Automatické řízení Semestrální práce

Ondřej Vaníček

Václav Helma

25. ledna 2016

Automatické řízení - zadání referátu

I. Model neurčitosti

- 1. Při konstantním přítoku $Q_{10} = 1.5 \cdot 10^{-4} \text{m}^3 \cdot \text{s}^{-1}$ vypočtěte potřebné nastavení přepouštěcího ventilu S_p a výtokového ventilu S_2 tak, aby výšky hladin v nádobách při ustáleném stavu byly $H_{10} = 0.6$ m a $H_{20} = 0.4$ m (tzv. pracovní bod). Hodnoty známých parametrů: $S = 25 \cdot 10^{-4} \text{m}^2$ (plocha dna nádob), $c_p = c_2 = 0.6$.
- 2. Určete linearizovaný stavový model v daném pracovním bodě a v pracovním bodě, který by odpovídal 20% zvýšení přítoku Q_{10} .
 - (A) Nastavení přepouštěcích ventilů S_p a S_2 zůstane stejné, se zvyšujícím se přítokem Q_1 se mění výšky hladin H_1 a H_2 .
 - (B) Spolu se zvyšujícím se přítokem Q_1 se mění nastavení ventilů S_p a S_2 tak, aby výška hladin zůstala konstantní, tedy $H_1(t) = H_{10}$, $H_2(t) = H_{20}$.
- 3. Určete přenos systému $Q_1(t) \rightarrow H_2(t)$ v závislosti na výšce hladiny H_1 a H_2 (případ 2A) či nastavení ventilu S_p, S_2 (případ 2B). Znázorněte pro oba případy v komplexní rovině neurčitost přenosu za předpokladu, že skutečný pracovní bod je libovolně mezi původním pracovním bodem a pracovním bodem při 20 % zvýšeném přítoku.
 - (a) Určete numericky skutečnou neurčitost danou intervalem pro výšky hladin H_1 , H_2 (resp. S_p , S_2) a přítok Q_1 .
 - (b) Definujte model neurčitosti pomocí vhodně zvoleného modelu perturbací, nominálního modelu P_0 a váhové funkce W(s) tak, aby velikost neurčitosti byla minimální a přesto pokrývala skutečnou neurčitost získanou v bodě (b).

Pro zobrazení neurčitosti použijte 10 frekvencí $\omega_1, \ldots, \omega_{10}$, které pokryjí fázové zpoždění $(0,\pi)$ fázové frekvenční charakteristiky procesu.

4. Porovnejte velikosti obou neurčitostí (2A a 2B).

II. Návrh regulátoru

Dále předpokládejte, že přítok $Q_1(t)$ je realizován vodním čerpadlem, které je poháněno stejnosměrným motorem. Chování čerpadla budeme pro jednoduchost aproximovat systémem prvního řádu s časovou konstantou T=0.5s a statickým zesílením $K_s=Q_{10}$. Dále uvažujme PI regulátor, který řídí napětí na kotvě motoru čerpadla s cílem řídit výšku hladiny H_2 . Rovněž předpokládejme, že všechny externí signály regulační smyčky jsou rozumně malé, takže systém není příliš vychýlen ze svého pracovního bodu a může být považován za lineární.

- 1. Navrhněte parametry PI regulátoru s přenosem $C(s) = K(1 + \frac{1}{T_i s})$ tak, aby byly splňeny následující návrhové požadavky pro všechny systémy z modelu neurčitosti získaného v bodě 3(b) pro 2A (mění se výška hladin), tedy pro libovolný pracovní bod, který se nachází mezi původním pracovním bodem a pracovním bodem při zvýšeném přítoku.
 - (a) Vnitřní stabilita uzavřené smyčky ověřte analyticky i graficky (Nyquistovo kritérium).
 - (b) Robustnost ve stabilitě maximální hodnota amplitudy citlivostní funkce $S(j\omega)$ je $M_S < 2$.
 - (c) Předpokládejte, že díky dalším nepřesnostem, šumům a nelinearitám je dostupná šířka pásma omezená na $\Omega_a=10~[\mathrm{rad/s}]$. Útlum komplementární citlivostní funkce $T(\mathrm{j}\omega)$ na frekvenci Ω_a musí být alespoň -10 dB.
 - (d) Zajistěte, aby energie libovolného šumu měření n(t) nebyla zesílena více než 1.5 krát.
- 2. Předpokládejte, že měření, tedy senzor hladiny H_2 , je zatíženo harmonickým šumem n(t) s frekvencí 50Hz a výstup soustavy omezenou harmonickou poruchou d(t) s frekvencí 0.1Hz. Ověřte, zda žádný z těchto signálů není na výstupu systému (tedy $H_2(t)$) smyčkou s navrženým PI regulátorem zesílen.
- 3. Předpokládejte, že je systém v rovnovážném stavu a e(t) = 0. Na vstup řízené soustavy začne působit porucha d_i s omezenou energií $||d_i||_2 < 1$. Určet k jakému maximálnímu kolísání hladiny H_2 od požadovaného stavu může dojít.
- 4. Určete signály n(t) a d(t), kde $||n(t)||_{\infty} < 1$, $||d(t)||_{\infty} < 1$, které jsou zpětnovazební smyčkou nejvíce zesíleny ve smyslu
 - (a) maximální hodnoty signálu,
 - (b) energie signálu.

Určete hodnoty těchto zesílení.

Poznámka: K řešení využijte libovolné prostředky Matlabu/Simulinku, Robust Control Toolbox, Symbolic Toolbox, webový applet "PID Control Laboratory".

Vypracování

I. Model neurčitosti

1. K výpočtu potřebného nastavení ventilů S_p a S_2 je nejprve nutné sestavit matematický model dané soustavy.

Označíme-li V_1 objem kapaliny v 1. nádobce a V_2 objem kapaliny v 2. nádobce, Q_1 přítok do 1. nádobky, Q_p přítok do 2. nádobky a Q_2 odtok z 2. nádobky, potom můžeme napsat

$$\frac{dV_1}{dt} = Q_1(t) - Q_p(t),$$

$$\frac{dV_2}{dt} = Q_p(t) - Q_2(t),$$

kde V_1 , resp. V_2 lze zapsat jako

$$V_1 = s \cdot H_1(t),$$

$$V_2 = s \cdot H_2(t)$$

a Q_p resp. Q_2 jako

$$Q_p = S_p \cdot C_p \cdot v_p(t),$$

$$Q_2 = c_2 \cdot S_2 \cdot v_2(t).$$

Z Bernouliho rovnice lze určit rychlosti v_p a v_2 , tedy rychlost přítoku do 2. nádobky a rychlost výtoku z 2. nádobky

$$v_p(t) = \sqrt{2 \cdot g \cdot (H_1(t) - H_2(t))},$$

$$v_2(t) = \sqrt{2 \cdot g \cdot H_2(t)}.$$

Z těchto vztahů získáme

$$\frac{dH_1(t)}{dt} = \frac{Q_1(t)}{S} - \frac{C_p \cdot S_p}{S} \cdot \sqrt{2g \cdot (H_1(t) - H_2(t))},\tag{1}$$

$$\frac{dH_2(t)}{dt} = \frac{C_p \cdot S_p}{S} \cdot \sqrt{2g \cdot (H_1(t) - H_2(t))} - \frac{C_2 \cdot S_2}{S} \cdot \sqrt{2g \cdot H_2(t)}.$$
 (2)

Z těchto rovnic nyní vypočítáme potřebné nastavení ventilů, aby se soustava dostala do požadovaného ustáleného stavu. Definice ustáleného stavu praví, že ustává veškerý pohyb v dynamice systému (při konstantním vstupu Q_{1konst}), což znamená, že derivace jsou rovny nule. Můžeme tedy počítat

$$0 = \frac{Q_1(t)}{S} - \frac{C_p \cdot S_p}{S} \cdot \sqrt{2g \cdot (H_1(t) - H_2(t))},$$

$$0 = \frac{C_p \cdot S_p}{S} \cdot \sqrt{2g \cdot (H_1(t) - H_2(t))} - \frac{C_2 \cdot S_2}{S} \cdot \sqrt{2g \cdot H_2(t)},$$

z čehož vyjádříme

$$S_p = \frac{Q_{1konst}}{C_p \cdot \sqrt{2g(H_1 - H_2)}},\tag{3}$$

$$S_2 = \frac{C_p \cdot S_p \sqrt{H_1 - H_2}}{C_2 \sqrt{H_2}} \tag{4}$$

a konečně po dosazení všech hodnot $(Q_{1konst}=1,5\cdot 10^{-4}m^3\cdot s^{-1},h_1=0,6m,h_2=0,4m,S=25\cdot 10^{-4}m^2,C_p=C_2=0,6)$ získáme

$$S_p = 1,2620 \cdot 10^{-4},\tag{5}$$

$$S_2 = 8,9240 \cdot 10^{-5}. (6)$$

2. Linearizovaný stavový model daného systému určíme pomocí Taylorova polynomu prvního stupně, tudíž matice dynamiky A a matice řízení B budou vypadat následovně

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial H_1} & \frac{\partial f_1}{\partial H_2} \\ \frac{\partial f_2}{\partial H_1} & \frac{\partial f_2}{\partial H_2} \end{bmatrix}, B = \begin{bmatrix} \frac{\partial f_1}{\partial Q_1} \\ \frac{\partial f_2}{\partial Q_1} \\ \frac{\partial f_2}{\partial Q_1} \end{bmatrix}.$$

Po provedení jednotlivých parciálních derivací získáme následující podobu matic A a B

$$A = \begin{bmatrix} -\frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} & \frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} \\ \frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} & -\frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} - \frac{C_2 \cdot S_2 \cdot g}{S \cdot \sqrt{(2gH_2)}} \end{bmatrix}, B = \begin{bmatrix} \frac{1}{S} \\ 0 \end{bmatrix}. \quad (7)$$

Matice vyčíslíme

$$A = \left[\begin{array}{cc} -0,1498 & 0,1498 \\ 0,1498 & -0,2248 \end{array} \right], B = \left[\begin{array}{c} 400 \\ 0 \end{array} \right].$$

Vzhledem k tomu, že jednotlivé stavy jsou zároveň výstupy a vstup přímo neovlivňuje výstup, platí

$$C = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], D = \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$$

Konečně stavový popis linearizovaného systému je

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0,1498 & 0,1498 \\ 0,1498 & -0,2248 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 400 \\ 0 \end{bmatrix} \cdot u(t),$$

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}.$$
(8)

Nyní přichází na řadu nový pracovní bod, který je dán navýšením přítoku Q_1 o 20%. Zvýšený přítok $Q=Q_{1konst}\cdot 1,2$. Z rovnic rovnovážného stavu (3) a (4) odvodíme následující vztahy

$$H_{2} = \frac{Q^{2}}{2g \cdot S_{2}^{2} \cdot c_{2}^{2}},$$

$$H_{1} = \frac{Q^{2}}{2g \cdot S_{p}^{2} \cdot c_{p}^{2}} + H_{2}.$$

Dosazením přítoku a konstant získáme nový pracovní bod [0, 864; 0, 576]. Dosazením pracovního bodu do maticové reprezentace (obdobně jako v předchozím případě) získáme nový stavový model pro zvýšený přítok

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0,1248 & 0,1248 \\ 0,1248 & -0,1873 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 400 \\ 0 \end{bmatrix} \cdot u(t),$$

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}. \tag{9}$$

Dále je zapotřebí určit linearizovaný stavový model v případě, že přítok je stejně jako v předchozím případě navýšen o 20%, avšak hladiny zůstávají stejné a mění se nastavení přepouštěcích ventilů. Dosadíme tedy do rovnic (3) a (4) a dostaneme

$$S_p = 1,5145 \cdot 10^{-4},$$

$$S_2 = 8.924 \cdot 10^{-5}.$$

Nyní dosadíme všechny známe parametry do (7) dostaneme linearizovaný model

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0,1800 & 0,1800 \\ 0,1800 & -0,2550 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 400 \\ 0 \end{bmatrix} \cdot u(t),$$
$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}. \tag{10}$$

3. Ze stavového popisu (8) lze určit přenos $Q_1(t) \to H_2(t)$

$$P(s) = \frac{60}{s^2 + 0.375s + 0.01125}.$$

Dále je nutné určit přenosy $Q_1(t) \to H_2(t)$ ze stavových popisů (9) a (10)

$$P_H = \frac{50}{s^2 + 0.3125s + 0.007813},$$
$$P_S = \frac{72}{s^2 + 0.45s + 0.0162}.$$

Neurčitost daná intervalem za předpokladu, že skutečný pracovní bod je libovolně mezi původním pracovním bodem a a pracovním bodem při 20% zvýšeném přítoku a měnících se výškách hladin P_1 byla určena z přenosů P a P_H

$$P_1(s) = \frac{<50;60>}{s^2 + <0.3125;0.375>s + <0.007813;0.01125>}.$$

Nadále jsme se zaměřili na určení modelu neurčitosti, v našem případě konkrétně aditivní neurčitosti, pomocí nominálního modelu a váhové funkce

$$P_a(s) = P_{0a}(s) + W_a(s)\Delta,$$

kde $||\Delta||_{\infty} \leq 1$.

Nominálním modelem $P_{0a}(s)$ systému jsme označili přenos při přítoku navýšeném o 10 %

$$P_{0a} = \frac{54,55}{s^2 + 0,3409s + 0,009298}.$$

Váhovou funkci aditivní neurčitosti jsme posléze určili jako rozdíl $W_a(s) = P(s) - P_{0a}(s)$

$$W_a(s) = \frac{5,455s^2 + 3,553 \cdot 10^{-15}s - 0,05579}{s^4 + 0,7159s^3 + 0,1484s^2 + 0,007322s + 0,0001046}.$$

Velikost této neurčitosti pak je jednoduše $|W_a(s)|$.

Nyní tedy můžeme znázornit neurčitost v komplexní rovině. Na obrázku 1 je vykreslena tato neurčitost pro 10 různých frekvencí.

Obrázek 1: Neurčitost(bod 2A), modře - nominální přenos, zeleně - perturbované přenosy, červeně - neurčitost

Stejný postup lze uplatnit i v dalším případě. Neurčitost daná intervalem za předpokladu, že skutečný pracovní bod je libovolně mezi původním pracovním bodem a pracovním bodem při 20% zvýšeném přítoku a měnícím se nastavením přepouštěcích ventilů P_2 byla určena z přenosů P a P_S

$$P_2(s) = \frac{<60;72>}{s^2 + <0.375;0.45>s + <0.01125;0.0162>}.$$

Dále určíme model neurčitosti pomoci nominálního přenosu a váhové funkce

$$P_b(s) = P_{0b}(s) + W_b(s)\Delta.$$

Zopakujeme tedy stejný postup jako v předchozím případě a nominálním modelem $P_{0b}(s)$ bude přenos při přítoku navýšeném o 10%, tentokrát však samozřejmě při měnícím se nastavení přepouštěcích ventilů

$$P_{0b}(s) = \frac{66}{s^2 + 0.4125s + 0.01361}.$$

Aditivní váhovou funkci $W_b(s)$ vypočítáme jako rozdíl $W_b(s) = P(s) - P_{0b}(s)$

$$W_b(s) = \frac{-6s^2 - 3.55 \cdot 10^{-15}s + 0.07425}{s^4 + 0.7875s^3 + 0.1796s^2 + 0.009745s + 0.0001531}.$$

Na obrázku 2 je tato neurčitost, stejně jako v předchozím případě, znázorněna v komplexní rovině.

Obrázek 2: Neurčitost(bod 2B), modře - nominální přenos, zeleně - perturbované přenosy, červeně - neurčitost

4. Na obrázku 3 jsou pomocí Bodeho amplitudové frekvenční charakteristiky porovnány velikosti obou neurčitostí.

Obrázek 3: Porovnání velikostí obou neurčitostí

Z grafu je patrné, že velikosti obou neurčitostí jsou na všech frekvencích velmi podobné.

II. Návrh regulátoru

Úkolem druhé části semestrální práce bylo navrhnout parametry PI regulátoru tak, aby byly splněny jisté návrhové požadavky pro všechny systémy z modelu neurčitosti získaného v první části práce, konkrétně se jedná o model, v něž se mění výšky hladin.

Přítok $Q_1(t)$ je realizován vodním čerpadlem. Nejprve je tedy nutné rozšířit přenos systému $P_a(s)$ o aproximovaný model čerpadla $Q_{pump}(s)$, abychom dostali finální model řízené soustavy P_{cs}

$$P_{cs} = Q_{pump}(s) \cdot P_a(s) = \frac{Q_{10}}{0.5s + 1} \cdot P_a(s) = \frac{0.01636}{s^3 + 2.341s^2 + 0.6911s + 0.0186}.$$

Získali jsme tedy přenos řízeného systému, který je dle zdání třeba řídit PI regulátorem s přenosem

$$C(s) = \frac{Ks + K_i}{s}.$$

Po detailnějším prozkoumání problému jsme se rozhodli pro použití konkrétních parametrů K=4 a $K_i=0,3$. Nominální přenos otevřené smyčky, který je potřeba pro další analýzu, má tvar

$$L_0(s) = C(s) \cdot Q_{pump}(s) \cdot P_{0a}(s).$$

Uzavřená smyčka pak měla splňovat následující základní požadavky na robustní kvalitu řízení pro všechny systémy z modelu neurčitosti. Systém měl být vnitřně stabilní a amplituda citlivostní funkce nesměla přesáhnout hodnotu $M_s=2$.

K ověření platnosti těchto předpokladů lze využít vztah pro robustní kvalitu

$$||W_1(s)S_0(s)| + |W_2(s)T_0(s)||_{\infty} < 1,$$

kde $S_0(s)$ je nominální citlivostní funkce $S_0(s) = \frac{1}{1+L_0(s)}$ a $T_0(s)$ je komplementární citlivostní funkce s předpisem $T_0(s) = \frac{L_0(s)}{1+L_0(s)}$.

Funkce W_2 je pak určena váhovou funkcí modelu neurčitosti získanou v první části práce $W_2(s) = \frac{W_a(s)}{P_{0a}(s)}$. Funkce $W_1(s)$ je pro náš požadavek na kvalitu řízení jednoduše $W_1(s) = \frac{1}{2}$.

Po výpočtu nekonečno normy jsme obdrželi výsledek

$$|||W_1(s)S_0(s)| + |W_2(s)T_0(s)|||_{\infty} = 0.8237.$$
(11)

Vidíme, že uzavřená smyčka splňuje základní požadavky na robustní kvalitu řízení. Tento test (11) lze rovněž ilustrovat graficky pomocí Bodeho amplitudové frekvenční charakteristiky(obrázek 4).

Obrázek 4: Test robustní kvality

Posléze jsme ještě provedli test stability pomocí Nyquistova kritéria, viz obrázek 5.

Obrázek 5: Nyquistovo kritérium, modře - nominální přenos, zeleně - perturbované přenosy

Vzhledem k následnému testování dalších vlastností uzavřené smyčky, je zde vhodné přiložit Bodeho amplitudové frekvenční charakteristiky nominální citlivostní funkce a komplementární citlivostní funkce (obrázek 6).

Obrázek 6: Nominální citlivostní a komplementární citlivostní funkce

Kvůli předpokladům ohledně dostupné šířce pásma regulace, bylo dále nutné, aby útlum komplementární citlivostní funkce na frekvenci $\Omega_a = 10rad/sec$ byl alespoň -10dB. Maximální hodnotu amplitudy komplementární citlivostní funkce na dané frekvenci jsme tedy určili takto

$$20 \log \left(\left| \frac{C(j10).Q_{pump}(j10).(P_{0a}(j10) + W_a(j10))}{1 + C(j10).Q_{pump}(j10).(P_{0a}(j10) + W_a(j10))} \right| \right) = -83,0284dB.$$

Zesílení komplementární citlivostní funkce je tedy na frekvenci $\Omega_a = 10rad/sec$ hluboko pod požadovanou hodnotou -10dB.

Dalším omezením při návrhu byl požadavek, aby energie libovolného šumu měření nebyla zesílena více než 1,5 krát. Maximální možné zesílení energie šumu měření jsme vyčíslili na

$$\left\| \frac{C(j\omega).Q_{pump}().(P_{0a}(j\omega) - W_a(j\omega))}{1 + C(j\omega).Q_{pump}(j\omega).(P_{0a}(j\omega) - W_a(j\omega))} \right\|_{\infty} = 1,3686.$$

Tento požadavek na chování uzavřené smyčky je tedy také splněn.

2. Ověření, zda harmonický šum o frekvenci 50Hz působící na měření není

na výstupu uzavřeného systému zesílen, jsme provedli výpočtem

$$\left| \frac{C(j2\pi50).Q_{pump}(j2\pi50).(P_{0a}(j2\pi50) - W_a(j2\pi50))}{1 + C(j2\pi50).Q_{pump}(j2\pi50).(P_{0a}(j2\pi50) - W_a(j2\pi50))} \right| = 1.9 \cdot 10^{-9},$$

který jednoznačně potvrdil, že uzavřená smyčka na výstupu tlumí šumy měření o frekvenci 50Hz.

Podobně jsme prozkoumali zesílení na výstupu uzavřené smyčky na harmonickou poruchu o frekvenci 0.1Hz ovlivňující výstup systému. Zesílení jsme určili takto

$$\left| \frac{1}{1 + C(j2\pi 0, 1) \cdot Q_{pump}(j2\pi 0, 1) \cdot (P_{0a}(j2\pi 0, 1) - W_a(j2\pi 0, 1))} \right| = 1,0824.$$

Výsledek ukázal, že taková harmonická porucha bude na výstupu systému mírně zesílena.

3. V následujícím úkolu jsme měli uvažovat, že se systém nachází v rovnovážném stavu a regulační odchylka je nulová. Za takového předpokladu jsme měli prozkoumat k jakému maximálnímu možnému kolísání výstupu(tedy hladiny H_2) může dojít, působí-li na vstup řízené soustavy porucha d_i s omezenou energií $||d_i||_2 \le 1$. K tomu lze využít vztah pro zesílení systému v případě, že vstup měříme ve 2 normě a výstup v nekonečno normě

$$\sup_{\|u\|_{2}=1} \frac{||y||_{\infty}}{||u||_{2}} \le ||H||_{2}. \tag{12}$$

Konkrétně jsme potom tedy dostali

$$\left\| \frac{Q_{pump}().(P_{0a}(j\omega) - W_a(j\omega))}{1 + C(j\omega).Q_{pump}(j\omega).(P_{0a}(j\omega) - W_a(j\omega))} \right\|_2 = 0.0571.$$

4. Posledním úkolem bylo určit signály n(t) a d(t), kde $||n(t)||_{\infty} <= 1$, $||d(t)||_{\infty} <= 1$, které jsou zpětnovazební smyčkou nejvíce zesíleny ve smyslu maximální hodnoty signálu a energie signálu.

Nejvíce zesílen ve smyslu energie signálu bude pro oba případy například signál d(t) = sin(t) = n(t), pro který platí, že $||sin(t)||_{\infty} = 1$ a energie výstupu potom bude $||y(t)||_2 = \infty$.

Ve smyslu maximální hodnoty signálu pak bude nejvíce zesilovat signál

$$u(t-\tau) = sgn(h(\tau)), \quad \forall \tau,$$

který produkuje zesílení

$$\sup_{\|u\|_{2}=\infty} \frac{||y||_{\infty}}{||u||_{\infty}} \le ||h||_{1}.$$

Konkrétně pak dostaneme výsledky

$$||T(s)||_1 = 1.6154,$$

 $||S(s)||_1 = 2.6154.$