ANALYTIC GEOMETRY, PROBLEM SET 2

More polar coordinates

- 1. Let ABCDEF be a regular hexagon with size length l. Find the polar coordinates of its vertices in each of the following cases:
 - a) The center of the hexagon O is chosen as the pole and the half-line [OA] is set as the polar axis.
 - b) The vertex A is chosen as the pole and the half-line [AB] is set as the polar axis.
- 2. Find the polar equation corresponding to the given Cartesian equation: a) y = 5; b) x + 1 = 0; c) y = 7x; d) 3x + 8y + 6 = 0; e) $y^2 = -4x + 4$; f) $x^2 - 12y - 36 = 0$; g) $x^2 + y^2 = 36$; h) $x^2 - y^2 = 25$. Briefly give a geometric interpretation for the solutions to these equations.
- 3. Find the polar coordinates of the point $P \in \mathcal{E}_2$, whose rectangular (Cartesian) coordinates are $(1 + \cos \alpha, \sin \alpha)$, where $\alpha \in (0, 2\pi)$ is fixed.

Cylindrical and spherical (everything is in 3D here)

Warmp-up 1. In the cylindrical coordinate system, what do the following equations repsent in \mathcal{E}_3 ?

a) $r = r_0$, where $r_0 \in \mathbb{R}_{\geq 0}$ is fixed; b) $\theta = \theta_0$, where $\theta_0 \in [0, 2\pi)$ is fixed; resent in \mathcal{E}_3 ?

- c) $\varphi = \varphi_0$, where $\varphi_0 \in [0, \pi]$ is fixed.
- 4. Let $P_1(r_1, \theta_1, z_1)$ and $P_2(r_2, \theta_2, z_2)$ be points in \mathcal{E}_3 expressed using their cylindrical coordinates. Find the distance P_1P_2 , as an expression of r_i, θ_i, z_i , where $i \in \{1, 2\}$.
- 5. Let $P_1(r_1, \theta_1, \varphi_1)$ and $P_2(r_2, \theta_2, \varphi_2)$ be points in \mathcal{E}_3 , expressed using their spherical coordinates. Find the distance P_1P_2 , as an expression of r_i, θ_i, φ_i , where $i \in \{1, 2\}$.
- 6. Determine, in cylindrical coordinates, the equation of the surface whose equation in rectangular coordinates is $z = x^2 + y^2 - 2x + y$.
- 7. Find the equation, in rectangular coordinates, of the surface whose equation in cylindrical coordinates is $r = 4\cos(\theta)$. Explain what the equation describes geometrically.
- 8. (Non-examinable) Three spheres are pairwise exterior tangent; a plane is tangent to these spheres at points A, B and C. Find the radii of the spheres in terms of a, b, c, representing the lengths of the sides of triangle ABC.

Date: October 2, 2021.

1.

Polar coordinates: A(l,0), D(l,1) B(l,0), E(l,1) $C(l,\frac{2\pi}{3}), E(l,\frac{5\pi}{3})$

$$A(0,0)$$
 , $B(l,0)$

$$((2\sqrt{3}, \frac{11}{6}), D(22, \frac{11}{3})$$

$$E(QV_3, \frac{\pi}{2})$$
, $F(Q, \frac{2\pi}{3})$

2. Find the polar equation corresponding to the given Cartesian equation: a) y = 5; b) x + 1 = 0; c) y = 7x; d) 3x + 8y + 6 = 0; e) $y^2 = -4x + 4$; f) $x^2 - 12y - 36 = 0$; g) $x^2 + y^2 = 36$; h) $x^2 - y^2 = 25$. Briefly give a geometric interpretation for the solutions to these equations.

$$\therefore \quad \cancel{x} + \cancel{1} = 0 \quad \angle =) \quad \cancel{x} \cdot \cos 6 = -1$$

$$(3)$$
 (2)

$$\frac{1}{2} + \frac{1}{2} = 25.$$

3. Find the polar coordinates of the point $P \in \mathcal{E}_2$, whose rectangular (Cartesian) coordinates are $(1 + \cos \alpha, \sin \alpha)$, where $\alpha \in (0, 2\pi)$ is fixed.

$$\Theta = \operatorname{ordon}\left(\frac{\sin \alpha}{1 + \cos \alpha}\right)$$
If $\alpha = \pi$, then $P(0, 0) = 0$
the gale.

$$t \in [0, 2\pi] \longrightarrow (\cos(t), \sin(t))$$

$$P(x, y).$$

4. Let $P_1(r_1, \theta_1, z_1)$ and $P_2(r_2, \theta_2, z_2)$ be points in \mathcal{E}_3 expressed using their cylindrical coordinates. Find the distance P_1P_2 , as an expression of r_i, θ_i, z_i , where $i \in \{1, 2\}$.

$$\frac{P_{1}(x_{1},y_{1},z_{1})}{A(P_{1},P_{2})} - \frac{P_{2}(x_{2},y_{2},z_{2})}{P_{1}(y_{1}-y_{2})} + \frac{P_{2}(x_{2},y_{2},z_{2})}{P_{2}(x_{1}-x_{2})} + \frac{P_{2}(x_{1}-x_{2})}{P_{2}(x_{1}-x_{2})} + \frac{P_{$$

In rolar coordinates, $\partial(\mathcal{P}_1,\mathcal{P}_2) = (\mathcal{P}_1,\mathcal{P}_2) = (\mathcal{P}_1,\mathcal{P}_2,\mathcal{P}_2,\mathcal{P}_2,\mathcal{P}_2) + (\mathcal{P}_1,\mathcal{P}_2,\mathcal{P}_2,\mathcal{P}_2,\mathcal{P}_2)$ + (21 - 22)2 P₂ = 0₁ P₁ P₁ = 0₂ P Let P_i be the projection of P_i in χ Oy. From the cosine theorem: $|P_1 \cdot P_2|^2 = \lambda_1 + \lambda_2 - 2 \cdot \lambda_2 \cdot \cos(\theta_2 - \theta_1).$

$$O(P_1, P_2) = \int \lambda_1^2 + \lambda_2^2 - 2\lambda_1 \cdot \lambda_2 \cdot \cos(\theta_2 - \theta_1) + (2_1 - 2_2)$$

6. Determine, in cylindrical coordinates, the equation of the surface whose equation in rectangular coordinates is $z = x^2 + y^2 - 2x + y$.

$$\frac{2}{2} = \frac{\lambda^2 \cos^2 \theta + \frac{\lambda^2}{2} \cdot \sin^2 \theta - 2\lambda \cos \theta + \lambda \cdot \sin \theta}{2\lambda \cdot \cos \theta + \frac{\lambda^2}{2} \cdot \sin \theta}$$

$$= \frac{\lambda^2}{2} - 2\lambda \left(\cos \theta - \frac{\sin \theta}{2}\right)$$

- 7. Find the equation, in rectangular coordinates, of the surface whose equation in cylindrical coordinates is $r = 4\cos(\theta)$. Explain what the equation describes geometrically.
- Q (Non axaminable) Three aphores are pairwise exterior tengent, a plane is tangent to these