Université Hassiba Benbouali Chlef Faculté des Sciences exactes et informatique Département de Mathématiques Année universitaire 2021/2022 Master I: Math.Appli & Stat Module : Analyse de données

Analyse des Données

Fiche de TD $n^{o}4$ AFC

Une étude a été menée sur 592 femmes dans le but d'analyser une éventuelle liaison entre les variables "couleur des yeux" et "couleur des cheveux". Dans la suite, on désignera par X la variable "couleur des yeux" et par Y la variable "couleur des cheveux". Les résultats de l'étude sont contenus dans le tableau suivant :

X	Brun	Châtain	Roux	Blond
Marron	68	119	26	7
Noisette	15	54	14	10
Vert	5	29	14	16
Bleu	20	84	17	94

 Le tableau suivant donne la distribution bivariée en pourcentage, ainsi que les distributions marginales elles-mêmes exprimées en pourcentage. Compléter alors ce tableau.

	Brun	Châtain	Roux	Blond	$f_{i.}$
Marron	11.49	20.11	4.39	1.18	
Noisette		9.12	2.36	1.69	15.70
Vert	0.84	4.90	2.36	2.70	10.80
Bleu	3.38	14.19	2.87	15.89	36.33
$f_{.i}$		48.32	11.98	21.46	

2. Le tableau suivant donne les profils-lignes. Compléter ce tableau.

%	Brun	Châtain	Roux	Blond	
Marron		54.11	11.81	3.17	
Noisette	16.11		15.03	10.76	
Vert	7.78	45.37	21.85	25.00	
Bleu	9.30		7.90	43.74	
G_{ℓ}		•			100

3. Indiquer dans quel espace sera représenté le nuage des profils-lignes. Ces profils vont en fait appartenir à un sous-espace. Préciser la dimension de ce dernier, puis indiquer la raison de cette propriété.

Analyse des Données, TD nº4

4. Le tableau suivant donne les profils-colonnes. Compléter ce tableau.

%	Brun	Châtain	Roux	Blond	G_c
Marron	62.99	41.62	36.64	5.50	
Noisette	13.87		19.70	7.88	
Vert	4.60	10.14	19.70	12.58	
Bleu		29.37	23.96		

- 5. Indiquer dans quel espace sera représenté le nuage des profils-colonnes. Ces profils vont en fait appartenir à un sous-espace. Préciser la dimension de ce dernier, puis indiquer la raison de cette propriété.
- 6. Pour chacun des nuages de profils, préciser la matrice des pondérations (i.e. D_n et D_p), ainsi que les matrices associées aux métriques (i.e. M_p et M_n).
- 7. Rappeler la formule matricielle permettant de calculer la matrice à diagonaliser, notée S, pour réaliser l'ajustement du nuage des profils-lignes. Pourquoi est-il inutile de chercher à écrire, puis à diagonaliser la matrice associée aux profils-colonnes?
- 8. L'opération de diagonalisation de la matrice S par un logiciel de mathématiques a permis d'obtenir les valeurs propres suivantes :

$$\lambda_0 = 1$$
 $\lambda_1 = 0.20877$ $\lambda_2 = 0.02223$ $\lambda_3 = 0.00260$

Que pouvez-vous dire sur la valeur propre λ_0 ? Sur quelles valeurs propres allez-vous concentrer votre analyse ?

- Déterminer l'inertie associée à chacun des axes factoriels non-triviaux. En déduire le pourcentage d'inertie associé à chacun des axes, puis l'inertie cumulée.
- 10. Sachant que l'on veut conserver au moins 90% de l'inertie, indiquer le nombre d'axes factoriels que l'on doit sélectionner.
- 11. Les deux premiers vecteurs propres issus de la diagonalisation de la matrice S sont respectivement

$$u_1 = (-0.201436, -0.156799, -0.033982, 0.392135)$$

$$u_2 = (-0.262634, 0.105975, 0.256799, -0.100131)$$

Après avoir rappelé la formule permettant d'obtenir les coordonnées des profils-lignes dans la nouvelle base, compléter les matrices colonnes suivantes :

$$\Psi_1 = \begin{pmatrix} \cdot \\ -0.2125 \\ 0.1617 \\ 0.5474 \end{pmatrix} \qquad \text{et} \qquad \Psi_2 = \begin{pmatrix} -0.0883 \\ 0.1673 \\ \cdot \\ -0.0831 \end{pmatrix}$$

12. Rappeler la formule permettant d'obtenir la contribution d'un profil-ligne à la formation d'un axe. Compléter alors le tableau suivant :

Profils-lignes	$Cr_1(i)$	$Cr_2(i)$
1		13.04
2	3.40	19.79
3	1.35	
4	52.14	11.26

9

13. Rappeler la formule permettant d'obtenir la qualité de représentation d'un profil-ligne sur un axe. Comment obtient-on alors facilement la qualité de représentation d'un profil-ligne sur le plan factoriel principal. Compléter alors le tableau suivant :

Profils-lignes	$Qual_1(i)$	$Qual_2(i)$	$Qual_{1\times 2}(i)$
1	96.70	2.78	
2		33.58	87.82
3	17.59	76.77	94.36
4	97.75	2.25	

14. Indiquer la formule quasi-barycentrique permettant de calculer les coordonnées des profils-colonnes à partir des coordonnées des profils-lignes. Compléter alors les matrices colonnes suivantes :

$$\varphi_1 = \begin{pmatrix} \cdot \\ -0.1483 \\ -0.1296 \\ 0.8349 \end{pmatrix} \quad \text{et} \quad \varphi_2 = \begin{pmatrix} -0.2148 \\ 0.0327 \\ \cdot \\ -0.0696 \end{pmatrix}$$

15. Rappeler la formule permettant d'obtenir la contribution d'un profil-colonne à la formation d'un axe. Compléter alors le tableau suivant :

Profils-colonnes	$Cr_1(j)$	$Cr_2(j)$
1	22.25	
2	5.09	2.32
3	0.96	55.13
4		4.67

16. Rappeler la formule permettant d'obtenir la qualité de représentation d'un profil-colonne sur un axe. Comment obtient-on alors facilement la qualité de représentation d'un profil-colonne sur le plan factoriel principal. Compléter alors le tableau suivant :

Profils-colonnes	$Qual_1(i)$	$Qual_2(i)$	$Qual_{1\times 2}(i)$
1		15.12	
2	86.59	4.21	90.80
3	13.36		94.62
4	99.14	0.69	•

- 17. Afin de proposer une interprétation contextuelle des axes, et en particulier le premier qui contient une part importante d'information, une technique consiste à sélectionner les profils dont la contribution est supérieure à leur pondération, puis à les ranger selon le signe de leur coordonnée sur l'axe considéré. Réaliser ce travail, puis synthétiser cette information à l'intérieur d'un tableau. En déduire une interprétation de chacun des facteurs (si possible!).
- 18. En faisant usage des relations quasi-barycentriques :
 - (a) représenter le nuage des profils-lignes $\sqrt{\lambda_{\alpha}}\Psi_{\alpha}$ en fonction des profils-colonnes, puis déduire, si possible, les profils-colonnes qui attirent significativement les profils-lignes.
 - (b) représenter le nuage des profils-colonnes $\sqrt{\lambda_{\alpha}\varphi_{\alpha}}$ en fonction des profils-lignes, puis déduire, si possible, les profils-lignes qui attirent significativement les profils-colonnes.
- 19. Fournir une représentation simultanée des deux nuages. Vérifier que votre graphique est semblable à celui de la Figure 1.

Analyse des Données, TD n°4

- 4

- 20. Retrouve-t-on sur ce dernier les commentaires précédents? Justifier votre réponse.
- 21. Observe-t-on une indépendance entre les deux variables? Justifier votre réponse.
- 22. Calculer l'inertie totale des nuages. Que représente le produit de cette inertie totale par l'effectif total?
- 23. Réaliser un test d'indépendance du khi-deux au niveau $\alpha = 5\%$. Que décidez-vous? $(c_{0.05} = 16.92)$.
- 24. Analyser le nuage des profils-lignes.
- 25. Analyser le nuage des profils-colonnes.
- 26. Calculer les coefficients de distorsion $1/\sqrt{\lambda_1}$ et $1/\sqrt{\lambda_2}$. Interpréter géométriquement leur rôle dans le cadre des relations quasi-barycentriques.
- 27. Analyser simultanément les deux nuages de profils selon le premier axe factoriel.
- 28. Vérifier vos commentaires à l'aide des écarts relatifs entre les profils et leur barycentre.

Représentation simultanée des nuages de profils

Fig. 1 - Représentation simultanée