Sistemas de Representación

Trabajo Práctico Integrador: Intersección de Recta Con Plano

Carrera Ingeniería Mecánica

Docentes Ing. Guillermo Verger

Gastón St. Jean

Comisión

Alumno

Legajo

Año / Cuatrimestre

Objetivo del trabajo

- Resolver un problema de Intersección de recta con plano siguiendo dos métodos diferentes: a/ en sistema diédrico y b/ con herramientas de modelado 3D.
- Analizar los procesos seguidos en ambos métodos con la finalidad de extraer conclusiones orientadas a determinar la conveniencia de utilizar uno u otro cuando se trata de resolver problemas de representación de objetos tridimensionales.

Enunciado del problema

Determinar la intersección del segmento A-B con el triángulo P-Q-R Coordenadas del triángulo P-Q-R P(110,50,80), Q(160,150,16), R(80,130,40)

Coordenadas del segmento A-B A(62,110,8), B(210,135,100)

Planteo Gráfico del problema en 2D

En base a las cotas provistas se determinan las proyecciones de los elementos dados.

Comentarios:

Explicar las consideraciones realizadas.

Detallar la información buscada para resolver el problema. Presentar croquis y bocetos de ideas para obtener la solución.

Destacar los conceptos geométricos que justifican el desarrollo.

Resolución 2D

Determinar la intersección.
Utilizando un plano proyectante
auxiliar se determina el punto J
común al plano y a la recta dada.

Resolución 2D

Estudio de visibilidad.

Se analiza una proyección, donde se superponen las proyecciones de un punto de la recta y otro del plano.

En la proyección adyacente se deduce la visibilidad de acuerdo a las faces del plano que se esten mostrando.

Resolución en 3D

Ilustrar el problema a resolver con Imágenes reales y/o virtuales que lo ejemplifiquen.

También se puede ilustrar con un video, por ejemplo, en este caso:
InterseccionRectaPlano-1.wmv

Resolución en 3D (1)

Con las coordenadas provistas ubicamos los elementos geométricos dados.

Triángulo P-Q-R: P(110,50,80), Q(160,150,16), R(80,130,40)

Segmento A-B: A(62,110,8), B(210,135,100)

Estrategia de resolución: Proyectar segmento sobre plano.

El punto común al segmento y su proyección es el punto buscado.

Resolución en 3D (2)

Se genera la proyección del segmento dado sobre el plano trazando una linea con el uso de filtros de punto.

Resolución en 3D (3)

El problema se ha resuelto en el espacio y se pueden extraer las coordenadas del punto de intersección.

Resolución en 3D - Salida 2D

En una solapa de presentación se prepara una salida comparable a la representación en sistema diédrico.

Se puede verificar la igualdad de resultados.

En este caso, y por tratarse de elementos geométricos simples no se puede utilizar SOLVIEW y SOLDRAW.

Se trabaja con ventanas donde se eligen las vistas con igual escala y cuidando la alineación.

Conclusiones

- Comparando los procesos de resolución 2D y 3D se considera que para este caso el método 3D es más simple y directo.
- El segundo método permite, adicionalmente, modificar las direcciones de visualización lo que facilita la comprensión.
- Se verifica la equivalencia de los resultados.
- Se pueden extraer proyecciones en sistema diédrico, ilustraciones estáticas y recorridos de cámara.
- Induce a pensar que en problemas similares sería conveniente trabajar en el espacio virtual.