SOLUCIÓN Al hacer uso de la eliminación de Gauss-Jordan se obtiene, sucesivamente,

$$\begin{pmatrix}
1 & 2 & -1 & | & 0 \\
3 & -3 & 2 & | & 0 \\
-1 & -11 & 6 & | & 0
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 4R_1}
\begin{pmatrix}
1 & 2 & -1 & | & 0 \\
0 & -9 & 5 & | & 0 \\
0 & -9 & 5 & | & 0
\end{pmatrix}$$

$$\xrightarrow{R_2 \to -\frac{1}{9}R_2}$$

$$\begin{pmatrix}
1 & 2 & -1 & | & 0 \\
0 & 1 & -\frac{5}{9} & | & 0 \\
0 & -9 & 5 & | & 0
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - 2R_3}$$

$$\begin{pmatrix}
1 & 0 & -\frac{1}{9} & | & 0 \\
0 & 1 & -\frac{5}{9} & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Ahora la matriz aumentada está en la forma escalonada reducida por renglones, y, como tenemos un renglón de ceros, esto nos indica que existe un número infinito de soluciones. Si elegimos a x_3 como parámetro, encontramos que toda solución es de la forma $\left(\frac{1}{9}x_3, \frac{5}{9}x_3, x_3\right)$. Si, por ejemplo, $x_3 = 0$, se obtiene la solución trivial. Si $x_3 = 1$ se obtiene la solución $\left(\frac{1}{9}, \frac{5}{9}\right)$. Si $x_3 = 9\pi$ se obtiene la solución $(\pi, 5\pi, 9\pi)$.

Un sistema homogéneo con más incógnitas que ecuaciones tiene un número infinito de soluciones

Resuelva el siguiente sistema

$$x_1 + x_2 - x_3 = 0$$

$$4x_1 - 2x_2 + 7x_3 = 0$$
(1.4.2)

SOLUCIÓN Al reducir por renglones, utilizando el método de Gauss-Jordan se obtiene

$$\begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 4 & -2 & 7 & | & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 4R_1} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -6 & 11 & | & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{-1}{6}R_2} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 - \frac{11}{6} & | & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 1 & \frac{5}{6} & | & 0 \\ 0 & 1 - \frac{11}{6} & | & 0 \end{pmatrix}$$

En esta ocasión tenemos más incógnitas que ecuaciones, por lo que hay un número infinito de soluciones. Si elegimos a x_3 como parámetro, encontramos que toda solución es de la forma $\left(\frac{5}{6}x_3, \frac{11}{6}x_3, x_3\right)$.

En términos generales, si hay más incógnitas que ecuaciones, el sistema homogéneo (1.4.1) siempre tendrá un número infinito de soluciones. Para ver esto observe que si sólo tuviera la solución trivial, la reducción por renglones conduciría al sistema

$$x_1 = 0$$

$$x_2 = 0$$

$$\vdots$$

$$x_n = 0$$

y, posiblemente, algunas ecuaciones adicionales de la forma 0 = 0. Pero este sistema tiene al menos tantas ecuaciones como incógnitas. Puesto que la reducción por renglones no cambia ni el número de ecuaciones ni el número de incógnitas, se tiene una contradicción en la suposición de que había más incógnitas que ecuaciones. Entonces se tiene el teorema 1.4.1.