امتحان میانترم زمان: ۲ ساعت

سوال ١: صحيح يا غلط

صحیح و غلط بودن موارد زیر را به صراحت ذکر کنید و در حداکثر یک خط و نیم توضیح دهید.

- مجموعه A که برابر است با همه زیر مجموعههای متناهی از رشتههای عضو $\{\circ,1\}^*$ شماراست. $(A=\{L\subset \{\circ,1\}^*\,|\,|L|\in \mathbb{Z}\})$
- بنابر قضیه Rice زبان توصیف همه ماشینهای تورینگ که رشته ۰۱ را میپذیرند و رشته ۱۰ را نمی پذیرند بازگشتی نیست.
- اشتراک دو مجموعه تشخیص پذیر توسط ماشین تورینگ^۱، مجموعهای تشخیص پذیر توسط ماشین تورینگ است.
- نمونههایی از مسئله PCP شامل دوتاییهای (α_i, β_i) نمونههای از مسئله PCP شامل دوتاییهای (α_i, β_i) با آن نمونهها نمی توان ترکیب صحیح را ساخت، یعنی تورینگ می تواند تصمیم بگیرد (اعلام کند) با آن نمونهها نمی توان ترکیب صحیح را ساخت، یعنی هیچ دنباله ای از اعداد $\alpha_i, \alpha_{i_1} \dots \alpha_{i_k} = \beta_i, \beta_{i_1} \dots \beta_{i_k}$ وجود ندارد که داشته باشیم:
- نمونههایی از مسئله PCP شامل دوتاییهای ((α_i, β_i) نمونههایی از مسئله PCP شامل دوتاییهای آن نمونهها نمی تواند تصمیم بگیرد (اعلام کند) با آن نمونهها نمی تواند تصمیم بگیرد (اعلام کند) با آن نمونهها نمی تواند مدیر و ساخت، یعنی هیچ دنباله ای از اعداد $(\alpha_i, \alpha_{i_1}, \dots, \alpha_{i_k} = \beta_i, \beta_{i_1}, \dots, \beta_{i_k})$ دنباله ای از اعداد $(\alpha_i, \alpha_{i_1}, \dots, \alpha_{i_k})$ وجود ندارد که داشته باشیم:
 - ماشین تورینگ جهانشمول^۳ نمی تواند ماشین تورینگ جهانشمول را شبیه سازی کند.

سوال ۲: تعریفها

موارد زیر را تعریف کنید:

- محاسبه یک تابع جزئی ۴ چند متغیره توسط ماشین تورینگ.
 - زبان بازگشتی^۵

^{&#}x27;Turing Machine Recognizable

[†]Post's Correspondence Problem

[&]quot;Universal Turing Machine

^{*}Partial Function

 $^{{}^{\}vartriangle}\mathrm{Recursive}$

سوال ٣: تابع على

على تابع زير را طراحي كردهاست.

function HOTPO(n) while n > 0 do if $n \mod 2 = 0$ then $n \leftarrow n/2$ else $n \leftarrow 3n + 1$

- اگر خواستید تعریف شمارش یک زبان توسط یک ماشین تورینگ را بنویسید (صفر نمره)
- على نمى داند كه آیا تابعاش به ازاى عددهاى مختلف پایان مىپذیرد یا خیر. شما به مشكل على كارى ندارید، بلكه ماشین تورینگی طراحی كنید كه نمایش یگانی 9 تمام اعداد n را بنویسد كه براى آنها الگوریتم على پایان مىپذیرد.

سوال ۴: محاسبه پذیری همه یا هیچ

زبان

ربان $L=\{e(T_{\mathsf{1}})e(T_{\mathsf{1}})|L(T_{\mathsf{1}})\cup L(T_{\mathsf{1}})=\Sigma^*$ یا $L(T_{\mathsf{1}})\cap L(T_{\mathsf{1}})=\emptyset\}$ را در نظر بگیرید که هر کدام از T_i ها یک ماشین تورینگ، E(T) توصیف ماشین E(T) زبان ماشین T است. ثابت کنید زبان E(T) بازگشتی نیست اما بازگشتی شمارشی $^{\mathsf{N}}$ هست.

موفق باشيد

⁹Unary

 $^{{}^{\}vee} {\rm Recursively\ Enumerable}$