الدورة العادية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	

Cette épreuve est formée de quatre exercices répartis sur quatre pages de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

Premier exercice (7,5 points) Moment d'inertie d'une tige

On dispose d'une tige rigide AB homogène, de section négligeable, de longueur $\ell = 1$ m et de masse m = 240 g. Cette tige peut tourner autour d'un axe (Δ) horizontal qui lui est perpendiculaire et passant par son milieu O. Le but de cet exercice est de déterminer, par deux méthodes, le moment d'inertie I₀ de la tige, par rapport à l'axe (Δ). La position verticale CD de cette tige représente

l'origine des abscisses angulaires. On néglige toute force de frottement.

Prendre: $g = 10 \text{ m/s}^2$; $\pi^2 = 10$; $\sqrt{3} = 1,732$;

 $\sin \theta \approx \theta$ et $\cos \theta \approx 1 - \frac{\theta^2}{2}$ pour des angles θ faibles mesurés en rd.

La tige, partant du repos à la date $t_0 = 0$, tourne autour de (Δ) sous l'action d'une force

 \vec{F} dont le moment par rapport à (Δ) est constant de valeur $\mathbf{M}=0,1$ m.N (Fig.1).

À une date t, l'abscisse angulaire de la tige est θ et sa vitesse angulaire est θ '.

- 1) a) Montrer que le moment résultant des forces appliquées à la tige par rapport à (Δ) est égal à **M**.
 - b) Déterminer, en utilisant le théorème du moment cinétique, la nature du mouvement de la tige entre t₀ et t.
- c) Déduire l'expression du moment cinétique σ de la tige, par rapport à (Δ), en fonction du temps t.
- 2) Déterminer la valeur de I_0 , sachant qu'à la date $t_1 = 10$ s, la vitesse de rotation de la tige est 8 tours/s.

B - Deuxième méthode

On fixe, au point B, une particule de masse m' = 160 g. Le système (S) ainsi formé constitue un pendule pesant dont le centre d'inertie est G. (S) peut osciller librement, autour de l'axe (Δ).

On écarte (S), à partir de sa position d'équilibre, d'un angle faible et on le lâche, sans vitesse, à la date $t_0 = 0$.

À la date t, l'élongation angulaire du pendule est θ et sa vitesse angulaire est

$$\theta'\!=\frac{d\theta}{dt}\,.$$

Le niveau de référence de l'énergie potentielle de pesanteur est le plan horizontal passant par le point O.

- 1) Déterminer:
 - a) la position de G par rapport à O (a = OG), en fonction de m, m' et ℓ ;
 - **b**) le moment d'inertie I de (S) par rapport à (Δ), en fonction de I₀, m' et ℓ .
- 2) Déterminer, à la date t, l'énergie mécanique du système [(S), Terre], en fonction de I, θ' , θ , m, m', a et g.
- 3) a) Établir l'équation différentielle du second ordre qui régit le mouvement de (S).
 - **b**) Déduire l'expression de la période propre T des oscillations de (S), en fonction de I_0 , m', ℓ et g.
- 4) La durée de 10 oscillations du pendule vaut 17,32 s. Déterminer la valeur de I₀.

Fig.2

Deuxième exercice (7,5 points) Détermination de la capacité d'un condensateur

Dans le but de déterminer la capacité C d'un condensateur, on dispose du matériel suivant :

- un générateur G délivrant à ses bornes une tension alternative sinusoïdale de valeur efficace U et de fréquence f réglable;
- un conducteur ohmique de résistance $R = 250 \Omega$;
- un oscilloscope;
- deux voltmètres V_1 et V_2 ;
- un interrupteur;
- des fils de connexion.

On réalise le montage du circuit schématisé par la figure 1.

A – Étude théorique

La tension aux bornes du générateur est $u_{AB}=U\sqrt{2}\sin\omega t$. En régime permanent, l'intensité i du courant peut se mettre sous la forme : $i=I\sqrt{2}\sin(\omega t+\phi)$, où I est la valeur efficace de i .

- 1) a) Donner l'expression de l'intensité i en fonction de C et $\frac{du_C}{dt}$ avec $u_c = u_{AD}$.
 - **b**) Déterminer l'expression de la tension u_C en fonction du I, C, ω et t.
 - c) En déduire l'expression de la valeur efficace U_C de u_C en fonction de I, C et ω .
- 2) En appliquant la loi d'additivité des tensions et en donnant à t une valeur particulière, montrer que

$$\tan \varphi = \frac{1}{RC\omega}.$$

B – Détermination de C

1) À l'aide de l'oscilloscope

L'oscilloscope, convenablement branché, visualise sur la voie (Y_1) la tension u_{AB} aux bornes du générateur, et sur la voie (Y_2) la tension u_{DB} aux bornes du

conducteur ohmique. Sur l'écran de l'oscilloscope, on obtient les oscillogrammes représentés par la figure 2.

Base de temps : 1 ms / div.

- **a**) Reproduire la figure 1 en montrant les branchements de l'oscilloscope.
- b) En se référant à la figure 2,
 - i) déterminer la valeur de la fréquence f de la tension u_{AB} ;
 - ii) lequel des oscillogrammes, (a) ou (b), est-il en avance de phase par rapport à l'autre ?
 - iii) pourquoi l'oscillogramme (a) visualise-t-il l'évolution de la tension u_{DB} ?
 - iv) déterminer le déphasage entre les deux tensions u_{AB} et u_{DB} .
- c) Calculer la valeur de C.

2) À l'aide des voltmètres

On débranche l'oscilloscope et on règle la fréquence f à la valeur 200 Hz. On branche, ensuite, le voltmètre V_1 aux bornes du conducteur ohmique et V_2 aux bornes du condensateur. V_1 et V_2 indiquent respectivement 2,20 V et 3,20 V.

2

En tenant compte de ces mesures et de la partie A, déterminer la valeur de C.

Troisième exercice (7,5 points) Aspects de la lumière

On dispose d'une source (S) émettant une lumière visible monochromatique de fréquence $v = 6.163 \times 10^{14}$ Hz.

Données: $c = 3 \times 10^8 \text{ m/s}$; $h = 6.62 \times 10^{-34} \text{ J.s}$; $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J.}$

I – Premier aspect de la lumière

A – Cette source éclaire une fente très fine qui se trouve à 10 m d'un écran. Une figure, étalée sur une grande largeur, est observée sur l'écran.

- 1) À quel phénomène est due la formation de cette figure?
- 2) Déterminer la largeur de la fente sachant que la largeur linéaire de la tache centrale est de 40 cm.
- ${f B}$ La même source éclaire maintenant les deux fentes du dispositif de Young, ces deux fentes verticales étant distantes de a=1 mm. Une figure est observée sur un écran placé parallèlement au plan des fentes et à la distance D=2 m de ce plan.

Décrire la figure observée et calculer la valeur de l'interfrange i.

C – Quel aspect de la lumière les deux expériences précédentes mettent- elles en évidence?

II – Deuxième aspect de la lumière

A – Un faisceau lumineux émis par (S) tombe sur la surface d'une plaque de césium dont l'énergie d'extraction est $W_0 = 1.89$ eV.

- 1) a) Calculer la valeur de la fréquence seuil du césium.
 - **b**) Déduire qu'il y a une émission d'électrons par la plaque.
- 2) Déterminer la valeur de l'énergie cinétique maximale d'un électron émis.
- **B** La figure ci-contre représente le diagramme énergétique de l'atome d'hydrogène. L'énergie de l'atome d'hydrogène est donnée par :

$$E_n = \frac{-13.6}{n^2} \ (E_n \ \text{en eV}, \ n \ \text{un nombre entier non nul}).$$

- Un atome d'hydrogène, pris dans l'état fondamental, reçoit un photon de (S).
 Ce photon n'est pas absorbé. Pourquoi ?
- 2) L'atome d'hydrogène, pris dans le premier état excité, reçoit un photon de (S).

Ce photon est absorbé et l'atome passe alors à un nouvel état excité.

- a) Déterminer ce nouvel état excité.
- **b**) L'atome se désexcite. Préciser la transition possible pouvant donner la radiation visible dont la longueur d'onde est la plus grande.

C – Quel aspect de la lumière les parties A et B mettent- elles en évidence?

Quatrième exercice (7,5 points) Oscillations électromagnétiques

Le but de cet exercice est de mettre en évidence le phénomène des oscillations électromagnétiques dans différentes situations.

Pour cela, on dispose d'un générateur G idéal de f.é.m E=3~V, d'un condensateur non chargé de capacité $~C=1\mu F$, d'une bobine d'inductance L=0,1~H et de résistance r, d'un conducteur ohmique de résistance R, d'un oscilloscope, d'un commutateur K et de fils de connexion.

On réalise le montage schématisé par la figure1. L'oscilloscope est branché aux bornes du condensateur.

L'interrupteur K est en position (1). Le condensateur se charge totalement et la tension entre ses bornes est alors $u_{AM} = U_0$.

- 1) Déterminer la valeur de U_0 .
- 2) Calculer l'énergie électrique W₀ emmagasinée par le condensateur à la fin de la charge.

B – Oscillations électromagnétiques

Le condensateur étant totalement chargé, on met, à la date $t_0 = 0$, l'interrupteur K en position (2). Le circuit est le siège d'oscillations électriques. À une date t, le circuit est parcouru par un courant d'intensité i.

1) Première situation (circuit idéal)

Dans le circuit idéal, on néglige la résistance r de la bobine.

- a) Reproduire la figure 1 en indiquant un sens arbitraire de i.
- **b**) Établir l'équation différentielle qui régit l'évolution de la tension $u_{AM} = u_C$ aux bornes du condensateur en fonction du temps.
- c) Déduire, alors, l'expression de la période propre T_0 des oscillations électriques en fonction de L et C et calculer sa valeur en ms, avec 2 chiffres après la virgule. (utiliser $\pi = 3,14$).
- **d)** Tracer l'allure de la courbe représentant l'évolution de la tension u_C en fonction du temps.
- e) Préciser le mode des oscillations électriques établies dans le circuit.

2) Deuxième situation (circuit réel)

L'évolution de la tension $u_{AM} = u_C$ observée sur l'écran de l'oscilloscope est représentée par l'oscillogramme de la figure 2.

- **a**) Préciser le mode des oscillations électriques établies dans le circuit.
- **b**) Donner une interprétation énergétique du phénomène obtenu.
- c) En se référant à l'oscillogramme de la figure 2,
 - i) donner la durée T d'une oscillation;
 - ii) comparer T et T_0 ;
 - iii) préciser la valeur autour de laquelle la tension u_C évolue.

3) Troisième situation

On réalise un nouveau montage en série (Figure 3) formé du générateur G, de la bobine, du condensateur initialement non chargé, et de l'interrupteur K.

On ferme K à la date $t_0 = 0$. À une date t, le circuit est alors parcouru par un courant d'intensité i. La figure 4 donne, en fonction du temps, les variations de i (Fig. 4a) et u_C (Fig. 4b).

- a) Préciser la valeur autour de laquelle la tension u_C évolue.
- **b)** Donner la durée d'une oscillation.
- c) On considère les 3 intervalles de temps suivants : $0 \le t \le 0.5$ ms ; 0.5 ms $\le t \le 1$ ms ; 1 ms $\le t \le 1.5$ ms.

En se référant aux courbes de la figure 4, préciser, en le justifiant, l'intervalle où :

- i) la bobine fournit de l'énergie au condensateur;
- ii) le condensateur fournit de l'énergie à la bobine;
- iii) aucun échange d'énergie ne se produit entre le condensateur et la bobine.