

Analyse et Programmation avec Python

Janvier 2020

Enseignant: Jaafar Chaaouri

Email: <u>Jaafar.chaaouri@fsm.rnu.tn</u>

→ TP1: NumPy/Matplotlib

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
```

▼ 1. Manipulations simples avec Numpy

```
A = np.arange(15).reshape(3, 5)
print(A)
```


▼ 1.1 Retournez la sous-matrice [[6, 7], [11, 12]]

```
# votre réponse
```

Étudiez la fonction np.sum. On va s'intéresser à l'argument axis= qui joue un rôle important pour la manipulation des tableau.

▼ 1.2 Afficher la somme des lignes de A

(un vecteur de 5 éléments)

votre réponse

▼ 1.3 Afficher la somme des colonnes de A

(un vecteur de 3 éléments)

- # votre réponse
- ▼ 1.4 Afficher la somme de tous les éléments de A

(un nombre)

- # votre réponse
- ▼ 1.5 Extraire tous les nombre impairs de A

```
Résultat recherché: array([ 1, 3, 5, 7, 9, 11, 13])
```

votre réponse

▼ 1.6 Remplacer tous les éléments impairs de A par -1 sans modifier A :

sortie attendue:

```
[[ 0 -1 2 -1 4]
[-1 6 -1 8 -1]
[10 -1 12 -1 14]]
```

votre réponse

- 2. Numpy: quelques manipulations avec des jeux de données
- ▼ 2.1 Un jeu de données artificielles

Dans le répertoire data/ se trouvant à la racine de ce dépot il y a le fichier kms-dataset2d-X.csv

votre réponse

▼ 2.1.1 À l'aide de la fonction <u>loadtxt</u>, charger le fichier dans la variable data de type tableau de NumPy.

votre réponse

2.1.2 Afficher sa forme (nombre de lignes, nombre de colonnes), puis la somme des éléments de la première colonne.

votre réponse

▼ 2.2 Le jeu de données iris

Le jeu de données iris (https://en.wikipedia.org/wiki/Iris_flower_data_set) décrit un échantillon de 150 fleurs de différentes espèces d'iris par 4 attributs mesurés en cm : petal length, petal width, sepal length, sepal width, la dernière colonne étant le nom de l'espèce.

Le fichier iris.csv se trouve dans le répertoire data de ce dépôt.

▼ 2.2.1 Charger les données du fichier iris.csv dans un tableau NumPy et l'affecter à la variable iris.

Que se passe-t-il si l'on ne précise pas l'argument delimiter= ? Comprendre ce qui se passe. Indiquer le bon délimiteur. Essayer de résoudre les problèmes de lectures de ce fichier.

votre réponse

▼ 2.2.2 Afficher les noms des différentes espèces d'Iris dans ce jeu de données (dernière colonne)

votre réponse

2.2.3 Trouver un moyen de ne garder que les valeurs numériques concernant l'Iris Setosa :

Obtenir un tableau avec des 4 premières dimensions des lignes correspondant à l'Iris Setosa seulement.

votre réponse

▼ 2.2.4 Calculer la moyenne, la médiane et l'écart-type de chacune des dimensions.

Nous verrons comment Pandas permet de manipuler des tableaux avec des données de types différents.

→ 3. Matplotlib

3.1 Afficher le nuage de points correspondant aux deux premières dimensions du jeu de données Iris (petal length et petal width) pour l'iris Setosa

```
# votre réponse
```

3.2 Afficher sur le même graphique les nuages de points correspondant aux deux autres esp`ces, pour les même dimensions.

Ajouter les légendes des axes et des couleurs pour les trois espèces.

```
# votre réponse
```

▼ 3.2 Demo avec pandas et seaborn

```
(ce n'est pas un exercice)
```

```
import pandas as pd
import seaborn as sns
iris2 = sns.load_dataset('iris')
```

iris2.head()

8		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

sns.pairplot(data=iris2 ,kind='scatter', hue='species')

