Computabilità e Algoritmi - 8 Febbraio 2019

Soluzioni Formali

Esercizio 1

Problema: Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive e, utilizzando esclusivamente la definizione, dimostrare che per ogni $k \ge 2$ è primitiva ricorsiva la funzione sum_ $k : \mathbb{N}^k \to \mathbb{N}$ definita da sum_ $k(x_1,...,x_k) = \Sigma_{i=1}^k x_i$.

Soluzione:

Definizione di \mathcal{PR} : La classe \mathcal{PR} delle funzioni primitive ricorsive è la più piccola classe di funzioni che:

• Contiene le funzioni base:

- Funzione zero: z(x) = 0
- Funzione successore: s(x) = x + 1
- Funzioni proiezione: $U_i^k(x_1,...,x_k) = x_i$

• È chiusa rispetto a:

- Composizione (generalizzata)
- Ricorsione primitiva

Dimostrazione che sum_k $\in \mathcal{PR}$ per k \geq 2:

Procederemo per induzione su k.

Caso base k = 2: Definiamo sum₂: $\mathbb{N}^2 \to \mathbb{N}$ con sum₂(x,y) = x + y.

Per ricorsione primitiva:

```
sum_2(x,0) = x = U_1^1(x)

sum_2(x,y+1) = sum_2(x,y) + 1 = s(sum_2(x,y))
```

Dove:

- $f(x) = U_1^{1}(x) \in \mathcal{PR}$ (proiezione)
- $q(x,y,z) = s(z) \in \mathcal{PR}$ (successore)

Quindi sum₂ $\in \mathcal{PR}$ per ricorsione primitiva.

Passo induttivo: Supponiamo sum_{k-1} $\in \mathcal{PR}$. Dimostriamo che sum_ $k \in \mathcal{PR}$.

Definiamo sum_k: $\mathbb{N}^k \to \mathbb{N}$ per composizione:

```
sum_k(x_1,...,x_k) = sum_2(sum_{k-1}(x_1,...,x_{k-1}), x_k)
```

Equivalentemente:

```
sum_k(x_1,...,x_k) = sum_2(h_1(x_1,...,x_k), h_2(x_1,...,x_k))
```

dove:

- $h_1(x_1,...,x_k) = sum_{\{k-1\}}(x_1,...,x_{\{k-1\}}) \in \mathcal{PR}$ (per ipotesi induttiva e composizione con proiezioni)
- $h_2(x_1,...,x_k) = x_k = U_k(x_1,...,x_k) \in \mathcal{PR}$ (proiezione)

Poiché sum₂ $\in \mathcal{PR}$ e h₁, h₂ $\in \mathcal{PR}$, per chiusura rispetto alla composizione abbiamo sum_k $\in \mathcal{PR}$.

Conclusione: $\forall k \geq 2$, sum_ $k \in \mathcal{PR}$.

Esercizio 2

Problema: Data una funzione $f : \mathbb{N} \to \mathbb{N}$ si definisca $Z(f) = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}. g(x) = f(x) \lor g(x) = 0\}$. Si dimostri che l'insieme Z(id) è non numerabile. È vero per ogni funzione f che Z(f) è non numerabile?

Soluzione:

Parte 1: Z(id) è non numerabile

```
Sia id: \mathbb{N} \to \mathbb{N} la funzione identità, id(x) = x.
Allora Z(id) = {q : \mathbb{N} \to \mathbb{N} | \forall x \in \mathbb{N}. q(x) = x \vee q(x) = 0}.
```

Dimostrazione per diagonalizzazione: Consideriamo il sottoinsieme $Z_0(id) \subseteq Z(id)$ delle funzioni totali g: $\mathbb{N} \to \mathbb{N}$ tali che $g(x) \in \{0,x\}$ per ogni x.

Ogni funzione $g \in Z_0(id)$ è completamente determinata dall'insieme:

$$A_q = \{x \in \mathbb{N} : q(x) = x\}$$

Viceversa, per ogni A ⊆ \mathbb{N} , possiamo definire g_A ∈ \mathbb{Z}_0 (id):

```
g_A(x) = {
    x se x ∈ A
    0 se x ∉ A
}
```

Questo stabilisce una biiezione tra $Z_0(id)$ e 2^N (l'insieme dei sottoinsiemi di N).

Poiché $|2^N| > |N|$ (per il teorema di Cantor), abbiamo $|Z_0(id)| > |N|$. Quindi $|Z(id)| \ge |Z_0(id)| > |N|$, cioè Z(id) è non numerabile.

Parte 2: Non vale per ogni funzione f

Controesempio: Sia f(x) = 0 per ogni $x \in \mathbb{N}$. Allora $Z(f) = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}. g(x) = 0 \lor g(x) = 0\} = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}. g(x) = 0\}.$

Quindi $Z(f) = \{0\}$, dove $0^\circ e$ la funzione costante zero.

Poiché |Z(f)| = 1, Z(f) è numerabile (anzi, finito).

Conclusione: Z(id) è non numerabile, ma non vale per ogni funzione f. ■

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x \mid W_x \subseteq \{x\}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che il dominio di φ_x è contenuto nel singleton $\{x\}$.

Analisi della struttura:

A è un insieme saturo, poiché può essere espresso come A = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \in \mathcal{C} : dom(f) \subseteq \{indice di f\}\}$.

Tuttavia, la condizione di saturazione richiede che gli indici della stessa funzione abbiano la stessa proprietà, il che qui non è automaticamente garantito.

Ricorsività:

A non è ricorsivo. Dimostriamo K ≤_m A.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
z + 1 se y \in K \land z = y
\uparrow altrimenti
\}
```

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifica della riduzione:

- Se $y \in K$, allora $W_{s(y)} = \{y\}$, quindi $s(y) \in A$
- Se y \notin K, allora $W_{s(y)} = \emptyset \subseteq \{s(y)\}$, quindi $s(y) \in A$

Questa riduzione non funziona perché entrambi i casi portano ad A.

Approccio corretto: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(y,z) = \{
z + 1 \quad \text{se } y \in K \land (z = y \lor z = 0)
\uparrow \quad \text{altrimenti}
```

- Se $y \in K$, allora $W_{t(y)} = \{y,0\}$, quindi se $y \ne 0$, $t(y) \notin A$
- Se y \notin K, allora $W_{t(y)} = \emptyset \subseteq \{t(y)\}$, quindi $t(y) \in A$

Quindi $\bar{K} \leq_m A$, e poiché \bar{K} non è ricorsivo.

Enumerabilità ricorsiva:

A è r.e. Possiamo scrivere la funzione semicaratteristica:

```
sc_A(x) = 1(\mu t. \forall y \le t. [H(x,y,t) \rightarrow y = x])
```

Enumerabilità ricorsiva di Ā:

Ā non è r.e. Se lo fosse, insieme ad A essendo r.e., avremmo che A sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : |W_x| > 1\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che il dominio di φ_x ha cardinalità strettamente maggiore di 1.

Ricorsività:

B non è ricorsivo. Dimostriamo K ≤_m B.

Definiamo q: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
z + 1 \quad \text{se } y \in K \land z \in \{0,1\}
\uparrow \quad \text{altrimenti}
```

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifica della riduzione:

- Se y \in K, allora $W_{s(y)} = \{0,1\}$, quindi $|W_{s(y)}| = 2 > 1$, dunque $s(y) \in B$
- Se y ∉ K, allora W_{s(y)} = Ø, quindi |W_{s(y)}| = 0 ≤ 1, dunque s(y) ∉ B

Pertanto K ≤_m B, e poiché K non è ricorsivo, B non è ricorsivo.

Enumerabilità ricorsiva di B:

B è r.e. Possiamo scrivere la funzione semicaratteristica:

```
SC_B(x) = 1(\mu t. \exists u, v \le t. [u \ne v \land H(x,u,t) \land H(x,v,t)])
```

Questa funzione cerca un tempo t entro il quale esistono almeno due input distinti u,v tali che $\phi_x(u)$ e $\phi_x(v)$ convergono.

Enumerabilità ricorsiva di B:

```
\bar{B} = \{x \in \mathbb{N} : |W_x| \le 1\}
```

B non è r.e. Se lo fosse, insieme a B essendo r.e., avremmo che B sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione: B non è ricorsivo, B è r.e., B̄ non è r.e. ■

Esercizio 5

Problema: Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che l'insieme $A = \{x \mid W_x \subseteq \{x\}\}$ non è saturato.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e \mathbb{N} tale che $\phi_e = \phi_f(e)$.

Dimostrazione che A non è saturato:

Per dimostrare che A non è saturato, dobbiamo trovare indici e, e' tali che:

- $\phi_e = \phi_{e'}$
- e ∈ A ma e' ∉ A (oppure viceversa)

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile: $g(x,y) = (y + 1) \cdot \mu z.|x - y|$

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Quindi $W_{s(x)} = \{x\} \in |W_{s(x)}| = 1$, il che significa $s(x) \in A$ per ogni x.

Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che:

```
\varphi_e = \varphi_{s(e)}
```

Da questa uguaglianza:

- $W_e = W_{s(e)} = \{e\}$
- $e \in A$ (poiché $W_e = \{e\} \subseteq \{e\}$)

Ora, sia e' = s(e). Abbiamo $\phi_{e'} = \phi_{s(e)} = \phi_{e}$, ma:

- $W_{e'} = W_{s(e)} = \{e\}$
- Se e' \neq e, allora $W_{e'} = \{e\} \notin \{e'\}$, quindi e' $\notin A$

Quindi abbiamo $e \in A$, $e' \notin A$, ma $\phi_e = \phi_e'$, il che prova che A non è saturato.

Conclusione: L'insieme $A = \{x \mid W_x \subseteq \{x\}\}$ non è saturato.