1. Let function f be defined by the polynomial below:

$$f(x) = 8x^4 + 4x^3 + 6x^2 - 9x + 5$$

Draw lines that match each function reflection with its polynomial:



2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.



For all questions on this page, the functions f, g, and h are defined by the table below.

| $\boldsymbol{x}$ | $\frac{f(x)}{8}$ | g(x) | $\frac{h(x)}{5}$ |
|------------------|------------------|------|------------------|
| 1                | 8                | 8    | 5                |
| 2                | 1                | 9    | 6                |
| 3                | 5                | 2    | 1                |
| 4                | 9                | 3    | 7                |
| 5                | 2                | 4    | 4                |
| 6                | 4                | 1    | 9                |
| 7                | 6                | 5    | 2                |
| 8                | 7                | 6    | 3                |
| 9                | 3                | 7    | 8                |

3. Evaluate h(3).

$$h(3) = 1$$

4. Evaluate  $f^{-1}(4)$ .

$$f^{-1}(4) = 6$$

5. Assuming f is an **even** function, evaluate f(-7).

If function f is even, then

$$f(-7) = 6$$

6. Assuming g is an **odd** function, evaluate g(-5).

If function g is odd, then

$$g(-5) = -4$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 + (-x)$$
  
 $p(-x) = x^3 - x$ 

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 - x)$$
$$-p(-x) = -x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. I have drawn half of a function. Draw the other half to make it even or odd.



9. Let function f be defined with the equation below.

$$f(x) = 5(x-9)$$

a. Evaluate f(23).

step 1: subtract 9 step 2: multiply by 5

$$f(23) = 5((23) - 9)$$
$$f(23) = 70$$

b. Evaluate  $f^{-1}(25)$ .

step 1: divide by 5 step 2: add 9

$$f^{-1}(x) = \frac{x}{5} + 9$$

$$f^{-1}(25) = \frac{(25)}{5} + 9$$

$$f^{-1}(25) = 14$$

10. The function b is represented by the curve y = b(x) graphed below.



a. Evaluate b(7).

$$b(7) = 8$$

b. Evaluate  $b^{-1}(6)$ .

$$b^{-1}(6) = 2$$

- 11. Function f is defined by the table below.
  - a. Complete the columns for -f(x) and f(-x) and -f(-x).

| $\overline{x}$ | f(x) | -f(x) | f(-x) | -f(-x) |
|----------------|------|-------|-------|--------|
| -2             | -9   | 9     | -9    | 9      |
| -1             | 7    | -7    | 7     | -7     |
| 0              | 0    | 0     | 0     | 0      |
| 1              | 7    | -7    | 7     | -7     |
| 2              | -9   | 9     | -9    | 9      |

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.