Modified Maximum Spanning Tree Clustering for Large-Scale Image Retrieval

Cheng Chang, Chundi Liu, Guangwei Yu, Maksims Volkovs Laver 6 Al

LAYER

PubMAP

Motivation

Challenges:

- Retrieve all the images depicting the same landmark regardless of visual similarity.
- Ranking is necessary for the MAP metric.

Architecture

Iterative DELF Query Expansion

Images with the same landmarks move closer to the approximated centers of the landmark clusters iteratively.

- Apply geometric verification using local descriptors.

Iter*	VMAP*	VMD^*
0	66.43%	1.02
1	76.68%	0.60
2	77.89%	0.45
3	75.84%	0.39
4	74.28%	0.36

Results

Google Landmark Retrieval Challenge:

- Largest public dataset for image retrieval.
- 15K unique landmarks, 1M training images, 1M index images, 100K test images.

Method

DIR

- Images have various sizes and high resolutions: 329GB in total.

Highlights:

- No fine-tuning.

- Single model

without ensemble

Validation:

Experiment Results:

Team	PvtMAP
1. CVSSP & Visual Atoms	62.7%
2. Layer 6 AI	60.8%
3. SevenSpace	59.8%
4. Naver Labs Europe	58.6%
5. VPP	58.3%

Modified Maximum Spanning Tree Clustering

- As long as there is a bridging image, visually dissimilar images can be connected
- Ranking is accomplished since we are adding the most confident image at a time

VFTER MMST-C

					A		(H			3)
	s	F	D	E	С	н	G	В	1	К	J
			<u> </u>						5	Â	
					est es						
										-	
	# (HI) 4	To I							1		
- 1 m	E.		See All	neuthr			1.	700			
					A		4.		-	4	
and a	d		1	-11	-			-	(del)		

Conclusion

- Iterative DELF QE constrains the global feature space. - Clustering resolves the challenge of visually dissimilar
- images through transition of bridging images.
- Modified maximum spanning tree clustering ranks the candidates across the connected images.
- Scalability: fast approximate update for both new images in index and in test.
- Flexibility: limit depth to constraint visual similarity.

References

- [1] Noh H et al. Large-Scale Image Retrieval with Attentive Deep Local Features, Proc. ICCV 2017.
- [2] Gordo A et al. Deep Image Retrieval: Learning Global Representations for Image Search, ECCV 2016.
- [3] Gordo A et al. End-to-end Learning of Deep Visual Representations for Image Retrieval. IJCV 2017.