日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 8月30日

出 願 番 号

Application Number:

特願2002-254734

[ST.10/C]:

[JP2002-254734]

出. 願、人

Applicant(s): 富士写真フイルム株式会社

2003年 4月18日

特許庁長官 Commissioner, Japan Patent Office

特2002-254734

【書類名】

特許願

【整理番号】

P26082J

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

A61B 1/00

【発明者】

【住所又は居所】

神奈川県足柄上郡開成町宮台798番地 富士写真フィ

ルム株式会社内

【氏名】

袴田 和男

【特許出願人】

【識別番号】

000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】

100073184

【弁理士】

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】

100090468

【弁理士】

【氏名又は名称】 佐久間 剛

【手数料の表示】

【予納台帳番号】 008969

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9814441

【プルーフの要否】

【書類名】

明細書

【発明の名称】

摄像装置

【特許請求の範囲】

【請求項1】 撮像により各画素において取得される信号電荷を増倍する電荷増倍部を有し、装置が要求する飽和光量に相当するフルウェルサイズの1/Mのフルウェルサイズを前記各画素が有する固体撮像手段と、

前記固体撮像手段から前記信号電荷の読み出しを所定時間当たりにN回行う読 出手段とを備え、

前記信号電荷に含まれるダークノイズndおよび読出ノイズnrが下記の関係 を満たすことを特徴とする撮像装置。

$$n d (1-1/M) > n r^{2} (N^{2}-1)$$

【請求項2】 さらに下記の関係を満たすことを特徴とする請求項1記載の 撮像装置。

$$n r^2 / n d = 1 / (2 N M^2)$$

【請求項3】 照明光を被測定部まで導光して照射する照射手段と、該照射手段による前記照明光の照射により前記被測定部から発生する光学像を撮像する 請求項1または2記載の撮像装置とを備えたことを特徴とする画像撮像装置。

【請求項4】 前記照射手段および前記撮像装置の一部または全部が、生体内部に挿入される挿入部を有する内視鏡の形態であることを特徴とする請求項3 記載の画像撮像装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、光電子増倍部を有する固体撮像手段を用いた撮像装置およびこの撮像装置を用いた画像撮像装置に関するものである。

[0002]

【従来の技術】

従来より、光学像を電気信号に変換するCCD等の固体撮像素子を用いて、観察部の光学像を撮像する撮像装置が知られている。また、近年、特許文献1に記

載されたような増倍率制御信号に基づいた増倍率で、撮像された信号電荷を増倍する電荷増倍型の固体撮像素子が開発され、この固体撮像素子を搭載することにより、撮像装置の撮像感度の向上および撮像感度の制御が可能となっている。すなわち、光学像の光量が、従来の撮像素子を用いて撮像するには不十分な場合であっても、この固体撮像素子を用いて撮像を行えば、視認可能な画像として表示することができ、また適宜撮像感度を撮像条件に合わせて制御することも可能である。このような電荷増倍手段を備えた電荷増倍型の固体撮像素子は、CMD(Charge Multiplying Detector) - CCDと呼ばれ、強度の電界領域中で電導電子と原子を衝突させ、このイオン化によって生じる電荷増倍効果により信号電荷を増倍し、撮像素子の撮像感度を向上させるものである。

[0003]

電荷増倍型の固体撮像素子においては、電荷増倍手段は、信号電荷を順次信号電圧に変換して出力信号として取り出す電荷検出回路より前段において信号電荷を増倍するため、電荷検出回路において生じる読出ノイズを増倍することがなく、出力信号のS/Nを向上させることができる。したがって、電荷増倍型の固体撮像素子を用いることにより、光学像の光量が不十分な環境下での撮像を行うことがある撮像装置において、出力信号のS/Nの向上が可能となる。

[0004]

また、従来より固体撮像素子を搭載した内視鏡装置が広く用いられている。これらの内視鏡装置は、固体撮像素子により撮像した画像をモニタ等に表示することにより複数の人間が同時に観察することができる利点を有し、また、撮像した画像を表示する前に種々の画像処理を施すことにより、特徴的な画像を強調してモニタ上に表示することもでき、医療の発展に大きく貢献している。

[0005]

一方、近年では、内視鏡の細径化が進み、従来の消化器系に限らず、気管支や 耳鼻咽喉、関節等へも適用されている。しかしながら、内視鏡の細径化にともな い、照明光を伝送するライトガイドの本数も制限されるため、十分な照明光を照 射することがきない場合が生じ、所望の撮像感度で撮像可能な装置の開発が望ま れていた。また、上述した励起光を照射して生体組織が発する蛍光を観察する蛍 光観察等も行われている。生体組織が発する蛍光は微弱であり、撮像不可能な場合も生じるため、所望の撮像感度で撮像可能な装置の開発が待たれていた。これらの問題を解決するために、上記の電荷増倍型の固体撮像素子を、内視鏡装置へ搭載した装置が、特許文献2に開示されている。

[0006]

【特許文献1】

特開平7-176721号公報

[0007]

【特許文献2】

特開2001-29313号公報

[0008]

【発明が解決しようとする課題】

ところで、電荷増倍型の固体撮像素子を用いることにより、S/Nを向上させた出力信号を得ることができるが、その一方で、固体撮像手段において得られる出力データのノイズは、ダークノイズが支配的となる。さらに、高温下で撮影を行ったり、フルウェルサイズの大きい固体撮像素子を用いた場合、さらには信号電荷の読み出し時間が長い状況下においては、信号電荷に含まれるダークノイズが増倍される。この場合、信号電荷が増倍されることによりダークノイズも増倍されてしまい、その結果、読出ノイズを低減させても出力信号のS/Nを向上させることができなくなってしまうという問題がある。

[0009]

このため、固体撮像素子を冷却することが考えられるが、内視鏡のように生体内部に挿入される部分に固体撮像素子を設けた場合、冷却装置の搭載は困難である。 さらには、内視鏡は撮影時に被写体に照明光が照射されるため、照明光による温度の上昇に起因するダークノイズの増大を避けることができないという問題もある。

[0010]

本発明は上記事情に鑑みなされたものであり、電荷増倍型の固体撮像素子を用いた撮像装置において、ノイズを低減してS/Nの良好な出力信号を得ることを

目的とする。

[0011]

【課題を解決するための手段】

本発明による撮像装置は、撮像により各画素において取得される信号電荷を増倍する電荷増倍部を有し、装置が要求する飽和光量に相当するフルウェルサイズの1/Mのフルウェルサイズを前記各画素が有する固体撮像手段と、

前記固体撮像手段から前記信号電荷の読み出しを所定時間当たりにN回行う読 出手段とを備え、

前記信号電荷に含まれるダークノイズndおよび読出ノイズnrが、

nd
$$(1-1/M) > n r^2 (N^2-1)$$

の関係を満たすことを特徴とするものである。

[0012]

「飽和光量」とは、1回の露光によりフルウェルサイズを満たす電荷が発生する光量であり、「フルウェルサイズ」とは、画素に最大まで電荷を蓄積した場合の電子の個数をいう。また、「装置が要求する飽和光量に相当するフルウェルサイズ」とは、撮像装置により設定された、1回の露光により最大でそのサイズの信号電荷を得ることが可能なフルウェルサイズをいう。

[0013]

「所定時間」とは、一般的なテレビレートにおける1フレームの読み出し時間をいう。具体的には、NTSC方式のテレビレートは30フレーム/sec、PAL方式のテレビレートは25フレーム/secであるため、所定時間を1/30秒、あるいは1/25秒とすればよい。

[0014]

なお、本発明による撮像装置においては、さらに、

 $n r^2 / n d = 1 / (2 N M^2)$

の関係を満たすようにしてもよい。

[0015]

本発明による画像撮像装置は、照明光を被測定部まで導光して照射する照射手段と、該照射手段による前記照明光の照射により前記被測定部から発生する光学

像を撮像する本発明による撮像装置とを備えたことを特徴とするものである。

[0016]

なお、本発明による画像撮像装置においては、前記照射手段および前記撮像装置の一部または全部を、生体内部に挿入される挿入部を有する内視鏡の形態であるようにしてもよい。これにより、本発明による画像撮像装置を、内視鏡装置として有効に利用することができる。

[0017]

【発明の実施の形態】

以下図面を参照して本発明の実施形態について説明する。図1は本発明の実施形態による撮像装置を用いた内視鏡装置の構成を示す概略構成図である。図1に示すように、この内視鏡装置は生体観察部9に、照明光であるR光(赤色光)Lr、G光(緑色光)Lg、B光(青色光)Lb、参照光(近赤外光)Lsおよび励起光Leを順次照射して、生体観察部9において反射された反射像および生体観察部9において発生した蛍光像を電荷増倍型のCCD撮像素子により撮像し、観察部の画像をカラー画像としてモニタに表示する面順次方式の内視鏡装置であり、先端に電荷増倍型のCCD撮像素子を備え、患者の病巣と疑われる部位に挿入される内視鏡挿入部100、生体観察部9において得られた情報を表す画像データを処理する画像データ処理部1、および画像データ処理部1において処理された画像データを可視画像として表示するモニタ200から構成される。

[0018]

内視鏡挿入部100は、内部に先端まで延びるライトガイド101およびCC Dケーブル102を備えている。ライトガイド101およびCCDケーブル102の先端部、すなわち内視鏡挿入部100の先端部には、照明光学系103、励起光カットフィルタ104および集光レンズ105を備えている。

[0019]

CCDケーブル102の先端部には、微少な帯域フィルタ要素がモザイク状に組み合わされたモザイクフィルタ108がオンチップされた電荷増倍型のCCD撮像素子106にはプリズム107が取り付けられている。励起光カットフィルタ104は、波長420nm以上の全蛍光を

透過するロングパスフィルタである。ライトガイド101の先端部と反対側の端部は後述する照明ユニット110へ接続されている。なお、CCD撮像素子106は、R光Lr、G光LgおよびB光Lbの照射により生体観察部9において得られた反射像Zr,Zg,Zbと、励起光Leの照射により生体観察部9から発生した蛍光像Zeと、参照光Lsの照射により生体観察部9において得られた反射像Zs(以下これらを光学像と称する)とを撮像し、デジタル値に変換して画像データとして出力するものである。

[0020]

図2はCCD撮像素子106の構成を示す図である。図2に示すように、CCD撮像素子106はフレームトランスファー型のCMD-CCD撮像素子であり、撮像した光学像を信号電荷へ変換する受光部21、信号電荷の一時的蓄積および転送を行う蓄積部22、信号電荷の水平転送を行う水平転送部23、入力された増倍率制御信号に基づいて信号電荷を増倍する電荷増倍部24、および信号電荷を信号電圧へ変更し、増幅して出力端子27から後述する画像処理ユニット130へ出力する出力部25を備えている。

[0021]

受光部21は、光電変換および信号電荷の垂直転送を行う垂直転送CCD31 が縦n個、横n'個並んで構成されている。説明を簡単にするために、図2においては縦3つ横4つの垂直転送CCD31から構成された受光部21を記載しているが、実際のCCD撮像素子106は、縦横ともに、数百個の垂直転送CCD31が設けられている。

[0022]

蓄積部22は、薄い金属膜等により光遮蔽され、信号電荷の一時的蓄積および 垂直転送を行う垂直転送CCD33から構成されている。水平転送部23は、水 平転送CCD35から構成されている。

[0023]

電荷増倍部24は、m個の電荷増倍セル36から構成されている。電荷増倍部 24に入力された信号電荷は、連続したパルス信号である増倍率制御信号に基づ いて、増倍されながら順次転送される。この電荷増倍セル36は、強度の電荷領 域中で伝電子と原子を衝突させ、イオン化によって生じる電荷増倍効果を用いて、入力された電荷を増倍して出力するものであり、その増倍率は、上記増倍率制御信号の信号特性により変化する。なお、図2においては、蓄積部22、水平転送部23および電荷増倍部24も、受光部21と同様に簡略化されて記載されている。

[0024]

出力部25は、信号電荷を信号電圧(出力信号)へ変換する電荷検出部37および出力信号を増幅する出力アンプ38を備えている。

[0025]

ここで、本実施形態においては、CCD撮像素子106の垂直転送CCD33のフルウェルサイズを装置が要求する飽和光量に相当するフルウェルサイズの1/Mとし、所定時間当たりにN回の信号電荷の読み出しを行うものとする。なお、フルウェルサイズを1/Mとするのは、画素サイズ、電荷転送路の大きさ等の寸法に応じてCCD撮像素子106を構成する他のCCDとしてもよい。以下、MおよびNの決定方法について説明する。

[0026]

装置が要求する飽和光量に相当するフルウェルサイズを有するCCD撮像素子において、1回の読み出しにより得られる信号電荷の強度(以下単に出力信号とする)をS、ダークノイズをnd、読出ノイズをnrとすると、出力信号Sに含まれるノイズn0は、下記の式(1)により表される。

【数1】

$$n0 = \sqrt{S + nr^2 + nd} \tag{1}$$

[0027]

ここで、本実施形態においては、1回の露光により蓄積部22からN回の信号電荷の読み出しを行うものであり、N回読み出しを行う際に1回当たりの読み出したより得られる信号に含まれるノイズをn1とすると、ノイズn1は下記の式(2)により表される。

【数2】

$$n1 = \sqrt{\frac{S}{N} + (nr^2 \times N) + \frac{nd}{N}}$$
 (2)

したがって、N回読み出された信号を積算して得られた積算信号に含まれるノイズ<math>n1 は、下記の式(3)により表される。

【数3】

$$n1' = \sqrt{\sum_{N} n1^{2}} = n1 \times \sqrt{N}$$

$$= \sqrt{\frac{S}{N} + (nr^{2} \times N) + \frac{nd}{N}} \times \sqrt{N}$$

$$= \sqrt{S + nr^{2} \times N^{2} + nd}$$
(3)

[0029]

また、本実施形態においては、蓄積部22のフルウェルサイズを、装置が要求するフルウェルサイズの1/Mとしている。ここで、フルウェルサイズを1/Mとし、1回の露光によりN回読み出した場合の1回の読み出しにより得られる信、号に含まれるノイズn2は下記の式(4)により表される。

【数4】

$$n2 = \sqrt{\frac{S}{N} + (nr^2 \times N) + \frac{nd}{N \times M}}$$
 (4)

したがって、N回読み出された信号を積算して得られた積算信号に含まれるノイズniは、下記の式(5)により表される。

【数5】

$$ni = \sqrt{S + nr^2 \times N^2 + \frac{nd}{M}}$$
 (5)

ここで、フルウェルサイズを1/Mとするとともに読み出し回数をN回とした 場合において、積算信号に含まれるノイズが、フルウェルサイズを変更すること なく1回の読み出しを行った場合の信号に含まれるノイズよりも小さいこと、すなわち、nO>niとなることが必要である。したがって、

【数 6】

$$\sqrt{S + nr^2 + nd} > \sqrt{S + nr^2 \times N^2 + \frac{nd}{M}}$$
 (6)

であり、式(6)を変形すると、

【数7】

$$nr^{2} + nd > nr^{2} \times N^{2} + \frac{nd}{M}$$

$$nd\left(1 - \frac{1}{M}\right) > nr^{2}\left(N^{2} - 1\right)$$
 (7)

となる。よって、式(7)の関係を満たすように、MおよびNを設定することにより、得られる信号のS/Nの向上することができる。

さらに、ノイズが最小となるMおよびNの条件を考える。式(5)をM,Nについてそれぞれ微分すると、

【数8】

$$\frac{dni}{dM} = \frac{d}{dM} \sqrt{S + nr^2 \cdot N^2 + \frac{nd}{M}}$$

$$= \frac{-1}{\left[2 \cdot \left(S + nr^2 \cdot N^2 + \frac{nd}{M}\right)^{\left(\frac{1}{2}\right)}\right]} \cdot \frac{nd}{M^2}$$

$$\frac{dni}{dN} = \frac{d}{dN} \sqrt{S + nr^2 \cdot N^2 + \frac{nd}{M}}$$

$$= \frac{1}{\left(S + nr^2 \cdot N^2 + \frac{nd}{M}\right)^{\left(\frac{1}{2}\right)}} \cdot nr^2 \cdot N$$

となる。

【数9】

 $\frac{\partial ni}{\partial N} + \frac{\partial ni}{\partial M} = 0$ の関係が成立することが必要であるため、

$$\frac{-1}{\left[2\cdot\left(S+nr^2\cdot N^2+\frac{nd}{M}\right)^{\left(\frac{1}{2}\right)}\right]}\cdot\frac{nd}{M^2}+\frac{1}{\left(S+nr^2\cdot N^2+\frac{nd}{M}\right)^{\left(\frac{1}{2}\right)}}\cdot nr^2\cdot N=0$$

となり、これを変形すると、

【数10】

$$\frac{1}{2} \cdot \frac{\left(-\text{nd} + 2 \cdot \text{nr}^2 \cdot \text{N} \cdot \text{M}^2\right)}{\left[\left[\frac{\left(\text{S} \cdot \text{M} + \text{nr}^2 \cdot \text{N}^2 \cdot \text{M} + \text{nd}\right)}{\text{M}}\right]^{\left(\frac{1}{2}\right)} \cdot \text{M}^2\right]} = 0$$

となる。

[0033]

ここで、分母は常に0よりも大きいため、分子=0すなわち、

【数11】

$$0 = nd + 2 \cdot nr^2 \cdot N \cdot M^2$$

であることが必要である。したがって、

【数12】

$$\frac{\operatorname{nr}^{2}}{\operatorname{nd}} = \frac{1}{2N \cdot M^{2}}$$

の時にノイズが最小となる。

なお、MおよびNの値を種々変更した場合のノイズ特性を図3〜図6に示す。 なお、図3〜図6において、縦軸は1画素当たりのノイズであり、数値は、(信 号量, 読出ノイズ, 素子温度, 露光時間, 読み出し時間, 分割数, 読み出し回数) を表す。なお、縦軸の値10は、フルウェルサイズを変更することなく1回の読み出しを行った場合の信号強度に含まれるノイズを表す。

[0035]

図7はモザイクフィルタ108の構成を示す図である。図7に示すように、モザイクフィルタ108は、400nm~900nmの波長域の光を透過させる広帯域フィルタ要素108aおよび430nm~530nmの波長域の光を透過させる狭帯域フィルタ要素108bが交互に組み合わされ、各帯域フィルタ要素108a,108bはCCD撮像素子106の画素に一対一で対応している。

[0036]

画像データ処理部1は、照明光を射出する照明ユニット110、画像データを表示するための画像処理を行う画像処理ユニット130、CCD撮像素子106の動作を制御するCCDコントローラ140、および各ユニットとCCDコントローラ140との制御を行うコントローラ150から構成されている。

[0037]

照明ユニット110は、白色光を射出するキセノンランプからなる白色光源11、白色光源111に電気的に接続されている光源用電源112、および白色光源111から射出される白色光を集光する集光レンズ113、白色光をR光、G光、B光、参照光および励起光に順次色分解するための回転フィルタ114、および回転フィルタ114を回転させるモータ115を備えている。

[0038]

図8は回転フィルタの構成を示す図である。図8に示すように、回転フィルタ 114は、R,G,B、750nm~900nmの近赤外域(IR)および41 0nmの励起光の波長域の光を透過するフィルタ要素114a~114e並びに 光を遮光する遮光要素114fからなる。

[0039]

なお、回転フィルタ114が回転することにより、R,G,B、近赤外光および励起光の生体観察部9への照射並びに遮光のサイクルが繰り返される。ここで、生体観察部9にR光Lr、G光Lg、B光Lbおよび参照光Lsが照射されて

いる間は、モザイクフィルタ108の広帯域フィルタ要素108aを透過した光学像のみをCCD撮像素子106において検出し、励起光Leが照射されている間は広帯域フィルタ要素108aおよび狭帯域フィルタ要素108bをそれぞれ透過した蛍光像をCCD撮像素子106において検出する。

[0040]

ここで、各光の生体観察部 9 への照射時間が、テレビレートの1 フレームに相当する時間(例えば1/3 0 秒、1/2 5 秒)となるように、回転フィルタ 1 1 4 がモータ 1 1 5 により回転される。

[0041]

CCDコントローラ140は、CCD撮像素子106の動作タイミングを制御する動作制御信号および電荷増倍部24における増倍率を制御する増倍率制御信号を出力するものである。使用者により設定された所望のピーク値を有する増倍率制御信号を出力することにより、電荷増倍部24での電荷増倍率を制御することができる。ここで、CCDコントローラ140は、CCD撮像素子106から1回の露光当たりにN回の信号電荷の読み出しを行うよう動作制御信号を出力する。

[0042]

画像処理ユニット130は、CCD撮像素子106において得られた信号のプロセス処理を行う信号処理回路131、信号処理回路131において得られた画像データをデジタル化するA/D変換回路132、反射像Zr,Zg,Zbから得られた画像データを各色毎に保存する画像メモリ133、後述するように蛍光像Zeから得られた広帯域蛍光画像を表す広帯域蛍光画像データと狭帯域蛍光画像を表す狭帯域蛍光画像データとをそれぞれ保存する蛍光画像メモリ135、反射像Zsから得られた参照画像データを保存する画像メモリ136、広帯域蛍光画像データにより表される広帯域蛍光画像および狭帯域蛍光画像データにより表される狭帯域蛍光画像の対応する各画素値の比率を算出して演算値を得、この演算値にその値の大きさに応じた色情報を割り当てて色画像を表す色画像データを生成しの大きさに応じた海度情報を割り当てて四度画像を表す輝度画像データを生成しの大きさに応じた輝度情報を割り当てて輝度画像を表す輝度画像データを生成し

、色画像データおよび輝度画像データを合成して蛍光診断画像を表す合成画像データを生成して出力する画像生成回路137、および画像メモリ133から同時化されて出力された3色の画像データ、および画像生成回路137において生成された合成画像データをビデオ信号に変換して出力するビデオ信号処理回路134を備えている。

[0043]

なお、画像生成回路137は、画像メモリ136に記憶された参照画像データにより表される参照画像と、蛍光画像メモリ135の広帯域蛍光画像データにより表される広帯域蛍光画像または狭帯域蛍光画像データにより表される狭帯域蛍光画像との対応する各画素値の比率を算出して演算値を得、この演算値にその値の大きさに応じた色情報を割り当てて色画像を表す色画像データを生成するものであってもよい。

[0044]

以下、本実施形態による内視鏡装置の作用について説明する。本実施形態による内視鏡装置においては、反射像Zr,Zg,Zbの撮像、反射像Zsの撮像、および蛍光像Zeの撮像が時分割で行われ、反射像Zr,Zg,Zbに基づいた 通常画像11および反射像Zsおよび蛍光像Zeに基づいた蛍光診断画像13がモニタ200に表示される。各光学像を時分割で撮像するために、照明ユニット110における回転フィルタ114を回転させ、白色光源111から射出される白色光を、回転フィルタ114を透過させることにより、R光Lr、G光Lg、B光Lb、参照光Lsおよび励起光Leが順次生体観察部9に照射される。

[0045]

まず、通常画像11を表示する際の動作を説明する。白色光源111から射出された白色光が回転フィルタ114におけるフィルタ要素114aを透過してR光Lrとなり、このR光Lrがライトガイド101により導光され、さらに照明光学系103を透過して生体観察部9に照射される。

[0046]

生体観察部9において反射されたR光Lrによる反射像Zrは集光レンズ105により集光され、励起光カットフィルタ104を透過してプリズム107によ

り反射され、モザイクフィルタ108の広帯域フィルタ要素108aを透過して CCD撮像素子106上に結像される。

[0047]

CCD撮像素子106においては、受光部10の垂直転送CCD31により反射像Zrが受光され、光電変換されて光の強弱に応じた電気信号に変換される。

[0048]

テレビレートの1フレームに相当する所定時間が経過すると、回転フィルタ114が回転して白色光源111から射出される白色光の光路上にあるフィルタ要素がR光用のフィルタ要素114bに切り替わる。この所定時間が経過する間、蓄積部22からN回の信号電荷の読み出しが行われる。以下、1回の読み出し動作について説明する。まず、垂直転送CCD31に蓄積された信号電荷は、蓄積部22の垂直転送CCD33へ転送される。

[0049]

蓄積部22の垂直転送CCD33に転送された信号電荷は、並列に垂直転送され、水平転送部23の水平転送CCD35に順次送り込まれる。

[0050]

水平転送部23では、横1ラインの画素の信号電荷が入ると、信号電荷は水平 方向に転送され、順次電荷増倍部24の電荷増倍セル36へ転送される。電荷増 倍セル36において、信号電荷は増倍率制御信号に基づいて増倍されながら順次 転送される。最後の電荷増倍セル36から右端に設けられた出力部25へ出力さ れた信号電荷は、電荷検出部37において信号電圧へ変換され、出力アンプ38 で増幅されて、出力端子27から出力信号として出力される。

[0051]

その後、次の横1ラインの信号電荷が、蓄積部22から水平転送部23へ転送される。このような動作を繰り返すことにより、受光部10の左下の画素から右方向へ順次信号電荷が読み出され、横1ラインの信号電荷が読み出されると、次にその上の横1ラインの信号電荷が読み出され、順番に移動して、1回の読み出し動作においてR画像を形成する信号電荷が出力信号として読み出される。なお、CCD撮像素子106における撮像動作は、CCDコントローラ140から入

力された動作制御信号に基づいて実行されている。

[0052]

CCD撮像素子106より出力された1回分の出力信号は、画像処理ユニット130の信号処理回路131においてプロセス処理が施されてA/D変換回路132においてデジタル信号に変換され、画像メモリ133のR画像データの記憶領域へ記憶される。そして、画像メモリ133においてN回分の出力信号が積算されて、積算された出力信号からなるR画像データが画像メモリ133の記憶領域に記憶される。

[0053]

以後、同様の動作によりG画像データおよびB画像データが取得され、画像メモリ133のG画像データの記憶領域およびB画像データの記憶領域にそれぞれ記憶される。

[0054]

3色の画像データが画像メモリ133に記憶されると、表示タイミングに合わせて同時化されて出力され、ビデオ信号処理回路134においてビデオ信号に変換されてモニタ200に出力され、カラー画像である通常画像11として表示される。

[0055]

次に蛍光診断画像13を表示する際の動作を説明する。回転フィルタ114はコントローラ150からの信号に基づいて引き続き回転されており、フィルタ要素114cに続いてフィルタ要素114dが白色光源111から射出される白色光の光路上に位置する。これにより、生体観察部9には近赤外光である参照光Lsが照射される。

[0056]

生体観察部9において反射された参照光Lsの反射像Zsは、集光レンズ105により集光され、励起光カットフィルタ104を透過してプリズム107により反射され、モザイクフィルタ108の広帯域フィルタ要素108aを透過してCCD撮像素子106上に結像される。

[0057]

CCD撮像素子106においては反射像Zsが受光され、光電変換されて電気信号に変換され、上記と同様にして画像処理ユニット130に入力される。画像処理ユニット130に入力された電気信号は、信号処理回路131においてプロセス処理が施されてA/D変換回路132においてデジタル信号に変換され、画像メモリ136へ参照画像データとして記憶される。

[0058]

次に励起光Leによる蛍光像Zeを撮像する際の動作を説明する。回転フィルタ114はコントローラ150からの信号に基づいて引き続き回転されており、フィルタ要素114dに続いてフィルタ要素114eが白色光源111から射出される白色光の光路上に位置する。これにより、生体観察部9には励起光Leが照射される。

[0059]

励起光Leが照射されることにより生じる生体観察部9からの蛍光像Zeは、 集光レンズ105により集光され、励起光カットフィルタ104を透過してプリズム107により反射され、モザイクフィルタ108の広帯域フィルタ要素108aおよび狭帯域フィルタ要素108bをそれぞれ透過してCCD撮像素子106上に結像される。

[0060]

CCD撮像素子106においては蛍光像Zeが受光され、広帯域フィルタ要素108aおよび狭帯域フィルタ要素108bにそれぞれ対応する画素毎に光電変換されて電気信号に変換され、上記と同様にして画像処理ユニット130に入力される。画像処理ユニット130に入力された電気信号は、信号処理回路131においてプロセス処理が施されてA/D変換回路132においてデジタル信号に変換され、蛍光画像メモリ135へ広帯域蛍光画像データおよび狭帯域蛍光画像データとして記憶される。

[0061]

広帯域蛍光画像データおよび狭帯域蛍光画像データが得られると、画像生成回路137では、相対応する画素において広帯域蛍光画像データおよび狭帯域蛍光 画像データの信号強度の比率を算出し、その比率に対して色情報を割り当てて色 画像データを得、さらに参照画像データの信号強度に輝度情報を割り当てて輝度画像データを得、これらを合成して合成画像データを生成し、ビデオ信号処理回路134では、合成画像データをビデオ信号に変換しモニタ200に出力する。モニタ200には、疑似カラー画像である蛍光診断画像13が表示される。

[0062]

なお、蛍光診断画像13は、広帯域蛍光画像データの信号強度と狭帯域蛍光画像データの信号強度の相対的比率の変化に応じて表示色が変化し、参照画像データの信号強度に応じて輝度が変化する疑似カラーで表示されている。正常組織から発せられた蛍光と、病変組織から発せられた蛍光の表示色の差異が明らかになるような疑似カラーを設定することにより、例えば正常組織から発せられた蛍光を白色に表示し、病変組織から発せられた蛍光はピンクあるいは他の色として表示できる。このため、観察者は病変組織を容易に認識することができる。また、参照画像データの信号強度に応じて輝度が異なるため、生体観察部9の凹凸や、距離感を備えた蛍光診断画像を表示することができる。

[0063]

このように、本実施形態においては、CCD撮像素子106のフルウェルサイズを、装置が要求する飽和光量に相当するフルウェルサイズの1/Mとし、1回の照明光の照射中にN回の信号電荷の読み出しを行うに際し、nd(1-1/M)>nr²(N²-1)の関係が成立するようにしたものである。ここで、フルウェルサイズを小さくすると、ダークノイズを小さくすることができるものの、照明光の光量が大きい場合に信号電荷が飽和してしまう。これに対して、本実施形態のように複数回の読み出しを行えば信号電荷の飽和を回避することができる。一方、読出ノイズが大きい場合に複数回の読み出しを行うことにより得られた信号電荷を積算すると、得られる出力信号に含まれるノイズが大きくなってしまう

[0064]

本実施形態においては、 $n d (1-1/M) > n r^2 (N^2-1)$ の関係が成立 するようにしたため、ダークノイズを低減できるとともに、読出ノイズをも低減 することができ、これによりノイズの少ない出力信号を得ることができ、その結果、高画質の通常画像 1 1 および蛍光診断画像 1 3 をモニタ 2 0 0 に表示することができる。

[0065]

[0066]

通常、フィルタサイズが6万電子のCCD撮像素子のダークノイズは、素子温度55度で2000電子であるため、読出ノイズが8.2電子以下であればノイズを低減できる。ここで、電荷増倍型のCCD撮像素子のように読出ノイズが非常に小さい撮像素子においては、読出ノイズを1電子以下とすることが可能であり、そのように読出ノイズを小さくすることにより、出力信号に含まれるノイズを低減することができる。

[0067]

また、通常、CCD撮像素子はフルウェルサイズが数万電子であり、その画素サイズは数ミクロン角である。本実施形態のように、フルウェルサイズを1/Mとすると、画素サイズを1/Mとすることができ、その結果、撮像素子のサイズを $1/M^2$ とすることができる。したがって、CCD撮像素子のサイズを小さくすることができ、その結果、本発明による撮像素子を内視鏡装置に適用した場合に、内視鏡を細径化することができる。

[0068]

また、CCD撮像素子のサイズを小さくすることができるため、CCD撮像素子を製造する際に、1枚のウェハーから得られるCCD撮像素子の数を大きくすることができ、これにより、CCD撮像素子の生産効率を向上させることができる。

[0069]

なお、上記実施形態においては、内視鏡装置に本発明を適用しているが、内視 鏡装置以外の他の撮影装置にも本発明を適用することができる。

【図面の簡単な説明】

【図1】

本発明の実施形態による撮像装置を用いた内視鏡装置の構成を示す概略構成図 【図2】

CCD撮像素子の構成を示す図

【図3】

MおよびNの値を種々変更した場合のノイズ特性を示す図 (その1) 【図4】

MおよびNの値を種々変更した場合のノイズ特性を示す図 (その2) 【図5】

MおよびNの値を種々変更した場合のノイズ特性を示す図 (その3) 【図6】

MおよびNの値を種々変更した場合のノイズ特性を示す図 (その4) 【図7】

モザイクフィルタの構成を示す図

【図8】

回転フィルタの構成を示す図

【符号の説明】

- 1 画像データ処理部
- 9 生体観察部
- 11 通常画像
- 13 蛍光診断画像
- 100 内視鏡挿入部
- 106 ССD撮像素子
- 108 モザイクフィルタ
- 110 照明ユニット
- 130 画像処理ユニット
- 140 ССDコントローラ
- 150 コントローラ

200 モニタ

【書類名】

図面

【図1】

【図2】

【図3】

【図5】

【図6】

【図7】

【図8】

【書類名】

要約書

【要約】

【課題】 内視鏡装置等の撮影装置において、電荷増倍型の固体撮像装置を用いた場合であっても、ダークノイズの影響を低減してS/Nの良好な出力信号を得る。

【解決手段】 内視鏡挿入部 100 の先端に設けた CCD 撮像素子 106 を電荷増倍型の撮像素子とする。CCD 撮像素子 106 のフルウェルサイズを装置が要求する飽和光量に相当するフルウェルサイズの 1 / Mとし、CCD 撮像素子 106 からテレビレートの 1 フレームに相当する所定時間当たりに 1 回の読み出しを行う。さらに、信号電荷に含まれるダークノイズ 1 d および読出ノイズ 1 r の関係が、1 n d 1 (1 - 1 / M) 1 n r 1 (1 0 の関係を満たすようにする。

【選択図】

図 1

認定・付加情報

特許出願の番号

特願2002-254734

受付番号

50201300161

書類名

特許願

担当官

第一担当上席

0090

作成日

平成14年 9月 2日

<認定情報・付加情報>

【提出日】

平成14年 8月30日

【特許出願人】

【識別番号】

000005201

【住所又は居所】

神奈川県南足柄市中沼210番地

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

申請人

【識別番号】

100073184

【住所又は居所】

神奈川県横浜市港北区新横浜3-18-3 新横

浜KSビル 7階

【氏名又は名称】

柳田 征史

【選任した代理人】

【識別番号】

100090468

【住所又は居所】

神奈川県横浜市港北区新横浜3-18-3 新樟

浜KSビル 7階

【氏名又は名称】

佐久間 剛

出願人履歴情報

識別番号

[000005201]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名

富士写真フイルム株式会社