

LEADERS: Learnable Deep Radial Subsampling for MRI reconstruction

Zhiwen Wang¹, Bowen Li¹, Wenjun Xia¹, Chenyu Shen¹, Mingzheng Hou^{2,1}, Hu Chen¹, Yan Liu³, Jiliu Zhou¹, Yi Zhang^{4, 1, 🖂}

Representor: Zhiwen Wang

¹College of Computer Science, Sichuan University, Chengdu, China ²National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu, China ³College of Electrical Engineering, Sichuan University, Chengdu, China ⁴School of Cyber Science and Engineering, Sichuan University, Chengdu, China

 MRI suffers from a relatively long acquisition time, which limits its sphere of application and probably discomfort the patients.

- MRI suffers from a relatively long acquisition time, which limits its sphere of application and probably discomfort the patients.
- One way to speed up MR imaging is to observe partial measurement and reconstruct image.

- MRI suffers from a relatively long acquisition time, which limits its sphere of application and probably discomfort the patients.
- One way to speed up MR imaging is to observe partial measurement and reconstruct image.
- Suitable subsampling is crucial for MRI reconstruction. So far, all of deep subsampling methods focus on Cartesian sampling scenarios.

- MRI suffers from a relatively long acquisition time, which limits its sphere of application and probably discomfort the patients.
- One way to speed up MR imaging is to observe partial measurement and reconstruct image.
- Suitable subsampling is crucial for MRI reconstruction. So far, all of deep subsampling methods focus on Cartesian sampling scenarios.
- Radial subsampling design: generate adaptive radial sampling trajectories for each subsampling rate by a deep Monte Carlo method.

Related works

- [1] Deep-learning-based Optimization of the Under-Sampling Pattern in MRI (Bahadir et al, 2020)
- [2] End-to-End Sequential Sampling and Reconstruction for MR Imaging (Tianwei et al, 2021)
- [3] Active MR k-space Sampling with Reinforcement Learning (Pineda et al, 2020)
- [4] An Optimal Radial Profile Order-based on the Golden Ratio for Time-resolved MRI (Winkelmann et al, 2006)
- [5] Active Deep Probabilistic Subsampling (Hans et al, 2021)

Method

Radial parameter layer (RPL): Initialization: a)~b) Forward training: d)~g)

Radial sampler and reconstructor are optimized jointly:

1st stage: Training sampler and reconstructor jointly;

2nd stage: Fixing sampler, binarizing its' output, and finetuning reconstructor.

Experiments

Experiments

Table 1. Quantitative results with two acceleration factors

	Model	Radial subsampling patterns			
R		M_L	\mathbf{M}_{E}	\mathbf{M}_G	\mathbf{M}_R
		PSNR	PSNR	PSNR	PSNR
4×	Unet [16] MDR [19] Our	35.03 42.41 35.73	34.14 40.50	33.76 40.49	32.91 38.42 -
8×	Unet [16] MDR [19] Our	39.55 47.02 40.31	38.97 46.46 -	39.03 46.01	35.31 42.87

MDR: MD-Recon-Net

Deep radial subsampling is crucial for good performance.

- 4x accelerated rate in the 1st row.
- 8x accelerated rate in the 2nd row.

[16] U-net: Convolutional Networks for Biomedical Image Segmentation (Ronneberger et al, 2015)

[19] MD-Recon-Net: A Parallel Dual-domain Convolutional Neural Network for Compressed Sensing MRI (Maosong et al, 2020)

Conclusion

This paper proposed:

- 1. The first pipeline of learning radial subsampling, reconstruction simultaneously
- 2. A new state of the art model
- 3. Matching a MRI reconstruction model well with a suitable radial trajectories.

Thank you!

Code: https://github.com/Deep-Imaging-Group/LEADERS