Statistical Methods for single cell data analysis 3

Yongjin Park, UBC Path + Stat, BC Cancer

19 March 2024

Source code available:

https://github.com/stat540-UBC/lectures

Overview of single-cell data analysis

Alignment and molecular counting

Cell filtering and quality control

Doublet scoring

Cell size estimation

Gene variance analysis

Karchenko, Nature Methods (2021)

Overview of single-cell data analysis cont'd

Reduction to a medium-dimensional space

Manifold representation

Clustering and differential expression

Trajectories

Velocity estimation

Karchenko, Nature Methods (2021)

The goal of modelling in high-dimensional space

The goal is to model two types of relationships:

- Relationship between dimensions/features (genes)
- Relationship between samples/data points (cells)

• One of the most fundamental relationships is co-variation.

Covariance calculation in high-dimensional space

Covariance between cell i and j across genes:

$$\mathrm{cov}(X_i,X_j) = \mathbb{E}\big[X_i\,X_j\big] - \mathbb{E}[X_i]\,\mathbb{E}\big[X_j\big]$$

If $\mathbb{E}[X_i] = \mathbb{E}\big[X_i\big] = 0$ (e.g., standardization),

$$\mathrm{cov}(X_i,X_j) = \mathbb{E}\big[X_i\,X_j\big] \approx \frac{1}{p}\sum_{g=1}^p X_{gi}X_{gj}$$

Covariance calculation in high-dimensional space - 2

Letting
$$\mathbf{x}_i^{\top} \equiv \left(X_{1i},\dots,X_{gi},\dots,X_{pi}\right)$$
 and $\mathbb{E}\big[X_{gi}\big] \approx p^{-1}\sum_q X_{gi} = 0$

Covariance calculation in high-dimensional space - 2

Letting
$$\mathbf{x}_i^\top \equiv \left(X_{1i},\dots,X_{gi},\dots,X_{pi}\right)$$
 and $\mathbb{E}\big[X_{gi}\big] \approx p^{-1}\sum_g X_{gi} = 0$

$$\mathrm{cov}(X_i, X_j) = \mathbb{E}\big[X_i X_j\big] \approx \frac{1}{p} \sum_{g=1}^p X_{gi} X_{gj} = \frac{1}{p} \mathbf{x}_i^\top \mathbf{x}_j$$

Covariance calculation in high-dimensional space - 2

Letting
$$\mathbf{x}_i^\top \equiv \left(X_{1i},\dots,X_{gi},\dots,X_{pi}\right)$$
 and $\mathbb{E}\big[X_{gi}\big] \approx p^{-1}\sum_g X_{gi} = 0$

$$\mathrm{cov}(X_i, X_j) = \mathbb{E}\big[X_i X_j\big] \approx \frac{1}{p} \sum_{g=1}^p X_{gi} X_{gj} = \frac{1}{p} \mathbf{x}_i^\top \mathbf{x}_j$$

Full sample covariance:

$$\frac{1}{p}X^{\top}X = \frac{1}{p} \begin{pmatrix} \mathbf{x}_{1}^{\top}\mathbf{x}_{1} & \cdots & \mathbf{x}_{1}^{\top}\mathbf{x}_{n} \\ \mathbf{x}_{2}^{\top}\mathbf{x}_{1} & \cdots & \mathbf{x}_{2}^{\top}\mathbf{x}_{n} \\ \vdots & \vdots & \\ \mathbf{x}_{n}^{\top}\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}^{\top}\mathbf{x}_{n} \end{pmatrix}$$

Singular value decomposition simplifies covariance

$$X = UDV^{\top}$$

Gene covarince

$$\begin{array}{rcl} XX^\top &=& UDV^\top (UDV^\top)^\top \\ &=& UDV^\top ((V^\top)^\top D^\top U^\top) \\ &=& UDV^\top VDU^\top \\ &=& UD^2U^\top \end{array}$$

• The Matrix Cookbook: https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

Singular value decomposition simplifies covariance

$$X = UDV^{\top}$$

Sample covarince

$$X^{\top}X = (UDV^{\top})^{\top}UDV^{\top}$$

$$= ((V^{\top})^{\top}D^{\top}U^{\top})UDV^{\top}$$

$$= VDU^{\top}UDV^{\top}$$

$$= VD^{2}V^{\top}$$

• The Matrix Cookbook: https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

Example: scRNA-seq data of human pancreatic cells

Muraro et al. Cell Systems (2016)

- 19,140 genes/features/rows
- 3,072 cells/columns
- 12,442,034 non-zero elements
- ullet pprox 21 % non-zero elements

Today's lecture

Recent developments in latent factor modelling

Recap: How can we learn patterns in unsupervised learning from single cell count data?

ullet Goal: Find the factor-specific gene dictionary eta and hidden factor loading H.

Can we "encode" high-dim data to low-dim hidden variables?

- ullet Take one cell as a long vector ${f x}_i$
- Apply an encoding function $f(\mathbf{x}_i)$
- Neural network architectures capture relationships between variables

no connection within each layer

Can we "encode" high-dim data to low-dim hidden variables?

- ullet Take one cell as a long vector ${f x}_i$
- \bullet Apply an encoding function $f(\mathbf{x}_i)$
- Neural network architectures capture relationships between variables

$$h_i^{(l)} \leftarrow f(\sum_j W_{ij} h_j^{(l-1)} + b_i)_{\text{bias}}$$

no connection within each layer

Unsupervised learning of a good encoder model is fundamentally challenging because ...

Unsupervised learning of a good encoder model is fundamentally challenging because ...

we don't have good encoding "examples" beforehand.

How can we "supervise" how well we encoded?

"Supervise" unsupervised learning by self reconstruction

Deep autoencoder first proposed in computer vision

- Hinton & Salakhutdinov, Science (2006)
- One of the first "deep learning" idea
- Learning the latent representation of an image helps subsequent classification tasks.
- To train a deep autoencoder architecture, they pretrained the model layer by layer.

Let's build a simple autoencoder model using torch

- See this online book if you are interested in building your own deep learning model: Deep Learning and Scientific Computing with R torch
- https://skeydan.github.io/Deep-Learning-and-Scientific-Computing-with-R-torch/

Why do we use some Deep Learning library?

- Built-in functions for scientific computing
 - log, log1p, exp, softmax, sigmoid, softplus
- Faster computation both in CPU and GPU (in general)
- No need to work on differentiation by hands
- Trouble shooting by ML community

Encoder: high-dim data ightarrow low-dim latent space

```
build linear encoder <-
   nn module(
        ## How do we want to haild this module ##
        classname = "linear encoder".
        initialize = function(d.in, K){
            self$K <- K # number of hidden factors
            self$func.z <- nn_linear(d.in, K) # a linear neural net layer
            self$bn <- nn batch norm1d(d.in) # batch norm
        }.
        ## Define how do we propate infomration ##
        forward = function(x.b){}
            self$get.latent(x.b)
        ٦.
        get.latent = function(x.b){
            x.b <- torch_log1p(x.b) # log1p transformation
            x.b <- self$bn(x.b) # to expedite training
            self$func.z(x.b) # take linear combinations
        })
```

Check if this encoder module works okay

```
lin.encoder <- build.linear.encoder(ncol(x.torch), 7)$to(dev = GPU)
lin.encoder
## An `nn module` containing 172.267 parameters.
##
## -- Modules ------
## * func.z: <nn_linear> #133,987 parameters
## * bn: <nn batch norm1d> #38,280 parameters
## Test using the first five cells/data ##
lin.encoder(x.torch[1:5, ])
```

```
## 0.5178 -0.1340 -0.2252 0.4695 -0.5365 0.0752 0.6359

## -1.2402 0.3763 0.1773 0.0695 0.0615 0.2551 0.1502

## 1.0977 -0.1319 -0.2735 -0.1878 0.2748 0.2927 -0.6805

## -0.4851 0.5978 0.9569 -0.4714 -0.1900 0.4356 -0.2359

## 0.1058 -0.7104 -0.6104 0.1353 0.3994 -1.0707 0.1194

## [ CUDAFloatType{5,7} ] [ grad_fn = <AddmmBackward0> ]
```

torch tensor

Decoder: low-dim latent space ightarrow high-dim data

```
build linear decoder <-
   nn module(
        classname = "linear decoder".
        ## Define how we want to build this module
        initialize = function(n.out, K) {
            self$K <- K
            self$func.logX <- nn_linear(K, n.out) # latent dim -> data dim
        },
        ## Define how do get back high-dim data
        forward = function(z,b){
            .num <- self$func.logX(z.b)</pre>
            .denom <- torch_logsumexp(.num, dim = -1, keepdim = T)</pre>
            return(.num - .denom)
        }.
        ## Helper function
        get.weight = function(){
            self$func.logX$weight
        })
```

Check flow from the encoder to decoder

```
lin.decoder <- build.linear.decoder(ncol(x.torch), K=7)$to(device=GPU)
x.input <- x.torch[1:5, ]
z.b <- lin.encoder(x.input)</pre>
## reconstruction of x based on the latent ##
logx.recon <- lin.decoder(z.b)</pre>
logx.recon[, 1:7]
## torch tensor
## -9.8609 -9.8068 -9.9801 -9.3937 -9.8530 -9.7527 -9.5305
## -9.6868 -9.8304 -10.3684 -10.3412 -9.7813 -9.5759 -9.4160
## -9.7035 -9.7975 -9.4423 -9.6822 -9.9356 -10.2369 -9.9145
## -10.0678 -10.1096 -9.9874 -10.5153 -9.8163 -9.5094 -9.8346
## -9.6050 -9.8140 -9.5354 -9.1587 -9.7487 -10.5920 -10.0368
```

Note: the reconstructed data matrix is in logarithm scale

[CUDAFloatType{5,7}][grad_fn = <SliceBackward0>]

What's really going on in terms of functions?

For each sample/cell i,

• Encoder:

$$\mathbf{z}_i \leftarrow \operatorname{normalize}(\log(\mathbf{x}_i+1)) \cdot \mathbf{W}^{(z)} + \mathbf{b}^{(z)}$$

Decoder:

$$\hat{\mathbf{x}}_i \leftarrow \mathbf{z}_i \cdot \mathbf{W}^{(x)} + \mathbf{b}^{(x)}$$

Goal: to make the reconstructed data pprox the input

• Gene expression frequency:

$$\rho_{ig} = \frac{\exp(\widehat{\log} X_{ig})}{\sum_{g'} \exp(\widehat{\log} X_{ig'})}$$

• Multinomial log-likelihood:

$$L_i \stackrel{\text{def}}{=} \sum_{g=1}^p X_{ig} \log \rho_{ig}$$

$$\log \rho_{ig} = \widehat{\log} \widehat{X}_{ig} - \log \sum_{g'} \exp(\widehat{\log} \widehat{X}_{ig'})$$

Goal: to make the reconstructed data pprox the input

• Gene expression frequency:

$$\rho_{ig} = \frac{\exp(\widehat{\log} \overline{X}_{ig})}{\sum_{g'} \exp(\widehat{\log} \overline{X}_{ig'})}$$

• Multinomial log-likelihood:

$$L_i \stackrel{\text{def}}{=} \sum_{g=1}^p X_{ig} \log \rho_{ig}$$

$$L_i = \sum_{g=1}^p X_{ig} \left[\widehat{\log X}_{ig} - \operatorname{logSumExp}(\widehat{\log \mathbf{x}}_i) \right]$$

Goal: to make the reconstructed data pprox the input

```
multinom.llik <- function(x.input, logx.recon){</pre>
    torch sum(x.input * logx.recon, dim = -1)
multinom.llik(x.input, logx.recon)
## torch tensor
## 1e+05 *
## -2.3134
## -3.1798
## -1.7161
## -3.3900
## -1.6135
## [ CUDAFloatType{5} ] [ grad fn = <SumBackward1> ]
```

- We need to maximize this with respect to all the parameters in the encoder and decoder layers.
- Maximizing log-likelihood
 minimizing negative log-likelihood

Torch provides a convenient way to "differentiate"

```
loss <- -torch_mean(multinom.llik(x.input, logx.recon))
loss

## torch_tensor
## 244255

## [ CUDAFloatType{} ][ grad_fn = <SubBackward0> ]
loss$backward()
```

Put the encoder and decoder together (so that gradients flow)

```
build.linear.autoenc <-
nn_module(
    classname = "linear autoencoder",
    initialize = function(d.data, K){
        self$enc <- build.linear.encoder(d.data, K)
        self$dec <- build.linear.decoder(d.data, K)
},
forward = function(x){
        z <- self$enc(x)
        x.hat <- self$dec(z)
        .loss <- - multinom.llik(x, x.hat)
        list(loss = .loss)
})</pre>
```

A bit more formal definition

Minimize the total loss

$$L \stackrel{\text{def}}{=} \sum_{i=1}^n \operatorname{Loss}(\mathbf{x}_i, \hat{\mathbf{x}}_i)$$

where

$$\hat{\mathbf{x}}_i = \mathsf{Decoder}(\mathsf{Encoder}(\mathbf{x}_i; \boldsymbol{\theta}^{(\mathsf{enc})}); \boldsymbol{\theta}^{(\mathsf{dec})})$$

with respect to the parameters θ .

Update by stochastic gradient steps

Take gradient (direction to minimize the loss) for each parameter:

$$\nabla L \equiv \left(\frac{\partial L}{\partial \theta_1}, \frac{\partial L}{\partial \theta_2}, \dots\right)$$

Update parameters:

$$\theta^{(t)} \leftarrow \theta^{(t-1)} - \rho_t \underbrace{\sum L}_{\text{learning rate gradient at } t-1}$$

Update by stochastic gradient steps

```
## register parameters to ADAM optimizer
.params <- linear.autoenc$parameters
adam <- optim_adam(.params, lr = 1e-2)
adam$zero_grad()</pre>
```

```
x.b <- x.torch[1:3, ]  # Select minibatch data
out <- linear.autoenc(x.b)  # data -> latent -> recon.
out$loss  # loss evaluated on X.b

## torch_tensor
## 1e+05 *
## 2.3280
## 3.1825
## 1.7177
## [ CUDAFloatType{3} ] [ grad_fn = <SubBackward0> ]
```

- lacktriangle Take minibatch $X^{(b)}$
- $\widehat{X}^{(b)} = \operatorname{Dec}(\operatorname{Enc}(X^{(b)}))$
- $lacksquare Loss(X^{(b)}, \hat{X}^{(b)})$

```
loss.b <- torch_sum(out$loss) #</pre>
loss.b$backward()
                              # numericallu
                               # differentiate
## Before we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.001 *
## 5.9024
## 6.9991
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
adam$step() -> .
## After we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.01 *
## 1.5902
## -0.3001
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
```

```
loss.b <- torch_sum(out$loss) #</pre>
loss.b$backward()
                               # numericallu
                               # differentiate
## Before we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.001 *
## 5.9024
## 6.9991
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
adam$step() -> .
## After we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.01 *
## 1.5902
## -0.3001
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
```

$$\begin{split} & \text{\star Aggregate training loss across} \\ & \text{samples in this minibatch:} \\ & \sum_{i \in \text{minibatch}(b)} \text{loss}(\mathbf{x}_i, \hat{\mathbf{x}_i}) \end{split}$$

```
loss.b <- torch_sum(out$loss) #</pre>
loss.b$backward()
                               # numericallu
                               # differentiate
## Before we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.001 *
    5.9024
## 6.9991
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
adam$step() -> .
## After we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.01 *
## 1.5902
## -0.3001
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
```

$$\begin{split} & \text{\star Aggregate training loss across} \\ & \text{samples in this minibatch:} \\ & \sum_{i \in \text{minibatch}(b)} \text{loss}(\mathbf{x}_i, \hat{\mathbf{x}_i}) \end{split}$$

* Take gradient with respect to encoder and decoder parameters

```
loss.b <- torch_sum(out$loss) #</pre>
loss.b$backward()
                               # numericallu
                               # differentiate
## Before we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.001 *
    5.9024
## 6.9991
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
adam$step() -> .
## After we take one SGD step
head(adam$param_groups[[1]]$params$enc.func.z.bias, 2)
## torch tensor
## 0.01 *
   1.5902
## -0.3001
## [ CUDAFloatType{2} ][ grad_fn = <IndexBackward0> ]
```

$$\begin{split} & \text{\star Aggregate training loss across} \\ & \text{samples in this minibatch:} \\ & \sum_{i \in \mathsf{minibatch}(b)} \mathsf{loss}(\mathbf{x}_i, \hat{\mathbf{x}_i}) \end{split}$$

* Take gradient with respect to encoder and decoder parameters

★ Update the parameters by taking one (stochastic) gradient descent step

$$\theta^{(t)} \leftarrow \theta^{(t-1)} + \rho \nabla L$$

Training algorithm: Repeat SGD steps many times

- For many epochs
 - Sample mini batch data
 - 2 Evaluate loss function $L(\mathbf{x}_i, \hat{\mathbf{x}}_i)$
 - lacksquare Compute gradient $abla_{ heta}L$
 - Update parameters by SGD
- Report encoding results

Results: SGD minimized the loss function

Latent dimensions estimated by the encoder model

Latent dimensions estimated by the encoder model

Variational autoencoder (VAE)

A classical autoencoder:

Encoder θ z_i z_i Decoder

Variational autoencoder:

- Define relationships between variables (auto generative process)
- Usually, the decoder side captures our scientific hypothesis

VAE approximates Bayesian inference

Auto-EncodingVariational Bayes

Diederik P. Kingma Machine Learning Group Universiteit van Amsterdam dpkingma@gmail.com

Max Welling Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

Prior:

$$Z \sim p(Z|\psi)$$

Data likelihood:

$$X \sim p(X|Z,\theta)$$

Variational Encoder:

$$q(Z|X) = \mathsf{NN}(X)$$

SCVI: deep generative model for scRNA-seq

Generative model: zero-inflated negative binomial distribution

Lopez, .., Jordan, Yosef, Nature Methods (2018)

A new encoder as a posterior inference machine

We need to define functions (neural networks) that maps from the data vector \mathbf{x} to

- ullet the mean of latent embedding: μ
- ullet the log variance of latent embedding: σ
- $z_{ig} \leftarrow \mu_{ig} + \sigma_{ig} \epsilon$, $\epsilon \sim \mathcal{N}(0, 1)$

A new encoder as a posterior inference machine

```
build.vae.encoder <- nn module(</pre>
        classname = "vae encoder",
        initialize = function(d.in, K){
            self$K <- K
                                                                   # number of hidden vars.
            self$z.mean <- nn linear(d.in, K)</pre>
                                                                   # mean function
            self$z.logvar <- nn_linear(d.in, K)</pre>
                                                                   # log variance function
            self$bn <- nn batch norm1d(d.in)</pre>
                                                                  # batch norm
        }.
        forward = function(x,b){
            x.b <- self$normalize(x.b)
            mm \le self_{z,mean}(x,b)
                                                                   # mean evaluated
            lv \leftarrow torch_clamp(self$z.logvar(x.b), -4.0, 4.0)
                                                                  # log-var evaluated
            z <- mm + torch randn like(lv) * torch exp(lv/ 2.) # stochastic z
            list(z = z, z.mean = mm, z.logvar = lv)
        },
        normalize = function(x.b){
                                                                   # normalization
            x.b <- torch_log1p(x.b)
                                                                   # log1p transformation
            self$bn(x.b)
                                                                   # to expedite training
        }, ## helper function
        get.latent = function(x.b){ self$z.mean(self$normalize(x.b)) })
```

We will have two types of loss functions

Data log likelihood (a generative model)

$$\log \prod_{i=1}^n p(\mathbf{x}_i|\mathbf{z}_i)$$

```
multinom.llik <- function(x.input, logx.recon){
   torch_sum(x.input * logx.recon, dim = -1)
}</pre>
```

- The log-likelihood is the same as before
- KL loss will work like regularization

Divergence between prior and posterior

$$D_{\mathrm{KL}} \left(\left. q(\mathbf{z}) \right\| p(\mathbf{z}) \right)_{\mathrm{prior}}$$

• We assume both q and p follows Gaussian distribution

A complete definition of our VAE model

```
build.vae <-
   nn_module(
        classname = "variational autoencoder".
        initialize = function(d.data, K){
            self enc <- build.vae.encoder (d.data, K) # encoder model
            self$dec <- build.linear.decoder(d.data, K) # decoder model</pre>
       }.
        forward = function(x){
            .enc <- self$enc(x)
            x.hat <- self$dec(.enc$z)
                                                          # reconstruction
            .llik <- multinom.llik(x, x.hat)</pre>
                                                          # data likelihood
            .kl <- kl.loss(.enc$z.mean, .enc$z.logvar) # KL divergence
                                                          # combined loss
            .loss <- .kl - .llik
            list(loss = .loss, kl=.kl)
```

• What do you want to change?

VAE: Check flow from the encoder to decoder

```
vae <- build.vae(ncol(x.torch), K=12)</pre>
                                                 vae$to(device = GPU)
                                                 ## reconstruction of x based on the latent ##
                                                 x.input <- x.torch[1:5, ]</pre>
                                                 z.b <- vae$enc(x.input)</pre>
                                                 logx.recon <- vae$dec(z.b$z)</pre>
out <- vae(x.input)</pre>
                                                 logx.recon[, 1:5]
out$loss
## torch tensor
                                                 ## torch tensor
## 1e+05 *
                                                 ## -9.6245 -8.9755 -9.8750 -10.1086 -9.9185
   2.3476
                                                 ## -10.6932 -10.6797 -10.8862 -10.2064 -10.9111
   3.2510
                                                 ## -10.0054 -9.7063 -10.5240 -9.9714 -10.3936
   1.7279
                                                 ## -9.8656 -10.3461 -10.1127 -10.6001 -9.8205
   3.4527
                                                 ## -10.6077 -10.3243 -10.8839 -10.1722 -11.3678
   1.6430
                                                 ## [ CUDAFloatType{5,5} ][ grad_fn = <SliceBackward0>
  [ CUDAFloatType{5} ] [ grad_fn = <SubBackward0> ]
```

• Note: the reconstructed data matrix is in logarithm scale

Results: SGD minimized the VAE loss function

Latent dimensions in the VAE model

Latent dimensions in the VAE model

Annotate factors to cell types by enrichment (fgsea)

Annotate factors to cell types by enrichment (fgsea)

Can we improve model interpretation?

Can we improve model interpretation?

• The decoder part is open to modelling in many different ways.

Can we improve model interpretation?

- The decoder part is open to modelling in many different ways.
- Can we define latent factors by gene expression frequencies?

Single-cell Embedded Topic Model

Zhao .. Li, Nature Comm. (2021)

Document topic modelling

Slide credit: David Blei

Word frequencies define topics in documents

Slide credit: David Blei

Multinomial topic model for scRNA-seq data

Can we simply model scRNA-seq counts by multinomial distribution?

- ullet X_{iq} : gene expression of a gene g in a single cell i
- ullet H_{ik} : latent topic proportion of a cell i to a topic k
- ullet eta_{kq} : topic k-specific gene probability

Multinomial topic model for scRNA-seq data

Can we simply model scRNA-seq counts by multinomial distribution?

Likelihood model:

$$\mathcal{L} = \prod_{i=1}^n \prod_{g=1}^{\text{genes}} \left(\sum_k H_{ik} \beta_{kg} \right)^{X_{ij}}$$

- ullet X_{ia} : gene expression of a gene g in a single cell i
- ullet H_{ik} : latent topic proportion of a cell i to a topic k
- β_{ka} : topic k-specific gene probability

Multinomial topic model for scRNA-seq data

Can we simply model scRNA-seq counts by multinomial distribution? Likelihood model:

$$\mathcal{L} = \prod_{i=1}^n \prod_{g=1}^{\text{genes}} \left(\sum_k H_{ik} \beta_{kg} \atop \text{a gene g's probability in a cell $i \equiv \rho_{ig}$} \right)^{X_{ij}}$$

- ullet X_{ia} : gene expression of a gene g in a single cell i
- ullet H_{ik} : latent topic proportion of a cell i to a topic k
- ullet β_{kq} : topic k-specific gene probability

Topic modelling for single-cell data

Probability of gene g in a cell i:

$$\rho_{ig} = \sum_{k \in \text{topics}} H_{ik} \beta_{kg}$$

By **not** normalizing the probability of each cell, we do not worry about modelling sequencing depths.

Document topic modelling vs. single-cell ETM

variables	in document topic model	in single cell ETM
\overline{D}	Total number of documents (corpus)	Total number of cells
d	Document index	Cell index
N_d	Number of words in a document d	Number of read counts in a cell d
$\stackrel{j}{K}$	Word index, $j \in [N_d]$	Read index
K	Total number of topics	Total number of cell type topics
k	Topic index, $k \in [K]$	Cell topic index
V	Size of vocabulary	Total number of genes
v	Vocabulary index $v \in [V]$	Gene index
W_{di}^v	Indicator for a word to vocabulary $\in \{0,1\}$	Indicator for a read to a gene $\in \{0,1\}$
X_{dv}^v	Vocabulary \boldsymbol{v} occurrence in a document \boldsymbol{d}	Gene expression of a gene v in a cell $d \in [0, N_d]$

variables	in document topic model	in single cell ETM
$Z_{dj}^{k} \ H_{dk} \ eta_{kv}$	Indicator for assigning a word to a topic k Hidden state k of a document d topic k -specific vocabulary v frequency	Indicator for assigning a read to a topic k Hidden state k of a cell d topic k -specific, a gene v 's exression

- In Latent Dirichlet Allocation: $\sum_{k=1}^K H_{dk} = 1$ and $H_{dk} > 0$, and $\mathbf{h}_d \sim \mathrm{Dirichlet}(\alpha/K, \dots, \alpha/K)$ a priori. Approximately, we have $\hat{H}_{dk} = \sum_j^{N_d} Z_{dj}^k/N_d$.
- In Embedded Topic model, H_{dk} with the simplex constraints; $H_{dk} = \exp(\delta_{dk})/\sum_{k'} \exp(\delta_{dk'})$ where $\delta_{dk} \sim \mathcal{N}(0,1)$ a priori.
- ullet Additional constraints: $eta_{kv}>0$ and $\sum_v eta_{kv}=1$, meaning that only a handful of vocabulary v contribute to a topic k.

Let's modify the decoder part

```
build etm decoder <-
    nn module(classname = "ETM decoder",
        initialize = function(n.out, K, jitter = 1e-2) {
            self$lbeta <- nn_parameter(torch_randn(K, n.out) * jitter)</pre>
            self$beta <- nn_log_softmax(2) # topic x variant (softmax for each topic)
            self$hid <- nn_log_softmax(2) # sample x topic (softmax for each sample)</pre>
       },
        ## Define how do get back high-dim data
        forward = function(z.b, eps = 1e-8){
            .beta <- self$get.weight()</pre>
            h.b \le self 
            torch log(torch mm(torch exp(h.b), torch exp(.beta)) + eps)
        },
        ## Helper function
        get.weight = function(){
            self$beta(self$lbeta)
        })
```

ETM: putting the encoder and decoder together

```
build etm <-
   nn_module(
        classname = "embedded topic model".
        initialize = function(d.data, K){
            self$enc <- build.vae.encoder(d.data, K)</pre>
            self$dec <- build.etm.decoder(d.data, K)</pre>
        },
        forward = function(x){
            .enc <- self$enc(x)
            x.hat <- self$dec(.enc$z)
            .llik <- multinom.llik(x, x,hat)</pre>
            .kl <- kl.loss(.enc$z.mean, .enc$z.logvar)
            .loss <- .kl - .llik
            list(loss = .loss, kl = .kl, latent = .enc$z.mean)
        })
```

ETM: Check flow from the encoder to decoder

```
etm <- build.etm(ncol(x.torch), K=12)
                                                etm$to(device = GPU)
                                                ## reconstruction of x based on the latent ##
                                                x.input <- x.torch[1:5, ]</pre>
                                                z.b <- etm$enc(x.input)</pre>
out <- etm(x.input)
                                                logx.recon <- etm$dec(z.b$z)</pre>
                                                logx.recon[, 1:5]
out <- vae(x.input)</pre>
                                                ## torch tensor
out$loss
                                                ## -9.8668 -9.8612 -9.8545 -9.8606 -9.8590
## torch tensor
                                                ## -9.8612 -9.8600 -9.8577 -9.8645 -9.8578
## 1e+05 *
                                                ## -9.8653 -9.8566 -9.8557 -9.8602 -9.8615
   2.3777
                                                ## -9.8616 -9.8548 -9.8593 -9.8646 -9.8690
   3.2378
                                                ## -9.8608 -9.8624 -9.8502 -9.8621 -9.8614
  1.7490
                                                ## [ CUDAFloatType{5.5} ] [ grad fn = <SliceBackward0>
   3.4944
   1.6479
```

• Note: the reconstructed data matrix is in logarithm scale

[CUDAFloatType{5}][grad_fn = <SubBackward0>]

Results: SGD minimized the loss function

Latent dimensions in the ETM model

Latent dimensions in the ETM model

In ETM, the hidden dimensions are not independent

$$H_{ik} = \frac{\exp(Z_{ik})}{\sum_{k'} \exp(Z_{ik'})}$$

epoch = 1451

epoch = 2001

Annotate factors to cell types by enrichment (fgsea)

Annotate factors to cell types by enrichment (fgsea)

Discussions on latent topic modelling

- Most cells predominantly belong to one topic (one colour). Why?
- If we model cells as a mixture of cell topics, we can capture doublets or triplets.
- The underlying generative model assumes no sequencing depth! This can help avoid batch-specific differences in practice.
- VAE offers a flexible framework with which our scientific hypothesis can be formulated in a probabilistic language (torch).
- Potentially, this purely-unsupervised learning framework can be combined with supervised, semi-supervised learning models.