CS415 Module 6 Part A - Scheduling Overview

Athens State University

Outline

Contents

2	Scheduling Criteria	4
	Key Points	7
J	Key Folius	1

1 Need for Scheduling

Processor Scheduling

- Requirement: assign processes to processor(s) in a way that meets system objectives
 - Optimization of one or more of response time, throughput, processor efficiency, and energy use
- Three separate functions:

Long term Scheduling

Medium term Scheduling

Short term Scheduling

Long-term vs. Short-term Scheduling

Long-term Scheduler Select threads to be brought into the ready queue

Medium-term Scheduler The decision to add to the number of processes that are partially or fully in main memory

• This is tied to virtual memory management and will be considered later

Short-term Scheduler The decision as to which available thread will be executed by a processor

The short-term scheduler is invoked by the kernel very frequently (usually with a time tick measured in milliseconds) while the long term scheduler is invoked infrequently (seconds to minutes).

${\bf CPU}$ Bound vs. ${\bf I/O}$ Bound

Burst cycle

- \bullet Execution occurs in a cycle of CPU execution and I/O wait
- Scheduling must be concerned with distribution of CPU bursts

CPU Burst Times

Scheduling and Process State Transitions

The Shor-Term Scheduler

- ullet Known as the dispatcher
- Makes the fine-grained decision about which thread to execute next
- Invoked when an event occurs that may block the the current process or provide an opportunity to preempt a currently running process in favor of another process
 - Clock interrupts
 - I/O interrupts
 - System calls

- Signals

Scheduling and Process Queues

2 Scheduling Criteria

Short-Term Scheduling Criteria

A set of criteria is needed to evaluate scheduling policy

User-oriented criteria

- Relate to the how the user or process perceives the behavior of the system
- Example: Response time in an interactive system

System-oriented criteria

- Focus on effective and efficient utilization of the process
- Example: Rate at which processes complete

Short-Term Scheduling Criteria: Performance

Priority Queuing

Figure 9.4 Priority Queuing

Selection Function

- Determines which ready thread is selected next for execution
- May be based on priority, resource requirements, or the execution characteristics of the process and thread
- Important execution characteristics
 - Time spent waiting in the system
 - Time spent in execution so far
 - Estimated total service time required by the process

Non-preemptive vs. Preemptive Scheduler

Nonpremptive

 \bullet Once a process is in the running state, it continues running until it terminates or must block itself to wait on I/O

Premptive

- Currently running process may be interrupted and moved to the ready state by the OS
- Preemption may occur when a new process arrives, on an interrupt, or periodically

3 Key Points

Key Points

- $\bullet\,$ Types of scheduling
- Scheduling of criteria
- Non-preemptive vs. preemptive