Isometrías

J. A. Rodríguez-Velázquez

URV

Definición (Isometría lineal)

Una isometría lineal es una aplicación lineal $f:V\longrightarrow V'$, entre espacios normados, que preserva la norma. Es decir, f es lineal y

$$\|f(\overrightarrow{u})\| = \|\overrightarrow{u}\| \ \ \text{para todo vector} \ \ \overrightarrow{u} \in V.$$

Definición (Isometría lineal)

Una isometría lineal es una aplicación lineal $f:V\longrightarrow V'$, entre espacios normados, que preserva la norma. Es decir, f es lineal y

$$||f(\overrightarrow{u})|| = ||\overrightarrow{u}||$$
 para todo vector $\overrightarrow{u} \in V$.

Ejemplo

Las siguientes aplicaciones son isometrías en \mathbb{R}^2 .

- ① f(x,y) = (y,x).
- ② f(x,y) = (x,-y).
- 3 $f(x,y) = \left(\frac{\sqrt{3}}{2}x + \frac{1}{2}y, \frac{\sqrt{3}}{2}y \frac{1}{2}x\right).$

Observación

Como el producto escalar se puede expresar en términos de normas mediante la igualdad

$$4\overrightarrow{u}\cdot\overrightarrow{v} = \|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2, \tag{1}$$

las isometrías preservan el producto escalar y, en particular, preservan la ortogonalidad.

Observación

Como el producto escalar se puede expresar en términos de normas mediante la igualdad

$$4\overrightarrow{u}\cdot\overrightarrow{v} = \|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2, \tag{1}$$

las isometrías preservan el producto escalar y, en particular, preservan la ortogonalidad.

Ejercicio

Demuestra (1).

Definición (Isometría afín)

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines euclidianos. Una aplicación $\psi:A\longrightarrow B$ es una isometría si y solo si es afín y $d(\psi(x),\psi(y))=d(x,y)$ para todo par de puntos $x,y\in A$.

Definición (Isometría afín)

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines euclidianos. Una aplicación $\psi:A\longrightarrow B$ es una isometría si y solo si es afín y $d(\psi(x),\psi(y))=d(x,y)$ para todo par de puntos $x,y\in A$.

Nótese que ψ es una isometría si y solo si su aplicación lineal asociada $\overrightarrow{\psi}$ es una isometría.

- Las traslaciones son isometrías.
- Una homotecia de razón λ es una isometria si y solo si $\lambda \in \{-1,1\}$, i.e., es la identidad cuando $\lambda = 1$, o es una simetría central cuando $\lambda = -1$.
- Las reflexiones, que serán definidas a continuación, son isometrías.
- Las rotaciones, que se definirán después de definir ángulo, son isometrías.

Simetrías ortogonales. Reflexiones

Si $F \subseteq V$ es un subespacio vectorial de V, la simetría ortogonal S_F es la aplicación lineal definida a partir de

•
$$S_F(\overrightarrow{u}) = \overrightarrow{u}$$
 para todo $\overrightarrow{u} \in F$;

$$\quad \bullet \ S_F(\overrightarrow{u}) = -\overrightarrow{u} \ \text{para todo} \ \overrightarrow{u} \in F^\perp.$$

Si $F\subseteq V$ es un subespacio vectorial de V, la simetría ortogonal S_F es la aplicación lineal definida a partir de

$$\circ$$
 $S_F(\overrightarrow{u}) = \overrightarrow{u}$ para todo $\overrightarrow{u} \in F$;

$$\circ$$
 $S_F(\overrightarrow{u}) = -\overrightarrow{u}$ para todo $\overrightarrow{u} \in F^{\perp}$.

Esto es, para todo $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ con $\overrightarrow{u} \in F$ y $\overrightarrow{v} \in F^{\perp}$,

$$S_F(\overrightarrow{w}) = \overrightarrow{u} - \overrightarrow{v}.$$

Si $F\subseteq V$ es un subespacio vectorial de V, la simetría ortogonal S_F es la aplicación lineal definida a partir de

- \circ $S_F(\overrightarrow{u}) = \overrightarrow{u}$ para todo $\overrightarrow{u} \in F$;
- $S_F(\overrightarrow{u}) = -\overrightarrow{u}$ para todo $\overrightarrow{u} \in F^{\perp}$.

Esto es, para todo $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ con $\overrightarrow{u} \in F$ y $\overrightarrow{v} \in F^{\perp}$,

$$S_F(\overrightarrow{w}) = \overrightarrow{u} - \overrightarrow{v}.$$

Observación

Toda simetría ortogonal es una isometría.

Si $F\subseteq V$ es un subespacio vectorial de V, la simetría ortogonal S_F es la aplicación lineal definida a partir de

- \circ $S_F(\overrightarrow{u}) = \overrightarrow{u}$ para todo $\overrightarrow{u} \in F$;
- $\bullet \ S_F(\overrightarrow{u}) = -\overrightarrow{u} \ \text{para todo} \ \overrightarrow{u} \in F^{\perp}.$

Esto es, para todo $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ con $\overrightarrow{u} \in F$ y $\overrightarrow{v} \in F^{\perp}$,

$$S_F(\overrightarrow{w}) = \overrightarrow{u} - \overrightarrow{v}.$$

Observación

Toda simetría ortogonal es una isometría.

Definición (Reflexión lineal)

Una reflexión lineal es una simetría ortogonal S_F donde F es un hiperplano.

Ejercicio

Sea H un hiperplano en un espacio vectorial euclidiano V y sea $\overrightarrow{w} \in H^{\perp}$ un vector no nulo. Prueba que $S_H(\overrightarrow{x}) = \overrightarrow{x} - 2 \frac{\overrightarrow{x} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2} \overrightarrow{w}$.

Ejercicio

Sea H un hiperplano en un espacio vectorial euclidiano V y sea $\overrightarrow{w} \in H^{\perp}$ un vector no nulo. Prueba que $S_H(\overrightarrow{x}) = \overrightarrow{x} - 2 \frac{\overrightarrow{x} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2} \overrightarrow{w}$.

Solución

Sea $\overrightarrow{x} = \overrightarrow{u} + \overrightarrow{v}$ tal que $\overrightarrow{u} \in H$ y $\overrightarrow{v} \in H^{\perp}$. Como $S_H(\overrightarrow{x}) = \overrightarrow{u} - \overrightarrow{v}$, tenemos $S_H(\overrightarrow{x}) = \overrightarrow{x} - 2\overrightarrow{v}$. Veamos que para todo vector no nulo $\overrightarrow{w} \in H^{\perp}$ se cumple $\overrightarrow{v} = \frac{\overrightarrow{x} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \overrightarrow{w}$.

Para toda base ortogonal $(\overrightarrow{u_1},\ldots,\overrightarrow{u_{n-1}})$ de H tenemos una base ortogonal $(\overrightarrow{u_1},\ldots,\overrightarrow{u_{n-1}},\overrightarrow{w})$ de V. De ahí que el vector de coordenadas de \overrightarrow{x} en esta base es

$$\left(\frac{\overrightarrow{x}\cdot\overrightarrow{u_1}}{\|\overrightarrow{u_1}\|^2},\ldots,\frac{\overrightarrow{x}\cdot\overrightarrow{u_{n-1}}}{\|\overrightarrow{u_{n-1}}\|^2},\frac{\overrightarrow{x}\cdot\overrightarrow{w}}{\|\overrightarrow{w}\|^2}\right).$$

Por lo tanto, $\overrightarrow{v} = \frac{\overrightarrow{x} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2} \overrightarrow{w}$.

Si $\mathcal{A}'=(A',F)$ es un subespacio afín $\mathcal{A}=(A,V)$, entonces la simetría ortogonal afín $\sigma_{\mathcal{A}'}:A\longrightarrow A$ es la aplicación afín cuya aplicación lineal asociada es S_F y $\sigma_{\mathcal{A}'}(o)=o$ para todo $o\in A'$. Es decir, tomando $o\in A'$,

$$\sigma_{\mathcal{A}'}(p) = o + S_F(\overrightarrow{op})$$
 para todo $p \in A$.

Si $\mathcal{A}'=(A',F)$ es un subespacio afín $\mathcal{A}=(A,V)$, entonces la simetría ortogonal afín $\sigma_{\mathcal{A}'}:A\longrightarrow A$ es la aplicación afín cuya aplicación lineal asociada es S_F y $\sigma_{\mathcal{A}'}(o)=o$ para todo $o\in A'$. Es decir, tomando $o\in A'$,

$$\sigma_{\mathcal{A}'}(p) = o + S_F(\overrightarrow{op})$$
 para todo $p \in A$.

Una simetría ortogonal afín toma un nombre determinado en función de la dimensión de la variedad lineal \mathcal{A}' . En particular, consideraremos los siguientes casos.

- Si \mathcal{A}' es un punto, entonces $\sigma_{\mathcal{A}'}$ es una simetría central.
- Si \mathcal{A}' es una recta, entonces $\sigma_{\mathcal{A}'}$ es una simetría axial, y \mathcal{A}' es el eje de simetría.
- Si \mathcal{A}' es un plano, entonces $\sigma_{\mathcal{A}'}$ se conoce como simetría especular.

Si $\mathcal{A}'=(A',F)$ es un subespacio afín $\mathcal{A}=(A,V)$, entonces la simetría ortogonal afín $\sigma_{\mathcal{A}'}:A\longrightarrow A$ es la aplicación afín cuya aplicación lineal asociada es S_F y $\sigma_{\mathcal{A}'}(o)=o$ para todo $o\in A'$. Es decir, tomando $o\in A'$,

$$\sigma_{\mathcal{A}'}(p) = o + S_F(\overrightarrow{op})$$
 para todo $p \in A$.

Una simetría ortogonal afín toma un nombre determinado en función de la dimensión de la variedad lineal \mathcal{A}' . En particular, consideraremos los siguientes casos.

- Si \mathcal{A}' es un punto, entonces $\sigma_{\mathcal{A}'}$ es una simetría central.
- Si \mathcal{A}' es una recta, entonces $\sigma_{\mathcal{A}'}$ es una simetría axial, y \mathcal{A}' es el eje de simetría.
- Si \mathcal{A}' es un plano, entonces $\sigma_{\mathcal{A}'}$ se conoce como simetría especular.

Definición (Reflexión afín)

 $\sigma_{\mathcal{A}'}$ es una *reflexión afín* si \mathcal{A}' es un hiperplano.

Ejercicio

Considera \mathbb{R}^2 como espacio afín euclidiano. Sean $\mathcal{A}=(A,F_1)$ y $\mathcal{B}=(B,F_2)$ dos subespacios afines cuyos conjuntos de puntos son $A=\{(x,y)\in\mathbb{R}^2:\ y=x+1\}$ y $B=\{(x,y)\in\mathbb{R}^2:\ 2x+3y=4\}$. Sea $\overrightarrow{u}=(x,y)$ y p=(a,b).

- (a) Determina F_1^{\perp} .
- (b) Determina $S_{F_1}(\overrightarrow{u})$ y $S_{F_1}(F_2)$.
- (c) Determina $\sigma_{\mathcal{A}}(p)$ y $\sigma_{\mathcal{A}}(B)$.

Ejercicio

Considera \mathbb{R}^2 como espacio afín euclidiano. Sean $\mathcal{A}=(A,F_1)$ y $\mathcal{B}=(B,F_2)$ dos subespacios afines cuyos conjuntos de puntos son $A=\{(x,y)\in\mathbb{R}^2:\ y=x+1\}$ y $B=\{(x,y)\in\mathbb{R}^2:\ 2x+3y=4\}$. Sea $\overrightarrow{u}=(x,y)$ y p=(a,b).

- (a) Determina F_1^{\perp} .
- (b) Determina $S_{F_1}(\overrightarrow{u})$ y $S_{F_1}(F_2)$.
- (c) Determina $\sigma_{\mathcal{A}}(p)$ y $\sigma_{\mathcal{A}}(B)$.

Solución (a)

Como $F_1 = \langle (1,1) \rangle$, obtenemos $F_1^{\perp} = \langle (-1,1) \rangle$.

Solución (b)

existen $\lambda, \lambda' \in \mathbb{R}$ tales que

$$(x,y) = \lambda(1,1) + \lambda'(-1,1).$$

Así,
$$\lambda = \frac{(x,y)\cdot(1,1)}{\|(1,1))\|^2} = \frac{x+y}{2}$$
 y $\lambda' = \frac{(x,y)\cdot(-1,1)}{\|(-1,1))\|^2} = \frac{y-x}{2}$. Por lo tanto,

$$S_{F_1}(x,y) = \lambda(1,1) - \lambda'(-1,1)$$

$$= \frac{1}{2}(x+y)(1,1) - \frac{1}{2}(y-x)(-1,1)$$

$$= (y,x).$$

Por último,

$$S_{F_1}(F_2) = S_{F_1}(\{(x,y) \in \mathbb{R}^2 : 2x + 3y = 0\}) = \{(x,y) \in \mathbb{R}^2 : 3x + 2y = 0\}.$$

《ㅁ》《레》《불》《불》 (B) 원 이익(C)

Solución (c)

Sea $o=(0,1)\in\mathcal{A}$. Para p=(a,b) tenemos $\overrightarrow{op}=(a,b-1)$. Entonces, por el apartado (b),

$$S_{F_1}(\overrightarrow{op}) = S_{F_1}(a, b-1) = (b-1, a).$$

Por lo tanto, de $\sigma_{\mathcal{A}}(p) = o + S_{F_1}(\overrightarrow{op})$ se deduce que

$$\sigma_{\mathcal{A}}(a,b) = (0,1) + (b-1,a) = (b-1,a+1).$$

Solución (c)

Sea $o=(0,1)\in\mathcal{A}$. Para p=(a,b) tenemos $\overrightarrow{op}=(a,b-1)$. Entonces, por el apartado (b),

$$S_{F_1}(\overrightarrow{op}) = S_{F_1}(a, b-1) = (b-1, a).$$

Por lo tanto, de $\sigma_{\mathcal{A}}(p) = o + S_{F_1}(\overrightarrow{op})$ se deduce que

$$\sigma_{\mathcal{A}}(a,b) = (0,1) + (b-1,a) = (b-1,a+1).$$

Otra forma de llegar a lo mismo:

$$\sigma_{\mathcal{A}}(a,b) = \varphi_{(0,1)} \left(S_{F_1} \left(\varphi_{(0,1)}^{-1}(a,b) \right) \right)$$

$$= \varphi_{(0,1)} \left(S_{F_1} \left(a, b - 1 \right) \right)$$

$$= \varphi_{(0,1)} \left(b - 1, a \right)$$

$$= (b - 1, a + 1).$$

Solución (c), continuación

Por último, como $\sigma_{\mathcal{A}}\left(x,\frac{4-2x}{3}\right)=\left(\frac{4-2x}{3}-1,x+1\right)$, concluimos que $\sigma_{\mathcal{A}}(B)$ está dado por 3x+2y=3.

Otra forma de llegar a lo mismo es tomar un punto de B, por ejemplo, $(2,0) \in B$, y como $\sigma_{\mathcal{A}}(2,0) = (-1,3)$ y $S_{F_1}(F_2) = \{(x,y) \in \mathbb{R}^2: 3x+2y=0\}$ obtenemos que $\sigma_{\mathcal{A}}(B) = \{(x,y) \in \mathbb{R}^2: 3x+2y=3\}$.

Observación sobre el ejercicio anterior

Representación de $A = \{(x, y) \in \mathbb{R}^2 : y = x + 1\}, B = \{(x, y) \in \mathbb{R}^2 : 2x + 3y = 4\}$ y $\sigma_{\mathcal{A}}(B) = \{(x, y) \in \mathbb{R}^2 : 3x + 2y = 3\}.$

Grupo de isometrías

Sea $\mathcal{A}=(A,V)$ un espacio afín euclidiano de dimensión finita. Sean O(V) y $O(\mathcal{A})$ los conjuntos de isometrías de V y \mathcal{A} , respectivamente. Los conjuntos O(V) y $O(\mathcal{A})$ equipados con la composición de aplicaciones son grupos.

Sea $\mathcal{A}=(A,V)$ un espacio afín euclidiano de dimensión finita. Sean O(V) y $O(\mathcal{A})$ los conjuntos de isometrías de V y \mathcal{A} , respectivamente. Los conjuntos O(V) y $O(\mathcal{A})$ equipados con la composición de aplicaciones son grupos.

Demostración

La aplicación identidad es una isometría.

Sea $\mathcal{A}=(A,V)$ un espacio afín euclidiano de dimensión finita. Sean O(V) y $O(\mathcal{A})$ los conjuntos de isometrías de V y \mathcal{A} , respectivamente. Los conjuntos O(V) y $O(\mathcal{A})$ equipados con la composición de aplicaciones son grupos.

Demostración

La aplicación identidad es una isometría.

La composición de aplicaciones es asociativa.

Sea $\mathcal{A}=(A,V)$ un espacio afín euclidiano de dimensión finita. Sean O(V) y $O(\mathcal{A})$ los conjuntos de isometrías de V y \mathcal{A} , respectivamente. Los conjuntos O(V) y $O(\mathcal{A})$ equipados con la composición de aplicaciones son grupos.

Demostración

La aplicación identidad es una isometría.

La composición de aplicaciones es asociativa.

La composición de isometrías es una isometría (escribe los detalles)

Sea $\mathcal{A}=(A,V)$ un espacio afín euclidiano de dimensión finita. Sean O(V) y $O(\mathcal{A})$ los conjuntos de isometrías de V y \mathcal{A} , respectivamente. Los conjuntos O(V) y $O(\mathcal{A})$ equipados con la composición de aplicaciones son grupos.

Demostración

La aplicación identidad es una isometría.

La composición de aplicaciones es asociativa.

La composición de isometrías es una isometría (escribe los detalles)

Falta demostrar que para cualquier isometría afín ψ existe la isometría afín inversa ψ^{-1} y, equivalentemente, la aplicación lineal asociada $\overrightarrow{\psi^{-1}}$ es una isometría.

Sea $\mathcal{A}=(A,V)$ un espacio afín euclidiano de dimensión finita. Sean O(V) y $O(\mathcal{A})$ los conjuntos de isometrías de V y \mathcal{A} , respectivamente. Los conjuntos O(V) y $O(\mathcal{A})$ equipados con la composición de aplicaciones son grupos.

Demostración

La aplicación identidad es una isometría.

La composición de aplicaciones es asociativa.

La composición de isometrías es una isometría (escribe los detalles)

Falta demostrar que para cualquier isometría afín ψ existe la isometría afín inversa ψ^{-1} y, equivalentemente, la aplicación lineal asociada $\overrightarrow{\psi^{-1}}$ es una isometría.

A continuación están los detalles...

En espacios de dimensión finita, una aplicación lineal $\overrightarrow{\psi}:V\longrightarrow V$ es biyectiva si y solo si es inyectiva.

En espacios de dimensión finita, una aplicación lineal $\overrightarrow{\psi}:V\longrightarrow V$ es biyectiva si y solo si es inyectiva. Así, para una isometría lineal, $\overrightarrow{\psi}(\overrightarrow{x})=\overrightarrow{0}$ si y solo si $\|\overrightarrow{x}\|=0$, lo que implica que toda isometría lineal $\overrightarrow{\psi}$ es inyectiva, y por tanto biyectiva. Por la Proposición 1.27, ψ es biyectiva.

En espacios de dimensión finita, una aplicación lineal $\overrightarrow{\psi}: V \longrightarrow V$ es biyectiva si y solo si es inyectiva. Así, para una isometría lineal, $\overrightarrow{\psi}(\overrightarrow{x}) = \overrightarrow{0}$ si y solo si $\|\overrightarrow{x}\| = 0$, lo que implica que toda isometría lineal $\overrightarrow{\psi}$ es inyectiva, y por tanto biyectiva. Por la Proposición 1.27, ψ es biyectiva.

Falta demostrar que Ψ^{-1} es una isometría, lo que es fácil ya que para todo par de puntos y, y' existen dos puntos x, x' con $\Psi(x) = y$ y $\Psi(x') = y'$, y por eso

En espacios de dimensión finita, una aplicación lineal $\overrightarrow{\psi}:V\longrightarrow V$ es biyectiva si y solo si es inyectiva. Así, para una isometría lineal, $\overrightarrow{\psi}(\overrightarrow{x})=\overrightarrow{0}$ si y solo si $\|\overrightarrow{x}\|=0$, lo que implica que toda isometría lineal $\overrightarrow{\psi}$ es inyectiva, y por tanto biyectiva. Por la Proposición 1.27, ψ es biyectiva.

Falta demostrar que ψ^{-1} es una isometría, lo que es fácil ya que para todo par de puntos y,y' existen dos puntos x,x' con $\psi(x)=y$ y $\psi(x')=y'$, y por eso

$$d\left(\Psi^{-1}(y), \Psi^{-1}(y')\right) = d(x, x') = d\left(\Psi(x), \Psi(x')\right) = d(y, y').$$

Por lo tanto, el resultado se cumple.

Estructura de las isometrías

- ② Ψ tiene dos puntos fijos pero no tres puntos fijos no colineales. Sean a,b dos puntos fijos y sea $\mathbb L$ la recta que pasa por ellos. Notese que $\Psi(c)=c$ para todo $c\in\mathbb L$, por la Proposición 1.23 y el Ejercicio 1.21. Además, $d(x,a)=d(\Psi(x),a)$ para todo $x\in\mathbb P\setminus\mathbb L$, ya que Ψ es una isometría. Por lo tanto, $\mathbb L=B_{x|\Psi(x)}$ para todo $x\in\mathbb P\setminus\mathbb L$ y por eso $\Psi=\sigma_\mathbb L$.

- ② Ψ tiene dos puntos fijos pero no tres puntos fijos no colineales. Sean a,b dos puntos fijos y sea $\mathbb L$ la recta que pasa por ellos. Notese que $\Psi(c)=c$ para todo $c\in\mathbb L$, por la Proposición 1.23 y el Ejercicio 1.21. Además, $d(x,a)=d(\Psi(x),a)$ para todo $x\in\mathbb P\setminus\mathbb L$, ya que Ψ es una isometría. Por lo tanto, $\mathbb L=B_{x|\Psi(x)}$ para todo $x\in\mathbb P\setminus\mathbb L$ y por eso $\Psi=\sigma_\mathbb L$.
- ③ Ψ tiene un solo punto fijo. Sea a ese punto fijo y sea $b \neq a$. Nótese que $a \in B_{b|\Psi(b)}$, ya que $d(a,b) = d(\Psi(a),\Psi(b)) = d(a,\Psi(b))$. Como $\sigma_{B_{b|\Psi(b)}} \circ \Psi$ fija los puntos, a y b, por los casos anteriores, $\sigma_{B_{b|\Psi(b)}} \circ \Psi$ es una reflexión, lo que implica que Ψ es la composición de dos reflexiones.

- ② Ψ tiene dos puntos fijos pero no tres puntos fijos no colineales. Sean a,b dos puntos fijos y sea $\mathbb L$ la recta que pasa por ellos. Notese que $\Psi(c)=c$ para todo $c\in\mathbb L$, por la Proposición 1.23 y el Ejercicio 1.21. Además, $d(x,a)=d(\Psi(x),a)$ para todo $x\in\mathbb P\setminus\mathbb L$, ya que Ψ es una isometría. Por lo tanto, $\mathbb L=B_{x|\Psi(x)}$ para todo $x\in\mathbb P\setminus\mathbb L$ y por eso $\Psi=\sigma_\mathbb L$.
- ③ Ψ tiene un solo punto fijo. Sea a ese punto fijo y sea $b \neq a$. Nótese que $a \in B_{b|\Psi(b)}$, ya que $d(a,b) = d(\Psi(a),\Psi(b)) = d(a,\Psi(b))$. Como $\sigma_{B_{b|\Psi(b)}} \circ \Psi$ fija los puntos, a y b, por los casos anteriores, $\sigma_{B_{b|\Psi(b)}} \circ \Psi$ es una reflexión, lo que implica que Ψ es la composición de dos reflexiones.

En todo espacio afín euclidiano de dimensión n las isometrías se pueden expresar como producto de $p \le n+1$ reflexiones.

Demostración

Ver apuntes.

Una isometría en un espacio vectorial euclidiano es *positiva* si el determinante de su matriz asociada es positivo.

Una isometría en un espacio vectorial euclidiano es *positiva* si el determinante de su matriz asociada es positivo.

Una isometría en un espacio afín euclidiano es *positiva* si la aplicación lineal asociada es positiva.

Una isometría en un espacio vectorial euclidiano es *positiva* si el determinante de su matriz asociada es positivo.

Una isometría en un espacio afín euclidiano es *positiva* si la aplicación lineal asociada es positiva.

Proposición

El número de reflexiones que aparecen en la descomposición de una isometría ψ es par si y solo si ψ es positiva.

Una isometría en un espacio vectorial euclidiano es *positiva* si el determinante de su matriz asociada es positivo.

Una isometría en un espacio afín euclidiano es *positiva* si la aplicación lineal asociada es positiva.

Proposición

El número de reflexiones que aparecen en la descomposición de una isometría ψ es par si y solo si ψ es positiva.

Demostración

Solo tenemos que demostrar que el determinante de cualquier reflexión lineal es -1.

Una isometría en un espacio vectorial euclidiano es *positiva* si el determinante de su matriz asociada es positivo.

Una isometría en un espacio afín euclidiano es *positiva* si la aplicación lineal asociada es positiva.

Proposición

El número de reflexiones que aparecen en la descomposición de una isometría ψ es par si y solo si ψ es positiva.

Demostración

Solo tenemos que demostrar que el determinante de cualquier reflexión lineal es

-1. Sea H un hiperplano y $(\overrightarrow{e_1}, \dots, \overrightarrow{e_{n-1}})$ una base ortonormal de H. Sea $\overrightarrow{e_n}$ un vector unitario asociado al subespacio unidimensional ortogonal a H.

Una isometría en un espacio vectorial euclidiano es *positiva* si el determinante de su matriz asociada es positivo.

Una isometría en un espacio afín euclidiano es *positiva* si la aplicación lineal asociada es positiva.

Proposición

El número de reflexiones que aparecen en la descomposición de una isometría ψ es par si y solo si ψ es positiva.

Demostración

Solo tenemos que demostrar que el determinante de cualquier reflexión lineal es -1. Sea H un hiperplano y $(\overrightarrow{e_1}, \dots, \overrightarrow{e_{n-1}})$ una base ortonormal de H. Sea $\overrightarrow{e_n}$ un

vector unitario asociado al subespacio unidimensional ortogonal a H.

Por lo tanto, la matriz M asociada a S_H en la base $(\overrightarrow{e_1},\ldots,\overrightarrow{e_n})$ es la matriz diagonal $M=diag(1,\ldots,1,-1)$, cuyo determinante es $\det(M)=-1$.

• La matriz asociada a cualquier isometría lineal positiva tiene determinante igual a 1, para las demás isometrías el determinante es igual a -1 y se agrupan en un conjunto denotado por $O^-(V)$.

- La matriz asociada a cualquier isometría lineal positiva tiene determinante igual a 1, para las demás isometrías el determinante es igual a -1 y se agrupan en un conjunto denotado por $O^-(V)$.
- ullet El grupo de isometrías linealeses $O(V) = O^+(V) \cup O^-(V)$.

- La matriz asociada a cualquier isometría lineal positiva tiene determinante igual a 1, para las demás isometrías el determinante es igual a -1 y se agrupan en un conjunto denotado por $O^-(V)$.
- ullet El grupo de isometrías linealeses $O(V) = O^+(V) \cup O^-(V)$.
- No es difícil ver que el conjunto $O^+(V)$ con la composición de aplicaciones es un grupo.

- La matriz asociada a cualquier isometría lineal positiva tiene determinante igual a 1, para las demás isometrías el determinante es igual a -1 y se agrupan en un conjunto denotado por $O^-(V)$.
- El grupo de isometrías linealeses $O(V) = O^+(V) \cup O^-(V)$.
- No es difícil ver que el conjunto ${\cal O}^+(V)$ con la composición de aplicaciones es un grupo.
- Dada una base ortonormal de un espacio vectorial euclidiano V de dimensión n, el grupo de isometrías O(V) puede verse como un grupo de isometrías sobre el espacio vectorial euclidiano \mathbb{R}^n , y se denomina grupo ortogonal O(n).

- La matriz asociada a cualquier isometría lineal positiva tiene determinante igual a 1, para las demás isometrías el determinante es igual a -1 y se agrupan en un conjunto denotado por $O^-(V)$.
- El grupo de isometrías linealeses $O(V) = O^+(V) \cup O^-(V)$.
- No es difícil ver que el conjunto ${\cal O}^+(V)$ con la composición de aplicaciones es un grupo.
- Dada una base ortonormal de un espacio vectorial euclidiano V de dimensión n, el grupo de isometrías O(V) puede verse como un grupo de isometrías sobre el espacio vectorial euclidiano \mathbb{R}^n , y se denomina grupo ortogonal O(n).
- A continuación veremos que O(n) es un grupo matricial compuesto por matrices cuadradas del espacio vectorial real $M_n(\mathbb{R})$.

Una matriz A pertenece a O(n) si y solo si $A^tA = Id$.

Una matriz A pertenece a O(n) si y solo si $A^tA = Id$.

Demostración

 (\Leftarrow) Sea A una matriz tal que $A^tA = Id$, y sea $\overrightarrow{x} \in \mathbb{R}^n$.

Una matriz A pertenece a O(n) si y solo si $A^tA = Id$.

Demostración

 (\Leftarrow) Sea A una matriz tal que $A^tA = Id$, y sea $\overrightarrow{x} \in \mathbb{R}^n$. Como A es una matriz ortogonal, los vectores fila de A, digamos $\overrightarrow{u}_1, \ldots \overrightarrow{u}_n$, forman una base ortonormal de \mathbb{R}^n .

Una matriz A pertenece a O(n) si y solo si $A^tA = Id$.

Demostración

(\Leftarrow) Sea A una matriz tal que $A^tA=Id$, y sea $\overrightarrow{x}\in\mathbb{R}^n$. Como A es una matriz ortogonal, los vectores fila de A, digamos $\overrightarrow{u}_1,\ldots\overrightarrow{u}_n$, forman una base ortonormal de \mathbb{R}^n . Por lo tanto, existen $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tales que $\overrightarrow{x}=\sum_{i=1}^n\lambda_i\overrightarrow{u}_i$ y $\|\overrightarrow{x}\|^2=\sum_{i=1}^n\lambda_i^2$.

Una matriz A pertenece a O(n) si y solo si $A^tA = Id$.

Demostración

 (\Leftarrow) Sea A una matriz tal que $A^tA=Id$, y sea $\overrightarrow{x}\in\mathbb{R}^n$. Como A es una matriz ortogonal, los vectores fila de A, digamos $\overrightarrow{u}_1,\ldots\overrightarrow{u}_n$, forman una base ortonormal de \mathbb{R}^n . Por lo tanto, existen $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tales que $\overrightarrow{x}=\sum_{i=1}^n\lambda_i\overrightarrow{u}_i$ y $\|\overrightarrow{x}\|^2=\sum_{i=1}^n\lambda_i^2$. Entonces,

$$||A\overrightarrow{x}||^2 = ||(\overrightarrow{u}_1 \cdot \overrightarrow{x}, \dots, \overrightarrow{u}_n \cdot \overrightarrow{x})^t||^2 = \sum_{i=1}^n \lambda_i^2 = ||\overrightarrow{x}||^2,$$

lo que implica que A pertenece a O(n).

Una matriz A pertenece a O(n) si y solo si $A^tA = Id$.

Demostración

 (\Leftarrow) Sea A una matriz tal que $A^tA=Id$, y sea $\overrightarrow{x}\in\mathbb{R}^n$. Como A es una matriz ortogonal, los vectores fila de A, digamos $\overrightarrow{u}_1,\ldots\overrightarrow{u}_n$, forman una base ortonormal de \mathbb{R}^n . Por lo tanto, existen $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tales que $\overrightarrow{x}=\sum_{i=1}^n\lambda_i\overrightarrow{u}_i$ y $\|\overrightarrow{x}\|^2=\sum_{i=1}^n\lambda_i^2$. Entonces,

$$||A\overrightarrow{x}||^2 = ||(\overrightarrow{u}_1 \cdot \overrightarrow{x}, \dots, \overrightarrow{u}_n \cdot \overrightarrow{x})^t||^2 = \sum_{i=1}^n \lambda_i^2 = ||\overrightarrow{x}||^2,$$

lo que implica que A pertenece a O(n).

 (\Rightarrow) Sea A la matriz asociada a una isometría lineal en la base canónica. Como los vectores columna de A son las imágenes por la isometría de los vectores de la base canónica, y cualquier isometría transforma sistemas ortonormales en sistemas ortonormales, se cumple que $A^tA = Id$.