Finding All Valid Hand Configurations for a Given Precision Grasp

Carlos Rosales^{1,2}, Josep M. Porta², Raúl Suarez¹ and Lluís Ros²

¹Institut d'Organització i Control de Sistemes Industrials (UPC)

Introduction Formulation Numerical solution Tests Conclusions

Introduction Formulation Numerical solution Tests Conclusions

Introduction Formulation Numerical solution Tests Conclusion

Grasping and manipulation tasks

Usually tackled in two steps:

- 1 Find the grasping points: Largely solved, e.g. force/form closure, etc.
- 2 Solving inverse kinematics:

Previous work

Grasping and manipulation tasks

Usually tackled in two steps:

- 1 Find the grasping points: Largely solved, e.g. force/form closure, etc.
- 2 Solving inverse kinematics: Previous work

```
[Borst et al., 2002] Unconstrained optimization, penalty terms
[Gorce et al., 2005] Neural networks, reinforcement learning
[Rosell et al., 2005] Fingertip-contact distance minimization
```


Shortcomings of previous works

- Need an initial estimation
- May diverge
- Converge to only one solution
- Incomplete

Contribution over previous works

The proposed approach is an inverse kinematic technique that:

- Does not require an initial estimation
- Is *complete* (converges to all solutions)
- Is applicable to other hand structures

Approach

Formulation:

formulate kinematic loop closure constraints algebraically

Numerical solution:

solve the resulting equations via a branch-and-prune technique based on linear relaxations

Formulation

The formulation is tailored to the numerical solution adopted:

- Algebraic equations directly
- Involving monomials of linear, bilinear and quadratic type

System of equations

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$\|\mathbf{o}_1\| = 1, \|\mathbf{o}_2\| = 1 \text{ and } \mathbf{o}_1 \cdot \mathbf{o}_2 = 0$$
 (2)

$$\|\mathbf{r}_{j,i}\| = 1, \ \|\mathbf{p}_{j,i}\| = 1 \ \text{and} \ \mathbf{r}_{j,i} \cdot \mathbf{p}_{j,i} = 0$$
 (3)

$$\mathbf{r}_{j,2} = \mathbf{r}_{j,3} = \mathbf{r}_{j,4}$$
 (4)
 $\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0$ (5)

$$\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0 \quad (5)$$

$$\mathbf{x}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \cdot \mathbf{\hat{x}}_j \quad (6)$$

$$\mathbf{q}_{j,4} = (\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \cdot \hat{\mathbf{q}}_{j,4}$$
 (7)

$$(\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \, \hat{\mathbf{m}}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \, \hat{\mathbf{n}}_j$$
 (8)

Loop closure constraints

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$\|\mathbf{o}_1\| = 1$$
, $\|\mathbf{o}_2\| = 1$ and $\mathbf{o}_1 \cdot \mathbf{o}_2 = 0$ (2)

$$\|\mathbf{r}_{i|i}\| = 1$$
, $\|\mathbf{p}_{i|i}\| = 1$ and $\mathbf{r}_{i|i} \cdot \mathbf{p}_{i|i} = 0$ (3)

$$\mathbf{r}_{j,2} = \mathbf{r}_{j,3} = \mathbf{r}_{j,4} \quad (4)$$

$$\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0 \quad (5$$

$$\mathbf{x}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \cdot \hat{\mathbf{x}}_j \quad (6)$$

$$\mathbf{q}_{j,4} = (\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \cdot \hat{\mathbf{q}}_{j,4}$$
 (7

$$\mathbf{r}_{i|4}, \mathbf{p}_{i|4}, \mathbf{t}_{i|4}) \, \hat{\mathbf{m}}_{i} = (\mathbf{o}_{1}, \mathbf{o}_{2}, \mathbf{o}_{3}) \, \hat{\mathbf{n}}_{i} \quad (8)$$

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$||\mathbf{O}_1|| = 1, \ ||\mathbf{O}_2|| = 1 \text{ and } \mathbf{O}_1 \cdot \mathbf{O}_2 = 0$$

$$\|\mathbf{1}_{j,i}\| = 1, \|\mathbf{p}_{j,i}\| = 1 \text{ and } \mathbf{1}_{j,i} \cdot \mathbf{p}_{j,i} = 0$$
 (5)

$$\Gamma_{j,2} - \Gamma_{j,3} - \Gamma_{j,4}$$
 (4)

$$\mathbf{x}_i = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \cdot \hat{\mathbf{x}}_i \quad (6)$$

$$\mathbf{r}_{\mathbf{s}A} = (\mathbf{r}_{\mathbf{s}A}, \mathbf{p}_{\mathbf{s}A}, \mathbf{t}_{\mathbf{s}A}) \cdot \hat{\mathbf{q}}_{\mathbf{s}A} \tag{7}$$

$$\mathbf{q}_{j,4} = (x_{j,4}, p_{j,4}, y_{j,4}) \quad \mathbf{q}_{j,4} = (x_{j,4}, p_{j,4}, x_{j,4}) \quad \mathbf{q}_{j,4} = (x_{j,4},$$

Reference frame constraints

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$\|\mathbf{o}_1\| = 1, \ \|\mathbf{o}_2\| = 1 \ \text{and} \ \mathbf{o}_1 \cdot \mathbf{o}_2 = 0$$
 (

$$\|\mathbf{r}_{j,i}\| = 1$$
, $\|\mathbf{p}_{j,i}\| = 1$ and $\mathbf{r}_{j,i} \cdot \mathbf{p}_{j,i} = 0$ (3)

$$\Gamma_{j,2} - \Gamma_{j,3} - \Gamma_{j,4}$$
 (4)

$$\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0 \quad (5)$$

$$\mathbf{x}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \cdot \hat{\mathbf{x}}_j \quad (6$$

$$\mathbf{q}_{j,4} = (\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \cdot \hat{\mathbf{q}}_{j,4}$$
 (7)

$$(\mathbf{r}_{i,4}, \mathbf{p}_{i,4}, \mathbf{t}_{i,4}) \, \hat{\mathbf{m}}_i = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \, \hat{\mathbf{n}}_i$$
 (8)

Joint position constraints

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$\|\mathbf{o}_1\| = 1, \|\mathbf{o}_2\| = 1 \text{ and } \mathbf{o}_1 \cdot \mathbf{o}_2 = 0$$
 (

$$\|\mathbf{r}_{j,i}\| = 1, \|\mathbf{p}_{j,i}\| = 1 \text{ and } \mathbf{r}_{j,i} \cdot \mathbf{p}_{j,i} = 0$$
 (3)

$$\mathbf{r}_{j,2} = \mathbf{r}_{j,3} = \mathbf{r}_{j,4} \quad (4)$$

$$\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0 \quad (5)$$

$$\mathbf{x}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \cdot \hat{\mathbf{x}}_j \quad (\mathbf{o}_j)$$

$$\mathbf{q}_{j,4} = (\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \cdot \hat{\mathbf{q}}_{j,4}$$
 (7)

$$(\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \, \hat{\mathbf{m}}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \, \hat{\mathbf{n}}_j \quad (8)$$

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$\|\mathbf{o}_1\| = 1, \ \|\mathbf{o}_2\| = 1 \ \text{and} \ \mathbf{o}_1 \cdot \mathbf{o}_2 = 0$$
 (2)

$$\|\mathbf{r}_{j,i}\| = 1, \|\mathbf{p}_{j,i}\| = 1 \text{ and } \mathbf{r}_{j,i} \cdot \mathbf{p}_{j,i} = 0$$
 (3)

$$\mathbf{r}_{j,2} = \mathbf{r}_{j,3} = \mathbf{r}_{j,4}$$
 (4)
 $\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0$ (5)

$$= (0 \cdot 0 \cdot 0 \cdot) \cdot \hat{\mathbf{x}} \cdot (6)$$

$$\mathbf{A}_{j} = (\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}) \quad \mathbf{A}_{j} \quad (\mathbf{G}_{3})$$

$$\mathbf{q}_{j,4} = (\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \cdot \hat{\mathbf{q}}_{j,4}$$
 (7)

$$\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \, \hat{\mathbf{m}}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \, \hat{\mathbf{n}}_j \quad (8)$$

Contact constraints

$$\mathbf{x}_{j} - \sum_{i=1}^{4} \mathbf{q}_{j,i} = \mathbf{x}_{k} - \sum_{i=1}^{4} \mathbf{q}_{k,i}$$
 (1)

$$\|\mathbf{o}_1\| = 1, \ \|\mathbf{o}_2\| = 1 \ \text{and} \ \mathbf{o}_1 \cdot \mathbf{o}_2 = 0$$
 (2)

$$\|\mathbf{r}_{j,i}\| = 1, \|\mathbf{p}_{j,i}\| = 1 \text{ and } \mathbf{r}_{j,i} \cdot \mathbf{p}_{j,i} = 0$$
 (3)

$$\mathbf{r}_{j,2} = \mathbf{r}_{j,3} = \mathbf{r}_{j,4} \quad (4)$$

$$\mathbf{r}_{j,1} \cdot \mathbf{r}_{j,2} = 0 \quad (5)$$

$$\mathbf{x}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \cdot \hat{\mathbf{x}}_j \quad (6)$$

$$\mathbf{q}_{j,4} = (\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \cdot \hat{\mathbf{q}}_{j,4}$$
 (7)

$$(\mathbf{r}_{j,4}, \mathbf{p}_{j,4}, \mathbf{t}_{j,4}) \, \hat{\mathbf{m}}_j = (\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3) \, \hat{\mathbf{n}}_j$$
 (8)

Introducing joint limits constraints

Joint angles are constrained by limiting their sine and cosine To limit ϕ to $[-\alpha,\alpha]$ we define

$$c = \cos(\phi),$$

 $s = \sin(\phi),$

then, introduce two new constraints

$$c = \mathbf{u} \cdot \mathbf{v},$$
$$s \cdot \mathbf{w} = \mathbf{u} \times \mathbf{v},$$

with $\mathbf{u},\mathbf{v},\mathbf{w}$ appropriate finger vectors, and finally set

$$c \in [c_{\min}, c_{\max}],$$

 $s \in [s_{\min}, s_{\max}].$

System of polynomials to be solved

- Note all monomials are of the form x_i , x_i^2 or $x_i x_j$
- 3 Change of variables $q_i = x_i^2$ and $b_k = x_i x_j$
- 4 New system

$$L(\mathbf{x}) = 0 \tag{9}$$

$$Q(\mathbf{x}) = 0 \tag{10}$$

$$B(\mathbf{x}) = 0 \tag{11}$$

- 1 System of polynomials to be solved
- 2 Note all monomials are of the form x_i , x_i^2 or $x_i x_j$
- 3 Change of variables $q_i = x_i^2$ and $b_k = x_i x_j$
- 4 New system

$$L(\mathbf{x}) = 0 \tag{9}$$

$$Q(\mathbf{x}) = 0 \tag{10}$$

$$B(\mathbf{x}) = 0 \tag{11}$$

- System of polynomials to be solved
- 2 Note all monomials are of the form x_i , x_i^2 or $x_i x_j$
- 3 Change of variables $q_i = x_i^2$ and $b_k = x_i x_j$
- 4 New system

$$L(\mathbf{x}) = 0 \tag{9}$$

$$Q(\mathbf{x}) = 0 \tag{10}$$

$$(\mathbf{x}) = 0 \tag{11}$$

- System of polynomials to be solved
- 2 Note all monomials are of the form x_i , x_i^2 or $x_i x_j$
- 3 Change of variables $q_i = x_i^2$ and $b_k = x_i x_j$
- 4 New system:

$$L(\mathbf{x}) = 0 \tag{9}$$

$$Q(\mathbf{x}) = 0 \tag{10}$$

$$B(\mathbf{x}) = 0 \tag{11}$$

- System of polynomials to be solved
- 2 Note all monomials are of the form x_i , x_i^2 or $x_i x_j$
- 3 Change of variables $q_i = x_i^2$ and $b_k = x_i x_j$
- 4 New system:

$$L(\mathbf{x}) = 0 \tag{9}$$

$$Q(\mathbf{x}) = 0 \tag{10}$$

$$B(\mathbf{x}) = 0 \tag{11}$$

1. Shrink box: Reduce the size of the box along x_i

1. Shrink box: Reduce the size of the box along x_i

1. Shrink box: Reduce the size of the box along x_i

1. Shrink box: Reduce the size of the box along x_i

1. Shrink box: Reduce the size of the box along x_i

A linear programming problem:

LP1: Minimize x_i , subject to: $L(\mathbf{x}) = 0, \mathbf{x} \in \mathcal{B}_c$

LP2: Maximize x_i , subject to: $L(\mathbf{x}) = 0, \mathbf{x} \in \mathcal{B}_c$

Quadratic and bilinear equations treated via linear relaxations:

Formulation

For a grasp performed by the hand MA-I using n fingers:

- = f = 5n degrees of freedom
- ightharpoonup r = 6(n-1) constraints
- By the Grübler-Kutzbach criterion, the dimension of the solution space will be d=f-r=6-n

Additional constraints can be included, if plausible

ntroduction Formulation Numerical solution **Tests** Conclusion

0-dimensional solutions

Added constraints: Coupling the proximal and distal joints of the ring and middle fingers

Resulting system: 54 variables, 54 equations

(a) A valid solution.

(b) A non-valid solution due to collision.

Numerical solution Tests

1-dimensional solutions

Added constraint: Coupling the proximal and distal joints of the

ring finger only

Resulting system: 54 variables, 53 equations

troduction Formulation Numerical solution Tests Conclusions

Conclusions

Summary:

- An inverse kinematic technique for anthropomorphic hands
- Does not require an initial estimation
- Is *complete* (converges to all solutions)
- Is applicable to other hand structures

Future work:

■ To integrate the given kinematic loop closure constraints with additional force closure and mobility constraints, so as to achieve a reachable, prehensile and manipulable grasp simultaneously.

Thanks for your attention

Feel free to ask questions, I will do my best to answer them!

ntroduction Formulation Numerical solution Tests **Conclusions**

References

- C. Borst, M. Fischer, and G. Hirzinger, "Calculating hand configurations for precision and pinch grasps," in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Lausanne, Switzerland. Oct. 2002. pp. 1553–1559.
- P. Gorce and N. Rezzoug, "Grasping posture learning with noisy sensing information for a large scale of multifingered robotic systems," *Journal of Robotic Systems*, vol. 22(12), pp. 711–724, May 2005.
- J. Rosell, X. Sierra, L. Palomo, and R. Suárez, "Finding grasping configuration of a dextrous hand an industrial robot," in *Proceedings of the IEEE International Conference on Robotics and Automation*, Barcelona, Spain, Apr. 2005, pp. 1190–1195.
- J. M. Porta, L. Ros, and F. Thomas, "Multi-loop position analysis via iterated linear programming," in Robotics: Science and Systems II. MIT Press, 2006, pp. 169–178.
- J. M. Porta, L. Ros, T. Creemers, and F. Thomas, "Box approximations of planar linkage configuration spaces," ASME Journal of Mechanical Design, vol. 129, no. 4, pp. 397–405, 2007.
- J. M. Porta, L. Ros, and F. Thomas, "A linear relaxation technique for the position analysis of multi-loop linkages," Institut de Robòtica i Informàtica Industrial, Llorens Artigas 4-6, 08028 Barcelona, Tech. Rep., 2008, available through http://www-iri.upc.es.

