

BEICHAR MATEMATKA

Tema 4. OCHOBЫ BEKTOPHOЙ
AЛГЕБРЫ И ЕЕ ПРИМЕНЕНИЕ
B ГЕОМЕТРИИ.

Вопрос 1. Векторы. Линейные операции над векторами.

Понятие вектора. Длина. Направление. Коллинеарность. Компланарность

Вектор – направленный прямолинейный отрезок, т.е. отрезок, имеющий определенную длину и определенное направление.

Если A — начало вектора, B — конец, то вектор обозначается символом \overrightarrow{AB} или \overrightarrow{a} (рис. 1).

Рис. 1 Вектор

Вектор \overrightarrow{BA} (вектор с началом в точке B, а концом в точке A) называется противоположным вектору \overrightarrow{AB} . Вектор, противоположный вектору \vec{a} , обозначается $-\vec{a}$ (рис. 2).

Puc. 2 Противоположные векторы

Длиной или модулем вектора \overrightarrow{AB} называется длина отрезка и обозначается $|\overrightarrow{AB}|$. Вектор, длина которого равна нулю, называется нулевым вектором и обозначается $\overrightarrow{0}$. Этот вектор направления не имеет.

Вектор, длина которого равна единице, называется единичным вектором и обозначается \vec{e} . Единичный вектор, на правление которого совпадает с направлением вектора \vec{a} , называется ортом вектора \vec{a} и обозначается $\vec{a^0}$.

Векторы \vec{a} и \vec{b} называются коллинеарными, если они лежат на одной прямой или параллельных прямых и обозначаются: $\vec{a} \parallel \vec{b}$. Коллинеарные векторы могут быть направлены одинаково или противоположно. (рис. 3).

Puc. 3

На рисунке $\overrightarrow{AB} \parallel \overrightarrow{CD}, \overrightarrow{AB} \parallel \overrightarrow{FE}, \overrightarrow{CD} \parallel \overrightarrow{FE}, \vec{a} \parallel -\vec{a}, \vec{b} \parallel \vec{d}$.

При этом векторы \overrightarrow{AB} и \overrightarrow{CD} направлены одинаково $(\overrightarrow{AB} \uparrow \overrightarrow{CD})$, а векторы \overrightarrow{AB} и \overrightarrow{FE} , \overrightarrow{a} и $-\overrightarrow{a}$, \overrightarrow{b} и \overrightarrow{d} направлены противоположно $(\overrightarrow{AB} \uparrow \downarrow \overrightarrow{FE}, \overrightarrow{a} \uparrow \downarrow -\overrightarrow{a}, \overrightarrow{b} \uparrow \downarrow \overrightarrow{d})$.

Нулевой вектор коллинеарен любому вектору.

Два вектора \vec{a} и \vec{b} называются равными $(\vec{a}=\vec{b})$, если они коллинеарны $(\vec{a}\parallel\vec{b})$, одинаково направлены $(\vec{a}\uparrow\vec{b})$ и имеют одинаковые длины $(|\vec{a}|=|\vec{b}|)$ (рис. 4).

Рис. 4 Равные векторы

Три вектора в пространстве называются компланарными если они лежат в одной плоскости или в параллельных плоскостях.

Если среди трех векторов хотя бы один нулевой, то векторы компланарны. Если среди трех векторов два любых вектора коллинеарны, то три вектора компланарны .

Линейные операции над векторами

Сложение векторов (по правилу треугольника). Пусть \vec{a} и \vec{b} — два произвольных вектора. От произвольной точки O отложим вектор $\overrightarrow{OA} = \vec{a}$. От точки A отложим вектор $\overrightarrow{AB} = \vec{b}$. Вектор \overrightarrow{OB} , соединяющий начало первого вектора с концом последнего вектора, называется суммой векторов \vec{a} и \vec{b} (см. рис.5).

Рис. 5 Сложение векторов по правилу треугольника

По правилу многоугольника можно сложить несколько векторов. Например, для того, чтобы найти сумму векторов $\vec{a} + \vec{b} + \vec{c} + \vec{d}$ необходимо от точки пространства отложить вектор \vec{a} , от конца \vec{a} отложить вектор \vec{b} , от конца \vec{b} вектор \vec{c} , от конца \vec{c} вектор \vec{d} , а затем соединить начало вектора \vec{a} и конец вектора \vec{d} (см. рис.6).

Рис. 6 Сложение векторов по правилу многоугольника

Сложение векторов (по правилу параллелограмма). Пусть \vec{a} и \vec{b} — два произвольных вектора. Ог произвольной точки O отложим вектор $\overrightarrow{OA} = \vec{a}$ и вектор

 $\overrightarrow{OB} = \vec{b}$. Достроим фигуру до параллелограмма OACB. Далее, построим вектор \overrightarrow{OC} , который является диагональю параллелограмма. Этот вектор называется суммой векторов \vec{a} и \vec{b} (см. рис. 7).

Рис. 7 Сумма векторов

Разность векторов. Под разностью векторов \vec{a} и \vec{b} понимается вектор $\vec{c}=\vec{a}-\vec{b}$ такой, что $\vec{b}+\vec{c}=\vec{a}$ (см. рис. 8).

Рис. 8 Разность векторов

Отметим, что в параллелограмме OACB вектор \overrightarrow{BA} является разностью векторов \vec{a} и \vec{b} (см. рис.9).

Рис. 9 Разность векторов

Произведение вектора на число. Произведением вектора \vec{a} и а число λ называется вектор $\lambda \vec{a}$, длина которого равна $|\lambda||\vec{a}|$, вектор $\lambda \vec{a}$ коллинеарен вектору \vec{a} и имеет направление, совпадающее с направлением \vec{a} , если $\lambda > 0$ и противоположное \vec{a} , если $\lambda < 0$.

Например, на рисунке ниже изображены векторы (см. рис.10).

$$\overrightarrow{CD} = \frac{1}{2}\overrightarrow{AB}, \overrightarrow{FE} = -\frac{3}{4}\overrightarrow{AB}, -\vec{a} = -1 \cdot \vec{a}, \vec{b} = -3\vec{d}$$

Рис. 10 Векторы

Свойства операций над векторами.

Пусть \vec{a} , \vec{b} , \vec{c} -векторы, λ , λ_1 , λ_2 — действительные числа. Тогда справедливы следующие свойства:

 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ коммутативность сложения векторов;

 $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ ассоциативность сложения векторов;

 $\lambda_1(\lambda_2\vec{a})=(\lambda_1\lambda_2)\vec{a}$ ассоциативность умножения на число;

 $(\lambda_1 + \lambda_2) \vec{a} = \lambda_1 \vec{a} + \lambda_2 \vec{a}$ дистрибутивность умножения на вектор относительно сложения чисел;

 $\lambda(\vec{a}+\vec{b})=\lambda\vec{a}+\lambda\vec{b}$ дистрибутивность умножения на число относительно сложения векторов.

Пример. Даны векторы \vec{a} и \vec{b} . Построить вектор $-3\vec{a}+\frac{1}{2}\vec{b}$.

Решение. По данным векторам \vec{a} и \vec{b} вначале построим векторы $-3\vec{a}$ и $\frac{1}{2}\vec{b}$, а затем построим сумму по правилу треугольника и по правилу параллелограмма (см. рис. ниже).

Рис. 11

Линейная зависимость векторов. Коллинеарность и компланарность векторов

Выражение $\lambda_1 \cdot \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \cdots + \lambda_n \overrightarrow{a_n}$ называется линейной комбинацией векторов $\overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_n}$ с коэффициентами $\lambda_1, \lambda_2, \dots, \lambda_n$.

Линейная комбинация векторов $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ называется нетривиальной, если хотя бы один из коэффициентов $\lambda_1, \lambda_2, ..., \lambda_n$ отличен от нуля.

Векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ называют линейно зависимыми, если существует нетривиальная линейная комбинация этих векторов, равная нулевому вектору, т. е. найдутся такие числа $\lambda_1, \lambda_2, ..., \lambda_n$ не все равные нулю, такие что $\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \cdots + \lambda_n \overrightarrow{a_n} = \overrightarrow{0}$.

Векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ называются линейно независимыми, если из того, что $\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \cdots + \lambda_n \overrightarrow{a_n} = \overrightarrow{0}$ следует, что все числа $\lambda_1, \lambda_2, ..., \lambda_n$ равны нулю.

Проекция вектора и точки на ось

Осью называется прямая, с выбранным на ней ненулевым вектором. Этот вектор называется направляющим вектором оси.

Пусть на плоскости заданы две непараллельные оси. Точку их пересечения обозначим O, а направляющие векторы $\overrightarrow{e_1}$ и $\overrightarrow{e_2}$. A — произвольная точка плоскости. Через точку A проведем прямую, параллельную вектору $\overrightarrow{e_2}$ и прямую, параллельную вектору $\overrightarrow{e_1}$

Пусть на плоскости заданы две непараллельные оси. Точку их пересечения обозначим O, а направляющие векторы $\overrightarrow{e_1}$ и $\overrightarrow{e_2}$, A — произвольная точка плоскости. Через точку A проведем прямую, параллельную вектору $\overrightarrow{e_2}$ и прямую, параллельную вектору $\overrightarrow{e_1}$

Рис. 12.

Проекцией точки A на ось $\overrightarrow{e_1}$ называется точка A_1 пересечения прямой, проходящей через точку A параллельно $\overrightarrow{e_2}$ с осью $\overrightarrow{e_1}$.

Проекцией точки A на ось $\overrightarrow{e_2}$ называется точка A_2 пересечения прямой, проходящей через точку A параллельно $\overrightarrow{e_1}$ с осью $\overrightarrow{e_2}$.

Рассмотрим вектор $\vec{a} = \overrightarrow{OA}$.

$$\vec{a} = \overrightarrow{OA} = \overrightarrow{OA_1} + = \overrightarrow{OA_2}$$

$$\overrightarrow{OA_1} \parallel \overrightarrow{e_1} \implies \exists x : \overrightarrow{OA_1} = x \overrightarrow{e_1}$$

 $\overrightarrow{OA_2} \parallel \overrightarrow{e_2} \implies \exists y : \overrightarrow{OA_2} = y \overrightarrow{e_2}$

$$\vec{a} = x\vec{e_1} + y\vec{e_2}$$
.

Числа x и y называются координатами вектора \vec{a} относительно осей $\overrightarrow{e_1}$ и $\overrightarrow{e_2}$ или проекциями вектора \vec{a} на эти оси.

Заметим, проекция точки на ось – это точка, проекция вектора на ось – число. Теорема 1. Вся кий вектор на плоскости можно выразить в виде линейной комбинации любых двух неколлинеарных векторов.

Т.е. если $\vec{a} \Vdash \vec{b}$ на плоскости, то для любого \vec{c} найдутся числа x и y такие, что $\vec{c} = x \cdot \vec{a} + y \cdot \vec{b}$.

Теорема 2. Всякий вектор в пространстве можно выразить в виде линейной комбинации трех некомпланарных векторов.

Т.е. если \vec{a} , \vec{b} и \vec{c} — некомпланарные векторы в пространстве, то для любого \vec{d} найдутся числа x,y,z такие, что $\vec{d}=x\cdot\vec{a}+y\cdot\vec{b}+z\cdot\vec{c}$.

Вопрос 2. Базисы на плоскости и в пространстве

Базисом на плоскости называется пара векторов $\overrightarrow{e_1}, \overrightarrow{e_2},$ обладающая свойствами: Векторы $\overrightarrow{e_1}, \overrightarrow{e_2}$ линейно независимы.

Любой вектор плоскости линейно выражается через векторы $\overrightarrow{e_1}, \overrightarrow{e_2}$, т.е.

$$\forall \vec{a} \in \mathbb{R}^2 \exists x, y \in \mathbb{R} : \vec{a} = x \cdot \overrightarrow{e_1} + y \cdot \overrightarrow{e_2}.$$

+++

(Для любого вектора \vec{a} на плоскости найдутся такие действительные числа x, y, что вектор \vec{a} будет иметь следующее разложение по векторам $\overrightarrow{e_1}, \overrightarrow{e_2}: \vec{a} = x \cdot \overrightarrow{e_1} + y \cdot \overrightarrow{e_2}$.)

Теорема 1. Два вектора образуют базис на плоскости тогда и только тогда, когда они не коллинеарны.

Теорема 2. Числа x и y в разложении $\vec{a}=x\cdot\overrightarrow{e_1}+y\cdot\overrightarrow{e_2}$ определены однозначно. Эти числа называются координатами вектора \vec{a} относительно базиса $\overrightarrow{e_1}, \overrightarrow{e_2}$.

Базисом в пространстве называется тройка векторов $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ обладающая следующими свойствами:

Векторы $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ линейно независимы.

Любой вектор пространства линейно выражается через векторы $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$, т.е.

$$\forall \vec{a} \in \mathbb{R}^3 \exists x,y,z \in \mathbb{R} \colon \vec{a} = x \cdot \overrightarrow{e_1} + y \cdot \overrightarrow{e_2} + z \cdot \overrightarrow{e_3}.$$

(Для любого вектора \vec{a} в пространстве найдутся такие действительные числа x,y,z, что вектор \vec{a} будет иметь следующее разложение по векторам $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$: $\vec{a}=x\cdot\overrightarrow{e_1}+y\cdot\overrightarrow{e_2}+z\cdot\overrightarrow{e_3}$.)

Теорема 3. Три вектора образуют базис в пространстве тогда и только тогда, когда они не компланарны.

Теорема 4. Числа x,y,z в разложении $\vec{a}=x\cdot \overrightarrow{e_1}+y\cdot \overrightarrow{e_2}+z\cdot \overrightarrow{e_3}$ определены однозначно. Эти числа называются координатами вектора \vec{a} относительно базиса $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$.

Базис $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ называется ортогональным, если $\overrightarrow{e_i}\perp\overrightarrow{e_j},i=1,2,3,j=1,2,3,$ $(i\neq j).$

Базис $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ называется ортонормированным, если он ортогонален и состоит из единичных векторов, т.е. $|\overrightarrow{e_1}|=|\overrightarrow{e_2}|=|\overrightarrow{e_3}|=1$.

Декартовой (прямоугольной) системой координат на плоскости называется тройка $\{0, \overrightarrow{e_1}, \overrightarrow{e_2}\}, O$ — начало координат, $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ — ортонормированный базис.

Рис.13

Декартовой (прямоугольной) системой координат в пространстве называется четверка $\{0, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}, O$ — начало координат, $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ — ортонормированный базис.

Рис. 14

Для ортонормированного базиса чаще используется другое обозначение: $\overrightarrow{e_1} = \overrightarrow{l}, \overrightarrow{e_2} = \overrightarrow{j}, \overrightarrow{e_3} = \overrightarrow{k}$.

Ортогональная проекция вектора на ось

Пусть в пространстве задана ось l, т.е. направленная прямая. Ортогональной проекцией точки M на ось l называетс точка N, которая является основанием перпендикуляра, опущенного из точки M на ось l.

Рис. 15

Пусть \overrightarrow{AB} — произвольный вектор $(\overrightarrow{AB} \neq 0)$. Обозначим через A_1 проекцию точки A на ось l, через B_1 проекцию точки B на ось l, получим вектор $\overrightarrow{A_1B_1}$.

Рис. 16

Ортогональной проекцией вектора \overrightarrow{AB} на ось l называется положительное число $|\overrightarrow{A_1B_1}|$, если вектор $\overrightarrow{A_1B_1}$ и ось l одинаково направлены и отрицательное число $-|\overrightarrow{A_1B_1}|$, если вектор $\overrightarrow{A_1B_1}$ и ось l противоположно направлены. Если точки A_1 и B_1 совпадают, то $\overrightarrow{A_1B_1}=\overrightarrow{0}$.

Проекция вектора \overrightarrow{AB} на ось l обозначим $\Pi_l \overrightarrow{AB}$. Если $\overrightarrow{AB} = \overrightarrow{0}$ или $\overrightarrow{AB} \perp l$, то $\prod_{\mathbf{p}} \overrightarrow{AB} = 0$.

Рассмотрим угол φ между вектором \vec{a} и осью l или угол между двумя векторами. Углом между двумя векторами называется угол между лучами, построенными на этих векторах.

Очевидно, $0 \le \varphi \le \pi$.

Рис. 17

Свойства проекции.

Проекция вектора \vec{a} на ось l равна произведению модуля вектора \vec{a} на косинус угла φ между вектором \vec{a} и осью l, т.е. $\Pi \mathbf{p}_l \vec{a} = |a| \cdot \cos \, \varphi$.

Рис. 18

Проекция суммы нескольких векторов на одну и ту же ось равна сумме их проекций на эту ось.

Пусть \vec{a} , \vec{b} , \vec{c} , \vec{d} — векторы.

Тогда
$$\Pi_l(\vec{a}+\vec{b}+\vec{c}+\vec{d})=\Pi p_l \vec{a}+\Pi_{p_l} \vec{b}+\Pi_{p_l} \vec{c}+\Pi_{p_l} \vec{d}.$$

Разложение векторов по ортам координатных осей. Модуль вектора. Направляющие косинусы

Выберем в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ox, Oy и Oz единичные векторы (орты) \vec{i} , \vec{j} , \vec{k} соответственно (см. рис.19 ниже).

Рис. 19

Выберем произвольный вектор $\vec{a} = \overrightarrow{OM}$. Найдем проекции этого вектора на координатные оси. Для этого проведем через конец вектора \overrightarrow{OM} плоскости, параллельные координатным плоскостям. Точки пересечения этих плоскостей с осями обозначим соответственно через M_1, M_2, M_3 . В результате получим прямоугольный параллелепипед, одной из диагоналей которого является вектор \overrightarrow{OM} . Тогда $\Pi_x \vec{a} = |\overrightarrow{OM_1}|$, $\Pi_p \vec{a} = |\overrightarrow{OM_2}|$, $\Pi_{p_z} \vec{a} = |\overrightarrow{OM_3}|$. По определению суммы нескольких векторов находим $\vec{a} = \overrightarrow{OM_1} + \overrightarrow{M_1N} + \overrightarrow{NM}$. А так как $\overrightarrow{M_1N} = \overrightarrow{OM_2}, \overrightarrow{NM} = \overrightarrow{OM_3}$, то $\vec{a} = \overrightarrow{OM_1} + \overrightarrow{OM_2} + \overrightarrow{OM_3}$. Но $\overrightarrow{OM_1} = |\overrightarrow{OM_1}| \cdot \vec{\iota}$, $\overrightarrow{OM_2} = |\overrightarrow{OM_2}| \cdot \vec{\iota}$, $\overrightarrow{OM_3} = |\overrightarrow{OM_3}| \cdot \vec{k}$. Переобозначим проекции вектора \vec{a} следующим образом:

 $\left|\overrightarrow{OM_1}\right|=a_x,\left|\overrightarrow{OM_2}\right|=a_y,\left|\overrightarrow{OM_3}\right|=a_z.$ Тогда имеем разложение вектора по ортам координатных осей:

$$\vec{a} = a_x \cdot \vec{i} + a_y \cdot \vec{j} + a_z \cdot \vec{k}$$

Это равенство часто записывают в виде:

$$\vec{a} = \{a_x, a_y, a_z\}.$$

Числа a_x , a_y , a_z называются координатами вектора \vec{a} . На основании теоремы о длине диагонали прямоугольного параллелепипеда можем записать:

$$|\overrightarrow{OM}|^2 = |\overrightarrow{OM_1}|^2 + |\overrightarrow{OM_2}|^2 + |\overrightarrow{OM_3}|^2$$

т. е.

$$|\vec{a}|^2 = a_x^2 + a_y^2 + a_z^2$$

Отсюда

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$

Пусть углы вектора \vec{a} с осями Ox,Oy,Oz соответственно равны α,β,γ . По свойству проекции вектора на ось, имеем

$$a_x = |\vec{a}| \cdot \cos \alpha$$
, $a_y = |\vec{a}| \cdot \cos \beta$, $a_z = |\vec{a}| \cdot \cos \gamma$.

Отсюда

$$\cos \alpha = \frac{a_x}{|\vec{a}|}, \cos \beta = \frac{a_y}{|\vec{a}|}, \cos \gamma = \frac{a_z}{|\vec{a}|}.$$

Числа $\cos \alpha, \cos \beta, \cos \gamma$ называются направляющими косинусами вектора \vec{a} . Подставим выражение (**) в выражение (*), получим

$$|\vec{a}|^2 = |\vec{a}|^2 \cdot \cos^2 \alpha + |\vec{a}|^2 \cdot \cos^2 \beta + |\vec{a}|^2 \cdot \cos^2 \gamma.$$

Сократив на $|\vec{a}|^2 \neq 0$, получим соотношение

$$\cos^2 \, \alpha + \cos^2 \, \beta + \cos^2 \, \gamma = 1.$$

Итак, задав координаты вектора, всегда можно определить его модуль и направление, т. е. сам вектор.

Действия над векторами, заданными проекциями (координатами)

Пусть векторы $\vec{a} = \{a_x, a_y, a_z\}$ и $\vec{b} = \{b_x, b_y, b_z\}$ заданы своими проекциями на оси координат $Ox, Oy, Oz. \lambda$ — число. Тогда выполняется следующее:

$$\vec{a} \pm \vec{b} = \{a_x \pm b_x, a_y \pm b_y, a_z \pm b_z\}$$

$$\lambda \vec{a} = \{\lambda a_x, \lambda a_y, \lambda a_z\}.$$

Например, для векторов $\vec{a} = \{1,2,1\}$ и $\vec{b} = \{-4,2,-5\}$

$$\vec{a} + \vec{b} = \{1 + (-4), 2 + 2, 1 + (-5)\} = \{-3, 4, -4\}.$$

 $\vec{a} - \vec{b} = \{1 - (-4), 2 - 2, 1 - (-5)\} = \{5, 0, 6\}.$
 $3 \cdot \vec{a} = 3 \cdot \{1, 2, 1\} = \{3, 6, 3\}.$

Свойства векторов, заданных проекциями (координатами)

Равенство векторов. Два вектора $\vec{a}=\{a_x,a_y,a_z\}$ и $\vec{b}=\{b_x,b_y,b_z\}$ равны тогда и только тогда, когда выполняется равенство $a_x=b_x$, $a_y=b_y$, $a_z=b_z$.

Коллинеарность векторов. $\vec{a} \parallel \vec{b}$ можно записать $\vec{a} = \alpha \vec{b}$, где α — некоторое число. Отсюда

$$a_x = \alpha b_x$$
, $a_y = \alpha b_y$, $a_z = \alpha b_z$,

т.е.

$$\frac{a_x}{b_x} = \alpha$$
, $\frac{a_y}{b_y} = \alpha$, $\frac{a_z}{b_z} = \alpha$.

Таким образом, координаты коллинеарных векторов пропорциональны. Верно и обратное, векторы, имеющие пропорциональные координаты, коллинеарны.

Координаты точки.

Пусть в пространстве задана прямоугольная (декартова) система координат Охуг. Для произвольной точки $M=M(x_M,y_M,z_M)$ координаты ее радиус-вектора \overrightarrow{OM} называются координатами точки M. Для $\overrightarrow{r}=\overrightarrow{OM}=\{x_M,y_M,z_M\}$.

Рис. 20

Координаты вектора, заданного координатами двух точек.

Найдем координаты вектора $\vec{a} = \overrightarrow{AB}$, если известны координаты точек $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2)$. Имеем (см. рисунок ниже) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \{x_2 - x_1; y_2 - y_1; z_2 - z_1\}$.

Рис. 21

Вопрос 3. Определение скалярного, векторного и смешанного произведения векторов

Определение скалярного произведения

Скалярным произведением двух векторов \vec{a} и \vec{b} называется число, равное произведению длин этих векторов на косинус угла между ними.

$$(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi$$
, где $\varphi = (\vec{a}, \vec{b})$. (1)

Формулу (1) можно записать в другом виде: т.к. $|\vec{a}| \cdot \cos \varphi = \prod_{\vec{b}} \vec{a}$, а $|\vec{b}| \cdot \cos \varphi = \Pi_{\vec{a}} \vec{b}$, то получаем

$$(\vec{a}, \vec{b}) = |\vec{b}| \cdot \Pi p_{\vec{b}} \vec{a} \quad (2)$$

Рис. 22

Определение векторного произведения векторов

Векторным произведением двух векторов \vec{a} и \vec{b} называется вектор $\vec{c} = \vec{a} \times \vec{b}$, удовлетворяющий трем условиям:

Имеет длину, численно равную площади параллелограмма, построенного на векторах \vec{a} и \vec{b} как на сторонах.

$$|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b}) = S$$

Рис. 23

$$\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$$

 $\vec{a}, \vec{b}, \vec{c}$ — правая тройка (т.е. с конца вектора \vec{c} кратчайший поворот от вектора \vec{a} к вектору \vec{b} виден против часовой стрелки).

Часто для векторного произведения используют другое обозначение: $[\vec{a}, \vec{b}] = \vec{a} \times \vec{b}$.

Определение смешанного произведения векторов

Смешанное произведение трех векторов $\vec{a}, \vec{b}, \vec{c}$ — это число, равное $(\vec{a} \times \vec{b}, \vec{c})$, которое обозначается $(\vec{a}, \vec{b}, \vec{c})$ или $\vec{a} \cdot \vec{b} \cdot \vec{c}$.

Геометрический смысл смешанного произведения.

Построим параллелепипед, ребрами которого являются векторы $\vec{a}, \vec{b}, \vec{c}$ и вектор $\vec{d} = \vec{a} \times \vec{b}$

Имеем: $(\vec{a} \times \vec{b}, \vec{c}) = (\vec{d}, \vec{c}) = |\vec{d}| \cdot \Pi_{\rm p} \vec{c} \vec{c}, \vec{d} = |\vec{a} \times \vec{b}| = S$, где S — площадь параллелограмма, построенного на векторах \vec{a} и $\vec{b} \cdot \Pi_{\vec{d}} \vec{c} = H$ для правой тройки векторов и ${\bf p}_{\vec{a}} \vec{c} = -H$ для левой, где H — высота параллелепипеда. Получаем: $(\vec{a} \times \vec{b}, \vec{c}) = S \cdot (\pm H)$, т.е. $(\vec{a} \times \vec{b}, \vec{c}) = \pm V$, где V — объем параллелепипеда, образованного векторами $\vec{a}, \vec{b}, \vec{c}$.

Практические задания

Задача 1.

Найдите длину и направление вектора $\vec{a} = \{6,7,-6\}$.

Решение.

Для решения задачи найдем длину вектора \vec{a} .

Длина вектора $|\vec{a}| = \sqrt{6^2 + 7^2 + (-6)^2} = \sqrt{36 + 49 + 36} = \sqrt{121} = 11.$

Тогда разделим вектор на его длину, получим вектор того же направления, что вектор \vec{a} , но единичной длины, т.е. орт вектора \vec{a} .

$$\vec{a}^0 = \frac{\vec{a}}{|\vec{a}|} = \left\{ \frac{6}{11}, \frac{7}{11}, \frac{-6}{11} \right\}.$$

ОТВЕТ: Длина вектора $|\vec{a}| = 11$.

$$\vec{a}^0 = \left\{ \frac{6}{11}, \frac{7}{11}, \frac{-6}{11} \right\}.$$

т.е.

$$\cos \alpha = \frac{6}{11}, \cos \beta = \frac{7}{11}, \cos \gamma = \frac{-6}{11}.$$

Задача 2.

Даны векторы $\overrightarrow{a_1}=\{1;8;-4\}, \overrightarrow{a_2}=\{1;3;-1\}, \overrightarrow{a_3}=\{-1;-6;3\}, \overrightarrow{a_4}=\{1;2;-3\}$ в некотором базисе. Показать, что векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ образуют базис и найти координаты вектора $\overrightarrow{a_4}$ в базисе $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$.

Решение.

Система векторов $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{a_3}$ образует базис, т.е. является линейно независимой, а это означает, что из равенства $\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \lambda_3 \overrightarrow{a_3} = 0$ следует, что все числа λ_1 , λ_2 , λ_3 равны нулю.

Запишем равенство покоординатно:

$$\lambda_1$$
{1; 8; -4} + λ_2 {1; 3; -1} + λ_3 {-1; -6; 3} = {0; 0; 0}

Отсюда получим:

$$\{\lambda_1; 8\lambda_1; -4\lambda_1\} + \{\lambda_2; 3\lambda_2; -\lambda_2\} + \{-\lambda_3; -6\lambda_3; 3\lambda_3\} = \{0; 0; 0\}$$

Приравняем левую и правую часть покоординатно, получим систему:

$$\begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0, \\ 8\lambda_1 + 3\lambda_2 - 6\lambda_3 = 0 \\ -4\lambda_1 - \lambda_2 + 3\lambda_3 = 0. \end{cases}$$

Вычислим определитель основной матрицы системы:

$$|A| = \begin{vmatrix} 1 & 1 & -1 \\ 8 & 3 & -6 \\ -4 & -1 & 3 \end{vmatrix} = 1 \cdot 3 \cdot 3 + 8 \cdot (-1) \cdot (-1) + 1 \cdot (-6) \cdot (-4) - ((-1) \cdot 3 \cdot (-4) + 1 \cdot (-1) \cdot (-6) + 1 \cdot 8 \cdot 3) = 9 + 8 + 24 - (12 + 6 + 24) = 17 - 18 = -1 \neq 0.$$

Так как определитель однородной системы не равен нулю, то система имеет единственное нулевое решение: $\{\lambda_1; \lambda_2; \lambda_3\} = \{0; 0; 0\}$. А это означает, что векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ линей но независимые и образуют базис. Найдем разложение вектора $\overrightarrow{a_4}$ через векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$. Т.е. найдем такие коэффициенты $\lambda_1, \lambda_2, \lambda_3\}$, что вектор

Запишем равенство покоординатно:

$$\lambda_1$$
{1; 8; -4} + λ_2 {1; 3; -1} + λ_3 {-1; -6; 3} = {1; 2; -3}

 $\overrightarrow{a_4} = \lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \lambda_3 \overrightarrow{a_3}$

Отсюда получим:

$$\{\lambda_1; 8\lambda_1; -4\lambda_1\} + \{\lambda_2; 3\lambda_2; -\lambda_2\} + \{-\lambda_3; -6\lambda_3; 3\lambda_3\} = \{1; 2; -3\}$$

Приравняем левую и правую часть покоординатно, получим систему:

$$\begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 1, \\ 8\lambda_1 + 3\lambda_2 - 6\lambda_3 = 2, \\ -4\lambda_1 - \lambda_2 + 3\lambda_3 = -3. \end{cases}$$

Решим систему по правилу Крамера. Определитель основной матрицы системы $|A| = -1 \neq 0$, вычислили выше. Сосчитаем определители:

$$|A_1| = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & -6 \\ -3 & -1 & 3 \end{vmatrix} = 1 \cdot 3 \cdot 3 + 1 \cdot (-6) \cdot (-3) + 2 \cdot (-1) \cdot (-1) - ((-1) \cdot 3 \cdot (-3) + 1 \cdot 2 \cdot 3 + (-1) \cdot (-6) \cdot 1) = 9 + 18 + 2 - (9 + 6 + 6) = 8.$$

Тогда
$$\lambda_1 = \frac{|A_1|}{|\lambda|} = \frac{8}{-1} = -8.$$

$$|A_2| = \begin{vmatrix} 1 & 1 & -1 \\ 8 & 2 & -6 \\ -4 & -3 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 + 1 \cdot (-6) \cdot (-4) + 8 \cdot (-3) \cdot (-1) - (-1 \cdot 2 \cdot (-4) + 1 \cdot (-6) \cdot (-3) + 3 \cdot 1 \cdot 8) = 6 + 24 + 24 - (8 + 18 + 24) = 4$$

Тогда
$$\lambda_2 = \frac{|A_2|}{|A|} = \frac{4}{-1} = -4$$
.

$$|A_3|=egin{array}{c|cccc} 1&1&1&1\ 8&3&2\ -4&-1&-3 \ \end{array} =1\cdot3\cdot(-3)+8\cdot(-1)\cdot1+1\cdot2\cdot(-4)-(1\cdot3\cdot(-4)+2\cdot(-1)\cdot1+1\cdot8\cdot(-3))= \\ &-9-8-8-(-12-2-24)=-25+38=13 \end{array}$$
 Тогда $\lambda_3=rac{|A_3|}{|A|}=rac{13}{-1}=-13.$

OTBET:
$$\overrightarrow{a_4} = -8\overrightarrow{a_1} - 4\overrightarrow{a_2} - 13\overrightarrow{a_3}$$
.

Задача З.

Найти вектор \vec{x} из уравнения:

$$\overrightarrow{a_1} - 5\overrightarrow{a_2} + \overrightarrow{a_3} - 7\overrightarrow{x} = \overrightarrow{0},$$

где

$$\overrightarrow{a_1} = \{1; -1; -1; 2\}, \overrightarrow{a_2} = \{2; -1; 3; -3\}, \overrightarrow{a_3} = \{-3; 2; -8; 4\}$$

Решение.

Подставим в уравнение координаты векторов:

$$\overrightarrow{a_1} - 5\overrightarrow{a_2} + \overrightarrow{a_3} - 7\overrightarrow{x} = \overrightarrow{0}$$

{1; -1; -1; 2} - 5{2; -1; 3; -3} + {-3; 2; -8; 4} - 7{x_1; x_2; x_3; x_4} = {0; 0; 0; 0}

и сосчитаем:

$$\begin{aligned} \{1;-1;-1;2\} - \{10;-5;15;-15\} + \{-3;2;-8;4\} - \{7x_1;7x_2;7x_3;7x_4\} &= \{0;0;0;0\} \\ \{-12;6;-24;21\} - \{7x_1;7x_2;7x_3;7x_4\} &= \{0;0;0;0\} \\ \{-7x_1;-7x_2;-7x_3;-7x_4\} &= \{12;-6;24;-21\} \\ \{x_1;x_2;x_3;x_4\} &= -\frac{1}{7}\{12;-6;24;-21\} \\ \{x_1;x_2;x_3;x_4\} &= \left\{-\frac{12}{7};\frac{6}{7};-\frac{24}{7};3\right\} \end{aligned}$$

ОТВет: Искомый вектор имеет координаты:

$$\vec{x}\left\{-\frac{12}{7};\frac{6}{7};-\frac{24}{7};3\right\}.$$

Задача 4.

Найти вектор \vec{x} , коллинеарный вектору $\vec{a}=\{2,3,2\}$ и удовлетворяющий условию $(\vec{x},\vec{a})=34$.

Решение.

Так как по условию задачи $\vec{x} \parallel \vec{a}$, то координаты вектора \vec{x} и пропорциональны координатам вектора \vec{a} . Обозначим коэффициент пропорциональности k, тогда координаты вектора $\vec{x} = \{2k; 3k; 2k\}$. Вычислим скалярное произведение $(\vec{x}, \vec{a}) = 2k \cdot 2 + 3k \cdot 3 + 2k \cdot 2 = 17k$. По условию задачи $(\vec{x}, \vec{a}) = 34$, следовательно, 17k = 34, k = 2. Поэтому координаты вектора $\vec{x} = \{4,6,4\}$.

OTBET: $\vec{x} = \{4,6,4\}.$

Задача 5.

Найдите орт вектора \vec{p} (вектор единичной длины и того же направления, что вектор \vec{p}) перпендикулярный вектору \vec{a} и си $OX \cdot \overrightarrow{p^0} \perp \vec{a} = \{3,6,8\}$ и $\overrightarrow{p^0} \perp OX$

Решение.

Вначале найдем вектор \vec{p} такой что $\vec{p} \perp \vec{a}$ и $\vec{p} \perp OX$. Поэтому найдем вектор \vec{p} как векторное произведение векторов \vec{a} и \vec{i} .

$$\vec{p} = \vec{a} \times \vec{i} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 3 & 6 & 8 \end{vmatrix} = \{0, -8, 6\}.$$

Заметим, что если мы поменяем в произведении векторы \vec{a} и \vec{i} местами, то получим вектор $\vec{i} \times \vec{a} = \{0,8,-6\}$. Т.е. условиям нашей задачи удовлетворяют два взаимно противоположных вектора. Вычислим $|\vec{p}| = \sqrt{0^2 + (-8)^2 + 6^2} = \sqrt{64 + 36} = 10$. Тогда $\vec{p^0} = \pm \{0; -0.8; 0.6\}$.

OTBET:
$$\overrightarrow{p^0} = \pm \{0; -0.8; 0.6\}.$$

Задача б.

Вычислить площадь параллелограмма, построенного на векторах $\vec{p}=6\vec{a}+2\vec{b}$ и $\vec{q}=-3\vec{a}+\vec{b}$, где \vec{a} и \vec{b} — единичные взаимноперпендикулярные векторы.

Решение.

Площадь параллелограмма, построенного на векторах находим как модуль векторного произведения этих векторов.

$$S = |\vec{p} \times \vec{q}|.$$

Вычислим векторное произведение.

$$\vec{p} \times \vec{q} = (6\vec{a} + 2\vec{b}) \times (-3\vec{a} + \vec{b}) = -18\vec{a} \times \vec{a} + 6\vec{a} \times \vec{b} - 6\vec{b} \times \vec{a} + 2\vec{b} \times \vec{b}$$

По свойству 4 векторного произведения, первое и последнее слагаемые равны нулю, по свойству 1 третье слагаемое $-6\vec{b}\times\vec{a}=6\vec{a}\times\vec{b}$.

Таким образом, получаем $\vec{p} \times \vec{q} = 12\vec{a} \times \vec{b}$.

$$S = |\vec{p} \times \vec{q}| = |12\vec{a} \times \vec{b}| = 12|\vec{p}| |\vec{q}| \sin 90 = 12 \cdot 1 \cdot 1 \cdot 1 = 12.$$

ОТВЕТ: площадь параллелограмма составляет 12 квадратных единиц.

Задача 7.

Вычислить высоту h параллелепипеда, построенного на векторах $\vec{a}=3\vec{t}+2\vec{j}-5\vec{k},\,\vec{b}=\vec{t}-\vec{j}+4\vec{k},\,\vec{c}=\vec{t}-3\vec{j}+\vec{k},$ если за основание взят параллелограмм, построены на векторах \vec{a} и \vec{b} .

Решение.

Объем можно вычислить с помощью смешанного произведения:

$$V = (\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} 3 & 2 & -5 \\ 1 & -1 & 4 \\ 1 & -3 & 1 \end{vmatrix} = 49.$$

Вычислим объем по-другому: $V = S \cdot h$, при этом $S = |\vec{a} \times \vec{b}|$. Найдем векторное произведение векторов \vec{a} и \vec{b} , а затем его модуль.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 2 & -5 \\ 1 & -1 & 4 \end{vmatrix} = \{3\vec{i} - 17\vec{j} - 5\vec{k}\}.$$
 Тог да $S = \sqrt{9 + 25 + 289} = \sqrt{323}$.

Тогда

$$h = \frac{49}{\sqrt{323}} = \frac{49\sqrt{323}}{323}.$$

OTBET:
$$h = \frac{49\sqrt{323}}{323}$$
.

Задача 8.

Проверить, компланарны ли векторы $\vec{p}=2\vec{\imath}+\vec{\jmath}-5\vec{k}$, $\vec{q}=-3\vec{\imath}-2\vec{\jmath}+7\vec{k}$, $\vec{r}=6\vec{\imath}+5\vec{\jmath}+2\vec{k}$.

Решение.

По свойству 5 смешанного произведения имеем, три вектора компланарны тогда и только тогда, когда и х смешанное произведение равно нулю. Вычислим смешанное произведение.

$$(\vec{p}, \vec{q}, \vec{r}) = \begin{vmatrix} 2 & 1 & -5 \\ -3 & -2 & 7 \\ 6 & 5 & 2 \end{vmatrix} = 2(-2)2 + (-3)5(-5) + 176 - ((-5)(-2)6 + 752 + 1(-3)2) =$$

$$= -8 + 75 + 42 - (60 + 70 - 6) = 5 - 2 - 18 = -15 \neq 0.$$

ОТВЕТ: так как смешанное произведение векторов не равно нуль, то векторы некомпланарные.