

# Single Supply V.35 Transceiver

# **Preliminary Technical Information**

ADM1345

#### **FEATURES**

Provides All V.35 Differential Clock and Data Signals on One Chip
Single +5V Supply
Shutdown Mode 1µA Typical I<sub>CC</sub>
Pin-Selectable DCE or DTE Configuration
ESD-Protected Transmitter Outputs and Receiver Inputs up to 10kV
Failsafe Transmitter Outputs are High Impedance when Disabled, Shutdown or Power Off
Short-Circuit Protected Transmitter Outputs
Complies With CCITT V.35 Specification
Flow-through Pinout for Easy PCB Layout
Second Source for LTC1345

APPLICATIONS
Modems
Telecommunications
Data Routers

#### GENERAL DESCRIPTION

and receive the differential clock and data signals for a V.35 interface while requiring only a single +5V supply. The device contains three current output differential line transmitters, three differential receivers, and a charge pump to generate an on-chip negative supply. The ADM1345 operates at data rates up to 10Mbaud. Transmitter outputs are short-circuit protected and are failsafe, assuming a high impedance state when the transmitters are disabled, the device is shut down, or the power is off. A Receiver Output Enable pin allows the receiver outputs to be forced into a high impedance state. The receiver inputs and transmitter outputs are both protected against repeated electrostatic discharge (ESD) up to  $\pm 10 \,\mathrm{kV}$ .

The ADM1345 is a line transmitter/receiver that can send

A complete DCE or DTE V.35 port can be implemented using only an ADM1345 and 4 x  $1\mu$ F capacitors for the charge pump, an external resistor termination network, and an ADM208E for the control signals.

#### FUNCTIONAL BLOCK DIAGRAM



## **Preliminary Technical Information**

# ADM1345-SPECIFICATIONS

 $(V_{CC} = Full\ Operating\ Range,\ T_A = T_{MIN}\ to\ T_{MAX}\ unless\ otherwise\ noted)$ 

| Parameter                                                                                                                                                                                                                                                                                                                                               | Min                          | Тур                          | Max                                 | Units                                       | Test Conditions/Comments                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitter Differential Output Voltage, $V_{OD}$ Transmitter Common-Mode Output Voltage, $V_{OC}$ TransmitterOutputHighCurrent, $I_{OH}$ Transmitter Output Low Current, $I_{OL}$ Transmitter Output Leakage Current, $I_{OZ}$                                                                                                                         | 0.44<br>-0.6<br>-12.6<br>9.4 | 0.55<br>0<br>-11<br>11<br>+1 | 0.66<br>0.6<br>-9.4<br>12.6<br>+100 | V<br>V<br>mA<br>mA<br>μA                    | Figure 2, $-4V \le V_{OS} \le 4V$<br>Figure 2, $V_{OS} = 0V$<br>$V_{Y, Z} = 0V$<br>$V_{Y, Z} = 0V$<br>$Sl = S2 = 0V, -5V \le V_{Y, Z} \le 5V$                                                                                                                                          |
| Transmitter Output Impedance, R <sub>O</sub>                                                                                                                                                                                                                                                                                                            |                              | 100                          |                                     | kΩ                                          | $-2V \le V_{Y, Z} \le 2V$                                                                                                                                                                                                                                                              |
| Differential Receiver Input Threshold Voltage, $V_T$ Receiver Input Hysteresis, $\Delta V_{TH}$ Receiver Input Current (A, B), $I_{IN}$ Receiver Input Impedance, $R_{IN}$ Receiver Output High Voltage, $V_{OH}$ Receiver Output Low Voltage, $V_{OL}$ Receiver Output Short-Circuit Current, $I_{OSR}$ Receiver Three-State Output Current, $I_{OZR}$ | 17.5<br>3                    | 50<br>30<br>4.5<br>0.2       | 25<br>0.4<br>0.4<br>85<br>±10       | 200<br>mV<br>mA<br>kΩ<br>V<br>V<br>mA<br>μA | $\begin{split} mV & -7V \leq (V_A + V_B)/2 \leq 7V \\ -7V \leq (V_A + V_B)/2 \leq 7V \\ -7V \leq V_{A, B} \leq 7V \\ -7V \leq V_{A, B} \leq 7V \\ I_O = 4mA, V_{B, A} = 0.2V \\ I_O = 4mA, V_{B, A} = -0.2V \\ 0V < V_O < V_{CC} \\ S1 = S2 = 0V, 0V \leq V_O \leq V_{CC} \end{split}$ |
| Logic Input High Voltage, $V_{\rm INH}$<br>Logic Input Low Voltage, $V_{\rm INL}$<br>Logic Input Current, $I_{\rm IN}$                                                                                                                                                                                                                                  | 2                            |                              | 0.8<br>±10                          | V<br>V<br>μA                                | Transmitter Inputs, S1, S2, OE<br>Transmitter Inputs, S1, S2, OE<br>Transmitter Inputs, S1, S2, OE                                                                                                                                                                                     |
| $ m V_{CC}$ Supply Current, $ m I_{CC}$                                                                                                                                                                                                                                                                                                                 |                              | 118<br>19<br>1               | 170<br>30<br>100                    | mA<br>mA<br>μA                              | Figure 2, $V_{OS}$ = 0, $S1$ = $S2$ = HIGH<br>No Load, $S1$ = $S2$ = HIGH<br>Shutdown, $S1$ = $S2$ = $0V$                                                                                                                                                                              |
| Generated Negative Supply Voltage, V <sub>EE</sub>                                                                                                                                                                                                                                                                                                      |                              | -5.5                         |                                     | V                                           | No Load, S1 = S2 = HIGH                                                                                                                                                                                                                                                                |
| Transmitter Rise or Fall Time, t <sub>r</sub> , t <sub>f</sub> Transmitter Input to Output Propagation Delay, Low to High, t <sub>PLH</sub>                                                                                                                                                                                                             |                              | 7<br>25                      | 40<br>70                            | ns<br>ns                                    | Figures 2 and 4, $V_{OS} = 0V$<br>Figures 2 and 4, $V_{OS} = 0V$                                                                                                                                                                                                                       |
| Transmitter Input to Output Propagation Delay,<br>High to Low, t <sub>PHL</sub><br>Transmitter Output to Output Skew, t <sub>SKEW</sub>                                                                                                                                                                                                                 |                              | 25<br>0                      | 70                                  | ns<br>ns                                    | Figures 2 and 4, $V_{OS} = 0V$<br>Figures 2 and 4, $V_{OS} = 0V$                                                                                                                                                                                                                       |
| Receiver Input to Output Propagation Delay,<br>Low to High, t <sub>PLH</sub><br>Receiver Input to Output Propagation Delay,<br>High to Low, t <sub>PHL</sub>                                                                                                                                                                                            |                              | 49<br>52                     | 100<br>100                          | ns<br>ns                                    | Figures 2 and 5, $V_{OS} = 0V$<br>Figures 2 and 5, $V_{OS} = 0V$                                                                                                                                                                                                                       |
| Differential Receiver Skew, $(t_{SKEW} = t_{PLH} - t_{PHL})$<br>Receiver Enable to Output LOW, $t_{ZL}$<br>Receiver Enable to Output HIGH, $t_{ZH}$<br>Receiver Disable From LOW, $t_{LZ}$<br>Receiver Disable From HIGH, $t_{HZ}$                                                                                                                      |                              | 3<br>40<br>35<br>30<br>35    | 70<br>70<br>70<br>70                | ns<br>ns<br>ns<br>ns                        | Figures 2 and 5, $V_{OS} = 0V$<br>Figures 3 and 6, $C_L = 15pF$<br>Figures 3 and 6, $C_L = 15pF$<br>Figures 3 and 6, $C_L = 15pF$<br>Figures 3 and 6, $C_L = 15pF$                                                                                                                     |
| Charge Pump Oscillator Frequency, f <sub>OSC</sub>                                                                                                                                                                                                                                                                                                      |                              | 200                          |                                     | kHz                                         |                                                                                                                                                                                                                                                                                        |
| Maximum Data Rate, BR <sub>MAX</sub> (Note 3)                                                                                                                                                                                                                                                                                                           | 10                           | 15                           |                                     | Mbaud                                       |                                                                                                                                                                                                                                                                                        |

#### Notes

- 1. All currents into device pins are termed positive; all currents out of device pins are termed negative. All voltages are referenced to device ground unless otherwise specified.
- 2. All typicals are given for Vcc = 5V, C1 = C2 = C3 = l $\mu$ F ceramic capacitors and T $_A$  = 25°C.
- 3. Maximum data rate is specified for NRZ data encoding scheme. The maximum data rate may be different for other data encoding schemes. Data rate is guaranteed by correlation and is not tested.

## **Preliminary Technical Information**

ADM1345

#### ABSOLUTE MAXIMUM RATINGS\*

<sup>\*</sup>Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods of time may affect device reliability.



Figure 1. ADM1345 Pin Configuration Diagram

#### ORDERING GUIDE

| Model     | Temperature Range | Package Option |
|-----------|-------------------|----------------|
| ADM1345JN | 0°C to +70°C      | N-28           |
| ADM1345JR | 0°C to +70°C      | R-28           |
| ADM1345AN | –40°C to +85°C    | N-28           |
| ADM1345AR | −40°C to +85°C    | R-28           |

#### CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADM1345 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. A -3-

# **Preliminary Technical Information**

### PIN FUNCTION DESCRIPTION

| Pin No. | Mnemonic | Function                                                                                                                        |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------|
| 1       | C2+      | Capacitor C2 Positive Terminal. This is the positive side of the capacitor for the second stage of the charge pump.             |
| 2       | C1+      | Capacitor C1 Positive Terminal.  This is the positive side of the capacitor for the first stage of the charge pump.             |
| 3       | $V_{CC}$ | Positive Supply, $4.75 \le \text{Vcc} \le 5.25\text{V}$ .                                                                       |
| 4       | C1-      | Capacitor C1 Negative Terminal. This is the negative terminal of the capacitor for the first stage of the charge pump.          |
| 5       | GND      | Ground. The positive terminal of C3 is connected to ground.                                                                     |
| 6       | Tl       | Transmitter 1 Input. TTL/CMOS-compatible logic input.                                                                           |
| 7       | Т2       | Transmitter 2 Input. TTL/CMOS-compatible logic input.                                                                           |
| 8       | Т3       | Transmitter 3 Input. TTL/CMOS-compatible logic input.                                                                           |
| 9       | S1       | Select Input 1. TTL/CMOS-compatible logic input.                                                                                |
| 10      | S2       | Select Input 2. TTL/CMOS-compatible logic input.                                                                                |
| 11      | R3       | Receiver 3 Output. TTL/CMOS-compatible logic output.                                                                            |
| 12      | R2       | Receiver 2 Output. TTL/CMOS-compatible logic output.                                                                            |
| 13      | R1       | Receiver 1 Output. TTL/CMOS-compatible logic output.                                                                            |
| 14      | OE       | Receiver Output Enable. TTL/CMOS-compatible logic input.                                                                        |
| 15      | A1       | Receiver 1 Inverting Input.                                                                                                     |
| 16      | B1       | Receiver 1 Noninverting Input.                                                                                                  |
| 17      | A2       | Receiver 2 Inverting Input.                                                                                                     |
| 18      | B2       | Receiver 2 Noninverting Input.                                                                                                  |
| 19      | A3       | Receiver 3 Inverting Input.                                                                                                     |
| 20      | В3       | Receiver 3 Noninverting Input.                                                                                                  |
| 21      | Z3       | Transmitter 3 Inverting Output. Differential current source output. Sources current when T3 low. Sinks current when T3 high.    |
| 22      | Y3       | Transmitter 3 Noninverting Output. Differential current source output. Sinks current when T3 low. Sources current when T3 high. |
| 23      | Z2       | Transmitter 2 Inverting Output. Differential current source output. Sources current when T2 low. Sinks current when T2 high.    |
| 24      | Y2       | Transmitter 2 Noninverting Output. Differential current source output. Sinks current when T2 low. Sources current when T2 high. |
| 25      | Z1       | Transmitter 1 Inverting Output. Differential current source output. Sources current when T1 low. Sinks current when T1 high.    |
| 26      | Yl       | Transmitter 1 Noninverting Output. Differential current source output. Sinks current when T1 low. Sources current when T2 high. |
| 27      | $V_{EE}$ | Charge Pump Output. Connected to negative terminal of capacitor C3.                                                             |
| 28      | C2-      | Capacitor C2 Negative Terminal.                                                                                                 |

-4- REV. A

## **Typical Performance Characteristics**



Figure 2. V.35 Transmitter/Receiver Test Circuit



Figure 3. Receiver Test Loads for tzl, tzH



Figure 4. V.35 Transmitter Propagation Delays



Figure 5: V.35 Receiver Propagation Delays



Figure 6. Receiver Enable and Disable Times



Figure 7. Transmitter Output Waveforms



Figure 8. Receiver Output Waveforms

REV. A -5-

# AWAITINGDATA

Figure 9. Transmitter Output Current vs. Temperature



Figure 10. Transmitter Output Current vs. Output Voltage



Figure 11. Transmitter Output Skew vs. Temperature

## **Preliminary Technical Information**



Figure 12. Receiver Skew vs. Temperature



Figure 13. Supply Current vs. Temperature



Figure 14. V<sub>EE</sub> vs. Temperature

#### CIRCUIT DESCRIPTION

The ADM1345 contains three transmitters with TTL/CMOS-compatible inputs and complementaryl current-source outputs, three receivers with differential inputs and TTL/CMOS-compatible outputs, and an inverting charge pump to provide a negative supply rail ( $V_{\rm EE}$ ).

#### TRANSMITTER OUTPUTS

The internal CMOS logic of the transmitter controls an output stage consisting of switched complementary current sources, as shown in figure 15.



Figure 15. Transmitter Equivalent Output Circuit

With a logic zero at the transmitter input, the inverting output Z sources 11mA (positive current flows out of the pin) and the non-inverting output Y sinks 11mA (positive current flows into the pin). With a logic 1 at the transmitter input, the converse is true, Z sinks 11mA and Y sources 11mA.

The differential transmitter output voltage is set by the termination resistors. With both transmitter and receiver terminated with differential  $50\Omega$  resistors, the output voltage is set to  $(50\Omega \times 11\text{mA}) = 550\text{mV}$ .

If the transmitter and receiver grounds are at the same potential, then the output voltages of the transmitter will be symmetrical above and below zero and there will be no common-mode voltage ( assuming that the current sources and  $50\Omega$  resistors are matched). However, the transmitter outputs have a common-mode range of  $\pm 2V$ , which allows for a ground difference between transmitter and receiver of  $\pm 4V$ . In this case, a common-mode current will flow in the  $125\Omega$  resistors. More information on terminating resistors is given in the Applications Information section.

#### RECEIVER INPUTS

All receiver inputs have a  $30k\Omega$  resistance to ground and require additional, external terminating resistors. Receivers feature hysteresis of 50mV to improve noise immunity. The

receivers have a common Output Enable (OE) pin, which enables the receiver outputs when low and puts the receiver outputs into a high impedance state when high. OE should be held low for normal operation.

#### **SELECT INPUTS**

The ADM1345 can be configured by two select inputs, which may be hardwired or under software control. Using these two inputs, four modes can be selected, as shown in the following truth table.

Table I. Transmitter and Receiver Configuration

| <u>S1</u> | S2 | Condition                                              |
|-----------|----|--------------------------------------------------------|
| 0         | 0  | Shutdown Mode, all transmitters and receivers inactive |
| 0         | 1  | All receivers active, TX3 shut down (DTE Mode)         |
| 1         | 0  | All transmitters active, RX3 shut down (DCE Mode)      |
| 1         | 1  | All transmitters and receivers active                  |

In the DTE mode, the output of the shut-down transmitter (TX3) assumes a high-impedance state. In the DCE mode, the output of the shut-down receiver (RX3) assumes a high impedance state.

In the shutdown mode (S1 and S2 low) the charge pump is switched off,  $V_{EE}$  is clamped to ground, and all transmitter and receiver outputs assume a high impedance state.

Truth tables for the various transmitter and receiver input conditions are given below.

Table II. Transmitter Truth Table

|               | Inputs |    |   | Outputs |         |    |    |  |
|---------------|--------|----|---|---------|---------|----|----|--|
| Configuration | S1     | S2 | Т | Y1 & Y2 | Z1 & Z2 | Y3 | Z3 |  |
| DTE           | 0      | 1  | 0 | 0       | 1       | Z  | Z  |  |
| DTE           | 0      | 1  | 1 | 1       | 0       | Z  | Z  |  |
| DCE or all ON | 1      | X  | 0 | 0       | 1       | 0  | 1  |  |
| DCE or all ON | 1      | X  | 1 | 1       | 0       | 1  | 0  |  |
| Shutdown      | 0      | 0  | X | Z       | Z       | Z  | Z  |  |

Table III. Receiver Truth Table

|               | Inputs |    |    | Outputs |         |    |  |
|---------------|--------|----|----|---------|---------|----|--|
| Configuration | S1     | S2 | OE | B-A     | R1 & R2 | R3 |  |
| DTE or all ON | X      | 1  | 0  | ≥0.2V   | 1       | 1  |  |
| DTE or all ON | X      | 1  | 0  | ≤-0.2V  | 0       | 0  |  |
| DCE           | 1      | 0  | 0  | ≥0.2V   | 1       | Z  |  |
| DCE           | 1      | 0  | 0  | ≤-0.2V  | 0       | Z  |  |
| Disabled      | X      | X  | 1  | X       | Z       | Z  |  |
| Shutdown      | 0      | 0  | X  | X       | Z       | Z  |  |

Z = high impedance

#### CHARGE PUMP

A negative supply voltage is required to achieve the negative portion of the transmitter output common-mode range. This is achieved by a charge-pump voltage-doubler/inverter.



Figure 16. Connection of Charge Pump Capacitors

The charge pump requires 3,  $1\mu F$  capacitors, and the the 5V supply should also be decoupled with a  $1\mu F$  capacitor close to the  $V_{CC}$  pin More details about charge pump capacitors and supply decoupling are given in the Applications Information.

#### **ESD PROTECTION**

The receiver inputs and transmitter outputs of the ADM1345 have built-in protection against repeated electrostatic discharge (ESD) transients of up to  $\pm 10 \mathrm{kV}$ . As the ESD protection depends on clamping the transient to  $V_{CC}$  or  $V_{EE}$  by on-chip diodes, the impedance seen at these pins must be low, which means that capacitors with low equivalent series resistance (ESR) must be used on these pins.

ESD testing is carried out using the Human Body Model.

#### APPLICATIONS INFORMATION

## CHARGE PUMP CAPACITORS AND SUPPLY DECOUPLING

For proper operation of the charge pump, the capacitors should have an equivalent series resistance (ESR) less than  $1\Omega.$  As the charge pump draws current pulses from  $V_{CC}$ , the  $V_{CC}$  decoupling capacitor should also have low ESR. The  $V_{CC}$  decoupling capacitor and  $V_{EE}$  reservoir capacitor should also have low ESR because they determine how effectively ESD pulses are clamped to  $V_{CC}$  or  $V_{EE}$  by the onchip clamp diodes. Tantalum or monolithic ceramic capacitors are suitable for these components. If using tantalum capacitors, do not forget to observe polarity.

#### CABLE TERMINATION

Both the transmitter and receiver end of the cable connected between ADM1345s must be properly and identically terminated. Termination requires a differential resistance of  $100\Omega$  between the transmitter outputs (or receiver inputs) and a common-mode resistance of  $150\Omega$  to ground to allow common-mode current to flow if the transmitter and receiver grounds are at different potentials.

## **Preliminary Technical Information**



Figure 17. Termination Networks

This requirement can be met using either a Y network or an equivalent D network, as shown in figure 18. Standard 1/8W surface mount or through-hole resistors may be used but resistor tolerance should be 5% or better to maintain the proper differential output swing. Alternatively, a complete package containing 5 terminating networks in a 14-pin SO-IC or DIP can be obtained from:

BI Technologies (Formerly Beckman Industrial)

Resistor Networks,

4200 Bonita Place

Fullerton, CA 92635

Phone: (714) 447-2357 Fax: (714) 447 2500

Part #: BI Technologies 627T500/1250 (SOIC) BI Technologies 899TR50/125 (DIP)

#### DCE/DTE PORT APPLICATION

The ADM1435 is ideally suited for implementation of a Data Terminal Equipment (DTE) or Data Circuit Terminating Equipment (DCE) port. Figure 18 (facing page) shows a complete V.35 DTE/DCE interface using only two ICs, one terminating resistor network, and 9 capacitors for each side of the interface. The ADM1345 is used to transmit and receive the high-speed data and clock signals, while the ADM208Es are used for the lower speed control signals.

–8– REV. A



Figure 18. Complete DTE/DTE Interface Operating from Single +5V Supply

## **Preliminary Technical Information**

#### RS422/RS485 APPLICATIONS

The receivers in the ADM1345 are ideally suited to RS422 and RS485 applications. Using the circuit of figure 19, the receiver can reconstruct the data stream at data rates up to 10Mbaud while meeting the RS422 and RS485 common-mode voltage requirements of -7V to +12V.



Figure 19. RS422/RS485 Application

#### **OUTLINE DIMENSIONS**

Dimenions shown in inches and (mm)

#### 28-Lead Plastic DIP (N-28)



28-Lead Plastic DIP (N-28)



28-Lead SOIC (R-28)

–10– REV. A