Тема: Редове

Основни дефиниции и теореми

Нека е даден редът $a_1 + a_2 + ... + a_n + ... = \sum_{n=1}^{\infty} a_n$.

- 1. Сумата $S_n = a_1 + a_2 + ... + a_n$ се нарича частична (парциална) сума на реда.
- 2. Казваме, че редът е сходящ, ако редицата S_n е сходяща и границата $\lim_{n\to\infty} S_n = S$ се нарича сума на реда и това се отбелязва $S = a_1 + a_2 + ... + a_n + ... = \sum_{n=0}^{\infty} a_n$.
 - 3. **Необходимо условие за сходимост.** Ако редът $\sum_{n=1}^{\infty} a_n$ е сходящ, то $\lim_{n\to\infty} a_n = 0$.

Ясно е, че ако $\lim_{n\to\infty}a_n\neq 0$, то редът е разходящ.

- 4. Принцип за сравняване (разгледайте съответната теорема за несобствени интеграли) . Дадени са редовете $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$
 - Нека за членовете на редовете е в сила $0 \le a_n \le b_n$. Тогава:

ако
$$\sum_{n=1}^{\infty} b_n$$
 е сходящ, то $\sum_{n=1}^{\infty} a_n$ е сходящ,

ако
$$\sum_{n=1}^{\infty} b_n \sum_{n=1}^{\infty} a_n$$
 е разходящ, то $\sum_{n=1}^{\infty} a_n$ е разходящ.

– Нека
$$0 \le a_n = \alpha_n b_n$$
, $b_n \ge 0$. Тогава

ако
$$\lim_{n\to\infty} \alpha_n = 0$$
 и $\sum_{n=1}^{\infty} b_n$ е сходящ, то $\sum_{n=1}^{\infty} a_n$ е сходящ,

ако $\lim_{n\to\infty}\alpha_n=A>0$, то редовете $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ са едновременно сходящи, или

разходящи; в този случай ще пишем $\sum_{n=1}^{\infty} a_n \sim \sum_{n=1}^{\infty} b_n$.

ако
$$\lim_{n\to\infty} \alpha_n = \infty$$
 и $\sum_{n=1}^\infty a_n$ е разходящ, то $\sum_{n=1}^\infty b_n$ е разходящ.

Задача 1. Докажете, че редът $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + ... + \frac{1}{(2n-1)(2n+1)} + ...$ и намерете неговата сума.

Решение. Да разложим частното $\frac{1}{(2x-1)(2x+1)}$ на елементарни дроби:

$$\frac{1}{(2x-1)(2x+1)} = \frac{A}{2x-1} + \frac{B}{2x+1} \Leftrightarrow 1 = A(2x+1) + B(2x-1)$$

При
$$x = \frac{1}{2} \Rightarrow 1 = 2A \Rightarrow A = \frac{1}{2}$$
 и при $x = -\frac{1}{2} \Rightarrow 1 = -2B \Rightarrow B = -\frac{1}{2}$ или

$$\frac{1}{(2x-1)(2x+1)} = \frac{1}{2} \left(\frac{1}{2x-1} - \frac{1}{2x+1} \right).$$

Да разгледаме парциалната сума $S_n = \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + ... + \frac{1}{(2n-1)(2n+1)}$

Всеки от членовете разлагаме, като използваме доказаното равенство при x=1,2,3,...:

$$S_{n} = \frac{1}{2} (\frac{1}{1} - \frac{1}{3}) + \frac{1}{2} (\frac{1}{3} - \frac{1}{5}) + \dots + \frac{1}{2} (\frac{1}{2n-1} - \frac{1}{2n+1}) =$$

$$= \frac{1}{2} (\frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1}) = \frac{1}{2} (1 - \frac{1}{2n+1}).$$

Оттук $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{2} (1 - \frac{1}{2n+1}) = \frac{1}{2}$.

Следователно редът е сходящ и $\frac{1}{2} = \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} + \dots$

Задача 2. Докажете, че редът $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + ... + \frac{1}{n(n+1)(n+2)} + ...$ намерете неговата сума.

Решение. Да разложим частното $\frac{1}{x(x+1)(x+2)}$ на елементарни дроби:

$$\frac{1}{x(x+1)(x+2)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2} \Leftrightarrow 1 = A(x+1)(x+2) + Bx(x+2) + Cx(x+1)$$

При
$$x = 0 \Rightarrow 1 = 2A \Rightarrow A = \frac{1}{2}$$
, при $x = -1 \Rightarrow 1 = -B \Rightarrow B = -1$ и

$$x=-2 \Rightarrow 1=2C \Rightarrow C=\frac{1}{2}$$
 или $\frac{1}{x(x+1)(x+2)}=\frac{1}{2}\frac{1}{x}-\frac{2}{x+1}+\frac{1}{x+2}$.

Да разгледаме парциалната сума $S_n = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)}$

Всеки от членовете разлагаме, като използваме доказаното равенство при x=1,2,3,...:

$$S_n = \frac{1}{2} \left(\frac{1}{1} - \frac{2}{2} + \frac{1}{3} + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{3} - \frac{2}{4} + \frac{1}{5} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} - \frac{2}{4} + \frac{1}{5} + \frac{1}{4} + \frac{1}{4}$$

......

$$+\frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1} + \frac{1}{n-2} - \frac{2}{n+1} + \frac{1}{n+2} = \frac{1}{2} (1 - \frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2})$$

Оттук
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{2} (\frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2}) = \frac{1}{4}$$
.

Слелователно релът е схолящ и

$$\frac{1}{4} = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} + \dots$$

Задача 3. (за домашно). Докажете, че редът $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.11} + ... + \frac{1}{n(n+3)} + ...$ намерете неговата сума.

Задача 4. а) Докажете, че редът $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...+\frac{(-1)^{n+1}}{n}+...$ и намерете неговата сума.

б) Сходящ ли е редът $1-2+4-8+...+(-1)^{n+1}n+...$

Решение. а) Парциалната сума

$$S_n = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n+1}}{n} = \frac{1 - (-\frac{1}{2})^n}{1 - (-\frac{1}{2})} = \frac{2}{3} 1 - (-\frac{1}{2})^n \to \frac{2}{3}.$$

Следователно редът е сходящ и

$$\frac{2}{3} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

б) Редицата $(-1)^{n+1}n$ не клони към 0. Следователно редът е разходящ.

При изследване за сходимост на редове е важно да се знаят следните стандартни редове:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \quad \begin{cases}$$
при $\alpha \leq 1$ редът е разходящ при $\alpha > 1$ редът е сходящ

$$\sum_{n=1}^{\infty} q^n \quad egin{cases} \operatorname{при} -1 \! < \! q \! < \! 1 & \operatorname{редът e } \operatorname{cxoдящ} \ \operatorname{при} |q| \! \geq \! 1 & \operatorname{peдът e } \operatorname{pa3xoдящ} \end{cases} .$$

Задача 5. Да се изследва кои от следните редове са сходящи:

a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)};$$

$$6) \sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+1} \right)^2;$$

$$\mathrm{B)} \sum_{n=1}^{\infty} \mathrm{tg} \frac{\pi}{4n};$$

$$\mathrm{II}) \; \sum_{n=1}^{\infty} \; \sqrt{n} - \sqrt{n-1} \; \; ; \; \; \mathrm{e}) \; \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \; ; \qquad \qquad \mathrm{ж}) \; \sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} \ln \frac{n+1}{n-1} \; .$$

ж)
$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} \ln \frac{n+1}{n-1}.$$

Решение. Задачата ще решим с принципа за сравняване

a)
$$\frac{n+1}{n(n+2)} = \frac{n}{n^2} \cdot \frac{1+\frac{1}{n}}{1+\frac{2}{n}} \sim \frac{1}{n}$$
 $(\alpha_n = \frac{1+\frac{1}{n}}{1+\frac{2}{n}} \to 1 \neq 0)$. Редът $\sum_{n=1}^{\infty} \frac{1}{n}$ е разходящ.

Следователно $\sum_{i=1}^{\infty} \frac{n+1}{n(n+2)}$ е разходящ.

$$6) \left(\frac{n+1}{n^2+1}\right)^2 = \frac{n^2}{n^4} \left(\frac{1+\frac{1}{n}}{1+\frac{1}{n^2}}\right)^2 \sim \frac{1}{n^2} \left(\alpha_n = \left(\frac{1+\frac{1}{n}}{1+\frac{1}{n^2}}\right)^2 \to 1\right)$$

Редът $\sum_{n=1}^{\infty} \frac{1}{n^2}$ е сходящ и следователно $\sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+1}\right)^2$ е сходящ.

в)
$$\operatorname{tg} \frac{\pi}{4n} = \frac{\operatorname{tg} \frac{\pi}{4n}}{\frac{\pi}{4n}} \cdot \frac{\pi}{4} \cdot \frac{1}{n} \sim \frac{1}{n}$$
 $(\alpha_n = \frac{\operatorname{tg} \frac{\pi}{4n}}{\frac{\pi}{4n}} \cdot \frac{\pi}{4} \to \frac{\pi}{4})$ Редът $\sum_{n=1}^{\infty} \frac{1}{n}$ е разходящ.

Следователно $\sum_{n=1}^{\infty} tg \frac{\pi}{4n}$ е разходящ.

$$\Gamma) \ \frac{\sqrt{n}-\sqrt{n-1}}{n} = \frac{n-(n-1)}{n(\sqrt{n}+\sqrt{n-1})} = \frac{1}{n^{\frac{3}{2}}} \cdot \frac{1}{\left(1+\sqrt{1-\frac{1}{n}}\right)} \sim \frac{1}{n^{\frac{3}{2}}} \,.$$
 Редът $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ е сходящ и следователно $\sum_{n=1}^{\infty} \frac{\sqrt{n}-\sqrt{n-1}}{n}$ е сходящ.

д) Решете задачата самостоятелно.

$$e) \ \frac{\ln n}{n^2} = \frac{\ln n}{\sqrt{n}} \cdot \frac{1}{n^{\frac{3}{2}}} \ .$$
 Имаме $\alpha_n = \frac{\ln n}{\sqrt{n}} \to 0$ и $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ е сходящ. Следователно $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ е

сходящ.

ж)
$$\frac{1}{n^{\alpha}} \ln \frac{n+1}{n-1} = \frac{1}{n^{\alpha}} \frac{\ln \frac{n+1}{n-1}}{\frac{n+1}{n-1}-1} \cdot \frac{n+1}{n-1} - 1 = \frac{1}{n^{\alpha}} \frac{\ln \frac{n+1}{n-1}}{\frac{n+1}{n-1}-1} \cdot \frac{1}{1-\frac{1}{n}} \cdot \frac{1}{n^{\alpha+1}} - \frac{1}{n^{\alpha+1}}$$

$$(\alpha_n = \frac{\ln \frac{n+1}{n-1}}{\frac{n+1}{n-1} - 1} \cdot \frac{1}{1 - \frac{1}{n}} \to 1)$$

Следователно при $\alpha+1 \le 1$ редът е разходящ, а при $\alpha+1 > 1$ е сходящ.