Computer Exercise 2

Submitted by:

Muhammad Ghanayem – 207965922

Wiaam Fares - 209460997

Part II: Visualizing and Moving the Robot:

1.

2. The robot consist 6 Revolute joints, 6 links, a base link, and an end_effector.

3.

The relative rotation between the base_link and the end_effector is 0 in its center position. Both of them rotate around the z axis with their x axis pointing towards the left.

4. We used a fixed type of joint so it moves with the end effector's movement.

here is the modified section of the URDF file, the rest of the file remains the same:

```
k name="sphere-end-effector"><visual><origin xyz="0 0 0" rpy="0 0 0" /><geometry><sphere radius="1"/>
```

```
</geometry>
<material name="white"/>
</visual>
</link>

<joint name="sphere_joint" type="fixed">
<origin xyz="0 0 1.05" rpy="0 0 0"/>
<parent link="end-effector-link"/>
<child link="sphere-end-effector"/>
</joint>
</robot>
```


Part III: Denavit-Hartenberg

3.

Link	a _i	α_{i}	d _i	θί
1	0	$-\frac{\pi}{2}$	0.8	$\theta_1 - \frac{\pi}{2}$
2	0.8	0	0	$\theta_2 - \frac{\pi}{2}$
3	0	$\frac{\pi}{2}$	0	$\theta_3 + \frac{\pi}{2}$
4	0	$-\frac{\pi}{2}$	1.1	$ heta_4$
5	0	$\frac{\pi}{2}$	0.05	$ heta_5$
6	0	0	0.6	$\theta_6 + \frac{\pi}{2}$

4. The first frame is aligned to the base_link frame, but the first link is located in a 0.1 offset along the z axis. There is no rotation between those 2 links.

The last link is aligned to the last frame and there is no offset between them, Therefor:

$$T_0^B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0.1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

```
T_{EE}^{n} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
```

5. a)

b)

Part IV: Forward Kinematics

4. The result for joints configuration j1 matches the results of tf as we can see in the next picture.

^{**} in quaternion, q and -q resemble the same rotation.

Part V: Inverse Kinematics

1.

muhammadgha@DESKTOP-RN6FR8J:~/hw2_ws/src/scripts\$ python hw2_services.py [1.680388874611447, 2.327935788857583, 2.562857292534119]

^CFinal Position Error:[0.00017568 -0.00040761 0.00046185], Final Orientation Error: [-0.00063093 -0.0004069 1 -0.00016114]

Part VII: Trajectory Planning

First of all, we notice that both joints have the same trajectory planning in terms of how both joints start from $\theta=0$ at t=0, then $\theta=\frac{\pi}{2}$ at t=2 and finally $\theta=-\frac{\pi}{2}$ at t=4.

therefor both joints should have the same defined $\theta(t)$.

we define the following constraints:

$$\theta(0) = 0$$
, $\theta(2) = \frac{\pi}{2}$, $\theta(4) = -\frac{\pi}{2}$, $\dot{\theta}(0) = 0$ and $\dot{\theta}(4) = 0$.

and as a result we define a polynom of 4_{th} degree.

$$\theta(t) = a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0.$$

from the defined constraints, we get the following:

1.
$$a_0 = 0$$

2.
$$a_1 = 0$$

3.
$$16a_4 + 8a_3 + 4a_2 + 2a_1 + a_0 = \frac{\pi}{2}$$

$$4.256a_4 + 64a_3 + 16a_2 + 4a_1 + a_0 = -\frac{\pi}{2}$$

$$5.\ 256a_{\$} + 48a_{3} + 8a_{2} + a_{1} = 0$$

after solving the set of equations, we get the following:

$$a_4 = 0.19726$$
 $a_3 = -1.129$ and $a_2 = 2.0616$.

$$\to \theta(t) = 0.19726t^4 - a.129t^3 + 2.0616t^2.$$

