SECURITY INDUSTRIAL IOT

Software and Services Group IoT Developer Relations, Intel

SECURITY IS CRITICAL

Connecting "things" to the Internet that have never been connected is valuable, but also introduces risk. - Source: McAfee Labs Q1 '14

46%	Increase in new malicious signed binaries					
236	New threats every minute, or almost four every seconds					
49%	Growth in new threats attacking the master boot record and an all-time high for a single quarter					

"The ability to attack will outpace the ability to defend."

—Rand Group

"It takes 20 years to build a reputation and five minutes to ruin it. If you think about that, you'll do things differently."

—Warren Buffet on Target Corp

PROTECTING THE EXECUTION, STORAGE, AND TRANSFER OF DATA

- 1 Security built into the hardware: Hardware integrity must be enforced to ensure the device has not been altered.
- Secures OS and applications: The gateway itself must have a secure operating system to ensure that data is safely stored.
- 3 **Secures data from chip to cloud:** Data must be transmitted securely from sensor to data center, even when one or more gateways must process it on the way.
- 4 **Enabling ecosystem security:** Standardized Intel solutions allow augmented security with third-party solutions.

Security and privacy are the top two inhibitors of the success of IoT deployments. *Recent survey of more than 450 IT and business leaders*¹

From the Field

- A lack of security in implanted medical devices opens the door for malicious activity that could put patient health at risk.
- Industrial devices, if tampered with, can leak sensitive operational data.
- Hackers may breach retail devices to gain insight into sales patterns, change prices, or hide inventory.

LOOKING AHEAD IN 2018 – USGOV IOT/CYBER SECURITY

- Protecting your own IT & OT Networks is critical for brand and security excellence
- Cyberthreats by nation states, including Russia, China, Iran & N Korea lead threat assessment
- DARPA has released several broad agency announcements (BAA/RFQ), seeking innovative IoT/Cyber solutions. 74 DARPA budget activities, totaling \$856M¹ related to IOT and Cyber in 2018.
- USGov funding IoT/Cybersecurity over \$5B¹ in 2018 budgets.
- Fastest BAA's ever:
 - Urgent call for securing SCADA system at international waste water giant on US side of Mexico border is due Sep 29 (only \$1M).
 - Anti-phishing BAA HR001117S0050 was posted 9/11, abstract due 9/19 and bid 11/9. Bid must include best practices in bots & whitelisting, AI for zero day and for honey pots to collect attacker info.

IOT SECURITY IS ESSENTIAL TO SCALE IOT DEPLOYMENTS

HW SECURITY IS AN IOT PRIORITY

Barrier to IoT Adoption*

poor device security

Mirai Botnet!

Isolation & added protections of HW security has recognized role

NEW SPECS

STRATEGIC **PRINCIPLES FOR** SECURING THE INTERNET OF THINGS

Pattern to secure & role of HW is defined

CUSTOMER REQUIREMENT

HW security moving from shadows to key RFP request

Security solutions Designed-in to HW are keys to accelerating adoption and scale

(intel)

PROTECTED BOOT TYPES

ROOT OF TRUST

A set of hardware, firmware, and/or software that is inherently trusted to perform a vital security function (NIST Definition)

through Secure Boot/UEFI Secure Boot BIOS security standard that prevents use of unauthorized option ROMs, and ensures the next stage of the boot is "authorized

SECURE BOOT

Boot process where each stage of the boot is cryptographically verified by the previous stage; a failure in the any verification causes the boot to fail.

MEASURED BOOT

Boot process where each stage of the boot is measured, usually by a cryptographic hash, and the measurements are stored for later comparison to known good values.".

WINDOWS SECURE VERIFIED BOOT PROCESS

http://blogs.msdn.com/b/olivnie/archive/2013/01/09/windows-8-trusted-boot-secure-boot-measured-boot.aspx

INTEL® PLATFORM TRUST TECHNOLOGY: PROTECTED STORAGE

Intel® PTT is a hardware TPM 2.0 implementation for credential storage and key management across Atom, Core and Xeon. **Benefits:**

- A secure trust element to meet requirements for TPM 2.0 and Measured Boot for systems on which TPM 2.0 is required.
- Integrated solution
- Compliance with: TCG specifications, TPM Profile commands, EK cert provisioning, ECC, SHA2, Windows 10 requirements
- Protects: anti-replay, dictionary attack
- Key protection technology for distributed HW Security Module (HSM)
- Reduction in BOM cost and board savings as compared to a discrete TPM, or use with a Discrete TPM (for geo or vendor-specific)
- This is have existing installations can perform TE

HARDWARE IDENTITY MANAGEMENT

Prevents Attack Mapping-Protects device data vs PKI that reveals data to hack device

Baseline Minimum HW Root of Trust

- Intel® Enhanced Privacy ID (Intel ® EPID)
- TCG/ISO standard with privacy preserving group authentication scheme
- Used to authenticate & open secure, authenticated channel for remote attestation
- Proven- 2.5 Billion keys fused into Intel processors since 2008. Intel® Xeon®, Intel® Core™, & Intel® Atom™
- Open source SDK
- Used by Intel solutions- SGX, DRM, IPT, Intel® Secure Device Onboard

Enables Customers to deliver many use cases where privacy & attestation are key requirements

DESIGNED IN SECURITY FOUNDATION

SW IDENTIFICATION - FOR DEVICE "HEALTH" ATTESTATION

Baseline Minimum HW Root of Trust

- Trusted Platform Module (TPM) on chip firmware to safely store credentials or (PCR) platform configuration registry values. Intel® Platform Trust Technology (Intel® PTT)
- Protected Boot platform dependent capabilities to ensure firmware & OS are running trustworthy configuration
- Remote Attestation "best." send both boot and app measurements to 3rd party that verifies device stack running is equal to predefined Trusted Configuration
- White Listing "best." allowable agents/applications for that specific device- Intel helps manage ecosystem solutions

Enables Core Security capabilities available during lifetime
Utilization of "Health" Services through Device Management Platforms

DESIGNED IN SECURITY FOUNDATION

5. TRUSTED EXECUTION TECHNOLOGY (TXT) & SECURITY ENGINES

Baseline Minimum HW Root of Trust

- Crypto random # generator to create secure keys or apply message encryption - Intel® Secure Key, Intel® Advanced Encryption Standard New Instructions (Intel® AES NI)
- Trusted Execution Environment (TEE) physical/logical separated processing. Only Intel signed apps run. Stored data sealed in protected memory- Intel® Software Guard Extensions (SGX), engines- Intel® Dynamic Application Loader applets
- Usages secures keys for device comms, attestation, & authentication. Enables ISVs to provision & run app containers protected by hardware. Enforce code IP protection "DRM"

Intel delivers simple means to run multiple apps in our TEEs

Lowers BOM costs & increases performance by using on chip vs discrete security co-processors

HW FEATURES FOR DATA PROTECTION

- AES Hardware Acceleration with AES-NI
 - Data Protection with Cryptographic Acceleration
 - AES-NI allows significant performance at a lower price point, no custom hardware.
- Hardware DRNG
 - Better Encryption Keys and Simulations with On-Board Digital Random Number Generator
 - Solves the problems of limited entropy in virtual platforms

Functions meet NIST SP800-90A, B & C: improving encryption of full disk, data at rest, in transit or transaction and app-level granularity

Hardware Entropy Source

Nondeterministic Random Numbers

Hardware AES-CBC-MAC

High Quality Seeds for Pseudo-Random Generation

Hardware SP800A AED CTR Based DRNG

Hardware SP800-90 B & C ENRNG

Cryptographically Secure Random Numbers Cryptographically Secure Random S

EPID Comparison & whitepapers

	Key Strength	Provisioning	Key Distribution	Trust Model	Privacy	Scalability	Static vs. Dynamic	HWROT
X509 RSA	80-112 RSA	SW	TLS	HW+ SW	0	1/Device	S	N
X509 ECDH	128-192	HW/FW	TLS (ATTEST depends on HW)	HW	0	1/Device	S	Υ
E-SIM Card	Variable 80-192	FW	TLS/IKE	HW+ SW		1/SIM	S	Υ
DICE	128-192	FW	ATTEST	HW+ SW	0	1/Device	S	Υ
EPID 2.0	128 ECC	HW	ATTEST	HW		1/Group= millions	Dyn	Υ

- Best practice for privacy oriented use cases like IoT device onboarding
- Post EPID authentication can swap for traditional PKI key

INTEL® SECURE DEVICE ONBOARD – ZERO TOUCH SERVICE

Separate Roles – Installer plugs in & IT takes control of device to get on network and control platform

- Proxy Installation by Trust Broker Service Sales transaction can automatically start provisioning of users account to control platform. No passwords!
- Privacy Attackers cannot trace devices from factory to owner. Unlike PKI, EPID does not reveal endpoint authentication details.

- Solves major pain point in securely deploying IoT "things"
- Manual deployment, staging, & OEM pre-loads are not optimal and causing deployment delays
- Hardware root of trust EPID based service for "0" touch device onboarding
- Tremendous ROI for customers & ecosystem
- Scale's POCs to production. Increases number of devices in use

INTEL® SDO - ZERO TOUCH CONCEPT & COMPONENTS

INTEL® SDO - ZERO TOUCH USE CASE FLOW

Lab

