where \overline{y} is the mean of y and $\overline{X^j}$ is the mean of the jth column of X. Therefore,

$$b = \overline{y} - \sum_{j=1}^{n} \overline{X^{j}} w_{j} = \overline{y} - (\overline{X^{1}} \cdots \overline{X^{n}}) w,$$

where $(\overline{X^1} \cdots \overline{X^n})$ is the $1 \times n$ row vector whose jth entry is $\overline{X^j}$.

We will now show that solving the dual (**DRR3**) for α and obtaining $w = X^{\top} \alpha$ is equivalent to solving our previous ridge regression Problem (**RR2**) applied to the centered data $\hat{y} = y - \overline{y} \mathbf{1}_m$ and $\hat{X} = X - \overline{X}$, where \overline{X} is the $m \times n$ matrix whose jth column is $\overline{X^j} \mathbf{1}_m$, the vector whose coordinates are all equal to the mean $\overline{X^j}$ of the jth column X^j of X.

The expression

$$b = \overline{y} - (\overline{X^1} \cdots \overline{X^n})w$$

suggests looking for an intercept term b (also called bias) of the above form, namely

Program (RR4):

minimize
$$\xi^{\top} \xi + K w^{\top} w$$

subject to
$$y - X w - b \mathbf{1} = \xi$$

$$b = \hat{b} + \overline{y} - (\overline{X^1} \cdots \overline{X^n}) w,$$

with $\hat{b} \in \mathbb{R}$. Again, in Program (**RR4**), minimization is performed over ξ , w, b and \hat{b} , but b and \hat{b} are not penalized.

Since

$$b\mathbf{1} = \widehat{b}\mathbf{1} + \overline{y}\mathbf{1} - (\overline{X^1}\mathbf{1} \cdots \overline{X^n}\mathbf{1})w,$$

if $\overline{X} = (\overline{X^1} \mathbf{1} \cdots \overline{X^n} \mathbf{1})$ is the $m \times n$ matrix whose jth column is the vector $\overline{X^j} \mathbf{1}$, then the above program is equivalent to the program

${\bf Program} \,\, ({\bf RR5}):$

minimize
$$\xi^{\top} \xi + K w^{\top} w$$

subject to

$$y - Xw - \overline{y}\mathbf{1} + \overline{X}w - \widehat{b}\mathbf{1} = \xi,$$

where minimization is performed over ξ , w and \hat{b} . If we write $\hat{y} = y - \overline{y}\mathbf{1}$ and $\hat{X} = X - \overline{X}$, then the above program becomes

Program (RR6):

minimize
$$\xi^{\top}\xi + Kw^{\top}w$$

subject to
$$\widehat{y} - \widehat{X}w - \widehat{b}\mathbf{1} = \xi,$$