IT575 Computational Shape Modeling Assignment 2 - Differential Geometry of Surfaces

- 1. Let $\sigma:W\subset\mathbb{R}^2\to U\subset\mathbb{R}^3$ be a surface patch for any given regular embedded surface. Let $p=\sigma(u,v)\in S$ be a point in S. The patch σ can be reparameterized using the map $\Phi(u,v)=(\tilde{u},\tilde{v})=(f(u,v),g(u,v))$, where $\Phi:W\to \tilde{W}$ is a diffeomorphism, such that $\tilde{\sigma}(\tilde{u},\tilde{v})=\sigma(u,v)$. Figure out the relation between the first fundamental form at p in terms of σ and $\tilde{\sigma}$.
- 2. Let $\sigma(u,v)=(u,v,f(u,v))$ be a parameterization of a surface for $(u,v)\in\mathbb{R}^2$, where f is a degree n polynomial in the two variables u and v:

$$f(u,v) = a_0 + a_1 u + a_2 v + a_3 u^2 + a_4 u v + a_5 v^2 + \dots + a_k u^n + a_{k+1} u^{n-1} v + \dots + a_m v^n.$$
(1)

The function f can be represented by the coefficient vector $a = (a_0, a_1, \ldots, a_m)^1$. Write a MATLAB function mypolysurface.m that takes an input vector a (of any length), a vector (u_0, v_0) specifying parameter values, and

- (a) plots the surface (u, v, f(u, v)) for $u \in [u_0 1, u_0 + 1], v \in [v_0 1, v_0 + 1]$ as an appropriately sampled mesh (use mesh.m or surf.m),
- (b) plots the basis of the tangent space² σ_u , σ_v at the point $\sigma(u_0, v_0)$, and the unit normal, (use quiver3),
- (c) plots the principal curvature directions scaled by the principal curvatures at $\sigma(u_0, v_0)$,
- (d) and outputs the Gaussian and Mean curvature at $\sigma(u_0, v_0)$ on the screen.
- 3. Given a surface patch $\sigma(u,v)=(u,v,f(u,v))$ where $f:\mathbb{R}^2\to\mathbb{R}$ is an arbitrary smooth function, compute the
 - (a) First fundamental form and unit normal to the surface at a point $\sigma(u, v)$,
 - (b) The Second fundamental form and principal curvatures κ_1 , κ_2 at a point $\sigma(u, v)$.
 - (c) Plot examples of surfaces (using Question 2) with points where:

i.
$$\kappa_1 > 0, \kappa_2 > 0$$
.

ii.
$$\kappa_1 < 0, \kappa_2 > 0$$
.

iii.
$$\kappa_1 > 0, \kappa_2 = 0$$
.

iv. $\kappa_1 = \kappa_2 = 0$, but the surface is not a flat plane.

¹You can assume that the coefficient vector entries are contiguous and in the same order as given in Equation (1), with all other entries being zero.

²given a polynomial coefficient vector, it is not too difficult to analytically write its derivatives in terms of the coefficient vector; the derivatives of a polynomial will also be polynomials.

Submission Instructions

1. Write your answers as a LATeX report; submit the generated pdf-YourID_report_asg2.pdf) along with mypolysurface.m as a single zip file-YourID_asg2.zip on the course webpage, no later than Saturday 4^{th} February 2017, 8:00 am.