1 Solutions to Quadratic Equations

The first activity we'll do is deriving the general solution to quadratic equations. First, we'll start with the definition of a quadratic equation.

Definition 1. A quadratic equation is an equation of the form $f(x) = ax^2 + bx + c$ where $a, b, c \in \mathbb{R}$.

Definition 2. $s \in \mathbb{R}$ is a solution to a quadratic equation $f(x) = ax^2 + bx + c$ if f(s) = 0.

When solving equations there are two main questions we can ask.

- (I) How many solutions are there?
- (II) What are the solutions?

Over the next couple of exercises we will answer both of those for every quadratic equation.

- (1) Show that $s = \sqrt{a}$ and $s = -\sqrt{a}$ are solutions to $f(x) = x^2 a$. What happens if a < 0?
- (2) Show that s = 0 and s = -b are solutions to $f(x) = x^2 + bx$.
- (3) Show that $s = \frac{-b + \sqrt{b^2 4ac}}{2a}$ and $s = \frac{-b \sqrt{b^2 4ac}}{2a}$ solve $f(x) = ax^2 + bx + c$.
- (4) Show that $a\left(x \frac{-b + \sqrt{b^2 4ac}}{2a}\right)\left(x \frac{-b \sqrt{4ac}}{2a}\right) = ax^2 + bx + c$. This shows that, if $f(x) = ax^2 + bx + c$ has a solution, then it can be factored as a product of linear equations. The y-intercepts of these linear equations are precisely the solutions to the quadratic.
- (5) How many solutions can a quadratic equation have? Hint: Draw some graphs.
- (6) Let $f(x) = ax^2 + bx + c$. For which values of $a, b, c \in \mathbb{R}$ does f(x) have:
 - (a) 2 solutions?
 - (b) 1 solution?
 - (c) 0 solutions?

Hint: Use (3) and (4).

2 Functions

The second activity we'll do is looking at some properties functions have so we have more intuition about them. First, we'll start with the definition of a function.

Definition 3. A function f with domain A and codomain B is $f: A \to B, x \mapsto f(x)$ where if $a \in A$ and $f(a) = b_1 \in B$ and $f(a) = b_2 \in B$, then $b_1 = b_2$. Intuitively, this means that every input has a unique output.

We can combine functions through composition.

Definition 4. Let $f: A \to B$ and $g: B \to C$. Then, the **composition** of g with f is $g \circ f: A \to C$, $x \mapsto g(f(x))$.

Now, functions can have some special properties.

Definition 5. We say $f: A \to B$ is **injective** if, whenever f(x) = f(y), we have x = y.

Definition 6. We say $f: A \to B$ is **surjective** if, whenever $b \in B$, there exists some $a \in A$ such that f(a) = b. Intuitively, everything in the codomain is "reached" by the function.

Definition 7. We say $f: A \to B$ is **bijective** if it is both injective and surjective.

The following exercises will help develop our understanding of these properties.

- (1) State whether y can be written as a function of x in the following equations. If so, state the domain, codomain, and if you can, the range.
 - (a) ax + by + c = 0
 - (b) $\frac{x}{y} = 42$
 - (c) $x^2 + y^2 = 1$
- (2) State whether the following functions are injective, surjective, bijective, or none of those.
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x$
 - (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$
 - (c) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$
 - (d) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^n \text{ where } n \in \mathbb{N}$
 - (e) $f: \{x \in \mathbb{R} : x \ge 0\} \to \{x \in \mathbb{R} : x \ge 0\}, f(x) = x^2$
- (3) If $f: A \to B$ is injective and $g: B \to C$ is injective, must $g \circ f$ be injective?
- (4) If $f: A \to B$ is surjective and $g: B \to C$ is surjective, must $g \circ f$ be surjective?
- (5) Suppose we have $f: A \to B$, $g: B \to C$, and we know $g \circ f$ is injective.
 - (a) Must f be injective? If not, find a counterexample.
 - (b) Must g be injective? If not, find a counterexample.