Al-Powered PDF Assistant for Business

Leveraging LLMs for Extractive Question Answering and Dynamic Content Generation

LLM Use Case Overview

What are LLMs?

Advanced AI systems for understanding and generating human language.

Potential in Document Processing:

- Automates information extraction and query answering.
- Reduces manual effort and errors.

Convince the Customer or Business People

Value Proposition:

Unique selling points of the Al assistant.

Real-World Examples:

Success stories and case studies.

Address Pain Points:

Show how it solves common challenges.

Demonstrate ROI:

Highlight cost savings and productivity gains.

Focus on Business Value

Challenges Addressed:

- Manual processing inefficiencies.
- Difficulty in information retrieval.

Key Benefits:

- Productivity: Automates tasks and speeds up retrieval.
- Accuracy: Reduces errors and provides consistent responses.
- Cost Savings: Lowers labor costs and training needs.
- Scalability: Handles large volumes efficiently.

Development Process Overview

1. Data Preparation:

Collection:

Gathered diverse and comprehensive datasets relevant to the document processing tasks.

Preprocessing:

- Cleaned and formatted the data to ensure consistency and quality.
- Removed any irrelevant or noisy data to improve the model's performance.
- Tokenized the text to convert it into a format suitable for model training.

2. Model Training:

Model Selection:

Chose the distillert-base-uncased-distilled-squad model for its efficiency and accuracy in question answering tasks.

Transfer Learning:

Used transfer learning to leverage the pre-trained knowledge of the model and improve its performance on our tasks.

Training Process:

Employed supervised learning techniques to train the model.

Split the dataset into training and validation sets to monitor the model's performance and prevent overfitting.

3. Evaluation:

- **Metrics:**
 - Evaluated the model using standard metrics like accuracy, precision, recall, and F1 score.
- Iterative Improvements:

 Based on the evaluation results, made iterative improvements to the model by adjusting hyperparameters and retraining.

Extractive Question Answering

Training the Model:

Question-Answer Pairs:

- Created a dataset of question-answer pairs from the documents.
- Ensured the questions covered a wide range of topics to enhance the model's generalizability.

• Tokenization:

- Used tokenization to convert the text into tokens that the model can process.
- Employed the DistilBERT tokenizer for consistent tokenization.

Training Steps:

- Fine-tuned the DistilBERT model on the question-answer pairs.
- Employed loss functions to minimize the difference between predicted and actual answers.

Dynamic Content Generation

1. Dynamic Updates Based on KPIs:

- Identifying KPIs:
 - Extracted key performance indicators (KPIs) from the text using regular expressions.
 - Example KPIs: Length of the Nile River, Discharge rate.

Updating Content:

- Replaced old KPI values with new ones dynamically.
- Ensured the context around the KPIs remained coherent and meaningful.

2. Implementation Steps:

Regex Patterns:

- Created regex patterns to identify and extract KPIs from the text.
- Example: 'length_of_nile': r'6,650 kilometers'

Updating Text:

- Used a function to replace old KPI values with updated ones in the text.
- Highlighted changes to make updates transparent.

Summary and Q&A