CSE 258 – Lecture 6

Web Mining and Recommender Systems

Community Detection

Dimensionality reduction

Goal: take **high-dimensional** data, and describe it compactly using a small number of dimensions

Assumption: Data lies (approximately) on some **low-dimensional** manifold

(a few dimensions of opinions, a small number of topics, or a small number of communities)

Principal Component Analysis

Clustering

Q: What would PCA do with this data?
A: Not much, variance is about equal

K-means Clustering

1. Input is still a matrix of features:

$$X = \begin{pmatrix} 5 & 3 & \cdots & 1 \\ 4 & 2 & & 1 \\ 3 & 1 & & 3 \\ 2 & 2 & & 4 \\ 1 & 5 & & 2 \\ \vdots & & \ddots & \vdots \\ 1 & 2 & \cdots & 1 \end{pmatrix}$$

3. From this we can describe each point in X Y = (1, 2, 4, 3, 4, 2, 4, 2, 2, 3, 3, 2, 1, 1, 3, ..., 2) by its cluster membership:

Hierarchical clustering

Q: What if our clusters are hierarchical?

Hierarchical clustering

Q: What if our clusters are hierarchical?

A: We'd like a representation that encodes that points have **some features** in common but not others

• **Q:** How to choose K in K-means? (or:

- How to choose how many PCA dimensions to keep?
- How to choose at what position to "cut" our hierarchical clusters?
- (later) how to choose how many communities to look for in a network)

1) As a means of "compressing" our data

- Choose however many dimensions we can afford to obtain a given file size/compression ratio
- Keep adding dimensions until adding more no longer decreases the reconstruction error significantly

- 2) As a means of generating potentially useful features for some other predictive task (which is what we're more interested in in a predictive analytics course!)
 - Increasing the number of dimensions/number of clusters gives us additional features to work with, i.e., a longer feature vector
 - In some settings, we may be running an algorithm whose complexity (either time or memory) scales with the feature dimensionality (such as we saw last week!); in this case we would just take however many dimensions we can afford

 Otherwise, we should choose however many dimensions results in the best prediction performance on held out data

Questions?

Further reading:

Ricardo Gutierrez-Osuna's PCA slides (slightly more mathsy than mine):

http://research.cs.tamu.edu/prism/lectures/pr/pr_l9.pdf

Relationship between PCA and K-means:

http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

So far we have seen methods to reduce the dimension of points based on their **features**

So far we have seen methods to reduce the dimension of points based on their **features**

What if points are not defined by features but by their relationships to each other?

Q: how can we compactly represent the set of relationships in a graph?

A: by representing the nodes in terms of the **communities** they belong to

Community detection

(from previous lecture)

e.g. from a PPI network; Yang, McAuley, & Leskovec (2014)

Part 1 – Clustering
Group sets of points based on their features

Part 2 – Community detection
Group sets of points based on
their connectivity

Warning: These are **rough** distinctions that don't cover all cases. E.g. if I treat a row of an adjacency matrix as a "feature" and run hierarchical clustering on it, am I doing clustering or community detection?

Community detection

How should a "community" be defined?

Community detection

How should a "community" be defined?

- 1. Members should be connected
- 2. Few edges between communities
 - 3. "Cliqueishness"
- 4. Dense inside, few edges outside

Today

1. Connected components

(members should be connected)

2. Minimum cut

(few edges between communities)

3. Clique percolation

("cliqueishness")

4. Network modularity

(dense inside, few edges outside)

1. Connected components

Define communities in terms of sets of nodes which are reachable from each other

- If a and b belong to a **strongly connected component** then there must be a path from a \rightarrow b and a path from b \rightarrow a
 - A weakly connected component is a set of nodes that would be strongly connected, if the graph were undirected

1. Connected components

- Captures about the roughest notion of "community" that we could imagine
 - Not useful for (most) real graphs:
 there will usually be a "giant
 component" containing almost all
 nodes, which is not really a
 community in any reasonable sense

What if the separation between communities isn't so clear?

e.g. "Zachary's Karate Club" (1970)

Aside: Zachary's Karate Club Club

Cut the network into two partitions such that the number of edges crossed by the cut is minimal

Solution will be degenerate – we need additional constraints

We'd like a cut that favors **large** communities over small ones

#of edges that separate c from the rest of the network

Ratio
$$\operatorname{Cut}(C) = \frac{1}{|C|} \sum_{c \in C} \frac{\operatorname{cut}(c,\bar{c})}{|c|}$$
Proposed set of communities size of this community

What is the **Ratio Cut** cost of the following two cuts?

Ratio Cut(
$$\cdot$$
) = $\frac{1}{2}(\frac{3}{33} + \frac{3}{1}) = 1.54545$
Ratio Cut(\cdot) = $\frac{1}{2}(\frac{9}{16} + \frac{9}{18}) = 0.53125$

But what about...

Ratio Cut(
$$\cdot$$
) = $\frac{1}{2}(\frac{1}{33} + \frac{1}{1}) = 0.51515$

Maybe rather than counting all nodes equally in a community, we should give additional weight to "influential", or high-degree nodes

Normalized Cut(C) =
$$\frac{1}{|C|} \sum_{c \in C} \frac{cut(c,\bar{c})}{\sum_{c \in C} \frac{cu$$

nodes of high degree will have more influence in the denominator

What is the **Normalized Cut** cost of the following two cuts?

Norm. Cut(*.) =
$$\frac{1}{2}(\frac{1}{155} + \frac{1}{1}) = 0.50322$$

Norm. Cut(*.) = $\frac{1}{2}(\frac{9}{76} + \frac{9}{80}) = 0.11546$

Code:

```
>>> Import networkx as nx
>>> G = nx.karate_club_graph()
>>> c1 = [1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22]
>>> c2 = [9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34]
>>> Sum([G.degree(v-1) for v in c1])
76
>>> sum([G.degree(v-1) for v in c2])
80
```

Nodes are indexed from 0 in the networkx dataset, 1 in the figure

So what actually happened?

- · · = Optimal cut
- Red/blue = actual split

Normalized cuts in Computer Vision

"Normalized Cuts and Image Segmentation" Shi and Malik, 1998

Disjoint communities

Separating networks into disjoint subsets seems to make sense when communities are somehow "adversarial"

E.g. links between democratic/republican political blogs (from Adamic, 2004)

Social communities

But what about communities in social networks (for example)?

e.g. the graph of my facebook friends:

http://jmcauley.ucsd.edu/cse258/data/facebook/egonet.txt

Social communities

Such graphs might have:

- Disjoint communities (i.e., groups of friends who don't know each other)
 e.g. my American friends and my Australian friends
- **Overlapping** communities (i.e., groups with **some** intersection) e.g. my friends and my girlfriend's friends
- **Nested** communities (i.e., one group within another) e.g. my UCSD friends and my CSE friends

3. Clique percolation

How can we define an algorithm that handles all three types of community (disjoint/overlapping/nested)?

Clique percolation is one such algorithm, that discovers communities based on their "cliqueishness"

3. Clique percolation

- Clique percolation searches for "cliques" in the network of a certain size (K). Initially each of these cliques is considered to be its own community
- If two communities share a (K-1) clique in common, they are merged into a single community
- This process repeats until no more communities can be merged

```
    Given a clique size K
    Initialize every K-clique as its own community
    While (two communities I and J have a (K-1)-clique in common):
    Merge I and J into a single community
```

3. Clique percolation

What is a "good" community algorithm?

- So far we've just defined algorithms to match some (hopefully reasonable) intuition of what communities should "look like"
- But how do we know if one definition is better than another? I.e., how do we evaluate a community detection algorithm?
- Can we define a probabilistic model and evaluate the likelihood of observing a certain set of communities compared to some null model

Null model:
Edges are equally likely between any pair of nodes, regardless of community structure ("Erdos-Renyi random model")

Null model:
Edges are equally likely between any pair of nodes, regardless of community structure
("Erdos-Renyi random model")

Q: How much does a proposed set of communities **deviate** from this null model?

$$e_{kk} = \frac{\text{\# edges with both endpoints in community } k}{\text{\# edges}}$$

$$a_k = \frac{\text{\# edge endpoints in community } k}{\text{\# edge endpoints}}$$

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

Fraction of community k

Fraction that we would edges in expect if edges were allocated randomly

$$e_{kk} = rac{\# ext{ edges with both endpoints in community } k}{\# ext{ edges}}$$

$$a_k = rac{\# ext{ edge endpoints in community } k}{\# ext{ edge endpoints}}$$

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

$$e_{kk} = \frac{\text{\# edges with both endpoints in community } k}{\text{\# edges}}$$

$$a_k = \frac{\text{\# edge endpoints in community } k}{\text{\# edge endpoints}}$$

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

$$-\frac{1}{2} \leq Q < 1$$
 Far fewer edges in Far

communities than we would communities than we would expect at random

Far more edges in expect at random

Algorithm: Choose communities so that the deviation from the null model is maximized

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

 $\operatorname{arg\,max_{communities}} Q(\operatorname{communities})$

That is, choose communities such that **maximally** many edges are within communities and **minimally** many edges cross them

(NP Hard, have to approximate, e.g. choose greedily)

Summary

- Community detection aims to summarize the structure in networks
 - (as opposed to clustering which aims to summarize feature dimensions)
- Communities can be defined in various ways, depending on the type of network in question
 - 1. Members should be connected (connected components)
 - 2. Few edges between communities (minimum cut)
 - 3. "Cliqueishness" (clique percolation)
 - 4. Dense inside, few edges outside (network modularity)

Assignment 1

Will be discussed next lecture when we introduce **Recommender Systems**

Questions?

Further reading:

Just on modularity: http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/modularity.pdf

Various community detection algorithms, includes spectral formulation of ratio and normalized cuts:

http://dmml.asu.edu/cdm/slides/chapter3.pptx