Intradomain Routing

Routing Overview

- Routing
 - Routing vs. forwarding
 - Properties of routing protocols
- Internet routing architecture
 - Separation of intradomain and interdomain
 - Intra: metric-based and router level
 - Inter: policy-based at Autonomous System level

What is a Route?

• A famous quotation from RFC 791

"A *name* indicates what we seek.
An *address* indicates where it is.
A *route* indicates how we get there."
-- Jon Postel

Forwarding vs. Routing

- Forwarding: data plane
 - -Directing a data packet to an outgoing link
 - -Individual router *using* a forwarding table
- Routing: control plane
 - -Computing paths the packets will follow
 - Routers talking amongst themselves
 - Individual router *creating* a forwarding table

Why Does Routing Matter?

- End-to-end performance
 - Quality of the path affects user performance
 - Propagation delay, throughput, and packet loss
- Use of network resources
 - Balance of the traffic over the routers and links
 - Avoiding congestion by balancing load
- Transient disruptions during changes
 - Failures, maintenance, and load balancing
 - Limiting packet loss and delay during changes
- Realizing business objectives
 - Maximizing revenue or minimizing cost
 - Avoiding paths going through untrusted parties

Choosing a Routing Protocol

- Who is in charge of selecting the path?
 - The network or the end host?
- How complex are the path-selection goals?
 - Shortest-path vs. policy-based routing
- Are participants willing to cooperate?
 - Willing to share information?
 - Have a common goal in selecting paths?
- Is large-scale behavior a concern?
 - Stability of the network topology
 - State and message overhead
 - Disruptions during routing convergence

Many Kinds of Routing Protocols

- Link-state routing (Dijkstra)
 - Routers flood topology information
 - And compute (shortest) paths
- Distance-vector routing (Bellman-Ford)
 - Routers learn path costs from their neighbors
 - And select the neighbor along shortest path
- Policy-based path-vector routing
 - Routers learn full path from their neighbors
 - And select the most desirable path

Many Kinds of Routing Protocols (Continued)

- Source routing
 - End host or edge router learn the topology
 - And select the end-to-end path
- Route servers
 - Set of servers learn topology and compute routes
 - And tell all the routers how to forward packets
- Ad hoc routing
 - Routers keep track of a small neighborhood
 - And forward packets in (hopefully) right direction

Two-Tiered Internet Routing Architecture

- Goal: distributed management of resources
 - Internetworking of multiple networks
 - Networks under separate administrative control
- Solution: two-tiered routing architecture
 - Intradomain: inside a region of control
 - Okay for routers to share topology information
 - Routers configured to achieve a common goal
 - Interdomain: between regions of control
 - Not okay to share complete information
 - Networks may have different/conflicting goals

Autonomous Systems (ASes) Interdomain (i.e., "intra-AS") routing Interdomain routing

Modelling Routing with ILP

Network modelling Techniques: the shortest path problem

Consider a network G = (N, A) in which there is an origin node s and a destination node t. standard notation: n = |N|, m = |A|

What is the shortest path from s to t?

• ILP: Integer Linear Programming

1

Model the Matching with Flow

 $c_{< s, u>} = 1$

- •Total flow out of $u = \text{flow into } u \le 1$
- •Boy *u* matched to at most one girl.

$$c_{} = 1$$

- •Total flow into v = flow out of $v \le 1$
- •Girl v matched to at most one boy.15

Ex2: the Maximum Flow Problem

Directed Graph G = (N, A).

- Source s
- Sink t
- Capacities u_{ii} on arc (i,j)
- Maximize the flow out of s, subject to

Flow out of i = Flow into i, for $i \neq s$ or t.

A Network with Arc Capacities (and the maximum flow)

Intradomain Topology and Routing

Routing Inside an AS

- Intra-AS topology
 - Nodes and edges
- Intradomain routing protocols
 - Distance Vector
 - Split-horizon/Poison-reverse
 - Example: RIP
 - Link State
 - Example: OSPF

Key Questions

- Where to place "nodes"?
 - Typically in dense population centers
 - Close to other providers (easier interconnection)
 - Close to other customers (cheaper backhaul)
 - Note: A "node" may in fact be a group of routers, located in a single city. Called a "Pointof-Presence" (PoP)
- Where to place "edges"?
 - Often constrained by location of fiber

Problem: Routing

- Routing: the process by which nodes discover where to forward traffic so that it reaches a certain node
- Within an AS: there are two "styles"
 - Distance vector
 - Link State

Distance-Vector Routing

- Routers send routing table copies to neighbors
- Routers compute costs to destination based on shortest available path
- Based on Bellman-Ford Algorithm
 d_x(y) = min_x{ c(x,v) + d_y(y) }
 Solution to this equation is x's forwarding table

Good News Travels Quickly

• When costs decrease, network converges quickly

25

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- □ if DV changes, notify neighbors

"good news travels fast"

At time t_0 , y detects the link-cost change, updates its DV, and informs its neighbors.

At time t_j , z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV.

At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does *not* send any message to z.

26

Distance Vector: link cost changes

Link cost changes:

- good news travels fast
- bad news travels slow "count to infinity" problem!

•Assume we use hop count as cost, •A uses B and B uses C to reach Internet with costs 3, 2, 1, respectively

The Count to Infinity Problem

- •C's Internet link breaks
- • C erroneously switches to B, increases its cost to B's +1 = 3

27

The Count to Infinity Problem

- B's path cost is now C's plus 1 = 4
- A hasn't realized what has happened yet

The Count to Infinity Problem

- •B's path cost is still 4
- •A's & C's cost are now B's + 1 = 5

The Count to Infinity Problem

- •B's path cost is now C's + 1 = 6
- • Cycle repeats while "counting to infinity"
- • Packets caught between B & C loop

What are some solutions?

- Poisoned reverse:
 - If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
 - will this completely solve count to infinity problem?
- Split horizon
- Triggered Updates

Example: Routing Information Protocol

• Earliest IP routing protocol (1982 BSD)

Version 1: RFC 1058Version 2: RFC 2453

Features

- Edges have unit cost

- "Infinity" = 16

Sending Updates

- Router listens for updates on UDP port 520

- Message can contain up to 25 table entries

2/

RIP Updates

Initial

- When router first starts, asks for copy of table for every neighbor
- Uses it to iteratively generate own table

• Periodic

- Table refresh every 30 seconds

Triggered

- When every entry changes, send copy of entry to neighbors
 - Except for one causing update (split horizon rule)
- Neighbors use to update their tables

RIP: Staleness and Oscillation Control

- Small value for Infinity
 - Count to infinity doesn't take very long
- Route Timer
 - Every route has timeout limit of 180 seconds
 - Reached when haven't received update from next hop for 6 periods
 - If not updated, set to infinity
 - Soft-state

Behavior

 When router or link fails, can take minutes to stabilize

36

Link-State Routing

- *Idea:* distribute a network map
- Each node performs shortest path (SPF) computation between itself and all other nodes
- Initialization step
 - Add costs of immediate neighbors, D(v), else infinite
 - Flood costs c(u,v) to neighbors, N
- For some D(w) that is not in N
 - -D(v) = min(c(u,w) + D(w), D(v))

37

Link-State vs. Distance-Vector

• Convergence

- DV has count-to-infinity
- DV often converges slowly (minutes)
- Odd timing dependencies in DV

Robustness

- Route calculations a bit more robust under linkstate.
- DV algorithms can advertise incorrect least-cost paths
- Bandwidth Consumption for Messages
- Computation
- Security

20

OSPF: Salient Features

- Dijkstra, plus some additional features
- Equal-cost multipath
- Support for hierarchy: Inter-Area Routing

Example: Open Shortest Paths First (OSPF)

- Key Feature: hierarchy
- Network's routers divided into areas
- Backbone area is area 0
- Area 0 routers perform SPF computation
 - All inter-area traffic travles through Area 0 routers ("border routers")

39

Example: IS-IS

- Originally: ISO Connectionless Network Protocol (CLNP).
 - CLNP: ISO equivalent to IP for datagram delivery services
 - ISO 10589 or RFC 1142
- Later: Integrated or Dual IS-IS (RFC 1195)
 - IS-IS adapted for IP
 - Doesn't use IP to carry routing messages
- OSPF more widely used in enterprise, IS-IS in large service providers

Hierarchical Routing in IS-IS Backbone Area 49.001 Area 49.0002 Level-1 Level-1 Level-2 Routing Routing Routing • Like OSPF, 2-level routing hierarchy Within an area: level-1Between areas: level-2 - Level 1-2 Routers: Level-2 routers may also participate in L1 routing

Level-1 vs. Level-2 Routing

- **Level 1 routing** Routing *within* an area
 - Level 1 routers track links, routers, and end systems within L1 area
 - L1 routers do not know the identity of destinations outside their area.
 A L 1 router forwards all traffic for destinations outside its area to the nearest L2 router within its area.

Level 2 routing

- Routing *between* areas
- Level 2 routers know the level 2 topology and know which addresses are reachable via each level 2 router.

- are reducative via each level 2 fouter.

 Level 2 routers track the location of each level 1 area.

 Level 2 routers are not concerned with the topology within any level 1 area (for example, the details internal to each level 1 area).

 Level 2 routers can identify when a level 2 router is also a level 1 router within the same area.
- Only a level 2 router can exchange packets with external routers located outside its routing domain.

ISIS on the Wire...

IS-IS vs. OSPF

- Cisco ships OSPF in 1991
- Cisco ships dual IS-IS in 1992
- Circa 1995: ISPs need to run IGPs, IS-IS is recommended due to the recent rewrite
- IS-IS became very popular in late 1990s
 - Deployed in most large ISPs (also Abilene)
 - Some ISPs (e.g., AOL backbone) even switched

Measuring Internet Routing

Motivations for Measuring the Routing System

- Characterizing the Internet
 - Internet path properties
 - Demands on Internet routers
 - Routing convergence
- Improving Internet health
 - Protocol design problems
 - Protocol implementation problems
 - Configuration errors or attacks
- Operating a network
 - Detecting and diagnosing routing problems
 - Traffic shifts, routing attacks, flaky equipment, ...

Techniques for Measuring Internet Routing

- Active probing
 - Inject probes along path through the data plane
 - E.g., using traceroute
- Passive route monitoring
 - Capture control-plane messages between routers
 - E.g., using tcpdump or a software router
 - E.g., dumping the routing table on a router
- Injecting network events
 - Cause failure/recovery at planned time and place
 - E.g., BGP route beacon, or planned maintenance

Internet Routing is Hard to Measure

- Nobody knows the Internet topology
 - No central registry of the AS-level graph
 - Little public information about intra-AS topologies
- Deploying monitoring infrastructure is hard
 - Forwarding: active probes of end-to-end paths
 - Routing: passive monitoring of routing messages
- Many measurement challenges
 - Network conditions vary by location
 - Network conditions change over time
 - One-way measurements are hard to collect
 - Controlled experiments are hard to do

Conclusions

- Internet routing architecture
 - Two-tiered system
 - Intradomain is metric-based, with common goal
 - Interdomain is policy-based, reconciling different goals across ASes
- Behavior of complete systems is mysterious
 - Challenging to measure
 - Challenging to characterize, and diagnose

Interdomain Routing: Border Gateway Protocol

- ASes exchange info about who they can reach
 - IP prefix: block of destination IP addresses
 - AS path: sequence of ASes along the path
- Policies configured by the AS's operator
 - Path selection: which of the paths to use?
 - Path export: which neighbors to tell?

