1.2 ベクトル

図 1.8 幾何ベクトルとして等しい有向線分

て \vec{a} , \vec{b} ,...などと表す。 \vec{a} と逆の向きを持つベクトルを $-\vec{a}$ と表す。

定義 1.1. 始点と終点が同じ点のベクトルを零ベクトルといい, $\vec{0}$ と表す.ベクトル \vec{a} の線分としての長さをベクトルのノルムといい, $\|\vec{a}\|$ と表す.例えば, $\vec{a}=\overrightarrow{AB}$ のとき, $\|\vec{a}\|=|AB|$ である.

ベクトル \vec{a} が平面上の有向線分として表されるとき, \vec{a} を平面ベクトルとよぶ.同様に,空間上の有向線分として表されるとき, \vec{a} を空間ベクトルとよぶ.

1.2.2 ベクトルの線形演算

ベクトルの和

ベクトル \vec{a} , \vec{b} に対し,その和 $\vec{a} + \vec{b}$ を以下のようにして定義する; $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$ のように \vec{a} の終点と \vec{b} の視点が重なるように平行移動し, $\vec{a} + \vec{b} = \overrightarrow{AC}$ と定める(図 1.9 左).これは \vec{a} , \vec{b} を 2 辺とし,始点を共有する平行四辺形の対角線のひとつに図 1.9 右のような向きを定めたベクトルに他ならない.この定義から,ベクトルの和が可換,つまり $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ が成り立つことがわかる.また,任意のベクトル \vec{a} に対し, $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$, $\vec{a} + (-\vec{a}) = \vec{0}$ であることも明らかだろう.

図 1.9 ベクトルの和

ベクトルのスカラー倍

ベクトル \vec{a} と実数tに対し、そのスカラー倍 $t\vec{a}$ を

- (a) t > 0 のとき、 \vec{a} と同じ向きで、ノルムが $t \|\vec{a}\|$ のベクトル、
- (b) t = 0 のとき, $\vec{0}$,
- (c) t < 0 のとき、 \vec{a} と逆の向きで、ノルムが $(-t) \times ||\vec{a}||$ のベクトル

と定める.

図 1.10 ベクトルのスカラー倍. t>0 の場合(左)と t<0 の場合(右)

この定義から、 $-\vec{a} = (-1)\vec{a}$ であることがわかる.

定義 **1.2.** 零ベクトルでないベクトル \vec{a} , \vec{b} に対し, $\vec{a}=k\vec{b}$ となる実数 k が存在するとき, \vec{a} と \vec{b} は平行であるという.

ベクトルの和とスカラー倍の性質

1.2.3 位置ベクトルとベクトルの成分表示

位置ベクトル

ベクトルの成分表示

- 1.2.4 内積とノルム
- 1.2.5 空間ベクトルの外積
- 1.3 基底と座標系