Band Graf Determination using Post Office Box

AIM: To find the band gap of the material of the given thermistor using post office box.

APPARATUS REQUIRED:
Thermistor, thermometer, bost office box, bower supply,
galvanometer, insulating coil and glass leakers.

PRINCIPLE AND FORMULAE:

1 Wheatstone's Principle for balancing a network: $\frac{P}{9} = \frac{R}{5}$

Of the four resistances, if three resistances are known and one is unknown, the unknown resistance can be calculated

2) The band gak for semiconductors is given by,

$$E_{g} = 2k \left(\frac{2.303 \log_{10} R^{\frac{2}{7}}}{1/T} \right)$$

where; $k = Boltzmann constant = 1.38 \times 10^{-23} J/K$

RT = Resistance at TK

Circuit Diagram of A post office

TABLE: TO FIND THE RESISTANCE OF THERMISTOR AT DIFFERENT TEMPERATURES

SL. No	Temperature of thermistor $T = \ell + 273$	1	Resistance in P	Resistance in 9	Resistance in R	Resistance Of the therminton $R_T = \frac{P}{Q} \times R$	2.303 log10 RT
	(K)	(K-1)	(Ohm)	(Ohm)	(Ohm)	(ohm)	Ohm)
1	305	0.00327869	10	10	946	946	6.8535 × (2.303 log 946)
2	310	0.00322581	10	10	740	740	6.6078
3	318	0-00314465	10	10	528	528	6.2702 (2.303 log 528)
4	328	0.00304878	10	10	400 -	400	5.9925 5 (2.303109400)
5	333	0.00300300	10	10	360	360	5.8872 (2.300 log 360)
6	343	0.00291545	10	10	300	300	5.7048 (2.303log 300)
7	353	0.00283286	10	10	259	259	5.5578 x (2.303 log 259)
8	358	0.00279330	10	10	200	200	5.2993 g
9	363	0.00275482	10	10	179	179	5.1883 × (2.303 log 179)
10	371	0.00269542	10	10	173	173	5.1542 < (2.303/09/173)

Calculations:

1. When
$$R_T = 946$$
, Ω , 2.303 $\log R_T = 2.303 \log 946 = 6.8535 52$

OBSERVATION:

As graph is drawn between 1/T in X axis and 2.303 log R, in Y axis where T is temperature in K and R, is the resistance of the thermister at T K

From graph, slope = $\frac{dy}{dx} = \frac{y_1 - y_1}{x_1 - x_1}$

= 7.15 - 5.65 0.00340 - 0.00268

= 2083.3333 2K"

Band gap (Eg) = 2k × Slope of the graph
= 2k × Boltzmann × dy
constant) dn

 $= 2 \times 1.38 \times 10^{-23} \times 2083.3333$

 $= 5.75 \times 10^{-20}$

 $= \frac{5.76 \times 10^{-20}}{1.6 \times 10^{-19}} = 0.3594 \text{ eV}$

Result: The appreximate band gap value of the given therestor is 0.3594 eV GAMS