ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ

Лабораторная работа №4.

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ. ЭКОНОМИЯ УПРАВЛЕНИЯ

Цель работы: ознакомиться с принципом максимума Понтрягина, исследовать задачу экономии управления на основе данного принципа, освоить аналитические и численные методы поиска оптимального управления.

Основные положения

Одним из основных теоретических подходов к решению задач поиска оптимального управления является *принцип максимума Понтрягина*. Этот принцип будет применяться во всех следующих лабораторных работах.

Сначала приведем общую формулировку принципа максимума. Для этого рассмотрим динамическую систему, заданную в общем случае нелинейными дифференциальными уравнениями:

$$\frac{dx_1}{dt} = f_1(x_1, x_2, ..., x_n, u);$$

$$\frac{dx_2}{dt} = f_2(x_1, x_2, ..., x_n, u);$$

$$\vdots$$

$$\frac{dx_n}{dt} = f_n(x_1, x_2, ..., x_n, u).$$
(4.1)

Для простоты предположим, что управление в системе скалярное $(u \in R^1)$, это не влияет на общую формулировку. В задаче оптимального управления также должен быть задан некоторый функционал качества

$$J(u) = \int_{0}^{\infty} L(x_1, x_2, ..., x_n, u, t) dt, \qquad (4.2)$$

и искомое оптимальное управление должно обеспечить минимум функционала.

В зависимости от вида функционала могут измениться пределы интегрирования в (4.2), также иногда требуется задать дополнительные условия, начальные или граничные, подробное описание будет приведено в соответствующих лабораторных работах.

Для формулировки принципа максимума Понтрягина следует ввести понятие <u>гамильтониана</u> динамической системы. Для этого выполняются следующие действия:

1) интегральный критерий дополнительно включается в систему дифференциальных уравнений (4.1): для этого можно продифференцировать выражение (4.2)

$$\frac{dJ}{dt} = L(x_1, x_2, ..., x_n, u, t); \tag{4.3}$$

- 2) каждой переменной состояния x_i ставится в соответствие так называемая сопряженная переменная ψ_i , функционалу соответствует сопряженная переменная ψ_0 ;
- 3) тогда гамильтониан системы определяется как <u>скалярное произведение</u> расширенного вектора сопряженных переменных и производных переменных состояния:

$$H = \sum_{i=1}^{n} \psi_i f_i + \psi_0 L, \tag{4.4}$$

где сопряженная переменная ψ_0 является константой. Можно показать, что решение оптимальной задачи от нее не зависит, и чаще всего выбирается $\psi_0 = -1$.

Для остальных сопряженных переменных через гамильтониан формируются дифференциальные уравнения:

$$\frac{d\psi_i}{dt} = -\frac{\partial H}{\partial x_i}. (4.5)$$

Сам принцип максимума Понтрягина формулируется следующим образом: *оптимальное управление доставляет максимум гамильтониану динами*ческой системы.

Следует подчеркнуть, что принцип максимума не содержит готового алгоритма решения задачи оптимального управления. На его основе можно определить вид функции управляющего воздействия и его связь с сопряженными переменными и переменными состояния. Для решения задачи этого недостаточно. Но в любом случае, применение принципа предполагает наличие следующих шагов:

- 1) построение гамильтониана динамической системы;
- 2) определение вида управляющего воздействия согласно принципу;
- 3) построение системы уравнений для сопряженных координат.

Как решать задачу управления дальше, будет рассмотрено на примерах различных функционалов в данной работе и следующих.

Пример решения оптимальной задачи с экономией управления.

Рассмотрим динамическую систему (типа двойной интегратор)

$$\frac{dx_1}{dt} = x_2; x_1(0) = x_{10};
\frac{dx_2}{dt} = u x_2(0) = 0.$$
(4.6)

Сформулируем задачу следующим образом: требуется найти такое управление $u_0(t)$, которое переведет систему из заданного начального положения в конечное

$$x_1(2) = 0;$$

 $x_2(2) = 0,$

При условии минимизации функционала экономии управления

$$J = \int_{0}^{2} u^{2}(t)dt. (4.7)$$

Как отмечено выше, первым шагом в решении задачи определения управляющего воздействия является запись гамильтониана в соответствии с (4.4):

$$H = \psi_1 x_2 + \psi_2 u - u^2. \tag{4.8}$$

На втором шаге определяется вид оптимального управляющего воздействия u_o . Согласно принципу максимума Понтрягина, гамильтониан при оптимальном управлении имеет максимум, поэтому можно использовать следующее уравнение:

$$\frac{\partial H}{\partial u}\Big|_{u=u_O} = 0$$

или

$$\psi_2 = 2u_0$$

или

$$u_0 = 0.5 \psi_2$$
. (4.9)

На третьем шаге формируется система сопряженных уравнений по (4.5) для гамильтониана (4.8):

$$\frac{d\psi_1}{dt} = 0$$

$$\frac{d\psi_2}{dt} = -\psi_1$$
(4.10)

Выполненные шаги позволяют сформировать полную систему дифференциальных уравнений из (4.6), (4.9), (4.10):

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = 0.5\psi_2$$

$$\frac{d\psi_1}{dt} = 0$$

$$\frac{d\psi_2}{dt} = -\psi_1$$
(4.11)

Таким образом для определения управляющего воздействия $u_0 = 0.5 \psi_2$ нужно найти частное решение системы (4.11), удовлетворяющее начальным и граничным условиям. Решение может быть найдено как аналитически, так и численно.

Аналитическое решение задачи может быть получено с помощью функции DSOLVE из раздела символьных вычислений MATLAB. Положительным свойством функции DSOLVE является то, что она может работать при задании любых N (N — порядок системы уравнений) значений переменных, не обязательно начальных. Тогда система (4.11) имеет единственное решение (4 дифференциальных уравнения, 4 условия).

Однако, как отмечалось в лабораторной работе 1, символьное выражение не всегда может оказаться компактным и удобным для использования. Поэтому можно воспользоваться методом преобразований Лапласа. Тем более, из анализа системы (4.11) видно, что два последних уравнения не зависят от x, значит их можно решить отдельно, а затем найти решения для первых двух уравнений.

Используя метод преобразований Лапласа для последних уравнений, имеем:

$$s\psi_{1}(s) - \psi_{10} = 0 \\ s\psi_{2}(s) - \psi_{20} = -\psi_{1}(s) \rightarrow \psi_{1}(s) = \frac{\psi_{10}}{s} \\ \psi_{2}(s) = \frac{\psi_{20}}{s} - \frac{\psi_{10}}{s^{2}}$$

Переходя к функциям-оригиналам, получаем

$$\psi_1(t) = \psi_{10} \psi_2(t) = \psi_{20} - \psi_{10}t$$
 (4.12)

Вид искомой функции управления известен, но неизвестны начальные условия сопряженных переменных ψ_{10} , ψ_{20} .

Чтобы найти начальные условия, нужно найти решения для переменных состояния $x_1(t)$, $x_2(t)$.

$$sx_1(s) - x_{10} = x_2(s)$$

 $sx_2(s) - x_{20} = 0.5\psi_2(s) = 0.5\left(\frac{\psi_{20}}{s} - \frac{\psi_{10}}{s^2}\right)$

Учитывая, что $x_{20} = 0$, находим выражения для алгебраических функций:

$$x_2(s) = \frac{0.5\psi_{20}}{s^2} - \frac{0.5\psi_{10}}{s^3}$$
$$x_1(s) = \frac{x_{10}}{s} + \frac{0.5\psi_{20}}{s^3} - \frac{0.5\psi_{10}}{s^4}$$

Переходя к функциям-оригиналам:

$$x_{2}(t) = 0.5\psi_{20}t - 0.25\psi_{10}t^{2}$$

$$x_{1}(t) = x_{10} + 0.25\psi_{20}t^{2} - \frac{\psi_{10}}{12}t^{3}$$
(4.13)

Последние выражения получены на основе правила преобразования Лапласа $t^n \to n! / s^{n+1}$.

Подставляя граничные условия в (4.13), получаем уравнения:

$$x_2(2) = \psi_{20} - \psi_{10} = 0$$

 $x_1(2) = x_{10} + \psi_{20} - \frac{2}{3}\psi_{10} = 0$

Решая данную систему относительно ψ_{10} , ψ_{20} , получаем:

$$\psi_{10} = -3x_{10}$$

$$\psi_{20} = -3x_{20}$$
(4.14)

Подставляя (4.14) в (4.12) и (4.13), можно найти все искомые функции, в том числе и функцию управляющего воздействия:

$$u_0(t) = -1.5x_{10} + 1.5x_{10}t$$
.

Проверить правильность аналитического решения можно путем численного моделирования системы (4.11) с начальными условиями (4.14). Пример скрипта приведен ниже:

%%Скрипт main4_1.m

Рисунок 1 – Результаты моделирования системы (4.11)

Графики переходных процессов показывают, что необходимые условия задачи выполнены, т.е. объект управления переводится из заданной начальной точки в заданную конечную точку за заданное время. Минимум расхода управления гарантируется тем, что использованное для этого перевода управляющее воздействие является решением системы уравнений (4.11).

Численное решение задачи предполагает численное решение системы уравнений (4.11), однако для этого также необходимо предварительно определить начальные условия сопряженных переменных ψ_{10} , ψ_{20} . Для этого можно использовать процедуру оптимизации, считая проектными параметрами начальные условия сопряженных переменных. Целевая функция должна возвращать отклонение переменных x_i на интервале интегрирования от требуемых граничных условий. Поскольку переменных несколько, имеет смысл задать целевую функцию как сумму квадратов отклонений (или <u>невязок</u>). Пример программы приведен ниже.

%%Скрипт Main4_2.m

%Начальные значения сопряженных переменных

% для поисковой процедуры

```
Psi0B=[1 1];
Psi0=fminsearch('costfunc4', Ksi0B)
```

%% Файл-функция costfunc4.m

```
function f=costfunc4(Ksi0)
t=[];
x=[];
h_odefun = @(t,x) [x(2);0.5*x(4);0;-x(3)]
[t,x]=ode45(h_odefun,[0 2],[1 0 Ksi0(1) Ksi0(2)]);
%вычисление невязки
f=x(end,1)*x(end,1)+x(end,2)*x(end,2);
% наблюдение за процессом поиска
plot(t,x(:,1),'r',t,0.5*x(:,4),'g')
pause(0.5)
```

Сравнивая значения ψ_{10} , ψ_{20} с вычисленными аналитически начальными условиями, а также графики, можно сделать вывод о правильности работы численного метода решения задачи оптимального управления.

Содержание работы

- 1. Определить аналитическим способом оптимальное управляющее воздействие как функцию времени, построить графики управляющего воздействия и переменных состояния объекта управления в соответствии с вариантом. Начальные и граничные условия: $x_1(0) = 1$, $x_2(0) = 0$, $x_1(T) = 0$, $x_2(T) = 0$.
- 2. Определить численным способом оптимальное управляющее воздействие, привести графики и сравнить с аналитическим решением.

Индивидуальные задания

Таблица 4.1 – Исходные данные к работе

Вариант	Объект управления	T	Вариант	Объект управления	T
1	$\frac{dx_1}{dt} = -x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	3	13	$\frac{dx_1}{dt} = -2x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	3.5
2	$\frac{dx_1}{dt} = -x_2 + u$ $\frac{dx_2}{dt} = -2x_2 + u$	1.8	14	$\frac{dx_1}{dt} = -2x_2 + u$ $\frac{dx_2}{dt} = -x_2 + u$	1.5
3	$\frac{dx_1}{dt} = -2x_2 + u$ $\frac{dx_2}{dt} = x_2 + u$	3	15	$\frac{dx_1}{dt} = -2x_2$ $\frac{dx_2}{dt} = x_2 + u$	3.5
4	$\frac{dx_1}{dt} = -x_1 + x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	4	16	$\frac{dx_1}{dt} = -x_1 + 2x_2$ $\frac{dx_2}{dt} = -x_2 + u$	4.5
5	$\frac{dx_1}{dt} = x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	2	17	$\frac{dx_1}{dt} = 2x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	2.5
6	$\frac{dx_1}{dt} = x_2 + u$ $\frac{dx_2}{dt} = -2x_2 + u$	1.8	18	$\frac{dx_1}{dt} = 2x_2 + u$ $\frac{dx_2}{dt} = -2x_2 + u$	2.3
7	$\frac{dx_1}{dt} = -x_1 + x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	2	19	$\frac{dx_1}{dt} = -x_1 + 2x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	2.5
8	$\frac{dx_1}{dt} = -x_1 + x_2 + u$ $\frac{dx_2}{dt} = -2x_2 + u$	1.8	20	$\frac{dx_1}{dt} = -x_1 + 2x_2 + u$ $\frac{dx_2}{dt} = -2x_2 + u$	2.3
9	$\frac{dx_1}{dt} = x_2$ $\frac{dx_2}{dt} = -x_2 + u$	1.8	21	$\frac{dx_1}{dt} = 2x_2$ $\frac{dx_2}{dt} = -2x_2 + u$	1.5
10	$\frac{dx_1}{dt} = x_1 + x_2$ $\frac{dx_2}{dt} = u$	3	22	$\frac{dx_1}{dt} = x_1 + 2x_2$ $\frac{dx_2}{dt} = u$	3.5

11	$\frac{dx_1}{dt} = x_2 + u$ $\frac{dx_2}{dt} = -x_2 + u$	4	23	$\frac{dx_1}{dt} = 2x_2 + u$ $\frac{dx_2}{dt} = -x_2 + u$	4.5
12	$\frac{dx_1}{dt} = -x_1 + x_2 + u$ $\frac{dx_2}{dt} = -x_2 + u$	2	24	$\frac{dx_1}{dt} = -x_1 + 2x_2 + u$ $\frac{dx_2}{dt} = -x_2 + u$	2.5