radiative properties of partoles

radiative properties of gases

moster equat.

			[[/3
	(Extende cross-section	Ce= We/Ii	
Cross- Section	absorpti	Ca = Wa/Ji	
Seation	scatteig	$c_s = W_s/I_i$	
effèceengy	: extinction	Qe = Ce/G	
<u> </u>	abroopt-	Qa= Ca/G	
	Scalle	$Q_s = C_s/G$	
		L projected a	ms-sect.
	Albedo:		
	$\omega_{\circ} = \frac{R_{s}}{Re}$	$=\frac{Q_S}{Q_S+Q_Q}$	
* 7	hase function 1/2		
		(si'>si) = this linealet	sgattered into
	7012		
·		power scattered from D' into De	direct:
		power scattered from IZ' in IZ	it scattly in ison
	$\Phi = 1$	estropic scatte;	
		7 5 5 5 5 5	
	在 Ja g(12/25	$2)d\Omega = 1$	

*	Scatter of a spherical par	stirle	
	Mie theory. (Gu	Hav Mie, 1908)	
TOPS FORM 7527			

Nade in U.S.A.

 $Qe = \frac{2}{\chi^2} \sum_{n=1}^{60} (2nH) \text{ Re } \{an+bn\}$ $Q_{S} = \frac{Z}{\chi^{2}} \sum_{n=1}^{2} (2nH) \left(\left| a_{n} \right|^{2} + \left| b_{n} \right|^{2} \right)$ $an = \frac{\sqrt{n'(mx)} \sqrt{n(x)} - m \sqrt{n'(mx)} \sqrt{n'(x)}}{\sqrt{n'(mx)} \sqrt{n'(x)} - m \sqrt{n(mx)} \sqrt{n'(x)}}$

 $b_n = \frac{m \sqrt{n'(mx)} \sqrt{n(x)} - \sqrt{n'(mx)} \sqrt{n'(x)}}{m \sqrt{n'(mx)} \sqrt{n'(x)} - \sqrt{n'(mx)} \sqrt{n'(x)}}$

Yn, In - Ricatti-Bessel function

Yn+1(x) = 24+ 7n (x) - 7n+ (x)

 $\chi_{\text{mH}}(x) = \frac{2nt!}{x} \chi_n(x) - \chi_{n-1}$

3n= 4n-ixn

4- £002=000 X Yo = 5mg

 $\gamma_{-1}(x) = -57mx$ $\gamma_0 = 05 \chi$

 $\chi = \frac{\lambda}{2}$ $m = \frac{\lambda_1}{\lambda_2}$

L'particle sise parameter

Show example of Mie theory.

Comment: (a) In some reguin

Qa >1 emissualy >1.

(b) for large particles

another I edge 1

