Metody numeryczne Wykład nr 4 Układy równań liniowych II - metody iteracyjne

Aneta Wróblewska

UMCS, Lublin

March 17, 2024

Wprowadzenie do metod iteracyjnych

- Metody iteracyjne są alternatywą dla metod bezpośrednich w rozwiązywaniu układów równań liniowych.
- Umożliwiają aproksymację rozwiązania poprzez iteracyjne poprawianie przybliżenia początkowego.
- Są szczególnie przydatne dla dużych, rzadkich układów równań, gdzie metody bezpośrednie mogą być nieefektywne z powodu wymagań pamięciowych lub obliczeniowych.

Kiedy stosować metody iteracyjne?

- Gdy układ równań jest zbyt duży dla metod bezpośrednich.
- W przypadkach, gdy macierz systemu jest rzadka i dobrze uwarunkowana.
- Gdy potrzebne jest szybkie znalezienie przybliżonego rozwiązania, a niekoniecznie dokładnego.
- W środowiskach obliczeniowych o ograniczonych zasobach pamięciowych.

Przykłady metod iteracyjnych

- Metoda Jacobiego
- Metoda Gaussa-Seidla
- Metoda sukcesywnych nadrelaksacji (SOR)
- Metoda gradientów sprzężonych (dla macierzy symetrycznych i dodatnio określonych)

Ogólny schemat metod iteracyjnych

- Wybierz początkowe przybliżenie rozwiązania $x^{(0)}$.
- Powtarzaj następujące kroki do spełnienia kryterium zbieżności:
 - Uaktualnij przybliżenie rozwiązania stosując wybraną metodę iteracyjną.
 - Sprawdź kryterium zbieżności (np. różnicę między kolejnymi przybliżeniami).
- 3 Zakończ, gdy rozwiązanie jest wystarczająco dokładne.

Wprowadzenie do metod iteracyjnych

W przybliżonych metodach rozwiązywania układu równań Ax = b, zawierającego n niewiadomych, poszukiwanie rozwiązania x rozpoczyna się od zastosowania pewnego rozwiązania początkowego $x^{(0)}$, generując ciąg wektorów $\{x^{(k)}\}_{k=0}^{\infty}$, zbieżny z x.

Przekształcenie układu równań

W większości metod iteracyjnych układ równań Ax = b zamieniany jest na ekwiwalentny układ równań

$$x = Wx + Z \quad (1)$$

gdzie W jest macierzą $n \times n$, natomiast Z jest wektorem.

Iteracyjne poszukiwanie rozwiązania

Mając dany wektor początkowy $x^{(0)}$, iteracyjne poszukiwanie rozwiązania można zapisać w postaci

$$x^{(k)} = Wx^{(k-1)} + Z \quad k = 1, 2, 3, \dots$$
 (2)

Metoda Jacobiego - Wstęp

W metodzie Jacobiego wykorzystujemy wzory (1) i (2)

$$x = Wx + Z$$

$$x^{(k)} = Wx^{(k-1)} + Z$$
 $k = 1, 2, 3, ...$

Należy tylko określić, co to są macierze W i Z.

Dany jest układ równań: Ax = b

Macierz główna układu A rozbijamy na sumę dwóch macierzy D + R:

$$A = D + R$$

gdzie D to macierz diagonalna, a R to reszta elementów macierzy A.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}$$

W literaturze spotykamy też podział macierzy A na trzy macierze:

$$A = D + L + U$$
 gdzie:

- D macierz diagonalna,
- L macierz dolnotrójkątna z zerami na diagonali,
- *U* macierz górnotrójkątna z zerami na diagonali.

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Mamy serię następujących przekształceń:

$$Ax = b$$
$$(D+R)x = b$$
$$Dx + Rx = b$$

Przenosimy na prawą stronę:

$$Dx = -Rx + b$$

Mnożymy obustronnie przez macierz D^{-1} :

$$D^{-1}Dx = -D^{-1}Rx + D^{-1}b$$

$$x = -D^{-1}Rx + D^{-1}b$$
 (3)

W równaniu (3):

$$x = -D^{-1}Rx + D^{-1}b$$

wprowadzamy macierz W i wektor Z następująco:

$$W = -D^{-1}R$$

$$Z = D^{-1}b$$

Ostatecznie otrzymujemy wprowadzone wcześniej równania (1) i (2)

$$x = Wx + Z$$

$$x^{(k)} = Wx^{(k-1)} + Z$$
 $k = 1, 2, 3, ...$

Odwrotność macierzy diagonalnej D

Macierz odwrotna do macierzy diagonalnej D też jest macierzą diagonalną, główna przekątna tworzy odwrotności elementów macierzy D:

$$D^{-1} = \begin{bmatrix} \frac{1}{d_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_{nn}} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{nn}} \end{bmatrix}$$

W naszym przypadku zastąpienia macierzy A sumą macierzy D+R, na głównej przekątnej macierzy D^{-1} będą odwrotności elementów z głównej przekątnej macierzy A.

Wyznaczenie wartości macierzy W

Dla macierzy W mamy:

$$W = -D^{-1}R$$

gdzie D^{-1} jest macierzą odwrotną do macierzy diagonalnej D, a R reprezentuje pozostałą część macierzy A po odjęciu D. Konkretnie:

$$D^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0\\ 0 & \frac{1}{a_{22}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{a_{nn}} \end{bmatrix}$$

$$R = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}$$

Wyznaczenie wartości macierzy W

Stąd:

$$W = -D^{-1}R = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{bmatrix}$$

Elementy macierzy W będą następujące:

$$W_{ij} = -rac{a_{ij}}{a_{ii}}; \quad i,j = 1,2,\ldots,n \quad ext{and} \quad j
eq i$$

Wyznaczenie wartości wektora Z

Wyznaczenie wartości wektora Z wykorzystuje macierz odwrotną do macierzy diagonalnej D i wektor b. Obliczenie Z przedstawia się następująco:

$$Z = D^{-1}b = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{nn}} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{bmatrix}$$

Elementy wektora Z będą następujące:

$$Z_i=\frac{b_i}{a_{ii}}; \quad i=1,2,\ldots,n$$

Metoda Jacobiego - zapis macierzowy

Równanie iteracyjne w postaci ogólnej: x = Wx + Z zapisane macierzowo prezentuje się następująco:

$$x = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{2n}} \end{bmatrix}$$

Zapis dla poszczególnych niewiadomych

W przypadku, gdy każda z wartości $x_i^{(k)}$ obliczana jest na podstawie wektora $x_i^{(k-1)}$ dla $k \ge 1$:

$$x_i^{(k)} = \sum_{\substack{j=1\\j\neq i}}^{n} \left(-\frac{a_{ij}x_j^{(k-1)}}{a_{ii}} \right) + \frac{b_i}{a_{ii}}; \quad i = 1, 2, \dots, n \quad (5)$$

W praktyce równanie (2) jest stosowane w rozwazaniach teoretycznych, natomiast do obliczen uzywane jest równanie (5)

Zapis metody przy podziale na macierze D, L i U

W równaniu Ax = b macierz współczynników A można zapisać jako sumę macierzy diagonalnej D, trójkątnej dolnej L i trójkątnej górnej U:

$$A = D + L + U$$

Stąd, równanie wyjściowe Ax = b może przyjąć postać:

$$Dx = -(L+U)x + b$$

i ostatecznie:

$$x = -D^{-1}(L + U)x + D^{-1}b$$

Postać przystosowana do metody iteracyjnej Jacobiego jest następująca:

$$x^{(k)} = -D^{-1}(L+U)x^{(k-1)} + D^{-1}b; \quad k = 1, 2, ...$$
 (6)

Badanie zbieżności - liczenie norm macierzy W

Nie dla każdej macierzy W kolejne iteracje będą zbieżne. Zbieżność macierzy W trzeba sprawdzić.

Poprawne rozwiązanie układu metoda iteracyjna uzyskamy, jeśli największa co do wartości modułu wartość własna macierzy W jest mniejsza od jedności.

Spełnienie tego warunku wymaga, aby którakolwiek z norm macierzy ${\it W}$ była mniejsza niż 1.

Badanie zbieżności - liczenie norm macierzy W

Normę macierzy można definiować na różne sposoby:

Norma dla wierszy:

$$\|W\|_{\infty} = \max_{i} \sum_{j=1}^{n} |w_{ij}|$$

Norma dla kolumn:

$$\|W\|_1 = \max_j \sum_{i=1}^n |w_{ij}|$$

Norma Frobeniusa:

$$||W||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n w_{ij}^2}$$

Stosując technikę iteracyjną rozwiązać układ równań:

E1:
$$4x_1 - 2x_2 = 0$$

E2: $-2x_1 + 5x_2 - x_3 = 2$
E3: $-x_2 + 4x_3 + 2x_4 = 3$
E4: $2x_3 + 3x_4 = -2$

którego rozwiązanie dokładne wynosi:

$$x = \begin{pmatrix} 0.5\\1\\2\\-2 \end{pmatrix}$$

Przekształcamy ten układ równań do postaci x = Wx + Z, obliczając z każdego równania E_i niewiadomą $x_i (i = 1, 2, 3, 4)$. Otrzymujemy:

$$x_1 = \frac{1}{2}x_2$$

$$x_2 = \frac{2}{5} + \frac{1}{5}x_1 + \frac{1}{5}x_3$$

$$x_3 = \frac{3}{4} - \frac{1}{4}x_2 + \frac{2}{4}x_4$$

$$x_4 = -\frac{2}{3} - \frac{2}{3}x_3$$

gdzie:

$$W = \begin{bmatrix} 0 & \frac{2}{4} & 0 & 0 \\ \frac{2}{5} & 0 & \frac{1}{5} & 0 \\ 0 & \frac{1}{4} & 0 & -\frac{2}{4} \\ 0 & 0 & -\frac{2}{3} & 0 \end{bmatrix}, Z = \begin{bmatrix} 0 \\ \frac{2}{5} \\ \frac{3}{4} \\ -\frac{2}{3} \end{bmatrix}$$

Sprawdzamy zbieżność (norma dla wierszy):

$$\|W\| = \max_{i} \sum_{i=1}^{n} |w_{ij}| = \max\left(\frac{2}{4}, \frac{3}{5}, \frac{3}{4}, \frac{2}{3}\right) = \frac{3}{4}$$

Stosując równanie $x^{(k)} = Wx^{(k-1)} + Z$ i przyjmując rozwiązanie początkowe $x^{(0)} = (0,0,0,0)^T$, możemy zapisać kolejne iteracje:

$$x_1^{(k)} = \frac{1}{4}x_2^{(k-1)}$$

$$x_2^{(k)} = \frac{2}{5} + \frac{1}{5}x_1^{(k-1)} + \frac{1}{5}x_3^{(k-1)}$$

$$x_3^{(k)} = \frac{1}{4}x_2^{(k-1)} - \frac{2}{4}x_4^{(k-1)} + \frac{3}{4}$$

$$x_4^{(k)} = -\frac{2}{3}x_3^{(k-1)} - \frac{2}{3}$$

gdzie $x_i^{(k)}$ oznacza wartość i-tej niewiadomej w k-tej iteracji, a $x_i^{(k-1)}$ oznacza wartość i-tej niewiadomej w poprzedniej iteracji. Przyjmując dokładność obliczeń $\epsilon=10^{-3}$, w kolejnych iteracjach otrzymuje się następujące wartości:

Wyniki iteracji metody Jacobiego

-					blad
I	<i>X</i> ₁	X ₂	X3	X ₄	błąd
0	0.0000	0.4000	0.7500	-0.6667	0.7500
1	0.2000	0.5500	1.1833	-1.1667	0.5000
2	0.2750	0.7167	1.4708	-1.4556	0.2889
3	0.3583	0.8042	1.6569	-1.6472	0.1917
4	0.4021	0.8747	1.7747	-1.7713	0.1241
5	0.4374	0.9158	1.8543	-1.8498	0.0797
6	0.4579	0.9458	1.9038	-1.9029	0.0531
7	0.4729	0.9639	1.9379	-1.9359	0.0341
8	0.4820	0.9767	1.9589	-1.9586	0.0227
9	0.4884	0.9846	1.9735	-1.9726	0.0146
10	0.4923	0.9900	1.9824	-1.9823	0.0097
11	0.4950	0.9934	1.9887	-1.9883	0.0062
12	0.4967	0.9957	1.9925	-1.9924	0.0041
13	0.4979	0.9972	1.9952	-1.9950	0.0027
14	0.4986	0.9982	1.9968	-1.9968	0.0018
15	0.4991	0.9988	1.9979	-1.9979	0.0011
16	0.4994	0.9992	1.9986	-1.9986	0.0008

Warunek stopu

Zakończenie obliczeń może nastąpić po spełnieniu warunku stopu, na przykład gdy stosunek normy różnicy kolejnych przybliżeń do normy bieżącego przybliżenia jest mniejszy od zadanej tolerancji ϵ :

$$\frac{\|x^{(k)} - x^{(k-1)}\|}{\|x^{(k)}\|} \leqslant \epsilon$$

W naszym przykładzie mamy:

$$\frac{\|x^{(k)} - x^{(k-1)}\|}{\|x^{(k)}\|} = \frac{1.9986 - 1.9979}{1.9986} \approx 0.00035 \leqslant 10^{-3}$$

Korzystamy tutaj z normy maksimum dla oceny zbieżności:

$$\|W\|_{\mathsf{max}} = \max_{ij} |w_{ij}|$$

U nas dla macierzy A mamy:

$$\|A\|_{\max} = \max_{ij} |a_{ij}|$$

Metoda Jacobiego - podsumowanie

- Prosty algorytm Jacobiego rozwiązania układu równań metodą Jacobiego wymaga, aby $a_{ii} \neq 0$ dla każdego i = 1, 2, ..., n.
- Jeżeli warunek ten nie jest spełniony, a układ równań jest nieosobliwy, to układ równań można tak przekształcić, by warunek $a_{ii} \neq 0$ dla każdego i = 1, 2, ..., n był spełniony.
- Przyspieszenie zbieżności otrzymuje się w ten sposób, że jako a_{ii} wybiera się elementy największe co do ich wartości bezwzględnej.

Metoda Gaussa-Seidla

Metoda Gaussa-Seidla jest jedną z metod iteracyjnych rozwiązywania układów równań liniowych. Podobnie jak metoda Jacobiego, służy do znalezienia rozwiązania układu równań Ax = b, ale różni się sposobem aktualizacji wartości niewiadomych.

Ogólny schemat metody Gaussa-Seidla

Metoda Gaussa-Seidla aktualizuje wartości niewiadomych sekwencyjnie, wykorzystując już zaktualizowane wartości:

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right),$$

dla i = 1, 2, ..., n.

Zalety i warunki stosowania metody Gaussa-Seidla

Metoda Gaussa-Seidla często zbiega szybciej niż metoda Jacobiego, szczególnie dla macierzy dobrze uwarunkowanych i dominującej przekątnej.

Stosuje się ją, gdy:

- Macierz systemu jest duża i rzadka.
- Preferowana jest szybsza konwergencja kosztem większej złożoności obliczeniowej pojedynczej iteracji.
- Macierz spełnia warunki zbieżności, np. jest silnie diagonalnie dominująca.

Metoda Gaussa-Seidla - przedstawienie w zapisie macierzowym

W celu przedstawienia tej metody w zapisie macierzowym, pomnóżmy każde równanie (7) przez a_{ii} . Mamy wtedy następujące zależności dla $i=1,2,\ldots,n$:

$$a_{i1}x_1^{(k)} + a_{i2}x_2^{(k)} + \dots + a_{ii}x_i^{(k)} = -a_{i,i+1}x_{i+1}^{(k-1)} - \dots - a_{in}x_n^{(k-1)} + b_i;$$

Dla wszystkich *n* równań otrzymujemy:

$$a_{11}x_1^{(k)} = -a_{12}x_2^{(k-1)} - a_{13}x_3^{(k-1)} - \dots - a_{1n}x_n^{(k-1)} + b_1$$

$$a_{21}x_1^{(k)} + a_{22}x_2^{(k)} = -a_{23}x_3^{(k-1)} - \dots - a_{2n}x_n^{(k-1)} + b_2$$

$$\vdots$$

$$a_{n1}x_1^{(k)} + a_{n2}x_2^{(k)} + \cdots + a_{nn}x_n^{(k)} = b_n$$

Metoda Gaussa-Seidla - przedstawienie w zapisie macierzowym

lub w formie skróconej:

$$(L+D)x^{(k)} = -Ux^{(k-1)} + b$$

gdzie:

- L jest macierzą trójkątną dolną,
- D jest macierzą diagonalną,
- U jest macierzą trójkątną górną.

Przekształcenia równań metody Gaussa-Seidla

Po przekształceniach otrzymujemy równanie iteracyjne w postaci:

$$x^{(k)} = -(L+D)^{-1}Ux^{(k-1)} + (L+D)^{-1}b; \quad k = 1, 2, ...$$

Aby macierz trójkątna dolna D-L była nieosobliwa, wymagane jest, aby:

$$a_{ii} \neq 0$$
 dla wszystkich $i = 1, 2, \dots, n$.

Metoda Gaussa-Seidla - Przykład 3

Rozwiązanie układu równań z przykładu 1, stosując wzór (7). Dla układu równań:

E1:
$$4x_1 - 2x_2 = 0$$

E2: $-2x_1 + 5x_2 - x_3 = 2$
E3: $-x_2 + 4x_3 + 2x_4 = 3$
E4: $2x_3 + 3x_4 = -2$

Wzór (7) dla metody Gaussa-Seidla

Stosując wzór (7) dla powyższego układu równań, otrzymujemy kolejne iteracje:

$$x_1^{(k)} = \frac{1}{2}x_2^{(k-1)}$$

$$x_2^{(k)} = \frac{2 + 2x_1^{(k)} - \frac{1}{5}x_3^{(k-1)}}{5}$$

$$x_3^{(k)} = \frac{3 + x_2^{(k)} + \frac{2}{4}x_4^{(k-1)}}{4}$$

$$x_4^{(k)} = \frac{-2 - 2x_3^{(k)}}{3}$$

Wyniki iteracji metody Gaussa-Seidla

i	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	błąd
0	0.0000	0.4000	0.8500	-1.2333	1.2333
1	0.2000	0.6500	1.5292	-1.6861	0.6792
2	0.3250	0.8358	1.8020	-1.8680	0.2728
3	0.4179	0.9276	1.9159	-1.9439	0.1139
4	0.4638	0.9687	1.9641	-1.9761	0.0482
5	0.4843	0.9866	1.9847	-1.9898	0.0206
6	0.4933	0.9943	1.9935	-1.9956	0.0089
7	0.4971	0.9975	1.9972	-1.9981	0.0038
8	0.4988	0.9989	1.9988	-1.9992	0.0016
9	0.4995	0.9996	1.9995	-1.9997	0.0007

Kryterium zakończenia obliczeń

Dla $\epsilon=10^{-3}$ zakończenie obliczeń nastąpiło po 9 iteracjach, ponieważ

$$\frac{\|x^{(k)} - x^{(k-1)}\|}{\|x^{(k)}\|} = \frac{1.9997 - 1.9992}{1.9997} \approx 0.00025 \leqslant 10^{-3}$$

Tutaj również korzystamy z normy maksimum:

$$\|A\|_{\max} = \max_{ij} |a_{ij}|$$

Podsumowanie metody Gaussa-Seidla

Metoda Gaussa-Seidla, dzięki swojej iteracyjnej naturze i sposobowi aktualizacji wartości niewiadomych, może być bardziej efektywna od metody Jacobiego w wielu praktycznych zastosowaniach. Jej zastosowanie jest szczególnie korzystne w przypadku dużych układów równań z macierzami spełniającymi odpowiednie warunki zbieżności.