Choice probabilities in dynamic models follow the same structure as static cases
Key difference: use conditional value functions v 's instead of utilities u 's

Choice probabilities in dynamic models follow the same structure as static cases

Key difference: use conditional value functions v's instead of utilities u's

For multinomial logit with choice set J alternatives:

$$p_{jt}(X_{it}) = \frac{\exp(v_{jt}(X_{it}))}{\sum_{t=1}^{J} \exp(v_{tt}(X_{it}))}$$

Choice probabilities in dynamic models follow the same structure as static cases

Key difference: use conditional value functions v's instead of utilities u's

For multinomial logit with choice set J alternatives:

$$p_{jt}(X_{it}) = \frac{\exp(v_{jt}(X_{it}))}{\sum_{k=1}^{J} \exp(v_{kt}(X_{it}))}$$

This is why we defined the conditional value functions the way that we did:

So that we could express the current-period choice probabilities conveniently

 $v_{jt}(X_{it}; \alpha, \beta, \gamma) = u_{jt}(X_{it}; \alpha) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}; \alpha, \beta, \gamma) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it}; \gamma)$

Three sets of parameters to estimate:

 $v_{jt}(X_{it}; \alpha, \beta, \gamma) = u_{jt}(X_{it}; \alpha) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}; \alpha, \beta, \gamma) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it}; \gamma)$

 α : Flow utility parameters

 $v_{jt}(X_{it}; \alpha, \beta, \gamma) = u_{jt}(X_{it}; \alpha) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}; \alpha, \beta, \gamma) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it}; \gamma)$

 β : Discount factor

 $v_{jt}(X_{it}; \alpha, \beta, \gamma) = u_{jt}(X_{it}; \alpha) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}; \alpha, \beta, \gamma) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it}; \gamma)$

 γ : Parameters governing state transitions

Putting it all together, assume the following:

•
$$\epsilon_{ijt} \stackrel{\textit{iid}}{\sim} \mathsf{T1EV}$$

• $u_{it}(X_{it}; \alpha) = X_{it}\alpha_i$

Putting it all together, assume the following:

•
$$\epsilon_{iit} \stackrel{\textit{iid}}{\sim} \mathsf{T}1\mathsf{EV}$$

•
$$u_{it}(X_{it}; \alpha) = X_{it}\alpha_i$$

Then

$$p_{jt}(X_{it}; \alpha, \beta, \gamma) = \frac{\exp\left[X_{it}\alpha_j + \beta \int \log\left(\sum_k \exp\left(v_{kt+1}\left(X_{it+1}; \alpha, \beta, \gamma\right)\right)\right) dF_{jt}(X_{it+1}|X_{it}; \gamma) + \beta c\right]}{\sum_m \exp\left[X_{it}\alpha_m + \beta \int \log\left(\sum_{k'} \exp\left(v_{k't+1}\left(X_{it+1}; \alpha, \beta, \gamma\right)\right)\right) dF_{mt}(X_{it+1}|X_{it}; \gamma) + \beta c\right]}$$

When taking this model to data, there are two model objects we need to match:
1. Getting the p 's to match the d 's (choices)

2. Getting the mapping between X_t and X_{t+1}

The likelihood function thus incorporates both choice and state transition probabilities:

$$\mathcal{L}(\alpha, \beta, \gamma; X) = \prod_{i} \prod_{t} \prod_{j} \left[p_{jt}(X_{it}; \alpha, \beta, \gamma) f_{jt}(X_{it+1} | X_{it}; \gamma) \right]^{d_{it} = j}$$

The likelihood function thus incorporates both choice and state transition probabilities:

$$\mathcal{L}(\alpha, \beta, \gamma; X) = \prod_{i} \prod_{t} \prod_{j} \left[p_{jt}(X_{it}; \alpha, \beta, \gamma) f_{jt}(X_{it+1} | X_{it}; \gamma) \right]^{d_{it} = j}$$

where γ governs the transitions of the state variables X's

The likelihood function thus incorporates both choice and state transition probabilities:

$$\mathcal{L}(\alpha, \beta, \gamma; X) = \prod_{i} \prod_{t} \prod_{j} \left[p_{jt}(X_{it}; \alpha, \beta, \gamma) f_{jt}(X_{it+1}|X_{it}; \gamma) \right]^{d_{it}=j}$$

where γ governs the transitions of the state variables X's

Taking logs gives the log-likelihood:

$$\ell(\alpha, \beta, \gamma) = \sum_{i} \sum_{t} \sum_{j} (d_{it} = j) \left\{ \log[p_{jt}(X_{it}; \alpha, \beta, \gamma)] + \log[f_{jt}(X_{it+1}|X_{it}; \gamma)] \right\}$$

The log likelihood is additively separable in parameters
This allows for two-stage estimation:

The log likelihood is additively separable in parameters

This allows for two-stage estimation:

1. Estimate γ from state transitions

The log likelihood is additively separable in parameters

This allows for two-stage estimation:

- 1. Estimate γ from state transitions
- 2. Taking $\hat{\gamma}$ as given, estimate α, β from choice probabilities

The log likelihood is additively separable in parameters

This allows for two-stage estimation:

- 1. Estimate γ from state transitions
- 2. Taking $\hat{\gamma}$ as given, estimate α, β from choice probabilities

Separability simplifies computational burden at cost of statistical efficiency

Bringing in the ba	ackwards recursion	ideas from last	video, algorithm	is as follows:

1. Start with initial guess of (α, β, γ)

- 1. Start with initial guess of (α, β, γ)
- 2. Solve value functions v_{it} backwards from terminal period using Bellman equation

- 1. Start with initial guess of (α, β, γ)
- 2. Solve value functions v_{jt} backwards from terminal period using Bellman equation
- 3. Compute policy functions (choice probabilities, $p_{jt}(X_{it}; \alpha, \beta, \gamma)$) using current v_{jt} 's

- 1. Start with initial guess of (α, β, γ)
- 2. Solve value functions v_{jt} backwards from terminal period using Bellman equation
- 3. Compute policy functions (choice probabilities, $p_{jt}(X_{it}; \alpha, \beta, \gamma)$) using current v_{jt} 's
- 4. Evaluate log likelihood $\ell(\alpha, \beta, \gamma)$ and update parameter guesses

- 1. Start with initial guess of (α, β, γ)
- 2. Solve value functions v_{jt} backwards from terminal period using Bellman equation
- 3. Compute policy functions (choice probabilities, $p_{jt}(X_{it}; \alpha, \beta, \gamma)$) using current v_{jt} 's
- 4. Evaluate log likelihood $\ell(\alpha, \beta, \gamma)$ and update parameter guesses
- 5. Repeat steps 2–5 until convergence

Key insight: Value function iteration nested within likelihood maximization	

• The backwards recursion gives optimal behavior for any given parameter values

Key insight: Value function iteration nested within likelihood maximization

• The backwards recursion gives optimal behavior for any given parameter values

 MLE finds which parameter values make that optimal behavior consistent with observed data

Key insight: Value function iteration nested within likelihood maximization

- The backwards recursion gives optimal behavior for any given parameter values
- MLE finds which parameter values make that optimal behavior consistent with observed data
- Must solve at all states—not just observed ones—because state transitions depend on choice probabilities at unvisited states