Index

Note: Page numbers followed by "f" indicate figures, "t" indicate tables, and "np" indicate footnotes.

A Aalborg PID controller, 236 Added mass, 11–12, 18–20, 26 AMAZON-CW solution, for peak pressure, 117, 118f AMAZON-SC simulation LIMPET WEC model, 109, 110f oscillating wave surge converter, 109, 112f ANN model. See Artificial neural network (ANN) model AR model. See Autoregressive (AR) model Array modelling techniques boundary element method, 151–152 CFD model, 152–153 frequency-domain WEC array models, 152, 156 fundamental principles, 151–153 hydrodynamic time domain WEC array model, 152 internal numerical dissipation, 162 limitations, 162 linear potential flow models computational effort, 153 cross-coupling impulse response functions, 157 cross-coupling radiation coefficient, 154–155 equations of motions, 154 frequency components, 155, 155f frequency dependent radiation impedance function, 157 heaving buoy, array configuration for, 157, 158f hydrodynamic coefficients, frequencies for 153–154	Prony's method, 161 response amplitude operator, 159, 160f multiple degrees-of-freedom, 151 spectral-domain WEC array model, 152, 156 time-domain WEC array models, 152, 156–161 Artificial neural network (ANN) model, 131–132 ARX model. See Autoregressive with exogenous input (ARX) model Autoregressive (AR) model, wave forecasting, 239–240, 240f Autoregressive with exogenous input (ARX) model, 130–131 B BEM. See Boundary element methods (BEM) Bernoulli's equation, 14, 86–87 Beyond linear theory, 83–84 BIEM. See Boundary-integral equation method (BIEM) Black-box model, 131–132, 146 Block-oriented nonlinear (BONL) model, 132–133 BONL model. See Block-oriented nonlinear (BONL) model Boundary element method (BEM), 11–12, 89–90, 151–152 Boundary-integral equation method (BIEM), 11, 18, 89–90 Boundary value problem (BVP), 84 C Cartesian cut cell method, 109–113, 113f	Compressibility effects, 113–114 Compressible two-phase CFD models, 113–115, 114f, 116f Computational fluid dynamics (CFD) models, 3, 83–84, 124, 152–153 based NWT, 125 compressible two-phase, 113–115, 114f, 116f fundamental principles, 105–107 future developments, 119 incompressible, 107–113, 114f limitations, 117–118 smoothed-particle hydrodynamic models, 115–117 Continuous-time (CT) models, 129–130 identified from free responses, 137–140 Convolution integral, 32–33, 37–39, 53, 55, 60 Coupling methodology description, 201 wave field interaction, 204–205, 204f WEC/WEC farm, 201–204, 203f CT models. See Continuous-time (CT) models Cummins equation, 43, 125 hydrostatic forces in, 54–55 for modelling WECs, 32–33 solution of, 55 Cummins method, 32 D Damping, 11, 26 PTO, 23–24, 27 Damping coefficient, 11–12, 18–20, 25f, 26 Declutching control, 243, 246 Degree-of-freedom (DoF), WECs mulitale 25–27

Design load case (DLC), 273–274 Difference-frequency wave forces, 84 Diffracted wave field, 211–212 Diffraction code, 12 potential, 20 problem, 18 Diffraction-radiation of harmonic waves, 18 Direct matrix method, semianalytical methods, 182–184 Discrete-time models, 130–133 from forced oscillation, 141–142 from input waves, 142–145 Drift forces, 34	Extended Kalman filter (EKF), 233–234, 239–240 Extra-array effect, 192 F Fast Fourier transforms (FFTs), 90–91 Finite difference method, 105–106 Finite element method (FEM), 90 Finite volume method, 105–106 First-order excitation forces, 33 FNPF models. See Fully nonlinear potential flow (FNPF) models Forced oscillation, discrete-time models from, 141–142 Force-to-velocity model, WECs, 232	H Hammerstein model, 132–133, 133f Harmonic component, superposition of, 34–37 Haskind relation, hydrodynamic force, 20 High-order spectral (HOS) methods, 90–91 models, 88–89 Ho and Kalman realization theory, 51 Ho–Kalman method, 48 HOS. See High-order spectral (HOS) HOS Tank (HOST) model, 91 Hybrid WEC array model, 219 Hydraulic PTO, 56–57, 56f
E EKF. See Extended Kalman filter (EKF) End-stop mechanism, 13 Environmental impact assessment ecological processes benthos distribution, 284 biogeochemical process, 283 coastal users, 284 noise, 283–284 organism transport, 282 pollution, 282–283 sediment transport, 281–282 limitations, 287–288 modelling approach calibration and validation data, 285–286 considerations, 284–285 current speeds, 286–287 water level and bathymetry data, 285	Fourier transform, 37 Free decay experiment, 125, 126f Free surface elevation (FSE), 125–126 Free-surface Green function, 12 Frequency-domain analysis, 11 approach, 31 identification, 44, 52–54 model, 31, 67–68 limitations, 28–29 WECs array models, 152, 156 Froude–Krylov force, 19, 38–39 nonlinear, 38–39, 241 Fully nonlinear potential flow (FNPF) models beyond linear theory, 83–84 computation of hydrodynamic body forces and motions, 91–92 formulation of, 86–88 fundamental principles, 84–85 high-order spectral methods, 90–91	Hydrodynamic body forces, and motions, 91–92 Hydrodynamic forces Haskind relation, 20 Kramers–Kronig relations, 20–21 potential flow boundary value problem, 18–20 Hydrodynamic interactions, 11 direct matrix method, 182–184 multiple scattering method, 179–182 plane wave method, 176–179 point absorber method, 173–176 Hydrodynamic models, 125, 128–130 Hydrodynamic time domain WEC array model, 152 Hydrodynamic wave-body interaction problem, 31–32 Hydrostatic coefficient, 21 Hydrostatic forces, 12, 21, 54–55 in Cummins equation, 54–55
wind data and boundary wave data, 285 modelling tools, 287 Equal energy method, 36 Equation of motion multiple degree-of-freedom WECs,	limitations, 99–101 mixed Eulerian–Lagrangian method, 89–90 in wave energy, 85–86 wave–structure interactions, 84	I IMC. See Internal model control (IMC) Impulse response function radiation, 32–33 numerical computation of, 41–43,
single degree-of-freedom WECs, 17–25, 17f Eulerian CFD method, 105–106 Excitation force, 20, 23 convolution of, 37–38 as superposition of harmonic components, 34–37 wave, 19 Excitation loads, 11–12, 25–27	G Gauss divergence theorem, 105–106 Gaussian closure, 70, 76, 79–80 Gaussian process, 67–68, 70 Gauss–Newton algorithm, 48 Gauss–Newton method, 53 Green's function, 18, 90 free-surface, 12 Green's theorem, 11–12	properties of, 39–41 of wave excitation force, 38f Incompressible CFD models, 107–113, 114f Input force experiment, 126–128, 127–128f Input waves experiment, 125–126 Internal model control (IMC), 233–236 Internal numerical dissipation, 162

Intra-array effect, 192	M	Nonlinear autoregressive with
Inviscid flow, 13	Matlab toolbox, 52	exogenous input (NARX)
IRF, 37, 39	Maximum distance algorithm (MDA),	models, 130, 130f
**	260–261	Nonlinear force, 71, 73–74, 79
K	Mean annual energy production	Nonlinear Froude–Krylov force,
k-means algorithm (KMA), 260	(MAEP), 3	38–39
Kochin functions, 222	abridged power	Nonlinear hydrodynamics, 84–85,
Kolmogorov–Gabor polynomial (KGP)	performance-extensive wave	92–93
model, 130–131	climate, 264	problem, 68–69
Kramers–Kronig relations, 40	extensive/abridged	Nonlinear interactions, 97
hydrodynamic force, 20–21	power performance, 264	Nonlinear optimization algorithms, 136, 137 <i>f</i>
L	wave climate, 264 limitations and constraints, 264–265	Nonlinear program (NLP), WEC,
Lagrangian CFD method, 106	power matrix	237–238
Laplace equation, 13–14	extensive/abridged wave climate,	Nonlinear static (NLS) model, 132
Latching control, 243, 246	263	Nonlinear systems, 68–69, 128
Levelized cost of energy (LCOE), 253	scatter table, 262–263	complex, 69
Levenberg–Marquardt algorithm, 48	power performance representation,	Nonlinear wave forces, 38–39
LIMPET WEC model, 109	261–262	NSE. See Navier-Stokes equation (NSE)
AMAZON-SC simulation of, 109, 110f	wave climate	Numerical modelling of WECs, 1–2
Linear approach, 11	abridged representation, 260-261	Numerical wave tank (NWT), 86, 88, 91,
Linear frequency-domain model, 83	extensive representation, 258-260	106, 109, 124–125
Linear optimization algorithms,	sea-state parameters, 255	CFD based, 125
134–136	traditional (scatter table)	experiment, 138–139f
model parameters identification,	representation, 256–258, 257f	simulation results and linear models'
135–136	WEC modelling techniques,	predictions, 142f
time delay and dynamical order	254, 254t	O
estimation, 135	Mixed Euler–Lagrange (MEL) method FNPF model, 89–90	Ocean waves, 11
Linear potential flow theory	time-stepping scheme, 88–89	ODEs. See Ordinary differential
array modelling techniques	Model predictive control (MPC),	equations (ODEs)
computational effort, 153	WECs, 233–237, 235f	OpenFoam simulation, of oscillating
cross-coupling impulse response	Monochromatic waves, 15f	WECs, 120f OpenFOAM software, 2
functions, 157	Monotone upstream centred schemes for	Optimization algorithm
cross-coupling radiation coefficient, 154–155	conservation law (MUSCL), 115	linear, 134–136
equations of motions, 154	Mooring/foundation system, 13, 17–18,	model parameters identification,
frequency components, 155, 155f	21–22	135–136
frequency dependent radiation	Morison's equation, 68–69	time delay and dynamical order
impedance function, 157	type drag forces, 69	estimation, 135
heaving buoy, array configuration	MPC. See Model predictive control	nonlinear, 136, 137f
for, 157, 158f	(MPC)	Ordinary differential equations
hydrodynamic coefficients,	Multilayer perceptron (MLP) artificial	(ODEs), 33, 70
frequencies for, 153-154	neural network, 131–132 Multiple degree-of-freedom WECs,	Oscillating water column (OWC), 12,
modal canonical form, 159	25–27	27–28, 85, 107
Prony's method, 161	Multiple scattering method,	model, 1–2
response amplitude operator, 159,	semianalytical methods,	plants, 27–28, 28f
160 <i>f</i>	179–182	Oscillating wave surge converter, 109
Linear PTO, 56	N	AMAZON-SC simulation of, 109, 112 <i>f</i>
Linear theory, 11 <i>np</i> , 14, 15 <i>np</i> , 17–18, 28–29	Navier–Stokes equation (NSE), 83–84,	OpenFoam simulation of, 120f
potential, 12	105, 107	OWC. See Oscillating water column
wave, 39	Newton's second law, 12–13	(OWC)
	,	

	D 1 THE 22.25	D. 1 1 1 100 100
P	Power absorption, WECs, 22–25	Riemann-based approach, 108–109
Partial differential equations (PDEs),	absorption bandwidth, 25	RIRF. See Radiation impulse response
105	constrained motion, 24	function (RIRF)
Perturbation theory, 84	mean power absorption, 22–23	RTF. See Radiation transfer function
Perturbed wave field, 192, 212–213	optimal PTO control, 23–24	(RTF)
Phase-averaged wave propagation	suboptimal PTO control, 24	S
models, 69	Power take off (PTO) 222	
continuity equation, 217–218	Power take-off (PTO), 232	Semianalytical array methods
fundamental limitations, 223–224	component, 231, 231f	direct matrix method, 182–184
sea-state, 217	configurations, 31	limitations and capabilities
third-generation spectral wave	control of WECs, 230–231	comparison, 184–186, 185t
models, 218	damping, 23–24, 27	considerations, 186 restrictions, 186
advantages, 219	equipment, 13	verification and validation,
natural processes, 218	force, 21, 125	187–188, 187–188 <i>f</i>
subgrid model, 219–221	lower-loop control strategies, 233 optimal force, 238–239	mathematical model
supragrid model, 219, 221–223	Prony identification method, 45–46	Cartesian coordinate system,
Phase-resolving wave propagation models	Proportional-integral-plus (PIP)	166–167
coupling methodology	control, 233	time-dependent velocity potential,
description, 201	Pseudo-spectral approach, WEC	167–168
wave field interaction, 204–205,	control, 238	multiple scattering method, 179–182
204 <i>f</i>	PTO. See Power take-off (PTO)	partial wave operators
WEC/WEC farm, 201–204, 203f	,	coordinate transformation
far-field effect, 192	Q	operator, 171–172
limitations, 214	Quasi arbitrary Lagrangian-Eulerian	diffraction transfer operator,
MILD wave formulation, 194–195	finite element method	172–173
park effect, 192	(QALE-FEM), 90	plane wave method, 176-179
perturbed wave field, 192		point absorber method, 173–176
sponge layer technique, 191, 193,	R	assumptions, 173–176
195–201	Radial basis functions (RBFs) method,	background, 173
absorption characteristics, 199	263	velocity potential
absorption coefficients, 196-199	Radiated wave field, 210, 211f	ambient incident wave potential,
frequency dependent absorption,	Radiation force, 13, 19–20, 39–40	168–169
199–201	convolution of, 43–54	governing equations, 168
limitations, 195	design and verification of	radiation potential, 171
in MILD wave, 196	time-domain models, 57–60	scattered potential, 169–171
overtopping principle, 196	direct numerical integration, 44–45	Simple but effective (SE) controller,
wave generation circle, 195	frequency-domain identification,	WEC, 233–236, 235f
Physical modelling of WECs, 106	52–54	Simulation duration, influence of, 60–62
PIP control. See Proportional-integral-	Prony identification method,	Single-body heaving WECs
plus (PIP) control	45–46	hydraulic PTO, 56–57
Plane wave method, semianalytical	time-domain identification, 46–52	linear PTO, 56 Single degree of freedom WECs 17, 25
methods, 176–179	Radiation impulse response function (RIRF), 32–33	Single degree-of-freedom WECs, 17–25, 17 <i>f</i> , 72 <i>f</i>
Point absorber	numerical computation of, 41–43, 43f	complex amplitude of body motion,
approximation, 173 method, semianalytical methods,	properties of, 39–41	22
173–176	Radiation transfer function (RTF), 39	hydrodynamic force, 18–21
Potential flow theory, 13	RAO. See Response amplitude	hydrostatic force, 21
boundary conditions, 14–15	operator (RAO)	power absorption, 22–25
Laplace equation, 13–14	Reaction forces, 21–22	reaction forces, 21–22
limitation of, 99	Realization theory, 44, 51, 52f	Singular value decomposition (SVD),
problem decomposition, 16–17, 17f	Response amplitude operator (RAO),	49–50
sinusoidal waves, 15–16	24, 97, 243	Sinusoidal waves, 15–16
,		

	240, 250	T: 1 : 02.51.62
Slack-moored devices, 34	waves, 269–270	Time-domain analysis, 32, 51, 63
Slow-drift forces, 33	wind, 271	Time-domain identification, 44, 46–52
Smoothed-particle hydrodynamic	structural assessment	Time-domain methods, 31–32
(SPH) models, 106, 115–117	extreme event analysis, 275	Time-domain models, 31–32, 37, 83
Spectral-domain model	fatigue analysis, 275–276	design and verification of, 57–60
examples of, 74–76	technology qualification, 267–268	limitations, 63–64
formulation of, 70-72	Subgrid models of WEC arrays,	power capture and loss for, 75f
fundamental principles, 67–69	219–221	wave loads in, 33–34
limitations, 79–80	components, 221	Time-domain WEC array models, 152,
power capture and loss for, 75f	considerations, 221	156–161
solving, 73–74	definition, 221–222	
spectral variance density for, 78f	Kochin functions, 222	V
structure of, 70f	pitching cylinder, diffraction and	Violent wave interaction, 113-114
Spectral-domain WEC array model,	radiation, 222–223	Volume of fluid (VoF) method, 108
152, 156	Supragrid models of WEC arrays,	
Spectral wave models. See Phase-	219–221	W
averaged wave propagation	Surface capturing method, 109	Wave-body interactions, 84
models	System identification	problem, formulation of, 86
SPH models. See Smoothed-particle	algorithms, 133–134	Wave climate representation, MAEP
hydrodynamic (SPH) models	ANN model, 131–132	abridged representation, 260–261
Sponge layer technique, 191, 193,	artificial neural network model,	extensive representation, 258–260
195–201	131–132	sea-state parameters, 255
absorption characteristics, 199	ARX model, 131	traditional (scatter table)
absorption coefficients, 196–199	BONL model, 132–133	representation, 256–258, 257f
frequency dependent absorption,	continuous-time models, 129–130	Wave energy
199–201	data generation, 124–129	challenge of, 1
limitations, 195	discrete-time models, 130–133	conversion, 32, 44
in MILDwave, 196	free decay experiment, 125, 126f	absorption, 34
overtopping principle, 196	fundamental principles, 123–124,	models, 33
State-space model, 44	133–134	FNPF models in, 85–86
Structural loads and design	input force experiment, 126–128,	Wave energy converters (WECs)
design criteria	127–128 <i>f</i>	array
characteristic loads, 273	input waves experiment, 125–126,	control, 230, 238–239
	127 <i>f</i>	
design load cases, 273–274		layout optimization, 246–248,
limit state, 272–273	KGP model, 131	248–249 <i>f</i>
load factors, 274	limitations, 146	autoregressive model, 239–240,
resistance factors, 275	linear optimization algorithms,	240f
design methods	134–136	challenges and future developments,
load processes, 268	models for, 129–133	2–3
partial safety factor method, 268	NLS model, 132	complex-conjugate control, 234–236
probability-based design, 268–269	nonlinear optimization algorithms,	control effectors, 230–231
by testing, 268	136, 137 <i>f</i>	control perspectives, 240–242
numerical modelling	nonlinear static model, 132	device motion, 230–231
computational fluid dynamics	prescribed motion experiment,	force-to-velocity model, 232
methods, 272	128–129	fundamental control results,
coupled vs. uncoupled, 271–272	T	232–233
frequency vs. time domain, 271	T	fundamental principles, 11–12
semiempirical and potential flow	Third-generation spectral wave	geometric optimization, 243–246,
methods, 272	models, 218	243f, 246t
physical modelling, 272	advantages, 219	model-free approaches, 230
safety philosophy and classes, 269	natural processes, 218	MPC, 233–237, 235f
site conditions characterization	subgrid model, 219–221	nonlinear program, 237–238
current and water level, 270–271	supragrid model, 219, 221–223	numerical modelling of, 1–2

Wave energy converters (WECs)
(Continued)
and ocean waves, interaction, 11
optimization, 242
phase control strategies, 233
phenomenological discussion, 12–13,
13f
pseudo-spectral approach, 238
real-time controller, 233–238
Aalborg PID controller, 236
on numerical optimization,
236–238
simple but effective, 233–236, 235f
requirements, 229
response
calculation, 92–99

subject to linear PTO forces, 93–99 techno-economic optimization, 242f use of, 229 wave forecasting, 239-240, 239f Wave energy spectrum, 67, 68f Wave excitation, 18 force, 19, 33-39 impulse response function of, 38f Wave force, nonlinear, 38-39 Wave forecasting autoregressive model, 239-240, 240f WEC control, 239-240, 239f Wave load, in time-domain models, 33-34

Wave/structure interaction (WSI), 117 fluid domain for open ocean, 87f FNPF model, 84 hydrodynamic, 11-12 Wave tank conventional, 124-125 models, spectral variance density for, 78f numerical, 124-125 CFD based, 125 experiment, 138-139f simulation results and linear models' predictions, 142f physical, 106, 123-124, 129-130 WECs. See Wave energy converters (WECs)