Classification and Prediction

Classification and Prediction

- What is classification? What is regression?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Scalable decision tree induction

Classification vs. Prediction

Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Regression:

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical Applications
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Why Classification? A motivating application

Credit approval

- A bank wants to classify its customers based on whether they are expected to pay back their approved loans
- The history of past customers is used to train the classifier
- The classifier provides rules, which identify potentially reliable future customers
- Classification rule:
 - If age = "31...40" and income = high then credit_rating = excellent
- Future customers
 - □ Paul: age = 35, income = high \Rightarrow excellent credit rating
 - □ John: age = 20, income = medium ⇒ fair credit rating

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test samples is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise overfitting will occur

Classification Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classifier

(Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Classification Process (2): Use the Model in Prediction

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Issues regarding classification and prediction (1): Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data
 - numerical attribute income ⇒ categorical {low,medium,high}
 - normalize all numerical attributes to [0,1)

Issues regarding classification and prediction (2): Evaluating Classification Methods

- Predictive accuracy
- Speed
 - time to construct the model
 - time to use the model
- Robustness
 - Resistant to handle noise, extreme and missing values
- Scalability
 - efficiency in disk-resident databases
- Interpretability:
 - understanding and insight provided by the model
- Goodness of rules (quality)
 - decision tree size
 - compactness of classification rules

Classification by Decision Tree Induction

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Training Dataset

This follows an example from Quinlan's ID3

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys computer"

Algorithm for Decision Tree Induction

In early 1980s, J. Ross Quinlan, a researcher in machine learning, developed **ID3** (Iterative Dichotomiser). Quinlan later presented **C4.5** (a successor of ID3), which became a benchmark. In 1984, a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published the book *Classification and Regression Trees* (**CART**), which described the generation of binary decision trees

Algorithm for Decision Tree Induction

ID3 Iterative Dichotomiser. The algorithm is called with three parameters: D, attribute list, and Attribute selection method. We refer to D as a data partition. Second parameter is the attributes describing the tuples. Attribute selection method specifies a heuristic procedure for selecting the attribute that "best" discriminates the given tuples according to class.

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Samples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Algorithm for Decision Tree Induction (pseudocode)

Algorithm GenDecTree(Sample S, Attlist A)

- create a node N
- If all samples are of the same class C then label N with C; terminate;
- 3. If A is empty then label N with the most common class C in S (majority voting); terminate;
- Select a∈A, with the highest information gain; Label N with a;
- 5. For each value v of a:
 - a. Grow a branch from N with condition a=v;
 - b. Let S_v be the subset of samples in S with a=v;
 - c. If S_v is empty then attach a leaf labeled with the most common class in S;
 - d. Else attach the node generated by GenDecTree(S_v , A-a)

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$

Information needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{i=1}^{\nu} \frac{|D_i|}{|D|} \times I(D_j)$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Info. gain for Attribute=Income

Info(D)=
$$-\frac{9}{14} log_2(\frac{9}{14}) - \frac{5}{14} log_2(\frac{5}{14}) = 0.94028$$

For Income=high

Info(D)=
$$-\frac{2}{4} log_2(\frac{2}{4}) - \frac{2}{4} log_2(\frac{2}{4}) = 1$$

For Income=Medium

Info(D) =
$$-\frac{4}{6} log_2(\frac{4}{6}) - \frac{2}{6} log_2(\frac{2}{6}) = 0.918296$$

For Income=Low

Info(D) =
$$-\frac{3}{4} log_2(\frac{3}{4}) - \frac{1}{4} log_2(\frac{1}{4}) = 0.811278$$

Info. gain for Attribute=Income

Info(D)=
$$-\frac{9}{14} log_2(\frac{9}{14}) - \frac{5}{14} log_2(\frac{5}{14}) = 0.94028$$

Info(D_{Income}) =
$$\frac{4}{14} X 1 + \frac{6}{14} X 0.918296 + \frac{4}{14} X 0.811278$$

= 0.911063

Gain=Info(D)-Info(
$$D_{Income}$$
)
=0.94028-0.911063 =0.029223

Splitting the samples using age

		▼	
income	student	credit_rating	buys_computer
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes

-labeled yes

$$\text{Hnfo}(D) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.94028$$

For Age is ≤ 30

Info(D)=
$$-\frac{3}{5} log_2(\frac{3}{5}) - \frac{2}{5} log_2(\frac{2}{5}) = 0.97095$$

For Age is 31-40

Info(D) =
$$-\frac{4}{4} log_2(\frac{4}{4}) = 0$$

For Age is >40

Info(D) =
$$-\frac{3}{5} log_2(\frac{3}{5}) - \frac{2}{5} log_2(\frac{2}{5}) = 0.97095$$

$$\text{Hnfo}(D) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.94028$$

Info(D_{Age})=
$$\frac{5}{14}$$
 X 0.97095 + $\frac{4}{14}$ X 0+
 $\frac{5}{14}$ X 0.97095
=0.693536

Gain=Info(D)-Info(
$$D_{Age}$$
)
=0.94028-0.693536 =0.24675

$$\text{Hnfo}(D) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.94028$$

For Age is ≤ 30

Info(D)=
$$-\frac{3}{5} log_2(\frac{3}{5}) - \frac{2}{5} log_2(\frac{2}{5}) = 0.97095$$

For Age is 31-40

Info(D) =
$$-\frac{4}{4} log_2(\frac{4}{4}) = 0$$

For Age is >40

Info(D) =
$$-\frac{3}{5} log_2(\frac{3}{5}) - \frac{2}{5} log_2(\frac{2}{5}) = 0.97095$$

$$\text{Hnfo}(D) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.94028$$

Info(D_{Age})=
$$\frac{5}{14}$$
 X 0.97095 + $\frac{4}{14}$ X 0+
 $\frac{5}{14}$ X 0.97095
=0.693536

Gain=Info(D)-Info(
$$D_{Age}$$
)
=0.94028-0.693536 =0.24675

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit_rating) = 0.048$

Computing Information-Gain for Continuous-Value Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - \Box $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the minimum expected information requirement for A is selected as the split-point for A

Split:

■ D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Questions and Answers