

Development of an Open-Source Hardware Platform for Sirius BPM and Orbit Feedback

ICALEPCS 2013, San Francisco

Speaker: Daniel Tavares

Authors: (LNLS) Rafael Baron, Fernando Cardoso, Sérgio Marques, Lucas Russo, Daniel Tavares **(WUT)** Adrian Byszuk, Grzegorz Kasprowicz, Andrzej Wojeński

October 9, 2013

L N L S

Outline

- Introduction
- System Requirements
- System Architecture
- Hardware designs
- HDL and Software designs
- Results and Issues
- New developments
- Collaboration
- Conclusion

Development of an Open-Source Hardware Platform for Sirius BPM and Orbit Feedback
Daniel Tavares - ICALEPCS 2013, San Francisco

Sirius light source

- 3rd generation light source providing diffraction-limited photon beams
- Vertical emmitance @ 1% coupling:2.8 pm.rad
- RF frequency: ~500 MHz
- Natural bunch length: 8.8 ps
- Circumference: 520 m
- Tightest BPM/orbit feedback requirement: vertical beam position RMS displacement < 140 nm (0.1 Hz to 1 kHz bandwidth)

System Requirements

- Sirius Beam Position Monitor (BPM) system:
 - Ordinary accelerator data acquisition system requirements:
 - Beam synchronous
 - Triggered acquisition 100 MB to 1 GB range
 - Programmable logic resources (basically FPGA)
 - Integration with accelerator-wide distributed control system via 1 Gb Ethernet
 - Special requirements for analog/mixed-signal performance:
 - SNR > 100 dB (per channel) @ orbit feedback bandwidth
 - Gain long-term drifts < 1 mdB RMS (temperature + beam current dependences)
- Sirius storage ring Fast Orbit Feedback (FOFB) system:
 - Update rate: > 100 kS/s
 - Closed-loop latency: < 25 μs
 - Sensors: 240 RF BPMs, 17 insertion device gap/phase encoders, ~70 X-Ray BPMs
 - Actuators: ~440 orbit corrector power supplies

System Architecture

System Architecture

System Architecture

Hardware designs (AMC FMC Carrier)

Hardware designs (AMC FMC Carrier)

Designed by Warsaw University of Technology (WUT) for LNLS

Hardware designs (FMC ADC)

Hardware designs (FMC ADC)

LTC2208 (130MS/s) - LNLS design

ISLA216P25 (250 MS/s) - WUT design

Common shielding/heatsink, front panel and connectors

HDL and Software designs

HDL and Software designs

Results and Issues

Sirius BPM RF Front-End 🙂	1 st version layout 100% correct, standalone performance meets specifications. Details in IBIC'13 papers: WEPC07, MOPC09
AMC FMC Carrier tests	No major problems found on 1st prototype tests
Digital Signal Processing	Basic Beam Position Monitor math is currently done with System Generator (porting for open-source HDL is still pending)
Local Bus 🙂	Wishbone B4 sucessfully employed, seamless substitution of bus master (PCIe, LM32, RS-232 controller), large reuse of HDL code
PCI Express 🙂	130 MB/s(read) and 170 MB/s (write) performace on PCIe Gen1 x1
FMC ADC 130 MS/s 😐	High distortion (THD > -65 dBc) for input powers > -8 dBm
FMC ADC 250 MS/s 😐	High attenuation @ 500 MHz (> 12 dB) + poor S11
MicroTCA platform 😐	IPMI incompatibility between Vadatech MCH and N.A.T. power supplies → severe startup and cooling failures
AMC CPU 😕	PowerPC P2020 → strong ties to vendor's outdated Linux SDK Moving to x86 → easier software development, better support

Moving to x86 \rightarrow easier software development, better support

Collaboration

- CERN Open Hardware Licence + GNU General Public License (GPL)
- Designs and codes hosted at:
 - http://www.ohwr.org/projects/bpm
 - http://www.ohwr.org/projects/bpm-rffe
 - http://www.ohwr.org/projects/bpm-sw
 - http://www.ohwr.org/projects/afc
 - http://www.ohwr.org/projects/fmc-adc-130m-16b-4cha
 - http://www.ohwr.org/projects/fmc-adc-250m-16b-4cha

Brazilian Synchrotron Light Laboratory

WARSAW UNIVERSITY OF TECHNOLOGY

OPEN HARDWARE REPOSITORY

Conclusion

- The concept:
 - Modular
 - Based on proven and emerging standards
 - Open-source hardware and software

- Current status:
 - Overall hardware functionality and performance have been proven
 - Efforts for improvements on ADC boards are ongoing
 - New round of board prototypes is foreseen to December 2013
- Next steps (6 12 months):
 - Improve existing hardware designs
 - Build remaining hardware: RTM with 8 SFP+ cages, universal FOFB node
 - Refinements on DSP chains + data acquisition engine
 - Control software integration: EPICS IOC, CLI utility, Labview, etc.
 - Timing system interface
 - Fast Orbit Feedback data distribution

Thank you!

