## Aula 30 - Teoria do Aprendizado (Parte II)

João B. Florindo

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas - Brasil florindo@unicamp.br

## Outline

 $lue{1}$  Caso de  ${\mathcal H}$  finito

Caso de H infinito



- Seja a classe finita  $\mathcal{H} = \{h_1, \cdots, h_k\}$ .
- Este é um conjunto de k funções que mapeiam de  $\mathcal{X}$  para  $\{0,1\}$ .
- ERM seleciona entre essas *k* funções qual tem menor erro de treino.
- Queremos dar garantias sobre o erro de generalização de h. Para isto:
  - lacktriangle Mostramos que  $\hat{arepsilon}(h)$  é uma estimativa confiável de arepsilon(h) para todo h.
  - igorplus Mostramos que isso implica em um limitante superior para arepsilon(h)



- Seja a classe finita  $\mathcal{H} = \{h_1, \cdots, h_k\}$ .
- Este é um conjunto de k funções que mapeiam de  $\mathcal X$  para  $\{0,1\}$ .
- ERM seleciona entre essas k funções qual tem menor erro de treino.
- Queremos dar garantias sobre o erro de generalização de h. Para isto:
  - lacktriangle Mostramos que  $\hat{arepsilon}(h)$  é uma estimativa confiável de arepsilon(h) para todo h.
  - igorplus Mostramos que isso implica em um limitante superior para arepsilon(h)



- Seja a classe finita  $\mathcal{H} = \{h_1, \cdots, h_k\}$ .
- Este é um conjunto de k funções que mapeiam de  $\mathcal X$  para  $\{0,1\}$ .
- ERM seleciona entre essas k funções qual tem menor erro de treino.
- Queremos dar garantias sobre o erro de generalização de h. Para isto:
  - $\bigcirc$  Mostramos que  $\widehat{arepsilon}(h)$  é uma estimativa confiável de arepsilon(h) para todo h.
  - igorplus Mostramos que isso implica em um limitante superior para arepsilon(h)



- Seja a classe finita  $\mathcal{H} = \{h_1, \cdots, h_k\}$ .
- Este é um conjunto de k funções que mapeiam de  $\mathcal X$  para  $\{0,1\}$ .
- ERM seleciona entre essas *k* funções qual tem menor erro de treino.
- Queremos dar garantias sobre o erro de generalização de h. Para isto:
  - ① Mostramos que  $\hat{\varepsilon}(h)$  é uma estimativa confiável de  $\varepsilon(h)$  para todo h.
  - 2 Mostramos que isso implica em um limitante superior para  $\varepsilon(h)$



- Seja a classe finita  $\mathcal{H} = \{h_1, \cdots, h_k\}$ .
- Este é um conjunto de k funções que mapeiam de  $\mathcal X$  para  $\{0,1\}$ .
- ERM seleciona entre essas *k* funções qual tem menor erro de treino.
- Queremos dar garantias sobre o erro de generalização de h. Para isto:
  - **①** Mostramos que  $\hat{\varepsilon}(h)$  é uma estimativa confiável de  $\varepsilon(h)$  para todo h.
  - 2 Mostramos que isso implica em um limitante superior para  $\varepsilon(h)$



- Seja a classe finita  $\mathcal{H} = \{h_1, \dots, h_k\}$ .
- Este é um conjunto de k funções que mapeiam de  $\mathcal{X}$  para  $\{0,1\}$ .
- ERM seleciona entre essas k funções qual tem menor erro de treino.
- Queremos dar garantias sobre o erro de generalização de h. Para isto:
  - **1** Mostramos que  $\hat{\varepsilon}(h)$  é uma estimativa confiável de  $\varepsilon(h)$  para todo h.
  - Mostramos que isso implica em um limitante superior para  $\varepsilon(h)$ .



- Vamos partir de uma hipótese  $h_i \in \mathcal{H}$  fixa.
- Definimos uma variável aleatória de Bernoulli Z.
- Amostramos  $(x, y) \sim \mathcal{D}$  e fazemos

$$Z=\mathbb{1}\{h_i(x)\neq y\}.$$

$$Z_j = \mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}.$$



- Vamos partir de uma hipótese  $h_i \in \mathcal{H}$  fixa.
- Definimos uma variável aleatória de Bernoulli Z.
- Amostramos  $(x, y) \sim \mathcal{D}$  e fazemos

$$Z=\mathbb{1}\{h_i(x)\neq y\}.$$

$$Z_j = \mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}.$$



- Vamos partir de uma hipótese  $h_i \in \mathcal{H}$  fixa.
- Definimos uma variável aleatória de Bernoulli Z.
- Amostramos  $(x,y) \sim \mathcal{D}$  e fazemos

$$Z=\mathbb{1}\{h_i(x)\neq y\}.$$

$$Z_j = \mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}.$$



- Vamos partir de uma hipótese  $h_i \in \mathcal{H}$  fixa.
- Definimos uma variável aleatória de Bernoulli Z.
- Amostramos  $(x, y) \sim \mathcal{D}$  e fazemos

$$Z=\mathbb{1}\{h_i(x)\neq y\}.$$

$$Z_j = \mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}.$$



- Vamos partir de uma hipótese  $h_i \in \mathcal{H}$  fixa.
- Definimos uma variável aleatória de Bernoulli Z.
- Amostramos  $(x, y) \sim \mathcal{D}$  e fazemos

$$Z=\mathbb{1}\{h_i(x)\neq y\}.$$

$$Z_j = \mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}.$$



- A probabilidade de classificação incorreta para um exemplo aleatório, i.e.,  $\varepsilon(h)$  é o valor esperado de Z (e  $Z_j$ ).
- Já para o erro de treinamento temos

$$\hat{\varepsilon}(h_i) = \frac{1}{n} \sum_{j=1}^n Z_j.$$

- Portanto,  $\hat{\varepsilon}(h_i)$  é a média de n variáveis aleatórias amostradas iid de uma distribuição de Bernoulli com média  $\varepsilon(h_i)$ .
- Podemos aplicar então a desigualdade de Hoeffding:

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2 \exp(-2\gamma^2 n)$$



- A probabilidade de classificação incorreta para um exemplo aleatório, i.e.,  $\varepsilon(h)$  é o valor esperado de Z (e  $Z_j$ ).
- Já para o erro de treinamento temos

$$\hat{\varepsilon}(h_i) = \frac{1}{n} \sum_{j=1}^n Z_j.$$

- Portanto,  $\hat{\varepsilon}(h_i)$  é a média de n variáveis aleatórias amostradas iid de uma distribuição de Bernoulli com média  $\varepsilon(h_i)$ .
- Podemos aplicar então a desigualdade de Hoeffding:

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2 \exp(-2\gamma^2 n).$$



- A probabilidade de classificação incorreta para um exemplo aleatório, i.e.,  $\varepsilon(h)$  é o valor esperado de Z (e  $Z_j$ ).
- Já para o erro de treinamento temos

$$\hat{\varepsilon}(h_i) = \frac{1}{n} \sum_{j=1}^n Z_j.$$

- Portanto,  $\hat{\varepsilon}(h_i)$  é a média de n variáveis aleatórias amostradas iid de uma distribuição de Bernoulli com média  $\varepsilon(h_i)$ .
- Podemos aplicar então a desigualdade de Hoeffding:

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2 \exp(-2\gamma^2 n).$$



- A probabilidade de classificação incorreta para um exemplo aleatório, i.e.,  $\varepsilon(h)$  é o valor esperado de Z (e  $Z_j$ ).
- Já para o erro de treinamento temos

$$\hat{\varepsilon}(h_i) = \frac{1}{n} \sum_{j=1}^n Z_j.$$

- Portanto,  $\hat{\varepsilon}(h_i)$  é a média de n variáveis aleatórias amostradas iid de uma distribuição de Bernoulli com média  $\varepsilon(h_i)$ .
- Podemos aplicar então a desigualdade de Hoeffding:

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2 \exp(-2\gamma^2 n).$$



- Então, para nossa  $h_i$  específica, o erro de generalização está próximo do de treino com alta probabilidade se n é grande.
- Mas queremos mostrar isso para  $toda h \in \mathcal{H}$ .
- Seja  $A_i$  o evento  $|\varepsilon(h_i) \hat{\varepsilon}(h_i)| > \gamma$ .
- Já vimos que para um A<sub>i</sub> específico:

$$P(A_i) \leq 2 \exp(-2\gamma^2 n).$$



- Então, para nossa h<sub>i</sub> específica, o erro de generalização está próximo do de treino com alta probabilidade se n é grande.
- Mas queremos mostrar isso para  $toda h \in \mathcal{H}$ .
- Seja  $A_i$  o evento  $|\varepsilon(h_i) \hat{\varepsilon}(h_i)| > \gamma$ .
- Já vimos que para um A; específico:

$$P(A_i) \leq 2 \exp(-2\gamma^2 n).$$



- Então, para nossa  $h_i$  específica, o erro de generalização está próximo do de treino com alta probabilidade se n é grande.
- Mas queremos mostrar isso para  $toda h \in \mathcal{H}$ .
- Seja  $A_i$  o evento  $|\varepsilon(h_i) \hat{\varepsilon}(h_i)| > \gamma$ .
- Já vimos que para um A; específico:

$$P(A_i) \leq 2 \exp(-2\gamma^2 n)$$



- Então, para nossa  $h_i$  específica, o erro de generalização está próximo do de treino com alta probabilidade se n é grande.
- Mas queremos mostrar isso para  $toda h \in \mathcal{H}$ .
- Seja  $A_i$  o evento  $|\varepsilon(h_i) \hat{\varepsilon}(h_i)| > \gamma$ .
- Já vimos que para um A<sub>i</sub> específico:

$$P(A_i) \leq 2 \exp(-2\gamma^2 n).$$



Pelo limitante da união:

$$P(\exists h \in \mathcal{H} : |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(A_1 \cup \dots \cup A_k)$$

$$\leq \sum_{i=1}^k P(A_i)$$

$$\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 n)$$

$$= 2k \exp(-2\gamma^2 n).$$

Subtraindo 1 de ambos os lados:

$$P(\nexists h \in \mathcal{H} : |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(\forall h \in \mathcal{H} : |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| \le \gamma)$$
$$> 1 - 2k \exp(-2\gamma^2 n).$$



Pelo limitante da uni\u00e3o:

$$P(\exists h \in \mathcal{H} : |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(A_1 \cup \dots \cup A_k)$$

$$\leq \sum_{i=1}^k P(A_i)$$

$$\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 n)$$

$$= 2k \exp(-2\gamma^2 n).$$

Subtraindo 1 de ambos os lados:

$$P(\nexists h \in \mathcal{H} : |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(\forall h \in \mathcal{H} : |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| \le \gamma)$$
  
 
$$\ge 1 - 2k \exp(-2\gamma^2 n).$$



- Então, com probabilidade no mínimo  $1 2k \exp(-2\gamma^2 n)$ , temos que  $\varepsilon(h)$  está a uma distância no máximo  $\gamma$  de  $\hat{\varepsilon}(h)$ , para todo  $h \in \mathcal{H}$ .
- Este é um resultado de *convergência uniforme* porque é um limitante que vale simultaneamente para todo  $h \in \mathcal{H}$ .



- Então, com probabilidade no mínimo  $1 2k \exp(-2\gamma^2 n)$ , temos que  $\varepsilon(h)$  está a uma distância no máximo  $\gamma$  de  $\hat{\varepsilon}(h)$ , para todo  $h \in \mathcal{H}$ .
- Este é um resultado de *convergência uniforme* porque é um limitante que vale simultaneamente para todo  $h \in \mathcal{H}$ .



- Até agora limitamos a probabilidade de erro, dados  $n \in \gamma$ .
- Mas e se nos forem dados  $\gamma$  e algum  $\delta > 0$ , quão grande deve ser n para que o erro de treino fique a uma distância no máximo  $\gamma$  do erro de generalização com probabilidade no mínimo  $1 \delta$ ?
- Para responder, fazemos  $\delta = 2k \exp(-2\gamma^2 n)$  e resolvemos para n, tal que

$$n \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$



- Até agora limitamos a probabilidade de erro, dados  $n \in \gamma$ .
- Mas e se nos forem dados  $\gamma$  e algum  $\delta > 0$ , quão grande deve ser n para que o erro de treino fique a uma distância no máximo  $\gamma$  do erro de generalização com probabilidade no mínimo  $1 \delta$ ?
- Para responder, fazemos  $\delta = 2k \exp(-2\gamma^2 n)$  e resolvemos para n, tal que

$$n \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$



- Até agora limitamos a probabilidade de erro, dados  $n \in \gamma$ .
- Mas e se nos forem dados  $\gamma$  e algum  $\delta > 0$ , quão grande deve ser n para que o erro de treino fique a uma distância no máximo  $\gamma$  do erro de generalização com probabilidade no mínimo  $1 \delta$ ?
- Para responder, fazemos  $\delta = 2k \exp(-2\gamma^2 n)$  e resolvemos para n, tal que

$$n \geq \frac{1}{2\gamma^2}\log\frac{2k}{\delta}$$



- Até agora limitamos a probabilidade de erro, dados  $n \in \gamma$ .
- Mas e se nos forem dados  $\gamma$  e algum  $\delta > 0$ , quão grande deve ser n para que o erro de treino fique a uma distância no máximo  $\gamma$  do erro de generalização com probabilidade no mínimo  $1 \delta$ ?
- Para responder, fazemos  $\delta = 2k \exp(-2\gamma^2 n)$  e resolvemos para n, tal que

$$n \geq \frac{1}{2\gamma^2}\log\frac{2k}{\delta}$$



- Este tamanho de treino *n* necessário para certo nível de performance é chamado de **complexidade amostral**.
- Note que aqui, o n necessário é apenas logarítmico em k (número de hipóteses em  $\mathcal{H}$ ).
- Usaremos isso mais tarde.

- Este tamanho de treino *n* necessário para certo nível de performance é chamado de **complexidade amostral**.
- Note que aqui, o n necessário é apenas logarítmico em k (número de hipóteses em  $\mathcal{H}$ ).
- Usaremos isso mais tarde.

- Este tamanho de treino *n* necessário para certo nível de performance é chamado de **complexidade amostral**.
- Note que aqui, o n necessário é apenas logarítmico em k (número de hipóteses em  $\mathcal{H}$ ).
- Usaremos isso mais tarde.

- Podemos também fixar n e  $\delta$  e resolver para  $\gamma$ .
- Então, com probabilidade  $1 \delta$  temos para todo  $h \in \mathcal{H}$ :

$$|\varepsilon(h) - \hat{\varepsilon}(h)| \le \sqrt{\frac{1}{2n} \log \frac{2k}{\delta}}$$



- Podemos também fixar n e  $\delta$  e resolver para  $\gamma$ .
- Então, com probabilidade  $1 \delta$  temos para todo  $h \in \mathcal{H}$ :

$$|\varepsilon(h) - \hat{\varepsilon}(h)| \leq \sqrt{\frac{1}{2n} \log \frac{2k}{\delta}}.$$



- Vamos focar agora na generalização da melhor hipótese  $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\varepsilon}(H)$ , que nosso algoritmo de aprendizado encontra.
- Seja  $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \varepsilon(H)$  a melhor hipótese possível em  $\mathcal{H}$ .
- Assumimos convergência uniforme, i.e.,  $|\varepsilon(h) \hat{\varepsilon}(h)| \leq \gamma$  para todo  $h \in \mathcal{H}$ .
- Então teremos:

$$\varepsilon(\hat{h}) \le \hat{\varepsilon}(\hat{h}) + \gamma$$
  
$$\le \hat{\varepsilon}(h^*) + \gamma$$
  
$$\le \varepsilon(h^*) + 2\gamma.$$



- Vamos focar agora na generalização da melhor hipótese  $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\varepsilon}(H)$ , que nosso algoritmo de aprendizado encontra.
- Seja  $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \varepsilon(H)$  a melhor hipótese possível em  $\mathcal{H}$ .
- Assumimos convergência uniforme, i.e.,  $|\varepsilon(h) \hat{\varepsilon}(h)| \le \gamma$  para todo  $h \in \mathcal{H}$ .
- Então teremos:

$$\varepsilon(\hat{h}) \le \hat{\varepsilon}(\hat{h}) + \gamma$$
  
$$\le \hat{\varepsilon}(h^*) + \gamma$$
  
$$\le \varepsilon(h^*) + 2\gamma.$$



- Vamos focar agora na generalização da melhor hipótese  $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\varepsilon}(H)$ , que nosso algoritmo de aprendizado encontra.
- Seja  $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \varepsilon(H)$  a melhor hipótese possível em  $\mathcal{H}$ .
- Assumimos convergência uniforme, i.e.,  $|\varepsilon(h) \hat{\varepsilon}(h)| \leq \gamma$  para todo  $h \in \mathcal{H}$ .
- Então teremos:

$$\varepsilon(\hat{h}) \le \hat{\varepsilon}(\hat{h}) + \gamma$$
  
$$\le \hat{\varepsilon}(h^*) + \gamma$$
  
$$\le \varepsilon(h^*) + 2\gamma.$$



- Vamos focar agora na generalização da melhor hipótese  $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\varepsilon}(H)$ , que nosso algoritmo de aprendizado encontra.
- Seja  $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \varepsilon(H)$  a melhor hipótese possível em  $\mathcal{H}$ .
- Assumimos convergência uniforme, i.e.,  $|\varepsilon(h) \hat{\varepsilon}(h)| \leq \gamma$  para todo  $h \in \mathcal{H}$ .
- Então teremos:

$$\varepsilon(\hat{h}) \le \hat{\varepsilon}(\hat{h}) + \gamma$$
  
$$\le \hat{\varepsilon}(h^*) + \gamma$$
  
$$\le \varepsilon(h^*) + 2\gamma.$$



- A 1<sup>a</sup> linha vem de  $|\varepsilon(\hat{h}) \hat{\varepsilon}(\hat{h})| \leq \gamma$ , devido à convergência uniforme.
- A 2<sup>a</sup> vem de que  $\hat{h}$  minimiza  $\hat{\varepsilon}(h)$  e portanto  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h)$  para todo h e, em particular,  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h^*)$ .
- A 3ª vem de aplicarmos a convergência uniforme novamente, de modo que  $\hat{\varepsilon}(h^*) \leq \varepsilon(h^*) + \gamma$ .
- Então, em condições de convergência uniforme, temos que o erro de generalização de  $\hat{h}$  é no máximo  $2\gamma$  pior do que a melhor hipótese possível em  $\mathcal{H}$ .

- A 1<sup>a</sup> linha vem de  $|\varepsilon(\hat{h}) \hat{\varepsilon}(\hat{h})| \leq \gamma$ , devido à convergência uniforme.
- A 2<sup>a</sup> vem de que  $\hat{h}$  minimiza  $\hat{\varepsilon}(h)$  e portanto  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h)$  para todo h e, em particular,  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h^*)$ .
- A 3ª vem de aplicarmos a convergência uniforme novamente, de modo que  $\hat{\varepsilon}(h^*) \leq \varepsilon(h^*) + \gamma$ .
- Então, em condições de convergência uniforme, temos que o erro de generalização de  $\hat{h}$  é no máximo  $2\gamma$  pior do que a melhor hipótese possível em  $\mathcal{H}$ .

- A 1<sup>a</sup> linha vem de  $|\varepsilon(\hat{h}) \hat{\varepsilon}(\hat{h})| \leq \gamma$ , devido à convergência uniforme.
- A 2ª vem de que  $\hat{h}$  minimiza  $\hat{\varepsilon}(h)$  e portanto  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h)$  para todo h e, em particular,  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h^*)$ .
- A 3ª vem de aplicarmos a convergência uniforme novamente, de modo que  $\hat{\varepsilon}(h^*) \leq \varepsilon(h^*) + \gamma$ .
- Então, em condições de convergência uniforme, temos que o erro de generalização de  $\hat{h}$  é no máximo  $2\gamma$  pior do que a melhor hipótese possível em  $\mathcal{H}$ .

- A 1<sup>a</sup> linha vem de  $|\varepsilon(\hat{h}) \hat{\varepsilon}(\hat{h})| \leq \gamma$ , devido à convergência uniforme.
- A 2<sup>a</sup> vem de que  $\hat{h}$  minimiza  $\hat{\varepsilon}(h)$  e portanto  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h)$  para todo h e, em particular,  $\hat{\varepsilon}(\hat{h}) \leq \hat{\varepsilon}(h^*)$ .
- A 3ª vem de aplicarmos a convergência uniforme novamente, de modo que  $\hat{\varepsilon}(h^*) \leq \varepsilon(h^*) + \gamma$ .
- Então, em condições de convergência uniforme, temos que o erro de generalização de  $\hat{h}$  é no máximo  $2\gamma$  pior do que a melhor hipótese possível em  $\mathcal{H}$ .

Teorema

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log\frac{2k}{\delta}}$$

- Este teorema dá a fundamentação teórica do dilema viés/variância.
- Se mudamos da classe de hipóteses  $\mathcal{H}$  para uma classe maior  $\mathcal{H}'\supseteq\mathcal{H}$ , então o 1° termo min $_{h\in\mathcal{H}}$  só pode decair pois buscamos o mínimo em um conjunto maior.
- Isso corresponde ao nosso "viés" decrescendo.
- Ao mesmo tempo, como k aumenta, o segundo termo  $2\sqrt{\cdot}$ , que corresponderia à "variância", aumenta.

## Teorema

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log\frac{2k}{\delta}}.$$

- Este teorema dá a fundamentação teórica do dilema viés/variância.
- Se mudamos da classe de hipóteses  $\mathcal{H}$  para uma classe maior  $\mathcal{H}'\supseteq\mathcal{H}$ , então o 1° termo min $_{h\in\mathcal{H}}$  só pode decair pois buscamos o mínimo em um conjunto maior.
- Isso corresponde ao nosso "viés" decrescendo.
- Ao mesmo tempo, como k aumenta, o segundo termo  $2\sqrt{\cdot}$ , que corresponderia à "variância", aumenta.

## Teorema

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log\frac{2k}{\delta}}.$$

- Este teorema dá a fundamentação teórica do dilema viés/variância.
- Se mudamos da classe de hipóteses  $\mathcal{H}$  para uma classe maior  $\mathcal{H}'\supseteq\mathcal{H}$ , então o 1° termo min $_{h\in\mathcal{H}}$  só pode decair pois buscamos o mínimo em um conjunto maior.
- Isso corresponde ao nosso "viés" decrescendo.
- Ao mesmo tempo, como k aumenta, o segundo termo  $2\sqrt{\cdot}$ , que corresponderia à "variância", aumenta.

## Teorema

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log\frac{2k}{\delta}}.$$

- Este teorema dá a fundamentação teórica do dilema viés/variância.
- Se mudamos da classe de hipóteses  $\mathcal H$  para uma classe maior  $\mathcal H'\supseteq \mathcal H$ , então o 1° termo min $_{h\in \mathcal H}$  só pode decair pois buscamos o mínimo em um conjunto maior.
- Isso corresponde ao nosso "viés" decrescendo.
- Ao mesmo tempo, como k aumenta, o segundo termo  $2\sqrt{\cdot}$ , que corresponderia à "variância", aumenta.

## Teorema

$$\varepsilon(\hat{h}) \leq \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log \frac{2k}{\delta}}.$$

- Este teorema dá a fundamentação teórica do dilema viés/variância.
- Se mudamos da classe de hipóteses  $\mathcal H$  para uma classe maior  $\mathcal H'\supseteq \mathcal H$ , então o 1° termo min $_{h\in \mathcal H}$  só pode decair pois buscamos o mínimo em um conjunto maior.
- Isso corresponde ao nosso "viés" decrescendo.
- Ao mesmo tempo, como k aumenta, o segundo termo  $2\sqrt{\cdot}$ , que corresponderia à "variância", aumenta.

## Teorema

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log\frac{2k}{\delta}}.$$

- Este teorema dá a fundamentação teórica do dilema viés/variância.
- Se mudamos da classe de hipóteses  $\mathcal H$  para uma classe maior  $\mathcal H'\supseteq \mathcal H$ , então o 1° termo min $_{h\in \mathcal H}$  só pode decair pois buscamos o mínimo em um conjunto maior.
- Isso corresponde ao nosso "viés" decrescendo.
- Ao mesmo tempo, como k aumenta, o segundo termo  $2\sqrt{\cdot}$ , que corresponderia à "variância", aumenta.

• Se fixarmos  $\gamma$  e  $\delta$  e resolvermos para n, temos o seguinte limitante para a complexidade amostral:

## Corolário

Seja  $|\mathcal{H}|=k$  e  $\delta,\gamma$  fixados. Então, para que tenhamos  $\varepsilon(\hat{h})\leq \min_{h\in\mathcal{H}}\varepsilon(h)+2\gamma$  com probabilidade ao menos  $1-\delta$ , basta que

$$n \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$
$$= \mathcal{O}\left(\frac{1}{\gamma^2} \log \frac{k}{\delta}\right).$$

• Se fixarmos  $\gamma$  e  $\delta$  e resolvermos para n, temos o seguinte limitante para a complexidade amostral:

## Corolário

Seja  $|\mathcal{H}|=k$  e  $\delta,\gamma$  fixados. Então, para que tenhamos  $\varepsilon(\hat{h}) \leq \min_{h \in \mathcal{H}} \varepsilon(h) + 2\gamma$  com probabilidade ao menos  $1-\delta$ , basta que

$$\begin{split} n &\geq \frac{1}{2\gamma^2}\log\frac{2k}{\delta} \\ &= \mathcal{O}\left(\frac{1}{\gamma^2}\log\frac{k}{\delta}\right). \end{split}$$

# Outline

 $lue{1}$  Caso de  ${\cal H}$  finito

 $oldsymbol{2}$  Caso de  ${\cal H}$  infinito



# Mostramos teoremas para o caso finito.

- Mas normalmente as classes de hipóteses são infinitas (ex. algoritmos parametrizados por números reais, como os classificadores lineares).
- Usaremos um argumento que não é o mais "correto", mas é intuitivo.
- ullet Seja  ${\mathcal H}$  parametrizado por d números reais.
- No computador, usamos ponto flutuante de precisão dupla (double em C).
- Nosso algoritmo de aprendizado é então parametrizado por 64d bits e temos  $k = 2^{64d}$  hipóteses diferentes.



- Mostramos teoremas para o caso finito.
- Mas normalmente as classes de hipóteses são infinitas (ex. algoritmos parametrizados por números reais, como os classificadores lineares).
- Usaremos um argumento que não é o mais "correto", mas é intuitivo.
- ullet Seja  ${\mathcal H}$  parametrizado por d números reais.
- No computador, usamos ponto flutuante de precisão dupla (double em C).
- Nosso algoritmo de aprendizado é então parametrizado por 64d bits e temos  $k = 2^{64d}$  hipóteses diferentes.



- Mostramos teoremas para o caso finito.
- Mas normalmente as classes de hipóteses são infinitas (ex. algoritmos parametrizados por números reais, como os classificadores lineares).
- Usaremos um argumento que não é o mais "correto", mas é intuitivo.
- ullet Seja  ${\mathcal H}$  parametrizado por d números reais.
- No computador, usamos ponto flutuante de precisão dupla (double em C).
- Nosso algoritmo de aprendizado é então parametrizado por 64d bits e temos  $k = 2^{64d}$  hipóteses diferentes.



- Mostramos teoremas para o caso finito.
- Mas normalmente as classes de hipóteses são infinitas (ex. algoritmos parametrizados por números reais, como os classificadores lineares).
- Usaremos um argumento que não é o mais "correto", mas é intuitivo.
- ullet Seja  ${\mathcal H}$  parametrizado por d números reais.
- No computador, usamos ponto flutuante de precisão dupla (double em C).
- Nosso algoritmo de aprendizado é então parametrizado por 64d bits e temos  $k = 2^{64d}$  hipóteses diferentes.



- Mostramos teoremas para o caso finito.
- Mas normalmente as classes de hipóteses são infinitas (ex. algoritmos parametrizados por números reais, como os classificadores lineares).
- Usaremos um argumento que não é o mais "correto", mas é intuitivo.
- ullet Seja  ${\cal H}$  parametrizado por d números reais.
- No computador, usamos ponto flutuante de precisão dupla (double em C).
- Nosso algoritmo de aprendizado é então parametrizado por 64d bits e temos  $k = 2^{64d}$  hipóteses diferentes.



- Mostramos teoremas para o caso finito.
- Mas normalmente as classes de hipóteses são infinitas (ex. algoritmos parametrizados por números reais, como os classificadores lineares).
- Usaremos um argumento que não é o mais "correto", mas é intuitivo.
- ullet Seja  ${\cal H}$  parametrizado por d números reais.
- No computador, usamos ponto flutuante de precisão dupla (double em C).
- Nosso algoritmo de aprendizado é então parametrizado por 64d bits e temos  $k = 2^{64d}$  hipóteses diferentes.



• Do corolário, temos que, para garantir  $\varepsilon(\hat{h}) \leq \varepsilon(h^*) + 2\gamma$  com probabilidade no mínimo  $1 - \delta$ , basta que

$$n \ge \mathcal{O}\left(\frac{1}{\gamma^2}\log\frac{2^{64d}}{\delta}\right)$$
$$= \mathcal{O}\left(\frac{d}{\gamma^2}\log\frac{1}{\delta}\right)$$
$$= \mathcal{O}_{\gamma,\delta}(d).$$

- Ou seja, o número de exemplos de treino necessários é no máximo linear nos parâmetros do modelo.
- Embora o argumento não seja o mais preciso, esta conclusão é válida em geral.



• Do corolário, temos que, para garantir  $\varepsilon(\hat{h}) \leq \varepsilon(h^*) + 2\gamma$  com probabilidade no mínimo  $1 - \delta$ , basta que

$$n \ge \mathcal{O}\left(\frac{1}{\gamma^2}\log\frac{2^{64d}}{\delta}\right)$$
$$= \mathcal{O}\left(\frac{d}{\gamma^2}\log\frac{1}{\delta}\right)$$
$$= \mathcal{O}_{\gamma,\delta}(d).$$

- Ou seja, o número de exemplos de treino necessários é no máximo *linear* nos parâmetros do modelo.
- Embora o argumento n\u00e3o seja o mais preciso, esta conclus\u00e3o \u00e9 v\u00e1lida em geral.



• Do corolário, temos que, para garantir  $\varepsilon(\hat{h}) \leq \varepsilon(h^*) + 2\gamma$  com probabilidade no mínimo  $1 - \delta$ , basta que

$$n \ge \mathcal{O}\left(\frac{1}{\gamma^2}\log\frac{2^{64d}}{\delta}\right)$$
$$= \mathcal{O}\left(\frac{d}{\gamma^2}\log\frac{1}{\delta}\right)$$
$$= \mathcal{O}_{\gamma,\delta}(d).$$

- Ou seja, o número de exemplos de treino necessários é no máximo *linear* nos parâmetros do modelo.
- Embora o argumento não seja o mais preciso, esta conclusão é válida em geral.



- Note também que este resultado assume um algoritmo que usa minimização do risco empírico.
- Obter boas garantias teóricas para algoritmos não-ERM ainda é uma área ativa de pesquisa.
- ullet Outro problema em nosso argumento é a parametrização de  ${\cal H}.$
- Veja que a classe dos classificadores lineares em d dimensões pode ser escrita como  $h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d \geq 0\}$ , com d+1 parâmetros  $\theta_0, \dots, \theta_d$ .
- Mas também poderia ser escrita como  $h_{u,v}(x) = \mathbb{1}\{(u_0^2 v_0^2) + (u_1^2 v_1^2)x_1 + \dots + (u_d^2 v_d^2)x_d \ge 0\}$ , com 2(d+1) parâmetros  $u_i, v_i$ .



- Note também que este resultado assume um algoritmo que usa minimização do risco empírico.
- Obter boas garantias teóricas para algoritmos não-ERM ainda é uma área ativa de pesquisa.
- ullet Outro problema em nosso argumento é a parametrização de  ${\cal H}.$
- Veja que a classe dos classificadores lineares em d dimensões pode ser escrita como  $h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d \geq 0\}$ , com d+1 parâmetros  $\theta_0, \dots, \theta_d$ .
- Mas também poderia ser escrita como  $h_{u,v}(x) = \mathbb{1}\{(u_0^2 v_0^2) + (u_1^2 v_1^2)x_1 + \dots + (u_d^2 v_d^2)x_d \ge 0\}$ , com 2(d+1) parâmetros  $u_i, v_i$ .



- Note também que este resultado assume um algoritmo que usa minimização do risco empírico.
- Obter boas garantias teóricas para algoritmos não-ERM ainda é uma área ativa de pesquisa.
- ullet Outro problema em nosso argumento é a parametrização de  ${\cal H}.$
- Veja que a classe dos classificadores lineares em d dimensões pode ser escrita como  $h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d \geq 0\}$ , com d+1 parâmetros  $\theta_0, \dots, \theta_d$ .
- Mas também poderia ser escrita como  $h_{u,v}(x) = \mathbb{1}\{(u_0^2 v_0^2) + (u_1^2 v_1^2)x_1 + \dots + (u_d^2 v_d^2)x_d \ge 0\}$ , com 2(d+1) parâmetros  $u_i, v_i$ .



- Note também que este resultado assume um algoritmo que usa minimização do risco empírico.
- Obter boas garantias teóricas para algoritmos não-ERM ainda é uma área ativa de pesquisa.
- ullet Outro problema em nosso argumento é a parametrização de  ${\cal H}.$
- Veja que a classe dos classificadores lineares em d dimensões pode ser escrita como  $h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d \geq 0\}$ , com d+1 parâmetros  $\theta_0, \dots, \theta_d$ .
- Mas também poderia ser escrita como  $h_{u,v}(x) = \mathbb{1}\{(u_0^2 v_0^2) + (u_1^2 v_1^2)x_1 + \dots + (u_d^2 v_d^2)x_d \ge 0\}$ , com 2(d+1) parâmetros  $u_i, v_i$ .



- Note também que este resultado assume um algoritmo que usa minimização do risco empírico.
- Obter boas garantias teóricas para algoritmos não-ERM ainda é uma área ativa de pesquisa.
- ullet Outro problema em nosso argumento é a parametrização de  ${\cal H}.$
- Veja que a classe dos classificadores lineares em d dimensões pode ser escrita como  $h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_d x_d \geq 0\}$ , com d+1 parâmetros  $\theta_0, \dots, \theta_d$ .
- Mas também poderia ser escrita como  $h_{u,v}(x) = \mathbb{1}\{(u_0^2 v_0^2) + (u_1^2 v_1^2)x_1 + \dots + (u_d^2 v_d^2)x_d \ge 0\}$ , com 2(d+1) parâmetros  $u_i, v_i$ .



- Vamos derivar um argumento melhor definindo alguns conceitos novos.
- Seja  $S = \{x^{(i)}, \dots, x^{(D)}\}$  um conjunto de pontos  $x^{(i)} \in \mathcal{X}$ .
- Diz-se que  $\mathcal H$  shatters ("destrói") S se  $\mathcal H$  pode realizar qualquer rotulagem em S.
- I.e., para qualquer conjunto de rótulos  $\{y^{(1)}, \cdots, y^{(D)}\}$ , existe algum  $h \in \mathcal{H}$  tal que  $h(x^{(i)}) = y^{(i)}$  para todo  $i = 1, \cdots, D$ .



- Vamos derivar um argumento melhor definindo alguns conceitos novos.
- Seja  $S = \{x^{(i)}, \dots, x^{(D)}\}$  um conjunto de pontos  $x^{(i)} \in \mathcal{X}$ .
- Diz-se que  $\mathcal H$  shatters ("destrói") S se  $\mathcal H$  pode realizar qualquer rotulagem em S.
- I.e., para qualquer conjunto de rótulos  $\{y^{(1)}, \cdots, y^{(D)}\}$ , existe algum  $h \in \mathcal{H}$  tal que  $h(x^{(i)}) = y^{(i)}$  para todo  $i = 1, \cdots, D$ .



- Vamos derivar um argumento melhor definindo alguns conceitos novos.
- Seja  $S = \{x^{(i)}, \dots, x^{(D)}\}$  um conjunto de pontos  $x^{(i)} \in \mathcal{X}$ .
- Diz-se que  $\mathcal H$  shatters ("destrói") S se  $\mathcal H$  pode realizar qualquer rotulagem em S.
- I.e., para qualquer conjunto de rótulos  $\{y^{(1)}, \cdots, y^{(D)}\}$ , existe algum  $h \in \mathcal{H}$  tal que  $h(x^{(i)}) = y^{(i)}$  para todo  $i = 1, \cdots, D$ .



- Vamos derivar um argumento melhor definindo alguns conceitos novos.
- Seja  $S = \{x^{(i)}, \dots, x^{(D)}\}$  um conjunto de pontos  $x^{(i)} \in \mathcal{X}$ .
- Diz-se que  $\mathcal H$  shatters ("destrói") S se  $\mathcal H$  pode realizar qualquer rotulagem em S.
- I.e., para qualquer conjunto de rótulos  $\{y^{(1)}, \dots, y^{(D)}\}$ , existe algum  $h \in \mathcal{H}$  tal que  $h(x^{(i)}) = y^{(i)}$  para todo  $i = 1, \dots, D$ .

#### Dimensão VC

Dada uma classe de hipóteses  $\mathcal{H}$ , define-se a **dimensão de Vapnik-Chervonenkis**  $(\mathrm{VC}(\mathcal{H}))$  como o tamanho do maior conjunto que é *shattered* por  $\mathcal{H}$ .

Se  $\mathcal{H}$  shatters conjuntos arbitrariamente grandes,  $VC(\mathcal{H}) = \infty$ .

• Considere o conjunto de três pontos abaixo:



- Poderia a classe  $\mathcal{H}$  dos classificadores lineares em duas dimensões  $(h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \theta_2 x_2 \geq 0\})$  shatter este conjunto?
- A resposta é SIM!
- Note que, para qualquer das 8 rotulagens possíveis para estes pontos, pode-se encontrar um classificador linear com "erro de treino zero":



- Poderia a classe  $\mathcal{H}$  dos classificadores lineares em duas dimensões  $(h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \theta_2 x_2 \geq 0\})$  shatter este conjunto?
- A resposta é SIM!
- Note que, para qualquer das 8 rotulagens possíveis para estes pontos, pode-se encontrar um classificador linear com "erro de treino zero":



- Poderia a classe  $\mathcal{H}$  dos classificadores lineares em duas dimensões  $(h_{\theta}(x) = \mathbb{1}\{\theta_0 + \theta_1 x_1 + \theta_2 x_2 \geq 0\})$  shatter este conjunto?
- A resposta é SIM!
- Note que, para qualquer das 8 rotulagens possíveis para estes pontos, pode-se encontrar um classificador linear com "erro de treino zero":



- Pode-se mostrar também que esta classe não pode shatter nenhum conjunto de 4 pontos.
- Portanto, o maior conjunto shattered por  $\mathcal H$  tem tamanho 3 e, assim,  $\mathrm{VC}(\mathcal H)=3.$
- O fato de que  $VC(\mathcal{H})=3$  não implica que todo conjunto de tamanho 3 pode ser *shattered*.
- Veja o exemplo de pontos colineares abaixo, em que não há nenhum separador linear para esta rotulagem:





- Pode-se mostrar também que esta classe não pode shatter nenhum conjunto de 4 pontos.
- Portanto, o maior conjunto shattered por  ${\cal H}$  tem tamanho 3 e, assim,  ${\rm VC}({\cal H})=3.$
- O fato de que  $VC(\mathcal{H}) = 3$  não implica que todo conjunto de tamanho 3 pode ser *shattered*.
- Veja o exemplo de pontos colineares abaixo, em que não há nenhum separador linear para esta rotulagem:





- Pode-se mostrar também que esta classe não pode shatter nenhum conjunto de 4 pontos.
- Portanto, o maior conjunto shattered por  ${\cal H}$  tem tamanho 3 e, assim,  ${\rm VC}({\cal H})=3.$
- O fato de que  $VC(\mathcal{H}) = 3$  não implica que todo conjunto de tamanho 3 pode ser *shattered*.
- Veja o exemplo de pontos colineares abaixo, em que não há nenhum separador linear para esta rotulagem:



- Pode-se mostrar também que esta classe não pode shatter nenhum conjunto de 4 pontos.
- Portanto, o maior conjunto shattered por  ${\cal H}$  tem tamanho 3 e, assim,  ${\rm VC}({\cal H})=3.$
- O fato de que  $VC(\mathcal{H}) = 3$  não implica que todo conjunto de tamanho 3 pode ser *shattered*.
- Veja o exemplo de pontos colineares abaixo, em que não há nenhum separador linear para esta rotulagem:



- Ou seja, para mostrar que  $VC(\mathcal{H})$  é ao menos **D**, precisamos mostrar que há no mínimo **um** conjunto de tamanho **D** que  $\mathcal{H}$  pode *shatter*.
- Temos então o seguinte teorema, devido a Vapnik, e considerado por muitos como o mais importante de toda a teoria do aprendizado.

#### Teorema

Seja  ${\mathcal H}$  dado e seja  ${\sf D}={
m VC}({\mathcal H})$ . Então, com probabilidade no mínimo $1-\delta$ , temos para todo  $h\in {\mathcal H}$ :

$$|\varepsilon(h) - \hat{\varepsilon}(h)| \le \mathcal{O}\left(\sqrt{\frac{\mathsf{D}}{n}\log\frac{n}{\mathsf{D}} + \frac{1}{n}\log\frac{1}{\delta}}\right)$$

E ainda, com probabilidade no mínimo  $1-\delta$ , também temos

$$\varepsilon(\hat{h}) \leq \varepsilon(h^*) + \mathcal{O}\left(\sqrt{\frac{\mathsf{D}}{n}}\log\frac{n}{\mathsf{D}} + \frac{1}{n}\log\frac{1}{\delta}\right)$$

- Ou seja, para mostrar que  $VC(\mathcal{H})$  é ao menos **D**, precisamos mostrar que há no mínimo **um** conjunto de tamanho **D** que  $\mathcal{H}$  pode *shatter*.
- Temos então o seguinte teorema, devido a Vapnik, e considerado por muitos como o mais importante de toda a teoria do aprendizado.

#### Teorema

Seja  ${\cal H}$  dado e seja  ${f D}={
m VC}({\cal H})$ . Então, com probabilidade no mínimo  $1-\delta$ , temos para todo  $h\in {\cal H}$ :

$$|arepsilon(h) - \hat{arepsilon}(h)| \leq \mathcal{O}\left(\sqrt{rac{\mathsf{D}}{n}\lograc{n}{\mathsf{D}} + rac{1}{n}\lograc{1}{\delta}}
ight).$$

E ainda, com probabilidade no mínimo  $1-\delta$ , também temos

$$\varepsilon(\hat{h}) \le \varepsilon(h^*) + \mathcal{O}\left(\sqrt{\frac{\mathsf{D}}{n}\log\frac{n}{\mathsf{D}} + \frac{1}{n}\log\frac{1}{\delta}}\right).$$

- Ou seja, para mostrar que  $VC(\mathcal{H})$  é ao menos **D**, precisamos mostrar que há no mínimo **um** conjunto de tamanho **D** que  $\mathcal{H}$  pode *shatter*.
- Temos então o seguinte teorema, devido a Vapnik, e considerado por muitos como o mais importante de toda a teoria do aprendizado.

### Teorema

Seja  $\mathcal{H}$  dado e seja  $\mathbf{D} = \mathrm{VC}(\mathcal{H})$ . Então, com probabilidade no mínimo  $1 - \delta$ , temos para todo  $h \in \mathcal{H}$ :

$$|\varepsilon(h) - \hat{\varepsilon}(h)| \leq \mathcal{O}\left(\sqrt{\frac{\mathsf{D}}{n}\log\frac{n}{\mathsf{D}} + \frac{1}{n}\log\frac{1}{\delta}}\right).$$

E ainda, com probabilidade no mínimo  $1-\delta$ , também temos

$$\varepsilon(\hat{h}) \leq \varepsilon(h^*) + \mathcal{O}\left(\sqrt{\frac{\mathbf{D}}{n}\log\frac{n}{\mathbf{D}} + \frac{1}{n}\log\frac{1}{\delta}}\right).$$

- Ou seja, se a classe de hipóteses tem dimensão VC finita, então temos convergência uniforme para n grande.
- Como antes, isso nos permite estabelecer limitantes sobre  $\varepsilon(h)$  em termos de  $\varepsilon(h^*)$ .
- Temos então o corolário seguinte:

Para que  $|arepsilon(h)-arepsilon(h)|\leq\gamma$  seja válido para todo  $h\in\mathcal{H}$  (e portanto  $arepsilon(\hat{h})\leqarepsilon(h^*)+2\gamma)$  com probabilidade no mínimo  $1-\delta$ , basta que  $n=\mathcal{O}_{\gamma,\delta}(\mathbf{D}).$ 



- Ou seja, se a classe de hipóteses tem dimensão VC finita, então temos convergência uniforme para *n* grande.
- Como antes, isso nos permite estabelecer limitantes sobre  $\varepsilon(h)$  em termos de  $\varepsilon(h^*)$ .
- Temos então o corolário seguinte:

Para que  $|\varepsilon(h) - \varepsilon(h)| \le \gamma$  seja válido para todo  $h \in \mathcal{H}$  (e portanto  $\varepsilon(\hat{h}) \le \varepsilon(h^*) + 2\gamma$ ) com probabilidade no mínimo  $1 - \delta$ , basta que  $n = \mathcal{O}_{\gamma,\delta}(\mathbf{D})$ .



- Ou seja, se a classe de hipóteses tem dimensão VC finita, então temos convergência uniforme para n grande.
- Como antes, isso nos permite estabelecer limitantes sobre  $\varepsilon(h)$  em termos de  $\varepsilon(h^*)$ .
- Temos então o corolário seguinte:

Para que  $|\varepsilon(h) - \varepsilon(h)| \le \gamma$  seja válido para todo  $h \in \mathcal{H}$  (e portanto  $\varepsilon(\hat{h}) \le \varepsilon(h^*) + 2\gamma$ ) com probabilidade no mínimo  $1 - \delta$ , basta que  $n = \mathcal{O}_{\gamma,\delta}(\mathbf{D})$ .



- Ou seja, se a classe de hipóteses tem dimensão VC finita, então temos convergência uniforme para n grande.
- Como antes, isso nos permite estabelecer limitantes sobre  $\varepsilon(h)$  em termos de  $\varepsilon(h^*)$ .
- Temos então o corolário seguinte:

Para que  $|\varepsilon(h) - \varepsilon(h)| \le \gamma$  seja válido para todo  $h \in \mathcal{H}$  (e portanto  $\varepsilon(\hat{h}) \le \varepsilon(h^*) + 2\gamma$ ) com probabilidade no mínimo  $1 - \delta$ , basta que  $n = \mathcal{O}_{\gamma,\delta}(\mathbf{D})$ .



- Ou seja, se a classe de hipóteses tem dimensão VC finita, então temos convergência uniforme para n grande.
- Como antes, isso nos permite estabelecer limitantes sobre  $\varepsilon(h)$  em termos de  $\varepsilon(h^*)$ .
- Temos então o corolário seguinte:

Para que  $|\varepsilon(h) - \varepsilon(h)| \le \gamma$  seja válido para todo  $h \in \mathcal{H}$  (e portanto  $\varepsilon(\hat{h}) \le \varepsilon(h^*) + 2\gamma$ ) com probabilidade no mínimo  $1 - \delta$ , basta que  $n = \mathcal{O}_{\gamma,\delta}(\mathbf{D})$ .



- Ocorre que, para a maioria das classes de hipóteses, a dimensão VC é aproximadamente linear no número de parâmetros (assumindo-se uma "parametrização" razoável).
- Juntando as peças, concluímos que, para uma classe H (e um algoritmo que visa minimizar o erro de treino), o número de exemplos de treino para que o erro de generalização fique próximo ao do classificador ótimo é usualmente aproximadamente linear no número de parâmetros de H.

- Ocorre que, para a maioria das classes de hipóteses, a dimensão VC é aproximadamente linear no número de parâmetros (assumindo-se uma "parametrização" razoável).
- Juntando as peças, concluímos que, para uma classe  $\mathcal{H}$  (e um algoritmo que visa minimizar o erro de treino), o número de exemplos de treino para que o erro de generalização fique próximo ao do classificador ótimo é usualmente aproximadamente linear no número de parâmetros de  $\mathcal{H}$ .