

c

L Equations de 1ère degré d'un seul inconnu – inéquation de 1ère degré d'un seul inconnu : (rappel)

- **A.** Equations de 1ère degré d'un seul inconnu :
- a. Définition :

Soient a et b de \mathbb{R} (avec $a \neq 0$).

Toute équation son écriture se ramène sous la forme suivante $x \in \mathbb{R} / ax + b = 0$ est appelée équation du 1^{er} degré d'un seul inconnu x de \mathbb{R} et ses coefficients réels sont a et b.

b. Exemple:

- $x \in \mathbb{R} / 2x + 3 = 5x 12$.
- $x \in \mathbb{R} / 2x + 3 = 2x 12$.
- $x \in \mathbb{R} / 2(x+3) = 2x-12$
 - **c.** Vocabulaire:

Toute solution d'équation est appelée : solution de l'équation ou racine de l'équation ou zéro de l'équation .

- **B.** Inéquation de 1ère degré d'un seul inconnu :
- a. Définition :

Soient a et b de \mathbb{R} (avec $a \neq 0$).

Toute inéquation son écriture se ramène sous la forme suivante $x \in \mathbb{R}/ax+b \le 0$ ou $x \in \mathbb{R}/ax+b \ge 0$ ou $x \in \mathbb{R}/ax+b \ge 0$ ou $x \in \mathbb{R}/ax+b \ge 0$ est appelée inéquation du 1^{er} degré d'un seul inconnu x de \mathbb{R} et ses coefficients réels sont a et b.

b. Exemple:

- $x \in \mathbb{R}/2x + 3 \le 5x 12.$
- $x \in \mathbb{R}/2x+3 < 2x-12$.
- $x \in \mathbb{R}/2x+3 > 2x-12$
 - c. Le signe du binôme du 1er degré ax + b.
- 1^{er} cas a > 0:

Son signe à l'aide d'un tableau

• $2^{i\hat{e}me}$ cas a < 0:

Son signe à l'aide d'un tableau

d. Exercice:

Donner le signe des binômes suivants :

1.
$$2x+7$$
 2. $-3x+4$ 3. $(2x+7)(-3x+4)$

Cas a < 0	X	∞	$\frac{-\mathbf{b}}{\mathbf{a}}$		+∞
	ax+b	_	0	+	

Equations de 2ième degré d'un seul inconnu :

- A. Equations de 2ième degré d'un seul inconnu
- a. Définition

Soient a et b et c de \mathbb{R} (avec $a \neq 0$).

Toute équation son écriture se ramène sous la forme suivante $x \in \mathbb{R} / ax^2 + bx + c = 0$ est appelée équation du $2^{ième}$ degré d'un seul inconnu x de \mathbb{R} et ses coefficients réels sont a et b et c.

b. Exemple:

(E):
$$x \in \mathbb{R} / 2x^2 + 4x - 6 = 0$$
 est -ce que 1 est racine de l'équation (E)

- **B.** Forme canonique du trinôme de second degré $ax^2 + bx + c$ $(a \ne 0)$:
- a. Activité:

On considère trinôme de second degré $ax^2 + bx + c$.

Compléter les étapes suivantes :

$$ax^{2} + bx + c = a \times \left[\cdots \right]$$

$$= a \times \left[x^{2} + 2 \times \frac{b}{2a} x + \left(\frac{b}{2a} \right)^{2} - \frac{\cdots}{\cdots} + \frac{c}{a} \right]$$

$$= a \left[\left(x + \frac{\cdots}{\cdots} \right)^{2} - \frac{\cdots}{4a^{2}} \right]$$

b. Vocabulaire:

L'écriture a
$$\left[\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a^2}\right]$$
 est appelée la forme canonique du trinôme de second degré

$$ax^2 + bx + c.$$
 $(a \neq 0)$

- Le nombre $b^2 4ac$ est appelé le discriminant du trinôme de second $ax^2 + bx + c$.
- Le nombre $b^2 4ac$ est appelé aussi le discriminant de l'équation : $x \in \mathbb{R} / ax^2 + bx + c = 0$.
- **le discriminant** $b^2 4ac$ on le note par Δ on écrit $\Delta = b^2 4ac$.
- la forme canonique du trinôme de second degré ax² + bx + c on l'écrit:

$$\mathbf{a} \left[\left(\mathbf{x} + \frac{\mathbf{b}}{2\mathbf{a}} \right)^2 - \frac{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}}{4\mathbf{a}^2} \right] = \mathbf{a} \left[\left(\mathbf{x} + \frac{\mathbf{b}}{2\mathbf{a}} \right)^2 - \frac{\Delta}{4\mathbf{a}^2} \right]$$

- d'où: $ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} \frac{\Delta}{4a^{2}} \right]$
 - **Exemple:**

On considère l'équation suivante (E): $x \in \mathbb{R} / 2x^2 + 4x - 6 = 0$.

- 1. Calculer le discriminant Δ de l'équation (E).
- 2. Ecrire l'équation on utilise la forme canonique de $2x^2 + 4x 6$.
- **3.** Résoudre l'équation (E).
- C. Détermination les solutions de l'équation $x \in \mathbb{R} / ax^2 + bx + c = 0$.
- a. Activité:

On a:
$$ax^2 + bx + c = 0 \Leftrightarrow a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
 (la forme canonique de $ax^2 + bx + c$)

$$\Leftrightarrow \left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0 \; ; \; \left(\text{ car } a \neq 0\right)$$

 $\Leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2} \left(1\right) ; \left(\text{car } a \neq 0\right)$

 1^{er} cas: $\Delta < 0$

Donc: $\frac{\Delta}{4a^2} < 0$ et $\left(x + \frac{b}{2a}\right)^2 > 0$ d'où l'équation n'a pas de solution dans \mathbb{R} .

Ensemble des solution de l'équation (E) est $S = \emptyset$.

 $2^{i\hat{e}me}$ cas : $\Delta = 0$

Donc d'après (1) on obtient : $\left(x + \frac{b}{2a}\right)^2 = 0 \Leftrightarrow x + \frac{b}{2a} = 0$ $\Leftrightarrow x = -\frac{b}{2a}$

d'où l'équation admet une solution dans $\mathbb R$. on dit aussi l'équation admet solution double (ou deux solutions confondues) car :

$$\left(x + \frac{b}{2a}\right)^2 = 0 \Leftrightarrow \left(x + \frac{b}{2a}\right) \times \left(x + \frac{b}{2a}\right) = 0$$
$$\Leftrightarrow x + \frac{b}{2a} = 0 \text{ ou } x + \frac{b}{2a} = 0$$
$$\Leftrightarrow x = -\frac{b}{2a} \text{ ou } x = -\frac{b}{2a}$$

Ensemble des solution de l'équation (E) est $S = \left\{ -\frac{b}{2a} \right\}$.

 $3^{ième}$ cas: $\Delta > 0$

Donc d'après (1) on obtient :

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{\Delta}{4a^{2}} \Leftrightarrow \left(x + \frac{b}{2a}\right)^{2} = \left(\frac{\sqrt{\Delta}}{2a}\right)^{2} \qquad \left(\operatorname{car} \Delta > 0\right)$$

$$\Leftrightarrow x + \frac{b}{2a} = \frac{\sqrt{\Delta}}{2a} \quad \text{ou} \quad x + \frac{b}{2a} = -\frac{\sqrt{\Delta}}{2a}$$

$$\Leftrightarrow x = -\frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \quad \text{ou} \quad x = -\frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}$$

$$\Leftrightarrow x = -\frac{b + \sqrt{\Delta}}{2a} \quad \text{ou} \quad x = \frac{-b - \sqrt{\Delta}}{2a}$$

d'où l'équation admet deux solutions distinctes dans \mathbb{R} : $x = -\frac{b + \sqrt{\Delta}}{2a}$ ou $x = \frac{-b - \sqrt{\Delta}}{2a}$.

b. Propriété:

Soit l'équation : $x \in \mathbb{R} / ax^2 + bx + c = 0$ avec $a \neq 0$ et son discriminant $\Delta = b^2 - 4ac$.

Si $\Delta > 0$ l'équation admet deux solutions distinctes (ou deux racines distinctes) dans \mathbb{R} :

$$x_1 = -\frac{b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$ l'équation admet une solution(ou deux racines) dans $\mathbb{R} : \mathbf{x} = -\frac{\mathbf{b}}{2a}$ (solution double).
- Si $\Delta < 0$ l'équation n'a pas de solution (n'a pas de racines) dans $\mathbb{R} \cdot (S = \emptyset)$.

c. Exercice:

On considère l'équation suivante : (E): $x \in \mathbb{R} / 2x^2 + 4x - 6 = 0$.

- 1. Calculer discriminant Δ de l'équation (E).
- 2. Donner l'ensemble des solution de l'équation (E).
- **D.** La somme et le produit des racines de l'équation $x \in \mathbb{R} / ax^2 + bx + c = 0$:

a. Activité:

On considère l'équation suivante $x \in \mathbb{R} / ax^2 + bx + c = 0$ tel qu'il admet deux racines distinctes x_1 et x_2 .

- 1. Donner x_1 et x_2 en fonction de a et b et c.
- **2.** Calculer $x_1 + x_2$ puis $x_1 \times x_2$; puis donner la propriété.

<u>b.</u> Propriété :

Si l'équation $x \in \mathbb{R} / ax^2 + bx + c = 0$ admet deux racines distinctes x_1 et x_2 on a

•
$$x_1 + x_2 = \frac{-b}{a}$$
 et $x_1 \times x_2 = \frac{c}{a}$.

Exercice:

On considère l'exercice précédente (E): $x \in \mathbb{R} / 2x^2 + 4x - 6 = 0$.

- 1. Calculer $x_1 + x_2$ puis $x_1 \times x_2$ par deux méthodes différentes.
- **E.** Factorisation signe de trinôme de second degré $ax^2 + bx + c$:
 - \Rightarrow Factorisation de $ax^2 + bx + c$:

a. Activité:

On considère le trinôme de second degré $ax^2 + bx + c$.

- 1. Donner son discriminant Δ en fonction de a et b et c.
- 2. Donner la forme canonique de $ax^2 + bx + c$.
- 3. D'après le signe de Δ donner la factorisation de $ax^2 + bx + c$ dans les cas possibles en utilisant les racines $x_1 + x_2$.

b. Propriété:

 Δ est le discriminant de l'équation $\mathbf{x} \in \mathbb{R} / \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0}$.

- Si $\Delta > 0$ l'équation admet deux solutions distinctes x_1 et x_2 on a: $ax^2 + bx + c = a(x x_1)(x x_2)$.
 - Si $\Delta = 0$ l'équation admet une solution $x_1 = \frac{-b}{2a}$ on $a : ax^2 + bx + c = a(x x_1)^2$.
- Si $\Delta < 0$ l'équation n'a pas de solution dans \mathbb{R} on ne peut pas factoriser $ax^2 + bx + c$ sous forme de produit de deux polynômes de 1er degré (deux monômes).
 - \Rightarrow signe de trinôme de second degré $ax^2 + bx + c$:

a. Activité:

On considère le trinôme de second degré $ax^2 + bx + c$.

 1^{er} cas: $\Delta > 0$

On a deux racines x_1 et x_2 on pose $x_1 < x_2$.

- 1. Donner les racines x_1 et x_2 en fonction de a et b et c
- 2. Factoriser $ax^2 + bx + c$.
- 3. Compléter le tableau suivant :

X	– ∞	X ₁	x ₂ +∞
a	Signe de a	Signe de a	Signe de a
$\mathbf{x} - \mathbf{x}_1$	_	0 +	+
$\mathbf{x} - \mathbf{x}_2$	••••	••••	0
$a(x-x_1)(x-x_2)$	••••	0	0
$ax^2 + bx + c$	Signe de	Signe de	Signe de

4. En déduit le signe de $ax^2 + bx + c$.

 $2^{i\hat{e}me}$ cas: $\Delta = 0$

On a une racine double x_1 .

- 1. Donner la racine double en fonction de a et b.
- 2. Factoriser $ax^2 + bx + c$.
- Compléter le tableau suivant :

X	-∞	X ₁	+∞
a	Signe de a		Signe de a
$(x-x_1)^2$	+	0	+
$a(x-x_1)^2$	•••••	0	•••••
$ax^2 + bx + c$	Signe de		Signe de

4. En déduit le signe de $ax^2 + bx + c$.

5. Donner la propriété :

b. Propriété :

 Δ est le discriminant du trinôme de second $P(x) = ax^2 + bx + c$.

- Si $\Delta > 0$ et x_1 et x_2 sont les racines distinctes du trinôme de second P(x) alors:
 - \checkmark à l'extérieure des racines x_1 et x_2 le signe de P(x) est celui de a.
 - \checkmark entre les racines x_1 et x_2 le signe de P(x) est le contraire du signe de a.
 - \checkmark on a: $P(x_1) = 0$ et $P(x_2) = 0$.
- Si $\Delta = 0$ et x_1 est la racine distincte du trinôme de second P(x) alors:
 - ✓ le signe de P(x) est celui de a pour tout $x \neq \frac{-b}{a}$. (c.à.d. $x \neq x_1$)
 - \checkmark P(x) s'annule pour x = $\frac{-b}{a}$. (c.à.d. P($\frac{-b}{a}$) = 0.
- Si $\Delta < 0$ trinôme de second P(x) n' a pas de racine dans \mathbb{R} on ne peut pas factoriser P(x) et son signe est celui de a pour tout x de \mathbb{R} .

Exercice:

On considère l'équation suivante : (E): $x \in \mathbb{R} / 2x^2 + 4x - 6 = 0$.

- 1. Résoudre l'équation (E).
- 2. Factoriser $2x^2 + 4x 6$.
- 3. Donner le signe de $2x^2 + 4x 6$.
- 4. En déduit l'ensemble de solution de l'inéquation : (E'): $x \in \mathbb{R} / 2x^2 + 4x 6 \le 0$.

Equations et inéquations de 1ère degré à deux inconnues : (méthode graphique)

On considère l'équation suivante : (E): $(x,y) \in \mathbb{R}^2 / 2x + 5y = 10$.

- 1. Est-ce que le couple (5,0) vérifie l'équation (E)?
- **2.** Est-ce que le couple (0,2) vérifie l'équation (E)?
- 3. On considère le plan (P) est rapporté au repère $(0, \vec{i}, \vec{j})$ et $M(x, y) \in (P)$ et vérifie 2x + 5y = 10.
 - a. Que représente l'équation 2x + 5y = 10 dans le plan (P).
 - b. En déduit l'ensemble des points $M(x,y) \in (P)$ qui vérifie 2x + 5y = 10.
 - c. Construire la droite (D) d'équation cartésienne (D): 2x + 5y = 10.
 - d. noté sur la figure le demi plan (\mathfrak{I}_1) de bord (ou de frontière) la droite (D) qui contient le point O(0,0) l'autre demi plan sera noté (\mathcal{G}_2) .

e.

Niveau : TRONC COMMUN - Cours

- 4. On considère l'inéquation suivante : (I): $(x,y) \in \mathbb{R}^2 / 2x + 5y \le 10$.
 - a. Prenez plusieurs points A(x,y) quelconque de (\mathcal{G}_1) puis vérifier est-ce que leurs coordonnées (x,y) sont solutions de l'inéquation (I).
 - b. Prenez plusieurs points B(x,y) quelconque de (\mathcal{G}_2) puis vérifier est-ce que leurs coordonnées (x,y) sont solutions de l'inéquation (I).

b. Méthode graphique :

Pour résoudre graphique les inéquations :

- ✓ $(I):(x,y) \in \mathbb{R}^2 / ax + by + c \le 0$ ou $(I):(x,y) \in \mathbb{R}^2 / ax + by + c < 0$.
- ✓ $(I):(x,y) \in \mathbb{R}^2 / ax + by + c \ge 0$ ou $(I):(x,y) \in \mathbb{R}^2 / ax + by + c > 0$.

On suit les étapes suivantes :

- On construit la droite d'équation : (D) : ax + by + c = 0 dans un plan (P) muni d'un repère $(0, \vec{i}, \vec{j})$.
- On place un point A(e,f) sur le plan (P) tel que : $A(e,f) \notin (D)$.
- On désigne (arbitrairement) par (\mathscr{G}_1) le demi plan de bord (\mathbf{D}) qui contient $\mathbf{A}(\mathbf{e},\mathbf{f})$, l'autre demi plan par (\mathscr{G}_2) .
- Si les coordonnées (e,f) de A vérifie l'inéquation (I) donc l'ensemble des solutions de (I) toutes les coordonnées des points de ce demi plan (P₁) fermé (c.à.d. contient la droite (D) si l'inéquation (I) est écrit avec les symboles ≤ ou ≥ si non toutes les coordonnées, des points de ce demi plan (P₁) ouvert .

Niveau : TRONC COMMUN - Cours les équations – inéquations - systèmes page

- Si les coordonnées (e,f) de A ne vérifie pas l'inéquation (I) donc l'ensemble des solutions de (I) toutes les coordonnées des points de l'autre demi plan (\mathcal{P}_2) fermé [avec bien sûr (c.à.d. contient la droite (D) si l'inéquation (I) est écrit avec les symboles \leq ou \geq si non toutes les coordonnées des points de ce demi plan (\mathcal{G}_2) ouvert].
- IV. Système de deux équations de premières degré à deux inconnues :
 - a. Déterminants d'un système :
 - **Définition:**

On considère le système suivant $(S):(x,y) \in \mathbb{R}^2 / \begin{cases} ax + by = c \\ a' + b'y = c' \end{cases}$

- Le nombre $\Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' a'b$ est appelé le déterminant du système (S).
- Le nombre $\Delta_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} = cb' c'b$ est appelé le déterminant pour déterminer x.
- Le nombre $\Delta_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} = cb' c'b$ est appelé le déterminant pour déterminer y.

On considère le système suivant (S): $(x,y) \in \mathbb{R}^2 / \begin{cases} ax + by = c \\ a' + b'y = c' \end{cases}$

$$1^{\text{er}} \operatorname{cas} \Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b \neq 0$$

Le système est appelé système de Cramer, le système admet une et une solution c'est le couple $\left(\frac{\Delta_x}{\Delta}, \frac{\Delta_y}{\Delta}\right)$

d'où l'ensemble des solutions de (S) est $S = \left\{ \left(\frac{\Delta_x}{\Delta}, \frac{\Delta_y}{\Delta} \right) \right\}$.

$$2^{i\text{ème}} \cos \Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b = 0 \text{ on } a:$$

- a. si $\Delta_x \neq 0$ ou $\Delta_y \neq 0$ le système n' pas de solution, d'où l'ensemble des solutions de (S) est $S = \emptyset$
- b. si $\Delta_x = 0$ et $\Delta_y = 0$ le système se ramène a une seule équation (on prend une par exemple
 - $(S) \Leftrightarrow (x,y) \in \mathbb{R}^2 / ax + by = c$) le système a une infinité de solutions. d'où l'ensemble des solutions de

$$(S) \text{ est } S = \left\{ (x,y)/y = -\frac{b}{a}x + \frac{c}{a}, x \in \mathbb{R} \right\} \text{ (si } a \neq 0 \text{) (si } b \neq 0 \text{ } S = \left\{ (x,y)/y = -\frac{a}{b}x + \frac{c}{b}, x \in \mathbb{R} \right\}$$

b. Exercice : Résoudre dans \mathbb{R}^2 les systèmes suivants on utilise la méthode des déterminants

a.
$$\begin{cases} 2x + y = 3 \\ -3x + 10y = 7 \end{cases}$$
 b.
$$\begin{cases} x + 2y = 3 \\ 3x + 6y = 9 \end{cases}$$
 c.
$$\begin{cases} x + 2y = 3 \\ 3x + 6y = 7 \end{cases}$$