Trees based methods

Decision Trees, Random Forests and Gradient Boosting

Hicham Zmarrou, PhD

2018-11-16

▶ Understand what are decision trees (DT), random forests (RF) and gradient boosting (GB), how they works, and how to evaluate a DT a RF or a GB model.

- ▶ Understand what are decision trees (DT), random forests (RF) and gradient boosting (GB), how they works, and how to evaluate a DT a RF or a GB model.
- Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) mostly used in classification problems.

- ▶ Understand what are decision trees (DT), random forests (RF) and gradient boosting (GB), how they works, and how to evaluate a DT a RF or a GB model.
- Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) mostly used in classification problems.
- It works for both categorical and continuous input and output variables.

- Understand what are decision trees (DT), random forests (RF) and gradient boosting (GB), how they works, and how to evaluate a DT a RF or a GB model.
- Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) mostly used in classification problems.
- ► It works for both categorical and continuous input and output variables.
- ► In this technique, we split the population or sample into two or more homogeneous sets (or sub-populations) based on most significant splitter/differentiator in input variables.

Decision trees

Decision trees

Training examples:		examples:	9 yes / 5 no		
	Day	Outlook	Humidity	Wind	Play
	D1	Sunny	High	Weak	No
	D2	Sunny	High	Strong	No
	D3	Overcast	High	Weak	Yes
	D4	Rain	High	Weak	Yes
	D5	Rain	Normal	Weak	Yes
	D6	Rain	Normal	Strong	No
	D7	Overcast	Normal	Strong	Yes
	D8	Sunny	High	Weak	No
	D9	Sunny	Normal	Weak	Yes
	D10	Rain	Normal	Weak	Yes
	D11	Sunny	Normal	Strong	Yes
	D12	Overcast	High	Strong	Yes
	D13	Overcast	Normal	Weak	Yes
	D14	Rain	High	Strong	No
	New data	a:			
	D15	Rain	High	Weak	?

Figure 1: Playing tennis?

Training examples:		9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No
New da	ta:			
D15	Rain	High	Weak	?

Figure 2: Playing tennis?

Figure 3: Playing tennis?

Figure 4: Playing tennis?

Figure 5: Playing tennis?

Figure 6: Playing tennis?

► Classification decision tree: Decision trees which have categorical target variable

- ► Classification decision tree: Decision trees which have categorical target variable
 - ► Models suitable for answering questions: Which category(ies)

- ► Classification decision tree: Decision trees which have categorical target variable
 - ► Models suitable for answering questions: Which category(ies)
- Regression trees: decision trees that have continuous target variable

- ► Classification decision tree: Decision trees which have categorical target variable
 - ► Models suitable for answering questions: Which category(ies)
- ▶ Regression trees: decision trees that have continuous target variable
 - ▶ Models suitable for answering questions: How mach, how many

1. **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.

- 1. **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- 2. **Splitting:** It is a process of dividing a node into two or more sub-nodes.

- 1. **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- 2. **Splitting:** It is a process of dividing a node into two or more sub-nodes.
- 3. **Decision Node:** When a sub-node splits into further sub-nodes, then it is called decision node.

- Root Node: It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- Decision Node: When a sub-node splits into further sub-nodes, then it is called decision node.
- Leaf/ Terminal Node: Nodes do not split is called Leaf or Terminal node.

- 1. **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- 3. **Decision Node:** When a sub-node splits into further sub-nodes, then it is called decision node.
- 4. **Leaf/ Terminal Node:** Nodes do not split is called Leaf or Terminal node.
- Pruning: When we remove sub-nodes of a decision node, this process is called pruning. You can say opposite process of splitting.

- 1. **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- 3. **Decision Node:** When a sub-node splits into further sub-nodes, then it is called decision node.
- 4. **Leaf/ Terminal Node:** Nodes do not split is called Leaf or Terminal node.
- Pruning: When we remove sub-nodes of a decision node, this process is called pruning. You can say opposite process of splitting.
- Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree.

- 1. **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- 3. **Decision Node:** When a sub-node splits into further sub-nodes, then it is called decision node.
- 4. **Leaf/ Terminal Node:** Nodes do not split is called Leaf or Terminal node.
- Pruning: When we remove sub-nodes of a decision node, this process is called pruning. You can say opposite process of splitting.
- Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree.
- Parent and Child Node: A node, which is divided into sub-nodes is called parent node of sub-nodes where as sub-nodes are the child of parent node.

Figure 7: Trees Terminology

Advantages

Easy to Understand:

Advantages

- Easy to Understand:
- Useful in data exploration:

Advantages

- Easy to Understand:
- Useful in data exploration:
- Less data cleaning required.

Advantages

- Easy to Understand:
- Useful in data exploration:
- Less data cleaning required.
- Data type is not a constraint.

Advantages

- Easy to Understand:
- ► Useful in data exploration:
- Less data cleaning required.
- Data type is not a constraint.
- Non parametric method.

Advantages

- Easy to Understand:
- Useful in data exploration:
- Less data cleaning required.
- Data type is not a constraint.
- Non parametric method.

Disadvantages

Over fitting

Advantages

- Easy to Understand:
- Useful in data exploration:
- Less data cleaning required.
- Data type is not a constraint.
- Non parametric method.

- Over fitting
- Not fit for continuous variables

Figure 8: Tree spliting

Figure 9: Compute the entropy

Figure 10: Compute the entropy

Figure 11: Compute the entropy

Figure 12: Compute the entropy

Figure 13: Compute the entropy

Figure 14: Compute the entropy

Figure 15: Compute the entropy

Figure 16: Compute the entropy

Figure 17: Compute the entropy

Figure 18: Compute the entropy

$$y = -\sum_{i=1}^k p_i log_k(p_i)$$

$$y = -\underbrace{\left[\left(\frac{1}{10}\right)log_4\left(\frac{1}{10}\right)\right]}_{\text{Red}} - \underbrace{\left[\left(\frac{3}{10}\right)log_4\left(\frac{3}{10}\right)\right]}_{\text{Green}} - \underbrace{\left[\left(\frac{2}{10}\right)log_4\left(\frac{2}{10}\right)\right]}_{\text{Blue}} - \underbrace{\left[\left(\frac{4}{10}\right)log_4\left(\frac{4}{10}\right)\right]}_{\text{Yellow}}$$

Figure 19: Compute the entropy

Figure 20: Compute information gain

Figure 21: Compute information gain

Figure 22: Compute information gain

Figure 23: Compute information gain

Figure 24: Compute information gain

Figure 25: Compute information gain

Overfitting is one of the key challenges faced while modeling decision trees.

- Overfitting is one of the key challenges faced while modeling decision trees.
- ▶ If no limit set, tree give you 100% accuracy on training set

- Overfitting is one of the key challenges faced while modeling decision trees.
- ightharpoonup If no limit set, tree give you 100% accuracy on training set
- Preventing overfitting is essential in fitting a decision tree and it can be done in 2 ways:

- Overfitting is one of the key challenges faced while modeling decision trees.
- ▶ If no limit set, tree give you 100% accuracy on training set
- Preventing overfitting is essential in fitting a decision tree and it can be done in 2 ways:
 - Setting constraints on tree size

- Overfitting is one of the key challenges faced while modeling decision trees.
- ▶ If no limit set, tree give you 100% accuracy on training set
- Preventing overfitting is essential in fitting a decision tree and it can be done in 2 ways:
 - Setting constraints on tree size
 - Tree pruning

Figure 26: constraints on tree size

1. Minimum samples for a node split (min_samples_split)

- 1. Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.

- 1. Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)

- 1. Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)
 - Control over-fitting similar to min_samples_split.

- Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)
 - Control over-fitting similar to min_samples_split.
- 3. Maximum depth of tree (vertical depth, max_depth)

- Minimum samples for a node split (min_samples_split)
 - ► Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)
 - Control over-fitting similar to min_samples_split.
- Maximum depth of tree (vertical depth, max_depth)
 - Control over-fitting Should be tuned using CV

- Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)
 - Control over-fitting similar to min_samples_split.
- 3. Maximum depth of tree (vertical depth, max_depth)
 - Control over-fitting Should be tuned using CV
- 4. Maximum number of terminal nodes

- 1. Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)
 - Control over-fitting similar to min_samples_split.
- 3. Maximum depth of tree (vertical depth, max_depth)
 - Control over-fitting Should be tuned using CV
- 4. Maximum number of terminal nodes
 - Can be defined in place of max_depth. In a binary tree, a depth of 'n' would produce a maximum of 2ⁿ⁺¹ − 1 leaves.

- 1. Minimum samples for a node split (min_samples_split)
 - Control over-fitting. Should be tuned using CV.
- 2. Minimum samples for a terminal node (leaf)
 - Control over-fitting similar to min_samples_split.
- 3. Maximum depth of tree (vertical depth, max_depth)
 - Control over-fitting Should be tuned using CV
- 4. Maximum number of terminal nodes
 - Can be defined in place of max_depth. In a binary tree, a depth of 'n' would produce a maximum of $2^{n+1} 1$ leaves.
- 5. Maximum features to consider for split

Tree pruning

1. Make the decision tree to a large depth.

Suppose a split is giving us a gain of say -10 (loss of 10) and then the next split on that gives us a gain of 20. A simple decision tree will stop at step 1 but in pruning, we will see that the overall gain is ± 10 and keep both leaves.

Tree pruning

- 1. Make the decision tree to a large depth.
- 2. Start at the bottom and start removing leaves which are giving us negative IG when compared from the top.

Suppose a split is giving us a gain of say -10 (loss of 10) and then the next split on that gives us a gain of 20. A simple decision tree will stop at step 1 but in pruning, we will see that the overall gain is ± 10 and keep both leaves.

Are tree based models better than logistic models?

If the relationship between feature and label is well approximated by a linear model, linear regression will outperform tree based model.

Are tree based models better than logistic models?

- If the relationship between feature and label is well approximated by a linear model, linear regression will outperform tree based model.
- ▶ If there is a high non-linearity and complex relationship between feature and label tree model will outperform a classical regression method.

Are tree based models better than logistic models?

- If the relationship between feature and label is well approximated by a linear model, linear regression will outperform tree based model.
- ▶ If there is a high non-linearity and complex relationship between feature and label tree model will outperform a classical regression method.
- ▶ If you need to build a model which is easy to explain to people, a decision tree model will always do better than a linear model. Decision tree models are even simpler to interpret than linear regression!

Working with decision trees in R

Go to the notebook