Lecture #6 NMR in Hilbert Space

Topics

- Review of spin operators
- Single spin in a magnetic field: longitudinal and transverse magnetization
- Ensemble of spins in a magnetic field
- RF excitation

Handouts and Reading assignments

- van de Ven, section 1.10, Appendices B.1 and C.
- F. Bloch, W. Hansen, and M. Packard, Nuclear Induction. *Phys. Rev.*, 69: 127, 1946
- E. M. Purcell, H. C. Torrey and and R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. *Phys. Rev.*, 69: 37, 1946.
- Miller, Chapter 12: pp 297-310 (optional).

Isolated Spin in a Magnetic Field

• Goal: Find the appropriate wavefunction $|\psi(t)\rangle$ that describes a system consisting of a nucleus (spin = 1/2) in a uniform magnetic field.

• Procedure:

- Given: Schrödinger's Equation: $\frac{\partial}{\partial t} |\psi(t)\rangle = -i\hat{H}(t)|\psi(t)\rangle$
- Find $\hat{H}(t)$.
- Solve for $|\psi\rangle$.
- Compute quantities of interest: e.g. components of magnetic moment $\langle \hat{\mu}_x \rangle$, $\langle \hat{\mu}_y \rangle$, and $\langle \hat{\mu}_z \rangle$.

Later we'll show these correspond to the familiar quantities M_x , M_y , and M_z .

Review: Spin, Angular Momentum, and Magnetic Moment

• Spin, angular momentum, and magnetic moment operators are linearly related.

• Matrix representation in $\{|\alpha\rangle, |\beta\rangle\}$ basis:

$$\underline{I}_{x,} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\underline{I}_{y,} = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\underline{I}_{z,} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Spin Operators

• General case (based on properties of angular momentum):

$$\begin{bmatrix} \hat{I}_x, \hat{I}_y \end{bmatrix} = i\hat{I}_z \qquad \begin{bmatrix} \hat{I}_y, \hat{I}_z \end{bmatrix} = i\hat{I}_x \qquad \begin{bmatrix} \hat{I}_z, \hat{I}_x \end{bmatrix} = i\hat{I}_y$$

from which it follows that \hat{I}_x , \hat{I}_y , and \hat{I}_z commute cyclically:

$$\left(\hat{\hat{I}}_{p}\right)^{n} \hat{I}_{q} = \begin{cases} \left[\hat{I}_{p}, \hat{I}_{q}\right], & n \text{ odd} \\ \hat{I}_{q}, & n \text{ even} \end{cases} \quad p, q = x, y, z; \quad p \neq q$$
superoperation notation

• Let's also define a new operator \hat{I}^2 corresponding to the total angular momentum (magnitude).

$$\hat{I}^2 = \hat{I}_x \hat{I}_x + \hat{I}_y \hat{I}_y + \hat{I}_z \hat{I}_z$$

which is easily shown to satisfy

$$\left[\hat{I}^2, \hat{I}_x\right] = \left[\hat{I}^2, \hat{I}_y\right] = \left[\hat{I}^2, \hat{I}_z\right] = 0$$

Spin Operators

• From the commutator relations, one can derive the corresponding eigenkets and eignevalues of \hat{I}^2 and \hat{I}_z (note, since operators commute, they have a common set of eigenkets).

Spectrum of $\hat{I}^2 = I(I+1)$ for I integer multiple of 1/2

Spectrum of
$$\hat{I}_z = m$$
 for $m = -I, -I + 1, ..., I - 1, I$

- \implies I is known as the spin quantum number.
- \implies m is known as the magnetic quantum number.
- Hence, spin/angular momentum/magnetic moment of elementary particles (e.g. electrons, protons, etc) are quantized in magnitude and along a projection onto any one axis.
- Formally, eigenkets of \hat{I}_z are written as: $|I,m\rangle$ where for $I=\frac{1}{2}: |\alpha\rangle = \left|\frac{1}{2}, +\frac{1}{2}\right\rangle = \left|+\right\rangle$ and $|\beta\rangle = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle = \left|-\right\rangle$.

Space quantization

- In a magnetic field $\vec{B} = B_0 \hat{z}$, magnetic moment is quantized in z (remember Stern-Gerlach experiment).
- Pictorial drawings for spin 1/2 nuclei (e.g. ¹H, ³¹P, ¹³C)

Picture 1: "cones" (used by de Graaf)

angle between spin and magnetic field

$$\theta = \cos^{-1} \left(\frac{m}{\sqrt{I(I+1)}} \right)$$
discrete!

$$\theta = 54.7^{\circ}, I = \frac{1}{2}, m = \frac{1}{2}$$

$$\mu_{z} = \frac{1}{2} \gamma \hbar, |\vec{\mu}| = \frac{\sqrt{3}}{2} \gamma \hbar$$

"spin up, parallel" "spin down, anti-parallel"

$$\theta = 125.3^{\circ}, I = \frac{1}{2}, m = -\frac{1}{2}$$

$$\mu_z = -\frac{1}{2}\gamma\hbar, |\vec{\mu}| = \frac{\sqrt{3}}{2}\gamma\hbar$$

Picture 2: "polarization" (used by Levitt)

Arrow depicts the direction for which magnetic moment is well defined, i.e. = $\frac{1}{2} \gamma \hbar$ with probability 1.0

Note:
$$|\beta\rangle \neq -|\alpha\rangle$$

What's missing from these drawings?

If you were to measure I_x , I_y , and I_z for an individual spin, what would you get?

The Hamiltonian

- Total energy of the system is given by the expected value of $\hat{H}(t)$. $\mathcal{E} = \hbar \langle \hat{H} \rangle = \hbar \langle \psi | \hat{H} | \psi \rangle$ (remember, we defined \hat{H} as energy/ \hbar)
- Classically, the potential energy of a dipole in a magnetic field is: $\mathcal{E} = -\vec{\mu} \cdot \vec{B} = -\mu_z B_0 \quad \text{(assumes field is in z direction)}$
- Substituting the operator corresponding to μ_z , yields the quantum mechanical Hamiltonian operator.

$$\hat{H} = -\gamma B_o \hat{I}_z = -\omega_0 \hat{I}_z$$

• Thus, the spectrum of \hat{H} is discrete with eigenvalues $\pm \frac{1}{2}\omega_0$ and eigenkets $|\alpha\rangle$ and $|\beta\rangle$.

Solving Schrödinger's Equation

• $\hat{H} = -\gamma B_0 \hat{I}_z$, hence $\hat{H}(t)$ is time independent.

Schrödinger's Equation:
$$\frac{\partial}{\partial t} |\psi(t)\rangle = -i\hat{H} |\psi(t)\rangle$$

Solution:

$$|\psi(t)\rangle = e^{-it\hat{H}}|\psi(0)\rangle$$

$$|\psi(t)\rangle = \left(\hat{E} + \left(-it\hat{H}\right) + \frac{\left(-it\hat{H}\right)^{2}}{2!} + \frac{\left(-it\hat{H}\right)^{3}}{3!} + \cdots\right)|\psi(0)\rangle$$
The equation implies expanding $|\psi\rangle$ in terms of eigenfact

Above equation implies expanding $|\psi\rangle$ in terms of eigenkets of \hat{H} would be helpful. Most general solution then given by:

$$|\psi(t)\rangle = c_{\alpha}e^{i(\phi_{\alpha} + \gamma B)}$$

$$|\psi(t)\rangle = c_{\alpha}e^{i(\phi_{\alpha} + \gamma B_{o}t/2)}|\alpha\rangle + c_{\beta}e^{i(\phi_{\beta} - \gamma B_{o}t/2)}|\beta\rangle$$

 c_{α} , c_{β} , ϕ_{α} , and ϕ_{β} real constants where $c_{\alpha}^2 + c_{\beta}^2 = 1$.

Longitudinal Magnetization

- Wavefunction is $|\psi(t)\rangle = c_{\alpha}e^{i(\phi_{\alpha} + \gamma B_{o}t/2)}|\alpha\rangle + c_{\beta}e^{i(\phi_{\beta} \gamma B_{o}t/2)}|\beta\rangle$.
- Longitudinal magnetization

$$\begin{split} \left\langle \hat{\mu}_z \right\rangle &= \hbar \gamma \left\langle \psi \middle| \hat{I}_z \middle| \psi \right\rangle \\ &= \frac{\hbar \gamma}{2} \Big(c_\alpha^2 - c_\beta^2 \Big) \\ &= \frac{\hbar \gamma}{2} \Big(P_\alpha - P_\beta \Big) \quad \text{where } \begin{cases} P_\alpha \\ P_\beta \end{cases} \text{ probability finding the system in state } \begin{cases} |\alpha\rangle \\ |\beta\rangle \end{cases}. \end{split}$$

How do we find P_{α} and P_{β} ?

Boltzman Distribution

• Probability P_n of finding a system in a specific state $|n\rangle$ is dependent on the energy E_n as given by the Boltzmann distribution

Boltzmann
/ constant

$$P_n = \frac{1}{Z}e^{-E_n/kT}$$
 where
where
where
 $Z = \sum_{i=1}^{N} e^{-E_i/kT}$
where
 $Z = \sum_{i=1}^{N} e^{-E_i/kT}$
where
 $Z = \sum_{i=1}^{N} e^{-E_i/kT}$
sum over all possible energies

• NMR Energies $(E_n = \mp \hbar \omega_0/2)$ much smaller than kT. Thus

$$e^{-E_n/kT} \approx 1 - E_n/kT$$
 \leftarrow high temperature approximation

Hence
$$\langle \hat{\mu}_z \rangle = \frac{\hbar \gamma}{2} (P_{\alpha} - P_{\beta}) = \frac{\hbar \gamma}{2} (\frac{\hbar \omega_0}{2kT}) = \frac{\hbar^2 \gamma^2 B_0}{4kT}$$

factor of two from Z term (compare Lecture 2, slide 14)

Transverse Magnetization

• Some useful equations:

$$\hat{I}_{x}|\alpha\rangle = \frac{1}{2}|\beta\rangle \qquad \hat{I}_{y}|\alpha\rangle = \frac{i}{2}|\beta\rangle$$

$$\hat{I}_{x}|\beta\rangle = \frac{1}{2}|\alpha\rangle \qquad \hat{I}_{y}|\beta\rangle = -\frac{i}{2}|\alpha\rangle$$

 $= \hbar \gamma c_{\alpha} c_{\beta} \cos(\omega_0 t + \Delta \phi)$

• Letting $\Delta \phi = \phi_{\beta} - \phi_{\alpha}$, yields (after some algebra)

$$\langle \hat{\mu}_{x} \rangle = \hbar \gamma \langle \psi | \hat{I}_{x} | \psi \rangle = \frac{\hbar \gamma}{2} \left(c_{\alpha} c_{\beta} e^{-i(\omega_{0}t + \Delta\phi)} + c_{\beta} c_{\alpha} e^{+i(\omega_{0}t + \Delta\phi)} \right)$$

Similarly...

$$\left\langle \hat{\mu}_{y}\right\rangle = \hbar \gamma \left\langle \psi | \hat{I}_{y} | \psi \right\rangle = -\hbar \gamma c_{\alpha} c_{\beta} \sin(\omega_{0} t + \Delta \phi)$$

Larmor precession!

Aren't ϕ_{α} and ϕ_{β} arbitrary?

Ensemble of Identical Spins

• Consider an ensemble of N independent spins with ϕ_{α} and ϕ_{β} (and by extension $\Delta \phi$) randomly distributed.

average over ensemble
$$\frac{1}{\langle \hat{\mu}_x \rangle} = \overline{\langle \hat{\mu}_y \rangle} = 0$$

• Physical pictures for a collection of spins in states $|\alpha\rangle$ and $|\beta\rangle$:

$$\overline{\langle \hat{\mu}_z \rangle} = N \frac{\hbar^2 \gamma^2 B_0}{4kT}$$

$$\uparrow M_z = \frac{N}{V} \frac{\hbar^2 \gamma^2 B_0}{4kT} = \rho \frac{\hbar^2 \gamma^2 B_0}{4kT}$$
spins/volume

In order to get transverse magnetization, we need to establish some phase relationship (coherence) among spins.

RF excitation

• In the presence of a rotating magnetic field, the Hamiltonian is:

$$\hat{H}(t) = -\omega_0 \hat{I}_z - \omega_1 \left(\hat{I}_x \cos \omega t - \hat{I}_y \sin \omega t \right) \text{ where } \omega_1 = \gamma B_1.$$

• $\hat{H}(t)$ is periodic \implies change to rotating frame of reference.

$$|\psi'\rangle = e^{-i\omega t \hat{I}_z} |\psi\rangle$$
 and $\hat{H}' = e^{-i\omega t \hat{I}_z} \hat{H} e^{i\omega t \hat{I}_z} = e^{-i\omega t \hat{I}_z} \hat{H}$ (Change of basis)

Using Schrödinger's equation and the chain rule for differentiation:

$$\frac{\partial}{\partial t} |\psi'\rangle = -i\hat{H}_{eff} |\psi'\rangle \quad \text{where} \quad \hat{H}_{eff} = -(\omega_0 - \omega)\hat{I}_z - \omega_1\hat{I}_x$$

Time independent

Effective field in the rotating frame just like the classical case

• Assuming RF pulse is on resonance (i.e. $\omega = \omega_0$), $|\psi'(\tau)\rangle$ at the end of a constant pulse of length τ is:

$$|\psi'(\tau)\rangle = e^{-i\tau \hat{H}_{eff}} |\psi'(0)\rangle = c_{\alpha} e^{-i\phi_{\alpha}} \left[\cos\left(\frac{1}{2}\omega_{1}\tau\right)|\alpha\rangle + i\sin\left(\frac{1}{2}\omega_{1}\tau\right)|\beta\rangle\right] + c_{\beta} e^{-i\phi_{\beta}} \left[\cos\left(\frac{1}{2}\omega_{1}\tau\right)|\beta\rangle + i\sin\left(\frac{1}{2}\omega_{1}\tau\right)|\alpha\rangle\right]$$

• Case 1: $\omega_1 \tau = 180^{\circ}$

$$\left|\psi'\left(\tau_{180}\right)\right\rangle = i\left(c_{\alpha}e^{-i\phi_{\alpha}}\left|\beta\right\rangle + c_{\beta}e^{-i\phi_{\beta}}\left|\alpha\right\rangle\right) \implies \left\langle\hat{\mu}_{z}\right\rangle = \frac{\hbar\gamma}{2}\left(c_{\beta}^{2} - c_{\alpha}^{2}\right)$$

General case:

$$\begin{aligned} \left| \psi'(\tau) \right\rangle &= e^{-i\tau \hat{H}_{eff}} \left| \psi'(0) \right\rangle = c_{\alpha} e^{-i\phi_{\alpha}} \left[\cos\left(\frac{1}{2}\omega_{1}\tau\right) |\alpha\rangle + i\sin\left(\frac{1}{2}\omega_{1}\tau\right) |\beta\rangle \right] \\ &+ c_{\beta} e^{-i\phi_{\beta}} \left[\cos\left(\frac{1}{2}\omega_{1}\tau\right) |\beta\rangle + i\sin\left(\frac{1}{2}\omega_{1}\tau\right) |\alpha\rangle \right] \end{aligned}$$

• Case 2: $\gamma_1 B_1 \tau = 90^\circ$ (about x axis)

$$\left|\psi'\left(\tau_{90}\right)\right\rangle = \frac{\sqrt{2}}{2}\left[\left(c_{\alpha}e^{-i\phi_{\alpha}} + ic_{\beta}e^{-i\phi_{\beta}}\right)|\alpha\rangle + \left(c_{\beta}e^{-i\phi_{\beta}} + ic_{\alpha}e^{-i\phi_{\alpha}}\right)|\beta\rangle\right]$$

$\frac{\text{Single Spin}}{\left\langle \hat{\mu}_{x} \right\rangle = \hbar \gamma c_{\alpha} c_{\beta} \cos \Delta \phi}$

$$\left\langle \hat{\mu}_{y}\right\rangle = -\frac{1}{2}\hbar\gamma\left(c_{\alpha}^{2} - c_{\beta}^{2}\right)$$

$$\left\langle \hat{\mu}_{z}\right\rangle =\hbar\gamma c_{\alpha}c_{\beta}\sin\Delta\phi$$

Ensemble average

$$\frac{\left\langle \hat{\mu}_{x} \right\rangle = 0}{\left\langle \hat{\mu}_{y} \right\rangle = -\frac{1}{2}\hbar\gamma \left(c_{\alpha}^{2} - c_{\beta}^{2}\right)}$$

$$\frac{\left\langle \hat{\mu}_{y} \right\rangle}{\left\langle \hat{\mu}_{z} \right\rangle = 0}$$
 as expected

• In summary 90_x° RF pulse causes:

1) equalization of probabilities of $\{|\alpha\rangle, |\beta\rangle\}$ states $\Rightarrow M_z = 0$.

2) a phase coherence between $\{|\alpha\rangle, |\beta\rangle\}$ states generating M_y .

There is something subtle, yet fundamentally wrong, about the above diagrams. What is it?

Linear Superposition of States

Consider the following two examples:

- System 1: N_{α} and N_{β} spins with $|\psi_{\alpha}\rangle = |\alpha\rangle$ and $|\psi_{\beta}\rangle = |\beta\rangle$ respectively such that $N = N_{\alpha} + N_{\beta}$, $N_{\alpha}/N = c_{\alpha}^2$, and $N_{\beta}/N = c_{\beta}^2$.
 - Implies that a given spin has probabilities c_{α}^2 and c_{β}^2 of being in state $|\alpha\rangle$ and $|\beta\rangle$ respectively.

However, System 1 virtually never occurs in practice! It is wrong to claim that all spins are either "spin up" of "spin down". 17

Linear Superposition of States

- System 2: N spins each with wavefunction $|\psi\rangle = c_{\alpha}e^{-i\phi_{\alpha}}|\alpha\rangle + c_{\beta}e^{-i\phi_{\beta}}|\beta\rangle$.
 - Does **NOT** imply that a given spin has probabilities c_{α}^2 and c_{β}^2 of being in state $|\alpha\rangle$ and $|\beta\rangle$ respectively.

"Cones": picture doesn't work

"Polarization": works better, but still not very realistic

Here, spins are almost fully polarized in z

Linear Superposition of States

• System 2 spins are described by a <u>linear superposition of states</u> as opposed to the <u>statistical mixture</u> of states in System 1.

Example: If we insist that each spin is always either "spin up" or "spin down" (System 1), then for all spins: $\{c_{\alpha}, c_{\beta}\}=\{1, 0\}$ or $\{c_{\alpha}, c_{\beta}\}=\{0, 1\}$. Hence this system could *never* generate any transverse magnetization.

For System 2, all spins have perfect phase coherence.

Actual MR Experiments

- In a real NMR experiment, we actually deal with a <u>statistical</u> <u>mixture</u> of spins each of which is described by a <u>linear</u> <u>superposition of states</u> (topic for next lecture).
- System 3: N spins with wavefunctions $|\psi_i\rangle = c_{\alpha_i} e^{-i\phi_{\alpha_i}} |\alpha\rangle + c_{\beta_i} e^{-i\phi_{\beta_i}} |\beta\rangle$ where i=1,...N, $c_{\alpha_i}, c_{\beta_i}, \phi_{\alpha_i}$, and ϕ_{β_i} real constants for which $c_{\alpha_i}^2 + c_{\beta_i}^2 = 1$.

At typical magnetic fields and temperatures, spins are polarized almost isotropically in space, with the term "almost" referring to a slight preference for the +z component (\sim 10ppm for 1 H, B_{0} = 3 Tesla, T = 37°C)

We'll make use of this alternative energy diagram when studying relaxation.

Summary

- Quantum mechanical derivations show that $\langle \hat{\mu}_x \rangle$, $\langle \hat{\mu}_y \rangle$, and $\langle \hat{\mu}_z \rangle$ faithfully reproduce the classically-derived behavior of M_x , M_y , and M_z (e.g. Larmor precession, RF excitation, etc).
- Rigorous but with limited intuition.
- Subsequent lectures will show that Liouville Space description of NMR and, in particular, the <u>Product Operator Formalism</u> is....
 - Mathematically easier.
 - Retains intuition associated with classical vector formulation.
 - Readily extended to the case of interacting spins (coupling).

Next Lecture: NMR in Liouville Space