Задания

29 марта 2021 г.

1. На второй лекции мы видели, что морфизм групп является мономорфизмом тогда и только тогда, когда мономорфизмом является соответствующая ему функция на множествах. Сейчас мы можем обобщить это утверждение. Забывающий функтор $U: \mathbf{Grp} \to \mathbf{Set}$ является правым сопряженным и строгим. Для любого функтора, удовлетворяющего этим двум условиям, можно доказать аналогичное утверждение.

Пусть $U: \mathbf{C} \to \mathbf{D}$ – некоторый функтор. Докажите следующие утверждения:

(a) Если U является правым сопряженным, то он сохраняет мономорфизмы.

Пусть $f:X \to Y$ – моно. Пусть в следующей диаграмме $U(f) \circ g = U(f) \circ h$.

$$A \xrightarrow{g \atop h} U(X) \xrightarrow{U(f)} U(Y)$$

$$\begin{array}{l} \phi^{-1}(U(f)\circ g)=\phi^{-1}(U(f)\circ h)\\ f\circ\phi^{-1}(g)=f\circ\phi^{-1}(h)\Rightarrow\phi^{-1}(g)=\phi^{-1}(h)\Rightarrow f=g \end{array}$$

(b) Если U является строгим, то обратное верно, то есть если U(f) – мономорфизм, то f также является мономорфизмом.

$$A \xrightarrow{g} X \xrightarrow{f} Y$$

$$f\circ g=f\circ h,\ U$$
 строгий $\Rightarrow U(f\circ g)=U(f\circ h)\Rightarrow U(f)\circ U(g)=U(f)\circ U(h)\Rightarrow U(g)=U(h)\Rightarrow \phi^{-1}(U(g))=\phi^{-1}(U(h))\Rightarrow g=h$

2. Докажите, что у забывающего функтора $U: \mathbf{Cat} \to \mathbf{Graph}$, сконструированного в 5 ДЗ, существует левый сопряженный.

Построим левый обратный F.

Пусть
$$F((V, E)) = C$$
, где

$$Ob(C) = V$$

 $Hom(v_a,v_b)=\{[v_a,E(v_a,v_1),v_1,E(v_1,v_2),v_2,...,v_b]\mid v_i\in V\}$ — произвольные конечные пути (если $v_a=v_b,$ то $[v_a]\in Hom(v_a,v_b)$ — нейтральный элемент)

$$\begin{aligned} F_V(v) &= v \\ F_E(e^{a \to b}) &= [a, e^{a \to b}, b] \end{aligned}$$

Композиция морфизмов — композиция путей.

Покажем, что $Hom(A, U(B)) \simeq Hom(F(A), B)$.

Пусть $f \in Hom(A, U(B))$, тогда ему можно однозначно сопоставить $g \in Hom(F(A), B)$:

$$g(V) = f(V)$$

$$g([v_a, E(v_a, v_1), v_1, E(v_1, v_2), v_2, ..., v_b]) = f(E(v_a, v_1)) \circ f(E(v_1, v_2))...$$

$$g([v_a]) = [f(v_a)]$$

3. Докажите, что левый сопряженный к некоторому функтору U уникален с точностью до изоморфизма, то есть если $F\dashv U$ и $F'\dashv U$, то $F\simeq F'.$

Пусть
$$\alpha_A = \epsilon_{F'A} \circ F \eta'_A$$
, $\beta_A = \epsilon'_{FA} \circ F' \eta_A$

Рассмотрим диаграмму

Верхний квадрат коммутирует по натуральности η' , два нижних — по натуральности ϵ . Правый верхний треугольник — так как $F' \dashv U$. Композиция стрелок $F(A) \to FGF(A) \to FGF(A) \to F(A)$ равна id, так как $F \dashv U$. Значит $\beta_A \circ \alpha_A = id$. Если построить симметричную диаграмму (меняем F, F'), то получится, что $\alpha_A \circ \beta_A = id$. То есть α — изоморфизм функторов F, F'.

- 4. Есть ли у забывающего функтора $U: \mathbf{Grp} \to \mathbf{Set}$ правый сопряженный? Докажите это.
- 5. Есть ли у забывающего функтора $U: \mathbf{Grp} \to \mathbf{Mon}$ правый сопряженный? Докажите это.
- 6. Пусть **rGraph** категорий рефлексивных графов. Объекты этой категории это графы, в которых для каждой вершины x выбрана петля id_x в этой вершине. Морфизмы морфизмы графов, сохраняющие тождественные петли.

Категория графов в данном упражнении не будет работать, но вместо **rGraph** можно взять категорию малых группоидов или категорию малых категорий; решение при этом не изменится.

Докажите, что у функтора $\Gamma: \mathbf{rGraph} \to \mathbf{Set}$, сопоставляющего каждому рефлексивному графу множество его вершин, существует правый сопряженный $C: \mathbf{Set} \to \mathbf{rGraph}$ и левый сопряженный $D: \mathbf{Set} \to \mathbf{rGraph}$, и у D существует левый сопряженный $\Pi_0: \mathbf{rGraph} \to \mathbf{Set}$. Таким образом, мы получаем следующую цепочку сопряженных функторов:

$$\Pi_0 \dashv D \dashv \Gamma \dashv C$$

- 7. Докажите, что категории \mathbf{Fam}_I и \mathbf{Set}/I эквивалентны.
- 8. Пусть **С** декартовая категория. Если A объект **С**, то мы можем определить функтор $A^*: \mathbf{C} \to \mathbf{C}/A$ как $A^*(B) = (A \times B, \pi_1)$ и $A^*(f) = \mathrm{id}_A \times f$.
 - (a) Докажите, что у A^* есть левый сопряженный.
 - (b) Докажите, что если ${\bf C}$ декартово замкнута и в ${\bf C}$ есть уравнители, то у A^* есть правый сопряженный.