高効率な制御器の合成における 計算空間削減を目的とした On-the-fly 直接合成手法

提出日:2025年8月1日

都竹 佑季 (22B30490) 指導教員:鄭 顕志

1 概要

本研究では、制御効率の良い制御器の合成における計算空間の爆発の課題に対処するため、On-the-fly 探索を用いた制御器の直接合成手法を提案する。On-the-fly 探索は、動作仕様を満たす目標状態への状態遷移を逐次的に構築するため、制御効率を指標として非効率な状態構築を排除しつつ探索することで、従来構築されていた非効率な制御の構築を回避することができる。本研究では、この On-the-fly 探索を制御効率の考慮した制御器合成分野に拡張し、計算空間削減を図る。

2 制御効率の良い制御器の設計

離散事象システムとは、離散的な状態集合を持ち、事象の発生によって状態が変化する事象駆動型のシステムの総称である。離散事象システムを安全かつ信頼性の高い形で運用するためには、安全性、到達可能性といった制御仕様を確実に満たすことが求められる。この課題に対し、スーパーバイザ制御と呼ばれる手法が広く研究されてきた。

スーパーバイザ制御は、動作仕様の充足が保証された制御器に基づいてシステムを制御することで、その振る舞いが常に制御仕様を満たすように導く制御手法である。そこで、E. Castellano ら [1] は、スーパーバイザ制御に用いる制御効率の良い制御器を自動合成する技術を提案した。この手法では、まず開発者が、実際のシステムが運用される動作環境を形式的にモデル化し、Labelled Transition System (LTS) として表現する。これは、制御対象となるシステムと、システムに関与するすべての環境の振る舞いを、状態遷移モデルであるLTSで明示的に記述する。次に、この環境の中で保証すべき安全性や到達可能性などの制御仕様を定義し、それを監視するための監視モデルを、同様にLTSとして構築する。こうして得られた環境モデルと監視モデルを入力とし、制御仕様が満たされるか否かを検証するためのゲーム空間を並列合成を用いて自動構築する。その後、構築されたゲーム空間において二人型対戦ゲームを解くことによって、動作仕様が保証される環境モデル上の全状態空間である制御器を合成する。最後に、システム上で発生する各事象に対応する実行コストを考慮して、制御器から非効率な制御を排除した制御効率の良い制御器を合成する。

3 制御器の合成における課題

しかし、E. Castellano ら [1] の制御器の合成過程で構築されるゲーム空間は指数関数的に増加する課題があり、制御器合成技術の実践的な規模のシステム開発への適用を困難にしている。ゲーム空間は、事象の同期を考慮した環境モデルと監視モデルの全状態の直積により状態を構築するため、各モデル数の増加に伴って状態数が指数関数的に増加する。このゲーム空間の指数関数的増加に伴って、要求される計算空間、計算時間、必要主記憶量も指数関数的に増加するため、制御器を合成するにあたって計算空間の状態削減は重要な課題となっている。

4 実行コストを考慮した On-the-fly 制御器合成手法

本研究では、制御器合成過程における計算空間爆発の問題に対処するため、On-the-fly 探索を用いて制御効率を考慮した制御器の直接合成に取り組む、その概要が1である。

提出日:2025年8月1日

On-the-fly 探索 [2] は,環境モデルと監視モデルに加え,目標状態が与えられた上で,動作仕様を違反しない状態遷移を初期状態から目標状態に向けて逐次的に探索・構築する手法である.本手法では,動作仕様を満たす目標状態への状態遷移がひとつでも見つかれば探索を終了するため,ゲーム空間全体を網羅的に構築・探索する必要がない.このような性質により,On-the-fly 探索に基づく制御器合成は,計算空間を大幅に削減できるという利点がある.一方で,目標状態に到達する経路がひとつだけ合成されるため,探索方針に依存して制御器の内容が変化するという欠点がある.

そこで本研究では、各事象に対する実行コストを考慮しつつ On-the-fly 探索を実行することで、環境モデル・監視モデル・実行コストの情報から、制御効率の高い制御器を直接導出する。このような制御効率を指標とした制御器の合成において、On-the-fly 探索は従来扱われてこなかった。On-the-fly 探索の「ひとつの制御のみ合成する」という欠点は、状態空間削減の観点で見ると制御効率の悪い状態と遷移の構築を避けられるため、本研究では積極的に活用し、制御効率の良い制御器の合成における計算空間の爆発の課題に対処する。

図 1: スーパーバイザ制御における制御器合成方法(従来手法と提案手法)の比較

5 研究計画

現在までに、提案手法の実装は概ね完了している。今後は、8月中に本手法の有効性を検証するための評価実験を実施する予定である。評価結果をもとに、9月にはソフトウェア工学分野の研究会である SIG-KBSE への論文投稿を目指す。論文が採択された場合、11月に開催される同研究会において研究成果の発表を行う。12月から翌年1月にかけては、これまでの研究内容を取りまとめ、卒業論文の執筆を進める計画である。

参考文献

- [1] E. Castellano, V. Braberman, N. D'Ippolito, S. Uchitel, and K. Tei, Minimising Makespan of Discrete Controllers: A Qualitative Approach, in 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019, pp. 1068-1075...
- [2] D. Ciolek, M. Duran, F. Zanollo, N. Pazos, J. Braier, V. Braberman, N. D'Ippolito, and S. Uchitel, On-the-fly informed search of non-blocking directed controllers, Automatica, vol. 147, No. C (2023).