

University of North Carolina - Chapel Hill

Multi-Model Financial Fraud Detection

Contributor

Contributor

Contributor

Ehsan Bagheri

Zachary Moran

Quinton Wilson

Synthetic Data Creation

 Custom function created 100k synthetic transactions

Fraud rate set at 2% for balanced modeling

• Realistic feature simulation: merchant type, location, account, credit score

 Distributions tailored by transaction type and fraud probability

Exploratory Data Analysis

EDA - Insights and Patterns

Confirmed class imbalance:
 98% non-fraud, 2% fraud

 Correlation heatmap showcases key variables include amount, credit score, and transaction timing

Feature Engineering

Ensemble Models

Random Forest

XGBoost

Random Forest

300 trees, max depth = 30

Feature sampling: log2

Strengths: Robust to noise, low tuning complexity

Method: Bagging (parallel tree growth)

XGBoost

200 estimators, max depth = 5

Learning rate = 0.1, early stopping = 50 rounds

Feature sampling: 80% per tree

Strengths: High accuracy, effective on tabular data

Method: Boosting (sequential correction)

Overall Performance Comparison (Radar Chart)

Visual Comparison

XGBoost outperformed Random Forest in recall, while training nearly 50x faster

Slight trade-off in precision, but overall higher F1 shows better balance

Ideal for real-time or high-volume fraud detection systems

Neural Network

Neural Network Results

Key Highlights:

- High Recall (0.97) on test set captures nearly all fraud cases
- **AUC:** 0.9986 near-perfect class separation
- Cross-Validated Recall: 0.93 ± 0.01
- **F1 Score (Test):** 0.78

- Precision (Test): 0.66
- **Accuracy:** 98.93%
- Training Stability: Low loss & consistent accuracy over epochs
- Balanced Generalization: Minimal overfitting observed

Imbalanced Data Solutions: Sampling & Threshold Tuning

Oversampling vs. Undersampling Feature Importance

Feature Importance Stability

- Top features (num_transactions_today, prev_transaction_hours, location) remained consistent
- Sampling method (SMOTE vs. undersampling) had minimal effect
- Suggests robust, model-independent signal in feature ranking

PR Curves for Threshold Tuning: RF, XGB, and NN

Improved RF and XGB Class 1 Detection

- XGBoost consistently outperforms
 Random Forest across both sampling strategies
- Threshold tuning greatly improves
 F1-score for undersampled models
 (RF: +18 pts, XGB: +25 pts)
- SMOTE yields better baseline, but tuned undersampling closes the gap or surpasses it

Improved Neural Network Class 1 Detection

- Threshold tuning boosts Class
 1 F1-score (SMOTE: +9 pts,
 Under: +19 pts)
- Undersampling sees biggest gain, narrowing gap with SMOTE-based training

Model Comparison: Sampling & Threshold Tuning

- XGBoost consistently outperformed RF and NN in Class 1 F1-score across both SMOTE and undersampling.
- Threshold tuning significantly improved Class 1 detection, especially for undersampled models (e.g., +25 pts for XGB Under).
- SMOTE models had stronger baseline performance, but undersampled models caught up or surpassed after tuning.
- Neural Networks improved with tuning, but still underperformed compared to XGBoost, particularly on undersampled data.
- Model calibration mattered optimal thresholds varied widely (e.g., 0.46 for RF Over vs. 0.97 for XGB Under), showing tuning is essential for imbalanced datasets.

Hyperparameter Tuning

XGBoost Optimization via Grid Search

XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric='logloss', feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.2, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=9, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=300, n_jobs=None, num_parallel_tree=None, random_state=None, ...)

 Objective: Improve performance for the XGBoost classification

- Used Grid Search Cross Validation to tune:
 - N_estimators (number of trees)
 - Max_depth (tree depth)
 - learning_rate (step size shrinkage)
 - subsample (row sampling)
 - Colsample_bytree (feature sampling)

 Manual tuning provided similar results than Grid Search

Optuna Neural Network Tuning

```
AUC Scores: ['0.9947', '0.9956', '0.9960', '0.9954', '0.9959']

Mean AUC: 0.9955

Std AUC: 0.0005

Optuna Best Hyperparameters:
batch_size: 128
patience: 18
n_units1: 26
n_units2: 98
n_units3: 30
dropout: 0.12042960989760738
lr: 0.0004461073453710296
```

Best ROC AUC: 0.9972

- Objective: Improve performance for the Neural Network
- Utilized Optuna to create 5 trials examining:
 - Layer Sizes
 - Dropout rate (to prevent overfitting)
 - Activation functions
 - Learning rate and batch sizes
- Selected parameters from best of 5 trails
- Final model showed strong performance with stable convergence

Cross-validation ROC AUC scores: ['0.9972', '0.9976', '0.9957', '0.9961', '0.9976']
Mean Cross-validation ROC AUC: 0.9968
Standard Deviation of Cross-validation ROC AUC: 0.0008