List 3

Michał Balcerek Computer Simulations of Stochastic Processes

03.2022

Remark 1 (Series representation, Samorodnitsky, Taqqu). Let $\{\epsilon_i\}_{i\in\mathbb{N}}$, $\{W_i\}_{i\in\mathbb{N}}$, $\{\Gamma_i\}_{i\in\mathbb{N}}$ be three independent sequences of random variables. Here ϵ_i is i.i.d. sequence of coin toss results:

 $\mathbb{P}(\epsilon_i = \pm 1) = \frac{1}{2},$

 W_i is an i.i.d. sequence of random variables (not necessarily positive) with finite absolute α -th moment ($\mathbb{E}|W_i|^{\alpha} < \infty$). Finally, let $\Gamma_1, \Gamma_2, \ldots$ be a sequence of arrival times of a Poisson process with unit arrival rate, i.e. $\Gamma_i = \sum_{k=1}^i e_k$, where the e_k 's are i.i.d. exponential random variable with $\mathbb{E}(e_k) = 1$. The $\Gamma_1, \Gamma_2, \ldots$ are, therefore, dependent and they are not identically distributed.

Suppose $0 < \alpha < 2$. Then the sum

$$\sum_{i=1}^{\infty} \epsilon_i \Gamma_i^{-1/\alpha} W_i$$

converges a.s. to a random variable X whose distribution is stable $S_{\alpha}(\sigma = (c_{\alpha}^{-1}\mathbb{E}|W_1|^{\alpha})^{1/\alpha}, \beta = 0, \mu = 0)$. $c_{\alpha} = \frac{2\sin\frac{\pi\alpha}{2}\Gamma(\alpha)}{\pi}$.

Question How to modify the distribution of ϵ_k 's to obtain non-symmetric stable distribution?

Problem 1 (Series representation). Implement program simulating α -stable distribution using series representation described in Remark 1. Choose different distributions of W_i 's and discuss the influence where we cut the presented series.

Problem 2 (Series representation). Answer the question stated in Remark 1.

Problem 3 (Series representation). Use already implemented methods (such as looking at tails of empirical distribution function or comparing characteristic function) to check if your implementation of series representation is correct.

Problem 4. Using properties of tail behaviour of CDF, propose a estimator of parameter α .

Problem 5. Using properties of characteristic function, propose estimators of parameters α and scale γ .

Note You can only consider estimating parameters α, γ, δ : first, consider symmetric stable distribution. Then consider a case when shift $\delta \neq 0$.

Note 2 For full step-wise solution, see Problem 6.

Problem 6 (Estimating all parameters – Borak, Härdle, Weron, p. 15). **Advanced method.** The regression method is based on the following observations concerning the characteristic function $\varphi(u)$ (in Nolan's $\mathbf{S}(\alpha, \beta, \gamma, \delta; \mathbf{1})$ characterization). First, we can derive:

$$\ln(-\ln|\varphi(u)|^2) = \ln(2\gamma^\alpha) + \alpha \ln|u|. \tag{1}$$

Also, considering the real and imaginary part of the characteristic function we get

$$\arctan\left(\frac{\Im(\varphi(u))}{\Re(\varphi(u))}\right) = \begin{cases} \gamma^{\alpha}|u|^{\alpha}\beta\tan\frac{\pi\alpha}{2}\mathrm{sign}u + \delta u, & \alpha \neq 1, \\ -\gamma|u|\beta\frac{2}{\pi}\mathrm{sign}u + \delta u, & \alpha \neq 1. \end{cases}$$
(2)

Equation (1) depends only on α and γ and suggest that we estimate these parameters by regressing $y = \ln(-\ln|\varphi(u)|^2)$ on $w = \ln|u|$ in the model

$$y_k = m + \alpha w_k + \varepsilon_k, \quad k = 1, \dots, K$$

where u_k is an appropriate set of real numbers, $m = \ln(2\gamma^{\alpha})$, and ε_k denotes an error term. Koutrouvelis (1980) proposed to use $u_k = \frac{\pi k}{25}, k = 1, 2, ..., K$ with K ranging between 9 and 134 for different estimates of α and sample sizes.

Once $\hat{\alpha}$ and $\hat{\sigma}$ have been obtained and α and σ have been fixed at these values, estimates of β and δ can be obtained using (2). Next, the regressions are repeated with $\hat{\alpha}, \hat{\beta}, \hat{\gamma}$ and $\hat{\delta}$ as the initial parameters. The iterations continue until a prespecified convergence criterion is satisfied.