Festkörperphysik, SoSe 2023 Übungsblatt 10

Prof. Dr. Thomas Michely

Dr. Wouter Jolie (wjolie@ph2.uni-koeln.de) II. Physikalisches Institut, Universität zu Köln

Ausgabe: Mittwoch, 21.06.2023

Abgabe: Mittwoch, 28.06.2023, bis 8 Uhr über ILIAS

Aufgabe Nr.:	1	2	3	4	Summe
Points:	5	8	2	5	20
Punkte:					

Bitte Aufgaben zusammen mit Aufgabenblatt als PDF hochladen. Namen, Matrikelnummer und Gruppennummer deutlich lesbar eintragen (sonst Punktabzug). Abgabe in Gruppen zu 2, max. 3 Personen erwünscht. Die Teammitglieder müssen in der gleichen Übungsgruppe sein.

1. [5 Punkte] Kurzfragen

Markieren Sie im folgenden die richtigen Satzenden (Mehrfachauswahl möglich).

Das chemische Potential
– eines Elektronengases ist bei Zimmertemperatur in sehr guter Näherung identisch zu k_BT_F . \square
$-$ ist die freie Energie, die notwendig ist um einem System ein Teilchen hinzuzufügen $\hfill\Box$
– eines Gases von Spin $\frac{1}{2}$ Atomen (z. B. Ag Dampf) ist bei Raumtemperatur in sehr guter Näherung identisch zu E_F . \square
 von zwei Systemen die im Kontakt miteinander stehen und Teilchen austauschen können ist im thermodynamischen Gleichgewicht identisch.
 taucht in der Verteilungsfunktion für die Phononenbesetzungszahlen nicht auf, weit die Teilchenzahl für Phononen nicht erhalten ist. □
Die Fermi-Dirac Verteilung
– ist beschränkt auf Werte $f(E) \in [0, 2]$.
– gibt die Besetzungswahrsche inlichkeit eines Energiezustandes in einem Ensemble von Fermionen an . \Box
$-$ besagt, dass bei Raumtemperatur alle Zustände bis zur Fermienergie besetzt sind. \Box
– geht in die Boltzmann-Verteilung über, wenn $T>>T_F$.

	_	enthält das chemische Potential als Parameter. Für $T << T_F$. ist μ in guter Näherung identisch mit der Fermi-Energie.
•	Die	Wärmekapazität eines freien Elektronengases
	_	mit einem Valenzelektron pro Einheitszelle ist klassisch identisch mit dem Dulong-Petit Wert für ein Gitter mit einer einatomigen Basis. \Box
	_	verhält sich bei tiefen Temperaturen ähnlich wie die Wärmekapazität des Gitters. \square
	-	ist nur bei tiefen Temperaturen gegenüber dem Gitterbeitrag von erheblichem Wert. \Box
	_	in einem Kristall ist immer Zehnerpotenzen kleiner als man es klassisch erwarten würde. \Box
	_	wird durch das Verhältnis von $(T/T_F)^2$ bestimmt.
•	Die	Leitfähigkeit
	_	ist der Proportionalitätsfaktor zwischen elektrischem Feld und Stromdichte. \Box
	_	hängt von der Mobilität μ der Elektronen ab. \square
	_	wird durch die mittlere Stoßzeit $ au$ bestimmt. \square
	_	wird durch Streuprozesse von Elektronen im Inneren der Fermikugel bestimmt. \Box
	_	kann für ein gutes Metall auch in erster Näherung nicht durch eine kinetische Stoßtheorie beschrieben werden. \Box
•	Die	Temperaturabhängigkeit des spezifischen Widerstands eines Metalls
	_	wird durch die empirische Matthiessen-Regel beschrieben. \square
	_	wird durch die Temperaturabhängigkeit der Streuprozesse der Elektronen bestimmt. \Box
	_	wird bei tiefen Temperaturen durch Phonon-Elektron Streuung bestimmt. \Box
	_	verschwindet bei hohen Temperaturen und hängt dann von der Defektkonzentration und der Probengeometrie ab. \Box
	_	ist so beschaffen, dass der spezifische Widerstand eines Metalls mit zunehmender Temperatur aufgrund der steigenden Mobilität der Elektronen abnimmt. \Box

2. [8 Punkte] Frequenzabhängigkeit der elektrischen Leitfähigkeit, Plasmafrequenz

a) Zeigen Sie, dass die frequenzabhängige Leitfähigkeit $\sigma(\omega)$ gegeben ist durch

$$\sigma(\omega) = \sigma(0) \left(\frac{1 + i\omega \tau}{1 + (\omega \tau)^2} \right), \quad \text{mit} \quad \sigma_0 = ne^2 \tau / m .$$

Dazu verwenden Sie die Bewegungsgleichung $m\left(\frac{dv_D}{dt}+\frac{v_D}{\tau}\right)=-eE$ für die Elektronendriftgeschwindigkeit v_D und den Fourier-Ansatz $E(t)=E(\omega)e^{-i\omega t}$ und analog $v_D(t)=v_D(\omega)e^{-i\omega t}$. Die Leitfähigkeit ist dann definiert durch $j(\omega)=nev_D=\sigma(\omega)E(\omega)$.

b) Das Elektronengas eines Metalls wird durch einfallende elektromagnetische Strahlung zu Schwingungen angeregt. Diese Anregung ist dann besonders effektiv, wenn die Eigenfrequenz des Systems (Plasmafrequenz ω_p) getroffen wird. Berechnen Sie ω_p für das unten skizzierte Modell (Schnitt durch einen unendlich ausgedehnten Block). Nehmen Sie an, dass das Elektronengas in einem einfachen Metall zum Zeitpunkt $t_0=0$ um d gegenüber dem Hintergrund

positiver Ionen verschoben ist. Berechnen Sie aus der Oberflächenladungsdichte s das im Inneren des Blocks herrschende elektrische Feld E und daraus die auf das Elektronengas wirkende Rückstellkraft F und lösen sie damit die Bewegungsgleichung $Nm\ddot{d}=-NF$. Schätzen Sie ω_p für ein typisches Metall ab, und zwar Cu $(n_{\text{Cu}}\approx 8,47\cdot 10^{22}~\text{cm}^{-3})$.

3. [2 Punkte] Widerstand eines einfachen Metalls (Cu)

Diskutieren Sie den in der Abbildung gezeigten spezifischen Widerstand von Cu. Berechnen Sie die freie Weglänge l bei 4.2K und 300K mit $\rho = m/(ne^2\tau)$ und $l = v_{\rm F}\tau$. $(n_{\rm Cu} \approx 8.47 \cdot 10^{22} {\rm cm}^{-3}; v_{\rm F} \approx 1.57 \cdot 10^8 {\rm \, cm/s.})$

4. [5 Punkte] Leitfähigkeiten

In dieser Übung vergleichen Sie die elektrische und die thermische Leitfähigkeit von zwei Drähten, einer ist aus Gold der andere ist eine 50-50 Gold-Palladium Legierung. Der Gold-Draht besitzt einen spezifischen Widerstand von $\rho = 3 \,\mu\Omega$ cm bei 300 K und einen spezifischen Widerstand von $\rho = 1 \cdot 10^{-3} \,\mu\Omega$ cm bei 4 K. Die Gold-Palladium Legierung zeigt einen fast temperaturunabhängigen spezifischen Widerstand von $\rho = 50 \,\mu\Omega$ cm.

- (a) Berechnen Sie die mittlere freie Weglänge der Elektronen in den beiden Proben bei Raumtemperatur und 4 K ($k_F = 1, 2 \text{ Å}^{-1}, m_{therm} = 1, 1m_e$).
- (b) Welche Streuprozesse dominieren bei welcher Temperatur in den beiden Proben?
- (c) Schätzen Sie die Wärmeleitfähigkeit der beiden Proben bei einer Temperatur von 4K ab.

Erreichbare Gesamtpunktzahl: 20