Fall 2013

ER MODELING

[CH 2: SECTIONS 2.1-2.4.2 AND CH3: SECTIONS 3.5.1 - 3.5.4]

Database Design

- Requirements Analysis
 - Data stored, operations, apps, ...
- Conceptual Database Design
 - Model high-level description of the data, constraints, ER model
- Logical Database Design
 - Choose a DBMS and design a database schema
- Schema Refinement
- Physical Database Design
- Application and Security Design

ER Model Basics

- Entity: Distinguishable real-world object
 - Described by a set of attributes, Each attribute has a domain
- Entity Set: A collection of similar entities. E.g., all citizens.
 - All entities in an entity set have the same set of attributes.
 (Until we consider ISA hierarchies!)
 - Key: minimal set of attributes whose values uniquely identify an entity in an entity set
 - Primary key
 - Candidate key
- Pictorially ...

- Relationship: Association among two or more entities
- Relationship Set: Collection of similar relationships

Mathematical relation on n entities (degree N):

$$\{(e_1, e_2, ..., e_n) | e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}$$

- Entity sets:
 - Can participate in > 1 relationship sets in different "roles".

Key Constraints

Key Constraint: Each citizen votes at most once

Key Constraints: Generalize

Each voter votes at most once (for one candidate) and at a single location

Participation Constraints

- Key Constraint: A citizen has a single vote
- Q: Must every citizen vote?
 - This is a participation constraint: Every citizen must participate (total vs. partial).

Other Constructs in the ER model

- Weak Entities: an entity that is dependent on another entity
- Hierarchies: Model "IS A" hierarchies.
- Aggregation: Make a relationship act like an entity when participating in another relationship.

See the text book if you are interested in these advanced constructs

Next Step

Need to map the ER diagram to SQL DDL statements

Logical DB Design: ER to Relational


```
CREATE TABLE Citizens
(ssn CHAR(11),
name CHAR(20),
bday DATE,
PRIMARY KEY (ssn))
```

Relationship Sets to Tables

Relationship set -> Table

Attributes:

- Participating entity set primary keys
 - Foreign key
 - Superkey
- Descriptive attributes

CREATE TABLE Votes(
ssn CHAR(11),

cid INTEGER,

when DATE,

PRIMARY KEY (ssn, cid),

FOREIGN KEY (SSN) REFERENCES Citizens,

FOREIGN KEY (cid) REFERENCES PR-Cands)

Can ssn have a null value?

Can generalize to n-ary relationships

Relationship Sets to Tables

Key Constraints: Review

Key Constraint: Each citizen votes at most once

Key Constraints

PRIMARY KEY (ssn),

FOREIGN KEY (ssn) REFERENCES Citizens, FOREIGN KEY (cid) REFERENCES PR-Cands)

← Approach 1: Three tables

CREATE TABLE Citizen_Votes (

ssn CHAR(11), name CHAR(20), bday DATE, when DATE,

cid INTEGER,

PRIMARY KEY (ssn),

FOREIGN KEY (cid) REFERENCES PR-Cands)

Approach 2: Two tables!

Fold into Citizens.

Q: Can cid be null?

Q: What if many citizens don't vote

Q: Which approach is better?

Can generalize to n-ary relationships

(Total) Participation Constraints

- Participation constraint on OF
 - Use Table constraints and assertions: Expressive but expensive!

Mapping Participating Constraints

r1 Integer, a1 Integer, a2 Integer, a3 Integer, b1 Integer, b2 Integer, b3 Integer, b1 Integer,

Key constraints?

Mapping Participating Constraints


```
create table RAB(
    r1 Integer,
    a1 Integer,
    a2 Integer,
    a3 Integer,
    b1 Integer NOT NULL,
    b2 Integer,
    b3 Integer,
    UNIQUE (b1), PRIMARY KEY (a1))
```

More modeling

 There are well-known techniques to map the advanced ER techniques (e.g. aggregation). See the book if you are interested.

 There are more than one ways to draw the ER diagram. A popular model is the "Crow's Foot Notation."

 Often the diagrams are generated using tools, and initial mappings are produced in automated ways.