Self-exercise - SRU03 Response to questions

Tuan Vo

09th November, 2022

1 Step-by-step with A3-SRU03

Example 1. Let the linear m-step method be given by coefficients $\alpha_l \in \mathbb{R}$ and $\beta_l \in \mathbb{R}$ where l = 0, 1, ..., m, satisfying the following system of equations

$$\sum_{l=0}^{m} a_l = 0, (1)$$

$$\sum_{l=0}^{m} (l^{q} \alpha_{l} - q \, l^{q-1} \beta_{l}) = 0, \quad for \quad q = 1, 2, 3, \dots, p.$$
 (2)

Then the linear m-step method has the consistency order of p.

Consider the following ordinary differential equation (ODE) taking the form

$$x'(t) = f(t, x(t)), \text{ with } x(t_0) = x_0,$$
 (3)

which may be approximated by a linear multistep method, taking the general form

$$\sum_{l=0}^{m} \alpha_l \, x(t_j + lh) = h \sum_{l=0}^{m} \beta_l \, f(t_j + lh, x(t_j + lh)).$$
 (4)

Observation 1. There are 6 symbols arising in (1), (2), (4) to be aware of

- 1. m is the total number of steps used in the multistep method.
- 2. $\alpha \in \mathbb{R}$ is the coefficient for the linear combination of $x(t_i + lh)$
- 3. $\beta \in \mathbb{R}$ is the coefficient for the linear combination of $f(t_j + lh, x(t_j + lh))$.
- 4. p is the consistency order.
- 5. l is the dummy index, running from 0 to m.
- 6. q is the dummy index, running from 1 to p.

Observation 2. The multistep method arising in (4) is a linear multistep method, or specifically linear m-step method. The term linear coming along with m-step method, i.e. linear m-step method, emphasizes the fact that there is actually a linear combination of the terms $x(t_j + lh)$ with coefficients α_l on the LHS of (4), and a linear combination of the terms $f(t_j + lh, x(t_j + lh))$ with coefficients β_l on the RHS of (4). This linear m-step method uses the information from the previous m steps to compute the value for the next step. In details, let us examine the formula (4) which is written again as follows

$$\sum_{l=0}^{m} \alpha_l x(t_j + lh) = h \sum_{l=0}^{m} \beta_l f(t_j + lh, x(t_j + lh)),$$
 (5)

whose LHS is written in its entirety as follows

$$\sum_{l=0}^{m} \alpha_l x(t_j + lh) = \alpha_0 x(t_j) + \alpha_1 x(t_j + h) + \alpha_2 x(t_j + 2h) + \dots + \dots + \alpha_{m-1} x(t_j + (m-1)h) + \alpha_m x(t_j + mh),$$
 (6)

whereas the RHS of (5) has its expansion as follows

$$\sum_{l=0}^{m} \beta_{l} f(t_{j} + lh, x(t_{j} + lh)) = \beta_{0} f(t_{j}, x(t_{j})) + \beta_{1} f(t_{j} + h, x(t_{j} + h)) + \beta_{2} f(t_{j} + 2h, x(t_{j} + 2h)) + \cdots + + \beta_{m-1} f(t_{j} + (m-1)h, x(t_{j} + (m-1)h)) + \beta_{m} f(t_{j} + mh, x(t_{j} + mh)).$$
(7)

The insertion of (6) and (7) into (5) leads to

$$\alpha_{0} x(t_{j}) + \alpha_{1} x(t_{j} + h) + \alpha_{2} x(t_{j} + 2h) + \dots + \alpha_{m-1} x(t_{j} + (m-1)h) + \alpha_{m} x(t_{j} + mh) = \beta_{0} f(t_{j}, x(t_{j})) + \beta_{1} f(t_{j} + h, x(t_{j} + h)) + \beta_{2} f(t_{j} + 2h, x(t_{j} + 2h)) + \dots + \beta_{m-1} f(t_{i} + (m-1)h, x(t_{j} + (m-1)h)) + \beta_{m} f(t_{i} + mh, x(t_{j} + mh)),$$
 (8)

which tells us the fact that the value $x(t_j + mh)$ is approximated by using all information from previous steps, based on

- 1. $x(t_j), x(t_j + h), \ldots, x(t_j + (m-1)h).$
- 2. $f(t_j, x(t_j)), f(t_j + h, x(t_j + h)), \ldots, f(t_j + mh, x(t_j + mh)).$
- 3. Coefficients α_l and β_l .

Observation 3. The appearance of the green term $f(t_j + mh, x(t_j + mh))$ arising in (8) plays a significant role, meaning that

- 1. $\beta_m = 0$: the green term is switched off, and the scheme becomes **explicit**.
- 2. $\beta_m \neq 0$: the green term is switched on, and the scheme becomes **implicit**.

Observation 4. Specific choices of α_l and β_l leads to some familiar methods. Especially, when m=1 the linear m-step method becomes single-step method, or one-step method. If so, according to (4) there will be 4 coefficients $(\alpha_0, \alpha_1, \beta_0, \beta_1)$ to be defined. For example:

- 1. $(\alpha_0, \alpha_1, \beta_0, \beta_1) = (-1, 1, 1, 0)$ we obtain explicit Euler.
- 2. $(\alpha_0, \alpha_1, \beta_0, \beta_1) = (-1, 1, 0, 1)$ we obtain implicit Euler.

When the time t is considered at a specific discretized time point $t = t_j + lh$, the ODE in (3) yields

$$x'(t_{j} + lh) = f(t_{j} + lh, x(t_{j} + lh)), \tag{9}$$

Substitution of (9) into (4) leads to

$$\sum_{l=0}^{m} \alpha_l x(t_j + lh) = h \sum_{l=0}^{m} \beta_l x'(t_j + lh),$$
 (10)

which, by group the summation sign together, leads equally to

$$\therefore \left| \sum_{l=0}^{m} \left(\alpha_l \, x(t_j + lh) - h \, \beta_l \, x'(t_j + lh) \right) = 0. \right| \tag{11}$$

Then, the order of consistency is figured out by taking advantage of using Taylor's expansion for $x(t_j + lh)$ and $x'(t_j + lh)$. By using (24) and (27) in Observation 5 we obtain

$$x(t_j + lh) = \sum_{n=0}^{q} \frac{x^{(n)}(t_j)(lh)^n}{n!} + \mathcal{O}((lh)^{q+1}),$$
(12)

$$x'(t_j + lh) = \sum_{n=0}^{r-1} \frac{x^{(n)}(t_j) (lh)^{n-1}}{(n-1)!} + \mathcal{O}((lh)^r),$$
(13)

where, according to (24) and (27) in Observation 5, the following two substitutions have been performed for (12) and (13)

$$a \to t_i,$$
 (14)

$$h \to lh$$
, (15)

which means that a is replaced by t_j while h is by lh. Furthermore, expression (12) can be split into two main parts, where the first part is going with index n = 0, and the second part with $n \in [1, q]$, as follows

$$x(t_{j} + lh) = \sum_{n=0}^{q} \frac{x^{(n)}(t_{j}) (lh)^{n}}{n!} + \mathcal{O}((lh)^{q+1})$$

$$= \frac{x^{(0)}(t_{j}) (lh)^{0}}{0!} + \sum_{n=1}^{q} \frac{x^{(n)}(t_{j}) (lh)^{n}}{n!} + \mathcal{O}((lh)^{q+1})$$

$$= x(t_{j}) + \sum_{n=1}^{q} \frac{x^{(n)}(t_{j}) (lh)^{n}}{n!} + \mathcal{O}((lh)^{q+1}), \tag{16}$$

which reads

$$\therefore \left| x(t_j + lh) = x(t_j) + \sum_{n=1}^q \frac{x^{(n)}(t_j) (lh)^n}{n!} + \mathcal{O}((lh)^{q+1}). \right|$$
 (17)

Besides, let the index in expression (13) be starting from n = 1, instead of n = 0, we then obtain

$$x'(t_j + lh) = \sum_{n=0}^{r-1} \frac{x^{(n)}(t_j) (lh)^{n-1}}{(n-1)!} + \mathcal{O}((lh)^r)$$
$$= \sum_{n=1}^r \frac{x^{(n)}(t_j) (lh)^{n-1}}{(n-1)!} + \mathcal{O}((lh)^r), \tag{18}$$

which means that every element within the summation sign going with (n + 1) becomes n, and element going with n will become (n - 1). Further expressions of (18) lead to

$$x'(t_j + lh) = \sum_{n=1}^{r+1} \frac{n \, x^{(n)}(t_j) \, (lh)^{n-1}}{n!} + \mathcal{O}((lh)^r)$$

$$= \sum_{n=1}^{r+1} \frac{n \, x^{(n)}(t_j) \, l^{n-1} h^n}{n! \, h} + \mathcal{O}((lh)^r), \tag{19}$$

which reads

$$\therefore \quad x'(t_j + lh) = \sum_{n=1}^{r+1} \frac{n \, x^{(n)}(t_j) \, l^{n-1} h^n}{n! \, h} + \mathcal{O}((lh)^r).$$
 (20)

Next, by substituting (17) and (20) into (11) we obtain the following relation

$$\sum_{l=0}^{m} \left(\alpha_{l} x(t_{j}) + \alpha_{l} \sum_{n=1}^{q} \frac{x^{(n)}(t_{j}) (lh)^{n}}{n!} + \alpha_{l} \mathcal{O}((lh)^{q+1}) - h \beta_{l} \sum_{n=1}^{r+1} \frac{n x^{(n)}(t_{j}) l^{n-1} h^{n}}{n! h} - h \beta_{l} \mathcal{O}((lh)^{r}) \right) = 0,$$
(21)

which leads to

$$\sum_{l=0}^{m} \alpha_{l} x(t_{j}) + \sum_{l=0}^{m} \alpha_{l} \sum_{n=1}^{q} \frac{x^{(n)}(t_{j}) (lh)^{n}}{n!} + \sum_{l=0}^{m} \alpha_{l} \underbrace{\mathcal{O}((lh)^{q+1})}_{\mathcal{O}(h^{q+1})}$$

$$- \sum_{l=0}^{m} h \beta_{l} \sum_{n=1}^{r+1} \frac{n x^{(n)}(t_{j}) l^{n-1} h^{n}}{n! h} - \sum_{l=0}^{m} \beta_{l} \underbrace{h \mathcal{O}((lh)^{r})}_{\mathcal{O}(h^{r+1})} = 0,$$

$$\Leftrightarrow \sum_{l=0}^{m} \alpha_{l} x(t_{j}) + \sum_{l=0}^{m} \left(\alpha_{l} \sum_{n=1}^{q} \frac{x^{(n)}(t_{j}) (lh)^{n}}{n!} - h \beta_{l} \sum_{n=1}^{r+1} \frac{n x^{(n)}(t_{j}) l^{n-1} h^{n}}{n! h} \right)$$

$$+ \sum_{l=0}^{m} \left(\underbrace{\alpha_{l} \mathcal{O}(h^{q+1}) - \beta_{l} \mathcal{O}(h^{r+1})}_{\gamma_{l} \mathcal{O}(h^{q+1})} \right) = 0$$

$$\Leftrightarrow \sum_{l=0}^{m} \alpha_{l} x(t_{j}) + \sum_{l=0}^{m} \left(\alpha_{l} \sum_{n=1}^{q} \frac{x^{(n)}(t_{j}) l^{n} h^{n}}{n!} - \beta_{l} \sum_{n=1}^{r+1} \frac{n x^{(n)}(t_{j}) l^{n-1} h^{n}}{n!} \right)$$

$$+ \sum_{l=0}^{m} \gamma_{l} \mathcal{O}(h^{q+1}) = 0$$

$$(22)$$

Observation 5. Taylor's expansion of function x(t) around point a reads

$$x(t) = x(a) + \frac{x'(a)(t-a)}{1!} + \frac{x''(a)(t-a)^{2}}{2!} + \dots + \frac{x^{(p)}(a)(t-a)^{p}}{p!} + \mathcal{O}((t-a)^{p+1})$$

$$= \sum_{n=0}^{p} \frac{x^{(n)}(a)(t-a)^{n}}{n!} + \mathcal{O}((t-a)^{p+1}). \tag{23}$$

Then, by setting h := t - a we obtain t = a + h; hence, the (23) becomes

$$x(a+h) = x(a) + \frac{x'(a)h}{1!} + \frac{x''(a)h^2}{2!} + \dots + \frac{x^{(p)}(a)h^p}{p!} + \mathcal{O}(h^{p+1})$$
$$= \sum_{n=0}^{p} \frac{x^{(n)}(a)h^n}{n!} + \mathcal{O}(h^{p+1}). \tag{24}$$

Since the point a can be chosen arbitrarily, we can set it as a variable t, yielding

$$x(t+h) = x(t) + \frac{x'(t)h}{1!} + \frac{x''(t)h^2}{2!} + \dots + \frac{x^{(p)}(t)h^p}{p!} + \mathcal{O}(h^{p+1})$$
$$= \sum_{n=0}^{p} \frac{x^{(n)}(t)h^n}{n!} + \mathcal{O}(h^{p+1}), \tag{25}$$

which, by taking derivative w.r.t. variable t on both sides of (25), gives rise to

$$x'(t+h) = x'(t) + \frac{x''(t)h}{1!} + \frac{x'''(t)h^{2}}{2!} + \dots + \frac{x^{(p+1)}(t)h^{p}}{p!} + \mathcal{O}(h^{p+1})$$

$$= \sum_{n=0}^{p} \frac{x^{(n+1)}(t)h^{n}}{n!} + \mathcal{O}(h^{p+1}), \tag{26}$$

which can also be written as follows

$$x'(t+h) = x'(t) + \frac{x''(t)h}{1!} + \frac{x'''(t)h^2}{2!} + \dots + \frac{x^{(p)}(t)h^{p-1}}{(p-1)!} + \mathcal{O}(h^p)$$

$$= \sum_{n=0}^{p-1} \frac{x^{(n+1)}(t)h^n}{n!} + \mathcal{O}(h^p).$$
(27)

Note in passing that the only difference between (26) and (27) is the order p, i.e. we expand till p in (26), but only till (p-1) in (27). It turns out that the expression (27) helps our analysis in this exercise become more succinct.

$$x(t_i + lh) = x(t_i) (28)$$