

DNA 1251-2-EX

COMPILATION OF LOCAL FALLOUT DATA FROM TEST DETONATIONS 1945-1962 EXTRACTED FROM DASA 1251

Volume II -Oceanic U.S. Tests

General Electric Company—TEMPO DASIAC 816 State Street Santa Barbara, California 93102

1 May 1979

Extract

CONTRACT No. DNA 901-79-C-0081

FILE COP

3

0

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B337079464 P99QAXDC00809 H2590D.

Prepared for

Director

DEFENSE NUCLEAR AGENCY

Washington, D. C. 20305

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM ACCESSION NO. DNA 1251-2-EX , AD-6300 636 S. TYPE OF REPORT & PERIOD COVERED COMPILATION OF LOCAL FALLOUT DATA FROM JEST DETONATIONS 1945-1962 EXTRACTED FROM DASA 1251 Extract Volume II - Oceanic U.S. Tests PERFORMING ORG. REPORT DASIAC-SR-179-VOL A 074 309 Howard A./Hawthorned Editor DNA D01-79-C-0081 9. PERFORMING ONGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS General Electric Company -- TEMPO Subtask P990AXDC008-09 DASIAC, 816 State Street Santa Barbara, California 93102 1. CONTROLLING OFFICE NAME AND ADDRESS Director Defense Nuclear Agency Washington, D.C. 20305 351 NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, if different from Report) 6270474 18. SUPPLEMENTARY NOTES This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B337079464 P990AXDC00809 H2590D. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Nuclear Weapons Testing Pacific Proving Ground Fallout Enewetak Radiological Contamination Bikinı Nuclear Radiation Johnston Island Christmas Island 20. ABSTRACT (Coulinus on reverse side if necessary and identify by block number) Fallout patterns from U.S. oceanic nuclear weapons tests. Also given are time and place of test and ambient winds.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date

PREFACE

This report has been prepared to serve as an unclassified source of information and data concerning the atmospheric nuclear test program conducted by the United States prior to 1963. The information contained herein was reproduced directly from the classified versions of the DASA 1251 series of reports. The classified material which was deleted to prepare this report was in accordance with the requirements of the Atomic Energy Act of 1954 and would not contribute to an understanding of the radiation interactions with personnel. All fallout plots and radiation contours are presented exactly as they appeared in the classified version of DASA 1251.

Acces	ssion For	_
Unann	GRANI MAB counced fication	
By		
Distr	Medien	
Avai	labarray Crans	
Dist.	Availand/on special	

TABLE OF CONTENTS

OPERATION	PAGE NO
Crossroads	4
Sandstone	13
Greenhouse	26
Ivy	50
Castle	61
Wigwam	97
Redwing	100
Hardtack I	185
Argus	316
Dominic	319
Appendix	A-1

INTRODUCTION

The objective of this report is to provide a ready reference of fallout patterns and related test data for those engaged in the analysis of fallout effects.

This compilation was extracted from DASA 1251 "Local Fallout from Nuclear Test Detonations" (U) Vol. 2 "Compilation of Fallout Patterns and Related Test Data" (U) Parts 1 through 3. DASA 1251 Vol. 2 was the work of Manfred Morgenthau, Harvy Meieran, Richard Showers, Jeffrey Morse, Norman Dombeck, and Arnoldo Garcia of the U.S. Army Nuclear Defense Laboratory under Defense Atomic Support Agency (now Defense Nuclear Agency) sponsorship.

Although local (early) fallout is emphasized, the data presented will be useful to those studying world-wide (delayed) fallout as well. In this report local fallout is defined as all fallout which consists principally of the larger particles that are deposited within 24 hours after the detonation. World-wide or delayed fallout is defined as fallout which consists of very small particles which descend very slowly over large areas of the earth's surface.

Data resulting from each U.S. detonation are presented chronologically. For each detonation, the basic information useful for an interpretation of the fallout data is tabulated first. This is followed by both on-site and off-site fallout patterns where available. A graph of the growth-rate of the cloud and stem is presented next. Wind speed and direction are than tabulated as a function of altitude, and hodographs are drawn from these data.

EXPLANATION COMMENTS ON DATA PRESENTED

Fallout Patterns

One or more fallout patterns are given for each event, except for those shots for which no sigificant residual radiation was observed downwind of GZ or for which no patterns were found in the literature. In the remarks included on the basic data sheet for each shot, the individual fallout patterns are discussed briefly; some comments are made for those shots for which no patterns were available. The doserate contours for the fallout patterns have been drawn to show the gamma dose rate in roentgens per hour, three feet above the ground, in terms of the one hour after burst reference time. The t^{-1,2} approximation was used when no actual decay data was available to adjust radiation measurements to the one hour reference time. It is important to recognize the H+1 hour is used as a reference time, and that only the contours from low yield weapons are complete at one hour after burst. For high yield weapons, fallout over some parts of the vast areas

shown does not commence until many hours after the burst. The time of arrival of fallout is indicated on some of the fallout patterns by "dot-dash" lines. The time lines are intended to give only a rough average arrival time in hours as estimated from the wind reports and the available monitoring information.

Induced Activity Patterns

The contamination resulting from low air bursts is due primarily to the activity induced by neutrons which are captured by certain elements in the soil, notably sodium, manganese and aluminum. The resulting radiation field is circular and covers a limited area about ground zero. Weather conditions have very little influence on the location or shape of the induced radiation pattern. However, increasing the moisture content in soils can increase the induced activity levels. The rate of decay of the induced radiation field is different from the decay of fission products and depends on the composition of the soil over which the weapon was detonated. For Nevada soil, the sodium and manganese composition generally varies by a factor of 1.4 to 2 and the aluminum composition varies by a factor of 3 to 7 within and between test areas. For most induced activity patterns in this report, a general neutron-induced decay curve for Nevada soil was used to extrapolate the observed dose rates back to H+1 hour. For a few induced activity patterns, Na24 decay is used to extrapolate the observed dose rates to H+1 hour. This decay rate is not strictly applicable but it closely approximates the observed decay.

Wind Data

The tables of wind data give surface and upper air winds for heights up to at least the top of the nuclear cloud. These data are presented for times as close to shot time as possible and for several times after shot. Directions are in degrees from which the wind is blowing, and are measured clockwise from North. Velocities are in statute miles per hour. The height of the tropopause at shot time is given when available. Although the meteorological data were taken in close proximity to ground zero, they do not necessarily represent the wind field downwind from ground zero in space and time.

The hodographs are drawn for a constant balloon rise rate of 5,000 ft/hr and are presented for illustrative purposes only. The fall rates of particles vary considerably with altitude; therefore, errors will result from the use of a constant fall-rate hodograph for fallout prediction. In general, particles in higher altitude levels fall faster and the percentage change in the falling rate is greater for larger particles. The numbers on the hodographs represent altitudes in thousands of feet. The associated points represent the locations on the surface where particles having a constant fall-rate of 5,000 ft/hr would land if they originated over GZ at the altitudes shown. The letter S on the hodographs stands for "Surface" and the number next to it in parenthesis (for the Nevada shots) is the site elevation of ground zero in feet above MSL.

Figure 1 Operations CROSSROADS, Shot Locations.

OPERATION CROSSROADS -

Able

PPG time DATE: 1 Jul 1946 30 June 1946

TIME: 0900 **2200**

TOTAL YIELD: 23 kt

FIREBALL DATA:

Time to 1st minimum: NM Time to 2nd maximum: MM Radius at 2nd maximum: ~ 576 ft Sponsor: LASL and DOD

SITE: PPG - Bikini

11° 37' 10" 165° 29' 20" Ē

Site elevation: Sea level

HEIGHT OF BURST: 520 ft

TYPE OF BURST AND PLACEMENT:

Air burst over water

CLOUD TOP HEIGHT: 40,000 ft MSL

CLOUD BOTTOM HEIGHT: Not available

CRATER DATA: No crater

REMARKS:

The residual radioactivity on target vessels was low. On D+1 day, radioactivities greater than 0.1r per 24 hours were found on only 13 vessels. The residual radioactivity in the water after H-hour was negligible.

Figure 2. Cloud Dimensions: Operation CROSSROADS -

Able.

TABLE & BIKINI WIND DATA FOR OPERATION CROSSROADS,

ABLE

Altitude	H-hou	r	H+5 ho	urs	H+8 ho	ure
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	шђу	degrees	mph	degrees	mbp
Surface	(070)	(09)	045	C9	070	08
2,000	130	15				••
4,000	130	16	130	16	120	14
5,000	(130)	(16)	(130)	(15)	(120)	(14)
6,000	140	17	`130	14	120	`15
8,000	120	13	120	14	020	16
10,000	(120)	(19)	130	17	120	16
12,000	120	ÒŠ	110	16	130	17
14,000	100	10	110	10	070	53
15,000	100	80	020	06	oùo	06
20,000	330	05	150	17	170	09
25,000	180	09	280	CŽ	230	07
30,000	340	07	330	05	310	05
35,000	340	02	08 0	06	Calm	Calı
40,000	070	09	360	25	350	28
45,000	030	3 0	330	31	320	32

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Surface wind data was obtained on Bikini; upper wind data was obtained on board the Mt. McKinley.
- 3. Tropopause height was 54,000 to 60,000 feet (exact height is uncertain).
- 4. At H-hour the surface air pressure was 14.68 psi, the temperature 27.2°C and the dew point 23.4°C.

Figure 3. Hodographs for Operation CROSSROADS

- Able.

OPERATION CROSSROADS -

Baker

PPG time GMT
DATE: 25 Jul 1946 24 Jul 1946
TIME: 0835 2135

TOTAL YIELD: 23 kt

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

Sponsor: LASL and DOD

SITE: PPG - Bikini - Near How 11° 37' 10" N 165° 29' 28" E

Site elevation: Sea level

HEIGHT OF BURST: -90 ft

TYPE OF BURST AND PLACEMENT:

Underwater - cable-supported 90 ft above lagoon floor. Lagoon was 180 ft deep.

CLOUD TOP HEIGHT: 7,600 ft MSL

CRATER DATA:

Diameter: 3,300 ft maximum

1,800 It minimum

Depth: 25 ft

REMARKS:

The contamination pattern is unreliable. The dose-rate readings used for the pattern were obtained from the total dose measured by film badges collected between D+10 days and D+15 days. The radioactivity on the target vessels diminished

At its greatest extent the base surge extended about 2,000 yd upwind, 3,000 yd crosswind and 4,000 yd downwind. "The contamination resulted from fallout or radioactive rain from the mushroom head reinforced somewhat by condensation of the base surge. Ideally there should have been an annular infinitive-dose pattern as a result of fallout from the outer edges of the mushroom head. This ideal pattern was changed because of the intermittent behavior of the rain-out and because of the varying ability of the different target ships to retain the fallout activity."

Distance From GZ, yards

Figure 4. Operation CROSSROADS - Baker. On-site dose rate contours in r/hr at H+1 hour.

Figure 5. Cloud Dimensions: Operation CROSSROADS -

Baker.

Altitude	H-hou:	r	Altitude	li-hour	
(MSL)	Direction	Speed	(MSL)	Direction	Speed
feet	degrees	mph	ieet	degrees	nīby
Surface	200	03	24,000	080	09
2,000	150	12	15,000	080	09
4,000	160	12	16,000	080	13
6,000	150	09	20,000	110	09
8,000	150	08	25,000	050	15
10,000	120	09	30,000	040	20
12,000	110	14	35,000	060	32

NOTES:

- Surface wind data was obtained at H+1 hour on Bikini; upper wind data was obtained on board the "Fall River."
- 2. Tropopause height was 54,000 to 60,000 feet (exact height is uncertain).
- 3. At H-hour the surface air pressure was 14.68 psi, the temperature 28.9°C and the dew point 25.0°C.

Figure 6. Hodographs for Operation CROSSROADS -

Baker

Figure 7. Operation SANDSTONE, Shot Locations.

OPERATION SANDSTONE -

X-Ray

PPG Time

Sponsor: LASL

0617

15 Apr 15/8 14 Apr 1948 1817

SITE: PPG - Eniwetok - Janet

11° 40' N

162° 14' 37" E

Site elevation: Sea level

TOTAL YIELD: 37 kt

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:

Tower burst over coral soil

FIREBALL DATA:

Time to 1st minimum: NM

Time to 2nd maximum: NM Radius at 2nd maximum: NM CLOUD BOTTOM HEIGHT: 25,000 ft MSL

CLOUD TOP HEIGHT: 56,000 ft MSL

CRATER DATA: Not available

REMARKS:

No fallout pattern available. Radioactive samples were taken from Ground Zero and showed a decay Also much activity due to Na24 was observed. Cloud reached the tropopause in 12 minutes.

Figure 8. Cloud Dimensions: Operation SANDSTONE -

TABLE 3 ENIWETOK WIND DATA FOR OPERATION SANDSTONE -

X-RAY

Altitude	H-hou	H-hour		H+2 hours		urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mbp
Surface	090	10	090	12	070	16
2,000		-	100	15	070	23
4,000			100	12	090	23
5,000	100	14	(100)	(12)	(095)	(24)
6,000			090	12	100	25
8,000			110	21	090	23
10,000	130	14	130	15	080	16
12,000			120	13	080	12
14,000			140	09	070	09
15,000	150	09	(140)	(09)	(075)	(8o)
16,000			140	10	080	07
18,000			140	09	360	07
20,000	160	09	140	02	510	oż
25,000	230	12	550	12	120	09
30,000	240	14	210	15		
35,000	220	23	510	21		
40,000	220	15	220	21		
45,000	550	34	220	37		
50,000	230	Ž3	230	21		
55,000	220	14			***	

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 55,000 ft MSL at H-hour.
- 3. The H-hour wind data was estimated by the USAF weather station on Eniwetok Island. The H+2 and H+3 hour winds were measured.
- 4. At H-hour the sea level pressure was 1190 mb, temperature 75°F, and the dew point 71°F.

Figure 9. Hodographs for Operation SANDSTONE -

X-Ray.

OPERATION SANDSTONE -

Yoke

TE: PPG time GMT 1948 30 Apr 1948

Sponsor: LASL

TIME: 0609 1809

SITE: PPG - Eniwetok - Sally

11° 37' 40" N 162° 19' 27" E

TOTAL YIELD: 49 kt

Site elevation: Sea level

HEIGHT OF BURST: 200 ft

THE OF BONDI. LOO IC

FIREBALL DATA:

Time to 1st minimum: NM

Time to 2nd maximum: NM Radius to 2nd maximum: NM

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 56,000 ft MSL CLOUD BOTTOM HEIGHT: 35,000 ft MSL

CRATER DATA: Not available

REMARKS:

No fallous pattern available. Cloud reached tropopause in 12 minutes. Yoke rain-out was observed on Kwajalein at H+36 hours; rain fell for 10 hours and the maximum activity observed was 6 to 10 mr/hr.

Figure 10. Cloud Dimensions: Operation SANDSTONE -

Yoke.

TABLE 4 ENIWHOK WIND DATA FOR OPERATION SANDSTONE -

YOKE

Altitude	H-hov	Y	H+3 ho	urs	
(MSL)	Dir	Speed	Dir	Speed	
feet	degrees	utbp	degrees	mph	
Surface	080	16	070	15	٠
2,000			070	21	
4,000			090	12	
5,000	090	14	170	07	
6,000			180	80	
10,000	160	12	150	× ≢39	
14,000			080	41	
15,000	090	07	090	29	
16,000			100	28	
20,00 0	350	12	170	42	
25,000	210	16	250	70	
30,000	210	5/+	270	47	
35,000	220	48			
40,000	210	5 7	~~~	~-	
45,000	210	54	40 44 49	~-	
50,000	500	49			
55,000	200	40			

NOTES:

- Tropopause height was estimated to be 56,000 ft MSL at H-hour.
 The H-hour wind data was estimated by the USAF weather station on Eniwetok Island. The H+3 hour winds were measured.
- 3. At H-hour the sea level pressure was 1050 mb, the temperature 79°F, and the dewpoint 72°F.

Figure 11. Hodographs for Operation SANDSTONE -

Yoke.

OPERATION SANDSTONE -

Zebra

DATE: 15 May 1948 14 May 1948

IME: 0604 1804

TOTAL YIELD: 18 kt

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Rodius at 2nd maximum: NM

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne

11° 33' 15" N 162° 21' 24" E Site elevation: Sea level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 28,400 ft MSL

CRATER DATA: Not available

REMARKS:

No fallout pattern available.

Figure 12. Cloud Dimensions: Operation SANDSTONE -

Zebra.

TABLE 5 ENIWETOK WIND DATA FOR OPERATION SANDSTONE -

ZERRA

Altitude	H-hour		H+2 h	H+2 hours		H+3 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	080	10	100	09	090	09	
2,000	100	17	110	16	100	17	
5,000	130	13	110	15	110	14	
10,000	220	13	190	12	220	14	
15,000	270	14	240	07	240	80	
20,000	240	21	250	20	260	24	
25,000	250	31	260	29	250	36	
30,000	270	50	260	45	270	44	
35,000	280	50	260	46	290	44	
40,000	270	83	290	48	290	56	
45,000	270	40	280	48	270	55	

NOTES:

- 1. Tropopause height was 54,000 feet MSL at H-hour.
- 2. The H-wind data was estimated by the USAF weather station on Eniwetok Island. The H+2 and H+3 hour winds were measured.
- 3. At H-hour the sea level pressure was 810 mb, the temperature 81°F, and the dew point 74°F.

Figure 13. Hodographs for Operation SANDSTONE -

Zebra

Figure 14. Operation GREENHOUSE, Shot Locations

OPERATION GREENHOUSE -

Dog

 DATE:
 8 Apr 1951
 7 Apr 1951

 TIME:
 0634
 1834

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne
11° 33' 21" N
162° 21' 16" E
Site elevation: Sea level

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 56,000 ft MSL CLOUD BOTTOM HEIGHT: 33,000 ft MSL

REMARKS:

The dose-rate readings were corrected to H+1 hour by applying the $t^{-1.2}$ law to measurements made by the Radiological Safety organization. Measurements on Yvonne were made at $H+8\frac{1}{2}$ hours. Many of the measurements were obtained from a helicopter flying at an altitude of 10 to 20 feet above the ground. These readings may therefore be low by as much as 20 to 50 percent. The wind shear at about 20.000 feet accounts for the higher dose rates on the southeastern part of the atoll, as compared to the southern end of the shot island.

Figure 15. Operation GREENHOUSE - Dog.
Shot - Island dose rate contours in r/hr at H+l hour.

Figure 16. Operation GREENHOUSE - rates in r/hr at H+1 hour.

Dog. Atoll dose

Figure 17. Cloud Dimensions: Operation GREENHOUSE -

Dog.

Altitude	H-ho	ur	H+23 h	ours
(MSL)	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph
Surface	070	22	040	21
4,000	080	33		
5,000	(080)	(30)	090	24
6,000	080	26		
10,000	080	22	100	25
14,000	070	21	070	25
15,000	(070)	(24)	(070)	(25)
16,000	070	`29`	070	24
20,000	030	22	050	22
25,000	300	12	340	17
30,000	280	31	290	29
35,000	230	29	230	29
40,000	220	33	230	37
45,000	280	26	250	31
50,000	310	22	330	29
55,000	340	31	360	36
60,000	030	33		

NOTES:

- 1. Numbers in parentheses are estimated values.
- Tropopause height was 55,000 ft MSL at H-hour.
 At H-hour at a pressure of 1000 mb the temperature was 25°C and the dew point 22°C.

Figure 18. Hodographs for Operation CREENHOUSE -

Dog.

OPERATION GREENHOUSE -

Easy

PPG time 21 Apr 1951 20 Apr 1951 Sponsor: LASL

0627 1827

SITE: PPG - Eniwetok - Janet 110 40' 08" N

162° 14' 25" E Site elevation: Sea level

TOTAL YIELD: 47 kt

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT: Tower burst over coral soil

FIREBALL DATA:

Time to 1st minimum: 19 to 29.5 msec Time to 2nd maximum: 200 to 230 msec

Radius at 2nd maximum: NM

41,000 ft MSL CLOUD TOP HEIGHT: CLOUD BOTTOM HEIGHT: 30,000 ft MSL

CRATER DATA: Diameter: 836 ft Depth: 2.4 ft

REMARKS:

The fallout readings on the shot island were obtained by the Radiological Safety organization at H+28 hours and corrected to H+1 hours, using the t-1.2 decay approximation. Dose rates shown for other islands are based upon daily surveys made to determine field decay rates. Readings were made 1 meter above the ground with gamma ionization chambers. The values shown were corrected to H+1 hour by extrapolating from the experimental decay curves. There was a wind shear at about 15,000 feet.

Figure 19. Operation GREENHOUSE - Easy. Shot Island dose rate contours in r/hr at H+l hour.

Figure 20. Operation GREENHOUSE - rates in r/hr at H+1 hour.

Easy. Atoll dose

Figure 21. Cloud Dimensions: Operation GREENHOUSE -

Easy.

TABLE 7 ENIMETOK WIND DATA FOR OPERATION GREENHOUSE - EASY

Altitude	H-35 hours		H-hour		H+21 hours		H+85 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
Surface	050	16	060	16	070	17	070	20
5,000	100	09	080	13	070	16	090	06
10,000	070	08	090	06	100	05	200	14
14,000	210	03			220	07	210	07
15,000			240	06	(230)	(07)	(230)	(08)
16,000	280	07			250	07	260	10
20,000	310	03	330	04	360	05	Calm	Ca I
25,000	320	13	350	13	300	80	310	22
30,000	260	20	270	28	270	15	270	40
35,000	270	28	280	31	280	35	270	46
40,000	280	32	280	37	280	40	270	40
45,000	260	35	270	38	260	37	240	28
50,000	270	28	260	32	260	30	25 0	30
55,000	350	35	240	23	340	12	230	06
60,000	330	15	330	15				

- 1. Numbers in parentheses are estimated values.
- 2. H-hour values were determined by interpolating between the H- $3\frac{1}{2}$ and H+ $2\frac{1}{2}$ hour values.
- 3. Tropopause height was 53,000 ft MSL at H-hour.
- 4. At H-hour at a pressure of 1,000 mb the temperature was 25°C and the dew point 21°C.

Rise rate: 5000 ft/hr

Figure 22. Hodographs for Operation GREENHOUSE -

Easy.

OPERATION GREENHOUSE -

George

PPG time CMT

DATE: 9 May 1951 8 May 1951

TIME: 0930 2130

Sponsor: LASL

SITE: PPG - Eniwetok - Ruby 11° 37' 37" N 162° 18' 53" E

Site elevation: Sea level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 56,000 ft MSL CLOUD BOTTOM HEIGHT: 41,000 ft MSL

REMARKS:

The survey readings on the shot island were obtained at H+24 hours and extrapolated to H+1 hour using the t-1.2 decay approximation. Since the winds were from the west-southwest throughout their entire structure, no radiation reading higher than twice background was observed on islands beyond 2,000 yards from ground zero.

Figure 23. Operation GREENHOUSE - George. On-site dose rate contours in r/hr at H+l hour.

Figure 24 . Cloud Dimensions: Operation GREENHOUSE -

George.

TABLE 8 ENIWETOK WIND DATA FOR OPERATION GREENHOUSE -

GEORGE

Altitude	II-hour		H+6 hours		H+12 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	240	14	260	16	130	12
4,000	260	35				
5,000	(250)	(32)	260	25	220	15
6,000	250	31				
10,000	250	48	270	31	260	26
14,000			260	30	270	41
15,000	260	26	(260)	(31)	(260)	(40)
16,000			260	32	260	39
20,000	230	23	220	32	260	23
25,000	190	25	200	23	240	37
30,000	230	24	180	20	180	33
35,000	270	20	160	18	160	31
40,000	290	18	200	13	160	26
45,000	170	03	010	07	170	16
50,000	310	15		-	030	41
55,000	050	12				

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 55,000 ft MSL at H-hour.
- 3. At H-hour at a pressure of 1,000 mb the temperature was 27°C and the dew point 23°C.

Figure 25. Hodographs for Operation GREENHOUSE -

OPERATION GREENHOUSE -

Item

PPG Time GMT

DATE: 25 May 1951 24 May 1951

TIME: 0617 1817

Sponsor: LASL

SITE: PPG - Eniwetok - Janet
11° 40' 23" N
162° 14' 55" E
Site elevation: Sea level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 40,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

The survey readings of the shot island, Janet, were obtained by the Radiological Safety Organization at H+24 and H+72 hours and extrapolated to H+1 hour by the tological decay approximation. Most readings were obtained from a helicopter flying at an altitude of 10 to 20 feet and the observations were considered representative of readings 3 feet above ground. Such readings may be low by 20 to 50 percent.

Figure 26. Operation GREENHOUSE - Item. Shot Island dose rates in r/hr at H+1 hour.

Figure 28. Cloud Dimensions: Operation GREENHOUSE -

Item

ENIWETOK WIND DATA FOR OPERATION GREENHOUSE -

Altitude	H-hour		H+2+ hours		H+67 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mbp	degrees	mph	degrees	mph
Surface	070	15	070	22	070	15
5,000	090	16	080	17	090	15
10,000	090	05	060	02	Calm	Calm
14,000	250	10	250	10	250	09
15,000	(260)	(09)	(260)	(09)	(270)	(10)
16,000	280	(08)	270	09	290	13
20,000	29%	09	300	10	310	16
25,000	250	12	360	09	350	13
30,000	360	10		-	350	12
35,000	250	09			250	06
40,000	280	08				
45,000	150	08				
50,000	330	10				

- 1. Numbers in parentheses are estimated values.
- Tropopause height was 55,000 ft MSL at H-hour.
 At H-hour at a pressure of 1,000 mb the temperature was 31°C and the dew point 23°C.

Figure 29. Hodographs for Operation GREENHOUSE -

Figure 30. Operation IVY, Shot Locations.

OPERATION IVY -

Mike

PPG time

GMT

: 1 Nov 1952

31 Oct 1952

TIME: 0715

1915

Sponsor: LASL

SITE: PPG - Eniwetok - Flora

11° 14' 14" N

162° 11' 41" É Site elevation: Sea level

TOTAL YIELD: 10.4 mt

HEIGHT OF BURST: Surface

FIREBALL DATA:

Time to 1st minimum: 270 to 310 msec

Time to 2nd maximum: 3 to 3.5 sec

Radius at 2nd meximum: NM

TYPE OF BURST AND PLACEMENT:

Surface burst on coral soil

and water

CLOUD TOP HEIGHT: 98,000 ft MSL CLOUD BOTTOM HEIGHT: 59,000 ft MSL

CRATER DATA: Diameter: 6,240 ft

Depth: 164 ft

REMARKS:

Most of the fallout occurred over the open sea. Documentation of the fallout was thus limited to the islands and the lagoon of Eniwetok atoll. The lagoon dose rates were determined by multiplying the readings obtained on rafts by the factor 7. This factor is based upon the ratio of Operation Jangle field dose rates and readings taken over flat plates after their removal from the contaminated area. The data presented for the lagoon stations can thus be considered as approximations only. The island dose rates are based upon groundand aerial-survey readings and were adjusted to H÷l hour by using the t-1.2 law to approximate the decay.

Figure 31 Operation IVY - Mike. Atoll dose rate contours in r/hr at H+l hour.

Figure 32 . Cloud Dimensions: Operation IVY - Mike.

TABLE 10 ENIWETOK WIND DATA FOR OPERATION IVY -

MIKE

Altitude	H-hou	r
(MSL)	Dir	Speed
feet	degrees	mph
Surface	090	05
5,000	090	16
10,000	095	17
15,000	115	17
20,000	125	14
25,000	170	15
30,000	220	20
40,000	230	17
50,000	220	14
60,000	040	. 09
70,000	100	23
80, 000	085	09
90,000	280	12
100,000	250	23
110,000	300	23
120,000	040	06
130,000	Calm	Calm
135,000	Calm	Calm

NOTES:

Tropopause height was 56,000 ft MSL at H-hour.
 The surface air pressure was 14.66 psi, the temperature 29.4°C and the dew point 23.8°C.

Figure 33 . Hodograph for Operation IVY - Mike.

OPERATION IVY -

King

PPG time GMT 16 Nov 1952 15 Nov 1952

DATE: 16 Nov 1952 15 No TIME: 1130 "330

SITE: PPG - Reef northeast of

Sponsor: LASL

north end of Yvonne 11° 33' 44" N 162° 21' 09" E

TOTAL YIELD: 500 kt

Site elevation: Sea level

FIREBALL DATA:

Time to 1st minimum: 62 to 70 msec

Time to 2nd maximum: 700 to 850 msec

Radius at 2nd maximum: 1,968 ft

CLOUD TOP HEIGHT: 67,000 ft MSL CLOUD BOTTOM HEIGHT: 51,800 ft MSL HEIGHT OF BURST: 1,480 ft

CRATER DATA: No crater

TYPE OF BURST AND PLACEMENT:
Air burst over coral soil and
sea water

REMARKS:

Contamination of the islands of Eniwetok atoll was generally masked by the contamination resulting from the earlier Mike shot. The dose rates indicated in figure 102 are estimates based upon readings taken from helicopters flying 25 feet above the ground. The estimates are corrected for dose-rate levels existing on D-1.

Figure 34. Operation IVY - King.
Atoll dose rates in r/hr at H+1 hour.

Figure 35. Cloud Dimensions: Operation TVY -

King.

TABLE 11 ENIWETOK WIND DATA FOR OPERATION IVY -

KING

Altitude	li-hour		H+3 € h	ours	H+95 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	070	20	08c	22	070	24	
5,000	105	23	080	26	090	26	
10,000	085	23	07 0	20	090	50	
14,000			07 0	12	080	13	
15,000	069	19					
16,000	060	16	040	12 .	070	17	
20,000	059	20	050	23	040	25	
25,000	056	24	050	33	050	05	
30,000	018	13	310	13	300	06	
35,000	(351)	(21)	330	26	260	18	
40,000	325	28	290	44	070	33	
45,000	(322)	(29)	320	36	280	45	
50,000	320	30	230	80	050	17	
55,000	(021)	(22)	080	50	080	26	
60,000	083	14	09 0	33	070	. 43	
65,000	(079)	(17)	090	24	090	32	
70,000	076	21	070	05	130	23	
75,000	288	07	330	18	300	05	
80,000			320	18	340	23	
85,000		** ***	310	09	020	οŠ	
90,000		~-	320	06			
95,000			260	32			

- 1. Numbers in parentheses are estimated values.
- Tropopause height was 56,000 ft MSL at H-hour. The surface air pressure was 11,66 psi, the temperature 28.0°C and the dew point 23.5°C.

Figure 36. Hodographs for Operation IVY -

BIKINI ATOLL OPERATION CASTLE SHOT LOCATIONS

Figure 37. Operation CASTLE, Shot Locations.

Figure 38. Operation CASTLE, Shot Locations.

OPERATION CASTLE -

Bruvo

PPG Time GMT

DATE: 1 Mar 1954 28 Feb 1954

TIME: 0645 1845

TOTAL YIELD: 15 Mt

FIREDALL DATA:

Time to 1st minimum: 313 to 350 msec Time to 2nd maximum: 3.54 to 3.95 sec

Radius at 2nd maximum: 9,512 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from platform on Coral soil

Sponsor: LASL

SITE: PPG - Bikini - on reci between

Baker and Charlie 11° 41' 27" N 165° 16' 25" Ε

Site elevation: Sea level

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 114,000 ft CLOUD BOTTOM HEIGHT: 55,300 ft

CRATER DATA: Diameter: 6,000 ft

Depth: 240 ft Lip: Apparently

washed away

REMARKS:

The on-site fallout pattern was constructed from survey measurements on Bikini Atoll, and from samples obtained with the total collectors and gummed paper collectors. The free-floating sea stations were not in the correct location to receive primary fallout. The data were extrapolated to H+1 hour by the composite gamma-ionization-decay curve obtained from samples measured in the laboratory.

This is the only megaton shot where some downwind land areas were unexpectedly contaminated; thus, partial documentation of fallout effects was possible. However, the major portion of the fallout occurred over the open ocean and was not documented. Because this shot is one of those used as the basis of fallout prediction for megaton yield weapons, three off-site fallout patterns are presented. The most widely known pattern is shown in Figure 40. It was constructed immediately after the event from the preliminary data available at Mas, AFSWP. The second pattern was constructed by NRDL by establishing an experimental model; the field data plus a thorough analysis of the wind structure existing at and after shot time was used. The third pattern was constructed by IMND Corp., by supplementing field observations with model calculations.

Figure 39. Operation CASTLE - Bravo.
On-site dose rate contours in r/hr at H+1 hour.

Figure 40. Operation CASTLE - Bravo.
Off-site dose rate contours in r/hr at H+1 hour (AFSWP).

Figure 41 Operation CASTLE - Bravo.
Off-site dose rate contours in r/hr at H+1 hour (NRDL).

Figure 42. Operation CASTLE - Bravo.
Off-site dose rate contours in r/hr at H+1 hour (RAND).

Figure 43. Cloud Dimensions: Operation CASTLE -

Bravo.

	. *					
Altitude	li-ho	นา	II+3 1	ours	11+6 h	oura
(MSI,)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	06 0	14	070	17	060	2 0
1,000	070	20				
2,000	090	21	070	23	090	16
3,000	090	20				
4,000	090	, 16	090	12	100	16
5,000	(100)	(10)	(090)	(20)	(090)	(13)
6,000	1.20	05	080	13	080	09
7,000	31.0	05				
8,000	310	05	300	07 -	350	03
9,000	320	08				
10,000	310	06	1 50	13	300	17
12,000	310	12	320	21	330	17
14,000	290	16	330	12	300	12
15,000	(290)	(15)	(330)	(14)	(300)	(12)
136,000 / ·	290	0.5	320	17	300	12
18,000	290	15	300	26	310	16
20,000	280	15	290	26	290	20
25,000	260	22	510	25	250	28
30,000	250	30	230	36	250	33
35,000	5/10	40			260	55
40,000	230	40			250	51
45,000	250	. 52			260	51
50,000	250	36			270	92
55,000	200	18			350	13
57,000	340	31				

- 1. Numbers in parentheses are estimated values.
- M-hopr wind data was obtained on board the U.S.S. Curtiss.
- Tropopause height was 55,000 ft MSL.

 At H-hour the sea level pressure was 1006.1 mb, the temperature 80 F, the dew point 72°F and the relative humidity 77%.

Figure 44. Hodographs for Operation CASTLE -

Bravo.

OPERATION CASTLE

- Roneo

PPT time

DATE:

27 Mar 1954 26 Mar 1954

0630

1830

Sponsor: LASL

SITE: PPG - Bikini - Shot 1 Crater 110 41' 27" N

165° 16' 23" E Site elevation: Sea level

TOTAL YIELD: 11 Mt

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 110,000 ft MSL CLOUD BOTTOM HEIGHT: 48,500 ft MSL

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water Water depth: 240 ft

RFMARKS:

The individual island dose rates were taken from aerial surveys by the Radiological Safety organization and corrected to H+1 hour with the t-1.2 decay approximation. The contamination due to previous shots was subtracted.

Figure 45. Operation CASTLE - Romeo. Island dose rates in r/hr at H+1 hour.

Figure 46 . Cloud Dimensions: Operation CASTLE -

Romeo.

TABLE 13 DIKINI WIND DATA FOR OPERATION CASTLE-

Altitude		H-hour		ours	H+9 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
fcet	degrees	mbjr	degrees	uldu	degrees	mph	
Surface	. 040	12	070	12	070	20	
1,000	060	15	070	17	060	21	
2,000	070	16	070	17	070	18	
3,000	060	15	070	14	090	21	
4,000	060	13	090	10	110	21	
5,000	060	80	120	12	120	17	
6,000	080	૦૯	100	13	(140)	(15)	
7,000	160	07	160	14	150	15	
8,000	170	09	140	06	170	12	
9,000			120	06	190	09	
10,000	180	09	180	06	200	06	
12,000	150	12	140	12	150	80	
14,000	100	12	100	13	110	17	
15,000	(100)	(15)	(100)	(17)	(100)	(18)	
16,000	090	17	090 '	55	(090)	(20)	
18,000	100	20	100	22	100	30	
20,000	100	23	120	29	(080)	(17)	
25,000	170	16	180	07	500	02	
30,000	220	09	130	05	170	32	
35,000	180	21	180	20	220	15	
40,000	500	41.	190	15	590	80	
45,000	300	06	250	10	200	17	
50,000	140	17	150	10	150	20	
55,000	270	17	200	12	170	05	
56,000			160	07			
60,000	270	15			240	15	
62,000					260	12	
65,000	320	12	***				
67,0CU	080	25					

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U. S. S. Curtiss.
- Tropopause height was 55,000 ft MSL. At H-hour the sea level pressure was 1012.4 mb, the temperature 80°F, the dew point 72°F and the relative humidity 77%.

Figure 47 . Hodographs for Operation CASTLE -

Romeo.

OPERATION CASTLE

- Koori

PPG time 7 Apr 1954 6 Apr 1954 DATE: 0620 1820 TIME:

TOTAL YIFLD: 110 kt

FIREBALL DATA:

Time to 1st minimum: 52.5 ± 2 msec

Time to 2nd maximum: Radius at 2nd maximum: NM

TYPE OF BURST AND PLACEMENT:

Surface burst from platform on coral soil

UCRL Sponsor:

PPG - Bikini - Tare SITE: 11° 29' 48" 1650 221 03" E

Site elevation: Sea level

HETCHT OF BURST: 13.6 ft

CLOUD TOP HELGHT: 53,000 ft MSL

CLOUD POTTOM HEIGHT:

CRATHE DATA: Diameter:

75 ft Depth:

REMARKS:

The on-site fallout pattern was constructed from survey readings made by technical project personnel and by the Endiclogical Safety organization, plus conversion of activity measurements of fallout samples collected on rafts and free-floating buoys anchored in the lagoon. The fallout occurred ideally with respect to the measurement stations so that more readings than usual were available. The dose-rate readings were extrapolated to H+1 hour by using actual field decay rates.

Figure 48. Operation CASTLE - Koon.
On-site dose rate contours in r/hr at H+1 hour.

TABLE 14 RIKINI WIND DATA FOR OPERATION CASTLE -

KOON

Altitude	II-hc	ידווי	H+3 1	iours	II+9 hours		
(MSL)	Dir Speed		ed Dir Speed		Dir	Spece	
fect	degrees	mph	degrees	mbjr	degrees	mph	
Surface	040	23	070	80	08 0	15	
1,000	0 70	20					
2,00 0	060	18	080	23	080	17	
3,000	090	09	090 (120) 150			~ ■	
4,000	120	80		14	100	55	
5,000	(140)	(10)		(10)	(090)	(50	
6,000	170	14		10	08 0	17	
7,000	170	20					
8,000	190	16	160	14	100	15	
9,000	200	16					
10,000	500	16	170	14	140	0.0	
12,000	180	20	160	14	150	12	
14,000	500	09	170	10	180	12	
15,000	(500)	(10)	(170)	(14)	(380)	(09	
16,000	190	12	170	17	18 0	08	
18,000	200	12	180	55	280	03	
20,000	550	05	510	18	260	12	
25,000	190	23	200	23	510	18	
30,000	510	25	250	24	550	36	
35,000	510	32	240	28	220	36	
40,000	230	39	250	38 43	250 240	55 51	
45,000	280	28	260				
50,000	5)†0	40	260	37	250	47	
52,000	830	45					
55,000			250	21	୬ 6୦	33	
60,000		~~	290	15	5/10	07	
65,000		••	130	17	160	26	
70,000			150	40	110	26	
75,000					080	29	
79,000					090	26	

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U.S.S. Curtiss.
- Tropopause height was 53,000 ft MSL.
 At H-hour the sea level pressure was 1009.7 mb, the temperature 81°F, the dew point 75°F and the humidity 82%.

OPERATION CASPEE -

Union

PPG time GMT

DATE: 26 Apr 1954 25 Apr 1954

TIME: 0605 1805

TOTAL WIELD: 6.9 Mt

Spensor: LASL

Fox
11° 39' 59" N
165° 23' 14" E
Site elevation: Sea level

HEIGHT OF BURST: 7 ft
Water depth: 160 ft

CLOUD TOP HEIGHT: 94,000 ft MSL CLOUD BOTTOM HEIGHT: 51,500 ft MSL

REMARKS:

The on-site fallout pattern was drawn from land survey readings made by technical project personnel and by the Radiclogical Safety organization, plus conversion of the activity to dose-rate readings of samples from fallout collectors. The shot location and the winds localized the radiation levels of military significance to the northeastern portion of the atoll. The dose-rate readings were extrapolated to H+1 hour by using actual field-decay rates.

Figure 51. Cloud Pimensions: Operation CASTLE -

Union.

Altitude	ll-ho	ur	H+3	hours	11+6 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	050	20	090	16	080	18	
1,000	060	24					
2,000	080	21	090	22	100	14	
3,000	090	20					
4,000	090	21	090	20	090	10	
5,000	(100)	(20)	(090)	(81)	(1.00)	(10)	
6,000	110	21	080	17	110	12	
7,000	120	21					
8,000	130	20	080	17	130	14	
9,000	120	18					
10,000	110	14	100	16	130	15	
12,000	3 50	04	060	80	090	04	
14,000	360	07	020	08	360	70	
15,000	(300)	(18)	(010)	(10)	(350)	(08)	
16,000	240	29	360	12	340	09	
18,000	290	16	260	09	540	80	
20,000	560	17	520	80	230	14	
25,000	200	38	220	34	570	18	
30,000	250	46	290	50	250	33	
35,000	240	51	260	48	240	36	
40,000	250	46	260	48	270	39	
45,000	250	46	S7tO	45	260	44	
50,000	260	32	510	214	260	50	
55,000	550	10	110	29	150	29	
60,000	180	17	340	02	190	16	
65,000	** **		100	33	090	20	
70,000			090	116	100	31	
75,000			090	58	110	50	
80,000			100	36	100	47	
85,000		•	08 0	62	120	47	
90,000	• -		050	85			
95,000			320	γ <u>8</u>	45. 14. 46		

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U. S. S. Curtiss.
- 3. Tropopause height was 57,000 ft MoJ.
- 4. At H-hour the sea level pressure was 1007.4 mb, the temperature 81°F, the dew point 76°F and the hamidity 80%.

Figure 52. Hodographs for Operation CASTLE -

Thison

OPERATION CASTLE -

Yankec

PPG time GMF 5 May 1954 4 May 1954

DATE: 5 May 1954 4 May 19 TIME: 0610 1810

TOTAL YIELD: 13.5 Mt

Sponsor: LASL

SITE: PPG - Bikini - near Dog &

Fox

11° 39' 56" .N 165° 23' 13" E

Site elevation: Sea level

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 110,000 ft MSI, CLOUD POTTOM HEIGHT: 61,300 ft MSL

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

REMARKS:

The individual island dose rates were computed from the I+1 day aerial-survey readings of the Radiological Safe y organization. The various readings were corrected to H+1 hour, using the t-1.2 relationship, and extrapolated to 3 ft above the surface, using the air-to-ground conversion factors determined later for the REDWING Flathead shot 102. The Fox, George, Nan, Oboe, Uncle and William readings were taken at ground level. All other readings were obtained by aerial survey. The off-site fallout pattern was documented for the first time by a combined water-surface reading, aerial survey, and water-sampling operation. The dose-rate readings were extrapolated to H+1 hour by using actual decay rates.

Figure 53. Operation CASTLE - Yankee. Island dose rates in r/hr at H+1 hour.

Figure 54. Operation CASTLE - Yankee.
Off-site dose wate contours in r/hr at H+1 hour.

Figure 55. Cloud Dimensions: Operation CASTLE -

Yankce.

TABLE 16 PIKINI WIND DATA FOR OPERATION CASTLE-

YANKEE

Altitude	II-hour		H+3 h	ours	H+6 h	ours	1149 hours	
(MSL)	Dir	Speed	Dia	Speed	Di.r	Speed	Dir	Speed
fect	degrees	mbp	degraes	nph	degrees	mph	degrees	mph
Surface	080.	28	050	18	0	20	020	15
1,000	070	26			~			
2,000	080	29	070	29	090	26	080	55
3,000	080	28						
4,000	080	ટ્ટલ	070	25	110	30	090	23
5,000	(080)	(25)	(080)	(24)	(110)	(29)	(090)	(20)
6,000	070	23	090	23	110	29	090	18
7,000	070	21						
8,000	C70	13	040	13	090	24	110	12
9,000	040	07						
10,000	020	06	320	02	080	17	140	10
12,000	010	06	290	02	060	80	180	07
14,000	340	06	350	09	110	03	510	05
15,000	(330)	(10)	(290)	(80)	(200)	(06)	(220)	(06)
16,000	320	15	5/10	07	290	08	230	`06
18,000	280	10	3 30	13	290	14	5/10	12
20,000	290	16	260	10	280	12	260	10
25,000	230	26	250	40	280	36	250	32
30,0 00	220	39	240	18	280	33	260	42
35,000			260	16	280	31	5.10	66
40,000			26 0	29	280	29	260	57
45,000	280	64	2 80	46	280	25	280	14
50,000	250	51.			270	62	170	30
55,000	200	53			260	33	140	37
60,000						••	140	46

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U.S.S. Curtiss.
- 3. Tropopause height was 55,000 ft MSL.
- 4. At H-hour the sea level pressure was 1018.8 mb, the temperature 80.8°F, the dew point 75.0°F and the relative humidity 84%.

OPERATION CASTLE -

Nectar

PPG time GMT

DATE: 14 May 1954 13 May 1954

TIME: 0620 1820

Sponsor: LASL

and Articles

SITE: PFG - Eniwetok
Ivy Mike Crater

11° ho' 1h" N

162° 11' 47" E

TOTAL YIELD: 1.69 Mt

Site elevation: Sea level

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 71,000 ft MSI-CLOUD BOTTOM HEIGHT: 40,500 ft MSL

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

REMARKS:

The on-site fallout pattern was drawn from Radiological Safety organization data and by converting the readings obtained from fallout samples to equivalent dose-rate readings over land. Since the fallout went in a northerly direction from ground zero very few of the collecting stations received significant fallout. The fallout collected was primarily upwind fallout. Aerial survey was used for measurements north of the atoll, and two tugs gathered water samples throughout the fallout area. Analyses of the water samples, combined with an estimate of the depth of mixing, served to determine the land-equivalent exposure rate at a number of points. The aerial survey served to fill in the contours.

Figure 57. Operation CASTLE - Nectar.
On-site dose rate contours in r/hr at H+l hour.

Figure 58. Operation CASTLE - Nectar.
Off-cite dose rate contours in r/hr at H+1 hour.

Figure 59 , Cloud Dimensions: Operation CASTLE -

Nectar.

TABLE 17 ENIMETOK WIND DATA FOR OPERATION CASTLE -

NECTAR

Altitude	H-hou	7,	H+3 hc	นาร	H+9 hours		
(MSI.)	Dir	Speed	Dir	Speed	Dir	Speed	
fect	degrees	mph	degrees	mph	degrees	mph	
Surface	090	22	070	23	090	23	
1,000	090	24				-	
2,000	100	20	110	24	100	20	
3,000	110	22					
4,000	110	22	1.10	20	1.40	16	
5,000	(110)	(18)	(100)	(16)	(150)	(16)	
6,000	1.10	16	100	14	160	17	
7,000	100	14					
8,000	500	12	120	13	160	16	
9,000	1.10	13	~ ~ -				
10,000	1.10	16	130	16	170	16	
12,000	150	20	140	12	190	20	
14,000	110	21	7.20	16	500	57	
15,000	(180)	(17)	(150)	(18)	(500)	(18)	
16,000	130	14	120	18	200	17	
1.8,000	140	14	500	80	1.90	17	
20,000	130	09	150	21	190	15	
25,000	190	07	510	06	Calm	Calm	
30,000	230	19	200	14	Calm	Calm	
35,000	210	10	210	29	180	16	
40,000	SJ0	29	210	31	180	10	
45,000	230	37	540	24	Ca l.m	Calm	
50,000	280	40	580	27	Calm	Calm	
55,000	2 9 0	44	310	30	230	14	
60,000					240	18	

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained by the weather station on Eniwetok Island.
- 3. Tropopause height was 56,000 ft MSL.
 4. At H-hour the sea level pressure was 1006.4 mb, the temperature 80°F, the dew point 75°F and the relative humidity 85%.

Rise rate: 5000 ft/hr

Figure 60. Hodographs for Operation CASTLE -

Nectar.

OPERATION WIGWAM

PDF GMT

DATE: 14 May 1995 14 May 1995

TIME: 1300 2000

Sponsor: DOD

MOMET SITUTE - --

SITE: Pacific Ocean 400 miles Southwest of San Diego 28° 44' N 126° 16' W

TOTAL YIELD: 30 kt

Site elevation: Sea level

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

HEIGHT OF BURST: 2000 ft underwater depth 16,000 ft

TYPE OF BURST AND PLACEMENT:
Subsurface burst - Device
suspended by cable from barge

SPRAY DOME HEIGHT: 880 ft MSL FIRST PLUME HEIGHT: 1,450 ft MSL

REMARKS:

"The contours given (for H+1.4 hour) were computed on the basis of surface and subsurface water samples and are reproduced here uncorrected. They do not represent fallout activity deposited on the surface. The activity was mixed throughout a surface zone whose depth remained roughly constant for the first two days. This contaminated zone resulted from debris thrown out locally during the surface events or from upwelling of contaminated water from below. The downwind airborne radioactivity varied with the base surge and yielded very little if any residual fallout." At H+19 minutes the contaminated water area was about 5.3 mi². The area was contaminated in an irregular manner, the peak intensities being approximately three times the average intensity of 25 to 30 r/hr, 3 ft above the surface. The area circumscribed by a 50 mr/hr isointensity contour increased to 7.5 mi² at H+1.4 hr. At H+4.2 hr it had decreased to 3.5 mi2. Measurements of water samples indicated a radioactive decay exponent

Figure 61. Operation WIGWAM. Off-site dose rate contours in r/hr at H+1.4 hours.

Figure 62. Plume Height Dimensions: Operation WJGWAM.

Figure 63. Operation REDWING, Shot Locations, Eniwetok Atoll.

Figure 64. Operation REDVING, Shot Locations, Bikini Atoll.

OPERATION REDWING -

LaCrosse

PPG Time GMT

DATE: 5 May 1956 4 May 1956

TIME: 0625 1825

TOTAL YIELD: 40 kt

FIREBALL DATA:

Time to 1st minimum: 18 to 34 msec Time to 2nd maximum: 190 to 254 msec Radius at 2nd maximum: 872.5 ft

CRATER DATA:

Diameter: 404 ft Pepth: 44 ft Lip: 15 ft Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne 11° 33' 28" N 162° 21' 18" E

Site elevation: Sea Level

HEIGHT OF BURST: 17 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from platform on coral soil

CLOUD TOP HEIGHT:

38,000 ft MSL (Ref 105)
40,000 ft MSL (Ref 112)

CLOUD BOTTOM HEIGHT: 22,000 ft MSL (Ref 105) 13,000 ft MSL (Ref 112)

REMARKS:

The dose-rates shown for the islands of the atoll are based upon ground and aerial surveys made by the Radiological Sufety organization and by Project 2.65. The dose-rate readings in the immediate environment of the crater were calculated from survey readings at low tide on D+1 day and D+2 days, after the reef around the crater had been flushed by at least two high tides. The measured field gamma decay exponent

was used to extrapolate the readings to H+1 hour. The one reading which gave an H+1 hour dose rate of 57,000 r/hr was uniquely high and may have been due to one of the extremely radioactive, partially fused, pieces of metal scattered about near the crater.

Figure 65. Operation REDWING - Lacrosse. Island dose rates in r/hr at H+1 hour.

Figure 66. Dose rate readings near the Lacrosse crater in r/hr at H+1 hour.

Figure 67. Cloud Dimensions: Operation REDVING - Lacrosse.

Diameter-curve 1 represents the diameter of the main cloud; curve 2 refers to a portion of the cloud which resulted from a shear at 8 minutes; curve 3 represents the average diameter of two clouds which resulted from a shear of the second cloud at 15 minutes.

TABLE 18 ENIWETOK WIND LATA FOR OPERATION REDWING-

LACROSSE

Altitude	H-hou	ir	11+2½ h	ours	11+5½ h	ours	H+81 h	ours
(MSL)	Dir	Speed	Dir	Speed	Di.r	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
Surface	070	17	090	15	090	14	090	14
1,000	1.00	28	090	23	090	18	0 80	18
2,000	510	28	110	24	090	24	090	55
3,000	110	28	110	26	110	29	100	29
4,000	110	29	110	26	110	31	100	31
5,000	110	33	110	29	110	29	100	32
6,000	j00	34	110	28	110	33	110	30
7,000	100	32	110	28	110	33	110	26
8,000	090	26	11.0	31	110	31	110	23
9,000	090	23	100	3 3	110	31	120	23
10,000	100	23	100	33	110	2 6	120	22
12,000	100	13	100	22	100	17	120	20
14,000	110	.06	090	07	050	02	120	.09
15,000	(180)	(06)	(020)	(07)	(020)	(02)	(040)	(08)
16,000	250	05	320	07	350	03	320	7'0
18,000	230	05	260	07	270	05	250	C.
20,000	240	15	250	17	270	17	210	09
25,000	260	28	260	31	260	30	260	32
30,000	240	43	2 50	47	5/10	51	250	47
35,000	260	60	260	55	260	60	260	69
40,000	260	69	25 0	γ l	260	68	260	73
45,000	240	58	250	74	260	71	260	75
50,000	240	70	240	71	2 50	69	240	64
55,000	280	33	2 50	44	270	32	290	36
60,00 0	130	09	150	80	180	06	190	13
<i>6</i> 5,000	130	- 15	210	05	170	07	140	07
70,000	080	12	090	90	090	13	080	12
75,000	110	32	090	25	110	38	090	37
80,000	090	48	110	47	110	51	100	119
85,000	700	64	090	64	090	62	090	56
90,000	100	72	110	69	100	71	100	61
94,000	100	65	44 44 44	es en				
95,000			100	64	100	57	100	62
98,000							100	63
100,000			100	65	100	63		~~
102,000					100	63	~~	***
105,000			100	67				~ ~
106,000			100	67				***

Numbers in parentheses are estimated values.
 Tropopause height was 52,300 ft MSL. (Reference 149).
 Wind data was obtained by the weather station on Eniwetok Island.

^{4.} At the surface the air pressure was 14.62 psi, the temperature 27.2°C, the dew point 25.0°C, and the relative humidity 84%.

Figure 68. Hodographs for Operation REDWING - Lacrosse.

Cherokee

PPG time GMF PATE: 21 May 1956 20 May 1956 TIME: 0551 1751 Sponsor: LASL

SITE: PPG - Bikini - 16,000 ft NE
of Charlie
11° 40' 06" N
165° 23' 39" E

Site elevation: Sea level

HEIGHT OF BURST: 4,350 ± 150 ft

TYPE OF BURST AND PLACEMENT: Air burst over water

CLOUD TOP HEIGHT: 94,000 ft MEL CLOUD BOTTOM HEIGHT: 44,000 ft MSL

REMARKS:

No fallout was observed on the islands. Very light fallout was observed North of GZ. Gamma dose-rate readings on Charlie were at background levels.

Figure 69. Cloud Dimensions: Operation REDWING -

Cherokee.

TABLE 19 BIKINI WIND DATA FOR OPERATION REDWING -

CHEROKEE

Altitude	li-he	นา	H+3	hours	H+6 h	ours
(MSI)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	myh	degrees	mph	degrees	mph
Surface	090	06	120	18	130	17
1,000	100	20	090	18	090	22
2,000	090	23	100	18	100	25
3,000	090	23	110	23	100	- 26
4,000	090	24	110	ર્સ	100	26
5,000	090	21	110	22	100	22
6,000	090	16	110	17	090	21
7,000	090	16	110	17	090	23
8,000	090	15	100	18	090	22
9,000	100	13	100	15	090	17
10,000	120	13	090	18	120	13
12,000	120	14	110	17	120	16
14,000	140	16	130	18	110	15
15,000	(140)	(16)	(140)	(17)	(130)	(15)
16,000	140	17	150	17	150	15
18,000	130	17	160	16	170	23
20,000	1.40	21	170	15	150	15
25,000	150	10	090	20	160	20
30,000	140	07	150	14	2.50	10
35,000	260	07	220	12	220	09
40,000	230	3.7	250	23	230	25
45,000	240	18	250	37	250	38
50,000	250	37	250	39	240	25
55,000	210	01	180	07	230	14
60,000	100	20	100	12	150	09
65,000	030	23	090	30	090	23
70,000	100	25	090	40	090	31
75,000	090	55	090	45	080	53
78,000			es; est 6%		08 0	60
80,000	090	58	090	53		`
85,000	080	63	090	35		
87,000			090	39	W 40-40	
90,000	080	70	****		~~*	
95,000	090	85				
100,000	090	93				

Numbers in parentheses are estimated values.

^{2.}

Tropopause height was 52,500 ft MSL.
Wind data was obtained on board the U. S. S. Curtiss.
At H-hour the sea level pressure was 1009.0 mb, the temperature 81°F, the dew point 73°F, and the relative humidity 76%.

Figure 70. Hodographs for Operation REDWING -

Cherokee.

Zuni

PPG Time GMT

DATE: 28 May 1956 27 May 1956

TIME: 0556 1756

Sponsor: UCRL

SITE: PPG - Bikini - Tare
11° 29' 18" N

165° 22' 09" E Site elevation: Sea Level

TOTAL YIELD: 3.5 mt

HEIGHT OF BURST: 9 ft

FIREBALL DATA:

Time to 1st minimum: 160 ± 184 msec Time to 2nd maximum: 1.705 ± 2.15 sec

Radius at 2nd maximum: 5,248 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from platform
on coral soil and over water

CRATER DATA: Diameter: 2,310 ft

Depth: 103 ft Lip: No apparent lip

CLOUD TOP HEIGHT: 79,000 ft MSL CLOUD BOTTOM HEIGHT: 49,000 ft MSL

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific project 2.65 supplemented by fallout sample collection on rafts and barges in the lagoon. The measured field decay exponent

was used to extrapolate the dose-rate readings to Hi hour. It was observed that the water adjacent to the beaches of the northern islands of the atoli was generally much more highly contaminated than the islands.

The off-site fallout pattern was drawn from occanographic surveys. The oceanographic surveys used detector probes for measuring the dose-rate at the surface, plus the allied equipment necessary for measuring the dose-rate at depths to and below the thermocline (water-sampling equipment for the taking of surface samples and for the collection of samples from any desired depth). The dose-rate readings were extrapolated to H+1 hour by using the decay measurements of the samples collected. The portion of fallout that penetrated below the thermocline is unknown. Rather than attempt to estimate the percentage, the results for the dose rates assume no penetration beyond the depth of mixing.

Figure 72. Operation REDWING - Zuni. Off-site dose rate contours in r/hr at H+1 hour.

Figure 73. Cloud Dimensions: Operation REDWING -

Zuni.

TABLE 20 BIKERT WIND DATA FOR OPERATION REDWING -

NUNI

Altitude	II-li ho		H-he		11+3 hc		11+6 h	
(MSL)	Dir	Spood	Dir	Opeed	bir	Speed	Dir	Speed
Teet	degrees	\mathbf{m}_{l} , \mathbf{t}_{1}	degrees	mbji	degrees	mph	degrees	mph
Surface	0,10	55	050	58	060	30	090	24
1,,000	090	26	080	26	060	2 6	070	S 8
2,000	090	54	0 70	25	060	26	080	35
3,000	090	5/1	070	28	970	30	090	31
4,000	090	25	090	28	OYO	31	100	30
5,000	o8c	26	090	24	090	29	100	88
6,000	080	23	100	22	090	2 9	100	30
7,000	090	23	100	22	1.00	23	100	31
8,000	080	5/1	100	2 2	120	23	090	29
9,000	090	24	1.00	22	110	24	100	30
1.0,000	090	24	100	23	120	2 2	100	30
12,000	100	55	090	24	090	17	090	કંઉ
14,000	080	17	090	17	080	16	090	Σ_{j}
15,000			(100)	(15)	(080)	(15)	(090)	(24)
16,000	110	15	1.10	12	070	14	090	25
18,000	110	17	100	1.2	090	13	090	קֿנ
20,000	110	$\mathbf{T}^{\mathbf{J}_{\dagger}}$	140	15	1.1.0	10	ა90	17
25,000	170	18	160	18	170	50	ຄ60	QS.
30,000	540	26	170	14	1.60	18	180	13
35,000	250	36	550	2 9	200	35	230	35
10,000	ადი	34	220	46	510	50	560	50
45,000	230	54	210	40	220	43	230	61
50,000	240	37	240	59	250	31	240	32
51,000			250	29				
55,000	550	56	240	3	250	21	240	80
60,000	060	18	080	17	090	16	080	55
65,000	090	28	090	30	090	31	090	32
7 0,0 00	090	32	090	30	090	37	090	30
75,000	080	44	090	ħΟ	090	38	090	35
77,000			~				100	λj
80,000	100	47	100	48	100	48		
85,000	090	51	100	148	100	46		
86,000	***		~		100	43		
90,000	090	52	100	48				

- Numbers in parentheses are estimated values.
 Tropopause height was 51,200 ft MSL.
- Wind data was obtained on board the U. S. S. Curtiss.
- H-hour data for altitudes, over 51,000 ft were determined by interpolating from measurements taken between H-4 and H+3 hours.
- 5. At H-hour the sea level pressure was 1010.5 mb, the temperature 81°F, the dew point 76°F, and the relative humidity 80%.

	······································	Rikini Rongerik							
Altitude	H+9 ho	ພາຣ	H+15 h	ours	11+21 h	ours			
(MSL)	Di r	Speed	Dir	Speed	Dir	Spee			
fect	degroes	inpli	degrees	mph	degrees	mph			
Surface	080	54	090	23	070	15			
1,000	090	28	080	5/1	080	5/4			
2,000	100	31.	080	23	080	54			
3,000	100	31	090	20	080	21			
4,000	100	28	090	18	080	16			
5,000	100	29	090	18	080	13			
6,000	100	25	090	20	090	15			
7,000	100	26	100	21	090	12			
8,000	100	31	100	51	090	14			
9,000	090	30	090	21	090	14			
1.0,000	090	26	100	21	090	12			
12,000	100	25	100	22	090	114			
14,000	080	31	0 90	21	100	12			
15,000	(080)	(86)	(090)	(18)	(100)	(14			
16,000	`070	,55 _,	090	17	`090	1.8			
18,000	090	18	100	24	090	24			
20,000	0,0	24	090	23	080	51			
25,000	050	25	070	20	060	23			
30,000	230	21	500	13	020	26			
35,000	230	31	200	13	220	15			
40,000	210	46	210	26	230	24			
45,000	550	47	220	38	230	28			
50,000	250	31	230	32	310	25			
53,000			540	31					
55,000	290	16			010	07			
60,000	110	23			150	14			
65,000	090	26			090	21			
70,000	o <u>9</u> 0	31			0 80	23			
75,000	090	37			090	40			
80,000	090	36			080	47			
85,000	090	144			090	52			
90,000	090	56			c 80	56			
95,000	100	65			080	69			
96,000	100	65							
99,000				~**	080	81			

1. Numbers in parentheses are estimated values.

^{2.} Wind data for H+9 hours and H+15 hours were obtained on hourd the U. S. S. Curtiss. Wind data for H+21 hours was obtained by weather station on Eniwetok Island (Rongerik Atoll).

Altitude	11+27 h	ours	H+33 ho		1439 h	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	nph
Surface	090	18	090	10	070	18
1,000	080	21.	080	16	070	23
2,000	080	22	070	17	070	25
3,000	080	51	070	16	070	29
4,000	080	18	080	13	070	55
5,000	080	16	100	09	070	15
6,000	070	14	090	06	080	07
7,000	080	23	080	06	080	07
8,000	090	13	090	80	070	Oγ
9,000	090	13	090	10	080	7.0
10,000	090	13	080	13	080	10
12,000	080	12	060	13	090	12
14,000	110	08	060	13	060	14
15,000	(090)	(13)	(080)	(12)	(060)	(15.)
16,000	070	17	090	10	060	17
18,000	090	17	090	12	040	16
20,000	ογο	15	080	07	030	18
25,000	060	22	080	55	090	14
30,000	050	24	070	2 2	050	13
35,000	330	80	33 0	17	310	18
40,000	190	10	200	16	180	51
45,000	230	10	190	06	290	09
50,000	230	14	320	17	270	80
55,000	180	14	800	09	550	17
60,000	110	16	360	05	080	17
65,000	090	22	100	15	090	23
70,0 00	080	29	040	80	080	26
75,000	100	38	100	32	080	38
000,08	090	36	090	41	080	47
85,000	090	5 5	090	56	100	57
90,000	090	60	090	61	090	67
92,000					080	75
95,000	090	74	090	69	*-*	
.00,000	090	81	090	81		
105,000	090	04	080	89		
10,000	090	69	080	102	*	
000 ل 114	090	69	080	102		•• ••

Numbers in parenthes - are estimated values.
Wind data was obtained by the weather station on Eniwetok
Island (Rongerik Atell).

Figure 74 . Hodographs for Operation REDWING -

Zuni.

Figure 75. Hodographs for Operation REDWING -

Zuni.

- Yuma

<u>PPG time</u> <u>GMT</u> <u>DATE:</u> 28 May 1956 27 May 1956 <u>TIME:</u> 0756 1956 Sponsor: UCRL

SITE: PPG - Eniwetok - Sally
11° 30' 33" N
162° 18' 55" E
Site elevation: Sea Level

HEIGHT OF BURST: . 205 ft

CLOUD TOP HEIGHT: 8,000 ft MSL CLOUD BOTTOM HEIGHT: 1,000 ft MCL

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

REMARKS:

Only island dose rate readings are available. These were taken from the aerial and ground surveys made by the Radiological Safety organization. The toleron decay approximation was used to extrapolate the dose rate readings to H+1 hour. Significant amounts of alpha (plutonium) contamination were found on the shot island.

Figure 76. Operation REDWING - Yuma.

Island dose rates in r/hr at H+1 hour.

TABLE 21 ENIMPTOK WIND DATA FOR OPERATION REDWING -

YUMA

feet 6 Surface 1,000 2,000 3,000	Dir 080 080 080 080 080 080 080	Speed mph 21 24 31	Dir degrees 080 090 090	Speed mph 21 33	Dir degrees 090 090	Speed mph 17	Dir degrees 090	Speed mph 14
Surface 1,000 2,000 3,000	080 080 080 080 080	21 24 31 35	080 090 090	21 33	090	17		mph
1,000 2,000 3,000	080 080 080 080	21 35	090 090	33			090	ולנ
2,000 3,000	080 080 080	31 35	090		090			
3,000	080 080	35				26	090	26
	080		000	33	1.00	33	090	30
). OOO				35	100	38	100	33
4,000	\ \ \ \ \ \ \ \ \	35	090	36	100	45	100	36
5,000		32	090	33	100	36	110	30
6,000	090	28	0 80	33	100	35	120	28
7,000	090	28	080	36	090	30	110	30
8,000	090	29	080	38	090	37	110	35
9,000	090	3 0	080	37	090	39	110	36
10,000	090	30	080	31	090	43	120	35
12,000	090	25	080	214	090	40	100	32
14,000	110	23	090	15	090	14	090	28
16,000	140	2 2	140	16	11.0	16	100	14
18,000	140	17	1.50	14	120	18	120	15
20,000	1.80	05	100	12	100	14	1.00	12
25,0 00	170	26	1.60	21	180	13	270	08
30,000	260	21	190	55	160	51	220	23
35,000	230	35	220	35	190	41	220	47
40,000	220	55	510	44	200	55	200	52
45,000			230	51	240	35	230	40
50,000			270	45	250	35	230	24
55,000			sio	59	5/10	38	5,10	28
60,000			060	14	060	10	1.00	15
65,000			c8o	37	100	39	700	32
70,000			110	38	100	3 8	100	31
75,000			090	37	100	40	090	37
80,000			100	47	100	39	100	45
85,000			090	1:7	090	53	100	54
90,000			110	60	100	55	100	60
95,000			100	68	090	67	100	71
93,000					100	85		
100,000			100	89			100	68
102,000			100	92				

^{1.} Tropopause height was 55,500 ft MSL.

^{2.} Wind data was obtained by the weather station on Eniwetok Island.

^{3.} H hour values were interpolated from data taken at H-2 hours and H+1 hour.

^{4.} At the surface the air pressure was 14.64 psi, the temperature 27.5°C, the dew point 23.9°C and the relative humidity 80%.

Figure 77. Hodographs for Operation REDWING -

Yuma.

Erie

PPG Time

DATE:

30 May 1956 31 May 1956

1815 0615 TIME:

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne 11° 32' 40" N

162° 21' 52" E

Site elevation: Sea level

HEIGHT OF BURST: 300 ft

TOWER OF BURGT AND PLACEMENT: Tower burst over coral soil

CLOUD TOP HEIGHT: 32,000 ft MSL CLOUD BOTTOM HEIGHT: 10,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from serial and ground surveys made by the Radiological Safety organization at H^{+1} hours. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the dose-rate readings to H+1 hour. Islands north of Yvonne in the atoll were only slightly contaminated.

Figure 78. Operation REDWING - Erie.
Island dose rates in r/hr at H+1 hour.

TABLE 22 ENTWETOK WIND DATA FOR OPERATION REDWING -

Altitude	IIho	ur	II+3 ho	ura	H+6 hc	urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	100	16	130	16	090	12
1,000	100	28	100	20	090	23
2,000	100	28	100	21	090	23
3,000	100	23	100	52	0 90	22
4,000	100	51	1.00	53	090	20
5,000	090	20	100	18	090	16
6,000 ×	090	16	100	12	100	17
7,000	080	10	110	07	100	16
8,000	100	80	110	06	100	16
9,000	100	17	090	07	110	16
10,000	080	05	090	80	120	14
12,000	100	06	100	06	120	05
14,000	090	09	090	07	120	09
15,000	(080)	(10)	(090)	(09)	(100)	(07)
16,000	080	10	090	13	080	06
18,000	070	14	090	13	[′] 080	12
20,000	360	07	1.10	07	080	07
25,000	260	15	200	20	280	09
30,000	250	22	250	24	230	17
35,000	5/10	1414	270	28	240	30
40,000	280	37	270	41	280	38
45,000	280	36	270	140	260	3 8
50,000	260	38	250	41	\$40	39
55,000	320	18	300	12	270	5/1
60,00 0	080	12	090	1.3	140	07
65,000	090	26	080	24	080	24
70,000	100	33	110	32	110	32
75,000	1.00	3 40	100	44	100	44
80,000	100	72	090	68	120	62
85,000	090	79	090	98	120	72
90,000	090	74	110	83.	100	78
94,000	090	77				
9 5,000			100	77	100	80
96,000			100	78		
1.00,000					120	88
102,000					120	93

1. Numbers in parentheses are estimated values.

2. Tropopause height was 54,100 ft MSL. (Reference 149).

3. Wind data was obtained by the weather station on Eniwetok Island.

4. At H-hour the sea level pressure was 1009.1 mb, the temperature 80.3°F, the dew point 73.5°F, and the relative humidity 80.2%.

Rise rate: 5000 ft/hr

Figure 79 . Hodographs for Operation REDWING -

- Seminole

PPG time GMU

PMTE: 6 June 1956 6 June 1956

TIME: 1255 0055

Sponsor: LASL

<u>SITE</u>: PPG - Eniwetok - Irene 11° 40' 35" N 162° 13' 02" E

HEIGHT OF BURGE: 4.5 ft

TYPE OF BURST AND PLACEMENT:
Surface burst in water tank
over coral soil

CLOUD TOP HEIGHT: 16,000 ft MSL CLOUD BOTTOM HEIGHT: 9,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the dose-rate readings to H+1 hour.

Figure 80. Operation REDWING - Seminole. Island dose rates in r/hr at H+1 hour.

TABLE 23 ENIVEROK WIND DATA FOR OPERATION REDWING -

SEMINOLE

Altitude	II-1 hour		li-hou:	l'	II+2 ho	วนาธ	11+5 hour	
(ASL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mbh
Surface	100	13	100	12	090	09	080	18
1,000	090	16	090	15	080	14	070	20
2,000	090	16	090	17	090	20	070	50
3,000	090	18	090	18	090	17	100	20
4,000	090	18	09 0	17	080	34.	100	50
5,000	090	18	090	17	080	$\mathbf{R}^{(i)}$	090	17
6,000	100	15	090	15	080	34	080	16
7,000	100	10	100	12	100	14	080	09
8,000	100	10	110	12	120	14	100	80
9,000	090	13	090	13	100	14	110	80
10,000	090	14	090	1.4	080	14	090	80
12,000	090	12	080	10	070	80	100	07
14,000	090	05	090	06	100	09	140	02
15,000			(100)	(06)	(100)	(09)	(Calm)	(Calm
16,000	100	05	1.00	06	100	09	Calm	Calm
18,000	110	02	110	03	110	05	Calm	Calm
20,000	040	80	060	09	090	10	160	07
25,000	030	09	110	3.3	260	21	5/10	05
30,000	250	14	250	17	240	23	240	14
35,000	250	23	240	23	230	23	220	1.7
40,000	240	20	5/10	20	230	21	230	16
45,000	250	27	250	30	260	23	250	25
50,000	260	18	260	20	270	51	270	13
55,000	360	05	340	05	300	09	290	09
60,000	090	13	080	12	060	10	120	05
65,000	090	26	100	26	11.0	28	i10	23
70,000	070	45	080	47	090	49	090	52
75,000	090	60	090	60	100	61	100	56
80,000	090	63	090	63	090	76	100	64
85,000	100	75	100	76	090	79	1.00	74
90,000	100	77	100	79	090	84	990	71
93,000					090	84	090	71
95,000	100	81	100	80	,	••		
100,000	100	68	1.00	68			400 pag pan	

- 1. Numbers in parentheses are estimated values.
- Tropopause height was 52,200 ft MSL. (Reference 149). Wind data was obtained by the weather station on Eniwetok Island.
- H-hour values were interpolated from data taken at H-1 hour and II+2 hours.
- 5. At the surface the air pressure was 14.64 psi, the temperature 30.5°C, the dew point 24.7°C and the relative humidity 71%.

Rise rate: 5000 ft/hr

Figure 81. Hodographs for Operation REDWING -

Seminole.

Flathend

TATE: 1.2 Jun 1950 11 Jun 1956 TIME: 0626 1826 Sponsor: LASL

SITE: PPG - Bikini - 5,000 ft south

of Dog

11° 36' 00" N

165° 27' 05" E

Site elevation: Sea Level

HEIGHT OF BURST: 15 Pt.

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on
water; center of gravity
approx. 15 ft above surface
of water; water depth 114 ft

CLOUD TOP HEIGHT: 65,700 ft MSL CLOUD BOTTOM HEIGHT: 38,600 ft MSL

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific projects supplemented by fallout sample collection on rafts and barges in the lagoon. Actual field decay measurements, which indicated a decay exponent were used to extrapolate the dose-rate readings to II+1 hour.

The off-site fallout pattern was drawn from oceanographic surveys. The oceanographic surveys used detector probes for measuring the dose-rate at depths to and below the thermocline. Water-sampling equipment was used for the taking of surface samples and for the collection of samples from any desired depth. The dose-rate readings were extrapolated to H+1 hour by using the decay measurements of the samples collected. Very little of the fallout should have been associated with solid particles large enough to penetrate below the thermocline.

Figure 82. Operation REDWING - Flathead. On-site dose rate contours in r/hr at H+1 hour.

Figure 83. Operation REDWING - Flathead.
Off-site dose rate contours in r/hr at H+1 hour.

Figure 84 . Cloud Dimensions: Operation REDWING -

Flathead.

FLATHEAD TABLE 24 BIKINI WIND IATA FOR OPERATION REDWING -

Altitude		ours	II-hor		lì+l> ho			ານາຍ	H+55 h	
(MSL)	Dir	Speed	Dir	Speed	Di.r	Speed	Dir	Speed	Dir	Spee
feet	degrees	mph	degrees	mzh	degrees	mbp	degrees	ngh	degrees	niby
Surface	080	18	080	22	080	24	060	21	050	.15
1,000	060	17	0,(0	21	070	23	060	20	050	22
2,000	070	14	080	17	080	20	070	20	050	51
3,000	080	14	090	15	. 090	15	070	18	060	24
4,000	080	16	090	14	100	13	070	18	070	15
5,000	090	17	100	15	100	13	070	18	080	16
6,000	090	15	100	14	100	14	0 79	16	080	15
7,000	090	14	090	14	090	.14	0 60	09	090	14
8,000	080	12	090	10	090	10	060	08	090	09
9,000	080	10	090	09	100	80	090	07	060	06
10,000	090	09	100	08	100	07	050	06	050	05
12,000	090	υŘ	090	07	090	05	090	80	100	06
14,000	110	03	120	05	130	06	Calm	Calm	Calm	Ca
16,000	020	02	110	06	160	08	080	03	170	05
18,000	110	06	130	19	1.50	14	100	06	070	04
20,000	160	09	160	12	1.60	13	150	07	180	07
25,000	050	14	120	17	170	20	170	3.4	180	12
30,000	Sjo	12	200	17	200	21	200	15	200	16
35,000	240	14	250	14	250	14	250	15	260	21
40,000	260	22	240	21	230	51	240	22	270	21
45,000	220	22	2 30	21	340	20	270	18	310	18
50,000	300	15	3110	15	:60	15	330	14	030	15
55,000	070	14	090	17	100	20	070	21	100	20
60,000	090	28	090	28			100	23	090	16
65,000	100	28	100	28			080	24	080	25
70,000	100	33	100	33	~~~		090	40	080	37
75,000	090	46	090	46	***		080	46	080	57
80,000		~~		~=			080	63	090	64
85,000			es 40 40				090	64	080	68
90,000				-	***		090	54	080	59
91,000									080	69
93,000					***	~~	090	56		

Tropopause height was 48,900 ct MSL at H-hour. Wind data was obtained on board the U. S. S. Curtiss.

H-hour values were interpolated from data taken at H-22 hours and H+l2 hours.

At H-hour the sea level pressure was 1012.9 mb, the temperature 82.0°F, the dew point 76.0°F and the relative humidity 82.0%.

SCALE Lillilili 0 20 40 60 miles

Rise rate: 5000ft/hr

137

Blackfoot

PFC Time GMT

DATE: 12 June 1956 11 June 1956

TIME: 0626 1826

Sponsor: IASL

SITE: PPG - Eniwetok - Yvonne

11° 33' 04" N

162° 21' 31" E

Site elevation: Sea level

HEIGHT OF BURED: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 25,000 ft MSL CLOUD BOTTOM HEIGHT: 14,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization. The t^{-1.3} decay approximation was used to extrapolate the dose-rate readings to H+1 hour. Heavy contamination from this shot, fired on central Yvonne, was limited primarily to the shot island. However, the photo tower on Mack was highly contaminated from the fallout.

Figure 86. Operation REDWING - Blackfoot. Island dose rates in r/hr at H+1 hour.

TABLE 25 ENIMEROK WIND DATA FOR OPERATION REDWING

BLACKFOOT

Altitude	H-1 h	วนา	II+25 ho	nero	11+5 nc	urs	11+82	nours
(MCH)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
reet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
	***			- 1				- 1
Surface	090	14	130	14	110	15	050	14
1,000	090	3.4	070	08	080	1.8	080	18
2,000	090	15	080	16	080	16	οχο	17
J3,000	100	Sjt	090	15	090	16	080	14
4,000	100	1.8	100	15	090	16	080	1.2
5,000	100	15	1.00	14	090	13	080	13
6,000	100	1.3	090	15	100	12	080	12
7,000	100	1.2	090	14	100	12	080	12
8,000	100	12	090	13	100	13	100	13
9,000	090	09	090	12	100	13	100	13
10,000	070	09	090	07	090	10	100	14
1:2,000	080	09	090	07	100	09	100	08
14,000	090	80	110	10	100	09	100	09
15,000	(090)	(09)	(100)	(10)	(100)	(08)	(120)	(06)
16,000	090	09	090	12	110	07	110	07
18,000	070	16	080	09	090	12	120	06
-20,000	070	09	070	09	090	12	100	13
25,000	090	10	120	21	180	. 12	150	09
30,000	050	08	080	07	140	12	170	10
35,000	280	14	240	32	230	26	220	28
40,000	240	35	240	28	240	23	230	23
45,000	240	23	250	17	030	09	290	23
50,	31C	22	010	13	090	16	020	12
\$2,000								
53,000			030	20			020	23
55,000	090	20			100	18		
60,000	120	26			100	20		
65,000	060	17			080	17		 ,
70,000	090	36			090	50		
71,000	090	36						
000 و 55					090	59		
80,000					090	59		
82,000		en en			090	61		e= ==

Numbers in parentheses are estimated values.

Tropopause height was 52,500 ft MSL.

^{3.} Wind data was obtained by the weather station on Eniwetok Island.
4. At H-hou the sea level pressure was 1012.5 mb, the temperature 81.1°F, the dew point 75.8°F and the relative humidity 84.0%.

Kickapoo

DATE: 14 June 1956 13 June 1956

TIME: 1126 2326

Sponsor: UCRL

SITE: PPG - Eniwetck - Sally
11° 30' 38" N
162° 19' 11" E
Site elevation: Sea Level

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 16,000 ft MSL CLOUD FOTTOM HEIGHT: 11,000 ft MSL

REMARKS: Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety Organization. The t^{-1.2} decay approximation was used to extrapolate the dose-rate readings to H+l hour. Heavy contamination was encountered only on Sally, the shot island. Significant alpha (plutonium) contamination was also found on the shot island.

Figure 88. Operation REDWING - Island dose rates in r/hr at H+1 hour.

Kickapoo.

TABLE 26 ENIMPTOK WIND DATA FOR OPERATION REDWING

Altitude H-hour				ours	H+95 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degree	s mph	degrees	mbp	degrees	mph	
Surface	080	18	050	12	080	12	
000, ت	090	1S	090	12	090	14	
2,000	090	14	090	14	090	14	
3,000	090	17	090	17	700	14	
4,000	090	16	100	15	090	13	
5,000	100	14	100	13	090	10	
6,000	150	12	150	12	0 70	80	
7,000	100	07	150	12	080	07	
8,000	C80	06	100	12	080	07	
9,000	060	09	100	12	070	80	
10,000	030	3.0	070	03	060	09	
12,000	030	13	040	-05	06 0	05	
14,000	030	10	020	07	05 0	05	
15,000	(030)	(80)	(020)	(09)	(050)	(06)	
16,000	020	06	020	13	040	07	
18,000	020	12	080	09	040	12	
20,000	070	12	050	07	020	14	
25,000	030	10	040	15	030	23	
30,000	360	09	350	17	010	15	
35,000	350	12	350	18	040	15	
40,000	360	20	020	18	030	15	
45,000	350	22	020	24	340	23	
50,000	340	24	250	26	350	29	
55,000	060	26	050	32	060	30	
60,000	080	2,14	090	16	07 0	25	
65,000	3.00	31	110	37	100	39	
70,000	090	46	090	5 i	090	51	
75,000	090	77	100	61	100	56	
80,000	100	74	100	69	090	65	
81,000					090	65	
85,000	100	71	090	79			
90,000	090	83	090	86			
95,000	100	90	090	86			
98,000	100	90					
.00,000			090	68			
02,000			090	68			

^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopause height was 53,100 ft MSL.

^{3.} Wind data was obtained by weather station on Eniwetok Island.
4. At the surface the air pressure was 14.65 psi, the temperature 29.8°C, the relative humidity 71%.

Kickapoo

Osage

PPG Time

DATE: 16 Jun 1956 16 Jun 1956

TIME: 1314

0114

Sponsor: LASL

SITE: PFG - Eniwetok - Yvonne 11° 32' 48" N 162° 21' 39" E

Site elevation: Sea Level

HEIGHT OF BURST: 670 ± 35 ft

TYPE OF BURST AND PLACEMENT:
Air burst over coral soil

CLOUD TOP HEIGHT: 21,000 ft MSL 17,000 ft MSL

REMARKS: No significant contamination was observed.

Altitude	H-& ho	ors	H-hour		11+75110	1117711	11+10%	hours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
fcet	degrees	mph	degrees	mph	degrees	त्रित	degrees	mph
		a 1.	150	- 1.	2/0		* O.S	
Surface	150	14	150	14	160	1.6	180	15
1,000	130	16	130	16			160	12
2,000	130	18	140	17			190	12
3,000	130	18	140	17			190	. 15
4,000	140	18	150	17			190	09
5,000	150	17	150	16			190	10
6,000	160	16	160	16			190	13
7,000	1.70	14	170	14			1.90	13
8,000	180	09	180	09			190	10
9,000	180	09	180	09			190	05
10,000	170	12	170	10			170	07
12,000	220	13	820	12			180	07
14,000	230	14.	230	14			210	09
15,000			(550)	(14)	~~~		,	
15,000	210	15	210	13	~-~		200	07
18,000	200	12	200	12			200	07
20,000	200	07	200	07			180	05
25,000	230	05	830	05	~		180	02
30,000	020	05	030	05	080	06	180	03
35,000	030	15	040	15	090	14	360	05
40,000	050	26	050	25	040	18	010	ıž.
45,000	160	07	150	09	050	30		
50,000	11.0	14	120	14	230	īz		
55,000	140	07	140	07	120	07		
60,000	140	07	1.30	12	090	<u>ų</u> ,		

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 51,500 ft MSL.
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- 4. H-hour values above 30,000 ft were interpolated from data taken at H-2 $\frac{1}{2}$ hours and H+1 $\frac{1}{2}$ hours.
- 5. At the surface the air pressure was 14.63 psi, the temperature 29.9°C, and the relative humidity 74%.

Inca

PPG Time GMT 22 June 1956 21 June 1956

TIME: 0956 2156

Sponsor: UCRL

SITE: PFG - Eniwetok - Pearl

11° 37' 53" N 162° 17' 50" E

Site elevation: Sea Level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 42,000 ft MSL CLOUD BOITOM HEIGHT: 30,000 ft MSL

REMARKS: Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety Organization. The t^{-1.2} decay approximation was used to extrapolate the dose rate readings to H+1 hour. Heavy contamination resulted only on the shot island.

Figure 91. Operation RZDWING - Inca.
Island dose rates in r/hr at H+l hour.

TABLE 28 ENIWETOK WIND DATA FOR OPERATION RELWING-

INCA

Altitude	1J-1 1	our	H-hour		H-12 ho	ours	H+5 h	ours	TI+8 F	ours
_ (MSL)	Dir	Speed	Dir 8	Speed	Dir S	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	whyr	degrees	mph	degrees	mph
Surface	150	12	140	14	110	18	090`	12	090	18
1,700	100	20	100	20	090	21	080	21	080	16
2,000	100	22	100	23	090	24	090	23	080	20
3,00 0	110	26	100	26	090	28	100	29	080	26
4,000	110	29	100	29	090	28	100	29	080	26
5,000	110	2 9	100	29	090	29	100	29	080	, 23
6,000	110	29	110	29	100	30	100	28	090	20
7,000	100	29	100	29	100	30	100	24	090	17
8,000	100	29	100	30	100	31	100	24	110	23
9,000	090	29	090	29	100	29	100	24	110	24
10,000	090	29	090	28	100	. 24	3.00	24	100	24
12,000	090	29	090	28	100	24	090	20	090	21
14,000	100	29	100	26	100	23	090	22	100	23
15,000	(100)	(28)	(100)	(26)	(100)	(23)	(100)	(21)	(100)	(22)
16,000	100	28	100	26	100	23	100	21	100	52,
18,000	080	24	0 80	24	090	23	110	20	090	22
20,000	080	22	080	23	090	26	100	22	090	20
25,000	010	25	020	22	040	16	010	· 13	040	09
30,000	240	ī8	220	16	170	12	180	14	150	13
35,000	210	25	200	23	170	17	170	14	210	10
40,000	210	30	21.0	29	200	26	270	17	260	30
45,000	230	36	240	36	260	35	270	3i	300	26
50,000		*~	300	23	320	24	020	17	100	13
55,000		**	350	22	330	21	110	zi	110	24
60,000	** ** **	-					100	2 5	090	24
65,000							100	29	080	24
70,000				***			990	49	100	54"
75,000	~~~		***				.100	53	100	42
80,000							110	49	100	43
85,000	<u></u>			* ~ ±		~-	100	54	090	56
90,000			41 46 20		*		090	83	090	74
95,000					***		090	97	090	<u>Ļ</u> ļ
97,000	60 1 - 10-	-				. .			100	43
100,000	# # 54						3.00	_ 85		

^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopeuse height was 54,400 ft MSL at H+5 hours.

^{3.} Wind data was obtained by the weather station on Eniwetok Island.

^{4.} H-hour values were interpolated from data taken at H-1 hour and H+2 hours.

^{5.} At the surface the air pressure was 14.63 psi, the temperature 28.6°C and the relative humidity 81%.

SCALE [LIL]

Rise rate: 5000 ft/hr

Figure 92. Hodographs for Operation REDWING -

Inca

Dakota

PPG Time 26 June 1956

25 June 1956 DATE: TIME: 0606 1806

Sponsor: IASI.

SITE: PPC - Bikini - 5,000 ft

> south of Dog 11° 36' 10" N 165° 27' 05" E

Site elevation: Sea level

HEIGHT OF BURST: Surface

HEIGHT OF BURST AND PLACEMENT: Surface burst from barge on water

CLOUD TOP HEIGHT: 75,000 ft MSL CLOUD BOTTOM HEIGHT: 55,000 ft MSL

REMARKS:

Only island dose-rate readings are available. They were obtained from aerial and ground surveys made by the Radiological Safety Organization. The t-1.2 decay approximation was used to extrapolate the dose rate readings to Hel hour. This shot produced less contamination on the islands than expected. However, the water adjacent to the northern islands was heavily contaminated.

Figure 93. Operation REDWING -

ないというできないというというというないからないというないのできないというないかられているというないからないというないかられているというないからないというないかられているというないというないというと

Figure 94. Cloud Dimensions: Operation REDWING -

Dakota

TABLE 29 BIKINI WIND DATA FOR OPERATION REDWING-

DAKOTA

Altitude	H-4 hrs		H-1 hr		Н	lir	11-	3 hrs	H+6 hrs	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	deg	nilyi	deg	mph	deg	mph	qeg	mph	deg	mph
Surface	070	17	080	21	090	17	080	15	090	18
1,000	070	17	080	21			070	18	090	17
2,000	060	13	080	18		**	080	51	100	ži
3,000	080	17	080	17	110	2.1	090	23	100	25
4,000	080	16	070	17	110	17	100	22	090	26
5,000	120	15	070	17	100	ī5	100	17	090	52
6,000	120	ī8	090	15	100	ī6	110	13	080	17
7,000	110	18	080	13	100	14	110	15	100	16
8,000	120	15	100	17	120	16	110	17	110	18
9,000	130	13	110	18	120	16	100	18	100	20
10,000	130	14	100	14	120	16	100	17	100	16
12,000	120	12	110	15	110	15	120	10	090	16
14,000	060	06	100	13	130	15	080	12	080	10
16,000	310	05	080	07	160	09	090	07	100	07
18,000	190	06	210	10	190	09	240	07	210	05
20,000	250	08	210	07	210	14	200	09	210	09
25,000	270	08	240	25	230	1.8	250	17	250	23
30,000	230	14	240	33	240	25	260	27	260	25
35,000	250	25	250	32	240	51	240	45	230	48
40,000	250	41	240	45	250	51 .	240	54	230	54
45,000	250	58	250	35	250	57 ·	260	60	260	48
50,000	270	35	250	54	280	35	270	53 .	250	22
55,000	080	09	2,0) +	090	08	210	73	130	10
60,000	100	22			100	16		1	080	88
65,000	080	33			080			(28
70,000	100	33 45			080	39		;	090	40
75,000	080	58			080	39 62			090	
80,000	090	63			100			:	100	58
85,000	090	81 83				74			090	71
90,000	100	89			090	85			090	87
NOTES:	100	09							190	

Tropopause height was 54,200 ft MSL at H+9 hours.
 Wind data was obtained on board the U.S.S. Curtiss.
 At H-hour the sea level pressure was 1009.1 mb, the temperature 82.0°F, the dew point 75.0°F and the relative humidity 80.0%.

Mohavk

 PFG Time
 GMT

 DATE:
 3 Jul 1956
 2 Jul 1956

 TIME:
 0606
 1806

Sponsor: UCRL

SITE: PPG - Entwetok - Ruby
11° 30' 38" N
162° 18' 39" E
Site elevation: Sea level

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 65,000 ft MSL CLOUD BOTTOM HEIGHT: 42,000 ft MSL

REMARKS: The dose-rate readings on the islands of the atoll were taken by aerial and ground surveys of scientific projects between H+9 hours and H+56 hours. The experimentally determined gamma field decay was used to extrapilate the dose rate readings to H+1 hour. Extremely heavy local contamination resulted on Ruby. In addition, significant amounts of contamination were deposited on the northern islands of the atoll. The readings taken between sites, Janet and Olive, were corrected for the small done rates observed there before the shot. No such corrections were applied to sites, Pearl and Sally, because the contamination from shot Mohawk was so heavy that the preshot dose rates could be neglected. The readings in the vicinity of the crater were taken between H+32 hours and H+56 hours. The average field decay exponent was used to extrapolate the readings to H+1 hour. Approximately 2 hours after detonation, light fallout started on Elmer and continued for one hour. Peak intensity was 22 mr/kr.

Figure 96. Operation REDWING - Island dose rates in r/hr at H+l hour.

Mohawk.

97. Dose rate readings near the Mohawk crater in r/hr at H+1 hour

Figure 98. Cloud Dimensions: Operation REDWING - Mohawk

Allitude	H-3 hours		. II-hot			urs	N+6 hours		
(MSL)	Dir	Speed	Dir	Spoud	Dir	Speed		Speed	
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph	
Surface	130	28	130	21	2)10	18	130	18	
1,000	, 3.10	24	110	18	090	18	090	50	
2,000	110	24	120	23	100	23	090	21	
3,000	1.00	26	110	- 26	120	25	090	23	
4,000	100	55	110	30	120	25	090	- 23	
5,000	110	20	110	37	120	26	100	23	
6,000	110	23	120	35	120	21	110	23	
7,000	090	55	120	29	110	16	130	24	
8,000	090	20	120	22	100	18	120	26	
9,000	090	16	100	16	100	18	120	2 6	
10,000	080	15	060	15	090	16	1.00	25	
12,000	070	15	070	18	060	18	070	16	
14,000	040	07	050	18	030	17	050	14	
15,000			(020)	(16)	(010)	(17)	(၀န္၀)	(13)	
16,000	090	09	- 350	14	350	17	360	13	
18,000	120	10	280	0 9	070	08	020	09	
20,000	140	20	510	03	090	1.2	070	10	
25,000	270	10	160	06	130	07	220	14	
30,000	260	29	150	14	190	20	210	22	
35,000	240	36	180	24	200	32	220	32	
40,000	2 40	54	230	32	25C	7 †7	220	38	
45,000	250	51	250	45	2140	40	230	35	
50,000	270	32	270	32	260	32	250	25	
55,000	1.70	09	160	08	150	07	150	18	
60,000	100	10	100	20	110	29	090	24	
65,000		89 -4			090	35	100	38	
70,000					100	748	100	45	
75,000					100	54	100	52	
80,000					100	65	100	56	
82,000							100	56	
85,000		***			100	61			
90,000					090	74			
95,000				~~	090	79			
100,000					090	88			
102,000			94 PM SE		090	88			

^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopause height was 56,800 ft MSL.

^{3.} Wind data was obtained by the weather station on Eniwetok Island.

^{4.} H-hour values interpolated for 45,000 ft and above from H-3 hours and H-3 hours data.

^{5.} At the surface the air pressure was 14.64 psi, the temperature 26.5°C dew point 22.8°C and the relative humidity 8

igure 99. Hodographs for Operation REDWING -

OPERATION RELATING -

Arache

PPC Time GMT 9 Jul 1956 8 Jul 1956 1806

Sponsor: UCKL,

SITE: PPG - Eniwetch - Flora 11° 40' 17" N 162° 12' 01" E Site elevation: Sea level

HEIGHT OF BURST: Surface

TYPE OF BURGE AND PLACEMENT:
Surface burst from barge on water over the Mike crater

CLOUD TOP HEIGHT: 66,700 ft MSL CLOUD BOTTOM HEIGHT: 36,000 ft MSL

REMARKS:

Only island dose rate readings are available. These were taken by aerial and ground surveys made by the Radiological Safety organization. The t⁻¹·² decay approximation was used to extrapolate the dose rate readings to H+1 hour. This shot produced exceptionally heavy contamination throughout the upper islands of the atoll. Water in the north end of the lageon was highly contaminated for a considerable distance from the shot island, and as the silt and debris were moved out by lagoon currents, the contamination spread widely.

Figure 100. Operation REDWING - Apache. Island dose rates in r/h; at H+1 hour.

Figure 101. Cloud Dimensions: Operation REDWING -

Apache.

TABLE 31 ENIWEROK WIND DATA FOR OPERATION REDWING -

APACHE

Altitude	H-1.		H-hcur		H+1 ho			ours	II+9 hours	
(MSI,)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	uñbp	degrees	mph	degrees	mph	degrees	nibp
Surface	070	12	070	12	070	12	070	15	090	14
1,000	070	14	070	16	060	50	080	21	080	16
2,000	070	14	070	18	070	23	080	23	090	17
3,000	080	12	080	17	070	24	090	23	090	24
4,000	100	15	090	20	080	26	090	23	100	28
5,000	100	15	100	23	100	31	090	23	100	25
6,000	110	15	110	18	110	22	090	21	100	24
7,000	110	17	110	18	150	21	090	21	100	21
8,000	130	16	120	22	100	21	100	21	100	21
9,000	130	18	130	21	130	23	110	21	110	20
10,000	140	18	140	21	140	23	110	21	110	20
12,000	150	09	150	10	140	13	110	15	110	18
14,000	120	oź	120	03	110	06	160	05	100	12
16,000	060	07	060	06	060	05	230	07	130	12
18,000	040	05	020	05	350	05	310	os	300	09
20,000	050	02	030	05	020	07	050	05	360	09
25,000	230	07	190	08	160	09	230	07	320	12
30,000	300	10	270	10	250	09	180	09	210	13
35,000	110	511	200	14	210	15	210	14	510	50
40,000	310	10	290	09	280	07	220	07	210	15
45,000	280	16	270	16	260	17	250	28	230	28
50,000	5 20	17	220	26	230	37	220	35	230	31
55,000	180	28	160	23	-5-		090	04	160	36
60,000	100	30	100	30			090	32	080	41
65,000	080	39	080	39			090	41	100	46
70,000							100	1,4	100	55
75,000							100	51,	090	54
80,000	w = =						090	72	090	71
89,000							090	108		
90,000									110	106
93,000									110	96

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 52,300 ft MSL at H-3 hours.
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- 4. H-hour values interpolated; H-1 hour and H+1 hour data was used for surface through 50,000 ft; H-1 hour and H+ $\frac{1}{2}$ hours data was used for 55,000 ft and above.
- 5. At the surface the air pressure was 14.63 psi, the temperature 26.8°C, the dew point 23.9°C, and the relative humidity 81%.

RISE RATE GOOD FT/HR

Figure 102. Hodographs for Operation REIWING -

Apache.

Navajo:

 PPG Time
 GMT

 DATE:
 11 Jul 1956
 10 Jul 1956

 TIME:
 0556
 1756

Sponsor: LASL

SITE: PPG - Bikini - South of Dog 11° 39' 48" N 165° 23' 14" E Site elevation: Sea level

HEIGHT OF BURST: 15 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on
water; center of gravity
approx. 15 ft above surface
of water; depth to bottom-215 ft

CLOUD TOP HEIGHT: 85,000 ft MSL CLOUD BOTTOM HEIGHT: 51,200 ft MSL

REMARKS:

別は発展を言うがは、からままります。まるのでは、からのできる。

The on-site fallout pattern was drawn from island readings taken by scientific projects supplemented by fallout sample collections on rafts and barges in the lagoon. The survey readings were obtained on D-day. A gamma decay exponent determined from laboratory gamma decay measurements, was used to convert the D-day readings to H+1 hour values. Light fallout occurred on Nan approximately 18 hours after detonation, with peak gamma intensities of 22 mr/hr.

The off-site fallout pattern was drawn from aerial and oceanographic surveys: The oceanographic surveys used detector probes for measuring the dose rate at depths to and below the thermocline. Water sampling equipment was used for taking of surface samples and for the collection of samples from any desired depth. The dose rate readings were extrapolated to H+1 hour by using the decay measurements of the samples collected.

Navajo. Atoll rate contours in r/hr at H+1 hour.

Figure 104. Operation REDWING - Navajo. Off-site dose rate contours in r/hr at H+1 hour.

Figure 105. Cloud Dimensions: Operation RETWING -

Navajo.

TARLE 32 BIKINI WIND DATA FOR OPERATION REDWING -

NA VAJO

-					·				
Attitude	li-hour		11+3 ho		HG he		II+9 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	uph	asorgob	mph	degrees	mbji	asoryob	mph	
Surface	090	1.2	090	20	090	S 1	080	14	
1,000	080	5/1	080	24	100	20	080	14	
2,000	080	26	080	25	1.00	5/1	090	15	
3,000	080	25	080	29	090	26	100	20	
4,000	080	25	080	26	090	26	110	81	
5,000	080	23	080	24	090	2 2	110	· 81	
6,000	080	21	080	24	100	21	100	51	
7,000	c ₈ 0	55	080	214	1.00	21	.00	21	
8,000	080	23	090	23	1.00	21	1 ()	23	
9,000	080	22	080	24	090	24	100	ຂຶ້	
10,000	080	21	080	85	oŝo	24	090	23	
12,000	070	15	c3o	22	070	23	070	รา	
14,000	060	14	070	13	050	17	0 60	15	
15,000	(080)	(12)	(070)	(13)	(050)	(15)	(060)	(15)	
16,000	100	10	070	13	`060	14	`050	1.6	
18,000	100	10	08 0	10	060	13	070	13	
20,000	140	09	090	30	3.00	07	090	οŠ	
25,000	180	80	170	09	270	03	070	05	
30,000	210	17	240	13	260	14	290	15	
35,000	550	24	270	17	5/10	16	5(0	55	
1,0,000	270	18	260	29	240	32	240	34	
45,000	540	35	250	37.	230	42	220	38	
50,000	5/10	33	240	21	S <u>1</u> 10	30	250	34	
52,000	230	37							
55,000			150	14	300	06	050	18	
60,000			080	25	ĭ10	30	110	25	
65,000		~~	090	40	090	35	080	3 5	
70,000			ი გი	52	090	47	c90	414	
72,000			## ep es		090	48			
74,000							090	5 9	

- 1. Numbers in parenthenes are estimated values.
- 2. Wind data was obtained on board the U. S. S. Curtiss.
- Tropopause height was 50,000 ft MSL.

 At H-hour the sea level pressure was 1010.2 mb, the temperature 81.2°F, the dew point 74.0°F and the relative humidity 80.0%.

Towa

DATE: 21 Jul 1956 20 Jul 1956

TIME: 0546 1746

TOTAL YEMID: 5 Mt

FIREBALL DATA:

Time to 1st minimum: 185 to 240 msec Time to 2nd maximum: 2.08 sec

Radius at 2nd maximum: 5,904 ft

CRATER INTA:

Diameter: 4,000 ft Depth: 129 ft Sponsor: UCRL

SITE: PPG - Bikini - Charlie - Dog Reef

11° 40' 26" N

Site elevation: Sea level

HEIGHT OF BURST: 15 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water; center of gravity 15 ft above surface of water; depth to bottom 25 ft.

CLOUD TOP HEIGHT: 99,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific projects, supplemented by fallout sample collection on rafts and barges in the lagoon. Actual field decay measurements indicated a decay exponent. This decay exponent was used to extrapolate the dose rate readings to H+1 hour. The extremely heavy rains which followed this shot had no observable effect on the decay rates. On all islands the contamination remaining from previous shots was negligible in comparison with the high radiation levels produced by this shot. Very slight fallout occurring approximately 18 hours after firing increased the background on Nan by approximately 4 mr/hr. In contrast to the other barge shots, contamination was also experienced on the atoll's southwestern islands.

The off-site fallout pattern was drawn from oceanographic surveys. The oceanographic surveys used detector probes for measuring the dose rate at depths to and below the thermoeline. Water-sampling equipment was used for the taking of surface samples and for the collection of samples from any desired depth. The dose rate readings were extrapolated to H+1 hour by using the decay measurements of the samples collected. Fallout from the firing of this device contaminated Eniwetok atoll. The fallout on Eniwetok commenced approximately 9 hours after the device was fired with a peak of 100 to 120 mr/hr.

Figure 107. Operation REDWING - Tew

Teva. Atoll dose rate contours in r/hr at H+1 hour.

Figure 108. Operation REDWING - Tewa.
Off-site dose rate contours in r/hr at H+l hour.

Figure 109. Cloud Dimensions: Operation REDWING -

TABLE 33 BIKENI WIND DAWN FOR OPERATION REDWING -

-								
Altitude	II-hou		H+3 hc		Ht'/ hot			nurs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
Teet	degrees	mph	degrees	myh	degrees	mpli	degrees	myh
Surface	090	15	090	16	100	15	080	22
1,000	080	17	090	1.6	1.00	16	080	13
2,000	090	17	100	17	090	1.7	090	16
3,000	110	18	100	20	100	5/1	1090	14
4,000	110	18	100	51	100	2 }}	090	18
5,000	110	18	100	20	090	28	100	23
6,000	100	20	1.10	20	090	52	100	23
7,000	100	22	110	23	090	50	100	22
8,000	090	23	100	24	100	18	090	5,7
9,000	090	21	110	22	090	21.	090	15
10,000	070	20	100	17	090	18	090	15
12,000	080	17	100	15	090	16	080	13
14,000	o80	16	1.00	10	o8o	10	060	09
15,000	(100)	(12)	(190)	(13)	(090)	(11)	(080)	(12)
15,000	150	07	1.00	15	090	13	090	T^{1+}
18,000	090	1.3	110	15	150	13	160	03
20,000	1.30	13	1.20	13	140	12	180	O7
25,000	290	09	130	7'0	180	၃၀	220	15
30,000	320	06	210	13	170	ぴり	260	07
35,000	190	09	260	13	150	05	270	14
40,000	260	23	270	28	5.10	90	320	18
45,000	250	37	290	21	340	13	0)10	31
50,000	270	25	260	21	080	50	310	12
55,000	110	06	070	05	080	16	100	17
60,000	070	33	080	37	080	51	090	28
65,000	090	52	1.00	50	300	54	100	1414
70,000	090	48	110	40	090	55	090	40
72,000		***	110	37	~			
75,000	080	61			090	60	090	63
80,000	100	55			090	61	090	69
85,000	100	56			090	78		
90,000					090	108	400 600 600	

NOTES:

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was obtained on board the U. S. S. Curtiss.

^{3.} Tropopause height was 52,000 ft MSL.

^{4.} At H-hour the sea level pressure was 1009.3 mb, the temperature 82°F, the dew point 77°F and the relative humidity 85%.

RISE RATE SOODFT/HR

Figure 110. Hodographs for Operation REDWING -

Tewa.

OPERATION REDWING -

Huron

PPG Time

GMT

Sponsor: LASL

DATE: 22 July 1956 TIME: 0616

21 July 1956 1816

SITE: PPG - Eniwetok - Off Flora

11° 40' 19" N 162° 22' 09" E

Site elevation: Sea level

HEIGHT OF BURST: Surface

TYPE OF BURCT AND PLACEMENT:

Surface burst from barge on

water

CLOUD TOP HEIGHT: 54,000 ft MSL

CLOUD BOTTOM HEIGHT: 27,000 It MSI

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization. The $t^{-1.2}$ decay approximation was used to extrapolate the dose rate readings to N+1 hour.

Figure 111. Operation REDWING - Huron.
Island dose rates in r/hr at H-1 hour.

TABLE 34 ENTWETOK WIND DATA FOR OPERATION REDWING -

HURON

O/1,8	H+9 hc	นาร	1146 hc	urs	H+3 ho	12*	li-hou	Altitude
Speed	Dir	Speed	Dir	Speed	Dia	Speed	Dir	(MSL)
mph	gegrees	mph	degrees	mph	degrees	mph	degrees	feet
	-1-	- /		- 0				
23	140	16	1.30	18	090	14	150	Surface
29	120	1 /t	110	2	11.0	18	100	1,000
28	1.10	1/4	090	24	1.10	18	700	2,000
32	110	16	100	29	110	18	100	3,000
35	110	15	060	30	100	18	1.00	4,000
3 <u>7</u>	110	3.4	120	29	700	4	110	5,000
38	110	16	150	28	1.00	55	110	6,000
38	110	16	110	25	100	18	120	7,000
35	110	14	110	23	090	22	120	8,000
35	100	14	110	25	090	23	110	9,000
35	1.00	14	110	28	100	18	110	10,000
28	090	14	110	21	110	12	110	12,000
23	080	18	080	23	100	14	120	14,000
(16)	(080)	(13)	(110)	(23)	(090)	(13)	(140)	15,000
09	080	07	130	23	080	12	160	16,000
12	090	15	090	10	070	12	160	18,000
Oγ	080	18	060	09	060	12	150	20,000
07	010	07	360	05	030	09	170	25,000
29	120	06	110	10	040	16	0 8 0	30,000
24	090	14	060	37	050	32	060	35,000
25	060	09	100	39	050	40	060	40,000
	~			3 9	050			44,000
09	050	80	070			52	070	000 و 45
10	560	15	o8o	20 74		08	070	50,000
14	08 0	13	120	** **	*	23	0,10	55,000
40	090	20 20	120		** ** **	38	100	60,000
52	090	22	100			51	110	
53								
63								
75	100							80,000
82			•					85.000
117	090							
	100 100	35 37 23 23	100 110 090 070 090			56 71 79 87 107	090 100 100 100 100	65,000 70,000 75,000 80,000 85,000 90,000

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 50,000 ft MSL at H-hour.
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- 4. At the surface the air pressure was 14.62 psi, the temperature 27.4°C, the dew point 24.5°C and the relative humidity 84%.

Figure 112. Hodographs for Operation REDWING -

MISE RATE SCOOLFINER

Figure 113. Operation HARDTACK I, Shot Locations, Eniwetok Atoll

BIKIMI ATOLL
OPERATION MARDTACK I
SMOT LOCATIONS
Assessibles Alkitude) Deleased GC Miss West of Shini

Figure 114. Operation HARDTACK I, Shot Locations, Bikini Atoll

Yucca

PPG Time

28 Apr 1958 28 Apr 1958 0240

TIME: 1440

REMARKS: No fallout

Sponsor: DOD

SITE: PPG - USS Boxer 60 mi

west of Bikini 12° 37' 00" N 163° 01' 30" E

Site elevation: Sea level

HEIGHT OF BURST: 86,000 ft

TYPE OF BURST AND PLACEMENT: Air burst from free balloon

over water

CLOUD TOF HEIGHT: NM

CLOUD BOTTOM HEIGHT: NM

Altitude	H-hou	r
(MSL)	Dir	Speed
feet	degrees	mph
Surface	040	16
1,000	050	29
2,000	050	35
3,000	070	36
4,000	130	09 12
5,000	350	12
6,000	360	14
7,000	150	15
8,000	190	12
9,000	510	09
10,000	230	06 12
12,000	350 320	15
14,000 15,000	(320)	(15)
16,000	330	16
18,000	300	15
20,000	260	07
23,000	210	15
25,000	240	18
30,000	200	13
35,000	210	32
40,000	270	44
45,000	270	51
50,000	270	40
55,000	270	38
60,000	280	38
65,000	250	18
70,000	070	15
75,000	180	09

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship located within 30 nautical miles of the Tower at Man Island, Bikini Atoll.
- 3. Tropopause height was 53,000 ft MSL.
- 4. At H-hour the surface air pressure was 14.67 psi, the temperature 25.7°C, the dew point 69.6°F, and the relative humidity 75%.

Figure 115. Hodograph for Operation HARDTACK I -

Yucca.

Cactus

PPG Time GMT

DATE: 6 May 1958 5 May 1958

TIME: 0615 1815

TOTAL YIELD: 18 kt

FIREBALL DATA:

東京の東京はあるをはるが、そのからできているのでき

Time to 1st minimum: 12 msec Time to 2nd maximum: 130 msec Radius at 2nd maximum: 656 ft

CRATER DATA:

Diameter: 340 ft
Depth: 34.5 ft
Lip Height: 8 to 14 ft
Lip Width: 115 to 170 ft

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne

11° 33' 23" N 162° 21' 15" E

Site elevation: Sea level

HEIGHT OF BURST: 3 1t

TYPE OF BURST AND PLACEMENT:
Surface burst - Platform on coral soil

CLOUD TOP HEIGHT: 19,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys at H+4 hours made by the Radiological Safety organization. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.8 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 116. Operation HARDTACK I - Cactus.
Island dose rates in r/hr at H+1 hour.

ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

Altitude	E+3 ho	ull.	H+5星 h	ours	
(MSL)	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	
Surface	060	16	060	16	
1,000	070	24	060	29 .	
2,000	070	25	060	24	
3,000	060	26	060	26	
4,000	060	24	060	28	
5,000	૦6ગ	23	050	2 5	
6,000	060	23	040	24	
7,000	080	15	030	17	
8,000	090	10	cro	o 8	
9,000	110	05	040	05	
10,000	06 0	03	160	08	
12,000	200	02	220	10	
14,000	150	12	180	13	
15,000	(130)	(15)	(160)	(13)	
16,000	100	18	130	14	
18,000	100	18	140	15	
20,000	120	18	140	15	
23,000	090	13	150	18	
25,000	050	09	230	15	
30,000	270	17	260	26	
35,000			230	32	
40,000	55 0	37	230	3 9	
45,000	290	35	270	3 3	
50,000	310	39	270	េះខ្ម	
55,000	230	07	2 50	18	
€0,000	26 0	17	240	17	
65,000			2 50 ·	75	
67,000	210	oŢ	***		
70,000	120	UB	090	05	
75,000	070	13	€80	15	
80,000	080	31	090	23	
85,000	080	52	100	33	
90,000	090	60	100	40	
95,000			100	62	
96,000	100	57			
100,000	~~	~~	090	49	
105,000			090	51	
110,000		• . ••	090	59	
112,000		* L-	090	61	

- Number in parentheses are estimated values.
 Wind data was taken by the Eniwater weather station.
 Tropopause height was \$1,000 ft MSL.
 The surface air pressure was 14.66 ps;, the temperature 26.7°C, the dew point 72°F and the relative humidity 76%.

Rise rate: 5000 ft/hr

Figure 117. Hodographs for Operation HARDTACK I -

Cactus.

Fir

 DATE:
 12 May 1958
 TIME:
 0550
 1750

Sponsor: UCRL

SITE: PPG - Bikini - SW of
Charlie 4,000 ft from
nearest edge of the island
11° 41' 27" N
165° 16' 25" E

Site elevation: Sea level

HEIGHT OF BURST: 9.88 ft

SL TYPE OF BURST AND PLACEMENT:
Surface burst from burge on water

CLOUD TOP HEIGHT: 90,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.8 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

Figure 118. Operation HARDTACK I - Fir. Island dose rates in r/hr at H+1 hour.

Altitude			H+71 hours H+12 hours				
	H-3 1			Speed	tir	Speed	
(MSL)	Dir	Speed	Dir			mph	
feet	degrees	mph	degrees	mpn	degrees	whu	
Surface	070	25	070	25	060	28	
1,000	070	26	060	26	06 0	26	
2,000	080	26	070	26	070	29	
3,000	080	22	080	26	080	29	
4,000	090	26	090	29	090	25	
5,000	090	36	100	30	110	22	
6,000	110	26	100	29	110	23	
7,000	130	23	110	24	110	31	
8,000	130	17	110	18	120	29	
9,000	150	17	130	18	130	18	
10,000	170	15	150	16	150	13	
12,000	120	08	190	07	200	13	
14,000	110	08	550	14	250	10	
15,000	(090)	(12)	(170)	(10)	(Sio)	(08)	
16,000	070	`1 4	120	07	180	c 6	
18,000	060	C7	140	o 6	190	02	
20,000	050	07	160	03	280	01	
23,000	090	05	500	03	240	06	
25,000	130	06	55 0	06	2 50	10	
30,000	280	20	280	17	270	17	
35,000	(255)	(34)	(250)	(28)	(235)	(32)	
40,000	230	48	220	40	200	48	
45,000	240	56	(250)	(39)	550	55	
50,000	260	45	280	39	260	33	
54,000	280	26				,,	
55,000	(270)	(23)	(500)	(25)	(250)	(21)	
56,000			180	15	250	18	
60,000	210	05	590	ი8	360	05	
64,000			080	.09	,	\	
65,000	(120)	(12)	(190)	(13)	(110)	(12)	
67,000	360	06		••	***		
70,000	040	20	090	.17	ຸ090ຸ	13	
75,000	080	26	(090)	(55)	(090)	(16)	
80,000	120	26	090	26	090	20	
85,000	110	40		••		••	
					100	5 3	

NOTES:

1. Numbers in parentheses are estimated values.

numbers in parentheses are estimated values.
 Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan Island, Bikini Atoll.
 Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.64 psi, the temperature 26.7°C, the dew point 73.0°F, and the relative humidity 80%.

Figure 119. Hodographs for Operation HARDTACK I -

Butternut

PPG Time CMT

ATE: 12 May 1958 11 May 1958

IME: 0615 1815

Sponsor: LASL

SITE: PPG - Eniwetok - SW of
Yvonne
4,000 ft from the nearest
edge of the island
11° 20' 41" N
162° 21' 02" E
Site elevation: Sea level

HEIGHT OF BURST: 10.13 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on
water
Water depth: 65 ft

CLOUD TOP HEIGHT: 35,000 ft MSL CLOUD BOTTOM HEIGHT: NA

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys at H+4 hours made by the Radiological Safet Organization. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 120 . Operation HARDTACK I - Butternut.

Island dose rates in r/hr at H+l hour.

TABLE 38 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

BUTTERNUT

Altitude	H-1 ho	our	H+5景 h		H+114 hours	
(MSL)	Dir	Speed	Dir	Speed	bir	Speed
feet	degrees	niph	degrees	mph	degrees	mph
Surface	080	12	080	17	070	16
1,000	090	24	080	24	080	28
2,000	090	25	080	24	080	29
3,000	090	25	090	29	090	29
4,000	100	21	090	28	100	26
5,000	120	18	100	2 4	110	24
6,000	150	18	120	54	130	21
7,000	150	16	150	21	130	17
8,000	150	13	170	16	150	13
9,000	130	09	170	15	170	15
10,000	100	10	120	80	160	10
12,000	090	09	190	07	230	09
14,000	080	09	150	9	500	09
15,000	(080)	(14)	(120)	(09)	(140)	(09)
16,000	070	18	090	09	080	80
18,00^	100	12	110	09	070	07
20,0 00	100	09	090	07	070	05
23,000	110	07	160	05	340	05
25,000	Calm	Calm	200	03	300	80
30,000	280	52	270	17	270	24
35,000	(230)	(41)	240	36	550	33
37,000	210	49				
40,000	230	43	550	39	21 0	37
45,000	260	47	240	28	2 50	35
50,000	250	40	260	33	260	40
54,000	280	21				
55,000		••	250	16	260	17
60,000	200	05	250	09	300	12
65,000		•-	03 0	12	250	15
66,000	070	12				••
70,000	080	16	070	18	050	10
72,000	100	25				
75,000			110	16	100	17
80,000	090	37	110	20	08 0	20
84,000	100	36				••
85,000			110	29	100	38

NOTES:

The second secon

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 53,000 ft MSL.
 The surface air pressure was 14.63 psi, the temperature 27°C, the dew point 74°F, and the relative humidity 80%.

Figure 121 . Hodographs for Operation HARDIACK I -

OPERATION WARDIACK I-

Koa

PPG Time DATE: 13 May 1958 12 May 1958 TIME: 0630 183C

TOTAL YIELD: 1.37 Mt

FIREBALL DATA:

Time to 1st minimum: 100 msec Time to 2nd maximum: 0.94 to 1.35 sec

Radius at 2nd maximum: 3,641 ft

CRATER DATA:
Diameter: 4,000 ft

Depth: 171 ft

Lip: Apparently washed away

Sponsor: LASL

SITE: PPG - Eniwetok - West

end of Gene 11º 40' 30" 20" E

Site elevation: Sea level

HEIGHT OF BURST:

1620 121

TYPE OF BURST AND PLACEMENT:

Surface burst from 10 ft deep tank of water sitting on coral soil

CLOUD TOP HEIGHT: 72,200 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the sircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.3 docay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

Figure 122. Operation HARDTACK I - Koa.
Island dose rates in r/hr at H+l hour.

Figure 123. Cloud Dimensions: Operation HARDTACK I -

ENIVETOK WIND DATA FOR OPERATION HARDTACK I-

KOA

Altitude	-i h	our	H+53 ho	urs	H+11; hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	uph
Surface	050	18	060	18	060	18
1,000	070	29	080	32	୦ ୫୦	26
2,000	07C	31	070	38	080	29
3,000	080	32	UTO	37	08 0	29
4,000	080	36	ა80	29	090	31
5,000	090	33	080	29	100	26
6,000	100	29	090	23	110	26
7,000	100	31	100	18	100	26
8,000	100	31	100	20	080	23
9,000	090	25	100	20	070	20
10,000	090	25	120	18	090	14
12,000	100	29	130	20	120	13
14,000	110	25	150	14	120	03
15,000	(110)	(20)	(150)	(14)	(160)	(07)
16,000	`120 ´	14	`140	14	`190	`12
18,000	110	12	140	14	180	05
20,000	070	08	130	05	220	09
23,000	200	09	180	18	180	16
25,000	270	14	160	18	170	14
30,000	250	24	240	21	250	21
35,000	190	31	170	31	180	51
40,000	220	29	190	29	230	31
45,000	240	40	260	52	(255)	(32)
50,000	290	36	280	35	280	33
55,000	280	13	230	ĩ4	200	33
60,000	140	17	210	07	270	iž
65,000	090	07	060	υŔ	(810)	(09)
70,000	100	15	130	09	150	`07′
74,000					070	26
75,000	100	23	070	80	¢80	18
80,000	100	31	090	36	100	30
85,000	030	41	100	53		
90,000	090	59	110	71	100	61
92,000	090	66				
95,000		••	100	77		••
00,000			100	83	100	68
05,000		***	100	85		==
10,000		***	100	126	100	75
18,000					100	101

NOTES:

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 57,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 27.2°C, the dew point 74°F, and the relative humidity 79%.

Figure 124. Hodographs for Operation HARDIACK

Wahoo

PPG Time CMT

DATE: 16 May 1958 16 May 1958

TIME: 1330 0130

Sponsor: LASL/DOD

SITE: PPG - Eniwetok -south by SSW of Irwin about 8,000 ft from the island 11° 20' 41" N 162° 10' 44" E
Site elevation: Sea level

HEIGHT OF BURST: -500 ft under water

TYPE OF BURST AND PLACEMENT:

Underwater - Device suspended
by a cable. Water depth
3,200 ft

PLUME TOP HEIGHT: 1,760 ft MSL at 15½ sec PLUME DIAMETER: 3,400 ft MSL at 15½ sec

REMARKS:

"Nearly all of the total gamma dose occurred within 25 minutes after zero time and was due to the passage of airborne radioactive material. Gamma doses in excess of 100r occurred within the first 15 minutes at downwind distances less than 16,000 feet. In both instances the residual field due to deposited radioactive material was relatively insignificant, although radioactive fram may represent a radiological hazard."

Distance From GZ, statute miles

Figure 125. Operation HARDTACK I - Wahoo.
On-site cumulative dose to 6 hours in roentgens.

TABLE 40 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

wAH00

Altitude	H-l≥ ho	urs	H+45 hou	178
(MSL)	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph
Surface	090	17	080	16
1,000	090	22	08 0	18
2,000	090	22	080	20
3,000	090	20	080	21
4,000	0904	17	080	20
5,000	070	13	060	14
6,000	040	oš	050	12
7,000	330	07	350	07
8,000	280	12	300	14
9,000	290	17	300	20
10,000	280	21	300	22
12,000	310	16	ž 90	14
14,000	290	69	310	12
16,000	050	07	340	09
18,000	240	14	ŏ 2 0	09
20,000	040	08	040	13
23,000	060	05	010	07
25,000	240	02	360	07
30,000	300	15	260	10
35,000	260	35		
40,000	270	25	270	30
45,000	280	29		
50,000	340	15	310	24
52,000		•-	270	09
55,000	070	06		
60,000	060	15	020	20
65,000	090	17		
69,000			120	10
70,000	090	12	100	07
73,000	090	57	060	13
75,000				
80,000	100	60	090	40
85,000	090	57		
90,000	090	57	090	72
95,000				
100,000			090	79
110,000			100	93
114,000			100	100

NOTES:

1. Wind data was taken by the Eniwetok weather station.

2. Tropopause height was 59,000 ft MSL.

3. The surface air pressure was 14.69 psi, the temperature 30.8°C, the dew point 73°F, and the relative humidity 63%.

Rise rate: 5000ft/hr

Figure 126. Hodographs for Operation HARDIACK I -

Wahoo

Holly

PPG Time CMT

DATE: 21 May 1958 20 May 1958

TIME: 0630 1830

Sponsor: LASL

SITE: PPG - Eniwetok - West
of Yvonne, 4,000 ft
from the nearest edge
of the island
11° 32' 38" N
162° 21' 22" E
Site elevation: Sea level
HEIGHT OF BURST: 13.06 ft

TYPE OF BURST AND PIACEMENT:
Surface burst from barge on
water
Water depth: 40 ft

CLOUD TOP HEIGHT: 15,000 ft MSL CLOUD BOTTOM HEIGHT: 7,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

Figure 127. Operation HARDTACK I - Holly. Island dose rates in r/hr at H+l hour.

TABLE 41 ENIWETOK WIND DATA FOR OPERATION HARDTACK I-

HOLLY

Altitude	H-5 h	our	H+53 hou	ırs	H+105 h	วนระ
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	nph
Surface	080	16	090	23	080	23
1,000	080	24	080	26	070	26
2,000	080	26	080	26	070	5,4
3,000	080	26	080	24	080	24
4,000	080	24	070	55	080	26
5,000	080	23	070	17	080	5/1
6,000	090	14	080	17	070	20
7,000	100	10	100	17	080	16
8,000	120	12	120	14	110	17
9,000	150	12	140	14	120	14
10,000	180	12	150	10	150	09
12,000	210	05	210	10	210	05
14,000	280	10	240	05	270	02
15,000	(270)	(07)	(200)	(05)	(300)	(05)
16,000	250	05	150	05	320	07
18,000	220	05	120	02	28 0	09
20,000	220	09	220	10	240	12
23,000	250	12	260	09	510	10
25,000	270	13	290	05	240	10
30,000	280	24	280	09	240	21
35,000			280	55	270	20
36,000	270	24				
40,000	220	22	500	30	190	39
45,000	510	38	510	43	21 0	32
50,000	230	20	270	17	270	18

NO TES:

1. Numbers in parentheses are estimated values.

^{2.} Wind data was taken by the Eniwetok weather station.

Tropopause height was 52,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 27°C, the dew point 75°F, and the relative humidity 75%.

Rise rate: 5000 ft/hr

Figure 128. Hodographs for Operation HARDTACK I -

Holly.

Nutmeg

	PPG Time	GMT			
DATE:	22 May 1958	21 May 1958			
TIME:	0920	2120			

Sponser: UCRL

SITE: PPG - Bikini - West end Tare
11° 29' 46" N
165° 22' 15" E
Site elevation: Sea level

HEIGHT OF BURST: 12.11 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 20,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to correct the H+4 hour doserate readings to H+1 hour.

TABLE 42 BIKINI WIND DATA FOR OPERATION HARDTACK I -

NUIMEG

Altitude	H-hou	r	H+23 ho	urs	H+8분 hou	rs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	16	080	16	080	14
1,000	090	16	070	18	070	14
2,000	090	15	070	16	080	15
3,000	090	18	080	18	080	14
4,000	090	18	090	15	090	09
5,000	090	16	120	14	090	12
6,000	100	17	110	17	110	09
7,000	090	18	100	20	110	14
8,000	070	18	080	20	080	14
9,000	090	18	090	23	090	14
10,000	100	17	100	20	110	14
12,000	080	10	130	16	120	14
14,000	120	10	150	12	140	14
15,000	(110)	(12)	(140)	(12)	(130)	(09)
16,000	`110	12	120	10	120	06
18,000	220	12	340	10	070	07
20,000	240	08	280	08	310	05
23,000	210	09	190	07	320	07
25,000	230	06	200	15	27C	12
30,000	310	24	310	14	250	09
33,000					220	16
34,000	300	21				
35,000			260	16		
40,000	200	35	200	24	240	14
45,000	250	23			250	14
50,000	320	10	310	07	500	02
55,000			080	07	040	C5
57,000	080	07				
60,000	200	06	160	06	250	07
64,000					080	07
65,000	090	09	120	08		
70,000	110	12	110	08	080	08
72,000					050	08
75,000	080	25				
80,000	090	36	090	35	090	37
82,000			090	38	-11-	
83,000					090	22
85,000	090	52				

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan Island, Bikini Atoll.
- 3. Tropopause height was 54,000 ft MSL.
- 4. The surface air pressure was 14.08 psi, the temperature 27.4°C, the dew point 72.5°F, and the relative humidity 76%.

H-Hour

Rise rate: 5000 ft/hr

.

Figure 130 . Hodographs for Operation HARDTACK I -

Nutmeg.

Yellowwood

DATE: 26 May 1958 26 May 1958 TIME: 1400 0200 Sponsor: LASL

STTE: FPG - Eniwetok - SW of Janet 5,000 ft 11° 39' 37" N 162° 13' 31" E
Site elevation: Sea level Water depth: 75 ft

HEIGHT OF BURST: 10.52 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: 30,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 131. Operation HARDTACK I - Yellowwood. Island dose rates in r/hr at H+l hour.

ENIVEROK WIND DATA FOR OPERATION HARDTACK I -

YELLOWWCOD

Altitude	H-hou	r	H+4 ho	urs	H+10 ho	urs
(MSL)	Dir	Cpeed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	14	070	18	080	15
1,000	090	16	080	20	080	18
2,000	090	16	080	17	080	18
3,000	. 090	18	08 0	17	090	18
4,000	090	17	090	15	100	16
5,000	080	16	090	12	100	12
6,000	070	13	080	09	100	12
7,000	060	13	070	09	090	12
8,000	050	09	070	ıź	090	15
9,000	050	10	070	12	090	15
10,000	050	08	060	13	090	éυ
12,000	040	12	050	14	030	ié
14,000	050	07	020	09	360	12
15,000	(060)	(07)	(030)	(ôŚ)	(360)	(08
16,000	`070	07	040	07	350	`06
18,000	060	20	060	12	100	96
20,000	0,00	30	o 6 0	14	090	09
23,000	090	18	080	18	080	20
25,000	100	22	090	18	090	16
30,000	080	29	070	23	070	29
35,000	110	30	090	23	050	23
40,000	070	31	080	36	090	30
45,000	080	32	090	29	oŝo	32
50,000	090	24	090	17	090	23
55,000	050	24	050	32	050	24
50,000	U70	23	060	20	030	24
55,000	060	09	050	16	080	21
7 0,00 0	090	07	100	23	08 0	21.
75,000	080	43	100	38	110	35
30,000	100	49	100	48	090	55
35,000	100	51	080	59	090	60
90,000	100	57	090	54	090	61
95,000	100	63	090	53		
000,000	090	76	090	79		
.5,000	080	86	090	ġί		•-
10,000	c8o	79	090	109		
15,000	100	105	090	105		
20,000	110	11é	100	92		
22,000			100	90		
23,000	110	114				

NOTES:

Numbers in parentheses are estimated values.
Wind data was taken by the Eniwetok weather station.
Tropopause height was 55,000 ft MSL.
The surface air pressure was 14.66 psi, the temperature 30.6°C, the dew point 73°F, and the relative humidity 63%.

Figure 132. Hodographs for Operation HARDTACK I -

Yellowwood.

Magnolia

PPG Time CMT

27 May 1958 26 May 1958

TIME: 0600 1800

Sponsor: LASL

SITE: PPG - Eniwetok - SW of Yvonne, 3,000 ft from the nearest edge of the island 11° 32' 34" N 162° 21' 14" E
Site elevation: Sea level

HEIGHT OF BURST: 13.88 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 44,000 ft MCL CLOUD BOTTOM HEIGHT: 15,000 ft MCL

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t^{-1.2} decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 133. Operation HARDTACK I - Magnolia. Island dose rates in r/hr at H+1 hour.

TABLE 44 ENIVETOK WIND DATA FOR OPERATION HARDTACK I -

MAGNOI IA

Altitude	H-hou	r	11+6 h	ours	1[+11 h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph:	degrees	mph
Surface	090	16	110	16	090	12
1,000	080	14	100	16	080	14
2,000	080	14	100	14	100	00
3,000	090	14	100	10	08 0	09
4,000	100	15	100	09	090	07
5,000	120	10	090	09	090	08
6,000	1.20	07	07C	07	090	06
7,000	080	05	070	07	060	03
8,000	070	υ8	070	09	020	06
9,000	070	09	060	09	040	06
10,000	070	09	o60	09	030	03
12,000	060	09	140	03	260	03
14,000	040	12	110	o ō	150	05
15,000	(040)	(14)	(110)	(07)	(110)	(05)
16,000	050	05	100	09	080	05
18,000	100	0 9	190	09	08 0	09.
20,000	130	0 5	090	15	070	12
23,000	090	16	070	14	050	15
25,000	080	12	060	14	020	13
30,000	060	31	060	31	030	21
35,000	060	25	040	20	030	23
40,000	080	24	060	30	050	25
45,000	090	39	060	<u>\$</u> 2	020	25 18
50,000	040	24	020	30	350	16
55,000	050	23	050	35	050	28
60,000	050	31	050	25	080	20
65,000	100	15	070	23	100	16
70,000	080	18	110	22	090	21
75,000	090	37	110	32	090	24
80,000	090	49	100	52	100	48
85,000	090	71	100	64	090	61
90,000	090	78	100	64	090	69
91,000	090	78				
95,000		***	100	68	የዓ ዕ	71
00,000			100	69	080	64:
05,000			100	8ó	*	
10,000			100	99		
13,000			100	101	-	

NOTES:

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 26.8°C, the dew point 72°F, and the relative humidity 76%.

Figure 134. Hodographs for Operation HARDTACK I -

Magnolia.

Tobacco

PPG Time GMT E: 30 May 1958 30 May 1958 E: 1415 0215

Sponsor: IASL

SITE: PPG - Eniwetok - 3,000 ft
NW of Janet

11° 39' 48" N 162° 13' 48" E

Site elevation: Sea level

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 18,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

Figure 135. Operation HARDTACK I - Topacco.

Island dose rates in r/hr at H+1 hour.

TABLE 45 ENIVETOK WIND DATA FOR OPERATION HARDTACK I -

TOBACCO

Altitude	H-i h	our	(f+3 / ho	urs		urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mby
Surface	080	14	080	23	120	28
1,000	080	24	080	26	090	24
2,000	080	36	080	29	100	28
3,000	090	21	090	29	110	30
4,000	090	16	090	26	120	25
5,000	090	14	100	22	130	25
6,000	090	17	100	22	140	52
7,000	090	22	110	21	140	æ€
8,000	100	21	110	16	130	29
9,000	110	18	110	16	120	32
10,000	130	20	110	20	110	33
12,000	140	14	120	09	100	29
14,000	130	10	130	07	120	19
15,000	(130)	(11)	(130)	(06)	(120)	(13)
16,000	140	`13	`130	05	120	`09
18,000	120	īž	140	óź	110	10
20,000	120	12	110	02	110	17
23,000	130	14	140	05	120	18
25,000	120	12	130	07	150	16
30,000	190	07	200	ç3	210	07
35,000	240	15	530	12	510	09
40,000	200	17	550	14	210	26
45,000	200	17	550	25	230	26
50,000	230	17	230	īé	270	12
55,000	290	Ōγ	220	05	240	<u> </u>
60,000	070	Ö.	070	13	100	18
65,000	130	24	140	18	160	15
70,000	110	17	070	23	070	24
75,000	090	35	090	37	090	38
80,000	090	35 48	100	55	090	57
85,000	100	68	100	68	090	69
90,000	100	69	100	69	090	71
94,000		-,			090	71
95,000	100	71	090	69		
100,000	100	77	090	69		
05,000	100	72	100	76		
10,000	090	77	200	,0		
18,000	090	95				-•

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 55,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 28.9°C, the dew point 75°F, and the relative humidity 74%.

Figure 136. Hodographs for Operation HARDTACK I -

Tobacco.

Sycamore

PPG Time CMT
ATE: 31 May 1958 31 May 1958
TME: 1500 0300

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie 4,000 ft from the nearest edge of the island
11° 41' 27" N
165° 16' 25" E
Site elevation: Sea level

HEIGHT OF BURST: 11.64 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on
water

CLOUD TOP HEIGHT: 46,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+h hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/FDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used 50 extrapolate the H+4 hour dose rate readings to H+1 hour.

TABLE 46 BIKINI WIND DATA FOR OPERATION HARDTACK I -

SYCAMORE

Altitude	H-hou			urs	H+9 hou	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	12	100	17	070	21
1,000	110	55	ი90	51	080	55
2,000	100	23	090	22	080	24
3,000	110	28	690	54	. 080	25
4,000	110	24	100	23	ဝ၇၁	23
5,000	110	18	110	55	0 30	18
6,000	110	14	110	18	990	15
7,000	100	17	110	18	100	15
8,000	100	07	100	18	100	15
9,000	110	. 14	100	17	790	50
10,000	120	14	110	. 16	110	14
12,000	120	16	110	16	130	16
14,000	080	15	090	Τ̈́э	100	17
15,000	(080)	(13)	(070)	(1	(090)	(15)
16,000	090	12	050	الذ	080	14
. : 18,000	120	13	100	09	750	07
20,000	130	18	140	12	100	02
23,000	160	10	130	17	090	08
25,000	140	23	100	14	010	16
30,000	010	09	040 /	13	060	13
33,000	270	06				~-
34,000					120	10
35,000	(260)	(12)	280	17	(140)	(13)
40,000	550	26	230	.23	230	23
45,000	230	24	(255)	(17)	300	25
50,000	280	18	280	15	270	08
53,000			.080	.06		~ •
55,000	(150)	(30)	(080)	(10)	060	16
57,000	100	35		**		•••
60,000	120	26	120	55	100	20
65,000	080	16				
66,000			060	.30		
70,000	100	24	09 0	31	090	29
75,000	090	38				
80,000	100	55	100	53	090	53
81,000	100	58				
85,000					090	41
90,000		**	090	59	080	75
91,000			090	59		
94,000					080	68

NOTES:

. Numbers in parentheses are estimated values.

3. Tropopause height was 55,000 ft MSL.

^{2.} Wind data was taken on board ship located within 30 nautical miles of the Tower on Nan Island, Bikini Atoll.

^{4.} The surface air pressure was 14.62 psi, the temperature 28.6°C, the dew point 74°F and the relative humidity 73%.

Figure 138. Hodographs for Operation MARDIACK I -

Sycamore.

Rose

PPG Time CMT

DATE: 3 June 1958 2 June 1958

TIME: 0645 1845

Sponsor: LASL

SITE: PPG - Eniwetok - SW of
Yvonne 4,000 ft from the
nearest edge of the island
Site elevation: Sea level

HEIGHT OF BURST: 15.43 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 17,000 ft MSL CLOUD BOTTOM HEIGHT: 5,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t^{-1.2} decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 139. Operation HARDTACK I - Rose. Island dose rates in r/hr at H+1 hour.

TABLE 47 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

ROSE

1,000 070 26 060 2 2,000 080 26 070 2 3,000 060 24 070 2 4,000 080 21 080 2 5,000 080 20 090 1 6,000 090 22 080 2 7,000 080 28 070 2 8,000 070 29 060 2 9,000 070 25 060 1 10,000 070 23 080 1 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 25,000 100 24 100 2 25,000 100 24 100 2 25,000 100 21 160 3 35,000 190 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 24 090 55, 060 50, 000 50 50 50 50 50 50 50 50 50 50 50 50	ed
feet degrees mph degrees mph Surface 080 25 070 2 1,000 070 26 060 2 2,000 080 26 070 2 3,000 060 24 070 2 4,000 080 21 080 2 5,000 080 20 090 1 6,000 090 22 080 2 7,000 080 28 070 2 8,000 070 29 060 2 9,000 070 23 080 1 10,000 070 23 080 1 12,000 070 10 130 1 15,000 (070) (05) (110) (0 18,000 110 12 120 1 20,000 130 09 130 1 21,000 100 <th></th>	
1,000 070 26 060 2 2,000 080 26 070 2 3,000 060 24 070 2 4,000 080 21 080 2 5,000 080 20 090 1 6,000 090 22 080 2 7,000 080 28 070 2 8,000 070 29 060 2 9,000 070 25 060 1 10,000 070 23 080 1 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 16,000 100 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 25,000 100 24 100 2 25,000 100 24 100 2 30,000 090 15 090 3 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 24 090 55, 060 50, 000 50 50 50 50 50 50 50 50 50 50 50 50	
1,000 070 26 060 2 2,000 080 26 070 2 3,000 060 24 070 2 4,000 080 21 080 2 5,000 080 20 090 1 6,000 090 22 080 2 7,000 080 28 070 2 8,000 070 29 060 2 9,000 070 25 060 1 12,000 070 10 130 1 12,000 070 10 130 1 12,000 070 (070) (05) (110) (010) (_
2,000 080 26 070 28 3,000 060 24 070 8	23
3,000 060 24 070 24 070 24 1,000 080 21 080 22 080 22 080 22 080 28 070 28 8,000 070 29 060 29 060 29 060 20 070 25 060 10,000 070 23 080 12,000 070 10 130 110 12,000 070 10 130 110 15,000 (070) (05) (110) (05) (110) (05) (18,000 110 12 120 120 120 120 120 120 120 1	22
\$\frac{1}{4},000 080 21 080 25 090 090 15 6,000 090 22 080 28 070 28 600 070 29 060 29 060 29 060 29 060 29 060 29 060 29 060 21 100 070 100 130 110 120 \	24
5,000 080 20 090 1 6,000 090 22 080 2 7,000 080 28 070 2 8,000 070 29 060 2 9,000 070 25 060 1 10,000 070 23 080 1 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) 0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 30,000 090 15 090 3 35,000 140 09 090 1 45,000 160 21 160 3 50,000 180 29 130 <t< td=""><td>5</td></t<>	5
6,000 090 22 080 2 7,000 080 28 070 2 8,000 070 29 060 2 9,000 070 25 060 1 10,000 070 23 080 1 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 25,000 100 24 100 2 30,000 090 15 090 1 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 55,000 240 07 090 28 120 28	X
7,000 080 28 070 28 8,000 070 29 060 2 9,000 070 25 060 1 10,000 070 23 080 1 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 30,000 090 15 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55,000 100 28 120 2	7
8,000 070 29 060 2 9,000 070 25 060 1 10,000 070 23 080 1 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 30,000 090 15 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55,000 100 28 120 28	21
9,000 070 25 060 11 10,000 070 23 080 11 12,000 070 10 130 11 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 30,000 090 15 090 1 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 55, 060 24 090 25 60,000 100 28 120 28	24
10,000 070 23 080 11 12,000 070 10 130 1 14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 20,000 130 09 130 1 23,000 100 22 100 1 25,000 100 24 100 2 30,000 090 15 090 1 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 6 55,000 240 07 090 6 55,000 100 28 120 28	22
12,000 070 10 130 14,000 060 02 110 00 15,000 (070) (05) (110) (010,000 080 07 120 00 18,000 110 12 120 11 20,000 130 09 130 12 23,000 100 22 100 11 25,000 100 24 100 25,000 100 24 100 25,000 100 24 100 25,000 140 09 090 15 090 25,000 180 29 130 20,000 180 29 130 20,000 180 29 130 20,000 180 29 130 20,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 21 160 30,000 160 24 090 25,000 24 090 25,000 24 090 25,000 25,000 28 120 28 120	.8
14,000 060 02 110 0 15,000 (070) (05) (110) (0 16,000 080 07 120 0 18,000 110 12 120 1 120 120 120,000 130 09 130 120 120 120,000 100 22 100 120 120 120,000 100 24 100 25,000 100 24 100 25,000 100 25,000 15 090 15 090 120,000 180 29 130 22 120 120 120,000 160 21 160 30,000 20 30,000 20	4
15,000 (070) (05) (110) (016,000 080 07 120 07 120 18,000 110 12 120 11 20,000 130 09 130 12 120 120	.2
16,000 080 07 120 00 18,000 110 12 120 11 20,000 130 09 130 12 23,000 100 22 100 11 25,000 100 24 100 23 30,000 090 15 090 15 090 25 35,000 140 09 090 11 40,000 180 29 130 20 45,000 160 21 160 30 50,000 240 07 090 00 55,000 240 07 090 26 60,000 100 28 120 28	9
18,000 110 12 120 12 20,000 130 09 130 12 23,000 100 22 100 12 25,000 100 24 100 23 30,000 090 15 090 12 40,000 180 29 130 24 45,000 160 21 160 35 50,000 240 07 090 55 50,000 100 28 120 28	8)
20,000 130 09 130 130 23,000 100 22 100 1 25,000 100 24 100 2 30,000 090 15 090 2 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55, 060 24 090 2 60,000 100 28 120 2	7
20,000 130 09 130 130 23,000 100 22 100 120 25,000 100 24 100 22 30,000 090 15 090 23 35,000 140 09 090 130 40,000 180 29 130 23 45,000 160 21 160 33 50,000 240 07 090 20 55, 060 24 090 22 60,000 100 28 120 20	.3
25,000 100 24 100 2 30,000 090 15 090 2 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55, 060 24 090 2 60,000 100 28 120 2	.7
30,000 090 15 090 2 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55, 060 24 090 2 60,000 100 28 120 2	.5
30,000 090 15 090 2 35,000 140 09 090 1 40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55, 060 24 090 2 60,000 100 28 120 2	23
40,000 180 29 130 2 45,000 160 21 160 3 50,000 240 07 090 0 55, 060 24 090 2 60,000 100 28 120 2	21
45,000 160 21 160 3 50,000 240 07 090 0 55,000 100 28 120 2	.5
50,000 240 07 090 0 55,: 060 24 090 2 60,000 100 28 120 2	4
50,000 240 07 090 0 55,: 060 24 090 2 60,000 100 28 120 2	1
55,: 060 24 090 2 60,000 100 28 120 2	9
60,000 100 28 120 2	21
60 000 000 000 000 000 000 000 000 000	.0
	:3
70,000 090 33 100 3	8
75,000 110 3	5
77,000 110 45	-
80,000 110 4	3
85,000 090 4	2
90,000 090 5	4
95,000 100 6	5
100,000 100 7	6
105,000 100 8	4
110,000 080 7	O.
105,000 110 7	6

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken by the Eniwetok weather station.

Figure 140 . Hodographs for Operation HARDTACK I -

Rose.

- Umbrella

PPG Time CM

DATE: 9 June 1958 8 June 1958 TIME: 1115 2315

SITE: PPG - Enivetok - NNE of

Henry 11° 22' 51" N

Spensor: DOD

162° 13' 09" E

Site elevation: Sea level

Water depth: 150 ft

HEIGHT OF BURST: 150 ft underwater

TYPE OF BURST AND PLACEMENT:
Sub-surface burst on lagoon bottom

REMARKS:

The pattern was obtained from a total of about 80 points which is really too few to place much reliance on the rather pronounced lobing of the downwind contours. "Nearly all of the total gamma dose occurred within 25 minutes after zero time and was due to the passage of airborne radioactive material. Gamma doses in excess of 100r occurred within the first 15 minutes at downwind distances less than 14,000 feet. The residual field due to deposited radioactive material was relatively insignificant, although radioactive foam may represent a radiological hazard."

Figure 141. Operation HARDTACK I - Umbrella. Idealized rate contours in r. (Contours represent cumulative dose to 6 hours.)

TABLE 48 ENIMETOR WIND DATA FOR OPERATION HARDTACK 1 -

Altitude	H+; he	יעד	H+6% hours		
(MSL)					
feet	degrees	mph	cogrees.	mby	
Surface	060	23	070	23	
1,000	050	26	***		
2,000	060	24			
3,000	070	24			
4,000	080	25	,		
5,000	080	ន្តអ			
6,000	090	. 23			
7,000	100	. A. 121			
8,000	100 "	17			
9,000	100	20			
10,000	100	24			
12,000	110	18			
14,000	120	15	0 70	09	
16,000	100	09	060	15	
18,000	160	05	080	07	
20,000	070	97	190	05	
23,000	090	02	030	09	
25,000	080	96	360	05	
30,000	050	96	350	17	
35,000	330	14	250	15	
40,000	260	14	270	15	
45,000	270	15	200	29	
50,000	280	10	200	20	
55,000	160	08	150	06	
60,000	140	07	⊅ ∳0	80	
65,000	090	54	120	55	
70,000	100	50	080	16	
75,000	100	45			
80,000	100	57	090	57	
85,000	090	57			
90,000	090	62	090	63	
95,000	090	63			
99,000	• • •		090	56	
00,000	090	60		**	
05,000	090	58			

- Wind data was taken by the Eniwetok weather station.
 Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 30°C, the dew point 72°F, and the relative humidity 63%.

Figure 142. Hodograph for Operation HARDTACK I -

Umbrella.

Maple

PPG Time

CMT

DATE:

11 June 1958 10 June 1958

TIME: 0530 1730

Sponsor: UCRL

SITE: PPG - Bikini - South of

Fox

110 41' 14" N

165° 24' 54" E

Lite elevation: Sea level

HEIGHT OF BURST: 11.58 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water

CLOUD TOP HEIGHT: 40,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

243

Figure 143.

TABLE 49 BIKINI WIND DATA FOR OPERATION HARDTACK I -

MAPLE

Altitude	li+2 h	our	11+6½ h	ours	H+121	nours	•
(MSL)	Dir	Speed	Dir	Speed	Dir	ಶ್ರುeed	•
fect	degrees	mph	degrees	mph	degrees	mph	•
Surface	080	25	040	25	050	21	
1,000	080	23	070	55	070		
2,000	080	24	070	20	070	23	
3,000	080	23	080	17	080	23	
4,000	100	22	090	14	090	21 20	
5,000	110	2 2	150		100	20	
6,000	120	55	140	17 2 0	110	16	
7,000	130	18	150	18	100		
8,000	140	20	150	18	110	13	
9,000	130	20	140	16	110	09 12	
10,000	130	18	130	20	110	34	
12,000	100	24	120	20	120	144	
14,000	080	21	140	24	120	13 10	
15,000	(080)	(55)	(140)	(21)			
16,000	080	24	140)	18	(130)		
18,000	140	29	120	24	130 (1) 150		1,
20,000	140	28	130	26	130	40.5	
23,000	130	20	17/0	15	130	20	
25,000	190	10	190	08	330	× 18	
30,000	270	20	280	09	2 80	18	
35,000	250	38	(285)	(17)	(285)	(17)	
46,000	270	33	290	25	290	17	
45,000	310	5 1	(315)	(24)	350	26	
50,000	330	20	340	23	350	24	
54,000	070	03	J=(/		370	24	
55,000	(080)	(06)	(350)	(06)	(250)	(07)	
56,000	(000)	(00)	350	02	230	C7	
60,000	100	14	130	13	360	ο̈́β	
63,000			-54		100	22	
65,000	070	33					
70,000	090	21	090	25	980	24	
75,000	090	32					
80,000	090	58	090	56	090	60	
83,000					100	61	
84,000			090	56			
85,000	090	69					
90,000	090	79					
,-,	-,-	. ,			•	_	

NOTES:

[.] Numbers in parentheses are estimated values.

^{2.} Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan, Bikini 4toll.

^{3.} Tropopause height was 53,000 ft MSL.

^{4.} The surface air pressure was 14.66 psi, the temperature 27.0°C, the dew point 74°F, and the relative humidity 81%.

Figure 144. Hodographs for Operation HARDTACK I -

Maple.

Aspen

	PPG Time	GMT
DATE:	15 June 1.958	14 June 1958
TIME:	0530	1730

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie 4,000 ft from the island
11° 41' 27" N
165° 16' 24" E
Site elevation: Sea level

HEIGHT OF BURST: 10.82 ft

CLOUD TOP HEIGHT: 48,600 ft CLOUD BOTTOM HEIGHT: NM TYPE OF BURST AND PLACEMENT:
Surface burst from barge on
water

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

the house of the second second and the second secon

Figure 145. Operation HARDTACK - Aspen.

TABLE 50 BIKINI WIND DATA FOR OPERATION HARDTACK I -

Altitude	H+ ho	ır	H+93 h	ours	H+3.25 1	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mbp	degrees	ang h	degrees	m/bt/
12	050	21	06 0	21	060	23
	070	55	06 0	22	070	24
- v00	080	21	060	55	070	2 4
3, 00 0	090	51	070	22	070	25
4,000	090	51	090	24	070	24
5,000	090	20	090	25	070	24
6,000	100	22			090	22
7,000	110	52			090	12
8,000	110	55			080	23
9,000	120	23	100	22	080	21
10,000	110	14	100	22	08 0	17
12,000	110	16	100	13	090	17
14,000	120	.10	110	15	090	15
15,000	(110)	(12)	(110)	(16)	(090)	(16)
16,000	110	13	`110	17	`090	18
18,000	120	13	110	15	090	17
20,000	120	13	120	18	090	17
23,000	140	21	120	17	100	15
25,000	150	23	130	51	120	18
30,000	160	26	140	23	130	23
35,000	170	29	(140)	(26)	(150)	(24)
37,000			140	28		••
40,000	150	26	200	33	170	25
44,000			~~~		180	46
45,000	160	23				
50,000	190	30	190	28	200	20
54,000	100	14				
55,000	(110)	(13)	(110)	(18)	(150)	(12)
56,000					110	10
57,000			070	15		
60,000	150	08	060	17	100	20
62,000	060	20				
64,000	41 44 44	••			110	08
66,000	in m m		120	38		••
70,000	090	29	090	23	060	23
73,000	***		060	45	•••	-5
78,000		~			080	48
89,000					110	57

Numbers in parentheses are estimated values.
 Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan, Bikini Atoll.
 Tropopause height was j2,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 27.4°C, the dew point 74°F, and the relative humidity 78%.

Figure 146. Hodographs for Operation HARDTACK I -

Aspen

OPERATION HARDTACK I -

Walnut

PPG Time GMT

DATE: 15 Jun 1958 14 Jun 1958

TIME: 0630 1830

Sponsor: LASL

SITE: PPG - Eniwetok - 5,000 ft SW of Janet 11° 39' 37" N 162° 13' 31" E

Site elevation: Sea level

HEIGHT OF BURST: 7.21 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

CLOUD TOP HEIGHT: 61,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 147. Operation HARDTACK I - Walnut. Island dose rates in r/hr at H+1 hour.

TABLE 51 ENIVETOK WIND DATA FOR HARDTACK I-

WALHUT

Altitude	H-+ hour		11+53 hours		H+10+ hours Dir Speed		
(MSL)	Dir Speed		Dir			Speed	
feet	degrees	mp h	degrees	mbp	degrees	шБу	
Surface	070	16	100	17	080	17	
1,000	070	22	070	25	060	17	
2,000	080	22	080	20	070	21	
3,000	090	55	100	50	080	21	
4,000	09 0	22	100	50	090	21	
5,000	090	20	100	10	090	24	
6,000	090	17	110	21	090	26	
7,000	090	15	110	21	090	24	
8,000	090	15	110	17	` 100	50	
9,000	100	15	110	14	100	16	
10,000	100	15.	100	15	120	17	
12,000	090	15	120	10	090	12	
14,000	110	17	110	80	110	07	
15,000	(110)	(20)	(120)	(09)	(110)	(80)	
16,000	110	23	130	12	110	99	
18,000	110	23	120	2 2	120	15	
20,000	110	57	130	20	120	14	
23,000	150	14	110	07	130	14	
25,000	500	13	130	oŢ	140	18	
30,000	180	29	160	11:	170	24	
35,000	.190	24	160	29	(170)	(26)	
40,000	510	26	160	28	170	28	
45,000	150	16	160	26	170	45	
50,000	140	16	180	,30	210	28	
55,000	110	09	170	06			
57,000				***	050	15	
60,000	080	20	080	17	,090	,20	
65,000	100	26	110	30	(090)	(23)	
70,000	090	29	090	26	,080	28	
75,000	090	48	090	39	(080)	(38)	
80,000	090	57	090	53	090	59	
85,000	090	69	090	69	***		
90,000	090	73	100	76	080	54	
94,000	090	73					
95,000			100	77			
100,000			100	90	090	83	
105,000			090	94	090	78	

Mumbers in parentheses are estimated values.
 Wind data was taken by the Enivetok weather station.
 Tropogause height was 54,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 27.1°C, the dew point 76°F, and the relative humidity 84\$.

A STATE OF THE STA

.

Walmut.

253

Pigure 148. Hodographs for Operation HARDDACK I -

OPERATION HARDWACK I -

Linden

PPG Time CMT

DATE: 18 Jun 1958 18 Jun 1958

TIME: 1500 0300

Sponsor: LASL

Yvonne, 4,000 ft from the island
110 32' 39" N

162° 21' 23" E te elevation: Sea le

Site elevation: Sea level Water depth: 33 ft

HEIGHT OF BURST: 8.25 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 20,000 ft MSL CLOUD BOTTOM NEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t^{-1·2} decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 149. Operation HARDTACK I - Linden. Island dose rates in r/hr at H+1 hour.

TABLE 52 ENIVETOK WIND DATA FOR OPERATION HARDTACK I -

LINDEN

Altitude	H-hour			ours	H49 hours		
(MSL)	Mr	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	110	18	110	18	070	16	
1,000	090	17	080	14	***		
2,000	100	14	080	15			
3,000	120	12	090	12			
4,000	120	12	110	09			
5,000	120	09	110	10			
6,000	120	09	110	08			
7,000	120	05	100	07	*		
8,000	J5 0	05	· 100	05			
9,000	110	07	08 0	07			
10,000	100	15	090	09		••	
12,000	110	14	110	15			
14,000	140	12	120	09			
15,000	(130)	(14)	(120)	(12)	(120)	(14)	
16,000	130	17	130	14	120	14	
18,000	110	24	110	25	130	18	
20,000	100	20	110	23	120	16	
23,000	100	16	100	12	130	10	
25,000	140	13	140	13	140	07	
30,000	060	15	07 0	13	080	07	
35,000	070	25			O40	15	
40,000	320	07	010	14	320	13	
41,000			290	17			
45,000	340	13			340	S5	
50,000	030	07	010	07	060	07	
55,000	120	15	140	13	500	14	
60,000	100	16	090	09	090	23	
65,000	090	37			090	26	
70,000	100	38	100	3 3			
75,000	120	40					
80,000	100	48	100	52			
85,000	090	63			***		
90,000	090	69	090	74		~-	
95,000	090	85		• •	***		
.00,000	100	110	100	95			

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 31.2°C, the dew point 77.50°F, and the relative humidity 71%.

Figure 150. Hodographs for Operation HARDTACK I -

Linden.

OPERATION HARDTACK I

Redvood

,	PPG Time		GMI	-
DATE:	28 Jun 1958	'27	Jun	1958
TIME:	0 530	173	30	

Sponsor: UCRL

SITE: PPG - Bikini South of Fox 11° 41' 14" N 165° 24' 54" E Site elecation: Sea level

HEIGHT OF BURST: 10.79 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on
water

CLOUD TOP HEIGHT: 51,000 ft MSL CLOUD BOTTOM HEIGHT: 28,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

BIKINI WIND DATA FOR GRERATION VARDTACK

The state of the s								
Altitule				ours 🗥	H+12½ hours			
(MSI,)	Dir	Speed	Di ₂	Speed	Dir	Speed		
feet	degrees	mph	degrees	mph	degrees.	mph		
Surface	aro	23	080	23	090	25		
1,000	0 7 0 /	23	090	29	.090	33		
2,000	070	· 29 🖔	080	29	100	29		
3,00r	UTC	£3	090	28	100	24		
4,000	070	20	୍ ୦୨୦	26	100	12		
5,000	୧୫୦	18	1.00	23	110	17		
6,00∪	10ວ	21	100	22.	110	16		
7,600	100	22	110	22	110	23		
3,000	110	, 22	120	50	110	25		
9,000	110	23	110	18	110	28		
10,000	110	23	120	20	110	24		
12,000	110	21	110	20	120	25		
14,000	110	20	120	21	100	24		
15,000	(110)	(18)	(110)	(21)	(100)	(25)		
16,000	100	18	110	21	100	26		
18,000	ა90	16	120	25	120	29		
20,000	100	18	110	21	110	23		
23,000	080	12	100	22	130	20		
25,000	140	12	100	28	140	23		
30,000	070	06			120	23		
35,000	180	68			140	07		
40,000	170	16			190	07		
45,000	510	26			220	09		
50,000	530	24			040	16		
5 5,0 00	310	07			140	18		
60,0 00	130	08		40 cm	08 0	28		
55,000				-	090	41		
70,000					100	54		
72,000		60 mg			110	46		

NOTES:

Numbers in parentheses are estimated values.
 Wind data was taken on board ship within 30 nautical miles of the tower at Man Island, Bikini Atoll. Tropopause height was 52,000 ft MSL.

The surface air pressure was 14.65 psi, the temperature 27.3°C, the dew point 76.5°F, and the relative humidity 92%.

Figure 152 . Hodographs for Operation HARDTACK I -

Redwood.

OPERATION HARDIACK I -

Elder

 PPG Time
 GMT

 DAME: 28 June 1958
 27 June 1958

 TIME: 0630
 1830

Sponsor: LASL

SITE: PPG - Eniwetok - SW of Janet 1,000 ft to nearest edge of island 11° 39' 48" N 162° 13' 48" E Site elevation: Sea level

HEIGHT OF BURST: 9.17 ft

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM WEIGHT: NM

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water.

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 153. Operation HARDTACK I - Elder. Island dose rates in r/hr at H+l hour.

Altitude	H-충 1	nour	H+5+ ho	ours	H+11½ h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	080	24	090	17	100	16
1,000	070	26	070	23	100	26
2,000	070	26	090	24	1.00	26
3,000	080	24	100	54	100	26
4,000	090	22	100	22	100	26
5,000	09 0	22	100	5 lt	100	26
6,000	100	55	110	28	100	26
7,000	120	23	110	23	100	26
8,000	130	21	110	22	100	26
9,000	130	22	100	5/1	100	30
10,000	120	20	110	26	100	31
12,000	090	50	200	22	100	26
14,000	090	18	100	22	100	26
15,000	(100)	(17)	(100)	(22)	(100)	(15)
16,000	: 110	16	100	22	100	06
18,000	120	13	150	. 22	080	.33
20,000	110	16	150	22	(060)	(50)
23,000	110	16	120	17	100	18
25,000	090	15	100	14	110	23
30,000	230	16	185	21	140	28
34,000	~-~	~=	160	38		
35,000	190	33	(160)	(37)	140.	31
40,000	180	47	160	.29	190	26
45,000	180	23	(220)	(21)	240	07
50,000	180	23	280	13	150	13
53,000			180	13		
55,000	150	13	(160)	(14)	270	30
60,000	100	26	100	18	110	23
65,000	100	28			090	47
70,000	060	46	100	48	090	56
75,000	100	47			090	56
80,0 00	090	61	090	62	090	61
85,000	090	67		~-	090	74
90,000	090	93	100	87	090	8 7
95,00 0	090	90			OCO	90
100,000			100	105		46 🕶
105,000			100	117		~ -
110,000			100	107	-	
116,000			100	90	***	~-

NOTES:

Numbers in parentheses are estimated values.

Wind data was taken by the Eniwetok weather station.

Tropopause height was 52,000 ft MSL.

The surface air pressure was 14.63 psi, the temperature 27.4°C, the dew point 7%°F, and the relative humidity 78%.

Figure 154. Hodographs for Operation HARDTACK I -

Elder.

OPERATION HARDIACK I -

Oak

 PPC Time
 CMT

 DATE:
 29 June 1958 28 June 1958

 TIME:
 0730 1930

TOTAL YIELD: 8.9 Mt

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: 2.98 sec
Radius at 2nd maximum: NM

CRATER DATA:

Diameter: 4,400 ft Depth: 183 ft Sponsor: LASL

SITE: PPG - Eniwetok - 3 mi
SW of Alice
11° 36' 28" N
162° 06' 28" E
Site elevation: Sea level
Water depth: 13 ft

HEIGHT OF BURST: 6.5 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 78,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at a desired spot, so that a ground reading could be obtained or to make a slow pass over the desired spot at an elevation of 25 feet. Peadings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 155. Operation HARDTACK I - Oak.
Island dose rates in r/hr at H+l hour.

Altitude	H+3 hour		H+42 hours		H+94 hours	
(MSL)	Dir Speed		Dir	Dir Speed		Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	120	16	090	12	100	22
1,000	090	55	080	17	100	30
2,000	100	54	೧ 80	55	100	30
3,000	100	24	080	22	100	28
¥,000	100	24	090	50	3.00	60
5,000	110	55	100	20	100	23
6,000	110	50	110	17	100	16
7,000	120	20	120	17	100	18
8,000	120	20	130	17	100	18
9,000	130	18	130	17	100	17
10,000	140	17	1.30	17	100	13
12,000	150	16	130	18	120	13
14,000	130	18	150	22	130	12
15,000	(130)	(17)	(150)	(51)	(130)	(09
16,000	3.30	17	150	20	130	07
18,000	130	17	150	20	130	07
20,000	130	18	160	20	200	05
23,000	140	17	160	26	170	12
25,000	140	55	150	23	170	12
30,000	140	16	140	20	190	09
35,000			140	16	160	10
40,000	120	20	110	16	100	16
44,000	060	14				
45,000	(070)	(14)	090	18	08 0	17
50,000	090	13	160	21	140	08
55,000	(100)	(12)	070	08	040	1.2
57,000	110	12				
60,000			080	31	080	30
65,000			090	33	100	35
70,000	***		090	43	090	41
75,000			090	56	090	54
8 0,000			100	67	100	67
85,000	~		1.00	97	090	78
90,000			090	72	090	84
91,000			090	73		
95,000		~-			090	82
00,000				••	090	9 5
05,000					100	106
10,000					100	115
14,000					090	121

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 50,000 ft MSL.
 The surface air pressure was 14.64 psi, the temperature 27.3°C, the dew point 76.5°F, and the relative humidity 87%.

Figure 156. Hodographs for Operation HARDTACK I -

Oak.

OPERATION HARDTACK I -

lickory

PPG Time CMT

DATE: 29 June 1958 29 June 1958

TIME: 1200 2400

Sponsor: UCRL

SITE: PPG - Bikini - Off west end of Tare
11° 29' 45" N
165° 22' 15" E
Site elevation: Sea level

HEIGHT OF BURST: 12.11 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 24,000 ft MSL CLOUD BOTTOM HEIGHT: 12,000 ft MSL

CRATER DATA: Not available

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 157. Operation HARITACK I - Hickory. Island dose rates in r/hr at H+1 hour.

Altitude	H-hou	r	H+6 hc	urs	H+12 h	ours
(MSI,)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	09	050	23	080	17
1,000	080	23	080	28	080	22
2,000	080	23	080	36	08 0	24
3,000	080	24	080	36	080-	23
4,000	090	24	090	16	080	21
5,000	090	24	090	31	070	20
6,000	090	21	080	29	060	21
7,000	090	22	090	24	060	21
8,000	090	20	090	22	070	18
9,000	090	17	080	15	090	21
10,000	100	18	070	12	090	20
12,000	100	14	050	13	070	21
14,000	110	15	070	14	070	21
15,000	(100)	(17)	(070)	(10)	(070)	(21)
16,000	100	20	060	08	070	21
18,000	110	21	040	15	060	23
20,000	110	12	040	16	030	15
23,000	100	09	030	06	040	09
25,000	060	06			010	16
30,000	Calm	Calm	010	07	050	03
35,000	160	08	100	08	110	12
40,000			110	09	070	08
45,000			040	20	020	14
50,000			140	10	060	03
55,000		,	350	12	350	28
60,000			070	40	080	35
6 5,000			120	25	090	18
70,000			070	41	030	62
72,000			060	41		

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship within 30 nautical miles of the tower at Nan Island, Bikini Atoll.
- 3. Tropopause height was 51,000 ft MSL.
- 4. The surface air pressure was 14.65 psi, the temperature 27.8°C, the dew point 81.3°F, and the relative humidity 84%.

Figure 158. Hodographs for Operation HARDIACK I -

OPERATION HARDTACK I -

Sequola

PPG Time DATE: 2 July 1958 1 July 1958 TIME: 0630 1830

Sponsor: LASL

PPG - Eniwetok west of Yvonne 13.0 321 39" 162° 21' 23" E Site elevation: Sea level

HEIGHT OF BURST: 6.5 ft

TYPE OF BURST AND PLACEMENT: Surface burst from barge on water

CLOUD TOP HEIGHT: 17,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to wad up to 500 r/hr. The t-1-1 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 159. Operation HARDTACK I - Sequoia.

Island dose rates in r/hr at H+1 hour.

TABLE 57 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

Altitude	H-∮ hour		H+51 hours		H+104 nours		
(MSL)	Mr	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mbp	
Surface	100	14	080	18	090	18	
1,000	090	20	090	18	090	23	
2,000	090	22	090	55	090	24	
3,000	100	55	100	55	090	24	
4,000	700	26	100	55	090	23	
5,000	100	23	100	24	090	55	
6,000	100	22	100	20	100	20	
7,000	100	22	090	17	100	17	
3,000	100	25	. 100	15	100	15	
9,000	100	21	110	14	100	14	
10,000	100	18	110	16	100	16	
12,000	110	20	110	16	C90	15	
14,000	130	15	130	14	130	08	
15,000	(120)	(13)	(130)	(13)	(130)	(09)	
16,000	120	10	130	13	130	12	
18,000	050	07	100	13	120	10	
20,000	040	13	080	09	130	05	
23,000	010	23	010	18	040	16	
25,000	340	18	340	22	020	07	
30,000	010	15	030	10	320	09	
35,000	020	18	020	18	020	07	
40,000	010	28	360	21	010	17	
45,000	020	36	010	29	010	21	
50,000	270	2 6	340	22	300	17	
55,000	010	18	31.0	12	050	08	
60,000	080	14	100	55	110	18	
65,000	100	28	100	30	080	29	
70,000	090	39	090	45	090	48	
75,000	1.00	55	100	47	100	57	
80,000	090	56	090	54	-090	67	
85,000	100	72	100	70	090	75	
90,000	090	68	100	80	1390	76	
95,000	090	90	090	90	090	83	
100,000	090	68		••	φρο	100	
105,000	100	\$8	•••		090	109	
110,000		40 MB			090	79	
112,000	1			-4	100	θé	

Numbers in parentheses are estimated values.
Wind data was taken by the Eniwetok veather station.
Tropopause height was 52,000 ft MSL.
The surface air pressure was 14.61 psi, the temperature 27.2°C, the dev point 83.5°F, and the relative humid/ty 76%.

Rise rate: 5000ft/hr

Figure 160. Hodographs for Operation HARDTACK I -

Sequoia.

OPERATION HARDTACK I -

Cedar

 DATE:
 3 July 1958
 2 July 1958

 TIME:
 0530
 1730

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie, 4,000 ft from the island
Site elevation: Sea level

HEIGHT OF BURST: 10.84 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: 35,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+h hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Operation HARDFACK I - Cedar. Island dose rates in r/hr at H+1 hour.

Hgurs 161.

TABLE 58 BIKINI WIND DATA FOR OPERATION HARDTACK I -

CEDAR

Altitude	li+1 nour		H+6 hc	urs	11+9½ ho	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
ſeet	degrees	mph	degrees	mph	degrees	mbjr
Surface	080	18	090	1.6	090	ì8
1,000	090	26	110	17	080	22
2,000	100	29	1.00	23	090	25
3,000	110	30	080	28	090	26
4,000	110	29	100	25	100	28
5,000	110	28	090	25	100	26
6,000	110	24	080	24	100	25
7,000	100	24	080	23	070	24
8,000	100	2 5	08c	28	100	22
9,000	100	21.	090	30	110	26
10,000	090	20	090	30	100	28
12,000	080	16	090	21	120	21
14,000	060	13	070	21	08 0 -	21
15,000	(040)	(13)	(070)	(20)	(090)	(20)
16,000	030	13	070	20	100	20
18,000	350	03	050	17	060	13
20,000	270	12	Calm	Calm	340	05
23,000	270	15	Calm	Calm	340	08
25,000	(250)	(16)	280	10	300	07
30,000	230	21	240	17	220	16
35,000	200	33	210	25	210	47
40,000	210	40	210	47	220	53
45,000	250	47	240	39	550	38
50,000	250	28	220	46	230	41
53,000			240	38		
55,000	260	20		-	290	09
60,000	090	22			100	26
65,000	080	28			100	30.

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship within 30 nautical miles of the Tower at Nan island, Bikini Atoll.
- Tropopause height was 51,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 28.4°C, the dew point 76.3°F, and the relative humidity 79%.

Figure 162. Hodographs for Operation HARDTACK I -

Cedar.

OPERATION MARDTACK I -

Dogwood

PPG Time GMT

DATE: 6 July 1958 5 July 1958

FIME: 0630 1830

Sponsor: UCRL

SITE: PPG - Eniwetok - SW of Janet 4,000 ft to nearest edge of island (Sta. 1312) 11° 39' 48" N 162° 13' 48" E

HEIGHT OF BURST: 12.25 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

CLOUD TOP HEIGHT: 58,000 ft MSL CLOUD BOTTOM HEIGHT: 35,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour doserate readings to H+1 hour.

Figure 163. Operation HARDFACK I - Dogwood. Island dose rates in r/hr at H+l hour.

TABLE 59 ENIVEROK WIND DATA FOR OPERATION HARDWACK I-

DOGWOOD

Altitude (MSL)	II-s hour		H+5≥ hours		H-83 hours	
	Dir Speed		Dir	Dir Speed		Speed
feet	degrees	mbp	degrees	mph	degrees	mby
Surface	090	18	090	18	080	16
1,000	080	20	080	17	080	16
2,000	080	24	090	20	070	18
3,000	090	25	100	17	070	21
4,000	090	24	100	15	080	21
5,000	090	20	100	15	080	16
6,000	090	17	100	15	090	14
7,000	080	20	100	14	090	15
8,000	080	17	080	14	090	15
9,000	070	18	080	17	080	14
10,000	080	20	090	17	090	14
12,000	100	16	090	18	100	14
14,000	100	14	100	50	120	17
15,000	(100)	(17)	(100)	(20)	(130)	(16)
16,000	100	21	`110	22	150	15
18,000	100	22	110	21	120	22
20,000	100	18	110	17	120	20
23,000	100	12	100	23	110	26
25,000	100	15	090	24	100	29
30,000	120	21	080	30	140	20
35,000	130	18	160	18	160	21
40,000	190	38	180	22	160	25
45,000	210	40	200	29	140	38
50,000	280	15	250	21	5,40	15
55,000	290	17	160	09	240	05
60,000	030	10	090	18	08 0	20
65,000	050	22	090	24		
70,000	050	4h	090	38		
75,000	050	40	100	40		
80,000			100	54	₩ # / \$	
85,000	*	••	700	59		•••
90,000		~-	090	76		
95,000			100	92		**
000,000			2.00	101	Y	••
05,000			000	234	•••	••

Humbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Trupopause height was 52,000 ft MSL.
 The surface air pressure was 14.63 psi, the temperature 27.4°C, the dew point 77°F, and the relative humidity 85%.

Figure 164. Hodographs for Operation HARDTACK I -

Dogwood.

Poplar

 DATE:
 12 July 1958
 12 July 1958

 TIME:
 1530
 0330

Sponsor: UCRL

SITE: PPG - Bikini - SW of
Charlie, 7,500 ft from
the nearest edge of island
11° 41' 17" N
165° 15' 52" E
Site clevation: Sea level

HEIGHT OF BURST: 11.66 ft

TYFE OF BURST AND PLACEMENT:
Surface burst from barge on water over reef

CLOUD TOP HEIGHT: > 61,000 ft MSL CLOUD BOTTOM HEIGHT: 42,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from the Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

Figure 165. Operation HARDTACK I - Poplar. Island dose rates in r/hr at H+1 hour.

Altitude	H+2 h	our	H+8 ₂ h	$H+8^{1}_{2}$ hours	
(MSL)	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	
Surface	060	14	070	18	
1,000	070	22	070	21	
2,000	060	24	080	24	
3,000	060	22	080	22	
4,000	060	2 2	080	20	
5,000	050	22	090	15	
6,000	060	21	090	14	
7,000	070	18	080	17	
8,000	070	14	080	20	
9,000	070	07	070	21	
10,000	060	13	070	24	
12,000	080	22	070	26	
14,000	100	18	090	21	
15,000	(100)	(15)	(100)	(21)	
16,000	110	13	100	21	
18,000	120	16	120	16	
20,000	150	12	110	16	
23,000	220	07	100	16	
25,000	260	80	110	14	
30,000			210	09	
35,000			210	16	
40,000	~ ~ ~		210	17	
45,000			130	21	
50,000	***		210	31	
55,000			180	12	
60,000			090	25	
65,000			090	24	
70,000			090	36	
72,000			080	47	

NOTES:

- Numbers in parentheses are estimated values.
 Weather observations were made using the standard rawinsonde system on Nan Island (Bikini Atoll) adjacent to the Nan Tower. Additional data was taken on board destroyers.
- 3. Tropopause height was 55,000 ft MSL.
- 4. The surface air pressure was 14.62 psi, the temperature 27.9°C, the dew point 81.9°F, and the relative humidity 99%.

Figure 166. Hodographs for Operation HARDTACK I -

Poplar.

OPERATION HARDTACK I - Scaevola

PPG Time

Sponsor: LASL

14 July 1958 14 July 1958

TIME:

1600 0400

SITE: PPG - Eniwetok - Off

Yvonne

11° 33' 15" N 162° 21' 24" E

Site elevation: Sea level

HEIGHT OF BURST: 20 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge

on water

CLOUD TOP HEIGHT: NM

CLOUD BOTTOM HEIGHT: NM

REMARKS:

No fallout.

Pisonia.

 DATE:
 PPG Time
 CMT

 18 July 1958
 17 July 1958

 TIME:
 1100
 2300

Sponsor: IASL

SITE: PPG - Eniwetok - 11,000 ft
W of Yvonne
11° 33' N
162° 19' 43" E
Site elevation: Sea level

HEIGHT OF BURST: 6.5 ft

TYPE OF BURST AND PIACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 55,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 167. Operation HARDTACK I - Pisonia.

Island dose rates in r/hr at H+1 hour.

TABLE 61 ENIVETOK WIND DATA FOR HARDDACK I -PISONIA

Altitude	H+1 he	our	H+6 h	UTS	H+13 ho	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	Calm	Calm	330	09	070	14
1,000	180	09	030	05	070	55
2,000	170	10	090	09	070	20
3,000	160	14	09 0	12	080	17
4,000	140	17	100	13	090	15
5,000	130	14	120	14	110	15
6,000	130	75	140	16	120	14
7,000	130	14	150	17	130	10
8,000	120	10	150	18	120	10
9,000	120	08	150	20	110	14
10,000	120	13	150	17	120	18
12,000	110	12	130	13	110	14
14,000	100	09	100	15	090	14
15,000	(100)	(80)	(080)	(13)	(o 8 o)	(14)
16,000	090	07	070	15	070	14
18,000	120	17	110	05	090	09
20,000	120	14	120	02	100	05
23,000	080	18	090	14	140	09
25,000	0 60	15	090	17	120	12
30,000	060	22	060	15	090	07
35,000	050	57	040	17	060	07
40,000	070	09	050	12	090	09
45,000	040	20	040	06	OÃO	06
50,000	050	12	050	15	130	10
55,000	100	12	570	05	130	12
60,000	110	55	120	30	110	50
65,000	090	31	090	39	090	44
70,000	090	52	090	38	090	45
75,000	090	55	100	51	090	54
80,000	090	67	100	61	090	76
85,000	100	68	090	78	090	80
90,000	090	82	090	87		••
95,000	090	75	090	98		
100,000	090	97	090	83		
101,000		- -	090	76		
105,000	090	101				

NOTES:

1. Numbers in parentheses are estimated values.
2. Wind data was taken by the Eniwetok weather station.
3. The surface air pressure was 14.67 psi, the temperature 26.8°C, the dew point 74.9°F, and the relative humidity 83%.

Figure 168. Hodographs for Operation HARDTACK I -

Pisonia.

Juniper

PPG Time

22 July 1958 22 July 1958

1620 TIME:

0420

Sponsor: UCRL

SITE: PPG - Bikini - 4,000 ft

from west end of Tare

11° 29' 46" N

165° 22' 15" E Site elevation: Sea level

HEIGHT OF BURST: 12.11 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge

on water

CLOUD TOP HEIGHT: 40,000 ft MSL CLOUD BOTTOM HEIGHT: 24,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 169. Operation HARDMACK I - Juniper. Island dose rates in r/hr at H+1 hour.

TABLE 62 BIKINI WIND DATA FOR OPERATION HARDTACK I -

JUNIPER

(MSL) feet Surface	Dir degrees	Speed	Dir	ours		
	degrees		<u> </u>	Speed	Dir	Speed
Cumfaca	_	mph	degrees	mph	de gree s	mph
Suriace	080	16	100	09	110	07
1,000	080	18	100	16	110	13
2,000	090	20	100	16	120	14
3,000	100	21	110	17	120	14
4,000	100	21	110	17	120	14
5,000	100	20	110	17	110	15
6,000	110	18	110	18	110	17
7,000	110	16	100	20	110	20
8,000	110	13	090	18	100	18
9,000	110	09	090	17	100	15
10,000	110	10	080	16	100	15
12,000	120	13	090	16	100	16
14,000	120	16	090	16	100	16
15,000	(120)	(15)	(090)	(17)	(100)	(16)
16,000	130	14	100	1.8	100	16
18,000	130	15	100	15	100	13
20,000	130	18	110	18	090	12
23,000	130	21	120	20	100	10
25,000	140	22	140	09	100	09
30,000	140	16	150	07	080	06
35,000	150	12	300	02	260	12
40,000	310	12	310	14	330	10
45,000	090	10	070	13	300	13
50,000	<u>∷</u> 20	12	120	09	050	09
55,000	230	07	320	03	06 0	07
60,000	c8o	31	090	38	090	36
65,000	090	36	08 0	32		
70,000	100	48	080	38		
75,000	090	51	090	41		
80,000	080	63	080	63		
85,000	090	67	090	79		
90,000	080	67	090	98		
95,000	080	76	090	121		
100,000	090	78				
105,000	090	80				

NOTES:

1. Numbers in parentheses are estimated values.

^{2.} Weather observations were made using the standard rawinsonde system on Nan Island (Bikini Atoll) adjacent to the Nan Tower. Additional data was taken on board destroyers.

Tropopause height was 51,000 ft MSL.
 The surface air pressure was 14.64 psi, the temperature 30.8°C, the dew point 78.9°F, and the relative humidity 76%.

Figure 170. Hodographs for Operation HARDTACK I -

Juniper.

Olive

 PPG Time
 CMT

 DATE:
 23 July 1958
 22 July 1958

 TIME:
 0830
 2030

Sponsor: UCRL

SITE: PPG - Eniwetok - SW of Janet, 4,000 ft from the nearest edge of island (Sta. 1312) 11° 39' 48" N 162° 13' 48" E
Site elevation: Sea level

HEIGHT OF BURST: 8.0 ft

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: 15,000 ft MSL

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

REMARKS:

Only individual dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 171. Operation HARDTACK I - Olive. Island dose rates in r/hr at H+l hour.

TABLE 63 ENIVETOK VIND DATA FOR OPERATION HARDTACK I -

OLI VE

	Altitude	H-2' h	ours	H-hc	ur	H+3; h	ours	H+91	ours
•	(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
	feet	degrees	mph	degrees	mph	degrees	mph	degrees	uph
						-			
:	Surface	310	18	830	18	130	18	160	21
	1,000	130	25	130	23	120	20	140	15
	2,000	130	32	130	29	130	24	150	17
	3,000	130	29	130	26	140	55	150	51
	4,000	130	26	140	24	150	20	150	51
	5,000	130	26	140	24	150	20	160	51
	6,000	130	2 6	140	54	150	55	160	50
	7,000	120	29	130	28	140	26	160	17
	8,000	120	29	130	29	140	28	140	17
	9,000	120	26	130	25	140	24	140	16
	10,000	120	23	130	23	140	55	140	16
	12,000	110	23	120	23	130	22	140	50
	14,000	120	24	120	.24	130	24	130	20
	15,000			(150)	(23)	(130)	(22)	(140)	(18)
	16,000	120	23	150.	22	130	50	140	18
	18,000					150	23	140	20
	20,000	120	21	130	23	140	26	130	50
2	23,000	140	27	140	17	130	17	130	20
2	25,000	140	24	140	18	140	12	130	18
	30,000	150	15	150	14	150	15	110	15
	35,000	190	17	180	17	160	17	150	10
1	40,000	180	13	180	15	180	17	200	09
	45,000	140	10	140	14	130	18	100	10
	50,000	050	07	090	07	150	07	320	12
	55,000	040	15	0 70	15	100	14	090	26
	60,000	100	33	100	32	100	31	150	25 38
	65,000	070	33	080	37	100	41	090	38
	70,000					110	38	090	38
	75,000					090	52	090	59
	80,000				••	100	70	100	67
	35,000					100	74	090	67
	90,000					090	82 -	090	89
	91,000							090	92
9	000, باو	•••				090	90		

- NOTES:

 1. Numbers in parentheses are estimated values.
 - Vind data was taken by the Eniwetok weather station. Tropopause height was 48,000 ft MSL.

 - H-hour values were interpolated from H-22 hours and H+32 hours data.
 - The surface air pressure was 14.64 psi, the temperature 26.4°C, the dew point 76° F, and the relative humidity 89%.

Figure 172. Hodographs for Operation HARDTACK I -

Olive.

Pine

 DATE:
 PPG Time
 GMT

 27 July 1958
 26 July 1958

 TIME:
 0830
 2030

Sponsor: UCRL

SITE: PPG - Eniwetok - SW of Janet, 8,000 ft to nearest edge of island 11° 39' 22" N 162° 13' 11" E
Site elevation: Sea level

HEIGHT OF BURST: 8.0 ft

TYPE OF BURST AND FLACEMENT:
Surface burst from barge
on water

CLOUD HEIGHT: Not available

REMARKS:

Only individual island dose rates are available. These were obtained from the Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Figure 173. Operation HARDTACK I - Pine. Island dose rates in r/hr at H+1 hour.

TABLE 64 ENIVETOK VIND DATA FOR OPERATION HARCTACK I -

PINE

Altitude	H- 1					NITS
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	200	18	230	12	200	05
1,000	210	17			190	80
2,000	200	17			240	07
3,000	200	17			240	12
4,000	200	17			550	13
5,000	200	12	220	07	210	13
6,000	190	12	180	09	220	13
7,000	170	05	170	10	220	13
8,000	200	05	170	09	210	12
9,000	200	05	180	09	200	12
10,000	200	05	180	10	200	12
12,000	170	05	180	08	170	10
14,000	150	06	170	09	210	10
15,000	(140)	(05)	(140)	(05)	(210)	(06)
16,000	`130	`05	160	`o6´	`220	`02´
18,000	080	05	190	05	Calm	Çalm
20,000	100	80	190	03	120	05
23,000	140	13	180	09	120	07
25,000	160	17	160	14	150	08
30,000	160	26	150	18	140	10
35,000	150	24	140	2 6	120	50
40,000	190	16	140	21	140	26
45,000	200	16	150	20	120	33
50,000	190	14	170	13	180	05
55,000	130	14	130	14	120	15
60,000	080	23	090	23	130	23
65,000	090	41		• •		
70,000	100	48				
75,000	100	59				
80,000	100	69	***			
85,000	100	81	***			
90,000	100	91	100	68		
92,000			100	70		
95,000	100	90				
00,000	100	99				
.05,000	100	240				
10,000	100	126				
15,000	100	232				

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.

^{3.} Tropopause height was 52,000 ft MSL.
4. The surface air programment of the surface air pro The surface air pressure was 14.64 psi, the temperature 26.7°C, the dew point 75.5°F, and the relative humidity 85%.

Figure 174. Hodographs for Operation HARDFACK I -

Pine.

Teak

	PPG Tim	_	GMT.	
DATE:	31. July 2350	1958	31 July 1050	1958

Sponsor: DOD

<u>SITE</u>: PPG - Johnston Island 16° 44' 38" N 169° 32' 00" W

HEIGHT OF BURST: 250,000 ft

TYPE OF BURST AND PLACEMENT:
High altitude burst from
Redstone missile over
vicinity of Johnston Island.

REMARKS:

No local fallout.

CLOUD TOP HEIGHT: NM

CLOUD BOTION HEIGHT: NM

Quince

PPG Time CMT

DATE: 6 Aug 1958 6 Aug 1958

TIME: 1415 0215

Sponsor: UCRL - DOD

SITE: PPG - Eniwetok - Yvonne
11° 33' 15" N
162° 21' 24" E
Site elevation: Sea level

HEIGHT OF BURST: 3 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from platform on coral soil

CLOUD TOP HEIGHT: 1,500 ft MSL CLOUD BOITOM HEIGHT: NM

REMARKS:

Only alpha contamination resulted from this detonation. Surface alpha monitoring was conducted throughout the area on D and D+1 day with PAC-3G gas-flow proportional alpha counters. The readings were taken in counts per minute, corrected for the probe area, and multiplied by the appropriate shielding factors to compensate for the roughness of the surface monitored. The two isoconcentration lines shown are the most significant ones, since 3,500 µg/m² is the chronic hazard limit and any concentration in excess of 1,000 µg/m² requires decontamination. It is interesting to note that in the great majority of cases the alpha concentrations in the downwind area were higher on D+1 than on D day.

Figure 175. Operation HARDTACK I - Quince.
Alpha contamination in micrograms per square meter.

TABLE 65 ENIWEIOK WIND DATA FOR OPERATION MARDIACK I -

QUINCE

Altitude	li-ho	ır
(MSL)	Dir	Speed
feet	degrees	mph
Surface	060	13
241	070	14
482	070	14
723	070	16
964	080	16

NOTE: Wind data was taken by the Friwetok weather station.

Figure 176. Hodograph for Operation HARDTACK I -

Quince.

Orange

PPG Time CMT

DATE: 11 Aug 1958 11 Aug 1958

TIME: 2330 1030

Sponsor: DOD

SITE: PPG - Johnston 16° 21' 30" N 169° 32' 08" E

HEIGHT OF BURST: 141,1000

TYPE OF BURST AND PLACEMENT:
High altitude burst from
Redstone missile over the
vicinity of Johnston Island.

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

REMARKS: No local fallout.

Fig

PPG Time GMT
18 Aw; 1958 18 Aw; 1958
TIME: 1600 0400

Sponsor: UCRL - DOD

SITE: PPG - Eniwetok - Yvonne

11° 33' 15" N 162° 21' 24" E

Site clevation: Sea level

HEIGHT OF BURST: 1.5 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from platform
over Nevada soil

CLOUD TOP HEIGHT: 5,400 ft MSL CLOUD BOTTOM HEIGHT: 4,300 ft MSL

REMARKS:

The dose-rate contours were obtained by ground survey readings made by scientific projects. Actual decay measurements were used to correct the dose-rate readings to H+1 hour. The portion of the pattern on the island is reliable. That portion which is over water is less reliable because it was not based upon free-field dose-rate readings but upon calculations made from readings taken on five barges and from samples collected in sticky pans mounted on 87 buoys.

Figure 177. Operation HARDTACK I - Fig. On-site dose rate contours in r/hr at H+1 hour.

Figure 178 . Cloud Dimensions: Operation HARDTACK I -

Fig.

Altitude Range	H-ho	ur
(MSL)	Dir	Speed
feet	degrees	mph
0 - 1,000	080	17
1,000 - 2,000	090	19
2,000 - 3,000	100	18
3,000 - 4,000	110	19
4,000 - 5,000	100	18
5,000 - 6,00 0	100	18
6,000 - 7,000	090	18
7,000 - 8,000	090	21
8,000 - 9,000	090	51
9,000 -10,000	080	21.

NOTES: 1. Wind data was obtained by the weather stations on Yvonne Island (Eniwetok Atoll); which were located 1,000 yds and 1,500 yds from GZ.

2. The surface air pressure was 14.62 psi, the temperature 30°C, the dew point 78°F, and the relative humidity 77%.

Figure 179. Hodograph for Operation HARDIACK I -

Fig.

OPERATION ARGUS -

ARGUS I

Local Time

GMT

27 Aug 1958 27 Aug 1958

0128

0228

TOTAL YIELD: 1-2 kt estimated

South Atlantic SITE: 38° 48' S

Sponsor: DOD

11º 55' W

HEIGHT OF BURST: ~ 300 miles

FIREBALL DATA:

Time to 1st minimum: NM

Time to 2nd maximum: NM Radius at 2nd maximum: NM

TYPE OF BURST AND PLACEMENT:

High altitude burst

CLOUD TOP HEIGHT: NM

CLOUD BOTTOM HEIGHT:

REMARKS:

No fallout.

OPERATION ARGUS -

ARGUS II

Local Time GMT 30 Aug 1958

TIME: 0218 0318

TOTAL YIELD: 1-2 kt estimated

Sponsor: DOD

SITE: South Atlantic

49° 23' S 08° 43' W

HEIGHT OF BURST: ~ 300 miles

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

TYPE OF BURST AND PLACEMENT:

High altitude burst

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

REMARKS: No fallout

OPERATION ARGUS -

ARGUS III

 Local time
 CMT

 DATE:
 6 Sep 1958
 6 Sep 1958

 TIME:
 2113
 2213

TOTAL YIELD: 1-2 kt estimated

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

REMARKS: No fallout

Sponsor: DOD

SITE: South Atlantic

49° 30' S

HEIGHT OF BURST: ~ 300 miles

17,700,100

TYPE OF BURST AND PLACEMENT:

High altitude burst

CLOUD TOP HEIGHT: NM
CLOUD BOTTOM HEIGHT: NM

OPERATION DOMINIC -

Adobe

LOCT DATE: 25 Apr 1962

GMT 25 Apr 1962

1545 TIME: 0545

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

TIME: 0601

Aztec

LOCT DATE: 27 Apr 1962

GMT 27 Apr 1962 1601

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (free fall), over Pacific

Oce an

OPERATION DOMINIC -

Arkans as

LOCT

D/ FE: 2 May 1962

GMT 2 May 1962

TIME: 0801

1801

SPONSOR: LRL

SITE: Christmas Island, GZ-15

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Questa

LOCT

SPONSOR: LASL

DATE: 4 May 1962 TIME: 0904

4 May 1962 1904

SITE: Christmas Island, GZ-15

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Frigate Bird

LOCT DATE: 6 May 1962

TIME: 1330

GMT 6 May 1962

2330

SPONSOR: LRL

SITE: Johnston Island danger area

4° 50' N 149° 49' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air, from Polaris missile

OPERATION DOMINIC -

Yukon

LOCT

GMT 8 May 1962

DATE: 8 May 1962

TIME: 0801

1801

SPONSOR: LRL

SITE: Christmas Island, G2-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Pacific Ocean

Mesilla

LOCT DATE: 9 May 1962

TIME: 0701

GMT 9 May 1962 1701

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE KLEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Muskegon

LOCT DATE: 11 May 1962 TIME: 0537

GMT 11 May 1962 1537

SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Sword Fish

GMT 11 May 1962 DATE: 11 May 1962 TIME: 1202 2002

SPONSOR: DOD

SITE: ~400 miles west of San Diego

31° 14.7' ± 0.3' N 124° 13.3' ± 0.3' W

SITE ELEVATION: Sea Level

DEPTH OF BURST:

WATER DEPTH: 17,100 ft

TYPE OF BURST AND PLACEMENT: Underwater, from anti-

submarine rocket

REMARKS:

Figure 180 illustrates the growth and movement of the pool of radioactivity resulting from the Sword Fish test. The contours from D-day to D+6 days represent readings in mR/hr at 500 feet above the water surface.

Figure 180 OPERATION DOMINIC - Sword Fish contours showing growth and movement of the pool of radio-activity from D-day to D+6 days. Contours values in mR/hr at the survey aircraft height of 500 feet

Encino

<u>LOCT</u> <u>GMT</u>

<u>DATE</u>: 12 May 1962 12 May 1962

<u>TIME</u>: 0702 1702

SITE: Christmas Island, GZ-12

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

Sponyor: LASL

TYPE OF BURST AND PLACEMENT:

Air (free fall), over Pacific Ocean

OPERATION DOMINIC -

Swanec

<u>LOCT</u> <u>GMT</u>

<u>DATE</u>: 14 May 1962 14 May 1962

TIME: 0521 1521

SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop),

over Pacific Ocean

OPERATION DOMINIC -

Chetco

LOCT GMT

DATE: 19 May 1962 19 May 1962

TIME: 0536 1536

SPONSOR: LRL

SITE: Christmas Island, G2-10

SITE ELEVATION: Sca Level

HEIGHT OF BURST:

Air (parachute drop), over Pacific Ocean

on an annich and an air a the state of the same of the state of

Tanona

LOCT **GMT** DATE: 25 May 1962 25 May 1962

1608 TIME: 0608

SPONSOR: LRL

SITE: Christmas Island, G2-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Nambe

LOCT GMT DATE: 27 May 1962 27 May 1962

TIME: 0702

1702

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Alma

LOCT GM1 DATE: 8 Jun 1962

8 Jun 1962

TIME: 0702

1702

SPONSOR: LASL

SITE: Christmas Island, GZ-15

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Truckee

SPONSOR: LRL

DATE: 9 Jun 1962 TIME: 0537

9 Jun 1962 1537

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Yeso

LOCT DATE: 10 Jun 1962

TIME: 0601

10 Jun 1962

1601

SPONSOR: LASL

SITE: Christmas Island, GZ-20

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Harlem

TIME: 0537

LOCT DATE: 12 Jun 1962

GMT 12 Jun 1962

1537

SPONSOR: LRL

SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Rinconada

LOCT. 15 Jun 1962 DATE: 15 Jun 1962

1600 TIME: 0600

SPONSOR: LASL

SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Dul ce

LOCT GMT 17 Jun 1962 DATE: 17 Jun 1962 TIME: 0600

1600

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Petit

LOCT 19 Jun 1962 DATE: 19 Jun 1962 T1ME: 0501 1501

SPONSOR: LRL

SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEICHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

OFFRATION DOMINIC -

Otowi

DATE: 22 Jun 1962 22 Jun 1962

TLME: 0600 1600

SPONGOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over

Pacific Ocean

OFERATION DOMINIC -

Bighorn

LOCT GMT

ATE: 27 Jun 1962 27 Jun 1962

TIME: 0519 1519

SPONSOR: LRL

SITE: Christmas Island, GZ-30

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURET AND PLACEMENT:

Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Bluestone

DATE: 30 Jun 1962 30 Jun 1962

T1ME: 0521

1521

SPONSOR: LRL

SITE: Chirstmas Island, GZ-25

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

OPERATION DOMINIC - Star Fish Prime

DATE: 8 Jul 1962 9 Jul 1962

TIME: 2200 U900

TOTAL YIELD: 1.4 Mt

SPONSOR: DOD

SITE: Johnston Island

16° 28' 06.32" N 169° 37' 48.27" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST: 249 miles

TYPE OF BURST AND PLACEMENT: High altitude, from Thor

missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

OPERATION DOMINIC -

Sunset

<u>DATE</u>: 10 Jul 1962 10 Jul 1962 <u>TIME</u>: 0633 1633 SPONSOR: LASL

SITE: Christmas Island, GZ-17

SITE FLEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over
Pacific Ocean

Pamli co

DATE: 11 Jul 1962 11 Jul 1962 TIME: 0537 1537 SPONSOR: LRL

SITE: Christmas Island, GZ-25

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

Air (parachute drop), over Pacific Ocean

OPERATION DOMINIC - Androscoggin

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 2 Oct 1962 2 Oct 1962 <u>TIME</u>: 0517 1617 SPONSOR: LRL

SITE: Johnston Island 13° 38.5' N 172° 11.1' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

OPERATION DOMINIC - Bumping

DATE: 6 Oct 1962 6 Oct 1962 TIME: 0502 1602 SPONSOR: LRL

SITE: Johnston Island 14° 30' N 168° 15' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

Air (parachute drop), over Pacific Ocean

Chema

<u>LOCT</u> <u>GMT</u>

<u>DATE</u>: 18 Oct 1962 18 Oct 1962

<u>TIME</u>: 0501 1601

SPONSOR: LASL

SITE: Johnston Island 14° 32' N 108° 44.7' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over Pacific
Ocean

OPERATION DOMINIC - Check Mate

<u>LOCT</u> <u>GMT</u>

<u>DATE</u>: 19 Oct 1962 20 Oct 1962

<u>TIME</u>: 2130 0830

SPONSOR: DOD

SITE: Johnston Island 16° 04' 20.57" N 169° 36' 35.95" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
High altitude, from XM-23
Strypi (Sergeant) missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

OPERATION DOMINIC - Blue Gill Triple Prime

LOCT GNT SPONSOR: DOD

DATE: 25 Oct 1962 26 Oct 1962 TIME: 2259 0959

SITE: Johnston Island

16° 24' 57.03" N 169° 36' 11.15" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

High altitude, from Thor missile

REMARKS:

This event was conducted as part of the Fish Bowl Series.

OPERATION DOMINIC - Calamity

<u>LOCT GMT</u> <u>SPONSOR: LRL</u> <u>DATE</u>: 27 Oct 1962 27 Oct 1962

TIME: 0446 1546 SITE: Johnston Island 14° 31.1' N 168° 15.6' W

SITE ELEVATION: Sca Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

OPERATION DOMINIC - Housatonic

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 30 Oct 1962 30 Oct 1962 TIME: 0501 1601 SPONSOR: LRL

SITE: Johnston Island 13° 36.8' N 172° 13' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

OPERATION DOMINIC -

King Fish

<u>DATE</u>: 1 Nov 1962 1 Nov 1962 TIME: 0110 1210 SPONSOP: DOD

SITE: Johnston Island 16° 06' 48.61" N 169" 40' 56.02" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
High altitude, from Thor
missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

OPERATION DOMINIC - Tight Rope

 DATE:
 3 Nov 1962
 4 Nov 1962

 TIME:
 2030
 0730

SPONSOR: DOD

SITE: Johnston Island 16° 42' 26.71' N 169° 32' 32.66" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
High altitude, from NikeHercules missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

APPENDIX A

Announced United States Nuclear Detonations

Yields are listed as: Low (less than 20 kt)

Intermediate (20 to 999 kt inclusive) Low Megaton (one to several megatons).

Rrior to October 1958, testing was conducted on an intermittent basis and each series of tests was designated by a series name, such as OPERATION CROSSROADS. The United States conducted no tests from October 30, 1958 to September 1961. After resumption of testing, tests were conducted year around and were listed by fiscal year. For example, all NTS tests during FY-1962, which ended June 30, 1962, were in the OPERATION NOUGAT series except for four surface tests (Little Feller I and II, Small Boy and Johnny Boy) designated DOMINIC II, which were a continuation of the DOMINIC I series conducted in the Pacific.

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	VIELD RANGE
TRINITY FIRST TEST OF	67/16/45 AN A-BONS	ALANGGORDO	TOWER	WEAPONS RELATED	1947
HORLD WAR II FIRST COMBAT	80/95/45 MT USE-HIROSHIMA	JAPAN	AIRUROP	COMBAT	13 KT
HORLD MAR II Second Combat	HAR II 68/89/45 SECOND COMBAT USE-NAGASAKI	JAPAN UPERATION CPOSSROADS	AIRCROP	CONEAT	23 KT
ABLE	99/38/98	DIKENI	AIRDROP	HEAPONS RELATED	23 KT
BAKER	91/57/10	BIKINI OPERATION SANDSTONE	3	HEAPONS RELATED	23 KT
K-RAY	01/11/10	ENTHETOK	TOWER	HEAFONS RELATED	37KT
YOKE	84/38/48	ENIMETOK.	TOWER	WEAPONS RELATED	1361
ZEBRA	87/1/48	ENTWETOK OPERATION RANGER	TOWER	HE A PONS RELATED	1913
ABLE	15/22/18	MTS	AIRDROP	WEAPONS RELATED	111
BAKER	01/20/51	HTS	AIRDROP	WEAPONS RELATED	OKT.
EASY	15/01/20	HTS	AIRDROP	HEAPONS RELATED	111
BAKER-2	15/20/20	MTS	ATROROP	WEAFONS RELATED	SKT
FOX	15/99/21	NTS OPERATION GREENHOUSE	AIRDROP	NEAPONS RELATED	221/
900	15/11/51	ENTHETOK	TOWER	WEAPONS RELATED	
EASV	04/20/51	ENTHETOK	TOWER	WEAFONS RELATED	47KT
GEORGE	15/00/50	ENTWETOK	TOWER	WEAPONS RELATED	
ITEN	15/52/58	ENIMETOK ANCOATION BUCTED TANCE	TOWER	KEAPONS RELATED	
ABLE	19/22/81	MIS	TOWER	NEAPONS RELATED	LESS THAN 8.1KT
BAKER	19/59/81	NTS	AIRDROP	HEA-ONS RELATED	3.547
CHARL IE	16/38/81	NTS	ATROROP	WEAPONS RELATED	1991
900	11/11/11	MTS	AIRDROF	HEAFONS RELATED	2117
EAST	11/08/51	MTS	ATROROP	WEAFONS RELATED	SIKE
SUGAR	11/19/51	MTS	SURFACE	MEAPGNS RELATED	1.241

ANNOUNCED UNITED STATES NUCLEAR DETONATIONS

EVENT NAME	DATE (GCT)	LOCATION	TVPE	PURPOSE	VIELD RANGE
UNCLE	11/25/51	NTS	CRATER	WEAPONS RELATED	1.2KF
		OPERATION TUMBLER-SNAPPER			
ABLE	94/81/52	MTS	AIROROF	NEAPONS RELATED	1KT
BAKER	25/51/10	#1S	AIRDROP	MEAPONS RELATED	187
CHARL IE	04/22/52	HTS	AIRDROP	NEAFONS RELATED	31KT
900	25/10/50	MTS	ATROROP	WEAPONS RELATED	1961
EASY	15/11/52	MTS	TOWER	WEAFONS RELATED	1211
FOX	25/52/50	HTS	TONER	WEAPONS RELATED	1887
390039	25/10/90	RTS	TONER	KEAPONS RELATED	1547
МОН	26/08/98	nts	TOWER	WEAPONS RELATED	1467
		OPERATION IVY			
MIKE Experimental	10/31/52 Ental Thermonuclear	ENIMETOK Device	SURFACE	WEAPONS RELATED	16.487
KING	11/15/52	ENINETOK	AIRDROP	HEAPONS RELATED	500 KT
		OPERATION UPSHOT-KNOTHOLE			
ANNIE	03/11/53	HTS	TOWER	HEAPONS RELATED	1647
HANCY	03/24/53	272	TONER	MEAFONS RELATED	24KT
RUTH	03/31/53	MTS	TOWER	WEAPONS RELATED	0.2KT
DINIE	85/90/40	273	AIRDROP	IKAPONS RELATED	1117
RAY	04/11/53	MTS	TOWER	WEAPONS RELATED	8.2KT
BADGER	84/18/53	MTS	TOWER	WEAFONS RELATED	23KT
SIMON	04/25/53	MTS	TOWER	MEAPONS MELATED	4387
ENCORE	05/00/53	273	AIRDROP	WEAPONS RELATED	27167
HARRY	65/13/53	HTS	TOWER	WEAPONS RELATED	3211
GRABLE FIRED FROM 28	65/25/53 ON 28899 GUN	213	****	HEAPONS RELATED	1947
Ct Inax	16/11/53	MTS	AIRDROP	HEAPONS RELATED	6111
		OPERATION CASTLE			
BRAVO Expertmental	EXPERIMENTAL THERMONUCLEAR	OFFINE DEVICE	SURFACE	WEAPONS RELATED	1547

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	VIELD RANGE
RONED	13/56/54	BIKINI	BARGE	MEAPONS RELATED	11 MT
KOON	15/91/11	BIXINI	SURFACE	WE 1 PONS RELATED	118 KT
MINI	15/52/10	BIKINI	GARGE	WESFONS RELATED	6.9 MT
YANKEE	15/19/50	BIKIMI	BARGE	WEAPONS RELATED	13.5 MT
MECTAR	85/13/54	ENINETOK	BARGE	WEAPONS RELATED	1.69 MT
		OPERATION TEAPOT			
MASP	15/11/28	NTS	AIRDROP	NEAPONS RELATED	1167
MOTH	95/22/20	MTS	TONER	WEAPONS RELATED	2KT
TESLA	03/01/55	MTS	TOWER	MEAPONS RELATED	7.8.1
TURK	03/01/55	MTS	TOWER	NEAFONS RELATED	43KT
HORNET	83/15/59	MTS	TOWER	WEAPONS RELATED	+467
966	93/22/89	MTS	TOWER	WEAFONS RELATED	967
ESS	93/23/20	XTS	CRATER	WEAPONS RELATED	141
APPLE-1	93/53/28	27.5	TOWER	WEAPONS RELATED	14KT
MASP PRINE	13/29/55	MTS	AIRDROP	WEAPONS RELATED	367
4	95/90/30	MTS	AIRDROP	WEAPONS RELATED	385
Post	55/61/11	MTS	TOWER	WEAPONS RELATED	2KT
7.51	14/15/55	MTS	TOWER	WEAPONS RELATED	22KT
APPLE-2	15/18/55	HTS	TOWER	WEAPORS RELATED	29KT
ZUCCHIMI	98/51/50	MTS OPERATION MIGHAM	TOWER	WEAPONS RELATED	28KT
WIGNAM 29 DEGREESN-124	85/14/55 85/14/55 858-126 DEGREES W		3	WEAPONS RELATED	30KT
		OPERATION REDWING			
LACROSSE	95/10/50	ENIWETOK	SURFACE	MEAPONS RELATED	5 3
CHEROKEE FIRST AIR DROP	85/28/56 87 U.S. OF A	DIKINI THERMONUCLEAR WEAPON	A I RDROP	HEAPONS RELATED	SEVERAL MT
ZUMI	05/27/56	BIKINE	SURFACE	WEAPONS RELATED	3.5 NT
YUMA	98/21/80	ent wetok		NEAPONS RELATED	

EVENT HAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	VIELO RANGE
ERIE	18/38/56	ENTHETOK	TOWER	HEAPONS RELATED	
SENTHOLE	95/98/98	ENI WETOK	SURFACE	WEAPONS RELATED	
FLATHEAD	96/11/98	SIKINI	BARGE	HEAFONS RELATED	
BLACKFOOT	96/11/96	ENI WETOK	TOWER	WE APONS RELATED	
KICKAPOO	96/13/56	ENINETOK		WEAFONS RELATED	
OSAGE	95/91/90	ENINETOK	AIRDROF	WEAFONS RELATED	
IHCA	99/12/98	ENIMETOK		MEAFONS RELATED	
ОАКОТА	99/52/98	BIKIMI	BARGE	MEAPONS MELATED	
MOHAWK	95/29/10	ENTHETOK		MEAPONS RELATED	
APACHE	95/88/28	ENI WETOK	BARGE	MEAFONS RELATED	
MAYAJO	95/11//0	BIKINI	BARGE	HEAPONS RELATED	
TENA	95/02/10	BIKINI	BARGE	WEAPONS RELATED	S NT
HUROM	91/21/56	ENIWETOK	BARGE	WEAPONS RELATED	
		OPERATION PLUMBBOB	~		
BOLTZHAN	18/22/81	MTS	TOWER	MEAFONS RELATED	12KT
FRANKLIN	16/28/91	HTS	TOWER	MEAFONS RELATED	1401085
LASSEN	18/88/91	urs	BALLOOM	WEAFONS RELATED	6.5 TOMS
MILSON	06/18/57	MTS	BALLOOM	MEAFONS RELATED	101.1
PRISCILLA	(\$/42/90	MTS	8ALL 00M	HE APONS RELATED	37.67
жоож	67/85/5;	urs	BALLOOM	HEAPONS RELATED	7647
DIABLO	17/15/5	MIS	TOWER	HE AFONS RELATED	1741
же	17/19/5:	Z 2 2	ROCKET	MEAPONS NELATED	ABBIT 2KT
KEPLER	87/24/5:	MTS	TOWER	WEAPONS RELATED	1047
OWENS	07/25/5;		BALLOON	MEAPONS WELATED	9.744
STOKES	19/10/10	MTS	87110011	ME A'PONS CELATED	1947
SHASTA	16/11/10	275	TOWER	HE APONS RELATED	1747
DOPPLER	16/22/00	RTS	841100#	MEAPONS RELATED	1117

EVENT NAME	nate (GCT)	LOCATION	TYPE	PURPOSE	VIELD RANGE
FRANKLIN PRIME	19/30/37	SLE	BAL L 00N	WEAPONS RELATED	4.7KT
SHOKY	88/31/57	NTS	TOWER	WEAPONS RELATED	64KT
GALILEO	15/28/68	NTS	TOWER	WEAPONS RELATED	11КТ
WHEELER	15/90/60	NTS	BALLOOM	WEAPONS RELATED	197 TONS
LAPLACE	18/11/61	MTS	BALLOOM	WEAPONS RELATED	1KT
FIZEAU	19/11/60	NTS	TOWER	WEAPONS RELATED	11147
MEHTON	19/16/57	KTS	BALLOOM	WEAPONS RELATED	1247
RAINIER FIRST TUNNEL	89/19/57 EMPLACEMEN	NTS.	TUNNEL	NEAFONS RELATED	1.7KT
NHITNEY	19/23/51	NTS	TOWER	WEAFONS RELATED	19KT
CHARLESTON	125/82/68	NTS	BALLOOM	WEAPONS RELATED	12KT
HORGAN	10/01/57	NTS	BALLOON	WEAPONS RELATED	9KT
		OPERATION HARDTACK I			
YUCCA 12 DEGREES 37	E4/26/58 HIN N-163	DEGREES OI MIN E	BALLOOM	WEAPONS RELATED	
CACTUS	85/88/58	ENTHETOK	SURFACE	WEAFONS RELATED	18 KT
FIR	05/11/50	BIKINI	BARGE	WEAPONS RELATED	
BUTTERNUT	05/11/50	ENINETOK	BARGE	MEAPONS RELATED	
KOA	85/15/58	ENIMETOK	SURFACE	WEAFONS RELATED	1,37 HT
МАНОО	05/16/58	ENINETOK	3	WEAFONS RELATED	
HOLLY	05/58/58	ENIWETOK	BARGE	WEAPONS RELATED	
NUTHEG	85/21/58	BIKINI	BARGE	WEAFONS RELATED	
VELLOWWOOD	85/52/58	ENTHETOK	BARGE	WEAPONS RELATED	
nagnol Ia	82/52/58	ENIMETOK	BARGE	WEAFONS RELATED	
TOBACCO	85/38/58	ENTHETOK	BARGE	WEAPON'S RELATED	
SYCAHORE	95/31/58	BIKIRI	BARGE	WEAPONS RELATED	:
ROSE	06/20/90	ENIWETOK	BARGE	WEAPONS RELATED	
UMBRELLA	85/88/98	ENIMETOK	*	HE APONS 'REL ATED	

-
0
Ħ
TONATION
-
_
- 3
-
0
DETON
DET
w
0
_
NUCLEAR
-
141
-
u
- 44
=
z
w,
ia:
=
=
-
-
STATES
••
_
UNITED
44.2
_
_
-
-
=
UNITED
63
w
u
- 3
=
HOUNCED
0
-
2
- 4
-

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
HAPLE	86/18/58	BIKINI	BARGE	WEAFONS RELATED	
ASPEN	86/11/98	BIKINI	BARGE	WEAPONS RELATED	
HALMOT	16/11/98	ENINETOK	BARGE	WEAFONS RELATED	
LIMDER	86/11/99	ENINETOK	BARGE	WEAPONS RELATED	
REDNOOD	86/21/58	BIKINI	BARGE	WEAPONS RELATED	
ELDER	16/27/58	ENIMETOK	BARGE	WEAFOUS RELATED	
OAK	86/28/98	ENIMETOK	BARGE	WEAPONS RELATED	0.9 HT
HICKORY	86/52/98	BIKINI	BARGE	WEAPONS RELATED	
SEQUOIA	95/19/28	ENTHETOK	BARGE	WEAFONS RELATED	
CEDAR	81/02/58	BIKINI	BARGE	WEAPONS RELATED	
SOCHOOD	81/88/28	ENTHETOK	BARGE	WEAPONS RELATED	
POPLAR	81/11/18	BIKINI	BARGE	WEAPONS RELATED	
PISONIA	81/11/18	ENTHETOK		HEAPONS RELATED	
JUNIPER	85/22/18	BIKINI	BARGE	WEAPONS RELATED	
OLIVE	81/22/58	ENTWETOK	BARGE	WEAPONS RELATED	
3MI d	81/56/58	ENIMETOK	BARGE	WEAFONS RELATED	
TEAK	88/81/58	JOHNSTON ISL AREA	ROCKET	WEAPONS RELATED	MEGATON RANGE
GUINCE	88/88/58	ENTHETOR		WEAFONS RELATED	
ORANGE	88/15/58	JOHNSTON ISL AREA	ROCKET	WEAFONS RELATED	MEGATON RANGE
F16	18/18/88	ENEMETOR DECENTION ADDITED		WEAFONS RELATED	
ARGUS I ABOUT 388 HELI	. 06/27/58 HELES ALTITUDE	SOUTH ATLANTIC	ROCKET	HEAPONS RELATED	1-2KT
ARGUS II About 300 MILES	88/38/58 ES ALTITUDE	SOUTH ATLANTIC	ROCKET	WEAPONS RELATED	1-2KT
ARGUS III ABB WILES	89/86/58 ES ALTITUDE	SOUTH ATLANTIC	ROCKET	WEAPONS RELATED	1-2KT
		OFFICIAL PARTIES A	•		
EDDY	16/51/61	BITS	BALLOOM	MEAPONS RELATED	63 TOKS

ANNOUNCED UNITED STATES NUCLEAR DETONATIONS

EVENT NAME	DATE (GGT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
MORA	35/52/68	NTS	BALLOOM	WEAPONS RELATED	2KT
TANALPAIS SLIGHT VENTING	11/18/58	27.5	TURNEL	WEAPONS RELATED	72 TOMS
QUAY	18/11/28	HTS	TOWER	WEAFONS RELATED	79 TONS
LEA	10/13/58	XIX	BALLOOM	WEAPONS RELATED	1.4KT
HANIL FOR	10/15/58	MTS	TONER	WEAFONS RELATED	1.2 TONS
LOGAN	10/16/58	NTS	TURNER	WEAPONS RELATED	5KT
DONA ANA	18/19/1	NTS	BALLOOM	WEAPONS RELATED	37 TONS
RIO ARRIGA	18/18/59	MTS	TOWER	WEAPONS RELATED	98 TONS
SOCORRO	10/22/58	MTS	BALLOOM	WEAPONS RELATED	6KT
HRANGEL L	18/22/58	MTS	BALLOOM	WEAPONS RELATED	115 TONS
RUSHMORE	18/22/88	HTS	BALLOOM	WEAPONS RELATED	188 TONS
SANFORD	10/26/58	NTS	BALLOOM	WEAFONS RELATED	4.9KT
DE BACA	18/56/58	HTS	BALLOON	WEAPONS RELATED	2.2KT
EVANS VENTING	18/53/58	RTS.	TURNEL	WEAPONS RELATED	55 TONS
HUMBOLDT	10/29/54	MTS	TOWER	WEAPONS RELATED	7.5 TONS
SANTA FE	10/38/58	MTS	BALLOON	WEAPONS RELATED	1.3KT
BLANCA SENTING	16/30/58	MTS	TUNNEL	WEAPONS RELATED	1987
St. Lens Revision	•	OPERATION NOUGAT	-	•	,
ANTLER	19/12/61	NTS	TUNNEL	MEAPONS RELATED	2.4KT
SHRFW LOW TIELD WEAH	89/16/61 WEAWS LESS THAN 2	MTS	SHAFT	WEAPONS RELATED	M01
CHENA	19/11/01	KTS	TUNNEL	WEAPONS RELATED	107
HIMK	19/52/91	NTS	SHAFT	WEAPONS RELATED	NO.1
FISHER	12/83/61	MIS	SHAFT	WEAFONS RELATED	13.5KT
GNOWE 12/10/61 MULTIPLE-PURPOSE EXPERIMENT SELEN FT.MICH	12/18/61 35E EXPERTHENT	CARLSBAD SHAFT PLONSHARE IN SALT.FORMED CAVITY 160-170 FT.DIAMETER	SHAFT ITY 260-170 FT.	PLONSHARE DIAMETER	3.147

ANNOUNCED UNITED STATES NUCLEAR DETONATIONS

THE STATE OF THE BUTCH OF THE STATE OF THE S

EVENT NAME	BATE (GCT)	_	LOCATION	TYPE	PURPESE	VIELO RANGE
HAD	15/13/61	NTS		SHAFT	WEAPONS RFLATED	9.43KT
RINGIAIL	15/11/21	NTS		SHAFT	WEAPONS RELATED	707
FEATHER	15/22/21	NTS		TUNNEL	HEAPOHS RELATED	104
STORT	29/60/10	NTS		SHAFT	WEAPONS RELATED	4.5KT
AGOUTE	29/11/19	MTS		SHAFT	WEAFONS RELATED	5.9KT
DORMOUSE	29/06/10	NTS		SHAFT	WEAFONS RELATED	101
STILLMATER	29/10/20	MTS		SHAFT	WEAPONS RELATED	2.787
ARMABILLO	29/69/21	MTS		SHAFT	HEAFONS RELATED	6.6KT
SARDHAT GRANITE	29/51/20	RTS		SHAFT	WEAFONS RELATED	5.9KT
CHINCHILLA	29/61/20	NTS		SHAFT	WEAPONS RELATED	1.8KT
CODSAN	29/61/20	MTS		SHAFT	WEAFONS RELATED	1.04
CIMARRON	29/22/28	NTS		SHAFT	WEAPONS RELATED	11.2KT
PLATTPUS	29/92/20	NTS		SHAFT	HEAPONS RELATED	707
PEMPAS	03/01/62	MTS		SHAFT	JOINT US-UK	101
CAMPY BOY CRAVETER OF ANETER	03/05/62 STANKTER 265 FT. DI	NTS DEPTH 84	FT. IN BASALT	CRATER	KEAPONS RELATED	8.42KT
ERRINE	13/16/62	KTS		SHAFT	WEAPONS RELATED	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
BRAZOS	29/00/63	MTS		SHAFT	NEAFONS RELATED	7.6KT
HOCHREE	03/12/62	NTS		SHAFT	HEAPONS RELATED	707
) 31500H	03/20/62	NTS		SHAFT	WEAPONS RELATED	381
CHINCHELLA II	13/31/62	MTS		SHAFT	NEAPONS RELATED	101
BORNDUSE EE	29/51/10	MTS		SHAFT	WEAPONS RELATED	1011
PASSAIC	29/98/18	MTS		SHAFT	WEAPONS RELATED	101
MUBSON	84/12/62	MTS		SHAFT	NEAPONS RELATED	101
PLATTE (84/14/62	NTS		TUMMEL	HEAPONS RELATED	1.7KT
0610	29/12/10	MTS		SHAFT	NEAPONS RELATED	701

28

としてきませんがあるというというできていますというできることがある。

EVENT MANE	OATE (GCT)	LOCATION	2102000	TYPE	PURPOSE	YIELD RANGE
ADOSE INTERNEDIATE	64/25/62 NEANS 28 TO 18	DIATE MEANS 28 TO 1808 KT	AREA	AIRDROP	HEAPONS RELATED	INTERNEDIATE
AZTEG	29/12/10	CHRISTHAS ISL AREA	AREA	AIRDROP	NEAPONS RELATED	INTERNEDIATE
PL ACK	84/23/62	MTS		SHAFT	WEAPONS RELATED	LON
ARKANSAS	85/82/62	CHRISTHAS ISL	AREA	AIRGROP	WEAPONS RELATED	LOW WEGATON
QUESTA	19/10/62	CHRISTHAS 15L	AREA	AIRDROP	WEAPDNS RELATED	INTERNEDIATE
FRIGATE BIRD NARHEAD IN HIS	85/86/62 IN MISSILE LAUNCHED	CHRISTHAS ISL FROM POLARIS S	AREA SUBMARINE	HISSILE	HEAPONS RELATED	
PACA	29/18/50	MTS		SHAFT	WEAFONS RELATED	NOT
Y UKON	29/00/50	CHRISTMAS ISL	AREA	AIRORDP	WEAPONS RELATED	INTERNEDIATE
MESTLLA	29/60/58	CHRISTHAS ISL	AMEA	AIRDROP	NEAPONS RELATED	INTERNEDIATE
MUSICE GOM	85/11/65	CHRISTHAS ISL	AREA	AIRDROP	WEAFONS RELATED	INTERNEDIATE
SWORDFISH ANTISUBNARINE	05/11/62 ROCKET /ASROC/	EASTERN PACIFIC / SYSTEN PROOF TEST	C TEST	N O	MEAPONS RELATED	. 407
ENCINO	8/15/62	CHRISTMAS ISL	AREA	AIRORDP	WEAFONS RELATED	INTERMEDIATE
AARBVARK	65/12/62	NTS		SHAFT	WEAPONS RELATED	38KT
Syanee	15/14/62	CHRISTHAS ISL	AREA	AIRDROP	WEAPONS RELATED	INTERNEO1ATE:
EFL	05/19/62	MTS		SHAFT	HEAPONS RELATED	ron
CHETCO	18/13/62	CHRISTHAS ISL	AREA	AIROROP	WEAPONS RELATED	INTERNEDIATE
WITE	19/52/51	MTS		SHAFT	WEAPONS RELATED	LOM
TARARA	29/52/50	CHRISTHAS ISL	AREA	AIRORDP	HEAPONS RELATED	, 101
KANDE	18/27/62	CHRISTMAS ISL	AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
PACCOON	16/11/62	MTS		SHAFT	HEAFONS RELATED	CONF
PACHRAT	16/16/62	MTS		SHAFT	WEAPONS RELATED	. ,
44.14	29/90/98	CHRISTHAS ISL	AREA	AIRDROP	HEAPONS RELATED	INTERNEOLATE
TRUCKEE	29/60/91	CHRISTHAS ISL	A 25E 4	AIRDROP	HEAPONS RELATED	INTERMEDIATE
VF.SO	29/01/90	CHRISTHAS ISL	AREA	AIRDROP	WEAPONS RELATED	LON NEGATON
HARLEH	29/21/90	CHRISTHAS ISL	AREA	AIRDROP	HEAPONS RELATED	INTERNEDIATE

z
ō
Ň
DETOMATION
-
7
≍
2
-
~
0
_
NUCLEAR
•
w
_
v
2
z
n
w
STATES
æ
=
'n
•
UNITED
=
Ξ
=
=
_
_
·
2
Z
2
ANNOUNCED
z
z
-

		ANNOUNCED UNITED STATES MUCLEAR DETORATIONS	UCLEAR DETURA	SMOIL	
EVENT NAME	DATE (GCT)	COCATION LOCATION	TYPE	PURPOSE	VIELD RANGE
DES MOTNES	29/81/90	STR	TUNNEL	HEAPONS RELATED	101
RINCOMADA	16/15/62	CHRISTHAS ISL AREA	AIRDROP	WEAFONS RELATED	INTERMEDIATE
DULÉE	29/21/98	CHRISTNAS ISL AREA	AIRDRCP	WEAPONS RELATED	INTERNEDIATE
PETIT	16/19/62	CHRISTHAS ISL AREA	AIRDROP	WEAFONS RELATED	707
DAMAN I	06/21/62	MTS	SHAFT	WEAPONS RELATED	101
01041	19/22/90	CHRISTHAS ISL AREA	AIROROP	WEAPONS RELATED	INTERNEDIATE
BIGHORN	96/27/62	CHRISTMAS ISL AREA	AIRDROP	WEAPONS RELATED	HEGATON RANGE
HAYNAKER.	29/22/90	MTS	SHAFT	WEAPONS RELATED	5647
MARSHHELL OF DOD EVENT	29/82/98	NTS.	TUNNEL	WEAPONS RELATED	701
BLUES TOME	196/38/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	LOW MEGATON
SACRAMENTO	96/38/62	MTS	SHAFT	WEAPONS RELATED	ron
		OPERATION STORAX			
SEBAN EXCAVATION EXP	87/86/62 ERIMENT-CR	EXCAVATION EXPERIMENT-CRATER 1288 FT.DIAN 328 FT.DEEP-THERMONUCLEAR DEV.	Crater Deep-Thernow	PLOWSHARE CLEAR DEV.	100KT
LITTLE FELLERII SLIGHTLY ABOVE	87/87/82 GROUND.	MTS DOMINIC II SERIES.	SURFACE	WEAPONS RELATED	707
STARFISH PRINE 07/09/62 High altitude-458 KR	87/89/62 458 KK	JOHNSTON ISL AREA	ROCKET	MEAPONS RELATED	1.4 MEGATOHS
SUNSET	87/110/62	CHRISTHAS ISL AREA	ATROROP	WEAPONS RELATED	INTERNEDIATE
PANLICO	97/11/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	LOW MEGATON
JOHNNY BOY	87/11/62 GROUND.	MTS DOMINIC II SERIES.	SURFACE	WEAPONS RELATED	6.5
PERKE PAC	29/21/18	MTS	SHAFT	WEAPONS RELATED	101
SHALL BOY	87/14/62 GROUND.	MIS DOMINIC II SERIES.	SURFACE	WEAPONS RELATED	101
Litte Feller I Troop participi	07/17/62 ATION. SLI	LITTLE FELLER I 67/17/62 MTS SOUP CROUMD. DOMINIC II SERIES.	SURFACE IC II SERIES.	WEAPONS RELATED	108
WIGHTA	87/27/62	NTS	SHAFT	WEAPONS RELATED	707
YORK	29/52/10	NTS	SHAFT	NEAPONS RELATED	761
BOBAC	29/52/88	NTS	SHAFT	WEAPONS RELATED	101

ANNOUNCED UNITED STATES NUCLEAR DETOMATIONS

EVENT MANE	DATE (GCT)		LOCATION	8		TYPE	PURPOSE	,0SE	VIELO RANGE
HYRAX	89/14/65	MTS				SHAFT	WEAFONS RELATED	REL ATEO	101
PEBA	29/82/68	MTS				SHAFT	MEAFONS RELATED	RELATED	F0#
ALLEGHENY .	29/62/68	NTS				SHAFT	WEAFONS RELATED	RELATED	100
ANDROSCOGGIN	10/02/62	JOHNSTON ISL	SI N	L AR	AREA	AIROROP	HE A PONS	WEAPONS RELATED	INTERMEDIATE
HISSISSIPPI	18/88/62	NTS				SHAFT	WE A FONS	RELATED	110 KT
BUMPING	18/16/62	JOHNSTON ISL	SI IS	LAR	AREA	AIRDROP	WEAPONS	WEAPONS RELATED	707
ROANOKE	10/12/62	NTS				SHAFT	ME A PONS	WEAPONS RELATED	708
CHANA	18/18/62	JOHNSTON ISL	žI IŠ	F 7	AREA	ALROROP	HE A PONS	WEAPONS RELATED	LOW MEGATON
BAKDICOOT	10/19/62	NTS		•		SHAFT	WEAPONS RELATED	RELATEO	707
CHECKNATE HIGH ALTITUDE	18/28/62 - TENS OF KI	JOHNSTON ISL KMS	E IS		AREA	ROCKET	NE A PONS	WEAPONS RELATED	101
BLUEGILL SPRIME HIGH ALTITUDE	10/26/62 - TENS OF KP	JOHNSTON ISL KNS	SI N	L 1	AREA	ROCKET	WE A POWS	WEAPONS RELATED	SUBMEGATON
SANTEE	10/27/62	NTS				SHAFT	ME APONS	WEAPONS RELATED	F.0W
CALAHITY	18/27/62	JOHNSTON	N ISL	L AR	AREA	AIRDROP	WE A PONS	WEAPONS RELATED	INTERNEDIATE
HOUSATONIC	10/30/62	JOHNSTON ISL	₹/ 3/		AREA	AIRDROP	NE A POPS	PEL ATED	NEGATON RANGE
KINGFISH HIGH ALTITUDE	11/01/62 - TENS OF	JOHNSTON KMS	N ISL		AREA	ROCKET	NEAPONS	RELATED	SUBMEGATON
TIGHTROPE MIGH ALTITUDE	11/84/62 - TENS OF KI	. JOHNSTON ISL	E IS		AREA	ROCKET	NE A PONS	MEAPONS RELATED	701
AMACOSTIA 11/27/62 DEVICE DEVELOPHENT	11/27/62 MENT	S TH				SHAFT	PL OWSHARE	2	101
TENDRAC	12/07/62	NTS				SHAFT	JOINT US-UK	3-UK	101
HADISON	12/15/62	NTS				TUMMEL	WEAPONS RELATED	RELATED	101
NUMBET	12/15/62	NTS				SHAFT	WEAPONS RELATED	REL ATEO	761

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Armed Forces Radiobiology Research Institute Defense Nuclear Agency National Naval Medical Center 4 cy ATTN: Director

Assistant Secretary of Defense Public Affairs

Assistant Secretary of Defense Manpower Reserve Affairs & Logistics

Assistant Secretary of Defense Health Affairs

Assistant Secretary of Defense Legislative Affairs

Assistant to the Secretary of Defense Atomic Energy

Defense Advanced Rsch. Proj. Agency ATTN: Director

Defense Documentation Center 12 cy ATTN: DD

Defense Nuclear Agency

ATTN: DDST ATTN: STSP

ATTN: VLWS 2 cy ATTN: Director

2 CY ATTN: BA
2 CY ATTN: PAO
4 CY ATTN: GC
51 CY ATTN: TITL

Deputy Asst. Secretary of Defense Energy, Environment & Safety ATTN: G. Marienthal

Commander
Field Command
Defense Nuclear Agency
ATTN: FCTMOT

ATTN: FCTMOT ATTN: FCPR ATTN: FCPRA

Chief Field Command Defense Nuclear Agency Livermore Division ATTN: FCPRL, L-395

Chief Field Command Defense Nuclear Agency Los Alamos Branch

Undersecretary of Def. for Rsch. & Engrg.
Department of Defense
ATTN: P. Winter

Director
Interservice Nuclear Weapons School

DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Rsch., Dev. & Acq. Department of the Army ATTN: DAMA-CSS-N

Commander
Harry Diamond Laboratories
Department of the Army
3 cy ATTN: DELHD-N-CC

Office of the Chief of Staff Department of the Army ATTN: DACS-DMA, D. Way

Director
U.S. Army Ballistic Research Labs.
2 cy ATTN: DRDAR-BLB, J. Maloney

Commander U.S. Army Nuclear & Chemical Agency

Commandant
U.S. Army Ordnance & Chemical Center and School
ATTN: H. Whitten

DEPARTMENT OF THE NAVY

Commandant Marine Corps Department of the Navy 2 cy ATTN: J. McNabb

Commander Naval Ocean Systems Center

Commander Naval Sea Systems Command ATTN: SEA-08, M. Miles

Officer-in-Charge Naval Surface Weapons Center White Oak Laboratory

Commanding Officer Naval Weapons Evaluation Facility

Navy Nuclear Test Personnel Review 5 cy ATTN: J. Buckley

Commander-in-Chief U.S. Atlantic Fleet

DEPARTMENT OF THE AIR FORCE

Air Force Institute of Technology Air University ATTN: ENP, C. Bridgeman

Air Force Nuclear Test Personnel Review 4 cy ATTN: Commander

Salahara an America

DEPARTMENT OF THE AIR FORCE (Continued)

Air Force Weapons Laboratory Air Force Systems Command ATTN: NT

ATTN: DYT ATTN: SUL

U.S. Air Force Occupational & Env. Health Lab.

OTHER GOVERNMENT AGENCIES

Center for Disease Control U.S. Public Health Service 2 cy ATTN: G. Caldwell

Central Intelligence Agency ATTN: OMŠ, P. Zranka

Department of Commerce National Bureau of Standards Center for Radiation Research 2 cy ATTN: J. Hubell

Department of Health, Education & Welfare Food & Drug Administration Bureau of Radiobiological Health ATTN: J. Villforth

Department of Justice 12 cy ATTN: B. Titus

Office of the Governor of the State of Utah 2 cy ATTN: C. Peterson

U.S. House of Representatives Subcommittee on Health & the Environment Committee on Interstate & Foreign Commerce

U.S. Nuclear Regulatory Commission ATTN: R. Whipp

U.S. Senate Committee on Armed Service

U.S. Senate Committee on Veterans Affairs ATTN: M. Milligan

U.S. Senate Subcommittee on Energy, Nuclear Proliferation & Federal Services Committee on Govt. Affairs ATTN: T. Nelapoldi

U.S. Senate Subcommittee on Health & Scientific Research

Utah Cancer Registry University Medical Center 2 cy ATTN: B. Lyon

Veterans Administration ATTN: L. Hobson 2 cy ATTN: D. Starbuck 2 cy ATTN: F. Kuta

DEPARTMENT OF ENERGY CONTRACTORS

Los Alamos Scientific Laboratory ATTN: Document Control for D. Harris & E. Young

ATTN: Document Control for T. Lowler

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Lawrence Livermore Laboratory
ATTN: Document Control for L-262, J. Knox
ATTN: Document Control for Technical

Information Dept.

ATTN: Document Control for L-96, T. Harvey
ATTN: Document Control for F. Serduke

Oak Ridge National Laboratory, Nuclear Division ATTN: Document Control for Central Research

Library

ATTN: Document Control for F. Mynatt ATTN: Document Control for C. Clifford

Sandia Laboratories

ATTN: Document Control for J. Kaizur

DEPARTMENT OF DEFENSE CONTRACTORS

BDM Corp.

ATTN: C. Somers

Brookhaven National Laboratory
ATTN: Nat. Neu. Cross. Sec., S. Pearlstein

Energy Systems, Inc. ATTN: B. Ogle

General Electric Company-TEMPO ATTN: DASIAC

General electric Company-TEMPO

2 cy ATTN: DASIAC

IIT RESEARCH Institute ATTN: J. Bridges

Institute for Defense Analyses

ATTN: L. Schmidt

JAYCOR

ATTN: P. Harris ATTN: E. Weary

National Academy of Sciences National Materials Adivsory Board ATTN: S. Jablon

R&D Associates

ATTN: H. Brode ATTN: J. Marcum ATTN: C. Macdonald

Reynolds Electrical and Engr. Co., Inc.

ATTN: Document Control Facility for W. Brady

Science Applications, Inc.

ATTN: J. Klemm ATTN: J. McGahan

ATTN: J. Goetz ATTN: W. Layson

Tech Reps, Inc.

ATTN: B. Collins

ville a self-manusidado