Modelowanie zmienności Warszawskiego Indeksu Giełdowego przy wykorzystaniu metod GARCH Na podstawie Volatility Forecasting in the Hang Seng Index using the GARCH Approach

Bartłomiej Kuźma, Maciej Odziemczyk

WNE UW

Agenda

- Wstęp, cele, hipotezy
- Metodologia
- Oane i ich analiza
- Wyniki
- Wnioski i podsumowanie

Wstęp, cele, hipotezy

Celem pracy było sprawdzenie zdolności predykcyjnej modeli z rodziny GARCH w porównaniu z modelami uśredniającymi (zmienność) hipoteza badawcza:

 $metric_{GARCH-N} > metric_{GARCH-T}$ jeżeli $Skew \approx 0$,

 $metric_{GARCH-N} > metric_{GARCH-T} > metric_{GARCH-ST}$ jeżeli $Skew \not\approx 0$

gdzie:

metric - metryka błędu predykcji (im niższa tym lepszy model),

GARCH - N model GARCH z założeniem o normalnym rozkładzie błędu losowego,

GARCH-T model GARCH z założeniem o rozkładzie t-studenta dla błędu losowego,

GARCH-ST model GARCH z założeniem o skośnym rozkładzie t-studenta dla błędu losowego,

Skew to skośność rozkładu stóp zwrotu.

Metodologia I

Zwykły model GARCH(1,1):

$$r_t = \mu + \varepsilon_t, \quad \varepsilon_t \sim N(0, h_t)$$

 $h_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}^2$

Exponential-GARCH(1,1) (E-GARCH):

$$\ln h_t^2 = \omega + \beta \ln h_{t-j}^2 + \alpha \left| \frac{\varepsilon_{t-1}}{\sqrt{h_{t-1}^2}} \right| + \gamma \frac{\varepsilon_{t-1}}{\sqrt{h_{t-1}^2}}$$

Threshold-GARCH(1,1) (T-GARCH):

$$\begin{split} h_t^2 &= \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}^2 + \gamma \varepsilon_{t-1}^2 I_{t-1} \\ I_{t-1} &= \begin{cases} 1 & \text{dla} & \varepsilon_{t-1} < 0 \\ 0 & \text{w p.p.} \end{cases} \end{split}$$

Metodologia II

Component-GARCH(1,1) (C-GARCH):

W odróżnieniu od powyższych modeli GARCH, model C-GARCH rozróżnia długo- i krótko-okresowość zjawiska mean-reversion (m_t to próg)

$$h_t^2 - m_t = \bar{\omega} + \alpha(\varepsilon_{t-1}^2 - \bar{\omega}) + \beta(h_{t-1}^2 - \bar{\omega}) m_t = \omega + \rho(m_{t-1} - \omega) + \phi(\varepsilon_{t-1}^2 - h_{t-1}^2)$$

Błądzenie Losowe:

$$h_t^2 = h_{t-1}^2$$

Średnia Historyczna:

$$h_t^2 = \frac{1}{t-1} \sum_{i=1}^{t-1} h_i^2$$

Metodologia III

Średnia Ruchoma:

$$h_t^2 = \frac{1}{\tau} \sum_{i=t-\tau}^{t-1} h_i^2$$

Średni błąd (Mean Error, ME):

$$ME = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} (h_t^2 - s_t^2)$$

Średni błąd bezwzględny (Mean Absolute Error, MAE):

$$MAE = rac{1}{ au} \sum_{t=T+1}^{T+ au} |h_t^2 - s_t^2|$$

Metodologia IV

Błąd średnio kwadratowy (Root Mean Square Error, RMSE):

$$\textit{RMSE} = \sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} (h_t^2 - s_t^2)^2}$$

Dopasowany średni procentowy błąd bezwzględny (Adjusted Mean Absolute Percentage Error, AMAPE):

$$\textit{AMAPE} = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} \left| \frac{\left(h_t^2 - s_t^2\right)}{\left(h_t^2 + s_t^2\right)} \right|$$

Współczynnik nierówności Theila (Theil Income Coefficient, TIC):

$$TIC = \frac{\sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} (h_t^2 - s_t^2)^2}}{\sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} h_t^4} + \sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} s_t^4}}$$

Metodologia V

Średni błąd asymetryczny (niedoszacowania) (MME(U)):

$$MME(U) = \frac{1}{\tau} \left[\sum_{i=1}^{O} |(h_t^2 - s_t^2)| + \sum_{i=1}^{U} \sqrt{|h_t^2 + s_t^2|} \right]$$

Średni błąd asymetryczny (przeszacowania) (MME(O)):

$$MME(O) = \frac{1}{\tau} \left[\sum_{i=1}^{O} \sqrt{|(h_t^2 - s_t^2)|} + \sum_{i=1}^{U} |h_t^2 + s_t^2| \right]$$

DCP:

% correct direction change predictions (DCP) $=\frac{1}{\tau}\sum_{t=T+1}^{I+\tau}z_{t+1}$

$$z_{t+1} = egin{cases} 1 & ext{jeżeli} & (s_{t+1}^2 - s_t^2)(h_{t+1}^2 - s_t^2) > 0 \ 0 & ext{w p.p.} \end{cases}$$

Metodologia VI

DCPU:

$$DCPU = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} z_{t+1},$$

$$z_{t+1} = egin{cases} 1 & ext{jeżeli} & (s_{t+1}^2 - s_t^2)(h_{t+1}^2 - s_t^2) > 0, & s_t^2 > T \ 0 & ext{w p.p.} \end{cases}$$

- metryki liczone były dla okresu OOS,
- prognozy robione były na jeden okres do przodu (szacowanie modeli co krok).

Dane i ich analiza I

Logarytmincze stopy zwrotu z indeksu WIG:

- 2010-2019 (in sample), 2020 (out of sample),
- częstotliwość dzienna i tygodniowa,
- źródło: https://stooq.pl.

Rysunek: log-stopy zwrotu WIG

Dane i ich analiza II

Rysunek: Wykresy ACF dla proxy zmienności zrealizowanej log-stóp zwrotu z WIG

- (a) dzienne (kwadrat log-stóp zwrotu) (b) tygodniowe (wariancja danych o wyższej częstotliwości)

Źródło: Opracowanie własne.

Dane i ich analiza III

Tablica: Statystyki rozkładów log-stóp zwrotu

	dzienne	tygodniowe
N	2748	574
Średnia	0.000129	0.000595
Mediana	0.000396	0.002114
Odchylenie standardowe	0.010937	0.025013
Skośność	-1.1712	-2.2507
Kurtoza	12.4303	18.9578

Źródło: Opracowanie własne.

Testy ARCH i Jarque-Bera odrzucają H0 dla obu wariantów częstotliowści (homoskedastyczność i normalność rozkładu).

Wyniki I

Tablica 2: Błędy prognozy, dane tygodniowe

model	ME		MAE		RMSE		AMAPE		TIC	
Random walk	-0.0000000*	0.00	0.000245	1.33	0.000668	1.15	0.476530	1.09	0.551043*	0.65
Historical ave.	-0.000143	1.00	0.000184*	1.00	0.000583*	1.00	0.436195**	1.00	0.850964	1.00
MA—1year	-0.000056**	0.39	0.000207***	1.12	0.000585***	1.00	0.457780***	1.05	0.747517	0.88
MA—3year	-0.000128***	0.89	0.000186**	1.01	0.000584**	1.00	0.434961*	1.00	0.831373	0.98
GARCH-N	0.001024	-7.16	0.001173	6.36	0.001968	3.37	0.754718	1.73	0.738220	0.87
GARCH-T	0.001247	-8.72	0.001343	7.29	0.001901	3.26	0.780532	1.79	0.716255	0.84
GARCH-G	0.001104	-7.72	0.001255	6.81	0.001902	3.26	0.771298	1.77	0.732034	0.86
GARCH-ST	0.001388	-9.71	0.001480	8.03	0.002065	3.54	0.790393	1.81	0.731506	0.86
EGARCH-N	0.000746	-5.22	0.000870	4.72	0.001785	3.06	0.700629	1.61	0.716094	0.84
EGARCH-T	0.000837	-5.85	0.000940	5.10	0.001371	2.35	0.751132	1.72	0.649630	0.76
EGARCH-G	0.000828	-5.79	0.000939	5.10	0.001579	2.71	0.736675	1.69	0.684270	0.80
EGARCH-ST	0.000942	-6.59	0.001042	5.65	0.001470	2.52	0.767838	1.76	0.663185	0.78
TGARCH-N	0.000850	-5.94	0.000958	5.20	0.001890	3.24	0.718342	1.65	0.720454	0.85
TGARCH-T	0.000775	-5.42	0.000885	4.80	0.001213	2.08	0.748120	1.72	0.627071**	0.74
TGARCH-G	0.000781	-5.46	0.000890	4.83	0.001404	2.41	0.734760	1.68	0.658633	0.77
TGARCH-ST	0.000839	-5.86	0.000948	5.15	0.001254	2.15	0.761043	1.74	0.634342***	0.75
CGARCH-N	0.001044	-7.30	0.001166	6.33	0.001927	3.30	0.754246	1.73	0.728049	0.86
CGARCH-T	0.001236	-8.64	0.001333	7.23	0.001868	3.20	0.779943	1.79	0.713124	0.84
CGARCH-G	0.001163	-8.13	0.001271	6.90	0.001883	3.23	0.770886	1.77	0.718181	0.84
CGARCH-ST	0.001341	-9.38	0.001436	7.79	0.001994	3.42	0.787025	1.80	0.725426	0.85

Wyniki II

Tablica 3: Błędy prognozy, dane dzienne

model	ME		MAE		RMSE		AMAPE		TIC	
Random walk	-0.000001*	0.00	0.000530	1.53	0.001645	1.25	0.667039	1.14	0.613278*	0.68
Historical ave.	-0.000248	1.00	0.000347	1.00	0.001317	1.00	0.583329	1.00	0.905538	1.00
MA—1year	-0.000101	0.41	0.000415	1.20	0.001313	1.00	0.628684	1.08	0.811254	0.90
MA—3year	-0.000225	0.90	0.000356	1.03	0.001316	1.00	0.593164	1.02	0.888582	0.98
GARCH-N	-0.000079***	0.32	0.000381	1.10	0.001259	0.96	0.578332	0.99	0.700110**	0.77
GARCH-T	-0.000082	0.33	0.000379	1.09	0.001256	0.95	0.577685	0.99	0.701183***	0.77
GARCH-G	-0.000085	0.34	0.000378	1.09	0.001257	0.95	0.576741	0.99	0.702682	0.78
GARCH-ST	-0.000081	0.33	0.000379	1.09	0.001256	0.95	0.577979	0.99	0.701471	0.77
EGARCH-N	-0.000143	0.57	0.000346	1.00	0.001239	0.94	0.560509	0.96	0.732538	0.81
EGARCH-T	-0.000142	0.57	0.000345**	0.99	0.001236	0.94	0.560237	0.96	0.729620	0.81
EGARCH-G	-0.000145	0.58	0.000344*	0.99	0.001237	0.94	0.559314***	0.96	0.732583	0.81
EGARCH-ST	-0.000141	0.57	0.000346***	1.00	0.001236	0.94	0.560633	0.96	0.730869	0.81
TGARCH-N	-0.000132	0.53	0.000350	1.01	0.001236	0.94	0.559253**	0.96	0.712847	0.79
TGARCH-T	-0.000129	0.52	0.000351	1.01	0.001233*	0.94	0.559439	0.96	0.709366	0.78
TGARCH-G	-0.000134	0.54	0.000349	1.01	0.001234**	0.94	0.558409*	0.96	0.712189	0.79
TGARCH-ST	-0.000129	0.52	0.000351	1.01	0.001234***	0.94	0.559721	0.96	0.711877	0.79
CGARCH-N	-0.000079	0.32	0.000385	1.11	0.001259	0.96	0.579690	0.99	0.701555	0.77
CGARCH-T	-0.000080	0.32	0.000380	1.09	0.001255	0.95	0.579984	0.99	0.702123	0.78
CGARCH-G	-0.000084	0.34	0.000378	1.09	0.001256	0.95	0.578373	0.99	0.702627	0.78
CGARCH-ST	-0.000079**	0.32	0.000380	1.10	0.001255	0.95	0.580986	1.00	0.702320	0.78

Wyniki III

Tablica 4: Asymetryczne błędy prognozy

		Dane tygodniowe			->	Dane dzienne		
model	MME(U)		MME(O)		MME(U)		MME(O)	
Random walk	0.0058	0.81	0.0060***	1.93	0.0084	1.03	0.0083	1.47
Historical ave.	0.0072	1.00	0.0031*	1.00	0.0081	1.00	0.0057*	1.00
MA—1year	0.0048	0.68	0.0067	2.17	0.0065	0.81	0.0105	1.85
MA—3year	0.0065	0.91	0.0039**	1.27	0.0077	0.96	0.0066**	1.17
GARCH-N	0.0026	0.36	0.0283	9.11	0.0062***	0.76	0.0093	1.64
GARCH-T	0.0023	0.31	0.0320	10.29	0.0062	0.77	0.0093	1.63
GARCH-G	0.0027	0.37	0.0299	9.61	0.0062	0.77	0.0092	1.62
GARCH-ST	0.0024	0.33	0.0336	10.83	0.0062	0.77	0.0093	1.64
EGARCH-N	0.0019	0.26	0.0241	7.76	0.0066	0.82	0.0077	1.36
EGARCH-T	0.0019***	0.26	0.0271	8.72	0.0066	0.82	0.0077	1.36
EGARCH-G	0.0019	0.27	0.0263	8.45	0.0066	0.82	0.0076***	1.34
EGARCH-ST	0.0020	0.27	0.0287	9.24	0.0066	0.81	0.0077	1.37
TGARCH-N	0.0019	0.27	0.0256	8.23	0.0066	0.82	0.0077	1.36
TGARCH-T	0.0019*	0.26	0.0266	8.56	0.0066	0.82	0.0078	1.37
TGARCH-G	0.0019**	0.26	0.0259	8.34	0.0066	0.82	0.0076	1.35
TGARCH-ST	0.0019	0.27	0.0277	8.92	0.0066	0.81	0.0078	1.38
CGARCH-N	0.0022	0.31	0.0288	9.27	0.0062	0.77	0.0094	1.66
CGARCH-T	0.0022	0.31	0.0319	10.27	0.0061**	0.76	0.0094	1.66
CGARCH-G	0.0022	0.31	0.0307	9.90	0.0062	0.77	0.0092	1.63
CGARCH-ST	0.0023	0.33	0.0331	10.67	0.0061*	0.76	0.0095	1.67

Wyniki IV

Tablica 5: Finansowe funkcje straty

	Dane tygodniowe			Dane dzienne		
model	DCP		DCP		DCPU	
Random walk	0.000	0.00	0.000	0.00	0.000	0.00
Historical ave.	0.725	1.00	0.697	1.00	0.847	1.00
MA—1year	0.686	0.95	0.665	0.95	0.750	0.89
MA—3year	0.647	0.89	0.665	0.95	0.750	0.89
GARCH-N	0.451	0.62	0.701	1.01	0.792	0.93
GARCH-T	0.471	0.65	0.701	1.01	0.792	0.93
GARCH-G	0.451	0.62	0.697	1.00	0.792	0.93
GARCH-ST	0.471	0.65	0.701	1.01	0.792	0.93
EGARCH-N	0.471	0.65	0.705	1.01	0.778	0.92
EGARCH-T	0.471	0.65	0.709	1.02	0.792	0.93
EGARCH-G	0.471	0.65	0.705	1.01	0.778	0.92
EGARCH-ST	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-N	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-T	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-G	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-ST	0.471	0.65	0.709	1.02	0.778	0.92
CGARCH-N	0.471	0.65	0.697	1.00	0.778	0.92
CGARCH-T	0.471	0.65	0.697	1.00	0.792	0.93
CGARCH-G	0.471	0.65	0.701	1.01	0.792	0.93
CGARCH-ST	0.471	0.65	0.689	0.99	0.792	0.93

Wnioski i podsumowanie

- Modele z rodziny GARCH wydają się być skuteczniejsze dla danych o wysokiej częstotliwości,
- przy niższej częstotliwości modele z rodziny GARCH wydają się być "niedotrenowane",
- większa częstotliwość wygładza wyniki do tego stopnia, że różnice między zastosowanymi rozkładami, a nawet typami modeli GARCH nie są widoczne,
- brak najlepszego modelu,
- brak podstaw do przyjęcia hipotezy badawczej.

Dziękujemy za uwagę.