Additive Noise Models: Identifiability, Learning Algorithms, Hidden Variables and Time Series

Behrad Moniri

Sharif University of Technology bemoniri@ee.sharif.edu

January 22, 2019

Model Definition

We call the SCM, C, an additive noise model if each observed variable X_j is associated with a node j in a directed acyclic graph G, and the value of X_j is obtained as a function of its parents in G, plus independent additive noise N_j , i.e.

$$X_j = f_j(\mathbf{PA}_j) + N_j, \qquad j = 1, \dots, p \tag{1}$$

with jointly independent variables N_j . We will assume that the noise variables have strictly positive density.

Causal Minimality

For those models with strictly positive density, causal minimality reduces to the condition that each function f_i is not constant in any of its arguments.

Identifiability: The Bivariate Case

Hoyer et al. (2009) proves the following theorem about the identifiability of bivariate additive noise models.

3 / 17

Identifiability: The Bivariate Case

Theorem

An additive noise model with two variables, i.e., $X_1 = N_1$ and $X_2 = f_j(X_1) + N_2$, with $N_1 \perp \!\!\! \perp N_2$, is identifiable if it does not solve the following differential equation for all x_i, x_j with $\nu''(x_i - f(x_i))f'(x_i) \neq 0$:

$$\xi''' = \xi'' \left(-\frac{\nu''' f'}{\nu''} + \frac{f''}{f'} \right) - 2\nu'' f'' f' + \nu' f''' + \frac{\nu' \nu''' f'' f'}{\nu''} - \frac{\nu' (f'')^2}{f'} ,$$

Here $\xi := \log p_{X_1}$ and $\nu := \log p_{N_2}$ and we have skipped the arguments $x_2 - f(x_1)$, x_1 , and x_1 for ν , ξ , and f and their derivatives, respectively.

Corollary

Gaussian Noise: Assume that $\nu'''=\xi'''=0$ everywhere. If a backward model exists, then f is linear.

Corollary

Assume that f(x) = x and $p_x(x) = e^{-x-e^{-x}}$ and $p_n(n) = e^{-n-e^{-n}}$. With $p_y(y) = e^{-y-2\log(1+e^y)}$, $\tilde{p}_n(\tilde{n}) = e^{-2\tilde{n}-e^{-\tilde{n}}}$ and $g(y) = \log(1+e^{-y})$, one obtains:

$$p(x,y) = p_n(y - f(x))p_x(x) = \tilde{p}_n(x - g(y))p_y(y)$$

so the model is not identifiable.

Identifiability: From Bivariate to Multivariate

Definition

Consider an ANM with p variables. We call this SCM a *restricted additive* noise model if for all $j \in V$, $i \in PA_j$ and all sets $S \subseteq V$ with $PA_i \setminus \{i\} \subseteq S \subseteq ND_i \setminus \{i,j\}$, there is an x_S with $p_S(x_S) > 0$, such that

$$\left(f_j(x_{\mathsf{PA}_j\setminus\{i\}},X_i),\mathcal{L}(X_i\,|\,X_{\mathsf{S}}=x_{\mathsf{S}}),\mathcal{L}(N_j)\right)$$

satisfies the bivariate identifiability conditions.

We assume that the noise variables to have non-vanishing densities and the functions f_i are three times differentiable.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ ○ ·

Identifiability: The Multivariate Case

Peters et al. (2014) proves a very interesting theorem. This theorem states how we can generalize a bivariate identifiability to the multivariate case, in this case ANM identifiability.

Theorem

Let X_1, \ldots, X_p be generated by a restricted additive noise model with graph G_0 and assume that $P_{\mathbf{X}}$ satisfies causal minimality with respect to G_0 , i.e., the functions f_j are not constant. Then, G_0 is identifiable from the joint distribution.

7 / 17

Identifiability: Post Non Linear (PNL) Models

Definition

PNL Models are introduced in Zhang and Hyvärinen (2009). A PNL is an SCM where each expresses each variable X_i as

$$X_i = g_i(f_i(\mathbf{PA}_i) + N_i), \quad i = 1, ..., n$$

Theorem (Bivariate Identifiability)

Assume that $x_2 = f_2(f_1(x_1) + e2)$ and $x_1 = g_2(g_1(x_2) + e1)$. Densities and nonlinear functions are three times differentiable. We then have the following equation for every (x_1, x_2) satisfying $\eta''h' \neq 0$:

$$t_1 = g_2^{-1}(x_1), \ z_2 = f_2^{-1}(x_2), \ h = f_1 \circ g_2, \ h_1 = g_1 \circ f_2$$

$$\eta_1(t_1) = \log p_{t_1}(t_1) \ \eta_2(e_2) = \log p_{e_2}(e_2)$$

$$\eta_1''' - \frac{\eta_1'''h''}{h'} = (\frac{\eta_2'\eta_2'''}{\eta_2''} - 2\eta_2'').h'h'' - \frac{\eta_2'''}{\eta_2''}.h'\eta_1'' + \eta_2'.(h''' - \frac{h''^2}{h'})$$

and h_1 depends on η_1 , η_2 , and h in the following way:

$$\frac{1}{h_1'} = \frac{\eta_1'' + \eta_2'' h'^2 - \eta_2' h''}{\eta_2'' h'}$$

	p_{e_2}	$p_{t_1} (t_1 = g_2^{-1}(x_1))$	$h = f_1 \circ g_2$	Remark
I	Gaussian	Gaussian	linear	h_1 also linear
II	log-mix-lin-exp	log-mix-lin-exp	linear	h_1 strictly monotonic, and $h'_1 \rightarrow$
				0, as $z_2 \to +\infty$ or as $z_2 \to -\infty$
III	log-mix-lin-exp	one-sided asymptoti-	h strictly monotonic,	_
		cally exponential (but	and $h' \to 0$, as $t_1 \to 0$	
		not log-mix-lin-exp)	$+\infty$ or as $t_1 \rightarrow -\infty$	
IV	log-mix-lin-exp	generalized mixture of	Same as above	_
		two exponentials		
V	generalized mixture	two-sided asymptoti-	Same as above	_
	of two exponentials	cally exponential		

Figure: All unidentifiable cases with the assumptions made above

Score Based Method

RESIT Algorithm

- First proposed in Peters et al. (2014)
- Assumption : Multivariate ANM + Causal Sufficiency
- Idea : X_i is sink \iff $N_i \perp \!\!\! \perp X \setminus \{X_i\}$
- The are two stages in the algorithm:
 - Stage 1 : Finding a causal order
 - Stage 2: Estimating DAG by removing edges
- Number of Tests (Less than PC)
 - Stage 1 : $O(n^2)$
 - Stage 2 : *O*(*n*)

RESIT Algorithm

```
Algorithm 1 Regression with subsequent independence test (RESIT)
 1: Input: I.i.d. samples of a p-dimensional distribution on (X_1, \ldots, X_n)
 2: S := \{1, \dots, p\}, \pi := []
 3: PHASE 1: Determine topological order.
 4: repeat
       for k \in S do
         Regress X_k on \{X_i\}_{i \in S \setminus \{k\}}.
         Measure dependence between residuals and \{X_i\}_{i \in S \setminus \{k\}}.
 7:
       end for
       Let k^* be the k with the weakest dependence.
       S := S \setminus \{k^*\}
       pa(k^*) := S
11.
       \pi := [k^*, \pi]
                          (\pi will be the topological order, its last component being a sink)
13: until \#S = 0
14: PHASE 2: Remove superfluous edges.
15: for k \in \{2, ..., p\} do
       for \ell \in pa(\pi(k)) do
16:
         Regress X_{\pi(k)} on \{X_i\}_{i \in pa(\pi(k)) \setminus \{\ell\}}.
         if residuals are independent of \{X_i\}_{i\in\{\pi(1),\dots,\pi(k-1)\}} then
18:
            pa(\pi(k)) := pa(\pi(k)) \setminus \{\ell\}
19-
         end if
20 \cdot
       end for
21:
22: end for
23: Output: (pa(1),...,pa(p))
```

RESIT Algorithm : Performance (Linear Setting)

$$\beta_{jk} \sim [-2, -0.1] \cup [0.1, 2] \qquad N_j \sim K_j \cdot \mathrm{sign}(M_j) \cdot |M_j|^{\alpha_j} \text{ such that } M_j \sim \textit{N}(0, 1), \\ K_j \sim \textit{U}(0.1, 0.5) \text{ and } \alpha_j \sim \textit{U}([2, 4]).$$

	GDS	BF	RESIT	LiNGAM	PC	CPC	GES	RAND
	p = 4, n = 100							
DAG	0.7 ± 0.9	0.6 ± 0.8	1.2 ± 1.3	1.9 ± 1.2	3.5 ± 1.5	3.6 ± 1.4	3.1 ± 1.7	4.4 ± 1.0
CPDAG	1.1 ± 1.5	0.9 ± 1.4	1.5 ± 1.7	2.4 ± 1.5	2.4 ± 1.7	2.3 ± 1.6	2.0 ± 2.0	4.3 ± 1.4
	p = 4, n = 500							
DAG	0.2 ± 0.6	0.1 ± 0.3	0.6 ± 0.8	0.5 ± 0.8	3.1 ± 1.4	3.2 ± 1.4	2.9 ± 1.6	4.1 ± 1.2
CPDAG	0.3 ± 0.9	0.2 ± 0.5	0.9 ± 1.3	0.8 ± 1.2	1.9 ± 1.8	1.6 ± 1.7	1.6 ± 1.9	3.9 ± 1.4
	p = 15, n = 100							
DAG	12.2 ± 5.3	_	25.2 ± 8.3	11.1 ± 3.7	13.0 ± 3.6	13.7 ± 3.7	12.7 ± 4.2	57.4 ± 26.4
CPDAG	13.2 ± 5.4	_	27.0 ± 8.5	12.4 ± 3.9	10.7 ± 3.5	10.8 ± 3.8	12.4 ± 4.9	58.5 ± 27.1
	p = 15, n = 500							
DAG	6.1 ± 6.4	_	51.2 ± 17.8	3.4 ± 2.8	10.2 ± 3.8	10.8 ± 4.2	8.7 ± 4.6	57.6 ± 24.2
CPDAG	6.8 ± 6.9	_	54.5 ± 18.5	4.5 ± 3.8	8.2 ± 4.6	7.5 ± 4.4	7.1 ± 5.6	58.9 ± 25.0

Figure: Structural Hamming Distance of Estimated Graph

Behrad Moniri (EE @ Sharif)

RESIT Algorithm : Performance (Non Linear Setting)

Functions sampled from a Gaussian process with BW=1. Gaussian Noise with random variance.

	GDS	BF	RESIT	LiNGAM	PC	CPC	GES	RAND
	p = 4, n = 100							
DAG	1.5 ± 1.4	1.0 ± 1.0	1.7 ± 1.3	3.5 ± 1.2	3.5 ± 1.5	3.8 ± 1.4	3.5 ± 1.3	4.0 ± 1.3
CPDAG	1.7 ± 1.7	1.2 ± 1.4	2.0 ± 1.6	3.0 ± 1.4	2.9 ± 1.5	2.7 ± 1.4	3.4 ± 1.7	3.9 ± 1.4
	p = 4, n = 500							
DAG	0.5 ± 0.9	0.3 ± 0.5	0.8 ± 0.9	3.7 ± 1.2	3.5 ± 1.5	3.8 ± 1.5	3.3 ± 1.5	4.1 ± 1.2
CPDAG	0.6 ± 1.1	0.6 ± 1.0	1.0 ± 1.3	3.0 ± 1.7	3.1 ± 1.9	2.8 ± 1.8	3.4 ± 1.9	3.8 ± 1.6
	p = 15, n = 100							
DAG	14.3 ± 4.9	_	15.4 ± 5.7	15.4 ± 3.6	14.2 ± 3.5	15.5 ± 3.6	24.8 ± 6.3	56.8 ± 24.1
CPDAG	15.1 ± 5.4	_	16.5 ± 5.9	15.3 ± 4.0	13.3 ± 3.6	13.3 ± 4.0	26.4 ± 6.5	58.0 ± 24.7
	p = 15, n = 500							
DAG	13.0 ± 8.4	_	10.1 ± 5.7	21.4 ± 6.9	13.9 ± 4.5	15.1 ± 4.8	26.8 ± 8.5	56.1 ± 26.8
CPDAG	14.2 ± 9.2	-	11.3 ± 6.3	21.1 ± 7.3	13.7 ± 4.9	13.4 ± 5.1	28.6 ± 8.8	57.0 ± 27.3

Figure: Structural Hamming Distance of Estimated Graph

References

- Patrik O. Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal discovery with additive noise models. In *Advances in Neural Information Processing Systems 21*, pages 689–696. 2009.
- Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous additive noise models. *J. Mach. Learn. Res.*, 15(1):2009–2053, 2014.
- Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In *Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence*, UAI '09, pages 647–655, 2009.

The End

