# MATH 241

## Chapter 3

#### SECTION 3.5: SUMMARY OF CURVE SKETCHING

## Contents

| A First Example                | 2 |
|--------------------------------|---|
| Guideline For Sketching Curves | 6 |
| DIY!                           | 6 |

Created by: Pierre-Olivier Parisé Spring 2023

## A FIRST EXAMPLE

**EXAMPLE 1.** Sketch the curve given by  $y = \frac{2x^2}{x^2 - 1}$ .

A. Domain: 
$$x^2-1=0 \implies x=11$$

$$(-\infty,-1)\cup(-1,1)\cup(1,\infty).$$

B. y-interupt: 
$$x=0$$
 =>  $y=0$ .  
 $x$ -interupt:  $x^2=0$   $\Rightarrow$   $x=0$ .

C. (I) Even: 
$$f(-x) = \frac{2(-x)^2}{(-x)^2 - 1} = \frac{2x^2}{x^2 - 1} = f(x)$$
!

Lo So, function is even.

$$\frac{D.}{x \rightarrow \infty} \frac{D}{\frac{\partial x^2}{x^2 - 1}} = \frac{\partial}{\partial x} = \frac$$

$$\lim_{\chi \to -1^{-}} \frac{2 x^{2}}{(x-1)(x+1)} = \frac{2 \cdot (-1)^{2}}{(-2) \cdot 0^{-}} = + \infty$$

$$\lim_{\chi \to -1^{-}} \frac{2 x^{2}}{(x-1)(x+1)} = \frac{2 (-1)}{(-2) \cdot 0^{+}} = -\infty$$

$$\lim_{\chi \to -1^{+}} \frac{2 x^{2}}{(x-1)(x+1)} = \frac{2 (-1)}{(-2) \cdot 0^{+}} = -\infty$$

$$\frac{\chi=1}{\chi\rightarrow 1^{-}}\frac{\int_{\chi\rightarrow 1}^{2}\frac{\partial^{2}\chi^{2}}{(\chi\rightarrow 1)(\chi\rightarrow 1)}=\frac{2}{0^{-}\cdot 2}=-\infty$$

$$\frac{\chi=1}{\chi\rightarrow 1^{+}}\frac{\partial^{2}\chi^{2}}{(\chi\rightarrow 1)(\chi\rightarrow 1)}=\frac{2}{0^{+}\cdot 2}=+\infty$$

$$\frac{\chi=1}{\chi\rightarrow 1^{+}}\frac{\partial^{2}\chi^{2}}{(\chi\rightarrow 1)(\chi\rightarrow 1)}=\frac{2}{0^{+}\cdot 2}=+\infty$$

$$E \cdot \int |x| = \frac{-4x}{(x^2-1)^2} = \frac{-4x}{(x-1)^2(x+1)^2}$$

Lis 
$$f'(x) = 0$$
 if  $-4x = 0$  if  $x = 0$ .  
and  $f'(x)$  DNE if  $x = -1$ ,  $x = 1$ .

$$f''(x) = \frac{12x^4 + 4}{(x^2 - 1)^3} = \frac{12x^4 + 4}{(x - 1)^3(x + 1)^3}$$

and 
$$f''(x)$$
 DNE if  $x=-1$ ,  $x=1$ 

F.

| Factors            | χ 4 | - 1 | 2 2 4 | 0          | 2 X Z | 1   | ζχ       |
|--------------------|-----|-----|-------|------------|-------|-----|----------|
| -4x                | +   |     | +     |            |       |     |          |
| $(\chi-1)^{2}$     | +   |     | +     |            | +     |     | +        |
| (2641)2            | +   |     | +     |            | +     |     | +        |
| f'(n)              | +   | DNE | +     | 0          | )     | DNE |          |
| $(\chi-1)^3$       | )   |     | -     |            | _     |     | +        |
| (2+1) <sup>3</sup> | _   |     | +     |            | +     |     | +        |
| <b>す"ね)</b>        | +   | DNE | ı     | -4         | 1     |     | +        |
| fln)               | 1   | VΑ  | 7     | loc<br>max |       |     | <b>\</b> |



### Guideline For Sketching Curves

- **A.** Find the domain of the function.
- **B.** Find the y-intercept and x-intercept, that is f(0) and when f(x) = 0.
- C. Search for symmetries:
  - (I) If f(x) = f(-x) for all x, then the function is even.
  - (II) If -f(x) = f(-x) for all x, then the function is odd.
  - (III) If f(x+p) = f(x) for some p and all x, then the function repeats itself after a period p.
- **D.** Find the asymptotes:
  - (I) The <u>horizontal</u> asymptotes.
  - (II) The <u>vertical</u> asymptotes.
- **E.** Find the critical numbers and the possible points of inflections.
- **F.** Construct the table:
  - (I) Deduce the intervals of increase and decrease.
  - (II) Deduce the intervals of concavity.
  - (III) Deduce the local (global) maximum values and local (global) minimum values.
- **G.** Sketch the graph of the functions.

DIY!

**EXAMPLE 2.** Sketch the graph of  $f(x) = \frac{x^2}{\sqrt{x+1}}$ .