Lecture 15.

E-field of a charged ring.

E-field of a charged rod.

Electric field lines.

Force and torque on electric dipole (if time permits).

Last Time Electric field due to a continuous charge distribution

- What we know so far is the electric field produced by a point charge: $\vec{E} = \pm \frac{kq}{r^2} \vec{u}_r$
- How can we calculate the field produced by a continuous charge distribution?

➤ Say, we know that total charge *Q* is distributed evenly over this rod, and we want to know E-field at point P

- ightharpoonup Big idea: let's cut the object into tiny almost-point-like charges dQ
- Then find the field created by each of them, and sum these fields up!

• Consider a thin ring-shaped conductor with radius R that has a total charge +Q uniformly distributed around it.

• What is the electric field at the point P located at a position on the z-axis a distance h above the ring's centre?

Why a ring? It's a good starter. It's a highly symmetric object, and we will be looking for a field at a point with high symmetry (otherwise it will be a nightmare)

1) Menatlly cut the object into infinitesimal charges dQ.

- 2) Calculate $d\vec{E}$ at P due to a point charge dQ.
 - Magnitude: $dE = k \frac{dQ}{R^2 + h^2}$
 - Direction: away from dQ, at an angle (shown in the picture)
- Next step would be to add all tiny fields $d\vec{E}$ up.
- We need to remember though that they add as vectors (in components)

Why a ring? It's a good starter. It's a highly symmetric object, and we will be looking for a field at a point with high symmetry (otherwise it will be a nightmare)

3) Find the components of $d\vec{E}$. Do we actually need all of them?

- Due to the symmetry of the ring, all the components of E-filed in x and y directions will cancel out. And the components in z-direction will add up!
- We expect: $\vec{E} = \{0, 0, E_z\}$
- We have:

$$dE_z = dE \cos \theta$$
 $dE = \frac{k \ dQ}{R^2 + h^2}$ $\cos \theta = \frac{h}{\sqrt{R^2 + h^2}}$

4) Find $E_x = \int dE_x$, $E_y = \int dE_y$, $E_z = \int dE_z$. Basically, you are just adding up the fileds produced by all tiny charges (superposition principle)

$$dE_z = \frac{k \ dQ}{R^2 + h^2} \cdot \frac{h}{\sqrt{R^2 + h^2}} = \frac{kh \ dQ}{(R^2 + h^2)^{3/2}}$$

$$E_{z} = \int dE_{z} = \int \frac{kh \ dQ}{(R^{2} + h^{2})^{\frac{3}{2}}} = \frac{kh}{(R^{2} + h^{2})^{\frac{3}{2}}} \int_{ring}^{ring} dQ$$

Total charge!

*) Sanity check:

$$\vec{E} = \frac{kh Q}{(R^2 + h^2)^{\frac{3}{2}}} \vec{u}_z$$

• Limiting cases:

• Far away from the ring: $h \gg R$

$$\frac{khQ}{h^3}$$

$$\vec{E} = \frac{k \ Q}{h^2} \ \vec{u}_z$$
 -- point charge!

• Center of the ring: h = 0

$$\vec{E}=0$$

-- by symmetry

Q: A circular ring uniformly charged (charge +Q) is shown in the (x,y) plane. On $\vec{E} = \vec{E}_z \cdot \vec{k}$. Which graph correctly represents the electric field component, E_z , on the z-axis?

Application: loop antenna

Q: A circular ring uniformly charged (charge +Q) is shown in the (x,y) plane. On the z axis, $\vec{E} = E_z \vec{k}$. Which graph correctly represents the electric field component, E_z , on the z-axis?

$$E_z = \left(\frac{kzQ}{\left(R^2 + z^2\right)^{3/2}}\right) = 0 \text{ for } z = 0 \text{ (centre of ring)}$$
$$= \max \text{ for } z = \pm \frac{R}{\sqrt{2}}$$

Application: loop antenna

Q: A positive charge +Q is uniformly distributed on the upper half of a semicircular rod and a negative charge -Q is uniformly distributed on the lower half. What is the direction of the electric field at the point P, the center of the semicircle?

- A. Upward
- (B.) Downward
- C. Left
- D. Right
- E. 45 degree north of east

- Consider charge +Q distributed uniformly along a line L=2a.
- Find the electric field \vec{E} at point P at the symmetry axis at distance h from the rod.

- ightharpoonup Consider the line to be made up of infinitesimal segments, dx, at the position x
- Find the superposition of tiny fields, $d\vec{E}$, produced by these charged at point P (!) E-fields add up in components!

1) Menatlly cut the object into infinitesimal charges dQ.

Q: How much charge, dQ, is sitting in a segment of length dx?

A.
$$\frac{Q}{2a}$$

B.
$$\frac{Q}{2a}dx$$

C.
$$Q dx$$

D.
$$Q \frac{2a}{dx}$$

$$\frac{dQ}{Q} = \frac{dx}{L} = \frac{dx}{Za}$$

$$dQ = \frac{Q}{Zq} dx$$

2) Calculate $d\vec{E}$ at P due to a point charge dQ.

Q: What is the magnitude of the electric field $d\vec{E}$ created by a tiny charge $d\vec{E}$ highlighted in the picture? A. $dE = k \frac{dQ}{h^2}$ B. $dE = k \frac{dQ}{dt^2}$ $\text{(c.)} \ dE = k \frac{dQ}{x^2 + h^2}$ D. $dE = k \frac{dQ}{r^2 + h^2} \cos \theta$ E. $dE = k \frac{dQ}{r^2 + h^2} \sin \theta$

Q: What is its direction? Show in the picture.

3) Find the components of $d\vec{E}$. Do we actually need all of them?

$$dE = \frac{kQ}{2a} \frac{dx}{x^2 + h^2} \qquad dE = k \frac{dQ}{x^2 + h^2}$$

$$dE = k \frac{dQ}{x^2 + h^2}$$

$$dE_x = -dE\cos\theta = -\left(\frac{kQ}{2a}\frac{dx}{x^2 + h^2}\right)\frac{x}{\sqrt{x^2 + h^2}}$$

$$dE_y = +dE \sin \theta = +\left(\frac{kQ}{2a} \frac{dx}{x^2 + h^2}\right) \frac{h}{\sqrt{x^2 + h^2}}$$

4) Find $E_x = \int dE_x$, $E_y = \int dE_y$, $E_z = \int dE_z$. Basically, you are just adding up the fields produced by all tiny charges (superposition principle)

$$E_x = \frac{kQ}{2a} \int_{-a}^{+a} \frac{-x \, dx}{(x^2 + h^2)^{3/2}} = 0$$
 by symmetry

$$E_y = \frac{kQ}{2a} \int_{-a}^{+a} \frac{h \, dx}{(x^2 + h^2)^{3/2}} = \frac{kQ}{h\sqrt{a^2 + h^2}}$$

• Use this standard integral:

$$\int \frac{dx}{(x^2 + c^2)^{3/2}} = \frac{x}{c^2 \sqrt{x^2 + c^2}}$$

*) Limiting cases:

$$E_{\mathcal{Y}}(h) = \frac{kQ}{h\sqrt{2+h^2}}$$

• $a \gg h$ (very long rod)

$$E_y \to \frac{kQ}{h \ a} = 2k\left(\frac{Q}{2a}\right)\frac{1}{h} = \frac{2k\lambda}{h}$$

- $\lambda = Q/(2a)$: linear charge density (charge per unit length)
- Electric field decays as
 1/(distance from the rod)
- $a \ll h$ (very short rod)

$$E_y \to \frac{kQ}{h^2} = \text{E-field of a point charge } Q - \text{faster } \text{than rod}.$$

Q: The same line as before now has charges uniformly distributed as:

- +Q between x = -a and x = 0
- -Q between x = 0 and x = +a

In this situation, the electric field at point P is:

- \overrightarrow{A} . in the positive x direction
- B. in the negative x direction
- C. in the positive *y* direction
- D. in the negative *y* direction
- E. zero

$$E_{y}(h) = \frac{kQ}{h\sqrt{a^2 + h^2}}$$

Calculations with continuous charge distribution: Summary

Step 0: Try to reduce the problem in hand to what you already know

Consider symmetry

- 1. Mentally cut the object into infinitesimal segments = tiny charges dq.
- 2. Write the electric field, $d\vec{E}$, at the point P due to each tiny charge dq.
- 3. Write the *components* of $d\vec{E}$ (dE_x , dE_y , dE_z) at the point P due to a segment dq.
- 4. Add up (as vectors, <u>componentwise</u>!) the fields produced by all the small segment = integrate the projections dE_x , dE_y , dE_z :

$$E_x = \int dE_x$$
, $E_y = \int dE_y$, $E_z = \int dE_z$

5. Calculate the magnitude of the electric field from its components:

$$E = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

Remember what is your integration variable, and what is constant (i.e. does not change)

Sanity-check your answer:
look at limiting cases
(field far away and near
the charged object)

Field Lines

Field Lines:

show you in which direction a positive test charge would move if placed at this point.

- 1. The field vector is always tangent to the field line at any point.
- 2. Field lines start on positive charges and end on negative charges.
- 3. Field strength: density of field lines. Closer spacing = stronger field.
- 4. Field lines never cross.

Q: What can you say about charges q_1 and q_2 ?

A. (a)
$$+ \& +$$
, (b) $+ \& -$

C. (a)
$$- \& -$$
, (b) $+ \& -$

D. (a)
$$- \& -$$
, (b) $- \& +$

E. Other

Q: What can you say about the magnitudes of these charges?

A. (a)
$$q1 = q2$$
, (b) $q1 = q2$

B. (a)
$$q1 = q2$$
, (b) $q1 > q2$

C. (a)
$$q1 = q2$$
, (b) $q1 < q2$

D. (a)
$$q1 > q2$$
, (b) $q1 = q2$

E. (a)
$$q1 < q2$$
, (b) $q1 = q2$

density of E-field lives proportional to the E-field strength Q: If a <u>negative charge</u> is released from rest at A, in which direction will it <u>initially</u> travel?

3) When we know the direction of the force acting on the charge, we also E-FIEID L the direction in which it accelerates right after

- A. To the left
- B. To the right
- C. Toward B along the field line
- 1) È-field is taugent to the field lines -> we know the direction of E

- D. Away from B along the field line 2) Force on a charge 9t in electric field E:
- E. Other