SIA - TP N°5 Deep Learning Grupo 5

Integrantes:

- Catalán, Roberto José 59174
- Dell'Isola, Lucas 58025
- Galende, Lautaro 60287

1

Autoencoder

Probando distintas configuraciones...

- Cantidad de capas y cantidad de neuronas en las mismas
 - Variaciones de [35 20 10 2]
- Método de actualización de pesos
 - Gradiente descendiente con momentum
 - Adam
 - Powell
- Cantidad de iteraciones del optimizador
 - $\circ \in \{10, 20, 30, 40, 50\}$
- Tamaño del conjunto de datos

Configuración elegida

- Capas
 - 0 35 20 10 2 10 20 35
- Optimizador
 - Método de Powell → 30 iteraciones

Se buscó un balance entre tiempos de ejecución y capacidad de aprendizaje.

Autoencoder

Conjunto de datos

- Fonts
 - o @, C, G, O, Q

Se eligieron debido a que tienen representaciones similares.

Con más de 10 fonts fue muy difícil que la red aprendiera en tiempos razonables.

Capacidad de aprendizaje

Espacio latente

Generación de nuevas letras

• Muestras generadas "moviéndose" dentro del vector de representación de 'G' a '@'.

2

Denoising Autoencoder

Denoising Autoencoder

- Se probó con diferentes arquitecturas y probabilidades de ruido
- Para modelar el ruido se aplicó el algoritmo "Salt and Pepper"
- Arquitectura elegida: [30, 20, 10] con capa latente de 5
- Se entrenó con un conjunto donde cada letra está repetida 10 veces con diferentes ruidos

Probabilidad de ruido del 2%

Probabilidad de ruido del 2%

Probabilidad de ruido del 3%

Probabilidad de ruido del 5%

Probabilidad de ruido del 20%

Entrada sin ruido

Entrada con ruido

Salida con ruido

 Intentos fallidos de entrenamiento con un dataset de ruido pobre y una mala arquitectura.

Salida

3

Generative Autoencoder

Mnist dataset

Fashion Mnist dataset

Conclusiones

Algunas de nuestras conclusiones...

No es posible aprender todo el set de datos (*fonts*) en un tiempo razonable.

La capacidad de aprendizaje de la red se ve influenciada por cuán similares son las características de las entradas.

Las *fonts* con representaciones similares se encuentran cerca en el espacio latente en 2D.

Se necesita de una arquitectura y un entrenamiento muy específico para poder lograr que se aprenda un conjunto con ruido.

Gracias!