<u>Documentation And Architecture Diagram of Advanced Graph RAG</u> <u>System (Gemini + Neo4j Hybrid Agent)</u>

Problem statement:

Use Knowledge Graph databases like NeoJ4 and create proper graphical relationships among the data given (pdf + excel files) and create an advanced RAG out of it

Solution:

This document outlines the architecture, setup, and functionality of an **Advanced Graph RAG (Retrieval-Augmented Generation) System**. This solution leverages the power of **Neo4j** (as a Knowledge Graph and Vector Database) and the **Gemini API** via LangChain to create an intelligent AI agent capable of answering complex queries that require both structured/relational data and unstructured context.

1. Project Overview and Architecture

The system is designed as a **Hybrid Retrieval Pipeline** that intelligently routes a user's question to the most appropriate data store: the Knowledge Graph for facts and relationships, or the Vector Store for contextual summaries.

Core Architecture Components

Phase	Component	Technology/Tool	Purpose
Ingestion	Knowledge Graph (KG) & Vector Index Creation	ingest_utility.py, pandas, pdfplumber, langchain-neo4j	Processes Excel (.xlsx) into Structured Nodes/Relationships and PDFs (.pdf) into Text Chunks with Vector Embeddings in Neo4j.
Retrieval	Intelligent Query Router	Gemini (LLM), langchain-core	Classifies user questions as "GRAPH" (relational/metric-based) or "VECTOR" (contextual/summary-based).
	Graph Search	GraphCypherQAChain, Neo4j	Translates "GRAPH" questions into Cypher queries for precise retrieval of facts and relationships.
	Vector Search	Neo4jVector, Gemini Embeddings	Performs semantic search on "VECTOR" questions, retrieving relevant text chunks from the PDF corpus.
Generation	Final Answer Synthesis	Gemini (LLM), langchain-core	Generates the final, grounded natural language answer using the retrieved context from either the Graph or Vector search.

2. Setup and Prerequisites

2.1 Dependencies

The following packages are required to run the application.

pandas
openpyxl
pdfplumber
streamlit
langchain
langchain-community
langchain-neo4j
langchain-google-genai
neo4j
python-dotenv
requests
langchain_experimental

2.2 Environment Variables (.env)

You must configure your credentials and model names in a .env file at the root of the project.

Variable	Description	Source
GEMINI_API_KEY	Your API key for Google's Gemini models.	Google Al Studio
GOOGLE_API_KEY	(Alias for GEMINI_API_KEY)	Google Al Studio
NEO4J_URI	The connection URL for your Neo4j database (e.g., AuraDB instance).	Neo4j AuraDB Console
NEO4J_USERNAME	Usually neo4j	Neo4j AuraDB Console

NEO4J_PASSWORD	The password for your Neo4j instance.	Neo4j AuraDB Console
LLM_MODEL	The model used for reasoning, routing, and generation (e.g., gemini-2.5-flash).	Gemini API
EMBEDDING_MODEL	The model used for generating vector embeddings (e.g., text-embedding-004).	Gemini API

3. Application Workflow (app.py)

The main application is a Streamlit interface that orchestrates the Hybrid RAG pipeline.

3.1 Initialization and Caching

The initialize_rag_components() function uses @st.cache_resource to ensure the expensive operations—like connecting to the LLM/Neo4j and refreshing the graph schema—only happen once when the application starts.

3.2 Graph Search Chain

The system sets up the GraphCypherQAChain using **Gemini** to translate natural language into the Neo4j query language, **Cypher**.

The custom cypher_generation_prompt provides specific examples to the LLM, guiding it to generate precise Cypher based on the existing graph schema (e.g., Company, Metric, HAS_METRIC).

3.3 Vector Search Retriever

The setup_vector_retriever() function connects to the **pdf_vector_index** in Neo4j, using the Neo4jVector class with the specified Gemini embeddings_instance.

3.4 Intelligent Query Router

This is the core of the hybrid solution. The intelligent_query_router(question) function:

- 1. Feeds the user's question into a specific **Gemini prompt**.
- 2. The prompt forces Gemini to respond with only one of two keywords: **"GRAPH"** or **"VECTOR"**.
- 3. This single-word classification determines which retrieval path is taken in the next step.

3.5 Hybrid RAG Execution (run_hybrid_query)

This function executes the chosen retrieval path:

- If 'GRAPH': It runs the graph_qa_chain. This returns a direct, factual answer and exposes the intermediate Cypher query for transparency. It includes a fallback to Vector Search if the Graph Query fails.
- If 'VECTOR': It uses the vector_retriever to fetch the top 3 relevant Chunk nodes from the PDF vector index. It then passes these chunks as **context** to a final RAG prompt for Gemini to generate a summarized, contextual answer.

4. Data Ingestion Utility (ingest_utility.py)

This script handles the ingestion pipeline, intelligently processing both Excel and PDF files into the Neo4j database.

4.1 Data Cleaning and Setup

- clean_value(value): Normalizes data types, converting strings to floats or dates where appropriate, and handling empty/NaN values.
- clear_data_by_source(file_name): Ensures idempotency by deleting any pre-existing data tied to the uploaded file name before ingestion.

4.2 Excel Ingestion (ingest_excel_intelligent)

This function adapts its ingestion logic based on the Excel structure:

- Simple (Key-Value): If columns are, it treats the file as a list of financial metrics (Metric nodes) and links them to a Company node via the :HAS_METRIC relationship.
- Complex (Tabular): If the data is highly tabular (e.g., Inventory, Books, Invoices), it creates detailed entity nodes (Book, InventoryItem, etc.) for each row.
 - It also uses helper functions (create_book_relationships) to extract and create secondary entities like Author, Publisher, and Store, connecting them relationally.
 - It calculates and stores aggregate metrics (e.g., "Total Opening Stock,"
 "Average Price") as a type of Metric node, allowing the Graph Search to answer summary-based numerical questions.

4.3 PDF Ingestion (ingest_pdf_intelligent)

This function performs two critical tasks:

- Structured Extraction: It uses Python's re module (extract_invoice_data) to parse key-value pairs (Invoice No, Total Amount, Date) from the raw text, creating structured Invoice and Customer nodes.
- 2. **Unstructured Chunking & Vectorization:** It uses PDFPlumberLoader for text extraction, RecursiveCharacterTextSplitter to create small, overlapping text chunks, and the **Gemini Embeddings** model to calculate vector embeddings, which are stored in the **Chunk** nodes in the Neo4j vector index.

- 5. Usage Guide (Streamlit UI)
 - 1. Run the application: (refer User Guide)

Final Output in Neo4j Browser: (explained in User Guide
