

Department: Computers Engineering and Automatic Control
Total Marks: 90 Marks

Course Title: Signals and Systems

Date: May 30th, 2013

Course Code: CCE2210 Allowed time: 3 Hours Year: 2nd Comp. No. of Pages:

Remarks: You must show all of your work -- partial credit may be given to partially correct answers, while answers with no justification may not receive full points. Please attempt all questions.

Problem (1) (35 Marks)

a) For the block diagram given in Fig.1

Fig. 1: Block diagram of problem 1-a

- i- Using block diagram reduction rules, find the system transfer function (10 Marks)
- ii- Check your answer using signal flow graph technique (10 Marks)
- b) The state-space representation of a satellite system is given by:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

- i- Find the system transfer function (5 Marks)
- ii- Calculate the state-transition matrix $\Phi(t)$ (4 Marks)
- iii-Check the system controllability and observability (6 Marks)

Problem (2) (25 Marks)

a) Discuss the stability of the closed loop system shown in Fig. 2 in terms of K and determine the value of K which results in critical stability. (10 Marks)

Fig. 2: Block diagram of problem 2-a

b) Consider the system shown in Fig. 3.

Fig. 3: Block diagram of problem 2-b

- i- For Fig.3-a, show that the steady-state error e_{ss} for unit ramp input is equal to $2\alpha/\omega_n$
- ii- Show that e_{ss} is eliminated if the input is introduced to the system through proportional plus derivative element as shown in Fig. 3-b and the value of K is properly set. (10 Marks)

Problem (3) (20 Marks)

The electric equivalent circuit of the armature and the free-body diagram of the rotor of a DC motor are shown in Fig.4. The definitions of the physical parameters are:

Fig. 4: Schematic diagram of problem 3

- (J) moment of inertia of the rotor
- (b) motor viscous friction constant
- (R) electric resistance
- (L) electric inductance
- (Kb) electromotive force constant
- (Kt) motor torque constant
- i- Write the system equations and show that its block diagram representation is as in Fig. 5
- ii- Drive a state-space representation using current, angular velocity, and angular position as the states of the system (10 Marks)

Fig. 5: Schematic diagram of problem 3-i

Problem (4) (10 Marks)

When the system shown in Fig. 6-a is subjected to a unit step input, the system output responds as shown in Fig. 6-b. Determine the values of K and T using the response curve and then find an expression for the output for unit step input.

Fig. 6: Schematic diagram of problem 4

Good Luck