Using genetic variants for causal inference using Mendelian randomization

2020-03-02 - Marc-André Legault

Causality in the medical sciences

A large fraction of medical research focuses on:

- Prediction of disease onset or disease course (prognosis)
 - Having a causal understanding may improve predictive power or generalizability
- Determining safe and efficacious interventions
 - Drugs
 - Surgical interventions
 - Recommendations, diets, etc.

The Randomized Clinical Trial (RCT)

- Start from a population and randomize
 - Any latent <u>confounder</u> should be distributed in the same way in both arms
 - No possibility of reverse causation of treatment
 - Investigator and patient **blinded** to treatment (accounts for placebo or experimenter bias)
- Statistical challenges
 - Compliance
 - Non-random dropout
 - Design, power, etc.

CLINICAL TRIALS RANDOMIZATION

The Randomized Clinical Trial (RCT)

- One of the highest quality level of evidence (if well done)
- Often long and costly
 - Example of major adverse cardiovascular event trials where a pre-defined number of events need to occur
- Answers a very specific question: "Does treatment X work in clinical population Y and protocol Z"
 - Secondary or post-hoc analyses are usually considered hypothesis-generating
- (Rightfully) required for approval of treatment by health authorities

Instrumental variable approaches

Another approach to estimating causal effects is to use "instrumental variables"

- From the world of econometrics
- Goal: Estimate the effect of X on Y
 - In epidemiology X is the "exposure" (e.g. cholesterol levels) and Y is the "outcome" (e.g. cardiovascular disease)
- Traditional set of assumptions:
 - Relevance: IV correlated with X
 - Exclusion-restriction: IV not associated with Y conditional on U and X

Instrumental variable approaches

Another approach to estimating causal effects is to use "instrumental variables"

- If the assumptions are met, the causal effect of X on Y can be estimated
- The 2-stage least squares is the traditionally used method:
 - Stage 1. Estimate

 Stage 2. Use predicted X from stage 1 to estimate causal effect

$$Y \sim \hat{X} + covariates$$

What to use as the instrument variable?

Few variables truly satisfy the IV assumptions

- Frequent source of conflicts in econometrics
- Assumptions are hard to verify statistically

Mendelian Randomization (MR)

Genetic variants are good candidate IVs!

Common "polymorphisms" in the population

- "Easy" and affordable to screen in large cohorts
- Usually of low to moderate effect size because of natural selection
- Can be seen as a binomial random variable with n=2 (number of copies of the polymorphism)

Mendelian Randomization (MR)

Genetic variants are good candidate IVs!

- Are inherited at birth and don't change
 - Can't suffer from reverse causation
 - Not very susceptible to confounding (except by ethnicity)
- The main problem is pleiotropy
 - Vertical pleiotropy (OK): G acts somewhere in the X pathway, but there are mediators
 - Horizontal pleiotropy (not OK): G acts on the X pathway, but also on an independent pathway that affects Y

Example of LDL-c

Artificial randomization

Randomization by the random allocation of alleles at birth

Example of LDL-c

- High concordance of effect estimates from RCTs and MR
- Overall, benefit of genetic reduction of LDL-c seems higher, why?
- When known drug target, risk of pleiotropy is small

Ference, B.A. et al. J Am Coll Cardiol. 2015; 65(15):1552-61.

Can we replace RCTs with MR?

No! Testing an intervention in a RCT remains the only way to truly test its causal effect

But,

- MR can predict result of RCT (which take time)
- MR can estimate the dose-response curve to inform RCT design
 - What is the expected effect?
 - How many individuals or events are needed to have the statistical power to detect this effect?
- MR can assess differential effects in other clinical populations
 - RCTs are characterized by many inclusions and exclusions
- MR can further understanding of causal mechanism

Ratio estimate

The simplest MR estimate for a single genetic variant is the "ratio estimate"

$$\hat{ heta} = rac{eta_Y}{\hat{eta}_X}$$

Inverse variance weighted (IVW)

With multiple variants, estimates can be combined using the inverse variance

weighted approach

 Ratio estimates weighted by their precision (se⁻²)

- Idea from meta-analysis literature (equivalent of a fixed-effect meta-analysis of ratio estimates)
- Can be seen as a (weighted) linear regression

 β_X

Real-life example of ratio estimates and the IVW method

Heterogeneity in direction of effect motivates other approaches

Effect of HR increase on atrial fibrillation:

• IVW: 0.98 (0.96, 1.00); p=0.021

Effect of HR increase on CAD:

• IVW: 0.99 (0.98, 1.01); p=0.305

MR-Egger

- Builds on the analogy to meta-analysis
- Similar to the IVW method, but allows for an intercept term: directional pleiotropy
- Implication: Only useful to correct for the mean direct effects (G -> Y) across tested variants

Figure 2. Plot of the gene–outcome $(\hat{\Gamma})$ vs gene–exposure $(\hat{\gamma})$ regression coefficients for a fictional Mendelian randomization analysis with 15 genetic variants. The true slope is shown by a dotted line, the inverse-variance weighted (IVW) estimate by a red line, and the MR-Egger regression estimate by a blue line. Refer to text for explanation of points (i) and (ii).

From Burgess S et al. (2017) Eur. J. of Epi.

Weighted median

- As for all standard (linear) regression models, IVW and MR-Egger are sensitive to outliers
 - o They assume that **all** included variants are "valid IVs" under similar assumptions
- The simple median estimator is simply the median ratio estimate
 - Significantly relaxes MR assumptions (works if majority of IVs are valid)

The weighted median is the same, but estimates are weighted by their

precision

Bowden et al. (2016) Genet. Epidemiol.

Mendelian Randomization Pleiotropy RESidual Sum and Outlier

Assumption:

Largest set of variants with homogeneous causal effect estimates represent the true effect

- MR-PRESSO provides:
 - Global test (detection of horizontal pleiotropy)
 - Outlier test for every variant
 - And subsequent correction by removing outliers
 - Distortion test (did removing outlier significantly change the causal estimate?)

MR-PRESSO

High level overview of the method (global test):

- IVW estimate obtained by iteratively excluding variant j
- Compare observed RSS(j)

 (distance to predicted variant-outcome effect) with an expected distribution sampled from the IVW estimate

Other flavors - Multivariable MR

- Leveraging known pleiotropy to estimate causal effects
- For example: correlated exposures like blood lipids
- Same methods as before, but multivariable
 - o 2SLS
 - Likelihood based method
 - Regression-based methods
 - Iteratively fits risk factors and keeps residuals

$$\begin{pmatrix} X_{1j} \\ X_{2j} \\ Y_j \end{pmatrix} \sim \mathcal{N}_3 \begin{pmatrix} \xi_{1j} \\ \xi_{2j} \\ \beta_1 \xi_{1j} + \beta_2 \xi_{2j} \end{pmatrix}, \begin{pmatrix} \sigma_{X1j}^2 & \rho_{12} \sigma_{X1j} \sigma_{X2j} & \rho_{1Y} \sigma_{X1j} \sigma_{Yj} \\ \rho_{12} \sigma_{X1j} \sigma_{X2j} & \sigma_{X2j}^2 & \rho_{2Y} \sigma_{X2j} \sigma_{Yj} \\ \rho_{1Y} \sigma_{X1j} \sigma_{Yj} & \rho_{2Y} \sigma_{X2j} \sigma_{Yj} & \sigma_{Yj}^2 \end{pmatrix} \right).$$

Example model to be fit using probabilistic programming software (Bayesian or maximum likelihood).

 X_{1j} is the effect of variant j on exposure 1 X_{2j} is the effect of variant j on exposure 2 etc.

Other flavors - Bi-directional MR

Do the MR causal estimate in both directions

Example from our group (Legault MA et al. (2020) preprint on medRxiv)

Exposure	Outcome	MR Causal OR (95% CI) *	P-value
Atrial fibrillation (152 variants)	Heart failure	1.23 (1.20, 1.27)	3.7×10^{-52}
Atrial fibrillation (152 variants)	Coronary artery disease	1.00 (0.98, 1.03)	0.76
Atrial fibrillation (152 variants)	Myocardial infarction	0.98 (0.95, 1.02)	0.30
Heart failure (11 variants)	Atrial Fibrillation	1.45 (1.11, 1.90)	0.0067
Coronary artery disease (68 variants)	Atrial Fibrillation	1.15 (1.11, 1.21)	1.7×10^{-10}
Myocardial infarction (31 variants)	Atrial Fibrillation	1.11 (1.06, 1.16)	1.3 × 10 ⁻⁵

Try it!

A platform for Mendelian randomisation using summary data from genome-wide association studies

http://www.mrbase.org/

Perspectives for ML

- Opportunities for ML research in Mendelian randomization
 - Going beyond linearity (estimate the causal y = f(X))
 - Different (complex) outcomes:
 - age at onset, disease trajectory
 - ECG or imaging

Glossary

- Fork
- Confounder
- Common cause

- Chain
- Mediator

• Collider

Extra slides

Formal regression

When I write $Y \sim X$ I'm referring to the model:

$$Y = \beta X + \epsilon$$

With $\epsilon \sim \mathcal{N}(0, \sigma_e)$

When I write "effect" or "coefficient", I refer to the beta term from this model or its estimate (by OLS or maximum likelihood, formally $\hat{\beta}$)

MR-Egger assumptions

IV1: Genetic variant independent of confounders U;

IV2: Genetic variant associated with exposure X;

$$\gamma_i \neq 0$$

• 173: Genetic variant independent of the outcome Y given X and U

$$G \perp Y \mid X, U$$

InSIDE (Instrument Strength Independent of Direct Effects)

Ratio estimate derivation (French)

On cherche l'effet causal de X sur Y

Effet génétique des variants sur X Confounders Résidus Exposition (par ex. LDL)
$$X_i = \sum_{i=1}^J \gamma_j G_{ij} + U_i + \epsilon_i^X$$
 (1)

Outcome (par ex. CAD)
$$\longrightarrow Y_i = \sum_{j=1}^J \alpha_j G_{ij} + \beta X_i + U_i + \epsilon_i^Y.$$

Effets génétiques directs (par ex. pléiotropie)

* Effet de l'exposition

La méthode du ratio utilise le ratio des coefficients des régressions Y~G / X~G

$$Y_{i} = \Gamma_{j}G_{ij} + \epsilon_{ij}^{Y}$$

$$= (\alpha_{j}^{\prime} + \beta \gamma_{j})G_{ij} + \epsilon_{ij}^{Y}$$

$$V3$$

Donc, avec nos suppositions:

$$\Gamma = \beta \gamma$$
Soit le ratio du coefficient de la régression G sur Y et de la régression G sur X

MR-Egger funnel plot

