Optical activity

Optical Activity

Ordinary light

Vibrations in all planes at right angle to the line of propagation

Plane polarized light

Vibration only in one plane at right angle to the line of propagation

Two important conditions for optical activity:

♦ Molecule must have chiral or asymmetric carbon

Molecule must have no plane of symmetry

Optically active

Optically active

Optically inactive

Effect in physico-chemical properties

(+)-tartaric acid: [α]_D = +13° m.p. 172 °C

(-)-tartaric acid: [α]_D = -13° m.p. 172 °C

meso-tartaric acid: [α]_D = 0° m.p. 140 °C

Absolute configuration and Relative configuration

Relative configurations

Absolute configurations

Conventions, terminologies and projections

Fisher projection (for the lactic acids, amino acids, carbohydrates)

Rule: Position of the OH keeping -CH₂OH at rear position

How to look at a 3D molecule

Atom or functional group with least atomic weight should be placed at rear position

Conventions and terminologies

The (R, S) - convention (or Cahn-Ingold-Prelog system, mostly covers all areas)

Atom or functional group with least atomic weight should be placed at rear position

Sequence rules:

- (1) Sequence A>B>C>D atomic number
- (2) Sense the rotation from A to D

CIP- Priority rule

The Sequence Rule for Assignment of Configurations to Chiral Centers

Assign sequence priorities to the four substituents by looking at the atoms attached directly to the chiral center.

- The higher the atomic number of the immediate substituent atom, the higher the priority.
 For example, H= < C= < N= < C=. (Different isotopes of the same element are assigned a priority according to their atomic mass.)
- If two substituents have the same immediate substituent atom, evaluate atoms progressively further away from the chiral center until a difference is found.
 For example, CH₃- < C₂H₅- < CICH₂- < BrCH₂- < CH₃O-.
- If double or triple bonded groups are encountered as substituents, they are treated as an equivalent set of single-bonded atoms.

For example, $C_2H_5- < CH_2=CH- < HC=C-$

- 1. Higher atomic number: Higher priority
- 2. Try to keep the lower priority group at the bottom
- 3. R—right turn, S—left turn

Interconversion

Fischer

Conformational analysis of n-butane

Conformational Analysis of

Stag Butane

Staggered: gauche

3 KJ/mol

<u>Steric Strain:</u> repulsive interaction that occurs when two groups are closer than their atomic radii

Eclipsed conformations of butane: rotational barrier of butane is 25 KJ/mol. *A* CH_3 - CH_3 eclipsing interaction is 17 KJ/mol.

17