main

Introduction

The dictionary meaning of "Democracy" defined by Encyclopedia Britannica is "literally ruled by the pe Measuring democracy also has been contested that there still have ongoing debates on this subject. The Following the introduction, this research paper will proceed by presenting previous studies to provide

Prior studies and background about Democratization

Democratization, according to "An Agenda for Democratization" by Boutros Boutros-Ghali, the formal Se From his On Democracy, Robert Dahl suggests three conditions that are essential to attain democratic Africa has also been the wave of political transitions from various types of dictatorships to more op

Research Question

test

Data Availability

- 1) Measurement of Democratization 1-1) Polity 4 ?? ??http://www.systemicpeace.org/inscr/p4manualv2015.pdf 1-2)
- 2) Gross National Income Level
- 3) primary enrollment
- 4) Income Inequality
- 5) Gender Inequality in labor force
- 6) mortality rate under 5

Democratization

Warning: Removed 5 rows containing missing values (geom_path).

Warning: Removed 6 rows containing missing values (geom_path).

Explanetory variables

variable name	detail	source
gdppc	Gross National Production Per Capita	World Bank
pe	Primary enrollment in education	United Nations
mr	Infant Mortaliry Rate	United Nations
gi	gender inequality in labor market	United Nations

OLS results

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Dec 02, 2016 - 11:22:24

Pooled OLS

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Dec 02, 2016 - 11:22:24

Table 2: Regression results for each country

	$Dependent\ variable:$		
	SouthAfrica	demo Botswana	Kenya
	(1)	(2)	(3)
$\log(\mathrm{gdppc})$	-2.78^* (1.43)	1.86*** (0.56)	-6.37 (3.79)
$\log(\text{pe})$	0.81 (2.83)	-3.29 (2.31)	9.05 (8.68)
$\log(\text{mr})$	-11.16 (7.05)	2.84*** (0.84)	-34.05^{***} (9.39)
$\log(gi)$	-43.66^{***} (13.70)	4.61 (2.85)	-147.18^{***} (38.41)
Constant	44.40 (73.50)	23.80 (22.73)	21.71 (157.22)
Observations R^2 Adjusted R^2	17 0.93 0.90	21 0.85 0.82	19 0.92 0.90
Residual Std. Error F Statistic	0.72 (df = 12) $38.99^{***} \text{ (df} = 4; 12)$	0.28 (df = 16) $23.04^{***} (df = 4; 16)$	$1.94 (df = 14)$ $42.66^{***} (df = 4; 14)$

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 3: Pooled OLS

	Dependent variable:	
	demo	
$\log(\text{gdppc})$	-0.64	
0,0 22 /	(1.39)	
log(pe)	-1.10**	
O(1)	(0.46)	
$\log(mr)$	-6.89**	
	(3.06)	
log(gi)	-39.08***	
0.07	(10.91)	
Constant	41.87*	
	(21.14)	
Observations	57	
R^2	0.72	
Adjusted \mathbb{R}^2	0.70	
Residual Std. Error	3.16 (df = 52)	
F Statistic	$33.01^{***} (df = 4; 52)$	
Note:	*p<0.1; **p<0.05; ***p<0.01	

residual vs fitted value

Breusch-Pagan test

```
##
## studentized Breusch-Pagan test
##
## data: L4
## BP = 12.672, df = 4, p-value = 0.01299
```

Fixed-Effect model

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Dec 02, 2016 - 11:22:25

Table 4: pooled OLS and fixed effects OLS

	Dependen	$Dependent\ variable:$	
	demo		
	PooledOLS	FixedOLS	
	(1)	(2)	
$\log(\text{gdppc})$	-0.644	-1.496	
0 (0 11)	(1.393)	(1.424)	
log(pe)	-1.103**	15.793***	
	(0.456)	(4.012)	
$\log(mr)$	-6.886**	-12.087***	
	(3.062)	(3.176)	
log(gi)	-39.075***	-28.940**	
	(10.914)	(11.221)	
Constant	41.873*		
	(21.138)		
Observations	57	57	
\mathbb{R}^2	0.717	0.610	
Adjusted R ²	0.696	0.563	
F Statistic	$33.013^{***} (df = 4; 52)$	$19.532^{***} (df = 4; 50)$	
Note:	*p<(0.1; **p<0.05; ***p<0.01	

constants:

fixef(fixed)

Botswana Kenya South Africa ## -139.0599 -186.3148 -191.4030

Do panel specific effects exist?

```
pFtest(fixed,pooled)
```

```
##
## F test for individual effects
##
## data: demo ~ log(gdppc) + log(pe) + log(mr) + log(gi)
## F = 17.075, df1 = 2, df2 = 50, p-value = 2.228e-06
## alternative hypothesis: significant effects
```

Breush-Pagan test

```
##
## Lagrange Multiplier Test - (Breusch-Pagan) for unbalanced panels
##
## data: demo ~ log(gdppc) + log(pe) + log(mr) + log(gi)
## chisq = 0.67568, df = 1, p-value = 0.4111
## alternative hypothesis: significant effects
we cannot reject the null hypothesis. (residuals doesn't correlated with independent variables)
```

Random-Effects OLS

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Fri, Dec 02, 2016 - 11:22:25

Hausman test

Hausman Test

data: demo $\sim \log(\mathrm{gdppc}) + \log(\mathrm{pe}) + \log(\mathrm{mr}) + \log(\mathrm{gi})$ chisq = 4.6666e-19, df = 4, p-value = 1 alternative hypothesis: one model is inconsistent

results

```
\% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu \% Date and time: Fri, Dec 02, 2016 - 11:22:26
```

Oneway (individual) effect Within Model

```
Call: plm(formula = demo \sim log(gdppc) + log(pe) + log(mr) + log(gi), data = dfpanel, model = "within", index = c("country", "year"))
```

Unbalanced Panel: n=3, T=17-21, N=57

Residuals: Min. -3.160 1st Qu. -1.560 Median -0.584 3rd Qu. 0.730 Max. 8.200

Coefficients: Estimate $\log(\text{gdppc})$ -1.4964 $\log(\text{pe})$ 15.7935 $\log(\text{mr})$ -12.0870 $\log(\text{gi})$ -28.9397 Std. Error $\log(\text{gdppc})$ 1.4239 $\log(\text{pe})$ 4.0120 $\log(\text{mr})$ 3.1755 $\log(\text{gi})$ 11.2214 t-value $\log(\text{gdppc})$ -1.0509 $\log(\text{pe})$ 3.9366

Table 5: random effects OLS

		$Dependent\ variable:$	
		demo	
	(1)	(2)	(3)
$\log(\mathrm{gdppc})$	-0.644	-1.496	-1.496
0(0 11)	(1.393)	(1.424)	(1.396)
$\log(\text{pe})$	-1.103**	15.793***	15.793***
	(0.456)	(4.012)	(3.934)
$\log(\mathrm{mr})$	-6.886**	-12.087***	-12.087***
,	(3.062)	(3.176)	(3.114)
$\log(gi)$	-39.075***	-28.940**	-28.940**
	(10.914)	(11.221)	(11.003)
Constant	41.873*		-172.259
	(21.138)		(997, 305.100)
Observations	57	57	57
\mathbb{R}^2	0.717	0.610	0.610
Adjusted \mathbb{R}^2	0.696	0.563	0.580
F Statistic	$33.013^{***} (df = 4; 52)$	$19.532^{***} (df = 4; 50)$	$20.314^{***} (df = 4; 52)$

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 6: Regression results

		Dependent variable:	
		demo	
	(1)	(2)	(3)
$\log(\mathrm{gdppc})$	-0.644	-1.496	-1.496
3(8 11 /	(1.393)	(1.424)	(1.396)
$\log(\text{pe})$	-1.103**	15.793***	15.793***
,	(0.456)	(4.012)	(3.934)
$\log(\mathrm{mr})$	-6.886**	-12.087***	-12.087***
<i>(</i>)	(3.062)	(3.176)	(3.114)
$\log(gi)$	-39.075***	-28.940**	-28.940**
0(0)	(10.914)	(11.221)	(11.003)
Constant	41.873*		-172.259
	(21.138)		(997,305.100)
Observations	57	57	57
R^2	0.717	0.610	0.610
Adjusted \mathbb{R}^2	0.696	0.563	0.580
F Statistic	$33.013^{***} (df = 4; 52)$	$19.532^{***} (df = 4; 50)$	$20.314^{***} (df = 4; 52)$

Note:

*p<0.1; **p<0.05; ***p<0.01

```
\begin{array}{l} \log(\mathrm{mr}) \text{ -3.8063 log(gi) -2.5790 Pr(>|t|) log(gdppc) 0.2983644 log(pe) 0.0002560 log(mr) 0.0003859 log(gi) 0.0128989} \\ \log(\mathrm{gdppc}) \\ \log(\mathrm{pe}) \quad \log(\mathrm{mr}) \quad \log(\mathrm{gi}) \ ^* \\ -- \quad \mathrm{Signif. codes:} \\ 0 \text{ '' } \textit{0.001 '' 0.05 '' 0.1 '' 1} \end{array}
```

Total Sum of Squares: 788.23 Residual Sum of Squares: 307.59 R-Squared: 0.60977 Adj. R-Squared: 0.56294 F-statistic: 19.5324 on 4 and 50 DF, p-value: 9.8562e-10

```
democratization = -1.496log(gdppc) + 15.793log(pe) - 12.087log(mr) - 28.940log(gi) + \alpha_i
```

where a_i represents panel specific effects

Conclusion