AMATYC Student Mathematics League

Test #2

1.	Ms. Pham writes 2 final exams, each with 25 problems. If the exams have 12 problems in common, how many problems does she write?													
	A. 24	B. :	26	C. 37		D. 38	;		E.	49				
2.	A triangle has two sides of length 8.1 and 1.4. If the length of the third side is an even integer, its length must be													
	A. 2		B. 4	C.	6	D	. 8		E. 10	1				
3.	If (a, b) is the solution to the system of equations $\begin{cases} \pi x + (\pi + e)y = \pi + 2e \\ (\pi + 3e)x + (\pi + 4e)y = \pi + 5e \end{cases}$													
	find b -				_	_	_			_		_		
	A3	В	1		C.	0	D.	1		E.		3		
4.	The year are each number A. 201	reduc is a fa	ed by 1	and wr	itten i t. Fin	n incr	easing next y	g ord ear	ler (tl	nat is, this p	2, 1	0, 60		61
	n. 201	т "Д.	2010	C. 2.	310	D. 2	.017	.ענ	2010	,				
5.	If the linaxis, the		_	_			-					_		the x-
6.	Find the smallest positive integer value of n for which $\frac{1}{a} + \frac{1}{b} = \frac{1}{n}$ has at least three													
	solution	ıs (a, b)	in inte	gers wit	$h \ a \ge$	<i>b</i> > 0.								
	A. 3	B.	4	C. 5		D. 6		E.	8					
7.	The equation $a^3 + b^2 + c^2 = 2013$ has a solution in positive integers for which b is a multiple of 5. Find $a + b + c$ for this solution.													
	A. 55	5 B.	57	C.	59	D.	61	E.	63	}				
8.	Each letter A through Z of the alphabet is assigned a unique integer from 2 to 27. If $A \cdot M \cdot A \cdot T \cdot Y \cdot C = 3^2 \cdot 5^2 \cdot 7 \cdot 11^2$, find M + T + Y + C.													
	A. 30	B.	34	C. 36		D. 38	3	E. 4	42					
9.	The third-degree polynomial $P(x)$ has only nonnegative integer coefficients. If $P(0)\cdot P(3) = 139$ and $P(1)\cdot P(2) = 689$, find $P(-1)$.													
	A2	B.	-1	C. 0		D. 1		E . :	2					
10.	Find th radians corresp	or in d	legrees.	Write y	our a	nswer	(roun							
11.	In quad	rilatera	1 ABCD	, AB = 6	5, BC =	= 6, C	D = 8,	AD	= 10,	and 4	<u> </u>	90°.	If the	angle

bisector of $\angle A$ meets diagonal BD at point E, find BE.

C. 5

D. 6

A. $\frac{15}{4}$

B. 4

A. 625

12.	Line L has intercepts 2 and 4, while line M has intercepts 4 and 6. If L and M intersect at (a, b) , which of the following could NOT be $3a + b$?									
	A. 0	B. 4	C. 8	D. 12	E. 32					
13.	months, ar	nd each succ ded on 12/3	essive trip v 31/2012, wh	was 2 days le ich of these	2. Her first tronger than the was the lenger D. 72	ne previous t th in days o	rip. If her			
14.	A binary string is a sequence of 1's and 0's, such as 10011 or 11101010. How madifferent binary strings of length 6 are there such that no two are reversals of earther or add up to 111111?									
	A. 22	B. 23	C. 24	D. 25	E. 26					
15.	In quadrilateral PQRS, $\angle P = \angle Q = \angle S = 45^\circ$, $\angle QPR = \angle RPS$, and $PR = 8\sqrt{2}$. Find the area of quadrilateral PQRS to the nearest integer.									
	A. 60	B. 61	C. 62	D. 63	E. 64					
16.	The numbers 2 and 1 are the smallest positive integers for which the square of the first is 2 more than twice the square of the second. If a and b are the smallest such pair with $a > 10$, find $a - b$.									
	A. 13	B. 15	C. 17	D. 19	E. 21					
17.	A number is chosen at random from among all 5-digit numbers containing exactly one each of the digits 1, 2, 3, 4, and 5. Find the probability that no two adjacent digits in the number are consecutive integers.									
	A. $\frac{1}{10}$	B. $\frac{7}{60}$	C. $\frac{2}{15}$	D. $\frac{3}{20}$	E. $\frac{1}{6}$					
18.	The triangular region with vertices (0, 0), (4, 0), and (0, 3) is rotated 90° counter-clockwise around the origin. Find the area of the figure formed by this rotation to the nearest hundredth.									
	A. 19.96	6 B. 2	0.04	C. 20.12	D. 20	0.20 E.	20.28			
19.	For how many pairs of positive integers (n, m) with n, m < 100 are both of the polynomials $x^2 + mx + n$ and $x^2 + mx - n$ factorable over the integers?									
	A. 4	B. 5	C. 6	D. 7	E. 8					
20.	_	ACD and BCI CD = 50. If Al	•	•	e inscribed in heir union.	a semicircle	e with			

B. 637.5 C. 652.5 D. 673.5

E. 675