Math 170E: Winter 2023

Lecture 22, Wed 8th Mar

Bivariate distributions of the continuous type

Last time:

• Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$. Then if $A \subseteq \mathbb{R}^2$,

$$\mathbb{P}((X,Y)\in A)=\iint_A f_{X,Y}(x,y)dxdy$$

- We define the marginals by integrating out one of the variables:
 - the marginal PDF of X to be

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

the marginal PDF of Y to be

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Proposition 4.22:

Let X, Y be continuous random variables and f_X be the marginal PDF of X. If a < b, then

Proof:

$$P(a < X \le b) = \int_{a}^{b} f_{X}(x) dx$$

$$P(a < X \le b) = P((x_{1}y) \in \mathbb{R}^{2}, a < X \le b, y \in \mathbb{R}^{2})$$

$$= \iint_{A} f_{X_{1}y}(n_{1}y) dxdy$$

$$= \iint_{A} f_{X_{1}y}(n_{1}y) dydy dx = \iint_{A} f_{X_{1}y}(n_{1}y) dxdy$$

$$= \int_{A} f_{X_{1}y}(n_{1}y) dydy dx = \int_{A} f_{X_{1}y}(n_{1}y) dxdy$$

Definition 4.23:

Let X, Y be continuous random variable with joint PDF $f_{X,Y}(x,y)$.

Given a function $g: \mathbb{R}^2 \to \mathbb{R}$, we define the expected value of g(X, Y) to be

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

$$1-d case : \#(g(x)) = \int_{-\infty}^{\infty} g(x) f_{x}(x) dx$$

of OENEYEIS

Example 21:

• Let X, Y have joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 2 & \text{if } 0 \le x \le y \le 1, \\ 0 & \text{otherwise} \end{cases}$$

• What is $\mathbb{E}[XY]$?

$$E[XY] = E[g(XY)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{XY}(ny) dxdy.$$

$$= \int_{-\infty}^{\infty} xy \cdot 2 dxdy.$$

$$= 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y dxdy.$$

$$= 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y dxdx.$$

Proposition 4.24:

Let X, Y be continuous random variable with joint PDF $f_{X,Y}(x,y)$. Then

• If $a, b \in \mathbb{R}$ and $g, h : \mathbb{R}^2 \to \mathbb{R}$, we have

$$\mathbb{E}[ag(X,Y) + bh(X,Y)] = a\mathbb{E}[g(X,Y)] + b\mathbb{E}[h(X,Y)]$$

• If $g,h:\mathbb{R}^2 \to \mathbb{R}$ and $g(x,y) \le h(x,y)$ for all $(x,y) \in \mathbb{R}^2$ we have $\mathbb{E}[g(X,Y)] \le \mathbb{E}[h(X,Y)]$

Proof: Exautly he sure as 1-variable care.

If XiY discrette, indep if Riy(21y)=R(2)R(y)

[X=2], [Y=y] are independents

Definition 4.25:

Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$ and marginal PDFs $f_X(x), f_Y(y)$.

We say that X, Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \text{ for all } (x,y) \in \mathbb{R}^2.$$

$$\{X \leq 2X\}, \{Y \leq Y\} \text{ are inclependent } \approx -definition for XiY inclep.}$$

$$C = \{P(X \leq 2X, Y \leq Y)\}$$

$$= \{P(X \leq 2X, Y \leq Y)\}$$

$$=$$

Proposition 4.25:

Let X,Y be independent continuous random variables. Then if $g,h:\mathbb{R}\to\mathbb{R}$, we have

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$$

Proof: Exempe,

Definition 4.26:

Let X, Y be continuous random variables.

• We define the covariance of X and Y to be

$$cov(X, Y) = \mathbb{E}\Big[\big(X - \mathbb{E}[X]\big)\big(Y - \mathbb{E}[Y]\big)\Big] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

• We define the correlation coefficient of X and Y to be

$$\rho(X, Y) = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X)\text{var}(Y)}}$$

The Cauchy-Schwarz inequality also holds in the continuous setting

$$\bullet \implies -1 \le \rho(X, Y) \le 1$$

Example 21:

Wereal: cor(XIY) -> Elx], #14]

Let X, Y have joint PDF

var(x), var(y) -> #(x], #(Y) #(x2), #(x2).

 $f_{X,Y}(x,y) = \begin{cases} 2 & \text{if } 0 \le x \le y \le 1, \\ 0 & \text{otherwise} \end{cases}$

• What is
$$\rho(X,Y)$$
? $f_X(x) = \begin{cases} 2-2x, & \text{if } 0 \leq x \leq 1 \\ 0 & \text{otherwise.} \end{cases}$

 $f_{Y}(y) = \begin{cases} \int_{0}^{y} 2dx & \text{if } 0 \leq y \leq 1 \\ 0 & \text{if } y > (\alpha y < 0) \end{cases}$ = \ 2y \ foeyel.

$$E(X) = \int_{0}^{1} \chi(2-2x) dx = 2 \int_{0}^{1} \chi(-x^{2}) dx = 2 \int_{0}^{1} \chi(-x$$

$$E(Y) = \int_{0}^{1} y \cdot 2y \, dy = \frac{2}{3}.$$

$$E(XY) = \frac{1}{4} \quad \text{(Premearlier)}.$$

$$E(XY) = \int_{0}^{1} \frac{2^{2}(2-2x)dx}{2^{2}(2-2x)dx} = 2\int_{0}^{1} \frac{x^{2}-x^{3}dx}{2^{2}(2-2x)dx} = 2\int_{0}^{1} \frac{x^{2}-x^{3}dx}{3^{2}(2-2x)dx} = 2\int_{0}^{1} \frac{x^{2}-x^{2}dx}{3^{2}(2-2x)dx} = 2\int_{0}^{1} \frac{x^{2}-x^{$$

$$\Rightarrow P(X|Y) = \frac{COV(X|Y)}{VOV(X)VOV(Y)} = \frac{\frac{1}{36}}{\frac{1}{18} \times \frac{1}{18}}$$

$$\lim_{N \to 0} \frac{SUN(N)}{N} = 1.$$

$$= \frac{\frac{1}{36}}{\frac{1}{18}} = \frac{18}{36} = \frac{1}{2}$$

Conditional distributions of the continuous type

$$V(X=x) = \frac{2e^{x}}{e^{x}} \frac{1}{e^{x}} \frac{$$

placentatué (h. Er, wegrals

 $\frac{1}{28} \int_{2-8}^{2+8} \int_{-\infty}^{4} f(s,t) dt ds. \int_{5-a}^{4} f(s) ds$ $= f(s_0)$ $= f(s_0)$ $= f(s_0)$ $= f(s_0)$ 1 28. Just fx(s)ds. $\frac{\int_{S} f(s_2)}{\int_{N-S} f(s_1) dt}, \text{ for some } s_1, s_2 \in (n-s_1) \times f(s_2).$ $S \to 0^+ \int_{N} f(s_1) (2n+1) dt$ $\lim_{S \to 0} |P(Y \leq Y|x - S \leq X \leq x + S) = f_X(x) \int_{\infty}^{y} f_{X,Y}(x,t) dt.$

$$\begin{aligned}
& (y) = x \\
&$$

Definition 4.27:

Let X, Y be continuous random variable with joint PDF $f_{X,Y}(x,y)$. Given $x \in \mathbb{R}$ such that $f_X(x) > 0$, we define the continuous random variable Y|x with PDF

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

Example 23:

• Let X, Y have joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 2 & \text{if } 0 \le x \le y \le 1, \\ 0 & \text{otherwise} \end{cases}$$

• Given 0 < x < 1, what is $f_{Y|X}(y|x)$?

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)}{f_{X}(x)} = \frac{f_{X|Y}(x|y)}{2(1-x)}.$$

$$= \begin{cases} 1 & \text{if } x \leq y \leq 1. \\ 0 & \text{otherws}. \end{cases}$$

Proposition 4.28:

Let X, Y be continuous random variable and $x \in \mathbb{R}$ such that $f_X(x) > 0$. Then,

$$\int_{-\infty}^{\infty} f_{Y|X}(y|x)dy = 1.$$

Proof:

exercise

Example 24:

• Let X, Y have joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 2 & \text{if } 0 \le x \le y \le 1, \\ 0 & \text{otherwise} \end{cases}$$

• If $0 \le x < 1$, what is $\mathbb{E}[Y|x]$? $\gamma \sim Uniform((x_{1}))$ E(Y/2) = 24 $= \int_{\mathcal{X}}^{1} y \cdot f_{1}(y|x) dy$ $= \int_{\mathcal{X}}^{1} y \cdot \frac{1}{1-x} dy = \frac{1}{1-x} \cdot \left(\frac{y^{2}}{2}\right)_{y=x}^{1}$ $= \frac{1}{1-x} \cdot \frac{1-x^{2}}{2} = \frac{xt}{2}$

 $g(2e) = E(Y|X), = \frac{2i}{2}$ Vouferm (Cair) $(vor(\sqrt{2}))$ $= \sqrt{2}a^{2}$ (2. $h(x) = var(Y(x)) = \frac{1-x^2}{(2)}$ $var(Y(X) = h(X)) = \frac{1-x^2}{(2)}$ $var(Y(X) = h(X)) = \frac{1-x^2}{(2)}$ Lau of iterated expertances (s there hold true of XiY are cos cush a jour pdf.

 $C > X \sim Y = u(X)$. C > What is the distribution of X?

$$P(Y=y) = P(u(x)=y).$$

= $IP(x=u^{-1}(y)).$
= $IP(x \in u^{-1}(y))$

$$\mathcal{U}(x) = x^{2}$$

$$\frac{1}{\sqrt{y}}$$

$$\frac{1}{\sqrt{y}}$$

$$\frac{1}{\sqrt{y}}$$

$$\frac{1}{\sqrt{y}}$$

$$\frac{1}{\sqrt{y}}$$