What is a common perpendicular? Try this to find out:

The diagram shows two coplanar vectors $\mathbf{a} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -1 & 1 & -1 \end{pmatrix}$. Another vector is $\mathbf{c} = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$.

(a) Find $\mathbf{a} \cdot \mathbf{c}$. What is the relationship between \mathbf{a} and \mathbf{c} .

(b) Find $\mathbf{b} \cdot \mathbf{c}$. What is the relationship between \mathbf{b} and \mathbf{c} .

(c) Draw c on the diagram. Explain.

Common Perpendicular

Common perpendicular of two straight lines is defined by a non - coplanar straight line that meet both lines and perpendicular to both.

Cros Product

KFC

Set Induction

Is there ONE &ONLY ONE vector of common perpendicular

between two vectors? Try this to find out:

Let
$$\mathbf{a} = (1 \ 1 \ 1)$$
, $\mathbf{b} = (-1 \ 1 \ -1)$ and $\mathbf{c} = (x \ y \ z)$.

(a) From the diagram, write an equation involving a and c.

(b) Write an equation involving **b** and **c**.

KFC

(c) Solve the equations (a) and (b). State any assumption you made.

(d) what can you deduce from your result?

Set Induction

(e) Use the similar method to prove that the vector of a common perpendicular of the vectors $(a_1 \ a_2 \ a_3)$ and $(b_1 \ b_2 \ b_3)$ is $(a_2b_3-a_3b_2 \ a_3b_1-a_1b_3 \ a_1b_2-a_2b_1)$.

Cross Product

Definition

Cross product of two vectors $\mathbf{a} = (a_1 \ a_2 \ a_3)$ and $\mathbf{b} = (b_1 \ b_2 \ b_3)$, $\mathbf{a} \times \mathbf{b}$, is defined by the VECTOR perpendicular to both \mathbf{a} and \mathbf{b} and is parallel to $(a_2b_3 - a_3b_2 \ a_3b_1 - a_1b_3 \ a_1b_2 - a_2b_1)$.

OR
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} a_1 & a_2 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

KFC

Cross Product

Example: Find $\mathbf{a} \times \mathbf{b}$

$$(i)\begin{cases} \mathbf{a} = \mathbf{i} + 2\mathbf{j} \\ \mathbf{b} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \end{cases} (ii)\begin{cases} \mathbf{a} = (1 \quad 2 \quad 1) \\ \mathbf{b} = (2 \quad -3 \quad 2) \end{cases}$$

$$\begin{cases}
\mathbf{a} = 2\mathbf{i} - 4\mathbf{j} + 3\mathbf{k} \\
\mathbf{b} = 3\mathbf{i} + 5\mathbf{j} - 8\mathbf{k}
\end{cases} \qquad \text{(iv)} \begin{cases}
\mathbf{a} = (5 \quad 0 \quad -7) \\
\mathbf{b} = (4 \quad 0 \quad -1)
\end{cases}$$

A plane contains points A(1,2,4), B(0,1,2) and C(2,0,-1). Find the unit vector perpendicular to vectors \mathbf{AB} and \mathbf{AC} .

Question: Is $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$?

From definition of the cross product, it is know that

$$\mathbf{a} \times \mathbf{b} = (a_2 b_3 - a_3 b_2 \quad a_3 b_1 - a_1 b_3 \quad a_1 b_2 - a_2 b_1).$$
(a) Find $\mathbf{b} \times \mathbf{a}$.

(b) Compare $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.

 $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$ have the same magnitute but opposite direction

$$\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$$

KFC

Standard Direction of Cross Product

KFC Cross Product 13

Properties of Cross Product

(i) Cross product is distributive over addition, i.e.

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}.$$

(ii) Cross product is distributive over scalar multiplication, i.e. $(r\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (r\mathbf{b}) = r(\mathbf{a} \times \mathbf{b})$.

(iii) Cross product is NOT associative, i.e.

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$$

Simplify

$$(a)a\cdot(a\times b)=$$

$$(b)(a-b)\times a =$$

If $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, show that $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$.

Triple Products

$$(i)a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$

(ii)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

(iii)
$$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c}) = [\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})]\mathbf{a}$$

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

Prove the following:

$$(a)i \times i = j \times j = k \times k = 0$$

$$(b)i \times j = k$$

$$(c) \mathbf{j} \times \mathbf{k} = \mathbf{i}$$

$$(d)\mathbf{k} \times \mathbf{i} = \mathbf{j}$$

Find the unit vector perpendicular to the lines

$$\mathbf{r} = (1 + 2\lambda)\mathbf{i} + (1 + \lambda)\mathbf{j} + \mathbf{k} \text{ and}$$
$$\mathbf{r} = (1 + \mu)\mathbf{i} + (1 + 3\mu)\mathbf{k}.$$

A triangle has vertices A(1,2,3), B(4,3,2) and C(2,0,1). Find the vector unit of the normal of the plane ABC.

Simplify

$$(a)(a+b)\times a=$$

$$(b)(a+b)\times(a+b)=$$

A plane contains three points A, B and C with position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively. Show that the common perpendicular of the plane is $\lambda(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$.