

Advanced Applications of Systems Modeling & Dimulation

Dr. Xueping Li University of Tennessee, Knoxville

Case Study #3

SP - PP System

	Name:			delay	
	Show name				
	Туре:	=,		ecified time til stopDelay() is called	
	Delay time:	\Im	ex	oonential(1.0/60)	minutes
	Capacity:	=,	1		
	Maximum capacity:	=,			
	Agent location:	=,	🖫 noc	de1	▼ %
*	Advanced				
	Forced pushing:			=, 🗆	
	Restore agent location on exit:				
Force statistics collection:				=, 🗆	
*	Actions				
	On enter:				
	On at exit:				
	On exit:				
	On exit:				
	On remove:				

Sink - Sink					
Name:	sink				
Show name	Show name				
▼ Actions					
On enter:	<pre>vWIP1; statWIP1.add(vWIP1, time()); //calculate TIS agent.TIS = time() - agent.TIS; statTIS1.add(agent.TIS); dsTIS1.add(agent.TIS);</pre>				
▼ Advanced					
Agent type:	= Customer ▼				
 Single agent (Population of agents				
Model/library:	Process Modeling Library (change)				
Visible:	yes				
☐ Visible on upper level					
Turn on model	Turn on model execution logging				
Show presentation	n				
Description					

How many runs are needed??

Half Width, Number of Replications

- Prefer smaller confidence intervals precision
- Notation:

$$n = \text{no. replications}$$
 $\overline{X} = \text{sample mean}$
 $s = \text{sample standard deviation}$
 $t_{n-1,1-\alpha/2} = \text{critical value from } t \text{ tables}$

- Confidence interval:
- Half-width =

$$t_{n-1,1-\alpha/2}\frac{s}{\sqrt{n}}$$

Must increase n — how much?

$$\overline{X} \pm t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$$

Want this to be "small," say < h where h is prespecified

Half Width, Number of Replications

(cont'd.)

$$n = t_{n-1,1-\alpha/2}^2 \frac{s^2}{h^2}$$

- Set half-width = h, solve for
- Not really solved for n (t, s depend on n)
- Approximation:
 - Replace t by z, corresponding normal critical value
 - Pretend that current s will hold for larger samples
 - Get

$$n \cong Z_{1-\alpha/2}^2 \frac{s^2}{h^2}$$

s = sample standard deviation from "initial" number n_0 of replications

Easier but different approximation:

$$n \cong n_0 \frac{h_0^2}{h^2}$$

 h_0 = half width from "initial" number n_0 of replications

n grows quadratically as h decreases

E.G. SP-PP Project::1) Define a parameter

2) Create a Parameter Variation experiment

3) Collect data etc.

