

lcs (8, 82, m, n):

we if either of string finishes if m == -1 || n == -1 : return 0 if meno[m][n]!=-1: xehm neno[m][n] si: "abc" S2: int meno[m][n] if $S_1[m] == S_2[n]$: meno[n][n] = rehan $[+] lcs(S_1, S_2, M-1, N-1)$ = {-1} Code Mens [m](n) =

Reham max $\begin{cases} lcs(s_1, s_2, m, n-1), \\ lcs(s_1, s_2, m-1, n), \\ lcs(s_1, s_2, m-1, m-1, m), \\ lcs(s_1, s_2, m-1, m), \\ lcs(s_1, s_2$ Ics (reduce, S2) lcs (S1, Reduce)

S1 Repetition is

match. there !! Longest common substrug. $\rightarrow LC$ # Variations. 1) 8, = abcde } In 0/p: 4. Les logic. s2 = dbcbcdea m it shing timshes: Return 0 int le substring (\$1, 82, m, n): if M==-1 || n==-1 : Rehm 0 if match happens: if si[m] == s2[n]: max_len = max (maxlen | + lcs subshing (SI, Sz, return max_len | M_I, AT Rehim 1+ KS(M-1 m-1, ^7)) else: Rehummax {lcs (m, n-1)} tesubstring $(S_1, S_2, M-1, N)$ } Lusubstring $(S_1, S_2, M, N-1)$ } les (n-1, n)

-> LE | +. 81: abce S1: bdc f shortest supersequence that Contains s = a bacde sq and sz both as subsequences. logic: bac de -> SCS -> shortest Connon s uper sequence. all chans + all chars in length = |cs + Sz that are in s_i that are not in (cs . = |cs + (m - lcs) + (n - lcs) |cs occus in both. = | m+n-lcs) = take so } cubiractonce take so chow need to be considered once (3) 2 kind of : insert a chan Operation delete a char s,: heap s, update a char * S2: pea S2 8, -> 32 # min operations required to do so. heap hea the least pea olp: 3: add extraction in sz Remove exha chas from SI (-: Const insertions) (... Const deleting) (m-lcs) + (n-lcs) #min ops = | m + n - 2 1 cs | -> ans.

() 8 = a g b c b a longest subsequence that is a palindsome abcba UPS => longest palindom c O/p = 5agbaba } les -> ababa $g_1 = g_1$ 82 = 8, reverse() to make it palindrome. OR dolete: a glocba $1 \text{ m} - \text{lcs}(s, s. \text{reverse}()) \rightarrow \text{ans}.$ $6 - 5 \Rightarrow \text{ans} = 1$