Problema de integración.

Demostrar la proposición siguiente:

Proposición

Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función acotada. Entonces, para todo valor $\epsilon > 0$, siempre es posible hallar un valor $\delta > 0$ tal que si P es una partición del intervalo [a,b] con diámetro menor que δ , $|P| < \delta$, entonces:

$$0 \leq \int_{\underline{a}}^{\underline{b}} f - L(f, P) < \epsilon, \quad 0 \leq U(f, P) - \overline{\int_{\underline{a}}^{\underline{b}}} f < \epsilon.$$

Solución

Consideramos el conjunto \mathcal{L} de las sumas inferiores L(f, P) de la función f para todas las particiones del intervalo [a, b]: $\mathcal{L} = \{L(f, P), \text{ donde } P \text{ es una partición del intervalo } [a, b].\}$

Sea $\epsilon > 0$. Sabemos que $\int_a^b f$ es una cota superior del conjunto \mathcal{L} y además es la más pequeña de todas las cotas superiores. Por tanto, $\int_a^b f - \epsilon$ no puede ser cota superior del conjunto \mathcal{L} al ser un valor menor que $\int_a^b f$ y recordemos que dicho valor es la menor de las cotas superiores de \mathcal{L} .

Como $\int_{\underline{a}}^{\underline{b}} f - \epsilon$ no es cota superior del conjunto \mathcal{L} , significa que existe una partición P del intervalo [a, b] tal que $\int_{\underline{a}}^{\underline{b}} f - \epsilon < L(f, P)$.

Veamos que podemos elegir P con diámetro tan pequeño como queramos. Sea |P| el diámetro de la partición P. Entonces, consideramos P' una partición más fina de P construida de la forma siguiente: añadimos para cada dos puntos $x_i < x_{i+1}$ de P, el punto medio $\frac{x_i + x_{i+1}}{2}$. De esta forma $|P'| = \frac{|P|}{2}$. Además se cumple que:

$$\underline{\int_a^b} f - \epsilon < L(f,P) \leq L(f,P').$$

Siguiendo este proceso las veces n que haga falta, dado un valor δ , siempre podemos hallar una partición P' tal que $|P'| = \frac{P}{2^n} < \delta$ y además:

$$\int_{a}^{b} f - \epsilon < L(f, P) \le L(f, P'),$$

quedando demostrada la primera parte de la proposición.

Para la segunda parte, razonamos de manera parecida.

Consideramos el conjunto \mathcal{U} de las sumas superiores U(f, P) de la función f para todas las particiones del intervalo [a, b]: $\mathcal{U} = \{U(f, P), \text{ donde } P \text{ es una partición del intervalo } [a, b].\}$

Sea $\epsilon > 0$. Sabemos que $\overline{\int_a^b} f$ es una cota inferior del conjunto \mathcal{U} y además es la más grande de todas las cotas inferiores. Por tanto, $\overline{\int_a^b} f + \epsilon$ no puede ser cota inferior del conjunto \mathcal{U} al ser un valor mayor que $\overline{\int_a^b} f$ y recordemos que dicho valor es la mayor de las cotas inferiores de \mathcal{U} .

Como $\overline{\int_a^b} f + \epsilon$ no es cota inferior del conjunto \mathcal{U} , significa que existe una partición P del intervalo [a,b] tal que $\overline{\int_a^b} f + \epsilon > U(f,P)$.

Veamos que podemos elegir P con diámetro tan pequeño como queramos. Sea |P| el diámetro de la partición P. Entonces, consideramos P' una partición más fina de P construida de la forma siguiente: añadimos para cada dos puntos $x_i < x_{i+1}$ de P, el punto medio $\frac{x_i + x_{i+1}}{2}$. De esta forma $|P'| = \frac{|P|}{2}$. Además se cumple que:

$$\overline{\int_a^b} f + \epsilon > U(f, P) \ge U(f, P').$$

Siguiendo este proceso las veces n que haga falta, dado un valor δ , siempre podemos hallar una partición P' tal que $|P'| = \frac{P}{2^n} < \delta$ y además:

$$\overline{\int_a^b} f + \epsilon > U(f, P) \ge U(f, P'),$$

quedando demostrada la segunda parte de la proposición.