

1

SEQUENCE LISTING

<110> PLOWMAN, GREGORY D.
WHYTE, DAVID
MARTINEZ, RICARDO
HILL, RONALD
FLANAGAN, PETER
LIOUBIN, MARIO

<120> NOVEL PROTEIN PHOSPHATASES AND DIAGNOSIS AND TREATMENT
OF PHOSPHATASE-RELATED DISORDERS

<130> 034536-0726

<140> 10/049,515
<141> 2002-06-14

<150> PCT/US00/22158
<151> 2000-08-11

<160> 45

<170> PatentIn Ver. 3.2

<210> 1
<211> 715
<212> DNA
<213> Mus sp.

<400> 1
actccccccca cgatgggcgt gcaacccccc aacttctcct gggtgcttcc gggacggctg 60
gccggactgg cgttgcggcc gctgcccgcg cactaccagt tcctgctgga ccagggtgtg 120
cggcacctgg tgccttcgtac ggagcgcgga cccctcaca gtgacagctg tccccggcctc 180
acgctgcacc gaatgcgcac ccctgacttt tgcccgccgt ccccgaaaca gatcgaccaa 240
tttgtgaaga tctgtggacga ggccaatgcc cggggagagg ctgttgaggt gcactgtgcc 300
ctaggcttgc gccgcactgg caccatgcta gcctgctact tggtgaaggaa gcgggctttg 360
tgatggcatttgc tgatggccgg cgcctgcgac caggatccat tgagacgtat 420
ggccgcaggag atgcccatttgc tgatggccgg cgcctgcgac caggatccat tgagacgtat 480
gaacaggaga agggccgtctt ccagttctac cagcgaacaaa aatgaggact tcaacaagcc 540
cgccctttccc cctcccaaac tcctgcccggcc agggaggaag gggaggtaaactgtaactg 600
catccttcag gtcccttcgtac tccttattgg acaaaaatgtac tccttccccca aagccataaac 660
gtggccggca ggatggccga gacccacaaa aaatgaggtaaataactgata agaactcatc 715
accgctgcatac agcatgtaca cagcactccc aatacatctg ggtggttgaa aagac

<210> 2
<211> 150
<212> PRT
<213> Mus sp.

<400> 2
Met Gly Val Gln Pro Pro Asn Phe Ser Trp Val Leu Pro Gly Arg Leu
1 5 10 15

Ala Gly Leu Ala Leu Pro Arg Leu Pro Ala His Tyr Gln Phe Leu Leu
20 25 30

Asp Gln Gly Val Arg His Leu Val Ser Leu Thr Glu Arg Gly Pro Pro
35 40 45

His	Ser	Asp	Ser	Cys	Pro	Gly	Leu	Thr	Leu	His	Arg	Met	Arg	Ile	Pro
50					55					60					
Asp	Phe	Cys	Pro	Pro	Ser	Pro	Glu	Gln	Ile	Asp	Gln	Phe	Val	Lys	Ile
65					70					75				80	
Val	Asp	Glu	Ala	Asn	Ala	Arg	Gly	Glu	Ala	Val	Gly	Val	His	Cys	Ala
					85					90				95	
Leu	Gly	Phe	Gly	Arg	Thr	Gly	Thr	Met	Leu	Ala	Cys	Tyr	Leu	Val	Lys
					100					105				110	
Glu	Arg	Ala	Leu	Ala	Ala	Gly	Asp	Ala	Ile	Ala	Glu	Ile	Arg	Arg	Leu
					115					120				125	
Arg	Pro	Gly	Ser	Ile	Glu	Thr	Tyr	Glu	Gln	Glu	Lys	Ala	Val	Phe	Gln
					130					135				140	
Phe	Tyr	Gln	Arg	Thr	Lys										
					145					150					

<210> 3
<211> 968
<212> DNA
<213> Mus sp.

<400> 3
cgcaactcgc ggccccgtag atggccctag ggtcgaggg gttatggca cctcgaggc 60
tgcaccgccc ccttcgcgc gcgtcgcccc cgcgctttc atcggaaatg cgcgagccgc 120
gggtgcgacg gagctgtgg tgcgcgcggg catcaacttg tgcgtcaatg tctccgcga 180
gcagccggg ccgcgcgcgc ccggagtggc ggaactacgc gtaccgtgt tcgacgacc 240
agctgaggac ctgctgacac acctggagcc cacctgtgcc gccatgaaag ccgcgggtgcg 300
cgacggcggc tcctgtctcg tgtactgcaa gaacggccgc agtcgctcag ccgcgtctg 360
caccgcctac ctaatgcggc accgcggcca cagcctggat cgcccttcc agatggtaa 420
gagcgcggcgc ccggtagccg agcccaattt ggggttctgg gtcagctgc agaagtagca 480
gcagaccctt caggccccagg ccatcctgcc ccgggagccc attgatccgg agtaagccga 540
ctgttcggct gctgggtgac caagcgtcta tactgaaaagg aagtgtccct tccctccctt 600
ttcttattagg cagctggctt tgggttgtgc cccatcttga tggtagtaca ggaacgtcta 660
ctgagtagga ggacttcgtt tattcatcat gtttgacca aatccaaacc agcacgtttt 720
aggttagagaa attgagtgaa ggatagtctg ggaaggctac gaacggttga tagcgagtga 780
tagatcagag tcctagctgc ctactccaag ggagtgcctg ggtttttagg cagaacctat 840
ctgtctccctg aacctctggt cccttagaaa tgaacataga gtctcccagc aggagctcat 900
gggcccaccc ttggcttaca gctgctgtgc catggaaagg aggccgtgca gactgcagct 960
gagcgaact 968

<210> 4
<211> 163
<212> PRT
<213> Mus sp.

<400> 4
Met Gly Thr Ser Glu Ala Ala Pro Pro Pro Phe Ala Arg Val Ala Pro
1 5 10 15

Ala Leu Phe Ile Gly Asn Ala Arg Ala Ala Gly Ala Thr Glu Leu Leu
 20 25 30

Val Arg Ala Gly Ile Thr Leu Cys Val Asn Val Ser Arg Gln Gln Pro
 35 40 45

Gly Pro Arg Ala Pro Gly Val Ala Glu Leu Arg Val Pro Val Phe Asp
 50 55 60

Asp Pro Ala Glu Asp Leu Leu Thr His Leu Glu Pro Thr Cys Ala Ala
 65 70 75 80

Met Glu Ala Ala Val Arg Asp Gly Gly Ser Cys Leu Val Tyr Cys Lys
 85 90 95

Asn Gly Arg Ser Arg Ser Ala Ala Val Cys Thr Ala Tyr Leu Met Arg
 100 105 110

His Arg Gly His Ser Leu Asp Arg Ala Phe Gln Met Val Lys Ser Ala
 115 120 125

Arg Pro Val Ala Glu Pro Asn Leu Gly Phe Trp Ala Gln Leu Gln Lys
 130 135 140

Tyr Glu Gln Thr Leu Gln Ala Gln Ala Ile Leu Pro Arg Glu Pro Ile
 145 150 155 160

Asp Pro Glu

<210> 5
<211> 1067
<212> DNA
<213> Mus sp.

<400> 5
cccgctccg gcgagcgcgg agcggcgagc cccggcgccgc catggggagt gggatgagcc 60
agatccgtcc gggcctgtac attggcaact tcaaagacgc aagagatgca gaacagttga 120
gcaggaacaa ggtgacacac attcttctg tgcacgatac tgccaggccc atgttggagg 180
gagttaaaata cctgtgtatt ccagcggcag acacaccatc tcaaaacctg acaagacatt 240
tcaaagaaaag cattaaattc attcatgagt gcccactcca gggtgagagc tgtcttgtac 300
attgcctggc tggggcttc aggagtgtga cattggtgat cgcatacatc atgactgtca 360
ccgactttgg ctgggaagat gccttcaca ctgttcgtgc ggggaggtcc tggcccaacc 420
ccaaacctggg ctttcaaagg cagctgcagg agtttgagaa acatgaagtg caccagtatc 480
ggcaatggct gagagaagag tatggagaga acccttgcg ggatgcagaa gaagccaaaa 540
atattctggc tgcggggaa attctgaagt actgggcctt ttcagaaga ctgtaatgta 600
cctgaagttt ctgaaatatt gcaaagttca ggctgggtgc gccaaaaaga aaagtgtatgt 660
aaagtttatt tttaagaattc caatagtgtat ttgtataactt gttttttt cattttaaac 720
caaattgcatt tataatcatg ttggaaatatg ttaagatcta tggatattct gtagcaagag 780
aaaatatctt tgccttaact ccactgctgt ggttggccct tggacctgac cgatgctcat 840
acaataatctt caagagccct gtctgttcg taatagtaac tacttctcat gaacactacc 900
caaggagggaa gcctgcaccc gggaaatgtg cagttgtgagc tctgcctcc tgtaagtcc 960
tccagctcta gacatgtctc ttgggtgtg ttttatctac tggtgttatt ctatatggta 1020
gaattaccaa aagctattca gatttcttaa taaagggcaa atcaacc 1067

<210> 6
<211> 184
<212> PRT
<213> Mus sp.

<400> 6
Met Gly Ser Gly Met Ser Gln Ile Leu Pro Gly Leu Tyr Ile Gly Asn
1 5 10 15
Phe Lys Asp Ala Arg Asp Ala Glu Gln Leu Ser Arg Asn Lys Val Thr
20 25 30
His Ile Leu Ser Val His Asp Thr Ala Arg Pro Met Leu Glu Gly Val
35 40 45
Lys Tyr Leu Cys Ile Pro Ala Ala Asp Thr Pro Ser Gln Asn Leu Thr
50 55 60
Arg His Phe Lys Glu Ser Ile Lys Phe Ile His Glu Cys Arg Leu Gln
65 70 75 80
Gly Glu Ser Cys Leu Val His Cys Leu Ala Gly Val Ser Arg Ser Val
85 90 95
Thr Leu Val Ile Ala Tyr Ile Met Thr Val Thr Asp Phe Gly Trp Glu
100 105 110
Asp Ala Leu His Thr Val Arg Ala Gly Arg Ser Cys Ala Asn Pro Asn
115 120 125
Leu Gly Phe Gln Arg Gln Leu Gln Glu Phe Glu Lys His Glu Val His
130 135 140
Gln Tyr Arg Gln Trp Leu Arg Glu Glu Tyr Gly Glu Asn Pro Leu Arg
145 150 155 160
Asp Ala Glu Glu Ala Lys Asn Ile Leu Ala Ala Pro Gly Ile Leu Lys
165 170 175
Tyr Trp Ala Phe Leu Arg Arg Leu
180

<210> 7
<211> 597
<212> DNA
<213> Mus sp.

<400> 7
atggactcgc tacagaagca ggaacttcgg aggccaaaga ttcatggggc agtccagggtg 60
tccccctacc agccacccac actggcctct ctgcagcgat tgctgtgggt ccgtcggaact 120
gccacactga cccacatcaa tgaggtctgg cccaaccttt tcttgggaga tgcgtatgct 180
gccagagaca agggtcgtct aatccagctg ggcattaccc atgttgtgaa tgtggctgcg 240
ggcaagttcc aggtggacac aggtgccaag ttctaccgtg gaacacctct ggagtactat 300
ggcattgagg ctgatgacaa ccccttctt gacctcagcg tccactttct gcctgttgc 360
cgttacatca gagatgccct caatattccc cgaagccgag tgctggtcca ctgcgtatg 420
ggggtgagtc gctctgccac aattgtcttg gccttcctca tgatcttcga gaacatgaca 480
ctggtagatg ccatccagac ggtgcaggcc caccgagata tctgtcccaa ctcaggctc 540

ctccgacagc tccaggttct ggacaacagg ctgaggcgaa aaacaggaag actctga 597

<210> 8
<211> 198
<212> PRT
<213> Mus sp.

<400> 8
Met Asp Ser Leu Gln Lys Gln Glu Leu Arg Arg Pro Lys Ile His Gly
1 5 10 15
Ala Val Gln Val Ser Pro Tyr Gln Pro Pro Thr Leu Ala Ser Leu Gln
20 25 30
Arg Leu Leu Trp Val Arg Arg Thr Ala Thr Leu Thr His Ile Asn Glu
35 40 45
Val Trp Pro Asn Leu Phe Leu Gly Asp Ala Tyr Ala Ala Arg Asp Lys
50 55 60
Gly Arg Leu Ile Gln Leu Gly Ile Thr His Val Val Asn Val Ala Ala
65 70 75 80
Gly Lys Phe Gln Val Asp Thr Gly Ala Lys Phe Tyr Arg Gly Thr Pro
85 90 95
Leu Glu Tyr Tyr Gly Ile Glu Ala Asp Asp Asn Pro Phe Phe Asp Leu
100 105 110
Ser Val His Phe Leu Pro Val Ala Arg Tyr Ile Arg Asp Ala Leu Asn
115 120 125
Ile Pro Arg Ser Arg Val Leu Val His Cys Ala Met Gly Val Ser Arg
130 135 140
Ser Ala Thr Ile Val Leu Ala Phe Leu Met Ile Phe Glu Asn Met Thr
145 150 155 160
Leu Val Asp Ala Ile Gln Thr Val Gln Ala His Arg Asp Ile Cys Pro
165 170 175
Asn Ser Gly Phe Leu Arg Gln Leu Gln Val Leu Asp Asn Arg Leu Arg
180 185 190
Arg Glu Thr Gly Arg Leu
195

<210> 9
<211> 828
<212> DNA
<213> Mus sp.

<400> 9
atgcactccc tgaaccaaga aatcaaagca ttctcccgaa ataatctcag gaagcagtgc 60
accagggtaa ccacgctaac tggaaagaaa cttatagaaaa cctggaaaga tgccacagtt 120
catgttgtgg agacagagcc cagcgggtgg ggtgggtgtg gctatgtgca ggaccttacc 180

ttggacctgc aagtggcgt tattaagccc tggttgcttc tggggtcaca ggatgctgct 240
 catgacctgg agtactgag aaagcataag gtgactcata ttctcaatgt tgcataatgga 300
 gttgaaaatg cttccctcg ttagtttaca tataagacca tttctatact ggatgtgcct 360
 gaaaccaata tcctgtctta tttccagaa tggggactt tattgagca agaaaaactg 420
 aaggatggcg tgggtctcg gcactgtaat gcagggttt ccagggctgc tgcattgtc 480
 attggcttcc tcatgagttc tgaagaagcc actttcacca ctgccctgtc gttggtgaaa 540
 gaggcgagac catccatatg tccgaatcct ggcttcatgg aacaactccg cacctaccaa 600
 gtggcaagg agagcaatgg aggtgacaaa gtgcccgcgg aggacacgcg cgggtgtctg 660
 ttagtctgtac tccagcagag gcaaacgact tctgcatcag actctgtcct ctgcctgtg 720
 ttttggaaagg aaacttggaa aacttccctt ttctgttgc ttttaccagt gaaatgaac 780
 gttaccttg tcgcctgaa ttaatacatt taaaagttt acctttc 828

<210> 10
 <211> 220
 <212> PRT
 <213> Mus sp.

<400> 10
 Met His Ser Leu Asn Gln Glu Ile Lys Ala Phe Ser Arg Asp Asn Leu
 1 5 10 15
 Arg Lys Gln Cys Thr Arg Val Thr Thr Leu Thr Gly Lys Lys Leu Ile
 20 25 30
 Glu Thr Trp Glu Asp Ala Thr Val His Val Val Glu Thr Glu Pro Ser
 35 40 45
 Gly Gly Gly Cys Gly Tyr Val Gln Asp Leu Thr Leu Asp Leu Gln
 50 55 60
 Val Gly Val Ile Lys Pro Trp Leu Leu Leu Gly Ser Gln Asp Ala Ala
 65 70 75 80
 His Asp Leu Glu Leu Leu Arg Lys His Lys Val Thr His Ile Leu Asn
 85 90 95
 Val Ala Tyr Gly Val Glu Asn Ala Phe Leu Ser Glu Phe Thr Tyr Lys
 100 105 110
 Thr Ile Ser Ile Leu Asp Val Pro Glu Thr Asn Ile Leu Ser Tyr Phe
 115 120 125
 Pro Glu Cys Phe Glu Phe Ile Glu Gln Ala Lys Leu Lys Asp Gly Val
 130 135 140
 Val Leu Val His Cys Asn Ala Gly Val Ser Arg Ala Ala Ala Ile Val
 145 150 155 160
 Ile Gly Phe Leu Met Ser Ser Glu Glu Ala Thr Phe Thr Thr Ala Leu
 165 170 175
 Ser Leu Val Lys Glu Ala Arg Pro Ser Ile Cys Pro Asn Pro Gly Phe
 180 185 190
 Met Glu Gln Leu Arg Thr Tyr Gln Val Gly Lys Glu Ser Asn Gly Gly
 195 200 205

Asp	Lys	Val	Pro	Ala	Glu	Asp	Thr	Thr	Gly	Gly	Leu
210					215						220

<210> 11
<211> 1379
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (39)
<223> a, c, g, t, other or unknown

<400> 11
gggcggccgg acgaggaggg acgctgggcc tgcccggtng cgcacgggggg cggggaccgg 60
caaggccggga ccatttcccg gcataggtc cgtgtccccct gcccggctcc cgccggaaag 120
ttcttagccg cgcacagaa agccctgccc tcacgcccgg gtctctggag cgccctgggt 180
tgcccgccgg gtccctgccc ctgacttgtt gacactgcga gcactcagtc cctcccgccg 240
gcctccccc cgcccccccc gcccgtcctc ctccctgtaa catgcctat tgccctgcg 300
accacacggc cggggcgcta gcgttcgcct tcagccacca tggggaatgg gatgaacaag 360
atcctggccg gcctgtacat cggcaacttc aaagatgcca gagacgcgga acaattgagc 420
aagaacaagg tgacacatat tctgtctgtc cacgatagtg ccaggctat gttggaggga 480
gttaataacc tgtgcattccc agcagcggat tcaccatctc aaaacctgac aagacatttc 540
aaagaaaagta ttaaattcat tcacgagtgc cggctccgcg gtgagagctg ccttgtacac 600
tgcctggccg ggtctccag gagcgtgaca ctggtgatcg catacatcat gaccgtcact 660
gactttggct gggaggatgc cctgcacacc gtgcgtgctg ggagatcctg tgccaacccc 720
aacgtgggct tccagagaca gctccaggag tttgagaagc atgagggtcca tcagtatcgg 780
cagtggctga aggaagaata tggagagagc ctttgcagg atgcagaaga agccaaaaac 840
attctggccg ctccggaaat tctgaagttc tgggccttcc tcagaagact gtaatgtacc 900
tgaagttct gaaatattgc aaacccacag agtttaggct ggtgctgcca aaaagaaaag 960
caacatagag tttaagtatac cagtagtgat ttgtaaaactt gttttcatt tgaagctgaa 1020
tatatacgtt gtcatttttta tggtgagaac taaggatatt ctttagcaag agaaaatatt 1080
ttcccccattt ccccactgtc gtggagggtt ctgtacctcg cttggatgcc tggatgtacc 1140
ccgggagcct tgccgcactg ccttgggggt ggcttggcgc tcgtgattgc ttccctgtgaa 1200
ccgcctcccaa ggacgagccc agttagttt tggtggctga actctgccc tggatgttca 1260
aattccccag ctggggaaat agccctgggt gtgggtttt tctctgggtt gtgttctccg 1320
tggtggattt gaccgaaagc tctatgtttt cgttaataaa gggcaactta gccaagttt 1379

<210> 12
<211> 184
<212> PRT
<213> Homo sapiens

<400> 12
Met Gly Asn Gly Met Asn Lys Ile Leu Pro Gly Leu Tyr Ile Gly Asn
1 5 10 15

Phe Lys Asp Ala Arg Asp Ala Glu Gln Leu Ser Lys Asn Lys Val Thr
20 25 30

His Ile Leu Ser Val His Asp Ser Ala Arg Pro Met Leu Glu Gly Val
35 40 45

Lys Tyr Leu Cys Ile Pro Ala Ala Asp Ser Pro Ser Gln Asn Leu Thr
50 55 60

Arg His Phe Lys Glu Ser Ile Lys Phe Ile His Glu Cys Arg Leu Arg
 65 70 75 80
 Gly Glu Ser Cys Leu Val His Cys Leu Ala Gly Val Ser Arg Ser Val
 85 90 95
 Thr Leu Val Ile Ala Tyr Ile Met Thr Val Thr Asp Phe Gly Trp Glu
 100 105 110
 Asp Ala Leu His Thr Val Arg Ala Gly Arg Ser Cys Ala Asn Pro Asn
 115 120 125
 Val Gly Phe Gln Arg Gln Leu Gln Glu Phe Glu Lys His Glu Val His
 130 135 140
 Gln Tyr Arg Gln Trp Leu Lys Glu Glu Tyr Gly Glu Ser Pro Leu Gln
 145 150 155 160
 Asp Ala Glu Glu Ala Lys Asn Ile Leu Ala Ala Pro Gly Ile Leu Lys
 165 170 175
 Phe Trp Ala Phe Leu Arg Arg Leu
 180

<210> 13
 <211> 1020
 <212> DNA
 <213> Mus sp.

<400> 13
 gaacccttgg tattgaaagg gggactcagt agttttaaac agaaccatgg aaacacctgt 60
 gacaactccc tccagctcca agagtgcgg gaggtgggg gtgggcacatc tgccggctcg 120
 agcatgctac ctcagtcgt ccccacccacc cctgacatcg agaacgcaga gctaacgccc 180
 atcctgcctt tcctgttcct cggcaatgag caggatgctc aggacataga caccatgcag 240
 aggctcaaca tcggctatgt catcaacgtc accacgcacc ttccctgtta ccattatgag 300
 aaaggcctct tcaactacaa gaggctgcca gccacagaca gcaacaaaaca gaacctgcgg 360
 cagtaactttg aagaggcctt cgagttcattc gaggaagctc accagtgtgg gaaggccctt 420
 ctcatccact gccaggccgg cgtgtcccgat tccgccacca tcgtcatcgcttacttgatg 480
 aagcacacac ggatgaccat gactgacgct tacaaattcg tcaaaggcaa acgaccaatt 540
 atttccccga acctaactt catggggcag ttgctggat ttgaggatga cctaaacaac 600
 ggcgtacgc caagaatcct tacaccaaaat ctcattggca tggagacagt tttgtgacaaa 660
 cgggcaggac gggaaagggtt gtgtctctc aggagacgaa aaggaggaa ggtggatttt 720
 agtttgtcgc tcttctttcc tttcccttttcc tttcttttcc tttcttttcc 780
 ttttttttcc tttcttttcc tttttttttt aaggttggaa gtgtttgtga 840
 aagtaaacaacttgtctaa agactctatt ttaataagt gtaagaagac tgtaactttt 900
 gatgcgaatg agacccactt ctcttaaact gtttgcag tttagttaaa gaggtctttt 960
 ttggtttggtt ttgtttttt aagccaaaccc ataaaaatataaaaactt gtttctttcc 1020

<210> 14
 <211> 218
 <212> PRT
 <213> Mus sp.

<400> 14
 Glu Pro Leu Val Leu Lys Gly Gly Leu Ser Ser Phe Lys Gln Asn His
 1 5 10 15

Gly Asn Leu Cys Asp Asn Ser Leu Gln Leu Gln Glu Cys Arg Glu Val
 20 25 30

Gly Gly Gly Ala Ser Ala Ala Ser Ser Met Leu Pro Gln Ser Val Pro
 35 40 45

Thr Thr Pro Asp Ile Glu Asn Ala Glu Leu Thr Pro Ile Leu Pro Phe
 50 55 60

Leu Phe Leu Gly Asn Glu Gln Asp Ala Gln Asp Leu Asp Thr Met Gln
 65 70 75 80

Arg Leu Asn Ile Gly Tyr Val Ile Asn Val Thr Thr His Leu Pro Leu
 85 90 95

Tyr His Tyr Glu Lys Gly Leu Phe Asn Tyr Lys Arg Leu Pro Ala Thr
 100 105 110

Asp Ser Asn Lys Gln Asn Leu Arg Gln Tyr Phe Glu Glu Ala Phe Glu
 115 120 125

Phe Ile Glu Glu Ala His Gln Cys Gly Lys Gly Leu Leu Ile His Cys
 130 135 140

Gln Ala Gly Val Ser Arg Ser Ala Thr Ile Val Ile Ala Tyr Leu Met
 145 150 155 160

Lys His Thr Arg Met Thr Met Thr Asp Ala Tyr Lys Phe Val Lys Gly
 165 170 175

Lys Arg Pro Ile Ile Ser Pro Asn Leu Asn Phe Met Gly Gln Leu Leu
 180 185 190

Glu Phe Glu Asp Asp Leu Asn Asn Gly Val Thr Pro Arg Ile Leu Thr
 195 200 205

Pro Lys Leu Met Gly Met Glu Thr Val Val
 210 215

<210> 15
<211> 1241
<212> DNA
<213> Mus sp.

```

<400> 15
atggttggaa ggcgcaaggta ctaaccatgg ctgcgcagcgc caggctccga ctgccagtc 60
cgccagctcg gcaggcgcacg ccgtggaagt gcccgcggg ctgtatctgg gtggggcagc 120
ggcagtggcg gaaccgggccc atctgaggga ggcgggcata accggccgtgc tgacgggtg 180
ctctgaaccg gcttcccggt ctggggctgg gtgcgaaggt ctccggagcc tttcgtgc 240
ggcgctggac aaaccccgaga ccgacctgtc cagccacccgt gatcgctgcg tggccttcat 300
cgcccgaggct cgctccgaag gccgcgcgggt gttgggtgcac tgatcgac gagtca 360
cagtgttgcgt gtatgtatgg ctttataat gaagaccgc cagcttacct ttggaaaaa 420
ctacgacatc ctcggacgg tcaaggccaga ggctaaagtgt aatgggggtt tgaatggca 480
actggaaaactg tatgaggcaat tgggatacga agtcgatacg tccagtgcc ttacaagca 540
gtaccgttta caaaaagggtga ctgagaagta tccagaactt tggaatttac ctcaggaaact 600
cttcqctgtt qacccaacta ccatttcaca qqqattaaaa gatgacattc tctacaaaatg 660

```

cagaaaatgc aggccgtctt tat tagaca ttcttagatt ttgggtcata gtgaaggaag 720
 tggccaata gccttgctc acaagagaac ggcgccatct tctgtactta ccacaggag 780
 tcaggctcag tgacacgtctt acttcattga gcctgtcag tggatggaat ctactctgtt 840
 gggcgttatg gatggacagc ttcttgc 339
 ctggtatggt gaacagtgc cgtgtgtcg atggataacc cctgctttc aaatacacaa 960
 gaacagagtg gatgaaatga aaatgtgcc ggcgctgggt tcacagacaa agaagctgtg 1020
 aacttaggac ccagcttggg ctagatcctg tgaaaaggcac ttccccgtt tcatcattca 1080
 tggcgatgt caaaacttctt ttggaatgtc cgaagacaat tactgactgt aacagctgtg 1140
 ggttggtagc ttattatgtg gcatatatac agttacgtt cttggcaatt cagatattta 1200
 gttatgtaa ttggatttgc tattaaaatc tttataacc c 1241

<210> 16
 <211> 339
 <212> PRT
 <213> Mus sp.

<400> 16
 Met Leu Glu Ala Gln Gly Thr Asn His Gly Cys Glu Arg Gln Ala Pro
 1 5 10 15
 Thr Ala Ser Pro Ala Ser Ser Ala Gly His Ala Val Glu Val Arg Pro
 20 25 30
 Gly Leu Tyr Leu Gly Gly Ala Ala Ala Val Ala Glu Pro Gly His Leu
 35 40 45
 Arg Glu Ala Gly Ile Thr Ala Val Leu Thr Val Asp Ser Glu Pro Ala
 50 55 60
 Phe Pro Ala Gly Ala Gly Phe Glu Gly Leu Arg Ser Leu Phe Val Pro
 65 70 75 80
 Ala Leu Asp Lys Pro Glu Thr Asp Leu Leu Ser His Leu Asp Arg Cys
 85 90 95
 Val Ala Phe Ile Gly Gln Ala Arg Ser Glu Gly Arg Ala Val Leu Val
 100 105 110
 His Cys His Ala Gly Val Ser Arg Ser Val Ala Val Val Met Ala Phe
 115 120 125
 Ile Met Lys Thr Asp Gln Leu Thr Phe Glu Lys Ala Tyr Asp Ile Leu
 130 135 140
 Arg Thr Val Lys Pro Glu Ala Lys Val Asn Glu Gly Phe Glu Trp Gln
 145 150 155 160
 Leu Lys Leu Tyr Glu Ala Met Gly Tyr Glu Val Asp Thr Ser Ser Ala
 165 170 175
 Phe Tyr Lys Gln Tyr Arg Leu Gln Lys Val Thr Glu Lys Tyr Pro Glu
 180 185 190
 Leu Trp Asn Leu Pro Gln Glu Leu Phe Ala Val Asp Pro Thr Thr Ile
 195 200 205

Ser Gln Gly Leu Lys Asp Asp Ile Leu Tyr Lys Cys Arg Lys Cys Arg
 210 215 220
 Arg Ser Leu Phe Arg His Ser Ser Ile Leu Gly His Ser Glu Gly Ser
 225 230 235 240
 Gly Pro Ile Ala Phe Ala His Lys Arg Thr Ala Pro Ser Ser Val Leu
 245 250 255
 Thr Thr Gly Ser Gln Ala Gln Cys Thr Ser Tyr Phe Ile Glu Pro Val
 260 265 270
 Gln Trp Met Glu Ser Thr Leu Leu Gly Val Met Asp Gly Gln Leu Leu
 275 280 285
 Cys Pro Lys Cys Ser Ala Lys Leu Gly Ser Phe Asn Trp Tyr Gly Glu
 290 295 300
 Gln Cys Ser Cys Gly Arg Trp Ile Thr Pro Ala Phe Gln Ile His Lys
 305 310 315 320
 Asn Arg Val Asp Glu Met Lys Met Leu Pro Ala Leu Gly Ser Gln Thr
 325 330 335
 Lys Lys Leu

<210> 17
 <211> 904
 <212> DNA
 <213> Homo sapiens

<400> 17
 gtgttccgct caggcagagt cctgccccctg caccactcc cccattcccg gccccagggc 60
 atgccccagg atggactcac tgcagaagca ggacctccgg aggcccaaga tccatggggc 120
 agtccaggca tctccctacc agccggccac attggcttcg ctgcagcgct tgctgtgggt 180
 ccgtcaggct gccacactga accatatcga tgaggctcg cccagccct tcctgggaga 240
 tgcgtacgca gcccgggaca agagcaagct gatccagctg ggaatcaccc acgttgtgaa 300
 tgccgctgca ggcaagttcc aggtggacac aggtgccaaa ttctaccgtg gaatgtccct 360
 ggagactat ggcattgagg cggacaccaa ccccttctc gacctcagtg tctactttct 420
 gcctgttgcg cgtatacatcc gagctgccct cagtgttccc caaggccgc tgctggta 480
 ctgtgccatg gggtaagcc gctctgccac acttgtcctg gccttcctca tgatctatga 540
 gaacatgacg ctggtagagg ccatccagac ggtgcaggcc caccgcaata tctgccctaa 600
 ctcaggcttc ctccggcagc tccaggttct ggacaaccga ctggggcggg agacggggcg 660
 gttctgatct ggcaaggcagc caggatccct gacccttggc ccaacccac cagcctggcc 720
 ctggaaacag caggctctgc tgtttctagt gaccctgaga tgtaaacagc aagtgggggc 780
 tgaggcagag gcagggatag ctgggtggtg acctcttagc gggtgattt ccctgaccca 840
 attcagagat tcttatgca aaagtgagtt cagtccatct ctataataaa atattcatcg 900
 904
 tcat

<210> 18
 <211> 198
 <212> PRT
 <213> Homo sapiens

<400> 18
 Met Asp Ser Leu Gln Lys Gln Asp Leu Arg Arg Pro Lys Ile His Gly
 1 5 10 15
 Ala Val Gln Ala Ser Pro Tyr Gln Pro Pro Thr Leu Ala Ser Leu Gln
 20 25 30
 Arg Leu Leu Trp Val Arg Gln Ala Ala Thr Leu Asn His Ile Asp Glu
 35 40 45
 Val Trp Pro Ser Leu Phe Leu Gly Asp Ala Tyr Ala Ala Arg Asp Lys
 50 55 60
 Ser Lys Leu Ile Gln Leu Gly Ile Thr His Val Val Asn Ala Ala Ala
 65 70 75 80
 Gly Lys Phe Gln Val Asp Thr Gly Ala Lys Phe Tyr Arg Gly Met Ser
 85 90 95
 Leu Glu Tyr Tyr Gly Ile Glu Ala Asp Asp Asn Pro Phe Phe Asp Leu
 100 105 110
 Ser Val Tyr Phe Leu Pro Val Ala Arg Tyr Ile Arg Ala Ala Leu Ser
 115 120 125
 Val Pro Gln Gly Arg Val Leu Val His Cys Ala Met Gly Val Ser Arg
 130 135 140
 Ser Ala Thr Leu Val Leu Ala Phe Leu Met Ile Tyr Glu Asn Met Thr
 145 150 155 160
 Leu Val Glu Ala Ile Gln Thr Val Gln Ala His Arg Asn Ile Cys Pro
 165 170 175
 Asn Ser Gly Phe Leu Arg Gln Leu Gln Val Leu Asp Asn Arg Leu Gly
 180 185 190
 Arg Glu Thr Gly Arg Phe
 195

<210> 19
<211> 908
<212> DNA
<213> Homo sapiens

<400> 19
gtgagaggag acagaaaagag ggtgggtggcc gatacgctgg cctctttctc caacacccat 60
cctgagactt ggcggcgcgg ctgcatacct gaacttagctt ggtaagtgtt gtgtcccgaa 120
ccagcgtaga gagacacctgg accagccgcc ttgatgacag catccgcgtc ctccctttca 180
tcatctcagg gtgtccagca gccctccatc tacagcttct cccaaataac cagaagcttg 240
tttctcagca atggtgtggc cgccaaacgc aaactccctc tgtccagcaa tcgcattacc 300
gccattgtca atgcctcggt ggaagtggtc aacgtattct tcgagggcat tcagttacata 360
aaggtgcctg ttaccgatgc tcgtgactcg cgtctctacg acttttttga ccccatggct 420
gatcttatcc acaccatcga tatgaggcag ggcgcgtacgc tgctgcactg catggctgga 480
gtgagccgtt ccgcctcact gtgccttgcg tacctcatga aataccactc catgtcgctg 540
ctggacgccc atacatggac caagtgcgc cggcccatca tccggcccaa caacggcttt 600
tggaaacagc tcataatta cgaattcaag ctgtttaata acaacaccgt ggcgtatgatc 660

aactcgccgg taggtaacat ccctgacatc tatgagaagg acctacgtat gatgatatca 720
 atgtaagcca tcccgccag cccctgacat ctgccatcgatcttgcacca agactgaact 780
 ttgaacactg acatttgtt agtaaaagaaa accggatggt gccttggtaa agggcaagaa 840
 aaaagggagg gggttggagt tttgaacgta gtaaggccta ccttaataga attaaattca 900
 tgaaaacat 908

<210> 20
<211> 190
<212> PRT
<213> Homo sapiens

<400> 20
Met Thr Ala Ser Ala Ser Ser Phe Ser Ser Ser Gln Gly Val Gln Gln
1 5 10 15
Pro Ser Ile Tyr Ser Phe Ser Gln Ile Thr Arg Ser Leu Phe Leu Ser
20 25 30
Asn Gly Val Ala Ala Asn Asp Lys Leu Leu Leu Ser Ser Asn Arg Ile
35 40 45
Thr Ala Ile Val Asn Ala Ser Val Glu Val Val Asn Val Phe Phe Glu
50 55 60
Gly Ile Gln Tyr Ile Lys Val Pro Val Thr Asp Ala Arg Asp Ser Arg
65 70 75 80
Leu Tyr Asp Phe Phe Asp Pro Ile Ala Asp Leu Ile His Thr Ile Asp
85 90 95
Met Arg Gln Gly Arg Thr Leu Leu His Cys Met Ala Gly Val Ser Arg
100 105 110
Ser Ala Ser Leu Cys Leu Ala Tyr Leu Met Lys Tyr His Ser Met Ser
115 120 125
Leu Leu Asp Ala His Thr Trp Thr Lys Ser Arg Arg Pro Ile Ile Arg
130 135 140
Pro Asn Asn Gly Phe Trp Glu Gln Leu Ile Asn Tyr Glu Phe Lys Leu
145 150 155 160
Phe Asn Asn Asn Thr Val Arg Met Ile Asn Ser Pro Val Gly Asn Ile
165 170 175
Pro Asp Ile Tyr Glu Lys Asp Leu Arg Met Met Ile Ser Met
180 185 190

<210> 21
<211> 775
<212> DNA
<213> Homo sapiens

<400> 21
aattacttag cggcgactgaa gcctatcgag cagttttcca tggacacagc ctagcagaaa 60
gacgcagcct tcgtgcttcg ctgactgctg accactgacc caccgccttg atgacagcac 120

cctcggtgtgc cttcccagtt cagttccggc agccctcagt cagcggcctc tcgcagataa 180
 ccaaaaaggct gtatatcagc aatgggtgtgg ccgccaacaa caagctcatg ctgtcttagca 240
 accagatcac catggtcatac aatgtctcag tggaggttagt gaacacccatg tatgaggata 300
 tccagtgacat gcaggtaccc gtggctgact cccctaactc acgtctctgt gacttctttg 360
 accctattgc tgaccatatac cacagcgtgg agatgaagca gggccgtact ttgctgcact 420
 gtgctgctgg tggagccgc tcagctgccc tggcctcgc ctacctcatg aagtaccacg 480
 ccatgtccct gctggacgccc cacacgtgga ccaagtcatac ccggcccatc atccgaccca 540
 acagcgcctt ttgggagcag ctcataactc atgagttcca attgttggc aagaacactg 600
 tgcacatggc cagttccccca gtggaatga tccctgacat ctatgagaag gaagtccgtt 660
 tgatgattcc actgtgagcc atcccacgag cccctgcatt ggagtcaagag gtacagatct 720
 attgttgcatac ttacaccaactt gaacattcta ctgggttga tacag 775

<210> 22
<211> 188
<212> PRT
<213> Homo sapiens

<400> 22
Met Thr Ala Pro Ser Cys Ala Phe Pro Val Gln Phe Arg Gln Pro Ser
1 5 10 15
Val Ser Gly Leu Ser Gln Ile Thr Lys Ser Leu Tyr Ile Ser Asn Gly
20 25 30
Val Ala Ala Asn Asn Lys Leu Met Leu Ser Ser Asn Gln Ile Thr Met
35 40 45
Val Ile Asn Val Ser Val Glu Val Val Asn Thr Leu Tyr Glu Asp Ile
50 55 60
Gln Tyr Met Gln Val Pro Val Ala Asp Ser Pro Asn Ser Arg Leu Cys
65 70 75 80
Asp Phe Phe Asp Pro Ile Ala Asp His Ile His Ser Val Glu Met Lys
85 90 95
Gln Gly Arg Thr Leu Leu His Cys Ala Ala Gly Val Ser Arg Ser Ala
100 105 110
Ala Leu Cys Leu Ala Tyr Leu Met Lys Tyr His Ala Met Ser Leu Leu
115 120 125
Asp Ala His Thr Trp Thr Lys Ser Cys Arg Pro Ile Ile Arg Pro Asn
130 135 140
Ser Gly Phe Trp Glu Gln Leu Ile His Tyr Glu Phe Gln Leu Phe Gly
145 150 155 160
Lys Asn Thr Val His Met Val Ser Ser Pro Val Gly Met Ile Pro Asp
165 170 175
Ile Tyr Glu Lys Glu Val Arg Leu Met Ile Pro Leu
180 185

```
<210> 23
<211> 1251
<212> DNA
<213> Homo sapiens

<400> 23
tgggcgcggc catgttggag gctccgggcc cgagtgtatgg ctgcgagctc agcaacccca 60
gcgcgcaggcag agtcagctgt gccgggcaga tgctggaaagt gcagccagga ttgttattcg 120
gtggggccgc ggcgcgtcgcg gagccagatc acctgaggaga agcgggcatac acggccgtgc 180
taacagtggc ctcggaggag cccagttca aggccggggcc tggggtcgag gatctatggc 240
gcctttcggt gccagcgctg gacaaaacccg agacggaccc actcagccat ctggaccggt 300
gcgtggccctt catcggtcag gcccgcgtg aggccgtgc ggtgttggtg cactgtcatg 360
caggagtcag tcgaagtgtg gccataataa ctgttttct catgaagact gaccaacttc 420
cctttaaaaa agcctatgaa aagctccaga ttctcaaacc agaggctaag atgaatgggg 480
ggttttagtg gcaactgaaa ttataccagg caatgggata tgaagtggat acctctatgt 540
caatttataa gcaatatcg ttacaaaagg ttacagagaaa gtatccagaa ttgcagaatt 600
taccccaaga actctttctt gttgacccaa ctaccgtttc acaaggattg aaagatgagg 660
ttctctacaa gttagaaaaag tgcaggcgat cattatttcg aagttctatg attctggatc 720
accgtgaagg aagtggaccc atagcccttgc cccacaagag aatgacacca tcttccatgc 780
ttaccacagg gagccaagct caatgtacat cttatttcat tgaacctgta cagtggatgg 840
aatctgcctt gttggagtg atggatggac agcttctttc cccaaaatgc agtgccaagt 900
tgggttcctt caactggatg ggtgaacagt gctttgtgg taggtggata acacactgtt 960
ttcaaataca taagaataga gtggatgaaa tgaaaatatt gcctgttttgc ggtacacaaa 1020
cagaaaaaat atgaacatga tattttatag ctgggaaaga aacttgcaga tggatgtgc 1080
tgccttgc tcttatcatt catggcagat tggtagtgc ttcaacattt catttggaaat 1140
gggagaagat aaaatcactt gatgtaacct ggaaaactatg ctttacatgg caatcaaagc 1200
cttttgcata tgcacatattt atttgatatt aaaatctttt ataaccagaa a 1251
```

```

<210> 24
<211> 340
<212> PRT
<213> Homo sapiens

<400> 24
Met Leu Glu Ala Pro Gly Pro Ser Asp Gly Cys Glu Leu Ser Asn Pro
      1           5                   10                  15
Met Leu Glu Ala Pro Gly Pro Ser Asp Gly Cys Glu Leu Ser Asn Pro
      1           5                   10                  15
Ser Ala Ser Arg Val Ser Cys Ala Gly Gln Met Leu Glu Val Gln Pro
      20          25                   30
Ser Ala Ser Arg Val Ser Cys Ala Gly Gln Met Leu Glu Val Gln Pro
      20          25                   30
Gly Leu Tyr Phe Gly Gly Ala Ala Ala Val Ala Glu Pro Asp His Leu
      35          40                   45
Gly Leu Tyr Phe Gly Gly Ala Ala Ala Val Ala Glu Pro Asp His Leu
      35          40                   45
Arg Glu Ala Gly Ile Thr Ala Val Leu Thr Val Asp Ser Glu Glu Pro
      50          55                   60
Arg Glu Ala Gly Ile Thr Ala Val Leu Thr Val Asp Ser Glu Glu Pro
      50          55                   60
Ser Phe Lys Ala Gly Pro Gly Val Glu Asp Leu Trp Arg Leu Phe Val
      65          70                   75                  80
Ser Phe Lys Ala Gly Pro Gly Val Glu Asp Leu Trp Arg Leu Phe Val
      65          70                   75                  80
Pro Ala Leu Asp Lys Pro Glu Thr Asp Leu Leu Ser His Leu Asp Arg
      85          90                   95
Pro Ala Leu Asp Lys Pro Glu Thr Asp Leu Leu Ser His Leu Asp Arg
      85          90                   95
Cys Val Ala Phe Ile Gly Gln Ala Arg Ala Glu Gly Arg Ala Val Leu
      100         105                  110
Cys Val Ala Phe Ile Gly Gln Ala Arg Ala Glu Gly Arg Ala Val Leu
      100         105                  110
Val His Cys His Ala Gly Val Ser Arg Ser Val Ala Ile Ile Thr Ala
      115         120                  125

```

Phe Leu Met Lys Thr Asp Gln Leu Pro Phe Glu Lys Ala Tyr Glu Lys
 130 135 140
 Leu Gln Ile Leu Lys Pro Glu Ala Lys Met Asn Glu Gly Phe Glu Trp
 145 150 155 160
 Gln Leu Lys Leu Tyr Gln Ala Met Gly Tyr Glu Val Asp Thr Ser Ser
 165 170 175
 Ala Ile Tyr Lys Gln Tyr Arg Leu Gln Lys Val Thr Glu Lys Tyr Pro
 180 185 190
 Glu Leu Gln Asn Leu Pro Gln Glu Leu Phe Ala Val Asp Pro Thr Thr
 195 200 205
 Val Ser Gln Gly Leu Lys Asp Glu Val Leu Tyr Lys Cys Arg Lys Cys
 210 215 220
 Arg Arg Ser Leu Phe Arg Ser Ser Ser Ile Leu Asp His Arg Glu Gly
 225 230 235 240
 Ser Gly Pro Ile Ala Phe Ala His Lys Arg Met Thr Pro Ser Ser Met
 245 250 255
 Leu Thr Thr Gly Arg Gln Ala Gln Cys Thr Ser Tyr Phe Ile Glu Pro
 260 265 270
 Val Gln Trp Met Glu Ser Ala Leu Leu Gly Val Met Asp Gly Gln Leu
 275 280 285
 Leu Cys Pro Lys Cys Ser Ala Lys Leu Gly Ser Phe Asn Trp Tyr Gly
 290 295 300
 Glu Gln Cys Ser Cys Gly Arg Trp Ile Thr Pro Ala Phe Gln Ile His
 305 310 315 320
 Lys Asn Arg Val Asp Glu Met Lys Ile Leu Pro Val Leu Gly Ser Gln
 325 330 335
 Thr Gly Lys Ile
 340

<210> 25
 <211> 687
 <212> DNA
 <213> Homo sapiens

<400> 25
 gggccctgatccccata tagatcctca gggcccagaa gcagactctt cggcgccgc 60
 catgggaccgc tcagaagctg ggccgcgcgg ggccgcctcg cccgtaccgc caccgttgt 120
 gcgcgctcgcc ccctcactct tcctcggag cgccgcgagcc gcgggcgcgg aggagcagct 180
 ggcgcgcgcgg ggagtcaactc tgcgtccgc cgtctccgc cagcagcccg gccccgcgc 240
 gcccgcgtgc gcagagctgc gcgtccccgt gttcgacgc acggctgagg acctgctggc 300
 gcacctggag cccacgtgcg cccatggaa ggcgcgggtg cgccgcggcg gccctgcct 360
 agtctactgc aagaacggcc gcagccagct cggccgcgtc tgcaccgcgt acctcatgcg 420
 gcaccgcggc ctcagcctgg cgaaggcatt ccagatggtg aagagcgctc gccccgttagc 480

agaaccgaac ccgggcttct ggtctcagct ccagaagtat gaggaggccc tccaggcccc 540
gtcctgcctg cagggagagc ccccagcctt agggttgggc cctgaggcctt gaagcttcaa 600
ggcctgtgc ctggaggaag gatgtccctg cactgataca gaaggctggt ctttaccctt 660
cttcctcact gtcatatcga gttttcc 687

<210> 26
<211> 176
<212> PRT
<213> *Homo sapiens*

<400> 26
Met Gly Pro Ser Glu Ala Gly Arg Arg Gly Ala Ala Ser Pro Val Pro
1 5 10 15

Pro Pro Leu Val Arg Val Ala Pro Ser Leu Phe Leu Gly Ser Ala Arg
20 25 30

Ala Ala Gly Ala Glu Glu Gln Leu Ala Arg Ala Gly Val Thr Leu Cys
35 40 45

Val Asn Val Ser Arg Gln Gln Pro Gly Pro Arg Ala Pro Gly Val Ala
50 55 60

Glu	Leu	Arg	Val	Pro	Val	Phe	Asp	Asp	Pro	Ala	Glu	Asp	Leu	Leu	Ala
65					70					75					80

His Leu Glu Pro Thr Cys Ala Ala Met Glu Ala Ala Val Arg Ala Gly
85 90 95

Gly Ala Cys Leu Val Tyr Cys Lys Asn Gly Arg Ser Gln Leu Gly Ala
100 105 110

Val Cys Thr Ala Tyr Leu Met Arg His Arg Gly Leu Ser Leu Ala Lys
115 120 125

Ala Phe Gln Met Val Lys Ser Ala Arg Pro Val Ala Glu Pro Asn Pro
130 135 140

Gly Phe Trp Ser Gln Leu Gln Lys Tyr Glu Glu Ala Leu Gln Ala Gln
 145 150 155 160

Ser Cys Leu Gln Gly Glu Pro Pro Ala Leu Gly Leu Gly Pro Glu Ala
165 170 175

<210> 27
<211> 901
<212> DNA
<213> *Homo sapiens*

gactcatatt cttaatgttg catatggagt taaaaatgct ttccctcagtg actttacata 420
 taagagcatt tctatattgg atctgcctga aaccaacatc ctgtcttatt ttccagaatg 480
 ttttgaattt attgaagaag caaaaagaaa agatggagtg gttcttgttc attgtaatgc 540
 aggcgttcc agggctgctg caattgtaat aggttccctg atgaattctg aacaaacctc 600
 atttaccagt gcttttctt tggtaaaaaa tgcaagacct tccatatgtc caaattctgg 660
 cttcatggag cagttcgtta cataatcaaga gggcaaagaa agcaataagt gtgacagaat 720
 acaggagaac agttcatgag ttgcattgtta gcagacaatg gacaactgtta gtttctgaat 780
 tgacttctat agccatctt tccctttttt ggagagtaga ctagaaaaat tccctttttt 840
 ctcttgccctt ttttatgcat aaatggaggt caatctgatt gtcctgacct actgtataaaa 900
 g 901

<210> 28
 <211> 217
 <212> PRT
 <213> Homo sapiens

<400> 28
 Met Tyr Ser Leu Asn Gln Glu Ile Lys Ala Phe Ser Arg Asn Asn Leu
 1 5 10 15
 Arg Lys Gln Cys Thr Arg Val Thr Thr Leu Thr Gly Lys Lys Ile Ile
 20 25 30
 Glu Thr Trp Lys Asp Ala Arg Ile His Val Val Glu Glu Val Glu Pro
 35 40 45
 Ser Ser Gly Gly Cys Gly Tyr Val Gln Asp Leu Ser Ser Asp Leu
 50 55 60
 Gln Val Gly Val Ile Lys Pro Trp Leu Leu Leu Gly Ser Gln Asp Ala
 65 70 75 80
 Ala His Asp Leu Asp Thr Leu Lys Asn Lys Val Thr His Ile Leu
 85 90 95
 Asn Val Ala Tyr Gly Val Glu Asn Ala Phe Leu Ser Asp Phe Thr Tyr
 100 105 110
 Lys Ser Ile Ser Ile Leu Asp Leu Pro Glu Thr Asn Ile Leu Ser Tyr
 115 120 125
 Phe Pro Glu Cys Phe Glu Phe Ile Glu Glu Ala Lys Arg Lys Asp Gly
 130 135 140
 Val Val Leu Val His Cys Asn Ala Gly Val Ser Arg Ala Ala Ala Ile
 145 150 155 160
 Val Ile Gly Phe Leu Met Asn Ser Glu Gln Thr Ser Phe Thr Ser Ala
 165 170 175
 Phe Ser Leu Val Lys Asn Ala Arg Pro Ser Ile Cys Pro Asn Ser Gly
 180 185 190
 Phe Met Glu Gln Leu Arg Thr Tyr Gln Glu Gly Lys Glu Ser Asn Lys
 195 200 205

Cys Asp Arg Ile Gln Glu Asn Ser Ser
210 215

<210> 29
<211> 2050
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1954)
<223> a, c, g, t, other or unknown

<220>
<221> modified_base
<222> (2010)
<223> a, c, g, t, other or unknown

<220>
<221> modified_base
<222> (2032)
<223> a, c, g, t, other or unknown

<400> 29
cactataggg cgaattgggc ctctagatgc atgctcgagc ggccgccagt gtgatggata 60
tctgcagaat tcgccttac gattnagggt aactataga aggtacgcct gcaggtaccg 120
gtccggaaatt cccgggtcga cccacgcgtc cgcaatgaag ccgagtgaat gggggctgaa 180
tgtgcgagtc catacgctgaa gaggagcgc agatggtgaa ggaatacact tatttatgaa 240
actgtcttga gttcttcttgc aattggcagt tttcagccctc ctcatgcctc cgtctccccc 300
agacgcacagg gtagttagtgg cactatctag gcccgtccga cctcaggatc tcaacccccc 360
tttagactct atttaccttgc gctctgccaa cccaggcagt aacagccacc ctcctgtcat 420
cgccaccacc gttgtgtccc tcaaggctgc gaatctgacg tatatgcct catccagcgg 480
ctctgcccgc tcgctgaatt gtggatgcag cagtgcgcgc tgctgcactg tggcaaccta 540
cgacaaggac aatcaggccc aaacccaagc cattgcccgc ggcaccacca ccaactgcct 600
cggaacctct accacctgcc ctgcttaacca gatggtaaac aataatgaga atacaggctc 660
tctaagtccca tcaagtgggg tgggcagccc tggcgtcaggg acccccaagc agctagccag 720
catcaaaaata atctacccca atgacttgc aaagaagatg accaaatgca gcaagagtc 780
cctgcccagt cagggccctg tcattcattga ctgcaggcccc ttcatggagt acaacaagag 840
tcacatccaa ggagctgtcc acattaactg tgccgataag atcagccggc ggagactgca 900
gcagggcaag atcaactgtcc tagacttgc ttctgttagg gaaggcaagg actctttcaa 960
gaggatctt tccaaagaaaa ttatagttt tgatgagaat accaatgagc caagccgagt 1020
gatgccctcc cagccacttc acatagtcct cgagtcctcg aagagagaag gcaaaagaacc 1080
tctgggtttg aaaggtggac tttagttt taagcagaac cataaaaacc tctgtgacaaa 1140
ctccctccag ctccaagagt gcccggaggt gggggccggc gcatccgggg ctcgagctt 1200
gctacccatcg cccatccccca ccacccctga catcgagaac gctgagctca ccccccattt 1260
gcccttccttgc ttctttggca atgagcaggta tgcgtggac ctggacacca tgcagcggct 1320
gaacatcgcc tacgttcatca acgttcacccat tcatttccctt ctctaccact atgagaaaagg 1380
cctgttcaac tacaagcggc tgccaagcac tgacagcaac aagcagaacc tgcggcagta 1440
ctttgaagag gcttttggat tcatttggat agctcaccat gttggaaagg ggcttctcat 1500
ccactgcccag gctgggggtgt cccgcgtccgc caccatcgat atcgcttact tgatgaagca 1560
cactcggtatg accatgactg atgcttataa atttgcataa ggcaaaacgcac caattatctc 1620
cccaaaacccat aacttcatgg ggcagggtgc agagttcgat gaagaccta acaacgggt 1680
gacaccggaga atcccttacac caaagctgtat gggcgtggat acgggtgtgt gacaatggtc 1740
tggatggaaa ggattgctgc tctccattat gagacaatgaa ggaaggagga tggattctgg 1800
ttttttttct ttcttttttt tttgttagttt ggatgaaatggtt ttgtgaatgg aaacaaaccc 1860
ggtaaacaat tttatttttt acaagttgtaa gaagactata cttttgtatgc cattgagatt 1920
caccttccac aaactggcca aattaaggat gttnaagaag taatttttt taagcccaac 1980

cattaaaaat ttaatacacaac ttggtttctn ccccttttc cttaaagct antttgtaaa 2040
agtttatgag 2050

<210> 30
<211> 482
<212> PRT
<213> *Homo sapiens*

<400> 30
Met Pro Pro Ser Pro Leu Asp Asp Arg Val Val Val Ala Leu Ser Arg
1 5 10 15

Pro Val Arg Pro Gln Asp Leu Asn Leu Cys Leu Asp Ser Ser Tyr Leu
 20 25 30

Gly Ser Ala Asn Pro Gly Ser Asn Ser His Pro Pro Val Ile Ala Thr
35 40 45

Thr	Val	Val	Ser	Leu	Lys	Ala	Ala	Asn	Leu	Thr	Tyr	Met	Pro	Ser	Ser
50					55						60				

Ser Gly Ser Ala Arg Ser Leu Asn Cys Gly Cys Ser Ser Ala Ser Cys
65 70 75 80

Cys Thr Val Ala Thr Tyr Asp Lys Asp Asn Gln Ala Gln Thr Gln Ala
85 90 95

Ile Ala Ala Gly Thr Thr Thr Thr Ala Ile Gly Thr Ser Thr Thr Cys
 100 105 110

Pro Ala Asn Gln Met Val Asn Asn Asn Glu Asn Thr Gly Ser Leu Ser
115 120 125

Pro Ser Ser Gly Val Gly Ser Pro Val Ser Gly Thr Pro Lys Gln Leu
130 135 140

Ala Ser Ile Lys Ile Ile Tyr Pro Asn Asp Leu Ala Lys Lys Met Thr
145 150 155 160

Lys Cys Ser Lys Ser His Leu Pro Ser Gin Gly Pro Val Ile Ile Asp
165 170 175

Cys Arg Pro Phe Met Glu Tyr Asn Lys Ser His Ile Gin Gly Ala Val
180 185 190

His Ile Asn Cys Ala Asp Lys Ile Ser Arg Arg Arg Leu Gin Gin Gly
195 200 205

Lys Ile Thr Val Leu Asp Leu Ile Ser Cys Arg Glu Gly Lys Asp Ser
210 215 220

Phe Lys Arg Ile Phe Ser Lys Glu Ile Ile Val Tyr Asp Glu Asn Thr
225 230 235 240

Asn Glu Pro Ser Arg Val Met Pro Ser Gln Pro Leu His Ile Val Leu
245 250 255

Glu Ser Leu Lys Arg Glu Gly Lys Glu Pro Leu Val Leu Lys Gly Gly
 260 265 270

Leu Ser Ser Phe Lys Gln Asn His Glu Asn Leu Cys Asp Asn Ser Leu
 275 280 285

Gln Leu Gln Glu Cys Arg Glu Val Gly Gly Ala Ser Gly Ala Ser
 290 295 300

Ser Leu Leu Pro Gln Pro Ile Pro Thr Thr Pro Asp Ile Glu Asn Ala
 305 310 315 320

Glu Leu Thr Pro Ile Leu Pro Phe Leu Phe Leu Gly Asn Glu Gln Asp
 325 330 335

Val Arg Asp Leu Asp Thr Met Gln Arg Leu Asn Ile Gly Tyr Val Ile
 340 345 350

Asn Val Thr Thr His Leu Pro Leu Tyr His Tyr Glu Lys Gly Leu Phe
 355 360 365

Asn Tyr Lys Arg Leu Pro Ser Thr Asp Ser Asn Lys Gln Asn Leu Arg
 370 375 380

Gln Tyr Phe Glu Glu Ala Phe Glu Phe Ile Glu Glu Ala His Gln Cys
 385 390 395 400

Gly Lys Gly Leu Leu Ile His Cys Gln Ala Gly Val Ser Arg Ser Ala
 405 410 415

Thr Ile Val Ile Ala Tyr Leu Met Lys His Thr Arg Met Thr Met Thr
 420 425 430

Asp Ala Tyr Lys Phe Val Lys Gly Lys Arg Pro Ile Ile Ser Pro Asn
 435 440 445

Leu Asn Phe Met Gly Gln Leu Leu Glu Phe Glu Glu Asp Leu Asn Asn
 450 455 460

Gly Val Thr Pro Arg Ile Leu Thr Pro Lys Leu Met Gly Val Glu Thr
 465 470 475 480

Val Val

<210> 31
 <211> 1026
 <212> DNA
 <213> Homo sapiens

<400> 31
 atgctgctgc tgggtggcaca gcgggaccga gcctcccgca tcttccccca cctctacctg 60
 ggctcagagt ggaacgcagc aaacctggag gagctgcaga ggaacagggt cacccacatc 120
 ttgaacatgg cccggggagat tgacaacttc taccctgagc gttcaccta ccacaatgtg 180
 cgcctctggg atgaggagtc ggcccagctg ctgccgcact ggaaggagac gcaccgcttc 240
 attgaggctg caagaaacaca gggcaccac gtgctgggcc actgcaagat gggcgtcagc 300
 cgctcagcgg ccacagtgtt ggcctatgcc atgaaggcagt acgaatgcag cctggagcag 360
 gccctgcggcc acgtgcagga gctccggccc atcgcccccc ccaaccctgg cttcctgcgc 420

cagctgcaga tctaccaggg catcctgacg gccagccgcc agagccatgt ctgggagcag 480
aaagtgggtg gggtctccc agaggagcac ccagccctg aagtctctac accattccca 540
cctcttcgc cagaacctga gggtggtggg gaggagaagg tttaggcat ggaagagagc 600
caggcagccc cgaaaagaaga gcctggcca cgccacgt aaaacctccg aggggtcatg 660
aggtccatca gtcttcttga gcctcttgc gagctggaga gcacctcaga gaccagtgac 720
atgccagagg tcttctcttc ccacgactc tcacatgaag agcctctgca gcccttccca 780
cagttgcaa ggaccaaggg aggccagcag gtggacaggg ggccteagcc tgccctgaag 840
tcccgcact cagtggttac cttccaggc agtgcgtgg tggccaaccg gaccaggcc 900
ttccagggc aggaggcaggg gcagggcag ggcagggag agccctgcat ttctctacg 960
cccagggtcc ggaagggttgt gagacaggcc agcgtgcatg acagtggaga ggagggcgag 1020
gcctga 1026

<210> 32
<211> 341
<212> PRT
<213> Homo sapiens

<400> 32
Met Leu Leu Leu Val Ala Gln Arg Asp Arg Ala Ser Arg Ile Phe Pro
1 5 10 15
His Leu Tyr Leu Gly Ser Glu Trp Asn Ala Ala Asn Leu Glu Glu Leu
20 25 30
Gln Arg Asn Arg Val Thr His Ile Leu Asn Met Ala Arg Glu Ile Asp
35 40 45
Asn Phe Tyr Pro Glu Arg Phe Thr Tyr His Asn Val Arg Leu Trp Asp
50 55 60
Glu Glu Ser Ala Gln Leu Leu Pro His Trp Lys Glu Thr His Arg Phe
65 70 75 80
Ile Glu Ala Ala Arg Ala Gln Gly Thr His Val Leu Val His Cys Lys
85 90 95
Met Gly Val Ser Arg Ser Ala Ala Thr Val Leu Ala Tyr Ala Met Lys
100 105 110
Gln Tyr Glu Cys Ser Leu Glu Gln Ala Leu Arg His Val Gln Glu Leu
115 120 125
Arg Pro Ile Ala Arg Pro Asn Pro Gly Phe Leu Arg Gln Leu Gln Ile
130 135 140
Tyr Gln Gly Ile Leu Thr Ala Ser Arg Gln Ser His Val Trp Glu Gln
145 150 155 160
Lys Val Gly Gly Val Ser Pro Glu Glu His Pro Ala Pro Glu Val Ser
165 170 175
Thr Pro Phe Pro Pro Leu Pro Pro Glu Pro Glu Gly Gly Glu Glu
180 185 190
Lys Val Val Gly Met Glu Glu Ser Gln Ala Ala Pro Lys Glu Glu Pro
195 200 205

Gly Pro Arg Pro Arg Ile Asn Leu Arg Gly Val Met Arg Ser Ile Ser
 210 215 220

Leu Leu Glu Pro Ser Leu Glu Leu Glu Ser Thr Ser Glu Thr Ser Asp
 225 230 235 240

Met Pro Glu Val Phe Ser Ser His Glu Ser Ser His Glu Glu Pro Leu
 245 250 255

Gln Pro Phe Pro Gln Leu Ala Arg Thr Lys Gly Gly Gln Gln Val Asp
 260 265 270

Arg Gly Pro Gln Pro Ala Leu Lys Ser Arg Gln Ser Val Val Thr Leu
 275 280 285

Gln Gly Ser Ala Val Val Ala Asn Arg Thr Gln Ala Phe Gln Glu Gln
 290 295 300

Glu Gln Gly Gln Gly Gln Gly Glu Pro Cys Ile Ser Ser Thr
 305 310 315 320

Pro Arg Phe Arg Lys Val Val Arg Gln Ala Ser Val His Asp Ser Gly
 325 330 335

Glu Glu Gly Glu Ala
 340

<210> 33
 <211> 3995
 <212> DNA
 <213> Homo sapiens

<400> 33

ttacgccccgg aggcgtcgcc gctgccactg gcccgcgacg ggaacggggc gaaaaggcgg 60
 cggcaccatg ttctccctca agccgccccaa acccaccttc aggtcctact tcctgcccacc 120
 gccccagact gacgataaga tcaatcgga accgaagatt aaaaaactgg agccagtct 180
 tttgcagga gaaattgtcg taaatgaagt caattttg 240
 cacaagccag tacgatttg gggaaagct gatatgcgt aacttcaaaa tctcctttat 300
 tacagatgac ccaatgccat tacagaaatt ccattacaga aaccttcttc ttggtaaca 360
 cgatgtccct ttaacatgta ttgaacaaat tgcacagta aacgaccaca agaggaagca 420
 gaaagtcccta ggccccaacc agaaactgaa atttaatcca acagagttaa ttatttattg 480
 taaagatttc agaattgtca gatttcgctt tgatgaatca ggtcccgaaa gtgctaaaaa 540
 ggtatgcctt gcaatagctc attattccca gccaacagac ctccagctac tctttgcatt 600
 tgaatatgtt gggaaaaaat accacaattc agcaaacaaa attaatggaa ttccctcagg 660
 agatggagga ggaggaggag gaggaggtaa tggagcttgt ggtggcagca gccagaaaaac 720
 tccactctt gaaacttact cggattggga cagagaaatc aagaggacag gtgcttccgg 780
 gtggagagtt tttcttattt acgagggtta catgatatcc acttgccttc cagaatacat 840
 tgtatgtcca agttctttag cagaccaaga tctaaagatc tttcccttattt 900
 gagaaggatg ccactcttgt gctggagcca ctctaacggc agtgctcttgcgaatggc 960
 cctcatcaaa gacgtgctgc agcagaggaa gattgaccag aggatttgta atgcaataac 1020
 taaaagtccac ccacagagaa gtgatgttta caaatcagat ttggataaga cttgcctaa 1080
 tattcaagaa gtacaaggcag catttgtaaa actgaagcag ctatgcgtt atgagcctt 1140
 tgaagaaact gaagagaaat ggttatcttc actggaaaat actcgatggt tagaatatgt 1200
 aaggccattt ctaaaggcatt cagcagaact tttatcatg ctagaaagca aacatcttc 1260
 tgtatgttca caagaggagg aagggaaat cttgagctgt tttgtatgtt cttttgttca 1320
 agtgatgttca gatccctttagt ttaggacaat tactggattt cagatgttca tacagaagga 1380
 gtgggtcatg gcaggatattc agtttctttaga cagatgcac catctaaaga gatcagagaa 1440

aggctctcc	tatattttgc	tattcttgg	tgccacacctgg	cagctgttag	aacaataatcc	15000
tgcagcttt	gagttctccg	aaacacctac	ggcagtgtt	tatgacagca	cccgatctc	15600
actgtttggc	acccttcgt	tcaactcccc	tcaccagcga	gtgaagcaa	gcacgaaatt	16200
tgctataagg	aaaaacatcc	aattgggtga	tgagaagggc	ttaaaattcc	cctctgttt	16800
ggactggct	ctccagttt	cagcaaagga	tcgcaccc	ttccataacc	ccttctacat	17400
tggaaagagc	acaccttgt	tacagaatgg	ctccgtgaag	tcttttaaac	ggacaagaa	18000
aagctacagc	tccacactaa	gaggaatgcc	gtctgccta	aagaatggaa	tcatcagtga	18600
ccaagaatta	cttccaagga	gaaattcatt	gatattaaaa	ccaaaggccag	atccagctca	19200
gcaaaccgac	agccagaaca	gtgatacgg	gcagtat	agagaatgg	tttccaaacc	19800
cgc当地	cacgggtt	ttctgccc	tgctctgg	acacacataa	aactgtggaa	20400
actgtgtac	ttccgctggg	ttcccgaggc	ccagatcagc	ctgggtggct	ccatcacagc	21000
cttccacaag	cttccttcc	tggctgtat	agtgcacgt	ctgagcagga	tgctgccc	21600
acagcgcagt	ggccccctgg	aggcctgtct	tggggagct	ggccagagca	ggatgtactt	22200
caacgcgc	ggcccttacc	acaccgcac	ctcggggaca	ccggagttc	tcccttcctc	22800
atttccattt	tctctgttag	ggaatctgt	cagacgaagc	attttagaa	caccattaag	23400
caaattttt	agtggggcca	aaatatgtt	gtctactgt	acattagca	atgaagacta	24000
aaataggggt	tttctgtac	atttgggg	aagtgtcaa	ctttttct	ctgatattaa	24600
attgctaacc	taggcgttt	aatctcta	aacttata	gtaagaataa	tagtggaa	25200
ttgcactaat	attaaaaac	atgttgaatc	atgttctt	cacacttatt	ttaagagaga	25800
tgtaaattt	gttctgtcc	tctttctgt	attacaggc	tggctctt	aaccgtgatc	26400
aaactgttca	tgttgtctgc	tacattttt	tctccatcca	tttttcttac	caccccttga	27000
aggctatctg	atagtcgtc	acattagcag	ccccaggcag	cagacaacag	gaaagttagg	27600
aaattttgtgt	ttcgtgtcat	ttttaggagc	atctgataaa	acctccagca	ggttttagga	28200
agtattcatg	tattttctg	gttactttct	gtcatctct	attgaactca	cctgatgaa	28800
gttcagtg	ctggggccag	aatttatgt	tttagatcac	cttcttttga	accttagatc	29400
actgtgtttt	gaaatcatga	gtttgctttt	aacttcatag	ggtcaactt	aaaatgat	30000
gcactgttaa	ttttaaagca	tttgctgcag	ataattaaac	ttagaagtgc	ctttgactt	30600
aggataaaaa	tattacagaa	gaaaatataa	tttca	aaaatttgg	gtggggaaat	31200
ccattgtcat	atttgaata	ggcttttcat	actaagctt	atagccagga	gtccccagag	31800
tcttgttcc	ctgaaagcca	ctggggagtg	gcctctggg	tgctgattcc	acagagggt	32400
atgctgtaga	caggagagtg	ccatctatgc	caaaactcgc	cctcaaaaac	aaacaaggct	33000
tgctgggagg	cgtgtgtggc	ttggccatca	gtat	tgtgtt	tattgtgt	33600
acttccccc	ggaataact	aatgagggtt	cgatgtggc	acctgcacag	atgtccttct	34200
ctcatagtt	ctatgttta	ggaatagagg	agaaaataaa	aatggatt	tctcaaaaaca	34800
ctgccat	aatagcgaca	gaagtgtcc	cccagcccc	aacttggac	agcaaaagtt	35400
aggagaatga	gcagacacag	ttgtttgtt	gatctgtat	tctctaaagt	aaagtattt	36000
caaactgtgt	gacaagagcc	tacctaccac	tgtagcggtc	aaagctgtaa	cttcttacag	36600
cagtgaaacg	ggcaccacc	tccccccacac	tccttattcc	ccgctt	atggataact	37200
ttcaaaattt	actgtttctt	aaactgcct	cctaagat	gaaaattt	tatagtaaag	37800
tgtctagtt	gcttatttcc	tttctaaaa	caagtgttt	caagataact	gtat	38400
tttatatgt	ctgaatagct	gtttctttt	gaattat	cctttt	tttgataat	39000
tctctggata	taacaggaca	ggagttctt	aaaaatatct	taagaaattc	actttatgg	39600
taaacc	gttttgcca	acttgg	tagaa			3995

<210> 34
<211> 777
<212> PRT
<213> *Homo sapiens*

<400> 34
Met Phe Ser Leu Lys Pro Pro Lys Pro Thr Phe Arg Ser Tyr Phe Leu
1 5 10 15

Pro Pro Pro Gln Thr Asp Asp Lys Ile Asn Ser Glu Pro Lys Ile Lys
20 25 30

Lys Leu Glu Pro Val Leu Leu Pro Gly Glu Ile Val Val Asn Glu Val
 35 40 45

Asn Phe Val Arg Lys Cys Ile Ala Thr Asp Thr Ser Gln Tyr Asp Leu
 50 55 60

Trp Gly Lys Leu Ile Cys Ser Asn Phe Lys Ile Ser Phe Ile Thr Asp
 65 70 75 80

Asp Pro Met Pro Leu Gln Lys Phe His Tyr Arg Asn Leu Leu Leu Gly
 85 90 95

Glu His Asp Val Pro Leu Thr Cys Ile Glu Gln Ile Val Thr Val Asn
 100 105 110

Asp His Lys Arg Lys Gln Lys Val Leu Gly Pro Asn Gln Lys Leu Lys
 115 120 125

Phe Asn Pro Thr Glu Leu Ile Ile Tyr Cys Lys Asp Phe Arg Ile Val
 130 135 140

Arg Phe Arg Phe Asp Glu Ser Gly Pro Glu Ser Ala Lys Lys Val Cys
 145 150 155 160

Leu Ala Ile Ala His Tyr Ser Gln Pro Thr Asp Leu Gln Leu Leu Phe
 165 170 175

Ala Phe Glu Tyr Val Gly Lys Tyr His Asn Ser Ala Asn Lys Ile
 180 185 190

Asn Gly Ile Pro Ser Gly Asp Gly Gly Gly Gly Gly Gly Asn
 195 200 205

Gly Ala Gly Gly Ser Ser Gln Lys Thr Pro Leu Phe Glu Thr Tyr
 210 215 220

Ser Asp Trp Asp Arg Glu Ile Lys Arg Thr Gly Ala Ser Gly Trp Arg
 225 230 235 240

Val Cys Ser Ile Asn Glu Gly Tyr Met Ile Ser Thr Cys Leu Pro Glu
 245 250 255

Tyr Ile Val Val Pro Ser Ser Leu Ala Asp Gln Asp Leu Lys Ile Phe
 260 265 270

Ser His Ser Phe Val Gly Arg Arg Met Pro Leu Trp Cys Trp Ser His
 275 280 285

Ser Asn Gly Ser Ala Leu Val Arg Met Ala Leu Ile Lys Asp Val Leu
 290 295 300

Gln Gln Arg Lys Ile Asp Gln Arg Ile Cys Asn Ala Ile Thr Lys Ser
 305 310 315 320

His Pro Gln Arg Ser Asp Val Tyr Lys Ser Asp Leu Asp Lys Thr Leu
 325 330 335

Pro Asn Ile Gln Glu Val Gln Ala Ala Phe Val Lys Leu Lys Gln Leu
 340 345 350

Cys Val Asn Glu Pro Phe Glu Glu Thr Glu Glu Lys Trp Leu Ser Ser
 355 360 365

Leu Glu Asn Thr Arg Trp Leu Glu Tyr Val Arg Ala Phe Leu Lys His
 370 375 380

Ser Ala Glu Leu Val Tyr Met Leu Glu Ser Lys His Leu Ser Val Val
 385 390 395 400

Leu Gln Glu Glu Glu Gly Arg Asp Leu Ser Cys Cys Val Ala Ser Leu
 405 410 415

Val Gln Val Met Leu Asp Pro Tyr Phe Arg Thr Ile Thr Gly Phe Gln
 420 425 430

Ser Leu Ile Gln Lys Glu Trp Val Met Ala Gly Tyr Gln Phe Leu Asp
 435 440 445

Arg Cys Asn His Leu Lys Arg Ser Glu Lys Glu Ser Pro Leu Phe Leu
 450 455 460

Leu Phe Leu Asp Ala Thr Trp Gln Leu Leu Glu Gln Tyr Pro Ala Ala
 465 470 475 480

Phe Glu Phe Ser Glu Thr Tyr Leu Ala Val Leu Tyr Asp Ser Thr Arg
 485 490 495

Ile Ser Leu Phe Gly Thr Phe Leu Phe Asn Ser Pro His Gln Arg Val
 500 505 510

Lys Gln Ser Thr Glu Phe Ala Ile Ser Lys Asn Ile Gln Leu Gly Asp
 515 520 525

Glu Lys Gly Leu Lys Phe Pro Ser Val Trp Asp Trp Ser Leu Gln Phe
 530 535 540

Thr Ala Lys Asp Arg Thr Leu Phe His Asn Pro Phe Tyr Ile Gly Lys
 545 550 555 560

Ser Thr Pro Cys Ile Gln Asn Gly Ser Val Lys Ser Phe Lys Arg Thr
 565 570 575

Lys Lys Ser Tyr Ser Ser Thr Leu Arg Gly Met Pro Ser Ala Leu Lys
 580 585 590

Asn Gly Ile Ile Ser Asp Gln Glu Leu Leu Pro Arg Arg Asn Ser Leu
 595 600 605

Ile Leu Lys Pro Lys Pro Asp Pro Ala Gln Gln Thr Asp Ser Gln Asn
 610 615 620

Ser Asp Thr Glu Gln Tyr Phe Arg Glu Trp Phe Ser Lys Pro Ala Asn
 625 630 635 640

Leu His Gly Val Ile Leu Pro Arg Val Ser Gly Thr His Ile Lys Leu
 645 650 655

Trp Lys Leu Cys Tyr Phe Arg Trp Val Pro Glu Ala Gln Ile Ser Leu
 660 665 670

Gly Gly Ser Ile Thr Ala Phe His Lys Leu Ser Leu Leu Ala Asp Glu
 675 680 685

Val Asp Val Leu Ser Arg Met Leu Arg Gln Gln Arg Ser Gly Pro Leu
 690 695 700

Glu Ala Cys Tyr Gly Glu Leu Gly Gln Ser Arg Met Tyr Phe Asn Ala
 705 710 715 720

Ser Gly Pro His His Thr Asp Thr Ser Gly Thr Pro Glu Phe Leu Ser
 725 730 735

Ser Ser Phe Pro Phe Ser Pro Val Gly Asn Leu Cys Arg Arg Ser Ile
 740 745 750

Leu Gly Thr Pro Leu Ser Lys Phe Leu Ser Gly Ala Lys Ile Trp Leu
 755 760 765

Ser Thr Glu Thr Leu Ala Asn Glu Asp
 770 775

<210> 35

<211> 2353

<212> DNA

<213> Homo sapiens

<400> 35

tggttcctgc atggttcctc caaagctgca ggaggccctt gaacccttcg atttgaaca 60
 tgctggcgca cacttcagag ctccggccag agaatccctc gaccacccggg agaaccgagt 120
 ctttccccggta ttgtccctc cagacaagag aaatgagcaa gcaggagact catcagctgt 180
 tggtagtcta ttgtacgtgt gtggatggc ccaatacagt tcgttctt ccagtgtggc 240
 tcaggaaagc cgaaagggtt aaaaatgtccg cttggtagat cgagtgtctc ctaaaaaaagc 300
 agctcttagt actttgtatt tgacgctac ccatgtcata ttctgtggaaa attcacctga 360
 cgcaagaaaa gaaaacatgga ttcttcacag ttagatttcc accatggaga aacaggcaac 420
 aaccgctacc ggtatgccctc tgctgattcg ctgcaagaac tttcaagataa tacagctcat 480
 cataacctcg gaaaagagatt gccacacgt gtacatctcc ctgatacgcc ttgcaaggcc 540
 agtgaatat gaggagttat actgttttc attcaaccc atgctggata aagaagaaaag 600
 agagcaaggc tgggtgctga tcgatcttag tgaagaatac acgcggatgg gcctccctaa 660
 tcattactgg cagctcagcg atgtgaatag agactataga gtctgtact cttatcctac 720
 tgaactgtac gttcccaaatt cggccacggc acacatcata gtggggagtt ccaaattccg 780
 gagtagacgg cgatttcctg tcctttctta ctattataaa gataaccacg cctccatctg 840
 ccggagcagc cagccccctgt cccgcttcag tgcccggcgc ctagaggacg agcagatgt 900
 ccaggccatt agggaaagcca atccaggaag tgacttcgtt tatgtcggtt acacccggcc 960
 taaacttaat gcaatggcaa atcgtgctgc agggaaaggc tatgagaatg aagacaatta 1020
 ttccaatatac aagtttcagt ttatcggtt agagaacatc catgtcatga ggaacagtct 1080
 gcagaaaaatg ctggaaagtgt gtgaacttaa atctccctcc atgagtgatt tcctgtgggg 1140
 tctggagaac tctggctggta taaggcacat taaaaggccata atggatgcag gaatcttcat 1200
 tgcaaaggca gtgtcagagg aaggggcaag tggctgtt cactgttctg atggctggga 1260
 caggaccgct caggtgtgtc cggtgcaag cctgctgtc gaccctcaact accggactct 1320
 gaagggttcc atggatttaa ttggaaaagga ctggatttcc tttgggtcata agtttaatca 1380
 ccgatatggc aatcttagtg gtgacccaaa agaaatctct ccagttattg accagttcat 1440

tgagtgtgtt tggcagttaa tggacaatt tccctgtgcc tttgagttca atgagagggtt 1500
 tttgattcac attcaacatc acatttattc ctgccagtt ggaaacttcc tatgtaacag 1560
 cccaaaaggag agacgagaac tcaagattca agaaaagaaca tactcattat gggctcacct 1620
 gtggaaagaat cggggccgact acctgaatcc tctgtttaga gctgatcaca gccagactca 1680
 gggaaacctt catctcccta caacaccatg taacttcattg tacaagttt ggagtggaaat 1740
 gtataaccgc ttgaaaagg ggatgcagcc ccgacagtca gttacagatt acctaattggc 1800
 agtgaaggaa gaaactcagc agctagagga agaacttagag gcccgttggaaag aagtaagaca 1860
 tacttgcattt gttaatctat ttctgtgtt tatttcttga agagcaaggc ttcatgaaaag 1920
 cctcttaaga ttcaatgc aaatattt tcacatttt agtcagtaga acacctgaaa 1980
 cacaacccca tccaggtcag gactcagata accgaagccc aaaccttaggc attaatgca 2040
 ttccacacat ctggtttgtt gctcaattcc acaaattttt ggttgcctt tatttttagt 2100
 caactgttt ggttactgtt atttgagagt agtaaaattt attttttctt gaaaagtgtt 2160
 aaaaagtaac agaataaaat caaatatatg tacttgtaaa actcttccc cacttttaga 2220
 aattatgtta actatgatataa taatctataa ttggtaaagg ggagactgac tgtaaagtct 2280
 tatctttgg cttctatgaa ctccctgtt cttggacagg gaggttataa taaaatgctt 2340
 ttcctaattt gaa 2353

<210> 36

<211> 629

<212> PRT

<213> Homo sapiens

<400> 36

Met	Val	Pro	Pro	Lys	Leu	Gln	Glu	Ala	Phe	Glu	Pro	Phe	Asp	Leu	Lys
1					5				10			15			

His	Ala	Gly	Ala	His	Phe	Arg	Ala	Pro	Pro	Arg	Glu	Ser	Leu	Asp	His
					20				25			30			

Arg	Glu	Asn	Arg	Val	Phe	Arg	Gly	Phe	Ala	Pro	Pro	Asp	Lys	Arg	Asn
					35			40				45			

Glu	Gln	Ala	Gly	Ser	Ser	Ser	Ala	Val	Val	Ser	Val	Phe	Tyr	Val	Cys
					50			55				60			

Gly	Met	Ala	Gln	Tyr	Ser	Ser	Ser	Ser	Ser	Val	Ala	Gln	Gly	Ser	
	65				70				75			80			

Arg	Lys	Val	Glu	Asn	Val	Arg	Leu	Val	Asp	Arg	Val	Ser	Pro	Lys	Lys
					85				90			95			

Ala	Ala	Leu	Gly	Thr	Leu	Tyr	Leu	Thr	Ala	Thr	His	Val	Ile	Phe	Val
					100			105				110			

Glu	Asn	Ser	Pro	Asp	Ala	Arg	Lys	Glu	Thr	Trp	Ile	Leu	His	Ser	Gln
					115			120			125				

Ile	Ser	Thr	Ile	Glu	Lys	Gln	Ala	Thr	Thr	Ala	Thr	Gly	Cys	Pro	Leu
			130					135			140				

Leu	Ile	Arg	Cys	Lys	Asn	Phe	Gln	Ile	Ile	Gln	Leu	Ile	Ile	Pro	Gln
					145				150			155		160	

Glu	Arg	Asp	Cys	His	Asp	Val	Tyr	Ile	Ser	Leu	Ile	Arg	Leu	Ala	Arg
					165				170			175			

Pro Val Lys Tyr Glu Glu Leu Tyr Cys Phe Ser Phe Asn Pro Met Leu
 180 185 190

Asp Lys Glu Glu Arg Glu Gln Gly Trp Val Leu Ile Asp Leu Ser Glu
 195 200 205

Glu Tyr Thr Arg Met Gly Leu Pro Asn His Tyr Trp Gln Leu Ser Asp
 210 215 220

Val Asn Arg Asp Tyr Arg Val Cys Asp Ser Tyr Pro Thr Glu Leu Tyr
 225 230 235 240

Val Pro Lys Ser Ala Thr Ala His Ile Ile Val Gly Ser Ser Lys Phe
 245 250 255

Arg Ser Arg Arg Arg Phe Pro Val Leu Ser Tyr Tyr Tyr Lys Asp Asn
 260 265 270

His Ala Ser Ile Cys Arg Ser Ser Gln Pro Leu Ser Gly Phe Ser Ala
 275 280 285

Arg Cys Leu Glu Asp Glu Gln Met Leu Gln Ala Ile Arg Lys Ala Asn
 290 295 300

Pro Gly Ser Asp Phe Val Tyr Val Val Asp Thr Arg Pro Lys Leu Asn
 305 310 315 320

Ala Met Ala Asn Arg Ala Ala Gly Lys Gly Tyr Glu Asn Glu Asp Asn
 325 330 335

Tyr Ser Asn Ile Lys Phe Gln Phe Ile Gly Ile Glu Asn Ile His Val
 340 345 350

Met Arg Asn Ser Leu Gln Lys Met Leu Glu Val Cys Glu Leu Lys Ser
 355 360 365

Pro Ser Met Ser Asp Phe Leu Trp Gly Leu Glu Asn Ser Gly Trp Leu
 370 375 380

Arg His Ile Lys Ala Ile Met Asp Ala Gly Ile Phe Ile Ala Lys Ala
 385 390 395 400

Val Ser Glu Glu Gly Ala Ser Val Leu Val His Cys Ser Asp Gly Trp
 405 410 415

Asp Arg Thr Ala Gln Val Cys Ser Val Ala Ser Leu Leu Asp Pro
 420 425 430

His Tyr Arg Thr Leu Lys Gly Phe Met Val Leu Ile Glu Lys Asp Trp
 435 440 445

Ile Ser Phe Gly His Lys Phe Asn His Arg Tyr Gly Asn Leu Asp Gly
 450 455 460

Asp Pro Lys Glu Ile Ser Pro Val Ile Asp Gln Phe Ile Glu Cys Val
 465 470 475 480

Trp Gln Leu Met Glu Gln Phe Pro Cys Ala Phe Glu Phe Asn Glu Arg
485 490 495

Phe Leu Ile His Ile Gln His His Ile Tyr Ser Cys Gln Phe Gly Asn
500 505 510

Phe Leu Cys Asn Ser Gln Lys Glu Arg Arg Glu Leu Lys Ile Gln Glu
 515 520 525

Arg Thr Tyr Ser Leu Trp Ala His Leu Trp Lys Asn Arg Ala Asp Tyr
530 535 540

Leu Asn Pro Leu Phe Arg Ala Asp His Ser Gln Thr Gln Gly Thr Phe
545 550 555 560

His Leu Pro Thr Thr Pro Cys Asn Phe Met Tyr Lys Phe Trp Ser Gly
565 570 575

Met Tyr Asn Arg Phe Glu Lys Gly Met Gln Pro Arg Gln Ser Val Thr
 580 585 590

Asp Tyr Leu Met Ala Val Lys Glu Glu Thr Gln Gln Leu Glu Glu Glu
595 600 605

Leu Glu Ala Leu Glu Glu Val Arg His Thr Cys Phe Val Asn Leu Phe
610 615 620

Ser Val Leu Ile Ser
625

<210> 37
<211> 1200
<212> DNA
<213> *Homo sapiens*

<210> 38

<211> 400

<212> PRT

<213> Homo sapiens

<400> 38

Met	Asn	Glu	Ser	Pro	Asp	Pro	Asn	Ala	Leu	Ala	Gly	Val	Ile	Ile	Glu
1				5					10					15	

Arg	Ala	Pro	Ser	Asp	Ser	Pro	Gln	Thr	Asn	Glu	Phe	Lys	Gly	Ala	Thr
20							25					30			

Glu	Glu	Ala	Pro	Ala	Lys	Glu	Ser	Pro	His	Thr	Ser	Glu	Phe	Lys	Gly
35						40						45			

Ala	Ala	Leu	Val	Ser	Pro	Ile	Ser	Lys	Ser	Met	Leu	Glu	Arg	Leu	Ser
50						55				60					

Lys	Phe	Glu	Val	Glu	Asp	Ala	Glu	Asn	Val	Ala	Ser	Tyr	Asp	Ser	Lys
65						70				75			80		

Ile	Lys	Lys	Ile	Val	His	Ser	Ile	Val	Ser	Ser	Phe	Ala	Phe	Gly	Leu
85							90					95			

Phe	Gly	Val	Phe	Leu	Val	Leu	Leu	Asp	Val	Thr	Leu	Val	Leu	Ala	Asp
100							105				110				

Leu	Ile	Phe	Thr	Asp	Ser	Lys	Leu	Tyr	Ile	Pro	Ser	Glu	Tyr	Arg	Ser
115						120				125					

Ile	Ser	Leu	Ala	Ile	Ala	Leu	Phe	Phe	Leu	Met	Asp	Val	Leu	Leu	Arg
130						135				140					

Val	Phe	Val	Glu	Gly	Pro	Val	Tyr	Thr	Ile	Gly	Leu	Pro	Pro	Ser	Asp
145						150			155			160			

Leu	Arg	Ala	Gly	Lys	Glu	Glu	Thr	Val	Leu	Val	Arg	Glu	Arg	His	Gln
165						170					175				

Gln	Glu	Ser	Gln	Arg	Phe	Leu	Leu	Ser	Ile	Ile	Thr	Ile	Thr	Ile	
180								185			190				

Ile	Leu	Ile	Thr	Ile	Thr	Val	Thr	Val	Ile	Lys	Tyr	Phe	Asn	Leu	Thr
195						200				205					

Lys	Asn	Ile	Lys	Leu	Glu	Ile	Ser	Lys	Met	Val	Val	Phe	Ser	Lys	Glu
210						215				220					

Val	Asn	Glu	Trp	Met	Thr	Gln	Asp	Pro	Glu	Asn	Ile	Ile	Val	Ile	His
225						230			235			240			

Cys	Lys	Gly	Gly	Lys	Ile	Ile	Ile	Thr	Ile	Met	Asp	Phe	Lys	Glu	Val
245							250				255				

Cys	Thr	Thr	Gln	Tyr	Cys	Lys	Val	Val	Ser	Ser	Leu	Lys	Leu	Ile	Tyr
260							265				270				

Lys Phe Asn Val Val Pro Ile Lys Ile Leu Asn Val Lys Gly Arg Thr
 275 280 285

Gly Thr Met Val Cys Ala Leu Leu Ile Ala Ser Glu Ile Phe Leu Thr
 290 295 300

Ala Glu Glu Ser Leu Tyr Tyr Phe Gly Glu Arg Arg Thr Asp Lys Thr
 305 310 315 320

His Ser Asn Lys Phe Gln Gly Val Glu Thr Pro Cys Gln Asn Arg Tyr
 325 330 335

Val Gly Tyr Phe Ala Gln Val Lys His Leu Tyr Asn Gly Asn Ile Pro
 340 345 350

Pro Arg Arg Ile Leu Phe Ile Lys Arg Phe Ile Ile Tyr Ser Thr Arg
 355 360 365

Gly Val Gly Thr Gly Asp Val Cys Asp Leu Gln Phe Gln Ile Val Met
 370 375 380

Glu Lys Lys Val Val Phe Ser Ser Thr Ser Leu Gly Asn Cys Ser Leu
 385 390 395 400

<210> 39

<211> 694

<212> DNA

<213> Homo sapiens

<400> 39

gtggcccgaa aggccgcgag gccaggtagg tgcgatggc gtgcagcccc ccaacttctc 60
 ctgggtgctt ccggccggc tggcggact ggcgctgccg cggctccccg cccactacca 120
 gttccctgtt gacacctggcg tgcggcacct ggtgtccctg acggagcgcg ggccccctca 180
 cagcgacaggc tgccccggcc tcaccctgca cccgcctgcgc atccccact tctgcccggc 240
 ggccccggac cagatcgacc gttcgtgca gatcgtggac gaggccaacg cacggggaga 300
 ggctgtggga gtgcactgtg ctctggctt tggccgcact ggcacccatgc tggcctgtta 360
 cctggtaag gacgggggt tggctgcagg agatgccatt gctgaaatcc gacgactacg 420
 acccgccccc atcgagaccc atgagcagga gaaagcagtc ttccagttct accagcgaac 480
 gaaataaggg gccttagtac cttcttacca gcccctcact ccccttcccc atgttgtcga 540
 tggggccaga gatgaaggaa agtgactaa agtattaaac cctctagctc ccattggctg 600
 aagacactga agtagcccac ccctgcaggc aggtcctgtat tgaagggag gcttgtactg 660
 ctttggaa taaatgagtt ttacgaacca ggaa 694

<210> 40

<211> 150

<212> PRT

<213> Homo sapiens

<400> 40

Met Gly Val Gln Pro Pro Asn Phe Ser Trp Val Leu Pro Gly Arg Leu
 1 5 10 15

Ala Gly Leu Ala Leu Pro Arg Leu Pro Ala His Tyr Gln Phe Leu Leu
 20 25 30

Asp Leu Gly Val Arg His Leu Val Ser Leu Thr Glu Arg Gly Pro Pro
 35 40 45

His Ser Asp Ser Cys Pro Gly Leu Thr Leu His Arg Leu Arg Ile Pro
 50 55 60

Asp Phe Cys Pro Pro Ala Pro Asp Gln Ile Asp Arg Phe Val Gln Ile
 65 70 75 80

Val Asp Glu Ala Asn Ala Arg Gly Glu Ala Val Gly Val His Cys Ala
 85 90 95

Leu Gly Phe Gly Arg Thr Gly Thr Met Leu Ala Cys Tyr Leu Val Lys
 100 105 110

Glu Arg Gly Leu Ala Ala Gly Asp Ala Ile Ala Glu Ile Arg Arg Leu
 115 120 125

Arg Pro Gly Pro Ile Glu Thr Tyr Glu Gln Glu Lys Ala Val Phe Gln
 130 135 140

Phe Tyr Gln Arg Thr Lys
 145 150

<210> 41

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic primer

<220>

<221> modified_base

<222> (57)

<223> a, c, g, t, other or unknown

<400> 41

aagcagtggtaacaacgcag agtactttttttttttttttttttttttttvnn 57

<210> 42

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic primer

<400> 42

aagtggcaac agagataacg cgtacgcggg

30

<210> 43

<211> 30

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 43
aagcagtggt aacaacgcag agtacgcggg

30

<210> 44
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 44
aagcagtggt aacaacgcag agt

23

<210> 45
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 45
aagtggcaac agagataacg cgt

23