(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 August 2001 (23.08.2001)

PCT

(10) International Publication Number WO 01/60850 A1

(51) International Patent Classification⁷: C07K 14/17, C12N 5/10, 15/12, 15/63, 15/64

(21) International Application Number: PCT/US01/04703

(22) International Filing Date: 14 February 2001 (14.02.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/182,172 60/186,084	14 February 2000 (14.02.2000) 29 February 2000 (29.02.2000)	US US
60/198,583	18 April 2000 (18.04.2000)	US
60/237,963	4 October 2000 (04.10.2000)	US

(71) Applicants (for all designated States except US):
SMITHKLINE BEECHAM CORPORATION
[US/US]; One Franklin Plaza, Philadelphia, PA 19103
(US). SMITHKLINE BEECHAM P.L.C. [GB/GB]; New
Horizons Court, Great West Road, Brentford, Middlesex
TW8 9EP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AGARWAL, Pankaj [IN/US]; 251 West DeKalb Pike, King of Prussia, PA 19406 (US). KABNICK, Karen, S. [US/US]; 4138 Presidential Drive, Lafayette Hill, PA 19444 (US). MURDOCH, Paul, R. [GB/GB]; New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB).

RIZVI, Safia, K. [PK/US]; 4617 Pine Street, Philadelphia, PA 19143 (US). SMITH, Randall, F. [US/US]; 4138 Presidential Drive, Lafayette Hill, PA 19444 (US). XIANG, Zahoying [CN/US]; 2413 Ridgeway, Fort Lee, NJ 07024 (US).

- (74) Agents: HECHT, Elisabeth, J. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW 2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).
- (81) Designated States (national): AE, AL, AU, BA, BB, BG, BR, BZ, CA, CN, CZ, DZ, EE, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, MZ, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, TZ, UA, US, UZ, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL COMPOUNDS

(57) Abstract: Polypeptides and polynucleotides of the genes set forth in Table I and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing polypeptides and polynucleotides of the genes set forth in Table I in diagnostic assays.

Novel Compounds

Field of Invention

This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides, to their use in diagnosis and in identifying compounds that may be agonists, antagonists that are potentially useful in therapy, and to production of such polypeptides and polynucleotides. The polynucleotides and polypeptides of the present invention also relate to proteins with signal sequences which allow them to be secreted extracellularly or membrane-associated (hereinafter often referred collectively as secreted proteins or secreted polypeptides).

10

15

20

25

30

35

5

Background of the Invention

The drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics", that is, high throughput genome- or gene-based biology. This approach as a means to identify genes and gene products as therapeutic targets is rapidly superseding earlier approaches based on "positional cloning". A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.

Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug discovery.

Proteins and polypeptides that are naturally secreted into blood, lymph and other body fluids, or secreted into the cellular membrane are of primary interest for pharmaceutical research and development. The reason for this interest is the relative ease to target protein therapeutics into their place of action (body fluids or the cellular membrane). The natural pathway for protein secretion into extracellular space is the endoplasmic reticulum in eukaryotes and the inner membrane in prokaryotes (Palade, 1975, Science, 189, 347; Milstein, Brownlee, Harrison, and Mathews, 1972, Nature New Biol., 239, 117; Blobel, and Dobberstein, 1975, J. Cell. Biol., 67, 835). On the other hand, there is no known natural pathway for exporting a protein from the exterior of the cells into the cytosol (with the exception of pinocytosis, a mechanism of snake venom toxin intrusion into cells). Therefore targeting protein therapeutics into cells poses extreme difficulties.

The secreted and membrane-associated proteins include but are not limited to all peptide hormones and their receptors (including but not limited to insulin, growth hormones, chemokines, cytokines, neuropeptides, integrins, kallikreins, lamins, melanins, natriuretic hormones, neuropsin, neurotropins, pituitiary hormones, pleiotropins,

prostaglandins, secretogranins, selectins, thromboglobulins, thymosins), the breast and colon cancer gene products, leptin, the obesity gene protein and its receptors, serum albumin, superoxide dismutase, spliceosome proteins, 7TM (transmembrane) proteins also called as G-protein coupled receptors, immunoglobulins, several families of serine proteinases (including but not limited to proteins of the blood coagulation cascade, digestive enzymes), deoxyribonuclease I, etc.

Therapeutics based on secreted or membrane-associated proteins approved by FDA or foreign agencies include but are not limited to insulin, glucagon, growth hormone, chorionic gonadotropin, follicle stimulating hormone, luteinizing hormone, calcitonin, adrenocorticotropic hormone (ACTH), vasopressin, interleukines, interferones, immunoglobulins, lactoferrin (diverse products marketed by several companies), tissuetype plasminogen activator (Alteplase by Genentech), hyaulorindase (Wydase by Wyeth-Ayerst), dornase alpha (Pulmozyme\ by Genentech), Chymodiactin (chymopapain by Knoll), alglucerase (Ceredase by Genzyme), streptokinase (Kabikinase by Pharmacia) (Streptase by Astra), etc. This indicates that secreted and membrane-associated proteins have an established, proven history as therapeutic targets. Clearly, there is a need for identification and characterization of further secreted and membrane-associated proteins which can play a role in preventing, ameliorating or correcting dysfunction or disease, including but not limited to diabetes, breast-, prostate-, colon cancer and other malignant tumors, hyper- and hypotension, obesity, bulimia, anorexia, growth abnormalities, asthma, manic depression, dementia, delirium, mental retardation, Huntington's disease, Tourette's syndrome, schizophrenia, growth, mental or sexual development disorders, and dysfunctions of the blood cascade system including those leading to stroke. The proteins of the present invention which include the signal sequences are also useful to further elucidate the mechanism of protein transport which at present is not entirely understood, and thus can be used as research tools.

Summary of the Invention

5

10

15

20

25

30

35

The present invention relates to particular polypeptides and polynucleotides of the genes set forth in Table I, including recombinant materials and methods for their production. Such polypeptides and polynucleotides are of interest in relation to methods of treatment of certain diseases, including, but not limited to, the diseases set forth in Tables III and V, hereinafter referred to as "diseases of the invention". In a further aspect, the invention relates to methods for identifying agonists and antagonists (e.g., inhibitors) using the materials provided by the invention, and treating conditions associated with imbalance of polypeptides and/or polynucleotides of the genes set forth in Table I with the identified compounds. In still a further aspect, the invention

relates to diagnostic assays for detecting diseases associated with inappropriate activity or levels the genes set forth in Table I. Another aspect of the invention concerns a polynucleotide comprising any of the nucleotide sequences set forth in the Sequence Listing and a polypeptide comprising a polypeptide encoded by the nucleotide sequence. In another aspect, the invention relates to a polypeptide comprising any of the polypeptide sequences set forth in the Sequence Listing and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such polypeptides and polynucleotides. Such uses include the treatment of diseases, abnormalities and disorders (hereinafter simply referred to as diseases) caused by abnormal expression, production, function and or metabolism of the genes of this invention, and such diseases are readily apparent by those skilled in the art from the homology to other proteins disclosed for each attached sequence. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the invention, and treating conditions associated with the imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate activity or levels of the secreted proteins of the present invention.

Description of the Invention

5

10

15

35

In a first aspect, the present invention relates to polypeptides the genes set forth in Table I. Such polypeptides include:

- (a) an isolated polypeptide encoded by a polynucleotide comprising a sequence set forth in the Sequence Listing, herein when referring to polynucleotides or polypeptides of the Sequence Listing, a reference is also made to the Sequence Listing referred to in the Sequence Listing;
 (b) an isolated polypeptide comprising a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
- 25 (c) an isolated polypeptide comprising a polypeptide sequence set forth in the Sequence Listing;
 - (d) an isolated polypeptide having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (e) a polypeptide sequence set forth in the Sequence Listing; and
- (f) an isolated polypeptide having or comprising a polypeptide sequence that has an Identity Index
 of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polypeptide sequence set forth in the Sequence
 Listing;
 - (g) fragments and variants of such polypeptides in (a) to (f).

 Polypeptides of the present invention are believed to be members of the gene families set forth in Table II. They are therefore of therapeutic and diagnostic interest for the reasons set forth in Tables III and V. The biological properties of the polypeptides and polynucleotides of the genes

set forth in Table I are hereinafter referred to as "the biological activity" of polypeptides and polynucleotides of the genes set forth in Table I. Preferably, a polypeptide of the present invention exhibits at least one biological activity of the genes set forth in Table I.

Polypeptides of the present invention also include variants of the aforementioned polypeptides, including all allelic forms and splice variants. Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred variants are those in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acids are inserted, substituted, or deleted, in any combination.

5

10

15

20

25

30

35

Preferred fragments of polypeptides of the present invention include an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids from an amino acid sequence set forth in the Sequence Listing, or an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids truncated or deleted from an amino acid sequence set forth in the Sequence Listing. Preferred fragments are biologically active fragments that mediate the biological activity of polypeptides and polynucleotides of the genes set forth in Table I, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also preferred are those fragments that are antigenic or immunogenic in an animal, especially in a human.

Fragments of a polypeptide of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention. A polypeptide of the present invention may be in the form of the "mature" protein or may be a part of a larger protein such as a precursor or a fusion protein. It is often advantageous to include an additional amino acid sequence that contains secretory or leader sequences, pro-sequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.

Polypeptides of the present invention can be prepared in any suitable manner, for instance by isolation form naturally occurring sources, from genetically engineered host cells comprising expression systems (*vide infra*) or by chemical synthesis, using for instance automated peptide synthesizers, or a combination of such methods. Means for preparing such polypeptides are well understood in the art.

In a further aspect, the present invention relates to polynucleotides of the genes set forth in Table I. Such polynucleotides include:

(a) an isolated polynucleotide comprising a polynucleotide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polynucleotide sequence set forth in the Sequence Listing;

(b) an isolated polynucleotide comprising a polynucleotide set forth in the Sequence Listing;

- (c) an isolated polynucleotide having at least 95%, 96%, 97%, 98%, or 99% identity to a polynucleotide set forth in the Sequence Listing;
- (d) an isolated polynucleotide set forth in the Sequence Listing;

15

25

30

- 5 (e) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (f) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide set forth in the Sequence Listing;
- 10 (g) an isolated polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to a polypeptide sequence set forth in the Sequence Listing;
 - (h) an isolated polynucleotide encoding a polypeptide set forth in the Sequence Listing;
 - (i) an isolated polynucleotide having or comprising a polynucleotide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polynucleotide sequence set forth in the Sequence Listing;
 - (j) an isolated polynucleotide having or comprising a polynucleotide sequence encoding a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to a polypeptide sequence set forth in the Sequence Listing; and
- polynucleotides that are fragments and variants of the above mentioned polynucleotides or that are complementary to above mentioned polynucleotides, over the entire length thereof.

Preferred fragments of polynucleotides of the present invention include an isolated polynucleotide comprising an nucleotide sequence having at least 15, 30, 50 or 100 contiguous nucleotides from a sequence set forth in the Sequence Listing, or an isolated polynucleotide comprising a sequence having at least 30, 50 or 100 contiguous nucleotides truncated or deleted from a sequence set forth in the Sequence Listing.

Preferred variants of polynucleotides of the present invention include splice variants, allelic variants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms (SNPs).

Polynucleotides of the present invention also include polynucleotides encoding polypeptide variants that comprise an amino acid sequence set forth in the Sequence Listing and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acid residues are substituted, deleted or added, in any combination.

In a further aspect, the present invention provides polynucleotides that are RNA transcripts of the DNA sequences of the present invention. Accordingly, there is provided an RNA polynucleotide that:

- (a) comprises an RNA transcript of the DNA sequence encoding a polypeptide set forth in the Sequence Listing;
- (b) is a RNA transcript of a DNA sequence encoding a polypeptide set forth in the Sequence Listing;

5

10

15

20

25

30

35

- (c) comprises an RNA transcript of a DNA sequence set forth in the Sequence Listing; or
- (d) is a RNA transcript of a DNA sequence set forth in the Sequence Listing; and RNA polynucleotides that are complementary thereto.

The polynucleotide sequences set forth in the Sequence Listing show homology with the polynucleotide sequences set forth in Table II. A polynucleotide sequence set forth in the Sequence Listing is a cDNA sequence that encodes a polypeptide set forth in the Sequence Listing. A polynucleotide sequence encoding a polypeptide set forth in the Sequence Listing may be identical to a polypeptide encoding a sequence set forth in the Sequence Listing or it may be a sequence other than a sequence set forth in the Sequence Listing, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes a polypeptide set forth in the Sequence Listing. A polypeptide of a sequence set forth in the Sequence Listingis related to other proteins of the gene families set forth in Table II, having homology and/or structural similarity with the polypeptides set forth in Table II. Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one activity of the genes set forth in Table I.

Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA from the tissues set forth in Table IV (see for instance, Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments

of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz *et al.*, Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. A polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

5

10

15

20

25

30

Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequence set forth in the Sequence Listing, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification reaction (for instance, PCR). Such probes and primers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from species other than) that have a high sequence similarity to sequences set forth in the Sequence Listing, typically at least 95% identity. Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.

A polynucleotide encoding a polypeptide of the present invention, including homologs from species other than, may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having a sequence set forth in the Sequence Listing or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-length cDNA and genomic clones containing the polynucleotide sequence set forth in the Sequence Listing. Such hybridization techniques are well known to the skilled artisan. Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 0.1x SSC at about 65°C. Thus the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence set forth in the Sequence Listing or a fragment thereof, preferably of at least 15 nucleotides.

The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide does not extend all the way through to the 5' terminus. This is a consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the

polymerisation reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.

5

10

15

20

25

30

35

There are several methods available and well known to those skilled in the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., Proc Nat Acad Sci USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon (trade mark) technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon (trade mark) technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5'end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adapter specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analyzed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.

Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems.

Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook *et al.*(*ibid*). Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, micro-injection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as *Streptococci*, *Staphylococci*, *E. coli*, *Streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and

Aspergillus cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells.

5

10

15

20

25

30

35

A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, *e.g.*, vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector that is able to maintain, propagate or express a polynucleotide to produce a polypeptide in a host may be used. The appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook *et al.*, (*ibid*). Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.

If a polypeptide of the present invention is to be expressed for use in screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular synthesis, isolation and/or purification.

Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene. Detection of a mutated form of a gene is characterized by the polynucleotides set forth in the Sequence Listing in the cDNA or genomic sequence and which is associated with a dysfunction. Will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-

expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques well known in the art.

Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled nucleotide sequences of the genes set forth in Table I. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (see, for instance, Myers *et al.*, Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (see Cotton *et al.*, Proc Natl Acad Sci USA (1985) 85: 4397-4401).

An array of oligonucleotides probes comprising polynucleotide sequences or fragments thereof of the genes set forth in Table I can be constructed to conduct efficient screening of *e.g.*, genetic mutations. Such arrays are preferably high density arrays or grids. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M. Chee et al., Science, 274, 610-613 (1996) and other references cited therein. Detection of abnormally decreased or increased levels of polypeptide or mRNA expression may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radio-immunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Thus in another aspect, the present invention relates to a diagnostic kit comprising:

(a) a polynucleotide of the present invention, preferably the nucleotide sequence set forth in the Sequence Listing, or a fragment or an RNA transcript thereof;

(b) a nucleotide sequence complementary to that of (a);

5

10

15

20

25

30

35

(c) a polypeptide of the present invention, preferably the polypeptide set forth in the Sequence Listing or a fragment thereof; or

(d) an antibody to a polypeptide of the present invention, preferably to the polypeptide set forth in the Sequence Listing.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.

5

10

15

20

25

30

35

The polynucleotide sequences of the present invention are valuable for chromosome localisation studies. The sequences set forth in the Sequence Listing are specifically targeted to, and can hybridize with, a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (co-inheritance of physically adjacent genes). Precise human chromosomal localisations for a genomic sequence (gene fragment etc.) can be determined using Radiation Hybrid (RH) Mapping (Walter, M. Spillett, D., Thomas, P., Weissenbach, J., and Goodfellow, P., (1994) A method for constructing radiation hybrid maps of whole genomes, Nature Genetics 7, 22-28). A number of RH panels are available from Research Genetics (Huntsville, AL, USA) e.g. the GeneBridge4 RH panel (Hum Mol Genet 1996 Mar;5(3):339-46 A radiation hybrid map of the human genome. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C, Morissette J, Weissenbach J, Goodfellow PN). To determine the chromosomal location of a gene using this panel, 93 PCRs are performed using primers designed from the gene of interest on RH DNAs. Each of these DNAs contains random human genomic fragments maintained in a hamster background (human / hamster hybrid cell lines). These PCRs result in 93 scores indicating the presence or absence of the PCR product of the gene of interest. These scores are compared with scores created using PCR products from genomic sequences of known location. This comparison is conducted at http://www.genome.wi.mit.edu/.

The polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded polypeptides in tissues, by detecting the mRNAs that encode them. The techniques used are well

known in the art and include in situ hydridization techniques to clones arrayed on a grid, such as cDNA microarray hybridization (Schena *et al*, Science, 270, 467-470, 1995 and Shalon *et al*, Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques such as PCR. A preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an indication of the normal function of the polypeptide in the organism. In addition, comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of the same gene (for example, one having an alteration in polypeptide coding potential or a regulatory mutation) can provide valuable insights into the role of the polypeptides of the present invention, or that of inappropriate expression thereof in disease. Such inappropriate expression may be of a temporal, spatial or simply quantitative nature.

5

10

15

20

25

30

35

A further aspect of the present invention relates to antibodies. The polypeptides of the invention or their fragments, or cells expressing them, can be used as immunogens to produce antibodies that are immunospecific for polypeptides of the present invention. The term "immunospecific" means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.

Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, or cells to an animal, preferably a non-human animal, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C., Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole *et al.*, Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).

Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography. Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.

Polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, including,

5

10

15

20

25

30

35

for example, cytokine-producing T cells or cytotoxic T cells, to protect said animal from disease. whether that disease is already established within the individual or not. An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention. One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid. For use a vaccine, a polypeptide or a nucleic acid vector will be normally provided as a vaccine formulation (composition). The formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous, intra-muscular, intravenous, or intra-dermal injection). Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions that may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multidose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, in particular the diseases of the invention hereinbefore mentioned. It is therefore useful to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, collections of chemical compounds, and natural product mixtures. Such agonists or antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Coligan *et al.*, Current Protocols in Immunology 1(2):Chapter 5 (1991)) or a small molecule. Such small molecules preferably have a molecular weight below 2,000 daltons, more

5

10

15

20

25

30

35

preferably between 300 and 1,000 daltons, and most preferably between 400 and 700 daltons. It is preferred that these small molecules are organic molecules.

The screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bearing the polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e.g. agonist or antagonist). Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present invention, to form a mixture, measuring an activity of the genes set forth in Table I in the mixture, and comparing activity of the mixture of the genes set forth in Table I to a control mixture which contains no candidate compound.

Polypeptides of the present invention may be employed in conventional low capacity screening methods and also in high-throughput screening (HTS) formats. Such HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).

Fusion proteins, such as those made from Fc portion and polypeptide of the genes set forth in Table I, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett *et al.*, J Mol Recognition, 8:52-58 (1995); and K. Johanson *et al.*, J Biol Chem, 270(16):9459-9471 (1995)).

The polynucleotides, polypeptides and antibodies to the polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

A polypeptide of the present invention may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is

labeled with a radioactive isotope (for instance, ¹²⁵I), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.

Examples of antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case may be, of the polypeptide, *e.g.*, a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.

Screening methods may also involve the use of transgenic technology and the genes set forth in Table I. The art of constructing transgenic animals is well established. For example, the genes set forth in Table I may be introduced through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by electroporation, embryonic stem cells into host blastocysts. Particularly useful transgenic animals are so-called "knock-in" animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the human target. Other useful transgenic animals are so-called "knock-out" animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled. The gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may occur in all, or substantially all, cells in the animal. Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention

Screening kits for use in the above described methods form a further aspect of the present invention. Such screening kits comprise:

30 (a) a polypeptide of the present invention;

5

10

15

20

25

- (b) a recombinant cell expressing a polypeptide of the present invention;
- (c) a cell membrane expressing a polypeptide of the present invention; or
- (d) an antibody to a polypeptide of the present invention; which polypeptide is preferably that set forth in the Sequence Listing.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

Glossary

10

15

20

25

30

35

5 The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated" even if it is still present in said organism, which organism may be living or non-living.

"Secreted protein activity or secreted polypeptide activity" or "biological activity of the secreted protein or secreted polypeptide" refers to the metabolic or physiologic function of said secreted protein including similar activities or improved activities or these activities with decreased undesirable side-effects. Also included are antigenic and immunogenic activities of said secreted protein.

"Secreted protein gene" refers to a polynucleotide comprising any of the attached nucleotide sequences or allelic variants thereof and/or their complements.

"Polynucleotide" generally refers to any polyribonucleotide (RNA) or polydeoxribonucleotide (DNA), which may be unmodified or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus,

"polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

5

10

15

20

25

30

35

"Polypeptide" refers to any polypeptide comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present to the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, 1-12, in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol, 182, 626-646, 1990, and Rattan et al., "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci, 663, 48-62, 1992).

"Fragment" of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the same biological function or activity as the

reference polypeptide. "Fragment" of a polynucleotide sequence refers to a polynucleotide sequence that is shorter than the reference sequence set forth in the Sequence Listing.

5

10

15

20

25

30

35

"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential properties thereof. A typical variant of a polynucleotide differs in nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from the reference polypeptide. Generally, alterations are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe and Tyr. A variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.

"Allele" refers to one of two or more alternative forms of a gene occurring at a given locus in the genome.

"Polymorphism" refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.

"Single Nucleotide Polymorphism" (SNP) refers to the occurrence of nucleotide variability at a single nucleotide position in the genome, within a population. An SNP may occur within a gene or within intergenic regions of the genome. SNPs can be assayed using Allele Specific Amplification (ASA). For the process at least 3 primers are required. A common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps from the polymorphic base. The other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism. Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.

"Splice Variant" as used herein refers to cDNA molecules produced from RNA molecules initially transcribed from the same genomic DNA sequence but which have undergone alternative RNA splicing. Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may encode different amino acid sequences. The term splice variant also refers to the proteins encoded by the above cDNA molecules.

5

10

15

20

25

30

35

"Identity" reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.

"% Identity" - For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.

"Similarity" is a further, more sophisticated measure of the relationship between two polypeptide sequences. In general, "similarity" means a comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between a between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is not an exact correspondence, whether, on an evolutionary basis, one residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.

Methods for comparing the identity and similarity of two or more sequences are well known in the art. Thus for instance, programs available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, available from Genetics Computer Group, Madison, Wisconsin, USA), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and the % identity and the % similarity between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981) and finds the best single region of similarity between two sequences. BESTFIT is more suited to comparing two polynucleotide or two polypeptide sequences that are dissimilar in length, the program assuming that the shorter sequence represents

a portion of the longer. In comparison, GAP aligns two sequences, finding a "maximum similarity", according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970). GAP is more suited to comparing sequences that are approximately the same length and an alignment is expected over the entire length. Preferably, the parameters "Gap Weight" and "Length Weight" used in each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively. Preferably, % identities and similarities are determined when the two sequences being compared are optimally aligned.

5

10

15

20

25

30

35

Other programs for determining identity and/or similarity between sequences are also known in the art, for instance the BLAST family of programs (Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F et al, Nucleic Acids Res., 25:389-3402, 1997, available from the National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA and accessible through the home page of the NCBI at www.ncbi.nlm.nih.gov) and FASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin Sequence Analysis Package).

Preferably, the BLOSUM62 amino acid substitution matrix (Henikoff S and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992) is used in polypeptide sequence comparisons including where nucleotide sequences are first translated into amino acid sequences before comparison.

Preferably, the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the program set at the default value, as hereinbefore described.

"Identity Index" is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence. Thus, for instance, a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion. These differences may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between these terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polynucleotide sequence having an Identity Index of 0.95 compared to a reference polynucleotide sequence, an average of up to 5 in every 100 of the nucleotides of the in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as

hereinbefore described. The same applies *mutatis mutandis* for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

Similarly, for a polypeptide, a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion. These differences may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polypeptide sequence having an Identity Index of 0.95 compared to a reference polypeptide sequence, an average of up to 5 in every 100 of the amino acids in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies *mutatis mutandis* for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

The relationship between the number of nucleotide or amino acid differences and the Identity Index may be expressed in the following equation:

$$n_a \le x_a - (x_a \bullet I),$$

in which:

5

10

15

25

30

na is the number of nucleotide or amino acid differences,

 x_a is the total number of nucleotides or amino acids in a sequence set forth in the Sequence Listing,

I is the Identity Index,

• is the symbol for the multiplication operator, and in which any non-integer product of x_a and I is rounded down to the nearest integer prior to subtracting it from x_a .

"Homolog" is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be quantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are the terms "ortholog", and "paralog". "Ortholog" refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or polypeptide in another species. "Paralog" refers to a polynucleotideor polypeptide that within the same species which is functionally similar.

"Fusion protein" refers to a protein encoded by two, often unrelated, fused genes or fragments thereof. In one example, EP-A-0 464 533-A discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties [see, *e.g.*, EP-A 0232 262]. On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified.

5

10

All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety in the manner described above for publications and references.

Table I.

	GSK	Nucleic Acid	Corresponding Protein
Gene Name	Gene ID	SEQ ID NO's	SEQ ID NO's
sbgTango79a	14898	SEQ ID NO:1	SEQ ID NO:24
sbgPRO331a	14908	SEQ ID NO:2	SEQ ID NO:25
sbghPYYa	24835	SEQ ID NO:3	SEQ ID NO:26
sbghGTa	25306	SEQ ID NO:4	SEQ ID NO:27
SB-HDGF	42748	SEQ ID NO:5	SEQ ID NO:28
		SEQ ID NO:6	SEQ ID NO:29
SBhACRP30a	34718	SEQ ID NO:7	SEQ ID NO:30
		SEQ ID NO:8	SEQ ID NO:31
sbg35069DBIa	35069	SEQ ID NO:9	SEQ ID NO:32
sbg14862SPERCTa	14862	SEQ ID NO:10	SEQ ID NO:33
		SEQ ID NO:11	SEQ ID NO:34
sbg24878SIa	24878	SEQ ID NO:12	SEQ ID NO:35
		SEQ ID NO:13	SEQ ID NO:36
sbg34976IGBa	34976	SEQ ID NO:14	SEQ ID NO:37
sbg41608HDGFa	41608	SEQ ID NO:15	SEQ ID NO:38
sbg66804SPARCra	66804	SEQ ID NO:16	SEQ ID NO:39
		SEQ ID NO:17	SEQ ID NO:40
sbg72825FOLATEa	72825	SEQ ID NO:18	SEQ ID NO:41
SBhPRO221	73255	SEQ ID NO:19	SEQ ID NO:42
sbg77153CYSa	77153	SEQ ID NO:20	SEQ ID NO:43
SBh80014.IAPa	80014	SEQ ID NO:21	SEQ ID NO:44
		SEQ ID NO:22	SEQ ID NO:45
sbgFGF-19b	68602	SEQ ID NO:23	SEQ ID NO:46

Table II

Gene Name	Gene Family	Closest	Closest	Cell
		Polynuclotide by homology	Polypeptide by homology	Localization (by homology)
sbgTango7 9a	Slit-like membrane glycoprotein	GB:AC004152 Joint Genome Institute, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551, USA	The human Tango-79 protein, geneseqp:W84596 Patent number and publication date: WO9906427-A1 11-Feb-99	membrane- bound
sbgPRO331 a	Slit-like membrane glycoprotein	GB:AC008039 Human Genome Center, University of Washington, Box 352145, Seattle, WA 98195, USA	The human protein PRO331, geneseqp:Y13394 Patent number and publication date: WO9914328-A2 25-Mar-99	membrane- bound
sbghPYYa	Peptide YY	GB:AJ239323	Human peptideYY,	secreted

		Max-Planck-Institute for Molecular Genetics	gi:1172796 Kohri,K., Nata,K., Yonekura,H., Nagai, A., Konno,K. and Okamoto,H. Biochim. Biophys. Acta 1173 (3), 345-349 (1993)	
sbghGTa	Gonadotropin beta chain	GB:AL049871 Genoscope – Centre National de Sequencage :BP 19191006 EVRY cedex FRANCE	Pacific herring gonadotropin II- beta, gi:4200297 Power, M.E., Carolsfield, J, Wallis, G.P. and Sherwood, N.M. J. Fish Biol. 50, 315-323 (1997)	secreted
SB-HDGF	Hepatoma derived growth factor (HDGF)	JGI:CIT978SKB_50L17 Found at Joint Genome Institute	Mouse HDGF, gi: 2558501 Biochem. Biophys. Res. Commun. 238(1), 26-32, 1997	secreted
SBhACRP3 0a	Complement C1q/TNF	GB:AC007016 Submitted (08-May-99) by Department of Genetics, Stanford Human Genome Center, 855 Miranda Avenue, Palo, CA 94304	Mouse30 Kda adipocyte complement-related protein ACRP30, gi: 1051268 P. Sherer et al., J.Biol. Chem. 270(18), 10697-10703, 1996.	secreted
sbg35069D BIa	Neuropeptide	EMBL:AC010999 Submitted (29-Sep- 1999) by Multimegabase Sequencing Center, University of Washington, P.O. Box 357730. Seattle, WA 98195	ACYL-COA-BINDING PROTEIN HOMOLOG (ACBP), gi:1168274 Lihrmann, I. et al. Proc. Natl. Acad. Sci. U.S.A. 91 (15), 6899-6903 (1994)	cytosolic
sbg14862S PERCTa	speract receptor	GB:AC005522 (WU:H_DJ1129E2) submitted by Genome Sequencing Center, Washington University, School of Medicine, 4444 Forest Park Parkway, St. Lous, MO 63108, USA	gp-340, a putative opsonin receptor for lung surfactant, gi:5733598 Holmskov U, Mollenhauer J, Madsen J, Vitved L, Gronlund J, Tornoe I, Kliem A, Reid KB, Poustka A, Skjodt K, Proc Natl Acad Sci U S A 1999 Sep 14; 96(19):10794-9.	membrane- bound
sbg24878SI a	laminin type EGF, EGF2, Idlra2, dlra2, Idlra1 and EGF1	SC:AL109804 found at Sanger Center	Mouse sialoadhesin gene, gi:2769747 Mucklow S, Gordon S, Crocker PR. Mamm Genome 1997 Dec;8(12):934-7	secreted
sbg34976I GBa	Slit-like membrane glycoprotein	GB:AC010931 Submitted (30-JAN- 1999) by Genome Sequencing Center, Washington University	Immunoglobulin superfamily containing leucine-rich repeat, gi:5031809 Nagasawa A, Kubota R,	membrane- bound

		School of Medicine, 4444 Forest Park Parkway, St. Louis, MO 63108, USA	Imamura Y, Nagamine K, Wang Y, Asakawa S, Kudoh J, Minoshima S, Mashima Y, Oguchi Y, Shimizu N, Genomics 1997 Sep 15;44(3):273-9	
sbg41608H DGFa	Hepatoma- derived growth factor	GB:AL033539 Submitted by Sanger Center Hinxton, Cambridgeshire, CB10 1SA, UK	Bovine hepatoma-derived growth factor, gi:945419 Biochem. Biophys. Res. Commun. 238(1):26-32, 1997	secreted
sbg66804S PARCra	Sparc-related protein	GB:AL135747 Submitted by Genoscope – Centre National de Sequencage :BP 19191006 EVRY cedex, FRANCE	Mouse SPARC-related rpotein, gi:5305327 Submitted (05-Jun-1998) by GeneCraft, Treskowst. 10, Muenster 48163, Germany.	membrane- bound
sbg72825F OLATEa	Folate receptor	SB:AP000765 Submitted (25-NOV- 1999) by Masahira Hattori, The Institute of Physical and ChemicalResearch (RIKEN), Genomic Sciences Center (GSC); 1-7-22 Suehiro-chou, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan	Sus scrofa membrance-bound folate binding protein, gi:4928859 Vallet,J.L., Smith,T.P.L., Sontegard,T., Pearson,P.L.,Christenson, R.K. and Klemcke,H.G. Biol. Reprod. 61(2):372 (1999)	membrane- bound
SBhPRO221	Slit-like membrane glycoprotein	GB:AP001065 Submitted (12-JAN-2000) by Nobuyoshi Shimizu, Keio University, School of Medicine, Molecular Biology; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan	New isolated human gene, geneseqp:Y13356. WO9914328-A2, Chen, J. Goddard, A., Yuan, J., Genentech Inc. 25th June 1999 GPS	membrane- bound
sbg77153C YSa	Testatin	GB:AL121894 Submitted by Sanger Center	Mouse testatin precursor, gi:3928491 Tohonen,V., Osterlund,C. and Nordqvist,K. Proc. Natl. Acad. Sci. U.S.A. 95 (24), 14208-14213 (1998).	secreted
SBh80014.I APa	Inhibitor of apoptosis protein (IAP)	GB:AL121827 Submitted by Sanger Center	human putative inhibitor of apoptosis, gi: 3914339 C. Stehlik et al, Biochem. Biophys. Res. Commun. 243(3), 827-832, 1998	cytosolic

sbgFGF-19b	Fibroblast	GB:AB018122Homo	FGF-19 (gi	secreted
	Growth Factor	sapiens mRNA for FGF-	5668601, gi 4826726,	
		19, complete cds	gi4514718,	
		(Nishimura,T.,	(Nishimura,T.,	
		Utsunomiya,Y.,	Utsunomiya,Y.,	
		Hoshikawa,M.,	Hoshikawa, M., Ohuchi, H.	
}		Ohuchi,H. and Itoh,N.	and Itoh, N. Structure and	
		Structure and expression	expression of a novel	
		of a novel human FGF,	human FGF, FGF-19,	
		FGF-19, expressed in the	expressed in the fetal	
		fetal brain. Biochim.	brain. Biochim. Biophys.	
		Biophys. Acta 1444 (1),	Acta 1444 (1), 148-151	
		148-151 (1999))	(1999))	

Table III.

Gene Name	Uses	Associated Diseases
sbgTango79a	An embodiment of the invention is the use of sbgTango79a, a secreted protein, in the diagnosis and treatment of Tango-associated diseases and involvement in gastrointestinal ulceration. Close Homologs of sbgTango79a are Tango 79 and PRO227.	Alzheimers disease, ALS, abnormal keratinocyte differentiation, anti thrombosis, atrophia areata, cell growth, congenital microvillus atrophy, dermal scarring, enterocolitis, cancer, gastrointestinal ulceration, neuropathy, Parkinson's disease, psoriasis, skin diseases, Usher's syndrome, wound healing, and Zollinger-Ellison syndrome
sbgPRO331a	An embodiment of the invention is the use of sbgPRO331a, in the treatment of gastrointestinal ulceration and involved in nutritional activity, cytokine and cell proliferation/differentiation activity, immune stimulating (e.g. as vaccines) or suppressing activity, haematopoiesis regulating activity, tissue growth activity, activin/inhibin activity, chemotactic/chemokinetic activity, haemostatic and thrombolytic activity, receptor/ligand activity, anti-inflammatory activity, cadherin/tumour invasion suppressor activity, and tumour inhibition activity. The polynucleotides of sbgPRO331a may also be useful for gene therapy. Close Homologs of sbgPRO331a are PRO331 and AS209_1.	Alzheimers disease, ALS, abnormal keratinocyte differentiation, antithrombosis, atrophia areata, cell growth, hematopoietic disease, diseases of the immune system, inflammation, congenital microvillus atrophy, dermal scarring, enterocolitis, cancer, gastrointestinal ulceration, neuropathy, Parkinson's disease, psoriasis, skin diseases, Usher's syndrome, wound healing, and Zollinger-Ellison syndrome
sbghPYYa	An embodiment of the invention is the use of sbghPYYa, to identify new receptors and receptor agonists, antagonists, or protein agents. A close homolog of sbghPYYa is Peptide YY precursor, a clinically significant member of the neuropeptide family which include peptides such as pancreatic hormone, neuropeptide Y (NPY) and peptide YY (PYY). These neuropeptides are ligands for G-protein coupled receptors.	Anxiety, schizophrenia, feeding disorders, anorexia, depression, grooming, stretching, yawning, social, sexual and rewarded behavior, chronic and acute inflammation, cardiovasuclar disease, sleep disorder, learning and memory alteration and altered immune response, cancer, seizure, stroke, migraine, asthma, neuropathy and aging
sbghGTa	Human gonadotropin most similar to luteinizing hormone, sbghGTa, is exploitable in similar ways to luteinizing hormone or its releasing hormone. Luteinizing hormone is helpful in ovulation induction for reproductive procedures (Fertil. Steril.	Sexual disorders, infertility, blocking fertility, hypogonadism, prostate and other cancers, treatment of transsexuals

	1000 71/20 405 414) 7	
	1999. 71(3):405-414). Luteinizing hormone-	
	releasing hormone and its agonists are exploited to reduce androgen levels in prostate cancer (Oncology.	
}		
}	1998. 12(4):499-505). Gonadotropin releasing	
l l	hormone use is helpful in polycystic ovary syndrome	
1	(Eur. J. Contracept. Reprod.Health Care. 1997.	
on in on	2(4):213-224).	
SB-HDGF	An embodiment of the invention is the use of SB-	Cancer, inflammation, defective
}	HDGF, to control cell growth and regulation of cell	immune response, cardiovadcular
	differentiation. Hepatoma-derived growth factors are	disease, growth abnormalities
1	members of a diverse family of cytokines. Like other	
1	cytokines, they are peptides involved in the control	
}	of cell growth regulation, differentiation and	
	function(Thomson, The Cytokine Handbook, 2nd	
}	edition, Academic Press, Harcourt Brace & co.	
1	publishers, London). Another embodiment of the	
}	invention is the use of SB-HDGF for diagnosis or	
}	therapeutic treatment of human hepatoma. HDGFs	
}	are structurally related to Fibroblast growth factors	
1	(Klagsbrun M., Sasse, J., Proc. Natl. Acad. Sci. USA	
{	1986 83(8) 2448-52). This putative growth factor	
1	may play an important role in autonomous growth of	
	hepatoma and may lead to useful diagnosis or	
	therapeutic approaches to Human Hepatoma	
	(Nakamura, H., Kambe, H., Egawa, T Clin Chim Acta	
	1989, 183(3):273-84). A further embodiment of the	
{	invention is the use of SB-HDGF to prevent tumor	
1	growth. Inhibition of fibroblast growth factor-2 by	
}	the compound Suramin prevents neovascularisation	
	and tumor growth in mice (Pesenti et al., British	
	Journal of Cancer, 66:367-372.)	
SBhACRP30	Based on EST expression data, SBHACRP30a is	Cancer, obesity, anorexia,
a	primarily or exclusively expressed in heart. Based	inflammation, cardiovadcular
	on the similiarity of SBHACRP30a to ACRP30,	disease, growth abnormalities
1	Hib27, Clq complement proteins, TNF, and other	
1	members of the TNF superfamily, an embodiment of	
}	the invention is the use that the encoded protein of	
	SBhACRP30a may play a role in inflammation, cell	
	proliferation, cell death, immunity, and/or energy	
1	homeostatis processes. SBHACRP30a show highest	
Į.	similarity to one member of this superfamily,	
]	ACRP30 (Adipocyte Complement-Related Protein of	
}	30 kDa). ACRP30 is made exclusively in	
	adipocytes, and its expression is dysregulated in	
-	various forms of obesity (Hu, E, Liang, P and	
ļ	Spiegelman, BM. J. Biol. Chem 271, 10697-10703,	
	1996). ACRP30 secretion is acutely stimulated by	
}	insulin (Scherer, PE, Williams S., Fogliano, M.,	
1	Baldini, G. and Lodish, J Biol. Chem. 270, 26746-	
}	26749, 1995) and is repressed by chronically	
1	elevated levels of insulin. A related molecule, the	
}	Hib27 protein from Siberian chipmunks, seems also	
{	to be involved in energy homeostasis, as its	
)	expression is specifically extinguished during	
{	hibernation (Takamatsu, N., Ohba, K., Kondo,	
	J., Kondo, N., and Shiba, T. Mol. Cell Biol. 13 1516-	
1	1521, 1993). Recently, it has been shown that the	
1	i rowri rosofi rooonidy, it had occh shown diat the	
į.	three dimensional structure of ACRP30 is	
	three dimensional structure of ACRP30 is superimposible with that of the TNF's, suggesting	

sbg35069DBI	that these proteins may have a similar function and mode of action (Shapiro, L and Scherer PE.,. Current Biology 8, 335-338, 1997). TNF's are known to play a role in energy homeostasis, where they are implicated in cachexia, obesity and in insulin resistance (Hotamisligil GS., and Spiegelman BM. Diabetes (1994) 43, 1271-1278; Teoman Uysal K., Wiesbrock SM, Marina MW and Hotamisligil GS, Nature 389, 610-614, 1997). An embodiment of the invention is the use of	Anxiety, schizophrenia, feeding
a	sbg35069DBIa to function as a neuropeptide, modulating the activity of the GABA receptor. A simular homologue can displace diazepam from benzodiazepine (BZD) recognition site on GABA type A receptors. As such, it may function as a neuropeptide, modulating the activity of the GABA receptor (J.B.C. 1986. 261(21):9727-31). Two forms, short and long (Biochem. J. 1995. 306:327-30), are predicted to be intracellular and secreted, respectively.	disorders, anorexia, depression, grooming, stretching, yawning, social, sexual and rewarded behavior, chronic and acute inflammation, cardiovasuclar disease, sleep disorder, learning and memory alteration and altered immune response, cancer, seizure, stroke, migraine, asthma, neuropathy and aging
sbg14862SPE RCTa	An embodiment of the invention is the use of sbg14862SPERCTa, a secreted protein, in the diagnosis and treatment of cancers. A close homolog of sbg14862SPERCTa is human secreted protein SRCR.	Cancer, infections, autoimmune diseases, wound healing and hematopoietic disorder
sbg24878SIa	An embodiment of the invention is the use that the encoded protein of sbg24878SIa, a member of the immunoglobulin superfamily, may play a roll in cellcell interactions. The closest homologue to this protein is the mouse sialoadhesin genes, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains, is proposed to function in both secreted and membrane-bound forms and involved in cell-cell interactions. A further embodiment of the invention is the use of sbg24878SIa to inhibit T-cell-B-cell interactions for treating auto-immune disease such as rheumatoid arthritis, systemic lupus erythematosus etc. Close Homologs of sbg24878SIa are mouse sialoadhesin genes and CD22 beta.	Auto-immune diseases such as rheumatoid arthritis, systemic lupus erythematosus and tumors
sbg34976IGB a	An embodiment of the invention is the use of sbg34976IGBa, a secreted protein, in the diagnosis and treatment of Bardet-Biedl syndrome type 4 (BBS4). A close homolog of sbg34976IGBa is leucine rich repeat (ISLR) mRNA.	Alzheimers disease, ALS, abnormal keratinocyte differentiation, antithrombosis, atrophia areata, cell growth, hematopoietic disease, diseases of the immune system, inflammation, congenital microvillus atrophy, dermal scarring, enterocolitis, cancer, gastrointestinal ulceration, neuropathy, Parkinson's disease, psoriasis, skin diseases, Usher's syndrome, wound healing, and Zollinger-Ellison syndrome
sbg41608HD GFa	An embodiment of the invention is the use of sbg41608HDGFa, to control cell growth and regulation of cell differentiation. Hepatoma-derived growth factors are members of a diverse family of cytokines. Like other cytokines, they are peptides involved in the control of cell growth, regulation,	Cancer, inflammation, defective immune response, cardiovascular disease, growth abnormalities

	differentiation and function (e.g. Thomson, The Cytokine Handbook, 2nd edition, Academic Press, Harcourt Brace & co. publishers, London). Another embodiment of the invention is the use of sbg41608HDGFa for diagnosis or therapeutic treatment of human hepatoma. HDGF are structurally related to Fibroblast growth factors (Klagsbrun M., Sasse, J., Proc. Natl.Acad. Sci. USA 1986 83(8) 2448-52). This putative growth factor may play an important role in autonomous growth of hepatoma and may lead to useful diagnosis or therapeutic approaches to Human Hepatoma (Nakamura, H., Kambe, H., Egawa, T Clin Chim Acta 1989, 183(3):273-84,). A further embodiment of the invention is the use of sbg41608HDGFa to prevent tumor growth. Inhibition of fibroblast growth factor-2 by the compound Suramin prevents neovascularisation and tumor growth in mice (Pesenti et al., British Journal of Cancer, 66:367-372)	
sbg66804SPA RCra	An embodiment of the invention is the use of sbg66804SPARCra, in development, remodeling, cell turnover, tissue repair, and tumor growth. The closest homologue to this secreted protein is the mouse SPARC-related protein. SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a unique matricellular glycoprotein that is expressed by many different types of cells and is associated with development, remodeling, cell turnover, and tissue repair. Its principal functions in vitro are counteradhesion and antiproliferation, which proceed via different signaling pathways. SPARC has demonstrated activities in angiogenesis, cataractogenesis, and wound healing. SPARC has also been identified in tumors.	Cataractogenesis, angiogenesis, wound healing, tumors
sbg72825FO LATEa	An embodiment of the invention is the use of sbg72825FOLATEa in the diagnostic and treatment applications of malignant, such as epithelial cancers, ovary, uterus, cervix cancer and future cancer vaccine developments. A close homolog of sbg72825FOLATEa is membrane bound folate binding protein.	Epithelial cancers, ovary, uterus and cervix cancer
SBhPRO221	An embodiment of the invention is the use of SBhPRO221 in disorders associated with preservation and maintenance of gastric mucosa, treatment of chronic and acute gastric ulcer, skin disease like epithelial cancer, lung squamous carcinoma, neuropathy, Parkinson disease, Alzheimer disease, tissue repair, problems of kidney, endometrium, blood vessels and other tissue in genital tract.	Disorders associated with healthy maintanance of gastric mucosa and repair of acute and chronic mucosal lesion, skin disease, lung carcinoma, growth abnormalities, Parkinson, Alzheimer's dosaes, ALS, neuropathy and cancer
sbg77153CY Sa	An embodiment of the invention is the use of sbg77153CYSa in natural tissue remodeling events such as bone resorption and embryo implantation along with associations with tumor formation and metastasis. The closest homologue is the mouse testatin precursor (Cystatin 9), is related to a group of genes that encodes cysteine protease inhibitors known as cystatins. Cystatins and their target	Tumors and matastasis, remodeling bone resorption and embryo implantation

	proteases have been associated with tumor formation	
	and metastasis, but also are involved in natural tissue	
	remodeling events such as bone resorption and	
SBh80014.IA	embryo implantation.	Common of a section of
Pa	An embodiment of the invention is the use of SBh80014.IAPa in inhibition of apoptosos and thus	Suppression of apoptosis, cell
1 a	in, cell proliferation, cancer, metastasis, cell death,	proliferation, cancer, metastasis, Inflammation, defective immune
	immunity, and energy homeostatis processes. A	response, growth abnormalities
	close homolog to SBh80014.IAPa is PIAP(putative	response, grown abnormances
	inhibitor of apoptosis protein) (C. Stehlik et al,	
	Biochem. Biophys. Res. Commun. 243(3), 827-832,	
	1998). PIAP is made primarlily in tumor cells and is	
	strongly upregulated in response to inflammatory	
	cytokine TNF-•, IL-1 and lipopolysacchrides. The	
	members of this family are conserved across species.	
sbgFGF-19b	An embodiment of the invention is the use of	Cerebral ischemia, cancer,
	sbgFGF-19b in cell growth, regulation,	atherosclerosis, rheumatoid arthritis,
	differentiation, function, angiogenesis,	cirrhosis, psoriasis, sarcoidosis,
	neovascularisation, wound healing, astrogliosis, glial	idiopathic pulmonary fibrosis, tumor
	cell proliferation and differentiation, cerebral	development, developmental
	vasodilation, neurotrophic/neuromodulatory	disorders, skeletal disorders, wound
	processes, improves the outcome in cerebral	repair
	ischemia, promotes neoangiogenesis in ischemic	
	myocardium, and enhances functional recovery	
	and/or promotes neuronal sprouting following focal	
	cerebral infarct. Fibroblast growth factors are a	
	diverse family of cytokines. Like other cytokines,	
	they are peptides involved in the control of cell	
	growth, regulation, differentiation and function (e.g. Thomson, The Cytokine Handbook, 2nd edition,	
	Academic Press, Harcourt Brace & co. publishers,	
	London). Fibroblast growth factors are so called	
	because they are fibroblast mitogens	
	(Gospodarawicz, Journal of Biological Chemistry,	
	(1975) 250: 2515-2520,). Inhibition of fibroblast	
	growth factor-2 by the compound Suramin prevents	
	neovascularisation and tumor growth in mice	
	(Pesenti et al., British Journal of Cancer, 66:367-	
	372). Fibroblast growth factors also function in	
	angiogenesis (Lyons, M.K., et al., Brain Res. (1991)	
	558:315-320), wound healing (Uhl, E., et al., Br. J.	
	Surg. (1993) 80:977-980, 1993), astrogliosis, glial	
	cell proliferation and differentiation (Biagini, G. et	
	al., Neurochem. Int. (1994) 25:17-24), cerebral	
	vasodilation (Tanaka, R. et al., Stroke (1995)	
	26:2154-2159), and neurotrophic/neuromodulatory	
	processes. Fibroblast growth factor also has multiple positive effects including blood flow and protection	
	from calcium toxicity to improve outcome in	
	cerebral ischemia (Mattson, M.P. et al., Semin.	
	Neurosci. (1993) 5:295-307; Doetrocj. W.D. et al., J.	
	Neurotrauma (1996) 13:309-316). Basic FGF	
	treatment promotes neoangiogenesis in ischemic	
	myocardium (Schumacher et al., Circulation (1998)	
	97: 645-650). Basic FGF enhances functional	
	recovery and promotes neuronal sprouting following	
	focal cerebral infarct (Kawamata et al., Proc.Natl.	
	Acad. Sci.(1997) 94 (15):8179-84).	

Table IV. Quantitative, Tissue-specific mRNA expression detected using SybrMan or TaqMan.

human cDNAs prepared from various human tissues. Gene-specific PCR primers were designed using the first nucleic acid sequence listed in the Sequence List for each gene. Results are presented as the number of copies of each specific gene's mRNA detected in 1ng mRNA pool from each tissue. Two replicate mRNA City, CA) or TaqMan PCR (Perkin Elmer, see Lie et al. Current Opinion in Biotechnology 9:43-48, 1998; Gibson et al., Genome Methods 6:995-1001, 1996) and Quantitative, tissue-specific, mRNA expression patterns of the genes were measured using SYBR-Green Quantitative PCR (Applied Biosystems, Foster measurements were made from each tissue RNA.

SybrMan Results:

		Tissue-Spe	cific mRNA l	Expression	(copies per n	g mRNA; avg	. ± range for	Tissue-Specific mRNA Expression (copies per ng mRNA; avg. ± range for 2 data points per tissue)	per tissue)	
Gene Name	Brain	Heart	Lung	Liver	Kidney	Skeletal	Intestine	Spleen/	Placenta	Testis
						muscle		lymph		
sbgTango79a	358±7	278±55	239±100	53±20	247±29	461±60	83±1	202±18	300±55	770±106
sbgPRO331a	15411±861	1831±25	2409±103	656+2	2283±82	625±47	510±5	2096±74	2596±68	4692±472
sbghPYYa	-3±1	-1+0	0∓0	-7±8	8+2	-5±9	-4±1	2±1	-1±0	38+5
sbghGTa	24±10	5±4	5±3	-4±8	2±1	-3+5	-1+3	4±2	4±0	92±8
SB-HDGF	4362±359	3387±11	2425±120	972±82	3270±152	7106±1647	1133±164	2058±101	2528±50	9024±652
SBhACRP30a	10751±954	7443±294	08/±0066	6463±45	8530±225	7638±405	6040±438	8912±1021	8931±617	8098±612
sbg35069DBIa	142±15	180±17	94±10	37±3	257±15	73±8	27±10	76±29	184±5	158±2
sbg14862SPERCTa	31±3	18±6	23±4	10±6	49±1	V=8	7±0	23±1	18+2	30±1
sbg24878SIa	327±29	1251±8	1740±103	552+20	514±182	636±65	582±64	5200+222	5151±271	695±30
sbg34976IGBa	1500±64	451±21	123±14	976	55±6	156±6	38±12	80±4	76±3	1975±183
sbg41608HDGFa	11±4	3+0	4±4	2+0	0±1	1±2	1±0	7±5	0+0	14909±926
sbg66804SPARCra	296±53	24±0	4±1	457±21	7±0	68+3	9±1	439±11	128±1	1037±17
sbg72825FOLATEa	289±40	381±12	100±78	92±3	494±102	289±52	101±3	219±30	405±121	270±44
SBhPRO221	14±6	109±43	102±30	221±44	19±9	979	61±13	60±19	33±11	119±40
sbg77153CYSa	20∓8	80±32	181±3	10±2	234±50	.54±7	25±8	93±0	151±3	26223±604
SBh80014.IAPa	0 1 =10	82±70	31±3	-2+3	110+1	88±24	17±4	29±1	62+3	65±20

Table IV (cont).

TaqMan Results:

		Tissue-Sp	ecific mRNA	Expression (copies per	ng mRNA; av	'g. ± SD for 4	Tissue-Specific mRNA Expression (copies per ng mRNA; avg. ± SD for 4 data points per tissue)	er tissue)	
Gene Name	Brain	Heart	Lung	Liver	Kidney	Kidney Skeletal	Intestine	Spleen	Placenta Pancreas	Pancreas
						muscle				
sbgFGF-19b	676	25±30	8±11	8±11 1612+1711	9±16	10±9	9±15	16±20		0+3 123+144

Table V. Additional diseases based on mRNA expression in specific tissues

Tissue Expression	Additional Diseases
Brain	Neurological and psychiatric diseases, including Alzheimers, parasupranuclear palsey, Huntington's disease, myotonic dystrophy, anorexia, depression, schizophrenia, headache, amnesias, anxiety disorders, sleep disorders, multiple sclerosis
Heart	Cardiovascular diseases, including congestive heart failure, dilated cardiomyopathy, cardiac arrhythmias, Hodgson's Disease, myocardial infarction, cardiac arrhythmias
Lung	Respiratory diseases, including asthma, Chronic Obstructive Pulmonary Disease, cystic fibrosis, acute bronchitis, adult respiratory distress syndrome
Liver	Dyslipidemia, hypercholesterolemia, hypertriglyceridemia, cirrhosis, hepatic encephalopathy, fatty hepatocirrhosis, viral and nonviral hepatitis, Type II Diabetes Mellitis, impaired glucose tolerance
Kidney	Renal diseases, including acute and chronic renal failure, acute tubular necrosis, cystinuria, Fanconi's Syndrome, glomerulonephritis, renal cell carcinoma, renovascular hypertension
Skeletal muscle	Eulenburg's Disease, hypoglycemia, obesity, tendinitis, periodic paralyses, malignant hyperthermia, paramyotonia congenita, myotonia congenita
Intestine	Gastrointestinal diseases, including Myotonia congenita, Ileus, Intestinal Obstruction, Tropical Sprue, Pseudomembranous Enterocolitis
Spleen/lymph	Lymphangiectasia, hypersplenism, angiomas, ankylosing spondylitis, Hodgkin's Disease, macroglobulinemia, malignant lymphomas, rheumatoid arthritis
Placenta	Choriocarcinoma, hydatidiform mole, placenta previa
Testis	Testicular cancer, male reproductive diseases, including low testosterone and male infertility
Pancreas	Diabetic ketoacidosis, Type 1 & 2 diabetes, obesity, impaired glucose tolerance

What is claimed is:

- 1. An isolated polypeptide selected from the group consisting of:
- 5 (a) an isolated polypeptide encoded by a polynucleotide comprising a sequence set forth in Table I;
 - (b) an isolated polypeptide comprising a polypeptide sequence having at least 95% identity to a polypeptide sequence set forth in Table I;
 - (c) an isolated polypeptide comprising a polypeptide sequence set forth in Table I;
- 10 (d) an isolated polypeptide having at least 95% identity to a polypeptide sequence set forth in Table I;
 - (e) a polypeptide sequence of a gene set forth in Table I; and
 - (f) fragments and variants of such polypeptides in (a) to (e)
- 2. An isolated polynucleotide selected from the group consisting of:
 - (a) an isolated polynucleotide comprising a polynucleotide sequence having at least 95% identity to a polynucleotide sequence set forth in Table I;
 - (b) an isolated polynucleotide comprising a polynucleotide set forth in Table I;
 - (c) an isolated polynucleotide having at least 95% identity to a polynucleotide set forth in Table I;
- 20 (d) an isolated polynucleotide of a gene set forth in Table I;
 - (e) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence set forth in Table I;
 - (f) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide set forth in Table I;
- 25 (g) an isolated polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to a polypeptide sequence set forth in Table I;
 - (h) an isolated polynucleotide encoding a polypeptide set forth in Table I;
 - (i) an isolated polynucleotide with a nucleotide sequence of at least 100 nucleotides obtained by screening a library under stringent hybridization conditions with a labelled probe having a sequence set forth in Table I or a fragment thereof having at least 15 nucleotides;
 - (j) a polynucleotide which is an RNA equivalent of the polynucleotide of (a) to (i); or a polynucleotide sequence complementary to said isolated polynucleotide and polynucleotides that are variants and fragments of the above mentioned polynucleotides or that are complementary to above mentioned polynucleotides, over the entire length thereof.

30

- 3. An antibody immunospecific for the polypeptide of claim 1.
- 4. An antibody as claimed in claim 3 which is a polyclonal antibody.
- 5. An expression vector comprising a polynucleotide capable of producing a polypeptide of claim 1 when said expression vector is present in a compatible host cell.
 - 6. A process for producing a recombinant host cell which comprises the step of introducing an expression vector comprising a polynucleotide capable of producing a polypeptide of claim 1 into a cell such that the host cell, under appropriate culture conditions, produces said polypeptide.
 - 7. A recombinant host cell produced by the process of claim 6.
 - 8. A membrane of a recombinant host cell of claim 7 expressing said polypeptide.
- 15

10

9. A process for producing a polypeptide which comprises culturing a host cell of claim 7 under conditions sufficient for the production of said polypeptide and recovering said polypeptide from the culture.

<110> SMITHKLINE BEECHAM CORPORATION

SEQUENCE LISTING

```
SMITHKLINE BEECHAM p.l.c.
     <120> NOVEL COMPOUNDS
     <130> GP50013
     <140> TO BE ASSIGNED
     <141> 2001-02-14
     <150> 60/182,172
     <151> 2000-02-14
     <150> 60/186,084
     <151> 2000-02-29
     <160> 46
     <170> FastSEO for Windows Version 3.0
     <210> 1
      <211> 1779
     <212> DNA
     <213> Homo sapiens
      <400> 1
atgacetget ggetgtgegt cetgageetg eccetgetee tgetgeeege ggegeegeee
                                                                        60
ccggctggag gctgcccggc ccgctgcgag tgcaccgtgc agacccgcgc ggtggcctgc
                                                                       120
acgcgccgcc gcctgaccgc cgtgcccgac ggcatcccgg ccgagacccg cctgctggag
                                                                       180
ctcagccgca accgcatccg ctgcctgaac ccgggcgacc tggccgcgct gcccgcgctg
                                                                       240
gaggagctgg acctgagcga gaacgccatc gcgcacgtgg agcccggcgc cttcgccaac
                                                                       300
                                                                       360
ctgccgcgcc tgcgcgtcct gcgtctccgt ggcaaccagc tgaagctcat cccgcccggg
                                                                       420
gtcttcacgc gcctggacaa cctcacgctg ctggacctga gcgagaacaa gctggtaatc
ctgctggact acactttcca ggacctgcac agcctgcgcc ggctggaagt gggcgacaac
                                                                       480
```

gacctggtat tcgtctcgcg ccgcgccttc gcggggctgc tggccctgga ggagctgacc

ctggagcgct gcaacctcac ggctctgtcc ggggagtcgc tgggccatct gcgcagcctg ggcgccctgc ggctgcgcca cctggccatc gcctccctgg aggaccagaa cttccgcagg

ctgcccgggc tgctgcacct ggagattgac aactggccgc tgctggagga ggtggcggcg ggcagcctgc ggggcctgaa cctgacctcg ctgtcggtca cccacaccaa catcaccgcc 540

600

660 720

780

gtgccggccg	ccgcgctgcg	gcaccaggcg	cacctcacct	gcctcaatct	gtcgcacaac	840
cccatcagca	cggtgccgcg	ggggtcgttc	cgggacctgg	tccgcctgcg	cgagctgcac	900
ctggccgggg	ccctgctggc	tgtggtggag	ccgcaggcct	tcctgggcct	gcgccagatc	960
cgcctgctca	acctctccaa	caacctgctc	tccacgttgg	aggagagcac	cttccactcg	1020
gtgaacacgc	tagagacgct	gcgcgtggac	gggaacccgc	tggcctgcga	ctgtcgcctg	1080
ctgtggatcg	tgcagcgtcg	caagaccctc	aacttcgacg	ggcggctgcc	ggcctgcgcc	1140
accccggccg	aggtgcgcgg	cgacgcgctg	cgaaacctgc	cggactccgt	gctgttcgag	1200
tacttcgtgt	gccgcaaacc	caagatccgg	gagcggcggc	tgcagcgcgt	cacggccacc	1260
gcgggcgaag	acgtccgctt	cctctgccgc	gccgagggcg	agccggcgcc	caccgtggcc	1320
tgggtgaccc	cccagcaccg	gccggtgacg	gccaccagcg	cgggccgggc	gcgcgtgctc	1380
cccgggggga	cgctggagat	ccaggacgcg	cggccgcagg	acagcggcac	ctacacgtgc	1440
gtggccagca	acgcgggcgg	caacgacacc	tacttcgcca	cgctgaccgt	gcgccccgag	1500
ccggccgcca	accggacccc	gggcgaggcc	cacaacgaga	cgctggcggc	cctgcgcgcg	1560
ccgctcgacc	tcaccaccat	cctggtgtcc	accgccatgg	gctgcatcac	cttcctgggc	1620
gtggtcctct	tctgcttcgt	gctgctgttc	gtgtggagcc	gcggccgcgg	gcagcacaaa	1680
aacaacttct	cggtggagta	ctccttccgc	aaggtggatg	ggccggccgc	cgcggcgggc	1740
cagggaggcg	cgcgcaagtt	caacatgaag	atgatctga			1779

<210> 2

<211> 1962

<212> DNA

<213> Homo sapiens

<400> 2

atgaagetet tgtggcaggt aactgtgcac caccacact ggaatgccat cetgeteecg 60 ttcgtctacc tcacggcgca agtgtggatt ctgtgtgcag ccatcgctgc tgccgcctca 120 gccgggcccc agaactgccc ctccgtctgc tcgtgcagta accagttcag caaggtggtg 180 tgcacgcgcc ggggcctctc cgaggtcccg cagggtattc cctcgaacac ccggtacctc 240 aacctcatgg agaacaacat ccagatgatc caggccgaca ccttccgcca cctccaccac 300 ctggaggtcc tgcagttggg caggaactcc atccggcaga ttgaggtggg ggccttcaac 360 ggcctggcca gcctcaacac cctggagctg ttcgacaact ggctgacagt catccctagc 420 ggggcctttg aatacctgtc caagctgcgg gagctctggc ttcgcaacaa ccccatcgaa 480 agcatecect ettaegeett caacegggtg ceetecetea tgegeetgga ettgggggag 540 ctcaagaagc tggagtatat ctctgaggga gcttttgagg ggctgttcaa cctcaagtat 600 ctgaacttgg gcatgtgcaa cattaaagac atgcccaatc tcaccccct ggtgqqqctq 660 gaggagctgg agatgtcagg gaaccacttc cctgagatca ggcctggctc cttccatggc 720 ctgagctccc tcaagaagct ctgggtcatg aactcacagg tcagcctgat tgagcggaat 780 gettttgaeg ggetggette aettgtggaa etcaaettgg eccaeaataa eetetettet 840 ttgccccatg acctctttac cccgctgagg tacctggtgg agttgcatct acaccacaac 900 ccttggaact gtgattgtga cattctgtgg ctagcctggt ggcttcgaga gtatataccc 960 accaattcca cctgctgtgg ccgctgtcat gctcccatgc acatgcgagg ccgctacctc 1020 gtggaggtgg accaggcctc cttccagtgc tctgccccct tcatcatgga cgcacctcga 1080

gacctcaaca tttctgaggg tcggatggca gaacttaagt gtcggactcc ccctatg	tcc 1140
tccgtgaagt ggttgctgcc caatgggaca gtgctcagcc acgcctcccg ccaccca	agg 1200
atctctgtcc tcaacgacgg caccttgaac ttttcccacg tgctgctttc agacact	ggg 1260
gtgtacacat gcatggtgac caatgttgca ggcaactcca acgcctcggc ctacctc	aat 1320
gtgagcacgg ctgagcttaa cacctccaac tacagcttct tcaccacagt aacagtg	gag 1380
accacggaga tctcgcctga ggacacaacg cgaaagtaca agcctgttcc taccacg	tcc 1440
actggttacc agccggcata taccacctct accacggtgc tcattcagac tacccgt	gtg 1500
cccaagcagg tggcagtacc cgcgacagac accactgaca agatgcagac cagcctg	gat 1560
gaagtcatga agaccaccaa gatcatcatt ggctgctttg tggcagtgac tctgcta	gct 1620
gccgccatgt tgattgtctt ctataaactt cgtaagcggc accagcagcg gagtaca	gtc 1680
acageegeee ggaetgttga gataateeag gtggaegaag acateeeage agcaaca	tcc 1740
gcagcagcaa cagcagctcc gtccggtgta tcaggtgagg gggcagtagt gctgccc	aca 1800
attcatgacc atattaacta caacacctac aaaccagcac atggggccca ctggaca	gaa 1860
aacagcctgg ggaactctct gcaccccaca gtcaccacta tctctgaacc ttatata	att 1920
cagacccata ccaaggacaa ggtacaggaa actcaaatat ga	1962
<210> 3	
<211> 213	
<212> DNA	
<213> Homo sapiens	
<400> 3	
atggtgtcgg tgtgcaggcc gtggcctgct gtggccatag cacttctggc tctgctg	gtc 60
tgcctggggg cgctggtcga cacctgcccc atcaaacccg aggctcctgg cgaagac	gag 120
tccctggagg agctgagcca ctattatgct tccctgtgcc actacctcaa cgtggtca	acc 180
agacagtggt gggagggtgc agacatgtgg tga	213
<210> 4	
<211> 393	
<212> DNA	
<213> Homo sapiens	
<400> 4	
atgaagetgg catteetett cettggeece atggeeetee teettetgge tggetatg	ggc 60
tgtgtcctcg gtgcctccag tgggaacctg cgcacctttg tgggctgtgc cgtgaggg	
tttactttcc tggccaagaa gccaggctgc aggggccttc ggatcaccac ggatgcct	
tggggtcgct gtgagacctg ggagaaaccc attctggaac cccctatat tgaagcc	
catcgagtct gtacctacaa cgagaccaaa caggtgactg tcaagctgcc caactgtg	
ccgggagtcg accettcta cacetatece gtggccatec getgtgactg eggagect	
tecactgea ccaeggagtg tgagaccate tga	393
5	2,73

<210> 5

<211> 2031 <212> DNA <213> Homo sapiens

<400> 5

attccaaacg	cctttaaacc	cggggacttg	gttttcccta	aaattaaggg	ctaccctcaa	60
tggccttcca	ggatcgacga	catcgcggat	ggcgccgtga	agccccacc	caacaagtac	120
cccatctttt	tctttggcac	acacgaaaca	gccttcctgg	gacccaagga	cctgttcccc	180
tacgacaaat	gtaaagacaa	gtacgggaag	cccaacaaga	ggaaaggctt	caatgaaggg	240
ctgtgggaga	tccagaacaa	ccccacgcc	agctacagcg	cccctccgcc	agtgagctcc	300
tccgacagcg	aggcccccga	ggccaacccc	gccgacggca	gtgacgctga	cgaggacgat	360
gaggaccggg	gggtcatggc	cgtcacagcg	gtaaccgcca	cagctgccag	cgacaggatg	420
gagagcgact	cagactcaga	caagagtagc	gacaacagtg	gcctgaagag	gaagacgcct	480
gcgctaaaga	tgtcggtctc	gaaacgagcc	cgaaaggcct	ccagcgacct	ggatcaggcc	540
agcgtgtccc	catccgaaga	ggagaactcg	gaaagctcat	ctgagtcgga	gaagaccagc	600
gaccaggact	tcacacctga	gaagaaagca	gcggtccggg	cgccacggag	gggccctctg	660
gggggacgga	aaaaaagaa	ggcgccatca	gcctccgact	ccgactccaa	ggccgattcg	720
gacggggcca	agcctgagcc	ggtggccatg	gcgcggtcgg	cgtcctcctc	ctcctcttcc	780
tcctcctcct	ccgactccga	tgtgtctgtg	aagaagcctc	cgaggggcag	gaagccagcg	840
gagaagcctc	tcccgaagcc	gcgagggcgg	aaaccgaagc	ctgaacggcc	tccgtccagc	900
tccagcagtg	acagtgacag	cgacgaggtg	gaccgcatca	gtgagtggaa	gcggcgggac	960
gaggcgcgga	ggcgcgagct	ggaggcccgg	cggcggcgag	agcaggagga	ggagctgcgg	1020
cgcctgcggg	agcaggagaa	ggaggagaag	gagcggaggc	gcgagcgggc	cgaccgcggg	1080
gaggctgagc	ggggcagcgg	cggcagcagc	ggggacgagc	tcagggagga	cgatgagccc	1140
gtcaagaagc	ggggacgcaa	gggccggggc	cggggtcccc	cgtcctcctc	tgactccgag	1200
cccgaggccg	agctggagag	agaggccaag	aaatcagcga	agaagccgca	gtcctcaagc	1260
acagagcccg	ccaggaaacc	tggccagaag	gagaagagag	tgcggcccga	ggagaagcaa	1320
caagccaagc	ccgtgaaggt	ggagcggacc	cggaagcggt	ccgagggctt	ctcgatggac	1380
aggaaggtag	agaagaagaa	agagccctcc	gtggaggaga	agctgcagaa	gctgcacagt	1440
gagatcaagt	ttgccctaaa	ggtcgacagc	ccggacgtga	agaggtgcct	gaatgcccta	1500
gaggagctgg	gaaccctgca	ggtgacctct	cagatcctcc	agaagaacac	agacgtggtg	1560
gccaccttga	agaagattcg	ccgttacaaa	gcgaacaagg	acgtaatgga	gaaggcagca	1620
gaagtctata	cccggctcaa	gtcgcgggtc	ctcggcccaa	agatcgaggc	ggtgcagaaa	1680
gtgaacaagg	ctgggatgga	gaaggagaag	gccgaggaga	agctggccgg	ggaggagctg	1740
gccggggagg	agctggccgg	ggaggaggcc	ccccaggaga	aggcggagga	caagcccagc	1800
accgatctct	cagccccagt	gaatggcgag	gccacatcac	agaaggggga	gagcgcagag	1860
gacaaggagc	acgaggaggg	tcgggactcg	gaggagggc	caaggtgtgg	ctcctctgaa	1920
gacctgcacg	acagcgtacg	ggagggtccc	gacctggaca	ggcctgggag	cgaccggcag	1980
gagcgcgaga	gggcacgggg	ggactcggag	gccctggacg	aggagagctg	a	2031

<210> 6

<211> 2154

<212> DNA

<213> Homo sapiens

<400> 6

atggcggtcc tggacctgag ggagctgcgc cgtggggatc tggggggtgt ccagggcctg 6 aaggagetge ggegeeaatg gtetgggggt cetgggeetg aggaagetge getetggggg 12 tctggggctt ctgtgcctga gggagctgca ccatggggat ctggggttgc cctggcccag 18 24 agggagccac gcctcatcga cgacatcgcg gatggcgccg tgaagccccc acccaacaag 30 taccccatct ttttctttgg cacacacgaa acagccttcc tgggacccaa ggacctgttc ccctacgaca aatgtaaaga caagtacggg aagcccaaca agaggaaagg cttcaatgaa 36 qqqctqtqqq agatccagaa caacccccac gccagctaca qcgcccctcc gccagtgagc 42 48 tectecgaea gegaggeece egaggeeaae eeegeegaeg geagtgaege tgaegaggae gatgaggacc ggggggtcat ggccgtcaca gcggtaaccg ccacagctgc cagcgacagg 54 60 atggagageg acteagacte agacaagagt agegacaaca gtggeetgaa gaggaagaeg cctgcgctaa agatgtcggt ctcgaaacga gcccgaaagg cctccagcga cctggatcag 66 gccagcgtgt ccccatccga agaggagaac tcggaaagct catctgagtc ggagaagacc 72 agegaccagg acttcacacc tgagaagaaa gcagcggtcc gggcgccacg gaggggccct 78 ctggggggac ggaaaaaaa gaaggcgcca tcagcctccg actccgactc caaggccgat 84 90 teggaegggg ceaageetga geeggtggee atggegeggt eggegteete etecteetet 96 tectectect ceteegacte egatgtgtet gtgaagaage eteegagggg caggaageea 102 geggagaage eteteeegaa geegegaggg eggaaaeega ageetgaaeg geeteegtee agctccagca gtgacagtga cagcgacgag gtggaccgca tcagtgagtg gaagcggcgg 108 114 gacgaggcgc ggaggcgcga gctggaggcc cggcggcggc gagagcagga ggaggagctg 120 cggcgcctgc gggagcagga gaaggaggag aaggagcgga ggcgcgagcg ggccgaccgc ggggaggetg ageggggeag eggeggeage ageggggaeg ageteaggga ggaegatgag 126 132 cccgtcaaga ageggggacg caagggccgg ggccggggtc ccccgtcctc ctctgactcc 138 gagecegagg eegagetgga gagagaggee aagaaateag egaagaagee geagteetea agcacagage cegecaggaa acetggecag aaggagaaga gagtgeggee egaggagaag 144 caacaagcca agcccgtgaa ggtggagcgg acccggaagc ggtccgaggg cttctcgatg 150 gacaggaagg tagagaagaa gaaagagccc teegtggagg agaagetgea gaagetgeac 156 agtgagatca agtttgccct aaaggtcgac agcccggacg tgaagaggtg cctgaatgcc 162 ctagaggagc tgggaaccet gcaggtgacc tetcagatce tecagaagaa cacagacgtg 168 174 gtggccacct tgaagaagat tcgccgttac aaagcgaaca aggacgtaat ggagaaggca gcagaagtct atacccggct caagtcgcgg gtcctcggcc caaagatcga ggcggtgcag 180 186 aaagtgaaca aggctgggat ggagaaggag aaggccgagg agaagctggc cggggaggag 192 ctggccgggg aggagctggc cggggaggag gccccccagg agaaggcgga ggacaagccc 198 agcaccgatc teteageeee agtgaatgge gaggeeaeat cacagaaggg ggagagegea 204 gaggacaagg agcacgagga gggtcgggac tcggaggagg ggccaaggtg tggctcctct 210 gaagacetge acgacagegt acgggagggt ceegacetgg acaggeetgg gagegacegg caggagegeg agagggeaeg gggggaeteg gaggeeetgg aegaggagag etga 215

<210> 7

<211> 870

<212> DNA <213> Homo sapiens <400> 7 atgtttgtct tgctctatgt tacaagtttt gccatttgtg ccagtggaca accccggggt 60 aatcagttga aaggagagaa ctactccccc aggtatatct gcagcattcc tggcttgcct 120 ggacctccag ggccccctgg agcaaatggt tcccctgggc cccatggtcg catcggcctt 180 ccaggaagag atggtagaga cggcaggaaa ggagagaaag gtgaaaaggg aactgcaggt 240 ttgagaggta agactggacc gctaggtctt gccggtgaga aaggggacca aggagagact 300 gggaagaaag gacccatagg accagaggga gagaaaggag aagtaggtcc aattggtcct 360 cctggaccaa agggagacag aggagaacaa ggggacccgg ggctgcctgg agtttgcaga 420 tgtggaagca tcgtgctcaa atccgccttt tctgttggca tcacaaccag ctacccagaa 480 gaaagactac ctattatatt taacaaggtc ctcttcaacg agggagagca ctacaaccct 540 gccacaggga agttcatctg tgctttccca gggatctatt acttttctta tgatatcaca 600 ttggctaata agcatctggc aatcggactg gtacacaatg ggcaataccg gataaagacc 660 ttcgacgcca acacaggaaa ccatgatgtg gcttcggggt ccacagtcat ctatctgcag 720 ccagaagatg aagtctggct ggagattttc ttcacagacc agaatggcct cttctcagac 780 ccaggttggg cagacagctt attctccggg tttctcttat acgttgacac agattaccta 840 gattccatat cagaagatga tgaattgtga 870 <210> 8 <211> 912 <212> DNA <213> Homo sapiens <400> 8 atggggaagg aggacactca agaaactcgc acagagccaa agatgtttgt cttgctctat 60 gttacaagtt ttgccatttg tgccagtgga caaccccggg gtaatcagtt gaaaggagag 120 aactactccc ccaggtatat ctgcagcatt cctggcttgc ctggacctcc agggccccct 180 ggagcaaatg gttcccctgg gccccatggt cgcatcggcc ttccaggaag agatggtaga 240 gacggcagga aaggagagaa aggtgaaaag ggaactgcag gtttgagagg taagactgga 300 ccgctaggtc ttgccggtga gaaaggggac caaggagaga ctqqqaaqaa aqqaccata 360 ggaccagagg gagagaaagg agaagtaggt ccaattggtc ctcctggacc aaagggagac 420 agaggagaac aaggggaccc ggggctgcct ggagtttgca gatgtggaag catcgtgctc 480 aaatccgcct tttctgttgg catcacaacc agctacccag aagaaagact acctattata 540 tttaacaagg tcctcttcaa cgagggagag cactacaacc ctgccacagg gaagttcatc 600 tgtgctttcc cagggatcta ttacttttct tatgatatca cattggctaa taagcatctg 660 gcaatcggac tggtacacaa tgggcaatac cggataaaga ccttcgacgc caacacagga 720 aaccatgatg tggcttcggg gtccacagtc atctatctgc agccagaaga tgaagtctgg 780

840

900

ctggagattt tcttcacaga ccagaatggc ctcttctcag acccaggttg ggcagacagc

ttattctccg ggtttctctt atacgttgac acagattacc tagattccat atcagaagat

gatgaattgt ga	912
<210> 9	
<211> 267	
<212> DNA	
<213> Homo sapiens	
<400> 9	
atgtccctgc aggctgattt tgacatggtc acagaagatg tgaggaagct gaaaacaaga	60
ccagatgatg aagaactgaa agaactttat gggctttaca aacaagctgt aattggaaac	120
attaatattg agtgttcaga aatgctagaa ttaaaaggca aggccaaatg ggaagcacag	180
aacccccaaa aaggattgtc agaggaagat atgatgcgtg cctttatttc taaagccgaa	240
gagctgatag aaaaatatgg aatttag	267
<210> 10	
<211> 1269	
<212> DNA	
<213> Homo sapiens	
<400> 10	
atgcacggtg gctcctgggg cagcgtctgt gatgacgact gggacgtggt ggacgccaac	60
gtagtgtgtc gccagctggg ctgtggcctg gcactgcccg tgccacggcc ccttgccttt	120
ggccaaggcc gaggccccat cctgctggac aacgtggagt gccgcgggca ggaagctgcg	180
ctgagcgagt gcggcagccg cggctggggc gtccacaatt gctttcacta cgaggatgtg	240
gctgtcctgt gtgatggtga gggcagcgta cgcctggtag ggggcgcgaa cctgtgtcag	300
ggccgagtgg agatcctgca cagtggcctg tggggcaccg tgtgtgacga cgactggggg	360
ctgccggatg ccgctgtggt ctgtcgtcag ctgggctgcg gggcggccat ggccgccacc	420
accaacgeet tetteggeta tggcacegga cacateetge tggacaaegt geactgegaa	480
ggcggcgagc cccgcctggc agcctgccag agcctgggct ggggtgtgca caactgcggc	540
caccacgagg acgcgggcgc gctctgcgca ggtgcgggct ctagggggcga tgggcggggc	600
cggggcagcc cctctggccg cgggcctgtg cgccccgcag gtggacggct gcgactggtg	660
ggcggcccgg gtccgtgccg cggccgcgtg gaggtgttgc acgccggggg ctggggcacc	720
gtgtgcgacg atgactggga ctttgcggac gcgcgcgtgg cctgccgcga agcgggctgc	780
gggcctgcgc tgggcgctac gggactgggc cacttcggct acggccgcgg ccccgtgctg	840
ctggacaacg tgggctgcgc cggcaccgag gctcgcctga gcgactgctt ccacctgggc	900
tggggccagc acaactgcgg ccaccacgag gacgcgggag cgctctgcgc agggcatcta	960
cgtctggtca atggagccca ccgatgcgag ggacgtgtag agctctacct agggcaacgg	1020
tggggcactg tctgtgatga tgcttgggac ctgcgggcag ccggtgtcct gtgccgccag	1080
ctgggctgtg gccaggccct cgcagcccct ggcgaggctc actttggccc aggccgaggc	1140
cccattctcc tggacaatgt caagtgccgt ggggaagaaa gtgctctgct gctctgctct	1200
catatccgct gggatgccca caactgtgac cacagcgagg atgccagtgt cctgtgccag	1260
ccttcatga	1269

<210> 11 <211> 1659

<212> DNA

<400> 12

<213> Homo sapiens

```
<212> DNA
      <213> Homo sapiens
      <400> 11
atggccacat taccagagaa ggccctgaaa gaggcctgga agggattgat cccaaggttc
                                                                       60
ccatggcttc atggcaaagc ggagctgagg ctggtggggg gccccagccg ctgccggggc
                                                                      120
cgcctggaag tcatgcacgg tggctcctgg ggcagcgtct gtgatgacga ctgggacgtg
                                                                      180
gtggacgcca acgtagtgtg tcgccagctg ggctgtggcc tggcactgcc cgtgccacgg
                                                                      240
ccccttgcct ttggccaagg ccgaggcccc atcctgctgg acaacgtgga gtgccgcggg
                                                                      300
caggaagctg cgctgagcga gtgcggcagc cgcggctggg gcgtccacaa ttgctttcac
                                                                      360
tacgaggatg tggctgtcct gtgtgatgaa ttcttgccaa cgcagccccc aacaaggaag
                                                                      420
atgttaacca gtagagcacc tcctacgaca ctgccgaatg gaaaaagtga gggcagcgta
                                                                      480
cgcctggtag ggggcgcgaa cctgtgtcag ggccgagtgg agatcctgca cagtggcctg
                                                                      540
tggggcaccg tgtgtgacga cgactggggg ctgccggatg ccgctgtggt ctgtcgtcag
                                                                      600
ctgggctgcg gggcggccat ggccgccacc accaacgcct tcttcggcta tggcaccgga
                                                                      660
cacatcctgc tggacaacgt gcactgcgaa ggcggcgagc cccgcctggc agcctgccag
                                                                      720
agectggget ggggtgtgca caactgegge caecaegagg aegegggege getetgegea
                                                                      780
ggcctgggtc ccccaacgct cacagcactg ccatcctcag ccacaagaga ggactgggct
                                                                      840
tggcagacag atccgtccgc tacaggagtt ggcccccagc cttcccggga gacagcactg
                                                                      900
ctcaccaccg ccgcctgggc cgcggggaag aaaagtggac ggctgcgact ggtgggcggc
                                                                      960
ccgggtccgt gccgcggccg cgtggaggtg ttgcacgccg ggggctgggg caccgtgtgc
                                                                     1020
gacgatgact gggactttgc ggacgcgcgc gtggcctgcc gcgaagcggg ctgcgggcct
                                                                     1080
gcgctgggcg ctacgggact gggccacttc ggctacggcc gcggccccgt gctgctggac
                                                                     1140
                                                                     1200
aacgtgggct gcgccggcac cgaggctcgc ctgagcgact gcttccacct gggctggggc
cagcacaact gcggccacca cgaggacgcg ggagcgctct gcgcaggtga ggctgacagc
                                                                     1260
gaaggcccag aggagctggg actgcaagtc cagcaggatg gttctgagac cacgcgggtg
                                                                     1320
cccactcctc ggcccaggga cgggcatcta cgtctggtca atggagccca ccgatgcgag
                                                                     1380
ggacgtgtag agctctacct agggcaacgg tggggcactg tctgtgatga tgcttgggac
                                                                     1440
ctgcgggcag ccggtgtcct gtgccgccag ctgggctgtg gccaggccct cgcagcccct
                                                                     1500
ggcgaggete actttggccc aggccgagge cccattetec tggacaatgt caagtgccgt
                                                                     1560
ggggaagaaa gtgctctgct gctctgctct catatccgct gggatgccca caactgtgac
                                                                     1620
cacagcgagg atgccagtgt cctgtgccag ccttcatga
                                                                     1659
      <210> 12
      <211> 5130
```

^{8/56}

atgggcttct	tgcccaagct	tctcctcctg	gcctcattct	tcccagcagg	ccaggcctca	60
tggggcgtct	ccagtcccca	ggacgtgcag	ggtgtgaagg	ggtcttgcct	gcttatcccc	120
tgcatcttca	gcttccctgc	cgacgtggag	gtgcccgacg	gcatcacggc	catctggtac	180
tacgactact	cgggccagcg	gcaggtggtg	agccactcgg	cggaccccaa	gctggtggag	240
gcccgcttcc	gcggccgcac	cgagttcatg	gggaaccccg	agcacagggt	gtgcaacctg	300
ctgctgaagg	acctgcagcc	cgaggactct	ggttcctaca	acttccgctt	cgagatcagt	360
gaggtcaacc	gctggtcaga	tgtgaaaggc	accttggtca	cagtaacaga	ggagcccagg	420
gtgcccacca	ttgcctcccc	ggtggagctt	ctcgagggca	cagaggtgga	cttcaactgc	480
tccactccct	acgtatgcct	gcaggagcag	gtcagactgc	agtggcaagg	ccaggaccct	540
gctcgctctg	tcaccttcaa	cagccagaag	tttgagccca	ccggcgtcgg	ccacctggag	600
accctccaca	tggccatgtc	ctggcaggac	cacggccgga	tcctgcgctg	ccagctctcc	660
gtggccaatc	acagggctca	gagcgagatt	cacctccaag	tgaagtatgc	ccccaagggt	720
gtgaagatcc	tcctcagccc	ctcggggagg	aacatccttc	caggtgagct	ggtcacactc	780
acctgccagg	tgaacagcag	ctaccctgca	gtcagttcca	ttaagtggct	caaggatggg	840
gtacgcctcc	aaaccaagac	tggtgtgctg	cacctgcccc	aggcagcctg	gagcgatgct	900
ggcgtctaca	cctgccaagc	tgagaacggc	gtgggctctt	tggtctcacc	ccccatcagc	960
ctccacatct	tcatggctga	ggtccaggtg	agcccagcag	gtcccatcct	ggagaaccag	1020
acagtgacac	tagtctgcaa	cacacccaat	gaggcaccca	gtgatctccg	ctacagctgg	1080
tacaagaacc	atgtcctgct	ggaggatgcc	cactcccata	ccctccggct	gcacttggcc	1140
actagggctg	atactggctt	ctacttctgt	gaggtgcaga	acgtccatgg	cagcgagcgc	1200
tegggeeetg	tcagcgtggt	agtcaacctc	ctgacagcct	tcctggagac	ccaggcggga	1260
cttgtgggca	tccttcactg	ctctgtggtc	agtgagcccc	tggccacact	ggtgctgtca	1320
catgggggtc	atatcctggc	ctccacctcc	ggggacagtg	atcacagccc	acgcttcagt	1380
ggtacctctg	gtcccaactc	cctgcgcctg	gagatccgag	acctggagga	aactgacagt	1440
ggggagtaca	agtgctcagc	caccaactcc	cttggaaatg	caacctccac	cctggacttc	1500
catgccaatg	ccgcccgtct	cctcatcagc	ccggcagccg	aggtggtgga	aggacaggca	1560
gtgacactga	gctgcagaag	cggcctaagc	cccacacctg	atgcccgctt	ctcctggtac	1620
ctgaatggag	ccctgcttca	cgagggtccc	ggcagcagcc	tcctgctccc	cgcggcctcc	1680
agcactgacg	ccggctcata	ccactgccgg	gcccgggacg	gccacagtgc	cagtggcccc	1740
tcttcgccag	ctgttctcac	tgtgctctac	cccctcgac	aaccaacatt	caccaccagg	1800
ctggaccttg	atgccgctgg	ggccggggct	ggacggcgag	gcctcctttt	gtgccgtgtg	1860
gacagcgacc	ccccgccag	gctgcagctg	ctccacaagg	accgtgttgt	ggccacttcc	1920
ctgccatcag	ggggtggctg	cagcacctgt	gggggctgtt	ccccacgcat	gaaggtcacc	1980
aaagccccca	acttgctgcg	tgtggagatt	cacaaccctt	tgctggaaga	ggagggcttg	2040
tacctctgtg	aggccagcaa	tgccctgggc	aacgcctcca	cctcagccac	cttcaatggc	2100
caggccactg	tcctggccat	tgcaccatca	cacacacttc	aggagggcac	agaagccaac	2160
ttgacttgca	acgtgagccg	ggaagctgct	ggcagccctg	ctaacttctc	ctggttccga	2220
aatggggtgc	tgtgggccca	gggtcccctg	gagaccgtga	cactgctgcc	cgtggccaga	2280
actgatgctg	ccctttacgc	ctgccgcatc	ctgactgagg	ctggtgccca	gctctccact	2340
cccgtgctcc	tgagtgtact	ctatcccccg	gaccgtccaa	agctgtcagc	cctcctagac	2400
atgggccagg	gccacatggc	tctgttcatc	tgcactgtgg	acagccgccc	cctggccttg	2460
ctggccttgt	tccatgggga	gcacctcctg	gccaccagcc	tgggtcccca	ggtcccatcc	2520

catggtcggt	tccaggctaa	agctgaggcc	aactccctga	agttagaggt	ccgagaactg	2580
				atgttcttgg		2640
acctcactct	tcttccaggt	ccgaggagcc	tgggtccagg	tgtcaccatc	acctgagctc	2700
caagagggcc	aggctgtggt	cctgagctgc	caggtacaca	caggagtccc	agaggggacc	2760
tcatatcgtt	ggtatcggga	tggccagccc	ctccaggagt	cgacctcggc	cacgctccgc	2820
tttgcagcca	taactttgac	acaagctggg	gcctatcatt	gccaagccca	ggccccaggc	2880
tcagccacca	cgagcctagc	tgcacccatc	agcctccacg	tgtcctatgc	cccacgccac	2940
gtcacactca	ctaccctgat	ggacacaggc	cctggacgac	tgggcctcct	cctgtgccgt	3000
gtggacagtg	accctccggc	ccagctgcgg	ctgctccacg	gggatcgcct	tgtggcctcc	3060
accctacaag	gtgtggggg	acccgaaggc	agctctccca	ggctgcatgt	ggctgtggcc	3120
cccaacacac	tgcgtctgga	gatccacggg	gctatgctgg	aggatgaggg	tgtctatatc	3180
tgtgaggcct	ccaacaccct	gggccaggcc	teggeeteag	ctgacttcga	cgctcaagct	3240
gtgaatgtgc	aggtgtggcc	cggggctacc	gtgcgggagg	ggcagctggt	gaacctgacc	3300
tgccttgtgt	ggaccactca	cccggcccag	ctcacctaca	catggtacca	ggatgggcag	3360
cagcgcctgg	atgcccactc	catccccctg	cccaacgtca	cagtcaggga	tgccacctcc	3420
taccgctgcg	gtgtgggccc	ccctggtcgg	gcaccccgcc	tctccagacc	tatcaccttg	3480
gacgtcctct	acgcgccccg	caacctgcgc	ctgacctacc	tcctggagag	ccatggcggg	3540
cagctggccc	tggtactgtg	cactgtggac	agccgcccgc	ccgcccagct	ggccctcagc	3600
cacgccggtc	gcctcttggc	ctcctcgaca	gcagcctctg	tccccaacac	cctgcgcctg	3660
gagctgcgag	ggccacagcc	cagggatgag	ggtttctaca	gctgctctgc	ccgcagccct	3720
ctgggccagg	ccaacacgtc	cctggagctg	cggctggagg	gtgtgcgggt	gatcctggct	3780
ccggaggctg	ccgtgcctga	aggtgccccc	atcacagtga	cctgtgcgga	ccctgctgcc	3840
cacgcaccca	cactctatac	ttggtaccac	aacggtcgtt	ggctgcagga	gggtccagct	3900
gcctcactct	cattcctggt	ggccacgcgg	gctcatgcag	gcgcctactc	ttgccaggcc	3960
caggatgccc	agggcacccg	cagctcccgt	cctgctgccc	tgcaagtcct	ctatgcccct	4020
caggacgctg	tcctgtcctc	cttccgggac	tccagggcca	gatccatggc	tgtgatacag	4080
tgcactgtgg	acagtgagcc	acctgctgag	ctggccctat	ctcatgatgg	caaggtgctg	4140
gccacgagca	gcggggtcca	cagcttggca	tcagggacag	gccatgtcca	ggtggcccga	4200
aacgccctac	ggctgcaggt	gcaagatgtg	cctgcaggtg	atgacaccta	tgtttgcaca	4260
gcccaaaact	tgctgggctc	aatcagcacc	atcgggcggt	tgcaggtaga	aggtgcacgc	4320
gtggtggcag	agcctggcct	ggacgtgcct	gagggcgctg	ccctgaacct	cagctgccgc	4380
ctcctgggtg	gccctgggcc	tgtgggcaac	tccacctttg	catggttctg	gaatgaccgg	4440
cggctgcacg	cggagcctgt	gcccactctc	gccttcaccc	acgtggctcg	tgctcaagct	4500
gggatgtacc	actgcctggc	tgagctcccc	actggggctg	ctgcctctgc	tccagtcatg	4560
ctccgtgtgc	tctaccctcc	caagacgccc	accatgatgg	tcttcgtgga	gcctgagggt	4620
ggcctccggg	gcatcctgga	ttgccgagtg	gacagcgagc	cgctcgccag	cctgactctc	4680
caccttggca	gtcgactggt	ggcctccagt	cagccccagg	gtgctcctgc	agagccacac	4740
atccatgtcc	tggcttcccc	caatgccctg	agggtggaca	tcgaggcgct	gaggcccagc	4800
gaccaagggg	aatacatctg	ttctgcctca	aatgtcctgg	gctctgcctc	tacctccacc	4860
tactttgggg	tcagagccct	gcaccgcctg	catcagttcc	agcagctģct	ctgggtcctg	4920
ggactgctgg	tgggcctcct	gctcctgctg	ttgggcctgg	gggcctgcta	cacctggaga	4980
aggaggcgtg	tttgtaagca	gagcatgggc	gagaattcgg	tggagatggc	ttttcagaaa	5040

5100

gagaccacgc agggttttct ctgtgggaag ctcattgatc ctgatgcagc cacatgtgag

acctcaacct gtgccccacc cctgggctga 5130 <210> 13 <211> 5158 <212> DNA <213> Homo sapiens <400> 13 atgggcttet tgcccaaget tetectectg geeteattet teccageagg ceaggeetea 60 tggggcgtct ccagtcccca ggacgtgcag ggtgtgaagg ggtcttgcct gcttatcccc 120 tgcatcttca gcttccctgc cgacgtggag gtgcccgacg gcatcacggc catctggtac 180 tacgactact cgggccagcg gcaggtggtg agccactcgg cggaccccaa gctggtggag 240 gcccgcttcc gcggccgcac cgagttcatg gggaaccccg agcacagggt gtgcaacctg 300 ctgctgaagg acctgcagcc cgaggactct ggttcctaca acttccgctt cgagatcagt 360 gaggtcaacc gctggtcaga tgtgaaaggc accttggtca cagtaacaga ggagcccagg 420 gtgcccacca ttgcctcccc ggtggagctt ctcgagggca cagaggtgga cttcaactgc 480 tccactccct acgtatgcct gcaggagcag gtcagactgc agtggcaagg ccaggaccct 540 gctcgctctg tcaccttcaa cagccagaag tttgagccca ccggcgtcgg ccacctggag 600 accetecaea tggecatgte etggeaggae eaeggeegga teetgegetg eeagetetee 660 gtggccaatc acagggctca gagcgagatt cacctccaag tgaagtatgc ccccaagggt 720 gtgaagatee teeteageee eteggggagg aacateette caggtgaget ggteacaete 780 acctgccagg tgaacagcag ctaccctgca gtcagttcca ttaagtggct caaqqatqqq 840 gtacgcctcc aaaccaagac tggtgtgctg cacctgcccc aggcagcctg gagcgatgct 900 ggcgtctaca cctgccaagc tgagaacggc gtgggctctt tggtctcacc ccccatcagc 960 ctccacatct tcatggctga ggtccaggtg agcccagcag gtcccatcct ggagaaccag 1020 acagtgacac tagtctgcaa cacacccaat gaggcaccca gtgatctccg ctacagctgg 1080 tacaagaacc atgtcctgct ggaggatgcc cactcccata ccctccggct gcacttggcc 1140 actagggctg atactggctt ctacttctgt gaggtgcaga acgtccatgg cagcgagcgc 1200 tegggeetg teagegtggt agteaacete etgaeageet teetggagae eeaggeggga 1260 cttgtgggca tccttcactg ctctgtggtc agtgagcccc tggccacact ggtgctgtca 1320 catgggggtc atatectggc ctccacctcc ggggacagtg atcacagecc acgettcagt 1380 ggtacctctg gtcccaactc cctgcgcctg gagatccgag acctggagga aactgacagt 1440 ggggagtaca agtgctcagc caccaactcc cttggaaatg caacctccac cctggacttc 1500 catgccaatg ccgcccgtct cctcatcagc ccggcagccg aggtggtgga aggacaggca 1560 gtgacactga gctgcagaag cggcctaagc cccacacctg atgcccgctt ctcctggtac 1620 ctgaatggag ccctgcttca cgagggtccc ggcagcagcc tcctgctccc cgcggcctcc 1680 agcactgacg ccggctcata ccactgccgg gcccgggacg gccacagtgc cagtggcccc 1740 tettegecag etgtteteac tgtgetetac eccetegae aaccaacatt eaccaceagg 1800 ctggaccttg atgccgctgg ggccggggct ggacggcgag gcctcctttt gtgccgtgtg 1860 gacagegace eccegecag getgeagetg etceacaagg accgtgttgt ggecaettee 1920 ctgccatcag ggggtggctg cagcacctgt gggggctgtt ccccacgcat gaaggtcacc 1980

aaagccccca	acttgctgcg	tgtggagatt	cacaaccctt	tgctggaaga	ggagggcttg	2040
tacctctgtg	aggccagcaa	tgccctgggc	aacgcctcca	cctcagccac	cttcaatggc	2100
caggccactg	tcctggccat	tgcaccatca	cacacacttc	aggagggcac	agaagccaac	2160
ttgacttgca	acgtgagccg	ggaagctgct	ggcagccctg	ctaacttctc	ctggttccga	2220
aatggggtgc	tgtgggccca	gggtcccctg	gagaccgtga	cactgctgcc	cgtggccaga	2280
actgatgctg	ccctttacgc	ctgccgcatc	ctgactgagg	ctggtgccca	gctctccact	2340
cccgtgctcc	tgagtgtact	ctatcccccg	gaccgtccaa	agctgtcagc	cctcctagac	2400
atgggccagg	gccacatggc	tctgttcatc	tgcactgtgg	acagccgccc	cctggccttg	2460
ctggccttgt	tccatgggga	gcacctcctg	gccaccagcc	tgggtcccca	ggtcccatcc	2520
catggtcggt	tccaggctaa	agctgaggcc	aactccctga	agttagaggt	ccgagaactg	2580
ggccttgggg	actctggcag	ctaccgctgt	gaggccacaa	atgttcttgg	atcatccaac	2640
acctcactct	tcttccaggt	ccgaggagcc	tgggtccagg	tgtcaccatc	acctgagctc	2700
caagagggcc	aggctgtggt	cctgagctgc	caggtacaca	caggagtccc	agaggggacc	2760
tcatatcgtt	ggtatcggga	tggccagccc	ctccaggagt	cgacctcggc	cacgctccgc	2820
tttgcagcca	taactttgac	acaagctggg	gcctatcatt	gccaagccca	ggccccaggc	2880
tcagccacca	cgagcctagc	tgcacccatc	agcctccacg	tgtcctatgc	cccacgccac	2940
gtcacactca	ctaccctgat	ggacacaggc	cctggacgac	tgggcctcct	cctgtgccgt	3000
gtggacagtg	accctccggc	ccagctgcgg	ctgctccacg	gggatcgcct	tgtggcctcc	3060
accctacaag	gtgtgggggg	acccgaaggc	agctctccca	ggctgcatgt	ggctgtggcc	3120
cccaacacac	tgcgtctgga	gatccacggg	gctatgctgg	aggatgaggg	tgtctatatc	3180
tgtgaggcct	ccaacaccct	gggccaggcc	tcggcctcag	ctgacttcga	cgctcaagct	3240
gtgaatgtgc	aggtgtggcc	cggggctacc	gtgcgggagg	ggcagctggt	gaacctgacc	3300
tgccttgtgt	ggaccactca	cccggcccag	ctcacctaca	catggtacca	ggatgggcag	3360
cagcgcctgg	atgcccactc	catccccctg	cccaacgtca	cagtcaggga	tgccacctcc	3420
taccgctgcg	gtgtgggccc	ccctggtcgg	gcaccccgcc	tctccagacc	tatcaccttg	3480
gacgtcctct	acgcgccccg	caacctgcgc	ctgacctacc	tcctggagag	ccatggcggg	3540
cagctggccc	tggtactgtg	cactgtggac	agccgcccgc	ccgcccagct	ggccctcagc	3600
cacgccggtc	gcctcttggc	ctcctcgaca	gcagcctctg	tccccaacac	cctgcgcctg	3660
gagctgcgag	ggccacagcc	cagggatgag	ggtttctaca	gctgctctgc	ccgcagccct	3720
ctgggccagg	ccaacacgtc	cctggagctg	cggctggagg	gtgtgcgggt	gatcctggct	3780
ccggaggctg	ccgtgcctga	aggtgccccc	atcacagtga	cctgtgcgga	ccctgctgcc	3840
cacgcaccca	cactctatac	ttggtaccac	aacggtcgtt	ggctgcagga	gggtccagct	3900
gcctcactct	cattcctggt	ggccacgcgg	gctcatgcag	gcgcctactc	ttgccaggcc	3960
caggatgccc	agggcacccg	cagctcccgt	cctgctgccc	tgcaagtcct	ctatgcccct	4020
caggacgctg	tectgteete	cttccgggac	tccagggcca	gatccatggc	tgtgatacag	4080
tgcactgtgg	acagtgagcc	acctgctgag	ctggccctat	ctcatgatgg	caaggtgctg	4140
	gcggggtcca					4200
aacgccctac	ggctgcaggt	gcaagatgtg	cctgcaggtg	atgacaccta	tgtttgcaca	4260
gcccaaaact	tgctgggctc	aatcagcacc	atcgggcggt	tgcaggtaga	aggtgcacgc	4320
gtggtggcag	agcctggcct	ggacgtgcct	gagggcgctg	ccctgaacct	cagctgccgc	4380
ctcctgggtg	gccctgggcc	tgtgggcaac	tccacctttg	catggttctg	gaatgaccgg	4440
cggctgcacg	cggagcctgt	gcccactctc	gccttcaccc	acgtggctcg	tgctcaagct	4500

gggatgtacc actgcctggc tgagctcccc actggggctg ctgcctctgc tccagtcatg 4560 ctccgtgtgc tctaccctcc caagacgccc accatgatgg tcttcgtgga gcctgaqqgt 4620 ggcctccggg gcatcctgga ttgccgagtg gacagcgagc cgctcgccag cctgactctc 4680 caccttggca gtcgactggt ggcctccagt cagccccagg gtgctcctgc agagccacac 4740 atccatgtcc tggcttcccc caatgccctg agggtggaca tcgaggcgct gaggcccagc 4800 gaccaagggg aatacatctg ttctgcctca aatgtcctgg gctctgcctc tacctccacc 4860 tactttgggg tcagagccct gcaccgcctg catcagttcc agcagctgct ctgggtcctg 4920 ggactgctgg tgggcctcct gctcctgctg ttgggcctgg gggcctgcta cacctggaga 4980 aggaggcgtg tttgtaagca gagcatgggc gagaattcgg tggagatggc ttttcagaaa 5040 gagaccacgc agggactggg tactacctta ctggccctta caagagtgga gggcagacac 5100 agatgttgtc agcatcctta ttcctgctcc agatgcatct ctgttcatga ctgtgtga 5158

<210> 14

<211> 2238

<212> DNA

<213> Homo sapiens

<400> 14

atgttccccc ttcgggccct gtggttggtc tgggcgcttc taggagtggc cggatcatgc 60 ccggagccgt gcgcctgcgt ggacaagtac gctcaccagt tcgcggactg cgcttacaaa 120 gagttgcgtg aggtgccgga aggactgcct gccaacgtga cgacgcttag tctgtccgcg 180 aacaagatca ctgtgctgcg gcgcggggcc ttcgccgacg tcacacaggt cacgtcgctg 240 tggctggcgc acaatgaggt gcgcaccgtg gagccaggcg cactggccgt gctgagtcag 300 ctcaagaacc tcgatctgag ccacaacttc atatccagct ttccgtggag cgacctgcgc 360 aacctgagcg cgctgcagct gctcaaaatg aaccacaacc gcctgggctc tctgccccgg 420 gacgcactcg gtgcgctacc cgacctgcgt tccctgcgca tcaacaacaa ccggctgcgt 480 acgetggege etggeacett egaegegett agegegetgt cacaettgea actetateae 540 aatcccttcc actgcggctg cggccttgtg tggctgcagg cctgggccgc gagcacccgg 600 gtgtccttac ccgagcccga ctccattgct tgtgcctcgc ctcccgcgct gcagggggtg 660 ceggtgtace geetgeeege cetgeeetgt geacegeeea gegtgeatet gagtgeegag 720 ccaccgcttg aagcacccgg caccccactg cgcgcaggac tggcgttcgt gttacactgc 780 ategeegaeg geeaceetae geetegeetg caatggeaae tteagateee eggtggeaee 840 gtagtettag agecaceggt tetgageggg gaggaegaeg gggttgggge ggaggaagga 900 gagggagaag gagatgggga tttgctgacg cagacccaag cccaaacgcc gactccagca 960 cccgcttggc cggcgcccc agccacaccg cgcttcctgg ccctcgcaaa tggctccctg 1020 ttggtgcccc tcctgagtgc caaggaggcg ggcgtctaca cttgccgtgc acacaatgag 1080 ctgggcgcca actctacgtc aatacgcgtg gcggtggcag caaccgggcc cccaaaacac 1140 gcgcctggcg ccgggggaga acccgacgga caggccccga cctctgagcg caagtccaca 1200 gccaagggcc ggggcaacag cgtcctgcct tccaaacccg agggcaaaat caaaggccaa 1260 ggcctggcca aggtcagcat tctcggggag accgagacgg agccggagga ggacacaagt 1320 gagggagagg aggccgaaga ccagatcctc gcggacccgg cggaggagca gcgctgtggc 1380 aacggggacc cctctcggta cgtttctaac cacgcgttca accagagcgc agagctcaag 1440

```
ccgcacgtct tcgagctggg cgtcatcgcg ctggatgtgg cggagcgcga ggcgcgggtg
                                                                     1500
cagetgaete egetggetge gegetgggee eetgggeeeg geggggetgg eggageeeeg
                                                                     1560
cgacccgggc ggcgacccct gcgcctactc tatctgtgtc cagcgggggg cggcgcggca
                                                                     1620
gtgcagtggt cccgcgtaga ggaaggcgtc aacgcctact ggttccgcgg cctgcggccg
                                                                     1680
ggtaccaact actccgtgtg cctggcgctg gcgggcgaag cctgccacgt gcaagtggtq
                                                                     1740
ttttccacca agaaggagct cccatcgctg ctggtcatag tggcagtgag cgtattcctc
                                                                     1800
ctggtgctgg ccacagtgcc ccttctgggc gccgcctgct gccatctgct ggctaaacac
                                                                     1860
ccgggcaagc cctaccgtct gatcctgcgg cctcaggccc ctgaccctat ggagaagcgc
                                                                     1920
ategeegeag acttegacee gegtgetteg tacetegagt eegagaaaag etaceeggea
                                                                     1980
ggcggcgagg cgggcggcga ggagccagag gacgtgcagg gggagggcct tgatgaagac
                                                                     2040
gcggagcagg gagacccaag tggggacctg cagagagagg agagcctggc ggcctgctca
                                                                     2100
ctggtggagt cccagtccaa ggccaaccaa gaggagttcg aggcgggctc tgagtacagc
                                                                     2160
gateggetge ceetgggege egaggeggte aacategeee aggagattaa tggcaactae
                                                                     2220
aggcagacgg caggctga
                                                                     2238
```

<210> 15

<211> 756

<212> DNA

<213> Homo sapiens

<400> 15

atgtcggcct acggcatgcc catgtacaag agcggggacc tggtqtttgc caaqttaaaq 60 ggctatgccc actggccggc gaggatagag cacatgaccc agcccaaccg ctaccaggtg 120 tttttcttcg ggacccacga gacggccttc ctgagtccca aacgcctgtt cccgtacaag 180 gagtgcaagg agaagttcgg caagcccaac aagaggcgcg gcttcagcgc ggggctgtgg 240 gaaatcgaga acaaccccac ggtccaggcc tccgactgcc cattagcctc agagaagggc 300 ageggagaeg ggeettggee ggageeegag geegeagagg gegaegagga caageegaee 360 cacgctggtg gcggcggcga cgaattgggg aagccggacg acgacaagcc cactgaggag 420 gagaaggggc cgctgaagag gagcgcgggg gacccgccgg aggacgcccc caaacgaccc 480 aaggaggcag cccccgacca agaggaggag gcggaggcgg agaggggggc ggaagcggag 540 agggcggcgg cggcggcggc ggcgacggcc gtcgacgagg agagtccgtt cctcgtggcg 600 gtggagaacg gcagcgccc tagcgagccg ggcctggtct gcgagccgcc tcagccagag 660 gaggaggagc tccgggagga agaagtcgcg gacgaggagg cctcccagga gtggcatgcc 720 gaggcaccgg gcggcggaga tcgcgacagc ctgtag 756

<210> 16

<211> 1224

<212> DNA

<213> Homo sapiens

<400> 16

tttctaataa gtgaccgtga cccacagtgc aacctccact gctccaggac tcaacccaaa

cccatctgtg	cctctgatgg	caggtcctac	gagtccatgt	gtgagtacca	gcgagccaag	120
tgccgagacc	cgaccctggg	cgtggtgcat	cgaggtagat	gcaaagatgc	tggccagagc	180
aagtgtcgcc	tggagcgggc	tcaagccctg	gagcaagcca	agaagcctca	ggaagctgtg	240
tttgtcccag	agtgtggcga	ggatggctcc	tttacccagg	tgcagtgcca	tacttacact	300
gggtactgct	ggtgtgtcac	cccggatggg	aagcccatca	gtggctcttc	tgtgcagaat	360
aaaactcctg	tatgttcagg	ttcagtcacc	gacaagccct	tgagccaggg	taactcagga	420
aggaaagatg	acgggtctaa	gccgacaccc	acgatggaga	cccagccggt	gttcgatgga	480
gatgaaatca	cagccccaac	tctatggatt	aaacacttgg	tgatcaagga	ctccaaactg	540
aacaacacca	acataagaaa	ttcagagaaa	gtctattcgt	gtgaccagga	gaggcagagt	600
gccctggaag	aggcccagca	gaatccccgt	gagggtattg	tcatccctga	atgtgcccct	660
gggggactct	ataagccagt	gcaatgccac	cagtccactg	gctactgctg	gtgtgtgctg	720
gtggacacag	ggcgcccgct	gcctgggacc	tccacacgct	acgtgatgcc	cagttgtgag	780
agcgacgcca	gggccaagac	tacagaggcg	gatgacccct	tcaaggacag	ggagctacca	840
ggctgtccag	aagggaagaa	aatggagttt	atcaccagcc	tactggatgc	tctcaccact	900
gacatggttc	aggccattaa	ctcagcagcg	cccactggag	gtgggaggtt	ctcagagcca	960
gaccccagcc	acaccctgga	ggagcgggta	gtgcactggt	atttcagcca	gctggacagc	1020
aatagcagca	acgacattaa	caagcgggag	atgaagccct	tcaagcgcta	cgtgaagaag	1080
aaagccaagc	ccaagaaatg	tgcccggcgt	ttcaccgact	actgtgacct	gaacaaagac	1140
aaggtcattt	cactgcctga	gctgaagggc	tgcctgggtg	ttagcaaaga	aggtggtagc	1200
cttggcagtt	tccccaggc	aaaa				1224

<210> 17

<211> 1305

<212> DNA

<213> Homo sapiens

<400> 17

atggcaggct ctgggccacc tctgcccacg tgcaatgcag aagtgggatg ggagaacatg 60 gctgaggacg gcaaggcttt tctaataagt gaccgtgacc cacagtgcaa cctccactgc 120 tccaggactc aacccaaacc catctgtgcc tctgatggca ggtcctacga gtccatgtgt 180 gagtaccage gagecaagtg cegagaceeg accetgggeg tggtgcateg aggtagatge 240 aaagatgctg gccagagcaa gtgtcgcctg gagcgggctc aagccctgga gcaagccaag 300 aagcctcagg aagctgtgtt tgtcccagag tgtggcgagg atggctcctt tacccaggtg 360 cagtgccata cttacactgg gtactgctgg tgtgtcaccc cggatgggaa gcccatcagt 420 ggctcttctg tgcagaataa aactcctgta tgttcaggtt cagtcaccga caagcccttg 480 agccagggta actcaggaag gaaagatgac gggtctaagc cgacacccac gatggagacc 540 cagccggtgt tcgatggaga tgaaatcaca gccccaactc tatggattaa acacttggtg 600 atcaaggact ccaaactgaa caacaccaac ataagaaatt cagagaaagt ctattcgtgt 660 gaccaggaga ggcagagtgc cctggaagag gcccagcaga atccccgtga gggtattgtc 720 atccctgaat gtgcccctgg gggactctat aagccagtgc aatgccacca gtccactggc 780 tactgctggt gtgtgctggt ggacacaggg cgcccgctgc ctgggacctc cacacgctac 840 gtgatgccca gttgtgagag cgacgccagg gccaagacta cagaggcgga tgaccccttc 900

aaggacaggg agctaccagg	ctgtccagaa	gggaagaaaa	tggagtttat	caccagccta	960
ctggatgctc tcaccactga	catggttcag	gccattaact	cagcagcgcc	cactggaggt	1020
gggaggttct cagagccaga	ccccagccac	accctggagg	agcgggtagt	gcactggtat	1080
ttcagccagc tggacagcaa	tagcagcaac	gacattaaca	agcgggagat	gaagcccttc	1140
aagcgctacg tgaagaagaa	agccaagccc	aagaaatgtg	cccggcgttt	caccgactac	1200
tgtgacctga acaaagacaa	ggtcatttca	ctgcctgagc	tgaagggctg	cctgggtgtt	1260
agcaaagaag gtggtagcct	tggcagtttc	ccccaggcaa	aatga		1305
<210> 18					
<211> 753					
<212> DNA					
<213> Homo sapie	ens				
<400> 18					
atggcatgct ggtggccgct	cctgctagag	ctgtggacag	tcatgcccac	ctgggctggg	60
gacgagctgc tcaacatctg	catgaatgcc	aaacaccaca	agagagtgcc	cagcccagaa	120
gacaagctct atgaggagtg	catcccctgg	aaggacaatg	cctgctgcac	cctcacgaca	180
agctgggaag cccatctgga	tgtatcccca	ctctacaact	tcagcctgtt	tcactgtgga	240
ctgctgatgc ctggctgtcg	gaagcacttc	atccaggcta	tctgcttcta	tgagtgctcc	300
ccaaacctgg ggccctggat	ccagccagtg	ggaagcctgg	ggtgggaggt	ggccccgagt	360
gggcagggag agcgagttgt	gaatgtgccg	ctgtgccagg	aggactgtga	ggagtggtgg	420
gaagactgtc gcatgtctta	cacatgcaaa	tccaactggc	gtggtggctg	ggactggagt	480
caggggaaga accgctgccc	caaaggggcc	cagtgcctcc	ctttctccca	ttacttcccc	540
accccagctg acctgtgtga	gaagacttgg	agcaattcct	tcaaagccag	ccctgagcga	600
cggaacagtg ggcggtgtct	ccagaagtgg	tttgagcctg	ctcagggcaa	ccccaatgtg	660
gccgtggccc gcctcttcgc	cagctctgcc	ccatcctggg	aactgtccta	caccatcatg	720
gtatgataca tgttactgac	gttcctttcc	tga			753
<210> 19					
<211> 774					
<212> DNA					
<213> Homo sapie	ens				
<400> 19					
atgggcaccg tgcgcccacc					60
ctcttcctcc tcttctgcct					120
gaccacgcag gggctgtggc		_	_		180
gacatecegg ceaacacegt					240
gacggggcct tccagcacct					300
gaggccatcg gctccgccac					360
tettacaace geatecagag	_		_		420
cgcctgtccc acaaccccct	gcactgcgag	tgcgccctgc	aggaggccct	gtgggagctg	480

gtggggaage ctctggttca ggctctggat gcgggtgcca gcctctgcag cgtccccac 600 aggaccacag acgtggccat gctggtcacc atgttcggct ggttcgccat ggtgatcgcc 660 tacgtcgtgt actatgtgcg ccacaaccag gaggatgccc ggaggcacct ggagtacctg 720 aagtctctgc ccagcgccc cgcctccaag gaccccatcg gcccggggcc ctag 774
tacgtcgtgt actatgtgcg ccacaaccag gaggatgccc ggaggcacct ggagtacctg aagtctctgc ccagcgccc cgcctccaag gaccccatcg gcccggggcc ctag <210> 20 <211> 447 <212> DNA <213> Homo sapiens <400> 20
aagtetetge ecagegeee egeetecaag gaceceateg geeegggee etag 774 <210> 20 <211> 447 <212> DNA <213> Homo sapiens <400> 20
<210> 20 <211> 447 <212> DNA <213> Homo sapiens <400> 20
<211> 447 <212> DNA <213> Homo sapiens <400> 20
<211> 447 <212> DNA <213> Homo sapiens <400> 20
<212> DNA <213> Homo sapiens <400> 20
<213> Homo sapiens <400> 20
<400> 20
atgctgggcc tgccgtggaa gggaggtctg tcctgggcgc tgctgctgct tctcttaggc 60
tcccagatcc tgctgatcta tgcctggcat ttccacgagc aaagggactg tgatgaacac 120
aatgtcatgg ctcgttacct ccctgccaca gtggagtttg ctgtccacac attcaaccaa 180
cagagcaagg actactatgc ctacagactg gggcacatct tgaattcctg gaaggagcag 240
gtggagtcca agactgtatt ctcaatggag ctactgctgg ggagaactag gtgtgggaaa 300
tttgaagacg acattgacaa ctgccatttc caagaaagca cagagctgaa caatgtaaga 360
caggacacca gcttccctcc tggatacagc tgtggatgcc acatggggtg tggtgtgggc 420
acaggtgcaa ctgacaaaga gacttag 447
<210> 21
<211> 1068
<212> DNA
<213> Homo sapiens
<400> 21
atgggaceta aagacagtge caagtgeetg cacegtggae cacageegag ceaetgggea 60
aryyyarta aayarayiyo caayiyooiy careyiyyac cacagoogag coacigggca
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccgcttct tccacacagg ccatcaggac 360
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac 360 aaggtgaggt gcttcttctg ctatggggc ctgcagagct ggaagcgcg ggacgaccc 420
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggaggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac 360 aaggtgaggt gcttcttctg ctatgggggc ctgcagagct ggaagcgcgg ggacgacccc 420 tggacggagc atgccaagtg gttccccagc tgtcagttcc tgctccggtc aaaaggaaga 480
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac 360 aaggtgaggt gcttcttctg ctatgggggc ctgcagagct ggaagcgcgg ggacgacccc 420 tggacggac atgccaagtg gttccccagc tgtcagttcc tgctccgtc aaaaggaaga 480 gactttgtcc acagtgtgca ggagactcac tcccagctgc tggggctcctg ggtgagcgcc 540
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac 360 aaggtgaggt gcttcttctg ctatgggggc ctgcagagct ggaagcgcgg ggacgacccc 420 tggacggac atgccaagtg gttccccagc tgtcagttcc tgctccggtc aaaaggaaga 480 gactttgtcc acagtgtgca ggagactcac tcccagctgc tggggctcctg ggtgagcgcc 540 acctctcctc ggggctccgg gtggcagtgg ggtcctgcc ctcctatttc cccaaggcct 600
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta 120 ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac 360 aaggtgaggt gcttcttctg ctatgggggc ctgcagagct ggaagcgcgg ggacgaccc 420 tggacggagc atgccaagtg gttccccagc tgtcagttcc tgctccggtc aaaaggaaga 480 gactttgtcc acagtgtca ggagactcac tcccagctgc tgggctcctg ggtgagcgcc 540 acctctcctc ggggctccgg gtggcagtgg ggtcctgcc ctcctatttc cccaaggcct 600 gatggtctct ggctccttc aggacccgt ggaagaccga cccctgtggc 660
gcctggaca cctgcagagc ctgggaccac gtggatggc agatcctggg ccagctgcgg 180 cccctgacag aggaggaaga ggaggagggc gccggggcca ccttgtccag ggggcctgcc 240 ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact 300 gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac 360 aaggtgaggt gcttcttct ctatggggc ctgcagct ggaaggtgagg ggacgaccc 420 tggacggac atgccaagtg gttccccagc tgtcagtct gcagagct ggaagcggg ggacgacccc 420 tggacggac atgccaagtg gttccccagc tgtcagtct tccacacagg ccatcaggac 360 aaggtgaggt atgccaagtg gttccccagc tgtcagttcc tgctccggtc aaaaggaaga 480 gactttgtcc acagtgtga ggagactcac tcccagctgc tgggctcctg ggtgagcgcc 540 acctctctc ggggctccgg gtggcagtgg ggtcctgcc ctcctatttc cccaaggcct 600 gatggtctct ggctccttcc aggacccgtg ggaagaaccg gaagacgcag cccctgggt 660 cccctccggt ccagtctgaa agtgccagg agccaggtgc aggcccggga cccctgggt 720

```
cggcggctgc aggaggagag gacgtgcaag gtgtgcctgg accgcgccgt gtccatcgtc
                                                                       960
tttgtgccgt gcggccacct ggtctgtgct gagtgtgccc ccggcctgca gctgtgccc
                                                                      1020
atctgcagag cccccgtccg cagccgcgtg cgcaccttcc tgtcctag
                                                                      1068
      <210> 22
      <211> 769
      <212> DNA
      <213> Homo sapiens
      <400> 22
atgggaccta aagacagtgc caagtgcctg caccgtggac cacagccgag ccactgggca
                                                                       60
gccggtgatg gtcccacgca ggagcgctgt ggaccccgct ctctgggcag ccctgtccta
                                                                       120
ggcctggaca cctgcagagc ctgggaccac gtggatgggc agatcctggg ccagctgcgg
                                                                       180
cccctgacag aggaggaaga ggaggaggcc gccggggcca ccttgtccag ggggcctgcc
                                                                      240
ttccccggca tgggctctga ggagttgcgt ctggcctcct tctatgactg gccgctgact
                                                                       300
gctgaggtgc cacccgagct gctggctgct gccggcttct tccacacagg ccatcaggac
                                                                      360
aaggtgaggt gcttcttctg ctatgggggc ctgcagagct ggaagcgcgg ggacgacccc
                                                                       420
tggacggagc atgccaagtg gttcccctg tcagttcctg ctccggtcaa aaggaagaga
                                                                       480
ctttgtccac agtgtgcagg agactcactc ccagctgctg ggctcctggg acccgtggga
                                                                      540
agaaccggaa gacgcagccc ctgtggcccc ctccggagcc agggatgtgg aggcgcagct
                                                                      600
geggeggetg caggaggaga ggaegtgeaa ggtgtgeetg gaeegegeeg tgteeategt
                                                                      660
etttgtgccg tgcggccacc tggtctgtgc tgagtgtgcc cccggcctgc agctgtgccc
                                                                      720
catctgcaga gcccccgtcc gcagccgcgt gcgcaccttc ctgtcctag
                                                                      769
      <210> 23
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 23
atgttggggg cccgcctcag gctctgggtc tgtgccttgt gcagcgtctg cagcatgagc
                                                                       60
gtcctcagag cctatcccaa tgcctccca ctgctcggct ccagctgggg tggcctgatc
                                                                      120
cacctgtaca cagccacage caggaacage taccacctge agatecacaa gaatggccat
                                                                      180
gtggatggcg caccccatca gaccatctac agtgccctga tgatcagatc agaggatgct
                                                                      240
ggctttgtgg tgattacagg tgtgatgagc agaagatacc tctgcatgga tttcagaggc
                                                                      300
aacatttttg gatcacacta tttcgacccg gagaactgca ggttccaaca ccagacgctg
                                                                      360
gaaaacgggt acgacgtcta ccactctcct cagtatcact tcctggtcag tctgggccgg
                                                                      420
gcgaagagag cetteetgee aggeatgaae ceacecegt acteecagtt eetgteeegg
                                                                      480
aggaacgaga tccccctaat tcacttcaac acccccatac cacggcggca cacccggagc
                                                                      540
gccgaggacg actcggagcg ggaccccctg aacgtgctga agccccgggc ccggatgacc
                                                                      600
eeggeeeegg ceteetgtte acaggagete eegagegeeg aggacaacag eeegatggee
                                                                      660
agtgacccat taggggtggt caggggcggt cgagtgaaca cgcacgctgg gggaacgggc
                                                                      720
```

ccggaaggct gccgccctt cgccaagttc atctag

756

<210> 24

<211> 592

<212> PRT

<213> Homo sapiens

260

<400> 24

Met Thr Cys Trp Leu Cys Val Leu Ser Leu Pro Leu Leu Leu Pro 10 Ala Ala Pro Pro Pro Ala Gly Gly Cys Pro Ala Arg Cys Glu Cys Thr 20 25 Val Gln Thr Arg Ala Val Ala Cys Thr Arg Arg Arg Leu Thr Ala Val Pro Asp Gly Ile Pro Ala Glu Thr Arg Leu Leu Glu Leu Ser Arg Asn 55 Arg Ile Arg Cys Leu Asn Pro Gly Asp Leu Ala Ala Leu Pro Ala Leu 70 75 Glu Glu Leu Asp Leu Ser Glu Asn Ala Ile Ala His Val Glu Pro Gly 85 90 Ala Phe Ala Asn Leu Pro Arg Leu Arg Val Leu Arg Leu Arg Gly Asn 100 105 Gln Leu Lys Leu Ile Pro Pro Gly Val Phe Thr Arg Leu Asp Asn Leu 120 Thr Leu Leu Asp Leu Ser Glu Asn Lys Leu Val Ile Leu Leu Asp Tyr 135 Thr Phe Gln Asp Leu His Ser Leu Arg Arg Leu Glu Val Gly Asp Asn 150 155 Asp Leu Val Phe Val Ser Arg Arg Ala Phe Ala Gly Leu Leu Ala Leu 165 170 Glu Glu Leu Thr Leu Glu Arg Cys Asn Leu Thr Ala Leu Ser Gly Glu 180 185 Ser Leu Gly His Leu Arg Ser Leu Gly Ala Leu Arg Leu Arg His Leu 200 Ala Ile Ala Ser Leu Glu Asp Gln Asn Phe Arg Arg Leu Pro Gly Leu 215 Leu His Leu Glu Ile Asp Asn Trp Pro Leu Glu Glu Val Ala Ala 230 235 Gly Ser Leu Arg Gly Leu Asn Leu Thr Ser Leu Ser Val Thr His Thr 245 250 Asn Ile Thr Ala Val Pro Ala Ala Ala Leu Arg His Gln Ala His Leu

Thr	Cys	Leu 275	Asn	Leu	Ser	His	Asn 280	Pro	Ile	Ser	Thr	Val 285	Pro	Arg	Gly
Ser	Phe 290	Arg	Asp	Leu	Val	Arg 295	Leu	Arg	Glu	Leu	His 300	Leu	Ala	Gly	Ala
	Leu	Ala	Val	Val		Pro	Gln	Ala	Phe		Gly	Leu	Arg	Gln	
305	Т о	Т	7	T	310	7 ~~	7. ~~	T 0	т	315	mb ac	Т о	01. .	a 1	320
Arg	ьеи	ьеи	Asn		Ser	ASII	ASII	ьеи		ser	T 11T	ьеи	Giu		ser
mb as	Dho	TT-1 ~	C	325	7 ~~	∏ha	Т ол	C 1	330	T 011	7 ~~~	77- T	7 ~~	335	7 ~~
1111	FIIG	птѕ	Ser	vai	ASII	TIIT	пеп	345	1111	пеп	Arg	vai		Сту	ASII
Dro	T 011	7. 7. ~		7 000	Crra	7 ~~~	T 011		Пип	Tlo	7727	Cln	350	7 ~~~	Tara
FIO	Бец	355	Cys	Asp	СуБ	ALG	360	ьец	TTD	116	vai	365	ALG	ALG	цуъ
Thr	Leu	Asn	Phe	Asp	Gly	Arg	Leu	Pro	Ala	Cys	Ala	Thr	Pro	Ala	Glu
	370					375					380				
Val	Arg	Gly	Asp	Ala	Leu	Arg	Asn	Leu	Pro	Asp	Ser	Val	Leu	Phe	Glu
385					390					395					400
Tyr	Phe	Val	Cys	Arg	Lys	Pro	Lys	Ile	Arg	Glu	Arg	Arg	Leu	Gln	Arg
				405					410	٠				415	
Val	Thr	Ala	Thr	Ala	Gly	Glu	Asp	Val	Arg	Phe	Leu	Cys	Arg	Ala	Glu
			420					425					430		
Gly	Glu	Pro	Ala	Pro	Thr	Val	Ala	Trp	Val	Thr	Pro	Gln	His	Arg	Pro
		435					440					445			
Val	Thr	Ala	Thr	Ser	Ala	Gly	Arg	Ala	Arg	Val	Leu	Pro	Gly	Gly	Thr
	450					455					460				
Leu	Glu	Ile	Gln	Asp	Ala	Arg	Pro	Gln	Asp	Ser	Gly	Thr	Tyr	Thr	Cys
465					470					475					480
Val	Ala	Ser	Asn		Gly	Gly	Asn	Asp		Tyr	Phe	Ala	Thr		Thr
_				485					490			_	_	495	
Val	Arg	Pro	Glu	Pro	Ala	Ala	Asn	_	Thr	Pro	Gly	Glu		His	Asn
		_	500	_ =	_		_ =	505	_	_	_		510		_
GLu	Thr		Ala	Ala	Leu	Arg		Pro	Leu	Asp	Leu		Thr	Ile	Leu
7	~	515				_	520	1	1	_	~ 7	525	7	_	1
Val		Thr	Ala	Met	GLY		TTE	Thr	Phe	Leu		Va⊥	Val	Leu	Phe
_	530		-	_	-1	535	_	a		~ 1	540	a 1	~ 1	,	_
	rne	va⊥	Leu	ьeu		val	тrр	ser	arg		arg	στλ	GIN	HLS	
545	7	D1	G	T7- 7	550	m	G	Dl	7	555	T7_ 7	7	G1	D	560
Asn	ASN	rne	Ser		GIU	туr	ser	rne		ьys	val	Asp	σтУ		ATA
71 T	71 -	አግ _	Q1	565	Q1	Q1	አግ _	7	570	Dle -	71	Mot	T	575	T7.
ATG	ALd	ALA	Gly 580	GIII	GTĀ	GТĀ	ALA		гда	rne	ASII	mec	ь <u>у</u> в	mec	тте
			700					585					J90		

<210> 25

<211> 653

<212> PRT

<213> Homo sapiens

<400> 25

Met Lys Leu Leu Trp Gln Val Thr Val His His His Thr Trp Asn Ala 5 10 Ile Leu Leu Pro Phe Val Tyr Leu Thr Ala Gln Val Trp Ile Leu Cys 25 Ala Ala Ile Ala Ala Ala Ser Ala Gly Pro Gln Asn Cys Pro Ser 40 Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Val Cys Thr Arg Arg 55 60 Gly Leu Ser Glu Val Pro Gln Gly Ile Pro Ser Asn Thr Arg Tyr Leu 70 75 Asn Leu Met Glu Asn Asn Ile Gln Met Ile Gln Ala Asp Thr Phe Arg 90 His Leu His His Leu Glu Val Leu Gln Leu Gly Arg Asn Ser Ile Arg 105 110 Gln Ile Glu Val Gly Ala Phe Asn Gly Leu Ala Ser Leu Asn Thr Leu 120 125 Glu Leu Phe Asp Asn Trp Leu Thr Val Ile Pro Ser Gly Ala Phe Glu 130 135 140 Tyr Leu Ser Lys Leu Arg Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu 150 155 Ser Ile Pro Ser Tyr Ala Phe Asn Arg Val Pro Ser Leu Met Arg Leu 165 170 Asp Leu Gly Glu Leu Lys Lys Leu Glu Tyr Ile Ser Glu Gly Ala Phe 185 190 Glu Gly Leu Phe Asn Leu Lys Tyr Leu Asn Leu Gly Met Cys Asn Ile 200 205 Lys Asp Met Pro Asn Leu Thr Pro Leu Val Gly Leu Glu Leu Glu 210 215 220 Met Ser Gly Asn His Phe Pro Glu Ile Arg Pro Gly Ser Phe His Gly 230 235 Leu Ser Ser Leu Lys Lys Leu Trp Val Met Asn Ser Gln Val Ser Leu 245 250 Ile Glu Arg Asn Ala Phe Asp Gly Leu Ala Ser Leu Val Glu Leu Asn 260 265 270 Leu Ala His Asn Asn Leu Ser Ser Leu Pro His Asp Leu Phe Thr Pro 280 285 Leu Arg Tyr Leu Val Glu Leu His Leu His His Asn Pro Trp Asn Cys

290 295	300
Asp Cys Asp Ile Leu Trp Leu Ala Trp Trp Le	eu Arg Glu Tyr Ile Pro
305 310 3:	L5 320
Thr Asn Ser Thr Cys Cys Gly Arg Cys His A	la Pro Met His Met Arg
325 330	335
Gly Arg Tyr Leu Val Glu Val Asp Gln Ala Se	er Phe Gln Cys Ser Ala
340 345	350
Pro Phe Ile Met Asp Ala Pro Arg Asp Leu As	sn Ile Ser Glu Gly Arg
355 360	365
Met Ala Glu Leu Lys Cys Arg Thr Pro Pro Me	et Ser Ser Val Lys Trp
370 375	380
Leu Leu Pro Asn Gly Thr Val Leu Ser His A	la Ser Arg His Pro Arg
385 390 39	95 400
Ile Ser Val Leu Asn Asp Gly Thr Leu Asn Pl	ne Ser His Val Leu Leu
405 410	415
Ser Asp Thr Gly Val Tyr Thr Cys Met Val Tl	nr Asn Val Ala Gly Asn
420 425	430
Ser Asn Ala Ser Ala Tyr Leu Asn Val Ser Tl	ır Ala Glu Leu Asn Thr
435 440	445
Ser Asn Tyr Ser Phe Phe Thr Thr Val Thr Va	al Glu Thr Thr Glu Ile
450 455	460
Ser Pro Glu Asp Thr Thr Arg Lys Tyr Lys Pr	
	75 480
Thr Gly Tyr Gln Pro Ala Tyr Thr Thr Ser Tl	
485 490	495
Thr Thr Arg Val Pro Lys Gln Val Ala Val Pr	
500 505	510
Asp Lys Met Gln Thr Ser Leu Asp Glu Val Me 515 520	
	525
Ile Ile Gly Cys Phe Val Ala Val Thr Leu Le 530 535	
	540
Ile Val Phe Tyr Lys Leu Arg Lys Arg His G: 545 550 55	
Thr Ala Ala Arg Thr Val Glu Ile Ile Gln Va	
565 570	575
Ala Ala Thr Ser Ala Ala Ala Thr Ala Ala Pi	
580 585	590
Glu Gly Ala Val Val Leu Pro Thr Ile His As	
595 600	605
Thr Tyr Lys Pro Ala His Gly Ala His Trp Th	
	ır Glu Asn Ser Leu Glv
610 615	er Glu Asn Ser Leu Gly 620

625 630 635 640

Gln Thr His Thr Lys Asp Lys Val Gln Glu Thr Gln Ile

645 650

<210> 26

<211> 70

<212> PRT

<213> Homo sapiens

<400> 26

Met Val Ser Val Cys Arg Pro Trp Pro Ala Val Ala Ile Ala Leu Leu

1 5 10 15

Ala Leu Leu Val Cys Leu Gly Ala Leu Val Asp Thr Cys Pro Ile Lys
20 25 30

Pro Glu Ala Pro Gly Glu Asp Glu Ser Leu Glu Glu Leu Ser His Tyr
35 40 45

Tyr Ala Ser Leu Cys His Tyr Leu Asn Val Val Thr Arg Gln Trp Trp 50 55 60

Glu Gly Ala Asp Met Trp 65 70

<210> 27

<211> 130

<212> PRT

<213> Homo sapiens

<400> 27

Met Lys Leu Ala Phe Leu Phe Leu Gly Pro Met Ala'Leu Leu Leu Leu 1 5 10 15

Ala Gly Tyr Gly Cys Val Leu Gly Ala Ser Ser Gly Asn Leu Arg Thr 20 25 30

Phe Val Gly Cys Ala Val Arg Glu Phe Thr Phe Leu Ala Lys Lys Pro 35 40 45

Gly Cys Arg Gly Leu Arg Ile Thr Thr Asp Ala Cys Trp Gly Arg Cys
50 55 60

Glu Thr Trp Glu Lys Pro Ile Leu Glu Pro Pro Tyr Ile Glu Ala His 65 70 75 80

His Arg Val Cys Thr Tyr Asn Glu Thr Lys Gln Val Thr Val Lys Leu
85 90 95

Pro Asn Cys Ala Pro Gly Val Asp Pro Phe Tyr Thr Tyr Pro Val Ala
100 105 110

Ile Arg Cys Asp Cys Gly Ala Cys Ser Thr Ala Thr Thr Glu Cys Glu

115 120 125 Thr Ile 130 <210> 28 <211> 676 <212> PRT <213> Homo sapiens <400> 28 Ile Pro Asn Ala Phe Lys Pro Gly Asp Leu Val Phe Pro Lys Ile Lys 5 Gly Tyr Pro Gln Trp Pro Ser Arg Ile Asp Asp Ile Ala Asp Gly Ala 25 Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe Gly Thr His 40 45 Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu Phe Pro Tyr Asp Lys Cys 55 60 Lys Asp Lys Tyr Gly Lys Pro Asn Lys Arg Lys Gly Phe Asn Glu Gly 70 75 Leu Trp Glu Ile Gln Asn Asn Pro His Ala Ser Tyr Ser Ala Pro Pro 85 90 Pro Val Ser Ser Ser Asp Ser Glu Ala Pro Glu Ala Asn Pro Ala Asp 105 Gly Ser Asp Ala Asp Glu Asp Glu Asp Arg Gly Val Met Ala Val 115 120 125 Thr Ala Val Thr Ala Thr Ala Ala Ser Asp Arg Met Glu Ser Asp Ser 135 140 Asp Ser Asp Lys Ser Ser Asp Asn Ser Gly Leu Lys Arg Lys Thr Pro 150 155 Ala Leu Lys Met Ser Val Ser Lys Arg Ala Arg Lys Ala Ser Ser Asp 165 170 Leu Asp Gln Ala Ser Val Ser Pro Ser Glu Glu Glu Asn Ser Glu Ser 185 Ser Ser Glu Ser Glu Lys Thr Ser Asp Gln Asp Phe Thr Pro Glu Lys 200 205 Lys Ala Ala Val Arg Ala Pro Arg Arg Gly Pro Leu Gly Gly Arg Lys 215 220 Lys Lys Lys Ala Pro Ser Ala Ser Asp Ser Asp Ser Lys Ala Asp Ser 230 235 Asp Gly Ala Lys Pro Glu Pro Val Ala Met Ala Arg Ser Ala Ser Ser

Ser	Ser	Ser	Ser 260	Ser	Ser	Ser	Ser	Asp 265	Ser	Asp	Val	Ser	Val 270	Lys	Lys
Pro	Pro	Arg 275		Arg	Lys	Pro	Ala 280	Glu	Lys	Pro	Leu	Pro 285		Pro	Arg
Gly	Arg 290	Lys	Pro	Lys	Pro	Glu 295	Arg	Pro	Pro	Ser	Ser 300	Ser	Ser	Ser	Asp
Ser 305	Asp	Ser	Asp	Glu	Val 310	Asp	Arg	Ile	Ser	Glu 315	Trp	Lys	Arg	Arg	Asp 320
Glu	Ala	Arg	Arg	Arg 325	Glu	Leu	Glu	Ala	Arg 330	Arg	Arg	Arg	Glu	Gln 335	Glu
Glu	Glu	Leu	Arg 340	Arg	Leu	Arg	Glu	Gln 345	Glu	Lys	Glu	Glu	Lys 350	Glu	Arg
Arg	Arg	Glu 355	Arg	Ala	Asp	Arg	Gly 360	Glu	Ala	Glu	Arg	Gly 365	Ser	Gly	Gly
	370	Gly				375					380				
385		Lys			390					395					400
		Ala		405					410					415	
		Ser	420					425	_		_		430		_
		Arg 435					440					445	_		
	450	Arg				455					460				
465		Lys			470					475		_			480
		Ala		485					490					495	
		Lys	500					505					510		
		515 Ala					520					525			
	530	Lys				535					540				
545		Lys			550					555					560
		Glu		565					570					575	
- <u>-</u>			580			_	_ =	585		-2	_ •		590		

Glu Lys Ala Glu Asp Lys Pro Ser Thr Asp Leu Ser Ala Pro Val Asn 595 600 605 Gly Glu Ala Thr Ser Gln Lys Gly Glu Ser Ala Glu Asp Lys Glu His 615 Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg Cys Gly Ser Ser Glu 630 635 Asp Leu His Asp Ser Val Arg Glu Gly Pro Asp Leu Asp Arg Pro Gly 645 650 Ser Asp Arg Glu Arg Glu Arg Ala Arg Gly Asp Ser Glu Ala Leu 660 665 670 Asp Glu Glu Ser 675 <210> 29 <211> 717 <212> PRT <213> Homo sapiens <400> 29 Met Ala Val Leu Asp Leu Arg Glu Leu Arg Arg Gly Asp Leu Gly Gly 10 Val Gln Gly Leu Lys Glu Leu Arg Arg Gln Trp Ser Gly Gly Pro Gly 20 25 Pro Glu Glu Ala Ala Leu Trp Gly Ser Gly Ala Ser Val Pro Glu Gly 40 Ala Ala Pro Trp Gly Ser Gly Val Ala Leu Ala Gln Arg Glu Pro Arg 55 Leu Ile Asp Asp Ile Ala Asp Gly Ala Val Lys Pro Pro Pro Asn Lys 65 75 Tyr Pro Ile Phe Phe Gly Thr His Glu Thr Ala Phe Leu Gly Pro 90 Lys Asp Leu Phe Pro Tyr Asp Lys Cys Lys Asp Lys Tyr Gly Lys Pro 100 105 Asn Lys Arg Lys Gly Phe Asn Glu Gly Leu Trp Glu Ile Gln Asn Asn 120 125 Pro His Ala Ser Tyr Ser Ala Pro Pro Val Ser Ser Ser Asp Ser 135 Glu Ala Pro Glu Ala Asn Pro Ala Asp Gly Ser Asp Ala Asp Glu Asp 150 155 Asp Glu Asp Arg Gly Val Met Ala Val Thr Ala Val Thr Ala Thr Ala 165 170 Ala Ser Asp Arg Met Glu Ser Asp Ser Asp Ser Asp Lys Ser Ser Asp

			180					185					190		
Asn	Ser	Gly	Leu	Lys	Arg	Lys	Thr	Pro	Ala	Leu	Lys	Met	Ser	Val	Ser
		195					200					205			
Lys	Arg	Ala	Arg	Lys	Ala	Ser	Ser	Asp	Leu	Asp	Gln	Ala	Ser	Val	Ser
	210					215					220				
Pro	Ser	Glu	Glu	Glu	Asn	Ser	Glu	Ser	Ser	Ser	Glu	Ser	Glu	Lys	Thr
225					230					235					240
Ser	Asp	Gln	Asp	Phe	Thr	Pro	Glu	Lys	Lys	Ala	Ala	Val	Arg	Ala	Pro
				245					250					255	
Arg	Arg	Gly	Pro	Leu	Gly	Gly	Arg	Lys	Lys	Lys	Lys	Ala	Pro	Ser	Ala
			260					265					270		
Ser	Asp	Ser	Asp	Ser	Lys	Ala	Asp	Ser	Asp	Gly	Ala	Lys	Pro	Glu	Pro
		275					280					285			
Val		Met	Ala	Arg	Ser		Ser	Ser	Ser	Ser		Ser	Ser	Ser	Ser
	290					295					300	_			
	Asp	Ser	Asp	Val		Va⊥	Lys	Lys	Pro		Arg	GLy	Arg	Lys	
305	a i	-	.	-	310	-	.	7	~ 1	315	_	_	_	_	320
Ala	GIu	Lys	Pro		Pro	Lys	Pro	Arg	_	Arg	Lys	Pro	Lys		GIu
7~~	Dro	Dwo	Com	325	Com	Com	Com	7 ~~	330	7 ~~	Com	7) card	C1	335	7 ~~
Arg	PLO	Pro	340	ser	ser	ser	ser	345	ser	Asp	ser	Asp	350	vaı	Asp
λ×α	T10	Ser		Tlyn,	Lazo	λrα	λνα		C1.,	אן א	λ×α	722		C1.,	T 011
Arg	TTE	355	Gru	ттЪ	цуь	Arg	360	Asp	Gru	Ата	Arg	365	Arg	GIU	пеп
Glu	Ala	Arg	Ara	Ara	Ara	G111		G111	Glu	Glu	Len		Ara	T ₁ e11	Ara
O_u	370	1129	9	1129	1129	375	0111	O_u	014	014	380	1129	1129	Lou	1129
Glu		Glu	Lys	Glu	Glu		Glu	Arg	Arg	Arg		Arg	Ala	Asp	Arg
385			_		390	_		_	_	395				-	400
Gly	Glu	Ala	Glu	Arg	Gly	Ser	Gly	Gly	Ser	Ser	Gly	Asp	Glu	Leu	Arg
				405					410					415	
Glu	Asp	Asp	Glu	Pro	Val	Lys	Lys	Arg	Gly	Arg	Lys	Gly	Arg	Gly	Arg
			420					425					430		
Gly	Pro	Pro	Ser	Ser	Ser	Asp	Ser	Glu	Pro	Glu	Ala	Glu	Leu	Glu	Arg
		435					440					445			
Glu	Ala	Lys	Lys	Ser	Ala	Lys	Lys	Pro	Gln	Ser	Ser	Ser	Thr	Glu	Pro
	450					455					460				
Ala	Arg	Lys	Pro	Gly	Gln	Lys	Glu	Lys	Arg	Val	Arg	Pro	Glu	Glu	Lys
465					470					475					480
Gln	Gln	Ala	Lys		Val	Lys	Val	Glu	_	Thr	Arg	Lys	Arg		Glu
	_			485					490					495	_
Gly	Phe	Ser		Asp	Arg	Lys	Val		Lys	Lys	Lys	Glu		Ser	Val
	~ "	_	500	~-	_	_		505			_	_,	510	_	_
Glu	Glu	Lys	Leu	Gln	Lys	Leu	His	Ser	Glu	Ile	Lys	Phe	Ala	Leu	Lys

515 520 525 Val Asp Ser Pro Asp Val Lys Arg Cys Leu Asn Ala Leu Glu Leu 535 Gly Thr Leu Gln Val Thr Ser Gln Ile Leu Gln Lys Asn Thr Asp Val 550 555 Val Ala Thr Leu Lys Lys Ile Arg Arg Tyr Lys Ala Asn Lys Asp Val 565 570 Met Glu Lys Ala Ala Glu Val Tyr Thr Arg Leu Lys Ser Arg Val Leu 580 585 590 Gly Pro Lys Ile Glu Ala Val Gln Lys Val Asn Lys Ala Gly Met Glu Lys Glu Lys Ala Glu Glu Lys Leu Ala Gly Glu Glu Leu Ala Gly Glu 615 620 Glu Leu Ala Gly Glu Glu Ala Pro Gln Glu Lys Ala Glu Asp Lys Pro 630 635 Ser Thr Asp Leu Ser Ala Pro Val Asn Gly Glu Ala Thr Ser Gln Lys 645 650 Gly Glu Ser Ala Glu Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu 660 665 Glu Gly Pro Arg Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg 680 Glu Gly Pro Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu 695 700 Arg Ala Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser 710 715 <210> 30 <211> 288 <212> PRT <213> Homo sapiens <400> 30

Arg Gly Lys Thr Gly Pro Leu Gly Leu Ala Gly Glu Lys Gly Asp Gln 85 90 Gly Glu Thr Gly Lys Lys Gly Pro Ile Gly Pro Glu Gly Glu Lys Gly 100 105 Glu Val Gly Pro Ile Gly Pro Pro Gly Pro Lys Gly Asp Arg Gly Glu 120 Gln Gly Asp Pro Gly Leu Pro Gly Val Cys Arg Cys Gly Ser Ile Val 135 140 Leu Lys Ser Ala Phe Ser Val Gly Ile Thr Thr Ser Tyr Pro Glu Glu 150 155 Arg Leu Pro Ile Ile Phe Asn Lys Val Leu Phe Asn Glu Gly Glu His 165 170 Tyr Asn Pro Ala Thr Gly Lys Phe Ile Cys Ala Phe Pro Gly Ile Tyr 185 190 Tyr Phe Ser Tyr Asp Ile Thr Leu Ala Asn Lys His Leu Ala Ile Gly 195 200 205 Leu Val His Asn Gly Gln Tyr Arg Ile Lys Thr Phe Asp Ala Asn Thr 215 220 Gly Asn His Asp Val Ala Ser Gly Ser Thr Val Ile Tyr Leu Gln Pro 230 235 Glu Asp Glu Val Trp Leu Glu Ile Phe Phe Thr Asp Gln Asn Gly Leu 245 250 Phe Ser Asp Pro Gly Trp Ala Asp Ser Leu Phe Ser Gly Phe Leu Leu 265 Tyr Val Asp Thr Asp Tyr Leu Asp Ser Ile Ser Glu Asp Asp Glu Leu 275 280 285 <210> 31 <211> 303

<212> PRT

<213> Homo sapiens

<400> 31

65	70		75	80
Asp Gly Arg	Lys Gly Glu 85	Lys Gly Glu	Lys Gly Thr Ala Gly : 90	Leu Arg 95
Gly Lys Thr	Gly Pro Leu 100	Gly Leu Ala 105	Gly Glu Lys Gly Asp	Gln Gly
Glu Thr Gly 115	Lys Lys Gly	Pro Ile Gly 120	Pro Glu Gly Glu Lys 125	Gly Glu
Val Gly Pro 130	Ile Gly Pro	Pro Gly Pro 135	Lys Gly Asp Arg Gly	Glu Gln
Gly Asp Pro 145	Gly Leu Pro		Arg Cys Gly Ser Ile 1	Val Leu 160
Lys Ser Ala	Phe Ser Val	Gly Ile Thr	Thr Ser Tyr Pro Glu (Glu Arg 175
Leu Pro Ile	Ile Phe Asn 180	Lys Val Leu 185	Phe Asn Glu Gly Glu : 190	His Tyr
Asn Pro Ala 195	Thr Gly Lys	Phe Ile Cys 200	Ala Phe Pro Gly Ile 205	Tyr Tyr
Phe Ser Tyr 210	Asp Ile Thr	Leu Ala Asn _. 215	Lys His Leu Ala Ile	Gly Leu
Val His Asn 225	Gly Gln Tyr 230	_	Thr Phe Asp Ala Asn 235	Thr Gly 240
Asn His Asp	Val Ala Ser 245		Val Ile Tyr Leu Gln 250	Pro Glu 255
Asp Glu Val	Trp Leu Glu 260	Ile Phe Phe 265	Thr Asp Gln Asn Gly 270	Leu Phe
Ser Asp Pro 275	Gly Trp Ala	Asp Ser Leu 280	Phe Ser Gly Phe Leu : 285	Leu Tyr
Val Asp Thr 290	Asp Tyr Leu	Asp Ser Ile 295	Ser Glu Asp Asp Glu 3	Leu

<210> 32

<211> 88

<212> PRT

<213> Homo sapiens

<400> 32

<210> 33 <211> 422

<212> PRT

<213> Homo sapiens

<400> 33

Met His Gly Gly Ser Trp Gly Ser Val Cys Asp Asp Trp Asp Val Val Asp Ala Asn Val Val Cys Arg Gln Leu Gly Cys Gly Leu Ala Leu 25 Pro Val Pro Arg Pro Leu Ala Phe Gly Gln Gly Arg Gly Pro Ile Leu 45 Leu Asp Asn Val Glu Cys Arg Gly Gln Glu Ala Ala Leu Ser Glu Cys 55 Gly Ser Arg Gly Trp Gly Val His Asn Cys Phe His Tyr Glu Asp Val 70 75 80 Ala Val Leu Cys Asp Gly Glu Gly Ser Val Arg Leu Val Gly Gly Ala 85 90 Asn Leu Cys Gln Gly Arg Val Glu Ile Leu His Ser Gly Leu Trp Gly 100 105 Thr Val Cys Asp Asp Asp Trp Gly Leu Pro Asp Ala Ala Val Val Cys 120 125 Arg Gln Leu Gly Cys Gly Ala Ala Met Ala Ala Thr Thr Asn Ala Phe 135 140 Phe Gly Tyr Gly Thr Gly His Ile Leu Leu Asp Asn Val His Cys Glu 145 150 155 160 Gly Gly Glu Pro Arg Leu Ala Ala Cys Gln Ser Leu Gly Trp Gly Val 165 170 His Asn Cys Gly His His Glu Asp Ala Gly Ala Leu Cys Ala Gly Ala 185 Gly Ser Arg Gly Asp Gly Arg Gly Arg Gly Ser Pro Ser Gly Arg Gly 195 200 205 Pro Val Arg Pro Ala Gly Gly Arg Leu Arg Leu Val Gly Gly Pro Gly 215 220 Pro Cys Arg Gly Arg Val Glu Val Leu His Ala Gly Gly Trp Gly Thr

PCT/US01/04703 WO 01/60850

225					230					235					240
	Cvs	Asn	Δen	Δan		Δen	Phe	Δ1a	Aan		Δνα	77a 1	Ala	Care	
VOLL	Cyb	1100	изр	245	110	1100	1110	maa	250	ma	711 g	van	тла	255	my
Glu	Ala	Glv	Cvs		Pro	Ala	Len	Glv		Thr	Glv	T _i en	Gly		Phe
	1123	CLY	260	Gry	110	11.L.C.	LCu	265	111.0		CLY	шса	270	1115	1110
Gl.v	Tvr	Glv		Glv	Pro	Va1	Len		Asp	Asn	Va1	Glv	Cys	Ala	Glv
2	-2-	275	3	- L			280				V 0	285	0,7.2		0
Thr	Glu		Ara	Leu	Ser	Asp		Phe	His	Leu	Glv		Gly	Gln	His
	290		J			295	_				300	-	_		
Asn		Gly	His	His	Glu		Ala	Gly	Ala	Leu	Cys	Ala	Gly	His	Leu
305					310					315	_		_		320
Arg	Leu	Val	Asn	Gly	Ala	His	Arg	Cys	Glu	Gly	Arg	Val	Glu	Leu	Tyr
				325					330					335	
Leu	Gly	Gln	Arg	Trp	Gly	Thr	Val	Cys	Asp	Asp	Ala	Trp	Asp	Leu	Arg
			340					345					350		
Ala	Ala	Gly	Val	Leu	Cys	Arg	Gln	Leu	Gly	Cys	Gly	Gln	Ala	Leu	Ala
		355					360					365			
Ala	Pro	Gly	Glu	Ala	His	Phe	Gly	Pro	Gly	Arg	Gly	Pro	Ile	Leu	Leu
	370					375					380				
Asp	Asn	Val	Lys	Cys		Gly	Glu	Glu	Ser	Ala	Leu	Leu	Leu	Cys	Ser
385					390					395					400
His	Ile	Arg	Trp		Ala	His	Asn	Cys		His	Ser	Glu	Asp		Ser
TT- 7			~ 1	405	~				410					415	
vaı	Leu	Cys		Pro	Ser										
			420												
	- 2	210>	34												
		211>													
		212>													
		213>		sar	oiens	5									
				-											
	<4	100>	34												
Met	Ala	Thr	Leu	Pro	Glu	Lys	Ala	Leu	Lys	Glu	Ala	Trp	Lys	Gly	Leu
1				5					10					15	
Ile	Pro	Arg	Phe	Pro	Trp	Leu	His	Gly	Lys	Ala	Glu	Leu	Arg	Leu	Val
			20					25					30		
Gly	Gly	Pro	Ser	Arg	Cys	Arg	Gly	Arg	Leu	Glu	Va1	Met	His	Gly	Gly
		35					40					45			
Ser	Trp	Gly	Ser	Val	Cys	Asp	Asp	Asp	Trp	Asp	Val	Va1	Asp	Ala	Asn
	50					55					60				

80

Val Val Cys Arg Gln Leu Gly Cys Gly Leu Ala Leu Pro Val Pro Arg . 75

70

Pro	Leu	Ala	Phe	Gly 85	Gln	Gly	Arg	Gly	Pro 90	Ile	Leu	Leu	Asp	Asn 95	Val
Glu	Cys	Arg	Gly	Gln	Glu	Ala	Ala			Glu	Cys	Gly	Ser		Gly
			100					105					110		
Trp	Gly	Val	His	Asn	Cys	Phe	His	Tyr	Glu	Asp	Val	Ala	Val	Leu	Cys
		115					120					125			
Asp	Glu	Phe	Leu	Pro	Thr	Gln	Pro	Pro	Thr	Arg	Lys	Met	Leu	Thr	Ser
	130					135			•		140				
Arg	Ala	Pro	Pro	Thr	Thr	Leu	Pro	Asn	Gly	Lys	Ser	Glu	Gly	Ser	Val
145					150					155					160
Arg	Leu	Val	Gly	Gly	Ala	Asn	Leu	Cys	Gln	Gly	Arg	Val	Glu	Ile	Leu
				165					170					175	
His	Ser	Gly	Leu	Trp	Gly	Thr	Val	Cys	Asp	Asp	Asp	Trp	Gly	Leu	Pro
			180					185			•		190		
Asp	Ala	Ala	Val	Val	Cys	Arg	Gln	Leu	Gly	Cys	Gly	Ala	Ala	Met	Ala
		195					200		_	_	_	205			
Ala	Thr	Thr	Asn	Ala	Phe	Phe	Gly	Tvr	Glv	Thr	Glv		Ile	Leu	Leu
	210					215			2		220				
Asp		Val	His	Cvs	Glu		Gl.v	G.l.11	Pro	Ara		Ala	Ala	Cvs	G1n
225				-	230					235					240
	Leu	Glv	Trp	Glv		His	Asn	Cvs	Glv		His	Glu	Asp		
		2		245		2		0,7,2	250		1110	O_u	1100	255	O.L.y
Ala	Leu	Cvs	Ala		Leu	Glv	Pro	Pro		T ₁ e11	Thr	Δla	T.e.11		Ser
		-1	260	2		2		265				11	270	110	DCI
Ser	Ala	Thr	Arg	G] 11	Asp	Ттр	Ala		Gln	ጥከዮ	Δen	Pro		Δla	πъν
		275	9	0_4	1101		280	110	0.1.11		1100	285	DCI	ıııa	TIIL
Glv	Va 1		Pro	Gln	Pro	Ser		Glu	Thr	λ1 =	T.OU		Thr	πh×	717
	290	0.1.7	110	0.1.11	110	295	1119	O_Lu	1111	11110	300	пец	1111	1111	пла
Δla		Δ 1 =	Ala	G1v	Tage		Sor	G1 ₃₂	λκα	T.011		Lou	7727	C1.,	C1
305	тър	ALG	AIA	GTĀ	310	цур	per	GTĀ	Arg	315	Arg	ьеи	Val	GTĀ	
	Glaz	Dro	Cvc	720		7 ~~	τ <i>τ</i> - 1	C1.,	τ <i>τ</i> - 1		TT 2 G	71 -	Q1	01. -	320
PIO	GTĀ	PIO	Cys	325	GTĀ	Arg	Val	GIU		ьеu	HIS	Ата	GTĀ		Trp
C1	Шрж	77- 7	C		7 ~~	7		7	330	7.7 -	70	3 .7 -	7	335	n 1
GTĀ	TIIT	vaı	Cys	Asp	Asp	Asp	Trp		Pne	Ала	Asp	Ата		vaı	Ала
_	_	~ 1	340	~ 1	_	~ 1	_	345	_				350		_
Cys	Arg		Ala	GTĀ	Cys	GTĀ		Ala	Leu	GTA	Ala		Gly	Leu	Gly
		355		_			360					365			
His		Gly	Tyr	Gly	Arg	G1y	Pro	Val	Leu	Leu	Asp	Asn	Va1	Gly	Cys
	370					375					380				
Ala	Gly	Thr	Glu	Ala		Leu	Ser	Asp	Cys	Phe	His	Leu	Gly	Trp	Gly
385					390					395					400
Gln	His	Asn	Cys	Gly	His	His	Glu	Asp	Ala	${\tt Gly}$	Ala	Leu	Cys	Ala	Gly
				405					410					415	

Glu Ala Asp Ser Glu Gly Pro Glu Glu Leu Gly Leu Gln Val Gln Gln 420 425 430 Asp Gly Ser Glu Thr Thr Arg Val Pro Thr Pro Arg Pro Arg Asp Gly 440 His Leu Arg Leu Val Asn Gly Ala His Arg Cys Glu Gly Arg Val Glu 455 Leu Tyr Leu Gly Gln Arg Trp Gly Thr Val Cys Asp Asp Ala Trp Asp 470 475 Leu Arg Ala Ala Gly Val Leu Cys Arg Gln Leu Gly Cys Gly Gln Ala 490 485 Leu Ala Ala Pro Gly Glu Ala His Phe Gly Pro Gly Arg Gly Pro Ile 500 505 510 Leu Leu Asp Asn Val Lys Cys Arg Gly Glu Glu Ser Ala Leu Leu Leu 520 Cys Ser His Ile Arg Trp Asp Ala His Asn Cys Asp His Ser Glu Asp 535 540 Ala Ser Val Leu Cys Gln Pro Ser 545 550

<210> 35

<211> 1709

<212> PRT

<213> Homo sapiens

<400> 35

Met Gly Phe Leu Pro Lys Leu Leu Leu Ala Ser Phe Phe Pro Ala 5 10 Gly Gln Ala Ser Trp Gly Val Ser Ser Pro Gln Asp Val Gln Gly Val 25 30 Lys Gly Ser Cys Leu Leu Ile Pro Cys Ile Phe Ser Phe Pro Ala Asp 40 Val Glu Val Pro Asp Gly Ile Thr Ala Ile Trp Tyr Tyr Asp Tyr Ser 55 60 Gly Gln Arg Gln Val Val Ser His Ser Ala Asp Pro Lys Leu Val Glu 75 70 Ala Arg Phe Arg Gly Arg Thr Glu Phe Met Gly Asn Pro Glu His Arg 85 90 Val Cys Asn Leu Leu Lys Asp Leu Gln Pro Glu Asp Ser Gly Ser 100 105 Tyr Asn Phe Arg Phe Glu Ile Ser Glu Val Asn Arg Trp Ser Asp Val 120 Lys Gly Thr Leu Val Thr Val Thr Glu Glu Pro Arg Val Pro Thr Ile

	130					135					140				
Ala	Ser	Pro	Val	Glu	Leu	Leu	Glu	Gly	Thr	Glu	Val	Asp	Phe	Asn	Cys
145					150					155					160
Ser	Thr	Pro	Tyr	Val	Cys	Leu	Gln	Glu	Gln	Val	Arg	Leu	Gln	Trp	Gln
				165					170					175	
Gly	Gln	Asp	Pro	Ala	Arg	Ser	Val	Thr	Phe	Asn	Ser	Gln	Lys	Phe	Glu
	•		180					185					190		
Pro	Thr	Gly	Val	Gly	His	Leu	Glu	Thr	Leu	His	Met	Ala	Met	Ser	Trp
		195					200					205			
Gln	Asp	His	Gly	Arg	Ile	Leu	Arg	Cys	Gln	Leu	Ser	Val	Ala	Asn	His
	210					215					220				
Arg	Ala	Gln	Ser	Glu	Ile	His	Leu	Gln	Val	Lys	Tyr	Ala	Pro	Lys	Gly
225					230					235					240
Val	Lys	Ile	Leu	Leu	Ser	Pro	Ser	Gly	Arg	Asn	Ile	Leu	Pro	Gly	Glu
				245					250					255	
Leu	Val	Thr	Leu	Thr	Cys	Gln	Val	Asn	Ser	Ser	Tyr	Pro	Ala	Val	Ser
			260					265					270		
Ser	Ile	Lys	Trp	Leu	Lys	Asp	_	Val	Arg	Leu	Gln	Thr	Lys	Thr	Gly
		275					280					285			
Val	Leu	His	Leu	Pro	Gln		Ala	Trp	Ser	Asp		Gly	Val	Tyr	Thr
	290		_			295					300				
	Gln	Ala	Glu	Asn		Val	Gly	Ser	Leu		Ser	Pro	Pro	Ile	
305	·'		-1		310	~7				315	_			_	320
Leu	His	TTE	Phe		Ala	Glu	Val	GIn		Ser	Pro	Ala	GTA		Ile
Т	Q1	7	Q1	325	TT- 7	mle	т	TT_ 7	330	70	m1	D	3	335	7 7
ьeu	Glu	Asn		Thr	va⊥	THY	Leu		Cys	Asn	Thr	Pro		GIU	Ala
Dro	Ser	7	340	71 22 02	Пт тэс	Con	Пин	345	T	7. ~~	TT	77-7	350	Т	Q1
FIO	per	355	пец	Arg	тАт	ser	360	тАт	пур	ASII	птр	365	цец	цец	GIU
Δen	Ala	_	Sar	нiе	Thr	T.211		T.011	нiс	T. 211	7.1 a		λνα	7.1 a	Λαn
1100	370	11.1.0	DCI	1110		375	711 9	БСи	1110	Lea	380	1111	1119	11.L.C	лэр
Thr	Gly	Phe	Tvr	Phe	Cvs		Va1	Gln	Asn	Va1		Glv	Ser	G111	Ara
385	2		-1-		390	a	V C.	011	11011	395	11110	O.L.J	501	O.L.u	400
	Gly	Pro	Va1	Ser		Val	Val	Asn	Leu		Thr	Ala	Phe	Leu	
	_			405					410					415	
Thr	Gln	Ala	Gly	Leu	Val	Glv	Ile	Leu		Cys	Ser	Val	Va1		Glu
			420			_		425		_			430		
Pro	Leu	Ala		Leu	Val	Leu	Ser		Gly	Gly	His	Ile		Ala	Ser
		435					440		_	_		445			
Thr	Ser	G1y	Asp	Ser	Asp	His	Ser	Pro	Arg	Phe	Ser	Gly	Thr	Ser	Gly
	450					455					460				

465					470					475					480
${ t Gly}$	Glu	Tyr	Lys	Cys	Ser	Ala	Thr	Asn	Ser	Leu	Gly	Asn	Ala	Thr	Ser
				485					490					495	
Thr	Leu	Asp	Phe	His	Ala	Asn	Ala	Ala	Arg	Leu	Leu	Ile	Ser	Pro	Ala
			500					505					510		
Ala	Glu	Val	Val	Glu	Gly	Gln	Ala	Val	Thr	Leu	Ser	Cys	Arg	Ser	Gly
		515			_		520					- 525			_
Leu	Ser		Thr	Pro	Asp	Ala	Ara	Phe	Ser	Trp	Tvr	Leu	Asn	Glv	Ala
	530					535					540				
T.e.11		пie	Glu	G1 v	Pro		Ser	Ser	T.@11	T.e.11		Pro	Δla	Δla	Ser
545	neu	11113	OLG	GTĀ	550	GLY	DCI	DCI	пса	555	шси	110	11.L.C.	ma	560
	Пhх	7	7.1.	C1.,	-	Th 220	ui o	Carc	7 ~~		7~~	7 an	Clar	пiс	
ser	TIIT	Asp	Ala		ser	тАт	птъ	Cys		Ата	Arg	ASD	GTĀ		per
7.7	a	~ 1		565	a	D	27 -	1	570	m1	TT - 7	Ŧ	m	575 D	D
Ала	ser	GTA	Pro	ser	ser	Pro	Ala		Leu	Thr	vaı	ьeu	_	Pro	Pro
_		_	580	_,			_	585	_	_			590		
Arg	Gln		Thr	Phe	Thr	Thr		Leu	Asp	Leu	Asp		Ala	GIY	Ala
		595					600				_	605			
Gly		Gly	Arg	Arg	Gly		Leu	Leu	Cys	Arg		Asp	Ser	Asp	Pro
	610					615					620				
Pro	Ala	Arg	Leu	Gln	Leu	Leu	His	Lys	Asp	Arg	Val	Val	Ala	Thr	Ser
625					630					635					640
Leu	Pro	Ser	Gly	Gly	Gly	Cys	Ser	Thr	Cys	Gly	Gly	Cys	Ser	Pro	Arg
				645					650					655	
Met	Lys	Val	Thr	Lys	Ala	Pro	Asn	Leu	Leu	Arg	Val	Glu	Ile	His	Asn
			660					665					670		
Pro	Leu	Leu	Glu	Glu	Glu	Gly	Leu	Tyr	Leu	Cys	Glu	Ala	Ser	Asn	Ala
		675					680					685			
Leu	Gly	Asn	Ala	Ser	Thr	Ser	Ala	Thr	Phe	Asn	Gly	Gln	Ala	Thr	Val
	690					695					700				
Leu	Ala	Ile	Ala	Pro	Ser	His	Thr	Leu	Gln	Glu	Gly	Thr	Glu	Ala	Asn
705					710					715					720
Leu	Thr	Cys	Asn	Val	Ser	Arg	Glu	Ala	Ala	Gly	Ser	Pro	Ala	Asn	Phe
				725					730					735	
Ser	Trp	Phe	Arg	Asn	Gly	Val	Leu	Trp	Ala	Gln	Gly	Pro	Leu	Glu	Thr
			740					745					750		
Val	Thr	Leu	Leu	Pro	Val	Ala	Arg	Thr	Asp	Ala	Ala	Leu	Tyr	Ala	Cys
		755					760		_			765	_		_
Ara	Ile		Thr	Glu	Ala	Glv		Gln	Leu	Ser	Thr		Val	Leu	Leu
	770					775					780				
Car		Leu	Tyr	Pro	Pro		λ~~	Dro	Larg	Len		∆ 1 ⇒	Leu	Len	Asn
	var	шeu	т Х т	110	790	лар	AT 9	FIO	пЛэ	795	PET	та	ьeu	шeu	800
785	C1	Q1	01	m: -		ה ד _ו ת	т	Db -	т1-		m₁~	77-7	7\	C	
Mer	стА	GTU	Gly	nlS	Mer	АТа	ьeu	rne	тте	Cys	unr	vaı	ASP	ser	Arg

Pro	Leu	Ala		Leu	Ala	Leu	Phe	His 825	Gly	Glu	His	Leu	Leu 830	Ala	Thr
_	_		820			_	_		~-	_	~ 1	~ 1		-	~ 7
Ser	Leu	835	Pro	Gln	Val	Pro	Ser 840	His	GIY	Arg	Phe	845	Ala	ГÀЗ	Ala
Glu	Ala	Asn	Ser	Leu	Lys	Leu	Glu	Val	Arg	Glu	Leu	Gly	Leu	Gly	Asp
	850				_	855					860				
Ser		Ser	Tvr	Ara	Cys		Ala	Thr	Asn	Val	Leu	Glv	Ser	Ser	Asn
865	~ <u>7</u>	~	~	3	870					875			•		880
	Cor	T. 011	Dho	Pho	Gln	₹7 ≈ T	7 20	Clv	λla		τ <i>τ</i> ⇒ 1	Gln	T/a l	Ser	
TYYT	per	пец	FIIG	885	GTII	Val	Arg	GTĀ		110	var	GTII	Val	895	110
~	_	~ 7	~		G 1	~ 1	G7	37.	890	77- T	*	Ø	G		77 7
Ser	Pro	GTA		GTU	Glu	СТА	GTD		Val	Λ9T	ьeu	ser		Gin	vaı
			900					905					910		
His	Thr	Gly	Val	Pro	Glu	Gly	Thr	Ser	Tyr	Arg	Trp	Tyr	Arg	Asp	Glу
		915					920					925			
Gln	Pro	Leu	Gln	Glu	Ser	Thr	Ser	Ala	Thr	Leu	Arg	Phe	Ala	Ala	Ile
	930					935					940				
Thr	Leu	Thx	Gln	Ala	Gly	Ala	Tyr	His	Cys	Gln	Ala	Gln	Ala	Pro	Gly
945					950					955					960
Ser	Ala	Thr	Thr	Ser	Leu	Ala	Ala	Pro	Ile	Ser	Leu	Hìs	Val	Ser	Tyr
				965					970					975	
Ala	Pro	Arg	His	Val	Thr	Leu	Thr	Thr	Leu	Met	Asp	Thr	Gly	Pro	Gly
			980					985					990		
Arg	Leu	Gly	Leu	Leu	Leu	Cys	Arg	Val	Asp	Ser	Asp	Pro	Pro	Ala	${\tt Gln}$
		995					1000)				1005	5		
Leu	Arg	Leu	Leu	His	Gly	Asp	Arg	Leu	Val	Ala	Ser	Thr	Leu	Gln	Gly
	1010)				1015	ŝ				1020	0			
Val	Gly	Gly	Pro	Glu	Gly	Ser	Ser	Pro	Arg	Leu	Hìs	Val	Ala	Val	Ala
1025	5				103	3				1039	<u> </u>				1040
Pro	Asn	Thr	Leu	Arg	Leu	Glu	Ile	His	Gly	Ala	Met	Leu	Glu	Asp	Glu
				104					1050					1055	
Glv	Val	Tvr	Ile	Cvs	Glu	Ala	Ser	Asn	Thr	Leu	Gly	Gln	Ala	Ser	Ala
_		_	106					106			_		107		
Ser	Ala	Asp			Ala	Gln	Ala			Val.	Gln	Val.			Gly
501	7411.00	107				0	108					108			~~,
71	mb ~			C7.11	Gly	CIn.			'nαn	T.OU	መኩ ን-			₹ <i>1</i> ⇒ 1	Фνъ
ALa			ALG	Gra	GTĀ	1095		vas	ASII	neu			пеп	var	TTD
1	109		_	~ ~	6 5.			~	m1		110		70	~7	Q1
		His	Pro	Ala			Thr	"I,ĀĽ	Thr			G⊥n	Asp	GTA	Gln
1105					111				_	111				-	1120
Gln	Arg	ren	Asp	Ala	His	Ser	Ile	Pro			Asn	Val	Thr		Arg
				112	5				113	0				113	5
Asp	Ala	Thr	Ser	Tyr	Arg	Cys	Gly	Val	${\tt Gl}_{Y}$	Pro	Pro	Gly	Arg	Ala	Pro

			11	40				11	45				11.	50	
Ar	g Le	u Se	r Ar	g Pr	o Il	e Thi	r Lei	u Asj	o Va	1 Le	и Ту	r Al			g Asn
		11	55				116				_	11	•		J
Le	u Ar	g Le	u Th	r Ty	r Le	ı Leı	ı Glı	ı Se	r Hi	s Gl [.]	y Gl			1 Ala	a Leu
	11	70				117				•	11				
Va:	l Le	u Cy:	s Th	r Va	l Ası	Ser	: Arg	y Pro	o Pro	o Ala	a G1:	n Lei	n A1a	a Tien	ı Ser
118	85				119					119					1200
His	s A1	a Gl	y Ar	g Lei	າ Leເ	ı Ala	a Ser	. Sei	r Thi			a Se	r Val	l Dro	Asn
				120					123			- DU.	- vas	123	
Thi	. Le	ı Arg	g Le	u Glı	ı Leı	ı Arg	. Gly	r Pro			o Arc	י אפו	n (31)		y Phe
			12				_	122				5 1101	123		, riie
Туг	Sei	c Cys	s Sei	r Ala	a Arg	, Ser	Pro			/ Glr	n Ala	a Asr			. Leu
		123	35				124		_			124		. 561	. neu
Glu	ı Leı	ı Arç	J Lei	ı Glı	ı Gly	val	Arg	Val	. I1e	e Leu	1 Ala			π Δ٦ =	ı Ala
	125					125					126		01.0	1110	ALA
Va1	. Pro	Glu	ı Gl <u>y</u>	/ Ala	ı Pro	Ile	Thr	Val	Thr	Cvs			Pro	ح ا ∆ ا	Ala
126	5				127					127		· IIDE	, 110	1110	1280
His	Ala	n Pro	Thr	Leu	ı Tyr	Thr	Trp	Tyr	His			z Aro	ו שירים	Lon	Gln
				128			_	_	129		1		1 112	129	
Glu	Gly	r Pro	Ala	ι Ala	Ser	Leu	Ser	Phe			Ala	ጥከተ	· Ara		His
			130	0				130					131		1112
Ala	Gly	Ala	Tyr	Ser	Cys	Gln	Ala	Gln	Asp	Ala	Gln	Glv	Thr		Ser
		131					132		-			132		9	DCI
Ser	Arg	Pro	Ala	Ala	Leu	Gln	Val	Leu	Tyr	Ala	Pro		Asp	Δla	Va 1
	133					1335			_		134			11	Val
Leu	Ser	Ser	Phe	Arg	Asp	Ser	Arg	Ala	Arg	Ser			Val	T1e	Gln
134	5				135				_	135					1360
Cys	Thr	Val	Asp	Ser	Glu	Pro	Pro	Ala	Glu	Leu	Ala	Leu	Ser	His	
				136					137					137	
Gly	Lys	Val	Leu	Ala	Thr	Ser	Ser	Gly	Val	His	Ser	Leu	Ala		
			138										1390		2
Thr	Gly	His	Val	Gln	Val	Ala	Arg	Asn	Ala	Leu	Arg	Leu	Gln		Gln
		1395					1400					1409			
Asp	Val	Pro	Ala	Gly	Asp	Asp	Thr	Tyr	Va1	Cys	Thr	Ala	Gln	Asn	Len
	1410)				1415				_	1420				
Leu	Gly	Ser	Ile	Ser	Thr	Ile	Gly	Arg	Leu	Gln	Val	Glu	Gly	Ala	Ara
1425					1430					1435			4		1440
Val	Val	Ala	Glu	Pro	Gly	Leu	Asp	Val	Pro	Glu	Gly	Ala	Ala	Leu	
				1445					1450		_			1455	
Leu	Ser	Cys	Arg	Leu	Leu	Gly	${ t Gly}$	Pro	Gly	Pro	Val	Glv	Asn		
			1460					1465				- 4	1470		
Phe	Ala	Trp	Phe	Trp	Asn	Asp 1	Ara	Ara	Len	Hie	Δ 1 a	Glu	Dro		Dage

		1475	5				1480)				1485	5		
Thr	Leu	Ala	Phe	Thr	His	Val	Ala	Arg	Ala	Gln	Ala	Gly	Met	Tyr	His
	1490)				1495	5				1500)			
Cys	Leu	Ala	Glu	Leu	Pro	Thr	Gly	Ala	Ala	Ala	Ser	Ala	Pro	Val	Met
1505	5				1510)				1515	5				1520
Leu	Arg	Val	Leu	Tyr	Pro	Pro	Lys	Thr	Pro	Thr	Met	Met	Val	Phe	Val
			•	1525	5				153	C				1535	5
Glu	Pro	Glu	Gly	Gly	Leu	Arg	Gly	Ile	Leu	Asp	Cys	Arg	Val	Asp	Ser
			1540)				1545	5				1550)	
Glu	Pro	Leu	Ala	Ser	Leu	Thr	Leu	His	Leu	Gly	Ser	Arg	Leu	Val	Ala
		1555	5				1560)				1565	5		
Ser	Ser	Gln	Pro	Gln	Gly	Ala	Pro	Ala	Glu	Pro	His	Ile	His	Val	Leu
	1570)				1575	5				1580)			
Ala	Ser	Pro	Asn	Ala	Leu	Arg	Val	Asp	Ile	Glu	Ala	Leu	Arg	Pro	Ser
1585	5				1590)				1595	5				1600
Asp	Gln	Gly	Glu	Tyr	Ile	Cys	Ser	Ala	Ser	Asn	Val	Leu	Gly	Ser	Ala
				1605	5				1610)				1615	5
Ser	Thr	Ser	Thr	Tyr	Phe	Gly	Va1	Arg	Ala	Leu	His	Arg	Leu	His	Gln
			1620)				1625	5				1630)	
Phe	Gln	Gln	Leu	Leu	Trp	Val	Leu	Gly	Leu	Leu	Val	Gly	Leu	Leu	Leu
		1635	5				1640)				1645	5		
Leu	Leu	Leu	${\tt Gly}$	Leu	Gly	Ala	Cys	Tyr	Thr	Trp	Arg	Arg	Arg	Arg	Val
	1650)			,	1655	5				1660)			
Cys	Lys	Gln	Ser	Met	Gly	Glu	Asn	Ser	Val	Glu	Met	Ala	Phe	Gln	Lys
1665	5				1670)				1675	5				1680
Glu	Thr	Thr	Gln	Gly	Phe	Leu	Cys	${\tt Gly}$	Lys	Leu	Ile	Asp	Pro	Asp	Ala
				1685	5				1690)				1695	5
Ala	Thr	Cys	Glu	Thr	Ser	Thr	Cys	Ala	Pro	Pro	Leu	Gly			
			1700)				1705	5						
	<2	210>	36												
	<2	211>	1694	1											
	<2	212>	PRT												
	<2	213>	Homo	sar	oiens	5									
	<4	100>	36												
Met	Gly	Phe	Leu	Pro	Lys	Leu	Leu	Leu	Leu	Ala	Ser	Phe	Phe	Pro	Ala
1				5					10					15	
Gly	Gln	Ala	Ser	Trp	${\tt Gly}$	Val	Ser	Ser	Pro	Gln	Asp	Val	Gln	${ t Gly}$	Val

39/56

Lys Gly Ser Cys Leu Leu Ile Pro Cys Ile Phe Ser Phe Pro Ala Asp

40

30

45

20 25

Val	Glu 50	Val	Pro	Asp	Gly	Ile 55	Thr	Ala	Ile	Trp	Tyr 60	Tyr	Asp	Tyr	Ser
Gly 65	Gln	Arg	Gln	Val	Val 70	Ser	His	Ser	Ala	Ašp 75	Pro	Lys	Leu	Val	Glu 80
Ala	Arg	Phe	Arg	Gly 85	Arg	Thr	Glu	Phe	Met 90	Gly	Asn	Pro	Glu	His 95	Arg
Val	Cys	Asn	Leu 100	Leu	Leu	Lys	Asp	Leu 105	Gln	Pro	Glu	Asp	Ser 110	Gly	Ser
Tyr	Asn	Phe 115	Arg	Phe	Glu	Ile	Ser 120	Glu	Val	Asn	Arg	Trp 125	Ser	Asp	Val
Lys	Gly 130	Thr	Leu	Val	Thr	Val 135	Thr	Glu	Glu	Pro	Arg 140	Val	Pro	Thr	Ile
Ala 145	Ser	Pro	Val	Glu	Leu 150	Leu	Glu	Gly	Thr	Glu 155	Val	Asp	Phe	Asn	Cys 160
Ser	Thr	Pro	Tyr	Val 165	Cys	Leu	Gln	Glu	Gln 170	Val	Arg	Leu	Gln	Trp 175	Gln
Gly	Gln	Asp	Pro 180	Ala	Arg	Ser	Val	Thr 185	Phe	Asn	Ser	Gln	Lys 190	Phe	Glu
Pro	Thr	Gly 195	Va1	Gly	His	Leu	Glu 200	Thr	Leu	His	Met	Ala 205	Met	Ser	Trp
Gln	Asp 210	His	Gly	Arg	Ile	Leu 215	Arg	Cys	Gln	Leu	Ser 220	Val	Ala	Asn	His
Arg 225	Ala	Gln	Ser	Glu	11e 230	His	Leu	Gln	Val	Lys 235	Tyr	Ala	Pro	Lys	Gly 240
Val	Lys	Ile	Leu	Leu 245	Ser	Pro	Ser	Gly	Arg 250	Asn	Ile	Leu	Pro	Gly 255	Glu
Leu	Val	Thr	Leu 260	Thr	Cys	Gln	Val	Asn 265	Ser	Ser	Tyr	Pro	Ala 270	Val	Ser
Ser	Ile	Lys 275	Trp	Leu	Lys	Asp	Gly 280	Val	Arg	Leu	Gln	Thr 285	Lys	Thr	Gly
Val	Leu 290	His	Lėu	Pro	Gln	Ala 295	Ala	Trp	Ser	Asp	Ala 300	Gly	Val	Tyr	Thr
Cys 305	Gln	Ala	Glu	Asn	Gly 310	Val	Gly	Ser	Leu	Val 315	Ser	Pro	Pro	Ile	Ser 320
Leu	His	Ile	Phe	Met 325	Ala	Glu	Val	Gln	Val 330	Ser	Pro	Ala	Gly	Pro 335	Ile
Leu	Glu	Asn	Gln 340	Thr	Val	Thr	Leu	Val 345	Cys	Asn	Thr	Pro	Asn 350	Glu	Ala
Pro	Ser	Asp 355	Leu	Arg	Tyr	Ser	Trp 360	Tyr	Lys	Asn	His	Val 365	Leu	Leu	Glu
Asp	Ala 370	His	Ser	His	Thr	Leu 375	Arg	Leu	His	Leu	Ala 380	Thr	Arg	Ala	Asp

Thr 385	Gly	Phe	Tyr	Phe	Cys 390	Glu	Val	Gln	Asn	Val 395	His	Gly	Ser	Glu	Arg 400
Ser	Glv	Pro	Val	Ser	Va1	Val	Val	Asn	Leu	Leu	Thr	Ala	Phe	Leu	Glu
	_			405					410					415	
Фhr	G1n	Ala	GT 37		77⇒ 1	G137	т1.	T ₁ O11		Carc	Sor	77a 7	77a 1		Glu
T11T	0.1.11	ллα	_	neu	val	GTĀ	T7.C		111.5	Cys	DET	Val		Der	Giu
ъ		~ 7	420	_	7	_	~	425	~1	~ 7	1		430	~ 7	~
Pro	Leu	Ala	Thr	ьeu	vaı	Leu		HIS	GTĀ	GIY	HIS		ьeu	Ала	Ser
		435					440					445			
Thr		Gly	Asp	Ser	Asp		Ser	Pro	Arg	Phe		Gly	Thr	Ser	Gly
	450					455					460				
Pro	Asn	Ser	Leu	Arg	Leu	Glu	Ile	Arg	Asp	Leu	Glu	G1u	Thr	Asp	Ser
465					470					475					480
Gly	Glu	Tyr	Lys	Cys	Ser	Ala	Thr	Asn	Ser	Leu	${\tt Gly}$	Asn	Ala	Thr	Ser
				485					490					495	
Thr	Leu	Asp	Phe	His	Ala	Asn	Ala	Ala	Arg	Leu	Leu	Ile	Ser	Pro	Ala
			500					505					510		
Ala	Glu	Val	Val	Glu	Gly	Gln	Alà	Val	Thr	Leu	Ser	Cys	Arg	Ser	Gly
		515					520					525			
Leu	Ser	Pro	Thr	Pro	Asp	Ala	Arg	Phe	Ser	Trp	Tyr	Leu	Asn	Gly	Ala
	530					535					540			_	
Leu	Leu	His	Glu	Gly	Pro	Gly	Ser	Ser	Leu	Leu	Leu	Pro	Ala	Ala	Ser
545				_	550	_				555					560
	Thr	Asp	Ala	Gl.v	Ser	Tvr	His	Cvs	Ara		Ara	Asp	Glv	His	
				565					570		3		2	575	
Δla	Ser	Gly	Pro		Ser	Pro	Δla	Val		Thr	Va?	T.e.11	ጥህጕ		Pro
11	DCI	CTZ	580	501	501	110	1120	585	шса		vaz	БСи	590	110	110
7~~	Gla	Pro	_	Dho	Пhъ	መኤኤ	7 ~~		λαn	T. 011	7 00	71-		C1.2	77.7
ALG	GLII	595	222	riie	1111	1111	600	шеи	ycz	шеα	дор	605	лла	GTÅ	лта
07	71-		7	7	Q7	т		T	O	7)	T7_7		Cl	70	D
GTA		Glу	ALG	Arg	GTA		ьеu	neu	Cys	Arg		Asp	ser	ASD	PIO
_	610	_	_	~1	_	615		_	_	_	620		~ 7	mm.1	
	Ата	Arg	Leu	GIN		nea	HIS	гля	Asp		vaı	Val	Ата	Thr	
625			_		630					635					640
Leu	Pro	Ser	Gly		Gly	Cys	Ser	Thr		Gly	Gly	Суѕ	Ser		Arg
				645					650					655	
Met	Lys	Val	Thr	Гуs	Ala	Pro	Asn	Leu	Leu	Arg	Val	Glu	Ile	His	Asn
			660					665					670		
Pro	Leu	Leu	Glu	Glu	Glu	Gly	Leu	Tyr	Leu	Cys	Glu	Ala	Ser	Asn	Ala
		675					680					685			
Leu	Gly	Asn	Ala	Ser	Thr	Ser	Ala	\mathtt{Thr}	Phe	Asn	Gly	Gln	Ala	Thr	Val
	690					695					700				
Leu	Ala	Ile	Ala	Pro	Ser	His	Thr	Leu	Gln	Glu	Gly	Thr	Glu	Ala	Asn
705					710					715					720

Leu Thr Cys Ası	n Val Ser Ar 725	g Glu Ala Al 73	_	Ala Asn Phe
Ser Trp Phe Arg	_	l Leu Trp Al 745	a Gln Gly Pro	Leu Glu Thr 750
Val Thr Leu Let 755	ı Pro Val Al	a Arg Thr As 760	p Ala Ala Leu 765	Tyr Ala Cys
Arg Ile Leu Th: 770	r Glu Ala Gl 77		u Ser Thr Pro 780	Val Leu Leu
Ser Val Leu Ty: 785	r Pro Pro As 790	p Arg Pro Ly	s Leu Ser Ala 795	Leu Leu Asp 800
Met Gly Gln Gl	y His Met Al 805	a Leu Phe Il 81		Asp Ser Arg 815
Pro Leu Ala Leo 820		u Phe His Gl 825	y Glu His Leu	Leu Ala Thr 830
Ser Leu Gly Pro	o Gln Val Pr	o Ser His Gl 840	y Arg Phe Gln 845	Ala Lys Ala
Glu Ala Asn Set 850	c Leu Lys Le 85		g Glu Leu Gly 860	Leu Gly Asp
Ser Gly Ser Ty: 865	Arg Cys Gl 870	u Ala Thr As	n Val Leu Gly 875	Ser Ser Asn 880
Thr Ser Leu Phe	e Phe Gln Va 885	l Arg Gly Al 89		Val'Ser Pro 895
Ser Pro Glu Let		y Gln Ala Va 905	l Val Leu Ser	Cys Gln Val 910
His Thr Gly Vai	l Pro Glu Gl	y Thr Ser Ty 920	r Arg Trp Tyr 925	Arg Asp Gly
Gln Pro Leu Gli 930	n Glu Ser Th 93		r Leu Arg Phe 940	Ala Ala Ile
Thr Leu Thr Gli 945	n Ala Gly Al 950	a Tyr His Cy	s Gln Ala Gln 955	Ala Pro Gly 960
Ser Ala Thr Th	Ser Leu Al 965	a Ala Pro Il 97		Val Ser Tyr 975
Ala Pro Arg His		u Thr Thr Le 985	u Met Asp Thr	Gly Pro Gly 990
Arg Leu Gly Leu 995		1000	1005	5
Leu Arg Leu Leu 1010	ı His Gly As 10		1 Ala Ser Thr 1020	Leu Gln Gly
Val Gly Gly Pro	Glu Gly Se	r Ser Pro Ar	g Leu His Val	Ala Val Ala
1025	1030		1035	1040
Pro Asn Thr Let	ı Arg Leu Gl	u Ile His Gl	y Ala Met Leu	Glu Asp Glu
	1045	10	50	1055

Gly	Val	Tyr	Ile	Cys	Glu	Ala	Ser	Asn	Thr	Leu	Gly	Gln	Ala	Ser	Ala
			1060	0				106	5				1070)	
Ser	Ala	Asp	Phe	Asp.	Ala	Gln	Ala	Val	Asn	Val	Gln	Val	Trp	Pro	${\tt Gly}$
		1079	5				1080)				1085	5		
Ala	Thr	Val	Arg	Glu	Gly	Gln	Leu	Val	Asn	Leu	Thr	Cys	Leu	Val	Trp
	109)				1095	5				1100)		,	
Thr	Thr	His	Pro	Ala	Gln	Leu	Thr	Tyr	Thr	Trp	Tyr	Gln	Asp	Gly	Gln
110	5				1110)				1115	5				1120
Gln	Arg	Leu	Asp	Ala	His	Ser	Ile	Pro	Leu	Pro	Asn	Val	Thr	Val	Arg
				1125					1130					1135	
Asp	Ala	Thr	Ser	Tyr	Arg	Cys	Gly	Val	Gly	Pro	Pro	Gly	Arg	Ala	Pro
			1140					1145				_	1150		
Arg	Leu	Ser	Arg	Pro	Ile	Thr	Leu	Asp	Va1	Leu	Tyr	Ala			Asn
	•	115					1160					1165		_	
Leu	Arg	Leu	Thr	Tyr	Leu	Leu	Glu	Ser	His	Gly	Gly	Gln	Leu	Ala	Leu
	1170			_		1175				-	1180				
Val	Leu	Cys	Thr	Va1	Asp	Ser	Arg	Pro	Pro	Ala	Gln	Leu	Ala	Leu	Ser
118					1190		_			1195					1200
His	Ala	Gly	Arg	Leu	Leu	Ala	Ser	Ser	Thr	Ala	Ala	Ser	Val	Pro	
				1205					1210					1215	
Thr	Leu	Arg	Leu	Glu	Leu	Arg	Gly	Pro	Gln	Pro	Arg	Asp	Glu	Gly	Phe
			1220					1225			_	_	1230	_	
Tyr	Ser	Cys	Ser	Ala	Arg	Ser	Pro	Leu	Gly	Gln	Ala	Asn	Thr	Ser	Leu
		1235					1240		_			1245			
Glu	Leu	Arg	Leu	Glu	Gly	Val	Arg	Val	Ile	Leu	Ala	Pro	Glu	Ala	Ala
	1250					1255					1260				
Val	Pro	Glu	Gly	Ala	Pro	Ile	Thr	Val	Thr	Cys	Ala	Asp	Pro	Ala	Ala
126					1270					1275		_			1280
His	Ala	Pro	Thr	Leu	Tyr	Thr	Trp	Tyr	His	Asn	Gly	Arq	Trp	Leu	Gln
				1285					1290		_		_	1295	
Glu	Gly	Pro	Ala	Ala	Ser	Leu	Ser	Phe	Leu	Val	Ala	Thr	Arq	Ala	His
			1300					1305					1310		
Ala	Gly	Ala	Tyr	Ser	Cys	Gln	Ala	Gln	Asp	Ala	Gln	Gly	Thr	Arg	Ser
		1315					1320		_			1325		_	
Ser	Arg	Pro	Ala	Ala	Leu	Gln	Val	Leu	Tyr	Ala	Pro	Gln	Asp	Ala	Val
	1330					1335			_		1340		_		
Leu	Ser		Phe	Arg	Asp			Ala	Ara	Ser			Val	Ile	Gln
1345				_	1350		J		,	1355					1360
	Thr	Val	qaA	Ser			Pro	Ala	Glu			Leu	Ser	His	
_			-	1365				- 23	1370					1375	_
Gly	Lys	Val	Leu			Ser	Ser	Glv			Ser	Leu	Ala		
_								1							1
			1380)				1385	5				1390)	

Thr	Gly	His	Val	Gln	Val	Ala	Arg	Asn	Ala	Leu	Arg	Leu	Gln	Val	Gln
		139	5				1400)				1405	5		
Asp	Val	Pro	Ala	Gly	Asp	Asp	Thr	Tyr	Val	Cys	Thr	Ala	Gln	Asn	Leu
	1410	С				141	5				1420	O C			
Leu	Gly	Ser	Ile	Ser	Thr	Ile	Gly	Arg	Leu	Gln	Val	Glu	Gly	Ala	Arg
142	5				1430	О				1435	5				1440
Val	Val	Ala	Glu	Pro	Gly	Leu	Asp	Val	Pro	Glu	Gly	Ala	Ala	Leu	Asn
				144!					1450					145!	
Leu	Ser	Cys	Arg	Leu	Leu	Gly	Gly	Pro	Gly	Pro	Val	Gly	Asn	Ser	Thr
		_	1460			_	_	1465	_			_	1470		
Phe	Ala	Trp	Phe	Trp	Asn	Asp	Ara	Ara	Leu	His	Ala	Glu	Pro	Val	Pro
		1475		-			1480	_				1485		•	
Thr	Leu	Ala		Thr	His	Val			Ala	Gln	Ala			Tvr	His
	1490					1495		3			1500			-1-	
Cvs		Ala	G] 11	Len	Pro			Αla	Δla	Δla			Pro	Va 1	Met
150!					1510			1120		1515		11α	110	V	1520
		Val	T.e11	Ψуг			Lvc	Thr	Pro			Met	Ta7	Phe	
200	9	V 0	Lou	1525		110	11,10		1530		1100	1100	val	153	
GT 11	Pro	Glu	Glv			Δνα	Glv	T1e			Cvc	Σrα	Va1		
O_u		O u	1540		Lou	1119	CLY	1545		1100	0,5	1119	1550		DCI
Glu	Pro	Leu			Len	Thr	T,e11			Glv	Ser	Δrα			Δla
Oru	110	1555		DCI	EC u		1560		пси	CLY	DCI	1565		var	пта
Ser	Ser	Gln		Gln	Glaz	ΔΊа			Glu	Pro	ніс			Ta7	T. 011
DCI	1570		110	0111	Cry	1579		mia	Oru	110	1580		1112	vai	пец
λla		Pro	λan	λΊа	Lou			λαn	TIO	Glu			λνα	Dro	Cor
1585		110	11011	711 a	1590		vai	MSD	116	1595		пеп	ALG	FIO	1600
		Gly	Glu	Тъгъ с			Cor	ת 1 ת	Cor			T 011	C1	Cox	
ASP	GIII	GTĀ	Gru	1605		Cys	ser	Ата	1610		Val	пеп	GTĀ	1615	
Sor		Cor	Thr			Clar	77-7	7 ~~			u: a	7. 7	T 011		
ser	T11T	Ser	1620		rne	GTĀ	Val					Arg			GLII
Dha	C1	C1		-	m	T7_ 7	т		5			01	1630		T
Pne	Gin	Gln		ьeu	Trp	vaı			ьeu	ьeu	vaı			ьeu	Leu
_	_	1635		.	~ 7	3 7	1640		1	_	_	1645			_
ьeu		Leu	GIY	Leu	GIĀ			туr	Thr	Trp	_	_	Trp	vaı	Leu
_	1650		_	_		1655		_		_	1660		_	_	
		Trp	Pro	Leu			Trp	Arg	Ala			Asp	Val	Val	
1665			_		1670				_	1675					1680
Ile	Leu	Ile	Pro			Asp	Ala	Ser			Met	Thr	Val		
				1685	5				1690)					

<210> 37

<211> 745

<212> PRT

<213> Homo sapiens

<400> 37 Met Phe Pro Leu Arg Ala Leu Trp Leu Val Trp Ala Leu Leu Gly Val 5 10 Ala Gly Ser Cys Pro Glu Pro Cys Ala Cys Val Asp Lys Tyr Ala His Gln Phe Ala Asp Cys Ala Tyr Lys Glu Leu Arg Glu Val Pro Glu Gly 40 Leu Pro Ala Asn Val Thr Thr Leu Ser Leu Ser Ala Asn Lys Ile Thr 55 Val Leu Arg Arg Gly Ala Phe Ala Asp Val Thr Gln Val Thr Ser Leu 70 75 Trp Leu Ala His Asn Glu Val Arg Thr Val Glu Pro Gly Ala Leu Ala 90 Val Leu Ser Gln Leu Lys Asn Leu Asp Leu Ser His Asn Phe Ile Ser 105 Ser Phe Pro Trp Ser Asp Leu Arg Asn Leu Ser Ala Leu Gln Leu Leu 115 120 125 Lys Met Asn His Asn Arg Leu Gly Ser Leu Pro Arg Asp Ala Leu Gly 135 140 Ala Leu Pro Asp Leu Arg Ser Leu Arg Ile Asn Asn Asn Arg Leu Arg 145 150 155 Thr Leu Ala Pro Gly Thr Phe Asp Ala Leu Ser Ala Leu Ser His Leu 165 170 Gln Leu Tyr His Asn Pro Phe His Cys Gly Cys Gly Leu Val Trp Leu 180 185 ~ Gln Ala Trp Ala Ala Ser Thr Arg Val Ser Leu Pro Glu Pro Asp Ser 200 205 Ile Ala Cys Ala Ser Pro Pro Ala Leu Gln Gly Val Pro Val Tyr Arg 215 220 Leu Pro Ala Leu Pro Cys Ala Pro Pro Ser Val His Leu Ser Ala Glu 225 230 235 Pro Pro Leu Glu Ala Pro Gly Thr Pro Leu Arg Ala Gly Leu Ala Phe 250 Val Leu His Cys Ile Ala Asp Gly His Pro Thr Pro Arg Leu Gln Trp 260 265 Gln Leu Gln Ile Pro Gly Gly Thr Val Val Leu Glu Pro Pro Val Leu 275 280 285 Ser Gly Glu Asp Asp Gly Val Gly Ala Glu Glu Gly Glu Gly Gly 295 300 Asp Gly Asp Leu Leu Thr Gln Thr Gln Ala Gln Thr Pro Thr Pro Ala

305					310					315					320
Pro	Ala	Trp	Pro	Ala	Pro	Pro	Ala	Thr	Pro	Arg	Phe	Leu	Ala	Leu	Ala
				325					330					335	
Asn	Gly	Ser	Leu	Leu	Val	Pro	Leu	Leu	Ser	Ala	Lys	Glu	Ala	Gly	Val
			340					345					350		
Tyr	Thr	Cys	Arg	Ala	His	Asn	Glu	Leu	Gly	Ala	Asn	Ser	Thr	Ser	Ile
		355					360					365			
Arg	Val	Ala	Val	Ala	Ala	Thr	Gly	Pro	Pro	Lys	His	Ala	Pro	Gly	Ala
	370					375					380				
Gly	Gly	Glu	Pro	Asp	Gly	Gln	Ala	Pro	Thr	Ser	Glu	Arg	Lys	Ser	Thr
385					390					395					400
Ala	Lys	Gly	Arg	Gly	Asn	Ser	Val	Leu	Pro	Ser	Lys	Pro	Glu	Gly	Lys
				405					410					415	
Ile	Lys	Gly		Gly	Leu	Ala	Lys	Val	Ser	Ile	Leu	Gly	Glu	Thr	Glu
			420					425					430		
Thr	Glu		Glu	Glu	Asp	Thr		Glu	Gly	Glu	Glu	Ala	Glu	Asp	Gln
		435	_	_		-	440					445			
Ile	Leu	Ala	Asp	Pro	Ala		Glu	Gln	Arg	Cys		Asn	Gly	Asp	Pro
~	450	_		~	_	455		_,	_		460			_	
	Arg	Tyr	Val	Ser		His	Ala	Phe	Asn		Ser	Ala	Glu	Leu	
465	** '	1	D)	61	470	~ 7	1	1	7 .7	475	_				480
Pro	His	Vaı	Pne		ьeu	GIA	vaı	тте		ьeu	Asp	vaı	Ala		Arg
C1.,	7.7 -	7	77-1	485	Т он	mb ~	Dago	т он	490	ח ד ת	7) 70	m	07	495 Dec	07
Giu	Ala	ALG	500	GIII	пеп	T 11T	PIO	505	Ата	Ата	Arg	ттр	510	PIO	GTĀ
Pro	Gly	Glv		Glv	Glv	Δla	Pro		Pro	Glaz	λνα	λνα		Leu	Δrα
110	O±y	515	71.1.0	СТА	OTY	пια	520	ALG	110	GTĀ	ALG	525	FIO	шеи	ALG
Leu	Leu		Leu	Cvs	Pro	Ala		Glv	G1v	Ala	Ala		Gln	Ттр	Ser
	530	-2-		-1 -		535	1	07	07	11	540	,	0111	115	501
Arq	Val	Glu	Glu	Gly	Val	Asn	Ala	Tvr	Trp	Phe		Glv	Leu	Ara	Pro
545				_	550			_	-	555		_			560
	Thr	Asn	Tyr	Ser	Val	Cys	Leu	Ala	Leu		Gly	Glu	Ala	Cys	His
				565					570		_			- 575	
Val	Gln	Val	Val	Phe	Ser	Thr	Lys	Lys	Glu	Leu	Pro	Ser	Leu	Leu	Val
			580					585					590		
Ile	Val	Ala	Val	Ser	Val	Phe	Leu	Leu	Val	Leu	Ala	Thr	Val	Pro	Leu
		595					600					605			
Leu	Gly	Ala	Ala	Cys	Cys	His	Leu	Leu	Ala	Lys	His	Pro	Gly	Lys	Pro
	610					615					620				
Tyr	Arg	Leu	Ile	Leu	Arg	Pro	Gln	Ala	Pro	Asp	Pro	Met	Glu	Lys	Arg
625					630					635					640
					050					055					040

Ser Tyr Pro Ala Gly Gly Glu Ala Gly Gly Glu Glu Pro Glu Asp Val Gln Gly Glu Gly Leu Asp Glu Asp Ala Glu Gln Gly Asp Pro Ser Gly Asp Leu Gln Arg Glu Glu Ser Leu Ala Ala Cys Ser Leu Val Glu Ser Gln Ser Lys Ala Asn Gln Glu Glu Phe Glu Ala Gly Ser Glu Tyr Ser Asp Arg Leu Pro Leu Gly Ala Glu Ala Val Asn Ile Ala Gln Glu Ile Asn Gly Asn Tyr Arg Gln Thr Ala Gly

<210> 38

<211> 251

<212> PRT

<213> Homo sapiens

<400> 38

Met Ser Ala Tyr Gly Met Pro Met Tyr Lys Ser Gly Asp Leu Val Phe Ala Lys Leu Lys Gly Tyr Ala His Trp Pro Ala Arg Ile Glu His Met Thr Gln Pro Asn Arg Tyr Gln Val Phe Phe Gly Thr His Glu Thr Ala Phe Leu Ser Pro Lys Arg Leu Phe Pro Tyr Lys Glu Cys Lys Glu Lys Phe Gly Lys Pro Asn Lys Arg Gly Phe Ser Ala Gly Leu Trp Glu Ile Glu Asn Asn Pro Thr Val Gln Ala Ser Asp Cys Pro Leu Ala Ser Glu Lys Gly Ser Gly Asp Gly Pro Trp Pro Glu Pro Glu Ala Ala Glu Gly Asp Glu Asp Lys Pro Thr His Ala Gly Gly Gly Gly Asp Glu Leu Gly Lys Pro Asp Asp Lys Pro Thr Glu Glu Lys Gly Pro Leu Lys Arg Ser Ala Gly Asp Pro Pro Glu Asp Ala Pro Lys Arg Pro Lys Glu Ala Ala Pro Asp Gln Glu Glu Glu Ala Glu Ala Glu Arg Ala

Ala Glu Ala Glu Arg Ala Ala Ala Ala Ala Ala Thr Ala Val Asp 180 185 190 Glu Glu Ser Pro Phe Leu Val Ala Val Glu Asn Gly Ser Ala Pro Ser 200 Glu Pro Gly Leu Val Cys Glu Pro Pro Gln Pro Glu Glu Glu Leu 215 220 Arg Glu Glu Glu Val Ala Asp Glu Glu Ala Ser Gln Glu Trp His Ala 230 235 240 Glu Ala Pro Gly Gly Gly Asp Arg Asp Ser Leu 245 250

<210> 39

<211> 408

<212> PRT

<213> Homo sapiens

<400> 39

Phe Leu Ile Ser Asp Arg Asp Pro Gln Cys Asn Leu His Cys Ser Arg 5 Thr Gln Pro Lys Pro Ile Cys Ala Ser Asp Gly Arg Ser Tyr Glu Ser 25 Met Cys Glu Tyr Gln Arg Ala Lys Cys Arg Asp Pro Thr Leu Gly Val 40 45 Val His Arg Gly Arg Cys Lys Asp Ala Gly Gln Ser Lys Cys Arg Leu 55 60 Glu Arg Ala Gln Ala Leu Glu Gln Ala Lys Lys Pro Gln Glu Ala Val 70 75 Phe Val Pro Glu Cys Gly Glu Asp Gly Ser Phe Thr Gln Val Gln Cys His Thr Tyr Thr Gly Tyr Cys Trp Cys Val Thr Pro Asp Gly Lys Pro 105 Ile Ser Gly Ser Ser Val Gln Asn Lys Thr Pro Val Cys Ser Gly Ser 115 120 125 Val Thr Asp Lys Pro Leu Ser Gln Gly Asn Ser Gly Arg Lys Asp Asp 135 140 Gly Ser Lys Pro Thr Pro Thr Met Glu Thr Gln Pro Val Phe Asp Gly 150 155 Asp Glu Ile Thr Ala Pro Thr Leu Trp Ile Lys His Leu Val Ile Lys 165 170 175 Asp Ser Lys Leu Asn Asn Thr Asn Ile Arg Asn Ser Glu Lys Val Tyr 185 Ser Cys Asp Gln Glu Arg Gln Ser Ala Leu Glu Glu Ala Gln Asn

195			200					205			
Pro Arg Glu	Gly Ile	Val Ile	Pro	Glu	Cys	Ala	Pro	Gly	Gly	Leu	Tyr
210		215					220				
Lys Pro Val	Gln Cys	His Gln	Ser	Thr	Gly	Tyr	Cys	Trp	Cys	Val	Leu
225		230				235					240
.Val Asp Thr	Gly Arg	Pro Leu	Pro	Gly	Thr	Ser	Thr	Arg	Tyr	Val	Met
	245				250					255	
Pro Ser Cys	Glu Ser	Asp Ala	Arg	Ala	Lys	Thr	Thr	Glu	Ala	Asp	Asp
	260			265					270		
Pro Phe Lys	Asp Arg	Glu Leu		Gly	Cys	Pro	Glu	Gly	Lys	Lys	Met
275			280					285			
Glu Phe Ile	Thr Ser		Asp	Ala	Leu	Thr		Asp	Met	Val	Gln
290		295				~-7	300	1	_	~-1	_
Ala Ile Asn	Ser Ala		Thr	Gly	Gly		Arg	Phe	Ser	GIu	
305	77 day 1971	310	G1	7	TT_ 7	315	772 -			Dh a	320
Asp Pro Ser		Leu Giu	GLU	Arg		vaı	HIS	Trp	Tyr	335	Ser
Gln Leu Asp	325	Cor Cor	7 an	7 an	330 T10	λαn	Luc	λνα	Glu	_	Laze
GIN Deu Asp	340	ser ser	ASII	345	TTC	ASII	пуз	ALG	350	Mec	пур
Pro Phe Lys		Val Lvs	Lvs		Ala	Lvs	Pro	Lvs		Cvs	Ala
355		,	360					365		- 4	
Arg Arg Phe		Tyr Cys	Asp	Leu	Asn	Lys	Asp	Lys	Val	Ile	Ser
370		375					380				
Leu Pro Glu	Leu Lys	Gly Cys	Leu	Gly	Val	Ser	Lys	Glu	Gly	Gly	Ser
385		390				395					400
Leu Gly Ser	Phe Pro	Gln Ala	Lys								
	405										
<210>	40										
<211>											
<212>											
<213>	· Homo sa	piens									
<400>	40										
Met Ala Gly	Ser Gly	Pro Pro	Leu	Pro	Thr	Cys	Asn	Ala	Glu	Val	Gly
1	5				10					15	
Trp Glu Asr	Met Ala	Glu Asp	Gly	Lys	Ala	Phe	Leu	Ile	Ser	Asp	Arg

50 55 60

40

Cys Ala Ser Asp Gly Arg Ser Tyr Glu Ser Met Cys Glu Tyr Gln Arg

35

20 25 30 Asp Pro Gln Cys Asn Leu His Cys Ser Arg Thr Gln Pro Lys Pro Ile

Ala Lys Cys 65	Arg Asp	Pro The	Leu G	Gly Val	Val His	Arg	Gly	Arg	Cys 80
Lys Asp Ala	. Gly Gln 85	Ser Lys	Cys A	Arg Leu 90	Glu Arg	Ala	Gln	Ala 95	Leu
Glu Gln Ala	Lys Lys 100	Pro Glr		Ala Val 105	Phe Val	Pro	Glu 110	Cys	Gly
Glu Asp Gly 115		Thr Glr	120	Gln Cys	His Thr	Tyr 125	Thr	Gly	Tyr
Cys Trp Cys	Val Thr	Pro Asp		Lys Pro	Ile Ser		Ser	Ser	Val
Gln Asn Lys 145	Thr Pro	Val Cys 150	s Ser G	Gly Ser	Val Thr	Asp	Lys	Pro	Leu 160
Ser Gln Gly	Asn Ser 165	Gly Arg	J Lys A	Asp Asp 170	Gly Ser	Lys	Pro	Thr 175	Pro
Thr Met Glu	Thr Gln 180	Pro Val		Asp Gly 185	Asp Glu	. Ile	Thr 190	Ala	Pro
Thr Leu Trp 195	_	His Le	1 Val I 200	Ile Lys	Asp Ser	Lys 205	Leu	Asn	Asn
Thr Asn Ile	e Arg Asn	Ser Glu 215	_	Val Tyr	Ser Cys	_	Gln	Glu	Arg
Gln Ser Ala 225	Leu Glu	Glu Ala 230	ı Gln G	Gln Asn	Pro Arg	Glu	Gly	Ile	Val 240
Ile Pro Glu	Cys Ala 245	Pro Gly	gly I	Leu Tyr 250	Lys Pro	Val	Gln	Cys 255	His
Gln Ser Thr	Gly Tyr 260	Cys Tr		Val Leu 265	Val Asp	Thr	Gly 270	Arg	Pro
Leu Pro Gly 275			280			285			_
Ala Arg Ala 290		295	5		300	ı			
Leu Pro Gly 305	Cys Pro	Glu Gly 310	y Lys I	Lys Met	Glu Phe	: Ile	Thr	Ser	Leu 320
Leu Asp Ala	Leu Thr 325		Met V	Val Gln 330	Ala Ile	: Asn	Ser	Ala 335	Ala
Pro Thr Gly	340		3	345			350		
Glu Glu Arg 355		His Tr	360 Tyr	Phe Ser	Gln Leu	365	Ser	Asn	Ser
Ser Asn Asp 370	o Ile Asn	Lys Arg		Met Lys	Pro Phe		Arg	Tyr	Val
Lys Lys Lys 385	: Ala Lys	Pro Lys	s Lys C	Cys Ala	Arg Arg	Phe	Thr	Asp	Tyr 400

Cys Asp Leu Asn Lys Asp Lys Val Ile Ser Leu Pro Glu Leu Lys Gly
405 410 410 415

Cys Leu Gly Val Ser Lys Glu Gly Gly Ser Leu Gly Ser Phe Pro Gln
420 425 430

Ala Lys

<210> 41 <211> 250 <212> PRT

<213> Homo sapiens

<400> 41

Met Ala Cys Trp Trp Pro Leu Leu Glu Leu Trp Thr Val Met Pro 10 Thr Trp Ala Gly Asp Glu Leu Leu Asn Ile Cys Met Asn Ala Lys His 2.0 25 His Lys Arg Val Pro Ser Pro Glu Asp Lys Leu Tyr Glu Glu Cys Ile 40 45 Pro Trp Lys Asp Asn Ala Cys Cys Thr Leu Thr Thr Ser Trp Glu Ala 55 60 His Leu Asp Val Ser Pro Leu Tyr Asn Phe Ser Leu Phe His Cys Gly 70 75 80 Leu Leu Met Pro Gly Cys Arg Lys His Phe Ile Gln Ala Ile Cys Phe 90 Tyr Glu Cys Ser Pro Asn Leu Gly Pro Trp Ile Gln Pro Val Gly Ser 105 .100 Leu Gly Trp Glu Val Ala Pro Ser Gly Gln Gly Glu Arg Val Val Asn 115 120 125 Val Pro Leu Cys Gln Glu Asp Cys Glu Glu Trp Trp Glu Asp Cys Arg 135 140 Met Ser Tyr Thr Cys Lys Ser Asn Trp Arg Gly Gly Trp Asp Trp Ser 155 145 150 Gln Gly Lys Asn Arg Cys Pro Lys Gly Ala Gln Cys Leu Pro Phe Ser 170 His Tyr Phe Pro Thr Pro Ala Asp Leu Cys Glu Lys Thr Trp Ser Asn 180 185 Ser Phe Lys Ala Ser Pro Glu Arg Arg Asn Ser Gly Arg Cys Leu Gln 195 200 205 Lys Trp Phe Glu Pro Ala Gln Gly Asn Pro Asn Val Ala Val Ala Arg 215 220 Leu Phe Ala Ser Ser Ala Pro Ser Trp Glu Leu Ser Tyr Thr Ile Met

225 230 240 235 Val Cys Ser Leu Phe Leu Pro Phe Leu Ser 245 250

<210> 42

<211> 257

<212> PRT

<213> Homo sapiens

245

<400> 42

Met Gly Thr Val Arg Pro Pro Arg Pro Ser Leu Leu Val Ser Thr 5 10 Arg Glu Ser Cys Leu Phe Leu Leu Phe Cys Leu His Leu Gly Ala Ala 20 25 Cys Pro Gln Pro Cys Arg Cys Pro Asp His Ala Gly Ala Val Ala Val Phe Cys Ser Leu Arg Gly Leu Gln Glu Val Pro Glu Asp Ile Pro Ala 55 Asn Thr Val Leu Leu Lys Leu Asp Ala Asn Lys Ile Ser His Leu Pro 70 75 Asp Gly Ala Phe Gln His Leu His Arg Leu Arg Glu Leu Asp Leu Ser 85 90 His Asn Ala Ile Glu Ala Ile Gly Ser Ala Thr Phe Ala Gly Leu Ala 100 105 . 110 Gly Gly Leu Arg Leu Leu Asp Leu Ser Tyr Asn Arg Ile Gln Arg Ile 120 115 125 Pro Lys Asp Ala Leu Gly Lys Leu Ser Ala Lys Ile Arg Leu Ser His 135 Asn Pro Leu His Cys Glu Cys Ala Leu Gln Glu Ala Leu Trp Glu Leu 145 150 155 Lys Leu Asp Pro Asp Ser Val Asp Glu Ile Ala Cys His Thr Ser Val 165 170 Gln Glu Glu Phe Val Gly Lys Pro Leu Val Gln Ala Leu Asp Ala Gly 180 185 Ala Ser Leu Cys Ser Val Pro His Arg Thr Thr Asp Val Ala Met Leu 200 205 Val Thr Met Phe Gly Trp Phe Ala Met Val Ile Ala Tyr Val Val Tyr 215 220 Tyr Val Arg His Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu 225 230 235 · 240 Lys Ser Leu Pro Ser Ala Pro Ala Ser Lys Asp Pro Ile Gly Pro Gly

250

Pro

<210> 43

<211> 148

<212> PRT

<213> Homo sapiens

<400> 43

Met Leu Gly Leu Pro Trp Lys Gly Gly Leu Ser Trp Ala Leu Leu Leu 1

Leu Leu Gly Ser Gln Ile Leu Leu Ile Tyr Ala Trp His Phe His
20 25 30

Glu Gln Arg Asp Cys Asp Glu His Asn Val Met Ala Arg Tyr Leu Pro 35 40 45

Ala Thr Val Glu Phe Ala Val His Thr Phe Asn Gln Gln Ser Lys Asp 50 55 60

Tyr Tyr Ala Tyr Arg Leu Gly His Ile Leu Asn Ser Trp Lys Glu Gln 65 70 75 80

Val Glu Ser Lys Thr Val Phe Ser Met Glu Leu Leu Gly Arg Thr
85 90 95

Arg Cys Gly Lys Phe Glu Asp Asp Ile Asp Asn Cys His Phe Gln Glu 100 105 110

Ser Thr Glu Leu Asn Asn Val Arg Gln Asp Thr Ser Phe Pro Pro Gly
115 120 125

Tyr Ser Cys Gly Cys His Met Gly Cys Gly Val Gly Thr Gly Ala Thr 130 135 140

Asp Lys Glu Thr

145

<210> 44

<211> 355

<212> PRT

<213> Homo sapiens

<400> 44

Met Gly Pro Lys Asp Ser Ala Lys Cys Leu His Arg Gly Pro Gln Pro 1 5 10 15

Ser His Trp Ala Ala Gly Asp Gly Pro Thr Gln Glu Arg Cys Gly Pro
20 25 . 30

Arg Ser Leu Gly Ser Pro Val Leu Gly Leu Asp Thr Cys Arg Ala Trp
35 40 45

Asp	His 50	Val	Asp	Gly	Gln	Ile 55	Leu	Gly	Gln	Leu	Arg 60	Pro	Leu	Thr	Glu
Glu	Glu	Glu	Glu	Glu	Gly	Ala	Gly	Ala	Thr	Leu	Ser	Arg	Gly	Pro	Ala
65					70					75					80
Phe	Pro	Gly	Met	Gly	Ser	Glu	Glu	Leu	Arg	Leu	Ala	Ser	Phe	Tyr	Asp
				85					90					95	
Trp	Pro	Leu	Thr	Ala	Glu	Val	Pro	Pro	Glu	Leu	Leu	Ala	Ala	Ala	Gly
			100					105					110		
Phe	Phe	His	Thr	Gly	His	Gln	Asp	Lys	Val	Arg	Cys	Phe	Phe	Cys	Tyr
		115					120					125			
Gly	Gly	Leu	Gln	Ser	Trp	Lys	Arg	Gly	Asp	Asp	Pro	Trp	Thr	Glu	His
	130					135					1,40				
	Lys	Trp	Phe	Pro	Ser	Cys	Gln	Phe	Leu	Leu	Arg	Ser	Lys	Gly	Arg
145		_			150					155					160
Asp	Phe	Val	His		Val	Gln	Glu	Thr		Ser	Gln	Leu	Leu		Ser
_	7	_		165	_	_	_		170		_			175	_
Trp	Val	Ser	Ala	Thr	Ser	Pro	Arg		Ser	GTA	Trp	GIn		Gly	Pro
77.	Dage	Dwo	180	Com	Dras	7. 20.00	Dage	185	Q7	T		T	190	D	Q7
Ата	Pro	195	Ile	ser	Pro	Arg	200	Asp	GIY	Leu	Trp		ьeu	Pro	GTĀ
Dro	77al		Arg	πhr	G137	λνα		cor	Dro	Carc	C1.,	205 Bro	T. 011	7 ~~	Cox
FIO	210	GTĀ	ALG	TIIL	GTĀ	215	ALG	per	PIO	Cys	220	FIO	пеп	Arg	per
Ser		Lvs	Val	Pro	Ara		Gln	Va1	G1n	Δla		Asn	Pro	T.e.u	Gly
225		272			230	201	0111	V CL.	011	235	111 9	1105	110	Lea	240
	Gly	Trp	Gly	Arg		Gly	Leu	Arg	Asp		Asp	Leu	Pro	Trp	
				245		_		_	250		_			255	
Ile	Glu	Gly	Gly	Gly	Gln	Gly	Val	Gly	Thr	Phe	Arg	Arg	Pro	Val	Leu
			260					265					270		
Leu	Gly	Gly	Val	Ser	Pro	Ala	Glu	Ala	Gln	Arg	Ala	Trp	Trp	Val	Leu
		275					280					285			
Glu	Pro	Pro	Gly	Ala	Arg	Asp	Val	Glu	Ala	Gln	Leu	Arg	Arg	Leu	Gln
	290					295					300				
Glu	Glu	Arg	Thr	Cys	Lys	Val	Cys	Leu	Asp	Arg	Ala	Val	Ser	Ile	Val
305					310					315					320
Phe	Val	Pro	Cys		His	Leu	Val	Cys	Ala	Glu	Cys	Ala	Pro	Gly	Leu
_				325					330					335	
Gln	Leu	Cys	Pro	Ile	Cys	Arg	Ala		Val	Arg	Ser	Arg		Arg	Thr
_,	_	_	340					345					350		
Phe	Leu														
		355													

<210> 45

<211> 255 <212> PRT <213> Homo sapiens

<400> 45

Met Gly Pro Lys Asp Ser Ala Lys Cys Leu His Arg Gly Pro Gln Pro 10 Ser His Trp Ala Ala Gly Asp Gly Pro Thr Gln Glu Arg Cys Gly Pro 25 Arg Ser Leu Gly Ser Pro Val Leu Gly Leu Asp Thr Cys Arg Ala Trp 40 Asp His Val Asp Gly Gln Ile Leu Gly Gln Leu Arg Pro Leu Thr Glu 55 60 Glu Glu Glu Glu Gly Ala Gly Ala Thr Leu Ser Arg Gly Pro Ala 70 75 Phe Pro Gly Met Gly Ser Glu Glu Leu Arg Leu Ala Ser Phe Tyr Asp 90 Trp Pro Leu Thr Ala Glu Val Pro Pro Glu Leu Leu Ala Ala Gly 105 100 Phe Phe His Thr Gly His Gln Asp Lys Val Arg Cys Phe Phe Cys Tyr 120 Gly Gly Leu Gln Ser Trp Lys Arg Gly Asp Asp Pro Trp Thr Glu His 130 135 Ala Lys Trp Phe Pro Leu Ser Val Pro Ala Pro Val Lys Arg Lys Arg 150 155 Leu Cys Pro Gln Cys Ala Gly Asp Ser Leu Pro Ala Ala Gly Leu Leu 165 170 Gly Pro Val Gly Arg Thr Gly Arg Arg Ser Pro Cys Gly Pro Leu Arg 180 185 Ser Gln Gly Cys Gly Gly Ala Ala Ala Ala Ala Gly Gly Glu Asp 200 Val Gln Gly Val Pro Gly Pro Arg Arg Val His Arg Leu Cys Ala Val 210 215 220 Arg Pro Pro Gly Leu Cys Val Cys Pro Arg Pro Ala Ala Val Pro His 230 235 Leu Gln Ser Pro Arg Pro Gln Pro Arg Ala His Leu Pro Val Leu 250

<210> 46

<211> 251

<212> PRT

<213> Homo sapiens

	< 4	100>	46												
Met 1	Leu	Gly	Ala	Arg 5	Leu	Arg	Leu	Trp	Val 10	Cys	Ala	Leu	Cys	Ser 15	Val
Cys	Ser	Met	Ser 20	Val	Leu	Arg	Ala	Tyr 25	Pro	Asn	Ala	Ser	Pro 30	Leu	Leu
Gly	Ser	Ser 35	Trp	Gly	Gly	Leu	Ile 40	His	Leu	Tyr	Thr	Ala 45	Thr	Ala	Arg
Asn	Ser 50	Tyr	His	Leu	Gln	Ile 55	His	Lys	Asn	Gly	His 60	Val	Asp	Gly	Ala
Pro 65	His	Gln	Thr	Ile	Tyr 70	Ser	Ala	Leu	Met	Ile 75	Arg	Ser	Glu	Asp	Ala 80
Gly	Phe	Val	Val	Ile 85	Thr	Gly	Val	Met	Ser 90	Arg	Arg.	Tyr	Leu	Cys 95	Met
Asp	Phe	Arg	Gly 100	Asn	Ile	Phe	Gly	Ser 105	His	Tyr	Phe	Asp	Pro 110	Glu	Asn
Cys	Arg	Phe 115	Gln	His	Gln	Thr	Leu 120	Glu	Asn	Gly	Tyr	Asp 125	Val	Tyr	His
Ser	Pro 130	Gln	Tyr	His	Phe	Leu 135	Val	Ser	Leu	Gly	Arg 140	Ala	Lys	Arg	Ala
Phe 145	Leu	Pro	Gly	Met	Asn 150	Pro	Pro	Pro	Tyr	Ser 155	Gln	Phe	Leu	Ser	Arg
Arg	Asn	Glu	Ile	Pro 165	Leu	Ile	His	Phe	Asn 170	Thr	Pro	Ile	Pro	Arg 175	Arg
His	Thr	Arg	Ser 180	Ala	Glu	Asp	Asp	Ser 185	Glu	Arg	Asp	Pro	Leu 190	Asn	Val
Leu	Lys	Pro 195	Arg	Ala	Arg	Met	Thr 200	Pro	Ala	Pro	Ala	Ser 205	Cys	Ser	Gln
Glu	Leu 210	Pro	Ser	Ala	Glu	Asp 215	Asn	Ser	Pro	Met	Ala 220	Ser	Asp	Pro	Leu
Gly 225	Val	Val	Arg	Gly	Gly 230	Arg	Val	Asn	Thr	His 235	Ala	Gly	Gly	Thr	Gly 240
Pro	Glu	Gly	Cys	Arg 245	Pro	Phe	Ala	Lys	Phe 250	Ile					

INTERNATIONAL SEARCH REPORT

Inter ial application No.
PCT/US01/04703

A. CLASSIFICATION OF SUBJECT MATTER			
IPC(7) :C07K 14/17; C12N 5/10, 15/12, 15/63, 15/64			
US CL :Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)			
U.S. : 530/350; 536/23.1, 23.5, 24.3, 24.31; 435/69.1, 71.1, 71.2, 471, 325, 252.3, 254.11, 320.1			
0.6 330/350, 330/25.1, 25.5, 24.51, 435/05.1, 71.1, 71.2, 471, 325, 252.5, 254.11, 320.1			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	* Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Х	WO 96/41523 A1 (YEDA RESEARCH AND DEVELOPMENT CO., LTD.) 27 December 1996 (27/12/1996), see entire document, especially pages 7-9.		1-2, 5-9
-			
Further documents are listed in the continuation of Box C. See patent family annex.			
* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand			
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	
"E" car	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	
	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	when the document is taken alone	
*O" document referring to an oral disclosure, use, exhibition or other means		"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art	
	cument published prior to the international filing date but later than	"&" document member of the same patent	
Date of the actual completion of the international search		Date of mailing of the international search report	
16 APRIL 2001		13 JUN ZUUZ	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT		Authorized officer PREMA MERTZ	
Washington, D.C. 20231		0/6000	7
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/04703

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
Please See Extra Sheet.			
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-2, 5-9 (SEQ ID NO:1, 24)			
Remark on Protest			
No protest accompanied the payment of additional search fees.			

INTERNATIONAL SEARCH REPORT

Intermental application No. PCT/US01/04703

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

530/350; 536/23.1, 23.5, 24.3, 24.31; 435/69.1, 71.1, 71.2, 471, 325, 252.3, 254.11, 320.1

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-2, 5-9, drawn to a nucleic acid of SEQ ID NO:1 encoding a protein of SEQ ID NO:24, a vector, a host cell, a method of making the protein and the protein of SEQ ID NO:24.

Group II, claims 3-4, drawn to an antibody that binds the protein of SEQ ID NO:24.

The inventions listed as Groups I-II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Pursuant to 37 C.F.R. § 1.475 (d), the ISA/US considers that where multiple products and processes are claimed, the main invention shall consist of the first invention of the category first mentioned in the claims and the first recited invention of each of the other categories related thereto. Accordingly, the main invention (Group I) comprises the first-recited product, a nucleic acid encoding a protein of SEQ ID NO:24, a vector, a host cell, a method of making the protein of SEQ ID NO:24, and the protein of SEQ ID NO:59. Further pursuant to 37

C.F.R. § 1.475 (d), the ISA/US considers that any feature which the subsequently recited products and methods share with the main invention does not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

the polynucleotides set forth in SEQ ID NO:1-23 encoding the polypeptides set forth in SEQ ID NO:24-46.