Отчет по лабораторной работе №1

Основы информационной безопасности

Закиров Нурислам, НКАбд-01-23

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выполнение дополнительного задания	16
5	Ответы на контрольные вопросы	19
6	Выводы	21

Список иллюстраций

3.1	Окно создания виртуальной машины				•		•	7
3.2	Окно установки гостевой ОС							8
3.3	Окно выбора основных характеристик для гостевой (8
3.4	Окно выбора объема памяти							9
3.5	Итоговые настройки							9
3.6	Загруза операционной системы Rocky							10
3.7	Подключенные носители							10
3.8	Выбор языка установки							11
3.9	Окно настроек							11
3.10	Выбор раскладки							12
3.11	Настройка пользователя							12
3.12	Выбор окружения						•	13
3.13	Отключение kdump							13
3.14	Выбор сети						•	13
3.15	Установка							14
3.16	Проверка носителей							14
3.17	Окно входа в операционную систему			•	•	•	•	15
4.1	Окно терминала							16
4.2	Версия ядра							16
4.3	Частота процессора							16
4.4	Модель процессора						•	16
4.5	Объем доступной оперативной памяти							17
4.6	Тип обнаруженного гипервизора							17
4.7	Тип файловой системы							17
48	Последовательность монтирования файдовых систем	т						18

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установка и настройка операционной системы.
- 2. Найти следующую информацию:
 - 1. Версия ядра Linux (Linux version).
 - 2. Частота процессора (Detected Mhz processor).
 - 3. Модель процессора (CPU0).
 - 4. Объем доступной оперативной памяти (Memory available).
 - 5. Тип обнаруженного гипервизора (Hypervisor detected).
 - 6. Тип файловой системы корневого раздела.

3 Выполнение лабораторной работы

Создаю новую виртуальную машину в VirtualBox, выбираю имя, местоположение и образ ISO, устанавливать будем операционную систему Rocku DVD (рис. 1).

Рис. 3.1: Окно создания виртуальной машины

Выбираю имя пользователя и имя хоста (рис. 2).

Рис. 3.2: Окно установки гостевой ОС

Выставляю основной памяти размер 2048 Мб, выбираю 3 процессора (рис. 3).

Рис. 3.3: Окно выбора основных характеристик для гостевой ОС

Выделаю 20 Гб памяти на виртуальном жестком диске (рис. 4).

Рис. 3.4: Окно выбора объема памяти

Соглашаюсь с проставленными настройками (рис. 5).

Рис. 3.5: Итоговые настройки

Начинается загрузка операционной системы (рис. 6).

Рис. 3.6: Загруза операционной системы Rocky

При этом проверяю, что подключен в носителях образ диска! (рис. 7).

Рис. 3.7: Подключенные носители

Выбираю язык установки (рис. 8).

Рис. 3.8: Выбор языка установки

В обзоре установки будем проверять все настройки и менять на нужные (рис. 9).

Рис. 3.9: Окно настроек

Язык раскладки должен быть русский и английский (рис. 10).

Рис. 3.10: Выбор раскладки

Для пользователя так же делаю пароль и делаю этого пользователя администратором (рис. 13).

Рис. 3.11: Настройка пользователя

В соответствии с требованием лабораторной работы выбираю окружение сервер с GUB и средства разработки в дополнительном программном обеспечении (рис. 14).

Рис. 3.12: Выбор окружения

Отключаю kdump (рис. 15).

Рис. 3.13: Отключение kdump

Проверяю сеть, указываю имя узла в соответствии с соглашением об именовании (рис. 16).

Рис. 3.14: Выбор сети

Начало установки (рис. 17).

Рис. 3.15: Установка

После заврешения установки образ диска сам пропадет из носителей, но на всякий случай проверяем это (рис. 18).

Рис. 3.16: Проверка носителей

После установки при запуске операционной системы появляется окно выбора пользователя (рис. 19).

Рис. 3.17: Окно входа в операционную систему

4 Выполнение дополнительного задания

Открываю терминал, в нем прописываю dmesg | less (рис. 20).

```
Фаил Правка Вид Поиск Герминал Справка
[ndzakirov@ndzakirov ~]$ dmesg | less
```

Рис. 4.1: Окно терминала

Версия ядра 4.18.0-553.el8_10.x86_64 (рис. 21).

```
[ 0.000000] Linux version 4.18.0-553.el8_10.x86_64 (mockbuild@iad1-prod-build
001.bld.equ.rockylinux.org) (gcc version 8.5.0 20210514 (Red Hat 8.5.0-22) (GCC)
```

Рис. 4.2: Версия ядра

Частота процессора 2096.064 МГц (рис. 22).

```
[ndzakirov@ndzakirov ~]$ dmesg | grep -i "Detected"
[    0.000000] Hypervisor detected: KVM
[    0.000000] tsc: Detected 2096.064 MHz processor
[    0.003245] AMD Zen1 DIV0 bug detected. Disable SMT
```

Рис. 4.3: Частота процессора

Модель процессора AMD Ryzen 5 3500U (рис. 23).

```
[ndzakirov@ndzakirov ~]$ dmesg | grep -i "CPU0"
[    0.131490] smpboot: CPU0: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx
ily: 0x17, model: 0x18, stepping: 0x1)
[ndzakirov@ndzakirov ~]$
```

Рис. 4.4: Модель процессора

Доступно 261120 Кб из 2096696 Кб (рис. 24).

```
[ndzakirov@ndzakirov ~]$ dmesg
                                 grep
    0.000000] ACPI: Reserving FACP table
                                                  at [mem 0x7fff00f0-0x7fff0
                                                  at [mem 0x7fff0620-0x7fff29
at [mem 0x7fff0200-0x7fff02
    0.000000] ACPI: Reserving DSDT table
    0.000000] ACPI: Reserving FACS table
    0.000000] ACPI: Reserving FACS table
                                                  at [mem 0x7fff0200-0x7fff02
                                                  at [mem 0x7fff0240-0x7fff02
    0.000000] ACPI: Reserving APIC table
    0.000000] ACPI: Reserving SSDT table
                                                  at [mem 0x7fff02b0-0x7fff00
                                       emory: [mem 0x00000000-0x00000fff]
    0.000000] Early m
                           node ranges
    0.000000] PM: Registered nosave
    0.000000] PM: Registered nosave
    0.000000] PM: Registered nosave
                                              [mem 0x000a0000-0x000effff]
    0.000000] PM: Registered nosave
                                              [mem 0x000f0000-0x000fffff]
                   ry: 261120K/2096696K available (14339K kernel code, 5957k
    0.0000001
```

Рис. 4.5: Объем доступной оперативной памяти

Обнаруженный гипервизор типа KVM (рис. 25).

```
[ndzakirov@ndzakirov ~]$ dmesg | grep -i "Hypervisor"

[ 0.000000] Hypervisor detected: KVM

[ 3.281555] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running

an unsupported hypervisor.

[ndzakirov@ndzakirov ~]$
```

Рис. 4.6: Тип обнаруженного гипервизора

sudo fdish -l показывает тип файловой системы, типа Linux, Linux LVM (рис. 26).

```
ndzakirov@ndzakirov ~]$ sudo fdisk
Диск /dev/sda: 19,9 GiB, 21359984640 байт, 41718720 секторов
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер І/О (минимальный/оптимальный): 512 байт / 512 байт
Тип метки диска: dos
Идентификатор диска: 0х226827аа
                               ачало Конец Секторы Размер Идентификатор Тип
2048 2099199 2097152 1G 83 Lint
Устр-во
             Загрузочный начало
/dev/sda1
/dev/sda2
                            2099200 41717759 39618560
                                                             18,9G
                                                                                  8e Linux
Диск /dev/mapper/rl_ndzakirov-root: 16,9 GiB, 18144559104 байт, 35438592 сек
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер I/O (минимальный/оптимальный): 512 байт / 512 байт
```

Рис. 4.7: Тип файловой системы

Далее показана последовательно монтирования файловых систем (рис. 27).

```
[ndzakirov@ndzakirov ~]$ dmesg | grep -i "Mount"
[    0.002203] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, loc)
[    0.002215] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 by vmalloc)
[    4.286262] XFS (dm-0): Mounting V5 Filesystem
[    8.834982] XFS (sdal): Mounting V5 Filesystem
[ndzakirov@ndzakirov ~]$ ■
```

Рис. 4.8: Последовательность монтирования файловых систем

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: —help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выводы

Я приобрел практические навыки установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.