Proof of Belief Convergence and Other Discoveries

Weakly Connected - Classic Update

Bernardo Amorim

Universidade Federal de Minas Gerais

May 22, 2020

min^t and max^t definition

Definition

Let's call min^t and max^t the minimum and maximum of the beliefs in time t over all agents, respectively. Thus:

$$min^t = \min_{a_i \in A} Bel_p^t(a_i)$$
 and $max^t = \max_{a_i \in A} Bel_p^t(a_i)$

Useful ideas

• $min^{t+1} \ge min^t$ and $max^{t+1} \le max^t$.

Useful ideas

- $min^{t+1} \ge min^t$ and $max^{t+1} \le max^t$.
- This means that both *min* and *max* are monotonic.

Useful ideas

- $min^{t+1} \ge min^t$ and $max^{t+1} \le max^t$.
- This means that both min and max are monotonic.
- It can be showed (Corollary 2) that this implies that *min* and *max* converge to *L* and *U*, respectively.

Proof main idea

• Our proof relies on the fact that all beliefs converge to the same value if and only if L=U.

Proof main idea

- Our proof relies on the fact that all beliefs converge to the same value if and only if L=U.
- Thus we must show that L = U, otherwise a situation like this could occur:

Proof main idea

- Our proof relies on the fact that all beliefs converge to the same value if and only if L=U.
- Thus we must show that L = U, otherwise a situation like this could occur:

• Since our graph is weakly connected, every agent a_i influences every other agent a_j directly of indirectly via a path $P(a_i \rightarrow a_j)$.

- Since our graph is weakly connected, every agent a_i influences every other agent a_j directly of indirectly via a path $P(a_i \rightarrow a_j)$.
- Using this information we choose an extreme agent a_*^t in time t (the agent who holds the belief min^t) and try to trace the influence it exerts in the rest of the society.

- Since our graph is weakly connected, every agent a_i influences every other agent a_j directly of indirectly via a path $P(a_i \rightarrow a_j)$.
- Using this information we choose an extreme agent a_*^t in time t (the agent who holds the belief min^t) and try to trace the influence it exerts in the rest of the society.
- It can be showed (Theorem 1) that doing so guarantees us that a_*^t influences every a_i by a factor of δ^t .

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t \to a_i)|$ every agent is less extreme than max^t by a factor of at least δ^t .

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t \to a_i)|$ every agent is less extreme than max^t by a factor of at least δ^t

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t \to a_i)|$ every agent is less extreme than max^t by a factor of at least δ^t

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t \to a_i)|$ every agent is less extreme than max^t by a factor of at least δ^t

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t \to a_i)|$ every agent is less extreme than max^t by a factor of at least δ^t

One problem

ullet We now know that every agent is influenced by a factor of δ^t .

One problem

- ullet We now know that every agent is influenced by a factor of δ^t .
- But it does not convey us much information, because each one of them is influenced in a different time.

One problem

- ullet We now know that every agent is influenced by a factor of δ^t .
- But it does not convey us much information, because each one of them is influenced in a different time.
- To solve this we can use an important piece of information to acquire an idea about the agents belief in the same time step.

An important information

• An agent is influenced by what it believed in the past.

An important information

- An agent is influenced by what it believed in the past.
- Thus, although every agent receives the influence of a_*^t in a different time step, all of them are still influenced by it at time t + |A| 1.

An important information

- An agent is influenced by what it believed in the past.
- Thus, although every agent receives the influence of a_*^t in a different time step, all of them are still influenced by it at time t + |A| 1.

• It can be showed (Theorem 2) using the informations above that in the time t + |A| - 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .

- It can be showed (Theorem 2) using the informations above that in the time t + |A| 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .
- What is ϵ ?

- It can be showed (Theorem 2) using the informations above that in the time t + |A| 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .
- What is ϵ ?
 - ▶ It is a constant which depends on various factors:

- It can be showed (Theorem 2) using the informations above that in the time t + |A| 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .
- What is ϵ ?
 - ▶ It is a constant which depends on various factors:
 - ★ The size of the largest path in the influence graph.

- It can be showed (Theorem 2) using the informations above that in the time t + |A| 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .
- What is ϵ ?
 - ▶ It is a constant which depends on various factors:
 - ★ The size of the largest path in the influence graph.
 - ★ The smallest non negative influence.

- It can be showed (Theorem 2) using the informations above that in the time t + |A| 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .
- What is ϵ ?
 - ▶ It is a constant which depends on various factors:
 - **★** The size of the largest path in the influence graph.
 - ★ The smallest non negative influence.
 - ★ The size of the society.

- It can be showed (Theorem 2) using the informations above that in the time t + |A| 1 every agent is less extreme than the most extreme agent (the one who holds the belief max^t) in the time t by a factor of ϵ .
- What is ϵ ?
 - ▶ It is a constant which depends on various factors:
 - ★ The size of the largest path in the influence graph.
 - ★ The smallest non negative influence.
 - ★ The size of the society.
 - ★ L and U, the limits of minimum and maximum.

• An observation is sufficient to end our proof.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ Since after |A|-1 steps every agent is influenced by a factor of ϵ , max reduces by ϵ .

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ Since after |A|-1 steps every agent is influenced by a factor of ϵ , max reduces by ϵ .
 - ▶ We can reduce *max* until it gets smaller than 0.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ Since after |A|-1 steps every agent is influenced by a factor of ϵ , max reduces by ϵ .
 - ▶ We can reduce max until it gets smaller than 0.
 - ▶ Which contradicts the definition of belief.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ Since after |A|-1 steps every agent is influenced by a factor of ϵ , max reduces by ϵ .
 - ▶ We can reduce max until it gets smaller than 0.
 - Which contradicts the definition of belief.
- Denoting by a_{**}^t an agent who holds the belief \max_t in the time t, n = |A|-1 and $m = \left(\left\lceil\frac{1}{\epsilon}\right\rceil + 1\right)$:

Theorem 3

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ Since after |A|-1 steps every agent is influenced by a factor of ϵ , max reduces by ϵ .
 - ▶ We can reduce max until it gets smaller than 0.
 - ▶ Which contradicts the definition of belief.
- Denoting by a_{**}^t an agent who holds the belief max_t in the time t, n=|A|-1 and $m=\left(\left\lceil\frac{1}{\epsilon}\right\rceil+1\right)$:

Theorem 3

• Since assuming $L \neq U$ led us to a contradiction: L = U.

Theorem 3

- Since assuming $L \neq U$ led us to a contradiction: L = U.
- Since the limits of maximum and minimum are equal, every belief equal in the limit, as we wanted to prove.

Generalizing: Confirmation bias

• I tried changing this proof so it also holds for confirmation-bias.

Generalizing: Confirmation bias

- I tried changing this proof so it also holds for confirmation-bias.
- In general the proof is the same as the one showed above but with different constant factors.

Generalizing: Confirmation bias

- I tried changing this proof so it also holds for confirmation-bias.
- In general the proof is the same as the one showed above but with different constant factors.
- There are some corner cases we must address, but we solve it using a similar approach used with a_*^t in the proof above.

Generalizing: All graphs

• I have some ideas for generalizing this proof for <u>all graphs</u>, although there are many parts missing.

Generalizing: All graphs

- I have some ideas for generalizing this proof for <u>all graphs</u>, although there are many parts missing.
- The idea is, for short, to use the proof showed above in weakly connected subgraphs and thus guaranteeing conversion of each subgraph.

Generalizing: Backfire-Effect

• Unfortunately, I think that none of what was used above can also be used for the backfire-effect.

Generalizing: Backfire-Effect

- Unfortunately, I think that none of what was used above can also be used for the backfire-effect.
- Experiments showed that, under the backfire-effect update function, *min* and *max* are not monotonic.

Generalizing: Backfire-Effect

- Unfortunately, I think that none of what was used above can also be used for the backfire-effect.
- Experiments showed that, under the backfire-effect update function, *min* and *max* are not monotonic.
- Since this property is crucial for the proof showed above, I don't think that this is the way to prove convergence in this case.

• In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)
- In a clique, under the classic update function, the speed of convergence is directly proportional to the influence. (proved)

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)
- In a clique, under the classic update function, the speed of convergence is directly proportional to the influence. (proved)
- In some graphs, the initial belief of some agents does not affect their own belief in the limit. (found via experiments).

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)
- In a clique, under the classic update function, the speed of convergence is directly proportional to the influence. (proved)
- In some graphs, the initial belief of some agents does not affect their own belief in the limit. (found via experiments).
- In the graph "unrelenting influencers" the belief in the limit seems to be equal to the average of the beliefs of the influencers weighted by their influence (found via experiments).