# Development of IoT-Based Irrigation System for Sustainable Agriculture

# Thesis Pre-Defense

Presenter: Registration:

Charles Mzigo Kajanja E222-01-0102-2022 Supervisors:

1. Dr. Sam Macharia

2. Dr. Charles Kagiri

MSc. Advanced Manufacturing and Automation Engineering









# **Presentation Highlights**

- 1. Introduction
- 2. Literature Review
- 3. Material and Methods
- 4. Results and Discussion
- 5. Conclusion
- 6. Recommendation

# Introduction

# **Background Information**

Agriculture is the Source of Food, Raw material for industry and Domestic, Contributes to the National Economy

### **Resources for Agriculture**



### **Challenges in Agriculture**

Water and Land scarcity, High Food demand

### **Automation and IoT System**



### **Causes of the Challenges**

Climate changes, Urbanisation, Population growth

### **Farming and Irrigation Methods**



### **Facing Challenges**

Efficient use of Available Water, land, Modernising Agriculture

# **Problem Statement**

Limited arable land compels to multiple-crop farming, which challenges farm monitoring and irrigation processes, compromising water scarcity management strategies.

| <u>Problem</u>                                                                      | <u>Causes</u>                                             | <u>Gap</u>                                                                                               | Proposed solution                                                                            |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Challenges in Monitoring and scheduling irrigation process in multiple crop farming | Crop Difference growing parameters and water requirements | There is no adequate information on the concept of IoT and automation in multiple crop farming in (EAC). | IoT Irrigation system to Monitor and schedule irrigation processes on the intercropped farm. |

| <u>Rationale</u>                | <u>Motivation</u>              |  |
|---------------------------------|--------------------------------|--|
| Scarce of resources issues      | Impact on addressing farming   |  |
| Popularity of Intercropping for | challenges in the society.     |  |
| Smallholder farmers (SHF).      | Automating irrigation system   |  |
| Engineering aspect on solving   | improves farming.              |  |
| problems in Agriculture.        | IoT tech can help SHF for farm |  |
|                                 | monitoring.                    |  |

# **Research Objectives and Scope**



# **Literature Review**

### **Automatic irrigation**

# Soil Moisture Sensor BUZZER LED Arduino RELAY WATER PUMP

Mon Arjay, et al. (2020) https://doi.org/10.30534/iiatcse/2020/216922020



Gilroy P., et al.(2022) https://doi.org/10.3390/iot4030012

# IoT controlled irrigation IoT irrigation for smart farming



Chanthana Susawaengsup, et al. (2022) https://doi.org/10.3390/horticulturae8121130

### **Results:**

Minimized Water wastage while satisfying crop needs.

Monitoring weather condition Maximize crop production

Simplified farming

### Gap:

IoT and Automation in Multiple crop farming is limited



**Dhanalakshmi R., et al. (2020)** https://doi.org/10.6180/jase.202208 25(4).0009



Emmanuel, et al. (2020) https://doi.org/10.1016/i.inpa.2020.05.004

# **Materials and Methods**

# **Study Area Description**

The Research was conducted in Mechatronic Labs Department of mechatronic Engineering, School of engineering at the Dedan Kimathi University of Technology

Location: 0° 23′ 51″ S, 36°,57′31″E

Lab temperature 17-19 oC and Humidity 90 - 93%

# **Materials**

# **Hardware Components**



# **Software Components**

| Software    | Version | Function                      |
|-------------|---------|-------------------------------|
| Arduino IDE | 2.1.0   | Programing the system         |
| Node-Red    | v3.0.2  | Data processing               |
| Influx BD   | v1.8.10 | Database to store Data        |
| Grafana     | 10.0.3  | Data Analysis & Visualization |
| MQTT        | 2.0.11  | Communication Protocol        |
| Proteus     | Pro. 8  | Electrical Circuit Design     |
| Python      | 3.9.2   | Data analysis                 |
| RealVNC     | 7.1.0   | Cloud Connection              |





# **Method 2:Experimental Setup**

# Data collection Techniques





# Method 3: Soil Moisture Optimization

# **Energy use management**



# **Results and Discussions**

# **Irrigation system:**

# IoT system







# **Soil Moisture Content**

# Soil Moisture contents 25 15 20 Period (Days)

- The system maintained moisture levels within the range for all crops with an average of 75,65,64 & 95% for beans, maize, onion and rice.
- The system can identify the crop needs
- It can help farmers to automatically plan irrigations

# **Soil Moisture Patterns**



- Beans maintained 70-85% for 32 days, maize 60-75% for 33 days, 0nion 60-75% for 33 days, rice 90-100% for 32 days.
- The system achieved the range of moisture contents most of the days.

# Humidity

# Temperature

# Water Level



- Humid range between 92 & 93%
- Many days humidity was 92%

- Temp. reneged between 17 & 18° C •
- Many days temp was 18° C

- Water level mostly ranged between 25-35 mm.
- Average of 29 mm allover experiment period.

- Humidity and Temp found to have no significant changes
- Does not caused any schedule of irrigation processes
- However, they are important especially during hottest seasons
- It can help on maintaining required water level.
   It helps smallholder farmers (SHE) to
  - It helps smallholder farmers (SHF) to achieving optimal water levels preventing overflow.

# Soil -water volume relationship

# Soil moisture optimisation



- The models for all samples found to have a correlation of 0.99.
- It indicates that as water increases also the moisture content increase.
- The model can be used to optimise soil moisture



- Soil- water volume relationship achieved optimal soil moisture level for all crops.
- Moisture contents of 75, 60, 58 & 98% for beans, maize, onion and rice was achieved.
- It allocates the right amount of water to the crop
- It promotes crop health for improved crop production

# **Soil moisture Confirmation**



- Sensors confirmed soil moisture and schedule Irrigations during optimal irrigation hours.
- The technique yielded the same results as when the IoT system remained ON for 24 hours.
- The technique can be used for energy use Management
- It promotes system's scalability in areas with energy scarce

# **Energy Saving**



- Optimal irrigation hours scheduling technique can save energy up to 97%.
- It can be a tool energy use managements
- Can help smallholder farmers in remote areas to adopt the system.

# **Irrigation Scheduling Plans**



# Discussion

- Day 1 irrigation happened twice for beans, maize and onion, and three times in rice.
- Day 2 happened once for all crops except for the rice happened twice.
- From Day 7 irrigation became dynamic happening once or twice daily.
- Beans: Day7 & D33. Maize: Day 11 & 36.
   Onion: Day 16 & 26.
- Rice maintained twice irrigations except on Day 16 & 33 happened once.

- It is difficult for SHF to detect water crop needs and take action on time.
- The system is important to farmers helping on water resources allocation.

# Water Usage

## Water Usage for Different Crops Over Days Water Usage (in litres) Maize Onion Day 2 Days Water Usage for Different Crops Over Weeks Maize Onior Usage 4 20 10 Week 3

• More water Day 1, normal up to Day 7.

Weeks

- Started to increased from Week 2
- The system can detects water needs in the right time.
- Efficient utilisation of water

# **Water Saving**



- IoT Irrigation system utilized less water by 8.6%.
- It can be a tool for managing water usage.
- Can provide the right water at the right time.

# Conclusion



The developed system managed to schedule irrigation processes depending on crop water needs on the intercropped farm.

The system respond to the unpredictable, dynamic changes of moisture content

It helps farmers automatically allocate water resources and reduce water waste



Using IoT sensors, the system Monitors farm remotely.

It can eliminate physical presence in the field, simplifying farming practices for farmers

It can help farmers identify abnormalities on the farm and make the right decisions



Optimal soil moisture content attained by using soil and water volume relationship.

Optimal soil moisture contents can promote crop health.

It maximizes utilization of water resources.



Using Optimal irrigation hours scheduling technique saves energy.

Less energy use can promote the system's scalability for farmers in remote areas where energy is scarce.

Enables irrigation to happen during optimal irrigation hours

### **Contributions**

The Research Provides: Insights on the integration of automation and IoT technology in multiple crop farming,

:Soil Moisture and Water volume relationship technique for optimisation of soil moisture contents.

: Optimal irrigation hours scheduling technique for energy use Management.

18

# Recommendations

# Future research may prioritise on:

- ★ Design of wireless sensors to streamline the process of removing and replacing of wires during the farming process.
- ★ Integrate the system with a database containing crucial crop growing parameters, allowing the system's adaptability of crop rotations.
- ★ Integrating the system with other sensing technologies such as disease detection and fertigation systems.

# Acknowledgement

# Thank You!







