

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 17.11.2016

Gliederung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Vollständige Induktion

Formale Sprache

2 Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzung und Kodierung

- Kodierung von Zahlen
- Repräsentation von Zahlen
- Zweierkomplement-Darstellung

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Was macht die Funktion val_I?
- Was bedeutet Äquivalenz?
- Was bedeutet Tautologie und Erfüllbarkeit?
- Welche dieser Aussagen sind erfüllbar?

 - ${\color{red} \bullet} \ P \wedge P \leftrightarrow P \vee P$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Wir haben immernoch unendlich viele Aussagen...

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also: Der erste Stein fällt, sowie: falls der i-te Stein fällt, so fällt auch der i + 1-te Stein.
- Nach dem Prinzip der vollständigen Induktion fallen dann alle Steine um.

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Struktur des Beweises

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - **Teigen**, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Vorhin:

$$\underbrace{A(1) \text{ ist wahr}}_{IA}$$
, sowie $\underbrace{A(i) \text{ gilt}}_{IV} o \underbrace{A(i+1) \text{ gilt}}_{IS}$ für beliebiges i $\in \mathbb{N}$

Übung zu Vollständiger Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Aufgabe

Formale Sprache

 $x_0 := 0$

Übersetzung und Kodierung

Für alle $n \in \mathbb{N}_0$: $x_{n+1} := x_n + 2n + 1$

Kodierung von

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

Repräsentation v

 $x_n = n^2$

Zahlen

gilt.

Zweierkomplement-Darstellung

Übung zu vollständiger Induktion

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übungsaufgaben

Zeige die Wahrheit folgender Aussagen mit vollständiger Induktion:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \forall n \in \mathbb{N}$$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A^*$.

Als Beispiel von vorigen Folien:

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei $A := \{a, b\}, B := \{\alpha, \beta, \gamma, \varepsilon, \delta\}.$

- Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}$.
- Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:
 - Zwei beliebigen Zweichen aus B.
 - Dann einem ε oder zwei δ 's.
 - Dann vier Zeichen aus A.
- $L_3 = B \cdot B \cdot \{\varepsilon, \delta\delta\} \cdot A \cdot A \cdot A \cdot A$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M:=\{L:L \text{ ist formale Sprache über }A\}=2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot:M\times M\to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion Die Verknüpfung · ist assoziativ:

•
$$(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$$

Formale Sprache

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

Ubersetzung und Kodierung

 $x \cdot e = e \cdot x = x$. (neutrales Element)

Kodierung von

 $e := \{\varepsilon\}.$

 $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Repräsentation vor Zahlen ■ Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

o := ∅

 $L_1 \cdot \emptyset = \emptyset = \emptyset \cdot L_1$

Zweierkomplement-Darstellung

 (M,\cdot) ist damit trotzdem keine Gruppe, denn es existieren keine Invers-Element.

Potenz von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$ Formale Sprache
 - $I^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_0.$

Übersetzung und Kodieruna

• $L_1 := \{a\}.$

Kodierung von

• $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

• $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$ $L_2 := \{ab\}^3 \{c\}^4$

Zweierkomplement-

• $L_2^0 = \{\varepsilon\}, L_2^1 = ...$

{abababccccabababcccc}.

■ $L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation voi Zahlen

Zweierkomplement-Darstellung

Konkatenationsabschluss bei formalen Sprachen

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

- Warum gilt $\varepsilon \notin L^+$ bei formalen Sprache $L \subseteq A^* \setminus \{\varepsilon\}$?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$
- $L := \{aa, bc\}.L^* = \{\varepsilon, aa, bc, aa \cdot aa, aa \cdot bc, bc \cdot aa, bc \cdot bc, aa \cdot aa \cdot aa, \ldots\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Übersetzung und Kodierung

Kodierung von

Repräsentation vol Zahlen

Zweierkomplement-Darstellung Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die das Teilwort ab nicht enthält? $L_1 = \{b\}^* \{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.

$$B := \{_, a, b, ..., z, A, B, ..., Z\}$$

- $C := B \cup \mathbb{Z}_9$
- $L_2 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus $\{a,b\}^*! \rightarrow L^* = \{a,b\}^*$.

Ubung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Erinnerung

 $L^* := \bigcup L^i$

 $L^+ := \bigcup L^i$

Beweise: $L^* \cdot L = L^+$.

 \subset :

Voraussetzung: $w \in L^* \cdot L$ mit

 $w = w'w'', w' \in L^*$ und $w'' \in L$

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$.

Voraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da

für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$. Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

 $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also

Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L₁³ aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?
- Wie sieht $(L_1^*)^0 \cdot L_2^+$ aus?

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 101001111001, 11111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.
- Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Kodierung von Zahlen Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Repräsentation vor Zahlen Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) = 2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$

Zweierkomplement-Darstellung $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Yay!

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übungen zu Zahlendarstellungen

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

- *Num*₈(345).
- *Num*₂(11001).
- *Num*₂(1000).
- $Num_4(123)$.
- ightharpoonup Num₁₆(4DF). (Zusatz)

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Lösungen:

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- $Num_{16}(4DF) = 1247.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Formale Sprache

Übersetzung und

Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Es gilt:

$$2(2(2(2(2 \cdot 1 + 0) + 1) + 0) + 1) + 0 = 2^4 \cdot 1 + 2^4 \cdot 0 + 2^3 \cdot 1 + 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(11111111111) = 1023.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- $Num_{16}(14) = 20.$

Rechnen mit div und mod

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

mod Funktion

Die Modulo Funktion mod gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{9} = 2,75 \right)$.
- 22 mod 8 = 6.

Fülle die Tabelle aus:

x 0 1 2 3 4 5 6 7 8 9 10 11 12													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	0

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

 11101_2 ist also 29_{10} . Was ist 29_{10} in binär?

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

k-äre Darstellung

Die Repräsentation einer Zahl n zur Basis k lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Achtung! Das · Symbol steht für Konkatenation, nicht für Multiplikation!

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Zum Beispiel:

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung $Repr_2(29) = Repr_2(29 \text{ div } 2) \cdot repr_2(29 \text{ mod } 2)$ $= \operatorname{Repr}_{2}(14) \cdot \operatorname{repr}_{2}(1)$ = $\operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$ $= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$ $= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$ $= \mathbf{Repr}_{2}(3) \cdot \mathbf{repr}(1) \cdot 01$ $= \operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ $= \mathbf{Repr}_{2}(1) \cdot \mathbf{repr}(1) \cdot 101$ = 11101

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Beispiel mit Hexadezimalzahlen:

$$\begin{aligned} \text{Repr}_{16}(29) &= \text{Repr}_{16}(29 \text{ div } 16) \cdot \text{repr}_{16}(29 \text{ mod } 16) \\ &= \text{Repr}_{16}(1) \cdot \text{repr}_{16}(13) \\ &= 1 \cdot D = 1D \end{aligned}$$

Übung zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

Übung zu *Repr_k*

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

Lösungen:

- $Repr_2(13) = 1101.$
- **Repr**₄(15) = 33.
- **Repr**₁₆(268) = 10C.

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung und Kodierung

Kodierung von Zahlen

Repräsentation voi Zahlen

Zweierkomplement-Darstellung

bin_ℓ

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

Beispiel:

- **bin**₈(3) = $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$.
- **bin**₁₆(3) = 000000000000011.

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vo Zahlen

Zweierkomplement-Darstellung Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge ℓ ist wie folgt definiert:

$$\mathbf{Zkpl}_{\ell}(x) = egin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Wieso ℓ − 1?

Aufgaben zu Zweierkomplement-Darstellung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Was sind folgende Zahlen in Zweierkomplement-Darstellung?

- **Zkpl**₄(3) = 0011.
- **Zkpl**₄(7) = 0111.
- **Zkpl**₄(-5) = 1101.
- **Zkpl**₈(13) = 00001101.
- **Zkpl**₈(-34) = 10100010.
- **Zkpl**₈(-9) = 10001001.

Informationen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul