RISC-V Instruction Set Architecture II

Muhammad Tahir

Lecture 5

Electrical Engineering Department University of Engineering and Technology Lahore

Contents

1 CSR & Special Instructions

2 RISC-V Privileged Architecture

3 Trap/Interrupt CSRs

CSR Instructions: I Type

• Format: I-type

12	5	3	5	7
csr	rs1	func3	rd	opcode

Table 1: I type CSR instructions.

Instruction	Operation	Туре	Illustration
CSRRW	Atomic Read and Write	I	CSRRW rd, csr, rs1
CSRRS	Atomic Read and Set bit	I	CSRRS rd, csr, rs1
CSRRC	Atomic Read and Clear bit	ı	CSRRC rd, csr, rs1
CSRRWI	Atomic R/W Imm	l I	CSRRWI rd, csr, imm
CSRRSI	Atomic Read and Set bit Imm	l I	CSRRSI rd, csr, imm
CSRRCI	Atomic Read and Clear bit Imm	I	CSRRCI rd, csr, imm

CSR Instructions: I Type Cont'd

• Format: I-type

- opcode = csr ← rs1, rd ← csr func3 = CSRRW
- Pseudo-instructions to read and write a CSR
 - CSRR csr, rd (funct3 = CSRRS, rs1 = x0): rd \leftarrow csr
 - CSRW rs1, csr (funct3 = CSRRW, rd = x0): csr ← rs1

Special Instructions: Environment Calls

- Format: I-type
- Used to generate an exception to invoke Operating System (ECALL) and debugger (EBREAK)

Table 2: Environment Call Instructions.

Instruction	Operation	Туре	Illustration
ECALL	Environment Call	I	ECALL
EBREAK	Environment Break	I	EBREAK

Special Instructions: FENCE

- Format: I-type
- Provides (memory) synchronization barriers for data memory (fence) and instruction memory (FENSE.I)

Table 3: Synch Instructions.

Instruction	Operation	Туре	Illustration
FENCE	Synchronize data accesses	I	fence
FENCE.I	Synchronize instruction fetches	ı	fence.i

Special Instructions: Trap-Return Instructions

- Format: I-type
- URET returns from an exception handler in user mode
- SRET returns from an exception handler in supervisor mode
- MRET returns from an exception handler in machine mode

12	5	3	5	7
func12	rs1	func3	rd	opcode
MRFT/SRFT/URFT	0	PRIV	0	SYS

RISC V Privilege Levels

- Privilege levels are used to provide protection between different components of the software stack
- At a given time, a RISC-V hardware thread (hart) is running at some privilege level
- Privilege level is encoded as a mode in one or more CSRs (control status registers)

Level	Encoding	Name	Abbreviation
0	00	User/application level	U
1	01	Supervisor level	S
2	10	Reserved	
3	11	Machine level	М

Table 4: RISC V privilege levels.

RISC V Privilege Levels Cont'd

Supported modes at different privilege levels

No. of Level	Supported Modes	Usage
1	M	For simple embedded systems
2	M, U	For secure embedded systems
3	M, S, U	For systems running Linux type operating systems

Table 5: Combinations of privilege levels that can be supported.

CSRs Address Allocation

CSF	CSR Address		Hex	Use and Accessibility
[11:10]	[9:8]	[7:4]		
			User C	SRs
00	00	XXXX	0x000-0x0FF	Standard read/write
01	00	XXXX	0x400-0x4FF	Standard read/write
10	00	XXXX	0x800-0x8FF	Custom read/write
11	00	OXXX	0xC00-0xC7F	Standard read-only
11	00	10XX	0xC80-0xCBF	Standard read-only
11	00	11XX	0xCCO-0xCFF	Custom read-only
	Supervis			r CSRs
00	01	XXXX	0x100-0x1FF	Standard read/write
01	01	OXXX	0x500-0x57F	Standard read/write
01	01	10XX	0x580-0x5BF	Standard read/write
01	01	11XX	0x5C0-0x5FF	Custom read/write
10	01	OXXX	0x900-0x97F	Standard read/write
10	01	10XX	0x980-0x9BF	Standard read/write
10	01	11XX	0x9C0-0x9FF	Custom read/write
11	01	OXXX	0xD00-0xD7F	Standard read-only
11	01	10XX	0xD80-0xDBF	Standard read-only
11	01	11XX	0xDC0-0xDFF	Custom read-only

:

Figure 1: CSR groups with address allocation [Waterman et al., 2016a].

CSRs Address Allocation Cont'd

Hypervisor CSRs XXXX 0x200-0x2FF Standard read/write 00 OXXX 0x600-0x67F Standard read/write 01 10 10XX 0x680-0x6BF Standard read/write 01 10 11XX 0x6C0-0x6FF Custom read/write 10 OXXX 0xA00-0xA7F Standard read/write 10 Standard read/write 10 10XX 0xA80-0xABF 10 10 11XX OxACO-OxAFF Custom read/write OXXX 0xE00-0xE7F Standard read-only 11 10 11 10XX 0xE80-0xEBF Standard read-only 10 11 11XX 0xECO-0xEFF Custom read-only 10 Machine CSRs 00 XXXX 0x300-0x3FF Standard read/write 01 11 OXXX 0x700-0x77F Standard read/write 11 100X 0x780-0x79F Standard read/write 0x7A0-0x7AF Standard read/write debug CSRs 01 11 1010 0x7B0-0x7BF Debug-mode-only CSRs 01 11 1011 0x7C0-0x7FF Custom read/write 01 11 11XX 11 Standard read/write OXXX 0xB00-0xB7F 11 Standard read/write 10 10XX 0xB80-0xBBF 10 11 11XX 0xBC0-0xBFF Custom read/write 11 11 OXXX 0xF00-0xF7F Standard read-only 11 10XX 0xF80-0xFBF Standard read-only 11 11 11XX 0xFC0-0xFFF Custom read-only 11

Figure 2: CSR groups with address allocation [Waterman et al., 2016a].

Machine Level CSRs

Number	Privilege	Name	Description
Machine Information Registers			
0xF11	MRO	mvendorid	Vendor ID.
0xF12	MRO	marchid	Architecture ID.
0xF13	MRO	mimpid	Implementation ID.
0xF14	MRO	mhartid	Hardware thread ID.
			Machine Trap Setup
0x300	MRW	mstatus	Machine status register.
0x301	MRW	misa	ISA and extensions
0x302	MRW	medeleg	Machine exception delegation register.
0x303	MRW	mideleg	Machine interrupt delegation register.
0x304	MRW	mie	Machine interrupt-enable register.
0x305	MRW	mtvec	Machine trap-handler base address.
0x306	MRW	mcounteren	Machine counter enable.
		M	achine Trap Handling
0x340	MRW	mscratch	Scratch register for machine trap handlers.
0x341	MRW	mepc	Machine exception program counter.
0x342	MRW	mcause	Machine trap cause.
0x343	MRW	mtval	Machine bad address or instruction.
0x344	MRW	mip	Machine interrupt pending.
		Mac	hine Memory Protection
0x3A0	MRW	pmpcfg0	Physical memory protection configuration.
0x3A1	MRW	pmpcfg1	Physical memory protection configuration, RV32 only.
0x3A2	MRW	pmpcfg2	Physical memory protection configuration.
0x3A3	MRW	pmpcfg3	Physical memory protection configuration, RV32 only.
0x3B0	MRW	pmpaddr0	Physical memory protection address register.
0x3B1	MRW	pmpaddr1	Physical memory protection address register.
		:	
0x3BF	MRW	pmpaddr15	Physical memory protection address register.

Figure 3: Machine level CSRs [Waterman et al., 2016a].

Machine Level CSRs Cont'd

Number	Privilege	Name	Description
		Machine	Counter/Timers
0xB00	MRW	mcycle	Machine cycle counter.
0xB02	MRW	minstret	Machine instructions-retired counter.
0xB03	MRW	mhpmcounter3	Machine performance-monitoring counter.
0xB04	MRW	mhpmcounter4	Machine performance-monitoring counter.
		:	
0xB1F	MRW	mhpmcounter31	Machine performance-monitoring counter.
0xB80	MRW	mcycleh	Upper 32 bits of mcycle, RV32I only.
0xB82	MRW	minstreth	Upper 32 bits of minstret, RV32I only.
0xB83	MRW	mhpmcounter3h	Upper 32 bits of mhpmcounter3, RV32I only.
0xB84	MRW	mhpmcounter4h	Upper 32 bits of mhpmcounter4, RV32I only.
		:	
0xB9F	MRW	mhpmcounter31h	Upper 32 bits of mhpmcounter31, RV32I only.
		Machin	e Counter Setup
0x320	MRW	mcountinhibit	Machine counter-inhibit register.
0x323	MRW	mhpmevent3	Machine performance-monitoring event selector.
0x324	MRW	mhpmevent4	Machine performance-monitoring event selector.
		:	
0x33F	MRW	mhpmevent31	Machine performance-monitoring event selector.
	Ι	Debug/Trace Registe	ers (shared with Debug Mode)
0x7A0	MRW	tselect	Debug/Trace trigger register select.
0x7A1	MRW	tdata1	First Debug/Trace trigger data register.
0x7A2	MRW	tdata2	Second Debug/Trace trigger data register.
0x7A3	MRW	tdata3	Third Debug/Trace trigger data register.
		Debug	Mode Registers
0x7B0	DRW	dcsr	Debug control and status register.
0x7B1	DRW	dpc	Debug PC.
0x7B2	DRW	dscratch0	Debug scratch register 0.
0x7B3	DRW	dscratch1	Debug scratch register 1.

Figure 4: Machine level CSRs [Waterman et al., 2016a].

Trap/Interrupt Setup CSRs

Table 6: User, supervisor and machine mode trap/interrupt setup CSRs.

U Mode	S Mode	M Mode	Description
ustatus	sstatus	mstatus	Status register.
uie	sie	mie	Interrupt-enable register.
utvec	stvec	mtvec	Trap-handler base address.
	sedeleg	medeleg	Exception delegation register.
	sideleg	mideleg	Interrupt delegation register.
	scounteren	mcounteren	Counter enable.
		misa	ISA and extensions.

Trap Handling CSRs

Table 7: User, supervisor and machine mode trap handling CSRs.

U Mode	S Mode	M Mode	Description
uscratch	sscratch	mscratch	Scratch register for trap handlers.
uepc	sepc	mepc	Exception program counter.
ucause	scause	mcause	Trap cause.
utval	stval	mtval	Bad address or instruction.
uip	sip	mip	Interrupt pending.

Trap/Interrupt Setup CSRs: mstatus

Table 8: Machine status register bit field descriptions.

Bit field	Description
MIE, SIE, UIE	Interrupt-enable bits for each privilege mode. MIE for machine mode, SIE for supervisor mode, and UIE for user mode.
MPIE, SPIE, UPIE	xPIE holds the value of the interrupt-enable bit active prior to the trap, where $x \in \{M, S, U\}$.
MPP, SPP	xPP holds the previous privilege mode prior to the trap and can only hold privilege modes up to x . So MPP is two bits wide, SPP is one bit wide, and UPP is implicitly of bit width zero.

Trap/Interrupt Setup CSRs: mie

Table 9: Machine interrupt enable register bit field descriptions.

Bit field		Description	
MSIE, USIE	SSIE,	These fields enable software interrupts for M-mode, S-mode and U-mode, respectively.	
MTIE, UTIE	STIE,	These fields enable timer interrupts for M-mode, S-mode, and U-mode, respectively.	
MEIE, UEIE	SEIE,	E, These fields enable external interrupts for M-mode, S-mode, U-mode, respectively.	

Trap/Interrupt Setup CSRs: mtvec

Table 10: Machine trap-handler base address register bit field descriptions.

31	2	0
BASE[31:2]		MODE

Bit field	Description	
MODE	This two bit field can be configured to following possible values:	
	 A value of 0 corresponds to Direct mode. All exceptions set pc to BASE field. A value of 1 corresponds to Vectored mode. All exceptions set pc to (BASE + cause << 2). Reserved for other values. 	
BASE[31:2]	This field corresponds to 30 (most significant) bits of the 32-bit (word aligned) BASE address.	

Trap/Interrupt Handling CSRs: mip

Table 11: Machine interrupt pending register bit field descriptions.

Bit field		Description	
MSIP, USIP	SSIP,	These fields correspond to software pending interrupts for M-mode, S-mode and U-mode, respectively.	
MTIP, UTIP	STIP,	These fields correspond to timer pending interrupts for M-mode, S-mode, and U-mode, respectively.	
MEIP, UEIP	SEIP,	These fields correspond to external pending interrupts for M-mode, S-mode, and U-mode, respectively.	

Trap/Interrupt Handling CSRs: mcause

Table 12: Machine trap cause register bit field descriptions.

31		0
INTR	Exception Code	

Bit field	Description	
INTR	The INTR (Interrupt) bit is set if the trap was caused by an interrupt and is cleared in case of other traps (e.g. address fault).	
Exception Code	This field contains a code identifying the last exception.	

Trap/Interrupt Handling CSRs: Exception Codes

Table 13: Machine cause register bit field values after trap.

INTR	Exception Code	Description			
1	0	User software interrupt			
1	1	Supervisor software interrupt			
1	2	Reserved			
1	3	Machine software interrupt			
1	4	User timer interrupt			
1	5	Supervisor timer interrupt			
1	6	Reserved			
1	7	Machine timer interrupt			
:	:	:			
0	0	Instruction address misaligned			
0	1	Instruction access fault			
0	2	Illegal instruction			
0	3	Breakpoint			
0	4	Load address misaligned			
0	5	Load access fault			
:	:	:			

Suggested Reading

- Read Section 5.14 of [Patterson and Hennessy, 2021].
- Read User Manual for the instruction set and its architecture [Waterman et al., 2016b].
- For Control and Status register description consult Privileged architecture manual [Waterman et al., 2016a].

Acknowledgment

 Preparation of this material was partly supported by Lampro Mellon Pakistan.

References

Patterson, D. and Hennessy, J. (2021).

Computer Organization and Design RISC-V Edition: The Hardware Software Interface, 2nd Edition.

Morgan Kaufmann.

Waterman, A., Lee, Y., Avizienis, R., Patterson, D. A., and Asanovic, K. (2016a).

The risc-v instruction set manual volume ii: Privileged architecture version 1.9.

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-129.

Waterman, A., Lee, Y., Patterson, D. A., and Asanović, K. (2016b).

The risc-v instruction set manual, volume i: User-level isa, version 2.1.

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-129.