# <u>Practical Principles of Microbial Physiology // 4<sup>th</sup> Stage</u> Control of Microbial Growth

Lab 3 3 pages

### **Methods to Control Microbial Growth**

- **■** Physical Methods
- **■** Chemical Methods
- Biological Methods

### Effect of temperature on microbial growth

- ➤ Temperature probably is a major environmental factor controlling the growth and survival of microorganisms.
- ➤ If temperature is too hot or too cold microorganisms will not grow and may even die.
- $\triangleright$  Bacteria have been discovered living in habitats ranging from  $-10^{\circ}$  C to more than  $110^{\circ}$  C.

## **Temperature affects living organisms in two opposing ways:**

- 1. As temperature rises, chemical and enzymatic reactions precede at a faster rate and the growth rate increases.
- 2. Above a certain temperature, proteins are irreversibly damaged

## **Each microorganism thus has:**

Each microorganism species is characterized by a minimum, maximum, and optimum temperatures collectively known as its **Cardinal Temperatures**.

- ➤ Minimum Temperature: is lowest temperature at which microbes will grow, or temperature below which no growth occurs.
- > Optimum Temperature: Temperature at which its growth rate is the fastest.
- Maximum Temperature: is highest temperature at which microbes will grow, or temperature above which growth is not possible.

# At high temperature:

- 1. Denature enzymes, transport carries, and other proteins.
- 2. Microbial membranes are also disrupted.
- 3. The lipid bilayer melts and disintegrates.

# Microorganisms are classified into categories based on their optimal growth temperature.

- 1. Psychrophiles: Optimal growth between (-5) 20° C, usually found in super cooled water, such as *Flavobacterium* and *Polaromonas vacoulata*.
- 2. Mesophiles: Optimal growth between 15 45° C, most bacteria found in this class for example most pathogens grow between 35 40° C.
- 3. Thermophiles: Optimal growth between 40 70° C, found in hot springs and in soil, such as *Bacillus stearothermophilus*.
- 4. Hyperthermophiles: Optimal growth between 65 120° C, found in thermal vent within deep ocean floor and from volcano, such *as Thermococcus celer* and *Thermus aquaticus*.



Thermal classification of microorganisms

#### **Materials**

- 1. Nutrient broth culture of bacteria cultures
  - **■** Bacterial Sample 1
  - Bacterial Sample 2
  - Bacterial Sample 3
  - Bacterial Sample 4
- 2. Nutrient agar plates.
- 3. Micropipette.
- 4. Swabs.

## **Procedure**

- 1. Label each nutrient agar plate with bacterial sample no. and one of the following temperatures (4° C, 25° C, 37° C, 42° C, 60° C).
- 2. Inoculate each of nutrient agar plate with 0.05 ml of the appropriate microorganisms.
- 3. Place each nutrient agar plate in one of the five baskets that is labeled according to incubation temperature for 24 48 hours.
- 4. After incubation period, detect the effect of temperature on microbial growth by presence or absence of growth.

## **Results**

Observations and Interpretations

| Microorganisms     | Temperatures |       |       |       |       | Classification |
|--------------------|--------------|-------|-------|-------|-------|----------------|
|                    | 4° C         | 25° C | 37° C | 42° C | 60° C | Classification |
| Bacterial sample 1 |              |       |       |       |       |                |
| Bacterial sample 2 |              |       |       |       |       |                |
| Bacterial sample 3 |              |       |       |       |       |                |
| Bacterial sample 4 |              |       |       |       |       |                |