# (19) World Intellectual Property Organization International Bureau





# (43) International Publication Date 3 October 2002 (03.10.2002)

#### **PCT**

# (10) International Publication Number WO 02/077270 A1

- (51) International Patent Classification<sup>7</sup>: C1: C12N 9/88, 15/62, G06F 17/50
  - C12Q 1/527,
- (21) International Application Number: PCT/GB02/01490
- (22) International Filing Date: 27 March 2002 (27.03.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 09/812,957
- 27 March 2001 (27.03.2001) US
- (71) Applicant (for all designated States except US): ASTEX TECHNOLOGY LIMITED [GB/GB]; 250 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WE (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BLUNDELL, Tom, Leon [GB/GB]; Rushmore House, Fowlmere Road, Shepreth, Royston, Hertfordshire SG8 6QP (GB). ABELL, Christopher [GB/GB]; 39 Leys Avenue, Cambridge, Cambridgeshire CB4 2AN (GB). VON DELFT, Frank [ZA/US]; 2875 Mission Boulevard, San Diego, CA 92109 (US).

- (74) Agents: BRASNETT, Adrian, H. et al.; Mewburn Ellis, York House, 23 Kingsway, London, Greater London WC2B 6HP (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

/077270 /

(54) Title: PROTEIN CRYSTAL STRUCTURE AND METHOD FOR IDENTIFYING PROTEIN MODULATORS

(57) Abstract: A method of identifying an agent compound (such as an inhibitor) which modulates asparate decarboxylase (ADC) activity. The method comprises the steps of: a) providing a model of a binding cavity of ADC, said model including at least one of binding site nos. 1 and 9 defined by Table 2; b) providing the structure of said agent compound; c) fitting the candidate agent compound to said binding cavity, including determining the interactions between the candidate agent compound and at least one of binding site nos. 1 and 9; and d) selecting the candidate agent compound.

10

15

20

25

30

# PROTEIN CRYSTAL STRUCTURE AND METHOD FOR IDENTIFYING PROTEIN MODULATORS

# Field of the Invention

The present invention relates to the enzyme aspartate decarboxylase, and in particular the use of its crystal structure for drug discovery.

#### Background of the Invention

Pantothenic acid (vitamin  $B_5$ ) is found in coenzyme A (CoA) and the acyl carrier protein (ACP), both of which are involved in fatty acid metabolism.

Pantothenic acid can be synthesised by plants and microorganisms but animals are apparently unable to make the vitamin, and require it in their diet. However, all organisms are able to convert pantothenic acid to its metabolically active form, coenzyme A.

The pathway for the synthesis of pantothenic acid in bacteria is shown in Fig. 1. It provides a potential target for the treatment of infectious disease, since inhibitors of the pathway should be damaging to microorganisms but not to human or animal subjects infected by microorganisms.

Of specific interest is aspartate decarboxylase (L-aspartate- $\alpha$ -decarboxylase (EC 4.1.1.1)). This enzyme catalyses the decarboxylation of L-aspartate to  $\beta$ -alanine, which then goes on to form pantothenate in a condensation reaction with D-pantoate. Inhibitors (whether competitive, non-competitive, uncompetitive or irreversible) of aspartate decarboxylase (ADC) would be of significant technical and commercial interest.

ADC was first isolated from Escherichia coli by Williamson et al. (J. Biol. Chem., 254, (1979), 8074-8082), who found indications that the protein was present in

15

20

25

30

different processed states. The unprocessed enzyme is referred to as the  $\pi$ -chain and has 126 residues. Processing (see Fig. 2) splits the  $\pi$ -chain at the Gly24-Ser25 peptide bond into a larger C-terminal chain and a smaller N-terminal chain. A pyruvol group (for convenience termed Pvl25) is generated from the serine residue (Ser25) at the end of the C-chain, and a carboxylate group is formed at the end of the glycine residue (Gly24) of the smaller N-terminal chain. Williamson et al. found that only a proportion of the enzyme chains were processed in this way.

Purification to homogeneity of overexpressed, recombinant ADC was achieved by Ramjee et al. (J. Biochem., 323, (1997), 661-669). The purified enzyme was found to be a tetramer which, after processing, contained three processed chains and one chain which was not fully processed.

Albert et al. (Nature Structural Biology, 5, (1998), 289-293) used X-ray crystallography to determine the structure of ADC to 2.2 Å resolution. They showed that the enzyme studied by Ramjee et al. has pseudo-fourfold rotational symmetry, each of the four tetramer subunits (each subunit or corresponding to a  $\pi$ -chain labelled A, B, C or D) having a six-stranded  $\beta$ barrel capped by small  $\alpha$ -helices at each end. The binding cavities for aspartate decarboxylation are located between adjacent subunits. Three of the binding cavities have catalytic pyruvol groups resulting from respective processed π-chains. The other binding cavity has an ester which appears to be an intermediate in the processing reaction. evidence points to an autocatalytic self-processing mechanism which did not lead to full processing of all the n-chains. The coordinates of the crystal structure determined by Albert et al. are available from the Protein Data Bank (Berman et al., Nucleic Acids Research, 28, (2000), 235-242) under access code 1AW8.

Albert et al. proposed a model of L-asparate binding, but did not suggest a mechanism by which ADC accomplishes aspartate decarboxylation. Until now very little was known about the enzyme's role in catalysis. This has impeded the development of ADC inhibitors via structure-based drug design methodologies. Knowledge of the mechanism would significantly assist the rational design of novel therapeutics based on ADC inhibitors.

#### 10 Definitions

5

15

20

25

30

Specific residues are denoted herein by their conventional acronyms (e.g. Gly for glycine), and numbers corresponding to their position in the unprocessed  $\pi$ -chain counting from the N-terminal of the  $\pi$ -chain (e.g. Gly24). Moreover, because each binding cavity is formed from the residues of two  $\pi$ -chains, each residue is further denoted by a letter corresponding to the respective one of the  $\pi$ -chains (e.g. Gly24A or Lys9D). Below, we have used D and A to denote the two  $\pi$ -chains of a binding cavity, but in a tetramer with four equivalent binding cavities and subunits labelled A, B, C and D one could equally use A and B, B and C, or C and D instead.

In the following by "binding site" we mean a site, such as an atom or functional group of an amino acid residue, in the ADC binding cavity which may bind to an agent compound such as a candidate inhibitor. Depending on the particular molecule in the cavity, sites may exhibit attractive or repulsive binding interactions, brought about by charge, steric considerations and the like.

By "fitting", is meant determining by automatic, or semiautomatic means, interactions between one or more atoms of an agent molecule and one or more atoms or binding sites of the ADC, and determining the extent to which such interactions are

4

stable. Various computer-based methods for fitting are described further herein.

5

10

15

20

25

30

By "fully processed" ADC we mean a composition comprising an amount of ADC in which pyruvoyl groups are generated from at least 90%, preferably at least 95%, and more preferably at least 99% of the ADC Ser25 residues.

By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

By a "computer system" we mean the hardware means, software means and data storage means used to analyse atomic coordinate data. The minimum hardware means of the computer-based systems of the present invention typically comprises a central processing unit (CPU), input means, output means and data storage means. Desirably a monitor is provided to visualise structure data. The data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows NT or IBM OS/2 operating systems.

By "computer readable media" we mean any media which can be read and accessed directly by a computer e.g. so that the media is suitable for use in the above-mentioned computer system. The media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

10

15

20

25

30

#### Summary of the Invention

The present invention is at least partly based on overcoming several technical hurdles: we have (i) produced fully processed ADC, (ii) produced crystals of ADC of suitable quality for performing X-ray diffraction analyses (in particular we have produced crystals which diffract X-rays for the determination of atomic coordinates of ADC to a resolution which is better, i.e. numerically lower, than 2 Å), (iii) formed ADC-ligand complexes by soaking the crystals in appropriate soaking solutions, (iv) collected X-ray diffraction data from the ADC-ligand complexes, (v) determined the three-dimensional structures of the complexes, (vi) identified regions of ADC which undergo conformational changes upon ligand binding and decarboxylation, and (vii) determined the likely mechanism by which ADC accomplishes aspartate decarboxylation.

In general aspects, the present invention is concerned with identifying or obtaining agent compounds (especially inhibitors of ADC) for modulating ADC activity, and in preferred embodiments identifying or obtaining actual agent compounds/inhibitors. Crystal structure information presented herein is useful in designing potential inhibitors and modelling them or their potential interaction with the ADC binding cavity. Potential inhibitors may be brought into contact with ADC to test for ability to interact with the ADC binding cavity. Actual inhibitors may be identified from among potential inhibitors synthesized following design and model work performed in silico. An inhibitor identified using the present invention may be formulated into a composition, for instance a composition comprising a pharmaceutically acceptable excipient, and may be used in the manufacture of a medicament for use in a method of treatment. These and other

15

20

25

30

aspects and embodiments of the present invention are discussed below.

A first aspect of the invention provides a crystal of fully processed ADC. The crystal may have unit cell dimensions of a = 71.1 Å  $\pm$  5%, and c = 215.8 Å  $\pm$  5%. Preferably, a = 71.1 Å, and c = 215.8 Å, or more generally a = 71.1 $\pm$ 0.2 Å, and c = 215.8 $\pm$ 0.2 Å. Preferably the crystal of fully processed ADC has the hexagonal point group 622, and more preferably the space group  $P6_122$ .

A further aspect of the invention provides a crystal of (preferably fully processed) ADC which diffract X-rays for the determination of atomic coordinates of ADC to a resolution which is better than 2 Å.

Alternatively or additionally, the crystal has the three dimensional atomic coordinates of Table 1. An advantageous feature of the structural data according to Table 1 are that they have a high resolution of about 1.55 Å.

The coordinates of Table 1 provide a measure of atomic location in Angstroms, to a first decimal place. The coordinates are a relative set of positions that define a shape in three dimensions. It is possible that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape. Furthermore, varying the relative atomic positions of the atoms of the structure so that the root mean square deviation of the conserved residue backbone atoms (i.e. the nitrogen-carboncarbon backbone atoms of the protein amino acid residues) is less than 1.5 Å (preferably less than 1.0 Å and more preferably less than 0.5 Å) when superimposed on the coordinates provided in Table 1 for the conserved residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and potency for structure-

based drug design of ADC inhibitors. Likewise changing the number and/or positions of the water molecules of Table 1 will not generally affect the potency of the structure for structure-based drug design of ADC inhibitors. Thus for the purposes described herein as being aspects of the present invention, it is within the scope of the invention if: the Table 1 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of conserved residue backbone atoms is less than 1.5 Å (preferably less than 1.0 Å and more preferably less than 0.5 Å) when superimposed on the coordinates provided in Table 1 for the conserved residue backbone atoms; and/or the number and/or positions of water molecules is varied. Reference herein to the coordinates of Table 1 thus includes the coordinates in which one or more individual values of the Table are varied in this way.

10

15

20

25

30

Also, modifications in the ADC crystal structure due to e.g. mutations, additions, substitutions, and/or deletions of amino acid residues (including the deletion of one or more tetramer subunits) could account for variations in the ADC atomic coordinates. However, atomic coordinate data of ADC modified so that a ligand that bound to one or more binding sites of ADC would also be expected to bind to the corresponding binding sites of the modified ADC are, for the purposes described herein as being aspects of the present invention, also within the scope of the invention. Reference herein to the coordinates of Table 1 thus includes the coordinates modified in this way. Preferably, the modified coordinate data define at least one ADC binding cavity.

We have been able to produce and isolate for the first time fully-processed ADC, in which the binding cavities of substantially all the ADC molecules are identical and each

10

15

20

25

30

binding cavity has a catalytic pyruvol group. This has been made possible by the identification of conditions which allow the processing reaction to proceed to completion.

8

The present invention contemplates also "mutants", wherein by a "mutant" we mean a polypeptide which is obtained by replacing at least one amino acid residue in ADC with a different amino acid residue and/or by adding and/or deleting amino acid residues within ADC or at the N- and/or C-terminus of ADC and which has substantially the same three-dimensional structure as ADC from which it is derived. By having substantially the same three-dimensional structure is meant having a set of atomic structure co-ordinates that have a root mean square deviation of less than or equal to about 2.0 Å when superimposed with the atomic structure co-ordinates of the ADC from which the mutant is derived when at least about 50% to 100% of the  $C_{\alpha}$  atoms of the ADC are included in the superposition.

To produce mutants, amino acids present in ADC can be replaced by other amino acids having similar properties, for example hydrophobicity, hydrophobic moment, propensity to form or break  $\alpha$ -helical or  $\beta$ -sheet structures, and so on. Substitutional variants of a protein are those in which at least one amino acid in the protein sequence has been removed and a different residue inserted in its place. Amino acid substitutions are typically of single residues but may be clustered depending on functional constraints e.g. at a crystal contact. Preferably amino acid substitutions will comprise conservative amino acid substitutions. Insertional amino acid variants are those in which one or more amino acids are introduced. This can be amino-terminal and/or carboxy-terminal fusion as well as intrasequence.

Thus the previous aspects of the invention relating to crystals of ADC, may be extended to crystals of mutant ADC.

10

15

20

25

30

A further aspect of the invention provides a method of fully processing ADC comprising the step of forming a solution of ADC, the solution having a pH in the range 6.5-8.5 (preferably 7.0-8.0) and an ADC concentration in the range 1-50 mg/ml (preferably 4-20 mg/ml).

The method may further comprise the step of crystallising the dissolved ADC to form a crystal of fully processed ADC.

In a further aspect, the invention provides a method for growing a crystal of (preferably fully processed) ADC, which method comprises: forming a 1:1 mixture of a crystallising solution containing 1.6 to 2.4 M  $\rm Na_2(SO_4)$  and a protein solution containing ADC at a concentration of 6 to 10 mg/ml in 25 mM HEPES buffer at pH 7.5; and growing the crystal by vapour diffusion from the mixture.

In a further aspect, the invention provides a method of testing a candidate agent compound (such as a candidate inhibitor of ADC) for ability to modulate ADC activity comprising the step of contacting the candidate agent compound with fully processed ADC (produced e.g. according to the method of the one of the previous aspects) to determine the ability of the candidate agent compound to interact with ADC.

Preferably, the candidate agent compound is contacted with ADC in the presence of L-aspartate, and typically a buffer.

By using fully processed ADC for forming ADC-ligand complexes more candidate agent compound molecules per molecule of ADC are exposed to fully processed binding cavities, thereby increasing the sensitivity of e.g. chemical assays based on such complexes.

The above aspects of the invention, both singly and in combination, all contribute to features of the invention which are advantageous.

The structure of fully processed ADC can also be used to solve the crystal structure of proteins, such as ADC-ligand complexes or ADC chimaera-ligand complexes (ADC chimaeras are discussed below) of unknown structure, where X-ray diffraction data or NMR spectroscopic data of these targets has been generated and requires interpretation in order to provide the structure.

Thus, where X-ray crystallographic or NMR spectroscopic data is provided for a target ADC-ligand complex, or an ADC chimaera-ligand complex of unknown three-dimensional structure, the structure of fully processed ADC as defined by Table 1 may be used to interpret that data to provide a likely structure for the target by techniques which are well known in the art, e.g. phasing in the case of X-ray crystallography and assisting peak assignments in NMR spectra.

10

15

20

25

30

One method that may be employed for these purposes is molecular replacement. This method can provide an accurate structural form for the unknown structure more quickly and efficiently than attempting to determine such information ab initio. Examples of computer programs known in the art for performing molecular replacement are CNX (Brunger et al., Current Opinion in Structural Biology, 8, Issue 5, October 1998, 606-611, and commercially available from Accelerys, San Diego, CA) and AMORE (Navaza, Acta Crystallographica, A50, (1994), 157-163).

Thus, a further aspect of the invention provides a method for determining the structure of a protein, which method comprises;

providing the co-ordinates of Table 1, and either (a) positioning the co-ordinates in the crystal unit cell of said protein so as to provide a structure for said protein, or (b) assigning NMR spectra peaks of said protein by manipulating the co-ordinates of Table 1.

10

15

20

25

30

In a further aspect the invention provides a method for determining the structure of a compound bound to ADC, said method comprising:

providing a crystal of ADC;

soaking the crystal with the compound to form a complex; and

determining the structure of the complex by employing the data of Table 1.

Alternatively, the ADC and the compound may be cocrystallized. Thus the invention provides a method for determining the structure of a compound bound to ADC, said method comprising:

mixing ADC with the compound;

crystallizing a ADC-compound complex; and

determining the structure of the complex by employing the data of Table 1.

A mixture of compounds may be soaked or co-crystallized with the crystal, wherein only one or some of the compounds may be expected to bind to the ADC. As well as the structure of the complex, the identity of the complexing compound(s) is/are then determined.

In a further aspect, the invention provides a method for determining the structure of a modulator of ADC bound to fully processed ADC, said method comprising:

providing a crystal of fully processed ADC according to the invention;

soaking the crystal with said modulator; and determining the structure of said ADC-modulator complex.

Alternatively, the ADC and modulator may be cocrystallized. In either case, L-aspartate,  $\beta$ -alanine or an analogue thereof may optionally be present.

In a further aspect, the invention provides a method of analysing an ADC-ligand complex comprising the step of

10

15

20

25

30

WO 02/077270 PCT/GB02/01490 12

employing (i) X-ray crystallographic diffraction data from the ADC-ligand complex and (ii) a three-dimensional structure of fully processed ADC, to generate a difference Fourier electron density map of the complex, the three-dimensional structure being defined by atomic coordinate data according to Table 1.

Preferably, the ADC is itself fully processed in the ADCligand complexes of the previous aspects.

Therefore, such complexes can be crystallised and analysed using X-ray diffraction methods, e.g. according to the approach described by Greer et al., J. of Medicinal Chemistry, Vol. 37, (1994), 1035-1054, and difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked or co-crystallised ADC and the solved structure of fully processed un-complexed ADC. maps can then be used to determine whether and where a particular ligand binds to ADC and/or changes the conformation of ADC.

Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763.). For map visualisation and model building programs such as O (Jones et al., Acta Crystallograhy, A47, (1991), 110-119) can be used.

In a further aspect, the invention provides a method of identifying an agent compound (such as an inhibitor of ADC) which modulates ADC activity comprising the steps of:

- a) providing a candidate agent compound;
- b) forming a complex of fully processed ADC (produced e.g. according to the method of one of the previous aspects) and the candidate agent compound; and
  - c) analysing said complex by X-ray crystallography (e.g. according to the method of one of the previous aspects) or by

NMR spectroscopy to determine the ability of said candidate agent compound to interact with ADC. Detailed structural information can then be obtained about the binding of the agent compound to ADC, and in the light of this information adjustments can be made to the structure or functionality of the agent compound, e.g. to improve binding to the binding cavity. Steps b) and c) may be repeated and re-repeated as necessary. For X-ray crystallographic analysis, the complex may be formed by crystal soaking or co-crystallisation.

5

10

15

20

30

Therefore, compared to partially processed ADC, X-ray crystallographic data from the binding cavities of fully processed ADC-ligand complexes can be interpreted more easily because all the binding cavities are identical. That is, the data are not complicated by reflections from binding sites containing esters instead of pyruvol groups. Likewise the interpretation of NMR spectra is simplified.

In a further aspect, the present invention provides a method of identifying an agent compound (such as an inhibitor of ADC) which modulates ADC activity, comprising the steps of:

- a) providing a model of a binding cavity of ADC, said model including at least one (and preferably both) of binding site nos. 1 and 9 defined by Table 2;
  - b) providing the structure of a candidate agent compound;
- c) fitting the candidate agent compound to said binding cavity, including determining the interactions between the candidate agent compound and at least one (and preferably both) of binding site nos. 1 and 9; and
  - d) selecting the fitted candidate agent compound.

Without wishing to be held to any particular theory, we believe that, in the appropriate context (e.g. in the complexes described below in the "Detailed Description of the Invention"), one or more of the binding sites of Table 2 provides the corresponding binding interaction of Table 2 to

an agent compound. However, the binding interactions of Table 2 are not intended to be exhaustive, and it is within the scope of this aspect of the invention that any of the binding sites may exhibit an interaction which is not listed in Table 2.

5

10

15

20

25

30

Varying the relative positions of the binding sites of Table 2 by relatively small amounts generally results in arrangements of binding sites which are substantially identical to the arrangement of Table 2 in terms of expected interactions with the agent compound. Consequently, the scope of this aspect of the invention includes a binding cavity in which the root mean square deviation of the conserved residue backbone atoms of the residues of column 2 of Table 2 is less than 1.5 Å (preferably less than 1.0 Å and more preferably less than 0.5 Å) when superimposed on the coordinates provided in Table 1 for the conserved residue backbone atoms of the residues of column 2 of Table 2.

The smaller N-terminal  $\beta$ -chain has a tail (hereafter called Tail24A) formed when the  $\pi$ -chain cleaves at the Gly24-Ser25 peptide bond and consisting of the four residues His21A, Tyr22A, Glu23A, and Gly24A (as discussed above, Gly24A having a carboxylate end group). We have found that Tail24A shifts between an "open" and a "closed" position via a "half-closed" position (which we call the O-state, C-state and H-state respectively) during aspartate decarboxylation. In the C-state Tail24A obstructs the binding cavity, while the O-state allows access thereto. These states are characterised by increased disorder in the measured position of Tail24A as it shifts from the C-state to the O-state.

Binding site no. 1 is associated with the hydrophobic phenyl ring of Tyr22A which in turn belongs to Tail24A. Hence binding site no. 1 is closely involved with the C-, H- and O-states of Tail24A.

The  $\mathrm{NH_3}^+$  group (binding site no. 9) of the Lys9D side chain is a potential hydrogen bond donor when Tail24A is in the O- and H-states. However, we have found that in the C-state the Gly24A carboxylate end group forms a salt bridge or hydrogen bond with the  $\mathrm{NH_3}^+$  group of the Lys9D side chain. This prevents the  $\mathrm{NH_3}^+$  group from being a potential hydrogen bond donor to the agent compound in the C-state.

The modelling may include generating the cavity (and optionally the agent compound) on a computer screen for visual inspection.

10

15

20

25

30

In practice, it is desirable to model a sufficient number of atoms of the ADC as defined by the coordinates of Table 1. Thus, in this aspect of the invention, there will preferably be provided the coordinates of at least 5, preferably at least 10, more preferably at least 50 and even more preferably at least 100 atoms of the ADC structure.

Preferred candidate agent compounds bind with at least two, three, four, five, six or seven of the binding sites defined by Table 2. In general, the agent compound binds better as the strength and number of binding interactions increases. The candidate agent compound may have a molecular weight of up to about 600.

Binding interactions may be mediated by e.g. water or other solvent molecules.

Candidate inhibitors identified according to the method are characterised by their suitability for binding to a particular binding site or sites. The binding cavity can therefore be regarded as a type of binding site framework or negative template with which the candidate inhibitors correlate in the manner described above.

Modulators of ADC may be inhibitors of the enzyme or compounds which affect its specificity or activity in relation to L-aspartate in other ways. The invention is particularly

suitable for the design, screening and development of ADC inhibitor components. It is thus a preferred aspect of the invention that modulating agent compounds are inhibitors.

5

10

15

20

25

30

The step of providing the structure of a candidate modulator molecule may involve selecting the compound by computationally screening a database of compounds for interaction with the binding cavity or cavities. For example, a 3-D descriptor for the potential modulator may be derived, the descriptor including geometric and functional constraints derived from the architecture and chemical nature of the binding cavity or cavities. The descriptor may then be used to interrogate the compound database, a potential modulator being a compound that has a good match to the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.

In any event, the identification of ADC binding sites and interactions provides a basis for the design of new and specific ligands for ADC. For example, knowing the binding sites of ADC, computer modelling programs may be used to design different molecules expected to interact with possible or confirmed binding cavities or other structural or functional features of ADC.

More specifically, a potential modulator of ADC activity can be examined through the use of computer modelling using a docking program such as GRAM, DOCK, or AUTODOCK (see Walters et al., Drug Discovery Today, Vol.3, No.4, (1998), 160-178, and Dunbrack et al., Folding and Design, 2, (1997), 27-42) to identify candidate inhibitors of ADC. This procedure can include computer fitting of candidate inhibitors to ADC to ascertain how well the shape and the chemical structure of the candidate inhibitor will bind to the enzyme.

Computer programs can be employed to estimate the interactions between the ADC and the agent compound. The more

specificity in the design of a candidate drug, the more likely it is that the drug will not interact with other proteins as well. This will tend to minimise side-effects due to unwanted interactions with other proteins.

5

10

15

20

25

30

In one embodiment a plurality of candidate agent compounds are screened or interrogated for interaction with the binding sites. In one example, step (b) involves providing the structures of the candidate agent compounds, each of which is then fitted in step (c) to computationally screen a database of compounds (such as the Cambridge Structural Database) for interaction with the binding sites, i.e. the candidate agent compound is selected by computationally screening a database of compounds for interaction with the binding cavity. In another example, a 3-D descriptor for the agent compound is derived, the descriptor including e.g. geometric and functional constraints derived from the architecture and chemical nature of the binding cavity or cavities. The descriptor may then be used to interrogate the compound database, the identified agent compound being the compound which matches with the features of the descriptor. For example, the model resulting from step a) may be used to interrogate the compound database, a candidate inhibitor being a compound that has a good match to the features of the model. In effect, the descriptor is a type of virtual pharmacophore.

If one or more additional ADC binding cavities are characterised and a plurality of respective compounds are designed or selected, the candidate inhibitor may be formed by linking the respective compounds into a larger compound which maintains the relative positions and orientations of the respective compounds at the binding cavities. The larger compound may be formed as a real molecule or by computer modelling.

Thus the indentification of the ADC binding sites allows the development of compounds which interact with the binding cavity regions of ADC (for example to act as inhibitors of ADC) based on a fragment linking or fragment growing approach. For example, the binding of one or more molecular fragments can be determined in the protein binding cavity by X-ray crystallography. Molecular fragments are typically compounds with a molecular weight between 100 and 200 Da. This can then provide a starting point for medicinal chemistry to optimize the interactions using a structure-based approach. fragments can be combined onto a template or used as the starting point for 'growing out' an inhibitor into other cavities of the protein. The fragments can be positioned in the binding cavity or cavities of ADC and then 'grown' to fill the space available, exploring the electrostatic, van der Waals or hydrogen-bonding interactions that are involved in molecular recognition. The potency of the original weakly binding fragment thus can be rapidly improved using iterative structure-based chemical synthesis.

5

10

15

20

25

30

At one or more stages in the fragment growing approach, the compound may be synthesized and tested in a biological system for its activity. This can be used to guide the further growing out of the fragment.

Where two fragment-binding regions are identified, a linked fragment approach may be based upon attempting to link the two fragments directly, or growing one or both fragments in the manner described above in order to obtain a larger, linked structure which may have the desired properties.

Having determined possible binding partners, these can then be obtained or synthesised and screened for activity. Consequently, the method preferably comprises the further step of:

e) contacting the candidate agent compound with ADC to determine the ability of the candidate agent compound to interact with ADC.

Preferably, in step e) the candidate agent compound is contacted with ADC in the presence of L-aspartate, and typically a buffer.

5

10

15

20

25

30 -

Instead of, or in addition to, performing a chemical assay, the method may comprise the further steps of:

- e) forming a complex of ADC and said candidate agent compound; and
- f) analysing said complex by X-ray crystallography (e.g. according to the method of the previous aspects of the invention) or by NMR spectroscopy to determine the ability of said candidate agent compound to interact with ADC.

Detailed structural information can then be obtained about the binding of the candidate agent compound to ADC, and in the light of this information adjustments can be made to the structure or functionality of the candidate agent compound, e.g. to improve binding to the binding cavity. Steps e) and f) may then be repeated and re-repeated as necessary. For X-ray crystallographic analysis, the complex may be formed by crystal soaking or co-crystallisation.

In a further general aspect, the invention relates to chimaeric proteins which have the binding specificities of ADC.

The use of chimaeric proteins to achieve desired properties is now common in the scientific literature. For example, Sieber et al. (Nature Biotechnology, 19, (2001), 456-460) produced hybrids between human cytochrome P450 isoform 1A2 and the bacterial P450 BM3, in order to make proteins with the specificity of 1A2, but which had desirable expression and solubility properties of BM3. Active site chimaeras are also described for example by Swairjo et al. (Biochemistry, 37,

WO 02/077270 PCT/GB02/01490 20

(1998), 10928-10936) who made loop chimaeras of HIV-1 and HIV-2 protease to try to understand determinants of inhibitor-binding specificity.

Of particular relevance are cases where the binding cavity is modified so as to provide a surrogate system to obtain structural information. Thus Ikuta et al. (*J. Biol. Chem.*, 276, (2001), 27548-27554) modified the binding cavity of cdk2, for which they could obtain structural data, to resemble that of cdk4, for which no X-ray structure is currently available. In this way they were able to obtain protein/ligand structures from the chimaeric protein which were useful in cdk4 inhibitor design.

5

10

15

20

25

30

Thus from a knowledge of the structure and residues of the binding cavities of ADC described herein, a person skilled in the art could modify a non-ADC protein to produce a chimaeric ADC protein having a binding cavity or cavities which mimics those of ADC. The chimaeric protein could then be used to obtain information on compound binding through the determination of chimaeric protein/ligand complex structures (which may be characterized using the ADC crystal structure).

This strategy could readily be applied to proteins that exhibit high sequence homology with ADC, whether or not the proteins have overlapping substrate specificities with ADC. The proteins may also come from different species.

The determination by X-ray crystallography of the three-dimensional structures of such chimaeric proteins relies on the ability of the chimaeric proteins to yield crystals that diffract at high resolution. Thus if high quality crystals of the unmodified protein can already be produced, an aim could be to modify the inside part of the protein to produce a new substrate binding cavity which mimics ADC without modifying the outside shell of the protein that allows the protein to crystallize.

WO 02/077270 PCT/GB02/01490 21

The substrate specificity of an enzyme generally relies on only a limited number of residues located in non-contiguous parts of the polypeptide chain. Thus this aspect of the invention provides a chimaeric protein having a binding cavities for L-aspartate, the binding cavity providing a plurality of atoms which interact with L-aspartate and which correspond to selected ADC atoms in the ADC binding cavity for L-aspartate, the relative positions of the plurality of atoms corresponding to the relative positions, as defined by Table 1, of the selected ADC atoms, wherein either or both of binding site nos. 1 and 9 defined by Table 2 provide one or more of the selected ADC atoms. Typically, the plurality of atoms are linked by at least one amino acid residue which is not present in the equivalent position in ADC. Generally, smaller proteins are easier to manipulate, crystallise etc., and so preferably the chimaeric protein contains less than 90% (more preferably less than 75% or 50%) of the number of residues contained by ADC.

5

10

15.

20

25

30

Typically the plurality of atoms would derive from respective amino acid residues, and thus the minimal mutation that would usually be required to convert a protein into a ADC chimera according to this aspect involves the selection of at least two residues from Table 1. These mutations could be introduced by site-directed mutagenesis e.g. using a Stratagene QuikChange<sup>TM</sup> Site-Directed Mutagenesis Kit or cassette mutagenesis methods (see e.g. Ausubel et al., eds., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, and Sambrook et al., Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989)).

In practice, it will be desirable to provide a sufficient number of atoms in the chimaeric protein which interact with Laspartate. Thus preferably the binding cavity of the protein

will provide at least 5 or 10, more preferably at least 50 and even more preferably at least 100 atoms which correspond to selected ADC atoms in the ADC binding cavities for L-aspartate.

By identifying conditions under which high quality crystals of fully processed ADC can be produced (i.e. crystals which can diffract X-rays for the determination of atomic coordinates to a resolution of better than 2Å), the present invention facilitates the identification of modulators of ADC activity.

5

10·

15

20

25

30

Thus a further aspect of the present provides a method of assessing the ability of a candidate modulator to interact with ADC which comprises:

obtaining or synthesising said candidate modulator; forming a crystallised complex of fully processed ADC and said candidate modulator, the complex diffracting X-rays for the determination of atomic coordinates of the complex to a resolution of better than 2Å; and

analysing the complex by X-ray crystallography to determine the ability of the candidate modulator to interact with ADC.

The step of analysing the complex may involve e.g. phasing, molecular replacement or calculating a Fourier difference map of the complex as discussed above. However, with the high resolutions obtainable with the crystal, it can also be possible to determine the ability of the candidate modulator to interact with ADC merely by comparing the intensities and/or positions of X-ray diffraction spots from the complex with e.g. diffraction spots of uncomplexed ADC or a previously identified ADC-ligand complex. Thus the step of analysing the complex may involve analysing the intensities and/or positions of X-ray diffraction spots from the complex to determine the ability of the candidate modulator to interact with ADC.

The crystallised complex may be formed by e.g. crystal soaking or co-crystallisation.

In another aspect, the invention includes a compound which is identified as an agent compound (such as an inhibitor of ADC) for modulating ADC activity by the method of one the previous aspects.

Having obtained and characterized a modulator compound according to the invention, the invention further provides a method for modulating the activity of ADC which method comprises:

providing fully processed ADC under conditions where, in the absence of modulator, the ADC is able to synthesize  $\beta$ -alanine from L-aspartate;

providing a modulator compound; and

5

10

15

. 20

25

30

determining the extent to which the activity of fully processed ADC is altered by the presence of said compound.

Following identification of an agent compound it may be manufactured and/or used in preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

Thus, the present invention extends in various aspects not only to an agent compound as provided by the invention, but also a pharmaceutical composition, medicament, drug or other composition comprising such an agent compound e.g. for treatment (which may include preventative treatment) of a disease such as a microbial infection; a method comprising administration of such a composition to a patient, e.g. for treatment of a disease such as a microbial infection; use of such an agent compound in the manufacture of a composition for administration, e.g. for treatment of a disease such as a microbial infection; and a method of making a pharmaceutical composition comprising admixing such an agent compound with a

pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

Thus a further aspect of the present invention provides a method for preparing a medicament, pharmaceutical composition or drug, the method comprising:

· 5

10

15

20

25

30

identifying an ADC modulator molecule (which may thus be termed a lead compound) by a method of any one of the other aspects of the invention disclosed herein;

optimising the structure of the modulator molecule; and preparing a medicament, pharmaceutical composition or drug containing the optimised modulator molecule.

By "optimising the structure" we mean e.g. adding molecular scaffolding, adding or varying functional groups, or connecting the molecule with other molecules (e.g. using a fragment linking approach) such that the chemical structure of the modulator molecule is changed while its original modulating functionality is maintained or enhanced. Such optimisation is regularly undertaken during drug development programmes to e.g. enhance potency, promote pharmacological acceptability, increase chemical stability etc. of lead compounds.

In another aspect, the present invention provides systems, particularly a computer system, intended to generate structures and/or perform rational drug design for ADC, or complexes of ADC with a potential modulator; the systems containing computer-readable data comprising at least one of:

(a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of fully processed ADC; and (b) structure factor data for ADC, said structure factor data being derivable from the atomic coordinate data of Table 1.

For example the computer system may comprise: (i) a computer-readable data storage medium comprising data storage

material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design. The computer system may further comprise a display coupled to said central-processing unit for displaying said structures.

In a further aspect, the present invention provides computer readable media with at least one of: (a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of fully processed ADC; and (b) structure factor data for ADC recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1.

10

15

20

25

30

By providing such computer readable media, the atomic coordinate data can be routinely accessed to model fully-processed ADC. For example, RASMOL (Sayle et al., Trends in Biochemical Sciences, Vol. 20, (1995), 374) is a publicly available computer software package which allows access and analysis of atomic coordinate data for structure determination and/or rational drug design.

On the other hand, structure factor data, which are derivable from atomic coordinate data (see e.g. Blundell et al., Protein Crystallography, Academic Press, New York, London and San Francisco, (1976)), are particularly useful for calculating e.g. difference Fourier electron density maps.

A further aspect of the invention provides a method of providing data for generating structures and/or performing rational drug design for ADC, or complexes of ADC with a potential modulator, the method comprising:

PCT/GB02/01490 WO 02/077270 26

- (i) establishing communication with a remote device containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of fully processed ADC; and (b) structure factor data for ADC, said structure factor data being derivable from the atomic coordinate data of Table 1; and
- (ii) receiving said computer-readable data from said remote device.

Thus the remote device may comprise e.g. a computer system or computer readable media of one of the previous aspects of the invention. The device may be in a different country or jurisdiction from where the computer-readable data is received.

15 The communication may be via the internet, intranet, e-Typically the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibres.

#### Brief Description of the Drawings 20

10

25

30

- Fig. 1 shows schematically the pathway for the biosynthesis of pantothenic acid.
- Fig. 2 shows schematically the mechanism for the processing of ADC.
- Figs. 3a to e show the respective structures of ADC ligands and also show how the ligands interact with three significant functional regions of the ADC binding cavity, i.e. the  $C_{\alpha}$  and  $C_{\beta}$  pockets and the Pvl25A/imine species: the  $C_{\alpha}$  and C<sub>B</sub> pockets are shown schematically, whereas the Pv125A/imine species is given in chemical notation.
  - Fig. 4 shows the previously proposed (Ramjee et al.) catalytic mechanism of ADC.

10

15

20

25

30

WO 02/077270 PCT/GB02/01490 27

Figs. 5a and b show respectively ribbon representations of fully processed ADC tetramer viewed perpendicularly to and along its fourfold axis.

Figs. 6a to c show stick model stereo representations of the ADC binding cavity and respective bound ligands, with the observed electron densities of Tail24A in wire-frame: in Fig. 6a the ligand is  $\alpha$ -methyl aspartate and Tail24A is in the Cstate, in Fig. 6b the ligand is L-aspartate and Tail24A is in the H-state, and in Fig. 6c the ligand is reductively bound  $\beta$ alanine and Tail24A is in the O-state. Also shown in wireframe in Fig. 6b is an observed negative difference density which appears over the ligand atoms after refinement of the complete structure and which was modelled as three water The prominent wire-frame density in Fig. 6c between the ligand and Gly24A was modelled as sulphate.

Figs. 7a to c show plots (in thin line) of side chain temperature factor for the subunit A residues of respectively the  $\alpha$ -methyl aspartate, L-aspartate and reductively bound  $\beta$ alanine complexes. For reference, in each case the native side chain temperature factor is also plotted (in thick line).

Fig. 8 shows schematically the residues and interactions of the  $\beta CO_2$  binding pocket (interatomic distances are in Å).

Figs. 9a to d show schematically the four steps in the proposed decarboxylation catalytic process (interatomic distances are in Å).

## Detailed Description of the Invention

The present invention is founded at least partly on the production of fully processed ADC, the characterisation of the ADC binding cavity and the determination of a likely mechanism for aspartate decarboxylation.

In order to determine this mechanism and the binding site interactions the structures of several ADC-ligand complexes

were solved. The ligands which were studied were: L-aspartate (hereinafter referred to as Sbst),  $\beta$ -alanine (Prod), reductively bound  $\beta$ -alanine ( $r\beta Ala$ ),  $\alpha$ -methyl aspartate (MeAsp), 3-amino-4-methylpentanoic acid (i.e.  $\beta$ -isopropyl- $\beta$ -alanine, isoA). The structures of the respective ligands are shown in Figs. 3a to e. The structure of the uncomplexed protein (Nat) was also solved under identical conditions to those used for the ligand complexes, to enable better structural comparison with the complexes.

5

10

15

20

25

30

We have found that elements of the model of aspartate binding originally proposed by Albert et al. are correct: Sbst  $\beta CO_2$  (i.e. the L-aspartate carboxylate group furthest from the amine group,  $lpha CO_2$  being the other L-aspartate carboxylate group) is in a well-defined pocket and forms a salt-bridge with the guanidyl group of Arg54D, the salt-bridge being stacked over the aromatic ring of Trp47D; Sbst αCO2 is situated in another well-defined pocket; while an imine bond formed from the Sbst amine group and the Pvl25A ketone closest to the split in the n-chain group results in an imine-amide intermediate. Fig. 4, which shows the previously proposed (Ramjee et al.) catalytic mechanism, illustrates the imineamide intermediate. Three significant functional regions of the binding cavity may be identified: (i) Pvl25A which is needed to form the imine species, (ii) a binding pocket for Sbst  $\beta CO_2$ , and (iii) a binding pocket for Sbst  $\alpha CO_2$ . regions are illustrated in Figs. 4a to f which also show schematically how the ligands interact with these regions.

However, contrary to expectation, the  $\beta CO_2$ -guanidyl salt bridge is significantly non-planar, although an approximate plane may be constructed (RMS deviation between 0.16 and 0.23 Å). Also, although the atoms of the imine species in the four complexes formed respectively from MeAsp, IsoA, Prod and Sbst are nearly planar (the RMS deviation is between 0.02 and

0.06 Å), even this species does not appear completely planar, but has a slight rotational deviation (175-178°) around the imine-amide C-C bond (i.e. what was previously the pyruvoyl inter-oxygen C-C bond).

A significant advance over the model proposed by Albert et al. relates to the residues of Tail24A. Not only have we been able to determine the positions of these residues (except for Glu23A which was disordered in all the structures we studied as well as in the structure reported by Albert et al.) for Nat and the various ADC-ligand complexes, but we have determined the crucial role Tail24A plays in asparate decarboxylation.

## Solving the Crystal Structures

#### 15 1. Abbreviations

10

20

25

30

IPTG, isopropyl- $\beta$ -D-thioglactopyranoside; SeMet, L-selenomethionine; DTT, dithiothreitol; ATP, adenosine triphosphate; PMSF, phenylmethylsulphonyl fluoride; HEPES, N-2-hydroxyethylpiperazine N´-2-ethanesulphonic acid; PEG<sub>400</sub> /<sub>4000</sub> /<sub>8000</sub>, polyethylene glycol average MW 400/4000/8000; MPD, 2-methyl-2,4-pentanediol.

## 2. Materials and Methods

All the compounds used were obtained from Sigma, P.O.Box 14508 St. Louis, MO 63178, USA, with the following exceptions. Liquid and solid LB medium, Yeast Extract, Bactotryptone, Agar and the DIFCO Amino Acid Assay Medium were obtained from DIFCO Laboratories, Detroit, MI 48232-7058, USA. IPTG, HEPES and DTT were obtained from Melford Laboratories Ltd., Chelsworth, Suffolk IP7 7LE, UK. PEG4000, PEG8000, and MPD were purchased from Fluka Chemie AG, Messerschmidt Strasse 17, D-89231, Neu-Ulm, Germany. Ethanol and ethylene glycol were obtained from Fischer Scientific UK Ltd., LE11 5RG, UK. 3-Amino-4-methyl-

pentanoic acid was obtained from ACROS, New Jersey, USA. α-methyl aspartate was synthesised in-house. All chromatography matrices were obtained from Pharmacia Biotech (now Amersham Pharmacia Biotech), Uppsala, Sweden.

5

10

15

20

25

30

Chromatography at 4 °C was performed using a Pharmacia FPLC system. At 37 °C the Pharmacia Äkta Explorer system was used. Concentrators were either (for volumes below 4 ml) Ultrafree<sup>TM</sup> centrifugal concentrators from Millipore Corporation, Bedford, MA 01730, USA; or (for larger volumes) the Amicon<sup>TM</sup> Ultrafiltration Cell, manufactured by Amicon Inc., Beverley, MA 01915, USA. Linbro<sup>TM</sup> plates were obtained from ICN Biomedicals Inc., 1263 South Chillicothe Rd., Aurora, Ohio, 44202. Qplate II<sup>TM</sup> and CrystalCap<sup>TM</sup> accessories were supplied by Hampton Research, 27632 El Lazo Road, Suite 100, Laguna Niguel, CA 92677-3913, USA.

To prepare the ADC, a glycerol stock of *E. coli* SJ16::pDKS1 (Ramjee *et al.*) was used to seed 11 of Terrific Broth containing 60 mg/ml ampicillin and 80 mg/ml IPTG. Growth was continued for 16 hours and approximately 6 g of stationary phase cells were harvested by centrifugation at 4000 g for 15 minutes, resuspended in 15 ml of buffer containing 10 mM Tris pH 8.0 and lysed by two passages through a French Press.

The crude lysate was centrifuged at 10 000 g for 30 minutes and filtered using 0.22 micrometer nitrocellulose before loading at 1 ml/min onto a Q-Sepharose Fast Flow column (Pharmacia 17-0510-01, 10 x 2 cm diameter, 30 ml matrix volume). The column was washed with 25 ml of 10 mM Tris pH 8.0. Protein was eluted using the same buffer with a zero to 1 M gradient of KCl and 2.5 ml fractions collected.

Fractions containing ADC were identified using Tricine SDS-PAGE (Schagger et al., Analytical Biochemistry, 166, (1987), 368-379), pooled and dialysed for 16 hours and 2 hours

in 5 l of buffer containing 10 mM Tris pH 6.8. Pooled fractions were loaded onto a hydroxyapatite column (5 g Bio Rad HTP Hydroxyapatite No. 130-0420, in a 2.5 x 3.6 cm matrix volume) and eluted with a gradient of 10 to 500 mM KH<sub>2</sub>PO<sub>4</sub> pH 7.0. Fractions containing ADC were identified using SDS-PAGE as before, pooled, and concentrated by ultrafiltration (Amicon centriprep 10 concentrators repeatedly centrifuged at 3000 g for 20 min) to approximately 10 mg/ml purified ADC. Approximately 5 mg ADC was obtained per gram of cells.

The ADC was stored at 4 °C for several weeks during which time autocatalytic processing occurred to form fully processed ADC with four binding site pyruvoyl groups per tetramer.

#### 3. Protein Crystallisation

5

10

15 The protein was transferred to 25 mM HEPES buffer at pH 7.5 by repeated dilution and concentration using an Ultrafree™ filter. The final protein concentration was between 6 and 10 mg/ml, as judged by its theoretical extinction coefficient e280 = 1.09 ml/mg (see Gill et al., Analytical Biochemistry, 20 182, (1989), 319-326). The crystallising solution was unbuffered (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> at concentrations of between 1.6 and 2.4 Equal volumes of protein and crystallisation solutions (2-10 ml) were placed on siliconised cover slides and sealed in wells containing the crystallisation solution (1 ml), in Linbro<sup>™</sup> or Qplate II<sup>™</sup> plates for vapour diffusion 25 crystallisation as hanging or sitting drops respectively (as described by Sawyer et al., in Crystallization of Nucleic Acids and Proteins, ed. Ducroix and Giege, 225-289, John Wiley & Sons, New York, 1992). The protein crystallised both at 4 30 and 19 °C, although the volume ratio of crystallisation to protein solution needed changing to 2:1 when at 4 °C. Crystals formed within 1-7 days, depending on temperature and component concentrations. Typical crystals were clear

hexagonal pyramids, but frequently grew on a surface so that the pyramid was only half formed. Crystals as long as 0.6 mm were grown. Growth in sitting drops or alternatively at 4  $^{\circ}$ C yielded the largest crystals.

The condition used here differed substantially from those used by Albert et al., where  $PEG_{4000}$  was used with acetate buffer at pH 4.8. The pH of the HEPES buffer protein solution and the protein concentration was apparently significant in enabling the crystallisation of fully processed ADC in the present method.

# 4. Preparation of Crystals of ADC-Ligand Complexes

10

15

25

30

Six different ligands were used for ADC-ligand complexes. The crystals of ADC were robust and appeared to withstand high solution concentrations of the ligands.

Sbst: Protein crystals were transferred to a crystallisation solution (1.9 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>) containing 0.5 M Sbst. The solution was buffered to pH 4.5 with 50 mM NaAcetate. The soaking time was 10 minutes prior to mounting.

20 Prod: Protein crystals were transferred to a crystallisation solution (1.9 M  $(NH_4)_2SO_4$ ) containing 0.5 M Prod. The soaking time was 10 minutes prior to mounting.

 $r\beta Ala$ : Prod was reductively bound to ADC in solution using NaCNBH3, using the method described by Ramjee et al., but substituting  $\beta$ -alanine for L-aspartate. The adduct was concentrated and crystallised as for the native protein. MeAsp, isoA: These compounds were added in solid form to separate drops containing crystals of ADC, and left for 10-20 minutes before mounting.

The Nat and complex crystals were placed in crystallisation solution containing 25% glycerol for between 10-300 seconds. Each crystal was then scooped up in a cryoloop smaller than the crystal using the CrystalCap<sup>TM</sup>

system (Hampton Research) Within 3 seconds the crystal was either plunged into liquid nitrogen, or flash-cooled in a stream of nitrogen gas at 100 K, and kept at low temperature

(< 110 K) until after data collection.

5

10

15

20

25

30

#### 5. Data Collection

All the ligand-complex data were collected with a Raxis IV detector using copper  $K_{\alpha}$  radiation from a Rigaku rotating anode generator, with crystals cooled to 100 K. dataset was collected on Station 9.6 at the Daresbury Laboratory Synchrotron Radiation Source with an ADSC Quantum 4 detector. Reflections were integrated with either DENZO (Otwinwski et al., Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology, Vol. 276, ed. Carter and Sweet, Academic Press, 1997) or MOSFLM (Leslie, Joint CCP4 and EESF-EACMB Newsletter on Protein Crystallography, Vol.26, Daresbury Laboratory, UK); data were scaled and merged using either SCALEPACK (Otwinwski et al.) or SCALA (Collaborative Computational Project 4 - CCP4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763); and intensities were converted to amplitudes using TRUNCATE (CCP4). Data quality statistics are given in Table 3.

During data collections from MeAsp, r\u03bala, Prod, and Sbst, the 20-angle (Table 3) needed changing from the standard 0° setting to enable recording of the high angle data on the 30 cm detector surface while allowing a crystal-detector separation where reflections did not overlap due to the long crystallographic c-axis, high mosaicity, and large beam divergence of the home X-ray source. In spite of the high symmetry of the reciprocal lattice (6/mmm), such a detector setting required the collection of oscillation data from at least two crystal orientations to enable acceptable (but even

then not complete) coverage of reciprocal space. The data for Sbst were the least complete due to premature crystal destruction.

PCT/GB02/01490

#### 6. Refinement and Model Building

15

20

25

30

Refinement was performed similarly for all crystal structures. The crystallographic cell parameters agreed closely with those of the published structure of Albert et al., which was therefore intially used directly in the refinement, thereby avoiding an explicit molecular replacement search. The MeAsp structure was solved relatively early in this way and for some of the later complexes the MeAsp structure was used as the starting model. Tail24A and Pvl25A were excluded from the initial rigid-body refinement and 12 cycles of restrained isotropic refinement with REFMAC (Murshudov et al., Acta Crystallographica, D53, (1997), 24-255). Using map coefficients generated by REFMAC,  $\sigma_A$ -weighted (Read, Acta Crystallographica, A42, (1986), 140-149) 2mFo-DFc and difference maps were calculated and manipulated using CCP4 and Uppsala Software Factory (G.J. Kleywegt, Dept. of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-75124 Uppsala, Sweden) programs, and examined in O (Jones et al., Acta Crystallography, A47, (1991), 110-119), which was used for all model rebuilding. The ligand species were built into the clearly identifiable difference density, and errors corrected in the rest of the model. At this stage the residues of Tail24A were only built, where possible, after a further round of refinement, and ordered solvent molecules were automatically added by alternating cycles of ARP (Perrakis et al., Acta Crystallographica, D55, (1999), 1765-1770) and REFMAC until convergence of the  $R_{\text{free}}$  model-data residual (Brunger et al., Acta Crystallographica, D54, (1992), 905-921).

10

15

20

25

For each model, omit maps for Tail24A were recalculated using the program BUSTER (Bricogne, Methods in Enzymology, 276, (1993), 361-423) in its implementation with TNT (Tronrud, Methods in Enzymology, 277, (1997), 306-319). The refined structure from REFMAC, with Tail24A omitted along with any solvent molecules in the area, was briefly re-refined with optimised bulk solvent parameters, followed by Maximum Entropy partial structure completion and calculation of  $\sigma_A$ -weighted  $mF_0$ - $DF_c$  difference maps. Tail24A was modelled into all structures (in the absence of good density then by comparison with well-ordered structures) and refined to convergence with BUSTER/TNT. The refinement convergence and some model quality indicators are summarised in Table 4.

The standard Engh & Huber (Engh et al., Acta Crystallographica, A47, (1991) 392-400) parameters were used as geometric restraints for the ligands, where available. All structures, apart from the  $r\beta Ala$  and MeSuc complexes and Nat, were defined to contain a planar imine-amide species, which is not represented in those parameters, and the relevant bondlengths and angles were taken from the Cambridge Structural Database (CSD, Allen et al., J. of Chemical Information and Computer Sciences, 31, (1991), 187-204). The pyruvoyl in Nat was modelled in the cis conformation.

The different models agreed closely (between 0.1 and 0.2 Å RMS deviation over all  $C_{\alpha}$ -atoms), with differences limited to the binding cavity. The various soaked ligands did bind and were clearly visible.

## Structural Characterisation

#### 30 1. Nat

Tail24A residues were very well ordered, along with a solvent molecule between Tyr22A and Pvl25A. There was a prominent density of uncertain origin deeper in the binding

36

cavity in the substrate  $\beta CO_2$  pocket between Pv125A and Arg54D. It was modelled as solvent. Table 1 provides the atomic coordinates of the Nat structure.

Unlike the partially processed enzyme (which only has a pseudo-fourfold rotation axis and at most three binding cavities), the fully processed ADC tetramer has a crystallographic fourfold rotation axis and four binding cavities. This significantly simplifies the analysis of X-ray experiments (e.g. for the determination of the structures of the complexes discussed below), the higher symmetry of the fully processed tetramer facilitating the interpretation of diffraction data and the additional binding cavity increasing the intensity of reflections from binding cavities.

A ribbon representation of the fully processed tetramer is shown viewed perpendicularly to the four-fold axis in Fig. 5a and along the fourfold axis in Fig. 5b.

# 2. MeAsp, IsoA, Prod

These complexes had the cleanest density. The ligand positions were evident, and Tail24A was very well ordered, with no spurious density peaks. In Prod, there was a solvent molecule between Tyr22A and the Pvl25A/ligand adduct, in the same position as the  $\alpha CO_2Me$  and isopropyl groups of MeAsp and IsoA. This position corresponds to the substrate  $\alpha CO_2$  pocket.

25

30

5

10

15

20

## 3. $r\beta Ala$

The reduced  $\beta$ -alanine was located with ease, however Tail24A appeared more disordered. Only His21A and Tyr22A were defined, but by very weak densities. In the substrate  $\alpha CO_2$  pocket there was a very prominent difference density feature. There is a significant likelihood that it is due to a sulphate ion - a crystallisation precipitant which has bound in this site. Sulphate matched the density reasonably well, and (at

occupancy = 0.5) refined to B-factors of around 47 and 37 Å<sup>2</sup> in the respective A and D subunits, which compared favourably with some of the less well-ordered parts of the structure. The two negative sulphate charges would be accommodated by  $N_{\text{ZLys9D}}$  and the reduced nitrogen of the ligand  $(N_{\text{Lig}})$ , both of would be protonated and positive at the pH of crystallisation. The absence of such a sulphate in *Prod* may be explained by the different orientation of  $N_{\text{Lig}}$ , which in  $r\beta Ala$ , points towards the putative sulphate, but in *Prod* towards the Asn72A mainchain.

### 4. Sbst

5

10

15

20

25

30

Contrary to the other complexes, two crystallographically unique conformations, Y and Z, of ADC were observed in the asymmetric unit (with respect to the respective tetramer n-chains, conformation Y was observed in binding cavities D/A and B/C, and conformation Z in cavities A/B and C/D). These two conformations showed distinct differences in their respective binding cavities and appeared to correspond to different stages of decarboxylation. The difference densities for the ligands showed that neither conformation was as well ordered as ADC in the complexes with the other ligands. In both conformations there were breaks in the observed electron densities, but this may be a crystallographic artifact caused by incompleteness of the Sbst dataset. Of course, in view of the fact that Sbst undergoes decarboxylation by ADC it is not surprising that well-defined densities were not obtained.

Tail24A differed between the conformations, but in both it was visible only at low map contour levels and therefore accompanied by much spurious density which is unsurprising, since we expect to see a superposition of reaction states in the Sbst complex. With conformation Z, density is relatively convincing; while with conformation Y, it is significantly

less well ordered, with a break in the  $C_{\alpha}$  density of Tyr22A and a poorly defined Gly24A. The orientation of the terminal carboxylate group of Tail24A with conformation Y is different from that of the other structures, pointing out of the binding cavity rather than down at the amino group of Lys9D. A large difference density feature around Lys9D and Tyr58A was seen, at a higher map contour level, to consist of three separated peaks, and was therefore modelled as three water molecules.

So three states of Tail24A may be distinguished: the C-(closed), O- (open), and H- (half-closed) states. The C-state (seen in complexes with Nat, MeAsp, IsoA, and Prod is a conformation in which Tail24A blocks off the binding cavity and is well ordered, the terminal carboxylate of Gly24A interacting with Lys9D. In the O-state (seen in the complex with  $r\beta$ Ala) Tail24A is largely disordered and the binding cavity is exposed. In the H-state (seen with ADC conformation Y in the complex with Sbst) most of Tail24A has the C-state conformation, except the terminal carboxylate of Gly24A which does not interact with Lys9D.

10

15

20

25

30

Table 2 (see below) provides the coordinates and binding interactions of binding sites within the binding cavity. The C-, H- and O-states are respectively illustrated in Figs. 6a to c which show stereo representations of the binding cavity together with the observed electron density of Tail24A. In Fig. 6a the ligand is MeAsp, in Fig. 6b it is Sbst (in the complex with ADC conformation Y), and in Fig. 6c it is  $r\beta Ala$ .

Figs. 7a to c show plots (in thin line) of side chain temperature factor (B in Table 4) for the subunit A residues of respectively the *MeAsp*, *Sbst* and  $r\beta Ala$  complexes, i.e. the C-, H-, and O-states. For reference, in each case the *Nat* side chain temperature factor is also plotted (in thick line). Significant is the height of the main peak (corresponding to

39

the residues of Tail24A) which increases in height as Tail24A progresses from the C-state to the O-state. This implies that in the O-state Tail24A is less strongly constrained to a particular conformation, i.e. Tail24A is more mobile. So although complexes having the respective states may be modelled by refined structures in which Tail24A adopts similar conformations, the higher B-factors allotted to the side chains of Tail24A in the O-state are evidence of an increased indeterminacy in the position of Tail24A. This is consistent with increased exposure of the binding cavity in the O-state.

## Aspartate Decarboxylation

10

15

20

25

30

An elaborated version of the Albert et al. explanation for initial binding of the substrate into the binding cavity requires only minimal distortion of the residues of the two adjacent  $\pi$ -chain subunits. The guanidyl group of Arg54D is ideally positioned in a deep, hydrophobic pocket (Trp47D, Phe55A, Ala75A) to form a strong, directed salt bridge with the negatively charged aspartate  $\beta CO_2$  group. The resulting aromatic stacking with Trp47D is known to be a favourable type of interaction (Westhead et al., Trends in Biochemical sciences, 23, (1998), 35-36). The  $\beta CO_2$  binding pocket is shown schematically in Fig. 8.

 $N_{\text{Lig}}$  (i.e. in this case the L-aspartate nitrogen atom) is thus placed at a suitable distance for imine formation above the Pvl25A ketone closest to the split in the  $\pi$ -chain. The substrate  $\alpha CO_2$  group is then positioned above the plane of the newly-formed imine-amide group in the hydrophobic environment of Tyr22A, Tyr58A and Ile60A, and the Pvl25A methyl group. This provides the non-polar incentive to neutralise the negatively-charged substrate  $\alpha CO_2$  and drive decarboxylation; the resulting negative charge on the adjacent ( $C_{\alpha}$ ) substrate carbon being dispersed over the planar imine-amide group and

beyond via hydrogen bonding between the oxygen of the remaining Pvl25A ketone and strands  $\beta 5$  and  $\beta 1$  of subunit A and solvent molecules. The negative charge is finally neutralised by protonation of the substrate  $C_{\alpha}$  carbanion.

However, this mechanism does not explain how the base, which must be available to protonate the  $C_{\alpha}$  carbanion, is earlier prevented from stabilising the negatively-charged substrate  $\alpha CO_2$ , thereby preventing decarboxylation. Also, the position of the Tyr22A group varies with the position of Tail24A, and so is only available to provide a hydrophobic environment for the  $\alpha CO_2$  group in certain positions of Tail24A.

We therefore propose the following four-step catalytic process which takes account of these factors:

- (1) Tail24A flips from the C- to the O-state to allow the substrate molecule to enter the binding cavity. The substrate  $\beta CO_2$  positions itself in the Trp47D, Phe55A, Ala75A hydrophobic pocket and  $N_{Lig}$  reacts with Pvl25A to form the imine-amide group, as described above. Tail24A then undergoes an O- to H-state transition whereby Tyr22A completes the hydrophobic pocket around the substrate  $\alpha CO_2$  group.
- (2) Tail24A undergoes an H- to C-state transition whereby the terminal carboxylate group of Gly24A neutralises the positive charge on Lys9D which had previously stabilised the substrate  $\alpha CO_2$  group.
- (3) The substrate  $\alpha CO_2$  group undergoes decarboxylation.
  - (4) The decarboxylated substrate  $C_{\alpha}$  carbanion is protonated and Tail24A opens to allow the carbon dioxide molecule to escape.

Steps (1) to (4) are illustrated schematically in Figs. 9a to d, and are described in more detail below.

Step (1)

10

15

20

25

30

The detailed mechanism by which Tail24A flips from the C-to the O-state to allow the substrate molecule to enter the

41

binding cavity, is not entirely clear. Possibly the steric and electrical presence of the substrate molecule is sufficient to force away the aromatic hydrophobic Tyr22A sidechain (and thus the rest of Tail24A) in the same way that the sulphate ion in the  $r\beta Ala$  complex apparently forces Tail24A into the O-state. Note the position of Asp19A means that it is not possible simply to rotate the Tyr22A sidechain out of the binding cavity while maintaining the Tail24A mainchain in the C-state; the whole of Tail24A has to move away.

10

15

20

25

30

In any event, once the substrate is completely bound, through both  $\beta CO_2$  and the imine species, the position and orientation of  $\alpha CO_2$  induce the H-state. There are four interactions which fix Tyr22A into this conformation, one to the substrate, three within the enzyme: OTVIZZA hydrogen bonds to His11D, and the Tyr22A sidechain bonds with Asp19A and Asn72A. These two interactions arise from the electric dipole of the Tyr22A phenyl  $\pi$ -bond system which carries a fractional negative charge above, and a fractional positive charge equatorial to, the ring: the protons of the Asn72A sidechain amide interact with the former, the negative charge on Asp19A with the latter. The same effect allows the fourth Tyr22A interaction, which is the approach of the hydrophobic phenyl ring to the negatively charged substrate  $\alpha CO_2$  group. completes around  $\alpha CO_2$  the hydrophobic pocket consisting of Tyr22A , Tyr58A, Ile60A (not shown in Figs. 9a to d) and the pyruvoyl methyl carbon.

The  $\alpha CO_2$  group also forms a hydrogen bridge to the positively charged Lys9D, forming the latter's third hydrogen bond (along with Tyr58A and His11D). At this stage, the negative Gly24A terminal carboxylate does not bind to Lys9D, and instead it has to adopt the conformation seen in conformation Y.

The two equatorial phenyl-carboxylate interactions (substrate  $\alpha CO_2$  and Asp19A) involve the formally uncharged (see Fig. 8a) oxygens of the carboxylates, since the charged oxygens interact with  $N_{ZLys9D}$  and  $N_{His2lA}$  respectively, both of which are better able to accommodate the negative charge than the only fractionally positive charge on the aromatic ring.

### Step (2)

5

10

15

20

25

30

Because of its linkage to Tyr22A, the negatively charged Gly24A carboxylate is drawn into forming a salt bridge with the closest positive charge, which is that on  $N_{\rm ZLys9D}$ . Tail24A is now in the C-state. The differing observations in the two ADC conformations with Sbst illustrate this competition for  $N_{\rm ZLys9D}$ : in conformation Y, the substrate appears to be more clearly present than in Z, which suggests that Y represents a less advanced stage in the catalytic process. This is also consistent with Gly24A being relatively poorly ordered and not bound to  $N_{\rm ZLys9D}$  (i.e. the H-state) with conformation Y, whereas Gly24A is more ordered and Tail24A is more nearly in the C-state with Z.

The formation of the C-state observed with MeAsp and IsoA is also consistent with this step of the proposed mechanism. Like Sbst, MeAsp and IsoA are held in the binding cavity by the formation of the imine species and the favourable positioning of their carboxylate groups in the substrate  $\beta CO_2$  binding pocket. However, unlike Sbst, neither MeAsp nor IsoA has a decarboxylatable  $\alpha CO_2$  group. Instead each has a relatively hydrophobic group (respectively  $\alpha CO_2$ Me and isopropyl) which is stable in the  $\alpha CO_2$  hydrophobic binding pocket and does not hydrogen bond to  $N_{ZLys9D}$ . Consequently, the  $N_{ZLys9D}$ -Gly24A carboxylate salt bridge is favoured and Tail24A is immobilised in the C-state.

Prod, like MeAsp and IsoA, is held in the binding cavity by the formation of a imine species and the favourable positioning of its carboxylate group into the  $\beta CO_2$  binding pocket. However, with Prod the  $N_{\rm ZLys9D}$ -Gly24A carboxylate salt bridge is favoured and Tail24A is held in the C-state because Prod lacks a group to interact significantly with the  $\alpha CO_2$  binding pocket (a solvent molecule occupies this pocket in Prod). Similarly, in Nat there is no competition from any part of a bound ligand for  $N_{\rm ZLys9D}$ , and so Tail24A favours the C-state.

# Step(3)

10

15

20

25

30 -

The effect of the previous two steps was first to enclose  $\alpha CO_2$  with hydrophobic residues, and next to remove the remaining stabilising interaction with the positive  $N_{2Lys9D}$ . This leaves the negative charge on  $\alpha CO_2$  unstabilised and in an unfavourable environment, and thus provides the "push" required to drive decarboxylation. The fractional positive charge equatorial to the Tyr22A sidechain is not sufficient to stabilise the negative charge. Indirect evidence of this comes from the MeAsp complex, in which the MeAsp  $\alpha CO_2$ Me hydrophobic methyl group is oriented towards the aromatic ring of Tyr22A despite the electric dipole of the Tyr22A phenyl  $\pi$ -bond system.

The source of the "pull" effect, which is required to stabilise the charged, decarboxylated species, is also confirmed by the orientation of the oxygen of the remaining pyruvol ketone, which allows it to form H-bonds to the peptide bond groups between residues Val71A-Asn72A and Ala18A-Asp19A on parallel  $\beta$ -strands  $\beta 5$  and  $\beta 1$  of  $\pi$ -chain A. The negative charge which remains on the reaction intermediate after decarboxylation is dispersed over the planar imine species, which stabilises the intermediate. This creates a net

negative charge on the electrophilic oxygen of the remaining pyruvol ketone, which in turn induces electric dipoles in the delocalised  $\pi$ -electrons of the two parallel amide bond systems to which it is H-bonded. This results in a stabilising dielectric effect which is further enhanced by the solvent which surrounds the amide bond between Ala18A and Asp19A. Overall the energy of the charged reaction intermediate is lowered and the reaction therefore accelerated.

### 10 Step(4)

5

15

20

25

30

The final step is protonation of  $C_{\alpha}$ , which probably occurs rapidly before the release of  $CO_2$  from the cavity. Hisl1D is unlikely to be the proton donor, since both of its N-atoms are involved in H-bonds. So the remaining candidates are Tyr58A and Lys9D, both of which are within 5 Å of  $C_{\alpha}$ , are part of the same H-bonding system and are exposed to solvent.

The most plausible mechanism involves both Lys9D and Tyr58A. Initially all three protons on  $N_{ZLys9D}$  are used in H-bonds (to Tyr58A, His11D and Gly24A) and are therefore unavailable. The  $OH_{Tyr58A}$  proton from Tyr58A, however, is available, because the proton for the H-bond between  $OH_{Tyr58A}$  and  $N_{ZLys9D}$  is provided by  $N_{ZLys9D}$ . Therefore the  $OH_{Tyr58A}$  proton is transferred to the  $C_{\alpha}$ , and the resulting negative charge created on  $OH_{Tyr58}$  is stabilised by the neighbouring positive charge on  $N_{ZLys9}$ . This charge is then neutralised by transfer of the H-bonding proton from  $N_{ZLys9D}$  which therefore loses its positive charge. Because of this the Gly24A terminal carboxylate group debonds from  $N_{ZLys9D}$  and Tail24A adopts the H-or O-state, allowing the  $CO_2$  molecule to escape from the binding cavity.

Of course, the O-state was observed with  $r\beta Ala$ , but in this case the apparent reason that the Gly24A terminal carboxylate group was not bound to  $N_{\rm ZLys9D}$  (thereby releasing

Tail24A from the C-state) was the steric and/or electrical effect of a sulphate ion in the  $\alpha CO_2$  pocket. Such an ion may be a more preferred binding partner for  $N_{\text{ZLys9D}}$  compared with the Gly24A terminal carboxylate.

The distance between  $C_{\alpha}$  and  $OH_{Tyr58A}$  is about 4.5 Å. This may be close enough for a direct proton transfer after some side chain movement from  $OH_{Tyr58A}$  to  $C_{\alpha}$ , or alternatively the  $CO_2$  molecule may play a significant role, by transiently binding the proton during its transfer to  $C_{\alpha}$ .

10

5

To summarise, a function of the somewhat elaborate Tail24A mechanism is apparently to prevent Lys9D from interfering with the process of decarboxylation until Lys9D is needed for protonation.

15

20

25

30

# Structure-Based Drug Design

Determination of the mechanism of aspartate decarboxylation by ADC, and in particular the recognition of the crucial role of Tail24A, provides important information for rational design of ADC inhibitors, e.g. via computational techniques which identify possible binding ligands for the binding cavity. These techniques are discussed in more detail below.

Greer et al. (J. of Medicinal Chemistry, 37, (1994), 1035-1054) described an iterative approach to ligand design based on repeated sequences of computer modelling, protein-ligand complex formation and X-ray crystallographic or NMR spectroscopic analysis. Thus novel thymidylate synthase inhibitor series were designed de novo by Greer et al., and ADC inhibitors may also be designed in the this way. More specifically, using e.g. GRID (Goodford, J of Medicinal Chemistry, 28, (1985), 849-857.) on the solved 3D structure of ADC, a ligand (e.g. a candidate inhibitor) for ADC may be

designed that complements the functionalities of the ADC binding site. The ligand can then be synthesised, formed into a complex with ADC, and the complex then analysed by X-ray crystallography to identify the actual position of the bound ligand. The structure and/or functional groups of the ligand can then be adjusted, if necessary, in view of the results of the X-ray analysis, and the synthesis and analysis sequence repeated until an optimised ligand is obtained. Related approaches to structure-based drug design are also discussed in Bohacek et al., Medicinal Research Reviews, 16, (1996), 3-50.

5

10

15

20

25

30

As a result of the determination of the mechanism of aspartate decarboxylation, more purely computational techniques for rational drug design may also be used to design ADC inhibitors (for an overview of these techniques see e.g. Walters et al. mentioned above). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in Current Opinion in Biotechnology, 6, (1995), 652-656) which require accurate information on the atomic coordinates of target receptors may be used to design candidate ADC inhibitors.

The approaches to structure-based drug design described above all require initial identification of possible compounds for interaction with target bio-molecule (in this case ADC). Sometimes these compounds are known e.g. from the research literature. However, when they are not, or when novel compounds are wanted, a first stage of the drug design program may involve computer-based in silico screening of compound databases (such as the Cambridge Structural Database) with the aim of identifying compounds which interact with the binding cavity or sites of the target bio-molecule. Screening selection criteria may be based on pharmacokinetic properties such as metabolic stability and toxicity. However,

determination of the mechanism of aspartate decarboxylation allows the architecture and chemical nature of the ADC binding site to be better defined, which in turn allows the geometric and functional constraints of a descriptor for the candidate inhibitor to be derived more accurately. The descriptor is, therefore, a type of virtual 3-D pharmacophore, which can also be used as selection criteria or filter for database screening.

While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure.

Accordingly, the exemplary embodiments of the invention set forth are considered to be illustrative and not limiting.

Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.

Table 1: Atomic structure of fully-processed native ADC

```
71.080
CRYST1
                    71.080 215.781 90.00 90.00 120.00
             1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
ORIGX1
                                                        0.00000
ORIGX2
                                                        0.00000
             0.000000 0.000000 1.000000
0.014069 0.008123 0.000000
ORIGX3
                                                        0.00000
SCALE1
                                                        0.00000
SCALE2
             0.000000 0.016245 0.000000
                                                        0.00000
             0.000000 0.000000 0.004634
SCALE3
                                                        0.00000
```

#### Remarks

Atoms of tetramer subunits A and B and their associated water molecules (which are designated G) are numbered from 1 to 2075. Tetramer subunits C and D were generated by symmetry from subunits A and B, and hence the atoms of subunits C and D and their associated water molecules (which are designated H) are also numbered from 1 to 2075.

Due to lack of measured electron density, C-terminal residues 116 to 126 were not modelled for any of the tetramer subunits. Hence atoms of residues 116 to 126 do not appear in the following data lists.

The atomic coordinates provided below are for orthogonal, right-handed axes.

The following data lists provide:

```
Column 2: Atom no.
Column 3:
             Atom type
             Residue type
Column 4:
             Tetramer subunit
Column 5:
Column 6:
             Residue no.
Column 7:
             x coordinate of atom (A)
Column 8:
             y coordinate of atom (A)
Column 9:
             z coordinate of atom (Å)
Column 10:
             Occupancy
Column 11:
             B-factor (A2)
```

N.B. For water molecules, column 4 reads "WAT", column 5 reads G or H, column 6 is the no. of the water molecule, and the atomic coordinates of columns 7-9 are the coordinates of the water oxygen atoms.

#### Data Lists

| T T C 14 |    |     |     | _ | _   |        |        |        |            |
|----------|----|-----|-----|---|-----|--------|--------|--------|------------|
| MOTA     | 1  | N   | MET | A | 1   | 42.243 | 31.537 | 9.436  | 1.00 25.25 |
| MOTA     | 2  | CA  | MET | A | 1 . | 43.570 | 31.458 | 10.034 | 1.00 23.37 |
| ATOM     | 3  | С   | MET | Α | 1   | 43.641 | 32.211 | 11.324 | 1.00 22.04 |
| MOTA     | 4  | 0   | MET | A | 1   | 42.712 | 32.932 | 11.694 | 1.00 22.16 |
| ATOM     | 5  | CB  | MET | Α | 1   | 44.716 | 31.746 | 9.121  | 1.00 26.58 |
| MOTA     | 6  | CG  | MET | Α | 1   | 44.484 | 32.827 | 8.276  | 1.00 29.48 |
| MOTA     | 7  | SD  | MET | A | 1   | 44.383 | 34.380 | 9.083  | 1.00 32.96 |
| ATOM     | 8  | CE  | MET | Α | 1   | 44.525 | 35.278 | 7.559  | 1.00 23.68 |
| ATOM     | 9  | N   | ILE | A | 2   | 44.751 | 32.014 | 11.983 | 1.00 14.33 |
| MOTA     | 10 | CA  | ILE | A | 2   | 44.972 | 32.564 | 13.345 | 1.00 12.86 |
| MOTA     | 11 | С   | ILE | A | 2   | 45.982 | 33.682 | 13.386 | 1.00 13.27 |
| ATOM     | 12 | 0   | ILE | А | 2   | 47.126 | 33.561 | 12.838 | 1.00 12.60 |
| MOTA     | 13 | СВ  | ILE | Α | 2   | 45.444 | 31.363 | 14.210 | 1.00 15.76 |
| MOTA     | 14 | CG1 | ILE | Α | 2   | 44.358 | 30.267 | 14.277 | 1,00 18.95 |
| ATOM     | 15 | CG2 | ILE | Α | 2   | 45.853 | 31.814 | 15.631 | 1.00 15.91 |
| MOTA     | 16 | CD1 | ILE | A | 2   | 43.131 | 30.698 | 14.977 | 1.00 30.84 |
| MOTA     | 17 | N   | ARG | Α | 3   | 45.597 | 34.790 | 14.035 | 1.00 11.28 |
| ATOM     | 18 | CA  | ARG | Α | . 3 | 46.492 | 35.952 | 14.142 | 1.00 10.27 |
| MOTA     | 19 | С   | ARG | A | 3   | 47.228 | 36.039 | 15.491 | 1.00 12.97 |
|          |    |     |     |   |     |        |        |        |            |

| ATOM         | 20       | 0      | ARG        | A      | 3      | 46.698           | 35.499           | 16.473           | 1.00 i1.98               | 3 |
|--------------|----------|--------|------------|--------|--------|------------------|------------------|------------------|--------------------------|---|
| ATOM         | 21       | CB     | ARG        | A      | 3      | 45.661           | 37.245           | 14.103           | 1.00 11.24               | 1 |
| ATOM         | 22       | CG     | ARG        | A      | 3      | 44.872           | 37.472           | 12.729           | 1.00 11.07               | 7 |
| ATOM         | 23       | CD     | ARG        |        | 3      | 45.819           | 38.078           | 11.695           | 1.00 14.19               | ) |
| ATOM         | 24       | NE     | ARG        |        | 3      | 44.929           | 38.442           | 10.562           | 1.00 12.85               | j |
| MOTA         | 25       | CZ     | ARG        |        | 3      | 45.343           | 39.206           | 9.551            | 1.00 13.01               |   |
| ATOM         | 26       |        | ARG        |        | 3      | 46.582           | 39.576           | 9.415            | 1.00 11.87               | 1 |
| ATOM         | 27       |        | ARG        |        | 3      | 44.406           | 39.516           | 8.613            | 1.00 15.42               | ! |
| ATOM         | 28       | N      | THR        |        | 4      | 48.373           | 36.698           | 15.491           | 1.00 10.90               | ) |
| ATOM         | 29       | CA     | THR        |        | 4      | 49.176           |                  | 16.738           | 1.00 8.73                |   |
| ATOM         | .30      | C      | THR        |        | 4      | 48.907           | 38.466           | 16.993           | 1.00 12.54               |   |
| ATOM         | 31       | 0      | THR        |        | 4      | 49.309           | 39.358           | 16.137           | 1.00 11.96               |   |
| MOTA         | 32       | CB     | THR        |        | 4      | 50.623           | 36.684           | 16.549           | 1.00 10.20               |   |
| ATOM<br>ATOM | 33<br>34 |        | THR        |        | 4      | 50.780           | 35.288           | 16.296           | 1.00 12.29               |   |
| ATOM         | 35       | N N    | THR        |        | 4<br>5 | 51.479           | 37.146           | 17.856           | 1.00 12.13               |   |
| ATOM         | 36       | CA     | MET<br>MET | A      | 5      | 48.224           | 38.786           | 18.149           | 1.00 10.12               |   |
| ATOM         | 37       | C      |            | A<br>A | 5      | 47.846           | 40.130           | 18.437           | 1.00 10.31               |   |
| ATOM         | 38       | Ö      |            | A      | 5      | 48.386<br>48.563 | 40.604<br>39.767 | 19.771<br>20.674 | 1.00 13.52               |   |
| ATOM         | 39       | СВ     |            | A      | 5      | 46.316           | 40.208           | 18.572           | 1.00 14.15               |   |
| ATOM         | 40       | CG     |            | A      | 5      | 45.503           | 39.690           | 17.370           | 1.00 13.06<br>1.00 11.30 |   |
| ATOM         | 41       | SD     |            | A      | 5      | 45.827           | 40.706           | 15.868           | 1.00 11.30               |   |
| ATOM         | 42       | CE     |            | A      | 5      | 45.032           | 42.250           | 16.304           | 1.00 13.37               |   |
| MOTA         | 43       | N      | LEU        |        | 6      | 48.622           | 41.904           | 19.871           | 1.00 10.44               |   |
| ATOM         | 44       | CA     | LEU        |        | 6      | 49.081           | 42.499           | 21.181           | 1.00 10.44               |   |
| ATOM         | 45       | С      | LEU        |        | 6      | 47.929           | 42.257           | 22.147           | 1.00 13.65               |   |
| ATOM         | 46       | 0      |            | Α      | 6      | 46.795           | 42.770           | 21.986           | 1.00 12.95               |   |
| ATOM         | 47       | CB     | LEU        | Α      | 6      | 49.255           | 43.989           | 21.000           | 1.00 11.43               |   |
| MOTA         | 48       | CG     | LEU        | Α      | 6      | 49.699           | 44.732           | 22.302           | 1.00 12.67               |   |
| MOTA         | 49       | CD1    | LEU        | Α      | 6      | 51.156           | 44.411           | 22.585           | 1.00 13.37               |   |
| MOTA         | 50       | CD2    | LEU        | Α      | 6      | 49.593           | 46.238           | 22.044           | 1.00 14.36               |   |
| MOTA         | 51       | N      | GLN        | Α      | 7      | 48.226           | 41.496           | 23.234           | 1.00 12.16               |   |
| MOTA         | 52       | CA     | GLN        | Α      | 7      | 47.239           | 41.216           | 24.275           | 1.00 11.30               |   |
| MOTA         | 53       | C      | GLN        | A      | 7      | 47.141           | 42.451           | 25.220           | 1.00 12.23               |   |
| MOTA         | 54       | 0      | GLN        | А      | 7      | 46.041           | 42.846           | 25.650           | 1.00 11.94               |   |
| MOTA         | 55       | СВ     | GLN        |        | 7      | 47.746           | 40.036           | 25.107           | 1.00 12.62               |   |
| ATOM         | 56       | CG     | GLN        |        | 7      | 46.732           | 39.520           | 26.148           | 1.00 14.99               |   |
| ATOM         | 57       | CD     |            | A      | 7      | 46.688           | 40.421           | 27.435           | 1.00 12.25               |   |
| ATOM         | 58       | OE1    | GLN        |        | 7      | 45.546           | 40.719           | 27.921           | 1.00 14.42               |   |
| ATOM         | 59       | NE2    | GLN        |        | .7     | 47.842           | 40.852           | 27.955           | 1.00 13.59               |   |
| ATOM         | 60       | N      | GLY        |        | 8      | 48.310           | 43.015           | 25.491           | 1.00 12.10               |   |
| ATOM         | 61       | CA     | GLY        |        | 8      | 48.374           | 44.194           | 26.380           | 1.00 12.14               |   |
| ATOM<br>ATOM | 62<br>63 | C<br>O | GLY        |        | 8      | 49.811           | 44.596           | 26.605           | 1.00 11.21               |   |
| ATOM         | 64       | N      | GLY<br>LYS |        | 8      | 50.775           | 43.898           | 26.221           | 1.00 12.25               |   |
| ATOM         | 65       | CA     | LYS        | A      | 9.     | 49.985           | 45.756           | 27.260           | 1.00 11.80               |   |
| ATOM         | 66       | C      | LYS        |        | 9<br>9 | 51.337           | 46.214           | 27.515           | 1.00 12.75               |   |
| ATOM         | 67       | 0      | LYS        |        | 9      | 51.410<br>50.401 | 47.227<br>47.872 | 28.669           | 1.00 12.69               |   |
| ATOM         | 68       |        |            | A      | 9      | 51.969           | 46.897           | 29.006           | 1.00 14.09               |   |
| ATOM         | 69       |        | LYS        |        | 9      | 51.366           | 48.231           | 26.258<br>25.859 | 1.00 16.31<br>1.00 16.10 |   |
| ATOM         | 70       |        | LYS        |        | 9      | 52.132           | 48.984           | 24.727           | 1.00 16.10<br>1.00 15.95 |   |
| ATOM         | 71       |        | LYS        |        | 9      | 51.406           | 50.282           | 24.423           | 1.00 20.48               |   |
| ATOM         | 72       |        | LYS        |        | 9      | 52.258           | 51.132           | 23.526           | 1.00 22.05               |   |
| MOTA         | 73       |        | LEU        |        | 10     | 52.615           | 47.337           | 29.208           | 1.00 13.44               |   |
| ATOM         | 74       |        | LEU        |        | 10     | 52.927           | 48.310           | 30.283           | 1.00 13.72               |   |
| ATOM         | 75       |        | LEU        |        | 10     | 53.805           | 49.288           | 29.528           | 1.00 14.03               |   |
| ATOM         | 76       |        | LEU        |        | 10     | 54.917           | 48.961           | 29.125           | 1.00 15.46               |   |
| Atom         | 77       | СВ     | LEU        | A      | 10     | 53.733           | 47.627           | 31.422           | 1.00 13.59               |   |
| MOTA         | 78       | CG     | LEU        | A      | 10     | 52.977           | 46.504           | 32.112           | 1.00 14.77               |   |
| MOTA         | 79       | CD1    | LΕU        | A      | 10     | 53.870           | 45.742           | 33.134           | 1.00 18.67               |   |

| ATOM         | 80         |         | FEO        |   | 10       |   | 51.669           | 47.010           | 32.829           | 1.00 | 15.75 |
|--------------|------------|---------|------------|---|----------|---|------------------|------------------|------------------|------|-------|
| ATOM         | 81         | N       | HIS        |   | 11       |   | 53.306           | 50.476           | 29.335           | 1.00 |       |
| ATOM         | 82         | CA      | HIS        |   | 11       |   | 54.009           | 51.485           | 28.542           | 1.00 |       |
| MOTA         | 83         | С       | HIS        |   | 11       |   | 54.833           | 52.488           | 29.338           | 1.00 |       |
| ATOM         | 84         | 0       | HIS        |   | 11       |   | 54.265           | 53.263           | 30.102           | 1.00 |       |
| ATOM         | 85         | СВ      | HIS        |   | 11       |   | 53.007           | 52.202           | 27.614           | 1.00 |       |
| MOTA         | 86         | CG      | HIS        |   | 11       |   | 53.650           | 53.095           | 26.601           | 1.00 |       |
| ATOM         | . 87       | ND1     |            |   | 11       |   | 54.118           | 52.627           | 25.381           | 1.00 |       |
| ATOM         | 88         |         | HIS        |   | 11       |   | 53.902           | 54.430           | 26.612           | 1.00 |       |
| ATOM         | 89         | CE1     |            |   | 11       |   | 54.652           | 53.629           | 24.711           | 1.00 |       |
| ATOM         | 90         | NE2     |            |   | 11       |   | 54.530           | 54.737           | 25.432           | 1.00 |       |
| ATOM<br>ATOM | 91<br>92   | N<br>CA | ARG        |   | 12       |   | 56.146           | 52.442           | 29.124           |      | 15.16 |
| ATOM         | 93         | CA      | ARG<br>ARG |   | 12<br>12 |   | 57.097           | 53.308           | 29.757           |      | 15.13 |
| ATOM         | 94         | o       | ARG        |   | 12       |   | 57.204           | 53.130<br>54.135 | 31.261           | 1.00 |       |
| ATOM         | 95         | СĖ      | ARG        |   | 12       |   | 57.175<br>56.873 | 54.135           | 32.023           | 1.00 |       |
| ATOM         | 96         | CG      | ARG        |   | 12       |   | 57.151           |                  | 29.408           |      | 15.43 |
| ATOM         | 97         | CD      | ARG        |   | 12       |   | 56.884           | 55.048<br>56.522 | 27.918           |      | 17.33 |
| ATOM         | 98         | NE      | ARG        |   | 12       |   | 57.737           | 57.412           | 27.538           | 1.00 |       |
| ATOM         | . 99       | CZ      | ARG        |   | 12       |   | 58.961           | 57.793           | 28.332           | 1.00 |       |
| ATOM         | 100        | NHl     |            |   | 12       |   | 59.545           | 57.416           | 28.026<br>26.907 | 1.00 |       |
| ATOM         | 101        | NH2     |            |   | 12       |   | 59.630           | 58.580           | 28.874           | 1.00 |       |
| ATOM         | 102        | N       | VAL        |   | 13       |   | 57.315           | 51.908           | 31.667           | 1.00 |       |
| ATOM         | 103        | CA      | VAL        |   | 13       |   | 57.545           | 51.669           | 33.106           | 1.00 |       |
| ATOM         | 104        | C       | VAL        |   | 13       |   | 59.069           | 51.826           | 33.262           | 1.00 |       |
| ATOM         | 105        | Ö       | VAL        |   | 13       |   | 59.877           | 51.698           | 32.280           | 1.00 |       |
| ATOM         | 106        | СВ      | VAL        |   | 13       |   | 57.146           | 50.312           | 33.603           | 1.00 |       |
| MOTA         | 107        | CG1     |            |   | 13       |   | 55.661           | 50.217           | 33.766           | 1.00 |       |
| MOTA         | 108        | CG2     |            |   | 13       |   | 57.768           | 49.142           | 32.719           | 1.00 |       |
| ATOM         | 109        | N       | LYS        |   | 14       |   | 59.524           | 52.096           | 34.513           | 1.00 |       |
| ATOM         | 110        | CA      | LYS        |   | 14       |   | 60.941           | 52.258           | 34.789           | 1.00 | 16.45 |
| ATOM         | 111        | С       | LYS        | Α | 14       |   | 61.497           | 51.036           | 35.528           | 1.00 | 16.56 |
| ATOM         | 112        | 0       | LYS        | Α | 14       |   | 60.817           | 50.471           | 36.456           | 1.00 | 16.75 |
| ATOM         | 113        | CB      | LYS        | A | 14       |   | 61.161           | 53.498           | 35.659           | 1.00 | 17.97 |
| ATOM         | 114        | CG      | LYS        | Α | 14       |   | 62.639           | 53.803           | 35.880           |      | 20.97 |
| ATOM         | 115        | CD      | LYS        | Α | 14       |   | 62.866           | 55.127           | 36.574           |      | 29.18 |
| MOTA         | 116        | CE      | LYS        | Α | 14       |   | 62.630           | 56.291           | 35.666           | 1.00 | 32.48 |
| ATOM         | 117        | NZ      | LYS        | Α | 14       |   | 62.715           | 57.533           | 36.483           | 1.00 | 33.64 |
| MOTA         | 118        | N       | VAL        | A | 15       |   | 62.708           | 50.585           | 35.121           | 1.00 | 13.79 |
| ATOM         | 119        | CA      | VAL        | Α | 15       |   | 63.339           | 49.420           | 35.746           | 1.00 | 14.02 |
| ATOM         | 120        | С       | VAL        | A | 15       |   | 63.786           | 49.854           | 37.179           | 1.00 | 14.49 |
| ATOM         | 121        | 0       | VAL        |   | 15       |   | 64.448           | 50.872           | 37.322           | 1.00 | 14.91 |
| MOTA         | 122        | CB      | VAL        |   | 15       |   | 64.579           | 48.948           | 34.960           | 1.00 | 14.72 |
| ATOM         | 123        | CG1     | VAL        |   | 15       |   | 65.246           | 47.816           | 35.695           | 1.00 | 15.47 |
| ATOM         | 124        | CG2     | VAL        |   | 15       |   | 64.092           | 48.461           | 33.499           | 1.00 | 15.44 |
| ATOM         | 125        | N       | THR        |   | 16       |   | 63.327           | 49.098           | 38.172           | 1.00 | 14.68 |
| ATOM         | 126        | CA      | THR        |   | 16       |   | 63.637           | 49.433           | 39.582           | 1.00 | 16.18 |
| ATOM         | 127        | C       | THR        |   | 16       |   | 64.731           | 48.629           | 40.230           | 1.00 | 19.63 |
| ATOM         | 128        | 0       | THR        |   | 16       |   | 65.282           | 49.078           | 41.258           | 1.00 | 18.35 |
| ATOM<br>ATOM | 129        | CB      | THR        |   | 16       |   | 62.365           | 49.292           | 40.416           | 1.00 | 14.13 |
|              | 130        |         | THR        |   | 16       |   | 61.976           | 47.947           | 40.564           |      | 17.95 |
| ATOM<br>ATOM | 131        |         | THR        |   | 16       |   | 61.253           | 50.204           | 39.873           |      | 18.04 |
| ATOM<br>ATOM | 132        | N       | HIS        |   | 17       |   | 65.056           | 47.469           | 39.699           |      | 14.05 |
| ATOM         | 133        | CA      | HIS        |   | 17       |   | 66.089           | 46.613           | 40.242           |      | 15.34 |
| ATOM         | 134        | С       | HIS        |   | 17       | • | 66.664           | 45.687           | 39.129           |      | 19.86 |
| ATOM         | 135        | 0       | HIS        |   | 17       |   | 65.947           | 45.353           | 38.137           |      | 17.90 |
| MOTA         | 136<br>137 | CB      | HIS        |   | 17       |   | 65.422           | 45.752           | 41.340           |      | 18.53 |
| ATOM         | 138        | CG      | HIS        |   | 17       |   | 66.361           | 44.834           | 42.079           |      | 22.33 |
| ATOM         | 138        |         | HIS        |   | 17       |   | 66.377           | 43.473           | 41.869           |      | 25.17 |
| 017          | 123        | CUZ     | HIS        | A | 17       |   | 67.273           | 45.068           | 43.071           | 1.00 | 24.77 |

| ATOM         | 140        |            | L HIS      |   | 17       |   | 67.278           | 42.908           | 42.651           | 1.00 | 25.62          |
|--------------|------------|------------|------------|---|----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 141        |            | 2 HIS      |   | 17       |   | 67.835           | 43.847           | 43.396           | 1.00 | 24.55          |
| ATOM         | 142        | N          | ALA        |   | 18       |   | 67.902           | 45.246           | 39.301           | 1.00 |                |
| MOTA         | 143        | CA         | ALA        |   | 18       |   | 68.552           | 44.311           | 38.349           |      | 18.95          |
| ATOM .       | 144        | С          | ALA        |   | 18       |   | 69.265           | 43.234           | 39.190           |      | 25.44          |
| ATOM         | 145        | . 0        | ALA        |   | 18       |   | 69.873           | 43.546           | 40.228           |      | 26.69          |
| ATOM         | 146        | CB         | ALA        |   | 18       |   | 69.508           | 45.039           | 37.431           |      | 21.19          |
| ATOM         | 147        | И          | ASP        |   | 19       |   | 69.136           | 41.983           | 38.815           | 1.00 |                |
| ATOM<br>ATOM | 148        | CA         | ASP        |   | 19       |   | 69.749           | 40.895           | 39.580           |      | 20.78          |
| ATOM         | 149<br>150 | С<br>0     | ASP<br>ASP |   | 19<br>19 |   | 70.278           | 39.807           | 38.655           | 1.00 | _              |
| ATOM         | 151        | СВ         | ASP        |   | 19       |   | 69.620<br>68.685 | 38.802           | 38.420           |      | 20.10          |
| ATOM         | 152        | CG         | ASP        |   | 19       |   | 69.255           | 40.329           | 40.553           |      | 21.77          |
| ATOM         | 153        | OD1        |            |   | 19       |   | 70.469           | 39.097           | 41.584           |      | 27.20          |
| ATOM         | 154        |            | ASP        |   | 19       |   | 68.416           | 38.772           | 41.617<br>42.356 |      | 27.06<br>28.93 |
| ATOM         | 155        | N          | LEU        |   | 20       |   | 71.500           | 40.003           | 38.200           |      | 20.93          |
| ATOM         | 156        | CA         | LEU        |   | 20       |   | 72.137           | 39.036           | 37.337           |      | 21.15          |
| ATOM         | 157        | С          | LEU        |   | 20       |   | 72.212           | 37.654           | 37.924           |      | 25.20          |
| ATOM         | 158        | 0          | LEU        |   | 20       |   | 72.017           | 36.677           | 37.212           |      | 24.39          |
| ATOM         | 159        | СВ         | LEU        |   | 20       |   | 73.557           | 39.513           | 36.967           | 1.00 |                |
| MOTA         | 160        | CG         | LEU        | Α | 20       | • | 74.383           | 38.693           | 35.995           | 1.00 |                |
| MOTA         | 161        | CD1        | LEU        | Α | 20       |   | 73.751           | 38.833           | 34.550           | 1.00 |                |
| ATOM         | 162        | CD2        | LEU        | A | 20       |   | 75.811           | 39.297           | 36.010           | 1.00 | 24.07          |
| ATOM         | 163        | N          | HIS        | A | 21       |   | 72.509           | 37.565           | 39.234           | 1.00 | 23.99          |
| ATOM         | 164        | CA         | HIS        | A | 21       |   | 72.638           | 36.275           | 39.933           | 1.00 | 26.08          |
| ATOM         | 165        | С          |            | A | 21       |   | 71.407           | 35.687           | 40.499           | 1.00 | 29.17          |
| MOTA         | 166        | 0          | HIS        | A | 21       |   | 71.493           | 34.758           | 41.302           | 1.00 | 29.91          |
| ATOM         | 167        | CB         |            | А | 21       |   |                  | .36.384          | 40.973           | 1.00 | 29.07          |
| ATOM         | 168        | CG         | HIS        |   | 21       |   | 75.006           | 36.943           | 40.395           | 1.00 | 34.17          |
| ATOM         | 169        |            | HIS        |   | 21       |   | 75.647           | 36.327           | 39.347           |      | 37.06          |
| MOTA         | 170        | CD2        |            |   | 21       |   | 75.663           | 38.112           | 40.605           | 1.00 | 37.54          |
| ATOM<br>ATOM | 171        | CE1<br>NE2 |            |   | 21       |   | 76.679           | 37.059           | 38.967           |      | 36.64          |
| ATOM         | 172<br>173 | NEZ<br>N   | HIS<br>TYR |   | 21       |   | 76.712           | 38.150           | 39.712           | 1.00 | 37.19          |
| ATOM         | 174        | CA         | TYR        |   | 22<br>22 |   | 70.251<br>68.964 | 36.223           | 40.095           | 1.00 | 26.33          |
| ATOM         | 175        | C          | TYR        |   | 22       |   | 68.951           | 35.717<br>34.193 | 40.583           |      | 27.04          |
| ATOM         | 176        | ŏ          | TYR        |   | 22       |   | 69.325           | 33.541           | 40.565<br>39.561 | 1.00 | 33.24          |
| ATOM         | 177        | СB         | TYR        |   | 22       |   | 67.847           | 36.225           | 39.676           | 1.00 |                |
| ATOM         | 178        | CG         | TYR        |   | 22       |   | 66.437           | 35.946           | 40.154           |      | 30.64          |
| MOTA         | 179        | CD1        | TYR        |   | 22       |   | 65.983           | 36.448           | 41.367           |      | 31.96          |
| MOTA         | 180        | CD2        | TYR        |   | 22       |   | 65.562           | 35.230           | 39.361           | 1.00 |                |
| ATOM         | 181        | CE1        | TYR        | A | 22       |   | 64.671           | 36.214           | 41.795           | 1.00 |                |
| ATOM         | 182        | CE2        | TYR        | A | 22       |   | 64.261           | 34.978           | 39.779           | 1.00 | 32.82          |
| ATOM         | 183        | CZ         | TYR        | A | 22       |   | 63.820           | 35.486           | 40.987           | 1.00 | 36.63          |
| MOTA         | 184        | OH         | TYR        | Α | 22       |   | 62.518           | 35.229           | 41.408           | 1.00 | 38.85          |
| ATOM         | 185        | N          |            | Α | 23       |   | 68.550           | 33.606           | 41.669           | 1.00 | 34.58          |
| ATOM         | 186        | CA         | GLU        |   | 23       |   | 68.528           | 32.182           | 41.739           | 1.00 | 37.52          |
| ATOM         | 187        | C          | GLU        |   | 23       |   | 67.204           | 31.479           | 41.529           | 1.00 | 42.30          |
| ATOM         | 188        | 0          | GLU        |   | 23       |   | 67.151           | 30.280           | 41.645           | 1.00 | 40.71          |
| ATOM .       | 189        | CB         | GLU        |   | 23       |   | 69.228           | 31.682           | 43.000           | 1.00 | 39.74          |
| ATOM<br>ATOM | 190        | CG         | GLU        |   | 23       |   | 70.712           | 32.011           | 43.019           | 1.00 |                |
| ATOM         | 191        | CD         | GLU        |   | 23       | • | 71.564           | 30.874           | 42.477           |      | 61.64          |
| ATOM         | 192<br>193 |            | GLU<br>GLU |   | 23<br>23 |   | 71.007           | 29.955           | 41.832           |      | 62.40          |
| ATOM         | 194        | N          | GLY        |   | 24       |   | 72.796<br>66.124 | 30.894           | 42.709           |      | 61.54          |
| ATOM         | 195        | CA         | GLY .      |   | 24       |   | 64.810           | 32.210           | 41.224           |      | 39.86          |
| ATOM         | 196        | C          | GLY        |   | 24       |   | 64.377           | 31.560<br>31.624 | 41.008           |      | 43.77          |
| ATOM         | 197        | Õ          | GLY        |   | 24       |   | 63.254           | 31.166           | 39.535<br>39.188 | 1.00 |                |
| MOTA         | 198        | ОН         | GLY        |   | 24       |   | 65.142           | 32.147           | 39.188           | 1.00 | 54.64<br>73.31 |
| ATOM         | 199        | C          | PVL        |   | 25       |   | 62.860           | 38.226           | 34.454           |      | 17.73          |
| -            |            | -          |            | - |          |   | 32.000           | 20.220           | 74.474           | 1.00 | 11.13          |

63.759 39.046 34.586 1.00 21.35 63.200 36.796 34.251 1.00 26.99 62.057 35.810 34.157 1.00 26.50 64.375 36.432 34.017 1.00 32.90 61.544 38.621 34.583 1.00 13.65 61.178 39.997 34.916 1.00 13.69 PVL A 25 PVL A 25 PVL A 25 ATOM 200 O MOTA 201 CA ATOM 202 CB PVL A 25 CYS A 26 CYS A 26 MOTA 203 ON ATOM 204 N ATOM 205 CA CYS A 26 CYS A 26 CYS A 26 ATOM 206 CB 60.770 40.866 33.674 1.00 19.50 207 SG 60.527 ATOM 42.598 34.108 1.00 17.42 208 C 60.046 ATOM 39.977 35.926 1.00 17.14 209 O CYS A 26 210 N ALA A 27 211 CA ALA A 27 ATOM 58.943 39.511 35.648 1.00 16.98 60.356 40.411 59.366 40.425 1.00 14.97 1.00 14.51 37.200 38.264 ATOM 40.411 ATOM 211 CA ALA A 27
212 C ALA A 27
213 O ALA A 27
214 CB ALA A 27
215 N ILE A 28
216 CA ILE A 28
217 C ILE A 28
218 O ILE A 28 ATOM 58.675 41.765 38.202 1.00 11.29 38.099 1.00 13.77 39.609 1.00 14.33 ATOM 59.305 42.828 ATOM 60.106 40.243 ATOM 57.353 41.694 38.222 1.00 12.96 1.00 12.54 1.00 13.11 ATOM 56.491 42.816 38.054 217 C ILE A 28
218 O ILE A 28
219 CB ILE A 28
220 CG1 ILE A 28
221 CG2 ILE A 28
222 CD1 ILE A 28
223 N ASP A 29
224 CA ASP A 29
225 C ASP A 29
226 O ASP A 29
227 CB ASP A 29
227 CB ASP A 29
228 CG ASP A 29
229 OD1 ASP A 29
229 OD1 ASP A 29
230 OD2 ASP A 29
231 N GLN A 30
232 CA GLN A 30
233 C GLN A 30 55.302 42.854 MOTA 39.067 ATOM 54.648 41.858 39.298 1.00 14.34 1.00 '13.91 1.00 15.23 MOTA 55.815 42.718 36.559 56.920 42.696 MOTA 35.525 ATOM 54.794 43.867 36.283 1.00 16.36 1.00 17.00 1.00 15.10 ATOM 56.376 42.100 34.149 ATOM 55.127 44.025 39.651 MOTA · 224 CA 54.022 44.252 40.636 1.00 14.57 MOTA 52.732 43.607 40.074 1.00 17.57 ATOM 52.315 43.902 38.916 1.00 15.63 ATOM 53.864 45.728 40.818 1.00 14.77 ATOM 52.748 46.139 41.788 1.00 14.70 ATOM 51.750 45.420 41.984 1.00 15.75 ATOM 52.843 47.278 42.239 1.00 16.77 ATOM 52.123 42.710 40.841 1.00 15.71 ATOM 50.878 42.040 40.414 1.00 16.19 ATOM 233 C GLN A 30 GLN A 30 49.797 43.037 39.938 1.00 17.73 ATOM 234 ٥ 48.961 42.704 39.057 1.00 17.08 GLN A 30 GLN A 30 GLN A 30 50.256 СВ ATOM 235 41.249 41.594 1.00 17.85 ATOM 236 CG 49.002 41.200 40.506 1.00 23.42 ATOM 237 CD 49.272 39.438 40.148 1.00 23.06 OE1 GLN A 30 NE2 GLN A 30 N ASP A 31 MOTA 238 50.062 38.487 40.361 1.00 21.11 48.588 1.00 20.59 ATOM 239 39.584 38.958 49.716 ATOM 240 N 44.238 40.516 1.00 16.44 241 CA ASP A . 31 ATOM 48.714 45.223 40.100 1.00 16.57 ASP A 31 ASP A 31 MOTA 242 45.579 45.769 C 48.977 38.606 1.00 17.31 47.995 MOTA 243 0 37.843 1.00 17.32 244 CB ASP A 31 MOTA 48.805 46.539 40.892 1.00 19.02 CG ASP A 31 OD1 ASP A 31 ATOM 48.138 1.00 24.47 245 46.456 42.294 47.188 ATOM 246 45.655 42.488 1.00 24.53 MOTA 247 OD2 ASP A 31 48.596 47.257 43.166 1.00 22.76 N PHE A 32 CA PHE A 32 MOTA 248 50.254 45.715 38.254 1.00 14.02 MOTA 249 50.643 36.861 1.00 13.65 46.073 250 C 251 O ATOM PHE A 32 50.244 44.926 35.950 1.00 16.12 O PHE A 32 CB PHE A 32 ATOM 49.661 45.197 34.838 1.00 14.39 MOTA 252 52.130 46.329 36.726 1.00 13.80 ATOM 253 CG PHE A 32 52.665 47.491 37.522 1.00 14.18 MOTA 254 CD1 PHE A 32 51.860 48.378 38.248 1.00 15.47 ATOM 255 CD2 PHE A 32 54.035 47.687 37.517 1.00 15.29 ATOM 256 CE2 PHE A 32 52.485 CZ PHE A 32 54.634 CZ PHE A 32 53.855 N LEU A 33 50.530 CE1 PHE A 32 52.485 1.00 16.12 49.495 38.988 ATOM 257 .48.727 38.238 1.00 16.29 MOTA 258 49.634 38.963 1.00 15.53 ATOM 259 N 50.530 43.696 36.347 1.00 15.49

| ATOM | 260   | CA  | LEU        | Α | 33   | 50.165      | 42.499      | 35.561 | 1.00 | 13.34 |
|------|-------|-----|------------|---|------|-------------|-------------|--------|------|-------|
| ATOM | 261   | С   | LEU        | Α | 33   | 48.648      | 42.564      | 35.331 | 1.00 |       |
| ATOM | 262   | 0   | LEU        | Α | 33   | 48.144      | 42.392      | 34.195 | 1.00 |       |
| ATOM | 263   | СВ  | LEU        |   | 33   | 50.522      | 41.184      | 36.282 | 1.00 | 14.40 |
| ATOM | 264   | CG  | LEU        |   | 33   | 52.018      | 40.976      | 36.508 | 1.00 | 17.89 |
| MOTA | 265   | CD1 | LEU        |   | 33   | 52.222      | 39.608      | 37.204 | 1.00 | 15.16 |
| ATOM | 266   | CD2 |            |   | 33   | 52.716      | 40.953      | 35.093 |      | 17.59 |
| ATOM | 267   | N   | ASP        |   | 34   | 47.856      | 42.816      | 36.382 |      | 15.41 |
| ATOM | 268   | CA  | ASP        |   | 34   | 46.391      | 42.861      | 36.217 |      | 16.06 |
| ATOM | 269   | c   | ASP        |   | 34   | 45.967      | 43.918      | 35.169 |      | 18.00 |
| ATOM | 270   | ō   | ASP        |   | 34   | 45.067      | 43.510      |        |      | 18.35 |
| ATOM | 271   | СВ  | ASP        |   | 34   | 45.717      |             | 34.353 |      |       |
| ATOM | 272   | CG  |            |   | 34   |             | 43.339      | 37.556 |      | 18.61 |
|      | 273   |     | ASP<br>ASP |   |      | 45.731      | 42.290      | 38.661 |      | 24.34 |
| ATOM |       | OD1 |            |   | 34   | 46.077      | 41.121      | 38.437 |      | 22.17 |
| ATOM | 274   | OD2 |            |   | 34   | 45.349      | 42.715      | 39.815 |      | 28.71 |
| ATOM | 275   | N   | ALA        |   | 35   | 46.538      | 45.111      | 35.239 | 1.00 | 13.94 |
| ATOM | 276   | CA  | ALA        |   | 35   | 46.146      | 46.214      | 34.349 | 1.00 | 15.72 |
| MOTA | 277   | С   | ALA        |   | 35   | 46.430      | 45.899      | 32.899 | 1.00 |       |
| MOTA | 278   | 0   | ALA        |   | 35   | 45.652      | 46.304      | 32.003 | 1.00 |       |
| ATOM | 279   | CB  | ALA        |   | 35   | 46.816      | 47.504      | 34.742 | 1.00 | 16.40 |
| ATOM | 280   | N   | ALA        |   | 36   | 47.547      | 45.207      | 32.677 | 1.00 | 13.80 |
| ATOM | 281   | CA  | ALA        |   | 36   | 47.926      | 44.876      | 31.274 | 1.00 | 14.07 |
| ATOM | 282   | С   | ALA        | A | 36   | 47.370      | 43.515      | 30.855 | 1.00 | 16.21 |
| ATOM | 283   | 0   | ALA        | A | 36   | 47.595      | 43.085      | 29.690 | 1.00 | 16.15 |
| ATOM | 284   | CB  | ALA        | Α | 36   | 49.461      | 44.944      | 31.064 | 1.00 | 14.23 |
| ATOM | 285   | N   | GLY        | A | 37   | 46.670      | 42.809      | 31.719 | 1.00 | 14.27 |
| ATOM | 286   | CA  | GLY        | A | 37   | 46.126      | 41.505      | 31.411 | 1.00 |       |
| ATOM | 287   | Ç   | GLY        | A | 37   | 47.249      | 40.412      | 31.271 | 1.00 |       |
| ATOM | 288   | ο.  | GLY        | A | 37   | 46.960      | 39.297      | 30.764 | 1.00 |       |
| ATOM | 289   | N   | ILE        |   | 38   | 48.469      | 40.675      | 31.788 | 1.00 |       |
| ATOM | 290 · | CA  | ILE        |   | 38 . | 49.602      | 39.753      | 31.728 |      | 13.98 |
| ATOM | 291   | C - | ILE        |   | 38   | 49.525      | 38.785      | 32.878 |      | 16.32 |
| ATOM | 292   | 0   | ILE        |   | 38   | 49.168      | 39.208      | 34.022 |      | 16.77 |
| ATOM | 293   | СВ  | ILE        |   | 38   | 50.930      | 40.521      | 31.729 |      | 15.34 |
| ATOM | 294   | CG1 | ILE        |   | 38   | 50.976      | 41.423      | 30,470 |      | 14.55 |
| ATOM | 295   | CG2 | ILE        |   | 38   | 52.146      | 39.592      | 31.688 |      | 15.27 |
| ATOM | 296   | CD1 | ILE        |   | 38   | 52.162      | 42.332      | 30.393 |      | 19.63 |
| ATOM | 297   | N   | LEU        |   | 39   | 49.805      | 37.537      | 32.591 |      |       |
| ATOM | 298   | CA  | LEU        |   | 39   | 49.759      | 36.442      |        |      | 12.96 |
| ATOM | 299   | C   |            |   |      |             |             | 33.598 |      | 11.40 |
| ATOM | 300   | Ö   | LEU        |   | 39   | 51.134      | 36.053      | 34.101 | 1.00 | 14.26 |
| ATOM | 301   | СВ  | LEU        |   | 39   | 52.138      | 36.122      | 33.435 |      | 13.15 |
| ATOM | 302   |     | LEU        |   | 39   | 49.109      | 35.177      | 33.041 |      | 12.16 |
|      | 303   | CG  | LEU        |   | 39   | 47.752      | 35.258      | 32.327 |      | 13.32 |
| ATOM |       | CD1 | LEU        |   | 39 . | 47.245      | 33.957      | 31.795 |      | 13.99 |
| MOTA | 304   | CD2 | LEU        |   | 39   | 46.722      | 35.899      | 33.344 | 1.00 | 17.01 |
| ATOM | 305   | N   | GLU        |   | 40   | 51.183      | 35.619      | 35.385 |      | 14.46 |
| ATOM | 306   | CA  | GLU        |   | 40   | 52.460      | 35.148      | 35.863 |      | 15.39 |
| ATOM | 307   | С   | GLU        |   | 40   | 52.828      | 33.894      | 34.973 | 1.00 | 13.93 |
| ATOM | 308   | 0   | GLU        |   | 40   | 51.988      | 33.067      | 34.640 |      | 13.92 |
| ATOM | 309   | СВ  | GLU        |   | 40   | 52.292      | 34.646      | 37.350 |      | 17.33 |
| ATOM | 310   | CG  | GLU        |   | 40   | 53.617      | 34.054      | 37.878 |      | 22.86 |
| ATOM | 311   | CD  | GLU        |   | 40   | 53.773      | 34.134      | 39.395 | 1.00 | 37.57 |
| ATOM | 312   | OE1 | GLU        |   | 40   | 52.744      | 33.891      | 40.044 | 1.00 | 29.60 |
| ATOM | 313   | OE2 | GLU        | A | 40   | 54.908      | 34.446      | 39.887 | 1.00 | 24.74 |
| ATOM | 314   | N   | ASN        |   | 41   | 54.108      | 33.828      | 34.623 |      | 12.53 |
| ATOM | 315   | CA  | ASN        | A | 41   | 54.739      | 32.808      | 33.826 |      | 12.52 |
| ATOM | 316   | С   | AŞN        | A | 41   | 54.433      | 33.020      | 32.318 |      | 13.84 |
| ATOM | 317   | 0   | ASN        |   | 41   | 54.806      | 32.130      | 31.523 |      | 13.31 |
| ATOM | 318   | CB  | ASN        |   | 41   | 54.390      | 31.431      | 34.223 |      | 14.21 |
| ATOM | 319   | CG  | ASN        |   | 41   | 54.886      | 31.102      | 35.690 |      | 18.26 |
|      | -     |     |            |   | . —  | <del></del> | <del></del> |        |      |       |

ATOM 320 OD1 ASN A 41 56.030 31.307 36.004 1.00 19.96 MOTA 321 ND2 ASN A 41 53.970 30.620 36.521 1.00 23.65 GLU A 42 GLU A 42 ATOM 322 N 53.772 34.119 31.971 1.00 12.49 ATOM 323 53.479 CA 34.350 30.505 1.00 11.09 АТОМ 324 С GLU A 42 54.733 34.843 29.866 1.00 12.61 GLU A 42 GLU A 42 ATOM 325 55.513 1.00 13.32 0 35.612 30.413 52.425 ATOM 326 CB 35.399 30.378 1.00 11.37 CG GLU A 42 CD GLU A 42 OE1 GLU A 42 ATOM 327 51.952 35.601 28.887 1.00 13.79 ATOM 328 50.768 36.534 28.828 1.00 16.86 MOTA 329 50.420 37.221 29.808 1.00 14.48 OE1 GLU A 42
OE2 GLU A 42
N ALA A 43
CA ALA A 43
C ALA A 43
O ALA A 43
CB ALA A 43
N ILE A 44
CA ILE A 44 ATOM 330 50.126 36.672 27,703 1.00 11.57 ATOM 331. 54.906 34.509 28.554 1.00 11.23 MOTA 332 56.007 27.813 1.00 11.52 35.047 ATOM 333 55.751 36.568 27.567 1.00 12.62 ATOM 334 54.597 37.005 27.290 1.00 11.29 MOTA 335 CB 56.006 34.370 26.420 1.00 11.84 56.805 MOTA 336 N 37.359 27.702 1.00 10.61 ATOM 337 56.733 38.810 27.493 1.00 9.63 ILE A 44 ATOM 338 C 57.918 39.296 26.651 1.00 11.21 ATOM 339 0 ILE A 44 59.026 38.712 26.696 1.00 11.77 ATOM 340 CB ILE A 44 56.682 39.604 28.857 1.00 11.13 ATOM 341 CG1 ILE A . 44 57.879 39.178 29.734 1.00 12.75 ATOM 342 CG2 ILE A 44 55.328 39.346 29.486 1.00 11.62 ATOM 343 CD1 ILE A 44 58.019 40.058 31.041 1.00 16.57 MOTA 344 N ASP A 45 57.676 1.00 11.18 40.362 25.894 ATOM 345 ASP A 45 40.991 CA 58.716 25.140 1.00 10.11 ATOM 346 ASP A 45 С 59.008 42.359 25.805 1.00 11.65 ATOM 347 0 ASP A 45 58.063 43.075 26.222 1.00 12.76 58.208 57.941 ATOM 348 СВ ASP A 45 41.256 23.682 1.00 11.49 ASP A 45 ATOM 349 CG 1.00 12.09 39.984 22.954 OD1 ASP A 45 OD2 ASP A 45 N ILE A 46 MOTA 350 58.610 38.923 23.143 1.00 13.27 ATOM 351 56.942 40.040 22.120 1.00 16.15 MOTA 352 N 60.287 25.967 42.698 1.00 12.45 ATOM 353 CA ILE A 46 60.676 43.964 26.617 1.00 11.69 1.00 13.15 ATOM 354 С ILE A 46 61.478 44.752 25.640 ATOM 355 0 ILE A 62.482 46 44.255 25.076 1.00 13.26 СВ ATOM 356 ILE A 46 61.482 43.643 27.903 1.00 13.14 MOTA 357 CG1 ILE A 46 60.601 42.768 28.783 1.00 12.28 MOTA 358 CG2 ILE A 46 61.923 44.987 28.578 1.00 13.37 MOTA 359 CD1 ILE A 46 61.243 42.613 30.298 1.00 14.34 MOTA 360 N TRP A 47 61.006 45.980 25.380 1.00 12.56 ATOM 361 CA TRP A 47 61.641 46.875 24.399 1.00 11.59 ATOM 362 С TRP A 47 62.178 48.069 25.241 1.00 12.65 ATOM 363 0 TRP A 47 61.400 48.793 25.849 1.00 13.30 ATOM TRP A 60.568 1.00 11.85 364 CB 47 47.322 23.405 ATOM 365 CG TRP A 47 59.929 46.134 22.708 1.00 11.21 1.00 12.57 1.00 12.14 ATOM 366 CD1 TRP A 47 60.560 45.005 22.299 ATOM CD2 TRP A 367 47 58.558 46.012 22.330 ATOM NE1 TRP A 368 47 59.646 44.145 21.663 1.00 11.88 ATOM 369 CE2 TRP A 47 58.417 44.748 21.674 1.00 10.79 MOTA 370 CE3 TRP A 47 57.437 46.819 22.525 1.00 14.11 MOTA 371 CZ2 TRP A 47 57.169 44.279 21.207 1.00 11.66 MOTA 47 372 C23 TRP A 56.173 46.361 22.020 1.00 14.28 MOTA 373 CH2 TRP A 47 56.091 45.074 21.376 1.00 14.15 MOTA 374 N ASN A 48 63.480 48.235 25,209 1.00 12.67 MOTA 375 CA 48 ASN A 64.154 49.253 26.002 1.00 14.84 MOTA 376 С ASN A 48 64.201 50.575 25.283 1.00 14.53 MOTA 50.755 377 0 ASN A 48 65.004 24.291 1.00 15.46 MOTA 378 CB ASN A 48 65.526 48.733 26.416 1.00 13.17 MOTA 379 CG ASN A 48 66.157 49.544 27.555 1.00 12.09

ATOM 380 OD1 ASN A 48 66.120 50.736 27.534 1.00 14.55 66.861 ATOM 381 ND2 ASN A 48 48.842 28.433 1.00 14.53 ATOM 382 N VAL A 49 63.389 51.514 25.726 1.00 13.24 ATOM 383 CA VAL A 49 63.372 52.806 25.119 1.00 13.19 ATOM VAL A 49 64.680 384 C 53.581 25.322 1.00 18.14 ATOM 385 0 VAL A 49 65.121 54.385 24.480 1.00 19.15 MOTA 386 VAL A 49 1.00 15.64 CB 62.180 53.670 25.631 CG1 VAL A 49 ATOM 387 55.015 62.151 24.907 1.00 17.34 ATOM 388 CG2 VAL A 49 60.838 52.930 25.473 1.00 15.21 THR A 50 THR A 50 ATOM 389 65.328 53.372 1.00 14.80 N 26.474 MOTA 390 66.553 54.086 CA 1.00 14.70 26.727 MOTA THR A 50 THR A 50 391 С 67.756 53.642 25.869 1.00 15.83 ATOM 392 0 68.460 54.508 25.322 1.00 18.87 MOTA 393 CB THR A 50 66.910 53.985 1.00 18.21 28.265 OG1 THR A 50 CG2 THR A 50 ATOM 394 65.832 54.538 28.996 1.00 15.78 ATOM 395 68.159 54.773 28.550 1.00 16.82 ATOM 396 N ASN A 51 67.997 52.351 25.772 1.00 14.06 CA ATOM 397 ASN A 51 69.160 51.861 25.010 1.00 15.31 MOTA 398 С ASN A 51 68.884 51.123 23.688 1.00 17.85 1.00 17.40 ASN A 51 MOTA 399 0 69.816 50.692 23.031 ATOM 400 СВ ASN A 51 70.089 51.021 25.909 1.00 18.14 MOTA 401 CG ASN A 51 69.476 49.674 26.309 1.00 20.44 MOTA 402 OD1 ASN A 51 68.497 1.00 16.68 49.227 25.701 ND2 ASN A 51 ATOM 403 70.059 48.998 27.332 1.00 16.78 ATOM GLY A 52 404 N 67,609 50.981 23.350 1.00 15.39 ATOM 405 CA GLY A 52 67.235 50.290 22.093 1.00 16.35 MOTA 406 C GLY A 52 48.776 22.108 67.255 1.00 18.04 АТОМ 407 GLY A 52 0 66.818 48.153 21.106 1.00 15.14 ATOM 408 N LYS A 53 67.728 48.111 23.180 1.00 13.62 CA LYS A 53 ATOM 409 67.752 46.655 23.215 1.00 13.33 ATOM 410 С LYS A 53 66.349 46.078 23.261 1.00 13.70 ATOM 411 0 LYS A 53 65.429 46.699 23.798 1.00 13.57 LYS A 53 ATOM 412 СВ 68.618 46.094 24.379 1.00 15.27 MOTA 413 CG LYS A 53 70.012 46.653 24.326 1.00 16.18 ATOM 414 CD LYS A 53 70.885 45.950 25.341 1.00 18.83 LYS A 53 MOTA 415 CE 72.239 46.673 25.454 1.00 24.88 MOTA NZ 416 LYS A 53 73.095 46.121 26.635 1.00 24.28 ATOM 417 N ARG A 54 66.162 44.891 22.656 1.00 12.69 MOTA 418 64.873 CA ARG A 54 44.207 22.584 1.00 11.88 ARG A 54 ATOM 419 65.109 С 42.735 22.949 1.00 14.37 ATOM 420 0 ARG A 54 65.984 42,067 22.418 1.00 13.79 ATOM 421 СВ ARG A 54 64.308 44.294 21.128 1.00 11.58 MOTA 422 CG ARG A 54 64.188 45.704 20.705 1.00 12.91 ARG A 54 ATOM 423 CD 63.609 45.807 19.209 1.00 13.98 ATOM 424 NE ARG A 54 62,173 45.652 19.138 1.00 15.65 MOTA 425 CZ ARG A 54 61.300 46.628 19.354 1.00 13.20 ATOM NH1 ARG A 54 426 61.742 47.863 19.705 1.00 13.97 MOTA 427 NH2 ARG A 54 59.988 46.434 19.232 1.00 12.47 64.333 ATOM 428 N PHE A 55 42.196 23.889 1.00 13.21 MOTA 429 CA PHE A 55 64.532 40.807 24.304 1.00 11.72 ATOM 430 С PHE A 55 63.205 40.203 24.780 1.00 12.09 ATOM 431 0 PHE A 55 62.219 40.972 25.049 1.00 14.53 ATOM PHE A 55 432 CB 65.612 40.693 25.418 1.00 12.81 ATOM 433 CG PHE A 55 65.290 41.475 26.699 1.00 14.26 ATOM 434 CD1 PHE A 55 65.511 42.830 26.778 1.00 15.91 ATOM CD2 PHE A 55 64.851 435 40.799 27.810 1.00 16.89 ATOM 436 CE1 PHE A 55 65.256 43.541 27.972 1.00 18.73 ATOM 437 CE2 PHE A 55 64.603 41.504 28,989 1.00 18.14 64.803 MOTA 438 CZ PHE A 55 42.824 29.062 1.00 16.81 SER A 56 63.195 38.884 24.887 1.00 12.30 MOTA 439 N

| ATOM         | 440        | CA         | SER A | 56       | 62.000           | 38.137           | 25.279           | 1.00 11.60               |
|--------------|------------|------------|-------|----------|------------------|------------------|------------------|--------------------------|
| ATOM         | 441        | С          | SER A |          | 62.321           | 37.267           | 26.506           | 1.00 13.08               |
| ATOM         | 442        | 0          | SER A |          | 63.361           | 36.664           | 26.570           | 1.00 12.92               |
| ATOM         | 443        | CB         | SER A |          | 61.485           | 37.268           | 24.140           | 1.00 14.04               |
| MOTA         | 444        | OG         | SER A |          | 61.166           | 38.129           | 23.026           | 1.00 17.74               |
| ATOM         | 445        | N          | THR A |          | 61.408           | 37.272           | 27.461           | 1.00 12.51               |
| ATOM         | 446        | CA         | THR A |          | 61.598           | 36.500           | 28.703           | 1.00 15.14               |
| ATOM         | 447        | C          | THR A |          | 60.206           | 36.070           | 29.208           | 1.00 16.57               |
| ATOM         | 448        | 0          | THR A |          | 59.313           | 35.793           | 28.389           | 1.00 13.36               |
| ATOM<br>ATOM | 449<br>450 | CB         | THR A |          | 62.368           | 37.331           | 29.719           | 1.00 17.35               |
| ATOM         | 451        | OG1<br>CG2 |       | 57<br>57 | 62.652<br>61.695 | 36.502           | 30.862           | 1.00 17.51               |
| ATOM         | 452        | N          | TYR A | 58       | 59.971           | 38.645<br>35.950 | 30.120<br>30.539 | 1.00 19.79               |
| ATOM         | 453        | CA         | TYR A |          | 58.641           | 35.565           | 31.042           | 1.00 13.07<br>1.00 11.86 |
| ATOM         | 454        | C          | TYR A | 58       | 58.405           | 36.396           | 32.333           | 1.00 14.46               |
| ATOM         | 455        | ō          | TYR A | 58       | 59.351           | 36.898           | 32.907           | 1.00 14.40               |
| ATOM         | 456        | CB         | TYR A | 58       | 58.474           | 34.094           | 31.314           | 1.00 11.64               |
| MOTA         | 457        | CG         | TYR A | 58       | 59.412           | 33.543           | 32.372           | 1.00 14.08               |
| ATOM         | 458        | CD1        |       | 58       | 60.722           | 33.204           | 32.057           | 1.00 14.47               |
| ATOM         | 459        | CD2        | TYR A | 58       | 58.962           | 33.402           | 33.703           | 1.00 16.79               |
| ATOM         | 460        | CE1        | TYR A | 58       | 61.591           | 32.711           | 33.019           | 1.00 19.79               |
| MOTA         | 461        | CE2        | TYR A | 58       | 59.850           | 32.890           | 34.685           | 1.00 15.79               |
| ATOM         | 462        | CZ         | TYR A | 58       | 61.134           | 32.569           | 34.321           | 1.00 22.24               |
| ATOM         | 463        | ОН         | TYR A | 58       | 61.935           | 32.108           | 35.380           | 1.00 23.11               |
| MOTA         | 464        | N          | ALA A | 59       | 57.139           | 36.566           | 32.673           | 1.00 11.72               |
| MOTA         | 465        | CA         | ALA A | 59       | 56.764           | 37.373           | 33.834           | 1.00 12.72               |
| ATOM         | 466        | С          | ALA A | 59       | 56.719           | 36.582           | 35.105           | 1.00 12.49               |
| ATOM         | 467        | 0          | ALA A |          | 56.191           | 35.479           | 35.157           | 1.00 13.37               |
| ATOM         | 468.       | CB         | ALA A | 59       | 55.325           | 37.956           | 33.607           | 1.00 13.81               |
| MOTA         | 469        | N          | ILE A | 60       | 57.259           | 37.249           | 36.146           | 1.00 15.14               |
| ATOM<br>ATOM | 470        | CA         | ILE A | 60       | 57.221           | 36.693           | 37.546           | 1.00 16.33               |
| ATOM         | 471<br>472 | С<br>0     | ILE A | 60       | 56.402           | 37.733           | 38.349           | 1.00 16.77               |
| ATOM         | 473        | CB         | ILE A | 60<br>60 | 56.575<br>58.619 | 38.937           | 38.182           | 1.00 14.68               |
| ATOM         | 474        | CG1        | ILE A | 60       | 59.497           | 36.674<br>35.633 | 38.126<br>37.421 | 1.00 18.30               |
| ATOM         | 475        | CG2        | ILE A | 60       | 58.553           | 36.414           | 39.697           | 1.00 19.09               |
| ATOM         | 476        | CD1        | ILE A | 60       | 60.986           | 35.801           | 37.681           | 1.00 21.06<br>1.00 26.31 |
| ATOM         | 477        | N          | ALA A | 61       | 55.480           | 37.268           | 39.208           | 1.00 26.31               |
| ATOM         | 478        | CA         | ALA A | 61       | 54.713           | 38.264           | 39.966           | 1.00 15.73               |
| ATOM         | 479        | C          | ALA A | 61       | 55.517           | 38.764           | 41.199           | 1.00 18.47               |
| MOTA         | 480        | 0          | ALA A | 61       | 56.163           | 37.978           | 41.882           | 1.00 23.19               |
| MOTA         | 481        | CB         | ALA A | 61       | 53.384           | 37.696           | 40.428           | 1.00 17.99               |
| MOTA         | 482        | N          | ALA A | 62       | 55.470           | 40.063           | 41.393           | 1.00 14.95               |
| ATOM         | 483        | CA         | ALA A | 62       | 56.093           | 40.757           | 42.560           | 1.00 14.55               |
| MOTA         | 484        | С          | ALA A | 62       | 54.872           | 41.146           | 43.391           | 1.00 18.92               |
| MOTA         | 485        | 0          | ALA A | 62       | 53.715           | 41.217           | 42.964           | 1.00 17.86               |
| MOTA         | 486        | CB         | ALA A | 62       | 56.883           | 42.004           | 42.189           | 1.00 13.98               |
| ATOM         | 487        | N          | GLU A | 63       | 55.159           | 41.391           | 44.690           | 1.00 17.78               |
| ATOM         | 488        | CA         | GLU A | 63       | 54.108           | 41.762           | 45.620           | 1.00 19.52               |
| ATOM         | 489        | С          | GLU A | 63       | 53.226           | 42.917           | 45.151           | 1.00 19.81               |
| ATOM         | 490        | 0          | GLU A | 63       | 53.728           | 43.915           | 44.654           | 1.00 17.13               |
| ATOM         | 491        | CB         | GLU A | 63       | 54.809           | 42.221           | 46.926           | 1.00 21.37               |
| ATOM<br>ATOM | 492<br>493 | CG         | GLU A | 63<br>63 | 53.838           | 42.563           | 48.082           | 1.00 29.86               |
| ATOM         | 493        | CD<br>OF 1 | GLU A | 63<br>63 | 54.387           | 43.633           | 49.041           | 1.00 53.22               |
| ATOM         | 495        | OE1        | GLU A | 63<br>63 | 55.572<br>53.610 | 44.035           | 48.935           | 1.00 44.04               |
| ATOM         | 496        | N          | ARG A | 64       | 53.610<br>51.924 | 44.064           | 49.915<br>45.347 | 1.00 43.79               |
| ATOM         | 497        | CA         | ARG A | 64       | 50.979           | 42.783<br>43.805 | 45.347           | 1.00 16.26<br>1.00 16.34 |
| ATOM         | 498        | C          | ARG A | 64       | . 51.297         | 45.121           | 45.697           | 1.00 16.34               |
| ATOM         | 499        | ō          | ARG A | 64       | 51.433           | 45.142           | 46.954           | 1.00 20.36               |
| -            |            | -          |       |          |                  |                  |                  | 20.30                    |

| ATOM         | 500        | СВ       | ARG        |   | 64       |   | 49.552           | 43.360           | 45.289  | 1.00 | 19.26  |
|--------------|------------|----------|------------|---|----------|---|------------------|------------------|---------|------|--------|
| MOTA         | 501        | CG       | ARG        |   | 64       | ٠ | 48.544           | 44.299           | 44.749  | 1.00 |        |
| ATOM         | 502        | CD       | ARG        |   | 64       |   | 47.108           | 43.842           | 44.982  | 1.00 |        |
| ATOM         | 503        | NE       | ARG        |   | 64       |   | 46.789           | 42.467           | 44.605  | 1.00 |        |
| ATOM         | 504        | CZ       | ARG        |   | 64       |   | 46.420           | 42.092           | 43.371  |      | 41.54  |
| ATOM         | 505        | NH1      |            |   | 64       |   | 46.373           | 42.981           | 42.364  | 1.00 |        |
| ATOM         | 506        | NH2      |            |   | 64       |   | 46.122           | 40.831           | 43.137  | 1.00 |        |
| ATOM         | 507        | N        | GLY        |   | 65       |   | 51.430           | 46.204           | 44.963  | 1.00 |        |
| ATOM         | 508        | CA       | GLY        |   | 65       |   | 51.707           | 47.513           | 45.507  | 1.00 |        |
| ATOM         | 509        | C        | GLY        |   | 65       |   | 53.195           | 47.853           | 45.639  | 1.00 |        |
| ATOM         | 510        | 0        | GLY        |   | 65       |   | 53.551           | 48.980           | 46.004  | 1.00 |        |
| ATOM         | 511        | N        | SER        |   | 66       |   | 54.074           | 46.897           | 45.329  | 1.00 |        |
| ATOM         | 512        | CA       | SER        |   | 66       |   | 55.502           | 47.099           | 45.413  | 1.00 |        |
| ATOM         | 513        | C        | SER        |   | 66       |   | 56.089           | 47.993           | 44.302  | 1.00 |        |
| ATOM<br>ATOM | 514        | O        | SER        |   | 66       |   | 57.144           | 48.615           | 44.440  | 1.00 |        |
| ATOM         | 515<br>516 | CB<br>OG | SER        |   | 66       |   | 56.223           | 45.788           | 45.382  | 1.00 |        |
| ATOM         | 517        |          | SER<br>ARG |   | 66       |   | 56.092           | 45.139           | 44.066  | 1.00 |        |
| ATOM         | 518        | N<br>CA  | ARG        |   | 67<br>67 |   | 55.339<br>55.762 | 48.040           | 43.176  |      | 16.53  |
| ATOM         | 519        | C        | ARG        |   | 67       |   | 57.111           | 48.826           | 41.973  | 1.00 | -      |
| ATOM         | 520        | Ö        | ARG        |   | 67       |   | 57.803           | 48.346           | 41.419  | 1.00 |        |
| ATOM         | 521        | СВ       | ARG        |   | 67       |   | 55.791           | 49.101<br>50.324 | 40.784  | 1.00 |        |
| ATOM         | 522        | CG       | ARG        |   | 67       |   | 54.431           | 50.904           | 42.242  | 1.00 |        |
| ATOM         | 523        | CD       | ARG        |   | 67       |   | 54.376           | 52.362           | 42.553  | 1.00 |        |
| ATOM         | 524        | NE       | ARG        |   | 67       |   | 53.069           | 52.872           | 43.035  | 1.00 |        |
| ATOM         | 525        | CZ       | ARG        |   | 67       |   | 52.677           | 54.135           | 42.909  | 1.00 |        |
| ATOM         | 526        |          | ARG        |   | 67       |   | 53.438           | 55.053           | 42.332  | 1.00 |        |
| ATOM         | 527        |          | ARG        |   | 67       |   | 51.487           | 54.504           | 43.395  | 1.00 |        |
| ATOM         | 528        | N        | ILE        |   | 68       |   | 57.444           | 47.091           | 41.670  | 1.00 |        |
| ATOM         | 529        | CA       | ILE        |   | 68       |   | 58.720           | 46.535           | 41.233  | 1.00 |        |
| ATOM         | 530        | C        | ILE        |   | 68       |   | 58.661           | 46.183           | 39.704  | 1.00 |        |
| ATOM         | 531        | ō        | ILE        |   | 68       |   | 57.632           | 45.692           | 39.216  | 1.00 |        |
| ATOM         | 532        | СВ       | ILE        |   | 68       |   | 59.009           | 45.237           | 42.014  |      | 16.07  |
| ATOM         | 533        | CG1      |            |   | 68       |   | 59.387           | 45.593           | 43.529  | 1.00 |        |
| MOTA         | 534        | CG2      |            |   | 68       |   | 60.143           | 44.394           | 41.325  | 1.00 |        |
| MOTA         | . 535      |          | ILE        |   | 68       |   | 59.427           | 44.398           | 44.371  | 1.00 | 17.12  |
| MOTA         | 536        | N        | ILE        |   | 69       |   | 59.782           | 46.449           | 39.064  | 1.00 | 15.79  |
| MOTA         | 537        | CA       | ILE        |   | 69       |   | 60.095           | 46.043           | 37.673  | 1.00 | 14.43  |
| MOTA         | 538        | С        | ILE        |   | 69       |   | 61.570           | 45.598           | 37.885  |      | .12.91 |
| ATOM         | 539        | 0        | ILE        | Α | 69       |   | 62.494           | 46.446           | 37.839  |      | 16.10  |
| MOTA         | 540        | CB       | ILE        | Α | 69       |   | 60.003           | 47.141           | 36.653  | 1.00 |        |
| ATOM         | 541        | CG1      | ILE        | A | 69       |   | 58.579           | 47.740           | 36.528  | 1.00 | 14.18  |
| ATOM         | 542        | CG2      | ILE        | Α | 69       |   | 60.415           | 46.555           | 35.241  | 1.00 | 14.77  |
| ATOM         | 543        | CD1      | ILE        | A | 69       |   | 57.484           | 46.764           | 35, 993 | 1.00 | 13.25  |
| ATOM         | 544        | N        | SER        | Α | 70       |   | 61.794           | 44.306           | 38.101  | 1.00 | 12.61  |
| ATOM         | 545        | CA       | SER        | A | 70       |   | 63.124           | 43.778           | 38.331  | 1.00 | 12.79  |
| ATOM         | 546        | С        | SER        | A | 70       |   | 63.559           | 42.861           | 37.151  | 1.00 | 16.65  |
| ATOM         | 547        | 0        | SER        | A | 70       |   | 62.929           | 41.846           | 36.887  | 1.00 | 16.44  |
| ATOM         | 548        | CB       | SER        | А | 70       |   | 63.136           | 42.977           | 39.663  | 1.00 | 17.19  |
| ATOM         | 549        | QG       | SER        |   | 70       |   | 64.479           | 42.512           | 39.964  | 1.00 | 19.28  |
| ATOM         | 550        |          | VAL        |   | 71       |   | 64.653           | 43.229           | 36.521  | 1.00 | 16.77  |
| ATOM         | 551        | CA       | VAL        | A | 71       |   | 65.194           | 42.443           | 35.375  | 1.00 | 16.54  |
| ATOM         | 552        | C        | VAL        |   | 71       |   | 66.231           | 41.490           | 36.002  |      | 18.47  |
| ATOM         | 553        | 0        | VAL        |   | 71       |   | 67.253           | 41.930           | 36.571  |      | 20.32  |
| ATOM         | 554        | CB       | VAL        |   | 71       |   | 65.746           | 43.437           | 34.301  |      | 21.34  |
| ATOM         |            | CG1      |            |   | 71       |   | 66.394           | 42.692           | 33.158  |      | 23.85  |
| MOTA         | 556        |          | VAL        |   | 71       |   | 64.618           | 44.286           | 33.711  |      | 21.90  |
| MOTA         | 557        | N        | ASN        |   | 72       |   | 65.953           | 40.204           | 35.942  |      | 17.21  |
| MOTA         | 558        | CA       | ASN        |   | 72       |   | 66.764           | 39.178           | 36.560  |      | 18.06  |
| MOTA         | 559        | С        | ASN        | A | 72       |   | 67.441           | 38.224           | 35.601  | 1.00 | 22.03  |
|              |            |          |            |   |          |   |                  |                  |         |      |        |

58

| ATOM         | 560        | 0       | ASN        | A | 72       |   | 67.039           | 38.141           | 34.422           | 1.00 20.77               |  |
|--------------|------------|---------|------------|---|----------|---|------------------|------------------|------------------|--------------------------|--|
| ATOM         | 561        | CB      | ASN        |   | 72       |   | 65.847           | 38.323           | 37.470           | 1.00 15.71               |  |
| ATOM         | 562        | CG      | ASN        |   | 72       |   | 65.116           | 39.170           | 38.557           | 1.00 21.14               |  |
| MOTA         | 563        | OD1     | ASN        | A | 72       |   | 65.574           | 40.229           | 38.928           | 1.00 22.76               |  |
| ATOM         | 564        | ND2     | ASN        | Α | 72       |   | 63.951           | 38.678           | 38.978           | 1.00 26.84               |  |
| ATOM         | 565        | N       | GLY        |   | 73       |   | 68.433           | 37.487           | 36.082           | 1.00 17.96               |  |
| ATOM         | 566        | CA      | GLY        |   | 73       |   | 69.132           | 36.519           | 35.239           | 1.00 17.13               |  |
| ATOM         | 567        | С       | GLY        | Α | 73       |   | 69.886           | 37.193           | 34.124           | 1.00 17.10               |  |
| ATOM         | 568        | 0       | GLY        | A | 73       |   | 70.357           | 38.314           | 34.238           | 1.00 17.56               |  |
| ATOM         | 569        | N       | ALA        | А | 74       |   | 69.996           | 36.475           | 33.003           | 1.00 16.81               |  |
| ATOM         | 570        | CA      | ALA        | A | 74       | • | 70.743           | 37.040           | 31.860           | 1.00 16.63               |  |
| ATOM         | 571        | С       | ALA        | Α | 74       |   | 70.172           | 38.361           | 31.377           | 1.00 17.98               |  |
| ATOM         | 572        | 0       | ALA        | A | 74       |   | 70.911           | 39.200           | 30.838           | 1.00 17.87               |  |
| MOTA         | 573        | CB      | ALA        | Α | 74       |   | 70.760           | 36.034           | 30.703           | 1.00 16.76               |  |
| MOTA         | 574        | N       | ALA        | Α | 75       |   | 68.859           | 38.568           | 31.576           | 1.00 16.77               |  |
| MOTA         | 575        | CA      | ALA        | Α | 75       |   | 68.214           | 39.834           | 31.160           | 1.00 17.69               |  |
| ATOM         | 576        | C       | ALA        | Α | 75       |   | 68.855           | 41.099           | 31.787           | 1.00 17.68               |  |
| MOTA         | 577        | 0       | ALA        | Α | 75       |   | 68.716           | 42.194           | 31.279           | 1.00 16.79               |  |
| ATOM         | 578        | CB      | ALA        | A | 75       |   | 66.761           | 39.816           | 31.504           | 1.00 20.55               |  |
| MOTA         | 579        | N       | ALA        | Α | 76       |   | 69.556           | 40.921           | 32.930           | 1.00 16.67               |  |
| ATOM         | 580        | ·CA     | ALA        | Α | 76       |   | 70.183           | 42.082           | 33.556           | 1.00 17.52               |  |
| ATOM         | 581        | С       | ALA        | А | 76       |   | 71.296           | 42.721           | 32.665           | 1.00 17.22               |  |
| ATOM         | 582        | 0       | ALA        |   | 76       |   | 71.738           | 43.846           | 32.900           | 1.00 18.09               |  |
| ATOM         | 583        | CB      | ALA        |   | 76       |   | 70.695           | 41.726           | 34.989           | 1.00 18.29               |  |
| MOTA         | 584        | N       | HIS        |   | 77       |   | 71.713           | 42.004           | 31.593           | 1.00 15.19               |  |
| ATOM         | 585        | CA      | HIS        |   | 77       |   | 72.705           | 42.553           | 30.666           | 1.00 16.72               |  |
| ATOM         | 586        | С       | HIS        |   | 77       |   | <b>71.</b> 996.  |                  | 29.623           | 1.00 16.17               |  |
| ATOM         | 587        | 0       | HIS        |   | 77       |   | 72.681           | 44.164           | 28.872           | 1.00 18.25               |  |
| ATOM         | 588        | CB      | HIS        |   | 77       |   | 73.300           | 41.399           | 29.823           | 1.00 18.31               |  |
| ATOM         | 589        | CG      | HIS        |   | 77       |   | 74.342           | 40.606           | 30.525           | 1.00 21.21               |  |
| ATOM         | 590        |         | HIS        |   | 77       |   | 75.625           | 41.057           | 30.668           | 1.00 25.21               |  |
| ATOM         | 591        |         | HIS        |   | 77       |   | 74.303           | 39.384           | 31.099           | 1.00 22.31               |  |
| ATOM         | 592        |         | HIS        |   | 77       |   | 76.336           | 40.153           | 31.323           | 1.00 23.74               |  |
| ATOM         | 593        |         | HIS        |   | 77<br>78 |   | 75.564           | 39.124           | 31.586           | 1.00 22.33               |  |
| ATOM<br>ATOM | 594<br>595 | N<br>CA | CYS<br>CYS |   | 78       |   | 70.666<br>69.896 | 43.404           | 29.585           | 1.00 14.86               |  |
| ATOM         | 596        | C       | CYS        |   | 78       |   | 69.145           | 44.162<br>45.376 | 28.587<br>29.085 | 1.00 16.42<br>1.00 16.96 |  |
| ATOM         | 597        | ŏ       | CYS        |   | 78       |   | 68.579           | 46.190           | 28.270           | 1.00 16.97               |  |
| ATOM         | 598        | СВ      | CYS        |   | 78       |   | 68.863           | 43.235           | 27.909           | 1.00 16.76               |  |
| ATOM         | 599        | SG      | CYS        |   | 78       |   | 69.588           | 41.704           | 27.164           | 1.00 22.74               |  |
| ATOM         | 600        | N       | ALA        |   | 79       |   | 69.075           | 45.549           | 30.440           | 1.00 14.78               |  |
| ATOM         | 601        | CA      | ALA        |   | 79       |   | 68.366           | 46.701           | 30.991           | 1.00 14.85               |  |
| ATOM         | 602        | С       | ALA        |   | 79       |   | 69.025           | 46.988           | 32.351           | 1.00 15.30               |  |
| ATOM         | 603        | 0       | ALA.       | A | 79       |   | 69.567           | 46.065           | 32.964           | 1.00 16.51               |  |
| MOTA         | 604        | CB      | ALA        |   | 79       |   | 66.885           | 46.431           | 31.178           | 1.00 15.77               |  |
| ATOM         | 605        | N       | SER        | A | 80       |   | 68.971           | 48.263           | 32.704           | 1.00 13.90               |  |
| ATOM         | 606        | CA      | SER        | A | 80       |   | 69.558           | 48.764           | 33.982           | 1.00 13.46               |  |
| ATOM         | 607        | С       | SER        | Α | 80       |   | 68.547           | 49.548           | 34.747           | 1.00 17.54               |  |
| MOTA         | 608        | 0       | SER .      | A | 80       |   | 67.589           | 50.071           | 34.213           | 1.00 16.85               |  |
| ATOM         | 609        | CB      | SER        |   | 80       |   | 70.739           | 49.652           | 33.656           | 1.00 17.79               |  |
| ATOM         | 610        | OG      | SER        |   | 80       |   | 71.725           | 48.905           | 32.934           | 1.00 18.84               |  |
| ATOM         | 611        | N       | VAL        |   | 81       |   | 68.788           | 49.664           | 36.076           | 1.00 15.99               |  |
| ATOM         | 612        | CA      | VAL        |   | 81       |   | 67.897           | 50.448           | 36.907           | 1.00 14.74               |  |
| ATOM         | 613        | С       | VAL        |   | 81       | • | 67.879           | 51.877           | 36.357           | 1.00 14.78               |  |
| ATOM         | 614        | 0       | VAL .      |   | 81       |   | 68.899           | 52.500           | 36.103           | 1.00 15.81               |  |
| ATOM         | 615        | CB      | VAL        |   | 81       |   | 68.468           | 50.470           | 38.409           | 1.00 14.01               |  |
| ATOM         | 616        |         | VAL .      |   | 81       |   | 67.606           | 51.444           | 39.242           | 1.00 15.95               |  |
| ATOM         | 617        |         | VAL .      |   | 81       |   | 68.363           | 49.104           | 39.020           | 1.00 15.67               |  |
| ATOM         | 618        | N       | GLY .      |   |          |   | 66.689           | 52.420           | 36.132           | 1.00 14.65               |  |
| ATOM         | 619        | CA      | GLY .      | A | 82       |   | 66.551           | 53.734           | 35.586           | 1.00 14.30               |  |
|              |            |         |            |   |          |   |                  |                  |                  |                          |  |

| ATOM         | 620        | C       | GLY |   | 82       | 66.072           | 53.721           | 34.113           |      | 16.91 |
|--------------|------------|---------|-----|---|----------|------------------|------------------|------------------|------|-------|
| ATOM         | 621        | 0       | GLY |   | 82       | 65.494           | 54.699           | 33.664           | 1.00 |       |
| ATOM         | 622        | N       | ASP |   | 83       | 66.347           | 52.624           | 33.431           | 1.00 |       |
| ATOM         | 623        | CA      | ASP |   | 83       | 65.911           | 52.551           | 31.994           | 1.00 |       |
| ATOM         | 624        | C       | ASP |   | 83       | 64.391           | 52.545           | 31.907           | 1.00 |       |
| ATOM         | 625        | 0       | ASP |   | 83       | 63.687           | 51.980           | 32.775           | 1.00 |       |
| ATOM         | 626        | CB      | ASP |   | 83       | 66.421           | 51.242           | 31.319           | 1.00 |       |
| ATOM         | 627        | CG      | ASP |   | 83       | 67.917           | 51.248           | 31.004           |      | 12.11 |
| MOTA         | 628        | OD1     |     |   | 83       | 68.614           | 52.301           | 31.107           | 1.00 |       |
| ATOM<br>ATOM | 629<br>630 | OD2     |     |   | 83       | 68.382           | 50.116           | 30.667           | 1.00 |       |
| ATOM         | 631        | N<br>CA | ILE |   | 84       | 63.879           | 53.153           | 30.818           | 1.00 |       |
| ATOM         | 632        | C       | ILE |   | 84<br>84 | 62.442<br>62.169 | 53.204<br>52.078 | 30.547           | 1.00 |       |
| ATOM         | 633        | ŏ       | ILE |   | 84       | 62.896           | 51.987           | 29.504<br>28.514 | 1.00 |       |
| ATOM         | 634        | СВ      | ILE |   | 84       | 62.092           | 54.551           | 29.873           | 1.00 |       |
| ATOM         | 635        | CG1     |     |   | 84       | 62.350           | 55.760           | 30.847           | 1.00 |       |
| ATOM         | 636        | CG2     |     |   | 84       | 60.633           | 54.554           | 29.440           | 1.00 |       |
| ATOM         | 637        | CD1     |     |   | 84       | 61.480           | 55.706           | 32.107           | 1.00 |       |
| MOTA         | 638        | N       | VAL |   | 85       | 61.212           | 51.235           | 29.785           | 1.00 |       |
| ATOM         | 639        | CA      | VAL |   | 85       | 60.934           | 50.112           | 28.876           | 1.00 |       |
| ATOM         | 640        | C       | VAL |   | 85       | 59.475           | 49.946           | 28.633           | 1.00 |       |
| ATOM         | 641        | ō       | VAL |   | 85       | 58.583           | 50.517           | 29.317           | 1.00 | 14.01 |
| ATOM         | 642        | СВ      | VAL |   | 85       | 61.466           | 48.783           | 29.474           | 1.00 | 14.37 |
| ATOM .       | 643        |         | VAL |   | 85       | 62.960           | 48.870           | 29.885           | 1.00 | 13.95 |
| ATOM         | 644        |         | VAL |   | 85       | 60.649           | 48.332           | 30.741           | 1.00 | 14.77 |
| ATOM         | 645        | N       | ILE |   | 86       | 59.162           | 49.117           | 27.608           | 1.00 | 13.28 |
| ATOM         | 646        | CA      | ILE |   | 86       | 57.778           | 48.809           | 27.263           | 1.00 | 13.39 |
| ATOM         | 647        | С       | ILE |   | 86       | 57.723           | 47.283           | 27.366           | 1.00 | 14.02 |
| ATOM         | 648        | 0       | ILE |   | 86       | 58.586           | 46.593           | 26.825           | 1.00 | 13.98 |
| ATOM         | 649        | СВ      | ILE |   | 86       | 57.418           | 49.286           | 25.801           |      | 13.99 |
| ATOM         | 650        | CG1     | ILE | A | 86       | 57.347           | 50.842           | 25.764           |      | 17.59 |
| MOTA         | 651        | CG2     | ILE | A | 86       | 56.067           | 48.669           | 25.419           | 1.00 | 15.22 |
| ATOM         | 652        | CD1     | ILE | Α | 86       | 57.543           | 51.448           | 24.363           |      | 22.03 |
| ATOM.        | 653        | N       | ILE | A | 87       | 56.779           | 46.734           | 28.149           |      | 12.05 |
| MOTA         | 654        | CA      | ILE | A | 87       | 56.654           | 45.304           | 28.337           | 1.00 | 11.27 |
| MOTA         | 655        | С       | ILE | Α | 87       | 55.336           | 44.865           | 27.730           | 1.00 | 12.08 |
| MOTA         | 656        | 0       | ILE | Α | 87       | 54.252           | 45.364           | 28.075           | 1.00 | 13.19 |
| ATOM         | 657        | CB      | ILE | A | 87       | 56.693           | 44.934           | 29.905           | 1.00 | 12.91 |
| MOTA         | 658        | CG1     | ILE |   | 87       | 57.972           | 45.491           | 30.455           | 1.00 | 14.33 |
| MOTA         | 659        | CG2     | ILE | A | 87       | 56.572           | 43.438           | 30.062           | 1.00 | 14.68 |
| ATOM         | 660        | CD1     | ILE |   | 87       | 58.085           | 45.263           | 32.060           | 1.00 | 14.91 |
| MOTA         | 661        | N       | ALA |   | 88       | 55.416           | 43.891           | 26.782           | 1.00 | 11.17 |
| ATOM         | 662        | CA      | ALA |   | 88       | 54.209           | 43.441           | 26.124           |      | 11.51 |
| ATOM         | 663        | С       | ALA |   | 88       | 53.978           | 41.975           | 26.112           | 1.00 | 11.06 |
| ATOM         | 664        | 0       | ALA |   | 88       | 54.949           | 41.191           | 26.190           |      | 12.85 |
| ATOM         | 665        | CB      | ALA |   | 88       | 54.372           | 43.905           | 24.582           | 1.00 | 12.18 |
| ATOM         | 666        | N       | SER |   | 89       | 52.719           | 41.526           | 25.953           | 1.00 | 11.32 |
| ATOM         | 667        | CA      | SER |   | 89       | 52.459           | 40.087           | 25.769           | 1.00 | 11.17 |
| ATOM         | 668        | С       | SER |   | 89       | 51.547           | 39.992           | 24.538           | 1.00 | 11.44 |
| ATOM .       | 669        | 0       | SER |   | 89       | 50.833           | 40.964           | 24.213           | 1.00 | 11.04 |
| ATOM         | 670        | СВ      | SER |   | 89       | 51.858           | 39.327           | 26.979           |      | 14.68 |
| ATOM         | 671        | OG      | SER |   | 89       | 50.438           | 39.480           | 27.037           |      | 13.56 |
| ATOM         | 672        | N       | PHE |   | 90       | 51.691           | 38.849           | 23.860           |      | 11.58 |
| ATOM         | 673        | CA      | PHE |   | 90       | 50.894           | 38.604           | 22.632           |      | 10.03 |
| MOTA         | 674        | C       | PHE |   | 90       | 50.125           | 37.331           | 22.780           |      | 11.41 |
| ATOM<br>ATOM | 675        | O       | PHE |   | 90       | 50.615           | 36.342           | 23.436           |      | 12.95 |
| ATOM<br>ATOM | 676<br>677 | CB      | PHE |   | 90       | 51.867           | 38.480           | 21.438           |      | 10.86 |
| ATOM         | 677        | CG      | PHE |   | 90       | 52.457           | 39.784           | 21.010           |      | 11.25 |
| ATOM         | 678        |         | PHE |   | 90       | 53.611           | 40.322           | 21.617           |      | 12.54 |
| ATOM         | 679        | CDZ     | PHE | A | 90       | 51.824           | 40.536           | 19.976           | T.00 | 13.88 |

ATOM 680 CE1 PHE A 90 54.134 41.602 21.173 1.00 12.35 ATOM 681 CE2 PHE A 90 52.304 41.729 19.539 1.00 13.61 682 CZ PHE A 90 ATOM 53.459 42.314 20.114 1.00 12.98 ATOM 683 N VAL A 91 48.928 37.303 22.178 1.00 . 9.83 684 CA 48.073 ATOM VAL A 91 36.118 22.213 1.00 10.22 VAL A 91 VAL A 91 ATOM 685 C 47.588 35.798 20.793 1.00 14.03 ATOM 686 0 47.690 36.675 19.893 1.00 13.50 687 CB VAL A 91 46.803 ATOM 36,261 23.098 1.00 13.62 CG1 VAL A 91 CG2 VAL A 91 688 ATOM 36.266 1.00 15.08 47.217 24.596 MOTA 689 45.999 37.507 22.722 1.00 13.05 ATOM 690 N THR A 92 47.154 34.586 20.611 1.00 12.76 THR A 92 THR A 92 ATOM 691 CA 34.182 46.628 19.275 1.00 11.56 ATOM 692 С 45.132 33.971 19.349 1.00 13.31 ATOM 693 THR A 92 44.530 0 33.582 20.391 1.00 13.08 CB THR A 92 OG1 THR A 92 ATOM 694 47.340 32.987 18.626 1.00 12.64 ATOM 695 47.132 31.797 19.427 1.00 16.06 ATOM 696 CG2 THR A 92 48.849 18.472 33.212 1.00 13.80 MET A 93 MET A 93 44.412 1.00 11.69 ATOM 697 N 18.224 34.267 ATOM 698 CA 42.951 34.108 18.147 1.00 11.35 MOTA 699 С MET A 93 42.609 16.641 1.00 14.45 34.143 MET A 93 MET A 93 43.429 1.00 13.44 700 MOTA 0 34.572 15.835 ATOM 701 CB 42.224 35.317 18.831 1.00 12.85 MOTA 702 CG MET A 93 42.628 36.660 18.178 1.00 13.91 1.00 14.46 MOTA 703 SD 42.084 MET A 93 38.126 19.099 MET A 93 43.261 ATOM 704 CE 37.982 20.500 1.00 14.10 ATOM 705 N PRO A 94 41.440 33.664 16.331 1.00 12.36 MOTA 706 40.994 1.00 12.35 CA PRO A 94 33.662 14.921 ATOM 707 C PRO A 94 40.927 35.119 14.384 1.00 15.66 708 MOTA 0 PRO A 94 40.708 36.116 15.069 1.00 14.35 MOTA 709 СВ 39.592 1.00 13.86 PRO A 94 33.150 15.005 ATOM 710 CG PRO A 94 39.606 16.204 1.00 15.72 32.186 ATOM 711 CD PRO A 94 40.405 33.060 17.191 1.00 12.82 ASP A ATOM 712 N 95 41.040 35.223 13.035 1.00 14.03 MOTA 713 CA ASP A 95 40.966 36.538 12.434 1.00 15.39 ATOM 714 С ASP A 95 39.760 37.423 12.789 1.00 16.06 ASP A ATOM 715 95 39.886 38.651 1.00 16.29 0 12.959 ATOM 716 СВ ASP A 95 40.998 36.355 10.903 1.00 15.44 MOTA 717 CG ASP A 95 41.147 37.685 10.168 1.00 15.85 OD1 ASP A ATOM 718 95 42.199 38.354 10.289 1.00 14.33 OD2 ASP A 95 40.178 9.441 ATOM 719 38,088 1.00 18.70 GLU A 96 ATOM 720 N 38.571 36.831 12.864 1.00 15.70 ATOM 721 CA GLU A 96 37.389 37.631 13.182 1.00 14.32 MOTA 722 С GLU A 96 37.468 38.304 14.550 1.00 18.35 MOTA 723 37.196 39.487 0 GLU A 96 14.686 1.00 17.78 MOTA 724 СВ GLU A 96 36.102 36.828 12.995 1.00 16.31 ATOM 725 CG GLU A 96 34.860 37.623 13.365 1.00 22.63 MOTA 726 36.880 CD GLU A 96 33.526 13.068 1.00 23.98 727 ATOM OE1 GLU A 96 33.559 35.704 12.706 1.00 25.84 MOTA 728 OE2 GLU A 96 32.461 37.497 13.246 1.00 30.53 37.863 MOTA 729 N GLU A 97 37.514 15.545 1.00 15.16 730 ATOM CA, GLU A 97 37.999 38.111 16.875 1.00 15.52 ATOM 731 С GLU A 97 39.128 39.177 16.850 1.00 13.99 GLU A ATOM 732 97 39.028 40.206 17.493 0 1.00 16.67 733 38.338 ATOM 97 36.990 CB GLU A 17.857 1.00 15.35 ATOM . 734 CG GLU A 97 38.566 37.525 19.290 1.00 17.59 MOTA 735 CD GLU A 97 38.814 36.394 1.00 22.36 20.261 35.209 ATOM 736 OE1 GLU A 97 38.899 19.850 1.00 17.71 38.890 40.228 41.349 ATOM 737 OE2 GLU A, 97 36.747 21.481 1.00 22.62 738 ALA A ATOM N 98 38.917 16.123 1.00 13.03 41.349 39.850 16.036 ATOM 739 CA ALA A 98 1.00 12.71

61

ATOM 740 C ALA A 98 40.957 41.219 15.463 1.00 15.63 ATOM 741 0 ALA A 98 41.496 42.253 15.834 1.00 14.36 ATOM 742 СВ ALA A 42.463 98 39.223 15.190 1.00 14.85 ATOM 743 N ARG A 99 39.959 41.235 14.534 1.00 14.05 ATOM 744 39.565 CA ARG A 99 42.490 13.944 1.00 15.96 ARG A 99 MOTA 745 C 38.883 43.474 14.862 1.00 17.44 ATOM 746 0 ARG A 99 38.845 44.666 14.535 1.00 21.21 ATOM 747 CB 38.743 12.633 ARG A 99 42.259 1.00 17.37 ARG A 99 ARG A 99 ATOM 748 CG 39.630 41.725 11.515 1.00 16.32 ATOM 749 CD 38.869 41.511 10.154 1.00 16.45 NE ARG A 99 CZ ARG A 99 NH1 ARG A 99 NH2 ARG A 99 ATOM 750 NE 38.150 40.252 10.074 1.00 14.75 36.851 36.084 ATOM 751 40.106 10.202 1.00 13.61 MOTA 752 41.162 10.415 1.00 16.09 MOTA 753 36.306 38.906 10.083 1.00 18.40 38.364 · 37.753 MOTA 754 THR A 100 N 43.021 1.00 16.42 15.998 THR A 100 ATOM 755 CA 43.988 16.917 1.00 16.33 ATOM С 756 THR A 100 38.350 43.803 18.317 1.00 19.97 THR A 100 THR A 100 MOTA 757 0 37.735 44.220 19.329 1.00 20.03 36.246 ATOM 758 CB 43.908 1.00 21.91 17.014 ATOM OG1 THR A 100 759 35.822 42.556 1.00 20.66 17.266 ATOM 760 CG2 THR A 100 35.626 44.354 15.658 1.00 22.68 ATOM 761 TRP A 101 N 39.533 43.203 18.349 1.00 17.87 ATOM 762 CA TRP A 101 40.199 42.981 19.671 1.00 16.71 ATOM 763 С TRP A 101 40.710 44.288 20.258 1.00 19.04 TRP A 101 ATOM 764 0 41.247 45.135 19.540 1.00 17.05 ATOM 765 CB TRP A 101 41.390 42.038 19.455 1.00 14.65 ATOM 766 CG TRP A 101 . 42.311 41.932 1.00 14.16 20.694 MOTA CD1 TRP A 101 767 43.528 42.444 20.800 1.00 16.31 ATOM 768 CD2 TRP A 101 42.034 41.196 21.899 1.00 16.31 ATOM 1.00 15.49 1.00 17.23 769 NE1 TRP A 101 44.070 42.124 22.085 ATOM 770 CE2 TRP A 101 43.151 41.365 22.743 ATOM 771 CE3 TRP A 101 40.944 40.448 22.362 1.00 19.60 CZ2 TRP A 101 43.211 1.00 18.02 1.00 21.23 MOTA 772 40.796 24.037 ATOM 773 C23 TRP A 101 41.013 39.854 23.639 CH2 TRP A 101 N ARG A 102 ATOM 774 42.136 40.045 24.443 1.00 21.41 ATOM 775 40.563 44.465 21.612 1.00 15.76 ATOM 776 CA ARG A 102 41.070 45.703 1.00 16.64 22.235 ARG A 102 ARG A 102 ATOM 777 С 42.180 45.344 23.275 1.00 14.79 ATOM 778 0 41.838 44.748 24.316 1.00 17.03 MOTA 779 СВ ARG A 102 39.943 1.00 17.42 46.431 22.963 ATOM 780 CG ARG A 102 38.775 22.058 46.821 1.00 24.67 ATOM ARG A 102 781 CD 39.285 47.662 20.922 1.00 40.94 ATOM 782 NE ARG A 102 38.215 47.967 19.971 1.00 58.76 ATOM 783 CZ ARG A 102 38.246 47.668 18.668 1.00 65.94 NH1 ARG A 102 ATOM 784 39.307 47.043 18.135 1.00 46.00 ATOM NH2 ARG A 102 785 37.211 47.987 17.896 1.00 52.57 ATOM 786 N PRO A 103 43.422 45.671 22.999 1.00 15.12 PRO A 103 ATOM 787 CA 44.515 45.313 23.948 1.00 13.53 MOTA 788 PRO A 103 С 44.329 46.058 25.274 1.00 15.29 MOTA 789 PRO A 103 43.749 25.309 1.00 16.02 0 47.117 PRO A 103 45.770 MOTA 790 СВ 45.786 1.00 14.34 23.270 PRO A 103 ATOM 791 CG 45.386 45.801 21.717 1.00 18.46 ATOM 792 CD PRO A 103 21.748 1.00 15.59 43.942 46.250 ASN A 104 44.884 MOTA 793 N 45.445 1.00 14.28 26.347 ATOM ASN A 104 794 CA 44.836 46.034 27.698 1.00 13.04 ATOM 795 ASN A 104 46.119 27.862 1.00 14.43 С 46.863 ATOM 796 ASN A 104 0 47.217 46,296 28.125 1.00 13.98 MOTA ASN A 104 797 CB 44.760 44.875 28.655 1.00 12.98 43.490 44.121 28.510 1.00 15.09 42.398 44.706 28.655 1.00 17.92 ATOM 798 ASN A 104 CG MOTA 799 OD1 ASN A 104

| MOTA         | 800        | ND      | 2 ASN       | A          | 104        |   | 43.569           | 42.842           | 28.158           | 1.00 | 16.93          |
|--------------|------------|---------|-------------|------------|------------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 801        | N       |             |            | 105        |   | 46.019           | 48.179           | 27.673           | 1.00 | 14.40          |
| ATOM         | 802        | CA      | VAL         | A          | 105        |   | 47.150           | 49.048           | 27.734           | 1.00 | 15.19          |
| ATOM         | 803        | C       |             |            | 105        |   | 47.164           | 49.895           | 28.992           | 1.00 |                |
| ATOM         | 804        | 0       |             |            | 105        |   | 46.172           | 50.559           | 29.309           |      | 20.46          |
| ATOM         | 805        | CB      |             |            | 105        |   | 47.188           | 50.005           | 26.534           | 1.00 |                |
| MOTA         | 806        | CGI     |             |            | 105        |   | 48.423           | 50.904           | 26.591           | 1.00 |                |
| ATOM         | 807        | CG2     |             |            | 105        |   | 47.223           | 49.166           | 25.186           | 1.00 |                |
| ATOM         | 808        | N       |             |            | 106        |   | 48.297           | 49.853           | 29.683           | 1.00 |                |
| ATOM<br>ATOM | 809<br>810 | CA<br>C |             |            | 106<br>106 |   | 48.457           | 50.694           | 30.921           | 1.00 |                |
| ATOM         | 811        | o       |             |            | 106        |   | 49.647<br>50.711 | 51.596<br>51.115 | 30.665           |      | 15.84          |
| ATOM         | 812        | СВ      |             |            | 106        |   | 48.672           | 49.807           | 30.266<br>32.141 | 1.00 |                |
| ATOM         | 813        | N       |             |            | 107        |   | 49.475           | 52.911           | 30.905           | 1.00 |                |
| ATOM         | 814        | CA      |             |            | 107        |   | 50.474           | 53.931           | 30.697           | 1.00 |                |
| ATOM         | 815        | С       |             |            | 107        |   | 51.037           | 54.390           | 32.046           | 1.00 |                |
| ATOM         | 816        | 0       | TYR         | A          | 107        |   | 50.287           | 54.506           | 33.007           | 1.00 |                |
| ATOM         | 817        | СВ      | TYR         | Α          | 107        |   | 49.901           | 55.154           | 29.951           | 1.00 |                |
| ATOM         | 818        | CG      | TYR         | A          | 107        | • | 49.419           | 54.812           | 28.533           | 1.00 | 21.14          |
| ATOM         | 819        | CD1     |             |            |            |   | 50.291           | 54.819           | 27.490           | 1.00 | 21.91          |
| ATOM         | 820        | CD2     |             |            |            |   | 48.106           | 54.510           | 28.307           | 1.00 | 23.16          |
| ATOM         | 821        | CE1     |             |            |            |   | 49.861           | 54.497           | 26.190           |      | 24.59          |
| ATOM         | 822        | CE2     |             |            |            |   | 47.672           | 54.182           | 27.007           |      | 24.09          |
| ATOM         | 823        | CZ      | TYR         |            |            |   | 48.571           | 54.197           | 25.992           |      | 27.50          |
| ATOM         | 824        | OH      | TYR         |            |            |   | 48.200           | 53.880           | 24.685           |      | 29.66          |
| ATOM<br>ATOM | 825<br>826 | N<br>CA | PHE         |            |            |   | 52.340           | 54.609           | 32.042           |      | 15.42          |
| ATOM         | 827        | C       | PHE         |            |            |   | 53.049<br>53.868 | 55.012<br>56.249 | 33.297<br>33.162 | 1.00 | 15.71          |
| ATOM         | 828        | ō       | PHE         |            |            |   | 54.268           | 56.703           | 32.071           | 1.00 | 19.91<br>19.12 |
| ATOM         | 829        | СВ      | PHE         |            |            |   | 53.974           | 53.876           | 33.723           |      | 16.87          |
| ATOM         | 830        | CG      | PHE         |            |            |   | 53.258           | 52.651           | 34.125           | 1.00 | 16.76          |
| ATOM         | 831        | CD1     | PHE         | Α          | 108        |   | 52.842           | 51.702           | 33.160           |      | 17.17          |
| ATOM         | 832        | CD2     |             |            |            |   | 52.940           | 52.381           | 35.481           | 1.00 | 17.45          |
| ATOM         | 833        | CE1     |             |            |            |   | 52.147           | 50.577           | 33.546           | 1.00 | 19.62          |
| MOTA         | 834        |         | PHE         |            |            |   | 52.242           | 51.243           | 35.867           |      | 20.41          |
| ATOM<br>ATOM | 835        | CZ      | PHE         |            |            |   | 51.838           | 50.301           | 34.901           |      | 19.54          |
| ATOM         | 836<br>837 | N<br>CA | .GLU<br>GLU |            |            |   | 54.193           | 56.830           | 34.342           |      | 17.02          |
| ATOM         | 838        | C       | GLU         |            |            |   | 55.053<br>55.561 | 58.009<br>58.104 | 34.382<br>35.858 |      | 17.21          |
| ATOM         | 839        | ŏ       | GLU         |            |            |   | 55.062           | 57.376           | 36.696           |      | 15.89<br>16.10 |
| ATOM         | 840        | СВ      | GLU         |            |            |   | 54.259           | 59.300           | 34.091           | 1.00 | 18.77          |
| MOTA         | 841        | CG      | GLU         |            |            |   | 53.234           | 59.595           | 35.166           | 1.00 | 19.64          |
| ATOM         | 842        | CD      | GLU         | Α          | 109        |   | 52.394           | 60.875           | 34.948           |      | 21.63          |
| ATOM         | 843        | OE1     | GLU         | Α          | 109        |   | 52.761           | 61.761           | 34.165           | 1.00 | 24.76          |
| ATOM         | 844        | OE2     | GLU         |            |            |   | 51.361           | 60.960           | 35.616           | 1.00 | 28.24          |
| ATOM         | 845        | N       | GLY         |            | 110        |   | 56.507           | 59.001           | 36.063           | 1.00 | 15.85          |
| ATOM         | 846        | CA      | GLY         |            |            |   | 57.054           | 59.240           | 37.466           |      | 17.20          |
| ATOM<br>ATOM | 847        | C       | GLY         |            |            |   | 57.499           | 57.968           | 38.164           |      | 16.93          |
| ATOM         | 848        | 0       | GLY         |            |            |   | 58.272           | 57.157           | 37.598           |      | 16.26          |
| ATOM         | 849<br>850 | N<br>C7 | ASP         |            |            |   | 57.047<br>57.455 | 57.749           | 39.423           |      | 14.38          |
| ATOM         | 851        | CA<br>C | ASP<br>ASP  |            |            |   | 56.588           | 56.568<br>55.369 | 40.177<br>39.865 |      | 14.84          |
| ATOM         | 852        | ō       | ASP         |            |            |   | 55.888           | 54.753           | 40.690           |      | 14.72<br>14.34 |
| ATOM         | 853        | СВ      | ASP         |            |            |   | 57.356           | 56.953           | 41.689           |      | 17.05          |
| ATOM         | 854        | CG      | ASP         |            |            |   | 57.812           | 55.841           | 42.614           |      | 19.59          |
| ATOM         | 855        |         | ASP         | A :        | 111        |   | 58.707           |                  | .42.277          | 1.00 |                |
| ATOM         | 856        |         | ASP .       |            |            |   | 57.219           | 55.731           | 43.714           | 1.00 |                |
| ATOM         | 857        | N       | ASN         |            |            |   | 56.617           | 54.987           |                  | 1.00 | 14.68          |
| ATOM         | 858        | CA      | ASN         |            |            |   | 55.763           | 53.835           | 38.157           | 1.00 |                |
| ATOM         | 859        | С       | ASN .       | <b>A</b> : | 11,2       |   | 54.291           | 54.049           | 38.569           | 1.00 | 13.02          |

ATOM 860 O **ASN A 112** 53.609 53.111 39.049 1.00 14.89 ATOM 861 CB ASN A 112 56.322 52.431 38.503 1.00 16.17 ATOM 862 ASN A 112 57.541 CG 52.089 37.656 1.00 18.78 ATOM 863 OD1 ASN A 112 57.742 52.728 36.605 1.00 17.25 864 ND2 ASN A 112 58.332 51.112 38.079 1.00 15.61 GLU A 113 865 ท ATOM 53.814 55.286 38.317 1.00 14.05 52.440 55.685 ATOM 866 CA GLU A 113 38.605 1.00 15.74 MOTA 867 C GLU A 113 51.602 55.432 37.349 1.00 18.95 GLU A 113 GLU A 113 56.053 MOTA 868 O 51.844 36.325 1.00 19.58 869 CB ATOM 52.402 57.167 38.952 1.00 17.38 ATOM 870 CG GLU A 113 51.034 57.648 39.454 1.00 20.91 871 CD GLU A 113 872 OE1 GLU A 113 57.002 MOTA 50.594 40.802 1.00 24.09 51.358 1.00 30.10 ATOM 56.979 41.779 40.862 ATOM 873 OE2 GLU A 113 49.450 56.530 874 N 875 CA MET A 114 MET A 114 50.624 49.757 ATOM 54.554 37.470 1.00 18.64 ATOM 54.212 36.305 1.00 20.88 876 C 877 O ATOM MET A 114 48.811 55.341 36.028 1.00 27.67 ATOM MET A 114 48.090 55.775 36.930 1.00 27.90 878 CB MET A 114 ATOM 48.991 52.925 1.00 23.89 36.584 ATOM 879 CG MET A 114 48.173 52.424 35.345 1.00 26.69 1.00 29.33 ATOM 880 SD . MET A 114 47.345 50.879 35.650 MET A 114 48.738 ATOM 881 CE 49.883 1.00 23.75 36.101 882 N 883 CA ATOM LYS A 115 48.790 55.846 34.789 1.00 25.26 LYS A 115 1.00 30.27 1.00 36.08 ATOM 47.883 56.943 34.440 46.430 56.485 LYS A 115 ATOM 884 C 34.405 885 O 886 CB ATOM 45.545 57.363 LYS A 115 34.605 1.00 41.29 LYS A 115 1.00 31.52 1.00 29.39 ATOM 48.251 57.602 33.112 887 CG MOTA 32.995 MOTA 888 CD 31.710 1.00 35.11 1.00 39.16 1.00 41.83 ATOM 889 CE 31.351 ATOM 890 NZ 30.288 ATOM 892 ท 11.961 1.00 17.87 1.00 15.77 1.00 18.38 ATOM 893 CA 12.674 ATOM 894 C 12.128 АТОМ 895 O 11.014 1.00 16.03 1.00 18.15 1.00 21.69 ATOM 896 CB 12.960 897 ATOM CG 11.858 MOTA 898 SD 10.552 1.00 24.50 MOTA 899 CE 9.256 1.00 19.90 ATOM 900 N 1.00 13.90 12.874 ATOM 901 CA 12.510 1.00 12.73 902 С **ATOM** 12.069 1.00 15.11 O ILE B
CB ILE B
CG1 ILE B ATOM 903 O 52.322 24.450 12.698 1.00 13.08 ATOM 904 2 49.400 24.499 13.757 1.00 12.91 ATOM 905 2 48.119 23.792 14.267 1.00 14.95 2 49.218 2 46.943 3 51.138 CG2 ILE B ATOM 906 CG2 ILE B 25.945 13.547 1.00 13.31 . ATOM 907 23.904 13.276 1.00 19.87 908 ATOM N 25.131 10.910 1.00 11.64 52.229 ARG B MOTA 909 CA 25.868 10.327 1.00 9.38 ATOM 910 ARG B ARG B 1.00 8.16 1.00 9.82 С 3 52.150 27.383 10.524 ATOM 911 0 3 51.039 27.931 10.673 ATOM CB ARG B . 52.082 912 3 25.697 8.760 1.00 11.91 ATOM CG ARG B 1.00 12.07 913 52.248 24.258 8.287 53.705 ATOM 914 CD ARG B 3 23.876 8.003 1.00 12.41 ARG B ATOM 915 NE 3 53.758 22.596 7.334 1.00 12.53 MOTA 916 CZ ARG B 6.901 1.00 11.34 54.867 21.986 ATOM 917 NH1 ARG B NH1 ARG B 3 NH2 ARG B 3 N THR B 4 CA THR B 4 56.094 7.125 22.483 1.00 11.49 ATOM 918 54.748 20.841 6.167 1.00 11.64 ATOM 919 1.00 11.35 53.317 28.048 10.501 53.417 29.519 10.576 1.00 10.99 ATOM 920

MOTA 921 C THR B 53.769 29.941 9.093 1.00 9.80 THR B 922 O ATOM 54.789 29.551 8.631 1.00 10.46 ATOM 923 CB THR B 54.502 29.963 11.507 1.00 13.30 ATOM 924 OG1 THR B 29.451 54.145 12.826 1.00 12.86 4 925 CG2 THR B ATOM 4 5 . 54.597 31.446 11.593 1.00 11.07 1.00 10.61 1.00 10.17 ATOM 926 N MET B 52.897 30.764 8.525 ATOM 927 CA MET B 5 53.045 31.215 7.092 ATOM 928 C MET B 5 53.023 32.709 6.987 1.00 13.79 929 O ATOM MET B 5 52.333 33.412 7.759 1.00 12.14 930 CB MET B ATOM 5 51.799 30.698 6.391 1.00 10.85 931 CG 932 SD MET B 5 5 MOTA 51.655 29.138 6.389 1.00 13.35 ATOM MET B 52.937 28.173 . 5.793 1.00 12.31 MOTA 933 CE MET B 5 52.760 28.465 3.924 1.00 9.06 934 N LEU B 935 CA LEU B 6 53.705 MOTA 33.229 5.939 1.00 11.48 ATOM 53.676 34.675 5.698 1.00 11.70 936 C MOTA LEU B 6 52.227 35.093 5.344 1.00 15.58 6 MOTA 937 0 LEU B 51.621 4.376 34.549 1.00 12.84 938 CB LEU B ATOM 54.595 34.999 4.516 1.00 11.07 ATOM 939 CG LEU B 54.561 1.00 10.79 6 36.468 4.141 6 6 55.327 MOTA 940 CD1 LEU B 37.415 5.158 1.00 12.32 941 CD2 LEU B ATOM 55.228 36.692 2.748 1.00 12.20 MOTA 942 N GLN B 7 51.608 36.000 6.115 1.00 11.50 1.00 12.08 1.00 13.00 36.439 5.854 MOTA 943 CA GLN B 7 50.275 50.283 ATOM 944 GLN B 7 С 37.543 GLN B 7 49.368 GLN B 7 49.614 4.772 ATOM 945 0 37.573 3.878 1.00 13.76 1.00 13.70 1.00 13.52 ATOM 946 CB GLN B 7.144 37.046 7 ATOM 947 CG GLN B 48.181 37.402 7.017 ATOM CD GLN B 7 948 47.882 38.740 6.256 1.00 15.62 1.00 14.96 1.00 13.51 MOTA 949 OE1 GLN B 38.816 5.553 ATOM 950 NE2 GLN B 39.780 6.431 951 N ATOM 38.442 4.850 1.00 12.82 3.907 1.00 13.57 4.210 1.00 17.33 MOTA 952 CA GLY B 39.567 MOTA 953 C 40.435 MOTA 954 O 40.314 5.278 1.00 16.12 1.00 13.73 1.00 14.09 MOTA 955 N 41.301 3.271 MOTA 956 CA LYS B 42.162 3.517 MOTA 957 С 43.423 2.693 1.00 17.41 MOTA 958 O 43.474 1.636 1.00 16.23 ATOM 959 CB LYS B 41.484 3.338 1.00 17.25 MOTA 960 CG 41.165 1.849 1,00 16.41 ATOM 961 CD 40.757 1.590 1.00 16.11 ATOM 962 CE 40.363 0.083 1.00 20.64 NZ LYS B 9 N LEU B 10 MOTA 963 40.122 -0.219 1.00 24.09 ATOM 964 N 44.438 3.206 1.00 14.37 MOTA 965 CA 45.753 1.00 13.07 2.541 LEU B 10 LEU B 10 ATOM 966 56.264 С 45.671 1.00 17.74 2.117 ATOM 967 Ω 57.211 45.651 2.922 1.00 15.88 ATOM 968 CB LEU B 10 54.531 1.00 12.64 46.942 3,473 CG LEU B 10 CD1 LEU B 10 47.012 4.065 MOTA 969 53.125 1.00 16.69 MOTA 970 52.972 48.183 5.050 1.00 19.95 ATOM 971 CD2 LEU B 10 51.998 47.113 2.952 1.00 18.21 N HIS B 11 CA HIS B 11 0.795 1.00 15.41 ATOM 972 56.532 45.559 57.852 ATOM 973 45.410 0.342 1.00 15.54 ATOM 974 HIS B 11 58.554 1.00 20.36 С 46.680 -0.107 HIS B 11 ATOM 975 0 58.088 -1.109 47.329 1.00 19.27 ATOM 976 CB HIS B 11 57.855 44.396 - - 0.897 1.00 17.02 CG HIS B ATOM 977 11 59.222 43.925 -1.277 1.00 20.52 ATOM 978 59.891 ND1 HIS B 11 42.946 1.00 23.10 -0.575 ATOM 979 CD2 HIS B 11 60.067 44.321 -2.265 1.00 23.01 980 CE1 HIS B 11 61.084 42.750 -1.109 1.00 22.29 ATOM

| ATOM         | 981          | NE2        | HIS        | В | 11       |   | 61.218           | 43.579           | -2.141           | 1.00 | 22.03          |
|--------------|--------------|------------|------------|---|----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 982          | N          | ARG        | В | 12       |   | 59.636           | 47.041           | 0.577            | 1.00 | 17.66          |
| ATOM         | 983          | CA         | ARG        | В | 12       |   | 60.427           | 48.202           | 0.273            | 1.00 | 17.87          |
| MOTA         | 984          | С          | ARG        |   | 12       |   | 59.755           | 49.542           | 0.461            | 1.00 | 21.36          |
| ATOM         | 985          | 0          | ARG        |   | 12       |   | 59.858           | 50.465           | -0.401           |      | 21.72          |
| ATOM         | 986          | CB         | ARG        |   | 12       |   | 61.185           | 48.082           | -1.105           | 1.00 |                |
| MOTA         | 987          | CG         | ARG        |   | 12       |   | 62.150           | 46.920           | -1.155           | 1.00 |                |
| ATOM         | 988          | CD         | AŔG        |   | 12       |   | 62.849           | 46.746           | -2.537           |      | 21.64          |
| ATOM         | 989          | NE         | ARG        |   | 12       |   | 63.541           | 47.993           | -2.907           |      | 26.91          |
| ATOM<br>ATOM | 990<br>991   | CZ<br>NH1  | ARG<br>ARG |   | 12<br>12 |   | 64.818           | 48.252           | -2.642           | 1.00 | 32.28          |
| ATOM         | 992          |            | ARG        |   | 12       |   | 65.345<br>65.573 | 49.421<br>47.367 | -3.011<br>-2.015 | 1.00 | 32.70          |
| ATOM         | 993          | N          | VAL        |   | 13       |   | 59.082           | 49.737           | 1.613            | 1.00 |                |
| ATOM         | 994          | CA         | VAL        |   | 13       |   | 58.476           | 51.010           | 1.919            | 1.00 |                |
| ATOM         | 995          | С          | VAL        |   | 13       |   | 59.568           | 51.825           | 2.625            | 1.00 |                |
| ATOM         | 996          | ō          | VAL        |   | 13       |   | 60.555           | 51.259           | 3.103            | 1.00 |                |
| ATOM         | 997          | СВ         | VAL        |   | 13       |   | 57.262           | 50.903           | 2.868            | 1.00 |                |
| ATOM         | 998          | CG1        | VAL        | В | 13       |   | 56.117           | 50.340           | 2.233            |      | 22.00          |
| ATOM         | 999          | CG2        | VAL        | В | 13       |   | 57.614           | 50.095           | 4.174            | 1.00 |                |
| MOTA         | 1000         | N          | LYS        | В | 14       |   | 59.429           | 53.148           | 2.658            | 1.00 | 17.58          |
| ATOM         | 1001         | CA         | LYS        | В | 14       |   | 60.462           | 53.955           | 3.313            | 1.00 | 18.29          |
| ATOM         | 1002         | С          | LYS        |   | 14       |   | 59.955           | 54.558           | 4.631            | 1.00 | 17.32          |
| ATOM         | 1003         | 0          | LYS        |   | 14       |   | 58.811           | 54.965           | 4.720            | 1.00 | 17.18          |
| ATOM         | 1004         | CB         | LYS        |   | 14       | • | 60.958           | 55.077           | 2.370            |      | 21.96          |
| ATOM         | 1005         | CG         | LYS        |   | 14       |   | 61.928           | 54.568           | 1.327            |      | 29.69          |
| ATOM<br>ATOM | 1006         | CD         | LYS        |   | 14       |   | 62.379           | 55.718           | 0.374            |      | 27.98          |
| ATOM         | 1007<br>1008 | CE<br>NZ   | LYS<br>LYS |   | 14       |   | 63.251           | 55.192           | -0.769           |      | 33.09          |
| MOTA         | 1009         | N          | VAL        |   | 14<br>15 |   | 62.422<br>60.836 | 54.676<br>54.550 | -1.901<br>5.641  |      | 36.70          |
| ATOM         | 1010         | CA         | VAL        |   | 15       |   | 60.462           | 55.122           | 6.942            | 1.00 | 17.61<br>15.98 |
| ATOM         | 1011         | С          | VAL        |   | 15       |   | 60.291           | 56.648           | 6.751            | 1.00 | 18.36          |
| ATOM         | 1012         | 0          | VAL        |   | 15       |   | 61.155           | 57.284           | 6.183            |      | 20.10          |
| ATOM         | 1013         | СВ         | VAL        |   | 15       |   | 61.537           | 54.823           | 7.986            |      | 18.17          |
| ATOM         | 1014         | CG1        | VAL        | В | 15       |   | 61.172           | 55.554           | 9.332            | 1.00 | 19.48          |
| MOTA         | 1015         | CG2        | VAL        | В | 15       |   | 61.579           | 53.284           | 8.219            | 1.00 | 18.97          |
| ATOM         | 1016         | N          | THR        |   | 16       |   | 59.195           | 57.208           | 7.241            | 1.00 | 16.59          |
| MOTA         | 1017         | CA         | THR        |   | 16       |   | 58.949           | 58.657           | 7.071            | 1.00 | 18.46          |
| MOTA         | 1018         | С          | THR        |   | 16       |   | 59.061           | 59.479           | 8.337            | 1.00 |                |
| MOTA         | .1019        | 0          | THR        |   | 16       |   | 59.187           | 60.728           | 8.286            | 1.00 |                |
| ATOM         | 1020         | CB         | THR        |   | 16       |   | 57.537           | 58.906           | 6.438            |      | 20.68          |
| ATOM<br>ATOM | 1021<br>1022 | OG1<br>CG2 | THR<br>THR |   | 16       |   | 56.495           | 58.483           | 7.322            |      | 20.66          |
| ATOM         | 1022         | N N        | HIS        |   | 16<br>17 |   | 57.407<br>59.034 | 58.134<br>58.811 | 5.067            |      | 20.82          |
| ATOM         | 1024         | CA         | HIS        |   | 17       |   | 59.102           | 59.539           | 9.484<br>10.776  |      | 21.79 23.09    |
| ATOM         | 1025         | C          |            | В | 17       |   | 59.580           | 58.582           | 11.852           | 1.00 | 25.64          |
| ATOM         | 1026         | ō          | HIS        |   | 17       | • | 59.398           | 57.358           | 11.739           | 1.00 |                |
| MOTA         | 1027         | СВ         | HIS        |   | 17       |   | 57.630           | 59.960           | 11.101           | 1.00 | 25.73          |
| MOTA         | 1028         | CG         |            | В | 17       |   | 57.436           | 60.783           | 12.353           | 1.00 | 31.57          |
| ATOM         | 1029         | NDI        | HIS        | В | 17       |   | 56.596           | 60.377           | 13.379           | 1.00 | 34.88          |
| ATOM         | 1030         | CD2        | HIS        | В | 17       |   | 57.919           | 62.000           | 12.724           | 1.00 | 34.96          |
| ATOM         | 1031         |            | HIS        |   | 17       |   | 56.589           | 61.293           | 14.335           | 1.00 | 35.01          |
| ATOM         | 1032         |            | HIS        |   | 17       |   | 57.383           | 62.290           | 13.966           |      | 35.08          |
| ATOM         | 1033         | N          | ALA        |   | 18       | • | 60.189           | 59.139           | 12.893           |      | 25.07          |
| ATOM         | 1034         | CA         | ALA        |   | 18       |   | 60.673           | 58.327           | 14.027           |      | 25.93          |
| ATOM         | 1035         | C          | ALA        |   | 18       |   | 60.235           | 59.122           | 15.285           | 1.00 |                |
| ATOM<br>ATOM | 1036<br>1037 | O<br>CB    | ALA<br>ALA |   | 18       |   | 60.376           | 60.360           | 15.314           | 1.00 | 33.50          |
| ATOM         | 1037         | N          | ASP        |   | 18<br>19 |   | 62.157<br>59.643 | 58.146<br>58.456 | 13.972<br>16.281 | 1.00 |                |
| ATOM         | 1030         | CA         | ASP        |   | 19       |   | 59.162           | 59.161           | 17.502           | 1.00 | 24.42<br>24.78 |
| ATOM         | 1040         | C          | ASP        |   | 19       |   | 59.503           | 58.342           | 18.739           | 1.00 |                |
|              |              | -          | <b>-</b>   | _ |          |   | 22.000           | J-, J-, 2        | ,,,              | 2.00 | 27.00          |

| ATOM         | 1041         | 0          | ASE        | В | 19       |   | 58.658           | 57.595           | 19.257           | 1.00 | 24.71          |
|--------------|--------------|------------|------------|---|----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 1042         | СВ         | ASE        |   | 19       |   | 57.647           | 59.409           | 17.384           | 1.00 | 25.96          |
| ATOM         | 1043         | CG         | ASE        |   | 19       |   | 57.052           | 60.183           | 18.572           | 1.00 | 34.10          |
| ATOM         | 1044         |            | ASF        | _ | 19       |   | 57.807           | 60.624           | 19.466           |      | 34.04          |
| ATOM         | 1045         |            | ASP        |   | 19       |   | 55.800           | 60.351           | 18.593           |      | 38.22          |
| MOTA         | 1046         | N          | LEU        |   | 20       |   | 60.742           | 58.494           | 19.199           |      | 25.80          |
| ATOM         | 1047         | CA         | LEU        |   | 20       |   | 61.238           | 57.779           | 20.364           |      | 24.85          |
| ATOM         | 1048         | C          | LEU        |   | 20       |   | 60.390           | 57.962           | 21.616           |      | 27.59          |
| ATOM<br>ATOM | 1049<br>1050 | 0          | LEU        |   | 20       |   | 60.129           | 56.981           | 22.335           |      | 26.06          |
| ATOM         | 1051         | CB<br>CG   | LEU        |   | 20       |   | 62.689           | 58.208           | 20.666           |      | 25.72          |
| ATOM         | 1052         | CD1        | LEU<br>LEU |   | 20<br>20 |   | 63.459<br>63.844 | 57.525<br>56.100 | 21.809           |      | 29.24          |
| ATOM         | 1052         | CD2        |            |   | 20       |   | 64.720           | 58.345           | 21.431           |      | 28.84          |
| ATOM         | 1054         | N          | HIS        |   | 21       |   | 59.981           | 59.207           | 22.159<br>21.878 |      | 29.15<br>28.61 |
| ATOM         | 1055         | CA         | HIS        |   | 21       |   | 59.155           | 59.572           | 23.074           |      | 30.90          |
| ATOM         | 1056         | c          | HIS        |   | 21       |   | 57.680           | 59.351           | 23.007           |      | 36.12          |
| ATOM         | 1057         | ō          | HIS        |   | 21       |   | 56.915           | 59.806           | 23.896           |      | 35.00          |
| ATOM         | 1058         | СВ         | HIS        |   | 21       |   | 59.509           | 60.991           | 23.549           |      | 32.76          |
| ATOM         | 1059         | CG         | HIS        |   | 21       |   | 60.950           | 61.157           | 23.845           |      | 36.81          |
| ATOM         | 1060         | ND1        | HIS        |   | 21       |   | 61.792           | 61.941           | 23.086           |      | 39.48          |
| ATOM         | 1061         | CD2        | HIS        | В | 21       |   | 61.731           | 60.556           | 24.776           |      | 38.76          |
| ATOM         | 1062         | CE1        | HIS        | В | 21       |   | 63.025           | 61:847           | 23.564           |      | 38.26          |
| MOTA         | 1063         | NE2        | HIS        | В | 21       |   | 63.014           | 61.014           | 24.588           |      | 38.36          |
| ATOM         | 1064         | N          | TYR        |   | 22       |   | 57.270           | 58.641           | 21.975           | 1.00 | 33.13          |
| ATOM         | 1065         | CA         | TYR        |   | 22       |   | 55.874           | 58.333           | 21.767           | 1.00 | 33.14          |
| ATOM         | 1066         | С          | TYR        |   | 22       |   | 55.136           | 57.743           | 22.985           | 1.00 | 37.60          |
| ATOM         | 1067         | 0          | TYR        |   | 22       |   | 55.697           | 56.936           | 23.774           | 1.00 | 32.76          |
| MOTA         | 1068         | CB         | TYR        |   | 22       |   | 55.794           | 57.254           | 20.681           |      | 33.35          |
| ATOM         | 1069         | CG         | TYR        |   | 22       |   | 54.410           | 57.005           | 20.169           |      | 35.03          |
| ATOM         | 1070         | CD1        |            |   | 22       |   | 53.728           | 58.003           | 19.481           |      | 36.82          |
| ATOM<br>ATOM | 1071<br>1072 | CD2<br>CE1 |            |   | 22       |   | 53.772           | 55.794           | 20.385           |      | 35.58          |
| ATOM         | 1072         | CE2        |            |   | 22<br>22 |   | 52.442<br>52.491 | 57.795           | 19.013           |      | 37.35          |
| ATOM         | 1074         | CZ         | TYR        |   | 22       |   | 51.834           | 55.577<br>56.569 | 19.914<br>19.229 |      | 36.01          |
| ATOM         | 1075         | ОН         | TYR        |   | 22       |   | 50.542           | 56.288           | 18.772           |      | 42.70<br>46.65 |
| ATOM         | 1076         | N          | GLU        |   | 23       |   | 53.877           | 58.126           | 23.092           |      | 39.24          |
| ATOM         | 1077         | CA         | GLU        |   | 23       |   | 52.991           | 57.636           | 24.122           |      | 42.44          |
| MOTA         | 1078         | С          | GLU        |   | 23       |   | 51.673           | 57.203           | 23.428           |      | 47.01          |
| ATOM         | 1079         | 0          | GLU        | В | 23       |   | 50.884           | 58.032           | 23.017           |      | 48.53          |
| MOTA         | 1080         | СВ         | GLU        | В | 23       |   | 52.723           | 58.677           | 25.211           |      | 44.81          |
| ATOM         | 1081         | CG         | GLU        | В | 23       | • | 51.620           | 58.234           | 26.155           |      | 53.00          |
| ATOM         | 1082         | CD         | GLU        |   | 23       |   | 51.690           | 58.900           | 27.515           | 1.00 | 63.57          |
| MOTA         | 1083         |            | GLU        |   | 23       |   | 52.173           | 60.058           | 27.596           | 1.00 | 70.57          |
| ATOM         | 1084         |            | GLU        |   | 23       |   | 51.237           | 58.268           | 28.501           | 1.00 | 49.95          |
| ATOM         | 1085         | N          | GLY        |   | 24       |   | 51.453           | 55.900           | 23.305           |      | 43.35          |
| MOTA         | 1086         | CA         | GLY        |   | 24       |   | 50.234           | 55.411           | 22.678           |      | 47.63          |
| ATOM<br>ATOM | 1087         | C          | GLY        |   | 24       |   | 50.321           | 53.939           | 22.257           |      | 49.81          |
| ATOM         | 1088<br>1089 | OH<br>O    | GLY        |   | 24<br>24 |   | 50.860           | 53.127           | 23.028           |      | 43.71          |
| ATOM         | 1099         | C          | PVL        |   | 25       |   | 49.852           | 53.595           | 21.143           |      | 78.26          |
| ATOM         | 1091         | 0          | PVL        |   | 25       |   | 55.590<br>56.587 | 51.160<br>51.766 | 16.243           |      | 18.29          |
| ATOM         | 1092         | CA         | PVL        | _ | 25       |   | 55.340           | 50.687           | 16.023           | 1.00 |                |
| ATOM         | 1093         | СВ         | PVL        |   | 25       |   | 54.143           | 49.829           | 17.625<br>17.834 |      | 27.46<br>25.35 |
| ATOM         | 1094         | ON         | PVL        |   | 25       |   | 56.135           | 50.957           | 18.541           |      | 23.35<br>33.71 |
| ATOM         | 1095         | N          | CYS        |   | 26       |   | 54.735           | 50.714           | 15.217           |      | 15.60          |
| ATOM         | 1096         | CA         | CYS        |   | 26       |   | 54.985           | 51.203           | 13.855           | 1.00 |                |
| ATOM         | 1097         | СВ         | CYS        |   | 26       |   | 55.756           | 50.146           | 13.029           | 1.00 |                |
| MOTA         | 1098         | SG         | CYS        |   | 26       |   | 56.010           | 50.798           | 11.325           | 1.00 |                |
| MOTA         | 1099         | С          | CYS        | В | 26       |   | 53.636           | 51.600           | 13.281           |      | 14.55          |
| MOTA         | 1100         | 0          | CYS        | В | 26       |   | 52.716           | 50.778           | 13.121           | 1.00 |                |
|              |              |            |            |   |          |   |                  |                  |                  |      |                |

ATOM 1101 ALA B 27 53.472 52.925 13.012 1.00 15.46 ATOM 1102 ALA B 52.197 CA 27 53.479 12.457 1.00 15.63 ATOM 1103 ALA B 27 С 52.328 53.470 10.917 1.00 15.10 ATOM 1104 0 ALA B 27 53.303 53.924 10.380 1.00 15.77 ATOM 1105 CB ALA B 27 51.919 54.908 12.948 1.00 16.71 1106 АТОМ ILE B 28 N 51.301 52.924 10.300 1.00 14.23 MOTA 1107 CA ILE B 28 51.286 1.00 14.71 52.712 8.846 MOTA 1108 С ILE B 28 49.989 53.151 8.224 1.00 17.41 ATOM Ο. ILE B 28 1109 48.913 52.880 8.714 1.00 16.90 ATOM 1110 CB ILE B 28 51.404 51.141 8.665 1.00 16.58 ATOM 1111 CG1 ILE B 28 52.699 50.640 9.314 1.00 16.36 ATOM 1112 CG2 ILE B 28 51.329 50.765 7.154 1.00 15.52 ATOM 1113 CDI ILE B 28 52.708 49.114 9.667 1.00 18.68 ATOM 1114 N ASP B 50.128 1.00 16.97 29 53.872 7.090 ATOM 1115 CA ASP B 48.943 29 54.364 6.337 1.00 18.01 ATOM 1116 C ASP B 29 47.927 53.186 6.186 1.00 17.51 ATOM 1117 0 ASP B 29 48.339 52.095 5.725 1.00 15.93 ATOM 1118 CB ASP B 29 49.481 54.766 4.949 1.00 18.64 ATOM 1119 ASP B CG 29 48.383 55.304 3.960 1.00 21.55 MOTA 1120 OD1 ASP B 29 47.171 55.003 4.082 1.00 21.30 ATOM 56.051 1121 OD2 ASP B 29 48.831 3.034 1.00 22.85 ATOM 1122 GLN B N 30 46.665 53.404 6.579 1.00 17.64 ATOM 1123 CA GLN B 30 45.593 52.389 6.498 1.00 16.64 MOTA 1124 С GLN B 30 51.773 45.497 5.101 1.00 20.42 MOTA 1125 0 GLN B 45.212 30 50.578 4.991 1.00 19.64 ATOM 1126 CB GLN B 30 44.231 52.918 6.947 1.00 19.10 MOTA 1127 CG GLN B 6.990 30 43.138 51.881 1..00 20.18 ATOM 1128 CD GLN B 30 43.422 50.807 8.020 1.00 24.27 ATOM 1129 OE1 GLN B 30 43.624 51.129 9.221 1.00 20.83 ATOM 1130 NE2 GLN B 30 43.418 49.525 1.00 20.72 7.584 45.765 ATOM 1131 N ASP B 31 52.541 4.034 1.00 19.98 ATOM 1132 CA ASP B 31 45.692 51.922 2.700 1.00 20.52 ATOM 1133 С ASP B 31 46.711 50.794 2.519 1.00 19.87 MOTA 1134 0 ASP B 31 46.458 49.781 1.783 1.00 20.49 ATOM 1135 СВ ASP B 31 45.971 52.970 1.621 1.00 20.56 ATOM 1136 CG ASP B 44.751 1.00 27.59 31 53.787 1.281 43.596 ATOM 1137 OD1 ASP B 31 53.382 1.538 1.00 27.63 MOTA 1138 OD2 ASP B 44.990 31 54.926 0.798 1.00 25.47 ATOM 1139 N PHE B 32 47.886 50.935 3.170 1.00 17.26 ATOM 1140 49.962 CA PHE B 32 48.951 3.088 1.00 16.13 MOTA PHE B 1141 С 48.525 32 48.723 3.890 1.00 15.84 ATOM 1142 0 PHE B 32 48.690 47.554 3.430 1.00 15.43 СВ MOTA 1143 PHE B 32 50.278 50.479 3,670 1.00 17.62 ATOM 1144 CG PHE B 50.847 51.723 32 2.976 1.00 18.64 ATOM 1145 CD1 PHE B 32 50.236 52.299 1.842 1.00 20.38 CD2 PHE B ATOM 1146 32 52.019 52,292 3,473 1.00 21.28 MOTA 1147 CE1 PHE B 50.828 32 53.473 1.249 1.00 21.62 ATOM 1148 CE2 PHE B 32 52.587 53.413 2.908 1.00 24.06 ATOM 1149 CZ PHE B 32 51.988 54.006 1.779 1.00 22.14 MOTA 48.981 1150 N LEU B 33 . 47.989 5.086 1.00 15.62 MOTA 1151 47.526 47.856 CA LEU B 33 5.919 1.00 15.62 ATOM 1152 С LEU B 33 46.481 47.031 5.124 1.00 14.56 ATOM 1153 0 LEU B . 33 46.534 45.810 5.106 1.00 15.50 ATOM 1154 CB 48.361 LEU B 46.899 33 7.221 1.00 15.46 ATOM 1155 CG LEU B 33 47.899 49.072 8.189 1.00 17.68 ATOM 1156 CD1 LEU B 33 47.114 49.554 9.450 1.00 18.11 MOTA 1157 48.993 48.086 CD2 LEU B 33 8.627 1.00 17.59 ATOM 1158 ASP B 45.530 47.724 N 34 4.466 1.00 .15.47 MOTA 1159 CA ASP B 34 44.461 47.090 3.695 1.00 15.42 MOTA 45.018 46.177 1160 C ASP B 34 2.609 1.00 15.50

ATOM 1161 0 ASP B 34 44.542 45.082 2.444 1.00 16.94 ATOM 1162 CB ASP B 43.604 48.177 3.031 34 1.00 16.78 3.990 MOTA 1163 CG ASP B 34 42.649 48.846 1.00 21.53 42.574 ATOM 1164. OD1 ASP B 34 48.461 5.192 . 1.00 22.41 ATOM 1165 OD2 ASP B 34 41.944 49.809 3.549 1.00 24.39 46.013 46.623 ATOM 1166 N ALA B 35 46.650 1.875 1.00 15.30 ATOM 1167 CA ALA B 35 45.864 0.804 1.00 16.57 ATOM 1168 С ALA B 35 47.378 44.636 1.289 1.00 18.73 ALA B 35 ALA B 35 MOTA 1169 43.587 1.00 19.02 0 47.387 0.644 1170 ATOM 47.576 CB 46.726 -0.042 1.00 18.18 MOTA ALA B 36 ALA B 36 ALA B 36 1171 N 48.063 44.784 2.448 1.00 15.77 MOTA 1172 48.818 1.00 14.01 CA 43.688 2.949 MOTA 1173 С 48.015 42.756 3.920 1.00 12.66 ALA B 36 ALA B 36 GLY B 37 MOTA 41.710 1174 0 48.612 4.327 1.00 15.97 ATOM 1175 СВ 50.083 44.221 3.681 1.00 15.98 ATOM 1176 46.798 43.130 4.266 N 1.00 12.31 GLY B 37 GLY B 37 1177 ATOM CA 45.973 42.352 5.150 1.00 12.99 ATOM 1178 С 46.496 42.432 6.606 1.00 13.99 1.00 13.49 GLY B 46.069 ATOM 1179 0 37 41.557 7.415 N ' 1180 ILE B 38 ILE B 38 6.904 ATOM 38 47.307 43.444 1.00 13.30 ATOM 1181 CA 47.864 43.618 8.310 1.00 11.90 ATOM 1182 ILE B 38 С 46.839 44.382 1.00 13.73 9.121 ILE B 38 ILE B 38 45.399 ATOM 1183 0 46.308 8.700 1.00 13.87 ATOM 1184 CB 49.184 44.279 8.258 1.00 12.06 ATOM 1185 CG1 ILE B 38 50.228 43.360 7.542 1.00 13.02 CG2 ILE B 38 CD1 ILE B 38 ATOM 1186 49.697 44.582 9.755 1.00 11.46 ATOM 1187 51.570 43.996 7.284 1.00 14.92 ATOM 1188 LEU B 39 46.564 43.916 10.371 N 1.00 11.75 LEU B 39 LEU B 39 ATOM 1189 CA 45.578 44.546 1.00 11.57 11.229 ATOM 1190 С 46.194 45.436 12.297 1.00 13.60 ATOM 1191 LEU B 39 47.314 1.00 12.83 0 45.212 12.681 ATOM 1192 СВ LEU B 39 44.793 11.979 43.478 1.00 11.62 LEU B ATOM 1193 11.176 CG 39 44.184 42.300 1.00 13.66 MOTA 1194 CD1 LEU B 39 43.446 41.373 12.104 1.00 15.79 MOTA 1195 CD2 LEU B 39 43.241 42.956 10.120 1.00 15.29 MOTA 1196 GLU B N 40 45.452 46.455 12.667 1.00 14.52 ATOM 1197 CA GLU B 40 45.908 47.316 13.786 1.00 14.56 ATOM 1198 С GLU B 40 46.034 46.318 14.996 1.00 14.90 ATOM 1199 GLU B ,40 0 45.194 15.204 1.00 13.14 45.428 ATOM 1200 СВ GLU B 40 44.819 48.341 14.096 1.00 17.43 1.00 36.71 1.00 43.99 ATOM 1201 CG GLU B 40. 45.175 49.769 13.693 ATOM 1202 GLU B 40 44.728 50.776 CD 14.770 ATOM OE1 GLU B 40 1203 43.514 50.732 15.112 1.00 33.64 MOTA 1204 OE2 GLU B 40 45.573 51.603 15.285 1.00 23.74 15.758 ATOM 1205 ASN B 1.00 12.38 N 41 47.136 46.514 ATOM 1206 ASN B CA 41 47.457 45.691 16.951 1.00 12.93 1.00 15.81 1.00 13.21 MOTA 1207 С ASN B 41 48.019 44.334 16.656 ATOM 1208 ASN B 48.283 41 43.527 17.534 0 MOTA СВ 1209 ASN B 41 46.298 45.648 17.922 1.00 14.28 ATOM 1210 CG ASN B 41 45.966 47.041 18.493 1.00 12.10 MOTA OD1 ASN B 1211 41 46.860 47.804 18.856 1.00 16.64 44.680 ATOM ND2 ASN B 41 1212 18.491 47.382 1.00 15.27 ATOM 1213 N GLU B 42 48.244 44.017 15.384 1.00 10.98 ATOM 1214 CA GLU B 42 48.831 42.744 15.033 1.00 9.74 GLU B ATOM 1215 42 50.356 С 42.767 15.148 1.00 9.74 MOTA 1216 O GLU B 42 51.026 43.784 14.869 1.00 10.17 GLU B ATOM 1217 СВ 42 48.499 42.388 13.482 1.00 10.40 MOTA GLU B 48.990 13.056 42 40.990 1.00 10.03 1218 CG MOTA 1219 CD GLU B 42 48.652 40.661 11.573 1.00 13.25 MOTA OE1 GLU B 1220 42 48.260 41.628 10.893 1.00 15.16

ATOM 1221 OE2 GLU B 42 48.788 39.493 11.198 1.00 12.03 MOTA 1222 N ALA B 43 50.947 41.634 15.574 1.00 9.51 ATOM 1223 52.384 41.493 CA ALA B 43 15.647 1.00 10.88 ATOM 1224 С ALA B 43 52.996 41.666 14.214 1.00 10.85 ATOM 1225 0 ALA B 43 52.435 41.054 13.263 1.00 11.54 ATOM 1226 CB ALA B 43 52.772 40.069 16.175 1.00 12.49 ATOM 1227 N ILE B 44 54.041 42.408 14.075 1.00 11.86 ATOM 1228 CA 54.719 1.00 11.02 ILE B 44 42.557 12.737 ATOM 1229 С ILE B 44 56.251 42.437 12.901 1.00 13.51 ATOM 1230 O ILE B 44 56.824 42.780 13.996 1.00 13.63 MOTA 1231 CB ILE B 44 54.386 43.905 12.029 1.00 12.21 MOTA 1232 54.727 CG1 ILE B 44 45.106 12.987 1.00 12.04 ATOM 1233 CG2 ILE B 44 52.925 43.894 11.585 1.00 14.58 ATOM 1234 CD1 ILE B 44 54.477 1.00 12.27 46.487 12.346 MOTA 1235 ASP B N 45 56.970 41.986 11.865 1.00 10.42 41.882 ATOM 1236 ASP B CA 45 58.401 11.844 1.00 10.06 ATOM 1237 С ASP B 45 58.826 42.973 1.00 14.23 10.843 ATOM 1238 0 ASP B 45 58.174 9.772 43.130 1.00 14.99 ATOM 1239 CB ASP B 45 58.893 40.494 11.379 1.00 12.39 ATOM 1240 CG ASP B 45 58.410 39.394 12.277 1.00 15.51 ATOM 1241 OD1 ASP B 39.655 45 58.325 13.536 1.00 15.80 ATOM 1242 OD2 ASP B 45 58.044 38.297 11.812 1.00 15.67 ATOM 1243 N ILE B 46 59.874 43.711 1.00 10.63 11.152 ATOM 1244 CA ILE B 46 60.402 44.798 1.00 10.58 10.315 ATOM 1245 С ILE B 46 61.845 44.462 10.039 1.00 14.80 ATOM 1246 0 ILE B 46 62.670 44.242 10.926 1.00 13.14 ATOM 1247 CB ILE B 46.173 10.981 46 60.237 1.00 12.68 ATOM 1248 CG1 ILE B 46 58.759 11.267 46.398 1.00 11.97 ATOM 1249 CG2 ILE B 46 60.843 47.266 10.035 1.00 14.01 ATOM 1250 CD1 ILE B 46 58.431 47.842 11.715 1.00 17.51 1251 ATOM N TRP B 47 62,185 44.361 8.719 1.00 11.09 MOTA 1252 CA TRP B 47 63.488 43.982 8.256 1.00 12.91 64.025 45.208 1.00 18.14 ATOM 1253 С TRP B 47 7.488 MOTA 1254 0 TRP B 47 63.436 45.628 6.467 1.00 16.83 ATOM 1255 CВ TRP B 47 63.352 42.731 7.340 1.00 12.75 ATOM 1256 CG TRP B 47 62.711 8.024 1.00 12.68 41.546 ATOM 1257 CD1 TRP B 47 62.891 41.157 9.370 1.00 13.80 ATOM 1258 CD2 TRP B 47 61.810 40.606 7.470 1.00 12.97 ATOM 1259 NE1 TRP B 47 62.133 40.068 9.635 1.00 12.97 MOTA 1260 CE2 TRP B 47 61.449 39.686 8.500 1.00 14.42 ATOM 1261 CE3 TRP B 47 61.195 40.476 6.207 1.00 14.96 ATOM 1262 CZ2 TRP B 47 60.573 38.635 1.00 14.53 8.298 ATOM 1263 CZ3 TRP B 47 60.351 39.440 5.994 1.00 16.02 ATOM 1264 CH2 TRP B 47 60.033 38.509 1.00 16.49 7.012 ATOM 1265 65.081 N ASN B 48 45.816 8.024 1.00 15.37 MOTA 1266 CA ASN B 48 65.648 47.056 7.466 1.00 15.56 ATOM 1267 С ASN B 66.662 48 46.765 6.393 1.00 16.84 ATOM 1268 67.746 0 ASN B 48 46.284 6.662 1.00 15.08 MOTA 1269 CB ASN B 48 66.293 47.841 8.654 1.00 14.22 MOTA 1270 CG ASN B 48 66.594 49.267 8.309 1.00 19.83 ATOM OD1 ASN B 1271 67.100 48 49.532 7.211 1.00 17.68 ATOM 1272 ND2 ASN B 48 66.291 50.207 9.205 1.00 18.60 MOTA 1273 N VAL B 49 66.292 47.051 5.125 1.00 16.35 MOTA 1274 67.188 CA VAL B 49 46.806 4.002 1.00 16.91 MOTA 1275 C VAL B 49 68.418 47.753 4.002 1.00 18.54 MOTA 1276 0 VAL B 49 69.539 47.390 3.566 1.00 19.45 ATOM 1277 CB VAL B 66.442 49 47.003 2.694 1.00 20.06 ATOM 1278 CG1 VAL B 49 67.380 46.691 1.524 1.00 21.67 ATOM · 1279 CG2 VAL B 49 65.196 46.106 2.650 1.00 18.68 MOTA 1280 68.196 N THR B 50 48.964 4.504 1.00 17.72

| ATOM         | 1281         | CA      | THR        | В | 50         |   | 69.290           | 49.926           | 4.552            | 1.00  | 18.92          |
|--------------|--------------|---------|------------|---|------------|---|------------------|------------------|------------------|-------|----------------|
| ATOM         | 1282         | С       | THR        | В | 50         |   | 70.403           | 49.565           | 5.528            |       | 20.97          |
| ATOM         | 1283         | 0       | THR        | В | 50         |   | 71.593           | 49.537           | 5.172            | 1.00  | 20,06          |
| ATOM         | 1284         | СВ      | THR        |   | 50         |   | 68.764           | 51.325           | 4.851            |       | 19.40          |
| ATOM         | 1285         | OG1     |            |   | 50         |   | 67.798           | 51.708           | 3.856            |       | 19.82          |
| ATOM         | 1286         | CG2     |            |   | 50         |   | 69.931           | 52.390           | 4.950            |       | 21.30          |
| MOTA         | 1287         | N       | ASN        |   | 51         |   | 70.022           | 49.279           | 6.788            |       | 17.46          |
| ATOM         | 1288<br>1289 | CA<br>C | ASN<br>ASN |   | 51         |   | 71.032           | 48.962           | 7.814            |       | 18.39          |
| ATOM<br>ATOM | 1290         | o       | ASN        |   | 51<br>51   |   | 71.132<br>71.970 | 47.525<br>47.226 | 8.327            |       | 19.48<br>19.00 |
| ATOM         | 1291         | СВ      | ASN        |   | 51         |   | 70.913           | 49.949           | 9.183<br>8.998   |       | 18.51          |
| ATOM         | 1292         | CG      | ASN        |   | 51         |   | 69.679           | 49.690           | 9.874            |       | 22.35          |
| ATOM         | 1293         | OD1     |            |   | 51         |   | 69.028           | 48.659           | .9.772           |       | 17.21          |
| ATOM         | 1294         |         | ASN        |   | 51         |   | 69.349           | 50.649           | 10.715           |       | 21.24          |
| ATOM         | 1295         | N       | GLY        |   | 52         |   | 70.282           | 46.636           | 7.807            |       | 15.50          |
| ATOM         | 1296         | CA      | GLY        | В | 52         |   | 70.231           | 45.232           | 8.164            | 1.00  |                |
| MOTA         | 1297         | С       | GLY        | В | 52         |   | 69.601           | 44.846           | 9.523            | 1.00  | 14.04          |
| ATOM         | 1298         | 0       | GLY        | В | 52         |   | 69.541           | 43.629           | 9.815            | .1.00 | 16.62          |
| MOTA         | 1299         | N       | LYS        |   | 53         |   | 69.153           | 45.837           | 10.279           | 1.00  | 14.08          |
| MOTA         | 1300         | CA      | LYS        |   | 53         |   | 68.540           | 45.457           | 11.593           | 1.00  |                |
| ATOM         | 1301         | С       | LYS        |   | 53         |   | 67.239           | 44.729           | 11.349           | 1.00  |                |
| ATOM         | 1302         | 0       | LYS        |   | 53         |   | 66.565           | 44.973           | 10.344           | 1.00  |                |
| ATOM         | 1303         | CB      | LYS        |   | 53         |   | 68.311           | 46.698           | 12.463           | 1.00  |                |
| ATOM         | 1304<br>1305 | CG      | LYS        |   | 53         |   | 69.654           | 47.303           | 12.877           | 1.00  |                |
| ATOM<br>ATOM | 1305         | CD      | LYS<br>LYS |   | 53<br>53   |   | 69.457           | 48.540           | 13.748           | 1.00  | 19.28          |
| ATOM         | 1307         | NZ      | LYS        |   | 53         |   | 70.801<br>70.585 | 49.177<br>50.475 | 14.108<br>14.799 |       | 26.70<br>29.14 |
| ATOM         | 1308         | N       | ARG        |   | 54         |   | 66.839           | 43.849           | 12.303           |       | 12.88          |
| ATOM         | 1309         | CA      | ARG        |   | 54         |   | 65.612           | 43.091           | 12.229           |       | 11.93          |
| ATOM         | 1310         | C       | ARG        |   | 54         |   | 64.954           | 43.162           | 13.592           |       | 14.91          |
| MOTA         | 1311         | 0       | ARG        |   | 54         |   | 65.646           | 42.907           | 14.590           |       | 15.98          |
| ATOM         | 1312         | СВ      | ARG        |   | 54         |   | 65.862           | 41.628           | 11.855           |       | 13.59          |
| MOTA         | 1313         | CG      | ARG        | В | 54         | • | 66.751           | 41.516           | 10.564           |       | 14.24          |
| MOTA         | 1314         | CD      | ARG        | В | 54         |   | 67.058           | 40.054           | 10.159           | 1.00  | 13.75          |
| ATOM         | 1315         | NE      | ARG        |   | 54         |   | 65.931           | 39.313           | 9.621            |       | 13.94          |
| ATOM         | 1316         | CZ      | ARG        |   | 54         |   | 65.562           | 39.372           | 8.330            |       | 16.69          |
| ATOM         | 1317         |         | ARG        |   | 54         |   | 66.281           | 40.180           | 7.510            |       | 13.80          |
| ATOM         | 1318         |         | ARG        |   | 54         |   | 64.520           | 38.644           | 7.857            |       | 13.52          |
| ATOM         | 1319         | N       | PHE        |   | 55         |   | 63.707           | 43.548           | 13.634           |       | 12.40          |
| ATOM<br>ATOM | 1320<br>1321 | CA<br>C | PHE        |   | 55<br>55   |   | 63.013           | 43.648           | 14.924           |       | 13.30          |
| ATOM         | 1322         | Ö       | PHE        | В | 55         |   | 61.564<br>61.017 | 43.314<br>43.231 | 14.815<br>13.703 | 1.00  | 18.51<br>16.08 |
| ATOM         | 1323         | СВ      | PHE        |   | 55         | • | 63.302           | 44.986           | 15.586           |       | 13.02          |
| ATOM         | 1324         | CG      | PHE        | В | 55         |   | 62.735           | 46.165           | 14.864           |       | 14.95          |
| ATOM         | 1325         |         | PHE        | В | 55         |   | 63.436           | 46.742           | 13.782           |       | 15.75          |
| ATOM         | 1326         | CD2     | PHE        | В | 55         |   | 61.514           | 46.740           | 15.273           |       | 15.13          |
| ATOM         | 1327         | CEl     | PHE        | В | 55         |   | 62.892           | 47.912           | 13.106           |       | 17.56          |
| ATOM         | 1328         | CE2     | PHE        | В | 55         |   | 60.996           | 47.844           | 14.615           | 1.00  | 17.23          |
| ATOM         | 1329         | CZ      | PHE        | В | 55         |   | 61.713           | 48.427           | 13.528           | 1.00  | 16.09          |
| MOTA         | 1330         | N       | SER        |   | 56         |   | 60.880           | 43.095           | 15.940           | 1.00  | 12.78          |
| ATOM         | 1331         | CA      | SER        |   | 56         |   | 59.482           | 42.752           | 15.962           |       | 12.18          |
| MOTA         | 1332         | С       | SER        |   | 56         |   | 58.741           | 43.706           | 16.846           |       | 15.48          |
| MOTA         | 1333         | 0       | SER        |   | 56         |   | 59.258           | 44.045           | 17.916           |       | 14.26          |
| MOTA         | 1334         | CB      | SER        |   | 56         |   | 59.222           | 41.336           | 16.394           |       | 13.68          |
| ATOM<br>ATOM | 1335         | OG<br>N | SER        |   | 56<br>57   |   | 59.880           | 40.377           | 15.532           |       | 18.10          |
| ATOM         | 1336<br>1337 | N<br>CA | THR        |   | 57<br>57   |   | 57.570           | 44.140<br>45.129 | 16.428<br>17.169 |       | 11.29          |
| ATOM         | 1338         | C       | THR        |   | 57         |   | 56.749<br>55.256 | 44.860           | 16.831           |       | 11.02          |
| ATOM         | 1339         | Ö       | THR        |   | 57         |   | 54.854           | 43.697           | 16.649           |       | 10.41          |
| ATOM         | 1340         | СВ      | THR        |   | 57         |   | 57.270           | 46.560           | 16.849           |       | 13.63          |
|              |              |         |            | _ | <b>-</b> ' |   |                  |                  |                  |       |                |

| MOTA         | 1341         | OG1        | THR        | В | 57       |   | 56.492           | 47.529           | 17.575           | 1.00 | 16.82       |
|--------------|--------------|------------|------------|---|----------|---|------------------|------------------|------------------|------|-------------|
| MOTA         | 1342         | CG2        |            |   | 57       |   | 57.073           | 46.896           | 15.328           | 1.00 | 16.40       |
| ATOM         | 1343         | N          | TYR        |   | 58       |   | 54.424           | 45.890           | 16.747           | 1.00 | 11.85       |
| ATOM .       | 1344         | CA         | TYR        |   | 58       |   | 52.995           | 45.709           | 16.405           | 1.00 | 11.66       |
| ATOM         | 1345         | С          | TYR        |   | 58       |   | 52.572           | 46.896           | 15.567           | 1.00 | 14.10       |
| ATOM         | 1346         | 0          | TYR        |   | 58       | • | 53.194           | 47.962           | 15.639           | 1.00 |             |
| ATOM         | 1347         | CB         | TYR        |   | 58       |   | 52.072           | 45.475           | 17.632           | 1.00 |             |
| ATOM         | 1348         | CG         | TYR        |   | 58       |   | 51.879           | 46.659           | 18.537           | 1.00 |             |
| ATOM         | 1349         | CD1        |            |   | 58       |   | 52.768           | 46.908           | 19.611           | 1.00 |             |
| ATOM         | 1350         | CD2        |            |   | 58       |   | 50.836           | 47.529           | 18.362           | 1.00 |             |
| ATOM         | 1351         | CE1        |            |   | 58       |   | 52.596           | 48.015           | 20.420           | 1.00 |             |
| ATOM         | 1352         | CE2        |            |   | 58       |   | 50.645           | 48.649           | 19.199           | 1.00 |             |
| ATOM         | 1353         | CZ         | TYR        |   | 58       |   | 51.546           | 48.875           | 20.222           | 1.00 |             |
| ATOM         | 1354         | OH         | TYR        |   | 58       |   | 51.493           | 49.934           | 21.108           | 1.00 |             |
| ATOM         | 1355         | N          | ALA        |   | 59       |   | 51.536           | 46.705           | 14.748           | 1.00 |             |
| ATOM         | 1356         | CA         | ALA        |   | 59       |   | 51.078           | 47.769           | 13.891           | 1.00 |             |
| ATOM         | 1357         | C          | ALA        |   | 59       |   | 50.067           | 48.702           | 14.494           | 1.00 |             |
| ATOM         | 1358         | 0          | ALA        |   | 59       |   | 49.190           | 48.297           | 15.241           |      | 13.85       |
| ATOM         | 1359         | CB         | ALA        |   | 59       |   | 50.435           | 47.110           | 12.626           | 1.00 |             |
| ATOM         | 1360         | N          | ILE        |   | 60       |   | 50.148           | 49.990           | 14.096           | 1.00 |             |
| ATOM         | 1361         | CA         | ILE        |   | 60       |   | 49.231           | 51.025           | 14.514           | 1.00 |             |
| ATOM<br>ATOM | 1362<br>1363 | C          | ILE        |   | 60       |   | 48.729           | 51.687           | 13.195           | 1.00 |             |
| ATOM         | 1364         | O          | ILE        |   | 60       |   | 49.522           | 51.850           | 12.286           | 1.00 |             |
| ATOM         | 1365         | CB         | ILE        |   | 60       |   | 50.004           | 52.105           | 15.349           | 1.00 |             |
| ATOM         | 1366         | CG1        |            |   | 60       |   | 50.363           | 51.533           | 16.724           | 1.00 |             |
| ATOM         | 1367         | CG2<br>CD1 |            | - | 60       |   | 49.155           | 53.362           | 15.569           | 1.00 |             |
| ATOM         | 1368         |            | ILE<br>ALA |   | 60       |   | 51.454           | 52.337           | 17.451           | 1.00 |             |
| ATOM         | 1369         | N<br>CA    | ALA        |   | 61       |   | 47.449           | 52.016           | 13.107           | 1.00 |             |
| ATOM         | 1370         | CA         | ALA        |   | 61<br>61 |   | 46.948           | 52.655           | 11.878           | 1.00 | 17.99       |
| ATOM         | 1371         | o          | ALA        |   | 61       |   | 47.328           | 54.129           | 11.847           | 1.00 |             |
| ATOM         | 1372         | СВ         | ALA        |   | 61       |   | 47.221           | 54.819           | 12.875           | 1.00 |             |
| ATOM         | 1373         | N          | ALA        |   | 62       |   | 45.481<br>47.721 | 52.541<br>54.613 | 11.804           | 1.00 | 19.35       |
|              | . 1374       | CA         | ALA        |   | 62       |   | 48.040           | 56.043           | 10.665<br>10.407 | 1.00 | 17.91       |
| ATOM         | 1375         | C          | ALA        |   | 62       |   | 46.962           | 56.453           | 9.380            | 1.00 | 17.67       |
| ATOM         | 1376         | ŏ          | ALA        |   | 62       |   | 46.335           | 55.614           | 8.745            | 1.00 | 23.91 22.36 |
| ATOM         | 1377         | СВ         | ALA        |   | 62       |   | 49.400           | 56.238           | 9.833            |      | 18.45       |
| ATOM         | 1378         | N          | GLU        |   | 63       |   | 46.756           | 57.756           | 9.246            | 1.00 | 22.90       |
| ATOM         | 1379         |            | GLU        |   | 63       |   | 45.759           | 58.312           | 8.358            | 1.00 | 23.71       |
| ATOM         | 1380         | C          | GLU        |   | 63       |   | 45.824           | 57.781           | 6.943            |      | 23.19       |
| ATOM         | 1381         | ō          |            | В | 63       |   | 46.894           | 57,737           | 6.345            |      | 22.01       |
| ATOM         | 1382         | CB         | GLU        |   | 63       |   | 45.919           | 59.835           | 8.343            |      | 25.20       |
| ATOM         | 1383         | CG         | GLU        |   | 63       |   | 44.902           | 60.517           | 7.444            | 1.00 | 31.69       |
| ATOM         | 1384         | CD         | GLU        |   | 63       |   | 44.852           | 61.991           | 7.708            |      | 54.65       |
| ATOM         | 1385         | OE1        | GLU        |   | 63       |   | 44.033           | 62.414           | 8.559            | 1.00 | 50.68       |
| MOTA         | 1386         | OE2        | GLU        |   | 63       |   | 45.642           | 62.719           | 7.072            |      | 49.85       |
| MOTA         | 1387         | N          | ARG        | В | 64       |   | 44.657           | 57.412           | 6.411            |      | 23.54       |
| MOTA         | 1388         | CA         | ARG        | В | 64       |   | 44.564           | 56.896           | 5.065            | 1.00 | 24.49       |
| ATOM         | 1389         | С          | ARG        | В | 64       |   | 45.068           | 57.940           | 4.059            | 1.00 | 29.91       |
| MOTA         | 1390         | 0          | ARG        | В | 64       |   | 44.635           | 59.103           | 4.101            | 1.00 | 30.10       |
| ATOM         | 1391         | CB         | ARG        | В | 64       |   | 43.116           |                  | 4.739            |      |             |
| MOTA         | 1392         | CG         | ARG        | В | 64       |   | 42.977           | 55.708           | 3,502            |      | 33.44       |
| MOTA         | 1393         | CD         | ARG        |   | 64       |   | 41.521           | 55.461           | 3.169            |      | 30.76       |
| MOTA         | 1394         | NE         | ARG        |   | 64       |   | 40.824           | 54.612           | 4.127            |      | 27.92       |
| MOTA         | 1395         | CZ         | ARG        |   | 64       |   | 41.003           | 53.288           | 4.241            |      | 30.52       |
| MOTA         | 1396         | NH1        |            |   | 64       |   | 41.878           | 52.653           | 3.470            | 1.00 |             |
| MOTA         | 1397         | NH2        | ARG        | В | 64       |   | 40.302           | 52.609           | 5.131            | 1.00 |             |
| ATOM         | 1398         | N          | GLY        | В | 65       |   | 45.967           | 57.544           | 3.177            |      | 27.07       |
| MOTA         | 1399         | CA         | GLY        | В | 65       |   | 46.485           | 58.475           | 2.170            | 1.00 | 26.85       |
| MOTA         | 1400         | С          | GLY        | В | 65       |   | 47.687           | 59.292           | 2.603            | 1.00 |             |
|              |              |            |            |   |          |   |                  |                  |                  |      |             |

| ATOM         | 1401         | 0       | GLY        | В | 65       |   | 48.287           | 59.983           | 1.789            | 1.00 | 31.19 |
|--------------|--------------|---------|------------|---|----------|---|------------------|------------------|------------------|------|-------|
| ATOM         | 1402         | N       | SER        | В | 66       |   | 48.069           | 59.183           | 3.874            | 1.00 | 25.88 |
| MOTA         | 1403         | CA      | SER        | В | 66       |   | 49.215           | 59.916           | 4.387            | 1.00 |       |
| MOTA         | 1404         | С       | SER        | В | 66       |   | 50.565           | 59.353           | 3.903            | 1.00 |       |
| MOTA         | 1405         | 0       | SER        | В | 66       |   | 51.589           | 60.044           | 3.898            | 1.00 | 29.06 |
| ATOM         | 1406         | CB      | SER        | В | 66       |   | 49.182           | 59.888           | 5.929            | 1.00 |       |
| MOTA         | 1407         | OG      | SER        | В | 66       |   | 49.450           | 58.548           | 6.422            | 1.00 |       |
| ATOM         | 1408         | N       | ARG        | ₿ | 67       |   | 50.576           | 58.055           | 3.539            | 1.00 |       |
| ATOM         | 1409         | CA      | ARG        | В | 67       |   | 51.780           | 57.368           | 3.106            | 1.00 |       |
| MOTA         | 1410         | С       | ARG        | В | .67      |   | 52.867           | 57.306           | 4.205            | 1.00 |       |
| ATOM         | 1411         | 0       | ARG        | В | 67       |   | 54.033           | 57.113           | 3.932            | 1.00 |       |
| ATOM         | 1412         | СВ      | ARG        | В | 67       |   | 52.272           | 57.896           | -1.753           | 1.00 |       |
| MOTA         | 1413         | CG      | ARG        | В | 67       |   | 51.094           | 57.832           | 0.749            | 1.00 |       |
| MOTA         | 1414         | CD      | ARG        | В | 67       |   | 51.498           | 57.942           | -0.692           | 1.00 |       |
| ATOM         | 1415         | NE      | ARG        | В | 67       |   | 51.642           | 59.344           | -1.083           |      | 42.73 |
| ATOM         | 1416         | CZ      | ARG        | В | 67       |   | 50.665           | 60.252           | -1.300           |      | 50.11 |
| ATOM         | 1417         | NH1     | ARG        | В | 67       |   | 49.347           | 60.005           | -1.191           | 1.00 | 32.87 |
| MOTA         | 1418         | NH2     | ARG        | В | 67       |   | 51.053           | 61.472           | -1.652           | 1.00 |       |
| MOTA         | 1419         | N       | ILE        | В | 68       |   | 52.404           | 57.413           | 5.449            | 1.00 |       |
| MOTA         | 1420         | CA      | ILE        | В | 68       |   | 53.313           | 57.374           | 6.590            | 1.00 |       |
| MOTA         | 1421         | С       | ILE        | В | 68       |   | 53.722           | 55.943           | 7.025            | 1.00 |       |
| MOTA         | 1422         | 0       | ILE        |   | 68       |   | 52.928           | 54.964           | 6.944            |      | 18.59 |
| MOTA         | 1423         | CB      | ILE        | В | 68       |   | 52.613           | 58.021           |                  |      | 22.72 |
| ATOM         | 1424         | CG1     | ILE        | В | 68       |   | 52.569           | 59.567           | 7.775            |      | 22.79 |
| ATOM         | 1425         | CG2     | ILE        | В | 68       |   | 53.272           | 57.570           | 9.182            |      | 23.66 |
| ATOM         | 1426         | CD1     | ILE        | В | 68       |   | 51.511           | 60.133           | 8.696            | 1.00 |       |
| MOTA         | 1427         | . N     | ILE        | В | 69       |   | 54.953           | 55.877           | 7.455            | 1.00 |       |
| MOTA         | 1428         | CA      | ILE        | В | 69       |   | 55.592           | 54.662           | . 8.057          | 1.00 | 16.07 |
| MOTA         | 1429         | С       | ILE        | B | 69       |   | 56.398           | 55.328           | 9.218            |      | 18.47 |
| MOTA         | 1430         | 0       | ILE        | В | 69       |   | 57.495           | 55.875           | 9.001            | 1.00 | 19.41 |
| ATOM         | 1431         | CB      | ILE        | В | 69       |   | 56.579           | 53.927           | 7.167            | 1.00 | 17.97 |
| ATOM         | 1432         | CG1     |            |   | 69       |   | 55.861           | 53.307           | 5.925            | 1.00 | 17.84 |
| ATOM         | 1433         | CG2     |            |   | 69       |   | 57.274           | 52.750           | 7.990            | 1.00 | 14.87 |
| MOTA         | 1434         | CD1     | ILE        |   | 69       |   | 54.757           | 52.283           | 6.267            | 1.00 | 16.76 |
| MOTA         | 1435         | N       | SER        |   | 70       |   | 55.833           | 55.293           | 10.427           | 1.00 | 16.82 |
| ATOM         | 1436         | CA      | SER        |   | 70       |   | 56.501           | 55.939           | 11.600           | 1.00 | 16.67 |
| ATOM         | 1437         | C       | SER        |   | 70       |   | 56.965           | 54.905           | 12.627           | 1.00 | 16.91 |
| ATOM         | 1438         | 0       | SER        |   | 70       |   | 56.147           | 54.102           | 13.128           | 1.00 | 17.58 |
| MOTA         | 1439         | CB      | SER        |   | 70       |   | 55.507           | 56.879           | 12.249           | 1.00 | 19.85 |
| ATOM         | 1440         | OG      | SER        |   | 70       |   | 56.106           | 57.626           | 13.304           |      | 22.39 |
| ATOM<br>ATOM | 1441<br>1442 | N       | VAL        |   | 71       |   | 58.251           | 54.930           | 12.921           | 1.00 |       |
| ATOM         | 1443         | CA<br>C | VAL<br>VAL |   | 71<br>71 |   | 58.827           | 53.962           | 13.933           | 1.00 | 17.80 |
| ATOM         | 1444         | o       | VAL        |   | 71       |   | 58.832           | 54.719           | 15.270           |      | 22.32 |
| ATOM         | 1445         | СВ      | VAL        |   | 71       |   | 59.512<br>60.163 | 55.723<br>53.404 | 15.417           | 1.00 |       |
| ATOM         | 1446         | CG1     | VAL        |   | 71       | • | 59.967           |                  | 13.523           | 1.00 | 22.83 |
| ATOM         | 1447         | CG2     | VAL        |   | 71       |   | 61.222           | 52.567<br>54.501 | 12.214           |      | 21.98 |
| ATOM         | 1448         | N       | ASN        |   | 72       |   | 58.010           | 54.232           | 13.387           |      | 24.06 |
| ATOM         | 1449         | CA      | ASN        |   | 72       |   | 57.806           | 54.878           | 16.202<br>17.519 | 1.00 | 20.48 |
| ATOM         | 1450         | C       | ASN        |   | 72       |   | 58.320           | 54.086           | 18.687           |      | 20.13 |
| ATOM         | 1451         | ō       | ASN        |   | 72       |   | 58.488           | 52.863           | 18.621           |      |       |
| MOTA         | 1452         |         | ASN        |   | 72       |   | 56.296           | 55.038           | 17.753           |      | 21.77 |
| MOTA         | 1453         | CG      | ASN        |   | 72       |   | 55.591           | 55.775           | 16.621           |      | 30.59 |
| MOTA         | 1454         |         | ASN        |   | 72       |   | 56.228           | 56.530           | 15.869           |      | 25.69 |
| MOTA         | 1455         |         | ASN        |   | 72       |   | 54.279           | 55.529           | 16.469           |      | 26.90 |
| MOTA         | 1456         | N       | GLY        |   | 73       |   | 58.520           | 54.790           | 19.792           |      | 20.53 |
| ATOM         | 1457         | CA      | GLY        |   | 73       |   | 58.998           | 54.092           | 20.992           |      | 19.66 |
| MOTA         | 1458         | C       | GLY        |   | 73       |   | 60.428           | 53.605           | 20.792           |      | 20.18 |
| MOTA         | 1459         | 0       | GLY        |   | 73       |   | 61.239           | 54.232           | 20.080           |      | 19.03 |
| MOTA         | 1460         | N       | ALA        |   | 74       |   | 60.758           | 52.473           | 21.443           | 1.00 | 16.73 |
|              |              |         |            |   |          |   |                  |                  |                  |      | -     |

ATOM 1461 CA ALA B 74 62.107 51.908 21.352 1.00 16.27 ATOM 1462 С ALA B 74 62.580 51.614 19.912 1.00 17.37 63.776 ATOM 1463 0 ALA B 74 51.649 19.637 1.00 18.06 ALA B MOTA 1464 СВ 74 62.278 50.633 22.256 1.00 17.59 ATOM 1465 ALA B 61.592 51.305 N 75 19.057 1.00 17.95 ATOM 1466 CA ALA B 75 61.873 50.961 17.639 1.00 17.42 62.567 1.00 19.91 ATOM 1467 С ALA B 75 52.115 16.916 1468 MOTA ALA B 63.215 51.889 0 75 15.889 1.00 19.81 ATOM 1469 CB ALA B 75 60.630 50.577 16.959 1.00 18.30 ATOM 1470 ALA B 76 62.467 53.348 17.441 1.00 16.78 N 63.152 ATOM 1471 ALA B CA 76 54.470 16.804 1.00 18.31 ATOM 1472 64.688 C ALA B 76 54.276 16.795 1.00 18.92 ATOM 1473 ALA B 76 65.409 54.921 16.046 1.00 19.50 0 1474 MOTA CB. ALA B 76 62.747 55.786 1.00 19.95 17.477 ATOM 1475 HIS B 77 65.225 17.637 N 53.369 1.00 16.41 MOTA 1476 CA HIS B 77 66.629 53.103 17.671 1.00 17.43 ATOM 1477 67.082 1.00 18.10 С HIS B 77 52.158 16.543 ATOM 1478 HIS B 77 68.280 0 51.967 1.00 20.06 16.351 66.975 ATOM 1479 СВ HIS B 77 52.307 18.995 1.00 19.37 67.026 68.174 20.241 1.00 22.65 MOTA 1480 77 53.149 CG HIS B ATOM 1481 ND1 HIS B 77 53.787 20.649 1.00 25.27 ATOM 1482 CD2 HIS B 77 66.090 53.421 21.181 1.00 22.98 1483 1.00 24.52 MOTA CE1 HIS B 77 67.944 54.431 21.784 66.688 ATOM 1484 NE2 HIS B 77 1.00 23.17 54.230 22.129 MOTA 1485 N CYS B 78 66.107 51.548 15.846 1.00 17.70 66.400 1.00 18.05 1.00 21.51 MOTA 1486 CYS B 78 CA 50.536 14.812 ATOM 1487 C CYS B 78 66.195 50.986 13.386 ATOM 1488 0 CYS B 78 66.497 50.233 12.465 1.00 21.14 ATOM 1489 СВ CYS B 65.489 78 49.332 15.033 1.00 19.61 MOTA 1490 CYS B 65.663 SG 78 48.553 16.688 1.00 25.07 MOTA 1491 65.673 N ALA B 79 52.190 13.200 1.00 20.09 ATOM 1492 CA ALA B 79. 65.471 52.690 11.843 1.00 19.73 ATOM 1493 ALA B 79 65.477 1.00 25.47 С 54.201 11.864 ATOM ALA B 79 ALA B 79 1494 65.094 0 54.811 12.852 1.00 23.97 ATOM 1495 CB 64.173 52.190 11.274 1.00 20.06 ATOM 1496 N SER B 80 65.895 54.802 1.00 21.56 10.750 1497 CA ATOM 10.595 1.00 22.17 9.407 1.00 23.37 SER B 80 65.935 56.270 ATOM 1498 С SER B 80 65.082 56.677 ATOM 1499 0 SER B 80 64.831 55.862 8.511 1.00 21.62 СВ SER B ATOM 1500 80 67.335 56.763 10.301 1.00 25.03 ATOM 1501 OG SER B 80 68.302 56.327 11.243 1.00 28.26 ATOM 1502 N VAL B 81 64.652 57.936 9.398 1.00 18.88 1503 CA ATOM VAL B 81 63.839 8.295 58.463 1.00 19.13 ATOM 1504 С VAL B 81 64.647 58.216 7.017 1.00 21.75 ATOM 1505 VAL B 81 1.00 20.90 0 65.878 58.452 6.967 ATOM 1506 СВ VAL B 81 63.576 59.970 1.00 21.73 8.514 ATOM 1507 CG1 VAL B 81 63.015 60.599 7.224 1.00 22.57 ATOM 1508 VAL B 9.631 1.00 21.80 CG2 81 62.555 60.148 MOTA 1509 GLY B 82 63.961 N 1.00 18.71 57.728 5.988 GLY B ATOM 1510 CA 82 64.654 .57.428 4.731 1.00 18.70 MOTA 1511 С GLY B 82 65.071 55.972 4.552 1.00 22.87 . 3.448 1.00 22.78 ATOM 65.361 55.545 1512 0 GLY B 82 MOTA 1513 ASP B N 83 65.157 55.182 5.641 1.00 16.66 MOTA 1514 CA ASP B 83 65.546 53.791 5.481 1.00 16.76 1.00 16.77 ATOM ASP B 83 4.716 1515 С 64.461 53.003 MOTA 1516 ASP B 0 83 63.257 53.256 4.890 1.00 17.18 ATOM 1.00 18.79 1517 CB ASP B 83 65.668 53.149 6.878 MOTA 83 7.622 1.00 22.59 1518 CG ASP B 66.945 53.556 MOTA OD1 ASP B 83 1519 67.788 54.320 7.106 1.00 20.93 MOTA 1520 OD2 ASP B 83 67.141 53.058 8.771 1.00 21.88

| MOTA         | 1521           | N       | ILE        |   | 84              | 64.912           | 52.031           | 3.926          | 1.00 | 17.58          |
|--------------|----------------|---------|------------|---|-----------------|------------------|------------------|----------------|------|----------------|
| ATOM         | 1522           | CA      | ILE        |   | 84              | 63.979           | 51.167           | 3.183          |      | 17.77          |
| ATOM         | 1523           | C       | ILE        |   | 84              | 63.804           | 49.904           | 4.035          |      | 17.52          |
| ATOM         | 1524           | 0       | ILE        | _ | 84              | 64.819           | 49.318           | 4.435          |      | 16.51          |
| ATOM         | 1525           | CB      | ILE        |   | 84              | 64.627           | 50.788           | 1.851          |      | 21.87          |
| ATOM         | 1526           | CG1     | ILE        |   | 84              | 64.840           |                  | 1.020          |      | 22.20          |
| ATOM         | 1527           | CG2     | ILE        |   | 84              | 63.771           | 49.760           | 1.060          |      | 22.70          |
| ATOM         | 1528           | CD1     | ILE        |   | 84              | 65.694           | 51.766           | -0.225         |      | 27.68          |
| ATOM         | 1529<br>1530   | N       | VAL        |   | 85              | 62.549           | 49.558           | 4.289          | 1.00 |                |
| ATOM<br>ATOM | 1531           | CA<br>C | VAL<br>VAL |   | 85<br>85        | 62.253<br>61.196 | 48.361           | 5.100          | 1.00 | 14.93          |
| ATOM         | 1532           | Ö       | VAL        |   | 85              | 60.487           | 47.462<br>47.874 | 4.460<br>3.522 |      | 18.77<br>18.51 |
| ATOM         | 1533           | СВ      | VAL        |   | 85              | 61.774           | 48.796           | 6.520          |      | 15.49          |
| ATOM         | 1534           |         | VAL        |   | 85              | 62.754           | 49.740           | 7.159          |      | 16.44          |
| ATOM         | 1535           |         | VAL        |   | 85              | 60.456           | 49.420           | 6.480          |      | 14.40          |
| ATOM         | 1536           | N       | ILE        |   | 86              | 61.088           | 46.220           | 4.979          |      | 14.77          |
| ATOM         | 1537           | CA      | ILE        |   | 86              | 60.101           | 45.258           | 4.557          |      | 15.52          |
| ATOM         | 1538           | C       |            | В | 86              | 59.318           | 44.987           | 5.853          |      | 15.28          |
| ATOM         | 1539           | ō       | ILE        |   | 86              | 59.977           | 44.736           | 6.887          |      | 15.56          |
| ATOM         | 1540           | СВ      |            | В | 86              | 60.708           | 43.982           | 4.000          |      | 18.22          |
| MOTA         | 1541           | CG1     |            | В | 86              | 61.392           | 44.270           | 2.628          |      | 19.52          |
| ATOM         | 1542           | CG2     | ILE        | В | 86              | 59.635           | 42.934           | 3.810          |      | 18.36          |
| MOTA         | 1543           | CD1     | ILE        | В | 86              | 62.446           | 43.260           | 2.291          |      | 25.25          |
| MOTA         | 1544           | N       | ILE        | В | 87              | 58.027           | 45.119           | 5.832          | 1.00 | 11.80          |
| MOTA         | 1545           | CA      | ILE        | В | 87              | 57.150           | 44.909           | 7.039          | 1.00 | 11.37          |
| ATOM         | 1546           | С       | ILE        | В | 87              | 56.294           | 43.697           | 6.765          | 1.00 | 16.80          |
| ATOM         | 1547           | 0       | ILE        |   | 87              | 55.535           | 43.669           | 5.743          | 1.00 | 15.75          |
| ATOM         | 1548           | CB      | ILE        |   | 87              | 56.290           | 46.133           | 7.310          | 1.00 | 14.04          |
| ATOM         | 1549           | CG1     |            |   | 87              | 57.201           | 47.385           | 7.461          |      | 14.68          |
| ATOM         | 1550           | CG2     | ILE        |   | 87              | 55.352           | 45.915           | 8.585          |      | 16.46          |
| MOTA         | 1551           | CD1     |            |   | 87              | 56.479           | 48.706           | 7.825          |      | 16.93          |
| ATOM         | 1552           | N       | ALA        | • | 88              | 56.344           | 42.673           | 7.625          |      | 13.54          |
| ATOM         | 1553           | CA      | ALA        |   | 88              | 55.573           | 41.433           | 7.389          |      | 12.01          |
| ATOM         | 1554           | C       | ALA        |   | 88              | 54.747           | 40.989           | 8.570          |      | 15.27          |
| ATOM         | 1555           | 0       | ALA        |   | 88              | 55.124           | 41.315           | 9.709.         |      | 14.13          |
| ATOM         | 1556           | CB      | ALA        |   | 88              | 56.578           | 40.310           | 7.103          |      | 12.68          |
| ATOM<br>ATOM | 1557<br>1558 - | N<br>CA | SER        |   | 89<br>89        | 53.681<br>52.915 | 40.257           | 8.354          |      | 11.75          |
| ATOM         | 1559           | C       | SER        |   | 89              | 52.832           | 39.648<br>38.161 | 9.450<br>9.095 | 1.00 | 9.22<br>13.85  |
| ATOM         | 1560           | ō       | SER        |   | 89              | 52.842           | 37.761           | 7.892          |      | 12.02          |
| ATOM         | 1561           | СВ      | SER        |   | 89              | 51.576           | 40.264           | 9.748          |      | 13.00          |
| ATOM         | 1562           | OG      | SER        |   | 89              | 50.496           | 39.710           | 8.999          |      | 13.68          |
| ATOM         | 1563           | N.      | PHE        |   | 90              | 52.719           | 37.289           | 10.096         | 1.00 | 9.51           |
| ATOM         | 1564           | CA      | PHE        |   | 90              | 52.623           | 35.844           | 9.949          |      | 10.69          |
| ATOM         | 1565           | Ċ       | PHE        |   | 90              | 51.374           | 35.318           | 10.617         |      | 14.12          |
| ATOM         | 1566           | 0       | PHE        | В | 90              | 50.966           | 35.838           | 11.662         |      | 13.43          |
| ATOM         | 1567           | СВ      | PHE        | В | 90              | 53.867           | 35.159           | 10.575         | 100  | 9.99           |
| MOTA         | 1568           | CG      | PHE        | В | 90              | 55.113           | 35.353           | 9.734          | 1.00 | 8.63           |
| ATOM         | 1569           | CD1     | PHE        | В | 90              | 55.859           | 36.535           | 9.814          | 1.00 | 12.75          |
| ATOM         | 1570           | CD2     | PHE        | В | 90              | 55.522           | 34.331           | 8.843          | 1.00 | 9.84           |
| MOTA         | 1571           | CE1     | PHE        | В | 90              | 57.025           | 36.701           |                |      | 12.66          |
| MOTA         | 1572           |         | PHE        |   | 90              | 56.641           | 34.530           | 8.034          |      | 11.34          |
| ATOM         | 1573           | CZ      | PHE        |   | 90              | 57.402           | 35.653           | 8.117          |      | 11.79          |
| ATOM         | 1574           | N       | VAL        |   | 91              | 50.758           | 34.290           | 10.053         |      | 11.04          |
| ATOM         | 1575           | CA      | VAL        |   | 91              | 49.550           | 33.671           | 10.631         | 1.00 | 8.97           |
| MOTA         | 1576           | C       | VAL        |   | 91              | 49.759           | 32.182           | 10.733         |      | 12.88          |
| ATOM         |                | .0      | VAL        |   | 91 <sup>-</sup> | 50.664           | 31.609           | 10.051         |      | 13.37          |
| ATOM         | 1578           | CB      | VAL        |   | 91              | 48.248           | 33.943           | 9.847          |      | 11.62          |
| ATOM         | 1579           |         | VAL        |   | 91              | 47.808           | 35.362           | 9.981          |      | 11.91          |
| MOTA         | 1580           | ÇG2     | VAL        | B | 91              | 48.467           | 33.557           | 8.297          | 1.00 | 13.43          |

| ATOM         | 1581         | N   | THR        | В      | 92       | 4   | 8.95           | 31.   | 506        | 11.57          | 1.00   | 11.67          |
|--------------|--------------|-----|------------|--------|----------|-----|----------------|-------|------------|----------------|--------|----------------|
| ATOM         | 1582         | CA  | THR        |        | 92       |     | 9.05           |       | 076        | 11.700         |        |                |
| MOTA         | 1583         | С   | THR        |        | 92       |     | 7.76           |       | . 379      | 11.153         |        | 8.31           |
| MOTA         | 1584         | 0   | THR        | В      | 92       | 4   | 6.69           | 5 29. | 929        | 11.140         | 1.00   | 11.35          |
| ATOM         | 1585         | CB  | THR        |        | 92       | . 4 | 9.410          | 29.   | 637        | 13.15          | 1.00   | 12.02          |
| ATOM.        | 1586         | OG1 | THR        |        | 92       | 4   | 8.375          | 30.   | 148        | 14.048         | 3 1.00 | -              |
| MOTA         | 1587         | CG2 |            |        | 92       |     | 0.76           |       | 137        | 13.517         |        |                |
| MOTA         | 1588         | N   | MET        | В      | 93       |     | 7.93           |       | 135        | 10.727         | 1.00   | 10.31          |
| MOTA         | 1589         | CA  | MET        | В      | 93       |     | 6.813          |       | 363        | 10.119         |        |                |
| ATOM         | 1590         | С   | MET        | В      | 93       |     | 7.283          |       | 922        | 9.940          |        |                |
| MOTA         | 1591         | 0   | MET        | В      | 93       |     | 8.489          |       | 635        | 9.886          |        |                |
| ATOM         | 1592         | CB  |            | В      | 93       |     | 6.433          |       | 950        | 8.677          |        |                |
| ATOM         | 1593         | CG  | MET        | В      | 93       |     | 7.606          |       | 775        | 7.732          |        |                |
| MOTA         | 1594         | SD  |            | В      | 93       |     | 7.367          |       | 740        | 6.145          |        |                |
| ATOM         | 1595         | CE  |            | В      | 93       |     | 7.673          |       | 365        | 6.821          |        |                |
| ATOM         | 1596         | N   | PRO        |        | 94       |     | 6.310          |       | 017        | 9.819          |        |                |
| MOTA         | 1597         | CA  | PRO        |        | 94       |     | 6.643          |       | 597        | 9.614          |        |                |
| ATOM         | 1598         | C   | PRO        |        | 94       |     | 7.476          |       | 350        | 8.341          |        |                |
| ATOM         | 1599         | 0   | PRO        |        | 94       |     | 7.320          |       | 098        | 7.342          |        |                |
| ATOM         | 1600         | CB  | PRO        |        | 94       |     | 5.279          |       | 924        | 9.495          |        |                |
| ATOM         | 1601         | CG  | PRO        |        | 94       |     | 4.323          |       | 877        | 10.157         |        |                |
| ATOM         | 1602         | CD  | PRO        |        | 94       |     | 4.883          |       | 258        | 9.963          |        | 13.59          |
| ATOM         | 1603         | N   | ASP        |        | 95       |     | 8.342          |       | 360        | 8.373          |        |                |
| MOTA         | 1604         | CA  | ASP        | В      | 95       |     | 9.212          |       | 008        | 7.262          |        |                |
| ATOM         | 1605         | C   | ASP        |        | 95       |     | 8.393          |       | 914        | 5.939          |        | 12.73          |
| ATOM         | 1606<br>1607 | 0   | ASP        | В      | 95       |     | 8.870          |       | 437        | 4.868          |        | 14.23          |
| MOTA         |              | CB  | ASP        | В      | 95       |     | 9.866          |       | 644        | 7.529          |        | 13.88          |
| ATOM<br>ATOM | 1608         | CG  | ASP        | В      | 95       |     | 0.845          |       | 258        | 6.464          |        |                |
| ATOM         | 1609<br>1610 | OD1 | ASP<br>ASP | B<br>B | 95       |     | 1.845          |       | 951        | 6.229          |        |                |
| ATOM         | 1611         | N   | GLU        |        | 95<br>96 |     | 0.556          |       | 245        | 5.782          |        | 25.27          |
| ATOM         | 1612         | CA  | GLU        |        | 96       |     | 7.243<br>6.390 |       | 265<br>080 | 6.009<br>4.780 |        | 11.92          |
| ATOM         | 1613         | C   | GLU        |        | 96       |     | 6.038          |       | 401        | 4.116          |        | 13.09<br>17.50 |
| ATOM         | 1614         | Ö   | GLU        |        | 96       |     | 6.007          |       | 470        | 2.870          |        | 17.59          |
| ATOM         | 1615         | СВ  | GLU        |        | 96       |     | 5.127          |       | 359        | 5.163          |        | 15.73          |
| ATOM         | 1616         | CG  | GLU        |        | 96       |     | 4.284          |       | 936        | 3.967          |        | 27.44          |
| ATOM         | 1617         | CD  | GLU        |        | 96       |     | 3.202          |       | 920        | 3.636          |        | 46.48          |
| ATOM         | 1618         | OE1 | GLU        |        | 96       |     | 2.841          |       | 740        | 4.488          |        | 32.53          |
| ATOM         | 1619         | OE2 | GLU        |        | 96       |     | 2.694          |       | 865        | 2.486          |        | 50.29          |
| ATOM         | 1620         | N   | GLU        |        | 97       |     | 5.759          |       | 446        | 4.888          |        | 13.12          |
| ATOM         | 1621         | CA  | GLU        |        | 97       |     | 5.427          |       | 755        | 4.311          |        | 11.58          |
| ATOM         | 1622         | C   | GLU        |        | 97       |     | 6.740          |       | 459        | 3.880          |        | 14.13          |
| ATOM         | 1623         | ō   | GLU        |        | 97       |     | 6.819          |       | 229        | 2.912          |        | 14.05          |
| ATOM         | 1624         | СВ  | GLU        |        | 97       |     | 4.687          |       | 646        | 5.357          |        | 10.79          |
| ATOM         | 1625         | CG  | GLU        |        | 97       |     | 3.358          |       |            | 5.736          |        | 12.84          |
| ATOM         | 1626         | CD  | GLU        |        | 97       |     | 2.625          |       |            | 6.749          |        | 16.10          |
| ATOM         | 1627         | OE1 | GLU        |        | 97       |     | 3.205          |       |            | 7.351          |        | 17.56          |
| MOTA         | 1628         | OE2 | GLU        |        | 97       |     | 1.424          |       |            | 6.889          |        | 19.58          |
| ATOM         | 1629         | N   | ALA        |        | 98       |     | 7.825          |       |            | 4.639          |        | 11.26          |
| MOTA         | 1630         | CA  | ALA        |        | 98       |     | 9.073          |       |            | 4.345          |        | 12.13          |
| ATOM         | 1631         | С   | ALA        | В      | 98       |     | 9.676          |       |            | 2.956          |        | 12.78          |
| ATOM         | 1632         | ο.  | ALA        |        | 98       |     | 0.385          |       |            | 2.363          |        | 12.87          |
| ATOM         | 1633         | CB  | ALA        |        | 98       |     | 0.090          |       |            | 5.483          | 1.00   |                |
| ATOM         | 1634         | N   | ARG        |        | 99       |     | 9.379          |       |            | 2.518          | 1.00   |                |
| ATOM ·       | 1635         | CA  | ARG        |        | 99       |     | 9.910          |       |            | 1.252          | 1.00   | 13.91          |
| ATOM         | 1636         | С   | ARG        | В      | 99       |     | 9.405          |       |            | 0.094          |        | 15.52          |
| ATOM         | 1637         | Ю.  | ARG        |        | 99       |     | 0.124          |       |            | -0.929         |        | 16.74          |
| ATOM         | 1638         | СВ  | ARG        | В      | 99       |     | 9.565          |       |            | 1.069          |        | 13.81          |
| ATOM         | 1639         | CG  | ARG        |        | 99       | 5   | 0.400          | 21.   | 628        | 2.049          |        | 21.54          |
| ATOM         | 1640         | CD  | ARG        | В      | 99       | 50  | 0.114          | 20.   | 193        | 2.018          |        | 31.31          |

| ATOM         | 1641         | NE       | ARG        |   |            | 50.922           | 19.539           | 3.049            | 1.00   | 34.14          |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|--------|----------------|
| ATOM         | 1642         | CZ       | ARG        | В | 99         | 52.233           | 19.293           | 2.966            | 1.00   | 39.78          |
| ATOM         | 1643         | NH1      |            |   |            | 52.927           | 19.613           | 1.874            | 1.00   | 39.29          |
| MOTA         | 1644         | NH2      |            |   |            | 52.860           | 18.698           | 3.965            | 1.00   |                |
| ATOM         | 1645         | N        |            |   | 100        | 48.273           | 25.465           | 0.233            | 1.00   |                |
| ATOM         | 1646         | CA       | THR        |   |            | 47.765           | 26.311           | -0.888           | 1.00   |                |
| ATOM         | 1647         | C        | THR        |   |            | 47.681           | 27.801           | -0.521           | 1.00   |                |
| ATOM         | 1648         | 0        | THR        |   |            | 47.191           | 28.652           | -1.282           | 1.00   |                |
| ATOM         | 1649         | CB       |            |   | 100        | 46.391           | 25.798           | -1.313           | 1.00   |                |
| ATOM         | 1650         | 0G1      |            |   | 100        | 45.503           | 25.711           | -0.202           | 1.00   |                |
| ATOM<br>ATOM | 1651<br>1652 | CG2      |            |   | 100        | 46.501           | 24.357           | -1.922           | 1.00   |                |
| ATOM         | 1653         | N<br>CA  |            |   | 101<br>101 | 48.179<br>48.083 | 28.176<br>29.565 | 0.681<br>1.087   | 1.00   | 14.25<br>13.12 |
| ATOM         | 1654         | C        |            |   | 101        | 48.843           | 30.513           | 0.232            |        | 15.12          |
| ATOM         | 1655         | ō        |            |   | 101        | 49.947           | 30.182           | -0.256           | 1.00   |                |
| ATOM         | 1656         | СВ       |            |   | 101        | 48.617           | 29.632           | 2.595            | 1.00   |                |
| ATOM         | 1657         | CG       |            |   | 101        | 48.657           | 31.026           | 3.110            | 1.00   | 10.50          |
| ATOM         | 1658         | CD1      |            |   | 101        | 49.734           | 31.812           | 3.259            |        | 12.40          |
| MOTA         | 1659         | CD2      |            |   | 101        | 47.519           | 31.822           | 3.403            | 1.00   | 12.89          |
| ATOM         | 1660         | NE1      |            |   | 101        | 49.344           | 33.048           | 3.665            |        | 12.65          |
| ATOM         | 1661         | CE2      | TRP        | В | 101        | 47.998           | 33.095           | 3.786            |        | 13.88          |
| ATOM         | 1662         | CE3      | TRP        | В | 101        | 46.141           | 31.580           | 3.424            |        | 15.74          |
| ATOM         | 1663         | CZ2      | TRP        | В | 101        | 47.158           | 34.140           | 4.162            |        | 16.20          |
| ATOM         | 1664         | CZ3      | TRP        | В | 101        | 45.272           | 32.635           | 3.777            | 1.00   | 19.25          |
| ATOM         | 1665         | CH2      | TRP        | В | 101        | 45.792           | 33.914           | 4.137            | 1.00   | 19.62          |
| MOTA         | 1666         | N        |            |   | 102        | 48.283           | 31.722           | 0.072            | 1.00   | 15.08          |
| ATOM         | 1667         | CA       | ARG        |   |            | 48.934           | 32.768           | -0.695           |        | 15.90          |
| ATOM         | 1668         | С        | ARG        |   |            | 48.968           | 34.063           | 0.149            |        | 11.33          |
| ATOM         | 1669         | 0        | ARG        |   | 102        | 47.928           | 34.506           | 0.584            |        | 14.41          |
| ATOM         | 1670         | CB       | ARG        |   | 102        | 48.114           | 33.078           | -1.993           |        | 18.89          |
| ATOM         | 1671         | CG       | ARG        |   | 102        | 48.011           | 31.878           | -2.994           |        | 24.40          |
| ATOM         | 1672         | CD       | ARG        |   | 102        | 47.276           | 32.241           | -4.310           |        | 22.77          |
| ATOM<br>ATOM | 1673<br>1674 | NE<br>CZ | ARG<br>ARG |   | 102<br>102 | 47.968           | 33.268           | -5.060           |        | 27.18          |
| ATOM         | 1675         |          | ARG        |   |            | 48.980<br>49.464 | 33.060<br>31.849 | -5.903<br>-6.107 | 1.00   |                |
| ATOM         | 1676         |          | ARG        |   |            | 49.523           | 34.086           | -6.107<br>-6.528 | 1.00   | 23.60 31.92    |
| ATOM         | 1677         | N        |            |   | 103        | 50.154           | 34.655           | 0.289            | 1.00   |                |
| ATOM         | 1678         | CA       |            |   | 103        | 50.259           | 35.917           | 1.065            | 1.00   |                |
| ATOM         | 1679         | С        |            |   | 103        | 49.796           | 37.123           | 0.286            | 1.00   |                |
| MOTA         | 1680         | ō        |            |   | 103        | 49.731           | 37.056           | -1.006           | 1.00   | 16.83          |
| MOTA         | 1681         | CB       | PRO        |   |            | 51.763           | 36.065           | 1.280            | 1.00   |                |
| MOTA         | 1682         | CG       | PRO        | В | 103        | 52.386           | 35.452           | 0.019            |        | 22.25          |
| ATOM         | 1683         | CD       | PRO        | В | 103        | 51.461           | 34.218           | -0.225           | 1.00   | 16.38          |
| MOTA         | 1684         | Ŋ        | ASN        | В | 104        | 49.507           | 38.228           | 1.005            | 1.00   | 13.82          |
| atom         | 1685         | CA       | ASN        | В | 104        | 49.083           | 39.495           | 0.409            | 1.00   | 12.48          |
| MOTA         | 1686         | С        | ASN        | В | 104        | 50.317           | 40.372           | 0.282            | 1.00   | 19.52          |
| ATOM         | 1687         | 0        | ASN        | В | 104        | 50.868           | 40.809           | 1.326            | , 1.00 | 16.91          |
| ATOM         | 1688         | СВ       | ASN        |   |            | 48.000           | 40.183           | 1.247            | 1.00   | 13.72          |
| ATOM         | 1689         | CG       | ASN        |   |            | 46.823           | 39.329           | 1.441            | 1.00   |                |
| ATOM         | 1690         |          | ASN        |   |            | 46.218           | 38.875           | 0.448            |        | 17.05          |
| ATOM         | 1691         |          | ASN        |   |            | 46.460           |                  | 2.699            |        | 20.70          |
| ATOM<br>ATOM | 1692         | N        | VAL        |   |            | 50.789           | 40.668           | -0.936           |        | 17.67          |
| ATOM<br>ATOM | 1693<br>1694 | CA       | VAL<br>VAL |   |            | 51.984<br>51.762 | 41.447           | -1.064           |        | 16.36          |
| ATOM<br>ATOM | 1695         | C<br>O   | VAL        |   |            | 51.762           | 42.755           | -1.760<br>-2.816 |        | 21.93          |
| ATOM         | 1696         | СВ       | VAL        |   |            | 53.090           | 42.783<br>40.681 | -2.816           |        | 22.45<br>18.76 |
| ATOM         | 1697         |          | VAL        |   |            | 54.343           | 41.495           | -1.848<br>-1.957 |        | 19.86          |
| ATOM         | 1698         |          | VAL        |   |            | 53.336           | 39.231           | -1.957           |        | 19.00          |
| ATOM         | 1699         | N        | ALA        |   |            | 52.287           | 43.832           | -1.188           |        | 20.08          |
| ATOM         | 1700         | CA       | ALA        |   |            | 52.199           | 45.188           | -1.794           |        | 19.28          |
|              | • •          |          |            | _ |            |                  |                  | 2.754            | 2.00   |                |

| ATOM         | 1701         | С       | ALA        | В | 106        |   | 53.617           | 45.637           | -2.080           | 1.00 22.54               |
|--------------|--------------|---------|------------|---|------------|---|------------------|------------------|------------------|--------------------------|
| MOTA         | 1702         | 0       |            |   | .106       |   | 54.491           | 45.558           | -1.214           | 1.00 20.02               |
| ATOM         | 1703         | CB      | ALA        | В | 106        |   | 51.533           | 46.151           | -0.903           | 1.00 19.59               |
| ATOM         | 1704         | N       |            |   | 107        |   | 53.895           | 46.128           | -3.312           | 1.00 21.77               |
| MOTA         | 1705         | CA      | TYR        |   | 107        |   | 55.244           | 46.571           | -3.683           | 1.00 22.90               |
| ATOM         | 1706         | С       | TYR        |   | 107        |   | 55.292           | 48.084           | -3.760           | 1.00 25.98               |
| ATOM         | 1707         | 0       | TYR        |   | 107        |   | 54.300           | 48.712           | -4.096           | 1.00 25.22               |
| ATOM         | 1708         | СВ      | TYR        |   | 107        |   | 55.668           | 45.972           | -5.032           | 1.00 25.00               |
| ATOM         | 1709         | CG      | TYR        |   | 107        |   | 55.904           | 44.492           | -4.966           | 1.00 24.25               |
| ATOM         | 1710         | CD1     |            |   | 107        |   | 57.129           | 43.980           | -4.544           | 1.00 26.30               |
| ATOM         |              | . CD2   |            |   | 107        |   | 54.888           | 43.600           | -5.316           | 1.00 25.93               |
| ATOM         | 1712         | CE 1    |            |   | 107        |   | 57.342           | 42.629           | -4.484           | 1.00 29.13               |
| ATOM         | 1713         | CE2     |            |   | 107        |   | 55.100           | 42.234           | -5.270           | 1.00 25.26               |
| MOTA         | 1714         | CZ      |            |   | 107        |   | 56.326           | 41.757           | -4.872           | 1.00 31.88               |
| ATOM<br>ATOM | 1715<br>1716 | ОН      | TYR        |   | 107        |   | 56.524           | 40.388           | -4.808           | 1.00 35.96               |
| ATOM         | 1717         | N<br>CA | PHE<br>PHE |   | 108        |   | 56.446           | 48.652           | -3.408           | 1.00 26.53               |
| ATOM         | 1718         |         |            |   | 108<br>108 |   | 56.584           | 50.098           | -3.399           | 1.00 25.71               |
| ATOM         | 1719         | Ç       | PHE        |   | 108        |   | 57.894<br>58.893 | 50.568           | -4.005           | 1.00 31.22               |
| ATOM         | 1720         | СВ      | PHE        |   | 108        |   | 56.572           | 49.844<br>50.645 | -4.074<br>-1.933 | 1.00 28.62               |
| ATOM         | 1721 -       |         | PHE        |   | 108        |   | 55.293           | 50.411           | -1.188           | 1.00 25.29               |
| ATOM         | 1722         |         |            |   | 108        |   | 55.033           | 49.174           | -0.571           | 1.00 21.78<br>1.00 19.05 |
| ATOM         | 1723         |         | PHE        |   | 108        |   | 54.354           | 51.421           | -1.064           | 1.00 20.20               |
| ATOM         | 1724         | CE1     |            |   | 108        | • | 53.856           | 48.967           | 0.111            | 1.00 19.07               |
| ATOM         | 1725         |         | PHE        |   | 108        |   | 53.187           | 51.237           | -0.377           | 1.00 22.77               |
| ATOM         | 1726         | CZ      | PHE        |   | 108        |   | 52.950           | 49.952           | 0.240            | 1.00 20.24               |
| MOTA         | 1727         | N       | GLU        |   |            |   | 57.864           | 51.828           | -4.412           | 1.00 30.97               |
| ATOM         | 1728         | CA      | GLU        | В | 109        |   | 59.012           | 52.499           | -5.011           | 1.00 32.90               |
| MOTA         | 1729         | С       | GLU        | В | 109        |   | 58.921           | 53.977           | -4.680           | 1.00 33.93               |
| MOTA         | 1730         | 0       | GLÜ        | В | 109        |   | 57.889           | 54.468           | -4.269           | 1.00 30.42               |
| ATOM         | 1731         | CB      | GLU        | В | 109        |   | 58.91 <i>6</i>   | 52.388           | -6.540           | 1.00 35.17               |
| MOTA         | 1732         | CG      | GLU        | В | 109        |   | 57.721           | 53,172           | -7.089           | 1.00 44.89               |
| MOTA         | 1733         | CD      | GLU        | В | 109        |   | 57.496           | 52.955           | -8.566           | 1.00 68.70               |
| MOTA         | 1734         |         | GLU        |   | 109        |   | 58.416           | 52.425           | -9.234           | 1.00 58.38               |
| ATOM         | -1735        |         | GLU        |   | 109        |   | 56.391           | 53.305           | -9.056           | 1.00 66.11               |
| ATOM         | . 1736       | N       | GLY        |   | 110        |   | 60.008           | 54.705           | -4.916           | 1.00 33.06               |
| ATOM         | 1737         | CA      | GLY        |   | 110        | • | 60.007           | 56.135           | -4.668           | 1.00 32.35               |
| ATOM         | 1738         | С       | GLY        |   | 110        |   | 59.545           | 56.486           | -3.270           | 1.00 35.50               |
| ATOM         | 1739         | 0       | GLY        |   | 110        |   | 60.045           | 55.920           | -2.286           | 1.00 35.53               |
| ATOM         | 1740         | N<br>GB | ASP        |   | 111        |   | 58.646           | 57.449           | -3.185           | 1.00 29.97               |
| ATOM         | 1741<br>1742 | CA      | ASP        |   | 111        | • | 58.151           | 57.917           | -1.907           | 1.00 31.05               |
| ATOM<br>ATOM | 1742         | C<br>O  | ASP        |   | 111        |   | 56.884           | 57.180           | -1.499           | 1.00 30.82               |
| ATOM         | 1744         | СВ      | ASP<br>ASP |   | 111<br>111 |   | 55.761<br>57.984 | 57.743           | -1.439           | 1.00 28.67               |
| ATOM         | 1745         | CG      |            |   | 111        |   | 57.207           | 59.438<br>59.966 | -1.931           | 1.00 33.49               |
| MOTA         | 1746         | OD1     | ASP        |   | 111        |   | 57.431           | 59.473           | -0.755<br>0.386  | 1.00 44.31               |
| ATOM         | 1747         |         | ASP        |   | 111        |   | 56.359           | 60.857           | -0.974           | 1.00 46.12<br>1.00 41.60 |
| ATOM         | 1748         | N       | ASN        |   | 112        |   | 57.084           | 55.909           | -1.181           | 1.00 27.75               |
| ATOM         | 1749         | CA      | ASN        |   | 112        |   | 55.987           | 55.068           | -0.770           | 1.00 25.85               |
| ATOM         | 1750         | C       | ASN        |   | 112        |   | 54.870           | 55.008           | -1.770           | 1.00 28.56               |
| ATOM         | 1751         | 0       | ASN        |   |            |   | 53.695           | 55.087           | -1.425           | 1.00 24.07               |
| ATOM         | 1752         | СВ      | ASN        |   |            |   | 55.512           | 55.413           | 0.637            | 1.00 25.14               |
| ATOM         | 1753         | CG      | ASN        |   | 112        |   | 56.544           | 55.084           | 1.628            | 1.00 19.48               |
| MOTA         | 1754         | OD1     | ASN        | В | 112        |   | 57.512           | 54.410           | 1.275            | 1.00 22.70               |
| MOTA         | 1755         | ND2     | ASN        | В | 112        |   | 56.399           | 55.582           | 2.868            | 1.00 21.36               |
| ATOM         | 1756         | N       | GLU        |   | 113        |   | 55.271           | 54.857           | -3.032           | 1.00 27.11               |
| MOTA         | 1757         | CA      | GLU        |   |            |   | 54.288           | 54.748           | -4.114           | 1.00 28.84               |
| MOTA         | 1758         | С       | GLU        |   |            |   | 54.071           | 53.286           | -4.361           | 1.00 27.72               |
| ATOM         | 1759         | 0       | GLU        |   |            |   | 55.024           | 52.572           | -4.769           | 1.00 26.82               |
| MOTA         | 1760         | CB      | GLU        | В | 113        |   | 54.752           | 55.441           | -5.391           | 1.00 30.87               |

| ATOM         | 1761         | CG       | GLU        | В | 113        |   | 54.797           | 56.958           | -5.306           | 1.00 | 37.93          |
|--------------|--------------|----------|------------|---|------------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 1762         | CD       | GLU        | В | 113        |   | 53.442           | 57.703           | -5.230           | 1.00 | 59.74          |
| ATOM         | 1763         | OE1      | GLU        | В | 113        |   | 52.345           | 57.089           | -5.096           | 1.00 | 46.50          |
| ATOM         | 1764         | OE2      |            |   | 113        |   | 53.517           | 58.956           | -5.296           |      | 59.60          |
| ATOM         | 1765         | N        | MET        |   | 114        |   | 52.842           | 52.856           | -4.080           |      | 27.25          |
| ATOM         | 1766         | CA       | MET        |   | 114        |   | 52.436           | 51.459           | -4.226           | 1.00 |                |
| ATOM         | 1767         | С        | MET        |   | 114        |   | 52.272           | 51.103           | -5.666           | 1.00 |                |
| ATOM         | 1768         | 0        | MET        | В | 114        |   | 51.463           | 51.727           | -6.359           |      | 40.94          |
| MOTA         | 1769         | СВ       | MET        | В | 114        |   | 51.094           | 51.203           | -3.533           | 1.00 |                |
| ATOM         | 1770         | CG       | MET        | В | 114        |   | 50.808           | 49.728           | -3.412           |      | 36.77          |
| ATOM         | 1771         | SD       |            | В | 114        |   | 49.151           | 49.352           | -2.940           |      | 39.76          |
| ATOM         | 1772         | CE       | MET        |   | 114        |   | 49.252<br>53.006 | 49.698           | -1.017           | 1.00 |                |
| ATOM<br>ATOM | 1773<br>1774 | N<br>CA  | LYS<br>LYS |   | 115<br>115 |   |                  | 50.104           | -6.129<br>-7.538 |      | 37.37          |
| ATOM         | 1775         | C        | LYS        |   | 115        |   | 52.918<br>51.644 | 49.687<br>48.899 | -7.836           |      | 38.95<br>54.19 |
| ATOM         | 1776         | 0        | LYS        |   | 115        |   | 51.157           | 48.178           | -6.919           |      | 51.66          |
| ATOM         | 1777         | СВ       | LYS        |   | 115        |   | 54.114           | 48.851           | -7.929           | 1.00 | 41.43          |
| ATOM         | 1778         | CG       | LYS        |   | 115        |   | 55.452           | 49.572           | -7.954           | 1.00 |                |
| ATOM         | 1779         | CD       | LYS        |   | 115        |   | 56.543           | 48.571           | -8.255           |      | 43.78          |
| ATOM         | 1780         | CE       | LYS        |   | 115        |   | 57.915           | 49.055           | -7.874           | 1.00 | 55.99          |
| ATOM         | 1781         | NZ       | LYS        |   | 115        |   | 58.975           | 48.255           | -8.577           |      | 62.59          |
| ATOM         | 1            | N        | MET        | c | 1          |   | 48.433           | 20.814           | 26.350           |      | 25.25          |
| ATOM         | 2            | CA       | MET        | Č | ī          |   | 49.028           | 22.003           | 25.752           |      | 23.37          |
| ATOM         | 3            | С        | MET        | Ċ | 1          |   | 49.715           | 21.688           | 24.462           |      | 22.04          |
| ATOM         | 4            | ō        |            | Č | 1          |   | 49.875           | 20.523           | 24.092           |      | 22.16          |
| ATOM         | 5            | СВ       | MET        | Č | 1          |   | 49.850           | 22.851           | 26.665           |      | 26.58          |
| ATOM         | 6            | CG       | MET        |   | 1          |   | 50.670           | 22.110           | 27.510           | 1.00 | 29.48          |
| ATOM         | 7            | SD       | MET        | С | 1          |   | 51.965           | 21.246           | 26.703           | 1.00 | 32.96          |
| ATOM         | 8            | CE       | MET        | С | 1          |   | 52.813           | 20.920           | 28.227           | 1.00 | 23.68          |
| ATOM         | 9            | N        | ILE        | С | 2          |   | 50.100           | 22.747           | 23.803           | 1.00 | 14.33          |
| ATOM         | 10           | CA       | ILE        | С | 2          |   | 50.686           | 22.664           | 22.441           | 1.00 | 12.86          |
| ATOM         | 11           | С        | ILE        | С | 2          |   | 52.160           | 22.979           | 22.400           | 1.00 | 13.27          |
| ATOM         | 12           | 0        | ILE        |   | 2          |   | 52.627           | 24.031           | 22.948           | 1.00 | 12.60          |
| ATOM         | 13           | СВ       |            | С | 2          |   | 49.882           | 23.673           | 21.576           | 1.00 | 15.76          |
| ATOM         | 14           | CG1      | ILE        |   | 2          |   | 48.390           | 23.281           | 21.509           | 1.00 | 18.95          |
| ATOM         | 15           | CG2      | ILE        |   | 2          |   | 50.477           | 23.802           | 20.155           |      | 15.91          |
| ATOM         | 16           |          | ILE        |   | 2          |   | 48.150           | 22.002           | 20.809           |      | 30.84          |
| ATOM         | 17           | N        | ARG        |   | 3          |   | 52.927           | 22.092           | 21.751           | 1.00 | 11.28          |
| ATOM         | 18           | CA       | ARG        |   | 3          |   | 54.380           | 22.286           | 21.644           | 1.00 |                |
| ATOM         | 19           | С        | ARG        |   | 3          |   |                  | . 22.880         | 20.295           | 1.00 | 12.97          |
| ATOM         | 20           | 0        | ARG        |   | 3          |   | 54.091           | 22.691           | 19.313           |      | 11.98          |
| ATOM<br>ATOM | 21           | CB<br>CG | ARG<br>ARG |   | 3<br>3     |   | 55.085<br>54.887 | 20.920           | 21.683<br>23.057 |      | 11.24<br>11.07 |
| ATOM         | 23           | CD       | ARG        |   | 3          |   | 55.885           | 20.123           | 24.091           |      | 14.19          |
| ATOM         | 24           | NE       | ARG        |   | 3          |   | 55.755           | 19.688           | 25.224           | 1.00 | 12.85          |
| ATOM         | 25           | cz       | ARG        |   | 3          |   | 56.624           | 19.664           | 26.235           |      | 13.01          |
| ATOM         | 26           |          | ARG        |   | 3          |   | 57.564           | 20.552           | 26.371           |      | 11.87          |
| ATOM         | 27           |          | ARG        |   | 3          |   | 56.424           | 18.698           | 27.173           |      | 15.42          |
| ATOM         | 28           | N        | THR        |   | 4          | • | 55.967           | 23.542           | 20.295           |      | 10.90          |
| ATOM         | 29           | CA       | THR        |   | 4          |   | 56.599           | 24.104           | 19.048           | 1.00 | 8.73           |
| ATOM         | 30           | С        | THR        |   | 4          |   | 57.765           | 23.120           | 18.793           |      | 12.54          |
| ATOM         | 31           | 0        | THR        | С | 4          |   | 58.739           | 23.023           | 19.649           |      | 11.96          |
| ATOM         | 32           | СВ       | THR        |   | 4          |   | 57.080           | 25.498           | 19.237           |      | 10.20          |
| ATOM         | 33           | OG1      | THR        | С | 4          |   | 55.949           | 26.331           | 19.490           | 1.00 | 12.29          |
| MOTA         | 34           | CG2      | THR        | С | 4          |   | 57.908           | 26.008           | 17.930           | 1.00 | 12.13          |
| MOTA         | 35           | N        | MET        | C | 5          |   | 57.701           | 22.369           | 17.637           |      | 10.12          |
| MOTA         | 36           | CA       | MET        |   | 5          |   | 58.676           | 21.370           | 17.349           |      | 10.31          |
| ATOM .       | 37           | С        | MET        |   | 5          |   | 59.356           | 21.600           | 16.015           |      | 13.52          |
| ATOM         | 38           | 0        | MET        |   | 5          |   | 58.720           | 22.172           | 15.112           |      | 14.15          |
| MOTA         | 39           | CB       | MET        | С | 5          |   | 57.978           | 20.006           | 17.214           | 1.00 | 13.06          |

| MOTA         | 40       | CG         | MET        | C | 5        |   | 57.123                                  | 19.561           | 18.416          | 1.00 | 11.30          |
|--------------|----------|------------|------------|---|----------|---|-----------------------------------------|------------------|-----------------|------|----------------|
| ATOM         | 41       | SD         | MET        |   | 5        |   | 58.165                                  | 19.333           | 19.918          | 1.00 |                |
| MOTA         | 42       | CE         | MET        |   | 5        |   | 59.104                                  | 17.873           | 19.482          | 1.00 | 14.97          |
| ATOM         | 43       | N          | LEU        |   | 6        |   | 60.600                                  | 21.155           | 15.915          | 1.00 | 10.44          |
| ATOM         | 44       | CA         | ·PEA       |   | 6        |   | 61.345                                  | 21.255           | 14.605          |      | 11.49          |
| ATOM         | 45       | C          | LEU        |   | 6        |   | 60.559                                  | 20.378           | 13.639          |      | .13.65         |
| ATOM         | 46       | 0          | LEU        |   | 6        |   | 60.436                                  | 19.139           | 13.800          |      | 12.95          |
| ATOM         | 47       | CB         | LEU        |   | 6        |   | 62.722                                  | 20.660           | 14.786          |      | 11.43          |
| ATOM         | 48       | CG         | LEU        |   | 6        |   | 63.587                                  | 20.673           | 13.484          | 1.00 | 12.67          |
| ATOM         | 49       | CD1        |            |   | 6        |   | 64.038                                  | 22.096           | 13.201          | 1.00 | 13.37          |
| ATOM         | 50       | CD2        |            |   | 6        |   | 64.839                                  | 19.829           | 13.742          | 1.00 | 14.36          |
| ATOM         | 51       | N          | GLN        |   | 7        |   | 60.049                                  | 21.016           | 12.552          | 1.00 | 12.16          |
| ATOM         | 52       | ·CA        | GLN        |   | 7        |   | 59.313                                  | 20.301           | 11.511          | 1.00 | 11.30          |
| ATOM         | 53       | C          | GLN        |   | 7        |   | 60.333                                  | 19.599           | 10.566          | 1.00 | 12.23          |
| ATOM         | 54       | 0          | GLN        |   | 7        |   | 60.125                                  | 18.449           | 10.136          | 1.00 | 11.94          |
| ATOM         | 55       | CB         | GLN        |   | 7<br>7   | • | 58.544                                  | 21.330           | 10.679          | 1.00 | 12.62          |
| ATOM         | 56       | CG         | GLN        |   | 7        |   | 57.590                                  | 20.710           | 9.638           | 1.00 | 14.99          |
| ATOM<br>ATOM | 57<br>58 | CD         | GLN        |   | 7        |   | 58.349                                  | 20.221           | 8.351           | 1.00 | 12.25          |
| ATOM         | 59       | OE1<br>NE2 |            |   | 7        |   | 58.036                                  | 19.083           | 7.865           |      | 14.42          |
| ATOM         | 60       | NEZ        | GLY        |   | 8        |   | 59.299                                  | 21.005           | 7.831           | 1.00 | 13.59          |
| ATOM         | 61       | CA         | GLY        |   | 8        |   | 61.406<br>62.459                        | 20.329<br>19.795 | 10.295<br>9.406 |      | 12.10          |
| ATOM         | 62       | C          | GLY        |   | 8        |   | 63.526                                  | 20.838           | 9.181           |      | 12.14<br>11.21 |
| ATOM         | 63       | Ö          | GLY        |   | 8        |   | 63.403                                  | 22.022           | 9.565           |      | 12.25          |
| ATOM         | 64       | N          | LYS        |   | 9        |   | 64.617                                  | 20.409           | 8.526           |      | 11.80          |
| ATOM         | 65       | CA         | LYS        |   | 9        |   | 65.690                                  | 21.351           | 8.271           |      | 12.75          |
| ATOM         | 66       | C          | LYS        |   | 9        |   | 66.604                                  | 20.908           | 7.117           | 1.00 |                |
| ATOM         | 67       | ŏ          | LYS        | č | 9        |   | 66.658                                  | 19.711           | 6.780           | 1.00 | 14.09          |
| ATOM         | 68       | СВ         | LYS        | c | 9        |   | 66.597                                  | 21.557           | 9.528           | 1.00 | 16.31          |
| ATOM         | 69       | CG         |            | č | 9        |   | 67.451                                  | 20.367           | 9.927           | 1.00 | 16.10          |
| ATOM         | 70       | CD         | LYS        | c | 9        |   | 68.486                                  | 20.654           | 11.059          | 1.00 | 15.95          |
| ATOM         | 71       | CE         |            | Ċ | 9        |   | 69.247                                  | 19.377           | 11.363          | 1.00 |                |
| ATOM         | 72       | NZ         | LYS        | Ċ | 9        |   | 70.409                                  | 19.689           | 12.260          |      | 22.05          |
| ATOM         | 73       | N          | LEU        |   | 10       |   | 67.301                                  | 21.896           | 6.578           | 1.00 |                |
| ATOM         | 74       | CA         | LEU        | С | 10       |   | 68.300                                  | 21.680           | 5.503           | 1.00 | 13.72          |
| ATOM         | 75       | С          | LEU        | С | 10       |   | 69.586                                  | 21.951           | 6.258           | 1.00 | 14.03          |
| ATOM         | 76       | 0          | LEU        | С | 10       |   | 69.859                                  | 23.078           | 6.661           | 1.00 | 15.46          |
| MOTA         | 77       | CB         | LEU        | С | 10       |   | 68.111                                  | 22.719           | 4.364           | 1.00 | 13.59          |
| ATOM         | 78       | CG         | LEU        | C | 10       |   | 66.761                                  | 22.626           | 3.674           | 1.00 | 14.77          |
| ATOM         | 79       | CD1        | LEU        | С | 10       |   | 66.548                                  | 23.780           | 2.652           | 1.00 | 18.67          |
| ATOM ·       | 80       | CD2        |            | C | 10       |   | 66.545                                  | 21.240           | 2.957           | 1.00 | 15.75          |
| ATOM         | 81       | N          | HIS        | C | 11       |   | 70.365                                  | 20.925           | 6.451           | 1.00 | 14.06          |
| ATOM         | 82       | CA         |            | С | 11       |   | 71.591                                  | 21.029           | 7.244           | 1.00 | 14.41          |
| MOTA         | 83       | C          |            | C | 11       |   | 72.871                                  | 21.241           | 6.448           |      | 18.20          |
| MOTA         | 84       | 0          | HIS        | C | 11       |   | 73.258                                  | 20.362           | 5.684           | 1.00 | 16.24          |
| MOTA         | 85       | CB         | HIS        | С | 11       |   | 71.710                                  | 19.803           | 8.172           | 1.00 | 17.29          |
| ATOM         | 86       | CG         | HIS        | С | 11       |   | 72.805                                  | 19.913           | 9.185           | 1.00 | 18.36          |
| ATOM         | 87       |            | HIS        | С | 11       |   | 72.634                                  | 20.553           | 10.405          | 1.00 | 20.19          |
| MOTA         | 88       |            | HIS        | C | 11       |   | 74.087                                  | 19.464           | 9.174           | 1.00 | 19.36          |
| ATOM         | 89       |            | HIS        | C | 11       |   | 73.769                                  | 20.514           | 11.075          | 1.00 | 19.59          |
| ATOM         | 90       |            |            | C | 11       |   | 74.667                                  | 19.854           | 10.354          |      | 18.93          |
| ATOM<br>ATOM | 91<br>92 | N          | ARG        |   | 12       |   | 73.488                                  | 22.401           | 6.662           |      | 15.16          |
| ATOM         | 93       | CA<br>C    | ARG<br>ARG |   | 12       |   | 74.713<br>74.613                        | 22.792           | 6.029           |      | 15.13          |
| ATOM         | 94       | 0          | ARG        |   | 12<br>12 |   | 75.468                                  | 22.974<br>22.446 | 4.525           |      | 16.37          |
| ATOM         | 95       | СВ         | ARG        |   | 12       |   | 75.855                                  | 21.874           | 3.763<br>6.378  |      | 18.19          |
| ATOM         | 96       | CG         | ARG        |   | 12       |   | 76.247                                  | 21.969           | 7.868           |      | 15.43<br>17.33 |
| ATOM         | 97       | CD         | ARG        |   | 12       |   | 77.390                                  | 21.969           | 8.248           |      | 17.26          |
| ATOM         | 98       | NE         | ARG        |   | 12       |   | 78.587                                  | 21.001           | 7.454           |      | 19.17          |
| ATOM         | 99       | CZ         | ARG        |   | 12       |   | 79.529                                  | 22.164           | 7.760           |      | 24.65          |
|              | 33       | -2         | THIC.      | _ |          |   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ~~ . 104         | 1.700.          | 1.00 | 24.03          |

| 3.004 | 100 |     | 200 | _ | 10   | 70 405 | 22 050 | 8.879  | 1.00 | 21.82 |
|-------|-----|-----|-----|---|------|--------|--------|--------|------|-------|
| ATOM  | 100 |     | ARG |   | 12   | 79.495 | 22.858 |        |      |       |
| ATOM  | 101 | NH2 | ARG | С | 12   | 80.545 | 22.350 | 6.912  | 1.00 |       |
| ATOM  | 102 | N   | VAL | С | 13   | 73.610 | 23.681 | 4.119  | 1.00 | 15.70 |
| ATOM  | 103 | CA. | VAL | C | 13   | 73.518 | 23.999 | 2.680  | 1.00 | 14.78 |
|       |     |     | VAL |   | 13   | 74.416 | 25.241 | 2.524  | 1.00 | 18.42 |
| ATOM  | 104 | C   |     |   |      |        |        |        |      |       |
| ATOM  | 105 | 0   | VAL |   | 13   | 74.709 | 26.004 | 3.506  | 1.00 | 15.58 |
| ATOM  | 106 | CB  | VAL | С | 13   | 72.143 | 24.332 | 2.183  | 1.00 | 16.79 |
| ATOM  | 107 | CG1 | VAL | С | 13   | 71.318 | 23.094 | 2.020  | 1.00 | 18.88 |
| ATOM  | 108 | CG2 | VAL |   | 13   | 71.441 | 25.456 | 3.067  | 1.00 | 16.41 |
|       |     |     |     |   |      | 74.877 | 25.500 | 1.273  | 1.00 | 15.68 |
| ATOM  | 109 | N   | LYS |   | 14   |        |        |        |      |       |
| ATOM  | 110 | CA  | LYS |   | 14   | 75.726 | 26.646 | 0.997  | 1.00 | 16.45 |
| ATOM  | 111 | С   | LYS | С | 14   | 74.946 | 27.738 | 0.258  | 1.00 | 16.56 |
| ATOM  | 112 | 0   | LYS | С | 14 . | 74.116 | 27.432 | -0.670 | 1.00 | 16.75 |
| ATOM  | 113 | СВ  | LYS |   | 14   | 76.910 | 26.216 | 0.127  | 1.00 | 17.97 |
|       |     |     |     |   |      |        |        | -0.094 | 1.00 | 20.97 |
| MOTA  | 114 | CG  | LYS |   | 14   | 77.913 | 27.344 |        |      |       |
| MOTA  | 115 | CD  | LYS | С | 14   | 79.173 | 26.878 | -0.788 | 1.00 | 29.18 |
| ATOM  | 116 | CE  | LYS | С | 14   | 80.063 | 26.092 | 0.120  | 1.00 | 32.48 |
| ATOM  | 117 | NZ  | LYS | С | 14   | 81.181 | 25.545 | -0.697 | 1.00 | 33.64 |
| ATOM  | 118 | N   | VAL |   | 15   | 75.161 | 29.013 | 0.665  | 1.00 | 13.79 |
|       |     |     |     |   |      |        |        |        |      |       |
| ATOM  | 119 | ÇA  | VAL |   | 15   | 74.467 | 30.142 | 0.040  | 1.00 |       |
| MOTA  | 120 | С   | VAL | С | 15   | 75.067 | 30.312 | -1.393 | 1.00 | 14.49 |
| ATOM  | 121 | 0   | VAL | С | 15   | 76.279 | 30.376 | -1.536 | 1.00 | 14.91 |
| ATOM  | 122 | CB  | VAL | С | 15   | 74.678 | 31.451 | 0.826  | 1.00 | 14.72 |
| ATOM  | 123 | CG1 | VAL |   | 15   | 74.032 | 32.595 | 0.091  | 1.00 | 15.47 |
|       |     |     |     |   |      | 74.013 | 31.273 | 2.287  | 1.00 |       |
| ATOM  | 124 |     | VAL |   | 15   |        |        |        |      |       |
| ATOM  | 125 | Ŋ   | THR |   | 16   | 74.182 | 30.292 | -2.386 | 1.00 | 14.68 |
| ATOM  | 126 | CA  | THR | С | 16   | 74.627 | 30.393 | -3.796 | 1.00 | 16.18 |
| ATOM  | 127 | С   | THR | С | 16   | 74.478 | 31.743 | -4.444 | 1.00 | 19.63 |
| ATOM  | 128 | 0   | THR | С | 16   | 75.143 | 31.995 | -5.472 | 1.00 | 18.35 |
| ATOM  | 129 | СВ  | THR |   | 16   | 73.869 | 29.362 | -4.630 | 1.00 | 14.13 |
|       |     |     |     |   |      |        |        | -4.778 |      |       |
| ATOM  | 130 |     | THR |   | 16   | 72.510 | 29.698 |        |      |       |
| ATOM  | 131 | CG2 | THR | С | 16   | 74.103 | 27.943 | -4.087 | 1.00 |       |
| ATOM  | 132 | N   | HIS | С | 17   | 73.636 | 32.604 | -3.913 | 1.00 | 14.05 |
| MOTA  | 133 | CA  | HIS | С | 17   | 73.411 | 33.927 | -4.456 | 1.00 | 15.34 |
| ATOM  | 134 | C   | HIS |   | 17   | 72.897 | 34.888 | -3.343 | 1.00 | 19.86 |
| ATOM  | 135 | ō   | HIS |   | 17   | 72.249 | 34.434 | -2.351 | 1.00 | 17.90 |
|       |     |     |     |   |      |        |        |        |      |       |
| ATOM  | 136 | СВ  | HIS |   | 17   | 72.332 | 33.779 | -5.554 | 1.00 | 18.53 |
| ATOM  | 137 | ÇG  | HIS | С | 17   | 72.007 | 35.052 | -6.293 | 1.00 | 22.33 |
| MOTA  | 138 | ND1 | HIS | С | 17   | 70.836 | 35.746 | -6.083 | 1.00 | 25.17 |
| ATOM  | 139 | CD2 | HIS | С | 17   | 72.665 | 35.724 | -7.285 | 1.00 | 24.77 |
| ATOM  | 140 | CE1 | HIS |   | 17   | 70.797 | 36.809 | -6.865 | 1.00 | 25.62 |
| ATOM  | 141 | NE2 | HIS |   | 17   | 71.889 | 36.822 | -7.610 | 1.00 |       |
|       |     |     |     |   |      |        |        |        |      |       |
| MOTA  | 142 | N   | ALA |   | 18   | 73.134 | 36.180 | -3.515 | 1.00 |       |
| ATOM  | 143 | ÇA  | ALA | C | 18   | 72.649 | 37.211 | -2.563 | 1.00 | 18.95 |
| ATOM  | 144 | С   | ALA | С | 18   | 72.073 | 38.366 | -3.404 | 1.00 | 25.44 |
| ATOM  | 145 | 0   | ALA | С | 18   | 72.647 | 38.737 | -4.442 | 1.00 | 26.69 |
| ATOM  | 146 | ĊВ· | ALA |   | 18   | 73.758 | 37.674 | -1.645 |      | 21.19 |
|       |     |     |     |   |      | 70.925 |        | -3.029 | 1.00 |       |
| ATOM  | 147 | N   | ASP |   | 19   |        | 38.880 |        |      |       |
| MOTA  | 148 | CA  |     | С | 19   | 70.290 | 39.955 | -3.794 | 1.00 |       |
| ATOM  | 149 | С   | ASP | С | 19   | 69.612 | 40.957 | -2.869 | 1.00 | 21.60 |
| ATOM  | 150 | 0   | ASP | С | 19   | 68.413 | 40.890 | -2.634 | 1.00 | 20.10 |
| ATOM  | 151 | CB  | ASP | С | 19   | 69.267 | 39.317 | -4.767 | 1.00 | 21.77 |
| ATOM  |     |     | ASP |   | 19   | 68.692 | 40.307 | -5.798 |      | 27.20 |
|       | 152 | CG  |     |   |      |        |        |        |      |       |
| ATOM  | 153 | OD1 | ASP |   | 19   | 69.092 | 41.478 | -5.831 |      | 27.06 |
| ATOM  | 154 | OD2 | ASP | C | 19   | 67.785 | 39.862 | -6.570 |      | 28.93 |
| ATOM  | 155 | N   | LEU | С | 20   | 70.393 | 41.917 | -2.414 | 1.00 | 21.47 |
| ATOM  | 156 | CA  | LEU |   | 20   | 69.874 | 42.953 | -1.551 | 1.00 | 21.15 |
| ATOM  | 157 | C   | LEU |   | 20   |        | 43.709 | -2.138 |      | 25.20 |
| ATOM  |     |     |     |   | 20   | 67.771 | 44.028 | -1.426 |      | 24.39 |
|       | 158 | 0   | LEU |   |      |        |        |        |      |       |
| ATOM  | 159 | CB  | LEU | U | 20   | 70.997 | 43.944 | -1.181 | 1.00 | 21.58 |

PCT/GB02/01490 **WO 02/077270** 

| ATOM         | 160        | CG        | LEU        | С | 20       |   | 70.700           | 45.069           | -0.209           | 1.00 | 24.50          |
|--------------|------------|-----------|------------|---|----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 161        | CD1       | LEU        | С | 20       |   | 70.505           | 44.452           | 1.236            | 1.00 | 22.31          |
| ATOM         | 162        | CD2       | LEU        | С | 20       |   | 71.937           | 46.004           | -0.224           | 1.00 | 24.07          |
| ATOM         | 163        | N         | HIS        | С | 21       |   | 68.786           | 44.010           | -3.448           | 1.00 | 23.99          |
| ATOM         | 164        | CA        | HIS        | С | 21       |   | 67.733           | 44.767           | -4.147           |      | 26.08          |
| ATOM         | 165        | С         | HIS        | С | 21       |   | 66.608           | 43.995           | -4.713           | 1.00 | 29.17          |
| ATOM         | 166        | 0         | HIS        |   | 21       |   | 65.847           | 44.534           | -5.516           |      | 29.91          |
| ATOM .       | 167        | CB        | HIS        | С | 21       |   | 68.393           | 45.692           | -5.187           | 1.00 | 29.07          |
| ATOM         | 168        | CG        | HIS        | С | 21       |   | 69.496           | 46.484           | -4.609           | 1.00 | 34.17          |
| ATOM         | 169        |           | HIS        |   | 21       |   | 69.283           | 47.347           | -3.561           | 1.00 | 37.06          |
| ATOM         | 170        | CD2       | HIS        |   | 21       |   | 70.836           | 46.468           | -4.819           | 1.00 | 37.54          |
| ATOM         | 171        | CE1       | HIS        |   | 21       |   | 70.433           | 47.875           | -3.181           | 1.00 | 36.64          |
| ATOM         | 172        | NE2       | HIS        |   | 21       |   | 71.394           | 47.358           | -3.926           | 1.00 | 37.19          |
| ATOM         | 173        | N         | TYR        |   | 22       |   | 66.495           | 42.726           | -4.309           | 1.00 |                |
| ATOM         | 174        | CA        | TYR        |   | 22       | • | 65.413           | 41.864           | -4.797           |      | 27.04          |
| ATOM         | 175        | C         | TYR        |   | 22       |   | 64.087           | 42.615           | -4.779           | 1.00 | 33.24          |
| ATOM         | 176        | 0         | TYR        |   | 22       |   | 63.709           | 43.265           | -3.775           |      | 26.75          |
| ATOM         | 177        | CB        | TYR        |   | 22       |   | 65.294           | 40.643           | -3.890           | 1.00 |                |
| ATOM         | 178        | CG        | TYR        |   | 22       |   | 64.348           | 39.561           | -4.368           | 1.00 | 30.64          |
| ATOM         | 179        |           | TYR        |   | 22       |   | 64.555           | 38.917           | -5.581           | 1.00 | 31.96          |
| ATOM         | 180        | CD2       | TYR        |   | 22       |   | 63.290           | 39.162           | -3.575           | 1.00 | 32.31          |
| ATOM         | 181        | CE1       | TYR        |   | 22       |   | 63.697           | 37.898           | -6.009           | 1.00 | 32.16          |
| ATOM         | 182        | CE2       | TYR        |   | 22       |   | 62.421           | 38.161           | -3.993           | 1.00 | 32.82          |
| ATOM         | 183        | CZ        | TYR        |   | 22       |   | 62.641           | 37.525           | -5.201           |      | 36.63          |
| ATOM         | 184        | ОН        | TYR        |   | 22       |   | 61.767           | 36.526           | -5.622           | 1.00 |                |
| ATOM         | 185        | N         | GLU        |   | 23       |   | 63.378           | 42.561           | -5.883           |      | 34.58          |
| ATOM         | 186        | CA        | GLU        |   | 23       |   | 62.134           | 43.254           | -5.953           |      | 37.52          |
| ATOM         | 187        | C         | GLU        |   | 23       |   | 60.863           | 42.459           | -5.743           | 1.00 |                |
| ATOM<br>ATOM | 188<br>189 | 0         | GLU        |   | 23       |   | 59.798           | 43.013           | -5.859           | 1.00 |                |
| ATOM         |            | CB        | GLU        |   | 23       |   | 62.051           | 44.110           | -7.214           |      | 39.74          |
|              | 190        | CG        | GLU        |   | 23       |   | 63.078           | 45.231           | -7.233           | 1.00 |                |
| ATOM<br>ATOM | 191<br>192 | CD<br>OE1 | GLU<br>GLU |   | 23<br>23 | • | 62.519           | 46.537<br>46.515 | -6.691<br>-6.046 |      | 61.64          |
| ATOM         | 193        | OE2       |            |   |          |   | 61.445           |                  |                  | 1.00 |                |
| ATOM         | 194        | N N       | GLU<br>GLY |   | 23<br>24 |   | 63.152<br>60.956 | 47.594<br>41.158 | -6.923<br>-5.438 | 1.00 | 61.54          |
| ATOM         | 195        | CA        | GLY        |   | 24       |   | 59.736           |                  |                  |      | 39.86          |
| ATOM         | 196        | C         | GLY        |   | 24       |   | 59.575           | 40.345<br>39.938 | -5.222           | 1.00 | 43.77          |
| ATOM         | 197        | 0         | GLY        |   | 24       |   | 58.617           | 39.195           | -3.749<br>-3.402 |      | 49.67<br>54.64 |
| ATOM         | 198        | ОН        | GLY        |   | 24       |   | 60.410           | 40.339           | -2.920           | 1.00 | 73.31          |
| ATOM         | 199        | C         | BAT        |   | 25       |   | 64.534           | 35.324           | 1.332            | 1.00 | 17.73          |
| ATOM         | 200        | ŏ         | PVL        |   | 25       |   | 65.693           | 35.692           | 1.200            | 1.00 | 21.35          |
| ATOM         | 201        | CA        | PAT        |   | 25       |   | 63.465           | 36.333           | 1.535            |      | 26.99          |
| ATOM         | 202        | СВ        | PVL        |   | 25       |   | 62.040           | 35.836           | 1.629            | 1.00 | 26.50          |
| ATOM         | 203        | ON        | PVL        |   | 25       |   | 63.738           | 37.533           | 1.769            |      | 32.90          |
| ATOM         | 204        | N         | CYS        |   | 26       |   | 64.218           | 33.987           | 1.203            | 1.00 | 13.65          |
| MOTA         | 205        | CA        |            | c | 26       |   | 65.226           | 32.982           | 0.870            | 1.00 | 13.69          |
| ATOM         | 206        | СВ        | CYS        |   | 26       |   | 65.775           | 32.194           | 2.112            | 1.00 | 19.50          |
| MOTA         | 207        | SG        | CYS        |   | 26       |   | 67.153           | 31.117           | 1.678            | 1.00 | 17.42          |
| ATOM         | 208        | C         | CYS        |   | 26       |   | 64.643           | 32.011           | -0.140           | 1.00 | 17.14          |
| ATOM         | 209        | ō         | CYS        |   | 26       |   | 63.688           | 31.289           | 0.138            | 1.00 | 16.98          |
| ATOM         | 210        | N         | ALA        |   | 27       |   | 65.174           | 32.063           | -1.414           |      | 14.97          |
| ATOM         | 211        | CA        | ALA        |   | 27       |   | 64.691           | 31.198           | -2.478           |      | 14.51          |
| ATOM         | 212        | С         | ALA        |   | 27       |   | 65.506           | 29.930           | -2.416           |      | 11.29          |
| ATOM         | 213        | ō         | ALA        |   | 27       |   | 66.742           | 29.944           | -2.313           |      | 13.77          |
| ATOM         | 214        | CB        | ALA        |   | 27       |   | 64.903           | 31.930           | -3.823           |      | 14.33          |
| ATOM         | 215        | N         | ILE        |   | 28       |   | 64.784           | 28.821           | -2.436           |      | 12.96          |
| ATOM         | 216        | CA        | ILE        |   | 28       |   | 65.324           | 27.513           | -2.268           |      | 12.54          |
| ATOM         | 217        | C         | ILE        |   | 28       |   | 64.763           | 26.465           | -3.281           |      | 13.11          |
| ATOM         | 218        | Ō         | ILE        |   | 28       |   | 63.573           | 26.396           | -3.512           |      | 14.34          |
| ATOM         | 219        | СВ        | ILE        |   | 28       |   | 64.901           | 26.977           | -0.773           |      | 13.91          |
|              |            |           |            | - |          |   |                  |                  | •                |      |                |

| MOTA         | 220        | CG1      | ILE        | C  | 28       | • | 65.435           | 27.945           | 0.261            |      | 15.23          |
|--------------|------------|----------|------------|----|----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 221        | CG2      |            |    | 28       | • | 65.386           | 25.518           | -0.497           |      | 16.36          |
| ATOM         | 222        | CD1      |            |    | 28       |   | 64.647           | 27.772           | 1.637            |      | 17.00          |
| ATOM         | 223        | N        | ASP        |    | 29       |   | 65.689           | 25.727           | -3.865           |      | 15.10          |
| ATOM         | 224        | CA       | ASP        |    | 29       |   | 65.333           | 24.657           | -4.850           |      | 14.57          |
| ATOM         | 225        | C        | ASP        |    | 29       |   | 64.130           | 23.862           | -4.288           |      | 17.57          |
| ATOM         | 226        | 0        | ASP        |    | 29       |   | 64.177           | 23.354           | -3.130           |      | 15.63          |
| ATOM         | 227<br>228 | CB<br>CG | ASP        |    | 29       |   | 66.532           | 23.782           | -5.032           | 1.00 | 14.77          |
| ATOM<br>ATOM | 229        | OD1      | ASP<br>ASP |    | 29<br>29 |   | 66.330<br>65.209 | 22.610<br>22.105 | -6.002           | 1.00 | 14.70          |
| ATOM         | 230        | OD2      |            |    | 29       |   | 67.364           | 22.103           | -6.198<br>-6.453 | 1.00 | 15.75<br>16.77 |
| ATOM         | 231        | N        | GLN        |    | 30       |   | 63.048           | 23,784           | -5.055           | 1.00 | 15.71          |
| ATOM         | 232        | CA       | GLN        |    | 30       |   | 61.846           | 23.040           | -4.628           | 1.00 |                |
| MOTA         | 233        | С        | GLN        |    | 30       |   | 62.169           | 21.606           | -4.152           | 1.00 | 17.73          |
| ATOM         | 234        | 0        | GLN        | С  | 30       |   | 61.462           | 21.048           | -3.271           | 1.00 | 17.08          |
| MOTA         | 235        | CB       | GLN        | C  | 30       |   | 60.850           | 22.897           | -5.808           | 1.00 |                |
| ATOM         | 236        | CG       | GLN        | С  | 30       |   | 59.579           | 22,183           | -5.414           | 1.00 | 23.42          |
| ATOM         | 237        | CD       | GLN        | С  | 30       |   | 58.789           | 22.951           | -4.362           | 1.00 | 23.06          |
| ATOM         | 238        | OE1      |            |    | 30       |   | 58.361           | 24.110           | -4.575           | 1.00 | 21.11          |
| ATOM         | 239        |          | GLN        |    | 30       |   | 58.574           | 22.285           | -3.172           |      | 20.59          |
| ATOM         | 240        | N        | ASP        | С  | 31       |   | 63.168           | 20.935           | -4.730           |      | 16.44          |
| ATOM         | 241        | CA       | ASP        | C  | 31       |   | 63.520           | 19.575           | -4.314           |      | 16.57          |
| ATOM<br>ATOM | 242<br>243 | 0        | ASP<br>ASP | C. | 31<br>31 |   | 63.960<br>63.633 | 19.625           | -2.820           | 1.00 | 17.31          |
| ATOM         | 244        | СВ       | ASP        | c  | 31       |   | 64.705           | 18.679<br>18.996 | -2.057<br>-5.106 |      | 17.32          |
| ATOM         | 245        | CG       | ASP        | c  | 31       |   | 64.300           | 18.460           | -6.508           |      | 19.02<br>24.47 |
| ATOM         | 246        |          | ASP        | č  | 31       |   | 63.131           | 18.037           | -6.702           |      | 24.53          |
| ATOM         | 247        |          | ASP        |    | 31       |   | 65.223           | 18.456           | -7.380           |      | 22.76          |
| MOTA         | 248        | N        | PHE        | C  | 32       |   | 64.716           | 20.662           | -2.468           |      | 14.02          |
| MOTA         | 249        | CA       | PHE        | С  | 32       |   | 65.221           | 20.820           | -1.075           |      | 13.65          |
| MOTA         | 250        | С        | PHE        | С  | 32       |   | 64.028           | 21.048           | -0.164           |      | 16.12          |
| ATOM         | 251        | 0        | PHE        | С  | 32       |   | 63.971           | 20.408           | 0.948            | 1.00 | 14.39          |
| ATOM         | 252        | CB       | PHE        | С  | 32       |   | 66.186           | 21.980           | -0.940           | 1.00 | 13.80          |
| ATOM         | 253        | CG       | PHE        | С  | 32       |   | 67.460           | 21.862           | -1.736           |      | 14.18          |
| ATOM         | 254        | CD1      | PHE        |    | 32       |   | 67.825           | 20.722           | -2.462           |      | 15.47          |
| ATOM         | 255        | CD2      | PHE        | C  | 32       |   | 68.314           | 22.951           | -1.731           |      | 15.29          |
| ATOM<br>ATOM | 256<br>257 | CE1      | PHE        | C  | 32       |   | 69.105           | 20.705           | -3.202           | 1.00 | 16.12          |
| ATOM         | 258        | CZ       | PHE        | C  | 32<br>32 |   | 69.515<br>69.911 | 22.950<br>21.821 | -2.452           | 1.00 | 16.29          |
| ATOM         | 259        | N        |            | c  | 33       |   | 63.106           | 21.021           | -3.177<br>-0.561 | 1.00 | 15.53<br>15.49 |
| ATOM         | 260        | CA       | LEU        |    | 33       |   | 61.887           | 22.193           | 0.225            | 1.00 | 13.34          |
| ATOM         | 261        | C        |            | Č  | 33       |   | 61.184           | 20.847           | 0.455            | 1.00 | 17.57          |
| ATOM         | 262        | 0        | LEU        |    | 33       |   | 60.783           | 20.497           | 1.591            | 1.00 | 16.65          |
| ATOM         | 263        | CB       | LEU        | С  | 33       |   | 60.926           | 23.160           | -0.496           | 1.00 | 14.40          |
| ATOM         | 264        | CG       | LEU        | С  | 33       |   | 61.494           | 24.560           | -0.722           | 1.00 | 17.89          |
| ATOM         | 265        | CD1      | LEU        | С  | 33       |   | 60.412           | 25.420           | -1.418           | 1.00 | 15.16          |
| MOTA         | 266        | CD2      | LEU        | С  | 33       |   | 61.823           | 25.176           | 0.693            | 1.00 | 17.59          |
| ATOM         | 267        | N        | ASP        | С  | 34       |   | 61.007           | 20.035           | -0.596           | 1.00 | 15.41          |
| ATOM         | 268        | CA       | ASP        | С  | 34       |   | 60.313           | 18.744           | -0.431           | 1.00 | 16.06          |
| ATOM         | 269        | C        | ASP        | С  | 34       |   | 61.016           | 17.848.          | 0.617            |      | 18.00          |
| ATOM         | 270        | 0        |            | C  | 34       |   | 60.349           | 17.195           | 1.433            |      | 18.35          |
| ATOM         | 271        | CB .     | ASP        |    | 34       |   |                  | 17.921           | -1.770           |      | 18.61          |
| ATOM<br>ATOM | 272<br>273 | CG       | ASP<br>ASP |    | 34<br>34 |   | 59.489<br>58.649 | 18.458<br>19.342 | -2.875           |      | 24.34          |
| ATOM         | 274        |          | ASP        |    | 34       |   | 59.666           | 17.915           | -2.651<br>-4.029 | 1.00 | 22.17<br>28.71 |
| ATOM         | 275        | N        | ALA        |    | 35       |   | 62.335           | 17.746           | 0.547            |      | 13.94          |
| ATOM         | 276        | CA       | ALA        |    | 35       |   | 63.094           | 16.855           | 1.437            |      | 15.72          |
| ATOM         | 277        | C        | ALA        |    | 35       |   | 62.964           | 17.259           | 2.887            |      | 17.50          |
| ATOM         | 278        | 0        | ALA        |    | 35       |   | 62.925           | 16.383           | 3.783            |      | 18.53          |
| ATOM         | 279        | CB       | ALA        | С  | 35       |   | 64.546           | 16.791           | 1.044            |      | 16.40          |
|              |            |          | •          |    |          |   |                  |                  |                  |      |                |

| ATOM         | 280        | N       | ALA  | С  | 36       | 62.923           | 18.572           | 3.109          | 1.00 13.80 |
|--------------|------------|---------|------|----|----------|------------------|------------------|----------------|------------|
| ATOM         | 281        | CA      | ALA  | С  | 36       | 62.826           | 19.066           | 4.512          | 1.00 14.07 |
| MOTA         | 282        | С       | ALA  | С  | 36       | 61.369           | 19.265           | 4.931          | 1.00 16.21 |
| ATOM         | 283        | 0       | ALA  |    | 36       | 61.109           | 19.675           | 6.096          | 1.00 16.15 |
| ATOM         | 284        | CB      | ALA  |    | 36       | 63.652           |                  | 4.722          | 1.00 14.23 |
| ATOM         | 285        | N       | GLY  |    | 37       | 60.408           | 19.012           | 4.067          | 1.00 14.27 |
| ATOM         | 286        | CA      | GLY  |    | 37       | 59.006           | 19.193           | 4.375          | 1.00 12.78 |
| ATOM         | 287        | C       | GLY  |    | 37       | 58.621           | 20.712           | 4.515          | 1.00 11.55 |
| ATOM         | 288        | 0       | GLY  |    | 37       | 57.511           | 21.019           | 5.022          | 1.00 13.36 |
| ATOM         | 289        | N       | ILE  |    | 38       | 59.459           | 21.637           | 3.998          | 1.00 13.57 |
| ATOM         | 290        | CA      | ILE  |    | 38       | 59.227           | 23.079           | 4.058          | 1.00 13.98 |
| MOTA         | 291        | C       | ILE  |    | 38       | 58.350           | 23.496           | 2.908          | 1.00 16.32 |
| ATOM         | 292        | 0       | ILE  |    | 38       | 58.538           | 22.975           | 1.764          | 1.00 16.77 |
| ATOM         | 293        | CB      | ILE  |    | 38       | 60.556           | 23.845           | 4.057          | 1.00 15.34 |
| ATOM         | 294        | CG1     |      | C. | 38       | 61.360           | 23.434           | 5.316          | 1.00 14.55 |
| ATOM         | 295        | CG2     |      | C  | 38       | 60.360           | 25.362           | 4.098          | 1.00 15.27 |
| ATOM         | 296        | CD1     | ILE  |    | 38       | 62.741           | 24.006           | 5.393          | 1.00 19.63 |
|              | 297        | N       | LEU  |    | 39       | 57.410           | 24.363           | 3.195          | 1.00 12.96 |
| ATOM         | 298        | CA      | LEU  |    | 39       | 56.438           | 24.870           | 2.188          | 1.00 11.40 |
| ATOM         | 299        | C       | LEU  |    | 39<br>39 | 56.789<br>57.351 | 26.256           | 1.685<br>2.351 | 1.00 14.26 |
| ATOM<br>ATOM | 300<br>301 | O<br>CB | LEU  |    | 39       | 55.018           | 27.091<br>24.940 | 2.745          | 1.00 13.15 |
| ATOM         | 302        | CG      | LEU  |    | 39       | 54.409           | 23.724           | 3.459          | 1.00 12.10 |
| ATOM         | 303        |         | LEU  |    | 39       | 53.029           | 23.724           | 3.991          | 1.00 13.32 |
| ATOM         | 304        |         | LEU  |    | 39       | 54.450           | 22.512           | 2.442          | 1.00 17.01 |
| ATOM         | 305        | N N     | GLU  |    | 40       | 56.438           | 26.515           | 0.401          | 1.00 17.01 |
| ATOM         | 306        | CA      | GLU  |    | 40       | 56.668           | 27.856           | -0.077         | 1.00 15.39 |
| ATOM         | 307        | C       | GLU  |    | 40       | 55.766           | 28.802           | 0.813          | 1.00 13.93 |
| ATOM         | 308        | ō       | GLU. |    | 40       | 54.630           | 28.488           | 1.146          | 1.00 13.92 |
| ATOM         | 309        | СВ      | GLU  |    | 40       | 56.149           | 27.962           | -1.564         | 1.00 17.33 |
| ATOM         | 310        | CG      | GLU  |    | 40       | 56.299           | 29.405           | -2.092         | 1.00 22.86 |
| ATOM ·       | 311        | CD      | GLU  |    | 40       | 56.447           | 29.500           | -3.609         | 1.00 37.57 |
| ATOM         | 312        |         | GLU  |    | 40       | 55.722           | 28.731           | -4.258         | 1.00 29.60 |
| ATOM         | 313        |         | GLU  |    | 40       | 57.284           | 30.327           | -4.101         | 1.00 24.74 |
| ATOM         | 314        | N       | ASN  |    | 41       | 56.349           | 29.944           | 1.163          | 1.00 12.53 |
| ATOM         | 315        | CA      | ASN  | С  | 41       | 55.781           | 31.000           | 1.960          | 1.00 12.52 |
| ATOM         | 316        | С       | ASN  | С  | 41       | 55.812           | 30.629           | 3.468          | 1.00 13.84 |
| ATOM         | 317        | 0       | ASN  | С  | 41       | 55.228           | 31.397           | 4.263          | 1.00 13.31 |
| ATOM         | 318        | CB      | ASN  | С  | 41       | 54.414           | 31.386           | 1.563          | 1.00 14.21 |
| MOTA         | 319        | CG      | ASN  | С  | 41       | 54.377           | 31.980           | 0.096          | 1.00 18.26 |
| MOTA         | 320        | OD1     | ASN  | С  | 41       | 55.127           | 32.868           | -0.218         | 1.00 19.96 |
| ATOM         | 321        | ND2     | ASN  | С  | 41       | 53.502           | 31.428           | -0.735         | 1.00 23.65 |
| MOTA         | 322        | N       | GLU  | С  | 42       | 56.433           | 29.507           | 3.815          | 1.00 12.49 |
| MOTA         |            | CA      | GLU  | С  | 42       | 56.487           | 29.138           | 5.281          | 1.00 11.09 |
| MOTA         | 324        | С       | GLU  |    | 42       | 57.541           | 29.977           | 5.920          | 1.00 12.61 |
| ATOM         | 325        | 0       | GLU  |    | 42       | 58.596           | 30.268           | 5.373          | 1.00 13.32 |
| MOTA         | 326        | СВ      | GLU  |    | 42       | 56.868           | 27.701 ·         |                | 1.00 11.37 |
| MOTA         | 327        | CG      | GLU  |    | 42       | 56.806           | 27.190           | 6.899          | 1.00 13.79 |
| MOTA         | 328        | CD      | GLU  |    | 42       | 57.022           | 25.698           | 6.958          | 1.00 16.86 |
| ATOM         |            |         | GLU  |    | 42       | 57.443           | 25.053           | 5.978          | 1.00 14.48 |
| ATOM         |            |         | GLU  |    | 42       | 56.821           | 25.073           | 8.083          | 1.00 11.57 |
| ATOM         | 331        | N       | ALA  |    | 43       | 57.338           | 30.294           | 7.232          | 1.00 11.23 |
| MOTA         | 332        | CA      | ALA  |    | 43       | 58.354           | 30.979           | 7.973          | 1.00 11.52 |
| MOTA         | 333        | C       | ALA  |    | 43       | 59.543           | 29.996           | 8.219          | 1.00 12.62 |
| MOTA         | 334        | 0       | ALA  |    | 43       | 59.345           | 28.779           | 8.496          | 1.00 11.29 |
| ATOM         | 335        | CB      | ALA  |    | 43       | 57.767           | 31.316           | 9.366          | 1.00 11.84 |
| ATOM         | 336        | N       | ILE  |    | 44       | 60.755           | 30.514           | 8.084          | 1.00 10.61 |
| MOTA         | 337        | CA      | ILE  |    | 44 .     | 61.976           | 29.726           | 8.293          | 1.00 9.63  |
| ATOM         | 338        | С       | ILE  |    | 44       | 62.989           | 30.509           | 9.135          | 1.00 11.21 |
| MOTA         | 339        | 0       | ILE  | C  | 44       | 63.038           | 31.761           | 9.090          | 1.00 11.77 |

| MOTA         | 340        | СВ      | ILE | С | 44       | 62.638           | 29.285           | 6.929            | 1.00 | 11.13          |
|--------------|------------|---------|-----|---|----------|------------------|------------------|------------------|------|----------------|
| ATOM         | 341        | CG1     |     |   | 44       | 62.868           | 30.534           | 6.052            |      | 12.75          |
| ATOM         | 342        | CG2     |     |   | 44       | 61.738           | 28.241           | 6.300            | 1.00 | 11.62          |
| ATOM         | 343        | CD1     |     |   | 44       | 63.700           | 30.215           | 4.745            | 1.00 | 16.57          |
| ATOM         | 344        | N       | ASP |   | 45       | 63.791           | 29.766           | 9.892            | 1.00 | 11.18          |
| MOTA         | 345        | CA.     | ASP |   | 45       | 64.856           | 30.353           | 10.646           | 1.00 | 10.11          |
| ATOM         | 346        | C       | ASP |   | 45       | 66.187           | 29.921           | 9.981            | 1.00 |                |
| ATOM         | 347        | 0       | ASP |   | 45       | 66.334           | 28.745           | 9.564            | 1.00 |                |
| ATOM         | 348        | CB      | ASP |   | 45       | 64.832           | 29.780           | 12.104           | 1.00 |                |
| ATOM         | 349        | CG      | ASP |   | 45       | 63.597           | 30.185           | 12.832           | 1.00 |                |
| ATOM         | 350        | OD1     |     |   | 45       | 63.012           | 31.295           | 12.643           | 1.00 |                |
| ATOM         | 351        | OD2     |     |   | 45       | 63.146           | 29.292           | 13.666           | 1.00 |                |
| MOTA         | 352        | N<br>Cr | ILE |   | 46       | 67.120           | 30.860           | 9.819            | 1.00 |                |
| ATOM         | 353<br>354 | CA      | ILE |   | 46       | 68.411           | 30.563           | 9.169            |      | 11.69          |
| ATOM<br>ATOM | 355        | C<br>O  | ILE |   | 46<br>46 | 69.494           | 30.864           | 10.146           | 1.00 | _              |
| ATOM         | 356        | СВ      | ILE |   | 46       | 69.566<br>68.536 | 31.982           | 10.710           | 1.00 |                |
| ATOM         | 357        |         | ILE |   | 46       | 67.338           | 31.422           | 7.883            | 1.00 |                |
| ATOM         | 358        | CG2     |     |   | 46       | 69.920           | 31.096<br>31.132 | 7.003<br>7.208   | 1.00 |                |
| ATOM         | 359        | CD1     | ILE |   | 46       | 67.524           | 31.730           | 5.488            | 1.00 |                |
| ATOM         | 360        | N       | TRP |   | 47       | 70.322           | 29.841           | 10.406           |      | 12.56          |
| ATOM         | 361        | CA      | TRP |   | 47       | 71.414           | 29.944           | 11.387           |      | 11.59          |
| ATOM         | 362        | c       | TRP |   | 47       | 72.717           | 29.812           | 10.545           |      | 12.65          |
| ATOM         | 363        | ō       | TRP |   | 47       | 72.955           | 28.776           | 9.937            |      | 13.30          |
| ATOM         | 364        | СB      | TRP |   | 47       | 71.265           | 28.791           | 12.381           |      | 11.85          |
| ATOM         | 365        | CG      | TRP |   | 47       | 69.917           | 28.832           | 13.078           |      | 11.21          |
| ATOM         | 366        | CD1     | TRP |   | 47       | 69.254           | 29.942           | 13.487           |      | 12.57          |
| ATOM         | 367        | CD2     | TRP |   | 47       | 69.125           | 27.705           | 13.456           |      | 12.14          |
| ATOM         | 368        | NE1     | TRP |   | 47       | 68.053           | 29.581           | 14.123           |      | 11.88          |
| ATOM         | 369        | CE2     | TRP | С | 47       | 67.960           | 28.215           | 14.112           |      | 10.79          |
| ATOM         | 370        | CE3     | TRP | С | 47       | 69.264           | 26.331           | 13.261           |      | 14.11          |
| ATOM         | 371        | CZ2     | TRP | С | 47       | 66.930           | 27.369           | 14.579           | 1.00 | 11.66          |
| ATOM         | 372        | CZ3     | TRP | С | 47 .     | 68.235           | 25.465           | 13.766           | 1.00 | 14.28          |
| ATOM         | 373        | CH2     |     | С | 47       | 67.080           | 26.038           | 14.410           | 1.00 | 14.15          |
| ATOM         | 374        | N       | ASN |   | 48       | 73.512           | 30.856           | 10.577           | 1.00 | 12.67          |
| ATOM         | 375        | CA      | ASN |   | 48       | 74.730           | 30.931           | 9.784            | 1.00 | 14.84          |
| ATOM         | 376        | С       | ASN |   | 48       | 75.898           | 30.311           | 10.503           | 1.00 | 14.53          |
| ATOM         | 377        | 0       | ASN |   | 48       | 76.456           | 30.916           | 11.495           |      | 15.46          |
| ATOM         | 378        | CB      | ASN |   | 48       | 74.966           | 32.379           | 9.370            |      | 13.17          |
| ATOM         | 379        | CG      | ASN |   | 48       | 75.984           | 32.520           | 8.231            | 1.00 | 12.09          |
| ATOM         | 380        | OD1     |     |   | 48       | 76.997           | 31.892           | 8.252            | 1.00 | 14.55          |
| ATOM<br>ATOM | 381<br>382 |         | ASN |   | 48       | 75.728           | 33.481           | 7.353            | 1.00 | 14.53          |
| ATOM         | 383        | N       | VAL |   | 49       | 76.306           | 29.138           | 10.060           |      | 13.24          |
| ATOM         | 384        | CA<br>C | VAL |   | 49<br>49 | 77.416           | 28.477           | 10.667           |      | 13.19          |
| ATOM         | 385        | ō       | VAL |   | 49       | 78.741<br>79.658 | 29.222<br>29.202 | 10.464           | 1.00 | 18.14          |
| ATOM '       | 386        | СВ      | VAL |   | 49       | 77.568           | 27.013           | 11.306<br>10.155 |      | 19.15<br>15.64 |
| ATOM         | 387        | CG1     |     |   | 49       | 78.718           | 26.315           | 10.133           |      | 17.34          |
| ATOM         | 388        | CG2     |     |   | 49       | 76.256           | 26.221           | 10.313           | 1.00 | 15.21          |
| ATOM         | 389        | N       | THR |   | 50       | 78.884           | 29.888           | 9.312            |      | 14.80          |
| ATOM '       | 390        | CA      | THR |   | 50       | 80.115           | 30.592           | 9.059            | 1.00 |                |
| ATOM         | 391        | C       | THR |   | 50       | 80.332           | 31.856           | 9.917            |      | 15.83          |
| ATOM         | 392        | Õ       | THR |   | 50       | 81.434           | 32.032           | 10.464           |      | 18.87          |
| ATOM         | 393        | СВ      | THR |   | 50       | 80.206           | 30.952           | 7.521            | 1.00 |                |
| ATOM         | 394        |         | THR |   | 50       | 80,146           | 29.742           | 6.790            |      | 15.78          |
| ATOM         | 395        |         | THR |   | 50       | 81.513           | 31.639           | 7.236            |      | 16.82          |
| ATOM         | 396        | N       | ASN |   | 51       | 79.334           | 32.710           | 10.014           | 1.00 |                |
| ATOM         | 397        | CA      | ASN |   | 51       | 79.492           | 33.962           | 10.776           | 1.00 |                |
| ATOM         | 398        | С       | ASN |   | 51       | 78.715           | 34.092           | 12.098           |      | 17.85          |
| ATOM         | 399        | 0       | ASN | С | 51       | 78.807           | 35.115           | 12.755           |      | 17.40          |
|              |            |         |     |   |          |                  |                  |                  |      |                |

| ATOM         | 400        | CB      | ASN        | С | 51       | 79.229           | 35.187           | 9.877            | 1.00 | 18.14          |
|--------------|------------|---------|------------|---|----------|------------------|------------------|------------------|------|----------------|
| ATOM         | 401        | CG      | ASN        |   | 51       | 77.756           | 35.329           | 9.477            |      | 20.44          |
| ATOM         | 402        |         | ASN        |   | 51       | 76.879           | 34.705           | 10.085           | 1.00 |                |
| MOTA         | 403        |         | ASN        |   | 51       | 77.462           | 36.172           | 8.454            | 1.00 | 16.78          |
| ATOM         | 404        | N       | GLY        |   | 52       | 77.954           | 33.059           | 12.436           |      | 15.39          |
| ATOM         | 405        | CA .    | GLY        |   | 52       | 77.169           | 33.081           | 13.693           |      | 16.35          |
| MOTA         | 406        | С       | GLY        |   | 52       | 75.868           | 33.855           | 13.678           |      | 18.04          |
| MOTA         | 407        | 0       | GLY        |   | 52       | 75.109           | 33.788           | 14.680           |      | 15.14          |
| ATOM         | 408        | N       | LYS        |   | 53       | 75.528           | 34.597           | 12.606           | 1.00 |                |
| ATOM         | 409        | CA      | LYS        |   | 53       | 74.279           | 35.346           | 12.571           |      | 13.33          |
| ATOM         | 410        | C       |            | С | 53       | 73.078           | 34.419           | 12.525           |      | 13.70          |
| ATOM         | 411        | 0       | LYS        |   | 53       | 73.156           | 33.312           | 11.988           |      | 13.57          |
| ATOM         | 412        | CB      | LYS        |   | 53 .     | 74.226           | 36.376           | 11.407           |      | 15.27          |
| ATOM         | 413        | CG      | LYS        |   | 53       | 75.408           | 37.304           | 11.460           |      | 16.18          |
| ATOM         | 414        | CD      | LYS        |   | 53       | 75.235           | 38.411           | 10.445           |      | 18.83          |
| ATOM         | 415        | CE      | LYS        |   | 53       | 76.538           | 39.222           | 10.332           | 1.00 |                |
| ATOM         | 416        | NZ      | LYS        |   | 53       | 76.488           | 40.240           | 9.151            |      | 24.28          |
| ATOM         | 417        | N       | ARG        |   | 54       | 71.957           | 34.851           | 13.130           | 1.00 |                |
| ATOM         | 418        | CA      | ARG        |   | 54       | 70.720           | 34.077           | 13.202           | 1.00 |                |
| MOTA         | 419        | C       | ARG        |   | 54       | 69.563           | 35.017           | 12.837           | 1.00 | 14.37          |
| ATOM         | 420<br>421 | O<br>CB | ARG        |   | 54       | 69.422           | 36.109           | 13.368           | 1.00 | 13.79          |
| ATOM<br>ATOM | 422        |         | ARG<br>ARG |   | 54       | 70.513<br>71.674 | 33.544           | 14.658<br>15.081 | 1.00 |                |
| ATOM         | 423        | CG      | ARG        |   | 54<br>54 | 71.674           | 32.735<br>32.182 | 16.577           | 1.00 | 12.91          |
| ATOM         | 424        | NE      | ARG        |   | 54       | 70.621           | 31.016           | 16.648           | 1.00 |                |
| ATOM         | 425        | CZ      | ARG        |   | 54       | 70.621           | 29.772           | 16.432           | 1.00 |                |
| ATOM         | 426        | NH1     | ARG        |   | 54       | 72.320           | 29.772           | 16.432           | 1.00 |                |
| ATOM         | 427        |         | ARG        |   | 54       | 70.206           | 28.733           | 16.554           | 1.00 |                |
| ATOM         | 428        | N       | PHE        |   | 55       | 68.708           | 34.614           | 11.897           | 1.00 |                |
| ATOM         | 429        | CA      |            | c | 55       | 67.605           | 35.481           | 11.482           |      | 11.72          |
| ATOM         | 430        | C       | PHE        | c | 55       | 66.418           | 34.634           | 11.402           | 1.00 |                |
| ATOM         | 431        | 0       | PHE        |   | 55       | 66.591           | 33.396           | 10.737           | 1.00 |                |
| ATOM         | 432        | СВ      |            | C | 55 ·     | 68.046           | 36.473           | 10.737           |      | 14.53<br>12.81 |
| ATOM         | 433        | CG      |            | c | 55       | 68.562           | 35.804           | 9.087            | 1.00 | 14.26          |
| ATOM         | 434        | CD1     | BHE.       |   | 55       | 69.846           | 35.318           | 9.008            | 1.00 | 15.91          |
| ATOM         | 435        | CD2     |            | c | 55       | 67.757           | 35.761           | 7.976            | 1.00 | 16.89          |
| ATOM         | 436        | CE1     |            | c | 55       | 70.335           | 34.741           | 7.814            | 1.00 | 18.73          |
| ATOM         | 437        | CE2     |            | c | 55       | 68.244           | 35.194           | 6.797            | 1.00 | 18.14          |
| ATOM         | 438        | CZ      |            | c | 55       | 69.487           | 34.707           | 6.724            | 1.00 | 16.81          |
| ATOM         | 439        | N       | SER        |   | 56       | 65.271           | 35.285           | 10.899           |      | 12.30          |
| ATOM         | 440        | CA      | SER        |   | 56       | 64.027           | 34.624           | 10.507           | 1.00 | 11.60          |
| ATOM         | 441        | C       | SER        |   | 56       | 63.434           | 35.336           | 9.280            | 1.00 |                |
| ATOM         | 442        | ō       | SER        |   | 56       | 63.432           | 36.539           | 9.216            | 1.00 | 12.92          |
| ATOM         | 443        | CB      | SER        |   | 56       | 63.017           | 34.612           | 11.646           | 1.00 | 14.04          |
| ATOM         | 444        | OG      | SER        |   | 56       | 63.603           | 33.905           | 12.760           | 1.00 | 17.74          |
| ATOM         | 445        | N       | THR        |   | 57       | 62.982           | 34.543           | 8.325            | 1.00 | 12.51          |
| ATOM         | 446        | CA      | THR        |   | 57       | 62.408           | 35.094           | 7.083            | 1.00 | 15.14          |
| ATOM         | 447        | С       | THR        |   | 57       | 61.340           | 34.103           | 6.578            | 1.00 | 16.57          |
| ATOM         | 448        | 0       | THR        |   | 57       | 60.653           | 33.469           | 7.397            | 1.00 | 13.36          |
| ATOM         | 449        | СВ      | THR        | С | 57       | 63.513           | 35.345           | 6.067            | 1.00 | 17.35          |
| ATOM         | 450        | OG1     | THR        | С | 57       | 62.937           | 36.006           | 4.924            |      | 17.51          |
| ATOM         | 451        | CG2     | THR        | С | 57       | 64.314           | 34.105           | 5.666            |      | 19,79          |
| ATOM         | 452        | N       | TYR        |   | 58       | 61.118           | 33.960           | 5.247            |      | 13.07          |
| ATOM         | 453        | CA      | TYR        |   | 58       | 60.120           | 33.001           | 4.744            | 1.00 | 11.86          |
| ATOM .       | 454        | С       | TYR        | С | 58       | 60.721           | 32.381           | 3.453            | 1.00 | 14.46          |
| MOTA         | 455        | 0       | TYR        | С | 58       | 61.629           | 32,949           | 2.879            |      | 14.80          |
| ATOM         | 456        | CB      | TYR        |   | 58       | 58.762           | 33.591           | 4.472            |      | 11.64          |
| MOTA         | 457        | CG      | TYR        |   | 58       | 58.754           | 34.679           | 3.414            | 1.00 | 14.08          |
| ATOM         | 458        | CD1     | TYR        |   | 58       | 59.116           | 35.983           | 3.729            |      | 14.47          |
| ATOM         | 459        | CD2     | TYR        | С | 58       | 58.407           | 34.360           | 2.083            | 1.00 | 16.79          |
|              |            |         |            |   |          |                  |                  |                  |      |                |

| ATOM         | 460        | CE1       | TYR        | C       | 58       | 59.123           | 36.982           | 2.767             | 1.00 | 19.79          |
|--------------|------------|-----------|------------|---------|----------|------------------|------------------|-------------------|------|----------------|
| ATOM         | 461        | CE2       | TYR        | C       | 58       | 58.408           | 35.385           | 1.101             | 1.00 | 15.79          |
| ATOM         | 462        | CZ        | TYR        |         | 58       | 58.772           | 36.658           | 1.465             | 1.00 | 22.24          |
| MOTA         | 463        | ОН        | TYR        |         | 58       | 58.773           | 37.582           | 0.406             |      | 23.11          |
| ATOM         | 464        | N         | ALA        |         | 59       | 60.236           | 31.199           | 3.113             |      | 11.72          |
| ATOM         | 465        | CA        | ALA        |         | 59       | 60.747           | 30.471           | 1.952             |      | 12.72          |
| ATOM         | 466        | С         | ALA        |         | 59       | 60.040           | 30.828           | 0.681             |      | 12.49          |
| ATOM         | 467        | 0         | ALA        |         | 59       | 58.820           | 30.922           | 0.629             |      | 13.37          |
| ATOM         | 468        | СВ        | ALA        |         | 59       | 60.532           | 28.933           | 2.179             |      | 13.81          |
| ATOM         | 469        | N         | ILE        |         | 60       | 60.887           | 30.962           | -0.360            | 1.00 | 15.14          |
| ATOM         | 470        | CA        | ILE        |         | 60       | 60.387           | 31.207           | -1.760            | 1.00 |                |
| ATOM<br>ATOM | 471<br>472 | С<br>0    | ILE        |         | 60<br>60 | 60.878<br>62.007 | 29.978<br>29.525 | -2.563<br>-2.396  | 1.00 |                |
| ATOM         | 473        | СВ        | ILE        |         | 60       | 61.069           | 32.427           | -2.340            | 1.00 | 14.68<br>18.30 |
| ATOM         | 474        | CG1       | ILE        |         | 60       | 60.607           | 33.708           | -1.635            | 1.00 |                |
| ATOM         | 475        | CG2       | ILE        |         | 60       | 60.811           | 32.500           | -3,911            | 1.00 |                |
| ATOM         | 476        | CD1       |            |         | 60       | 61.497           | 34.913           | -1.895            | 1.00 |                |
| ATOM         | 477        | N         | ALA        |         | 61       | 60.014           | 29.412           | -3.422            | 1.00 |                |
| ATOM         | 478        | CA        | ALA        |         | 61       | 60.493           | 28.249           | -4.180            | 1.00 |                |
| ATOM         | 479        | C         | ALA        |         | 61       | 61.328           | 28.696           | -5.413            |      | 18.47          |
| ATOM         | 480        | ō         | ALA        |         | 61       | 60.970           | 29.648           | -6.096            |      | 23.19          |
| ATOM         | 481        | CB        | ALA        |         | 61       | 59.337           | 27.383           | -4.642            |      | 17.99          |
| ATOM         | 482        | N         | ALA        |         | 62       | 62.430           | 28.006           | -5.607            |      | 14.95          |
| ATOM         | 483        | CA        | ALA        |         | 62       | 63.342           | 28.198           | -6.774            | 1.00 |                |
| MOTA         | 484        | С         | ALA        | С       | 62       | 63.068           | 26.946           | -7.605            | 1.00 | 18.92          |
| ATOM         | 485        | 0         | ALA        | С       | 62       | 62.551           | 25.909           | -7.178            | 1.00 | 17.86          |
| ATOM         | 486        | CB        | ALA        | C       | 62       | 64.817           | 28.259           | -6.403            | 1.00 | 13.98          |
| ATOM         | 487        | N         | GLU        |         | 63       | 63.424           | 27.072           | -8.904            | 1.00 | 17.78          |
| ATOM         | 488        | CA        | GLU        |         | 63       | 63.220           | 25.977           | -9.834            |      | 19.52          |
| ATOM         | 489        | С         | GLU        |         | 63       | 63.779           | 24.635           | -9.365            |      | 19.81          |
| ATOM         | 490        | 0_        | GLU        |         | 63       | 64.894           | 24.571           | -8.868            | 1.00 | 17.13          |
| ATOM         | 491        | CB        | GLU.       |         | 63       | 63.968           |                  | -11.140           |      | 21.37          |
| ATOM         | 492        | CG        | GLU        |         | 63       | 63.779           |                  | -12.296           |      | 29.86          |
| ATOM<br>ATOM | 493<br>494 | CD<br>OE1 | GLU        |         | 63       | 64.980           |                  | -13.255           |      | 53.22          |
| ATOM         | 495        | OE2       | GLU<br>GLU |         | 63<br>63 | 65.920<br>64.964 |                  | -13.149           |      | 44.04          |
| ATOM         | 496        | N         | ARG        |         | 64       | 63.012           | 23.575           | -14.129<br>-9.561 |      | 43.79<br>16.26 |
| ATOM         | 497        | CA        | ARG        |         | 64       | 63.425           | 22.245           | -9.201            |      | 16.34          |
| ATOM         | 498        | C         | ARG        |         | 64       | 64.723           | 21.863           | -9.911            |      | 21.13          |
| ATOM         | 499        | ō         | ARG        |         | 64       | 64.809           |                  | -11.168           |      | 20.36          |
| ATOM         | 500        | СВ        | ARG        |         | 64       | 62.326           | 21.232           | -9.503            |      | 19.26          |
| ATOM         | 501        | CG        | ARG        |         | 64       | 62,635           | 19.890           | -8.963            |      | 26.38          |
| MOTA         | 502        | CD        | ARG        |         | 64       | 61.521           | 18.875           | -9.196            |      | 27.64          |
| ATOM         | 503        | NE        | ARG        | ·C      | 64       | 60.171           | 19.286           | -8.819            | 1.00 | 26.53          |
| ATOM         | 504        | CZ        | ARG        | С       | 64       | 59.662           | 19.154           | -7.585            | 1.00 | 41.54          |
| ATOM         | 505        | NH1       | ARG        | С       | 64       | 60.408           | 18.669           | -6.578            | 1.00 | 23.51          |
| ATOM         | 506        | NH2       | ARG        | С       | 64       | 58.421           | 19.526           | -7.351            | 1.00 | 30.75          |
| ATOM         | 507        | N         | GLY        |         | 65       | 65.728           | 21.436           | -9.177            |      | 17.09          |
| ATOM         | 508        | CA        | GLY        |         | 65       | 67.000           | 21.022           | -9.721            |      | 17.60          |
| ATOM         | 509        | С         | GLY        |         | 65       | 68.038           | 22.140           | -9.853            |      | 18.83          |
| ATOM         | 510        | 0         | GLY        |         | 65       | 69.192           |                  | -10.218           |      | 20.21          |
| ATOM         | 511        | N         | SER        |         | 66       | 67.650           | 23.380           | -9.543            |      | 16.18          |
| ATOM<br>ATOM | 512<br>513 | CA        | SER        |         | 66<br>66 | 68.539           | 24.515           | -9.627            |      | 15.57          |
| ATOM         | 513        | C         | SER        | <u></u> | 66<br>66 | 69.606           | 24.577           | -8.516            |      | 19.13          |
| ATOM         | 515        | O<br>CB   | SER<br>SER |         | 66<br>66 | 70.673<br>67.764 | 25.179<br>25.795 | -8.654            |      | 18.34          |
| ATOM         | 516        | OG        | SER        |         | 66       | 67.136           | 26.006           | -9.596<br>-8.280  |      | 18.61<br>17.83 |
| ATOM         | 517        | N         | ARG        |         | 67       | 69.272           | 23.904           | -7.390            |      | 16.53          |
| ATOM         | 518        | CA        | ARG        |         | 67       | 70.164           | 23.877           | -6.187            |      | 17.76          |
| ATOM         | 519        | C         | ARG        |         | 67       | 70.423           | 25.285           | -5.633            |      | 14.93          |
|              |            | -         |            | _       |          |                  |                  | 4.000             |      |                |

| MOTA         | 520              | 0         | ARG        | С   | 67       | 71.423           | 25.507           | -4.998           | 1.00 | 16.56          |
|--------------|------------------|-----------|------------|-----|----------|------------------|------------------|------------------|------|----------------|
| ATOM         | 521              | CB        | ARG        |     | 67       | 71.476           | 23.153           | -6.456           | 1.00 | 15.58          |
| MOTA         | 522              | CG        | ARG        |     | 67       | 71.298           | 21.685           | -6.865           | 1.00 |                |
| ATOM         | 523              | CD        | ARG        |     | 67       | 72.533           | 20.909           | -6.767           | 1.00 |                |
| ATOM         | 524              | NE        | ARG        |     | 67       | 72.322           | 19.522           | -7.249           | 1.00 |                |
| ATOM         | 525              | CZ        | ARG        |     | 67       | 73.219           | 18.551           | -7:123           | 100  |                |
| ATOM         | 526              | NH1       |            |     | 67       | 74.395           | 18.751           | -6.546           | 1.00 |                |
| ATOM         | 527              | NH2       |            | _   | 67       | 72.944           | 17.336           | -7.609           | 1.00 |                |
| ATOM         | 528              | N         | ILE        |     | 68       | 69.503           | 26.201           | -5.884           | 1.00 |                |
| ATOM         | 529              | CA        | ILE        |     | 68       | 69.659           | 27.584           | -5.447           | 1.00 |                |
| ATOM<br>ATOM | 530              | C         | ILE        |     | 68<br>60 | 69.325           | 27.709           | -3.918           | 1.00 |                |
| ATOM         | 531<br>532       | O         | ILE        |     | 68<br>68 | 68.385           | 27.063           | -3.430           | 1.00 |                |
| ATOM         | 533              | CB<br>CG1 | ILE<br>ILE |     | 68<br>68 | 68.680           | 28.483<br>28.633 | -6.228           | 1.00 |                |
| ATOM         | 534              | CG2       | ILE        |     | 68<br>68 | 69.177<br>68.517 | 29.887           | -7.743<br>-5.539 | 1.00 |                |
| ATOM         | 535              | CD1       |            |     | 68       | 68.162           | 29.265           | -8.585           | 1.00 | 14.91<br>17.12 |
| ATOM         | 536              | N         | ILE        |     | 69       | 70.116           | 28.547           | -3.278           |      | 15.79          |
| ATOM         | 537              | CA        | ILE        |     | 69       | 69.921           | 29.021           | -1.887           |      | 14.43          |
| ATOM         | 538              | C         | ILE        |     | 69       | 70.273           | 30.521           | -2.099           | 1.00 | 12.91          |
| ATOM         | 539              | ŏ         | ILE        |     | 69       | 71.469           | 30.897           | -2.053           | 1.00 | 16.10          |
| ATOM         | 540              | CB        | ILE        |     | 69       | 70.826           | 28.392           | -0.867           | 1.00 | 14.38          |
| ATOM         | 541              | CG1       |            |     | 69       | 70.632           | 26.859           | -0.742           | 1.00 | 14.18          |
| ATOM         | ` 542            | CG2       | ILE        |     | 69       | 70.524           | 29.042           | 0.545            | 1.00 | 14.77          |
| MOTA         | 543              | CD1       | ILE        |     | 69       | 69.240           | 26.399           | -0.207           | 1.00 | 13.25          |
| ATOM         | 544              | N         | SER        | c.  | 70       | 69.266           | 31.361           | -2.315           |      | 12.61          |
| MOTA         | 545              | CA        | SER        | c ' | 70       | 69.474           | 32.776           | -2.545           | 1.00 | 12.79          |
| ATOM         | 546              | С         | SER        | c.  | 70       | 68.897           | 33.612           | -1.365           | 1.00 | 16.65          |
| ATOM         | 547              | 0         | SER        | c . | 70       | 67.703           | 33.574           | -1.101           | 1.00 | 16.44          |
| ATOM         | 548              | CB        | SER        | c 1 | 70       | 68.786           | 33.187           | -3.877           | 1.00 | 17.19          |
| ATOM         | 549              | OG        | SER        | c.  | 70       | 69.055           | 34.583           | -4.178           | 1.00 | 19.28          |
| MOTA         | 550              | N         | VAL        |     | 71       | 69.763           | 34.375           | -0.735           | 1.00 | 16.77          |
| ATOM         | 551              | CA        | VAL        |     | 71       | 69.353           | 35.237           | 0.411            | 1.00 | 16.54          |
| MOTA         | 552              | С         | VAL        |     | 71       | 69.046           | 36.611           | -0.216           | 1.00 | 18.47          |
| ATOM         | 553              | 0         | VAL        |     | 71       | 69.938           | 37.276           | -0.785           |      | 20.32          |
| ATOM         | 554              | СВ        | VAL        |     | 71       | 70.489           | 35.218           | 1.485            |      | 21.34          |
| ATOM         | 555              | CG1       | VAL        |     | 71       | 70.168           | 36.151           | 2.628            |      | 23.85          |
| MOTA         | 556              | CG2       | VAL        |     | 71       | 70.661           | 33.816           | 2.075            | 1.00 |                |
| ATOM         | · 557            | N         | ASN (      |     | 12       | 67.793           | 37.013           | -0.156           | 1.00 |                |
| ATOM         | 558              | CA        | ASN (      |     | 12       | 67.310           | 38.229           | -0.774           | 1.00 | 18.06          |
| ATOM<br>ATOM | 559              | C         | ASN (      |     | 72       | 66.822           | 39.292           | 0.185            | 1.00 |                |
| ATOM         | 560<br>561       | O<br>CB   | ASN (      |     | 12       | 66.550           | 38.985           | 1.364            | 1.00 |                |
| ATOM         | 562              | CG        | ASN (      |     | 12<br>12 | 66.111<br>66.479 | 37.862           | -1.684<br>-2.771 | 1.00 |                |
| ATOM         | 563              | OD1       |            |     | 12       | 67.625           | 36.805<br>36.673 | -3.142           |      | 21.14          |
| ATOM         | 564              |           | ASN (      |     | 12       | 65.471           | 36.043           | -3.192           |      | 22.76<br>26.84 |
| ATOM         | 565              | N         | GLY (      |     | 13       | 66.680           | 40.519           | -0.296           |      | 17.96          |
| ATOM         | 566              | CA        | GLY (      |     | 3        | 66.191           | 41.609           | 0.547            | 1.00 | 17.13          |
| ATOM         | 567              | C.        | GLY (      |     | 13       | 67.152           | 41.925           | 1.662            | 1.00 | 17.10          |
| ATOM         | 568              | ō         | GLY (      |     | 3        | 68.358           | 41.772           | 1.548            | 1.00 | 17.56          |
| ATOM         | 569              | N         | ALA C      |     | 4 .      | 66.585           | 42.379           | 2.783            |      | 16.81          |
| ATOM         | 570              | CA        | ALA (      |     | 4        | 67.448           | 42.743           | 3.926            |      | 16.63          |
| ATOM         | 571              | С         | ALA (      |     | 4        | 68.307           | 41.588           | 4.409            |      | 17.98          |
| ATOM         | 572              | 0         | ALA (      | 7   | 4        | 69.403           | 41.809           | 4.948            |      | 17.87          |
| ATOM         | 573              |           | ALA C      |     | 4        | 66.585           | 43.261           | 5.083            | 1.00 | 16.76          |
| MOTA         | 574              | N         | ALA C      |     | 5        | 67.829           | 40.348           | 4.210            | 1.00 | 16.77          |
| MOTA         | 575              | CA        | ALA C      |     | 5        | 68.603           | 39.156           | 4.626            |      | 17.69          |
| MOTA         | 576              | С         | ALA (      |     | 5        | 70.019           | 39.079           | 3.999            |      | 17.68          |
| ATOM         | 577              | 0         | ALA (      |     | 5        | 70.898           | 38.411           | 4.507            |      | 16.79          |
| ATOM         | 578              | CB        | ALA C      |     | 5        | 67.861           | 37.907           | 4.282            |      | 20.55          |
| ATOM         | <sub>.</sub> 579 | N         | ALA C      | 7   | 6        | 70.216           | 39.775           | 2.856            | 1.00 | 16.67          |
|              |                  |           |            |     |          |                  |                  |                  |      |                |

| ATOM         | 580        | CA      | ALA | С | 76       |   | 71.535           | 39. <b>7</b> 37  | 2.230           | 1.00 | 17.52          |
|--------------|------------|---------|-----|---|----------|---|------------------|------------------|-----------------|------|----------------|
| ATOM         | 581        | С       | ALA |   | 76       |   | 72.644           | 40.382           | 3.121           | 1.00 | 17.22          |
| ATOM         | 582        | 0       | ALA | С | 76       |   | 73.840           | 40.202           | 2.886           | 1.00 | 18.09          |
| ATOM         | 583        | CB      | ALA | С | 76       |   | 71.482           | 40.359           | 0.797           | 1.00 | 18.29          |
| ATOM         | 584        | N       | HIS | С | 77       |   | 72.232           | 41.101           | 4.193           | 1.00 | 15.19          |
| MOTA         | 585        | CA      | HIS | С | 77       |   | 73.203           | 41.686           | 5.120           | 1.00 | 16.72          |
| ATOM         | 586        | С       | HIS | С | 77       |   | 73.627           | 40.623           | 6.163           | 1.00 | 16.17          |
| ATOM         | 587        | Ο.      |     | С | 77       |   | 74.587           | 40.860           | 6.914           | 1.00 |                |
| ATOM         | 588        | СВ      | HIS |   | . 77     |   | 72.502           | 42.778           | 5.963           | 1.00 |                |
| ATOM         | 589        | CG      | HIS | С | 77       |   | 72.336           | 44.077           | 5.261           |      | 21.21          |
| ATOM         | 590        | ND1     |     | С | 77       |   | 73.368           | 44.963           | 5.118           | 1.00 |                |
| ATOM         | 591        |         |     | С | 77       |   | 71.258           | 44.654           | 4.687           |      | 22.31          |
| ATOM         | 592        |         |     | С | 77       |   | 72.940           | 46.030           | 4.463           | 1.00 | 23.74          |
| ATOM         | 593        |         | HIS |   | 77       |   | 71.663           | 45.876           | 4.200           | 1.00 |                |
| ATOM         | 594        | N       | CYS | C | 78       |   | 72.921           | 39.495           | 6.201           | 1.00 | 14.86          |
| ATOM         | 595        | CA      | CYS |   | 78       |   | 73.192           | 38.449           | 7.199           | 1.00 | 16.42          |
| ATOM         | 596        | C       |     | C | 78       |   | 73.868           | 37.192           | 6.701           | 1.00 | 16.96          |
| MOTA         | 597        | 0       |     | C | 78       |   | 74.290           | 36.294           | 7.516           | 1.00 | 16.97          |
| ATOM         | 598        | CB      | CYS |   | 78       |   | 71.873           | 38.018           | 7.877           | 1.00 | 16.76          |
| ATOM         | 599        | SG      | CYS |   | 78       |   | 70.910           | 39.411           | 8.622           | 1.00 | 22.74          |
| ATOM         | 600        | N       | ALA |   | 79       |   | 73.983           | 37.044           | 5.346           | 1.00 | 14.78          |
| ATOM         | 601        | CA      | ALA |   | 79       |   | 74.626           | 35.854           | 4.795           | 1.00 | 14.85          |
| ATOM         | 602        | C       | ALA |   | 79       |   | 75.204           | 36.282           | 3.435           |      | 15.30<br>16.51 |
| ATOM         | 603        | O.      | ALA |   | 79<br>70 |   | 74.676           | 37.213           | 2.822           | 1.00 |                |
| ATOM         | 604        | CB      | ALA |   | 79       |   | 73.652           | 34.707           | .4.608<br>3.082 | 1.00 | 15.77          |
| ATOM<br>ATOM | 605<br>606 | N<br>CA | SER |   | 80<br>80 |   | 76.281<br>77.009 | 35.597<br>35.855 | 1.804           | 1.00 | 13.90<br>13.46 |
| ATOM         | 607        | C       | SER |   | 80       |   | 77.182           | 34.588           | 1.039           | 1.00 | 17.54          |
| ATOM         | 608        | ō       | SER |   |          |   | 77.156           | 33.497           | 1.573           | 1.00 | 16.85          |
| ATOM         | 609        | СВ      | SER |   | 80       | • | 78.368           | 36.434           | 2.130           | 1.00 | 17.79          |
| ATOM         | 610        | OG      | SER |   | 80       |   | 78.214           | 37.661           | 2.852           | 1.00 | 18.84          |
| ATOM         | 611        | N       | VAL |   | 81       |   | 77.403           | 34.738           | -0.290          | 1.00 | 15.99          |
| ATOM         | 612        | CA      | VAL |   | 81       |   | 77.636           | 33.575           | -1.121          | 1.00 | 14.74          |
| ATOM         | 613        | C       | VAL |   | 81       |   | 78.865           | 32.845           | -0.571          | 1.00 | 14.78          |
| ATOM         | 614        | ŏ       | VAL |   | 81       |   | 79.915           | 33.417           | -0.317          | 1.00 | 15.81          |
| ATOM         | 615        | СВ      | VAL |   | 81       |   | 77.941           | 34.058           | -2.623          | 1.00 | 14.01          |
| ATOM         | 616        | CG1     |     |   | 81       |   | 78.354           | 32.825           | -3.456          | 1.00 | 15.95          |
| ATOM         | 617        |         | VAL |   | 81       |   | 76.706           | 34.650           | -3.234          | 1.00 | 15.67          |
| ATOM         | 618        | N       | GLY |   | 82       |   | 78.740           | 31.543           | -0.346          | 1.00 | 14.65          |
| ATOM         | 619        | CA      | GLY |   | 82       |   | 79.809           | 30.766           | 0.200           | 1.00 | 14.30          |
| ATOM         | 620        | С       | GLY |   | 82       |   | 79.558           | 30.358           | 1.673           | 1.00 | 16.91          |
| ATOM         | 621        | 0       | GLY |   | 82       |   | 80.116           | 29.368           | 2.122           | 1.00 | 15.50          |
| ATOM         | 622        | N       | ASP | С | 83       |   | 78.746           | 31,145           | 2.355           | 1.00 | 14.93          |
| ATOM         | 623        | CA      | ASP | С | 83       |   | 78.465           | 30.803           | 3.792           | 1.00 | 13.74          |
| MOTA         | 624        | С       | ASP | С | 83       |   | 77.699           | 29.490           | 3.879           | 1.00 | 14.63          |
| ATOM         | 625        | 0       | ASP | C | 83       |   | 76.858           | 29.163           | 3.011           | 1.00 | 15.91          |
| MOTA         | 626        | CB      | ASP | С | 83       |   | 77.586           | 31.900           | 4.467           | 1.00 | 13.28          |
| MOTA         | 627        | CG      | ASP | C | 83       |   | 78.339           | 33.192           | 4.782           | 1.00 | 12.11          |
| ATOM         | 628        |         |     | С | 83       |   | 79.600           | 33.269           | 4.679           | 1.00 | 15.32          |
| MOTA         | 629        | OD2     | ASP | С | 83       |   | 77.591           | 34.161           | 5.119           | 1.00 | 15.76          |
| ATOM         | 630        | N       | ILE |   | 84       |   | 77.970           | 28.743           | 4.968           |      | 14.29          |
| MOTA         | 631        | CA      | ILE |   | 84       |   | 77.296           | 27.473           | 5.239           |      | 13.65          |
| MOTA         | 632        | C       | ILE |   | 84       |   | 76.184           | 27.799           | 6.282           | 1.00 | 13.60          |
| ATOM         | 633        | 0       | ILE |   | 84       |   | 76.469           | 28.474           | 7.272           | 1.00 | 15.62          |
| ATOM         | 634        | CB      | ILE |   | 84       |   | 78.287           | 26.496           | 5.913           | 1.00 | 16.83          |
| ATOM         | 635        | CG1     |     |   | 84       |   | 79.463           | 26.115           | 4.939           | 1.00 | 17.52          |
| ATOM         | 636        | CG2     | ILE |   | 84       |   | 77.560           | 25.231           | 6.346           | 1.00 | 19.25          |
| ATOM         | 637        | CD1     |     |   | 84       |   | 78.981           | 25.389           | 3.679           |      | 21.07          |
| ATOM         | 638        | N       | VAL |   | 85       |   | 74.976           | 27.392           | 6.001           | 1.00 | 12.41          |
| ATOM         | 639        | CA      | VAL | С | 85       |   | 73.864           | 27.713           | 6.910           | 1.00 | 12.94          |

| ATOM         | 640        | C          | VAL        | С | 85        | • | 72.991           | 26.532           | 7.153            | 1.00 | 15.89          |
|--------------|------------|------------|------------|---|-----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 641        | 0          | VAL        |   | 85        |   | 73.039           | 25.474           | 6.469            | 1.00 | 14.01          |
| ATOM         | 642        | CB         | VAL        |   | 85        |   | 72.979           | 28.838           | 6.312            | 1.00 | 14.37          |
| ATOM         | 643        | CG1        |            |   | 85        |   | 73.801           | 30.088           | 5.901            | 1.00 | 13.95          |
| ATOM         | 644        | CG2        |            |   | 85        |   | 72.180           | 28.356           | 5.045            | 1.00 |                |
| ATOM         | 645        | N          | ILE        | _ | 86        |   | 72.116           | 26.676           | 8.178            | 1.00 |                |
| ATOM         | 646        | CA         | ILE        |   | 86        | - | 71.158           | 25.631           | 8.523            | 1.00 |                |
| ATOM         | 647        | C          | ILE        |   | 86        |   | 69.809           | 26.347           | 8.420            | 1.00 |                |
| ATOM         | 648        | 0          | ILE        |   | 86        |   | 69.643           | 27.439           | 8.961            | 1.00 |                |
| ATOM         | 649        | CB         | ILE        |   | 86        |   | 71.391           | 25.081           | 9.985            | 1.00 |                |
| ATOM         | 650<br>651 | CG1        |            |   | 86        |   | 72.703           | 24.242           | 10.022           | 1.00 |                |
| ATOM<br>ATOM | 652        | CG2<br>CD1 |            |   | 86<br>86  |   | 70.181<br>73.325 | 24.220<br>24.108 | 10.367           | 1.00 |                |
| ATOM         | 653        | И          | ILE        |   | 87        |   | 68.861           | 25.804           | 11.423           | 1.00 |                |
|              | 654        | CA         | ILE        |   | 87        |   | 67.560           | 26.410           | 7.449            | 1.00 |                |
| ATOM         | 655        | C          | ILE        |   | 87        |   | 66.521           | 25.488           | 8.056            | 1.00 |                |
| ATOM         | 656        | ō          | ILE        |   | 87        |   | 66.411           | 24.300           | 7.711            | 1.00 |                |
| ATOM         | 657        | СВ         | ILE        |   | 87        |   | 67.259           | 26.629           | 5.881            | 1.00 |                |
| ATOM         | 658        | CG1        |            |   | 87        |   | 68.381           | 27.458           | 5.331            | 1.00 |                |
| ATOM '       | 659        | CG2        |            |   | 87        |   | 65.903           | 27.272           | 5.724            | 1.00 | 14.68          |
| ATOM         | 660        | CD1        |            |   | 87        |   | 68.240           | 27.670           | 3.726            | 1.00 | 14.91          |
| ATOM         | 661        | N          | ALA        |   | 88        |   | 65.718           | 26.045           | 9.004            | 1.00 |                |
| ATOM         | 662        | CA         | ALA        |   | 88        |   | 64.724           | 25.224           | 9.662            | 1.00 |                |
| ATOM         | 663        | С          | ALA        | C | 88        |   | 63.339           | 25.757           | 9.674            | 1.00 |                |
| ATOM         | 664        | 0          | ALA        | С | 88        |   | 63.146           | 26.990           | 9.596            | 1.00 | 12.85          |
| ATOM         | 665        | CB         | ALA        | С | 88        |   | 65.208           | 25.134           | 11.204           | 1.00 | 12.18          |
| MOTA         | 666        | N          | SER        | С | 89        |   | 62.321           | 24.892           | 9.833            | 1.00 | 11.32          |
| ATOM         | 667        | CA         | SER        |   | 89        |   | 60.945           | 25.386           | 10.017           | 1.00 | 11.17          |
| ATOM         | 668        | С          | SER        |   | 89        |   | 60.407           | 24.644           | 11.248           | 1.00 | 11.44          |
| ATOM         | 669        | 0          | SER        |   | 89        |   | 60.891           | 23.539           | 11.573           | 1.00 |                |
| ATOM         | 670        | CB         | SER        |   | 89        |   | 59.986           | 25.246           | 8.807            | 1.00 | 14.68          |
| ATOM         | 671        | OG         | SER        |   | 89        |   | 59.409           | 23.939           | 8.749            |      | 13.56          |
| ATOM         | 672        | N          | PHE        |   | 90        |   | 59.489           | 25.340           | 11.926           |      | 11.58          |
| ATOM         | 673        | CA         | PHE        | C | 90        |   | 58.878           | 24.772           | 13.154           |      | 10.03          |
| ATOM<br>ATOM | 674<br>675 | C          |            | C | 90        |   | 57.391           | 24.743           | 13.006           | 1.00 | 11.41          |
| ATOM         | 676        | O<br>CB    | PHE        | С | 90.<br>90 |   | 56.780           | 25.662<br>25.677 | 12.350           |      | 12.95          |
| ATOM         | 677        | CG         |            | C | 90        |   | 59.257<br>60.681 | 25.536           | 14.348<br>14.776 |      | 10.86          |
| ATOM         | 678        |            | PHE        | C | 90        |   | 61.724           | 26.266           | 14.776           | 1.00 | 11.25<br>12.54 |
| ATOM         | 679        |            | PHE        |   | 90        |   | 61.016           | 24.612           | 15.810           |      | 13.88          |
| ATOM         | 680        | CE1        | PHE        |   | 90        |   | 63.094           | 26.079           | 14.613           | 1.00 | 12.35          |
| ATOM         | 681        | CE2        | PHE        |   | 90        |   | 62.289           | 24.431           | 16.247           | 1.00 | 13.61          |
| ATOM         | 682        | CZ         | PHE        |   | 90        |   | 63.373           | 25.138           | 15.672           | 1.00 | 12.98          |
| MOTA         | 683        | N          | VAL        |   | 91        |   | 56.768           | 23.720           | 13.608           | 1.00 | 9.83           |
| ATOM         | 684        | CA         | VAL        | С | 91        |   | 55.315           | 23.572           | 13.573           |      | 10.22          |
| ATOM         | 685        | С          | VAL        | С | 91        |   | 54.795           | 23.312           | 14.993           | 1.00 | 14.03          |
| ATOM         | 686        | 0          | VAL        | С | 91        |   | 55.606           | 22.962           | 15.893           | 1.00 | 13.50          |
| ATOM         | 687        | CB         | VAL        | С | 91        |   | 54.804           | 22.401           | 12.688           | 1.00 | 13.62          |
| ATOM         | 688        |            | VAL        |   | 91        |   | 55.015           | 22.757           | 11.190           | 1.00 | 15.08          |
| ATOM         | 689        |            | VAL        |   | 91        |   | 55.481           | 21.082           | 13.064           |      | 13.05          |
| ATOM         | 690        | N          | THR        |   | 92        |   | 53.528           | 23.542           | 15.175           |      | 12.76          |
| ATOM         | 691        | CA         | THR        |   |           | • | 52.916           | 23.289           | 16.511           |      | 11.56          |
| ATOM         | 692        | C          | THR        |   | 92        | • | 51.985           | 22.099           | 16.437           |      | 13.31          |
| MOTA         | 693        | 0          | THR        |   | 92        |   | 51.347           | 21.772           | 15.395           |      | 13.08          |
| ATOM         | 694        | CB         | THR        |   | 92        |   | 52.237           | 24.503           | 17.160           |      | 12.64          |
| ATOM<br>ATOM | 695<br>696 | OG1        | THR        |   | 92        |   | 51.102           | 24.918           | 16.359           |      | 16.06          |
| ATOM         | 697        | CG2        | THR        |   | 92        |   | 53.186           | 25.697           | 17.314           |      | 13.80          |
| ATOM         | 698        | N<br>CA    | MET<br>MET |   | 93<br>93  |   | 51.881<br>51.013 | 21.327<br>20.142 | 17.562           |      | 11.69          |
| ATOM         | 699        | CA         | MET        |   | 93        |   | 50.872           | 19.828           | 17.639<br>19.145 |      | 11.35          |
|              |            | ·          | tio T      | • | 23        |   | 30.012           | 19.020           | .J.143           | 1.00 | 14.45          |

| ATOM          | 700        | 0       | MET ( |       | 51.654           | 20.324           | 19.951           | 1.00 |                |
|---------------|------------|---------|-------|-------|------------------|------------------|------------------|------|----------------|
| MOTA          | 701        | CB      | MET ( |       | 51.697           | 18.907           | 16.955           | 1.00 | 12.85          |
| ATOM          | 702        | CG      | MET ( |       | 53.062           | 18.586           | 17.608           | 1.00 | 13.91          |
| ATOM          | 703        | SD      | MET ( |       | 54.059           | 17.382           | 16.687           | 1.00 | 14.46          |
| ATOM          | 704        | CE      |       | 93    | 54.523           | 18.473           | 15.286           | 1.00 | 14.10          |
| ATOM          | 705        | N       | PRO ( |       | 49.873           | 19.055           | 19.455           | 1.00 | 12.36          |
| ATOM          | 706        | CA      | PRO ( |       | 49.648           | 18.670           | 20.865           | 1.00 | 12.35          |
| ATOM          | 707        | C       | PRO ( |       | 50.877           | 17.883           | 21.402           | 1.00 | 15.66          |
| ATOM          | 708        | 0       | PRO ( |       | 51.630           | 17.195<br>17.712 | 20.717<br>20.781 | 1.00 | 14.35          |
| ATOM<br>ATOM  | 709<br>710 | CB      | PRO ( |       | 48.504<br>47.676 | 18.206           | 19.582           | 1.00 | 13.86<br>15.72 |
| ATOM          | 711        | CD      | PRO   |       | 48.832           | 18.461           | 18.595           | 1.00 | 12.82          |
| ATOM          | 712        | N       | ASP ( |       | 51.023           | 17.929           | 22.751           | 1.00 | 14.03          |
| ATOM          | 713        | CA      | ASP ( |       | 52.125           | 17.208           | 23.352           | 1.00 | 15.39          |
| ATOM          | 714        | C       | ASP ( |       | 52.288           | 15.721           | 22.997           | 1.00 | 16.06          |
| ATOM          | 715        | ō       | ASP ( |       | 53.415           | 15.216           | 22.827           | 1.00 | 16.29          |
| ATOM          | 716        | CB      | ASP ( |       | 51.982           | 17.327           | 24.883           | 1.00 | 15.44          |
| ATOM          | 717        | CG      | ASP ( | 95    | 53.209           | 16.791           | 25.618           | 1.00 | 15.85          |
| ATOM          | 718        | OD1     | ASP ( | 95    | 54.314           | 17.367           | 25.497           | 1.00 | 14.33          |
| ATOM          | 719        | OD2     | ASP ( | 95    | 53.073           | 15.750           | 26.345           | 1.00 | 18.70          |
| ATOM          | 720        | N       | Gra ( | 96    | 51.181           | 14.987           | 22.922           | 1.00 | 15.70          |
| MOTA          | 721        | CA      | GLU ( | 96    | 51.283           | 13.563           | 22.604           | 1.00 | 14.32          |
| ATOM          | 722        | С       | GLU ( |       | 51.905           | 13.295           | 21.236           | 1.00 | 18.35          |
| ATOM          | 723        | Ο,      | GLU ( |       |                  | 12.468           | 21.100           | 1.00 | 17.78          |
| ATOM          | 724        | CB      | GLU ( |       | 49.944           | 12.850           | 22.791           | 1.00 | 16.31          |
| ATOM          | 725        | CG      | GLU ( |       | 50.012           | 11.377           | 22.421           |      | 22.63          |
| ATOM          | 726        | CD      | GLU ( |       | 48.701           | 10.594           | 22.718           |      | 23.98          |
| ATOM          | 727        | OE1     |       |       | 47.699           | 11.210           | 23.080           |      | 25.84          |
| ATOM.<br>ATOM | 728<br>729 | OE2     | GLU ( |       | 48.703<br>51.419 | 9.363<br>14.032  | 22.540 20.241    | 1.00 | 30.53          |
| ATOM          | 730        | N<br>CA | GLU ( |       | 52.004           | 13.852           | 18.911           | 1.00 | 15.52          |
| ATOM          | 730        | C       | GLU ( |       | 53.491           | 14.296           | 18.936           | 1.00 | 13.99          |
| ATOM          | 732        | ō       | GLU ( |       | 54.332           | 13.695           | 18.293           | 1.00 | 16.67          |
| ATOM          | 733        | СВ      | GLU ( |       | 51.202           | 14.706           | 17.929           | 1.00 | 15.35          |
| ATOM          | 734        | CG      | GLU ( |       | 51.780           | 14.636           | 16.496           | 1.00 | 17.59          |
| ATOM          | 735        | CD      | GLU ( |       | 50.924           | 15.416           | 15.525           |      | 22.36          |
| ATOM          | 736        | OE1     | GLU ( |       | 49.940           | 16.082           | .15.936          | 1.00 | 17.71          |
| ATOM          | 737        | OE2     | GLU ( | 97    | 51.268           | 15.305           | 14.305           | 1.00 | 22.62          |
| ATOM          | . 738      | N       | ALA C | 98    | 53.816           | 15.379           | 19.663           | 1.00 | 13.03          |
| ATOM          | 739        | CA '    | ALA C | 98    | 55.185           | 15.883           | 19.750           | 1.00 | 12.71          |
| ATOM          | 740        | С       | ALA ( |       | 56.174           | 14.859           | 20.323           | 1.00 | 15.63          |
| ATOM          | 741        | 0       | ALA ( |       | 57.339           | 14.809           | 19.952           | 1.00 | 14.36          |
| ATOM          | 742        | CB      | ALA C |       | 55.199           | 17.161           | 20.596           | 1.00 | 14.85          |
| ATOM          | 743        | N       | ARG ( |       | 55.689           | 13.987           | 21.252           | 1.00 | 14.05          |
| ATOM          | 744        | CA      | ARG C |       | 56.579           | 13.018           | 21.842           | 1.00 | 15.96          |
| ATOM<br>ATOM  | 745<br>746 | C       | ARG ( |       | 57.090           | 11.936           | 20.924           | 1.00 | 17.44<br>21.21 |
| ATOM          | 747        | O<br>CB | ARG C |       | 58.103<br>55.968 | 11.307<br>12.422 | 21.251 23.153    | 1.00 | 17.37          |
| ATOM          | 748        | CG      | ARG ( |       | 55.949           | 13.457           | 24.271           | 1.00 | 16.32          |
| ATOM          | . 749      | CD      | ARG C |       | 55.383           | 12.905           | 25.632           | 1.00 | 16.45          |
| ATOM          | 750        | NE      | ARG C |       | 53.933           | 12.912           | 25.712           |      | 14.75          |
| ATOM          | 751        | CZ      | ARG C |       | 53.157.          |                  | 25.584           |      | 13.61          |
| ATOM          | 752        |         | ARG C |       | 53.688           | 10.668           | 25.371           |      | 16.09          |
| ATOM          | 753        |         | ARG C |       | 51.846           | 11.988           | 25.703           |      | 18.40          |
| ATOM          | 754        | N       | THR C | : 100 | 56.438           | 11.713           | 19.788           |      | 16.42          |
| MOTA          | 755        | CA      | THR C | : 100 | 56.970           | 10.700           | 18.869           |      | 16.33          |
| ATOM          | 756        | С       | THR C |       | 57.108           | 11.310           | 17.469           |      | 19.97          |
| ATOM          | 757        | 0       | THR C |       | 57.162           | 10.569           | 16.457           |      | 20.03          |
| MOTA          | 758        | CB      | THR C |       | 56.147           | 9.435            | 18.772           |      | 21.91          |
| ATOM          | 759        | OG1     | THR C | : 100 | 54.764           | 9.744            | 18.520           | 1.00 | 20.66          |
|               |            |         |       | •     |                  |                  |                  |      |                |

| ATOM    | 760  | CG2 | THR | С | 100   | 56.224 | 8.675  | 20.128 | 1.00 | 22.68 |
|---------|------|-----|-----|---|-------|--------|--------|--------|------|-------|
| ATOM    | 761  | N   | TRP | С | 101   | 57.180 | 12.634 | 17.437 | 1.00 | 17.87 |
| ATOM    | 762  | CA  | TRP | С | 101 . | 57.321 | 13.322 | 16.115 | 1.00 | 16.71 |
| ATOM    | 763  | C   | TRP | С | 101   | 58.708 | 13.111 | 15.528 | 1.00 | 19.04 |
| ATOM    | 764  | 0   | TRP | С | 101   | 59.710 | 13.152 | 16.246 | 1.00 | 17.05 |
| ATOM    | 765  | CB  | TRP | С | 101   | 57.100 | 14.825 | 16.331 | 1.00 | 14.65 |
| ATOM    | 766  | CG  | TRP |   | 101   | 57.469 | 15.675 | 15.092 |      | 14.16 |
| ATOM    | 767  | CD1 | TRP | С | 101   | 58.521 | 16.473 | 14.986 | 1.00 | 16.31 |
| ATOM    | 768  | CD2 | TRP |   | 101   | 56.693 | 15.803 | 13.887 |      | 16.31 |
| ATOM    | 769  | NE1 | TRP |   | 101   | 58.514 | 17.103 | 13.701 |      | 15.49 |
| ATOM    | 770  | CE2 | TRP |   | 101   | 57.398 | 16.686 | 13.043 |      | 17.23 |
| ATOM    | 771  | CE3 | TRP |   | 101   | 55.500 | 15.234 | 13.424 |      | 19.60 |
| MOTA    | 772  | CZ2 | TRP |   | 101   | 56.935 | 17.023 | 11.749 |      | 18.02 |
| ATOM    | 773  | CZ3 | TRP |   | 101   | 55.020 | 15.590 | 12.147 |      | 21.23 |
| ATOM    | 774  | CH2 | TRP |   | 101   | 55.747 | 16.467 | 11.343 | 1.00 | 21.41 |
| ATOM    | 775  | N   | ARG |   | 102   | 58.788 | 12.895 | 14.174 |      | 15.76 |
| ATOM    | 776  | CA  | ARG |   | 102   | 60.114 | 12.715 | 13.551 |      | 16.64 |
| ATOM    | 777  | C   | ARG |   |       | 60.358 | 13.856 | 12.511 |      | 14.79 |
| ATOM    | 778  | ō   | ARG |   | 102   | 59.671 | 13.858 | 11.470 |      | 17.03 |
| ATOM    | 779  | СВ  | ARG |   | 102   | 60.181 | 11.375 | 12.823 |      | 17.42 |
| ATOM    | 780  | CG  | ARG |   | 102   | 59.934 | 10.169 | 13.728 |      | 24.67 |
| ATOM    | 781  | CD  | ARG |   | 102   | 60.918 | 10.190 | 14.864 |      | 40.94 |
| ATOM    | 782  | NE  | ARG |   |       | 60.647 |        | 15.815 |      | 58.76 |
| ATOM    | 783  | CZ  | ARG |   | 102   | 60.403 | 9.287  | 17.118 |      | 65.94 |
| ATOM    | 784  |     | ARG |   | 102   | 60.393 | 10.518 | 17.651 |      | 46.00 |
| ATOM    | 785  | NH2 | ARG |   | 102   | 60.162 | 8.231  | 17.890 |      | 52.57 |
| ATOM    | 786  | N   | PRO |   | 103   | 61.262 | 14.768 | 12.787 |      | 15.12 |
| ATOM    | 787  | CA  | PRO |   | 103   | 61.499 | 15.893 | 11.838 |      | 13.53 |
| ATOM    | 788  | c   | PRO |   |       | 62.051 | 15.360 | 10.512 |      | 15.29 |
| ATOM    | 789  | ō   | PRO |   | 103   | 62.678 | 14.328 | 10.477 |      | 16.02 |
| ATOM    | 790  | СВ  | PRO |   | 103   | 62.536 | 16.744 | 12.516 |      | 14.34 |
| ATOM    | 791  | CG  | PRO |   | 103   | 62.357 | 16.404 | 14.069 |      | 18.46 |
| ATOM    | 792  | CD  | PRO |   |       | 62.024 | 14.929 | 14.038 |      | 15.59 |
| ATOM    | 793  | N   | ASN |   |       | 61.797 | 16.147 | 9.439  | -    | 14.28 |
| ATOM    | 794  | CA  | ASN |   | 104   | 62.283 | 15.811 | 8.088  |      | 13.04 |
| ATOM    | 795  | C   | ASN |   | 104   | 63.643 | 16.508 | 7.924  |      | 14.43 |
| ATOM    | 796  | 0   | ASN |   | 104   | 63.701 | 17.742 | 7.661  |      | 13.98 |
| ATOM    | .797 | СВ  | ASN |   | 104   | 61.242 | 16.325 | 7.131  |      | 12.98 |
| ATOM    | 798  | CG  | ASN |   | 104   | 59.954 | 15.602 | 7.276  |      | 15.09 |
| ATOM    | 799  | OD1 |     |   | 104   | 59.914 | 14.364 | 7.131  |      | 17.92 |
| ATOM    | 800  | ND2 | ASN |   | 104   | 58.886 | 16.310 | 7.628  |      | 16.93 |
| ATOM    | 801  | N   | VAL |   | 105   | 64.733 | 15.763 | 8.113  |      | 14.40 |
| ATOM    | 802  | CA  | VAL |   |       | 66.051 | 16.308 | 8.052  |      | 15.19 |
| ATOM    | 803  | C   | VAL |   |       | 66.791 | 15.897 | 6.794  |      | 18.79 |
| ATOM    | 804  | ō   | VAL |   |       | 66.870 | 14.705 | 6.477  |      | 20.46 |
| ATOM    | 805  | СВ  | VAL |   | 105   | 66.898 | 15.862 | 9.252  |      | 18.28 |
| ATOM    | 806  | CG1 |     |   | 105   | 68.294 | 16.482 | 9.195  |      | 20.67 |
| ATOM    | 807  | CG2 | VAL |   | 105   | 66.189 | 16.312 | 10.600 |      | 17.51 |
| ATOM    | 808  | N   | ALA |   |       | 67.321 | 16.899 | 6.103  | 1.00 | -     |
| ATOM    | 809  | CA  | ALA |   |       | 68.130 | 16.617 | 4.865  |      | 16.75 |
| ATOM    | 810  | C   | ALA |   |       | 69.506 | 17.196 | 5.121  |      | 15.84 |
| ATOM    | 811  | ō   | ALA |   |       | 69.621 | 18.358 | 5.520  |      | 16.27 |
| ATOM    | 812  | СВ  | ALA |   |       | 67.469 | 17.246 | 3.645  |      | 17.32 |
| ATOM    | 813  | И   | TYR |   | 107   | 70.558 | 16.390 | 4.881  |      | 15.99 |
| ATOM    | 814  | CA  | TYR |   |       | 71.941 | 16.745 | 5.089  |      | 15.93 |
| ATOM    | 815  | C   | TYR |   | 107   | 72.620 | 17.003 | 3.740  |      | 18.71 |
| ATOM    | 816  | o   | TYR |   |       | 72.346 | 16.296 | 2.779  |      | 20.84 |
| ATOM    | 817  | СВ  | TYR |   |       | 72.714 | 15.637 | 5.835  |      | 19.26 |
| ATOM    | 818  | CG  | TYR |   |       | 72.177 | 15.391 | 7.253  |      | 21.14 |
| ATOM    | 819  | CD1 |     |   |       | 72.619 | 16.143 | 8.296  |      | 21.14 |
| ert Ora | 213  | CDI | 111 | • | 101   |        | ~0.143 | 0.230  | 1.00 | 44.71 |

|              | •            |          |            |   |            |                  |                  |                  |      |                |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|------|----------------|
| ATOM         | 820          | CD2      | TYR        | C | 107        | 71.259           | 14.405           | 7.479            | 1.00 | 23.16          |
| MOTA         | 821          | CEl      | TYR        |   | 107        | 72.125           | 15.931           | 9.596            |      | 24.59          |
| ATOM         | 822          | CE2      |            |   | 107        | 70.758           | 14.193           | 8.779            |      | 24.09          |
| ATOM         | 823          | CZ       | TYR        | _ | 107        | 71.220           | 14.964           | 9.794            |      | 27.50          |
| ATOM         | 824          | ОН       |            |   | 107        | 70.760           | 14.801           | 11.101           |      | 29.66          |
| ATOM         | 825          | N        | PHE        |   | 108        | 73.461<br>74.165 | 18.022<br>18.434 | 3.744<br>2.489   |      | 15.42<br>15.71 |
| ATOM<br>ATOM | 826 ·<br>827 | CA<br>C  | PHE        |   | 108<br>108 | 75.646           | 18.525           | 2.624            |      | 19.91          |
| ATOM         | 828          | 0        | PHE        |   | 108        | 76.239           | 18.645           | 3.715            |      | 19.12          |
| ATOM         | 829          | СВ       | PHE        |   | 108        | 73.644           | 19.803           | 2,063            |      | 16.87          |
| ATOM         | 830          | CG       | PHE        |   | 108        | 72.225           | 19.796           | 1.661            | 1.00 |                |
| ATOM         | 831          |          | PHE        |   | 108        | 71.195           | 19.910           | 2.626            |      | 17.17          |
| ATOM         | 832          |          | PHE        |   | 108        | 71.832           | 19.656           | 0.305            |      | 17.45          |
| MOTA         | 833          | CE1      | PHE        | С | 108        | 69.873           | 19.871           | 2.240            | 1.00 | 19.62          |
| ATOM         | 834          | CE2      | PHE        | С | 108        | 70.497           | 19.620           | -0.081           |      | 20.41          |
| ATOM         | 835          | CZ       | PHE        |   | 108        | 69.480           | 19.741           | 0.885            |      | 19.54          |
| ATOM         | 836          | N        | GLU        |   | 109        | 76.311           | 18.516           | 1.444            |      | 17.02          |
| ATOM         | 837          | CA       | GLU        |   | 109        | 77.762           | 18.671           | 1.404            |      | 17.21          |
| ATOM         | 838          | C        | GLU        |   | 109        | 78.099           | 19.064           | -0.072           |      | 15.89          |
| ATOM         | 839          | 0        | GLU        |   | 109        | 77.219           | 18.996           | -0.910<br>1.695  | 1.00 |                |
| ATOM<br>ATOM | 840<br>841   | CB<br>CG | GLU<br>GLU |   | 109<br>109 | 78.483<br>78.226 | 17.338<br>16.303 | 0.620            | 1.00 | 18.77<br>19.64 |
| ATOM .       | 842          | CD       | GLU        |   | 109        | 78.915           | 14.936           | 0.838            |      | 21.63          |
| ATOM         | 843          |          | GLU        |   | 109        |                  | 14.811           | 1.621            |      | 24.76          |
| ATOM         | 844          |          | GLU        |   | 109        | 78.472           | 13.999           | 0.170            |      | 28.24          |
| ATOM         | 845          | N        | GLY        |   |            | 79.348           | 19.435           | -0.277           |      | 15.85          |
| ATOM         | 846          | CA       | GLY        |   |            | 79.829           | 19.789           | -1.680           | 1.00 |                |
| ATOM         | 847          | С        | GLY        | С | 110        | 78.950           | 20.810           | -2.378           | 1.00 | 16.93          |
| ATOM         | 848          | 0        | GLY        | С | 110        | 78.634           | 21.885           | -1.812           | 1.00 | 16.26          |
| MOTA         | 849          | N        | ASP        |   |            | 78.534           | 20.528           | -3.637           |      | 14.38          |
| ATOM         | 850          | CA       | ASP        |   | 111        | 77.715           | 21.472           | -4.391           |      | 14.84          |
| ATOM         | 851          | С        | ASP        |   |            | 76.244           | 21.321           | -4.079           |      | 14.72          |
| ATOM         | 852          | 0        | ASP        |   |            | 75.360           | 21.023           | -4.904           |      | 14.34          |
| ATOM         | 853          | CB       | ASP        |   | 111        | 77.999           | 21.194           | -5.903           |      | 17.05          |
| ATOM<br>ATOM | 854<br>855   | CG '     | ASP<br>ASP |   | 111        | 77.264<br>77.013 | 22.145<br>23.323 | -6.828<br>-6.491 |      | 19.59<br>20.52 |
| ATOM         | 856          |          | ASP        |   |            | 76.873           | 21.686           | -7.928           | 1.00 |                |
| ATOM         | 857          | N        | ASN        |   |            | 75.927           | 21.537           | -2.787           |      | 14.68          |
| ATOM         | 858          | CA       | ASN        |   |            | 74.503           | 21.373           | -2.371           |      | 16.14          |
| ATOM         | 859          | C        | ASN        |   |            | 73.952           | 19.992           | -2.783           | 1.00 |                |
| ATOM         | 860          | 0        | ASN        |   |            | 72.799           | 19.870           | -3.263           |      | 14.89          |
| ATOM         | 861          | CB       | ASN        | С | 112        | 73.566           | 22.559           | -2.717           | 1.00 | 16.17          |
| MOTA         | 862          | CG       | ASN        | С | 112        | 73.880           | 23.786           | -1.870           | 1.00 | 18.78          |
| ATOM         | 863          |          | ASN        |   | 112        | 74.533           | 23.641           | -0.819           |      | 17.25          |
| ATOM         | 864          |          | ASN        |   | 112        | 73.429           | 24.960           | -2.293           |      | 15.61          |
| ATOM         | 865          | N        | GLU        |   | 113        | 74.785           | 18.960           | -2.531           |      | 14.05          |
| MOTA         | 866          | CA       | GLU        |   | 113        | 74.443           | 17.571           | -2.819           |      | 15.74          |
| ATOM<br>ATOM | 867<br>868   | С<br>0   | GLU        |   | 113<br>113 | 73.805           | 16.971           | -1.563<br>-0.539 | 1.00 | 18.95<br>19.58 |
| ATOM         | 869          | CB       | GLU        |   |            | 74.464<br>75.708 | 16.870<br>16.797 | -3.166           | 1.00 | 17.38          |
| ATOM         | 870          | CG       | GLU        |   |            | 75.440           |                  | -3.668           |      | 20.91          |
| ATOM         | 871          | CD       | GLU        | _ |            | 74.661           | 15.313           | -5.016           |      | 24.09          |
| ATOM         | 872          |          | GLU        |   |            | 75.023           | 15.987           | -5.993           |      | 30.10          |
| ATOM         | 873          |          | GLU        |   |            | 73.680           | 14.559           | -5.076           |      | 36.71          |
| ATOM         | 874          | N        | MET        | Ç | 114        | 72.556           | 16.563           | -1.684           |      | 18.64          |
| MOTA         | 875          | CA       | MET        |   |            | 71.826           | 15.984           | -0.519           |      | 20.88          |
| MOTA         | 876          | С        | MET        |   |            | 72.331           | 14.600           | -0.242           |      | 27.67          |
| MOTA         | 877          | 0        | MET        |   |            | 72.346           | 13.758           | -1.144           |      | 27.90          |
| MOTA         | 878          | CB       | MET        |   |            | 70.329           | 15.964           | -0.798           |      | 23.89          |
| ATOM         | 879          | CG       | MET        | С | 114        | 69.486           | 15.506           | 0.441            | 1.00 | 26.69          |

| MOTA | 880 | SD   | MET | С  | 114 | 67.734 | 15.561 | 0.136  | 1.00 29.33 |
|------|-----|------|-----|----|-----|--------|--------|--------|------------|
| ATOM | 881 | CE   | MET | С  | 114 | 67:568 | 17.266 | -0.315 | 1.00 23.75 |
| ATOM | 882 | N    | LYS | С  | 115 | 72.758 | 14.329 | 0.997  | 1,00 25.26 |
| ATOM | 883 | CA   |     |    | 115 | 73.254 | 12.995 | 1.346  | 1.00 30.27 |
|      |     |      |     |    |     |        |        |        |            |
| ATOM | 884 | С    |     |    | 115 | 72.131 | 11.966 | 1.381  | 1.00 36.08 |
| ATOM | 885 | 0    | LYS | С  | 115 | 72.449 | 10.760 | 1.181  | 1.00 41.29 |
| ATOM | 886 | CB   | LYS | С  | 115 | 74.009 | 12.984 | 2.674  | 1.00 31.52 |
| ATOM | 887 | CG   | LYS | С  | 115 | 75.147 | 13.960 | 2.791  | 1.00 29.39 |
| ATOM | 888 | CD   | LYS |    | 115 | 75.948 | 13.688 | 4.076  | 1.00 35.11 |
|      | 889 | CE   | LYS |    |     | 76.864 | 14.835 | 4.435  | 1.00 39.16 |
| ATOM |     |      |     |    |     |        |        |        |            |
| ATOM | 890 | NZ   | LYS |    | 115 | 77.861 | 14.448 | 5.498  | 1.00 41.83 |
| ATOM | 892 | N    | MET | D  | 1   | 41.087 | 33.198 | 23.825 | 1.00 17.87 |
| ATOM | 893 | CA   | MET | D  | 1   | 42.349 | 33.385 | 23.112 | 1.00 15.77 |
| ATOM | 894 | С    | MET | D  | 1   | 43.435 | 32.503 | 23.658 | 1.00 18.38 |
| ATOM | 895 | 0    | MET | D  | 1   | 43.248 | 31.921 | 24.772 | 1.00 16.03 |
| ATOM | 896 | CB   | MET |    | 1   | 42.724 | 34.805 | 22.826 | 1.00 18.15 |
|      |     |      |     |    |     |        |        |        |            |
| ATOM | 897 | CG   | MET |    | 1   | 42.641 | 35.784 | 23.928 | 1.00 21.69 |
| MOTA | 898 | SD   |     | D  | 1   | 43.800 | 35.292 | 25.234 | 1.00 24.50 |
| MOTA | 899 | CE   | MET | D  | 1   | 43.405 | 36.711 | 26.530 | 1.00 19.90 |
| MOTA | 900 | N    | ILE | D  | 2   | 44.516 | 32.347 | 22.912 | 1.00 13.90 |
| ATOM | 901 | CA   | ILE | D  | 2   | 45.595 | 31.431 | 23.276 | 1.00 12.73 |
| ATOM | 902 | C    | ILE | D  | 2   | 46.834 | 32.154 | 23.717 | 1.00 15.11 |
|      |     |      |     |    |     |        |        |        |            |
| ATOM | 903 | 0    | ILE |    | 2,  | 47.335 | 33.086 | 23.088 | 1.00 13.08 |
| MOTA | 904 | CB   | ILE |    | 2   | 45.916 | 30.531 | 22.029 | 1.00 12.91 |
| ATOM | 905 | CG1  | ILE | D  | . 5 | 44.663 | 29.775 | 21.519 | 1.00 14.95 |
| ATOM | 906 | CG2  | ILE | D  | 2   | 47.077 | 29.650 | 22.239 | 1.00 13.31 |
| ATOM | 907 | CD1  | ILE | D  | 2   | 44.172 | 28.701 | 22.510 | 1.00 19.87 |
| ATOM | 908 | N    | ARG |    | 3   | 47.332 | 31.720 | 24.876 | 1.00 11.64 |
|      | 909 | CA   | ARG |    | 3   | 48.516 |        | 25.459 | 1.00 9.38  |
| ATOM |     |      |     |    |     |        |        |        |            |
| MOTA | 910 | С    | ARG |    | 3   | 49.789 | 31.470 | 25.262 | 1.00 8.16  |
| ATOM | 911 | 0    | ARG | D  | 3   | 49.708 | 30.234 | 25.113 | 1.00 9.82  |
| ATOM | 912 | CB   | ARG | D  | 3   | 48.295 | 32.255 | 27.026 | 1.00 11.91 |
| ATOM | 913 | CG   | ARG | D  | 3   | 47.131 | 33.118 | 27.499 | 1.00 12.07 |
| ATOM | 914 | CD   | ARG |    | 3   | 47.529 | 34.571 | 27.783 | 1.00 12.41 |
| MOTA | 915 | NE   | ARG |    | 3   | 46.447 | 35.256 | 28.452 | 1.00 12.53 |
|      |     |      |     |    |     |        |        |        |            |
| MOTA | 916 | CZ   | ARG |    | 3   | 46.473 | 36.522 | 28.885 | 1.00 11.34 |
| ATOM | 917 |      | ARG |    | 3   | 47.517 | 37.336 | 28.661 | 1.00 11.49 |
| MOTA | 918 | NH2  | ARG | D  | 3   | 45.422 | 36.991 | 29.619 | 1.00 11.64 |
| MOTA | 919 | N    | THR | D  | 4   | 50.948 | 32.149 | 25.285 | 1.00 11.35 |
| MOTA | 920 | CA . | THR | ·D | 4   | 52.272 | 31.500 | 25.210 | 1.00 10.99 |
| ATOM | 921 | С    | THR |    | 4   | 52.813 | 31.593 | 26.693 | 1.00 9.80  |
| ATOM | 922 | ō    | THR |    | 4   | 52.986 | 32.672 | 27.155 | 1.00 10.46 |
|      |     |      |     |    |     |        |        |        |            |
| MOTA | 923 | CB   | THR |    | 4   | 53.199 | 32.217 | 24.279 | 1.00 13.30 |
| MOTA | 924 | OG1  | THR |    | 4   | 52.577 | 32.164 | 22.960 | 1.00 12.86 |
| MOTA | 925 | CG2  | THR | D  | 4   | 54.531 | 31.558 | 24.193 | 1.00 11.07 |
| MOTA | 926 | N    | MET | D  | 5   | 53.090 | 30.427 | 27.261 | 1.00 10.61 |
| ATOM | 927 | CA   | MET | D  | 5   | 53.555 | 30.329 | 28.694 | 1.00 10.17 |
| ATOM | 928 | С    | MET | D  | 5   | 54.837 | 29.563 | 28.799 | 1.00 13.79 |
| ATOM | 929 |      | MET |    | 5   | 55.101 | 28.614 | 28.027 | 1.00 12.14 |
|      |     | 0    |     | D  |     |        |        |        |            |
| MOTA | 930 | СВ   | MET | D  | 5   | 52.484 | 29.509 |        | 1.00 10.85 |
| MOTA | 931 | CG   |     | D  | 5   | 51.061 | 30.164 | 29.397 | 1.00 13.35 |
| ATOM | 932 | SD   | MET |    | 5   | 50.866 | 31.757 | 29.993 | 1.00 12.31 |
| ATOM | 933 | CE   | MET |    | 5   | 51.031 | 31.458 | 31.862 | 1.00 9.06  |
| ATOM | 934 | N    | LEU |    | 6   | 55.629 | 29.894 | 29.847 | 1.00 11.48 |
| ATOM | 935 | CA   | LEU |    | 6   | 56.867 | 29.146 | 30.088 | 1.00 11.70 |
|      |     |      |     |    |     | 56.504 | 27.682 |        | 1.00 15.58 |
| ATOM | 936 | С    | LEU |    | 6   |        |        | 30.442 |            |
| MOTA | 937 | 0    | LEU |    | 6   | 55.730 | 27.429 | 31.410 | 1.00 12.84 |
| ATOM | 938 | CB   | LEU |    | 6   | 57.607 | 29.780 | 31.270 | 1.00 11.07 |
| ATOM | 939 | CG   | LΕU | D  | 6   | 58.862 | 29.016 | 31.645 | 1.00 10.79 |
| ATOM | 940 |      | LEU |    | 6   | 60.065 | 29.206 | 30.628 | 1.00 12.32 |
|      |     |      |     | _  | -   | •      |        |        |            |

| MOTA   | 941   | CD2 | LEU | D | 6   |     | 59.389 | 29.481 | 33.038 | 1.00 | 12.20 |
|--------|-------|-----|-----|---|-----|-----|--------|--------|--------|------|-------|
| ATOM   | 942   | N   | GLN | D | 7   |     | 56.980 | 26.693 | 29.671 | 1.00 | 11.50 |
| MOTA   | 943   | CA  | GLN | D | 7   | ;   | 56.694 | 25.319 | 29.932 | 1.00 | 12.08 |
| MOTA   | 944   | C   | GLN | D | 7   | !   | 57.654 | 24.774 | 31.014 | 1.00 | 13.00 |
| ATOM   | 945   | 0   | GLN | D | 7   |     | 57.222 | 23.966 | 31.908 | 1.00 | 13.76 |
| MOTA   | 946   | CB  | GLN | D | 7   | ;   | 56.889 | 24.443 | 28.642 | 1.00 | 13.70 |
| ATOM   | 947   | CG  | GLN | D | 7   |     | 56.481 | 23.024 | 28.769 | 1.00 | 13.52 |
| ATOM   | 948   | CD  | GLN | D | 7   |     | 57.490 | 22.096 | 29.530 | 1.00 | 15.62 |
| ATOM   | 949   | OE1 |     | D | 7   | :   | 57.020 | 21.129 | 30.233 | 1.00 | 14.96 |
| MOTA   | 950   | NE2 | GLN | D | 7   | . ! | 58.822 | 22.323 | 29.355 | 1.00 | 13.51 |
| MOTA   | 951   | N   | GLY | D | 8   |     | 58.908 | 25.149 | 30.936 | 1.00 | 12.82 |
| MOTA   | 952   | CA  | GLY |   | 8   |     | 59.924 | 24.658 | 31.879 |      | 13.57 |
| MOTA   | 953   | C · | GLY |   | 8   |     | 61.276 | 25.264 | 31.576 | 1.00 | 17.33 |
| ATOM   | 954   | 0   | GLY | D | 8   |     | 51.489 | 25.874 | 30.508 |      | 16.12 |
| MOTA   | . 955 | N   | LYS | D | 9   |     | 52.225 | 25.176 | 32.515 |      | 13.73 |
| MOTA   | 956   | CA  | LYS | D | 9   |     | 63.535 | 25.722 | 32.269 |      | 14.09 |
| MOTA   | 957   | С   | LYS | D | 9   |     | 54.594 | 25.035 | 33.093 |      | 17.41 |
| MOTA   | 958   | 0   | LYS | D | 9   |     | 54.293 | 24.412 | 34.150 |      | 16.23 |
| MOTA   | 959   | CB  | LYS | D | 9   | •   | 63.604 | 27.197 | 32.448 | 1.00 | 17.25 |
| MOTA   | · 960 | CG  | LYS | D | 9   | (   | 53.491 | 27.641 | 33.937 | 1.00 | 16.41 |
| ATOM   | 961   | CD  | LYS | D | . 9 | 6   | 53.860 | 29.094 | 34.196 | 1.00 | 16.11 |
| ATOM   | 962   | CE  | LYS | D | 9   |     | 63.661 | 29.538 | 35.703 | 1.00 | 20.64 |
| MOTA   | 963   | NZ  | LYS | D | 9   |     | 54.168 | 30.899 | 36.005 | 1.00 | 24.09 |
| ATOM   | 964   | N   | LEU | D | 10  | •   | 55.795 | 25.085 | 32.580 | 1.00 | 14.37 |
| ATOM   | 965   | CA  | LEU | D | 10  | •   | 57.019 | 24.574 | 33.245 | 1.00 | 13.07 |
| MOTA   | 96,6  | С   | LEU | D | 10  | 6   | 7.683  | 25.889 | 33.669 | 1.00 | 17.74 |
| MOTA   | 967   | 0   | LEU | D | 10  | 6   | 8.139  | 26.719 | 32.864 | 1.00 | 15.88 |
| ATOM   | 968   | CB  | LEU | D | 10  | •   | 57.917 | 23.753 | 32.313 | 1.00 | 12.64 |
| MOTA   | 969   | CG  | LEU | D | 10  | 6   | 57.275 | 22.500 | 31.721 | 1.00 | 16.69 |
| ATOM   | 970   | CD1 | LEU | D | 10  | •   | 8.212  | 21.782 | 30.736 | 1.00 | 19.95 |
| MOTA   | 971   | CD2 | LEU | D | 10  | 6   | 56.799 | 21.474 | 32.834 | 1.00 | 18.21 |
| ATOM   | 972   | N   | HIS | D | 11  | 6   | 57.720 | 26.177 | 34.991 | 1.00 | 15.41 |
| ATOM   | 973   | CA  | HIS | D | 11  | 6   | 8.251  | 27.395 | 35.444 | 1.00 | 15.54 |
| MOTA   | 974   | С   | HIS | D | 11  | 6   | 59.702 | 27.368 | 35.893 | 1.00 | 20.36 |
| MOTA   | 975   | ٥.  | HIS | D | 11  | 7   | 70.031 | 26.640 | 36.895 | 1.00 | 19.27 |
| MOTA   | 976   | CB  | HIS | D | 11  | 6   | 57.374 | 27.904 | 36.683 | 1.00 | 17.02 |
| ATOM   | 977   | CG  | HIS | D | 11  | 6   | 7.650  | 29.324 | 37.063 | 1.00 | 20.52 |
| MOTA   | 978   | ND1 | HIS | D | 11  | €   | 57.137 | 30.393 | 36.361 | 1.00 | 23.10 |
| MOTA   | 979   | CD2 | HIS | D | 11  | 6   | 8.415  | 29.858 | 38.051 | 1.00 | 23.01 |
| MOTA   | 980   | CE1 | HIS | D | 11  | 6   | 57.563 | 31.524 | 36.895 | 1.00 | 22.29 |
| ATOM   | 981   | NE2 | HIS | D | 11  | 6   | 8.348  | 31.225 | 37.927 | 1.00 | 22.03 |
| MOTA   | 982   | N   | ARG | D | 12  | 7   | 70.556 | 28.124 | 35.209 | 1.00 | 17.66 |
| MOTA   | 983   | CA  | ARG | D | 12  | 7   | 71.956 | 28.229 | 35.513 | 1.00 | 17.87 |
| MOTA   | 984   | С   | ARG | D | 12  | 7   | 72.781 | 26.977 | 35.325 | 1.00 | 21.36 |
| ATOM   | 985   | 0   | ARG | D | 12  | 7   | 3.632  | 26.605 | 36.187 | 1.00 | 21.72 |
| MOTA   | 986   | СВ  | ARG | D | 12  | 7   | 12.232 | 28.945 | 36.891 | 1.00 | 17.27 |
| MOTA   | 987   | CG  | ARG | D | 12  | 7   | 71.708 | 30.362 | 36.941 | 1.00 | 16.85 |
| MOTA   | 988   | CD  | ARG | D | 12  | 7   | 11.907 | 31.054 | 38.323 | 1.00 | 21.64 |
| ATOM   | 989   | NE  | ARG | D | 12  | 7   | 3.332  | 31.030 | 38.693 | 1.00 | 26.91 |
| ATOM   | 990   | CZ  | ARG | D | 12  | 7   | 4.195  | 32.006 | 38.428 | 1.00 | 32.28 |
| MOTA   | 991   | NH1 | ARG | D | 12  | 7   | 75.471 | 31.878 | 38.797 | 1.00 | 32.70 |
| MOTA   | 992   | NH2 | ARG | D | 12  | 7   | 73.806 | 33.103 | 37.801 | 1.00 | 23.04 |
| ATOM   | 993   | N   | VAL |   | 13  | 7   | 2.613  | 26.297 | 34.173 | 1.00 |       |
| ATOM   | 994   | CA  | VAL |   | 13  | . 7 | 73.413 | 25.135 | 33.867 | 1.00 | 16.81 |
| ATOM   | 995   | С   | VAL |   | 13  | 7   | 74.664 | 25.673 | 33.161 |      | 19.79 |
| MOTA   | 996   | 0   | VAL |   | 13  |     | 4.668  | 26.811 | 32.683 |      | 21.56 |
| ATOM   | 997   | СВ  | VAL |   | 13  |     | 72.713 | 24.137 | 32.918 |      | 20.87 |
| ATOM · | 998   |     | VAL |   | 13  |     | 11.653 | 23.427 | 33.553 |      | 22.00 |
| ATOM   | 999   |     | VAL |   | 13  |     | 72.189 | 24.846 | 31.612 |      | 19.93 |
| MOTA   | 1000  | N   | LYS |   | 14  |     | 75.741 | 24.892 | 33.128 |      | 17.58 |
|        |       |     |     |   |     |     |        |        |        |      | _     |

| ATOM      | 1001           | CA        | LYS        | D | 14       | 76.956           | 25.383           | 32.473           | 1.00 | 18.29          |
|-----------|----------------|-----------|------------|---|----------|------------------|------------------|------------------|------|----------------|
| ATOM      | 1002           | С         | LYS        | D | 14       | 77.225           | 24.642           | 31.155           | 1.00 | 17.32          |
| ATOM      | 1003           | 0         | LYS        | D | 14       | 77.005           | 23.448           | 31.066           | 1.00 | 17.18          |
| ATOM      | 1004           | CB        | LYS        |   | 14 .     | 78.176           | 25.251           | 33.416           | 1.00 | 21.96          |
| MOTA      | 1005           | CG        | LYS        |   | 14       | 78.220           | 26.346           | 34.459           | 1.00 | 29.69          |
| ATOM      | 1006           | CD        | <b>LYS</b> |   | 14       | 79.441           | 26,161           | 35.412           | 1.00 | 27.98          |
| ATOM      | 1007           | CE        | LYS        |   | 14       | 79.422           | 27.179           | 36.555           | 1.00 | 33.09          |
| ATOM      | 1008           | NZ        | LYS        |   | 14       | 78.560           | 26.719           | 37.687           | 1.00 | 36.70          |
| ATOM      | 1009           | N         | VAL        |   | 15       | 77.658           | 25.409           | 30.145           | 1.00 | 17.61          |
| ATOM      | 1010           | CA        | VAL        |   | 15       | 77.967           | 24.799           | 28.844           | 1.00 | 15.98          |
| ATOM      | 1011           | С         | VAL        |   | 15       | 79.203           | 23.888           | 29.035           | 1.00 | 18.36          |
| ATOM      | 1012           | 0         | VAL        |   | 15       | 80.185           | 24.318           | 29.603           | 1.00 | 20.10          |
| ATOM      | 1013           | CB        | VAL        |   | 15       | 78.245           | 25.880           | 27.800           | 1.00 | 18.17          |
| ATOM      | 1014           | CG1       | VAL        |   | 15       | 78.696           | 25.198           | 26.454           | 1.00 | 19.48          |
| ATOM      | 1015           | CG2       |            |   | 15       | 76.933           | 26.685           | 27.567<br>28.545 | 1.00 | 18.97          |
| ATOM      | 1016           | N         | THR        |   | 16       | 79.140           | 22.659           |                  | 1.00 | 16.59<br>18.46 |
| ATOM      | 1017           | CA        | THR        |   | 16       | 80.271           | 21.721           | 28.715           | 1.00 |                |
| ATOM      | 1018           | C         | THR        |   | 16       | 81.039           | 21.407 20.892    | 27.449<br>27.500 | 1.00 | 23.98          |
| ATOM      | 1019           | 0         | THR        |   | 16<br>16 | 82.184<br>79.781 | 20.374           | 29.348           | 1.00 | 20.68          |
| ATOM      | 1020 ·<br>1021 | CB<br>OG1 | THR        |   | 16       | 78.894           | 19.683           | 28.464           | 1.00 | 20.66          |
| ATOM .    | 1021           | CG2       |            |   | 16       | 79.048           | 20.647           | 30.719           | 1.00 | 20.82          |
| ATOM      | 1023           | N N       | HIS        |   | 17       | 80.447           | 21.718           | 26.302           | 1.00 | 21.79          |
| ATOM      | 1023           | CA        | HIS        |   | 17       | 81.112           | 21.413           | 25.010           |      | 23.09          |
| ATOM      | 1025           | C         | HIS        |   | 17       | 80.522           | 22.305           | 23.934           |      | 25.64          |
| ATOM      | 1026           | Ö         | HIS        |   | 17       | 79.371           | 22.760           | 24.047           | 1.00 | 20.59          |
| ATOM      | 1027           | СВ        | HIS        |   | 17       | 80.740           | 19.928           | 24,685           | 1.00 | 25.73          |
| ATOM      | 1028           | CG        | HIS        |   | 17       | 81.356           | 19.348           | 23,433           | 1.00 | 31.57          |
| ATOM      | 1029           | ND1       |            | Ď | 17       | 80.584           | 18.824           | 22.407           | 1.00 | 34.88          |
| ATOM      | 1030           |           | HIS        |   | 17       | 82.652           | 19.158           | 23.062           |      | 34.96          |
| ATOM-     | 1031           |           | HIS        |   | 17       | 81.374           | 18.360           | 21.451           | 1.00 | 35.01          |
| ATOM      | 1032           |           | HIS        |   | 17       | 82.635           | 18.549           | 21.820           | 1.00 | 35.08          |
| ATOM      | 1033           | N         | ALA        | D | 18       | 81.309           | 22.554           | 22.893           | 1.00 | 25.07          |
| ATOM      | 1034           | CA        | ALA        | D | 18       | 80.848           | 23.379           | 21.759           | 1.00 | 25.93          |
| ATOM      | 1035           | С         | ALA        | D | 18       | 81.317           | 22.603           | 20.501           | 1.00 | 31.11          |
| ATOM      | 1036           | 0         | ALA        | D | 18       | 82.460           | 22.106           | 20.472           | 1.00 | 33.50          |
| ATOM      | 1037           | CB        | ALA        | D | 18       | 81.433           | 24.755           | 21.814           | 1.00 | 27.54          |
| ATOM      | 1038           | N         | ASP        | D | 19       | 80.444           | 22.423           | 19.505           | 1.00 | 24.42          |
| ATOM      | 1039           | CA        | ASP        | D | 19       | 80.814           | 21.654           | 18.284           | 1.00 | 24.78          |
| ATOM      | 1040           | С         | ASP        |   | 19       | 80.276           | 22.359           | 17.047           | 1.00 | 27.05          |
| ATOM      | 1041           | 0         | ASP        | D | 19       | 79.206           | 22.000           | 16.529           | 1.00 | 24.71          |
| ATOM      | 1042           | СВ        | ASP        | D | 19       | 80.272           | 20.218           | 18.402           | 1.00 | 25.96          |
| MOTA      | 1043           | CG        | ASP        |   | 19       | 80.644           | 19.316           | 17.214           | 1.00 |                |
| MOTA      | 1044           |           | ASP        |   | 19       | 81.404           | 19.749           | 16.320           |      | 34.04          |
| MOTA      | 1045           |           | ASP        |   | 19       | 80.164           | 18.147           | 17.193           | 1.00 |                |
| ATOM      | 1046           | N         | LEU        |   | 20       | 81.027           | 23.356           | 16.587           | 1.00 | 25.80          |
| MOTA      | 1047           | CA        | LEU        |   | 20       | 80.656           | 24.143           | 15.422           | 1.00 |                |
| MOTA      | 1048           | C         | LEU        |   | 20       | 80.390           | 23.317           | 14.170           | 1.00 | 27.59          |
| ATOM      | 1049           | 0         | LEU        |   | 20       | 79.410           | 23.581           | 13.451           | 1.00 | 26.06<br>25.72 |
| MOTA      | 1050           |           | LEU        | _ | 20<br>20 | 81.753<br>81.546 | 25.185<br>26.193 | 15.120<br>13.977 |      | 29.24          |
| ATOM      | 1051           | CG        | LEU        |   | 20       | 80.505           | 27.239           | 14.355           |      | 28.84          |
| ATOM ATOM | 1052<br>1053   |           | LEU        |   | 20       | 82.887           | 26.875           | 13.627           |      | 29.15          |
| ATOM      | 1053           | N<br>N    | HIS        |   | 21       | 81.264           | 22.340           | 13.908           |      | 28.61          |
| ATOM      | 1054           | CA        | HIS        |   | 21       | 81.167           | 21.442           | 12.712           |      | 30.90          |
| ATOM      | 1055           | C         | HIS        |   | 21       | 80.238           | 20.275           | 12.779           |      | 36.12          |
| ATOM      | 1057           | o         | HIS        |   | 21       | 80.249           | 19.385           | 11.890           |      | 35.00          |
| ATOM      | 1058           | СВ        | HIS        |   | 21       | 82.573           | 21.039           | 12.237           |      | 32.76          |
| ATOM      | 1059           | CG        | HIS        |   | 21       | 83.437           | 22.204           | 11.941           |      | 36.81          |
| ATOM      | 1060           |           | HIS        |   | 21       | 84.537           | 22.541           | 12.700           |      | 39.48          |
|           |                |           |            | - |          |                  |                  |                  |      |                |

1061 21 ' 83.307 ATOM CD2 HIS D 23.181 11.010 1.00 38.76 MOTA 1062 21 85.072 23.656 12.222 1.00 38.26 CE1 HIS D ATOM 1063 84.345 24.063 11,198 1.00 38.36 NE2 HIS D 21 MOTA 1064 79.418 N TYR D 22 20.275 13.811 1.00 33.13 ATOM 1065 CA TYR D 22 78.453 19,220 14.019 1.00 33.14 ATOM 1066 22 77.573 18.876 12.801 1.00 37.60 С TYR D ATOM 1067 TYR D 77.155 19.766 12.012 0 22 1.00 32.76 ATOM 1068 CB TYR D 22 77.479 19.691 15.105 1.00 33.35 76.571 ATOM 1069 TYR D 22 18.617 15.617 1.00 35.03 CG ATOM 77.095 1.00 36.82 1070 CD1 TYR D 22 16.305 17.527 ATOM 1071 CD2 TYR D 22 75.204 18.670 15.401 1.00 35.58 16.773 ATOM 1072 CEI TYR D 22 76.271 16.517 1.00 37.35 ATOM 74.375 1073 CE2 TYR D 22 15.872 1.00 36.01 17.669 ATOM 1074 CZTYR D 22 74.906 16.604 16.557 1.00 42.70 1075 74.016 ATOM OH TYR D 22 15.625 17.014 1.00 46.65 ATOM 1076 77.276 N GLU D 23 17.594 12.694 1.00 39.24 ATOM . 1077 CA GLU D 23 . 76.408 17.072 11.664 1.00 42.44 1078 75.374 1.00 47.01 ATOM С GLU D 23 16.147 12.358 75.698 ATOM 1079 GLU D 15.050 12.769 23 1.00 48.53 O ATOM 1080 CB GLU D 23 77.176 16.320 10.575 1.00 44.81 23 76.241 1.00 53.00 ATOM 1081 CG GLU D 15.586 9.631 GLO D 76.852 MOTA 1082 1.00 63.57 1.00 70.57 CD 23 15.314 8.271 ATOM 1083 OE1 GLU D 23 78.097 15.153 8.190 MOTA 1084 GLU D 23 76.079 15.237 7.285 1.00 49.95 OE2 74.136 73.103 MOTA 1085 GLY D 12.481 N 24 16.608 1.00 43.35 MOTA 1086 CA GLY D 24 15.797 13.108 1.00 47.63 MOTA 1087 GLY D 71.872 16.608 13.529 1.00 49.81 С 24 71.438 17.481 12.758 ATOM 1088 GLY D 24 0 1.00 43.71 ATOM 1089 OH GLY D 24 71.339 16.374 14.643 1.00 78.26 25 ATOM 1090 PVL D 72.100 22.561 19.543 С 1.00 18.29 MOTA 1091 PVL D 25 73.123 0 23.121 19.763 1.00 21.21 ATOM 1092 CA PVL D 25 71.565 22.581 18.161 1.00 27.46 MOTA 1093 PVL D 25 70.223 21.973 17.952 CB 1.00 25.35 ATOM 1094 ON PVL D 25 . 72.196 17.245 23.134 1.00 33.71 ATOM 1095 71.286 N CYS D 26 22.044 20.569 1.00 15.60 26 ATOM 1096 CA CYS D 71.834 22.016 21.931 1.00 16.64 23.212 1.00 14.30 ATOM 1097 CB CYS D 26 71.304 22.757 ATOM 1098 CYS D 71.996 23.106 SG 26 24.461 1.00 18.05 ATOM 1099 С CYS D 26 71.504 20.649 22.505 1.00 14.55 MOTA 1100 70.332 20.263 0 CYS D 26 22.665 1.00 16.28 ATOM 72.569 1101 N ALA D 27 19.844 22.774 1.00 15.46 1102 **ATOM** CA ALA D 27 72,411 18.463 23.329 1.00 15.63 MOTA 1103 ALA D 27 72.469 18.581 С 24.869 1.00 15.10 ATOM .1104 0 ALA D 27 73.350 19.198 25.406 1.00 15.77 MOTA 1105 CB ALA D 73.510 17.508 27 22.838 1.00 16.71 ATOM 1106 N ILE D 28 71.483 17.965 25.486 1.00 14.23 ATOM 1107 CA ILE D 28 71.292 18.058 26.940 1.00 14.71 ATOM 1108 ILE D 28 71.023 16.715 С 27.562 1.00 17.41 ATOM 1109 0 ILE D 28 70.251 15.919 27.072 1.00 16.90 MOTA 1110 СВ ILE D 28 69.990 18.945 27.121 1.00 16.58 MOTA 1111 CG1 ILE D 70.204 20.317 28 26.472 1.00 16.36 ATOM 1112 CG2 ILE D 28 69.627 19.068 28.632 1.00 15.52 ATOM 1113 CD1 ILE D 28 68.887 21.088 26.119 1.00 18.68 16.475 ATOM 1114 N ASP D 29 71.717 28.696 1.00 16.97 ATOM 1115 CA ASP D 29 71.551 15.203 29.449 1.00 18.01 MOTA 1116 ASP D 29 70.023 14.912 29,600 1.00 17.51 C 15.814 ATOM 1117 ASP D 69.284 30.061 0 29 1.00 15.93 ATOM 1118 CB ASP D 29 72.168 15.468 30.837 1.00 18.64 72.085 14.248 71.218 13.349 ATOM 1119 ASP D 29 31.826 1.00 21.55 CG ATOM 1120 OD1 ASP D 29 31.704 1.00 21.30

|       |      |     |     |   |      |   |        |        | •      |            |
|-------|------|-----|-----|---|------|---|--------|--------|--------|------------|
| ATOM  | 1121 | OD2 | ASP | D | 29   |   | 72.956 | 14.262 | 32.752 | 1.00 22.85 |
| ATOM  | 1122 | N   | GLN | D | 30   |   | 69.580 | 13.710 | 29.207 | 1.00 17.64 |
| ATOM  | 1123 | CA  | GLN | D | 30   |   | 68.165 | 13.289 | 29.288 | 1.00 16.64 |
| ATOM  | 1124 | С   | GLN | D | 30 . |   | 67.584 | 13.514 | 30.685 | 1.00 20.42 |
| ATOM  | 1125 | 0   | GLN |   | 30   | • | 66.407 | 13.865 | 30.795 |            |
| ATOM  | 1126 | CB  | GLN | D | 30   |   | 67.942 | 11.845 | 28.839 | 1.00 19.10 |
| ATOM  | 1127 | CG  | GLN |   | 30   |   | 66.498 | 11.417 | 28.796 | 1.00 20.18 |
| ATOM  | 1128 | CD  | GLN |   | 30   |   | 65.710 | 12.200 | 27.766 | 1.00 24.27 |
| ATOM  | 1129 | OE1 | GLN |   | 30   |   | 66.090 | 12.214 | 26.565 | 1.00 20.83 |
| MOTA  | 1130 | NE2 | GLN |   | 30   |   | 64.598 | 12.837 | 28.202 | 1.00 20.72 |
| ATOM  | 1131 | N   | ASP |   | 31   |   | 68.383 | 13.362 | 31.752 | 1.00 19.98 |
| MOTA  | 1132 | CA  |     | D | 31   |   | 67.810 | 13.608 | 33.086 | 1.00 20.52 |
| ATOM  | 1133 | С   | ASP | D | 31   |   | 67.343 | 15.055 | 33.267 | 1.00 19.87 |
| MOTA  | 1134 | 0   | ASP |   | 31   |   | 66.339 | 15.342 | 34.003 | 1.00 20.49 |
| ATOM  | 1135 | СВ  | ASP | D | 31   |   | 68.858 | 13.326 | 34.165 | 1.00 20.56 |
| ATOM  | 1136 | CG  | ASP |   | 31   |   | 68.955 | 11.861 | 34.505 | 1.00 27.59 |
| ATOM  | 1137 |     |     | D | 31,  |   | 68.027 | 11.063 | 34.248 | 1.00 27.63 |
| MOTA  | 1138 |     | ASP |   | 31   |   | 70.061 | 11.498 | 34.988 | 1.00 25.47 |
| MOTA  | 1139 | N   | PHE |   | 32   |   | 68.053 | 16.002 | 32.616 | 1.00 17.26 |
| ATOM  | 1140 | CA  |     | D | 32   |   | 67.743 | 17.411 |        | 1.00 16.13 |
| MOTA  | 1141 | C   |     | D | 32   |   | 66.457 | 17.661 | 31.896 | 1.00 15.84 |
| ATOM  | 1142 | 0   | PHE | D | 32   |   | 65.527 | 18.389 | 32.356 | 1.00 15.43 |
| ATOM  | 1143 | CB  | PHE | D | 32   |   | 68.854 | 18.301 | 32.116 | 1.00 17.62 |
| ATOM  | 1144 | CG  |     | D | 32   |   | 70.216 | 18.172 | 32.810 | 1.00 18.64 |
| MOTA  | 1145 | CD1 |     | D | 32   |   | 70.409 | 17.355 | 33.944 | 1.00 20.38 |
| ATOM  | 1146 | CD2 | PHE | D | 32   |   | 71.294 | 18.902 | 32.313 | 1.00 21.28 |
| ATOM  | 1147 | CE1 |     | D | 32   | • | 71.722 | 17.281 | 34.537 | 1.00 21.62 |
| MOTA  | 1148 | CE2 | PHE | D | 32   |   | 72.549 | 18.834 | 32.878 | 1.00 24.06 |
| ATOM  | 1149 | CZ  | PHE |   | 32   |   | 72.763 | 18.019 | 34.007 | 1.00 22.14 |
| ATOM  | 1150 | N   | LEU |   | 33   |   | 66.412 | 17.068 | 30.700 | 1.00 15.62 |
| ATOM  | 1151 | CA  | LEU |   | 33   |   | 65.206 | 17.230 | 29.867 | 1.00 15.62 |
| ATOM  | 1152 | С   | LEU |   | 33   |   | 63.969 | 16.737 | 30.662 | 1.00 14.56 |
| ATOM  | 1153 | 0   | LEU | D | 33   |   | 62.938 | 17.393 | 30.680 | 1.00 15.50 |
| ATOM  | 1154 | CB  |     | D | 33   |   | 65.330 | 16.434 | 28.565 | 1.00 15.46 |
| ATOM  | 1155 | CG  | LEU |   | 33   |   | 66.446 | 16.945 | 27.597 | 1.00 17.68 |
| ATOM  | 1156 | CD1 | LEU |   | 33   |   | 66.471 | 16.024 | 26.336 | 1.00 18.11 |
| ATOM  | 1157 | CD2 | LEU |   | 33   |   | 66.139 | 18.385 | 27.159 | 1.00 17.59 |
| MOTA  | 1158 | N   | ASP | D | 34   |   | 64.094 | 15.567 | 31.320 | 1.00 15.47 |
| MOTA  | 1159 | CA  | ASP |   | 34   |   | 63.010 | 14.958 | 32.091 | 1.00 15.42 |
| ATOM  | 1160 | С   | ASP | D | 34   |   | 62.498 | 15.897 | 33.177 | 1.00 15.50 |
| MOTA  | 1161 | 0   | ASP | D | 34   |   | 61.312 | 16.032 | 33.342 | 1.00 16.94 |
| ATOM. | 1162 | CB  | ASP |   | 34   |   | 63.523 | 13.673 | 32.755 | 1.00 16.78 |
| MOTA  | 1163 | CG  | ASP | D | 34   |   | 63.625 | 12.511 | 31.796 | 1.00 21.53 |
| MOTA  | 1164 |     | ASP |   | 34   |   | 63.254 | 12.639 | 30.594 | 1.00 22.41 |
| MOTA  | 1165 |     | ASP |   | 34   |   | 64.107 | 11.419 | 32.237 | 1.00 24.39 |
| MOTA  | 1166 | N   | ALA |   | 35   |   | 63.405 | 16.522 | 33.911 | 1.00 15.30 |
| MOTA  | 1167 | CA  | ALA |   | 35   |   | 63.030 | 17.444 | 34.982 | 1.00 16.57 |
| MOTA  | 1168 | С   | ALA |   | 35   |   | 62.344 | 18.711 | 34.497 | 1.00 18.73 |
| ATOM  | 1169 | 0   | ALA |   | 35   |   | 61.440 | 19.244 | 35.142 | 1.00 19.02 |
| ATOM  | 1170 | CB  | ALA |   | 35   | • | 64.253 | 17.838 | 35.828 | 1.00 18.18 |
| ATOM  | 1171 | N   | ALA | - | 36   |   | 62.814 | 19.231 | 33.338 | 1.00 15.77 |
| MOTA  | 1172 | CA  | ALA |   | 36   |   | 62.243 | 20.432 | 32.837 | 1.00 14.01 |
| ATOM  | 1173 | С   | ALA |   | 36   |   | 61.034 | 20.203 | 31.866 | 1.00 12.66 |
| ATOM  | 1174 | 0   | ALA |   | 36   |   | 60.427 | 21.243 | 31.459 | 1.00 15.97 |
| ATOM  | 1175 | CB  | ALA |   | 36   |   | 63.337 | 21.261 | 32.105 | 1.00 15.98 |
| ATOM  | 1176 | N   | GLY |   | 37   |   |        | 18.962 | 31.520 | 1.00 12.31 |
| ATOM  | 1177 | CA  | GLY |   | 37   |   | 59.663 | 18.637 | 30.636 | 1.00 12.99 |
| ATOM  | 1178 | C   | GLY |   | 37   |   | 59.994 | 19.050 | 29.180 | 1.00 13.99 |
| MOTA  | 1179 | 0   | GLY |   | 37   |   | 59.023 | 19.117 | 28.371 | 1.00 13.49 |
| MOTA  | 1180 | N   | ILE | D | 38   |   | 61.276 | 19.246 | 28.882 | 1.00 13.30 |

ATOM 1181 CA 61.705 19.641 ILE D 38 27.476 1.00 11.90 1182 61.854 ATOM С ILE D 38 18.372 26.665 1.00 13.73 ATOM 1183 62.470 17.403 27.086 0 ILE D 38 1.00 13.87 MOTA 1184 CB ILE D 38 62.938 20.454 27.528 1.00 12.06 ATOM 1185 CG1 ILE D 38 62.664 21.817 28.244 1.00 13.02 ATOM 63.457 1186 CG2 ILE D 26.031 38 20.747 1.00 11.46 ATOM 1187 CD1 ILE D 38 63.886 22.662 28.502 1.00 14.92 ATOM 1188 N LEU D 39 61.313 18.366 25.415 1.00 11.75 ATOM 1189 LEU D 61.366 CA 17.198 24.557 39 1.00 11.57 1190 ATOM С LEU D 39 62.445 17.286 23.489 1.00 13.60 ATOM 1191 0 LEU D 39 62.811 18.368 23.105 1.00 12.83 MOTA 1192 СВ LEU D 39 60.048 17.052 23.807 1.00 11.62 MOTA 1193 24.610 LEU D 58.724 1.00 13.66 CG 39 17.113 ATOM 1194 CD1 LEU D 39 57.552 .16.938 23.682 1.00 15.79 1195 58.820 ATOM CD2 LEU D 39 15.969 25.666 1.00 15.29 ATOM 1196 GLU D 40 62.956 1.00 14.52 N 16.134 23.119 MOTA 1197 CA GLU D 40 63.930 16.098 22.000 1.00 14.56 ATOM 1198 GLU D 63.128 16.706 С 40 20.790 1.00 14.90 ATOM 1199 o GLU D 61.938 20.582 40 16.424 1.00 13.14 ATOM 1200 CB GLU D 40 64.273 14.643 21.690 1.00 17.43 MOTA 1201 GLU D 65.687 CG 40 14.237 22.093 1.00 36.71 GLU D 21.016 ATOM 1202 CD 1.00 43.99 40 66.336 13.346 ATOM 1203 OE1 GLU D 40 65.691 12.317 20.674 1.00 33.64 MOTA 1204 OE2 GLU D 67.475 20.501 40 13.665 1.00 23.74 20.028 ATOM 1205 ASN D 63.849 N 41 17.563 1.00 12.38 ATOM 1206 CA ASN D 41 63.297 18.252 18.835 1.00 12.93 ATOM 1207 62.403 19.417 19.130 1.00 15.81 С ASN D 41 ATOM 1208 ASN D 61.836 0 41 20.050 18.252 1.00 13.21 ATOM 1209 СВ ASN D 41 62.680 17.270 17.864 1.00 14.28 ATOM 1210 ASN D 63.721 16.286 17.293 1.00 12.10 CG 41 ATOM 1211 OD1 ASN D 64.828 16.679 16.930 1.00 16.64 41 MOTA 1212 ND2 ASN D 41 63.373 15.002 17.295 1.00 15.27 ATOM 1213 GLU D 62.241 19.771 20.402 1.00 10.98 N 42 1.00 9.74 1.00 9.74 ATOM 1214 CA GLU D 61.432 20.916 20.753 42 MOTA 1215 С GLU D 62.214 22.225 42 20.638 MOTA 1216 0 GLU D 42 63.430 22.297 20.917 1.00 10.17 ATOM 1217 CB GLU D 42 60.958 20.806 22.304 1.00 10.40 1218 GLU D .42 1.00 10.03 ATOM CG 59.992 21.930 22.730 ATOM 1219 CD GLU D 42 59.538 21.802 24.213 1.00 13.25 MOTA 1220 OE1 60.180 20.979 GLU D 42 24.893 1.00 15.16 ATOM GLU D 22.504 1221 OE2 42 58.595 24.588 1.00 12.03 ATOM 1222 И ALA D 43 61.529 23.303 20.212 1.00 9.51 ATOM 1223 CA 62.125 ALA D 43 24.618 20.139 1.00 10.88 1224 ATOM C ALA D 43 62.581 25.062 21.572 1.00 10.85 MOTA 1225 0 ALA D 43 61.770 24.882 22.523 1.00 11.54 MOTA 1226 СВ ALA D 61.086 43 25.666 19.611 1.00 12.49 ATOM 1227 N ILE D 63.746 25.596 44 21.711 1.00 11.86 ATOM CA 1228 ILE D 44 64.214 26.108 23.049 1.00 11.02 ATOM 1229 С ILE D 44 64.876 27.495 22.885 1.00 13.51 ο. ATOM .1230 ILE D 44 65.459 27.820 21.790 1.00 13.63 ATOM СВ 25.146 1231 ILE D 44 65.215 23.757 1.00 12.21 ATOM 1232 CG1 ILE D 44 66.425 24.841 22.799 1.00 12.04 ATOM 1233 CG2 ILE D 44 64.475 23.886 24.201 1.00 14.58 MOTA 67.496 23.934 1.00 12.27 1234 CD1 ILE D 23.440 44 MOTA 1235 N ASP D 45 64.845 28.343 23.921 1.00 10.42 MOTA 1236 CA ASP D 45 65.470 29.634 23.942 1.00 10.06 MOTA 66.628 1237 1.00 14.23 С ASP. D 45 29.457 24.943 ATOM 1238 ٥ ASP D 45 66.438 28.814 26.014 1.00 14.99 ATOM 1239 CB ASP D 45 64.514 30.754 24.407 1.00 12.39 MOTA 63.320 30.886 1.00 15.51 1240 ASP D 45 23.509 CG

| ATOM | 1241 | 001 | ASP | ъ  | 45   | 63.504 | 30.682   | 22.250 | 1.00 15.80 |
|------|------|-----|-----|----|------|--------|----------|--------|------------|
|      |      |     |     |    |      |        |          |        |            |
| MOTA | 1242 | OD2 |     |    | 45   | 62.187 | 31.118   | 23.974 | 1.00 15.67 |
| ATOM | 1243 | N   | ILE | D  | 46   | 67.791 | 29.995 · | 24.634 | 1.00 10.63 |
| MOTA | 1244 | CA  | ILE | D  | 46   | 68.996 | 29.909   | 25.471 | 1.00 10.58 |
| ATOM | 1245 | С   | ILE | D  | 46   | 69.427 | 31.327   | 25,747 | 1.00 14.80 |
| ATOM | 1246 | 0   | ILE | D  | 46   | 69.649 | 32.151   | 24.860 | 1.00 13.14 |
| ATOM | 1247 | СВ  | ILE | D  | 46   | 70.104 | 29.079   | 24.805 | 1.00 12.68 |
| ATOM | 1248 | CG1 | ILE |    | 46   | 69.560 | 27.686   | 24.519 | 1.00 11.97 |
|      |      |     |     |    |      |        |          |        |            |
| ATOM | 1249 | CG2 | ILE |    | 46   | 71.354 | 29.057   | 25.751 | 1.00 14.01 |
| ATOM | 1250 | CD1 | ILE |    | 46   | 70.647 | 26.680   | 24.071 | 1.00 17.51 |
| ATOM | 1251 | N.  | TRP | D  | 47   | 69.509 | 31.672   | 27.067 | 1.00 11.09 |
| ATOM | 1252 | CA  | TRP | D  | 47   | 69.832 | 32.990   | 27.530 | 1.00 12.91 |
| ATOM | 1253 | С   | TRP | D  | 47   | 71.163 | 32.842   | 28.298 | 1.00 18.14 |
| ATOM | 1254 | 0   | TRP | D  | 47   | 71.232 | 32.122   | 29.319 | 1.00 16.83 |
| ATOM | 1255 | СВ  | TRP |    | 47   | 68.681 | 33.497   | 28.446 | 1.00 12.75 |
|      |      |     |     |    |      | 67.334 |          |        |            |
| MOTA | 1256 | CG  | TRP | D  | 47   |        | 33.535   | 27.762 | 1.00 12.68 |
| ATOM | 1257 |     | TRP |    | 47   | 67.087 | 33.885   | 26.416 | 1.00 13.80 |
| ATOM | 1258 | CD2 | TRP | D  | 47   | 66.070 | 33.224   | 28.316 | 1.00 12.97 |
| ATOM | 1259 | NE1 | TRP | D  | 47   | 65.765 | 33.773   | 26.151 | 1.00 12.97 |
| MOTA | 1260 | CE2 | TRP | D  | 47   | 65.093 | 33.372   | 27.286 | 1.00 14.42 |
| ATOM | 1261 | CE3 | TRP | D  | 47   | 65.650 | 32.757   | 29.579 | 1.00 14.96 |
| ATOM | 1262 | CZ2 | TRP | D  | 47   | 63.744 | 33.139   | 27.488 | 1.00 14.53 |
| ATOM | 1263 | CZ3 | TRP | D  | 47   | 64.331 | 32.544   | 29.792 | 1.00 16.02 |
| MOTA | 1264 | CH2 | TRP | Ď  | 47   | 63.365 | 32.734   | 28.774 | 1.00 16.49 |
| ATOM | 1265 | N   | ASN |    | 48   | 72.217 | 33.452   | 27.762 | 1.00 15.37 |
|      |      |     |     |    |      | 73.574 |          | 28.320 |            |
| ATOM | 1266 | CA  | ASN |    | 48   |        | 33.323   |        | 1.00 15.56 |
| ATOM | 1267 | C   | ASN |    | 48   | 73.829 | 34.347   | 29.393 | 1.00 16.84 |
| ATOM | 1268 | 0   | ASN |    | 48   | 73.955 | 35.526   | 29.124 | 1.00 15.08 |
| MOTA | 1269 | CB  | ASN | D  | 48   | 74.577 | 33.489   | 27.132 | 1.00 14.22 |
| MOTA | 1270 | CG  | ASN | D  | 48   | 75.962 | 33.037   | 27.477 | 1.00 19.83 |
| ATOM | 1271 | OD1 | ASN | D  | 48   | 76.445 | 33.343   | 28.575 | 1.00 17.68 |
| ATOM | 1272 | ND2 | ASN | D  | 48   | 76.625 | 32.305   | 26.581 | 1.00 18.60 |
| ATOM | 1273 | N   | VAL |    | 49 . | 73.892 | 33.883   | 30.661 | 1.00 16.35 |
| ATOM | 1274 | CA  | VAL |    | 49   | 74.128 | 34.782   | 31.784 | 1.00 16.91 |
| ATOM | 1275 | C   | VAL |    | 49   | 75.563 | 35.373   | 31,784 | 1.00 18.54 |
| ATOM | 1276 | 0   | VAL |    | 49   | 75.809 | 36.526   | 32.220 | 1.00 19.45 |
|      |      |     |     |    |      |        |          |        |            |
| ATOM | 1277 | CB  | VAL |    | 49   | 73.926 | 34.037   | 33.092 | 1.00 20.06 |
| ATOM | 1278 | CG1 | VAL |    | 49   | 74.124 | 35.006   | 34.262 | 1.00 21.67 |
| ATOM | 1279 | CG2 | VAL |    | 49   | 72.526 | 33.407   | 33.136 | 1.00 18.68 |
| ATOM | 1280 | N   | THR | D  | 50   | 76.501 | 34.576   | 31.282 | 1.00 17.72 |
| MOTA | 1281 | CA  | THR | Ð  | 50   | 77.881 | 35.042   | 31.234 | 1.00 18.92 |
| ATOM | 1282 | С   | THR | D  | 50   | 78.125 | 36.187   | 30.258 | 1.00 20.97 |
| MOTA | 1283 | 0   | THR | D  | 50   | 78.696 | 37.231   | 30.614 | 1.00 20.06 |
| ATOM | 1284 | CB  | THR | D  | 50   | 78.829 | 33.887   | 30.935 | 1.00 19.40 |
| ATOM | 1285 | OG1 | THR |    | 50.  | 78.678 | 32.859   | 31.930 | 1.00 19.82 |
| ATOM | 1286 | CG2 | THR |    | 50   | 80.335 | 34.365   | 30.836 | 1.00 21.30 |
| ATOM | 1287 | N   | ASN |    | 51   | 77.687 | 36.000   | 28.998 | 1.00 17.46 |
|      | 1288 | CA  | ASN |    | 51   | 77.917 | 37.033   | 27.972 | 1.00 18.39 |
|      |      |     |     |    |      |        |          |        |            |
| ATOM | 1289 | С   | ASN | D  | 51   | 76.723 | 37.838   | 27.459 | 1.00 19.48 |
| MOTA | 1290 | 0   | ASN |    | 51   | 76.883 | 38.713   | 26.603 | 1.00 19.00 |
| ATOM | 1291 | СВ  | ASN |    | 51   | 78.712 | 36.436   | 26.788 | 1.00 18.51 |
| MOTA | 1292 | CG  | ASN | D  | 51   | 77.871 | 35.497   | 25.912 | 1.00 22.35 |
| MOTA | 1293 | OD1 | ASN | D  | 51   | 76.653 | 35.449   | 26.014 | 1.00 17.21 |
| ATOM | 1294 | ND2 | ASN | D  | 51   | 78.537 | 34.732   | 25.071 | 1.00 21.24 |
| ATOM | 1295 | N   | GLY |    | 52   | 75.528 | 37.546   | 27.979 | 1.00 15.50 |
| ATOM | 1296 | CA  | GLY |    | 52   | 74.286 | 38.204   | 27.622 | 1.00 14.95 |
| ATOM | 1297 |     | GLY |    | 52   | 73.637 | 37.851   | 26.263 | 1.00 14.04 |
| ATOM | 1298 | Õ.  | GLY |    | 52   | 72.553 | 38.408   | 25.971 | 1.00 16.62 |
| ATOM | 1299 | N   |     |    | 53.  | 74.271 | 36.968   | 25.507 | 1.00 14.08 |
|      |      |     |     | D. |      |        |          |        |            |
| ATOM | 1300 | CA  | LYS | ט  | 53   | 73.636 | 36.627   | 24.193 | 1.00 14.38 |

| ATOM         | 1301         | С       | LYS  | ָ ס | 53       | 72.355           | 35.864           | 24.437           | 1.00 | 15.94          |
|--------------|--------------|---------|------|-----|----------|------------------|------------------|------------------|------|----------------|
| MOTA         | 1302         | 0       | LYS  | D   | 53       | 72.229           | 35.159           | 25.442           | 1.00 | 16.45          |
| MOTA         | 1303         | CB      | LYS  | D   | 53       | 74.596           | 35.808           | 23.323           | 1.00 | 14.22          |
| ATOM         | 1304         | CG      | LYS  |     | 53       | 75.791           | 36.669           | 22.909           | 1.00 | 16.49          |
| ATOM         | 1305         | CD      | LYS  |     | 53       | 76.764           | 35.880           | 22.038           | 1.00 | 19.28          |
| MOTA         | 1306         | CE      | LYS  |     | 53       | 77.988           | 36.725           | 21.678           | 1.00 |                |
| ATOM         | 1307         | NZ      | LYS  |     | 53       | 79.004           | 35.889           | 20.987           |      | 29.14          |
| MOTA         | 1308         | N       | ARG  |     | 54       | 71.393           | 35.958           | 23.483           |      | 12.88          |
| MOTA         | 1309         | CA      | ARG  |     | 54       | 70.123           | 35.274           | 23.557           |      | 11.93          |
| MOTA         | 1310         | С       | ARG  |     | 54       | 69.855           | 34.669           | 22.194           |      | 14.91          |
| ATOM         | 1311         | 0       | ARG  |     | 54       | 69.980           | 35.396           | 21.196           |      | 15.98          |
| ATOM         | 1312         | CB      | ARG  |     | 54       | 68.981           | 36.222           | 23.931           |      | 13.59          |
| ATOM         | 1313         | CG      | ARG  |     | 54       | 69.328           | 37.048           | 25.222           | 1.00 | 14.24          |
| ATOM         | 1314         | CD      | ARG  |     | 54       | 68.216           | 38.045           | 25.627           |      | 13.75          |
| ATOM         | 1315         | NE      | ARG  |     | 54       | 67.011           | 37.440           | 26.165           | 1.00 | 13.94          |
| ATOM         | 1316         | CZ      | ARG  |     | 54       | 66.877           | 37.091           | 27.456           | 1.00 | 16.69          |
| ATOM         | 1317         | NH1     | ARG  |     | 54       | 67.936           | 37.309           | 28.276           | 1.00 | 13.80          |
| ATOM         | 1318         | NH2     |      |     | 54       | 65.726           | 36.552           | 27.929           | 1.00 | 13.52          |
| ATOM         | 1319         | N       | PHE  |     | 55       | 69.566           | 33.396           | 22.152           | 1.00 | 12.40          |
| ATOM         | 1320         | CA      | PHE  | D   | 55       | 69.306           | 32.745           | 20.862           | 1.00 |                |
| ATOM         | 1321         | C       | PHE  |     | 55       | 68.292           | 31.657           | 20.971           | 1.00 |                |
| MOTA         | 1322         | 0       | PHE  |     | 55       | 67.947           | 31.225           | 22.083           | 1.00 | 16.08          |
| MOTA         | 1323         | CB      | PHE  |     | 55       | 70.609           | 32.327           | 20.200           | 1.00 | 13.02          |
| ATOM         | 1324         | CG      | PHE  | D   | 55       | 71.346           | 31.246           | 20.922           | 1.00 | 14.95          |
| ATOM         | 1325         |         | PHE  |     | 55       | 72.197           | 31.565           | 22.004           | 1.00 |                |
| ATOM         | 1326         | CD2     |      | D   | 55       | 71.234           | 29.901           | 20.513           | 1.00 | 15.13          |
| ATOM         | 1327         |         | PHE  |     | 55       | 72.938           | 30.508           | 22.680           |      | 17.56          |
| ATOM         | 1328         | CE2     | PHE  | D   | 55       | 71.931           | 28.901           | 21.171           | 1.00 | 17.23<br>16.09 |
| ATOM         | 1329<br>1330 | CZ      | PHE  | D   | 55       | 72.794<br>67.760 | 29.230<br>31.175 | 22.258<br>19.846 | 1.00 |                |
| ATOM<br>ATOM | 1331         | N<br>CA | SER  |     | 56<br>56 | 66.764           | 30.135           | 19.824           | 1.00 | 12.78          |
| ATOM         | 1332         | C       | SER  |     | 56       | 67.220           | 29.017           | 18.940           | 1.00 |                |
| MOTA         | 1333         | 0       | SER  |     | 56       | 67.772           | 29.295           | 17.870           | 1.00 |                |
| ATOM         | 1334         | СВ      | SER  |     | 56       | 65.408           | 30.618           | 19.392           | 1.00 | 13.68          |
| ATOM         | 1335         | OG      | SER  |     | 56       | 64.906           | 31.668           | 20.254           | 1.00 | 18.10          |
| ATOM         | 1336         | N       | THR  |     | 57       | 67.010           | 27.786           | 19.358           | 1.00 | 11.29          |
| ATOM         | 1337         | CA      | THR  |     | 57       | 67.456           | 26.580           | 18.617           | 1.00 |                |
| ATOM         | 1338         | C.      | THR  |     | 57       | 66.477           | 25.422           | 18.955           | 1.00 | 11.10          |
| ATOM         | 1339         | ō       | THR  |     | 57       | 65.269           | 25.655           | 19.137           | 1.00 | 10.41          |
| ATOM         | 1340         | СВ      | THR  |     | 57       | 68.956           | 26.316           | 18.937           | 1.00 | 13.63          |
| ATOM         | 1341         | OG1     | THR  |     | 57       | 69.406           | 25.158           | 18.211           | 1.00 | 16.82          |
| ATOM         | 1342         | CG2     | THR  |     | 57       | 69.148           | 25.977           | 20.458           | 1.00 | 16.40          |
| ATOM         | 1343         | N       | TYR  |     | 58       | 66.953           | 24.186           | 19.039           |      | 11.85          |
| MOTA         | 1344         | CA      | TYR  |     | 58       | 66.081           | 23.039           | 19.381           | 1.00 |                |
| MOTA         | 1345         | С       | TYR  |     | 58       | 66.898           | 22.079           | 20.219           |      | 14.10          |
| MOTA         | 1346         | 0       | TYR  |     | 58       | 68.132           | 22.085           | 20.147           | 1.00 |                |
| ATOM         | 1347         | СВ      | TYR  |     | 58       | 65.417           | 22.357           | 18.154           | 1.00 | 13.66          |
| ATOM         | 1348         | CG      | TYR  | D   | 58       | 66.346           | 21.598 -         | 17.249           | 1.00 | 14.03          |
| ATOM         | 1349         | CD1     | TYR  | D   | 58       | 67.006           | 22.243           | 16.175           | 1.00 | 14.60          |
| ATOM         | 1350         | CD2     | TYR  | D   | 58       | 66.578           | 20.259           | 17.424           | 1.00 | 14.69          |
| MOTA         | 1351         | CEl     | TYR  | D   | 58       | 67.879           | 21.541           | 15.366           |      | 14.59          |
| MOTA         | 1352         | CE2     | TYR. | D   | 58       | 67.453           | 19.534           | 16.587           | 1.00 | 16.85          |
| ATOM         | 1353         | CZ      | TYR  | D   | 58       | 68.099           | 20.201           | 15.564           | 1.00 | 21.58          |
| MOTA         | 1354         | ОН      | TYR  | D   | 58       | 68.989           | 19.626           | 14.678           |      | 22.59          |
| ATOM         | 1355         | N.      | ALA  |     | 59       | 66.215           | 21.278           | 21.038           |      | 12.25          |
| ATOM         | 1356         | CA      | ALA  | D   | 59       | 66.907           | 20.349           | 21.895           | 1.00 | 12.10          |
| ATOM         | 1357         | С       | ALA  |     | - 59     | 67.209           | 19.007           | 21.292           | 1.00 |                |
| MOTA         | 1358         | 0       | ALA  |     | 59       | 66.420           | 18.450           | 20.545           | 1.00 | 13.85          |
| ATOM         | 1359         | CB      | ALA  |     | 59       | 66.015           | 20.122           | 23.160           | 1.00 | 13.24          |
| MOTA         | 1360         | N       | ILE  | D   | 60       | 68.365           | 18.433           | 21.690           | 1.00 | 15.08          |

| ATOM   | 1361 | CA  | ILE  | D | 60   | 68.803           | 17.122  | 21.272 | 1.00 | 17.01       |
|--------|------|-----|------|---|------|------------------|---------|--------|------|-------------|
| ATOM   | 1362 | С   | ILE  | D | 60   | 69.125           | 16.356  | 22.591 | 1.00 | 16.03       |
| ATOM   | 1363 | 0   | ILE  | D | 60   | 69.663           | 16.961  | 23.500 | 1.00 | 16.17       |
| ATOM   | 1364 | CB  | ILE  | D | 60   | 70.125           | 17.251  | 20.437 | 1.00 | 20.97       |
| ATOM   | 1365 | CG1 | ILE  | D | 60 · | 69.809           | 17.848  | 19.062 |      | 23.49       |
| ATOM   | 1366 | CG2 | ILE  |   | 60   | 70.789           | 15.887  | 20.217 | 1.00 | 23.18       |
| ATOM   | 1367 | CD1 | ILE  |   | 60   | 71.051           | 18.391  | 18.335 |      | 26.91       |
| ATOM   | 1368 | N   | ALA  |   | 61   | 68.770           | 15.083  | 22.679 | 1.00 | 16.21       |
| ATOM   | 1369 | CA  | ALA  |   | 61   | 69.073           | 14.329  | 23.908 |      | 17.99       |
| ATOM   | 1370 | C   | ALA  |   | 61   | 70.540           | 13.922  | 23.939 | 1.00 | 20.83       |
| ATOM   | 1371 | ŏ   | ALA  |   | 61   | 71.084           | 13.484  | 22.911 | 1.00 |             |
| ATOM   | 1372 | CB. | ALA  |   | 61   | 68.241           | 13.116  | 23.982 | 1.00 | 19.35       |
| ATOM   | 1373 | N   | ALA  |   | 62   | 71.155           | 14.020  | 25.121 | 1.00 | 17.91       |
| ATOM   | 1374 | CA  | ALA  |   | 62   | 72.553           | 13.581  | 25.379 | 1.00 | 17.67       |
| ATOM   | 1375 | C   | ALA  |   | 62   | 72.369           | 12.443  | 26.406 |      |             |
| ATOM   | 1376 | Ö   | ALA  |   | 62   | 71.329           | 12.319  | 27.041 |      | 23.91 22.36 |
| ATOM   | 1377 |     | ALA  |   | 62   | 73.402           | 14.661  |        |      |             |
|        | 1378 | CB  |      |   |      |                  |         |        |      | 18.45       |
| ATOM   |      | N   | GLU  |   | 63   | 73.395           | 11.613  | 26.540 | 1.00 |             |
| ATOM   | 1379 | CA  | GLU  |   | 63   | 73.378           | 10.471  | 27.428 | 1.00 |             |
| MOTA   | 1380 | C   | GLU  |   | 63   | 72.950           | 10.793  | 28.843 | 1.00 |             |
|        | 1381 | 0   | GLU  |   | 63   | 73.447           | 11.742  | 29.441 | 1.00 |             |
| ATOM   | 1382 | СВ  | GLU  |   | 63   | 74.777           | 9.848   | 27.443 | 1.00 |             |
| ATOM   | 1383 | CG  | GLU  |   | 63   | 74.859           | 8.627   | 28.342 | 1.00 |             |
| ATOM   | 1384 | CD  | GLU  |   | 63   | 76.110           | 7.846   | 28.078 |      | 54.65       |
| ATOM   | 1385 | OE1 |      |   | 63   | 76.067           | 6.926   | 27.227 |      | 50.68       |
| MOTA   | 1386 | OE2 |      |   | 63   | 77.136           | 8.166   | 28.714 | 1.00 | 49.85       |
| ATOM   | 1387 | N   | ARG  |   | 64   | 72.047           | 9.967   | 29.375 |      | 23.54       |
| ATOM . | 1388 | CA  | ARG  | D | 64   | 71.554           | 10.144  | 30.721 | 1.00 | 24.49       |
| ATOM   | 1389 | C   | ARG  |   | 64   | 72.710           | 10.059  | 31.727 | 1.00 | 29.91       |
| ATOM   | 1390 | 0   | ARG  |   | 64   | 73.501           | 9.102   | 31.685 | 1.00 | 30.10       |
| ATOM   | 1391 | CB  | ARG  | D | 64   | 70.529           | 9.064   | 31.047 | 1.00 | 24.54       |
| ATOM   | 1392 | CG  | ARG  | D | 64   | 69.732           | 9.364   | 32.284 | 1.00 | 33.44       |
| ATOM   | 1393 | CD  | ARG  | D | 64   | 68.790           | 8.227   | 32.617 | 1.00 | 30.76       |
| ATOM   | 1394 | NE  | ARG  | D | 64   | 67.706           | 8.048   | 31.659 | 1.00 | 27.92       |
| ATOM   | 1395 | CZ  | ARG  | D | 64   | 66.649           | 8.865   | 31.545 | 1.00 | 30.52       |
| ATOM   | 1396 | NHl | ARG  | D | 64   | 66.536           | 9.940   | 32.316 | 1.00 | 26.37       |
| ATOM   | 1397 | NH2 | ARG  | D | 64   | 65.710           | 8.597 · | 30.655 | 1.00 | 30.42       |
| ATOM   | 1398 | N   | GLY  | D | 65   | 72.817           | 11.035  | 32.609 | 1.00 | 27.07       |
| ATOM   | 1399 | CA  | GLY  | D | 65   | 73.882           | 11.019  | 33.616 | 1.00 | 26.85       |
| ATOM   | 1400 | С   | GLY  | D | 65   | 75.190           | 11.651  | 33.183 | 1.00 | 30.69       |
| ATOM   | 1401 | 0   | GLY  |   | 65   | 76.089           | 11.825  | 33.997 | 1.00 | 31.19       |
| ATOM   | 1402 | N   | SER  | D | 66   | 75.287           | 12.036  | 31.912 | 1.00 | 25.88       |
| MOTA   | 1403 | CA  | SER  |   | 66   | 76.495           | 12.662  | 31.399 | 1.00 | 24.31       |
| ATOM   | 1404 | С   | SER  |   | 66   | 76.682           | 14.113  | 31.883 |      | 28.10       |
| MOTA   | 1405 | 0   | SER  |   | 66   | 77.793.          | 14.654  | 31.888 |      | 29.06       |
| MOTA   | 1406 | СВ  | SER  |   | 66   | 76.454           | 12.648  | 29.857 |      | 25.33       |
| ATOM   | 1407 | OG  | SER  |   | 66   | 75.428           | 13.550  | 29.364 |      | 25.27       |
| ATOM   | 1408 | N   | ARG. |   | 67   | 75.564           | 14.771  | 32.247 |      | 21.92       |
| ATOM   | 1409 | CA  | ARG  |   | 67   | 75.571           | 16.157  | 32.680 | 1.00 | 20.64       |
| ATOM   | 1410 | C   | ARG  |   | 67   | 76.060           | 17.130  | 31.581 |      | 21.33       |
| ATOM   | 1411 | ō   | ARG  |   | 67   | 76.476           | 18.236  | 31.854 |      | 23.88       |
| ATOM   | 1412 | СВ  | ARG  |   | 67   |                  | 16.320  | 34.033 |      | 24.90       |
| ATOM   | 1413 | CG  | ARG  |   | 67   | 76.274<br>75.630 | 15.331  | 35.037 |      | 34.18       |
| ATOM   | 1414 | CD  | ARG  |   | 67   | 75.927           | 15.626  | 36.478 |      | 41.97       |
| ATOM   | 1415 | NE  | ARG  |   | 67   | 77.213           | 15.050  | 36.869 |      | 42.73       |
| ATOM   | 1416 | CZ  | ARG  |   | 67   | 77.511           | 13.750  | 37.086 |      | 50.11       |
|        | 1417 |     | ARG  |   |      |                  | 12.732  |        |      |             |
| ATOM   | 1417 |     | ARG  |   | 67   |                  |         | 36.977 |      | 32.87       |
| ATOM   |      |     |      |   | 67   | 78.761           | 13.476  | 37.438 |      | 35.89       |
|        | 1419 | N   | ILE  |   | 68,  | 75.922           | 16.675  | 30.337 |      | 20.99       |
| MOTA   | 1420 | ÇA  | ILE  | ט | 68   | 76.342           | 17.482  | 29.196 | T.00 | 19.82       |

| MOTA  | 1421 | С   | ILE | D | 68 | 75.308 | 18.552 | 28.761 | 1.00 | 18.74 |
|-------|------|-----|-----|---|----|--------|--------|--------|------|-------|
| ATOM  | 1422 | 0   | ILE | D | 68 | 74.063 | 18.354 | 28.842 | 1.00 | 18.59 |
| ATOM  | 1423 | CB  | ILE | D | 68 | 76.553 | 16.552 | 27.943 | 1.00 | 22.72 |
| ATOM  | 1424 | CG1 |     | D | 68 | 77.870 | 15.741 | 28.011 | 1.00 | 22.79 |
| ATOM  | 1425 | CG2 |     | D | 68 | 76.492 | 17.349 | 26.604 |      | 23.66 |
| ATOM  | 1426 | CD1 |     | D | 68 | 77.831 | 14.542 | 27.090 | 1.00 | 24.22 |
| ATOM  | 1427 | N   | ILE | D | 69 | 75.866 | 19.651 | 28.331 | 1.00 | 17.03 |
| ATOM  | 1428 | CA  | ILE |   |    | 75.133 | 20.812 | 27.729 | 1.00 | 16.07 |
| ATOM  | 1429 | c   | ILE | D | 69 | 76.113 | 21.177 | 26.568 | 1.00 | 18.47 |
| ATOM  | 1430 | Õ   | ILE | D | 69 | 77.135 | 21.853 | 26.785 | 1.00 | 19.41 |
|       | 1431 | СВ  |     |   | 69 | 74.990 |        |        |      | 17.97 |
| ATOM  |      |     | ILE | D |    |        | 22.034 | 28.619 | 1.00 |       |
| ATOM  | 1432 | CG1 |     | D | 69 | 74.094 | 21.722 | 29.861 | 1.00 | 17.84 |
| ATOM  | 1433 | CG2 | ILE | D | 69 | 74.318 | 23.224 | 27.796 | 1.00 |       |
| ATOM  | 1434 | CD1 |     |   | 69 | 72.656 | 21.278 | 29.519 | 1.00 | 16.76 |
| ATOM  | 1435 | N   | SER |   | 70 | 75.800 | 20.705 | 25.359 | 1.00 | 16.82 |
| ATOM  | 1436 | CA  | SER |   | 70 | 76.694 | 20.960 | 24.186 | 1.00 | 16.67 |
| ATOM  | 1437 | С   | SER | D | 70 | 76.030 | 21.879 | 23.159 | 1.00 | 16.91 |
| MOTA  | 1438 | 0   | SER | D | 70 | 74.926 | 21.572 | 22.658 | 1.00 | 17.58 |
| MOTA  | 1439 | CB. | SER | D | 70 | 77.011 | 19.630 | 23.537 | 1.00 | 19.85 |
| ATOM  | 1440 | OG  | SER | D | 70 | 77.957 | 19.775 | 22.482 | 1.00 | 22.39 |
| ATOM  | 1441 | N   | VAL | D | 71 | 76.695 | 22.980 | 22.865 | 1.00 | 16.01 |
| MOTA  | 1442 | CA  | VAL | D | 71 | 76.145 | 23.963 | 21.853 | 1.00 | 17.80 |
| ATOM  | 1443 | С   | VAL | D | 71 | 76.803 | 23.589 | 20.516 | 1.00 | 22.32 |
| ATOM  | 1444 | 0   | VAL |   | 71 | 78.012 | 23.676 | 20.369 |      | 23.49 |
| ATOM  | 1445 | СВ  | VAL |   | 71 | 76.329 | 25.399 | 22.263 |      | 22.83 |
| ATOM  | 1446 |     | VAL |   | 71 | 75.507 | 25.648 | 23.572 |      | 21.98 |
| ATOM  | 1447 | CG2 |     |   | 71 | 77.809 | 25:768 | 22.399 | 1.00 | 24.06 |
| ATOM  | 1448 | N   | ASN |   | 72 | 75.970 | 23.121 | 19.584 |      | 20.48 |
| ATOM  | 1449 | CA  | ASN |   | 72 | 76.427 | 22.621 | 18.267 |      |       |
| ATOM  | 1450 |     | ASN |   | 72 |        |        |        |      | 20.13 |
|       | 1451 | C   |     |   |    | 75.998 | 23.462 | 17.099 | 1.00 | 22.39 |
| ATOM  |      | 0   | ASN |   | 72 | 75.023 | 24.219 | 17.165 | 1.00 | 22.18 |
| ATOM  | 1452 | СВ  | ASN |   | 72 | 75.811 | 21.233 | 18.033 |      | 21.77 |
| ATOM  | 1453 | CG  |     | D | 72 | 76.097 | 20.254 | 19.165 |      | 30.59 |
| ATOM  | 1454 |     | ASN |   | 72 | 77.069 | 20.428 | 19.917 |      | 25.69 |
| ATOM  | 1455 | ND2 | ASN |   | 72 | 75.228 | 19.241 | 19.317 |      | 26.90 |
| ATOM  | 1456 | N   | GLY | D | 73 | 76.708 | 23.283 | 15.994 | 1.00 | 20.53 |
| ATOM  | 1457 | CA  | GLY | D | 73 | 76.343 | 24.046 | 14.794 | 1.00 | 19.66 |
| ATOM  | 1458 | С   | GLY | D | 73 | 76.636 | 25.528 | 14.994 | 1.00 | 20.18 |
| ATOM  | 1459 | 0   | GLY | D | 73 | 77.584 | 25.917 | 15.706 | 1.00 | 19.03 |
| ATOM. | 1460 | N   | ALA | D | 74 | 75.821 | 26.380 | 14.343 | 1.00 | 16.73 |
| MOTA  | 1461 | CA  | ALA | D | 74 | 76.006 | 27.831 | 14.434 | 1.00 | 16.27 |
| ATOM  | 1462 | C . | ALA | D | 74 | 75.988 | 28.387 | 15.874 | 1.00 | 17.37 |
| ATOM  | 1463 | 0   | ALA | D | 74 | 76.616 | 29.406 | 16.149 | 1.00 | 18.06 |
| ATOM  | 1464 | СВ  | ALA | D | 74 | 74.987 | 28.616 | 13.530 | 1.00 | 17.59 |
| ATOM  | 1465 | N   | ALA |   | 75 | 75.226 | 27.686 | 16.729 | 1.00 | 17.95 |
| ATOM  | 1466 | CA  | ALA |   | 75 | 75.069 | 28.102 | 18.147 |      | 17.42 |
| ATOM  | 1467 | C   | ALA |   | 75 | 76.415 | 28.126 | 18.870 |      | 19.91 |
| ATOM  | 1468 | ō   | ALA |   | 75 | 76.543 | 28.800 | 19.897 | 1.00 | 19.81 |
| ATOM  | 1469 | СВ  | ALA |   | 75 | 74.115 | 27.217 | 18.827 | 1.00 | 18.30 |
| ATOM  | 1470 | N   | ALA |   | 76 | 77.433 | 27.422 | 18.345 | 1.00 |       |
|       | 1471 |     |     |   |    |        |        |        |      | 16.78 |
| MOTA  |      | CA  | ALA |   | 76 | 78.747 | 27.455 | 18.982 |      | 18.31 |
| ATOM  | 1472 | C   | ALA |   | 76 | 79.347 | 28.882 | 18.991 |      | 18.92 |
| ATOM  | 1473 | 0   | ALA |   | 76 | 80.266 | 29.184 | 19.740 |      | 19.50 |
| ATOM  | 1474 | CB  | ALA |   | 76 | 79.684 | 26.446 | 18.309 |      | 19.95 |
| ATOM  | 1475 | N   | HIS |   | 77 | 78.B30 | 29.800 | 18.149 |      | 16.41 |
| ATOM  | 1476 | CA  | HIS |   | 77 | 79.302 | 31.149 | 18.115 |      | 17.43 |
| ATOM. | 1477 | С   | HIS |   | 77 | 78.710 | 32.014 | 19.243 |      | 18.10 |
| ATOM  | 1478 | 0   | HIS | D | 77 | 79.143 | 33.147 | 19.435 |      | 20.06 |
| ATOM  | 1479 | CB  |     | D | 77 | 78.785 | 31.847 | 16.791 |      | 19.37 |
| ATOM  | 1480 | CG  | HIS | D | 77 | 79.540 | 31.470 | 15.545 | 1.00 | 22.65 |
|       |      |     |     |   |    |        |        |        |      |       |

| ATOM         | 1481         | ND1     | HIS | D  | 77       |   | 80.667           | 32.145           | 15.137           | 1.00 | 25.27          |
|--------------|--------------|---------|-----|----|----------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 1482         | CD2     | HIS |    | 77       |   | 79.308           | 30.523           | 14.605           |      | 22.98          |
| MOTA         | 1483         | CE1     |     | D  | 77       |   | 81.109           | 31.624           | 14.002           | 1.00 |                |
| ATOM         | 1484         | NE2     |     |    | 77       |   | 80.307           | 30.637           | 13.657           |      | 23.17          |
| MOTA         | 1485         | N       | CYS |    | 78       |   | 77.694           | 31.475           | 19.940           |      | 17.70          |
| ATOM         | 1486         | CA      | CYS |    | 78       |   | 76.964           | 32.234           | 20.974           | 1.00 | 18.05          |
| MOTA         | 1487         | С       | CYS |    | 78       |   | 77.251           | 31.832           | 22.400           |      | 21.51          |
| ATOM         | 1488         | 0       | CYS | D  | 78       |   | 76.750           | 32.470           | 23.321           | 1.00 | 21.14          |
| ATOM         | 1489         | CB      | CYS |    | 78       |   | 75.466           | 32.047           | 20.753           | 1.00 | 19.61          |
| ATOM         | 1490         | SG      | CYS |    | 78       |   | 74.878           | 32.588           | 19.098           | 1.00 | 25.07          |
| ATOM         | 1491         | N       | ALA |    | 79       |   | 78.033           | 30.778           |                  | 1.00 |                |
| ATOM         | 1492         | CA      | ALA |    | 79       |   | 78.365           | 30.353           | 23.943           | 1.00 | 19.73          |
| ATOM         | 1493         | C       | ALA |    | 79       |   | 79.677           | 29.603           | 23.922           | 1.00 | 25.47          |
| ATOM         | 1494         | 0       | ALA |    | 79       |   | 80.013           | 28.966           | 22.934           | 1.00 |                |
| ATOM         | 1495         | CB      | ALA |    | 79       |   | 77.283           | 29.479           | 24.512           |      | 20.06          |
| ATOM         | 1496         | N       | SER |    | 80       |   | 80.406           | 29.664           | 25.036           |      | 21.56          |
| ATOM         | 1497         | CA      | SER |    | 80       |   | 81.697           | 28.965           | 25.191           |      | 22.17          |
| ATOM         | 1498<br>1499 | C       | SER |    | 80       |   | 81.623           | 28.023           | 26.379           |      | 23.37          |
| ATOM<br>ATOM | 1500         | O<br>CB | SER |    | 80       |   | 80.792           | 28.213           | 27.275<br>25.485 | 1.00 |                |
| ATOM         | 1501         | OG      | SER |    | 80<br>80 | - | 82.824<br>82.930 | 29.931<br>30.986 | 24.543           | 1.00 | 25.03<br>28.26 |
| ATOM         | 1501         | N       | VAL |    | 81       |   | 82.499           | 27.021           | 26.388           | 1.00 | 18.88          |
| ATOM         | 1502         | CA      | VAL |    | 81       |   | 82.548           | 26.053           | 27.491           | 1.00 | 19.13          |
| ATOM         | 1503         | C       | VAL |    | 81       |   | 82.739           | 26.876           | 28.769           | 1.00 | 21.75          |
| ATOM         | 1505         | Ö       | VAL |    | 81       |   | 83.558           | 27.824           | 28.819           | 1.00 |                |
| ATOM         | 1506         | СВ      | VAL |    | 81       |   | 83.722           | 25.072           | 27.272           | 1.00 | 21.73          |
| ATOM         | 1507         | CG1     | VAL |    | 81       |   | 83.986           | 24.271           | 28.562           | 1.00 | 22.57          |
| ATOM         | 1508         | CG2     | VAL |    | 81       |   | 83.366           | 24.099           | 26.155           | 1.00 | 21.80          |
| ATOM         | 1509         | N .     | GLY |    | 82       |   |                  | 26.526           | 29.798           | 1.00 | 18.71          |
| ATOM         | 1510         | CA      | GLY |    | 82       |   | 82.060           | 27,276           | 31.055           | 1.00 | 18.70          |
| ATOM         | 1511         | C       | GLY |    | 82       |   | 81.007           | 28.365           | 31.234           | 1.00 |                |
| MOTA         | 1512         | ō       | GLY |    | 82       |   | 80.782           | 28.830           | 32.338           | 1.00 |                |
| ATOM         | 1513         | N       | ASP |    | 83       |   | 80.366           | 28.835           | 30.145           | 1.00 |                |
| MOTA         | 1514         | CA      | ASP | D  | 83       |   | 79.356           | 29.867           | 30.305           | 1.00 | 16.76          |
| MOTA         | 1515         | С       | ASP | D  | 83       |   | 78.131           | 29.322           | 31.070           | 1.00 |                |
| MOTA         | 1516         | 0       | ASP | D  | 83       |   | 77.748           | 28.153           | 30.896           | 1.00 | 17.18          |
| ATOM         | 1517         | CB      | ASP | D  | 83       |   | 78.861           | 30.294           | 28.908           | 1.00 | 18.79          |
| MOTA         | 1518         | CG      | ASP | D  | 83       |   | 79.852           | 31.196           | 28.164           | 1.00 | 22.59          |
| MOTA         | 1519         | OD1     | ASP | D  | 83       |   | 80.935           | 31.544           | 28.680           | 1.00 | 20.93          |
| MOTA         | 1520         | OD2     | ASP | D  | 83       |   | 79.519           | 31.615           | 27.015           | 1.00 | 21.88          |
| MOTA         | 1521         | N       | ILE | D  | 84       |   | 77.515           | 30.198           | 31.860           | 1.00 | 17.58          |
| MOTA         | 1522         | CA      | ILE | ,D | 84       |   | 76.300           | 29.822           | 32.603           | 1.00 | 17.77          |
| ATOM         | 1523         | С       |     | D  | 84       |   | 75.119           | 30.302           | 31.751           |      | 17.52          |
| ATOM         | 1524         | 0       |     | D  | 84       |   | 75.119           | 31.474           | 31.351           |      | 16.51          |
| ATOM         | 1525         | CB      | ILE | D  | 84       |   | 76.296           | 30.573           | 33.935           | 1.00 | 21.87          |
| ATOM         | 1526         | CG1     |     | D  | 84       |   | 77.513           | 30.116           | 34.766           |      | 22.20          |
| ATOM         | 1527         | CG2     | ILE | D  | 84       |   | 74.978           | 30.346           | 34.726           |      | 22.70          |
| MOTA         | 1528         | CD1     |     | D  | 84       |   | 77.676           | 31.008           | 36.011           |      | 27.68          |
| ATOM         | 1529         | N       | VAL |    | 85       |   | 74.192           | 29.388           | 31.497           | 1.00 | 16.68          |
| ATOM         | 1530         | CA      | VAL |    | 85       |   | 73.007           | 29.731           | 30.686           |      | 14.93          |
| ATOM         | 1531         | C .     |     |    | 85       | • | 71.700           | 29.265           | 31.326           |      | 18.77          |
| ATOM         | 1532         | 0       | VAL |    | 85       |   | 71.702           | 28.445           | 32.264           |      | 18.51          |
| ATOM         | 1533         | CB      | VAL |    | 85       |   | 73.144           | 29.098           | 29.266           |      | 15.49          |
| ATOM         | 1534         |         | VAL |    | 85       |   | 74.452           | 29.475           | 28.627           |      | 16.44          |
| ATOM         | 1535         |         | VAL |    | 85       |   | 73.026           | 27.645           | 29.306           |      | 14.40          |
| ATOM         | 1536         | N       | ILE |    | 86       | • | 70.571           | 29.792           | 30.807           |      | 14.77          |
| MOTA         | 1537         | CA      | ILE |    | 86       |   | 69.244           | 29.418           | 31.229           |      | 15.52          |
| ATOM         | 1538         | C       | ILE |    | 86       |   | 68.618           | 28.876           | 29.933           |      | 15.28          |
| MOTA         | 1539         | 0       | ILE |    | 86.      |   | 68.730           | 29.572           | 28.899<br>31.786 |      | 15,56<br>18,22 |
| ATOM         | 1540         | CB      | ILE | U  | 86       |   | 68.442           | 30.582           | JI. /85          | 1.00 | 10.22          |

| ATOM         | 1541         | CG1     | ILE | D   | 86       | 69.034           | 31.030           | 33.158           | 1.00 | 19.52          |
|--------------|--------------|---------|-----|-----|----------|------------------|------------------|------------------|------|----------------|
| MOTA         | 1542         | CG2     | ILE | D   | 86       | 66.998           | 30.177           | 31.976           | 1.00 |                |
| MOTA         | 1543         | CD1     | ILE |     | 86       | 68.686           | 32.448           | 33.495           |      | 25.25          |
| ATOM         | 1544         | N       | ILE | D   | 87       | 68.087           | 27.692           | 29.954           | 1.00 |                |
| MOTA         | 1545         | CA      |     | D   | 87       | 67.466           | 27.037           | 28.747           | 1.00 | 11.37          |
| ATOM         | 1546         | С       | ILE |     | 87       | 65.989           | 26.902           | 29.021           | 1.00 |                |
| ATOM         | 1547         | 0       | ILE |     | 87       | 65.585           | 26.259           | 30.043           | 1.00 |                |
| ATOM         | 1548         | CB      | ILE |     | 87       | 68.096           | 25.681           | 28.476           | 1.00 |                |
| ATOM         | 1549         | CG1     | ILE |     | 87       | 69.636           | 25.844           | 28.325           | 1.00 | 14.68          |
| ATOM         | 1550         | CG2     | ILE |     | .87      | 67.438           | 24.977           | 27.201           | 1.00 |                |
| ATOM         | 1551         | CD1     | ILE |     | 87       | 70.419           | 24.558           | 27.961           | 1.00 |                |
| ATOM         | 1552         | N       | ALA |     | 88       | 65.127           | 27.457           | 28.161           | 1.00 |                |
| ATOM<br>ATOM | 1553<br>1554 | CA<br>C | ALA |     | 88 .     | 63.667           | 27.410<br>26.916 | 28.397<br>27.216 | 1.00 |                |
| ATOM         | 1555         | 0       | ALA |     | 88<br>88 | 62.870<br>63.341 | 27.080           | 26.077           | 1.00 |                |
| ATOM         | 1556         | СВ      | ALA |     | 88       | 63.197           | 28.842           | 28.683           | 1.00 | 12.68          |
| ATOM         | 1557         | N       | SER |     | 89       | 61.703           | 26.359           | 27.432           | 1.00 | 11.75          |
| ATOM         | 1558         | CA      | SER |     | 89       | 60.793           | 26.000           | 26.336           | 1.00 | 9.22           |
| ATOM         | 1559         | C       | SER |     | 89       | 59.463           | 26.672           | 26.691           | 1.00 |                |
| ATOM         | 1560         | ō       | SER |     | 89.      | 59.122           | 26.881           | 27.894           | 1.00 |                |
| ATOM         | 1561         | СВ      | SER |     | 89       | 60.657           | 24.533           | 26.038           | 1.00 |                |
| ATOM         | 1562         | OG      | SER |     | 89       | 59.637           | 23.875           | 26.787           | 1.00 | 13.68          |
| ATOM         | 1563         | N       | PHE |     | 90       | 58.652           | 27.010           | 25.690           | 1.00 | 9.51           |
| ATOM         | 1564         | CA      |     | D   |          | 57.352           | 27.650           | 25.837           | 1.00 | 10.69          |
| ATOM         | 1565         | С       | •   | D   | 90       | 56.272           | 26.831           | 25.169           | 1.00 | 14.12          |
| ATOM         | 1566         | 0       | PHE | Đ   | 90       | 56.519           | 26.218           | 24.124           | 1.00 | 13.43          |
| ATOM         | 1567         | СВ      |     | D . | 90       | 57.381           | 29.069           | 25.211           | 1.00 | 9.99           |
| ATOM         | 1568         | CG      | PHE | D   | 90       | 58.172           | 30.051           | 26.052           | 1.00 | 8.63           |
| ATOM         | 1569         | CD1     | PHE | D   | 90       | 59.569           | 30.106           | 25.972           | 1.00 | 12.75          |
| ATOM         | 1570         | CD2     | PHE | D   | 90       | 57.492           | 30.917           | 26.943           | 1.00 | 9.84           |
| ATOM         | 1571         | CE1     | PHE | D   | 90       | 60.296           | 31.033           | 26.745           | 1.00 | 12.66          |
| ATOM         | 1572         | CE2     | PHE | D   | 90       | 58.223           | 31.786           | 27.752           | 1.00 | 11.34          |
| ATOM         | 1573         | CZ      | PHE | D   | 90       | 59.576           | 31.884           | 27.669           | 1.00 | 11.79          |
| ATOM         | 1574         | N       | VAL | D   | 91       | 55.074·          | 26.811           | 25.733           | 1.00 | 11.04          |
| MOTA         | 1575         | CA      | VAL |     | 91       | 53.934           | 26.075           | 25.155           | 1.00 | 8.97           |
| ATOM         | 1576         | C ·     | VAL |     | 91       | 52.749           | 27.000           | 25.053           |      | 12.88          |
| MOTA         | 1577         | 0       | VAL |     | 91       | 52.705           | 28.071           | 25.735           |      | 13.37          |
| ATOM         | 1578         | CB      | VAL |     | 91       | 53.519           | 24.811           | 25.939           |      | 11.62          |
| ATOM         | 1579         | CG1     | VAL |     | 91       | 54.527           | 23.721           | 25.805           |      | 11.91          |
| MOTA         | 1580         | CG2     | VAL |     | 91       | 53.294           | 25.194           | 27.489           |      | 13.43          |
| ATOM         | 1581         | N       | THR |     | 92       | 51.759           | 26.638           | 24.210           | 1.00 | 11.67          |
| ATOM         | 1582         | CA      | THR |     | 92       | 50.571           | 27.439           | 24.086           | 1.00 | 9.61           |
| ATOM         | 1583         | C       | THR |     | 92       | 49.326           | 26.678           | 24.633<br>24.646 | 1.00 | 8.31           |
| ATOM<br>ATOM | 1584<br>1585 | O<br>CB | THR |     | 92<br>92 | 49.266<br>50.371 | 25.473<br>27.971 | 22.630           | 1.00 | 11.35<br>12.02 |
| ATOM         | 1586         |         | THR |     | 92       | 50.296           | 26.819           | 21.738           |      | 17.42          |
| ATOM         | 1587         | CG2     | THR |     | 92       | 51.481           | 28.893           | 22.269           |      | 11.07          |
| ATOM         | 1588         | N N     |     | D   | 93       | 48.330           | 27.441           | 25.059           |      | 10.31          |
| ATOM         | 1589         | CA      |     | D   | 93       | 47.103           | 26.859           | 25.667           | 1.00 | 10.55          |
| ATOM         | 1590         | C       |     | D   | 93       | 46.090           | 27.986           | 25.846           |      | 10.55          |
| ATOM         | 1591         | ō       |     | Ď   | 93       | 46.444           | 29.174           | 25.900           |      | 11.69          |
| ATOM         | 1592         | СВ      | MET |     | 93       | 47.421           | 26.236           | 27.109           |      | 11.27          |
| ATOM         | 1593         | CG      | MET |     | 93       | 47.856           | 27.339           | 28.054           |      | 11.07          |
| ATOM         | 1594         | SD      | MET |     | 93       | 48.572           | 26.650           | 29.641           |      | 13.35          |
| ATOM         | 1595         | CE      | MET |     | Š3       | 50.133           | 26.102           | 28.965           |      | 13.30          |
| ATOM         | 1596         | N       | PRO |     | 94       | 44.820           | 27.596           | 25.967           |      | 10.89          |
| ATOM         | 1597         | CA      | PRO |     | 94       | 43.757           | 28.594           | 26.172           |      | 10.92          |
| MOTA         | 1598         | С       | PRO |     | 94       | 43.959           | 29.439           | 27.445           | 1.00 | 13.89          |
| ATOM         | 1599         | 0       | PRO | D   | 94       | 44.529           | 28.930           | 28.444           | 1.00 | 13.64          |
| MOTA         | 1600         | CB      | PRO | D   | 94       | 42.492           | 27.750           | 26.291           | 1.00 | 15.15          |
|              |              |         |     |     |          |                  |                  |                  |      |                |

| ATOM   | 1601 | CG  | PRO | D | 94  | 42.839  | 26.445 | 25.629 | 1.00 18.73 |
|--------|------|-----|-----|---|-----|---------|--------|--------|------------|
| ATOM   | 1602 | CD  | PRO | D | 94  | 44.315  | 26.240 | 25.823 | 1.00 13.59 |
| ATOM   | 1603 | N   | ASP | D | 95  | 43.535  | 30.684 | 27.413 | 1.00 12.77 |
| ATOM   | 1604 | CA  | ASP | D | 95  | 43.665  | 31.614 | 28.524 | 1.00 11.85 |
| ATOM   | 1605 | С   | ASP | D | 95  | 43.174  | 30.951 | 29.847 | 1.00 12.73 |
| ATOM   | 1606 | 0   | ASP |   | 95  | 43.865  | 31.103 | 30.918 | 1.00 14.23 |
| ATOM   | 1607 | СВ  | ASP |   | 95  | 42.811  | 32.862 | 28.257 | 1.00 13.88 |
| ATOM   | 1608 | CG  | ASP |   | 95  | 42.966  | 33.903 | 29.322 | 1.00 16.93 |
| ATOM   | 1609 |     | ASP |   | 95  | 44.066  | 34.422 | 29.557 | 1.00 15.12 |
| ATOM   | 1610 |     | ASP |   | 95  | 41.944  | 34.159 | 30.004 | 1.00 25.27 |
| ATOM   | 1611 | N   | GLU |   | 96  | 42.037  | 30.280 | 29.777 | 1.00 11.92 |
| MOTA   | 1612 | CA  | GLU |   | 96  | 41.450  | 29.634 | 31.006 | 1.00 13.09 |
| ATOM   | 1613 | C   | GLU |   | 96  | 42.418  | 28.668 | 31.670 | 1.00 17.50 |
| ATOM   | 1614 | ŏ   | GLU |   | 96  | 42.463  | 28.607 | 32.916 | 1.00 17.59 |
|        | 1615 | СВ  | GLU |   | 96  | 40.194  | 28.900 | 30.623 | 1.00 15.73 |
| ATOM   |      |     |     |   | 96  |         | 28.382 | 31.819 | 1.00 27.44 |
| ATOM   | 1616 | CG  | GLU |   |     | 39.407  |        | 32.150 | 1.00 27.44 |
| ATOM   | 1617 | CD  | GLU |   | 96  | 39.718  | 26.953 |        |            |
| ATOM   | 1618 | OE1 | GLU |   | 96  | 40.247  | 26.230 | 31.298 | 1.00 32.53 |
| ATOM   | 1619 | OE2 | GLU |   | 96  | 39.416  | 26.541 | 33.300 | 1.00 50.29 |
| ATOM   | 1620 | N   | GLU |   | 97  | 43.184  | 27.904 | 30.898 | 1.00 13.12 |
| ATOM   | 1621 | CA  | GLU |   | 97  | 44.151  | 26.962 | 31.475 | 1.00 11.58 |
| ATOM   | 1622 | С   | GLU |   | 97  | 45.417  | 27.747 | 31.906 | 1.00 14.13 |
| ATOM   | 1623 | 0   | GĽŨ |   | 97  | 46.124  | 27.431 | 32.874 | 1.00 14.05 |
| ATOM   | 1624 | CB  | GLU |   | 97  | 44.553  | 25.876 | 30.429 | 1.00 10.79 |
| ATOM · | 1625 | CG  | GLU |   | 97  | 43.463  | 24.971 | 30.050 | 1.00 12.84 |
| ATOM   | 1626 | CD  | GLU |   | 97  | 43.862  | 23.894 | 29.037 | 1.00 16.10 |
| MOTA   | 1627 | OE1 | GLU | D | 97  | 44.997  | 23.908 | 28.435 | 1.00 17.56 |
| ATOM   | 1628 | OE2 | GLU | D | 97  | 43.042  | 22.981 | 28.897 | 1.00 19.58 |
| MOTA   | 1629 | N   | ALA | D | 98  | 45.828  | 28.763 | 31.147 | 1.00 11.26 |
| ATOM   | 1630 | CA  | ALA | D | 98  | 47.011  | 29.521 | 31.441 | 1.00 12.13 |
| ATOM   | 1631 | С   | ALA | D | 98  | 47.025  | 30.209 | 32.830 | 1.00 12.78 |
| ATOM   | 1632 | 0   | ALA | D | 98  | 48.121  | 30.395 | 33.423 | 1.00 12.87 |
| ATOM   | 1633 | СВ  | ALA |   | 98  | .47.161 | 30.609 | 30.303 | 1.00 13.93 |
| ATOM   | 1634 | N   | ARG |   | 99  | 45.795  | 30.577 | 33.268 | 1.00 13.12 |
| ATOM   | 1635 | CA  | ARG |   | 99  | 45.668  | 31.263 | 34.534 | 1.00 13.91 |
| ATOM   | 1636 | C   | ARG |   | 99  | 46.164  | 30.394 | 35.692 | 1.00 15.52 |
| ATOM   | 1637 | ŏ   | ARG |   | 99  | 46.555  | 30.998 | 36.715 | 1.00 16.74 |
| ATOM   | 1638 | СВ  | ARG |   | 99  | 44.232  | 31.694 | 34.717 | 1.00 13.81 |
| ATOM   | 1639 | CG  | ARG |   | 99  | 43.930  |        | 33.737 | 1.00 21.54 |
| ATOM   | 1640 | CD  | ARG |   | 99  | 42.544  | 33.302 | 33.768 | 1.00 31.31 |
| ATOM   | 1641 | NE  | ARG |   | 99  | 42.382  | 34.329 | 32.737 | 1.00 34.14 |
| ATOM   | 1642 | CZ  | ARG |   | 99  | 42.824  | 35.587 | 32.820 | 1.00 39.78 |
| ATOM   | 1643 |     | ARG |   | 99  | 43.448  | 36.028 | 33.912 | 1.00 39.29 |
| ATOM   | 1644 | NH2 | ARG |   | 99  | 42.622  | 36.428 | 31.821 | 1.00 34.68 |
|        | 1645 | N   |     |   | 100 | 46.189  | 29.072 | 35.553 | 1.00 12.99 |
| ATOM   |      |     | THR |   |     | 46.668  | 28.209 | 36.674 | 1.00 13.08 |
| ATOM   | 1646 | CA  | THR |   | 100 | 47.916  |        | 36.307 | 1.00 15.62 |
| ATOM   | 1647 | C   | THR |   | 100 |         | 27.391 |        | •          |
| ATOM   | 1648 | 0   | THR |   | 100 | 48.408  | 26.541 | 37.068 | 1.00 16.66 |
| ATOM   | 1649 | CB  | THR |   | 100 | 45.537  | 27.276 | 37.099 | 1.00 15.79 |
| MOTA   | 1650 |     | THR |   |     | 45.017  | 26.550 | 35.988 | 1.00 14.58 |
| ATOM   | 1651 |     | THR |   |     | 44.344  | 28.091 | 37.708 | 1.00 15.05 |
| MOTA   | 1652 | N   | TRP |   |     | 48.490  | 27.635 | 35.105 | 1.00 14.25 |
| ATOM . | 1653 | CA  | TRP |   |     | 49.645  | 26.857 | 34.699 | 1.00 13.12 |
| MOTA   | 1654 | С   | TRP |   |     | 50.846  | 27.042 | 35.554 | 1.00 15.17 |
| MOTA   | 1655 | 0   | TRP |   |     | 51.111  | 28.163 | 36.042 | 1.00 16.82 |
| MOTA   | 1656 | CB  | TRP |   |     | 49.970  | 27.286 | 33.191 | 1.00 11.79 |
| MOTA   | 1657 | CG  | TRP |   |     | 51.197  | 26.624 | 32.676 | 1.00 10.50 |
| MOTA   | 1658 |     | TRP |   |     | 52.416  | 27.164 | 32.527 | 1.00 12.40 |
| MOTA   | 1659 | CD2 | TRP | D | 101 | 51.317  | 25.240 | 32.383 | 1.00 12.89 |
| ATOM   | 1660 | NE1 | TRP | D | 101 | 53.292  | 26.208 | 32.121 | 1.00 12.65 |
|        |      |     |     |   |     |         |        |        |            |

| ATOM         | 1661         | CE2    | TRP [ | 101 | 52.659           | 25.019           | 32.000           | 1.00 | 13.88          |
|--------------|--------------|--------|-------|-----|------------------|------------------|------------------|------|----------------|
| ATOM         | 1662         | CE3    | TRP ( | 101 | 50.419           | 24.168           | 32.362           | 1.00 | 15.74          |
| ATOM         | 1663         | CZ2    | TRP [ | 101 | 53.144           | 23.769           | 31.624           | 1.00 | 16.20          |
| ATOM         | 1664         | CZ3    | TRP I | 101 | 50.898           | 22.888           | 32.009           | 1.00 | 19.25          |
| ATOM         | 1665         | CH2    | TRP I | 101 | 52.266           | 22.699           | 31.649           | 1.00 | 19.62          |
| ATOM         | 1666         | N      | ARG I | 102 | 51.613           | 25,952           | 35.714           | 1.00 | 15.08          |
| ATOM         | 1667         | CA     | ARG I | 102 | 52.844           | 25.993           | 36.481           |      | 15.90          |
| ATOM         | 1668         | С      | ARG I | 102 | 53.983           | 25.375           | 35.637           | 1.00 | 11.33          |
| MOTA         | 1669         | 0      | ARG I | 102 | 53.846           | 24.253           | 35.202           | 1.00 | 14.41          |
| MOTA         | 1670         | CB     | ARG I | 102 | 52.703           | 25.128           | 37.779           | 1.00 | 18.89          |
| ATOM         | 1671         | ÇG     | ARG I | 102 | 51.612           | 25.639           | 38.780           |      | 24.40          |
| MOTA         | 1672         | CD     | ARG [ |     | 51,559           | 24.821           | 40.096           |      | 22.77          |
| MOTA         | 1673         | NE     | ARG I |     | 52.794           | 24.906           | 40.846           |      | 27.18          |
| ATOM .       | 1674         | CZ     | ARG [ |     | 53.120           | 25.887           | 41.689           |      | 28.35          |
| ATOM         | 1675         | NH1    | ARG I |     | 52.313           | 26.911           | 41.893           |      | 23.60          |
| ATOM         | 1676         | NH2    | ARG I |     | 54.280           | 25.844           | 42.314           |      | 31.92          |
| ATOM         | 1677         | N      | PRO I |     | 55.088           | 26.106           | 35.497           |      | 12.26          |
| ATOM         | 1678         | CA     | PRO D |     | 56.234           | 25.566           | 34.721           |      | 13.54          |
| ATOM         | 1679         | C      | PRO D |     | 57.047           | 24.562           | 35.500           |      | 17.32          |
| MOTA         | 1680         | 0      | PRO I |     | 56.956           | 24.539           | 36.792           |      | 16.83          |
| ATOM         | 1681         | CB     | PRO I |     | 57.114           | 26.794           | 34.506           |      | 14.38          |
| ATOM         | 1682         | CG     | PRO I |     | 56.894           | 27.640           | 35.767           |      | 22.25<br>16.38 |
| MOTA         | 1683         | CD     | PRO D |     | 55.363<br>57:859 | 27.456<br>23.759 | 36.011<br>34.781 |      | 13.82          |
| ATOM         | 1684         | Ŋ      |       |     |                  | 22.758           | 35.377           |      | 12.48          |
| ATOM         | 1685         | CA     | ASN D |     | 58.744<br>60.121 | 23.389           | 35.504           |      | 19.52          |
| ATOM .       | 1686<br>1687 | C<br>O | ASN D |     | 60.775           | 23.569           | 34.460           |      | 16.91          |
| ATOM         | 1688         | CB     | ASN D |     | 58.798           | 21.477           | 34.539           |      | 13.72          |
| ATOM         | 1689         | CG     | ASN C |     | 57.470           | 20.884           | 34.345           |      | 19.91          |
| ATOM         | 1690         | OD1    |       |     | 56.775           | 20.587           | 35.338           |      | 17.05          |
| ATOM         | 1691         | ND2    | ASN D |     | 57.032           | 20.718           | 33.087           |      | 20.70          |
| ATOM         | 1692         | N      | VAL D |     | 60.613           | 23.649           | 36.722           |      | 17.67          |
| ATOM         | 1693         | CA     | VAL D |     | 61.885           | 24.295           | 36.850           |      | 16.36          |
| ATOM         | 1694         |        | VAL [ |     | 62.907           | 23.448           | 37.546           |      | 21.93          |
| ATOM         | 1695         | 0      | VAL D |     | 62.601           | 22.863           | 38.602           | 1.00 | 22.45          |
| ATOM         | 1696         | СВ     | VAL D | 105 | 61.775           | 25.635           | 37.634           | 1.00 | 18.76          |
| ATOM         | 1697         | CG1    | VAL D | 105 | 63.106           | 26.314           | 37.743           | 1.00 | 19.86          |
| ATOM         | 1698         | CG2    | VAL D | 105 | 60:642           | 26.573           | 37.039           | 1.00 | 19.00          |
| ATOM         | 1699         | N      | AĹA D | 106 | 64.102           | 23.365           | 36.974           | 1,00 | 20.08          |
| MOTA         | 1700         | CA     | ALA D | 106 | 65.232           | 22.610           | 37.580           | 1.00 | 19.28          |
| MOTA         | 1701         | С      | ALA D |     | 66.330           | 23.614           | 37.866           |      | 22.54          |
| MOTA         | 1702         | 0      | ALA D |     | 66.699           | 24.410           | 37.000           |      | 20.02          |
| MOTA         | 1703         | СВ     | ALA D |     | 65.733           | 21.552           | 36.689           |      | 19.59          |
| ATOM         | 1704         | N      | TYR D |     | 66.894           | 23.609           | 39.098           |      | 21.77          |
| MOTA         | 1705         | CA     | TYR D |     | 67.952           | 24.556           | 39.469           |      | 22.90          |
| ATOM         | 1706         | C      | TYR D |     | 69.287           | 23.841           | 39.546           |      | 25.98          |
| ATOM         | 1707         | 0      | TYR D |     | 69.335           | 22.668           | 39.882           |      | 25.22          |
| ATOM         | 1708         | CB     | TYR C |     | 67.646           | 25.222           | 40.818           |      | 25.00          |
| ATOM         | 1709         | CG     | TYR D |     | 66.482           | 26.167           | 40.752           |      | 24.25          |
| ATOM         | 1710         | CD1    | TYR D |     | 66.651           | 27.484           | 40.330           |      | 26.30          |
| ATOM         | 1711         | CD2    | TYR D |     | 65.202           | 25.733<br>28.344 | 41.102<br>40.270 |      | 25.93<br>29.13 |
| ATOM         | 1712<br>1713 | CE2    | TYR D |     | 65.588<br>64.125 | 26.600           | 40.270           |      | 25.26          |
| ATOM         | 1713         | CE2    | TYR D |     |                  | 27.900           | 40.658           |      | 31.88          |
| ATOM<br>ATOM | 1714         | OH     |       |     | 64.325<br>63.238 | 28.756           | 40.558           |      | 35.96          |
| ATOM         | 1716         | N      | TYR D |     | 70.356           | 24.556           | 39.194           |      | 26.53          |
| ATOM         | 1717         | CA     | PHE C |     | 71.677           | 23.953           | 39.185           |      | 25.71          |
| ATOM         | 1718         | C      | PHE C |     | 72.739           | 24.852           | 39.791           |      | 31.22          |
| MOTA         | 1719         | ō      | PHE D |     | 72.733           | 26.079           | 39.860           |      | 28.62          |
| ATOM         | 1720         | СВ     | PHE D |     | 72.145           | 23.669           | 37.719           |      | 25.29          |
|              |              |        |       |     | ,                |                  |                  |      |                |

| ATOM         | 1721         | CG       | PHE        | D | 108        | 71.302           | 22.678           | 36.974           |      | 21.78          |
|--------------|--------------|----------|------------|---|------------|------------------|------------------|------------------|------|----------------|
|              | 1722         |          |            | D | 108        | 70.101           | 23.072           | 36.357           |      | 19.05          |
| ATOM         | 1723         |          |            | D | 108        | 71.708           | 21.360           | 36.850           |      | 20.20          |
|              | 1724         |          |            | D | 108        | 69.333           | 22.156           | 35.675           |      | 19.07          |
| MOTA         | 1725         |          | PHE        |   | 108<br>108 | 70.965           | 20.441           | 36.163           |      | 22.77          |
| ATOM<br>ATOM | 1726<br>1727 | CZ<br>N  | PHE<br>GLU |   | 108        | 69.733<br>73.815 | 20.879<br>24.196 | 35.546<br>40.198 |      | 20.24          |
| ATOM         | 1728         | CA       | GLU        |   | 109        | 74.970           | 24.150           | 40.198           |      | 32.90          |
| ATOM         | 1729         | C        | GLU        |   | 109        | 76.205           | 24.037           | 40.466           |      | 33.93          |
| ATOM         | 1730         | ŏ        | GLU        |   | 109        | 76.114           | 22.898           | 40.055           |      | 30.42          |
| ATOM         | 1731         | СВ       | GLU        |   | 109        | 74.826           | 24.827           | 42.326           |      | 35.17          |
| ATOM         | 1732         | CG       | GLU        |   | 109        | 74.907           | 23.400           | 42.875           |      | 44.89          |
| MOTA         | 1733         | CD       | GLU        | D | 109        | 74.607           | 23.314           | 44.352           | 1.00 | 68.70          |
| MOTA         | 1734         |          | GLU        |   | 109        | 74.608           | 24.376           | 45.020           | 1.00 | 58.38          |
| ATOM         | 1735         | OE2      | GLU        |   | 109        | 74.358           | 22.182           | 44.842           |      | 66.11          |
| ATOM         | 1736         | N        | GLY        |   |            | 77.379           | 24.614           | 40.702           |      | 33.06          |
| ATOM         | 1737         | CA       | GLY        |   |            | 78.616           | 23.899           | 40.454           |      | 32.35          |
| ATOM         | 1738         | C        | GLY        |   |            | 78.689           | 23.323           | 39.056           |      | 35.50          |
| ATOM         | 1739         | 0        | GLY        |   |            | 78.449           | 24.039           | 38.072           |      | 35.53          |
| ATOM         | 1740         | N        | ASP        |   |            | 79.074           | 22.063           | 38.971           |      | 29.97          |
| ATOM<br>ATOM | 1741<br>1742 | CA<br>C  | ASP<br>ASP |   |            | 79.232<br>77.960 | 21.400<br>20.672 | 37.693<br>37.285 |      | 31.05          |
| ATOM         | 1743         | 0        | ASP        |   |            | 77.886           | 19.418           | 37.225           |      | 28.67          |
| ATOM         | 1744         | CB       | ASP        |   |            | 80.465           | 20.495           | 37.717           |      | 33.49          |
| ATOM         | 1745         | CG       | ASP        |   |            | 80.534           | 19.558           | 36.541           |      | 44.31          |
| ATOM         | 1746         |          | ASP        |   |            | 80.219           | 19.999           | 35.400           |      | 46.12          |
| ATOM         | 1747         | OD2      | ASP        | D | 111        | 80.882           | 18.378           | 36.760           | 1.00 | 41.60          |
| ATOM         | 1748         | N        | ASN        | D | 112        | 76.959           | 21.480           | 36.967           | 1.00 | 27.75          |
| ATOM         | 1749         | CA       | ASN        | D | 112        | 75.682           | 20.951           | 36.556           | 1.00 | 25.85          |
| MOTA         | 1750         | C        | Asn        | D | 112        | 75.072           | 20.013           | 37.556           | 1.00 |                |
| ATOM         | 1751         | 0        | ASN        |   |            | 74.553           | 18.956           | 37.211           |      | 24.07          |
| MOTA         | 1752         | CB       | ASN        |   |            | 75.744           | 20.367           | 35.149           |      | 25.14          |
| ATOM         | 1753         | CG       | ASN        |   |            | 75.975           | 21.425           | 34.158           | 1.00 |                |
| MOTA         | 1754         |          | ASN        |   |            | 75.875           | 22.600           | 34.511           |      | 22.70          |
| ATOM         | 1755         |          | ASN        |   |            | 76.334           | 21.051           | 32.918           |      | 21.36          |
| ATOM<br>ATOM | 1756<br>1757 | N<br>Cr  | GLU<br>GLU |   |            | 75.142<br>74.556 | 20.436           | 38.818           |      | 27.11 28.84    |
| ATOM         | 1758         | CA<br>C  | GLU        |   |            | 73.181           | 19.639<br>20.182 | 39.900<br>40.147 |      | 27.72          |
| ATOM         | 1759         | Ö        | GLU        |   |            | 73.101           | 21.365           | 40.555           | 1.00 |                |
| ATOM         | 1760         | СВ       | GLU        |   |            | 75.388           | 19.695           | 41.177           | 1.00 | 30.87          |
| ATOM         | 1761         | CG       | GLU        |   | 113        | 76.724           | 18.975           | 41.092           | 1.00 | 37.93          |
| ATOM         | 1762         | CD       | GLU        |   | 113        | 76.692           | 17.429           | 41.016           |      | 59.74          |
| MOTA         | 1763         | OE1      | GLU        | D | 113        | 75.612           | 16.786           | 40.882           | 1.00 | 46.50          |
| ATOM         | 1764         | OE2      | GLU        | D | 113        | 77.814           | 16.868           | 41.082           | 1.00 | 59.60          |
| ATOM         | 1765         | N        |            |   | 114        | 72.194           | 19.333           | 39.866           |      | 27.25          |
| MOTA         | 1766         | CA       |            |   | 114        | 70.781           | 19.680           | 40.012           |      | 32.32          |
| MOTA         | 1767         | C        |            |   | 114        | 70.391           | 19.716           | 41.452           |      | 39.86          |
| ATOM         | 1768         | 0        |            |   | 114        | 70.527           | 18.703           | 42.145           | 1.00 | 40.94          |
| ATOM         | 1769         |          |            |   | 114        | 69.889           | 18.646           | 39.319           |      | 34.33          |
| ATOM<br>ATOM | 1770         | CG       | MET<br>MET |   | 114        | 68.468<br>67.314 | 19.136           | 39.198<br>38.726 | 1.00 | 36.77<br>39.76 |
| ATOM         | 1771<br>1772 | SD<br>CE | MET        |   |            | 67.514           | 17.889<br>17.803 | 36.803           |      | 31.31          |
| ATOM         | 1773         | N N      | LYS        |   |            | 69.893           | 20.851           | 41.915           |      | 37.37          |
| ATOM         | 1774         | CA       | LYS        |   |            | 69.488           | 20.983           | 43.324           |      | 38.95          |
| ATOM         | 1775         |          | LYS        |   |            | 68.169           | 20.274           | 43.622           | _    | 54.19          |
| ATOM         | 1776         |          | LYS        |   |            | 67.301           | 20.213           | 42.705           |      | 51.66          |
| ATOM         | 1777         |          | LYS        |   |            | 69.362           | 22.437           | 43.715           | 1.00 | 41.43          |
| ATOM         | 1778         | CG       | LYS        | D | 115        | 70.655           | 23.235           | 43.740           | 1.00 | 47.27          |
| ATOM         | 1779         | CD       | LYS        | D | 115        | 70.334           | 24.681           | 44.041           | 1.00 | 43.78          |
| MOTA         | 1780         | CE       | LYS        | D | 115        | 71.439           | 25.627           | 43.660           | 1.00 | 55.99          |
|              |              |          |            |   |            |                  |                  |                  |      |                |

|    |              |              |           |            | _ |          |                  |                  |                  |                          |
|----|--------------|--------------|-----------|------------|---|----------|------------------|------------------|------------------|--------------------------|
| A: | rom          | 1781         | NZ        | LYS        | D |          | 71.276           | 26.945           | 44.363           | 1.00 62.59               |
| A: | rom          | 1783         | OWO       | WAT        | G | 1        | 50.690           | 34.966           | 25.739           | 1.00 12.46               |
| A' | TOM          | 1784         | OWO       | WAT        | G | 2 .      | 65.358           | 37.341           | 23.976           | 1.00 14.50               |
| A? | TOM          | 1785         | OWO       | WAT        | G | 3        | 53.112           | 36.553           | 25.090           | 1.00 12.96               |
|    | rom          | 1786         |           | WAT        |   | 4        | 59.501           | 34.869           | 25,680           | 1.00 16.21               |
|    | TOM          | 1787         |           | WAT        |   | 5        | 42.457           | 44.697           | 14.900           | 1.00 16.96               |
|    |              |              |           |            |   |          |                  |                  |                  |                          |
|    | MOT          | 1788         |           | WAT        |   | 6        | 62.264           | 42.848           | 18.466           | 1.00 12.78               |
|    | POM          | 1789         |           | WAT        |   | 7        | 60.346           | 41.648           | 20.211           | 1.00 14.43               |
| A' | MO1          | 1790         |           | WAT        |   | 8        | 49.376           | 37.618           | 12.957           | 1.00 11.87               |
| A3 | rom          | 1791         | OW0       | WAT        | G | 9        | 43.082           | 43.742           | 4.464            | 1.00 15.75               |
| A? | MOT          | 1792         | OWO       | TAW        | G | 10       | 57.736           | 40.739           | 19.570           | 1.00 18.14               |
| A? | MOT          | 1793         | OWO       | WAT        | G | 11       | 53.768           | 31.148           | 15.023           | 1.00 18.49               |
|    | MOT          | 1794         |           | WAT        |   | 12       | 46.397           | 19.640           | 8.284            | 1.00 20.49               |
|    | MOT          | 1795         |           | WAT        |   | 13       | 49.398           | 32.153           | 35.416           | 1.00 15.58               |
|    | COM          | 1796         |           | WAT        |   | 14 .     | 52.292           | 38.335           | 12.919           | 1.00 12.77               |
|    | OM           | 1797         |           | WAT        |   | 15       | 55.884           | 41.199           | 17.565           | 1.00 17.15               |
|    |              |              |           |            |   |          |                  |                  |                  |                          |
|    | MOT          | 1798         |           | WAT        |   | 16       | 68.646           | 41.874           | 7.890            | 1.00 18.45               |
|    | MO           | 1799         |           | WAT        |   | 17       | 60.172           | 36.501           | 11.568           | 1.00 20.08               |
|    | MOT          | 1800         |           | WAT        |   | 18       | 52.295           | 33.705           | 18.070           | 1.00 19.24               |
| ΑJ | MÓJ          | 1801         | OWO       | WAT        | G | 19       | 43.878           | 46.628           | 8.547            | 1.00 18.83               |
| A7 | MO           | 1802         | OWO       | WAT        | G | 20       | 44.503           | 23.424           | 0.796            | 1.00 17.45               |
| A? | MOT          | 1803         | OWO       | WAT        | G | 21       | 64.440           | 48.899           | 19.979           | 1.00 18.93               |
|    | MOT          | 1804         |           | TAW        |   | 22       | 71.193           | 48.088           | 36.959           | 1.00 16.89               |
|    | rom          | 1805         |           | WAT        |   | 23       | 49.349           | 33.334           | 14.599           | 1.00 20.32               |
|    | rom          | 1806         |           | WAT        |   | 24       | 71.024           | 49.740           | 30.410           | 1.00 19.88               |
|    | MO           | 1807         |           | WAT        |   | 25       | 42.979           | 46.992           | 11.153           | 1.00 17.12               |
|    |              |              |           |            |   |          |                  | 42.979           |                  |                          |
|    | MOT          | 1808         |           | WAT        |   | 26       | 38.559           |                  | 23.184           | 1.00 21.81               |
|    | MOT          | 1809         |           | WAT        |   | 27       | 53.263           | 26.900           | 13.822           | 1.00 15.81               |
|    | MO           | 1810         |           | WAT        |   | 28       | 71.768           | 47.157           | 29.190           | 1.00 21.31               |
|    | MO           | 1811         |           | WAT        |   | 29       | 50.910           | 52.836           | 39.909           | 1.00 21.20               |
| A  | rom          | 1812         | OWO       | WAT        | G | ´30      | 51.612           | 34.739           | 20.749           | 1.00 21.50               |
| AT | MOT          | 1813         | OWO       | WAT        | G | 31       | 47.760           | 55.722           | 0.508            | 1.00 26.79               |
| A7 | MO1          | 1814         | OWO       | WAT        | G | 32       | 57.250           | 54.959           | 34.792           | 1.00 18.33               |
| ΑŢ | MO           | 1815         | OWO       | WAT        | G | 33       | 65.008           | 51.887           | 42.170           | 1.00 21.45               |
|    | MOT          | 1816         |           | WAT        |   | 34       | 71.716           | 46.104           | 34.998           | 1.00 19.77               |
|    | MOT          | 1817         |           | WAT        |   | 35       | 56.789           | 36.428           | 13.221           | 1.00 19.13               |
|    | OM           | 1818         |           | WAT        |   | 36       | 69.004           | 52.586           | 13.271           | 1.00 25.88               |
|    |              |              |           |            |   |          |                  |                  | •                |                          |
|    | MOT          | 1819         |           | TAW        |   | 37       | 36.912           | 40.900           | 19.049           | 1.00 24.35               |
|    | MOT          | 1820         |           | WAT        |   | 38       | 37.939           | 34.172           | 11.858           | 1.00 21.53               |
|    | MO           | 1821         |           | WAT        |   | 39       | 50.673           | 48.829           | 42.462           | 1.00 17.05               |
|    | MO           | 1822         |           | WAT        |   | 40       | 40.211           | 49.838           | 5.952            | 1.00 26.29               |
| ΑŢ | MO           | 1823         | OWO       | WAT        | G | 41       | 46.904           | 53.941           | 31.892           | 1.00 26.19               |
| АJ | MOT          | 1824         | OWO       | WAT        | G | 42       | 69.397           | 54.598           | 32.144           | 1.00 21.59               |
| ĽA | MO           | 1825         | OWO       | WAT        | G | 43       | 42.745           | 49.698           | 11.329           | 1.00 28:13               |
|    | MO           | 1826         |           | WAT        |   | 44       | 69.038           | 43.121           | 14.087           | 1.00 27.79               |
|    | ĊΟΜ          | 1827         | OWO       | WAT        | G | 45       | 37.919           | 36.710           | 9.225            | 1.00 22.42               |
|    | MOT          | 1828         |           | WAT        |   | 46       | 62.878           | 47.097           | 42.928           | 1.00 24.58               |
|    | OM           | 1829         |           | WAT        |   | 47       | 39.794           | 32.943           | 21.142           | 1.00 24.59               |
|    | MO           | 1830         |           | WAT        |   | 48       | 45.700           | 54.348           | 15.115           | 1.00 34.46               |
|    |              |              |           |            |   |          | 59.403           | •                |                  | 1.00 20.52               |
|    | MOT          | 1831         |           | WAT        |   | 49       |                  | 48.140           | 46.193           |                          |
|    | MOT          | 1832         |           | WAT        |   | 50       | 60.684           | 31.160           | 37.777           | 1.00 29.82               |
|    | MO1          | 1833         |           | WAT.       |   | 51       | 49.475           | 50.666           | 40.460           | 1.00 22.18               |
|    | MO           | 1834         |           | WAT        |   | 52       | 39.653           | 24.604           | 5.289            | 1.00 17.35               |
| PΙ | MOT          | 1835         | OWO       | WAT        | G | 53       | 59.252           | 56.969           | 34.916           | 1.00 19.50               |
| AT | rom          | 1836         | OWO       | WAT        | G | 54       | 69.096           | 53.771           | 10.568           | 1.00 27.87               |
|    | MO           | 1837         |           | WAT        |   | 55       | 66.440           | 38.568           | 14.149           | 1.00 30.16               |
|    | MOT          | 1838         |           | WAT        | _ | 56       | 65.406           | 57.383           | 14.154           | 1.00 26.01               |
|    | OM           | 1839         |           | WAT        |   | 57       | 41.137           | 23.132           | 3.518            | 1.00 23.54               |
|    |              |              | - · · · · |            | - | •        |                  |                  |                  |                          |
|    |              | 1840         | OWO       | TAW        | G | 58       | 49.156           | 50.953           | 21.456           | 1.00 30.99               |
|    | MO'I<br>MO'I | 1840<br>1841 |           | TAW<br>TAW |   | 58<br>59 | 49.156<br>57.860 | 50.953<br>36.323 | 21.456<br>24.017 | 1.00 30.99<br>1.00 20.83 |

| ATOM         | 1842         | OWO | WAT | G | 60         | 57.496           | 33.962           | 11.899           | 1.00 | 21.39          |
|--------------|--------------|-----|-----|---|------------|------------------|------------------|------------------|------|----------------|
| ATOM         | 1843         |     | WAT |   | 61         | 66.579           | 48.294           | 43.413           |      | 24.77          |
| MOTA         | 1844         |     | WAT |   | 62         | 54.871           | 38.598           | 18.657           |      | 25.45          |
| ATOM         | 1845         |     | WAT |   | 63         | 50.967           | 51.195           | 43.999           |      | 22.75          |
| ATOM         | 1846         |     | WAT |   | 64         | 44.140           | 29.593           | 6.643            |      | 21.96          |
| MOTA         | 1847         |     | WAT |   | 65         | 43.548           | 39.803           | 29.673           |      | 26.57          |
| ATOM         | 1848         |     | WAT |   | 66         | 36.492           | 44.150           | 10.666           | 1.00 |                |
| ATOM         | 1849         |     | WAT |   | 67         | 72.566           | 46.343           | 31.771           |      | 22.95          |
| ATOM         | 1850         | OWO | WAT |   | 68         | 48.293           | 59.724           | 10.894           | 1.00 |                |
| ATOM         | 1851         |     | WAT |   | 69         | 62.460           | 39.930           | 21.422           |      | 26.61          |
| ATOM         | 1852         | OWO | WAT |   | 70         | 56.208           | 39.397           | 15.274           |      | 20.01          |
| ATOM         | 1853         |     | WAT |   | 71<br>72   | 72.875           | 42.561<br>44.087 | 38.908<br>20.849 |      | 36.97          |
| ATOM<br>ATOM | 1854<br>1855 | OWO | WAT |   | 73         | 68.365<br>43.058 | 49.160           | 23.577           |      | 29.26<br>29.45 |
| ATOM         | 1856         | OWO | WAT |   | 74         | 70.366           | 27.891           | 40.490           |      | 33.14          |
| ATOM         | 1857         |     | WAT |   | 75         | 37.060           | 33.614           | 18.493           |      | 25.03          |
| ATOM         | 1858         | OWO |     | G | 76         | 43.652           | 50.031           | 19.379           |      | 36.34          |
| ATOM         | 1859         |     |     | G | 77         | 70.513           | 54.847           | 7.916            |      | 33.66          |
| ATOM         | 1860         |     |     | G | 78         | 74.648           | 42.946           | 34.418           |      | 46.06          |
| ATOM         | 1861         |     | WAT |   | 79         | 44.747           |                  | -0.304           |      | 26.95          |
| ATOM         | 1862         |     |     | G | 80         | 40.824           | 41.298           | 27.887           |      | 25.17          |
| ATOM         | 1863         |     | WAT |   | 81         | 41.107           | 45.630           | 12.507           |      | 25.41          |
| ATOM         | 1864         | OWO | WAT |   | 82         | 57.806           | 41.126           | 45.667           |      | 28.19          |
| ATOM         | 1865         | OWO | WAT | G | 83         | 51.183           | 54.617           | -2.727           |      | 32.75          |
| ATOM         | 1866         |     | WAT |   | 84         | 43.186           | 49.347           | 27.882           |      | 28.33          |
| ATOM         | 1867         | OWO | WAT | G | 85         | 61.540           | 49.575           | -4.582           |      | 35.95          |
| MOTA         | 1868         | OWO | WAT | G | 86         | 50.267           | 17.542           | 8.910            | 1.00 | 30.16          |
| ATOM         | 1869         | OWO | WAT | G | 87         | 36.217           | 32.811           | 13.941           | 1.00 | 28.34          |
| ATOM         | 1870         | OWO | WAT | G | 88         | 72.058           | 52.836           | 10,622           | 1.00 | 45.57          |
| ATOM         | 1871         | OWO | WAT | G | 89         | 61.348           | 58.887           | 3.805            | 1.00 | 30.95          |
| ATOM         | 1872         | OWO | WAT | G | 90         | 48.622           | 56.983           | 14.003           | 1.00 | 31.75          |
| ATOM         | 1873         |     |     | G | 91         | 51.936           | 33.480           | 13.709           | 1.00 | 26.64          |
| ATOM         | 1874         | OWO | WAT | G | 92         | 51.875           | 46.258           | -5.376           |      | 34.61          |
| MOTA         | 1875         |     |     | G | 93         | 42.359           | 53.407           | 10.255           |      | 30.41          |
| ATOM         | 1876         | OWO | WAT | G | 94         | 52.890           | 57.749           | 15.136           |      | 30.22          |
| ATOM         | 1877         |     | WAT |   | 95         | 58.430           | 56.302           | 24.467           |      | 26.47          |
| ATOM         | 1878         |     | WAT |   | 96         | 37.197           | 41.147           | 21.811           |      | 24.52          |
| ATOM         | 1879         |     |     | G | 97         | 52.686           | 23.652           | -1.094           |      | 25.58          |
| ATOM         | 1880         |     | WAT | G | 98         | 43.317           | 41.529           | 34.451           |      | 35.83          |
| ATOM         | 1881         |     | WAT |   | 99         | 50.916           | 40.421           | 46.697           |      | 31.62          |
| ATOM         | 1882         |     |     | G | 100        | 59.444           | 53.045           | -1.297           |      | 35.13          |
| ATOM         | 1883         |     | WAT | G | 101        | 54.344<br>39.161 | 37.059<br>35.171 | 14.071<br>23.645 |      | 25.37<br>22.49 |
| ATOM<br>ATOM | 1884<br>1885 |     |     | G | 102<br>103 | 48.196           | 28.696           | 16.212           |      | 22.74          |
| ATOM         | 1886         | OWO |     | G | 104        | 51.803           | 31.025           | 19.010           | 1.00 |                |
| ATOM         | 1887         |     | WAT |   | 105        | 50.671           | 37.681           | 42.927           |      | 29.64          |
| ATOM         | 1888         |     |     | G | 106        | 62.180           | 51.664           | -1.624           |      | 34.04          |
| ATOM         | 1889         | OWO |     | G | 107        | 52.524           | 59.538           | 42.266           |      | 35.09          |
| ATOM         | 1890         | OWO | TAW | G | 108        | 46.932           | 49.006           | 21.391           | 1.00 |                |
| ATOM         | 1891         |     | WAT |   | 109        | 37.499           | 38.570           | 22.800           |      | 26.50          |
| ATOM         | 1892         |     | WAT |   |            | 72.898           | 50.305           |                  |      | 30.56          |
| ATOM         | 1893         | OWO | WAT | G | 111        | 67.993           | 56.760           | 5.901            |      | 29.70          |
| ATOM         | 1894         |     | WAT |   |            | 48.644           | 53.571           | -1.398           |      | 35.84          |
| ATOM         | 1895         |     | WAT |   |            | 58.963           | 38.275           | 42.967           |      | 30.25          |
| ATOM         | 1896         |     | WAT |   | 114        |                  | . 29.728         | 18.792           | 1.00 | 30.45          |
| MOTA         | 1897         | 000 | WAT | G | 115        | 42.373           | 28.434           | 9.504            | 1.00 | 30.65          |
| ATOM         | 1898         | OWO | WAT | G | 116        | 48.337           | 17.998           | 4.927            | 1.00 | 26.85          |
| ATOM         | 1899         |     | WAT |   |            | 43.367           | 57.024           | 0.108            |      | 36.26          |
| ATOM         | 1900         |     | TAW |   |            | 55.991           | 35.183           | 42.088           |      | 33.36          |
| ATOM         | 1901         | OWO | WAT | G | 119        | 55.166           | 18.825           | 3.751            | 1.00 | 39.06          |

110

| ATOM         | 1902         | OWO  | WAT    | G | 120 | 36.538           | 34.658           | 16.002           | 1.00 23. |      |
|--------------|--------------|------|--------|---|-----|------------------|------------------|------------------|----------|------|
| MOTA         | 1903         | OWO  | WAT    | G | 121 | 38.971           | 45.277           | 10.960           | 1.00,32. |      |
| ATOM         | 1904         | OW0  | WAT    | G | 122 | 45.394           | 39.705           | 40.673           | 1.00 28. | 95   |
| ATOM         | 1905         | OWO  | WAT    | G | 123 | 64.660           | 56.850           | 28.096           | 1.00 31. |      |
| ATOM         | 1906         | OWO  | WAT    | G | 124 | 31.495           | 39.706           | 12.940           | 1.00 30. |      |
| ATOM         | 1907         | OWO  | WAT    | G | 125 | 66.898           | 41.660           | 19.788           | 1.00 37. | 52   |
| ATOM         | 1908         | OWO  | WAT    | G | 126 | 59.279           | 62.353           | 6.022            | 1.00 30. | 85   |
| ATOM         | 1909         | OWO  | WAT    | G | 127 | 54.862           | 34.329           | 17.654           | 1.00 28. | 43   |
| ATOM         | 1910         | OWO  | WAT    | G | 128 | 46.944           | 36.876           | -2.147           | 1.00 28. | 17   |
| ATOM         | 1911         | OWO  | WAT    | G | 129 | 47.374           | 18.007           | 2.535            | 1.00 36. | 60   |
| ATOM         | 1912         | OWO. | WAT    | G | 130 | 44.808           | 50.361           | 22.031           | 1.00 29. | 95   |
| ATOM         | 1913         | OWO  | WAT    | G | 131 | 56.071           | 58.293           | 30.768           | 1.00 29. | 87   |
| ATOM         | 1914         |      | WAT    |   |     | 39.948           | 33.299           | 8.889            | 1.00 43. | 00   |
| ATOM         | 1917         |      | WAT    |   |     | 62.136           | 38.451           | 12.117           | 1.00 15. | 27   |
| ATOM         | 1918         |      | WAT    |   |     | 57.446           | 61.036           | 34.612           | 1.00 23. | 04   |
| ATOM         | 1919         |      | WAT    |   |     | 55.835           | 37.709           | 21.070           | 1.00 20. | 63   |
| ATOM         | 1920         |      | WAT    |   |     | 62.428           | 40.009           | 14.530           | 1.00 34. | 20   |
| ATOM         | 1921         |      | WAT    |   |     | 62.638           | 59.963           | 30.173           | 1.00 31. |      |
| ATOM         | 1922         |      | WAT    |   |     | 55.220           | 36.878           | 16.564           | 1.00 26. |      |
| ATOM         | 1923         |      | WAT    |   |     | 53.791           | 35.442           | 22.528           | 1.00 28. |      |
| ATOM         | 1924         |      | WAT    |   |     | 64.950           | 39.916           | 20.459           | 1.00 30. |      |
| ATOM         | 1925         |      | WAT    |   |     | 60.864           | 56.504           | 38.809           | 1.00 27. |      |
| ATOM         | 1926         |      |        |   | 144 | 50.834           | 36.062           | -3.236           | 1.00 24. |      |
| ATOM         | 1927         |      | WAT    |   |     | 57.988           | 31.870           | 13.658           | 1.00 27. |      |
| ATOM         | 1928         |      | WAT    |   | 146 | 59.420           | 50.371           | 43.012           | 1.00 27. |      |
| ATOM         | 1929         |      | WAT    |   |     | 41.507           | 31.122           | 20.116           | 1.00 27. |      |
| ATOM         | 1930         |      | WAT    |   |     | 60.586           | 52.675           | 43.032           | 1.00 29. |      |
| ATOM         | 1931         |      | WAT    |   | 149 | 46.395           | 26.704           | 16.386           | 1.00 36. |      |
|              | 1932         |      | WAT    |   |     | 65.273           | 33.456           | 33.695           | 1.00 30. |      |
| ATOM<br>ATOM | 1933         |      | TAW    |   |     | 64.591           | 41.448           | 18.391           | 1.00 28. |      |
|              |              |      | WAT    |   |     | 48.864           | 29.166           | -5.087           | 1.00 26. |      |
| ATOM         | 1934<br>1935 |      | WAT    |   |     | 62.622           | 58.231           | 27.208           | 1.00 34. |      |
| ATOM         |              |      |        |   | 154 | 61.506           | 38.693           | 18.376           | 1.00 48. |      |
| MOTA         | 1936         |      |        |   |     | 56.258           | 32.027           | 15.818           | 1.00 40. |      |
| ATOM         | 1937         |      | TAW    |   |     | 58.824           | 38.296           | 18.235           | 1.00 34. |      |
| MOTA         | 1938         |      | WAT    |   |     |                  |                  | 39.376           | 1.00 34. |      |
| MOTA         | 1939         |      |        |   | 157 | 53.978<br>53.182 | 29.606<br>56.416 | 29.461           | 1.00 25. |      |
| ATOM         | 1940         |      | WAT    |   |     | 49.085           | 39.844           | -3.201           | 1.00 29. |      |
| MOTA         | 1941         |      | TAW    |   |     |                  | 34.232           | 21.770           | 1.00 29. |      |
| ATOM         | 1942         |      | WAT    |   |     | 60.344           | 60.535           | -5.207           | 1.00 30. |      |
| MOTA         | 1943         |      | TAW    |   |     | 51.797<br>48.186 | 38.211           | 36.506           | 1.00 28. |      |
| MOTA         | 1944         |      | WAT    |   | 162 |                  |                  | 15.660           | 1.00 45. |      |
| ATOM         | 1945         |      | WAT    |   |     | 58.462           | 37.470           |                  | 1.00 28  |      |
| MOTA         | 1946         |      |        |   | 164 | 45.851           | 29.690           | 18.302<br>16.036 | 1.00 26. |      |
| ATOM         | 1947         |      | WAT    |   |     | 64.873           | 40.315           |                  | 1.00 36. |      |
| MOTA         | 1948         |      | WAT    |   |     | 59.897           | 58.114           | 1.470            |          |      |
| MOTA         | 1949         |      |        |   | 167 | 55.910           | 60.828           | 8.749            | 1.00 35  |      |
| MOTA         | 1950         |      | TAW    |   |     | 58.826           | 36.800           | 21.280           | 1.00 46  |      |
| ATOM         | 1951         |      | WAT    |   |     | 73.241           | 44.114           | 36.191           | 1.00 28  |      |
| ATOM         | 1952         |      | _      |   | 170 | 62.716           | 53.030           | 41.277           | 1.00 28. |      |
| MOTA         | 1953         |      |        |   | 171 | 71.215           | 34.038           | 37.383           | 1.00 27  |      |
| ATOM         | 1954         |      |        |   | 172 | 62.192           | 37.635           | 14.596           | 1.00 50. |      |
| MOTA         | 1955         |      |        |   | 173 | 65.616           | 56.974           | 1.251            | 1.00 31. |      |
| ATOM         | 1956         |      | WAT    |   |     | 76.080           | 34.843           | 37.370           | 1.00 35  |      |
| 7) TO NA     | 1057         | OFF  | ቤተ እ ጥ |   | 175 | 77 299           | 43 407           | 25 575           | 1 00 36. | . 58 |

73.299 43.407

65.884 43.263

44.613 37.553

70.015 49.056

40.654

62.290

49.736

67.452

54.648

51.497

25.575 17.413

32.413

48.977

5.661

1.00 36.58 1.00 40.37

1.00 53.70

1.00 29.11

1.00 33.03

15.215 1.00 42.76

17.242 1.00 35.32

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

ATOM

1957

1958

1959

1960

1961

1962

OWO WAT G 175

OWO WAT G 176

OWO WAT G 177

OWO WAT G 178

OWO WAT G 179

OWO WAT G 180

1963 OWO WAT G.181

| MOTA         | 1964         | OWO | TAW | G | 182        |     | 67.847           | 54.823           | 14.616           | 1.00  | 27.00 |
|--------------|--------------|-----|-----|---|------------|-----|------------------|------------------|------------------|-------|-------|
| ATOM         | 1965         | OWO | WAT | G | 183        | • • | 75.622           | 47.339           | 26.201           | 1.00  | 39.70 |
| ATOM         | 1966         | OWO | WAT | G | 184        |     | 58.156           | 30.750           | 37.764           | 1.00  | 43.06 |
| ATOM         | 1967         | OWO | WAT |   | 185        |     | 63.117           | 44.122           | 43.660           | 1.00  | 32.67 |
| ATOM         | 1968         | OWO | WAT | G | 186        |     | 70.428           | 46.037           | 20.380           | 1.00  |       |
| ATOM         | 1969         | OWO | WAT |   | 187        |     | 65.215           | 59.373           | 12.091           |       | 28.47 |
| MOTA         | 1970         | OWO |     |   | 188        |     | 67.748           | 44.609           | 18.032           |       | 53.73 |
| MOTA         | 1971         |     |     |   | 189        |     | 40.492           | 30.145           | 11.606           |       | 64.58 |
| ATOM         | 1972         | OWO |     |   | 190        |     | 67.625           | 60.042           | 8.441            | 1.00  |       |
| ATOM         | 1973         | OWO | WAT |   |            |     | 50.314           | 57.576           | 44.671           |       | 50.98 |
| ATOM         | 1974         | OWO |     |   | 192        |     | 52.073           | 26.847           | -2.175           |       | 30.83 |
| ATOM         | 1975         |     | WAT |   | 193        |     | 46.545           | 20.307           | 1.167            | 1.00  |       |
| ATOM         | 1976         | OWO |     |   | 194        |     | 73.086           | 39.913           | 40.981           | 1.00  |       |
| ATOM         | 1977         |     |     |   | 195        |     | 45.430           | 39.245           | -2.273           | 1.00  |       |
| ATOM         | 1978         |     | •   |   | 196        |     | 52.037           | 58.706           | 12.556           | 1.00  | 43.96 |
| ATOM         | 1979         |     |     |   | 197        |     | 57.543           | 61.063           | 30.828           | 1.00  | 37.03 |
| MOTA         | 1980         |     |     |   | 198        |     | 61.990           | 41.753           | 42.998           | 1.00  |       |
| ATOM         | 1981         |     |     |   | 199        |     | 43.339           | 30.612           | 18.051           | 1.00  |       |
| ATOM         | 1982         |     |     |   | 200        |     | 67.423           | 56.983           | 24.190           |       | 29.95 |
| ATOM         | 1983         |     |     |   | 201        |     | 63.945           | 61.652           | 12.824           | 1.00  |       |
| MOTA         | 1984         |     |     |   | 202        |     | 63.921           | 52.785           | 39.204           |       | 38.19 |
| MOTA         | 1985         |     |     |   | 203        |     | 52.495           | 20.862           | -0.923           |       | 33.05 |
| ATOM         | 1986         |     |     |   | 204        |     | 53.126           | 35.768           | -3.356           |       | 51.51 |
| ATOM         | 1987         |     |     |   | 205        |     | 12.327           | 41.556           | 31.448           |       | 30.36 |
| ATOM         | 1988         |     | WAT |   |            |     | 12.439           | 21.980           | 7.095            | 1.00  | 40.12 |
| ATOM         | 1989         | OWO |     |   | 207        |     | 72.241           | 46.621           | 16.496           | 1.00  | 54.53 |
| MOTA         | 1990         |     | WAT |   |            |     | 74.161<br>48.098 | 48.453           | 34.505<br>~4.627 |       | 32.75 |
| MOTA         | 1991<br>1992 | OWO |     | G | 209        |     |                  | 26.277<br>44.677 | 42.814           | 1.00  | 41.33 |
| ATOM<br>ATOM | 1993         |     |     |   | 210<br>211 |     | 70.983<br>47.557 | 20.513           | -1.605           |       | 40.08 |
| ATOM         | 1994         |     | WAT |   |            |     | 61.375           | 59.056           | -0.566           |       | 39.28 |
| ATOM         | 1995         |     | WAT |   |            |     | 72.365           | 48.660           | 2.612            |       | 35.85 |
| ATOM         | 1996         |     |     |   | 214        |     | 12.447           | 46.142           | 17.219           |       | 28.95 |
| ATOM         | 1997         |     | WAT |   |            |     | 70.417           | 41.828           | 12.236           |       | 60.99 |
| ATOM         | 1998         |     |     |   | 216        |     | 65.658           | 40.114           | 42.603           |       | 38.52 |
| ATOM         | 1999         |     | WAT |   |            |     | 51.676           | 48.645           | 44.176           |       | 39.02 |
| ATOM         | 2000         |     |     |   | 218        |     | 10.044           | 49.688           | 1.595            |       | 34.19 |
| ATOM         | 2001         | OWO | TAW |   |            |     | 10.202           | 42.880           | 25.589           |       | 32.08 |
| ATOM         | 2002         | OWO |     |   | 220        |     | 70.759           | 53.406           | 19.605           |       | 41.25 |
| ATOM         | 2003         |     | WAT |   |            |     | 34.228           | 33.047           | 11.879           | 1.00  |       |
| ATOM         | 2004         |     |     |   | 222        |     | 50.879           | 55.070           | 40.559           |       | 33.10 |
| MOTA         | 2005         |     |     |   | 223        |     | 58.520           | 33.967           | 42.655           |       | 52.56 |
| MOTA         | 2006         |     |     |   | 224        |     | 17.130           | 35.676           | -4.383           |       | 40.47 |
| ATOM         | 2007         |     |     |   | 225        |     | 12.291           | 57.764           | 7.951            |       | 34.20 |
| ATOM ·       | 2008         | OWO |     |   | 226        |     | 51.783           | 38.556           | -5.023           | 1.00  | 54.27 |
| ATOM         | 2009         |     |     |   | 227        |     | 53.204           | 39.780           | 41.589           |       | 26.92 |
| ATOM         | 2010         | OWO | WAT | G | 228        | . • | 70.115           | 41.265           | 21.543           | 1.00  | 54.51 |
| MOTA         | 2011         | OWO | TAW | G | 229        |     | 35.142           | 41.094           | 15.033           | 1.00  | 26.43 |
| ATOM         | 2012         | OWO | TAW | G | 230        | 4   | 19.437           | 28.507           | -7.487           | 1.00  | 36.06 |
| ATOM         | 2013         | OWO | WAT | G | 231        | 4   | 18.186           | 58.600           | 27.989           | 1.00  | 47.86 |
| ATOM         | 2014         | OWO | WAT | G | 232        | 4   | 13.227           | 57.642           | 34.042           | 1.00  | 64.53 |
| ATOM         | 2015         |     | WAT |   |            | 4   | 14.435           | 45.324           | 40.354           | 1.00  | 38.94 |
| ATOM         | 2016         |     | WAT |   |            | (   | 58.332           | 40.178           | 22.530           | 1.00  | 41.49 |
| MOTA         | 2017         | OWO | WAT | G | 235        | 4   | 11.021           | 47.384           | 26.519           | 1.00  | 32.18 |
| MOTA         | 2018         | OWO | WAT |   |            | (   | 57.943           | 34.804           | 44.311           | .1.00 | 40.51 |
| ATOM         | 2019         | OWO | WAT | G | 237        |     | 54.009           | 33.505           | 14.576           | 1.00  | 38.62 |
| MOTA         | 2020         | OWO | WAT | G | 238        | (   | 59.128           | 52.076           | 1.540            | 1.00  | 44.17 |
| ATOM         | 2021         |     |     |   | 239        |     | 18.173           | 55.704           | 43.334           | 1.00  | 38.16 |
| ATOM         | 2022         |     |     |   | 240        | 4   | 13.506           | 19.874           | 8.570            |       | 34.50 |
| MOTA         | 2023         | OWO | WAT | G | 241        | •   | 16.783           | 19,606           | 10.993           | 1.00  | 33.70 |
|              |              |     |     |   |            |     |                  |                  |                  |       |       |

| ATOM         | 2024         | OWO | WAT        | G | 242        |   | 62.052           | 46.130           | 46.425           | 1.00 | 52.48          |
|--------------|--------------|-----|------------|---|------------|---|------------------|------------------|------------------|------|----------------|
| ATOM         | 2025         | OWO | WAT        | G | 243        |   | 34.174           | 43.821           | 10.769           | 1.00 | 40.93          |
| ATOM         | 2026         | OWO | TAW        | G | 244        |   | 39.585           | 37.127           | 26.006           | 1.00 |                |
| ATOM         | 2027         |     |            | G | 245        |   | 70.915           | 52.471           | 29.511           |      | 46.35          |
| ATOM         | 2028         |     | WAT        |   | 246        |   | 50.280           | 28.842           | -2.906           | 1.00 |                |
| MOTA         | 2029         |     | WAT        |   | 247        |   | 45.574           | 23.804           | -6.012           |      | 54.66          |
| ATOM         | 2030         |     | WAT        |   | 248        |   | 50.575           | 41.649           | -5.114           | 1.00 |                |
| MOTA         | 2031         |     | WAT        |   |            |   | 46.284           | 60.877           | -0.658           | 1.00 |                |
| ATOM         | 2032         |     | WAT        |   | 250        |   | 69.052           | 41.253           | 44.563           |      | 41.98          |
| MOTA         | 2033         |     | WAT        |   |            |   | 76.192           | 44.065           | 31.740           |      | 39.19          |
| ATOM         | 2034         |     | WAT        |   | 252        |   | 55.206           | 59.668           | 2.632            | 1.00 |                |
| MOTA         | 2035         |     | TAW        |   |            |   | 46.669           | 36.720           | 40.608           |      | 50.14          |
| ATOM         | 2036         |     | WAT        |   | 254        |   | 59.034           | 52.468           | 41.277           | 1.00 |                |
| MOTA         | 2037         |     | WAT        |   |            |   | 52.334           | 63.688           | 32.421           |      | 64.26          |
| ATOM         | 2038         |     | WAT        |   |            |   | 45.249           | 20.912           | 12.682           | 1.00 | 45.78          |
| ATOM         | 2039         |     | WAT        |   | 257        |   | 45.580           | 47.063           | 38.611           | 1.00 | 32.72          |
| ATOM         | 2040         |     | WAT        |   | 258        |   | 60.934           | 36.503           | 20.702           |      | 58.02          |
| ATOM         | 2041         |     | WAT        |   | 259        |   | 47.948           | 47.662           | 45.709           | 1.00 |                |
| MOTA         | 2042         |     | WAT        |   |            |   | 60.178           | 62.958           | 9.683            |      | 36.71          |
| ATOM         | 2043         |     | WAT        |   |            |   | 55.919           | 30.766           | 39.029           |      | 61.42          |
| ATOM         | 2044         |     | WAT        |   |            |   | 58.188           | 56.854           | 32.396           |      | 36.54          |
| MOTA         | 2045         |     | WAT        |   |            |   | 56.797           | 37.074           | 18.930           |      | 61.43          |
| ATOM         | 2046         |     | WAT        |   |            |   | 54.847           | 38.394           | -5.215           | 1.00 |                |
| ATOM         | 2047         |     | WAT        |   |            |   | 74.299           | 44.365           | 9.183            | 1.00 |                |
| ATOM         | 2048         |     | WAT        |   |            |   | 68.666           | 37.135           | 44.386           | 1.00 | 49.26          |
| ATOM         | 2049         |     | TAW        |   |            |   | 48.423           | 62.166           | 9.434            | 1.00 |                |
| ATOM         | 2050         |     | WAT        |   |            |   | 42.729           | 27.614           | 12.002           | 1.00 |                |
| ATOM         | 2051         |     | WAT        |   | 269        |   | 53.863           | 61.181           | 11.430           | 1.00 |                |
| ATOM         | 2052         |     | WAT        |   | 270        |   | 65.415           | 58.143<br>32.393 | 25.828           | 1.00 |                |
| ATOM         | 2053         |     | WAT        |   | 271        |   | 51.875           | 61.993           | -8.603           | 1.00 | 53.80          |
| ATOM         | 2054<br>2055 |     | WAT        |   | 272<br>273 |   | 60.962           |                  | 12.376<br>11.451 |      | 29.89<br>35.54 |
| ATOM         |              |     | WAT        |   |            |   | 40.308           | 32.786           | 17.773           |      | 38.70          |
| ATOM<br>ATOM | 2056<br>2057 |     | WAT<br>WAT |   | 274<br>275 |   | 62.383<br>37.093 | 60.257<br>30.464 | 14.199           | 1.00 |                |
| ATOM         | 2058         |     | WAT        |   | 276        |   | 53.952           | 61.207           | -1.317           |      | 46.85          |
| ATOM         | 2059         |     | WAT        |   |            |   | 51.860           | 29.501           | 0.746            |      | 37.36          |
| ATOM         | 2060         |     | WAT        |   | 278        |   | 50.151           | 63.360           | 7.446            |      | 45.00          |
| ATOM .       | 2061         |     | WAT        |   | 279        |   | 69.694           | 43.050           | 22.397           | 1.00 |                |
| ATOM         | 2062         |     | WAT        |   | 280        |   | 49.754           | 37.037           | -4.944           |      | 69.60          |
| ATOM         | 2063         |     | WAT        |   | 281        |   | 50.342           | 25.060           | -3.761           | 1.00 | 44.24          |
| ATOM         | 2064         |     | WAT        |   | 282        |   | 54.321           | 59.856           | 16.427           |      | 35.71          |
| ATOM         | 2065         |     | WAT        |   |            |   | 63.746           | 59.693           | 0.468            |      | 55.15          |
| ATOM         | 2066         |     | WAT        |   | 284        |   | 43.389           | 46.275           | 36.615           |      | 37.96          |
| ATOM         | 2067         |     | WAT        |   | 285        |   | 59.808           |                  | 43.590           |      | 33.32          |
| ATOM         | 2068         |     |            | G | 286        |   | 43.995           | 23,232           | 16.324           |      | 38.95          |
| ATOM         | 2069         |     | WAT        |   | 287        |   | 43.552           | 24.401           | 13.416           | 1.00 |                |
| ATOM         | 2070         |     | WAT        |   | 288        |   | 71.661           | 53.820           | 27.764           |      | 45.96          |
| ATOM         | 2071         | OWO |            |   | 289        |   | 48.871           | 35.713           | 37.068           | 1.00 | 21.32          |
| ATOM         | 2072         |     |            |   | 290        |   | 39.975           | 49.726           | 8.734            | 1.00 | 46.02          |
| ATOM         | 2074         |     | WAT        |   | 292        |   | 65.526           | 33.873           | 35.894           |      | 37.27          |
| ATOM         | 2075         | OWO | WAT        |   |            | • | 48.218           | 18.217           | 9.649            | 1.00 | 32.19          |
| ATOM         | 1783         |     | WAT        |   | í          |   | 55.626           | 26.415           | 10.047           | 1.00 | 12.46          |
| ATOM         | 1784         |     | WAT        |   | 2          |   | 65.016           | 37.930           | 11.810           |      | 14.50          |
| ATOM         | 1785         | OWO |            | Н | 3          |   | 58.211           | 27.718           | 10.696           |      | 12.96          |
| ATOM         | 1786         | OWO |            | H | 4          |   | 59.947           | 34.093           | 10.106           |      | 16.21          |
| ATOM         | 1787         |     |            | Н | 5          |   | 59.936           | 14.419           | 20.886           |      | 16.96          |
| ATOM         | 1788         |     | WAT        | Н | 6          |   | 68.238           | 32.497           | 17.320           |      | 12.78          |
| ATOM         | 1789         | OWO | WAT        | Н | 7          |   | 66.240           | 31.436           | 15.575           |      | 14.43          |
| ATOM         | 1790         | 000 | WAT        | Н | 8          |   | 57.265           | 23.951           | 22.829           | 1.00 | 11.87          |
| ATOM         | 1791         | 000 | WAT.       | Н | 9          |   | 59.422           | 15.438           | 31.322           | 1.00 | 15.75          |
|              |              |     |            |   |            |   |                  |                  |                  |      |                |

| ATOM         | 1792         | OWO  | WAT | Н      | 10       | 64.1         | 48 29 | .630  | 16.216           | 1.00  | 18.14          |
|--------------|--------------|------|-----|--------|----------|--------------|-------|-------|------------------|-------|----------------|
| MOTA         | 1793         | OWO  | WAT | Н      | 11       | 53.8         |       | .989  | 20.763           | 1.00  | 18.49          |
| MOTA         | 1794         | OWO  |     | Н      | 12       | 40.2         |       | .360  | 27.502           |       | 20.49          |
| MOTA         | 1795         | OWO  | WAT | Н      | 13       | 52.5         |       | .702  | 0.370            | 1.00  |                |
| MOTA         | 1796         |      |     | Н      | 14       | 59.3         |       | .117  | 22.867           |       | 12.77          |
| ATOM         | 1797         |      | TAW | Н      | 15       | 63.6         |       | .796  | 18.221           | 1.00  |                |
| MOTA         | 1798         |      |     | Н      | 16       | 70.5         |       | .510  | 27.896           | 1.00  | 18.45          |
| ATOM         | 1799         |      | WAT | Н      | 17       | 61.6         |       | .858  | 24.218           | 1.00  |                |
| ATOM         | 1800         |      |     | Н      | 18       | 55.3         |       | .435  | 17.716           | 1.00  |                |
| MOTA         | 1801         |      | WAT | Н      | 19       | 62.3         |       | .684  | 27.239           | 1.00  |                |
| MOTA         | 1802         |      | WAT | Н      | 20       | 42.5         |       | .828  | 34.990<br>15.807 | 1.00  |                |
| ATOM         | 1803         | OWO  |     | H      | 21       | 74.5         |       | .356  | -1.173           | 1.00  |                |
| ATOM<br>ATOM | 1804<br>1805 | -    | WAI | H<br>H | 22<br>23 | 77.2<br>53.5 |       | .069  | 21.187           |       | 20.32          |
|              | 1806         | OWO  |     | Н      | 24       | 78.5         |       | .637  | 5.376            | 1.00  |                |
| ATOM<br>ATOM | 1807         |      | WAT | Н      | 25       | 62.1         |       | .724  | 24.633           | 1.00  | 17.12          |
| ATOM         | 1808         | OWO  |     | н.     |          | 56.4         |       | .903  | 12.602           | 1.00  |                |
| ATOM         | 1809         | OWO  | WAT | н      | 27       | 49.9         |       | .676  | 21.964           |       | 15.81          |
| ATOM         | 1810         |      | WAT | н      | 28       | 76.7         |       | .573  | 6.596            |       | 21.31          |
| MOTA         | 1811         |      | WAT |        | 29       | 71.2         |       | .670  | -4.123           | 1.00  |                |
| ATOM         | 1812         |      | WAT | Н      | 30       | 55.8         |       | .326  | 15.037           | 1.00  |                |
| ATOM         | 1813         |      |     | Н      | 31       | 72.1         |       | .499  | 35.278           | 1.00  |                |
| ATOM         | 1814         |      | WAT | н      | 32       | 76.2         |       | .099  | 0.994            | 1.00  | 18.33          |
| MOTA         | 1815         | OWO  | WAT | Н      | 33       | 77.4         | 38 30 | .353  | -6.384           | 1.00  | 21.45          |
| ATOM         | 1816         | OWO  | WAT | Н      | 34       | 75.7         | 84 39 | .054  | 0.788            | 1.00  | 19.77          |
| MOTA         | 1817         | OWO  | WAT | н      | 35       | 59.9         | 41 30 | .965  | 22.565           | 1.00  | 19.13          |
| ATOM         | 1818         | OWO  | WAT | Н      | 36       | 80.0         | 41 33 | .464  | 22.515           | 1.00  | 25.88          |
| ATOM '       | 1819         | OWO  | WAT | Н      | 37       | 53.8         | 75 11 | .516  | 16.737           | .1.00 | 24.35          |
| ATOM         | 1820         | OWO  | wat | Н      | 38       | 48.5         | 62 15 | .769  | 23.928           |       | 21.53          |
| ATOM         | 1821         | OWO  | WAT | Н      | 39       | 67.6         |       | .468  | -6.676           |       | 17.05          |
| MOTA         | 1822         | OWO  | WAT | Н      | 40       | · 63.2       |       | .904  | 29.834           |       | 26.29          |
| MOTA         | 1823         |      |     | H      | 41       | 70.1         |       | .648  | 3.894            |       | 26.19          |
| MOTA         | 1824         |      | WAT |        | 42       | 81.9         |       | .799  | 3.642            | 1.00  |                |
| ATOM         | 1825         |      | WAT |        | 43       | 64.4         |       | .168  | 24.457           | 1.00  | 28.13          |
| MOTA         | 1826         | OWO  | WAT |        | 44       | 71.8         |       | .226  | 21.699           | 1.00  | 27.79          |
| MOTA         | 1827         | OW0  | WAT | Н      | 45       | 50.7         |       | .483  | 26.561           | 1.00  |                |
| ATOM         | 1828         | OWO  | WAT | Н      | 46       | 72.2         |       | .904  | -7.142           |       | 24.58          |
| ATOM         | 1829         | OWO  | WAT | Н      | 47       | 48.4<br>69.9 |       | .990  | 14.644<br>20.671 |       | 24.59<br>34.46 |
| ATOM<br>ATOM | 1830<br>1831 | OWO  | WAT | H<br>H | 48<br>49 | 71.3         |       | .373  | -10.407          |       | 20.52          |
| ATOM         | 1832         | OWO  | WAT | Н      | 50       | 57.3         |       | .972  | -1.991           |       | 29.82          |
| ATOM         | 1833         | OWO  |     | н      | 51       | 68.6         |       | .512  | -4.674           |       | 22.18          |
| ATOM         | 1834         | OWO  | WAT | н      | 52       | 41.1         |       | .037  | 30.497           | 1.00  |                |
| ATOM         | 1835         | OWO  | WAT |        | 53       | 78.9         |       | .828  | 0.870            | 1.00  | 19.50          |
| ATOM         | 1836         |      |     | Н      | 54       | 81.1         |       | .952  | 25.218           | 1.00  | 27.87          |
| MOTA         | 1837         | OWO  |     | н      | 55       | .66.6        | 20 38 | .253  | 21.637           | 1.00  | 30.16          |
| MOTA         | 1838         | OWO  | WAT | н.     | 56       | 82.3         | 97 27 | .950  | 21.632           | 1.00  | 26.01          |
| ATOM         | 1839         | OWO  | WAT | н      | 57       | 40.6         | 01 24 | .059  | 32.268           | 1.00  | 23.54          |
| ATOM         | 1840         | OWO  | WAT | Н      | 58       | 68.7         | 03 17 | .093  | 14.330           | 1.00  | 30.99          |
| MOTA         | 1841         | OWO  | WAT | Н      | 59       | 60.3         |       | .945  | 11.769           |       | 20.83          |
| ATOM         | 1842         | OWO. | TAW | Н      | 60       | 58.1         |       | .811  | 23.887           |       | 21.39          |
| MOTA         | 1843         |      | WAT |        | 61       | 75.1         |       | .510  | -7.627           |       | 24.77          |
| MOTA         | 1844         |      | WAT |        | 62       | 60.8         |       | .219  | 17.129           |       | 25.45          |
| MOTA         | 1845         |      | TAW |        | 63       | 69.8         |       | .540  | -8.213           |       | 22.75          |
| ATOM         | 1846         |      | TAW |        | 64       | 47.6         |       | .429  | 29.143           |       | 21.96          |
| ATOM         | 1847         |      | TAW |        | 65       | 56.2         |       | .811  | 6.113            |       | 26.57          |
| MOTA         | 1848         |      | TAW |        | 66       | 56.4         |       | .527  | 25.120           |       | 24.57          |
| ATOM         | 1849         |      | WAT |        | 67       | 76.4         |       | 0.671 | 4.015            |       | 22.95          |
| ATOM         | 1850         |      | WAT |        | 68       | 75.8<br>65.8 |       | .960  | 24.892           |       | 26.76          |
| ATOM         | 1851         | OWO  | WAT | н      | 69       | 65.6         | J4 CU | .125  | 14.364           | T.00  | 26.61          |

| ATOM         | 1852         | OWO | WAT        | Н | 70       | 6   | 52.222           | 28.978           | 20.512           | 1.00 20.01               |
|--------------|--------------|-----|------------|---|----------|-----|------------------|------------------|------------------|--------------------------|
| ATOM         | 1853         | OWO | WAT        | Н | 71       | 7   | 73.295           | 41.829           | -3.122           | 1.00 36.97               |
| MOTA         | 1854         | OWO | WAT        | Н | 72       | 7   | 72.362           | 37.161           | 14.937           | 1.00 29.26               |
| MOTA         | 1855         | OWO | TAW        | Н | 73       | 6   | 54.102           | 12.708           | 12.209           | 1.00 29.45               |
| MOTA         | 1856         | OW0 | WAT        | Н | 74       |     | 59.337           | 46.991           | -4.704           | 1.00 33.14               |
| ATOM         | 1857         | OWO | WAT        | Н | 75       |     | 17.640           | 15.287           | 17.293           | 1.00 25.03               |
| MOTA         | 1858         |     | WAT        |   | 76       |     | 55.153           | 12.787           | 16.407           | 1.00 36.34               |
| MOTA         | 1859         | OWO | WAT        |   | 77       |     | 32.754           | 33.641           | 27.870           | 1.00 33.66               |
| ATOM         | 1860         | OWO | WAT        |   | 78       |     | 74.515           | 43.172           | 1.368            | 1.00 46.06               |
| ATOM         | 1861         | OWO |            | Н | 79       |     | 55.544           | 13.826           | 36.090           | 1.00 26.95               |
| ATOM         | 1862         |     | WAT        |   | 80       |     | 6.176            | 14.705           | 7.899            | 1.00 25.17               |
| ATOM         | 1863         | OWO | WAT        |   | 81       |     | 50.069           | 12.784           | 23.279           | 1.00 25.41               |
| MOTA         | 1864         | 0W0 |            |   | 82       |     | 54.518           | 29.497           | -9.881<br>38.513 | 1.00 28.19               |
| ATOM         | 1865<br>1866 |     | TAW<br>TAW |   | 83<br>84 |     | 72.890<br>54.327 | 17.016<br>12.726 | 7.904            | 1.00 32.75<br>1.00 28.33 |
| ATOM<br>ATOM | 1867         |     | WAT        |   | 85       |     | 73.702           | 28.506           | 40.368           | 1.00 35.95               |
| ATOM         | 1868         |     |            | Н | 86       |     | 10.325           | 34.760           | 26.876           | 1.00 30.16               |
| ATOM         | 1869         |     | WAT        |   | 87       |     | 16.523           |                  | 21.845           | 1.00 28.34               |
| ATOM         | 1870         |     | WAT        |   | 88       |     | 31.785           | 35.984           | 25.164           | 1.00 45.57               |
| ATOM         | 1871         |     | WAT        |   | 89       |     | 31.670           | 23.684           | 31.981           | 1.00 30.95               |
| ATOM         | 1872         |     | WAT        |   | 90       |     | 73.658           | 13.615           | 21.783           | 1.00 31.75               |
| ATOM         | 1873         |     | WAT        |   | 91       |     | 4.962            | 28.237           | 22.077           | 1.00 26.64               |
| ATOM         | 1874         |     | WAT        |   | 92       |     | 55.997           | 21.795           | 41.162           | 1.00 34.61               |
| ATOM         | 1875         |     | WAT        |   | 93       |     | 57.430           | 9.979            | 25.531           | 1.00 30.41               |
| ATOM         | 1876         |     | WAT.       |   | 94       |     | 6.456            | 16.928           | 20.650           | 1.00 30.22               |
| ATOM         | 1877         |     | WAT        |   | 95       |     | 77.973           | 22.449           | 11.319           | 1.00 26.47               |
| ATOM         | 1878         |     | WAT        |   | 96       | 5   | 64.232           | 11.639           | 13.975           | 1.00 24.52               |
| ATOM         | 1879         | OWO |            |   | 97       | . 4 | 16.826           | 33.800           | 36.880           | 1.00 25.58               |
| MOTA         | 1880         | OWO | WAT        | Н | 98       | 5   | 7.623            | 16.748           | 1.335            | 1.00 35.83               |
| ATOM         | 1881         | OWO | WAT        | Н | 99       | 6   | 50.463           | 23.883           | -10.911          | 1.00 31.62               |
| ATOM         | 1882         | OWO | WAT        | Н | 100      | 7   | 75.659           | 24.956           | 37.083           | 1.00 35.13               |
| MOTA         | 1883         | OWO | WAT        | Н | 101      | 5   | 9.265            | 28.532           | 21.715           | 1.00 25.37               |
| ATOM         | 1884         | OWO | WAT        | Н | 102      |     | 0.039            | 16.328           | 12.141           | 1.00 22.49               |
| ATOM         | 1885         |     | TAW        |   |          |     | 18.949           | 27.390           | 19.574           | 1.00 22.74               |
| ATOM         | 1886         |     | WAT        |   |          |     | 2.769            | 29.349           | 16.776           | 1.00 23.17               |
| ATOM         | 1887         |     | WAT        |   |          |     | 57.967           | 25.041           | -7.141           | 1.00 29.64               |
| ATOM         | 1888         | OWO |            |   |          |     | 75.831           | 28.016           | 37.410           | 1.00 34.04               |
| ATOM         | 1889         |     | WAT        |   |          |     | 77.822           | 15.717           | -6.480           | 1.00 35.09               |
| MOTA         | 1890         |     |            |   | 108      |     | 55.905           | 16.140           | 14.395           | 1.00 25.94               |
| MOTA         | 1891         |     | WAT        |   |          |     | 52.151           | 13.189           | 12.986<br>7.957  | 1.00 26.50               |
| MOTA         | 1892         |     | WAT        |   |          |     | 30.013           | 37.977<br>30.502 | 29.885           | 1.00 30.56<br>1.00 29.70 |
| ATOM         | 1893         |     | TAW<br>TAW |   |          |     | 33.151<br>70.714 | 15.340           | 37.184           | 1.00 25.70               |
| ATOM<br>ATOM | 1894<br>1895 |     | WAT        |   |          |     | 52.628           | 31.924           | -7.181           | 1.00 30.25               |
| ATOM         | 1896         |     | WAT        |   |          |     | 0.066            | 27.262           | 16.994           | 1.00 30.45               |
| ATOM         | 1897         |     | WAT        |   |          |     | 15.810           | 22.478           | 26.282           | 1.00 30.45               |
| ATOM         | 1898         |     | WAT        |   |          |     | 39.755           | 32.861           | 30.859           | 1.00 26.85               |
| ATOM         | 1899         |     | TAW        |   |          |     | 71.066           | 9.044            | 35.678           | 1.00 36.26               |
| ATOM         | 1900         |     | WAT        |   |          |     | 8.464            | 30.897           | -6.302           | 1.00 33.36               |
| ATOM         | 1901         |     | WAT        |   |          |     | 13.885           | 38.361           | 32.035           | 1.00 39.06               |
| ATOM         | 1902         | OWO | WAT        | Н | 120      |     |                  | 14.313           | 19.784           | 1.00 23.39               |
| ATOM         | 1903         | OWO | WAT        | Н | 121      | . 5 | 8.695            | 11.110           | 24.826           | 1.00 32.00               |
| ATOM         | 1904         |     | WAT        |   |          | 5   | 57.082           | 19.459           | -4.887           | 1.00 28.95               |
| ATOM         | 1905         | OWO | WAT        | Н | 123      |     | 31.562           | 27.571           | 7.690            | 1.00 31.43               |
| ATOM         | 1906         | OWO | WAT        | Н | 124      | 5   | 50.133           | 7.422            | 22.846           | 1.00 30.11               |
| MOTA         | 1907         | OWO | WAT        | Н | 125      | •   | 59.527           | 37.104           | 15.998           | 1.00 37.52               |
| ATOM         | 1908         | _   | WAT        |   |          |     | 33.637           | 20.159           | 29.764           | 1.00 30.85               |
| MOTA         | 1909         |     | WAT        |   |          |     | 57.160           | 30.346           | 18.132           | 1.00 28.43               |
| MOTA         | 1910         |     | WAT        |   |          |     | 55.407           | 22.216           | 37.933           | 1.00 28.17               |
| MOTA         | 1911         | OWO | WAT        | H | 129      | 3   | 39.281           | 32.022           | 33.251           | 1.00 36.60               |
|              |              |     |            |   |          |     |                  |                  |                  |                          |
|              |              |     |            |   |          |     |                  |                  |                  |                          |

| MOTA         | 1912         | AW 0WO | т н | 130 | 6   | 6.017          | 13.623           | 13.755           | 1.00 29.95               |
|--------------|--------------|--------|-----|-----|-----|----------------|------------------|------------------|--------------------------|
| ATOM         | 1913         | AW 0WO | т н | 131 | . 7 | 8.517          | 19.411           | 5.018            | 1.00 29.87               |
| ATOM         | 1914         | AW OWO |     |     |     | 8.811          | 17.945           | 26.897           | 1.00 43.00               |
| MOTA         | 1917         | AW 0WO |     | 135 |     | 4.367          | 34.584           | 23.669           | 1.00 15.27               |
| ATOM         | 1918         | AW OWO |     | 136 |     | 1.580          | 19.230           | 1.174            | 1.00 23.04               |
| ATOM         | 1919         | AW OWO |     | 137 |     | 0.573          | 29.499           | 14.716           | 1.00 20.63               |
| ATOM         | 1920         | AW OWO |     |     |     | 5.862          | 34.058           | 21.256           | 1.00 34.20               |
| MOTA         | 1921         | AW OWO |     |     |     | 3.247          | 24.263           | 5.613            | 1.00 31.10               |
| ATOM         | 1922         | AW OWO |     |     |     | 9.546          | 29.382           | 19.222           | 1.00 26.78               |
| ATOM         | 1923         |        |     | 141 |     | 7.588          | 28.862           | 13.258           | 1.00 28.89<br>1.00 30.25 |
| ATOM         | 1924         | AW OWO |     |     |     | 7.042<br>9.364 | 36.289<br>24.456 | 15.327<br>-3.023 | 1.00 30.25<br>1.00 27.10 |
| ATOM         | 1925<br>1926 | AW 0WO |     |     |     | 6.647          | 25.991.          | 39.023           | 1.00 24.20               |
| ATOM<br>ATOM | 1927         | OWO WA |     |     |     | 6.593          | 34.283           | 22.128           | 1.00 27.16               |
| ATOM         | 1928         | AW OWO |     |     |     | 3.331          | 26.272           | -7.226           | 1.00 27.11               |
| ATOM         | 1929         | OWO WA |     |     |     | 7.705          | 20.384           | 15.670           | 1.00 27.47               |
| ATOM         | 1930         | OWO WA |     |     |     | 5.910          | 26.130           | -7.246           | 1.00 29.71               |
| ATOM         | 1931         | OWO WA |     |     |     | 6.323          | 26.826           | 19.400           | 1.00 36.67               |
| ATOM         | 1932         | AW 0WO |     |     |     | 1.609          | 39.798           | 2.091            | 1.00 30.16               |
| ATOM         | 1933         | AW 0WO |     |     |     | 8.189          | 35.212           | 17.395           | 1.00 28.63               |
| ATOM         | 1934         | OWO WA |     |     |     | 9.690          | 27.733           | 40.873           | 1.00 26.64               |
| ATOM         | 1935         | AW OWO |     |     |     | 1.739          | 25.115           | 8.578            | 1.00 34.13               |
| ATOM .       | 1936         | OWO WA |     |     |     | 4.261          | 33.918           | 17.410           | 1.00 48.10               |
| ATOM         | 1937         | AW 0WO | г н | 155 | 5   | 5.864          | 32.706           | 19.968           | 1.00 40.67               |
| ATOM         | 1938         | OWO WA | т н | 156 | 6   | 2.576          | 31.794           | 17.551           | 1.00 34.94               |
| ATOM         | 1939         | AW 0WO | т н | 157 | 5   | 2.628          | 31.942           | -3.590           | 1.00 38.68               |
| ATOM         | 1940         | AW 0WO | г н | 158 | 7   | 5.447          | 17.848           | 6.325            | 1.00 25.79               |
| ATOM         | 1941         | OWO WA | T H | 159 | 5   | 9.047          | 22.586           | 38.987           | 1.00 29.14               |
| ATOM         | 1942         | AW 0WO | т н | 160 | 5   | 9.817          | 35.142           | 14.016           | 1.00 38.25               |
| ATOM         | 1943         | AW 0WO | т н | 161 |     | 8.322          | 14.589           |                  | 1.00 32.32               |
| ATOM         | 1944         | AW 0WO |     |     |     | 7.184          | 22.624           | -0.720           | 1.00 28.29               |
| ATOM         | 1945         | OWO WA |     |     |     | 1.680          | 31.893           | 20.126           | 1.00 45.25               |
| ATOM         | 1946         | AW 0WO |     |     |     | 8.637          | 24.862           | 17.484           | 1.00 28.59               |
| ATOM         | 1947         | OWO WA |     |     |     | 7.349          | 36.023           | 19.750           | 1.00 36.40               |
| ATOM         | 1948         | AW 0WO |     |     |     | 0.275          | 22.814           | 34.316           | 1.00 36.57               |
| ATOM         | 1949         | OWO WA |     |     |     | 0.632          | 18.004           | 27.037           | 1.00 35.99<br>1.00 46.77 |
| ATOM         | 1950         | OWO WA |     |     |     | 1.282          | 32.543           | 14.506<br>-0.405 | 1.00 46.77<br>1.00 28.55 |
| ATOM         | 1951         | AW OWO |     |     |     | 4.823<br>7.282 | 41.370<br>27.797 | -5.491           | 1.00 28.32               |
| ATOM<br>ATOM | 1952<br>1953 | AW 0WO |     |     |     | 5.084          | 44.653           | -1.597           | 1.00 27.69               |
| ATOM         | 1954         | OWO WA |     |     |     | 3.688          | 35.041           | 21.190           | 1.00 50.53               |
| ATOM         | 1955         | OWO WA |     |     |     | 2.147          | 28.336           | 34.535           | 1.00 31.26               |
| ATOM         | 1956         | AW 0WO |     |     |     | 8.214          | 48.464           | -1.584           | 1.00 35.85               |
| ATOM         | 1957         | AW 0WO |     |     |     | 4.240          | 41.773           | 10.211           | 1.00 36.58               |
| ATOM         | 1958         | AW 0WO |     |     |     | 0.408          | 35.424           | 18.373           | 1.00 40.37               |
| ATOM         | 1959         | AW 0WO | гн  | 177 | 6   | 8.932          | 38.086           | 20.571           | 1.00 42.76               |
| ATOM         | 1960         | AW 0WO |     | 178 | 8   | 1.267          | 16.180           | 3.373            | 1.00 53.70               |
| ATOM         | 1961         | OWO WA | т н | 179 | 6   | 8.820          | 19.728           | -13.191          | 1.00 29.11               |
| ATOM         | 1962         | OWO WA | т н | 180 | 5   | 4.827          | 19.858           | 30.125           | 1.00 33.03               |
| ATOM         | 1963         | AW 0WO | т н | 181 | 7   | 7.490          | 36.105           | 18.544           | 1.00 35.32               |
| MOTA         | 1964         | OWO WA | т н | 182 |     | 1.400          | 31.344           |                  |                          |
| MOTA         | 1965         | AW 0WO | т н | 183 |     | 8.807          | 41.819           | 9.585            | 1.00 39.70               |
| MOTA         | 1966         | AW OWO |     |     |     | 5.707          | 34.988           | -1.978           | 1.00 43.06               |
| ATOM         | 1967         | AW 0WO |     |     |     | 9.768          | .32.598          | -7.874           | 1.00 32.67               |
| ATOM         | 1968         | AW 0WO |     |     |     | 5.082          | 37.972           | 15.406           | 1.00 37.29               |
| MOTA         | 1969         | OWO WA |     |     |     | 4.025          | 26.790           | 23.695           | 1.00 28.47               |
| MOTA         | 1970         | AW 0WO |     |     |     | 2.505          | 36.365           | 17.754           | 1.00 53.73               |
| MOTA         | 1971         | AW OWO |     |     |     | 6.352          | 19.994           | 24.180           | 1.00 64.58               |
| MOTA         | 1972         | AW OWO |     |     |     | 5.809<br>5.018 | 28.542           | 27.345<br>-8.885 | 1.00 33.03<br>1.00 50.98 |
| MOTA         | 1973         | AW 0WO | ı H | TAT | . ' | 0.010          | 14.784           | -0.003           | 1.00 30.90               |
|              |              |        |     |     |     |                |                  |                  |                          |

| ATOM         | 1974         | OWO  | WAT H  | 192 | 49.286           | 31.672           | 37.961          | 1.00 | 30.83          |
|--------------|--------------|------|--------|-----|------------------|------------------|-----------------|------|----------------|
| ATOM         | 1975         | OWO  | WAT H  | 193 | 40.858           | 30.154           | 34.619          | 1.00 | 32.08          |
| ATOM         | 1976         | OWO  | WAT H  | 194 | 71.108           | 43.336           | -5.195          | 1.00 | 33.57          |
| ATOM         | 1977         | OWO  | WAT H  | 195 | 56.701           | 19.720           | 38.059          | 1.00 | 37.02          |
| ATOM         | 1978         | OWO  | WAT H  | 196 | 76.858           | 15.711           | 23.230          | 1.00 | 43.96          |
| ATOM         | 1979         | OWO  | WAT H  | 197 | 81.652           | 19.301           | 4.958           | 1.00 | 37.03          |
| ATOM         | 1980         | OW0  | WAT H  | 198 | 67.153           | 32.807           | -7.212          | 1.00 | 33.81          |
| MOTA         | 1981         | OWO  | WAT H  | 199 | 48.179           | 22,226           | 17.735          | 1.00 | 41.32          |
| ATOM         | 1982         | OWO  | WAT H  | 200 | 83.059           | 29.897           | 11.596          | 1.00 | 29.95          |
| ATOM         | 1983         | OWO  | WAT H  | 201 | 85.363           | 24.550           | 22.962          | 1,00 | 34.11          |
| ATOM         | 1984         | OWO  | WAT H  | 202 | 77.672           | 28.963           | -3.418          | 1.00 | 38.19          |
| ATOM         | 1985         | OWO  | WAT H  | 203 | 44.314           | 35.030           | 36.709          | 1.00 | 33.05          |
| ATOM         | 1986         | OWO  | WAT H  | 204 | 57.538           | 28.123           | 39.142          |      | 51.51          |
| ATOM         | 1987         | OWO  | WAT H  | 205 | 57.151           | 15.877           | 4.338           |      | 30.36          |
| ATOM         | 1988         | OWO  | H TAW  | 206 | 40.254           | 25.762           | 28.691          |      | 40.12          |
| ATOM         | 1989         | OWO  | WAT H  | 207 | 76.494           | 39.250           | 19.290          |      | 54.53          |
| ATOM         | 1990         | OWO  | WAT H  | 208 | 79.041           | 39.997           | 1.281           |      | 32.75          |
| ATOM         | 1991         | OWO  | WAT H  | 209 | 46.805           | 28.514           | 40.413          |      | 41.33          |
| MOTA         | 1992         | OWO  | WAT H  |     | 74.182           | 39.133           | -7.028          |      | 43.40          |
| ATOM         | 1993         | OWO  | WAT H  | 211 | 41.543           | 30.928           | 37.391          |      | 40.08          |
| ATOM         | 1994         | OWO  | WAT H  | 212 | 81.830           | 23.623           | 36.352          |      | 39.28          |
| ATOM         | 1995         | OWO  | WAT H  |     | 78.322           | 38.338           | 33.174          |      | 35.85          |
| ATOM         | 1996         | OWO  | WAT H  |     | 61.182           | 13.688           | 18.567          |      | 28.95          |
| ATOM         | 1997         | OWO  | WAT H  |     | 71.432           | 40.067           | 23.550          |      | 60.99          |
| MOTA         | 1998         | OWO  | WAT H  |     | 67.568           | 36.803           | -6.817          | 1.00 |                |
| ATOM         | 1999         | OWO  |        | 217 | 72.965           | 29.089           | -8.390          |      | 39.02          |
| ATOM         | 2000         |      | WAT H  |     | 63.052           | 9.834            | 34.191          |      | 34.19          |
| ATOM         | 2001         | OWO  | WAT H  |     | 57.235           | 13.375           | 10.197          |      | 32.08          |
| MOTA         | 2002         | OWO  | WAT H  |     | 81.629           | 34.574           | 16.181          |      | 41.25          |
| ATOM         | 2003         |      | WAT H  |     | 45.733           | 13.118           | 23.907          |      | 38.87          |
| ATOM         | 2004         |      | WAT H  |     | 78.130           | 25.186           | -4.773          |      | 33.10          |
| MOTA         | 2005         |      |        | 223 | 58.675           | 33.695           | -6.869          |      | 52.56          |
| MOTA         | 2006         |      |        | 224 | 54.460           | 22.977           | 40.169          |      | 40.47          |
| MOTA         | 2007         |      | WAT H  |     | 71.169           | 7.742            | 27.835          |      | 34.20          |
| MOTA         | 2008         |      | WAT H  |     | 59.281           | 25.566           | 40.809          |      | 54.27          |
| ATOM         | 2009         |      | WAT H  |     | 66.051           | 34.845           | -5.803          |      | 26.92          |
| ATOM         | 2010         |      |        | 228 | 70.793           | 40.087           | 14.243          |      | 54.51          |
| ATOM         | 2011         |      | WAT H  |     | 53.158           | 9.886            | 20.753          |      | 26.43          |
| ATOM         | 2012         |      |        | 230 | 49.406           | 28.559           | 43.273          |      | 36.06          |
| ATOM         | 2013         |      | WAT H  |     | 74.841           | 12.429           | 7.797           |      | 47.86          |
| ATOM         | 2014         |      | WAT H  |     | 71.531           | 8.614            | 1.744           |      | 64.53          |
| ATOM         | 2015         |      | WAT. H |     | . 61.468         | 15.819           | -4.568          |      | 38.94          |
| MOTA         | 2016         |      | WAT H  |     | 68.960           | 39.087           | 13.256          |      | 41.49          |
| ATOM<br>ATOM | 2017<br>2018 |      | WAT H  |     | 61.545           | 11.832<br>41.437 | 9.267<br>-8.525 |      | 32.18<br>40.51 |
| ATOM         | 2019         |      | WAT H  |     | 64.112<br>56.020 | 30.019           | 21.210          |      | 38.62          |
| ATOM         | 2020         | OWO  | WAT H  |     | 79.662           | 33.827           | 34.246          |      | 44.17          |
| ATOM         | 2021         | OWO  |        | 239 | 72.326           | 13.866           | -7.548          | 1.00 |                |
| ATOM         | 2022         | OWO  | WAT H  |     | 38.964           | 27.739           | 27.216          | 1.00 |                |
| ATOM         | 2023         |      | WAT H  |     | 40.370           | 30.711           | 24.793          |      | 33.70          |
| ATOM         | 2024         |      | WAT H  |     | 70.975           |                  | -10.639         |      | 52.48          |
| ATOM         | 2025         |      | WAT H  |     | 55.036           | 7.684            | 25.017          |      | 40.93          |
| ATOM         | 2026         |      | WAT H  |     | 51.944           | 15.717           | 9.780           | 1.00 |                |
| ATOM         | 2027         |      | WAT H  |     | 80.897           | 35.177           | 6.275           |      | 46.35          |
| ATOM         | 2028         |      | WAT H  |     | 50.117           | 29.121           | 38.692          | 1.00 | 34.56          |
| ATOM         | 2029         |      |        | 247 | 43.401           | 27.565           | 41.798          |      | 54.66          |
| ATOM         | 2030         |      | WAT H  |     | 61.356           | 22.973           | 40.900          |      | 37.19          |
| ATOM         | 2031         |      | WAT H  |     | 75.861           | 9.643            | 36.444          |      | 48.34          |
| ATOM         | 2032         |      | WAT H  |     | 70.251           | 39.173           | -8.777          |      | 41.98          |
| ATOM         | 2033         |      | WAT H  |     | 76.256           | 43.950           | 4.046           |      | 39.19          |
| .11011       | 2033         | 0.10 | II     | ~   | ,0.250           | .0.500           |                 | 2.00 |                |

| MOTA | 2034 | OWO | WAT | Н | 252 | 79.275 | 17.974 | 33.154 |      | 44.08 |
|------|------|-----|-----|---|-----|--------|--------|--------|------|-------|
| MOTA | 2035 | OWO | WAT | Н | 253 | 55.134 | 22.055 | -4.822 |      | 50.14 |
| ATOM | 2036 | OWO | WAT | Н | 254 | 74.954 | 24.889 | -5.491 |      | 35.99 |
| ATOM | 2037 | OWO | WAT | Н | 255 | 81.321 | 13.477 | 3.365  |      | 64.26 |
| ATOM | 2038 | OWO | WAT | Н | 256 | 40.734 | 28.730 | 23.104 |      | 45.78 |
| ATOM | 2039 | OWO | WAT | Н | 257 | 63.547 | 15.941 | -2.825 |      | 32.72 |
| ATOM | 2040 |     |     |   |     | 62.079 | 34.517 | 15.084 |      | 58.02 |
| ATOM | 2041 | OWO | WAT | Н | 259 | 65.249 | 17.692 | -9.923 |      | 33.97 |
| ATOM | 2042 |     | WAT |   |     | 84.611 | 20.635 | 26.103 |      | 36.71 |
| MOTA | 2043 | OWO | WAT | Н | 261 | 54.603 | 33.043 | -3.243 |      | 61.42 |
| MOTA | 2044 |     | WAT |   |     | 78.330 | 21.964 | 3.390  |      | 36.54 |
| MOTA | 2045 |     | WAT |   |     | 60.505 | 30.649 | 16.856 |      | 61.43 |
| ATOM | 2046 |     | WAT |   |     | 60.673 | 28.301 | 41.001 |      | 61.42 |
| MOTA | 2047 |     | WAT |   |     | 75.570 | 42.160 | 26.603 |      | 48.11 |
| ATOM | 2048 |     | WAT |   |     | 66.492 | 40.897 | -8.600 |      | 49.26 |
| ATOM | 2049 |     | WAT |   |     | 78.047 | 10.851 | 26.352 |      | 37.66 |
| MOTA | 2050 |     | WAT |   |     | 45.278 | 23.196 | 23.784 |      | 46.39 |
| ATOM | 2051 |     | WAT |   |     | 79.914 | 16.055 | 24.356 |      | 60.41 |
| ATOM | 2052 |     | WAT |   |     | 83.059 | 27.578 | 9.958  |      | 41.48 |
| MOTA | 2053 |     | WAT |   |     | 53.990 | 28.727 | 44.389 |      | 53.80 |
| MOTA | 2054 |     | WAT |   |     | 84.167 | 21.797 | 23.410 |      | 29.89 |
| ATOM | 2055 |     | WAT |   |     | 48.547 | 18.514 | 24.335 |      | 35.54 |
| ATOM | 2056 |     | WAT |   |     | 83.374 | 23.895 | 18.013 |      | 38.70 |
| ATOM | 2057 | OM0 |     |   |     | 44.928 | 16.891 | 21.587 |      | 47.27 |
| ATOM | 2058 | OWO | WAT |   |     | 79.981 | 16.119 | 37.103 |      | 46.85 |
| ATOM | 2059 | OWO |     |   |     | 51.478 | 30.160 | 35.040 |      | 37.36 |
| ATOM | 2060 |     | WAT |   |     | 79.945 | 11.751 | 28.340 |      | 45.00 |
| MOTA | 2061 | OWO | WAT |   |     | 72.128 | 38.830 | 13.389 |      | 68.19 |
| ATOM | 2062 | OWO |     |   |     | 56.951 | 24.568 | 40.730 |      | 69.60 |
| ATOM | 2063 | OWO | WAT |   |     | 46.873 | 31.066 | 39.547 |      | 44.24 |
| MOTA | 2064 | OWO | WAT |   |     | 78.996 | 17.114 | 19.359 |      | 35.71 |
| ATOM | 2065 |     | WAT |   |     | 83.567 | 25.358 | 35.318 |      | 55.15 |
| MOTA | 2066 |     | WAT |   |     | 61.769 | 14.437 | -0.829 |      | 37.96 |
| MOTA | 2067 | OWO |     |   |     | 65.163 | 31.436 | -7.804 |      | 33.32 |
| ATOM | 2068 | OWO | WAT |   |     | 42.116 | 26.484 | 19.462 |      | 38.95 |
| ATOM | 2069 | OMO | WAT |   |     | 42.907 | 25.516 | 22.370 |      | 61.34 |
| ATOM | 2070 |     | WAT |   |     | 82.439 | 35.148 | 8.022  |      | 45.96 |
| MOTA | 2071 |     | TAW |   |     | 55.363 | 24.466 | -1.282 |      | 21.32 |
| ATOM | 2072 | OWO | TAW |   |     | 63.050 | 9.755  | 27.052 |      | 46.02 |
| ATOM | 2074 | OWO |     |   | -   | 62.097 | 39.809 | -0.108 |      | 37.27 |
| ATOM | 2075 | OWO | WAT | н | 293 | 39.885 | 32.648 | 26.137 | 1.00 | 32.19 |

Table 2: Binding sites of the ADC binding cavity (the atomic coordinates of the binding sites are provided in Table 1)

| Binding  | Amino acid | Atom(s)           | Atom no.   | Binding       |
|----------|------------|-------------------|------------|---------------|
| site no. | residue    | involved          | in Table 1 | interaction   |
| · 1      | Tyr22A     | C <sub>D2</sub>   | 180        | HI            |
|          |            | C <sub>E2</sub>   | 182        |               |
| 2        | Pv125A     | C <sub>A</sub>    | 201 .      | СВ            |
| 3        | Pvl25A     | Св                | 202        | HI            |
| 4        | Thr57A     | O <sub>G1</sub>   | 450        | НВ            |
| 5        | Tyr58A     | $C_{G}$           | 457        | HI            |
| 1        |            | C <sub>E1</sub>   | 460        |               |
| 1        |            | C <sub>E2</sub>   | 461        |               |
| ļ        |            | C <sub>D1</sub>   | 458        |               |
|          |            | · C <sub>D2</sub> | 459        | 1             |
|          |            | $C_{\mathbf{z}}$  | _462       |               |
| 6        | Ile60A     | C <sub>G1</sub>   | 474        | HI            |
| }        | •          | C <sub>G2</sub>   | 475        |               |
|          |            | C <sub>D1</sub>   | 476        |               |
| 7        | Asn72A     | 0                 | 560        | НВ            |
| 8        | · Ala75A   | N                 | 574        | HB            |
| 9        | Lys9D      | $N_{z}$           | 963        | HB, II or SMI |
| 10       | Trp47D     | $C_{G}$           | 1256       | Π             |
| i        |            | C <sub>D1</sub>   | 1257       |               |
| 1        |            | C <sub>D2</sub>   | 1258       |               |
|          | į          | C <sub>E2</sub>   | 1260       |               |
| )        |            | C <sub>E3</sub>   | 1261       |               |
| }        |            | $C_{z2}$          | 1262       |               |
| j        |            | $C_{z3}$          | 1263       |               |
| ļ {      |            | C <sub>H2</sub>   | 1264       |               |
|          |            | NEI               | 1259       |               |
| 11       | Arg54D     | N <sub>H1</sub>   | 1317       | II            |
|          |            | N <sub>H2</sub>   | 1318       |               |

CB = Covalent Bond HB = Hydrogen Bond

II = Ionic Interaction
HI = Hydrophobic Interaction

π = π Interaction
SMI = Sulphate-Mediated Interaction

Table 3: X-ray crystallographic data quality statistics

|                                              | Native  | MeAsp   | rβAla   | isoA           | Sbst            | Prod           |
|----------------------------------------------|---------|---------|---------|----------------|-----------------|----------------|
| Space group:                                 |         |         | P6      | 122            |                 |                |
| Wavelength (Å)                               | 0.87    | 1.54    | 1.54    | 1.54           | 1.54            | 1.54           |
| Number of frames                             | 360     | 200     | 90      | 90             | 155             | 138            |
| 2θ angle setting (°)                         | 0       | 24.3    | 17.8    | 0              | 27.2            | 19             |
| Resolution (Å) <sup>a</sup>                  | 1.55    | 1.7     | 1.9     | 1.7            | 1.5             | 1.7            |
| Estimated mosaicity (°)                      | 0.24    | 0.36    | 0.35    | 0.24           | 0.31            | 0.42           |
| No. observed reflexions                      | 1025720 | 298195  | 107245  | 158424         | 103704          | 143040         |
| No. unique reflexions                        | 47 479  | 33 689  | 24 116  | 33 723         | 39 320          | 32 160         |
| Multiplicity                                 | 8.9     | 8.9     | 4.4     | 4.7            | 2.6             | 4.1            |
| Completeness (All data) (%)                  | 98.9    | 93.6    | 91.9    | 93.7           | 76.9            | 89.2           |
| Completeness (highest resol.) (%)            | 91.0    | 88.1    | 81.1    | 69.2           | 63.9            | 57.2           |
| Low resolution limit (Å) <sup>b</sup>        | 60      | 22      | 11.5    | 25             | 10.3            | 14.8           |
| No. reflexions missing < 10 Å                | 16 /247 | 48 /244 | 99 /246 | <b>21</b> /245 | <b>219</b> /246 | <b>17</b> /246 |
| Average I/σ(I)                               | 24.9    | 20.5    | 13.1    | 23.0           | 18.7            | 15.3           |
| I/ $\sigma(I)$ (highest resolution shell)    | 6.8     | 2.4     | 1.7     | 3.5            | 2.3             | 1.8            |
| $R_{ m meas}^{{ m c}}$                       | 0.071   | 0.064   | 0.070   | 0. 048         | 0.059           | 0.090          |
| $R_{\text{meas}}$ (highest resolution shell) | 0.166   | 0.499   | 0.590   | 0.330          | 0.399           | 0.382          |

<sup>&</sup>lt;sup>a</sup> Judged where  $I/\sigma(I) > 2$ .

$$R_{meas} = \frac{\sum_{h} \sqrt{\frac{n_{h}}{n_{h} - 1} \sum_{i} |\hat{I}_{h} - I_{h,i}|}}{\sum_{h} \sum_{i} I_{h,i}}, \hat{I}_{h} = \frac{1}{n_{h}} \sum_{i}^{n_{h}} I_{h}$$

<sup>&</sup>lt;sup>b</sup> Judged where  $I/\sigma(I)$  is largest and  $R_{meas}$  lowest.

<sup>&</sup>lt;sup>c</sup> Multiplicity weighted R<sub>sym</sub>:

Table 4: Model refinement convergence criteria and parameters, and quality indicators.

|                                                                     | Nat                                          | MeAsp        | · IsoA      | Prod     | Subst       | rβAla   |
|---------------------------------------------------------------------|----------------------------------------------|--------------|-------------|----------|-------------|---------|
| Crystallographic refinement                                         | <del></del>                                  | <u> </u>     | <del></del> |          | <del></del> |         |
| No. reflexions for refinement                                       | 44 963                                       | 32 355       | 32 349      | 30 807   | 37 582      | 21 420  |
| No. test reflexions                                                 | .2 395                                       | 1 360        | 1 348       | 1 266    | 1 620       | 1 657   |
| No. restraints <sup>b</sup>                                         | 6 430                                        | 6 500        | 6 491       | 6 482    | 6 497       | 6 473   |
| No. parameters                                                      | 8 300                                        | 8 888        | 8 832       | 8 744    | 8 536       | 8 220   |
| Weight for geom. restraints (TNT)                                   | 4 .                                          | 3            | 4           | 4 .      | 4 ·         | 3       |
| Final model parameters                                              |                                              |              |             |          |             |         |
| Residues                                                            | · 228                                        | 228          | 228         | 228      | 228         | . 228   |
| Hetero groups                                                       | 2                                            | 4            | 4           | 4        | 4           | 6       |
| No. water molecules                                                 | 290                                          | 422          | 410         | 393      | 336         | 261     |
| No. non-hydrogen atoms                                              | 2 072                                        | 2 222        | 2 208       | 2 185    | 2 134       | 2 063   |
| Resolution range (Å)                                                | 60 –1.55                                     | 22 – 1.7     | 11.5–1.7    | 25 – 1.7 | 10.3-1.5    | 14 – 1. |
| Refinement convergence                                              |                                              |              |             |          |             |         |
| R <sub>free</sub> c                                                 | 0.217                                        | 0.205        | 0.196       | 0.206    | 0.194       | 0.229   |
| $R_{ m factor}^{ m d}$                                              | 0.198                                        | 0.176        | 0.167       | 0.172    | 0.177       | 0.18    |
| Average $B$ -factor, subunit A ( $\mathring{A}^2$ )                 | 18.1                                         | 23.3         | 21.1        | 18.4     | 20.9        | 25.8    |
| subunit B(Ų)                                                        | 20.7                                         | 25.4         | .23.3       | 20.1     | 21.9.       | 29.4    |
| waters (Å)                                                          | 33.2                                         | 46.0         | 42.9        | 37.4     | 36.9        | 41.0    |
| Wilson distribution $B_{\text{factor}}$ ( $\mathring{\text{A}}^2$ ) | 17.8                                         | 22.6         | 21.4        | 19.7     | 18.8        | 23.1    |
| Lodel quality                                                       | <u>.                                    </u> | <del> </del> | ·           |          | <del></del> |         |
| amachandran plot:                                                   | ·                                            |              |             | ,        |             |         |
| In most favoured region                                             | 91.2                                         | 90.7         | 90.6        | 91.2     | 90.6        | 90.1    |
| In generously allowed region                                        | 8.8                                          | 9.3          | 9.4         | 8.8      | 9.4         | 9.9     |
| In disallowed region                                                | 0                                            | 0 .          | 0           | 0        | Ö           | 0       |

### SUBSTITUTE SHEET (RULE 26)

| RMS° deviation from ideal      |       |       |       |       |        |       |
|--------------------------------|-------|-------|-------|-------|--------|-------|
| Covalent bond lengths (Å)      | 0.022 | 0.018 | 0.021 | 0.023 | 0.019  | 0.018 |
| Bond angles (°)                | , 1.8 | 1.6   | 1.9   | 1.6   | 1.7    | 1.5   |
| Planar groups (Å)              | 0.013 | 0.015 | 0.016 | 0.011 | .0.012 | 0.012 |
| Procheck <sup>f</sup> criteria | • •   |       | •     |       | ٠.     | •     |
| Bond length outliers (%)       | 5.9   | 2.4   | 5.2   | 6.5   | 3.9    | 2.2   |
| Bond angle outliers (%)        | 6.1   | 4.0   | 4.8   | 4.4   | 5.2    | 3.8   |
| Planarity outliers (%)         | 2.3   | 0     | 0     | 2.9   | 0      | . 0   |

<sup>&</sup>lt;sup>a</sup> Test set is excluded from refinement for cross-validation (Brunger, 1992).

<sup>&</sup>lt;sup>b</sup> Restraints in TNT with non-zero weight.

 $<sup>^{</sup>c}$   $R_{factor}$  calculated using test reflexions.

 $<sup>^{</sup>d}$   $R_{\text{factor}} = \Sigma_{\text{h}} ||F_{\text{obs}}| - |F_{\text{calc}}|| / \Sigma_{\text{h}} |F_{\text{obs}}|$ , with test reflexions excluded.

e RMS - Root mean square

f Laskowski et al., 1993

#### References

The references mentioned in the above text and listed below are incorporated by reference.

5

Albert et al., Nature Structural Biology, 5, (1998), 289-293. Allen et al., J. of Chemical Information and Computer Sciences, 31, (1991), 187-204.

Berman et al., Nucleic Acids Research, 28, (2000), 235-242.

- Blundell et al., Protein Crystallography, Academic Press, New York, London and San Francisco, (1976).
  - Bohacek et al., Medicinal Research Reviews, 16, (1996), 3-50. Bricogne, Methods in Enzymology, 276, (1993), 361-423.
  - Brunger et al., Acta Crystallographica, D54, (1992), 905-921.
- 15 Collaborative Computational Project 4.
  - Brunger et al., Current Opinion in Structural Biology, 8, Issue 5, October 1998, 606-611.
  - The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763.
- Dunbrack et al., Folding and Design, 2, (1997), 27-42. Engh et al., Acta Crystallographica, A47, (1991) 392-400.

Gill et al., Analytical Biochemistry, 182, (1989), 319-326.

Goodford, J. of Medicinal Chemistry, 28, (1985), 849-857.

Greer et al., J. of Medicinal Chemistry, 37, (1994), 1035-

25 1054.

Jones et al., Acta Crystallography, A47, (1991), 110-119. Jones et al. in Current Opinion in Biotechnology, 6, (1995), 652-656.

Leslie, Joint CCP4 and EESF-EACMB Newsletter on Protein

Crystallography, Vol.26, Daresbury Laboratory, UK.

Murshudov et al., Acta Crystallographica, D53, (1997), 24-255.

Navaza, Acta Crystallographica, A50, (1994), 157-163.

5

10

Otwinwski et al., Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology, Vol. 276, ed. Carter and Sweet, Academic Press, 1997.

Perrakis et al., Acta Crystallographica, D55, (1999), 1765-1770.

Ramjee et al., J. Biochem., 323, (1997), 661-669.

Read, Acta Crystallographica, A42, (1986), 140-149.

Sawyer et al., in Crystallization of Nucleic Acids and Proteins, ed. Ducroix and Giege, 225-289, John Wiley & Sons, New York, 1992.

Sayle et al., Trends in Biochemical Sciences, Vol. 20, (1995), 374.

Schagger et al., Analytical Biochemistry, 166, (1987), 368-379.

- Tronrud, Methods in Enzymology, 277, (1997), 306-319.

  Walters et al., Drug Discovery Today, Vol.3, No.4, (1998), 160-178.
  - Westhead et al., Trends in Biochemical Sciences, 23, (1998), 35-36.
- 20 Williamson et al., J. Biol. Chem., 254, (1979), 8074-8082.

#### Claims

5

10

20

- 1. A method of identifying an agent compound which modulates asparate decarboxylase (ADC) activity comprising the steps of:
- a) providing a model of a binding cavity of ADC, said model including at least one of binding site nos. 1 and 9 defined by Table 2;
  - b) providing the structure of a candidate agent compound;
- c) fitting the candidate agent compound to said binding cavity, including determining the interactions between the candidate agent compound and at least one of binding site nos. 1 and 9; and
  - d) selecting the fitted candidate agent compound.
- 15 2. The method according to claim 1, comprising the further step of:
  - e) contacting the candidate agent compound with ADC to determine the ability of the candidate agent compound to interact with ADC.
  - 3. The method according to claim 1, comprising the further steps of:
  - e) forming a complex of ADC and said candidate agent compound; and
- f) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said candidate agent compound to interact with ADC.
  - 4. A crystal of fully processed ADC.
  - 5. A crystal of fully processed ADC having a hexagonal point group 622.

- 6. A crystal of fully processed ADC having a hexagonal space group  $P6_122$ .
- 7. A crystal of ADC which diffracts X-rays for the determination of atomic coordinates of ADC to a resolution of better than 2Å.
- 8. A crystal of ADC according to claim 7, wherein the ADC is fully processed.
  - 9. A crystal of fully processed ADC having unit cell dimensions of a = 71.1 Å  $\pm$  5%, and c = 215.8 Å  $\pm$  5%.
- 15 10. A crystal of fully processed ADC having the three dimensional atomic coordinates of Table 1.
- 11. A method of fully processing ADC, comprising the step of forming a solution of ADC, the solution having a pH in the range 6.5-8.5 and an ADC concentration in the range 1-50 mg/ml.
  - 12. A method for growing a crystal of ADC, which method comprises:
- forming a 1:1 mixture of a crystallising solution containing 1.6 to 2.4 M  $Na_2(SO_4)$  and a protein solution containing ADC at a concentration of 6 to 10 mg/ml in 25 mM HEPES buffer at pH 7.5, and
- growing the crystal by vapour diffusion from the mixture.

PCT/GB02/01490

- 13. A method of testing a candidate agent compound for ability to modulate ADC activity, comprising the step of contacting the candidate agent compound with fully processed ADC to determine the ability of the candidate agent compound to interact with ADC.
- 14. A method of identifying an agent compound which modulates ADC activity, comprising the steps of:
  - a) providing a candidate agent compound;
- b) forming a complex of fully processed ADC and the candidate agent compound; and
- c) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of the candidate agent compound to interact with ADC.

15

20

25

30

5

- 15. A method of analysing an ADC-ligand complex comprising the step of employing (i) X-ray crystallographic diffraction data from the fully processed ADC-ligand complex and (ii) a three-dimensional structure of fully processed ADC, to generate a difference Fourier electron density map of the complex, the three-dimensional structure being defined by atomic coordinate data according to Table 1.
- 16. A chimaeric protein having a binding cavities for L-aspartate, the binding cavity providing a plurality of atoms which interact with L-aspartate and which correspond to selected ADC atoms in the ADC binding cavity for L-aspartate, the relative positions of the plurality of atoms corresponding to the relative positions, as defined by Table 1, of the selected ADC atoms,

wherein either or both of binding site nos. 1 and 9 defined by Table 2 provide one or more of the selected ADC atoms

- 17. A computer system, intended to generate structures and/or perform rational drug design for ADC, or complexes of ADC with a potential modulator; the systems containing computer-readable data comprising at least one of: (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of fully processed ADC; and (b) structure factor data for ADC, said structure factor data being derivable from the atomic coordinate data of Table 1.
  - 18. A computer system according to claim 17 comprising:
  - (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data;
  - (ii) a working memory for storing instructions for processing said computer-readable data; and
  - (iii) a central-processing unit coupled to said working memory and to said computer-readable data storage medium for processing said computer-readable data and thereby generating structures and/or performing rational drug design
- 19. Computer readable media with at least one of: (a) atomic coordinate data according to Table 1 recorded thereon, said data defining the three-dimensional structure of fully processed ADC; and (b) structure factor data for ADC recorded thereon, the structure factor data being derivable from the atomic coordinate data of Table 1.

15

5

- 20. A method of providing data for generating structures and/or performing rational drug design for ADC, or complexes of ADC with a potential modulator, the method comprising:
- (i) establishing communication with a remote device containing computer-readable data comprising at least one of:

  (a) atomic coordinate data according to Table 1, said data defining the three-dimensional structure of fully processed ADC; and (b) structure factor data for ADC, said structure factor data being derivable from the atomic coordinate data of Table 1; and
- (ii) receiving said computer-readable data from said remote device.

# Figure 2

3/17

Figure 3a

L-Aspartate (Sbst)

Imine Species

$$C\alpha$$
 pocket  $HO_2C$   $N$   $H$   $HO_2C$   $Bound$ 

Figure 3b

β-Alanine (Prod)

Imine Species

Unbound

HO,C Cβ pocket

Ca pocket solvent Bound

Figure 3c

Reductively Bound β-Alanine (rβAla)

Imine Species

4/17

Figure 3d

α-Methyl Aspartate (MeAsp)

Imine Species

MeO<sub>2</sub>C HO<sub>2</sub>C

Unbound

Ca pocket MeO<sub>2</sub>C HO₂C Cβ pocket

Bound

Figure 3e

β-Isopropyl-β-alanine (IsoA)

Imine Species

Unbound

Ca pocket HO2C Cβ pocket

Bound

5/17

## Figure 4

Figure 5a



Figure 5b



SUBSTITUTE SHEET (RULE 26)



Figure 6a



SUBSTITUTE SHEET (RULE 26)



Figure 6c



Figure 7a

**SUBSTITUTE SHEET (RULE 26)** 





Figure 7b

SUBSTITUTE SHEET (RULE 26)



Figure 7c

**SUBSTITUTE SHEET (RULE 26)** 

13/17

### Figure 8



Figure 9a

Figure 9b



SUBSTITUTE SHEET (RULE 26)



 ${
m Figu}$ 

#### INTERNATIONAL SEARCH REPORT

PCT/GB 02/01490

|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                               | 1017 48 02, 01                                                                                                     |                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| A. CLASSIF<br>IPC 7                                                                                                                                                                                                                                                                                                                                                              | C12Q1/527 C12N9/88 C12N15/6                                                                                                                                                                                                                                                   | 2 G06F17/50                                                                                                        |                       |  |  |  |
| According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| B. FIELDS                                                                                                                                                                                                                                                                                                                                                                        | SEARCHED                                                                                                                                                                                                                                                                      | •                                                                                                                  |                       |  |  |  |
| Minimum documentation searched (dassification system followed by classification symbols) IPC 7 C12N C12Q G06F                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| Electronic data base consulted during the International search (name of data base and, where practical, search terms used) BIOSIS, EPO-Internal, WPI Data                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| C. DOCUME                                                                                                                                                                                                                                                                                                                                                                        | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                |                                                                                                                    |                       |  |  |  |
| Category °                                                                                                                                                                                                                                                                                                                                                                       | Citation of document, with indication, where appropriate, of the rele                                                                                                                                                                                                         | ovant passages                                                                                                     | Relevant to claim No. |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                  | ALBERT ARMANDO ET AL: "Crystal sof aspartate decarboxylase at 2.2 resolution provides evidence for in protein self-processing."  NATURE STRUCTURAL BIOLOGY, vol. 5, no. 4, April 1998 (1998-0289-293, XP008007005 ISSN: 1072-8368 cited in the application the whole document | A<br>an ester                                                                                                      | 1-3,13,               |  |  |  |
| X Furti                                                                                                                                                                                                                                                                                                                                                                          | ner documents are listed in the continuation of box C.                                                                                                                                                                                                                        | Patent family members are listed in ar                                                                             | nnex.                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                  | tegories of cited documents:                                                                                                                                                                                                                                                  | 'T' later document published after the Internati                                                                   | ionał filing date     |  |  |  |
| *A* document defining the general state of the art which is not considered to be of particular relevance  *E* earlier document but published on or after the international  *C* or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention  *C* occurrent of particular relevance; the claimed invention |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| filing date  cannot be considered novel or cannot be considered to  "L" document which may throw doubts on priority claim(s) or  "L" document which may throw doubts on priority claim(s) or                                                                                                                                                                                     |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| which is cited to establish the publication date of another citation or other special reason (as specified) cannot be considered to involve an inventive step when the document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-                                                                                       |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
| "P" docume                                                                                                                                                                                                                                                                                                                                                                       | means<br>ent published prior to the international filing date but<br>han the priority date claimed                                                                                                                                                                            | ments, such combination being obvious to a person skilled in the art.  & document member of the same patent family |                       |  |  |  |
| Date of the                                                                                                                                                                                                                                                                                                                                                                      | actual completion of the international search                                                                                                                                                                                                                                 | Date of mailing of the international search                                                                        | report                |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                | 3 August 2002                                                                                                                                                                                                                                                                 | 06/09/2002                                                                                                         |                       |  |  |  |
| Name and malling address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  Authorized officer                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                    |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                  | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                 | Van der Schaal, C                                                                                                  |                       |  |  |  |

### INTERNATIONAL SEARCH REPORT

PCT/GB 02/01490

| 0.75                     | AL-A DOMINICATO CONCIDENCE TO DE CEI EVANE                                                                                                                                                                                                                                                                                                                                   |                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C.(Continu<br>Category ° | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with Indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                               | Relevant to claim No. |
| X                        | RAMJEE MANOJ K ET AL: "Escherichia coli L-aspartate-alpha-decarboxylase: Preprotein processing and observation of reaction intermediates by electrospray mass spectrometry." BIOCHEMICAL JOURNAL, vol. 323, no. 3, 1997, pages 661-669, XP002210776 ISSN: 0264-6021 cited in the application the whole document                                                              | 13,16                 |
| X                        | WILLIAMSON J M ET AL: "PURIFICATION AND PROPERTIES OF L-ASPARTATE-ALPHA-DECARBOXYLASE, AN ENZYME THAT CATALYZES THE FORMATION OF BETHA-ALANINE IN ESCHERICHIACOLI" JOURNAL OF BIOLOGICAL CHEMISTRY, THE AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, INC.,, US, vol. 254, no. 16, 1979, pages 8074-8082, XP002058676 ISSN: 0021-9258 cited in the application the whole document | 11,13                 |