2020年普通高等学校招生全国统一考试 理科数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
- 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

$1.$ 已知集合 $A \square \{(x$	$(y) x, y \square \mathbf{N}^*, y \square x \}, B \square$	$\exists \{(x,y) \mid x \Box y \Box 8\}, \emptyset \mid A$	$\square B$ 中元素的个数为(\square)
A. 2 【答案】C 【解析】	B. 3	C. 4	D. 6
【分析】			
	$A \square B$ 中元素的即可.		
【详解】由题意,	$A \square B$ 中的元素满足 \square \square \square N \square	y □ x , 且 *, □ □ x,y□	
$\pm x \Box y \Box 8 \Box 2x$;, 得 <i>x</i> □ 4,		
所以满足 $x \square y \square$	8的有(1,7),(2,6),(3,5),(4	4,4),	
故 $A \square B$ 中元素的	个数为4.		
故选: C.			
【点晴】本题主要	考查集合的交集运算,考	查学生对交集定义的理解	,是一道容易题.
1 2.复数 1 □ 3i	是 ()		
\Box 3	□ 1	1	3
A.	В.	C.	D. 10
10 【答案】D	10	10	
【解析】			
关注《公众传》—个高中僧	"获取更多高中资料		

利用复数的除法运算求出z即可. $1 \square 3i \quad (1 \square 3i)(1 \square 3i) \quad 10 \quad 10$ $z \square$ 的虚部为 . 所以复数 $1 \square 3i$ 10 故选: D. 【点睛】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.在一组样本数据中,1,2,3,4出现的频率分别为 p_1,p_2,p_3,p_4 ,且 $\prod_{i=1}^{4} p_i \prod_{i=1}^{4} 1$,则下面四种情形中,对应样本的标准差最大的一组是() A. $p_1 \square p_4 \square 0.1, p_2 \square p_3 \square 0.4$ C. $p_1 \square p_4 \square 0.2, p_2 \square p_3 \square 0.3$ 【答案】B 【解析】 【分析】 计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A选项,该组数据的平均数为 $\Box 1$ 4 \Box 0.1 $\Box 2$ 3 \Box 0.4 2.5, $x \square \square \square \square \square \square \square$ 方差为 □ □ □ □ □ □ □ □ □ $s^2 \square 1 \square 2.5 \square 0.1 \square 2 \square 2.5 \square 0.4 \square 3 \square 2.5 \square 0.4 \square 4 \square 2.5 \square 0.1 \square 0.65$ 对于B选项,该组数据的平均数为x \square \square 1 \square 4 \square \square 0.4 \square \square 2 \square 3 \square \square 0.1 \square 2.5, 方差为 🗆 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 $s^2 \square 1 \square 2.5 \square 0.4 \square 2 \square 2.5 \square 0.1 \square 3 \square 2.5 \square 0.1 \square 4 \square 2.5 \square 0.4 \square 1.85$ 对于C选项,该组数据的平均数为x \square \square 1 \square 4 \square \square 0.2 \square \square 2 \square 3 \square \square 0.3 \square 2.5, 方差为 🗆 🗅 🗅 🗅 🗅 🗅 🗅 2

 $s^2 \square 1 \square 2.5 \square 0.2 \square 2 \square 2.5 \square 0.3 \square 3 \square 2.5 \square 0.3 \square 4 \square 2.5 \square 0.2 \square 1.05$

方差为]		\square_2		\square_2		\square_2		\square_2	
	s^2	\Box 1 \Box 2.5	5 □ 0.3 □	2 🗆 2.5	\square 0.2 \square	3 □ 2.5	\square 0.2 \square	4 □ 2.5	\square 0.3 \square 1.45	
因业	B选:	而☆ —细』	的标准差最	*						
口IDU,	Die.	火区 坦	小小庄在取	八.						

【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.

故选: B.

4.Logistic模型是常用数学模型之一,可应用于流行病学领城。有学者根据公布数据建立了某地区新冠肺炎

The	累计确诊病例数I(t)(t的单	位:天)的Logistic模型:	$I t = \frac{K}{0.23(53)}$, 其中 <i>K</i> 为最大确诊病例数.当 <i>I</i> (<i>t</i>
A. 60 B. 63 C. 66 D. 69 【答案】 C 【解析】 【分析】				*
[答案] C)=0.95 <i>K</i> 时,标志着已初去	♭遏制疫情,则 <i>t</i> ∗约为	() (ln19≈3)	
「	A. 60	B. 63	C. 66	D. 69
	【答案】C			
接合	【解析】			
将 t □ t ○ 代入函数 □	【分析】			
		<i>K</i>		
I to		结合	□ □ 0.95 対	· 守得 即可得解.
	$I t \square$		$\overline{}$ K t_{\square}	
K K K N N N N N N N N N N N N N N N N N		$1 \square e$		
「详解】				
-	I	ζ	K	
I t □ □ □ 0.95K □ □ □ 0.23 t 53 19 □ 0.23 t 53 19 □ 0.23 t 53 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	【详解】	,所以		,则
	$-\frac{\sqcup}{I}_{I}$	_		ап П
0.23 r 53 19 0.23 r 53 19 0.23 r 53 0 0 0 0 0 0 0 0 0	- ,		\square 0.	
e 1 e 1 □ e 1 □ e 所以, 0.23 □ t 53 □ ln19 3, 解得 t□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		Ц		0.23 t 53 19
e 1 e 1 □ e 1 □ e 53 □ 53 □ 66 — 所以, 0.23 □ t □ 53 □ ln19 3, 解得 t□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			$\square 0.23 \ t \ \square 53$	
1 e 1 □ e 3 53 66	0	.23 □ <i>t</i> 53 □		_
□□□□□□□35366 □□□□□□□□□□□□□□□□□□□□□□□□□□	1 e			e
— 所以,0.23 □ t 53 □ ln19 3,解得 t□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			1 □ <i>e</i>	
t_{\square} \square			3 53 66	
故选: C . 【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设 O 为坐标原点,直线 x = 2 与抛物线 C : y^2 = $2px(p>0)$ 交于 D , E 两点,若 $OD \bot OE$,则 C 的焦点坐标	所以, 0.23 □ t 53 □	t \square		
【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设 O 为坐标原点,直线 x =2与抛物线 C : y^2 =2 $px(p>0)$ 交于 D , E 两点,若 $OD\bot OE$,则 C 的焦点坐标	故选: C.			
5.设 O 为坐标原点,直线 x =2与抛物线 C : y^2 =2 $px(p>0)$ 交于 D , E 两点,若 $OD \perp OE$,则 C 的焦点坐标		运算,考查指数与对数) 放的互化,考查计算	「能力,属于中等题.
)	5.设 <i>O</i> 为坐标原点,直线x	;=2与抛物线 <i>C: y</i> 2=2 <i>px</i> ((p>0)交于 <i>D,E</i> 两点	、若OD⊥OE,则C的焦点坐标为
)			
1 注公众号"一介高中僧"获取更多高中资料0) C. (1, 0) D. (2, 0) 4 2			C. (1, 0)	D. (2, 0)

【分析】
$\Box COx \Box \Box COx \Box_{4}^{\Box}$
根据题中所给的条件 $OD \ \square \ OE$,结合抛物线的对称性,可知 ,从而可以确定出点
D p 的坐标,代入方程求得 的值,进而求得其焦点坐标,得到结果.
【详解】因为直线 $x \square 2$ 与抛物线 $y^2 \square 2px(p \square 0)$ 交于 C,D 两点,且 $OD \square OE$,
$\square DOx \square \square COx \square$ $C(2,2)$ 根据抛物线的对称性可以确定 , 所以 , 4
代入抛物线方程 $4 \square 4p$, 求得 $p \square 1$,所以其焦点坐标为 $(1,0)$, 2
故选: B.
【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,

点在抛物线上的条件, 抛物线的焦点坐标, 属于简单题目.

【答案】B

【解析】

 $2AB \square BC$

【详解】 \Box 在AABC中, $\cos C$ \Box 3

根据余弦定理: $AB^2 \square AC^2 \square BC^2 \square 2AC \square BC \square \cos C$

 $\begin{array}{c|ccccc}
AB^2 & 4^2 & 3^2 & \\
2 & 4 & 3 & \\
\end{array}$

可得 $AB^2 \square 9$,即 $AB \square 3$

故选: A.

【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.

A. 6+4 2

B. 4+4 2

C. 6+2 3

D. 4+2 3

【答案】C

【解析】

【分析】

根据三视图特征, 在正方体中截取出符合题意的立体图形, 求出每个面的面积, 即可求得其表面积.

根据勾股定理可得: $AB \square AD \square DB \square 2 2$

$$\square \triangle ADB$$
 2 2 $\sqrt{}$ 一是边长为 的等边三角形 $\sqrt{}$

根据三角形面积公式可得:

□ 该几何体的表面积是:	$3 \square 2 \square 2\sqrt{3} \square 6 \square \cancel{2} 3$		
故选: C.			
【点睛】本题主要考查了	[*] 根据三视图求立体图形的表	長面积问题,解题关键是掌	握根据三视图画出立体图形
,考查了分析能力和空间	可想象能力,属于基础题.		
9.已知 $2\tan\theta$ $-\tan(\theta + \frac{\pi}{4})$ =7	,则 $ an heta=$ $()$		
A. –2	B. –1	C. 1	D. 2
【答案】D			
【解析】			
【分析】			
利用两角和的正切公式,	结合换元法,解一元二次方	方程,即可得出答案. ———	
【详解】 2 tan tan	$_{}$ 7, \Box 2 tan \Box	tan 1	
	□ 4 □	$1 \square \tan \square$	
$\diamondsuit t \square \tan \square, t \square 1, 则 2$	2 1 7,整理得	,解得 ,即	
\sqrt{t}	$ \begin{array}{ccc} \square t \\ \square & & \\ 1 \square t \end{array} $	$t \square 4 \square 0$ $t \square 2$	tan □ 2
故选: D.	_	_	
【点睛】本题主要考查了	了利用两角和的正切公式化简	简求值,属于中档题.	
10.若直线 <i>l</i> 与曲线 <i>y= x</i> 5	1 和 <i>x²+y²=</i> 都相切,则 <i>l</i> 的方程 5	程为 ()	1 2
A. <i>y</i> =2 <i>x</i> +1	B. $y=2x+$ $\sqrt{}$	-C. $y = $ $ x+1 $ $ 2$	D. $y = \frac{1}{x}$
【答案】D	$\sqrt{2}$	2	2
【解析】√			
【分析】	$\sqrt{}$	$\sqrt{}$	
根据导数的几何意义设置	— 出直线 I 的方 程,再由直线与 √	圆相切的性质,即可得出得	
【详解】设直线/ 在曲线	y─□ x 上的 切点为 □ √	= □, 则 , <i>x</i> □	
	x_0, x	· ₀ 0 0	

		l	k	□ 函数 y	
	,则直线	的斜率		,	
	y				
	2 x				
				2 x	
				0	
	1				
设直线 l 的方程为		\Box ,	即		,
<i>y</i> [$\Box x \Box$	$x \square x$			
	0 0	0	$x \square 2$	$x \ y \square x \square$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U			
	0			0 0	
	Ü				
		x	1		
2	2 1				
		0			
$\Box x$	$\Box y \Box$				
由于直线 1 与圆	相切,则		,		
		$1 \square 4x$			
	5 5				
		Δ.			

A. a < b < c B. b < a < c C. b < c < a D. c < a < b

关注公民= 55 < 84 高山管 發取資 零售 等 资料 $= \log_{13} 8$ 则()

【答案】A			
【解析】			
【分析】			

由题意可得 a 、 b 、 c \square 0,1 \square , 利用作商法以及基本不等式可得出 a 、 b 的大小关系,由b \square \log_8 5 , 得

关注公务等。一个高中僧"获取更多高中资料

【分析】

作出可行域, 利用截距的几何意义解决.

【详解】不等式组所表示的可行域如图

因为 $z \square 3x \square 2$	y ,所l	以 3		,易知截距	越大,	则	越大,
		\boldsymbol{x}	\boldsymbol{z}	z			
		$y \square \square$					
						\boldsymbol{z}	
		2	2	2			
$y \ \square \ \square$	3x	3					
		\boldsymbol{x}	\boldsymbol{z}				
		$y \square \square$					
平移直线	,当			经过4点时截距	量最大,	此时	tz最大,
	2	2	2				
$\Box y \Box 2x$	$\Box x \Box$]					
	1						
ПП	ПГ						
		A(1,2)	ф				
,得,	,	11(1,2)	щ				
x = 1	<i>y</i> 2						
所以 z _{max} □ 3 □ 1	1 □ 2 □	2 □ 7					

故答案为: 7.

【点睛】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想 是一道容易题。

,正 坦台勿咫・
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
【答案】 240
【解析】
【分析】
_ 6
ПП

其二项式展开通项:

故答案为: 240.

【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握 $\,\Box\, a \,\Box\, b \,\Box\,$

的展开通项公式 □1 □ C , 考查了分析能力和计算能力, 属于基础题.

$$T \qquad ra^{n\Box r}b^{r}$$

15.已知圆锥的底面半径为1, 母线长为3, 则该圆锥内半径最大的球的体积为______

【解析】

【分析】

将原问题转化为求解圆锥内切球的问题, 然后结合截面确定其半径即可确定体积的值.

【详解】易知半径最大球为圆锥的内切球, 球与圆锥内切时的轴截面如图所示,

其中 $BC \square 2$, $AB \square AC \square 3$,且点 $M \ni BC$ 边上的中点,

$$\sqrt{}$$
 $\sqrt{}$ $\sqrt{}$

由于AM \square 3^2 \square 1^2 \square 2 2 , 故 \square \square 2 \square

设内切圆半径为r.则:

解得: $r = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ 其体积: $V \square^4 \square r^3 \square^2 \square$ \square

故答案为: $\frac{2}{3}$ \square .

【点睛】与球有关的组合体问题,一种是内切,一种是外接,解题时要认真分析图形,明确切点和接点的 关注公众号"一个高中僧"获取更多高中资料 位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中

心,	正方体的棱长等于球的直径;	球外接于正方体,	正方体的顶点均在球面上,	正方体的体对角线长等于
球的	的直径.			

$\frac{1}{\sin x}$	
$\sin x$ \Box 有如下四个命题: $\sin x$	
① $f(x)$ 的图像关于 y 轴对称 .	
② $f(x)$ 的图像关于原点对称.	
③ $f(x)$ 的图像关于直线 $x=$ 对称 .	
4f(x) 的最小值为2.	
其中所有真命题的序号是	
【答案】②③	
【解析】	
【分析】	
利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命	⁶ 题②的正误;利用对称性的定义可能。
断命题③的正误;取 $\Box\Box\Box x \Box 0$ 可判断命题④的正误:综合可得出统	结论. — —
	5
(详解】对于命题①, 2 f 2 (□□ 「別
所以,函数 $f\square x\square$ 的图象不关于 y 轴对称,命题①错误;	
对于命题②,函数 f - \Box x \Box 的定义 $域$ 为 \Box x x \Box x k \Box z Z \Box ,定义 z	域关 于原点对称,
	,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f x
所以,函数 $f\square x\square$ 的图象关于原点对称,命题②正确;	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
文文工会题③ 《注公众号题③个高中僧"获取更多高中资料 sin co	os ,

	\boldsymbol{x}
	_ x _
	x
□ □ 1 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cos x $cos x$ cos
2 2 sin	cos
$\Box \ 2 \ \Box$	
所以,函数 $f \square x \square$ 的图象关于直线 $x \square$ 2	†称,命题③正确 ;
对于命题④,当 \Box \Box x \Box 0 时, $\sin x$ \Box 0	,则 $f \square x \square \square \sin x \square$ $\square 0 \square 2$,
命题④错误.	

故答案为: ②③.

【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.
三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个
试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一) 必考题: 共60分.
17.设数列 $\{a_n\}$ 满足 $a_1=3$, $a_{n\square 1} \square 3a_n \square 4n$.
(1) 计算 a_2 , a_3 , 猜想 $\{a_n\}$ 的通项公式并加以证明;
(2) 求数列 $\{2^na_n\}$ 的前 n 项和 S_n .
【答案】(1) a_2 \square 5, , a \square n \square ,证明见解析;(2) (2 1) 2^{n} \square 2.
3 7 n
【解析】
【分析】
(1)利用递推公式得出 a_2,a_3 , 猜想得出 \square \square 的通项公式,利用数学归纳法证明即可; a "
(2) 由错位相减法求解即可.
【详解】 (1) 由题意可得 a_2 \square $3a_1$ \square 4 \square 9 \square 4 \square 5 , $ _3$ 3 $ _2$ 8 15 8 7 , $ _a$ \square a \square \square \square \square \square
由数列 $\square a$ \square 的前三项可猜想数列 \square \square 是以为首项, 2 为公差的等差数列,即
$a \qquad a \qquad$
证明如下:
当 <i>n</i> □ 1 时, 1 3 成立; <i>a</i> □
假设 $n \square k$ 时, $a \square 2k \square 1$ 成立.
那么 $n \square k \square 1$ 时, $a_{\square 1} \square 3a_{k} \square 4k \square 3(2k \square 1) \square 4k \square 2k \square 3 \square 2(k \square 1) \square 1$ 也成立。
则对任意的 $n \square N_*$,都有 $a_n \square 2n \square 1$ 成立;
(2) 由 (1) 可知, $a \square 2^n \square (2n \square 1) \square 2^n$
$S \square 3 \square 2 \square 5 \square 2 \square 7 \square 2 \square \square \square (2n \square 1) \square 2^{n\square} \square (2n , \square)$ $\square 1) \square 2^n$ $2 3 1$
$2S \square 3 \square 2^2 \square 5 \square 2^3 \square 7 \square 2^4 \square \square \square (2n \square 1) \square 2^n \square (2n \square 1) \square 2^{n \square 1}$

关注公众号"一个高中僧"获取更多高中资料

【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.

18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次 空气质量等级	[0, 200]	(200, 400]	(400, 600]
1 (优)	2	16	25
2 (良)	5	10	12
3(轻度污染)	6	7	8
4(中度污染)	7	2	0

- (1) 分别估计该市一天的空气质量等级为1, 2, 3, 4的概率;
- (2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
- (3) 若某天的空气质量等级为1或2,则称这天"空气质量好";若某天的空气质量等级为3或4,则称这天"空气质量不好".根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

	人次≤400	人次>400
空气质量好		
空气质量不好		

2	
	n ad bc

附:		,		
$K \square$				
($(a \square b)(c \square d)(a \square c)(a \square c)$	$(b \Box d)$		
$P(K^2 \ge k)$	0.050	0.010	0	0.001
k	3.841	6.635	1	0.828

【答案】 (1) 该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09

; (2) 350; (3) 有, 理由见解析.

【解析】

【分析】

空气质量好

- (1) 根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;
- (2) 利用每组的中点值乘以频数, 相加后除以100可得结果;

22

(3) 根据表格中的数据完善 $2 \square 2$ 列联表,计算出 K^2 的观测值,再结合临界值表可得结论.

2 16 25 2 【详解】(1) 由频数分布表可知, 该市一天的空气质量等级为1的概率为 0.43. 等级为 100 5 10 12 3 $6 \square 7 \square 8 \square 0.21$ 4 $7 \square 2 \square 0 \square 0.09$ 0.27 的概率为 等级为 的概率为 , 等级为 的概率为 100 100 100 100 20 300 35 500 45 350 П (2) 由频数分布表可知. -- 医中到该公园锻炼的人次的平均数为 100 (3) 2□2列联表如下: 人次 □ 400 人次 □ 400 33 37 空气质量不好

8

 $BF \square 2FB$

- (1) 证明: 点C₁在平面 AEF 内;
- (2) 若 AB □ 2 , AD □ 1 , AA 1 □ 3 , 求二面角 的正弦值 .
 A □ EF □ A
 1

【答案】 (1) 证明见解析; (2) $\sqrt{42}$

【解析】

【分析】

- (1) 连接 C_1E 、 C_1F , 证明出四边形 AEC_1F 为平行四边形, 进而可证得点 C_1 在平面 AEF 内;
- (2) 以点 C_1 为坐标原点, C_1D_1 、 C_1B_1 、 C_1C 所在直线分别为x 、y 、z 轴建立空间直角坐标系

 $C \square xyz$

,利用空间向量法可计算出二面角 $A \square EF \square A$ 的余弦值,进而可求得二面角 的正弦值. $A \square EF \square A$

【详解】 (1) 在棱CC 上取点G ,使得CG \square CG ,连接DG 、FG 、CE 、CF , 2

在长方体 ABCD \square $A_1B_1C_1D_1$ 中, AD//BC 且 AD \square BC , 1// 1 且 BB CC BB \square CC

所以,四边形 BCGF 为平行四边形,则 AF//DG 且 $AF \square DG$,

同理可证四边形 DEC_1G 为平行四边形, $\Box C_1E/\!\!/DG$ 且 $CE \Box DG$

 $\Box C_1 E //AF$ $C E \Box AF$

AEC F 且 则四边形 为平行四边形 关注公众号"一个高中僧"获取更多高中资料 1 因此,点 C_1 在平面AEF内;

(2) 以点 C_1 为坐标原点, C_1D_1 、 C_1B_1 、 C_1C 所在直线分别为x、y、z 轴建立如下图所示的空间直角坐标系 C_1 \square xyz ,

$m \square n$ 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
设二面角 $A \square EF \square A_1$ 的平面角为 \square ,则 $\cos \square \square $
因此,二面角 $A \square EF \square A_1$ 的正弦值为 42 . 7
【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能
力,属于中等题.
$x \square y \square \square \square \square$
20.已知椭圆 <i>C</i> : 1(0 <i>m</i> 5)的离心率为 , <i>A</i> , <i>B</i> 分别为 <i>C</i> 的左、右顶点 . 25 <i>m</i>
4

(1)	求 C 的方程;
(1)	

(2) 若点P在C上,点Q在直线 $x \square 6$ 上,且 $|BP|\square|BQ|$, $BP \square BQ$,求AAPQ的面积.

$$\frac{x}{2} \frac{y}{16^{2}} = \frac{5}{25}$$
[答案] (1) 1; (2) . 25 25 2

【解析】

(1) 因为C: 1(0 m 5),可得 , 根据离心率公式,结合已知,即可求得答案; 25 m

(2) 点 P 在 C 上,点 Q 在直线 $x \square 6$ 上,且 $|BP|\square |BQ|$, $BP \square BQ$,过点 P 作 x 轴垂线,交点为 M

,设 $x \Box 6$ 与x轴交点为 \overline{N} ,可得 $\triangle \triangle PMB \Box BNQ$,可求得P点坐标,求出直线AQ

的直线方程,根据点到直线距离公式和两点距离公式,即可求得AAPQ的面积.

【详解】 (1)
$$\Box$$
 $\sqrt{x^2 + y^2}$ $\sqrt{-}$ $\sqrt{-}$ $C: \Box \Box 1(0 \Box m \Box \Box 1)$ $25 m$

$$\Box a \Box 5$$
, $b \Box m$,

$$\square$$
 C X_2 Y_2 \square 2 \square 1 的方程为: \square \square \square

$$x \square y \square$$

(2) \Box 点P在C上,点Q在直线x \Box 6上,且|BP| \Box |BQ|,|BP| \Box |BQ|,|BP|

过点 P 作 x 轴垂线,交点为 M ,设 x \square 6 与 x 轴交点为 N 根据题意画出图形,如图

$\Box \mid BP \mid \Box \mid BQ \mid$	$BP \square BQ$	$\Box PMB \ \Box \ \Box QNB \ \Box \ 90 \ \Box$
---------------------------------------	-----------------	---

$$\mathbb{Z} \square \square PBM \square \square QBN \square 90\square$$
, $\square BQN \square \square QBN \square 90\square$,

$$\Box \ \Box PBM \ \Box \ \Box BQN$$

根据三角形全等条件" AAS",

可得: $\triangle \triangle PMB \square BNQ$,

$$\Box B(5,\emptyset)$$

$$\square$$
 PM \square BN \square 6 \square 5 \square 1

设P点为 (x_{P}, y_{P}) ,

 $x^2 \square 16y^2 \square$

可得P点纵坐标为y \square 1,将其代入

1 25 25

x² □ 16 □ 可得: , | |₂₅ 25

解得:
$$x_P \square 3 \stackrel{\cdot}{\underset{P}{\text{od}}} x \square \square 3$$
,

①当 *P* 点为 (3,1)时,

关注公众号"一个高中僧"获取更多高中资料

故 *MB* □ 5 □ 3 □ 2,

- $\Box \triangle \triangle PMB \Box BNQ$,
- $\Box \mid MB \mid \Box \mid NQ \mid \Box 2$

可得: Q点为(6,2),

画出图象, 如图

 $\Box \ A(\Box 5,0) \ \ Q(6,2)$

可求得直线 AQ 的直线方程为: $2x \square 11y \square 10 \square 0$,

根据两点间距离公式可得: AQ \square $\square 6 \square 5 \square$ $\square 2 \square 0 \square$ $\square 5$ 5,

②当 *P* 点为 (□3,1) 时,

故 *MB* □ 5+3 □ 8,

2 4 2 4 2 4

, 采用反证法, 推出矛盾即可.

【详解】 (1) 因为 $f(x) \square 3x^2 \square b$,

由题意, $f() \square 0$,即 $\square \square \square \square b \square$

2

□ 2 □

, b □ □ 则 ; 4 3 3

 $f(x) \square x \square x \square c$ (2) 由 (1) 可得 4

```
f(x) \square 3x \square \square \square 3(x \square \square)(x \square \square)
所以 f(x) 在 - 上单调递减,在- 0 0 0
                                    ( , \Box \Box )
                            (, 1)
           2 2
           1 1
                   1
f(\Box 1) \Box c \Box , f(\Box 1) \Box c \Box 
                                         f(\Box 1) \Box 0 f(1) \Box 0
若 f(x) 所有零点中存在一个绝对值大于1的零点 ,则
 c \square 1
   1
      c \square \square
 c \square (1) 1 0, (1) 1 0, (1) 1 0
        \nabla f(\Box 4c) \Box \Box 64c^3 \Box 3c \Box c \Box 4c(1\Box 16c^2) \Box 0
由零点存在性定理知 f(x) 在 (\Box 4c, \Box 1)上存在唯一一个零点
即 f(x) 在 (\Box1)上存在唯一一个零点,在 (\Box1,\Box1)上不存在零点,
此时 f(x) 不存在绝对值不大于1的零点,与题设矛盾;
 c \square \square (1) 1 0, (1) 1 0, (1) 1 0
         f \square c \square c \square f \square c \square f \square c \square
□当
                             2
                                           2 4
\nabla f(\Box 4c) \Box 64c^3 \Box 3c \Box c \Box 4c(1\Box 16c^2) \Box 0
由零点存在性定理知 f(x) 在(1, \Box 4c) 上存在唯一一个零点 x \Box,
即 f(x) \pm (1, \Box) 上存在唯一一个零点,在 (\Box, 1) 上不存在零点,
```

综上,f(x) 所有零点的绝对值都不大于1.

【点睛】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.

(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.

[选修4-4: 坐标系与参数方程] (10分)

 $(t为参数且<math>t \neq 1$), C与坐标轴交于A、B两点.

(1) 求| AB |;

(2) 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程 .
【答案】 (1) $4\sqrt{10}$ (2) $3\square\cos\square$ $\square\sin\square$ $\square12$ \square 0
【解析】
【分析】
(1) 由参数方程得出 A,B 的坐标,最后由两点间距离公式,即可得出 $\left AB\right $ 的值;
(2) 由 A,B 的坐标得出直线 AB 的直角坐标方程,再化为极坐标方程即可.
【详解】 (1) 令 $x \square 0$,则 $t^2 \square t \square 2 \square 0$,解得 $t \square \square 2$ 或 $t \square 1$ (舍),则 $y \square 2 \square 6 \square 4 \square 12$,即 $A(0,12)$.
令 $y \square 0$,则 $t^2 \square 3t \square 2 \square 0$,解得 $t \square 2$ 或 $t \square 1$ (舍),则 $x \square 2 \square 2 \square 4 \square \square 4$,即 $B(\square 4,0)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c cccc} \hline 12 \Box 0 \\ k & \Box & \Box 3 \\ (2) 由 (1) 可知 $
则直线 AB 的方程为 $y \square 3(x \square 4)$,即 $3x \square y \square 12 \square 0$.
由 $x \square \square \cos \square$, $y \square \square \sin \square$ 可得,直线 AB 的极坐标方程为 $3 \square \cos \square \square \square \sin \square \square 12 \square 0$.
【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.
[选修4—5:不等式选讲](10分)
23.设 a , b , $c \square R$, $a+b+c=0$, $abc=1$.
(1) 证明: ab+bc+ca<0;
(2) 用 $\max\{a, b, c\}$ 表示 a, b, c 中的最大值,证明: $\max\{a, b, c\} \ge 34$.
【答案】 (1) 证明见解析 (2) 证明见解析.
【解析】
【分析】
(1) 由 $(a \Box b \Box c)^2 \Box a^2 \Box b^2 \Box c^2 \Box 2ab \Box 2ac \Box 2bc \Box 0$ 结合不等式的性质,即可得出证明;
(2) 不妨设 $\max\{a,b,c\}$ \square a , 由题意得出 a \square $0,b,c$ \square 0 , 由 $\begin{matrix} 3 & 2 & \square & b & \square & c & \square \\ a & \square & a & \square & a & \square \end{matrix}$ $\begin{matrix} b & \square & c & \square & 2bc \\ 2 & 2 & 2 & 2 \end{matrix}$
bc bc
,结合基本不等式,即可得出证明.
【详解】 $(1) \ \Box (a \Box b \Box c)^2 \Box a^2 \Box b^2 \Box c^2 \Box 2ab \Box 2ac \Box 2bc \Box 0$,

关注公众号"一个高中僧"获取更多高中资料

【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.