Graphes auto-duaux et applications

Baptiste Cellier-Valencia

Université de Montpellier

1^{er} septembre 2025

Plan

Graphes Antipodalement Auto-duaux

2 Application à la théorie des nœuds

Arbres Auto-duaux

Dualité

Figure – G

Figure – $G \cup G^*$

Dualité

Figure – G

Figure – K_4

Figure – $G \cup G^*$

Figure – Plongement antipodalement auto-dual de K_4

Graphes auxiliaires:

Figure – $G \cup G^*$

Figure – G^{\square}

Graphes auxiliaires :

Figure – $G \cup G^*$

Figure -I(G)

Figure – G^{\square}

Figure – med(G)

Théorèmes

Lemme

Si G est un graphe antipodalement auto-dual alors I(G) et med(G) sont antipodalement symétriques.

Figure - Plongement de K₄

Figure – med(G) en gras et I(G) en pointillés

Théorèmes

Théorème

Si G est antipodalement auto-dual, alors tous les cycles symétriques de I(G) sont de longueur $n \equiv 2[4]$.

Figure – Graphe non antipodalement auto-dual

Figure – Cycle symétrique de longueur 8

Théorèmes

Définition

Un graphe fortement involutif est un graphe auto-dual muni d'un isomorphisme de dualité σ qui vérifie :

- $\forall (u, v) \in V(G)^2$, $u \in \sigma(v) \Leftrightarrow v \in \sigma(u)$
- $\forall u \in V(G), u \notin \sigma(u)$

Théorème

Soit G un graphe auto-dual, alors G fortement involutif $\Rightarrow G$ est antipodalement auto-dual.

Familles de Graphes Antipodalement Auto-duaux

Caractérisation de certaines familles de graphes

- Les n-roues sont antipodalement auto-duales si et seulement si $n \ge 1$ est impair.
- Les *n*-oreilles sont antipodalement auto-duales si et seulement si $n \ge 3$ est pair.
- Les (n, l)-pancakes sont antipodalement auto-duals si et seulement si $n \ge 3$ est impair.

Construction du diagramme de Tait

Définition

On appelle nœud un plongement de \mathbb{S}^1 dans \mathbb{R}^3 . Un lien est une union de plusieurs nœuds. Si l'on projette régulièrement un lien sur un plan, on obtient le diagramme suivant :

A partir de ce diagramme, on obtient un graphe D 4-régulier, dont on peut colorer les faces proprement avec deux couleurs. On construit le graphe N_D en plaçant des sommets sur les faces noires et en les reliant si elles partagent un croisement commun. En faisant de même pour les faces blanches, on obtient B_D , le dual de N_D .

Construction du diagramme de Tait

Signature d'un croisement

Puisqu'un graphe 4-régulier ne caractérise pas entièrement un lien, il faut ajouter une signature sur les croisement pour indiquer quelle courbe pas au-dessus et en-dessous. Grâce au schéma suivant, on convient d'une convention.

Construction du diagramme de Tait

Finalement, à partir du diagramme de lien, on peut construire un couple (N_D, S_E) qui est un graphe de Tait munit d'une signature des arêtes qui détermine entièrement le lien.

Achiralité

Définition

- Deux liens L_1 et L_2 sont équivalents s'il existe un homéomorphisme ϕ de \mathbb{R}^3 qui conserve l'orientation tel que $\phi(L_1) = L_2$.
- Pour un lien L, on note [L] sa classe d'équivalence et L^* son image par la réflexion selon le plan d'équation x = 0.
- Un lien L est dit achiral si et seulement si $L \in [L^*]$

Utilisation des graphes antipodalements auto-duaux

Théorème

On suppose que (G, S_E) est un graphe de Tait antipodalement auto-dual. On rappelle que le graphe médial de G est antipodalment symétrique (via la symétrie centrale σ), que ses sommets sont signés et ses faces colorées. Si l'on est dans un des cas suivants :

- ullet Si σ préserve les couleurs et inverse la signature
- ullet Si σ préserve la signature et inverse les couleurs

Alors le lien associé à (G, S_E) est achiral.

Familles de Liens Achiraux

Figure – La 3-roue avec toutes les arêtes signées positivement nous donnes les anneaux borroméens

Familles de Liens Achiraux

Figure – La roues d'ordres supérieurs avec toutes les arêtes signées positivement nous donnent une famille de tresse qui sont achirales

Arbres Auto-duaux

Définition

Soit G un graphe auto-dual avec ϕ son isomorphisme de dualité. Si e est une arête de G, e^* est l'arête de G^* qui coupe e. On pose alors $\widetilde{e} = \phi^{-1}(e^*)$.

Définition

Un arbre couvrant d'un graphe G est un sous-graphe qui possède tous les sommets de G est qui est un arbre. Le nombre d'arbres couvrant est noté $\kappa(G)$.

Le graphe précédent en compte 16.

Arbres Auto-duaux

Définition

Si G est un graphe antipodalment auto-dual, alors on définit un arbre couvrant auto-dual comme un arbre couvrant de G qui pour chaque arête e ne compte qu'un élément de la paire $\{e, \widetilde{e}\}$. Le nombre d'arbres couvrants auto-duaux est noté $\chi(G)$.

Théorème

Si G est antipodalement auto-dual, alors $\kappa(G) = \chi(G)^2$.

Le graphe précédent n'en compte bien que 4.

