Unit 5 → Momentum

Momentum

- An object's "stop-ability"
 - The more momentum, the starter to stop
- Two factors
 - Mass and velocity
- Examples
 - o Nickel vs. bullet
 - o Kickball vs. bowling ball
- Reference table and Equations
 - \circ p = mv

 - Momentum and velocity are vectors
- Change of momentum
 - o An individual object can have a change in momentum
 - $\circ \quad \Delta p_{x} = p_{x} p_{x_{0}}$
 - $\circ \quad \Delta p_x = m \Delta v_x = m(v_x v_{x_0})$

Impulse

- Means change in momentum
- When we change momentum, or impart an impulse, we change object velocity
 - How do we change an objects velocity?
 - Exert a force on it!
- Represented by Δp , I, or I
- Reference table and Equations
 - $\circ \quad \Delta p = F \Delta t$
 - $\blacksquare \quad m\Delta v = m(v v_0)$
 - o Impulse is a vector
 - $\circ kg \times \frac{m}{s} = kg \frac{m}{s}$
- When two objects interact...
 - Same F_{net} on each action/reaction
 - Same amount of time (t)
 - Each object receives the *same* impulse (change in momentum)
- Collision
 - Short duration interaction between objects
 - o Time to COMPRESS and time to EXPAND
 - Perfectly elastic
 - Bounce apart
 - o Perfectly inelastic
 - Stick together

Conservation of momentum

- Impulse and change in momentum
 - o Exerts a force over time
 - Accelerate an object
 - Change the velocity
 - o Change its momentum
- Conservation
 - o 2 or more objects collide
 - Colliding
 - Exploding apart
 - o Individual momentum changes
 - o Total momentum remains the same
- Types of Collisions
 - o Perfectly elastic collision
 - No object deformation
 - o Inelastic collision
 - Object deforms to a certain degree
 - o Perfectly inelastic collision
 - Objects stick together
- Conservation of momentum
 - o Total momentum of an isolated system is constant
 - o Interactions within the system *do not* change the toal momentum
- Equations and the reference table
 - \circ $p_{total\ before} = p_{total\ after}$
- Scenarios
 - 1→2

 $p_{total\ before} = p_{total\ after}$

$$p_{AB} = p_A + p_B$$

$$m_{AB}v_{AB} = m_A v_A + m_B v_B$$

○ 2→1

 $p_{total\ before} = p_{total\ after}$

$$p_A + p_A = p_{AB}$$
$$m_A v_A + m_B v_B = m_{AB} v_{AB}$$

 \circ 2 \rightarrow 2

$$p_{total\ before} = p_{total\ after}$$

$$p_A + p_B = p_A + p_B$$

$$m_A v_A + m_B v_B = m_A v_A + m_B v_B$$

Momentum Quiz

Multiple Choice

- 1)
- 2)
- 3)
- 4)
- 5)
- 6)
- 7)
- 8)
- 9)
- 10)

Short Response

- 11)
- 12)
- 13)
- 14)
- 15)