МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет

Н. Л. Абашеева, Т. Ю. Михайлова

СЕМИНАРЫ ПО МЕТОДАМ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Учебное пособие

Новосибирск 2012 УДК 517.95 ББК В161.62 А136

Абашеева Н. Л., Михайлова Т. Ю. Семинары по методам математической физики: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, $2012.\ 138\ c.$

В учебном пособии изложены основные приемы решения задач по курсу "Методы математической физики" для студентов 3-го курса отделения физической информатики физического факультета и отделений геофизики и геомеханики геолого-геофизического факультета Новосибирского государственного университета.

Рецензент проф. Д. А. Шапиро

Издание подготовлено в рамках реализации Программы развития государственного образовательного учреждения высшего профессионального образования "Новосибирский государственный университет" на 2009–2018 годы.

- © Новосибирский государственный университет, 2012
- © Абашеева Н. Л., Михайлова Т. Ю., 2012

Предисловие

Курс "Методы математической физики" читается на физическом факультете Новосибирского государственного университета на отделении физической информатики.

Название курса, его структура и содержание подчеркивают, что основное внимание уделяется именно методам решения задач математической физики. Формат изложения (одна лекция и два семинара в неделю) позволяет рассмотреть практически все классические приемы: метод бегущих волн для гиперболических уравнений, метод Фурье, функцию Грина, теорию потенциалов и интегральных преобразований.

Данный курс является иллюстрацией того, как знания и навыки, полученные студентами на первых двух курсах, могут быть использованы в решении практических задач физики.

Пособие содержит основы наиболее распространенных алгоритмов; ожидается, что техническая часть (разложение в ряды, вычисление интегралов и т. д.) читателю уже знакома и не требует пояснений.

Тем не менее, мы считаем, что студентам будет полезно отработать на практических примерах те знания, которые они приобрели в рамках нашего курса.

Приведем список рекомендуемой литературы (полный список см. на с. 116).

 $By\partial a\kappa \ B.\ M.,\ Camapcku \ A.\ A.,\ Tuxoнob\ A.\ H.\$ Сборник задач по математической физике. М.: Физматлит, 2003.

Данный задачник содержит подробные решения практически всех задач. Следует отметить, что, как правило, постановка задач носит физический характер, и тем интереснее, как она затем переводится в математическую плоскость. Можно сказать, что сегодня это лучшее, что предлагает нам обширная библиография по интересующему нас вопросу.

Cборник задач по уравнениям математической физики / Под ред. В. С. Владимирова. М.: Физматлит, 2001.

Именно этот сборник является источником многих задач, которые мы рассматриваем на практических занятиях. В отличие от предыдущего, он написан более современным математическим языком. Задачи часто не имеют ярко выраженного физического смысла и являются, скорее, примерами основных подходов к решению задач математической физики.

Кошляков Н. С., Глинер Э. Б., Смирнов М. М. Уравнения в частных производных математической физики. М.: Высш. шк., 1970.

Написанная простым и понятным языком книга может быть полезна тем студентам, которые хотят более подробно ознакомиться с предметом.

Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Изд-во МГУ, 1999.

Классический учебник. Особенно хочется отметить, что в этой книге вы найдете простые выводы основных уравнений математической физики— вопросы, которые мы практически не рассматриваем в нашем курсе.

Уравнения с частными производными первого порядка

§ 1. Линейные однородные уравнения первого порядка

Рассмотрим уравнение вида

$$a_1 \frac{\partial u}{\partial x_1} + \ldots + a_n \frac{\partial u}{\partial x_n} = 0,$$
 (1.1)

где $a_i(x_1,\dots,x_n)$ $(i=\overline{1,n})$ — непрерывно дифференцируемые функции, $\sum\limits_{i=1}^n a_i^2 \neq 0$.

Определение. Автономная система

$$\begin{cases}
\frac{dx_1}{ds} = a_1(x_1, \dots, x_n), \\
\dots \\
\frac{dx_n}{ds} = a_n(x_1, \dots, x_n)
\end{cases}$$
(1.2)

называется xарактеристической системой уравнения (1.1). В симметричной форме эта система имеет вид

$$\frac{dx_1}{a_1} = \dots = \frac{dx_n}{a_n}. (1.2')$$

Определение. Характеристиками уравнения (1.1) называются траектории системы (1.2), т. е. интегральные кривые системы (1.2').

ОПРЕДЕЛЕНИЕ. Первым интегралом системы (1.2') называется любая функция $\varphi(x_1,\ldots,x_n)$, принимающая постоянное значение на решениях этой системы (т. е. характеристиках уравнения (1.1)).

Пусть $\varphi_1, \dots, \varphi_{n-1}$ — независимые первые интегралы системы (1.2').

Теорема. Любое решение уравнения (1.1) имеет вид

$$u = F(\varphi_1, \dots, \varphi_{n-1}), \tag{1.3}$$

где F — произвольная гладкая функция от n-1 переменной. Пусть S — гладкая (n-1)-мерная поверхность в \mathbb{R}^n .

Задача Коши 1 . Найти решение уравнения (1.1) такое, что

$$u\big|_{S} = u_0, \tag{1.4}$$

где u_0 — заданная непрерывно дифференцируемая функция.

Определение. Точка $x_0 \in S$ называется $\mathit{nexapakmepu-cmuчeckoй}$, если характеристика, проходящая через точку x_0 , не касается поверхности S.

Теорема. Задача Коши имеет единственное решение в окрестности любой нехарактеристической точки.

Итак, чтобы решить задачу Коши,

- 1) находим характеристики и первые интегралы системы (1.2');
 - 2) составляем общее решение по формуле (1.3);
- 3) используя начальные данные (1.4), находим функцию F, т. е. решение задачи Коши.

Найти решения уравнений, удовлетворяющие указанным условиям.

- 1. $u_x + u_y = 0$, $u|_{y=0} = u_0(x)$.
- **2.** $u_x + u_y = 0$, $u|_{y=1-x} = u_0(x)$.
- **3.** $u_x + u_y = 0$, $u|_{y=x} = u_0(x)$.
- **4.** $yu_x xu_y = 0$, $u|_{y=x} = u_0(x)$.
- **5.** $u_x + (2e^x y)u_y = 0$, $u|_{x=0} = y$.
- **6.** $(x-z)u_x + (y-z)u_y + 2zu_z = 0$, $u|_{z=1} = xy$.
- 7. $xu_x + yu_y + xyu_z = 0$, $u|_{z=0} = x^2 + y^2$.
- 8. $u_x + u_y + 2u_z = 0$, $u|_{x=1} = yz$.

 $^{^{1}}$ Augustin Louis Cauchy (1789–1857), французский математик.

§ 2. Линейные неоднородные уравнения первого порядка

Теперь рассмотрим уравнение

$$a_1 \frac{\partial u}{\partial x_1} + \ldots + a_n \frac{\partial u}{\partial x_n} = b,$$
 (2.1)

где $a_i(x_1,...,x_n)$ $(i=\overline{1,n}),$ $b(x_1,...,x_n)$ — непрерывно дифференцируемые функции, $\sum_{i=1}^n a_i^2 \neq 0$.

Теорема. Если u_1 , u_2 — решения (2.1), то $v = u_1 - u_2$ является решением (1.1).

Отсюда

$$u_{\text{O.p.H.}} = u_{\text{O.p.O.}} + u_{\text{Y.p.H.}},$$
 (2.2)

где $u_{\text{O.D.H.}}$ — общее решение неоднородного уравнения,

 $u_{\text{O.p.o.}}$ — общее решение однородного уравнения,

 $u_{\rm {H.D.H.}}$ — частное решение неоднородного уравнения.

Задача Коши ставится так же, как и для однородного уравнения (см. § 1).

Итак, чтобы решить задачу Коши для уравнения (2.1),

- 1) находим общее решение однородного уравнения (1.1), как в $\S 1$;
- 2) затем находим частное решение неоднородного уравнения (2.1), используя соотношение на характеристике

$$du = b ds$$
:

3) составляем общее решение неоднородного уравнения по формуле (2.2).

Найти решения уравнений, удовлетворяющие указанным условиям.

9.
$$y^2u_x + xyu_y = x$$
, $u|_{x=0} = y^2$.

10.
$$xu_x + yu_y = 2xy$$
, $u|_{y=x} = x^2$.

11.
$$xu_x + yu_y = 2xy$$
, $u|_{x^2+y^2=1} = x$.

12.
$$e^x u_x + y^2 u_y = y e^x$$
, $u|_{x=0} = y$.

§ 3. Квазилинейные уравнения первого порядка

Теперь коэффициенты уравнения могут зависеть и от искомой функции, т. е.

$$\sum_{i=1}^{n} a_i(x_1, \dots, x_n, u) \frac{\partial u}{\partial x_i} = b(x_1, \dots, x_n, u).$$

Для наглядности рассмотрим случай n=2, т. е. уравнение вида

$$a(x, y, u) \frac{\partial u}{\partial x} + b(x, y, u) \frac{\partial u}{\partial y} = c(x, y, u).$$
 (3.1)

Определение. Система

$$\frac{dx}{a} = \frac{dy}{b} = \frac{du}{c} \tag{3.2}$$

называется характеристической системой уравнения (3.1)

ОПРЕДЕЛЕНИЕ. Характеристиками уравнения (3.1) называются интегральные кривые системы (3.2).

Переформулируем задачу Коши для случая n=2. Пусть γ — гладкая кривая в \mathbb{R}^2 .

Задача Коши. Найти решение уравнения (3.1) такое, что

$$u\big|_{\gamma} = u_0, \tag{3.3}$$

где u_0 — заданная непрерывно дифференцируемая функция.

1-й способ решения задачи Коши для уравнения (3.1):

- 1) сначала нужно найти независимые первые интегралы $\varphi_1(x,y,u), \, \varphi_2(x,y,u)$ системы (3.2);
 - 2) составить общее решение, заданное неявной формулой

$$\Phi(\varphi_1, \varphi_2) = 0;$$

3) используя начальные условия (3.3), найти функцию Φ . Существует еще один способ решения задачи Коши. Если кривая γ задана параметрически уравнениями

$$\begin{cases} x = x_0(t), \\ y = y_0(t), \end{cases}$$

то геометрически решить задачу Коши означает построить интегральную поверхность уравнения (3.1), проходящую через заданную кривую Γ :

$$\begin{cases} x = x_0(t), \\ y = y_0(t), \\ u = u_0(t). \end{cases}$$

2-й способ решения задачи Коши для уравнения (3.1): Нужно найти поверхность, заданную параметрически уравнениями

$$\begin{cases} x = x(t, s), \\ y = y(t, s), \\ u = u(t, s), \end{cases}$$

решив задачу Коши для системы (при каждом фиксированном t)

$$\begin{cases} \frac{dx}{ds} = a(x, y, u), \\ \frac{dy}{ds} = b(x, y, u), \\ \frac{du}{ds} = c(x, y, u) \end{cases}$$

с данными

$$\begin{cases} x|_{s=0} = x_0(t), \\ y|_{s=0} = y_0(t), \\ u|_{s=0} = u_0(t). \end{cases}$$

Заметим, что этим способом можно решать и линейные уравнения.

Найти поверхности, удовлетворяющие данным уравнениям и проходящие через заданные кривые.

- **13.** $uu_x + u_y = 1$; $x y^2 = 0$, u + y = 0.
- **14.** $(x-u)u_x + (y-u)u_y = 2u$; x-y=2, u+2x=1.
- **15.** $u_x + 2u_y + u = xy$; x = 0, u + y = 2.
- **16.** $xu_x + (xu + y)u_y = u$; x + y = 2u, xu = 1.
- 17. $xu_x + u_y = u xy$; x = 2, $u y^2 = 1$.
- **18.** $xz_x + zz_y = y$; x = t, $y = \sin t$, $z = \cos t$.
- **19.** $u_t+uu_x=0;\lim_{t\to +0}u(t,x)=\operatorname{sgn} x.$ Следует уточнить, что здесь $u=u\left(t,x\right)$ означает функцию, определенную и непре-

здесь $u=u\left(t,x\right)$ означает функцию, определенную и непрерывную в полуплоскости t>0, гладкую при $t\neq |x|$ и для каждого фиксированного значения x имеющую указанный выше предел при $t\to +0$.

Классификация уравнений второго порядка

 \S 4. Приведение к каноническому виду квазилинейных уравнений второго порядка с переменными коэффициентами в случае n=2

Рассмотрим уравнение

$$a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + F(x,y,u,u_x,u_y) = 0, (4.1)$$

где a, b, c, F — заданные вещественные функции.

Определение. Уравнение

$$a\varphi_x^2 + 2b\varphi_x\varphi_y + c\varphi_y^2 = 0$$

называется xарактеристическим. Кривая γ , заданная уравнением $\varphi(x,y) = \text{const}$, называется xарактеристической, если вектор нормали (φ_x, φ_y) удовлетворяет характеристическому уравнению.

Характеристическому уравнению соответствует квадратичная форма

$$\Phi(\lambda, \mu) = a\lambda^2 + 2b\lambda\mu + c\mu^2$$

и квадратное уравнение (при $a \neq 0$, случай a = 0 рассматривается аналогично):

$$ak^2 + 2bk + c = 0. (4.2)$$

Дискриминант этого уравнения $D = 4(b^2 - ac)$.

Определение. Уравнение (4.1) называется уравнением ε иперболического muna, если D>0 (квадратичная форма Φ знакопеременна);

эллиптического типа, если D < 0 (квадратичная форма Φ знакоопределена);

napa foлического muna, если D=0 (квадратичная форма Φ вырождена).

1-й случай.

В этом случае уравнение (4.2) имеет два вещественных различных корня k_1, k_2 . Характеристическое уравнение распадается на

$$\varphi_x - k_1 \varphi_y = 0 \quad \text{и} \quad \varphi_x - k_2 \varphi_y = 0.$$

Первые интегралы этих уравнений

$$\varphi_1(x,y) = C_1$$
 и $\varphi_2(x,y) = C_2$

задают два семейства вещественных характеристик.

После замены

$$\xi = \varphi_1(x, y),$$

$$\eta = \varphi_2(x, y)$$

уравнение (4.1) приводится к первому каноническому виду

$$u_{\xi\eta} + G(\xi, \eta, u, u_{\xi}, u_{\eta}) = 0.$$

Заменой

$$\xi = \alpha + \beta,$$

$$\eta = \alpha - \beta$$

это уравнение приводится ко второму каноническому виду

$$u_{\alpha\alpha} - u_{\beta\beta} + H(\alpha, \beta, u, u_{\alpha}, u_{\beta}) = 0.$$

2-й случай.

Уравнение (4.2) имеет два комплексно сопряженных корня k, \bar{k} . Характеристическое уравнение распадается на

$$\varphi_x - k\varphi_y = 0$$
 и $\varphi_x - \overline{k}\varphi_y = 0$.

Первые интегралы этих уравнений имеют вид

$$\varphi_1(x,y) \pm i\varphi_2(x,y) = C,$$

где $\varphi_1(x,y)$, $\varphi_2(x,y)$ — вещественные функции. Вещественных характеристик в этом случае нет.

После замены

$$\xi = \varphi_1(x, y),$$

$$\eta = \varphi_2(x, y)$$

уравнение (4.1) приводится к каноническому виду

$$u_{\xi\xi} + u_{\eta\eta} + G(\xi, \eta, u, u_{\xi}, u_{\eta}) = 0.$$

3-й случай.

Уравнение (4.2) имеет один вещественный корень k. Характеристическое уравнение имеет вид

$$\varphi_x - k\varphi_y = 0.$$

Первый интеграл этого уравнения

$$\varphi(x,y) = C$$

задает семейство вещественных характеристик.

После замены

$$\xi = \varphi(x, y),$$

$$\eta = \psi(x, y),$$

где ψ — произвольная независимая с φ функция, уравнение (4.1) приводится к каноническому виду

$$u_{\eta\eta} + G(\xi, \eta, u, u_{\xi}, u_{\eta}) = 0.$$

Напомним следующие формулы:

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x, \\ u_y &= u_\xi \xi_y + u_\eta \eta_y, \\ u_{xx} &= u_{\xi\xi} \xi_x^2 + 2u_{\xi\eta} \xi_x \eta_x + u_{\eta\eta} \eta_x^2 + u_{\xi} \xi_{xx} + u_\eta \eta_{xx}, \\ u_{xy} &= u_{\xi\xi} \xi_x \xi_y + u_{\xi\eta} (\xi_x \eta_y + \eta_x \xi_y) + u_{\eta\eta} \eta_x \eta_y + u_{\xi} \xi_{xy} + u_\eta \eta_{xy}, \\ u_{yy} &= u_{\xi\xi} \xi_y^2 + 2u_{\xi\eta} \xi_y \eta_y + u_{\eta\eta} \eta_y^2 + u_{\xi} \xi_{yy} + u_\eta \eta_{yy}. \end{split}$$

Итак, чтобы **привести уравнение** (4.1) к каноническому виду, нужно

- 1) решить квадратное уравнение (4.2) и определить тип уравнения;
 - 2) найти характеристики уравнения;
- 3) сделать соответствующие типу уравнения замены и пересчитать частные производные по выписанным выше формулам.

Для следующих уравнений укажите области, в пределах которых сохраняется тип уравнения, определите этот тип, найдите каноническую форму уравнения, а для параболических и гиперболических областей найдите общее решение.

20.
$$x^2u_{xx} - y^2u_{yy} = 0$$
.

21.
$$y^2u_{xx} + x^2u_{yy} = 0$$
.

22.
$$x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = 0.$$

23.
$$u_{xx} + yu_{yy} = 0$$
.

24.
$$u_{xx} - 2u_{xy} - 3u_{yy} + 2u_x + u_y = 0.$$

25.
$$x^2u_{xx} + 2xyu_{xy} - 3y^2u_{yy} - 2xu_x = 0.$$

26.
$$u_{xx} + yu_{yy} + \frac{1}{2}u_y = 0.$$

27.
$$(\operatorname{sgn} y)u_{xx} + 2u_{xy} + u_{yy} = 0.$$

\S 5. Приведение к каноническому виду квазилинейных уравнений второго порядка с постоянными коэффициентами в случае n>2

Рассматриваем уравнение

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + F(x_1, \dots, x_n, u, \text{grad } u) = 0,$$
 (5.1)

где a_{ij} $(i,j=\overline{1,n}),\ F$ — заданные вещественные функции, $a_{ij}=a_{ji}.$

Уравнению (5.1) соответствует квадратичная форма

$$\Phi(\mathbf{p}) = \sum_{i,j=1}^{n} a_{ij} p_i p_j = (A\mathbf{p}, \mathbf{p}), \tag{5.2}$$

где
$$\mathbf{p} = (p_1, \dots, p_n)^T$$
, $A = (a_{ij})_{i,j=1}^n$.

Как известно, квадратичная форма заменой $\mathbf{p} = S\mathbf{q}$ (где S — некоторая невырожденная матрица) приводится к каноническому виду, т. е. матрица

$$\widetilde{A} = S^T A S = \begin{pmatrix} \delta_1 & 0 & \cdots & 0 \\ 0 & \delta_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \delta_n \end{pmatrix}$$

диагональная с элементами на диагонали, равными 0 или ± 1 .

ОПРЕДЕЛЕНИЕ. Уравнение (5.1) называется уравнением $sunep6onuчecкого\ muna$, если квадратичная форма Φ зна-копеременна, причем n-1 коэффициент δ_i — одного знака, а последний — другого;

эллиптического типа, если квадратичная форма Φ знакоопределена, т. е. все коэффициенты δ_i одного знака;

 $napaболического\ muna,$ если квадратичная форма Φ вырождена, т. е. хотя бы один из коэффициентов δ_i равен нулю.

После линейной замены

$$\mathbf{y} = S^T \mathbf{x},\tag{5.3}$$

где $\mathbf{x} = (x_1, \dots, x_n)^T$, $\mathbf{y} = (y_1, \dots, y_n)^T$, уравнение (5.1) приводится к *каноническому виду*

$$\sum_{i=1}^{n} \delta_i u_{y_i y_i} + G(y_1, \dots, y_n, u, \operatorname{grad} u) = 0.$$

Итак, чтобы **привести уравнение** (5.1) к каноническому виду, нужно

- 1) привести квадратичную форму (5.2) к каноническому виду;
 - 2) сделать замену (5.3).

Укажите тип дифференциальных уравнений, приведите их к каноническому виду.

28.
$$u_{xx} + 2u_{xy} - 2u_{xz} + 2u_{yy} + 6u_{zz} = 0$$
.

29.
$$u_{xy} + u_{yz} = 0$$
.

30.
$$u_{x_1x_1} + 2\sum_{k=2}^{n} u_{x_kx_k} - 2\sum_{k=1}^{n-1} u_{x_kx_{k+1}}$$
.
31. $u_{xx} + 2u_{xy} - 4u_{xz} - 6u_{yz} - u_{zz} = 0$.

31.
$$u_{xx} + 2u_{xy} - 4u_{xz} - 6u_{yz} - u_{zz} = 0.$$

32.
$$u_{xy} + u_{xz} - u_{tx} - u_{yz} + u_{ty} + u_{tz} = 0.$$

Гиперболические уравнения

§ 6. Задача Коши для гиперболического уравнения в случае двух переменных

Пусть уравнение

$$Lu \equiv a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + F(x,y,u,u_x,u_y) = 0$$
(6.1)

является уравнением гиперболического типа.

Как известно, это уравнение имеет два семейства вещественных характеристик. Пусть γ — гладкая кривая в \mathbb{R}^2 , не касающаяся характеристик уравнения (6.1), и вектор \mathbf{l} не касается этой кривой γ .

Задача Коши. Найти решение уравнения (6.1) такое, что

$$u\big|_{\gamma} = \varphi,$$
 $\frac{\partial u}{\partial \mathbf{l}}\Big|_{\gamma} = \psi,$

где φ , ψ — заданные функции.

Чтобы решить задачу Коши для уравнения (6.1),

- 1) приводим уравнение к каноническому виду (см. § 4);
- 2) находим общее решение полученного уравнения (если удастся);
- 3) используя данные задачи Коши, находим неизвестные функции, участвующие в формуле общего решения, т. е. находим решение задачи Коши.

Заметим, что если уравнение (6.1) является линейным уравнением с постоянными коэффициентами, то после приведения к каноническому виду оно примет вид

$$u_{\xi\eta} + Au_{\xi} + Bu_{\eta} + Cu = f(\xi, \eta).$$

В этом случае можно избавиться от младших производных заменой

$$u = e^{-B\xi - A\eta}v$$
.

Решите задачи Коши для гиперболических уравнений второго порядка.

33.
$$u_{xy} = 0,$$
 $u\Big|_{\gamma} = \varphi(x), \quad u_y\Big|_{\gamma} = \psi(x),$

где кривая γ задана уравнением y = f(x).

34.
$$u_{xy} = 0,$$
 $u|_{y=0} = \varphi(x), \quad u_y|_{y=0} = \psi(x).$

35.
$$x^2 u_{xx} - y^2 u_{yy} = 0$$
 B $x, y > 0,$ $u\Big|_{x=1} = y^2, \quad u_x\Big|_{x=1} = y.$

36.
$$xu_{xx} + (x+y)u_{xy} + yu_{yy} = 0$$
 B $x, y > 0$, $u\Big|_{y=1/x} = x^3$, $u_x\Big|_{y=1/x} = 2x^2$.

37.
$$u_{xx} - 3u_{xy} + 2u_{yy} + u_x - 2u_y = 0,$$

 $u|_{y=0} = 1, \quad u_y|_{y=0} = e^{2x}.$

38.
$$u_y + u_{xx} - 2u_{xy} - 3u_{yy} - \frac{1}{16}u = 0$$
 B $x \ge 0$, $u\Big|_{x=0} = 2ye^{y/8}$, $u_x\Big|_{x=0} = \left(2 + \frac{y}{4}\right)e^{y/8}$.

39.
$$4y^2u_{xx} + 2(1-y^2)u_{xy} - u_{yy} - \frac{2y}{1+y^2}(2u_x - u_y) = 0,$$

 $u\big|_{y=0} = \varphi(x), \quad u_y\big|_{y=0} = \psi(x).$

§ 7. Задача Гурса для гиперболического уравнения в случае двух переменных

Пусть уравнение

$$Lu \equiv a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + F(x,y,u,u_x,u_y) = 0$$
(7.1)

является уравнением гиперболического типа.

Пусть через точку $(x_0, y_0) \in \mathbb{R}^2$ проходят характеристики γ_1 и γ_2 уравнения (7.1).

Задача Гурса 2 . Найти решение уравнения (7.1) такое, что

$$u\big|_{\gamma_1} = \varphi_1, u\big|_{\gamma_2} = \varphi_2,$$

где $\varphi_1, \, \varphi_2$ — заданные функции и $\varphi_1(x_0, y_0) = \varphi_2(x_0, y_0)$.

Чтобы решить задачу Гурса для уравнения (7.1),

- 1) приводим уравнение к каноническому виду (см. § 4);
- 2) находим общее решение полученного уравнения (если удастся);
- 3) используя данные задачи Гурса, находим неизвестные функции, участвующие в формуле общего решения, т. е. находим решение задачи Коши.

В примерах 40-42 решите задачи Гурса.

40.
$$u_{xy} - u_x = x$$
 B $x, y > 0,$ $u\big|_{x=0} = y, u\big|_{y=0} = x^2.$

41.
$$u_{xy} + xu_x = 0$$
 B $x, y > 0,$ $u\big|_{x=0} = \varphi(y), \quad u\big|_{y=0} = \psi(x),$

где функции $\varphi(y)$ и $\psi(x)$ определены и непрерывны соответственно на полуосях $x \geqslant 0$ и $y \geqslant 0$, имеют непрерывные вторые производные при положительных значениях своих аргументов и "согласованы" равенством $\varphi(0) = \psi(0)$.

42.
$$u_{xy} + 3u_x - u_y - 3u = 0$$
 B $x, y > 0,$ $u\big|_{x=0} = y^2, \quad u\big|_{y=0} = \cos x - 1.$

43. Пусть k < 0. Покажите, что задача

$$u_{xy} = 0$$
 B $x > 0, y > kx,$
 $u\big|_{x=0} = 0, u\big|_{y=kx} = 0,$

поставлена некорректно.

 $^{^2}$ Édouard Jean-Baptiste Goursat (1858–1936), французский математик.

§ 8. Задача Коши и смешанная задача для волнового уравнения в случае двух переменных

Волновое уравнение (или уравнение колебаний струны) имеет вид

$$u_{tt} = a^2 u_{xx}, (8.1)$$

где a = const > 0.

Это уравнение имеет два семейства вещественных характеристик:

$$x \pm at = C$$
.

После замены

$$\xi = x + at,$$

$$\eta = x - at$$

уравнение (8.1) приводится к виду

$$u_{\xi\eta}=0.$$

Общее решение этого уравнения задается формулой

$$u = F(\xi) + G(\eta) = F(x + at) + G(x - at),$$
 (8.2)

т. е. является суммой двух волн.

Задача Коши (неограниченная струна). Найти решение при $x \in \mathbb{R}, \, t>0$ уравнения (8.1) такое, что

$$u\big|_{t=0} = \varphi(x),$$

 $u_t\big|_{t=0} = \psi(x),$

где φ , ψ — заданные функции.

Решение задачи Коши задается формулой Д'Аламбера³

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(s)ds, \qquad (8.3)$$

³ Jean Le Rond d'Alembert (1717–1783), французский ученый.

т. е.

$$F(y) = \frac{\varphi(y)}{2} + \frac{1}{2a} \int_{y_0}^{y} \psi(s) ds,$$

$$G(y) = \frac{\varphi(y)}{2} - \frac{1}{2a} \int_{y_0}^{y} \psi(s) ds.$$
(8.4)

Смешанная задача с однородными условиями (полуограниченная струна). Найти решение уравнения (8.1) в области $x>0,\,t>0$ такое, что

$$\begin{aligned} u\big|_{t=0} &= \varphi(x), \quad x>0, \\ u_t\big|_{t=0} &= \psi(x), \quad x>0, \end{aligned}$$

И

$$u\big|_{x=0} = 0, \quad t > 0,$$
 (8.5₁)

либо

$$u_x\big|_{x=0} = 0, \quad t > 0,$$
 (8.5₂)

либо

$$u_x - ku\big|_{x=0} = 0, \quad t > 0,$$
 (8.5₃)

где φ , ψ — заданные функции.

Лемма. Если функции φ , ψ — нечетные (четные), то решение задачи Коши обладает свойством $u\big|_{x=0}=0$ ($u_x\big|_{x=0}=0$).

Для решения 1-й смешанной задачи

- 1) продолжаем функции φ , ψ нечетно;
- 2) решаем задачу Коши с продолженными данными (подставляем в формулу Д'Аламбера (8.3) полученные функции).

В результате получим

$$u(x,t) = \begin{cases} \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(s)ds, & x \ge at, \\ \frac{\varphi(x+at) - \varphi(at-x)}{2} + \frac{1}{2a} \int_{at-x}^{x+at} \psi(s)ds, & x < at. \end{cases}$$

Поэтому для решения 2-й смешанной задачи

- 1) продолжаем функции φ , ψ четно;
- 2) решаем задачу Коши с продолженными данными (подставляем в формулу Д'Аламбера (8.3) полученные функции).

В результате получим

$$u(x,t) = \begin{cases} \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int\limits_{x-at}^{x+at} \psi(s) ds \\ \text{при } x \geq at, \end{cases}$$

$$\frac{\varphi(x+at) + \varphi(at-x)}{2} + \frac{1}{2a} \int\limits_{0}^{at-x} \psi(s) ds$$

$$\text{при } x < at.$$

Для решения 3-й смешанной задачи

- 1) в области x > at решение находим по формуле Д'Аламбера (8.3);
- 2) в области x < at решение находим по формуле (8.2), где компоненту F (волну, бегущую налево) находим так же, как и раньше, т. е. по формуле (8.4), а компоненту G (волну, бегущую направо) находим из условия (8.5₃);
- 3) неизвестные постоянные, участвующие в формулах для F и G, находим из условия непрерывности решения на прямой x=at.

Рис. 2

Далее, если рассматривается смешанная задача с неоднородными условиями, т. е.

Смешанная задача с неоднородными условиями (полуограниченная струна). Найти решение уравнения (8.1) в области $x>0,\,t>0$ такое, что

$$\begin{aligned} u\big|_{t=0} &= \varphi(x), \quad x>0, \\ u_t\big|_{t=0} &= \psi(x), \quad x>0, \end{aligned}$$

И

$$u\big|_{x=0} = \mu(t), \quad t > 0,$$
 (8.6₁)

либо

$$u_x\big|_{x=0} = \mu(t), \quad t > 0,$$
 (8.6₂)

либо

$$u_x - ku\big|_{x=0} = \mu(t), \quad t > 0,$$
 (8.6₃)

где φ , ψ , μ — заданные функции, то ее решаем так же, как 3-ю смешанную задачу с однородными условиями.

Итак, для **решения смешанной задачи с неоднородными условиями**

- 1) в области x > at решение находим по формуле Д'Аламбера (8.3);
- 2) в области x < at решение находим по формуле (8.2), где компоненту F (волну, бегущую налево) находим так же, как и раньше, т. е. по формуле (8.4), а компоненту G (волну, бегущую направо) находим либо из условия (8.6₁), либо из (8.6₂), либо из (8.6₃);
- 3) неизвестные постоянные, участвующие в формулах для F и G, находим из условия непрерывности решения на прямой x=at.

Если требуется **решить смешанную задачу для неоднородного уравнения**, то можно воспользоваться принципом суперпозиции и искать решение в виде суммы u=v+w, где

- v частное решение этого неоднородного уравнения;
- w решение смешанной задачи для однородного уравнения с новыми начальными и граничными условиями, полученными из исходных с помощью соотношения w=u-v.

Вопрос о нахождении частного решения неоднородного уравнения будет еще раз рассмотрен в § 10.

Решите смешанные задачи.

44.
$$u_{tt} - a^2 u_{xx} = 0$$
 в $x, t > 0,$ $u\Big|_{t=0} = \varphi(x), \quad u_t\Big|_{t=0} = 0$ при $x > 0,$ $u\Big|_{x=0} = 0$ при $t > 0.$

45.
$$u_{tt} - a^2 u_{xx} = 0$$
 B $x, t > 0,$ $u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = \psi(x)$ при $x > 0,$ $u_x\Big|_{x=0} = 0$ при $t > 0.$

46.
$$u_{tt} - a^2 u_{xx} = 0$$
 B $x, t > 0,$ $u\Big|_{t=0} = e^x, \quad u_t\Big|_{t=0} = 1$ при $x > 0,$ $u_x - u\Big|_{x=0} = 0$ при $t > 0.$

47.
$$u_{tt} - u_{xx} = 0$$
 в $x, t > 0,$ $u\Big|_{t=0} = x, u_t\Big|_{t=0} = 1$ при $x > 0,$ $u\Big|_{x=0} = 0$ при $t > 0.$

48.
$$u_{tt} - a^2 u_{xx} = 0$$
 B $x, t > 0,$ $u\Big|_{t=0} = 1, \quad u_t\Big|_{t=0} = 0$ при $x > 0,$ $u_x\Big|_{x=0} = \cos t$ при $t > 0.$

49.
$$u_{tt} - 9u_{xx} = 0$$
 B $x, t > 0,$ $u\Big|_{t=0} = x, u_t\Big|_{t=0} = \sin x$ при $x > 0,$ $u_x\Big|_{x=0} = \cos t$ при $t > 0.$

50.
$$u_{tt} - u_{xx} = e^{-t}$$
 B $x, t > 0,$ $u\Big|_{t=0} = 1, u_t\Big|_{t=0} = x - 1$ при $x > 0,$ $u_x\Big|_{x=0} = \sin t$ при $t > 0.$

51.
$$u_{tt} - 9u_{xx} = e^t$$
 в $x, t > 0,$ $u\Big|_{t=0} = 1 + x, \quad u_t\Big|_{t=0} = 4 - 3\cos\frac{x}{3}$ при $x > 0,$ $u_x\Big|_{x=0} = 2 - \cos t$ при $t > 0.$

52.
$$u_{tt} - a^2 u_{xx} = 0$$
 B $x, t > 0,$ $u\Big|_{t=0} = 0, u_t\Big|_{t=0} = 0$ при $x > 0,$ $u\Big|_{x=0} = g(t)$ при $t > 0,$

где заданная дважды гладкая при $t \geqslant 0$ функция g(t) удовлетворяет условиям g(0) = g'(0) = g''(0) = 0.

53.
$$u_{tt} - a^2 u_{xx} = 0$$
 B $x, t > 0,$ $u\Big|_{t=0} = \varphi(x), \quad u_t\Big|_{t=0} = 0$ при $x > 0,$ $u_x - ku\Big|_{x=0} = 0$ при $t > 0,$

где заданная дважды гладкая при $x \geqslant 0$ функция $\varphi(x)$ удовлетворяет условию $\varphi'(0) - k\varphi(0) = 0$.

§ 9. Задача Коши для однородного волнового уравнения в случае многих переменных

Однородное волновое уравнение имеет вид

$$u_{tt} = a^2 \Delta u, \tag{9.1}$$

где $a={\rm const}>0,\, \Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$ — оператор Лапласа⁴. Конус в \mathbb{R}^4 с вершиной (x,y,z,t)

$$(\xi - x)^{2} + (\eta - y)^{2} + (\zeta - z)^{2} = a^{2}(\tau - t)^{2}$$

называется характеристическим.

Задача Коши. Найти решение уравнения (9.1) при $(x,y,z)\in\mathbb{R}^3,\, t>0$ такое, что

$$u\big|_{t=0} = \varphi(x, y, z),$$

$$u_t\big|_{t=0} = \psi(x, y, z),$$

где φ , ψ — заданные функции.

Решение задачи Коши задается формулой $Kupxro\phi a^5$

$$u(x, y, z, t) = \frac{\partial}{\partial t} \left(t M_{at}[\varphi] \right) + t M_{at}[\psi],$$

где

$$M_{at}[\varphi] = \frac{1}{4\pi a^2 t^2} \iint_{S_{at}} \varphi(\xi, \eta, \zeta) dS$$
 (9.2)

— среднее значение функции φ по сфере $S_{at} \subset \mathbb{R}^3$ с центром в точке (x, y, z) радиуса at (рис. 3), т. е. по границе основания характеристического конуса при $\tau = 0$.

⁴ Pierre-Simon Laplace (1749–1827), французский математик, физик и астроном.

⁵ Gustav Robert Kirchhoff (1824–1887), немецкий физик.

Анализируя формулу Кирхгофа в случае, если функции φ , ψ — финитные, приходим к *принципу Гюйгенса*⁶: имеет место распространение волны в трехмерном пространстве с четкими передним и задним фронтами.

В случае двух пространственных переменных (x,y) решение задачи Коши задается формулой Пуассона⁷

$$u(x, y, t) = \frac{\partial}{\partial t} \Big(t M_{at}[\varphi] \Big) + t M_{at}[\psi],$$

где

$$M_{at}[\varphi] = \frac{1}{2\pi at} \iint_{B_{at}} \frac{\varphi(\xi, \eta)}{\sqrt{(at)^2 - (x - \xi)^2 - (y - \eta)^2}} d\xi d\eta, \quad (9.3)$$

 $B_{at} \subset \mathbb{R}^2$ — круг с центром в точке (x,y) радиуса at, т. е. основание характеристического конуса при $\tau=0$ (рис. 4).

 $^{^{-6}}$ Christiaan Huygens (1629–1695), голландский математик, физик и астроном.

 $^{^{7}}$ Siméon Denis Poisson (1781–1840), французский физик и математик.

Рис. 4

Принцип Гюйгенса не имеет места: при распространении колебаний в двумерном пространстве имеется передний фронт волны и нет заднего.

В ряде случаев можно найти решение задачи Коши без использования этих формул.

1-й случай. Если функции φ и ψ имеют вид

$$\varphi = \varphi(\alpha x + \beta y + \gamma z), \quad \psi = \psi(\alpha x + \beta y + \gamma z),$$

то решение можно найти в виде плоской волны $F(\alpha x + \beta y + \gamma z + \lambda t)$ с $\lambda = \pm a \sqrt{\alpha^2 + \beta^2 + \gamma^2}$, так как после замены $p = \alpha x + \beta y + \gamma z$ мы получим одномерное волновое уравнение, решение задачи Коши для которого находится по формуле Д'Аламбера (см. § 8).

2-й случай (только при n=3). Если функции φ и ψ имеют вид

$$\varphi = \varphi(r), \quad \psi = \psi(r),$$

где $r=\sqrt{x^2+y^2+z^2}$, то решение можно найти в виде сферической волны. После перехода в сферическую систему координат (см. п. 1 приложения) мы получим одномерное волновое уравнение для v=ru с дополнительным условием

$$v\big|_{r=0} = 0,$$

т. е. получим 1-ю смешанную задачу (см. §8).

3-й случай. Если функции φ и ψ таковы, что

$$\Delta \varphi = \lambda \varphi, \quad \Delta \psi = \mu \psi,$$

то, пользуясь принципом суперпозиции, решение можно найти в виде суммы u=v+w, где $v=F(t)\varphi,\,w=G(t)\psi.$

4-й случай. Если функции φ и ψ имеют вид

$$\varphi = \alpha(x)\mu(y,z), \quad \psi = \beta(x)\mu(y,z)$$

и $\Delta \mu = 0$, то решение можно найти в виде $u = F(x,t)\mu(y,z)$. **5-й случай.** Если найдется $N \in \mathbb{N}$ такое, что

$$\Delta^N \varphi = 0, \quad \Delta^N \psi = 0,$$

то решение задачи Коши имеет вид

$$u = \sum_{k=0}^{N-1} \frac{(at)^{2k}}{(2k)!} \Delta^k \varphi + \sum_{k=0}^{N-1} \frac{a^{2k} t^{2k+1}}{(2k+1)!} \Delta^k \psi.$$

Используя принцип суперпозиции, можно комбинировать эти случаи.

В примерах **54–60** для волнового уравнения $u_{tt} = a^2 \Delta u$ в трехмерном пространстве найдите решения, удовлетворяющие следующим условиям Коши.

54.
$$u\big|_{t=0} = e^{3x-y}\cos z, \ u_t\big|_{t=0} = 0.$$

55.
$$u\Big|_{t=0}^{t=0} = 0, u_t\Big|_{t=0} = r.$$

56.
$$u\Big|_{t=0}^{t} = x^2 + y^2, \ u_t\Big|_{t=0} = z\cos z.$$

57.
$$u\Big|_{t=0} = xyz, \ u_t\Big|_{t=0} = x\sin y.$$

58.
$$u\Big|_{t=0}^{t} = x^2 y, \ u_t\Big|_{t=0}^{t} = 0.$$

59.
$$u\Big|_{t=0}^{t=0} = x^2 y^2 z^2, \ u_t\Big|_{t=0} = 0.$$

60.
$$u\Big|_{t=0} = e^z \cos(x+y), \ u_t\Big|_{t=0} = e^{\sqrt{x^2+y^2+z^2}}.$$

61. Продемонстрируйте действие принципа Гюйгенса на примере следующей задачи Коши для волнового уравнения на плоскости и в пространстве:

$$u\big|_{t=0} = \begin{cases} u_0, & 0 \leqslant r \leqslant r_0, \\ 0, & r_0 < r, \end{cases} \quad u_t\big|_{t=0} = 0.$$

§ 10. Задача Коши для неоднородного волнового уравнения в случае многих переменных

Рассмотрим неоднородное волновое уравнение

$$u_{tt} = a^2 \Delta u + f(x, y, z, t),$$
 (10.1)

где a = const > 0, f -заданная функция.

ЗАДАЧА КОШИ. Найти решение уравнения (10.1) в области $\{(x,y,z)\in\mathbb{R}^3,\,t>0\}$, такое, что

$$u\big|_{t=0} = \varphi(x, y, z),$$

$$u_t\big|_{t=0} = \psi(x, y, z),$$

где φ , ψ — заданные функции.

В силу принципа суперпозиции достаточно уметь находить частное решение неоднородного уравнения.

Его можно найти, например, воспользовавшись следующим принципом.

Принцип Дюамеля⁸. Пусть функция $v(x, y, z, t, \tau)$ — решение задачи Коши для однородного уравнения (9.1) с начальными условиями, заданными при $t = \tau$:

$$v\big|_{t=\tau} = 0, \quad v_t\big|_{t=\tau} = f(x, y, z, \tau).$$

Тогда функция

$$u(x, y, z, t) = \int_{0}^{t} v(x, y, z, t, \tau) d\tau$$

 $^{^8}$ Jean-Marie Constant Duhamel (1797–1872), французский математик.

является решением задачи Коши для уравнения (10.1) c однородными условиями $\varphi \equiv 0$, $\psi \equiv 0$.

Таким образом, получаем следующие формулы для решения задачи Коши для неоднородного уравнения:

— формулу Д'Аламбера при n=1

$$u(x,t) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(s)ds + \frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(x,s)dsd\tau;$$

— формулу Пуассона при n=2

$$\begin{split} u(x,y,t) &= \frac{1}{2\pi a} \frac{\partial}{\partial t} \iint_{B_{at}} \frac{\varphi(\xi,\eta) \, d\xi d\eta}{\sqrt{(at)^2 - (x - \xi)^2 - (y - \eta)^2}} + \\ &+ \frac{1}{2\pi a} \iint_{B_{at}} \frac{\psi(\xi,\eta) \, d\xi d\eta}{\sqrt{(at)^2 - (x - \xi)^2 - (y - \eta)^2}} + \\ &+ \frac{1}{2\pi a} \int_{0}^t \iint_{B_{a(t - \xi)}} \frac{f(\xi,\eta,\tau) \, d\xi d\eta}{\sqrt{(a(t - \tau))^2 - (x - \xi)^2 - (y - \eta)^2}} d\tau, \end{split}$$

где $B_{at} \subset \mathbb{R}^2$ — круг с центром в точке (x,y) радиуса at; — формулу Кирхгофа при n=3

$$u(x, y, z, t) = \frac{\partial}{\partial t} \left(\frac{1}{4\pi a^2 t} \iint_{S_{at}} \varphi(\xi, \eta, \zeta) dS \right) + \frac{1}{4\pi a^2 t} \iint_{S_{at}} \psi(\xi, \eta, \zeta) dS + \frac{1}{4\pi a^2} \iint_{0.S} \frac{f(\xi, \eta, \zeta, \tau)}{t - \tau} dS d\tau,$$

где S_{at} — сфера с центром в точке (x, y, z) радиуса at. В случае, когда функция f имеет вид

$$f = g(x, y, z)h(t),$$

где g — собственная функция оператора Лапласа, т. е. $\Delta g = \lambda g$, частное решение неоднородного уравнения можно найти в виде

$$u = g(x, y, z)H(t).$$

Решите указанные ниже задачи Коши.

- **62.** $u_{tt} a^2 u_{xx} = \sin \omega t,$ $u\big|_{t=0} = \sin x, \quad u_t\big|_{t=0} = x.$
- **63.** $u_{tt} a^2 \Delta u = \frac{xt}{1+t^2},$ $u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = y \cos z.$
- **64.** $u_{tt} \Delta u = txy \sin 2z$, $u\Big|_{t=0} = z xy$, $u_t\Big|_{t=0} = 0$.
- **65.** $u_{tt} \Delta u = 2xyz$, $u\Big|_{t=0} = x^2 + y^2 + z^2$, $u_t\Big|_{t=0} = e^z \sin 2x$.

Mетод Φ урье 9

§ 11. Уравнение Лапласа в двумерном случае. Разделение переменных в декартовой системе координат

Задача Дирихле¹⁰. Найти решение уравнения Лапласа

$$\Delta u \equiv u_{xx} + u_{yy} = 0, \quad (x, y) \in D, \tag{11.1}$$

такое, что

$$u\big|_{\partial D} = \varphi,$$

где $D = (0, a) \times (0, b)$, φ — заданная функция. Положим $\varphi_1 = \varphi(x, 0)$, $\varphi_2 = \varphi(x, b)$, $\varphi_3 = \varphi(0, y)$, $\varphi_4 = \varphi(a, y)$ (рис. 5).

Теорема. Для любой $\varphi \in C(\partial D)$ существует единственное решение задачи Дирихле для уравнения Лапласа из пространства $C^2(D) \cap C(\overline{D})$.

Чтобы решить задачу Дирихле в случае, когда

$$\varphi(0,0) = \varphi(a,0) = \varphi(0,b) = \varphi(a,b) = 0,$$
 (11.2)

⁹ Jean Baptiste Joseph Fourier (1768–1830), французский математик и физик.

 $^{^{10}}$ Johann Peter Gustav Lejeune Dirichlet (1805–1859), немецкий математик.

разбиваем эту задачу на две подзадачи (рис. 6):

(I)
$$u\big|_{y=0} = \varphi_1(x)$$
, $u\big|_{y=b} = \varphi_2(x)$, $u\big|_{x=0} = u\big|_{x=a} = 0$;

(II)
$$u|_{x=0} = \varphi_3(y)$$
, $u|_{x=a} = \varphi_4(y)$, $u|_{y=0} = u|_{y=b} = 0$.

Затем каждую из полученных задач решаем методом разделения переменных (методом Фурье).

Метод разделения переменных, например, для первой задачи состоит в том, что

1) сначала ищется частное решение в виде u = X(x)Y(y). Уравнение (11.1) приобретает вид

$$\frac{X''}{X} + \frac{Y''}{Y} = 0$$

и распадается на два уравнения:

$$X'' = \lambda X, \quad Y'' = -\lambda Y,$$

где λ — некоторая (пока неизвестная) постоянная.

1а) Сначала решается то уравнение, для которого имеются однородные краевые условия, т. е. в первом случае сначала решается следующая задача Штурма 11 — Лиувилля 12 :

$$X'' = \lambda X, \quad X(0) = X(a) = 0.$$

 $[\]overline{\ }^{11}$ Charles-François Sturm (1803–1855), французский математик.

¹² Joseph Liouville (1809–1882), французский математик.

При этом находится бесконечная последовательность собственных значений и соответствующих им собственных функций:

$$X_n = \sin \frac{\pi nx}{a}, \quad \lambda_n = -\left(\frac{\pi n}{a}\right)^2, \quad n \in \mathbb{N}.$$

Причем, как известно, эта последовательность собственных функций X_n (как последовательность собственных функций оператора Штурма – Лиувилля) образует ортогональный базис в пространстве $L_2(0,a)$.

16) Затем решается оставшееся уравнение с найденными λ_n , т. е.

$$Y_n'' = \left(\frac{\pi n}{a}\right)^2 Y_n.$$

В результате получается, что

$$Y_n = A_n \sinh \frac{\pi n y}{a} + B_n \sinh \frac{\pi n (y - b)}{a}.$$

Таким образом, найдено семейство частных решений вида

$$u_n = X_n(x)Y_n(x), \quad n \in \mathbb{N}.$$

2) Далее ищем решение каждой задачи в виде ряда $u=\sum_{n=1}^{\infty}X_n(x)Y_n(y),$ т. е. для первой задачи в виде

$$u = \sum_{n=1}^{\infty} \left[A_n \operatorname{sh} \frac{\pi n y}{a} + B_n \operatorname{sh} \frac{\pi n (y-b)}{a} \right] \sin \frac{\pi n x}{a}.$$

Коэффициенты A_n , B_n находим из краевых условий

$$u\big|_{y=0} = \varphi_1, \quad u\big|_{y=b} = \varphi_2.$$

Решением исходной задачи будет сумма решений подзадач (I) и (II).

Если условие (11.2) не выполнено, то сначала найдем гармоническую функцию v (т. е. удовлетворяющую уравнению Лапласа), такую, что

$$v(0,0) = \varphi(0,0), \quad v(a,0) = \varphi(a,0),$$

 $v(0,b) = \varphi(0,b), \quad v(a,b) = \varphi(a,b).$

А затем, воспользовавшись принципом суперпозиции, сведем исходную задачу к задаче для функции w=u-v, для которой условие (11.2) выполнено. Заметим, что функцию v можно найти в виде

$$v = A + Bx + Cy + Dxy.$$

Задача Неймана 13 . Найти решение уравнения Лапласа (11.1) в прямоугольнике D такое, что

$$\frac{\partial u}{\partial \mathbf{n}}\Big|_{\partial D} = \varphi,$$

где \mathbf{n} — вектор внешней нормали к ∂D .

Теорема. Пусть $\varphi \in C(\partial D)$. Решение задачи Неймана для уравнения Лапласа из пространства $C^2(D) \cap C^1(\overline{D})$ существует тогда и только тогда, когда

$$\int_{\partial D} \varphi ds = 0. \tag{11.3}$$

Если условие (11.3) выполнено, то решение определяется с точностью до аддитивной постоянной.

Пусть условие (11.3) выполнено. Чтобы **решить задачу Неймана** в случае, когда

$$\int_{0}^{a} \varphi(x,0)dx = \int_{0}^{b} \varphi(a,y)dy = \int_{0}^{a} \varphi(x,b)dx = \int_{0}^{b} \varphi(0,y)dy = 0,$$
(11.4)

¹³ Carl Gottfried Neumann (1832–1925), немецкий математик.

разбиваем эту задачу на две подзадачи:

(I)
$$u_y|_{y=0} = \varphi_1(x)$$
, $u_y|_{y=b} = \varphi_2(x)$, $u_x|_{x=0} = u_x|_{x=a} = 0$;

(II)
$$u_x|_{x=0} = \varphi_3(y)$$
, $u_x|_{x=a} = \varphi_4(y)$, $u_y|_{y=0} = u_y|_{y=b} = 0$,

где
$$\varphi_1 = -\varphi(x,0), \ \varphi_2 = \varphi(x,b), \ \varphi_3 = -\varphi(0,y), \ \varphi_4 = \varphi(a,y).$$

Затем каждую из полученных задач решаем методом разделения переменных (см. решение задачи Дирихле).

Если условие (11.4) не выполнено (но условие (11.3) выполнено), то сначала найдем гармоническую функцию v такую, что

$$\int_{0}^{a} v_y(x,0)dx = \int_{0}^{a} \varphi(x,0)dx, \quad \int_{0}^{b} v_x(a,y)dy = \int_{0}^{b} \varphi(a,y)dy,$$

$$\int_{0}^{a} v_y(x,b)dx = \int_{0}^{a} \varphi(x,b)dx, \quad \int_{0}^{b} v_x(0,y)dy = \int_{0}^{b} \varphi(0,y)dy$$

(заметим, что четвертое условие автоматически будет выполнено в силу условия (11.3)). Затем, воспользовавшись принципом суперпозиции, сведем исходную задачу к задаче для функции w=u-v, для которой условие (11.4) выполнено. Функцию v можно найти в виде

$$v = Ax + By + C(x^2 - y^2).$$

Решите задачи Дирихле и Неймана для уравнения Лапласа в прямоугольнике $0 < x < a, \ 0 < y < b.$

66.
$$u\big|_{y=0} = 0$$
, $u\big|_{y=b} = x(a-x)$, $u\big|_{x=0} = A\sin\frac{\pi y}{b}$, $u\big|_{x=a} = 0$.

67.
$$u\big|_{y=0} = x$$
, $u\big|_{y=b} = 0$, $u\big|_{x=0} = 0$, $u\big|_{x=a} = \frac{a}{b^2}(b-y)^2$.

68.
$$u_y|_{y=0} = A$$
, $u_y|_{y=b} = x$, $u_x|_{x=0} = -y$, $u_x|_{x=a} = 0$.

69.
$$u_y|_{y=0} = A$$
, $u_y|_{y=b} = 0$, $u_x|_{x=0} = B$, $u_x|_{x=a} = 0$.

70.
$$u_y|_{y=0} = Ax^2$$
, $u_y|_{y=b} = 0$, $u_x|_{x=0} = By$, $u_x|_{x=a} = 0$,

§ 12. Уравнение Лапласа в двумерном случае. Разделение переменных в полярной системе координат

Задачи Дирихле и Неймана формулируются так же, как и в предыдущем параграфе, только область D является либо кругом

$$D = \{(x, y) \in \mathbb{R}^2 : \ \rho = \sqrt{x^2 + y^2} < R\},\$$

либо кольцом

$$D = \{(x, y) \in \mathbb{R}^2 : R_1 < \rho < R_2\},\$$

либо внешностью круга

$$D = \{(x, y) \in \mathbb{R}^2 : R < \rho\}.$$

В последнем случае дополнительно задаем условие на поведение решения при $\rho \to +\infty$:

$$u = O(1)$$
 при $\rho \to +\infty$.

Решение находится методом разделения переменных в полярной системе координат. Напомним, что оператор Лапласа

в полярной системе координат

$$x = \rho \cos \varphi, \quad y = \rho \sin \varphi$$

имеет вид

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2}.$$

Метод разделения переменных состоит в том, что

1) сначала ищем частное решение в виде $u = R(\rho)\Phi(\varphi)$. Подставляя функцию такого вида в уравнение (11.1), получаем уравнение

$$\frac{\rho(\rho R')'}{R} + \frac{\Phi''}{\Phi} = 0,$$

распадающееся на следующие два:

$$\Phi'' = \lambda \Phi, \quad \rho(\rho R')' = -\lambda R,$$

где λ — некоторая постоянная.

1a) Решаем следующую задачу Штурма — Лиувилля

$$\Phi'' = \lambda \Phi$$
, $\Phi(0) = \Phi(2\pi)$, $\Phi'(0) = \Phi'(2\pi)$

и находим

$$\Phi_0 = 1, \quad \lambda_0 = 0,$$

$$\Phi_n^1 = \cos n\varphi, \quad \Phi_n^2 = \sin n\varphi, \quad \lambda_n = -n^2, \quad n = 1, 2, \dots$$

Полученная система собственных функций образует ортогональный базис в пространстве $L_2(0,2\pi)$.

16) Затем решаем второе уравнение с найденным λ_n , т. е.

$$\rho(\rho R')' = n^2 R.$$

Это уравнение имеет решения вида

$$R_0 = a_0 + b_0 \ln \rho$$
 при $n = 0$, $R_n = a_n \rho^n + b_n \rho^{-n}$ при $n = 1, 2, \dots$

Таким образом, найдено семейство частных решений вида

$$u_n = \Phi_n(\varphi)R_n(\rho), \quad n = 0, 1, 2, \dots$$

2) Решение нашей исходной задачи ищем в виде ряда $u = \sum_{n=0}^{\infty} \Phi_n(\varphi) R_n(\rho)$, т. е. в виде

$$u = A_0 + B_0 \ln \rho + \sum_{n=1}^{\infty} [A_n \cos n\varphi + B_n \sin n\varphi] \rho^n +$$

$$+ \sum_{n=1}^{\infty} [C_n \cos n\varphi + D_n \sin n\varphi] \frac{1}{\rho^n}.$$

Коэффициенты A_n , B_n , C_n , D_n находим из граничных условий.

Решите задачи Дирихле и Неймана для уравнения Лапласа в области D.

71.
$$u|_{\rho=1} = \cos^2 \varphi$$
, $D = {\rho < 1}$.

72.
$$u_{\rho}|_{\rho=R} = \sin 2\varphi$$
, $D = {\rho < R}$.

73.
$$u\Big|_{\rho=1}^{\rho=1}=\sin^2\varphi,\, u(\rho)=O(1)$$
 при $\rho\to\infty,\, D=\{\rho>1\}.$

74.
$$u\Big|_{\rho=1}^{\rho=1} = \cos 2\varphi, \ u\Big|_{\rho=1} = 1 + \sin 3\varphi, \ D = \{1 < \rho < 2\}.$$

75.
$$u\Big|_{\rho=R} = \begin{cases} 1, & 0 < \varphi < \pi, \\ -1, & \pi < \varphi < 2\pi, \end{cases} D = \{\rho < R\}.$$

§ 13. Смешанная задача для уравнения колебаний струны и уравнения распространения тепла в стержне

Рассмотрим смешанные задачи для уравнения колебаний ограниченной струны. Требуется найти решение уравнения

$$u_{tt} = a^2 u_{xx}, \quad 0 < x < l, \ t > 0,$$
 (13.1)

удовлетворяющее начальным условиям

$$u\big|_{t=0} = \varphi, \quad u_t\big|_{t=0} = \psi, \quad 0 < x < l$$
 (13.2)

и граничным условиям одного из следующих видов:

$$u\big|_{x=0} = u\big|_{x=l} = 0,$$
 (13.3₁)

$$u_x\big|_{x=0} = u_x\big|_{x=l} = 0,$$
 (13.3₂)

$$u\big|_{x=0} = u_x\big|_{x=l} = 0,$$
 (13.3₃)

$$u_x\big|_{x=0} = u\big|_{x=l} = 0 (13.3_4)$$

при t > 0.

Задача решается методом разделения переменных:

1) сначала ищем частное решение уравнения (13.1) в виде u = X(x)T(t), при этом уравнение (13.1) распадается на два уравнения

$$X'' = \lambda X$$
 и $T'' = \lambda a^2 T$;

1a) решаем краевую задачу для функции X, т. е. находим собственные функции одной из задач:

$$X'' = \lambda X, \quad X(0) = X(l) = 0, \tag{13.4_1}$$

$$X'' = \lambda X, \quad X'(0) = X'(l) = 0,$$
 (13.4₂)

$$X'' = \lambda X, \quad X(0) = X'(l) = 0,$$
 (13.4₃)

$$X'' = \lambda X, \quad X'(0) = X(l) = 0, \tag{13.44}$$

при этом найдется счетное множество собственных функций X_n :

$$X_n = \sin \frac{\pi nx}{l}, \quad n = 1, 2, ...,$$

 $X_n = \cos \frac{\pi nx}{l}, \quad n = 0, 1, 2, ...,$
 $X_n = \sin \frac{\pi (2n+1)x}{2l}, \quad n = 0, 1, 2, ...,$
 $X_n = \cos \frac{\pi (2n+1)x}{2l}, \quad n = 0, 1, 2, ...,$

и собственных значений λ_n , причем система собственных функций $\{X_n\}$ будет образовывать ортогональный базис в пространстве $L_2(0,l)$;

- **16)** из второго уравнения находим функции T_n для каждого из полученных λ_n ;
- **2)** решение составляем в виде ряда по собственным функциям, т. е. в виде $u=\sum_{n=0}^{\infty}T_n(t)X_n(x)$, при этом неизвестные коэффициенты находим из начальных условий (13.2).

Если нужно **решить смешанную задачу для неоднородного уравнения**

$$u_{tt} = a^2 u_{xx} + f(x, t), \quad 0 < x < l, \ t > 0,$$
 (13.5)

с условиями (13.2), (13.3_i) (i = 1, 2, 3, 4), то

- **1)** сначала находим собственные функции задачи (13.4_i) (i=1,2,3,4);
- **2)** раскладываем функцию f(x,t) в ряд по найденным собственным функциям $X_n(x)$:

$$f(x,t) = \sum_{n=0}^{\infty} F_n(t) X_n(x);$$

3) ищем решение исходной задачи в виде ряда

$$u = \sum_{n=0}^{\infty} T_n(t) X_n(x).$$

Тогда из уравнения (13.5) и условий (13.2) получаем следующие задачи для коэффициентов T_n :

$$T_n'' = \lambda_n a^2 T_n + F_n,$$

$$T_n(0) = \Phi_n,$$

$$T_n'(0) = \Psi_n,$$

где Φ_n , Ψ_n — коэффициенты разложения функций $\varphi(x)$ и $\psi(x)$ соответственно в ряд по собственным функциям $X_n(x)$.

Если нужно **решить смешанную задачу** для уравнения (13.5) с условиями (13.2) и **неоднородными граничными условиями** одного из следующих видов

$$u\big|_{x=0} = \mu_1(t), \qquad u\big|_{x=l} = \mu_2(t), \qquad (13.6_1)$$

$$u_x|_{x=0} = \nu_1(t), \qquad u_x|_{x=l} = \nu_2(t), \qquad (13.6_2)$$

$$u\Big|_{x=0} = \varphi_1(t), \qquad u_x\Big|_{x=l} = \varphi_2(t), \qquad (13.6_3)$$

$$u_x|_{x=0} = \psi_1(t), \qquad u|_{x=l} = \psi_2(t), \qquad (13.6_4)$$

то сводим задачу с неоднородными граничными условиями к задаче с однородными условиями. Для этого ищем решение в виде суммы u=v+w:

1) сначала находим функцию v(x,t), удовлетворяющую граничным условиям (13.6_i) (i=1,2,3,4), в случае условий (13.6₁) это будет, например, следующая функция:

$$v = \frac{\mu_1(t)(l-x) + \mu_2(t)x}{l};$$

2) затем находим решение w(x,t) уравнения

$$w_{tt} = a^2 w_{xx} + \widetilde{f}(x, t), \quad 0 < x < l, \ t > 0,$$

удовлетворяющее условиям

$$w\big|_{t=0} = \widetilde{\varphi}, \quad w_t\big|_{t=0} = \widetilde{\psi}, \quad 0 < x < l$$

и однородным граничным условиям

$$w\big|_{x=0} = w\big|_{x=l} = 0, \quad t > 0,$$

или

$$w_x\big|_{x=0} = w_x\big|_{x=l} = 0, \quad t > 0,$$

где
$$\widetilde{f}(x,t) = f(x,t) - v_{tt} + a^2 v_{xx}, \ \widetilde{\varphi}(x) = \varphi(x) - v(x,0), \ \widetilde{\psi}(x) = \psi(x) - v_t(x,0).$$

Аналогично можно решать смешанные задачи для уравнения теплопроводности

$$u_t = a^2 u_{xx} + f(x, t), \quad 0 < x < l, \ t > 0$$

или уравнений вида

$$a_0 u_{tt} + a_1 u_t + a_2 u = u_{xx} + f(x, t), \quad 0 < x < l, \ t > 0,$$

где $a_i = a_i(t), i = 0, 1, 2$. Изменения произойдут только в уравнении для компоненты решения T(t).

Решите смешанные задачи для гиперболических уравнений. В примерах **79**, **80**, **83**, **84** выясните, при каких значениях ω возникает резонанс.

76.
$$u_{tt} = a^2 u_{xx},$$
 $u\Big|_{t=0} = x(l-x), \quad u_t\Big|_{t=0} = \sin\frac{3\pi x}{l},$
 $u\Big|_{x=0} = u\Big|_{x=l} = 0.$

77.
$$u_{tt} - 3u_t - u = u_{xx},$$
 $u\Big|_{t=0} = \cos\frac{x}{2}, \quad u_t\Big|_{t=0} = 0,$
 $u\Big|_{x=0} = u\Big|_{x=\pi} = 0.$

78.
$$u_{tt} + 2u_t + u = u_{xx},$$

 $u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = v_0,$
 $u\Big|_{x=0} = u_x\Big|_{x=l} = 0.$

79.
$$u_{tt} = a^2 u_{xx} + \sin \omega t,$$

 $u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = 0,$
 $u\Big|_{x=0} = u\Big|_{x=\pi} = 0.$

80.
$$u_{tt} = u_{xx} + \cos \omega t,$$

 $u\Big|_{t=0} = x, \quad u_t\Big|_{t=0} = 0,$
 $u_x\Big|_{x=0} = u_x\Big|_{x=\pi} = 0.$

81.
$$u_{tt} = a^2 u_{xx} + g,$$
 $u\Big|_{t=0} = 0, u_t\Big|_{t=0} = 0,$ $u\Big|_{x=0} = u_x\Big|_{x=\pi} = 0.$

82.
$$u_{tt} = a^2 u_{xx},$$
 $u\Big|_{t=0} = x+1, \quad u_t\Big|_{t=0} = 0,$ $u\Big|_{x=0} = t+1, \quad u\Big|_{x=1} = t^2+2.$

83.
$$u_{tt} = a^2 u_{xx},$$

 $u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = 0,$
 $u\Big|_{x=0} = 0, \quad u\Big|_{x=l} = A\cos\omega t,$

84.
$$u_{tt} = a^2 u_{xx},$$

 $u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = 0,$
 $u_x\big|_{x=0} = 0, \quad u\big|_{x=l} = A\sin\omega t,$

§ 14. Уравнение Лапласа в трехмерном случае. Разделение переменных в цилиндрической системе координат

Пусть

$$Q = \{(x, y, z) \in \mathbb{R}^3 : \rho = \sqrt{x^2 + y^2} < \rho_0, \ 0 < z < h\}.$$

Будем искать гармоническую в цилиндре Q функцию, удовлетворяющую либо условиям Дирихле, либо условиям Неймана на границе цилиндра. Например, задача Дирихле ставится следующим образом.

Задача Дирихле. Найти решение уравнения Лапласа

$$\Delta u = 0, \quad (x, y, z) \in Q, \tag{14.1}$$

такое, что

$$u\big|_{\rho=\rho_0} = \alpha,$$

$$u\big|_{z=0} = \beta, \quad u\big|_{z=h} = \gamma,$$

где α , β , γ — заданные функции.

Перейдем в цилиндрическую систему координат:

$$x = \rho \cos \varphi, \quad y = \rho \sin \varphi, \quad z.$$

Оператор Лапласа в цилиндрической системе координат имеет вид

$$\Delta u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{\partial^2 u}{\partial z^2}.$$

Если на основаниях цилиндра заданы однородные условия, т. е. $\beta \equiv 0$, $\gamma \equiv 0$, то ищем решение уравнения Лапласа следующим образом:

1) ищем частное решение в виде $u = R(\rho)\Phi(\varphi)Z(z)$. Тогда из уравнения (14.1) получаем уравнение

$$\frac{1}{\rho} \frac{(\rho R')'}{R} + \frac{1}{\rho^2} \frac{\Phi''}{\Phi} + \frac{Z''}{Z} = 0,$$

распадающееся на следующие три:

$$\Phi'' = \alpha \Phi, \quad Z'' = \beta Z, \quad \frac{1}{\rho} (\rho R')' + \left[\beta + \frac{\alpha}{\rho^2}\right] R = 0,$$

где α , β — некоторые постоянные;

1а) решая задачу Штурма — Лиувилля

$$\Phi'' = \alpha \Phi, \quad \Phi(0) = \Phi(2\pi), \quad \Phi'(0) = \Phi'(2\pi),$$

находим

$$\Phi_n = e^{in\varphi}, \quad \alpha_n = -n^2, \quad n \in \mathbb{Z};$$

16) в случае условий Дирихле возникает следующая задача Штурма — Лиувилля:

$$Z'' = \beta Z$$
, $Z(0) = Z(h) = 0$,

решениями которой будут

$$Z_k = \sin \frac{\pi k z}{h}, \quad \beta_k = -\left(\frac{\pi k}{h}\right)^2, \quad k \in \mathbb{N}.$$

Случай условий Неймана исследуется аналогично;

1в) теперь решаем оставшееся уравнение с найденными α_n и β_k , т. е.

$$R'' + \frac{1}{\rho}R' - \left[\left(\frac{\pi k}{h}\right)^2 + \frac{n^2}{\rho^2}\right]R = 0.$$

Это уравнение имеет ограниченное в окрестности нуля решение вида

$$R_{nk} = I_n \left(\frac{\pi k \rho}{h} \right), \quad n = 0, 1, 2, \dots, \quad k = 1, 2, \dots,$$

где $I_n(\xi)$ — модифицированные функции Бесселя¹⁴ (см. п. 2 приложения). Заметим, что поскольку

$$J_{-n}(x) = (-1)^n J_n(x) (14.2)$$

при $n \in \mathbb{N}$, то можно рассматривать и $n \in \mathbb{Z}$.

Таким образом, найдено семейство частных решений вида

$$u_{nk} = \Phi_n(\varphi) R_{nk}(\rho) Z_k(z), \quad n \in \mathbb{Z}, \quad k \in \mathbb{N}.$$

Отметим, что для задачи Неймана $k \in \{0, 1, 2, ...\}$, и следует отдельно рассмотреть случай k = 0.

2) Решением задачи Дирихле будет ряд

$$u = \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} A_{nk} I_n \left(\frac{\pi k \rho}{h}\right) e^{in\varphi} \sin \frac{\pi k z}{h}.$$

Коэффициенты A_{nk} находятся из граничных условий на боковой поверхности цилиндра $S=\{\rho=\rho_0,\ 0\leq z\leq h\},$ поскольку система функций

$$\left\{ v_{nk} = e^{in\varphi} \sin \frac{\pi kz}{h}, \ n \in \mathbb{Z}, \ k \in \mathbb{N} \right\}$$

 $[\]overline{\ \ }^{14}$ Friedrich Wilhelm Bessel (1784–1846), немецкий математик и астроном.

является ортогональным базисом в пространстве $L_2(S)$. Это означает, что произвольную функцию f из $L_2(S)$ можно представить в виде ряда

$$f(\varphi, z) = \sum_{n = -\infty}^{\infty} \sum_{k=1}^{\infty} c_{nk} v_{nk},$$

где

$$c_{nk} = \frac{(f, v_{nk})}{\|v_{nk}\|^2} = \frac{\int_{0}^{h} \int_{0}^{2\pi} f v_{nk} \, d\varphi dz}{\pi h}.$$

Если на боковой поверхности цилиндра заданы однородные условия, т. е. $\alpha \equiv 0$, то решение уравнения Лапласа находим следующим образом:

1) ищем частное решение в виде $u = R(\rho)\Phi(\varphi)Z(z)$. Как и в предыдущем случае, уравнение (14.1) распадается на три:

$$\Phi'' = \alpha \Phi, \quad Z'' = \beta Z, \quad \frac{1}{\rho} (\rho R')' + \left[\beta + \frac{\alpha}{\rho^2}\right] R = 0,$$

где α , β — некоторые постоянные;

1a) решая задачу Штурма — Лиувилля

$$\Phi'' = \alpha \Phi, \quad \Phi(0) = \Phi(2\pi), \quad \Phi'(0) = \Phi'(2\pi),$$

находим

$$\Phi_n = e^{in\varphi}, \quad \alpha_n = -n^2, \quad n \in \mathbb{Z};$$

16) в случае условий Дирихле возникает следующая задача Штурма — Лиувилля:

$$R''+\frac{1}{\rho}R'+\left[\beta-\frac{n^2}{\rho^2}\right]R=0,$$

$$R(\rho_0)=0,\quad R(\rho)=O(1)\text{ при }\rho\to0,$$

решениями которой будут

$$R_{nk} = J_n \left(\frac{\mu_k^n}{\rho_0} \rho\right), \quad \beta_{nk} = \left(\frac{\mu_k^n}{\rho_0}\right)^2,$$

$$n = 0, 1, 2, \dots, \quad k = 1, 2, \dots,$$

где $\{\mu_k^n\}_{k=1}^{\infty}$ — положительные нули функции Бесселя $J_n(\mu)$. Опять же в силу (14.2) можно считать $n \in \mathbb{Z}$;

1в) теперь решаем оставшееся уравнение с найденными β_{nk} , т. е.

$$Z'' = \left(\frac{\mu_k^n}{\rho_0}\right)^2 Z.$$

Это уравнение имеет решения вида

$$Z_{nk} = c_{nk} \operatorname{sh} \frac{\mu_k^n z}{\rho_0} + d_{nk} \operatorname{sh} \frac{\mu_k^n (z - h)}{\rho_0}.$$

Таким образом, найдено семейство частных решений вида

$$u_{nk} = \Phi_n(\varphi) R_{nk}(\rho) Z_{nk}(z), \quad n = 0, 1, 2, \dots, \quad k = 1, 2, \dots$$

2) Решением задачи Дирихле будет ряд

$$u = \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} \left[A_{nk} \operatorname{sh} \frac{\mu_k^n z}{\rho_0} + B_{nk} \operatorname{sh} \frac{\mu_k^n (z-h)}{\rho_0} \right] e^{in\varphi} J_n \left(\frac{\mu_k^n}{\rho_0} \rho \right).$$

Коэффициенты A_{nk} , B_{nk} находятся из граничных условий на основаниях цилиндра, поскольку система функций

$$\left\{ v_{nk} = e^{in\varphi} J_n\left(\frac{\mu_k^n}{\rho_0}\rho\right), \ n \in \mathbb{Z}, \ k \in \mathbb{N} \right\}$$

является ортогональным базисом в пространстве квадратично интегрируемых в круге $B_{\rho_0}=\{\rho<\rho_0\}$ функций. Это

означает, что произвольную функцию f из $L_2(B_{\rho_0})$ можно представить в виде ряда

$$f(\rho,\varphi) = \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} c_{nk} v_{nk},$$

где

$$c_{nk} = \frac{(f, v_{nk})}{\|v_{nk}\|^2} = \frac{\int_{0}^{\rho_0} \int_{0}^{2\pi} f v_{nk} \rho \, d\varphi d\rho}{2\pi \int_{0}^{\rho_0} \left[J_n \left(\frac{\mu_k^n}{\rho_0} \rho \right) \right]^2 \rho \, d\rho}.$$

В общем случае сведем задачу к предыдущим двум. Обозначим

$$\alpha_1(\varphi) = \alpha(\varphi, 0) = \beta(\rho_0, \varphi), \quad \alpha_2(\varphi) = \alpha(\varphi, h) = \gamma(\rho_0, \varphi).$$

Будем искать решение нашей задачи в виде суммы u = v + w.

1) Сначала находим функцию v, удовлетворяющую в цилиндре Q уравнению Лапласа и условиям

$$v\big|_{\rho=\rho_0,\ z=0} = \alpha_1(\varphi), \quad v\big|_{\rho=\rho_0,\ z=h} = \alpha_2(\varphi),$$

например, ее можно найти по формуле

$$v = \frac{v_1(\rho, \varphi)(h - z) + v_2(\rho, \varphi)z}{h},$$

где v_1, v_2 — решения следующих задач Дирихле для двумерного уравнения Лапласа в круге $\{\rho < \rho_0\}$:

$$\Delta v_1 = 0, \quad v_1\big|_{\rho=\rho_0} = \alpha_1(\varphi),$$

 $\Delta v_2 = 0, \quad v_2\big|_{\rho=\rho_0} = \alpha_2(\varphi).$

2) Затем находим функцию w как сумму w_1 и w_2 решений задач:

$$\Delta w_1 = 0$$
 b Q , $w_1|_{\rho=\rho_0} = \alpha - v|_{\rho=\rho_0}$, $w_1|_{z=0} = w_1|_{z=b} = 0$,

И

$$\begin{split} \Delta w_2 &= 0 \quad \mathbf{B} \quad Q, \\ w_2\big|_{\rho=\rho_0} &= 0, \\ w_2\big|_{z=0} &= \beta - v\big|_{z=0}, \quad w_2\big|_{z=h} = \gamma - v\big|_{z=h}. \end{split}$$

Найдите стационарную температуру $u(\rho, z)$ внутри цилиндра, имеющего круглое основание радиуса ρ_0 и высоту h, если

85.
$$u \Big|_{z=0} = u \Big|_{z=h} = 0,$$

 $u \Big|_{\rho=\rho_0} = 3 \sin \frac{\pi z}{h}.$
86. $u \Big|_{z=0} = u \Big|_{z=h} = 0,$
 $u \Big|_{\rho=\rho_0} = \cos^2 \varphi \sin \frac{3\pi z}{h}.$
87. $u_z \Big|_{z=0} = u_z \Big|_{z=h} = 0,$
 $u \Big|_{\rho=\rho_0} = f(z).$
88. $u \Big|_{z=0} = \rho - \rho_0, \quad u \Big|_{z=h} = 0,$
 $u \Big|_{\rho=\rho_0} = 0.$
89. $u \Big|_{z=0} = 0, \quad u \Big|_{z=h} = f(\rho),$
 $u_\rho \Big|_{\rho=\rho_0} = 0.$

§ 15. Уравнение Лапласа в трехмерном случае. Разделение переменных в сферической системе координат. Сферические гармоники

Будем искать гармоническую функцию, разделяя переменные в сферической системе координат:

$$x = r \cos \varphi \sin \theta,$$

$$y = r \sin \varphi \sin \theta,$$

$$z = r \cos \theta.$$

Уравнение Лапласа запишется в виде

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2} = 0.$$

1) Сначала ищем частное решение уравнения Лапласа в виде $u = R(r)\Phi(\varphi)F(\theta)$. Получаем уравнение

$$\frac{(r^2R')'}{R} + \frac{(\sin\theta F')'}{\sin\theta F} + \frac{1}{\sin^2\theta} \frac{\Phi''}{\Phi} = 0,$$

распадающееся на следующие три:

$$\Phi'' = \alpha \Phi, \quad \frac{(\sin \theta F')'}{\sin \theta} + \frac{\alpha F}{\sin^2 \theta} = \beta F, \quad (r^2 R')' = -\beta R,$$

где α , β — некоторые постоянные.

1a) Решая задачу Штурма — Лиувилля

$$\Phi'' = \alpha \Phi$$
, $\Phi(0) = \Phi(2\pi)$, $\Phi'(0) = \Phi'(2\pi)$,

находим

$$\Phi_m = e^{im\varphi}, \quad \alpha_m = -m^2, \quad m \in \mathbb{Z}.$$

16) Для функции F возникает следующая задача Штурма — Лиувилля:

$$\frac{(\sin\theta F')'}{\sin\theta}-\frac{m^2F}{\sin^2\theta}=\beta F,$$

$$F(\theta)=O(1)\ \text{при }\theta\to0\ \text{и при }\theta\to\pi,$$

решениями которой будут присоединенные функции Лежандра¹⁵ (см. п. 3 приложения):

$$F_{nm}(\theta) = P_n^m(\cos \theta), \quad \beta_{nm} = -n(n+1),$$

$$n = 0, 1, 2, \dots, \quad m = \overline{-n, n}.$$

1в) Теперь решаем оставшееся уравнение с найденными β_{nm} , т. е.

$$(r^2R')' = n(n+1)R.$$

 $[\]overline{\ }^{15}$ Adrien-Marie Legendre (1752–1833), французский математик.

Это уравнение имеет решения вида

$$R_n = a_n r^n + \frac{b_n}{r^{n+1}}, \quad n = 0, 1, 2, \dots$$

Таким образом, найдено семейство частных решений вида

$$u_{nm} = R_{nm}(r)\Phi_m(\varphi)F_{nm}(\theta), \quad n = 0, 1, 2, \dots, \quad m = \overline{-n, n}.$$

2) Итак, гармонические функции в сферической системе координат имеют вид

$$u = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(A_{nm} r^n + \frac{B_{nm}}{r^{n+1}} \right) e^{im\varphi} P_n^m(\cos \theta)$$

или

$$u = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(\widetilde{A}_{nm} r^{n} + \frac{\widetilde{B}_{nm}}{r^{n+1}} \right) Y_{n}^{m}(\theta, \varphi),$$

где

$$Y_n^m(\theta,\varphi) = \sqrt{\frac{1}{2\pi} \frac{2n+1}{2} \frac{(n-m)!}{(n+m)!}} e^{im\varphi} P_n^m(\cos\theta)$$

— сферические гармоники.

Для наглядности приведем таблицы ненормированных сферических гармоник (табл. 1, 2).

Ta6auya 1

Ненормированные сферические гармоники $\{P_n^m(\cos\theta)e^{imarphi}\}$

	m = -3	m = -2	m = -1	m = 0	m = 1	m = 2	m = 3
u = 0				п			
n = 1			$\sin \theta e^{-i\varphi}$	$\cos \theta$	$\sin \theta e^{i \varphi}$		
n = 2		$3\sin^2\theta e^{-i2\varphi}$	$3\sin\theta\cos\theta e^{-i\varphi}$ $\frac{3\cos^2\theta-1}{2}$ 3	$\frac{3\cos^2\theta - 1}{2}$	$3\sin\theta\cos\thetae^{iarphi}$	$3\sin^2\theta e^{i2\varphi}$	
n = 3	$15\sin^3\theta \ e^{-i3\varphi}$	$n=3 \begin{vmatrix} 15\sin^3\theta \ e^{-i3\varphi} & 15\sin^2\theta \cos\theta \ e^{-i2\varphi} & \sin\theta \ \frac{15\cos^2\theta - 3}{2}e^{-i\varphi} & \frac{5\cos^3\theta - 3\cos\theta}{2} & \sin\theta \ \frac{15\cos^2\theta - 3}{2}e^{i\varphi} & 15\sin^2\theta \cos\theta \ e^{i2\varphi} & 15\sin^3\theta \ e^{i3\varphi} \end{vmatrix}$	$\sin \theta \frac{15\cos^2\theta - 3}{2}e^{-i\varphi}$	$\frac{5\cos^3\theta - 3\cos\theta}{2}$	$\sin \theta \frac{15\cos^2 \theta - 3}{2} e^{i\varphi}$	$15\sin^2\theta\cos\thetae^{i2\varphi}$	$15\sin^3\theta e^{i3\varphi}$

Ta6_nuya 2

Ненормированные вещественные сферические гармоники

 $\{P_n^m(\cos\theta)\sin m\varphi, P_n^m(\cos\theta)\cos m\varphi\}$

	m = 3	m = 2	m = 1	m = 0	m = 1	m = 2	m = 3
u = 0				П			
n = 1			$\sin \theta \sin \varphi$	$\cos \theta$	$\sin heta \cos arphi$		
n = 2		$3\sin^2\theta\sin2\varphi$	$3\sin\theta\cos\theta\sin\varphi$	$^{2}_{\theta-1}$	$3\sin heta\cos heta\cosarphi$	$3\sin^2\theta\cos2\varphi$	
n = 3	$15\sin^3\theta\sin3\varphi$	$15\sin^2\theta\cos\theta\sin$	$2\varphi \sin\theta \frac{15\cos^2\theta - 3}{2}\sin\varphi \frac{5\cos^3\theta}{2}$	-3 cos θ	$\sin\theta \frac{15\cos^2\theta - 3}{2}\cos\varphi 15\sin^2\!\theta\cos\theta\cos2\varphi 15\sin^3\!\theta\cos3\varphi$	$15\sin^2\theta\cos\theta\cos2\varphi$	$15\sin^3\theta\cos3\varphi$

Если потребуется найти гармоническую функцию в шаре $\{r < r_0\}$ (или вне шара, или в сферическом слое), удовлетворяющую на границе условиям Дирихле или Неймана, то коэффициенты A_{nm} , B_{nm} (или \widetilde{A}_{nm} , \widetilde{B}_{nm}) будут находиться из граничных условий, поскольку сферические гармоники $Y_n^m(\theta,\varphi)$ образуют ортонормированный базис в пространстве квадратично интегрируемых функций на сфере $L_2(S_1)$, т. е. произвольную функцию f из этого пространства можно представить в виде ряда

$$f(\theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} c_{nm} Y_n^m(\theta, \varphi),$$

где

$$c_{nm} = (f, Y_n^m) = \int_0^{2\pi} \int_0^{\pi} f(\theta, \varphi) \overline{Y_n^m(\theta, \varphi)} \sin \theta \, d\theta d\varphi.$$

Заметим, что для задачи вне шара дополнительно ставится условие $u \to 0$ при $r \to \infty$.

Разложите по сферическим гармоникам следующие функции, заданные на сфере.

- **90.** $\sin^2\theta\sin 2\varphi$.
- **91.** $\sin^2\theta\sin^2\varphi$.
- **92.** $\cos^2\theta\sin 2\varphi$.
- **93.** $\sin^2 \theta \cos(2\varphi + \pi/3)$.
- **94.** $\cos\theta\sin^2\theta$.
- **95.** $\sin 3\varphi$.
- **96.** $\cos^3 \varphi$.

Найдите гармоническую функцию u в области D, удовлетворяющую заданным условиям на границе.

97.
$$D = \{r < r_0\}, \ u\Big|_{r=r_0} = \sin^2 \theta + \sin^5 \theta \sin 5\varphi.$$

98. $D = \{1 < r < 2\}, \ u_r\big|_{r=1} = \sin\theta\cos\varphi, \ u\big|_{r=2} = \sin2\theta\sin\varphi.$

99.
$$D = \{1 < r\}, \ u\big|_{r=1} = \sin^7 \theta \cos 7\varphi - 1, \ u = o(1)$$
 при $r \to \infty$.

100.
$$D = \{r < 1\}, u_r|_{r=1} = \sin^{10}\theta \sin 10\varphi.$$

101. $D = \{r > 1\}, \ u - u_r|_{r=1} = (\sin \varphi + \cos \varphi \cos \theta + \sin \theta) \sin \theta, \ u = o(1) \text{ при } r \to \infty.$

102.
$$D = \{1 < r < 2\}, \ u\big|_{r=1} = \sin^3 \theta \sin \varphi, \ u\big|_{r=2} = 1.$$

103.
$$D = \{r < r_0\}, u \Big|_{r=r_0} = \begin{cases} 1, & 0 < \theta < \frac{\pi}{2}, \\ -1, & \frac{\pi}{2} < \theta < \pi. \end{cases}$$

104. $D = \{r > 1\}, \ u + u_r\big|_{r=1} = f(\theta, \varphi), \ u = o(1)$ при $r \to \infty$.

§ 16. Собственные функции оператора Лапласа

Здесь мы опишем, как находить собственные функции оператора Лапласа в декартовой, цилиндрической и сферической системах координат.

Задача Штурма — Лиувилля. Найти собственные функции и собственные значения оператора Лапласа в области D, удовлетворяющие условиям Дирихле или Неймана, т. е. найти ненулевые функции u и числа λ такие, что

$$\Delta u = \lambda u, \quad (x, y, z) \in D,$$
 $u\Big|_{\partial D} = 0 \quad \text{или} \quad \frac{\partial u}{\partial \mathbf{n}}\Big|_{\partial D} = 0.$

Теорема (о спектре). Все собственные значения задачи Штурма — Лиувилля вещественны, неположительны и имеют конечную кратность. Множество собственных значений задачи Штурма — Лиувилля счетно, и предельной точкой этого множества является $-\infty$, т. е. собственные значения можно упорядочить следующим образом:

$$\ldots \leq \lambda_n \leq \ldots \leq \lambda_2 \leq \lambda_1 \leq 0.$$

Теорема Гильберта¹⁶ — Шмидта¹⁷. Собственные функции $\{u_n\}_{n=1}^{\infty}$ задачи Штурма — Лиувилля образуют ортонормированный базис в пространстве $L_2(D)$, т. е. любую функцию $f \in L_2(D)$ можно представить в виде ряда

$$f = \sum_{n=1}^{\infty} c_n u_n, \quad c_n = (f, u_n),$$
 (16.1)

сходящегося в пространстве $L_2(D)$.

Теорема Стеклова¹⁸. Если функция $f \in C^2(D) \cap C(\overline{D})$ (или $C^2(D) \cap C^1(\overline{D})$) и удовлетворяет однородным условиям Дирихле (или Неймана), то ряд (16.1) сходится равномерно в области D.

Заметим, что перечисленные теоремы имеют место и для более общих равномерно эллиптических операторов (не только для оператора Лапласа).

Для того чтобы найти собственные функции, можно воспользоваться методом разделения переменных.

Если область D — **параллелепипед** $(0,a) \times (0,b) \times (0,c)$, то, разделяя переменные в декартовой системе координат, находим в случае условий Дирихле

$$u_{nmk} = \sin \frac{\pi nx}{a} \sin \frac{\pi my}{b} \sin \frac{\pi kz}{c},$$

$$\lambda_{nmk} = -\left[\left(\frac{\pi n}{a}\right)^2 + \left(\frac{\pi m}{b}\right)^2 + \left(\frac{\pi k}{c}\right)^2\right],$$

$$n, m, k = 1, 2, \dots$$

Любая функция $f \in L_2(D)$ представима в виде ряда

$$f(x, y, z) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} c_{nmk} u_{nmk},$$

¹⁶ David Hilbert (1862–1943), немецкий математик.

 $^{^{17}}$ Erhard Schmidt (1876–1959), немецкий математик.

 $^{^{18}}$ Владимир Андреевич Стеклов (1863–1926), русский математик и механик.

где

$$c_{nmk} = \frac{8}{abc} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} fu_{nmk} \, dx \, dy \, dz.$$

В случае условий Неймана

$$u_{nmk} = \cos \frac{\pi nx}{a} \cos \frac{\pi my}{b} \cos \frac{\pi kz}{c},$$

$$\lambda_{nmk} = -\left[\left(\frac{\pi n}{a}\right)^2 + \left(\frac{\pi m}{b}\right)^2 + \left(\frac{\pi k}{c}\right)^2\right],$$

$$n, m, k = 0, 1, 2, \dots$$

Отметим, что в случае условий Неймана $u_{000}=1,\ \lambda_{000}=0.$ Любая функция $f\in L_2(D)$ представима в виде ряда

$$f(x, y, z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} c_{nmk} u_{nmk},$$

где

$$c_{000} = \frac{1}{abc} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} f \, dx \, dy \, dz,$$

$$a \quad b \quad c$$

$$c_{nmk} = \frac{2}{abc} \int_{0}^{a} \int_{0}^{z} \int_{0}^{z} fu_{nmk} \, dx \, dy \, dz,$$

если $m=k=0,\, n\neq 0,$ или $n=k=0,\, m\neq 0,$ или $n=m=0,\, k\neq 0,$

$$c_{nmk} = \frac{4}{abc} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} fu_{nmk} \, dx dy dz,$$

если $n=0,\,m,k\neq 0,$ или $m=0,\,n,k\neq 0,$ или $k=0,\,m,n\neq 0,$

$$c_{nmk} = \frac{8}{abc} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} fu_{nmk} \, dx \, dy \, dz,$$

если $n, m, k \neq 0$.

Если область D — **цилиндр** $\{\rho < \rho_0, 0 < z < h\}$, то, разделяя переменные в цилиндрической системе координат (см. § 14), находим в случае условий Дирихле

$$u_{nmk} = J_n \left(\frac{\mu_k^n \rho}{\rho_0}\right) e^{in\varphi} \sin \frac{\pi mz}{h},$$

$$\lambda_{nmk} = -\left[\left(\frac{\mu_k^n}{\rho_0}\right)^2 + \left(\frac{\pi m}{h}\right)^2\right],$$

$$m, k = 1, 2, \dots, \quad n \in \mathbb{Z},$$

где $\{\mu_k^n\}_{k=1}^{\infty}$ — положительные нули функции Бесселя J_n . Любая функция $f \in L_2(D)$ представима в виде ряда

$$f(\rho, \varphi, z) = \sum_{n = -\infty}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} c_{nmk} u_{nmk},$$

где

$$c_{nmk} = \frac{1}{\pi h \gamma_{nk}} \int_{0}^{\rho_0} \int_{0}^{2\pi} \int_{0}^{h} f \overline{u}_{nmk} \rho \, d\rho d\varphi dz,$$
$$\gamma_{nk} = \int_{0}^{\rho_0} \left[J_n \left(\frac{\mu_k^n \rho}{\rho_0} \right) \right]^2 \rho \, d\rho.$$

В случае условий Неймана получаем следующие собственные функции и собственные значения

$$u_{nmk} = J_n \left(\frac{\nu_k^n \rho}{\rho_0}\right) e^{in\varphi} \cos \frac{\pi m z}{h},$$

$$\lambda_{nmk} = -\left[\left(\frac{\nu_k^n}{\rho_0}\right)^2 + \left(\frac{\pi m}{h}\right)^2\right],$$

$$m = 0, 1, 2, \dots, \quad k = 1, 2, \dots, \quad n \in \mathbb{Z},$$

И

$$u_{0m0} = \cos \frac{\pi mz}{h}, \quad \lambda_{0m0} = -\left(\frac{\pi m}{h}\right)^2, \quad m = 0, 1, 2, \dots,$$

где $\{\nu_k^n\}_{k=1}^\infty$ — положительные нули производной функции Бесселя J_n' . Любая функция $f\in L_2(D)$ представима в виде ряда

$$f(\rho, \varphi, z) = c_{000} + \sum_{n=-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} c_{nmk} u_{nmk},$$

где

$$c_{000} = \frac{1}{\pi \rho_0^2 h} \int_0^{\rho_0} \int_0^{2\pi} \int_0^h f \rho \, d\rho d\varphi dz,$$

$$c_{n0k} = \frac{1}{2\pi h \delta_{nk}} \int_0^{\rho_0} \int_0^{2\pi} \int_0^h f \overline{u}_{n0k} \rho \, d\rho d\varphi dz, \quad n^2 + k^2 \neq 0,$$

$$c_{nmk} = \frac{1}{\pi h \delta_{nk}} \int_0^{\rho_0} \int_0^{2\pi} \int_0^h f \overline{u}_{nmk} \rho \, d\rho d\varphi dz, \quad n^2 + k^2 \neq 0, \quad m \neq 0,$$

$$\delta_{nk} = \int_{0}^{\rho_0} \left[J_n \left(\frac{\nu_k^n \rho}{\rho_0} \right) \right]^2 \rho \, d\rho.$$

Если область D — **шар** $\{r < r_0\}$, то, разделяя переменные в сферической системе координат (см. § 15), находим в случае условий Дирихле

$$u_{nmk} = \frac{J_{n+\frac{1}{2}}\left(\mu_k^{n+\frac{1}{2}}\frac{r}{r_0}\right)}{\sqrt{r}}P_n^m(\cos\theta)e^{im\varphi}, \quad \lambda_{nmk} = -\left(\frac{\mu_k^{n+\frac{1}{2}}}{r_0}\right)^2,$$

$$n = 0, 1, 2, \dots, \quad k = 1, 2, \dots, \quad m = \overline{-n, n},$$

где $\{\mu_k^{n+\frac{1}{2}}\}_{k=1}^\infty$ — положительные нули функции Бесселя $J_{n+\frac{1}{2}}.$ Любая функция $f\in L_2(D)$ представима в виде ряда

$$f(r,\varphi,\theta) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \sum_{k=1}^{\infty} c_{nmk} u_{nmk},$$

где

$$c_{nmk} = \frac{(2n+1)(n-m)!}{4\pi(n+m)!} \int_{0}^{r_0} \int_{0}^{2\pi} \int_{0}^{\pi} f\overline{u}_{nmk} r^2 \sin\theta \, dr d\varphi d\theta,$$

$$\gamma_{nk} = \int_{0}^{r_0} \left[J_{n+\frac{1}{2}} \left(\mu_k^{n+\frac{1}{2}} \frac{r}{r_0} \right) \right]^2 r \, dr.$$

В случае условий Неймана собственные функции и собственные значения имеют вид

$$u_{nmk} = \frac{J_{n+\frac{1}{2}}\left(\sigma_k^{n+\frac{1}{2}}\frac{r}{r_0}\right)}{\sqrt{r}}P_n^m(\cos\theta)e^{im\varphi}, \quad \lambda_{nmk} = -\left(\frac{\sigma_k^{n+\frac{1}{2}}}{r_0}\right)^2,$$

$$n = 0, 1, 2, \dots, \quad k = 1, 2, \dots, \quad m = \overline{-n, n},$$

И

$$u_{000} = 1, \quad \lambda_{000} = 0,$$

где $\sigma_k^{n+\frac{1}{2}}$ — решения уравнения

$$2\sigma J'_{n+\frac{1}{2}}(\sigma) = J_{n+\frac{1}{2}}(\sigma).$$

Любая функция $f \in L_2(D)$ представима в виде ряда

$$f(r, \varphi, \theta) = c_{000} + \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \sum_{k=1}^{\infty} c_{nmk} u_{nmk},$$

где

$$c_{000} = \frac{3}{4\pi r_0^3} \int_0^{r_0} \int_0^{2\pi} \int_0^{\pi} fr^2 \sin\theta \, dr d\varphi d\theta,$$

$$c_{nmk} = \frac{(2n+1)(n-m)!}{4\pi(n+m)!} \int_{0}^{r_0} \int_{0}^{2\pi} \int_{0}^{\pi} f \overline{u}_{nmk} r^2 \sin\theta \, dr d\varphi d\theta,$$
$$n^2 + m^2 + k^2 \neq 0,$$

$$\delta_{nk} = \int_{0}^{r_0} \left[J_{n+\frac{1}{2}} \left(\sigma_k^{n+\frac{1}{2}} \frac{r}{r_0} \right) \right]^2 r \, dr.$$

Для удобства полученные системы собственных функций оператора Лапласа приведены в таблице (табл. 3).

Найдите собственные значения и нормированные собственные функции для:

- 105. Круглой мембраны со свободной границей.
- **106.** Мембраны, имеющей форму кольца с жестко закрепленной границей.
- **107.** Мембраны, имеющей форму кольцевого сектора с жестко закрепленной границей.
- **108.** Прямоугольного параллелепипеда при граничных условиях третьего рода $\frac{\partial u}{\partial \mathbf{n}} ku\big|_{\partial D} = 0$.
- **109.** Круглого цилиндра при граничных условиях третьего рода $\frac{\partial u}{\partial \mathbf{n}} ku\big|_{\partial D} = 0.$
- **110.** Сферы при граничных условиях третьего рода $\frac{\partial u}{\partial \mathbf{n}} ku\big|_{\partial D} = 0.$

 ${\it Tаблица} \ 3$ Собственные функции оператора Лапласа

Область	Условия Дирихле	Условия Неймана
параллелепипед $(0,a) \times (0,b) \times (0,c)$	$u_{nmk} = \sin \frac{\pi nx}{a} \sin \frac{\pi my}{b} \sin \frac{\pi kz}{c},$ $\lambda_{nmk} = -\left[\left(\frac{\pi n}{a}\right)^2 + \left(\frac{\pi m}{b}\right)^2 + \left(\frac{\pi k}{c}\right)^2\right],$	$u_{nmk} = \cos \frac{\pi nx}{a} \cos \frac{\pi my}{b} \cos \frac{\pi kz}{c},$ $\lambda_{nmk} = -\left[\left(\frac{\pi n}{a}\right)^2 + \left(\frac{\pi m}{b}\right)^2 + \left(\frac{\pi k}{c}\right)^2\right],$
	$n, m, k = 1, 2, \dots$	$n, m, k = 0, 1, 2, \dots$
цилиндр $\{0 < \rho < \rho_0, 0 < z < h\}$	$u_{nmk}=$ $J_n\Big(\frac{\mu_k^n\rho}{\rho_0}\Big)e^{in\varphi}\sin\frac{\pi mz}{h},$ $\lambda_{nmk}=$ $-\Big[\Big(\frac{\mu_k^n}{\rho_0}\Big)^2+\Big(\frac{\pi m}{h}\Big)^2\Big],$ $n\in\mathbb{Z},\ m,k=1,2,\ldots,$ $\{\mu_k^n\}_{k=1}^\infty$ — положительные нули функции Бесселя J_n	$u_{nmk} = J_n \left(\frac{\nu_k^n \rho}{\rho_0}\right) e^{in\varphi} \cos \frac{\pi m z}{h},$ $\lambda_{nmk} = -\left[\left(\frac{\nu_k^n}{\rho_0}\right)^2 + \left(\frac{\pi m}{h}\right)^2\right],$ $u_{0m0} = \cos \frac{\pi m z}{h},$ $\lambda_{0m0} = -\left(\frac{\pi m}{h}\right)^2$ $n \in \mathbb{Z}, \ m = 0, 1, 2, \dots,$ $k = 1, 2, \dots,$
		$\{ u_k^n \}_{k=1}^{\infty} -$ положительные нули производной функции Бесселя J_n'
$\max \left\{ r < r_0 \right\}$	$u_{nmk} = \\ \frac{J_{n+\frac{1}{2}}\left(\mu_k^{n+\frac{1}{2}}\frac{r}{r_0}\right)}{\sqrt{r}}P_n^m(\cos\theta)e^{im\varphi}, \\ \lambda_{nmk} = -\left(\frac{\mu_k^{n+\frac{1}{2}}}{r_0}\right)^2, \\ n = 0, 1, 2, \dots, \ k = 1, 2, \dots, \\ m = \overline{-n, n}, \\ \{\mu_k^{n+\frac{1}{2}}\}_{k=1}^{\infty} - \text{положитель-} \\ \text{ные нули функции Бесселя} \\ J_{n+\frac{1}{2}}$	$\begin{split} u_{nmk} &= \\ &\frac{J_{n+\frac{1}{2}} \left(\sigma_k^{n+\frac{1}{2}} \frac{r}{r_0}\right)}{\sqrt{r}} P_n^m(\cos\theta) e^{im\varphi}, \\ &\lambda_{nmk} &= -\left(\frac{\sigma_k^{n+\frac{1}{2}}}{r_0}\right)^2, \\ &u_{000} &= 1, \ \lambda_{000} &= 0, \\ &n = 0, 1, 2, \dots, \ k = 1, 2, \dots, \\ &m = \overline{-n, n}, \\ &\{\sigma_k^{n+\frac{1}{2}}\}_{k=1}^{\infty} - \text{ решения} \\ &\text{уравнения} \ 2\sigma J_{n+\frac{1}{2}}'(\sigma) &= J_{n+\frac{1}{2}}(\sigma) \end{split}$

§ 17. Смешанные задачи для волнового уравнения и уравнения теплопроводности в трехмерном случае

Рассмотрим смешанные задачи для волнового уравнения. Требуется найти решение уравнения

$$u_{tt} = a^2 \Delta u, \quad x \in D, \ 0 < t < T,$$
 (17.1)

удовлетворяющее начальным условиям

$$u\big|_{t=0} = \varphi, \quad u_t\big|_{t=0} = \psi, \quad x \in D$$
 (17.2)

и граничным условиям либо вида

$$u|_{S} = 0, (17.3)$$

либо

$$\left. \frac{\partial u}{\partial \mathbf{n}} \right|_{S} = 0. \tag{17.4}$$

Здесь $S = \partial D \times [0, T]$.

Задача решается методом разделения переменных.

1) Ищем частное решение уравнения (17.1) в виде u = V(x,y,z)T(t), при этом уравнение (17.1) распадается на два уравнения:

$$\Delta V = \lambda V$$
 и $T'' = \lambda a^2 T$.

- 1а) Сначала решаем краевую задачу для функции V, т. е. задачу Штурма Лиувилля для оператора Лапласа либо с условиями Дирихле (17.3), либо с условиями (17.4) (см. § 16), и находим бесконечную последовательность собственных функций V_n и собственных значений λ_n .
- **16)** Из второго уравнения находим функции T_n для каждого из полученных на втором шаге λ_n .
- **2)** Решение составляем в виде ряда по собственным функциям, т. е. в виде $u = \sum_{n=0}^{\infty} T_n(t) V_n(x,y,z)$, при этом неизвестные коэффициенты находим из начальных условий (17.2).

Точно так же можно решать смешанные задачи для уравнения теплопроводности:

$$u_t = a^2 \Delta u_{xx}, \quad x \in D, \ 0 < t < T.$$

Случай, когда уравнение или (и) граничные условия являются неоднородными, исследуется так же, как в § 13.

В примерах 111-119 решите смешанные задачи.

111.
$$u_{tt} = u_{xx} + u_{yy}$$
, $0 < x < a$, $0 < y < b$, $t > 0$, $u\Big|_{t=0} = 1 + \cos\frac{\pi x}{a}\cos\frac{3\pi y}{b}$, $u_t\Big|_{t=0} = 0$, $u_x\Big|_{x=0} = u_x\Big|_{x=a} = u_y\Big|_{y=0} = u_y\Big|_{y=b} = 0$.

112.
$$u_{tt} = a^2(u_{xx} + u_{yy}), \quad \rho < \rho_0, \ t > 0,$$

 $u\big|_{t=0} = (\rho - \rho_0)\cos\varphi, \quad u_t\big|_{t=0} = 0,$
 $u\big|_{\rho=\rho_0} = 0.$

113.
$$u_{tt} = a^2(u_{xx} + u_{yy}), \quad \rho < 1, \ t > 0,$$

 $u\big|_{t=0} = u_t\big|_{t=0} = 0,$
 $u\big|_{\rho=1} = \sin \omega t \cos 3\varphi.$

114.
$$u_t = a^2 \Delta u$$
, $\rho < \rho_0$, $0 < z < h$, $t > 0$, $u\big|_{t=0} = (\rho - \rho_0) \sin 2\varphi \sin \frac{\pi z}{h}$, $u\big|_{\rho=\rho_0} = u\big|_{z=0} = u\big|_{z=h} = 0$.

115.
$$u_t = a^2 \Delta u + f(\rho, \varphi, z, t), \quad \rho < \rho_0, \ 0 < z < h, \ t > 0,$$
 $u\big|_{t=0} = 0,$
 $u\big|_{\rho=\rho_0} = g(\varphi) \sin \omega t, \quad u_z\big|_{z=0} = u_z\big|_{z=h} = 0.$

116.
$$u_t = a^2 \Delta u + t \sin \theta \cos \varphi$$
, $r < r_0$, $t > 0$, $u\big|_{t=0} = \sin 2\theta \sin \varphi$, $u_r\big|_{r=r_0} = 0$.

117.
$$u_t = \Delta u, \quad r < r_0, \ t > 0,$$
 $u\big|_{t=0} = 0,$
 $u_r\big|_{r=r_0} = c.$

- 118. $u_{tt} = a^2 \Delta u$, $\rho < \rho_0$, 0 < z < h, t > 0, $u\big|_{t=0} = u_t\big|_{t=0} = 0$, $u_\rho\big|_{\rho=\rho_0} = u_z\big|_{z=0} = 0$, $u_z\big|_{z=h} = f(\rho)\cos\omega t$.
- 119. $u_{tt} = a^2 \Delta u$, $r < r_0$, t > 0, $u\big|_{t=0} = u_t\big|_{t=0} = 0$, $u_r\big|_{r=r_0} = P_n^m(\cos\theta)\cos m\varphi\cos\omega t$.
- 120. Докажите формулу

$$e^{ir\cos\theta} = \sqrt{\frac{\pi}{2r}} \sum_{n=0}^{\infty} (2n+1)i^n P_n(\cos\theta) J_{n+1/2}(r).$$

Функция Грина¹⁹

§ 18. Функция Грина уравнения Лапласа. Метод отражений

ОПРЕДЕЛЕНИЕ. Фундаментальным решением линейного дифференциального оператора L называется такая обобщенная функция $E(\mathbf{x})$, что $LE(\mathbf{x}) = \delta(\mathbf{x})$, где $\delta(\mathbf{x})$ — дельтафункция Дирака.

Теорема. В случае n=3 фундаментальным решением оператора Лапласа является функция $E(\mathbf{x})=-\frac{1}{4\pi}\frac{1}{|\mathbf{x}|}$, в случае n=2- функция $E(\mathbf{x})=-\frac{1}{2\pi}\ln\frac{1}{|\mathbf{x}|}$.

Положим

$$E(\mathbf{x}, \mathbf{y}) = E(\mathbf{x} - \mathbf{y}) = \begin{cases} -\frac{1}{4\pi} \frac{1}{|\mathbf{x} - \mathbf{y}|}, & n = 3, \\ -\frac{1}{2\pi} \ln \frac{1}{|\mathbf{x} - \mathbf{y}|}, & n = 2. \end{cases}$$

Пусть D — область в \mathbb{R}^n .

Задача Дирихле. Найти решение уравнения Лапласа такое, что

$$u|_{\partial D} = f,$$

где f — заданная функция.

Определение. Функцией Грина задачи Дирихле для уравнения Лапласа называется функция $G(\mathbf{x}, \mathbf{y}) = E(\mathbf{x}, \mathbf{y}) + g(\mathbf{x}, \mathbf{y})$, такая, что для $\mathbf{y} \in D$:

- 1) $\Delta_{\mathbf{x}}q = 0$ в D;
- 2) $G(\mathbf{x}, \mathbf{y})|_{\mathbf{x} \in \partial D} = 0.$

Теорема. Решение задачи Дирихле задается формулой Пуассона

$$u(\mathbf{x}) = \int_{\partial D} f(\mathbf{y}) \frac{\partial}{\partial \mathbf{n_y}} G(\mathbf{x}, \mathbf{y}) dS_{\mathbf{y}}.$$

¹⁹ George Green (1793–1841), английский математик.

Задача Неймана. Найти решение уравнения Лапласа такое, что

$$\frac{\partial u}{\partial \mathbf{n}}\big|_{\partial D} = g,$$

где g — заданная функция.

Определение. Функцией Грина задачи Неймана для уравнения Лапласа называется функция $G(\mathbf{x}, \mathbf{y}) = E(\mathbf{x}, \mathbf{y}) + g(\mathbf{x}, \mathbf{y})$, такая, что для $\mathbf{y} \in D$:

- 1) $\Delta_{\mathbf{x}}g = 0$ в D;
- 2) $\frac{\partial}{\partial \mathbf{n_x}} G(\mathbf{x}, \mathbf{y}) \big|_{\mathbf{x} \in \partial D} = 0.$

Теорема. Решение задачи Неймана задается формулой Пуассона

$$u(\mathbf{x}) = -\int_{\partial D} g(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) dS_{\mathbf{y}}.$$

В ряде случаев функцию Грина удается найти **методом отражений**. Поясним его на следующих примерах.

ПРИМЕР 1. Построить функцию Грина задачи Дирихле для полупространства $D = \{M = (x, y, z) \in \mathbb{R}^3 : z > 0\}.$

Это означает, что для $P \in D$ нужно найти гармоническую в полупространстве D функцию g(M,P), равную на его границе $\{M=(x,y,z)\in\mathbb{R}^3:\ z=0\}$:

$$-E(M,P) = \frac{1}{4\pi r_{MP}}.$$

Такой функцией будет функция

$$g(M,P) = \frac{1}{4\pi r_{MP_1}},$$

где P_1 — точка, симметричная точке P относительно плоскости $\{z=0\}$ (рис. 7).

Значит, функцией Грина задачи Дирихле для полупространства будет функция

$$G(M, P) = -\frac{1}{4\pi r_{MP}} + \frac{1}{4\pi r_{MP}}$$

ПРИМЕР 2. Построить функцию Грина задачи Дирихле для шара $D = \{M = (x, y, z) \in \mathbb{R}^3 : r = \sqrt{x^2 + y^2 + z^2} < R\}.$

Для $P \in D$ требуется найти гармоническую по переменной M = (x, y, z) в шаре D функцию g(M, P), равную на его границе $S_R = \{(x, y, z) \in \mathbb{R}^3 : r = R\}$

$$-E(M,P) = \frac{1}{4\pi r_{MP}}.$$

Так как для точки $M \in S_R$ и точки P_1 , симметричной точке P относительно сферы $\{r = R\}$ (рис. 8),

$$r_{MP_1} = \frac{R}{r_P} r_{MP},$$

то такой функцией будет функция

$$g(M,P) = \frac{R}{4\pi r_P r_{MP_1}}.$$

Таким образом, функцией Грина задачи Дирихле для шара является функция

$$G(M, P) = -\frac{1}{4\pi r_{MP}} + \frac{R}{4\pi r_{P} r_{MP}}.$$

В примерах **121**—**131** найдите функции Грина задачи Дирихле для данных областей и решите задачи Дирихле:

$$\Delta u = 0$$
 B D , $u|_{\partial D} = f$.

- **121.** D верхняя полуплоскость.
- **122.** D первая четверть.
- **123.** D круг с центром в начале координат радиуса R.
- **124.** D полукруг с центром в начале координат радиуса R, лежащий в верхней полуплоскости.
 - **125.** D полоса $\{(x, y): 0 < y < l\}$.
 - **126.** D полуполоса $\{(x,y): 0 < y < l, x > 0\}.$
 - **127.** D полупространство $\{(x, y, z) : z > 0\}$.
 - **128.** D первый октант $\{(x, y, z): x, y, z > 0\}.$
 - **129.** D шар с центром в начале координат радиуса R.
- **130.** D полушар с центром в начале координат радиуса R, лежащий в полупространстве $\{(x,y,z): z>0\}$.
 - **131.** D слой $\{(x, y, z): 0 < z < l\}$.

§ 19. Функция Грина уравнения Лапласа. Метод конформных отображений

В случае двух переменных функцию Грина задачи Дирихле для уравнения Лапласа можно построить с помощью конформных отображений (см. п. 4 приложения), поскольку свойство гармоничности является инвариантом конформного отображения.

Будем точкам $M=(x,y),\ P=(\xi,\eta)$ сопоставлять точки на комплексной плоскости $z=x+iy,\ \zeta=\xi+i\eta$ соответственно.

Теорема. Пусть $f_P(M)$ — функция, осуществляющая конформное отображение области D на единичный круг, такая, что $f_P(P) = 0$. Тогда

$$G(M, P) = -\frac{1}{2\pi} \ln \frac{1}{|f_P(M)|}.$$

Если же нужно **решить задачу** Дирихле для уравнения Лапласа, то можно не строить функцию Грина для заданной области, а воспользоваться уже построенной функцией Грина, например для верхней полуплоскости, и полученной с помощью нее формулой решения.

Для этого

- 1) конформно отображаем область D на верхнюю полуплоскость;
- 2) решаем задачу Дирихле для уравнения Лапласа в верхней полуплоскости;
 - 3) возвращаемся к исходным переменным x, y.

Решите задачи **121–126** с помощью конформных отображений.

§ 20. Функция Грина уравнения Гельмгольца²⁰

Уравнение Гельмгольца имеет вид

$$\Delta u + \varkappa^2 u = 0,$$

где $\varkappa \geq 0$ — некоторая постоянная.

Фундаментальными решениями уравнения Гельмгольца в случае n=3 будут функции

$$-\frac{1}{4\pi}\frac{e^{i\varkappa|\mathbf{x}|}}{|\mathbf{x}|}, \quad -\frac{1}{4\pi}\frac{e^{-i\varkappa|\mathbf{x}|}}{|\mathbf{x}|},$$

а также действительная функция

$$-\frac{1}{4\pi} \frac{\cos \varkappa |\mathbf{x}|}{|\mathbf{x}|},$$

в случае n=2 — функции Ганкеля 21 1-го и 2-го рода (см. п. 2 приложения)

$$\frac{1}{4i}H_0^{(1)}(\varkappa|\mathbf{x}|), \quad -\frac{1}{4i}H_0^{(2)}(\varkappa|\mathbf{x}|)$$

и функция Бесселя 2-го рода

$$\frac{1}{4}Y_0(\varkappa|\mathbf{x}|).$$

$$G(\mathbf{x}, \mathbf{y}) = -\frac{1}{4\pi} \frac{\cos \varkappa |\mathbf{x} - \mathbf{y}|}{|\mathbf{x} - \mathbf{y}|} + g(\mathbf{x}, \mathbf{y})$$
 в случае $n = 3$,

$$G(\mathbf{x}, \mathbf{y}) = \frac{1}{4}Y_0(\varkappa |\mathbf{x} - \mathbf{y}|) + g(\mathbf{x}, \mathbf{y})$$
 в случае $n = 2$,

 $^{^{20}}$ Hermann von Helmholtz (1821–1894), немецкий физик, физиолог и психолог.

 $^{^{21}}$ Hermann Hankel (1839–1873), немецкий математик.

такая, что для $\mathbf{y} \in D$

- 1) $\Delta_{\mathbf{x}}g + \varkappa^2 g = 0$ в D,
- 2) $G(\mathbf{x}, \mathbf{y})|_{\mathbf{x} \in \partial D} = 0.$

Отметим, что функция Грина задачи Дирихле в области D для уравнения Гельмгольца существует только в том случае, когда $-\varkappa^2$ не является собственным значением соответствующей задачи Штурма — Лиувилля для оператора Лапласа в области D, т. е. когда задача

$$\Delta u + \varkappa^2 u = 0, \quad u\big|_{\partial D} = 0$$

имеет только нулевое решение.

Теорема. Решение задачи Дирихле для уравнения Гельмгольца задается формулой Пуассона

$$u(\mathbf{x}) = \int_{\partial D} f(\mathbf{y}) \frac{\partial}{\partial \mathbf{n_y}} G(\mathbf{x}, \mathbf{y}) dS_{\mathbf{y}}.$$

Аналогично можно ввести функцию Грина для задачи Неймана.

- **132.** Проверьте, что функции $-\frac{1}{4\pi}\frac{e^{\pm i\varkappa r}}{r}$, $-\frac{1}{4\pi}\frac{\cos\varkappa r}{r}$ являются фундаментальными решениями уравнения Гельмгольца при n=3.
- **133.** Проверьте, что функции $\frac{1}{4i}H_0^{(1)}(\varkappa\rho)$, $-\frac{1}{4i}H_0^{(2)}(\varkappa\rho)$ и $\frac{1}{4}Y_0(\varkappa\rho)$ являются фундаментальными решениями уравнения Гельмгольца при n=2.
- **134.** Постройте функцию Грина задачи Дирихле для уравнения Гельмгольца в полупространстве $\{z>0\}$ и запишите формулу Пуассона.
- **135.** Покажите, что функцию Грина задачи Дирихле для уравнения Гельмгольца в шаре нельзя построить методом отражений.

§ 21. Функция Грина уравнения теплопроводности

Обозначим оператор теплопроводности через

$$L = \frac{\partial}{\partial t} - a^2 \Delta.$$

Теорема. Фундаментальным решением оператора теплопроводности является функция

$$E(\mathbf{x},t) = \frac{H(t)}{(2a\sqrt{\pi t})^n} e^{-\frac{|\mathbf{x}|^2}{4a^2t}}.$$

Положим

$$E(\mathbf{x}, \mathbf{y}, t, \tau) = \frac{H(t - \tau)}{(2a\sqrt{\pi(t - \tau)})^n} e^{-\frac{|\mathbf{x} - \mathbf{y}|^2}{4a^2(t - \tau)}}.$$

Задача Коши. Найти решение уравнения теплопроводности

$$\frac{\partial u}{\partial t} - a^2 \Delta u = 0, \quad \mathbf{x} \in \mathbb{R}^n, \ t > 0,$$

такое, что

$$u\big|_{t=0} = f(\mathbf{x}),$$

где f — заданная функция.

Определение. Функцией Грина задачи Коши для уравнения теплопроводности называется функция $G(\mathbf{x}, \mathbf{y}, t)$, такая, что для $\mathbf{y} \in \mathbb{R}^n$

- 1) $G_t a^2 \Delta_{\mathbf{x}} G = 0$ для $\mathbf{x} \in \mathbb{R}^n$, t > 0,
- 2) $G(\mathbf{x}, \mathbf{y}, t)|_{t=+0} = \delta(\mathbf{x} \mathbf{y}).$

Теорема. Функцией Грина задачи Коши для уравнения теплопроводности является функция

$$G(\mathbf{x}, \mathbf{y}, t) = E(\mathbf{x}, \mathbf{y}, t, 0) = \frac{H(t)}{(2a\sqrt{\pi t})^n} e^{-\frac{|\mathbf{x} - \mathbf{y}|^2}{4a^2t}}.$$

Решение задачи Коши для уравнения теплопроводности задается формулой

$$u(\mathbf{x},t) = \int_{\mathbb{R}^n} f(\mathbf{y})G(\mathbf{x},\mathbf{y},t)d\mathbf{y}.$$

Пусть D — область в \mathbb{R}^n .

Смешанная задача с краевыми условиями Дирихле. Найти решение уравнения теплопроводности

$$\frac{\partial u}{\partial t} - a^2 \Delta u = 0, \quad \mathbf{x} \in D, \ t > 0,$$

такое, что

$$u|_{t=0} = f(\mathbf{x}), \quad \mathbf{x} \in D,$$

И

$$u\big|_{\mathbf{x}\in\partial D} = g(\mathbf{x}, t), \quad t > 0,$$

где f, g — заданные функции.

Определение. Функцией Грина смешанной задачи с краевыми условиями Дирихле для уравнения теплопроводности называется функция $G(\mathbf{x}, \mathbf{y}, t)$, такая, что для $\mathbf{y} \in \mathbb{R}^n$

- 1) $G_t a^2 \Delta_{\mathbf{x}} G = 0$ для $\mathbf{x} \in D, t > 0$,
- 2) $G(\mathbf{x}, \mathbf{y}, t)|_{t=+0} = \delta(\mathbf{x} \mathbf{y}),$
- 3) $G(\mathbf{x}, \mathbf{y}, t)|_{\mathbf{x} \in \partial D} = 0.$

Теорема. Решение смешанной задачи с краевыми условиями Дирихле для уравнения теплопроводности задается формулой

$$u(\mathbf{x}, t) = \int_{D} f(\mathbf{y})G(\mathbf{x}, \mathbf{y}, t)d\mathbf{y} + \int_{0}^{t} \int_{\partial D} g(\mathbf{y}, \tau) \frac{\partial}{\partial \mathbf{n_y}} G(\mathbf{x}, \mathbf{y}, t - \tau)dS_{\mathbf{y}}d\tau.$$

Смешанная задача с краевыми условиями Неймана. Найти решение уравнения теплопроводности

$$\frac{\partial u}{\partial t} - a^2 \Delta u = 0, \quad \mathbf{x} \in D, \ t > 0,$$

такое, что

$$u|_{t=0} = f(\mathbf{x}), \quad \mathbf{x} \in D,$$

И

$$\left. \frac{\partial u}{\partial \mathbf{n}} \right|_{\mathbf{x} \in \partial D} = g(\mathbf{x}, t),$$

где f, g — заданные функции.

Определение. Функцией Грина смешанной задачи с краевыми условиями Неймана для уравнения теплопроводности называется функция $G(\mathbf{x}, \mathbf{y}, t)$, такая, что для $\mathbf{y} \in \mathbb{R}^n$

- 1) $G_t a^2 \Delta_{\mathbf{x}} G = 0$ для $\mathbf{x} \in D, t > 0$,
- 2) $G(\mathbf{x}, \mathbf{y}, t)|_{t=+0} = \delta(\mathbf{x} \mathbf{y}),$
- 3) $\frac{\partial}{\partial \mathbf{n_x}} G(\mathbf{x}, \mathbf{y}, t) \Big|_{\mathbf{x} \in \partial D} = 0.$

Теорема. Решение смешанной задачи с краевыми условиями Неймана задается формулой

$$u(\mathbf{x},t) = \int_{D} f(\mathbf{y})G(\mathbf{x},\mathbf{y},t)d\mathbf{y} + \int_{0}^{t} \int_{\partial D} g(\mathbf{y},\tau)G(\mathbf{x},\mathbf{y},t-\tau)dS_{\mathbf{y}}d\tau.$$

Для того, чтобы найти функцию Грина смешанной задачи, можно в некоторых случаях воспользоваться **методом отражений** (см. $\S 18$).

Найдите функции Грина смешанной задачи Дирихле для уравнения теплопроводности и решите смешанные задачи

$$u_t = a^2 \Delta u, \quad x \in D, \ t > 0,$$

 $u\big|_{t=0} = g,$
 $u\big|_{\partial D} = f$

для областей из примеров 121-131.

§ 22. Функция Грина волнового уравнения

Применительно к уравнениям гиперболического типа метод функций Грина не является настолько же удобным, как для уравнений эллиптического и параболического типов. Поэтому введем понятие функции Грина только для одномерного случая.

Фундаментальным решением волнового оператора $\Box_a=\frac{\partial^2}{\partial t^2}-a^2\frac{\partial^2}{\partial x^2}$ является функция

$$E(x,t) = \frac{1}{2a}H(at - |x|),$$

где $H(\tau)=\left\{ egin{array}{ll} 1, & \tau\geq 0, \\ 0, & \tau<0, \end{array}
ight. -$ функция Хевисайда $^{22}.$

Задача Коши. Найти решение волнового уравнения

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in \mathbb{R}, \ t > 0,$$

такое, что

$$u|_{t=0} = \varphi(x), \quad u|_{t=0} = \psi(x),$$

где φ , ψ — заданные функции.

Определение. Функцией Грина задачи Коши для волнового уравнения называется такая функция G(x,y,t), что для $y\in\mathbb{R}$

- 1) $G_{tt} a^2 G_{xx} = 0$ для $x \in \mathbb{R}, t > 0$,
- 2) $G(x, y, t)|_{t=+0} = 0$,
- 3) $G_t(x, y, t)|_{t=+0} = \delta(x y).$

Непосредственной проверкой можно убедиться, что функцией Грина задачи Коши для волнового уравнения является функция

$$G(x, y, t) = \frac{1}{2a} [H(x - y + at) - H(x - y - at)].$$

 $^{^{22}}$ Oliver Heaviside (1850–1925), английский ученый.

Решение задачи Коши для волнового уравнения задается формулой

$$u(\mathbf{x},t) = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} \varphi(y)G(x,y,t)dy + \int_{-\infty}^{\infty} \psi(y)G(x,y,t)dy.$$

- **136.** Проверьте, что функция $\frac{1}{2a}H(at-|x|)$ является фундаментальным решением волнового оператора при n=1.
- **137.** Проверьте, что функция $\frac{1}{2a}[H(x-y+at)-H(x-y-at)]$ является функцией Грина задачи Коши для волнового уравнения при n=1.
- **138.** Пользуясь функцией Грина, установите формулу Д'Аламбера для решения задачи Коши для волнового уравнения.

Теория потенциалов

§ 23. Объемный и логарифмический потенциалы

Пусть D — ограниченная область в \mathbb{R}^n (n=2,3). Будем обозначать область D через D^- , а область $\mathbb{R}^n \setminus \overline{D}$ — через D^+ (рис. 9).

Рис. 9

Определение. *Объемным потенциалом* называется функция

$$U_3(\mathbf{x}) = \iiint_D \frac{f(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} d\mathbf{y},$$

где f — заданная функция, называемая плотностью потенциала. Логарифмическим потенциалом называется функция

$$U_2(\mathbf{x}) = \iint_D f(\mathbf{y}) \ln \frac{1}{|\mathbf{x} - \mathbf{y}|} d\mathbf{y}.$$

Будем обозначать

$$U_n(\mathbf{x}) = \begin{cases} U_n^+(\mathbf{x}), & \mathbf{x} \in D^+, \\ U_n^-(\mathbf{x}), & \mathbf{x} \in D^-. \end{cases}$$

Перечислим основные свойства объемного и логарифмического потенциалов.

Свойства. Пусть функция $f \in C(D)$. Тогда

1)
$$U_n \in C^1(\mathbb{R}^n)$$
, $U_n^+ \in C^{\infty}(D^+)$, $U_n^- \in C^2(D^-)$;

2)
$$\Delta U_n^+ = 0$$
 в $D^+;$ если $f \in C^1(D),$ то $\Delta U_n^- = -2^{n-1}\pi f$ в $D^-;$

3)
$$U_3^+(\mathbf{x}) = \frac{1}{|\mathbf{x}|} \iiint_D f(\mathbf{y}) d\mathbf{y} + O\left(\frac{1}{|\mathbf{x}|^2}\right)$$
 при $\mathbf{x} \to \infty$,
$$U_2^+(\mathbf{x}) = \ln \frac{1}{|\mathbf{x}|} \iint_D f(\mathbf{y}) d\mathbf{y} + O\left(\frac{1}{|\mathbf{x}|}\right)$$
 при $\mathbf{x} \to \infty$.

Решите задачи **139—142** двумя способами: во-первых, поставив краевые задачи для потенциалов, а во-вторых, прямым вычислением соответствующих интегралов.

- **139.** Найдите объемный потенциал с постоянной плотностью для шара.
- **140.** Найдите логарифмический потенциал с постоянной плотностью для круга.
- **141.** Найдите объемный потенциал масс, распределенных с постоянной плотностью f_0 в сферическом слое $\{a < r < b\}$.
- **142.** Найдите логарифмический потенциал с постоянной плотностью f_0 для кольца $\{a < \rho < b\}$.
- **143.** В круге $\{\rho < R\}$ задан логарифмический потенциал этого круга $U_2^- = \pi \left(R\rho \frac{2}{3}\rho^2\right)\sin\varphi$. Найдите его плотность и значение потенциала вне круга.
- **144.** Докажите, что многочлен $u(x,y,z) = x^2 y^2 + (x + 2y)z^2$ не может служить объемным потенциалом шара.
- **145.** Докажите, что функция $u = \sin \varphi \rho^2 \cos 3\varphi$ не является логарифмическим потенциалом круга.

§ 24. Потенциалы простого слоя

Пусть D — ограниченная область в \mathbb{R}^n . Опять будем обозначать область D через D^- , а область $\mathbb{R}^n \setminus \overline{D}$ — через D^+ .

Предполагаем, что граница области $\partial D = S \ (\partial D = \gamma)$ является C^2 -гладкой поверхностью (кривой). Вообще говоря, достаточно считать, что она является *поверхностью Ляпунова* (кривой Ляпунова), см. определение, например, в [8, гл. 4, § 5].

Определение. *Потенциалом простого слоя* называется функция

$$V_3(\mathbf{x}) = \iint_S \frac{\mu(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} dS_{\mathbf{y}},$$

где μ — заданная функция, называемая плотностью потенциала. Логарифмическим потенциалом простого слоя называется функция

$$V_2(\mathbf{x}) = \int_{\gamma} \mu(\mathbf{y}) \ln \frac{1}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}}.$$

Будем обозначать

$$V_n(\mathbf{x}) = \begin{cases} V_n^+(\mathbf{x}), & \mathbf{x} \in D^+, \\ V_n^-(\mathbf{x}), & \mathbf{x} \in D^-. \end{cases}$$

Также будем обозначать внешнее предельное значение нормальной производной в точке $\mathbf{x} \in S \ (\mathbf{x} \in \gamma)$ через

$$\left(\frac{\partial V_n}{\partial \mathbf{n}}\right)^+(\mathbf{x}) = \lim_{\mathbf{y} \to \mathbf{x}, \ \mathbf{y} \in D^+} \frac{\partial V_n}{\partial \mathbf{n}}(\mathbf{y}),$$

внутреннее предельное значение нормальной производной в точке $\mathbf{x} \in S \ (\mathbf{x} \in \gamma)$ через

$$\left(\frac{\partial V_n}{\partial \mathbf{n}}\right)^{-}(\mathbf{x}) = \lim_{\mathbf{y} \to \mathbf{x}, \ \mathbf{y} \in D^{-}} \frac{\partial V_n}{\partial \mathbf{n}}(\mathbf{y})$$

и непосредственное значение нормальной производной в точке $\mathbf{x} \in S \ (\mathbf{x} \in \gamma)$ через

$$\left(\frac{\partial V_3}{\partial \mathbf{n}}\right)^0(\mathbf{x}) = \frac{\partial}{\partial \mathbf{n_x}} \iint_{S} \frac{\mu(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} dS_{\mathbf{y}} = \iint_{S} \mu(\mathbf{y}) \frac{\cos \psi_{\mathbf{xy}}}{|\mathbf{x} - \mathbf{y}|^2} dS_{\mathbf{y}},$$

$$\left(\frac{\partial V_2}{\partial \mathbf{n}}\right)^0(\mathbf{x}) = \frac{\partial}{\partial \mathbf{n_x}} \int_{\gamma} \mu(\mathbf{y}) \ln \frac{1}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} = \int_{\gamma} \mu(\mathbf{y}) \frac{\cos \psi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}},$$

где $\psi_{\mathbf{x}\mathbf{y}}$ — угол между внешней нормалью к поверхности S (кривой γ) в точке \mathbf{x} и вектором $\mathbf{y} - \mathbf{x}$ (рис. 10).

Перечислим основные свойства потенциалов простого слоя. Свойства. Пусть функция $\mu \in C(S)$ $(C(\gamma))$. Тогда

1)
$$V_n \in C(\mathbb{R}^n), \quad V_n^{\pm} \in C^{\infty}(D^{\pm}),$$

$$\left(\frac{\partial V_n}{\partial \mathbf{n}}\right)^{\pm} = \left(\frac{\partial V_n}{\partial \mathbf{n}}\right)^0 \mp 2^{n-2}\pi\mu$$
 для $\mathbf{x} \in S$ или γ ;

2) $\Delta V_n^{\pm} = 0 \text{ B } D^{\pm};$

3)
$$V_3^+(\mathbf{x}) = \frac{1}{|\mathbf{x}|} \iint_S \mu(\mathbf{y}) dS_{\mathbf{y}} + O\left(\frac{1}{|\mathbf{x}|^2}\right)$$
 при $\mathbf{x} \to \infty$,
$$V_2^+(\mathbf{x}) = \ln \frac{1}{|\mathbf{x}|} \int_{\gamma} \mu(\mathbf{y}) ds_{\mathbf{y}} + O\left(\frac{1}{|\mathbf{x}|}\right)$$
 при $\mathbf{x} \to \infty$.

Решите задачи **146**—**148** двумя способами: во-первых, поставив краевые задачи для потенциалов, а во-вторых, прямым вычислением соответствующих интегралов.

- **146.** Найдите потенциал простого слоя с постоянной плотностью для сферы.
- **147.** Найдите логарифмический потенциал с постоянной плотностью для окружности.
- **148.** Найдите потенциал простого слоя окружности радиуса R с плотностью $\mu = \sin \varphi$.
- **149.** Проверьте, что функция $u(\rho,\varphi) = \rho \sin \varphi$ является потенциалом простого слоя внутри круга радиуса R. Найдите значение этого потенциала вне круга и плотность потенциала на окружности.
- **150.** Проверьте, что функция $u(x,y) = \frac{x^3 3xy^2}{(x^2 + y^2)^3}$ является потенциалом простого слоя вне круга единичного радиуса. Найдите значение этого потенциала внутри круга и плотность потенциала на окружности.

§ 25. Потенциалы двойного слоя

Пусть D — ограниченная область в \mathbb{R}^n с C^2 -гладкой границей $\partial D = S$ ($\partial D = \gamma$). Опять обозначаем область D через D^- , а область $\mathbb{R}^n \setminus \overline{D}$ — через D^+ .

Определение. *Потенциалом двойного слоя* называется функция

$$W_3(\mathbf{x}) = \iint_S \nu(\mathbf{y}) \frac{\partial}{\partial \mathbf{n_y}} \left(\frac{1}{|\mathbf{x} - \mathbf{y}|} \right) dS_{\mathbf{y}} = \iint_S \nu(\mathbf{y}) \frac{\cos \varphi_{\mathbf{xy}}}{|\mathbf{x} - \mathbf{y}|^2} dS_{\mathbf{y}},$$

где ν — заданная функция, называемая плотностью потенциала. Логарифмическим потенциалом двойного слоя назы-

вается функция

$$W_2(\mathbf{x}) = \int_{\gamma} \nu(\mathbf{y}) \frac{\partial}{\partial \mathbf{n_y}} \left(\ln \frac{1}{|\mathbf{x} - \mathbf{y}|} \right) ds_{\mathbf{y}} = \int_{\gamma} \nu(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}}.$$

Здесь $\varphi_{\mathbf{x}\mathbf{y}}$ — угол между внешней нормалью к поверхности S (кривой γ) в точке \mathbf{y} и вектором $\mathbf{x} - \mathbf{y}$ (см. рис. 10).

Будем обозначать через $W_n^0(\mathbf{x})$ непосредственное значение потенциала двойного слоя для точек $\mathbf{x} \in S$ ($\mathbf{x} \in \gamma$), через

$$W_n^+(\mathbf{x}) = \lim_{\mathbf{y} \to \mathbf{x}, \ \mathbf{y} \in D^+} W_n^+(\mathbf{y})$$

предельное значение потенциала в точке $\mathbf{x} \in S \ (\mathbf{x} \in \gamma)$ на поверхности (кривой) снаружи, через

$$W_n^-(\mathbf{x}) = \lim_{\mathbf{y} \to \mathbf{x}, \ \mathbf{y} \in D^-} W_n^-(\mathbf{y})$$

предельное значение потенциала в точке $\mathbf{x} \in S \ (\mathbf{x} \in \gamma)$ на поверхности (кривой) изнутри.

Перечислим основные свойства потенциалов двойного слоя.

Свойства. Пусть функция $\nu \in C(S)$ (или $C(\gamma)$). Тогда

- 1) $W_n^{\pm} \in C^{\infty}(D^{\pm}),$ $W_n^{\pm}(\mathbf{x}) = W_n^0(\mathbf{x}) \pm 2^{n-2}\pi\nu(\mathbf{x})$ для $\mathbf{x} \in S$ или $\gamma;$
- 2) $\Delta W_n^{\pm} = 0 \text{ B } D^{\pm};$

3)
$$W_n^+(\mathbf{x}) = O\left(\frac{1}{|\mathbf{x}|^{n-1}}\right)$$
 при $\mathbf{x} \to \infty$.

Для наглядности выпишем свойства всех потенциалов в виде таблицы (табл. 4).

Свойства потенциалов

Определение	Гладкость	Уравнение	Поведение при $\mathbf{x} \to \infty$
$U_3(\mathbf{x}) = \iiint\limits_D rac{f(\mathbf{y})}{ \mathbf{x} - \mathbf{y} } d\mathbf{y}$	$U_n \in C^1(\mathbb{R}^n)$	$\Delta U_n^+=0$ b D^+	$U_3^+(\mathbf{x}) = \frac{1}{ \mathbf{x} } \iint_D f(\mathbf{y}) d\mathbf{y} + O\left(\frac{1}{ \mathbf{x} ^2}\right)$
$U_2(\mathbf{x}) = \iint\limits_D f(\mathbf{y}) \ln \frac{1}{ \mathbf{x} - \mathbf{y} } d\mathbf{y}$	$U_n^+ \in C^{\infty}(D^+)$	$\Delta U_3^- = -4\pi f \text{ B } D^-$	$U_2^+(\mathbf{x}) = \ln \frac{1}{ \mathbf{x} } \iint f(\mathbf{y}) d\mathbf{y} + O\left(\frac{1}{ \mathbf{x} }\right)$
	$U_n^- \in C^2(D^-)$	$\Delta U_2^- = -2\pi f \ \mathrm{B} \ D^-$	$\infty \leftarrow \mathbf{x}$ иdп
$V_3(\mathbf{x}) = \iint_{\mathcal{S}} \frac{\mu(\mathbf{y})}{ \mathbf{x} - \mathbf{y} } dS_{\mathbf{y}}$	$V_n \in C(\mathbb{R}^n)$	$\Delta V_n^{\pm} = 0 \text{ B } D^{\pm}$	$V_3^+(\mathbf{x}) = \frac{1}{ \mathbf{x} } \iint_{\mathcal{L}} \mu(\mathbf{y}) dS_{\mathbf{y}} + O\left(\frac{1}{ \mathbf{x} ^2}\right)$
$V_2(\mathbf{x}) = \int \mu(\mathbf{y}) \ln \frac{1}{ \mathbf{x} - \mathbf{v} } ds_{\mathbf{y}}$	$V_n^\pm \in C^\infty(D^\pm)$		$V_s^+(\mathbf{x}) = \ln \frac{1}{1} \left(\mu(\mathbf{v}) ds_v + O\left(\frac{1}{1}\right) \right)$
7	$\left(\frac{\partial V_3}{\partial \mathbf{n}}\right)^{\pm} = \left(\frac{\partial V_3}{\partial \mathbf{n}}\right)^0 \mp 2\pi\mu$		$(\mathbf{x}) \sim \frac{e^{-\lambda} \cdot \mathbf{x} \cdot \mathbf{x}}{k} = \frac{e^{-\lambda} \cdot \mathbf{x} \cdot \mathbf{x}}{k}$
	для $\mathbf{x} \in S$		
	$\left(rac{\partial V_2}{\partial \mathbf{n}} ight)^{\pm} = \left(rac{\partial V_2}{\partial \mathbf{n}} ight)^0 \mp \pi \mu$		
	для $\mathbf{x} \in \gamma$		
$W_3(\mathbf{x}) = \iint_S \nu(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{ \mathbf{x} - \mathbf{y} ^2} dS_{\mathbf{y}}$	$W_n^{\pm} \in C^{\infty}(D^{\pm})$	$\Delta W_n^\pm = 0$ b D^\pm	$W_3^+(\mathbf{x}) = O\left(\frac{1}{ \mathbf{x} ^2}\right)$
$W_2(\mathbf{x}) = \int_{\gamma} \nu(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{ \mathbf{x} - \mathbf{y} } ds_{\mathbf{y}}$	$W_3^{\pm}(\mathbf{x}) = W_3^0(\mathbf{x}) \pm 2\pi\nu(\mathbf{x})$		$W_2^+(\mathbf{x}) = O\left(\frac{1}{ \mathbf{x} }\right)$
	для $\mathbf{x} \in S$		\$ 1 A BULL
	$W_2^{\pm}(\mathbf{x}) = W_2^0(\mathbf{x}) \pm \pi \nu(\mathbf{x})$		% → → mba
	для $\mathbf{x} \in \gamma$		

Решите задачи **151, 152** двумя способами: во-первых, поставив краевые задачи для потенциалов, а во-вторых, прямым вычислением соответствующих интегралов.

- **151.** Найдите потенциал двойного слоя с постоянной плотностью для сферы.
- **152.** Найдите логарифмический потенциал двойного слоя с постоянной плотностью для окружности.
- **153.** Проверьте, что функция $u = \frac{\cos 2\varphi}{\rho^2}$ является потенциалом двойного слоя вне круга радиуса R. Найдите значение этого потенциала внутри круга и плотность потенциала на окружности.
- **154.** Проверьте, что функция $u=1+\rho^2\sin 2\varphi$ является потенциалом двойного слоя внутри круга радиуса R. Найдите значение этого потенциала вне круга и плотность потенциала на окружности.

§ 26. Решение задач Дирихле и Неймана для уравнения Лапласа с помощью потенциалов

С помощью поверхностных потенциалов можно свести внутреннюю и внешнюю задачи Дирихле и Неймана для уравнения Лапласа к интегральным уравнениям Фредгольма 23 второго рода (см. п. 6 приложения).

Пусть D — ограниченная область в \mathbb{R}^2 с гладкой границей γ . Опять обозначим область D через D^- , а область $\mathbb{R}^n \setminus \overline{D}$ — через D^+ .

Внутренняя задача Дирихле. Найти решение уравнения Лапласа в области D^- , такое, что

$$u|_{\gamma} = f^-,$$

где f^- — заданная функция.

²³ Erik Ivar Fredholm (1866–1927), шведский математик.

Внешняя Задача Дирихле. Найти ограниченное решение уравнения Лапласа в области D^+ , такое, что

$$u|_{\gamma} = f^+,$$

где f^+ — заданная функция.

Внутренняя задача Неймана. Найти решение уравнения Лапласа в области D^- , такое, что

$$\left. \frac{\partial u}{\partial \mathbf{n}} \right|_{\gamma} = g^{-},$$

где g^- — заданная функция, ${\bf n}$ — вектор внешней нормали к границе $\partial D.$

Внешняя задача Неймана. Найти ограниченное решение уравнения Лапласа в области D^+ , такое, что

$$\left. \frac{\partial u}{\partial \mathbf{n}} \right|_{\gamma} = g^+,$$

где q^- — заданная функция.

Будем искать решение внутренней задачи Дирихле в виде потенциала двойного слоя с неизвестной плотностью ν^-

$$u(\mathbf{x}) = \int_{\gamma} \nu^{-}(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}}$$

 $(\varphi_{\mathbf{x}\mathbf{y}}$ — угол между внешней нормалью к кривой γ в точке \mathbf{y} и вектором $\mathbf{x} - \mathbf{y}$), внешней задачи Дирихле — в виде суммы потенциала двойного слоя с неизвестной плотностью ν^+ и некоторой неизвестной постоянной

$$u(\mathbf{x}) = \int_{\gamma} \nu^{+}(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} + A,$$

внутренней задачи Неймана — в виде суммы потенциала простого слоя с неизвестной плотностью μ^- и некоторой неизвестной постоянной

$$u(\mathbf{x}) = \int_{\gamma} \mu^{-}(\mathbf{y}) \ln \frac{1}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} + B$$

и, наконец, внешней задачи Неймана — в виде суммы потенциала простого слоя с неизвестной плотностью μ^+ , удовлетворяющей условию

$$\int_{\gamma} \mu^{+}(\mathbf{y})ds_{\mathbf{y}} = 0, \tag{26.1}$$

и некоторой неизвестной постоянной

$$u(\mathbf{x}) = \int_{\gamma} \mu^{+}(\mathbf{y}) \ln \frac{1}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} + C.$$

Из свойств поверхностных потенциалов получаем интегральные уравнения Фредгольма второго рода:

$$f^{-}(\mathbf{x}) = \int_{\gamma} \nu^{-}(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} - \pi \nu^{-}(\mathbf{x}), \quad \mathbf{x} \in \gamma, \qquad (D^{-})$$

$$f^{+}(\mathbf{x}) - A = \int_{\gamma} \nu^{+}(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} + \pi \nu^{+}(\mathbf{x}), \quad \mathbf{x} \in \gamma, \quad (D^{+})$$

$$g^{-}(\mathbf{x}) = \int_{\gamma} \mu^{-}(\mathbf{y}) \frac{\cos \psi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} + \pi \mu^{-}(\mathbf{x}), \quad \mathbf{x} \in \gamma, \qquad (N^{-})$$

$$g^{+}(\mathbf{x}) = \int_{\gamma} \mu^{+}(\mathbf{y}) \frac{\cos \psi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|} ds_{\mathbf{y}} - \pi \mu^{+}(\mathbf{x}), \quad \mathbf{x} \in \gamma, \qquad (N^{+})$$

где $\psi_{\mathbf{x}\mathbf{y}}$ — угол между внешней нормалью к кривой γ в точке \mathbf{x} и вектором $\mathbf{x} - \mathbf{y}$. Замечая, что $\varphi_{\mathbf{x}\mathbf{y}} = \psi_{\mathbf{y}\mathbf{x}}$ для $\mathbf{x}, \mathbf{y} \in \gamma$, видим, что пары (D^-) и (N^+) , (D^+) и (N^-) являются парами сопряженных уравнений.

Исследуя разрешимость этих интегральных уравнений с помощью теоремы Фредгольма (см. п. 6 приложения), получаем, что:

- интегральное уравнение (D^-) имеет единственное решение при любой f^- ;
- интегральное уравнение (N^+) имеет единственное решение, удовлетворяющее условию (26.1), при любой g^+ такой, что

$$\int_{\gamma} g^{+}(\mathbf{y})ds_{\mathbf{y}} = 0; \tag{26.2}$$

— интегральное уравнение (N^-) разрешимо тогда и только тогда, когда

$$\int_{\gamma} g^{-}(\mathbf{y})ds_{\mathbf{y}} = 0; \tag{26.3}$$

— интегральное уравнение (D^+) разрешимо тогда и только тогда, когда

$$A = \frac{1}{L_{\gamma}} \int_{\gamma} f^{+}(\mathbf{y}) ds_{\mathbf{y}},$$

где L_{γ} — длина кривой γ , т. е. в этом случае за счет выбора постоянной A получаем разрешимость этого интегрального уравнения.

Таким образом,

- внутренняя и внешняя задачи Дирихле разрешимы при любых f^- и f^+ ;
- внутренняя и внешняя задачи Неймана разрешимы, если функции g^- и g^+ удовлетворяют условиям (26.3) или (26.2) соответственно.

В трехмерном случае можно аналогично свести задачи Дирихле и Неймана к интегральным уравнениям. Отметим только, что в трехмерном случае для внешних задач ищется решение, стремящееся к нулю при $\mathbf{x} \to \infty$. Поскольку в этом случае потенциал простого слоя стремится к нулю при $\mathbf{x} \to \infty$, то условие (26.1) на плотность для внешней задачи Неймана является лишним. А так как потенциал двойного слоя есть $O\left(\frac{1}{|x|^2}\right)$ при $\mathbf{x} \to \infty$, то решение внешней задачи Дирихле ищем в виде суммы

$$u(\mathbf{x}) = \iint_{S} \nu^{+}(\mathbf{y}) \frac{\cos \varphi_{\mathbf{x}\mathbf{y}}}{|\mathbf{x} - \mathbf{y}|^{2}} dS_{\mathbf{y}} + \frac{A}{|\mathbf{x} - \mathbf{x}_{0}|},$$

где $\mathbf{x}_0 \in D$ — некоторая фиксированная точка, плотность ν^+ и постоянная A неизвестны.

В результате в трехмерном случае:

- внутренняя и внешняя задачи Дирихле разрешимы при любых f^- и $f^+;$
- внутренняя задача Неймана разрешима, если функция g^- удовлетворяет условию

$$\iint_{S} g^{-}(\mathbf{y})dS_{\mathbf{y}} = 0;$$

— внешняя задачи Неймана разрешима при любой g^+ .

155. Найдите решение внутренней и внешней задач Неймана и Дирихле для круга, опираясь на теорию потенциала.

Интегральные преобразования

§ 27. Преобразование Фурье

Напомним определение преобразования Фурье (см., например, [3, 8]).

 $Прямое преобразование Фуръе быстро убывающей функции <math>f(\mathbf{x})$ задается формулой

$$F_{+}[f](\mathbf{x}) = \hat{f}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{D}^n} f(\mathbf{y}) e^{-i(\mathbf{x},\mathbf{y})} d\mathbf{y},$$

обратное —

$$F_{-}[f](\mathbf{x}) = \check{f}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(\mathbf{y}) e^{i(\mathbf{x},\mathbf{y})} d\mathbf{y}.$$

Преобразование Фурье обобщенной функции медленного роста $f(\mathbf{x})$ задается формулой (см., например, [2, 7])

$$\langle F_{\pm}[f], \varphi \rangle = \langle f, F_{\pm}[\varphi] \rangle,$$

где φ — произвольная быстро убывающая функция.

Тот факт, что преобразование Фурье заменяет операцию дифференцирования на операцию умножения (см. свойство 5 в п. 7 приложения), позволяет применять его при решении уравнений в частных производных.

Рассмотрим уравнение с постоянными коэффициентами:

$$\frac{\partial^{M} u}{\partial t^{M}} + \sum_{k=1}^{M-1} a_{k}(t) \frac{\partial^{k} u}{\partial t^{k}} + \sum_{|\alpha| \le N} b_{\alpha}(t) D_{\alpha} u = f(t, \mathbf{x}). \tag{27.1}$$

Здесь
$$\alpha=(\alpha_1,\ldots,\alpha_n)$$
 — мультииндекс, $\alpha_k\in\mathbb{N}\cup\{0\},\ |\alpha|=\alpha_1+\ldots+\alpha_n,\ D_{\alpha}u=\frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1}\ldots\partial x_n^{\alpha_n}}.$

Задача Коши. Найти в $\{t>0,\ \mathbf{x}\in\mathbb{R}^n\}$ решение уравнения (27.1) такое, что

$$u\big|_{t=0} = \varphi_0(\mathbf{x}),$$

$$\dots$$

$$\frac{\partial^{M-1} u}{\partial t^{M-1}}\Big|_{t=0} = \varphi_{M-1}(\mathbf{x}),$$
(27.2)

где $\varphi_1, \ldots, \varphi_{M-1}$ — заданные функции.

Чтобы решить задачу Коши:

1) действуем преобразованием Фурье по переменной \mathbf{x} на уравнение (27.1) и начальные данные (27.2), получаем задачу Коши для обыкновенного дифференциального уравнения M-го порядка:

$$\frac{\partial^{M} \hat{u}}{\partial t^{M}} + \sum_{k=1}^{M-1} a_{k}(t) \frac{\partial^{k} \hat{u}}{\partial t^{k}} + \sum_{|\alpha| \leq N} i^{|\alpha|} b_{\alpha}(t) \mathbf{y}^{\alpha} \hat{u} = \hat{f}(t, \mathbf{y}),$$

$$\hat{u}\big|_{t=0} = \hat{\varphi}_{0}(\mathbf{y}),$$

$$\dots$$

$$\frac{\partial^{M-1} \hat{u}}{\partial t^{M-1}} \bigg|_{t=0} = \hat{\varphi}_{M-1}(\mathbf{y});$$

- 2) решая полученную задачу Коши, находим $\hat{u}(t, \mathbf{y})$;
- 3) применяя обратное преобразование Фурье, находим решение $u(t, \mathbf{x})$.

Пользуясь преобразованием Фурье, решите следующие задачи.

156.
$$u_{tt} - a^2 u_{xx} = 0$$
 B $x \in \mathbb{R}, \ t > 0,$ $u\big|_{t=0} = \varphi(x), \ u_t\big|_{t=0} = \psi(x).$
157. $u_{tt} - a^2 u_{xx} = f(x, t)$ B $x \in \mathbb{R}, \ t > 0,$ $u\big|_{t=0} = u_t\big|_{t=0} = 0.$

158.
$$u_t - a^2 u_{xx} = 0$$
 B $x \in \mathbb{R}, \ t > 0,$ $u\big|_{t=0} = \varphi(x).$
159. $u_t - a^2 u_{xx} = 0$ B $x > 0, \ t > 0,$ $u\big|_{t=0} = \varphi(x),$

$$u\Big|_{t=0} = \varphi(x),$$

$$u\Big|_{x=0} = 0.$$
160. $u_t - a^2 u_{xx} = 0$ B $x > 0, t > 0,$

$$u\Big|_{t=0} = \varphi(x),$$

$$u_x\Big|_{x=0} = 0.$$

161.
$$u_t - a^2 u_{xx} = f(x, t)$$
 B $x \in \mathbb{R}, t > 0,$ $u|_{t=0} = 0.$

§ 28. Преобразование Лапласа

Изображением оригинала f(t) является функция комплексного переменного (см., например, [12]):

$$F(p) = \int_{0}^{\infty} e^{-pt} f(t) dt.$$

Пишут $f(t) \stackrel{.}{=} F(p)$ или $\mathscr{L}: f \to F$.

Как и преобразование Фурье, преобразование Лапласа заменяет операцию дифференцирования на операцию умножения (см. свойство 6 в п. 8 приложения), и это позволяет применять его при решении уравнений в частных производных.

Рассмотрим для примера уравнение

$$\frac{\partial^m u}{\partial t^m} + \sum_{k=1}^{m-1} a_k(x) \frac{\partial^k u}{\partial t^k} + Lu = f(t, x), \qquad (28.1)$$

где

$$Lu = \frac{\partial}{\partial x} \left(p(x) \frac{\partial u}{\partial x} \right) + q(x)u$$

— оператор Штурма — Лиувилля.

Смешанная задача. Найти в $\{t>0,\ a < x < b\}$ решение уравнения (28.1), такое, что

$$u\Big|_{t=0} = \varphi_0(x), \dots, \frac{\partial^{m-1} u}{\partial t^{m-1}}\Big|_{t=0} = \varphi_{m-1}(x),$$

$$(\alpha_0 u + \alpha_1 u_x)\Big|_{x=a} = 0, \quad (\beta_0 u + \beta_1 u_x)\Big|_{x=b} = 0,$$
(28.2)

где $\varphi_1, \dots, \varphi_{M-1}$ — заданные функции, $\alpha_0, \alpha_1, \beta_0, \beta_1$ — постоянные.

Чтобы решить смешанную задачу (28.1), (28.2),

1) действуем преобразованием Лапласа по переменной t на уравнение (28.1) и данные (28.2), получаем краевую задачу для обыкновенного дифференциального уравнения:

$$LU + \left(\sum_{k=1}^{M} a_k(x)p^k\right)U =$$

$$= F(p,x) + \sum_{k=1}^{M} a_k(p^{k-1}\varphi_0 + p^{k-2}\varphi_1 + \dots + \varphi_{k-1}),$$

$$(\alpha_0 U + \alpha_1 U_x)\big|_{x=a} = 0, \quad (\beta_0 U + \beta_1 U_x)\big|_{x=b} = 0,$$

где U(p,x) — изображение u(t,x);

- 2) решая полученную краевую задачу, находим U(p, x);
- 3) применяя обратное преобразование Лапласа, находим решение u(t,x).

Пользуясь преобразованием Лапласа, решите следующие задачи.

162.
$$u_t + u_x = e^{2t}x + t$$
 B $x > 0, t > 0,$ $u\big|_{x=0} = a, u\big|_{t=0} = b.$

163.
$$u_t = a^2 u_{xx}$$
 B $x > 0, t > 0, u|_{t=0} = 0, u - u_x|_{x=0} = 1.$

164.
$$u_t = u_{xx} + a^2 u + f(x)$$
 B $x > 0, t > 0,$ $u|_{x=0} = u_x|_{x=0} = 0.$

- **165.** $u_t = u_{xx} + a^2 u + A \cos x$ B x > 0, t > 0, $u\Big|_{x=0} = Be^{-3t}, \quad u_x\Big|_{x=0} = 0.$
- **166.** $u_t = u_{xx} + a^2 u + f(x)$ B x > 0, t > 0, $u\big|_{x=0} = t, \quad u_x\big|_{x=0} = 0.$
- **167.** $u_{tt} u_{xx} = \cos \omega t$ B $0 < x < \pi, \ t > 0,$ $u\big|_{t=0} = x, \ u_t\big|_{t=0} = 0,$ $u_x\big|_{x=0} = u_x\big|_{x=\pi} = 0.$
- **168.** $u_{tt} + 2u_t + u = u_{xx}$ B 0 < x < l, t > 0, $u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = a,$ $u\Big|_{x=0} = u_x\Big|_{x=l} = 0.$

Системы уравнений первого порядка

§ 29. Гиперболические системы. Характеристики

Рассмотрим линейную систему уравнений первого порядка нормального вида:

$$\begin{cases} \frac{\partial u_1}{\partial t} + \sum_{k=1}^n \sum_{j=1}^m a_{1j}^k \frac{\partial u_j}{\partial x_k} + \sum_{j=1}^m b_{1j} u_j = f_1, \\ \dots \\ \frac{\partial u_m}{\partial t} + \sum_{k=1}^n \sum_{j=1}^m a_{mj}^k \frac{\partial u_j}{\partial x_k} + \sum_{j=1}^m b_{mj} u_j = f_m, \end{cases}$$

где $a_{ij}^k(t,x_1,\ldots,x_n)$ — заданные непрерывно дифференцируемые функции, $b_{ij}(t,x_1,\ldots,x_n), f_i(t,x_1,\ldots,x_n)$ — заданные непрерывные функции $(k=\overline{1,n},i,j=\overline{1,m}).$

Эту систему можно переписать в матричном виде, обозначив через $U^T = (u_1, \ldots, u_m), A_k = ||a_{ij}^k||_{i,j=1}^m (k = \overline{1,n}),$ $B = ||b_{ij}||_{i,j=1}^m, F^T = (f_1, \ldots, f_m),$

$$U_t + \sum_{i=1}^n A_i U_{x_i} + BU = F, \tag{29.1}$$

Определение. Система (29.1) называется t-гиперболической системой, если характеристическое уравнение

$$\det\left(\lambda E + \sum_{k=1}^{n} \xi_k A_k\right) = 0 \tag{29.2}$$

имеет относительно λ ровно m вещественных корней при любых вещественных $\xi_1, \xi_2, \ldots, \xi_n \neq 0$. Система (29.1) называется строго t-гиперболической (по Петровскому²⁴) системой, если характеристическое уравнение (29.2) имеет относительно λ ровно m вещественных различных корней при любых вещественных $\xi_1, \xi_2, \ldots, \xi_n \neq 0$.

 $^{^{24}}$ Иван Георгиевич Петровский (1901–1973), советский математик.

Пусть задана некоторая n-мерная поверхность $S \subset \mathbb{R}^{n+1}$. Задача Коши. Найти решение системы (29.1) такое, что

$$U|_{S} = U_0,$$

где $U_0(t, x_1, \dots, x_n)$ — заданная на S вектор-функция.

Определение. Гладкая n-мерная поверхность S, заданная уравнением

$$\varphi(t, x_1, \dots, x_n) = 0,$$

называется *характеристической поверхностью* системы (29.1), если

$$\det\left(\varphi_t E + \sum_{k=1}^n \varphi_{x_k} A_k\right) = 0 \quad \text{ha} \quad S,$$

или (29.2), где $(\lambda, \xi_1, \dots, \xi_n)$ — вектор нормали к поверхности S. Уравнение (29.2) называется конусом характеристических нормалей.

Известно, что если поверхность S не является характеристической, то задача Коши для строго t-гиперболической системы (29.1) поставлена корректно.

Выпишите уравнение конуса характеристических нормалей для следующих систем.

169.
$$p_t + \rho c^2(u_x + v_y) = 0,$$

 $u_t + \frac{1}{\rho}p_x = 0,$
 $v_t + \frac{1}{\rho}p_y = 0$

(система, описывающая распространение звуковых волн в двумерном случае).

$$\begin{aligned} \mathbf{170.} \quad & \frac{\mu}{c} \frac{\partial H_1}{\partial t} + \frac{\partial E_3}{\partial y} - \frac{\partial E_2}{\partial z} = 0, \\ & \frac{\mu}{c} \frac{\partial H_2}{\partial t} + \frac{\partial E_1}{\partial z} - \frac{\partial E_3}{\partial x} = 0, \\ & \frac{\mu}{c} \frac{\partial H_3}{\partial t} + \frac{\partial E_2}{\partial x} - \frac{\partial E_1}{\partial y} = 0, \\ & \frac{\varepsilon}{c} \frac{\partial E_1}{\partial t} + \frac{\partial H_3}{\partial y} - \frac{\partial H_2}{\partial z} = 0, \\ & \frac{\varepsilon}{c} \frac{\partial E_2}{\partial t} + \frac{\partial H_1}{\partial z} - \frac{\partial H_3}{\partial x} = 0, \\ & \frac{\varepsilon}{c} \frac{\partial E_3}{\partial t} + \frac{\partial H_2}{\partial x} - \frac{\partial H_1}{\partial y} = 0 \end{aligned}$$

(система уравнений Максвелла).

171. $\Psi_t = A_1 \Psi_x + A_2 \Psi_y + A_3 \Psi_z + m A_4 \Psi$ (система уравнений Дирака), где

$$A_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

§ 30. Приведение к каноническому виду гиперболической системы с двумя переменными

Рассмотрим подробнее случай двух переменных. В этом случае система (29.1) принимает вид

$$U_t + A(t, x)U_x + B(t, x)U = F(t, x), (30.1)$$

а характеристическое уравнение можно привести к виду

$$\det(A - \lambda E) = 0.$$

Следовательно, t-гиперболичность системы (30.1) означает, что все собственные значения матрицы A вещественные, а строгая t-гиперболичность означает, что все собственные значения матрицы A вещественные и простые.

Вспомнив определение характеристик, замечаем, что у t-гиперболической системы (30.1) все характеристики вещественные.

Определение характеристики в данном случае можно переписать в следующем эквивалентном виде.

ОПРЕДЕЛЕНИЕ. *Характеристикой* системы (30.1) называется такая кривая, вдоль которой

$$\det\left(\begin{array}{cc} E & A\\ dtE & dxE \end{array}\right) = 0,$$

или в более общем случае — характеристикой системы

$$A_0(t,x)U_t + A_1(t,x)U_x = F(t,x,U)$$
(30.2)

называется такая кривая, вдоль которой

$$\det \left(\begin{array}{cc} A_0 & A_1 \\ dtE & dxE \end{array} \right) = 0.$$

Определение. Соотношением на характеристике системы (30.2) называется следующее соотношение:

$$\operatorname{rank}\left(\begin{array}{cc} A_0 & A_1 \\ dtE & dxE \end{array}\right) = \operatorname{rank}\left(\begin{array}{cc} A_0 & A_1 & F \\ dtE & dxE & dU \end{array}\right).$$

Строго *t*-гиперболическую систему (30.1) можно **привести к каноническому виду** следующим образом:

1) приводим матрицу A(t,x) к диагональному виду, т. е. находим собственные значения $\lambda_1(t,x),\ldots,\lambda_m(t,x)$ и собственные векторы матрицы A(t,x), составляем из собственных

векторов матрицу перехода Z(t,x), в результате имеем

$$Z^{-1}AZ = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_m \end{pmatrix} = \Lambda;$$

2) производим замену

$$U = ZV$$

после которой система (30.1) принимает канонический вид

$$V_t + \Lambda(t, x)V_x + C(t, x)V = G(t, x),$$

где
$$C = Z^{-1}(Z_t + AZ_x + BZ), G = Z^{-1}F.$$

Отметим, что матрица перехода Z определяется неоднозначно, поскольку собственные векторы определяются с точностью до коэффициентов пропорциональности (причем зависящих от переменных t и x).

ОПРЕДЕЛЕНИЕ. Компоненты $v_j(t,x)$ вектора V называются римановыми инвариантами системы (30.1).

В задачах 172—181 приведите системы к каноническому виду.

172.
$$u_t - v_x = 0,$$

 $v_t - u_x = 0.$

173.
$$u_x + v_x + u_y - 3v_y = 0,$$

 $u_x + v_x - 3u_y + v_y = 0.$

174.
$$2u_t + (2t-1)u_x - (2t+1)v_x = 0,$$

 $2v_t - (2t+1)u_x + (2t-1)v_x = 0.$

175.
$$(x-1)u_t - (x+1)v_x + u_x = 0,$$

 $(x+1)u_x - (x-1)v_t - v_x = 0.$

176.
$$xu_x + y^2v_y + xyv = 0,$$

 $yu_y + xyv_x + (x-1)u = 0.$

177.
$$u_t + (1+x)v_x + u = 0,$$

 $v_t + (1+x)u_x - v = 0.$

178.
$$u_t + v_x + xu = 0,$$

 $(1 + x^2)v_t + u_x - v = 0.$

179.
$$2xu_x - 2yv_y + u - v = 0,$$

 $v_x - u_y = 0.$

180.
$$u_t + 4u_x + 5v_x = 0,$$

 $v_t + 5u_x + 4v_x = 0,$
 $w_t + 3u_x - 2w_x = 0.$

181.
$$2u_t + 4v_x + 2w_x = 2w - 2u - v,$$

 $v_t + 8u_x = 2w - 2u - v,$
 $w_t + 3w_x = 2u + v + 2w.$

182. Продемонстрируйте на примере системы уравнений акустики

$$p_t + \rho c^2 u_x = 0,$$

$$u_t + \frac{1}{\rho} p_x = 0$$

неоднозначность приведения к каноническому виду.

§ 31. Краевые задачи для гиперболических систем с двумя переменными

Смешанная задача для строго t-гиперболической системы уравнений, приведенной к каноническом виду,

$$V_t + \Lambda(t, x)V_x = F(t, x, V), \tag{31.1}$$

ставится следующим образом: требуется найти решение системы (31.1) в области $Q = \{t > 0, a < x < b\}$, при этом при

t=0 задаем начальные условия

$$V\big|_{t=0} = V_0(x), \quad \text{ T. e. } \quad \begin{aligned} v_1(0,x) &= v_1^0(x), \\ & \dots \\ v_m(0,x) &= v_m^0(x), \end{aligned}$$

а на прямых x=a, x=b задаем римановы инварианты v_k , соответствующие "уходящим" с этих прямых характеристикам. Говорим, что характеристика $\varphi(t,x)=C$ уходит c прямой x=a, если $\varphi_t\varphi_x<0$ при x=a; характеристика $\varphi(t,x)=C$ уходит c прямой x=b, если $\varphi_t\varphi_t>0$ при x=b.

Например, если с прямой x=a уходят характеристики, соответствующие римановым инвариантам v_1,\ldots,v_l , а с прямой x=b уходят характеристики, соответствующие римановым инвариантам $v_{l+1},\ldots,v_s,\ s\leq m$. Это означает, что на прямой x=a следует задать функции v_1,\ldots,v_l , а на прямой x=b функции v_{l+1},\ldots,v_s . Вообще говоря, нужно задать такие условия, чтобы на прямой x=a можно было бы определить v_1,\ldots,v_l , а на прямой $x=b-v_{l+1},\ldots,v_s$.

Рис. 11

В примерах **183—185** решите задачу Коши для указанных систем в области $x \in \mathbb{R}, t > 0$.

183.
$$2u_t + (2t-1)u_x - (2t+1)v_x = 0,$$

 $2v_t - (2t+1)u_x + (2t-1)v_x = 0,$
 $u|_{t=0} = 1, \quad v|_{t=0} = x.$

184.
$$(x-1)u_t - (x+1)v_t + u_x = 0,$$

 $(x+1)u_t - (x-1)v_t - v_x = 0,$
 $u\big|_{t=0} = e^x, \quad v\big|_{t=0} = x^2.$

185.
$$u_t + 4u_x + 5v_x = 0,$$

 $v_t + 5u_x + 4v_x = 0,$
 $w_t + 3u_x - 2w_x = 0,$
 $u\Big|_{t=0} = \cos x, \quad v\Big|_{t=0} = \sin x, \quad w\Big|_{t=0} = 0.$

186. Укажите, какие из смешанных задач для системы $u_t - v_x = 0,$ $v_t - u_x = 0$

в области 0 < x < l, t > 0 поставлены правильно.

Начальные условия: $u\big|_{t=0} = u_0(x), \ v\big|_{t=0} = v_0(x).$

Краевые условия:

a)
$$u|_{x=0} = a(t), u|_{x=1} = b(t);$$

6)
$$u\Big|_{x=0}^{x} = a(t), v\Big|_{x=0}^{x} = b(t);$$

B)
$$u + v|_{x=0} = a(t), v|_{x=1} = b(t);$$

$$u - v\Big|_{x=0}^{x=0} = a(t), v\Big|_{x=1}^{x=t} = b(t);$$

д)
$$u\big|_{x=0} = a(t), 2u + v\big|_{x=1} = b(t);$$

e)
$$u\Big|_{x=0}^{x=0} = a(t), u-v\Big|_{x=1}^{x=1} = b(t);$$

ж)
$$u - v \Big|_{x=0} = a(t), \ u + v \Big|_{x=1} = b(t);$$

3)
$$u-v\Big|_{x=0}^{x}=a(t), u-v\Big|_{x=1}^{x}=b(t);$$

и)
$$u + v\Big|_{x=0} = a(t), u + v\Big|_{x=l} = b(t);$$

K)
$$u - v \Big|_{x=0} = a(t), u + 3v \Big|_{x=l} = b(t).$$

187. Для системы

$$u_t + 8u_x + 7v_x = 0,$$

$$v_t + 7u_x + 8v_x = 0,$$

$$w_t - 2v_x - 3w_x = 0$$

приведите примеры правильных и неправильных постановок задач в областях

a)
$$x > 0, t > 0$$
;

6)
$$x < 0, t > 0$$
;

B)
$$0 < x < l, t > 0$$
.

Ответы

1. $u = u_0(x - y)$. **2.** $u = u_0(\frac{1 - x + y}{2})$. **3.** Решение не существует, если $u_0 \not\equiv \text{const}; \quad u = F(x - y) \; (F - \text{произволь$ ная гладкая функция, такая, что $F(0) = u_0$), если $u_0 \equiv \text{const.}$ **4.** $u = u_0 \left(\sqrt{\frac{x^2 + y^2}{2}} \right)$. **5.** $u = ye^x - e^{2x} + 1$. **6.** $u = s \frac{(1 - \sqrt{t})(s - \sqrt{t})}{(1 - s)^2}$, где $t = \frac{(x-y)^2}{z}$, $s = \frac{x+z}{y+z}$. 7. $u = (xy-2z)\frac{x^2+y^2}{xy}$. 8. u =(1-x+y)(2-2x+z). 9. $u = \ln|y| - x^2 + y^2 - \frac{1}{2}\ln|x^2 - y^2|$. **10.** $u = xy + F(\frac{x}{y})(F - \text{произвольная гладкая функция,}$ такая, что F(1) = 0). **11.** $u = x^2 y \frac{\sqrt{x^2 + y^2} - y}{x^2 + y^2}$. **12.** $u = x^2 y \frac{\sqrt{x^2 + y^2} - y}{x^2 + y^2}$. $y\left[\frac{x-\ln|1+y-ye^{-x}|}{1-ye^{-x}} + \frac{1}{1-ye^{-x}+y}\right].$ **13.** $(y-u)^2 - 8x + 4u^2 = 0.$ **14.** (x-y)(3x+y+4u) = 4u. **15.** $2y-4x+2+e^x(u-xy+4u)$ 6x - y - 4) = 0. **16.** $xu = (xu - x - y + 2u)^2.$ **17.** u = 0 $\frac{x}{2} \left[2 \left(\ln \frac{x}{2} - y \right)^2 + 1 - y^2 \right].$ **18.** $x = te^s, y = \sin t \cosh s + \cos t \sinh s,$ $z = \sin t \operatorname{sh} s + \cos t \operatorname{ch} s$. 19. t = s, $x = s \operatorname{sgn} p + p$, $u = \operatorname{sgn} p$. **20.** Гиперболического типа при $xy \neq 0; u_{\xi\eta} - \frac{1}{2\xi}u_{\eta} = 0$ (где $\xi =$ $xy, \eta = \frac{y}{x}$) — канонический вид; $u = \sqrt{|xy|}\varphi(\frac{y}{x}) + \psi(xy)$ (где $arphi,\,\psi$ — произвольные гладкие функции) — общее решение. **21.** Эллиптического типа при $xy \neq 0$; $u_{\xi\xi} + u_{\eta\eta} + \frac{1}{2\xi} u_{\xi} + \frac{1}{2\eta} u_{\eta} = 0$ (где $\xi = x^2, \, \eta = y^2$) — канонический вид. **22.** Параболического типа; $u_{\eta\eta}=0$ (где $\xi=\frac{x}{y},\ \eta=y$) — канонический вид; $u=yarphi\left(rac{x}{y}
ight)+\psi\left(rac{x}{y}
ight)$ (где $arphi,\,\psi$ — произвольные гладкие функции) — общее решение. $\,$ 23. При y < 0 гиперболического типа, $u_{\xi\eta} + \frac{u_{\xi} - u_{\eta}}{2(\xi - \eta)} = 0$ (где $\xi = x + 2\sqrt{-y}$, $\eta = x - 2\sqrt{-y}$) — канонический вид; при y>0 эллиптического типа, $u_{\xi\xi}+u_{\eta\eta}-\frac{1}{n}u_{\eta}=0$ (где $\xi = x, \, \eta = 2\sqrt{y}$) — канонический вид. **24.** Гиперболического типа; $u_{\xi\eta} + \frac{7}{16}u_{\xi} + \frac{1}{16}u_{\eta} = 0$ (где $\xi = 3x + y, \eta = x - y$) канонический вид. **25.** Гиперболического типа при $xy \neq 0$; $u_{\xi\eta} - \frac{3}{\xi}u_{\eta} = 0$ (где $\xi = xy, \ \eta = \frac{x^3}{y}$) — канонический вид; $u=x^3y^3arphiig(rac{x^3}{y}ig)+\psi(xy)$ (где $arphi,\ \psi$ — произвольные гладкие функции) — общее решение. **26.** При y < 0 гиперболического типа, $u_{\xi\eta} = 0$ (где $\xi = x + 2\sqrt{-y}$, $\eta = x - 2\sqrt{-y}$) — канонический вид, $u = \varphi(x+2\sqrt{-y}) + \psi(x-2\sqrt{-y})$ (где φ, ψ произвольные гладкие функции) — общее решение; при y > 0эллиптического типа, $u_{\xi\xi} + u_{\eta\eta} = 0$ (где $\xi = x, \, \eta = 2\sqrt{y}$) канонический вид. **27.** При y < 0 гиперболического типа, $u_{\xi\eta} = 0$ (где $\xi = (1+\sqrt{2})x + y, \, \eta = (1-\sqrt{2})x + y$) — канонический вид, $u = \varphi((1+\sqrt{2})x+y) + \psi((1-\sqrt{2})x+y)$ (где φ, ψ — произвольные гладкие функции) — общее решение; при y > 0 параболического типа, $u_{mn} = 0$ (где $\xi = x - y$, $\eta=x\big)$ — канонический вид, $u=x\varphi(x-y)+\psi(x-y)$ (где φ, ψ — произвольные гладкие функции) — общее решение. **28.** Эллиптического типа; $u_{\xi\xi} + u_{\eta\eta} + u_{\zeta\zeta} = 0$ (где $\xi = z$, $\eta = y - x$, $\zeta = x - \frac{y}{2} + \frac{z}{2}$) — канонический вид. **29.** Параболического типа; $u_{\xi\xi} - u_{\eta\eta} = 0$ (где $\xi = x + y, \ \eta = x - y,$ $\zeta = z - x$) — канонический вид. **30.** Эллиптического типа; $u_{y_1y_1}+u_{y_2y_2}+\cdots+u_{y_ny_n}=0$ (где $y_1=x_1,\,y_2=x_1+x_2,\,\ldots,$ $y_n = x_1 + x_2 + \dots + x_n$) — канонический вид. **31.** Гиперболического типа; $u_{\xi\xi} - u_{\eta\eta} - u_{\zeta\zeta} = 0$ (где $\xi = -x, \eta = -x + y,$ $\zeta = \frac{1}{2}(3x - y + z)$) — канонический вид. **32.** Гиперболического типа; $u_{\xi\xi} - u_{\eta\eta} + u_{\zeta\zeta} + u_{\tau\tau} = 0$ (где $\xi = x + y, \, \eta = x - y,$ $\zeta = x - y + z, \, \tau = \frac{1}{\sqrt{3}}(-x + y + z + 2t)$) — канонический вид. **33.** $u = \varphi(x) + \int_{-\infty}^{y} \psi(f^{-1}(t))dt$. **34.** Решение не существует, если $\psi \not\equiv const; \ u = \varphi(x) - F(0) + F(y) \ (F$ — произвольная гладкая функция с F'(0)=C), если $\psi\equiv C$. **35.** $u=xy-y+\frac{2y^2}{3x}+\frac{x^2y^2}{3}$. **36.** $u=\frac{x^2-xy+y^2}{y}$. **37.** $u=1+\frac{1}{2}(e^{2x+3y}-e^{2x+y})$. **38.** $u = 2(x+y)e^{(x+y)/8}$. **39.** $u = \varphi(x-\frac{2}{3}y^3) + \frac{1}{2} \int_{x-\frac{2}{3}y^3}^{x+2y} \psi(s)ds$. **40.** $u = \frac{x^2}{2}(3e^y - 1) + y$. **41.** $u = \varphi(y) + e^{-xy}\psi(x) - \psi(0) + y$ $y\int_{0}^{\infty} e^{-sy}\psi(s)ds$. **42.** $u = (\cos x - 1)e^{3y} + y^{2}e^{x}$. **43.** u =F(x) - F(0) при $y \ge 0, \, u = F(x) - F(y/k)$ при y < 0 (где F —

произвольная гладкая функция). 44. $u=rac{arphi(x-at)+arphi(x+at)}{2}$ при $x \ge at, u = \frac{-\varphi(at-x)+\varphi(x+at)}{2}$ при x < at. 45. $u = \frac{1}{2a} \int_{-\infty}^{x-at} \psi(s) ds$ при $x \ge at$, $u = \frac{1}{2a} \int_{a}^{at-x} \psi(s) ds + \frac{1}{2a} \int_{a}^{x+at} \psi(s) ds$ при x < at. **46.** $u = \frac{e^{x+at}+e^{x-at}}{2} + t$ при $x \ge at$, $u = \frac{e^{x+at}+e^{x-at}}{2} + t + \frac{e^{x-at}}{2} - \frac{1}{a}$ при x < at. 47. u = x + t при $x \ge t$, $u = \sin(x - t) + 2t$ при x < t. 48. u = 1 при $x \ge at$, $u = 1 + a \sin \frac{x - at}{a}$ при x < at. **49.** $u = x - \frac{\cos(x+3t) - \cos(x-3t)}{3}$ при $x \ge 3t$, $u = -\frac{\cos(x+3t) + \cos(x-3t)}{6} + 3t + \frac{1}{3} + 3\sin\frac{x-3t}{3}$ при x < 3t. **50.** $u = e^{-t} + xt$ при $x \ge t$, $u = e^{-t} + \frac{x^2 + t^2}{2} + \cos(x - t) - 1$ при x < t. **51.** $u = e^t + x + 3t - \frac{3}{2}\left(\sin\frac{x+3t}{3} - \sin\frac{x-3t}{3}\right)$ при $x \ge 3t$, $u = e^t + 2x - \frac{3}{2}\left(\sin\frac{x+3t}{3} + \sin\frac{x-3t}{3}\right)$ при x < 3t. **52.** u = 0 при $x \ge at$, $u = e^{-t} + 2t$ $g\left(\frac{at-x}{a}\right)$ при x < at. 53. $u = \frac{\varphi(x+at)+\varphi(x-at)}{2}$ при $x \ge at$, u = $\frac{\varphi(x+at)+\varphi(at-x)}{2}+ke^{k(x-at)}\int\limits_{0}^{0}e^{ks}\varphi(s)ds$ при x< at. **54.** u= $e^{3x-y}\cos z$ ch 3at. **55.** $u=rt+\frac{a^2t^3}{3r}$ при $r\geq at$, $u=\frac{r^2}{3a}+at^2$ при r< at. **56.** $u=2a^2t^2+x^2+y^2+\frac{1}{a}(\sin z\sin at+z\cos z\sin at+z\cos z\sin at)$ at $\sin z \cos at$). 57. $u = xyz + \frac{1}{a}x \sin y \sin at$. 58. $u = (x^2 + a^2t^2)y$. 59. $u = x^2y^2z^2 + (x^2y^2 + x^2z^2 + y^2z^2)a^2t^2 + \frac{1}{3}(x^2 + a^2t^2)a^2t^3 + \frac{1}{3}(x^2 + a^2t^2)$ $y^2 + z^2 a^4 t^4 + \frac{1}{15} a^6 t^6$. **60.** $u = e^z \cos(x+y) \cos at + \frac{e^{r+at} - e^{r-at}}{2ar}$ при $r \ge at$, $u = e^z \cos(x+y) \cos at + \frac{e^{r+at} - e^{at-r}}{2ar}$ при r < at.

62. $u = -\frac{\sin \omega t}{\omega^2} + xt + \frac{t}{\omega} + \frac{\sin(x+at) + \sin(x-at)}{2ar}$.
63. $u = x \left[\frac{1}{2}t \ln(1 + t^2) - t + \arctan t \right] + \frac{1}{a}y \cos z \sin at$.
64. $u = z - xy + \frac{1}{8}xy \sin 2z(2t - t^2)$ $\cos 2t$). **65.** $u = xyzt^2 + \frac{1}{\sqrt{3}}e^z \sin 2x \sin \sqrt{3}t + \frac{r^2 + a^2t^2}{r}$ при $r \ge at$, $u = xyzt^2 + \frac{1}{\sqrt{3}}e^z \sin 2x \sin \sqrt{3}t + 2at$ при r < at. **66.** u = $-A\frac{\sinh\frac{\pi(x-a)}{b}}{\sinh\frac{\pi a}{b}}\sin\frac{\pi y}{b} + \frac{8a^2}{\pi^3}\sum_{k=0}^{\infty}\frac{1}{(2k+1)^3}\frac{\sinh\frac{\pi(2k+1)y}{a}}{\sinh\frac{\pi(2k+1)b}{a}}\sin\frac{\pi(2k+1)x}{a}.$ **67.** u= $x - \frac{xy}{b} + \frac{8a}{\pi^3} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} \frac{\sinh \frac{\pi(2k+1)x}{b}}{\sinh \frac{\pi(2k+1)a}{b}} \sin \frac{\pi(2k+1)y}{b}$. 68. Если $2aA = a^2 + b^2$, To $u = -\frac{bx}{2} + Ay + \frac{b(x^2 - y^2)}{4a} - \frac{4a^2}{\pi^3} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} \frac{\operatorname{ch} \frac{\pi(2k+1)y}{a}}{\operatorname{ch} \frac{\pi(2k+1)b}{a}} \cos \frac{\pi(2k+1)x}{a} + \frac{\operatorname{ch} \frac{\pi(2k+1)b}{a}}{\operatorname{ch} \frac{\pi(2k+1)b}{a}} \cos \frac{\pi(2k+1)b}{a} + \frac{\operatorname{ch}$

$$\frac{4b^2}{\pi^3} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} \frac{\operatorname{ch} \frac{\pi(2k+1)(x-a)}{\operatorname{ch} \frac{\pi(2k+1)a}{n}} \operatorname{cos} \frac{\pi(2k+1)y}{b} + C \text{ (где } C - \operatorname{произволь-} \\ \text{ная постоянная); если } 2aA \neq a^2 + b^2, \text{ то решение не существу-} \\ \text{ет. } \mathbf{69.} \text{ Если } aA + bB = 0, \text{ то } u = Bx + Ay - \frac{B(x^2-y^2)}{2a} + C \text{ (где } C - \text{произволь-ная постоянная); если } 2a^3A + 3b^2B = 0, \text{ то } u = \frac{bEx}{2} + \frac{a^2Ay}{3} - \frac{bB(x^2-y^2)}{4a} + \frac{4a^4}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \frac{\operatorname{ch} \frac{\pi n(y-b)}{2a}}{\operatorname{ch} \frac{\pi ab}{2}} \operatorname{cos} \frac{\pi nx}{a} + \frac{4b^2B}{\pi^3} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} \frac{\operatorname{ch} \frac{\pi(2k+1)(x-a)}{2a}}{\operatorname{ch} \frac{\pi(2k+1)a}{2b+1b}} \operatorname{cos} \frac{\pi(2k+1)y}{b} + C \text{ (где } C - \text{произвольная постоянная); если } 2a^3A + 3b^2B \neq 0, \text{ то решение не существует.} \\ \mathbf{71.} u = \frac{1}{2}(1 + \rho^2 \cos 2\varphi). \quad \mathbf{72.} u = A + \frac{1}{2R}\rho^2 \sin 2\varphi. \quad \mathbf{73.} u = \frac{1}{2}(1 - \rho^{-2} \cos 2\varphi). \quad \mathbf{74.} u = \frac{1}{\ln 2} \ln \rho - \frac{1}{15}\rho^2 \cos 2\varphi + \frac{8}{63}\rho^3 \sin 3\varphi + \frac{1}{65}\rho^{-2} \cos 2\varphi - \frac{8}{63}\rho^{-3} \sin 3\varphi \quad \mathbf{75.} \quad \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \frac{\rho}{k} \sin(2k+1)\varphi. \\ \mathbf{76.} u = \frac{1}{3\pi a} \sin \frac{3\pi at}{l} \sin \frac{3\pi x}{l} + \frac{8l^2}{\pi^3} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} \cos \frac{\pi(2k+1)at}{l} \sin \frac{\pi(2k+1)x}{l}. \\ \mathbf{77.} u = \frac{4}{3\pi}(3e^t - e^{3t}) \sin x + \frac{4}{\pi}e^{3t/2} \sum_{n=2}^{\infty} \frac{1}{n^{n/2-1}} \left[2 \cos \sqrt{4n^2 - 13}t - \frac{3}{\sqrt{4n^2 - 13}} \sin \sqrt{4n^2 - 13}t\right] \sin nx. \quad \mathbf{78.} \quad u = \frac{8lv_0e^{-t}}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} e^{2(2k+1)^2-\omega^2} \sin (2k+1)x, \text{ если } \omega \neq \pm a(2k+1)$$
 для $k = 0, 1, \dots; u = -\frac{2[a(2k+1)t\cos\omega\omega - \sin at}{\pi a(2k+1)\sin\omega - \omega} \sin at}{\pi a(2k+1)\sin\omega - \omega} \sin at} \sin (2k_0 + 1)x + \frac{4}{\pi a} \sum_{k=0}^{\infty} \sin(2k+1)x. \\ \frac{a(2k+1)\sin\omega + \omega \sin at}{\pi a(2k+1)^2 e^{2(2k+1)^2}} \exp^2, \text{ если } \omega = 4\pi e^{2(2k+1)} \cos(2k+1)x. \\ \frac{a(2k+1)\sin\omega + \omega}{\pi a(2k+1)^2 e^{2(2k+1)^2}} \exp^2, \text{ если } \omega = \pm a(2k_0 + 1)$ при $k_0 \in \{0, 1, \dots\}.$

$$\mathbf{80.} \quad u = \frac{\pi}{2} + \frac{1-\cos\omega t}{\omega^2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos(2k+1)t\cos(2k+1)x}{(2k+1)^2}, \text{ если } \omega = 0. \quad \mathbf{81.} \quad u = \frac{gx(\pi-x)}{2a^2} - \frac{4\pi}{\pi a^2} \sum_{k=0}^{\infty} \frac{\sin\pi nx \sin\pi nat}{n^2}. \quad \mathbf{82.} \quad u = 1+t+x-1$$

 $\frac{(a\pi n)^2\cos{\frac{a\pi nt}{l}}-(\omega l)^2\cos{\omega t}}{n[(a\pi n)^2-(\omega l)^2]}\sin{\frac{\pi nx}{l}},$ если $\omega\neq\pm\frac{a\pi n}{l}$ для $n\in\mathbb{N};\ u=$ $\frac{A}{l}x\cos\omega t + \frac{A(-1)^{n_0}}{\pi n_0} \left[2\cos\frac{a\pi n_0 t}{l} - \omega t\sin\omega t\right] \sin\frac{\pi n_0 x}{l} + \frac{2A}{\pi} \sum_{n \neq n_0} (-1)^n$ $\frac{(a\pi n)^2\cosrac{a\pi nt}{l}-(\omega l)^2\cos\omega t}{n[(a\pi n)^2-(\omega l)^2]}\sinrac{\pi nx}{l},$ если $\omega=\pmrac{a\pi n_0}{l}$ при $n_0\in\mathbb{N}.$ **84.** $u = \frac{A}{l}x\sin\omega t + \frac{2A\omega}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n}{n}\left[\frac{l}{\pi na}\sin\frac{\pi nat}{l} - \frac{l^2}{(\pi na)^2 - (l\omega)^2}\sin\omega t\right]$ $\sin \frac{\pi n x}{l}$, если $\omega \neq \pm \frac{a \pi n}{l}$ для $n \in \mathbb{N}$; $u = \frac{A}{l} x \sin \omega t + \frac{(-1)^{n_0} A}{\pi n_0}$ $\left[\sin\omega t + \omega t\cos\omega t\right]\sin\frac{\pi n_0 x}{l} + \frac{2A\omega}{\pi}\sum_{n\neq n_0}\frac{(-1)^n}{n}\left[\frac{l}{\pi na}\sin\frac{\pi nat}{l}\right] \frac{l^2}{(\pi na)^2-(l\omega)^2}\sin\omega t$ $\sin\frac{\pi nx}{l}$, если $\omega=\pm\frac{a\pi n_0}{l}$ при $n_0\in$ **85.** $u = \frac{3I_0\left(\frac{\pi\rho}{h}\right)}{I_0\left(\frac{\pi\rho_0}{h}\right)}\sin\frac{\pi z}{h}$. **86.** $u = \frac{1}{2}\left[\frac{I_0\left(\frac{3\pi\rho}{h}\right)}{I_0\left(\frac{3\pi\rho_0}{h}\right)} + \frac{I_2\left(\frac{3\pi\rho}{h}\right)}{I_0\left(\frac{3\pi\rho_0}{h}\right)}\cos 2\varphi\right]$ $\sin \frac{3\pi z}{h}$. 87. $u = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \frac{I_0\left(\frac{\pi k \rho}{h}\right)}{I_0\left(\frac{\pi k \rho_0}{h}\right)} \cos \frac{\pi k z}{h}$, где $a_k = \frac{2}{h} \int\limits_0^n f(z)$ $\cos \frac{\pi k z}{h} dz$. **88.** $u = \sum_{n=0}^{\infty} A_n \left[e^{\frac{\mu_n^0 z}{h}} - e^{2\mu_n^0 - \frac{\mu_n^0 z}{h}} \right] I_0\left(\frac{\mu_n^0 \rho}{\rho_0}\right)$, где A_n — коэффициенты разложения функции $\rho-\rho_0$ в ряд по $\{I_0(\frac{\mu_n^0\rho}{\rho_0})\}$. **89.** $u=A_0\frac{z}{h}+\sum\limits_{k=1}^{\infty}A_k\frac{\sinh\frac{\nu_k^{\nu}z}{\rho_0}}{\cosh\frac{\nu_k^0h}{\rho_0}}J_0(\frac{\nu_k^0\rho}{\rho_0})$, где A_k — коэффициенты разложения функции f по $\{1; J_0(\frac{\nu_k^0 \rho}{\rho_0}), k = 1, 2, \dots\}.$ **90.** $\sin^2\theta \sin 2\varphi$. **91.** $\frac{1}{3} - \frac{1}{2}(\cos^2\theta - \frac{1}{3}) - \frac{1}{2}(\sin^2\theta \cos 2\varphi)$. **92.** $\sum_{n=0}^{\infty} c_n P_n^2(\cos \theta) \sin 2\varphi$, где c_n — коэффициенты разложения функции $\cos^2\theta$ по системе $\{P_n^2(\cos\theta)\}_{n=2}^{\infty}$. 93. $\frac{1}{2}\sin^2\theta\cos2\varphi$ $\frac{\sqrt{3}}{2}\sin^2\theta\sin^2\varphi$. **94.** $\frac{2}{5}\cos\theta-\left(\cos^3\theta-\frac{3}{5}\cos\theta\right)$. **95.** $\sin 3\varphi$ $\sum_{n=0}^{\infty} c_n P_n^3(\cos \theta)$, где c_n — коэффициенты разложения функции 1 по системе $\{P_n^3(\cos\theta)\}_{n=3}^{\infty}$. **96.** $\frac{3}{4}\sum_{n=3}^{\infty}a_nP_n^1(\cos\theta)\cos\varphi$ + $\frac{1}{4}\sum_{n=0}^{\infty}b_{n}P_{n}^{3}(\cos\theta)\cos3\varphi$, где $a_{n},\,b_{n}$ — коэффициенты разложения функции 1 по системам $\{P_n^1(\cos\theta)\}_{n=1}^{\infty}$ и $\{P_n^3(\cos\theta)\}_{n=3}^{\infty}$ соответственно. 97. $u=\frac{2}{3}-\frac{r^2}{r_0^2}\left(\cos^2\theta-\frac{1}{3}\right)+\frac{r^5}{r_0^5}\sin^5\theta\sin^5\varphi$. **98.** $u = \left[\frac{r}{17} - \frac{8}{17r^2}\right] \sin \theta \cos \varphi + \left[\frac{3r^2}{98} + \frac{2}{49r^3}\right] \sin \theta \cos \theta \sin \varphi.$ **99.** $u = \frac{1}{r^8} \sin^7 \theta \cos 7\varphi - \frac{1}{r}$. **100.** $u = \frac{r^{10}}{10} \sin^{10} \theta \sin 10\varphi + r$, где C — произвольная постоянная. **101.** $u = \frac{1}{3r} - \frac{1}{4r^3} \left(\cos^2 \theta - \frac{1}{3}\right) + \frac{1}{3r^2} \sin \theta \sin \varphi + \frac{1}{4r^3} \sin \theta \cos \theta \cos \varphi$. **102.** $u = 2 - \frac{2}{r} + \left(-\frac{4r}{35} + \frac{1}{3r^2}\right)$ $\left(\frac{32}{35r^2}\right)\sin\theta\sin\varphi + \left(\frac{r^3}{127} - \frac{128}{127r^4}\right)\sin\theta\left(\cos^2\theta - \frac{1}{5}\right)\sin\varphi$. **103.** $u = \sum_{k=0}^{\infty} A_k r^{2k+1} P_{2k+1}(\cos \theta)$, где $A_k = (-1)^{k+1} \frac{4k+3}{r_0^{2k+1}} \frac{2k+2}{2k+1}$ **104.** $u = AY_0^0(\theta, \varphi) - \sum_{n=1}^{\infty} \sum_{m=-\infty}^n \frac{f_{nm}}{nr^{n+1}} Y_n^m(\theta, \varphi)$ (где f_{nm} коэффициенты разложения функции f по сферическим гармоникам, A — произвольная постоянная), если $f_{00} = 0$; решение не существует, если $f_{00} \neq 0$. **105.** $u_{nk} = J_n \left(\frac{\nu_n^{\mu} \rho}{\rho_0} \right) e^{in\varphi}$, $(\lambda_{nk} = -(\frac{\nu_k^n}{k})^2)^2$ $(n \in \mathbb{Z}, k \in \mathbb{N}, \nu_k^n - \text{нули } J_n'), u_{00} = 1, \lambda_{00} = 0.$ **106.** $u_{nk} = [Y_n(\varkappa_k^n \rho_1)J_n(\varkappa_k^n \rho) - Y_n(\varkappa_k^n \rho)J_n(\varkappa_k^n \rho_1)]e^{in\varphi}, \ \lambda_{nk} =$ $-(\varkappa_{\iota}^{n})^{2}$ ($n\in\mathbb{Z},\ k\in\mathbb{N},\ \varkappa_{\iota}^{n}$ — решения уравнения $Y_n(\varkappa\rho_1)J_n(\varkappa\rho_2)-Y_n(\varkappa\rho_2)J_n(\varkappa\rho_1)=0.$ 107. $u_{nk}=[Y_{\pi n}(\varkappa_k^n\rho_1)]$ $J_{\frac{\pi n}{\alpha}}(\varkappa_k^n \rho) - Y_{\frac{\pi n}{\alpha}}(\varkappa_k^n \rho) J_{\frac{\pi n}{\alpha}}(\varkappa_k^n \rho_1)] \sin \frac{\pi n \varphi}{\alpha}, \ \lambda_{nk} = -(\varkappa_k^n)^2 (n \in \mathbb{Z},$ $k \in \mathbb{N}, \varkappa_k^n$ — решения уравнения $Y_{\frac{\pi n}{\alpha}}(\varkappa \rho_1)J_{\frac{\pi n}{\alpha}}(\varkappa \rho_2) - Y_{\frac{\pi n}{\alpha}}(\varkappa \rho_2)$ $J_{\frac{\pi n}{n}}(\varkappa \rho_1) = 0.$ 108. $u_{nml} = (k \sin \alpha_n x - \alpha_n \cos \alpha_n x)(k \sin \beta_m y - \alpha_n \cos \alpha_n x)$ $\beta_m \cos \beta_m y$) $(k \sin \gamma_l z - \gamma_l \cos \gamma_l z), \lambda_{nml} = -(\alpha_n^2 + \beta_m^2 + \gamma_l^2) (n, m, m)$ $l \in \mathbb{N}, \alpha_n$ — решения уравнения $(k^2 - \alpha^2)$ tg $a\alpha = 2k\alpha, \beta_m$ — решения уравнения $(k^2 - \beta^2) \operatorname{tg} b\beta = 2k\beta$, γ_l — решения уравнения $(k^2 - \gamma^2) \operatorname{tg} c \gamma = 2k \gamma$). **109.** $u_{nml} = [k \sin \beta_m z - (k^2 - \gamma^2)]$ $\beta_m \cos \beta_m z J_n(\gamma_l^n \rho) e^{in\varphi}, \ \lambda_{nml} = -(\beta_m^2 + (\gamma_l^n)^2) \ (n \in \mathbb{Z}, m, l \in \mathbb{N}, m$ β_m — решения уравнения $(k^2 - \beta^2) \operatorname{tg} h\beta = 2k\beta, \gamma_l^n$ — решения уравнения $\gamma J'_n(\gamma \rho_0) - k J_n(\gamma \rho_0) = 0$). **110.** $u_{nmk} =$ $\frac{J_{n+\frac{1}{2}}(\varkappa_k^n r)}{\sqrt{r}} P_n^m(\cos\theta) e^{in\varphi}, \ \lambda_{nmk} = -(\varkappa_k^n)^2 \ (n \in \mathbb{Z}, \ m = -n, \dots, n,$ $k\in\mathbb{N},\; \varkappa_k^n$ — решения уравнения $\varkappa J'_{n+\frac{1}{2}}(\varkappa r_0)-\left[k+\frac{1}{2r_0}\right]$ $J_{n+\frac{1}{2}}(\varkappa r_0) = 0$. **111.** $u = 1 + \cos\frac{\pi\sqrt{9a^2+b^2}\,ct}{ab}\cos\frac{\pi x}{a}\cos\frac{3\pi y}{b}$.

112. $u=\sum_{k=0}^{\infty}c_k\cos\frac{a\mu_k^1t}{\rho_0}J_1\left(\frac{\mu_k^1\rho}{\rho_0}\right)\cos\varphi$, где c_k — коэффициенты разложения функции $\rho - \rho_0$ по системе $\left\{J_1\left(\frac{\mu_k^1 \rho}{\rho_0}\right)\right\}_{k=1}^{\infty}$. **113.** $u = \sin \omega t \cos 3\varphi \frac{J_3\left(\frac{\omega\rho}{a}\right)}{J_2\left(\frac{\omega}{a}\right)} - \frac{\omega}{a} \sum_{k=1}^{\infty} \frac{c_k}{\sqrt{9+(\mu_k^3)^2}} \sin a\sqrt{9+(\mu_k^3)^2} t$ $J_3(\mu_k^3
ho)\cos 3 \varphi$, где c_k — коэффициенты разложения функции 1 по системе $\left\{J_3(\mu_k^3
ho)\right\}_{k=1}^\infty$. **114.** $u=\sin 2 \varphi \sin \frac{\pi z}{h}$ $\sum_{k=1}^{\infty} c_k \cos\left(a\sqrt{\left(\frac{\mu_k^1
ho}{
ho_0}\right)^2 + \left(\frac{\pi}{h}\right)^2} t\right) J_2\left(\frac{\mu_k^2
ho}{
ho_0}\right)$, где c_k — коэффициенты разложения функции $\rho - \rho_0$ по системе $\left\{J_2\left(\frac{\mu_k^2 \rho}{\rho_0}\right)\right\}_{k=1}^{\infty}$. **115.** $u = \sum_{k=0}^{\infty} T_{11k}(t) \frac{J_{3/2}\left(\frac{\sigma_k^{3/2}r}{r_0}\right)}{\sqrt{r}} \sin\theta\cos\varphi + \sum_{k=0}^{\infty} T_{21k}(t) \frac{J_{5/2}\left(\frac{\sigma_k^{5/2}r}{r_0}\right)}{\sqrt{r}}$ $\sin 2\theta \sin \varphi$, где $T_{11k} = -f_k \frac{1 - e^{a^2 \lambda_{11k} t} + a^2 \lambda_{11k} t}{(a^2 \lambda_{11k})^2}$, $T_{21k} = c_k e^{a^2 \lambda_{21k} t}$, f_k — коэффициенты разложения функции 1 по системе $\left\{ rac{J_{3/2}\left(rac{\sigma_k^{3/2}r_0}{r_0}
ight)}{\sqrt{r}}
ight\}^{\infty} \ , c_k$ — коэффициенты разложения функции 1 по системе $\left\{ \frac{J_{5/2}\left(\frac{\sigma_k^{5/2}r}{r_0}\right)}{\sqrt{r}} \right\}_{k=1}^{\infty}, \ \lambda_{nmk} = -\left(\frac{\sigma_k^{n+1/2}}{r_0}\right)^2.$ $\sin \omega t \sum_{k=-\infty}^{\infty} c_k \frac{J_k\left(\frac{\omega\rho}{a}\right)}{J_k\left(\frac{\omega\rho_0}{a}\right)} e^{ik\varphi} + \sum_{n=-\infty}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} T_{nmk}(t) J_n\left(\frac{\mu_k^n \rho}{\rho_0}\right) e^{in\varphi}$ $\cos \frac{\pi m z}{h}$, где c_k — коэффициенты разложения функции $g(\varphi)$ по системе $\{e^{ik\varphi}\}$, $T_{n0k} = e^{-a^2\lambda_{n0k}t}g_{nk} + \int_{0}^{t} e^{-a^2\lambda_{n0k}(t-s)}f_{n0k}(s)ds$, $T_{nmk} = \int_{0}^{t} e^{-a^2 \lambda_{nmk}(t-s)} f_{nmk}(s) ds$ при $m \neq 0$, $\lambda_{nmk} = -\left[\left(\frac{\pi m}{h}\right)^2 + \right]$ $\left(\frac{\mu_k^n}{\rho_0}\right)^2$, $f_{nmk}(t)$ — коэффициенты разложения функции f по системе $\{J_n(\frac{\mu_k^n\rho}{\rho_0})e^{in\varphi}\cos\frac{\pi mz}{h}\},\,g_{nk}$ — коэффициенты разложения функции $G(\rho,\varphi) = -\sum_{k=-\infty}^{\infty} c_k J_k \left(\frac{\omega\rho}{a}\right) e^{ik\varphi}$ по системе

$$\left\{J_{n}\left(\frac{\mu_{n}^{n}\rho}{\rho_{0}}\right)e^{in\varphi}\right\}. \quad \mathbf{117.} \ u = \frac{cr^{2}}{2r_{0}} + \left(\frac{3c}{r_{0}}t + c_{0}\right) + \sum_{k=1}^{\infty}c_{k}e^{-\left(\frac{c_{k}^{2}/2}{r_{0}}\right)^{2}t}$$

$$\frac{J_{1/2}\left(\frac{\sigma_{k}^{2}/2}{r_{0}}\right)}{\sqrt{r}}, \text{ где } c_{k} - \text{ коэффициенты разложения функции } -\frac{cr^{2}}{2r_{0}}$$
 по системе $\left\{1\right\} \cup \left\{J_{1/2}\left(\frac{\sigma_{k}^{1/2}r}{r_{0}}\right)\right\}_{k=1}^{\infty}. \quad \mathbf{118.} \ u = \cos\omega t F(\rho, z) +$
$$T_{000}(t) + \sum_{m=1}^{\infty}\sum_{k=1}^{\infty}T_{0mk}(t)J_{0}\left(\frac{\nu_{k}^{0}\rho}{\rho_{0}}\right)\cos\frac{\pi mz}{h}, \text{ где } F(\rho, z) = -\frac{ac_{0}}{\omega}\frac{\cos\frac{\omega z}{a}}{\sin\frac{\omega z}{h}} +$$

$$\sum_{k=1}^{\infty}\frac{c_{k}}{\sqrt{\left(\frac{\nu_{k}^{0}}{r_{0}}\right)^{2}-\left(\frac{\omega}{a}\right)^{2}}}\frac{ch\left(\sqrt{\left(\frac{\nu_{k}^{0}}{r_{0}}\right)^{2}-\left(\frac{\omega}{a}\right)^{2}z}\right)}{ch\left(\sqrt{\left(\frac{\nu_{k}^{0}}{r_{0}}\right)^{2}-\left(\frac{\omega}{a}\right)^{2}z}}J_{0}\left(\frac{\nu_{k}^{0}\rho}{\rho_{0}}\right), \ c_{k} - \text{ коэффициен-}$$
 ты разложения функции $f(\rho)$ по системе $\left\{1\right\} \cup \left\{J_{0}\left(\frac{\nu_{k}^{0}\rho}{\rho_{0}}\right)\right\}_{k=1}^{\infty},$
$$T_{000} = f_{00}, T_{0mk} = f_{mk}\cos a\sqrt{-\lambda_{0mk}}t, \ \lambda_{0mk} = -\left[\left(\frac{\nu_{k}^{0}}{\rho_{0}}\right)^{2}+\left(\frac{\pi m}{h}\right)^{2}\right],$$

$$f_{mk} - \text{ коэффициенты разложения функции } -F(\rho, z) \text{ по системе } \left\{1\right\} \cup \left\{J_{0}\left(\frac{\nu_{k}^{0}\rho}{\rho_{0}}\right)\cos\frac{\pi mz}{h}\right\}. \quad \mathbf{119.} \ u = \cos\omega t^{\frac{J_{n+\frac{1}{2}}(\omega r)}{\sqrt{r}}},$$

$$P_{n}^{m}(\cos\theta)\cos m\varphi + \sum_{k=1}^{\infty}c_{k}\cos\frac{a\sigma^{n+\frac{1}{2}}t}{r_{0}}\right\}. \quad \mathbf{119.} \ u = \cos\omega t^{\frac{J_{n+\frac{1}{2}}(\omega r)}{\sqrt{r}}},$$

$$P_{n}^{m}(\cos\theta)\cos m\varphi + \sum_{k=1}^{\infty}c_{k}\cos\frac{a\sigma^{n+\frac{1}{2}}t}{r_{0}}\frac{J_{n+\frac{1}{2}}\left(\frac{\sigma^{n+\frac{1}{2}}r}{r_{0}}\right)}{\sqrt{r}}P_{n}^{m}(\cos\theta)\cos m\varphi,$$
 где c_{k} — коэффициенты разложения функции $-J_{n+\frac{1}{2}}(\omega r)$ по системе
$$\left\{J_{n+\frac{1}{2}}\left(\frac{\sigma^{n+\frac{1}{2}}r}{r_{0}}\right)\right\}_{k=1}^{\infty}. \quad \mathbf{121.} \ G(M,P) = \frac{1}{2\pi}\ln\rho_{MP} - \frac{1}{2\pi}\ln\frac{r}{R}\rho_{MP}, \text{ где } M(\rho,\varphi), P(r,\psi), P_{1}\left(\frac{R^{2}}{r},\psi\right); \quad u(\rho,\varphi) = \frac{R^{2}-\rho^{2}}{2\pi} \int_{0}^{2\pi} \frac{f(\psi)d\psi}{R^{2}} \left(\frac{1}{2\pi}\right) \left(\frac{1}{2\pi}\right) \left(\frac{1}{2\pi}\right) \left(\frac{1}{2\pi}\right) \left(\frac{1}{2\pi}\right) \left(\frac{1}{2\pi}\right)$$

$$\begin{array}{lll} \frac{1}{2\pi}\ln\rho_{MP_2} \ + \ \frac{1}{2\pi}\ln\rho_{MP_3}, & \text{ fige} & M(\rho,\varphi), & P(r,\psi), & P_1(r,-\psi), \\ P_2\left(\frac{R^2}{r},\psi\right), & P_3\left(\frac{R^2}{r},-\psi\right); & u(M) = \frac{R^2-\rho^2}{2\pi}\int\limits_0^\pi \left[\frac{1}{R^2+\rho^2-2R\rho\cos(\psi-\varphi)} - \frac{1}{R^2+\rho^2-2R\rho\cos(\psi-\varphi)}\right] f(\psi)d\psi + \frac{y}{\pi}\int\limits_{-1}^1 \left[\frac{1}{(x-\xi)^2+y^2} - \frac{R^2/\xi}{(x-R^2/\xi)^2+y^2}\right] f(\xi)d\xi. \\ \mathbf{125.} & G(M,P) = \frac{1}{2\pi}\sum\limits_{k=-\infty}^\infty \left[\ln\rho_{MP_{2k}} - \ln\rho_{MP_{2k+1}}\right], & \text{ fige} & M(x,y), \\ P_{2k}(\xi,\eta+2kl), & P_{2k+1}(\xi,-\eta+2kl); & u(x,y) = \sum\limits_{k=-\infty}^\infty \frac{y+2kl}{\pi} \int\limits_{-\infty}^\infty \frac{f(\xi,0)d\xi}{(x-\xi)^2+(y+2kl)^2} - \sum\limits_{k=-\infty}^\infty \frac{y+(2k+1)l}{\pi}\int\limits_{-\infty}^\infty \frac{f(\xi,0)d\xi}{(x-\xi)^2+(y+(2k+1)l)^2}. \\ \mathbf{126.} & G(M,P) = \frac{1}{2\pi}\sum\limits_{k=-\infty}^\infty \left[\ln\rho_{MP_{2k}} - \ln\rho_{MP_{2k+1}} - \ln\rho_{MQ_{2k}} + \ln\rho_{MQ_{2k+1}}\right], & \text{ fige} & M(x,y), & P_{2k}(\xi,\eta+2kl), & P_{2k+1}(\xi,-\eta+2kl), \\ Q_{2k}(-\xi,\eta+2kl), & Q_{2k+1}(-\xi,-\eta+2kl); & u(x,y) = \sum\limits_{k=-\infty}^\infty \frac{y+2kl}{\pi} \int\limits_{-\infty}^\infty \left[\frac{1}{(x-\xi)^2+(y+2kl)^2} - \frac{1}{(x+\xi)^2+(y+2kl)^2}\right] f(\xi,0)d\xi - \sum\limits_{k=-\infty}^\infty \frac{y+(2k+1)l}{\pi} \int\limits_{-\infty}^\infty \left[\frac{1}{(x-\xi)^2+(y+2kl)^2} - \frac{1}{(x+\xi)^2+(y+2kl)^2}\right] f(0,\eta)d\eta. & \mathbf{127.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta)d\xi d\eta}{f(x-\xi)^2+(y-\eta)^2+2z^2\beta^2}. & \mathbf{128.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta)d\xi d\eta}{f(x-\xi)^2+(y-\eta)^2+2z^2\beta^2}. & \mathbf{128.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta)d\xi d\eta}{f(x-\xi)^2+(y-\eta)^2+2z^2\beta^2}. & \mathbf{128.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta)d\xi d\eta}{f(x-\xi)^2+(y-\eta)^2+2z^2\beta^2}. & \mathbf{128.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta)d\xi d\eta}{f(x-\xi)^2+y^2+(x-\zeta)^2\beta^2}. & \mathbf{128.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta)d\xi d\eta}{f(x-\xi)^2+y^2+(x-\zeta)^2\beta^2}. & \mathbf{128.} & f(\xi,\eta,0)d\xi d\eta \\ \mathcal{Q}_{2\pi}(-\xi,\eta,\zeta), & P_4(\xi,-\eta,-\zeta), & P_5(-\xi,-\eta,-\zeta), & P_6(-\xi,\eta,-\zeta), \\ P_7(\xi,\eta,-\zeta); & u(x,y,z) & = \frac{x}{2\pi} \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty \frac{f(\xi,\eta,0)d\xi d\eta}{f(x-\xi)^2+(y-\eta)^2+2z^2\beta^2}. & \mathbf{129.} & \mathbf{129.} & G(M,P) = -\frac{1}{4\pi} \int\limits_{-\infty}^\infty \frac{f(\xi,\eta,0)d\xi d\eta}{f(x-\xi)^2+y^2+(x-\zeta)^2\beta^2}. & \mathbf{129.} & \mathbf{129.} & G(M,P) & \mathbf{127.} & \mathbf{1$$

$$\begin{array}{lll} P_1(\frac{R^2}{\bar{r}},\tilde{\varphi},\tilde{\theta}); & u(r,\varphi,\theta) &= \frac{R(R^2-r^2)}{4\pi} \int\limits_0^2 \int\limits_0^\pi \frac{f(R,\bar{\varphi},\tilde{\theta})\sin\tilde{\theta}}{(R^2+r^2-2Rr\cos\alpha)^{3/2}} d\tilde{\theta} d\tilde{\varphi}, \\ \alpha &- \text{ угол между } OM, \ OP. & \mathbf{130.} \ G(M,P) &= -\frac{1}{4\pi} \bigg[\frac{1}{r_{MP}} - \frac{1}{r_{MP_1}} - \frac{R}{\bar{r}_{TMP_2}} + \frac{R}{\bar{r}_{TMP_3}} \bigg], \ \text{ где } M(r,\varphi,\theta), \ P(\tilde{r},\tilde{\varphi},\tilde{\theta}), \ P_1(\tilde{r},\tilde{\varphi},\pi-\bar{\theta}), \ P_2(\frac{R^2}{\bar{r}},\tilde{\varphi},\tilde{\theta}), \ P_3(\frac{R^2}{\bar{r}},\tilde{\varphi},\pi-\bar{\theta}); & u(M) &= \frac{1}{2\pi} \int\limits_0^R \int\limits_0^{2\pi} f(\tilde{r},\tilde{\varphi},\pi/2) \\ \bigg[\frac{R(\bar{r},\tilde{r})}{[(x-\bar{r}\cos\tilde{\varphi})^2+(y-\bar{r}\sin\tilde{\varphi})^2+z^2]^{3/2}} - \frac{(R(\bar{r},\tilde{r})^3)}{[(x-R^2\cos\tilde{\varphi})^2+(y-\bar{r}\sin\tilde{\varphi})^2+z^2]^{3/2}} - \frac{R(1-r^2)-(1-R^2)r\cos\alpha}{[(x-R^2\cos\tilde{\varphi})^2+(y-\bar{r}\sin\tilde{\varphi})^2+z^2]^{3/2}} \bigg] \\ \tilde{r}d\tilde{\varphi}d\tilde{r} &+ \frac{R}{4\pi} \int\limits_0^{2\pi} \int\limits_0^1 \bigg[\frac{R(1-r^2)-(1-R^2)r\cos\alpha}{(R^2+r^2-2Rr\cos\alpha)^{3/2}} - \frac{R(1-r^2)-(1-R^2)r\cos\beta}{(R^2+r^2-2Rr\cos\beta)^{3/2}} \bigg] \\ f(R,\tilde{\varphi},\tilde{\theta})\sin\tilde{\theta}d\tilde{\theta}d\tilde{\varphi}, \ \alpha - \text{ угол между } OM, \ OP, \ \beta - \text{ угол меж-} \\ \text{ду } OM, OP_1. & \mathbf{131.} \ G(M,P) &= -\frac{1}{4\pi} \sum\limits_{k=-\infty}^{\infty} \bigg[\frac{1}{r_{MP_{2k}-1}} - \frac{1}{r_{MP_{2k+1}}} \bigg], \ \text{ где } M(x,y,z), \quad P_{2k}(\xi,\eta,\zeta+2kl) \bigg[\frac{f(\xi,\eta,0)d\xi d\eta}{([(x-\xi)^2+(y-\eta)^2+(z+2kl)^2]^{3/2}} - \sum\limits_{k=-\infty}^{\infty} \frac{z+(2k+1)l}{2\pi} \bigg] \\ \int\limits_{\mathbb{R}^2} \frac{f(\xi,\eta,0)d\xi d\eta}{[(x-\xi)^2+(y-\eta)^2+(z+2kl)^2]^{3/2}} - \sum\limits_{k=-\infty}^{\infty} \frac{z+(2k+1)l}{r_{MP}} + \frac{1}{4\pi} \frac{\cos\varkappa r_{MP}}{r_{MP}} + \frac{1}{4\pi} \frac{\cos\varkappa r_{MP}}{r_{MP}} + \frac{1}{4\pi} \frac{\cos\varkappa r_{MP}}{r_{MP}} + \frac{1}{4\pi} \frac{\cos\varkappa r_{MP}}{(x-\xi)^2+(y-\eta)^2+z^2} \bigg] f(\xi,\eta)d\xi d\eta. \\ \mathbf{139.} \ U_3^- = 2\pi f_0 \bigg(R^2 - \frac{r^2}{3}\bigg), \ U_3^+ = \frac{4\pi f_0R^3}{3r}. \quad \mathbf{140.} \ U_2^- = -\pi f_0 \bigg(R^2 \ln R - \frac{R^2-\rho^2}{2}\bigg), \ U_2^+ = -\pi f_0(b^2 \ln b - a^2 \ln \rho - \frac{b^2-\rho^2}{2}\bigg), \ U_2^+ = -\pi f_0(b^2 \ln b - a^2 \ln \rho - \frac{b^2-\rho^2}{2}\bigg), \ U_2^+ = -\pi f_0(b^2 \ln b - a^2 \ln \rho - \frac{b^2-\rho^2}{2}\bigg) \ \text{ In } \rho \\ \mathrm{In } \rho > b. \quad \mathbf{143.} \ f = \sin\varphi, \ U_2^+ = \frac{\pi R^3}{3\rho} \sin\varphi. \\ \mathbf{146.} \ V_3^- = 4\pi \mu_0 R, \ V_3^+ = \frac{4\pi \mu_0 R}{r}. \quad \mathbf{147.} \ V_2^- = -2\pi \mu_0 R \ln R, \ V_2^+ = -2\pi \mu_0 R \ln \rho. \quad \mathbf{148.} \ V_2^- = \pi \rho \sin\varphi, \ V_2^+ = \frac{\pi R^3}{\rho} \cos 3\varphi, \ \mu = \frac{\pi R^3}{3R^3} \cos 3\varphi. \quad \mathbf{151.} \ W_3^- = -4\pi \nu_0, \ W_3^+ = 0. \quad \mathbf{152.} \ W_2^- = \frac{\pi R^3}$$

 $-2\pi\nu_0, W_2^+ = 0.$ **153.** $\nu = -\frac{1}{\pi R^2}\cos 2\varphi + C, W_2^- = -\frac{\rho^2}{R^4}\cos 2\varphi - C$ $2\pi C$, где C — произвольная постоянная. **154.** $\nu = -\frac{1}{2\pi} - \frac{R^2}{\pi} \sin 2\varphi$, $W_2^+ = -\frac{R^4}{\rho^2} \sin 2\varphi$. **155.** $u(\rho, \varphi) = \pm \frac{R^2 - \rho^2}{2\pi}$ $\int\limits_0^{2\pi} \frac{f(\psi)d\psi}{R^2+
ho^2-2R
ho\cos(\psi-\varphi)}$ — решение внутренней (внешней) задачи Дирихле; $u(\rho,\varphi) = \mp \frac{R}{2\pi} \int_{0}^{2\pi} g(\psi) \ln(R^2 + \rho^2 - 2R\rho\cos(\psi - \psi)) d\mu$ $(\varphi)d\psi + C$ — решение внутренней (внешней) задачи Неймана при условии $\int_{0}^{\infty} g(\psi)d\psi = 0$, где C — произвольная постоян-**156.** $u = \frac{\varphi(x+at)+\varphi(x-at)}{2} + \frac{1}{2a} \int_{-\infty}^{x+at} \psi(s) \, ds$. **157.** $u = \frac{1}{2a} \int_{-\infty}^{x+at} \psi(s) \, ds$. $\frac{1}{2a} \int_{0}^{t} \int_{x-as}^{x+as} f(y,t-s) \, dy \, ds. \quad \mathbf{158.} \ u = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4a^2t}} \varphi(y) \, dy.$ **159.** $u = \frac{1}{2a\sqrt{\pi t}} \int_{0}^{\infty} \left[e^{-\frac{(x-y)^2}{4a^2t}} - e^{-\frac{(x+y)^2}{4a^2t}} \right] \varphi(y) \, dy.$ **160.** $u = \frac{1}{2a\sqrt{\pi t}}$ $\int_{0}^{\infty} \left[e^{-\frac{(x-y)^2}{4a^2t}} + e^{-\frac{(x+y)^2}{4a^2t}} \right] \varphi(y) \, dy. \quad \mathbf{161.} \, u = \frac{1}{2a\sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \frac{1}{\sqrt{t-s}} e^{-\frac{(x-y)^2}{4a^2(t-s)}}$ $f(y,s)\,dy\,ds.$ **162.** $u=b+\frac{1}{4}+\frac{1}{2}t-\frac{1}{2}t^2-\frac{1}{4}e^{2t}+\frac{1}{2}xe^{2t}-\frac{1}{2}x$ при $x>t,\ u=a+\frac{1}{4}e^{2(t-x)}-\frac{1}{4}e^{2t}+\frac{1}{2}xe^{2t}-tx+\frac{1}{2}x^2$ при x<t.**163.** $u = \frac{x}{2a\sqrt{t}} - e^{x+a^2t} \frac{x-2a^2t}{2a\sqrt{t}}$. **164.** $u = -\frac{1}{a} \int_{0}^{\pi} f(x-y) \sin ay \, dy$. **165.** $u = Be^{-3t}\cos\sqrt{a^2+3}\,x - \frac{A}{a^2}(\cos x - \cos ax)$ при $a \neq \pm 1$, $u = Be^{-3t}\cos\sqrt{a^2 + 3}x + \frac{A}{2a}x\sin x$ при $a = \pm 1$. **166.** $u = -\frac{1}{a}\int_{0}^{x} f(x - y)\sin ay \,dy + t\cos ax - \frac{1}{2a}x\sin ax$. **167.** $u = \frac{\pi}{2} + \frac{1-\cos\omega t}{\omega^2} - \frac{2}{\pi} \sum_{k=-\infty}^{\infty} \frac{1}{(2k+1)^2} e^{ia(2k+1)t} \cos(2k+1)x$ при $\omega \neq 0, u = \frac{\pi + t^2}{2} - \frac{2}{\pi} \sum_{k = -\infty}^{\infty} \frac{1}{(2k+1)^2} e^{ia(2k+1)t} \cos(2k+1)x$ при $\omega = 0$ (cp. c 80). 168. $u = -\frac{4ale^{-t}}{i\pi^2} \sum_{k=-\infty}^{\infty} \frac{1}{(2k+1)^2} e^{i\frac{\pi(2k+1)}{2l}t} \sin\frac{\pi(2k+1)x}{2l}$

(cp. c 78). **169.** $t(t^2-c^2(x^2+y^2))=0$. **170.** $\frac{\mu\varepsilon}{c^2}-t^2(\frac{\mu\varepsilon}{c^2}t^2-x^2-t^2)$ $(y^2 - z^2)^2 = 0.$ 171. $(t^2 - x^2 - y^2 - z^2)^2 = 0.$ **172.** $\tilde{u}_t + \tilde{u}_x = 0$, $\tilde{v}_t - \tilde{v}_x = 0$, где $u = \tilde{u} + \tilde{v}$, $v = -\tilde{u} + \tilde{v}$. **173.** $\tilde{u}_y = 0$, $\tilde{v}_y - \tilde{v}_x = 0$, где $u = \tilde{u} + \tilde{v}$, $v = -\tilde{u} + \tilde{v}$. **174.** $\tilde{u}_t - \tilde{u}_x = 0$, $\tilde{v}_t + 2t\tilde{v}_x = 0$, где $u = \tilde{u} + \tilde{v}$, $v = \tilde{u} - \tilde{v}$. **175.** $\tilde{u}_t - \frac{x}{x-1}\tilde{u}_x = 0$, $\tilde{v}_t + \frac{x+2}{x-1}\tilde{v}_x = 0$, где $u = \tilde{u} + \tilde{v}$, $v = \tilde{u} - \tilde{v}$. **176.** $\tilde{u}_x + \frac{y}{x}\tilde{u}_y = 0$, $\tilde{v}_x - \frac{y}{x}\tilde{v}_y = 0$, где $u = y\tilde{u} + y\tilde{v}$, $v = \tilde{u} - \tilde{v}$. **177.** $\tilde{u}_t + (1+x)\tilde{u}_x + \tilde{v} = 0$, $\tilde{v}_t - (1+x)\tilde{v}_x + \tilde{u} = 0$, где $u = \tilde{u} + \tilde{v}$, $v = \tilde{u} - \tilde{v}$. 178. $\tilde{u}_t + \frac{1}{\sqrt{1+x^2}}\tilde{u}_x + 2\frac{x^3+x-1}{1+x^2}\tilde{u} + 2\frac{x^3+x+1}{1+x^2}\tilde{v} = 0$, $\tilde{v}_t - \frac{1}{\sqrt{1+x^2}} \tilde{v}_x + 2 \frac{x^3+x+1}{1+x^2} \tilde{u} + 2 \frac{x^3+x-1}{1+x^2} \tilde{v} = 0$, где $u = \tilde{u} + \tilde{v}$, $v = \frac{\tilde{u} - \tilde{v}}{\sqrt{1+x^2}}$. **179.** $\tilde{u}_x + \sqrt{\frac{y}{x}} \tilde{u}_y = 0$, $\tilde{v}_x - \sqrt{\frac{y}{x}} \tilde{v}_y = 0$, где $u = \frac{1}{\sqrt{x}} (\tilde{u} + \tilde{v})$, v = $-\frac{1}{\sqrt{u}}(\tilde{u}-\tilde{v})$. **180.** $\tilde{u}_t-2\tilde{u}_x=0,\ \tilde{v}_t+9\tilde{v}_x=0,\ \tilde{w}_t-\tilde{w}_x=0$, где $u = \tilde{v} + \tilde{w}, v = \tilde{v} - \tilde{w}, w = \tilde{u} + \frac{3}{11}\tilde{v} + 3\tilde{w}.$ **181.** $\tilde{u}_t + 3\tilde{u}_x = \frac{20}{3}\tilde{u} + 4\tilde{v},$ $\tilde{v}_t + 4\tilde{v}_x = -\frac{265}{36}\tilde{u} - \frac{29}{12}\tilde{v} - \frac{3}{4}\tilde{w}, \ \tilde{w}_t - 4\tilde{w}_x = \frac{2}{9}\tilde{u} + \frac{2}{3}\tilde{v},$ где $u = \tilde{u} + \tilde{v} + \tilde{w},$ $v = \frac{8}{3}\tilde{u} + 2\tilde{v} - 2\tilde{w}, \ w = \tilde{u}.$ 183. $u = 1 + \frac{t+t^2}{2}, \ v = x + \frac{t-t^2}{2}.$ **184.** $u = \frac{t^2 + 4tx + 4t}{8} + \frac{1}{2} \left(e^{\frac{t + 2x}{2}} + e^{\sqrt{x^2 - t}} \right), v = \frac{t^2 + 4tx - 4t + 8x^2}{8} + \frac{1}{2} \left(e^{\frac{t + 2x}{2}} - e^{\frac{t + 2x}{2}} \right)$ **185.** $u = \frac{1}{2}[\cos(9t - x) - \sin(9t - x) + \cos(t + x) - \cos(t + x)]$ $\sin(t+x)$, $v = \frac{1}{2}[\cos(9t-x) - \sin(9t-x) - \cos(t+x) + \sin(t+x)]$, $w = \frac{3}{11} \left[-6\cos(2t+x) + 5\sin(2t+x) + \cos(9t-x) - \sin(9t-x) + \right]$ $11\cos(t+x)-11\sin(t+x)$]. **186.** а, г, д, ж, к поставлены **187а.** При t = 0 заданы u, v и w, при x = 0**1876.** При t=0 заданы u, v и w, при x=0заданы u и v. **187в.** При t = 0 заданы u, v и w, при x = 0задано w. заданы u и v, при x = l задано w.

Библиографический список

- 1. *Агошков В. И.*, *Дубовский П. Б.*, *Шутяев В. П.* Методы решения задач математической физики. М.: Физматлит, 2002.
- 2. *Александров В. А.* Обобщенные функции: Учеб. пособие. Новосибирск: НГУ, 2005.
- 3. *Александров В. А.* Преобразование Фурье: Учеб. пособие. Новосибирск: НГУ, 2002.
- 4. *Арнольд В. И.* Лекции об уравнениях с частными производными. М.: Фазис, 1997.
- 5. *Арсенин В. Я.* Методы математической физики и специальные функции. М.: Наука, 1984.
- 6. Бицадзе А.В., Калиниченко Д.Ф. Сборник задач по уравнениям математической физики. М.: Наука, 1985.
- 7. *Будак Б. М., Самарский А. А., Тихонов А. Н.* Сборник задач по математической физике. М.: Физматлит, 2003.
- 8. Bладимиров B. C. Уравнения математической физики. М.: Наука, 1988.
- 9. *Годунов С. К.* Уравнения математической физики. М.: Наука, 1979.
- 10. Годунов С. К., Золотарева Е. В. Сборник задач по уравнениям математической физики. Новосибирск: НГУ, 1987.
- 11. *Кошляков Н. С., Глинер Э. Б., Смирнов М. М.* Уравнения в частных производных математической физики. М.: Высш. шк., 1970.
- 12. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1987.
- 13. *Лебедев Н. Н.* Специальные функции и их приложения. М.; Л.: Физматгиз, 1963.
- 14. *Миллер У., мл.* Симметрия и разделение переменных. М.: Мир, 1981.

- 15. Олейник О. А. Лекции об уравнениях с частными про-изводными. М.: БИНОМ. Лаборатория знаний, 2005.
- 16. *Сборник* задач по уравнениям математической физики / Под ред. В. С. Владимирова. М.: Физматлит, 2001.
- 17. Свешников А. Г., Боголюбов А. Н., Кравцов В. В. Лекции по математической физике. М.: Изд-во МГУ, 1993.
- 18. *Степанов В. В.* Курс дифференциальных уравнений. М.: Гостехиздат, 1950.
- 19. *Тихонов А. Н.*, *Самарский А. А.* Уравнения математической физики. М.: Изд-во МГУ, 1999.
- 20. Φ илиппов А. Φ . Сборник задач по дифференциальным уравнениям. М.; Ижевск: Регуляр. и хаотич. динамика, 2000.

Приложение

1. Оператор Лапласа

Здесь мы выпишем, как выглядит оператор Лапласа в различных ортогональных системах координат.

В произвольной ортогональной системе координат

$$x = x(q_1, q_2, q_3), \quad y = y(q_1, q_2, q_3), \quad z = z(q_1, q_2, q_3)$$

оператор Лапласа записывается в виде

$$\begin{split} \Delta u &= \frac{1}{H_1 H_2 H_3} \bigg[\frac{\partial}{\partial q_1} \bigg(\frac{H_2 H_3}{H_1} \frac{\partial f}{\partial q_1} \bigg) + \\ &\quad + \frac{\partial}{\partial q_2} \bigg(\frac{H_1 H_3}{H_2} \frac{\partial f}{\partial q_2} \bigg) + \frac{\partial}{\partial q_3} \bigg(\frac{H_1 H_2}{H_3} \frac{\partial f}{\partial q_3} \bigg) \bigg], \end{split}$$

где

$$H_i = \sqrt{\left(\frac{\partial x}{\partial q_i}\right)^2 + \left(\frac{\partial y}{\partial q_i}\right)^2 + \left(\frac{\partial z}{\partial q_i}\right)^2}, \quad i = 1, 2, 3,$$

— коэффициенты Ламе 25 .

Известно (см., например, [14, гл. 3]), что уравнение Гельмгольца

$$\Delta u + \varkappa^2 u = 0$$

в трехмерном случае допускает разделение переменных в одиннадцати ортогональных системах координат (декартовой, цилиндрической, параболического цилиндра, эллиптического цилиндра, сферической, вытянутого сфероида, сплющенного сфероида, параболической, параболоидальной, эллипсоидальной и конической). Приведем в виде таблицы случаи декартовой, цилиндрической и сферической систем координат.

 $^{^{25}\,\}mathrm{Gabriel}$ Lamé (1795–1870), французский математик, физик и инженер.

Таблица 5 Оператор Лапласа в различных системах координат

Координаты	Оператор Лапласа Δu
декартовы	
x, y, z	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$
цилиндрические	
$x = \rho \cos \varphi$	$\begin{vmatrix} 1 & \partial & \langle \partial u \rangle & 1 & \partial^2 u & \partial^2 u \end{vmatrix}$
$y = \rho \sin \varphi$	$\left \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{\partial^2 u}{\partial z^2} \right $
z = z	$\rho \ \partial \rho \setminus \partial \rho) \rho^2 \ \partial \varphi^2 \partial z^2$
сферические	
$x = r \cos \varphi \sin \theta$ $y = r \sin \varphi \sin \theta$	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) +$
$y = r \sin \varphi \sin \theta$ $z = r \cos \theta$	$1 \partial^2 u$
2 - 1 cos 0	$+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 u}{\partial \varphi^2}$

Заметим, что уравнение Лапласа допускает разделение переменных дополнительно еще в двух системах координат (бисферической и тороидальной).

2. Функции Бесселя

В этом пункте напомним свойства функций Бесселя (см., например, [13]).

Уравнение Бесселя имеет вид

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\nu^2}{x^2}\right)y = 0.$$

Если $\nu \in \mathbb{R} \backslash \mathbb{Z}$, то общее решение уравнения Бесселя имеет вид

$$y = C_1 J_{\nu}(x) + C_2 J_{-\nu}(x),$$

где $J_{\nu}(x)$, $J_{-\nu}(x)$ — функции Бесселя 1-го рода.

Для $\nu \in \mathbb{R} \setminus \mathbb{Z}$ функции Бесселя 1-го рода представимы в виде ряда

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+1)\Gamma(\nu+k+1)} \left(\frac{x}{2}\right)^{2k},$$

$$x \in \mathbb{C} \setminus (-\infty, 0).$$

Если ввести ϕ ункции Бесселя 2-го рода (или ϕ ункции Неймана):

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}, \quad \nu \in \mathbb{R} \setminus \mathbb{Z},$$

то общее решение уравнения Бесселя в этом случае можно также записать в виде

$$y = A_1 J_{\nu}(x) + A_2 Y_{\nu}(x).$$

Если $\nu=n\in\mathbb{Z}$ и $n\geq0,$ то общее решение уравнения Бесселя имеет вид

$$y = C_1 J_n(x) + C_2 Y_n(x),$$

где $J_n(x)$ — функция Бесселя 1-го рода, $Y_n(x)$ — функция Бесселя 2-го рода.

Для $n \in \mathbb{Z}, n \geq 0$ функции Бесселя 1-го рода представимы в виде ряда

$$J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{x}{2}\right)^{2k},$$

$$J_{-n}(x) = (-1)^n J_n(x).$$

Функции Бесселя 2-го рода в случае $n \in \mathbb{Z}, n \geq 0$ представимы в виде

$$Y_n(x) = \frac{2}{\pi} J_n(x) \ln \frac{x}{2} - \frac{1}{\pi} \left(\frac{x}{2}\right)^{-n} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} \left(\frac{x}{2}\right)^{2k} - \frac{1}{\pi} \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{x}{2}\right)^{2k} \left[\frac{\Gamma'(k+1)}{\Gamma(k+1)} + \frac{\Gamma'(k+n+1)}{\Gamma(k+n+1)}\right],$$

$$x \in \mathbb{C} \setminus (-\infty, 0).$$

Функции $J_{\nu}(x)$ (при $\nu \in \mathbb{R}$, $\nu > -1$) имеют бесконечное множество вещественных положительных нулей и не имеют комплексных нулей, все нули простые (за исключением, может быть, x = 0).

Пусть μ_k^{ν} — положительные нули функции $J_{\nu}(x)$ ($\nu \in \mathbb{R}$, $\nu > -\frac{1}{2}$), расположенные в порядке возрастания. Система функций $\{J_{\nu}(\mu_k^{\nu}x)\}_{k=1}^{\infty}$ ортогональна на промежутке (0,1) с весом x, т. е.

$$\int_{0}^{1} x J_{\nu}(\mu_{k}^{\nu} x) J_{\nu}(\mu_{l}^{\nu} x) dx = 0, \quad k \neq l.$$

Любая кусочно-гладкая на [0,1] функция f(x) представима в точках непрерывности рядом Фурье

$$f(x) = \sum_{k=1}^{\infty} c_k J_{\nu}(\mu_k^{\nu} x),$$

где

$$c_k = \frac{\int_0^1 x f(x) J_{\nu}(\mu_k^{\nu} x) dx}{\int_0^1 x [J_{\nu}(\mu_k^{\nu} x)]^2 dx}.$$

Аналогичные утверждения имеют место для корней уравнения

$$\alpha J_{\nu}(x) + \beta x J_{\nu}'(x) = 0 \tag{*}$$

(при $\nu \in \mathbb{R}$, $\nu > -1$, $\alpha, \beta \in \mathbb{R}$, $\frac{\alpha}{\beta} + \nu \geq 0$). Это уравнение имеет бесконечное множество вещественных положительных корней и не имеет комплексных корней. Если σ_k^{ν} — положительные корни уравнения (*), расположенные в порядке возрастания, то любая кусочно-гладкая на [0,1] функция f(x) представима в точках непрерывности рядом Фурье по системе $\{J_{\nu}(\sigma_k^{\nu}x)\}_{k=1}^{\infty}$ в случае $\alpha \neq 0$ и по системе $\{1\} \cup \{J_{\nu}(\sigma_k^{\nu}x)\}_{k=1}^{\infty}$ в случае $\alpha = 0$.

Модифицированные функции Бесселя 1-го рода — это функции

$$I_{\nu}(x) = i^{-\nu} J_{\nu}(ix),$$

модифицированные функции Бесселя 2-го рода — это функции

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{\nu}(x) - I_{-\nu}(x)}{\sin \nu \pi}.$$

 Φy нкции Ганкеля 1-го и 2-го рода — это линейные комбинации функций Бесселя первого и второго рода:

$$H_{\nu}^{(1)}(x) = J_{\nu}(z) + iY_{\nu}(x), \quad H_{\nu}^{(2)}(x) = J_{\nu}(z) - iY_{\nu}(x).$$

Отметим, что модифицированные функции Бесселя $I_{\nu}(x)$ не имеют вещественных нулей (за исключением, может быть, x=0).

3. Полиномы Лежандра и присоединенные функции Лежандра

Теперь приведем некоторые сведения о полиномах Лежандра и присоединенных функциях Лежандра (см., например, [13]).

Присоединенные функции Лежандра выражаются через полиномы Лежандра

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

по формуле

$$P_n^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_n(x).$$

Заметим, что $P_n^0(x) = P_n(x)$.

Производящая функция полиномов Лежандра имеет вид

$$w(x,t) = \frac{1}{\sqrt{1 - 2tx + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n,$$

$$x \in [-1, 1], |t| < 1.$$

Присоединенные функции Лежандра $P_n^m(x)$ являются решениями дифференциального уравнения

$$\frac{d}{dx}\left((1-x^2)\frac{dy}{dx}\right) + \left[n(n+1) - \frac{m^2}{1-x^2}\right]y = 0.$$

Функции $P_n^m(\cos\theta)$ являются решениями дифференциального уравнения

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dy}{d\theta} \right) + \left[n(n+1) - \frac{m^2}{\sin^2\theta} \right] y = 0.$$

При фиксированном $m \in \{0,1,2,\ldots\}$ система функций $\{P_n^m(x)\}_{n=m}^\infty$ образует ортогональный базис в пространстве $L_2(-1,1)$ и

$$\int_{-1}^{1} P_n^m(x) P_k^m(x) dx = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{nk}.$$

Для наглядности выпишем несколько ненормированных присоединенных функций Лежандра $P_n^m(\cos\theta)$.

Tаблица~6 Ненормированные присоединенные функции Лежандра $P_n^m(\cos\theta)$

	10		$n \leftarrow 1$	
	m = 0	m = 1	m=2	m = 3
n = 0	1			
n=1	$\cos \theta$	$\sin \theta$		
n=2	$\frac{3\cos^2\theta - 1}{2}$	$3\sin\theta\cos\theta$	$3\sin^2\theta$	
n=3	$\frac{5\cos^3\theta - 3\cos\theta}{2}$	$\sin \theta \frac{15\cos^2 \theta - 3}{2}$	$15\sin^2\theta\cos\theta$	$15\sin^3\theta$

Если положить при $n=0,1,2,...,m=\overline{-n,0}$

$$P_n^m = \frac{(n+m)!}{(n-m)!} P_n^{-m},$$

ТО

$$\int_{-1}^{1} P_n^m(x) P_k^m(x) dx = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{nk},$$

и, следовательно, можно рассматривать $n=0,1,2,\ldots,m=-n,n$.

4. Конформные отображения

Приведем некоторые сведения о конформных отображения (см., например, [12]).

Отображение области $D \subset \mathbb{C}$, осуществляемое функцией w = f(z), конформно, если функция f(z) аналитична и однолистна в области D.

1. Линейная функция

$$w = az + b$$
,

 $a, b \in \mathbb{C}, \ a \neq 0$. В частности, линейными функциями являются поворот $w = e^{i\alpha}z \ (\alpha \in \mathbb{R})$, растяжение (сжатие) w = kz (k > 0), перенос $w = z + z_0$.

2. Дробно-линейная функция

$$w = \frac{az+b}{cz+d},$$

 $a, b, c, d \in \mathbb{C}, ad - bc \neq 0$. В частности, функция

$$w = e^{i\alpha} \frac{z - a}{z - \overline{a}}$$

 $(\alpha \in \mathbb{R}, \text{ Im } a > 0)$ отображает верхнюю полуплоскость на единичный круг, функция

$$w = e^{i\alpha} \frac{z - a}{1 - \overline{a}z}$$

 $(\alpha \in \mathbb{R}, |a| < 1)$ отображает единичный круг на единичный круг.

3. Степенная функция

$$w = z^n$$
,

 $n \in \mathbb{N}$. Области однолистности — углы $D_k = \{z = re^{i\varphi} : \frac{2\pi}{n}k < \varphi < \frac{2\pi}{n}(k+1)\}, \ k = 0, 1, \dots, n-1.$

4. Функция Xyковского 26

$$w = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

Области однолистности — единичный круг $\{z: |z| < 1\}$, внешность единичного круга $\{z: |z| > 1\}$, верхняя полуплоскость $\{z: \text{Im } z > 0\}$, нижняя полуплоскость $\{z: \text{Im } z < 0\}$.

При отображении с помощью функции Жуковского окружность $\{z: |z|=1\}$ переходит в отрезок [-1,1], лучи $\{z: \arg z=\pm\frac{\pi}{2}\}$ — в мнимую ось, лучи $\{z: \arg z=0\}$ и $\{z: \arg z=\pi\}$ — в лучи действительной оси $[1,+\infty)$ и $(-\infty,-1]$ соответственно. Полукруг $\{z: |z|<1,\ \mathrm{Im}\ z>0\}$ переходит в нижнюю полуплоскость (рис. 12).

Рис. 12

5. Показательная функция

$$w = e^z = e^x(\cos y + i\sin y).$$

²⁶ Николай Егорович Жуковский (1847–1921), русский ученый.

Области однолистности — полосы $D_k = \{z = x + iy : 2\pi k < y < 2\pi(k+1)\}, k \in \mathbb{Z}.$

Полоса $\{z = x + iy : 0 < y < \pi\}$ переходит в верхнюю полуплоскость (рис. 13).

6. Тригонометрическая функция

$$w = \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Области однолистности — полосы $E_k = \{z = x + iy : \pi k < x < \pi(k+1)\}, k \in \mathbb{Z}.$

Полуполоса $\{z = x + iy : 0 < x < \pi, y < 0\}$ переходит в верхнюю полуплоскость (рис. 14).

Рис. 14

5. Вычисление интегралов с помощью теории вычетов

Сначала напомним некоторые формулы для вычисления вычетов (см., например, [12]).

Если $z_0 \neq \infty$ — изолированная особая точка, то

$$\operatorname{Res}_{z=z_0} f(z) = c_{-1},$$

где c_{-1} — коэффициент ряда Лорана²⁷ в окрестности точки z_0 при $(z-z_0)^{-1}$.

Если $z_0 = \infty$ — изолированная особая точка, то

$$\operatorname{Res}_{z=\infty} f(z) = -c_{-1},$$

где c_{-1} — коэффициент ряда Лорана в окрестности точки $z_0 = \infty$ при z^{-1} .

Если $z_0 \neq \infty$ — устранимая особая точка функции f(z), то $\mathop{\mathrm{Res}}_{z=z_0} f(z) = 0.$

Если $z_0 \neq \infty$ — полюс порядка k функции f(z), то

Res_{z=z₀}
$$f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} [(z-z_0)^k f(z)]^{(k-1)}.$$

Если $z_0 \neq \infty$ — простой полюс функции $f(z) = \frac{\varphi(z)}{\psi(z)}$, где $\varphi(z)$, $\psi(z)$ — аналитические в точке z_0 функции, причем $\varphi(z_0) \neq 0$ и z_0 — простой нуль функции $\psi(z)$, то

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)}.$$

Следующие интегралы можно вычислять с помощью вычетов.

 $^{^{27}}$ Pierre Alphonse Laurent (1813-1854), французский математик.

1. Пусть Q(x,y) — рациональная функция. С помощью замены $z=e^{i\varphi}$ следующий определенный интеграл преобразуется в интеграл по замкнутому контуру:

$$\int_{0}^{2\pi} Q(\cos\varphi, \sin\varphi) \, d\varphi = \frac{1}{i} \int_{|z|=1} Q\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right) \frac{dz}{z}.$$

2. Если Q(z) — рациональная функция, не имеющая полюсов на действительной оси, такая, что $\lim_{z \to \infty} z Q(z) = 0$, то

$$\int_{-\infty}^{+\infty} Q(x) dx = 2\pi i \sum_{\text{Im } z_k > 0} \operatorname{Res}_{z = z_k} Q(z).$$

3. Если Q(z) — рациональная функция, не имеющая полюсов на луче $[0,+\infty)$ и такая, что $\lim_{z\to\infty}zQ(z)=0$, то

$$\int_{0}^{+\infty} Q(x) dx = \sum_{z_k} \operatorname{Res}_{z=z_k} [Q(z) \ln z],$$

где $\ln z = \ln |z| + i \arg z$, arg $z \in (0, 2\pi)$.

4. Если $\omega>0,\ Q(z)$ — рациональная функция, не имеющая полюсов на действительной оси, такая, что $\lim_{z\to\infty}Q(z)=0,$ то

$$\int_{-\infty}^{+\infty} e^{i\omega x} Q(x) dx = 2\pi i \sum_{\text{Im } z_k > 0} \text{Res}_{z=z_k} \left[e^{i\omega z} Q(z) \right].$$

6. Интегральные уравнения

Здесь мы приведем некоторые известные факты об интегральных уравнениях Фредгольма второго рода (см., например, [8]).

 $\it Интегральное уравнение Фредгольма второго рода имеет вид$

$$x(t) - \lambda \int_{a}^{b} K(t, s)x(s) ds = f(t), \tag{H}$$

здесь $K(t,s) \in L_2((a,b) \times (a,b))$ — ядро интегрального оператора $(Ax)(t) = \int\limits_a^b K(t,s)x(s)\,ds, \, f(t)$ — заданная функция, $\lambda \in \mathbb{C}$. Соответствующее ему однородное уравнение имеет вид

$$x(t) - \lambda \int_{a}^{b} K(t, s)x(s) ds = 0,$$
 (o)

сопряженное неоднородное уравнение —

$$y(t) - \overline{\lambda} \int_{a}^{b} \overline{K(s,t)} y(s) \, ds = g(t) \tag{CH}$$

и сопряженное однородное уравнение —

$$y(t) - \overline{\lambda} \int_{a}^{b} \overline{K(s,t)} y(s) \, ds = 0.$$
 (co)

Теорема Фредгольма. Для $\lambda \in \mathbb{C}$ возможны только следующие два случая.

- (i) Однородные уравнения (o) и (co) имеют только нулевые решения. При этом неоднородные уравнения (н) и (сн) имеют единственное решение при любых $f \in L_2(a,b)$ и $g \in L_2(a,b)$;
- (ii) Однородные уравнения (o) и (co) имеют ненулевые решения, при этом количество линейно независимых решений этих уравнений совпадает и конечно. Неоднородное уравнение (н) разрешимо тогда и только тогда, когда f ортогональ-

на в пространстве $L_2(a,b)$ всем решениям (co), а неоднородное уравнение (cн) разрешимо тогда и только тогда, когда g ортогональна в пространстве $L_2(a,b)$ всем решениям (o).

Отметим, что теорема Фредгольма справедлива для произвольного компактного оператора.

7. Преобразование Фурье

Прямое (обратное) преобразование Фурье быстро убывающей функции $f(\mathbf{x})$ задается формулой

$$F_{\pm}[f](\mathbf{x}) = \hat{f}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(\mathbf{y}) e^{\mp i(\mathbf{x}, \mathbf{y})} d\mathbf{y}.$$

Напомним определение и основные свойства преобразования Фурье (см., например, [2, 3, 8]):

$$F_{+}[F_{-}[f]] = F_{-}[F_{+}[f]] = f.$$

Таблица 7 Свойства преобразования Фурье

Функция $f(x)$	Образ $F_+[f] = \hat{f}(\omega)$
$\alpha f + \beta g$	$\alpha \hat{f} + \beta \hat{g}$
$e^{i(a,x)}f(x)$	$\begin{vmatrix} \hat{f}(\omega - a) \\ e^{-i(a,\omega)} \hat{f} \end{vmatrix}$
f(x-a)	$e^{-i(a,\omega)}\hat{f}$
$\frac{\partial f}{\partial x}$	$i\omega_k\hat{f}$
$\overline{\partial x_k}$	
$x_k f$	$irac{\partial \hat{f}}{\partial \omega_k}$
f * g	$(2\pi)^{n/2}\hat{f}\cdot\hat{g}$
$f \cdot g$	$\frac{1}{(2\pi)^{n/2}}\hat{f}*\hat{g}$

Приведем таблицу образов некоторых функций при n=1.

 ${\it Taблица} \ 8$ Образы некоторых функций

Функция $f(x)$	Образ $F_+[f](\omega)$
$\delta(x)$	$\frac{1}{\sqrt{2\pi}}$
1	$\sqrt{2\pi} \delta(\omega)$
$\delta(x-a)$	$\frac{1}{\sqrt{2\pi}}e^{-ia\omega}$
e^{iax}	$\sqrt[4]{2\pi}\delta(\omega-a)$
$\cos ax$	$\sqrt{\frac{\pi}{2}} \left[\delta(\omega - a) + \delta(\omega + a) \right]$
$\sin ax$	$-i\sqrt{\frac{\pi}{2}}\left[\delta(\omega-a)-\delta(\omega+a)\right]$
$\sqrt{\frac{\pi}{2}} \left[\delta(x-a) + \delta(x+a) \right]$	$\cos a\omega$
$i\sqrt{\frac{\pi}{2}}\left[\delta(x-a) - \delta(x+a)\right]$	$\sin a\omega$
$\operatorname{sgn} x$	$-i\sqrt{\frac{2}{\pi}}$ v. p. $\frac{1}{\omega}$
$\chi_a(x) = H(x+a) - H(x-a)$	$\sqrt{\frac{2}{\pi}} \frac{\sin a\omega}{\omega}$
x	$i\sqrt{\frac{2}{\pi}}$ v. p. $\frac{1}{\omega^2}$
$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \omega^2}$
$\operatorname{sgn} x \cdot e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{\omega}{a^2 + \omega^2}$
e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{-\frac{\omega^2}{4a}}$

8. Преобразование Лапласа

Изображением оригинала f(t) является функция

$$F(p) = \int_{0}^{\infty} e^{-pt} f(t) dt.$$

Пишут $f(t) \rightleftharpoons F(p)$ или $\mathcal{L}: f \to F$.

Перечислим основные свойства преобразования Лапласа (см., например, [12]):

$$f(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} e^{pt} F(p) \, dp, \quad s > a(f)$$

$$\alpha f + \beta g \rightleftharpoons \alpha F + \beta G$$

$$f(at) \rightleftharpoons \frac{1}{a} F\left(\frac{p}{a}\right) \quad \forall a > 0$$

$$e^{\lambda t} f(t) \rightleftharpoons F(p-\lambda) \quad \forall \lambda \in \mathbb{C}$$

$$f(t-a) \rightleftharpoons e^{-ap} F(p) \quad \forall a > 0$$

$$f^{(k)}(t) \rightleftharpoons p^k F(p) - p^{k-1} f(0) - \dots - f^{(k-1)}(0)$$

$$t^k f(t) \rightleftharpoons (-1)^k F^{(k)}(p)$$

$$\int_0^t f(s) \, ds \rightleftharpoons \frac{1}{p} F(p)$$

$$\frac{1}{t} f(t) \rightleftharpoons \int_p^\infty F(q) \, dq, \quad \text{путь интегрирования лежит в полуплоскости Re } p > a(f)$$

$$f * g \rightleftharpoons F(p) G(p)$$

$$fg \rightleftharpoons \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} F(q) G(p-q) \, dp,$$

$$s > a(f), \text{ Re } p > s + a(g)$$

Здесь a(f) — показатель роста функции f(t), $F(p)=\mathscr{L}[f(t)],$ $G(p)=\mathscr{L}[g(t)].$

Для нахождения оригинала по заданному изображению полезна следующая теорема.

Теорема разложения. Пусть

- (i) функция F(p) мероморфна в \mathbb{C} и аналитична в некоторой полуплоскости $\text{Re } p > a_0$;
- (ii) существует система окружностей $\Gamma_n = \{p : |p = R_n|\},$ $R_n \to \infty$ при $n \to \infty$, на которой F(p) стремится к нулю равномерно относительно arg p;
 - (iii) интеграл $\int_{s-i\infty}^{s+i\infty} F(p) dp$ абсолютно сходится для $s>a_0$. Тогда оригиналом функции F(p) является функция

$$f(t) = H(t) \sum_{k} \underset{p=p_k}{\text{Res}} \left[e^{pt} F(p) \right],$$

где сумма берется по всем особым точкам p_k функции F(p) в порядке неубывания их модулей.

Приведем таблицу изображений некоторых оригиналов.

Таблица 9 Изображения некоторых оригиналов

Оригинал	Изображение
1	1_
e^{at}	$\frac{p}{\frac{1}{p-a}}$
$\cos at$	$\frac{p}{p^2 + a^2}$
$\sin at$	$ \frac{p}{p^2 + a^2} $ $ \frac{a}{p^2 + a^2} $
$\cosh at$	$ \begin{array}{c} \frac{p}{p^2 - a^2} \\ \underline{a} \end{array} $
$\sinh at$	$\frac{a}{p^2 - a^2}$

Оригинал	Изображение
$t^{\alpha}, \alpha > -1$	$\frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$
$\delta(t)$	1
$\frac{1}{\sqrt{\pi t}} \int_{t}^{+\infty} f(s)e^{-s^{2}/4t} ds$	$\frac{F(\sqrt{p})}{\sqrt{p}}$
$\frac{1}{\sqrt{\pi t}}$	$\frac{F(\sqrt{p})}{\sqrt{p}}$ $\frac{1}{\sqrt{p}}$
$2\sqrt{\frac{t}{\pi}}$	1
$\frac{1}{\sqrt{\pi t}} e^{-at}$ $\frac{1}{\sqrt{\pi t}} e^{-a^2/4t}$	$ \frac{p\sqrt{p}}{1} $ $ \frac{1}{\sqrt{p+a}} $ $ \frac{e^{-a\sqrt{p}}}{\sqrt{p}} $ $ e^{-a\sqrt{p}} $ $ \frac{e^{-a\sqrt{p}}}{p} $
$\frac{1}{\sqrt{\pi t}} e^{-a^2/4t}$	$\frac{e^{-a\sqrt{p}}}{\sqrt{p}}$
$\frac{a}{2t\sqrt{\pi t}}e^{-a^2/4t}$	$e^{-a\sqrt{p}}$
$\boxed{\text{Erf } \frac{a}{2\sqrt{t}}}$	$\frac{e^{-a\sqrt{p}}}{p}$

Здесь Erf
$$t = \frac{2}{\sqrt{\pi}} \int_{t}^{+\infty} e^{-s^2} ds = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-s^2} ds = 1 - \text{erf } t.$$

Оглавление

Пред	цисловие	3
Ураг поря	внения с частными производными первого ідка	
1.	Линейные однородные уравнения первого порядка	5
2.	Линейные неоднородные уравнения первого поряд-	_
3.	каКвазилинейные уравнения первого порядка	7 8
Клас	ссификация уравнений второго порядка	
4.	Приведение к каноническому виду квазилинейных уравнений второго порядка с переменными коэффициентами в случае $n=2\dots$	11
5.	Приведение к каноническому виду квазилинейных уравнений второго порядка с постоянными коэффициентами в случае $n>2\dots$	14
Гипе	ерболические уравнения	
6.	Задача Коши для гиперболического уравнения в случае двух переменных	17
7.	Задача Гурса для гиперболического уравнения в случае двух переменных	18
8.	Задача Коши и смешанная задача для волнового уравнения в случае двух переменных	20
9.	Задача Коши для однородного волнового уравнения в случае многих переменных	26
10.	Задача Коши для неоднородного волнового уравнения в случае многих переменных	30
Мет	од Фурье	
11.	Уравнение Лапласа в двумерном случае. Разделение переменных в декартовой системе координат.	33
12.	Уравнение Лапласа в двумерном случае. Разделение переменных в полярной системе координат	38

13.	Смешанная задача для уравнения колеоаний стру-	
1.4	ны и уравнения распространения тепла в стержне	40
14.	Уравнение Лапласа в трехмерном случае. Разделе-	
	ние переменных в цилиндрической системе коорди-	45
15.	нат	40
	ние переменных в сферической системе координат.	
	Сферические гармоники	51
16.	Собственные функции оператора Лапласа	56
17.	Смешанные задачи для волнового уравнения	
	и уравнения теплопроводности в трехмерном слу-	64
	чae	
Фун	кция Грина	
18.	Функция Грина уравнения Лапласа. Метод отра-	
10	жений	67
19.	Функция Грина уравнения Лапласа. Метод кон-	71
00	формных отображений	71
	Функция Грина уравнения Гельмгольца	72
21.	Функция Грина уравнения теплопроводности	74
22.	Функция Грина волнового уравнения	77
Teop	оия потенциалов	
23.	Объемный и логарифмический потенциалы	79
24.	Потенциалы простого слоя	80
25.	Потенциалы двойного слоя	83
26.	Решение задач Дирихле и Неймана для уравнения	
	Лапласа с помощью потенциалов	86
Инт	егральные преобразования	
27.	Преобразование Фурье	91
28.	Преобразование Лапласа	93

Системы уравнении первого порядка	
29. Гиперболические системы. Характеристики	96
30. Приведение к каноническому виду гиперболической системы с двумя переменными31. Краевые задачи для гиперболических систем с дву-	98
мя переменными	101
Ответы	104
Библиографический список	116
Приложение	
1. Оператор Лапласа	118
2. Функции Бесселя	119
3. Полиномы Лежандра и присоединенные функции	
Лежандра	
4. Конформные отображения	124
5. Вычисление интегралов с помощью теории вычетов	127
6. Интегральные уравнения	128
7. Преобразование Фурье	130
8. Преобразование Лапласа	132

Учебное издание

Абашеева Нина Леонидовна, **Михайлова** Татьяна Юрьевна

СЕМИНАРЫ ПО МЕТОДАМ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Учебное пособие

Подписано в печать xx.04.2012 г. Печать офсетная. Заказ № xxx. Формат $60 \times 84 \ 1/16$. Уч.-изд. л. 8,6. Тираж 100 экз.

Редакционно-издательский центр НГУ, 630090, Новосибирск-90, ул. Пирогова, 2.