Pferdeführanlage

HTBLA Kaindorf an der Sulm Grazer Straße 202, A-8430 Kaindorf an der Sulm Ausbildungsschwerpunkt Mechatronik und Automatisierungstechnik

> Ornik Stefan, Riegelnegg Dominik, Freyler Lukas, Pölzl Fabio

Abgabedatum: 15. Februar 2018

Betreut von:

Dipl.-Ing Manfred Steiner Dipl.-Ing Wolfgang Mader Dipl.-Ing Werner Harnisch Dipl.-Päd Otto Schuller

Inhaltsverzeichnis

1	Einle	eitung		6			
	1.1	Zielset	zung	6			
		1.1.1	Elektronik	6			
	1.2	Gesam	tziel	6			
2	Elek	tronik	und Sicherheit	7			
	2.1	Abstra	uct	7			
	2.2	Zusam	menfassung	7			
	2.3	Aufgal	penbereich	8			
	2.4	Vorarb	oeit	9			
		2.4.1	Motor	9			
		2.4.2	Ansteuerung Elektromotor	9			
		2.4.3	Wasserversorgung Sprühregen	9			
		2.4.4	Verarbeitung der Daten	9			
		2.4.5	Pferde Sicherheit	9			
	2.5	2.5 Antriebstechnik Grundlagen					
		2.5.1		10			
		2.5.2	Anforderungen	10			
	2.6	Elektro	omotor	11			
		2.6.1	Grundprinzip	11			
		2.6.2	Motorarten	11			
		2.6.3	Motorauswahl	13			
		2.6.4	Frequenzumrichter	16			
	2.7	Wasser	•	17			
	2.8			18			
	2.9			19			
				20			
				20			
			0	$\frac{1}{20}$			
				$\frac{1}{21}$			
				$\frac{-1}{21}$			
				$\frac{1}{22}$			

Abbildungsverzeichnis

2.1	Aufbau Antriebstechnik	10
2.2	Link-Hand-Regel	11
2.3	Aufbau Gleichstrommaschine	12
2.4	Aufbau Drehfeldmaschine	12
2.5	Tabelle Übersicht Elektromotor	14

Tabellenverzeichnis

1 Einleitung

- 1.1 Zielsetzung
- 1.1.1 Elektronik
- 1.2 Gesamtziel

2 Elektronik und Sicherheit

2.1 Abstract

Because of the electronic part, the horse exerciser should be able to rotate. The actuator of the engine is realised by a frequency converter, which gets the signals from the GPIO-Pins on the Raspberry-Pi. How fast the horse exerciser will move, depends on the commands, that he recives over the Ethernet from the webserver. The horses will get a refreshment on hot sommer days by the use of the electric water valve. Due to the fact that the system will be used to exercise animals, one of the most important points is the safety of the horses.

2.2 Zusammenfassung

Der Elektronikteil soll dazu dienen, die Pferdeführanlage in den gewünschten Geschwindigkeiten zu drehen, welche über die App für die Pferde gewählt wurden. Die Ansteuerung des Motors kann mit einem Frequenzumrichter realisiert werden, welcher die Signale von einem gewünschten Kommunikationssystem bekommt. Des weiteren bekommt die Steuereinheit über Ethernet die Befehle, wie schnell sich die Anlage drehen darf und wie lange. Mittels eines elektrischen Wasserventils, wird den Pferden an heißen Sommertagen eine Erfrischung ermöglicht. Da mit der Anlage Tiere trainiert werden sollen, ist der wichtigste Nebenpunkt die Sicherheit der Pferde und natürlich von der Anlage selbst.

2.3 Aufgabenbereich

Mein Aufgabenbereich bei der Diplomarbeit "Pferdeführanlage", ist die Planung für die Elektronik. Wie bereits bei der Hauptaufgabenstellung (1.1.?) erwähnt, soll sich die Anlage mit verschiedenen Geschwindigkeiten und Variationen drehen. Neben der Steuerung der Anlage, muss man auch auf die Sicherheit der Pferde achten.

Mein Aufgabenbereich bei der Diplomarbeit sind:

- Auswahl des Motors
- Ansteuerung des Motors
- Auswahl der Sensoren
- Auswahl eines Ventils
- Kommunikation zu Web-Server
- Schutz des Pferdes

2.4 Vorarbeit

Um die Suche ein wenig einzugrenzen, wurden persönliche Vorgaben festgelegt. Diese Vorgaben konnten durch Erfahrung oder Gespräche erstellt werden.

2.4.1 Motor

Prinzipiell könnte man die Anlage auch rein mechanisch Ansteuern. Mit der Hilfe von Wind, Wasser oder Öl, diese sind aber wetter- und ortsbedingt, im letzten Fall noch eine zusätzliche Umweltbelastung. Da in Mitteleuropa fast jeder Haushalt eine Stromanbindung hat, wurde der Fokus auf die Elektromotoren gerichtet.

2.4.2 Ansteuerung Elektromotor

Um einen Motor gezielt und einfach steuern zu können, wird in den meisten Fällen auf einen Frequenzumrichter zurückgegriffen. Alternative dazu wäre ein Motorstarter. Mit diesen lassen sich aber nicht so einfach die Geschwindigkeiten steuern.

2.4.3 Wasserversorgung Sprühregen

Für die Wasserversorgung wird ein 1 Zoll Wasseranschluss benötigt. Dieser ist normaler Weise bei jedem Haus vorhanden. Sollte dies nicht der Fall sein, ist es auch möglich eine Zuleitung mit geringeren Durchmesser nehmen.

2.4.4 Verarbeitung der Daten

Da sowohl das Senden von elektrischen Signalen, als auch die Kommunikation über ein Netzwerk realisiert werden soll, sollte ein System verwendet werden, welches beides direkt verarbeiten kann.

2.4.5 Pferde Sicherheit

Man darf bei der Anlage nicht auf die allgemeine Sicherheit vergessen. Überall können Fehler auftreten. Bei einem Fehler muss man wissen, wie man die Pferde, Menschen und auch die Anlage schützt. Dazu gehören allgemeine Fehler, NOT-AUS und NOT-STOPP.

2.5 Antriebstechnik Grundlagen

2.5.1 **Aufbau**

Abbildung 2.1: Aufbau Antriebstechnik

Der Inverter wandelt die vorhandene elektrische Energie in die gewünschte elektrische Ausgangsgröße um. Diese wird so gewählt, dass der Motor direkt damit betrieben werden kann. Dieser kann durch der Welle den gewünschten mechanischen Prozess betreiben. Falls man die Drehzahl nicht elektrisch verändern will, benötigt man zusätzlich ein Getriebe. Das Getriebe kann aber auch nur als Verbindung dienen und mittels Keilriemen oder ähnlichem realisiert werden.

Daraus ergibt sich folgender Ablauf wie aus der Abbildung oben ersichtlich: Versorgungsspannung \rightarrow Inverter \rightarrow Motor \rightarrow (Getriebe) \rightarrow Mechanischer Prozess

2.5.2 Anforderungen

Ein Antriebssystem sollte gewissen Anforderungen entsprechen, um vermarktbar zu sein. Folgende Auflistung zeigt die wichtigsten Punkte:

- Stabile Steuerung der Geschwindigkeit
- Verbundene Mechanik mit hoher Genauigkeit ansteuern
- Stabile Kraftanwendung

2.6 Elektromotor

2.6.1 Grundprinzip

Die Kraft, welche den Elektromotor in Bewegung versetzt, nennt sich Lorentzkraft. Befindet sich ein stromdurchflossener elektrischer Leiter in einem Magnetfeld, so wirkt auf diesen Leiter eine Kraft. Die Wirkungsrichtung hängt von der Stromflussrichtung im Leiter ab. Um sich die Vorstellung zu erleichtern, wird in den meisten Fällen die "Linke-Hand-Regel" verwendet.

Abbildung 2.2: Link-Hand-Regel

Die Lorentzkraft wird mit folgender Formel festgelegt:

$$F = B * I * l \tag{2.1}$$

F= Lorentzkraft, B= magnetische Flussdichte, I = Stromstärke, l = Länge des Leiters im Magnetfeld

Aus der Formel lässt sich entnehmen, dass die Lorentzkraft von der magnetischen Flussdichte, Stromstärke und Länge des Leiters abhängt.

Diese Kraft erzeugt bei einer Lagerung von der Spule, ein Moment, welches das gewünschte System drehen lässt.

2.6.2 Motorarten

Gleichstrommotor

Der Rotor wird gelagert und mehrfach mit Draht umwickelt. Der Rotor bekommt über Kohlebürsten am Kollektor eine Stromübertragung. Daraufhin bekommt der Rotor erneuten Schwung mit. Wenn der Motor größer sein muss, kann der Stator in mehrere Pole aufgeteilt werden. Der Stromfluss wird dadurch stabiler.

Das Foto zeigt den einfachen Aufbau von einer Gleichstrommaschine. Er ist bei einfachen Anwendungen sehr beliebt, da sich die Drehzahl durch Veränderung der Versorgungsspannung ändert.

Anwendungsbereiche:

Abbildung 2.3: Aufbau Gleichstrommaschine

- Scheibenwischermotoren
- Fensterheber
- Handstaubsauger

Drehstrommotor

Drehmaschinen arbeiten durch die Variation im Statorfeld. Der Rotor wird auch hier durch einen Magneten realisiert. Der Rotor versucht sich immer bei den entsprechenden Magnetpol zu bleiben. Die Spannungen beim Drehstrom sind um 120° versetzt. Deshalb variieren die magnetischen Pole regelmäßig. Aus diesem Grund beginnt der Rotor zu drehen.

Abbildung 2.4: Aufbau Drehfeldmaschine

Bei den Drehfeldmaschinen gibt es zwei verschiedene Aufbauarten: Asynchron- und Synchronmaschine.

Asynchronmotor

Ein Asynchronmotor hat einen Kurzschlussläufer. Bei einem Kurzschlussläufer werden die Leiter, wie der Name erraten lässt, im Rotor kurzgeschlossen. Wenn der Rotor dem elektrischen Feld des Stators ausgesetzt wird, bekommen die kurzgeschlossenen Leiter eine Spannung, die einen Stromfluss verursachen. Im Rotor befindet sich jetzt ebenfalls ein eigenes Magnetfeld. Nun wirken die Magnetfelder entgegen und somit verursachen die Kräfte eine Drehbewegung.

Anwendungsbereiche:

- Pumpen
- Kompressoren
- Ventilatoren

Synchronmotor

Anwendungsbereiche:

- Roboter
- CNC-Anwendungen
- Positionierantriebe

2.6.3 Motorauswahl

Die Tabelle gibt einen Überblick, in welchen Bereich man seinen gesuchten Motor finden kann. Um weiter den gewünschten Motor auswählen zu können, benötigt man die Daten, was überhaupt bewegt werden soll und wie.

Festlegung des Motors

Aufgrund der oben angeführten Tabelle, ging der Fokus auf den Bereich der Asynchronmotoren. Man kann sie sehr oft am Markt in verschiedensten Ausführungen finden. Dadurch ist auch ein sehr gutes Preis/Leistung-Verhältnis gegeben.

Folgende Auflistung zeigt noch einmal die konkreten Vor- und Nachteile von einem Asynchronmotor:

Vorteile:

- Günstig
- Hohe Standardisierung
- Robust und Wartungsarm

Nachteile:

• Etwas schwieriger zu Regeln

Abbildung 2.5: Tabelle Übersicht Elektromotor

Antriebssystem (Motor und Regelgerät)	Permanent erregter Gleichstrommotor	Permanent erregter Synchronmotor	Standardisierter Asynchronmotor	Geschaltener Reluktanzmotor
Leistungsbereich	1 W bis 1 kW	1 W bis 10 kW	1.5 kW bis 630 kW	10 W bis 300 kW
Preis Motor	teuer	teuer	günstig	günstig
Preis Elektronik	günstig bis mittel	mittel bis teuer	günstig bis mittel	mittel
Robustheit	mittel	gut	sehr gut	sehr gut
Regelgüte	sehr gut	gut	mittel bis gut	gut
Standardisierung	gering	gering	hoch	keine
Wirkungsgrad	schlecht bis gut	mittel bis sehr gut	schlecht bis gut	mittel bis gut

Motoranforderungen

Der Laufradius der Pferdeführanlage beträgt 9,5 Meter. Bei diesem Radius kann man die Pferde nicht galoppieren lassen. Für eine geeignete Geschwindigkeit wurde ein realistischer Wert gefunden. Unsere Konstruktion dreht sich, wie bereits im Kapitel ?.?.? erwähnt, mit nur 5,3 min⁻¹.

Vom Konstrukteur der Anlage bekomme ich zusätzlich folgende Angaben, die der Antrieb erfüllen soll:

- Beschleunigung $\alpha = 0.0947 \text{ 1/s}^2$
- Geschwindigkeit ω = 0,5 1/s

Durch diese Angaben lässt sich ein geeigneter Motor unter folgender Berechnung finden:

 $M_A = Drehmoment der Anlage$

 $P_A = Leistung \ der \ Anlage$

 $M_M = Drehmoment des Motors$

 $P_M = Leistung des Motors$

 $\eta_{GM} = Wirkungsgrad \ von \ Motor \ und \ \ddot{U}bersetzung = 0.81$

$$M_A = I * \alpha = 30273, 53kgm^2 * 0,0947 \frac{1}{s^2} = 2866,9Nm$$
 (2.2)

$$P_A = M_A * \omega = 2866, 9Nm * 0, 5\frac{1}{s} = 1433, 45W$$
 (2.3)

Beide Formeln welche oberhalb verwendet wurden, sind grundlegende Formeln in der Mechanik. Daraus konnte das benötigte Drehmoment und die benötigte Leistung der Anlage berechnet werden. Systeme haben in der Realität aber Verluste. Diese werden mit dem Wirkungsgrad festgelegt. Wenn man diesen vernachlässigt, könnte der gesuchte Antrieb überfordert sein und dadurch die Anlage nicht bewegen. Dadurch muss man folgende Rechnung durchführen:

$$\eta_{GM} = \frac{P_A}{P_M} \to P_M = \frac{P_A}{\eta_{GM}} = \frac{1433,45W}{0,81} = 1769,69W$$
(2.4)

Nun musste ein Asynchronmotor mit einer Leistung von mindestens 1770 Watt gefunden werden.

Bei der Suche nach einen geeigneten Motor kamen folgende 2 in die engere Auswahl: Zusammengefasst muss der Motor folgendes Erfüllen:

• Drehmoment: ???? Nm

• Leistung: ???? W

• Drehzahl: max. 5,5min⁻¹

Auswahlverfahren

Aufgrund der Anforderungen fiel die Entscheidung auf die Asynchronmotoren. Da die Anlage mit sehr geringer Drehzahl fährt, besteht die Möglichkeit ein externes Getriebe oder direkt auf einen Getriebemotor zurückzugreifen. Am Häufigsten findet man bei uns eine 230V Steckdose. Drehstromsteckdosen sind meist nur an den Orten platziert, wo sie von Anfang an benötigt werden. Um den Besitzer keine Umbauarbeiten aufzulegen liegt das Visier bei einen 230V Getriebemotor.

Getriebemotor

Ein Getriebemotor hat besteht aus einem Motor und einem Getriebe, welche direkt in einer gemeinsamen Einheit miteinander verbunden sind. Das Getriebe soll sowohl Drehzahl als auch Drehmoment des Motors verwandeln. Diese Wandlung kann mittels Drehzahlverhältnis ermittelt werden. Bei Getriebemotoren muss man das Drehmoment von Motor und Getriebe beachten. Primär gilt die Last die auf das Getriebe wirkt. Wie auch bei allen anderen Motoren gibt es auch bei den Getriebemotoren viele weitere Modelle. Zum Beispiel Servo-Getriebemotore und Verstellbare-Getriebemotore.

2.6.4 Frequenzumrichter

2.7 Wasserversorgung

2.8 Geschwindigkeitsmessung

2.9 Kommunikationsschnittstelle

2.10 Sicherheit der Pferde und Anlage

2.10.1 Allgemeine Sicherheitsfragen

Um die Anlage bei Tieren aktivieren zu können, muss man auch eine Basissicherheit gewährleisten. Diesen Bereich darf man nicht vernachlässigen.

In Folgenden Abschnitt kann in manchen Fällen nicht zwischen Besitzer oder Eigentümer Rücksicht genommen werden , da es beide Fälle in der Praxis geben kann. Deshalb bleibt primär der Eigentümer für die Wartungen und den Anlagenschutz haftbar. Sollte der Eigentümer die Anlage in der Regel nicht verwenden, kann er die jeweiligen Wartungs—und Sicherheitsaufgaben auf den Besitzer übertragen. Dieses muss aber in schriftlicher Form erfolgen. In diesen Fall muss der Besitzer im nachfolgenden Kontext die Aufgaben des Eigentümers erfüllen.

Bei unserer Pferdeführanlage können folgende Fehler bewusst auftreten:

- Was passiert, wenn ein Pferd hinfällt?
- Was passiert wenn ein Pferd stur stehen bleibt?
- Was passiert wenn das Pferd die Anlage anschieben will (schneller ist)?
- Was passiert wenn die Anlage nicht arbeitet wie gewünscht?
- Welche Vorkehrungen gibt es im Bereich Blitzschutz?

2.10.2 Tierschutzgesetz und Anlagenschutz

Gemäß §5 Abs. 1 Tierschutzgesetz ist es verboten, einem Tier ungerechtfertigt Schmerzen, Leiden oder Schäden zuzufügen oder es in schwere Angst zu versetzten. Unter §5 Abs. 2 Satz 3 lit. b wird nochmals extra darauf hingewiesen, dass keine technischen Geräte verwendet werden, welche das Verhalten eines Tieres durch Härte oder durch Strafreize zu beeinflussen.

Somit darf man dem Ross mit unserer Anlage, keine kleinen Denkimpulse geben, wenn es stur stehen bleibt. Wenn das Reitvieh stehen bleibt, darf ihm und der Anlage selbst nichts passieren. Die einfachste und sicherste Lösung ist, die Anlage zu stoppen. Wenn die Anlage weiter fahren möchte, könnten ungewollte Momente auftreten und somit mechanische Schäden in der Anlage verursachen.

Folgende Vorkehrungen wurden auf der elektrischen Seite zum beidseitigem Schutz getroffen:

Sobald die Auswertung des Sensors merkt, dass die Anlage unfreiwillig stehen bleibt, schaltet die Anlage automatisch ab. Daraufhin muss der jeweilige Eigentümer überprüfen, ob es ein technischer Fehler oder ein Problem beim Pferd vorliegt, bevor er diese wieder in Betrieb nimmt Die Gitter, hinter beziehungsweise vor dem Pferd, werden zum Schutz des Tieres nicht elektrisch verbunden. Welcher Zaun neben den Gitter gebaut wird, bleibt dem Eigentümer selbst überlassen.

Sollte man einen Elektrozaun beziehungsweise doch Strom durch die Gitter schicken, werden die Pferde in der Anfangsphase leicht gestresst sein. Sobald sie sich daran gewöhnt haben, funktioniert er wie ein normaler Zaun und die Pferde wissen, dass sie diesen nicht berühren sollten. Bei den Gittern mit Strom würden die Pferde sogar mehr geschützt werden, wenn sie mit Strom durchflossen werden. Grund dafür ist, dass sich die Pferde an den Stangen Verletzungen zu ziehen könnten, als mit kurzen Stromimpulsen. In Österreich ist dies aber nicht gesetzeskonform.

2.10.3 Blitzschutz

Da unsere Pferdeführanlage im Freien steht, darf man auch den Fall eines Blitzeinschlags nicht vernachlässigen. Die Durchschnittsanzahl von Blitzen in Österreich wird mit zirka 5 Blitze pro 1km² in einem Jahr geschätzt. Die Anlage darf nicht in Betrieb genommen werden, wenn der Betreiber bemerkt, dass es in wenigen Minuten ein Gewitter geben könnte. Sollte die Anlage während eines Gewitters in Betrieb genommen werden, gibt es ein erhöhtes Risiko für die Pferde und der Anlage selbst. Die Haftung liegt in diesem Fall bei der Person, die die Anlage in dieser Zeit in Betrieb nimmt.

2.10.4 Winterschutz

Die Zeit, in der Winterschutz unserer Pferdeführanlage in Kraft tritt, ist die gleiche wie die Winterreifenpflicht in Österreich. Das heißt vom 1. November bis 15. April muss die Anlage winterfest gemacht sein.

In folgenden Bereichen muss ein Winterschutz vorgenommen werden:

Boden: Den Untergrund wo sich die Pferde bewegen muss der Eigentümer selbst wählen. Bei Temperaturen unter 6°C darf der Sprühregen nicht mehr aktiviert werden. Nachdem das Wasser gefroren ist kann das Reitvieh am glatten Boden ausrutschen und gleichzeitig könnte es zu Komplikationen der Pferdeführanlage selbst kommen. Hierfür ist die jeweilige Person haftbar, die das Drehsystem in Betrieb genommen hat.

Wasserrohre: Um ein langes Leben der Wasserrohre gewährleisten zu können, muss der jeweilige Eigentümer vor den jährlich wiederkommenden Kälteperioden das Wasser aus den Rohren entfernen. Eine der gängigsten Methoden ist es, das Wasser in den Wasserleitungen durch ein kleines Entwässerungsventil zu entleeren. Das elektromagnetische Ventil muss manuell geöffnet werden, damit das Wasser zu rinnen beginnt. Wäre das Ventil geschlossen, könnte das Wasser nicht fließen, da ein Unterdruck in der Leitung erzeugt werden würde. Mittels Druckluft kann auch das restliche Wasser ausgeblasen werden. Somit sind die Wasserrohre für den Winter gerüstet.

2.10.5 Redundanz

Im Bereich Sicherheit von Anlagen, kann man häufig den Begriff Redundanz aufschnappen.

Redundanz (lat. = Überfluss) ist das Vorhandensein zusätzlicher technischer Komponenten, die für den Betrieb eines Systems oder Gerätes nicht nötig sind, solange keine Störung bzw. kein Ausfall vorliegt. 1

Sollte die Pferdeführanlage vermarktet werden, sollte man die Anlage erweitern. Diese Erweiterung betrifft vor allem die Sicherheit der Pferde.

Das Bild zeigt eine Möglichkeit die Redundanz zu realisieren.

Gedanke dabei ist, wenn ein Drehgeber defekt ist, kann auch noch der zweite Inkrementalgeber ein Signal liefern, um zumindest einen Durchlaufzyklus beenden zu können.

¹http://www.secupedia.info/wiki/Redundanz