CAMBRIA
Slick Concrete
Reinforcing
Bars

CAMBRIA STEEL COMPANY

Seneral Sales Office - Widener Building-Philodelphia Works - Johnstown, Pa.

STREET AND TO THE BUILDERS STREET STREET STREET

CAMBRIA STFEL COMPANY
Philadelphia

CAMBRIA STEEL COMPANY

Seneral Sales Office-Widener Building, Philadelphia Works - Johnstown, Pa,

8 AND 4 SQUARE SHITION BAR. Patented March 17, 1908 TYPES OF SLICK CONCRETE REINFORCING BARS LAND. ROLLS SOFTON BAR Petented March 17, 1908 8 AND 4 SQUARE SHITTON H

CAMBRIA SLICK CONCRETE REINFORCING BARS

GENERAL DESCRIPTION

LICK Concrete Reinforcing Bars are of substantially uniform cross-section throughout and are consequently of equal strength at all places, so that the material is economically distributed to best advantage

The projections on these bars are arranged in the form of undulations or waves and are so located that the concrete can be firmly bedded on all portions of the bar without the possibility of the formation of air pockets which would destroy the contact.

POINTS OF SUPERIORITY

THE Slick bar is the only one of all the deformed bars in the market which can be positively spliced, so as to be equal in strength to the bar; whereas all other bars are merely spliced by overlapping; these latter depending upon the concrete for their strength instead of on the steel, as it should be.

With other forms of bars it is customary to provide a lap in cases where they have to be spliced, this lap being equal to about forty diameters of the bar.

On the other hand, Slick bars are so arranged that their surfaces will interlock by merely

MANY REPORT CARD ANY Transfer and The Local Company of the Local Company

placing them in contact with each other and an overlap of the length of five waves or another tions together with the wedge clamp will develop a strength at the place equal to that of the bar, as determined by actual pallow to its By reason of this method of spherical less amount of lineal feet of bars will influe, and or cases where extreme lengths are used as excess of carboad or twin carboad lengths, 60 feet bars can be sphered to their full trougths by means of the clamps and wedges to save any length de ired.

REDUCED COST WITH SLICK BARS AND CLAMP JOINT

THE Shel Wedge Clamp Joint with its greatly decreased lap as compared with the usual lap of forty themselves, percented a large reduction in the weight and cost of the bar material, and the brought and handage charges thereon. The item of wise for busing the hipped ends of the bars is entirely shown mited, while the time labor and cost in damping the joint with the Slab Claum and Westerner but a fraction of those required by the orth nary wire to method

The total cost, all things considered manely amount of lap, time, labor, and who material for tying in accordance with the delinethout and, on the other hand, the material of the Stock Champs and Wedges, with the less time labor and lap to install them, make the Stock Champ and Wedge Method the cheaper and better construction, besides giving a positive joint whereas the old style joint is not positive and depends on the concrete for its strength.

USE AND ARRANGEMENT OF REINFORCING BARS

N FLOOR slabs, retaining walls and similar constructions generally, the principal point is to obtain a certain cross-sectional area of steel to withstand the tensional stresses, and this may be done by using more or less bars spaced at shorter or longer distances apart, so that the question of the size of any one bar, within the limits furnished, does not really enter into the matter. To put this more simply, if 10 square inches of cross-section are desired, this could be obtained by 10 bars, each 1 inch square, or 18 bars, each 1 inch square, or 40 bars, each 12 inch square, etc.

For beams and girders, however, the number of bars is limited to a certain extent, but a careful designer could use, for example, three Slick square bars, two of them being of a different size from the third, and in such a manner as to obtain practically any cross-section desired. In addition to this there are hundreds of methods and formulæ for the calculation of stresses in reinforcing steel for concrete structures, and the whole matter is not a well-defined art.

The main essential in using reinforcing bars is to have a certain cross section, and this may be made by any suitable combination of sizes, or by using a suitable number of bars, and arranging the spacing in such a way that the required cross-section of steel is obtained.

WEIGHTS AND DIMENSIONS -SQUARE BARS

THE sizes, areas and dimensions of the square Slick bars, in comparison with standard square bars, are given in the following table:

COMPARATIVE AREAS AND WEIGHTS OF SLICK REINFORCING BAR AND STANDARD SQUARE BAR

Patented March 17, 1908

Sections

APPROXIMATE AREAS AND WEIGHTS ALL DIMENSIONS IN INCHES

SLICK REINFORCING BAR SQUARE TYPE									STANDARD SQLARL BAR	
Section Number	of Bar	Ð	1,	В	L	Area Squire Unches	Wight The Per F	Arm) Square Inches	Weigh) Pounds Pirkon	
M = 395	1	1	128	13		.063	-51	0625	212	
M=396	4	ч				141	18	1400	1178	
M-397			1			(250)	153	2500		
M 398	3	7	110		São	.391	1-3.3	.3906	1 325	
M 399		1	114	4		563	[.9]	5027	1.013	
M 400	7	1	17,		11	766	2.60	7656	2,603	
21 (01	1	1	170		17	1.000	3,40	1 0000	5 400	
71-105	1.	11	1/1/			1.266	130	1.2656	1.305	
A 103	1;	11	1	133		1.563	5.31	1,5625		
M 101	15	į.	80	1		0.282	0.96	Specia		

Maximum Length, 60 feet

It should also be understood that the ³ 4 inch square Slick bar is substantially equal to a ⁷ 8 inch plain round, and a ⁷ 6 inch square Slick bar is about equal to a 1 inch plain round, and a 1 inch square Slick bar almost exactly equal to a 1 ¹ 8 inch plain round.

The only advantage that the Slick bars equal in section to round bars might have is in cases where an engineer has his drawings made for round bars, when the Slick bars of a similar cross-section can be provided, in such a way that the engineer or architect will not have to change his spacing of rods in order to provide the cross-section.

BONDING SURFACE OF CONTACT

A SQUARE bar is a better reinforcing bar than a round one for the reason that the area of contact of a square bar with the concrete in which it is embedded is much greater than that of a round one. A round bar gives the least possible surface of contact, and a greater contact is obtained the further we depart from the round or circular form.

For example, a 1 inch plain square bar has a circumference of 4 inches and an area of 1 square inch, whereas a round bar of approximately 1½ inch diameter has a cross-section of about 1 square inch, but is only 3½ inches in circumference, so that the square bar has about 14 per cent, more contact surface, the cross-sections being of equal area.

WEIGHTS AND DIMENSIONS OF SLICK ROUND DEFORMED BARS

O MEET the requirements of those who prefer a bar of round section, we roll a complete series of Slick bars of this form, as shown below:

COMPARATIVE AREAS AND WEIGHTS OF SLICK ROUND SECTION REINFORCING BAR AND STANDARD ROUND BAR

Patente I March 17, 1908

¥ *

COLUMN TOWN

APPROXIMATE AREAS AND WEIGHTS ALL DIMENSIONS IN INCHES

SLICK REINFORCING BARS STANDARD ROUND TYPE ROUND HAR									
Section Number	Nom mat Size	D	Α	В	L	Your quare Imbes	Vo stat Promote Pro Local	STREET	Vygini Pumula Per l'uni
M-494	1		0	1/2		0.49	17	0401	167
M=49.5	t Q	11	8.1			110		1104	.876
VI 496		8 4	21		224	-196	_67	_1067	668
M-497	4	A 1	11	18	157	_807	1.04	13008	1043
M 498	1					115	150	1118	1 50-2
VI=199	4	12	H		10	601	501	,6013	5.014
VI-500	1	1	lie.		11	185	2 67	1854	2.670
M 201	14	170	1		181	90 [3,38	9940	%.N80
11 205	1	1	1	-	15/6	1 227	4.17	1 2272	1115

Maximum Length, 60 feet

The round Slick deformed bars may be used by engineers, architects, contractors and builders who prefer this section and, in cases where required, these bars may be spliced with clamps and wedges in the same manner as the Slick square sections and with equally good results as regards strength and economy.

These round deformed bars can be directly substituted in all cases where the design has been made for the ordinary plain round bars without any changes whatsoever in the arrangement or dimensions.

The undulating form of the projections and depressions in the Slick round bars adds to the surface in contact with the concrete, in addition to providing positive bond with the concrete by reason of the deformations.

The Slick round bars will meet the most rigorous tests, and either the square or round bars may be selected by the user with equally satisfactory results.

RESULTS OF ACTUAL TESTS OF SLICK JOINTS

N ORDER to determine the strength of the clamps and wedges many tests have been made of the bare bars and clamps and wedges, which were pulled on a standard Riehle testing machine, the results in general being represented by the following:

(AMBRIA STARL CO. DEPT OF TRATS

TENSILE TEST DEPORT

"Juk Reinforcing Birth equipped with slamps and workers

TELCIMEN.	V)ni.	Citimate Franci Elek	Communication Stronger to Comparison Communication Communi	100 31 430 ft =
inch Shek Bace	251	10.020	607,8000	lends - mour and
y much Slick Brev.	1302	22 4(10)	59 6 100 1	-wells of two -1
meh Shek Bre-	0.802	2.2 (()()	(i.p. (i.br)	hotropations in

NOTE (pertinent broke to the body of the torse the count and sodie in every last being lattice after the coping of the bar.

While in actual use the bar are surrounded by solid concrete and, dependent upon the desure are stressed from 15,000 pounds per square inch, which is only one-fourth of that to which they are subjected when broken with the changes in testing machine. When the bars and changes were tested in the machine they were bore, while in the they are surrounded by subdictionated which will add possibly 50 per cent or a great deal more to the strength of the splice. This indicates that the splice, when embedded in concrete, is from six to ten times as strong as any stress to which it will be subjected.

EVERY PART OF THE SLICK HAR RESISTS. THE STRESSES OF USE

IN 1111, recommend denote of bare of the character, it is well to bear in model that the uniternal should be an arranged that it is all effective to resid the director to which it will be subjected, while at the same time, a deformed bar should have irregularities sufficient to provide a bond between it until the coverely shock corrounds it. Tests have been made of the square have in comparison with similar over its square have in determine that qualities in these projects.

The chargem on the opposite page above to comparison that the extension mode to solve tests of bare bars, within the charte basis of a law block bar and a such plant operator are equal, and if anothers, the slock bar state.

ter toward the lusher armits

The shageau shows the amount of shades as tension in feasion for accommodated bank of 1991 panels, and observe industrial fast the molularing form of the Shak has a multiple every party of the section is done it sham of the section when industrial sham of the section.

In other words, the shape and success of the Shek has are such that, in our the properties as well as the body of the har reast the stream and such and every part is an ound as a plane

har for residing pull

BUND TESTS.

TLSTS have also been made of the strength of the band between State bars and the courte surrounding them, in comparison with other bars, and it has been found that the State burs, when embedded to a depth of surroundings their morning disorders.

WOLVERINE SUPPLY AND MANUFACTURING COMPANY BUILDING PACESCENDAR PA

8 mehrs for a \$\frac{1}{2} meh bar 10 mehrs for a \$\frac{1}{2} meh bar 12 mehrs for a \$\frac{1}{4} meh bar, sec.

all broke outside of the concrete when public in tension, whereas other bars and plain bars for this depth of embedment would pull out of the concrete without breaking the stock. This indicates that the bonding effect between examine and stock is well taken care of by the form also construction of the bars in question.

In this connection test results obtained by independent engineers and one awa laboratore staff, which follow, will be found served by re-

HOSO PRATE OF SLICK OFFICERS
HETSYNTRESS HAVE

ore of milels Nor Les o	Disease 1	ninel I tipio I Novi in http	find of bottod out Proces	Local A Latine Franki	H=0.10	House Etc.
1	17614 17614 17617	503 503 503	No dis-	7.8 100 7.8 -0.0 7.8 -0.0 7.8 -0.00	Details Details Details Details	
1	17:17 17:17 17:17	83 83 80	100 A00	T1 010 T1 010 11 010	l Ind Sec	
	9058) 40 1 41 90 1 41	100 100 100 100	E 100 8000 Scribs	00 4740 10 740 14 600 14 600	Hook Broke Peak	11 6 11 6
1	2019 2019 2019 2019	18' 12 12	Accept Accept No dip	14,150	N = L N = L Vario	0 K
	51,9 51,5 51,9 51,9	0 0	7 (10) 7 (10) 7 (10) 7 (10)	14,750 14,750 16,750 16,750		O K. O K. Sulta Sulta

BOND TESTS OF CONCRETE REINFORCING BARS
MADE BY INDEPENDENT ENGINEER

Size	40		Bond Stress					
of	1 y pe	in 8-inch	at Initial	Bond Stres				
Bar	of	Concrete	Slip	Developed	Failure			
Inch	Bar	Cylinder	Lbs per	Lbs. per				
		Inches	Sq. In.	Sq. In.				
1.5	Plain Square	3.92	172	286	1			
1.5	Plain Square	3.76	226	282	Bar			
12	Plain Square	4:16	152	428	Pulled			
1,2	Plain Square	4.12	165	502	Out			
loc.	Plain Square	4.00	113	425) Crac			
12	Square Slick	3.80	167	535				
1 2	Square Slick	3.78	247	558				
1 2	Square Slick	4.00	167	608	Block			
1 2	Square Slick	3.90			Split			
1 2		3.87	106	345	1			
3	Square Slick		133	465	,			
34	Plain Square	5,47	189	334	1			
34	Plain Square	5.78	113	236	Bar			
34	Plain Square	5.80	132	245	Pulled			
1	Plain Square	6.02	108	255	Out			
34	Plain Square	6.02	137	244)			
3 4	Square Slick	5.80	290	538				
13 4	Square Slick	6.00	258	691	1			
0 4	Square Slick	6.00	270	514				
	Square Slick	5.57	304	482				
15 4 1	Square Slick	5.53	174	375	1			
2 4	Round Slick	6.09	222	441	1			
3 4	Round Slick	6.05	94	158	V			
13 4	Round Slick	6.10	133	598	Block			
3 4	Round Slick	6.07	135	435	Split			
-3 4	Round Slick	5.95	146	630				
	Round Slick	6.06	111	751				
	Round Slick	5.84	332	698	1			
0.	Round Slick	6.20	153	618	1			
0	Round Slick	6.10	198	670				
3 ,	Round Slick	6.05	189	504				
1	Plain Square	7.95	218	420	* B. C.			
1	Plain Square	7.93	210					
1	Plain Square	7.95		452	* B. C.			
i	Plain Square		116	414) Bar			
i	Plain Square	8.00	188	367	Pulled			
	Square Slick	8.00	172	294) Out			
^		8.00	218	540)			
	Square Slick	7.90	135	456	Block			
	Square Slick	7,92	129	390	Split			
	Square Slick	8.00	233	449	1			
1	Square Slick	7.98	168	458	f			

^{*}Block cracked shortly after maximum load was reached.

Concrete, 1:2:4 mixture, cement, sand and gravel; age, 61 days. The following is quoted from the Report on the above tests:

"The maximum loads developed by the Slick bars were higher than those developed by the corresponding plain bars, the additional strength varying in average amount from 18 to 98 per cent. The maximum load for the Slick bars was limited by the strength of the 8-inch cylinders to resist splitting action. It will be noted that all specimens with Slick bars broke by splitting of the test piece. In no case was the steel stressed to its elastic limit."

BOND TESTS OF CONCRETE REINFORCING BARS
CAMBRIA PHYSICAL TESTING LABORATORY

Embedded	1 g-IN. BA		1 ₂ -IN- PLAIN SQ. BARS	$^{1}_{2}$ -IN, PLAIN ROUND BARS	
Depth of Bar . Inches	Load Pounds	Failure	Load Pounds Failure	Load Pounds	Failure
8	16.340	Bars	11,330 Bars	8,760	Bars
10	16,130	broke	12,600 pulled	8,700	pulled
12	16,760	4^{1}_{2} to	12,270 out	8,750	out
18	16,600	10	12,450	9,050	
24	16,710	inches	12.440	9,420	
30	16,450	out-	13,140	9,960	
18 (wired)	16,270	side of			
18 (wired)	15,880	block			
18 (clamped)	16,110				
18 (clamped)	16,580				

The following tests were made on $\frac{3}{8}$ and $\frac{1}{2}$ inch Slick bars embedded in $\frac{43}{4}$ x 12 inch concrete slabs, the center line of bar being located about $\frac{1}{2}$ inches from the side of slab. Concrete $\frac{1}{2}$: 4 mixture, 70 days old.

All the bonds developed the full strength of the bar, and the samples after testing showed no sign of bond slipping or cracking of the concrete mass.

Test No.	Size of Slick Bar Inch	Distance from Side of Slab Inches	Depth of Einhed ment, Bar in Slah Juches	Load at Failure Pounds	Failure Bar Broke Inches Outside Slah
1		11	117	8,560	6
5		1 3	11	8,690	7
3		1,5	112	8,670	8
4		176	111	8,670	6^{1}
ñ.		1 .	114	14.600	11
6		1.1	111	14.600	7
7	1	1 1	111	14,600	G
8		1 1	11/	14,600	14

GRADES AND QUALITY OF SLICK BARS

HESE bars are made to standard specifications of either structural steel grade, intermediate grade, or of the hard grade.

On account of the fact that the Slick bars are substantially of uniform cross-section, the structural steel grade bars may be bent where necessary, as customary in this class of work.

Due consideration of the question of reinforcing bars leads to the opinion that those for use in reinforcing concrete should be initially of composition and physical properties similar to standard structural steel for buildings. Bars of these qualities when stressed from 15,000 to 18,000 pounds per square inch, act more harmoniously with the concrete, as, under these conditions, the elastic stretch of the steel will not break the bond between the bars and the

concrete to so great an extent as in the case of harder bars of high elastic limit, if used for greater working stresses.

The reason for this is that the moduli of clasticity of soft steel and hard steel are practically the same, so that the elastic stretch of the latter would be greater under higher loads with the consequent destructive effect on the bond between the steel and the concrete. The use of structural grade steels and stresses is, therefore, to be preferred for this purpose.

Cambria Slick Concrete Reinforcing Bars and Clamps are made by the Cambria Steel Company exclusively, under patents to E. E. Slick, Vice President and General Manager.

FROM 0.0005 POUND TO 400,000 POUNDS

A LINE were and weighing green pound and a giganite steel casting weighing 200 tens represent two extremes which clearly convey an idea of the waterange of steel products manufactured by

MIDVALE STEEL AND ORDNANCE COMPANY CAMBRIA STEEL COMPANY

GENERAL SALES OFFICE WHOESER HULDING PHILADELPRIA PA

PARTIAL LIST OF PRODUCTS

Monais Incometive and for Wheel Time Machine Bolin Ordinare Material Pipe of Tenk Bands Plow Steel Pressed Steel Sents for Ag-

resultated Implements
Projectible
Result Steel
Result

Strå Steel Mine Too Stamp Shore and Dies Steel Torot and Relled Steel Wheels

Structural Stant Work-Stant Class

wood Hade Stort Diace Wire Rada, Wow and Wice

Products

CAMBRIA STEEL COMPANY

GENERAL SALES OFFICE PHILADELPHIA—WIDENER BUILDING

DISTRICT OFFICES

ATLANTA	CANDLER	BUILDING
BOSTON	10 COUT	RT STREET
CHICAGO	${}_{-}.M\varepsilon CORMICK$	BUILDING
CINCINNATI	UNION TRUST	BUILDING
CLEVELAND .	SWETLAND	BUILDING
DETROIT	PENOBSCOT	BUILDING
NEW YORK	, 165 E	ROADWAY
PHILADELPHIA	WIDENER	BUILDING
PITTSBURGH	OLIVER	BUILDING
SALT LAKE CITY	NEWHOUSE	BUILDING
SAN FRANCISCO	MONADNOCK	BUILDING
SEATTLE	COLMAN	BUILDING
ST LOUIS	CHEMICAL.	BUILDING

ALLOY AND TOOL STEEL WAREHOUSES

BOSTON CHICAGO CLEVELAND NEW YORK
PHILADELPHIA SAN FRANCISCO

