

Page 1 of 42 Pages

TEST REPORT

1. Applicant

Name : Ericsson-LG Co., Ltd.

Address: Yeoksam-dong, GS Tower 7,8th Floor, 508 Nonhyeon-ro,

Gangnam-gu, SEOUL, 135-985, KOREA

2. Products

Type of Product: IP Gigabit Video Phone

Model/Type : LIP-9070

Manufacturer : Ericsson-LG Co., Ltd.

3. Test Standard : FCC CFR 47 Part 15, Subpart C section 15.247 / RSS-210

4. Test Method : ANSI C63.4-2009

5. Test Result : Positive

Gung-kyn Cho

6. Date of Application : October 5th, 2012

7. Date of Issue : November 13th, 2012

Tested by Approved by

Sung-kyu Cho Jeong-min Kim

Telecommunication Center Telecommunication Center

Senior Engineer Manager

The test results contained apply only to the test sample(s) supplied by the applicant, and this test report shall not be reproduced in full or in part without approval of the KTL in advance.

Korea Testing Laboratory

FP-204-03-01

Tel.: +82-31-5000-132
Fax.: +82-31-5000-149

Leong min Kim

Report No.: 12-056907-01 Page 2 of 42 Pages

Tel.: +82-31-5000-132
Fax.: +82-31-5000-149

TABLE OF CONTENTS

1.	GENE	ERAL INFORMATIONS	4
1.1.	App	licant (Client)	4
1.2.	Equi	ipment (EUT)	4
1.3.	Test	ing Laboratory	5
1.4.	Chai	nnel numbers and Frequencies	5
2.	SUMI	MARY OF TEST RESULTS	6
3.	MEAS	SUREMENT & RESULTS	7
3.1.	20 d	B Bandwidth	7
	3.1.1.	Test Setup Layout	7
	3.1.2.	Test Condition & Limit	7
	3.1.3.	Test result	7
3.2.	Maxi	imum Peak Power	11
	3.2.1.	Test Setup Layout	11
	3.2.2.	Test Condition & Limit	11
	3.2.3.	Test result	11
3.3.	100	KHz Bandwidth of Frequency Band Edges	15
	3.3.1.	Test Setup Layout	15
	3.3.2.	Test Condition & Limit	15
	3.3.3.	Test result	15
3.4.	Нор	ping Channel Separation	18
	3.4.1.	Test Setup Layout	18
	3.4.2.	Test Condition & Limit	18
	3.4.3.	Test result	18
3.5.	Num	ber of Hopping Channels	20
	3.5.1.	Test Setup Layout	20
	3.5.2.	Test Condition & Limit	20
	3.5.3.	Test result	20

Report No.: 12-056907-01 Page 3 of 42 Pages

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

3.6.	Dwe	Il Time	23
	3.6.1.	Test Setup Layout	23
	3.6.2.	Test Condition & Limit	23
	3.6.3.	Test result	23
3.7.	Con	ducted Spurious Emission	27
	3.7.1.	Test Setup Layout	27
	3.7.2.	Test Condition & Limit	27
	3.7.3.	Test result	27
3.8.	Radi	ated Spurious Emissions	31
	3.8.1.	Test Procedure	31
	3.8.2.	Limits	32
	3.8.3.	Sample Calculation	33
	3.8.4.	Measurement Configuration	33
	3.8.5.	Restricted Bandedge Graph	34
	3.8.6.	Spurious Emission Test Results	38
3.9.	AC	Conducted Emissions	39
	3.9.1.	Test Procedure	39
	3.9.2.	Limits	39
	3.9.3.	Sample calculation	40
	3.9.4.	Photograph for the test configuration	40
	3.9.5.	Test Results	41
4	TEST	COURTE	40

Page 4 of 42 Pages

1. GENERAL INFORMATIONS

1.1. Applicant (Client)

Name	Ericsson-LG Co., Ltd.	
Address	Yeoksam-dong, GS Tower 7,8th Floor, 508 Nonhyeon-ro, Gangnam-gu, SEOUL, 135-985, KOREA	
Contact Person	Sang-Jin Kang	
Telephone No.	+82-31-8054-6017	
Facsimile No.	+82-31-450-4745	
E-mail address	sangjin.kang@ericssonlg.com	
Manufacturer Name	Ericsson-LG Co., Ltd.	
Manufacturer Address	Yeoksam-dong, GS Tower 7,8th Floor, 508 Nonhyeon-ro, Gangnam-gu, SEOUL, 135-985, KOREA	

1.2. Equipment (EUT)

Type of Product	IP Gigabit Video Phone		
Model Name	LIP-9070		
FCC ID	TUILIP-9070		
IC Number	6241A-LIP9070		
Frequency Range	2,402 ~ 2,480 MHz		
Max RF Output Power	-0.4 dBm		
Modulation Technique	Frequency Hopping Spread Spectrum		
Type of Modulation	GFSK / DQPSK		
Number of Channels	79		
Antenna Type	Inverted F antanna		
Antenna Gain	2.6 dBi		
FCC Classification	FCC Part 15 Spread Spectrum Transmitter (DSS)		
Hardware Version	V1.0		
Software Version	V1.0.132		
Bluetooth Core spec	v2.1+EDR		

FP-204-03-01

Page 5 of 42 Pages

1.3. Testing Laboratory

Testing Place	Korea Testing Laboratory (KTL) 723 Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-901, KOREA
FCC registration number	408324
Industry Canada filing number	6298
Test Engineer	Sung-kyu Cho
Telephone number	+82 31 5000 132
Facsimile number	+82 31 5000 149
E-mail address	skcho@ktl.re.kr
Other Comments	-

1.4. Channel numbers and Frequencies

Channel	FREQ(MHz)	Channel	FREQ(MHz)	Channel	FREQ(MHz)	Channel	FREQ(MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

FP-204-03-01

Page 6 of 42 Pages

2. SUMMARY OF TEST RESULTS

Testing performed for : Ericsson-LG Co., Ltd.

Equipment Under Test : LIP-9070

Receipt of Test Sample: October 05th, 2012

Test Start Date: October 17th, 2012

Test End Date: November 13th, 2012

FCC Rules	IC Rules	Test Requirements	Result	Comments
15.247 (a)(1)	RSS-210 A8.4(2)	20dB Bandwidth	Pass	See Data sheets
15.247 (b)(1)	RSS-210 A8.1(a)	Maximum Peak Power	Pass	See Data sheets
15.247(d)	RSS-210 A8.5	100 KHz Bandwidth of Frequency Band Edges	Pass	See Data sheets
15.247 (a)(1)	RSS-210 A8.1(b)	Hopping channel separation	Pass	See Data sheets
15.247 (a)(1)(iii)	RSS-210 A8.4(2)	Number of hopping channels	Pass	See Data sheets
15.247 (a)(1)(iii)	RSS-210 A8.1(d)	Dwell time	Pass	See Data sheets
15.247(d)	RSS-210 A8.5	Conducted Spurious Emission	Pass	See Data sheets
15.209	RSS-Gen 7.2.2	Radiated Spurious Emissions	Pass	See Data sheets

FP-204-03-01

Page 7 of 42 Pages

3. Measurement & Results

3.1. 20 dB Bandwidth

3.1.1. Test Setup Layout

3.1.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 10 kHz
- The 20dB bandwidth is defined as the frequency range where the power is higher than the peak power minus 20dB. Frequencies that are separated by 25 kHz or two-thirds of the 20 dB Bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

3.1.3. Test result

* Operation Mode : GFSK

Channels	Frequency (MHz)	Result (MHz)	Verdict
Low	2402	0.925	Pass
Middle	2441	0.930	Pass
High	2480	0.925	Pass

* Operation Mode: 8DPQSK

Channels	Frequency (MHz)	Result (kHz)	Verdict
Low	2402	1.255	Pass
Middle	2441	1.265	Pass
High	2480	1.265	Pass

Tel.: +82-31-5000-132
Fax.: +82-31-5000-149

- Low Channel (GFSK) -

- Mid Channel (GFSK) -

- High Channel (GFSK) -

- Low Channel (8DPQSK) -

FP-204-03-01

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

- Mid Channel (8DPQSK) -

- High Channel (8DPQSK) -

Tel.: +82-31-5000-132
Fax.: +82-31-5000-149

Page 11 of 42 Pages

3.2. Maximum Peak Power

3.2.1. Test Setup Layout

3.2.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 1 MHz
- The Maximum Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

3.2.3. Test result

* Operation Mode: GFSK

Channels	Frequency (MHz)	Result (dBm)	Limit (dBm)	Verdict
0	2402	-2.09	30	Pass
39	2441	-3.22	30	Pass
78	2480	-4.14	30	Pass

* Operation Mode: 8DPQSK

Channels	Frequency (MHz)	Result (dBm)	Limit (dBm)	Verdict
0	2402	-0.40	30	Pass
39	2441	-1.54	30	Pass
78	2480	-2.25	30	Pass

Tel.: +82-31-5000-132 Fax.: +82-31-5000-149

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

- Low Channel (GFSK) -

- Mid Channel (GFSK) -

- High Channel (GFSK) -

- Low Channel (8DPQSK) -

http://www.kti.re.ki

- Mid Channel (8DPQSK) -

- High Channel (8DPQSK) -

FP-204-03-01

Page 15 of 42 Pages

3.3.100 KHz Bandwidth of Frequency Band Edges

3.3.1. Test Setup Layout

3.3.2. Test Condition & Limit

- Set RBW & VBW of Spectrum analyzer to 100 kHz
- The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
- The maximum frequency range measuring with the spectrum from 30 MHz to 25 GHz is investigated with the transmitter

3.3.3. Test result

* Operation Mode : GFSK

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2402	40 >	20	Pass
High	2480	40 >	20	Pass

* Operation Mode: 8DPQSK

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2402	40 >	20	Pass
High	2480	40 >	20	Pass

http://www.ktl.re.kr FP-204-03-01

Tel.: +82-31-5000-132

- Band edge lower side (GFSK) -

- Band edge higher side (GFSK) -

Tel.: +82-31-5000-132

- - Band edge lower side (8DPQSK) -

- Band edge higher side (8DPQSK) -

Page 18 of 42 Pages

3.4. Hopping Channel Separation

3.4.1. Test Setup Layout

3.4.2. Test Condition & Limit

- Set the center frequency of spectrum analyzer = middle of hopping frequency
- Set the spectrum analyzer as RBW, VBW = 100 kHz, Span = 5 MHz
- Frequency hopping system shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the two-third of 20dB bandwidth of the hopping channel, whichever is greater.

3.4.3. Test result

* Operation Mode : GFSK

Channels	Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
Hopping	2441	1.000	0.620	Pass

^{*}Remark: 20dB bandwidth is 0.930 MHz

* Operation Mode: 8DPQSK

Channels	Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
Hopping	2441	1.000	0.843	Pass

^{*}Remark: 20dB bandwidth is 1.265 MHz

Fax.: +82-31-5000-149

Tel.: +82-31-5000-132

- Channel Separation (GFSK) -

- Channel Separation (8DPQSK) -

Tel.: +82-31-5000-132 Fax.: +82-31-5000-149

FP-204-03-01

Page 20 of 42 Pages

Tel.: +82-31-5000-132

3.5. Number of Hopping Channels

3.5.1. Test Setup Layout

3.5.2. Test Condition & Limit

- Set the spectrum analyzer as start frequency = 2,400 MHz, stop frequency = 2,441.5 MHz and start frequency = 2,441.5 MHz, stop frequency = 2,483.5 MHz
- Set the spectrum analyzer as RBW, VBW = 300 kHz
- Frequency hopping system operating in the $2,400 \sim 2,483.5$ MHz bands shall use at least 15 hopping frequencies.

3.5.3. Test result

* Operation Mode: GFSK

Channels	Result (Number fo Hopping channels)	Limit (channel)	Verdict
Hopping	79	>=15	Pass

* Operation Mode: 8DPQSK

Channels	Result (Number fo Hopping channels)	Limit (channel)	Verdict
Hopping	79	>=15	Pass

http://www.ktl.re.kr
F2-204-03-01
Fax.: +82-31-5000-149

- - Number of hopping channel (GFSK) -

- Number of hopping channel (GFSK) -

Fax.: +82-31-5000-149

Tel.: +82-31-5000-132

FP-204-03-01

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

- - Number of hopping channel (8DPQSK) -

- Number of hopping channel (8DPQSK) -

FP-204-03-01

Page 23 of 42 Pages

3.6. Dwell Time

3.6.1. Test Setup Layout

3.6.2. Test Condition & Limit

- Set the spectrum analyzer to zero span mode and RBW, VBW = 3 MHz.
- Frequency hopping systems in the 2,400-2,483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

The dwell time is calculated by:

Dwell time = time domain slot length x (hop rate / number of hopping per channel) x 31.6 with:

3.6.3. Test result

* Operation Mode : GFSK

DH1: 0.413 * (1600/2)/79 * 31.6 = 132.2 (ms) DH3: 1.801 * (1600/4)/79 * 31.6 = 288.2 (ms)

DH5: 3.085 * (1600/6)/79 * 31.6 = 329.1 (ms)

Channels	Type slot length(ms)	Dwell time (ms)	Limits (msec)	Packet type	Verdict
Mid	0.413	132.2	≤ 400	DH1	Pass
Mid	1.801	288.2	≤ 400	DH3	Pass
Mid	3.085	329.1	≤ 400	DH5	Pass

* Operation Mode: 8DPQSK

3-DH1: 0.418 * (1600/2)/79 * 31.6 = 133.8 (ms) 3-DH3: 1.732 * (1600/4)/79 * 31.6 = 277.1 (ms)

3-DH5: 3.015 * (1600/6)/79 * 31.6 = 321.6 (ms)

Channels	Type slot length(ms)	Dwell time (ms)	Limits (msec)	Packet type	Verdict
Mid	0.418	133.8	≤ 400	3DH1	Pass
Mid	1.732	277.1	≤ 400	3DH3	Pass
Mid	3.015	321.6	≤ 400	3DH5	Pass

- DH1 packet type (GFSK) -

- DH3 packet type (GFSK) -

- DH5 packet type (GFSK) -

- DH1 packet type (8DPQSK) -

- DH3 packet type (8DPQSK) -

- DH5 packet type (8DPQSK) -

Page 27 of 42 Pages

Tel.: +82-31-5000-132

3.7. Conducted Spurious Emission

3.7.1. Test Setup Layout

3.7.2. Test Condition & Limit

- Set the spectrum analyzer as RBW, VBW = 1 MHz
- The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 4.5). This value is used to calculate the 20 dBc limit.
- In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.7.3. Test result

* Operation Mode: GFSK

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2,402	35 >	20	Pass
Mid	2,441	35 >	20	Pass
High	2,480	35 >	20	Pass

* Operation Mode: 8DPQSK

Channels	Frequency (MHz)	Result (dBc)	Limit (dBc)	Verdict
Low	2,402	35 >	20	Pass
Mid	2,441	35 >	20	Pass
High	2,480	35 >	20	Pass

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

- Low channel (GFSK) -

- Mid channel (GFSK) -

- High channel (GFSK) -

- Low channel (8DPQSK) -

FP-204-03-01

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

- Mid channel (8DPQSK) -

- High channel (8DPQSK) -

FP-204-03-01

Report No.: 12-056907-01 Page 31 of 42 Pages

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

3.8. Radiated Spurious Emissions

3.8.1. Test Procedure

3.8.1.1 Preliminary Testing for Reference

Preliminary testing was performed in a KTL absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna (Biconi-Log antenna : 30 to 1000 MHz or Horn Antenna : 1 to 40 GHz) was placed at the distance of 3 meter from the EUT.

An attempt was made to maximize the emission level with the various configurations of the EUT. Emission levels from the EUT with various configurations were examined on a spectrum analyzer connected with a RF amplifier and graphed.

The emission was within the illumination area of the 3 dB beam width of the antenna so that the maximum emission from the EUT is measured.

3.8.1.2 Final Radiated Emission Test at an Absorber-Lined Room

The final measurement of radiated field strength was carried out in a KTL Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.

Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver.

Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level. Receiving antenna polarization was changed vertical and horizontal. The worst value was recorded.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor (20 dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

Tested in x, y, z axis and worst case results are reported

The maximum frequency range measuring with the spectrum from 30 MHz to 40 GHz is investigated with the transmitter

Page 32 of 42 Pages

3.8.2. Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Field Strength Measurement Distance (MHz) (microvolts/meter) (meters)

Frequency (MHz)	Field Strength (microvolts/meter)	Distance (Meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200**	3
above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

² Above 38.6

Page 33 of 42 Pages

3.8.3. Sample Calculation

The emission level measured in decibels above one microvolt ($dB\mu$) was following sample calculation.

For example;

Measured Value at	4804 MHz	45.79 dB <i>⊭</i> V
Antenna Factor & Ca	able loss	28.20 dB
 Preamplifier 		-25.00 dB

= Radiated Emission 48.99 dB / M/m

3.8.4. Measurement Configuration

Page 34 of 42 Pages

3.8.5. Restricted Bandedge Graph

- GFSK Lower side bandedge (Peak) -

- GFSK Lower side bandedge (Average) -

Tel.: +82-31-5000-132 Fax.: +82-31-5000-149

Tel.: +82-31-5000-132

- GFSK Higher side bandedge (Peak) -

- GFSK Higher side bandedge (Average) -

- 8DPQSK Lower side bandedge (Peak) -

- 8DPQSK Lower side bandedge (Average) -

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

FP-204-03-01

- 8DPQSK Higher side bandedge (Peak) -

- 8DPQSK Higher side bandedge (Average) -

Fax.: +82-31-5000-149

Tel.: +82-31-5000-132

FP-204-03-01

Page 38 of 42 Pages

Tel.: +82-31-5000-132

Fax.: +82-31-5000-149

3.8.6. Spurious Emission Test Results

3.8.6.1 Spurious Radiated Emission (30 MHz ~ 25 GHz)

Frequency (MHz)	Antenna Pol.	Bandwidth (kHz) Detector	Reading level	Correction factor	Level Corrected	Limit	Margin	Remark
Lowest chan	nel Ch. 0							
4804	Н	1000, Peak	38.38	-2.33	36.05	74.0	37.95	Peak
4804	V	1000, Peak	36.54	-2.33	34.21	74.0	39.79	Peak
Middle chanr	nel Ch. 39						1	l
4882	Н	1000, Peak	37.28	-2.27	35.01	74.0	38.99	Peak
4882	V	1000, Peak	39.23	-2.27	36.96	74.0	37.04	Peak
Highest channel Ch. 78								
4960	Н	1000, Peak	39.95	-2.25	37.70	74.0	36.30	Peak
4960	V	1000, Peak	37.50	-2.25	35.25	74.0	38.75	Peak

Level Corrected = Reading level + Correction factor (dB/m)

Correction factor = Antenna factor + Cable loss – Pre-amplifier (when using a pre-amplifier)

1. Measurement was done over the frequency range from 1GHz to 10th harmonic. The EUT was rotated and the antenna was changed to a range of height of from 1 m to 4 m above the ground plane for maximum response.

- 2. Pre-amplifier was used in the range between $1 \sim 25$ GHz.
- 3. Test results include the rotation of the EUT through three orthogonal axes to determine the maximum emission.
- 4. If the peak measured values are lower than average limits, average measurements are not performed.

- **Remark** 1. Noise floor of 30 ~ 1000 MHz : <20 dBuV at 3m distance
 - 2. Noise floor of 1000 ~ 5000 MHz : <40 dBuV at 3m distance
 - 3. Noise floor of 5000 ~ 25000 MHz : <50 dBuV at 3m distance

Tel.: +82-31-5000-132

Korea Testing Laboratory

Page 39 of 42 Pages

3.9. AC Conducted Emissions

3.9.1. Test Procedure

Conducted emission measurements on the EUT were performed by "AC Power Line Conducted Emissions Testing" procedure as per ANSI C63.4. The EUT was set up on a wooden table 0.8 meters height, 1.0 by 1.5 meters in size, placed in the shielded enclosed with a side of wall of which constituted a vertical conducting surface of 2.2 m x 3.1 m in size to maintain 40 cm from the rear of EUT

LISN(Line Impedance Stabilization Network, ROHDE & SCHWARZ, ESH3-Z5, 50 ohm / 50 μ H) was installed and electrically boned to the conducting ground plane. The EUT was connected to the LISN using a typical power adapter.

One of two 50 ohm output terminals of the LISN was connected to the EMI Receiver (ROHDE & SCHWARZ, ESCI, 9 kHz to 3 GHz) and the other was terminated in 50 ohms. Measurements were again performed after interchanging such a connection oppositely.

The frequency range from 150 kHz to 30 MHz was examined and the remarkable frequencies were measured with Quasi-peak and Average values using the EMI receiver instrument (ROHDE & SCHWARZ, ESI, 9 kHz to 3 GHz; Detector Function; CISPR Quasi-Peak & Average). The 6 dB bandwidth of the Receiver was set to 9 kHz

The position of connecting cables of the EUT was changed to find the worst case configuration during measurements. The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

3.9.2. Limits

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Francisco (MILL-)	Conducted Limits (dBuV)			
Frequency (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

http://www.ktl.re.kr

FP-204-03-01

Page 40 of 42 Pages

Tel.: +82-31-5000-132

3.9.3. Sample calculation

The emission level measured in decibels above one microvolt (dBM) was converted into microvolt (M) as shown in following sample calculation.

For example:

Measured Value at	0.4245 MHz	25.5 dB ₩ @ Q-Peak mode
+ Correct factor *		9.9 dB
= Conducted Emission		35.4 dB <i>ሥ</i>

^{*} Correct factor is adding RF cable loss and Attenuation

3.9.4. Photograph for the test configuration

1271-12, Sa-Dong Sangnok-Gu, Ansan-si Gyunggi-Do, Korea.

Fax.: +82-31-5000-149 http://www.ktl.re.kr

FP-204-03-01

3.9.5. Test Results

Final Measurement - QuasiPeak

Frequency (MHz)	QuasiPeak (dB⊮)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.1680	40.6	Netural	9.8	24.5	65.1
3.5115	28.6	Live	9.7	27.4	56.0
5.0190	33.8	Live	9.7	26.2	60.0
6.7380	37.5	Live	9.7	22.5	60.0
12.6105	36.8	Netural	9.9	23.2	60.0
25.9035	22.0	Netural	10.0	38.0	60.0

Final Measurement - Average

Frequency (MHz)	QuasiPeak (dB⊮)	Line	Corr. (dB)	Margin (dB)	Limit (dB///)
0.1770	33.7	Netural	9.8	20.9	54.6
0.3885	25.5	Netural	9.9	22.6	48.1
5.8740	30.3	Live	9.7	19.7	50.0
9.9060	26.0	Live	9.7	24.0	50.0
10.7340	27.8	Netural	9.8	22.2	50.0
25.9170	17.7	Netural	10.0	32.3	50.0

Page 42 of 42 Pages

Tel.: +82-31-5000-132

4. TEST EQUIPMENTS

No.	Equipment	Manufacturer_	Model	S/N	Effective Cal.Duration
1	EMI Receiver (20 Hz ~ 26.5 GHz)	R&S	ESIB	100280	08/17/2012 ~ 08/17/2013
2	Spectrum Analyzer (100 Hz ~ 26.5 GHz)	Agilent	E4407B	US41443316	12/01/2011 ~ 12/01/2012
3	Spectrum Analyzer (3 Hz ~ 50 GHz)	Agilent	E4448A	MY43360322	08/30/2012 ~ 08/30/2013
4	Pre-Amplifier (100 kHz ~ 1 GHz)	SONOMA.	310N	186270	08/25/2012 ~ 08/25/2013
5	Pre-Amplifier (0.5 GHz ~ 26.5 GHz)	Agilent	83017A	MY39500982	04/02/2012 ~ 04/02/2013
6	LISN(50 Ω , 50 μH) (10 kHz ~ 100 MHz)	R&S	ESH3-Z5	826789009	07/05/2012 ~ 07/05/2013
7	Biconi-Log Ant. (30 MHz ~ 1000 MHz)	Schwarzbeck	VULB9168	9168-180	08/24/2012 ~ 08/24/2013
8	Horn Ant. (1 GHz ~ 18 GHz)	EMCO	3115	9012-3595	03/26/2012 ~ 03/26/2013
9	Horn Ant. (18 GHz ~ 40 GHz)	EMCO	3116	2664	03/26/2012 ~ 03/26/2013
10	Active Loop Ant. (9 kHz ~ 30 MHz)	EMCO	6502	2532	06/08/2012 ~ 06/08/2013
11	DC Power Supply	Agilent	E4356A	MY41000296	10/01/2012 ~ 10/01/2013
12	Power Meter	Agilent	E4417A	GB4129075	09/17/2012 ~ 09/17/2013
13	Bluetooth tester	Anritsu	MT8852B	6K00006994	01/28/2012 ~ 01/28/2013