Ch 1

Lemma 0.1. The series $\sum_{k=0}^{\infty} z^k$ converges normally absolutely on \mathbb{D} .

Proof. Let K be some compact subset of \mathbb{D} . Then K is contained in some disc of radius $\rho < 1$ centered at the origin such that K doesn't meet the boundary of that disc. Now,

$$\left(\sum_{k=0}^{\infty} |z|^k\right) - \left(\sum_{k=0}^{N} |z|^k\right) = \sum_{k=N+1}^{\infty} |z|^k$$
$$= |z|^{N+1} \sum_{k=0}^{\infty} |z|^k$$
$$= \frac{|z|^{N+1}}{1 - |z|}$$

and

$$\frac{|z|^{N+1}}{1-|z|} < \frac{\rho^{N+1}}{1-\rho}$$

for all $z \in K$ since $|z| < \rho$ here. It follows that we can pick N large enough so that

$$\left(\sum_{k=0}^{\infty}|z|^k\right) - \left(\sum_{k=0}^{N}|z|^k\right)$$

is smaller than any $\epsilon>0$ for all $z\in K$ whence the sum is normally absolutely convergent. \qed

We generalize to the multivariate setting by the following lemma.

Lemma 0.2. Let $(f_k)_{k\in\mathbb{N}}$ and $(g_k)_{k\in\mathbb{N}}$ be two series of complex valued functions which converge absolutely normally on some domain $D\subset\mathbb{C}^n$. Then their product $(f_kg_k)_{k\in\mathbb{N}}$ converges absolutely on D as well.

Proof. Let $\epsilon > 0$. Pick N_f, N_g such that $|f| - |f_k| < \epsilon/2 \max_{z \in D}(f)$ for all $k > N_f$, and similarly for g. Then

$$|fg| - |f_k g_k| = |fg| - |fg_k| + |fg_k| - |f_k g_k|$$

$$= |f|(|g| - |g_k|) + (|f| - |f_k|)|g_k|$$

$$\leq |f|\epsilon/2 \max_{z \in D}(f) + |g_k|\epsilon/2 \max_{z \in D}(g)$$

$$\leq \epsilon$$

for all $k > \max(N_f, N_g)$.

Lemma 0.3. The series $\sum_{\alpha \in \mathbb{N}_0^n} z^k$ converges normally absolutely on \mathbb{D}^n .

Proof. Let K be a compact subset of \mathbb{D}^n . Then the series converges normally absolutely in each variable on K.

Now let's show that multivariate power series admit a polyradius of convergence.

Lemma 0.4. Let $\sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha}$ be a power series which converges at some $z_0 \in \mathbb{C}^n$, and let $z' \in \mathbb{C}^n$ be such that $|z'| < |z_0|$. Then the series converges absolutely at z'.

Proof. As the sum converges at z_0 , the terms $c_{\alpha}z_0^{\alpha}$ tend to 0, and hence are bounded by some $M \in \mathbb{R}_+$. We now have that

$$|c_{\alpha}z'^{\alpha}| = |c_{\alpha}z_{0}^{\alpha}| \left| \frac{z'^{\alpha}}{z_{0}^{\alpha}} \right|$$

$$< M \left| \frac{z'^{\alpha}}{z_{0}^{\alpha}} \right|$$

$$= M \left| \frac{z'}{z_{0}} \right|^{\alpha}$$

where $\frac{z'}{z_0} = \left(\frac{z_1'}{(z_0)_1}, \dots, \frac{z_n'}{(z_0)_n}\right)$ and the sum

$$M\sum_{\alpha} \left| \frac{z'}{z_0} \right|$$

is absolutely convergent as it is a geometric sum and $\frac{z'}{z_0} \in \mathbb{D}^n$. It follows by Weierstrass M-test that $\sum_{\alpha \in \mathbb{N}_0^n} |c_{\alpha} z'^{\alpha}|$ is convergent.