

Characteristic energy losses in Al. (a) Electron reflection experiment;
 photoelectron experiment (upper curve × 3).

L' electron with kinetic energy E(K-LL'). The energy conservation law thus gives:

$$E(K) - E(L) = E^*(L') + E(K-LL')$$
 (1)

where E(K) and E(L) are respectively the binding energies of the K and L electrons, and $E^*(L')$ is the binding energy (in the so-

Fig. 2. Al K-LL Auger spectra: photon induced (L) and electron induced (P).

Table I. Al K-LL Auger electron kinetic energies (referenced to the Fermi level; values in eV)

Auger line	E (L lab)	E (P lab)	E (theory)	
$K-L_{2,3}L_{2,3}$ (^{3}P)	Not obs.	Not obs.	$(1.398.1)^a$	
$K-L_{2,3}L_{2,3}$ (¹ D)	1 393.2	1 393.1	1 393.5	
$K-L_{2,3}L_{2,3}$ (1S)	1 387.2	1 387.1	1 386.6	
$K-L_1L_{2,3}$ (3P)	1 357.2	1 357.2	1 358.5	
$K-L_1L_{2,3}$ (1P)	1 341.4	1 341.6	1 342.3	
$K-L_1L_1$ (1S).	1 302.0	1 302.6	1 304.0	

^a Forbidden in LS coupling.

lid) of an L' electron in an atom with an L hole. So the kinetic energy of the Auger electron can be written as:

$$E(K-LL') = E(K) - E(L) - E^*(L')$$
(2)

The last contribution of this equation is given by:

$$E^*(L') = E(L') + C(LL'; T) - R$$
(3)

because $E^*(L')$ is different from the binding energy E(L') by R, which takes into account the so-called electronic relaxation following the creation of the L hole, and by C(LL';T), the coupling energy between the L and L' holes in the final state T [7]. Finally, the K-LL' Auger electron kinetic energy is:

$$E(K-LL'; T) = E(K) - E(L) - E(L') - C(LL'; T) + R$$
(4)

The C(LL'; T) term of eqs. (3) and (4) can be calculated in LS coupling [4] using the Slater-Condon integrals F^k and G^k given by a nonrelativistic Hartree-Fock calculation [3], the effect of relativity being weak in this atomic number region. The two-hole coupling energies for the different final states T are given in Table II.

The term R in eqs. (3) and (4) can be considered as the sum of an atomic relaxation energy R_a and of an extra-atomic relaxation energy R_e [7]:

$$R = R_{\rm a} + R_{\rm e} \tag{5}$$

 $R_{\rm a}$ represents the reduction of the binding energy of an L' electron due to the relaxation which follows the creation of the L hole in a free atom. In the "equivalent core" approximation [13], $R_{\rm a}$ is twice the reorganization energy for the ionization of an L' electron [5]. This reorganization energy is the difference between the orbital energy given by a Hartree-Fock calculation and the true binding energy, which is the difference between the total energy of the atom and that of the ion. Gelius' calculations for Al [14] give $R_{\rm a} \approx 12.2$ eV for a 2s electron and $R_{\rm a} \approx 14.2$ eV for a 2p electron.

The L hole creation also modifies the electronic distribution in the solid. The relaxation energy $R_{\rm e}$ associated with this process can be evaluated using the excitonic model proposed by Ley

Table II. Two-hole coupling energies (eV) in Al K-LL Auger spectrum (LS coupling)

LL'	L_1L_1	L_1L_2	$L_{2,3}L_{2,3}$			
T $C(LL'; T)$	¹ <i>S</i> 39.8	¹ <i>P</i> 48.6	3 <i>p</i> 32.4	¹ <i>S</i> 49.4	¹ D 42.5	$(^{3}P)^{a}$ $(37.9)^{a}$

a Forbidden in LS coupling.