Informed Search

Lecture 4, CMSC 170

John Roy Daradal / Instructor

Previously on CMSC 170

- Search Problems
- Tree Search
- Uninformed Search
 - Depth-First Search
 - Breadth-First Search
 - Uniform Cost Search

Today's Topics

- Heuristics
- Greedy Search
- A* Search
- Graph Search

Review: Search Problem

- States
- Actions and costs
- Successor function
- Start state
- Goal test

Review: Search Tree

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Review: Search Algorithm

- Systematically builds a search tree
- Chooses ordering of the fringe
- DFS (stack), BFS (queue), UCS (PQ)
- Optimal = finds least-cost plans

Review: Uninformed Search

- Explore tree in systematic way
- DFS (leftmost, deepest), BFS (per-layer),
 UCS (least-costly)
- Limitation: unaware where the goals are

Review: Uniform Cost Search

- Strategy: Expand node with lowest path cost
- Good: UCS is optimal and complete

Review: Uniform Cost Search

- Bad: explores options in every direction
- Bad: no info about goal location

Informed Search

Informed Search Habitan

Informed Search

- Key Idea: Use a heuristic function
- Compass: look at a state and evaluate if that state gets you closer to the goal

Search Heuristics

- A function that estimates how close a state is to a goal
- Input: state, output: score
- Heuristic design varies for different search problems

Search Heuristic

Example: Pacman

Manhattan distance, Euclidean distance

Example: Romania Vacation

Straight line distance from city to Bucharest

- aka Best-First Search
- Strategy: expand node that seems closest to goal state, according to heuristic

- Heuristic: estimates distance to nearest goal for each state
- Implementation: fringe = priority queue (priority: heuristic value)

UCS vs Greedy Search

- UCS: cumulative cost (sum of action costs)
- Greedy: heuristics are not cumulative

Example: Romania Vacation

UCS vs Greedy Search

What can go wrong?

Worst case: like a badly-guided DFS

- Like a guided DFS
- Problem: when optimal solution needs to do something backwards from heuristic briefly in order to proceed

- Common case: greedy search takes you straight to goal, but with a suboptimal plan
- Search quality is only as good as heuristic
- In general, heuristics are not perfect

Greedy Search Properties

- Complete? Yes, if no loops
- Optimal? No
- Time? O(b^m), but good heuristic improves this
- Space? O(b^m), keeps all nodes in memory

UCS vs Greedy Search

- UCS: optimal solution, no guide (expands in all directions)
- Greedy: guided search toward goal, mostly suboptimal solution

A* Search

Combining UCS and Greedy

- UCS: orders by path cost, or backward cost, g(n)
- Greedy: orders by goal proximity, or forward cost, h(n)

Combining UCS and Greedy

- A* Search: orders by the sumf(n) = g(n) + h(n)
- Priority = actual path cost + heuristic

Example: A* Search

Example: A* Search

- Should A* stop when we enqueue a goal?
- No, stop when we dequeue a goal

Example: A* Search

Is A* search optimal?

What went wrong?

- Good path = S-A-G, cost = 4
- **Bad path** = S-G, cost = 5
- **Heuristic** value for A = 6
- actual bad goal cost < estimated good goal cost
- Estimates should be less than actual costs!

Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

- Let h*(n) = true cost to nearest goal
- Heuristic h is admissible (optimistic) if
 0 ≤ h(n) ≤ h*(n)
- estimate ≤ true cost

Example

Admissible heuristic: Manhattan distance

UCS vs A*

UCS vs A* Contours

- UCS: expands equally in all "directions"
- A*: expands mainly toward goal, but trims its bets to ensure optimality

UCS and A*

- UCS is A* search using a zero heuristic
- Zero heuristic = no clue where the goal is, worst kind of heuristic

Heuristic Quality

"The worse the heuristic, the lower it is as a lower bound, the more work you're gonna do in order to guarantee optimality."

Admissible Heuristics

- In practice, designing an admissible heuristic is most of the work in using A* search, to ensure optimal results
- Usually: solutions to relaxed problems, where new actions are available

Creating Heuristics

Creating Heuristics

Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Example: 8 Puzzle

Start State

Goal State

What are possible heuristics for 8 Puzzle?

- Number of misplaced tiles
- Loose, extreme relaxation of problem

h(start) = 8

Note: Don't count the free space

- If we can make any tile slide in any direction (NEWS) at any time, ignoring other tiles
- Total Manhattan distance

h(start) = 18

$$3 + 1 + 2 + 2 + 2 + 3 + 3 + 2$$

Relaxed Problems

- 8 Puzzle: a block can move from A to B if
 (1) A is adjacent to B, and (2) B is blank
- Relax condition 2 = heuristic 2
- Relax condition 1,2 = heuristic 1
- Both heuristics are admissible

- How about actual cost as heuristic?
- Would it be admissible? Yes
- Would we save on nodes expanded? Yes
- What's wrong with it? Too long to compute

A* Search

- Tradeoff between quality of estimate and work per node
- As heuristic gets closer to true cost: expand fewer nodes, but do more work per node to compute heuristic

Dominance

- $h_a \ge h_c$ if \forall n: $h_a(n) \ge h_c(n)$
- *Example*: 8-puzzle, heuristic 2 ≥ heuristic 1

- Max of two or more admissible heuristics is admissible
- $h(n) = max(h_a(n), h_b(n))$

Recall: Tree Search

```
function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

Recall: Tree Search

Failure to detect repeated states can cause exponentially more work

Example

Why shouldn't we bother expanding red nodes?

- Idea: never expand a state twice
- Tree search + set of expanded states

- Expand search tree node by node
- Before expanding node, check that it hasn't been expanded before
- If not new, skip it
- If new, expand and add to set

```
function GRAPH-SEARCH( problem, fringe) returns a solution, or failure  \begin{array}{l} closed \leftarrow \text{an empty set} \\ fringe \leftarrow \text{INSERT}(\text{Make-Node}(\text{Initial-State}[problem]), fringe) \\ loop do \\ if fringe is empty then return failure \\ node \leftarrow \text{Remove-Front}(fringe) \\ if \text{Goal-Test}(problem, \text{State}[node]) \text{ then return } node \\ if \text{State}[node] \text{ is not in } closed \text{ then} \\ \text{add State}[node] \text{ to } closed \\ fringe \leftarrow \text{InsertAll}(\text{Expand}(node, problem), fringe) \\ \text{end} \end{array}
```

Question

- Can graph search destroy completeness? No
- How about optimality? Yes

Example

Example: Tree Search

Example: Graph Search

Admissible Heuristics

- heuristic cost ≤ actual cost of path to goal
- h(A) ≤ actual cost from A to G
- A* tree search is optimal

Consistent Heuristics

- heuristic cost ≤ actual cost, for each arc
- h(A) h(C) ≤ actual cost from A to C, for each arc A-C

Example

Example

Estimate of cost from:

- A to G = h(A) = 4
- C to G = h(C) = 1
- A to C = h(A) h(C) = 4 1 = 3
- Estimate of cost from A to C exceeds actual cost = 1

Consistent Heuristics

Consistent heuristic if h(A) = 2

- h(A-C) = 2-1 = 1 ≤ actual(A-C) = 1
- $h(C-G) = 1-0 = 1 \le actual(C-G) = 3$

Consequences of Consistency

- f value along a path never decreases
- $h(A) \le cost(A to C) + h(C)$
- A* graph search is optimal

A* Search Properties

- Complete? Yes
- Optimal? Depends on the heuristic

A* Search Optimality

Optimal if:

- A* tree search: heuristic is admissible
- A* graph search: heuristic is consistent

- Consistency implies admissibility
- In general, most admissible heuristics tend to be consistent, especially if from relaxed problems

A* Summary

- Uses both backward costs + estimates of forward cost
- Optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Informed Search

- Add information about where the goal is
- Find optimal solutions while exploring less of search tree

Demo: UCS vs Greedy vs A*

Search

- Search and Planning
- Completeness vs Optimality
- Uninformed Search (BFS, DFS, ID, UCS)
- Informed Search (Greedy, A*)
- Admissible vs Consistent Heuristics

Announcements

- Assignment 2 available at Courseware
- Tuesday: MP1 Pacman Search (Python 2)
- Next Topic: Constraint Satisfaction Problems

References

- Artificial Intelligence: A Modern Approach, 3rd Edition, S. Russell and P. Norvig, 2010
- CS 188 Lec 3 slides, Dan Klein, UC Berkeley

Questions?