

Determining Absolute Neutrino Mass using Quantum Technologies

Model Building in Particle Physics: Physics Beyond the SM

Anastasiia Semeniuk & Riana Shaba

June 25, 2025

Ref.: https://arxiv.org/abs/2412.06338#

- · Absolute neutrino mass measurements and implications for particle physics
- Motivation for Quantum Technologies for Neutrino Mass (QTNM) Project
- Current developments of the QTNM Project
- Summary

Neutrino mass

- Masses of the fundamental particles Higgs mechanism
- Standard Model: Neutrinos are massless
- Detection of the neutrino oscillations indirect proof that neutrinos have a mass

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_{i}$$

Open questions

Normal or Inverted Mass Order?

 δ_{CP} ?

Absolute Neutrino mass: Cosmological measurement

Cosmological probes: effect of the relic neutrinos on the Cosmic Microwave Background and structure formation of the Universe

- Only sensitive to the sum of masses: $\sum m_{\nu} = m_1 + m_2 + m_3$
- . Current limit $\sum m_{\nu} < 0.113 eV/c^2$ with 90% confidence
 - affected by the choice of astrophysical data
 - depends on the mass ordering
 - weaker confidence if the cosmological model is not $\Lambda {\sf CDM}$

Absolute neutrino mass: Double β -decay

Neutrinoless double β **-decay** can only occur if ν is a massive Majorana particle.

• If decay occurs, its amplitude would be proportional to the neutrino mass

Effective Majorana mass:
$$m_{2\beta} = \sum_{k=1}^{3} U_{ek}^2 m_k$$

- Current limit: KamLAND-Zen Collaboration $|m_{2\beta}|$ < 28 - 122 meV/c^2

Fig. 14.10. Tree-level quark diagram of a $2\beta_{0\nu}^-$ process.

Source: C. Giunti Fundamentals of neutrino physics and astrophysics

Absolute neutrino mass: β -decay

Observing the **electron spectrum** in nuclear β -decay - the most sensitive method.

$$\mathcal{N}(A,Z) \to \mathcal{N}(A,Z+1) + e^- + \bar{\nu}_e$$

Q - surplus energy of the process: $Q_{eta} = M_i - M_f - m_e$

Neutrino energy: $E_{\nu}=Q_{\beta}-T$, T - kinetic energy of the electron.

If the electron antineutrino has a mass, the maximal kinetic energy of the electron:

$$T_{max} = Q_{\beta} - m_{\nu_{e}}$$

The effect of the $m_{
u_e}$ on the electron spectrum is maximal at its end-point

Absolute neutrino mass: β -decay

Tritium eta-decay has the smallest Q-value (18.6 keV) $\,$ the most stringent limit on $m_{
u_e}$

Kurie function
$$K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\nu_e}^2} \right]^{\frac{1}{2}}$$

If
$$m_{
u_e}$$
 = 0: $K(T)=Q_{\beta}-T$ - linear function of T

Tritium experiments aim to measure the endpoint of the electron energy spectrum

Absolute neutrino mass: β -decay

KATRIN - KArlsruhe TRitium Neutrino experiment, operating since 2018

Technique: measurement of the electron energy spectrum from the T_2 molecules' decay using a high-resolution electrostatic spectrometer

The most sensitive experiment (April 2025): m_{ν_e} < 0.45 eV/c^2 with 90% confidence

. Limitations:

Resolution is limited by the size and complexity

Absolute neutrino mass: implications for particle physics

- Neutrino mass ordering test neutrino mass and fermion flavour models
- Cosmological $\sum m_{
 u}$ and laboratory m_{eta} confirmation of Λ CDM model
- Lower limits for $|m_{\beta\beta}|$
- From oscillations: $m_{\beta} \approx$ (8.82 ± 0.11) meV/c^2. If after reaching this sensitivity still nothing

New approach towards neutrino masses

Motivation for the Quantum Technologies for Neutrino Masses

- Oscillation experiments provide no information about the absolute mass values
- Current sensitivity: 0.2 eV/c^2 (KATRIN experiment)

- Promising approach: detection of the cyclotron radiation
- Recent developments in quantum technologies can be beneficial for different areas of the experiment

Source: https://www.katrin.kit.edu/128.php

Goal of the experiment

Development of the new experimental apparatus to measure the absolute neutrino mass with a sensitivity ~ 10 meV/c^2

Cyclotrons

- Particle Accelerator (1930s)¹
- Constant magnetic field, alternating voltage source²

•
$$\overrightarrow{F_L} = e[\overrightarrow{E} + (\overrightarrow{v} \times \overrightarrow{B})]$$

- Works well for non-relativistic regime
- Constant cyclotron frequency³:

$$\nu_{cyc} = \frac{eB}{2\pi m}$$

Source: https://www.researchgate.net/figure/Schematic-view-of-the-classical-cyclotron-principle_fig21_283861027

^{[1]: &}lt;a href="https://www.britannica.com/technology/cyclotron">https://www.britannica.com/technology/cyclotron

^{[2]:} https://www.simply.science/images/content/physics/Electromagnetism/machines_devices/Concept_map/Cyclotron.html

^{[3]:} https://en.wikipedia.org/wiki/Cyclotron

Cyclotrons

Source: https://en.wikipedia.org/wiki/Cyclotron

CRES Experimental Setup⁴

Cyclotron Radiation Emission Spectroscopy

- Detect cyclotron radiation from mildly relativistic electrons (diluted $\,T_2\,$ decay)
- Cyclotron radiation frequency depends on energy:

$$\nu_{CR} = \frac{eB}{2\pi(m_e + E_e/c^2)} \sim \text{GHz}$$

Maximum electron kinetic energy:

$$E_0 = 18.6 \, \text{keV}$$

Detect signal using antennas

Source: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.80.051301

CRES Technique

Cyclotron Radiation Emission Spectroscopy

- → Implementation over a wide range of energies (including the endpoint 18.6 keV)
- → Enclose the measurement region in the spectrometer using a waveguide
- Choose the antenna configuration (end-caps or transverse arrays)
- Optimise all components and maximise radiation collection efficiency
- Usage of microwave frequency metrology
- → Precise determination of cyclotron radiation frequency

Goals and Challenges

Cyclotron Radiation Emission Spectroscopy

- ullet High phase-space density atomic T sources
- Long observational time t_{obs}
- Precise determination of cyclotron radiation frequency and kinetic energies of electrons
- Precise characterisation of the magnetic field:
 - $\sigma_B \simeq \pm 200\,\mathrm{nT}$ & $\sigma_{\nu_{CR}} \simeq \pm 5\,\mathrm{kHz}$ for energy resolution of $\pm 100\,\mathrm{meV}$
 - Limitation of sensors operation at $4\,K$ temperature
- Minimise uncontrolled electric fields from instrumentation imperfections

The QTNM Project

- Build on the work done by Project 8 collaboration & recent quantum technologies
- Measure neutrino mass down to $\sim 10 \, \mathrm{meV}$
- . Sensitivity on $m_{eta}^{90\%}=\sqrt{1.28\sigma_{m_{eta}^2}}$: $m_{eta}^2=\sum_{i=1}^{5}|U_{ei}|^2\,m_i^2$

$$m_{eta}^2 = \sum_{i=1}^3 |U_{ei}|^2 \, m_i^2$$

- Precision of magnetic field characterisation
- Precision of the cyclotron frequency determination:

 - $t_{obs}^{5,6} o ext{upper limit on the frequency precision}$ $t_{obs}^{-1} o ext{lower limit on the frequency precision}$

[5]: H. Cramér. Mathematical Methods of Statistics. Princeton, NJ: Princeton Univ. Press, 1946.

[6]: C. Rao. "Information and the Accuracy Attainable in the Estimation of Statistical Parameters". In: Breakthroughs in Statistics: Foundations and Basic Theory. Ed. by Samuel Kotz and Norman L. Johnson. New York, NY: Springer New York, 1992, pp. 235–247.

Anastasiia Semeniuk, Riana Shaba June 25, 2025

Sensitivity of a CRES experiment

- Bands represent the range of sensitivities expected by the frequency precision limits
- Instrumented volume of $10\,m^3$ can surpass the final limit projected for KATRIN
- NO case toward $\sim 10 \, meV$ lower bound:
 - Increase instrumented volume
 - Increase $oldsymbol{B}$ accuracy

Source: https://arxiv.org/pdf/2412.06338

Goals of QTNM

- lacktriangleright Development of high phase-space density sources of T atoms
- Construction of CRES spectrometer with total instrumented volume $\sim 10\,m^3$
- lacktriangle Exploit atomic quantum sensors for high-precision & minimally-invasive B mapping
- Development of a multichannel antenna to collect cyclotron radiation
 - High efficiency & low background noise
- Development of scalable multichannel quantum-noise-limited cryogenic microwave receivers
 - Precise microwave frequency metrology

Workflow of QTNM apparatus

Source: https://arxiv.org/pdf/2412.06338

- ${
 m I}$: High-density source of T atoms produced by dissociation of T_2 molecules
- ullet II: CRES region ($4\,K$) where cyclotron radiation from electrons in a uniform magnetic field is collected

Magnetic field

- Atoms in high Rydberg states used as quantum sensors
- III: Receiver chain where the cyclotron radiation will be amplified and measured
 - Purpose-developed quantum-noise-limited amplifiers

Current developments

Anastasiia Semeniuk, Riana Shaba

Prototype QTNM storage ring

- Increase the separation between the curved sections → install more CRES modules
- Total instrumented volume $\sim 10 \, m^3$ achievable with 640 modules

Source: https://arxiv.org/pdf/2412.06338

Atomic magnetometry and electrometry

High precision of the neutrino mass measurement -

thorough understanding of the magnetic and electric fields in the CRES region.

- Precision:
 - Magnetic field $\sim 1 \, \mu T$
 - Electric field $\sim 100 \,\mu\text{V/cm}$

How to achieve such precision and keep the measurement minimally invasive?

Tritium atoms as quantum sensors

Atomic magnetometry and electrometry

Circular Rydberg States

- Circular Rydberg States highly-excited electronic states. Electron has the largest possible m_l and l quantum numbers for any ${\bf n}$.
- Advantages:
 - + Energy level shifts due to magnetic and electric fields (Zeeman and Stark effects) can be precisely **analytically calculated**.
 - + The same energy level shifts can be **accurately measured** by Ramsey spectroscopy.
 - → Very sensitive to the magnetic and electric fields.
 - Pair of states that differ in $n \pm 1$ precise sensors.
 - Tiny field variation detectable changes in energy.

Atomic magnetometry and electrometry

Ramsey Spectroscopy Technique

- 1. Preparation of the state superposition
 - Short microwave pulse with frequency matching the ΔE of the states quantum superposition
- 2. Superposition state freely evolves over time
 - The relative phase difference encodes the effects of the fields.
- 3. Projection of the resulting superposition on the two basis Rydberg states
 - Second microwave pulse —— projection of the superposition —— interference fringes

Field's strengths can be deduced from the interference

QTNM electron spectrometer

Requirements:

- A. Detect electrons in the energy range of interest
- B. Measure the frequency of the cyclotron radiation
- C. Provide information on the trajectories of the electrons

- Experimental challenges:
 - ? Cyclotron radiation receivers
 - ? Electrons confinement
 - ? Event-based trigger system

High Signal-to-Noise ratio

Superconducting amplifiers

Superconducting Microwave Amplifiers

Anastasiia Semeniuk, Riana Shaba

^{*}Superconducting Parametric Kinetic-Inductance Amplifiers

^{*}Superconducting Low-Inductance Undulatory Galvanometer (SLUG)

Superconducting Microwave Amplifiers

Superconducting Parametric Kinetic-Inductance Amplifiers (SPKA)

- High gain $\sim (10 30) \, dB$
- Minimal added noise
- Maximal Signal-to-noise ratio (SNR)
- Operation at temperatures $\sim 4 K$
- Easy to manufacture, simple and robust operation
- $\Delta SNR = SNR_{ON} SNR_{OFF}$

Source: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.21.014052

Summary

*Atomic, Molecular and Optical Physics

- Neutrino oscillations remain the strongest support for physics BSM
- Neutrino absolute mass is crucial to understanding the origin of matter and evolution of the early Universe
- \blacktriangleright Promising, model-independent approach through precise measurement of the β -decay spectrum of atomic tritium
- QTNM project aims to tackle the absolute neutrino mass using quantum technologies and AMO* experimental methods
- QTNM proposal surpasses the capabilities of the KATRIN experiment
- ho High phase-space density atomic tritium source, electron spectrometer to measure electron energies near the $18.6\,\mathrm{keV}$ endpoint with precision below $0.1\,\mathrm{eV}$
- Collaboration with international projects like Project 8, KATRIN and PTOLEMY
- The scientific milestone includes sensitivities $\sim 0.05~{\rm eV}$ for IO, and $0.01~{\rm eV}$ for NO neutrino masses
- Potential to explore BSM physics and test advanced quantum technologies with applications beyond fundamental physics