

Основы электротехники

Отчет по лабораторной работе №1

Исследование характеристик источника электрической энергии постоянного тока

Группа Р3333

Вариант 96

Выполнил: Гуменник Петр Олегович

Дата сдачи отчета: 01.10.2024

Дата защиты: 02.10.2024

Контрольный срок защиты: 09.10.2024

Количество баллов:

СПб - 2024

Цель работы:

Исследование переходных процессов в электрических цепях первого и второго порядков с источником постоянного и переменного напряжения.

Часть I.

1) Схема исследуемой цепи, графики переходных процессов

2) Расчётные формулы и расчёты.

RC цепь:

$$U_{\rm C}(0+) = E(0-) = 0 \text{ B}$$

$$I(0+) = (E + U_C) / R = 18 / 320 = 0.05625 A$$

$$U_{\rm C}(\infty) = E(0+) = 18 \; {\rm B}$$

$$I(\infty) = I(0-) = 0 A$$

$$\tau = RC = 320 * 0.000025 = 8 \text{ MKC}$$

$$\tau_{\text{эксп.}} = 24800 \text{ MKC} / 3 = 8200 \text{ MKC}$$

RL цепь:

катушка идеальная, сопротивления не имеет

$$I(0+) = I(0-) = E(0-) / (R + R_k) = 0 / 320 = 0 A$$

$$U_L(0+) = E(0+) - I(0-) * R = 18 - 0 * 320 = 18 B$$

$$I(\infty) = E(0+) / (R + R_k) = 18 / 320 = 0.05625 A$$

$$U_L(\infty) = I(\infty) * R_k = 0 B$$

$$\tau = L / (R + R_k) = 2.56 / 320 = 0.008 c$$

$$\tau_{_{9KC\Pi}} = 24 \text{ MC} / 3 = 8 \text{ MC}$$

3) Заполненные таблицы 4.2 и 4.3.

Табл 4.2

R, [Ом]	С, [мкФ]	Тип данных	I(0+), [MA]	I(∞), [мA]	Uc(0+), [B]	Uc(∞), [B]	т, [мкс]
320	25	эксп.	56	0	0	18	8200
		расч.	56,25	0	0	18	8000

Табл 4.3

R, [Ом]	L, [Гн]	Rk, [O _M]	Тип данных	I(0+), [MA]	I(∞), [MA]	UL(0+), [B]	UL(∞), [B]	т, [мс]
320	2,56	0	эксп.	0	56	18	0	8
			расч.	0	56,25	18	0	8

4) Выводы по работе.

В результате выполнения работы была изучена цепь с катушкой индуктивности и резистором, и рассчитаны начальные и установившиеся значения тока и напряжения. В момент

коммутации t(0+) ток в цепи оказался равным нулю, а напряжение на катушке достигло максимального значения, равного напряжению источника. В установившемся режиме ток в цепи стал постоянным и составил 56.25 мА, а напряжение на катушке стало нулевым. Также была определена постоянная времени цепи, которая составила 8 мс. Результаты расчетов соответствуют теоретическим данным для RL-цепей первого порядка. В ходе работы также была исследована цепь с конденсатором и резистором. В момент коммутации t(0+) ток в цепи составил 56.25 мА, а напряжение на конденсаторе было равно нулю. В установившемся режиме ток в цепи стал равен нулю, а напряжение на конденсаторе достигло напряжения источника — 18 В. Постоянная времени цепи была рассчитана и составила 8000 микросекунд. Эти результаты подтвердили теоретические положения о поведении RC-цепей, где конденсатор ведет себя как разомкнутая цепь в установившемся режиме. Таким образом, для обоих типов цепей — с катушкой индуктивности и с конденсатором — были получены ожидаемые результаты, подтверждающие законы поведения переходных процессов в электрических цепях первого порядка.

Часть II.

1) Схема исследуемой цепи.

2) Расчётные формулы и расчёты. Графики переходных процессов.

а) апериодический процесс:

Корни s_1 и s_2 для апериодического процесса рассчитываются по формуле:

$$s_{12} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} = -(R/2L) \pm sqrt((R/2L)^2 - 1/\sqrt{LC}) = -250 \pm \sqrt{(250^2 - 125^2)}$$

$$s_1 = -33.55 c^{-1}$$

$$s_2 = -466.45 \text{ c}^{-1}$$

$$E_{\Sigma} = (E(0-) + |E(0+)|) * sign(E(0+)) = (18) * 1 = 18 B$$

$$i(0+) = (E_{\Sigma} / L * (s_1 - s_2)) * (1 - 1) = 0 A$$

$$U_L(0+) = (E_{\Sigma} / (s_1 - s_2)) * (s_1*1 - s_2*1) = 18 B$$

$$U_{C}(0+) = E(0+) - (E_{\Sigma}/(s_1 - s_2)) * (s_1*1 - s_2*1) = 18 - 18 = 0 B$$

$$t_p = 3 / (\delta - sqrt(\delta^2 - \omega_0^2)) = 3/33.55 \approx 89.552 \text{ MC}$$

б) колебательный процесс:

$$\delta = R/2L = 160 / 2.56*2 = 31.25 c^{-1}$$

$$\omega = \text{sqrt}(1/\text{LC} - \delta^2) \approx 121.031 \text{ c}^{-1}$$

$$\delta^* = \ln(I_{m1}/I_{m2})/T = \ln(38/17)/0.052 \approx 15.469 \text{ c}^{-1}$$

$$\omega_{\text{C}}^* = 2\pi/T = 2\pi/0.052 \approx 120.83 \text{ c}^{-1}$$

3) Заполненные таблицы 4.4 и 4.5.

Табл 4.4										
Параметры элементов цепи		<u>UC</u> (0+)		<u>UL</u> (0+)		Ĵ(0+)		tp		
R [OM]	<u>Г</u> [мГн]	С [мкФ]	расч [В]	эксп [В]	расч [В]	эксп [В]	расч [А]	эксп [А]	расч [мс]	эксп [мс]
1280	2560	25	0	0	18	18	0	0	89,552	90
Табл 4.5										
Параметры элементов цепи		δ		ယ္ကင္						
<u>R</u> [Ом]	<u>Г</u> [мГн]	С [мкФ]	расч [с -1]	эксп [с -1]	расч [с -1]	эксп [с -1]				
160	2560	25	31,25	15,469	121,031	120,83				

4) Выводы по работе.

В результате выполнения работы была изучена цепь второго порядка с источником постоянного напряжения, катушкой индуктивности, конденсатором и резистором. Были исследованы апериодический и колебательный переходные процессы, а также рассчитаны ключевые параметры.

- 1. Исследование апериодического переходного процесса: В момент коммутации ток в цепи оказался равным 0 А, напряжение на конденсаторе 0 В, а напряжение на катушке индуктивности достигло напряжения источника 18 В. Апериодический процесс характеризуется быстрым нарастанием тока до максимального значения с последующим медленным его спадом без возникновения колебаний. Постоянная времени для переходного процесса была рассчитана, и процесс завершился без колебаний, что подтверждает теоретические данные для апериодических процессов в цепях второго порядка.
- 2. Исследование колебательного переходного процесса: Для исследования колебательного переходного процесса было уменьшено сопротивление в цепи, что позволило уменьшить коэффициент затухания. В результате возникли затухающие колебания, амплитуда первого колебания составила 38 мА, второго 17 мА, а период колебаний 0.052 с. Были рассчитаны коэффициент затухания и частота затухающих колебаний, которые

оказались близкими к теоретическим значениям. Колебательный процесс продемонстрировал постепенное снижение амплитуды тока с каждым циклом, подтверждая классическое поведение цепей второго порядка при наличии слабого затухания. Таким образом, в ходе работы были изучены оба типа переходных процессов в цепях второго порядка: апериодический и колебательный. Полученные результаты согласуются с теоретическими положениями о переходных процессах в цепях второго порядка, подтверждая характерные особенности каждого типа процессов.