

Materia:

Análisis de Métodos Multivariados para Ciencia de Datos

Reto - Etapa 2

Profesores:

Blanca Rosa Ruiz Hernández Monica Guadalupe Elizondo Amaya

Alumnos:

Gian Marco Innocenti A00834310 Andrés Villarreal González A00833915 Andrea Hernandez A00835225

5 de octubre de 2023, Monterrey, N.L.

Para nuestra solución propondremos un estudio donde se verá si la calidad del aire mejoró en el año 2020 donde se experimentó la pandemia de COVID 19 donde la movilidad de las personas se redujo drásticamente en comparación a un año donde la actividad se normalizo tanto en industria como en movilidad humana en el año 2021. Para esto se tomarán registros de 3 diferentes estaciones de recolección de datos en 2020 y 2021. Las estaciones escogidas fueron la Estación Centro, la Estación Noreste2, y la Estación Sureste3. También durante este análisis solo se tomarán en cuenta los contaminantes que se incluyen en el Índice de Aire y Salud y las variables meteorológicas proporcionadas por la estación de recolección.

Indica el número de variables y el tamaño del dataset

Para esta problemática utilizaremos un dataset con 18 variables y 52,462 registros. Por lo que el tamaño del dataset es de 52,462 x 18.

Describe las variables que consideramos importantes y su relevancia para cumplir con el objetivo del proyecto.

Para nuestra solución utilizaremos las siguiente variables:

- date: Variable Categórica
- Año: Variable Categórica
- Estacion: Variable Categórica
- Esta variable representa la estación donde fue recolectada la información.
- CO: Variable Categórica
- Esta variable representa el nivel del contaminante CO en el índice de calidad del aire y salud medido por el promedio móvil ponderado medido en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• NO2: Variable Categórica

• Esta variable representa el nivel del contaminante NO2 en el índice de calidad del aire y salud medido por el promedio móvil ponderado medido en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• O3: Variable Categórica

• Esta variable representa el nivel del contaminante O3 en el índice de calidad del aire y salud medido por el promedio móvil ponderado medido en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• PM10: Variable Categórica

• Esta variable representa el nivel del contaminante PM10 en el índice de calidad del aire y salud medido por el promedio móvil ponderado medido en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• PM2.5: Variable Categórica

• Esta variable representa el nivel del contaminante PM2.5 en el índice de calidad del aire y salud medido por el promedio móvil ponderado medido en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• SO2: Variable Categórica

• Esta variable representa el nivel del contaminante SO2 en el índice de calidad del aire y salud medido por el promedio móvil ponderado medido en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• CO3Concentración: Variable Numérica

 Esta variable representa el nivel del contaminante NO2 en el índice de calidad del aire y salud medido por la concentración medida en la estación durante una hora. Es importante porque queremos descubrir el impacto de este contaminante en la calidad del aire.

• PRS: Variable Numérica

 Esta variable representa la presión atmosférica en la estación durante una hora. Es importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con la calidad del aire.

• RAINF: Variable Numérica

Esta variable representa la cantidad de precipitación en la estación durante una hora. Es
importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con
la calidad del aire.

• RH: Variable Numérica

Esta variable representa el porcentaje de humedad relativa en la estación durante una hora. Es
importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con
la calidad del aire.

• SR: Variable Numérica

 Esta variable representa la radiación solar en la estación durante una hora. Es importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con la calidad del aire.

• TOUT: Variable Numérica

Esta variable representa la temperatura promedio en la estación durante una hora. Es
 importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con la calidad del aire.

WSR: Variable Numérica

 Esta variable representa la velocidad del viento en la estación durante una hora. Es importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con la calidad del aire.

• WDR: Variable Numérica

• Esta variable representa la dirección del viento en la estación durante una hora. Es importante para el modelo ya que queremos descubrir que tanto este factor meteorológico impactó con la calidad del aire.

• Objetivo: Variable Numérica

 El valor del Índice de Calidad de Aire más alto medido cada hora en la estación. Es importante porque es la variable que trataremos de predecir.

Los diferentes valores que las siguientes variables pueden tomar para los diferentes años y estaciones se pueden ver en la siguiente Tabla1.

Dataset	date	со	NO2	03	PM10	PM2.5	PRS	RAINF	RH	SO2	SR	TOUT	WSR	WDR
0 Centro_2020	[2020-01-01 00:00:00, 2020-01-01 01:00:00, 202	[0.34- 6.36]	[0.0- 35.5]	[1.0- 148.0]	[2.0- 720.0]	[2.25- 112.84]	[689.4- 724.8]	[0.0-0.0]	[1.0- 92.0]	[0.7- 33.5]	[0.0- 0.282]	[3.15- 37.93]	[0.7- 23.4]	[1.0- 360.0]
1 Noreste2_2020	[2020-01-01 00:00:00, 2020-01-01 01:00:00, 202	[0.15- 16.93]	[0.0- 42.7]	[1.0- 125.0]	[2.0- 763.0]	[2.09- 140.45]	[692.1- 715.4]	[0.0- 0.48]	[1.0- 90.0]	[0.5- 192.1]	[0.0- 0.878]	[1.89- 38.03]	[0.6- 29.2]	[1.0- 359.0]
2 Sureste3_2020	[2020-01-01 00:00:00, 2020-01-01 01:00:00, 202	[0.05- 17.71]	[0.3- 75.3]	[2.0- 101.0]	[3.0- 711.0]	[2.0-158.0]	[706.9- 747.6]	[0.0- 4.39]	[1.0- 94.0]	[0.5- 90.8]	-0.0] [988.0	[2.38-40.2]	[0.6- 11.6]	[1.0- 360.0]
3 Centro_2021	[2021-01-01 00:00:00, 2021-01-01 01:00:00, 202	[0.05- 14.6]	[0.1- 90.4]	[1.0- 135.0]	[2.0- 634.0]	[2.17- 144.66]	[700.7- 722.7]	[0.0-0.0]	[1.0- 92.0]	[0.7- 61.9]	[0.0- 1.007]	[-4.75- 40.26]	[0.9- 21.9]	[1.0- 360.0]
4 Noreste2_2021	[2021-01-01 00:00:00, 2021-01-01 01:00:00, 202	[0.05- 22.38]	[0.0- 80.1]	[2.0- 139.0]	[2.0- 718.0]	[2.05- 160.57]	[680.0- 713.3]	[0.0- 22.38]	[1.0- 90.0]	[0.5- 58.5]	[0.0- 0.774]	[-6.3-41.13]	[0.1- 62.1]	[1.0- 360.0]
5 Sureste3_2021	[2021-01-01 00:00:00, 2021-01-01 01:00:00, 202	[0.11-4.15]	[0.0- 77.9]	[1.0- 129.0]	[2.0- 613.0]	[2.0-131.0]	[680.0- 745.7]	[0.0-2.1]	[3.0- 94.0]	[0.5- 175.5]	[0.0- 0.803]	[-3.22- 42.49]	[0.1- 42.0]	[1.0- 360.0]

Tabla 1. Posibles Valores Para las Variables

Resume el trabajo realizado en la preparación de datos: necesidad de unión de bases, limpieza de los datos, imputación (de haber sido necesaria), porcentaje de datos faltantes, datos atípicos, duplicados, etc

Durante este proceso primero identificamos los datos faltantes para cada estación y su respectiva columna. El desglose de los datos faltantes se puede ver en la siguiente Tabla2.

	Dataset	date	СО	NO2	03	PM10	PM2.5	PRS	RAINF	RH	SO2	SR	TOUT	WSR	WDR	Total_Estacion	Porcentaje
0	Centro_2020	0	124	967	1450	380	1845	132	123	126	447	54	135	131	133	6047	0.021553
	Noreste2_2020		108	3496	1784	253	1438	116	108	147	1325	33	109	781	1726	11424	0.040719
2	Sureste3_2020	0	918	136	2505	510	1456	128	126	137	1109	15	126	131	141	7438	0.026511
3	Centro_2021		654	1294	1064	288	834	208	198	200	1483	131	200	240	206	7000	0.02495
4	Noreste2_2021	0	315	592	517	400	481	899	313	598	1869	74	657	764	1480	8959	0.031933
5	Sureste3_2021		481	770	517	693	1311	505	484	727	1271	40	483	491	493	8266	0.029463
6	Total	0	2600	7255	7837	2524	7365	1988	1352	1935	7504	347	1710	2538	4179	49134	0.175128

Tabla 2. Valores Faltantes para cada Estación y sus Respectivas Variables

En esta tabla se puede apreciar que la estación con más datos faltantes es la Estación Noreste 2. También que en total en todo el dataset faltan 49134 datos lo que representa el 17% del dataset.

El siguiente paso de este proceso es identificar datos atípicos. Esto se hizo calculando el valor de Z con respecto a cada estación y su año. En otras palabras cada valor será evaluado sólo con los datos en su columna de su estación y de su año. Si se calculara en respecto a toda la población estaría sesgado por los datos recolectados en un lugar diferente o en otro año. La metodología implementada fue calcular Z.

$$i = columna$$

 $j = estación$
 $Z = (x - \mu_{ij}) / \sigma_{ij}$

Posteriormente un dato sería considerado como atípico si su valor Z es mayor a 2. Lo cual significa que ese valor se encuentra a más de dos desviaciones estándar de la media para su respectiva estación y año. El desglose de los datos atípicos se puede ver en la Tabla 3.

	Dataset	СО	NO2	03	PM10	PM2.5	PRS	RAINF	RH	SO2	SR	TOUT	WSR	WDR	Total_Estacion	Porcentaje
0	Centro_2020	505	587	389	336	396	513	0	199	395	134	329	312	547	4642	0.016545
1	Noreste2_2020	336	80	373	286	380	487	94	247	206	632	347	156	830	4454	0.015875
2	Sureste3_2020	296	545	476	339	388	512	48	246	244	633	365	322	0	4414	0.015733
3	Centro_2021	777	461	391	321	438	471	0	209	304	691	370	336	627	5396	0.019233
4	Noreste2_2021	321	350	463	325	379	480	1	265	763	10	380	181	825	4743	0.016905
5	Sureste3_2021	225	486	331	364	410	346	16	243	288	649	426	350	183	4317	0.015387
6	Total	2460	2509	2423	1971	2391	2809	159	1409	2200	2749	2217	1657	3012	27966	0.099679

Tabla 3. Valores Atípicos para cada Estación y sus Respectivas Variables

En esta tabla se puede apreciar que el 9% de los datos en el dataset son atípicos.

Calcula medidas estadísticas

Variables Cuantitativas

Media:

Med	ia Por	Año						Media 1	por E	stacio	ón					
Vann	PRS	RAINF	RH	SR	тоит	WSR	WDR	Estacion	PRS	RAINF	RH	SR	тоит	WSR	WDR	Year
Year 2020	714.874189	0.002596	57.543063	0.176938	22.776099	5.464991	124.824219	Centro_2020							123.467772	
2021	714.336249	0.001134	56.800864	0.144953	22.824300	7.687634	128.218224	Centro_2021 Noreste2_2020	711.479000 701.551924				22.680522 22.288953	7.077567 7.717388	113.157451 79.352444	2021.0
								Noreste2_2021	700.105564	0.002567	55.017200	0.087056	22.578841	9.003122	107.414659	2021.0
								Sureste3_2020 Sureste3_2021	731.421503 731.424184		60.145485 60.330517	0.185855 0.156471	23.493391 23.213537	2.696769 6.982212	171.652596 164.082561	2020.0
								22.25.00_202.								

Mediana:

Media	na Po	or Año						Mediana	por l	Estaci	ión					
	PRS	RAINF	RH	SR	TOUT	WSR	WDR		PRS	RAINF	RH	SR	TOUT	WSR	WDR	Year
Year								Estacion								
2020	711.3	0.0	59.0	0.165	23.12	3.9	103.0	Centro_2020 Centro_2021	711.2 711.4	0.0	57.0 56.0	0.172 0.158	22.89 23.48	5.6 6.7	96.0 81.0	2020.0 2021.0
2021	711.4	0.0	58.0	0.038	23.65	7.1	104.0	Noreste2_2020	701.2	0.0	58.0	0.007	22.68	6.9	82.0	2020.0
								Noreste2_2021	700.6	0.0	56.0	0.033	23.66	8.7	98.0	2021.0
								Sureste3_2020	730.4	0.0	63.0	0.041	23.80	2.5	147.0	2020.0
								Sureste3_2021	731.4	0.0	63.0	0.036	23.80	6.4	138.0	2021.0

Moda:

Mod	a Po	r Añ	0							Moda po	or E	stac	ión						
	PRS	RAINF	RH	SR	тоит	WSR	WDR	Estacion	Year	Estacion	PRS	RAINF	RH	SR	TOUT	WSR	WDR	Estacion	Year
Year										Centro_2020	711.2	0.0	58.0	0.170	23.03	0.9	78.0	Centro_2020	2020.0
2020	729.6	0.0	78.0	0.0	23.74	1.3	11.0	Centro_2020	2020.0	Centro_2021	711.8	0.0	74.0	0.000	24.68	5.9	60.0	Centro_2021	2021.0
2021	699.0	0.0	63.0	0.0	25.16	10.2	10.0	Centro_2021	2021.0	Noreste2_2020	700.4	0.0	77.0	0.000	20.44	1.3	11.0	Noreste2_2020	2020.0
										Noreste2_2021	699.0	0.0	63.0	0.000	25.16	10.2	10.0	Noreste2_2021	2021.0
										Sureste3_2020	729.6	0.0	81.0	0.036	23.31	2.3	123.0	Sureste3_2020	2020.0
										Sureste3_2021	730.3	0.0	65.0	0.001	23.12	10.3	225.0	Sureste3_2021	2021.0

Medidas de dispersión: rango: máximo - mínimo, varianza, desviación estándar.

Rango:

ango	Por	Año						Rango por	Esta	ción					
	PRS	RAINF	RH	SR	TOUT	WSR	WDR		PRS	RAINF	RH	SR	TOUT	WSR	WDR
Year								Estacion							
2020	58.2	4.39	93.0	0.889	38.31	28.6	359.0	Centro_2020	35.4	0.00	91.0	0.282	34.78	22.7	359.0
	05.7	00.00	00.0	4.007	40.70	00.0	050.0	Centro_2021	22.0	0.00	91.0	1.007	45.01	21.0	359.0
2021	65.7	22.38	93.0	1.007	48.79	62.0	359.0	Noreste2_2020	23.3	0.48	89.0	0.878	36.14	28.6	358.0
								Noreste2_2021	33.3	22.38	89.0	0.774	47.43	62.0	359.0
								Sureste3_2020	40.7	4.39	93.0	0.889	37.82	11.0	359.0
								Sureste3_2021	65.7	2.10	91.0	0.803	45.71	41.9	359.0

Varianza:

rianza Por Año	Varianza por Estación	
----------------	-----------------------	--

Desviación Estándar:

Variables cualitativas

Tabla de distribución de frecuencia:

Tabla de Frecuencia Por Año	Tabla de F	rec	uen	cia	por	· Estaci	ón					
Resultados para el año: 2020 1.0 2.0 3.0 4.0 5.0	Resultados para l	la es	tación	: Cent	ro_20	20	Resultados para	la est	ación:	Nores	te2_2	920
CO 20255 2 0 0 0 NO2 25591 0 0 0 0 NO2 25591 0 0 0 0 NO2 25591 0 0 0 0 NO3 25591 0 0 0 0 NO3 25591 0 0 0 0 0 0 0 0 0 0 0 NO3 25591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO2 03 PM10 PM2.5 SO2 03Concentracion	8753 8748 7516 5025 4556 8285 7487 2826	0 1186 2089 3082 466 1179 3691	0 51 1548 1034 0 81 2072	0 0 81 81 0 6	0 0 10 0 0 0	CO NO2 O3 PM10 PM2.5 SO2 O3Concentracion Objetivo	8751 8091 8226 4522 5420 2703 8182 1281	0 488 2638 2613 5079 522 5651	0 7 1501 662 0 24 1690	0 0 73 57 0 0	0 0 0 18 0 0 0
NU2 25205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		,					Resultados para	la est	ación:	Nores	te2 2	921
PM2.5 20801 4478 1064 62 0 502 2110 5095 0 0 0 0 0 03Concentracion 24530 1504 62 1 0 00jetivo 9326 18991 5099 300 107	NO2 O3 PM10 PM2.5 SO2 O3Concentracion Objetivo Resultados para la CO NO2 O3 PM10 PM1.5 SO2 O3Concentracion	1.0 8735 8735 7892 2736 7825 2736 a est. 1.0 8751 8752 8703 8705 8705 8705 8705 8705 8705 8705 8705	2.0 0 819 3075 2194 1039 863 3561 	3.0 0 0 24 2246 686 0 47 2332 Sures:	4.0 0 0 60 41 0 90 4.0 0 0 295 24 0	5.0 0 0 16 0 0 16 16 	CO NO2 O3 PM10 PM2.5 SO2 O3Concentracion Objetivo	7624 6663 8439 3556	0 255 2493 958 2072 286 3373	1 0 3 1687 145 0 9 1693	8 0 1 84	0 0 29 0 0 0 29
	Resultados para la				_							
	CO 8 NO2 8 PM10 5 PM2.5 SO2 03Concentracion 8	8735 8735 8347 3793 7163 6751 8274		0 0 16 1875 233 0 26	0 0 206 13 0	0 0 0 142 0 0						

Mediana (escala ordinal):

Med	ian	a P	or A	Año					Mediana	po	or E	sta	ción	l			
	СО	NO2	03	PM10	PM2.5	SO2	O3Concentracion	Objetivo	Estacion	со	NO2	03	PM10	PM2.5	SO2	O3Concentracion	Objetivo
Year									Centro_2020	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0
2020	1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	Centro 2021		1.0	1.0	2.0	1.0	1.0	1.0	2.0
2021	1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0	Noreste2_2020		1.0	1.0	1.0	1.0	2.0	1.0	2.0
									Noreste2_2021	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0
									Sureste3_2020	1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0
									Sureste3_2021	1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.0

Explora los datos usando herramientas de visualización

Variables cuantitativas:

 Medidas de posición no-central: cuartiles, outlier (valores atípicos), boxplots

Análisis de distribución de los datos (Histogramas).

Histograma Centro 2020	Histograma Centro 2021	Histograma Noreste 2020	Histograma Noreste 2021	Histograma Sureste 2021	Histograma Sureste 2021
La variable WSR,WDR tiene sesgo a la izquierda.	La variable WSR y SR tienen sesgo a la izquierda.	La variable WSR y SR,WDR tienen sesgo a la izquierda.	La variable WSR y SR tienen sesgo a la izquierda.	La variable WSR y SR tienen sesgo a la izquierda.	La variable WSR y SR tienen sesgo a la izquierda.

Análisis de correlación de los datos, mapa de calor

Podemos observar que en ambos años, todas nuestras variables tienen una correlación baja o moderada.

Podemos observar que en las seis estaciones, todas nuestras variables tienen una correlación baja o moderada.

Variables categóricas:

 Distribución de los datos (diagramas de barras, diagramas de pastel)

Podemos observar que 2021 presenta mejores resultados para todas las variables con excepción de PM10, también podemos observar que PM10 resulta ser la variable más problemática, presentando la mayoría de las malas calificaciones.

Nuevamente observamos que la variable más problemática es PM10, además podemos notar un pico en Noreste2 de la variable SO2.

Nuestra variable objetivo nos muestra que la estación Noreste2 es la que tiene la mayor cantidad de

"2", sin embargo tiene el menor número de las demás observaciones.

2) Verifica la calidad de los datos:

Después de analizar los datos podemos concluir que hay columnas como la variable Rain que está totalmente vacía, por lo que la mejor opción para el estudio es eliminar esta variable del análisis. Los datos faltantes para cada columna se calcularon de la siguiente manera. En el caso de que se encontrara un dato faltante en la posición xi se reemplazará por el promedio del valor anterior y el valor siguiente:

$$x_i = \frac{x_{i-1} + x_{i+1}}{2}$$

También al verificar los datos y sus distribuciones podemos concluir que ninguno sigue una distribución normal y que la mayoría de variables tienen un sesgo muy marcado a la izquierda o a la derecha.

Concluye con un breve resumen de lo que has logrado hasta ahora, qué falta por hacer, qué camino piensan seguir para lograrlo, cuáles son las preguntas que te han surgido, etc

Hasta el momento hemos logrado limpiar nuestra base de datos y determinar cuales variables no serán útiles para nuestro estudio como la variable Rain que esta llena de ceros. Hemos logrado convertir todas nuestras variables de la medida de los contaminantes de su medición por las estaciones a variables categóricas de su calificación en el índice de calidad de aire según la normativa del gobierno mexicano. También hemos analizado nuestras variables cualitativas y cuantitativas con sus determinadas medidas estadísticas visualmente para lograr entender cómo están distribuidos estos valores y cuantas variables están sesgadas. Como nuestro estudios se enfoca en encontrar si hay diferencia significativa entre la calidad de aire en 2020 y 2021 el análisis estadístico de media, mediana, y moda nos ayudaron a tener una hipótesis de que no hay una diferencia significativa entre los dos años dado que ambos tienen una frecuencia muy parecida en sus valores de la variable objetivo. Las preguntas que nos han surgido es si hay una diferencia significativa en la calidad del aire entre los años 2020 y 2021. Si ha habido un cambio significativo en los niveles de los contaminantes entre los años 2020 y 2021. Finalmente si las condiciones meteorológicas tienen un efecto en el nivel de los contaminantes. Los siguientes pasos a seguir es hacer un análisis de anova tanto por estación y por año para nuestra variable objetivo, hacer un análisis factorial para ver que factores afectan mas nuestra variable objetivo, y hacer un análisis de discriminante para poder clasificar la calidad de aire para una entrada.

Inserta una liga que dé acceso a tu documento de trabajo.

https://drive.google.com/file/d/1nL_FutUilOpESg7gzDg4_1THi_pxkeo5/view?usp=sharing https://drive.google.com/file/d/1nL_FutUilOpESg7gzDg4_1THi_pxkeo5/view?usp=sharing