Linear Algebra

Instructor: Jing YAO

2

Vector Spaces (向量空间)

2.3

LINEAR INDEPENDENCE, BASIS AND DIMENSION (线性无关性、基和维数)

Linear Independence

Basis

Coordinates (坐标)

Dimension

I. Introduction

在三维几何向量空间 R3 中,

$$i = (1,0,0)^{\mathrm{T}}, j = (0,1,0)^{\mathrm{T}}, k = (0,0,1)^{\mathrm{T}}.$$

 $\alpha = a_1 i + a_2 j + a_3 k.$

向量 (a_1, a_2, a_3) ^T是 α 关于一组基 $\{i, j, k\}$ 的坐标.

- 向量组{*i*, *j*, *k*}<u>线性无关</u>
- 向量组 $\{\alpha, i, j, k\}$ 线性相关
- R³中的任何一个向量可以由{*i*, *j*, *k*}线性表示, 但不可以仅由它的子集表示:

 $\{i,j,k\}$ 是 \mathbb{R}^3 的一组基

- R³的继数是3(基含有的向量个数)
- 系数 (a_1, a_2, a_3) ^T是向量 α 在这组基下的<u>坐标</u>

Use your geometric experience with R² and R³ to visualize general concepts

In \mathbf{R}^n , let

$$e_1 = (1,0,0, ..., 0,0)^T,$$

 $e_2 = (0,1,0, ..., 0,0)^T,$

• • •

$$e_n = (0,0,0, ..., 0,1)^{\mathrm{T}}$$
.

Then $\{e_1, e_2, ..., e_n\}$ is a spanning set of \mathbb{R}^n , since each vector $\mathbf{v} = (x_1, x_2, ..., x_n)^T$ is a linear combination of them:

$$\boldsymbol{v} = x_1 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 + \boldsymbol{\cdot} + x_n \boldsymbol{e}_n.$$

It is obvious that no *proper subset* (真子集) of $\{e_1, e_2, ..., e_n\}$ is a spanning set of \mathbb{R}^n .

Let V be a subspace of \mathbb{R}^n .

A set of vectors $\{v_1, v_2, ..., v_r\}$ is called a **basis** (一组基) if it is a *spanning set* of V but any proper subset is not.

Bases are important in the study of vector spaces.

Recall: Spanning Sets

Recall that, if V is a subspace of \mathbb{R}^n and A is a subset of \mathbb{R}^n such that

$$V = \operatorname{span}(A)$$

then V is the span of A, and A is a spanning set for V.

Example 1 Let $A = \{u, v\}$, defined below.

- (1) If $\mathbf{u} = (1,1)^{\mathrm{T}}$ and $\mathbf{v} = (2,2)^{\mathrm{T}}$, then $\mathrm{span}(A) = \{(\alpha, \alpha)^{\mathrm{T}} | \alpha \in \mathbf{R} \}.$
- (2) For $\boldsymbol{u} = (1,1)^{\mathrm{T}}$ and $\boldsymbol{v} = (1,2)^{\mathrm{T}}$, then $\mathrm{span}(A) = \{(\alpha, \beta)^{\mathrm{T}} \mid \alpha, \beta \in \mathbf{R}\} = \mathbf{R}^2$.

Example 2 Let $A = \{u, v, w\}$, defined below.

- (1) If $\mathbf{u} = (1,0,0)^{\mathrm{T}}$, $\mathbf{v} = (0,1,0)^{\mathrm{T}}$, and $\mathbf{w} = (2,3,0)^{\mathrm{T}}$, then $\mathrm{span}(A) = \{(\alpha, \beta, 0)^{\mathrm{T}} \mid \alpha, \beta \in \mathbf{R}\}.$
- (2) Let $\mathbf{u} = (1,0,0)^{\mathrm{T}}$, $\mathbf{v} = (0,1,0)^{\mathrm{T}}$ and $\mathbf{w} = (0,0,1)^{\mathrm{T}}$, then $\mathrm{span}(A) = \mathbf{R}^3$.

A natural question is how to determine whether a given set of vectors is a spanning set of a vector space?

Example 3 Let $A = \{(1,1,1)^T, (1,3,5)^T, (1,2,3)^T\}$. Is A a spanning set for \mathbb{R}^3 ?

We need to see if *any* vector $\mathbf{v} = (a, b, c)^{\mathrm{T}} \in \mathbf{R}^3$ is a linear combination of A. Let

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

for some scalars x_1 , x_2 , x_3 . This forms a system of linear equations.

If this system has solutions for any $(a, b, c)^T$, then A is a spanning set; otherwise, A is not a spanning set.

Answer?

What if -- Let
$$A = \{(1,1,1)^T, (1,3,5)^T, (1,2,4)^T\}$$
?

II. Linear Independence

实例

某调料公司用6种成分制造了6种调味品

每包调味品所需各成分的量

成分 调味品	A	В	C	D	E	F
红辣椒	3	1.5	4. 5	7. 5	9	4. 5
姜黄	2	4	0	8	1	6
胡椒	1	2	0	4	2	3
大蒜粉	0. 5	1	0	2	2	1. 5
盐	0. 5	1	0	2	2	1. 5
丁香油	0 25	0.5	0	2	1	0.75

- •顾客是否可只买其中部分调味品,并配出其余几种?
- •最少要购买几种调味品?哪几种?
- •能否配制出下列新调味品?

红辣椒:18; 姜黄:18; 胡椒:9; 大蒜粉:4.8; 盐:4.5; 丁香油: 3.25.

II. Linear Independence

Definition 1 (*Linear dependence*). Let $A = \{v_1, v_2, ..., v_k\}$ ($k \ge 2$) be a set of vectors of \mathbb{R}^n . Then

(i) A is called linearly dependent (线性相关) if *one of* the vectors can be expressed as a linear combination of the others,

i.e., there exists $v_i \in A$ such that

$$v_i = \sum_{j \neq i} \lambda_j v_j$$

where λ_i 's are numbers;

(ii) A is called **linearly independent** (线性无关) if *no* vector in A is a linear combination of the others.

A set containing a single vector \mathbf{v} (k=1) is linearly independent if and only if $\mathbf{v} \neq \mathbf{0}$. (仅有一个向量 \mathbf{v} 的集合线性无关当且仅当 $\mathbf{v} \neq \mathbf{0}$)

For example,

- $\{(1,1)^T, (2,2)^T\}$ is linearly dependent.
- $\{(1, 1)^T, (1, 2)^T\}$ is linearly independent.
- $\{(1, 0, 0)^T, (0, 1, 0)^T, (2, 3, 0)^T\}$ is linearly dependent.
- $\{(1, 0, 0)^T, (0, 1, 0)^T, (2, 3, 1)^T\}$ is linearly independent.

The next theorem provides us with a method for deciding whether a set of vectors is linearly independent.

Theorem 1 Let $A = \{v_1, v_2, ..., v_k\}$ be a set of vectors of \mathbb{R}^n . Then (1) A is linearly independent if and only if

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdot \quad + \lambda_k \mathbf{v}_k = \mathbf{0}$$

holds only for $\lambda_1 = \lambda_2 = \cdot = \lambda_k = 0$; equivalently

(2) A is linearly dependent if and only if

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdot \quad + \lambda_k \mathbf{v}_k = \mathbf{0}$$

holds for some scalars $\lambda_1, \lambda_2, ..., \lambda_k$ which are not all zeros.

Note: A set of vectors containing the zero vector must be linearly dependent. (含零向量的向量组必定线性相关.)

A Method: Given $A = \{v_1, v_2, ..., v_k\} \subset \mathbb{R}^n$, the following process decides if A is linearly independent.

Step 1. Set up a vector equation

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdot \quad + \lambda_k \mathbf{v}_k = \mathbf{0}$$

where λ_1 , λ_2 , ..., λ_k are unknowns.

- *Step 2*. Write this vector equation into a system of linear equations with unknowns λ_1 , λ_2 , ..., λ_k (关于 λ_1 , λ_2 , ..., λ_k 的线性方程组).
- *Step 3*. Solve the system of linear equations.
- Step 4. Discussion: If $\lambda_1 = \lambda_2 = \cdot = \lambda_k = 0$ is the only solution (该线性方程组只有零解, trivial), then A is linearly independent (线性无关).
- If there is a solution such that some $\lambda_i \neq 0$ (该线性方程组有非零解,即某些 λ_i 的取值非零, nontrivial), then A is linearly dependent (线性相关).

Example 4 Let

$$\boldsymbol{u} = (1, 0, -1, 0)^{\mathrm{T}}, \, \boldsymbol{v} = (1, 1, 0, 2)^{\mathrm{T}}, \, \boldsymbol{w} = (0, 3, 1, -2)^{\mathrm{T}}.$$

Is $\{u, v, w\}$ linearly independent?

Solution The key to answer this question is to solve the equation $\lambda_1 \boldsymbol{u} + \lambda_2 \boldsymbol{v} + \lambda_3 \boldsymbol{w} = \boldsymbol{0}.$

To solve this system of equations, we reduce the augmented matrix to row echelon form

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 This system only has solution $\lambda_1 = \lambda_2 = \lambda_3 = 0$, and so \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} are linearly independent.

In terms of components, we have a system of linear equations
$$\lambda_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 3 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
To solve this system of equations,

This system only has

Example 5 Let

$$\boldsymbol{u} = (1, 0, -1, 0)^{\mathrm{T}}, \, \boldsymbol{v} = (1, 1, 0, 2)^{\mathrm{T}}, \, \boldsymbol{w} = (1, 3, 2, 6)^{\mathrm{T}}.$$

Is $\{u, v, w\}$ linearly independent?

Solution The key to answer this question is to solve the equation $\lambda_1 \boldsymbol{u} + \lambda_2 \boldsymbol{v} + \lambda_3 \boldsymbol{w} = \boldsymbol{0}.$

In terms of components, we have a system of linear equations. To solve this system of equations, we reduce the augmented matrix to row echelon form

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & 2 & 6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Now, the system of equations has non-trivial solutions, so u, v, w are linearly dependent.

Two independent rows; Two independent columns

$$\rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

For instance, $(\lambda_1, \lambda_2, \lambda_3)$ $0 \quad 1 \quad 3 \quad 0$ $0 \quad 0 \quad 0 \quad 0$

$$2u - 3v + w = 0$$

Example 6 The columns of the following triangular matrix are *linearly independent*. It has **no zeros on the diagonal**.

$$A = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$$

Look for a combination of the columns that makes zero: Solve Ac = 0:

$$\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + c_{2} \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + c_{3} \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The only combination to produce the zero vector is the trivial combination ($c_1 = c_2 = c_3 = 0$).

The nullspace of A contains only the zero vector.

The columns of A are independent exactly when $N(A) = \{0\}$.

III. Basis

Definition 2 (*Basis*) Let V be a subspace of \mathbb{R}^n , and let A be a set of vectors of V. Then A is called a basis (基) for V if

- A is a spanning set for V, i.e., V = span(A), and (not too few vectors)
- A is linearly independent. (not too many vectors)

A basis is: 最小的生成集和最大的线性无关组

a minimal spanning set (It cannot be made smaller and still span the space), and a maximal linearly independent set (It cannot be made larger without losing independence).

For example,

- $\{(1,0)^T, (0,1)^T\}$ is a basis for \mathbb{R}^2 , and so is $\{(1,0)^T, (1,1)^T\}$.
- $\{(1, 0, 0)^T, (0, 1, 0)^T, (0, 0, 1)^T\}$ is a basis for \mathbb{R}^3 , and so is $\{(1, 0, 0)^T, (0, 2, 0)^T, (1, 1, 1)^T\}$.
- In \mathbb{R}^n , the set $\{e_1, e_2, ..., e_n\}$ is a basis for \mathbb{R}^n , called the **standard** basis (标准基, 或自然基) of \mathbb{R}^n .

The x-y plane in the figure is just \mathbb{R}^2 . The vector \mathbf{v}_1 by itself is linearly independent, but it fails to span \mathbb{R}^2 . The three vectors v_1 , v_2 , v_3 certainly span \mathbb{R}^2 , but are not independent. Any two of these vectors, say v_1 and v_2 , have both properties—they span, and they are independent. So they form a basis.

Notice again that a vector space does not have a unique basis. (向量空间的基不唯一)

A spanning set: v_1 , v_2 , v_3 . Bases: v_1 , v_2 and v_1 , v_3 and v_2 , v_3 .

A Method for deciding if A is a basis:

Show that

- (1) each vector in A lies in V,
- (2) A is linearly independent, i.e., none of the vectors in A is a linear combination of the others,
- (3) A is a spanning set for V, i.e., every vector of V is a linear combination of A.

Example 7 Let $V = \{(x, y, z)^T | x + y + z = 0\}$. Show that V is a subspace of \mathbb{R}^3 , and find a basis for V.

- (1) Show that V is a subspace of \mathbb{R}^3 .
- 1) $(0,0,0)^T \in V$ since 0+0+0=0.
- 2) $\forall \boldsymbol{u} = (x_1, y_1, z_1)^T, \boldsymbol{v} = (x_2, y_2, z_2)^T \in V$, then $x_1 + y_1 + z_1 = 0$ and $x_2 + y_2 + z_2 = 0$, and therefore $\boldsymbol{u} + \boldsymbol{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2)^T \in V$

since

$$(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2)$$

= $(x_1 + y_1 + z_1) + (x_2 + y_2 + z_2) = 0 + 0 = 0$

3) $\forall k \in \mathbf{R}, \forall \boldsymbol{u} = (x, y, z)^{\mathrm{T}} \in V,$ $k\boldsymbol{u} = (kx, ky, kz)^{\mathrm{T}} \in V$

since kx + ky + kz = k(x + y + z) = 0.

So V is a subspace of \mathbb{R}^3 .

Example 7 Let $V = \{(x, y, z)^T | x + y + z = 0\}$. Show that V is a subspace of \mathbb{R}^3 , and find a basis for V.

(2) Find a basis for V.

$$\forall u = (x, y, z)^{\mathrm{T}} \in V$$
, then $x + y + z = 0$ and $u = (-y - z, y, z)^{\mathrm{T}} = y(-1, 1, 0)^{\mathrm{T}} + z(-1, 0, 1)^{\mathrm{T}}$.

We claim that $\{(-1,1,0)^{T}, (-1,0,1)^{T}\}$ is a basis for *V* since

- 1) Clearly $(-1,1,0)^T$, $(-1,0,1)^T \in V$.
- 2) $(-1,1,0)^{\mathrm{T}}$, $(-1,0,1)^{\mathrm{T}}$ are linearly independent since $c_1(-1,1,0)^{\mathrm{T}} + c_2(-1,0,1)^{\mathrm{T}} = (0,0,0)^{\mathrm{T}}$

$$\Rightarrow (-c_1 - c_2, c_1, c_2)^{\mathrm{T}} = (0,0,0)^{\mathrm{T}} \Rightarrow c_1 = c_2 = 0.$$

3)
$$\forall u = (x, y, z)^{\mathrm{T}} \in V$$
,
 $u = (-y - z, y, z)^{\mathrm{T}} = y(-1, 1, 0)^{\mathrm{T}} + z(-1, 0, 1)^{\mathrm{T}}$

Every vector of V is a linear combination of $(-1,1,0)^T$ and $(-1,0,1)^T$.

IV. Coordinates

An important property of a basis is that it provides a unique representation for each vector.

Theorem 2 Let $B = \{v_1, v_2, ..., v_k\}$ be a basis for a space V. Then for each vector $w \in V$, there is a **unique** choice of scalars $a_1, a_2, ..., a_k$ such that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdot \quad + a_k \mathbf{v}_k.$$

We call the scalars a_1 , a_2 , ..., a_k the **coordinates** (坐标) of w in the basis B, denoted by $[w]_B$.

Example 8

• $A = \{(1, 0)^T, (0, 1)^T\}$ is a basis for \mathbb{R}^2 , and so is $B = \{(2, 1)^T, (-1, 1)^T\}$.

The vector $\mathbf{x} = (4, 5)^{\mathrm{T}}$ has coordinates

$$[x]_A = (4, 5)^T,$$

 $[x]_B = (3, 2)^T.$

$$c_{1}\begin{bmatrix}2\\1\end{bmatrix}+c_{2}\begin{bmatrix}-1\\1\end{bmatrix}=\begin{bmatrix}4\\5\end{bmatrix} \text{ i.e., } \begin{bmatrix}2&-1\\1&1\end{bmatrix}\begin{bmatrix}c_{1}\\c_{2}\end{bmatrix}=\begin{bmatrix}4\\5\end{bmatrix}$$

This equation can be solved by row operations on an augmented matrix or by using the inverse of the coefficient matrix on the left.

The \mathcal{B} -coordinate vector of \mathbf{x} is $(3, 2)^T$.

Example 9 The standard basis $B_1 = \{e_1, e_2, ..., e_n\}$ is a basis for \mathbb{R}^n , and so is $B_2 = \{\beta_1, \beta_2, ..., \beta_n\}$, where $\beta_1 = (1, -1, 0, ..., 0)^T$, $\beta_2 = (0, 1, -1, 0, ..., 0)^T$, ..., $\beta_{n-1} = (0, ..., 0, 1, -1)^T$, $\beta_n = (0, ..., 0, 1)^T$.

Determine the coordinates of the vector $\boldsymbol{\alpha} = (a_1, a_2, \dots, a_n)^T$ in B_1 and B_2 .

Solution It is easy to see that

$$\alpha = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$

SO

$$[\boldsymbol{\alpha}]_{B_1} = (a_1, a_2, ..., a_n)^{\mathrm{T}}.$$

For the basis $B_2 = \{ \beta_1, \beta_2, \dots, \beta_n \}$, we suppose that

$$\boldsymbol{\alpha} = x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + \cdots + x_n \boldsymbol{\beta}_n$$

Place the vectors $\boldsymbol{\alpha}$, $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, ..., $\boldsymbol{\beta}_n$ into column forms of the system, then

$$\begin{pmatrix}
1 & 0 & \cdots & 0 & 0 \\
-1 & 1 & \cdots & 0 & 0 \\
0 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & -1 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n
\end{pmatrix} = \begin{pmatrix}
a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n
\end{pmatrix}.$$
we can get
$$[\boldsymbol{\alpha}]_{B_2} = (x_1, x_2, ..., x_n)^{\mathrm{T}}$$

$$= \begin{pmatrix}
a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n
\end{pmatrix}.$$

$$= \begin{pmatrix}
a_1 \\ a_1 \\ a_1 + a_2 \\ \vdots \\ a_1 + a_2 + ... + a_{n-1} + a_n
\end{pmatrix}.$$

By solving the system,

$$[\boldsymbol{\alpha}]_{B_2} = (x_1, x_2, ..., x_n)^{1}$$

$$= \begin{pmatrix} a_1 \\ a_1 + a_2 \\ \vdots \\ a_n + a_n + a_n + a_n + a_n \end{pmatrix}$$

V. Dimension

The most fundamental parameter for a vector space would be its dimension.

Theorem 3 Every basis for a subspace V of \mathbb{R}^n contains the same number of vectors.

(Proof: see next slide or G. Strang: LA and its applications, p97)

Definition 3 (*Dimension*) The number of vectors in a basis for a vector space V is called the **dimension** (维数) of V.

For example,

- $B = \{(1, 1)^T, (1, 2)^T\}$ is a basis for \mathbb{R}^2 , and so is $C = \{(1, 0)^T, (1, 1)^T\}$. \mathbb{R}^2 is of dimension 2.
- $B = \{(2, 0, 0)^T, (1, 1, 0)^T, (1, 1, 1)^T\}$ is a basis for \mathbb{R}^3 , and so is $C = \{(1, 0, 0)^T, (0, 2, 0)^T, (1, 1, 1)^T\}$. \mathbb{R}^3 is of dimension 3.

Linear Independence, Basis and Dimension

Proof of Theorem 3 (If $v_1, ..., v_m$ and $w_1, ..., w_n$ are both bases for the same vector space, then m = n.)

Proof. Suppose there are more w's than v's (n > m).

Since the v's form a basis, they must span the space.

Every \mathbf{w}_i can be written as a combination of the \mathbf{v} 's:

$$\mathbf{w_1} = a_{11}\mathbf{v_1} + \dots + a_{m1}\mathbf{v_m}, \dots, \mathbf{w_n} = a_{1n}\mathbf{v_1} + \dots + a_{mn}\mathbf{v_m}.$$

So we have

$$[{\color{red} w_1} \quad {\color{red} w_2} \quad {\color{red} \cdots} \quad {\color{red} w_n}] = [{\color{red} v_1} \quad {\color{red} v_2} \quad {\color{red} \cdots} \quad {\color{red} v_m}] \left[egin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}
ight],$$

which can be rewritten as

$$W = VA$$
. (A is m by n)

There is a nonzero solution to Ax = 0 (since n > m),

then
$$VAx = 0$$
,

which is $\mathbf{W}\mathbf{x} = \mathbf{0}$. (A combination of the \mathbf{w} 's gives zero!)

The w's could not be a basis. So we cannot have n > m.

Similarly, we cannot have m > n.

The only way to avoid a contradiction is to have m = n.

$$r \le m < n$$

$$n-r > 0$$

Corollary (推论): Let V be a space of dimension k. Then

- (a) any set of more than k vectors is linearly dependent,
- (b) any set of less than k vectors is not a spanning set,
- (c) a proper subspace of \mathbf{R}^n has dimension less than n.

For example,

- Any set of 4 vectors of \mathbb{R}^3 is linearly dependent.
- Any set of 2 vectors of \mathbb{R}^3 is not a spanning set.
- A proper subspace of \mathbb{R}^3 has dimension at most 2.

The results in the following theorem are important and very useful. **Theorem 4** *Let V be a space. Then*

- (1) any linearly independent set of V can be extended to be a basis;
- (2) any spanning set for V contains a basis.

Example 10 (Basis from a spanning set) Let

$$A = \{(1, 1, -2)^{\mathrm{T}}, (-2, -2, 4)^{\mathrm{T}}, (-1, -2, 3)^{\mathrm{T}}, (1, -1, 0)^{\mathrm{T}}\},\$$

and let V = span(A). Find a basis contained in A.

Solution
$$\begin{bmatrix} 1 & -2 & -1 & 1 \\ 1 & -2 & -2 & -1 \\ -2 & 4 & 3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow \begin{matrix} \uparrow & \uparrow & \uparrow & \uparrow \\ b_1 & b_2 & b_3 & b_4 \end{matrix}$$

$$b_2 = -2b_1 \qquad b_4 = 3b_1 + 2b_3 \qquad c_2 = -2c_1 \qquad c_4 = 3c_1 + 2c_3$$

初等行变换不改变列向量 之间的线性相关性! Why? *Basis*: $\{\boldsymbol{b}_1, \boldsymbol{b}_3\}$, or $\{\boldsymbol{b}_2, \boldsymbol{b}_3\}$, or $\{\boldsymbol{b}_1, \boldsymbol{b}_4\}$, or $\{\boldsymbol{b}_2, \boldsymbol{b}_4\}$, or $\{\boldsymbol{b}_3, \boldsymbol{b}_4\}$.

Example 11 Find the dimension and a basis for the vector space $\mathbf{R}^{2\times 2}$.

Solution. Let

$$\mathbf{K}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{K}_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{K}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{K}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then $K_{11}, K_{12}, K_{21}, K_{22}$ are linearly independent.

In fact, by
$$a\mathbf{K}_{11} + b\mathbf{K}_{12} + c\mathbf{K}_{21} + d\mathbf{K}_{22} = \mathbf{0}$$
, i.e., $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{0}$, we have $a = b = c = d = 0$.

And
$$\forall A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \in \mathbf{R}^{2\times 2}$$
, it can be expressed as

$$\boldsymbol{A} = a_{11} \boldsymbol{K}_{11} + a_{12} \boldsymbol{K}_{12} + a_{21} \boldsymbol{K}_{21} + a_{22} \boldsymbol{K}_{22},$$

so K_{11} , K_{12} , K_{21} , K_{22} is a basis for $\mathbb{R}^{2\times 2}$, and the dimension of space $\mathbb{R}^{2\times 2}$ is 4.

Remark. The coordinates of the matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

in this coordinate system are $(a_{11}, a_{12}, a_{21}, a_{22})$.

In general, the vector space $\mathbf{R}^{m\times n}$ is of dimension $m\times n$,

$$\forall \mathbf{A} = [a_{ij}] \in \mathbf{R}^{m \times n}, \quad \mathbf{A} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \mathbf{K}_{ij}.$$

Key words:

Linearly dependent, linearly independent, spanning set, basis, dimension, coordinate

Homework

See Blackboard

Note: 20(c): If $u^Tv = 0$, then u, v are called **perpendicular** ($\underline{\#}\underline{\mathbf{1}}$).

