Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018

Department of Computer Science, University of Victoria

Proving a lower-bound

• We want to prove that any comparison sort takes at least $\Omega(n \log n)$ in the worst-case.

• In other words, a comparison sort cannot guarantee a running time of $o(n \log n)$ on all inputs.

Comparison-based sorting

Let's say we have the following ADT:

Abstract-Integer:

```
data type: An integer x
```

operations:

```
//compares x and y, and returns \leq or > compare(Abstract-Integer y)
```

Comparison-based sorting

Let's say we have the following ADT:

Abstract-Integer:

data type: An integer x

operations:

//compares x and y, and returns \leq or > compare(Abstract-Integer y)

• We assume a <u>comparison-based sorting algorithm</u> (also called a **comparison sort**) is working with instances of this ADT. So, it can't see the actual values.

- We can view the behavior of comparison sorts as a decision tree which is a **full binary tree**.
- Each internal node is annotated with a comparison.
- And each leaf node is annotated with a permutation which is the answer to the sorting problem.
- We assume all elements are distinct since we want to get a lower bound for the worst case.
- We assume comparison queries are of the form $A[i] \leq A[j]$.

- Example of a decision tree for Insertion-Sort on A[1...3]
- i:j means comparing A[i] and A[j]

- Each path from the root to a leaf is the sequence of comparisons required to sort a particular input.
- The input $A = \{7, 11, 5\}$ can cause the **highlighted** path to be followed by the algorithm.

 Each leaf is a re-ordering of the original indices that can make the whole array sorted.

- We use this model to analyze the running time of a sorting algorithm
- Only comparisons contribute to the cost (i.e. running time)

• If we prove that $\Omega(n \log n)$ comparisons are necessary in the worst case input for any sorting algorithm, we are done!

- We have 3 elements and 6 leaves or 6 possible answers.
- Question: What's the connection?

- We have 3 elements and 6 leaves or 6 possible answers.
- Question: What's the connection? Answer: The tree of a correct sorting algorithm must have all permutations (n!) in the leaves.

 Question: What does the longest root-to-leaf path correspond to?

• Question: What does the longest root-to-leaf path correspond to? Answer: It's the height of tree which corresponds to the worst-case number of comparisons.

Proving a lower bound

- The decision tree for a correct sorting algorithm on an input of size n, must have n! leaves. (one for each possible permutation)
- A good sorting algorithm tries to keep the height low, so that the worst-case running time is as low as possible.

• **Note:** Proving a lower bound of $\Omega(n \log n)$ here means proving that even the <u>best comparison sort that one can design</u> requires at least $n \log n$ time on some input.

Proving a lower bound

• Question: Knowing that this full binary tree must contain n! leaves, how low could the height be?

Proving a lower bound

- Question: Knowing that this full binary tree must contain n! leaves, how low could the height be?
- **Answer:** We know that in a full binary tree with k leaves, the height is in the range of $\log k$ to k-1. So, the lowest possible height of a tree with n! leaves is $\log n!$ which we prove is $\Omega(n\log n)$. (it's actually $\Theta(n\log n)$, however, since we want to prove a lower bound we use the big-Omega notation.)