California Wildfires: Predicting Wildfire Spread Using Machine Learning

Gwen Squires

Dept. of Mathematics | Southeast Missouri State University

Graduate Mentor: Daniel Breininger | Faculty Advisor: Dr. Nezamoddin N. Kachouie

Florida Institute of Technology

Introduction

- 4 million acres burned, 2020
- 2.6 million acres burned, 2021
- **\$148.5 billion** in costs, 2018
- **30%** emissions increase, 2020
- **50,000** premature deaths, 2008-18

McKinney Fire in Klamath National Forest, CA. (CNN, 2022)

Previous Work

Acreage burned by year. (OEHHA, 2022)

Purpose

Spatial and temporal scales. (Parisien & Moritz, 2009)

Ignition vs. Spread

Objective

Determine the flammability of California's landscapes by predicting whether fire will spread given an ignition occurs at a specified time and location.

Procedure

Data Processing

Time Series Analysis

Logistic Regression

Neural Network

Data Sources

- TerraClimate
- Spatial wildfire occurrence data for the United States
- California Vegetation WHR13 Types

Region of study, California, USA.

Data Description

- → Actual Evapotranspiration
- Climate Water Deficit
- → Potential Evapotranspiration
- → Precipitation
- → Runoff
- Soil Moisture
- Downward Surface Shortwave Radiation
- → Maximum Temperature
- → Minimum Temperature
- → Vapor Pressure
- → Wind Speed
- → Vapor Pressure Deficit
- → Palmer Drought Severity Index

Original observation

Difference

Anomaly

Anomaly Lags

Time Series Analysis

California Irrigation Management Information System (CIMIS) data

Time Series Analysis Cont.

Checking for stationarity

Time Series Analysis Cont.

Time Series Analysis Cont.

- Autoregressive (AR) model
- Autoregressive Distributed Lag (ADL) model

Feature Reduction

Feature Reduction Cont.

Feature Reduction Cont.

Logistic Regression

Large Variable Set

Accuracy	0.633
Sensitivity	0.612
Specificity	0.653
AUC	0.719

Optimal Cutoff: 0.214

Logistic Regression Cont.

Small Variable Set

Accuracy	0.643
Sensitivity	0.674
Specificity	0.612
AUC	0.709

Optimal Cutoff: 0.203

Feed-Forward Neural Network

Feed-Forward Neural Network Cont.

Large Variable Set

Accuracy	0.740
Sensitivity	0.640
Specificity	0.840
AUC	0.733

Optimal Cutoff: 0.398

Feed-Forward Neural Network Cont.

Small Variable Set

Accuracy	0.680
Sensitivity	0.800
Specificity	0.560
AUC	0.691

Optimal Cutoff: 0.335

Results

	Large Logistic	Small Logistic	Large NN	Small NN
Accuracy	0.633	0.643	0.740	0.680
Sensitivity	0.612	0.674	0.640	0.800
Specificity	0.653	0.612	0.840	0.560
AUC	0.719	0.709	0.733	0.691

Discussion

Strong winds. (Delbert, 2022)

Former wetland near Tulelake, California. (NPR, 2022)

Conclusion

Summary

- Neural networks outperformed logistic regression models
- Subset approach disregards time series element

Future work

- Other neural networks
- New variable combinations and selection methods
- Need for complementary ignition model

Fighting a wildfire. (WHO, 2024)

Thank you!

Questions?

References

- Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic
 water balance from 1958-2015 [Dataset]. Climatology Lab. https://www.climatologylab.org/terraclimate.html
- Esri. (2024). California Multi-Source Vegetation Layer [Data set]. ArcGIS. Retrieved May 20, 2024, from https://www.arcgis.com/home/item.html?id=b7ec5d68d8114b1fb2bfbf4665989eb3
- Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16(4). https://doi.org/10.1186/s42408-019-0062-8
- Office of Environmental Health Hazard Assessment [OEHHA]. (2022). Wildfires. In *Indicators of Climate Change in California*. California Environmental Protection Agency. https://oehha.ca.gov/media/downloads/climate-change/document/04wildfires.pdf
- Parisien, M.A., & Moritz, M. A. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. *Ecological Monographs*, 79(1), 127–154. https://doi.org/10.1890/07-1289.1
- Pham, K., Ward, D., Rubio, S., Shin, D., Zlotikman, L., Ramirez, S., ... & Jiang, X. (2022, December). California wildfire prediction using machine learning. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 525-530). IEEE.
- Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645-1658. https://doi.org/10.1080/19475705.2015.1084541
- Short, K. C. (2022). Spatial wildfire occurrence data for the United States, 1992-2020 (FPA_FOD_20221014) (6th ed.). Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2013-0009.6

:)

:)

Data

- -12 months for 29 years; 348 months; Jan 1992-Dec 2020
- -217,500 total rows of observations (348 x 625)
- -25x25 region = 625 cells (16 km²)

-region with habitat variability; has enough

fires to be relevant to study

-near LA and important parks

aet: (Actual Evapotranspiration, monthly total), units = mm

def: (Climate Water Deficit, monthly total), units = mm

pet: (Potential evapotranspiration, monthly total), units = mm

ppt: (Precipitation, monthly total), units = mm

q: (Runoff, monthly total), units = mm

soil

soil: (Soil Moisture, total column - at end of month), units = mm

srad: (Downward surface shortwave radiation), units = W/m2

tmax: (Max Temperature, average for month), units = C

tmin: (Min Temperature, average for month), units = C

vap: (Vapor pressure, average for month), units = kPa

ws: (Wind speed, average for month), units = m/s

vpd: (Vapor Pressure Deficit, average for month), units = kpa

PDSI: (Palmer Drought Severity Index, at end of month), units = unitless neg=dry

fires: total number of fires, count

fire total: sum of fire area in given month and given cell

habitat: specific habitat classification (most common specific habitat in that cell)

habitat g: general habitat classification (most common general habitat in that cell)

cell: concatenated lon0 and lat0 with comma separator

fire_events: 1 when at least one natural fire; 0 when no natural fire

fire_spread: 1 when fire area >0.1 acres; 0 when smaller or none

water leaving soil pet minus aet water could transpire

not absorbed by

water in soil sunlight

humidity

dryness

Logistic including lag anomalies

```
-90-10 train-test split
-all variables; reduce based on p-val >0.05
              -remove:
       #"q"
       #"diff aet"
       #"diff ppt"
       #"diff q"
      #"diff soil"
       #"diff PDSI"
       #"anom q"
       #"anom srad"
       #"lag anom srad"
-reduce with stepAIC to:
#Step: AIC=2028.84
aet + def + ppt + srad + vap + ws + vpd +
PDSI + diff pet + diff tmin + diff vap +
diff vpd + anom aet + anom def + anom pet
+ anom ppt + anom vap + anom ws +
anom vpd + anom PDSI + lag anom def +
lag anom pet + lag anom vap
-optcutoff on train data;
confusion/accuracy/pred for test data
```

- -STEP model has higher accuracy, sensitivity
- -FULL model has higher specificity, AUC

Logistic including lag anomalies (LARGE)

```
-90-10 train-test split
-all variables; reduce based on p-val >0.05
-remove:

#"q"
#"diff_aet"
#"diff_ppt"
#"diff_q"
#"diff_soil"
#"diff_PDSI"
#"anom_q"
#"anom_srad"
#"lag_anom_srad"
```

-full model results:

-using optcutoff (YJS): 0.2136121

#Accuracy: 0.6327 #Sensitivity: 0.6122 #Specificity: 0.6531 #AUC: 0.719

Logistic including lag anomalies (SMALL)

```
-90-10 train-test split
-all variables; reduce based on p-val >0.05
              -remove:
       #"q"
       #"diff aet"
       #"diff ppt"
       #"diff q"
       #"diff soil"
       #"diff PDSI"
       #"anom q"
       #"anom srad"
       #"lag anom srad"
-reduce with stepAIC to:
#Step: AIC=2028.84
aet + def + ppt + srad + vap + ws + vpd +
PDSI + diff pet + diff tmin + diff vap +
diff vpd + anom aet + anom def + anom pet
+ anom ppt + anom vap + anom ws +
anom_vpd + anom_PDSI + lag_anom_def +
lag anom pet + lag anom vap
-optcutoff on train data;
confusion/accuracy/pred for test data
```

-step model results:

-using optcutoff (YJS): 0.2031919

#Accuracy: 0.6429 #Sensitivity: 0.6735 #Specificity: 0.6122 #AUC: 0.709

NN including lag anomalies (LARGE)

```
-90-10 train-test split
-all variables; reduce based on p-val >0.05
              -remove:
       #"q"
       #"diff aet"
       #"diff ppt"
       #"diff q"
       #"diff soil"
       #"diff PDSI"
       #"anom q"
       #"anom srad"
       #"lag anom srad"
-activation: leaky relu
-5 layers: 80, 60, 40, 20, 1
-binary focal cross-entropy (alpha=0.1)
-optimizer: adam
-normalized
-30 epochs, batch size 10
```

-full model results:
-using optcutoff (YJS): 0.39797372
#Accuracy: 0.740
#Sensitivity: 0.640
#Specificity: 0.840
#AUC: 0.733

NN including lag anomalies (SMALL)

```
-90-10 train-test split
-all variables; reduce based on p-val >0.05
              -remove:
       #"q"
       #"diff aet"
       #"diff ppt"
       #"diff q"
       #"diff soil"
       #"diff PDSI"
       #"anom q"
       #"anom srad"
       #"lag anom srad"
-ALSO reduce with stepAIC to:
#Step: AIC=2028.84
aet + def + ppt + srad + vap + ws + vpd +
PDSI + diff pet + diff tmin + diff vap +
diff vpd + anom aet + anom def + anom pet
+ anom ppt + anom vap + anom ws +
anom_vpd + anom_PDSI + lag_anom_def +
lag anom pet + lag anom vap
-optcutoff on train data;
confusion/accuracy/pred for test data
```

```
-full model results:
-using optcutoff (YJS): 0.33526808
#Accuracy: 0.680
```

#Sensitivity: 0.800 #Specificity: 0.560 #AUC: 0.691

- -activation: leaky_relu -5 layers: 80, 60, 40, 20, 1
- -binary focal cross-entropy (alpha=0.1)
- -optimizer: adam
- -normalized
- -30 epochs, batch size 10

