

Statistical Tests

Tuesday 29th November, 2016

1 Introduction

2 lests

3 Conclusion

Statistical Tests

- up to this point
- basic procedure
- in practice specific tests used

Experiment I

- ► test hypothesis crime rates are elevated when Internet services are down
- what are the appropriate alternative and null hypotheses?

Experiment I

- ► test hypothesis crime rates are elevated when Internet services are down
- what are the appropriate alternative and null hypotheses?
- $ightharpoonup C_r$ crime rate
- $ightharpoonup C_r^{no-net}$ crime rate when Internet is down

$$H_0: C_r = C_r^{no-net}$$

$$H_1: C_r < C_r^{no-net}$$

Experiment II

- ► test hypothesis crime rates are changed when Internet services are down
- what are the appropriate alternative and null hypotheses?

Experiment II

- ► test hypothesis crime rates are changed when Internet services are down
- what are the appropriate alternative and null hypotheses?
- $ightharpoonup C_r$ crime rate
- $ightharpoonup C_r^{no-net}$ crime rate when Internet is down

$$H_0: C_r = C_r^{no-net}$$

$$H_1: C_r \neq C_r^{no-net}$$

One tailed test

$$H_0: \theta \leq \theta_0$$

$$H_1: \theta > \theta_0$$

Two tailed test

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

board

test if a coin is fair with significance $\alpha = 0.1$:

- ▶ toss coin 10 times 8 heads
- do you reject?
- what is the P-Value?

if the test is two tailed

$$H = \text{number of heads}$$

$$Pval = 2 \cdot \min \left\{ P\left(H \ge 8\right), P\left(H \le 8\right) \right\}$$

if the test is two tailed

$$H = \text{number of heads}$$

$$Pval = 2 \cdot \min \{ P(H \ge 8), P(H \le 8) \}$$
$$= 2 \cdot P(H \ge 8)$$

if the test is two tailed

$$H = \text{number of heads}$$

$$Pval = 2 \cdot \min \{ P(H \ge 8), P(H \le 8) \}$$

$$= 2 \cdot P(H \ge 8)$$

$$= 2 \cdot \left(\binom{10}{2} + \binom{10}{1} + 1 \right) \cdot 0.5^{10}$$

if the test is two tailed

H = number of heads

$$Pval = 2 \cdot \min \{ P(H \ge 8), P(H \le 8) \}$$

$$= 2 \cdot P(H \ge 8)$$

$$= 2 \cdot \left(\binom{10}{2} + \binom{10}{1} + 1 \right) \cdot 0.5^{10}$$

$$= 2 \cdot 0.055$$

$$= 0.109 > 0.1$$

Rejection Region

Automation

two tailed coin inspector

- ▶ H = 8 Pval = 0.109 not rejected
- ightharpoonup H = 9 Pval = 0.021 rejected

instead of computing P-Value for each coin we can safely reject...

Rejection Region

Automation

two tailed coin inspector

- ightharpoonup H = 8 Pval = 0.109 not rejected
- ightharpoonup H = 9 Pval = 0.021 rejected

instead of computing P-Value for each coin we can safely reject...

$$R = \{X : or (H_X \ge 9, H_X \le 1)\}$$
$$= \{X : |5 - H_X| \ge 4\}$$

$$R = \{X : T(X) > c\}$$

- ▶ T test statistic
- ▶ c critical value
- ▶ P(T(X) > c) = ?

$$R = \{X : T(X) > c\}$$

- ▶ T test statistic
- ▶ c critical value
- $P(T(X) > c) = \alpha$

Israel<mark>lëch</mark> challenge

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- ▶ $H_0: \mu \leq 0$
- $H_1: \mu > 0$

One Tailed Test Example

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- $H_0: \mu < 0$
- $H_1: \mu > 0$
- ▶ **Test**: $R = \{X : T(X) > c\}$
- $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$

One Tailed Test Example

$$T(X) \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$

$$T(X) \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$

- $X \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right), Y \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$
- X and Y are independent

$$T(X) \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$

- $X \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right), Y \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$
- X and Y are independent
- $ightharpoonup \alpha \in \mathbb{R}$

$$X + Y \sim \mathcal{N} \left(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2 \right)$$
$$\alpha \cdot X \sim \mathcal{N} \left(\alpha \mu_X, \alpha^2 \sigma_X^2 \right)$$

$$T(X) \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$$

$$T(X) = \frac{1}{n} [X_1 + X_2 + \dots + X_n]$$
$$T(X) \sim \mathcal{N}\left(0, \frac{1}{n^2} n \sigma^2\right)$$

- ▶ Z is standard normal $Z \sim \mathcal{N}\left(0,1\right)$
- \blacktriangleright Φ the CDF of Z

$$P(T > c) = P\left(\frac{T - \mu}{\sigma/\sqrt{n}} > \frac{c - \mu}{\sigma/\sqrt{n}}\right)$$

- ▶ Z is standard normal $Z \sim \mathcal{N}\left(0,1\right)$
- \blacktriangleright Φ the CDF of Z

$$P(T > c) = P\left(\frac{T - \mu}{\sigma/\sqrt{n}} > \frac{c - \mu}{\sigma/\sqrt{n}}\right)$$
$$= P\left(Z > \frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$

- ▶ Z is standard normal $Z \sim \mathcal{N}\left(0,1\right)$
- $ightharpoonup \Phi$ the CDF of Z

$$P(T > c) = P\left(\frac{T - \mu}{\sigma/\sqrt{n}} > \frac{c - \mu}{\sigma/\sqrt{n}}\right)$$
$$= P\left(Z > \frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$
$$= 1 - \Phi\left(\frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$

$$P(T > c) = 1 - \Phi\left(\frac{\sqrt{n}(c - \mu)}{\sigma}\right)$$

- ightharpoonup test is most strict for $\mu=0$
- we require $P(T > c) = \alpha$

why

$$P(T > c) = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$
$$\alpha = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$
$$\frac{\sqrt{nc}}{\sigma} = \Phi^{-1}(1 - \alpha)$$

 $c = \frac{\sigma\Phi^{-1}(1-\alpha)}{\sqrt{n}}$

$$P(T > c) = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$
$$\alpha = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$
$$\frac{\sqrt{nc}}{\sigma} = \Phi^{-1}(1 - \alpha)$$

$$c = \frac{\sigma Z_{\alpha}}{\sqrt{n}}$$

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- $H_0 : \mu = \mu_0$
- ▶ $H_1: \mu \neq \mu_0$

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- ▶ **Test**: $R = \{X : T(X) > c\}$
- $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i \dots$

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- ▶ **Test**: $R = \{X : T(X) > c\}$
- $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i \dots$
- nope

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- ▶ **Test**: $R = \{X : |T(X)| > c\}$
- $T(X) = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}, T \sim \mathcal{N}(0, 1)$
- $ightharpoonup c = Z_{\alpha/2}$

1 Introduction

2 Tests

3 Conclusion

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $ightharpoonup \sigma$ is known
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- ▶ **Test**: $R = \{X : |T(X)| > c\}$
- $T(X) = \frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}$
- $ightharpoonup T \sim \mathcal{N}(0,1)$

Z-Test

a test where the test statistic $T \sim \mathcal{N}\left(0,1\right)$

what happens when σ is uknown?

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $ightharpoonup \sigma$ is unknown
- $H_0: \mu = \mu_0$
- ▶ $H_1: \mu \neq \mu_0$
- $T(X) = \frac{\overline{X} \mu_0}{\hat{\sigma}/\sqrt{n}}$

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $ightharpoonup \sigma$ is unknown
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- $T(X) = \frac{\overline{X} \mu_0}{\hat{\sigma}/\sqrt{n}}$
- $ightharpoonup \sigma$ is estimated sample standard deviation
- ▶ for large n, the distribution of T under H_0 tends to $\mathcal{N}(0,1)$

Israel<mark>lëch</mark> challenge

$$X = X_1, \dots, X_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

- $ightharpoonup \sigma$ is unknown
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- $T(X) = \frac{\overline{X} \mu_0}{\hat{\sigma}/\sqrt{n}}$
- $ightharpoonup \sigma$ is estimated sample standard deviation
- exact distribution of T under H_0 is Student's t-distribution with n-1 degrees of freedom

Student's t-distribution

Likelihood Ratio Test

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $\triangleright \sigma$ is known
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$

Israel<mark>lëch</mark> challenge

$$X = X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

- $ightharpoonup \sigma$ is known
- $H_0: \mu = \mu_0$
- ► $H_1: \mu \neq \mu_0$
- ightharpoonup we can estimate μ_{mle}
- compute the likelihood ratio

rationale

$$\frac{\mathcal{L}\left(\mu_{mle}\right)}{\mathcal{L}\left(\mu_{0}\right)}$$

test statistic

$$\lambda = 2\log \frac{\mathcal{L}(\theta_{mle})}{\mathcal{L}(\theta_0)}$$

in our case

$$\blacktriangleright \mu_{mle} = \sum_{i=1}^{n} X_i / n$$

$$\mathcal{L}(\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2}$$

$$\lambda = 2\log \frac{e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu_{mle})^2}}{e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu_0)^2}}$$

Israel<mark>lëch</mark> challenge

$$\lambda = 2\log \frac{e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_{mle})^2}}{e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_0)^2}}$$

$$= 2\log e^{\frac{1}{2\sigma^2}\left[\sum_{i=1}^{n}(X_i - \mu_0)^2 - \sum_{i=1}^{n}(X_i - \mu_{mle})^2\right]}$$

$$\begin{bmatrix} (a-b)^2 \\ = \\ a^2 - 2ab + b^2 \end{bmatrix} = \frac{1}{\sigma^2}\sum_{i=1}^{n} \left(\mu_0^2 - \mu_{mle}^2 - 2X_i\mu_0 + 2X_i\mu_{mle}\right)$$

$$= \frac{1}{\sigma^2}\left(n\left(\mu_0^2 - \mu_{mle}^2\right) - 2\left(\mu_0 - \mu_{mle}\right)\sum_{i=1}^{n}X_i\right)$$

Israel<mark>lëch</mark> challenge

$$\lambda = \frac{1}{\sigma^{2}} \left(n \left(\mu_{0}^{2} - \mu_{mle}^{2} \right) - 2 \left(\mu_{0} - \mu_{mle} \right) \frac{n}{n} \sum_{i=1}^{n} X_{i} \right)$$

$$\begin{bmatrix} \binom{a^{2} - b^{2}}{=} \\ (a+b)(a-b) \end{bmatrix} = \frac{1}{\sigma^{2}} \begin{pmatrix} n \left(\mu_{0} - \mu_{mle} \right) \left(\mu_{0} + \mu_{mle} \right) \\ - \\ 2n \left(\mu_{0} - \mu_{mle} \right) \mu_{mle} \end{pmatrix}$$

$$= \frac{n \left(\mu_{0} - \mu_{mle} \right)^{2}}{\sigma^{2}}$$

$$\lambda = \frac{n \left(\mu_0 - \mu_{mle}\right)^2}{\sigma^2}$$

$$\lambda = \frac{n \left(\mu_0 - \mu_{mle}\right)^2}{\sigma^2}$$

$$\mu_{mle} \sim \mathcal{N}\left(\mu_0, \sigma^2/n\right)$$

$$\lambda = \frac{n \left(\mu_0 - \mu_{mle}\right)^2}{\sigma^2}$$

$$\mu_{mle} \sim \mathcal{N}\left(\mu_0, \sigma^2/n\right)$$

$$\sqrt{\lambda} = \frac{\sqrt{n}}{\sigma} \left(\mu_0 - \mu_{mle} \right) \sim \mathcal{N} \left(0, 1 \right)$$

$$\lambda = \frac{n \left(\mu_0 - \mu_{mle}\right)^2}{\sigma^2}$$

ightharpoonup under H_0

$$\mu_{mle} \sim \mathcal{N}\left(\mu_0, \sigma^2/n\right)$$

$$\sqrt{\lambda} = \frac{\sqrt{n}}{\sigma} \left(\mu_0 - \mu_{mle} \right) \sim \mathcal{N} \left(0, 1 \right)$$

$$\lambda \sim \chi_1^2$$

$$\lambda = \frac{n \left(\mu_0 - \mu_{mle}\right)^2}{\sigma^2}$$

ightharpoonup under H_0

$$\mu_{mle} \sim \mathcal{N}\left(\mu_0, \sigma^2/n\right)$$

$$\lambda \sim \chi_1^2$$

- ▶ The Chi-Distribution with 1 degree of freedom
- asymptotically true for a wide range of cases

Chi Squared Distribution

CHI-SQUARED DISTRIBUTION

X and Y two random variables

▶ let's test independence

X and Y two random variables

- $ightharpoonup H_0 \ X$ and Y are independent
- ▶ H₁ X and Y are **not** independent

under H_0 what can we say about P(X,Y)?

under H_0 what can we say about P(X,Y)?

$$P(X,Y) = P(X) P(Y)$$

- ▶ X and Y are binary
- $ightharpoonup (X_1, Y_1), \ldots, (X_n, Y_n)$ samples of (X, Y)
- number of observations for each value

	Y = 0	Y=1	Total
X = 0	z_{00}	z_{01}	z_0 .
X = 1	z_{10}	z_{11}	z_1 .
Total	$z_{\cdot 0}$	$z_{\cdot 1}$	n

- ▶ X and Y are binary
- $ightharpoonup (X_1, Y_1), \ldots, (X_n, Y_n)$ samples of (X, Y)
- probabilities

	Y = 0	Y=1	Total
X = 0	p_{00}	p_{01}	p_0 .
X = 1	p_{10}	p_{11}	p_{1} .
Total	$p_{\cdot 0}$	$p_{\cdot 1}$	1

estimation

$$\hat{p}_{ij} = rac{z_{ij}}{n} \ \hat{p}_{i\cdot} = rac{z_{i\cdot}}{n} \ \hat{p}_{\cdot j} = rac{z_{\cdot j}}{n}$$

example

we sample (X,Y) n=3 times

number of observations for each value

	Y = 0	Y=1	Total
X = 0	1	1	2
X = 1	1	0	1
Total	2	1	3

example

we sample (X,Y) n=3 times

our estimation of the probabilities

	Y = 0	Y = 1	Total
X = 0	1/3	1/3	2/3
X = 1	1/3	0	1/3
Total	2/3	1/3	1

Israel<mark>lëch</mark> challenge

example

we sample (X, Y) n = 3 times

$$P(X = 0, Y = 1) = ?$$

 \triangleright under H_0

$$P(X = 0, Y = 1) = P(X = 0) P(Y = 1)$$

= $2/3 \cdot 1/3$
= $2/9$

$$P(X = 0, Y = 1) = 1/3$$

$$\lambda = 2 \log \frac{\mathcal{L}(\hat{p})}{\mathcal{L}(\hat{p}_0)}$$

$$= 2 \sum_{i=1}^{n} \log \frac{\hat{p}_{X_i Y_i}}{\hat{p}_{X_i} \cdot \hat{p}_{\cdot Y_i}}$$

$$= 2 \sum_{i=0}^{1} \sum_{j=0}^{1} z_{ij} \log \frac{\hat{p}_{ij}}{\hat{p}_{i} \cdot \hat{p}_{\cdot j}}$$

$$= 2 \sum_{i=0}^{1} \sum_{j=0}^{1} z_{ij} \log \frac{z_{ij} n}{z_{i\cdot z_{\cdot j}}}$$

$$\lambda = 2 \sum_{i=0}^{1} \sum_{j=0}^{1} z_{ij} \log \frac{z_{ij}n}{z_{i}.z_{.j}}$$

• under H_0 , $\lambda \sim \chi_1^2$

In the general case

- ▶ X r values observed
- ➤ Y c values observed

$$\lambda = 2\sum_{i=0}^{1} \sum_{j=0}^{1} z_{ij} \log \frac{z_{ij}n}{z_{i}.z_{.j}}$$

- under H_0 , $\lambda \sim \chi_k^2$
- k = (r-1)(c-1)

Pearson's Test

$$U = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(z_{ij} - z_{i} \cdot z_{\cdot j} / n)^{2}}{z_{i} \cdot z_{\cdot j} / n}$$

• under H_0 , $U \sim \chi^2_{(r-1)(c-1)}$

- ▶ *X,Y* two random variables
- ▶ $(X_1, Y_1,), ..., (X_n, Y_n)$ samples of (X, Y)

how should we test?

Testing Correlation

- ▶ X, Y two random variables
- $(X_1, Y_1,), \dots, (X_n, Y_n)$ samples of (X, Y)
- $H_0 \rho_{XY} = 0$
- ► H_1 $\rho_{XY} \neq 0$
- r the sample correlation

Testing Correlation

- ▶ no knowledge of P(r) under H_0
- maybe we need a different approach

challenge

Testing Correlation

- ightharpoonup let's generate an empiric P(r)
- ightharpoonup p a random permutation of $1, \ldots, n$

$$p: \{1, \dots, n\} \mapsto \{1, \dots, n\}$$

example

$$p(\{1,2,3\}) = \{3,1,2\}$$

▶ a "new" (permuted) set of samples

$$(X_1, Y_{p(1)}), \ldots, (X_1, Y_{p(n)})$$

- ightharpoonup generate p_1, \ldots, p_m
- $\forall j = 1, \dots, m \text{ compute } r_j \text{ from }$

$$(X_1, Y_{p_j(1)}), \ldots, (X_1, Y_{p_j(n)})$$

the P-Value for this empiric distribution

$$P_{val} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \{ |r_j| > |r| \}$$

Important Terms

power/sensitivity/recall - probability of correctly rejecting H_0 when H_1 is true

$$P$$
 (reject $H_0 \mid H_1$)

ightharpoonup specificity - probability of correctly not rejecting H_0 when it is true

$$P$$
 (not reject $H_0 \mid H_0$)

precision - probability of a detection being true

$$P(H_1 \mid \text{reject } H_0)$$

Israel<mark>tëch</mark> challenge

1 Introduction

2 Tests

3 Conclusion

- from P-Values to test statistics
- one and two tailed tests
- the statistical test zoo
- tests for specific cases of interest independence, correlation

Credits

figures

▶ two tailed test - onlinecourses.science.psu.edu/stat500/node/44