AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

Claims 1-23. (Cancelled)

Claim 24 (Currently Amended): A method for producing a micro electromechanical device package, comprising the steps of:

forming a thermally decomposable sacrificial layer on a substrate of a micro electro-mechanical device, the sacrificial layer encapsulating a portion of the micro electro-mechanical device;

forming an overcoat layer around the sacrificial layer; and

thermally decomposing the sacrificial layer, wherein decomposed molecules of the sacrificial layer permeate through the overcoat layer, and wherein a gas cavity is formed where the thermally decomposable sacrificial layer was formed formed,

wherein the overcoat layer provides an airtight enclosure around the gas cavity.

Claim 25 (Original): The method of claim 24, further comprising the steps of: depositing the sacrificial layer by spin-coating; and patterning the sacrificial layer.

Claim 26 (Previously Presented): The method of claim 24, wherein the sacrificial layer has a decomposition temperature less than a decomposition temperature of the substrate and a decomposition temperature of the overcoat layer.

Claim 27 (Original): The method of claim 24, wherein the substrate comprises a silicon material.

Application No. 10/534,956

Paper Dated: November 8, 2010

In Reply to USPTO Correspondence of August 26, 2010

Attorney Docket No. 5219-091016

Claim 28 (Original): The method of claim 24, wherein the substrate comprises a

non-silicon material.

Claim 29 (Previously Presented): The method of claim 24, wherein the thickness

of the overcoat layer is within the range of 50 nm and 500 μm.

Claim 30 (Previously Presented): The method of claim 24, wherein the overcoat

layer has not been perforated.

Claim 31 (Previously Presented): The method of claim 24, wherein the overcoat

layer is substantially free of the sacrificial layer after the sacrificial layer has been thermally

decomposed.

Claim 32 (Cancelled)

Claim 33 (Previously Presented): The method of claim 32, wherein the overcoat

layer provides protection from mechanical forces.

Claim 34 (Previously Presented): The method of claim 33, wherein the overcoat

layer further provides protection against water.

Claim 35 (Previously Presented): The method of claim 34, wherein the overcoat

layer further provides protection against oxygen gas.

Claim 36 (Previously Presented): The method of claim 34, wherein the overcoat

layer further provides protection against exposure to gaseous materials.

Page 4 of 12

29J0913.DOC

Application No. 10/534,956

Paper Dated: November 8, 2010

In Reply to USPTO Correspondence of August 26, 2010

Attorney Docket No. 5219-091016

Claim 37 (Previously Presented): The method of claim 24, wherein the micro electro-mechanical device includes a released mechanical structure before the sacrificial layer is formed.

Claim 38 (Previously Presented): The method of claim 24, further comprising the steps of:

before the overcoat layer is formed, attaching the micro electro-mechanical device to a metal packaging frame, wherein the overcoat layer comprises an epoxy resin encapsulating the micro electro-mechanical device and metal packaging frame assembly.

Claim 39 (Previously Presented): The method of claim 38, further comprising the step of:

heating the micro assembly at a temperature for curing the overcoat layer; and heating the micro assembly at a temperature for decomposing the sacrificial layer, the temperature for decomposing the sacrificial layer exceeding the temperature for curing the overcoat layer.

Claim 40 (Previously Presented): The method of claim 24, further comprising the step of:

forming a barrier layer around the overcoat layer, the barrier layer providing a stronger protection against mechanical forces than the overcoat layer.

Claim 41 (Original): The method of claim 40, wherein the barrier layer comprises a metal material.

Claim 42 (Previously Presented): The method of claim 40, further comprising the steps of:

creating a vacuum inside the gas cavity by heating the micro electro-mechanical device in a chamber; and

after the vacuum is created, forming a barrier layer around the overcoat layer within the chamber to provide a vacuum-packed enclosure around the gas cavity, the barrier layer comprising a metal material.

Claim 43 (Previously Presented): The method of claim 42, further comprising the steps of:

after the barrier layer is formed, attaching the micro electro-mechanical device to an integrated circuit package structure; and

encapsulating the electro-mechanical device and integrated circuit package structure in a surrounding structure.

Claim 44 (Original): The method of claim 42, wherein the integrated circuit package structure comprises a leadframe.

Claim 45 (Original): The method of claim 42, wherein the integrated circuit package structure comprises a ceramic package.

Claim 46 (Original): The method of claim 42, wherein the step of thermally decomposing the sacrificial layer occurs inside the vacuum chamber.

Claim 47 (Previously Presented): The method of claim 24, further comprising the steps of:

after the sacrificial layer is decomposed, attaching the micro electro-mechanical device to an integrated circuit package structure; and

encapsulating the electro-mechanical device and package structure in a surrounding structure.

Claim 48 (Original): The method of claim 47, wherein the integrated circuit package structure comprises a leadframe.

Application No. 10/534,956

Paper Dated: November 8, 2010

In Reply to USPTO Correspondence of August 26, 2010

Attorney Docket No. 5219-091016

Claim 49 (Original): The method of claim 47, wherein the integrated circuit package structure comprises a ceramic package.

Claim 50 (Previously Presented): The method of claim 24, wherein thermal decomposition temperature of the sacrificial layer is less than 100 degrees Celsius.

Claim 51 (Cancelled)

Claim 52 (Previously Presented): The method of Claim 24, wherein said gas cavity is formed while decomposed molecules produced by decomposition of the sacrificial layer permeate the overcoat layer.

Claim 53 (Previously Presented): The method of Claim 24, wherein said overcoat layer comprises a polymer.

Claim 54 (Previously Presented): The method of Claim 24, wherein said overcoat layer comprises a photodefinable polymer.

Claim 55 (Previously Presented): The method of Claim 24, wherein said overcoat layer is a solid overcoat layer.