Correction des exercices du TD5

20 mars 2020

Exercice 4

Question 1

Convergence simple:

 $\forall n \in \mathbb{N}, \ f_n(1) = 0$ $\forall x \neq 1 \text{ clairement } \lim_{n \to +\infty} f_n(x) = 0$

Convergence uniforme:

On suppose $\varepsilon < 1$ Si $1 - \varepsilon < x$, on a $\forall n \in \mathbb{N}$:

$$x^n(1-x) \le 1 - x < \varepsilon$$

Si $x \le 1 - \varepsilon$, on a:

$$x^{n}(1-x) \le (1-\varepsilon)^{n}(1-x) \le (1-\varepsilon)^{n}$$

Si on prend donc n_0 tel que $(1-\varepsilon)^{n_0} < \varepsilon$ on a : $x^n(1-x) < \varepsilon$, $\forall n \ge n_0$ Ainsi $\forall n \ge n_0, \ \forall x \in [0,1], \ f_n(x) < \varepsilon$

Question 2

$$g_n(x) = x^n sin(\pi x) = x^n sin(\pi - \pi x) = x^n sin(\pi(1-x))$$

De plus $\forall x \ge 0, \ sin(x) \le x \ \text{Donc}$:

$$sin(\pi(1-x)) \le \pi(1-x)$$

$$\Rightarrow x^n sin(\pi(1-x)) \le \pi x^n (1-x), \ \forall x \in [0,1]$$

$$\Rightarrow 0 \le g_n(x) \le f_n(x) \forall x \in [0,1]$$

On sait que $f_n \xrightarrow{u} 0$, alors $\forall \varepsilon > 0 \exists n_0 \text{ tel que } \forall n \geq n_0, \ \forall x | f_n(x) | < \varepsilon \text{ Ainsi } \forall x, \ \forall n \geq n_0 | g_n(x) | \leq |f_n(x)| < \varepsilon \text{ Donc } g_n \xrightarrow{u} 0$

Exercice 14

Question 1

Montrons que $\lim_{k\to+\infty} f_k(x_k) = f(x)$. Fixons $\varepsilon > 0$.

$$\forall k \in \mathbb{N} |f_k(x_k) - f(x)| = |f_k(x_k) - f(x_k) + f(x_k) - f(x)|$$

$$\leq |f_k(x_k) - f(x_k)| + |f(x_k) - f(x)|$$