



# SELF-SUPERVISED PART AND VIEWPOINT DISCOVERY FROM IMAGE COLLECTIONS

Varun Jampani

Google Research

ECCV 2020 Tutorial on

New Frontiers for Learning with Limited Labels or Data

## Image collections are quite common

- Image collection: Set of images with common object category of interest.
- Examples include image search results, photo collections, tourist pictures of a landmark etc.



Car image collection



Face image collection

## Object understanding from image collections

Self-supervised learning of object properties from image collections

#### Object properties:

- Geometry: 3D shape, 3D viewpoint etc.
- Semantics: Keypoints, part segmentation, bounding boxes etc.
- Material properties: Diffuse albedo, specularities, roughness etc.

## Object understanding from image collections

Self-supervised learning of object properties from image collections

#### Object properties:

- Geometry: 3D shape, 3D viewpoint etc.
- Semantics: Keypoints, part segmentation, bounding boxes etc.
- Material properties: Diffuse albedo, specularities, roughness etc.

## Self-supervised Co-Part Segmentation

**CVPR 2019** 

Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo Molchanov, Ming-Hsuan Yang, Jan Kautz

Some slides credit: Wei-Chih Hung

### Our Goal

## Learn part segmentation from image collection



## Why Parts?

- Parts are relatively stable with respect to object deformations.
- Can provide reliable mid-level correspondences between images.
- Useful for several high-level vision tasks.



Fine-grain recognition



Object detection



Pose estimation



3D reconstruction

## **Keypoint Discovery**





Descriptor vector exchange [2]



Learning from videos [3]

- 1. Suwajanakorn, S., et al. "Discovery of latent 3d keypoints via end-to-end geometric reasoning." NeurIPS 2018
- 2. Thewlis, J., et al., "Unsupervised learning of landmarks by descriptor vector exchange." ICCV 2019
- 3. Jakab, T., et al., "Self-supervised Learning of Interpretable Keypoints from Unlabelled Videos." CVPR 2020

## Part Segmentation vs. Keypoints

- Part segmentation
  - provides both localization and segmentation of parts
  - can represent disjoint regions as a single part



Parts from [1]



Keypoints from MAFL [2] and 300W [3]

- 1. <a href="https://ai.googleblog.com/2018/03/mobile-real-time-video-segmentation.html">https://ai.googleblog.com/2018/03/mobile-real-time-video-segmentation.html</a>
- 2. Zhang et al. "Facial landmark detection by deep multi-task learning." ECCV 2014
- 3. Sagonas et al. "300 faces in-the-wild challenge: The first facial landmark localization challenge." ICCV Workshops 2013

## Deep Feature Factorization (DFF) [1]



- Apply non-negative matrix factorization (NMF) solver on all images
  - Difficult to scale to large datasets
  - Not easy to apply other constraints

## Properties of Good Part Segmentation

#### Geometric concentration:

Parts are concentrated geometrically and form connected components

#### Robustness to variations:

Part segments are robust with respect to object deformations

#### • Semantic consistency:

 Part segments should be semantically consistent across different object instances with appearance and pose variations

#### Objects as union of parts:

Parts appear on objects (not background) and the union of parts forms an object

## SCOPS Framework



## Geometric Concentration



Most part pixels are locally concentrated

## Equivariance



#### w/o Equivariance



w/ Equivariance



## Semantic Consistency



#### w/o Sematic Consistency



w/ Sematic Consistency



## Progression through training



Part features across all images – TSNE. visualization

#### Landmark Estimation Error

## Results on faces (Unaligned CelebA)

| Method      | Error (%) |  |
|-------------|-----------|--|
| ULD (K=8)   | 40.82     |  |
| DFF (K=8)   | 31.30     |  |
| SCOPS (K=4) | 21.76     |  |
| SCOPS (K=8) | 15.01     |  |

**Image** 



Deep Feature Factorization (DFF)



**Unsupervised Landmark Detection (ULD)** 



SCOPS (Ours)



## Results on birds (CUB)

Image









**Unsupervised Landmark Detection (ULD)** 



SCOPS (Ours)





## Results on Pascal-Part (Horse)

Image

Deep Feature Factorization (DFF)

SCOPS (Ours)



## Motion-supervised Co-Part Segmentation [1]















## Learning 3D shapes via part discovery



## Part discovery: Remarks

- Part discovery with self-supervised constraints
- To avoid degenerate solutions and to constrain solution space
  - Leverage part properties such equivariance and geometric concentration
  - Semantic consistency Leverage hidden consistencies in classification features
- Useful for higher level vision tasks such as object reconstruction

# Self-supervised viewpoint learning from image collections

**CVPR 2020** 

Siva Kumar Mustikovela, Varun Jampani, Shalini De Mello, Sifei Liu, Umar Iqbal, Carsten Rother, Jan Kautz

Some slides credit: Siva Kumar Mustikovela

## Viewpoint Annotation is Hard

- Hard to align 3D CAD models
- Error prone
- Time consuming and expensive





Viewpoint: (Azimuth, Elevation, Tilt)





## Generative consistency



Analysis by Synthesis



(b) Style and viewpoint consistency

Synthesis for Analysis





Image collection

## Symmetry Constraint









## Viewpoint-aware synthesis network [1]



## Synthesis Results - Varying Azimuth



## Synthesis Results - Varying Elevation



## Synthesis Results - Varying Tilt



## Head pose estimation

|                 | Method                               | Azimuth | Elevation | Tilt | MAE  |
|-----------------|--------------------------------------|---------|-----------|------|------|
|                 | LMDIS [Zhang et al. CVPR 18] + PnP   | 16.8    | 26.1      | 5.6  | 16.1 |
| visec           | IMM [Jakab et al. Neurips 18] + PnP  | 14.8    | 22.4      | 5.5  | 14.2 |
| Self-Supervised | SCOPS [Hung et al. CVPR 19] + PnP    | 15.7    | 13.8      | 7.3  | 12.3 |
|                 | HoloGAN [Nguyen-Phuoc et al. ICCV19] | 8.9     | 15.5      | 5.0  | 9.8  |
| 0,              | SSV (Ours)                           | 6.0     | 9.8       | 4.4  | 6.7  |

## Head pose estimation

|                 | Method                               | Azimuth | Elevation | Tilt | MAE  |
|-----------------|--------------------------------------|---------|-----------|------|------|
| Self-Supervised | LMDIS [Zhang et al. CVPR 18] + PnP   | 16.8    | 26.1      | 5.6  | 16.1 |
|                 | IMM [Jakab et al. Neurips 18] + PnP  | 14.8    | 22.4      | 5.5  | 14.2 |
|                 | SCOPS [Hung et al. CVPR 19] + PnP    | 15.7    | 13.8      | 7.3  | 12.3 |
| self-Su         | HoloGAN [Nguyen-Phuoc et al. ICCV19] | 8.9     | 15.5      | 5.0  | 9.8  |
| 0,              | SSV (Ours)                           | 6.0     | 9.8       | 4.4  | 6.7  |
|                 | 3DDFA [Zhu et al. TPAMI 17]          | 36.2    | 12.3      | 8.7  | 19.1 |
| $\overline{C}$  | KEPLER [Kumar et al. FG 17]          | 8.8     | 17.3      | 16.2 | 13.9 |
| Supervised      | Dlib [Kazemi et al. CVPR 14]         | 16.8    | 13.8      | 6.1  | 12.2 |
|                 | FAN [Bulat et al. CVPR 17]           | 8.5     | 7.4       | 7.6  | 7.8  |
|                 | Hopenet [Ruiz et al. CVPRW 18]       | 5.1     | 6.9       | 3.3  | 5.1  |
|                 | FSA [Yang et al. CVPR 19]            | 4.2     | 4.9       | 2.7  | 4.0  |

## Sample Results





## Other Objects

(PascalVOC 3D)

Median error Lower is better

|                     | Method                          | Car  | Bus  | Train |
|---------------------|---------------------------------|------|------|-------|
| f-<br>vised         | SSV (Ours)                      | 10.1 | 9.0  | 5.3   |
| Self-<br>Supervised | VGG-View                        | 34.2 | 19.0 | 9.4   |
| р                   | Tulsiani <i>et al.</i> CVPR 15  | 9.1  | 5.8  | 8.7   |
| Supervised          | Mahendran <i>et al.</i> BMVC 18 | 8.1  | 4.3  | 7.3   |
|                     | Liao <i>et al.</i> CVPR 19      | 5.2  | 3.4  | 6.1   |
|                     | Grabner <i>et al.</i> CVPR 18   | 5.1  | 3.3  | 6.7   |

Inlier Count Higher is better

| Self-<br>Supervised | SSV (Ours)                     | 0.67 | 0.82 | 0.96 |
|---------------------|--------------------------------|------|------|------|
|                     | VGG-View                       | 0.43 | 0.69 | 0.82 |
| sed                 | Tulsiani <i>et al.</i> CVPR 15 | 0.89 | 0.98 | 0.80 |
| Supervised          | Liao <i>et al.</i> CVPR 19     | 0.93 | 0.97 | 0.84 |
| Sup                 | Grabner <i>et al.</i> CVPR 18  | 0.93 | 0.97 | 0.80 |



## Viewpoint discovery: Remarks

- One of the first approaches for self-supervised viewpoint learning
- Works on several object categories
- Performance close to even fully-supervised approaches

- Key techniques
  - Viewpoint-aware GAN: *Analysis-by-synthesis* and *Synthesis-for-analysis*
  - Symmetry constraints

## Conclusion

Part and viewpoint discovery from image collections









- Useful for higher level tasks such as 3D object reconstruction
- Leverage prior-knowledge about the problem to design loss functions and to avoid degenerate solutions
- Future outlook: Self-supervised learning of other object attributes

# Thank you

Comments and suggestions are most welcome

varunjampani@gmail.com

http://varunjampani.github.io