Hybrid Filtering

Recommendations!

Fun Fact

-Netflix sponsored a competition, offering a grand prize of \$1,000,000 to the team that could take an offered dataset of over 100 million movie ratings and return recommendations that were 10% more accurate than those offered by the company's existing recommender system

Filtering

Collaborative

Uses user similarities based on rating patterns

Incorporates social network analysis through a similarity graph

Considers user influence through multiple centrality measures:

PageRank (overall influence)

Betweenness Centrality (bridge users)

Eigenvector Centrality (connection to influential users)

Content-Based

Uses item features to group similar items

Considers user's rating history to predict preferences for new items

Helps address the "cold start" problem when collaborative data is sparse

Key Features

Adaptive Weighting

Dynamically adjust the importance of collaborative vs. content-based recommendations

Adapt based on user's position in the social network

More content-based for bridge users (high betweenness)

More collaborative for influential users (high PageRank)

Social Network

Maintain a similarity graph of users

Use Pearson correlation to measure user similarities

Provide detailed analysis of user connections and influence

Goal: Create a sorted list of a users top 5 recommendations!

Page Rank

```
for each neighbor in incomingNodes:
                                                                 // Add weighted contributions from incoming edges
function CalculatePageRank(graph):
                                                                 weight = graph.getEdgeWeight(neighbor, node)
      n = graph.numberOfNodes
                                                                 outDegree = graph.getOutDegree(neighbor)
      pageRank = initializeMap(n, 1.0/n)
                                                                 newRank[node] +=
                                                                 dampingFactor * pageRank[neighbor] * weight / outDegree
      for iteration = 1 to maxIterations:
      newRank = initializeMap(n, (1 - dampingFactor) / n)
                                                           maxChange = max(maxChange, |newRank[node] - pageRank[node]|)
      maxChange = 0
                                                           pageRank = newRank
      for each node in graph:
                                                           if maxChange < epsilon:
      incomingNodes = graph.getIncomingNeighbors(node)
                                                           break
                                                           return normalizeScores(pageRank)
```

```
function CalculateBetweennessCentrality(graph):
      betweenness = initializeMap(graph.nodes, 0)
      for each source in graph.nodes:
      // Step 1: Calculate shortest paths using BFS
      distances = initializeMap(graph.nodes, INFINITY)
      paths = initializeMap(graph.nodes, 0)
      stack = []
      queue = Queue()
      distances[source] = 0
      paths[source] = 1
      queue.push(source)
      while not queue.empty():
      vertex = queue.pop()
      stack.push(vertex)
      for each neighbor in graph.getNeighbors(vertex):
             // Path discovery
             if distances[neighbor] == INFINITY:
             distances[neighbor] = distances[vertex] + 1
             queue.push(neighbor)
```

Brandes Algorithm

```
// Path counting
             if distances[neighbor] == distances[vertex] + 1:
             paths[neighbor] += paths[vertex]
      // Step 2: Accumulate dependencies
      dependencies = initializeMap(graph.nodes, 0)
      while not stack.empty():
      vertex = stack.pop()
      for each neighbor in graph.getNeighbors(vertex):
             if distances[neighbor] == distances[vertex] + 1:
             dependency = (paths[vertex] / paths[neighbor])
* (1 + dependencies[neighbor])
             dependencies[vertex] += dependency
             betweenness[vertex] += dependency
      return normalizeScores(betweenness)
```

Von Mises Iteration

```
function CalculateEigenvectorCentrality(graph, maxIterations=100,
                                                                     // Normalize to prevent numerical overflow
epsilon=1e-8):
                                                                            magnitude = sqrt(sum(newVector[i]<sup>2</sup> for i in nodes))
      n = graph.numberOfNodes
                                                                            if magnitude == 0: break
      eigenvector = initializeMap(n, 1.0/n) // Initial guess
                                                                            // Update values and check convergence
      for iteration = 1 to maxIterations:
                                                                            for each node in graph:
      newVector = initializeMap(n, 0)
                                                                            newVector[node] /= magnitude
      maxChange = 0
                                                                            maxChange = max(maxChange, |newVector[node] -
                                                                     eigenvector[node]])
      // Power iteration
      for each node in graph:
                                                                            eigenvector = newVector
      for each neighbor in graph.getNeighbors(node):
                                                                            if maxChange < epsilon:
             weight = graph.getEdgeWeight(node, neighbor)
                                                                            break
             newVector[node] += weight * eigenvector[neighbor]
                                                                            return normalizeScores(eigenvector)
```

Runtime (Hideos)

PageRank - O(k (n + e))
Betweenness - O(n² + ne)
Eigenvector - O(k e)

-K is based on graph convergence which I don't fully understand, but it has to do with the structure of the graph. Sparse or dense makes a huge difference depending on the algorithm.

Roadmap

SYED MUHAMMAHD HAMZA

Hybrid recommendation approach

Important Functions

```
double getDirectSimilarity(const std::string& from, const std::string& to) const;
double getPathSimilarity(const std::string& from, const std::string& to) const;
double getMultiPathSimilarity(const std::string& from, const std::string& to) const;
std::vector<std::pair<std::string, double>> getTopSimilarVertices(
```

Open to suggestions!