

Course Homepage Quiz Review Test Submission: MCA

Review Test Submission: MCA

User	Richa Singh	
Course	(MERGED) ACN 7310.002 - HCS 7310.002 -	- F18
Test	MCA	
Started	10/6/18 2:36 AM	
Submitted	10/6/18 1:11 PM	
Due Date	10/7/18 8:00 PM	
Status	Completed	
Attempt Score	29.72222 out of 50 points	
Time Elapsed	10 hours, 34 minutes	
	d All Answers, Submitted Answers	

Question 1 10 out of 10 points

A data table to be analyzed by MCA

Selected Answers: a. is geometrically represented as a hypercube

b. is geometrically represented as a hypnocube

c. is arranged with observations on the rows and variables on the columns

d. is geometrically represented as a simplex

f. can include only 0s and 1s

g. is geometrically represented as a hypnotoad

Answers: a. is geometrically represented as a hypercube

b. is geometrically represented as a hypnocube

c. is arranged with observations on the rows and variables on the columns

d. is geometrically represented as a simplex

e. can include only integers f. can include only 0s and 1s

g. is geometrically represented as a hypnotoad

Question 2 0 out of 10 points

What is a Burt matrix?

Selected

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, when \mathbf{X} is an indicator matrix Answers:

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, when \mathbf{X} has observation on the rows, and levels of variables on the

columns

It can only have 1s and 0s It is a diagonal matrix

It includes margins of each level of each variable on diagonal

Answers: $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, when \mathbf{X} is an indicator matrix

https://elearning.utdallas.edu/webapps/assessment/review/review.jsp?attempt_id=_17563615_1&course_id=_142099_1&content_id=_2160505_1&return_conte... 1/3

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, when **X** is a contingency table

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, when \mathbf{X} has observation on the rows, and levels of variables on the columns

It can only have 1s and 0s

It is a contingency table

It is a diagonal matrix

It includes margins of each level of each variable on diagonal

It includes margins of each level of each variable off diagonal

A close friend of the Ernie matrix

Question 3

2,22222 out of 10 points

Multiple correspondence analysis (MCA) extends [a] and [b] to analyze the pattern of relationship of multiple categorical variables. The data table that goes into MCA is a(n) [c] matrix. In that data table, each [d] of each variable is represented as its own column, and coded as a binary variable. This is also called [e] coding. MCA and CA computed [f] and [g] in the same way, and so both rely on the [h] distance. MCA is similar to CA in many ways, except that, in MCA, the eigenvalues are [i]-estimated.

Specified Answer for: a Correspondence Analysis

Specified Answer for: b Principal Component Analysis

Specified Answer for: c indicator

Specified Answer for: d levels

Specified Answer for: e one-hot

Specified Answer for: f row factor scores

Specified Answer for: g column factor scores

Specified Answer for: h chi-squared

Specified Answer for: i under

Question 4

7.5 out of 10 points

To conduct MCA on **X** (with $X = Z - rc^{T}$) is equivalent to

Selected Answers: a. PCA(MXW), with $M = D_r^{-1/2}$ and $W = D_c^{-1/2}$

d. GSVD(X, M, W), with $M = D_r^{-1/2}$; $W = D_r^{-1/2}$

e. SVD(**MXW**), with $\mathbf{M} = \mathbf{D_r}^{-1/2}$ and $\mathbf{W} = \mathbf{D_c}^{-1/2}$

a. PCA(MXW), with $M = D_r^{-1/2}$ and $W = D_c^{-1/2}$ Answers:

b. PCA(X)

c. SVD(X)

d. GSVD(X, M, W), with $M = D_r^{-1/2}$; $W = D_r^{-1/2}$

e. SVD(**MXW**), with $\mathbf{M} = \mathbf{D_r}^{-1/2}$ and $\mathbf{W} = \mathbf{D_c}^{-1/2}$

f. CA(X)

Question 5

10 out of 10 points

MCA can be used to analyze

Selected Answers: b. Nominal variables

- c. Ordinal variables (after binning them)
- e. Quantitative variables (after binning them)

Answers:

- a. Quantitative variables
- b. Nominal variables
- c. Ordinal variables (after binning them)
- d. Abominable variables
- e. Quantitative variables (after binning them)

Saturday, October 6, 2018 1:11:24 PM CDT

 \leftarrow OK