K.I.E.T. Group of Institutions Ghaziabad

Project title-Vegetable Classification Based on Nutritional Content

Name-Kushagra Srivastava

Roll no-202401100300143

Branch-CSE-AI

Section-B

Introduction

This project involves classifying vegetables into categories such as **leafy**, **root**, and **fruit** based on their nutritional attributes including Vitamin A, Vitamin C, and fiber content. Using machine learning classification algorithms, particularly Random Forest, the project aims to evaluate how well a model can distinguish between vegetable types based on nutrition.

Methodology

- 1. **Dataset**: The data contains nutritional information for various vegetables. The main features used were:
 - Vitamin a
 - Vitamin c
 - fiber
 - Target: type (root, leafy, fruit)
- 2. **Preprocessing**: The data was split into training and testing sets using an 80-20 split.
- 3. **Model**: A RandomForestClassifier from Scikit-learn was used to train the model.
- 4. Evaluation: The performance was measured using:
 - Confusion matrix (visualized as a heatmap)
 - Accuracy
 - Precision
 - Recall
 - Classification report

Code:

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score,
recall_score
import seaborn as sns
import matplotlib.pyplot as plt
# Step 1: Load Dataset
df = pd.read_csv('vegetables.csv')
# Step 2: Preprocess Data
X = df.drop('type', axis=1)
y = df['type']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 3: Train the Model
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# Step 4: Predictions
y_pred = model.predict(X_test)
# Step 5: Evaluation
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
labels = model.classes_
# Heatmap
```

```
plt.figure(figsize=(8,6))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.stitle('Confusion Matrix')

plt.show()

# Metrics

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred, average='macro') # macro for multiclass

recall = recall_score(y_test, y_pred, average='macro')

print("Accuracy:", accuracy)

print("Precision (macro):", precision)

print("Recall (macro):", recall)

# Detailed report

print("\nClassification Report:\n", classification_report(y_test, y_pred))
```

Output

Accuracy: 0.25

Precision (macro): 0.1878787878787879 Recall (macro): 0.23214285714285712

Classification	Report: precision	recall	f1-score	support
fruit leafy root	0.36 0.00 0.20	0.57 0.00 0.12	0.44 0.00 0.15	7 5 8
accuracy macro avg weighted avg	0.19 0.21	0.23 0.25	0.25 0.20 0.22	20 20 20

References

• **Dataset**: Provided.

• Libraries: Scikit-learn, Pandas, Matplotlib, Seaborn

• Tools: Google collab