CALCOLO DELLE PROBABILITA'

Appello del 12/1/2018

Nome:	COGNOME:	
		0686, 14) 18-37 806 1944
		William - Mid III Jabba
1) Del numero aleatorio X è noto che E	$E(X) = 6$, $P(X < 4) = 0.25$, $P(X \ge 9) = 0.35$.	0
(a) Determinare una limitazione info	eriore significativa per la varianza di X	- V
(b) Sia Y = -2X. Determinare una fi	mitazione superiore per Cov(X, Y).	

- 2) L'urna A contiene 2 palline bianche e 3 rosse, l'urna B contiene 5 palline bianche e 3 rosse. Si effettui una sequenza di estrazioni con contagio unitario, tutte dall'urna A con probabilità 1/4, tutte dall'urna B con probabilità 3/4. Posto E_f = "esce bianca all'i-esima estrazione":
 - (a) calcolare $P(E_1 | E_1 \wedge \overline{E}_2)$, $P(\overline{E}_1 \vee \overline{E}_2 \vee E_3)$;
 - (b) calcolare la probabilità che le estrazioni avvengano dall'urna A sapendo che nelle prime due estrazioni sono uscite palline di colore diverso;
 - (c) detto successo l'estrazione di pallina bianca, sia X_n il numero che conta la differenza fra il numero di successi e il numero di insuccessi nelle prime n estrazioni. Calcolare E(X_n), E[(X₂)²].
- La soppia aleatoria (X,Y) è distribuita sul triangolo di vertici (-1,0), (2,0), (0,2) con densità f_{X,Y}(x, y) = ky². Calcolare:
 - (a) la densità marginale f_x(x);
 - (b) la funzione di ripartizione della coppia (X, Y) nel generico punto $(x_0, 1)$, con $0 \le x_0 \le 1$;
 - (c) $P(Y > 1 | X \le 1)$.

AM

10

1.120 $P(E_{1}, E_{2}) = \frac{2}{5}, \frac{3}{6}, \frac{1}{4}, \frac{5}{8}, \frac{3}{3}, \frac{1}{4}, \frac{5}{20}, \frac{5}{32}$ $P(E_i/E_1 \land E_2) = 1.120 \cdot \frac{160}{33} = \frac{43}{77}$ De Horgan P(E1VE2VE3) = 1-P(E1VE2VE3)=1-P(E1AE2AE2) 1 129 991 = 1-1.120 1.120 P(A/H) = P(H/A) P(A/H) = P(A)H=(E11 E2) V (E11 E2) P(H)=F(E1AE2)V(E1AE2) = Velle brime 2 l'estrazioni sono l'usate palline, di colore diverso Incompati-= P(F1/E2) + P(E1/E2) P(S=1 Scambiobilità = 2 P(E1 1 E2) P(H/A) = P[(E1 N E2) V(E1 N E2)/A] Scambiabilità +
neomoratibilità fra eventi Propr. delle glera-=P[(E11E2/A) v (E11E2/A)] = 2P(E11E2/A) = 0

 $4\left(1-\frac{33}{80}\right)=\frac{47}{20}=E\left[(X_2)^2\right]$ y=2(x+1) $x = \frac{1}{2}(y-2)$ $\delta(x;y) = ky^2 = \frac{1}{2}y^2$ $\iint_T f(x, y) dxdy = 1$ K // y2 drdy = 1 = 1 K. 2=1 2 3 2 Con J = | y 2 dx dy = | y 2 dy | 2 - g dx = $\int y^2 \left[(2-y) - \frac{1}{2}(y-2) \right] dy = \int y^2 \left[(2-y)(1+\frac{1}{2}) \right] dy$ $= \frac{3}{2} \int y^{2}(2-y) dy = \frac{3}{2} \left[2 \cdot \frac{y^{3}}{3} - \frac{y^{4}}{4} \right]^{2}$ $=\frac{3}{2}(2.\frac{8}{3}-4)=\frac{3}{2}.\frac{4}{3}=2$ $\int y^2 dy = \frac{4}{3} \left[y^3 \right]_0^2 = \frac{9}{3} (x^3 + 3x^2 + 3x + 1)$ se -1 (x (0 $\int y^2 dy = \frac{1}{3} \left[y^3 \right] = \frac{1}{3} \left(8 - 12 \times + 6 \times^2 - x^3 \right)$ se OEXE2

F(xo;1) con 05 xo 51: $F(x_0; 1) = \frac{1}{2} \int y^2 dy \left[\int dx + \frac{1}{2} \int y^2 dy \right] dy \right] dx \right] dx \right]$ Siccome è dato il vincalo (1 Questo è la parte variabile della dx: sempre essere inclusa. da O fino all xo che $= \frac{1}{2} \int y^2 dy \left[[x]_{1/2(y-2)}^{0} [x]_{0} \right] = \frac{1}{2} \int y^2 (x_0 - \frac{1}{2}(y-2)) dy$ $= \frac{1}{4} \int (2y^2 - y^3 + 2x_0 y^2) dy = \frac{1}{4} \left[2\frac{y^3}{3} - \frac{y^4}{4} + 2x_0 \frac{y^3}{3} \right]^{\frac{1}{2}}$ $=\frac{4}{4}(5+8x0)=\frac{4}{(5+8x0)}$ $P(X > 1 | X \le 1) = P(X > 1 | X \le 1)$ $P(X \le 1)$ P(Y>1 AX < 1) = P(X; Y) = T' $= \frac{1}{2} \int_{1}^{2} y^{2} dy \int_{1/2(y-2)}^{2-y} dx$ Risultati già trovati in precedenta quando calcalaro $\begin{bmatrix} 3 & 2 & 8^3 & 9^4 \end{bmatrix}^2 = \frac{3}{4} \begin{bmatrix} 16 & 4 & 5 \\ 3 & 4 \end{bmatrix} = \frac{11}{4}$

Nota: Vi sono diversi modi di calcolore P(X € 1), ma è importante trovore il più semplice. $P(X \le 1) = F(1) - F(-1) = F(1), riccome$ $= \frac{1}{12} \left(\frac{8}{5} \int (x^3 + 3x^2 + 3x + 1) dx + \int \frac{1}{5} (8 - 12x + 6x^2 - x^3) dx \right)$ MA è un conto Cungo e Caborioso. MEGLIO Considerare: $P(X \le 1) = 1 - P(X > 1)$, riesce = 1 - \frac{1}{2} \left\frac{1}{3} (8-12x + 6x^2-x^3) dx Così Sacendo ho già un integrale in meno da calcalare! MA, horro connederare la questione anche in questo modo: Sono embrambi reventi AGB (XEA)= = (X; Y) & D Quindi P(XEA) = P (X, 1) ED => Posso procedere con un calcolo ancor meno Caborioso: $=1-\frac{1}{2}(\int y^2 dy \int dx) = 1-\frac{1}{2}(\int y^2(1-y)dy)$ $= 1 - \frac{1}{2} \left[\frac{y^3}{3} - \frac{84}{4} \right] = 1 - \frac{1}{2} \cdot \frac{1}{12} = \frac{11}{12}$

7

