Q1:

1. Answer:

$$\mathsf{AF}\;(\mathsf{f}) = \; \neg\mathsf{EG} \;\; (\neg \mathsf{f}) \Rightarrow \; \mathsf{AF}\; (\neg \mathsf{P1} \land \neg \mathsf{P2}) = \neg\mathsf{EG}\; (\neg\; (\neg \mathsf{P1} \land \neg \mathsf{P2})) = \neg\mathsf{EG}\; (\mathsf{P1} \land \mathsf{P2})$$

The following diagrams are the steps to check ¬EG (P1 ∧ P2)

Step1: check P1 ∧ P2

Step 2:check EG(P1∧P2)

Step 3: check ¬EG(P1∧P2)

Therefore, the initial state does not satisfy the requirement AF(\neg P1 \wedge \neg P2)(\neg EG(P1 \wedge P2)). It means that this model cannot meet requirement AF(\neg P1 \wedge \neg P2).

2.

(1).To any to different processes, the state of them will not be "critical" at the same time.

$$\forall i, j : n \bullet i! = j \text{ imply } AG(\neg(critical(i) \land critical(j)))$$

(2) To any process, if request happens, critical will always eventually happen

$$\forall i : n \bullet AG(request(i) \Rightarrow AF(critical(i))))$$

(3) The system is deadlock free

$\forall i: n \bullet AG EX true$

Q2 1. A₁|| A₂

Deterministic: No, considering the input $(a \land \neg b \land \neg c)$ to the initial state, states (0,4) and (0,2) are all possible next state. So it is not deterministic.

Reactive: No, considering the input ($a \wedge b \wedge c$) to the initial state, it will not react. So it is not reactive.

2. A1 || A2 \ {b,c}

Deterministic: No, considering the input ($\neg a$) to the initial state, states (1,3) and (0,3) are all possible next state. So it is not deterministic.

Reactive: No, considering state (0, 4), it will not react any action. So it is not reactive.

Q3

P and Q can be drawn like below(X is a middle state):

P. Q.

$P \mid\mid Q$ can be drawn like below:

Q4 We can define 2 processes T,S as below:

Т

S

(1) Bisimulation

We can use the algorithm to check Bisimulation.

We need to compute the greatest fixpoint (gfp): we do it by computing approximates starting from the Cartesian product:

- R0={(t0,s0), (t0,s1), (t0,s2), (t1,s0), (t1,s1),(t1,s2)} Cartesian product
- R1={(t0,s0),(t1,s0),(t1,s1),(t1,s2)} removed those pairs that violate local condition on final (if T final then S final)
- R2={(t0,s0),(t1,s1),(t1,s2)} removed (t1,s0), since t1 can do c and s0 cannot
- R3={(t0,s0),(t1,s1),(t1,s2)} nothing is further removed
- R2=R3

greatest fixpoint reached, S and T are bisimilar

(2) Simulation

We can use the algorithm to check Simulation.

We need to compute the greatest fixpoint (gfp): we do it by computing approximates starting from the Cartesian product:

- $R0 = \{(t0,s0), (t0,s1), (t0,s2), (t1,s0), (t1,s1), (t1,s2)\}$ Cartesian product
- R1={(t0,s0),(t1,s0),(t1,s1),(t1,s2)} removed those pairs that violate local condition on final (if T final then S final)
- $R2=\{(t0,s0),(t1,s1),(t1,s2)\}$ removed (t1,s0), since t1 can do c and s0 cannot
- R3={(t0,s0),(t1,s1),(t1,s2)} nothing is further removed

• R2=R3

Fixed point reached!

S simulates T and similarly vice versa

However if S performs like below:

(1). Bisimulation

As the algorithm, we can see that S and T are not Bisimilar.

(2). Simulation

We can use the algorithm to check Simulation.

We need to compute the greatest fixpoint: we do it by computing approximates starting from the Cartesian product:

- $R0 = \{(s0,t0), (s0,t1), (s1,t0), (s1,t1), (s2,t0), (s2,t1)\}$ Cartesian product
- R1= $\{(s0,t0), (s1,t0), (s1,t1), (s2,t0), (s2,t1)\}$ removed those pairs that violate local condition on final (if S final then T final)
- R2= {(s0,t0), (s1,t1), (s2,t0), (s2,t1)} removed (s1,t0), since s1 can do c but t0 cannot; removed (t1,s2) since t1 can do c but s2 cannot
- R3= {(s0,t0), (s1,t1), (s2,t0), (s2,t1)} nothing is removed R2=R3 greatest fixpoint reached, so T simulates S.

However, as we can see S2 cannot accept C action, so S does not simulates $\mathsf{T}.$