3.10 – Derivatives of Inverse Trigonometric Functions

MATH 2554 - Calculus I

Recall: If a function f is one-to-one, then its inverse exists and denoted f^{-1} .

If f is invertible and y = f(x), then $x = f^{-1}(y)$.

Example: If $y = x^3 + 1$, then $x = (y - 1)^{1/3}$. So $f(x) = x^3 + 1$ has inverse $f^{-1}(y) = (y - 1)^{1/3}$.

Note: f^{-1} is not the same as $\frac{1}{f(x)}!!$ Instead, $(f(x))^{-1} = \frac{1}{f(x)}$.

Notation: On an approriate domain, the trig functions are invertible. We will use the notation

$$\arcsin x = \sin^{-1} x$$
, $\arccos x = \cos^{-1} x$, etc.

interchangably.

Question: What are the domains and ranges of arcsin x, arccos x, and arctan x?

Implicit Differentiation allows us to compute the derivatives of the inverse trig functions.

Let $y = \arcsin x$.

$$1=(\cos y)\frac{dy}{dx}.$$

This means
$$\frac{dy}{dx} = \frac{1}{\cos y}$$
.

Question: How can we find $\cos y$?

Answer: Draw a triangle!!

Implicit Differentiation allows us to compute the derivatives of the inverse trig functions.

We see that
$$\cos y = \sqrt{1 - x^2}$$
 so that $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$.

Question: How do we know that $\cos y = \sqrt{1-x^2}$ and not $-\sqrt{1-x^2}$?

Examples: Compute

1.
$$\frac{d}{dx} \left[\sin^{-1}(4x^2 - 3) \right]$$

$$2. \ \frac{d}{ds}\cos(\sin^{-1}s).$$

Example:

Compute $\frac{d}{dx} \arctan x$.

Repeating this calculation for the remainder of the trig functions shows

$$\begin{split} \frac{d}{dx}\sin^{-1}x &= \frac{1}{\sqrt{1-x^2}} & \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}} & -1 < x < 1 \\ \frac{d}{dx}\tan^{-1}x &= \frac{1}{1+x^2} & \frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2} & -\infty < x < \infty \\ \frac{d}{dx}\sec^{-1}x &= \frac{1}{|x|\sqrt{x^2-1}} & \frac{d}{dx}\csc^{-1}x = -\frac{1}{|x|\sqrt{x^2-1}} & |x| > 1. \end{split}$$

Compute $\frac{d}{dt} \arctan(1/t)$.

Derivatives of Invertible Functions.

Example: Let y = mx + b. Then $\frac{dy}{dx} = m$.

Solving for x yields $x = f^{-1}(y) = \frac{y}{m} - \frac{b}{m}$.

Consequently, $\frac{df^{-1}}{dy} = \frac{1}{m}$.

This is not a coincidence!

Theorem

Let f be differentiable and invertible on an interval I. If x_0 is a point of I at which $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}, \text{ where } y_0 = f(x_0).$$

Exercise: Determine the derivative to the inverse of $f(x) = x^2 + 1$ at the point (5,2).

Homework Problems: Section 3.10 (pp.225-227) #15-43 odd, 50-52