

Plan

- 1. Généralité sur les BDD
 - · BDD, SGBD, MCD
- 2. Le modèle logique relationnel
 - · CONCEPTS, INTEGRITE REFERENTIELLE
- 3. Interrogation des BDD & langage SQL
 - algèbre relationnelle
 - · SQL

Plan du Cours

- ·Base de données
- ·Système de Gestion de BDD « SGBD »
 - -Fonctions
 - -Avantages
- · Modèle conceptuel de données MCD
 - Concepts Modèle Entité Association
 - schéma d'un MCD
 - -exemples

Définitions « données »

Un ensemble de données c'est :

- Des objets :
 - un nom, par exemple 'Mohamed', 'Ali', 'Salima'...
 - un cours, par exemple 'Bases de données', 'droit'...
 - une date, par exemple 20/12/2020
 - **...**
- Mais aussi DES LIENS OU RELATIONS ENTRE OBJETS:
 - Halimi enseigne le cours "Initiation aux bases de données" le 20/12/2020 à la "Section 1"

« Base de données »

<u>DEF1</u>: Un ensemble structuré de données enregistrées dans un ordinateur et accessibles de façon sélective par plusieurs utilisateurs
 <u>DEF2</u>: Un ensemble de fichiers sémantiquement liés.

· un fichier est un ensemble d'informations relatives

à un même sujet

Exemple: fichiers: étudiant, produit, facture, avion

Scolarité

Comptabilité

Bibliothèque

OBJETS: Étudiants, enseignants, modules Livres, mémoires, auteurs, emploi du temps, ... + LIENS

BDD centralisée

Exemples d'utilisation de bases de BDD

- · la gestion des personnels, étudiants, cours, inscriptions, ... d'une université ou école.
- · un système de réservation de places d'avion des compagnies d'aviation.
- · la gestion des comptes des clients des sociétés bancaires.
- · etc

Intérêt: Pourquoi une BDD?

 partager les données entre plusieurs utilisateurs

Qualités requises pour une BD

 Offrir des langages de haut niveau pour l'interrogation des données

 Contrôler la confidentialité, la sécurité des données

Qu'est ce qu'un SGBD

On appelle Système de Gestion de Base de Données (ou SGBD) une collection de logiciels qui permet d'interagir avec une base de données

Fonctions d'un SGBD

- · Décrire les données qui seront stockées
- Manipuler ces données (ajouter, modifier, supprimer des informations)
- Consulter les données et traiter les informations obtenues (sélectionner, trier, calculer, agréger,...)
- Définir des contraintes d'intégrité sur les données (contraintes de domaines, d'existence,...)

Fonctions d'un SGBD

- Définir des protections d'accès (mots de passe, autorisations,...)
- Résoudre les problèmes d'accès multiples aux données (blocages)
- Prévoir des procédures de reprise en cas d'incident (sauvegardes, journaux,...)

Sans base de données

Délais de mise à jour Données contradictoire

Avec base de données

- Une information n'est stockée qu'une seule fois
- · Une seule base pour toutes les applications
- · ...mais chaque application ne voit que ce qu'elle doit voir (contrôle par les vues)

Avantages de l'utilisation des SGBD

Les SGBD relationnels offrent des langages de requêtes simples

→ interrogation directe possible par les utilisateurs et réponses rapides à des questions non prévues par l'application

Avantages de l'utilisation des SGBD

- · Centralisation des données
 - → intégrité des données
- · Contrôle centralisé de l'accès aux données
 - → sécurité accrue
- · Instructions de traitement très puissantes
 - → grande rapidité de développement
- · Indépendance vis-à-vis de la structure physique et logique des données
 - → maintenance facilitée

Un peu d'histoire

- 1960: Uniquement des systèmes de gestion de fichiers plus ou moins sophistiqués.
- 1970 : Début des systèmes de gestion de bases de données réseaux et hiérarchiques proches des systèmes de gestion de fichiers.
- Fin 1970 : Sortie du papier de CODD sur la théorie des relations, fondement de la théorie des bases de données relationnelles.
- 1980 : Les systèmes de gestion de bases de données relationnels apparaissent sur le marché.
- 1990: Les systèmes de gestion de bases de données relationnels dominent le marché.
 - Début des systèmes de gestion de bases de données orientés objet.

Étapes pour la construction d'une BDD

MCD

MLD

MPD

MCD: les Concepts du modèle Entité Association

Modèle introduit par Chen en 1976, raffiné par Chen et d'autres.

Entité [définition de Chen]:

chose qui peut être identifiée distinctement: Fournisseur, pièce, Personne, Employé, département

Association [définition de Chen]:

Lien entre entités, peut être binaire, ternaire, n-aire: fabrication(fournisseur-pièce), Affectation(employé département)

Propriété (ou Attribut):

les entités (et les associations) sont décrites par des propriétés caractérisées par un nom et un type. Exemple : nom, prénom, date_naissance, taille, couleur yeux, adresse,

Les diagrammes E-A

- · Les entités
- Représentées par un rectangle contenant le nom de l'entité
- · Les propriétés (ou attributs)
- le nom de la propriété écrit dans l'entité ou l'association correspondante
- La propriété clé est soulignée et est appelée l'<u>identifiant</u>.

Client

Numéro
Nom
Prénom
Adresse
Code_Postal
Localité

Les diagrammes E-A

- · Les associations (relation)
- Représentées par une ellipse contenant le nom de l'association
- Les entités participantes de chaque association sont rattachées à l'association au moyen de lignes continues.
- Chacune de ces lignes est étiquetée par la cardinalité de l'association

Les diagrammes E-A

Exemple: MCD

les Concepts du modèle EA

OCCURRENCE:

- Réalisation particulière d'une entité, propriété ou association.
- Synonyme: INSTANCE
- « étudiant Mohamed» est une occurrence de l'entité Étudiant
- « commande n° 55 » est une occurrence de l'entité commande

En pratique, et en l'absence de précision, un mot sera relatif à un concept et lorsque l'on voudra parler d'un individu, on dira occurrence de ...

Les cardinalités

C'est l'expression d'une CONTRAINTE (une "loi") perçue sur le monde réel, et que l'on écrit dans le modèle.

Par exemple:

"il n'est pas possible de trouver dans le monde réel une commande qui ne concerne aucun produit".

Dans le modèle E-A, on se pose la question suivante: Pour une occurrence de cette entité, combien y a-t-il d'occurrences d'associations auxquelles cette occurrence d'entité participe, au plus et au moins?

Les cardinalités

- ·Pour calculer la cardinalité, se POSITIONNER sur l'entité concernée et regarder EN FACE combien de fois l'une de ses occurrences participe à l'association.
- ·Puis se DEPLACER de l'autre côté (du côté de l'autre entité) et faire la même chose (dans l'autre sens).

CARDINALITES

CARDINALITES MINIMUM:

« 0 »/ Une occurrence de l'entité peut exister sans participer à l'association

Exemple: un produit peut ne pas être commandé

« 1 »/ Une occurrence de l'entité participe nécessairement (au moins une fois) à une occurrence d'association

Exemple: toute commande concerne au moins un produit

CARDINALITES

CARDINALITES MAXIMUM:

« 1 »/ Une occurrence de l'entité participe au plus une fois

Exemple: un employé travaille au plus dans un service

un employé a au plus un chef immédiat

« N »/ Une occurrence de l'entité peut participer plusieurs fois

Exemple: une commande peut concerner plusieurs produits

CARDINALITES

CONFIGURATIONS POSSIBLES :

- « O,1 » Une occurrence participe au moins O fois et au plus 1 fois à l'association
- « 1,1 » Une occurrence participe exactement 1 fois à l'association
- « O,N » Une occurrence peut ne pas participer à l'association, ou participer plusieurs fois
- « 1,N » Une occurrence participe au moins 1 fois (voir plusieurs)

IDENTIFIANT D'ENTITE

Définition:

c'est une propriété PARTICULIERE de l'entité telle que pour chacune des valeurs de cette propriété, il existe une occurrence UNIQUE de l'entité.

Présentation:

L'identifiant est inscrit en tête de la liste des propriétés et est souligné.

Exemples MCD

Interpréter les 2 exemples

Dimensions d'une association

 On appelle DIMENSION d'une association le nombre d'entités qu'elle relie. On dit souvent : son nombre de "pattes".

 Une association "réflexive" est une association qui lie des occurrences d'une même entité entre elles (c'est un cas particulier de la dimension 2)

Association binaire (exemple)

Association binaire (occurrences)

Relation réflexive

Interpréter une association

Interpréter une association

- Un client peut disposer d'une seule carte membre
- · La carte membre est disposée par un et un seul client

Dimensions d'une association

Exemples MCD

Interpréter le schéma

Exemples MCD

Interpréter le schéma

Exemple: interpréter

Exemple: interpréter

Un professeur peut enseigner 1 à n fois, une matière à une classe.
Une matière peut être enseignée 1 à n fois, par un professeur à une classe.
À une classe peut être enseignée 1 à n fois une matière par un professeur.

