Polyp Segmentation from Colonoscopy Images

Hui Che

2020.08.27

Paper List

- Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation (MICCAI 2019)
- PraNet: Parallel Reverse Attention Network for Polyp Segmentation (MICCAI 2020)

Colorectal Polyps

Significance

- Colorectal cancer is the third leading cause of cancer-related deaths.
- In clinical practice, segmenting polyps from colonoscopy images is of great importance since it provides **valuable information for diagnosis and surgery**.

Colorectal Polyps

Challenges

- (i) the same type of polyps has a diversity of size, color and texture.
- (ii) the boundary between a polyp and its surrounding mucosa is not sharp

Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation

Yuqi Fang¹, Cheng Chen¹, Yixuan Yuan^{2(\boxtimes)}, and Kai-yu Tong^{1(\boxtimes)}

Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong kytong@cuhk.edu.hk

² Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong yxyuan.ee@cityu.edu.hk

Contributions

- ➤ Challenge 1 =>
 - Optimize the *skip concatenations*.
 - Enrich the *diversity of receptive fields* at each layer.
- ➤ Challenge 2 =>
 - Utilize *area and boundary information simultaneously* in polyp segmentation.
 - Boundary-sensitive loss function.

Network Architecture

Fig. 1. Illustration of the selective feature aggregation network with area-boundary constraints. Numbers in each block represents the number of feature channels. (Color figure online)

Selective Feature Aggregation

Skip concatenations in a parallel manner

Selective Feature Aggregation Selective Kernel Module (SKM)

Fig. 2. Selective Kernel Module (SKM). sq: squeeze; fc: fully connected; ex: excitation.

Boundary-Sensitive Loss

Area Loss:
$$(area ground truth \ label) \qquad L_a = -\sum_i z_i log(m_i) + (1 - \frac{2\sum_i m_i z_i + \varepsilon}{\sum_i m_i + \sum_i z_i + \varepsilon})$$
$$binary \ cross-entropy \ loss \qquad + \quad dice \ loss$$

Boundary Loss:
$$L_b = -\sum_i y_i log(p_i)$$
 (boundary ground truth label)

Area-Boundary Constraint Loss:

- aims to model the dependency between areas and boundaries.

The Chinese University of Hong Kong, Shenzher

Boundary-Sensitive Loss

Area-Boundary Constraint Loss:

Fig. 1. Illustration of the selective feature aggregation network with area-boundary constraints. Numbers in each block represents the number of feature channels. (Color figure online)

$$L_{C1} = -\sum_{i} y_i log(q_i)$$

To minimize the difference between edge detector results and boundary ground truth.

Boundary-Sensitive Loss

Area-Boundary Constraint Loss:

Fig. 1. Illustration of the selective feature aggregation network with area-boundary constraints. Numbers in each block represents the number of feature channels. (Color figure online)

$$L_{C2} = D_{KL}(P||Q) + D_{KL}(Q||P) = -\sum_{i} p_{i}log(\frac{q_{i}}{p_{i}}) - \sum_{i} q_{i}log(\frac{p_{i}}{q_{i}})$$
Kullback-leibler divergence

To minimize the difference between edge detector results and outputs of boundary branch.

Boundary-Sensitive Loss

The Final Loss Function:

$$L_{total} = w_a L_a + w_b L_b + w_{C1} L_{C1} + w_{C2} L_{C2}$$

where w_a , w_b , and w_{C1} are set to 1, w_{C2} is set to 0.5 by empirical studies.

Comparative Experiments

Fig. 3. Polyp segmentation results of different methods.

Comparative Experiments

Table 1. Comparison with different baselines and other state-of-the-art methods. 'UNet': the typical UNet with area branch; 'Up': up-concatenations; 'SKM': selective kernel module; 'bd': two-branch model with L_a and L_b ; ' L_{C1} ': the first constraint loss; 'Ours': the two-branch model with total loss, i.e. L_a , L_b , L_{C1} and L_{C2} .

Methods	Rec	Spec	Prec	Dice	IoU_P	IoU_B	mIoU	Acc
FCN8 [3]	53.38	98.83	78.11	55.70	45.48	93.69	69.59	93.97
FCN8s [2]	62.81	98.08	72.60	58.52	45.99	93.22	69.61	93.56
SegNet [12]	81.70	99.03	85.12	79.29	70.33	95.71	83.02	95.99
UNet++[13]	80.68	99.24	85.31	78.55	69.83	95.71	82.77	95.97
Ours	83.84	99.43	90.19	83.08	76.23	96.44	86.33	96.68
UNet	82.29	99.08	86.13	80.45	72.10	95.84	83.97	96.12
UNet+Up	82.53	99.18	87.13	80.85	72.74	95.88	84.31	96.16
UNet+Up+SKM	82.27	99.37	88.71	81.51	74.41	96.18	85.30	96.41
UNet+Up+SKM+bd	83.30	99.44	90.13	82.61	75.84	96.39	86.12	96.62
$ \text{UNet+Up+SKM+bd+} L_{C1} $	83.51	99.44	90.20	82.97	76.16	96.44	86.30	96.68

PraNet: Parallel Reverse Attention Network for Polyp Segmentation

Deng-Ping Fan¹, Ge-Peng Ji², Tao Zhou¹, Geng Chen¹, Huazhu Fu¹ ⋈, Jianbing Shen¹ ⋈, and Ling Shao^{3,1}

¹ Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.

² School of Computer Science, Wuhan University, Hubei, China.

³ Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE.

{huazhu.fu, jianbing.shen}@inceptioniai.org

https://github.com/DengPingFan/PraNet

Motivation

- The fact: during polyp annotation, clinicians first roughly locate a polyp and then accurately extract its silhouette mask according to the local features.

Strategy

- The *area and boundary* are two key characteristics that distinguish normal tissues and polyps.
- **First** predict *coarse areas* and **then** implicitly *model the boundaries* by means of reverse attention.

Contributions

- ➤ Challenge 1 =>
 - Aggregate the features in high-level layers using a *parallel partial decoder* (PPD).
 - Generate a global map as the initial *guidance area* for the following components.
- ➤ Challenge 2 =>
 - Mine the *boundary cues* using the reverse attention (RA) module.

- > Extra =>
- *Real-time* segmentation efficiency (~50fps).

Fig. 1: Overview of the proposed PraNet, which consists of three reverse attention modules with a parallel partial decoder connection. See § 2 for details.

Feature Aggregating via Parallel Partial Decoder

- **Res2Net-based backbone network** to extract five levels of features;
- Partial decoder $p_d(\cdot)$ to aggregate the high-level features with a paralleled connection.
 - The partial decoder feature is computed by

$$PD = p_d(f_3, f_4, f_5)$$

to obtain a global map S_q .

Reverse Attention Module

An erasing foreground object manner

Reverse Attention Module

Fig. 1: Overview of the proposed *PraNet*, which consists of three reverse attention modules with a parallel partial decoder connection. See § 2 for details.

• Loss Function:

$$\mathcal{L} = \mathcal{L}_{IoU}^w + \mathcal{L}_{BCE}^w$$

the weighted IoU loss + the binary cross entropy (BCE) loss

• **Deep supervision** for the three side-outputs $(S_3, S_4 \text{ and } S_5)$ and the global map S_g .

The Final Loss Function:

$$\mathcal{L}_{total} = \mathcal{L}(G, S_q^{up}) + \sum_{i=3}^{i=5} \mathcal{L}(G, S_i^{up})$$

Experiments – Learning Ability

Table 1: Quantitative results on Kvasir [15] and CVC-612 [2] datasets. 'n/a' denotes that the results are not available. '†' represents evaluation scores from [16].

							_
	Methods	mean Dice	mean IoU	F_{eta}^w	S_{lpha}	E_{ϕ}^{max}	MAE
Kvasir	U-Net (MICCAI'15) [22]	0.818	0.746	0.794	0.858	0.893	0.055
	U-Net++ (TMI'19) [39]	0.821	0.743	0.808	0.862	0.910	0.048
	ResUNet-mod † [35]	0.791	n/a	n/a	n/a	n/a	n/a
ΚV	$ResUNet++^{\dagger}$ [16]	0.813	0.793	n/a	n/a	n/a	n/a
	SFA (MICCAI'19) [10]	0.723	0.611	0.670	0.782	0.849	0.075
	PraNet (Ours)	0.898	0.840	0.885	0.915	0.948	0.030
CVC-612	U-Net (MICCAI'15) [22]	0.823	0.755	0.811	0.889	0.954	0.019
	U-Net++ (TMI'19) [39]	0.794	0.729	0.785	0.873	0.931	0.022
	ResUNet-mod † [35]	0.779	n/a	n/a	n/a	n/a	n/a
	$ResUNet++^{\dagger}$ [16]	0.796	0.796	n/a	n/a	n/a	n/a
	SFA (MICCAI'19) [10]	0.700	0.607	0.647	0.793	0.885	0.042
-	PraNet (Ours)	0.899	0.849	0.896	0.936	0.979	0.009

Experiments – Generalization Capability

Table 2: Quantitative results on CVC-ColonDB [24], ETIS [23], and test set (CVC-T) of EndoScene [25] datasets. SFA [10] results are generated using the released code.

	Methods	mean Dice	mean IoU	F_{eta}^w	${S}_{lpha}$	E_{ϕ}^{max}	MAE
)B	U-Net(MICCAI'15) [22]	0.512	0.444	0.498	0.712	0.776	0.061
ηľ	U-Net++(TMI'19) [39]	0.483	0.410	0.467	0.691	0.760	0.064
ColonDB	SFA (MICCAI'19) [10]	0.469	0.347	0.379	0.634	0.765	0.094
	PraNet (Ours)	0.709	0.640	0.696	0.819	0.869	0.045
	U-Net (MICCAI'15) [22]	0.398	0.335	0.366	0.684	0.740	0.036
	U-Net++ (TMI'19) [39]	0.401	0.344	0.390	0.683	0.776	0.035
ETIS	SFA (MICCAI'19) [10]	0.297	0.217	0.231	0.557	0.633	0.109
	PraNet (Ours)	0.628	0.567	0.600	0.794	0.841	0.031
———	U-Net (MICCAI'15) [22]	0.710	0.627	0.684	0.843	0.876	0.022
G	U-Net++ (TMI'19) [39]	0.707	0.624	0.687	0.839	0.898	0.018
$\sum_{i=1}^{n}$	SFA (MICCAI'19) [10]	0.467	0.329	0.341	0.640	0.817	0.065
	PraNet (Ours)	0.871	0.797	0.843	$\boldsymbol{0.925}$	$\boldsymbol{0.972}$	0.010

Experiments – Training and Inference Analysis

Table 3: Training and inference analysis (same platform) on CVC-ClinicDB [2] dataset. We record the #epochs when the model converges. Lr = learning rate.

	Methods	Epoch	Lr	Training	Inference	mean Dice
12	U-Net (MICCAI'15) [22]	30	3e-4	$\sim 40 \text{ minutes}$	$\sim 8 \mathrm{fps}$	0.823
9-	U-Net++ (TMI'19) [39]	30	3e-4	~ 45 minutes	$\sim 7 \mathrm{fps}$	0.794
Λ	SFA (MICCAI'19) [10]	500	1e-2	>20 hours	$\sim 40 \mathrm{fps}$	0.700
Ö	$PraNet \; (Ours)$	20	1e-4	$\sim \! 30 \mathrm{minutes}$	$\sim\!\!50\mathrm{fps}$	$\boldsymbol{0.899}$

Experiments – Qualitative Results

Fig. 2: Qualitative results of different methods.

Ablation Study

Table 4: Ablation study for *PraNet* on the CVC-612 and CVC300 datasets.

Settings	CVC	$C-612 \; (seen)$		CVC300 (unseen)			
	mean Dice	mean IoU	${S}_{lpha}$	mean Dice	mean IoU	${S}_{lpha}$	
Backbone (No.1)	0.747	0.668	0.735	0.726	0.631	0.670	
PPD + Backbone (No.2)	0.865	0.798	0.902	0.824	0.734	0.893	
RA + Backbone (No.3)	0.888	0.845	0.912	0.871	0.800	0.888	
PPD + RA + Backbone (No.4)	0.899	0.849	0.936	0.871	0.797	0.925	

- Effectiveness of PPD
- Effectiveness of RA
- Effectiveness of PPD & RA

Summary

- Multi-scale information;
- Global and local information;
- Feature selection;
- Boundary and area constraint.

Thanks for watching!

Hui Che

2020.08.27