CS365 Homework #2

Joshua Gleason

September 8, 2010

Page 46

- 6. (a) There exists a student in my school who has visited North Dakota.
 - (c) There does not exist a student in my school who has visited North Dakota.
 - (f) No students in my school have visited North Dakota.
- 12. (d) $\exists x Q(x)$ says that for some x, x + 1 > 2x. This statement is **True**. (for example when x = 0)
 - (e) $\forall x Q(x)$ says that for every x, x + 1 > 2x. This statement is **False**. (for example when x = 1)
 - (g) $\forall x \neg Q(x)$ says that for every $x, x + 1 \le 2x$. This statement is **False**. (for example when x = 0)
- 24. F(x): x is in your class.
 - (a) G(x): x has a cellular phone.
 - i. $\forall x G(x)$
 - ii. $\forall x (F(x) \to G(x))$
 - (c) H(x): x cannot swim.
 - i. $\exists x H(x)$
 - ii. $\exists x (F(x) \land H(x))$
 - (e) I(x): x does not want to be rich.
 - i. $\exists x I(x)$
 - ii. $\exists x (F(x) \land I(x))$

32. (a) F(x) : x has fleas.

Domain of x is all dogs

- i. $\forall x F(x)$
- ii. $\exists x \neg F(x)$
- iii. There is a dog that does not have fleas.
- (b) G(x): x can add.

Domain of x is all horses

- i. $\exists x G(x)$
- ii. $\forall x \neg G(x)$
- iii. There are no horses that can add.
- (e) H(x): x can swim.
 - I(x): x can catch fish.

Domain of x is all pigs.

- i. $\exists x (H(x) \land I(x))$
- ii. $\forall x (\neg H(x) \lor \neg I(x))$
- iii. There are no pigs that can catch fish and swim.
- 60. (a) $\forall x (P(x) \rightarrow Q(x))$
 - (b) $\exists x (R(x) \land \neg Q(x))$
 - (c) $\exists x (R(x) \land \neg P(x))$
 - (d) Just because all clear explanations are satisfactory and some excuses are not satisfactory then there is no guarantee that an unclear excuse exist. **No** (c) does not follow from (a) and (b).

Page 58

- 10. (c) $\forall x \exists y F(x,y)$
 - (e) $\forall y \exists x F(x,y)$
 - (j) $\exists x \exists y ((x \neq y) \land F(x, y) \land \forall z ((F(x, z) \land x \neq z) \rightarrow (z = y)))$
- 20. (a) $\forall x \forall y (((x < 0) \land (y < 0)) \rightarrow (x \times y > 0))$
 - (b) $\forall x \forall y (((x > 0) \land (y > 0)) \rightarrow (\frac{x+y}{2} > 0))$
 - (c) $\neg \forall x \forall y (((x < 0) \land (y < 0)) \rightarrow (x y > 0)))$
 - (d) $\forall x \forall y (|x+y| \le |x| + |y|)$

- 28. (e) This reads... For every real number x that is not zero, there exists another real number y such that $x \times y = 1$. This is **True** because if $x \times y = 1$ then $y = \frac{1}{x}$ which means y exists as long as $x \neq 0$.
 - (f) This reads... There exists some real number x that for every non-zero real number y $x \times y = 1$. This is **False** because there is no such number.
 - (i) This reads... For every real number x there exists a real number y such that x+y=2 and 2x-y=1. This is **False** because there are numbers that exists where no real number can satisfy both of these equations. For example if x=2 then for x+y=2, y=0, but for 2x-y=1, y=3.
 - (j) This reads... For all real numbers x and y there exists another real number z where $z=\frac{x+y}{2}$. This is **True** because the expression $\frac{x+y}{2}$ always evaluates to a real number given that x and y are also real numbers.
- 40. (a) If x = 2 then y must be equal to $\frac{1}{2}$, which is not an integer value.
 - (b) If x = -100 then $y^2 (-100) < 100$ evaluates to $y^2 < 0$ which is not true for any integer values.
 - (c) If x = 1000 and y = 100 then $x^2 = y^3$, which means that for every x and y it is not true that $x^2 \neq y^3$.