CHECK FOR NULL AND DUPLICATE

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36285 entries, 0 to 36284
Data columns (total 17 columns):
                             Non-Null Count Dtype
 # Column
    Booking_ID
                             36285 non-null object
1 number of adults
                             36285 non-null int64
 2 number of children
                             36285 non-null int64
3 number of weekend nights 36285 non-null int64
    number of week nights
                             36285 non-null int64
    type of meal
                             36285 non-null object
    car parking space
                             36285 non-null int64
    room type
                             36285 non-null object
    lead time
                             36285 non-null int64
    market segment type
                             36285 non-null object
 10 repeated
                             36285 non-null int64
 11 P-C
                             36285 non-null int64
 12 P-not-C
                             36285 non-null int64
13 average price
                             36285 non-null float64
 14 special requests
                             36285 non-null int64
 15 date of reservation
                             36285 non-null object
 16 booking status
                             36285 non-null object
dtypes: float64(1), int64(10), object(6)
memory usage: 4.7+ MB
```

```
data.duplicated().value_counts()

✓ 0.0s

False 36285
Name: count, dtype: int64
```

 As we see ther is no duplicates or null values

EXTRACTING FEATURES

```
def month_arr(date):
      parts = date.split('/')
      if len(parts) == 1:
          parts = date.split('-')
          mon = parts[1]
          day = parts[2]
      else:
          mon = parts[0]
          day = parts[1]
      return mon,day
✓ 0.0s
  def more_than_year(data):
      year = 0
      while data >12 :
          data = data-12
          year += 1
      return data
✓ 0.0s
```

 extractied more relvent feauter date of check in

FEATUER ENCODING

```
data = pd.get_dummies(data,columns=["type of meal" , "room type","market segment type" ],dtype='int8')
  data['booking status'] = data['booking status'] != 'Canceled'
  data['booking status'] = data['booking status'].astype('int8')

✓ 0.0s
```

 Used one-hot encoding for categorical features that have more than two values and dosnt have proper order.

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier
import pandas as pd

model = RandomForestClassifier()
model.fit(X_encoded, y_encoded)

importances = model.feature_importances_
features = X_encoded.columns

feature_importance = pd.DataFrame({
    'Feature': features,
    'Importance': importances
})

feature_importance.sort_values(by='Importance', ascending=False, inplace=True)

print(feature_importance)
```

	Feature	Importance
5	lead time	0.368756
7	average price	0.196177
8	special requests	0.105632
9	reservation_month	0.097990
3	number of week nights	0.060241
2	number of weekend nights	0.041776
22	market segment type_Online	0.026060
0	number of adults	0.024146
21	market segment type_Offline	0.016221
10	type of meal_Meal Plan 2	0.011862
12	type of meal_Not Selected	0.009650
15	room type_Room_Type 4	0.009454
1	number of children	0.007527
4	car parking space	0.007008
20	market segment type_Corporate	0.006358
6	repeated	0.003250
13	room type_Room_Type 2	0.002726
17	room type_Room_Type 6	0.001971
16	room type_Room_Type 5	0.001819
19	market segment type_Complementary	0.000797
18	room type_Room_Type 7	0.000483
11	type of meal_Meal Plan 3	0.000054
14	room type_Room_Type 3	0.000043

Use PCA to reduced dimensions to only 9 components.

```
Final shape after RF + PCA: (28998, 9)
```

Checking multicollinearity

VIF > 10 VERY STRONG MULTICOLLINEARITY
5 < VIF <10 STRONG MULTICOLLINEARITY
VIF <5 ACCEPTABLE RANGE

fisher exact test

```
P-value of number of adults: 0.0001
P-value of number of children: 0.0001
P-value of number of weekend nights: 0.0001
P-value of number of week nights: 0.0001
P-value of car parking space: 8.418005015790401e-47
P-value of lead time: 0.9784
P-value of repeated: 2.259552576228504e-106
P-value of P-C: 0.0001
P-value of P-not-C: 0.0001
P-value of average price: 1.0
P-value of special requests: 0.0001
P-value of month of arrive: 0.0001
P-value of type of meal_Meal Plan 1: 8.345191798624644e-10
P-value of type of meal_Meal Plan 2: 2.3727305250857149e-07
P-value of type of meal_Meal Plan 3: 1.0
P-value of type of meal_Not Selected: 0.0008080292683968222
P-value of room type_Room_Type 1: 2.988800770203236e-11
P-value of room type_Room_Type 2: 0.7075912466584158 (
P-value of room type_Room_Type 3: 0.6740157416309502
P-value of room type_Room_Type 4: 3.0649223041411686e-09
P-value of room type_Room_Type 5: 0.1551454422220999
P-value of room type_Room_Type 6: 4.369664283097506e-07
P-value of room type_Room_Type 7: 0.013887477752716135
P-value of market segment type_Aviation: 0.8303752998246963
P-value of market segment type_Complementary: 2.318068886348816e-51
P-value of market segment type Corporate: 2.4616513788841826e-84
P-value of market segment type_Offline: 2.2457680048682087e-38
P-value of market segment type_Online: 1.0895799939563126e-126
```

P-VALUE < 0.05 ACCEPTABLE

CHI2 > 5
THIS TEST WORK FOR CATEGRIAL FEATUERS

chi2 test

	features	chi2	
0	number of adults	27.758052	
1	number of children	49.135815	
2	number of weekend nights	161.481095	
3	number of week nights	243.848099	
4	car parking space	166.839467	
5	lead time	324588.422812	
6	repeated	311.366825	
7	P-C	190.817668	
8	P-not-C	1983.948274	
9	average price	6412.783619	
10	special requests	1655.427638	
11	month of arrive	718.134650	
12	type of meal_Meal Plan 1	8.545280	
13	type of meal_Meal Plan 2	25.310415	
14	type of meal_Meal Plan 3	0.060135	
15	type of meal_Not Selected	9.660096	
16	room type_Room_Type 1	10.107232	
17	room type_Room_Type 2	0.134044	
18	room type_Room_Type 3	0.552157	
19	room type_Room_Type 4	29.536233	
20	room type_Room_Type 5	2.212172	
21	room type_Room_Type 6	26.333171	
22	room type_Room_Type 7	6.214812	
23	market segment type_Aviation	0.073938	
24	market segment type_Complementary	140.564017	
25	market segment type_Corporate	299.963153	
26	market segment type_Offline	118.944465	
27	market segment type_Online	193.242402	

```
data.drop(["Booking_ID","date of reservation","day","month"],axis=1,inplace=True)

$\square 0.0s$
```

```
X = data.drop(["booking status", 'market segment type_Offline', 'type of meal_Not Selected'
,"type of meal_Meal Plan 3", 'room type_Room_Type 2', 'room type_Room_Type 3'
, 'room type_Room_Type 5', 'market segment type_Aviation'], axis=1)
```

- Removed unnecessary features after checking their relevance.
- Checked VIF after removing collinear features

chi2 for contnius feature after binning to test it

	20	lead_time_bin	3075.569879
ı	21	avg_bin	572.168737

```
Feature VIF
                    number of adults 1.32
                  number of children 1.77
            number of weekend nights 1.07
               number of week nights 1.10
                   car parking space 1.03
                           lead time 1.19
                            repeated 1.76
                                P-C 1.35
                            P-not-C 1.61
9
                      average price 1.80
10
                    special requests 1.23
11
                     month of arrive 1.06
12
            type of meal Meal Plan 1 1.70
13
            type of meal Meal Plan 2 1.74
14
               room type Room Type 1 7.15
15
               room type_Room_Type 4 6.81
16
               room type_Room_Type 6 2.26
17
               room type_Room_Type 7 1.16
18 market segment type Complementary 1.32
       market segment type Corporate 1.52
          market segment type Online 1.76
```

OUTLIERS, SPLITE AND SCALING

```
data = remove_outliers_iqr(data, 'lead time')
data = remove_outliers_zscore(data, 'average price ')
```

 Used IQR for outlier detection in lead time, and Z-score for average price because it follows a normal distribution

```
X_train,x_test,y_train,y_test = train_test_split(X,Y ,train_size=0.75, test_size=0.25 ,random_state=42)

    0.0s
```

splite data to train and test

 Applied standard scaling to normalize the data and improve model performance.

MODELING AND ACCURACY CALCULATION

First use SVC Modeling.

	precision	recall	f1-score	support
0	0.75	0.61	0.67	2369
1	0.83	0.90	0.86	4881
accuracy			0.80	7250
macro avg	0.79	0.75	0.77	7250
weighted avg	0.80	0.80	0.80	7250

MODELING AND ACCURACY CALCULATION

xgboost Model.

	precision	recall	f1-score	support
Ø	0.80	0.73	0.76	2369
1	0.87	0.91	0.89	4881
accuracy			0.85	7250
macro avg	0.84	0.82	0.83	7250
weighted avg	0.85	0.85	0.85	7250

MODELING AND ACCURACY CALCULATION

RandomForestCassifier

	precision	recall	f1-score	support
0	0.79	0.75	0.77	2369
1	0.88	0.90	0.89	4881
accuracy macro avg weighted avg	0.84 0.85	0.83 0.85	0.85 0.83 0.85	7250 7250 7250

