CSCI 8360 Data Science Practicum Project 3: Neuron Finding

Team Shirley

Marcus Hill, Narinder Singh, Jiahao Xu

Technologies

- keras
- thunder-python
- thunder-extraction

Overview

- Find neurons in a large time series calcium fluorescence dataset
- Image segmentation

Data

Corresponding label

Data

Animation

Corresponding label

Preprocessing

- Median filter
- Gaussian filter
- 64 64x64 Region Cropping
- Filtering of all regions that do not contain at least 40% neurons

NMF (Non-negative matrix factorization)

- NMF is a dimensionality reduction algorithm where a matrix V is factorized into two matrices W and H
- Attempts to cluster the columns of the input data
- Feature extractor

Implementation

- NMF package
 - https://github.com/thunder-project/thunder
 - https://github.com/thunder-project/thunder-extraction

- NMF(k=5, max_iter=20, max_size='full', min_size=20, percentile=95, overlap=0.1)
- algorithm.fit(data, chunk size, padding)
- model.merge(overlap=0.5, max_iter=2, k_nearest=10)

Results

 By varying the chunk size for each individual dataset, our best result is

TOTAL	AVG	AVG	AVG	AVG
SCORE	PRECISION	RECALL	INCLUSION	EXCLUSION
3.1648	0.85672	0.98383	0.56825	0.756

CNN

- FCN8 architecture utilized
- Inputs are 64x64 regions from the averaged samples

512x512 Output Masks

64x64 Region Output Masks

Future

- Use CNN as a feature extractor, then feed to NMF
- Use NMF as a feature extractor, then feed to CNN
- Overcome the data imbalance