buyers' surplus

Questions: what price $p(\omega_0)$

- \blacktriangleright would capture **individual value** that ω_0 -datapoint has for platform?
- would/should platform be willing to spend to add one datapoint with valuation ω_0 to database?

Broadly refer to these questions as data-pricing problem

 $p(\omega_0)$ not interpreted as monetary transfer to buyers for their data

▶ important, yet distinct issue (later)

Given optimal segmentation, let $v^*(\omega_0)$ be **realized** surplus of ω_0 -buyer

Question: does it make sense to set $p(\omega_0) = v^*(\omega_0)$?

Extreme cases:
$$\mu=1 \Rightarrow v^*(1)=0$$
 and $\mu=0 \Rightarrow v^*(2)=0$

If $\mu \in (0, 0.5)$, optimal market segmentation

	s'	s''	$v^*(\omega_0)$
$\omega_0 = 1$	1	0	0
$\omega_0 = 2$	$\frac{\mu}{1-\mu}$	$1 - \frac{\mu}{1-\mu}$	$\frac{\mu}{1-\mu}$
$\rightarrow a(s)$	1	2	

Idea: 1-buyers 'help' platform achieve positive surplus with some 2-buyers

Punchline: v^* misses this, so not good measure for $p(\omega_0)$

If $\mu \in (0.5, 1)$, optimal market segmentation

	s'	s''	$v^*(\omega_0)$
$\omega_0 = 1$	1	0	0
$\omega_0 = 2$	$\frac{\mu}{1-\mu}$	$1 - \frac{\mu}{1-\mu}$	$\frac{\mu}{1-\mu}$
ightarrow price	1	2	

Idea: 1-buyers 'help' platform achieve positive surplus with some 2-buyers

Our approach will yield $p^*(1) = 1 > v^*(1)$ and $p^*(2) = 0 < v^*(2)$

- ▶ 1-datapoints useful \leadsto induce seller to set **suboptimal** price for **2**-buyers
- ▶ 1-datapoints scarce 'input' in database ($\mu < 0.5$)

Principal (she) mediates economic interaction between group of agents (he) — e.g., buyer-seller trade

→ general formulation : Bayes incentive problem á la Myerson ('82,'83)

Each interaction characterized by data — e.g., buyer's valuation

Principal uses data to mediate interaction — e.g., segmentation

Question: what is value for principal of individual data characterizing each interaction she can mediate?

Parties: principal i = 0, agents $i \in I = \{1, \dots, n\}$

Action privately controlled by party $i: a_i \in A_i$

$$\rightsquigarrow A = A_0 \times \cdots \times A_n$$

Piece of data privately and directly accessed by party i: $\omega_i \in \Omega_i$

$$\rightsquigarrow \Omega = \Omega_0 \times \cdots \times \Omega_n$$

Payoff function of party $i: u_i : A \times \Omega \to \mathbb{R}$

 \Rightarrow every $\omega=(\omega_0,\ldots,\omega_n)$ pins down one **type** of economic interaction the principal can mediate

Letting $\mu \in \Delta(\Omega)$, assume $\Gamma = (I, (\Omega, \mu), (A_i, u_i)_{i=0}^n)$ is common knowledge

Myerson's principal can commit to mediating interaction by

- eliciting agents' private data
- ightharpoonup setting rules/incentives agents face: A_0 (mechanism)
- ightharpoonup sending signals to affect agents' private actions: A_i (information)

As usual, focus on direct mechanisms $x:\Omega\to\Delta(A)$ that satisfy IC

- **honesty**: optimal for each agent to report ω_i truthfully
- **b** obedience: optimal for each agent to follow recommended a_i
- \Rightarrow data-usage problem involves
 - production technologies = IC mechanisms
 - ▶ inputs = data $\omega \in \Omega$
 - objective = $\sum_{\omega} u_0(a,\omega)x(a|\omega)\mu(\omega)$

Frequentist interpretation:

- population of distinct economic interactions between agents (e.g., monopolist-buyer trade for all buyers in market)
- $ightharpoonup \Omega = \operatorname{set}$ of types of interactions
- ightharpoonup each interaction of type $\omega = {f datapoint}$ of type ω
- ► population = database
- $\mu(\omega) = \text{stock}$ of ω -datapoints as share of total quantity in database
- principal commits ex ante to how she mediates all interactions
 (ex: all monopolist-buyer trades)

Incentive compatibility \Rightarrow as if

- principal already owns database with entire datapoints
 (e.g., platform owns all buyers' valuations even if elicitation needed)
- but restricted to using IC mechanisms

Data-pricing problem: given μ , find function

$$p:\Omega\to\mathbb{R}$$

s.t. $p(\omega)$ reflects principal's willingness to pay for **replacing/adding** marginal ω -datapoint to those already in database

Interpretation: \bullet derivation of **demand functions** for each $\omega \in \Omega$

ullet each demand depends on overall μ , as mechanisms \sim non-separable production technology

Internet platform mediating competing firms (Armstrong-Zhou '19)

- platform's own data about buyers' demand
- ▶ firms' internal data from market intelligence

Auctions with(out) information design (Bergemann-Pesendorfer '07; Daskalakis et al. '16)

- ▶ data from bidders' reports about their valuations
- auctioneer's own data about features of item for sale

Navigation app routing drivers (Kremer et al. '14, Das et al. '17, Liu-Whinston '19)

- app's own data about overall traffic conditions
- drivers' data about desired destination and road conditions

data-pricing formulation

Important case: principal's data fully reveals all parties' data (omniscient)

- 1. simpler to develop concepts and intuitions
- 2. in many instances (Posner-Weyl '18), principal already knows agents' data and can use it without their consent (akin to no privacy protection)
- benchmark for problem where principal has to elicit agents' data with their consent (akin to privacy protection)

Consider mechanisms x that have to satisfy **only** obedience

Problem \mathcal{U}

$$\begin{split} V_{\mathcal{U}} &= \max_{x} \quad \sum_{\omega,a} u_{0}(a,\omega) x(a|\omega) \mu(\omega) \\ \text{s.t.} & \quad \text{for all } i, \, \omega_{i}, \, a_{i}, \, \text{and } a'_{i} \\ & \quad \sum_{\omega_{-i},a_{-i}} \Bigl(u_{i}\bigl(a_{i},a_{-i},\omega\bigr) - u_{i}\bigl(a'_{i},a_{-i},\omega\bigr) \Bigr) x\bigl(a_{i},a_{-i}|\omega\bigr) \mu(\omega) \geq 0 \end{split}$$

Question: what is the proper share of $V_{\mathcal{U}}$ to attribute to $\omega? \to p(\omega)$

One approach: define direct value of ω as $v^*(\omega) = \sum_a u_0(a,\omega) x^*(a|\omega)$

Clearly, $\sum_{\omega}\mu(\omega)v^*(\omega)=V_{\mathcal{U}}.$ But v^* may give incorrect shares/prices ...

Using primitives Γ , we can define a data-pricing problem

Principal designs for each agent i, a_i , and ω_i

$$\ell_i(\cdot|a_i,\omega_i) \in \Delta(A_i)$$
 and $q_i(a_i,\omega_i) \in \mathbb{R}_{++}$

Problem \mathcal{P}

$$V_{\mathcal{P}} = \min_{\ell, q} \quad \sum_{\omega} p(\omega) \mu(\omega)$$

s.t. for all ω ,

$$p(\omega) = \max_{a \in A} \left\{ u_0(a, \omega) + \sum_i T_{\ell_i, q_i}(a, \omega) \right\}$$

$$T_{\ell_{i},q_{i}}(a,\omega) = q_{i}(a_{i},\omega_{i}) \sum_{a' \in A_{i}} \left(u_{i}(a_{i},a_{-i},\omega) - u_{i}(a'_{i},a_{-i},\omega) \right) \ell_{i}(a'_{i}|a_{i},\omega_{i})$$

Lemma

Problem ${\mathcal P}$ is equivalent to the **dual** of Problem ${\mathcal U}.$ By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

Lemma

Problem $\mathcal P$ is equivalent to the **dual** of Problem $\mathcal U$. By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

$$\sum_{a} x(a|\omega) = 1 \quad \forall \omega$$

Lemma

Problem $\mathcal P$ is equivalent to the **dual** of Problem $\mathcal U$. By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

$$\sum_{a} x(a|\omega)\mu(\omega) = \mu(\omega) \qquad \forall \omega$$

Lemma

Problem $\mathcal P$ is equivalent to the **dual** of Problem $\mathcal U$. By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

$$\sum_{a} \chi(\omega, a) = \mu(\omega) \qquad \forall \omega$$

Lemma

Problem \mathcal{P} is equivalent to the **dual** of Problem \mathcal{U} . By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

 $ightharpoonup p(\omega)$ corresponds to \mathcal{U} -constraint

$$\sum_{a} \chi(\omega, a) = \mu(\omega) \qquad \forall \omega$$

 $ightharpoonup p(\omega)$ captures shadow **price** of **stock** $\mu(\omega)$ of ω -datapoints

Lemma

Problem \mathcal{P} is equivalent to the **dual** of Problem \mathcal{U} . By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

 $\triangleright p(\omega)$ corresponds to \mathcal{U} -constraint

$$\sum_{a} \chi(\omega, a) = \mu(\omega) \qquad \forall \omega$$

- $p(\omega)$ captures shadow **price** of **stock** $\mu(\omega)$ of ω -datapoints
- $ightharpoonup p(\omega) = \text{principal's WTP for marginal } \omega$ -datapoint in database

Lemma

Problem $\mathcal P$ is equivalent to the **dual** of Problem $\mathcal U$. By strong duality,

$$\sum_{\omega} v^*(\omega)\mu(\omega) = V_{\mathcal{U}} = V_{\mathcal{P}} = \sum_{\omega} p^*(\omega)\mu(\omega)$$

$$\sum_{a} \chi(\omega, a) = \mu(\omega) \qquad \forall \omega$$

- $ightharpoonup p(\omega)$ captures shadow **price** of **stock** $\mu(\omega)$ of ω -datapoints
- $ightharpoonup p(\omega) = principal's WTP for marginal <math>\omega$ -datapoint in database
- $ightharpoonup \mathcal{P}$ -variables (ℓ, q) correspond to \mathcal{U} -obedience constraints

 ${\cal P}$ offers rigorous way of assessing individual price of each datapoint, viewed as ${\it input}$ in mechanism-information-design problem

A classic interpretation of duality: (Dorfman, Samuelson, Solow '58)

- reminiscent of operations of frictionless competitive market
- competition among data users forces to offer data sources full value to which their data give rise
- competition among data sources drives data prices down to minimum consistent with this full value
- \rightsquigarrow **normative** meaning to p^*
 - ▶ takes into account full value that each datapoint generates in database
 - a benchmark for actual markets for data

back to example

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\min_{\ell,q} \quad \sum_{\omega_0} p(\omega_0) \mu(\omega_0)$$

s.t. for all ω_0 ,

$$p(\omega_0) = \max_{a \in A} \left\{ u_0(a, \omega_0) + T_{\ell, q}(a, \omega_0) \right\}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\min_{\ell,q} \quad \sum_{\omega_0} p(\omega_0) \mu(\omega_0)$$

s.t. for all ω_0 ,

$$p(\omega_0) = \max_{a \in A} \left\{ u_0(a, \omega_0) + T_{\ell, q}(a, \omega_0) \right\}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\min_{\ell,q} \quad \sum_{\omega_0} p(\omega_0) \mu(\omega_0) = p(1)\mu + p(2)(1-\mu)$$

s.t. for all ω_0 ,

$$p(\omega_0) = \max_{a \in A} \left\{ u_0(a, \omega_0) + T_{\ell, q}(a, \omega_0) \right\}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 0 0

$$\omega_0 = 2$$
 1 0

$$\begin{aligned} & \min_{\ell,q} \quad p(\mathbf{1})\mu + p(\mathbf{2})(1-\mu) \\ & \text{s.t.} \quad p(\mathbf{1}) = \max \left\{ u_0(1,\mathbf{1}) + T_{\ell,q}(1,\mathbf{1}), u_0(2,\mathbf{1}) + T_{\ell,q}(2,\mathbf{1}) \right\} \\ & p(\mathbf{2}) = \max \left\{ u_0(1,\mathbf{2}) + T_{\ell,q}(1,\mathbf{2}), u_0(2,\mathbf{2}) + T_{\ell,q}(2,\mathbf{2}) \right\} \end{aligned}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

$$\begin{aligned} & \min_{\ell,q} & & p(\mathbf{1})\mu + p(\mathbf{2})(1-\mu) \\ & \text{s.t.} & & p(\mathbf{1}) = \max \Big\{ q(1)\ell(2|1), -q(2)\ell(2|1) \Big\} \\ & & p(\mathbf{2}) = \max \Big\{ 1 - q(1)\ell(2|1), q(2)\ell(1|2) \Big\} \end{aligned}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

$$\begin{split} \min_{\ell,q} \quad & p(1)\mu + p(2)(1-\mu) \\ \text{s.t.} \quad & p(1) = \max \Big\{ q(1)\ell(2|1), -q(2)\ell(2|1) \Big\} = q(1)\ell(2|1) \\ & p(2) = \max \Big\{ 1 - q(1)\ell(2|1), q(2)\ell(1|2) \Big\} \end{split}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

$$\begin{aligned} & \min_{\ell,q} & & p(1)\mu + p(2)(1-\mu) \\ & \text{s.t.} & & p(1) = q(1)\ell(2|1) \\ & & p(2) = \max\left\{1 - q(1)\ell(2|1), q(2)\ell(1|2)\right\} \end{aligned}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\begin{aligned} & \min_{\ell,q} & & p(1)\mu + p(2)(1-\mu) \\ & \text{s.t.} & & p(1) = q(1)\ell(2|1) \\ & & p(2) = \max\left\{1 - q(1)\ell(2|1), q(2)\ell(1|2)\right\} \end{aligned}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\begin{aligned} & \min_{\ell,q} & & p(\mathbf{1})\mu + p(\mathbf{2})(1-\mu) \\ & \text{s.t.} & & p(\mathbf{1}) = q(1)\ell(2|1) \\ & & p(\mathbf{2}) = \max \Big\{ 1 - q(1)\ell(2|1), 0 \Big\} \end{aligned}$$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\begin{aligned} & \min_{\ell,q} & & p(\mathbf{1})\mu + p(\mathbf{2})(1-\mu) \\ & \text{s.t.} & & p(\mathbf{1}) = q(1)\ell(2|1) \\ & & p(\mathbf{2}) = \max \Big\{ 1 - q(1)\ell(2|1), 0 \Big\} \end{aligned}$$

Assuming $\mu < \frac{1}{2}$, solution involves setting $q^*(1)\ell^*(2|1) = 1$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$ $\omega_0 = 1$ 0 0 $\omega_0 = 2$ 1 0

Data-pricing problem (seller is the only agent)

$$\begin{aligned} & \min_{\ell,q} & & p(1)\mu + p(\mathbf{2})(1-\mu) \\ & \text{s.t.} & & p(1) = q(1)\ell(2|1) = 1 \\ & & p(2) = \max\left\{1 - q(1)\ell(2|1), 0\right\} = 0 \end{aligned}$$

Assuming $\mu < \frac{1}{2}$, solution involves setting $q^*(1)\ell^*(2|1) = 1$

$$u_1(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 1 0

$$\omega_0 = 2$$
 1 2

Buyer's surplus:

$$u_0(a, \omega_0)$$
 $a = 1$ $a = 2$

$$\omega_0 = 1$$
 0 0

$$\omega_0 = 2$$
 1 0

Data-pricing problem (seller is the only agent)

$$\begin{aligned} & \min_{\ell,q} \quad p(\mathbf{1})\mu + p(\mathbf{2})(1-\mu) \\ & \text{s.t.} \quad p(\mathbf{1}) = q(\mathbf{1})\ell(2|\mathbf{1}) = 1 > v^*(\mathbf{1}) = 0 \\ & \quad p(\mathbf{2}) = \max\left\{1 - q(\mathbf{1})\ell(2|\mathbf{1}), 0\right\} = 0 < v^*(2) = \frac{\mu}{1-\mu} \end{aligned}$$

Assuming $\mu < \frac{1}{2}$, solution involves setting $q^*(1)\ell^*(2|1) = 1$

information externalities

Principal combines datapoints to produce actionable information

What ω yields depends on which/how other ω' are combined with it

Information externalities between datapoints, which v^* fails to capture

Proposition

Let x^* and (ℓ^*, q^*) be optimal for \mathcal{U} and \mathcal{P} . Then

- 1. $p^*(\omega) > v^*(\omega)$ for some $\omega \iff p^*(\omega') < v^*(\omega')$ for some ω'
- 2. $p^*(\omega) v^*(\omega) = \sum_a \left(\sum_i T_{\ell_i^*, q_i^*}(a, \omega)\right) x^*(a|\omega)$ for all ω
- 1. \Leftarrow strong duality: $\sum_{\omega} [v^*(\omega) p^*(\omega)] \mu(\omega) = 0$
- 2. \Leftarrow compl. slackness: $x^*(a|\omega) \{p^*(\omega) v(a,\omega) \sum_i T_{\ell_i^*,q_i^*}(a,\omega)\} = 0$

Why transfer value $V_{\mathcal{U}}$ from ω -datapoints to ω' -datapoints?

Definition: Augmented Correlated Equilibrium

 $ACE(\Gamma_{\omega}) = \text{distributions } y \in \Delta(A) \text{ s.t. for all } i \in I \text{ and } a_i, a_i' \in A_i,$

$$\sum_{a_{-i}} (u_i(a_i, a_{-i}, \omega) - u_i(a'_i, a_{-i}, \omega)) y(a_i, a_{-i}) \ge 0$$

Proposition

If $v^*(\omega) > p^*(\omega)$, there must exists a such that $x^*(a|\omega) > 0$ and

$$u_0(a,\omega) > \bar{v}(\omega) = \max_{y \in ACE(\Gamma_\omega)} \sum_a u_0(a,\omega) y(a)$$

Achieve $u_0(a,\omega) > \bar{v}(\omega)$ by pooling ω with $\omega' \to p^*(\omega') > v^*(\omega')$

In paper: sufficient conditions for $p^* \neq v^*$ and for $p^* = v^*$

Which datapoints tend to be less valuable?

 \blacktriangleright ω pooled with other ω' to produce information that achieves otherwise impossible outcomes for ω

Which datapoints tend to be more valuable?

 \blacktriangleright ω pooled with other ω' to $\mathbf{help}~\omega'$ achieve otherwise impossible outcomes

what drives p^{\ast}

An **independent** interpretation of \mathcal{P} to understand what drives p^*

$$\begin{array}{ll} \text{Recall}: & & \min_{\ell,q} & \sum_{\omega} p(\omega) \mu(\omega) \\ & \text{s.t.} & & p(\omega) = \max_{a \in A} \left\{ u_0(a,\omega) + \sum_i T_{\ell_i,q_i}(a,\omega) \right\} & \forall \omega \end{array}$$

- $\rightarrow p$ ultimately determined by (ℓ,q) through best trade-off between
 - 1. principal's direct payoff u_0
 - 2. "transfer" function T_{ℓ_i,q_i} that account for information externalities

What are ℓ and q?

Fix (a, ω) and recall $q_i(a_i, \omega_i) \in \mathbb{R}_{++}$, $\ell_i(\cdot | a_i, \omega_i) \in \Delta(A_i)$, and

$$T_{\ell_i,q_i}(a,\omega) = q_i(a_i,\omega_i) \sum_{a_i' \in A_i} \left(u_i(a_i,a_{-i},\omega) - u_i(a_i',a_{-i},\omega) \right) \ell_i(a_i'|a_i,\omega_i)$$

Principal designs gambles against agents contingent on (a, ω)

- $lackbox{}(\ell_i,q_i)$ family of gambles (lottery & stake) contingent on (a_i,ω_i)
- ▶ given (a, ω) , $\ell_i(?|a_i, \omega_i)$ yields **prize** $u_i(a_i, a_{-i}, \omega) u_i(?, a_{-i}, \omega)$
- ▶ principal wins iff $u_i(a_i,a_{-i},\omega) < u_i(a_i',a_{-i},\omega)$ \leftrightarrow had i known (a_{-i},ω) , he would have preferred $a_i' \neq a_i$ (ex-post mistake)
- for every ω , value $p(\omega)$ given by best trade-off between $u_0(a,\omega)$ and gambles $\sum_i T_{\ell_i,q_i}(a,\omega)$ across a
- lacktriangle principal commits to (ℓ,q) ex ante o average with respect to μ

 $\min_{\ell, a} \sum p(\omega) \mu(\omega) \leadsto \text{principal wants to win gambles as much as possible}$

Constraint 1: Limited Flexibility

gambles against i can be tailored to (a_i, ω_i) , but not (a_{-i}, ω_{-i})

- \leadsto links between pricing formula of (ω_i,ω_{-i}) and (ω_i,ω_{-i}')
 - manifestation in ${\mathcal P}$ of non-separabilities in ${\mathcal U}$ across ω
 - still pin down *individual* prices for each ω
- \leadsto trade-offs across datapoints: using (ℓ_i,q_i) to lower $p(\omega_i,\omega_{-i})$ may cost raising $p(\omega_i,\omega_{-i}')$

 $\min_{\ell,q} \sum p(\omega) \mu(\omega) \leadsto \text{principal wants to win gambles as much as possible}$

Constraint 2: Agents' Joint Rationality (Nau '92)

 \sim agents accept gambles where they lose in (a,ω) only if they win in (a',ω')

Proposition

For every* (ℓ,q) , if $\sum_i T_{\ell_i,q_i}(a,\omega) < 0$ for (a,ω) , there must exist (a',ω') such that $\sum_i T_{\ell_i,q_i}(a',\omega') > 0$

⇒ key trade-off for principal:

winning less important for relatively scarce data (low μ) \leadsto higher price

Optimal (ℓ^*,q^*) for $\mathcal P$ has corresponding optimal x^* for $\mathcal U$ (and vice versa)

Proposition

Generically, $\ell_i^*(a_i'|a_i,\omega_i) > 0$ if and only if, given ω_i , agent i indifferent between a_i' and recommendation a_i from x^*

 \sim only indifferent agents under x^* contribute to gap $p^*(\omega) - v^*(\omega)$

Proposition

Generically, $x^*(a|\omega)>0$ if and only if $p^*(\omega)=u_0(a,\omega)+\sum_i T_{\ell_i^*,q_i^*}(a,\omega)$

 \sim all uses of ω -datapoints under x^* yield same (maximal) total value $p^*(\omega)$

Which datapoints tend to be more valuable?

- 1. ω that helps principal trick agents into making ex-post mistakes for some other ω'
- 2. ω relatively scarce in database (i.e., low $\mu(\omega)$)

Which datapoints tend to be less valuable?

- 1. ω where agents make ex-post mistakes with help of some other ω'
- 2. ω relatively abundant in database (i.e., high $\mu(\omega)$)

example II

To illustrate, operator (principal) manages online marketplace

Two firms (agents), each chooses to participate or not: produce $a_i \in \{0,1\}$

Profits:
$$u_i(a_i, a_{-i}, \omega_0) = \left(\omega_0 - \sum_i a_i\right) a_i$$

Demand strength:
$$\Omega_0=\{\underline{\omega}_0,\bar{\omega}_0\}$$
, $\mu(\underline{\omega}_0)=\mu(\bar{\omega}_0)=\frac{1}{2}$

Operator maximizes total production: $u_0(a,\omega) = \sum_i a_i$

Firms have own data about demand strength: $\Omega_i = \{\underline{\omega}_i, \bar{\omega}_i\}$

$$\begin{array}{c|ccccc} \underline{\omega}_0 & \underline{\omega}_2 & \overline{\omega}_2 & \overline{\omega}_0 & \underline{\omega}_2 & \overline{\omega}_2 \\ \\ \underline{\omega}_1 & \gamma^2 & \gamma(1-\gamma) & & \underline{\omega}_1 & (1-\gamma)^2 & \gamma(1-\gamma) \\ \\ \bar{\omega}_1 & \gamma(1-\gamma) & (1-\gamma)^2 & & \bar{\omega}_1 & \gamma(1-\gamma) & \gamma^2 \end{array}$$

$$\begin{array}{c|c} \bar{\omega}_0 & \underline{\omega}_2 & \bar{\omega}_2 \\ \\ \underline{\omega}_1 & (1-\gamma)^2 & \gamma(1-\gamma) \\ \\ \bar{\omega}_1 & \gamma(1-\gamma) & \gamma^2 \end{array}$$

where $1/2 < \gamma < 1$

Data usage: given ω , convey info to influence a_1 and a_2

Data pricing: find $p(\omega) = p(\omega_0, \omega_1, \omega_2)$ for all ω

Today, assume $\omega_0 \in \{0, 3\}$

- ▶ prices independent of (ω_1, ω_2)
- ightharpoonup $\bar{\omega}_0$ is more valuable than $\underline{\omega}_0$
 - $p^*(\underline{\omega}_0, \omega_1, \omega_2) < v^*(\underline{\omega}_0, \omega_1, \omega_2) \text{ and } p^*(\bar{\omega}_0, \omega_1, \omega_2) > v^*(\bar{\omega}_0, \omega_1, \omega_2)$
 - $\text{ gambles: } q_i^*(1,\underline{\omega}_i)\ell_i^*(0|1,\underline{\omega}_i) = q_i^*(1,\bar{\omega}_i)\ell_i^*(0|1,\bar{\omega}_i) > 0 \text{, for all } i$

Case 2: firms' data gives strong signal, $\gamma > \bar{\gamma}$

- $\begin{array}{l} \blacktriangleright \ \ \text{pessimistic firms} \leadsto \text{pooling harder} \leadsto \text{larger externality} \\ p^*(\underline{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) < v^*(\underline{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) < v^*(\bar{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) < p^*(\bar{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) \end{array}$
- \blacktriangleright optimistic firms \leadsto always produce \leadsto no externalities

$$p^*(\underline{\omega}_0, \bar{\omega}_1, \bar{\omega}_2) = v^*(\underline{\omega}_0, \bar{\omega}_1, \bar{\omega}_2) = v^*(\bar{\omega}_0, \bar{\omega}_1, \bar{\omega}_2) = p^*(\bar{\omega}_0, \bar{\omega}_1, \bar{\omega}_2)$$

▶ gambles: $q_i^*(1,\underline{\omega}_i)\ell_i^*(0|1,\underline{\omega}_i) > 0 = q_i^*(1,\bar{\omega}_i)\ell_i^*(0|1,\bar{\omega}_i)$, for all i

Case 3: firms' data gives intermediate signal, $\gamma < \gamma < \bar{\gamma}$

- pessimistic firms \leadsto pooling harder \leadsto larger externality $p^*(\underline{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) < v^*(\underline{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) < v^*(\bar{\omega}_0,\underline{\omega}_1,\underline{\omega}_2) < p^*(\bar{\omega}_0,\underline{\omega}_1,\underline{\omega}_2)$
- ▶ optimistic firms → always produce → no externalities

$$p^*(\underline{\omega}_0, \bar{\omega}_1, \bar{\omega}_2) = v^*(\underline{\omega}_0, \bar{\omega}_1, \bar{\omega}_2) = v^*(\bar{\omega}_0, \bar{\omega}_1, \bar{\omega}_2) = p^*(\bar{\omega}_0, \bar{\omega}_1, \bar{\omega}_2)$$

▶ gambles: $q_i^*(1,\underline{\omega}_i)\ell_i^*(0|1,\underline{\omega}_i) > 0 = q_i^*(1,\bar{\omega}_i)\ell_i^*(0|1,\bar{\omega}_i)$, for all i

prices under privacy

Suppose principal has to incentivize agents to report their private data

Incentives:

- directly from how principal commits to use data (no monetary transfers)
- in some settings, monetary transfer as part of mechanisms

Formally, mechanisms in problem $\ensuremath{\mathcal{U}}$ must satisfy $\ensuremath{\textbf{honesty}}$ and obedience

Question: How are prices affected by need to elicit data?

Elicitation does not change mathematical structure of problem

Problem \mathcal{U}^e

$$\begin{split} V_{\mathcal{U}} &= \max_{x} \quad \sum_{\omega,a} u_{0}(a,\omega)x(a|\omega)\mu(\omega) \\ \text{s.t.} & \text{for all } i,\,\omega_{i},\,\text{and } \delta_{i}:A_{i} \to A_{i} \\ & \sum_{a_{i},a_{-i},\omega_{-i}} u_{i}\big(a_{i},a_{-i},\omega\big)x\big(a_{i},a_{-i}|\omega_{i},\omega_{-i}\big)\mu(\omega_{i},\omega_{-i}) \geq \\ & \sum_{a_{i},a_{-i},\omega_{-i}} u_{i}\big(\delta_{i}(a_{i}),a_{-i},\omega\big)x\big(a_{i},a_{-i}|\omega_{i},\omega_{-i}\big)\mu(\omega_{i},\omega_{-i}) \end{split}$$

Elicitation does not change mathematical structure of problem

Problem \mathcal{U}^e

$$\begin{split} V_{\mathcal{U}^e} &= \max_x \quad \sum_{\omega,a} u_0(a,\omega) x(a|\omega) \mu(\omega) \\ \text{s.t.} & \text{for all } i, \ \omega_i, \ \omega_i', \ \text{and} \ \delta_i : A_i \to A_i \\ & \sum_{a_i,a_{-i},\omega_{-i}} u_i \big(a_i,a_{-i},\omega\big) x \big(a_i,a_{-i}|\omega_i,\omega_{-i}\big) \mu(\omega_i,\omega_{-i}) \geq \\ & \sum_{a_i,a_{-i},\omega_{-i}} u_i \big(\delta_i(a_i),a_{-i},\omega\big) x \big(a_i,a_{-i}|\omega_i',\omega_{-i}\big) \mu(\omega_i,\omega_{-i}) \end{split}$$

Principal chooses, for each player i and ω_i ,

$$\hat{\ell}_i(\cdot|\omega_i) \in \Delta(\Omega_i \times D_i)$$
 and $\hat{q}_i(\omega_i) \in \mathbb{R}_{++}$

Problem \mathcal{P}^e

$$V_{\mathcal{P}^e} = \min_{\hat{\ell}, \hat{q}} \quad \sum_{\omega} p(\omega) \mu(\omega)$$

s.t. for all ω ,

$$p(\omega) = \max_{a \in A} \left\{ u_0(a, \omega) + \sum_i T_{\hat{\ell}_i, \hat{q}_i}(a, \omega) \right\}$$

Data pricing with vs without elicitation:

- \blacktriangleright transfer function $T_{\hat{\ell}_i,\hat{q}_i}$ now involves richer gambles $(\hat{\ell},\hat{q})$
- principal can win against agent when
 - 1. deviating from obedience is ex-post beneficial (as before)
 - 2. deviating from honesty is ex-post beneficial (new)
 - 3. both (new)

Work in progress:

- $ightharpoonup p(\omega)$ incorporates difficulty to honestly elicit ω : new externalities
- ▶ compare $p(\omega)$ under omniscient and elicitation \leadsto insights into effects on value of data (e.g., effects of privacy protection)
- ▶ compare $p(\omega)$ under elicitation with monetary transfer (if any) to agents for their data \leadsto are they properly rewarded?

Cournot Competition with Elicitation

- **1**. elicitation \rightsquigarrow qualitative change in $p(\bar{\omega}_0, \omega_1, \omega_2)$
 - $\bar{\omega}_i$ tempted to mimic $\underline{\omega}_i$ to get more informative recommendation
 - ω induces temptation to lie \rightarrow suffers negative externality (gambles)
 - x^* distorted to make mimicking $\underline{\omega}_i$ less attractive, despite $\bar{\omega}_0$

- **2.** $p^*(\bar{\omega}_0, \bar{\omega}_1, \bar{\omega}_2)$ **higher** than in omniscient case
 - mimicking gamble $\hat{\ell}_i(\underline{\omega}_i,\cdot|\bar{\omega}_i)>0$ \to loss for principal if $\omega_0=\bar{\omega}_0$
 - $-~(\bar{\omega}_0,\bar{\omega}_1,\bar{\omega}_2)$ only data left with full participation under $x^*\leadsto$ value \uparrow

Next Steps

Robust data usage:

- robust mechanisms that do not rely on agents' higher-order beliefs
- lacktriangle for example, ex-post equilibrium ightarrow LP and similar data pricing

Restrictions on data usage:

- lacktriangle mechanism x can depend only on parts of datapoint ω
- ► for example, auctioneer can use data to influence bidders' valuations, but not to directly run the auction (Bergemann-Pesendorfer '07)
- ightharpoonup formulated as linear constraints on $x o \mathsf{LP}$ and similar data pricing

Value of **more precise data** for each mediated interaction:

- lacksquare ω_0' is more precise data than ω_0 about buyer's valuation for seller's product (e.g., longer cookie history) \leadsto databases (Ω, μ) and (Ω', μ')
- ▶ individual value of extra data = $p^*(\omega_0') p^*(\omega_0)$

Summary

A theory of how to price datapoints in a database to reflect their individual value

Basic insight:

- ▶ data-usage problem = mechanism-information design problem
- ▶ data-pricing problem = its dual

Preliminary analysis reveals:

- prices take into account information externalities across datapoints
- ▶ valuable data: scarce + helps trick agents into making mistakes
- rigorous method to assess effects of privacy protection: can have significant impact and increase prices of some types of data