Softwarica College of IT & E-Commerce STW104KM Enterprise Information Systems

Assignment Brief 2019/20

		Cohort March 2019 Resit	Module Code: STW104KM			
Coursework Title (e.g. CWK1) Assignment	Hand out date: Feb 2, 2020					
Lecturer Achyut Timsina	Due date: March 2, 2020					
Estimated Time (hrs):	Time (hrs): Coursework type: Individual / Practical		% of Module Mark 100%			
Word Limit*: (900-1100)						
Submission arrangement online via Softwarica Moodle: Upload through assignment links Mark and Feedback date: Within 3 weeks of final assignment submission Mark and Feedback method: Rubric marks and comments						

Module Learning Outcomes Assessed:

- 1. Demonstrate a clear understanding of organisational structures and an appreciation of the role of information technology in the support of business systems, including an awareness of the ethical, social and legal principles in the professional context.
- 2. Demonstrate an understanding of the methods and techniques involved in the design and implementation of various types of information systems with justification behind appropriate selection.
- 3. Apply appropriate methods for the initial analysis of information processing systems, developing a diagrammatic representation of system requirements using selected modelling techniques, supported by the use of a CASE tool.
- 4. Understand how enterprise systems foster stronger relationships with customers and suppliers and how these systems are widely used to enforce organisational structures and processes.

Task and Mark distribution:

- 1. Use Case Diagram (15%)
- 2. Use Case Scenario (10%)
- 3. Class Diagram (25%)
- 4. Activity Diagram (25%)
- 5. ER Diagram (25%)

Notes:

- 1. You are expected to use the <u>CUHarvard</u> referencing format. For support and advice on how this students can contact <u>Centre for Academic Writing (CAW)</u>.
- 2. Please notify your registry course support team and module leader for disability support.
- 3. Any student requiring an extension or deferral should follow the university process as outlined here.

- 4. The University cannot take responsibility for any coursework lost or corrupted on disks, laptops or personal computer. Students should therefore regularly back-up any work and are advised to save it on the University system.
- 5. If there are technical or performance issues that prevent students submitting coursework through the online coursework submission system on the day of a coursework deadline, an appropriate extension to the coursework submission deadline will be agreed. This extension will normally be 24 hours or the next working day if the deadline falls on a Friday or over the weekend period. This will be communicated via email and as a Softwarica Moodle announcement.

Assignment Brief

Project Tracker

An established software company in Nepal is looking for a software solution to effectively manage and track various projects under its roof. Central element of this system will be Project, which will be created by a user, typically a project manager. This user can later add one or more users to the project depending on the projects` tasks. A project will have series of tasks. For each task, following information need to be tracked:

- Task ID
- Estimated time required to complete the task
- Milestones if any
- Estimated start date
- Estimated end date
- Resources required if any
- User(s) who are mainly responsible for completing the task.

Each user has following information:

- Name
- Skill(s) that they posses

Users may serve in different capacities in different projects. Each project has following information:

- Project ID
- Project Name
- Project Description
- Project Manager (User)
- List of members assigned to the project
- Percentage of completed tasks in the project
- Completed Milestones
- Incomplete Milestones
- Estimated completion date

You have been hired as software engineering consultant. Based on these set of requirements, you are expected to build a suitable software solution for them.

Task1: Use case diagram (15%)

Draw a use case diagram showing all relevant use cases and actors for the system using UML notations. Use <<includes>> and <<extends>> where ever applicable.

Task 2: Use case documentation (10%)

Build a use case documentation for creating a task by the project manager. You should include brief description, list of actors, preconditions, basic flow, alternative flows and post conditions.

Task 3: Class diagram (25%)

Perform Natural Language Analysis to identify suitable classes for building this system. This class diagram should include attributes, methods, relationships and multiplicity of classes.

Task 4: Activity diagram (25%)

Draw an activity diagram for finding a user in the system, who is not yet assigned to any task and is currently free. You should depict the classes involved in this process in suitable swim lanes.

Task 5: Entity Relationship diagram (25%)

Draw an entity relationship diagram for this system. Identify all relevant entities, attributes, suitable attribute types, primary keys, foreign keys, and cardinalities between entities. This should be normalized up to 3rd Normal Form.

Marking Rubrics

T1: Use case diagram (10%)

0	1	2	3	4	5
Failed to submit the	Only few use cases	Some of the use	Many use cases and	All relevant use cases	Excellent use case
task within deadline.	and actors were	cases and actors	actors relevant in the	and actors are	diagram with all
No use case diagram	identified.	identified. Produced	system are identified.	identified.	relevant actors and
in the submitted	Association actor and	diagram could be	Produced diagram	Produced diagram	use cases identified
assignment.	use cases are not	improved. All	could be improved.	could be improved.	and depicted clearly in
	depicted clearly.	symbols used are not	All symbols are not in	Inconsistencies in the	agreement with UML
		standard UML.	UML standard. Have	use of < <includes>></includes>	standard. Use of
			not used	and < <extends>>.</extends>	< <include>> and</include>
			< <includes>> and</includes>		< <extends>> is</extends>
			< <extends>>.</extends>		proper.

T2: Use case documentation (15%)

0	1	2	3	4	5
No use case	Only few of	Some of the	Some of the	Good use case	Excellent use case
documentation is	documentation	documentation criteria	documentation	documentation with	documentation with
submitted.	criteria are listed and	are listed. Many of them	criteria are listed.	all criteria are listed.	all of criteria required
	are not properly	could be improved to	Some of them could	Few of the listed	are listed clearly.
	documented.	make it more precise.	be improved to make	criteria are not	Does include brief
			it more precise.	properly documented	description, list of
				or ambiguous.	actors
					(primary/secondary),
					Preconditions, Post
					conditions, normal
					flow, alternative
					flows are identified
					properly

T3: Class Diagram (25%)

0	1	2	3	4	5
No class diagram is	Only few relevant	No evidence of	Natural Language	Natural Language	Natural Language
present in the	classes are depicted	Natural Language	Analysis is applied. Its	Analysis is applied but	Analysis is properly
submitted class	in the class diagram.	Analysis is shown.	reporting could be	could be improved on	applied and well
diagram	No evidence of	Many relevant classes	improved. Many	its documentation	documented.
	Natural Language	are identified with	relevant classes are	and reporting. Class	Excellent class
	Analysis is given.	attributes and	identified with	diagram with clear	diagram with clear
		methods, but the	attributes and	depiction of class	depiction of class
		choice of relationship	methods, but the	name, attributes,	name, attributes,
		and multiplicity could	choice of relationship	methods, visibility,	methods, visibility,
		be improved.	and multiplicity could	relationships and	relationships and
			be improved.	multiplicity between	multiplicity between
				classes.	classes.

T4: Activity diagram (25%)

0	1	2	3	4	5
No activity diagram	Few of high-level	Many of high-level	Most of lower level	All lower level	Excellent activity diagram.
	activities are	activities are shown.	pertinent activities	activities and their	All lower level pertinent
	shown. No Swim	Activities are not	and their relationships	relationships are	activities and their
	lanes.	associated/divided	are depicted properly.	identified and	relationship are identified
		based on classes	Responsibilities of	depicted. All	and depicted properly
		responsibilities.	classes are not shown	involved classes are	such that algorithmic
		No Swim lanes.	in suitable swim lanes	depicted, but the	implementation of the
				division of identified	asked use case scenario
				activities are not	could be derived easily.
				properly shown in	All involved classes are
				swim lanes.	depicted, and associated
					activities are separated in
					swim lanes properly.

T5: Entity Relationship diagram (25%)

0	1	2	3	4	5
No ER diagram	ER diagram with only few	ER diagram with some	Good ER diagram with	Good ER diagram with	Excellent ER diagram
	relevant entities	relevant entities	many relevant entities	many relevant entities	with all relevant
	normalized up to 3NF.	normalized up to 3NF.	normalized up to 3NF.	normalized up to 3NF.	entities normalized up
	Few relevant attributes,	Some relevant	All relevant attributes,	All relevant attributes,	to 3NF. All relevant
	their types, primary keys,	attributes, their types,	their types, primary	their types, primary	attributes, their types,
	foreign keys and	primary keys, foreign	keys, foreign keys and	keys, foreign keys and	primary keys, foreign
	cardinalities are identified	keys and cardinalities	cardinalities are	cardinalities are	keys and cardinalities
	and depicted. The process	are identified and	identified and	identified and	are identified and
	of normalization is not	depicted. The process	depicted. The process	depicted. The process	depicted clearly. The
	documented.	of normalization is not	of normalization is not	of normalization is	process of
		documented.	documented.	also documented	normalization is also
					justifiably
					documented.