

ANÁLISIS Y CARACTERIZACIÓN EXPERIMENTAL DE SISTEMAS DE TERCER ORDEN.

Delgado Merchán, Daniel Alejandro Marquina Rojas, Jhoan Alberto

TABLA DE CONTENIDO

 Introducción 	01
 Marco Teórico 	02
 Metodología 	03
 Resultados 	04
 Conclusiones 	05

INTRODUCCIÓN

Los sistemas dinámicos de tercer orden ofrecen un equilibrio entre la simplicidad de modelos de menor orden y la complejidad de modelos de mayor dimensión. Esto los hace ideales para modelar fenómenos físicos y tecnológicos con mayor precisión en diversas áreas.

- Ecuación Diferencial: Se representan por una ecuación diferencial de tercer grado o tres ecuaciones de primer orden en espacio de estados.
- Relevancia: Son fundamentales en el diseño de filtros avanzados, la regulación de procesos industriales y el estudio de sistemas electromecánicos o electrónicos.
- Comportamiento Dinámico: La ubicación de los polos en el plano complejo es crucial, ya que determina la estabilidad, velocidad de respuesta y la presencia de oscilaciones en el sistema.

MARCO TEÓRICO

1

Representación de Sistemas en Espacio de Estados

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

Donde:

- x(t) ∈ Rⁿ es el vector de estados,
- u(t) ∈ ℝ^m es el vector de entradas,
- y(t) ∈ ℝ^p es el vector de salidas,
- A, B, C, D son matrices que caracterizan la dinámica del sistema.

Polos del Sistema

$$\det(sI - A) = 0$$

MARCO TEÓRICO

Forma Canónica Controlable

Es una estructura específica de representación en espacio de estados que facilita el diseño de sistemas con polos predefinidos.

• La matriz contiene directamente los coeficientes del polinomio característico del sistema en su última fila

$$\mathbf{A}_{cc} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{bmatrix} \qquad \mathbf{B}_{cc} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{s}^n + a_{n-1} \mathbf{s}^{n-1} + \dots + a_1 \mathbf{s} + a_0 = 0$$

METODOLOGÍA SISTEMA 1

Polos

Ecuacion Característica

$$(s+1)(s+2)(s+4) =$$

 $s^3 + 7s^2 + 14s + 8$

Matriz Canónica Controlable

$$\mathbf{A}_{cc} = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ -8 & -14 & -7 \end{bmatrix}$$

METODOLOGÍA SISTEMA 2

Polos

$$p1 = p2 = p3 = -4$$

Ecuacion Característica

$$(s+4)^3 =$$

$$s^3 + 12s^2 + 48s + 64$$

Matriz Canónica Controlable

$$\mathbf{A}_{cc} = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ -64 & -48 & -12 \end{bmatrix}$$

DIAGRAMA DE BLOQUES

SISTEMA 1

$$\begin{bmatrix} \dot{XI}(t) \\ \dot{X2}(t) \\ \dot{X3}(t) \end{bmatrix} = \begin{bmatrix} X2 \\ X3 \\ -8XI - 14X2 - 7X3 \end{bmatrix}$$

• SISTEMA 2

$$\begin{bmatrix} \dot{X}I(t) \\ \dot{X}2(t) \\ \dot{X}3(t) \end{bmatrix} = \begin{bmatrix} X2 \\ X3 \\ -64XI - 48X2 - 12X3 \end{bmatrix}$$

DIAGRAMA CIRCUITAL CON OP-AMPS

AMPLIFICADORES OPERACIONALES

LM324 14 Output 4 Output 1 Inverting Input 1 2 13 Inverting Input 4 Non-inverting Input 1 3 12 Non-inverting Input 4 V_{CC} + 4 11 V_{CC} -Non-inverting Input 2 10 Non-inverting Input 3 Inverting Input 2 Inverting Input 3 Output 2 Output 3

• INVERSOR

• SUMADOR

• INTEGRADOR

RESULTADOS

SALIDAS X1, X2, X3

DIAGRAMA DE FASES

RESULTADOS

SALIDAS X1, X2, X3

DIAGRAMA DE FASES

MUCHAS GRACIAS