SEGURANÇA DA INFORMAÇÃO

Criptografia Assimétrica

ROTEIRO

- Limitações da criptografia simétrica
- Criptografia assimétrica
- Algoritmos de criptografia assimétrica
- Vantagens e desvantagens

LIMITAÇÕES DA CRIPTOGRAFIA SIMÉTRICA

 Na criptografia de chave simétrica, a mesma chave é usada pelo remetente (para criptografia) e pelo receptor (para descriptografia).

- . A chave é compartilhada.
 - . Exemplos de algoritmo: DES, 3DES

LIMITAÇÕES DA CRIPTOGRAFIA ASSIMÉTRICA

Vantagens

Simples e rápida

Desvantagem

- as chaves precisam ser trocadas em um canal seguro
- Um atacante pode facilmente interceptar e obter a chave

- . Usa um par de chaves para criptografia
 - Chave pública para criptografia
 - Chave privada para descriptografia
- As mensagens codificadas usando a chave pública só podem ser decodificadas pela chave privada
- A transmissão secreta da chave para descriptografia não é necessária
- . Cada entidade pode gerar um par de chaves e liberar sua chave pública
- Usuários obtém a chave de uma autoridade certificadora

- . Essas chaves são geradas juntas
- A chave pública é distribuída gratuitamente.
 - Ela encripta/descriptografa o dado
- A chave privada é mantida em segredo
 - Ela decripta/descriptogra o dado
- Tanto o emissor quanto o receptor devem compartilhar suas chaves públicas para criptografar e devem usar suas chaves privadas para descriptografar

Fonte: 2

RSA e El Gamal são dois dos algoritmos mais populares

RSA

- Desenvolvido por Ron Rivest, Adi Shamir e Len Adelman
- As chaves pública e privada são intercambiáveis
- Tamanho variável da chave (512, 1024 ou 2048 bits)
- Algoritmo de chave pública mais popular

El Gamal

- Desenvolvido por Taher ElGamal
- Tamanho de chave variável (512 ou 1024 bits)
- Menos comum que RSA, usado em protocolos como PGP

Funcionamento do RSA

- Escolha dois números primos grandes p & q
- Calcule n=pq e z=(p-1)(q-1)
- Escolha o número e, menor que n, que não tem fator comum (além de 1) com z
- Encontre o número d, tal que ed 1 seja exatamente divisível por z

- Continua...
- As chaves são geradas usando n, d, e
 - A chave pública é (n,e)
 - A chave privada é (n, d)
 - Criptografia: c = me mod n
 - m é texto simples
 - c é texto cifrado
 - Descriptografia: m = cd mod n

A chave pública é compartilhada e a chave privada está oculta

Exemplo com RSA

- p=5 & q=7
- n=5*7=35 e z=(4)*(6) = 24
- e = 5
- d = 29, (29x5 1) é exatamente divisível por 24
- As chaves geradas são:
 - Chave pública: (35,5)
 - A chave privada é (35, 29)

Exemplo com RSA

Encriptar a palavra *love* usando: (c = m^e mod n)

. Texto Plano	. Representação Numérica (Alfabeto)	• m ^e	. Texto Crifrado (c = m ^e mod n)
	. 12	. 248832	. 17
• 0	. 15	. 759375	. 15
• V	. 22	. 5153632	. 22
• e	• 5	. 3125	. 10

Exemplo com RSA

Encriptar a palavra *love* usando: (c = m^e mod n)

. Texto Cifrado	. c ^d	. (m = m ^e mod n)	. Texto Aberto
. 17	. 481968572106750915091411825223072000	. 17	•
. 15	. 12783403948858939111232757568359400	. 15	•
. 22	. 852643319086537701956194499721110000000	. 22	• V
. 10	. 1000000000000000000000000000000000000	. 10	• e

- Autenticação e não-repúdio são possíveis.
 - Autenticação significa que você pode criptografar a mensagem com minha chave pública e somente eu posso descriptografá-la com minha chave privada.
 - Não-repúdio significa que você pode "assinar" a mensagem com sua chave privada e posso verificar se ela veio de você com sua chave pública.

Vantagens

- Mais segurança
- Autenticação

Desvantagens

- É mais complexa
- Processo demorado para criptografia e descriptografia

REFERÊNCIAS

- 1. https://www.albany.edu/~goel/classes/spring2002/msi604/
- 2. Criptografia e Segurança de Redes: Princípios e Práticas - Willian Stallings
- 3. https://www.pcpolytechnic.com/

SEGURANÇA DA INFORMAÇÃO

Criptografia Assimétrica