UNIVERSITÉ DE POITIERS

MATHÉMATIQUES

40. Avenue du Recteur Pineau 86022 POITIERS FRANCE Têl. 49 46 26 30 Agrey 1989-1990 Devoir d'analyse à remettre le 8 novembre

6240

COMPOSITION D'ANALYSE

Durée: 6 heures

PRÉAMBULE

On note R le corps des réels. Les espaces vectoriels considérés sont réels et non réduits au vecteur nul.

Si E et F sont deux espaces vectoriels normés, on note \mathcal{L}_c (E, F) l'espace vectoriel des applications linéaires continues de E dans F, muni de la norme usuelle :

$$\forall u \in \mathcal{L}_{c}(E, F), \quad ||u|| = \sup \left\{ \frac{||u(x)||}{||x||}, x \in E \text{ et } x \neq 0 \right\}.$$

PRÉLIMINAIRES

Les résultats des deux dernières questions de cette partie pourront être utilisés dans la suite du problème, même s'ils n'ont pas été démontrés.

Soit γ une application continue de [0, 1] dans un espace vectoriel normé E. On dit que γ est dérivable en 0 si et seulement si

$$\lim_{\substack{t \to 0 \\ t > 0}} \frac{\gamma(t) - \gamma(0)}{t}$$
 existe; on la note alors $\gamma'(0)$.

Tournez la page S. V. P.

Soient E et F deux espaces vectoriels normés, Ω un ouvert de E, x_0 un point de Ω et f une application continue sur Ω , à valeurs dans F. On dit que f est quasi différentiable en x_0 si et seulement si il existe une application linéaire u de E dans F telle que, pour toute application γ continue de [0, 1] dans Ω , dérivable en 0, vérifiant $\gamma(0) = x_0$, l'application $f \circ \gamma$ est dérivable en 0 et $(f \circ \gamma)'(0) = u(\gamma'(0))$.

- 1º a. Montrer que si f, continue sur Ω , est quasi différentiable en x_0 , l'application linéaire u est unique. On l'appelle la quasi-différentielle de f en x_0 et on la note $qf(x_0)$.
- b. Montrer que si f, continue sur Ω , est différentiable en x_0 , elle y est quasi différentiable et que $qf(x_0) = df(x_0)$, où $df(x_0)$ désigne la différentielle de f en x_0 .
- c. Énoncer et justifier un théorème relatif à la composition des applications quasi différentiables.
 - 2º On suppose, dans cette question seulement, qu'il existe un réel k tel que

$$\forall (x, y) \in \Omega^{2}, \quad || f(x) - f(y) || \leq k || x - y ||.$$

Montrer que s'il existe u linéaire de E dans F telle que pour tout vecteur a de E,

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(x_0 + ta) - f(x_0)}{t} = u(a),$$

alors f est quasi différentiable en x_0 .

- 3º Montrer que si f, continue sur Ω , est quasi différentiable en x_0 , alors $qf(x_0)$ est continue de E dans F.
- 4º Lorsque E est de dimension finie, montrer que toute application f, continue sur Ω , et quasi différentiable en x_0 , est différentiable en x_0 .

E désignant un espace vectoriel normé, on s'intéresse aux problèmes ${\mathfrak L}$ et ${\mathfrak Q}$ suivants :

- $\mathscr{Q} \left\{ \begin{array}{c} \text{déterminer l'ensemble P des éléments de E où l'application de E dans } \mathbb{R} : \\ x \longmapsto \parallel x \parallel, \text{ est différentiable, et calculer } df(x_0) \text{ pour } x_0 \text{ dans P;} \end{array} \right.$
- $\mathbb{Q}\left\{\begin{array}{c} \text{déterminer l'ensemble Q des éléments de E où l'application de E dans } \mathbb{R}: \\ x \longmapsto \|x\|, \text{ est quasi différentiable, et calculer } qf(x_0) \text{ pour } x_0 \text{ dans Q.} \end{array}\right.$

I

A

Soient $E = \mathbb{R}^n$, $n \ge 1$, et $x = (x_1, \ldots, x_n)$ dans E. On considère les trois normes :

$$\|x\|_{\infty} = \sup \{ |x_{i}|; 1 \leq i \leq n \};$$

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}|;$$

$$\|x\|_{2} = \left(\sum_{i=1}^{n} (x_{i})^{2}\right)^{\frac{1}{2}}.$$

1º Résoudre, avec soin, le problème & pour E muni successivement de chacune de ces trois normes.

2º Préciser dans chaque cas les composantes connexes de P (on en indiquera en particulier le nombre).

 \mathbf{B}

Soient E un espace vectoriel normé de dimension finie et $E^* = \mathcal{L}_c(E, \mathbb{R})$ son dual, normé (cf. PRÉAMBULE). On note B et S-(resp. B* et S*) la boule unité fermée et la sphère unité de E (resp. E*).

Pour chaque x_0 de S, on note L_{x_0} l'ensemble des formes linéaires φ , appartenant à S*, telles que

$$\forall x \in B, \quad \varphi(x) \leqslant \varphi(x_0) = 1.$$

On admet que, pour tout x_0 de S, cet ensemble L_{x_0} n'est pas vide.

Toute application l, de S dans S*, qui, à tout x_0 de S, associe un élément l_{x_0} de L_{x_0} est appelée fonction de dualité.

On dit que B est lisse en x_0 ($x_0 \in S$) si et seulement si L_{x_0} est de cardinal 1.

On dit que B est strictement convexe en x_0 (x_0 élément de S) si et seulement si $B \setminus \{x_0\}$ est convexe.

1º Soit $l: S \to S^*$ une fonction de dualité. Démontrer que si B est lisse en x_0 , alors B^* est strictement convexe en l_{x_0} .

 $2^{\rm o}$ Démontrer que, si pour toute fonction de dualité l, B* est strictement convexe en l_{x_0} , alors B est lisse en $x_{\rm o}$.

3º Soient (x, y) un élément de S^2 , et λ un réel strictement positif tel que $x + \lambda y$ soit non nul. Soit $z = \frac{x + \lambda y}{\|x + \lambda y\|}$. Démontrer que, pour toute fonction de dualité l:

$$l_x(y) \leqslant \frac{\parallel x + \lambda y \parallel - 1}{\lambda} \leqslant l_z(y).$$

 4° Soient x_{\circ} un élément de S et l une fonction de dualité. Démontrer l'équivalence des trois propriétés suivantes :

- a. B est lisse au point x_0 ,
- b. l est continue au point x_0 ,
- c. la norme est différentiable au point x_0 .

 \mathbf{II}

1º Résoudre les problèmes $\mathfrak L$ et $\mathfrak Q$ lorsque E est un espace euclidien qui n'est pas de dimension finie.

2º Soit F l'espace vectoriel des suites $x = (x_n)_{n \in \mathbb{N}}$ de nombres réels, qui convergent vers 0. On le norme en posant : $||x||_{\infty} = \sup \{ |x_n| ; n \in \mathbb{N} \}$.

Résoudre les problèmes $\mathfrak L$ et $\mathfrak Q$ pour F. Quelles sont les composantes connexes de P et Q?

3º Soit G l'espace vectoriel des suites $x = (x_n)_{n \in \mathbb{N}}$ de nombres réels telles que la série de terme général $|x_n|$ converge. On le norme en posant :

$$||x||_1 = \sum_{n=0}^{\infty} |x_n|.$$

Tournez la page S. V. P.

- a. Résoudre le problème Q pour G. L'ensemble Q est-il ouvert? Préciser ses composantes connexes.
 - b. Résoudre le problème & pour G.

III

Dans cette partie, E désigne l'espace vectoriel des applications continues de [0, 1] dans \mathbb{R} , normé par :

$$\forall x \in E, \|x\| = \sup\{|x(t)|; t \in [0, 1]\}.$$

- 1º Montrer que si l'application de E dans $\mathbb{R}: x \mapsto ||x||$, est quasi différentiable en x_0 , l'application de [0, 1] dans $\mathbb{R}: t \mapsto |x_0(t)|$, n'atteint son maximum qu'en un seul point.
- 2° a. Soient a et b deux éléments de E. Montrer que l'application de \mathbb{R} dans \mathbb{R} : $\lambda \mapsto \|a + \lambda b\|$ admet, en tout point, une dérivée à droite et une dérivée à gauche.
- b. Soit x_0 un élément de E tel que l'application : $t \mapsto |x_0(t)|$ n'atteigne son maximum qu'en un seul point t_0 .

Soient a un élément de E et λ un réel; on note t_{λ} la borne supérieure de l'ensemble des éléments de [0, 1] où l'application : $t \mapsto |x_0(t) + \lambda a(t)|$ atteint son maximum.

Montrer que
$$\lim_{\substack{\lambda \to 0 \\ \lambda > 0}} t_{\lambda} = t_{0}$$
.

- c. En déduire la solution du problème Q pour E. L'ensemble Q est-il ouvert? Quelles sont ses composantes connexes?
 - 3º Résoudre le problème & pour E.

· Y •