REPLACEMENT Page 1 of 57

Appln No.: 10/658,834 REPLACEMENT Page 1 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

| <u> </u>                              |  |
|---------------------------------------|--|
| IFNα-2b                               |  |
| nature                                |  |
| of humar                              |  |
| Amino acid sequence of human mature I |  |
| acid se                               |  |
| Amino                                 |  |
|                                       |  |

|                  | П              | 10                           | 20                           | 30                                                                                                                         | 40                           | 50               |
|------------------|----------------|------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|
| IFN $\alpha$ -2b | 0 <u>410</u> 0 | THS <u>L</u> GS <u>RR</u> TI | MI.LAQMRRI                   | C <u>DLP</u> QTHS <u>L</u> GS <u>RR</u> T <u>LMLLAQMRR</u> IS <u>LF</u> SC <u>LKDR</u> H <u>DFGFPQEEF</u> GNQ <u>FQK</u> A | )<br>Jagaoaasadi<br>Oaasbadi | Sno <b>fok</b> a |
|                  | 51             | 09                           | 70                           | 80                                                                                                                         | 06                           | 100              |
| IFN $\alpha$ -2b | Vaitai         | LHEMIQQIEN                   | ULFSTKDSSF                   | ETIPVLHEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVI                                                                         | .XTETXOOTNI                  | ·                |
|                  | 101            | 110                          | 120                          | 130                                                                                                                        | 140                          | 150              |
| IFN $\alpha$ -2b | A9A9Õ          | TETPLAKED                    | SI <u>L</u> AV <u>rkyf</u> Ç | QGVGVTETPLMKEDSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRS                                                                         | XSPCAWEVVE                   | RAEIMRS          |
|                  | 151            | 160                          |                              |                                                                                                                            |                              |                  |
| IFN $\alpha$ -2b | FSTSI          | <u>FSLSTNLOESLRSKE</u>       | ea l                         |                                                                                                                            |                              |                  |

REPLACEMENT Page 2 of 57 Appln No.: 10/658,834

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

### Three dimensional structure of INFα-2b

### showing candidate LEADs



FIG.1B

Appln No.: 10/658,834 REPLACEMENT Page 3 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC **REPLACEMENT Page 3 of 57** 

ACID MOLECULES

### The "Percent Accepted Mutation" (PAM250) matrix

|              | Α  | R    | N   | D  | C  | Q  | E  | G  | H  | I   | L    | K  | M  | F              | P  | S  | Т         | W         | Y         | V        |
|--------------|----|------|-----|----|----|----|----|----|----|-----|------|----|----|----------------|----|----|-----------|-----------|-----------|----------|
| Α            | 2  | -2   | 0   | 0  | -2 | 0  | 0  | 1  | -1 | -1  | -2   | -1 | -1 | -3             | 1  | 1  | 1         | -6        | -3        | 0        |
| R            | -2 | ×6 × | 0   | -1 | -4 |    | -1 | -3 | 2  | -2  | -3   | 3  | 0  | -4             | 0  | 0  | -1        | 2         | -4        | -2       |
| N            | 0  | 0    | 323 | 2  | -4 | 1  | 1  | 0  | 2  | -2  | -3   | 1  | -2 | -3             | 0  |    | 0         | <b>-4</b> | -2        | -2       |
| D            | 0  | -1   | 2   | 4  | -5 | 2  | 3  | 1  | 1  | -2  | 4    | 0  | -3 | -6             | -1 | 0  | 0         | -7        | -4        | -2       |
| С            | -2 | 4    | -4  | -5 | 12 | -5 | -5 | -3 | -3 | -2  | -6   | -5 | -5 | -4             | -3 | 0  | -2        | -8        | 0         | -2       |
| Q            | 0  | 1    | 1   | 2  | -5 | 4  | 2  | -1 | 3  | -2  | -2   | 1  | -1 | -5             | 0  | -1 | -1        | -5        | -4        | -2       |
| E            | 0  | -1   | 1   | 3  | -5 | 2  | () | 0  |    | -2  | -3   | 0  | -2 | -5             | -1 | 0  | 0         | -7        | -4        | -2       |
| G            | 1  | -3   | 0   | 1  | -3 | -1 | 0  | 5  | -2 | -3  | 4    | -2 | -3 | -5             | 0  | 1  | 0         | <u>-7</u> | -5        | -1       |
| Н            | -1 | 2    | 2   | 1  | -3 | 3  | 1  | -2 | 6  | -2  | -2   | 0  | -2 | -2             | 0  | -1 | -1        | -3        | 0         | -2       |
| I            | -1 | -2   | -2  | -2 | -2 | -2 | -2 | -3 | -2 | [3] | 2    | -2 | 2  |                | -2 | -1 | 0         | <b>-5</b> | -1        | 4        |
| L            | -2 | -3   | -3  | -4 | -6 | -2 | -3 | -4 | -2 | 2   | .(3) | -3 | 4  | 2_             | -3 | -3 | <b>-2</b> | -2        | -1        | 2        |
| K            | -1 | 3    | 1   | 0  | -5 | 1  | 0  | -2 | 0  | -2  | -3   | 5. | 0  | -5             | -1 | 0  | 0         | -3        | 4         | -2       |
| M            | -1 | 0    | -2  | -3 | -5 | -1 | -2 | -3 | -2 | 2   | 4    | 0  | G  | 0              | -2 | -2 | -1        | -4        | <b>-2</b> | 2        |
| F            | -3 | -4   | -3  | -6 | -4 | -5 | -5 | -5 | -2 | 1   | 2    | -5 | 0  | $\mathfrak{Q}$ | -5 | -3 | -3        | 0         | 7         | -1       |
| P            | 1  | 0    | 0   | -1 | -3 | 0  | -1 | 0  | 0  | -2  | -3   | -1 | -2 | -5             | G  |    | 0         | <b>-6</b> | <b>-5</b> | -1       |
| S            | 1  | 0    | 1   | 0  | 0  | -1 | 0  | 1  | -1 | -1  | -3   | 0  | -2 | -3             | 1  | 2  | 1         | -2        | <b>-3</b> | -1       |
| Т            | 1  | -1   | 0   | 0  | -2 | -1 | 0  | 0  | -1 | 0   | -2   | 0  | -1 | -3             | 0  | 1  | 3         | -5        | -3        | 0        |
| W            | -6 | 2    | -4  | -7 | -8 | -5 | -7 | -7 | -3 | -5  | -2   | -3 | -4 | 0              | -6 | -2 | -5        | 3174      | 0         | -6       |
| Y            | -3 | 4    | -2  | -4 | 0  | -4 | -4 | -5 | 0  | 1   | -1   | 4  | -2 | 7              | -5 | -3 | -3        | 0         | 10        | -2       |
| $\mathbf{V}$ | 0  | -2   | -2  | -2 | -2 | -2 | -2 | -1 | -2 | 4   | 2    | -2 | 2  | <u>-1</u>      | 1  | -1 | 0         | -6        | -2        | <b>4</b> |

FIG.2

Appln No.: 10/658,834 REPLACEMENT Page 4 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

## Scores from PAM250, given to residue substitutions to protect human INF α-2b against proteolysis

|   | R  | D  | Е   | L  | K  | M. | F  | P  | W  | Y  |
|---|----|----|-----|----|----|----|----|----|----|----|
| Α | -2 | 0  | 0   | -2 | -1 | -1 | -3 |    | -6 | -3 |
| N | 0  | 2  | 1   | -3 | 11 | -2 | -3 | 0  | -4 | -2 |
| C | -4 | -5 | -5  | -6 | -5 | -5 | -4 | -3 | -8 | 0  |
| Q | 1  | 2  | 2   | -2 | 1  | -1 | -5 | 0  | -5 | 4  |
| G | -3 | 1  | . 0 | -4 | -2 | -3 | -5 | 0  | -7 | 5  |
| Н | 2  | 1  | 1   | -2 | 0  | -2 | -2 | 0  | -3 | 0  |
| I | -2 | -2 | -2  | 2  | -2 | 2  | 1  | -2 | -5 | -1 |
| S | 0  | 0  | 0   | -3 | 0  | -2 | -3 |    | -2 | -3 |
| Т | -1 | 0  | 0   | -2 | 0  | -1 | -3 | 0  | -5 | -3 |
| V | -2 | -2 | -2  | 2  | -2 | 2  | -1 | -1 | -6 | -2 |

FIG.3

Appln No.: 10/658,834 REPLACEMENT Page 5 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

### Protection against proteolysis for interferon $\alpha$ -2b variants



FIG.4A

Appln No.: 10/658,834 **REPLACEMENT Page 6 of 57** 

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC





FIG. 4B

Appln No.: 10/658,834 REPLACEMENT Page 7 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



FIG. 4C

REPLACEMENT Page 8 of 57

Appln No.: 10/658,834 REPLACEMENT Page 8 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES



Applin No.: 10/658,834 REPLACEMENT Page 9 of 57 Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

### Treatment with chymotrypsin



FIG.6A

### Treatment with protease mixture



FIG.6B

Appln No.: 10/658,834 REPLACEMENT Page 10 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

### Treatment with blood lysate



FIG.6C

### Treatment with serum



FIG.6D

Appln No.: 10/658,834 REPLACEMENT Page 11 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABLEY, THE CYTOKINES AND ENCODING NUCLEIC REPLACEMENT Page 11 of 57

**ACID MOLECULES** 



Appln No.: 10/658,834 REPLACEMENT Page 12 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



REPLACEMENT Page 13 of 57

Appln No.: 10/658,834 REPLACEMENT Page 13 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



Potency (antiproliferation) – IFN $\alpha$  leads

|         | Potency   |
|---------|-----------|
|         | (10°U/mg) |
| ead 13  | 1,60      |
| ead 9   | 1,90      |
| ead 8   | 2,05      |
| ead 2   | 3,70      |
| ead 16  | 1,60      |
| ead 4   | 0,50      |
| ead 5   | 0,65      |
| Lead 15 | 3,20      |
| ead 10  | 0,50      |
| ead 12  | 1,50      |
| ead 11  | pu        |
| ead 6   | 1,20      |
| ead 1   | 2,95      |
| ead 7   | 1,60      |
| ead 3   | 2,25      |
| ead 14  | pu        |

Appln No.: 10/658,834 REPLACEMENT Page 15 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES REPLACEMENT Page 15 of 57





**REPLACEMENT Page 16 of 57** Applin No.: 10/658,834 RI Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

**ACID MOLECULES** 

### IFN-α LEADS

| IFN-α LEAD | SEQ ID N° | Mutation(s)                   |
|------------|-----------|-------------------------------|
| 1          | 983       | K121Q / P109A                 |
| 2          | 987       | E159H / Y89H                  |
| 3          | 124       | E159Q                         |
| 4          | 90        | E58H                          |
| 5          | 89        | E58Q                          |
| 6          | 979       | E41H / Y89H / N45D            |
| 7          | 103       | L117I                         |
| 8          | 986       | R125H / M111V                 |
| 9          | 96        | E107H                         |
| 10         | 101       | E113H                         |
| 11         | 87        | E41Q                          |
| 12         | 107       | R125Q                         |
| 13         | 985       | L117V / A139G                 |
| 14         | 980       | E41Q / D94G                   |
| 15         | 93        | E78H                          |
| 16         | 984       | K133Q / K121Q / P109A / G102R |

FIG. 6J

antiviral activity

20

6

5

50

ᅙ

20

antiviral activity

20

**5** 

쯗

50

8

120



antiviral activity

8

antiviral activity

ප

0

Ç

ġ

20

8



**REPLACEMENT Page 19 of 57** 

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

**ACID MOLECULES** 









FIG. 6M

**ACID MOLECULES** 

FIG. 6N



Appln No.: 10/658,834 REPLACEMENT Page 21 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



FIG. 60

Appln No.: 10/658,834 REPLACEMENT Page 22 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES





Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC
ACID MOLECULES



FIG. 6Q

O mutants treated with proteases

mutants

Appln No.: 10/658,834 REPLACEMENT Page 24 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES **REPLACEMENT Page 24 of 57** 



Appln No.: 10/658,834 REPLACEMENT Page 25 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



# Summary – IFN $\alpha$ leads

| Pegasys Pegasys Lead 13 Lead 8 Lead 2 Lead 16 Lead 16 Lead 15 Lead 10 Lead 11 Lead 11 Lead 1 Lead 1 Lead 3 Lead 3 Lead 1 |                                        |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1,6<br>1,2<br>1,0<br>2,1<br>1,2<br>1,3<br>1,4<br>1,7<br>1,7<br>0,9                                                       | Potency (AV) (10 <sup>8</sup> U/mg)    |
| 1,6<br>2,1<br>1,6<br>0,5<br>1,6<br>1,6<br>1,6<br>1,6                                                                     | Potency (AP)<br>(10 <sup>8</sup> U/mg) |
| 16,5<br>33,0<br>77,0<br>129,7<br>109,0<br>107,0<br>88,6<br>88,6<br>77,0<br>64,2<br>56,5<br>54,6                          | AUC (arbitrary units)                  |

REPLACEMENT Page 27 of 57

Appln No.: 10/658,834 REPLACEMENT Page 27 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

| Ŧ                         |
|---------------------------|
| T                         |
|                           |
| ×                         |
|                           |
| П                         |
|                           |
| Na LEADS-                 |
|                           |
| Y.                        |
|                           |
|                           |
|                           |
| P                         |
| B                         |
| Area under the curve (AUC |
| 3                         |
| Ω                         |
| 0                         |
| _                         |
|                           |
|                           |
| Ø                         |
| C                         |
|                           |
| 3                         |
|                           |
| (D                        |
|                           |
| 7                         |
|                           |
|                           |
|                           |

|      | Lead 14 | Lead 3 | Lead 7 | Lead 1 | Lead 6 | Lead 11 | Lead 12 | Lead 10 | Lead 15 | Lead 5 | Lead 4 | Lead 16 | Lead 2 | Lead 8 | Lead 9 | Lead 13 | Pegasys | Pegasys | WT   |                      |                  |
|------|---------|--------|--------|--------|--------|---------|---------|---------|---------|--------|--------|---------|--------|--------|--------|---------|---------|---------|------|----------------------|------------------|
| FIG. | 25,0    | 54,6   | 56,5   | 58,5   | 64,2   | 69,0    | 77,0    | 85,6    | 88,0    | 88,6   | 100,0  | 101,6   | 105,0  | 107,0  | 109,0  | 129,7   | 77,0    | 33,0    | 16,5 | (arbitrary units)    | AUC              |
| 6∪   | 2,0     | 2,5    | 2,4    | 2,1    | 3,4    | 0,2     | 3,0     | 1,0     | 2,4     | 3,6    | 1,0    | 5,4     | 2,0    | 4,2    | 3,5    | 10,3    | 36,0    | 18,0    | 2,5  | (µg/ml*)             | protein injected |
|      | 2,0     | 2,0    | 2,0    | 2,0    | 2,0    | 2,0     | 2,0     | 2,0     | 2,0     | 2,0    | 2,0    | 2,0     |        |        | 2,0    | 2,0     |         |         | 2,0  | injected / ml (x106) | IFN units        |

### Interferon $\alpha$ -2b structure in "space filling" representation



FIG.7A



FIG.7B

Appln No.: 10/658,834 REPLACEMENT Page 29 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



# Structural super-imposition of interferon α-2b (1RH2) and interferon β (1AU1)



FIG.8B

# Structural super-imposition of interferon $\alpha$ -2b (1RH2) and erythropoietin (1BUY)



FIG.8C

# Structural super-imposition of interferon α-2b (1RH2) and granulocyte-colony stimulating factor (1CD9)



FIG.8D

MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNF**DIPEEIKQLQQFQK**EDAALTI**YEMLQNIFAIFRQDSSSTGWNET**IVENLLANVYHQINHLKTVLEEK

lekedftrgkimsslhikryygriihyikake</mark>yshcawtivrveilrnfyfinrl<mark>igyirn</mark>

Exemplary protein of the interferons/interleukin-10 family

Cytokine regions susceptible to protease attack identified by structural alignment with Lead mutants

of IFN  $\alpha$ -2b

CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDF**GFPQEEFGNQFQK**AETIPVL**HEMIQQIFNLFSTKDSSAAWDE**TLLDKFYTELYQQLNDLEACVIQG

**VGVTETPIMKEDSILAVRKYFQRITLYLKEKK**YSPCAWEVVRAEIMRSFSLSTNL**QESLRSKE** 

IFN-a2b

Appln No.: 10/658,834 REPLACEMENT Page 33 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLN**ENITVPDTKVNFYAWKRMEV**GQQAVEVWQG**LALLSEAVIRGQALLVNSSQ**PWEPLQLHVDKAVSGLRSL

Exemplary protein of the short-chain cytokines family

TTLLRALGAQKEA**ISNSDAASAAPLRTIT**ADTFRKLFRVYSNFLRGKLKLYTGEA**CRTGDR** 

protein of the long-chain cytokines family Exemplary

G-CSF

GPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGI**PWAPLSSCPSQALQ**LAGCLSQL<mark>HSGLFLYQGLLQALEGISPELG</mark>PTLDTLQL

DVADFATTIWQQMEEL**GWAPALQPTQGAMPAFASAF**QRRAGGVLVASHLQSFLEVSY<mark>RVLRHLAQP</mark>

Appln No.: 10/658,834 REPLACEMENT Page 34 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES



FIG.10A

Appln No.: 10/658,834 REPLACEMENT Page 35 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

### Cell proliferation assay for alanine scanning of interferon α-2b



FIG.10B

Correlation between antiviral and cell proliferation activities for alanine scanning of interferon  $\alpha$ -2b



IG. 10C

Appln No.: 10/658,834 **REPLACEMENT Page 37 of 57** 

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

**ACID MOLECULES** 

## Glycosylation of interferon $\alpha$ -2b



FIG. 11

Appln No.: 10/658,834 **REPLACEMENT Page 38 of 57** 

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

#### Interferon-beta

| T          | • .     |        |           |
|------------|---------|--------|-----------|
| Urataatian | against | nrotoo | 37010     |
| Protection | avannsı | UIULEU | 1 V S I S |
|            |         | P-000. | .,        |

## Sequence:

MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQKEDAALTI YEMLQNIFAIFRQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMS SLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN

## Exposed residues:

|                   | DEKQLQQ-QK |
|-------------------|------------|
| QFARQD-SS-G-NET   | EKEDF-RL   |
| SI.H-KRGR-I.HKAKE | Y-RN       |

#### Proteases:

'Chymotrypsin', 'Proline endopeptidase', 'Endoproteinase Asp-N', ['Trypsin', 'Staphylococcal P.']

#### **Exclusion list:**

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

| 1.  | D39Q | 16. | D73Q  | 31. | F111I | 46. | L130I |
|-----|------|-----|-------|-----|-------|-----|-------|
| 2.  | D39N | 17. | D73N  | 32. | F111V | 47. | K134Q |
| 3.  | E42Q | 18. | E81Q  | 33. | R113H | 48. | K134N |
| 4.  | E42N | 19. | E81N  | 34. | R113Q | 49. | K136Q |
| 5.  | E42H | 20. | E81H  | 35. | L116V | 50. | K136N |
| 6.  | K45Q | 21. | E107Q | 36. | L116I | 51. | E137Q |
| 7.  | K45N | 22. | E107N | 37. | L120V | 52. | E137N |
| 8.  | L47V | 23. | E107H | 38. | L120I | 53. | E137H |
| 9.  | L47I | 24. | K108Q | 39. | K123Q | 54. | Y163H |
| 10. | K52Q | 25. | K108N | 40. | K123N | 55. | Y163I |
| 11. | K52N | 26. | E109Q | 41. | R124H | 56. | R165H |
| 12. | F67I | 27. | E109N | 42. | R124Q | 57. | R165Q |
| 13. | F67V | 28. | E109H | 43. | R128H |     |       |
| 14. | R71H | 29. | D110Q | 44. | R128Q |     |       |
| 15. | R71Q | 30. | D110N | 45. | L130V |     |       |

**FIG. 12A** 

REPLACEMENT Page 39 of 57 Appln No.: 10/658,834

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

## Interferon-gamma

Protection against proteolysis

| Sequ     | ence:         |                       |              |                   |              |          |                 |
|----------|---------------|-----------------------|--------------|-------------------|--------------|----------|-----------------|
| CYCÇ     | QDPYVKE.      | AENLKKYFNAG           | HSDVADNO     | GTLFLGIL          | KNWKEE       | SDRKIMÇ  | )SQIVSFYFKL     |
| FKNI     | FKDDQSI       | QKSVETIKEDM           | NVKFFNSI     | NKKKRDDFI         | EKLTN        |          |                 |
| Expo     | sed residu    | es:                   |              |                   |              |          |                 |
|          | <b>-</b>      |                       |              | -TL1              | KN-KEE       |          | К-              |
| -KN-     | -KDDQS-       |                       |              |                   |              |          |                 |
| Prote    | ases:         |                       |              |                   |              |          |                 |
| ['Try    | psin', 'E     | Endoproteinase        | Asp-N',      | 'Chymotry         | psin',       | 'Proline | endopeptidase', |
| 'Stap    | hylococca     | l P.']                |              |                   |              |          |                 |
| Excl     | usion list:   |                       |              |                   |              |          |                 |
| ['B', '  | Z', 'X', '*', | 'K', 'R', 'D', 'F', ' | W', 'Y', 'M' | ', 'L', 'P', 'E'] |              |          |                 |
| Subs     | titutions:    |                       |              |                   |              |          |                 |
| 1.       | L33V          |                       |              | 12.               | E42H         |          |                 |
| 2.       | L33I          |                       |              | 13.               | K58Q         |          |                 |
| 3.<br>4. | K37Q<br>K37N  |                       |              | 14.<br>15.        | K58N<br>K61Q |          |                 |
| 5.       | K37N<br>K40Q  |                       |              | 16.               | K61N         |          |                 |
| 6.       | K40N          |                       |              |                   | K64Q         |          |                 |
| 7.       | E41Q          |                       |              |                   | K64N         |          |                 |
| 8.       | E41N          |                       |              |                   | D65Q         |          |                 |
| 9.       | E41H          |                       |              | 20.               |              |          |                 |
| 10.      | E42Q          |                       |              | 21.               | D66Q         |          |                 |
| 11.      | E42N          |                       |              |                   |              |          |                 |

Appln No.: 10/658,834 REPLACEMENT Page 40 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

#### Interleukin-10

## Protection against proteolysis

## Sequence:

SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLLLKESLLEDFKGY

LGCQALSEMIQFYLEEVMPQAENQDPDIKAHVNSLGENLKT

## Exposed residues:

-----KESLLEDFKGY

L----EM-QFY-EEV-PQ-ENQDPD----K-

## Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

#### Exclusion list:

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

#### Substitutions:

| 1.  | K49Q | 18. | K57N | 35. | E75Q |
|-----|------|-----|------|-----|------|
|     | •    | 19. | Y59H | 36. | E75N |
| 2.  | K49N |     |      |     |      |
| 3.  | E50Q | 20. | Y59I | 37. | E75H |
| 4.  | E50N | 21. | L60V | 38. | P78S |
| 5.  | E50H | 22. | L60I | 39. | P78A |
| 6.  | L52V | 23. | E67Q | 40. | E81Q |
| 7.  | L52I | 24. | E67N | 41. | E81N |
| 8.  | L53V | 25. | E67H | 42. | E81H |
| 9.  | L53I | 26. | M68V | 43. | D84Q |
| 10. | E54Q | 27. | M68I | 44. | D84N |
| 11. | E54N | 28. | F71I | 45. | P85S |
| 12. | E54H | 29. | F71V | 46. | P85A |
| 13. | D55Q | 30. | Y72H | 47. | D86Q |
| 14. | D55N | 31. | Y72I | 48. | D86N |
| 15. | F56I | 32. | E74Q | 49. | K88Q |
| 16. | F56V | 33. | E74N | 50. | K88N |
| 17. | K57Q | 34. | E74H |     |      |

FIG. 12C

Appln No.: 10/658,834 **REPLACEMENT Page 41 of 57** 

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

## Ciliary neurotrophic factor

Protection against proteolysis

13.

14.

15.

R89Q

E92Q

E92N

#### Sequence: DSADGMPVASTDQWSELTEAERLQENLQAYRTFHVLLARLLEDQQVHFTPTEGDFHQAI HTLLLQVAAFAYQIEELMILLEYKIPRNEADGMPINVGDGGLFEKKLWGLKVLQELSQW TVRSIHDLRFISSHQTGIPA Exposed residues: -----VASTDQWSELT-----Q---T-HVL-AR--E--QVH--PTEGD-----------EYKIPRNE-DGMPINVGDG-L-----------Proteases: 'Endoproteinase 'Chymotrypsin', ['Trypsin', Asp-N', 'Proline endopeptidase', 'Staphylococcal P.'] Exclusion list: ['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] **Substitutions:** E92H P135S 1. D62Q 16. 31. 2. D<sub>6</sub>2N 17. P100S 32. P135A W64S 18. P100A 33. R136H 3. W64H 19. E102Q 34. R136Q 4. 35. E66Q 20. E102N E138Q 5. 21. E102H 36. E138N 6. E66N 37. 7. 22. D104Q E138H E66H 8. L67V 23. D104N 38. D140Q 39. D140N 9. L67I 24. E131Q 10. L86V 25. E131N 40. P143S P143A 11. L86I 26. E131H 41. 42. D148Q 12. R89H 27. Y132H

FIG. 12D

Y132I

K133Q

K133N

43.

44.

45.

D148N L151V

L151I

28.

29.

30.

Appln No.: 10/658,834 REPLACEMENT Page 42 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

## Granulocyte-colony stimulating factor

Protection against proteolysis

## Sequence:

VLLGHSLGIPWAPLSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTL QLDVADFATTIWQQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVASHLQSFLEVSY RVLRHLAQP

#### Exposed residues:

R--RH--QP-

#### Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

#### Exclusion list:

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

| 1.  | W61S | 12. | E96N  | 23. | P135S |
|-----|------|-----|-------|-----|-------|
| 2.  | W61H | 13. | E96H  | 24. | P135A |
| 3.  | P63S | 14. | P100S | 25. | F147I |
| 4.  | P63A | 15. | P100A | 26. | F147V |
| 5.  | P68S | 16. | E101Q | 27. | R169H |
| 6.  | P68A | 17. | E101N | 28. | R169Q |
| 7.  | L72V | 18. | E101H | 29. | R172H |
| 8.  | L72I | 19. | P131S | 30. | R172Q |
| 9.  | F86I | 20. | P131A | 31. | P177S |
| 10. | F86V | 21. | L133V | 32. | P177A |
| 11. | E96Q | 22. | L133I |     |       |

Appln No.: 10/658,834 REPLACEMENT Page 43 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

## Human growth hormone

Protection against proteolysis

## Sequence:

SLCFSESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGASDSN VYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDALLKNYGLLYCFRK DMDKVETFLRIVQCRSVEGSCGF

## Expose residues:

Proteases: ['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', 'Staphylococcal P.']

**Exclusion list:** 

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

#### Substitutions:

| 1.  | E56Q | 17. | F92I  | 33. | K140N |
|-----|------|-----|-------|-----|-------|
| 2.  | E56N | 18. | F92V  | 34. | Y143H |
| 3.  | E56H | 19. | R94H  | 35. | Y143I |
| 4.  | P59S | 20. | R94Q  | 36. | K145Q |
| 5.  | P59A | 21. | L101V | 37. | K145N |
| 6.  | R64H | 22. | L101I | 38. | F146I |
| 7.  | R64Q | 23. | E129Q | 39. | F146V |
| 8.  | E65Q | 24. | E129N | 40. | D147Q |
| 9.  | E65N | 25. | E129H | 41. | D147N |
| 10. | E65H | 26. | D130Q | 42. | R183H |
| 11. | E66Q | 27. | D130N | 43. | R183Q |
| 12. | E66N | 28. | P133S | 44. | E186Q |
| 13. | E66H | 29. | P133A | 45. | E186N |
| 14. | E88Q | 30. | R134H | 46. | E186H |
| 15. | E88N | 31. | R134Q |     |       |
| 16. | E88H | 32. | K140Q |     |       |

FIG. 12F

Appln No.: 10/658,834 REPLACEMENT Page 44 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

**ACID MOLECULES** 

#### Interleukin-12

## Protection against proteolysis

#### Sequence:

DITKDKTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDL

KMYQVEFKTMNAKLLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYK

TKIKLCILLHAFRIRAVTIDRVMSYLNAS

## Exposed residues:

#### Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

| 1.<br>2. | K56Q<br>K56N | 15.<br>16. | E72Q<br>E72N | 29.<br>30. | R92H<br>R92Q | 43.<br>44. | K117Q<br>K117N |
|----------|--------------|------------|--------------|------------|--------------|------------|----------------|
| 3.<br>4. | E61Q<br>E61N | 17.<br>18. | E72H<br>L75V | 31.<br>32. | K93Q<br>K93N | 45.<br>46. | L124V<br>L124I |
| 5.       | E61H         | 18.<br>19. | L751         | 33.        | E107Q        | 47.        | M125V          |
| 6.       | L66V         | 20.        | R78H         | 34.        | E107N        | 48.        | M125I          |
| 7.       | L66I         | 21.        | R78Q         | 35.        | E107H        | 49.        | P127S          |
| 8.       | E67Q         | 22.        | E79Q         | 36.        | K110Q        | 50.        | P127A          |
| 9.       | E67N         | 23.        | E79N         | 37.        | K110N        | 51.        | K128Q          |
| 10.      | E67H         | 24.        | E79H         | 38.        | M111V        | 52.        | K128N          |
| 11.      | L68V         | 25.        | F82I         | 39.        | M111I        | 53.        | R129H          |
| 12.      | L68I         | 26.        | F82V         | 40.        | E115Q        | 54.        | R129Q          |
| 13.      | K70Q         | 27.        | L89V         | 41.        | E115N        | 55.        | R189H          |
| 14.      | K70N         | 28.        | L89I         | 42.        | E115H        | 56.        | R189Q          |

FIG. 12G

Appln No.: 10/658,834 REPLACEMENT Page 45 of 57 Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

#### Interleukin-6

## Protection against proteolysis Sequence: SSKEALAENNLNLPKMAEKDGCFQSGFNEETCLVKIITGLLEFEVYLEYLQNRFESSEE QARAVQMSTKVLIQFLQKKAKNLDAITTPDPTTNASLLTKLQAQNQWLQDMTTHLILRS **FKEFLQSSLRALRQM** Exposed residues: -----T---E----ENMAEK---FOSGF-----T---E----E--QNR-ES-E------TR-QAQNQW------DA-TTPDPTT-AS--TK-QAQNQW-----------RQM Proteases: ['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', 'Staphylococcal P.'] Exclusion list:['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: E920 31. D133N P64S 16. 1

| 1.  | P045 | 10. | Li92Q | 51. | 1212211 |
|-----|------|-----|-------|-----|---------|
| 2.  | P64A | 17. | E92N  | 32. | P138S   |
| 3.  | K65Q | 18. | E92H  | 33. | P138A   |
| 4.  | K65N | 19. | E98Q  | 34. | D139Q   |
| 5.  | M66V | 20. | E98N  | 35. | D139N   |
| 6.  | M66I | 21. | E98H  | 36. | P140S   |
| 7.  | E68Q | 22. | R103H | 37. | P140A   |
| 8.  | E68N | 23. | R103Q | 38. | K149Q   |
| 9.  | E68H | 24. | E105Q | 39. | K149N   |
| 10. | K69Q | 25. | E105N | 40. | W156S   |
| 11. | K69N | 26. | E105H | 41. | W156H   |
| 12. | F73I | 27. | E108Q | 42. | R178H   |
| 13. | F73V | 28. | E108N | 43. | R178Q   |
| 14. | F77I | 29. | E108H | 44. | R181H   |
| 15. | F77V | 30. | D133Q | 45. | R181Q   |
|     |      |     |       |     |         |

FIG. 12H

Appln No.: 10/658,834 REPLACEMENT Page 46 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER

STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

11.

E105Q

#### Leptin

Protection against proteolysis Sequence: VPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGLDFIPGLHPILTLSKMDQTLA VYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLPWASGLETLDSLGGVLEASG YSTEVVALSRLQGSLQDMLWQLDLSPGC Exposed residues: ------P-H-IL----------SCH-PW-SGLETLDS--GV---------DLS-GC Proteases: 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', ['Trypsin', 'Staphylococcal P.'] **Exclusion list:** ['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: P43S 12. E105N 1. 13. E105H 2. P43A L107V **L49V** 14. 3. 15. L107I 4. L49I **P99S** 16. D108Q 5. P99A 17. D108N 6. 7. W100S 18. D141Q 19. **D141N** 8. W100H 20. L142V L104V 9. L104I 21. L142I 10.

FIG. 121

REPLACEMENT Page 47 of 57

Appln No.: 10/658,834 REPLACEMENT Page 47 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

## Leukemia inhibitory factor

Protection against proteolysis

| Seque                           | ence:                  |                       |                     |                   |              |
|---------------------------------|------------------------|-----------------------|---------------------|-------------------|--------------|
| PFPN                            | INLDKLCGPNVT           | DFPPFHANGTE           | KAKLVELYR           | IVVYLGTSLGNI      | TRDQKILNPSAL |
| SLHS                            | KLNATADILRG            | LLSNVLCRLCS           | KYHVGHVDV           | TYGPDTSGKDVF      | QKKKLGCQLLGK |
| YKQI                            | IAVLAQAF               |                       |                     |                   |              |
| Expo                            | sed residues:          |                       |                     |                   |              |
|                                 | <b>-</b>               | PFHAN-T-              | R                   | T                 | -RKIL-PS-    |
| LS                              |                        |                       | YH-GHVD             | VTYGPD-SGKDV      | 'F           |
|                                 | Q                      |                       |                     |                   |              |
| Prote                           | ases:                  |                       |                     |                   |              |
| ['Try <sub>]</sub>              | psin', 'Endoprotei     | nase Asp-N', 'Ch      | nymotrypsin',       | Proline endopepti | idase',      |
| 'Stapl                          | hylococcal P.']        |                       |                     |                   |              |
| Excl                            | ısion list:            |                       |                     |                   |              |
| ['B', '                         | Z', 'X', '*', 'K', 'R' | ', 'D', 'F', 'W', 'Y' | , 'M', 'L', 'P', 'I | Ε']               |              |
| Subs                            | titutions:             |                       |                     |                   |              |
|                                 |                        | 12.                   | 1 1041              | 23.               | P148S        |
| 1.                              | P69S                   | 13.                   | L104I<br>P106S      | 23.<br>24.        | P148A        |
| <ul><li>2.</li><li>3.</li></ul> | P69A<br>F70I           | 14.                   | P106A               | 25.               | D149Q        |
| 3.<br>4.                        | F70V                   | 15.                   | L109V               | 26.               | D149N        |
| 5.                              | R85H                   | 16.                   | L109I               | 27.               | K153Q        |
| 6.                              | R85Q                   | 17.                   | Y137H               | 28.               | K153N        |
| 7.                              | R99H                   | 18.                   | Y137I               | 29.               | D154Q        |
| 8.                              | R99Q                   | 19.                   | D143Q               | 30.               | D154N        |
| 9.                              | K102Q                  | 20.                   | D143N               | 31.               | F156I        |
| 10.                             | K102N                  | 21.                   | Y146H               | 32.               | F156V        |
| 11.                             | L104V                  | 22.                   | Y146I               |                   |              |

REPLACEMENT Page 48 of 57 Appln No.: 10/658,834

Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

#### **Oncostatin M**

## Protection against proteolysis

## Sequence:

ERPGAFPSEETLRGLGRRGFLQTLNATLGCVLHRLADLEQRLPKAQDLERSGLNIEDLE

KLQMARPNILGLRNNIYCMAQLLDNSDTAEPTKAGRGASQP

Exposed residues:

----SEET-RGLG-----NA---C-HR-AD-EQR--KAQD-ERSGLNIE---

## Proteases:

'Chymotrypsin', endopeptidase', ['Trypsin', 'Endoproteinase Asp-N', 'Proline

'Staphylococcal P.']

#### Exclusion list:

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

| 1. | E59Q | 12. | R84Q | 23.               | D97N                    |
|----|------|-----|------|-------------------|-------------------------|
| 2. | E59N | 13. | D87Q | 24.               | E99Q                    |
| 3. | E59H | 14. | D87N | 25.               | E99N                    |
| 4. | E60Q | 15. | E89Q | 26.               | E99H                    |
| 5. | E60N | 16. | E89N | 27.               | R100H                   |
| 6. | E60H | 17. | E89H | 28.               | R100Q                   |
| 7. | R63H | 18. | R91H | 29.               | L103V                   |
| 8. | R63Q | 19. | R91Q | 30.               | L103I                   |
| 9. | L65V | 20. | K94Q | 31.               | E106Q                   |
|    | ~    |     | ~    | 31.<br>32.<br>33. | E106Q<br>E106N<br>E106H |

Appln No.: 10/658,834 REPLACEMENT Page 49 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

## Erythropoietin

## Protection against proteolysis

| Sequence: |
|-----------|
| APPRI.TC  |

APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQ
AVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEA
ISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR

# Exposed residues:

-----N-T--DTKVNFYA-KR-EV---

-----A--SE--LR-QA--VNSSQ------

ISPPDA-SAAPLR-IT-----RTGDR

#### Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

#### Exclusion list:

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

#### Substitutions:

| 1.  | D43Q | 14. | E55N  | 27. | L130V |
|-----|------|-----|-------|-----|-------|
| 2.  | D43N | 15. | E55H  | 28. | L130I |
| 3.  | K45Q | 16. | E72Q  | 29. | R131H |
| 4.  | K45N | 17. | E72N  | 30. | R131Q |
| 5.  | F48I | 18. | E72H  | 31. | R162H |
| 6.  | F48V | 19. | L75V  | 32. | R162Q |
| 7.  | Y49H | 20. | L75I  | 33. | D165Q |
| 8.  | Y49I | 21. | R76H  | 34. | D165N |
| 9.  | K52Q | 22. | R76Q  | 35. | P121S |
| 10. | K52N | 23. | D123Q | 36. | P121A |
| 11. | R53H | 24. | D123N | 37. | P122S |
| 12. | R53Q | 25. | P129S | 38. | P122A |
| 13. | E55O | 26. | P129A |     |       |

**FIG. 12L** 

Appln No.: 10/658,834 REPLACEMENT Page 50 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

## Flt3 ligand

## Protection against proteolysis

# 

## Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

## 'Staphylococcal P.']

#### Exclusion list:

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

-KTV-G-----A-QPPPSC-RFV---

## Substitutions:

| 1.  | D3Q  | 15. | R59H |
|-----|------|-----|------|
| 2.  | D3N  | 16. | R59Q |
| 3.  | D40Q | 17. | K61Q |
| 4.  | D40N | 18. | K61N |
| 5.  | E42Q | 19. | P89S |
| 6.  | E42N | 20. | P89A |
| 7.  | E42H | 21. | P90S |
| 8.  | L43V | 22. | P90A |
| 9.  | L43I | 23. | P91S |
| 10. | R55H | 24. | P91A |
| 11. | R55Q | 25. | R95H |
| 12. | E58Q | 26. | R95Q |
| 13. | E58N | 27. | F96I |
| 14. | E58H | 28. | F96V |
|     |      |     |      |

**FIG. 12M** 

Appln No.: 10/658,834 REPLACEMENT Page 51 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

## Granulocyte-macrophage colony-stimulating factor

Protection against proteolysis

## Sequence:

APARSPSPSTQPWEHVNAIQEARRLLNLSRDTAAEMNETVEVISEMFDLQEPTCLQTRL ELYKQGLRGSLTKLKGPLTMMASHYKQHCPPTPETSCATQIITFESFKENLKDFLLVIP FDCWEPVQE

## Exposed residues:

-----ET-E--SEM-DLQE-----

E--KQ--R------PETSCATQI-T-----

FD--EP---

#### Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

#### Exclusion list:

['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

#### Substitutions:

| 1.  | E38Q | 14. | L49V | 27. | P92A  |
|-----|------|-----|------|-----|-------|
| 2.  | E38N | 15. | L49I | 28. | E93Q  |
| 3.  | E38H | 16. | E51Q | 29. | E93N  |
| 4.  | E41Q | 17. | E51N | 30. | E93H  |
| 5.  | E41N | 18. | E51H | 31. | F119I |
| 6.  | E41H | 19. | E60Q | 32. | F119V |
| 7.  | E45Q | 20. | E60N | 33. | D120Q |
| 8.  | E45N | 21. | E60H | 34. | D120N |
| 9.  | E45H | 22. | K63Q | 35. | E123Q |
| 10. | M46V | 23. | K63N | 36. | E123N |
| 11. | M46I | 24. | R67H | 37. | E123H |
| 12. | D48Q | 25. | R67Q | 38. | P124S |
| 13. | D48N | 26. | P92S | 39. | P124A |
|     |      |     |      |     |       |

**FIG. 12N** 

Appln No.: 10/658,834 REPLACEMENT Page 52 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER

STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

**ACID MOLECULES** 

#### Interleukin-13

Protection against proteolysis

| S | e | q | u | ıe | n | C | €: |
|---|---|---|---|----|---|---|----|
|   |   |   |   |    |   |   |    |

GPVPPSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGMYCAALESLINVSGCSAI EKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGRFN

Exposed residues:

----M-WS-NLTAG----E--INVSG----

-----REGRFN

## Proteases:

'Chymotrypsin', ['Trypsin', 'Endoproteinase Asp-N', 'Proline endopeptidase', 'Staphylococcal P.']

Exclusion list:['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

| 1.  | M32V | 11. | F79V  | 21. | R107Q |
|-----|------|-----|-------|-----|-------|
| 2.  | M32I | 12. | L82V  | 22. | E108Q |
| 3.  | W34S | 13. | L82I  | 23. | E108N |
| 4.  | W34H | 14. | R85H  | 24. | E108H |
| 5.  | L38V | 15. | R85Q  | 25. | R110H |
| 6.  | L38I | 16. | D86Q  | 26. | R110Q |
| 7.  | E48Q | 17. | D86N  | 27. | F111I |
| 8.  | E48N | 18. | K88Q  | 28. | F111V |
| 9.  | E48H | 19. | K88N  |     |       |
| 10. | F79I | 20. | R107H |     |       |

Appln No.: 10/658,834 REPLACEMENT Page 53 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

18.

19.

20.

21.

22.

23.

24.

6.

7.

8.

9.

10.

11.

12.

K48N

K49Q

K49N

E52Q

E52N

E52H

L53V

E61N

E61H P65S

P65A

**E67Q** 

E67N

E67H

## Interleukin-2

| Protec | tion against prote      | eolysis   |                       |                  |               |            |                 |
|--------|-------------------------|-----------|-----------------------|------------------|---------------|------------|-----------------|
| Seque  | nce:                    |           |                       |                  |               |            |                 |
| APTS   | SSTKKTQLQLEI            | HLLLD     | LQMILNGIN             | NYKNPKLT         | RMLTFKFYM     | PKKATEI    | CKHLQCL         |
| EEEL   | KPLEEVLNLAQ:            | SKNFH     | LRPRDLISN             | INVIVLEL         | KGSETTFMC     | EYADETA    | ATIVEFL         |
| NRWI'  | TFCQSIISTLT             |           |                       |                  |               |            |                 |
| Expos  | ed residues:            |           |                       |                  |               |            |                 |
|        |                         |           |                       | ·                | K-Y-          | -KKATEI    | Q               |
| EE     | KP-EENL                 |           |                       |                  | ETTFM-        | EYADET-    | -T              |
|        | STLT                    |           |                       |                  |               |            |                 |
| Protea | ises:                   |           |                       |                  |               |            |                 |
| ['Tryp | sin', 'Endopro          | teinase   | Asp-N',               | 'Chymotry        | psin', 'Proli | ne ende    | opeptidase',    |
| 'Staph | ylococcal P.']          |           |                       |                  |               |            |                 |
| Exclu  | sion list:              |           |                       |                  |               |            |                 |
|        | Z', 'X', '*', 'K', 'R', | 'D'. 'F'. | 'W'. 'Y'. 'M'.        | . 'L'. 'P'. 'E'l |               |            |                 |
| _      | itutions:               | _, _ ,    | , <b>,</b> - <b>,</b> | ,                |               |            |                 |
| Subsu  | itutions.               |           |                       |                  |               |            |                 |
| 1.     | K43Q                    | 13.       | L53I                  | 25.              | E68Q          | 37.        | •               |
| 2.     | K43N                    | 14.       | -                     | 26.              | E68N          | 38.        |                 |
| 3.     | Y45H                    | 15.       | E60N                  | 27.              | E68H          | 39.        |                 |
| 4.     | Y45I                    | 16.       | E60H                  | 28.              |               | 40.<br>41. | Y107H<br>Y107I  |
| 5.     | K48Q                    | 17.       | E61Q                  | 29.              | L72I          | 41.        | 1 10/1<br>D1000 |

FIG. 12P

30.

31.

32.

33.

34.

35.

36.

E100Q

E100N

E100H

F103I

F103V

M104V

M104I

42.

43.

44.

45.

46.

47.

48.

D109Q

D109N

E110Q

E110N

E110H

L132V

L132I

Appln No.: 10/658,834 REPLACEMENT Page 54 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

#### Interleukin-3

Protection against proteolysis Sequence: APMTQTTPLKTSWVNCSNMIDEIITHLKQPPLPLLDFNNLNGEDQDILMENNLRRPNLE AFNRAVKSLONASAIESILKNLLPCLPLATAAPTRHPIHIKDGDWNEFRRKLTFYLKTL ENAQAQQTTLSLAIF Exposed residues: -----F-N-NGE-OD-----E Proteases: 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', ['Trypsin', 'Staphylococcal P.'] **Exclusion list:** ['B', 'Z', 'X', '\*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: 12. **R63Q** 1. F37I 13. K66Q 2. F37V E43Q 14. **K66N** 3. P96S 4. E43N 15. 16. P96A 5. E43H K100Q 17. 6. **D46Q** K100N 7. **D46N** 18. 19. D101Q 8. E59Q 20. **D101N** 9. E59N E59H 21. D103Q 10. 22. D103N R63H 11.

FIG. 12Q

Appln No.: 10/658,834 REPLACEMENT Page 55 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

## Interleukin-4

## Protection against proteolysis

13.

R64H

| Seque              | ence:                        |                   |                    |                |                   |
|--------------------|------------------------------|-------------------|--------------------|----------------|-------------------|
| нксі               | OITLQEIIKTLNSLTI             | EQKTLCTELT        | VTDIFAASI          | KNTTEKETFCR    | AATVLRQFYSHH      |
| EKDI               | RCLGATAQQFHRHK               | QLIRFLKRLD        | RNLWGLAG           | LNSCPVKEANQ    | STLENFLERLKT      |
| IMRE               | EKYSKCSS                     |                   |                    |                |                   |
| Expo               | sed residues:                |                   |                    |                |                   |
|                    |                              | Е-Т               | 'AAS               | KNTT           | RQSH-             |
| EK-1               | R-L                          |                   |                    | SCPVKEANQ      |                   |
|                    | KCSS                         |                   |                    |                |                   |
| Prote              | ases:                        |                   |                    | •              |                   |
| ['Try <sub>]</sub> | psin', 'Endoproteina         | se Asp-N',        | 'Chymotry          | psin', 'Prolin | e endopeptidase', |
| 'Stapl             | hylococcal P.']              |                   |                    |                |                   |
| Excl               | usion list:                  |                   |                    |                |                   |
| ['B', '            | Z', 'X', '*', 'K', 'R', 'D', | 'F', 'W', 'Y', 'M | ſ', 'L', 'P', 'E'] |                |                   |
| Subs               | titutions:                   |                   |                    |                |                   |
| 1.                 | E26Q                         |                   | 14.                | R64Q           |                   |
| 2.                 | E26N                         |                   | 15.                | L66V           |                   |
| 3.                 | E26H                         |                   | 16.                | L66I           | •                 |
| 4.                 | K37Q                         |                   | 17.                | P100S          |                   |
| 5.                 | K37N                         |                   | 18.                | P100A          |                   |
| 6.                 | R53H                         |                   | 19.                | K102Q          |                   |
| 7.                 | R53Q                         |                   | 20.                | K102N          |                   |
| 8.                 | E60Q                         |                   | 21.                | E103Q          |                   |
| 9.                 | E60N                         |                   | 22.                | E103N          |                   |
| 10.                | E60H                         |                   |                    | E103H          |                   |
| 11.                | K61Q                         |                   |                    | K126Q          |                   |
| 12.                | K61N                         |                   | 25.                | K126N          |                   |

FIG. 12R

Appln No.: 10/658,834 REPLACEMENT Page 56 of 57

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC
ACID MOLECULES

## Interleukin-5

| T           | • .      |             |
|-------------|----------|-------------|
| Protection  | against  | proteolysis |
| 11010011011 | uguiiist | protectybis |

11.

12.

E47N

E47H

| Protec           | ction against proteolysis         |          |                       |            |                   |
|------------------|-----------------------------------|----------|-----------------------|------------|-------------------|
| Seque            | ence:                             |          |                       |            |                   |
| IPTE             | CIPTSALVKETLALLST                 | HRTLLI   | ANETLRIPVPVHKNH       | QLCTEE     | IFQGIGTLESQT      |
| VQGG             | TVERLFKNLSLIKKYII                 | OGQKKI   | CGEERRRVNQFLDYL       | QEFLGV     | MNTEWIIES         |
| Expos            | sed residues:                     |          |                       |            |                   |
|                  |                                   |          | R-PV-K                | EE         | QGT-ESQ-          |
|                  |                                   | K        | <-GEER                | -E         | -NTEW             |
| Prote            | ases:                             |          |                       |            |                   |
| ['Tryp           | osin', 'Endoproteinase            | Asp-l    | N', 'Chymotrypsin',   | 'Proline   | e endopeptidase', |
| 'Stapl           | nylococcal P.']                   |          |                       |            |                   |
| Exclu            | sion list:                        |          |                       |            |                   |
| ['B', 'Z         | Z', 'X', '*', 'K', 'R', 'D', 'F', | 'W', 'Y' | , 'M', 'L', 'P', 'E'] |            |                   |
| Subst            | itutions:                         |          |                       |            |                   |
| 1.               | R32H                              | 13.      | E56Q                  | 25.        | E89H              |
| 2.               | R32Q                              | 14.      | E56N                  | 26.        | R90H              |
| 3.               | P34S                              | 15.      | E56H                  | 20.<br>27. | R90Q              |
| <i>3</i> .<br>4. | P34A                              | 16.      | K84Q                  | 28.        | E102Q             |
| 5.               | K39Q                              | 17.      | K84N                  | 29.        | E102N             |
| 6.               | K39N                              | 18.      | K85Q                  | 30.        | E102H             |
| 7.               | E46Q                              | 19.      | K85N                  | 31.        | E110Q             |
| 8.               | E46N                              | 20.      | E88Q                  | 32.        | E110N             |
| 9.               | E46H                              | 21.      | E88N                  | 33.        | E110H             |
| 10.              | E47Q                              | 22.      | E88H                  | 34.        | W111S             |
| 11               | DATE                              | 22       | EGOO                  | 25         | 33711111          |

E89Q

E89N

35.

W111H

23.

24.

REPLACEMENT Page 57 of 57

Appln No.: 10/658,834 REPLACEMENT Page 57 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABLEY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLÉCULES

## Stem cell factor

| Prote   | ction against proteoly      | ysis             |                       |                |                |
|---------|-----------------------------|------------------|-----------------------|----------------|----------------|
| Seque   | ence:                       |                  |                       |                |                |
| EGIC    | RNRVTNNVKDVTKI              | LVANLPKDY        | MITLKYVPGMDV          | VLPSHCWISEN    | MVVQLSDSLTDL   |
| LDKE    | SNISEGLSNYSIII              | OKTANIADE        | LVECVKENSSKI          | OLKKSFKSPEI    | PRLFTPEEFFRI   |
| FNRS    | SIDAFKDFVVASETS             | SDCVVS           |                       |                |                |
| Expo    | sed residues:               |                  |                       |                |                |
|         |                             |                  | M-T-KPD               | V <b></b>      | VDTD-          |
| -DKE    | rsn                         |                  | SK-                   | -LKKSFKS-EI    | PRL            |
|         | ASETS                       | SDCVVS           |                       |                |                |
| Prote   | ases:                       |                  |                       |                |                |
| ['Try]  | osin', 'Endoprotein         | nase Asp-l       | N', 'Chymotryp        | sin', 'Proline | endopeptidase' |
| 'Stapl  | nylococcal P.']             |                  |                       |                |                |
| Excl    | ision list:                 |                  |                       |                |                |
| ['B', ' | Z', 'X', '*', 'K', 'R', 'D' | ', 'F', 'W', 'Y' | , 'M', 'L', 'P', 'E'] |                |                |
| Subst   | titutions:                  |                  |                       |                |                |
| Subsi   | M27V                        | 16.              | K62N                  | 31.            | E106Q          |
| 2.      | M27I                        | 17.              | F63I                  | 32.            | E106N          |
| 3.      | K31Q                        | 18.              | F63V                  |                | E106H          |
| 4.      | K31N                        | 19.              | •                     | =              | P107S          |
| 5.      | P34S                        | 20.              | K96N                  | 35.            | P107A          |
| 6.      | P34A                        | 21.              | L98V                  | 36.            | R108H          |
| 7.      | D37Q                        | 22.              | L98I                  | 37.            | R108Q          |
| 8.      | D37N                        | 23.              | K99Q                  | 38.            | L109V          |
| 9.      | D54Q                        | 24.              | K99N                  | 39.            | L109I          |
| 10.     | D54N                        | 25.              | K100Q                 | 40.            | E134Q          |
| 11.     | D58Q                        | 26.              | K100N                 | 41.            | E134N          |
| 12.     | D58N                        | 27.              | F102I                 | 42.            | E134H          |

FIG. 12T

F102V

K103Q

K103N

28.

29.

30.

13.

14.

15.

D61Q

D61N

K62Q

43.

44.

D137Q

D137N