

1 1. (Amended) A method of increasing the power handling
2 capability of a power line, the method comprising:
3 providing a conductor configured to transmit energy intermediate
4 plural locations;
5 supporting the conductor at a plurality of positions intermediate
6 the locations, the supporting at a plurality of positions defining a
7 plurality of spans within the conductor;
8 creating a model of the conductor following the supporting step;
9 identifying a critical span within the modelled conductor;
10 altering the modelled conductor responsive to the identifying step;
11 and
12 analyzing the modelled conductor following the altering step.

13 C
14 2. (Amended) The method according to claim 1 further
15 comprising analyzing the modelled conductor at an increased operating
16 condition and the identifying [being] step is responsive to the analyzing
17 the modelled conductor at the increased operating condition.

18
19 4. (Amended) The method according to claim 3 wherein the
20 altering [the conductor] step includes at least one of removing a portion
21 of the modelled conductor and adjusting the positioning of one of the
22 clamps [within] relative to the modelled conductor.

1 5. (Amended) The method according to claim 1 further
2 comprising identifying another critical span following the analyzing step.

3
4 6. (Amended) The method according to claim 1 further
5 comprising [repeating the altering and analyzing following the identifying
6 the another critical span] altering the conductor following the analyzing
7 step.

8
9 7. (Amended) The method according to claim [1 further
10 comprising optimizing including repeating the altering and the
11 analyzing] 6 wherein the altering the conductor step comprises at least
12 one of removing a portion of the conductor and adjusting the
13 positioning of at least one clamp coupled with the conductor.

14
15 8. (Amended) The method according to claim 1 wherein the
16 analyzing step comprises using a digital computer.

17
18 10. (Amended) The method according to claim 9 further
19 comprising:

20 creating a model of the conductor;
21 analyzing the modelled conductor at an increased operating
22 condition; and

23 identifying a critical span responsive to the analyzing step, wherein
24 the altering step is responsive to the identifying step.

1 11. (Amended) The method according to claim 9 further
2 comprising:

3 [analyzing the modelled conductor following the altering]
4 creating a model of the conductor; and
5 altering the modelled conductor, wherein the altering the conductor
6 step is responsive to the altering the modelled conductor step.

7
8 12. (Amended) The method according to claim 11 further
9 comprising:

10 identifying a critical span following the [analyzing] altering the
11 modelled conductor step; and
12 repeating the altering the modelled conductor step responsive to
13 the identifying step.

14
15 13. (Amended) The method according to claim 11 further
16 comprising optimizing steps including repeating the altering the modelled
17 conductor step and the analyzing step.

1 14. (Amended) A method of increasing the power handling
2 capability of a power line, the method comprising:

3 providing a conductor configured to transmit energy intermediate
4 plural locations;

5 creating a model of the conductor;

6 first analyzing the modelled conductor at an increased operating
7 condition following the creating step;

8 identifying a critical span following the first analyzing step;

9 altering the modelled conductor responsive to the identifying step;

10 and

11 second analyzing the modelled conductor following the altering
12 step.

14 15. (Amended) The method according to claim 14 wherein the
15 first analyzing step comprises analyzing the modelled conductor at a
16 maximum operating temperature.

18 16. (Amended) The method according to claim 14 wherein the
19 first and second [analyzings] analyzing steps individually comprise using
20 a digital computer.

1 17. (Amended) The method according to claim 14 further
2 comprising [supporting the conductor using a plurality of clamps] altering
3 the conductor following the first analyzing step and the second analyzing
4 step.

5

6 18. (Amended) The method according to claim 17 wherein the
7 altering step includes at least one of removing a portion of the
8 modelled conductor and adjusting the positioning of [one of the clamps
9 within] at least one clamp coupled with the modelled conductor.

10

11 19. (Amended) The method according to claim 14 further
12 comprising:

13 identifying another critical span following the second [modelling]
14 analyzing step; and

15 [repeating the altering and modelling following the analyzing
16 another critical span] altering the modelled conductor following the
17 identifying the another critical span.

18

19 20. (Amended) The method according to claim 14 further
20 comprising optimizing steps including repeating the altering step and the
21 second analyzing step.