Lecture 3 Random Variables

Nils Detering

January 15th, Online lecture

Random variable motivation

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ probability space.
- ▶ Instead of the actual events $\omega \in \Omega$, interested in related quantity.
 - Say you want to play monopoly. Use $\Omega = \{\omega : \omega = (\omega_1, \omega_2), \omega_i \in \{1, 2, 3, 4, 5, 6\}, i \in \{1, 2\}\}.$
 - ▶ Define probability measure by $\mathbb{P}(\{(\omega_1, \omega_2) = (k, j)\}) = \frac{1}{6^2}$ for $1 \le k, j \le 6$.
 - ▶ But actually you are interested in the sum $\omega_1 + \omega_2$.
 - ▶ Define function $X : \Omega \to \mathbb{N} \subset \mathbb{R}$ by

$$\omega \mapsto X(\omega) = \omega_1 + \omega_2.$$

Random variable informal

Definition

A function $X : \Omega \to \mathbb{R}$ is called a random variable.

Problem: We would like to say something about

$$\mathbb{P}(X \le \alpha) = \mathbb{P}(\{\omega : X(\omega) \le \alpha\}) = \mathbb{P}(X^{-1}((-\infty, \alpha])).$$

But: We know $\mathbb{P}(X^{-1}((-\infty, \alpha]))$ only if $X^{-1}((-\infty, \alpha]) \in \mathcal{F}$. This depends on \mathcal{F} and the function X.

Random variable more precise

We call a function $X : \Omega \to \mathbb{R}$ measurable if for all $\alpha \in \mathbb{R}$

$$\{\omega: X(\omega) \leq \alpha\} = X^{-1}((-\infty, \alpha]) \in \mathcal{F}.$$

Definition

A measurable function $X : \Omega \to \mathbb{R}$ is called a Random Variable (RV).

Obs: Every random variable induces a probability measure \mathbb{P}_X on \mathbb{R} by

$$\mathbb{P}_X(R) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in R\}) = \mathbb{P}(X^{-1}(R)).$$

for $R \in \mathbb{R}$.

We are often sloppy and write things like $\mathbb{P}(X \leq a)$ when we actually mean $\mathbb{P}(\{\omega : X(\omega) \leq a\})!$

By the definition of \mathbb{P}_X it holds $\mathbb{P}(X \leq a) = \mathbb{P}_X((-\infty, a])$.

Two types of RVs: **Discrete** and **Continuous**, plus others which are rare.

- ▶ **Discrete**: It attains only finitely or countably many values, i.e. $X(\Omega) = \{x_1, x_2, ...\}$, often $X(\Omega) = \mathbb{N}$ or \mathbb{Z} .
 - Examples: Bernoulli, Binomial, Geometric, Poisson,...
 - ▶ Define probability mass function (p.m.f.) of X, $p_X : X(\Omega) \to [0,1]$ by $x \mapsto p_X(x) = \mathbb{P}(X = x)$
 - ▶ Obs. that $X(\Omega) \subset \mathbb{R}$ and p_X can be extended to \mathbb{R} by setting $p_X(x) = 0$ for $x \in X(\Omega)^c$
 - Often combinatorial methods required for analysis.

- ▶ **Continuous**: It attains uncountably many values (for example $X(\Omega) = \mathbb{R}$ or $(0, \infty)$))
 - ► Examples: Normal, Exponential, Uniform, ...
 - ▶ Has a density function $f_X : \mathbb{R} \to \mathbb{R}_+$, s.t.

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

- ▶ Obs. $\mathbb{P}(a \leq X \leq a + \delta) \approx \delta f_X(a)$
- ▶ Always $\mathbb{P}(X = x) = 0$ for any value $x \in \mathbb{R}$.
- Use tools of calculus to analyze them.

Instead of \mathbb{P}_X , f_X , p_X we often write \mathbb{P} , f, p when it becomes clear from the context.

Summary of Properties

	discrete	continuous
Distribution		
$\mathbb{P}_X(R), R \subset \mathbb{R}$	$\sum_{x_i \in R} p_X(x_i)$	$\int_R f_X(x) dx$
Expectation $\mathbb{E}[g(X)]$,		
$g:X(\Omega) o\mathbb{R}$	$\sum_{x_i \in X(\Omega)} g(x_i) p_X(x_i)$	$\int_{-\infty}^{\infty} g(x) f_X(x) dx$
Cumulative Distrib.		
$F_X(x) = \mathbb{P}(X \leq x)$	$\sum_{x_i \leq x} p_X(x_i)$	$\int_{-\infty}^{x} f_X(y) dy$
Inv. Cum. Distrib.		
$F_X^{-1}(u)$	$ \inf\{x \in \mathbb{R} : \sum_{x_i \le x} p_X(x_i) \ge u \} $	$\inf\{x\in\mathbb{R}:\int_{-\infty}^x f_X(y)dy\geq u\}$

Example

. .

Inverse Cumulative Distribution $F_X^{-1}:(0,1) \to \mathbb{R}$ defined by

$$F_X^{-1}(u) = \inf\{x \in \mathbb{R} : F_X(x) \ge u\}$$

Inverse Cumulative Distribution

We will use F_X^{-1} to simulate a Random Variable with distribution F_X . For this let $U \sim \text{Unif}((0,1))$ (easy to simulate), then $F_X^{-1}(U) \stackrel{d}{=} X$. Why?....

Example

Joint probability/density

Say we have two random variables X, Y defined, both on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Both X and Y discrete:

- ▶ Define joint probability mass function by $p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$. Then
 - $\blacktriangleright \sum_{x,y} p_{X,Y}(x,y) = 1$
 - $p_X(x) = \sum_y p_{X,Y}(x,y)$
- ▶ and the conditional pmf of Y given X = x by $p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$
- independent if $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

Relation to conditional probability?....

Joint probability/density

Both X and Y continuous:

- ▶ There might exist a joint density function $f_{X,Y} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ s.t.
 - ▶ $\mathbb{P}((X,Y) \in R) = \iint_R f_{X,Y}(x,y) dxdy$ for $R \subset \mathbb{R} \times \mathbb{R}$

 - $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
- ▶ and the conditional density of Y given X = x by $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$
- independent if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Example

. .