T.D. VI - Calculs de sommes Séries numériques

I - Calculs de sommes

Exercice 1. (Sommes à étendre) Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{5} 3$$
.

2.
$$\sum_{n=3}^{5} 10$$
.

$$n=3$$
 $\sum_{\ell=1}^{7} \ell$.

4.
$$\sum_{n=3}^{10} (-1)^n.$$
5.
$$\sum_{n=1}^{5} \frac{1}{2^{2n}}.$$
6.
$$\sum_{n=1}^{4} \frac{3^{2n+1}}{2^{2n}}.$$

5.
$$\sum_{n=1}^{5} \frac{1}{2^{2n}}$$

6.
$$\sum_{n=1}^{4} \frac{3^{2n+1}}{2^{2n}}$$

Exercice 2. (Sommes géométriques) Calculer les sommes suivantes :

1.
$$\sum_{k=3}^{10} 2^k$$
.

2.
$$\sum_{\ell=1}^{5} (3^{\ell} - 2)$$
.

3.
$$\sum_{j=0}^{n} \left(\frac{2^k}{5^k} + \frac{1}{4^k} \right)$$

4.
$$\sum_{k=0}^{n} \frac{3^k + 4^k}{5^k}$$

II - Sommes télescopiques

Exercice 3. Pour tout n entier naturel, on pose $w_n = \frac{1}{2^n}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{2}w_n.$$

Donner l'expression de u_n en fonction de n.

Exercice 4. Pour tout n entier naturel, on pose $w_n = \left(\frac{2}{5}\right)^n$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{4}w_n.$$

Donner l'expression de u_n en fonction de n.

Exercice 5. Pour tout $k \ge 1$, on pose $u_k = \ln\left(\frac{k+1}{k}\right)$.

1. Exprimer u_k en fonction de $\ln(k+1)$ et $\ln(k)$.

2. À l'aide d'une somme télescopique, calculer $\sum_{k=1}^{n} u_k$.

3. En déduire la nature (et éventuellement la somme) de la série $\sum u_k$.

Exercice 6. Pour tout $k \ge 2$, on pose $u_k = \frac{1}{k^3 - k}$.

1. Montrer que

$$\forall k \geqslant 2, u_k = \frac{1}{2(k-1)} - \frac{1}{k} + \frac{2}{k+1}.$$

2. En utilisant la linéarité de la somme puis des changements d'indices, montrer que :

$$\sum_{k=2}^{n} u_k = \frac{1}{2} \sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=2}^{n-1} \frac{1}{k} + \frac{1}{2} \sum_{k=3}^{n+1} \frac{1}{k}.$$

3. En déduire que

$$\sum_{k=2}^{n} u_k = \frac{1}{4} - \frac{1}{2n(n+1)}.$$

4. En déduire la nature (et éventuellement la somme) de la série $\sum u_k$.

III - Séries géométriques...et plus

Exercice 7. Vérifier la convergence puis calculer les sommes suivantes :

1.
$$\sum_{k=0}^{+\infty} \frac{1}{5^k}$$
.
2. $\sum_{k=0}^{+\infty} \frac{3^k}{5^k}$.

2.
$$\sum_{k=0}^{+\infty} \frac{3^k}{5^k}$$

3.
$$\sum_{k=0}^{+\infty} \frac{1}{2^{2k}}$$

3.
$$\sum_{k=0}^{+\infty} \frac{1}{2^{2k}}$$
.
4. $\sum_{\ell=0}^{+\infty} \frac{3^{2\ell+1}}{10^{\ell}}$.

Exercice 8. Pour tout entier naturel n, on pose $u_n = 2 - \alpha + \frac{1}{5^n}$. Montrer que $\sum u_n$ converge si et seulement si $\alpha = 2$.

Exercice 9. Pour tout n entier naturel, on pose $u_n = \frac{1}{4} \left(1 - \frac{1}{3^n}\right) - \alpha$. Montrer que la série de terme général u_n converge si et seulement si $\alpha = \frac{1}{4}$.

Exercice 10. Pour tout entier naturel n, on pose $a_n = n2^{n-1}$. Soit $n \in \mathbb{N}$.

- **1.** Montrer que $a_n = a_{n+1} a_n 2^n$.
- **2.** Montrer que $\sum_{k=0}^{n} (a_{k+1} a_k) = a_{n+1}$.
- 3. Calculer $\sum_{k=0}^{n} 2^k$.
- **4.** En déduire que $\sum_{k=0}^{n} k2^{k-1} = (n-1)2^n + 1$.

Exercice 11. (Série harmonique, \Rightarrow) Pour tout n entier naturel non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Exprimer $H_{2n} H_n$ en fonction d'un seul signe somme.
- **2.** Montrer que $H_{2n} H_n \geqslant \frac{1}{2}$.
- 3. En raisonnant par l'absurde, montrer que la suite (H_n) diverge.
- **4.** En utilisant le théorème de la limite monotone, montrer que (H_n) tend vers $+\infty$.