Begging: Random data augmentation Boosting: Adaptive data augmentation

1	. 0
1	0 1
1	; O 1
1 0	
	, 0
0	' 0

	ن
1	1 .
, Ö ₀	0
, ()	•

Adaboost (y; [-1,13)

luit w:= 1 1=1,...,n

For bin 1,..., B:

Idea: Increase weights on mis classified points

Fit classifier to training later (90) using weights w. Compute weighted misclassification error En = [w: 1 (y: + g), i]

Update weights w; ~ w; exp (x, 184; + 96;3)

$$f(x) = \sum_{b=1}^{B} \alpha_b f_b(x) \qquad \text{final classifier}: \quad \widehat{y}(x) = \text{sign}(f(x))$$

det weak learner: base classifier used in boosting

Gradient Boosting

Wednesday, May 15, 2019 2:07 PM

Want to fit a given loss, I, but we want to use regression trees

$$\frac{Alg}{F.(x)} = argmin \sum_{i=1}^{n} \lambda(y_i, Y)$$

For bin 1, ..., B:

$$\tilde{y}_{Li} = -\frac{\partial l(y_i, Y)}{\partial Y} \bigg|_{Y = F_L(x_i)} \forall i = 1,...,n$$

La pseulo residuals (may be subgrad)

$$Y_{be} = \underset{i:X_i \in R_{be}}{\operatorname{argmin}} \sum_{i:X_i \in R_{be}} l(y_i, F_{be_i}|x_i|+y)$$

$$\sum_{i} (1-\lambda^{i}, \lambda)^{+} = N^{+} \cdot (1+\lambda)^{+}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow$$

Stochastic Gradient Tree Bosting

For b in 1, ... , B:

S is a random sample of 1,..., n Of size in W/out reptaisement $\widetilde{y}_{bi} = -\frac{\partial l(y_{i}, Y)}{\partial Y} \Big|_{Y=F_{b-1}(x)} \quad \forall i \in S$

reval Decitree over [xi, yi]ies La [Rbs]

$$Y_{be} = argmin \sum_{i \notin S: x_i \in R_{be}} L(y_i, F_{b-1}(x_i) + Y)$$

$$F_{b}(x) = F_{b-1}(x) + y \stackrel{!}{=} Y_{be} II \{x \in R_{be}\}$$