Metody numeryczne – laboratorium nr 9

Poszukiwanie minimum funkcji dwóch zmiennych – metody bezgradientowe

Zadanie 1

Napisz skrypt, który znajdzie minimum dowolnej funkcji dwóch zmiennych metodą spadku względem współrzędnych. Przyjmij następujące założenia:

- stałą długość kroku α
- $\quad \text{baze wersorów kierunkowych } e = \{e_1, e_2, e_3, e_4\} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$
- losowy punkt startowy w podanym zakresie zmiennych

Przykładowe funkcje do przetestowania skryptu:

L.p.	Funkcja	Zakres zmiennych
1.	$f(x_1, x_2) = x_1^2 + x_2^2$	$x_1 \in [-10, 10]$, $x_2 \in [-10, 10]$
2.	$f(x_1, x_2) = 2x_1^2 + 4x_2^2 - 2x_1x_2 + 4x_1 + 2x_2 - 6$	$x_1 \in [-8, 6]$, $x_2 \in [-6, 5]$

Wyniki działania skryptu zapisz w tabeli dla dwóch wybranych funkcji.

Funkcja <i>f</i>	Zakres i P_{start}	Krok	$oldsymbol{P_{min}}$	$f(P_{min})$	Liczba iteracji	Czas
$f(x_1, x_2) = x_1^2$	<i>x</i> ₁ ∈[-10, 10],	$\alpha = 0.01$	(- 1.96752336645289e- 14, 1.04940361955741e- 13)	2.9295e- 26	1001	1.932824
$+2x_1x_2 + 3x_2^2$	$x_2 \in [-10, 10]$ P_{start} = (-3, 7)	$\alpha = 0.1$	(1.52655665885959e- 15, 8.13238365537927e- 15)	2.2557e- 28	101	0.169792
	,,	$\alpha = 1$	(0, 0)	0	11	0.043027
<i>f(,)</i> 2	$ \begin{array}{c c} 10, & 0.01 \\ 10], & \alpha = 0.01 \\ x_2 \in [-10, 10], & \alpha = 0.1 \end{array} $	$\alpha = 0.01$	(-1, 7.52869988573934e- 16)	-1	401	0.612900
$f(x_1, x_2) = x_1^2 + 2x_1 + x_2^2$		$\alpha = 0.1$	(-1, - 1.38777878078145e- 16)	-1	41	0.084622
		$\alpha = 1$	(-1, 0)	-1	5	0.023693

Dla każdej z funkcji przygotuj dwa wykresy:

a) wykres 3D funkcji w podanym zakresie,

b) wykres poziomicowy na którym zaznaczony zostanie: punkt startowy (z odpowiednim opisem), punkt minimum (z odpowiednim opisem), ścieżka utworzona przez kolejno wyznaczane przez algorytm punkty. W tytule wykresu podaj wartość funkcji w punkcie minimum.

/Tu wstaw wykresy/

Zadanie 2

Dokonaj modyfikacji skryptu z zadania 1 polegające na:

a) wprowadzeniu modyfikacji długość kroku α

- b) zwiększeniu bazy wersorów kierunkowych, o wersory wskazujące kierunki po skosie
- c) zwiększeniu bazy wersorów kierunkowych i modyfikację kroku

Wyniki działania skryptu zapisz w tabeli. Przyjmij te same funkcje oraz punkty startowe jak w zadaniu 1.

a) modyfikacja kroku (przyjmij dokładność znalezienia P_{min} wynoszącą tol=0.01 oraz krok startowy lpha=1)

Funkcja <i>f</i>	Zakres i P _{start}	Dokładność	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
$f(x_1, x_2) = x_1^2 + +2x_1x_2 + 3x_2^2$	$x_1 \in [-10, 10],$ $x_2 \in [-10, 10],$ $P_{start} = (-3, 7)$	tol = 0.01	(0, 0)	0	11	0.031655
$f(x_1, x_2) = x_1^2 + 2x_1 + x_2^2$	$x_1 \in [-10, 10],$ $x_2 \in [-10, 10],$ $P_{start} = (2, -1)$	tol = 0.01	(-1, 0)	-1	5	0.020100

/Tu wstaw wykresy dla modyfikacji a)/

b) modyfikacja bazy wersorów kierunkowych

Funkcja <i>f</i>	Zakres i P _{start}	Krok	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
f()2	$x_1 \in [-10, 10],$	$\alpha = 0.01$	(- 0.0020,0.0020)	8.2004e- 06	890	1.700597
$f(x_1, x_2) = x_1^2 + x_2^2$	$x_2 \in [-10, 10],$	$\alpha = 0.1$	(0.0092,- 0.0092)	1.6885e- 04	90	0.167316
$+2x_1x_2 + 3x_2^2$	$P_{start} = (-3, 7)$	$\alpha = 1$	(0.1213,- 0.1213)	0.0294	10	0.040271
((,,,,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$x_1 \in [-10, 10],$	$\alpha = 0.01$	(-0.9970, - 0.0030)	-1	342	0.548454
$ \begin{aligned} f(x_1, x_2) &= x_1^2 \\ + \\ +2x_1 + x_2^2 \end{aligned} $	$x_2 \in [-10, 10],$	$\alpha = 0.1$	(-0.9899, - 0.0101)	-0.9998	35	0.096435
$+2x_1+x_2$	$\begin{array}{c} P_{start} = (2, \\ -1) \end{array}$	$\alpha = 1$	(-0.7071, - 0.2929)	-0.8284	4	0.017242

/Tu wstaw wykresy dla modyfikacji b)/

c) modyfikacja bazy wersorów kierunkowych i modyfikacja kroku (przyjmij dokładność znalezienia P_{min} wynoszącą tol=0.01 oraz krok startowy $\alpha=1$)

Funkcja <i>f</i>	Zakres i P _{start}	Dokładność	P_{min}	$f(P_{min})$	Liczba iteracji	Czas
$f(x_1, x_2) = x_1^2 + +2x_1x_2 + 3x_2^2$	$x_1 \in [-10, 10],$ $x_2 \in [-10, 10],$ $P_{start} = (-3, 7)$	tol = 0.01	(0.1213 , - 0.1213)	0.0294	10	0.048675
$f(x_1, x_2) = x_1^2 + +2x_1 + x_2^2$	$x_1 \in [-10, 10],$ $x_2 \in [-10, 10],$ $P_{start} = (2, -1)$	tol = 0.01	(- 0.7071 ,- 0.2929)	-0.8284	4	0.022163

/Tu wstaw wykresy dla modyfikacji c)/

