CLAIMS

1. Compounds of general formula (E) below:

$$B_x - L_z - (HR Ch)_y$$

(E)

in which:

- B is a biovector
- L is a linker
- HR Ch represents a chelate of formula (I):

[
$$(D)_q - (l_{a,b,c,d,e,f,g})_r$$
];

with:

a) $l_{a,b,c,d,e,f,g}$ chosen from l_a , l_b , l_c , l_d , l_e , l_f , l_g ,

la, lb, lc having the meanings:

15

where:

- the X, which may be identical or different, are chosen from $CO_2R'_a$, $CONR'_bR'_c$ or $P(R'_d)O_2H$, with :
 - R'_a , R'_b and R'_c , which may be identical or different, representing H or $(C_1\text{-}C_8)$ alkyl, which is optionally hydroxylated;
 - P is the phosphorus atom, R'_d is chosen from OH, (C₁-C₈)alkyl or (C₁-C₈)alkoxy, (C₁-C₈)arylalkyl or (C₁-C₈)alkoxyalkyl;

- R1 represents a hydrophilic group of molecular weight greater than 200, selected from groups :

-polyoxy(C_2 - C_3)alkylene, in particular polyethylene glycol and its C_1 - C_3 monoethers and monoesters, preferably of molecular mass from 1000 to 2000

- polyhydroxyalkyl
- polyol
- $(R_2g)_e [(R_2g)_iR_3]_h$ where:
 - h = 1 or 2; i = 0, 1 or 2; e = 1 to 5
 - R₂ represents (the R₂ being identical or different):
 - nothing, an alkylene, an alkoxyalkylene, a polyalkoxyalkylene;
 - a phenylene, or a heterocyclic residue which may be saturated or unsaturated, optionally substituted with OH, Cl, Br, I, (C₁-C₈)alkyl, (C₁-C₈)alkyloxy, NO2, NR_xR_Y, NR_xCOR_Y, CONR_xR_Y or COOR_x, R_x and R_Y being H or (C₁-C₈)alkyl, and the linear, branched or cyclic C₁-C₁₄ alkyl, alkylene and alkoxy groups possibly being hydroxylated;
 - g represents (the g being identical or different): nothing or a function O, CO, OCO, COO, SO3, OSO2, CONR', NR'CO, NR'COO, OCONR',NR', NR'CS, CSNR', SO2NR', NR'SO2, NR'CSO, OCSNR',NR'CSNR', P(O)(OH)NR', NR'P(O)-(OH), in which R' is H, (C₁-C₈)alkyl or R₃;
 - R₃ represents alkyl, phenyl, alkyl substituted or interrupted with one or more phenyl groups, alkyleneoxy groups; amino or amido unsubstituted or substituted with alkyl optionally substituted or interrupted with one of the above groups; phenyl, phenylene and heterocyclic groups which may be substituted with OH, Cl, Br, I,

10

15

20

25

15

20 .

(C₁-C₈)alkyl, (C₁-C₈)alkyloxy, NO₂, NR_xR_Y, NR_xCOR_Y, CONR_xR_Y or COOR_x, R_x and R_Y being H or (C₁-C₈)alkyl, and linear, branched or cyclic C₁-C₁₄ alkyl, alkylene and alkoxy groups which may be hydroxylated;

- R_a to R_i independently represent H, alkyl, hydroxyalkyl, alkylphenyl or cycloalkyl.
- U is a group -CXR₄-linker 1, CHR₄CON-linker 1, CHR₄-CHR₅OH-linker 1
- R₄ and R₅ independently representing H, alkyl or hydroxyalkyl,
- X having the meaning above,
- linker 1 being the linker providing the link between a chelate l_{a, b},
 c, and the linker L when q=0 and between l_{a, b}, c and D when q=1

 I_d , I_e , I_f having the meanings :

le

- X, R1, Ra to Ri having the same meaning as above,
 - U' is linker 1, providing the link between a chelate $I_{d,e,f}$ and a linker L when q=0 and between $I_{d,e,f}$ and D when q=1,
- Ig representing

U, X, R1 having the same meaning as above, linker 1 providing the link between a chelate l_g and a linker L when q=0 and between l_g and D when q=1.

5

b)

-q = 0 or q = 1

- r=1 when q=0, or r is between 2 and 5 when q=1

c) D is a polyfunctional molecule capable of linking a linker L to at least two chelates l_{a,b,c,d,e,f,g}

d) x, y and z are between 1 and 8, preferably x=1 to 3, y=1 to 6, z=1 to 3, given that y=z;

15

and also the salts of the compounds of formula (E) with pharmaceutically acceptable inorganic or organic acids or bases.

2. Compound according to Claim 1, characterized in that R1 is $(CH_2)_xCONHR$ with x=1, 2 or 3 and R is a hydrophilic group of molecular weight greater than 200, chosen from :

1) a group:

$$Z = \begin{bmatrix} Z' & & R1 & R2 \\ & Z'' & & R3 \\ & & R4 & IV1 \end{bmatrix}$$

and Z is a bond, CH2, CH2CONH or (CH2)2NHCO

10

15

20

Z' is a bond, O, S, NQ, CH₂, CO, CONQ, NQCO, NQ-CONQ or CONQCH₂CONQ,

Z" is a bond, CONQ, NQCO or CONQCH₂CONQ p and q are integers, the sum of which is 0 to 3;

R₁, R₂, R₃, R₄ or R₅ represent:

- either, independently of one another, H, Br, Cl, I, $CONQ_1Q_2$ or NQ_1COQ_2 with Q_1 and Q_2 , which may be identical or different, being H or a (C_1-C_8) alkyl group which is mono- or polyhydroxylated or optionally interrupted with one or more oxygen atoms, and at least one and no more than two of R_1 to R_5 are $CONQ_1Q_2$ or NQ_1COQ_2 ;

- or R₂ and R₄ represent

$$R'_1$$
 $CONQ_1Q_2$ $-Z'''$ R'_5 $CONQ_1Q_2$

and R_1 , R'_1 , R_3 , R'_3 , R_5 and R'_5 , which may be identical or different, represent H, Br, Cl or I, Q_1 and Q_2 have the same meaning as above and Z''' is a group chosen from CONQ, CONQCH₂CONQ, CONQCH₂, NQCONQ and CONQ(CH₂)₂NQCO and Q is H or (C₁-C₄)alkyl, which is optionally hydroxylated, it being possible for the alkyl groups to be linear or branched;

2) a "flash" branch

$$\begin{array}{c} Q_1Q_2N \\ N \\ N \\ Q_1Q_2N \end{array}$$

with Z"" being $NQ(CH_2)_j(CH_2OCH_2)_i(CH_2)_jNH_2$ with i=2 to 6 and j=1 to 6,

preferably
$$(CH_3OCH_2(CH_2OCH_2)tCH_2)N \\ N \\ N \\ NH-(CH_2)n-NH_2 \\ (CH_3OCH_2(CH_2OCH_2)tCH_2)N \\ or \\ (HOCH_2(CHOH)tCH_2)_2 \\ N \\ N \\ NH-(CH_2)n-NH_2 \\ (HOCH_2(CHOH)tCH_2)_2 \\ with t =1, 2, 3 or 4 and n=2 to 6.$$

- 3. Compound according to Claim 1 or 2, characterized in that q=1.
- 4. Compound according to Claim 1 or 2, characterized in that HR Ch represents the group:

$$\begin{array}{c} & COO^{-} & COO^{-} \\ B_{2} & HC & CH_{2})_{2} - N \\ & & CH_{2})_{2} - Gd^{3+} & S_{2} \\ & & N - S_{1} - T \\ B_{1} - CH & COO^{-} & II 1 \end{array}$$

in which:

$$-S_1-T-S_2-$$
 is

1) either

where $S_1 = S_2 = (CH_2)_2$

with all three of B_1 , B_2 and B_3 representing $(CH_2)_xCONHR$ with $x=1,\,2$ or 3

2):or

$$-H_2C$$
 N
 CH_2

Ш1

with k = 0 and $S_1 = S_2 = CH_2$ one of B1, B2, B3 representing G-NH, and the others representing $(CH_2)_xCONHR$

3) or

Ш1

10

20

with k=1

all three of B_1 , B_2 , B_3 representing $(CH_2)_xCONHR$ with x=1, 2 or 3

and GNH chosen from:

the groups $-(CH_2)_n$ -NH- with n = 1 to 4,

or -
$$(CH_2)_p$$
 NH with $p = 0 \text{ to } 3$;

- 5. Compound according to Claim 3, characterized in that HR Ch represents a group chosen from :
 - 1) the group

in which

where $S_1 = S_2 = (CH_2)_2$

all three of B_1 , B_2 , B_3 representing $(CH_2)_xCONHR$ with x=1, 2 or 3

2) the group

5 .

10

IIa2 (compound referred to as N-functionalized PCTA)

or IIb2 (compound referred to as N-functionalized PCTA and positional isomer of IIb2)

IIb2

in which S₁-T-S₂- is:

 III_2

with k = 0 and $S_1 = S_2 = CH_2$;

 $\mbox{\sc B}_3$ representing G-NH, and B1 and B2 representing (CH2)xCONHR for IIa2

 $$\rm B_2$$ representing G-NH, and B1 and B3 representing $(\mbox{CH}_2)_x\mbox{CONHR}$ for IIb2

15 3) the group

5.

IIc2 (compound referred to as C-functionalized PCTA)

when S₁-T-S₂- is:

Ш2

with k = 1 and $S_1 = S_2 = CH_2$;

all three of B_1 , B_2 , B_3 representing $(CH_2)_xCONHR$ with x=1, 2 or 3 for lic2

10 given that, for II2, IIa2, IIb2 and IIc2,

GNH is chosen from the groups - $(CH_2)_n$ -NH- with n = 1 to 4,

or -
$$(CH_2)_p$$
 NH with $p = 0$ to 3;

6. Compound according to any one of Claims 1 to 5, characterized in that D is an aromatic backbone polyfunctionalized with carboxylate and/or amino groups, D preferably being of 1,3,5-triazine type, of formula:

linker 2

with linker 2 chosen from a) and b) and preferably a):

- 20 **a)** $(CH_2)_2 \phi NH_2$, $(CH_2)_3 NH_2$, NH_2 , NH_2 , NH_3 , NH_4 , NH_3 , NH_4 , NH
 - b) P1-I-P2, which may be identical or different, P1 and P2 being chosen from OH, SH, NH₂, nothing, CO₂H, NCS, NCO, SO₃H,

20

with ! = alkylene, alkoxyalkylene, polyalkoxyalkylene, alkylene interrupted with phenylene, alkylidene, alkilidene,

and D being more preferably:

or

- 7. Compound according to any one of Claims 1 to 6, characterized in that
 10 L is a linker chosen from polyoxyalkylenes, squaric acid, a squarate-PEG
 radical, an alkylene, alkoxyalkylene, polyalkoxyalkylene, alkylene
 interrupted with phenylene, alkylidene, alkilidene.
 - 8. Compound according to any one of Claims 3 to 7, in which x of (CH₂)xCONHR is 2.
 - 9. Compound according to any one of Claims 4 to 8, in which $-S_1 T_2$ represents:

with $S_1 = S_2 = CH_2$.

10. Compounds according to Claim 9 of formula II1 in which k is 1 and G is $-(CH_2)_3$ -.

11. Compounds according to Claim 9 of formula II1 in which k is 0 and B₂ or B₃ represents-(-CH₂)₃NH- or

12. Compound according to any one of Claims 4 to 9, in which $-S_1 - T_2$ represents:

with
$$S_1 = S_2 = (CH_2)_2$$
.

10

- 13. Compounds according to any one of the preceding claims, for which B_1 , B_2 and B_3 , when they do not represent -G-NH, represent $(CH_2)_2CONHR$, with, in R, p = q = 0 and Z being -CH₂CONH.
- 15 14. Compounds according to Claim 13, for which R represents:

$$-CH_2CONH - X \\ CONQ_1Q_2 \\ CONQ_1Q_2$$

and the X are identical and represent Br or I, while Q_1 and Q_2 , which may be identical or different, are mono- or polyhydroxylated (C_1 - C_8)alkyl groups such that each CONQ₁Q₂ contains from 4 to 10 hydroxyls in total.

20

15. Compounds according to Claim 13, for which R represents:

and the X, which are identical, are Br or I, and Q_1 and Q_2 , which may be identical or different, are mono- or polyhydroxylated (C_1 - C_8)alkyl groups such that each CONQ₁Q₂ group contains from 4 to 10 hydroxyls in total.

16. Compounds according to any one of Claims 1 to 12, for which R represents:

$$-Z - Z' - R3$$

$$R5 CONQ_1Q_2$$

$$R5 CONQ_1Q_2$$

- Z is CH₂ or CH₂CONH, Z' is CONH or CONHCH₂CONH, R₁, R₃ and R₅, which are identical, are Br or I, and Q₁ and Q₂, which may be identical or different, are mono- or polyhydroxylated (C₁-C₈)alkyl groups such that each CONQ₁Q₂ group contains from 4 to 10 hydroxyls in total.
- 15 17. Compounds according to any one of Claims 1 to 12, for which R represents:

$$-Z - Z' - Z'' - Z'' - R3$$

$$R5 \quad CONQ_1Q_2$$

15

20

Z is CH_2CONH , Z' is CONH, Z" is $CONHCH_2CONH$ and R_1 , R_3 and R_5 , which are identical, are Br or I, and Q_1 and Q_2 , which may be identical or different, are monohydroxylated or polyhydroxylated (C_1 - C_8)alkyl groups such that each $CONQ_1Q_2$ group comprises from 4 to 10 hydroxyls in total.

18. Compounds according to any one of Claims 1 to 12, for which R represents

with Z "" being NQ(CH₂)_j (CH₂OCH₂)_i (CH₂)_jNH₂, with i=2 to 6 and j=1 to 6,

preferably R represents: $(CH_3OCH_2(CH_2OCH_2)tCH_2)N \longrightarrow NH-(CH_2)n-NH_2$ $(CH_3OCH_2(CH_2OCH_2)tCH_2)N$ or $(HOCH_2(CHOH)tCH_2)_2 \longrightarrow NH-(CH_2)n-NH_2$ $(HOCH_2(CHOH)tCH_2)_2 \longrightarrow NH-(CH_2)n-NH_2$

with t = 1, 2, 3 or 4 and n = 2 to 6.

19. Compound according to one of Claims 1 to 18, characterized in that the biovector is an agent capable of targeting cellular receptors or tissue components, in particular chosen from receptors of myocardial cells, of endothelial cells, of epithelial cells, of tumour cells or of immune system cells.

20. Compound according to one of Claims 1 to 19, characterized in that the biovector is an agent capable of targeting a folate receptor, (E) being written:

(E1):

or (E2):

with:

- a) G1 is chosen independently from the group consisting of : halo, R_f2 , O R_f2 , S R_f3 , N R_f4 R_f5 ;
- b) G2 is chosen independently from the group consisting of : halo, R_f2 , O R_f2 , S R_f3 , and N R_f4 R_f5 ;
 - c) G3 and G4 represent divalent groups chosen independently from the group consisting of -(R_f6') C=,-N=,-(R_f6') C (R_f7')-, -N (R_f4')-;
- d) G5 is absent or chosen from -(R_f6') C=,-N=,-(R_f6') C (R_f7')-, -N (R_f4')-;
 - e) the ring J is a possibly heterocyclic aromatic 5- or 6-membered ring, it being possible for the atoms of the ring to be C, N, O, S;
 - f) G6 is N or C;

- g) K1 and K2 are chosen independently from the group consisting of C (Z_f)-, -C (Z_f) O, -OC (Z_f)-,-N (R_f 4")-,-C (Z_f)-N (R_f 4")-,-N (R_f 4")-C(Z_f)-O-, N(R_f 4")-C(Z_f)-N(R_f 5")-, -O-, -S-, -S(O)-, -S(O)₂-, -N(R_f 4")S(O)₂-, -C(R_f 6")(R_f 7")-,
- -N(C = CH)-, -N(CH₂-C = CH)-, C_1 - C_{12} alkyl and C_1 - C_{12} alkoxy; in which Zf is O or S; preferably K1 is -N(R_f 4")- or -C(R_f 6")(R_f 7")- with R_f 4", R_f 6", R_f 7" being H; K2 possibly being covalently bonded to an amino acid;
 - h) R_f1 is chosen from the group consisting of : H, halo, C_1 - C_{12} alkyl and C_1 - C_{12} alkoxy; R_f2 , R_f3 , R_f4 , R_f4 ', R_f4 ', R_f5 , R_f5 ", R_f6 " and R_f7 " are chosen independently from the group consisting of : H, halo, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_1 - C_1 alkoxy, C_1 - C_1 alkoxy) carbonyl and $(C_1$ - C_1 alkylamino) carbonyl;
 - i) R_f6 and R_f7 are chosen independently from the group consisting of : H, halo, $C_{1-}C_{12}$ alkyl, $C_{1-}C_{12}$ alkoxy; or R_f6 and R_f7 together form O=;
- j) R_f6' and R_f7' are chosen independently from the group consisting of: H, halo, C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy; or R_f6' and R_f7' together form O=;
 k) L_f is a divalent linker which includes, where appropriate, a natural amino acid or a natural poly(amino acid), this acid or polyacid being bonded to
 - K2 or to K1 via its alpha-amino group via an amide bond;
- 20 I) n, p, r and s are independently 0 or 1.
 - 21. Compound according to Claim 20, characterized in that G1 is $\,$ NH $_2$ or $\,$ OH.
- 22. Compound according to Claim 20, characterized in that G3 is -N= or -CH- when the ring comprising G3 is aromatic, and G3 is -NH- or -CH₂-when the ring comprising G3 is non-aromatic; with, preferably, G3 being -CH-, G1 being OH, G6 being NH and K1 being -N(R_f4 ")-.

- 23. Compound according to Claim 20, characterized in that G4 is -CH- or -C(CH₃)-when the ring comprising G3 is aromatic, and -CH₂- or -CH(CH₃)- when the ring comprising G3 is non-aromatic.
- 24. Compound according to Claim 20, characterized in that G5 is absent, with, preferably, G1 being OH, G2 being NH₂, G6 being N.
 - 25. Compound according to Claim 20, characterized in that G6 is N or C.
- 26. Compound according to Claim 20, characterized in that (E) is

or

- 27. Compound according to one of Claims 1 to 19, characterized in that the biovector is an angiogenesis inhibitor.
- 28. Compound according to one of Claims 1 to 19, characterized in that the biovector is an agent capable of inhibiting the activity of an MMP.
- 29. Compound according to Claim 28, characterized in that the biovector is an MMP inhibitor derived from ilomastat .

- 30. Compound according to one of Claims 1 to 19, characterized in that the biovector is an agent capable of targeting an integrin.
- 31. Compound according to Claim 30, characterized in that the biovector is an agent capable of targeting the integrin $\alpha v \beta 3$, in particular an RGD peptide, a peptidomimetic of the RGD peptide, or a non-peptide agent capable of mimicing the action of an RGD peptide.
- 32. Compound according to Claim 31, characterized in that the biovector is an RGDfV peptide having the structure :

- 33. Compound according to Claim 30, characterized in that the biovector is an agent capable of targeting the integrin GPIIb/IIIa.
- 34. Compound according to Claim 30, characterized in that the biovector is an agent capable of targeting a vitronectin.
- 35. Compound according to one of Claims 1 to 19, characterized in that
 the biovector is an agent capable of targeting an angiogenic receptor of
 endothelial cells, in particular a VEGFR receptor, preferably a peptide
 ATWLPPR or HTMYYHHYQHHL.

15

20

- 36. Compound according to one of Claims 1 to 19, characterized in that the biovector is an agent capable of targeting receptors located on macrophages, in particular SRA receptors.
- 37. Compound according to Claim 36, characterized in that the biovector is a derivative of phosphatidylserine.
 - 38. Compound according to one of Claims 1 to 19, characterized in that the biovector is a bisphosphonate derivative.
 - 39. Compound according to one of Claims 1 to 19, characterized in that the biovector is a peptide targeting tuftsin.
 - 40. Compound according to one of Claims 1 to 19, characterized in that the biovector is Annexin 5.
 - 41. Intermediate compound, used for preparing a compound according to Claim 1, of formula:

$$L - [(D)_q - (l_{a,b,c,d,e,f,g})_r]$$

with L preferably of squarate type, q=1 and $[(D)_q-(I_{a,b,c,d,e,f,g})_r]$ preferably being chosen from :

11'2

II" a2

5

3) II " b2

10 with -G-NH being -(CH₂)₃-NH- or

$$-(CH_2)_2$$
-NH-

4)

11 " 2

with G-NH being -(-CH₂)₃-NH.

- 42. Compound according to any one of Claims 1 to 40, in its form bonded to an element M, (E) being written B_x L (HR Ch)_y M; given that M is either a paramagnetic metal ion having the atomic number 21-29, 42-44, or 58-70, or a radionucleide, typically chosen from ⁹⁹Tc, ¹¹⁷Sn, ¹¹¹In, ⁹⁷Ru, ⁶⁷Ga, ⁶⁸Ga, ⁸⁹Zr, ¹⁷⁷Lu, ⁴⁷Sc, ¹⁰⁵Rh; ¹⁸⁸Re, ⁶⁰Cu, ⁶²Cu, ⁶⁴Cu, ⁶⁷Cu, ⁹⁰Y, ¹⁵⁹Gd, ¹⁴⁹Pr, and ¹⁶⁶Ho, or a heavy metal ion having the atomic number 21-31, 39-49, 50, 56-80, 82, 83 or 90.
 - 43. Magnetic resonance imaging contrast product, characterized in that it comprises a compound according to one of Claims 1 to 40, optionally combined with a pharmaceutically acceptable vehicle.
 - 44. Contrast product according to Claim 43, provided in the form of an injectable sterile solution.
- 20 45. Compound according to either one of Claims 43 and 44, for its use in the diagnosis of a cardiovascular, cancer-related or inflammatory pathology.
- 46. Nuclear medicine product, characterized in that it comprises a compound according to one of Claims 1 to 38, optionally combined with a pharmaceutically acceptable vehicle.
 - 47. Compound according to any one of Claims 1 to 22, having a relaxivity of between 25 and 200 mM⁻¹Gd⁻¹.

48. Method for preparing a compound according to any one of Claims 1 to 40 characterized in that it comprises the coupling of at least one biovector and at least one high-relaxivity chelate as defined in one of Claims 1 to 18.