algebraic geometry

exercise (2.14). Let $\psi: \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^N$ be the map defined by sending the order pair $(a_0,\ldots,a_r) \times (b_0,\ldots,b_s)$ to (\ldots,a_ib_j,\ldots) in lexicographic order, where N=rs+r+s. Note that ψ is well-defined and injective. It is called the *Segre embedding*. Show that the image of ψ is a subvariety of \mathbb{P}^N . [*Hint*: Let the homogeneous coordinates of \mathbb{P}^N be $\{z_{ij}: i=0,\ldots,r,j=0,\ldots,s\}$ and let \mathfrak{a} be the kernel of the homomorphism $k[\{z_{ij}\}] \to k[x_0,\ldots,x_r,y_0,\ldots,y_s]$ which sends z_{ij} to x_iy_j . Then show that $img \psi = Z(\mathfrak{a})$.

content			

exercise (H-3.16, Products of Quasi-Projective Varieties). Use the Segre embedding (Ex. 2.14) to identify $\mathbb{P}^n \times \mathbb{P}^m$ with its image and hence give it a structure of projective variety. Now for any two quasi-projective varieties $X \subseteq \mathbb{P}^n$ and $Y \subseteq \mathbb{P}^m$ consider $X \times Y \subseteq \mathbb{P}^n \times \mathbb{P}^m$.

- (a) Show that $X \times Y$ is a quasi-projective variety.
- (b) If X, Y are both projective, show that $X \times Y$ is projective.
- (c) Show that $X \times Y$ is a product in the category of varieties.

Solution. content...