

Mathematical Foundations of Computer Science

Lecture 19: Graph Complements and Colorings

Independent Sets, Cliques, Graph Complements

Independent Set

Empty graph: a graph with *no* edges

Independent Set:

A subset of vertices with no edges between them in G (subset whose induced subgraph is empty). E.g., $S = \{v_2, v_4, v_8\}$

What is the size of the largest independent set in G? 3

Recap: Complete Graphs, Cliques

 K_n : complete graph on n-vertices.

Or also called an *n*-clique

Cliques in a graph:

A subgraph that is a clique. $\{v_1, v_3, v_4, v_5\}$

What is the size of the largest clique in G?

Graph Complements

$$\bar{G} = (V, \bar{E})$$
=Complement of $G = (V, E)$

- Graph on the same of vertices
- $(u,v) \in \overline{E}$ iff $(u,v) \notin E$

Thm. S is an independent set in G iff S is a clique in \overline{G}

Pf. S is an independent set. So, For every $u, v \in S$, $(u, v) \notin E$ i.e., $\forall u, v \in S$, $(u, v) \in \overline{E}$ Hence S is a clique in \overline{G}

Relations b/w Graph Properties

Given graph G(V, E):

what is the size of the maximum independent set in *G* (independent set with largest number of vertices)?

- a) = size of the maximum clique in \bar{G} ?
- b) = size of the maximum clique in G?
- c) = size of the maximum independent set in \bar{G} ?

Graph coloring

Graph Coloring

A graph G(V, E) is k- colorable (vertex) if each vertex can be colored with one of k colors such that each edge is not monochromatic i.e. if $(u, v) \in E$ then u, v have different colors.

Is this graph 2-colorable?

Is this graph 3-colorable?

Color Classes

What can you say about each color class i.e. all the vertices of

Each color class is an independent set

Theorem. If a graph is k-colorable, then the size of the maximum independent set $\geq \frac{n}{k}$?

Four color theorem

Theorem. If G = (V, E) is a simple "planar" graph (i.e., no edges cross) then G is 4- colorable.

Proof: Hard!

Bipartite Graphs

Bipartite Graphs

R

A graph is bipartite iff it is 2-colorable.

I.e. the nodes can be partitioned into sets *L* and *R* such that *all edges* go only between *L* and *R*. I.e. no edge inside *L* or inside *R*

Cycles in Graphs

Given G = (V, E) a cycle is a sequence of $k \ge 3$ vertices $(v_{i_1}, v_{i_2}, ..., v_{i_k}, v_{i_1})$ such that is an edge between any two consecutive vertices and such that v_{i_1} is the only repeated vertex.

The length of a cycle $(v_{i_1}, v_{i_2}, ..., v_{i_k}, v_{i_1})$ is k.

Characterization of Bipartite Graphs

How do you tell if a given graph is bipartite or not?

Theorem: A graph G = (V, E) is bipartite iff G has no odd length cycles.

Proof – part 1

Thm: A graph G = (V, E) is bipartite iff there is G has no odd cycle.

Proof of the easy direction: if bipartite, then no odd cycles.

Starting at a vertex $u \in L$, after odd number of steps, end up in R, (how do you prove this?) 1-step: any neighbor of a vertex in L is in R, and vice-versa

Hence, can not form an odd length path that starts in *u* and ends in *u*

Proof of the other direction: if no odd cycles, then bipartite.

Distance(u,v): length of the shortest path from u to v. (min. number of edges on any path from u to v)

Starting at a vertex $u \in V$.

$$R = \{v \in V : distance(u, v) = odd\}$$

 $L = \{v \in V : distance(u, v) = even\}$

Claim: No edge between any $v_1 \in R$, $v_2 \in R$ Pf: Suppose not. If $(v_1, v_2) \in E$, then there is a closed walk of odd length

→ a cycle of odd length

Similarly, no edge between any $v_1 \in L$, $v_2 \in L$

(do this for every piece or "connected component" separately)

