

# Verkabelter Multiplizierer (MUL)

### Labor Digital Design

### **Inhalt**

| Ziel                                    | 1 |
|-----------------------------------------|---|
| Multiplizierer für natürliche Zahlen    | 2 |
| 2.1 Algorithmus                         | 2 |
| 2.2 Analyse                             |   |
| 2.3 Schaltung                           |   |
| 2.4 Erstellung                          |   |
| Multiplizierer für Arithmetische Zahlen | 4 |
| 3.1 Algorithmus                         | 4 |
| 3.2 Analyse                             | 4 |
| 3.3 Erstellung                          |   |
| Analyse                                 |   |

### 1 | Ziel

In diesem Labor wird der Entwurf von iterativen arithmetischen Schaltungen anhand von kombinatorischen Logikgattern geübt. Das Labor zeigt die Realisierungstechnik von Multiplizierern für natürliche wie auch für ganze Zahlen.



## 2 | Multiplizierer für natürliche Zahlen

#### 2.1 Algorithmus

Abbildung 1 stellt den Algorithmus zur Multiplikation von 2 Zahlen von je 4 Ziffern dar. Das Produkt ist gegeben durch die Summe von Teilprodukten. Die Teilprodukte werden erstellt durch die Multiplikation von einer der Zahlen durch eine Ziffer der anderen Zahl.

|          |            |           | $\mathbf{a}_3$                 | $\mathbf{a}_2$                 |
|----------|------------|-----------|--------------------------------|--------------------------------|
|          |            |           | $\times$ b <sub>3</sub>        | $b_2$                          |
|          |            |           | b <sub>0</sub> *a <sub>3</sub> | b <sub>0</sub> *a <sub>2</sub> |
|          |            | $b_1*a_3$ | $b_1*a_2$                      | $b_{1}*a_{1}$                  |
|          | $b_2*a_3$  | $b_2*a_2$ | $b_{2}*a_{1}$                  | $b_2*a_0$                      |
| <b>h</b> | <b>l</b> a | h         | <b>L</b>                       |                                |

Abbildung 1: Multiplikationsalgorithmus

#### 2.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten natürlichen Zahlen (unsigned), bestimmen Sie den Binärwert des grösstmöglichen Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit  $n_1$ , respektiv mit  $n_2$  Bits codiert sind.

#### 2.3 Schaltung

Abbildung 2 zeigt die Schaltung eines Multiplizierers, welcher nach dem oben angegebenen Algorithmus arbeitet.





Abbildung 2: Architektur des Multiplizierers

#### 2.4 Erstellung

Mit Hilfe von INV, UND, ODER und XOR Gattern, ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 und überprüfen Sie seine Funktionalität.



## 3 | Multiplizierer für Arithmetische Zahlen

#### 3.1 Algorithmus

Abbildung 3 stellt den Algorithmus von Baugh-Wooley zur Multiplikation von zwei im Zweier-Komplement codierten arithmetischen Zahlen (signed) mit derselben Anzahl an Bits dar.

Abbildung 3: Multiplikationsalgorithmus für Zahlen im Zweier-Komplement

#### 3.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten ganzen Zahlen, bestimmen Sie den minimalen und den maximalen Wert des Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit  $n_1$ , respektiv mit  $n_2$  Bits codiert sind.

#### 3.3 Erstellung

Ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 mit Hilfe von kombinatorischen Logikgattern und überprüfen Sie seine Funktionalität.



## 4 | Analyse

Unter der Annahme, dass alle Logikgatter dieselbe Verzögerung von 1 ns vorweisen, bestimmen Sie die maximale Berechnungsverzögerung der erstellten Operatoren.

Schlagen Sie eine andere Struktur vor, um die Geschwindigkeit dieser Operatoren zu vergrössern.