SEQUENCE LISTING

<110> Gallatin, Michael W. Van der Vieren, Monica	
<120> Novel Human ß2	
<130> 27866/35004	
<140> <141>	
<150> 08/173,497 <151> 1993-12-23	
<150> 08/286,889 <151> 1994-08-05	
<150> 08/362,652 <151> 1994-12-21	
<150> 08/943,363 <151> 1997-10-03	
<160> 114	
<170> PatentIn Ver. 2.0	
<210> 1 <211> 3726 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (3)(3485)	
<pre><400> 1 tg acc ttc ggc act gtg ctt ctt ctg agt gtc ctg gct tct tat cat Thr Phe Gly Thr Val Leu Leu Ser Val Leu Ala Ser Tyr His</pre>	47
gga ttc aac ctg gat gtg gag gag cct acg atc ttc cag gag gat gca Gly Phe Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Gln Glu Asp Ala 20 25 30	95
ggc ggc ttt ggg cag agc gtg gtg cag ttc ggt gga tct cga ctc gtg Gly Gly Phe Gly Gln Ser Val Val Gln Phe Gly Gly Ser Arg Leu Val 35 40 45	143
gtg gga gca ccc ctg gag gtg gtg gcg gcc aac cag acg gga cgg ctg Val Gly Ala Pro Leu Glu Val Val Ala Ala Asn Gln Thr Gly Arg Leu 50 55 60	191
tat gac tgc gca gct gcc acc ggc atg tgc cag ccc atc ccg ctg cac Tyr Asp Cys Ala Ala Ala Thr Gly Met Cys Gln Pro Ile Pro Leu His 65 70 75	239
atc cgc cct gag gcc gtg aac atg tcc ttg ggc ctg acc ctg gca gcc Ile Arg Pro Glu Ala Val Asn Met Ser Leu Gly Leu Thr Leu Ala Ala	287

tcc Ser	acc Thr	aac Asn	ggc Gly	tcc Ser 100	cgg Arg	ctc Leu	ctg Leu	gcc Ala	tgt Cys 105	ggc Gly	ccg Pro	acc Thr	ctg Leu	cac His 110	aga Arg	335
gtc Val	tgt Cys	ggg ggg	gag Glu 115	aac Asn	tca Ser	tac Tyr	tca Ser	aag Lys 120	ggt Gly	tcc Ser	tgc Cys	ctc Leu	ctg Leu 125	ctg Leu	ggc Gly	383
tcg Ser	cgc Arg	tgg Trp 130	gag Glu	atc Ile	atc Ile	cag Gln	aca Thr 135	gtc Val	ccc Pro	gac Asp	gcc Ala	acg Thr 140	cca Pro	gag Glu	tgt Cys	431
cca Pro	cat His 145	caa Gln	gag Glu	atg Met	gac Asp	atc Ile 150	gtc Val	ttc Phe	ctg Leu	att Ile	gac Asp 155	ggc Gly	tct Ser	gga Gly	agc Ser	479
att Ile 160	gac Asp	caa Gln	aat Asn	gac Asp	ttt Phe 165	aac Asn	cag Gln	atg Met	aag Lys	ggc Gly 170	ttt Phe	gtc Val	caa Gln	gct Ala	gtc Val 175	527
atg Met	ggc Gly	cag Gln	ttt Phe	gag Glu 180	ggc Gly	act Thr	gac Asp	acc Thr	ctg Leu 185	ttt Phe	gca Ala	ctg Leu	atg Met	cag Gln 190	tac Tyr	575
tca Ser	aac Asn	ctc Leu	ctg Leu 195	aag Lys	atc Ile	cac His	ttc Phe	acc Thr 200	ttc Phe	acc Thr	caa Gln	ttc Phe	cgg Arg 205	acc Thr	agc Ser	623
ccg Pro	agc Ser	cag Gln 210	cag Gln	agc Ser	ctg Leu	gtg Val	gat Asp 215	ccc Pro	atc Ile	gtc Val	caa Gln	ctg Leu 220	aaa Lys	ggc	ctg Leu	671
acg Thr	ttc Phe 225	acg Thr	gcc Ala	acg Thr	ggc Gly	atc Ile 230	ctg Leu	aca Thr	gtg Val	gtg Val	aca Thr 235	cag Gln	cta Leu	ttt Phe	cat His	719
cat His 240	Lys	aat Asn	Gly	gcc Ala	cga Arg 245	aaa Lys	agt Ser	gcc Ala	aag Lys	aag Lys 250	atc Ile	ctc Leu	att Ile	gtc Val	atc Ile 255	767
aca Thr	gat Asp	GJA aaa	cag Gln	aag Lys 260	tac Tyr	aaa Lys	gac Asp	ccc Pro	ctg Leu 265	gaa Glu	tac Tyr	agt Ser	gat Asp	gto Val 270	atc Ile	815
ccc Pro	cag Gln	gca Ala	gag Glu 275	aag Lys	gct Ala	ggc	atc Ile	atc Ile 280	cgc Arg	tac Tyr	gct Ala	atc Ile	ggg Gly 285	Val	gga Gly	863
cac His	gct Ala	ttc Phe 290	cag Gln	gga Gly	ccc Pro	act Thr	gcc Ala 295	agg Arg	cag Gln	gag Glu	ctg Leu	aat Asn 300	Thr	ato	agc Ser	911
tca Ser	gcg Ala 305	Pro	ccg Pro	cag Gln	gac Asp	cac His 310	gtg Val	ttc Phe	aag Lys	gtg Val	gac Asp 315	Asn	ttt Phe	gca Ala	gcc Ala	959
ctt Leu 320	Gly	agc Ser	atc Ile	cag Gln	aag Lys 325	cag Gln	ctg Leu	cag Gln	gag Glu	aag Lys 330	Ile	tat Tyr	gca Ala	ı gtt ı Val	gag Glu 335	1007

gga Gly	acc Thr	cag Gln	tcc Ser	agg Arg 340	gca Ala	agc Ser	agc Ser	tcc Ser	ttc Phe 345	cag Gln	cac His	gag Glu	atg Met	tcc Ser 350	caa Gln	1055
gaa Glu	ggc Gly	ttc Phe	agc Ser 355	aca Thr	gcc Ala	ctc Leu	aca Thr	atg Met 360	gat Asp	ggc Gly	ctc Leu	ttc Phe	ctg Leu 365	Gly ggg	gct Ala	1103
gtg Val	Gly ggg	agc Ser 370	ttt Phe	agc Ser	tgg Trp	tct Ser	gga Gly 375	ggt Gly	gcc Ala	ttc Phe	ctg Leu	tat Tyr 380	ccc Pro	cca Pro	aat Asn	1151
atg Met	agc Ser 385	ccc Pro	acc Thr	ttc Phe	atc Ile	aac Asn 390	atg Met	tct Ser	cag Gln	gag Glu	aat Asn 395	gtg Val	gac Asp	atg Met	agg Arg	1199
gac Asp 400	tct Ser	tac Tyr	ctg Leu	ggt Gly	tac Tyr 405	tcc Ser	acc Thr	gag Glu	cta Leu	gcc Ala 410	ctg Leu	tgg Trp	aag Lys	el à aaa	gta Val 415	1247
cag Gln	aac Asn	ctg Leu	gtc Val	ctg Leu 420	Gly ggg	gcc Ala	ccc Pro	cgc Arg	tac Tyr 425	cag Gln	cat His	acc Thr	Gly ggg	aag Lys 430	gct Ala	1295
gtc Val	atc Ile	ttc Phe	acc Thr 435	cag Gln	gtg Val	tcc Ser	agg Arg	caa Gln 440	tgg Trp	agg Arg	aag Lys	aag Lys	gcc Ala 445	gaa Glu	gtc Val	1343
aca Thr	Gly	acg Thr 450	cag Gln	atc Ile	ggc Gly	tcc Ser	tac Tyr 455	ttc Phe	ggg Gly	gcc Ala	tcc Ser	ctc Leu 460	tgc Cys	tcc Ser	gtg Val	1391
gat Asp	gtg Val 465	gac Asp	agc Ser	gat Asp	ggc Gly	agc Ser 470	acc Thr	gac Asp	ctg Leu	atc Ile	ctc Leu 475	att Ile	ej A aaa	gcc Ala	ccc Pro	1439
cat His 480	Tyr	tat Tyr	gag Glu	cag Gln	acc Thr 485	cga Arg	ej aaa	ggc	cag Gln	gtg Val 490	Ser	gtg Val	tgt Cys	ccc Pro	ttg Leu 495	1487
cct Pro	agg Arg	G] À GGÀ	cag Gln	agg Arg 500	gtg Val	cag Gln	tgg Trp	cag Gln	tgt Cys 505	gac Asp	gct Ala	gtt Val	ctc Leu	cgt Arg 510	ggt Gly	1535
gag Glu	cag Gln	ggc Gly	cac His 515	ccc Pro	tgg Trp	ggc	cgc Arg	ttt Phe 520	ej gaa	gca Ala	gcc Ala	ctg Leu	Thr 525	· Val	ttg Leu	1583
ggg	gat Asp	gtg Val 530	Asn	gag Glu	gac Asp	aag Lys	ctg Leu 535	ata Ile	gac Asp	gtg Val	gcc Ala	att Ile 540	: Gly	gcc Ala	ccg Pro	1631
gga Gly	gag Glu 545	Gln	gag Glu	aac Asn	cgg Arg	ggt Gly 550	Ala	gtc Val	tac Tyr	ctg Leu	ttt Phe 555	e His	gga Gly	gco Ala	tca Ser	1679

gaa Glu 560	tcc Ser	ggc Gly	atc Ile	agc Ser	ccc Pro 565	tcc Ser	cac His	agc Ser	cag Gln	cgg Arg 570	att Ile	gcc Ala	agc Ser	tcc Ser	cag Gln 575	1727
ctc Leu	tcc Ser	ccc Pro	agg Arg	ctg Leu 580	cag Gln	tat Tyr	ttt Phe	Gly ggg	cag Gln 585	gcg Ala	ctg Leu	agt Ser	ggg	ggt Gly 590	cag Gln	1775
gac Asp	ctc Leu	acc Thr	cag Gln 595	gat Asp	gga Gly	ctg Leu	atg Met	gac Asp 600	ctg Leu	gcc Ala	gtg Val	Gly ggg	gcc Ala 605	cgg Arg	ggc	1823
cag Gln	gtg Val	ctc Leu 610	ctg Leu	ctc Leu	agg Arg	agt Ser	ctg Leu 615	ccg Pro	gtg Val	ctg Leu	aaa Lys	gtg Val 620	Gly ggg	gtg Val	gcc Ala	1871
atg Met	aga Arg 625	ttc Phe	agc Ser	cct Pro	gtg Val	gag Glu 630	gtg Val	gcc Ala	aag Lys	gct Ala	gtg Val 635	tac Tyr	cgg Arg	tgc Cys	tgg Trp	1919
gaa Glu 640	gag Glu	aag Lys	ccc Pro	agt Ser	gcc Ala 645	ctg Leu	gaa Glu	gct Ala	ggg ggg	gac Asp 650	gcc Ala	acc Thr	gtc Val	tgt Cys	ctc Leu 655	1967
acc Thr	atc Ile	cag Gln	aaa Lys	agc Ser 660	tca Ser	ctg Leu	gac Asp	cag Gln	cta Leu 665	ggt Gly	gac Asp	atc Ile	caa Gln	agc Ser 670	tct Ser	2015
gtc Val	agg Arg	ttt Phe	gat Asp 675	ctg Leu	gca Ala	ctg Leu	gac Asp	cca Pro 680	ggt Gly	cgt Arg	ctg Leu	act Thr	tct Ser 685	cgt Arg	gcc Ala	2063
att Ile	ttc Phe	aat Asn 690	gaa Glu	acc Thr	aag Lys	aac Asn	ccc Pro 695	act Thr	ttg Leu	act Thr	cga Arg	aga Arg 700	aaa Lys	acc Thr	ctg Leu	2111
gga Gly	ctg Leu 705	G] y ggg	att Ile	cac His	tgt Cys	gaa Glu 710	acc Thr	ctg Leu	aag Lys	ctg Leu	ctt Leu 715	ttg Leu	cca Pro	gat Asp	tgt Cys	2159
gtg Val 720	gag Glu	gat Asp	gtg Val	gtg Val	agc Ser 725	ccc Pro	atc Ile	att Ile	ctg Leu	cac His 730	ctc Leu	aac Asn	ttc Phe	tca Ser	ctg Leu 735	2207
gtg Val	aga Arg	gag Glu	ccc Pro	atc Ile 740	ccc Pro	tcc Ser	ccc Pro	cag Gln	aac Asn 745	ctg Leu	cgt Arg	cct Pro	gtg Val	ctg Leu 750	gcc Ala	2255
gtg Val	ggc Gly	tca Ser	caa Gln 755	gac Asp	ctc Leu	ttc Phe	act Thr	gct Ala 760	tct Ser	ctc Leu	ccc Pro	ttc Phe	gag Glu 765	aag Lys	aac Asn	2303
tgt Cys	G] À aaa	caa Gln 770	gat Asp	ggc Gly	ctc Leu	tgt Cys	gaa Glu 775	GJ À GG À	gac Asp	ctg Leu	ggt Gly	gtc Val 780	Thr	ctc Leu	agc Ser	2351
ttc Phe	tca Ser 785	ggc Gly	ctg Leu	cag Gln	acc Thr	ctg Leu 790	acc Thr	gtg Val	Gly ggg	agc Ser	tcc Ser 795	Leu	gag Glu	ctc Leu	aac Asn	2399

gtg Val 800	att Ile	gtg Val	act Thr	gtg Val	tgg Trp 805	aac Asn	gca Ala	ggt Gly	gag Glu	gat Asp 810	tcc Ser	tac Tyr	gga Gly	acc Thr	gtg Val 815	2447
gtc Val	agc Ser	ctc Leu	tac Tyr	tat Tyr 820	cca Pro	gca Ala	ggg ggg	ctg Leu	tcg Ser 825	cac His	cga Arg	cgg Arg	gtg Val	tca Ser 830	gga Gly	2495
gcc Ala	cag Gln	aag Lys	cag Gln 835	ccc Pro	cat His	cag Gln	agt Ser	gcc Ala 840	ctg Leu	cgc Arg	ctg Leu	gca Ala	tgt Cys 845	gag Glu	aca Thr	2543
gtg Val	ccc Pro	act Thr 850	gag Glu	gat Asp	gag Glu	ggc Gly	cta Leu 855	aga Arg	agc Ser	agc Ser	cgc Arg	tgc Cys 860	agt Ser	gtc Val	aac Asn	2591
cac His	ccc Pro 865	atc Ile	ttc Phe	cat His	gag Glu	ggc Gly 870	tct Ser	aac Asn	ggc Gly	acc Thr	ttc Phe 875	ata Ile	gtc Val	aca Thr	ttc Phe	2639
gat Asp 880	gtc Val	tcc Ser	tac Tyr	aag Lys	gcc Ala 885	acc Thr	ctg Leu	gga Gly	gac Asp	agg Arg 890	atg Met	ctt Leu	atg Met	agg Arg	gcc Ala 895	2687
agt Ser	gca Ala	agc Ser	agt Ser	gag Glu 900	aac Asn	aat Asn	aag Lys	gct Ala	tca Ser 905	agc Ser	agc Ser	aag Lys	gcc Ala	acc Thr 910	ttc Phe	2735
cag Gln	ctg Leu	gag Glu	ctc Leu 915	ccg Pro	gtg Val	aag Lys	tat Tyr	gca Ala 920	gtc Val	tac Tyr	acc Thr	atg Met	atc Ile 925	agc Ser	agg Arg	2783
cag Gln	gaa Glu	gaa Glu 930	tcc Ser	acc Thr	aag Lys	tac Tyr	ttc Phe 935	aac Asn	ttt Phe	gca Ala	acc Thr	tcc Ser 940	gat Asp	gag Glu	aag Lys	2831
aaa Lys	atg Met 945	aaa Lys	gag Glu	gct Ala	gag Glu	cat His 950	cga Arg	tac Tyr	cgt Arg	gtg Val	aat Asn 955	aac Asn	ctc Leu	agc Ser	cag Gln	2879
cga Arg 960	gat Asp	ctg Leu	gcc Ala	atc Ile	agc Ser 965	att Ile	aac Asn	ttc Phe	tgg Trp	gtt Val 970	cct Pro	gtc Val	ctg Leu	ctg Leu	aac Asn 975	2927
Gly ggg	gtg Val	gct Ala	gtg Val	tgg Trp 980	gat Asp	gtg Val	gtc Val	atg Met	gag Glu 985	gcc Ala	cca Pro	tct Ser	cag Gln	agt Ser 990	Leu	2975
ccc Pro	tgt Cys	gtt Val	tca Ser 995	gag Glu	aga Arg	aaa Lys	Pro	ccc Pro 1000	cag Gln	cat His	tct Ser	Asp	ttc Phe 1005	Leu	acc Thr	3023
cag Gln	Ile	tca Ser 1010	aga Arg	agt Ser	ccc Pro	Met	ctg Leu 1015	gac Asp	tgc Cys	tcc Ser	att Ile	gct Ala 1020	Asp	tgc Cys	ctg Leu	3071
Gln	ttc Phe L025	cgc Arg	tgt Cys	gac Asp	Val	ccc Pro 1030	tcc Ser	ttc Phe	agc Ser	Val	cag Gln 1035	Glu	gag Glu	ctg Leu	gat Asp	3119

ttc Phe 1040	Thr	ctg Leu	aag Lys	Gly	aat Asn 1045	ctc Leu	agt Ser	ttc Phe	Gly	tgg Trp 1050	gtc Val	cgc Arg	gag Glu	aca Thr	ttg Leu .055	3167
cag Gln	aag Lys	aag Lys	Val	ttg Leu 1060	gtc Val	gtg Val	agt Ser	Val	gct Ala 1065	gaa Glu	att Ile	acg Thr	Phe	gac Asp 1070	aca Thr	3215
tcc Ser	gtg Val	Tyr	tcc Ser L075	cag Gln	ctt Leu	cca Pro	Gly	cag Gln L080	gag Glu	gca Ala	ttt Phe	Met	aga Arg L085	gct Ala	cag Gln	3263
atg Met	Glu	atg Met L090	gtg Val	cta Leu	gaa Glu	Glu	gac Asp 1095	gag Glu	gtc Val	tac Tyr	Asn	gcc Ala 1100	att Ile	ccc Pro	atc Ile	3311
Ile	atg Met 1105	ggc Gly	agc Ser	tct Ser	Val	ggg Gly 1110	gct Ala	ctg Leu	cta Leu	Leu	ctg Leu 1115	gcg Ala	ctc Leu	atc Ile	aca Thr	3359
gcc Ala 112	Thr	ctg Leu	tac Tyr	Lys	ctt Leu 1125	ggc Gly	ttc Phe	ttc Phe	Lys	cgc Arg 1130	cac His	tac Tyr	aag Lys	gaa Glu	atg Met 1135	3407
ctg Leu	gag Glu	gac Asp	Lys	cct Pro L140	gaa Glu	gac Asp	act Thr	Ala	aca Thr 1145	ttc Phe	agt Ser	ggg	Asp	gat Asp 1150	ttc Phe	3455
agc Ser	tgt Cys	Val	gcc Ala 1155	cca Pro	aat Asn	gtg Val	Pro	ttg Leu 1160	tcc Ser	taai	taat	cca (cttt	cctg	tt	3505
tat	ctct	acc a	actgt	ggg	ct g	gacti	tgctt	t gca	aacc	ataa	atc	aact	tac	atgg	aaacaa	3565
ctt	ctgc	ata (gatct	gca	ct g	geeta	aagca	a ac	ctac	cagg	tgc	taag	cac	cttc	tcggag	3625
aga	taga	gat 1	tgtaa	atgti	tt ti	cacat	tatct	t gt	ccat	cttt	ttc	agca	atg	accc	actttt	3685
tac	agaa	gca (ggcat	ggt	gc ca	agcat	taaat	t tt	tcata	atgc	t					3726

<210> 2

<211> 1161 <212> PRT

<213> Homo sapiens

Thr Phe Gly Thr Val Leu Leu Ser Val Leu Ala Ser Tyr His Gly

Phe Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Gln Glu Asp Ala Gly 20 25 30

Gly Phe Gly Gln Ser Val Val Gln Phe Gly Gly Ser Arg Leu Val Val

Gly Ala Pro Leu Glu Val Val Ala Ala Asn Gln Thr Gly Arg Leu Tyr 50

Asp Cys Ala Ala Ala Thr Gly Met Cys Gln Pro Ile Pro Leu His Ile Arg Pro Glu Ala Val Asn Met Ser Leu Gly Leu Thr Leu Ala Ala Ser Thr Asn Gly Ser Arg Leu Leu Ala Cys Gly Pro Thr Leu His Arg Val Cys Gly Glu Asn Ser Tyr Ser Lys Gly Ser Cys Leu Leu Gly Ser Arg Trp Glu Ile Ile Gln Thr Val Pro Asp Ala Thr Pro Glu Cys Pro His Gln Glu Met Asp Ile Val Phe Leu Ile Asp Gly Ser Gly Ser Ile Asp Gln Asn Asp Phe Asn Gln Met Lys Gly Phe Val Gln Ala Val Met 170 Gly Gln Phe Glu Gly Thr Asp Thr Leu Phe Ala Leu Met Gln Tyr Ser 185 Asn Leu Leu Lys Ile His Phe Thr Phe Thr Gln Phe Arg Thr Ser Pro 200 Ser Gln Gln Ser Leu Val Asp Pro Ile Val Gln Leu Lys Gly Leu Thr Phe Thr Ala Thr Gly Ile Leu Thr Val Val Thr Gln Leu Phe His His 235 230 Lys Asn Gly Ala Arg Lys Ser Ala Lys Lys Ile Leu Ile Val Ile Thr Asp Gly Gln Lys Tyr Lys Asp Pro Leu Glu Tyr Ser Asp Val Ile Pro Gln Ala Glu Lys Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val Gly His Ala Phe Gln Gly Pro Thr Ala Arg Gln Glu Leu Asn Thr Ile Ser Ser Ala Pro Pro Gln Asp His Val Phe Lys Val Asp Asn Phe Ala Ala Leu 310 Gly Ser Ile Gln Lys Gln Leu Gln Glu Lys Ile Tyr Ala Val Glu Gly 325 Thr Gln Ser Arg Ala Ser Ser Ser Phe Gln His Glu Met Ser Gln Glu 345 Gly Phe Ser Thr Ala Leu Thr Met Asp Gly Leu Phe Leu Gly Ala Val 355 Gly Ser Phe Ser Trp Ser Gly Gly Ala Phe Leu Tyr Pro Pro Asn Met

375

Ser Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met Arg Asp 390 385 Ser Tyr Leu Gly Tyr Ser Thr Glu Leu Ala Leu Trp Lys Gly Val Gln 410 Asn Leu Val Leu Gly Ala Pro Arg Tyr Gln His Thr Gly Lys Ala Val Ile Phe Thr Gln Val Ser Arg Gln Trp Arg Lys Lys Ala Glu Val Thr Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser Val Asp Val Asp Ser Asp Gly Ser Thr Asp Leu Ile Leu Ile Gly Ala Pro His Tyr Tyr Glu Gln Thr Arg Gly Gly Gln Val Ser Val Cys Pro Leu Pro Arg Gly Gln Arg Val Gln Trp Gln Cys Asp Ala Val Leu Arg Gly Glu Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu Gly Asp Val Asn Glu Asp Lys Leu Ile Asp Val Ala Ile Gly Ala Pro Gly Glu Gln Glu Asn Arg Gly Ala Val Tyr Leu Phe His Gly Ala Ser Glu 550 Ser Gly Ile Ser Pro Ser His Ser Gln Arg Ile Ala Ser Ser Gln Leu 565 Ser Pro Arg Leu Gln Tyr Phe Gly Gln Ala Leu Ser Gly Gly Gln Asp Leu Thr Gln Asp Gly Leu Met Asp Leu Ala Val Gly Ala Arg Gly Gln Val Leu Leu Arg Ser Leu Pro Val Leu Lys Val Gly Val Ala Met 615 Arg Phe Ser Pro Val Glu Val Ala Lys Ala Val Tyr Arg Cys Trp Glu 630 Glu Lys Pro Ser Ala Leu Glu Ala Gly Asp Ala Thr Val Cys Leu Thr Ile Gln Lys Ser Ser Leu Asp Gln Leu Gly Asp Ile Gln Ser Ser Val Arg Phe Asp Leu Ala Leu Asp Pro Gly Arg Leu Thr Ser Arg Ala Ile Phe Asn Glu Thr Lys Asn Pro Thr Leu Thr Arg Arg Lys Thr Leu Gly 700

Leu Gly Ile His Cys Glu Thr Leu Lys Leu Leu Leu Pro Asp Cys Val 715 Glu Asp Val Val Ser Pro Ile Ile Leu His Leu Asn Phe Ser Leu Val 730 Arg Glu Pro Ile Pro Ser Pro Gln Asn Leu Arg Pro Val Leu Ala Val Gly Ser Gln Asp Leu Phe Thr Ala Ser Leu Pro Phe Glu Lys Asn Cys Gly Gln Asp Gly Leu Cys Glu Gly Asp Leu Gly Val Thr Leu Ser Phe Ser Gly Leu Gln Thr Leu Thr Val Gly Ser Ser Leu Glu Leu Asn Val Ile Val Thr Val Trp Asn Ala Gly Glu Asp Ser Tyr Gly Thr Val Val Ser Leu Tyr Tyr Pro Ala Gly Leu Ser His Arg Arg Val Ser Gly Ala Gln Lys Gln Pro His Gln Ser Ala Leu Arg Leu Ala Cys Glu Thr Val 840 Pro Thr Glu Asp Glu Gly Leu Arg Ser Ser Arg Cys Ser Val Asn His Pro Ile Phe His Glu Gly Ser Asn Gly Thr Phe Ile Val Thr Phe Asp 875 Val Ser Tyr Lys Ala Thr Leu Gly Asp Arg Met Leu Met Arg Ala Ser Ala Ser Ser Glu Asn Asn Lys Ala Ser Ser Ser Lys Ala Thr Phe Gln 905 Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Thr Met Ile Ser Arg Gln Glu Glu Ser Thr Lys Tyr Phe Asn Phe Ala Thr Ser Asp Glu Lys Lys Met Lys Glu Ala Glu His Arg Tyr Arg Val Asn Asn Leu Ser Gln Arg 955 Asp Leu Ala Ile Ser Ile Asn Phe Trp Val Pro Val Leu Leu Asn Gly Val Ala Val Trp Asp Val Val Met Glu Ala Pro Ser Gln Ser Leu Pro 985 Cys Val Ser Glu Arg Lys Pro Pro Gln His Ser Asp Phe Leu Thr Gln 1000 Ile Ser Arg Ser Pro Met Leu Asp Cys Ser Ile Ala Asp Cys Leu Gln

1015

Phe Arg Cys Asp Val Pro Ser Phe Ser Val Gln Glu Glu Leu Asp Phe 025 1030 1035 104

Thr Leu Lys Gly Asn Leu Ser Phe Gly Trp Val Arg Glu Thr Leu Gln 1045 1050 1055

Lys Lys Val Leu Val Val Ser Val Ala Glu Ile Thr Phe Asp Thr Ser 1060 1065 1070

Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe Met Arg Ala Gln Met 1075 1080 1085

Glu Met Val Leu Glu Glu Asp Glu Val Tyr Asn Ala Ile Pro Ile Ile 1090 1095 1100

Met Gly Ser Ser Val Gly Ala Leu Leu Leu Leu Ala Leu Ile Thr Ala 105 1110 1115 112

Thr Leu Tyr Lys Leu Gly Phe Phe Lys Arg His Tyr Lys Glu Met Leu 1125 1130 1135

Glu Asp Lys Pro Glu Asp Thr Ala Thr Phe Ser Gly Asp Asp Phe Ser 1140 1145 1150

Cys Val Ala Pro Asn Val Pro Leu Ser 1155 1160

<210> 3

<211> 1153

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Leu Arg Val Leu Leu Leu Thr Ala Leu Thr Leu Cys His Gly
1 5 10 15

Phe Asn Leu Asp Thr Glu Asn Ala Met Thr Phe Gln Glu Asn Ala Arg

Gly Phe Gly Gln Ser Val Val Gln Leu Gln Gly Ser Arg Val Val Val 35 40 45

Gly Ala Pro Gln Glu Ile Val Ala Ala Asn Gln Arg Gly Ser Leu Tyr 50 55 60

Gln Cys Asp Tyr Ser Thr Gly Ser Cys Glu Pro Ile Arg Leu Gln Val 65 70 75 80

Pro Val Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu Ala Ala Thr 85 90 95

Thr Ser Pro Pro Gln Leu Leu Ala Cys Gly Pro Thr Val His Gln Thr 100 105 110

Cys Ser Glu Asn Thr Tyr Val Lys Gly Leu Cys Phe Leu Phe Gly Ser 115 120 125

Asn Leu Arg Gln Gln Pro Gln Lys Phe Pro Glu Ala Leu Arg Gly Cys 130 135 140

Pro Gln Glu Asp Ser Asp Ile Ala Phe Leu Ile Asp Gly Ser Gly Ser Ile Ile Pro His Asp Phe Arg Arg Met Lys Glu Phe Val Ser Thr Val Met Glu Gln Leu Lys Lys Ser Lys Thr Leu Phe Ser Leu Met Gln Tyr 185 Ser Glu Glu Phe Arg Ile His Phe Thr Phe Lys Glu Phe Gln Asn Asn Pro Asn Pro Arg Ser Leu Val Lys Pro Ile Thr Gln Leu Leu Gly Arg Thr His Thr Ala Thr Gly Ile Arg Lys Val Val Arg Glu Leu Phe Asn Ile Thr Asn Gly Ala Arg Lys Asn Ala Phe Lys Ile Leu Val Val Ile Thr Asp Gly Glu Lys Phe Gly Asp Pro Leu Gly Tyr Glu Asp Val Ile 265 Pro Glu Ala Asp Arg Glu Gly Val Ile Arg Tyr Val Ile Gly Val Gly Asp Ala Phe Arg Ser Glu Lys Ser Arg Gln Glu Leu Asn Thr Ile Ala 295 Ser Lys Pro Pro Arg Asp His Val Phe Gln Val Asn Asn Phe Glu Ala 315 Leu Lys Thr Ile Gln Asn Gln Leu Arg Glu Lys Ile Phe Ala Ile Glu 325 Gly Thr Gln Thr Gly Ser Ser Ser Phe Glu His Glu Met Ser Gln Glu Gly Phe Ser Ala Ala Ile Thr Ser Asn Gly Pro Leu Leu Ser Thr Val Gly Ser Tyr Asp Trp Ala Gly Gly Val Phe Leu Tyr Thr Ser Lys Glu Lys Ser Thr Phe Ile Asn Met Thr Arg Val Asp Ser Asp Met Asn Asp Ala Tyr Leu Gly Tyr Ala Ala Ala Ile Ile Leu Arg Asn Arg Val 410 Gln Ser Leu Val Leu Gly Ala Pro Arg Tyr Gln His Ile Gly Leu Val Ala Met Phe Arg Gln Asn Thr Gly Met Trp Glu Ser Asn Ala Asn Val Lys Gly Thr Gln Ile Gly Ala Tyr Phe Gly Ala Ser Leu Cys Ser Val Asp Val Asp Ser Asn Gly Ser Thr Asp Leu Val Leu Ile Gly Ala Pro His Tyr Tyr Glu Gln Thr Arg Gly Gly Gln Val Ser Val Cys Pro Leu Pro Arg Gly Gln Arg Ala Arg Trp Gln Cys Asp Ala Val Leu Tyr Gly Glu Gln Gly Gln Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu Gly Asp Val Asn Gly Asp Lys Leu Thr Asp Val Ala Ile Gly Ala Pro Gly Glu Glu Asp Asn Arg Gly Ala Val Tyr Leu Phe His Gly Thr Ser Gly Ser Gly Ile Ser Pro Ser His Ser Gln Arg Ile Ala Gly Ser Lys 570 565 Leu Ser Pro Arg Leu Gln Tyr Phe Gly Gln Ser Leu Ser Gly Gln Asp Leu Thr Met Asp Gly Leu Val Asp Leu Thr Val Gly Ala Gln Gly His Val Leu Leu Leu Arg Ser Gln Pro Val Leu Arg Val Lys Ala Ile 615 Met Glu Phe Asn Pro Arg Glu Val Ala Arg Asn Val Phe Glu Cys Asn 630 Asp Gln Val Val Lys Gly Lys Glu Ala Gly Glu Val Arg Val Cys Leu His Val Gln Lys Ser Thr Arg Asp Arg Leu Arg Glu Gly Gln Ile Gln Ser Val Val Thr Tyr Asp Leu Ala Leu Asp Ser Gly Arg Pro His Ser 680 Arg Ala Val Phe Asn Glu Thr Lys Asn Ser Thr Arg Arg Gln Thr Gln 695 Val Leu Gly Leu Thr Gln Thr Cys Glu Thr Leu Lys Leu Gln Leu Pro Asn Cys Ile Glu Asp Pro Val Ser Pro Ile Val Leu Arg Leu Asn Phe 725 730 Ser Leu Val Gly Thr Pro Leu Ser Ala Phe Gly Asn Leu Arg Pro Val 745 Leu Ala Glu Asp Ala Gln Arg Leu Phe Thr Ala Leu Phe Pro Phe Glu Lys Asn Cys Gly Asn Asp Asn Ile Cys Gln Asp Asp Leu Ser Ile Thr 775 Phe Ser Phe Met Ser Leu Asp Cys Leu Val Val Gly Gly Pro Arg Glu Phe Asn Val Thr Val Thr Val Arg Asn Asp Gly Glu Asp Ser Tyr Arg 810 805

Thr Gln Val Thr Phe Phe Phe Pro Leu Asp Leu Ser Tyr Arg Lys Val 820 825 830

Ser Thr Leu Gln Asn Gln Arg Ser Gln Arg Ser Trp Arg Leu Ala Cys 835 840 845

Glu Ser Ala Ser Ser Thr Glu Val Ser Gly Ala Leu Lys Ser Thr Ser 850 855 860

Cys Ser Ile Asn His Pro Ile Phe Pro Glu Asn Ser Glu Val Thr Phe 865 870 875 880

Asn Ile Thr Phe Asp Val Asp Ser Lys Ala Ser Leu Gly Asn Lys Leu 885 890 895

Leu Leu Lys Ala Asn Val Thr Ser Glu Asn Asn Met Pro Arg Thr Asn 900 905 910

Lys Thr Glu Phe Gln Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Met 915 920 925

Val Val Thr Ser His Gly Val Ser Thr Lys Tyr Leu Asn Phe Thr Ala 930 935 940

Ser Glu Asn Thr Ser Arg Val Met Gln His Gln Tyr Gln Val Ser Asn 945 950 955 960

Leu Gly Gln Arg Ser Leu Pro Ile Ser Leu Val Phe Leu Val Pro Val 965 970 975

Arg Leu Asn Gln Thr Val Ile Trp Asp Arg Pro Gln Val Thr Phe Ser 980 985 990

Glu Asn Leu Ser Ser Thr Cys His Thr Lys Glu Arg Leu Pro Ser His 995 1000 1005

Ser Asp Phe Leu Ala Glu Leu Arg Lys Ala Pro Val Val Asn Cys Ser 1010 1015 1020

Ile Ala Val Cys Gln Arg Ile Gln Cys Asp Ile Pro Phe Phe Gly Ile 1025 1030 1035 1040

Gln Glu Glu Phe Asn Ala Thr Leu Lys Gly Asn Leu Ser Phe Asp Trp 1045 1050 1055

Tyr Ile Lys Thr Ser His Asn His Leu Leu Ile Val Ser Thr Ala Glu 1060 1065 1070

Ile Leu Phe Asn Asp Ser Val Phe Thr Leu Leu Pro Gly Gln Gly Ala 1075 1080 1085

Phe Val Arg Ser Gln Thr Glu Thr Lys Val Glu Pro Phe Glu Val Pro 1090 1095 1100

Asn Pro Leu Pro Leu Ile Val Gly Ser Ser Val Gly Gly Leu Leu 1105 1110 1115 1120

Leu Ala Leu Ile Thr Ala Ala Leu Tyr Lys Leu Gly Phe Phe Lys Arg 1125 1130 1135

Gln Tyr Lys Asp Met Met Ser Glu Gly Gly Pro Pro Gly Ala Glu Pro 1140 1145 1150 Gln

<210> 4 <211> 1163 <212> PRT <213> Homo sapiens

Val Val Val Gly Ala Pro Gln Lys Ile Ile Ala Ala Asn Gln Ile Gly

Gly Leu Tyr Gln Cys Gly Tyr Ser Thr Gly Ala Cys Glu Pro Ile Gly 65 70 75 80

Leu Gln Val Pro Pro Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu 85 90 95

Ala Ser Thr Thr Ser Pro Ser Gln Leu Leu Ala Cys Gly Pro Thr Val

His His Glu Cys Gly Arg Asn Met Tyr Leu Thr Gly Leu Cys Phe Leu 115 120 125

Leu Gly Pro Thr Gln Leu Thr Gln Arg Leu Pro Val Ser Arg Gln Glu 130 135 140

Cys Pro Arg Gln Glu Gln Asp Ile Val Phe Leu Ile Asp Gly Ser Gly 145 150 155 160

Ser Ile Ser Ser Arg Asn Phe Ala Thr Met Met Asn Phe Val Arg Ala 165 170 175

Val Ile Ser Gln Phe Gln Arg Pro Ser Thr Gln Phe Ser Leu Met Gln 180 185 190

Phe Ser Asn Lys Phe Gln Thr His Phe Thr Phe Glu Glu Phe Arg Arg 195 200 205

Thr Ser Asn Pro Leu Ser Leu Leu Ala Ser Val His Gln Leu Gln Gly 210 215 220

Phe Thr Tyr Thr Ala Thr Ala Ile Gln Asn Val Val His Arg Leu Phe 225 230 235 240

His Ala Ser Tyr Gly Ala Arg Arg Asp Ala Ile Lys Ile Leu Ile Val 245 250 255

Ile Thr Asp Gly Lys Lys Glu Gly Asp Ser Leu Asp Tyr Lys Asp Val 260 265 270

Ile Pro Met Ala Asp Ala Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val 280 275 Gly Leu Ala Phe Gln Asn Arg Asn Ser Trp Lys Glu Leu Asn Asp Ile Ala Ser Lys Pro Ser Gln Glu His Ile Phe Lys Val Glu Asp Phe Asp Ala Leu Lys Asp Ile Gln Asn Gln Leu Lys Glu Lys Ile Phe Ala Ile Glu Gly Thr Glu Thr Ile Ser Ser Ser Phe Glu Leu Glu Met Ala 345 Gln Glu Gly Phe Ser Ala Val Phe Thr Pro Asp Gly Pro Val Leu Gly Ala Val Gly Ser Phe Thr Trp Ser Gly Gly Ala Phe Leu Tyr Pro Pro Asn Met Ser Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met Arg Asp Ser Tyr Leu Gly Tyr Ser Thr Glu Leu Ala Leu Trp Lys Gly 405 410 Val Gln Ser Leu Val Leu Gly Ala Pro Arg Tyr Gln His Ile Gly Lys Ala Val Ile Phe Ile Gln Val Ser Arg Gln Trp Arg Met Lys Ala Glu Val Ile Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser Val Asp Val Asp Thr Asp Gly Ser Thr Asp Leu Val Leu Ile Gly Ala Pro His Tyr Tyr Glu Gln Thr Arg Gly Gln Val Ser Val Cys Pro Leu Pro Arg Gly Trp Arg Arg Trp Trp Cys Asp Ala Val Leu Tyr Gly Glu Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu 520 Gly Asp Val Asn Gly Asp Lys Leu Thr Asp Val Val Ile Gly Ala Pro 530 Gly Glu Glu Glu Asn Arg Gly Ala Val Tyr Leu Phe His Gly Val Leu 555 Gly Pro Ser Ile Ser Pro Ser His Ser Gln Arg Ile Ala Gly Ser Gln Leu Ser Ser Arg Leu Gln Tyr Phe Gly Gln Ala Leu Ser Gly Gly Gln 585

Asp Leu Thr Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Arg Gly Gln Val Leu Leu Leu Arg Thr Arg Pro Val Leu Trp Val Gly Val Ser 615 Met Gln Phe Ile Pro Ala Glu Ile Pro Arg Ser Ala Phe Glu Cys Arg Glu Gln Val Val Ser Glu Gln Thr Leu Val Gln Ser Asn Ile Cys Leu 650 645 Tyr Ile Asp Lys Arg Ser Lys Asn Leu Leu Gly Ser Arg Asp Leu Gln Ser Ser Val Thr Leu Asp Leu Ala Leu Ala Pro Gly Arg Leu Ser Pro 680 Arg Ala Ile Phe Gln Glu Thr Lys Asn Arg Ser Leu Ser Arg Val Arg Val Leu Gly Leu Lys Ala His Cys Glu Asn Phe Asn Leu Leu Leu Pro Ser Cys Val Glu Asp Ser Val Ile Pro Ile Ile Leu Arg Leu Asn Phe Thr Leu Val Gly Lys Pro Leu Leu Ala Phe Arg Asn Leu Arg Pro Met 745 Leu Ala Ala Leu Ala Gln Arg Tyr Phe Thr Ala Ser Leu Pro Phe Glu Lys Asn Cys Gly Ala Asp His Ile Cys Gln Asp Asn Leu Gly Ile Ser Phe Ser Phe Pro Gly Leu Lys Ser Leu Leu Val Gly Ser Asn Leu Glu Leu Asn Ala Glu Val Met Val Trp Asn Asp Gly Glu Asp Ser Tyr Gly Thr Thr Ile Thr Phe Ser His Pro Ala Gly Leu Ser Tyr Arg Tyr Val 825 Ala Glu Gly Gln Lys Gln Gly Gln Leu Arg Ser Leu His Leu Thr Cys 835 Cys Ser Ala Pro Val Gly Ser Gln Gly Thr Trp Ser Thr Ser Cys Arg 855 Ile Asn His Leu Ile Phe Arg Gly Gly Ala Gln Ile Thr Phe Leu Ala Thr Phe Asp Val Ser Pro Lys Ala Val Gly Leu Asp Arg Leu Leu Leu 885 890 Ile Ala Asn Val Ser Ser Glu Asn Asn Ile Pro Arg Thr Ser Lys Thr Ile Phe Gln Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Ile Val Val 920

Ser Ser His Glu Gln Phe Thr Lys Tyr Leu Asn Phe Ser Glu Ser Glu 930 935 940

Glu Lys Glu Ser His Val Ala Met His Arg Tyr Gln Val Asn Asn Leu 945 950 955 960

Gly Gln Arg Asp Leu Pro Val Ser Ile Asn Phe Trp Val Pro Val Glu 965 970 975

Leu Asn Gln Glu Ala Val Trp Met Asp Val Glu Val Ser His Pro Gln 980 985 990

Asn Pro Ser Leu Arg Cys Ser Ser Glu Lys Ile Ala Pro Pro Ala Ser 995 1000 1005

Asp Phe Leu Ala His Ile Gln Lys Asn Pro Val Leu Asp Cys Ser Ile 1010 1015 1020

Ala Gly Cys Leu Arg Phe Arg Cys Asp Val Pro Ser Phe Ser Val Gln 1025 1030 1035 1040

Glu Glu Leu Asp Phe Thr Leu Lys Gly Asn Leu Ser Phe Gly Trp Val 1045 1050 1055

Arg Gln Ile Leu Gln Lys Lys Val Ser Val Val Ser Val Ala Glu Ile 1060 1065 1070

Ile Phe Asp Thr Ser Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe 1075 1080 1085

Met Arg Ala Gln Thr Ile Thr Val Leu Glu Lys Tyr Lys Val His Asn 1090 1095 1100

Pro Ile Pro Leu Ile Val Gly Ser Ser Ile Gly Gly Leu Leu Leu 1105 1110 1115 1120

Ala Leu Ile Thr Ala Val Leu Tyr Lys Val Gly Phe Phe Lys Arg Gln 1125 1130 1135

Tyr Lys Glu Met Met Glu Glu Ala Asn Gly Gln Ile Ala Pro Glu Asn 1140 1145 1150

Gly Thr Gln Thr Pro Ser Pro Pro Ser Glu Lys 1155 1160

<210> 5

<211> 12

<212> PRT

<213> dog

<400> 5

Phe Asn Leu Asp Val Glu Glu Pro Met Val Phe Gln 1 5 10

<210> 6

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

	<223> Description of Artificial Sequence: primer	
	<400> 6	
	ttyaayytgg aygtngarga rccnatggtn ttyca	35
	<210> 7	
	<211> 36	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
	<400> 7	
	ttcaacctgg acgtggagga gcccatggtg ttccaa	36
	<210> 8	
	<211> 36	
d A	<212> DNA <213> Artificial Sequence	
there if he tends the third therefore the fleeds the	(213) Attiticial bequence	
1	<220>	
i.	<223> Description of Artificial Sequence: primer	
	<400> 8	
== ==:	ttcaacctgg acgtngaasa ncccatggtc ttccaa	36
1		
2	<210> 9	
ri.	<211> 23	
	<212> DNA	
and them must then	<213> Artificial Sequence	
7	<220>	
# #	<223> Description of Artificial Sequence: primer	
	<400> 9	
	ttyaayytng aygtngarga rcc	23
	<210> 10	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	(213) Altificial bequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
	<400> 10	
	ttyaayytgg acgtngaaga	20
	<210> 11	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	

```
<400> 11
                                                                     17
 tgraanacca tnggytc
 <210> 12
  <211> 18
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: primer
 <400> 12
                                                                      18
 ttggaagacc atnggytc
  <210> 13
  <211> 17
  <212> DNA
  <213> Artificial Sequence
<220>
  <223> Description of Artificial Sequence: primer
  <400> 13
                                                                      17
  attaaccctc actaaag
  <210> 14
  <211> 17
  <212> DNA
  <213> Artificial Sequence
  <223> Description of Artificial Sequence: primer
  <400> 14
                                                                      17
  aatacgactc actatag
  <210> 15
  <211> 11
  <212> PRT
  <213> dog
  <400> 15
  Val Phe Gln Glu Xaa Gly Ala Gly Phe Gly Gln
  <210> 16
  <211> 14
  <212> PRT
  <213> dog
  <400> 16
  Leu Tyr Asp Xaa Val Ala Ala Thr Gly Leu Xaa Gln Pro Ile
  <210> 17
  <211> 12
```

```
the state of the s
```

```
<212> PRT
<213> dog
<400> 17
Pro Leu Glu Tyr Xaa Asp Val Ile Pro Gln Ala Glu
                 5
<210> 18
<211> 10
<212> PRT
<213> dog
<400> 18
Phe Gln Glu Gly Phe Ser Xaa Val Leu Xaa
<210> 19
<211> 14
<212> PRT
<213> dog
<400> 19
Thr Ser Pro Thr Phe Ile Xaa Met Ser Gln Glu Asn Val Asp
1 5
<210> 20
<211> 17
<212> PRT
<213> dog
<400> 20
Leu Val Val Gly Ala Pro Leu Glu Val Val Ala Val Xaa Gln Thr Gly
                  5
Arg
<210> 21
<211> 9
<212> PRT
<213> dog
<400> 21
Leu Asp Xaa Lys Pro Xaa Asp Thr Ala
                  5
<210> 22
<211> 7
<212> PRT
<213> dog
<400> 22
Phe Gly Glu Gln Phe Ser Glu
           5
```

<210> 23

gtnttycarg argaygg

```
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 23
                                                                   21
raanccytcy tgraaactyt c
<210> 24
<211> 1006
<212> DNA
<213> dog
<400> 24
ttcaacctgg acgtggagga gcccatggtg ttcaagagga tggagctggc tttggacaga 60
gcgtggccca gcttggcgga tctagactcg tggtgggagc ccccctggag gtggtggcgg 120
tcaaccaaac aggaaggttg tatgactgtg tggctgccac tggccttgtc aacccatacc 180
cctgcacaca cccccagatg ctgtgaacat gtccctgggt ctgtccctgt cagccgccgc 240
cagtcgcccc tggctgctgg cctgtggccc aaccatgcac agagcctgtg gggagaatat 300
gtatgcagaa ggcttttgcc tcctgttgga ctcccatctg cagaccattt ggacagtacc 360
tgctgcccta ccagagtgtc caagtcaaga gatggacatt gtcttcctga ttgatggttc 420
tggcagtatg agcaaagtga ctttaaacaa atgaaggatt tgtgagagct gtgatgggac 480
agtttgaggg cacccaaacc ctgttctcac tgatacagta tcccacctcc ctgaagatcc 540
acttcacctt cacgcaattc cagagcagct ggaaccctct gagcctggtg gatcccattg 600
tccaactgga cggcctgaca tatacagcca cgggcatccg gaaagtggtg gaggaactgt 660
ttcatagtaa gaatggggcc cgtaaaagtg ccaagaagat cctcattgtc atcacagatg 720
qcaaaaatac aaagaccccc tggagtacga ggacgtatcc ccaggcagag agagcggatc 780
atccgctatg ccattggggt gggagatgct ttctggaaac ccagtgccaa gcaggagctg 840
gacaacattg gctcagagcc ggctcaggac catgtgttca gggtggacaa ctttgcagca 900
ctcagcagca tccaggagca gctgcaggag aagatctttg cactcgaagg aacccagtcg 960
                                                                   1006
acgacaagta gctctttcca acatgagatg ttccaagaag ggttca
<210> 25
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 25
```

<210> 26 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 26 ccactgtcag gatgcccgtg	20
<210> 27 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 27 agttacgaat tcgccaccat ggctctacgg gtgcttcttc tg	42
<210> 28 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 28 agttacgaat tcgccaccat gactcggact gtgcttcttc tg	42
<210> 29 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 29 agttacgaat tcgccaccat gaccttcggc actgtg	36
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 30 ttgctgactg cctgcagttc	20
<210> 31	

<211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 31 gttctgacgc gtaatggcat tgtagacctc gtcttc	36
<210> 32 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 32 acgtatgcag gatcccatca agagatggac atcgct	36
<210> 33 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 33 actgcatgtc tcgaggctga agccttcttg ggacatc	37
<210> 34 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 34 tatagactgc tgggtagtcc ccac	24
<210> 35 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 35 tgaagattgg gggtaaataa caga	24
<210> 36 <211> 3528 <212> DNA	

<213> Rattus rattus <220> <221> CDS <222> (1)..(3453) <223> Description of Artificial Sequence: primer <400> 36 ggc tgg gcc ctg gct tcc tgt cat ggg tct aac ctg gat gtg gag gaa 48 Gly Trp Ala Leu Ala Ser Cys His Gly Ser Asn Leu Asp Val Glu Glu ccc atc gtg ttc aga gag gat gca gcc agc ttt gga cag act gtg gtg 96 Pro Ile Val Phe Arg Glu Asp Ala Ala Ser Phe Gly Gln Thr Val Val 144 cag ttt ggt gga tct cga ctc gtg gtg gga gcc cct ctg gag gcg gtg Gln Phe Gly Gly Ser Arg Leu Val Val Gly Ala Pro Leu Glu Ala Val gca gtc aac caa aca gga cgg ttg tat gac tgt gca cct gcc act ggc 192 Ala Val Asn Gln Thr Gly Arg Leu Tyr Asp Cys Ala Pro Ala Thr Gly atg tgc cag ccc atc gta ctg cgc agt ccc cta gag gca gtg aac atg 240 Met Cys Gln Pro Ile Val Leu Arg Ser Pro Leu Glu Ala Val Asn Met tcc ctg ggc ctg tct ctg gtg act gcc acc aat aac gcc cag ttg ctg 288 Ser Leu Gly Leu Ser Leu Val Thr Ala Thr Asn Asn Ala Gln Leu Leu 90 gct tgt ggt cca act gca cag aga gct tgt gtg aag aac atg tat gcg 336 Ala Cys Gly Pro Thr Ala Gln Arg Ala Cys Val Lys Asn Met Tyr Ala 105 aaa ggt too tgo oto ott oto ggo too ago ttg cag tto ato cag gca 384 Lys Gly Ser Cys Leu Leu Leu Gly Ser Ser Leu Gln Phe Ile Gln Ala gtc cct gcc tcc atg cca gag tgt cca aga caa gag atg gac att gct 432 Val Pro Ala Ser Met Pro Glu Cys Pro Arg Gln Glu Met Asp Ile Ala ttc ctg att gat ggt tct ggc agc att aac caa agg gac ttt gcc cag 480 Phe Leu Ile Asp Gly Ser Gly Ser Ile Asn Gln Arg Asp Phe Ala Gln 150 atg aag gac ttt gtc aaa gct ttg atg gga gag ttt gcg agc acc agc 528 Met Lys Asp Phe Val Lys Ala Leu Met Gly Glu Phe Ala Ser Thr Ser acc ttg ttc tcc ctg atg caa tac tcg aac atc ctg aag acc cat ttt 576 Thr Leu Phe Ser Leu Met Gln Tyr Ser Asn Ile Leu Lys Thr His Phe 190 180 acc ttc act gaa ttc aag aac atc ctg gac cct cag agc ctg gtg gat Thr Phe Thr Glu Phe Lys Asn Ile Leu Asp Pro Gln Ser Leu Val Asp 200

ccc Pro	att Ile 210	gtc Val	cag Gln	ctg Leu	caa Gln	ggc Gly 215	ctg Leu	acc Thr	tac Tyr	aca Thr	gcc Ala 220	aca Thr	ggc ggc	atc Ile	cgg Arg	672
					cta Leu 230											720
					ctt Leu											768
					gat Asp											816
					GJ Å āāā											864
					acc Thr											912
					ttt Phe 310											960
_					gcc Ala									_	-	1008
					atg Met											1056
					ctg Leu											1104
					ccc Pro											1152
					gac Asp 390											1200
					aag Lys											1248
_		-		_	GJA GGG	_	_	-				_	-	-		1296
					tct Ser											1344

					aga Arg 460			1392
					gag Glu			1440
					agg Arg			1488
					cct Pro			1536
					GJ À GG À			1584
					agc Ser 540			1632
					atg Met			1680
					ctg Leu			1728
					gat Asp			1776
					ctc Leu			1824
					ccc Pro 620			1872
					act Thr			1920
					ggc Gly			1968
					ctg Leu			2016
					act Thr			2064

ttg Leu	acg Thr 690	gga Gly	agg Arg	aag Lys	act Thr	ctg Leu 695	Gly	ctt Leu	ggt Gly	gat Asp	cac His 700	tgc Cys	gaa Glu	aca Thr	gtg Val	2112
aag Lys 705	ctg Leu	ctt Leu	ttg Leu	ccg Pro	gac Asp 710	tgt Cys	gtg Val	gaa Glu	gat Asp	gca Ala 715	gtg Val	agc Ser	cct Pro	atc Ile	atc Ile 720	2160
ctg Leu	cgc Arg	ctc Leu	aac Asn	ttt Phe 725	tcc Ser	ctg Leu	gtg Val	aga Arg	gac Asp 730	tct Ser	gct Ala	tca Ser	ccc Pro	agg Arg 735	aac Asn	2208
ctg Leu	cat His	cct Pro	gtg Val 740	ctg Leu	gct Ala	gtg Val	ggc Gly	tca Ser 745	caa Gln	gac Asp	cac His	ata Ile	act Thr 750	gct Ala	tct Ser	2256
ctg Leu	ccg Pro	ttt Phe 755	gag Glu	aag Lys	aac Asn	tgt Cys	aag Lys 760	caa Gln	gaa Glu	ctc Leu	ctg Leu	tgt Cys 765	gag Glu	GJÀ GGÀ	gac Asp	2304
ctg Leu	ggc Gly 770	atc Ile	agc Ser	ttt Phe	aac Asn	ttc Phe 775	tca Ser	ggc Gly	ctg Leu	cag Gln	gtc Val 780	ttg Leu	gtg Val	gtg Val	gga Gly	2352
ggc Gly 785	Ser	cca Pro	gag Glu	ctc Leu	act Thr 790	gtg Val	aca Thr	gtc Val	act Thr	gtg Val 795	tgg Trp	aat Asn	gag Glu	ggt Gly	gag Glu 800	2400
gac Asp	agc Ser	tat Tyr	gga Gly	act Thr 805	tta Leu	gtc Val	aag Lys	ttc Phe	tac Tyr 810	tac Tyr	cca Pro	gca Ala	Gly ggg	cta Leu 815	tct Ser	2448
tac Tyr	cga Arg	cgg Arg	gta Val 820	aca Thr	Gly	act Thr	cag Gln	caa Gln 825	cct Pro	cat His	cag Gln	tac Tyr	cca Pro 830	cta Leu	cgc Arg	2496
ttg Leu	gcc Ala	tgt Cys 835	Glu	gct Ala	gag Glu	ccc Pro	gct Ala 840	gcc Ala	cag Gln	gag Glu	gac Asp	ctg Leu 845	Arg	agc Ser	agc Ser	2544
agc Ser	tgt Cys 850	Ser	att Ile	aat Asn	cac His	ccc Pro 855	atc Ile	ttc Phe	cga Arg	gaa Glu	ggt Gly 860	gca Ala	aag Lys	acc	acc	2592
ttc Phe 865	Met	atc Ile	aca Thr	ttc Phe	gat Asp 870	gtc Val	tcc Ser	tac Tyr	aag Lys	gcc Ala 875	Phe	cta Leu	gga Gly	gac Asp	agg Arg 880	2640
ttg Leu	ctt Leu	ctg Leu	agg Arg	gcc Ala 885	aaa Lys	gcc Ala	agc Ser	agt Ser	gag Glu 890	Asn	aat Asn	aag Lys	cct Pro	gat Asp 895	acc Thr	2688
aac Asn	aag Lys	act Thr	gcc Ala 900	Phe	cag Gln	ctg Leu	gag Glu	ctc Leu 905	Pro	gtg Val	g aag Lys	tac Tyr	acc Thr 910	· Val	tat Tyr	2736
acc Thi	ctg Leu	ato Ile 915	Ser	agg Arg	caa Gln	gaa Glu	gat Asp 920	Ser	acc Thr	aac Asr	cat n His	gto Val 925	. Asr	ttt Phe	tca Ser	2784

														cgt Arg		2832
														tgg Trp		2880
														agc Ser 975		2928
														cag Gln		2976
						Ile					Val			tgc Cys		3024
Ile					His					Ile				gac Asp		3072
cag Gln 102	Asp	gaa Glu	ctt Leu	Asp	ttc Phe L030	att Ile	ctg Leu	agg Arg	Gly	aac Asn 1035	ctc Leu	agc Ser	ttc Phe	ggc Gly	tgg Trp L040	3120
gtc Val	agt Ser	cag Gln	Thr	ttg Leu 1045	cag Gln	gaa Glu	aag Lys	Val	ttg Leu L050	ctt Leu	gtg Val	agt Ser	Glu	gct Ala 1055	gaa Glu	3168
atc Ile	act Thr	Phe	gac Asp 1060	aca Thr	tct Ser	gtg Val	Tyr	tcc Ser .065	cag Gln	ctg Leu	cca Pro	Gly	cag Gln L070	gag Glu	gca Ala	3216
ttt Phe	Leu	aga Arg .075	gcc Ala	cag Gln	gtg Val	Glu	aca Thr .080	acg Thr	tta Leu	gaa Glu	Glu	tac Tyr 1085	gtg Val	gtc Val	tat Tyr	3264
Glu	ecc Pro .090	atc Ile	ttc Phe	ctc Leu	Val	gcg Ala .095	ggc Gly	agc Ser	tcg Ser	Val	gga Gly 100	ggt Gly	ctg Leu	ctg Leu	tta Leu	3312
ctg Leu 1105	Ala	ctc Leu	atc Ile	Thr	gtg Val 110	gta Val	ctg Leu	tac Tyr	Lys	ctt Leu 115	ggc Gly	tyc Xaa	tyc Xaa	aaa Lys 1	cgt Arg 120	3360
cag Gln	tac Tyr	aaa Lys	Glu	atg Met 125	ctg Leu	gac Asp	ggc Gly	Lys	gct Ala 130	gca Ala	gat Asp	cct Pro	Val	aca Thr 1135	gcc Ala	3408
		Ala			ggc Gly		Glu					Leu				3453
tagg	aato	ca c	tctc	ctgo	c ta	tctc	tgna	atg	aaga	ttg	gtco	tgcc	ta t	gagt	ctact	3513
ggca	tggg	aa c	gagt													3528

<210> 37

<211> 1151

<212> PRT

<213> Rattus rattus

<400> 37

Gly Trp Ala Leu Ala Ser Cys His Gly Ser Asn Leu Asp Val Glu Glu 1 5 10 15

Pro Ile Val Phe Arg Glu Asp Ala Ala Ser Phe Gly Gln Thr Val Val 20 25 30

Gln Phe Gly Gly Ser Arg Leu Val Val Gly Ala Pro Leu Glu Ala Val 35 40 45

Ala Val Asn Gln Thr Gly Arg Leu Tyr Asp Cys Ala Pro Ala Thr Gly 50 55 60

Met Cys Gln Pro Ile Val Leu Arg Ser Pro Leu Glu Ala Val Asn Met 65 70 75 80

Ser Leu Gly Leu Ser Leu Val Thr Ala Thr Asn Asn Ala Gln Leu Leu 85 90 95

Ala Cys Gly Pro Thr Ala Gln Arg Ala Cys Val Lys Asn Met Tyr Ala 100 105 110

Lys Gly Ser Cys Leu Leu Leu Gly Ser Ser Leu Gln Phe Ile Gln Ala 115 120 125

Val Pro Ala Ser Met Pro Glu Cys Pro Arg Gln Glu Met Asp Ile Ala 130 135 140

Phe Leu Ile Asp Gly Ser Gly Ser Ile Asn Gln Arg Asp Phe Ala Gln 145 150 155 160

Met Lys Asp Phe Val Lys Ala Leu Met Gly Glu Phe Ala Ser Thr Ser 165 170 175

Thr Leu Phe Ser Leu Met Gln Tyr Ser Asn Ile Leu Lys Thr His Phe 180 185 190

Thr Phe Thr Glu Phe Lys Asn Ile Leu Asp Pro Gln Ser Leu Val Asp 195 200 205

Pro Ile Val Gln Leu Gln Gly Leu Thr Tyr Thr Ala Thr Gly Ile Arg 210 215 220

Thr Val Met Glu Glu Leu Phe His Ser Lys Asn Gly Ser Arg Lys Ser 225 230 235 240

Ala Lys Lys Ile Leu Leu Val Ile Thr Asp Gly Gln Lys Tyr Arg Asp 245 250 255

Pro Leu Glu Tyr Ser Asp Val Ile Pro Ala Ala Asp Lys Ala Gly Ile 260 265 270

Ile Arg Tyr Ala Ile Gly Val Gly Asp Ala Phe Gln Glu Pro Thr Ala 275 280 285

Leu Lys Glu Leu Asn Thr Ile Gly Ser Ala Pro Pro Gln Asp His Val 290 295 300 Phe Lys Val Gly Asn Phe Ala Ala Leu Arg Ser Ile Gln Arg Gln Leu Gln Glu Lys Ile Phe Ala Ile Glu Gly Thr Gln Ser Arg Ser Ser 325 Ser Phe Gln His Glu Met Ser Gln Glu Gly Phe Ser Ser Ala Leu Thr Ser Asp Gly Pro Val Leu Gly Ala Xaa Gly Ser Phe Ser Trp Ser Gly 360 Gly Ala Phe Leu Tyr Pro Pro Asn Thr Arg Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met Arg Asp Ser Tyr Leu Gly Tyr Ser Thr Ala Val Ala Phe Trp Lys Gly Val His Ser Leu Ile Leu Gly Ala Pro Arg His Gln His Thr Gly Lys Val Val Ile Phe Thr Gln Glu Ala Arg 425 His Trp Arg Pro Lys Ser Glu Val Arg Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser Val Asp Val Asp Arg Asp Gly Ser Xaa 455 Asp Leu Val Leu Ile Gly Ala Pro His Tyr Tyr Glu Gln Thr Arg Gly Gly Gln Val Ser Val Xaa Pro Val Pro Gly Val Arg Gly Arg Trp Gln 490 485 Cys Glu Ala Thr Leu His Gly Glu Gln Xaa His Pro Trp Gly Arg Phe 505 Gly Val Ala Leu Thr Val Leu Gly Asp Val Asn Gly Asp Asn Leu Ala Asp Val Ala Ile Gly Ala Pro Gly Glu Glu Glu Ser Arg Gly Ala Val 535 Tyr Ile Phe His Gly Ala Ser Arg Leu Glu Ile Met Pro Ser Pro Ser 545 Gln Arg Val Thr Gly Ser Gln Leu Ser Leu Arg Leu Gln Tyr Phe Gly 570 Gln Ser Leu Ser Gly Gly Gln Asp Leu Thr Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Gln Gly His Val Leu Leu Arg Ser Leu Pro 600 Leu Leu Lys Val Glu Leu Ser Ile Arg Phe Ala Pro Met Glu Val Ala Lys Ala Val Tyr Gln Cys Trp Glu Arg Thr Pro Thr Val Leu Glu Ala 635

Gly Glu Ala Thr Val Cys Leu Thr Val His Lys Gly Ser Pro Asp Leu Leu Gly Asn Val Gln Gly Ser Val Arg Tyr Asp Leu Ala Leu Asp Pro Gly Arg Leu Ile Ser Arg Ala Ile Phe Asp Glu Thr Lys Asn Cys Thr Leu Thr Gly Arg Lys Thr Leu Gly Leu Gly Asp His Cys Glu Thr Val Lys Leu Leu Pro Asp Cys Val Glu Asp Ala Val Ser Pro Ile Ile Leu Arg Leu Asn Phe Ser Leu Val Arg Asp Ser Ala Ser Pro Arg Asn 725 Leu His Pro Val Leu Ala Val Gly Ser Gln Asp His Ile Thr Ala Ser Leu Pro Phe Glu Lys Asn Cys Lys Gln Glu Leu Leu Cys Glu Gly Asp Leu Gly Ile Ser Phe Asn Phe Ser Gly Leu Gln Val Leu Val Val Gly Gly Ser Pro Glu Leu Thr Val Thr Val Thr Val Trp Asn Glu Gly Glu Asp Ser Tyr Gly Thr Leu Val Lys Phe Tyr Tyr Pro Ala Gly Leu Ser Tyr Arg Arg Val Thr Gly Thr Gln Gln Pro His Gln Tyr Pro Leu Arg Leu Ala Cys Glu Ala Glu Pro Ala Ala Gln Glu Asp Leu Arg Ser Ser 840 Ser Cys Ser Ile Asn His Pro Ile Phe Arg Glu Gly Ala Lys Thr Thr Phe Met Ile Thr Phe Asp Val Ser Tyr Lys Ala Phe Leu Gly Asp Arg Leu Leu Leu Arg Ala Lys Ala Ser Ser Glu Asn Asn Lys Pro Asp Thr 885 890 Asn Lys Thr Ala Phe Gln Leu Glu Leu Pro Val Lys Tyr Thr Val Tyr 905 Thr Leu Ile Ser Arg Gln Glu Asp Ser Thr Asn His Val Asn Phe Ser Ser Ser His Gly Gly Arg Arg Gln Glu Ala Ala His Arg Tyr Arg Val 935 Asn Asn Leu Ser Pro Leu Lys Leu Ala Val Arg Val Asn Phe Trp Val 945 Pro Val Leu Leu Asn Gly Val Ala Val Trp Asp Val Thr Leu Ser Ser

970

Pro Ala Gln Gly Val Ser Cys Val Ser Gln Met Lys Pro Pro Gln Asn 980 985 990											
Pro Asp Phe Leu Thr Gln Ile Gln Arg Arg Ser Val Leu Asp Cys Ser 995 1000 1005											
Ile Ala Asp Cys Leu His Ser Arg Cys Asp Ile Pro Ser Leu Asp Ile 1010 1015 1020											
Gln Asp Glu Leu Asp Phe Ile Leu Arg Gly Asn Leu Ser Phe Gly Trp 1025 1030 1035 1040											
Val Ser Gln Thr Leu Gln Glu Lys Val Leu Leu Val Ser Glu Ala Glu 1045 1050 1055											
Ile Thr Phe Asp Thr Ser Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala 1060 1065 1070											
Phe Leu Arg Ala Gln Val Glu Thr Thr Leu Glu Glu Tyr Val Val Tyr 1075 1080 1085											
Glu Pro Ile Phe Leu Val Ala Gly Ser Ser Val Gly Gly Leu Leu 1090 1095 1100											
Leu Ala Leu Ile Thr Val Val Leu Tyr Lys Leu Gly Xaa Xaa Lys Arg 1105 1110 1115 1120											
Gln Tyr Lys Glu Met Leu Asp Gly Lys Ala Ala Asp Pro Val Thr Ala 1125 1130 1135											
Gly Gln Ala Asp Phe Gly Cys Glu Thr Pro Pro Tyr Leu Val Ser 1140 1145 1150											
<210> 38 <211> 21 <212> DNA <213> Artificial Sequence											
<220> <223> Description of Artificial Sequence: primer											
<400> 38 gtccaagctg tcatgggcca g	21										
<210> 39 <211> 23 <212> DNA <213> Artificial Sequence											
<220> <223> Description of Artificial Sequence: primer											
<400> 39 gtccagcaga ctgaagagca cgg	23										
<210> 40 <211> 18 <212> DNA <212> Artificial Seguence											
<213> Artificial Sequence											

<220>	
<223> Description of Artificial Sequence: primer	
<400> 40	
tgtaaaacga cggccagt	18
tgtaaaacga cggccagc	
<210> 41	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: primer</pre>	
<400> 41	
ggaaacagct atgaccatg	19
<210> 42	
<211> 22 <211> 22	
<211> 22 <212> DNA	
<213> Artificial Sequence	
(S13) Vicilioiai pedaemoe	
<220>	
<223> Description of Artificial Sequence: primer	
.400. 40	
<400> 42	22
ggacatgttc actgcctcta gg	22
<210> 43	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 43	
ggcggacagt cagacgactg tootg	25
gycggacage cagacgaccg coots	
<210> 44	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><220> <223> Description of Artificial Sequence: primer</pre>	
7570 Depot thereif of impartment poducing, bramer	
<400> 44	
ctggttcggc ccacctctga aggttccaga atcgatag	38
<210> 45	
<211> 3519	
<211> 3319 <212> DNA	
<213> Mus musculus	
VETON LIND MINDORTAR	
<220>	
<221> CDS	

<222> (52)..(3516)

<220> <223> Description of Artificial Sequence: primer

<400> 45

gctttctgaa ggt	tccagaa tcgata	agtga attcgtggg	gc actgctcaga t a I	atg gtc 57 Met Val 1
cgt gga gtt gt Arg Gly Val Val 5	g atc ctc ctg l Ile Leu Leu	tgt ggc tgg gc Cys Gly Trp Al 10	cc ctg gct tcc to la Leu Ala Ser C 15	gt cat 105 ys His
ggg tct aac ct Gly Ser Asn Le 20	g gat gtg gag ı Asp Val Glu 25	aag ccc gtc gt Lys Pro Val Va	tg ttc aaa gag g al Phe Lys Glu A 30	at gca 153 sp Ala
gcc agc ttc gg Ala Ser Phe Gl 35	a cag act gtg y Gln Thr Val 40	Val Gln Phe Gl	gt gga tct cga c ly Gly Ser Arg L 45	tc gtg 201 eu Val 50
Val Gly Ala Pr	o Leu Glu Ala 55	Val Ala Val As 60		65
tct gac tgt cc Ser Asp Cys Pr 7	o Pro Ala Thr	ggc gtg tgc ca Gly Val Cys G 75	ag ccc atc tta c ln Pro Ile Leu L 80	tg cac 297 eu His
Ile Pro Leu Gl 85	u Ala Val Asn	Met Ser Leu G	gc ctg tct ctg g ly Leu Ser Leu V 95	al Ala
Asp Thr Asn As 100	n Ser Gln Leu 105	Leu Ala Cys G	gt cca act gca c ly Pro Thr Ala G 110	In Arg
Ala Cys Ala Ly 115	s Asn Met Tyr 120	Ala Lys Gly S	cc tgc ctc ctt c er Cys Leu Leu I 25	eu Gly 130
Ser Ser Leu Gl	n Phe Ile Gln 135	Ala Ile Pro A 140		Iu Cys .45
Pro Gly Gln Gl 15	u Met Asp Ile O	Ala Phe Leu I 155	tt gat ggc tcc g le Asp Gly Ser G 160	Sly Ser
Ile Asp Gln Se 165	r Asp Phe Thr	Gln Met Lys A 170	ac ttc gtc aaa g sp Phe Val Lys <i>F</i> 175	Ala Leu
Met Gly Gln Le 180	u Ala Ser Thr 185	Ser Thr Ser P	tc tcc ctg atg o The Ser Leu Met (190	31n Tyr
tca aac atc ct Ser Asn Ile Le 195	g aag act cat u Lys Thr His 200	Phe Thr Phe T	cg gaa ttc aag a hr Glu Phe Lys S 05	agc agc 681 Ser Ser 210

										gtc Va l						729
										gtg Val						777
agc Ser	aag Lys	aat Asn 245	Gly	gcc Ala	cga Arg	aaa Lys	agt Ser 250	gcc Ala	aag Lys	aag Lys	ata Ile	cta Leu 255	att Ile	gtc Val	atc Ile	825
										gag Glu						873
	_	_			-				_	tat Tyr 285	_					921
										gag Glu						969
	_		_	_	_				_	gtg Val				_	_	1017
										aaa Lys						1065
										cag Gln						1113
										gga Gly 365						1161
										ttc Phe						1209
										gag Glu						1257
										gcc Ala						1305
										cag Gln						1353
gtc Val 435	atc Ile	ttt Phe	acc Thr	cag Gln	gaa Glu 440	tcc Ser	agg Arg	cac His	tgg Trp	agg Arg 445	ccc Pro	aag Lys	tct Ser	gaa Glu	gtc Val 450	1401

aga Arg	Gly ggg	aca Thr	cag Gln	atc Ile 455	ggc Gly	tcc Ser	tac Tyr	ttt Phe	ggg Gly 460	gca Ala	tct Ser	ctc Leu	tgt Cys	tct Ser 465	gtg Val	1449
gac Asp	atg Met	gat Asp	aga Arg 470	gat Asp	ggc Gly	agc Ser	act Thr	gac Asp 475	ctg Leu	gtc Val	ctg Leu	att Ile	gga Gly 480	gtc Val	ccc Pro	1497
cat His	tac Tyr	tat Tyr 485	gag Glu	cac His	acc Thr	cga Arg	ggg Gly 490	gly ggg	cag Gln	gtg Val	tcg Ser	gtg Val 495	tgc Cys	ccc Pro	atg Met	1545
cct Pro	ggt Gly 500	gtg Val	agg Arg	agc Ser	agg Arg	tgg Trp 505	cat His	tgt Cys	Gly ggg	acc Thr	acc Thr 510	ctc Leu	cat His	Gly ggg	gag Glu	1593
cag Gln 515	ggc Gly	cat His	cct Pro	tgg Trp	ggc Gly 520	cgc Arg	ttt Phe	ggg ggg	gcg Ala	gct Ala 525	ctg Leu	aca Thr	gtg Val	cta Leu	ggg Gly 530	1641
gac Asp	gtg Val	aat Asn	ggg Gly	gac Asp 535	agt Ser	ctg Leu	gcg Ala	gat Asp	gtg Val 540	gct Ala	att Ile	ggt Gly	gca Ala	ccc Pro 545	gga Gly	1689
gag Glu	gag Glu	gag Glu	aac Asn 550	aga Arg	ggt Gly	gct Ala	gtc Val	tac Tyr 555	ata Ile	ttt Phe	cat His	gga Gly	gcc Ala 560	tcg Ser	aga Arg	1737
cag Gln	gac Asp	atc Ile 565	gct Ala	ccc Pro	tcg Ser	cct Pro	agc Ser 570	cag Gln	cgg Arg	gtc Val	act Thr	ggc Gly 575	tcc Ser	cag Gln	ctc Leu	1785
ttc Phe	ctg Leu 580	agg Arg	ctc Leu	caa Gln	tat Tyr	ttt Phe 585	elà aaa	cag Gln	tca Ser	tta Leu	agt Ser 590	Gly ggg	ggt Gly	cag Gln	gac Asp	1833
ctt Leu 595	aca Thr	cag Gln	gat Asp	ggc Gly	ctg Leu 600	gtg Val	gac Asp	ctg Leu	gcc Ala	gtg Val 605	gga Gly	gcc Ala	cag Gln	ej ggg	cac His 610	1881
gtg Val	ctg Leu	ctg Leu	ctt Leu	agg Arg 615	agt Ser	ctg Leu	cct Pro	ttg Leu	ctg Leu 620	aaa Lys	gtg Val	Gly	atc Ile	tcc Ser 625	att Ile	1929
aga Arg	ttt Phe	gcc Ala	ccc Pro 630	tca Ser	gag Glu	gtg Val	gca Ala	aag Lys 635	act Thr	gtg Val	tac Tyr	cag Gln	tgc Cys 640	tgg Trp	gga Gly	1977
agg Arg	act Thr	ccc Pro 645	act Thr	gtc Val	ctc Leu	gaa Glu	gct Ala 650	gga Gly	gag Glu	gcc Ala	acc Thr	gtc Val 655	tgt Cys	ctc Leu	act Thr	2025
gtc Val	cgc Arg 660	aaa Lys	ggt Gly	tca Ser	cct Pro	gac Asp 665	ctg Leu	tta Leu	ggt Gly	gat Asp	gtc Val 670	caa Gln	agc Ser	tct Ser	gtc Val	2073
agg Arg 675	tat Tyr	gat Asp	ctg Leu	gcg Ala	ttg Leu 680	gat Asp	ccg Pro	ggc Gly	cgt Arg	ctg Leu 685	att Ile	tct Ser	cgt Arg	gcc Ala	att Ile 690	2121

					aac Asn											2169
ctt Leu	ggt Gly	gat Asp	cac His 710	tgc Cys	gaa Glu	aca Thr	atg Met	aag Lys 715	ctg Leu	ctt Leu	ttg Leu	cca Pro	gac Asp 720	tgt Cys	gtg Val	2217
					cct Pro											2265
					tcc Ser											2313
		_		-	aca Thr 760	_			_			_		_		2361
					agc Ser											2409
-		_			gag Glu					_		_				2457
					gga Gly											2505
Leu	Ser 820	Tyr	Arg	Arg	gtg Val	Thr 825	Arg	Āla	Gln	Gln	Pro 830	His	Pro	Tyr	Pro	2553
Leu 835	Arg	Leu	Ala	Cys	gag Glu 840	Ala	Glu	Pro	Thr	Gly 845	Gln	Glu	Ser	Leu	Arg 850	2601
Ser	Ser	Ser	Cys	Ser 855	atc Ile	Asn	His	Pro	Ile 860	Phe	Arg	Glu	Gly	Ala 865	Lys	2649
gcc Ala	acc Thr	ttc Phe	atg Met 870	atc Ile	aca Thr	ttt Phe	gat Asp	gtc Val 875	tcc Ser	tac Tyr	aag Lys	gcc Ala	ttc Phe 880	ctg Leu	gga Gly	2697
					agg Arg											2745
gaa Glu	acc Thr 900	agc Ser	aag Lys	act Thr	gcc Ala	ttc Phe 905	cag Gln	ctg Leu	gag Glu	ctt Leu	ccg Pro 910	gtg Val	aag Lys	tac Tyr	acg Thr	2793
					agt Ser 920											2841
ttc	tca	tct	tcc	cac	ggg	gag	aga	cag	aaa	gag	gcc	gaa	cat	cga	tat	2889

Phe	Ser	Ser	Ser	His 935	Gly	Glu	Arg	Gln	Lys 940	Glu	Ala	Glu	His	Arg 945	Tyr	
cgt Arg	gtg Val	aat Asn	aac Asn 950	ctg Leu	agt Ser	cca Pro	ttg Leu	acg Thr 955	ctg Leu	gcc Ala	atc Ile	agc Ser	gtt Val 960	aac Asn	ttc Phe	2937
tgg Trp	gtc Val	ccc Pro 965	atc Ile	ctt Leu	ctg Leu	aat Asn	ggt Gly 970	gtg Val	gcc Ala	gtg Val	tgg Trp	gat Asp 975	gtg Val	act Thr	ctg Leu	2985
agg Arg	agc Ser 980	cca Pro	gca Ala	cag Gln	ggt Gly	gtc Val 985	tcc Ser	tgt Cys	gtg Val	tca Ser	cag Gln 990	agg Arg	gaa Glu	cct Pro	cct Pro	3033
caa Gln 995	cat His	tcc Ser	gac Asp	Leu	ctg Leu 1000	acc Thr	cag Gln	atc Ile	Gln	gga Gly 1005	cgc Arg	tct Ser	gtg Val	Leu	gac Asp 1010	3081
tgc Cys	gcc Ala	atc Ile	Ala	gac Asp 1015	tgc Cys	ctg Leu	cac His	Leu	cgc Arg 1020	tgt Cys	gac Asp	atc Ile	Pro	tcc Ser 1025	ttg Leu	3129
ggc Gly	acc Thr	Leu	gat Asp 1030	gag Glu	ctt Leu	gac Asp	ttc Phe	att Ile 1035	ctg Leu	aag Lys	ggc Gly	Asn	ctc Leu 1040	agc Ser	ttc Phe	3177
ggc	Trp	atc Ile 1045	agt Ser	cag Gln	aca Thr	Leu	cag Gln 1050	aaa Lys	aag Lys	gtg Val	Leu	ctc Leu 1055	Leu	agt Ser	gag Glu	3225
Āla	gaa Glu 1060	atc Ile	aca Thr	ttc Phe	Asn	aca Thr 1065	tct Ser	gtg Val	tat Tyr	Ser	cag Gln 1070	ctg Leu	ccg Pro	gga Gly	cag Gln	3273
gag Glu 107	Ala	ttt Phe	ctg Leu	Arg	gcc Ala 1080	cag Gln	gtg Val	tca Ser	Thr	atg Met 1085	cta Leu	gaa Glu	gaa Glu	Tyr	gtg Val 1090	3321
gtc Val	tat Tyr	gag Glu	Pro	gtc Val 1095	ttc Phe	ctc Leu	atg Met	Val	ttc Phe 1100	Ser	tca Ser	gtg Val	gga Gly	ggt Gly 1105	ctg Leu	3369
ctg Leu	tta Leu	Leu	gct Ala 1110	Leu	atc Ile	act Thr	Val	gcg Ala 1115	Leu	tac Tyr	aag Lys	ctt Leu	ggc Gly 1120	Phe	ttc Phe	3417
aaą Lys	Arg	cag Gln 1125	Tyr	aaa Lys	gag Glu	Met	ctg Leu 1130	Asp	cta Leu	cca Pro	Ser	gca Ala 1135	Asp	cct Pro	gac Asp	3465
cca Pro	gcc Ala 1140	Gly	cag Gln	gca Ala	Asp	tcc Ser 1145	Asn	cat His	gag Glu	Thr	cct Pro 1150	Pro	cat His	ctc Leu	acg Thr	3513
tcc Ser 115																3519

<210> 46 <211> 1155 <212> PRT <213> Mus musculus

Cys His Gly Ser Asn Leu Asp Val Glu Lys Pro Val Val Phe Lys Glu 20 25 30

Asp Ala Ala Ser Phe Gly Gln Thr Val Val Gln Phe Gly Gly Ser Arg 35 40 45

Leu Val Val Gly Ala Pro Leu Glu Ala Val Ala Val Asn Gln Thr Gly
50 55 60

Gln Ser Ser Asp Cys Pro Pro Ala Thr Gly Val Cys Gln Pro Ile Leu 65 70 75 80

Leu His Ile Pro Leu Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu 85 90 95

Val Ala Asp Thr Asn Asn Ser Gln Leu Leu Ala Cys Gly Pro Thr Ala 100 105 110

Gln Arg Ala Cys Ala Lys Asn Met Tyr Ala Lys Gly Ser Cys Leu Leu 115 120 125

Leu Gly Ser Ser Leu Gln Phe Ile Gln Ala Ile Pro Ala Thr Met Pro 130 135 140

Glu Cys Pro Gly Gln Glu Met Asp Ile Ala Phe Leu Ile Asp Gly Ser 145 150 155 160

Gly Ser Ile Asp Gln Ser Asp Phe Thr Gln Met Lys Asp Phe Val Lys 165 170 175

Ala Leu Met Gly Gln Leu Ala Ser Thr Ser Thr Ser Phe Ser Leu Met 180 185 190

Gln Tyr Ser Asn Ile Leu Lys Thr His Phe Thr Phe Thr Glu Phe Lys 195 200 205

Ser Ser Leu Ser Pro Gln Ser Leu Val Asp Ala Ile Val Gln Leu Gln 210 215 220

Gly Leu Thr Tyr Thr Ala Ser Gly Ile Gln Lys Val Val Lys Glu Leu 225 230 235 240

Phe His Ser Lys Asn Gly Ala Arg Lys Ser Ala Lys Lys Ile Leu Ile 245 250 255

Val Ile Thr Asp Gly Gln Lys Phe Arg Asp Pro Leu Glu Tyr Arg His 260 265 270

Val Ile Pro Glu Ala Glu Lys Ala Gly Ile Ile Arg Tyr Ala Ile Gly 275 280 285

Val Gly Asp Ala Phe Arg Glu Pro Thr Ala Leu Gln Glu Leu Asn Thr 290 295 300 Ile Gly Ser Ala Pro Ser Gln Asp His Val Phe Lys Val Gly Asn Phe Val Ala Leu Arg Ser Ile Gln Arg Gln Ile Gln Glu Lys Ile Phe Ala 330 Ile Glu Gly Thr Glu Ser Arg Ser Ser Ser Phe Gln His Glu Met 345 Ser Gln Glu Gly Phe Ser Ser Ala Leu Ser Met Asp Gly Pro Val Leu Gly Ala Val Gly Gly Phe Ser Trp Ser Gly Gly Ala Phe Leu Tyr Pro Ser Asn Met Arg Ser Thr Phe Ile Asn Met Ser Gln Glu Asn Glu Asp 390 Met Arg Asp Ala Tyr Leu Gly Tyr Ser Thr Ala Leu Ala Phe Trp Lys Gly Val His Ser Leu Ile Leu Gly Ala Pro Arg His Gln His Thr Gly Lys Val Val Ile Phe Thr Gln Glu Ser Arg His Trp Arg Pro Lys Ser 440 Glu Val Arg Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser Val Asp Met Asp Arg Asp Gly Ser Thr Asp Leu Val Leu Ile Gly 475 Val Pro His Tyr Tyr Glu His Thr Arg Gly Gly Gln Val Ser Val Cys Pro Met Pro Gly Val Arg Ser Arg Trp His Cys Gly Thr Thr Leu His 505 Gly Glu Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu Gly Asp Val Asn Gly Asp Ser Leu Ala Asp Val Ala Ile Gly Ala Pro Gly Glu Glu Asn Arg Gly Ala Val Tyr Ile Phe His Gly Ala Ser Arg Gln Asp Ile Ala Pro Ser Pro Ser Gln Arg Val Thr Gly Ser Gln Leu Phe Leu Arg Leu Gln Tyr Phe Gly Gln Ser Leu Ser Gly Gly 585 Gln Asp Leu Thr Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Gln Gly His Val Leu Leu Leu Arg Ser Leu Pro Leu Leu Lys Val Gly Ile 615 620

Ser Ile Arg Phe Ala Pro Ser Glu Val Ala Lys Thr Val Tyr Gln Cys Trp Gly Arg Thr Pro Thr Val Leu Glu Ala Gly Glu Ala Thr Val Cys Leu Thr Val Arg Lys Gly Ser Pro Asp Leu Leu Gly Asp Val Gln Ser Ser Val Arg Tyr Asp Leu Ala Leu Asp Pro Gly Arg Leu Ile Ser Arg Ala Ile Phe Asp Glu Thr Lys Asn Cys Thr Leu Thr Arg Arg Lys Thr Leu Gly Leu Gly Asp His Cys Glu Thr Met Lys Leu Leu Pro Asp 715 Cys Val Glu Asp Ala Val Thr Pro Ile Ile Leu Arg Leu Asn Leu Ser Leu Ala Gly Asp Ser Ala Pro Ser Arg Asn Leu Arg Pro Val Leu Ala Val Gly Ser Gln Asp His Val Thr Ala Ser Phe Pro Phe Glu Lys Asn 760 Cys Glu Gly Asn Leu Gly Val Ser Phe Asn Phe Ser Gly Leu Gln Val 775 Leu Glu Val Gly Ser Ser Pro Glu Leu Thr Val Thr Val Thr Val Trp 795 Asn Glu Gly Glu Asp Ser Tyr Gly Thr Leu Ile Lys Phe Tyr Tyr Pro Ala Glu Leu Ser Tyr Arg Arg Val Thr Arg Ala Gln Gln Pro His Pro Tyr Pro Leu Arg Leu Ala Cys Glu Ala Glu Pro Thr Gly Gln Glu Ser Leu Arg Ser Ser Ser Cys Ser Ile Asn His Pro Ile Phe Arg Glu Gly 855 Ala Lys Ala Thr Phe Met Ile Thr Phe Asp Val Ser Tyr Lys Ala Phe 870 875 Leu Gly Asp Arg Leu Leu Arg Ala Ser Ala Ser Ser Glu Asn Asn Lys Pro Glu Thr Ser Lys Thr Ala Phe Gln Leu Glu Leu Pro Val Lys 905 Tyr Thr Val Tyr Thr Val Ile Ser Arg Gln Glu Asp Ser Thr Lys His Phe Asn Phe Ser Ser His Gly Glu Arg Gln Lys Glu Ala Glu His

Arg Tyr Arg Val Asn Asn Leu Ser Pro Leu Thr Leu Ala Ile Ser Val 945 950 955 960

Asn Phe Trp Val Pro Ile Leu Leu Asn Gly Val Ala Val Trp Asp Val 965 970 975

Thr Leu Arg Ser Pro Ala Gln Gly Val Ser Cys Val Ser Gln Arg Glu 980 985 990

Pro Pro Gln His Ser Asp Leu Leu Thr Gln Ile Gln Gly Arg Ser Val 995 1000 1005

Leu Asp Cys Ala Ile Ala Asp Cys Leu His Leu Arg Cys Asp Ile Pro 1010 1015 1020

Ser Leu Gly Thr Leu Asp Glu Leu Asp Phe Ile Leu Lys Gly Asn Leu 025 1030 1035 1040

Ser Phe Gly Trp Ile Ser Gln Thr Leu Gln Lys Lys Val Leu Leu Leu 1045 1050 1055

Ser Glu Ala Glu Ile Thr Phe Asn Thr Ser Val Tyr Ser Gln Leu Pro 1060 1065 1070

Gly Gln Glu Ala Phe Leu Arg Ala Gln Val Ser Thr Met Leu Glu Glu 1075 1080 1085

Tyr Val Val Tyr Glu Pro Val Phe Leu Met Val Phe Ser Ser Val Gly 1090 1095 1100

Gly Leu Leu Leu Ala Leu Ile Thr Val Ala Leu Tyr Lys Leu Gly 105 1110 1115 1120

Phe Phe Lys Arg Gln Tyr Lys Glu Met Leu Asp Leu Pro Ser Ala Asp 1125 1130 1135

Pro Asp Pro Ala Gly Gln Ala Asp Ser Asn His Glu Thr Pro Pro His 1140 1145 1150

Leu Thr Ser 115

<210> 47

<211> 49 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 47

agttacggat ccggcaccat gaccttcggc actgtgatcc tcctgtgtg

49

<210> 48

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer	
<400> 48 gctggacgat ggcatccac	19
<210> 49 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 49 gtagagttac ggatccggca ccat	24
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 50 gcagccagct tcggacagac	20
<210> 51 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 51 ccatgtccac agaacagaga g	21
<210> 52 <211> 3803 <212> DNA <213> Mus musculus	
<220> <221> CDS <222> (1)(3483)	
<220> <223> Description of Artificial Sequence: primer	
<400> 52 atg gtc cgt gga gtt gtg atc ctc ctg tgt ggc tgg gcc ctg gct tcc Met Val Arg Gly Val Val Ile Leu Leu Cys Gly Trp Ala Leu Ala Ser 1 5 10 15	48
tgt cat ggg tct aac ctg gat gtg gag aag ccc gtc gtg ttc aaa gag Cys His Gly Ser Asn Leu Asp Val Glu Lys Pro Val Val Phe Lys Glu 20 25 30	96

gat Asp	gca Ala	gcc Ala 35	agc Ser	ttc Phe	gga Gly	cag Gln	act Thr 40	gtg Val	gtg Val	cag Gln	ttt Phe	ggt Gly 45	gga Gly	tct Ser	cga Arg	144
ctc Leu	gtg Val 50	gtg Val	gga Gly	gcc Ala	cct Pro	ctg Leu 55	gag Glu	gcg Ala	gtg Val	gca Ala	gtc Val 60	aac Asn	caa Gln	aca Thr	gga Gly	192
cag Gln 65	tcg Ser	tct Ser	gac Asp	tgt Cys	ccg Pro 70	cct Pro	gcc Ala	act Thr	ggc Gly	gtg Val 75	tgc Cys	cag Gln	ccc Pro	atc Ile	tta Leu 80	240
ctg Leu	cac His	att Ile	ccc Pro	cta Leu 85	gag Glu	gca Ala	gtg Val	aac Asn	atg Met 90	tcc Ser	ctg Leu	ggc Gly	ctg Leu	tct Ser 95	ctg Leu	288
gtg Val	gct Ala	gac Asp	acc Thr 100	aat Asn	aac Asn	tcc Ser	cag Gln	ttg Leu 105	ctg Leu	gct Ala	tgt Cys	ggt Gly	cca Pro 110	act Thr	gca Ala	336
cag Gln	aga Arg	gct Ala 115	tgt Cys	gca Ala	aag Lys	aac Asn	atg Met 120	tat Tyr	gca Ala	aaa Lys	ggt Gly	tcc Ser 125	tgc Cys	ctc Leu	ctt Leu	384
		tcc Ser														432
gag Glu 145	tgt Cys	cca Pro	gga Gly	caa Gln	gag Glu 150	atg Met	gac Asp	att Ile	gct Ala	ttc Phe 155	ctg Leu	att Ile	gat Asp	ggc Gly	tcc Ser 160	480
ggc Gly	agc Ser	att Ile	gat Asp	caa Gln 165	agt Ser	gac Asp	ttt Phe	acc Thr	cag Gln 170	atg Met	aag Lys	gac Asp	ttc Phe	gtc Val 175	aaa Lys	528
		atg Met														576
caa Gln	tac Tyr	tca Ser 195	aac Asn	atc Ile	ctg Leu	aag Lys	act Thr 200	cat His	ttt Phe	acc Thr	ttc Phe	acg Thr 205	gaa Glu	ttc Phe	aag Lys	624
		ctg Leu														672
ggc Gly 225	ctg Leu	acg Thr	tac Tyr	aca Thr	gcc Ala 230	tcg Ser	ggc Gly	atc Ile	cag Gln	aaa Lys 235	gtg Val	gtg Val	aaa Lys	gag Glu	cta Leu 240	720
ttt Phe	cat His	agc Ser	aag Lys	aat Asn 245	Gly ggg	gcc Ala	cga Arg	aaa Lys	agt Ser 250	gcc Ala	aag Lys	aag Lys	ata Ile	cta Leu 255	att Ile	768
		aca Thr														816

gtc Val	atc Ile	cct Pro 275	gaa Glu	gca Ala	gag Glu	aaa Lys	gct Ala 280	ggg Gly	atc Ile	att Ile	cgc Arg	tat Tyr 285	gct Ala	ata Ile	eja aaa	864
gtg Val	gga Gly 290	gat Asp	gcc Ala	ttc Phe	cgg Arg	gaa Glu 295	ccc Pro	act Thr	gcc Ala	cta Leu	cag Gln 300	gag Glu	ctg Leu	aac Asn	acc Thr	912
att Ile 305	ggc Gly	tca Ser	gct Ala	ccc Pro	tcg Ser 310	cag Gln	gac Asp	cac His	gtg Val	ttc Phe 315	aag Lys	gtg Val	ggc Gly	aat Asn	ttt Phe 320	960
gta Val	gca Ala	ctt Leu	cgc Arg	agc Ser 325	atc Ile	cag Gln	cgg Arg	caa Gln	att Ile 330	cag Gln	gag Glu	aaa Lys	atc Ile	ttt Phe 335	gcc Ala	1008
att Ile	gaa Glu	gga Gly	acc Thr 340	gaa Glu	tca Ser	agg Arg	tca Ser	agt Ser 345	agt Ser	tcc Ser	ttt Phe	cag Gln	cac His 350	gag Glu	atg Met	1056
tca Ser	caa Gln	gaa Glu 355	ggt Gly	ttc Phe	agc Ser	tca Ser	gct Ala 360	ctc Leu	tca Ser	atg Met	gat Asp	gga Gly 365	cca Pro	gtt Val	ctg Leu	1104
GJA āāā	gct Ala 370	gtg Val	gga Gly	ggc Gly	ttc Phe	agc Ser 375	tgg Trp	tct Ser	gga Gly	ggt Gly	gcc Ala 380	ttc Phe	ttg Leu	tac Tyr	ccc Pro	1152
tca Ser 385	aat Asn	atg Met	aga Arg	tcc Ser	acc Thr 390	ttc Phe	atc Ile	aac Asn	atg Met	tct Ser 395	cag Gln	gag Glu	aac Asn	gag Glu	gat Asp 400	1200
atg Met	agg Arg	gac Asp	gct Ala	tac Tyr 405	ctg Leu	ggt Gly	tac Tyr	tcc Ser	acc Thr 410	gca Ala	ctg Leu	gcc Ala	ttt Phe	tgg Trp 415	aag Lys	1248
ej À ààà	gtc Val	cac His	agc Ser 420	ctg Leu	atc Ile	ctg Leu	Gly	gcc Ala 425	cct Pro	cgc Arg	cac His	cag Gln	cac His 430	acg Thr	ej aaa	1296
aag Lys	gtt Val	gtc Val 435	atc Ile	ttt Phe	acc Thr	cag Gln	gaa Glu 440	tcc Ser	agg Arg	cac His	tgg Trp	agg Arg 445	ccc Pro	aag Lys	tct Ser	1344
gaa Glu	gtc Val 450	aga Arg	ggg Gly	aca Thr	cag Gln	atc Ile 455	ggc Gly	tcc Ser	tac Tyr	ttt Phe	ggg Gly 460	gca Ala	tct Ser	ctc Leu	tgt Cys	1392
tct Ser 465	gtg Val	gac Asp	atg Met	gat Asp	aga Arg 470	gat Asp	ggc Gly	agc Ser	act Thr	gac Asp 475	ctg Leu	gtc Val	ctg Leu	att Ile	gga Gly 480	1440
gtc Val	ccc Pro	cat His	tac Tyr	tat Tyr 485	gag Glu	cac His	acc Thr	cga Arg	ggg Gly 490	Gly	cag Gln	gtg Val	tcg Ser	gtg Val 495	Cys	1488
ccc Pro	atg Met	cct Pro	ggt Gly 500	gtg Val	agg Arg	agc Ser	agg Arg	tgg Trp 505	cat His	tgt Cys	GJ A G B B B	acc Thr	acc Thr 510	ctc Leu	cat His	1536

Gly	gag Glu	cag Gln 515	ggc Gly	cat His	cct Pro	tgg Trp	ggc Gly 520	cgc Arg	ttt Phe	G] À ààà	gcg Ala	gct Ala 525	ctg Leu	aca Thr	gtg Val	1584
cta Leu	ggg Gly 530	gac Asp	gtg Val	aat Asn	G] À ààà	gac Asp 535	agt Ser	ctg Leu	gcg Ala	gat Asp	gtg Val 540	gct Ala	att Ile	ggt Gly	gca Ala	1632
ccc Pro 545	gga Gly	gag Glu	gag Glu	gag Glu	aac Asn 550	aga Arg	ggt Gly	gct Ala	gtc Val	tac Tyr 555	ata Ile	ttt Phe	cat His	gga Gly	gcc Ala 560	1680
tcg Ser	aga Arg	cag Gln	gac Asp	atc Ile 565	gct Ala	ccc Pro	tcg Ser	cct Pro	agc Ser 570	cag Gln	cgg Arg	gtc Val	act Thr	ggc Gly 575	tcc Ser	1728
cag Gln	ctc Leu	ttc Phe	ctg Leu 580	agg Arg	ctc Leu	caa Gln	tat Tyr	ttt Phe 585	Gly ggg	cag Gln	tca Ser	tta Leu	agt Ser 590	Gly ggg	ggt Gly	1776
cag Gln	gac Asp	ctt Leu 595	aca Thr	cag Gln	gat Asp	ggc Gly	ctg Leu 600	gtg Val	gac Asp	ctg Leu	gcc Ala	gtg Val 605	gga Gly	gcc Ala	cag Gln	1824
ej A aaa	cac His 610	gtg Val	ctg Leu	ctg Leu	ctt Leu	agg Arg 615	agt Ser	ctg Leu	cct Pro	ttg Leu	ctg Leu 620	aaa Lys	gtg Val	GJA GGG	atc Ile	1872
tcc Ser 625	att Ile	aga Arg	ttt Phe	gcc Ala	ccc Pro 630	tca Ser	gag Glu	gtg Val	gca Ala	aag Lys 635	act Thr	gtg Val	tac Tyr	cag Gln	tgc Cys 640	1920
tgg Trp	gga Gly	agg Arg	act Thr	ccc Pro 645	act Thr	gtc Val	ctc Leu	gaa Glu	gct Ala 650	gga Gly	gag Glu	gcc Ala	acc Thr	gtc Val 655	tgt Cys	1968
ctc Leu	act Thr	gtc Val	cgc Arg 660	aaa Lys	ggt Gly	tca Ser	cct Pro	gac Asp 665	ctg Leu	tta Leu	ggt Gly	gat Asp	gtc Val 670	GIn	agc Ser	2016
tct Ser	gtc Val	agg Arg 675	tat Tyr	gat Asp	ctg Leu	gcg Ala	ttg Leu 680	gat Asp	ccg Pro	Gly	cgt Arg	ctg Leu 685	Ile	tct Ser	cgt Arg	2064
gcc Ala	att Ile 690	ttt Phe	gat Asp	gag Glu	acg Thr	aag Lys 695	aac Asn	tgc Cys	act Thr	ttg Leu	acc Thr 700	cga Arg	agg Arg	aag Lys	act Thr	2112
ctg Leu 705	Gly	ctt Leu	ggt Gly	gat Asp	cac His 710	Cys	gaa Glu	aca Thr	atg Met	aag Lys 715	Leu	ctt Leu	ttg Leu	cca Pro	gac Asp 720	2160
tgt Cys	gtg Val	gag Glu	gat Asp	gca Ala 725	gtg Val	acc Thr	cct Pro	atc Ile	ato Ile 730	Leu	cgc Arg	ctt Leu	aac Asn	tta Leu 735	tcc Ser	2208
ctg Leu	gca Ala	ggg	gac Asp 740	tct Ser	gct Ala	cca Pro	tcc Ser	agg Arg 745	Asn	ctt Leu	cgt Arg	cct Pro	gto Val	. Leu	gct Ala	2256

gtg ggc tca Val Gly Ser 755	caa gac cat Gln Asp His	gta aca gct Val Thr Ala 760	tct ttc ccg Ser Phe Pro	ttt gag aag Phe Glu Lys 765	aac 2304 Asn
tgt aag cag Cys Lys Gln 770	gag ctc ctg Glu Leu Leu	tgt gag ggg Cys Glu Gly 775	aac ctg ggc Asn Leu Gly 780	gtc agc ttc Val Ser Phe	aac 2352 Asn
ttc tca ggc Phe Ser Gly 785	ctg cag gtc Leu Gln Val 790	ttg gag gta Leu Glu Val	gga agc tcc Gly Ser Ser 795	cca gag ctc Pro Glu Leu	act 2400 Thr 800
	aca gtt tgg Thr Val Trp 805				
	tac tac cca Tyr Tyr Pro 820				
	cct cat ccg Pro His Pro				
	cag gag agc Gln Glu Ser				
	cga gaa ggt Arg Glu Gly 870				
	aag gcc ttc Lys Ala Phe 885				
gca agc agt Ala Ser Ser	gag aat aat Glu Asn Asn 900	aag cct gaa Lys Pro Glu 905	acc agc aag Thr Ser Lys	act gcc ttc Thr Ala Phe 910	cag 2736 Gln
ctg gag ctt Leu Glu Leu 915	ccg gtg aag Pro Val Lys	tac acg gtc Tyr Thr Val 920	tat acc gtg Tyr Thr Val	atc agt agg Ile Ser Arg 925	cag 2784 Gln
	acc aag cat Thr Lys His				
cag aaa gag Gln Lys Glu 945	gcc gaa cat Ala Glu His 950	cga tat cgt Arg Tyr Arg	gtg aat aac Val Asn Asn 955	ctg agt cca Leu Ser Pro	ttg 2880 Leu 960
	atc agc gtt Ile Ser Val 965				
	tgg gat gtg Trp Asp Val 980				

tgt gtg tca cag agg gaa cct cct caa cat tcc gac ctt ctg acc cag 3024 Cys Val Ser Gln Arg Glu Pro Pro Gln His Ser Asp Leu Leu Thr Gln 995 1000 1005	l
atc caa gga cgc tct gtg ctg gac tgc gcc atc gcc gac tgc ctg cac 3072 Ile Gln Gly Arg Ser Val Leu Asp Cys Ala Ile Ala Asp Cys Leu His 1010 1015 1020	2
ctc cgc tgt gac atc ccc tcc ttg ggc acc ctg gat gag ctt gac ttc 3120 Leu Arg Cys Asp Ile Pro Ser Leu Gly Thr Leu Asp Glu Leu Asp Phe 1025 1030 1035 1040)
att ctg aag ggc aac ctc agc ttc ggc tgg atc agt cag aca ttg cag 3168 Ile Leu Lys Gly Asn Leu Ser Phe Gly Trp Ile Ser Gln Thr Leu Gln 1045 1050 1055	3
aaa aag gtg ttg ctc ctg agt gag gct gaa atc aca ttc aac aca tct 3216 Lys Lys Val Leu Leu Leu Ser Glu Ala Glu Ile Thr Phe Asn Thr Ser 1060 1065 1070	5
gtg tat tcc cag ctg ccg gga cag gag gca ttt ctg aga gcc cag gtg 3264 Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe Leu Arg Ala Gln Val 1075 1080 1085	4
tca acg atg cta gaa gaa tac gtg gtc tat gag ccc gtc ttc ctc atg 3312 Ser Thr Met Leu Glu Glu Tyr Val Val Tyr Glu Pro Val Phe Leu Met 1090 1095 1100	2
gtg ttc agc tca gtg gga ggt ctg ctg tta ctg gct ctc atc act gtg 3360 Val Phe Ser Ser Val Gly Gly Leu Leu Leu Leu Ala Leu Ile Thr Val 1105 1110 1115 1120	0
gcg ctg tac aag ctt ggc ttc ttc aaa cgt cag tat aaa gag atg ctg 3408 Ala Leu Tyr Lys Leu Gly Phe Phe Lys Arg Gln Tyr Lys Glu Met Leu 1125 1130 1135	8
gat cta cca tct gca gat cct gac cca gcc ggc cag gca gat tcc aac 3456 Asp Leu Pro Ser Ala Asp Pro Asp Pro Ala Gly Gln Ala Asp Ser Asn 1140 1145 1150	6
cat gag act cct cca cat ctc acg tcc taggaatcta ctttcctgta 3503 His Glu Thr Pro Pro His Leu Thr Ser 1155 1160	3
tatctccaca attacgagat tggttttgct tttgcctatg aatctactgg catgggaaca 3563	3
agttctcttc agctctgggc tagcctggga aacttcccag aaatgatgcc ctacctcctg 3623	3
agetgggaga tttttatggt ttgcccatgt gtcagatttc agtgctgatc cactttttt 3683	3
gcaagagcag gaatggggtc agcataaatt tacatatgga taagaactaa cacaagactg 3743	3
agtaatatgc tcaatattca atgtattgct tgtataaatt tttaaaaaat aaaatgaaan 3803	3

<210> 53 <211> 1161 <212> PRT <213> Mus musculus

Met Val Arg Gly Val Val Ile Leu Leu Cys Gly Trp Ala Leu Ala Ser Cys His Gly Ser Asn Leu Asp Val Glu Lys Pro Val Val Phe Lys Glu Asp Ala Ala Ser Phe Gly Gln Thr Val Val Gln Phe Gly Gly Ser Arg Leu Val Val Gly Ala Pro Leu Glu Ala Val Ala Val Asn Gln Thr Gly Gln Ser Ser Asp Cys Pro Pro Ala Thr Gly Val Cys Gln Pro Ile Leu Leu His Ile Pro Leu Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu Val Ala Asp Thr Asn Asn Ser Gln Leu Leu Ala Cys Gly Pro Thr Ala Gln Arg Ala Cys Ala Lys Asn Met Tyr Ala Lys Gly Ser Cys Leu Leu Leu Gly Ser Ser Leu Gln Phe Ile Gln Ala Ile Pro Ala Thr Met Pro 135 Glu Cys Pro Gly Gln Glu Met Asp Ile Ala Phe Leu Ile Asp Gly Ser Gly Ser Ile Asp Gln Ser Asp Phe Thr Gln Met Lys Asp Phe Val Lys Ala Leu Met Gly Gln Leu Ala Ser Thr Ser Thr Ser Phe Ser Leu Met 185 Gln Tyr Ser Asn Ile Leu Lys Thr His Phe Thr Phe Thr Glu Phe Lys 200 Ser Ser Leu Ser Pro Gln Ser Leu Val Asp Ala Ile Val Gln Leu Gln Gly Leu Thr Tyr Thr Ala Ser Gly Ile Gln Lys Val Val Lys Glu Leu Phe His Ser Lys Asn Gly Ala Arg Lys Ser Ala Lys Lys Ile Leu Ile Val Ile Thr Asp Gly Gln Lys Phe Arg Asp Pro Leu Glu Tyr Arg His Val Ile Pro Glu Ala Glu Lys Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val Gly Asp Ala Phe Arg Glu Pro Thr Ala Leu Gln Glu Leu Asn Thr 300 Ile Gly Ser Ala Pro Ser Gln Asp His Val Phe Lys Val Gly Asn Phe 310 315 Val Ala Leu Arg Ser Ile Gln Arg Gln Ile Gln Glu Lys Ile Phe Ala

Ile Glu Gly Thr Glu Ser Arg Ser Ser Ser Phe Gln His Glu Met 345 Ser Gln Glu Gly Phe Ser Ser Ala Leu Ser Met Asp Gly Pro Val Leu Gly Ala Val Gly Gly Phe Ser Trp Ser Gly Gly Ala Phe Leu Tyr Pro Ser Asn Met Arg Ser Thr Phe Ile Asn Met Ser Gln Glu Asn Glu Asp 395 Met Arg Asp Ala Tyr Leu Gly Tyr Ser Thr Ala Leu Ala Phe Trp Lys 410 Gly Val His Ser Leu Ile Leu Gly Ala Pro Arg His Gln His Thr Gly 425 Lys Val Val Ile Phe Thr Gln Glu Ser Arg His Trp Arg Pro Lys Ser Glu Val Arg Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys 455 Ser Val Asp Met Asp Arg Asp Gly Ser Thr Asp Leu Val Leu Ile Gly 470 Val Pro His Tyr Tyr Glu His Thr Arg Gly Gly Gln Val Ser Val Cys 490 Pro Met Pro Gly Val Arg Ser Arg Trp His Cys Gly Thr Thr Leu His Gly Glu Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val 520 Leu Gly Asp Val Asn Gly Asp Ser Leu Ala Asp Val Ala Ile Gly Ala Pro Gly Glu Glu Asn Arg Gly Ala Val Tyr Ile Phe His Gly Ala Ser Arg Gln Asp Ile Ala Pro Ser Pro Ser Gln Arg Val Thr Gly Ser Gln Leu Phe Leu Arg Leu Gln Tyr Phe Gly Gln Ser Leu Ser Gly Gly Gln Asp Leu Thr Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Gln Gly His Val Leu Leu Leu Arg Ser Leu Pro Leu Leu Lys Val Gly Ile Ser Ile Arg Phe Ala Pro Ser Glu Val Ala Lys Thr Val Tyr Gln Cys 635 630 Trp Gly Arg Thr Pro Thr Val Leu Glu Ala Gly Glu Ala Thr Val Cys 645

Leu Thr Val Arg Lys Gly Ser Pro Asp Leu Leu Gly Asp Val Gln Ser 660 665 670 Ser Val Arg Tyr Asp Leu Ala Leu Asp Pro Gly Arg Leu Ile Ser Arg 680 Ala Ile Phe Asp Glu Thr Lys Asn Cys Thr Leu Thr Arg Arg Lys Thr Leu Gly Leu Gly Asp His Cys Glu Thr Met Lys Leu Leu Pro Asp Cys Val Glu Asp Ala Val Thr Pro Ile Ile Leu Arg Leu Asn Leu Ser Leu Ala Gly Asp Ser Ala Pro Ser Arg Asn Leu Arg Pro Val Leu Ala 745 Val Gly Ser Gln Asp His Val Thr Ala Ser Phe Pro Phe Glu Lys Asn Cys Lys Gln Glu Leu Leu Cys Glu Gly Asn Leu Gly Val Ser Phe Asn Phe Ser Gly Leu Gln Val Leu Glu Val Gly Ser Ser Pro Glu Leu Thr 795 Val Thr Val Thr Val Trp Asn Glu Gly Glu Asp Ser Tyr Gly Thr Leu Ile Lys Phe Tyr Tyr Pro Ala Glu Leu Ser Tyr Arg Arg Val Thr Arg Ala Gln Gln Pro His Pro Tyr Pro Leu Arg Leu Ala Cys Glu Ala Glu Pro Thr Gly Gln Glu Ser Leu Arg Ser Ser Ser Cys Ser Ile Asn His Pro Ile Phe Arg Glu Gly Ala Lys Ala Thr Phe Met Ile Thr Phe Asp Val Ser Tyr Lys Ala Phe Leu Gly Asp Arg Leu Leu Arg Ala Ser Ala Ser Ser Glu Asn Asn Lys Pro Glu Thr Ser Lys Thr Ala Phe Gln Leu Glu Leu Pro Val Lys Tyr Thr Val Tyr Thr Val Ile Ser Arg Gln Glu Asp Ser Thr Lys His Phe Asn Phe Ser Ser His Gly Glu Arg 935

Gln Lys Glu Ala Glu His Arg Tyr Arg Val Asn Asn Leu Ser Pro Leu 960

Thr Leu Ala Ile Ser Val Asn Phe Trp Val Pro Ile Leu Leu Asn Gly 975

Val Ala Val Trp 980

Cys Val Ser Gln Arg Glu Pro Pro Gln His Ser Asp Leu Leu Thr Gln

Ile Gln Gly Arg Ser Val Leu Asp Cys Ala Ile Ala Asp Cys Leu His 1015 Leu Arg Cys Asp Ile Pro Ser Leu Gly Thr Leu Asp Glu Leu Asp Phe 1025 Ile Leu Lys Gly Asn Leu Ser Phe Gly Trp Ile Ser Gln Thr Leu Gln Lys Lys Val Leu Leu Ser Glu Ala Glu Ile Thr Phe Asn Thr Ser 1065 Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe Leu Arg Ala Gln Val 1075 Ser Thr Met Leu Glu Glu Tyr Val Val Tyr Glu Pro Val Phe Leu Met 1090 1095 Val Phe Ser Ser Val Gly Gly Leu Leu Leu Leu Ala Leu Ile Thr Val Ala Leu Tyr Lys Leu Gly Phe Phe Lys Arg Gln Tyr Lys Glu Met Leu 1130 Asp Leu Pro Ser Ala Asp Pro Asp Pro Ala Gly Gln Ala Asp Ser Asn 1145 1140 His Glu Thr Pro Pro His Leu Thr Ser 1155 <210> 54 <211> 3597 <212> DNA <213> Rattus rattus <220> <221> CDS <222> (40)..(3522) <220> <223> Description of Artificial Sequence: primer <400> 54 agetttacag etetetaett eteagtgeae tgeteagtg atg gee ggt gga gtt 54 Met Ala Gly Gly Val 1 gtg atc ctc ctg tgt ggc tgg gtc ctg gct tcc tgt cat ggg tct aac 102 Val Ile Leu Leu Cys Gly Trp Val Leu Ala Ser Cys His Gly Ser Asn

ctg Leu	gat Asp	gtg Val	gag Glu 25	gaa Glu	ccc Pro	atc Ile	gtg Val	ttc Phe 30	aga Arg	gag Glu	gat Asp	gca Ala	gcc Ala 35	agc Ser	ttt Phe	150
gga Gly	cag Gln	act Thr 40	gtg Val	gtg Val	cag Gln	ttt Phe	ggt Gly 45	gga Gly	tct Ser	cga Arg	ctc Leu	gtg Val 50	gtg Val	gga Gly	gcc Ala	198
cct Pro	ctg Leu 55	gag Glu	gcg Ala	gtg Val	gca Ala	gtc Val 60	aac Asn	caa Gln	aca Thr	gga Gly	cgg Arg 65	ttg Leu	tat Tyr	gac Asp	tgt Cys	246
gca Ala 70	cct Pro	gcc Ala	act Thr	ggc Gly	atg Met 75	tgc Cys	cag Gln	ccc Pro	atc Ile	gta Val 80	ctg Leu	cgc Arg	agt Ser	ccc Pro	cta Leu 85	294
gag Glu	gca Ala	gtg Val	aac Asn	atg Met 90	tcc Ser	ctg Leu	ggc Gly	ctg Leu	tct Ser 95	ctg Leu	gtg Val	act Thr	gcc Ala	acc Thr 100	aat Asn	342
aac Asn	gcc Ala	cag Gln	ttg Leu 105	ctg Leu	gct Ala	tgt Cys	ggt Gly	cca Pro 110	act Thr	gca Ala	cag Gln	aga Arg	gct Ala 115	tgt Cys	gtg Val	390
aag Lys	aac Asn	atg Met 120	tat Tyr	gcg Ala	aaa Lys	ggt Gly	tcc Ser 125	tgc Cys	ctc Leu	ctt Leu	ctc Leu	ggc Gly 130	tcc Ser	agc Ser	ttg Leu	438
cag Gln	ttc Phe 135	atc Ile	cag Gln	gca Ala	gtc Val	cct Pro 140	gcc Ala	tcc Ser	atg Met	cca Pro	gag Glu 145	tgt Cys	cca Pro	aga Arg	caa Gln	486
gag Glu 150	atg Met	gac Asp	att Ile	gct Ala	ttc Phe 155	ctg Leu	att Ile	gat Asp	ggt Gly	tct Ser 160	ggc	agc Ser	att Ile	aac Asn	caa Gln 165	534
agg Arg	gac Asp	ttt Phe	gcc Ala	cag Gln 170	atg Met	aag Lys	gac Asp	ttt Phe	gtc Val 175	aaa Lys	gct Ala	ttg Leu	atg Met	gga Gly 180	gag Glu	582
ttt Phe	gcg Ala	agc Ser	acc Thr 185	agc Ser	acc Thr	ttg Leu	ttc Phe	tcc Ser 190	ctg Leu	atg Met	caa Gln	tac Tyr	tcg Ser 195	aac Asn	atc Ile	630
ctg Leu	aag Lys	acc Thr 200	cat His	ttt Phe	acc Thr	ttc Phe	act Thr 205	gaa Glu	ttc Phe	aag Lys	aac Asn	atc Ile 210	ctg Leu	gac Asp	cct Pro	678
cag Gln	agc Ser 215	ctg Leu	gtg Val	gat Asp	ccc Pro	att Ile 220	gtc Val	cag Gln	ctg Leu	caa Gln	ggc Gly 225	ctg Leu	acc Thr	tac Tyr	aca Thr	726
gcc Ala 230	aca Thr	ggc Gly	atc Ile	cgg Arg	aca Thr 235	gtg Val	atg Met	gaa Glu	gag Glu	cta Leu 240	ttt Phe	cat His	agc Ser	aag Lys	aat Asn 245	774
Gly	tcc Ser	cgt Arg	aaa Lys	agt Ser 250	gcc Ala	aag Lys	aag Lys	atc Ile	ctc Leu 255	ctt Leu	gtc Val	atc Ile	aca Thr	gat Asp 260	Gly	822

cag Gln	aaa Lys	tac Tyr	aga Arg 265	gac Asp	ccc Pro	ctg Leu	gag Glu	tat Tyr 270	agt Ser	gat Asp	gtc Val	att Ile	ccc Pro 275	gcc Ala	gca Ala	870
gac Asp	aaa Lys	gct Ala 280	ggc Gly	atc Ile	att Ile	cgt Arg	tat Tyr 285	gct Ala	att Ile	ej aaa	gtg Val	gga Gly 290	gat Asp	gcc Ala	ttc Phe	918
cag Gln	gag Glu 295	ccc Pro	act Thr	gcc Ala	ctg Leu	aag Lys 300	gag Glu	ctg Leu	aac Asn	acc Thr	att Ile 305	ggc Gly	tca Ser	gct Ala	ccc Pro	966
cca Pro 310	cag Gln	gac Asp	cac His	gtg Val	ttc Phe 315	aag Lys	gta Val	ggc Gly	aac Asn	ttt Phe 320	gca Ala	gca Ala	ctt Leu	cgc Arg	agc Ser 325	1014
ato	cag Gln	agg Arg	caa Gln	ctt Leu 330	cag Gln	gag Glu	aaa Lys	atc Ile	ttc Phe 335	gcc Ala	att Ile	gag Glu	gga Gly	act Thr 340	caa Gln	1062
tca Ser	agg Arg	tca Ser	agt Ser 345	agt Ser	tcc Ser	ttt Phe	cag Gln	cac His 350	gag Glu	atg Met	tca Ser	caa Gln	gaa Glu 355	ggt Gly	ttc Phe	1110
agt Ser	tca Ser	gct Ala 360	ctc Leu	aca Thr	tcg Ser	gat Asp	gga Gly 365	ccc Pro	gtt Val	ctg Leu	Gly ggg	gcc Ala 370	gtg Val	gga Gly	agc Ser	1158
ttc Phe	agc Ser 375	tgg Trp	tcc Ser	gga Gly	ggt Gly	gcc Ala 380	ttc Phe	tta Leu	tat Tyr	ccc Pro	cca Pro 385	aat Asn	acg Thr	aga Arg	ccc Pro	1206
	ttt Phe															1254
ctg Leu	ggt Gly	tac Tyr	tcc Ser	acc Thr 410	gca Ala	gtg Val	gcc Ala	ttt Phe	tgg Trp 415	aag Lys	Gly	gtt Val	cac His	agc Ser 420	ctg Leu	1302
ato Ile	ctg Leu	Gly	gcc Ala 425	ccg Pro	cgt Arg	cac His	cag Gln	cac His 430	acg Thr	Gly ggg	aag Lys	gtt Val	gtc Val 435	atc Ile	ttt Phe	1350
	cag Gln															1398
cag Gln	atc Ile 455	ggc Gly	tcc Ser	tac Tyr	ttc Phe	ggg Gly 460	gcc Ala	tct Ser	ctc Leu	tgt Cys	tct Ser 465	gtg Val	gac Asp	gtg Val	gat Asp	1446
aga Arg 470	gat Asp	ggc Gly	agc Ser	acy Xaa	gac Asp 475	ctg Leu	gtc Val	ctg Leu	atc Ile	gga Gly 480	gcc Ala	ccc Pro	cat His	tac Tyr	tat Tyr 485	1494
gag Glu	cag Gln	acc Thr	cga Arg	ggg Gly 490	GJA aaa	cag Gln	gtc Val	tca Ser	gtg Val 495	ttc Phe	ccc Pro	gtg Val	ccc Pro	ggt Gly 500	gtg Val	1542

agg Arg	ggc Gly	agg Arg	tgg Trp 505	cag Gln	tgt Cys	gag Glu	gcc Ala	acc Thr 510	ctc Leu	cac His	GJ À aaa	gag Glu	cag Gln 515	ggc Gly	cat His	1590
cct Pro	tgg Trp	ggc Gly 520	cgc Arg	ttt Phe	Gly	gtg Val	gct Ala 525	ctg Leu	aca Thr	gtg Val	ctg Leu	ggg Gly 530	gac Asp	gta Val	aac Asn	1638
GJA aaa	gac Asp 535	aat Asn	ctg Leu	gca Ala	gac Asp	gtg Val 540	gct Ala	att Ile	ggt Gly	gcc Ala	cct Pro 545	gga Gly	gag Glu	gag Glu	gag Glu	1686
agc Ser 550	aga Arg	ggt Gly	gct Ala	gtc Val	tac Tyr 555	ata Ile	ttt Phe	cat His	gga Gly	gcc Ala 560	tcg Ser	aga Arg	ctg Leu	gag Glu	atc Ile 565	1734
atg Met	ccc Pro	tca Ser	ccc Pro	agc Ser 570	cag Gln	cgg Arg	gtc Val	act Thr	ggc Gly 575	tcc Ser	cag Gln	ctc Leu	tcc Ser	ctg Leu 580	aga Arg	1782
ctg Leu	cag Gln	tat Tyr	ttt Phe 585	GJ À aaa	cag Gln	tca Ser	ttg Leu	agt Ser 590	Gly ggg	ggt Gly	cag Gln	gac Asp	ctt Leu 595	aca Thr	cag Gln	1830
gat Asp	ggc Gly	ctg Leu 600	gtg Val	gac Asp	ctg Leu	gcc Ala	gtg Val 605	gga Gly	gcc Ala	cag Gln	G] À ààà	cac His 610	gta Val	ctg Leu	ctg Leu	1878
ctc Leu	agg Arg 615	agt Ser	ctg Leu	cct Pro	ctg Leu	ctg Leu 620	aaa Lys	gtg Val	gag Glu	ctc Leu	tcc Ser 625	ata Ile	aga Arg	ttc Phe	gcc Ala	1926
ccc Pro 630	atg Met	gag Glu	gtg Val	gca Ala	aag Lys 635	gct Ala	gtg Val	tac Tyr	cag Gln	tgc Cys 640	tgg Trp	gaa Glu	agg Arg	act Thr	ccc Pro 645	1974
act Thr	gtc Val	ctc Leu	gaa Glu	gct Ala 650	gga Gly	gag Glu	gcc Ala	act Thr	gtc Val 655	Cys	ctc Leu	act Thr	gtc Val	cac His 660	aaa Lys	2022
ggc Gly	tca Ser	cct Pro	gac Asp 665	ctg Leu	tta Leu	ggt Gly	aat Asn	gtc Val 670	caa Gln	ggc Gly	tct Ser	gtc Val	agg Arg 675	Tyr	gat Asp	2070
ctg Leu	gcg Ala	tta Leu 680	Asp	ccg Pro	ggc Gly	cgc Arg	ctg Leu 685	att Ile	tct Ser	cgt Arg	gcc Ala	att Ile 690	Phe	gat Asp	gag Glu	2118
act Thr	aag Lys 695	Asn	tgc Cys	act Thr	ttg Leu	acg Thr 700	gga Gly	agg Arg	aag Lys	act Thr	ctg Leu 705	Gly	ctt Leu	ggt Gly	gat Asp	2166
cac His 710	Cys	gaa Glu	aca Thr	gtg Val	aag Lys 715	Leu	ctt Leu	ttg Leu	ccg Pro	gac Asp 720	Cys	gtg Val	gaa Glu	gat Asp	gca Ala 725	2214
gtg Val	ago Ser	cct Pro	atc Ile	atc Ile 730	Leu	cgc Arg	ctc Leu	aac Asn	ttt Phe 735	Ser	ctg Leu	gtg Val	g aga Arg	gac Asp 740	tct Ser	2262

gct Ala	tca Ser	ccc Pro	agg Arg 745	aac Asn	ctg Leu	cat His	cct Pro	gtg Val 750	ctg Leu	gct Ala	gtg Val	ggc Gly	tca Ser 755	caa Gln	gac Asp	2310
cac His	ata Ile	act Thr 760	gct Ala	tct Ser	ctg Leu	ccg Pro	ttt Phe 765	gag Glu	aag Lys	aac Asn	tgt Cys	aag Lys 770	caa Gln	gaa Glu	ctc Leu	2358
ctg Leu	tgt Cys 775	gag Glu	GJÀ ààà	gac Asp	ctg Leu	ggc Gly 780	atc Ile	agc Ser	ttt Phe	aac Asn	ttc Phe 785	tca Ser	ggc Gly	ctg Leu	cag Gln	2406
gtc Val 790	ttg Leu	gtg Val	gtg Val	gga Gly	ggc Gly 795	tcc Ser	cca Pro	gag Glu	ctc Leu	act Thr 800	gtg Val	aca Thr	gtc Val	act Thr	gtg Val 805	2454
tgg Trp	aat Asn	gag Glu	ggt Gly	gag Glu 810	gac Asp	agc Ser	tat Tyr	gga Gly	act Thr 815	tta Leu	gtc Val	aag Lys	ttc Phe	tac Tyr 820	tac Tyr	2502
cca Pro	gca Ala	G] À ààà	cta Leu 825	tct Ser	tac Tyr	cga Arg	cgg Arg	gta Val 830	aca Thr	ej gaa	act Thr	cag Gln	caa Gln 835	cct Pro	cat His	2550
cag Gln	tac Tyr	cca Pro 840	cta Leu	cgc Arg	ttg Leu	gcc Ala	tgt Cys 845	gag Glu	gct Ala	gag Glu	ccc Pro	gct Ala 850	gcc Ala	cag Gln	gag Glu	2598
gac Asp	ctg Leu 855	agg Arg	agc Ser	agc Ser	agc Ser	tgt Cys 860	agc Ser	att Ile	aat Asn	cac His	ccc Pro 865	atc Ile	ttc Phe	cga Arg	gaa Glu	2646
ggt Gly 870	gca Ala	aag Lys	acc Thr	acc Thr	ttc Phe 875	atg Met	atc Ile	aca Thr	ttc Phe	gat Asp 880	gtc Val	tcc Ser	tac Tyr	aag Lys	gcc Ala 885	2694
tto Phe	cta Leu	gga Gly	gac Asp	agg Arg 890	ttg Leu	ctt Leu	ctg Leu	agg Arg	gcc Ala 895	aaa Lys	gcc Ala	agc Ser	agt Ser	gag Glu 900	aat Asn	2742
aat Asr	aag Lys	cct Pro	gat Asp 905	Thr	aac Asn	aag Lys	act Thr	gcc Ala 910	ttc Phe	cag Gln	ctg Leu	gag Glu	ctc Leu 915	cca Pro	gtg Val	2790
aaq Lys	g tac Tyr	acc Thr 920	gtc Val	tat Tyr	acc Thr	ctg Leu	atc Ile 925	agt Ser	agg Arg	caa Gln	gaa Glu	gat Asp 930	Ser	acc Thr	aac Asn	2838
cat His	gto Val 935	Asn	ttt Phe	tca Ser	tct Ser	tcc Ser 940	His	gly ggg	ggg	aga Arg	agg Arg 945	Gln	gaa Glu	gcc Ala	gca Ala	2886
cat Hi: 950	cgc s Arg	tat Tyr	cgt Arg	gtg Val	aat Asn 955	Asn	ctg Leu	agt Ser	cca Pro	Leu 960	Lys	ctg Lev	gcc Ala	gto Val	aga Arg 965	2934
gt: Vai	t aad L Asn	ttc Phe	tgg Trp	gtc Val 970	cct Pro	gtc Val	ctt Leu	ctg Leu	aac Asn 975	Gly	gtg Val	gct Ala	gtg Val	Trp 980	Asp	2982

gtg act ctg agc agc cca gca cag ggt gtc tcc tgc gtg tcc cag atg Val Thr Leu Ser Ser Pro Ala Gln Gly Val Ser Cys Val Ser Gln Met 985 990 995	3030
aaa cct cct cag aat ccc gac ttt ctg acc cag att cag aga cgt tct Lys Pro Pro Gln Asn Pro Asp Phe Leu Thr Gln Ile Gln Arg Arg Ser 1000 1005 1010	3078
gtg ctg gac tgc tcc att gct gac tgc ctg cac ttc cgc tgt gac atc Val Leu Asp Cys Ser Ile Ala Asp Cys Leu His Phe Arg Cys Asp Ile 1015 1020 1025	3126
CCC tCC ttg gac atc cag gat gaa ctt gac ttc att ctg agg ggc aac Pro Ser Leu Asp Ile Gln Asp Glu Leu Asp Phe Ile Leu Arg Gly Asn 1030 1035 1040 1045	3174
ctc agc ttc ggc tgg gtc agt cag aca ttg cag gaa aag gtg ttg ctt Leu Ser Phe Gly Trp Val Ser Gln Thr Leu Gln Glu Lys Val Leu Leu 1050 1055	3222
gtg agt gag gct gaa atc act ttc gac aca tct gtg tac tcc cag ctg Val Ser Glu Ala Glu Ile Thr Phe Asp Thr Ser Val Tyr Ser Gln Leu 1065 1070 1075	3270
cca gga cag gag gca ttt ctg aga gcc cag gtg gag aca acg tta gaa Pro Gly Gln Glu Ala Phe Leu Arg Ala Gln Val Glu Thr Thr Leu Glu 1080 1085 1090	3318
gaa tac gtg gtc tat gag ccc atc ttc ctc gtg gcg ggc agc tcg gtg Glu Tyr Val Val Tyr Glu Pro Ile Phe Leu Val Ala Gly Ser Ser Val 1095 1100 1105	3366
gga ggt ctg ctg tta ctg gct ctc atc aca gtg gta ctg tac aag ctt Gly Gly Leu Leu Leu Ala Leu Ile Thr Val Val Leu Tyr Lys Leu 1110 1115 1120 1125	3414
ggc ttc tyc aaa cgt cag tac aaa gaa atg ctg gac ggc aag gct gca Gly Phe Xaa Lys Arg Gln Tyr Lys Glu Met Leu Asp Gly Lys Ala Ala 1130 1135 1140	3462
gat cct gtc aca gcc ggc cag gca gat ttc ggc tgt gag act cct cca Asp Pro Val Thr Ala Gly Gln Ala Asp Phe Gly Cys Glu Thr Pro Pro 1145 1150 1155	3510
tat ctc gtg agc taggaatcca ctctcctgcc tatctctgca atgaagattg Tyr Leu Val Ser 1160	3562
gtcctgccta tgagtctact ggcatgggaa cgagt	3597
<210> 55 <211> 1161 <212> PRT <213> Rattus rattus	
<400> 55 Met Ala Gly Gly Val Val Ile Leu Leu Cys Gly Trp Val Leu Ala Ser 1 5 10 15	

Cys His Gly Ser Asn Leu Asp Val Glu Pro Ile Val Phe Arg Glu 25 Asp Ala Ala Ser Phe Gly Gln Thr Val Val Gln Phe Gly Gly Ser Arg Leu Val Val Gly Ala Pro Leu Glu Ala Val Ala Val Asn Gln Thr Gly Arg Leu Tyr Asp Cys Ala Pro Ala Thr Gly Met Cys Gln Pro Ile Val Leu Arg Ser Pro Leu Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu Val Thr Ala Thr Asn Asn Ala Gln Leu Leu Ala Cys Gly Pro Thr Ala Gln Arg Ala Cys Val Lys Asn Met Tyr Ala Lys Gly Ser Cys Leu Leu Leu Gly Ser Ser Leu Gln Phe Ile Gln Ala Val Pro Ala Ser Met Pro 130 135 Glu Cys Pro Arg Gln Glu Met Asp Ile Ala Phe Leu Ile Asp Gly Ser Gly Ser Ile Asn Gln Arg Asp Phe Ala Gln Met Lys Asp Phe Val Lys Ala Leu Met Gly Glu Phe Ala Ser Thr Ser Thr Leu Phe Ser Leu Met 185 Gln Tyr Ser Asn Ile Leu Lys Thr His Phe Thr Phe Thr Glu Phe Lys Asn Ile Leu Asp Pro Gln Ser Leu Val Asp Pro Ile Val Gln Leu Gln Gly Leu Thr Tyr Thr Ala Thr Gly Ile Arg Thr Val Met Glu Glu Leu 235 Phe His Ser Lys Asn Gly Ser Arg Lys Ser Ala Lys Lys Ile Leu Leu Val Ile Thr Asp Gly Gln Lys Tyr Arg Asp Pro Leu Glu Tyr Ser Asp 265 Val Ile Pro Ala Ala Asp Lys Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val Gly Asp Ala Phe Gln Glu Pro Thr Ala Leu Lys Glu Leu Asn Thr 295 Ile Gly Ser Ala Pro Pro Gln Asp His Val Phe Lys Val Gly Asn Phe 310 Ala Ala Leu Arg Ser Ile Gln Arg Gln Leu Gln Glu Lys Ile Phe Ala 330

Ile Glu Gly Thr Gln Ser Arg Ser Ser Ser Phe Gln His Glu Met 345 Ser Gln Glu Gly Phe Ser Ser Ala Leu Thr Ser Asp Gly Pro Val Leu Gly Ala Val Gly Ser Phe Ser Trp Ser Gly Gly Ala Phe Leu Tyr Pro 375 Pro Asn Thr Arg Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met Arg Asp Ser Tyr Leu Gly Tyr Ser Thr Ala Val Ala Phe Trp Lys Gly Val His Ser Leu Ile Leu Gly Ala Pro Arg His Gln His Thr Gly Lys Val Val Ile Phe Thr Gln Glu Ala Arg His Trp Arg Pro Lys Ser Glu Val Arg Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser Val Asp Val Asp Arg Asp Gly Ser Xaa Asp Leu Val Leu Ile Gly Ala Pro His Tyr Tyr Glu Gln Thr Arg Gly Gly Gln Val Ser Val Phe Pro Val Pro Gly Val Arg Gly Arg Trp Gln Cys Glu Ala Thr Leu His 505 Gly Glu Gln Gly His Pro Trp Gly Arg Phe Gly Val Ala Leu Thr Val Leu Gly Asp Val Asn Gly Asp Asn Leu Ala Asp Val Ala Ile Gly Ala Pro Gly Glu Glu Ser Arg Gly Ala Val Tyr Ile Phe His Gly Ala 550 Ser Arg Leu Glu Ile Met Pro Ser Pro Ser Gln Arg Val Thr Gly Ser 565 Gln Leu Ser Leu Arg Leu Gln Tyr Phe Gly Gln Ser Leu Ser Gly Gly 585 Gln Asp Leu Thr Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Gln Gly His Val Leu Leu Leu Arg Ser Leu Pro Leu Leu Lys Val Glu Leu 620 615 Ser Ile Arg Phe Ala Pro Met Glu Val Ala Lys Ala Val Tyr Gln Cys Trp Glu Arg Thr Pro Thr Val Leu Glu Ala Gly Glu Ala Thr Val Cys

Leu Thr Val His Lys Gly Ser Pro Asp Leu Leu Gly Asn Val Gln Gly 665 Ser Val Arg Tyr Asp Leu Ala Leu Asp Pro Gly Arg Leu Ile Ser Arg Ala Ile Phe Asp Glu Thr Lys Asn Cys Thr Leu Thr Gly Arg Lys Thr Leu Gly Leu Gly Asp His Cys Glu Thr Val Lys Leu Leu Leu Pro Asp 715 Cys Val Glu Asp Ala Val Ser Pro Ile Ile Leu Arg Leu Asn Phe Ser 730 Leu Val Arg Asp Ser Ala Ser Pro Arg Asn Leu His Pro Val Leu Ala 745 Val Gly Ser Gln Asp His Ile Thr Ala Ser Leu Pro Phe Glu Lys Asn Cys Lys Gln Glu Leu Leu Cys Glu Gly Asp Leu Gly Ile Ser Phe Asn Phe Ser Gly Leu Gln Val Leu Val Val Gly Gly Ser Pro Glu Leu Thr Val Thr Val Thr Val Trp Asn Glu Gly Glu Asp Ser Tyr Gly Thr Leu Val Lys Phe Tyr Tyr Pro Ala Gly Leu Ser Tyr Arg Arg Val Thr Gly 825 Thr Gln Gln Pro His Gln Tyr Pro Leu Arg Leu Ala Cys Glu Ala Glu Pro Ala Ala Gln Glu Asp Leu Arg Ser Ser Ser Cys Ser Ile Asn His 855 Pro Ile Phe Arg Glu Gly Ala Lys Thr Thr Phe Met Ile Thr Phe Asp Val Ser Tyr Lys Ala Phe Leu Gly Asp Arg Leu Leu Arg Ala Lys 890 Ala Ser Ser Glu Asn Asn Lys Pro Asp Thr Asn Lys Thr Ala Phe Gln Leu Glu Leu Pro Val Lys Tyr Thr Val Tyr Thr Leu Ile Ser Arg Gln Glu Asp Ser Thr Asn His Val Asn Phe Ser Ser Ser His Gly Gly Arg 935 Arg Gln Glu Ala Ala His Arg Tyr Arg Val Asn Asn Leu Ser Pro Leu Lys Leu Ala Val Arg Val Asn Phe Trp Val Pro Val Leu Leu Asn Gly

970

Val Ala Val Trp Asp Val Thr Leu Ser Ser Pro Ala Gln Gly Val Ser 985 Cys Val Ser Gln Met Lys Pro Pro Gln Asn Pro Asp Phe Leu Thr Gln 1000 Ile Gln Arg Arg Ser Val Leu Asp Cys Ser Ile Ala Asp Cys Leu His 1015 Phe Arg Cys Asp Ile Pro Ser Leu Asp Ile Gln Asp Glu Leu Asp Phe 1030 Ile Leu Arg Gly Asn Leu Ser Phe Gly Trp Val Ser Gln Thr Leu Gln Glu Lys Val Leu Leu Val Ser Glu Ala Glu Ile Thr Phe Asp Thr Ser 1065 Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe Leu Arg Ala Gln Val Glu Thr Thr Leu Glu Glu Tyr Val Val Tyr Glu Pro Ile Phe Leu Val 1095 Ala Gly Ser Ser Val Gly Gly Leu Leu Leu Leu Ala Leu Ile Thr Val 1115 Val Leu Tyr Lys Leu Gly Phe Xaa Lys Arg Gln Tyr Lys Glu Met Leu 1130 1125 Asp Gly Lys Ala Ala Asp Pro Val Thr Ala Gly Gln Ala Asp Phe Gly Cys Glu Thr Pro Pro Tyr Leu Val Ser <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer <400> 56 20 cctgtcatgg gtctaacctg <210> 57 <211> 19 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: primer
<400> 57

aggttagacc catgacagg

<210> 58 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 58 ggccttgcag ctggacaatg	20
<210> 59	
<220> <223> Description of Artificial Sequence: primer	
<400> 59 ccaaagctgg ctgcatcctc tc	22
<210> 60 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 60 ccgcctgcca ctggcgtgtg c	21
<210> 61 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 61 cccagatgaa ggacttcgtc aa	22
<210> 62 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 62 gctgggatca ttcgctatgc	20
<210> 63 <211> 21	

	<212> DNA	
	<213> Artificial Sequence	
	<pre><220> <223> Description of Artificial Sequence: primer</pre>	
	ZZZZZ Description of Michigan podaguest binner	
	<400> 63	01
	caatggatgg accagttctg g	21
	<210> 64	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
	<400> 64	
	cagatcggct cctactttgg	20
	<210> 65 <211> 19	
	<211> 19 <212> DNA	
	<213> Artificial Sequence	
5 1		
	<pre><220> <223> Description of Artificial Sequence: primer</pre>	
2	<223> Description of Artificial Sequence. primer	
ri [†]	<400> 65	
	catggagcct cgagacagg	19
1		
# F	<210> 66	
4884 4844 4846 4844 4844 4844 4844 4844 4844 4844 4844 4844 4844 4844 4844 4	<211> 21	
	<212> DNA	
į.	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
	400 66	
	<400> 66 ccactgtcct cgaagctgga g	21
	Coucey cook agang ougger 5	
	<210> 67 <211> 26	
	<211> 26 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: primer	
	<223> Descripcion of Arctificial Sequence: Primer	
	<400> 67	
	cttcgtcctg tgctggctgt gggctc	26
	<210> 68	
	<211> 21	
	<212> DNA	
	<pre><213> Artificial Sequence</pre>	

	<220> <223> Description of Artificial Sequence: primer	
	<400> 68 cgcctggcat gtgaggctga g	21
	cgcccggcac gcgaggocga g	
	<210> 69 <211> 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: primer	
	<400> 69	
		21
	ccgtgatcag taggcaggaa g	
Park.	<210> 70	
## F	<211> 18	
74 20	<212> DNA	
j	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	
Bita Sita	<400> 70	
A.	gtcacagagg gaacetee	18
	<210> 71	
	<210> 71 <211> 23	
3 5		
tof co.	<212> DNA	
	<213> Artificial Sequence	
i.	<220>	
	<223> Description of Artificial Sequence: primer	
	<400> 71	
	geteetgagt gaggetgaaa tea	23
	<210> 72	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
١	<220>	
,	<223> Description of Artificial Sequence: primer	
	<400> 72	
	gagatgctgg atctaccatc tgc	23
	<210> 73	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: primer	

22

20

<400> 73

<400> 78

cggtaagata gctctgctgg

ctgagctggg agatttttat gg

<210> 79 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 79 gagcccacag ccagcacagg	20
<210> 80 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 80 gatccaacgc cagatcatac c	21
<210> 81 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 81 cacggccagg tccaccaggc	20
<210> 82 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 82 cacgtcccct agcactgtca g	21
<210> 83 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 83 ttgacgaagt ccttcatctg gg	22
<210> 84	

<211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 84 gaactgcaag ctggagccca g	21
<210> 85 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 85 ctggatgctg cgaagtgcta c	21
<210> 86 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 86 gccttggagc tggacgatgg c	21
<210> 87 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 87 gtaagatctc cagagtgtcc aagacaagag atg	33
<210> 88 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 88 cttctcgagt gtgagagctg aactgaaacc ttc	33
<210> 89 <211> 32 <212> DNA	

<213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: primer												
<400> 89 cgctgtgacg tcagagttga gtccaaatat gg												
<210> 90 <211> 21 <212> DNA <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: primer												
<400> 90 ggtgacacta tagaataggg c												
<210> 91 <211> 18 <212> DNA <213> Mus musculus												
<400> 91 aagcaggagc tcctgtgt	18											
<210> 92 <211> 852 <212> DNA <213> rabbit												
<220> <221> CDS <222> (61)(852)												
<400> 92 tgatctccct ccaggccact gttccctctc cacttcccct caccgctgca ctgctcagag	60											
atg gcc ctt ggg gct gtg gtc ctc ctt ggg gtc ctg gct tct t	108											
gga ttc aac ttg gac gtg atg agc ggt gat ctt cca gga aga cgc agc Gly Phe Asn Leu Asp Val Met Ser Gly Asp Leu Pro Gly Arg Arg Ser 20 25 30	156											
ggg ctt cgg gca gag cgt gat gca gtt tgg gga tct cga ctc gtg gtg Gly Leu Arg Ala Glu Arg Asp Ala Val Trp Gly Ser Arg Leu Val Val 35 40 45	204											
gga gcc ccc ctg gcg gtg gtg tcg gcc aac cac aca gga cgg ctg tac Gly Ala Pro Leu Ala Val Val Ser Ala Asn His Thr Gly Arg Leu Tyr 50 55 60	252											
gag tgt gcg cct gcc tcc ggc acc tgc acg ccc att ttc cca ttc atg Glu Cys Ala Pro Ala Ser Gly Thr Cys Thr Pro Ile Phe Pro Phe Met 65 70 75 80	300											

ccc Pro	ccc Pro	gaa Glu	gcc Ala	gtg Val 85	aac Asn	atg Met	tcc Ser	ctg Leu	ggc Gly 90	ctg Leu	tcc Ser	ctg Leu	gca Ala	gcc Ala 95	tcc Ser	348
ccc Pro	aac Asn	cat His	tcc Ser 100	cag Gln	ctg Leu	ctg Leu	gct Ala	tgt Cys 105	ggc Gly	ccg Pro	acc Thr	gtg Val	cat His 110	aga Arg	gcc Ala	396
tgc Cys	ggg Gly	gag Glu 115	gac Asp	gtg Val	tac Tyr	gcc Ala	cag Gln 120	ggt Gly	ttc Phe	tgt Cys	gtg Val	ctg Leu 125	ctg Leu	gat Asp	gcc Ala	444
cac His	gca Ala 130	cag Gln	ccc Pro	atc Ile	Gly ggg	act Thr 135	gtg Val	cca Pro	gct Ala	gcc Ala	ctg Leu 140	ccc Pro	gag Glu	tgc Cys	cca Pro	492
gat Asp 145	caa Gln	gag Glu	atg Met	gac Asp	att Ile 150	gtc Val	ttc Phe	ctg Leu	att Ile	gac Asp 155	ggc Gly	tct Ser	ggc Gly	agc Ser	att Ile 160	540
agc Ser	tca Ser	aat Asn	gac Asp	ttc Phe 165	cgc Arg	aag Lys	atg Met	aag Lys	gac Asp 170	ttt Phe	gtc Val	aga Arg	gct Ala	gtg Val 175	atg Met	588
gac Asp	cag Gln	ttc Phe	aag Lys 180	gac Asp	acc Thr	aac Asn	acc Thr	cag Gln 185	ttc Phe	tcg Ser	ctg Leu	atg Met	cag Gln 190	tac Tyr	tcc Ser	636
aat Asn	gtg Val	ctg Leu 195	gtg Val	aca Thr	cat His	ttc Phe	acc Thr 200	ttc Phe	agc Ser	agc Ser	ttc Phe	cgg Arg 205	aac Asn	agc Ser	tcc Ser	684
aat Asn	cct Pro 210	cag Gln	ggc Gly	cta Leu	gtg Val	gag Glu 215	ccc Pro	att Ile	gtg Val	cag Gln	ctg Leu 220	aca Thr	Gly	ctc Leu	acg Thr	732
ttc Phe 225	acg Thr	gcc Ala	aca Thr	ggg ggg	atc Ile 230	ctg Leu	aaa Lys	gtg Val	gtg Val	aca Thr 235	gag Glu	ctg Leu	ttt Phe	caa Gln	acc Thr 240	780
aag Lys	aac Asn	Gly ggg	gcc Ala	cgc Arg 245	gaa Glu	agt Ser	gcc Ala	aag Lys	aag Lys 250	atc Ile	ctc Leu	atc Ile	gtc Val	atc Ile 255	aca Thr	828
			aag Lys 260													852

<210> 93 <211> 264 <212> PRT <213> rabbit

<400> 93

Met Ala Leu Gly Ala Val Val Leu Leu Gly Val Leu Ala Ser Tyr His 1 5 10 15

Gly Phe Asn Leu Asp Val Met Ser Gly Asp Leu Pro Gly Arg Arg Ser 20 25 30

Gly Leu Arg Ala Glu Arg Asp Ala Val Trp Gly Ser Arg Leu Val Val 35 40 45

Gly Ala Pro Leu Ala Val Val Ser Ala Asn His Thr Gly Arg Leu Tyr
50 55 60

Glu Cys Ala Pro Ala Ser Gly Thr Cys Thr Pro Ile Phe Pro Phe Met

Pro Pro Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu Ala Ala Ser 85 90 95

Pro Asn His Ser Gln Leu Leu Ala Cys Gly Pro Thr Val His Arg Ala 100 105 110

Cys Gly Glu Asp Val Tyr Ala Gln Gly Phe Cys Val Leu Leu Asp Ala 115 120 125

His Ala Gln Pro Ile Gly Thr Val Pro Ala Ala Leu Pro Glu Cys Pro 130 135 140

Asp Gln Glu Met Asp Ile Val Phe Leu Ile Asp Gly Ser Gly Ser Ile 145 150 155 160

Ser Ser Asn Asp Phe Arg Lys Met Lys Asp Phe Val Arg Ala Val Met 165 170 175

Asp Gln Phe Lys Asp Thr Asn Thr Gln Phe Ser Leu Met Gln Tyr Ser 180 185 190

Asn Val Leu Val Thr His Phe Thr Phe Ser Ser Phe Arg Asn Ser Ser 195 200 205

Asn Pro Gln Gly Leu Val Glu Pro Ile Val Gln Leu Thr Gly Leu Thr 210 215 220

Phe Thr Ala Thr Gly Ile Leu Lys Val Val Thr Glu Leu Phe Gln Thr 225 230 235 240

Lys Asn Gly Ala Arg Glu Ser Ala Lys Lys Ile Leu Ile Val Ile Thr 245 250 255

Asp Gly Gln Lys Tyr Lys Ala Ala 260

<210> 94

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 94

ctggtctgga ggtgccttcc tg

<210> 95

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 95

cctgagcagg agcacctggc c

21

<210> 96 <211> 2499 <212> DNA

<213> Homo sapiens

atgacetteg geactgtget tettetgagt gteetggett ettateatgg atteaacetg 60 gatgtggagg agcctacgat cttccaggag gatgcaggcg gctttgggca gagcgtggtg 120 cagttcggtg gatctcgact cgtggtggga gcacccctgg aggtggtggc ggccaaccag 180 acgggacggc tgtatgactg cgcagctgcc accggcatgt gccagcccat cccgctgcac 240 atccgccctg aggccgtgaa catgtccttg ggcctgaccc tggcagcctc caccaacggc 300 teceggetee tggeetgtgg ecegaecetg cacagagtet gtggggagaa eteataetea 360 aagggtteet geeteetget gggetegege tgggagatea teeagacagt eeeegacgee 420 acgccagagt gtccacatca agagatggac atcgtcttcc tgattgacgg ctctggaagc 480 attgaccaaa atgactttaa ccagatgaag ggctttgtcc aagctgtcat gggccagttt 540 gagggcactg acaccctgtt tgcactgatg cagtactcaa acctcctgaa gatccacttc 600 accttcaccc aattccggac cagcccgagc cagcagagcc tggtggatcc catcgtccaa 660 ctgaaaggcc tgacgttcac ggccacgggc atcctgacag tggtgacaca gctatttcat 720 cataagaatg gggcccgaaa aagtgccaag aagatcctca ttgtcatcac agatgggcag 780 aagtacaaag accccctgga atacagtgat gtcatccccc aggcagagaa ggctggcatc 840 atccgctacg ctatcggggt gggacacgct ttccagggac ccactgccag gcaggagctg 900 aataccatca gctcagcgcc tccgcaggac cacgtgttca aggtggacaa ctttgcagcc 960 cttqqcaqca tccaqaaqca gctqcaqqaq aagatctatq caqttqaqqq aacccaqtcc 1020 agggcaagca gctccttcca gcacgagatg tcccaagaag gcttcagcac agccctcaca 1080 atggatggcc tetteetggg ggctgtgggg agetttaget ggtetggagg tgeetteetg 1140 tatcccccaa atatgagccc caccttcatc aacatgtctc aggagaatgt ggacatgagg 1200 qactcttacc tgggttactc caccgagcta gccctgtgga agggggtaca gaacctggtc 1260 ctqqqqqccc cccqctacca qcataccqgg aaggctgtca tcttcaccca ggtgtccagg 1320 caatggagga agaaggccga agtcacaggg acgcagatcg gctcctactt cggggcctcc 1380 ctctgctccg tggatgtgga cagcgatggc agcaccgacc tgatcctcat tggggccccc 1440

cattactatg agcagacccg agggggccag gtgtccgtgt gtcccttgcc tagggggagg 1500 qtgcagtggc agtgtgacgc tgttctccgt ggtgagcagg gccacccctg gggccgcttt 1560 ggggcagccc tgacagtgtt gggggatgtg aatgaggaca agctgataga cgtggccatt 1620 ggggccccgg gagagcagga gaaccggggt gctgtctacc tgtttcacgg agcctcagaa 1680 teeggeatea geceeteeca cagecagegg attgecaget eccagetete ecceagetg 1740 cagtattttg ggcaggcgct gagtgggggt caggacctca cccaggatgg actgatggac 1800 ctggccgtgg gggcccgggg ccaggtgctc ctgctcagga gtctgccggt gctgaaagtg 1860 ggggtggcca tgagattcag ccctgtggag gtggccaagg ctgtgtaccg gtgctgggaa 1920 gagaagccca gtgccctgga agctggggac gccaccgtct gtctcaccat ccagaaaagc 1980 tcactggacc agctaggtga catccaaagc tctgtcaggt ttgatctggc actggaccca 2040 ggtcgtctga cttctcgtgc cattttcaat gaaaccaaga accccacttt gactcgaaga 2100 aaaaccctgg gactggggat tcactgtgaa accctgaagc tgctfttgcc agtgaggact 2160 ttgggttctg ggaaggggga gagaggagga gcccaaggct ggcctggagc acccccgttc 2220 tctqctqaqc gaggtgggaa gggttaggat gttggggctg gagagaggga cattagggca 2280 ggagaacctg gctccacggc ttggagggag cactgtcagg gcagtgggga gtggatgcag 2340 tggaggagga cttgtggtgg agcgtagaga ggacagcagg ttcttgaaag cctgttctct 2400 ctcaggattg tgtggaggat gtggtgagcc ccatcattct gcacctcaac ttctcactgg 2460 2499 tgagagagee cateceetee eeccagaace tgegteetg

<210> 97 <211> 3956 <212> DNA

<213> Homo sapiens

tgtccacatc aagagatgga catcgtcttc ctgattgacg gctctggaag cattgaccaa 660 aatgacttta accagatgaa gggctttgtc caagctgtca tgggccagtt tgagggcact 720 gacaccetgt ttgcactgat gcagtactca aaccteetga agateeactt cacetteace 780 caattccgga ccagcccgag ccagcagagc ctggtggatc ccatcgtcca actgaaaggc 840 ctgacgttca cggccacggg catcctgaca gtggtgacac agctatttca tcataagaat 900 ggggcccgaa aaagtgccaa gaagatcctc attgtcatca cagatgggca gaagtacaaa 960 gaccccctgg aatacagtga tgtcatcccc caggcagaga aggctggcat catccgctac 1020 gctatcgggg tgggacacgc tttccaggga cccactgcca ggcaggagct gaataccatc 1080 ageteagege etecgeagga ceaegtgtte aaggtggaca aetttgeage eettggeage 1140 atccagaagc agctgcagga gaagatctat gcagttgagg gaacccagtc cagggcaagc 1200 ageteettee ageaegagat gteecaagaa ggetteagea eageeeteae aatggatgge 1260 ctcttcctgg gggctgtggg gagctttagc tggtctggag gtgccttcct gtatccccca 1320 aatatgagcc ccaccttcat caacatgtct caggagaatg tggacatgag ggactcttac 1380 ctgggttact ccaccgaget agccctgtgg aagggggtac agaacctggt cctgggggec 1440 ccccgctacc agcataccgg gaaggctgtc atcttcaccc aggtgtccag gcaatggagg 1500 aagaaggeeg aagteacagg gaegeagate ggeteetaet teggggeete eetetgetee 1560 gtggatgtgg acagcgatgg cagcaccgac ctgatcctca ttggggcccc ccattactat 1620 gagcagaccc gagggggcca ggtgtccgtg tgtcccttgc ctagggggag ggtgcagtgg 1680 cagtgtgacg ctgttctccg tggtgagcag ggccacccct ggggccgctt tggggcagcc 1740 ctgacagtgt tgggggatgt gaatgaggac aagctgatag acgtggccat tggggccccg 1800 ggagagcagg agaaccgggg tgctgtctac ctgtttcacg gagcctcaga atccggcatc 1860 agecectece acagecageg gattgecage teccagetet eccecagget geagtatttt 1920 gggcaggcgc tgagtggggg tcaggacctc acccaggatg gactgatgga cctggccgtg 1980 ggggcccggg gccaggtgct cctgctcagg agtctgccgg tgctgaaagt gggggtggcc 2040 atgagattca gccctgtgga ggtggccaag gctgtgtacc ggtgctggga agagaagccc 2100 agtgccctgg aagctgggga cgccaccgtc tgtctcacca tccagaaaag ctcactggac 2160 cagctaggtg acatccaaag ctctgtcagg tttgatctgg cactggaccc aggtcgtctg 2220 acttctcgtg ccattttcaa tgaaaccaag aaccccactt tgactcgaag aaaaaccctg 2280 ggactgggga ttcactgtga aaccctgaag ctgcttttgc cagattgtgt ggaggatgtg 2340 gtgagcccca tcattctgca cctcaacttc tcactggtga gagagcccat cccctccccc 2400 cagaacctgc gtcctgtgct ggccgtgggc tcacaagacc tcttcactgc ttctctcccc 2460 ttcgagaaga actgtgggca agatggcctc tgtgaagggg acctgggtgt caccctcagc 2520 ttctcaggcc tgcagaccct gaccgtgggg agctccctgg agctcaacgt gattgtgact 2580 gtgtggaacg caggtgagga ttcctacgga accgtggtca gcctctacta tccagcaggg 2640 ctgtcgcacc gacgggtgtc aggagcccag aagcagcccc atcagagtgc cctgcgcctg 2700 gcatgtgaga cagtgcccac tgaggatgag ggcctaagaa gcagccgctg cagtgtcaac 2760 caccccatct tocatgaggg ctctaacggc accttcatag tcacattcga tgtctcctac 2820 aaggccaccc tgggagacag gatgcttatg agggccagtg caagcagtga gaacaataag 2880 getteaagea geaaggeeae etteeagetg gageteeegg tgaagtatge agtetaeace 2940 atgatcagca ggcaggaaga atccaccaag tacttcaact ttgcaacctc cgatgagaag 3000 aaaatgaaag aggctgagca tcgataccgt gtgaataacc tcagccagcg agatctggcc 3060 atcagcatta acttctgggt tcctgtcctg ctgaacgggg tggctgtgtg ggatgtggtc 3120 atggaggece cateteagag teteceetgt gttteagaga gaaaacetee eeageattet 3180 gactteetga eccagattte aagaagteee atgetggaet geteeattge tgactgeetg 3240 cagttccgct gtgacgtccc ctccttcagc gtccaggagg agctggattt caccctgaag 3300 ggcaatctca gtttcggctg ggtccgcgag acattgcaga agaaggtgtt ggtcgtgagt 3360 gtggctgaaa ttacgttcga cacatccgtg tactcccagc ttccaggaca ggaggcattt 3420 atgagagete agatggagat ggtgetagaa gaagaegagg tetacaatge catteceate 3480 atcatgggca gctctgtggg ggctctgcta ctgctggcgc tcatcacagc cacactgtac 3540 aagcttggct tcttcaaacg ccactacaag gaaatgctgg aggacaagcc tgaagacact 3600 gccacattca gtggggacga tttcagctgt gtggccccaa atgtgccttt gtcctaataa 3660 tecaetttee tgtttatete taccaetgtg ggetggaett gettgeaace ataaateaac 3720 ttacatggaa acaacttctg catagatctg cactggccta agcaacctac caggtgctaa 3780 gcaccttctc ggagagatag agattgtcaa tgtttttaca tatctgtcca tctttttcag 3840 caatgaccca ctttttacag aagcaggcat ggtgccagca taaattttca tatgcttaag 3900 3956

<210> 98

<211> 3785

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(3483)

<400)> 98	}														4.0
Met 1	acc Thr	Phe	Gly	Thr 5	Val	Leu	Leu	Leu	Ser 10	Val	Leu	Ala	Ser	Tyr 15	His	48
gga Gly	ttc Phe	aac Asn	ctg Leu 20	gat Asp	gtg Val	gag Glu	gag Glu	cct Pro 25	acg Thr	atc Ile	ttc Phe	cag Gln	gag Glu 30	gat Asp	gca Ala	96
ggc Gly	ggc Gly	ttt Phe 35	Gly ggg	cag Gln	agc Ser	gtg Val	gtg Val 40	cag Gln	ttc Phe	ggt Gly	gga Gly	tct Ser 45	cga Arg	ctc Leu	gtg Val	144
gtg Val	gga Gly 50	gca Ala	ccc Pro	ctg Leu	gag Glu	gtg Val 55	gtg Val	gcg Ala	gcc Ala	aac Asn	cag Gln 60	acg Thr	gga Gly	cgg Arg	ctg Leu	192
tat Tyr 65	gac Asp	tgc Cys	gca Ala	gct Ala	gcc Ala 70	acc Thr	ggc Gly	atg Met	tgc Cys	cag Gln 75	ccc Pro	atc Ile	ccg Pro	ctg Leu	cac His 80	240
atc Ile	cgc Arg	cct Pro	gag Glu	gcc Ala 85	gtg Val	aac Asn	atg Met	tcc Ser	ttg Leu 90	ggc Gly	ctg Leu	acc Thr	ctg Leu	gca Ala 95	gcc Ala	288
tcc Ser	acc Thr	aac Asn	ggc Gly 100	tcc Ser	cgg Arg	ctc Leu	ctg Leu	gcc Ala 105	tgt Cys	ggc Gly	ccg Pro	acc Thr	ctg Leu 110	cac His	aga Arg	336
gtc Val	tgt Cys	ggg Gly 115	gag Glu	aac Asn	tca Ser	tac Tyr	tca Ser 120	aag Lys	ggt Gly	tcc Ser	tgc Cys	ctc Leu 125	ctg Leu	ctg Leu	ggc Gly	384
tcg Ser	cgc Arg 130	tgg Trp	gag Glu	atc Ile	atc Ile	cag Gln 135	aca Thr	gtc Val	ccc Pro	gac Asp	gcc Ala 140	acg Thr	cca Pro	gag Glu	tgt Cys	432
cca Pro 145	cat His	caa Gln	gag Glu	atg Met	gac Asp 150	atc Ile	gtc Val	ttc Phe	ctg Leu	att Ile 155	gac Asp	ggc Gly	tct Ser	gga Gly	agc Ser 160	480
att Ile	gac Asp	caa Gln	aat Asn	gac Asp 165	ttt Phe	aac Asn	cag Gln	atg Met	aag Lys 170	ggc Gly	ttt Phe	gtc Val	caa Gln	gct Ala 175	gtc Val	528
atg Met	ggc Gly	cag Gln	ttt Phe 180	gag Glu	ggc Gly	act Thr	gac Asp	acc Thr 185	ctg Leu	ttt Phe	gca Ala	ctg Leu	atg Met 190	cag Gln	tac Tyr	576
tca Ser	aac Asn	ctc Leu 195	ctg Leu	aag Lys	atc Ile	cac His	ttc Phe 200	acc Thr	ttc Phe	acc Thr	caa Gln	ttc Phe 205	cgg Arg	acc Thr	agc Ser	624
ccg Pro	agc Ser 210	cag Gln	cag Gln	agc Ser	ctg Leu	gtg Val 215	gat Asp	ccc Pro	atc Ile	gtc Val	caa Gln 220	ctg Leu	aaa Lys	ggc Gly	ctg Leu	672
acg Thr 225	ttc Phe	acg Thr	gcc Ala	acg Thr	ggc Gly 230	atc Ile	ctg Leu	aca Thr	gtg Val	gtg Val 235	aca Thr	cag Gln	cta Leu	ttt Phe	cat His 240	720

cat His	aag Lys	aat Asn	Gl ggg	gcc Ala 245	cga Arg	aaa Lys	agt Ser	gcc Ala	aag Lys 250	aag Lys	atc Ile	ctc Leu	att Ile	gtc Val 255	atc Ile	768
aca Thr	gat Asp	Gly ggg	cag Gln 260	aag Lys	tac Tyr	aaa Lys	gac Asp	ccc Pro 265	ctg Leu	gaa Glu	tac Tyr	agt Ser	gat Asp 270	gtc Val	atc Ile	816
ccc Pro	cag Gln	gca Ala 275	gag Glu	aag Lys	gct Ala	ggc Gly	atc Ile 280	atc Ile	cgc Arg	tac Tyr	gct Ala	atc Ile 285	G JÀ Gàà	gtg Val	gga Gly	864
cac His	gct Ala 290	ttc Phe	cag Gln	gga Gly	ccc Pro	act Thr 295	gcc Ala	agg Arg	cag Gln	gag Glu	ctg Leu 300	aat Asn	acc Thr	atc. Ile	agc Ser	912
tca Ser 305	gcg Ala	cct Pro	ccg Pro	cag Gln	gac Asp 310	cac His	gtg Val	ttc Phe	aag Lys	gtg Val 315	gac Asp	aac Asn	ttt Phe	gca Ala	gcc Ala 320	960
ctt Leu	ggc Gly	agc Ser	atc Ile	cag Gln 325	aag Lys	cag Gln	ctg Leu	cag Gln	gag Glu 330	aag Lys	atc Ile	tat Tyr	gca Ala	gtt Val 335	gag Glu	1008
gga Gly	acc Thr	cag Gln	tcc Ser 340	agg Arg	gca Ala	agc Ser	agc Ser	tcc Ser 345	ttc Phe	cag Gln	cac His	gag Glu	atg Met 350	tcc Ser	caa Gln	1056
gaa Glu	ggc Gly	ttc Phe 355	agc Ser	aca Thr	gcc Ala	ctc Leu	aca Thr 360	atg Met	gat Asp	ggc Gly	ctc Leu	ttc Phe 365	ctg Leu	Gly ggg	gct Ala	1104
gtg Val	ggg Gly 370	agc Ser	ttt Phe	agc Ser	tgg Trp	tct Ser 375	gga Gly	ggt Gly	gcc Ala	ttc Phe	ctg Leu 380	tat Tyr	ccc Pro	cca Pro	aat Asn	1152
atg Met 385	agc Ser	ccc Pro	acc Thr	ttc Phe	atc Ile 390	aac Asn	atg Met	tct Ser	cag Gln	gag Glu 395	aat Asn	gtg Val	gac Asp	atg Met	agg Arg 400	1200
gac Asp	tct Ser	tac Tyr	ctg Leu	ggt Gly 405	tac Tyr	tcc Ser	acc Thr	gag Glu	cta Leu 410	gcc Ala	ctg Leu	tgg Trp	aag Lys	ggg Gly 415	gta Val	1248
cag Gln	aac Asn	ctg Leu	gtc Val 420	ctg Leu	GJ À GG À	gcc Ala	ccc Pro	cgc Arg 425	tac Tyr	cag Gln	cat His	acc Thr	ggg Gly 430	aag Lys	gct Ala	1296
gtc Val	atc Ile	ttc Phe 435	acc Thr	cag Gln	gtg Val	tcc Ser	agg Arg 440	caa Gln	tgg Trp	agg Arg	aag Lys	aag Lys 445	gcc Ala	gaa Glu	gtc Val	1344
aca Thr	ggg Gly 450	acg Thr	cag Gln	atc Ile	ggc Gly	tcc Ser 455	tac Tyr	ttc Phe	Gly	gcc Ala	tcc Ser 460	ctc Leu	tgc Cys	tcc Ser	gtg Val	1392
gat Asp 465	gtg V al	gac Asp	agc Ser	gat Asp	ggc Gly 470	agc Ser	acc Thr	gac Asp	ctg Leu	atc Ile 475	ctc Leu	att Ile	Gly ggg	gcc Ala	ccc Pro 480	1440

cat His	tac Tyr	tat Tyr	gag Glu	cag Gln 485	acc Thr	cga Arg	G1A Gaa	ggc Gly	cag Gln 490	gtg Val	tcc Ser	gtg Val	tgt Cys	ccc Pro 495	ttg Leu	1488
cct Pro	agg Arg	GJ À GGG	agg Arg 500	gtg Val	cag Gln	tgg Trp	cag Gln	tgt Cys 505	gac Asp	gct Ala	gtt Val	ctc Leu	cgt Arg 510	ggt Gly	gag Glu	1536
cag Gln	ggc Gly	cac His 515	ccc Pro	tgg Trp	ggc Gly	cgc Arg	ttt Phe 520	ej aaa	gca Ala	gcc Ala	ctg Leu	aca Thr 525	gtg Val	ttg Leu	ej aaa	1584
gat Asp	gtg Val 530	aat Asn	gag Glu	gac Asp	aag Lys	ctg Leu 535	ata Ile	gac Asp	gtg Val	gcc Ala	att Ile 540	Gly ggg	gcc Ala	ccg Pro	gga Gly	1632
gag Glu 545	cag Gln	gag Glu	aac Asn	cgg Arg	ggt Gly 550	gct Ala	gtc Val	tac Tyr	ctg Leu	ttt Phe 555	cac His	gga Gly	gcc Ala	tca Ser	gaa Glu 560	1680
tcc Ser	ggc Gly	atc Ile	agc Ser	ccc Pro 565	tcc Ser	cac His	agc Ser	cag Gln	cgg Arg 570	att Ile	gcc Ala	agc Ser	tcc Ser	cag Gln 575	ctc Leu	1728
tcc Ser	ccc Pro	agg Arg	ctg Leu 580	cag Gln	tat Tyr	ttt Phe	ggg Gly	cag Gln 585	gcg Ala	ctg Leu	agt Ser	gly ggg	ggt Gly 590	cag Gln	gac Asp	1776
ctc Leu	acc Thr	cag Gln 595	gat Asp	gga Gly	ctg Leu	atg Met	gac Asp 600	ctg Leu	gcc Ala	gtg Val	Gly ggg	gcc Ala 605	cgg Arg	ggc Gly	cag Gln	1824
gtg Val	ctc Leu 610	ctg Leu	ctc Leu	agg Arg	agt Ser	ctg Leu 615	ccg Pro	gtg Val	ctg Leu	aaa Lys	gtg Val 620	Gly ggg	gtg Val	gcc Ala	atg Met	1872
aga Arg 625	ttc Phe	agc Ser	cct Pro	gtg Val	gag Glu 630	gtg Val	gcc Ala	aag Lys	gct Ala	gtg Val 635	tac Tyr	cgg Arg	tgc Cys	tgg Trp	gaa Glu 640	1920
gag Glu	aag Lys	ccc Pro	agt Ser	gcc Ala 645	ctg Leu	gaa Glu	gct Ala	Gly ggg	gac Asp 650	gcc Ala	acc Thr	gtc Val	tgt Cys	ctc Leu 655	acc Thr	1968
atc Ile	cag Gln	aaa Lys	agc Ser 660	tca Ser	ctg Leu	gac Asp	cag Gln	cta Leu 665	ggt Gly	gac Asp	atc Ile	caa Gln	agc Ser 670	tct Ser	gtc Val	2016
agg Arg	ttt Phe	gat Asp 675	ctg Leu	gca Ala	ctg Leu	gac Asp	cca Pro 680	ggt Gly	cgt Arg	ctg Leu	act Thr	tct Ser 685	cgt Arg	gcc Ala	att Ile	2064
	aat Asn 690															2112
	Gly			_	_		_		-		-		_	_		2160

gag Glu	gat Asp	gtg Val	gtg Val	agc Ser 725	ccc Pro	atc Ile	att Ile	ctg Leu	cac His 730	ctc Leu	aac Asn	ttc Phe	tca Ser	ctg Leu 735	gtg Val	2208
aga Arg	gag Glu	ccc Pro	atc Ile 740	ccc Pro	tcc Ser	ccc Pro	cag Gln	aac Asn 745	ctg Leu	cgt Arg	cct Pro	gtg Val	ctg Leu 750	gcc Ala	gtg Val	2256
ggc Gly	tca Ser	caa Gln 755	gac Asp	ctc Leu	ttc Phe	act Thr	gct Ala 760	tct Ser	ctc Leu	ccc Pro	ttc Phe	gag Glu 765	aag Lys	aac Asn	tgt Cys	2304
elà ààà	caa Gln 770	gat Asp	ggc Gly	ctc Leu	tgt Cys	gaa Glu 775	GJ À ààà	gac Asp	ctg Leu	ggt Gly	gtc Val 780	acc Thr	ctc Leu	agc Ser	ttc Phe	2352
tca Ser 785	ggc Gly	ctg Leu	cag Gln	acc Thr	ctg Leu 790	acc Thr	gtg Val	Gly ggg	agc Ser	tcc Ser 795	ctg Leu	gag Glu	ctc Leu	aac Asn	gtg Val 800	2400
att Ile	gtg Val	act Thr	gtg Val	tgg Trp 805	aac Asn	gca Ala	ggt Gly	gag Glu	gat Asp 810	tcc Ser	tac Tyr	gga Gly	acc Thr	gtg Val 815	gtc Val	2448
agc Ser	ctc Leu	tac Tyr	tat Tyr 820	cca Pro	gca Ala	Gly ggg	ctg Leu	tcg Ser 825	cac His	cga Arg	cgg Arg	gtg Val	tca Ser 830	gga Gly	gcc Ala	2496
cag Gln	aag Lys	cag Gln 835	ccc Pro	cat His	cag Gln	agt Ser	gcc Ala 840	ctg Leu	cgc Arg	ctg Leu	gca Ala	tgt Cys 845	gag Glu	aca Thr	gtg Val	2544
ccc Pro	act Thr 850	gag Glu	gat Asp	gag Glu	ggc Gly	cta Leu 855	aga Arg	agc Ser	agc Ser	cgc Arg	tgc Cys 860	agt Ser	gtc Val	aac Asn	cac His	2592
ccc Pro 865	atc Ile	ttc Phe	cat His	gag Glu	ggc Gly 870	tct Ser	aac Asn	ggc Gly	acc Thr	ttc Phe 875	ata Ile	gtc Val	aca Thr	ttc Phe	gat Asp 880	2640
gtc Val	tcc Ser	tac Tyr	aag Lys	gcc Ala 885	acc Thr	ctg Leu	gga Gly	gac Asp	agg Arg 890	atg Met	ctt Leu	atg Met	agg Arg	gcc Ala 895	agt Ser	2688
gca Ala	agc Ser	agt Ser	gag Glu 900	aac Asn	aat Asn	aag Lys	gct Ala	tca Ser 905	agc Ser	agc Ser	aag Lys	gcc Ala	acc Thr 910	ttc Phe	cag Gln	2736
ctg Leu	gag Glu	ctc Leu 915	ccg Pro	gtg Val	aag Lys	tat Tyr	gca Ala 920	gtc Val	tac Tyr	acc Thr	atg Met	atc Ile 925	agc Ser	agg Arg	cag Gln	2784
gaa Glu	gaa Glu 930	tcc Ser	acc Thr	aag Lys	tac Tyr	ttc Phe 935	aac Asn	ttt Phe	gca Ala	acc Thr	tcc Ser 940	gat Asp	gag Glu	aag Lys	aaa Lys	2832
atg Met 945	aaa Lys	gag Glu	gct Ala	gag Glu	cat His 950	cga Arg	tac Tyr	cgt Arg	gtg Val	aat Asn 955	aac Asn	ctc Leu	agc Ser	cag Gln	cga Arg 960	2880

gat ctg gcc atc agc att aac ttc tgg gtt cct gtc ctg ctg aac ggg Asp Leu Ala Ile Ser Ile Asn Phe Trp Val Pro Val Leu Leu Asn Gly 965 970 975	2928
gtg gct gtg tgg gat gtg gtc atg gag gcc cca tct cag agt ctc ccc Val Ala Val Trp Asp Val Val Met Glu Ala Pro Ser Gln Ser Leu Pro 980 985 990	2976
tgt gtt tca gag aga aaa cct ccc cag cat tct gac ttc ctg acc cag Cys Val Ser Glu Arg Lys Pro Pro Gln His Ser Asp Phe Leu Thr Gln 995 1000 1005	3024
att tca aga agt ccc atg ctg gac tgc tcc att gct gac tgc ctg cag Ile Ser Arg Ser Pro Met Leu Asp Cys Ser Ile Ala Asp Cys Leu Gln 1010 1015 1020	3072
ttc cgc tgt gac gtc ccc tcc ttc agc gtc cag gag gag ctg gat ttc Phe Arg Cys Asp Val Pro Ser Phe Ser Val Gln Glu Glu Leu Asp Phe 1025 1030 1035 1040	3120
acc ctg aag ggc aat ctc agt ttc ggc tgg gtc cgc gag aca ttg cag Thr Leu Lys Gly Asn Leu Ser Phe Gly Trp Val Arg Glu Thr Leu Gln 1045 1050 1055	3168
aag aag gtg ttg gtc gtg agt gtg gct gaa att acg ttc gac aca tcc Lys Lys Val Leu Val Val Ser Val Ala Glu Ile Thr Phe Asp Thr Ser 1060 1065 1070	3216
gtg tac tcc cag ctt cca gga cag gag gca ttt atg aga gct cag atg Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe Met Arg Ala Gln Met 1075 1080 1085	3264
gag atg gtg cta gaa gaa gac gag gtc tac aat gcc att ccc atc atc Glu Met Val Leu Glu Glu Asp Glu Val Tyr Asn Ala Ile Pro Ile Ile 1090 1095 1100	3312
atg ggc agc tct gtg ggg gct ctg cta ctg ctg gcg ctc atc aca gcc Met Gly Ser Ser Val Gly Ala Leu Leu Leu Leu Ala Leu Ile Thr Ala 1105 1110 1115	3360
aca ctg tac aag ctt ggc ttc ttc aaa cgc cac tac aag gaa atg ctg Thr Leu Tyr Lys Leu Gly Phe Phe Lys Arg His Tyr Lys Glu Met Leu 1125 1130 1135	3408
gag gac aag cct gaa gac act gcc aca ttc agt ggg gac gat ttc agc Glu Asp Lys Pro Glu Asp Thr Ala Thr Phe Ser Gly Asp Asp Phe Ser 1140 1145 1150	3456
tgt gtg gcc cca aat gtg cct ttg tcc taataatcca ctttcctgtt Cys Val Ala Pro Asn Val Pro Leu Ser 1155 1160	3503
tatctctacc actgtgggct ggacttgctt gcaaccataa atcaacttac atggaaacaa	3563
cttctgcata gatctgcact ggcctaagca acctaccagg tgctaagcac cttctcggag	3623
agatagagat tgtcaatgtt tttacatatc tgtccatctt tttcagcaat gacccacttt	3683
ttacagaagc aggcatggtg ccagcataaa ttttcatatg cttaagaatt gtcacatgaa	3743
aaaaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaacttt ag	3785

<210> 99

<211> 1161

<212> PRT

<213> Homo sapiens

<400> 99

Met Thr Phe Gly Thr Val Leu Leu Leu Ser Val Leu Ala Ser Tyr His 1 5 10 15

Gly Phe Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Gln Glu Asp Ala 20 25 30

Gly Gly Phe Gly Gln Ser Val Val Gln Phe Gly Gly Ser Arg Leu Val
35 40 45

Val Gly Ala Pro Leu Glu Val Val Ala Ala Asn Gln Thr Gly Arg Leu 50 55 60

Tyr Asp Cys Ala Ala Ala Thr Gly Met Cys Gln Pro Ile Pro Leu His 65 70 75 80

Ile Arg Pro Glu Ala Val Asn Met Ser Leu Gly Leu Thr Leu Ala Ala 85 90 95

Ser Thr Asn Gly Ser Arg Leu Leu Ala Cys Gly Pro Thr Leu His Arg 100 105 110

Val Cys Gly Glu Asn Ser Tyr Ser Lys Gly Ser Cys Leu Leu Gly
115 120 125

Ser Arg Trp Glu Ile Ile Gln Thr Val Pro Asp Ala Thr Pro Glu Cys 130 135 140

Pro His Gln Glu Met Asp Ile Val Phe Leu Ile Asp Gly Ser Gly Ser 145 150 155 160

Ile Asp Gln Asn Asp Phe Asn Gln Met Lys Gly Phe Val Gln Ala Val 165 170 175

Met Gly Gln Phe Glu Gly Thr Asp Thr Leu Phe Ala Leu Met Gln Tyr 180 185 190

Ser Asn Leu Leu Lys Ile His Phe Thr Phe Thr Gln Phe Arg Thr Ser 195 200 205

Pro Ser Gln Gln Ser Leu Val Asp Pro Ile Val Gln Leu Lys Gly Leu 210 215 220

Thr Phe Thr Ala Thr Gly Ile Leu Thr Val Val Thr Gln Leu Phe His 225 230 235 240

His Lys Asn Gly Ala Arg Lys Ser Ala Lys Lys Ile Leu Ile Val Ile 245 250 255

Thr Asp Gly Gln Lys Tyr Lys Asp Pro Leu Glu Tyr Ser Asp Val Ile 260 265 270

Pro Gln Ala Glu Lys Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val Gly 275 280 285

His Ala Phe Gln Gly Pro Thr Ala Arg Gln Glu Leu Asn Thr Ile Ser Ser Ala Pro Pro Gln Asp His Val Phe Lys Val Asp Asn Phe Ala Ala Leu Gly Ser Ile Gln Lys Gln Leu Gln Glu Lys Ile Tyr Ala Val Glu 325 Gly Thr Gln Ser Arg Ala Ser Ser Ser Phe Gln His Glu Met Ser Gln Glu Gly Phe Ser Thr Ala Leu Thr Met Asp Gly Leu Phe Leu Gly Ala Val Gly Ser Phe Ser Trp Ser Gly Gly Ala Phe Leu Tyr Pro Pro Asn Met Ser Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met Arg 390 Asp Ser Tyr Leu Gly Tyr Ser Thr Glu Leu Ala Leu Trp Lys Gly Val Gln Asn Leu Val Leu Gly Ala Pro Arg Tyr Gln His Thr Gly Lys Ala 425 Val Ile Phe Thr Gln Val Ser Arg Gln Trp Arg Lys Lys Ala Glu Val Thr Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser Val 455 Asp Val Asp Ser Asp Gly Ser Thr Asp Leu Ile Leu Ile Gly Ala Pro His Tyr Tyr Glu Gln Thr Arg Gly Gly Gln Val Ser Val Cys Pro Leu Pro Arg Gly Arg Val Gln Trp Gln Cys Asp Ala Val Leu Arg Gly Glu 505 Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu Gly Asp Val Asn Glu Asp Lys Leu Ile Asp Val Ala Ile Gly Ala Pro Gly 535 Glu Gln Glu Asn Arg Gly Ala Val Tyr Leu Phe His Gly Ala Ser Glu 545 Ser Gly Ile Ser Pro Ser His Ser Gln Arg Ile Ala Ser Ser Gln Leu 570 565 Ser Pro Arg Leu Gln Tyr Phe Gly Gln Ala Leu Ser Gly Gly Gln Asp Leu Thr Gln Asp Gly Leu Met Asp Leu Ala Val Gly Ala Arg Gly Gln

600

Val Leu Leu Arg Ser Leu Pro Val Leu Lys Val Gly Val Ala Met Arg Phe Ser Pro Val Glu Val Ala Lys Ala Val Tyr Arg Cys Trp Glu Glu Lys Pro Ser Ala Leu Glu Ala Gly Asp Ala Thr Val Cys Leu Thr Ile Gln Lys Ser Ser Leu Asp Gln Leu Gly Asp Ile Gln Ser Ser Val Arg Phe Asp Leu Ala Leu Asp Pro Gly Arg Leu Thr Ser Arg Ala Ile Phe Asn Glu Thr Lys Asn Pro Thr Leu Thr Arg Arg Lys Thr Leu Gly Leu Gly Ile His Cys Glu Thr Leu Lys Leu Leu Leu Pro Asp Cys Val Glu Asp Val Val Ser Pro Ile Ile Leu His Leu Asn Phe Ser Leu Val Arg Glu Pro Ile Pro Ser Pro Gln Asn Leu Arg Pro Val Leu Ala Val Gly Ser Gln Asp Leu Phe Thr Ala Ser Leu Pro Phe Glu Lys Asn Cys Gly Gln Asp Gly Leu Cys Glu Gly Asp Leu Gly Val Thr Leu Ser Phe Ser Gly Leu Gln Thr Leu Thr Val Gly Ser Ser Leu Glu Leu Asn Val Ile Val Thr Val Trp Asn Ala Gly Glu Asp Ser Tyr Gly Thr Val Val Ser Leu Tyr Tyr Pro Ala Gly Leu Ser His Arg Arg Val Ser Gly Ala Gln Lys Gln Pro His Gln Ser Ala Leu Arg Leu Ala Cys Glu Thr Val 835 Pro Thr Glu Asp Glu Gly Leu Arg Ser Ser Arg Cys Ser Val Asn His 855 Pro Ile Phe His Glu Gly Ser Asn Gly Thr Phe Ile Val Thr Phe Asp Val Ser Tyr Lys Ala Thr Leu Gly Asp Arg Met Leu Met Arg Ala Ser 890 Ala Ser Ser Glu Asn Asn Lys Ala Ser Ser Ser Lys Ala Thr Phe Gln Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Thr Met Ile Ser Arg Gln Glu Glu Ser Thr Lys Tyr Phe Asn Phe Ala Thr Ser Asp Glu Lys Lys 930 935 940

Met Lys Glu Ala Glu His Arg Tyr Arg Val Asn Asn Leu Ser Gln Arg 945 950 955 960

Asp Leu Ala Ile Ser Ile Asn Phe Trp Val Pro Val Leu Leu Asn Gly 965 970 975

Val Ala Val Trp Asp Val Val Met Glu Ala Pro Ser Gln Ser Leu Pro 980 985 990

Cys Val Ser Glu Arg Lys Pro Pro Gln His Ser Asp Phe Leu Thr Gln 995 1000 1005

Phe Arg Cys Asp Val Pro Ser Phe Ser Val Gln Glu Glu Leu Asp Phe 1025 1030 1035 1040

Thr Leu Lys Gly Asn Leu Ser Phe Gly Trp Val Arg Glu Thr Leu Gln
1045 1050 1055

Lys Lys Val Leu Val Val Ser Val Ala Glu Ile Thr Phe Asp Thr Ser 1060 1065 1070

Val Tyr Ser Gln Leu Pro Gly Gln Glu Ala Phe Met Arg Ala Gln Met 1075 1080 1085

Glu Met Val Leu Glu Glu Asp Glu Val Tyr Asn Ala Ile Pro Ile Ile 1090 1095 1100

Met Gly Ser Ser Val Gly Ala Leu Leu Leu Leu Ala Leu Ile Thr Ala 1105 1110 1115 1120

Thr Leu Tyr Lys Leu Gly Phe Phe Lys Arg His Tyr Lys Glu Met Leu 1125 1130 1135

Glu Asp Lys Pro Glu Asp Thr Ala Thr Phe Ser Gly Asp Asp Phe Ser 1140 1145 1150

Cys Val Ala Pro Asn Val Pro Leu Ser 1155 1160

<210> 100

<211> 1318

<212> DNA

<213> rabbit

<220>

<221> CDS

<222> (17)..(1255)

<400> 100

aattcggcac gagett ggg get gtg gte etc ett ggg gte etg get tet tac 52
Gly Ala Val Val Leu Gly Val Leu Ala Ser Tyr
1 5

cac His	gga Gly	ttc Phe 15	aac Asn	ttg Leu	gac Asp	gtg Val	gat Asp 20	gag Glu	ccg Pro	gtg Val	atc Ile	ttc Phe 25	cag Gln	gaa Glu	gac Asp	100
gca Ala	gcg Ala 30	ggc Gly	ttc Phe	Gly ggg	cag Gln	agc Ser 35	gtg Val	atg Met	cag Gln	ttt Phe	gga Gly 40	gga Gly	tct Ser	cga Arg	ctc Leu	148
gtg Val 45	gtg Val	gga Gly	gcc Ala	ccc Pro	ctg Leu 50	gcg Ala	gtg Val	gtg Val	tcg Ser	gcc Ala 55	aac Asn	cac His	aca Thr	gga Gly	cgg Arg 60	196
ctg Leu	tac Tyr	gag Glu	tgt Cys	gcg Ala 65	cct Pro	gcc Ala	tcc Ser	ggc Gly	acc Thr 70	tgc Cys	acg Thr	ccc Pro	att Ile	ttc Phe 75	cca Pro	244
ttc Phe	atg Met	ccc Pro	ccc Pro 80	gaa Glu	gcc Ala	gtg Val	aac Asn	atg Met 85	tcc Ser	ctg Leu	ggc Gly	ctg Leu	tcc Ser 90	ctg Leu	gca Ala	292
gcc Ala	tcc Ser	ccc Pro 95	aac Asn	cat His	tcc Ser	cag Gln	ctg Leu 100	ctg Leu	gct Ala	tgt Cys	ggc Gly	ccg Pro 105	acc Thr	gtg Val	cat His	340
aga Arg	gcc Ala 110	tgc Cys	ej A aaa	gag Glu	gac Asp	gtg Val 115	tac Tyr	gcc Ala	cag Gln	ggt Gly	ttc Phe 120	tgt Cys	gtg Val	ctg Leu	ctg Leu	388
gat Asp 125	gcc Ala	cac His	gca Ala	cag Gln	ccc Pro 130	atc Ile	Gly ggg	act Thr	gtg Val	cca Pro 135	gct Ala	gcc Ala	ctg Leu	ccc Pro	gag Glu 140	436
tgc Cys	cca Pro	gat Asp	caa Gln	gag Glu 145	atg Met	gac Asp	att Ile	gtc Val	ttc Phe 150	ctg Leu	att Ile	gac Asp	ggc	tct Ser 155	ggc Gly	484
agc Ser	att Ile	agc Ser	tca Ser 160	aat Asn	gac Asp	ttc Phe	cgc Arg	aag Lys 165	atg Met	aag Lys	gac Asp	ttt Phe	gtc Val 170	aga Arg	gct Ala	532
gtg Val	atg Met	gac Asp 175	cag Gln	ttc Phe	aag Lys	gac Asp	acc Thr 180	aac Asn	acc Thr	cag Gln	ttc Phe	tcg Ser 185	ctg Leu	atg Met	cag Gln	580
tac Tyr	tcc Ser 190	aat Asn	gtg Val	ctg Leu	gtg Val	aca Thr 195	cat His	ttc Phe	acc Thr	ttc Phe	agc Ser 200	agc Ser	ttc Phe	cgg Arg	aac Asn	628
agc Ser 205	Ser	aat Asn	cct Pro	cag Gln	ggc Gly 210	cta Leu	gtg Val	gag Glu	ccc Pro	att Ile 215	Val	cag Gln	ctg Leu	aca Thr	ggc Gly 220	676
ctc Leu	acg Thr	ttc Phe	acg Thr	gcc Ala 225	aca Thr	GJY	atc Ile	ctg Leu	aaa Lys 230	Val	gtg Val	aca Thr	gag Glu	ctg Leu 235	Phe	724
caa Gln	acc Thr	aag Lys	aac Asn 240	Gly	gcc Ala	cgc Arg	gaa Glu	agt Ser 245	Ala	aag Lys	aag Lys	atc Ile	Leu 250	Ile	gtc Val	772

a I	tc le	aca Thr	gat Asp 255	G] A GGG	cag Gln	aag Lys	tac Tyr	aaa Lys 260	gac Asp	ccc Pro	ctg Leu	cac His	tac Tyr 265	agt Ser	gct Ala	gtc Val	820
a	tc le	cca Pro 270	cag Gln	gca Ala	gag Glu	cag Gln	gcg Ala 275	ggc Gly	atc Ile	atc Ile	cgc Arg	tac Tyr 280	gcc Ala	atc Ile	ggg Gly	gtg Val	868
G	199 31y 185	gac Asp	gcg Ala	ttc Phe	cag Gln	aaa Lys 290	ccc Pro	aca Thr	gcc Ala	agg Arg	cag Gln 295	gag Glu	ctg Leu	gac Asp	acc Thr	atc Ile 300	916
Ç	jcc Ja	tcc Ser	gag Glu	ccg Pro	ccc Pro 305	gac Asp	gcc Ala	cac His	gtg Val	ttc Phe 310	cag Gln	gtg Val	gac Asp	aat Asn	ttc Phe 315	tca Ser	964
Ī	jca Na	ctc Leu	agc Ser	agc Ser 320	atc Ile	caa Gln	aag Lys	cag Gln	ctg Leu 325	tat Tyr	gac Asp	agg Arg	atc Ile	ttt Phe 330	gcc Ala	gtc Val	1012
Ç	gag Slu	gga Gly	acc Thr 335	ctg Leu	tca Ser	tcg Ser	gca Ala	agc Ser 340	acc Thr	tcc Ser	ttc Phe	cag Gln	cat His 345	gag Glu	atg Met	tcc Ser	1060
(caa Gln	gag Glu 350	ggc Gly	ttc Phe	agc Ser	tca Ser	ctt Leu 355	ctc Leu	acc Thr	acg Thr	gaa Glu	gga Gly 360	ccg Pro	gtg Val	ctg Leu	G]Å ggg	1108
Ž	gct Ala 365	gtg Val	ggc	agc Ser	ttc Phe	gat Asp 370	tgg Trp	tcc Ser	ggg	ggt Gly	gct Ala 375	ttc Phe	ctg Leu	tac Tyr	ccc Pro	ccc Pro 380	1156
(ggc Gly	ggg	agc Ser	ccc Pro	acc Thr 385	ttc Phe	atc Ile	aac Asn	atg Met	tct Ser 390	cag Gln	cag Gln	aac Asn	gtg Val	gac Asp 395	atg Met	1204
j	agg Arg	gac Asp	tcc Ser	tac Tyr 400	Leu	ggt Gly	gag Glu	gaa Glu	ggg Gly 405	gtg Val	Gly	gtg Val	Gly	aca Thr 410	GTA	GJA	1252
	agc Ser		ggct	tgg	ggtg	gggt	gg g	gctg	ggct	g gg	aggg	gagg	gaa	gagg	agg		1305
	gga	gagg	caa	aga													1318
		0> 1 1> 4															

<211> 413 <212> PRT

<213> rabbit

Gly Ala Val Val Leu Gly Val Leu Ala Ser Tyr His Gly Phe Asn
1 5 10

Leu Asp Val Asp Glu Pro Val Ile Phe Gln Glu Asp Ala Ala Gly Phe 25 20

Gly Gln Ser Val Met Gln Phe Gly Gly Ser Arg Leu Val Val Gly Ala

Pro Leu Ala Val Val Ser Ala Asn His Thr Gly Arg Leu Tyr Glu Cys Ala Pro Ala Ser Gly Thr Cys Thr Pro Ile Phe Pro Phe Met Pro Pro Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu Ala Ala Ser Pro Asn His Ser Gln Leu Leu Ala Cys Gly Pro Thr Val His Arg Ala Cys Gly 105 Glu Asp Val Tyr Ala Gln Gly Phe Cys Val Leu Leu Asp Ala His Ala Gln Pro Ile Gly Thr Val Pro Ala Ala Leu Pro Glu Cys Pro Asp Gln 135 Glu Met Asp Ile Val Phe Leu Ile Asp Gly Ser Gly Ser Ile Ser Ser 155 Asn Asp Phe Arg Lys Met Lys Asp Phe Val Arg Ala Val Met Asp Gln 170 Phe Lys Asp Thr Asn Thr Gln Phe Ser Leu Met Gln Tyr Ser Asn Val 185 Leu Val Thr His Phe Thr Phe Ser Ser Phe Arg Asn Ser Ser Asn Pro 200 Gln Gly Leu Val Glu Pro Ile Val Gln Leu Thr Gly Leu Thr Phe Thr 215 Ala Thr Gly Ile Leu Lys Val Val Thr Glu Leu Phe Gln Thr Lys Asn 235 Gly Ala Arg Glu Ser Ala Lys Lys Ile Leu Ile Val Ile Thr Asp Gly 250 Gln Lys Tyr Lys Asp Pro Leu His Tyr Ser Ala Val Ile Pro Gln Ala Glu Gln Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val Gly Asp Ala Phe 280 Gln Lys Pro Thr Ala Arg Gln Glu Leu Asp Thr Ile Ala Ser Glu Pro 290 Pro Asp Ala His Val Phe Gln Val Asp Asn Phe Ser Ala Leu Ser Ser 310 315 Ile Gln Lys Gln Leu Tyr Asp Arg Ile Phe Ala Val Glu Gly Thr Leu Ser Ser Ala Ser Thr Ser Phe Gln His Glu Met Ser Gln Glu Gly Phe Ser Ser Leu Leu Thr Thr Glu Gly Pro Val Leu Gly Ala Val Gly Ser Phe Asp Trp Ser Gly Gly Ala Phe Leu Tyr Pro Pro Gly Gly Ser Pro

Thr Phe Ile Asn Met Ser Gln Gln Asn Val Asp Met Arg Asp Ser Tyr 400 Leu Gly Glu Glu Gly Val Gly Val Gly Thr Gly Gly Ser 405 <210> 102 <211> 1484 <212> DNA <213> rabbit <220> <221> CDS <222> (1)..(1482) <400> 102 gat gtc cag agc tcc atc agc tat gat ctg gca ctg gac cca ggc cgc Asp Val Gln Ser Ser Ile Ser Tyr Asp Leu Ala Leu Asp Pro Gly Arg 96 ctg gtc tct cgg gcc att ttt caa gag acc cag aac cag act tta act Leu Val Ser Arg Ala Ile Phe Gln Glu Thr Gln Asn Gln Thr Leu Thr 20 cga agg aag acc ctg ggg ctg ggg cgt cac tgt gaa acc atg agg cta Arg Arg Lys Thr Leu Gly Leu Gly Arg His Cys Glu Thr Met Arg Leu ctt ttg cca gac tgc gta gag gac gtg gtg aac ccc atc gtc ctg cac 192 Leu Leu Pro Asp Cys Val Glu Asp Val Val Asn Pro Ile Val Leu His 50 ctc aac ttc tcc ctg gag gga cag cca atc ctc tca tcc cag aat ctg 240 Leu Asn Phe Ser Leu Glu Gly Gln Pro Ile Leu Ser Ser Gln Asn Leu cgc cct gtg ctg gcc acg ggc tcg cag gac cac ttc att gcc tcc ctc 288 Arg Pro Val Leu Ala Thr Gly Ser Gln Asp His Phe Ile Ala Ser Leu ccc ttt gag aag aac tgc gga caa gat cgc ctg tgt gag ggg gac ctg 336 Pro Phe Glu Lys Asn Cys Gly Gln Asp Arg Leu Cys Glu Gly Asp Leu 105 age ate age tte aae tte teg gge ttg aat ace etg etg gtg ggg ete 384 Ser Ile Ser Phe Asn Phe Ser Gly Leu Asn Thr Leu Leu Val Gly Leu tee etg gag ete aca gtg aca gtg ace gtg egg aat gag gge gag gae 432 Ser Leu Glu Leu Thr Val Thr Val Arg Asn Glu Gly Glu Asp 135 130 tcc tat ggg acc gcc atc acc ctc tac tac cca gca ggg cta tcc tac 480 Ser Tyr Gly Thr Ala Ile Thr Leu Tyr Tyr Pro Ala Gly Leu Ser Tyr 150 agg cgg gtg tcg ggc cag aca caa ccc tgg cag cgc ccc ctg cac ctc Arg Arg Val Ser Gly Gln Thr Gln Pro Trp Gln Arg Pro Leu His Leu 165 170

gca Ala	tgt Cys	gag Glu	gct Ala 180	gta Val	cct Pro	acc Thr	gag Glu	agc Ser 185	gag Glu	ggc Gly	ttg Leu	agg Arg	agt Ser 190	acc Thr	agc Ser	576
tgc Cys	agc Ser	gtc Val 195	aac Asn	cac His	ccc Pro	atc Ile	ttc Phe 200	caa Gln	Gly	ggt Gly	gct Ala	cag Gln 205	ggc Gly	act Thr	ttc Phe	624
gta Val	gtc Val 210	aag Lys	ttc Phe	gat Asp	gtc Val	tcc Ser 215	tcc Ser	aag Lys	gcc Ala	agc Ser	ctg Leu 220	ggt Gly	gac Asp	agg Arg	ttg Leu	672
ctc Leu 225	atg Met	Gly ggg	gcc Ala	agt Ser	gcc Ala 230	agc Ser	agt Ser	gag Glu	aat Asn	aat Asn 235	aag Lys	cct Pro	gcg Ala	agc Ser	aac Asn 240	720
aag Lys	acc Thr	tcc Ser	ttt Phe	gag Glu 245	ctg Leu	gaa Glu	ctg Leu	cca Pro	gtg Val 250	aaa Lys	tac Tyr	gct Ala	gtc Val	tac Tyr 255	atg Met	768
atg Met	atc Ile	aca Thr	agg Arg 260	cac His	gaa Glu	ggc Gly	tcc Ser	acc Thr 265	agg Arg	ttc Phe	ttc Phe	aac Asn	ttt Phe 270	tcc Ser	act Thr	816
tcc Ser	gct Ala	gag Glu 275	aag Lys	agc Ser	agc Ser	aaa Lys	gag Glu 280	gcc Ala	gag Glu	cac His	cgc Arg	tat Tyr 285	cgg Arg	gtg Val	aac Asn	864
aac Asn	ctg Leu 290	agt Ser	ctg Leu	cga Arg	gat Asp	gtg Val 295	gcc Ala	gtc Val	agc Ser	gtg Val	gac Asp 300	ttc Phe	tgg Trp	gcc Ala	ccc Pro	912
gtg Val 305	cag Gln	ctg Leu	aac Asn	gga Gly	gca Ala 310	gct Ala	gtg Val	tgg Trp	gac Asp	gtg Val 315	gcg Ala	gtg Val	gag Glu	gcc Ala	cct Pro 320	960
gcc Ala	cag Gln	agc Ser	ctg Leu	ccc Pro 325	tgt Cys	gcg Ala	cgg Arg	gag Glu	agg Arg 330	gaa Glu	cct Pro	ccg Pro	agg Arg	acc Thr 335	tct Ser	1008
gac Asp	ctg Leu	agc Ser	cgg Arg 340	gtc Val	ccg Pro	Gly ggg	agt Ser	ccc Pro 345	gtg Val	ctg Leu	gac Asp	tgc Cys	agc Ser 350	gtt Val	gcg Ala	1056
cac His	tgc Cys	ctg Leu 355	agg Arg	ttc Phe	cgc Arg	tgc Cys	cac His 360	atc Ile	ccc Pro	tcc Ser	ttc Phe	agc Ser 365	gcc Ala	aag Lys	gag Glu	1104
gag Glu	ctc Leu 370	cac His	ttc Phe	acc Thr	ctg Leu	aag Lys 375	ggc Gly	aac Asn	ctc Leu	agc Ser	ttc Phe 380	gcc Ala	tgg Trp	gtc Val	agc Ser	1152
cag Gln 385	Met	ctg Leu	caa Gln	aag Lys	aag Lys 390	gtg Val	tcg Ser	gtg Val	gtg Val	agt Ser 395	gtg Val	gcc Ala	gag Glu	atc Ile	acc Thr 400	1200
ttc Phe	aac Asn	agg Arg	gcc Ala	gtg Val 405	tac Tyr	tcc Ser	caa Gln	gtt Val	ccg Pro 410	ggc	gag Glu	gag Glu	ccc Pro	ttt Phe 415	atg Met	1248

aga Arg	gcc Ala	cag Gln	gtg Val 420	gag Glu	acg Thr	gtg Val	ctg Leu	gag Glu 425	gag Glu	tat Tyr	gag Glu	gag Glu	cac His 430	gac Asp	ccc Pro	1296
gtc Val	ccc Pro	ctg Leu 435	gtg Val	gtg Val	ggc Gly	agc Ser	tgt Cys 440	gtg Val	ggc Gly	ggc Gly	ctg Leu	ctg Leu 445	ctg Leu	ctg Leu	gct Ala	1344
Leu	atc Ile 450	tca Ser	gcc Ala	acc Thr	ctg Leu	tac Tyr 455	aag Lys	ctt Leu	ggc Gly	ttc Phe	ttc Phe 460	aag Lys	cgc Arg	cgg Arg	tac Tyr	1392
aag Lys 465	gag Glu	atg Met	ctg Leu	ggc Gly	gag Glu 470	aaa Lys	ccg Pro	gga Gly	gac Asp	gcg Ala 475	gcc Ala	acc Thr	ttc Phe	ccc Pro	ggg Gly 480	1440
gag Glu	gac Asp	gcc Ala	agc Ser	tgc Cys 485	ej gag	gct Ala	tca Ser	gat Asp	ttg Leu 490	cct Pro	ttg Leu	tcc Ser	cag Gln	tg		1484

<210> 103 <211> 494 <212> PRT

<213> rabbit

<400> 103 Asp Val Gln Ser Ser Ile Ser Tyr Asp Leu Ala Leu Asp Pro Gly Arg

Leu Val Ser Arg Ala Ile Phe Gln Glu Thr Gln Asn Gln Thr Leu Thr

Arg Arg Lys Thr Leu Gly Leu Gly Arg His Cys Glu Thr Met Arg Leu

Leu Leu Pro Asp Cys Val Glu Asp Val Val Asn Pro Ile Val Leu His

Leu Asn Phe Ser Leu Glu Gly Gln Pro Ile Leu Ser Ser Gln Asn Leu

Arg Pro Val Leu Ala Thr Gly Ser Gln Asp His Phe Ile Ala Ser Leu 85'

Pro Phe Glu Lys Asn Cys Gly Gln Asp Arg Leu Cys Glu Gly Asp Leu

Ser Ile Ser Phe Asn Phe Ser Gly Leu Asn Thr Leu Leu Val Gly Leu

Ser Leu Glu Leu Thr Val Thr Val Thr Val Arg Asn Glu Gly Glu Asp 135

Ser Tyr Gly Thr Ala Ile Thr Leu Tyr Tyr Pro Ala Gly Leu Ser Tyr 150

Arg Arg Val Ser Gly Gln Thr Gln Pro Trp Gln Arg Pro Leu His Leu 170

Ala Cys Glu Ala Val Pro Thr Glu Ser Glu Gly Leu Arg Ser Thr Ser Cys Ser Val Asn His Pro Ile Phe Gln Gly Gly Ala Gln Gly Thr Phe 200 Val Val Lys Phe Asp Val Ser Ser Lys Ala Ser Leu Gly Asp Arg Leu Leu Met Gly Ala Ser Ala Ser Ser Glu Asn Asn Lys Pro Ala Ser Asn Lys Thr Ser Phe Glu Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Met Met Ile Thr Arg His Glu Gly Ser Thr Arg Phe Phe Asn Phe Ser Thr 265 Ser Ala Glu Lys Ser Ser Lys Glu Ala Glu His Arg Tyr Arg Val Asn Asn Leu Ser Leu Arg Asp Val Ala Val Ser Val Asp Phe Trp Ala Pro 295 Val Gln Leu Asn Gly Ala Ala Val Trp Asp Val Ala Val Glu Ala Pro Ala Gln Ser Leu Pro Cys Ala Arg Glu Arg Glu Pro Pro Arg Thr Ser Asp Leu Ser Arg Val Pro Gly Ser Pro Val Leu Asp Cys Ser Val Ala His Cys Leu Arg Phe Arg Cys His Ile Pro Ser Phe Ser Ala Lys Glu 360 Glu Leu His Phe Thr Leu Lys Gly Asn Leu Ser Phe Ala Trp Val Ser Gln Met Leu Gln Lys Lys Val Ser Val Val Ser Val Ala Glu Ile Thr 395 Phe Asn Arg Ala Val Tyr Ser Gln Val Pro Gly Glu Glu Pro Phe Met Arg Ala Gln Val Glu Thr Val Leu Glu Glu Tyr Glu Glu His Asp Pro Val Pro Leu Val Val Gly Ser Cys Val Gly Gly Leu Leu Leu Leu Ala Leu Ile Ser Ala Thr Leu Tyr Lys Leu Gly Phe Phe Lys Arg Arg Tyr Lys Glu Met Leu Gly Glu Lys Pro Gly Asp Ala Ala Thr Phe Pro Gly Glu Asp Ala Ser Cys Gly Ala Ser Asp Leu Pro Leu Ser Gln

<210> 104 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 104 tgtccaggac aagagatgga cattgc	26
<210> 105 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 105 gagctatttc atagcaagaa tggg	24
<210> 106 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 106 tatagcatag cgaatgatcc	20
<210> 107 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 107 atggtccgtg gagttgtgat c	21
<210> 108 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 108 tcgagatcca ccaaactgca c	21
<210> 109 <211> 14	

```
<212> PRT
<213> monkey
<400> 109
Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Gln Glu Asp Ala
<210> 110
<211> 14
<212> PRT
<213> monkey
<400> 110
Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Xaa Glu Asp Ala
<210> 111
<211> 15
<212> PRT
<213> monkey
<400> 111
Phe Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Gln Glu Asp Ala
<210> 112
<211> 17
<212> PRT
<213> Homo sapiens
<400> 112
Phe Asn Leu Asp Val Glu Glu Pro Thr Ile Phe Gln Glu Asp Ala Gly
 1
Gly
<210> 113
<211> 16
<212> PRT
<213> Homo sapiens
Phe Asn Leu Asp Thr Glu Glu Leu Thr Ala Phe Val Asp Ser Ala Gly
<210> 114
<211> 17
<212> PRT
<213> Homo sapiens
Phe Asn Leu Asp Thr Glu Asn Ala Met Thr Phe Gln Glu Asn Ala Arg
                                      10
Gly
```