# R-code for producing Figure 2 from Pedersen et al. (2013), Nature Biotechnology

Lykke Pedersen, Peter H Hagedorn, Marie Lindholm, Morten Lindow

With the gain of increasing reproducibility, this vignette includes the commands to reproduce Fig. 2 from "A kinetic model of enzyme recruiting oligonucleotides predicts an optimal affinity and thus explains why shorter and less affine oligonucleotides may be more potent". The R-functions from the ASO-models are used and the package is loaded by the commands

```
> require(devtools)
> install_github('ASOmodel',username='lykkep')
> require(ASOmodels)
```

## Kinetic model figures

#### Figure 2a: Time-resolved simulation of the ASO model

Parameters for the ASO model, the initial concentrations and the time-steps for which the simulation is performed:

Using vode() the ASO model is simulated in time. The function diffASO() is part of the ASO models package.

```
> solASO <- vode(init,TimeSteps,diffASO,parms)</pre>
```

The time traces for the concentrations of  $[O],\ [T],\ [OT],\ [OTE],$  and [E] are plotted:

```
> xtime <- TimeSteps <= 35
 par(mar=c(3.2,3.4,0.1,0.1),bty='n',mgp=c(2,0.7,0),
      cex=0.6, cex.axis=1, las=1)
> for(i in 1:5){
    if(i!=1) par(new=TRUE)
    plot(TimeSteps[xtime], solASO[xtime,i], yaxt='n', xaxt='n',
         ylab='relative concentrations', xlab='minutes',las=1,
         col=colVAR[i], type='l', ylim=c(0,1), xlim=c(0,35+26))
+ }
> xtime <- 40
> for(i in 1:5) lines(xtime+0:20,rep(last(solASO)[i],21),
                      col=colVAR[i])
> axis(1,at=c((0:3)*10,45),label=c((0:3)*10,''))
> axis(1,at=45,label='steady-\nstate',mgp=c(0,1.6,0))
> axis(2,at=c(0,1),label=c('min','max'),las=1)
> text(xtime,last(solASO)[5]-0.05,col=colVAR[5],adj=0,
       substitute(0 == e^nM,list(e=SSvalue[5])))
> #T
 text(xtime, 0.05, col=colVAR[1], adj=0,
       substitute(T == e*pM,list(e=1e3*SSvalue[1])))
> #OT
> text(xtime,last(solASO)[2]-0.05,col=colVAR[2],adj=0,
       substitute(OT== e*nM,list(e=SSvalue[2])))
> #0TE
> text(xtime, last(solASO)[3]+0.05, col=colVAR[3], adj=0,
       substitute(OTE == e*pM,list(e=1e3*SSvalue[3])))
> #E
> text(xtime, last(solASO)[4]+0.05, col=colVAR[4], adj=0,
       substitute(E == e*nM,list(e=SSvalue[4])))
```



Figure 2a: Time resolved simulation of the relative concentrations of key species

## Figure 2b: Simulated dose-response curve

Given a set of parameters the R-function Trel() from the ASOmodels package calculates the relative target concentration as a function of the total concentration of oligonucleotide added to the system.



Total oligonucleotide conc (nM)

Figure 2b: The relative total target concentration  $(T_{\rm rel})$  is defined as the steady state level of total target in the presence of oligonucleotide divided by the target concentration in the absence of oligonucleotide. Dashed lines indicate efficacy (horizontal) and  $IC_{50}$  (vertical).

#### Figure 2c: An optimum affinity

For a sequence of affinities  $D1\_seq$  the  $IC_{50}$  values are calculated by use of the R-function IC50 from the ASOmodels package:

```
> D1_seq <- 10^seq(-3,3.2,by=0.25)
> ICfit <- sapply(D1_seq,IC50)</pre>
```

When there is no coupling between the off-rates  $k_{OT \to O+T}$  and  $k_{*C \to *+C}$  then the value of  $k_{*C \to *+C}$  is set in the param vector as the entry 'kC':

```
> parmsN0 <- c(parms,kC=parms['k0pT']*parms['Kd0T']/parms['alpha'])

> names(parmsN0)[length(parmsN0)] <- 'kC'

> ICfitN0 <- sapply(D1_seq,IC50N0) #IC50 without coupling

For the sequence of affinities the sequences of IC_{50} values are plotted:

> plot(D1\_seq,ICfit,log='xy',yaxt='n',type='l',xaxt='n',

+ xlab=expression(D[0T]^{-'}(nM)'),ylab=expression(IC[50]^{-'}(nM)'))

> lines(D1\_seq,ICfitN0,lty=2)

> axis(2,at=c(2,20,200),labels=c(2,20,200))

> axis(1,at=10^pretty(log10(D1\_seq)),

+ labels=pretty10expLP(10^pretty(log10(D1\_seq)),drop.1=T),)

> legend('topleft',c('Coupling','No coupling'),lty=c(1,2),bty='n')
```



Figure 2c: The  $IC_{50}$  as a function of the dissociation constant for the OT complex. A low  $K_{dOT}$  corresponds to a high affinity binding. Dashed line: no coupling of off-rates. Solid line: coupling of off-rates.

# Experimental data figures

### Figure 2d: Frieden et al. (2003)

```
> data(gapmers)
> dat <- data.frame(gapmers)
> colL <- c('red','orange','darkgreen','','darkblue','','purple','','black')
> #### We plot the data from Frieden et al, 2003
> dat.F <- dat[dat$Study=="Frieden 2003",]
> cohigh.F <- 63; colow.F <- 53
> tmp <- abs(cohigh.F-colow.F)
> cut.F <- cut(dat.F$Predicted.Tm,c(0,colow.F,cohigh.F,100),labels=F)</pre>
```



Figure 2d: 21 oligonucleotides targeted against the luciferase firefly gene.

## Figure 2e: Stanton et al. (2012)

```
> #### We plot the data from Stanton et al 2012
> dat.S <- dat[dat[,1]=="Stanton 2012",]
> cohigh.S <- 61; colow.S <- 46
> tmp <- abs(cohigh.S-colow.S)
> cut.S <- cut(dat.S$Predicted.Tm,c(0,colow.S,cohigh.S,100),labels=F)
> Sx <- lapply(1:3,function(i)dat.S$Predicted.Tm[cut.S==i])
> Sy <- lapply(1:3,function(i) dat.S$Dose.3nm[cut.S==i])
> Slength <- dat.S$Oligo.length
> bp <- barplot(sapply(Sy,mean),ylim=c(0,105), las=1,axes=F,</pre>
```

```
+ yaxs='i', xaxs='i',space=0.01)
> plotCI(bp[,1],sapply(Sy,mean),sapply(Sy,sd),add=T,pch=NA, gap=0,yaxs='i')
> par(new=T)
> plot(unlist(Sx),unlist(Sy),xlim=c(colow.S-tmp,cohigh.S+tmp),
+ ylim=c(0,105), pch=19,col=colL[Slength-11],xaxt='n',
+ ylab='% target measured from PCR',
+ xlab=expression(T[m]~'('*degree*C*')'),yaxs='i',xaxs='i')
> axis(1,at=c(colow.S,cohigh.S),labels=as.character(c(colow.S,cohigh.S)))
> legend('bottomright',as.character(sort(unique(Slength))),
+ pch=19,col=colL[sort(unique(Slength))-11],bg='white')
```



Figure 2e: 21 oligonucleotides targeted against the glucocorticoid receptor.

## Figure 2f: Pedersen et al. (2013) (this work)

```
+ pch=19,col=colL[Plength-11],xaxt='n',ylab=expression(IC[50]~'('*nM*')'),
+ xlab=expression(T[m]~'('*degree*C*')'),yaxs='i',xaxs='i')
> axis(1,at=c(colow.P,cohigh.P),labels=as.character(c(colow.P,cohigh.P)))
> legend('bottomright',as.character(sort(unique(Plength))),
+ pch=19,col=colL[sort(unique(Plength))-11],bg='white')
```



Figure 2f: 23 oligonucleotides targeted against ApoB.