

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V1

NOVEMBER 2011

MOONTLIKE ANTWOORDE

PUNTE: 150

Hierdie memorandum bestaan uit 27 bladsye.

LET WEL:

- As 'n kandidaat'n vraag TWEE keer beantwoord, merk net die EERSTE poging.
- As 'n kandidaat 'n antwoord deurhaal en nie oordoen nie, merk die deurgehaalde antwoord.
- Deurlopende Akkuraatheid moet deurgaans in die memorandum toegepas word.

VRAAG 1

1.1.1	$x(x+1) = 6$ $x^{2} + x = 6$ $x^{2} + x - 6 = 0$ $(x+3)(x-2) = 0$	Let wel: Antwoord deur inspeksie: 3/3 punte	✓ standaardvorm ✓ faktore
	$x = -3 \text{ of } 2$ \mathbf{OF} $x^2 + x - 6 = 0$	Let wel: Antwoord van slegs $x = 2$: 1/3 punte	✓ antwoorde (3) ✓ standaardvorm
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-1 \pm \sqrt{1^2 - 4(1)(-6)}}{2(1)}$ $x = -3 \text{ or } 2$	Let wel: Indien die kandidaat die vergelyking na lineêr verander: 0/3 punte	✓ substitusie in die korrekte formule✓ antwoorde✓ (3)
1.1.2	$3x^{2} - 4x = 8$ $3x^{2} - 4x - 8 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	Let wel: Indien kandidaat verkeerde formule gebruik: maksimum 1/4 punte .(vir standaardvorm)	✓ standaardvorm
	$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-4)^2 - 4(3)(-4)^2}}{2(3)}$ $= \frac{4 \pm \sqrt{16 + 96}}{6}$	Let wel: Indien verkeerde vervanging die antwoord van $\frac{4 \pm \sqrt{-80}}{6}$ gee en	✓ vervang in korrekte formule $\sqrt{112}$
	$= \frac{4 \pm \sqrt{112}}{6}$ $= \frac{2 \pm 2\sqrt{7}}{3}$ = 2,43 of -1,10	aandui dat daar geen oplossing is: maksimum 3/4 punte Indien NIE geen oplossing aandui: Maksimum 2/4 punte	$\sqrt{\frac{4 \pm \sqrt{112}}{6}}$ of korrekte desimale antwoorde
	OF $3x^{2} - 4x = 8$ $3x^{2} - 4x - 8 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(3)(-4)^{2}}}{2(3)}$	Let wel: Penaliseer 1 punt vir verkeerde afronding tot ENIGE getal desimale plekke indien die antwoord in desimale vorm gegee is.	 ✓ standaardvorm ✓ vervang in korrekte formule ✓ antwoord
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		✓ antwoord (4)

√ faktore

√ of

✓ beide kritieke

waardes van $\frac{1}{4}$ en

OF

(4)

√ antwoord

3

NSS -

1.1.3

$$4x^2 + 1 \ge 5x$$
$$4x^2 - 5x + 1 \ge 0$$

$$(4x-1)(x-1) \ge 0$$

$$x \le \frac{1}{4}$$
 of $x \ge 1$ **OR** $(-\infty; \frac{1}{4}] \cup [1; \infty)$

OF

OF

Let wel:

Indien kandidaat hierdie korrekte grafiese oplossings gee, maar die verkeerde intervalle neerskryf of EN gebruik:

Maksimum 3/4 punte

LET WEL:

Indien kandidaat die antwoord gee as $1 \le x \le \frac{1}{4}$ maksimum 3/4 punte.

Indien kandidaat die antwoord gee as $\frac{1}{4} \le x \le 1$ maksimum 2/4 punte.

Indien kandidaat antwoord gee as $x \le \frac{1}{4}$ en $x \ge 1$ maksimum 3/4 punte.

Indien kandidaat die antwoord gee sonder die gelyk aan tekens penaliseer met 1 punt.

Indien kandidaat antwoord gee as $x \le \frac{1}{4}$; $x \ge 1$ maksimum 3/4 punte.

Indien kandidaat die antwoord gee as $x \ge \frac{1}{4}$ of/en $x \ge 1$:

WISKUNDIGE REDENERINGSFOUT: maksimum 2/4 punte.

Indien kandidaat slegs

$$\frac{+ \quad 0 \quad - \quad 0 \quad +}{\frac{1}{4}}$$

maks 3/4 punte

as antwoord gee:

 $x^2 + 5xy + 6y^2 = 0$ 1.2.1 √ faktore (x+3y)(x+2y)=0Let wel: $x + 3y = 0 \qquad \qquad x + 2y = 0$ Indien kandidaat die x = -3y **OF** x = -2y antwoord gee as $\frac{x}{y} = -3$ $\frac{x}{y} = -2$ $\frac{x}{y} = 3$ of $\frac{x}{y} = 2$ ✓ antwoorde 2/3 punte (3) Let $k = \frac{x}{y}$ $x^2 + 5xy + 6y^2 = 0$ $\left(\frac{x}{v}\right)^2 + 5\left(\frac{x}{v}\right) + 6 = 0$ √ faktore $k^2 + 5k + 6 = 0$ (k+3)(k+2) = 0k = -3 or k = -2✓ antwoorde $\frac{x}{v} = -3$ or $\frac{x}{v} = -2$ (3) OF $x^2 + 5xy + 6y^2 = 0$ $x = \frac{-5y \pm \sqrt{(5y)^2 - 4(1)(6y^2)}}{2(1)}$ $x = \frac{-5y \pm \sqrt{y^2}}{2}$ √ formule $x = \frac{-5y \pm y}{2}$ $x = -3y \qquad x = -2y$ ✓ ✓ antwoorde $\frac{x}{y} = -3$ of $\frac{x}{y} = -2$ (3) $x^2 + 5xy + 6y^2 = 0$ $x^{2} + 5xy + \left(\frac{5}{2}y\right)^{2} = -6y^{2} + \left(\frac{5}{2}y\right)^{2}$ $\left(x + \frac{5}{2}y\right)^2 = \frac{1}{4}y^2$ vierkantsvoltooing $x + \frac{5}{2}y = \pm \frac{1}{2}y$ $x = -\frac{5}{2}y \pm \frac{1}{2}y$

le/	VV1 5 NSS	DBE/November 2011	
	$x = -3y x = -2y$ $\frac{x}{y} = -3 \text{of} \frac{x}{y} = -2$	✓✓ antwoorde	(3)
	OF		
	Let $k = \frac{x}{y}$ x = ky $x^2 + 5xy + 6y^2 = 0$ $(ky)^2 + 5y(ky) + 6y^2 = 0$		
	$k^{2}y^{2} + 5y^{2}k + 6y^{2} = 0$ $y^{2}(k^{2} + 5k + 6) = 0$ $(k^{2} + 5k + 6) = 0$ $(k+3)(k+2) = 0$	✓ faktore	
	k = -3 or $k = -2\frac{x}{y} = -3 or \frac{x}{y} = -2Let wel: (x;y) = (0;0) is ook 'n oplossing, maar in die geval is \frac{x}{y}$	✓✓ antwoorde	(3)
	ongedefinieerd.		
	OF Laat $y = 1$, $x^2 + 5x + 6 = 0$ (x + 2)(x + 3) = 0 x = -2 or $x = -3$	✓ faktore	
	Y Y	/// amturus amda	

✓ ✓ antwoorde

(3)

 $\frac{x}{y} = -2 \text{ or } \frac{x}{y} = -3$

6

NSS -	DBE//November 2011
1.2.2 $x + y = 8$ $x + y = 8$	✓ substitusie
-3y + y = 8 -2y + y = 8	x = -3y
$-2y = 8 \text{OF} \qquad -y = 8$	\checkmark subs $x = -2y$
y = -4 y = -8	√√ y-waardes
x = 12 x = 16	✓ beide <i>x</i> -waardes
OF	korrek
	(5)
$\frac{8-y}{y} = -3 OF \frac{8-y}{y} = -2$ $8-y = -3y 8-y = -2y$	$\checkmark x = 8 - y$
y y	✓ substitusie
$8 - y = -3y \qquad \qquad 8 - y = -2y$	
$8 = -2y \qquad \qquad 8 = -y$	✓✓ y-waardes
$y = -4 \qquad \qquad y = -8$	✓ beide x-waardes
x = 12 x = 16	korrek
OF	(5)
x+y=8	
y = 8 - x	$\checkmark y = 8 - x$
$\frac{x}{8-x} = -3 \qquad \text{OF} \qquad \frac{x}{8-x} = -2$	✓ subs
$ \begin{vmatrix} 8 - x & 8 - x \\ x = -3(8 - x) & x = -2(8 - x) \end{vmatrix} $	
x = -3(8-x) x = -2(8-x) $x = -24 + 3x x = -16 + 2x$	
-2x = -24 - 3x	✓ ✓ x-waardes
x = 12 $x = 16$	✓ beide y-waardes
y = -4 $y = -8$	korrek
y = 1 $y = 3$	(5)
OF	
(x+2y)(x+3y)=0	$\checkmark x = 8 - y$
x + y = 8	✓ subs
x = 8 - y	✓ ✓ y-waardes
(y+8)(2y+8) = 0	✓ beide x-waardes
y = -8 of $y = -4x = 16$ $x = 12$	korrek
x = 10 $x = 12$	(5)
OF	
x = 8 - y	$\checkmark x = 8 - y$
$(8-y)^2 + 5(8-y)y + 6y^2 = 0$	\checkmark subs
$64 - 16y + y^2 + 40y - 5y^2 + 6y^2 = 0$	✓ faktore
$2y^2 + 24y + 64 = 0$	✓ beide y-waardes
$y^2 + 12y + 32 = 0$	korrek
(y+8)(y+4)=0	✓ beide x-waardes
y = -8 OF $y = -4$	korrek (5)
$x = 16 \qquad x = 12$	ROHOK (3)

$$x = 8 - y$$

$$(8 - y)^{2} + 5(8 - y)y + 6y^{2} = 0$$

$$64 - 16y + y^{2} + 40y - 5y^{2} + 6y^{2} = 0$$

$$2y^{2} + 24y + 64 = 0$$

$$y^{2} + 12y + 32 = 0$$

$$y = \frac{-12 \pm \sqrt{12^{2} - 4(1)(32)}}{2(1)}$$

$$= \frac{-12 \pm \sqrt{16}}{2}$$

$$y = -8 \text{ OR } y = -4$$

$$x = 16 \qquad x = 12$$

Let wel:

Indien kandidaat die formule gebruik en *x* en *y* vervang en dan is antwoorde omgeruil: Maksimum 4/5 marks

$$\checkmark y = 8 - x$$

- ✓ subs
- ✓ substitusie in korrekte formule
- ✓ beide *y*-waardes korrek
- ✓ beide *x*-waardes korrek (5)

OF

$$y = 8 - x$$

$$x^{2} + 5x(8 - x) + 6(8 - x)^{2} = 0$$

$$x^{2} + 40x - 5x^{2} + 6(64 - 16x + x^{2}) = 0$$

$$2x^{2} - 56x + 384 = 0$$

$$x^{2} - 28x + 192 = 0$$

$$(x - 16)(x - 12) = 0$$

$$x = 12$$

$$y = -4$$
OF
$$y = -8$$

$$\checkmark y = 8 - x$$

- ✓ subs
- √ faktore
- ✓ beide *x*-waardes korrek
- ✓ beide *y*-waardes korrek

(5)

$$y = 8 - x$$

$$x^{2} + 5x(8 - x) + 6(8 - x)^{2} = 0$$

$$x^{2} + 40x - 5x^{2} + 6(64 - 16x + x^{2}) = 0$$

$$2x^{2} - 56x + 384 = 0$$

$$x^{2} - 28x + 192 = 0$$

$$x = \frac{-(-28) \pm \sqrt{(-28)^{2} - 4(1)(192)}}{2(1)}$$

$$= \frac{28 \pm \sqrt{416}}{2}$$

$$x = 12$$

$$y = -4$$

$$x = 16$$

$$y = -8$$

$$\checkmark y = 8 - x$$

- √ subs
- ✓ substitusie in korrekte formule
- ✓ beide *x*-waardes korrek
- ✓ beidey-waardes korrek (5)

[19]

2.1.1	x-4=32-x
	2x = 36
	x = 18

OF

$$a = 4$$

 $a + 2d = 32$
 $2d = 28$
 $d = 14$
 $x = 14 + 4$
 $x = 18$

$$\mathbf{OF}$$

$$x = \frac{4+32}{2} = 18$$

Let wel:

Slegs antwoord: 2/2 punte

Let wel: Indien kandidaat slegs x-4 32 – x skryf (i.e. geen gelyk aan teken): 0/2 punte

$$\sqrt{T_2 - T_1} = T_3 - T_2$$

✓ antwoord (2)

$$\sqrt{a+2d} = 32 \text{ en } a = 4$$

✓ antwoord (2)

✓ vervang korrek in rekenkundige gemiddeld formule i.e. $\frac{4+32}{2}$

✓ antwoord

(2)

(3)

2.1.2
$$\frac{x}{4} = \frac{32}{x}$$

 $x^2 = 128$
 $x = \pm \sqrt{128}$
 $x = \pm 8\sqrt{2}$ of $x = \pm 11{,}31$ of $x = \pm 2^{\frac{7}{2}}$

$$\mathbf{OF}$$

$$a = 4$$

$$r = \frac{x}{4}$$

$$ar^{2} = 4\left(\frac{x}{4}\right)^{2}$$
$$32 = 4\left(\frac{x}{4}\right)^{2}$$
$$x^{2} = 128$$
$$x = \pm\sqrt{128}$$

$$x = \pm \sqrt{4 \times 32}$$

= $\pm \sqrt{128}$
 $x = \pm 8\sqrt{2}$ of $x = \pm 11{,}31$ of $x = \pm 2^{\frac{7}{2}}$

 $x = \pm 8\sqrt{2}$ of $x = \pm 11.31$ of $x = \pm 2^{\frac{7}{2}}$

Let wel: Indien kandidaat slegs
$$\frac{x}{4} = \frac{32}{x}$$
 skryf (i.e. geen gelyk aan teken): 0/2 marks

Let wel: As slegs $x = \sqrt{128}$, penaliseer met 1 punt

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$$

$$\checkmark x^2 = 128$$

✓beide antwoorde (wortel-of desimale vorm)

 $\checkmark 32 = 4\left(\frac{x}{4}\right)^2$ $\checkmark x^2 = 128$

✓ beide antwoorde

✓✓ vervang korrek in meetkundige gemiddeld formule i.e. $\pm \sqrt{4 \times 32}$ ✓ beide antwoorde

(3)

(3)

WISKUI	ide/ v i	NSS -	DBE/November 2011
2.2	$P = \sum_{k=0}^{13} 3^{k-5}$		$\checkmark a = 3^{-4}$
	k=1	Let wel: Slegs korrekte antwoord:	
	$=3^{1-5}+3^{2-5}+3^{3-5}++3^{13-5}$	1/4 punte.	
	$=3^{-4}+3^{-3}+3^{-2}++3^{8}$		✓ $r = 3$ ✓ vervang in korrekte
	$=\frac{3^{-4}\left(3^{13}-1\right)}{3}$		formule
	3-1	_ 797161	
	$= 9841,49 \text{OF} 9841 \frac{40}{81} \text{C}$	9F	✓ antwoord
			(4)
	OF	Let wel: Indien kandidaat afrond	
	$P = \sum_{k=0}^{13} 3^{k-5}$	en die antwoord as 9841,46(i.e. korrek tot een desimale plek) gee:	
	$P = \sum_{k=1}^{\infty} 3^{k}$	GEEN penalisering vir afronding.	
	$=3^{1-5}+3^{2-5}+3^{3-5}++3^{13-5}$		✓✓ korrekte uitbreiding
	$=3^{-4}+3^{-3}+3^{-2}++3^{8}$		
	$=\frac{1}{81}+\frac{1}{27}+\frac{1}{9}+\dots6561$		✓ 13 terme in die reeks
•	01 27	707161	✓ antwoord
	$= 9841,49 \text{OR} 9841 \frac{40}{81} \text{OR} S_n = a + [a+d] + [a+2d] + \dots + \frac{1}{2} = \frac{1}{2} $	$OR = \frac{797101}{81}$	(4)
2.3	$S_n = a + [a+d] + [a+2d] + \dots + [a+2d]$	$-\left[a+\left(n-2\right)d\right]+\left[a+\left(n-1\right)d\right]$	\checkmark skryf S_n uit
	$S_n = [a + (n-1)d] + [a + (n-2)]$		\checkmark 'omgedraaide' S_n
		1)d]++[2a+(n-1)d]+[2a+(n-1)d]	artski ji van 25/
	= n[2a + (n-1)d]		✓ groepeer om te kry $2S_n = n[2a + (n-1)d]$
	$S_n = \frac{n}{2} [2a + (n-1)d]$		$2S_n = n[2\alpha + (n-1)\alpha] $ (4)
	2	-	
	OF	$\mathcal{L}(T) = \mathcal{L}(T) + T$	\checkmark skryf uit S_n
	$S_n = a + [a + d] + [a + 2d] +$ $S_n = T_n + (T_n - d) + + [a + a]$	- " " "	\checkmark 'omgedraaide' S_n
	$S_n = I_n + (I_n - a) + \dots + [a + b]$ $2S_n = a + T_n + a + T_n + a + T_n$	•	\checkmark uitskryf van $2S_n$
	= n[a + a + (n-1)d]		\checkmark groepeer om te kry
	= [2a + (n-1)d]	Let wel: Indien kandidaat 'n	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	wederkerende argument	(4)
	$\int_{n}^{\infty} \frac{1}{2} \left[2\alpha + (n-1)\alpha \right]$	gebruik(bv $S_{n+1} = S_n + T_n$: Maksimum 1/4 punte	
		(vir uitskryf van S_n)	
	Nada IC - U.L.	10-11	
	inote: If a candidate uses a spec	ific linear sequence, then NO marks.	[13]

VRAAG 3

3.1	Let wel: Indien kandidaat $T_8 = 21$ $T_7 = 24$ as antwoord gee: Maksimum 1/2 punte	✓ 21 ✓ 24 (2)
3.2	$T_{2k} = 3.2^{k-1}$ en dus $T_{52} = 3.2^{26-1} = 100663296$	$\checkmark T_{2k} = 3.2^{k-1}$ $\checkmark T_{52}$
	$T_{2k-1} = 6k - 3$ en dus $T_{51} = 6(26) - 3 = 153$ Let wel: Indien kandidaat die 52 terme uitskryf en die korrekte antwoord kry: 5/5	$\checkmark T_{2k-1} = 6k - 3$ $\checkmark T_{51}$
	$T_{52} - T_{51} = 100663296 - 153$ = 100663143	✓ antwoord (5)
	Oorweeg ry P : 3; 6; 12 $P_n = 3.2^{n-1}$ Let wel: Indien kandidaat die 52 terme uitskryf en $T_{51} - T_{52}$ doen: Maksimum 4/5 punte	$\checkmark P_n = 3.2^{n-1}$ $\checkmark P_{26}$
	Oorweeg ry Q : 3; 9; 15 $Q_n = 6n - 3$ Let wel: Indien kandidaat die orde omruil i.e. doen $T_{51} - T_{52}$: Maksimum 4/5 marks $T_{52} - T_{51} = P_{26} - Q_{26}$	$\checkmark Q_n = 6n - 3$ $\checkmark Q_{26}$
	= 100663296 - 153 = 100663143	✓ antwoord (5
3.3	Vir alle $n \in \mathbb{N}$, $n = 2k$ of $n = 2k - 1$ vir $k \in \mathbb{N}$ As $n = 2k$: $T_n = T_{2k} = 3.2^{k-1}$ As $n = 2k - 1$: Indien kandidaat deling deur 3 slegs vir 'n gekose gedeelte van die ry bewys en nie deur van die algemene term gebruik te maak nie: $0/2$ punte $= 6k - 3$ $= 3(2k - 1)$ In beide gevalle is 3 'n faktor van T_n , en dus deelbaar deur 3.	✓ faktore 3.2^{k-1} ✓ faktore $3(2k-1)$
	OF $P_n = 3.2^{n-1}$ 'n Veelvoud van 3 $Q_n = 6n - 3$	✓ faktore 3.2 ^{k-1}
-	= 3(2n-1) Ook 'n veelvoud van 3	✓ faktore $3(2k-1)$

Omdat $T_n = Q_{2k-1}$ of $T_n = P_{2k}$ vir alle $n \in \mathbb{N}$, sal T_n altyd deelbaar wees deur 3

(2)

OF

Die onewe terme is onewe veelvoude van 3 en die ewe terme is 3 maal 'n mag van 2. Dit beteken al die terme is veelvoude van 3 en dus deelbaar deur 3.

✓ onewe veelvoude van 3

✓ 3 maal 'n mag van

(2) [9]

(2

VRAAG 4

4.1 Die tweede, derde, vierde en vyfde termyne is 1; -6; T_4 en -14

Eerste Verkille is: -7, +6; T_4 ; $-14 - T_4$ $T_4 + 6 + 7 = -14 - 2$ $T_4 - 6$ $T_4 = -11$ d = -11 + 6 + 7 = 2 or -14 + 22 - 6 = 2 Let wel: Slegs antwoord(i.e d = 2) met geen bewys van uitwerking: 3/5 **√** – 7

Let wel: Kandidaat gebruik probeer en verbeter metode en wys die metode: 5/5 punte

Let wel: Kandidaat gee slegs $T_4 = -11$ en d = 2: 5/5 punte

✓ antwoord (5)

OF

 T_4 T_5 -14

-7+2d

 $\begin{array}{l}
\checkmark - 7 \\
\checkmark - 7 + d \\
\checkmark - 7 + 2d
\end{array}$

 $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$ -15 = (-7 + 2d) + (-7 + d) + -7 -15 = -21 + 3d 6 = 3d d = 2

✓ uiteensetting van $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$

✓ antwoord

(5)

OF

$$4a + 2b + c = 1$$
$$9a + 3b + c = -6$$

 \checkmark 4*a* + 2*b* + *c* = 1 \checkmark 9*a* + 3*b* + *c* = −6

$$25a + 5b + c = -14$$

$$16a + 2b = -8$$

5a + b = -7

$$10a + 2b = -14$$

$$a = 1$$

$$d = 2a = 2$$

- $\checkmark 25a + 5b + c = -14$
- ✓ gelyktydige vergelyking
- ✓ antwoord

OF

a+b+c=1

c = 21

= 10

 $T_n = n^2 - 12n + 21$

 $T_1 = (1)^2 - 12(1) + 21$

4(1) + 2(-12) + c = 1

✓ $T_1 = 10$

(2)

✓ metode

- N	α	
- 1	•	-

$$T_4 + 13 = -8 + T_1$$
 $y + 13 = -8 + x$
 $-11 + 13 = -8 + T_1$ **OF** $-11 + 13 = -8 + x$
 $T_1 = 10$ $x = 10$

✓ metode

$$\checkmark T_1 = 10 \tag{2}$$

[7]

[19]

14

	NSS -	
	$m = \frac{f(0) - f(-2)}{0 - (-2)}$ $= \frac{1 - \frac{1}{5}}{0 + 2}$ $= \frac{2}{5}$	✓ formule ✓ $f(-2) = \frac{1}{5}$ ✓ substitusie ✓ antwoord
5.2	$x = -\frac{b}{2a} < 0 \text{ want } b < 0 \text{ en } a < 0$	✓ y-afsnit negatief ✓ draaipunt op x-as ✓ draaipunt links van die y-as ✓ maksimum draaipunt en kwadratiese vorm
		(4)

NSS - N

6.1	$0 = 2^{x} - 8$ $8 = 2^{x}$ $2^{3} = 2^{x}$ $x = 3$ $A(3; 0)$	$f(0) = 2^{0} - 8$ $= 1 - 8$ $= -7$ $B(0; -7)$	√ y = 0 ✓ antwoord vir A $ √ x = 0 $ ✓ antwoord vir B $ (4)$
6.2	y = -8 OF $y + 8 = 0$	Let wel: geen DA punte	✓ antwoord (1)
6.3	$h(x) = f(2x) + 8$ $= (2^{2x} - 8) + 8$ $= 4^{x} \text{ of } 2^{2x}$	Let wel: slegs antwoord: 2/2 punte	$\checkmark (2^{2x} - 8)$ $\checkmark \text{ antwoord van}$ $h(x) = 4^x \text{ of } 2^{2x}$ (2)
6.4	$x = 4^y$ OF $y = \log_4 x$ Let wel: slegs antwoord: 2/2 punte	$x = 2^{2y}$ $2y = \log_2 x$ $y = \frac{1}{2}\log_2 x \text{ or } y = \log_2 \sqrt{x}$ Let wel: kandidaat werk f^{-1} uit en kry $y = \log_2(x+8):$ 1/2 punte	✓ ruil van x en y ✓ antwoord in die vorm $y = \dots$ (2)
6.5	$p(x) = -\log_4 x$ OF OF $p(x) = \log_4 \frac{1}{x}$ OF OF	$p(x) = \log_{\frac{1}{4}} x$ $p(x) = -\frac{1}{2} \log_2 x$	✓antwoord (1)
	$y = -\log_2 \sqrt{x}$		

NSS - $\begin{array}{c|c}
 & \sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k) \\
 & = g(0) + g(1) + g(2) + g(3) - g(4) - g(5) \\
 & x = 3 \text{ is die simmetrie- as van } g:
\end{array}$

Deur simmetrie

$$g(2) = g(4)$$
 en $g(1) = g(5)$

Antwoord =
$$g(0) + g(3)$$

= 4,5 + 0
= 4,5

OF

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$

$$\sum_{k=0}^{3} g(k) = g(0) + g(1) + g(2) + g(3)$$

$$\sum_{k=4}^{5} g(k) = g(4) + g(5)$$

x = 3 is die simmetrie - as van g:

Deur simmetrie

$$g(4) = g(2)$$

$$g(5) = g(1)$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$
$$= g(0) + g(3)$$

$$=4.5+0$$

OF

$$g(x) = a(x-3)^2 + 0$$

$$4.5 = a(0-3)^2 + 0$$

$$4.5 = 9a$$

$$a = \frac{1}{2}$$

$$g(x) = \frac{1}{2} \left(x - 3 \right)^2$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$

$$\sum_{k=0}^{3} g(k) = g(0) + g(1) + g(2) + g(3)$$

$$= 4.5 + 2 + 0.5 + 0$$

$$\checkmark = g(0) + g(1) + g(2) + g(3) - g(4) - g(5)$$

$$\checkmark g(2) = g(4) \text{ en } g(1) = g(5)$$

$$\checkmark g(0) + g(3)$$

✓ uitbreiding

✓
$$g(2) = g(4)$$
 en $g(1) = g(5)$

$$\checkmark g(0) + g(3)$$

√ antwoord

$$\checkmark g(x) = \frac{1}{2}(x-3)^2$$

✓ uitbreiding

NSS-

(4)

$$\sum_{k=4}^{5} g(k) = g(4) + g(5)$$
$$= 0.5 + 2$$

$$= 2,5$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$
$$= 7 - 2.5$$

 $\sqrt{7-2.5}$

✓ antwoord

OF

$$g(x) = ax^2 + bx + c$$

$$g(k) = ak^2 + bk + c$$

$$g(0) = c$$

$$g(1) = a + b + c$$

$$g(2) = 4a + 2b + c$$

$$g(3) = 9a + 3b + c$$

$$\sum_{k=0}^{3} g(k) = 14a + 6b + 4c$$

$$g(4) = 16a + 4b + c$$

$$g(5) = 25a + 9b + c$$

$$\sum_{k=4}^{5} g(k) = 41a + 9b + 2c$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k) = -27a - 3b + 2c$$

$$\checkmark \checkmark - 27a - 3b + 2c$$

 $\checkmark g(x) = \frac{1}{2}(x-3)^2$

$$g(x) = a(x-3)^2 + 0$$

$$4.5 = a(0-3)^2 + 0$$

$$4,5 = 9a$$

$$a=\frac{1}{2}$$

$$g(x) = \frac{1}{2}(x-3)^2$$

$$= \frac{1}{2}x^2 - 3x + \frac{9}{2}$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k) = -27a - 3b + 2c$$

$$= -27\left(\frac{1}{2}\right) - 3\left(-3\right) + 2\left(\frac{9}{2}\right)$$
$$= 4.5$$

ver

[14]

(4)

VKAA	<i>G</i> /			
7.1	$A = P(1-i)^{n}$ $\frac{P}{2} = P(1-0.07)^{n}$ $\frac{1}{2} = 0.93^{n}$ $\log \frac{1}{2} = n \log 0.93$ OF $n = \frac{\log \frac{1}{2}}{\log 0.93}$ $= 9.55 \text{ jaar}$ $Let wel: Indien kandidaat$ $A \text{ en } P \text{ omruil en dus}$ $P = \frac{A}{2} \text{ gebruik:}$ $\text{maksimum } 2/4$	$A = P(1-i)^{n}$ $\frac{P}{2} = P(1-0.07)^{n}$ $\frac{1}{2} = 0.93^{n}$ $\log_{0.93} \frac{1}{2} = n$ $n = 9.55 \text{ years}$ Let wel: Indien kandidaat verkeerde formule gebruik: Maksimum 1/4 punte vir $A = \frac{P}{2}$	$ √A = \frac{P}{2} $ ✓ subs in korrekte formule $ √\log $ ✓ antwoord	(4)
7.2	Radesh: A = P(1+in) = 6 000(1+0,085×5) OF = 8 550 Bonus = 0,05×6 000 = 300 Ontvang = 8 550+300 = R8 850	$A = 6000 + 8,5\% \text{ van } 6000 \times 5$ $= 6000 + 510 \times 5$ $= 6000 + 2550$ $= 8550$	✓ 8 550 ✓ antwoord	
	Thandi: $A = P(1+i)^n$ $= 6000 \left(1 + \frac{0.08}{4}\right)^{20}$ $= R8915.68$ Thandi se belegging is groter.		$ √ i = \frac{0.08}{4} $ $ √ n = 20 $ $ √ antwoord $ $ √ keuse gemaak $	(6)

7.3 F_{y} = aanvanklike deposito met rente + annuïteit

$$=1000\left(1+\frac{0{,}15}{12}\right)^{18}+700\left(\frac{\left(1+\frac{0{,}15}{12}\right)^{18}-1}{\frac{0{,}15}{12}}\right)$$

= 1250,58 + 14032,33

= R15 282,91

OF

 F_{v} = aanvanklike deposito met rente + annuïteit

$$= 1000 \left(1 + \frac{0.15}{12}\right)^{18} + 700 \left(\frac{1 - \left(1 + \frac{0.15}{12}\right)^{-18}}{\frac{0.15}{12}}\right) \left(1 + \frac{0.15}{12}\right)^{18}$$

$$= 1250,58 + 11220,68 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$= 1250,58 + 14032,33$$

$$= 1250,58 + 14032,33$$

$$= 1250,58 + 14032,33$$

$$= 1250,58 + 14032,33$$

$$= 1250,58 + 14032,33$$

$$= 1250,58 + 14032,33$$

$$= 1250,58 + 14032,33$$

OF

= R15 282,91

$$F_{v} = 300 \left(1 + \frac{0,15}{12}\right)^{18} + 700 \left(\frac{\left(1 + \frac{0,15}{12}\right)^{19} - 1}{\frac{0,15}{12}}\right)$$

$$= 375,17 + 14907,74$$

$$= R15282,91$$

$$\checkmark i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125$$

$$\checkmark n = 18$$

$$\checkmark n = 18$$

$$\checkmark 1000 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$\checkmark 700 \left(\frac{\left(1 + \frac{0,15}{12}\right)^{18} - 1}{\frac{0,15}{12}} \right)$$

(6)

$$\checkmark i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125$$

$$\sqrt{n} = 18$$

$$\sqrt{n} = 18$$

$$\checkmark 1000 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$700 \left(\frac{1 - \left(1 + \frac{0.15}{12}\right)^{-18}}{\frac{0.15}{12}} \right) \left(1 + \frac{0.15}{12}\right)^{18}$$

(6)

$$\checkmark i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125$$

 $\sqrt{n} = 19$ (ten opsigte van 700) EN

✓ n = 18 (ten opsigte van 300)

$$\checkmark 300 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$\sqrt{700} \left(\frac{\left(1 + \frac{0,15}{12}\right)^{19} - 1}{\frac{0,15}{12}} \right)$$

✓ antwoord

(6)

[16]

8.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		✓ formule	
	$= \lim_{h \to 0} \frac{-4(x+h)^2 - (-4x^2)}{h}$	Let wel: Verkeerde notasie:	✓ substitusie	
	$= \lim_{h \to 0} \frac{-4(x^2 + 2xh + h^2) + 4x^2}{h}$	Geen lim geskryf: penaliseer 2 punte	✓ uitbreiding	
	$= \lim_{h \to 0} \frac{-4x^2 - 8xh - 4h^2 + 4x^2}{h}$ $= \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$	lim voor gelyk aan teken: penaliseer 1 punt		
	$=\lim_{h\to 0}\frac{h(-8x-4h)}{h}$		$\sqrt{-8x-4h}$	
	$= \lim_{h \to 0} \frac{1}{h}$ $= \lim_{h \to 0} (-8x - 4h)$ $= -8x$	Let wel: As kandidaat slegs -8x as antwoord gee 0/5 punte	✓ antwoord	(5)
	OF	Let wel:		
	$f(x) = -4x^{2}$ $f(x+h) = -4(x+h)^{2}$	As kandidaat die hakkies uitlaat in $\lim_{h \to 0} (-8x - 4h)$	✓ substitusie	
	$= -4x^{2} - 8xh - 4h^{2}$ $f(x+h) - f(x) = -8xh - 4h^{2}$	Geen penalisering	✓ uitbreiding	
	$f'(x) = \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$ $h(-8x - 4h)$		✓ formule	
	$= \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$ $= \lim_{h \to 0} (-8x - 4h)$		$\sqrt{-8x-4h}$	
	$= \lim_{h \to 0} (-8x - 4h)$ $= -8x$		✓ antwoord	
				(5)
8.2.1	$y = \frac{3}{2x} - \frac{x^2}{2}$ 3 -1 1 2	Let wel: Verkeerde notasie in		
	$= \frac{3}{2}x^{-1} - \frac{1}{2}x^2$	8.2.1 en/of 8.2.2: Penaliseer 1 punt	$\sqrt{\frac{3}{2}}x^{-1}$	
	$\frac{dy}{dx} = -\frac{3}{2}x^{-2} - x$ $= -\frac{3}{2x^2} - x$		$\sqrt{\frac{3}{2}}x^{-1}$ $\sqrt{-\frac{3}{2}}x^{-2}$ $\sqrt{-x}$	
	$=-\frac{1}{2x^2}-x$		$\sqrt{-x}$	(3)

		1/22
8.2.2	$f(x) = (7x+1)^2$	

$$= 49x^{2} + 14x + 1$$

$$f'(x) = 98x + 14$$

$$f'(1) = 98(1) + 14$$

$$= 112$$

Let wel:

Verkeerde notasie in 8.2.1 en/of 8.2.2: Penaliseer 1 punt ✓ vermenigvuldiging

✓ 98*x*

√14

✓ antwoord

(4)

OF

$$f(x) = (7x+1)^2$$

 $f'(x) = 2(7x+1)(7)$ Deur die kettingreël
 $f'(x) = 98x+14$
 $f'(1) = 98(1)+14$
 $= 112$

✓✓ kettingreël

✓ antwoord

(4) [12]

VRAAG9

9.1 $f(x) = -2x^3 + ax^2 + bx + c$ $f'(x) = -6x^2 + 2ax + b$ Let wel: $\checkmark f'(x) = -6x^2 + 2ax + b$ =-6(x-5)(x-2)Indien kandidaat die waardes $\sqrt{-6(x-5)(x-2)}$ $=-6(x^2-7x+10)$ van a, b en c vervang en dan toets (deur vervanging) dat $=-6x^2+42x-60$ T(2,-9) en S(5,18) op die $\sqrt{2}a = 42$ kurwe lệ: Maks 2/7 punte ✓ b = -602a = 42a = 21b = -60 $f(2) = -2(2)^3 + 21(2)^2 - 60(2) + c$ $f(5) = -2(5)^3 + 21(5)^2 - 60(5) + c$ OF \checkmark subs (5; 18) of (2; -9) 18 = -25 + c-9 = -52 + cc = 43c = 43 $\sqrt{c} = 43$

22

waardes van a, b en c in die funksie vervang en die volgende kry $f(x) = -2x^3 - 21x^2 - 60x + 43$ en deur substitusie wys dat T(2; -9) and S(5;18) op die grafiek lê **en** dan die afgeleide uitwerk en $f'(x) = -6x^2 - 42x - 60$ kry en deur vervanging in die afgeleide wys dat die draaipunte by x = 2 en x = 5 is (neem aan wat hy moet bewys en bewys wat gegee is):

Maksimum 4/7 punte soos aangedui:

a = 21; b = -60; c = 43

✓ x = 2 van f'(x) = 0 OF vervang x = 2 in die afgeleide en 0 kry ✓ x = 5 van f'(x) = 0 OF vervang x = 5 in die afgeleide en 0 kry ✓ vervang x = 2 in f en kry -9✓ vervang x = 5 in f en kry -9

OF

 $f'(x) = -6x^{2} + 2ax + b$ $f'(2) = -6(2)^{2} + 2a(2) + b$ 0 = -24 + 4a + b b = 24 - 4a $f'(5) = -6(5)^{2} + 2a(5) + b$ 0 = -150 + 10a + b 0 = -150 + 10a + (24 - 4a) 0 = -126 + 6a 6a = 126 a = 21 b = -60

Let wel: Indien afgeleide gelyk aan 0 nie aangedui, penaliseer slegs een keer

$$\checkmark f'(x) = -6x^2 + 2ax + b$$

$$\checkmark f'(2) = 0$$

$$\checkmark f'(5) = 0$$

$$\checkmark 6a = 126$$

$$\checkmark b = -60$$

(7)

	NSS -	
	$f(5) = -2(5)^3 + 21(5)^2 - 60(5) + c f(2) = -2(2)^3 + 21(2)^2 - 60(2) + c$	✓ subs (5; 18) of (2; -9)
	18 = -25 + c OF $-9 = -52 + c$ $c = 43$	✓ c = 43
		(7)
	a = 21; $b = -60$; $c = 43$	
in the second	OR	
	f(2) = -9 i.e. $-16 + 4a + 2b + c = -9$	$\sqrt{-16 + 4a + 2b + c} = -9$
	4a+2b+c=7 f(5) = 18 i.e. $-250+25a+5b+c=18$	en $-250 + 25a + 5b + c = 18$
	25a + 5b + c = 268	
	21a + 3b = 261	
		$\int f'(x) = -6x^2 + 2ax + b$
	$f'(x) = -6x^2 + 2ax + b$ en $f'(2) = 0$ OF $f'(5) = 0$ 4a + b = 24 $10a + b = 150$	$\checkmark f'(2) = 0 \text{ of } f'(5) = 0$
	12a + 3b = 72 30a + 3b = 450	
	9a = 189 $9a = 189$	$\checkmark 9a = 189$
	$a = \frac{189}{9}$ OF $a = \frac{189}{9}$	
	$a = 21 \qquad \qquad a = 21$	
	12(21) + 3b = 72	
	3b = -180	
	b = -60	✓ b = -60
	4a + 2b + c = 7 $25a + 5b + c = 268$	
	4a + 2b + c = 7 25a + 5b + c = 268 4(21) + 2(-60) + c = 7 OF 25(21) + 5(-60) + c = 268	✓ subs $(5; 18)$ of $(2; -9)$
	c = 43 $c = 43$	
		$\checkmark c = 43 \tag{7}$
9.2	$f'(x) = -6x^2 + 42x - 60$	(1) ✓
	$m_{raaklyn} = -6(1)^2 + 42(1) - 60$	$f'(x) = -6x^2 + 42x - 60$
	=-24	\checkmark subs $f'(1)$
	$f(1) = -2(1)^3 + 21(1)^2 - 60(1) + 43$	$\checkmark m_{raaklyn} = -24$ $\checkmark f(1) = 2$
	= 2 Raakpunt is (1; 2)	<i>J</i> (1) ~
	y = -24x + c $y = -24(x + 1)$	$\checkmark y - 2 = -24(x - 1)$
	y-2 = -24(x-1) y = -24x + 26 OF $2 = -24(1) + c c = 26$	OF $y = -24x + 26$
	y = -24x + 20 $y = -24x + 26$	(5)
L	<u> </u>	(6)

 $f'(x) = -6x^2 + 42x - 60$ 9.3

f''(x) = -12x + 42

0 = -12x + 42

 $x = \frac{7}{2}$

OF

 $x = \frac{2+5}{2}$

 $x = \frac{7}{2}$

OF

 $x = \frac{-21}{3(-2)}$

f''(x) = -12x + 42

 $\checkmark x = \frac{7}{2}$

 $\checkmark x = \frac{2+5}{2}$

 $\checkmark x = \frac{7}{2}$

(2)

 $\checkmark x = \frac{-21}{3(-2)}$

 $\checkmark x = \frac{7}{2}$

[14]

(2)

VRAAG 10

x-waarde van die draaipunt: 10.1

 $x = \frac{-4+1}{2}$

 $\therefore x > -\frac{3}{2} \quad \mathbf{OF} \quad x \in \left(-\frac{3}{2}; \infty\right)$

 $\begin{cases} \checkmark x > -\frac{3}{2} \text{ OF} \\ x \in \left(-\frac{3}{2}; \infty\right) \end{cases}$

f het lokale minimum by x = -4 omdat: 10.2

(1; y)

 $\checkmark x = -4$ √√ graph

(3)

(1)

OF	$\checkmark x = -4$
f'(x) < 0 vir $x < -4$, so f is dalend vir $x < -4$.	$\checkmark f'(x) < 0 \text{ vir}$
f'(x) > 0 vir -4 < x < 1, so f is stygend vir -4 < x < 1.	x < -4
	$\checkmark f'(x) > 0 \text{ vir}$
	-4 < x < 1
i.e. $\therefore f$ het 'n lokale minimum by $x = -4$	(3)
_4	
	$\checkmark x = -4$
OF	✓ gradient negatief vir
	x < -4
Gradiënt van f verander van negatief na positief by $x = -4$	✓ gradient positief
	vir - 4 < x < 1
OF	(3)
f'(-4) = 0	
f''(-4) > 0 grafiek is konkaaf na bo by $x = -4$, so f het 'n lokale	$\checkmark f'(-4) = 0$
minimum by $x = -4$.	$\checkmark f''(-4) > 0$
111111111111111111111111111111111111111	$\checkmark x = -4$
	(3)
	[4]

11.1	V(0) = 100 - 4(0)		
	= 100 liter		✓ antwoord
11.2	Tempo in – tempo uit		$\begin{array}{ c c c c }\hline & & & & \\ \hline & \checkmark & 5 - k & & \\ \hline \end{array}$
11.4	$= 5 - k l / \min$		V 3 - K
			√ - 4
	$V'(t) = -4 l/\min$		✓ eenhede een keer aangedui
			(3)
11.3	5 - k = -4	Let wel: Slegs antwoord:	$\checkmark 5 - k = -4$
	$k = 9$ l/\min	2/2 punte	$\checkmark k = 9 \tag{2}$
			(2)
	OF		
	Volume vir enige gegewe $t = t$ – uitgaande totaal $100 + 5t - kt = 100 - 4t$	aanvanklike volume + inkomende totaal	
	5t - kt = -4t		$\sqrt{100+5t-kt} = 100-4t$
	9t - kt = 0		
	t(9-k)=0		
	As $t = 1$ minuut vanaf die beg	in, $t = 1, 9 - k = 0$,	
	so $k = 9$,	$\checkmark k = 9 \tag{2}$
	OF		(2)
	Aangesien $\frac{dr}{dt} = -4$, vermind	ler die volume van die water in die tenk	$\checkmark \checkmark k = 9$
	met 4 liters per minuut. Dus n	noet k , 4 meer wees as 5: $k = 9$.	
	1	,	(2) [6]

VRAAG 12

Let wel: Indien die verkeerde ongelykheid $50x+25y \le 500$ gebruik word, het die kandidaat verkeerdelik gesê dat daar meer leerlinge is as beskikbare sitplekke. 'n Maksimum van 10 punte vir die hele vraag kan dan toegeken word:

26

27

VRAAG 12.2

Kopiereg voorbehou