Chapitre 4	
Chaptere 1	
Algorithme Glouton	
Directement extrait de [CLR90]	
Olivier Raynaud, Université Blaise Passal, Clemont-Ferrand	
Chap. 4: Algorithmes gloutons	
Le choix glouton	
Principe: les algorithmes gloutons sont des algorithmes	
pour lesquels à chaque itération on fix e la valeur d'une ou	
plusieurs variables décrivant le problème sans remettre en	
cause les choix antérieurs.	
	-
Précisément Le principe consiste à faire localement le choix qui semble le meilleur, pour se ramener ensuite à la résolution	
d'un sous problème identique.	
Olivier Raynaud, Université Blaise Passal, Clemont-Ferrand	
Chap. 4: Algorithmes gloutons	1
Le problème du choix d'activité	
Description: soit un ensemble S de n activités concurrentes	
qui souhaitent utiliser une ressource commune qui ne peut être	
allouée que pour une activité à la fois. Chaque activité possède un horaire de début d_i et de fin f_i .	
and the possess an instant de deout af et de ini ff.	
Question: Trouver l'ensemble le plus grand possible d'activités	
compatibles entre elles.	

Olivier Raynaud, Université Blaise Passal, Clemont-Ferrand

Chap. 4: Algorithmes gloutons Le problème du choix d'activité Exemple d'instance Considérons les activités suivantes: a1: [5-9] a5: [5-7] a9:[8-11] a2: [2-13] a6: [3-8] a10:[3-5] a3: [0-6] a7: [12-14] a11[8-12] a4: [1-4] a8: [6-10] Question: Trouver l'ensemble le plus grand possible d'activités compatibles entre elles.

Chap. 4: Algorithmes gloutons Optimalité Théorème: l'algorithme choix Activité() calcule l'ensemble de taille maximum d'activités compatibles. Elément de démonstration: • Montrer qu'il existe une solution optimale qui intègre le choix glouton (c'est-à-dire l'activité 1); • Montrer que le même raisonnement peut être conduit sur S - {1}

Chap. 4: Algorithmes gloutons

Démonstration

Montrer qu'il existe une solution optimale qui intègre le choix glouton:

Soit A une solution optimale ordonnées par horaire de fin croissante, soit k la première activité de A:

> Si k=1, A est optimale et intègre le choix glouton; Sinon

soit B = A - $\{k\}$ + $\{1\}$ avec $f_1 \le f_k$

Les activités de B sont disjointes et comme B possède autant d'activités que A, B est optimale.

Chap. 4: Algorithmes gloutons

Démonstration

Montrer que si A est une solution optimale sur S, alors $A'=A-\{1\}$ est une solution optimale sur S'= $\{i$ dans $S: d_i>=f_1\}$

Par l'absurde :

si A'n'est pas optimale,
alors il existe une solution B'pour S'contenant plus d'activité que A'.

B' union {1} est alors une solution pour S contenant plus d'activités que A.

Ce qui contredit l'hypothèse que A était optimale sur S.

hap. 4: Algorithmes gloutons

Elément de stratégie gloutonne

La propriété du choix glouton : on peut arriver à une solution globalement optimale en effectuant un choix localement optimal.

La propriété de sous structure optimale: un problème fait apparaître une sous structure optimale si une solution optimale du problème contient la solution optimale des sous problèmes.

Olivier Raynaud, Université Blaise Pascal, Clemont-Ferrand

Validation de la démarche gloutonne Techniquement: • Etudier une solution globalement optimale puis montrer que cette solution peut être modifiée pour qu'un choix glouton soit effectué à la première étape; • Enfin, pour montrer qu'un choix glouton nous ramène à l'étude d'un problème similaire mais plus petit, il suffit de s'assurer qu'une solution optimale fait bien apparaître des sous structures optimales.

Chap. 4 : Algorithmes gloutons		
Problème « codage d'Huffman »		
11. 31 11.00		
Algorithme Huffman();		
Données : C : chaîne de caractères;		
Résultat: arbre binaire;		
Début		
$n \leftarrow C.taille; F \leftarrow C;$		
pour (i ← 1 à n-1) <u>faire</u>		
z ← nouveauNoeud();		
$x \leftarrow F.extraireMin(); z.gauche \leftarrow x;$		
y ← F.extraireMin(); z.droite ← y;		
$f(z) \leftarrow f(x) + f(y);$		
F. inserer(z);		
fin pour		
Retourner F. extraire Min,		
Fin		
Olivier Raynaud, Université Blaise Passal, Clemont-Ferrand		

Chap. 4: Algorithmes gloutons
Codage de Huffman
Codage ac Hamman
Définition
Soit un alphabet C et un caractère c , $f(c)$ est la fréquence de c dans le fichier et $d_T(c)$ la profondeur de la feuille c dans l'arbre T .
Le nombre de bits requis pour encoder un fichier vaut :
$B(T) = \sum_{c \text{ dans } C} f(c) \cdot d_T(c)$
Olivier Raynaud , Université Blaise Pascal , Clemont-Ferrand

Chap. 4: Algorithmes gloutons Propriété du choix glouton	
Lemme: Soit C un alphabet et f une fréquence d'apparition sur C. Soient x et y de C ayant les fréquences les plus basses. Il existe alors un codage préfixe optimal pour C dans lequel les mots de code pour x et y ont la même longueur et ne diffère que par le demier bit.	
[CLR90] Olider Raynaud, Université Blaise Paxal, Clemont-Fernand	

Chap. 4: Algorithmes gloutons
Démonstration
Pourquoi le cout de l'arbre n'est pas dégradé?
• On supposera $f(b) \le f(c)$ et $f(x) \le f(y)$ d'où $f(x) \le f(b)$ et $f(y) \le f(c)$
• $B(T) - B(T') = \sum_{cansc} F(c) \cdot d_T(c) - \sum_{cdanc} F(c) \cdot d_T(c)$
$= f(x)d_{T}(x) + f(b)d_{T}(b) - (f(x)d_{T}(x) + f(b)d_{T}(b))$
$= f(x)d_{T}(x) + f(b)d_{T}(b) - (f(x)d_{T}(b) + f(b)d_{T}(x))$ $= (f(b) - f(x)) (d_{T}(b) - d_{T}(x)) >= 0;$
• De la même façon l'on pourra montrer que B(T') - B(T") est supérieur à 0;
Ainsi nous avons : $B(T'') \leftarrow B(T)$; T'' est optimal;
Olivier Raynaud, Université Blaise Paxal, Clomont Ferrand

Chap. 4: Algorithmes gloutons Propriété de sous structure optimale Lemme: Soit T un arbre binaire représentant un codage préfixe optimal pour C, soient 2 caractères x et y quelconques qui apparaissent comme feuille sœurs dans T, et soit z leur père. Alors, en considérant z de fréquence f(x) + f(y), 1 'arbre T '=T-{x,y} représente un codage préfixe optimal pour l'alphabet C '= C - {x,y} U {z}.

Chap. 4: Algorithmes gloutons
Démonstration
Montrons que le cout B(T) de T peut être exprimé en fonction du cout B(T') de l'arbre T'.
• Rappel: $B(T) = \sum_{c \text{ dans } c} f(c) \cdot d_{T}(c)$
• Pour tout c dans C / $\{x,y\}$, on a $f(c)d_T(c) = f(c)d_T(c)$
• D'autre part $d_T(x) = d_T(y) = d_T(z) + 1$;
• $f(x)d_T(x) + f(y)d_T(y) = (f(x) + f(y)) \cdot (d_T(z) + 1)$
$= f(z) d_{T}(z) + f(x) + f(y)$
D'où $B(T) = B(T') + f(x) + f(y)$;
Olivier Raynaud, Université Blaise Pascal, Clemont-Ferrand

Chap. 4: Algorithmes gloutons		
Algorithme glouton générique		
3		
Données : G		
Résultat R		
Begin		
ensemble W={}		
tant que (W ≠ G)		
choisir (d dans G \ w)		
R = R + traiter (d)		
W = W union {d}		
fin tant que		
Retourner R		
End		
Olivier Raynaud, Université Blaise Pascal, Clemont-Ferrand		

Chap. 4 : Algorithmes gloutons	
Pour résumer	
Le paradigme « glouton » consiste à faire un choix local qui maximise un critère donné à un instant donné. Ce choix ne sera jamais remis en cause.	
• Le paradigme glouton est adapté aux problèmes pour lesquels les deux propriétés « du choix glouton » et de « sous structure optimale » sont vérifiées;	
Dans ce chapitre nous avons étudié deux problèmes : - Choix d'activité; - Codage de Huffman;	
Olivier Raynaud, Université Blaise Paxal, Clemont-Ferrand	