

مقدمة في حساب المثلثات

الدوال المثلثية للزاوية الحادة الموجبة:

الزاوية الحادة الموجبة هي زاوية موجبة قياسها ينتمي إلى الفترة $]^{\circ},90^{\circ}$. وفي المثلث الذي إحدى زواياه قائمة بمكننا أن نقول أن النسبة بين طولي أي ضلعين من أضلاعه هي نسبة مثلثية ويمكننا توضيح ذلك كالتالي:

التعبير الرمزي	التعريف			
$\sin C = \frac{AB}{AC}$	$\dfrac{C}{deb} = \dfrac{deb}{deb}$ = deb طول الضلع المقابل للزاوية deb			
$\cos C = \frac{BC}{AC}$	$\dfrac{C}{deb} = \dfrac{deb}{deb}$ جيب تمام قياس الزاوية $deb = deb$ هياس الزاوية $deb = deb$			
$\tan C = \frac{AB}{BC}$	$\dfrac{C}{d}$ طول الضلع المقابل للزاوية $\dfrac{C}{d}$ = $\dfrac{d}{d}$ طول الضلع المجاور للزاوية			
$\sec C = \frac{AC}{BC} = \frac{1}{\cos C}$	طول الوتر $\overline{C}=C$ طول الوتر طول \overline{C} قاطع قياس الزاوية \overline{C}			
$\csc C = \frac{AC}{AB} = \frac{1}{\sin C}$	طول الوتر $\overline{C}=C$ طول الوتر طول C قاطع تمام قياس الزاوية \overline{C}			
$\cot C = \frac{BC}{AB} = \frac{1}{\tan C}$	$\dfrac{C}{d}$ طول الضلع المقابل للزاوية $\dfrac{C}{d}$ $=$ $\dfrac{d}{d}$			

 $n \in \mathbb{Z}$ ملاحظة: الزوايا المتكافئة تكون لها نفس الدوال المثلثية. أي أن: حيث

$$i)\cos(\theta + 2n\pi) = \cos\theta$$

$$(ii)\sin(\theta + 2n\pi) = \sin\theta$$

$$iii)\tan(\theta + 2n\pi) = \tan\theta$$

العلاقة بين الدوال المثلثية لزاويتين متتامتين.

الزاويتان المتتامتان هما الزاويتان اللتان مجموع قياسهما °90، فإذا كانت

:اتم
$$eta$$
 نتم Δ فإن $lpha$

$$\cdot \angle \alpha + \angle \beta = 90^{\circ}$$

وتكون

$$. \angle \alpha = 90^{\circ} - \angle \beta$$
 , $\angle \beta = 90^{\circ} - \angle \alpha$

ومنها يمكننا الوصول منطقياً للعلاقة بين الدوال المثلثية للزاويتين المتنامتين كالتالي:

. $\angle A=90^{\circ}-lpha$ فإذ $\angle C=lpha$ فإذ كان مي Aتكون Aري تكون Aري متتامتان، فإذا كان مي فإذ كان مي القائم في الكون ال

$$\sin(90^\circ - \alpha) = \frac{BC}{AC}$$

$$\cos \alpha = \frac{BC}{AC}$$

إذن:

ولكن

$$\sin(90^{\circ} - \alpha) = \cos \alpha$$

ويمكن تلخيص ذلك كما يلي:

مثال	القاعدة
. 200	$\sin(90^{\circ} - \alpha) = \cos \alpha$
$\sin 20^{\circ} = \cos 70^{\circ}$	$\cos(90^{\circ} - \alpha) = \sin \alpha$
$\tan 40^{\circ} = \cot 50^{\circ}$	$\tan(90^{\circ} - \alpha) = \cot \alpha$
	$\cot(90^{\circ} - \alpha) = \tan \alpha$
	$\sec(90^{\circ} - \alpha) = \csc\alpha$
$\sec 30^{\circ} = \csc 60^{\circ}$	$\csc(90^{\circ} - \alpha) = \sec \alpha$

A(x,y) A'(x,-y)

heta,(- heta) العلاقة بين الدوال المثلثية للزاويتين اللتين قياسهما

إذا كان الضلع النهائي للزاوية التي قياسها (θ) يقطع دائرة الوحدة في النقطة A(X,Y)، والضلع النهائي للزاوية التي قياسها A(X,Y) يقطع دائرة الوحدة في النقطة A'، فمن هندسة الشكل المجاور نحد أن: A' هي صورة النقطة A' بالانعكاس حول المحور A'. إذن: A'(X,-Y)، أي أن:

$$.\cos(-\theta) = X = \cos\theta$$

و كذلك

$$.\sin(-\theta) = -Y = -\sin\theta$$

ويمكن تلخيص ذلك كما يلي:

مثال	القاعدة
$\sin(-30^{\circ}) = -\sin 30^{\circ}$	$\sin(-\theta) = -\sin\theta$
$\cos(-45^{\circ}) = \cos 45^{\circ}$	$\cos(-\theta) = \cos\theta$
$\tan(-60^{\circ}) = -\tan 60^{\circ}$	$\tan(-\theta) = -\tan\theta$
$\csc(-40^{\circ}) = -\csc 40^{\circ}$	$\csc(-\theta) = -\csc\theta$
$\sec(-15^{\circ}) = \sec 15^{\circ}$	$\sec(-\theta) = \sec\theta$
$\cot(-70^{\circ}) = -\cot 70^{\circ}$	$\cot(-\theta) = -\cot\theta$

وبما أن الزاوية التي قياسها $(-\theta)$ تكافئ الزاوية التي قياسها $(360^{\circ}-\theta)$ ، يمكن استنتاج العلاقات التالية:

مثال	القاعدة		
$\sin(330^\circ) = \sin(360^\circ - 30^\circ) = -\sin 30^\circ$	$\sin(360^\circ - \theta) = -\sin\theta$		
$\cos 315^{\circ} = \cos(360^{\circ} - 45^{\circ}) = \cos 45^{\circ}$	$\cos(360^{\circ} - \theta) = \cos\theta$		
$\tan(300^\circ) = -\tan 60^\circ$	$\tan(360^{\circ} - \theta) = -\tan\theta$		
$\csc(320) = -\csc 40^{\circ}$	$\csc(360^{\circ} - \theta) = -\csc\theta$		
$\sec(300^{\circ}) = \sec 60^{\circ}$	$\sec(360^{\circ} - \theta) = \sec\theta$		
$\cot(290) = -\cot 70^{\circ}$	$\cot(360^{\circ} - \theta) = -\cot\theta$		

للاحظة:

نعلم أن الزاوية التي قياسها
$$(-\theta)$$
 تكافئ الزاوية التي قياسها $(-\theta)$ حيث $(-\theta)$ أي أن:
$$\sin(2n\pi-\theta)=-\sin\theta$$

$$\cos(2n\pi-\theta)=\cos\theta$$

$$\tan(2n\pi-\theta)=-\tan\theta$$

$$heta,(90^\circ+ heta)$$
 العلاقة بين الدوال المثلثية للزاويتين اللتين قياسهما (α) " في أولاً " نحصل على العلاقة:
$$\sin~90^\circ-(- heta)~=\cos(- heta)$$

إذن:

." من ثانياً "
$$\sin~90^\circ + \theta~= \cos(-\theta) = \cos\theta$$

ومن ذلك يمكن استنتاج العلاقات التالية:

مثال	القاعدة		
$\sin(120^{\circ}) = \sin(90^{\circ} + 30^{\circ}) = \cos 30^{\circ}$	$\sin(90^\circ + \theta) = \cos\theta$		
$\cos(120^{\circ}) = \cos(90^{\circ} + 30^{\circ}) = -\sin 30^{\circ}$	$\cos(90^\circ + \theta) = -\sin\theta$		
$\tan(150^{\circ}) = \tan(90^{\circ} + 60^{\circ}) = -\cot 60^{\circ}$	$\tan(90^\circ + \theta) = -\cot\theta$		
$\csc(135^{\circ}) = \csc(90^{\circ} + 45^{\circ}) = \sec 45^{\circ}$	$\csc(90^{\circ} + \theta) = \sec \theta$		
$\sec(135^{\circ}) = \sec(90^{\circ} + 45^{\circ}) = -\csc 45^{\circ}$	$\sec(90^\circ + \theta) = -\csc\theta$		
$\cot(150^{\circ}) = \cot(90^{\circ} + 60^{\circ}) = -\tan 60^{\circ}$	$\cot(90^\circ + \theta) = -\tan\theta$		

العلاقة بين الدوال المثلثية للزاويتين اللتين قياسهما
$$heta, (180^\circ - heta)$$
 بوضع $(180^\circ - heta)$ بدلاً من $(10^\circ + heta)$ في ثالثاءً " إذن:

$$\sin 90^{\circ} + (90^{\circ} - \theta) = \cos(90^{\circ} - \theta)$$

إذن

" من أولاً
$$\sin 180^{\circ} - \theta$$
 من أولاً

ومن ذلك يمكن استنتاج العلاقات التالية:

مثال	القاعدة		
$\sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin 60^\circ$	$\sin(180^{\circ} - \theta) = \sin\theta$		
$\cos(120^{\circ}) = \cos(180^{\circ} - 60^{\circ}) = -\cos 60^{\circ}$	$\cos(180^{\circ} - \theta) = -\cos\theta$		
$\tan(150^{\circ}) = \tan(180^{\circ} - 30^{\circ}) = -\tan 30^{\circ}$	$\tan(180^{\circ} - \theta) = -\tan\theta$		
$\csc(135^{\circ}) = \csc(180^{\circ} - 45^{\circ}) = \csc 45^{\circ}$	$\sec(180^{\circ} - \theta) = -\sec\theta$		
$\sec(135^{\circ}) = \sec(180^{\circ} - 45^{\circ}) = \sec 45^{\circ}$	$\csc(180^{\circ} - \theta) = \csc\theta$		
$\cot(150^{\circ}) = \cot(90^{\circ} + 60^{\circ}) = -\tan 60^{\circ}$	$\cot(180^{\circ} - \theta) = -\cot\theta$		

$$heta,(180^\circ+ heta)$$
 العلاقة بين الدوال المثلثية للزاويتين اللتين قياسهما

بوضع
$$(heta)^{\circ}$$
بدلاً من $(heta)^{\circ}$ في ثالثاً "

إذن:

$$\sin 90^{\circ} + (90^{\circ} - \theta) = \cos(90^{\circ} - \theta)$$

إذن

" من أولاً "
$$\sin 180^{\circ} - \theta$$
 من أولاً "

ومن ذلك يمكن استنتاج العلاقات التالية:

مثال	القاعدة		
$\sin(240^{\circ}) = \sin(180^{\circ} + 60^{\circ}) = -\sin 60^{\circ}$	$\sin(180^\circ + \theta) = -\sin\theta$		
$\cos(210^{\circ}) = \cos(180^{\circ} + 30^{\circ}) = -\cos 30^{\circ}$	$\cos(180^\circ + \theta) = -\cos\theta$		
$\tan(225^{\circ}) = \tan(180^{\circ} + 45^{\circ}) = \tan 45^{\circ}$	$\tan(180^{\circ} + \theta) = \tan\theta$		
$\sec(225^{\circ}) = \sec(180^{\circ} + 45^{\circ}) = -\sec 45^{\circ}$	$\sec(180^{\circ} + \theta) = -\sec\theta$		
$\csc(225^{\circ}) = \csc(180^{\circ} + 45^{\circ}) = -\csc 45^{\circ}$	$\csc(180^{\circ} + \theta) = -\csc\theta$		
$\cot(240^{\circ}) = \cot(180^{\circ} + 60^{\circ}) = \cot 60^{\circ}$	$\cot(180^\circ + \theta) = \cot\theta$		

$heta,(270^\circ- heta)$ العلاقة بين الدوال المثلثية للزاويتين اللتين قياسهما

بوضع
$$(heta = 90^\circ)$$
بدلاً من $(heta)$ في خامساً،

إذن:

$$\sin 180^{\circ} + (90^{\circ} - \theta) = -\sin(90^{\circ} - \theta)$$

إذن

$$\sin 270^{\circ} - \theta) = -\cos \theta$$

ومن ذلك يمكن استنتاج العلاقات التالية:

مثال	القاعدة		
$\sin(210^{\circ}) = \sin(270^{\circ} - 60^{\circ}) = -\cos 60^{\circ}$	$\sin(270^{\circ} - \theta) = -\cos\theta$		
$\cos(225^{\circ}) = \cos(270^{\circ} - 45^{\circ}) = -\sin 45^{\circ}$	$\cos(270^{\circ} - \theta) = -\sin\theta$		
$\tan(210^{\circ}) = \tan(270^{\circ} - 60^{\circ}) = \cot 60^{\circ}$	$\tan(270^{\circ} - \theta) = \cot\theta$		
$\sec(240^{\circ}) = \sec(270^{\circ} - 30^{\circ}) = -\csc 30^{\circ}$	$\sec(270^{\circ} - \theta) = -\csc\theta$		
$\csc(240^{\circ}) = \csc(270^{\circ} - 30^{\circ}) = -\sec 30^{\circ}$	$\csc(270^{\circ} - \theta) = -\sec\theta$		
$\cot(225^{\circ}) = \cot(270^{\circ} - 45^{\circ}) = \tan 45^{\circ}$	$\cot(270^{\circ} - \theta) = \tan\theta$		

$heta,(270^\circ+ heta)$ العلاقة بين الدوال المثلثية للزاويتين اللتين قياسهما

بوضع
$$(heta)$$
بدلاً من $(heta)$ في خامساً

إذن:

$$\sin 180^{\circ} + (90^{\circ} + \theta) = -\sin(90^{\circ} + \theta)$$

إذن

$$\sin 270^{\circ} + \theta) = -\cos \theta$$

ومن ذلك يمكن استنتاج العلاقات التالية:

مثال	القاعدة		
$\sin(300^{\circ}) = \sin(270^{\circ} + 30^{\circ}) = -\cos 30^{\circ}$	$\sin(270^\circ + \theta) = -\cos\theta$		
$\cos(330^{\circ}) = \cos(270^{\circ} + 60^{\circ}) = \sin 60^{\circ}$	$\cos(270^{\circ} + \theta) = \sin\theta$		
$\tan(315^\circ) = \tan(270^\circ + 45^\circ) = -\cot 45^\circ$	$\tan(270^\circ + \theta) = -\cot\theta$		
$\sec(300^{\circ}) = \sec(270^{\circ} + 30^{\circ}) = \csc 30^{\circ}$	$\sec(270^{\circ} + \theta) = \csc\theta$		
$\csc(315^{\circ}) = \csc(270^{\circ} + 45^{\circ}) = -\sec 45^{\circ}$	$\csc(270^\circ + \theta) = -\sec\theta$		
$\cot(320^{\circ}) = \cot(270^{\circ} + 50^{\circ}) = -\tan 50^{\circ}$	$\cot(270^\circ + \theta) = -\tan\theta$		

(1) مثال

في ΔXYZ والقائم الزاوية في Z ، اثبت الفقرات الثلاث الأوائل ثم أوجد القيمة في الفقرة الرابعة:

I $\sin x < 1$

II $\cos x < 1$

III $\sin x + \cos x > 1$

 $V \quad \sin x \cos y + \cos x \sin y :$

الحل

$$\sin x = \frac{ZY}{XY}$$
 :ی ان I

$$.m \; Z \; > m \; X$$
 لأن $.XY > ZY$ ولكن:

إذن: $\sin x$ تساوي كسراً أقل من الواحد الصحيح

 $\sin x < 1$ إذن:

$$\cos x = \frac{ZX}{XY}$$
 :ن. II

 $\cos x < 1$ إذن: XY > ZX

$$\sin x + \cos x = \frac{ZY}{XY} + \frac{ZX}{XY} = \frac{ZY + ZX}{XY}$$
 III

ولكن: XY + ZX > XY . (مجموع طولي ضلعين في المثلث أكبر من الضلع الثالث)

إذن: $\sin x + \cos x$ كسر بسطه أكبر من مقامه.

إذن:

 $\cdot \sin x + \cos x > 1$

$$\sin x \cos y + \cos x \sin y = rac{ZY}{XY} \cdot rac{ZY}{XY} + rac{ZX}{XY} \cdot rac{ZX}{XY} = rac{ZY}{XY}^2 + rac{ZX}{XY}^2$$
 V . (id_{i}) (id_{i})

(2) مثال

ابحث إشارات الدوال المثلثية التالية:

I $\tan 320^{\circ}$

 $\sin 160^{\circ}$ II

III
$$\csc \frac{4\pi}{5}$$

 $V \sec 750^{\circ}$

IV $\cos(-200^{\circ})$

الحل

. سالبة.
$$\tan 320^\circ > 320^\circ$$
 أي تقع في الربع الرابع، إذن $360^\circ > 320^\circ > 270^\circ$ الله.

ى تقع في الربع الثاني، إذن
$$\sin 160^\circ > 160^\circ > 90^\circ$$
 موجبة.

يذن
$$\frac{4\pi}{5}=\frac{4\times180^\circ}{8}=144^\circ$$
 III ين من النه من

أي تقع في الربع الثاني $180^{\circ} > 144^{\circ} > 90^{\circ}$

إذن

موجبة.
$$\sin 160^{\circ} \csc \frac{4\pi}{5}$$

$$\sec 30^\circ$$
 أي تقع في الربع الأول، إذن $\sec 750^\circ = \sec (30^\circ + 2 \times 360^\circ) = \sec 30^\circ$ عما أن $\cot 30^\circ = \sec 30^\circ$ عما أن موجبة

ان
$$\cos(-200^\circ) = \cos(160^\circ - 360^\circ) = \cos(160^\circ)$$
 أي تقع في الربع الأول، إذن IV ما أن $\cos(-200^\circ)$ سالبة.

(4) مثال

a,b مستقل عن قيمتي $\sin^2\! lpha + \cos^2\! lpha$ وفا كان مستقل عن أثبت أن المقدار مستقل عن قيمتي مستقل عن مستقل عن أبدا

الحل

باستخدام نظرية فيثاغورس نحصل على:
$$(AB)^2 = a^2 + b^2 \Rightarrow AB = \sqrt{a^2 + b^2}$$

$$\sin^2 \alpha + \cos^2 \alpha = \frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}$$

$$= \frac{a^2 + b^2}{a^2 + b^2}$$

$$= 1$$

a,b مستقل عن قيمتي $\sin^2 lpha + \cos^2 lpha$ إذن: المقدار

(4) مثال

eta إذا كان $\sineta=\cos3eta$ حيث $\sineta=\cos3eta$.قياس زاوية حادة موجبة فأو جد قياس الزاوية

الحل

$$\sin \beta = \cos 3\beta \Rightarrow \beta + 3\beta = 90^{\circ} \Rightarrow 4\beta = 90^{\circ} \Rightarrow \beta = \frac{90^{\circ}}{4}$$

(5) مثال

إذا كان $\frac{2}{\sqrt{5}} = \cos \beta = \tan \alpha = \frac{2}{\sqrt{5}}$. هما قياسا زاويتين حادتين موجبتين. أو جد قيمة المقدار:

$$\cdot \frac{\cos^{2}(90^{\circ} - \alpha) + \sin^{2}(90^{\circ} - \beta)}{\sec^{2}(90^{\circ} - \alpha) + \cot^{2}(90^{\circ} - \beta)}$$

الحل

. فیکون: ΔLMN میا أن: $\frac{2}{\sqrt{5}}$ ، إذن نستطیع رسم ما أن: $\frac{2}{\sqrt{5}}$

$$(ML)^2 = 5 - 4 = 1 \Rightarrow ML = 1$$

$$(AC)^2 = 5 + 4 = 9 \Rightarrow AC = 3$$

و باستخدام العلاقة بين الدوال المثلثية لزاويتين متتامتين. يمكننا صياغة المطلوب

على الصورة:

$$\frac{\cos^2(90^{\circ} - \alpha) + \sin^2(90^{\circ} - \beta)}{\sec^2(90^{\circ} - \alpha) + \cot^2(90^{\circ} - \beta)} \Leftrightarrow \frac{\sin^2 \alpha + \cos^2 \beta}{\csc^2 \alpha + \tan^2 \beta}$$

وبالتعويض باستخدام النسب الموضحة على الرسم:

$$\frac{\left(\frac{2}{3}\right)^2 + \left(\frac{2}{\sqrt{5}}\right)^2}{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{\frac{4}{9} + \frac{4}{5}}{\frac{9}{4} + \frac{1}{4}} = \frac{\frac{56}{45}}{\frac{10}{4}} = \frac{112}{225}$$

النسب المثلثية لبعض الزوايا الخاصة:

degrees	radians	sinθ	cos θ	tan 0	csc 0	sec θ	cot θ
o°	0	0	1	0	_	1	_
30°	<u>π</u> 6	$\frac{1}{2}$	√3 2	<u>√3</u>	2	2√3 3	√3
45°	π 4	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	<u>π</u> 3	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	-	1	-	0

والآن لنقدم بعض من العلاقات الهامة والتي تساعدنا كثيرا في حل المسائل:

$$1 \quad \sin^2 x + \cos^2 x = 1$$

و منها:

$$\sin^2 x = 1 - \cos^2 x$$
$$\cos^2 x = 1 - \sin^2 x$$

2
$$\sin x + y = \sin x \cos y + \cos x \sin y$$

 $\sin x - y = \sin x \cos y - \cos x \sin y$

3
$$\cos x + y = \cos x \cos y - \sin x \sin y$$

 $\cos x - y = \cos x \cos y + \sin x \sin y$

$$4 \quad \tan x + y = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan x - y = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$5 \quad \sin 2x = 2\sin x \cos y$$

$$\cos 2x = \cos^2 y - \sin^2 x$$

$$= 1 - 2\sin^2 x$$

$$= 2\cos^2 x + 1$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

ندريبات1

(1) أحسب

(1)
$$\cos \frac{5\pi}{7} \cos \frac{13\pi}{28} + \sin \frac{5\pi}{7} \sin \frac{13\pi}{28}$$

$$(2)\cos(x+\frac{\pi}{3})\cos x + \sin(x+\frac{\pi}{3})\sin x$$

 $x,y \in \mathbb{R}$ اثبت العلاقات التالية حيث (2)

(1)
$$\cos(x - \frac{\pi}{4})\cos\frac{\pi}{4} - \cos(x + \frac{\pi}{4})\sin\frac{\pi}{4} = \sin x$$

$$(2)\cos(x-y)\cos y - \sin(x-y)\sin y = \cos x$$

(3)
$$\cos^2(x-y) - \cos^2(x+y) = 4\sin x \cos x \sin y \cos y$$

$$(4)\cos^2 x + \cos^2 y - (\cos x - \cos y)^2 = \cos(x+y) + \cos(x-y)$$

$$(5)\cos(x-y)\cdot\cos(x+y) = \cos x^2 - \sin y^2$$

(6)
$$\sin(x+y) + \cos(x-y) = (\sin x + \cos x)(\sin y + \cos y)$$

و كذلك
$$\cos a < 0, \cos b > 0$$
 ، $\sin a = \frac{\sqrt{3}}{2}, \sin b = \frac{1}{2}, \cos c = \frac{7}{25}$ و كذلك $\sin c < 0$. $\sin c < 0$

$$.\cos(a+b+c),\cos(a+b-c)$$

(4) أثبت العلاقات التالية:

$$(1) \cos^4 x - \sin^4 x = \cos 2x$$

(2)
$$(\cos x - \sin x)^2 = 1 - \sin 2x$$

$$(3)\cos 2x + 2\sin^2 x = 1$$

(4)
$$\sin 2x = 1 - 2\sin^2(\frac{\pi}{4} - x)$$

(5)
$$\sin 2x + \sqrt{3}\cos 2x = 2\sin(2x + \frac{\pi}{3})$$

$$\frac{\tan \alpha}{\tan \beta}$$
 أو حد $\frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)} = 3$ أو حد (5)

(6) أو جد قيمة:

$$.\cos 36^{\circ} - \cos 72^{\circ}$$

(7) اثبت أن:

(1)
$$(\sin 60^{\circ} - \sin 45^{\circ})(\cos 30^{\circ} + \cos 45^{\circ}) = \frac{1}{4}$$

(2)
$$(\tan 60^{\circ} + 1)(3 - \sqrt{3}) = \cot^{3} 30^{\circ} - 2\cos 30^{\circ}$$

(3) $\sqrt{2\sin^{2} 45^{\circ} - \sin^{2} 30^{\circ}} = \cos 30^{\circ}$

$$(3)\sqrt{2\sin^2 45^\circ - \sin^2 30^\circ} = \cos 30^\circ$$

يث
$$\cos 2x = \sin x$$
 حيث $\cos (90^\circ - \theta) = \frac{3}{5}$ وکانت $\cos (90^\circ - \theta) = \frac{3}{5}$ (8) إذا کان $\cos (90^\circ - \theta) = \frac{3}{5}$ وحيث $\cos (90^\circ - \theta) = \frac{3}{5}$

(9) اثبت أن

(1)
$$\sin^4 x - \cos^4 x = 1 - 2\cos^2 x$$

$$(2)\sin^2 x - \cos^2 x = 2\sin^2 x - 1$$

(3)
$$\tan x + \cot x = \frac{1}{\sin x \cos x}$$

$$(4)\sin x\cos x = \frac{\cot x}{\cot^2 x + 1}$$

(5)
$$\tan^2 x \sin^2 x + \cos^2 x + 2\sin^2 x = \frac{1}{\cos^2 x}$$

تدريبات2

ومساحة المثلث
$$K$$
 فأثبت أن $BC=a, AC=b, AB=c$ فأثبت أن ABC المثلث $K=\frac{ab\cdot\sin C}{2}$. $K=\frac{ab\cdot\sin C}{2}$

از کانت أطوال اضلاع المثلث
$$ABC$$
هي ماثبت أن أطوال اضلاع المثلث (2) $a^2=b^2+c^2-2bc\cdot\cos A$

نصف قطر الدائرة المحيطة له فأثبت أن R هي ABC نصف قطر الدائرة المحيطة له فأثبت أن R

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

الخارج من الرأس A إلى الضلع BC والذي أطوال اضلاعه m_a الخارج من الرأس A الخارج من الرأس a,b,c

$$.\,m_{_{a}}^{^{2}}=\frac{2\ b^{^{2}}+c^{^{2}}\ -a^{^{2}}}{4}$$

$$\cdot a = \sqrt{6}, b+c = 3+\sqrt{3}$$
 و حد مساحة ΔABC إذا كان ΔABC و حد مساحة ΔABC

r على الشكل. AB,CD وتران متوازيان في دائرة مركزها O ونصف قطرها T ونصف AB,CD . أوجد قيمة T إذا كان $AOB=3\angle COD$ ، AB=46,CD=18 .

ي المربع ABCD تقع P,Q بحيث P,Q بحيث P,Q بحيث P,Q عيث P,Q قيمة ممكنة للزاوية ABCD فيمة ممكنة للزاوية ABCD

أو حد.
$$\angle A \, \frac{AD}{BC} = \frac{1}{\sqrt{3}}$$
 ، $\angle BDC = 60^\circ$ ، $D \in AB$ ، $AB = AC$ فيه ABC فيه ABC . أو حد قياس ABC

الشكل الرباعي \overrightarrow{DE} والمرسوم داخل دائرة قطرها AC. رسمنا \overrightarrow{AB} حيث B تقع على ABCD الشكل الرباعي ABCD وحدة مربعة. أو جد طول ABCD اذا كان AD=DC اذا كان ABCD ومساحة الشكل ABCD تساوي ABC وحدة مربعة. أو جد طول

دائرة مركزها O ونصف قطرها 1. النقاط A,B,P تقع عليها بحيث P تقع بين A,B ، وكذلك (10) دائرة مركزها $AB = \angle AOB$