Eight Embedded Questions for MAC 2233 Final Exam

1. What is the slope of the the line 4x + 7y = 9?

 $(A) \frac{7}{4}$

(B) $-\frac{7}{4}$

(D) $-\frac{4}{7}$

(E) none of these

2. Let $f(t) = t^4 - 3t^2 + 6t + 6$. Find f'(t).

(A) $4t^3 - 6t + 12$ (B) $4t^3 - 6t + 6$

(C) $12t^2 - 6$

(D) $12t^2 - 12$

(E) none of these

3. Find $\lim_{x\to 3} \frac{x^2 - 5x + 6}{x - 3}$.

(A) -1

(B) 1

(C) 5

(D) no limit

(E) none of these

4. Differentiate the function $y = \frac{x-1}{x+1}$.

(A) $\frac{2}{(x+1)^2}$ (B) $-\frac{2}{(x+1)^2}$ (C) $\frac{2}{(x-1)^2}$ (D) $-\frac{2}{(x-1)^2}$

(E) none of these

5. Compute $\frac{dy}{dx}$ if $y = u^2 - 5u + 4$ and u = 4x - 5.

(B) 2u - 5

(D) 32x - 60

(E) none of these

6. Given $x^2 + x^2y + y^2 = 3$. Find $\frac{dy}{dx}$ by using implicit differentiation.

(A) $-\frac{2x+2xy}{x^2+2y}$ (B) $\frac{2x+2xy}{x^2+2y}$ (C) $-\frac{x^2+2y}{2x+2xy}$ (D) $\frac{x^2+2y}{2x+2xy}$

(E) none of these

7. Let P(t) be the population (in millions) of a certain city t years after 1970, and suppose that P(t) satisfies the differential equation P'(t) = 0.05P(t) and P(0) = 3. Find a formula for P(t).

(A) $3e^{-0.05t}$

(C) $5e^{-0.03t}$

(E) none of these

8. Set up the definite integral that gives the area of the region bounded by the curves $y = x^2$ and y = x.

(A) $\int_{1}^{1} (x^2 - x) dx$

(B) $\int_{-1}^{1} (x - x^2) dx$

(C) $\int_{0}^{1} (x^2 - x) dx$

(D) $\int_{0}^{1} (x - x^2) dx$

(E) none of these