Unemployment Insurance and Worker-Firm Sorting

Matthew McKernan

10 November 2023

University of Oxford

Motivation

Introduction

- ▶ Recessions have an **ambiguous** impact on the allocation of workers across jobs
 - ⋄ Lower productivity matches 'cleansed', slower reallocation ('sullying')
 - Available empirical evidence suggests cleansing effect marginally dominates
 Haltiwanger et al. (2022), Crane et al. (2022), Baley et al. (2023)

Introduction '

- Recessions have an ambiguous impact on the allocation of workers across jobs
 - Lower productivity matches 'cleansed', slower reallocation ('sullying')
 - Available empirical evidence suggests cleansing effect marginally dominates
 Haltiwanger et al. (2022), Crane et al. (2022), Baley et al. (2023)
- ▶ In United States unemployment insurance (UI) becomes more generous during recessions
 - ⋄ Max. duration extended above usual 26 weeks (systematic + discretionary component)
 - Matters for search behaviour Marinescu and Skaldalis (2020), job creation Hagedorn et al. (2019)
 - This paper: ...sorting of workers across jobs?

Introduction

- ▶ Recessions have an ambiguous impact on the allocation of workers across jobs
 - Lower productivity matches 'cleansed', slower reallocation ('sullying')
 - Available empirical evidence suggests cleansing effect marginally dominates
 Haltiwanger et al. (2022), Crane et al. (2022), Baley et al. (2023)
- ▶ In United States unemployment insurance (UI) becomes more generous during recessions
 - ⋄ Max. duration extended above usual 26 weeks (systematic + discretionary component)
 - Matters for search behaviour Marinescu and Skaldalis (2020), job creation Hagedorn et al. (2019)
 - This paper: ...sorting of workers across jobs?

Research questions

- 1. How does cyclical UI policy affect worker-firm sorting? Are these effects large?
- 2. Are cyclical changes in UI generosity desirable?

Preview of Results

- 1. Model: Random search with ex ante heterogeneous workers & jobs
 - → Complementarities between worker-firm types
 - → Heterogeneity in unemployment risk
 - ightarrow On-the-job search, employed use outside offers in wage bargain

Preview of Results

- 1. **Model:** Random search with **ex ante heterogeneous** workers & jobs
 - ightarrow Complementarities between worker-firm types
 - → Heterogeneity in unemployment risk
 - → On-the-job search, employed use outside offers in wage bargain
- 2. Empirics: Document facts using micro-data to discipline model
 - ightarrow Low-type workers face **higher** unemployment risk, driven by **separations**
 - \rightarrow \uparrow UI generosity associated with \downarrow job finding rate, separations essentially flat
 - ightarrow Wages sensitivity depends on recent **employment history**

Preview of Results

- 1. **Model:** Random search with **ex ante heterogeneous** workers & jobs
 - ightarrow Complementarities between worker-firm types
 - → Heterogeneity in unemployment risk
 - → On-the-job search, employed use outside offers in wage bargain
- 2. **Empirics:** Document facts using micro-data to discipline model
 - ightarrow Low-type workers face **higher** unemployment risk, driven by **separations**
 - \rightarrow \uparrow UI generosity associated with \downarrow job finding rate, separations essentially flat
 - ightarrow Wages sensitivity depends on recent employment history

3. Quantitative:

- $\rightarrow\,$ Countercyclical UI strengthens both cleansing and sullying effects of recessions
- \rightarrow \uparrow **Sorting** during recessions **stronger** (corr. w/ GDP -0.3 compared to -0.01)
- ightarrow Macro effects & welfare gains from cyclical UI policy are quantitatively small
- ightarrow Workers benefit **relatively more** from countercyclical UI, firms from procyclical UI

Literature review

- ▶ Worker-firm sorting: Lise and Robin (2017); Lise and Postel-Vinay (2020); Baley et al. (2023)
 - Contribution: Study interaction of cyclical UI policy with worker-firm sorting
- ▶ Effects of UI: Chodorow-Reich et al. (2019); Jäger et al. (2020)
 - Contribution: Estimate effects of UI shocks using panel data
 - 1. New estimates on effects of UI on transition rates and wages
 - 2. Novel evidence that wage effects depend on worker's labour market history
- ▶ Cyclical design of UI: Mitman and Rabinovich (2015); Jung and Kuester (2015); Landais et al. (2018)
 - ⋄ Contribution: Model with heterogeneous workers & jobs consistent with microdata
 - Countercyclical UI can deliver welfare gains by improving worker-firm sorting

Road map

- 1. Motivation
- 2. A Model of Sorting
- 3. Empirical evidence
- 4. Bringing the Model to the Data
- 5. The Anatomy of Sorting
- 6. Welfare
- 7. Conclusion

A Model of Sorting

Model overview

- ▶ Random search model with two-sided heterogeneity: e.g. Lise and Robin (2017)
 - Production complementarities
 - ⋄ On-the-job search
 - ⋄ Endogenous vacancy creation
 - ⋄ Firms compete for workers (à la Bertrand)
 - \diamond Aggregate shocks

Model primitives

Agents.

- ▶ Risk-neutral, discount future at rate *r*
- ▶ Worker and jobs are ex ante heterogeneous
 - \diamond Workers indexed by ability $x \in \mathcal{X}$, drawn from distribution $\mathcal{L}(x)$
 - \diamond Continuum of firms, $y \in \mathcal{Y}$ endogenously chosen at job creation

▶ Measures of unemployed and employed denoted as u(x) and e(x, y), where

$$u(x) + \int e(x, y) dy = \mathcal{L}(x)$$

Model primitives

Production.

- ▶ Worker-firm matches produce value-added according to p(x, y, z)
 - \diamond Allow for worker-firm **complementarities** (i.e. $p_{xy} \ge 0$)
 - Productivity depends on quality of worker-firm match

- ▶ Aggregate productivity indexed by $z \in \mathcal{Z}$
 - \diamond Evolves according to Markov transition probability $\pi(z,z')$

Model primitives

UI policy.

ightharpoonup Workers receive UI income b(x, z) when unemployed, given by

$$b(x,z) = \Psi(z) \times p(x,y^*(x,1),1)$$

where $y^*(x,1)$ is **optimal choice** of firm type for worker x when z=1

 \blacktriangleright $\Psi(z)$ function controls the **design** of UI policy (i.e. generosity, cyclicality)

Labour market

Search.

- ▶ All unemployed workers search, employed workers search with intensity s
- ▶ Aggregate search effort: $L = \int u(x)dx + s \int \int e(x,y)dydx$

Jobs.

- ▶ Measure of type-y opportunities given by v(y), posted with per-period cost c(v)
- ▶ Aggregate vacancies given by $V = \int v(y)dy$

Matching.

▶ Workers and firms meet via aggregate matching function

$$M_t = M(V_t, L_t)$$

- $lackbox{} f_t = M_t/L_t$ is unemployed worker contact rate, $s \cdot f_t$ for employed
- $ightharpoonup q_t = M_t/V_t$ is firm contact rate

Labour market

Upon matching.

- ▶ Unemployed: Firms make take it or leave it offer, unemployed always accept
- ▶ Employed: Firms engage in Bertrand competition, worker goes to firm with highest value

Contracts.

- ▶ Unemployed workers begin match with zero surplus share
- ▶ Force renegotiation upon receipt of **credible** alternative job offer

Separations.

- ightharpoonup Endogenous due to changes in z, or worker being poached by another firm
- **Exogenous** with probability $\delta \in (0,1)$

Match surplus

Proposition 1. Lise and Robin (2017)

The surplus of match (x, y) at time t does not depend on the distribution of vacancies, unemployed, or worker-firm pairs. Specifically, $S_t(x, y) \equiv S(x, y, z)$ such that

$$S(x, y, z) = s(x, y, z) + \frac{1 - \delta}{1 + r} \int S(x, y, z')^{+} \pi(z, z') dz'$$

where s(x, y, z) = p(x, y, z) - b(x, z) and $x^+ = \max\{x, 0\}$.

- \triangleright S(x, y, z) fully summarises all separation & mobility decisions
- ▶ Remaining equilibrium conditions are identities and laws of motion for distributions

Vacancy creation

- ▶ Free entry. Value of an unfilled vacancy in equilibrium is equal to zero
- ▶ Job creation equates marginal cost to marginal return:

$$c'(v_t(y)) = q_t J_t(y)$$

where $J_t(y)$ is the expected value of a new match:

$$J_{t}(y) = \int \frac{u_{t+}(x)}{L_{t}} \max\{S_{t}(x,y), 0\} dx + \int \int \frac{s \cdot e_{t+}(x,y)}{L_{t}} \max\{S_{t}(x,y) - S_{t}(x,y'), 0\} dx dy'$$

Wage distribution

- ▶ Framework does not require us to explicitly solve for wages
- ▶ Assume wage contract is commitment by firms to deliver fraction $\sigma \in (0,1)$ of match surplus to worker:

$$W_t(\sigma, x, y) = U_t(x) + \sigma S_t(x, y)$$

- $ightharpoonup \sigma$ for worker x at firm y depends on individual worker job offer history
- ▶ Contract σ will be equal to:

$$\sigma = \begin{cases} 0 & \text{if hired from unemployed} \\ S(x,y')/S(x,y) & \text{Bertrand competition between } y \text{ and } y', \text{ with } S(x,y) \geq S(x,y') \\ S(x,y)/S(x,y') & \text{Bertrand competition between } y \text{ and } y', \text{ with } S(x,y) < S(x,y') \end{cases}$$

 $ightharpoonup \sigma$ remains constant until next credible job offer, i.e. $S(x,y')>\sigma S(x,y)$

Wage distribution

▶ Wage given by:

$$w_t(\sigma, x, y) = \sigma p_t(x, y) + (1 - \sigma)b_t(x) - \Delta$$

where Δ is a discount for (expected) future renegotiation opportunities:

$$\Delta = (1-\delta)\beta \mathbb{E}_t \left[\mathbb{1}\{S_{t+1}(x,y) \geq 0\} \textit{sf}_{t+1} \int \left[I_{t+1}(\sigma,x,y,y') - \sigma S_{t+1}(x,y)\right] \frac{\textit{v}_{t+1}(y')}{\textit{V}_{t+1}} \textit{dy'}\right]$$

and where

$$I_{t+1}(\sigma, x, y, y') = \begin{cases} S_{t+1}(x, y) & \text{if } S_{t+1}(x, y') > S_{t+1}(x, y), \\ S_{t+1}(x, y') & \text{if } \sigma S_{t+1}(x, y) < S_{t+1}(x, y') \leq S_{t+1}(x, y), \\ \sigma S_{t+1}(x, y) & \text{if } S_{t+1}(x, y') \leq \sigma S_{t+1}(x, y) \end{cases}$$

Timing

Within period timing is as follows:

- 1. Aggregate productivity shock z is drawn from $\pi(z|z_{-1})$
- 2. Separations occur.
- 3. Firms decide which vacancies to post, $v_t(y)$
- 4. Vacancies and searchers meet according to $M(V_t, L_t)$
- 5. Matches decide whether to proceed, bargain over wages
- 6. Production takes place, wages are paid

Laws of motion for distributions

Worker measures after realization of aggregate/idiosyncratic shocks given by $u_{t+}(x)$, $e_{t+}(x,y)$, i.e.

$$e_{t+}(x, y) = (1 - \delta) \mathbb{1} \{ S(x, y, z_t) \ge 0 \} e_t(x, y)$$

▶ Measures are then updated according to:

$$u_{t+1}(x) = u_{t+}(x) \left[1 - \int f_t \frac{v_t(y)}{V_t} \mathbb{1}\{S(x, y, z_t) \ge 0\} dy \right]$$

$$\begin{aligned} e_{t+1}(x,y) &= e_{t+}(x,y) \left[1 - \int sf_t \frac{v_t(y)}{V_t} \mathbb{1}\{S(x,y',z_t) \ge S(x,y,z_t)\} dy' \right] \\ &+ \int e_{t+}(x,y') sf_t \frac{v_t(y)}{V_t} \mathbb{1}\{S(x,y,z_t) \ge S(x,y',z_t)\} dy' \\ &+ u_{t+}(x) f_t \frac{v_t(y)}{V_t} \mathbb{1}\{S(x,y,z_t) \ge 0\} \end{aligned}$$

Computation of stochastic search equilibrium

Algorithm

- 1. Solve for surplus function S(x, y, z) independently of realization of aggregate productivity shocks z
- 2. Given initial distributions $u_0(x)$ and $e_0(x,y)$, we simulate a sequence of productivity shocks $\{z_0,\ldots,z_T\}$ for a cohort of N workers and solve for the sequence of measures for vacancies, unemployed workers and worker-firm matches, $\{v_t(y),u_{t+1}(x),e_{t+1}(x,y)\}_{t=0}^T$, as well as the distribution of workers over wage contracts $\{\mathcal{W}_{t+1}(\sigma,x,y)\}_{t=0}^T$

How does UI affect worker-firm sorting?

Changes in $\Psi(z)$ can strengthen sorting by contracting matching space towards optimum...

How does UI affect worker-firm sorting?

Changes in $\Psi(z)$ can strengthen sorting by contracting matching space towards optimum...

How does UI affect worker-firm sorting?

...but can also weaken sorting by reducing the speed of worker reallocation in equilibrium

Empirical evidence

Panel data

Document micro-level evidence which we use to discipline model:

- 1. Unemployment risk by worker rank
- 2. Effects of UI shocks, both in aggregate and across workers

Panel data

Document micro-level evidence which we use to discipline model:

- 1. Unemployment risk by worker rank
- 2. Effects of UI shocks, both in aggregate and across workers

Panel data: Survey of Income and Programme Participation (SIPP)

- ▶ Participants interviewed every 4 months, up to 12 times
- ▶ Variables: earnings, employment, demographics, industry, occupation, assets/liabilities
- ▶ Unbalanced panel for 1996-2013, individuals observed for 30 months on average
- ▶ Final sample: 67,561 individuals aged 25-65. **1,442,645** total observations.
- ▶ Deflate nominal variables using PCE price index

Ranking workers

- ▶ Worker 'rank' is unobservable
 - ♦ How do we rank workers in the data?
- ▶ Use two different methods informed by theory:
 - 1. Non-employment time
 - ightarrow Higher-type workers are productive at more firm types, spend less time out of employment
 - 2. Earnings
 - ightarrow Higher-type workers in more productive matches, paid higher wages

Both methods used in sorting literature e.g. Bagger and Lentz (2019), Crane et al. (2020)

▶ Worker rank correlated with wealth, but not other characteristics (e.g. education, occupation etc.)

Unemployment risk by worker rank

How does unemployment risk vary with worker rank?

Unemployment risk determined by:

- 1. Separation risk, i.e. employment-unemployment (EU) rate
- 2. Job finding rate, i.e. unemployment-employment (UE) rate

	Table (1)	Unemployment risk by worker rank					
	Average (%)	Ranking #1			Ranking #2		
		Low	Mid	High	Low	Mid	High
EU	0.10	1.32	0.91	0.72	1.48	0.77	0.97
UE	27.10	1.08	1.01	0.93	0.94	0.93	0.71

Notes: The first column displays the average flow rates in the SIPP data in our sample from 1996-2013. The remaining columns present ratios of transition rate by rank to the average transition rate.

Estimating the Effects of UI

Impulse responses: Panel version of Jordà (2005) LPs

- ▶ Labour market flows (job finding rate, separation rate)
- ▶ Wages

$$w = \sigma \underbrace{\stackrel{ ext{Productivity}}{p}}_{ ext{Productivity}} + (1 - \sigma) \underbrace{\stackrel{ ext{Outside option}}{\Omega}}_{ ext{Outside option}}$$

- \diamond UI affects outside option (Ω), potentially **heterogeneous** across workers
- $\diamond\,$ Worker bargaining power σ will also vary, e.g. due to job offer history

Estimating the Effects of UI

Impulse responses: Panel version of Jordà (2005) LPs

- ▶ Labour market flows (job finding rate, separation rate)
- Wages

$$w = \sigma \underbrace{\stackrel{\mathsf{Productivity}}{p}}_{} + (1 - \sigma) \underbrace{\stackrel{\mathsf{Outside option}}{\Omega}}_{}$$

- \diamond UI affects outside option (Ω), potentially **heterogeneous** across workers
- \diamond Worker bargaining power σ will also vary, e.g. due to job offer history

UI shocks: Chodorow-Reich, Coglianese & Karabarbounis (2019 *QJE*)

- ▶ State-monthly shocks to UI duration covering sample period
- ▶ Identification: Real-time measurement error in state-level unemployment rate ▶ Ul shocks

Estimating the Effects of UI: Empirical specification

General empirical specification: Estimate the following regression for time horizon $h \ge 0$:

$$(\Delta_h)y_{i,s,t+h} = \left(\sum_{k=-\kappa}^h \gamma_h \varepsilon_{s,t+k}^{UI}\right) \times \mathbb{1}_{i \in \mathcal{I}^{\times}} + \sum_{j=1}^L \delta_h' \mathbf{X}_{i,s,t-j} + \phi_{i,h} + \phi_{s,h} + \phi_{t,h} + \nu_{i,t+h}$$

- \blacktriangleright $(\Delta_h)y_{i,s,t+h}$ is the (cumulative change in) worker-level variable of interest
- $ightharpoonup \varepsilon_{s,t}^{UI}$ is the UI shock in state s and time t
- $ightharpoonup \mathcal{I}^x$ is a sub-sample based on worker characteristic x (e.g. < 10th earnings pct.)
- ▶ X_{i,s,t} is a vector of individual and state-level controls
- lacktriangledown $\phi_{i,h},\,\phi_{s,t}$ and $\phi_{t,h}$ are individual, state and time fixed effects respectively

where $\{\gamma_h\}_{h=0}^H$ are the coefficients of interest

Estimating the Effects of UI: Labour Market Flows

Figure (4) Estimated responses of job finding and separation rates

- ▶ Job finding (UE) rate falls on impact, unwinds thereafter
- ▶ Separation (EU) rate essentially flat
- ▶ Robustness: (i) Individual-level controls, (ii) lagged & future shocks, (iii) seasonality, & (iv) cumulative change vs. levels

Estimating the Effects of UI: Wages

Figure (5) Impulse Responses of (Log) Real Wages

- Wages insensitive on average to changes in UI
- ▶ Robustness: (i) Individual-level controls, (ii) lagged & future shocks, (iii) seasonality, & (iv) cumulative change vs. levels

Heterogeneous Effects of UI: Wages

Figure (6) Wage effects by labour market experience

- ▶ Higher wage sensitivity for workers who spend time in unemployment
- ▶ Consistent with Postel-Vinay and Robin (2002) wage protocol
- ► Limited evidence that other characteristics matter ► Income/wealth ► Demographics

Empirical evidence: Summary

1. Unemployment risk

- Significant heterogeneity in unemployment risk by worker rank
- Key driver is differences in separation risk
- Differences in job finding rate less important

2. What are the effects of UI policy changes?

- ⋄ Job finding rate falls in response to ↑ UI generosity
- Separations almost flat in response to UI policy changes
- Wages highly insensitive on average, but sensitive for recently unemployed
- ⇒ Consistent with Postel-Vinay and Robin (2002) wage determination

Next: Bring model to the data

Bringing the Model to the Data

Functional forms

- ▶ Value-added: $p(x, y, z) = z(p_1x + p_2y p_3 \min\{x y, 0\}^2)$
 - e.g. Lise and Postel-Vinay (2020)
 - ⋄ p₁ captures return to higher-type workers
 - ⋄ p₂ captures return to higher-type firms
 - ⋄ p₃ controls costs associated with worker-firm mismatch

- ▶ Unemployment insurance: $\Psi(z) = b_0 \cdot z^{b_1}$
 - ⋄ b₀ controls average replacement rate
 - \diamond b_1 controls the cyclicality of generosity with respect to the aggregate state, z

Functional forms

- ▶ Type distributions: $x \sim \text{Beta}(\beta_1, \beta_2) \in [0, 1], y \in [0, 1]$
- **▶** Matching function:

$$M(L_t, V_t) = \frac{\alpha L_t V_t}{(L_t^{\omega} + V_t^{\omega})^{1/\omega}}, \quad \alpha > 0, \ \omega > 0$$

▶ Vacancy costs:

$$c(v) = \frac{c_0 v^{1+c_1}}{1+c_1}, \quad c_0 > 0, \ c_1 > 0$$

ullet Aggregate shocks: $z\sim\pi(z|z_{-1})$ modelled as Gaussian copula with lognormal marginals

Calibration (preliminary)

Fixed parameters.

- Fix r to give 5% ann. interest rate (weekly freq.)
- \blacktriangleright Set ω to match elasticity of substitution between vacancies-searchers equal to 0.7
- \blacktriangleright Set $\{\rho,\sigma\}$ to mimic cyclical properties of US labor productivity

Strategy. Calibrate remaining parameters to match salient features of the data

- \blacktriangleright Identify $\{\alpha, \mathbf{s}, \delta\}$ by targeting average labour market flows
- lacktriangleright Identify worker heterogeneity $\{eta_1,eta_2\}$ by targeting unemployment level + concentration
- lacktriangleright Identify $\{c_0,c_1\}$ by targeting volatility and cyclicality of vacancies
- lacktriangle Set UI policy parameters $\{b_0,b_1\}$ to match level and cyclicality of replacement rate

Identifying p(x, y, z)

How do we identify the shape of the production function, p(x, y, z)?

Figure (7) Production function and matching set

▶ Target wage dispersion $\sigma(w)$, + estimated elasticity of flow rates ϵ_{UE} , ϵ_{EU}

Model fit (preliminary)

Tab	Table (2) Targeted moments										
Fitted moments	Data	Model	Origin								
$\mathbb{E}[\mathit{UE}]$	0.421	0.376	BLS								
$\mathbb{E}[extbf{\textit{EE}}]$	0.025	0.024	BLS								
$\mathbb{E}[E U]$	0.025	0.022	BLS								
sd[V]	0.206	0.224	BLS								
corr[V, VA]	0.721	0.568	BLS								
$\mathbb{E}[\mathit{U}]$	0.058	0.051	BLS								
%U acc. by top 10	0.660	0.444	Morchio (2020)								
$\mathbb{E}[b/w]$	0.470	0.593	SIPP								
corr[b/w, VA]	-0.462	-0.442	Landais et al. (2018)								
$\mathbb{E}[sd \; wages]$	0.420	0.538	SIPP								
$\epsilon_{\mathit{UE},\mathit{UI}}$	-0.075	-0.059	SIPP								
$\epsilon_{EU,UI}$	0.0003	0.0003	SIPP								

Parameter estimates (preliminary)

Table ((3)	Summary	of	parameters
---------	-----	---------	----	------------

	3.0 (0) 0	arrinary or pararrieters			
Parameter	Value	Description			
Assigned:					
r	$\log(1.05)/52$	Weekly interest rate			
ω	0.429	Matching function			
σ	0.148	Dispersion of aggregate shock			
ρ	0.992	Persistence of aggregate shock			
Calibrated:					
α	0.554	Match efficiency			
S	0.070	Relative search intensity of employed			
δ	0.008	Exogenous separation rate			
<i>c</i> ₀	0.651	Vacancy cost scale			
c_1	0.184	Vacancy cost convexity			
b_0	0.696	UI constant			
b_1	-0.984	UI elasticity			
β_1	2.01	Worker shape 1			
β_2	1.540	Worker shape 2			
ρ_1	16.277	Returns to worker type			
p_2	11.561	Returns to firm type			
p_3	45.188	Mismatch cost			

Feasible matching sets

Figure (8) Feasible matching sets, $S_t(x, y) \ge 0$

Worker and firm distributions

Figure (9) Worker and firm distributions $\mathcal{L}(x)$, u(x) and v(y)

Untargeted: Earnings distribution by worker rank

Figure (10) Earnings distribution by rank: Data vs. Model

- ▶ Qualitatively generates correct pattern in earnings distribution
- ▶ Matches shape of low-rank earnings distribution, not high-rank

Untargeted: Unemployment risk by worker rank

Tab	le (4)	Unemp	loyment	: risk: N	risk: Model vs.		
		Data			Model		
	Low	Mid	High	Low	Mid	High	
EU	1.32	0.91	0.72	1.26	1.02	0.75	
UE	1.08	1.01	0.93	0.55	1.87	2.30	

Notes: Table presents ratios of worker transition rates to average transition rate by rank, where average EU and UE rates are targeted moments.

- ▶ Model captures heterogeneity in separation risk by worker rank fairly well
- ▶ Job finding rate strongly increasing in rank, at odds with data

The Anatomy of Sorting

Sorting: Model vs Data

Questions:

- ▶ How do workers and firms sort in the model? How does this compare to the data?
- ▶ How does the design of UI affect sorting patterns in the model?

Empirical evidence: Crane et al. (2020)

- ▶ LEHD data. 1994-2014
- ▶ Rank workers by employment time, firms by poaching share
- ▶ Document cyclicality of employment shares by worker/firm rank

Policy counterfactual: Acyclical UI, i.e. $b_2 = 0$

Sorting: Worker and firm distributions

Table (5) Changes in worker and firm employment shares

_7	, ,			
	Tercile	Data	Baseline	Acyclical
	Workers:			
	Low	-44.9	-10.65	-9.74
	High	31.6	11.74	9.35
	Firms:			
	Low	12.0	17.13	12.0
	High	-8.9	-7.31	-2.13
=				

Notes: Table presents percentage change in employment shares in response to a 1 percent increase in unemployment rate. This is computed by regressing changes in employment shares on the first-difference of the unemployment rate.

▶ UI strengthens both worker cleansing and firm sullying

Sorting: Joint distribution

Table (6) Chai	Table (6) Changes in joint composition									
Tercile	Data	Baseline	Acyclical							
High-type workers &:										
Low-type firms	9.80	-1.69	0.50							
High-type firms	11.0	13.41	10.49							
Low-type workers &:										
Low-type firms	-8.30	-3.47	-1.56							
High-type firms	-18.1	1.99	-0.66							

Notes: Table presents percentage change in employment shares in response to a 1 percent increase in unemployment rate. This is computed by regressing changes in employment shares on the first-difference of the unemployment rate.

- ▶ Model not consistent with 'off-diagonals'
- ▶ Reduces high-worker/low-firm matches, but increases low-worker/high-firm matches

Sorting and UI: Macro implications

Is the overall effect on sorting significant? Does this matter at the macro level?

Sorting index: $\rho_{x,y} = corr(x,y)$

 Table (7)
 Cyclical behaviour of sorting: Baseline vs. Acyclical

Moment	Baseline	Acyclical
Sorting:		
$sd[ho_{x,y}]$	0.039	0.046
$corr[\rho_{x,y}, VA]$	-0.338	-0.011
Others:		
$sd[\mathit{U}]$	0.178	0.125
sd[VA]	0.092	0.089
$corr[ho_{x,y}, VA]$ Others: $sd[U]$	-0.338	-0.011

Sorting and UI: A recession experiment

Figure (11) Recession under alternative UI policies

- ▶ Improved sorting comes at cost of more unemployment, larger initial fall in output
- lacktriangle Overall relatively small macro effects (pprox 1% on output, 2% on unemployment)

Welfare

Welfare quantification

▶ Is cyclicality in UI generosity desirable?

▶ Social welfare:

$$\Omega = \mathbb{E}_0 \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^t \left\{ \int p(x,y,z) de_t(x,y) + \int b(x,z) du_t(x) - \int c(v) dv_t(y) \right\}$$

- **Exercise:** Evaluate social welfare at ergodic distribution over range for b_2
 - ⋄ Compare welfare (as % annual GDP) to acyclical UI case

Social welfare and UI cyclicality

Figure (12) Social welfare and UI cyclicality

Decomposing social welfare

- ▶ How are welfare gains from UI policy distributed?
- ▶ Social welfare can be decomposed into workers consumption and firm profits:

Workers:

$$\Omega^{w} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^{t} \left\{ \int w(\sigma, x, y) dW_{t}(\sigma, x, y) + \int b(x, z) du_{t}(x) \right\}$$

Firms:

$$\Omega^{f} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^{t} \left\{ \int (p(x,y,z) - w(\sigma,x,y)) dW_{t}(\sigma,x,y) - \int c(v) dv_{t}(y) \right\}$$

Decomposing social welfare

Figure (13) Distribution of welfare gains: Workers vs. firms

Welfare: A recession experiment

Figure (14) Social welfare under different UI policies in recession

lacktriangle Countercyclical UI delivers small welfare gains relative to acyclical UI (< 0.1%)

Conclusion

- ▶ In this project:
 - 1. Outline a model of worker-firm sorting over the business cycle disciplined with micro data
 - Document heterogeneity in unemployment risk
 - Novel finding that UI effects depend on labour market experience
 - 2. Cyclicality UI policy has significant effects on sorting
 - Counteryclical UI strengthens both cleansing & sullying effect
 - Effect on cleansing effect dominates, increasing countercyclicality in sorting
 - 3. Interaction between cyclical UI policy and sorting has small macroeconomic effects

Appendix

Who Claims UI?

Figure (15) Labour force status: Distributions by time

- ▶ UI receipts even more concentrated than unemployment
- ▶ Birinci and See (2023): \approx 40% eligible workers don't claim UI

Who Claims UI?

Table (8) Fraction of time in unemployment or receiving UI: SIPP 1996-2013

	Unemployment	UI Recipient
Avg. % time	1.8	1.0
Avg. % time, excluding top 5%	0.65	0.14
% never	85.2	91.6

Notes: Table presents statistics summarising labour market experiences of workers in the SIPP sample during the period 1996-2013. Column (1) refers to being in unemployed, which includes unemployed worker receiving UI but also those who do not. Column (2) refers only to workers receiving UI.

- ▶ Majority never experience unemployment (85%) or claim for UI (92%)
- ▶ Top 5% by time receiving UI account for 85% total UI spells

UI Recipients: Demographics

Figure (16) Worker characteristics by sub-sample

- ▶ No large differences in gender, education between UI recipients and rest of sample
- ▶ UI recipients skewed towards manual routine occupations

UI Recipients: Earnings & Wealth

Figure (17) Average earnings & wealth distributions: UI recipients vs. Rest of sample

▶ On average UI recipients work in lower paid jobs & hold less liquid wealth

UI Recipients: Unemployment Risk

 Table (9)
 Transition rates by group: SIPP 1996-2013

Transition rate	Aggregate (%)	Gender		Education		Occupation		Earnings		Wealth	
		Male	Female	>College	<College	Cognitive	Manual	<50th pct.	> 50pct	<50th pct.	>50th pct.
E-U	0.10	1.13	0.79	0.24	1.21	0.92	1.22	1.87	0.42	1.50	0.62
U-E	27.10	0.94	0.96	1.08	0.94	1.02	1.02	1.04	1.04	1.10	0.85

Notes: Table presents transition rates between employment and unemployment. Transition rates are computed as the average transition rate by group across the full sample period 1996m1-2013m11. The table reports the average transitions rates across the whole sample, and then reports ratios of transition rates for sub-groups over the whole sample.

- ▶ Separation risk varies strongly with education, occupation, earnings & wealth
- ▶ Job finding rates only really correlared with education & wealth
- ▶ Doesn't account for heterogeneity in eligibility & take-up

UI Recipient: Which Characteristics Matter?

Table (10) Effects of worker-level observables on UI receipt status

Logit: Receives $UI_i = \gamma + \beta' \mathbf{X}_i + \varepsilon_i$	(1)	(2)	(3)	(4)	(5)	(6)
Constant	-2.602***	-2.199***	-2.707***	-2.171***	-2.085***	-3.141***
Age	0.00223	0.000414	0.00103	-0.000587	0.000985	0.00697***
Experience	-0.00146***	-0.00121***	-0.00124***	-0.000111	-4.20e-05	0.000331*
Education						
High school		-0.159***	-0.115**	0.0246	0.0292	0.179***
Some further		-0.352***	-0.217***	-5.97e-05	0.00247	0.177***
College		-0.870***	-0.588***	-0.240***	-0.225***	-0.0369
>College		-1.367***	-1.042***	-0.619***	-0.593***	-0.447***
Occupation						
Manual Nonroutine			-0.150***	-0.411***	-0.422***	-0.414***
Cognitive routine			0.113***	-0.0425	-0.0407	-0.0483
Manual routine			0.671***	0.524***	0.521***	0.568***
Earnings & wealth						
Earnings percentile				-0.0160***	-0.0151***	-0.00794***
Liquid wealth percentile					-0.00429***	-0.00404***
% Unemp						13.31***
Standard controls	X	X	X	X	X	X
Observations	67,561	67,561	67,561	67,561	67,561	67,561

Notes: Standard additional controls for each logit model include gender, race & state of residence. *** p < 0.01, ** p < 0.05, * p < 0.1 using robust standard error

▶ Education & occupation most strongly correlated when controlling for UI take-up

UI Recipients: Which Characteristics Matter?

Table (11) Accounting for fraction (%) time receiving UI

Regression: Time Share $UI_i = \gamma + \beta' \cdot \mathbf{X}_i + \varepsilon_i$	(1)	(2)	(3)	(4)	(5)
Constant	0.0798***	0.0938***	0.0868***	0.0917***	0.0923***
Age	0.000517***	0.000503***	0.000549***	0.000539***	0.000547***
Experience	2.60e-05	2.73e-05	2.23e-05	2.93e-05*	2.97e-05*
Education					
High school		-0.0125**	-0.0125**	-0.0116**	-0.0116**
Some further		-0.0175***	-0.0168***	-0.0156***	-0.0157***
College		-0.0185***	-0.0167**	-0.0143**	-0.0141**
>College		-0.0200**	-0.0186**	-0.0152*	-0.0150*
Occupation					
Manual Nonroutine			-0.0183***	-0.0208***	-0.0209***
Cognitive routine			-0.00392	-0.00548	-0.00552
Manual routine			0.00978**	0.00810*	0.00805
F' 0					
Earnings & wealth				-0.000126**	-0.000121*
Earnings percentile				-0.000126***	-0.000121* -2.68e-05
Liquid wealth percentile					-2.08e-05
Standard controls	X	X	X	X	X
R^2	0.022	0.023	0.027	0.030	0.031
Observations	3,885	3,885	3,885	3,885	3,885

Notes: Standard controls for each regression model include gender, race & state of residence. **** p < 0.01. *** p < 0.05. ** p < 0.1 using robust standard errors.

▶ Worker observables do not explain cross-sectional variation in UI claim duration

Chodorow-Reich et al. (2019) UI shocks

Main idea: Exploit ex post mistakes in UI duration extensions due to measurement error

- \blacktriangleright Extensions based on *real-time* estimates of state-level unemployment rate $u_{s,t}$
- $ightharpoonup u_{s,t}^*$ is a noisy real-time measure of $u_{s,t}$, which is subject to revisions

Actual UI duration $T_{s,t}^*$ given by:

$$T_{s,t}^* = T_{s,t} + \hat{T}_{s,t}$$

where $T_{s,t} = f(u_{s,t-1})$ is the 'correct' UI duration and $\hat{T}_{s,t}$ is a UI error.

Challenge: UI errors $\hat{T}_{s,t}$ are serially correlated

 \rightarrow Define structural innovation $\epsilon_{s,t}$ as unexpected component of UI error:

$$\epsilon_{s,t} = \hat{T}_{s,t} - \mathbb{E}_{t-1} \hat{T}_{s,t}$$

Identifying assumption: $\operatorname{Cov}(\mathbb{E}_{t-1}\hat{T}_{s,t},\epsilon_{s,t}) = \operatorname{Cov}(T^*_{s,t+j},\epsilon_{s,t}) = 0, \ \ \forall \ j < 0$

Transition rates

Table (12) Transition rates by group: SIPP 1996-2013

Transition rate (%)	Aggregate	Gender		Education		Occupation		Earnings		Wealth	
		Male	Female	>College	<college< td=""><td>Cognitive</td><td>Manual</td><td><50th pct.</td><td>> 50pct</td><td><50th pct.</td><td>>50th pct.</td></college<>	Cognitive	Manual	<50th pct.	> 50pct	<50th pct.	>50th pct.
E-U	0.11	0.98	0.99	0.57	1.10	0.89	1.32	1.81	0.37	1.37	0.67
E-N	1.56	0.75	1.15	0.94	1.07	0.92	1.06	1.60	0.45	1.26	0.63
U-E	27.10	1.15	1.01	1.12	0.96	1.07	1.05	0.96	1.32	1.08	0.95
U-N	7.25	1.1	0.98	1.03	0.98	1.02	0.9	0.99	0.84	1.11	0.89
N-E	37.50	1.1	0.97	1.04	0.94	1.11	0.94	0.96	1.25	1.04	1.0
N-U	7.62	1.4	0.85	1.0	1.08	0.97	1.06	1.05	0.97	1.09	0.78

Notes: Table presents transition rates between employment, unemployment and non-participation. Transition rates are computed as the average transition rate by group across the full sample period 1996m1-2013m11. The table reports the average transitions rates for the aggregates, and then reports ratios of transition rates to these averages.

Which workers spending time in unemployment?

Regression: Time Share Unemp. $_i = \gamma + \beta' \cdot \mathbf{X}_i + \varepsilon_i$

Table (13) Accounting for share (%) time unemployed

Table (13) Accounting for share				(70) time unemployed		
	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.0806***	0.101***	0.0961***	0.104***	0.103***	0.102***
Age	0.000412***	0.000391***	0.000398***	0.000386***	0.000371***	1.72e-05
Experience	-3.58e-05***	-3.13e-05***	-3.22e-05***	-1.78e-05	-1.83e-05	-3.79e-05***
Education						
High school		-0.0150***	-0.0150***	-0.0134***	-0.0134***	-0.0131***
Some further		-0.0254***	-0.0246***	-0.0226***	-0.0225***	-0.0210***
College		-0.0371***	-0.0351***	-0.0309***	-0.0310***	-0.0262***
>College		-0.0370***	-0.0351***	-0.0298***	-0.0301***	-0.0193***
Occupation						
Manual Nonroutine			-0.00686*	-0.0110***	-0.0109***	-0.000130
Cognitive routine			0.000320	-0.00257	-0.00253	-0.000898
Manual routine			0.00820**	0.00545	0.00548	0.000639
Earnings & wealth						
Earnings percentile				-0.000233***	-0.000241***	-0.000328***
Liquid wealth percentile					4.32e-05	4.79e-05
% time UI						0.507***
Standard controls	X	X	X	X	X	X
R^2	0.022	0.032	0.034	0.037	0.037	0.186
Observations	10,030	10,030	10,030	10,030	10,030	10,030

Notes: Standard controls for each regression model include gender, race & state of residence. *** p < 0.01, ** p < 0.05, * p < 0.1 using robust standard err

Worker-level Transition: Average effects

▶ Dynamic logit estimates for individual-level transition probabilities also very small

► Transition rates

Figure (18) Impulse responses of transition probabilities

Wage effects by income and wealth

Figure (19) Wage effects by earnings & wealth percentile

► Small effects even for workers below median of earnings/wealth distribution(s)

... but start to see some evidence of positive wage effects for very lowest earners/poorest

Wage effects by demographics

Figure (20) Impulse Responses of (Log) Real Wages by Worker Demographics

Re-employment wage effects by worker characteristics

Figure (21) Re-employment Wages by Worker Characteristic

▶ Characteristics such as education and gender more important than earnings/wealth for