Asymptotic Methods

Course given by Dr. D. Stuart LATEX by Dominic Skinner Dom-Skinner@github.com

January 19, 2016

Books: Bender and Orszag, "Advanced Mathematical methods for scientists and engineers", Chapters 3,6,10

More details can be found on the Moodle course site; self-enrol into the Asymptotic methods course.

What we'll learn in this course

Examples:

- 1. $I(\lambda) = \int_{\infty}^{\infty} \exp[-\lambda \cosh u] du$ We expect that $I(\lambda) \to 0$ as $\lambda \to \infty$. But how fast?
- 2. $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x)$ with $\psi(x,t) \in \mathbb{C}$, V = V(x). Look for a solution $\psi(x,t) = \exp\left[\frac{-iEt}{\hbar}\right] f(x) \implies \hbar^2 f'' = 2m(V(x) - E)f$ \hbar is very small. So a natural problem is to try and understand $\epsilon^2 \frac{d^2y}{dx^2} = Q(x)y$ when $\epsilon \ll 1$. The "semi-classical limit" or "geometric optics".
- 3. Put $\hbar=1, \ m=\frac{1}{2}, \ V=0$; specify $\psi(x,0)=\psi_0(x)$ Fourier transform $\to \psi(x,t)=\frac{1}{(4\pi i t)^{1/2}}\int_{\mathbb{R}} \exp\left[\frac{i|x-y|^2}{4t}\right]\psi_0(y)dy$. Question: Does $\psi(x,t)$ really approach $\psi_0(x)$ as $t\to 0$?

1 Asymptotic expansions of functions

$$\sinh x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

say $\sinh x \sim x$ as $x \to 0$.

Definition: $f \sim g$ as $x \to x_0$ is |f(x) - g(x)| = o(g(x)) as $x \to x_0$.

Example: $|\sinh x - x| = |\frac{x^3}{3!} + \frac{x^5}{5!} + \dots| = O(x^3) = o(x)$ $(F = O(G) \text{ as } x \to x_0 \text{ means } \exists C > 0 \text{ such that } |F(x)| \le C|G(x)| \text{ in some open interval } I, \text{ with } x_0 \in I)$ In fact, by remainder estimate for Taylor expansion

$$\left|\sinh x - \sum_{0}^{N} \frac{x^{2n+1}}{(2n+1)!}\right| = O(x^{2n+3}) = o(x^{2n+1}) \text{ as } x \to 0$$

We write $\sinh x \sim \sum_{0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

Definition: Asymptotic sequence and asymptotic expansion.

- (i) $\{\phi_n\}_{n=0}^{\infty}$ is an asymptotic sequence (of functions) as $x \to x_0$ if $\phi_{n+1}(x) = o(\phi_n(x))$ as $x \to x_0$.
- (ii) A function f has asymptotic expansion w.r.t. $\{\phi_n\}$ as $x \to x_0$ written $f \sim \sum_{n=0}^{\infty} a_n \phi_n$ if

$$\left| f(x) - \sum_{n=0}^{N} a_n \phi_n(x) \right| = o(\phi_N(x)) \text{ as } x \to x_0 \forall N$$

Notice the difference with Taylor expansion - an asymptotic expansion need not converge as $N \to \infty$ for any x!

Examples:

- $\{\phi_n(x) = x^n\}$ as $x \to 0$, the most common sequence.
- $\{\phi_n(x) = x^{2n+1}\}$ as $x \to 0$
- $\{\phi_n(x) = e^{-n/x}\}$ as $x \to 0^+$ (i.e. x > 0 and $x \to 0$ on right)

Warning: $\sin x \sim x - \frac{x^3}{3!} - \frac{x^5}{5!} + \dots$ as $x \to 0$. $\sin x + e^{-1/x} \sim x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$ as $x \to 0^+$.

Why?

$$\left| \sin x + e^{-1/x} - \sum_{0}^{N} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \right| = \left| \sum_{n=2N+1}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} + e^{-1/x} \right| = O(x^{2N+3}) = o(x^{2N+3})$$

Moral: information is lost in asymptotic expansions!

However, given f and asymptotic sequence, the a_j 's are unique, i.e.

$$a_0 = \lim_{x \to x_0} \frac{f(x)}{\phi_0(x)}$$

$$a_1 = \lim_{x \to x_0} \frac{f(x) - a_0 \phi_0(x)}{\phi_1(x)}$$

$$\vdots$$

Question: Is it possible that $f(x) \sim 0$ as $x \to 0$?

If |f(x) - 0| = o(0) = 0 in some interval I, containing 0, then $f \equiv 0$ on I.

Example: Consider $Ei(x) = \int_x^\infty \frac{e^{-t}}{t} dt$ as $x \to +\infty$.

Consider the asymptotic sequence $\phi_n(x) = 1/x^n$ as $x \to +\infty$

$$Ei(x) = \int_{x}^{\infty} \frac{-d(e^{-t})}{t} = \left[-\frac{e^{-t}}{t} \right]_{x}^{\infty} - \int_{x}^{\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} - \int_{x}^{\infty} \frac{e^{-t}}{t^{2}} dt$$

Claim: $Ei(x) \sim e^{-x}/x$ as $x \to +\infty$.

$$\left| Ei(x) - \frac{e^{-x}}{x} \right| = \left| \int_{x}^{\infty} \frac{e^{-t}}{t^{2}} dt \right| \le \frac{1}{x^{2}} \int_{x}^{\infty} e^{-t} dt = \frac{e^{-t}}{x^{2}} = o\left(\frac{e^{-x}}{x}\right)$$

Working out the full expansion of Ei with respect to $\phi_n = e^{-x}/x^n$ gives that.

$$Ei(x) \sim \sum_{n=0}^{\infty} \frac{(-1)^n n! e^{-x}}{x^{n+1}}$$

What do we mean?

- (i) $\phi_n(x) e^{-x}/x^{n+1}$ satisfies $\phi_{n+1}(x) = o(\phi_n(x))$ as $x \to +\infty$. i.e. it forms an "asymptotic sequence."
- (ii) The notation " \sim " ("asymptotic to") means

$$\left| Ei(x) - \sum_{n=0}^{N} \frac{(-1)^n n! e^{-x}}{x^{n+1}} \right| = o\left(\frac{e^{-x}}{x^{n+1}}\right) \text{ as } x \to +\infty$$

This can be proved with integration by parts:

$$Ei(x) = -\int_{x}^{\infty} \frac{1}{t} d(e^{-t}) = e^{-x}/x + \int_{x}^{\infty} \frac{1}{t^{2}} d(e^{-t})$$

$$= e^{-x}/x - e^{-x}/x^{2} + 2\int_{x}^{\infty} \frac{e^{-t}}{t^{3}} dt$$

$$= e^{-x} \left[\frac{1}{x} - \frac{1}{x^{2}} + \frac{2!}{x^{3}} - \frac{3!}{x^{4}} + \dots + \frac{(-1)^{n} n!}{x^{n+1}} \right] + \underbrace{(-1)^{n+1} (n+1)! \int_{x}^{\infty} \frac{e^{-t}}{t^{n+2}} dt}_{Rem_{x+1}(x)}$$

Where

$$|Rem_{n+1}(x)| \le \frac{(n+1)!}{x^{n+2}} \int_x^\infty e^{-t} dt = \frac{(n+1)!e^{-x}}{x^{n+2}} = o\left(\frac{e^{-x}}{x^{n+1}}\right) \text{ as } x \to +\infty$$

So it is an asymptotic expansion. Not convergent because $\sum (-1)^n n! y^{n+1}$ has radius of convergence 0. (In fact for fixed y the terms become unbounded.)

Consider magnitudes of successive terms $f_n(x) = (-1)^n n! e^{-x} / x^{n+1}$

$$\left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \frac{n+1}{x}$$

Optimal truncation: Truncate the asymptotic expansion at the point $n = N_x$, such that the first term excluded is the smallest.

In our example, choose $N_x = [x] - 1 = \sup\{j - 1 : j \le x, j \in \mathbb{N}\}\$

$$|f_{N_x+1}(x)/f_{N_x}(x)| = (N_x+1)/x \le 1$$
 so f_{N_x+1} is the smallest term, later terms are larger
$$|f_{N_x+2}(x)/f_{N_x+1}(x)| = (N_x+2)/x > 1$$

So we write

$$Ei(x) = \sum_{n=1}^{N_x} \frac{(-1)^n n! e^{-x}}{x^{n+1}} + Rem_{N_x+1}(x)$$

$$|Rem_{n+1}(x)| \le \frac{(N_x+1)!}{x^{N_x+2}} e^{-x} = \frac{[x]! e^{-x}}{x^{[x]+1}} \le \frac{2\left(\frac{[x]}{e}\right)^{[x]} \sqrt{2\pi[x]} e^{-x}}{x^{[x]+1}} \le \frac{2\sqrt{2\pi[x]}}{[x]} e^{-x} e^{-[x]}$$

Where we have used Stirling's formula.

$$\lim_{n\to\infty}\frac{n!}{(n/e)^n\sqrt{2\pi n}}\to 1 \text{ as } n\to\infty$$

The good new is the additional $e^{-[x]}$ term. Optimal truncation (often) gives an exponentially small remainder.

Examples:

$$\sinh x = \frac{e^x - e^{-x}}{2} \sim e^{-x}/2 \text{ as } x \to +\infty$$

Works because $e^{-x} = o(e^x)$ as $x \to \infty$

$$\operatorname{sech} x = \frac{2}{e^x + e^{-x}} = \frac{2}{e^x} (1 + e^{-2x})^{-1} = \frac{2}{e^x} (1 - e^{-2x} + e^{-4x} - \dots)$$

This gives an asymptotic expansion for the sequence $\phi_n = e^{-nx}$ (Which is asymptotic since $e^{-x} = o(e^x)$ as $x \to +\infty$)

Note: $\sinh x \sim -e^{-x}/2$ as $x \to -\infty$

Consider $\sinh z$, for $z \in \mathbb{C}$

$$\sinh z = \frac{e^z - e^{-z}}{2} = \frac{e^{x+iy} - e^{-x-iy}}{2}$$

$$\sim e^z/2 \quad \text{as } z \to \infty \text{ in sector } \{-\frac{\pi}{2} < arg(z) < \frac{\pi}{2}\}$$

$$\sim e^{-z}/2 \ \text{ as } z \to \infty \text{ in sector } \{\frac{\pi}{2} < arg(z) < \frac{3\pi}{2} \}$$

Conclusion: The asymptotic seems to change suddenly when going from sector to sector.

The lines separating the different sectors are Stokes Lines.

Excercise: Prove that the definition of asymptotics in a sector must satisfy that you do not approach Stokes lines too fast.