

Company identity card

Re-Juice Storage

https://www.rejuice-storage.com/

Re-Juice storage supply battery energy storage systems made with second life batteries from electric vehicles to SMEs or buildings.

Key figures:

	2017	2018	2019	2020
Turnover				
Net profit				
Equity				
Workforce		1	1	1

Market : Energy storage system

Definition Size : Trend :

Building Green Energy Storage Solutions with recycled EV batteries

Team

Denis JIDOVTSEFF - Co-Founder
R&D Engineer
Energy Specialist
Product developper

Grégoire MASQUELIER - Co-Founder Engineer and Project Manager

© +32 475 30 20 25 ⊠gregoire.masquelier@rejuice-storage.com

Storage needs linked to renewables

Source: On the economics of electrical storage for variable renewable energy sources Alexander Zerrahn a , *, Wolf-Peter Schill a , Claudia Kemfert

Identified problems

Renewable energy is not controllable

Over-production is not monetized => Limitation of production

Grid is less stable due to increase of renewable

EV charge is a challenge

Local Grid Infrastructure is not ready for fast EV charging

=> Connexion to grid is limited in max power

Sustainability of our lifestyle

One solution

Our product

Second Life Batteries from Electric Vehicles

Used EV Batteries:

- New/recent cars: Warranty returns, accidents,...
- Old EV: After Normal Vehicule lifetime: 80% of remaining capacity
- Replaced batteries for upgrades (ex: Zoe)
- 1. End of First Life
 Battery remaining capacity is more than 80%
 - - **2. Batteries are collected and dismantled**Battery remaining capacity is more than 80%

3. Each Cell is tested and sortedBy an patterned method

5. Re-assembly in Standard modules

4. Bad Cells are send for recycling

Batteries challenges

Public Assumptions

Batteries are complicated to set up and to use

Rejuice solution

Integrated Intelligence

Sustainable

Batteries are not

ecological

Market

Batteries are

expensive

Guarantee and Recycling

Batteries are not

reliable

200 kWh capacicty 150 kW power

Modular Capacity

EMS Integrated

Online Monitoring

Save per 200kWh 36 kg **Lithium** 110 kg **Cobalt** 40 tons **CO2**

Pricing: similar to new batteries

4000 cycles 10 Year

Battery uses

Peak shaving

Time shift

Battery uses: Quality of Electricity and UPS

4 quality factors of Electricity

1 – Tension loss 3 – Noise

2 – Tension overshoot 4 – Distorsions

Off-Grid Capability

Prototype

18 kWh 7.5 kW

Key learnings:
Communication protocols
Remote access
Online Monitoring
Battery troubleshooting
Thermal management
User Interface
Battery performance tests
Integrated EMS
SOC calculation

ReMobHub Project

Re-Juice is building a Pilot!

CooPilot Project, Re-Juice is developping the containered storage to power a fast charging station for John Cockerill.

200 kWh 150 kW

Location: Belgium

Other project member: CE+T Power, Enersol (Leader)

Future market demand and offer

¹Electric vehicle.

2Only for batteries from passenger cars.

Stationary batteries

10 kWh

Mature Market, very competive

Self-Consumption **Peak Shaving Load Shifting Emergency Backup**

EV Charging

More possibilities for revenue stacking

10.000 kWh

Market entry level too high **Cost Driven**

Our customer target

Retail

SME

Logistic centers

Peak Shaving
Load Shifting
Emergency Backup
Renewable Stabilization

Capacity reserve Anciliary services Line discharge

Microgrid

EV Charging

Renewable Power plant

Customer Targets details

Retail sector

- More that 15,000 stores in Belgium
- Huge interest on EV charging infrastructure
- Brands interest with sustainable development is important
- High solar power potential with the parkings

SMEs

- Facility + parking are a high solar power potential
- EV fleet for SME is increasing more rapidly
- Need of power safety (UPS)

Logistic Center

- Night Logistic centers has a delayed consumption
- High numbers of electric lifts
- Need of power safety

Competition

FATON

Two main technologies

	Reassembly	Repurpose
Companies	EATON, watt4ever, ecar- accu power vault	Connected energy, green vision, fenecon
Installation size	5-20 kwh EATON : 20 – 1000 kwh	20 kwh -1 MWh
Usage	Self consumption domestic	FCR, utility
Cost	>600 €/kwh	
Lifetime	Up to 4000 cycles	1000 cycles,
Maintenance	Batteries pack weigth limited, < 45 kg	Heavy packs> 100 kg, need special toolings

Competitive Advantage

Integrated EMS using opensource Framework

UPS with no break ability

Modular and compact design standardized formats

Containerized or inside the building

Technological partners

High quality inverters and UPS

Second life battery modules and battery recycling

Business Model

Price target for container (exclude installation cost)

370€/kwh

Cost new battery container

China sourced : 230€/kwh

EU sourced : 400€/kwh

Cost Breakdown						
Second life battery	162 €/kwh					
Inverter	50 €/kwh					
Casing	20 €/kwh					
Other components	16 €/kwh					
Man Work	30 €/kwh					
total	278 €/kwh					

Industrialization

STEP 1 < 1 Mwh /Year

- Purchase batteries and inverter to our partners
- Subcontracting the battery assembly to an electrotechnical company

STEP 2

- > 1 Mwh /year
- Purchase batteries and inverter to our partners
- Assembly of the batteries in our workshop

STEP 3

- > 10 Mwh /year
- Purchase batteries and inverters to our partners
- Storage of components for better fabrication delay
- Semi automatic assembly of the batteries in our workshop

Marketing / communication

- Social networks (linkedin,,,,)
- Final customer direct contact
- Webinars
- Publications
- Fairs (when open after COVID-19)

Sales Channels

- B2C installators for SMEs
 - Partnership with Enersol
- Direct sale for groups (like LIDL, or Carrefour)

Business plan

	2021	2022	2023	2024	2025
Incomes	127.700 €	253.480 €	962.160 €	2.373.000 €	4.616.200 €
audits	1.000	10.000	50.000	100.000	200.000
Project Management	11.100	20.880	76.560	183.000	349.200
Batteries Manufacturign	111.000	208.800	765.600	1.830.000	3.492.000
Installation of the Battery	2.600	10.800	60.000	240.000	550.000
Commissioning	2.000	3.000	10.000	20.000	25.000
Maintenance	-	-	-	2.000	
Installed Capacity		500	2.000	5.000	10.000
Unit Price Kwh		465	426	407	387
Average Installation		167	200	250	400
Costs	313.700 €	485.500 €	1.070.500 €	2.085.500 €	3.630.500 €
Direct Costs	116.200 €	174.000 €	638.000 €	1.525.000 €	2.910.000€
Purchase of battery components Main d'œuvre assemblage / installation	111.000 5.200	165.000 9.000	578.000 60.000	1.285.000 240.000	2.360.000 550.000
Indirect Costs	197.500 €	311.500 €	432.500 €	560.500 €	720.500 €
Staff	155.000	220.000	285.000	380.000	540.000
Staff (ETP)	2,5	3,8	5,0	6,8	9,5
infrastructure	-	20.000	90.000	120.000	120.000
Other costs	42.500	71.500	57.500	60.500	60.500
Ebit	-186.000€	-232.020 €	-108.340 €	287.500 €	985.700 €
Cumulative	-186.000€	-418.020 €	-526.360 €	-238.860 €	746.840 €

Roadmap

Supply Chain Expansion Concept Product and Belgium Components Pilot **Product Concept** International Expansion **Partners** Co-Developpement Assembly Workshop Market Distribution Marketing with targeted Series product Value Chain Prototype customers **Business Model** Staff Customers Financing

Intellectual property

- Current Developpement has been under John Cockerill Contract
- Agreement with John Cockerill to be discussed

