MBUYA PARENTS' PRIMARY SCHOOL LESSON NOTES FOR MATHEMATICS P.4 TERM I 2021

TOPIC I: SET CONCEPTS

SUB TOPIC: REVISION OF SETS

CONTENT: Definition

A set is a collection of well defined objects.

An element is an object or a thing which belongs to a set.

Naming sets

- A set of tomatoes
- A set of bags
- A set of oranges

Counting members in a set

Examples

D

Set B has 5 members therefore n(B) = 5 members $\therefore n(B) = 5$ members

 $X = \{r, s, t\}$ set X has 3 members Therefore n(x) = 3 members.

ACTIVITY:

Name these sets.

a, e, i, o, u

A set of _____

2.

A set of ____

3.

A set of_____

4.

A set of _____

A set of

LESSON 2:

CONTENT: Equivalent and non-equivalent sets.

Equivalent sets are sets with the same number of members but they are not the same

Symbol ←→→

Example.

M = (1, 2, 3, 4) N = (a, e, i, o)

Set M is equivalent to set N

Or $M \longleftrightarrow N$

Note: Equivalent sets are also called matching sets.

Non - Equivalent sets

These are sets which do not have the same number of members.

Symbol

Example

$$P = \{a, b, c\}$$

$$Q = \{p, q, u, s\}$$

Set P and Q are non - equivalent, non matching sets.

Activity:

Write equivalent or not equivalent.

LESSON 3:

TOPIC: SET CONCEPTS

SUB-TOTAL: TYPES OF SETS

EQUAL SETS AND EQUAL SETS CONTENT:

Equal sets:

Equal sets are sets which have the same number of elements which are exactly the same.

Examples:

Set D and E are equal sets

Not equal sets.

Not equal sets are sets which don't have same members.

Examples:

Set
$$A = (a, b, c, d)$$
 B = $(1, 2, 3, 4)$

Set A and B are equivalent sets.

Symbol
$$\neq$$

ACTIVITY:

- 1. Sets with the same type of members and same number of members are called_____ sets.
- 2. If set P and Q are equal find the missing number in set Q.

3. Write equal or not equal.

$$X = \{b, o, y\}$$
 $Y = \{b, a, y\}$
Set X is ______ to set Y.

4.
$$M = \{P, O, T\}$$
 $N = \{T, O, P\}$

LESSON 4:

CONTENT: EMPTY SETS

Empty sets are sets which do not have members or a set whose members cannot be found.

Symbol
$$\emptyset$$
 or $\{\ \}$

Examples

Set R is an empty set.

(b) A set of goats with 5 legs each is an empty set.

ACTIVITY:

- 1. List down five examples of empty sets.
- 2. Draw a set of men who breast feed babies.

- 3. Write empty or not empty.
- a) A set of people with five hands _____ sets.
- b) A set of chairs in a house _____ sets.
- c) A set of flies as big as a cow _____ sets.
- d) A set of bread made of stones _____ sets.
- e) A set of homes with two cars _____ sets.

LESSON 5:

CONTENT: Even and Odd sets.

Even sets are sets whose members can all be paired

Example:

Set P has 4 members.

Members of set P have all been paired; therefore it is an even set.

Note: An empty set is an even set.

Odd sets

Odd sets are sets whose members can not all be paired.

Example:

Not all members of set U have been paired. Therefore it is an odd set.

ACTIVITY:

State whether odd or even.

1.

P

B

3.

R

4. Set X= { m, e, a, n, t} and set Y= { P, i, n, c, h}.

5.

LESSON 6:

SUBTOPIC: INTERSECTION OF SETS.

CONTENT: Symbol for intersection \bigcap

Intersection sets have common members of two sets

Examples:

$$P = (a, b, c, d, e)$$
 $q = (a, e, i, o, u)$

Find (i)
$$P \cap Q$$
. = (a, e)

$$n(P \cap Q) = 2$$
 element

Note: Sets without common members are non - intersecting sets.

Examples

$$W = (1, 2, 3, 4)$$
 $N = (a, b, c)$

Set W and N are non - intersecting sets.

Drawing venndiagrams and shading the intersection.

Example: -

- Shading the intersection set.

 $A \cap B$ is shaded.

ACTIVITY:

- 1. Write a set symbol for intersection set.
- 2. If $F = \{ x, y, z, r, s, t \}$ and $G = \{ r, s, t, u, v, w \}$ What is $F \cap G$.
- 3. Set $K = \{1, 2, 3, 4, 5, 6\}$ and set $L = \{2, 4, 6, 8, 10\}$. List down the members of $K \cap L$.
- 4. In the diagram below shade $A \cap B$

- 5. Given that set $R = \{1, 2, 3, 4, 5\}$ and set $Y = \{2, 5, 7, 8\}$ Find $R \cap Y$.
- 6. If K = { cow, cat, bull, cocks, goats } P= { calf, cow, hen, kitten, goat } Find K∩ P.

LESSON 7: Listing members in the intersection

Example:

∴
$$U \cap V = \{1, 3, 5\}$$

Number of elements in the intersection

Examples:

Set
$$S = (g, o, a, t)$$
 $\nabla = (r, o, t)$

 $S \cap T = (0, t)$ Therefore; number of elements in the intersection set are 2.

 $n(S \cap T) = 2$ elements

Set

$$X \cap Y = (I, f)$$

∴ $n(X \cap Y) = 2$ elements

Activity.

Draw the Venn diagram and list the members in the intersection set.

LESSON 8:

CONTENT: UNION OF SETS AND INTERSECTION

A Union set is a collection of all the members in the given sets.

Symbol;→ U

Listing of members in union sets.

Examples

If P = (a, e, i, o, u) Q = (a, b, c, d, e)

What is PUQ?

 $P \cup Q = (a, e, i, o, u, b, c, d)$

N.B: All common members are written once.

Drawing Venn diagrams and shading.

Examples:

Shade $G \cup H$

Listing members of the union set

Example:

$$G \cup H = (i, s, f, h, e, a, t)$$

.. Number of elements in the union set are 7

$\underline{n(G \cup H)} = 7$ elements.

Activity

- 1. Write the set symbol for union set.
- 2. Draw a Venn diagram and shade the union.
- 3. Given that P= {orange, eggs, yam, mango }
 Q= {pawpaw, cabbage, eggs, carrot, yams }
- 6. If $R=\{a, e, i, o, u\}$ and $S=\{a, b, c, d, e, f\}$ Find $R \cup S$.

7. K= { M, A, N, G, O } and L= { M, O, N, K, E, Y }
Find KUL.

LESSON 9: DIFFERENCE OF SETS

Example:

Set
$$A = (1, 2, 3, 4, 5)$$

 $B = (0, 2, 4, 6, 8)$

Note: Members of a given set only is got without common members.

Find members of

- (i) Set A only = $\{1, 3, 5\}$
- (ii) Set B only = $\{0, 6, 8\}$

Members of set A only is represented by A - B

Members of set B only is shown as B - A.

Activity

1. Given that $A = \{1, 0, 4, 2, 3\}$ and $B = \{2, 3, 5, 7\}$.

Find; a) A-B

- b) B-A
- 2. If $D = \{ p, q, r, s, t, u, m, v, w \}$ and $E = \{ k, l, m, n, o, p, q, r \}$
 - a) D-E
 - b) E-D
- 3. H={ apple, mango, orange} and G= { guava, pear, apple } Find;
 - a) H-G
 - b) G-H.
- 4. M={ beans, peas, maize, millet } and N={ maize, sorghum, simsim } Find;
 - a) M-N
 - c) N-M.

SHADING VENN DIAGRAMS.

A only (A - B)

Set A

ACTIVITY:

Draw and shade these regions

- (i) A but not B
- (ii) $A \cup B$
- (iii) Set B
- (iv) B A
- (v) A B

LESSON 10:

CONTENT: PUTTING SETS ON A VENN DIAGRAM

Examples:

$$X = (1, 2, 3, 4, 5)$$

$$Y = (0, 2, 4, 6, 8)$$

Represent the two sets on a venn diagram.

List members of

$$X only = \{1, 5\} \qquad \qquad n(X \cup Y)$$

$$Y - X = \{0, 6, 8, 4\}$$
 = 8 elements

$$X \cap Y = \{2, 3\}$$
 $n(X \cap Y)$

= 2 members.

ACTIVITY

Set
$$M = \{a, b, c, d, e\}$$

 $N = \{a, e, i, o, u\}$

- (a) Represent the two sets on the Venn diagram below
- (b) Use your Venn diagram to answer the following:-
 - (i) $M \cap N$

(v) P-Q

(ii) $M \cup N$

(vi) n(Q - P)

(iii) N(P only)

(vii) n(Q only)

(iv) N(Q)

LESSON 11:

SUB TOPIC SUBSETS

CONTENT:

Definition

A subset is a set of members got from a given set.

An empty set is a subsetof any set

A set is a subset of itself (its called a super set).

Symbol

 \subseteq

Symbol for not subset

Listing subsets

- If A= {a, b}. Write down the subsets of A.
 { }, {a}, {b}, {a,b}
- = 4 subsets.

2.Set
$$P = \{1, 2, 3\}$$

The subsets are:;

$$\{\}, \{1, 2, 3\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}, \{1, 2\},$$

= 8 subsets.

Activity

1. Write the set symbols for subsets.

2.	Set	B =	{ b,	c}	List	down	subsets	in set	B.
----	-----	-----	------	----	------	------	---------	--------	----

- 3. Write down the subsets for the following sets.
 - a) $K = \{ a, b, c \}.$
 - b) M= { x, y}.
 - c) W={ Boy, girl, Book }

TOPIC: OPERATION ON NUMBERS

SUBTOPIC: Adding up to ten thousand

Examples

1. Add: 7464 + 4425

Arrange these numbers in their place values

ACTIVITY:

Add these numbers correctly.

More addition of numbers Example:

- Arrange numbers in their place values
- Add by regrouping all numbers (answers) that exceed 9

ACTIVITY:

5 .		6 1	5	1
		8	7	9
	+	6	4	2

Addition with word problems

Example:

1. Alice carried 349 books, her brother carried 578 books. How many books were carried altogether?

Alice carried = 349 books

Her brother = 578 books

Both carried = <u>927 books</u>

(2) Maria bought sugar for shs. 15,000. Soap at shs. 800 and a bunch of Matooke at shs. 3500. How much money did she spend?

Sugar shs. 15,000

Soap shs. 800

Matooke Shs 3500

Total Expenditure sh. 19,300

ACTIVITY:

- 1. A boy counted 268 cars on Monday and 454 on the next day. How many cars did he count in the two days?
- 2. Amos carried 349 books. His brother carried 573 books. How many books were carried altogether?
- 3. Ashamba had 4784 coffee trees. If 8474 more trees were planted. How many coffee trees are there altogether?
- 4. The table below shows two games played by Henry and John on a computer and their scores.

- i) What was Henry's total score?
- ii) What was the score of Henry's first game?
- 5. What is the sum of sh.1 3 0 and sh. 4834?

LESSON 26

SUB TOPIC: SUBTRACTION

Examples 1:

- 1. 246 192 H T O 2 4 6 -1 9 2 0 5 4
- Arrange numbers vertically by their place values.
- Subtract impossible numbers by

Example 2.

2. 530 - 254

H T O

5 3 0

-2 5 4

2 7 6

- Arrange numbers vertically in their place values.
- Subtract by borrowing.

ACTIVITY:

Subtract the following.

1. 9 9 6

<u>-356</u>

2.8642

-71 42

2. 3 4 0

<u>-3 3 0</u>

4. 1 7 8 3

<u>- 681</u>

6.8640

-1422

6. 3 2 8

- 16

7.5679

<u>-3 4 8 9</u>

8.8 9 4 6

<u>-3 5 5 7</u>

SUB TOPIC: SUBTRACTION OF LARGER NUMBERS

Example:

(i) 10246 -3118

(ii) 24035 - 3727

Activity

Workout the following

1. 3 4 6 8 3 -3 4 6 8 2. 3 8 4 3 0 - 7 9 8 5

3. 4 2 6 8 5 -9 8 7 6 4. 5 1 3 0 7 -1 9 8 3 9

3. 4 7 3 4 2

6.49341

- 3 6 6 8 4

8. 6 8 3 7 5 -4 3 7 8 6

8. 54,105 - 38,469.

LESSON: 28

SUB TOPIC: WORD PROBLEM INVOLVING

SUBTRACTION

Example:

What is the difference between 243 and 37?

2 4 3

- 37

206

(ii) Katabula had shs. 2500. He bought a book for 350.

What was his change?

Katabula had 2500

He paid - 350

His change 2150

ACTIVITY:

- 1. Find the difference between 39 and 15.
- 2. Find the difference between 142 and 135.
- 3. Subtract 11 from 70.

- 4. Take away 24 from 224.
- 5. Find the difference between 174 and 36.
- 6. Annet is 25 years old. Salim is 18 years old. Find the difference between their ages.
- 7. A library had 76,600 books,3212 were taken away. How many books remained in the library?
- 8. Mukiibi was given sh,27,000 by the uncle. He used sh.4500 to buy a shirt. How much money did he remain with?

TOPIC: OPERATION ON NUMBERS

SUB TOPIC MULTIPLICATION

Other words that call for multiplication are: product, times.

CONTENT: Multiplying by one digit

Example 1:

$$\begin{array}{cccc}
 & & 4 \\
 & \times & 8 \\
\hline
 & 1 & 1 & 2
\end{array}$$

Activity

Workout the following

LESSON: 30

Word problems involving multiplication by one digit.

Example:

1. Juma is paid shs. 6960 a day. How much will he get if he works for 7 days.

Solution:

1 day he gets shs. 6960

7 days he gets 6 9 6 0

∴ He gets 48, 720 in 7 days.

Shs. 48720

ACTIVITY:

LESSON: 31

Multiplication as repeated addition

CONTENT:

Example:

(a)
$$4 \times 2 = 2 + 2 + 2 + 2 = 8$$

(b)
$$3 + 3 + 3 + 3 = 4 \times 3$$

= 12

ACTIVITY:

Use repeated addition to multiply the following:-

- (i) 3×2
- (ii) 6×4
- (iii) 4×3
- (iv) 5×3
- $(v) 8 \times 2$

Complete

<u>Multiplication of 3 digit number by a 2 digit number.</u>

Examples

Activity

Workout the following

- 6. 115 x 32.
- 7. 821 x 22.
- 8. 432 x 32.

Multiplying a whole by 10.

Examples

- 1. Multiply 345 by 10.
 - $= 345 \times 10$.
 - = 3450
- 2. Multiply 749×10 .
 - $= 749 \times 10$
 - **= 7490**

Activity.

Workout the following.

- 1. 111 x 10.
- 2. 123 x 10.
- 3. 368×10 .
- 4. 584×10 .

- 5. 745 × 10.
- 6. 861 x 10.
- 7. 745×10 .
- 8. 586×10 .

Multiplying 3 digit number by 100.

Examples

- 1. Multiply 34 by 100.
 - $=34 \times 100$.
 - **= 3400**
 - 2. Multiply 962 by 100.
 - $= 962 \times 100$.
 - **= 96200**.

Activity

Workout the following;

- 1. 24 x 100.
- 2. 65 x 100.
- 3. 99 x 100.
- 4. 121×100 .
- 5. 346×100 .

- 6. Nakatude made 671 pancakes and sold each of them at sh.100. How much money did she earn?
- 7. Obua bought 100 chicks at sh.815 each. Find the amount of money he paid.
- 8. There are 984 pupils in Mbuya Parents' School. If each of the pupils contributed sh.100 for the orphanage, how much money did they contribute?

SUB TOPIC: DIVISION

CONTENT: DIVISION AS REPEATED SUBTRACTION

Example

1.
$$12 \div 3 = 12 - 3 = 9$$

9 - 3 = 6 count the number of times you subtract 3 division from the dividend until you get "o" is the answer

3 - 3 = 0 $\therefore 12 \div 3 = 4$ times

ACTIVITY:

$$3.36 \div 6 =$$

TOPIC: OPERATION ON NUMBERS

SUB TOPIC : DIVISION WITHOUT

REMAINDER

CONTENT:

Example 1: Divide 4804 by 4.

$$\begin{array}{c|cccc}
 & 31 \\
 & 124 \\
 & 3 \times 4 = 12 \\
 & 4 \\
\hline
 & 1 \times 4 = 4
\end{array}$$

ACTIVITY:

Workout the following.

SUBTOPIC: WORD PROBLEMS INVOLVING DIVISION WITHOUT REMAINDERS

CONTENT : Examples

1. There are 120 oranges in 2 bags. How many oranges are in each bag?

Divide

Example 1:

$$0 \times 2 = 0$$

$$0 \times 2 = 0$$

$$0 \times 2 = 0$$

$$0 \times 2 = 12$$

$$0$$

$$0 \times 2 = 0$$

Each bag has 60 oranges

Example 2

Divide 246 text books among 3 classes

Each gets 82 books.

ACTIVITY:

Workout:

1.7951 ÷ 8=

2.9152 ÷ 9=

 $3.5623 \div 7 =$

 $4.5731 \div 6=$

SUB TOPIC: DIVISION WITH REMAINDERS

CONTENT: Examples

Example: Divide 38148 by 5.

 \therefore 38148 ÷ 5 = 7629 rem 3

ACTIVITY:

Divide the following:-

- 1. 1516 by 5 =
- 2. 2425 by 3 =
- 3. 1212 by 5 =
- 4. 135 by 2 =
- 5. 215 by 4 =

SUB-TOPIC: DIVISION BY 10

Example:

(i)
$$650 \div 10$$

$$= \frac{650}{10}$$

$$\therefore 650 \div 10 = 65.$$

(ii) 420 ÷ 10 =
$$\frac{420}{10}$$

ACTIVITY:

(i)
$$200 \div 10 =$$

(ii)
$$370 \div 10 =$$
 (vii) $480 \div 10 =$

(iv)
$$340 \div 10 =$$

$$(v)$$
 640 ÷ 10 =

(vi)
$$280 \div 10 =$$

(viii)
$$560 \div 10 =$$

TERM 2

FRACTIONS

A fraction is a part of a whole.

The bottom part of the fraction is a denominator.

The top part of a fraction is a numerator.

Types of Fraction

- 1. Proper fraction.
- 2. Improper fractions.
- 3. Mixed fraction.
- 4. Equivalent fractions.

Definition

1. Proper fractions.

- This is the type of fraction where the numerator is smaller than the denominator. $\frac{2}{7}, \frac{3}{9}$,etc.

2 .Improper fraction.

-this is the type of fraction where the numerator is greater than the denominator eg. $\frac{9}{4}$, $\frac{10}{4}$, $\frac{15}{2}$,etc

3. Mixed fractions.

-This the fraction having both a whole and a proper fraction e.g $2\frac{1}{3}$, $4\frac{3}{4}$, $3\frac{1}{2}$ etc.

4. Equivalent fractions.

s a traction which is equal to another when simplified in its west term.
riting and reading of fractions.
e begin with a numerator to read or write fractions in words ing out of e.g $\frac{3}{4}$ three out of four or three quarters.
CTIVITY
is a type of fraction where the top number is naller than bottom number.
Mixed number is a type of fraction with othand
What is an improper?
What do we call the top number of a fraction?
A type of fraction where the largest term may be pressed in its lowest term is called
Write down three examples of a proper fraction.
i)
ii)

т.

TOPIC: FRACTIONS

SUBTOPIC; Naming the shaded fractions.

Content.

Examples

Name the shaded fractions.

$$1 = \frac{2}{4}$$

2.

3. What fraction is unshaded?

$$=\frac{1}{4}$$

Activity

1. What fraction is unshaded?

1.

What fraction is shaded?

2.

3.

CONTENT; changing a mixed fraction to an improper fraction.

Examples

$$I = (D \times W) + N$$

1. Write $4\frac{2}{3}$ as an improper fraction.

$$I = (D \times W) + N$$

$$I = (3 \times 4) + 2$$

$$3$$

$$I = 12 + 2$$

$$3$$

$$I = 14$$

$$3$$

2. Change $5\frac{1}{2}$ to an improper fraction.

$$I = (D \times W) + N$$
 $I = (2 \times 5) + 1$
 $I = 10 + 1$
 $I = 11$

- 1. Change $3\frac{1}{2}$ to an improper fraction.
- 2. Write $7\frac{3}{5}$ as an improper fraction.
- 3. Express $3\frac{2}{5}$ as an improper fraction.
- 4. Change $2\frac{1}{4}$ to an improper fraction.
- 5. Convert $9\frac{2}{4}$ to an improper fraction.
- 6. Write $6\frac{2}{5}$ as an improper fraction.

SUBTOPIC; COMMON FRACTION.

CONTENT; converting an improper fraction to a mixed fraction.

Examples

1. Change $\frac{9}{4}$ into a mixed fraction.

$$\begin{array}{r}
2 \\
4 \boxed{9} \\
2 \times 4 = -8 \\
1 \\
= 2\frac{1}{4}
\end{array}$$

2. Write $\frac{17}{3}$ as a mixed number.

$$\begin{array}{c|c}
5 \\
\hline
3 & 17
\end{array}$$

$$3 \times 5 = -15 \\
\hline
2 \\
= 5\frac{2}{3}$$

Activity

Change the following to a mixed fraction.

a)
$$\frac{10}{3}$$

b)
$$\frac{13}{2}$$

$$c) \frac{15}{4}$$

d)
$$\frac{29}{5}$$

e)
$$\frac{27}{4}$$

f)
$$\frac{30}{7}$$

SUBTOPIC; COMMON FRACTION.

CONTENT; Forming Equivalent fractions.

Examples

1. Find the next equivalent fractions $\frac{2}{3}$?

2. What are the next two equivalent to $\frac{3}{4}$?

$$\frac{3}{4} = \left(\frac{3x^2}{4x^2}\right) \quad \left(\frac{3x^3}{4x^3}\right)$$
$$= \frac{6}{8} \quad , \quad \frac{9}{12}$$

Activity

- 1. Find the next equivalent fraction.
- a) $\frac{2}{3}$

d) $\frac{4}{5}$

b) $\frac{7}{9}$

e) $\frac{5}{6}$

c) $\frac{3}{5}$

- f) $\frac{12}{17}$
- 2. Find the missing equivalent fraction in the given sequence.

a)
$$\frac{2}{5}$$
,..., $\frac{6}{15}$,..., $\frac{10}{25}$

b)
$$\frac{3}{7}$$
, $\frac{6}{14}$,

3. What are the next two equivalent fractions.

a)
$$\frac{3}{10}$$

b)
$$\frac{7}{9}$$

SUBTOPIC; COMMON FRACTIONS.

CONTENT; Finding the missing number.

Examples.

1.
$$\frac{1}{4} = \frac{\square}{8}$$

$$4 \times \square = 1 \times 8$$

2.
$$\frac{3}{10} = \frac{6}{\Box}$$

$$3 \times \square = 10 \times 6$$

$$_{\square}^{3}$$
= 20

2.
$$\frac{1}{4} = \frac{y}{12}$$

$$4 \times y = 1 \times 12$$

$$\frac{4y}{4} = \frac{12}{4}$$

Trial number.

$$-\frac{3}{5} = \frac{3}{y}$$

<u>Activity</u>

Find the missing number.

$$1. \quad \frac{2}{3} = \frac{\square}{6}$$

5.
$$\frac{1}{3} = \frac{w}{9}$$

2.
$$\frac{3}{5} = \frac{m}{10}$$

6.
$$\frac{1}{4} = \frac{\Box}{12}$$

3.
$$\frac{2}{5} = \frac{4}{\Box}$$

$$7.\frac{1}{2} = \frac{t}{6}$$

4.
$$\frac{1}{2} = \frac{5}{x}$$

8.
$$\frac{1}{4} = \frac{7}{v}$$

SUBTOPIC; COMMON FRACTION.

CONTENT; Reducing fractions.

Example

1. Reduce $\frac{3}{9}$ to its lowest terms. Using G.C.F.

$$\frac{3}{9} = \frac{3}{9} \div \frac{3}{3} = \frac{1}{3}$$

2. Reduce $\frac{8}{16}$ to the lowest term. Using G.C.F.

$$\frac{8}{16} \div 8 = \frac{1}{2}.$$

3. Reduce $\frac{5}{10}$ to the lowest term. Using G.C.F.

$$\frac{5}{10} \div \frac{5}{5} = \frac{1}{2}$$

Trial number

Reduce $\frac{2}{8}$ to its lowest terms.

ACTIVITY

Reduce the following to the lowest terms.

1.
$$\frac{2}{6}$$

2.
$$\frac{10}{15}$$

3.
$$\frac{2}{12}$$

4.
$$\frac{15}{18}$$

5.
$$\frac{2}{16}$$

6.
$$\frac{3}{6}$$

7.
$$\frac{3}{18}$$

8.
$$\frac{9}{18}$$

9.
$$\frac{4}{20}$$

$$10.\frac{7}{14}$$

SUBTOPIC; COMMON FRACTIONS.

CONTENT; Comparing fractions of the same denominator. Using < , > or = .

Examples

Use the correct symbol to complete < , > or =

a)
$$\frac{3}{4} > \frac{1}{4}$$

b)
$$\frac{4}{6} < \frac{5}{6}$$

c)
$$\frac{6}{9} > \frac{5}{9}$$

1.
$$\frac{7}{11}$$
 $\frac{5}{11}$

2.
$$\frac{4}{9}$$
 $\frac{6}{9}$

3.
$$\frac{8}{10}$$
 $\frac{3}{10}$

4.
$$\frac{7}{15}$$
 $\frac{7}{15}$

5.
$$\frac{8}{12}$$
 $\frac{9}{12}$

6.
$$\frac{1}{9}$$
 $\frac{5}{9}$

7.
$$\frac{4}{6}$$
 $\frac{1}{6}$

8.
$$\frac{3}{8}$$

SUBTOPIC; COMMON FRACTIONS.

CONTENT; Comparing fractions of different denominators.

Examples

Compare $\frac{1}{3}$ and $\frac{1}{2}$ using equivalent fractions

$$\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \frac{4}{12}$$

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$$

$$\frac{1}{3} < \frac{1}{2}$$

Compare the following fractions using < , > or =.

- 1. $\frac{1}{4}$ and $\frac{1}{2}$
- 2. $\frac{5}{6}$ and $\frac{3}{8}$
- 3. $\frac{1}{2}$ and $\frac{2}{3}$
- 4. $\frac{5}{8}$ and $\frac{7}{12}$
- 5. $\frac{1}{3}$ and $\frac{5}{8}$
- 6. $\frac{1}{4}$ and $\frac{1}{6}$
- 7. $\frac{2}{3}$ and $\frac{1}{6}$
- 8. $\frac{2}{4}$ and $\frac{1}{2}$

CONTENT; Addition of fractions with the same denominator.

Examples

1.Add;
$$\frac{1}{5} + \frac{2}{5}$$

$$= \frac{1+2}{5}$$

$$= \frac{3}{5}$$

2. Ashraf used $\frac{6}{10}$ of the water in the tank on Sunday and $\frac{2}{10}$ on Monday. What fraction of water did he use in two days?

$$= \frac{6}{10} + \frac{2}{10}$$

$$= \frac{6 + 2}{10}$$

$$= \frac{8}{10}$$

Activity

Add the following.

1.
$$\frac{10}{19} + \frac{4}{19} =$$

$$2.\frac{8}{15} + \frac{4}{15} =$$

2.
$$\frac{5}{9} + \frac{2}{9} =$$

4.
$$\frac{9}{23}$$
 + $\frac{11}{23}$ =

5.
$$\frac{11}{17} + \frac{3}{17} =$$

- 6. Sandra washed $\frac{4}{7}$ of her clothes in the morning and $\frac{2}{7}$ in the afternoon. What fraction of clothes did she wash in the morning and afternoon?
- 7. John ate $\frac{2}{9}$ of the apple in the morning $\frac{6}{9}$ of it in the evening. What fraction was eaten altogether?
- 8. Matovu sold $\frac{4}{10}$ of his land in April and $\frac{3}{10}$ in June what fraction of land did he sell altogether?

CONTENT; Subtraction of fractions with the same denominators.

Examples

1. Subtract;
$$\frac{5}{6} - \frac{1}{6}$$

$$= \frac{5-1}{6}$$

2. I read $\frac{2}{5}$ of mathematics books. What fraction was left?

Whole fraction =
$$\frac{5}{5}$$
.

I read
$$= \frac{2}{5}.$$
Left
$$= \frac{5}{5} - \frac{2}{5}$$

$$=\frac{5-2}{=\frac{3}{5}}$$

Activity

Subtract correctly.

$$1.\frac{3}{5} - \frac{1}{5} =$$

$$2.\frac{7}{12} - \frac{2}{12} =$$

$$3...\frac{9}{13} - \frac{5}{13} =$$

4.
$$\frac{3}{7} - \frac{2}{7} =$$

4.
$$\frac{3}{7} - \frac{2}{7} =$$
 5. $\frac{4}{6} - \frac{2}{6} =$

6.
$$\frac{7}{9} - \frac{2}{9} =$$

7. Subtract;
$$\frac{2}{7}$$
 from $\frac{5}{7}$.

- 9. Find the difference between $\frac{7}{11}$ and $\frac{5}{11}$.
- 10. What remains if $\frac{7}{15}$ is subtracted from $\frac{13}{15}$?

CONTENT; Addition of mixed fraction with the same denominator.

Examples

1. Add;
$$1\frac{1}{4} + 4\frac{1}{4} =$$

$$= 1 + 4 + \frac{1}{4} + \frac{1}{4}$$

$$= 5 + 1 + 1$$

$$= 5\frac{2}{4}$$

3. Add;
$$2\frac{1}{7} + 3\frac{5}{7}$$

= $2 + 3 + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{5}{7}$

Trial number.

= 2 + 3 +
$$\frac{1}{7}$$
 + $\frac{5}{7}$ workout; $3\frac{1}{5}$ + $4\frac{2}{5}$ =

$$= 5\frac{6}{7}$$

Activity

Workout the following.

1.
$$2\frac{3}{4} + 1\frac{1}{4} =$$

2.
$$4\frac{2}{5} + 1\frac{1}{5} =$$

3.
$$2\frac{2}{4} + 3\frac{1}{4} =$$

4.
$$3\frac{1}{3} + 4\frac{1}{3} =$$

5.
$$2\frac{2}{3} + 1\frac{1}{3} =$$

6.
$$8\frac{4}{7} + 1\frac{2}{7} =$$

SUBTOPIC ; COMMON FRACTION.

CONTENT; Subtraction of mixed fraction with the same denominator.

Example.

1. Subtract;
$$4\frac{3}{5} - 2\frac{1}{5} =$$

$$= 4 - 2 + \frac{3}{5} - \frac{1}{5}.$$

$$= 2 + 3 - 1$$

$$= 2\frac{2}{5}$$

2. Subtract;
$$6\frac{5}{7} - 2\frac{1}{7} =$$

$$= 6 - 2 + \frac{5}{7} - \frac{1}{7}$$

$$= 4 + \frac{5-1}{7}$$

$$= 4\frac{4}{7}$$

Workout the following fractions.

1.
$$2\frac{2}{3} - 1\frac{1}{3} =$$

2.
$$7\frac{5}{11} - 4\frac{1}{11}$$
=

3.
$$3\frac{4}{6} - 2\frac{3}{6} =$$

4.
$$10\frac{5}{13} - 2\frac{3}{13} =$$

5.
$$3\frac{4}{7} - 1\frac{2}{7} =$$

6.
$$6\frac{3}{5} - 3\frac{1}{5} =$$

7.
$$4\frac{2}{3} - 1\frac{1}{3} =$$

8.
$$5\frac{5}{17} - 3\frac{4}{17} =$$

CONTENT; Addition of fraction of different denominators / when adding fractions.

Examples

1. Add;
$$\frac{1}{2} + \frac{1}{3} =$$

Equivalent fractions.

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10}$$

$$\frac{1}{3} = \frac{2}{6} = \frac{3}{9}$$

$$=\frac{3}{6}+\frac{2}{6}$$

$$= \frac{3+2}{6}$$

$$=\frac{5}{6}$$

2. Workout;
$$\frac{2}{3} + \frac{1}{4} =$$

$$\frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \frac{8}{12} = \frac{10}{15}$$

$$\frac{1}{4} = \frac{2}{8} = \frac{3}{12}$$

$$=\frac{8}{12}+\frac{3}{12}$$

$$=\frac{11}{12}$$

Workout correctly.

1.
$$\frac{1}{3} + \frac{1}{4} =$$

8.
$$\frac{2}{3} + \frac{1}{4} =$$

$$2\frac{3}{5} + \frac{1}{4} =$$

2.
$$\frac{2}{3} + \frac{1}{4} =$$

3.
$$\frac{3}{8} + \frac{1}{3} =$$

4.
$$\frac{3}{4} + \frac{1}{2} =$$

5.
$$\frac{1}{7} + \frac{1}{2} =$$

6.
$$\frac{3}{4} + \frac{1}{6} =$$

CONTENT; Subtraction of fraction with different denominators.

Examples.

1. Subtraction; $\frac{3}{4} - \frac{2}{3}$ =

$$\frac{3}{4} = \frac{6}{8} = \frac{9}{12} = \frac{12}{16} = \frac{15}{20}$$

$$\frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \frac{8}{12}$$

$$=\frac{9}{12}-\frac{8}{12}$$

Activity

Subtract the following.

1.
$$\frac{2}{3} - \frac{1}{2} =$$

2.
$$\frac{3}{4} - \frac{2}{5} =$$

3.
$$\frac{6}{7} - \frac{4}{5} =$$

4.
$$\frac{5}{6} - \frac{3}{4} =$$

5.
$$\frac{1}{2} - \frac{1}{3} =$$

6.
$$\frac{3}{4} - \frac{2}{3} =$$

7.
$$\frac{1}{3} - \frac{1}{4} =$$

8.
$$\frac{2}{3} - \frac{1}{4} =$$

CONTENT; Multiplication of fractions.

Examples.

1. What is
$$\frac{1}{2}$$
 of 6.

$$=\frac{1}{2} \times 6.$$

$$= (1 \times 6) \div 2.$$

$$= 6 \div 2$$
.

2. Workout:
$$\frac{2}{3}$$
 of 6.

$$=\frac{2}{3} \times 6.$$

What is
$$\frac{1}{2}$$
 of 10.

$$= (2 \times 6) \div 3.$$

$$= 12 \div 3.$$

Multiply the following fractions.

1.
$$\frac{1}{5}$$
 of 10=

2.
$$\frac{2}{3}$$
 of 90=

3.
$$\frac{3}{4}$$
 of 12=

4.
$$\frac{2}{5}$$
 of 10=

5.
$$\frac{1}{7}$$
 of 21=

6.
$$\frac{4}{5}$$
 of 20=

7.
$$\frac{1}{2}$$
 of 16=

8.
$$\frac{1}{6}$$
 of 24=

9.
$$\frac{2}{3}$$
 of 30=

10.
$$\frac{1}{3}$$
 of 60=

CONTENT; Multiplication of a fractions by a fraction.

Formulae =
$$\frac{n \times n}{d \times d}$$

Examples

$$\frac{1}{3} \times \frac{2}{4} =$$

$$= 1 \times 2$$
$$3 \times 4$$

$$=\frac{2}{12}$$

2. Multiply;
$$\frac{1}{4} \times \frac{1}{5}$$

$$= 1 \times 1$$

$$4 \times 5$$

$$=\frac{1}{20}$$

Activity

Multiply the following fractions.

1.
$$\frac{1}{2} \times \frac{1}{2} =$$

2.
$$\frac{2}{3} \times \frac{2}{4} =$$

3.
$$\frac{1}{10} \times \frac{2}{20} =$$

4.
$$\frac{1}{10} \times \frac{2}{4} =$$

5.
$$\frac{2}{7} \times \frac{3}{4} =$$

6.
$$\frac{3}{4} \times \frac{2}{7} =$$

7.
$$\frac{4}{6} \times \frac{2}{4} =$$

8.
$$\frac{2}{5} \times \frac{3}{4} =$$

CONTENT; Application of fractions.

Examples.

In primary four class there are 50 pupils $\frac{1}{2}$ of them are girls.

a) What fraction are boys?

Fractions of boys.

Total fraction = $\frac{2}{2}$

Girl =
$$\frac{1}{2}$$
.

Boys =
$$\frac{2}{2} - \frac{1}{2}$$

= $\frac{2-1}{2} = \frac{1}{2}$

b) How many boys are there?

Number of boys.

Fraction =
$$\frac{1}{2}$$
.

Total = 60.

Therefore =
$$\frac{1}{2}$$
 of 60.

$$=\frac{1}{2} \times 60.$$

= 30 boys.

c) How many girls are in the school?

Number of girls.

Fraction =
$$\frac{1}{2}$$

$$=\frac{1}{2}$$
 of 60.

$$=\frac{1}{2} \times \frac{30}{60}$$

Solve these;

- 1. In primary four class there are 50 pupils, $\frac{1}{5}$ of them are boys and the rest are girls.
 - a) What fraction are girls?
 - b) How many girls are there than boys?
 - c) How many boys are there?
- 2. There are 22 pens in the box. $\frac{1}{2}$ Of them are red. What fraction are the remaining pens?
- 3. $\frac{1}{3}$ of 120 animals are goats. How many animals are cows?
 - a) What fraction are cows?
 - b) How many cows are there?
 - c) How many more cows than goats are there?

TOPIC; GEOMETRY

SUBTOPIC; LINES, ANGLES AND GEOMETRIC FIGURES.

CONTENT; Drawing and measuring line segments.

-A line segment is a line with two end points.

Examples.

Draw a line segment PQ = 6cm

Steps taken

- 1. Draw a line.
- 2. Measure the length from the ruler using a pair of compasses.
- 3. Place the pair of compasses on the line and mark off arcs.
- 4. Label both arcs.

2.Draw line segment MN = 4cm

3. Draw a line segment of 7cm.

Activity

- 1. Draw the following line segments.
 - a) AB =8cm

b) MN = 9cm.

c) PQ = 3cm

d) TN = 5cm.

e) 10cm.

SUBTOPIC; 2-DIMENTION FIGURES.

CONTENT: Drawing and naming shapes.

These are plane shapes because they have both length and width.

Example

Rectangle.

Square

SUBTIOPIC; 2-DIMENTION FIGURES.

CONTENT; Circles.

Parts of a circle.

Drawing circles using the given radius.

a) Draw a circle of radius 3cm.

<u>Activity</u>

Use the following radius to construct the circle.

a) 4cm

b) 6cm

d) 5cm

d) 3.5cm

e) 2cm.

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; Finding diameter and radius.

Example

Radius	2cm	6cm	7cm	9cm	10cm	13cm
Diameter	4cm	12cm	14cm	19cm		

Diameter = r + r.

Diameter = r + r.

= 6cm + 6cm.

= 7cm + 7cm.

= 12cm.

= 14cm.

Diameter =
$$r + r$$
.

Diameter =
$$r + r$$
.

$$= 9cm + 9cm.$$

$$= 10cm + 10cm.$$

Find the diameter given the following radius.

a) 5cm

b) 12cm.

b) 6cm.

- d) 15cm.
- c) 13cm

f) 16cm

SUBTOPIC: 2-DIMENTION.

CONTENT; Finding radius given the diameter.

Examples

Radius = <u>Diameter</u>

Find the radius of a circle with radius 12cm.

Radius = <u>Diameter</u>

Find the radius given the following diameter.

a) 8cm

b) 10cm

c) 24cm

d) 40cm

e) 44cm

f) 70cm

g) 50cm

h) 30cm

SUBTOPIC; 2-DIMENTION FIGURES.

CONTENT; Drawing and measuring angles.

- We use a protractor to measure and draw angles.
- It has the inner and the outer scale.

Examples

- 1. 50°
- 2.65°
- $3. 35^{\circ}$
- 4. 80°
- 5. 95°

<u>Activity</u>

Draw the following angles using a protractor.

1. 55°

2. 75°

2. 83⁰

4. 900

 $3. 125^{\circ}$

6. 100°

Measure the following angles.

1.

2.

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; Constructing angles of 90° and 60°.

Constructing an angle of 90°.

Steps taken

- 1. Using a ruler and a pencil, draw a straight line.
- 2. Mark a centre on the horizontal line.
- 3. Basing on the centre, draw a semi-circle on it mark two arcs intersecting either sides of the line.
- 4. Use the two points of intersection of the arcs and the line to draw two intersecting arcs above the straight line.
- 5. Connect the point to the intersection of the arcs to the center of the line.
- 6. Each smaller angle formed measures 90°.

Contracting angle of 60° using a compass.

- 1. Draw a horizontal straight line and mark off its centre.
- 2. Draw a big arc interesting one side / either side of the line, basing at the centre.
- 3. Use the new point of intersection of the line and the arc to draw another smaller arc to intersect the first one.
- 4. Connect the points of intersection of the arcs to the centre of the straight line.

Activity

- 1. Using a ruler, a pair of compasses and a pencil only, Construct the following angles.
- a) 90°

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; Drawing squares.

When drawing ,we use a protractor, ruler and a sharp pencil.

Steps taken.

- 1. Draw a well labeled sketch.
- 2. Measure the length accurately.
- 3. Label the two points correctly.
- 4. Draw an angle of 90° at each point using a protractor.
- 5. Mark off the same length from each point.
- 6. Join the four points and label them to form a square and label correctly.

Example

Draw a square PQRS with length 4cm using aruler, a pencil and a protractor.

Accurate diagram

Activity.

- 1. Draw a square ABCD with length of 6cm using a ruler, a pencil and a protractor.
- 2. Draw a square PQRS with side length of 7cm using a ruler, a pencil and a protractor.
- 3. Use a ruler, a pencil and a protractor to draw a square side length 3cm.

SUBTOPIC; 2-DIMENTION FIGURES.

CONTENT; Drawing a rectangle using a protractor.

- 1. Draw a well labeled sketch.
- 2. Draw a straight line.
- 3. Use a ruler and measure the given length.

- 4. Label the two points respectively.
- 5. Draw an angle of 90° at each point.
- 6. Using a ruler, measure the width and mark it off.
- 7. Join the points using a ruler to form a rectangle and label it correctly.

Examples

With the help of a ruler, a protractor and a pencil, draw a rectangle ABCD in which line AB = 8cm and line BC = 6cm.

Sketch

Accurate diagram

Activity

1. Using a ruler, pencil and a protractor draw a rectangle ABCD where AB=7cm and BC=3cm.

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; constructing squares.

Example.

Using a pair of compasses, ruler and pencil only.

Construct a square PQRS of side 5cm.

Sketch.

Accurate diagram

Activity;

Using a ruler, pencil and a pair of compasses construct a square.

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; constructing rectangle.

Example

Using a pair of compass, ruler and pencil, ruler and pencil only. Construct a rectangle of length 7cm and 5cm.

sketch

Accurate diagram

Activity.

Using a ruler, pencil and a pair of compasses construct a rectangle ABCD where AB = 8cm and BC = 4cm.

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; constructing an equilateral triangle.

Example

Using a pair of compasses, pencil and a ruler only. Construct an equilateral triangle of sides 6cm.

<u>sketch</u>

Accurate diagram

Accurate diagram

Using a pair of compasses, ruler and a pencil only, construct an equilateral triangle of sides 4cm.

SUBTOPIC; 2-DIMENTIONAL FIGURES.

CONTENT; Lines of folding symmetry.

Rectangle

-Two lines.

square

- Four lines.

Equilateral triangle

-Three lines.

Trapezium

- One line

-No line of symmetry.

Rhombus

- Two lines of folding symmetry.

Activity

Draw these shapes and show the lines of symmetry.

- 1. Isosceles triangle.
- 2. Rectangle.
- 3. Square.
- 4. Trapezium.
- 5. Rhombus.
- 6. Parallelogram.

TOPIC 11: 3-DIMENTIONAL FIGURES>

SUBTOPIC; 3-DIMENTIONAL FIGURES.

CONTENT; SOLID OBJECTS.

- -Cone -cube -Cuboids Cylinder
- -Triangular prism Triangle pyramid
- Rectangular pyramid square pyramid.

Naming parts of a solid figures

<u>Activity</u>

Draw and count	Number of faces	Number of vertices	Number of edges
Cube			
Cuboids			
Cone			
Cylinder			
Circle			

SUBTOPIC; 3-DIMENTIONAL FIGURES.

CONTENT; VOLUME OF CUBES

Examples.

Calculate the volume of the cube below.

 $V=S\times S\times S$.

V= 4cm x 4cm x 4cm.

V= 16cm x 4cm.

 $V = 64 \text{cm}^3$

<u>Activity</u>

Calculate the volume of the following cubes.

SUBTOPIC; 3-DIMENTIONAL FIGURES.

CONTENT; VOLUME OF CUBOIDS.

Examples.

Find the volume of the following cuboids.

 $V=5cm \times 4cm \times 3cm$.

V= 20cm x 3cm

V= 60cm²

Activity

Find the volume of these boxes.

- 5. A cuboid measures 12cm by 5cm by 3cm. Find its volume.
- 6. A petrol tank measures 100cm long, 5cm wide and 3cm high. Calculate its volume.
- 7. Study the figure below and answer the questions.

SUBTOPIC; 3-DIMENTIONAL FIGURES.

CONTENT; Area of cuboids and cubes.

Examples

Study the figure below and answer the questions that follow.

a) Find the area of the shaded part.

 $A = L \times W$.

 $A = 10 \text{cm} \times 5 \text{cm}$.

 $A = 50 \text{cm}^2$

Activity

1. Study the figure below to answer the question that follows.

- a) Calculate the volume of the cuboid.
- b) Find the area of the shaded part.

2. Study the cuboid below and answer the questions.

- a) Find the volume of the cube.
- b) Calculate the area of the shaded part.