Contents

ay 26	1 2
Final Exam Procedures	
t-Test for Slope	3
Confidence Interval for Slope Interpretation	4
Mean Response Interpretation	5

Day 26

Final Exam Procedures

- If the grade for either lecture or lab is better than the worse score, that score will replace that worse score
- Lab portion is take home (will take a week to do it)
 - Four questions
 - $\ast\,$ probability (pbinom, qnorm, t distributions, probability stuff) <- question 1 exam 1 and 2
 - * Midterm 1 inference problem (neyman pearson, NHST, fisher, chi squared)
 - * Midterm 2 inference (t procedures, 1 sample, 2 sample, matched pairs, CI, Hypot test (NHST), power analysis (but not for two sample), one way ANOVA)
 - * Inference for linear regression (ANOVA, rest of this current lecture can be on this problem)
- Lecture
 - longer version of the other midterms
 - Multiple cheat sheets allowed

t-Test for Slope

Almost exclusively, we use **NHST**:

- H_0 : $\beta_1 = 0$
- H_a : $\beta \neq 0$

Recall:

$$y = \beta_0 + \beta_1 x + \epsilon$$

$$\epsilon \sim N(0, \sigma)$$

- $\begin{array}{ll} \bullet & \mu_{\mathbf{y}|\mathbf{x}} = \beta_0 + \beta_1 x \\ \bullet & y = \mu_{\mathbf{y}|\mathbf{x}} + \epsilon \end{array}$

$$t = \frac{\text{statistic - parameter}}{\text{standard error}} = \frac{b_1 - \beta_1}{SE_{\text{b}_1}}$$

Where $\beta_1 = 0$

Under H_0 , $t \sim t(n-2)$

We reject H_0 :

• Slope is not 0, so a linear relationship between x and y exists.

Fail to reject H_0 :

• It is reasonable to believe that slope is 0 and there is no linear relationship exists between x & y.

Confidence Interval for Slope

Recall: Find the two-sided critical region. Want to find values of β_1 for which the t-statistic is NOT in the critical region.

$$-t^{**} < \frac{b_1 - \beta_1}{SE_{b_1}} < t^{**}$$

$$b_1 - t^{**} \times SE_{b_1}(2.5\%) < \beta_1 < b_1 + t^{**} \times SE_{b_1}(97.5\%)$$

$$t^{**} \sim t(n-2)$$

Interpretation

We are 95% confident in our estimate that when $\underline{\mathbf{x}}$ -variable increases by 1 unit, the population mean of $\underline{\mathbf{y}}$ -variable increases (1 decreases) by between $\underline{\mathbf{lower}}$ bound and $\underline{\mathbf{upper}}$ bound

Mean Response

Model: - $\mu_{y|x} = \beta_0 + \beta_1 x \leftarrow$ confidence interval for mean response

Confidence Interval for $\mu_{\mathbf{y}|\mathbf{x}}$: requires a specific x^* value to plug in for x.

$$\hat{\mu} = b_0 + b_1 x^*$$

 \hat{y} (Estimate y at x^*) and $\hat{\mu}_y$ (estimate μ_y at x^*) have the <u>same</u> value.

- Bigger sample size (s) \rightarrow wider confidence interval
- Bigger sample size (s) means <u>weaker</u> relationship (in general)
- Weaker relationship \rightarrow wider confidence interval
- Confidence interval at x^* close to $\bar{x} \to \text{narrower}$
- Confidence interval at x^* far from $\bar{x} \to \text{wider}$

$$PI: \hat{y} \pm t^{**} \times SE_{\hat{y}}$$

include formula for SE hat y

At the same x^* value, prediction interval for y is always wider than the confidence interval for μ_y

Interpretation

Confidence interval for $\mu_{y|x}$:

We are 95% confidence in our estimate that when <u>x-variable</u> is <u>value of x^* </u>, the population mean of <u>y-variable</u> for a new observation is between <u>lower bound</u> and <u>upper bound</u>