Documentación de la Fase 1 y Fase 2 -Proyecto de Gestión de Embalses

1 Introducción

En esta fase del proyecto nos vamos a centrar en la creación de la base de datos para poder ser utilizada en la posterior aplicación. El proposito principal es cargar los datos de la base de datos y relacionarlos entre ellos.

2 Estructura de la Base de Datos

2.1 Tablas y Esquema

A continuación, se describen las tablas utilizadas y las relaciones establecidas entre ellas.

2.1.1 Tabla EMBALSES

Campo	Tipo de Dato	Descripción
ID	INT	Identificador único del embalse
AMBITO_NOMBRE	VARCHAR(100)	Nombre del ámbito geográfico
EMBALSE_NOMBRE	VARCHAR(100)	Nombre del embalse
AGUA_TOTAL	FLOAT	Capacidad total de agua del embalse
ELECTRICO_FLAG	BOOLEAN	Indica si el embalse se utiliza para generar electric

Clave Primaria (PK): ID.

Descripción: Esta tabla almacena la información básica sobre cada embalse.

2.1.2 Tabla AGUA ALMACENADA

Campo	Tipo de Dato	Descripción
FECHA AGUA ACTUAL	DATE FLOAT	Fecha del registro del volumen de agua Cantidad de agua almacenada
ID	INT	Identificador del embalse (Foreign Key)

Clave Foránea (FK): ID, que referencia el campo ID de la tabla EM-BALSES.

Descripción: Esta tabla contiene los registros históricos del agua almacenada en cada embalse.

2.1.3 Tabla LISTADO EMBALSES

Campo	Tipo de Dato	Descripción
CODIGO	INT	Código único del embalse
NOMBRE	VARCHAR(100)	Nombre del embalse
EMBALSE	VARCHAR(100)	Nombre del embalse en una forma alternativa
X	FLOAT	Coordenada X (longitud)
Y	FLOAT	Coordenada Y (latitud)
DEMARC	VARCHAR(100)	Demarcación hidrográfica
CAUCE	VARCHAR(100)	Cauce del río donde se sitúa el embalse
GOOGLE	VARCHAR(255)	Enlace a Google Maps
OPENSTREETMAP	VARCHAR(255)	${ m Enlace\ a\ OpenStreetMap}$
WIKIDATA	VARCHAR(255)	Identificador de Wikidata
PROVINCIA	VARCHAR(100)	Provincia donde se ubica el embalse
CCAA	VARCHAR(100)	Comunidad Autónoma
TIPO	VARCHAR(50)	Tipo de embalse (natural, artificial, etc.)
TITULAR	VARCHAR(100)	Entidad titular del embalse
USO	VARCHAR(100)	Uso principal del embalse
COTA_CORON	FLOAT	Altura de la coronación
ALT_CIMIEN	FLOAT	Altura de la cimentación
INFORME	TEXT	Información adicional o informe técnico

Clave Primaria (PK): CODIGO.

Descripción: Esta tabla proporciona información adicional y geográfica sobre los embalses.

2.2 Relaciones entre las Tablas

Las relaciones entre las tablas se han implementado de la siguiente manera:

2.2.1 Relación EMBALSES - AGUA ALMACENADA

Se establece una relación de uno a muchos entre EMBALSES y AGUA_ALMACENADA. El campo ID de EMBALSES actúa como clave primaria en su tabla y como clave foránea en AGUA_ALMACENADA, permitiendo que cada embalse tenga múltiples registros de almacenamiento de agua en diferentes fechas.

2.2.2 Relación EMBALSES - LISTADO EMBALSES

Aunque ambas tablas contienen información sobre embalses, no existe una relación directa perfecta debido a que los datos no son exactamente iguales. Se está trabajando en encontrar una forma óptima de relacionar ambas tablas, utilizando el campo NOMBRE o EMBALSE. Finalmente para poder relacionarlas entre ellas se creará una tabla intermedia.

2.3 Índices

Para optimizar las consultas y mejorar el rendimiento de la base de datos, se han creado los siguientes índices:

- Índice en EMBALSE_NOMBRE de la tabla EMBALSES: Para acelerar las búsquedas por nombre de embalse.
- Índice en FECHA de la tabla AGUA_ALMACENADA: Para agilizar las consultas basadas en fechas específicas.

Estos índices aseguran que las consultas que involucren grandes volúmenes de datos sean rápidas y eficientes, especialmente al buscar embalses por nombre o al consultar los volúmenes de agua almacenada en fechas específicas.

3 Modelo de Clases (Entidades y Relaciones)

El diseño del modelo de la base de datos sigue el paradigma de modelado de entidades y relaciones (ER), donde cada tabla es una entidad y las relaciones se establecen mediante claves primarias y foráneas. A continuación, se describen las principales entidades:

- Entidad EMBALSES: Representa los embalses con atributos como su capacidad, nombre y si generan electricidad.
- Entidad AGUA_ALMACENADA: Almacena registros históricos de la cantidad de agua en los embalses.

Figure 1: Esta es una imagen de ejemplo.

• Entidad LISTADO_EMBALSES: Proporciona información complementaria y georreferenciada de los embalses.

Las relaciones entre estas entidades están definidas por las claves primarias y foráneas explicadas en las secciones anteriores.

4 Desafíos y Soluciones Propuestas

Uno de los principales desafíos encontrados ha sido la falta de correspondencia exacta entre las tablas EMBALSES y LISTADO_EMBALSES. Para abordar este problema, se han planteado varias estrategias:

• Creación de Tablas Intermedias: Se podrían crear tablas de correspondencia que actúen como un "puente" entre ambas tablas, utilizando campos comunes como EMBALSE NOMBRE.

• Añadir Atributos Auxiliares: Incorporar atributos que faciliten la vinculación entre los registros de ambas tablas.

5 Código SQL

A continuación se muestra el código SQL necesario para crear las tablas y las relaciones descritas:

```
CREATE TABLE EMBALSES (
ID INT PRIMARY KEY,
AMBITO NOMBRE VARCHAR(100),
EMBALSE NOMBRE VARCHAR (100),
AGUA TOTAL FLOAT,
ELECTRICO FLAG BOOLEAN
);
CREATE TABLE AGUA_ALMACENADA (
FECHA DATE,
AGUA_ACTUAL FLOAT,
ID INT,
FOREIGN KEY (ID) REFERENCES EMBALSES(ID)
);
CREATE TABLE LISTADO EMBALSES (
CODIGO INT PRIMARY KEY,
NOMBRE VARCHAR(100),
EMBALSE VARCHAR(100),
X FLOAT,
Y FLOAT,
DEMARC VARCHAR (100),
CAUCE VARCHAR(100),
GOOGLE VARCHAR (255),
OPENSTREETMAP VARCHAR (255),
WIKIDATA VARCHAR (255).
PROVINCIA VARCHAR(100),
CCAA VARCHAR(100),
TIPO VARCHAR(50),
TITULAR VARCHAR(100),
```

```
USO VARCHAR(100),
COTA_CORON FLOAT,
ALT_CIMIEN FLOAT,
INFORME TEXT
);
```

6 Fase 2: Implementación de la Interfaz de Usuario

En la fase 2 del proyecto, nos enfocamos en el desarrollo de la interfaz de usuario (UI) para interactuar con la base de datos creada en la fase anterior. A continuación se detallan los componentes y características implementados:

6.1 Componentes de la Interfaz

La interfaz de usuario se ha diseñado para ser intuitiva y fácil de usar. Los componentes principales son:

- Formulario de Búsqueda: Permite a los usuarios buscar embalses según diferentes criterios, como nombre, provincia y tipo.
- Tabla de Resultados: Muestra los embalses que cumplen con los criterios de búsqueda, presentando información como nombre, ubicación y capacidad.
- Detalles del Embalse: Al seleccionar un embalse de la tabla, se muestra un panel con información detallada sobre el embalse, incluyendo gráficos de agua almacenada a lo largo del tiempo.

6.2 Tecnologías Utilizadas

Para el desarrollo de la interfaz se han utilizado las siguientes tecnologías:

- HTML/CSS: Para la estructura y el estilo de la página web.
- JavaScript: Para la interactividad y las consultas dinámicas a la base de datos.
- PHP: Para la comunicación entre la interfaz y la base de datos.
- Framework Bootstrap: Para un diseño responsive que se adapte a diferentes dispositivos.