DS-GA 1011 NLP HW1 - Sylvie Shao (MS6771)

Github: https://github.com/sylvieshaonyu/DSGA-1011-NLP

1 Hyperparameter Tuning

1. Tokenization Schemes

In order to fully understand how big impact different tokenization schemes could have on the model performance, I included three different tokenization schemes - removing HTML tags, removing punctuations and removing stopwords. Five combinations of these tokenization schemes were experimented. At the end, training with HTML tags, punctuation and stopwords removed achieved the highest validation accuracy. Indeed, those meaningless but frequent words, tags and punctuation can affect the vocabulary the model is using and thus achieving suboptimal results.

Tokenization Schemes

							Decreasing			
Remove	Remove	Remove		Vocabulary	Embedding	Learning	Learning		Training	Validation
) HTML	Punctuation	Stopwords	Ngram	Size	Dimension	Rate	Rate	Optimizer	Loss	Accuracy
1 No	No	No	1	10000	100	0.01	No	Adam	0.1725	86.48%
2 Yes	Yes	Yes	1	10000	100	0.01	No	Adam	0.1176	88.44%
3 No	Yes	Yes	1	10000	100	0.01	No	Adam	0.1522	86.92%
4 Yes	No	Yes	1	10000	100	0.01	No	Adam	0.1795	87.78%
5 Yes	Yes	No	1	10000	100	0.01	No	Adam	0.2191	86.14%
	Remove HTML 1 No 2 Yes 3 No 4 Yes 5 Yes	HTML Punctuation 1 No No 2 Yes Yes 3 No Yes 4 Yes No	HTML Punctuation Stopwords 1 No No No 2 Yes Yes Yes 3 No Yes Yes 4 Yes No Yes	D HTML Punctuation Stopwords Ngram 1 No No No 1 2 Yes Yes Yes 1 3 No Yes Yes 1 4 Yes No Yes 1	D HTML Punctuation Stopwords Ngram Size 1 No No No 1 10000 2 Yes Yes Yes 1 10000 3 No Yes Yes 1 10000 4 Yes No Yes 1 10000	D HTML Punctuation Stopwords Ngram Size Dimension 1 No No No 1 10000 100 2 Yes Yes Yes 1 10000 100 3 No Yes Yes 1 10000 100 4 Yes No Yes 1 10000 100	D HTML Punctuation Stopwords Ngram Size Dimension Rate 1 No No No 1 10000 100 0.01 2 Yes Yes Yes 1 10000 100 0.01 3 No Yes Yes 1 10000 100 0.01 4 Yes No Yes 1 10000 100 0.01	Remove HTMLRemove PunctuationRemove StopwordsNogramVocabulary SizeEmbedding DimensionLearning Rate1 NoNoNo1 100001000.012 YesYesYes1 100001000.013 NoYesYes1 100001000.014 YesNoYes1 100001000.01	Remove HTMLRemove PunctuationRemove StopwordsVocabulary SizeEmbedding DimensionLearning RateLearning RateOptimizer1 NoNoNo1100001000.01NoAdam2 YesYesYes1100001000.01NoAdam3 NoYesYes1100001000.01NoAdam4 YesNoYes1100001000.01NoAdam	Remove HTMLRemove PunctuationRemove StopwordsVocabulary SizeEmbedding DimensionLearning RateLearning RateLearning RateTraining Dimension1 NoNoNo1100001000.01NoAdam0.17252 YesYesYes1100001000.01NoAdam0.17263 NoYesYes1100001000.01NoAdam0.15224 YesNoYes1100001000.01NoAdam0.1795

2. Model Hyperparameters

(a) N-gram

After playing with 1, 2, 3 and 4 grams, uni-gram achieved the best result. As the n-gram length increases, the amount of times any given n-gram shows up will decrease, which would lead to data sparsity. The more sparse the data set, the worse the model could possibly fit it. For this reason, despite that a higher-order n-gram model, in theory, contains more information about a word's context, it cannot easily generalize to other data sets because the number of events (i.e. n-grams) it has seen during training becomes progressively less as n increases.

Tokenization Schemes

	Remove HTML	Remove Punctuation	Remove Stopwords	Ngram	Vocabulary Size	Embedding Dimension	Learning Rate	Learning Rate	Optimizer	Training Loss	Validation Accuracy
2	Yes	Yes	Yes	1	10000	100	0.01	No	Adam	0.1176	88.44%
6	Yes	Yes	Yes	2	10000	100	0.01	No	Adam	0.1498	87.94%
7	Yes	Yes	Yes	3	10000	100	0.01	No	Adam	0.1209	88.14%
8	Yes	Yes	Yes	4	10000	100	0.01	No	Adam	0.1284	88.02%

Decreasing

(b) Vocabulary Size

With 10k, 30k, 50k and 100k vocabulary size experimented, 30k achieved the highest validation accuracy. Having a relatively large vocabulary is beneficial for model training. However, with a vocabulary size being too large (i.e. 100k), it cannot easily generalize to other data sets because of the increasing number of less frequent n-grams in the vocabulary.

Tokenization Schemes

I	Remove D HTML	Remove Punctuation	Remove Stopwords	Ngram		Embedding Dimension	Learning Rate	Learning Rate	Optimizer	Training Loss	Validation Accuracy
	2 Yes	Yes	Yes	1	10000	100	0.01	No	Adam	0.1176	88.44%
	9 Yes	Yes	Yes	1	30000	100	0.01	No	Adam	0.0247	89.22%
1	o Yes	Yes	Yes	1	50000	100	0.01	No	Adam	0.0444	89.12%
	1 Yes	Yes	Yes	1	100000	100	0.01	No	Adam	0.0624	87.10%

Training Curves with 50000 Vocabulary Size

Training Curves with 100000 Vocabulary Size

(c) Embedding Size

Longer embedding size don't add enough information and smaller ones don't represent the semantics well enough. In this experiment, 100 seems to be best embedding dimension.

Tokenization Schemes

ID	Remove HTML	Remove Punctuation	Remove Stopwords		•	Embedding Dimension	Learning Rate	Learning Rate	Optimizer	Training Loss	Validation Accuracy
9	Yes	Yes	Yes	1	30000	100	0.01	No	Adam	0.0247	89.22%
12	Yes	Yes	Yes	1	30000	200	0.01	No	Adam	0.0899	88.76%
13	Yes	Yes	Yes	1	30000	50	0.01	No	Adam	0.1624	83.88%

3. Optimization Hyperparameters

(a) Fixed Learning Rate

Learning rate is very important for optimization. Choosing a learning rate too large would lead to the failure of convergence (shown in the middle graph). Choosing a learning rate too small would take longer and more epochs to converge (shown in the right graph). Therefore, an appropriate 0.01 learning rate proves to work the best for this case.

Tokenization Schemes

	Remove HTML	Remove Punctuation	Remove Stopwords	Ngram	•	Embedding Dimension	Learning Rate	Decreasing Learning Rate	Optimizer	Training Loss	Validation Accuracy
9	Yes	Yes	Yes	1	30000	100	0.01	No	Adam	0.0247	89.22%
14	Yes	Yes	Yes	1	30000	100	0.1	No	Adam	0.0378	86.88%
15	Yes	Yes	Yes	1	30000	100	0.001	No	Adam	0.0284	89.08%

(b) Linear Annealing of Learning Rate

Adapting the learning rate for optimization procedure can increase performance and reduce training

time. It has the benefit of making large changes at the beginning of the training procedure when larger learning rate values are used, and decreasing the learning rate such that a smaller rate and therefore smaller training updates are made to weights later in the training procedure. This has the effect of quickly learning good weights early and fine tuning them later. Indeed, annealing learning rate with initialized at a good starting point (i.e. right graph) resulted in the best result.

Tokenization Schemes											
	Remove HTML	Remove Punctuation	Remove Stopwords		ocabulary ze	Embedding Dimension	Learning Rate	Decreasing Learning Rate	Optimizer	Training Loss	Validation Accuracy
9 .	Yes	Yes	Yes	1	30000	100	0.01	No	Adam	0.0247	89.22%
16	Yes	Yes	Yes	1	30000	100	0.05	Yes	Adam	0.0282	89.48%
17	Yes	Yes	Yes	1	30000	100	0.01	Yes	Adam	0.1054	89.66%

(c) Optimizer

From my experiment, SGD seemed to converge slower, and was unable to achieve the same result as Adam. For SGD, choosing a proper learning rate seems to matter a lot. However, choosing a proper learning rate can be difficult. A learning rate that is too small leads to painfully slow convergence, while a learning rate that is too large can hinder convergence and cause the loss function to fluctuate around the minimum or even to diverge. Another key challenge of minimizing highly non-convex error functions common for neural networks is avoiding getting trapped in their numerous suboptimal local minima.

Adam on the other hand is a method that computes adaptive learning rates for each parameter. In addition to storing an exponentially decaying average of past squared gradients, Adam also keeps an exponentially decaying average of past gradients similar to momentum, which empirically works better.

Tokenization Schemes

ID	Remove HTML	Remove Punctuation	Remove Stopwords	Ngram	•	Embedding Dimension	Learning Rate	Learning Rate	Optimizer	Training Loss	Validation Accuracy
17	Yes	Yes	Yes	1	30000	100	0.01	Yes	Adam	0.1054	89.66%
18	Yes	Yes	Yes	1	30000	100	0.5	No	SGD	0.1173	86.68%
19	Yes	Yes	Yes	1	30000	100	1	Yes	SGD	0.6403	71.46%

