Concours blanc

Seconde épreuve mercredi 01 juillet 2020 Durée: 3 heures

♦ Le candidat peut admettre le résultat d'une question et l'utiliser dans la suite à condition de l'écrire clairement sur sa copie.

♦ Si le candidat repère ce qu'il croit être une erreur d'énoncé, il l'indique sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Développements limités

On considère $f: \mathbb{R} \to \mathbb{R}$ définie par l'expression $f(x) = e^x - x$, pour tout $x \in \mathbb{R}$.

- 1. Étudier la fonction f.
- 2. Montrer que pour tout entier naturel $n \in \mathbb{N}$, il existe un unique nombre réel $x_n > 0$ tel que $e^{x_n} x_n 1 = e^{-n}$.
- 3. On souhaite montrer que $x_n \to 0$.
 - (a) Donner (en le démontrant) le développement limité de exp en 0 à l'ordre 4 en 0.
 - (b) Déterminer un équivalent de $e^{\frac{1}{n}} 1 \frac{1}{n} e^{-n}$.
 - (c) Montrer que $x_n = O(1/n)$.
- 4. En déduire un équivalent de x_n

Intégration

L'objectif de cet exercice est de calculer $\lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 + \frac{\sqrt{k(n-k)}}{n^2}\right)$. On définit $p_n = \prod_{k=1}^{n} \left(1 + \frac{\sqrt{k(n-k)}}{n^2}\right)$, pour tout entier naturel $n \in \mathbb{N}^*$.

- 1. Montrer que $\forall n \in \mathbb{N}, p_n \geq 1$. On définit dans la suite $s_n = \ln(p_n)$ pour tout entier naturel $n \in \mathbb{N}^*$.
- 2. Montrer que $\forall x > 0, x \frac{x^2}{2} \le \ln(1+x) \le x$.
- 3. Pour tout entier naturel $n \in \mathbb{N}^*$, en déduire les inégalités

$$\sum_{k=1}^{n} \frac{\sqrt{k(n-k)}}{n^2} - \frac{1}{2n^2} \sum_{k=1}^{n} \frac{k(n-k)}{n^2} \le s_n \le \sum_{k=1}^{n} \frac{\sqrt{k(n-k)}}{n^2}.$$

- 4. Montrer que $\frac{1}{2n^2} \sum_{k=1}^{n} \frac{k(n-k)}{n^2} \to 0$. 5. Montrer que $\sum_{k=1}^{n} \frac{\sqrt{k(n-k)}}{n^2} \to \int_0^1 \sqrt{x(1-x)} dx$.
- 6. On définit $D = \{(x, y) \in \mathbb{R} \times \mathbb{R}^+ / (x \frac{1}{2})^2 + y^2 \le \frac{1}{4}\}.$

 - (a) Montrer que $\{(x,y) \ / \ x \in [0,1] \ \text{et} \ 0 \le y \le f(x)\} = D$, où $f: x \mapsto \sqrt{x(1-x)}$. (b) En déduire l'égalité $\int_0^1 \sqrt{x(1-x)} dx = \frac{\pi}{8}$. On rappelle que l'aire d'un disque de rayon r est πr^2 .
- 7. Conclure.

Probabilités

Une particule peut se trouver dans deux états distincts notés 0 et 1. À chaque étape, la particule peut

- rester dans son état avec une probabilité $p \in]0,1[$.
- changer d'état avec une probabilité 1 p.

Pour tout entier naturel $n \in \mathbb{N}$, on note X_n la variable aléatoire qui donne l'état de la particule à l'étape n.

1. Dans cette question uniquement, on suppose que X_0 suit une loi de Bernoulli de paramètre 1/2. Déterminer la loi de X_1 .

Dans la suite aucune hypothèse n'est faite sur X_0 . On définit $M_n=(\mathbb{P}(X_{n+1}=i-1|X_n=j-1))_{i,j}\in\mathcal{M}_2(\mathbb{R})$ et $\gamma_n = \begin{pmatrix} \mathbb{P}(X_n = 0) \\ \mathbb{P}(X_n = 1) \end{pmatrix}$, pour tout entier naturel n.

- 2. Montrer que (M_n) est une suite constante de matrices. Dans la suite , on notera $M=M_0$.
- 3. Montrer que $\forall n \in \mathbb{N}, \gamma_{n+1} = M\gamma_n$.
- 4. En déduire que $\gamma_n = M^n \gamma_0$, pour tout entier naturel n.
- 5. On écrit sous forme exponentielle $p + i(1-p) = re^{i\theta}$. On introduit $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
 - (a) Montrer que P est inversible et calculer P^{-1} .

- (b) Déterminer une exression explicite de $P^{-1}MP = D$.
- (c) Calculer toutes les puissances de M.
- 6. On suppose dans cette question uniquement que X_0 suit une loi de Bernoulli de paramètre $q \in]0,1[$. Déterminer la loi et l'espérance de X_n , pour tout entier naturel n.

Séries

- Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs telle que $\frac{u_{n+1}}{u_n}\to l\in\mathbb{R}$. 1. On suppose dans cette question que l>1. Montrer que $\sum u_n$ diverge. On pourra montrer que $r^n=O(u_n)$ pour $un\ certain\ r > 1\ \grave{a}\ d\acute{e}terminer.$
- 2. On suppose danc cette question que l < 1. Montrer que $\sum u_n$ converge.
- 3. On suppose dans cette question que

$$\exists a \in \mathbb{R}, \quad \frac{u_{n+1}}{u_n} = \frac{1}{1 + \frac{a}{n} + O\left(\frac{1}{n^2}\right)}.$$

- (a) On définit v_n = ln(n^au_n) et w_n = v_{n+1} v_n. Montrer que w_n = O(¹/_{n²}).
 (b) En déduire qu'il existe λ > 0, u_n ~ λ/_{n^a}.
 (c) Déterminer la nature de ∑ u_n selon la valeur de a.
 4. Étudier la nature de la série de terme général ∑ u_n lorsque
- - (a) $u_n = \frac{\ln(n)}{n!}$. (b) $u_n = \frac{\prod_{k=1}^{n} (2k)}{n^n}$. (c) $u_n = \frac{n+2}{n+1}$.

FIN.