Exercise of Supervised Learning: Boosting Part 2

Yawei Li

yawei.li@stat.uni-muenchen.de

January 12, 2024

Exercise 1: Gradient Boosting

In the following, you assume that your outcome follows a \log_2 -normal distribution with density function

$$p(y|f) = \frac{1}{y\sigma\sqrt{2\pi}}\exp\left(-\frac{(\log_2(y) - f)^2}{2\sigma^2}\right) \qquad \triangleleft$$

where $\sigma=1$. In other words, $\log_2(Y)$ follows a normal distribution. You observe n=3 data points \mathbf{y} and want to model f using features $\mathbf{X} \in \mathbb{R}^{n \times p}$. You choose to use a gradient boosting tree algorithm.

(a) Derive the pseudo residuals based on the negative log-likelihood for the given distribution assumption.

- (a) Derive the pseudo residuals based on the negative log-likelihood for the given distribution assumption.
 - The loss is calulated by the NLL by:

$$L(y, f) = -\ell(f) = -(const. - (log_2(y) - f)^2/2)$$

The pseudo residuals are:

$$\tilde{r}(f) = \partial L(y, f) / \partial f = (\log_2(y) - f)$$

- (a) Derive the pseudo residuals based on the negative log-likelihood for the given distribution assumption.
 - ► The loss is calulated by the NLL by:

$$L(y, f) = -\ell(f) = -(const. - (\log_2(y) - f)^2/2).$$

The pseudo residuals are:

$$\widetilde{r}(f) = \partial L(y, f) / \partial f = (\log_2(y) - f).$$

- (a) Derive the pseudo residuals based on the negative log-likelihood for the given distribution assumption.
 - ► The loss is calulated by the NLL by:

$$L(y, f) = -\ell(f) = -(const. - (\log_2(y) - f)^2/2).$$

The pseudo residuals are:

$$\tilde{r}(t) = \partial L(y, t)/\partial t = (\log_2(y) - t).$$

Exercise 1 (b)

(b) Given only the 3 samples $\mathbf{y} = (1, 2, 4)^T$ \lhd and two features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad <$$

explicitly derive or state with explanation

- (i) the loss-optimal initial boosting model $\hat{t}^{[0]}(\mathbf{x})$,
- (ii) the pseudo residual $\tilde{r}^{[1]}$,
- (iii) the regression stump $R_t^{[1]}$, t = 1, 2,
- (iv) the boosting model $\hat{f}^{[1]}(\mathbf{x})$ as well as
- (v) the pseduo residual $\tilde{r}^{[2]}$

for tree base learners with depth d=1 (stumps) and a learning rate of $\alpha=1$.

(b) (i) Derive the loss-optimal intial boosting model $\hat{f}^{[1]}(\mathbf{x})$.

- ► We initialize $\hat{f}^{[0]}(\mathbf{x}) = \arg\min_{f^{[0]}} \sum_{i=1}^{n} L(y^{(i)}, f^{[0]}(\mathbf{x}^{(i)})).$
- It can be easily seen that $\hat{f}^{[0]}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \log_2(y^{(i)}) = 1$, as it miminizes the squared error.

- (b) (i) Derive the loss-optimal intial boosting model $\hat{f}^{[1]}(\mathbf{x})$.
 - ▶ We initialize $\hat{f}^{[0]}(\mathbf{x}) = \arg\min_{f^{[0]}} \sum_{i=1}^{n} L(y^{(i)}, f^{[0]}(\mathbf{x}^{(i)})).$
 - It can be easily seen that $\hat{f}^{[0]}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \log_2(y^{(i)}) = 1$, as it miminizes the squared error.

- (b) (i) Derive the loss-optimal intial boosting model $\hat{f}^{[1]}(\mathbf{x})$.
 - ▶ We initialize $\hat{f}^{[0]}(\mathbf{x}) = \arg\min_{f^{[0]}} \sum_{i=1}^{n} L(y^{(i)}, f^{[0]}(\mathbf{x}^{(i)})).$
 - It can be easily seen that $\hat{f}^{[0]}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \log_2(y^{(i)}) = 1$, as it miminizes the squared error.

(b) (ii) Derive the pseudo residual $\tilde{r}^{[1]}$.

- From (a) we know $\tilde{r}(f) = \partial L(y, f)/\partial f = (\log_2(y) f)$.
- ▶ Denote $\tilde{\mathbf{f}}^{[0]} = (\hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(1)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(2)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(3)}))^T = (1, 1, 1)^T$
- ► Sc

$$\tilde{r}^{[1]} = \left(\log_2(y^{(1)}), \log_2(y^{(2)}), \log_2(y^{(3)})\right)^T - \tilde{\mathbf{f}}^{[0]} \\
= (0, 1, 2)^T - (1, 1, 1)^T \\
= (-1, 0, 1)^T.$$

- (b) (ii) Derive the pseudo residual $\tilde{r}^{[1]}$.
 - From (a) we know $\tilde{r}(f) = \partial L(y, f)/\partial f = (\log_2(y) f)$.
 - ▶ Denote $\tilde{\mathbf{f}}^{[0]} = (\hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(1)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(2)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(3)}))^T = (1, 1, 1)^T$
 - ► Sc

$$\tilde{r}^{[1]} = \left(\log_2(y^{(1)}), \log_2(y^{(2)}), \log_2(y^{(3)})\right)^T - \tilde{\mathbf{f}}^{[0]} \\
= (0, 1, 2)^T - (1, 1, 1)^T \\
= (-1, 0, 1)^T.$$

- (b) (ii) Derive the pseudo residual $\tilde{r}^{[1]}$.
 - From (a) we know $\tilde{r}(f) = \partial L(y, f)/\partial f = (\log_2(y) f)$.
 - ▶ Denote $\tilde{\mathbf{f}}^{[0]} = (\hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(1)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(2)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(3)}))^T = (1, 1, 1)^T$
 - ► Sc

$$\tilde{r}^{[1]} = \left(\log_2(y^{(1)}), \log_2(y^{(2)}), \log_2(y^{(3)})\right)^T - \tilde{\mathbf{f}}^{[0]}
= (0, 1, 2)^T - (1, 1, 1)^T
= (-1, 0, 1)^T.$$

- (b) (ii) Derive the pseudo residual $\tilde{r}^{[1]}$.
 - From (a) we know $\tilde{r}(t) = \partial L(y, t)/\partial t = (\log_2(y) t)$.
 - ▶ Denote $\tilde{\mathbf{f}}^{[0]} = (\hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(1)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(2)}), \hat{\mathbf{f}}^{[0]}(\mathbf{x}^{(3)}))^T = (1, 1, 1)^T$
 - So

$$\tilde{r}^{[1]} = \left(\log_2(y^{(1)}), \log_2(y^{(2)}), \log_2(y^{(3)})\right)^T - \tilde{\mathbf{f}}^{[0]}
= (0, 1, 2)^T - (1, 1, 1)^T
= (-1, 0, 1)^T.$$

(b) (iii) Derive the regression stump $R_t^{[1]}$, t = 1, 2.

- $ightharpoonup R_t^{[1]}$, t = 1, 2 will split using \mathbf{x}_1 , as \mathbf{x}_2 carries no information.
- Note that $x_1^{(1)} = x_1^{(2)}$.
- Recall that $\tilde{r}^{[1]} = (-1, 0, 1)^T$, and $R_t^{[1]}$, t = 1, 2 aim to fit this pseudo residual.
- ▶ $R_1 = -0.5 \cdot I_{x_1 \ge 0.5}$, for which -0.5 stems from $\frac{1}{2} (\tilde{r}^{1} + \tilde{r}^{[1](2)})$ because $\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)} \ge 0.5$.
- $ightharpoonup R_2 = 1 \cdot I_{x_1 < 0.5}$, for which 1 stems from $\tilde{r}^{[1](3)}$ because only $\mathbf{x}_1^{(3)} < 0.5$.

- (b) (iii) Derive the regression stump $R_t^{[1]}$, t = 1, 2.
 - $ightharpoonup R_t^{[1]}$, t = 1, 2 will split using \mathbf{x}_1 , as \mathbf{x}_2 carries no information.
 - Note that $x_1^{(1)} = x_1^{(2)}$.
 - Recall that $ilde{r}^{[1]}=(-1,0,1)^T$, and $R_t^{[1]},t=1,2$ aim to fit this pseudo residual.
 - $R_1 = -0.5 \cdot I_{x_1 \ge 0.5}$, for which -0.5 stems from $\frac{1}{2} (\tilde{r}^{1} + \tilde{r}^{[1](2)})$ because $\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)} \ge 0.5$.
 - $Arr R_2 = 1 \cdot I_{x_1 < 0.5}$, for which 1 stems from $\tilde{r}^{[1](3)}$ because only $\mathbf{x}_1^{(3)} < 0.5$.

- (b) (iii) Derive the regression stump $R_t^{[1]}$, t = 1, 2.
 - $ightharpoonup R_t^{[1]}$, t = 1, 2 will split using \mathbf{x}_1 , as \mathbf{x}_2 carries no information.
 - Note that $x_1^{(1)} = x_1^{(2)}$.
 - Recall that $\tilde{r}^{[1]} = (-1,0,1)^T$, and $R_t^{[1]}$, t = 1,2 aim to fit this pseudo residual.
 - $R_1 = -0.5 \cdot I_{x_1 \ge 0.5}$, for which -0.5 stems from $\frac{1}{2} (\tilde{r}^{1} + \tilde{r}^{[1](2)})$ because $\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)} \ge 0.5$.
 - $Arr R_2 = 1 \cdot I_{x_1 < 0.5}$, for which 1 stems from $\tilde{r}^{[1](3)}$ because only $\mathbf{x}_1^{(3)} < 0.5$.

- (b) (iii) Derive the regression stump $R_t^{[1]}$, t = 1, 2.
 - $ightharpoonup R_t^{[1]}$, t = 1, 2 will split using \mathbf{x}_1 , as \mathbf{x}_2 carries no information.
 - Note that $x_1^{(1)} = x_1^{(2)}$.
 - Recall that $\tilde{r}^{[1]} = (-1, 0, 1)^T$, and $R_t^{[1]}$, t = 1, 2 aim to fit this pseudo residual.
 - $R_1 = -0.5 \cdot I_{x_1 \ge 0.5}$, for which -0.5 stems from $\frac{1}{2} (\tilde{r}^{1} + \tilde{r}^{[1](2)})$ because $\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)} \ge 0.5$.
 - $R_2 = 1 \cdot I_{x_1 < 0.5}$, for which 1 stems from $\tilde{r}^{[1](3)}$ because only $\mathbf{x}_1^{(3)} < 0.5$.

- (b) (iii) Derive the regression stump $R_t^{[1]}$, t = 1, 2.
 - $ightharpoonup R_t^{[1]}$, t = 1, 2 will split using \mathbf{x}_1 , as \mathbf{x}_2 carries no information.
 - Note that $x_1^{(1)} = x_1^{(2)}$.
 - Recall that $\tilde{r}^{[1]} = (-1, 0, 1)^T$, and $R_t^{[1]}$, t = 1, 2 aim to fit this pseudo residual.
 - $R_1 = -0.5 \cdot I_{x_1 \ge 0.5}$, for which -0.5 stems from $\frac{1}{2} (\tilde{r}^{1} + \tilde{r}^{[1](2)})$ because $\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)} \ge 0.5$.
 - $Arr R_2 = 1 \cdot I_{x_1 < 0.5}$, for which 1 stems from $\tilde{r}^{[1](3)}$ because only $\mathbf{x}_1^{(3)} < 0.5$.

- (b) (iii) Derive the regression stump $R_t^{[1]}$, t = 1, 2.
 - $ightharpoonup R_t^{[1]}$, t = 1, 2 will split using \mathbf{x}_1 , as \mathbf{x}_2 carries no information.
 - Note that $x_1^{(1)} = x_1^{(2)}$.
 - ▶ Recall that $\tilde{r}^{[1]} = (-1, 0, 1)^T$, and $R_t^{[1]}$, t = 1, 2 aim to fit this pseudo residual.
 - ▶ $R_1 = -0.5 \cdot I_{x_1 \ge 0.5}$, for which -0.5 stems from $\frac{1}{2} (\tilde{r}^{1} + \tilde{r}^{[1](2)})$ because $\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)} \ge 0.5$.
 - $P = R_2 = 1 \cdot I_{x_1 < 0.5}$, for which 1 stems from $\tilde{r}^{[1](3)}$ because only $\mathbf{x}_1^{(3)} < 0.5$.

(b) (iv) Derive the boosting model $\hat{f}^{[1]}(\mathbf{x})$ (i.e., $\tilde{f}^{[1]}$).

- lacktriangle Recall that $R_1^{[1]}=-0.5\emph{I}_{x_1\geq 0.5}$ and $R_2^{[1]}=1\cdot\emph{I}_{x_2<0.5}$, and learning rate lpha=1
- ► So the update direction given by the regression stump is $(-0.5, -0.5, 1)^T$
- ► Therefore,

$$\tilde{\mathbf{f}}^{[1]} = \tilde{\mathbf{f}}^{[0]} + 1 \cdot (-0.5, -0.5, 1)^T$$

= $(1, 1, 1)^t + (-0.5, -0.5, 1)^T$
= $(0.5, 0.5, 2)^T$

- (b) (iv) Derive the boosting model $\hat{f}^{[1]}(\mathbf{x})$ (i.e., $\tilde{f}^{[1]}$).
 - ▶ Recall that $R_1^{[1]} = -0.5 \emph{\textbf{I}}_{x_1 \geq 0.5}$ and $R_2^{[1]} = 1 \cdot \emph{\textbf{I}}_{x_2 < 0.5}$, and learning rate $\alpha = 1$.
 - So the update direction given by the regression stump is $(-0.5, -0.5, 1)^T$.
 - Therefore,

$$\tilde{\mathbf{f}}^{[1]} = \tilde{\mathbf{f}}^{[0]} + 1 \cdot (-0.5, -0.5, 1)^T$$

= $(1, 1, 1)^t + (-0.5, -0.5, 1)^T$
= $(0.5, 0.5, 2)^T$

- (b) (iv) Derive the boosting model $\hat{t}^{[1]}(\mathbf{x})$ (i.e., $\tilde{t}^{[1]}$).
 - ▶ Recall that $R_1^{[1]} = -0.5 I_{x_1 \ge 0.5}$ and $R_2^{[1]} = 1 \cdot I_{x_2 < 0.5}$, and learning rate $\alpha = 1$.
 - ► So the update direction given by the regression stump is $(-0.5, -0.5, 1)^T$.
 - Therefore,

$$\tilde{\mathbf{f}}^{[1]} = \tilde{\mathbf{f}}^{[0]} + 1 \cdot (-0.5, -0.5, 1)^T$$

= $(1, 1, 1)^t + (-0.5, -0.5, 1)^T$
= $(0.5, 0.5, 2)^T$

- (b) (iv) Derive the boosting model $\hat{t}^{[1]}(\mathbf{x})$ (i.e., $\tilde{t}^{[1]}$).
 - ▶ Recall that $R_1^{[1]} = -0.5 I_{x_1 \ge 0.5}$ and $R_2^{[1]} = 1 \cdot I_{x_2 < 0.5}$, and learning rate $\alpha = 1$.
 - ► So the update direction given by the regression stump is $(-0.5, -0.5, 1)^T$.
 - ► Therefore,

$$\tilde{\mathbf{f}}^{[1]} = \tilde{\mathbf{f}}^{[0]} + 1 \cdot (-0.5, -0.5, 1)^T$$

= $(1, 1, 1)^t + (-0.5, -0.5, 1)^T$
= $(0.5, 0.5, 2)^T$

- (b) (v) Derive the pseudo residual $\tilde{r}^{[2]}$.
 - Similar as the previous step,

$$\tilde{r}^{[2]} = \left(log_2(y^{(1)}), log_2(y^{(2)}), log_2(y^{(3)})\right)^T - \tilde{\mathbf{f}}^{[1]}
= (0, 1, 2)^T - (0.5, 0.5, 2)^T
= (-0.5, 0.5, 0)^T$$

Exercise 1 (c)

(c) What would happend in the second iteration of the previous boosting algorithm?

(c) What would happend in the second iteration of the previous boosting algorithm?

- ▶ Recall that $\tilde{r}^{[2]} = (-0.5, 0.5, 0)^T$, which needs to be fit by $R_1^{[2]}$ and $R_2^{[2]}$.
- Similar as before, we split based on \mathbf{x}_1 , and $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ goes to $R_1^{[2]}$, while $\mathbf{x}^{(3)}$ goes to $R_2^{[2]}$.
- ► Therefore $R_1^{[2]} = \frac{-0.5+0.5}{2} \cdot I_{x_1 \ge 0.5} = 0$, and $R_2^{[2]} = 0 \cdot I_{x_2 < 0} = 0$.
- So the update direction is $(0,0,0)^T$, implying that no information can be used to improve the model.

- (c) What would happend in the second iteration of the previous boosting algorithm?
 - ► Recall that $\tilde{r}^{[2]} = (-0.5, 0.5, 0)^T$, which needs to be fit by $R_1^{[2]}$ and $R_2^{[2]}$.
 - Similar as before, we split based on \mathbf{x}_1 , and $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ goes to $R_1^{[2]}$, while $\mathbf{x}^{(3)}$ goes to $R_2^{[2]}$.
 - ▶ Therefore $R_1^{[2]} = \frac{-0.5+0.5}{2} \cdot I_{x_1 \ge 0.5} = 0$, and $R_2^{[2]} = 0 \cdot I_{x_2 < 0} = 0$.
 - So the update direction is $(0,0,0)^T$, implying that no information can be used to improve the model.

- (c) What would happend in the second iteration of the previous boosting algorithm?
 - ► Recall that $\tilde{r}^{[2]} = (-0.5, 0.5, 0)^T$, which needs to be fit by $R_1^{[2]}$ and $R_2^{[2]}$.
 - Similar as before, we split based on \mathbf{x}_1 , and $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ goes to $R_1^{[2]}$, while $\mathbf{x}^{(3)}$ goes to $R_2^{[2]}$.
 - ▶ Therefore $R_1^{[2]} = rac{-0.5 + 0.5}{2} \cdot \emph{\textbf{I}}_{\emph{\textbf{X}}_1 \geq 0.5} = 0$, and $R_2^{[2]} = 0 \cdot \emph{\textbf{I}}_{\emph{\textbf{X}}_2 < 0} = 0$.
 - So the update direction is (0,0,0)', implying that no information can be used to improve the model.

- (c) What would happend in the second iteration of the previous boosting algorithm?
 - ▶ Recall that $\tilde{r}^{[2]} = (-0.5, 0.5, 0)^T$, which needs to be fit by $R_1^{[2]}$ and $R_2^{[2]}$.
 - Similar as before, we split based on \mathbf{x}_1 , and $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ goes to $R_1^{[2]}$, while $\mathbf{x}^{(3)}$ goes to $R_2^{[2]}$.
 - ► Therefore $R_1^{[2]} = \frac{-0.5+0.5}{2} \cdot I_{x_1 \ge 0.5} = 0$, and $R_2^{[2]} = 0 \cdot I_{x_2 < 0} = 0$.
 - So the update direction is $(0,0,0)^T$, implying that no information can be used to improve the model.

- (c) What would happend in the second iteration of the previous boosting algorithm?
 - ▶ Recall that $\tilde{r}^{[2]} = (-0.5, 0.5, 0)^T$, which needs to be fit by $R_1^{[2]}$ and $R_2^{[2]}$.
 - Similar as before, we split based on \mathbf{x}_1 , and $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ goes to $R_1^{[2]}$, while $\mathbf{x}^{(3)}$ goes to $R_2^{[2]}$.
 - ► Therefore $R_1^{[2]} = \frac{-0.5+0.5}{2} \cdot I_{x_1 \ge 0.5} = 0$, and $R_2^{[2]} = 0 \cdot I_{x_2 < 0} = 0$.
 - So the update direction is $(0,0,0)^T$, implying that no information can be used to improve the model.

Exercise 1 (d)

(d) If you are given more data points, but still the two binary feature vectors \mathbf{x}_1 and \mathbf{x}_2 , what will happen as

- (i) M grows
- (ii) n grows

in terms of model capacity (if d is kept fixed)?

- (i) *M* grows: capacity will increase and the algorithm may overfit.
- (ii) *n* grows: capacity will stay the same and the algorithm may underfit.