9. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 18.12.2022, 24.00 Uhr

Aufgabe 1: (3 + 1 = 4 Punkte)

a) Untersuchen Sie die Stetigkeit der Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) := \begin{cases} x & \text{für } x \in \mathbb{Q} \\ 1 - x & \text{für } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Hinweis: Sie können verwenden, dass $\mathbb{R} \setminus \mathbb{Q}$ dicht in \mathbb{R} ist.

b) Zeigen Sie, dass jede Funktion $f: \mathbb{N} \to \mathbb{R}$ stetig ist.

Aufgabe 2 (2 + 2 = 4 Punkte)

a) Beweisen Sie, dass jede stetige Funktion $f:[a,b] \to [a,b]$ einen Fixpunkt hat, d.h. es gibt $x_0 \in [a,b]$ mit $f(x_0) = x_0$.

Hinweis: Verwenden Sie den Zwischenwertsatz.

b) Geben Sie jeweils eine stetige Funktion $f:(0,1)\to(0,1)$ und $f:[0,\infty)\to[0,\infty)$ an, die keinen Fixpunkt haben.

Aufgabe 4: (1 + 2 + 2 = 5 Punkte)

Betrachten Sie die Funktion $f:[0,\infty)\to\mathbb{R}$ gegeben durch $x\mapsto\sqrt{x}$.

- a) Zeigen Sie die Stetigkeit von f mittels der $\varepsilon \delta$ Definition aus der Vorlesung.
- **b)** Zeigen Sie, dass f nicht Lipschitzstetig ist.
- c) Zeigen Sie, dass für jedes $\delta > 0$ die Funktion $f_{\delta} : [\delta, \infty)$ gegeben durch $x \mapsto \sqrt{x}$ Lipschitzstetig ist und bestimmen Sie die kleinste Lipschitzkonstante von f_{δ} .

Aufgabe 4 (3 + 4 = 7 Punkte)

- a) Sei $A \subset \mathbb{K}$. Zeigen Sie: $x \in A$ ist genau dann Häufungspunkt von A falls x kein isolierter Punkt von A ist.
- b) Bestimmen Sie Häufungspunkte und isolierte Punkte der Menge

$$A := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup (1, 3]$$