ASSIGNMENT ON MACHINE LEARNING REGRESSION

PROBLEM STATEMENT OR REQUIREMENT:

A client's requirement is he wants to **predict the insurance charges** based on the several parameters. The client has provided several datasets for the same.

PROBLEM IDENTIFICATION:

STAGE 1: DOMAIN SELECTION (Machine Learning)

STAGE 2: SUPERVISED LEARNING (inputs and outputs are very clear)

STAGE 3: REGRESSION (we are going to predict the charges for insurance which is in the form of numbers, so it comes under the regression)

INFORMATION ABOUT THE GIVEN DATASET:

There are 6 columns and 1339 rows.

The given columns are (Age, Sex, Bmi, Children, Smoker, Charges).

We can take Age, Sex, Bmi, Children, Smoker as an input and take Charges as an output.

DATASET PRE_PRCOCESSING:

The given dataset having the column like Sex and Smoker provided the categorical values like (male/female and yes/no). Machine Learning Regression can't handle categorical data. We have to convert that categorical data into numerical values.

Before Pre_Processing: Example

	age	sex	bmi	children	smoker	charges
0	19	female	27.900	0	yes	16884.92400
1	18	male	33.770	1	no	1725.55230
2	28	male	33.000	3	no	4449.46200
3	33	male	22.705	0	no	21984.47061
4	32	male	28.880	0	no	3866.85520

After Pre_Processing:

	age	bmi	children	charges	sex_male	smoker_yes
0	19	27.900	0	16884.92400	0	1
1	18	33.770	1	1725.55230	1	0
2	28	33.000	3	4449.46200	1	0
3	33	22.705	0	21984.47061	1	0
4	32	28.880	0	3866.85520	1	0

DEVELOPING THE MODEL BY USING VARIOUS MACHINE LEARNING REGRESSION ALGORITHMS

MULTIPLE LINEAR REGRESSION:

S.NO	HYPER TUNNING PARAMETER	R_SCORE
1	-	0.7894
2	fit_intercept=True	0.7894
3	copy_X=True	0.7894

MAXIMUM R_SCORE

BY USING MULTIPLE LINEAR REGRESSION IS = 0.7894

SUPPORT VECTOR MACHINE:

S.NO	KERNEL	HYPER TUNNING PARAMETER	R_SCORE
1	Rbf	-	-0.0833
2	Rbf	C=10	-0.0322
3	Rbf	C=50	0.1478
4	Rbf	C=100	0.3200

MAXIMUM R_SCORE

DECISION TREE:

S.NO	HYPER TUNNING PARAMETER	R_SCORE
1	Criterion='squared_error' Splitter='best'	0.6872
2	Criterion='friedman_mse' Splitter='best'	0.6845
3	Criterion='friedman_mse' splitter="random"	0.7151

MAXIMUM R_SCORE

BY USING DECISION TREE IS = 0.7151

RANDOM FOREST:

S.NO	HYPER TUNNING PARAMETER	R_SCORE
1	n_estimators=50 random_state=0	0.8498
2	n_estimators=100 random_state=0	0.8539
3	n_estimators=10 random_state=0	0.8331

MAXIMUM R_SCORE

BY USING RANDOM FOREST REGRESSION IS = 0.8539

FINALIZED MODEL FOR THE GIVEN PROBLEM STATEMENT IS RANDOM FOREST

We have created the different regression algorithms for the given problem statement. From all those alogorithms, finally I have selected the Random_forest algorithm as a better model.

Because comparatively it gives the highest accuracy for the given problem statement. I tabulated the R_score value for different parameters for our reference.