# Connected Stocks via Business Groups: Evidence from an Emerging Market

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

December, 2021

## Table of Contents

- Motivation
- 2 Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- **Evidence for correlated trading** 
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

## Co-movement and common ownership



## Co-movement and common ownership



#### Motivation

#### Does direct or indirect common ownership cause stock return co-movement?

- common ownership:
  - ullet We connect stocks through the common ownership by blockholders (ownership > 1%) for direct common ownership
  - We connect stocks through the ultimate owner for indirect common ownership
- We focus on excess return co-movement for a pair of the stocks
- We use common ownership (direct or indirect) to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals
- We demonstrate that correlated trading can be a channel of co-movement

# Why does it matter?

- Covariance
  - Covariance is a key component of risk in many financial applications.
    - Portfolio selection
    - Hedging
    - Asset pricing
  - Covariance is a significant input in risk measurement models
    - Such as Value-at-Risk
- Return predictability
  - If it's valid, we can build a profitable buy-sell strategy

## Table of Contents

- Motivation
  - LiteratureMain Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

#### Main effect



#### Our work

- We use daily records of block-holder ownership for firms
- We are not restricted to mutual funds ownership
- 85% of market belongs to the business groups
  - Would business groups be able to raise the co-movement of stock returns?
    - Cho and Mooney (2015):
       The strong co-movement between group returns and firm returns is explained by correlated fundamentals.
    - Kim et al. (2015):
       The increase in correlation appears to be driven more by non-fundamental factors such as correlated trading, rather than fundamental factors such as related-party transactions
  - Common ownership or business group (indirect common ownership) ?
  - Channel?

## Table of Contents

- - Main Effect
- **Empirical Studies** 
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- - Turnover
  - Institutional Imbalance

## Pair composition

Firms with at least one common owner



• In a business group, how can one pair be defined?

Business group



# Pair Composition and Business Group

Pair in the Business Group



## **Data Summary**

- Data: 2014/03/25 (1393/01/06) 2020/03/18 (1398/12/28)
  - 72 Months
  - 618 firm including 562 firms with common owners

| Year                                | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|-------------------------------------|------|------|------|------|------|------|
| No. of Firms                        | 365  | 376  | 446  | 552  | 587  | 618  |
| No. of Blockholders                 | 1606 | 1676 | 2099 | 2978 | 3374 | 3416 |
| No. of Groups                       | 38   | 41   | 43   | 44   | 40   | 43   |
| No. of Firms in Groups              | 249  | 268  | 300  | 336  | 346  | 375  |
| Ave. Number of group Members        | 7    | 7    | 7    | 8    | 9    | 9    |
| Ave. ownership of each Blockholders | 18   | 19   | 18   | 17   | 18   | 19   |
| Med. ownership of each Blockholders | 5    | 4    | 4    | 4    | 4    | 5    |
| Ave. Number of Owners               | 7    | 6    | 6    | 7    | 7    | 7    |
| Ave. Block. Ownership               | 77   | 77   | 75   | 76   | 75   | 72   |

## Pair Composition

- Pairs consist of two firms with at least one common owner
  - 17522 unique pairs which is 9% of possible pairs  $(\frac{618*617}{2} = 190653)$

|                        | mean | min  | Median | max  |
|------------------------|------|------|--------|------|
| Number of unique paris | 5000 | 3370 | 5097   | 6366 |

| Year                               | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|------------------------------------|------|------|------|------|------|------|
| No. of Pairs                       | 7471 | 7233 | 7515 | 8985 | 9479 | 9565 |
| No. of Pairs not in Groups         | 2579 | 2268 | 2228 | 3379 | 3247 | 3417 |
| No. of Pairs not in the same Group | 4045 | 4149 | 4361 | 4548 | 4870 | 4756 |
| No. of Pairs in the same Group     | 716  | 695  | 803  | 926  | 1192 | 1204 |
| Ave. Number of Common owner        | 1    | 1    | 1    | 1    | 1    | 1    |

# Measuring Common-ownership

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$



$$FCAP = \frac{50\% + 50\%}{100\% + 100\%} = 0.5$$

$$\mathsf{MFCAP} = \frac{\sqrt{50\%} + \sqrt{50\%}}{\sqrt{100\%} + \sqrt{100\%}} = 0.71$$

#### SQRT

$$\textit{MFCAP}_{ij,t} = [\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}} + \sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}} + \sqrt{S_{j,t}P_{j,t}}}]^{2}$$



$$FCAP = \frac{90\% + 10\%}{100\% + 100\%} = 0.5$$

$$MFCAP = \frac{\sqrt{90\%} + \sqrt{100\%}}{\sqrt{100\%} + \sqrt{100\%}} = 0.63$$

More example

# Measuring Common-ownership

|                   |       | MonthlyFCA |       |        |       | MonthlyFCAPf |       |       |        |       |
|-------------------|-------|------------|-------|--------|-------|--------------|-------|-------|--------|-------|
|                   | mean  | std        | min   | median | max   | mean         | std   | min   | median | max   |
| All               | 0.158 | 0.272      | 0.003 | 0.06   | 12.65 | 0.127        | 0.168 | 0.003 | 0.055  | 1.0   |
| Same Group        | 0.491 | 0.447      | 0.005 | 0.412  | 6.174 | 0.379        | 0.256 | 0.004 | 0.372  | 1.0   |
| Not Same Group    | 0.104 | 0.175      | 0.004 | 0.044  | 3.84  | 0.087        | 0.117 | 0.004 | 0.041  | 0.998 |
| Same Industry     | 0.358 | 0.44       | 0.005 | 0.189  | 5.656 | 0.255        | 0.242 | 0.004 | 0.162  | 0.999 |
| Not Same Industry | 0.128 | 0.222      | 0.003 | 0.053  | 12.65 | 0.108        | 0.144 | 0.003 | 0.049  | 1.0   |

# MFCAP vs. FCAP Distributions

#### Monthly







Kernel Density

Density

## Correlation Calculation

#### 4 Factor + Industry

Frist Step:

Estimate this model on periods of three month (From two months earlier):

4 Factor + Industry :

$$R_{i,t} = \alpha_i + \beta_{mkt,i} R_{M,t} + \beta_{Ind,i} R_{Ind,t}$$
$$+ \beta_{HML,i} HML_t + \beta_{SMB,i} SMB_t + \beta_{UMD,i} UMD_t + \boxed{\varepsilon_{i,t}}$$

 Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

|                       | mean  | std   | min    | median | max   |
|-----------------------|-------|-------|--------|--------|-------|
| CAPM + Industry       | 0.016 | 0.129 | -0.950 | 0.013  | 0.830 |
| 4 Factor              | 0.032 | 0.137 | -0.875 | 0.024  | 0.869 |
| 4 Factor $+$ Industry | 0.012 | 0.125 | -0.875 | 0.010  | 0.779 |
| Benchmark             | 0.008 | 0.146 | -0.927 | 0.006  | 0.848 |

#### Controls

- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- SameSize: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket : The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- CrossOwnership: The maximum percent of cross-ownership between two firms

## Table of Contents

- Motivation
- LiteratureMain Effect
- Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

## Co-movement and Common Ownership





#### Estimation model

Use Fama-MacBeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{MFCAP}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{MFCAP}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{1}$$

- Estimate the model on a monthly frequency
- Adjust standard errors by Newey and West adjustment with 4 lags  $(4(70/100)^{\frac{2}{9}}=3.69\sim4)$

Methodology

#### Model Estimation

#### Normalized Rank-Transformed

|                  |            | Dependent Variable: Future Pairs's co-movement |           |           |           |           |  |  |  |
|------------------|------------|------------------------------------------------|-----------|-----------|-----------|-----------|--|--|--|
|                  | (1)        | (2)                                            | (3)       | (4)       | (5)       | (6)       |  |  |  |
| MFCAP*           | 0.00501*** | 0.00324***                                     |           |           | 0.000682  | 0.000348  |  |  |  |
|                  | (7.27)     | (4.80)                                         |           |           | (1.01)    | (0.46)    |  |  |  |
| Same Group       |            |                                                | 0.0346*** | 0.0312*** | 0.0304*** | 0.0275*** |  |  |  |
|                  |            |                                                | (8.96)    | (5.39)    | (5.13)    | (4.44)    |  |  |  |
| Controls         | No         | Yes                                            | No        | Yes       | Yes       | Yes       |  |  |  |
| PairType Control | No         | No                                             | No        | No        | No        | Yes       |  |  |  |
| Observations     | 297874     | 297874                                         | 297874    | 297874    | 297874    | 297874    |  |  |  |
|                  |            |                                                |           |           |           |           |  |  |  |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Model Estimation

#### Normalized Rank-Transformed

|                              | Dependent V | /ariable: Fut | ure Pairs's co | -movement |
|------------------------------|-------------|---------------|----------------|-----------|
|                              | (1)         | (2)           | (3)            | (4)       |
| MFCAP*                       | 0.0123***   | -0.000448     | -0.000463      | 0.00111   |
|                              | (4.10)      | (-0.70)       | (-0.75)        | (1.06)    |
| Same Group                   |             |               | 0.0318         | 0.0338    |
|                              |             |               | (1.40)         | (1.24)    |
| $(MFCAP^*) \times SameGroup$ |             |               | 0.000209       | -0.00476  |
|                              |             |               | (0.02)         | (-0.27)   |
| Sub-sample                   | SameGroup   | Others        | All            | All       |
| Business Group FE            | No          | No            | No             | Yes       |
| Observations                 | 36061       | 261813        | 297874         | 297874    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Co-movement and Common Ownership

High level of common ownership





## Fama-MacBeth Estimation

High level of common ownership (sub-sample)

|                              | Dependent | Variable: F | uture Pairs's | co-movement |
|------------------------------|-----------|-------------|---------------|-------------|
|                              | (1)       | (2)         | (3)           | (4)         |
| Same Group                   | 0.0341*** |             | -0.0410       | -0.0407*    |
|                              | (8.32)    |             | (-1.94)       | (-2.09)     |
| MFCAP*                       |           | 0.0338***   | -0.0423       | -0.0338     |
|                              |           | (4.75)      | (-1.29)       | (-1.47)     |
| $(MFCAP^*) \times SameGroup$ |           |             | 0.0518***     | 0.0526***   |
|                              |           |             | (3.62)        | (3.87)      |
| Controls                     | Yes       | Yes         | Yes           | Yes         |
| Business Group FE            | No        | No          | No            | Yes         |
| Observations                 | 76527     | 76527       | 76527         | 76527       |

t statistics in parentheses

 $<sup>^{\</sup>ast}$  p < 0.05,  $^{\ast\ast}$  p < 0.01,  $^{\ast\ast\ast}$  p < 0.001

# All pairs

|                      |           | De         | ependent Var | iable: Future P | 'airs' co-move | ment        |           |
|----------------------|-----------|------------|--------------|-----------------|----------------|-------------|-----------|
|                      | (1)       | (2)        | (3)          | (4)             | (5)            | (6)         | (7)       |
| SameGroup            | 0.0156*** | , ,        | 0.0158***    | ` '             |                | 0.0138***   | 0.0131*** |
|                      | (9.84)    |            | (10.22)      |                 |                | (8.27)      | (7.68)    |
| MFCAP*               |           | -0.0000723 | -0.000277    | 0.00169         | -0.000322*     | -0.000390** | -0.000427 |
|                      |           | (-0.44)    | (-1.80)      | (1.42)          | (-2.19)        | (-2.70)     | (-2.29)   |
| (MFCAP*) × SameGroup |           |            |              |                 |                | 0.00313**   | 0.00364** |
|                      |           |            |              |                 |                | (2.80)      | (3.34)    |
| Controls             | Yes       | Yes        | Yes          | Yes             | Yes            | Yes         | Yes       |
| Sub-Sample           | Total     | Total      | Total        | SameGroups      | Others         | Total       | Total     |
| Business Group FE    | No        | No         | No           | No              | No             | No          | Yes       |
| Observations         | 6018646   | 6018646    | 6018646      | 114526          | 5904120        | 6018646     | 6018646   |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

## Table of Contents

- Motivation
- 2 Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

# TrunOver Koch et al. (2016)

$$\Delta \mathsf{TurnOver} = \mathsf{In}(\frac{\mathsf{TurnOver}_{i,t}}{\mathsf{TurnOver}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

|                                         | Deper    | dent Varia | ble: ΔTurn | Over_i   |
|-----------------------------------------|----------|------------|------------|----------|
|                                         | (1)      | (2)        | (3)        | (4)      |
| ∆TurnOver <sub>Market</sub>             | 0.457*** | 0.351***   | 0.182***   | 0.235*** |
|                                         | (4.04)   | (10.69)    | (3.42)     | (4.72)   |
| $\Delta$ TurnOver <sub>Industry-i</sub> | 0.220*** | 0.159***   | 0.0528     | 0.117*   |
|                                         | (4.28)   | (4.10)     | (1.03)     | (2.37)   |
| ΔTurnOver <sub>Group,-i</sub>           |          |            | 0.286***   | 0.213*** |
| ,.                                      |          |            | (6.21)     | (5.15)   |
| Portfo. Weight                          | -        | -          | MC         | MC       |
| Control                                 | No       | Yes        | No         | Yes      |
| Observations                            | 746640   | 742341     | 305563     | 301329   |
| R <sup>2</sup>                          | 0.298    | 0.579      | 0.460      | 0.749    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

## Business group and correlation in Turnover

|                                         | De                   | pendent Var         | iable: Future        | Monthly C         | orrelation of        | Delta turno          | ver                 |
|-----------------------------------------|----------------------|---------------------|----------------------|-------------------|----------------------|----------------------|---------------------|
|                                         | (1)                  | (2)                 | (3)                  | (4)               | (5)                  | (6)                  | (7)                 |
| Same Group                              | 0.0385***<br>(10.19) | 0.0225***<br>(4.95) |                      |                   | 0.0217***<br>(4.71)  | 0.0259*<br>(2.30)    | 0.00626<br>(0.60)   |
| MFCAP*                                  |                      |                     | 0.00623***<br>(4.20) | 0.00128<br>(1.04) | -0.000254<br>(-0.22) | -0.000331<br>(-0.29) | -0.00691<br>(-1.10) |
| $\left(MFCAP^*\right) \times SameGroup$ |                      |                     |                      |                   |                      | -0.00244<br>(-0.37)  | 0.0101<br>(1.58)    |
| Controls                                | No                   | Yes                 | No                   | Yes               | Yes                  | Yes                  | Yes                 |
| Business Group FE                       | No                   | No                  | No                   | No                | No                   | No                   | Yes                 |
| Observations                            | 288164               | 278286              | 288164               | 278286            | 278286               | 278286               | 278286              |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

## Correlation in Turnover and Co-movement

|                               | Depe      | ndent Varial | ole: Future F | Pairs's co-move | ement     |
|-------------------------------|-----------|--------------|---------------|-----------------|-----------|
|                               | (1)       | (2)          | (3)           | (4)             | (5)       |
| $\rho(\Delta TurnOver)_{t+1}$ | 0.0498*** | 0.0494***    | 0.0481***     | 0.0822***       | 0.0410*** |
|                               | (7.96)    | (6.71)       | (7.24)        | (10.23)         | (7.03)    |
| $ ho_{t}$                     | 0.0455*** | 0.0415***    | 0.0399***     | 0.118***        | 0.0280*** |
|                               | (10.05)   | (6.41)       | (5.60)        | (17.54)         | (3.62)    |
| Control                       | No        | Yes          | Yes           | Yes             | Yes       |
| Sub-sample                    | Total     | Total        | Total         | SameGroup       | Others    |
| Business Group FE             | No        | No           | No            | No              | No        |
| Observations                  | 288146    | 288146       | 288146        | 35026           | 253120    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Residual of Monthly Turnover

- $\bullet \ \mathsf{Turnover}_{i,t} = \alpha_0 + \alpha_1 \times \mathsf{Turnover}_{i,\mathit{avg}} + \alpha_2 \times \mathsf{Turnover}_{\mathit{m},t} + \boxed{\varepsilon_{i,t}}$ 
  - Turnover<sub>i,t</sub>: Monthly Turnover (Average of daily turnovers in each month)
  - Turnover<sub>i,avg</sub>: Annual average of monthly turnover
  - Turnover<sub>m,t</sub>: Market's turnover
- Assign residuals to the business groups

|           | $Firm \times Month$ | mean   | std   | min    | 25%    | 50%    | 75%   | max   |
|-----------|---------------------|--------|-------|--------|--------|--------|-------|-------|
| Grouped   |                     |        |       |        |        |        |       |       |
| Ungrouped | 8050                | -0.001 | 0.822 | -4.789 | -0.509 | -0.016 | 0.504 | 4.407 |
| Grouped   | 18199               | 0.001  | 0.777 | -4.832 | -0.481 | -0.033 | 0.469 | 4.955 |

# Residual of Monthly Turnover

#### Standard error

| Grouped              | $Group \times Month$ | mean | std            | min | 25% | 50% | 75% | max |
|----------------------|----------------------|------|----------------|-----|-----|-----|-----|-----|
| Ungrouped<br>Grouped | 72<br>2393           |      | 0.108<br>0.300 |     |     |     |     |     |



## Low residual standard error

|                                               | Dependent Variable: Future Pairs's co-movement |           |           |           |  |  |  |
|-----------------------------------------------|------------------------------------------------|-----------|-----------|-----------|--|--|--|
|                                               | (1)                                            | (2)       | (3)       | (4)       |  |  |  |
| Same Group                                    | 0.0277***                                      | 0.0280*** | 0.0204*** | -0.0301   |  |  |  |
|                                               | (4.88)                                         | (5.32)    | (3.50)    | (-0.71)   |  |  |  |
| LowResidualStd                                |                                                | -0.00160  | -0.00369  | -0.0313   |  |  |  |
|                                               |                                                | (-0.70)   | (-1.56)   | (-0.98)   |  |  |  |
| ${\sf LowResidualStd} \times {\sf SameGroup}$ |                                                |           | 0.0182*** | 0.0190*** |  |  |  |
|                                               |                                                |           | (3.60)    | (4.06)    |  |  |  |
| Group Size Effect                             | No                                             | Yes       | Yes       | No        |  |  |  |
| Business Group FE                             | No                                             | No        | No        | Yes       |  |  |  |
| Observations                                  | 297874                                         | 297874    | 297874    | 297874    |  |  |  |

t statistics in parentheses

 $<sup>^*</sup>$   $\rho <$  0.05,  $^{**}$   $\rho <$  0.01,  $^{***}$   $\rho <$  0.001

#### Institutional Imbalance

• Seasholes and Wu (2007)

$$Imbalance_{ins} = \frac{Buy_{ins} - Sell_{ins}}{Buy_{ins} + Sell_{ins}}$$

| Grouped              | $Group \times Month$ | mean            | std | min | 25%              | 50%             | 75%            | max        |
|----------------------|----------------------|-----------------|-----|-----|------------------|-----------------|----------------|------------|
| Ungrouped<br>Grouped | 20197<br>12021       | 0.010<br>-0.041 |     |     | -0.474<br>-0.462 | 0.016<br>-0.009 | 0.479<br>0.341 | 1.0<br>1.0 |

## Ins Imbalance std

#### Standard error

|           | $Group \times Month$ | mean  | std   | min  | 25%   | 50%   | 75%   | max   |
|-----------|----------------------|-------|-------|------|-------|-------|-------|-------|
| Grouped   |                      |       |       |      |       |       |       |       |
| Ungrouped | 72                   | 0.624 | 0.054 | 0.48 | 0.601 | 0.631 | 0.655 | 0.735 |
| Grouped   | 2057                 | 0.502 | 0.251 | 0.00 | 0.337 | 0.503 | 0.647 | 1.414 |



## Low Ins Imbalance Group

|                                      | Dependent Variable: Future Pairs's co-movement |           |             |           |  |  |  |
|--------------------------------------|------------------------------------------------|-----------|-------------|-----------|--|--|--|
|                                      | (1)                                            | (2)       | (3)         | (4)       |  |  |  |
| Same Group                           | 0.0277***                                      | 0.0293*** | 0.0243      | 0.0342    |  |  |  |
|                                      | (4.88)                                         | (4.55)    | (1.60)      | (1.32)    |  |  |  |
| Low Imbalance std                    |                                                | -0.00126  | -0.00556*** | -0.0163   |  |  |  |
|                                      |                                                | (-0.78)   | (-3.56)     | (-1.23)   |  |  |  |
| Low Imbalance std $\times$ SameGroup |                                                |           | 0.0194      | -0.000313 |  |  |  |
|                                      |                                                |           | (1.30)      | (-0.01)   |  |  |  |
| Group Size Effect                    | No                                             | Yes       | Yes         | No        |  |  |  |
| Business Group FE                    | No                                             | No        | No          | Yes       |  |  |  |
| Observations                         | 297874                                         | 297874    | 297874      | 297874    |  |  |  |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

## Table of Contents

- Motivation
- LiteratureMain Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

#### Conclusion

- Direct common ownership affects firms' co-movement.
- Firms in the business groups co-move more than other pairs
- Direct common ownership only matters for firms in the business groups.
- In the Business groups, firms are traded in the same time and also in the same direction.

#### References I

- Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099-1127.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common ownership. The Journal of Finance, 73(4):1513–1565.
- Barberis, N. and Shleifer, A. (2003). Style investing. Journal of financial Economics, 68(2):161-199.
- Barberis, N., Shleifer, A., and Wurgler, J. (2005). Comovement. Journal of financial economics, 75(2):283-317.
- Boubaker, S., Mansali, H., and Rjiba, H. (2014). Large controlling shareholders and stock price synchronicity. *Journal of Banking & Finance*, 40:80–96.
- Cho, C. H. and Mooney, T. (2015). Stock return comovement and korean business groups. Review of Development Finance, 5(2):71–81.
- David, J. M. and Simonovska, I. (2016). Correlated beliefs, returns, and stock market volatility. Journal of International Economics, 99:S58–S77.
- Freeman, K. (2019). The effects of common ownership on customer-supplier relationships. *Kelley School of Business Research Paper*, (16-84).
- Gilje, E. P., Gormley, T. A., and Levit, D. (2020). Who's paying attention? measuring common ownership and its impact on managerial incentives. *Journal of Financial Economics*, 137(1):152–178.
- Greenwood, R. and Thesmar, D. (2011). Stock price fragility. Journal of Financial Economics, 102(3):471-490.
- Grullon, G., Underwood, S., and Weston, J. P. (2014). Comovement and investment banking networks. Journal of Financial Economics, 113(1):73–89.
- Hameed, A. and Xie, J. (2019). Preference for dividends and return comovement. Journal of Financial Economics, 132(1):103–125.
- Hansen, R. G. and Lott Jr, J. R. (1996). Externalities and corporate objectives in a world with diversified shareholder/consumers. *Journal of Financial and Quantitative Analysis*. pages 43–68.
- Harford, J., Jenter, D., and Li, K. (2011). Institutional cross-holdings and their effect on acquisition decisions. *Journal of Financial Economics*, 99(1):27–39.

#### References II

- He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership: Evidence from institutional blockholdings. The Review of Financial Studies, 30(8):2674–2718.
- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. *Journal of Financial Economics*, 134(2):400–418.
- Khanna, T. and Thomas, C. (2009). Synchronicity and firm interlocks in an emerging market. *Journal of Financial Economics*, 92(2):182–204.
- Kim, M.-S., Kim, W., and Lee, D. W. (2015). Stock return commonality within business groups: Fundamentals or sentiment? Pacific-Basin Finance Journal. 35:198–224.
- Koch, A., Ruenzi, S., and Starks, L. (2016). Commonality in Liquidity: A Demand-Side Explanation. The Review of Financial Studies, 29(8):1943–1974.
- Newham, M., Seldeslachts, J., and Banal-Estanol, A. (2018). Common ownership and market entry: Evidence from pharmaceutical industry.
- Pantzalis, C. and Wang, B. (2017). Shareholder coordination, information diffusion and stock returns. Financial Review, 52(4):563–595.
- Seasholes, M. S. and Wu, G. (2007). Predictable behavior, profits, and attention. *Journal of Empirical Finance*, 14(5):590–610.
- Shiller, R. J. (1989). Comovements in stock prices and comovements in dividends. The Journal of Finance, 44(3):719–729.

### Table of Contents

- Appendix I
- 8 Appendix I
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail
- 9 Appendix II

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
  - Each holder owns 1/n of each firm.
  - Firm's market cap is  $\alpha_1$  and  $\alpha_2$ :
  - So for each holder of firms we have  $S_{i,t}^f P_{i,t} = \alpha_i$
  - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$



Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

**SQRT** 

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

#### Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

#### Example



For better observation, assume that

- $\alpha + \beta = 100$
- both firm have equal market cap



Comparison of three methods for calculating common ownership

Example of three common owner



Example of three common owner

| Ownership  | Type I | Type II | Type III | Type IV | Type V | Type VI | Type VII |
|------------|--------|---------|----------|---------|--------|---------|----------|
| $\alpha_1$ | 1/3    | 20      | 10       | 20      | 10     | 5       | 1        |
| $eta_1$    | 1/3    | 10      | 10       | 20      | 10     | 5       | 1        |
| $\alpha_2$ | 1/3    | 10      | 80       | 20      | 10     | 5       | 1        |
| $\beta_2$  | 1/3    | 20      | 80       | 20      | 10     | 5       | 1        |
| $\alpha_3$ | 1/3    | 70      | 10       | 20      | 10     | 5       | 1        |
| $eta_3$    | 1/3    | 70      | 10       | 20      | 10     | 5       | 1        |
| SQRT       | 3      | 2.56    | 2.33     | 1.8     | 0.9    | 0.45    | 0.09     |
| SUM        | 1      | 1       | 1        | 0.6     | 0.3    | 0.15    | 0.03     |
| Quadratic  | 3      | 1.85    | 1.52     | 8.33    | 33.33  | 133.33  | 3333.33  |



#### Comparison

- For better comparison we relax previous assumptions:
  - Two Firms with different market caps.

|                                   | $(\alpha_1,\beta_1),(\alpha_2,\beta_2)$ |         |          |          |                 |      |  |  |  |
|-----------------------------------|-----------------------------------------|---------|----------|----------|-----------------|------|--|--|--|
|                                   | (10,40)                                 | (10,40) | (15,35), | ,(15,35) | (20,30),(20,30) |      |  |  |  |
| $\frac{MarketCap_X}{MarketCap_y}$ | SQRT                                    | SUM     | SQRT     | SUM      | SQRT            | SUM  |  |  |  |
| 1                                 | 0.90                                    | 0.50    | 0.96     | 0.50     | 0.99            | 0.50 |  |  |  |
| 2                                 | 0.80                                    | 0.40    | 0.89     | 0.43     | 0.96            | 0.47 |  |  |  |
| 3                                 | 0.75                                    | 0.35    | 0.85     | 0.40     | 0.94            | 0.45 |  |  |  |
| 4                                 | 0.71                                    | 0.32    | 0.83     | 0.38     | 0.92            | 0.44 |  |  |  |
| 5                                 | 0.69                                    | 0.30    | 0.81     | 0.37     | 0.91            | 0.43 |  |  |  |
| 6                                 | 0.67                                    | 0.29    | 0.80     | 0.36     | 0.91            | 0.43 |  |  |  |
| 7                                 | 0.65                                    | 0.28    | 0.79     | 0.35     | 0.90            | 0.43 |  |  |  |
| 8                                 | 0.64                                    | 0.27    | 0.78     | 0.34     | 0.90            | 0.42 |  |  |  |
| 9                                 | 0.63                                    | 0.26    | 0.77     | 0.34     | 0.89            | 0.42 |  |  |  |
| 10                                | 0.62                                    | 0.25    | 0.76     | 0.34     | 0.89            | 0.42 |  |  |  |

#### Comparison



Comparison of two methods for calculating common ownership

#### Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

## Common Ownership measure

|                                             | Dependent Variable: Future Monthly Correlation of 4F+Industry Residuals |           |           |           |            |            |            |            |            |            |
|---------------------------------------------|-------------------------------------------------------------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|
|                                             | (1)                                                                     | (2)       | (3)       | (4)       | (5)        | (6)        | (7)        | (8)        | (9)        | (10)       |
| Common Ownership Measure                    | 0.00177***                                                              | 0.00150** | 0.00133** | 0.00102   | 0.000936   | 0.000663   | 0.000536   | 0.000377   | -0.0000197 | -0.0000113 |
|                                             | (3.93)                                                                  | (2.90)    | (2.76)    | (1.87)    | (1.90)     | (1.17)     | (1.06)     | (0.65)     | (-0.04)    | (-0.02)    |
| Same Group                                  |                                                                         |           | 0.0156*** | 0.0157*** | 0.00774*** | 0.00813*** | 0.00575*   | 0.00624**  | 0.00503*   | 0.00549*   |
| ·                                           |                                                                         |           | (7.32)    | (7.44)    | (3.61)     | (3.71)     | (2.62)     | (2.81)     | (2.11)     | (2.27)     |
| Common Ownership Measure $\times$ SameGroup |                                                                         |           |           |           | 0.0103***  | 0.00935*** | 0.0110***  | 0.00992*** | 0.0119***  | 0.0107***  |
|                                             |                                                                         |           |           |           | (7.76)     | (6.72)     | (7.47)     | (6.49)     | (7.94)     | (6.97)     |
| SameIndustry                                |                                                                         |           |           |           |            |            | -0.000364  | -0.000312  | 0.000286   | 0.000339   |
|                                             |                                                                         |           |           |           |            |            | (-0.21)    | (-0.19)    | (0.17)     | (0.21)     |
| SameSize                                    |                                                                         |           |           |           |            |            | 0.0133***  | 0.0135***  | 0.0131***  | 0.0132***  |
|                                             |                                                                         |           |           |           |            |            | (4.48)     | (4.56)     | (4.61)     | (4.68)     |
| SameBookToMarket                            |                                                                         |           |           |           |            |            | 0.00772*** | 0.00772*** | 0.00893*** | 0.00893*** |
|                                             |                                                                         |           |           |           |            |            | (4.55)     | (4.58)     | (5.05)     | (5.09)     |
| CrossOwnership                              |                                                                         |           |           |           |            |            | 0.0280*    | 0.0260     | 0.0303*    | 0.0283*    |
|                                             |                                                                         |           |           |           |            |            | (2.07)     | (1.93)     | (2.27)     | (2.14)     |
| Observations                                | 1665996                                                                 | 1665996   | 1665996   | 1665996   | 1665996    | 1665996    | 1665996    | 1665996    | 1665996    | 1665996    |
| Group FE                                    | No                                                                      | No        | No        | No        | No         | No         | No         | No         | Yes        | Yes        |
| Measurement                                 | Sum                                                                     | Quadratic | Sum       | Quadratic | Sum        | Quadratic  | Sum        | Quadratic  | Sum        | Quadratic  |
| R <sup>2</sup>                              | 0.000171                                                                | 0.000170  | 0.000348  | 0.000349  | 0.000443   | 0.000437   | 0.000898   | 0.000898   | 0.00575    | 0.00575    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Table of Contents

- 7 Appendix
- 8 Appendix II
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail
- 9 Appendix III

#### Main Effect

#### Common-ownership and comovement effect

[Anton and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

#### Common-ownership and liquidity demand

[Koch et al. (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

#### • Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

#### Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity



# Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
  - Equity network
  - ② Director network
  - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity =  $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{i,j,\mathbf{t}}, n_{i,j,\mathbf{t}}^{down})}{T_{i,j}}$
- $2 Correlation = \frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

# Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where  $R_{i,t}^2$  is the R-squared value from

$$RET_{i,w} = \alpha + \beta_1 MKRET_{w-1} + \beta_2 MKRET_w + \beta_3 INDRET_{i,w-1} + \beta_4 INDRET_{i,w} + \varepsilon_{i,w}$$

OLS estimation of

$$SYNCH_{i,t} = \beta_0 + \beta_1 Excess_{i,t} + \beta_2 UCF_{i,t} + \sum_k \beta_k Control_{i,t}^k$$

$$+ Industry Dummies + Year Dummies + \varepsilon_{i,t}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

## Connected Stocks

#### JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership

• 
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as  $FCAP_{ij,t}^*$
- $\rho_{ij,t}$ : within-month realized correlation of each stock pair's daily four-factor returns

a

$$ho_{ij,t+1} = a + b_f imes \textit{FCAPF}^*_{ij,t} + \sum_{k=1}^{n} \textit{CONTROL}_{ij,t,k} + arepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama-MacBeth

## Commonownership measurements

#### Model-based measures

• 
$$\mathsf{HJL}^A_I(A,B) = \sum_{i \in I^{A,B}} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$$
 Harford et al. (2011)

- Bi-directional
- Pair-level measure of common ownership
- Its potential impact on managerial incentives
- Measure not necessarily increases when the relative ownership increases
- Accounts only for an investor's relative holdings

$$\bullet \ \ \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} \mathsf{s}_{j} \mathsf{s}_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{i} \mu_{ij} \nu_{ij}} \ \ \mathsf{Azar} \ \mathsf{et} \ \mathsf{al.} \ \mathsf{(2018)}$$

- Capture a specific type of externality
- Measured at the industry level
- Assumes that investors are fully informed about the externalities
- $\operatorname{\mathsf{GGL}}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$  Gilje et al. (2020)
  - Bi-directional
  - Less information
  - Not sensitive to the scope
  - Measure increases when the relative ownership of firm A increases

## Commonownership measurements

#### Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017),He et al. (2019)
- $Overlap_{Min}(A, B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap\_{AP}(A,B) =  $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ Anton and Polk (2014)
- $Overlap_{HL}(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)
- Unappealing properties
  - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
  - Both Overlap<sub>Count</sub> and Overlap<sub>AP</sub> are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.



### Table of Contents

- 7 Appendix
- 8 Appendix I
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail
- 9 Appendix III

#### Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
  - The first step is to run periodic cross-sectional regression for dependent variables using data of each period.
  - The second step is to analyze the time series of each regression coefficient to determine whether the average coefficient differs from zero.

## Fama-MacBeth (1973)

- Two Step Regression
  - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

## Calculating standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
  - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
  - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

