

Periodic activities

Major computational demand in many applications

Sensory data acquisition

Control loops

System monitoring

Usually, several periodic tasks running concurrently

Assumptions

- 1. Instances of a task are periodically activated at constant rate.
- 2. All instances of a task have the same worst case execution time C_i
- 3. All instances of a task have the same deadline D_i , and $D_i = T_i$
- 4. All periodic tasks are independent (no precedence relations, no resource constraints)
- 5. No task can suspend itself (e.g., for I/O)
- 6. All tasks are released as soon as they arrive
- 7. All overheads due to the RTOS are assumed to be zero

Characterization of periodic tasks

- A periodic task τ_i can be characterized (see assumptions 1-4) by:
 - phase φ_i
 - period T_i
 - worst case computation time C_i
- Additional parameters:
 - Response time $R_i = f_i r_i$
 - Critical instant (of a task)
 - Release time of the instance resulting in the largest response time

Scheduling alternatives

Static scheduling

Dynamic (process-based) scheduling

Static scheduling - Cyclic executive

Often used in military and traffic systems

Fixed set of purely periodic tasks

Layout a schedule such that the repeated execution of this schedule will cause all processes to run at their correct rate

Essentially a table of procedure calls, where each procedure represents part of a code for a "process"

Cyclic executive - Principles

- Tasks are mapped in a set of minor cycles
- The set of minor cycles constitute a major cycle (the complete schedule)
- Cycle durations:
 - Minor cycle m = min (T_i)
 - Major cycle M = LCM (T_i) → M = k·m
- Example:
 - T = (7, 10, 21, 35)
 - m = 7
 - M = 2x3x5x7 = 210

Cyclic executive – Example

Task set

Process	period,T	Computation Time, C
A B C D	25 25 50 50 100	10 8 5 4 2

Schedule

Cyclic executive – Example

```
loop
 wait for interrupt
  Procedure For A
  Procedure For B
  Procedure For C
 wait for interrupt
  Procedure For A
  Procedure For B
  Procedure For E
 wait for interrupt
  Procedure For A
  Procedure For B
  Procedure For C
 wait for interrupt
  Procedure For A
  Procedure For B
end loop
```

Cyclic executive - Advantages

No actual process exists at run-time

The procedures share common address space and can pass data between themselves

Each minor cycle is a sequence of procedure calls

No need for data protection, no concurrency

Cyclic executive - Disadvantages

It only handles periodic tasks

Difficult to incorporate aperiodic processes without changing task sequence

Fragile in case of overload conditions

What happens if a task exceeds the minor?

Task periods must be multiple of minor cycle time

• To make this manageable

Difficult to construct cyclic executive

Equivalent to bin packing problem, NP-hard

Dynamic (process-based) scheduling

Rate Monotonic (RM)

Static priority scheduling

Rate monotonic → priorities assigned according to request rates

Each task is assigned a (unique) priority based on its period

The shorter the period, the higher the priority Given tasks t_i and t_i , $T_i < T_i \Rightarrow P_i > P_i$

Intrinsically preemptive

Currently executing task is preempted by a newly released task with shorter period

RM optimality

If a set of processes can be scheduled (using preemptive priority-based scheduling) with a fixed priority-based assignment scheme, then RM can also schedule the set of processes

RM – What about schedulability?

PROCESSOR UTILIZATION FACTOR

WORST CASE RESPONSE TIME ANALYSIS

Processor utilization factor (1)

- Given a set Γ of periodic tasks, the utilization factor U
 - is the fraction of processor time spent in the execution of the task set
 - · determines the load of the CPU

$$U = \sum_{i=1...n} C_i / T_i$$

 C_i/T_i = the fraction of processor time spent in executing τ_i

Processor utilization factor (2)

U can be improved by:

increasing computation times of the tasks, or decreasing the periods of the tasks

Maximum value for U:

below it, G is schedulable above it, G is not schedulable

Limit depends on:

task set (relations among task's periods) algorithm used to schedule the tasks

Processor utilization factor (3)

Upper bound of U, U_{ub} (Γ, A)

- The processor is fully utilized, given a task set and a scheduling algorithm
- Task set Γ is schedulable using A, but any increase of computation time in one of the tasks may make the set infeasible

Least upper bound of U, U_{lub}

- Minimum of U_{ub} over Γ that fully utilizes the processor, for a given algorithm
- U_{lub} allows to easily test for schedulability

$$U_{\text{lub}}(A) = \min(U_{ub}(\Gamma, A)), \forall \Gamma.$$

U-based schedulability test

- $U_{\Gamma i} \leftarrow U_{lub}(A) \Rightarrow \Gamma_i$ schedulable
- U_{Γi} > U_{lub}(A) → Γ_i may be schedulable, if the periods of the tasks are suitable related
- $U_{\Gamma i} > 1 \Rightarrow \Gamma_i$ not schedulable

U-based schedulability test [Liu&Layland 73]

$$U_{lub} = \sum_{i=1}^{n} \left(\frac{C_i}{T_i} \right) \le n(2^{\frac{1}{n}} - 1)$$

n	U(n)
1	1.000
2	0.828
3	0.780
4	0.757
5	0.743
6	0.735
7	0.729
8	0.724
9	0.721
10	0.718

For large values of *n* the bound asymptotically reaches 69.3% (ln2)

Any task set with U < 69.3% is schedulable under RM

U-based schedulability test - Notes

This schedulability test is **sufficient**, **but not necessary**

If a process set passes the test, it will meet all deadlines

if it fails the test, it may or may not fail at runtime

The utilizationbased test only gives a yes/no answer

No indication of actual response times of processes

Overestimation of processor load

U-based schedulability test – Example 1

Process	Period, T	Computation time, C	Priority, <i>P</i>	Utilization, <i>U</i>
Task_1	50	12	1	0.24
Task_2	40	10	2	0.25
Task_3	30	10	3	0.33

Is the set schedulable?

U = 12/50 + 10/40 + 10/30 = 0.82

 $U > U(3) = 3 (2^{1/3} - 1) = 0.78$

Undecidable, and... no!

U-based schedulability test – Example 2

Process	Period, T	Computation time, C	Priority, <i>P</i>	Utilization, <i>U</i>
Task_1	50	25	1	0.5
Task_2	40	5	2	0.125
Task_3	30	4	3	0.133

Yes!

U-based schedulability test – Example 3

Process	Period, T	Computation time, C	Priority,	Utilization, <i>U</i>
Task_1	80	40	1	0.500
Task_2	40	10	2	0.250
Task_3	20	5	3	0.250

Is the set schedulable?

U = 40/80 + 10/40 + 5/20 = 1

 $U > U(3) = 3 (2^{1/3} - 1) = 0.78$

Undecidable, and... yes!

Response time analysis

Sufficient and necessary conditions for schedulability

Two stages:

- The worst-case response time of each process is obtained analytically
- The response times are then individually compared with the process deadlines

Response time analysis

- For task i, the worst-case response time is given by R_i = C_i + I_i
 - I_i is the maximum interference that process i can experience in any time during the interval [t, t+R_i)
 - Interference = preemption
 - For the highest priority process, its worst-case response time equals its computation time (i.e., R = C)
 - Other processes suffer interference from higher-priority processes

Response time analysis – What is I_i?

Let i, j be two tasks where priority(j) > priority(i)

During the interval [0,R_i) we have

of releases of j instances is $\lceil R_i / T_i \rceil$

Max interference of j is $\lceil R_i / T_i \rceil C_i$

$$I_i = \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j \quad \square \rangle \quad R_i = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j \qquad \qquad \begin{array}{c} hp(i) = \text{ set of tasks with higher priority than i} \\ \end{array}$$

Response time analysis – Solution (1)

$$R_i = C_i + \sum_{j \in hp(i)} \left[\frac{R_i}{T_j} \right] C_j$$

Solving by forming a recurrence equation where the set $\{w_i^0, w_i^1, w_i^2, \dots, w_i^n, \dots\}$ is monotonically non-decreasing

$$w_i^{n+1} = C_i + \sum_{j \in hp(i)} \left\lceil \frac{w_i^n}{T_j} \right\rceil C_j$$

Response time analysis – Solution (2)

- The equation is solved when $w^{n+1} = w^n$
- If the equation does not have a solution, then the w values will continue to rise
 - Stop when $w > D \rightarrow$ not schedulable
- Value of w^0 ?
 - The smallest possible value for R_i is C_i

Response time analysis – Example (1)

• Task 1 =>
$$R_1 = C_1 = 3 \le 7 \text{ OK}$$

•
$$w_2^0 = C_2 = 3$$

•
$$W_2^1 = 3 + \lceil 3/7 \rceil 3 = 6$$

•
$$w_2^2 = 3 + \lceil 6/7 \rceil 3 = 6 = w_2^1 => R_2 = 6 <= 12 \text{ OK}$$

•
$$W_3^0 = C_3 = 5$$

•
$$W_3^1 = 5 + \lceil 5/12 \rceil 3 + \lceil 5/7 \rceil 3 = 11$$

•
$$w_3^2 = 5 + [11/12]3 + [11/7]3 = 14$$

•
$$w_3^3 = 5 + \lceil 14/12 \rceil 3 + \lceil 14/7 \rceil 3 = 17$$

•
$$W_3^4 = 5 + \lceil 17/12 \rceil 3 + \lceil 17/7 \rceil 3 = 20$$

•
$$W_3^5 = 5 + \lceil 20/12 \rceil 3 + \lceil 20/7 \rceil 3 = 20$$

Process	Period,	Computation	Priority,
	T	time, C	Р
Task_1	7	3	3
Task_2	12	3	2
Task_3	20	5	1

Response time analysis – Example (2)

- Task set that fails the U-based test
 - U = 40/80+10/40+5/20 = 1/2+1/4+1/4 = 1 > 0.78
- Response time test is ok

Process	Period,	Computation	Priority,
	I	time, C	Ρ
Task_1	80	40	1
Task_2	40	10	2
Task_3	20	5	3

EDF

Dynamic priority assignment

Same idea as for aperiodic tasks

- Tasks are selected according to their absolute deadlines
- Tasks with earlier deadlines are given higher priorities
- It is intrinsically preemptive

More powerful than RM

It works optimally for periodic as well as aperiodic tasks

EDF vs. RM – Example

Process	T	С
T ₁	5	2
T ₂	7	4

EDF schedule

Draw the schedule

RM schedule

EDF schedulability test [Liu&Layland 73]

- Schedulability of a periodic task set scheduled by EDF can be verified through the processor utilization factor U
- A set of periodic tasks is schedulable with EDF iff $\sum_{i=1}^{n} \left(\frac{C_i}{T_i} \right) \le 1$
- Sufficient and necessary condition

EDF schedulability test – Example

Processor utilization of the task set

• U =
$$2/5 + 4/7 = 34/35 = 0.97$$

- U > 0.82
 - Schedulability not guaranteed under RM
- U <1
 - Schedulability guaranteed under EDF

Process	Period, T	WCET, C
T ₁	5	2
T ₂	7	4

Deadline monotonic (DM)

Assumption up to now

• relative deadline = period

DM scheduling weakens this assumption

• Static algorithm with preemption

For DM each periodic tasks t_i is characterized by four parameters:

- Relative deadline D_i (equal for all instances)
- Worst case computation time C_i (equal for all instances)
- Period T_i
- Phase ϕ_i

DM scheduling

- DM = generalization of RM
 - RM optimal for D = T
 - DM extends this optimality for D < T
- Priority of a process inversely proportional to its deadline (but still static!)
 - Given tasks τ_i and τ_j , $D_i < D_j \Rightarrow P_i > P_j$

DM scheduling – Example

 Task set not schedulable with RM but schedulable with DM

Process	Period, T	Deadline, D	Computation time, C	Priority, <i>P</i>	Response time, R
Task_1	20	5	3	4	3
Task_2	15	7	3	3	6
Task_3	10	10	4	2	10
Task_4	20	20	3	1	20

DM schedulability analysis

 Schedulability can be tested replacing the period with the deadlines in the definition of U

$$U = \sum_{i=1...n} C_i / D_i$$

Too pessimistic! (U overestimated)

DM schedulability analysis

- Actual guarantee test based on a modified response time analysis
- Intuitively: for each τ_i , the sum of its processing time and the interference (preemption) imposed by higher priority tasks must be $\leq D_i$

$$C_{i} + I_{i} \leq D_{i} \qquad \forall i: 1 \leq i \leq n$$

$$I_{i} = \sum_{(j=1...i-1)} \lceil R_{i} / T_{j} \rceil C_{j}$$

EDF for D<T

- EDF applies also to the case D < T
- But schedulability test based on the processor demand criterion
- The processor demand of a task τ_i in any interval [t, t+L] is the amount of processing time required by τ_i in [t, t+L] that has to be completed at or before t+L
 - i.e., that has to be executed with deadlines ≤ t+L

Processor demand for EDF

- Applicable also to the case D=T
- In general, the schedulability of the task set is guaranteed iff the cumulative processor demand in any interval [0, L] ≤ L (the interval length):

$$C_P(0,L) = \sum_{i=1}^n \left\lfloor \frac{L}{T_i} \right\rfloor C_i. \le L$$

Processor demand for EDF

• In the case D<T

$$\forall L \ge 0 \qquad L \ge \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

Number of checkpoints is actually limited

Number of completions between 0 and L-D_i

Processor demand for EDF – Example

- Schedulability test (L=21)
 - $(\lfloor (21-7)/8 \rfloor + 1)$ 3 + $(\lfloor (21-4)/8 \rfloor + 1)$ 2 = 6 + 6 = 12 < 21 OK

Task	Т	D	С
$ au_1$	8	7	3
$ au_2$	8	4	2

- Schedulability test (L=24)
 - $(\lfloor (24-7)/8 \rfloor + 1)$ 3 + $(\lfloor (24-4)/8 \rfloor + 1)$ 2 = 9 + 6 = 15 < 24 OK

Periodic task scheduling: summary

RM is optimal among fixed priority assignments (with D=T)

EDF is optimal among dynamic priority assignments

Deadlines = Periods

• guarantee test in O(n) using processor utilization, applicable to EDF and RM (only sufficient condition)

Deadlines < periods

- polynomial time algorithms for guarantee test
- fixed priority (DM): response time analysis
- dynamic priority (EDF): processor demand

Periodic task scheduling – Summary

 $D_i = T_i$

 $D_i \leq T_i$

RMA

Static **Priority**

Processor utilization approach

$$\sum_{i=1}^{n} \left(\frac{C_i}{T_i} \right) \leq n (2^{\frac{1}{n}} - 1)$$

EDF

Dynamic **Priority**

Processor utilization approach

$$\sum_{i=1}^{n} \left(\frac{C_i}{T_i} \right) \le 1$$

DMA

Response time approach

$$\forall i, \ R_i = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil C_j \le D_i$$

EDF

Processor demand approach

$$\sum_{i=1}^{n} \left(\frac{C_i}{T_i} \right) \le 1 \qquad \forall L > 0, \quad L \ge \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$