Tema 4.3.Distribución de chi-cuadrado

Supongamos que estamos realizando un experimento donde medimos la masa de una partícula cuyo valor teórico es de $m_{teo} \equiv 130$ GeV. La precisión de nuestras medidas es de , $_{teo} \equiv 10$ GeV y en cada experimento realizamos 10 medidas. Construir un programa que simule dicho experimento obteniendo las 10 medidas mediante un generador de números gaussianos con media y desviación estándar $m_g \equiv 130$, $_{teo} \equiv 10$,

Repetir el experimento 10000 veces y calcular en cada uno de ellos

a) El valor del chi-cuadrado:
$$X^2 = \sum_{i=1}^{10} \left(\frac{m_i - m_{teo}}{\sigma_{teo}} \right)^2$$

Almacenando los valores obtenidos en un histograma comprobar que se trata de una distribución de chi-cuadrado con 10 grados de libertad.

b) Para cada experimento calcular la probabilidad de chi-cuadrado: $P \bigvee \ddot{y}_2 \mathring{\eta} \ddot{y}_{o2} \triangle y$ representarla en un histograma (Ayuda.- utilizar la función TMath::Prob de ROOT). Comprobar que se trata de una función uniforme.

c) Repetir los apartados anteriores para valores diferentes de la masa teórica de la partícula, por ejemplo $m_{teo} \equiv 145$, pero habiendo generando los valores experimentales con los valores originales. Construir los histogramas para chi2 y su probabilidad y comentar los resultados.

Histograma con un valor m_{teo} más grande que las valores originales por ejemplo m_{teo}=135.

Podemos ver que la distribución no es una distribución de chi quadrado. Una evidencia es que las probabilidades de chi-quadrado no construyen una distribución uniforme, pero una distribución exponentional.

Con valores m_{teo} menos grande que las valores originales obtenemos lo mismo, porque cuadramos las valores.

d) Repetir los apartados a) y b) para los siguientes casos:

$\mathring{\eta}\, Subestimación del error$, $\ \ \ \ _{\textit{teo}} \, \, \Xi \, \, 5\, \, \text{GeV}.$

$\H n$ Sobrestimación del error , 100 $\,\Xi\,\,15$ GeV.

