

Revisiting Unbiased Implicit Variational Inference

Tobias Pielok^{1,2}, Bernd Bischl^{1,2}, David Rügamer^{1,2}

IWVHI

Challenges in Semi-Implicit Variational Inference (SIVI)

Semi-implicit variational distributions allow flexible representations of complex densities - but estimating their marginal likelihood is non-trivial in high dimensions

- SIVI defines $q_z(z) = \mathbb{E}_{\epsilon \sim p(\epsilon)}[q(z|\epsilon)]$ a powerful yet implicit representation
- The marginal density $q_z(z)$ cannot be evaluated directly, complicating optimization of divergence objectives like KL
- Unbiased Implicit Variational Inference (UIVI) requires expensive inner-loop MCMC
- Our proposal: AISIVI a path-gradient-compatible training scheme with **low bias**, **low variance** score estimation via importance sampling and learned reverse conditionals

Training SIVI with Path Gradients

The path gradient estimator enables stable and efficient optimization - but relies on estimating the intractable score $\nabla_z \log q(z)$

Objective: Minimize reverse KL $D_{\mathrm{KL}}(q(z) || p(z))$

Reparametrization: $z=h_{\phi}(\epsilon,\eta)$ with $\epsilon \sim p(\epsilon), \eta \sim p(\eta)$

Path gradient:

$$\nabla_{\phi} D_{\mathrm{KL}}(q \| p) = \mathbb{E}_{\epsilon, \eta} \left[\nabla_z \left(\log q(z) - \log p(z) \right) \cdot \nabla_{\phi} h_{\phi}(\epsilon, \eta) \right]$$

Challenge: No tractable form of $\nabla_z \log q(z)$

Importance Sampling and Unbiasedness

We prove: If the proposal $\tau(\epsilon|z)$ matches the reverse conditional $q(\epsilon \mid z)$, our importance-weighted score estimate becomes unbiased

Key idea: Estimate score via importance sampling, for $\tilde{z}=z$:

$$\nabla_z \log q(z) = \nabla_z \log \mathbb{E}_{\epsilon \sim p(\epsilon)}[q(z|\epsilon)] = \nabla_z \log \mathbb{E}_{\epsilon \sim \tau(\cdot|\tilde{z})} \left[\frac{p(\epsilon)q(z|\epsilon)}{\tau(\epsilon|\tilde{z})} \right]$$

Theoretical guarantee: Let $\tilde{z} \sim q(z)$ and $\tau(\epsilon | \tilde{z}) = q(\epsilon | \tilde{z})$, then:

$$\mathbb{E}_{\epsilon_i \sim \tau(\epsilon|\tilde{z})} \left[\nabla_z \log \left(\frac{1}{k} \sum_{i=1}^k \frac{p(\epsilon_i) q(z|\epsilon_i)}{\tau(\epsilon_i|\tilde{z})} \right) \right] = \nabla_z \log q(\tilde{z})$$

 \Rightarrow Low bias and variance when $au(\epsilon|z) pprox q(\epsilon|z)$

AISIVI

- Even if $\tau(\epsilon|z) \neq q(\epsilon|z)$, the estimator remains consistent for: $\operatorname{supp}(\tau(\cdot|z)) \supseteq \operatorname{supp}(q(\cdot|z))$
- ullet Contrast: UIVI requires exact samples from $q(\epsilon|z)$

Learning the Proposal $\tau(\epsilon|z)$

We minimize the forward KL between the true reverse conditional and our proposal - with a tractable gradient estimator derived in closed form

Objective: $\min_{\theta} \mathbb{E}_{z \sim q(z)} \left[D_{\mathrm{KL}}(q(\epsilon|z) || \tau_{\theta}(\epsilon|z)) \right]$ We prove that $\nabla_{\theta} \mathbb{E}_{z \sim q(z)} \left[D_{\mathrm{KL}}(q(\epsilon|z) || \tau_{\theta}(\epsilon|z)) \right]$ $= -\mathbb{E}_{(z,\epsilon) \sim q(z,\epsilon)} \left[\nabla_{\theta} \log \tau_{\theta}(\epsilon|z) \right]$

- \bullet We can optimize τ directly using samples from $q(\epsilon,z)$
- \bullet No need to evaluate or sample from $q(\epsilon|z)$ explicitly
- \bullet We use a conditional normalizing flow for $\tau(\cdot|z)$

Contact

⋈ Tobias.Pielok@stat.uni-muenchen.de

