Interpretable Machine Learning

Correlation and dependencies

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1, X_2 = x_2)$$

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2)$$

Conditional distribution

$$p_{X_1|X_2}(x_1|x_2) = \mathbb{P}(X_1 = x_1|X_2 = x_2) = \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_2}(x_2)}$$

 \rightsquigarrow Analogue in the continuous case with integrals.

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

	$x_2 = 0$	$x_2 = 1$
$\mathbb{P}(X_1=0 X_2=x_2)$	0.67	0.43
$\mathbb{P}(X_1=1 X_2=x_2)$	0.33	0.57
Σ	1	1

PEARSON'S CORRELATION COEFFICIENT ρ

By correlation often Pearson's correlation is meant (measures only linear relationship)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (X_1^{(i)} - \bar{X}_1) \cdot (X_2^{(i)} - \bar{X}_2)}{\sqrt{\sum_{i=1}^{n} (X_1^{(i)} - \bar{X}_1)^2 \sum_{i=1}^{n} (X_2^{(i)} - \bar{X}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Numerator is sum of rectangle's area with width $x_1^{(i)} \bar{x}_1$ and height $x_2^{(i)} \bar{x}_2$
- Areas enter numerator with positive (+) or negative (-) sign, depending on point position
- Denominator scales the sum to [-1, 1]

PEARSON'S CORRELATION COEFFICIENT ρ

By correlation often Pearson's correlation is meant (measures only linear relationship)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Numerator is sum of rectangle's area with width $x_1^{(i)} \bar{x}_1$ and height $x_2^{(i)} \bar{x}_2$
- Areas enter numerator with positive (+) or negative (-) sign, depending on point position
- ullet Denominator scales the sum to [-1, 1]
- ullet ho=0 if area of rectangles of all points cancels out $\leadsto X_1,X_2$ linearly uncorrelated
- $\rho > 0$ if positive areas dominate negative areas $\rightsquigarrow X_1, X_2$ positive correlated
- ρ < 0 if negative areas dominate positive areas \rightsquigarrow X_1 , X_2 negative correlated

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between variables is by calculating the R^2

Idea for two-dimensional case:

- Fit a linear model: $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$ \rightsquigarrow Slope = 0 \Rightarrow no dependence
 - \leadsto Very large slope \Rightarrow strong dependence
- Exact θ_1 score problematic

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between variables is by calculating the R^2

Idea for two-dimensional case:

- Fit a linear model: $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$ \rightarrow Slope = 0 \Rightarrow no dependence \rightarrow Very large slope \Rightarrow strong dependence
- Exact θ₁ score problematic
 → Rescaling of x₁ or x₂ changes θ₁
- e.g. °F \rightarrow °C $\Rightarrow \theta_1 = 78.5 \rightarrow \theta_1^* = 141.3$

COEFFICIENT OF DETERMINATION R^2

Another method to evaluate **linear dependency** between variables is by calculating the R^2

Idea for two-dimensional case:

- Fit a linear model: x̂₂ = f̂_{LM}(x₁) = θ₀ + θ₁x₁
 Slope = 0 ⇒ no dependence
 Very large slope ⇒ strong dependence
- Exact θ₁ score problematic
 → Rescaling of x₁ or x₂ changes θ₁
- Set SSE_{LM} in relation to SSE of a constant model $\hat{f}_c = \bar{x}_2$ $SSE_{LM} = \sum_{i=1}^n (x_2^{(i)} \hat{f}_{LM}(x_1^{(i)}))^2$ $SSE_c = \sum_{i=1}^n (x_2^{(i)} \bar{x}_2)^2$

⇒ Measure of fitting quality of LM:
$$R^2 = 1 - \frac{SSE_{LM}}{SSE_c} \in [-1, 1]$$

⇒ $\rho(X_1, X_2) = R$

MUTUAL INFORMATION

- MI describes amount of information about one random variable obtained through another one or how different the joint distribution is from pure independence
- $MI(X_1; X_2)$ is the Kullback-Leibler distance between joint distribution and product distribution $p_{X_1}p_{X_2}$:

$$MI(X_1; X_2) = \sum_{x_1 \in \mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2) log \left(\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \right)$$

$$= D_{KL} \left(p(x_1, x_2) \mid\mid p(x_1)p(x_2) \right)$$

$$= \mathbb{E}_{p(x_1, x_2)} \left[log \left(\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \right) \right]$$

- MI measures amount of "dependence" between variables. It is zero if and only if the variables are independent.
- Unlike (Pearson) correlation, MI is not limited to real-valued random variables.

Scatterplot with multivariate distribution (contour lines) and marginal density X_1 , $X_2 \sim N(0, 1)$

Scatterplot with multivariate distribution (contour lines) and marginal density X_1 , $X_2 \sim N(0, 1)$

Examples with Pearson's correlation $\rho = 0$ but non-linear dependencies (MI $\neq 0$):

$$\rho(X_1,X_2) = 0 \;,\; MI(X_1,X_2) = 0.52 \qquad \rho(X_1,X_2) = 0.01 \;,\; MI(X_1,X_2) = 0.37 \quad \rho(X_1,X_2) = -0.06 \;,\; MI(X_1,X_2) = 0.61 \;,\; MI(X_1,X_2) = 0.01 \;,\; MI(X_1$$

Dependence: Describes general dependence structure of features (e.g., non-linear relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

Dependence: Describes general dependence structure of features (e.g., non-linear relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from conditional probability)

Dependence: Describes general dependence structure of features (e.g., non-linear relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

$$\mathbb{P}(X_i|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from conditional probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information
 - → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)

Dependence: Describes general dependence structure of features (e.g., non-linear relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from conditional probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information
 - → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
- N.B.: X_j , X_k independent $\Rightarrow \rho(X_j, X_k) = 0$ but $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k independent But equivalency holds if distribution is jointly normal

Dependence: Describes general dependence structure of features (e.g., non-linear relationships)

• Definition: X_i , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from conditional probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information
 - → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
- **N.B.:** X_j , X_k independent $\Rightarrow \rho(X_j, X_k) = 0$ **but** $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k independent But equivalency holds if distribution is jointly normal
- $MI(X_i, X_k) = 0$ if and only if X_i, X_k independent

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
 and $\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
 and $\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$

Conditional distributions do not match their marginal distributions

INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
 - → Model might pick only one feature (regularization) (even if it is causally irrelevant)
 - → Produced explanations can be misleading (true to the model, but not to the data)
 - → Different IML models often produce different results in these situation, and not always trivial to understand which / why

INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
 - → Model might pick only one feature (regularization) (even if it is causally irrelevant)
 - → Produced explanations can be misleading (true to the model, but not to the data)
 - \leadsto Different IML models often produce different results in these situation, and not always trivial to understand which / why

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - → Many of these points can lie in low-density regions if features are dependent
 - → Model predictions in such regions are subject to a high uncertainty
 - → Explanations may be biased as they often rely on predictions where model extrapolated

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - → Many of these points can lie in low-density regions if features are dependent
 - → Model predictions in such regions are subject to a high uncertainty
 - → Explanations may be biased as they often rely on predictions where model extrapolated
- There is no definition of when a model extrapolates and to what degree
 - → Severity of extrapolation depends on model, some extrapolate more than others
 - Training density might serve as proxy to identify regions where extrapolation is likely But: Density estimation in many dimensions is often infeasible