Visualizing the Data: NYC Rolling Sales

```
In [57]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [9]: data = pd.read_csv('C:/Users/munazzam/Downloads/nyc-rolling-sales.csv')
```

```
In [10]: data = data.drop('Unnamed: 0', 1)
    data = data.replace(' - ', np.nan) # empty data points are not set up p
    roperly
    data = data.replace(' ', np.nan)
    data
```

Out[10]:

	BOROUGH	NEIGHBORHOOD	BUILDING CLASS CATEGORY	TAX CLASS AT PRESENT	BLOCK	LOT	EASE- MENT	BUILDING CLASS AT PRESENT
0	1	ALPHABET CITY	07 RENTALS - WALKUP APARTMENTS	2A	392	6	NaN	C2
1	1	ALPHABET CITY	07 RENTALS - WALKUP APARTMENTS	2	399	26	NaN	C7
2	1	ALPHABET CITY	07 RENTALS - WALKUP APARTMENTS	2	399	39	NaN	C7
3	1	ALPHABET CITY	07 RENTALS - WALKUP APARTMENTS	2B	402	21	NaN	C4
4	1	ALPHABET CITY	07 RENTALS - WALKUP APARTMENTS	2A	404	55	NaN	C2
84543	5	WOODROW	02 TWO FAMILY DWELLINGS	1	7349	34	NaN	В9
84544	5	WOODROW	02 TWO FAMILY DWELLINGS	1	7349	78	NaN	В9
84545	5	WOODROW	02 TWO FAMILY DWELLINGS	1	7351	60	NaN	B2
84546	5	WOODROW	22 STORE BUILDINGS	4	7100	28	NaN	K6
84547	5	WOODROW	35 INDOOR PUBLIC AND CULTURAL FACILITIES	4	7105	679	NaN	P9

84548 rows × 21 columns

```
In [11]: data.drop_duplicates(inplace=True)
```

```
In [17]: #Price against Gross Square Feet

data['GROSS SQUARE FEET'] = data['GROSS SQUARE FEET'].fillna(0).astype(
    'int')
    plt.rcParams['figure.figsize'] = (20, 10)
    fig, ax = plt.subplots()
    sns.scatterplot(x='GROSS SQUARE FEET', y='SALE PRICE', data=data)
    ax.set_xlim([-10**3, 10**4.5])
    ax.set_ylim([.5, 10**9])
    ax.set_yscale("log")
    plt.show()
```


In [21]: #Since borough is a category we can use different color for each fig, ax = plt.subplots() sns.scatterplot(x='GROSS SQUARE FEET', y='SALE PRICE', data=data, hue='B OROUGH') ax.set_xlim([-10**3, 10**4.5]) ax.set_ylim([10**1, 10**9]) ax.set_yscale("log") plt.show()


```
In [42]: #Sales per borough_Residential
    sns.barplot(y='RESIDENTIAL UNITS', x='BOROUGH',data=data, palette='coolw
    arm', ci=None)
    plt.title('Sales per borough_Residential')
```

Out[42]: Text(0.5, 1.0, 'Sales per borough_Residential')

In [44]: #Sales per borough_Commercial
 sns.barplot(y='COMMERCIAL UNITS', x='BOROUGH',data=data, palette='coolwa
 rm', ci=None)
 plt.title('Sales per borough_Commercial')

Out[44]: Text(0.5, 1.0, 'Sales per borough_Commercial')


```
In [23]: data['NEIGHBORHOOD'].value_counts()
Out[23]: FLUSHING-NORTH
                                      3058
         UPPER EAST SIDE (59-79)
                                      1729
         UPPER EAST SIDE (79-96)
                                      1582
         BEDFORD STUYVESANT
                                      1429
         UPPER WEST SIDE (59-79)
                                      1415
         FRESH KILLS
                                         2
         CITY ISLAND-PELHAM STRIP
                                         1
         BRONX PARK
                                         1
         PELHAM BAY
                                         1
         EAST RIVER
         Name: NEIGHBORHOOD, Length: 254, dtype: int64
In [24]: sns.countplot(y = 'NEIGHBORHOOD',
                       data = data,
                        order = data['NEIGHBORHOOD'].value_counts().index)
         plt.show()
```


In [25]: data['BUILDING CLASS CATEGORY'].value_counts()

Out[25]:	01 ONE FAMILY DWELLINGS	18107
	02 TWO FAMILY DWELLINGS	15700
	13 CONDOS - ELEVATOR APARTMENTS	12929
	10 COOPS - ELEVATOR APARTMENTS	12876
	03 THREE FAMILY DWELLINGS	4342
	07 RENTALS - WALKUP APARTMENTS	3395
	09 COOPS - WALKUP APARTMENTS	2764
	04 TAX CLASS 1 CONDOS	1652
	44 CONDO PARKING	1437
	15 CONDOS - 2-10 UNIT RESIDENTIAL	1274
	05 TAX CLASS 1 VACANT LAND	1221
	17 CONDO COOPS	1199
	22 STORE BUILDINGS	918
	12 CONDOS - WALKUP APARTMENTS	871
	14 RENTALS - 4-10 UNIT	662
	29 COMMERCIAL GARAGES	578
	43 CONDO OFFICE BUILDINGS	466
	31 COMMERCIAL VACANT LAND	442
	47 CONDO NON-BUSINESS STORAGE	373
	08 RENTALS - ELEVATOR APARTMENTS	367
	21 OFFICE BUILDINGS	343
	30 WAREHOUSES	323
	27 FACTORIES	198
	06 TAX CLASS 1 - OTHER	177
	45 CONDO HOTELS	167
	41 TAX CLASS 4 - OTHER	154
	46 CONDO STORE BUILDINGS	149
	37 RELIGIOUS FACILITIES	98
	16 CONDOS - 2-10 UNIT WITH COMMERCIAL UNIT	95
	26 OTHER HOTELS	76
	33 EDUCATIONAL FACILITIES	69
	32 HOSPITAL AND HEALTH FACILITIES	58
	48 CONDO TERRACES/GARDENS/CABANAS	47
	23 LOFT BUILDINGS	44
	11A CONDO-RENTALS	42
	49 CONDO WAREHOUSES/FACTORY/INDUS	30
	35 INDOOR PUBLIC AND CULTURAL FACILITIES	30
	28 COMMERCIAL CONDOS	28
	38 ASYLUMS AND HOMES	25
	36 OUTDOOR RECREATIONAL FACILITIES	13
	42 CONDO CULTURAL/MEDICAL/EDUCATIONAL/ETC	13
	25 LUXURY HOTELS	12
	34 THEATRES	10
	18 TAX CLASS 3 - UNTILITY PROPERTIES	3
	11 SPECIAL CONDO BILLING LOTS	2
	39 TRANSPORTATION FACILITIES	2
	40 SELECTED GOVERNMENTAL FACILITIES	2
	Name: BUILDING CLASS CATEGORY, dtype: int64	

```
In [32]: #SALE DATE should be datetime
  data['SALE DATE'] = pd.to_datetime(data['SALE DATE'], errors='coerce'
)
  data['sale year'] = data['SALE DATE'].dt.year
  data['sale month'] = data['SALE DATE'].dt.month
  data['sale quarter'] = data['SALE DATE'].dt.quarter
  data['sale day'] = data['SALE DATE'].dt.day
  data['sale weekday'] = data['SALE DATE'].dt.weekday
```

```
In [58]: #Sale months for 2017
sns.boxplot(x='sale month', data=data[data['sale year']==2017])
```

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x27262da0948>


```
In [38]: #Sale months for 2016
sns.boxplot(x='sale month', data=data[data['sale year']==2016])
```

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x2726104dcc8>


```
In [48]: #Sales Compararison
    sns.countplot(x='sale year', data=data, palette='rainbow')
    plt.title('Sales 2016 VS 2017')
```

Out[48]: Text(0.5, 1.0, 'Sales 2016 VS 2017')


```
In [55]: #Count of Sales in each month
   plt.figure(figsize=(20,5))
   sns.countplot('sale month', hue='sale year', data=data, palette='RdBu_r'
   )
```

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x2726126e848>


```
In [73]: #Average units per property
sns.boxplot(x='RESIDENTIAL UNITS',data=data)
plt.title('Average units per property')
plt.show()
```



```
In [ ]:
```