Потоковый анализ

(Data-flow analysis)

Потоковый анализ

Достижимые присваивания (Reaching definitions)

Полурешетка свойств $\langle L, \wedge \rangle$

Полурешетка $\langle L, \wedge \rangle$

Бинарная операция \land (meet): $\forall x, y, z \in L$

- $x \wedge x = x$ (идемпотентность);
- $x \wedge y = y \wedge x$ (коммутативность);
- $(x \land y) \land z = x \land (y \land z)$ (ассоциативность).

Частичный порядок $\langle L, \leq \rangle$: 1 2

 $\forall x, y \in L$

- $x \le y \Leftrightarrow_{def} x \land y = x$;
- $x < y \Leftrightarrow_{def} x \land y = x \& x \neq y$.

Свойства полурешеток

- Обрыв убывающих цепей:
- $\forall x_1 > x_2 > \dots \exists k : \nexists y \in L : x_k > y$
- Ограниченность:

 $^{^1}$ Выполняются ли свойства частичного порядка при таком определении \leq через \wedge ?

²Можно ли восстановить полурешетку $\langle L, \wedge \rangle$ имея только частичный порядок $\langle L, \leq \rangle$?

Полурешетка свойств $\langle L, \wedge angle$

Полурешетка $\langle L, \wedge \rangle$

Бинарная операция \land (*meet*): $\forall x, y, z \in L$

- $x \wedge x = x$ (идемпотентность);
- $x \wedge y = y \wedge x$ (коммутативность);
- $(x \land y) \land z = x \land (y \land z)$ (ассоциативность).

Частичный порядок $\langle L, \leq \rangle$:

 $\forall x, y \in L$

- $x \le y \Leftrightarrow_{def} x \land y = x$;
- $x < y \Leftrightarrow_{def} x \land y = x \& x \neq y$.

Свойства полурешеток

- Обрыв убывающих цепей: $\forall x_1 > x_2 > \dots \ \exists k : \ \nexists y \in L : x_k > y$
- Ограниченность:

Примеры

- Множество подмножеств S $L = 2^S, \land = \cap (\mathsf{или} \cup)$
- Натуральные числа $L = \mathbb{N}, x \wedge y = min(x, y)$
- Константые целочисленные значения $L=\mathbb{Z}\cup\{\mathsf{T},\bot\},\bot<\mathbb{Z}<\mathsf{T}$
- Иерархия типов в программе $L = Types, x \le y = x <: y \text{ (subtype)}$

Потоковые функции

Монотонность

Монотонность на полурешетке

Дистрибутивность

Задача потокового анализа

- Потоковый граф
- Полурешетка свойств
- Начальная разметка
- Преобразователи свойств
 - Семейство монотонных функций

Решение задачи потокового анализа

- MOP
- MFP
 - $\exists MFP$
 - ∃!MFP
 - $MFP \leq MOP$
- Теорема Килдалла
 - ullet дистрибутивность преобразователей $\Rightarrow MFP = MOP$
- Неразрешимость

Оценка сложности

Topsort ??

