AI-Powered Nutrition Analyzer For Fitness Enthusiasts

Date	21-06-2025	
Team ID	SWTID1749893823	
Project Title	AI-Powered Nutrition Analyzer For Fitness Enthusiasts	
Maximum Marks	5 Marks	

Model Selection Report

In the model selection report for future deep learning and computer vision projects, various architectures, such as CNNs or RNNs, will be evaluated. Factors such as performance, complexity, and computational requirements will be considered to determine the most suitable model for the task at hand.

Model	Description	Performance Metric
		(Accuracy)
VGG16	It is a deep convolutional neural	Accuracy Score:
	network with 16 layers	98.01%
	developed by the Visual	
	Geometry Group at Oxford.	
	It uses small 3×3 filters and	
	follows a simple, uniform	
	architecture with stacked	
	convolutional and max-pooling	
	layers.	
	It is accurate but	
	computationally heavy and	
	memory-intensive.	
MobileNetV2	It is a lightweight, efficient CNN	Accuracy Score:
	designed for mobile and	99.91%
	embedded vision applications.	
	It uses depthwise separable	
	convolutions and inverted	
	residual blocks to reduce	
	computation and model size.	
	MobileNetV2 is faster and	
	smaller than VGG16, with	
	comparable accuracy for many	
	tasks.	