Zadanie: KOL Mieszanie kolorów [B]

Potyczki Algorytmiczne 2020, runda pierwsza. Limity: 256 MB, 5 s.

07.12.2020

Bajtazar szykuje się do pomalowania płotu. Przygotował już n puszek z białą farbą, które ustawił w rzędzie i ponumerował liczbami od 1 do n. Chciałby użyć tej farby, jednak nie chce pomalować płotu na biało. Zamówił specjalistów od mieszania kolorów, którzy dysponują trzema barwnikami: żółtym, niebieskim i czerwonym. Wykonali oni m operacji, z których i-ta to dosypanie pewnego barwnika do wszystkich puszek pomiędzy l_i -tą, a r_i -tą włącznie.

Wynikowy kolor farby zależy od zbioru barwników, które były do niej dodane co najmniej raz. Barwniki mieszają się zgodnie z poniższą tabelką i diagramem:

Barwniki	Kolor
brak	biały
żółty	żółty
niebieski	niebieski
czerwony	czerwony
żółty + niebieski	zielony
żółty + czerwony	pomarańczowy
niebieski + czerwony	fioletowy
\dot{z} ółty + niebieski + czerwony	brązowy

Bajtazar chciałby pomalować płot jednym kolorem. Po namyśle wybrał kolor zielony, ponieważ kojarzy mu się z werdyktem "OK" lub "Zaakceptowano", jaki można czasami zobaczyć na konkursach algorytmicznych. Zastanawia się, w ilu puszkach farba ma teraz taki kolor. Pomóż mu i policz to!

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n i m ($1 \le n, m \le 10^6$), oznaczające odpowiednio liczbę puszek w rzędzie oraz liczbę operacji wykonanych przez specjalistów od mieszania farby.

W każdym z następnych m wierszy znajdują się po trzy liczby całkowite l_i , r_i i k_i ($1 \le l_i \le r_i \le n$, $1 \le k_i \le 3$) oznaczające, że i-ta operacja polegała na dodaniu barwnika do puszek od l_i -tej do r_i -tej włącznie, a barwnik ten był żółty ($k_i = 1$), niebieski ($k_i = 2$) lub czerwony ($k_i = 3$).

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita, oznaczająca liczbę puszek z zieloną farbą po zakończeniu wszystkich operacji.

3

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

9 5

2 8 1

4 5 2

6 7 3

5 6 2

1 2 2

Wyjaśnienie przykładu: W kolejnych puszkach farba jest odpowiednio: niebieska, zielona, żółta, zielona, zielona, brązowa, pomarańczowa, żółta i biała. Zielony kolor występuje zatem w trzech puszkach.