АЛГЕБРЫ C ДЕЛЕНИЕМ, ТЕОРЕМЫ ФРОБЕНИУСА, КОММУТАТИВНЫЕ АЛГЕБРЫ C ДЕЛЕНИЕМ

2.7.1. АЛГЕБРЫ С ДЕЛЕНИЕМ

Одной из классических задач алгебр — это разыскание всех алгебр с делением. Несмотря на важность этой задачи она в полном объёме не решена до сих пор. Однако, если помимо существования деления, наложить ещё другие требования естественного характера, то задача становится легче. В 1878 г. немецкий математик Г.Фробениус (1849-1917) доказал следующую теорему.

Любая ассоциативная алгебра с делением изоморфна одной из трёх: алгебре действительных чисел, алгебре комплексных чисел или алгебре кватернионов.

Впоследствии был установлен более общий факт, называемый обобщённой теоремой Фробениуса..

Любая альтернативная алгебра с делением изоморфна одной из четырех алгебр: действительных чисел, комплексных чисел кватернионов или октав.

Доказательство теоремы Фробениуса опирается на ряд утверждений.

Утверждение I. **Ассоциативная алгебра** А с **делением содержит** единицу.

Рассмотрим уравнение $\mathbf{xa} = \mathbf{a}$, где \mathbf{a} – отличный от нуля элемент алгебры A. Так как алгебра \mathbf{c} делением, то имеется единственное решение \mathbf{e} этого уравнения, то есть $\mathbf{ea} = \mathbf{a}$. Умножая обе части этого равенства слева на \mathbf{b} , в силу ассоциативности алгебры получаем $\mathbf{b}(\mathbf{ea}) = (\mathbf{be})\mathbf{a} = \mathbf{ba}$ или $\mathbf{be} = \mathbf{b}$. Теперь умножим это равенство справа на \mathbf{c} : $(\mathbf{be})\mathbf{c} = \mathbf{b}(\mathbf{ec}) = \mathbf{bc} \rightarrow \mathbf{ec} = \mathbf{c}$. Эти два равенства в силу произвольности элементов \mathbf{b} и \mathbf{c} означают, что элемент \mathbf{e} является единицей алгебры A. В дальнейшем единицу будем обозначать $\mathbf{1}$.

Утверждение II. Если элемент ${\bf a}\in A$ не пропорционален 1, то совокупность C_a элементов вида $\alpha {\bf 1}+\beta {\bf a}$ образует подалгебру, изоморфную алгебре комплексных чисел.

В алгебре размерности n система из n+1 векторов $1, \mathbf{a}^1, \mathbf{a}^2, ..., \mathbf{a}^n$ линейно зависима и некоторая степень $m \le n$ должна разлагаться по предыдущим: $\mathbf{a}^m = k_{m-1} \mathbf{a}^{m-1} + ... + k_2 \mathbf{a}^2 + k_1 \mathbf{a} + k_0 \mathbf{1}$ или $\mathbf{a}^m - k_{m-1} \mathbf{a}^{m-1} - ... - k_2 \mathbf{a}^2 - k_1 \mathbf{a} - k_0 \mathbf{1} = 0$. Это уравнение эквивалентно произведению многочленов первой и второй степени $P_1(\mathbf{a})P_2(\mathbf{a})...P_m(\mathbf{a})=0$, то есть имеется сомножитель равный нулю и \mathbf{a} удовлетворяет уравнению первой или второй степени. Уравнение первой степени не может быть, ибо тогда $\alpha \mathbf{1} + \mathbf{a} = 0$ и элемент \mathbf{a} пропорционален $\mathbf{1}$, вопреки условию. Следовательно \mathbf{a} удовлетворяет неразложимому квадратному уравнению, корень которого комплексное число.

Утверждение III. Если элементы ${\bf a}\in A$, ${\bf b}\in A$ не принадлежат одной подалгебре C_a , то совокупность $Q_{a,b}$ элементов вида $\alpha {\bf 1}+\beta {\bf a}+\gamma {\bf b}+\delta {\bf a}{\bf b}$ образует подалгебру, изоморфную алгебре кватернионов. Если кроме того элементы ${\bf a}$ и ${\bf b}$ такие, что ${\bf a}^2=-1$, ${\bf b}^2=-1$, то ${\bf a}{\bf b}+{\bf b}{\bf a}=\lambda {\bf 1}$, где $\lambda-$ действительное число.

Если $\mathbf{a}^2 = -1$, $\mathbf{b}^2 = -1$ то **a** и **b** не содержат слагаемых кратных **1**.

Квадраты элементов $(\mathbf{a} + \mathbf{b})^2$ и $(\mathbf{a} + 2\mathbf{b})^2$ должны разлагаться соответственно по $\mathbf{1}, (\mathbf{a} + \mathbf{b})$ и $\mathbf{1}, (\mathbf{a} + 2\mathbf{b})$, то есть

$$(\mathbf{a} + \mathbf{b})^2 = -2 \cdot \mathbf{1} + (\mathbf{ab} + \mathbf{ba}) = p\mathbf{1} + q(\mathbf{a} + \mathbf{b}),$$

 $(\mathbf{a} + 2\mathbf{b})^2 = -5 \cdot \mathbf{1} + 2(\mathbf{ab} + \mathbf{ba}) = p'\mathbf{1} + q'(\mathbf{a} + 2\mathbf{b}).$

Из этих равенств имеем $(2+p)\mathbf{1}+q(\mathbf{a}+\mathbf{b})=(\mathbf{a}\mathbf{b}+\mathbf{b}\mathbf{a})=(5+p')\mathbf{1}+q'(\mathbf{a}+2\mathbf{b})$ или $(3+p'-p)\mathbf{1}+(q'-q)\mathbf{a}+(2q'-q)\mathbf{b}=0$, то есть \mathbf{a} и \mathbf{b} есть элементы одной подалгебры C_a . Это исключено условием и в разложениях q=q'=0. Итак, $\mathbf{a}\mathbf{b}+\mathbf{b}\mathbf{a}=\lambda\mathbf{1}$.

Из элементов $\mathbf{a} = \mathbf{e}_1$ и **b** можно сформировать элемент $\mathbf{e}_2 = \frac{\lambda \mathbf{a} + 2\mathbf{b}}{\sqrt{4 - \lambda^2}}$

так что $\mathbf{e}_{_{1}}{^{2}}=-\mathbf{1}, \quad \mathbf{e}_{_{2}}{^{2}}=-\mathbf{1}, \quad \left(\mathbf{e}_{_{1}}\mathbf{e}_{_{2}}\right)^{2}=-\mathbf{1}$.

Действительно
$$\mathbf{e}_{2}^{\ 2} = \left(\frac{\lambda \mathbf{a} + 2\mathbf{b}}{\sqrt{4 - \lambda^{2}}}\right)^{2} = \frac{-\left(\lambda^{2} + 4\right)\mathbf{l} + 2\lambda\left(\mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{b}\right)}{4 - \lambda^{2}} = -\mathbf{1};$$

Заметим, что $\mathbf{e}_{1}\mathbf{e}_{2}+\mathbf{e}_{2}\mathbf{e}_{1}=\frac{\mathbf{a}(\lambda\mathbf{a}+2\mathbf{b})+(\lambda\mathbf{a}+2\mathbf{b})\mathbf{a}}{\sqrt{4-\lambda^{2}}}=\frac{-2\lambda\cdot\mathbf{1}+2(\mathbf{a}\mathbf{b}+\mathbf{a}\mathbf{b})}{\sqrt{4-\lambda^{2}}}=0\;,$

и на основании этого факта

справедливо.

$$(\mathbf{e}_1\mathbf{e}_2)^2 = (\mathbf{e}_1\mathbf{e}_2)(\mathbf{e}_1\mathbf{e}_2) = (\mathbf{e}_1\mathbf{e}_2)(-\mathbf{e}_2\mathbf{e}_1) = -(\mathbf{e}_1\mathbf{e}_2)(-\mathbf{e}_2\mathbf{e}_1) = -(\mathbf{e}_1\mathbf{e}_2)$$

Теперь можем установить, что множество Q_{e_1,e_2} элементов вида $\alpha \mathbf{1} + \beta \mathbf{e}_1 + \gamma \mathbf{e}_2 + \delta \mathbf{e}_1 \mathbf{e}_2$ совпадающее с множеством $Q_{a,b}$ есть подалгебра алгебры A. Для этого достаточно убедиться в том, что произведение любых двух элементов из четвёрки $1, \mathbf{e}_1, \mathbf{e}_2, (\mathbf{e}_1 \mathbf{e}_2)$ разлагается по тем же четырём элементам. Кроме очевидных следует рассмотреть следующие:

$$\mathbf{e}_{1}(\mathbf{e}_{1}\mathbf{e}_{2}) = \mathbf{e}_{1}^{2}\mathbf{e}_{2} = -\mathbf{e}_{2}, \quad (\mathbf{e}_{1}\mathbf{e}_{2})\mathbf{e}_{1} = -(\mathbf{e}_{2}\mathbf{e}_{1})\mathbf{e}_{1} = -\mathbf{e}_{2}\mathbf{e}_{1}^{2} = \mathbf{e}_{2},$$
 $\mathbf{e}_{2}(\mathbf{e}_{1}\mathbf{e}_{2}) = -\mathbf{e}_{2}(\mathbf{e}_{2}\mathbf{e}_{1}) = -\mathbf{e}_{2}^{2}\mathbf{e}_{1} = \mathbf{e}_{1}, \quad (\mathbf{e}_{1}\mathbf{e}_{2})\mathbf{e}_{2} = \mathbf{e}_{1}\mathbf{e}_{2}^{2} = -\mathbf{e}_{1}.$

Итак, множество Q_{e_1,e_2} является подалгеброй. Поскольку, как следует из предыдущего, таблица умножения элементов четвёрки $\mathbf{1},\mathbf{e}_1,\mathbf{e}_2,(\mathbf{e}_1\mathbf{e}_2)=\mathbf{e}_3$ совпадает с таблицей умножения кватернионных единиц, для установления изоморфизма этой подалгебры алгебре кватернионов следует убедиться только в том, что четвёрка элементов $\mathbf{1},\mathbf{e}_1,\mathbf{e}_2,(\mathbf{e}_1\mathbf{e}_2)$ образует базис, то есть не один из её элементов не разлагается по *предшедствующим*.

Поскольку элементы $\mathbf{e}_1, \mathbf{e}_2$ не принадлежат одной подалгебре C_a , то элемент \mathbf{e}_2 не разлагается по $\mathbf{1}, \mathbf{e}_1$. Не разложимость $(\mathbf{e}_1\mathbf{e}_2)$ по $\mathbf{1}, \mathbf{e}_1, \mathbf{e}_2$ означает невозможность равенства $(\mathbf{e}_1\mathbf{e}_2) = p\mathbf{e}_2 + q\mathbf{e}_1 + r\mathbf{1}$, где $p \neq 0$, $q \neq 0$.

Если p=0, то, умножив слева равенство на \mathbf{e}_1 , получим $-\mathbf{e}_2=-q\mathbf{1}+r\mathbf{e}_1$, что невозможно в силу неразложимости \mathbf{e}_2 по $\mathbf{1},\mathbf{e}_1$. Поскольку $p\neq 0$ умножение слева равенства на \mathbf{e}_1 даёт $-\mathbf{e}_2=p(\mathbf{e}_1\mathbf{e}_2)-q\mathbf{1}+r\mathbf{e}_1$ или $(\mathbf{e}_1\mathbf{e}_2)=-\frac{1}{p}\mathbf{e}_2-\frac{r}{p}\mathbf{e}_1+\frac{q}{p}\mathbf{1}$. Вычитая из этого равенства исходное, получаем $\left(p+\frac{1}{p}\right)\mathbf{e}_2+\left(q+\frac{r}{p}\right)\mathbf{e}_1+\left(r-\frac{q}{p}\right)\mathbf{1}=0$. Все коэффициенты должны быть равны нулю, однако это невозможно ни при каком действительном p. Итак, четвёрка элементов $\mathbf{1},\mathbf{e}_1,\mathbf{e}_2,(\mathbf{e}_1\mathbf{e}_2)=\mathbf{e}_3$ образует базис подалгебры Q_{e_1,e_2} . Утверждение III

Теперь можно приступить к доказательству теоремы Фробениуса.

2.7.2. ТЕОРЕМА ФРОБЕНИУСА

Пусть A—ассоциативная алгебра с делением. Она согласно утверждению I содержит единицу. Элементы вида $k\mathbf{1}$ образуют подалгебру D, изоморфную алгебре действительных чисел. Если D не совпадает со всей алгеброй A, то, согласно утверждению II, в A содержится подалгебра C_a , изоморфная алгебре комплесных чисел. Если C_a не совпадает со всей алгеброй A, то, согласно утверждению III, в A содержится подалгебра $Q_{a,b}$, изоморфная алгебре кватернионов. Предположим, что $Q_{a,b}$ не совпадает со всей алгеброй A, то есть существует элемент \mathbf{c} , не принадлежащий $Q_{a,b}$, тогда это предположение приведёт к ряду противоречий, которые означают совпадение $Q_{a,b}$ со всей алгеброй A либо, что алгебра A не может быть алгеброй с делением.

В алгебре кватернионов выберем базис 1, i.j, k со стандартно таблицей умножения, а элемент с представим в виде $\mathbf{c} = p\mathbf{1} + q\mathbf{e}$, где $\mathbf{e}^2 = -1$ (\mathbf{e} есть мнимая единица комплексной алгебры C_a). Используя ассоциативность алгебры A и по свойству III соотношения $\mathbf{i}\mathbf{e} + \mathbf{e}\mathbf{i} = \lambda\mathbf{1}$, $\mathbf{j}\mathbf{e} + \mathbf{e}\mathbf{j} = \lambda'\mathbf{1}$, $\mathbf{k}\mathbf{e} + \mathbf{e}\mathbf{k} = \lambda''\mathbf{1}$ получаем $\mathbf{i}\mathbf{e} = (\mathbf{j}\mathbf{k})\mathbf{e} = \mathbf{j}(\mathbf{k}\mathbf{e}) = \mathbf{j}(-\mathbf{e}\mathbf{k} + \lambda''\mathbf{1}) = -(\mathbf{j}\mathbf{e})\mathbf{k} + \lambda''\mathbf{j} = -(-\mathbf{e}\mathbf{j} + \lambda'\mathbf{1})\mathbf{k} + \lambda''\mathbf{j} = \mathbf{e}\mathbf{i} - \lambda'\mathbf{k} + \lambda''\mathbf{j}$ и следовательно $\mathbf{i}\mathbf{e} - \mathbf{e}\mathbf{i} = \lambda''\mathbf{j} - \lambda'\mathbf{k}$. С другой стороны $\mathbf{i}\mathbf{e} + \mathbf{e}\mathbf{i} = \lambda\mathbf{1}$. Складывая эти равенства, находим что элемент $2\mathbf{i}\mathbf{e} = \lambda\mathbf{1} + \lambda''\mathbf{j} - \lambda'\mathbf{k}$ есть элемент из $Q_{a,b}$. Следовательно элемент $\mathbf{i}\mathbf{c} = \mathbf{i}(p\mathbf{1} + q\mathbf{e})$ есть также элемент из $Q_{a,b}$. Кроме того очевидно, что умножение \mathbf{i} на элемент из $Q_{a,b}$ даёт элемент из $Q_{a,b}$. Итак, умножение \mathbf{i} на любой элемент из A даёт элемент из A даёт элемент из A

Это невозможно, если A есть алгебра с делением, поскольку уравнение $\mathbf{i}\mathbf{x}=\mathbf{c}$ неразрешимо если \mathbf{c} не принадлежит $Q_{a,b}$. Либо $Q_{a,b}$ совпадает со всей алгеброй A. Теорема доказана.

2.7.3. ОБОШЁННАЯ ТЕОРЕМА ФРОБЕНИУСА

Обратимся к доказательству обобщённой теоремы Фробениуса. Сначала дадим другое определение альтернативной алгебры. Алгебра А называется альтернативной, если любое произведение, составленное из произвольных её элементов \mathbf{a} и \mathbf{b} , не зависит от способа расстановки скобок. Например, $(\mathbf{ab})\mathbf{b} = \mathbf{a}(\mathbf{bb})$, $(\mathbf{ab})(\mathbf{ba}) = (\mathbf{a}(\mathbf{bb}))\mathbf{a}$ и т.д. Это второе определение ассоциативности эквивалентно первому, которое состоит в выполнении тождеств $(\mathbf{ab})\mathbf{b} = \mathbf{a}(\mathbf{bb})$, $\mathbf{b}(\mathbf{ba}) = (\mathbf{bb})\mathbf{a}$ (теорема Артина). Таким образом, если алгебра A с делением такова, что любое произведение, составленное из двух произвольных её элементов, не зависит от расстановки скобок, то алгебра A изоморфна одной из четырёх алгебр: действительных чисел, комплексных чисел, кватернионов или октав.

Утверждения I, II, III о свойствах ассоциативной алгебры с делением остаются справедливыми и в случае альтернативной алгебры с делением. Например, утверждение I о единице алгебры: решение уравнений $\mathbf{x}\mathbf{a} = \mathbf{a}$, $\mathbf{b}\mathbf{x} = \mathbf{b}$ $\mathbf{x} = \mathbf{e}$ обладает свойством

$$ea = a \rightarrow e(ea) = (ee)a = ea \rightarrow ee = e,$$

 $be = b \rightarrow (be)e = b(ee) = be \rightarrow ee = e,$

то есть решение есть единица алгебры.

Далее аналогичное доказательство: если рассматриваемая альтернативная алгебра A не исчерпывается подалгеброй $Q_{a,b}$, то в ней содержится подалгебра, изоморфная алгебре октав; подалгебра же октав совпадает со всей алгеброй.

Однако, есть и другой путь. Можно показать, что алгебра A является нормированной. Тогда по теореме Гурвица будем иметь совпадение подалгебры октав со всей алгеброй.

Любые элементы \mathbf{a} и $\widetilde{\mathbf{a}}$, как сопряжённые в комплексной алгебре, удовлетворяют условиям $\mathbf{a} + \widetilde{\mathbf{a}} = k \cdot \mathbf{1}$, $\mathbf{a}\widetilde{\mathbf{a}} = k \cdot \mathbf{1}$, где k – действительное число.

Любые элементы **b** и $\widetilde{\mathbf{b}}$, как сопряжённые в алгебре кватернионов, удовлетворяют аналогичным условиям $\mathbf{b} + \widetilde{\mathbf{b}} = k \cdot \mathbf{1}$, $\mathbf{b}\widetilde{\mathbf{b}} = k \cdot \mathbf{1}$.

Пусть $\mathbf{a} = \mathbf{b}$, тогда разность соответствующих равенств даёт $\widetilde{\mathbf{a}} - \widetilde{\mathbf{b}} = k \cdot \mathbf{1}$, $\mathbf{a} \left(\widetilde{\mathbf{a}} - \widetilde{\mathbf{b}} \right) = k \cdot \mathbf{1}$. Если $\widetilde{\mathbf{a}} \neq \widetilde{\mathbf{b}}$, то из этих равенств вытекает, что элемент \mathbf{a} пропорционален $\mathbf{1}$, что противоречит предположению. Таким образом, элемент сопряжённый $\mathbf{a} = \mathbf{b}$, один и тот же, независимо от того, рассматриваем ли мы его как элемент комплексной подалгебры или же как элемент какой-либо подалгебры кватернионов.

То же самое относится и к модулю элементов $\mathbf{a} = \mathbf{b}$ поскольку $|\mathbf{a}|^2 = \mathbf{a}\widetilde{\mathbf{a}}, \ |\mathbf{b}|^2 = \mathbf{b}\widetilde{\mathbf{b}}$.

Итак, для любых двух элементов алгебры A имеем $\widetilde{\mathbf{a}+\mathbf{b}} = \widetilde{\mathbf{a}} + \widetilde{\mathbf{b}}$, $\widetilde{\mathbf{ab}} = \widetilde{\mathbf{b}}\widetilde{\mathbf{a}}$, то есть элемент сопряжённый $\widetilde{\mathbf{ab}}$ равен $\widetilde{\mathbf{ba}}$ и $\widetilde{\mathbf{ab}} + \widetilde{\mathbf{ba}} = k \cdot \mathbf{1}$.

Определим в алгебре A скалярное произведение (\mathbf{a}, \mathbf{b}) равенством $\mathbf{a}\widetilde{\mathbf{b}} + \mathbf{b}\widetilde{\mathbf{a}} = 2(\mathbf{a}, \mathbf{b}) \cdot \mathbf{1}$, которое обладает всеми свойствами скалярного произведения:

- $(\mathbf{a}, \mathbf{a}) > 0$, если $\mathbf{a} \neq 0$, и (0,0) = 0;
- $(\mathbf{a},\mathbf{b})=(\mathbf{b},\mathbf{a});$
- $(\mathbf{a}, k\mathbf{b}) = k(\mathbf{a}, \mathbf{b});$
- $(\mathbf{a}, \mathbf{b}_1 + \mathbf{b}_2) = (\mathbf{a}, \mathbf{b}_1) + (\mathbf{a}, \mathbf{b}_2).$

Из определения скалярного произведения имеем

$$2(\mathbf{a},\mathbf{a})\cdot\mathbf{1} = \mathbf{a}\widetilde{\mathbf{a}} + \mathbf{a}\widetilde{\mathbf{a}} = 2\|\mathbf{a}\|\cdot\mathbf{1} = 2|\mathbf{a}|^2\cdot\mathbf{1},$$

то есть норма элемента ${\bf a}$ в алгебре A совпадает с квадратом модуля как у комплексных чисел и кватернионов. Поскольку алгебры комплексных чисел и алгебры кватернионов являются нормированными алгебрами, то $({\bf ab},{\bf ab})=({\bf a},{\bf a})({\bf b},{\bf b})$, но это равенство означает нормированность алгебры A. Тогда по теореме Гурвица алгебра A изоморфна одной из четырёх «стандартных» алгебр.

2.8. КОММУТАТИВНЫЕ АЛГЕБРЫ С ДЕЛЕНИЕМ

Введём обозначение $A(\alpha,\beta,\gamma)$ для коммутативной алгебры размерности 2 с таблицей умножения

 $\begin{aligned} \mathbf{k}_1 \circ \mathbf{k}_1 &= \alpha \ \mathbf{k}_1 + \beta \ \mathbf{k}_2, \quad \mathbf{k}_1 \circ \mathbf{k}_2 &= \beta \ \mathbf{k}_1 + \gamma \ \mathbf{k}_2, \quad \mathbf{k}_2 \circ \mathbf{k}_2 = -\alpha \ \mathbf{k}_1 - \beta \ \mathbf{k}_2, \\ \text{где числа} \quad \alpha, \beta, \gamma \quad \text{удовлетворяют условиям} \quad \alpha \gamma - \beta^2 &= \pm 1; \quad \beta \geq 0; \quad \alpha \geq 0, \quad \text{если} \\ \alpha &= 0 \text{ , то } \gamma \geq 0 \text{ .} \end{aligned}$

Имеет место факт: Любая коммутативная алгебра с делением имеет размерность не выше 2 и изоморфна одной из алгебр $A(\alpha,\beta,\gamma)$. Все алгебры $A(\alpha,\beta,\gamma)$ суть алгебры с делением и никакие две из них не изоморфны друг другу.