Charu C. Aggarwal

Data Mining

The Textbook

Charu C. Aggarwal

Data Mining

The Textbook

Charu C. Aggarwal IBM T.J. Watson Research Center Yorktown Heights New York USA

A solution manual for this book is available on Springer.com.

ISBN 978-3-319-14141-1 ISBN 978-3-319-14142-8 (eBook) DOI 10.1007/978-3-319-14142-8

Library of Congress Control Number: 2015930833

Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1	An I	ntroduc	ction to Da	ata Mining	1
	1.1	Introdu	action		1
	1.2	The Da	ata Mining l	Process	3
		1.2.1	The Data	Preprocessing Phase	5
		1.2.2	The Analy	ytical Phase	6
	1.3	The Ba	sic Data Ty	ypes	6
		1.3.1	Nondepen	dency-Oriented Data	7
			1.3.1.1	Quantitative Multidimensional Data	7
			1.3.1.2	Categorical and Mixed Attribute Data	8
			1.3.1.3	Binary and Set Data	8
			1.3.1.4	Text Data	8
		1.3.2	Dependen	cy-Oriented Data	S
			1.3.2.1	Time-Series Data	S
			1.3.2.2	Discrete Sequences and Strings	10
			1.3.2.3	Spatial Data	11
			1.3.2.4	Network and Graph Data	12
	1.4	The Ma	ajor Buildin	ng Blocks: A Bird's Eye View	14
		1.4.1	Association	on Pattern Mining	15
		1.4.2	Data Clus	stering	16
		1.4.3	Outlier D	etection	17
		1.4.4	Data Clas	sification	18
		1.4.5	Impact of	Complex Data Types on Problem Definitions	19
			1.4.5.1	Pattern Mining with Complex Data Types	20
			1.4.5.2	Clustering with Complex Data Types	20
			1.4.5.3	Outlier Detection with Complex Data Types	21
			1.4.5.4	Classification with Complex Data Types	21
	1.5	Scalabi	lity Issues a	and the Streaming Scenario	21
	1.6	A Strol	ll Through S	Some Application Scenarios	22
		1.6.1	Store Pro	duct Placement	22
		1.6.2	Customer	Recommendations	23
		1.6.3	Medical D	Diagnosis	23
		1.6.4	Web Log	Anomalies	24
	1.7	Summa	arv		24

viii CONTENTS

	1.8 1.9	_	-	es
2	Data	Prepar	ation	27
	2.1	Introdu	ction	27
	2.2	Feature	Extractio	n and Portability
		2.2.1	Feature I	Extraction
		2.2.2	Data Typ	pe Portability
			2.2.2.1	Numeric to Categorical Data: Discretization 30
			2.2.2.2	Categorical to Numeric Data: Binarization 31
			2.2.2.3	Text to Numeric Data
			2.2.2.4	Time Series to Discrete Sequence Data
			2.2.2.5	Time Series to Numeric Data
			2.2.2.6	Discrete Sequence to Numeric Data
			2.2.2.7	Spatial to Numeric Data
			2.2.2.8	Graphs to Numeric Data
			2.2.2.9	Any Type to Graphs for Similarity-Based Applications 33
	2.3	Data C	leaning	34
		2.3.1	Handling	Missing Entries
		2.3.2	Handling	Incorrect and Inconsistent Entries
		2.3.3		nd Normalization
	2.4	Data R	eduction a	nd Transformation
		2.4.1	Sampling	38
			2.4.1.1	Sampling for Static Data
			2.4.1.2	Reservoir Sampling for Data Streams
		2.4.2		Subset Selection
		2.4.3	Dimensio	nality Reduction with Axis Rotation 41
			2.4.3.1	Principal Component Analysis
			2.4.3.2	Singular Value Decomposition
			2.4.3.3	Latent Semantic Analysis
			2.4.3.4	Applications of PCA and SVD 48
		2.4.4	Dimensio	nality Reduction with Type Transformation 49
			2.4.4.1	Haar Wavelet Transform
			2.4.4.2	Multidimensional Scaling
			2.4.4.3	Spectral Transformation and Embedding of Graphs 57
	2.5	Summa	ry	50
	2.6	Bibliogr	raphic Not	es
	2.7	Exercise	es	
3	Simil	arity ar	nd Distan	ices 63
	3.1	-		
	3.2	Multidi	mensional	Data
		3.2.1		tive Data
			3.2.1.1	Impact of Domain-Specific Relevance 65
			3.2.1.2	Impact of High Dimensionality
			3.2.1.3	Impact of Locally Irrelevant Features 66
			3.2.1.4	Impact of Different L_p -Norms 67
			3.2.1.5	Match-Based Similarity Computation
			3.2.1.6	Impact of Data Distribution

CONTENTS ix

			3.2.1.7	Nonlinear Distributions: ISOMAP				70
			3.2.1.8	Impact of Local Data Distribution				72
			3.2.1.9	Computational Considerations				73
		3.2.2	Categoric	al Data				74
		3.2.3	Mixed Qu	nantitative and Categorical Data				75
	3.3	Text Sin		easures				75
		3.3.1	Binary ar	nd Set Data				77
	3.4	Tempor	al Similari	ty Measures				77
		3.4.1		les Similarity Measures				77
			3.4.1.1	Impact of Behavioral Attribute Normalization				78
			3.4.1.2	L_p -Norm				79
			3.4.1.3	Dynamic Time Warping Distance				79
			3.4.1.4	Window-Based Methods				82
		3.4.2	Discrete S	Sequence Similarity Measures				82
			3.4.2.1	Edit Distance				82
			3.4.2.2	Longest Common Subsequence				84
	3.5	Graph S	Similarity I	Measures				85
		3.5.1	Similarity	between Two Nodes in a Single Graph				85
			3.5.1.1	Structural Distance-Based Measure				85
			3.5.1.2	Random Walk-Based Similarity				86
		3.5.2	Similarity	Between Two Graphs				86
	3.6	Supervi	sed Similar	rity Functions				87
	3.7	Summa	ry					88
	3.8	Bibliogr	raphic Note	es				89
	3.9	Exercise	es					90
4	A aao	aistion	Pattern N	dining.				93
4	4.1							93
	4.2			tern Mining Model				94
	4.3			Generation Framework				97
	4.4	Frequen	nt Itameat 1	Mining Algorithms	•	•	 •	99
	4.4	4.4.1		ce Algorithms				99
		4.4.2		ori Algorithm				100
		4.4.2	4.4.2.1	Efficient Support Counting				100
		4.4.3		ion-Tree Algorithms	•	•	 •	102
		4.4.0	4.4.3.1	Enumeration-Tree-Based Interpretation of Apr				105
			4.4.3.2	TreeProjection and DepthProject				106
			4.4.3.3	Vertical Counting Methods				
		4.4.4		Suffix-Based Pattern Growth Methods				112
		1.1.1	4.4.4.1	Implementation with Arrays but No Pointers				114
			4.4.4.2	Implementation with Pointers but No FP-Tree				114
			4.4.4.3	Implementation with Pointers and FP-Tree				116
			4.4.4.4	Trade-offs with Different Data Structures				118
			4.4.4.5	Relationship Between FP-Growth and Enur				110
			1. 1. 1.0	Tree Methods				119
	4.5	Alterna	tive Model	s: Interesting Patterns				122
	1.0	4.5.1		l Coefficient of Correlation				123
		4.5.2	χ^2 Measu					123
		4.5.3		Ratio				124
		-						

X CONTENTS

		4.5.4	Symmetric Confidence Measures	24
		4.5.5	Cosine Coefficient on Columns	25
		4.5.6	Jaccard Coefficient and the Min-hash Trick	25
		4.5.7	Collective Strength	26
		4.5.8	Relationship to Negative Pattern Mining	27
	4.6	Useful	Meta-algorithms	27
		4.6.1	Sampling Methods	28
		4.6.2	Data Partitioned Ensembles	28
		4.6.3	Generalization to Other Data Types	29
			4.6.3.1 Quantitative Data	29
			4.6.3.2 Categorical Data	29
	4.7	Summa		29
	4.8	Bibliog	raphic Notes	30
	4.9	Exercis	es	32
5	Asso	ciation	Pattern Mining: Advanced Concepts 13	15
•	5.1		ction	
	5.2		Summarization	
		5.2.1	Maximal Patterns	
		5.2.2	Closed Patterns	
		5.2.3	Approximate Frequent Patterns	
		0.2.0	5.2.3.1 Approximation in Terms of Transactions	
			5.2.3.2 Approximation in Terms of Itemsets	
	5.3	Pattern	Querying	
		5.3.1	Preprocess-once Query-many Paradigm	
		0.0.	5.3.1.1 Leveraging the Itemset Lattice	
			5.3.1.2 Leveraging Data Structures for Querying	
		5.3.2	Pushing Constraints into Pattern Mining	
	5.4		Associations to Work: Applications	
	0.1	5.4.1	Relationship to Other Data Mining Problems	
		9	5.4.1.1 Application to Classification	
			5.4.1.2 Application to Clustering	
			5.4.1.3 Applications to Outlier Detection	
		5.4.2	Market Basket Analysis	
		5.4.3	Demographic and Profile Analysis	
		5.4.4	Recommendations and Collaborative Filtering	
		5.4.5	Web Log Analysis	
		5.4.6	Bioinformatics	
		5.4.7	Other Applications for Complex Data Types	
	5.5	Summa	- · · · · · · · · · · · · · · · · · · ·	
	5.6		raphic Notes	
	5.7	_	es	
6	Clue	ter Ana	lysis 15	(3
U	6.1		ction	
	6.2		Selection for Clustering	
	0.2	6.2.1	Filter Models	
		0.2.1	6.2.1.1 Term Strength	
			6.2.1.2 Predictive Attribute Dependence	
			- 0.2.1.2 I IOGIOUTO IIUUIDUU DOPOHUOHOO It	,,

CONTENTS xi

			6.2.1.3 Entropy
			6.2.1.4 Hopkins Statistic
		6.2.2	Wrapper Models
	6.3	Represe	entative-Based Algorithms
		6.3.1	The k -Means Algorithm
		6.3.2	The Kernel k -Means Algorithm
		6.3.3	The k -Medians Algorithm
		6.3.4	The k -Medoids Algorithm
	6.4		hical Clustering Algorithms
	0.1	6.4.1	Bottom-Up Agglomerative Methods
		0.4.1	6.4.1.1 Group-Based Statistics
		6.4.2	Top-Down Divisive Methods
		0.4.2	•
		D 1 1	6.4.2.1 Bisecting k -Means
	6.5		ilistic Model-Based Algorithms
		6.5.1	Relationship of EM to k -means and Other Representative
			Methods
	6.6		ased and Density-Based Algorithms
		6.6.1	Grid-Based Methods
		6.6.2	DBSCAN
		6.6.3	DENCLUE
	6.7	Graph-l	Based Algorithms
		6.7.1	Properties of Graph-Based Algorithms
	6.8	Non-neg	gative Matrix Factorization
		6.8.1	Comparison with Singular Value Decomposition
	6.9	Cluster	Validation
		6.9.1	Internal Validation Criteria
			6.9.1.1 Parameter Tuning with Internal Measures 198
		6.9.2	External Validation Criteria
		6.9.3	General Comments
	6.10		ry
	6.11		raphic Notes
	6.12		es
	0.12	21101010	
7	Clust	er Ana	lysis: Advanced Concepts 205
	7.1	Introdu	ction
	7.2		ing Categorical Data
		7.2.1	Representative-Based Algorithms
			7.2.1.1 <i>k</i> -Modes Clustering
			7.2.1.2 <i>k</i> -Medoids Clustering
		7.2.2	Hierarchical Algorithms
			7.2.2.1 ROCK
		7.2.3	Probabilistic Algorithms
		7.2.4	Graph-Based Algorithms
	7.3		e Data Clustering
	1.5	7.3.1	CLARANS
		7.3.1	
			BIRCH
	7 A	7.3.3	CURE
	7.4	_	imensional Clustering
		7.4.1	CLIQUE
		7.4.2	PROCLUS

xii CONTENTS

		7.4.3	ORCLUS					 222	2
	7.5	Semisup	pervised Clustering					 . 224	1
		7.5.1	Pointwise Supervision					 . 22	5
		7.5.2	Pairwise Supervision					 . 226	3
	7.6	Human	and Visually Supervised Clustering					 . 22	7
		7.6.1	Modifications of Existing Clustering Algorithms						3
		7.6.2	Visual Clustering						3
	7.7	Cluster	Ensembles						1
		7.7.1	Selecting Different Ensemble Components						
		7.7.2	Combining Different Ensemble Components						
			7.7.2.1 Hypergraph Partitioning Algorithm						
			7.7.2.2 Meta-clustering Algorithm						
	7.8	Putting	Clustering to Work: Applications						
		7.8.1	Applications to Other Data Mining Problems						
		1.0.1	7.8.1.1 Data Summarization						
			7.8.1.2 Outlier Analysis						
			7.8.1.3 Classification						
			7.8.1.4 Dimensionality Reduction						
			7.8.1.5 Similarity Search and Indexing						
		7.8.2	Customer Segmentation and Collaborative Filtering						
		7.8.3	Text Applications						
		7.8.4	Multimedia Applications						
		7.8.5	Temporal and Sequence Applications						
		7.8.6	Social Network Analysis						
	7.9	Summa							
	7.10		raphic Notes						
	7.11	_	28						
	1.11	LACICISC		•	•	•	•	 200	,
8	Outli	er Anal	lysis					237	7
	8.1		ction						
	8.2		e Value Analysis						
		8.2.1	Univariate Extreme Value Analysis						
		8.2.2	Multivariate Extreme Values						
		8.2.3	Depth-Based Methods						
	8.3		ilistic Models						
	8.4		ing for Outlier Detection						
	8.5		e-Based Outlier Detection						
		8.5.1	Pruning Methods						
		0.0	8.5.1.1 Sampling Methods					 249	-
			8.5.1.2 Early Termination Trick with Nested Loops						
		8.5.2	Local Distance Correction Methods						
		0.0	8.5.2.1 Local Outlier Factor (LOF)						
			8.5.2.2 Instance-Specific Mahalanobis Distance						
	8.6	Density	-Based Methods						
		8.6.1	Histogram- and Grid-Based Techniques						
		8.6.2	Kernel Density Estimation						
	8.7		ation-Theoretic Models						
	8.8		Validity						
	0.0	8.8.1	Methodological Challenges						

CONTENTS xiii

		8.8.2 8.8.3	Receiver Operating Characteristic		259 261
	8.9		ry		261
	8.10		aphic Notes		262
	8.11	_	88		262
9			ysis: Advanced Concepts		265
	9.1		ction		265
	9.2		Detection with Categorical Data		266
		9.2.1	Probabilistic Models		266
		9.2.2	Clustering and Distance-Based Methods		267
		9.2.3	Binary and Set-Valued Data		268
	9.3	_	mensional Outlier Detection		268
		9.3.1	Grid-Based Rare Subspace Exploration		270
			9.3.1.1 Modeling Abnormal Lower Dimensional Projections .		271
			9.3.1.2 Grid Search for Subspace Outliers		271
		9.3.2	Random Subspace Sampling		273
	9.4		Ensembles		274
		9.4.1	Categorization by Component Independence		275
			9.4.1.1 Sequential Ensembles		275
			9.4.1.2 Independent Ensembles		276
		9.4.2	Categorization by Constituent Components		277
			9.4.2.1 Model-Centered Ensembles		277
			9.4.2.2 Data-Centered Ensembles		278
		9.4.3	Normalization and Combination		278
	9.5		Outliers to Work: Applications		279
		9.5.1	Quality Control and Fault Detection		279
		9.5.2	Financial Fraud and Anomalous Events		280
		9.5.3	Web Log Analytics		280
		9.5.4	Intrusion Detection Applications		280
		9.5.5	Biological and Medical Applications		281
		9.5.6	Earth Science Applications		281
	9.6		cy		281
	9.7	_	aphic Notes		281
	9.8	Exercise	es		283
10	Data	Classifi	cation		285
		Introduc			285
	10.2	Feature	Selection for Classification		287
	-	10.2.1	Filter Models		288
			10.2.1.1 Gini Index		288
			10.2.1.2 Entropy		289
			10.2.1.3 Fisher Score		290
			10.2.1.4 Fisher's Linear Discriminant		290
		10.2.2	Wrapper Models		292
		10.2.2	Embedded Models		$\frac{232}{292}$
	10.3		a Trees		293
	10.0	10.3.1	Split Criteria		$\frac{290}{294}$
		10.3.1	Stopping Criterion and Pruning		$\frac{294}{297}$
				•	_01

xiv CONTENTS

		10.3.3	Practical Issues	3
	10.4	Rule-Ba	sed Classifiers	3
		10.4.1	Rule Generation from Decision Trees)
		10.4.2	Sequential Covering Algorithms	1
			10.4.2.1 Learn-One-Rule	2
		10.4.3	Rule Pruning	
		10.4.4	Associative Classifiers	5
	10.5	Probabi	listic Classifiers	
		10.5.1	Naive Bayes Classifier	
			10.5.1.1 The Ranking Model for Classification 309	
			10.5.1.2 Discussion of the Naive Assumption	
		10.5.2	Logistic Regression	
		10.0.2	10.5.2.1 Training a Logistic Regression Classifier	
			10.5.2.2 Relationship with Other Linear Models	
	10.6	Support	Vector Machines	
	10.0	10.6.1	Support Vector Machines for Linearly Separable Data	
		10.0.1	10.6.1.1 Solving the Lagrangian Dual	
		10.6.2	Support Vector Machines with Soft Margin	,
		10.0.2	for Nonseparable Data	a
			10.6.2.1 Comparison with Other Linear Models	
		10.6.3	Nonlinear Support Vector Machines	
		10.6.4	The Kernel Trick	
		10.0.4	10.6.4.1 Other Applications of Kernel Methods	
	10.7	Noural 1	Networks	
	10.7	10.7.1	Single-Layer Neural Network: The Perceptron	
		10.7.1	Multilayer Neural Networks	
		10.7.2 $10.7.3$	Comparing Various Linear Models	
	10.8		e-Based Learning	
	10.6	10.8.1	Design Variations of Nearest Neighbor Classifiers	
		10.6.1	10.8.1.1 Unsupervised Mahalanobis Metric	
			10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis . 332	
	10.9	Classific	er Evaluation	
	10.9	10.9.1	Methodological Issues	
		10.3.1	10.9.1.1 Holdout	
			10.9.1.2 Cross-Validation	
			10.9.1.3 Bootstrap	
		10.9.2	Quantification Issues	
		10.9.2	10.9.2.1 Output as Class Labels	
			10.9.2.2 Output as Numerical Score	
	10.10	Cummo	ry	
			aphic Notes	
		_	es	
	10.12	Exercise	35)
11	Data	Classifi	cation: Advanced Concepts 345	5
	11.1		ction	
	11.2		ass Learning	
	11.3		ass Learning	
		11.3.1	Example Reweighting	
		11.3.2	Sampling Methods	

CONTENTS xv

		11.3.2.1 Relationship Between Weighting and Sampling 3	50
		11.3.2.2 Synthetic Oversampling: SMOTE	50
11.4	Scalable	Classification	50
	11.4.1		51
			51
		11.4.1.2 BOAT	51
	11.4.2		52
11.5	Regress	11	53
	11.5.1		53
	11.0.1	8	56
	11.5.2	<u>.</u>	56 56
	11.5.2 $11.5.3$	1 0	57
	11.5.4		559
	11.5.4 $11.5.5$	· · · · · · · · · · · · · · · · · · ·	560 160
	11.5.6		600 661
11.6		<u> </u>	
11.6		8	61
	11.6.1	9	63
		O Company of the comp	63
		8	63
	11.6.2	Specific Variations of Classification Algorithms	64
		11.6.2.1 Semisupervised Bayes Classification with EM 3	64
		11.6.2.2 Transductive Support Vector Machines	66
	11.6.3	Graph-Based Semisupervised Learning	67
	11.6.4	Discussion of Semisupervised Learning	67
11.7	Active I	earning	68
	11.7.1		70
			70
		v 1 O	71
			71
	11.7.2		72
	11.1.2		72
		1	
	11 7 9	1	73
11.0	11.7.3	•	73
11.8			373
	11.8.1	v v	75
	11.8.2		77
	11.8.3	1	79
		11.8.3.1 Bagging	79
		11.8.3.2 Random Forests	80
		11.8.3.3 Boosting	81
			83
			84
11.9	Summa		84
		v	85
	Exercise	•	186

xvi CONTENTS

12 Mini	ing Data	a Streams		389
12.1		action		389
12.2	Synops	is Data Structures for Streams		391
	12.2.1	Reservoir Sampling		
		12.2.1.1 Handling Concept Drift		
		12.2.1.2 Useful Theoretical Bounds for Sampling		
	12.2.2	Synopsis Structures for the Massive-Domain Scenario		
		12.2.2.1 Bloom Filter		
		12.2.2.2 Count-Min Sketch		
		12.2.2.3 AMS Sketch		
		12.2.2.4 Flajolet–Martin Algorithm for Distinct Element		
		Counting		408
12.3	Freque	nt Pattern Mining in Data Streams		
	12.3.1	Leveraging Synopsis Structures		
		12.3.1.1 Reservoir Sampling		
		12.3.1.2 Sketches		
	12.3.2	Lossy Counting Algorithm		
12.4		ring Data Streams		
	12.4.1	STREAM Algorithm		
	12.4.2	CluStream Algorithm		
	12.1.2	12.4.2.1 Microcluster Definition		
		12.4.2.2 Microclustering Algorithm		
		12.4.2.3 Pyramidal Time Frame		
	12.4.3	Massive-Domain Stream Clustering		
12.5	_	ing Outlier Detection		
12.0	12.5.1	Individual Data Points as Outliers		
	12.5.1 $12.5.2$	Aggregate Change Points as Outliers		
12.6		ing Classification		
12.0	12.6.1	VFDT Family		
	12.6.1 $12.6.2$	Supervised Microcluster Approach		
	12.6.2 $12.6.3$	Ensemble Method		
	12.6.3 $12.6.4$	Massive-Domain Streaming Classification		
12.7				
12.7		raphic Notes		
12.0 12.9	_	rapine Notes		
12.9	Exercis	es	•	420
13 Mini	ing Text	t Data		429
	_	action		
13.2		ent Preparation and Similarity		120
10.2	Compu	-		431
	13.2.1	Document Normalization and Similarity Computation		
	13.2.2	Specialized Preprocessing for Web Documents		
13.3	-	ized Clustering Methods for Text		
10.0	13.3.1	Representative-Based Algorithms		
	20.0.1	13.3.1.1 Scatter/Gather Approach		
	13.3.2	Probabilistic Algorithms		
	13.3.3	Simultaneous Document and Word Cluster Discovery		
	10.0.0	13.3.3.1 Co-clustering		
13.4	Topic N	Modeling		
10.1	Tobro 1			

CONTENTS xvii

	13.4.1	Use in Dimensionality Reduction and Comparison with Latent
		Semantic Analysis
	13.4.2	Use in Clustering and Comparison with Probabilistic
		Clustering
	13.4.3	Limitations of PLSA
13.5		zed Classification Methods for Text
	13.5.1	Instance-Based Classifiers
		13.5.1.1 Leveraging Latent Semantic Analysis 44
		13.5.1.2 Centroid-Based Classification
		13.5.1.3 Rocchio Classification
	13.5.2	Bayes Classifiers
		13.5.2.1 Multinomial Bayes Model
	13.5.3	SVM Classifiers for High-Dimensional and Sparse Data 45
13.6		and First Story Detection
	13.6.1	Micro-clustering Method
13.7		ry
13.8	_	raphic Notes
13.9	Exercise	es
14 Mini	ng Time	e Series Data 457
14.1		ction $\dots \dots \dots$
14.2		eries Preparation and Similarity
	14.2.1	Handling Missing Values
	14.2.2	Noise Removal
	14.2.3	Normalization
	14.2.4	Data Transformation and Reduction
		14.2.4.1 Discrete Wavelet Transform
		14.2.4.2 Discrete Fourier Transform
		14.2.4.3 Symbolic Aggregate Approximation (SAX) 464
	14.2.5	Time Series Similarity Measures
14.3		eries Forecasting
	14.3.1	Autoregressive Models
	14.3.2	Autoregressive Moving Average Models
	14.3.3	Multivariate Forecasting with Hidden Variables 470
14.4		eries Motifs
	14.4.1	Distance-Based Motifs
	14.4.2	Transformation to Sequential Pattern Mining
	14.4.3	Periodic Patterns
14.5		eries Clustering
	14.5.1	Online Clustering of Coevolving Series
	14.5.2	Shape-Based Clustering
		14.5.2.1 <i>k</i> -Means
		14.5.2.2 <i>k</i> -Medoids
		14.5.2.3 Hierarchical Methods
1.4.6	m· ~	14.5.2.4 Graph-Based Methods
14.6		eries Outlier Detection
	14.6.1	Point Outliers
1 4 🗁	14.6.2	Shape Outliers
14.7	Time Se	eries Classification

xviii CONTENTS

		14.7.1	Supervised Event Detection
		14.7.2	Whole Series Classification
			14.7.2.1 Wavelet-Based Rules
			14.7.2.2 Nearest Neighbor Classifier 489
			14.7.2.3 Graph-Based Methods
	14.8	Summa	
	14.9		aphic Notes
		_	es
	14.10	LACICISC	100
15	Mini	ng Disc	rete Sequences 493
	15.1		ction
	15.2		ial Pattern Mining
	-	15.2.1	Frequent Patterns to Frequent Sequences
		15.2.2	Constrained Sequential Pattern Mining 500
	15.3		ee Clustering
	10.0	15.3.1	Distance-Based Methods
		15.3.2	Graph-Based Methods
		15.3.2 $15.3.3$	Subsequence-Based Clustering
		15.3.4	Probabilistic Clustering
		10.0.4	15.3.4.1 Markovian Similarity-Based Algorithm: CLUSEQ 504
			v v
	15 /	Outlies	
	15.4		*
		15.4.1	Position Outliers
		15 40	15.4.1.1 Efficiency Issues: Probabilistic Suffix Trees 510
		15.4.2	Combination Outliers
			15.4.2.1 Distance-Based Models
			15.4.2.2 Frequency-Based Models
	15.5		Markov Models
		15.5.1	Formal Definition and Techniques for HMMs
			517
		15.5.2	Evaluation: Computing the Fit Probability for Observed
			Sequence
		15.5.3	Explanation: Determining the Most Likely State Sequence
			for Observed Sequence
		15.5.4	Training: Baum-Welch Algorithm
		15.5.5	Applications
	15.6	Sequence	ee Classification
		15.6.1	Nearest Neighbor Classifier
		15.6.2	Graph-Based Methods
		15.6.3	Rule-Based Methods
		15.6.4	Kernel Support Vector Machines
			15.6.4.1 Bag-of-Words Kernel
			15.6.4.2 Spectrum Kernel
			15.6.4.3 Weighted Degree Kernel
		15.6.5	Probabilistic Methods: Hidden Markov Models
	15.7	Summa	
	15.8		aphic Notes
	15.9	_	es

CONTENTS xix

16 Min	ing Spat	ial Data 53	1
16.1	Introdu	action	1
16.2	Mining	with Contextual Spatial Attributes	2
	16.2.1	Shape to Time Series Transformation	3
	16.2.2	Spatial to Multidimensional Transformation with Wavelets 53	7
	16.2.3	Spatial Colocation Patterns	8
	16.2.4	Clustering Shapes	9
	16.2.5	Outlier Detection	0
		16.2.5.1 Point Outliers	.1
		16.2.5.2 Shape Outliers	
	16.2.6	Classification of Shapes	
16.3		ory Mining	
	16.3.1	Equivalence of Trajectories and Multivariate Time Series 54	
	16.3.2	Converting Trajectories to Multidimensional Data 54	
	16.3.3	Trajectory Pattern Mining	
	10.0.0	16.3.3.1 Frequent Trajectory Paths	
		16.3.3.2 Colocation Patterns	
	16.3.4	Trajectory Clustering	
	10.5.4	16.3.4.1 Computing Similarity Between Trajectories 54	
		16.3.4.2 Similarity-Based Clustering Methods	
		16.3.4.3 Trajectory Clustering as a Sequence Clustering	U
			1
	16 2 5		
	16.3.5	Trajectory Outlier Detection	
	1696		
	16.3.6	Trajectory Classification	
		16.3.6.1 Distance-Based Methods	
10.4	C	16.3.6.2 Sequence-Based Methods	
16.4	Summa	·	
16.5		raphic Notes	
16.6	Exercis	es	,5
17 Min	ing Gra	ph Data 55	7
17.1		ection	
17.1		ng and Distance Computation in Graphs	
11.2	17.2.1	Ullman's Algorithm for Subgraph Isomorphism	
	11.2.1	17.2.1.1 Algorithm Variations and Refinements	
	1799	<u> </u>	
	17.2.2	Maximum Common Subgraph (MCG) Problem	
	17.2.3	Graph Matching Methods for Distance Computation	
		17.2.3.1 MCG-based Distances	
17.9	T f -	17.2.3.2 Graph Edit Distance	
17.3		ormation-Based Distance Computation	U
	17.3.1	Frequent Substructure-Based Transformation and Distance	70
	1500	Computation	
	17.3.2	Topological Descriptors	
	17.3.3	Kernel-Based Transformations and Computation	
		17.3.3.1 Random Walk Kernels	
	-	17.3.3.2 Shortest-Path Kernels	
17.4		nt Substructure Mining in Graphs	
	17.4.1	Node-Based Join Growth	8

XX CONTENTS

	17.4.2	Edge-Based Join Growth						578
	17.4.3	Frequent Pattern Mining to Graph Pattern Mining						578
17.5	Graph (Clustering						579
	17.5.1	Distance-Based Methods						579
	17.5.2	Frequent Substructure-Based Methods						580
		17.5.2.1 Generic Transformational Approach						580
		17.5.2.2 XProj: Direct Clustering with Frequent S						
		Discovery						581
17.6	Graph (Classification						582
	17.6.1	Distance-Based Methods						583
	17.6.2	Frequent Substructure-Based Methods						583
	1	17.6.2.1 Generic Transformational Approach						583
		17.6.2.2 XRules: A Rule-Based Approach						584
	17.6.3	Kernel SVMs						585
17.7	Summa							585
17.8		raphic Notes						586
17.9		es						586
11.9	EXCICISO	55	•		•	 •	•	500
18 Mini	ng Web	Data						589
18.1	_	ction						589
18.2		rawling and Resource Discovery						591
10.2	18.2.1	A Basic Crawler Algorithm						591
	18.2.2	Preferential Crawlers						593
	18.2.3	Multiple Threads						593
	18.2.4	Combatting Spider Traps						593
	18.2.4 $18.2.5$	~ -						593 594
10.9		Shingling for Near Duplicate Detection						594 594
18.3		Engine Indexing and Query Processing						
18.4	,	g Algorithms						597
	18.4.1	PageRank						598
		18.4.1.1 Topic-Sensitive PageRank						601
	10.40	18.4.1.2 SimRank						601
	18.4.2	HITS						602
18.5		mender Systems						604
	18.5.1	Content-Based Recommendations						606
	18.5.2	Neighborhood-Based Methods for Collaborative Filt		_				607
		18.5.2.1 User-Based Similarity with Ratings						607
		18.5.2.2 Item-Based Similarity with Ratings . .						608
	18.5.3	Graph-Based Methods						608
	18.5.4	Clustering Methods						609
		18.5.4.1 Adapting k -Means Clustering						610
		18.5.4.2 Adapting Co-Clustering						610
	18.5.5	Latent Factor Models						611
		18.5.5.1 Singular Value Decomposition						612
		18.5.5.2 Matrix Factorization						612
18.6	Web Us	sage Mining						613
	18.6.1	Data Preprocessing						614
	18.6.2	Applications						614
18.7	Summa							615
18.8		raphic Notes						616
18.9	_	es						616
				-				

CONTENTS xxi

19	Socia	l Netwo	ork Analysis	619
	19.1	Introdu	ction	619
	19.2	Social N	Networks: Preliminaries and Properties	620
		19.2.1	Homophily	
		19.2.2	Triadic Closure and Clustering Coefficient	621
		19.2.3	Dynamics of Network Formation	622
		19.2.4	Power-Law Degree Distributions	623
		19.2.5	Measures of Centrality and Prestige	623
			19.2.5.1 Degree Centrality and Prestige	624
			19.2.5.2 Closeness Centrality and Proximity Prestige	624
			19.2.5.3 Betweenness Centrality	626
			19.2.5.4 Rank Centrality and Prestige	627
	19.3	Commu	mity Detection	627
		19.3.1	Kernighan–Lin Algorithm	629
			19.3.1.1 Speeding Up Kernighan-Lin	630
		19.3.2	Girvan–Newman Algorithm	631
		19.3.3	Multilevel Graph Partitioning: METIS	
		19.3.4	Spectral Clustering	
			19.3.4.1 Important Observations and Intuitions	
	19.4	Collecti	ve Classification	
		19.4.1	Iterative Classification Algorithm	641
		19.4.2	Label Propagation with Random Walks	
			19.4.2.1 Iterative Label Propagation: The Spectral	
			Interpretation	646
		19.4.3	Supervised Spectral Methods	646
			19.4.3.1 Supervised Feature Generation with Spectral	
			Embedding	647
			19.4.3.2 Graph Regularization Approach	647
			19.4.3.3 Connections with Random Walk Methods	
	19.5	Link Pr	rediction	650
		19.5.1	Neighborhood-Based Measures	650
		19.5.2	Katz Measure	652
		19.5.3	Random Walk-Based Measures	653
		19.5.4	Link Prediction as a Classification Problem	653
		19.5.5	Link Prediction as a Missing-Value Estimation Problem	654
		19.5.6	Discussion	654
	19.6	Social I	nfluence Analysis	655
		19.6.1	Linear Threshold Model	656
		19.6.2	Independent Cascade Model	657
		19.6.3	Influence Function Evaluation	657
	19.7	Summa	ry	658
	19.8	Bibliogr	raphic Notes	659
	19.9	Exercise	es	660
2 0	Priva	cy-Pres	serving Data Mining	663
	20.1		ction	663
	20.2	Privacy	During Data Collection	664
		20.2.1	Reconstructing Aggregate Distributions	665
		20.2.2	Leveraging Aggregate Distributions for Data Mining	667
	20.3	Privacy	-Preserving Data Publishing	667
		20.3.1	The k -Anonymity Model	670

xxii CONTENTS

		20.3.1.1	Samara	ti's Alg	orith	m .												673
		20.3.1.2	Incognit	ю														675
		20.3.1.3	Mondria	an Mul	tidim	ens	iona	al k	<i>c</i> -A:	nor	ıyn	ity	· .					678
		20.3.1.4	Synthet	ic Data	a Ger	era	tior	ı: (Con	der	ısat	ior	ı-E	3as	ed			
			Approac	ch														680
	20.3.2	The ℓ-Div	ersity M	odel .														682
	20.3.3	The t-clo	seness Mo	odel														684
	20.3.4	The Curs	e of Dime	ensiona	lity													687
20.4	Output	Privacy .																688
20.5	Distribu	ited Priva	y															689
20.6	Summar	ry																690
20.7	Bibliogr	aphic Not	es															691
20.8	Exercise	es																692
Bibliogr	aphy																	695
\mathbf{Index}																		727

Preface

"Data is the new oil." - Clive Humby

The field of data mining has seen rapid strides over the past two decades, especially from the perspective of the computer science community. While data analysis has been studied extensively in the conventional field of probability and statistics, *data mining* is a term coined by the computer science-oriented community. For computer scientists, issues such as scalability, usability, and computational implementation are extremely important.

The emergence of data science as a discipline requires the development of a book that goes beyond the traditional focus of books on only the fundamental data mining courses. Recent years have seen the emergence of the job description of "data scientists," who try to glean knowledge from vast amounts of data. In typical applications, the data types are so heterogeneous and diverse that the fundamental methods discussed for a multidimensional data type may not be effective. Therefore, more emphasis needs to be placed on the different data types and the applications that arise in the context of these different data types. A comprehensive data mining book must explore the different aspects of data mining, starting from the fundamentals, and then explore the complex data types, and their relationships with the fundamental techniques. While fundamental techniques form an excellent basis for the further study of data mining, they do not provide a complete picture of the true complexity of data analysis. This book studies these advanced topics without compromising the presentation of fundamental methods. Therefore, this book may be used for both introductory and advanced data mining courses. Until now, no single book has addressed all these topics in a comprehensive and integrated way.

The textbook assumes a basic knowledge of probability, statistics, and linear algebra, which is taught in most undergraduate curricula of science and engineering disciplines. Therefore, the book can also be used by industrial practitioners, who have a working knowledge of these basic skills. While stronger mathematical background is helpful for the more advanced chapters, it is not a prerequisite. Special chapters are also devoted to different aspects of data mining, such as text data, time-series data, discrete sequences, and graphs. This kind of specialized treatment is intended to capture the wide diversity of problem domains in which a data mining problem might arise.

The chapters of this book fall into one of three categories:

• The fundamental chapters: Data mining has four main "super problems," which correspond to clustering, classification, association pattern mining, and outlier anal-

xxiv PREFACE

ysis. These problems are so important because they are used repeatedly as building blocks in the context of a wide variety of data mining applications. As a result, a large amount of emphasis has been placed by data mining researchers and practitioners to design effective and efficient methods for these problems. These chapters comprehensively discuss the vast diversity of methods used by the data mining community in the context of these super problems.

- **Domain chapters:** These chapters discuss the specific methods used for different *domains* of data such as text data, time-series data, sequence data, graph data, and spatial data. Many of these chapters can also be considered application chapters, because they explore the specific characteristics of the problem in a particular domain.
- Application chapters: Advancements in hardware technology and software platforms have lead to a number of data-intensive applications such as streaming systems, Web mining, social networks, and privacy preservation. These topics are studied in detail in these chapters. The domain chapters are also focused on many different kinds of applications that arise in the context of those data types.

Suggestions for the Instructor

The book was specifically written to enable the teaching of both the basic data mining and advanced data mining courses from a single book. It can be used to offer various types of data mining courses with different emphases. Specifically, the courses that could be offered with various chapters are as follows:

- Basic data mining course and fundamentals: The basic data mining course should focus on the fundamentals of data mining. Chapters 1, 2, 3, 4, 6, 8, and 10 can be covered. In fact, the material in these chapters is more than what is possible to teach in a single course. Therefore, instructors may need to select topics of their interest from these chapters. Some portions of Chaps. 5, 7, 9, and 11 can also be covered, although these chapters are really meant for an advanced course.
- Advanced course (fundamentals): Such a course would cover advanced topics on the fundamentals of data mining and assume that the student is already familiar with Chaps. 1–3, and parts of Chaps. 4, 6, 8, and 10. The course can then focus on Chaps. 5, 7, 9, and 11. Topics such as ensemble analysis are useful for the advanced course. Furthermore, some topics from Chaps. 4, 6, 8, and 10, which were not covered in the basic course, can be used. In addition, Chap. 20 on privacy can be offered.
- Advanced course (data types): Advanced topics such as text mining, time series, sequences, graphs, and spatial data may be covered. The material should focus on Chaps. 13, 14, 15, 16, and 17. Some parts of Chap. 19 (e.g., graph clustering) and Chap. 12 (data streaming) can also be used.
- Advanced course (applications): An application course overlaps with a data type course but has a different focus. For example, the focus in an application-centered course would be more on the modeling aspect than the algorithmic aspect. Therefore, the same materials in Chaps. 13, 14, 15, 16, and 17 can be used while skipping specific details of algorithms. With less focus on specific algorithms, these chapters can be covered fairly quickly. The remaining time should be allocated to three very important chapters on data streams (Chap. 12), Web mining (Chap. 18), and social network analysis (Chap. 19).

PREFACE xxv

The book is written in a simple style to make it accessible to undergraduate students and industrial practitioners with a limited mathematical background. Thus, the book will serve both as an introductory text and as an advanced text for students, industrial practitioners, and researchers.

Throughout this book, a vector or a multidimensional data point (including categorical attributes), is annotated with a bar, such as \overline{X} or \overline{y} . A vector or multidimensional point may be denoted by either small letters or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots, such as $\overline{X} \cdot \overline{Y}$. A matrix is denoted in capital letters without a bar, such as R. Throughout the book, the $n \times d$ data matrix is denoted by D, with n points and d dimensions. The individual data points in D are therefore d-dimensional row vectors. On the other hand, vectors with one component for each data point are usually n-dimensional column vectors. An example is the n-dimensional column vector \overline{y} of class variables of n data points.