PREMIER UNIVERSITY, CHITTAGONG

Department of Computer Science & Engineering

Assignment

Course Code : CSE 458

Course Title : Machine Learning Laboratory

Assignment No : 02

Name of the Assignment : KNN

Date of Performance : 16-02-22

Date of Submission : 22-02-22

SUBMITTED BY

REMARKS

Name: Sadia Chowdhury Dola

Student Id: 1703310201465

Department: CSE

Year: 2022

Semester: 8th

Group: C8B

KNN: This dataset has data collected from Gender, Age, Estimated salary and purchased from Social_Network_Ads.

There are 4 types of distances.

1. Euclidean distance:

KNeighborsClassifier(n_neighbors = 5, metric = 'euclidean', p = 2)

Confusion Matrix:

[[64 4]

[3 29]]

2. Hamming distance:

KNeighborsClassifier(n_neighbors = 5, metric = 'hamming', p = 2)

Confusion Matrix:

[[64 4]

[3 29]]

3. Manhattan distance:

KNeighborsClassifier(n_neighbors = 5, metric = 'manhattan', p = 2)

Confusion Matrix:

[[64 4]

[3 29]]

4. Minkowski distance: Best One

KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)

Confusion Matrix:

[[64 4]

[3 29]]

When n = 1,

 $KNeighborsClassifier(n_neighbors = 1, metric = 'minkowski', p = 2)$

Confusion Matrix:

[[61 7]

[6 26]]

When n = 2,

 $KNeighborsClassifier(n_neighbors = 2, metric = 'minkowski', p = 2)$

Confusion Matrix:

[[66 2]

[8 24]]

When n = 20,

KNeighborsClassifier(n_neighbors = 20, metric = 'minkowski', p = 2)

Confusion Matrix:

[[64 4]

[3 29]]

