电子线路设计与测试

第三阶段

方波一三角波发生器设计

教材4.5.6设计任务(P118)

实验室开放时间安排

□ 周二晚: 18:30-21:40 南一楼中213-216

□ 周五晚: 18:30-21:40 南一楼东303-306

几种集成运算放大器的典型参数

芯片型号₽		μΑ741 (単 ¹) ₽	0P07C₽	NE5532(双)₽	LF347(四).₽	LM324(四)₽
电源√	双电源型	±3V~±18V₽	±3V~±18V₽	±3 V∼ ±20 V ₽	±1.5V″±16V∂	±18 V ₽
电压₽	单电源₽	-0	-₽	- ₄	-4	3 V~32V ₽
输入失调电压 V _ю ₽		1. OmV∂	250μ V∂	0. 5mV ₽	5 mV∂	2mV₽
输入失调电流 /₀↩		20nA∂	8nA∂	10n A ₽	25 <u>p</u> A.	5 <u>n</u> A.
输入偏	置电流 /₌₽	80nA∂	±9 <u>n</u> A.	200nA₽	50 <u>p</u> A.	45nA₽
开环电压增益 Ano		2×10 [€]	4×10⁵₽	50×10 ^{r√} (<i>R</i> = 600Ω) ₽	1×10 ⁶	1×10 [€] ∂
输入电阻 /□□		2. ΟΜΩ₽	33 ΜΩ₽	0.3 MΩ₽	10 [™] Ω₽	-0
单位增益带宽 <i>B</i> K ₆ 2		1MHz.₽	0.6MHz«	10 MHz√ (G=100pF, R= 600 Ω) √	4 MHz₽	1 MHz.
转换速率 &₽		0. 5V/μs₽	0. 3V/μs ₽	9 V/μs₽	13 V/μs₽	- ₽
共模邦	赚比 Æ⊷	90 dB∂	120 dB∂	100 dB∂	100 dB₽	85 dB∂
功图	车消耗₽	60π ₩ ₽	150m₩₽	780 ∰.	570m₩₽	1130 m##
输入印	电压范围₽	±13 V ₽	±14 V ₽	±电源电压 ₽	±15 V ₽	-0. 3√″32V ₽
说 明₽		通用型₽	低噪声₽	低噪声₽	高胆型(JFET)₽	通用型₽

选作1

设计一高增益电压放大器,要求:输入信号为正弦交流电压信号,峰峰值Vipp=100mV,频率fi=10kHz,输出信号峰峰值Vopp=24V,且与输入信号反相。电路输入阻抗大于1M欧姆,输出阻抗小于100欧姆。

要求:

- (1)提出电路设计方案,画出电路原理图,要求标示出电阻元件参数和电源值,简述电路的工作原理。
- (2) 对电路进行仿真,验证你所设计的电路能满足设计要求。
- (3) 插板实现所设计的电路,测试电路的性能指标,验证你所设计实现的电路能够满足设计要求。
- (4) 当输入信号为1MHz,请问上述电路还能满足所要求的增益,输入阻抗与输出阻抗指标吗?描述电路性能指标变化的原因,并提出改进方案。

选作1

设计一高增益电压放大器,要求:输入信号为正弦交流电压信号,峰峰值Vipp=100mV,频率fi=10kHz,输出信号峰峰值Vopp=24V,且与输入信号反相。电路输入阻抗大于1M欧姆,输出阻抗小于100欧姆。

- ▶ 能用一级完成吗?为什么?
- ▶ 电源电压取多少? 理由?
- ▶ 输入阻抗测试方法?

函数发生器设计 (P112)

- 一、函数发生器的基本组成及主要性能指标
 - □ 函数发生器能自动产生方波-三角波-正弦波
 - □ 组成框图如图所示:

4.5 函数发生器设计 (P116)

- 一、函数发生器的基本组成及主要性能指标
- □ 输出波形 正弦波、方波、三角波等
- □ 频率范围 1~10 Hz, 10~100 Hz, 100~1 kHz, 1~10 kHz, 10~100 kHz, 100 kHz ~1 MHz
- \Box 输出电压 一般指输出波形峰-峰值,即 $V_{\rm pp}=2V_{\rm m}$
- □ 波形特性
 - 表征正弦波特性的参数是非线性失真 ½, 一般要求 ½ < 3%;
 - 表征三角波特性的参数是非线性系数 γ_{\triangle} , 一般要求 γ_{\triangle} <2%;
 - 表征方波特性的参数是上升时间 t_r ,一般要求 t_r <100ns(1kHz,最大输出时)。

二、方波-三角波产生电路

同相迟滞比较器

$$V_{+} = \frac{R_{2}}{R_{2} + R_{3} + RP_{1}} V_{o1} + \frac{R_{3} + RP_{1}}{R_{2} + R_{3} + RP_{1}} V_{ia}$$
 比较器的门限宽度 ΔV_{T} 为

将翻转条件
$$V_{+}=V_{-}=0$$
代入

$$V_{ia} = \frac{-R_2}{R_3 + RP_1} V_{o1} \longrightarrow \begin{cases} V_{T-} = \frac{-R_2}{R_3 + RP_1} V_{CC} \\ V_{T+} = \frac{R_2}{R_3 + RP_1} V_{CC} \end{cases}$$

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = 2 \cdot \frac{R_2}{R_3 + RP_1} V_{\rm CC}$$

二、方波-三角波产生电路

同相迟滞比较器

$$V_{+} = \frac{R_{2}}{R_{2} + R_{3} + RP_{1}} V_{o1} + \frac{R_{3} + RP_{1}}{R_{2} + R_{3} + RP_{1}} V_{ia}$$

将翻转条件
$$V_{+}=V_{-}=0$$
代入

$$V_{ia} = \frac{-R_2}{R_3 + RP_1} V_{o1} \longrightarrow \begin{cases} V_{T-} = \frac{-R_2}{R_3 + RP_1} V_{CC} \\ V_{T+} = \frac{R_2}{R_3 + RP_1} V_{CC} \end{cases}$$

反相积分器

$$v_{o2} = -\frac{1}{C_2} \int_{t_0}^{t_1} \frac{v_{o1}}{(R_4 + RP_2)} dt - v_{C2}(t_0)$$
$$= \pm \frac{V_{CC}}{(R_4 + RP_2)C_2} t + v_{O2}(t_0)$$

9

方波-三角波的工作过程:

- a点闭合,形成闭环电路,则自动产生方波-三角波。
- 输出 ν_{01} 为高电平($+V_{CC}$), 比较器门限 电 压为 V_{T-} 。这 时积分器开始反向积分,三角 波 ν_{02} 线性下降。
- \bullet 当 ν_{02} 下降到 $V_{T.}$ 时,比较器翻转,输出 ν_{01} 由高电平跳到低电平,门限电压为 V_{T+} 。这时积分器又开始正向积分, ν_{02} 线性增加。
- 如此反复,就可自动产生方 波-三角波。

方波-三角波的幅度和频率

●方波幅度:

三角波正、负幅度:就是比较器门限电压

$$V_{\text{o2m}} = \frac{R_2}{R_3 + RP_1} V_{\text{CC}}$$

$$V_{\text{o2pp}} = \Delta V_{\text{T}} = \frac{2R_2}{R_3 + \text{RP}_1} V_{\text{CC}}$$

● 方 波-三角波频率:

$$T = \frac{4R_2(R_4 + RP_2)C_2}{R_3 + RP_1}$$

$$f = \frac{1}{4(R_4 + RP_2)C_2} \cdot \frac{R_3 + RP_1}{R_2}$$

方波-三角波的幅度和频率

● 三角波正、负幅度:

$$V_{\text{o2m}} = \frac{R_2}{R_3 + RP_1} V_{\text{CC}}$$

● 方 波-三角波频率:

$$f = \frac{1}{4(R_4 + RP_2)C_2} \cdot \frac{R_3 + RP_1}{R_2}$$

- 结论:
- ①方波的幅度由+ V_{CC} 和 - V_{EE} 决定;
- ②三角波幅度可由RP₁进行调节,但会影响频率;
- ③调节RP₂,可调节频率,且不会影响三角波幅度,可用 RP₂ 实现频率微调,用C₂改变频率范围。

三、设计任务 (P118) :

方波-三角波函数发生器设计

- □ 已知条件: 运放 NE5532 一只
- □ 性能指标要求:
 - 频率范围: 100 Hz~1kHz,

1 kHz~10 kHz;

■ 输出电压: 方波V_{p-p}≤24V,

三角波 $V_{p-p}=6V$;

■ 波形特性: 方波 t_r <30µs(1kHz,最大输出时)

三角波 γ_{\wedge} <2%

参考P116设计

测试内容与要求

- □ 测量每一档位输出频率的最小值和最大值, 将选取的电容值及测量数据填入自拟表格中, 并对结果进行误差分析
- □ 在不同的频率范围档,选取一个频率值,画 出方波-三角波波形,并标出电压幅值和周 期
- □ 用示波器测量方波输出频率为1KHz、幅度 最大时的t_r

四、方波-三角波发生器的装调

- □ 由于比较器A₁与积分器A₂组成正反馈闭环电路,同时输出方波与三角波,故这两个单元电路需同时安装。
- □ 注意: 在安装电位器RP₁与RP₂之前,先将其调整到设计值,否则电路可能会不起振。
- \square 如果电路接线正确,则在接通电源后, A_1 的输出 v_{01} 为方波, A_2 的输出 v_{02} 为三角波。
- □ 在频率较低时,微调RP₁,使三角波输出幅度满足设计指标要求。
- □ 再调节RP₂,则输出频率连续可变。

五、注意事项

- 1.组装电路前须对所有电阻逐一测量,作好记录。
- 2.集成运算放大器的各个管脚不要接错,尤其是正、 负电源不能接反,否则极易损坏芯片。

使用运放的注意事项

注意: 正、负电源千万别接反!

验收要求

- □ 输出方波和三角波峰峰值满足设计要求
- □ 通过选择合适的C,工作频段正确
- □ 调节RP₂,输出频率在指定频段连续可调, 调节范围正确
- □ 波形记录坐标系,关键参数完整

验收要求

- 预习报告(含设计电路_具体计算过程与 电路参数)
- > 实际测试数据---验收表;
- > 实际电路与测量
- > MOOC课程模块七单元测验成绩
- > *选作实验报告与结果

下阶段: 音响放大器设计实现

□基本实验:

音响放大器设计实现(教材4.7.7设计任务)