Contents

Ford-Fulkerson	1
Complejidad de Greedy	1
FF	
idea	2
Camino aumentante	2
Lados forward y backward	
	3
Algoritmo de Ford-Fulkerson	3
FordFulkerson mantiene "flujicidad"	4
Complejidad de Ford-Fulkerson	4
Max Flow Min Cut	4
Teorema	4
A	
	4
В	
	4
${ m C}$	
Corolario	4
Teorema de la Integralidad	5
Teorema de la integralidad	5
Teorema	5

Ford-Fulkerson

Complejidad de Greedy

Como en Greedy los lados nunca se des-saturan, entonces Greedy puede hacer a lo sumo O(m) incrementos de flujo antes de que forzosamente deba terminar si o si.

Encontrar un camino dirigido no saturado es O(m)

la complejidad total de Greedy es O(m2).

FF

idea

$$f(\overrightarrow{xy}) < c(\overrightarrow{xy})$$

en vez de limitar la busqueda a y
 $\in \Gamma + (x)$ con f($- \to xy$) < c($- \to xy$)

$$y \in \Gamma^+(x)$$

permiten ademas buscar y
 $\in \Gamma$ — (x) con f(— \rightarrow yx) > 0

$$y \in \Gamma^{-}(x)$$

 $f(\overrightarrow{yx}) > 0$

Camino aumentante

Un camino aumentante (o f-camino aumentante si necesitamos especificar f) o camino de Ford-Fulkerson, es una sucesión de vértices x0, x1, ..., xr tales que:

 $x0=s,\,xr=t.$ Para cada i $=0,\,...,\,r-1$ ocurre una de las dos cosas siguientes:

$$\overrightarrow{x_i x_{i+1}} \in E \text{ y } f(\overrightarrow{x_i x_{i+1}}) < c(\overrightarrow{x_i x_{i+1}})$$

$$1 - \rightarrow xixi{+}1 \in E \ y \ f(\ - \rightarrow xixi{+}1) < c(\ - \rightarrow xixi{+}1)$$

$$\overrightarrow{x_{i+1}}x_i \in E \text{ y } f(\overrightarrow{x_{i+1}}x_i) > 0.$$

$$2 \longrightarrow xi+1xi \in E y f(\longrightarrow xi+1xi) > 0.$$

Si en vez de comenzar en s y terminar t el camino es como arriba pero con x0 = x,xr = z diremos que es un camino aumentante **desde** x **a** z

Lados forward y backward

A los lados en 1) los llamaremos "lados de tipo I" o "lados forward"

A los lados en 2) los llamaremos "lados de tipo II" o "lados backward"

Algoritmo de Ford-Fulkerson

$$f(\overrightarrow{xy}) = 0 \forall \overrightarrow{xy} \in E$$

Comenzar con f = 0 (es decir, f($-\rightarrow$ xy) = 0 \forall $-\rightarrow$ xy \in E).

Buscar un f-camino aumentante s = x0, x1, ..., xr = t.

Definir i de la siguiente manera:

$$\varepsilon_i = c(\overrightarrow{x_i}\overrightarrow{x_{i+1}}) - f(\overrightarrow{x_i}\overrightarrow{x_{i+1}})$$

 $i = c(- \rightarrow xixi+1) - f(- \rightarrow xixi+1)$ en los lados forward.

$$\varepsilon_i = f(x_{i+1}x_i)$$

 $i = f(-\rightarrow xi+1xi)$ en los lados backward.

Calcular $= \min\{i\}.$

Cambiar f a lo largo del camino de [2] en , de la siguiente forma:

$$\overrightarrow{f(x_ix_{i+1})} + = \varepsilon$$

 $f(-\rightarrow xixi+1)+=$ en los lados forward.

 $f(-\rightarrow xi+1xi) - = \text{ en los lados backwards.}$

Repetir [2] hasta que no se puedan hallar mas caminos aumentantes.

FordFulkerson mantiene "flujicidad"

Si f es un flujo de valor v y aumentamos f con un f-camino aumentante con calculado como se explica en el algoritmo de Ford-Fulkerson, entonces lo que queda sigue siendo flujo v el valor del nuevo flujo es v +

Complejidad de Ford-Fulkerson

NO ES polinomial:

Max Flow Min Cut

Teorema

Δ

Si f es un flujo y S es un corte, entonces v(f) = f(S, S) - f(S, S).

В

El valor de todo flujo es menor o igual que la capacidad de todo corte.

C

Si f es un flujo, las siguientes afirmaciones son equivalentes:

1 Existe un corte S tal que v(f) = cap(S). 2 f es maximal. 3 No existen f-caminos aumentantes.

Corolario

Si el algoritmo de Ford-Fulkerson termina, termina con un flujo maximal

Teorema de la Integralidad

Teorema de la integralidad.

En un network con capacidades enteras, todo flujo entero maximal es un flujo maximal.

Teorema

En un network donde todas las capacidades sean enteros, Ford-Fulkerson siempre termina y el flujo maximal resultante es un flujo entero.