### Redes Neurais Convolucionais

André Gustavo Hochuli

Orientadores: Dr. Luiz E. S. Oliveira/Dr. Alceu Britto

Programa de Pós-Graduação em Informática

Departamento de Informática

**UFPR** 

### **Redes Neurais**

- Neurônio Artificial
  - Vetor de Caracteristícas
  - Pesos
  - Bias
  - Função de Ativação



- Funções de Ativação
  - Dado uma entrada, define um estado para o neurônio.



## **Redes Neurais**

• Funções de Ativação



• Rede Neural Artificial (MLP)



Redes Neurais Convolucionais

# **Redes Neurais**

• Problema: Como determinar a probabilidade de cada classe na camada de saída da rede neural ?



### **Redes Neurais**

- Função SoftMax
  - Normaliza entre 0 e 1 as saídas, em um problema multi-classes, obtidas por um classificador linear (Ex: Neurônios).
  - Aplicada na camada de saída da rede (output layer).
  - Objetivo: Definir a probabilidade de uma classe dentro de um problema multiclasses





Redes Neurais Convolucionais

### **Redes Neurais**

• Função SoftMax - Exemplo



$$e^{0}$$
 = 1.0000  
 $e^{1}$  = 2.7182  
 $e^{-0.5}$  = 0.6065  
 $e^{0.5}$  = 1.6487

$$\sum_{j \in group} e^{z_j} = \sim 5.9734$$



$$y_0 = \frac{1.0000}{\sim 5.9734} = 0.16$$

$$y_1 = \frac{2.7182}{\sim 5.9734} = 0.46$$

$$y_2 = \frac{0.6065}{\sim 5.9734} = 0.10$$

$$y_3 = \frac{1.6487}{\sim 5.9734} = 0.27$$



# Convoluções Operações entre Matrizes (Imagem X Kernel) Ex: Filtros, Bordas, Etc Parâmetros do Kernel Tamanho Passo / Salto Pesos "Padding"

# Pooling (Agregação)

- Convolução para reduzir escala (downsampling)
- Max, Avg, Mediana, etc.
- Max é o mais comum



Redes Neurais Convolucionais

# **Deep Learning**

- Aprendizado baseado em Multi-Camadas (RN Densas)
- Representação dos dados em diferentes níveis de abstração
- Extração de Características é Implícita
- Elevada quantidade de parâmetros (Ajuste por BackProgation)
- Necessita de um grande número de exemplos para o aprendizado eficiente
- O aprendizado é voltado para compreensão pela máquina, ou seja, os dados são de díficil compreensão/visualização humana
- Vasta aplicação na área de Visão Computacional (processamento de áudio, imagens, vídeo, etc).



# Deep Learning – Vanish Gradient Problem

Problema do desaparecimento do gradiente e convergência da rede

- → Valores de entrada mapeados em gradientes pequenos
- ightarrow Ativação por Sigmoid [ 0 ightarrow1 ] ou Tangh [-1 ightarrow 1]
- → Variação "pequena"
- Agrava ao longo de uma rede múltiplas camadas
  - → Uma mudança de valores na entrada, pouco altera as camadas mais distantes



- · Aprendizado mais se torna mais lento
- Solução encontrada: RELU [ f(x) = max(0,x) ]
   → Mapeamento [0,∞]



- Inspiradas no modelo biológico da visão
- Conceito de Deep Learning (Multi-Camadas)
- Idealizada no ínicio do anos 90 [Lecun], e vasta aplicação após 2006 devido a "popularização" de GPU's (Custo ~\$ 3000,00)
- Treinamento de alto custo computacional e requer numerosa base de dados



Redes Neurais Convolucionais

### Redes Neurais Convolucionais

- Compostas de duas grandes etapas:
  - →Extração de Características pelas Camadas Convolucionais
  - →Classificação



Redes Neurais Convolucionais

# Tipos de Camadas (Layers)

- Convolucional : Definem os filtros (Aprendizado / BackPropagation)
- Ativação: Neurônios (Relu / Sigmoid / TangH)
- Pooling: Reduzem as escalas (Max, Median, etc..)
- Fully-Connected (FC): Camada que determina as classes (Classificador)



# Extração de Características

- Transforma uma imagem em um vetor de características
  - → Sequência de Convoluções, Ativação e Pooling's
  - → Convoluções: altera a representação dos dados e aprende os filtros
  - ightarrow Pooling: reduz a escala para o próximo layer Como ?
- Pesos dos filtros são calculados automaticamente (BackPropagation)
- Cada filtro aprendido é um extrator de características
- Cada imagem resultante de um filtro é um mapa de características
- Os pooling's s\u00e3o necess\u00e1rios para reduzir a quantidade de caracter\u00edsticas por filtro (redu\u00e7\u00e3o de escala)















• O que fazer se houver poucos exemplos na base ? Ou pouca variabilidade de uma mesma classe ?

Amostra -



Data Augmentation

Ampliação do número de amostras modificando a amostra original:

- → Translações→ Ruídos
- → Brilho / Contraste
  - $\rightarrow$  Flip's
  - → Smooth's



Redes Neurais Convolucionais

# Deep Learning - Análise

### **Pros**

- Enables learning of features rather than hand tuning
- Impressive performance gains on
  - Computer vision
  - Speech recognition
  - Some text analysis
- Potential for much more impact

### Cons

- Computationally really expensive
- Requires a lot of data for high accuracy
- · Extremely hard to tune
  - Choice of architecture
  - Parameter types
  - Hyperparameters
  - Learning algorithm

- ..

Computational + so many choices = incredibly hard to tune









# LENET-5 • Yan Lecun – 1998 • Primeira CNN implementada e testada com sucesso (Bell Labs) • Reconhecimento de Dígitos Manuscritos → MNIST DATASET (10 Classes [#0....#9]) → 60 K Treinamento → 10 K Teste • 0.95% (erro) • ~ 345 K de conexões • ~ 60 K parâmetros Ct. t.maps 16@10.10 St. t.maps 16@40.5 Redes Neurais Convolucionais

















| patch size/ output   #3×3   #3×3   #5×5   #5×5   pool |        |            |       |      |        |      |        |      |      |        |      |
|-------------------------------------------------------|--------|------------|-------|------|--------|------|--------|------|------|--------|------|
| type                                                  | stride | size       | depth | #1×1 | reduce | #3×3 | reduce | #5×5 | proj | params | ops  |
| convolution                                           | 7×7/2  | 112×112×64 | 1     |      |        |      |        |      |      | 2.7K   | 34M  |
| max pool                                              | 3×3/2  | 56×56×64   | 0     |      |        |      |        |      |      |        |      |
| convolution                                           | 3×3/1  | 56×56×192  | 2     |      | 64     | 192  |        |      |      | 112K   | 360N |
| max pool                                              | 3×3/2  | 28×28×192  | 0     |      |        |      |        |      |      |        |      |
| inception (3a)                                        |        | 28×28×256  | 2     | 64   | 96     | 128  | 16     | 32   | 32   | 159K   | 128N |
| inception (3b)                                        |        | 28×28×480  | 2     | 128  | 128    | 192  | 32     | 96   | 64   | 380K   | 304N |
| max pool                                              | 3×3/2  | 14×14×480  | 0     |      |        |      |        |      |      |        |      |
| inception (4a)                                        |        | 14×14×512  | 2     | 192  | 96     | 208  | 16     | 48   | 64   | 364K   | 73M  |
| inception (4b)                                        |        | 14×14×512  | 2     | 160  | 112    | 224  | 24     | 64   | 64   | 437K   | 88M  |
| inception (4c)                                        |        | 14×14×512  | 2     | 128  | 128    | 256  | 24     | 64   | 64   | 463K   | 100N |
| inception (4d)                                        |        | 14×14×528  | 2     | 112  | 144    | 288  | 32     | 64   | 64   | 580K   | 119N |
| inception (4e)                                        |        | 14×14×832  | 2     | 256  | 160    | 320  | 32     | 128  | 128  | 840K   | 170N |
| max pool                                              | 3×3/2  | 7×7×832    | 0     |      |        |      |        |      |      |        |      |
| inception (5a)                                        |        | 7×7×832    | 2     | 256  | 160    | 320  | 32     | 128  | 128  | 1072K  | 54M  |
| inception (5b)                                        |        | 7×7×1024   | 2     | 384  | 192    | 384  | 48     | 128  | 128  | 1388K  | 71M  |
| avg pool                                              | 7×7/1  | 1×1×1024   | 0     |      |        |      |        |      |      |        |      |
| dropout (40%)                                         |        | 1×1×1024   | 0     |      |        |      |        |      |      |        |      |
| linear                                                |        | 1×1×1000   | 1     |      |        |      |        |      |      | 1000K  | 1M   |
| softmax                                               |        | 1×1×1000   | 0     |      |        |      |        |      |      |        |      |







### FrameWork CAFFE DEEP LEARNING

- Implementação C++ / CUDA (GPU)
- API Python
- SITE: <a href="http://caffe.berkeleyvision.org/">http://caffe.berkeleyvision.org/</a>
- Tutorial de Instalação:

http://www.inf.ufpr.br/aghochuli/caffe/

http://caffe.berkeleyvision.org/installation.html

 Sintaxe da configuração de uma rede: <a href="http://caffe.berkeleyvision.org/tutorial/">http://caffe.berkeleyvision.org/tutorial/</a>

### FrameWork CAFFE DEEP LEARNING

• lenet\_solver.prototxt

```
# The train/test net protocol buffer definition』
net: "dummy/models/lenet/lenet_train_val.prototxt"』
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations, J
# covering the full 10,000 testing images.』
test_iter: 100↓
# Carry out testing every 500 training iterations.↓
test_interval: 500↓
# The base learning rate, momentum and the weight decay of the network.
momentum: 0.9🍕
# The learning rate policy lr_policy: "inv" l
gamma: 0.0001
power: 0.75
#Display every 100 iterations,
display: 100,
#The maximum number of iterations,
max_iter: 10000 J
# snapshot intermediate results』
snapshot: 2000 J
snapshot. 2000s
snapshot_prefix: "dummy/models/lenet/lenet" b
# solver mode: CPU or GPU
solver_mode: GPU
```

Redes Neurais Convolucionais

### FrameWork CAFFE DEEP LEARNING

lenet\_train\_val.prototxt : Data Sources

```
layer { J
name: "mnist" J
type: "Data" J
top: "data" J
top: "label" J
name: "LeNet"』
layer {』
name: "script" a
type: "Data" a
top: "data" a
top: "label" a
                                                              include { 』
 include { |
                                                                phase: TEST J
phase: TRAIN』
                                                              transform_param { | scale: 0.00390625 | 
 transform_param { J
  scale: 0.00390625$
                                 1 / 256
                                                              data_param { |
 data_param { |
                                                                source: "dummy/data/dummy_val_lmdb".
  source: "dummy/data/dummy_train_lmdb" |
                                                                batch_size: 64
  batch_size: 64
                                                                backend: LMDB
  backend: LMDB
```





