INDEPENDENT EVENTS

DISCRETE STRUCTURES II

DARRYL HILL

BASED ON THE TEXTBOOK:

DISCRETE STRUCTURES FOR COMPUTER SCIENCE: COUNTING, RECURSION, AND PROBABILITY

BY MICHIEL SMID

Events A, B, Pr(B) > 0

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

Events *A*, *B* are independent if:

An event A has no influence on the probability of event B, and

An event B has no influence on the probability of event A

If A and B independent, then

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent, then $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

Claim:

If A and B independent, then

If Pr(B) > 0 then

$$Pr(A|B) = Pr(A)$$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(A) \cdot Pr(B)}{Pr(B)}$$
$$= Pr(A)$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent, then $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

Claim:

If A and B independent, then

If Pr(A) > 0 then

$$Pr(B|A) = Pr(B)$$

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)} = \frac{Pr(A) \cdot Pr(B)}{Pr(A)}$$
$$= Pr(B)$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i,j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red} + \text{blue} = 7$$
"

Event
$$B = \text{"red} = 4$$
"

To verify that events A and B are independent, we must verify the expression:

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$
.

That means we need to determine $Pr(A \cap B)$, Pr(A), and Pr(B)

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red} + \text{blue} = 7\text{"}$$

$$A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$Pr(A) = \frac{|A|}{|S|}$$
$$= \frac{6}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$B = \text{"red} = 4\text{"}$$

$$B = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

$$Pr(B) = \frac{|B|}{|S|}$$
$$= \frac{6}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event $A \cap B =$ " red + blue = 7 and red = 4"

$$A \cap B = \{(4,3)\}$$

$$Pr(A \cap B) = \frac{|A \cap B|}{|S|}$$
$$= \frac{1}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

$$Pr(A \cap B) = \frac{|A \cap B|}{|S|} = \frac{1}{36}$$

$$Pr(A) = \frac{1}{6}, \quad Pr(B) = \frac{1}{6}$$

$$Pr(A) \cdot Pr(B) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

That means $Pr(A \cap B) = Pr(A) \cdot Pr(B)$ and thus A and B are independent events.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Observe that if A happens, then any of

$$A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

can be the outcome.

But if we know B happens, then the only outcome of A that can happen (4,3).

So B can affect what element of A can be selected, but does not affect the probability of A.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red} + \text{blue} = 11\text{"}$$

Event
$$B = \text{"red} = 5$$
"

To verify that events A and B are independent, we must verify the expression:

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$
.

That means we need to determine $Pr(A \cap B)$, Pr(A), and Pr(B)

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red + blue = 11"}$$

$$A = \{(5,6), (6,5)\}$$

$$Pr(A) = \frac{|A|}{|S|}$$
$$= \frac{2}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$B = \text{"red} = 5$$
"

$$B = \{(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)\}$$

$$Pr(B) = \frac{|B|}{|S|}$$
$$= \frac{6}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event $A \cap B =$ " red + blue = 11 and red = 5"

$$A \cap B = \{(5,6)\}$$

$$Pr(A \cap B) = \frac{|A \cap B|}{|S|}$$
$$= \frac{1}{36}$$

Events A, B, Pr(B) > 0

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

$$Pr(A \cap B) = \frac{|A \cap B|}{|S|} = \frac{1}{36}$$

$$Pr(A) = \frac{1}{18}, \quad Pr(B) = \frac{1}{6}$$

$$Pr(A) \cdot Pr(B) = \frac{1}{18} \cdot \frac{1}{6} = \frac{1}{108}$$

That means $Pr(A \cap B) \neq Pr(A) \cdot Pr(B)$ and thus A and B are NOT independent events.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

We individually find the values for $Pr(A \cap B)$, Pr(A), and Pr(B) then plug them into the equation.

This is the only way to verify independence.

Set based "intuitions" often do not hold up.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i,j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red + blue = 4"}$$

Event
$$B = \text{"red} = 4$$
"

$$A = \{(1,3), (2,2), (3,1)\}$$

$$\Pr(A) = \frac{|A|}{|S|}$$

$$=\frac{3}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red + blue = 4"}$$

Event
$$B = \text{"red} = 4$$
"

$$B = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

$$\Pr(A) = \frac{|B|}{|S|}$$

$$=\frac{6}{36}$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

$$S = \{(i,j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

Event
$$A = \text{"red} + \text{blue} = 4$$
"
Event $B = \text{"red} = 4$ "

$$A = \{(1,3), (2,2), (3,1)\}$$

$$B = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$$

$$A \cap B = \{\}$$

$$\Pr(A \cap B) = \frac{|A \cap B|}{|S|}$$

$$= 0$$

Events A, B, Pr(B) > 0

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Roll fair red die, fair blue die

$$S = \{(i, j): 1 \le i \le 6, 1 \le j \le 6\}$$

 $i = \text{red}, j = \text{blue}$

$$Pr(A \cap B) = \frac{|A \cap B|}{|S|} = 0$$

$$Pr(A) = \frac{1}{12}, \quad Pr(B) = \frac{1}{6}$$

$$Pr(A) \cdot Pr(B) = \frac{1}{12} \cdot \frac{1}{6} = \frac{1}{72}$$

That means $Pr(A \cap B) \neq Pr(A) \cdot Pr(B)$ and thus A and B are NOT independent events.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent,

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$

If
$$Pr(A) > 0$$
 then $Pr(B|A) = Pr(B)$

Intuitively if *A* and *B* are independent, then one event happening does not affect the probability of the other event happening.

Event
$$A = \text{"red} + \text{blue} = 4\text{"}$$

Event $B = \text{"red} = 4\text{"}$

We can see that if "red = 4", then it is impossible for "red + blue = 4". Thus B definitely will impact Pr(A).

If they were independent, Pr(A|B) = Pr(A)

But
$$Pr(A|B) = 0$$
 and $Pr(A) \neq 0$.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent, $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$
If $Pr(A) > 0$ then $Pr(B|A) = Pr(B)$

If A and B are independent, are A and \overline{B} independent?

If A and B are independent, then whether or not B occurs has no impact on the probability of A.

Observe that "not B occurring" is equivalent to \overline{B} . That implies that \overline{B} has no affect on Pr(A) thus A and \overline{B} are independent.

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If A and B independent, $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$
If $Pr(A) > 0$ then $Pr(B|A) = Pr(B)$

If A and B are independent, are A and \bar{B} independent? We will verify this using the rules of probability.

Given: A and B are independent, thus $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

To show: A and \bar{B} are independent, thus $\Pr(A \cap \bar{B}) = \Pr(A) \cdot \Pr(\bar{B})$

$$Pr(A \cap \overline{B}) = Pr(A) \cdot (1 - Pr(B))$$

$$Pr(A \cap \overline{B}) = Pr(A) - Pr(A) \cdot Pr(B)$$

$$Pr(A \cap \overline{B}) + Pr(A) \cdot Pr(B) = Pr(A)$$

$$Pr(A \cap \overline{B}) + Pr(A \cap B) = Pr(A)$$

Events $A, B, \Pr(B) > 0$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

probability.

If A and B independent, $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

If
$$Pr(B) > 0$$
 then $Pr(A|B) = Pr(A)$
If $Pr(A) > 0$ then $Pr(B|A) = Pr(B)$

If A and B are independent, are A and \bar{B} independent? We will verify this using the rules of

Given: A and B are independent, thus $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

To show: A and \overline{B} are independent, thus $\Pr(A \cap \overline{B}) = \Pr(A) \cdot \Pr(\overline{B})$

$$\Pr(A \cap \overline{B}) + \Pr(A \cap B) = \Pr(A)$$

$$\frac{|A \cap \overline{B}|}{|S|} + \frac{|A \cap B|}{|S|} = \frac{|A|}{|S|}$$

$$|A \cap \overline{B}| + |A \cap B| = |A|$$

Events $A_1, A_2, \dots, A_n \ n \geq 2$

pairwise independent events: $\forall i \neq j$, $\Pr(A_i \cap A_j) = \Pr(A_i) \cdot \Pr(A_j)$

mutually independent:

$$\forall k, 2 \le k \le n, \forall i_1 < i_2 ... < i_k$$
:

$$Pr(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k})$$

= $Pr(A_{i_1}) \cdot Pr(A_{i_2}) \cdot \dots \cdot Pr(A_{i_k})$

We can see that mutually independent \rightarrow pairwise independent, since pairwise independent is mutually independent for k=2.

If we want to verify pairwise independence of all equations for a set of n events, how many equations must we verify?

 $\binom{n}{2}$

Since there are n events and we must examine all pairs.

This behaves like n^2 .

Events A_1, A_2, \dots, A_n $n \ge 2$

pairwise independent events: $\forall i \neq j$, $\Pr(A_i \cap A_j) = \Pr(A_i) \cdot \Pr(A_j)$

mutually independent:

$$\forall k, 2 \le k \le n, \forall i_1 < i_2 ... < i_k$$
:

$$\Pr(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k})$$

=
$$\Pr(A_{i_1}) \cdot \Pr(A_{i_2}) \cdot \dots \cdot \Pr(A_{i_k})$$

We can see that mutually independent \rightarrow pairwise independent, since pairwise independent is mutually independent for k=2.

If we want to verify mutual independence of all equations for a set of n events, how many equations must we verify?

The claim is:

$$2^{n}-1-n$$

We need to examine all sets of k, $2 \le k \le n$.

This is all subsets 2^n

Subtract all subsets of size 1, there are n

Subtract the empty set, there is 1.

Events $A_1, A_2, \dots, A_n \ n \geq 2$

pairwise independent events: $\forall i \neq j$,

$$\Pr(A_i \cap A_j) = \Pr(A_i) \cdot \Pr(A_j)$$

 $\binom{n}{2}$

mutually independent:

$$\forall k, 2 \le k \le n, \forall i_1 < i_2 ... < i_k$$
:

$$\Pr(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) \qquad 2^n - 1 - n$$

=
$$\Pr(A_{i_1}) \cdot \Pr(A_{i_2}) \cdot \dots \cdot \Pr(A_{i_k})$$

mutually independent \rightarrow pairwise independent

Events A, B, C

To verify pairwise independent:

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

$$Pr(A \cap C) = Pr(A) \cdot Pr(C)$$

$$Pr(B \cap C) = Pr(B) \cdot Pr(C)$$

To verify mutually independent:

All equations of size 2, plus all equations of size 3. So the equations above, plus:

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

Events A, B, Cpairwise: $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$ $\Pr(A \cap C) = \Pr(A) \cdot \Pr(C)$ $\Pr(B \cap C) = \Pr(B) \cdot \Pr(C)$ mutually: above, plus $\Pr(A \cap B \cap C) = \Pr(A) \cdot \Pr(B) \cdot \Pr(C)$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, THH, THT, THH, THT, TTH, TTT\}$$

 $|S| = 8$, uniform probability

We will define the events:

$$A = 1$$
st flip equals 2nd flip $B = 2$ nd flip equals 3rd flip $C = 1$ st flip = 3rd flip

We will write this as:

$$A = "f_1 = f_2"$$

 $B = "f_2 = f_3"$
 $C = "f_1 = f_3"$

Events A, B, C

pairwise:
$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

 $Pr(A \cap C) = Pr(A) \cdot Pr(C)$
 $Pr(B \cap C) = Pr(B) \cdot Pr(C)$

mutually: above, plus

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, THH, THT, THH, THT, TTH, TTT\}$$

 $|S| = 8$, uniform probability

$$A = "f_1 = f_2"$$

 $B = "f_2 = f_3"$
 $C = "f_1 = f_3"$

$$A = \{HHH, HHT, TTH, TTT\}$$

 $B = \{HHH, THH, HTT, TTT\}$
 $C = \{HHH, HTH, THT, TTT\}$

$$|A| = |B| = |C| = 4$$

$$Pr(A) = Pr(B) = Pr(C) = \frac{4}{|S|} = \frac{4}{8} = \frac{1}{2}$$

We check pairwise independence by verifying 3 equations.

Events A, B, Cpairwise: $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$ $\Pr(A \cap C) = \Pr(A) \cdot \Pr(C)$ $\Pr(B \cap C) = \Pr(B) \cdot \Pr(C)$ mutually: above, plus $\Pr(A \cap B \cap C) = \Pr(A) \cdot \Pr(B) \cdot \Pr(C)$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, \\ THH, THT, TTH, TTT\}$$

$$|S| = 8, \text{ uniform probability}$$

$$A = "f_1 = f_2" = \{HHH, HHT, TTH, TTT\}$$

 $B = "f_2 = f_3" = \{HHH, THH, HTT, TTT\}$
 $C = "f_1 = f_3" = \{HHH, HTH, THT, TTT\}$

$$Pr(A) = Pr(B) = Pr(C) = \frac{1}{2}$$

Verify 1: $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

$$Pr(A) \cdot Pr(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$A \cap B = \{HHH, TTT\}$$

$$Pr(A \cap B) = \frac{|A \cap B|}{|S|} = \frac{2}{8} = \frac{1}{4},$$

∴ first equation is verified

Events A, B, C

pairwise: $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

$$Pr(A \cap C) = Pr(A) \cdot Pr(C)$$

$$Pr(B \cap C) = Pr(B) \cdot Pr(C)$$

mutually: above, plus

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, THH, TTT, THH, TTT, THH, TTTT\}$$

 $|S| = 8$, uniform probability

$$A = "f_1 = f_2" = \{HHH, HHT, TTH, TTT\}$$

 $B = "f_2 = f_3" = \{HHH, THH, HTT, TTT\}$
 $C = "f_1 = f_3" = \{HHH, HTH, THT, TTT\}$

$$Pr(A) = Pr(B) = Pr(C) = \frac{1}{2}$$

Verify 2: $Pr(A \cap C) = Pr(A) \cdot Pr(C)$

$$Pr(A) \cdot Pr(C) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$A \cap C = \{HHH, TTT\}$$

$$Pr(A \cap C) = \frac{|A \cap C|}{|S|} = \frac{2}{8} = \frac{1}{4},$$

∴ second equation is verified

Events A, B, Cpairwise: $Pr(A \cap B) = Pr(A) \cdot Pr(B)$ $Pr(A \cap C) = Pr(A) \cdot Pr(C)$ $Pr(B \cap C) = Pr(B) \cdot Pr(C)$

mutually: above, plus

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, THH, THT, THH, THT, TTH, TTT\}$$

 $|S| = 8$, uniform probability

$$A = "f_1 = f_2" = \{HHH, HHT, TTH, TTT\}$$

 $B = "f_2 = f_3" = \{HHH, THH, HTT, TTT\}$
 $C = "f_1 = f_3" = \{HHH, HTH, THT, TTT\}$

$$Pr(A) = Pr(B) = Pr(C) = \frac{1}{2}$$

Verify 3: $Pr(B \cap C) = Pr(B) \cdot Pr(C)$

$$Pr(B) \cdot Pr(C) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$B \cap C = \{HHH, TTT\}$$

$$Pr(B \cap C) = \frac{|B \cap C|}{|S|} = \frac{2}{8} = \frac{1}{4},$$

: third equation is verified

Events
$$A, B, C$$

pairwise: $Pr(A \cap B) = Pr(A) \cdot Pr(B)$
 $Pr(A \cap C) = Pr(A) \cdot Pr(C)$
 $Pr(B \cap C) = Pr(B) \cdot Pr(C)$

mutually: above, plus

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, THH, THT, THH, THT, TTH, TTT\}$$

 $|S| = 8$, uniform probability

$$A = "f_1 = f_2" = \{HHH, HHT, TTH, TTT\}$$

 $B = "f_2 = f_3" = \{HHH, THH, HTT, TTT\}$
 $C = "f_1 = f_3" = \{HHH, HTH, THT, TTT\}$

Since all three equations hold, events A, B, and C are **pairwise independent**.

To show additionally that they are mutually independent, we must show:

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

Events A, B, Cpairwise: $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$ $\Pr(A \cap C) = \Pr(A) \cdot \Pr(C)$ $\Pr(B \cap C) = \Pr(B) \cdot \Pr(C)$ mutually: above, plus $\Pr(A \cap B \cap C) = \Pr(A) \cdot \Pr(B) \cdot \Pr(C)$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, \\ THH, THT, TTH, TTT\}$$

$$|S| = 8, \text{ uniform probability}$$

$$A = "f_1 = f_2" = \{HHH, HHT, TTH, TTT\}$$

 $B = "f_2 = f_3" = \{HHH, THH, HTT, TTT\}$
 $C = "f_1 = f_3" = \{HHH, HTH, THT, TTT\}$

To show:

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

$$Pr(A) = Pr(B) = Pr(C) = \frac{1}{2}$$

$$Pr(A) \cdot Pr(B) \cdot Pr(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$A \cap B \cap C = \{HHH, TTT\}$$

$$Pr(A \cap B \cap C) = \frac{|A \cap B \cap C|}{|S|} = \frac{2}{8} = \frac{1}{4}$$
∴ Not mutually independent

Events
$$A, B, C$$

pairwise: $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$
 $\Pr(A \cap C) = \Pr(A) \cdot \Pr(C)$
 $\Pr(B \cap C) = \Pr(B) \cdot \Pr(C)$
mutually: above, plus
 $\Pr(A \cap B \cap C) = \Pr(A) \cdot \Pr(B) \cdot \Pr(C)$

Example: Flip a fair coin 3 times.

The sample space is:

$$S = \{HHH, HHT, HTH, HTT, THH, THT, THH, THT, TTH, TTT\}$$

 $|S| = 8$, uniform probability

$$A = "f_1 = f_2"$$

 $B = "f_2 = f_3"$
 $C = "f_1 = f_3"$

Not mutually independent:

Assume and A and B happen. If " $f_1 = f_2$ " and " $f_1 = f_3$ " then it must be that " $f_1 = 3$ ".

So if we know A and B happen, then Pr(C) = 1.

$$Pr(C|A \cap B) = 1$$
$$Pr(C) = \frac{1}{2}$$

Exercise 5.81:

Three students are writing an exam.

Annie: passes the exam with probability 0.9

Boris: passes the exam with probability 0.9

Charlie: passes the exam with probability 0.6

Assume that they are in a team setting, so as long as 2 of them pass, then all 3 pass. But if 2 or more fail, then all 3 fail.

How can they optimize their chances?

We will look at 2 different scenarios.

This Photo by Unknown Author is licensed under CC BY-SA-NC

A: Annie: passes with probability 0.9

B: Boris: passes with probability 0.9

C: Charlie: passes with probability 0.6

Scenario 1: no cheating

If no one is cheating, then the results of the exams are mutually independent, i.e., none of the outcomes of A, B or C has any influence on the probability of the others, either individually or in combination.

What is the $Pr(\geq 2 \text{ students pass})$?

$$\geq$$
 2 pass \leftrightarrow $A \cap B \cap C$ or $\overline{A} \cap B \cap \overline{C}$ or $\overline{A} \cap B \cap C$

Since these sets are pairwise disjoint, and "or" corresponds to union \rightarrow apply the sum rule:

$$Pr(\geq 2 pass)$$

$$= \Pr(A \cap B \cap C) + \Pr(A \cap B \cap \overline{C}) + \Pr(A \cap \overline{B} \cap C) + \Pr(\overline{A} \cap B \cap C)$$

Mutually independent:

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$$

A: Annie: passes with probability 0.9

B: Boris: passes with probability 0.9

C: Charlie: passes with probability 0.6

Scenario 1: no cheating

If no one is cheating, then the results of the exams are mutually independent, i.e., none of the outcomes of A, B or C has any influence on the probability of the others, either individually or in combination.

What is the $Pr(\geq 2 \text{ students pass})$?

$$\geq$$
 2 pass \leftrightarrow $A \cap B \cap C$ or $\overline{A} \cap B \cap \overline{C}$ or $\overline{A} \cap B \cap C$

Since these sets are pairwise disjoint, and "or" corresponds to union → apply the sum rule:

$$Pr(\geq 2 \ pass)$$

$$= 0.9 \cdot 0.9 \cdot 0.6$$

$$+0.9 \cdot 0.9 \cdot 0.4$$

$$+0.9 \cdot 0.1 \cdot 0.6$$

$$+0.1 \cdot 0.9 \cdot 0.6$$

= 0.918

A: Annie: passes with probability 0.9

B: Boris: passes with probability 0.9

C: Charlie: passes with probability 0.6

Scenario 2: Charlie copies from Annie

What is the $Pr(\geq 2 \text{ students pass})$?

Before we had:

 \geq 2 pass \leftrightarrow ABC or $AB\overline{C}$ or $A\overline{B}C$ or $\overline{A}BC$

Now we cannot have $AB\overline{C}$ or $\overline{A}BC$, since Annie and Charlie get the same mark.

That means now we have:

 \geq 2 pass \leftrightarrow ABC or $A\overline{B}C$

 \geq 2 pass \leftrightarrow AB or $A\overline{B}$

 \geq 2 pass \leftrightarrow A $\Pr(\geq 2 \ pass) = \Pr(A) = 0.9$

Whereas with no cheating:

 $Pr(\geq 2 \ pass) = 0.918$

If students cheat, the average goes down