CS/Math 113 - Problem Set $5\,$

Dead TAs Society Habib University - Spring 2023

Week 06

Problems

Problem 1. [Chapter 2.1, Question 10] Determine whether these statements are true or false.

- (a) $\phi \in \{\phi\}$
- (b) $\phi \in \{\phi, \{\phi\}\}$
- (c) $\{\phi\} \in \{\phi\}$
- (d) $\{\phi\} \in \{\{\phi\}\}\$
- (e) $\{\phi\} \subset \{\phi, \{\phi\}\}$
- (f) $\{\{\phi\}\}\subset\{\phi,\{\phi\}\}$
- (g) $\{\{\phi\}\}\subset\{\{\phi\},\{\phi\}\}$

Solution:

- (a) True
- (b) True
- (c) False
- (d) True
- (e) True
- (f) False
- (g) False

Problem 2. [Chapter 2.1, Question 21] Find the power set of these sets where a and b are distinct elements.

- (a) $\{a\}$
- (b) $\{a, b\}$
- (c) $\{\phi, \{\phi\}\}$

Solution:

- (a) $\mathcal{P} = \{\phi, \{a\}\}$
- (b) $\mathcal{P} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$
- (c) $\mathcal{P} = \{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\}\}$

Problem 3. [Chapter 2.1, Question 22] Can you conclude that A = B if A and B are two sets with the same power set?

Solution:

The Power Set $\mathcal{P}(\mathbb{A})$ contains the all the possible subsets of the set \mathbb{A} . Therefore, the Union of all elements in the Power Set would result in the original set of \mathbb{A} .

Therefore, if A and B are two sets such that $\mathcal{P}(A) = \mathcal{P}(B)$, then the Union of the elements of $\mathcal{P}(A) = \text{the Union of the elements of } \mathcal{P}(B)$. Hence, it can be concluded that A = B.

Problem 4. [Chapter 2.1, Question 23] How many elements does each of these sets have where a and b are distinct elements?

- (a) $\mathcal{P}(\{a, b, \{a, b\}\})$
- (b) $\mathcal{P}(\{\phi, a, \{a\}, \{\{a\}\}\})$
- (c) $\mathcal{P}(\mathcal{P}(\phi))$

Solution:

- (a) We have 3 elements, therefore there are $2^3 = 8$ distinct elements.
- (b) We have 4 elements, therefore there are $2^4 = 16$ distinct elements.
- (c) The Power Set of null set has only 1 element $[\mathcal{P}(\phi) = \{\phi\}]$. Then the power set of the power set has $2^1 = 2$ elements $\implies \mathcal{P}(\mathcal{P}(\phi)) = \{\phi, \{\phi\}\}$

Problem 5. [Chapter 2.1, Question 25] Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$

Solution:

Since we have **if and only if**, then we will have to prove that the statement holds both sides.

Case 1: If $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \subseteq B$

Consider any arbitrary element a such that $a \in A$. Then $\{a\} \subseteq A$. Therefore, $\{a\} \in \mathcal{P}(A)$. Since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, and $\{a\} \in \mathcal{P}(A)$, it follows (by transitivity) that $\{a\} \in \mathcal{P}(B)$. Since $\{a\}$ exists within the power set of B, then that implies that $\{a\} \subseteq B \implies a \in B$. Hence proved if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \subseteq B$.

Case 2: If $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Consider any arbitrary element a such that $a \in A$. Since $A \subseteq B$, then $a \in B$. Then we know that $\{a\} \subseteq A \implies \{a\} \in \mathcal{P}(A)$. Since $a \in B$, then $\{a\} \subseteq B \implies \{a\}in\mathcal{P}(B)$. Therefore, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Hence proved.

Problem 6. [Chapter 2.1, Question 26] Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$

Solution:

For two sets A and B, $A \times B$ is defined as a pair (a,b) where $a \in A$, $b \in B$. We know that $A \subseteq C$, and $B \subseteq D$, then for any arbitrary elements a and b, $a \in A$, $b \in B \implies a \in C$, $b \in D$. Therefore, $(a,b) \in C \times D$. Since $(a,b) \in A \times B$, therefore $A \times B \subseteq C \times D$. Hence shown.

Problem 7. [Chapter 2.1, Question 27] Let $A = \{a, b, c, d\}$ and $B = \{x, y\}$. Find

- (a) $A \times B$
- (b) $B \times A$

Solution:

(a)
$$A \times B = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y), (d, x), (d, y)\}$$

(b)
$$B \times A = \{(x, a), (x, b), (x, c), (x, d), (y, a), (y, b), (y, c), (y, d)\}$$

Problem 8. [Chapter 2.1, Question 38] Show that $A \times B \neq B \times A$, when A and B are nonempty, unless A = B

Solution:

Consider that $A \neq B$. Then there exists some arbitrary element a in A such that a does not exists in B. $\exists a \in A$ such that $a \notin B$. And we know that $A \neq \phi$ and $B \neq \phi[A$ and B are not empty]. Then for any arbitrary element $b \in B$, $(a,b) \in A \times B$ however, $(a,b) \notin B \times A$. The same can be said for any arbitrary element $b \in B$ where $b \notin A$. Therefore, $A \times B \neq B \times A$ for two non empty sets A and B if $A \neq B$ which implies it is only the case when A = B. Hence proved.

Problem 9. [Chapter 2.1, Question 44] Prove or disprove that if A, B, and C are nonempty sets, and $A \times B = B \times C$, then B = C

Solution:

 $A \times B = \{(a, b) \mid a \in A \land b \in B\}$ $B \times C = \{(b, c) \mid b \in B \land c \in C\}$

If $A \times B = B \times C$, then for any pair $(a,b) \in A \times B$, we can conclude that $(a,b) \in B \times C \implies a \in B$, $b \in C$. Therefore, $\forall a \in A \to a \in B$. Similarly, $\forall b \in B \to b \in C \equiv A \subseteq B \subseteq C$ and that without loss of generality $C \subseteq B \subseteq A$. Therefore B = C. Hence proved.

Problem 10. [Chapter 2.2, Question 5] Prove the complementation law in Table 1 by showing that $\bar{A} = A$

Solution:

By definition of complement, $\forall a \in A \to a \notin \bar{A}$. Similarly by the definition of the complement, $\forall a' \in \bar{A} \to a' \notin A$.

Then $\forall a\bar{A} \to a \notin \bar{A}$. Since a does not exist in \bar{A} , then by the definition, a exists in A. Hence we can conclude that $\bar{A} = A$.

This proof can be written in another way:

$$\bar{A} = \{x | \neg x \in \bar{A}\} = \{x | \neg \neg x \in A\} = \{x | x \in A\} = A$$

Hence proved.

Problem 11. [Chapter 2.2, Question 11] Let A and B sets. Prove the commutative laws from Table 1 by showing that

- (a) $A \cup B = B \cup A$
- (b) $A \cap B = B \cap A$

Solution:

- (a) By the definition, $A \cup B = \{x | x \in A \lor x \in B\}$ Then from the definition, $A \cup B = \{x | x \in A \lor x \in B\} = \{x | x \in B \lor x \in A\} = B \cup A$. Hence proved.
- (b) By the definition, $A \cap B = \{x | x \in A \land x \in B\}$ Then from the definition, $A \cap B = \{x | x \in A \land x \in B\} = \{x | x \in B \land x \in A\} = B \cap A$ Hence proved

Problem 12. [Chapter 2.2, Question 19] Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \bar{A} \cup \bar{B} \cup \bar{C}$

- (a) by showing each side is a subset of the other side
- (b) using a membership table.

Solution:

(a) By definition, $\overline{A \cap B \cap C} = \{x | x \notin A \lor x \notin B \lor x \notin C\} = \{x | x \in \overline{A} \lor x \in \overline{B} \lor x \in \overline{C}\} = \overline{A} \cup \overline{B} \cup \overline{C}$. Hence shown that $\overline{A \cap B \cap C} \subseteq \overline{A} \cup \overline{B} \cup \overline{C}$. Conversely, by definition $\overline{A} \cup \overline{B} \cup \overline{C} = \{x | x \in \overline{A} \lor x \in \overline{B} \lor x \in \overline{C}\} = \{x | x \notin A \lor x \notin B \lor x \notin C\} = \overline{A \cap B \cap C}$. Hence proved that $\overline{A} \cup \overline{B} \cup \overline{C} \subseteq \overline{A \cap B \cap C}$

(b)

A	$\mid B \mid$	C	$A \cap B \cap C$	$A \cap B \cap C$	$ \bar{A} $	\bar{B}	$ \bar{C} $	$ \bar{A} \cup \bar{B} \cup \bar{C} $
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

Hence shown that their truth values are same, hence they are logically equivalent.

Problem 12. Prove or disprove that for all sets $A, B, A \subset C$ we have

- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Solution:

- (a) Suppose that $(x,y) \in A \times (B \cup C)$. Then $x \in A$ and $y \in (B \cup C) \implies y \in B \vee y \in C$. Since y exists in either B or C, and x exists in A, then $(x,y) \in (A \times B) \vee (x,y) \in (A \times C) \implies (x,y) \in (A \times B) \cup (A \times C)$. Therefore $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$. Similarly, suppose that $(x,y) \in (A \times B) \cup (A \times C)$. Then $(x,y) \in (A \times B) \vee (x,y) \in (A \times C) \implies x \in A$, and $y \in B \vee y \in C \implies y \in (B \cup C)$. So, $(x,y) \in A \times (B \cup C)$. Therefore $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$. Hence proved that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- (b) Suppose that $(x,y) \in A \times (B \cap C)$. Then $x \in A$ and $y \in B \cap C \implies y \in B$, $y \in C$. Since y exists in both B and C, and x exists in A, then $(x,y) \in A \times B$ and $(x,y) \in A \times C \implies (x,y) \in (A \times B) \cap (A \times C)$. Therefore $A \times (B \cap C) \subseteq (A \times B) \cap (B \times C)$. Similarly, suppose $(x,y) \in (A \times B) \cap (B \times C)$. Then we know that $(x,y) \in A \times B$, and $(x,y) \in A \times C$. Therefore, $x \in A$, $y \in B$, $y \in C$. Hence $y \in B \cap C \implies (x,y) \in A \times (B \cap C)$. Therefore $(A \times B) \cap (B \times C) \subseteq A \times (B \cap C)$. Hence proved that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Problem 13. [Chapter 2.2, Question 44] Show that if A and B are finite sets, then $A \cup B$ is a finite set.

Solution:

For any finite sets A and B, suppose that A has n elements and B has m elements where n and m are natural numbers. Then $A \cup B$ at most has n+m elements. Since n and m are natural numbers, n+m is also a natural number. Therefore, $A \cup B$ is finite.

Problem 14. [Chapter 2.2, Question 45] Show that if A is an infinite set, then whenever B is a set, $A \cup B$ is also an infinite set.

Solution:

We know that A is an infinite set. Then consider that $A \cup B$ is a finite set. Then $A \cup B$ has a total number of n elements, where n is any natural number. However, we know that

A is infinite, therefore, A has more than n elements as A is infinite. Hence we have a contradiction. So $A \cup B$ cannot have n elements, but will have all elements of A, which implies $A \cup B$ is also infinite.