Midterm report: Heartdisease

Shuangyi Tan s1889983

Shuangyi Tan's dataset is about heart disease. And it came from Kaggle.

The source dataset is publicly available on the Kaggle website from an ongoing cardiovascular study of residents of Framingham, Massachusetts. The purpose of the classification is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD).[1]

Data processing and analysis

1. import librarys and supress Warnings

```
[3]: import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import scipy.stats as st
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.tools import add_constant as add_constant
```

2. Read the data, drop some information, rename columns

```
[4]: heart_df=pd.read_csv("framingham_heart_disease.csv")
    heart_df.head()
[4]:
       male
             age
                  education currentSmoker
                                              cigsPerDay
                                                          BPMeds prevalentStroke
              39
                                                     0.0
    0
          1
                         4.0
                                           0
                                                              0.0
                                                                                  0
                                                     0.0
    1
          0
              46
                         2.0
                                           0
                                                              0.0
                                                                                  0
    2
          1
              48
                         1.0
                                                    20.0
                                                              0.0
                                                                                  0
                                           1
                                                    30.0
    3
          0
              61
                         3.0
                                           1
                                                              0.0
                                                                                  0
          0
              46
                                                    23.0
                         3.0
                                           1
                                                              0.0
                                                                                  0
                                                 diaBP
       prevalentHyp
                     diabetes
                                totChol
                                          sysBP
                                                          BMI heartRate
                                                                           glucose
                                  195.0
                                         106.0
                                                  70.0
                                                        26.97
                                                                     80.0
                                                                               77.0
    0
                  0
                             0
    1
                  0
                             0
                                  250.0 121.0
                                                  81.0
                                                        28.73
                                                                     95.0
                                                                               76.0
    2
                  0
                             0
                                  245.0 127.5
                                                  80.0
                                                        25.34
                                                                     75.0
                                                                               70.0
    3
                             0
                                                                     65.0
                                                                              103.0
                  1
                                  225.0 150.0
                                                  95.0 28.58
    4
                                  285.0 130.0
                  0
                             0
                                                  84.0 23.10
                                                                     85.0
                                                                               85.0
       TenYearCHD
    0
                0
    1
    2
                0
    3
                1
                0
```

[5]:	heart_	df.describe()					
[5]:		male	age	education	currentSmoker	cigsPerDay \	
	count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	
	mean	0.429212	49.584946	1.978950	0.494101	9.003089	
	std	0.495022	8.572160	1.019791	0.500024	11.920094	
	min	0.000000	32.000000	1.000000	0.000000	0.000000	
	25%	0.000000	42.000000	1.000000	0.000000	0.000000	
	50%	0.000000	49.000000	2.000000	0.000000		
	75%	1.000000	56.000000	3.000000	1.000000	20.000000	
	max	1.000000	70.000000	4.000000	1.000000	70.000000	
		BPMeds	prevalentStr	_		tes totChol	\
	count	4185.000000	4238.000	000 4238.00	0000 4238.000	000 4188.000000	
	mean	0.029630	0.005		0524 0.025	720 236.721585	
	std	0.169584	0.076		2763 0.158		
	min	0.000000	0.000		0.000		
	25%	0.000000	0.000		0.000		
	50%	0.000000	0.000		0.000		
	75%	0.000000	0.000		0.000		
	max	1.000000	1.000	000 1.00	1.000	000 696.000000	
		sysBP	diaBP	BMI	heartRate	glucose \	
	count	4238.000000	4238.000000	4219.000000	4237.000000	3850.000000	
	mean	132.352407	82.893464	25.802008	75.878924	81.966753	
	std	22.038097	11.910850	4.080111	12.026596	23.959998	
	min	83.500000	48.000000	15.540000	44.000000	40.000000	
	25%	117.000000	75.000000	23.070000	68.000000	71.000000	
	50%	128.000000	82.000000	25.400000	75.000000	78.000000	
	75%	144.000000	89.875000	28.040000	83.000000	87.000000	
	max	295.000000	142.500000	56.800000	143.000000	394.000000	
		TenYearCHD					
	count	4238.000000					
	mean	0.151958					
	std	0.359023					
	min	0.000000					
	25%	0.000000					
	50%	0.000000					
	75%	0.000000					
	max	1.000000					

From above, we could see that the original dataset has 14 variables, 2 classes and 4238 samples. From original dataset description, we have:

Demographic:

Sex: male or female(Nominal)

Age: Age of the patient; (Continuous - Although the recorded ages have been truncated to whole numbers, the concept of age is continuous)

Behavioral:

Current Smoker: whether or not the patient is a current smoker (Nominal)

Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.)

Medical(history):

BP Meds: whether or not the patient was on blood pressure medication (Nominal)

Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)

Prevalent Hyp: whether or not the patient was hypertensive (Nominal)

Diabetes: whether or not the patient had diabetes (Nominal)

Tot Chol: total cholesterol level (Continuous)

Sys BP: systolic blood pressure (Continuous)

Dia BP: diastolic blood pressure (Continuous)

BMI: Body Mass Index (Continuous)

Heart Rate: heart rate (Continuous - In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.)

Glucose: glucose level (Continuous) Predict variable (desired target)

Class:

10 year risk of coronary heart disease CHD (binary: "1", means "Yes", "0" means "No")

```
[6]: heart_df.drop(['education'],axis=1,inplace=True)
  heart_df.rename(columns={'male':'Sex_male'},inplace=True)
```

From basic information, we could know education has nearly no relationship with heart disease. so we drop it here. ### 3. Handle the missing values

Total number of rows with missing values is 489 since it is only 12 percent of the entire dataset the rows with missing values are excluded.

[7]: Sex_male currentSmoker cigsPerDay **BPMeds** diabetes totChol prevalentStroke prevalentHyp sysBP diaBP BMI heartRate glucose TenYearCHD 3749.000000 3749.000000 3749.000000 3749.000000 count 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 3749.000000 0.445185 0.488397 0.030408 mean 49.578821 9.005335 0.005601 236.952787 0.311816 0.027207 132.365964 82.933716

25.809651	75.703921	81.883169	0.152574		
std	0.497053	8.569322	0.499932	11.922440	0.171730
0.074643	0.463297	0.162709	44.610417	22.051951	11.933321
4.065894	11.957763	23.888039	0.359624		
min	0.000000 35	2.000000	0.000000	0.00000	0.000000
0.000000	0.000000	0.000000	113.000000	83.500000	48.000000
15.540000	44.000000	40.000000	0.000000		
25%	0.000000 45	2.000000	0.000000	0.00000	0.000000
0.000000	0.000000	0.000000	206.000000	117.000000	75.000000
23.090000	68.000000	71.000000	0.000000		
50%	0.000000 49	9.000000	0.000000	0.00000	0.000000
0.000000	0.000000	0.000000	234.000000	128.000000	82.000000
25.410000	75.000000	78.000000	0.000000		
75%	1.000000 50	6.000000	1.000000	20.000000	0.000000
0.000000	1.000000	0.000000	264.000000	144.000000	90.000000
28.060000	82.000000	87.000000	0.000000		
max	1.000000 70	0.00000	1.000000	70.000000	1.000000
1.000000	1.000000	1.000000	696.000000	295.000000	142.500000
56.800000	143.000000	394.000000	1.000000		

Firstly, we check the proportion of missing values and find that total number of rows with missing values is 489, which is 12 percent of entire dataset.

As a result, here we do the complete analysis for the dataset, which means that we drop all samples with missing values.

Then we will have a dataset with values all observed. The new dataset has 3749 samples.

4. Add a constant

Here we add a constant for each sample, which make things more convenient for using several models.

```
[8]: heart_df_constant = add_constant(heart_df)
heart_df_constant.head()
```

[8]:	C	onst	Sex_	$_{\mathtt{male}}$	age cu	rrentSmo	oker ci	gsPerDay B	PMeds prev	alentStroke
	preva	alent	Нур	diabete	es tot	Chol sy	sBP dia	aBP BMI	heartRate	glucose
	TenYearCHD									
	0	1.0		1	39		0	0.0	0.0	0
	0		0	195.0	106.0	70.0	26.97	80.0	77.0	0
	1	1.0		0	46		0	0.0	0.0	0
	0		0	250.0	121.0	81.0	28.73	95.0	76.0	0
	2	1.0		1	48		1	20.0	0.0	0
	0		0	245.0	127.5	80.0	25.34	75.0	70.0	0
	3	1.0		0	61		1	30.0	0.0	0
	1		0	225.0	150.0	95.0	28.58	65.0	103.0	1
	4	1.0		0	46		1	23.0	0.0	0
	0		0	285.0	130.0	84.0	23.10	85.0	85.0	0

5. Choose relative features we need to use

```
[9]: st.chisqprob = lambda chisq, df: st.chi2.sf(chisq, df)
   cols = heart_df_constant.columns[:-1]
   model = sm.Logit(heart_df.TenYearCHD,heart_df_constant[cols])
   result = model.fit()
   print(result.summary())
   # Define back_feature_selection
   def back_feature_elem (data_frame,dep_var,col_list):
       while len(col_list)>0 :
           model = sm.Logit(dep_var,data_frame[col_list])
           result = model.fit(disp=0)
           largest_pvalue = round(result.pvalues,3).nlargest(1)
           if largest_pvalue[0]<(0.05):</pre>
               return result
               break
           else:
               col_list=col_list.drop(largest_pvalue.index)
   # Use back_feature_selection to select features, if p > 0.05, we delete the
    \rightarrow feature
   result=back_feature_elem(heart_df_constant,heart_df.TenYearCHD,cols)
   #Interpreting the results: Odds Ratio, Confidence Intervals and Pvalues
   params = np.exp(result.params)
   conf = np.exp(result.conf_int())
   conf['OR'] = params
   pvalue=round(result.pvalues,3)
   conf['pvalue']=pvalue
   conf.columns = ['CI 95%(2.5%)', 'CI 95%(97.5%)', 'Odds Ratio', 'pvalue']
   print (conf)
   new_features=heart_df[['age','Sex_male','cigsPerDay','totChol','sysBP','glucose','TenYearCHD']]
   Optimization terminated successfully.
           Current function value: 0.377199
           Iterations 7
                             Logit Regression Results
   ______
```

TenYearCHD No. Observations: Dep. Variable: 3749 Model: Logit Df Residuals: 3734 Method: MLE Df Model: 14 Mon, 11 Nov 2019 Pseudo R-squ.: Date: 0.1169 23:12:32 Log-Likelihood: Time: -1414.1 converged: True LL-Null: -1601.4 Covariance Type: nonrobust LLR p-value: 2.922e-71

===					
7	coef	std err	z	P> z	[0.025
0.975]					
	-8.6463	0.687	-12.577	0.000	-9.994
const -7.299	-0.0403	0.007	-12.577	0.000	-9.994
Sex_male	0.5740	0.107	5.343	0.000	0.363
0.785	0.0740	0.101	0.010	0.000	0.000
age	0.0640	0.007	9.787	0.000	0.051
0.077					
currentSmoker	0.0732	0.155	0.473	0.636	-0.230
0.376					
cigsPerDay	0.0184	0.006	3.003	0.003	0.006
0.030					
BPMeds	0.1446	0.232	0.622	0.534	-0.311
0.600					
prevalentStroke	0.7191	0.489	1.471	0.141	-0.239
1.677					
${\tt prevalentHyp}$	0.2146	0.136	1.574	0.116	-0.053
0.482					
diabetes	0.0025	0.312	0.008	0.994	-0.609
0.614					
totChol	0.0022	0.001	2.074	0.038	0.000
0.004	0.0450	0.004	4 000		
sysBP	0.0153	0.004	4.080	0.000	0.008
0.023 diaBP	-0.0039	0.006	0.610	0 526	0.016
0.009	-0.0039	0.006	-0.619	0.536	-0.016
BMI	0.0103	0.013	0.820	0.412	-0.014
0.035	0.0105	0.015	0.020	0.412	-0.014
heartRate	-0.0023	0.004	-0.550	0.583	-0.010
0.006					
glucose	0.0076	0.002	3.408	0.001	0.003
0.012					
=======================================	========			======	
===					
CI		95%(97.5%)	Odds Ratio	pvalue	
const	0.000044	0.000274	0.000109	0.000	
Sex_male	1.454877	2.198166	1.788313	0.000	
age	1.054409	1.080897	1.067571	0.000	
cigsPerDay	1.011730	1.028128	1.019896	0.000	
totChol	1.000150	1.004386	1.002266	0.036	
sysBP	1.013299	1.021791	1.017536	0.000	
glucose	1.004343	1.010895	1.007614	0.000	

Feature Selection: Backward elemination (P-value approach) Here we use backward elemination to select relative features.

Statistically speaking, if some attributes have the P values are higher than the preferred alpha (5%), there is a very low statistically significant relationship between these attributes and the probability of heart disease.

The backward elimination method is used to delete those attributes with the highest P value at a time, and then run the learning repeatedly until the P values of all the attributes are less than 0.05.

So finally we choose 'age', 'Sex_male', 'cigsPerDay', 'totChol', 'sysBP' and 'glucose' these six features which are most relative to the heart disease due to the low p-values. We use these six features and the class variable to form a new dataset named 'new_features' here.

6. Plot basis features of new dataset

```
[10]: import seaborn as sns
  plt.figure(figsize=(8,6))
  sns.countplot(x='TenYearCHD',data=new_features)
  plt.title('Number of people in each class')
  plt.ylabel('Number of People')
  plt.savefig('Class.png')
  plt.show()

print()
  count = new_features.TenYearCHD.value_counts()
  print(count)
  print()
```


0 3177 1 572

Name: TenYearCHD, dtype: int64

Firstly, from what is stated above, there are 2 classes. 0 shows that the participant has no has 10-year risk of future coronary heart disease(CHD) and 1 otherwise. From the result above, we could see that the dataset is extremely unbalanced.

```
[11]: plt.figure(figsize=(10,6))
    sns.heatmap(new_features.corr(),cmap='YlGn',annot=True)
    plt.savefig('Corr.png')
    plt.show()
```


From the graph above, we could see that the correlation between features are small, which means that the features we choose here describe the dataset to the utmost extent.

From the pairplot above, we could see that the data is very mixed in every dimension. That is, the problem here is a complex problem, which means that the classifier can't easily reach a high accuracy.

7. Split training data and testing data

```
[18]: new_features=heart_df[['age','Sex_male','cigsPerDay','totChol','sysBP','glucose','TenYearCHD']]
x = new_features.iloc[:,:-1]
y = new_features.iloc[:,-1]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=.
→20,random_state=5)
```

This module is aiming to generate 2 sets, one for testing and another for training. The proposition here we use is training set: testing set = 4:1.

8. Training different classifier and test result analysis

Firstly we focus on the random guess classifier, which also will be a baseline.

The AUROC of random guess will be 0.5 and the AUPRC of it should be $\frac{572}{3177+572} \approx 0.15257$.

```
[31]: # Create a list to show the Acc, AUROC and AUPRC for different classifiers
     table = pd.DataFrame(index=["Logistic Regression", "SVM", "KNN", "Naive_
      →Bayes", "Desicion Tree", "Random Forest"], columns=["AUROC", "AUPRC", "ACC", "
      →"log_loss", "F1"])
     # Fit the model and predict y with it
     from sklearn.linear_model import LogisticRegression
     logreg = LogisticRegression()
     log_y_score = logreg.fit(x_train, y_train).decision_function(x_test)
     log_y_pred = logreg.predict(x_test)
     from sklearn import svm
     SvM = svm.SVC()
     SVM_y_score = SvM.fit(x_train, y_train).decision_function(x_test)
     SVM_y_pred = SvM.predict(x_test)
     from sklearn.neighbors import KNeighborsClassifier
     neigh = KNeighborsClassifier(n_neighbors=10)
     KNN_y_score = neigh.fit(x_train, y_train).predict_proba(x_test)[:, 1]
     KNN_y_pred = neigh.predict(x_test)
     from sklearn.naive_bayes import GaussianNB
     gnb = GaussianNB()
     NB_y_score = gnb.fit(x_train, y_train).predict_proba(x_test)[:, 1]
     NB_y_pred = gnb.predict(x_test)
     from sklearn import tree
     dt = tree.DecisionTreeClassifier()
     DT_y_score = dt.fit(x_train, y_train).predict_proba(x_test)[:, 1]
     DT_y_pred = dt.predict(x_test)
     from sklearn.ensemble import RandomForestClassifier
     rf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
     RF_y_score = rf.fit(x_train, y_train).predict_proba(x_test)[:, 1]
     RF_y_pred = rf.predict(x_test)
     # AUROC
     from sklearn.metrics import roc_auc_score
     log_AUROC = roc_auc_score(y_test,log_y_score)
     table.values[0][0] = log_AUROC
```

```
SVM_AUROC = roc_auc_score(y_test,SVM_y_score)
table.values[1][0] = SVM_AUROC
KNN_AUROC = roc_auc_score(y_test,KNN_y_score)
table.values[2][0] = KNN_AUROC
NB_AUROC = roc_auc_score(y_test,NB_y_score)
table.values[3][0] = NB_AUROC
DT_AUROC = roc_auc_score(y_test,DT_y_score)
table.values[4][0] = DT_AUROC
RF_AUROC = roc_auc_score(y_test,RF_y_score)
table.values[5][0] = RF_AUROC
# AUPRC
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc
def AUPRC(y_test,y_pred_proba):
    precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
    auprc = auc(recall, precision)
    return aupro
log_AUPRC = AUPRC(y_test,log_y_score)
table.values[0][1] = log_AUPRC
SVM_AUPRC = AUPRC(y_test,SVM_y_score)
table.values[1][1] = SVM_AUPRC
KNN_AUPRC = AUPRC(y_test,KNN_y_score)
table.values[2][1] = KNN_AUPRC
NB_AUPRC = AUPRC(y_test, NB_y_score)
table.values[3][1] = NB_AUPRC
DT_AUPRC = AUPRC(y_test,DT_y_score)
table.values[4][1] = DT_AUPRC
RF_AUPRC = AUPRC(y_test,RF_y_score)
table.values[5][1] = RF_AUPRC
# Model accuracy
from sklearn.metrics import accuracy_score
log_Acc = accuracy_score(y_test, log_y_pred)
table.values[0][2] = log_Acc
SVM_Acc = accuracy_score(y_test, SVM_y_pred)
table.values[1][2] = SVM_Acc
KNN_Acc = accuracy_score(y_test, KNN_y_pred)
```

```
table.values[2][2] = KNN_Acc
NB_Acc = accuracy_score(y_test, NB_y_pred)
table.values[3][2] = NB_Acc
DT_Acc = accuracy_score(y_test, DT_y_pred)
table.values[4][2] = DT_Acc
RF_Acc = accuracy_score(y_test, RF_y_pred)
table.values[5][2] = RF_Acc
#neq_log loss
from sklearn.metrics import log_loss
log_neg_log = log_loss(y_test, log_y_pred)
table.values[0][3] = log_neg_log
SVM_neg_log = log_loss(y_test, SVM_y_pred)
table.values[1][3] = SVM_neg_log
KNN_neg_log = log_loss(y_test, KNN_y_pred)
table.values[2][3] = KNN_neg_log
NB_neg_log = log_loss(y_test, NB_y_pred)
table.values[3][3] = NB_neg_log
DT_neg_log = log_loss(y_test, DT_y_pred)
table.values[4][3] = DT_neg_log
RF_neg_log = log_loss(y_test, RF_y_pred)
table.values[5][3] = RF_neg_log
#F1
from sklearn.metrics import f1_score
log_f1 = f1_score(y_test, log_y_pred, average='weighted')
table.values[0][4] = log_f1
SVM_f1 = f1_score(y_test, SVM_y_pred, average='weighted')
table.values[1][4] = SVM_f1
KNN_f1 = f1_score(y_test, KNN_y_pred, average='weighted')
table.values[2][4] = KNN_f1
NB_f1 = f1_score(y_test, NB_y_pred, average='weighted')
table.values[3][4] = NB_f1
DT_f1 = f1_score(y_test, DT_y_pred, average='weighted')
table.values[4][4] = DT_f1
RF_f1 = f1_score(y_test, RF_y_pred, average='weighted')
table.values[5][4] = RF_f1
# Show the conclu table
print(table.head(7))
```

	AUROC	AUPRC	ACC	log_loss	F1
Logistic Regression	0.768746	0.40626	0.866667	4.60517	0.810866
SVM	0.59786	0.159508	0.862667	4.74333	0.799063
KNN	0.66192	0.225833	0.857333	4.92754	0.809676
Naive Bayes	0.776121	0.386426	0.861333	4.7894	0.834652
Desicion Tree	0.527753	0.246352	0.762667	8.19731	0.76892

Here we choose Logistic regression, Support Vector Machine, KNN, Naive Bayes, Decision Tree and Random Forest these 6 classifiers for experiments. Also, we choose AUROC, AUPRC, accuracy, log loss and F1 score as measurements.

The first one is Logistic regression, here we use built-in preset parameters for the classifier. The ROC and PRC are shown below.

```
[34]: from sklearn.metrics import roc_curve
   y_pred_proba = log_y_score ##############
   fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
   #Area under ROC curve
   from sklearn.metrics import roc_auc_score
   auroc = roc_auc_score(y_test,y_pred_proba)
   plt.plot([0,1],[0,1],'k--')
   plt.xlabel('fpr')
   plt.ylabel('tpr')
   title_name = 'log ROC curve, AUROC ='+str(auroc) ##########
   plt.title(title_name)
   plt.show()
   precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
   auprc = auc(recall, precision)
   plt.hlines(572/(3177+572), 0, 1, colors = "c", linestyles = "dashed")
   plt.xlabel('recall')
   plt.ylabel('precision')
   title_name = 'log PRC curve, AUPRC ='+str(auprc) ##############
   plt.title(title_name)
   plt.show()
```


The second one is Support Vector Machine, here we use built-in preset parameters for the classifier. The ROC and PRC are shown below.

```
[35]: from sklearn.metrics import roc_curve
   y_pred_proba = SVM_y_score ##############
   fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
   #Area under ROC curve
   from sklearn.metrics import roc_auc_score
   auroc = roc_auc_score(y_test,y_pred_proba)
   plt.plot([0,1],[0,1],'k--')
   plt.xlabel('fpr')
   plt.ylabel('tpr')
   title_name = 'SVM ROC curve, AUROC = '+str(auroc) ##########
   plt.title(title_name)
   plt.show()
   precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
   auprc = auc(recall, precision)
   plt.hlines(572/(3177+572), 0, 1, colors = "c", linestyles = "dashed")
   plt.xlabel('recall')
   plt.ylabel('precision')
   plt.title(title_name)
   plt.show()
```


The third one is KNN(K = 10), here for other parameters we use built-in preset ones for the classifier. The ROC and PRC are shown below.

```
[36]: from sklearn.metrics import roc_curve
   fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
   #Area under ROC curve
   from sklearn.metrics import roc_auc_score
   auroc = roc_auc_score(y_test,y_pred_proba)
   plt.plot([0,1],[0,1],'k--')
   plt.xlabel('fpr')
   plt.ylabel('tpr')
   title_name = 'KNN ROC curve, AUROC = '+str(auroc) ##########
   plt.title(title_name)
   plt.show()
   precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
   auprc = auc(recall, precision)
   plt.hlines(572/(3177+572), 0, 1, colors = "c", linestyles = "dashed")
   plt.xlabel('recall')
   plt.ylabel('precision')
   plt.title(title_name)
   plt.show()
```


The fourth one is Naive Bayes, here we use built-in preset parameters for the classifier. The ROC and PRC are shown below.

```
[37]: from sklearn.metrics import roc_curve
   fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
   #Area under ROC curve
   from sklearn.metrics import roc_auc_score
   auroc = roc_auc_score(y_test,y_pred_proba)
   plt.plot([0,1],[0,1],'k--')
   plt.xlabel('fpr')
   plt.ylabel('tpr')
   title_name = 'NB ROC curve, AUROC = '+str(auroc) ##########
   plt.title(title_name)
   plt.show()
   precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
   auprc = auc(recall, precision)
   plt.hlines(572/(3177+572), 0, 1, colors = "c", linestyles = "dashed")
   plt.xlabel('recall')
   plt.ylabel('precision')
   plt.title(title_name)
   plt.show()
```


The fifth one is Decision Tree, here we use built-in preset parameters for the classifier. The ROC and PRC are shown below.

```
[38]: from sklearn.metrics import roc_curve
   fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
   #Area under ROC curve
   from sklearn.metrics import roc_auc_score
   auroc = roc_auc_score(y_test,y_pred_proba)
   plt.plot([0,1],[0,1],'k--')
   plt.xlabel('fpr')
   plt.ylabel('tpr')
   title_name = 'DT ROC curve, AUROC = '+str(auroc) ##########
   plt.title(title_name)
   plt.show()
   precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
   auprc = auc(recall, precision)
   plt.hlines(572/(3177+572), 0, 1, colors = "c", linestyles = "dashed")
   plt.xlabel('recall')
   plt.ylabel('precision')
   plt.title(title_name)
   plt.show()
```


The sixth one is Random Forest with n_estimators=100, max_depth=2,and random_state=0. The ROC and PRC are shown below.

```
[39]: from sklearn.metrics import roc_curve
   fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
   #Area under ROC curve
   from sklearn.metrics import roc_auc_score
   auroc = roc_auc_score(y_test,y_pred_proba)
   plt.plot([0,1],[0,1],'k--')
   plt.xlabel('fpr')
   plt.ylabel('tpr')
   title_name = 'RF ROC curve, AUROC = '+str(auroc) ##########
   plt.title(title_name)
   plt.show()
   precision, recall, thresholds = precision_recall_curve(y_test,y_pred_proba)
   auprc = auc(recall, precision)
   plt.hlines(572/(3177+572), 0, 1, colors = "c", linestyles = "dashed")
   plt.xlabel('recall')
   plt.ylabel('precision')
   plt.title(title_name)
   plt.show()
```


Overall analysis:

From the table above, we could see that all the classifier we use here have higher accuracy than random guess.

As for which classifier is better, AUROC votes for:

Naive Bayes \approx Logistic Regression > Random Forest >> KNN > SVM > Decision Tree.

AUPRC votes for:

Logistic Regression > Naive Bayes > Random Forest >> Decision Tree > KNN > SVM.

Accuracy votes for:

Logistic Regression \approx SVM = Random Forest > Naive Bayes > KNN > Decision Tree.

Log_loss votes for:

Logistic Regression > SVM = Random Forest > Naive Bayes > KNN >> Decision Tree.

F1 score votes for:

Naive Bayes > Logistic Regression > KNN > SVM > Random Forest = Decision Tree.

For the majority vote, Logistic regression is the best classifier and Naive Bayes is the second best. Among these measurements, AUPRC seems has a similar pattern to the result achieved by the majority vote. However, from the majority vote, we also could see that the performance of Decision Tree is the worst and the performance of KNN is the second worst. For this situation, AUROC gives out the similar result. As for accuracy and F1 score, there is one more thing we need to mention. That is, the accuracy or F1 score of different classifier have no significant difference, which means they are not suitable for measuring performance of classifier for this dataset.

For the graphs above, we could see that PRC works well for "good" classifier (which means that the classifier works well), but for "bad" ones, the curve becomes unstable. At the same time, ROC shows similarly for "good" ones but clearly expresses the poor performance of those "bad" classifier.

So for this dataset, AUPRC should be a better measurement for evaluate the performance of "good" classifier than AUROC, while AUROC works well for evaluate the performance of "bad" classifier. They both works much better than accuracy and F1 score. As for log_loss, the result it gives out seems quite different from the majority vote, especially for the Naive Bayes and SVM. To reach a conclusion, AUPRC and AUROC should be used together for choosing classifiers. That is, AUPRC should be use to evaluate which classifier is accurate, while AUROC should be used to measure how inaccurate a classifier is.