

Fig. 1.1: Inhibition of endothelin-1 (ET)-induced contraction of rat tracheal rings by Lipid-conjugates.

A: Contraction of rat trachea by Endothelin-1.

B: Effect of HYPE on ET-induced contraction of rat trachea.

Fig. 1.2: Effect of HYPE and Hyaluronic acid (HA) on ET-1-induced contraction of rat trachea.

Fig 1.3: Effect of HYPE and Hyaluronic acid (HA) on Acetylcholine (AcCh) – induced contraction of isolated rat trachea rings.

Fig. 1.4: Lipid-conjugates ameliorate respiratory function in asthmatic rats.

Fig. 1.5: Amelioration of respiratory function in ovalbumin-challenged asthmatic rats by aerosolic administration of HyPE.

Fig. 1.6: Amelioration of airway remodeling in ovalbumin-sensitized asthmatic rats by inhalation of HyPE (compared with systemic dexamethasone treatment).

Thickening of airway smooth muscle

Infiltrate of inflammatory cells

Fig. 2.1: Amelioration of intestinal permeation in rats with indomethacin – induced small intestinal injury by CMPE.

Fig. 2.2: Amelioration of indomethacin-induced small intestinal damage by CMPE; macrosoring (left panel) and histological score (right panel).

Fig. 2.3: Amelioration of intestinal permeation in rats with TNBS – induced colitis by CMPE.

Fig. 2.4: CMPE suppresses phospholipase A₂ (PLA₂) activity in plasma of rats with TNBS-induced colitis

Fig. 2.5: Amelioration of TNBS-induced colon damage by treatment with CMPE: Histology micrographs.

Fig. 2.6: Amelioration of TNBS-induced colon damage by treatment with CMPE: Histological morphometry.

Fig. 2.7: HyPE (administered orally) ameliorates dextran sulfate-induced colitis in mice. Pathological score.

A – crypt score

B – inflammation score

C - lymph accumulation

D – DAI = Disease activity index

Fig. 2.8: HyPE (administered orally) abates colon shortening in mice with dextran sulfate-induced colitis.

Each datum is Mean+SEM for 9 mice. * $p \leq 0.001$; ** $p \leq 0.005$; *** $p \leq 0.001$; # not significant.

Fig. 3.1: Lipid-conjugates inhibit the secretion of PGE₂ from glial cells stimulated by LPS.

Fig. 3.2: Lipid-conjugates inhibit the secretion of PGE₂ from glial cells stimulated by pardaxin (PX).

Fig. 3.3: Lipid-conjugates inhibit the production of nitric oxide by LPS-stimulated rat glial cells.

Fig. 3.4: Lipid-conjugates inhibit the production of nitric oxide by PX-stimulated PC12 cells.

Fig. 3.5: Lipid-conjugates inhibit the secretion of sPLA₂ from glial cells stimulated by LPS.

Fig. 3.6: Lipid-conjugates inhibit PX-induced activation of PLA₂ (expressed as fatty acid release) in PC12 cells.

Fig. 3.7: Effect of CMPE on LPS-induced OA release.

Fig. 3.8: Lipid-conjugates inhibit PX-induced dopamine release by PC12 cells.

Fig. 3.9: Lipid-conjugates inhibit PX-induced production of 5-HETE by PC12 cells.

Fig. 3.10: Effect of Lipid-conjugates on T cell permeation through a monolayer of endothelial cells.

Fig. 5.1: Effect of CMPE on the proliferation of cultured human psoriatic fibroblasts and Swiss 3T3 cells.

Fig. 6.1: Effect of Lipid-conjugates on LDL-endogenous phospholipase A₂ activity.

Fig. 6.2: Effect of HYPE on uptake of oxidized LDL (ox LDL).

Fig. 7.1: Effect of HyPE on bovine aortic smooth muscle cell (SMC) proliferation.

Fig. 7.2: Effect of HYPE on proliferation of bovine aortic SMCs, stimulated with thrombin (48 hours).

Legend

- A - Basal, serum deficient DMEM
- B - Control, thrombin
- C - Thrombin, no wash-out, and after 6 hours add 50 μ M HYPE
- D - Thrombin+50 μ M HYPE
- E - Thrombin, 6 hours, then wash-out of thrombin, further incubation with DMEM
- F - Thrombin, 6 hours, wash-out of thrombin, add 50 μ M HYPE
- G - Thrombin, 6 hours ,then harvest and counting
- H - DMEM+10% fetal calf serum

Fig. 7.3: Effect of Lipid-conjugates on proliferation of human venous smooth muscle cells.

Fig. 7.4: Effect of Lipid-conjugates on ischemia/reperfusion – induced leukocyte adhesion (A) and extravasation (B) in rat cremaster muscle.

Fig. 7.5: Effect of Lipid-conjugates on red blood cell (RBC) adhesion to activated endothelial cells (EC).

Fig. 8.1: Effect of Lipid-conjugates on secretion of collagenase IV (MMP-2) by human fibrosarcoma cells.

Fig. 8.2: HYPE inhibits hyaluronic acid degradation by hyaluronidase.

Fig. 8.3: Effect of Lipid-conjugates on the activity of exogenous heparinase.

Fig. 8.4: Effect of Lipid-conjugates on invasiveness of human fibrosarcoma cells.

Fig. 8.5: Effect of Lipid-conjugates on proliferation of bovine aortic endothelial cells (EC).

Fig. 8.6: Effect of HyPE on proliferation of human bone marrow endothelial cells (HBMEC) induced by growth factors.

Fig. 8.7: Effect of Lipid-conjugates on growth factor-induced capillary formation by HNMEC in fibrin gel

Line A: control

Line B: b-FGF (25ng/ml)

Line C: VEGF (20ng/ml)

Line D: OSM (2.5nm/ml).

Column 1: Without HyPE

Column 2: HyPE 20 μ M

Column 3: Hyaluronic acid 20 μ M

Fig. 8.8: Effect of ExPLIs on mouse lung metastases formation induced by mouse melanoma cells.

I

II

Fig. 9.1: CMPE protects BGM cells from membrane lysis induced by combined action of hydrogen peroxide (produced by glucose oxidase = GO), and exogenous phospholipase A₂ (PLA₂).

Fig. 9.2: CMPE protects BGM cells from glycosaminoglycan degradation by Hydrogen peroxide (produced by GO).

Fig. 9.3: HYPE protects LDL from copper-induced oxidation.

Fig. 11.1-I: Effect of lipid-conjugates on LPS-induced production of TNF α in human whole blood.

Fig. 11.1-II: Effect of HyPE on LPS-induced production of TNF α in human whole blood.

Fig. 11.2: Effect of HyPE on rat survival in LPS-induced endotoxinemia.

Fig. 11.3: Effect of HyPE on serum levels of TNF- α and IL-6 in septic rats.

LPS (7,5mg/kg)	-	+	+	+	+	+
HyPE (150mg/kg)	-	-	+	+	+	+

Fig. 11.4: Effect of HyPE on TNF- α production after i.p. administration of LPS and simultaneous i.v. administration of HyPE.

Fig. 11.5: Effect of HyPE on serum cytokine levels in rats injected with LPS or LPS + LTA.

Fig. 11.6: Effect of HyPE on mRNA expression of IL-1, TNF- α and IL-6 genes in lung and liver of rats with LPS-induced sepsis.

Fig. 11.7: Effect of HyPE on mRNA expression of sPLA₂-IIA and iNOS genes in kidney and lung of rats with LPS-induced sepsis.

Fig. 11.8: Effect of HyPE on ICAM-1 expression in lung and kidney of rats with LPS-induced sepsis.

Fig. 12.1: Effect of different Lipid-conjugates on LPS-induced IL-8 production.

Fig. 12.2: Effect of HyPE on LPS-induced chemokine production.

Fig. 12.3: Effect of HyPE on LTA-induced IL-8 production.

Fig. 12.4: Effect of HyPE on LPS-induced ICAM-1 and E-selectin expression.

Fig. 12.5: Effect of HyPE on LPS-induced activation of NF- κ B in LMVEC.

Fig. 13.1: Inhibition of MHC-1 expression by TNF- γ stimulated human umbilical vein endothelial cells (HUVEC) by HyPE.

Fig. 13.2: CMPE inhibits the proliferation of lymphocytes in vitro.

Fig. 13.3: Inhibition of MLR-induced proliferation of lymphocyte by HyPE.

Fig. 14.1: Effect of Lipid-conjugates on HIV infectivity.

**Fig. 15.1: Effect of CMPE on allergic conjunctivitis in guinea pigs.
Corneal opacities at the immediate post-provocation phase.**

**Fig. 15.2: Effect of CMPE on allergic conjunctivitis in guinea pigs.
Corneal opacities at the late post-provocation phase.**

Fig. 15.3: Effect of CMPE on prostaglandin E₂ (PGE₂) and leukotriene B₄ (LTB₄) levels in the cornea of guinea pigs with allergic conjunctivitis.

Fig. 16.1: Effect of Lipid-conjugates on injection of HeLa cells by chlamydia.

Fig. 16.2: Effect of ExPLIs on *CHLAMYDIA*-induced apoptosis of HeLa cells.

