COMP 433: Introduction to Deep Learning

Practical Matters

- Labs ~10 Labs, 4 to be submitted
- 2 Problem sets
- 3 Quizzes
- Final Project to be assigned by Week 5
- Textbook: Deep Learning by Goodfellow, Courville, Bengio freely available online
- Dive into Deep Learning, freely available online

More Practical Matters

- Lab 1 is posted
- Office hours
 - Live office hours are Monday at 4-4:45 in room ER 958
 - By appointment on MS Teams
- MS Teams
 - Join MS Teams, link on moodle
 - Some announcements will be made there

Evaluation

Assignments: 30%

Programming assignments (roughly 80% of assignments)

Some theoretical and written questions

Project: 30%

Quizzes: 30%

3 Quizzes

• Labs: 10%

Only first 4 are graded

Pre-requisites

- Linear Algebra, Multivariable Calculus, Probability and Statistics, Algorithms
- Knowledge of *some* programming language
- Key concepts reviewed when appropriate

Outline

- Machine Learning Foundations
- Introduction to Neural Networks
- Backpropagation and Automatic Differentiation Software
- Optimization for Deep Learning
- Practical Training Recipes
- Convolutional Neural Networks
- RNNs and sequence models
- Attention and Self-Attention
- Multi-Task and Transfer Learning
- Deep Generative Models
- Self-supervised Learning

What You Will Learn From This Class

- In-depth practical and (some) theoretical understanding of the building blocks of deep learning models
- Hone or introduce important technologies like Python, Numpy, Pytorch
- Overview of some cutting edge techniques

Concepts to Reinforce or Learn

- Covered in lecture:
 - Basic linear algebra concepts
 - Relevant machine learning concepts

- From labs and additional material:
 - Python one of the most used programming languages in the world
 - Using Tensor/Matrix libraries e.g. Numpy

Applications

Autonomous Driving

Machine Translation

Speech Recognition

Image generation with prompts

Text Prompt

an armchair in the shape of an avocado....

Al Generated images

https://openai.com/research/dall-e

Deep Learning

- Subset of machine learning
- The main object of study is the Neural Network
- Associated with modular but powerful/expressive framework for creating predictive models

Simple computation blocks

$$h(x_1,x_2) = \sigma (w_1x_1 + w_2x_2 + b)$$

Simple computation blocks that work together

Simple computation blocks that work together

Review of Linear Algebra

- Scalar
- Vector
- Matrices
- Tensors

Representation in numerical software packages

Numpy

```
1 import numpy as np
2
3 # scalar
4 a =5
5
6 # vector
7 b = np.array([1,1])
8 c = np.array([2,2])
9 np.dot(b,c)
```

```
1 A = np.array([[1,2],[3,4]])
2 B = np.array([[2,3],[4,1]])
3 print(A)

[[1 2]
[3 4]]
```

PyTorch

```
1 import torch
2
3 b = torch.from_numpy(b)
4 c = torch.from_numpy(c)
5 print(b)
6

tensor([1, 1])

1 torch.dot(b,c)

tensor(4)
```

Matrix & Elementwise Multiplications

Numpy

```
1 import numpy as np
2 A = np.array([[1,2],[3,4]])
3 B = np.array([[1,1],[1,1]])
4
5 #Matrix multiply AB
6 print('Matrix Multiply:')
7 print(np.matmul(A,B))
8
9 print('ElementWise Multiply:')
10 #Elementwise Multiply
11 print(A*B)

Matrix Multiply:
[[3 3]
[7 7]]
ElementWise Multiply:
[[1 2]
[3 4]]
```

PyTorch

Tensors

Indexing

```
1 d = torch.tensor([[[1,2],[3,4]],
√ [16]
                               [[3,2],[6,7]]])
         3 print(d)
         4 print(d.shape)
        tensor([[[1, 2],
                 [3, 4]],
                [[3, 2],
                 [6, 7]]])
        torch.Size([2, 2, 2])
√
<sub>0s</sub> [17]
         1 print(d[0,:,:])
        tensor([[1, 2],
                [3, 4]])
         1 print(d[0,0,:])
        tensor([1, 2])
```

Matrix Inverse

Identity Matrix

$$oldsymbol{I_n} \longrightarrow \left[egin{smallmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

Inverse

$$\boldsymbol{A}^{-1}\boldsymbol{A}=\boldsymbol{I}_n$$
.

Norms

L_p norm

$$||oldsymbol{x}||_p = \left(\sum_i |x_i|^p
ight)^{rac{1}{p}}$$

Shorthand for p=2, length of a vector

Eigenvalues/vectors

Eigenvalues are a property of a square matrix

Eigenvector is a vector such that applying A is a rescaling

$$Av = \lambda v$$
.

Simple computation blocks that work together

 Can be written as composition of simple linear algebra operations (matrix multiplies and elementwise non-linearities)

- Can be written as composition of simple linear algebra operations (matrix multiplies and elementwise non-linearities)
- Bias term can be included in W to simplify notations

 W_i Matrix of parameters at layer i

 σ Pointwise non-linearity

Intro to Machine Learning

Data Explosion

- Millions and billions of measurements
- Millions and Billions of examples

What is Machine Learning

What is Machine Learning

- "Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." -Arthur Samuel (1959)
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." Michel (1997)

Traditional Programming

Machine Learning

Types of Machine Learning

Supervised Learning (Given: Training Data and Output examples)

Or

- Unsupervised Learning (Given: Training Data and no output)
 - Data exploration and visualization

Generating data

Reinforcement Learning

Rewards from sequences of actions

Supervised Learning: Regression

How tall is my dog? (depending on age)

	Age	Height
Dog 1	1	3
Dog 2	3	4.5
Dog 3	1	1
Dog 4	5	5.5
Dog 5	9	16
Dog 6	4	5.2
Dog 7	6	7.5
Dog 8	12	20

Height

Supervised Learning: Regression

Training Data

	Age	Height
Dog 1	1	3
Dog 2	3	4.5
Dog 3	1	1
Dog 4	5	5.5
Dog 5	9	16
Dog 6	4	5.2
Dog 7	6	7.5
Dog 8	12	20

Testing Data

	Age	Height
New Dog 1	1.2	?
New Dog 2	3.1	?

Use Model:

$$y = a^*x + b$$

Optimize Objective:

$$\min_{a,b} \sum_{i} (height_{i} - (a *age_{i} + b))^{2}$$

25

Height

Age

Overfitting and Underfitting

Supervised Learning: Classification

Classify cats and dog using height and weight

	Height	Weight
Cat 1	110 cm	20 kg
Cat 2	108 cm	15kg
Cat 3	109 cm	21kg
Cat 4	112.5 cm	23 kg
Dog 1	130 cm	28kg
Dog 2	125 cm	29kg
Dog 3	109.5 cm	30 kg
Dog 4	130 cm	22kg

Decision Boundary

Learning in High Dimensions Data is Harder

Classify cats and dog from raw pixels

VS

High Dimensional

Images are 3x512x512 ~ 1 million dimensions

Non-Linear Boundary

Autonomous Driving Example

- Supervised Learning
 - Identify objects
 - Uncertainty
 - Driving decisions from example

- Unsupervised Learning
 - Which data to label?
- Reinforcement Learning
 - Improve driving decision
 - Simulations