Theorem $0.0.1 \triangleright \mathbb{N}$ is not Bounded Above

Proof. Suppose for contradiction \mathbb{N} is bounded above. Since \mathbb{N} is not empty, then \mathbb{N} has a supremum in \mathbb{R} . Let $s \coloneqq \sup \mathbb{N} \in \mathbb{R}$. Then $n \le s$ for all $n \in \mathbb{N}$. By the Peano axioms, n has a successor $n+1 \in \mathbb{N}$, so $n+1 \le s$ for all $n \in \mathbb{N}$. Therefore, $n \le s-1$ for all $n \in \mathbb{N}$. This contradicts s being the least upper bound for \mathbb{N} .

Theorem 0.0.2 ▶ Archimedean Principle

Suppose $x, y \in \mathbb{R}$ where x > 0. Then, there exists $n \in \mathbb{N}$ such that nx > y.

Intuition: This is basically an extension of the fact that \mathbb{N} is not bounded above.

Proof. Since y/x is not an upper bound for \mathbb{N} , then there exists $n \in \mathbb{N}$ such that n > y/x. Since x > 0, then nx > y.

Theorem 0.0.3 ▶ Density of \mathbb{Q} in \mathbb{R}

Suppose $x, y \in \mathbb{R}$ where x < y. Then there exists $r \in Q$ such that x < r < y.

Intuition: Given any two different real numbers, there's some rational number between them.

Proof. We will consider three cases:

1. If $x \ge 0$, then $0 \le x < y$. Since y - x > 0, then by the Archimedean Principle, there exists $n \in \mathbb{N}$ such that n(y - x) > 1. We want to show there is a natural number between nx and ny. Let $A := \{k \in \mathbb{N} : k > nx\}$. Since \mathbb{N} isn't bounded above, then A is not empty. By the ??, A has a minimum. Let $m := \min A$. Then m > nx, and $m - 1 \le nx$. Thus, $m \le nx + 1$, so:

$$nx < m \le nx + 1 < ny$$

Dividing through by *n* yields x < m/n < y. Note that $m, n \in \mathbb{N} \subseteq \mathbb{Z}$, so $m/n \in \mathbb{Q}$.

 \bigcirc