# Performance Bounds for the Scenario Approach and an Extension to a Class of Non-Convex Programs

Peyman Mohajerin Esfahani, Tobias Sutter, and John Lygeros *IEEE TAC, Vol. 60, No. 1, pp. 46–58, Jan. 2015* 

Paper Introduction

D1, Zhicheng Zhang

July 27, 2021

#### Goal

#### This paper focuses on

- Consider the scenario convex program (SCP) for (relaxed) robust convex program (RCP) and chance-constrained program (CCP).
- Consider the tail probability of the worst-case violation.
- Build a probabilistic bridge from the optimal value of SCP  $(J_N^*)$  to the optimal value of RCP  $(J_{\text{RCP}}^*)$  and CCP  $(J_{\text{CCP}}^*)$ .

#### Problem Statement

#### **Technical Statements**

- Let  $\mathbb{X} \in \mathbb{R}^n$  be a compact convex set and  $c \in \mathbb{R}^n$  a constant vector.
- Let  $(\mathcal{D}, \mathcal{B}(\mathcal{D}), \mathbb{P})$  be probability space, where  $\mathcal{D}$  is a metric space with the respective Borel  $\sigma$ -algebra  $\mathcal{B}(\mathcal{D})$ .
- A measurable function  $f: \mathbb{X} \times \mathcal{D} \mapsto \mathbb{R}$ , which is convex in the first argument and bounded in the second argument.

Let us consider the following optimization problems:

## Robust Convex Program (RCP)

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{X}} & c^{\top} \mathbf{x} \\ & \text{s.t.} & f(\mathbf{x}, d) \leq 0 & \forall d \in \mathcal{D} \end{aligned}$$

where the optimal value of the RCP is denoted by  $J_{\rm RCP}^{\star}$ .

## Relaxed (Perturbed) RCP $_{\gamma}$

Consider the Relaxed (Perturbed) RCP for  $\gamma>0$ 

$$\begin{aligned} & \min_{x \in \mathbb{X}} & c^{\top} x \\ & \text{s.t.} & f(x, d) \leq \gamma, & \forall d \in \mathcal{D} \end{aligned}$$

with the optimal value  $J_{\mathrm{RCP}_{\gamma}}^{\star}$ .

# Chance-Constrained Program (CCP $_{\varepsilon}$ )

$$\label{eq:continuity} \begin{aligned} & \min_{\mathbf{x} \in \mathbb{X}} & c^{\top} \mathbf{x} \\ & \text{s.t.} & & \mathbb{P}\big[f(\mathbf{x}, d) \leq 0\big] \geq 1 - \varepsilon \end{aligned}$$

with the optimal value  $J_{\mathrm{CCP}_{\varepsilon}}^{\star}$ .

• x is an  $\varepsilon$ -probability robust design, if it holds that  $\mathbb{P}[f(x,d)>0]\leq \varepsilon$ .

# Standard Scenario Convex Program [Campi & Garatti]

- ullet Assume probability measure  ${\mathbb P}$  on  ${\mathcal D}$
- Sample  $(d_i)_{i=1}^N$  independent and identically distributed (i.i.d.) from  $\mathbb{P}$
- Formulate the scenario convex program

## Scenario Convex Program (SCP)

$$\min_{x \in \mathbb{X}} c^{\top} x$$

s.t. 
$$f(x, d_i) \leq 0$$
,  $\forall i \in \{1, \dots, N\}$ 

where the optimal solution and value of SCP are denoted by  $x_N^{\star}$  and  $J_N^{\star}$ .

## SP: Value Bound

## Theorem 2.2 (CCP $_{\varepsilon}$ Feasibility)

Let  $\beta \in [0,1]$  and  $N \geq N(\varepsilon; \beta)$  where

$$N \ge N(\varepsilon; \beta) := \min \left\{ N \in \mathbb{N} \mid \sum_{i=0}^{n-1} {N \choose i} \varepsilon^i (1-\varepsilon)^{N-i} \le \beta \right\}$$

Then, the optimizer of SCP is a feasible solution of  $CCP_{\varepsilon}$  with probability  $\mathbb{P}^N$  (N-fold product probability measure) at least  $1-\beta$ .

- Alternatively, it states that  $\mathbb{P}^N[x_N^\star \models \mathrm{CCP}_\varepsilon] \geq 1 \beta$ , where  $\models$  refers to the feasibility satisfaction, i.e.,  $x_N^\star \models \mathrm{CCP}_\varepsilon$  means that  $x_N^\star$  is a feasible solution for the program  $\mathrm{CCP}_\varepsilon$ .
- ullet w.p. at least 1-eta, if SCP is feasible it holds that  $J_N^\star \geq J_{\mathrm{CCP}_arepsilon}^\star$
- It is sufficient to select a sample size  $N \geq \frac{2}{\varepsilon} \left(n-1+\operatorname{In}\, \frac{1}{\beta}\right) \geq N(\varepsilon;\beta)$

# Uniform Level-set Bound (ULB) [Kanamori & Takeda]

#### Definition 3.1

The tail probability of the worst-case violation  $p: \mathbb{X} \times \mathbb{R}_+ \mapsto [0,1]$  is the function defined as

$$p(x, \delta) := \mathbb{P}[\sup_{v \in \mathcal{D}} f(x, v) - \delta < f(x, d)]$$

We call  $h:[0,1]\mapsto \mathbb{R}_+$  a uniform level-set bound (ULB) of p if

$$h(\varepsilon) \ge \sup \{ \delta \in \mathbb{R}_+ \mid \inf_{x \in \mathbb{X}} p(x, \delta) \le \varepsilon \}, \quad \forall \ \varepsilon \in [0, 1].$$



(a)  $p(x, \delta) = \mathbb{P}[A \cup B]$ 



(b) Tail probability of the worst-case violation



(c) Uniform level set bound

#### Lemma 3.2

Let  $h:[0,1]\mapsto \mathbb{R}_+$  be a ULB. Then

$$x \models \mathrm{CCP}_{\varepsilon} \Rightarrow x \models \mathrm{RCP}_{h(\varepsilon)}$$

that is, the feasible set of  ${\rm CCP}_{\varepsilon}$  with constraint violation level  $\varepsilon$  is a subset of the feasible set of the relaxed program  ${\rm RCP}_{h(\varepsilon)}$  with  $\gamma:=h(\varepsilon)$ .

## Proposition 3.8

Assume that the mapping  $\mathcal{D}\ni d\mapsto f(x,d)\in\mathbb{R}$  is Lipschitz continuous with constant  $L_d$  uniformly in  $x\in\mathbb{X}$ . Suppose there exists a strictly increasing function  $g:\mathbb{R}_+\mapsto [0,1]$  such that

$$\mathbb{P}\big[\mathbb{B}_r(d)\big] \geq g(r), \quad \forall d \in \mathcal{D}$$

where  $\mathbb{B}_r(d)\subset \mathcal{D}$  is an open ball centered at d with radius r. Then,  $h(\varepsilon):=L_dg^{-1}(\varepsilon)$  is a ULB in the sense of Definition 3.1, where  $g^{-1}$  is the inverse function of g.

Bad news: Curse of dimensionality!

←□ → ←□ → ← = → ← = → へへ

# Key Assumption and Lemma

## Assumption 3.3 (Slater Point)

There exists an  $x_0 \in \mathbb{X}$  such that  $\sup_{d \in \mathcal{D}} f(x, d) < 0$ . Define the constant:

$$L_{SP} := \frac{\min_{x \in \mathbb{X}} c^{\top} x - c^{\top} x_0}{\sup_{d \in \mathcal{D}} f(x, d)}$$

#### Lemma 3.4

Consider the relaxed program  $\mathrm{RCP}_{\gamma}$  and its optimal value  $J^\star_{\mathrm{RCP}_{\gamma}}$ . Under Assumption 3.3, the mapping  $\mathbb{R}_+ \ni \gamma \mapsto J^\star_{\mathrm{RCP}_{\gamma}} \mathbb{R}$  is Lipschitz continuous with constant bounded by  $L_{SP}$  i.e., for all  $\gamma_2 \ge \gamma_1 \ge 0$  we have

$$0 \leq J_{\mathrm{RCP}_{\gamma_1}}^{\star} - J_{\mathrm{RCP}_{\gamma_2}}^{\star} \leq L_{SP}(\gamma_2 - \gamma_1)$$

- *Proof:* Under the strong duality condition the mapping  $\gamma \mapsto \mathrm{RCP}_{\gamma}$ , which is Lipschitz continuous with the constant  $\|\lambda^{\star}\|_{1}$  where  $\lambda^{\star}$  is a dual optimizer of the RCP. In [33] it implies that  $\|\lambda^{\star}\|_{1} \leq L_{SP}$ .
- Note that Lemma 3.4 also can be applied to the program SCP.

9/18

#### Main Results

## Theorem 3.6 (RCP Confidence Interval)

Consider the programs RCP and SCP with the associated optimal values  $J_{\text{RCP}}^{\star}$  and  $J_{N}^{\star}$ , respectively. Suppose Assumption 3.3 holds and with constant  $L_{SP}$ . Given a ULB h and  $\varepsilon, \beta \in [0,1]$  for all  $N \geq N(\varepsilon, \beta)$ , we have

$$\mathbb{P}^{N}\big[J_{\mathrm{RCP}}^{\star}-J_{N}^{\star}\in[0,I(\varepsilon)]\big]\geq1-\beta$$

where  $I(\varepsilon) := \min\{L_{SP}h(\varepsilon), \max_{x \in \mathbb{X}} c^{\top}x - \min_{x \in \mathbb{X}} c^{\top}x\}$ 

- Proof:  $\mathbb{P}^{N}\left[x_{N}^{\star} \models \mathrm{CCP}_{\varepsilon}\right] \geq 1 \beta \Rightarrow^{Le3.2} \mathbb{P}^{N}\left[x_{N}^{\star} \models \mathrm{RCP}_{h(\varepsilon)}\right] \geq 1 \beta$   $\Rightarrow \mathbb{P}^{N}\left[J_{\mathrm{RCP}_{h(\varepsilon)}}^{\star} \leq J_{N}^{\star}\right] \geq 1 - \beta \Rightarrow^{Le3.4} J_{\mathrm{RCP}}^{\star} \leq J_{\mathrm{RCP}_{h(\varepsilon)}}^{\star} + L_{SP}h(\varepsilon)$ Then,  $\mathbb{P}^{N}\left[J_{\mathrm{RCP}}^{\star} \leq J_{N}^{\star} + L_{SP}h(\varepsilon)\right] \geq 1 - \beta$ . Meanwhile, SCP is a restricted version of RCP, then it has  $J_{N}^{\star} \leq J_{\mathrm{RCP}}^{\star}$ .
- Explicit bound: Under Pro 3.8, for any  $N \ge N(g(\frac{\varepsilon}{L_{SP}L_d}), \beta)$ , we have

$$\mathbb{P}^{N} \big[ J_{\text{RCP}}^{\star} - J_{N}^{\star} \in [0, \varepsilon] \big] \geq 1 - \beta$$

#### Main Results

## Theorem 3.7 (CCP<sub>e</sub> Confidence Interval)

Consider the programs  $CCP_{\varepsilon}$  and SCP with the associated optimal values  $J_{\text{CCP}_s}^{\star}$  and  $J_N^{\star}$ , respectively. Let h be a ULB and  $\lambda_N^{\star}$  be the dual optimizer of SCP. Given  $\beta \in [0,1]$  for all  $N \geq N(\varepsilon,\beta)$ , we have

A Priori Assessment: 
$$\mathbb{P}^{N}[J_{\text{CCP}_{\varepsilon}}^{\star} - J_{N}^{\star} \in [-I(\varepsilon), 0]] \geq 1 - \beta$$

A Posteriori Assessment:  $\mathbb{P}^{N}[J_{\text{CCP}}^{\star} - J_{N}^{\star} \in [-I_{N}(\varepsilon), 0]] \geq 1 - \beta$ 

where the a priori interval  $I(\varepsilon)$  is defined in the former, and the a posteriori interval is  $I_N(\varepsilon) := \min\{\|\lambda_N^*\|_1 h(\varepsilon), \max_{x \in \mathbb{X}} c^\top x - \min_{x \in \mathbb{X}} c^\top x\}.$ 

• Proof:  $\mathbb{P}^N \left[ J_{\mathrm{RCP}_{h(\varepsilon)}}^\star \leq J_{\mathrm{CCP}_{\varepsilon}}^\star \leq J_N^\star \right] \geq 1 - \beta$ . Lemma 3.4 ensures  $J_N^{\star} \leq J_{\mathrm{RCP}}^{\star} \leq J_{\mathrm{RCP}_{h(\varepsilon)}}^{\star} + L_{SP}h(\varepsilon)$ . The optimal value of scenario relaxed RCP<sub> $h(\varepsilon)$ </sub> is denoted by  $J_{N,h(\varepsilon)}^{\star}$ .  $J_{N,h(\varepsilon)}^{\star} \leq J_{\mathrm{RCP}_{h(\varepsilon)}}^{\star}$  w.p. 1. Approximate the  $L_{SP}$  as  $\|\lambda_N^{\star}\|_1$ , and apply Lemma 3.4 to SCP,

$$J_N^{\star} - \|\lambda_N^{\star}\|_1 h(\varepsilon) \leq J_{N,h(\varepsilon)}^{\star} \leq J_{\mathrm{RCP}_{h(\varepsilon)}}^{\star}$$

## Feasibility of RCP via SCP

## An Example to RCP & SCP

$$\begin{aligned} & \underset{x \in \mathbb{X} := [-1,1]}{\min} & -x \\ & \text{RCP: s.t.} & x - d \leq 0, & \forall d \in \mathcal{D} \\ & \text{SCP: s.t.} & x - d_i \leq 0, & \forall i \in \{1, \cdots, N\} \end{aligned}$$

- The feasible set of RCP is [-1,0] with the optimizer  $x^* = 0$ .
- The optimizer of SCP is  $x_N^* = \min_{i \leq N} d_i$ .
- If probability  $\mathbb{P}$  does not have atoms (point measure), we have  $\mathbb{P}^N[\min_{i\leq N}d_i>0]=1$ . Thus, one can deduce that  $\mathbb{P}^N[x_N^\star\models \mathsf{RCP}]=0, \quad \forall \mathbb{P}\in\mathcal{P}, \quad \forall N\in\mathbb{N}$  where  $\mathcal{P}$  is the family of all non-atomic measure on  $(\mathcal{D},\mathcal{B}(\mathcal{D}))$ .
- If the set  $\arg\max_{d\in\mathcal{D}}f(x,d)$  has measure zero for any  $x\models \mathsf{RCP}$ , then SCP almost surely (a.s.) returns infeasible solutions to RCP, as worst-case scenarios are a.s. neglected.

# Measurability of SCP Optimizer

#### Two-stage SCP

Let  $\phi:\mathbb{R}^n\mapsto\mathbb{R}$  is a strictly convex function. Then, consider the program

$$\min_{x \in \mathbb{X}} \quad \phi(x)$$
s.t.  $f(x, d_i) \le 0, \quad \forall i \in \{1, \dots, N\}$ 
 $c^{\top} x \le J_N^{\star}$ 

with the optimal solution (optimizer)  $\tilde{x}_N^{\star}$ .

- f(x, d) with respect to the x is lower semi-continuous.
- Clearly,  $\tilde{x}_N^{\star}$  is an optimizer of the program SCP.
- Proposition 3.10 (Measurability of the Optimizer)
- Proposition 3.11 (Measurability of the Feasible Set)
- Constraint function f(x, d): measurability w.r.t. the uncertainty and lower semi-continuity w.r.t. the decision variables.

# Example: Quadratic Constraints via Infinite Hyperplanes

### Model Setup

- ullet Take decision variable  $x=[x_1,x_2]^ op\in\mathbb{X}:[0,1]^2\subset\mathbb{R}^2$
- Define linear objective function  $c := [-1, -1]^{\top}$
- Choose constraint function  $f(x, d) := x_1 cos(d) + x_2 sin(d) 1$
- ullet is the uniform probability measure on uncertainty  $d\in\mathcal{D}:=[0,2\pi]$

Many infinite hyperplane constraints are rewritten as quadratic constraint

$$\max_{d \in [0,2\pi]} x_1 \cos(d) + x_2 \sin(d) - 1 \le \gamma \iff x_1^2 + x_2^2 \le (\gamma + 1)^2, \ \gamma \ge 0$$

And the analytical solutions of optimal values for programs

$$J_{ ext{RCP}_{\gamma}}^{\star} = \max \left\{ -\sqrt{2}(\gamma+1) \right\}, \quad J_{ ext{CCP}_{\varepsilon}}^{\star} = \max \left\{ -\sqrt{2}/cos(\pi \varepsilon), -2 \right\}$$

Fixed N scenarios for SCP with the optimal value  $J_N^{\star}$ , Given  $\varepsilon, \beta \in [0, 1]$ ,

$$\beta^*(\varepsilon) = \sum_{i=0}^{n-1} \binom{N}{i} \varepsilon^i (1-\varepsilon)^{N-i} = (1-\varepsilon)^N + N\varepsilon(1-\varepsilon)^{N-1}, \ (i.e., n=2)$$





- In this case  $x_0 = [0,0]^{\top}$  is Slater point, then  $L_{SP} = \frac{-2-0}{-1} = 2$ .
- The mapping  $d \mapsto f(x,d)$  has Lipschitz constant  $L_d = \sqrt{2}$  over  $\mathbb{X}$ .
- From Pro. 3.8, it derives that  $g(r) = \frac{r}{\pi}$  and the ULB  $h(\varepsilon) := \sqrt{2\pi\varepsilon}$ .
- Then the confidence interval  $I(\varepsilon) := \max\{2\sqrt{2}\pi\varepsilon, 2\}$ , this arrives at  $J_{\mathrm{RCP}}^{\star} J_{N}^{\star} \in [0, I(\varepsilon)]$  (resp.  $J_{\mathrm{CCP}}^{\star} J_{N}^{\star} \in [-I(\varepsilon), 0]$ ) w.p.  $1 \beta^{*}(\varepsilon)$ .

To validate this result, Solving program SCP for  ${\it M}$  different experiments:

- For each  $k \in \{1, 2, \cdots, M\}$ , drawing N scenarios  $(d_i(k))_{k=1}^N \subset [0, 2\pi]$  w.r.t. uniform probability distribution  $\mathbb{P}$ , and then solve the SCP.
- Let  $J_N^*(k)$  be the optimal value of the kth experiment.

□ ▶ ◀♬ ▶ ◀ 볼 ▶ │ 볼 │ ૾ Ŷ Q (?

• Given  $\beta \in [0,1]$ , the empirical confidence interval of RCP can be represented by the minimal  $\tilde{I}(\beta)$  so that the interval  $[0,\tilde{I}(\beta)]$  contains  $J_N^\star(m) - J_{\mathrm{RCP}}^\star$  for at least m experiments where  $\frac{m}{M} \geq 1 - \beta$ , i.e.,  $\tilde{I}(\beta) := \min \big\{ \tilde{I} \in \mathbb{R}_+ \mid \exists A \subset \{1,\cdots,M\} : |A| \geq (1-\beta)M \\ \text{and } J_{\mathrm{RCP}}^\star - J_N^\star(k) \in [0,\tilde{I}] \quad \forall k \in A \big\}$ 

• Regarding  $CCP_{\varepsilon}$ , notice that the empirical confidence interval  $\tilde{I}_{\varepsilon}(\beta)$  depends on both parameters  $\varepsilon$  and  $\beta$  since the analytical optimal values  $J_{CCP}^{\star}$  depends on  $\varepsilon$  as well. Then we can define

$$ilde{I}_{arepsilon}(eta) := \minig\{ ilde{I} \in \mathbb{R}_+ \mid \exists A \subset \{1,\cdots,M\} : |A| \geq (1-eta)M$$
and  $J^\star_{ ext{CCP}_arepsilon} - J^\star_N(k) \in [- ilde{I},0] \quad orall k \in Aig\}$ 

- ullet The sets  $ilde{I}(eta)$  and  $ilde{I}_{arepsilon}(eta)$  are in close relation with sample quantiles.
- Set the number of experiments as M = 2000, scenarios N = 6,60.
- The confidence interval  $[0, I(\varepsilon)]$  (resp.  $[-I(\varepsilon), 0]$ ) contains the empirical confidence interval  $[0, \tilde{I}(\beta^*(\varepsilon))]$  (resp.  $[-\tilde{I}_{\varepsilon}(\beta^*(\varepsilon)), 0]$ )



- Choose one of the experiments and depict the corresponding a posteriori confidence interval  $I_N(\varepsilon)$  versus  $\beta^*(\varepsilon)$ .
- Figs shows that a posteriori confidence interval  $I_N(\varepsilon)$  (violet) proposes a tighter bound than the a priori confidence interval  $I(\varepsilon)$  (green).
- We conjecture that in general the dual optimizer of SCP may happen to be a better approximation in comparison with the constant  $L_{SP}$ .

17 / 18

#### Conclusion

- $\bullet$  Propose probabilistic performance bounds for both RCP and CCP  $_{\varepsilon}$  via SCP.
- Based on the tail probability of the worst-case constraint violation of the SCP solution and perturbation theory of convex optimization to give bounds.
- Given confidence bounds for the objective performance of RCPs and CCPs based on SCP.

#### Outlook in this work

- Study the derivation of ULBs, depending on the uncertainty set and the constraint functions.
- Investigate the relation between the constant  $L_{SP}$  and the dual optimizers of the program SCP.