Model description: **Spiking Temporal Memory (STM) model**

1 Network model

	Summary	
Populations	excitatory (\mathcal{E}) , inhibitory (\mathcal{I}) and external (\mathcal{X})	
Connectivity		
	sparse random connectivity between excitatory neurons (plastic)	
	• local recurrent connectivity between excitatory and inhibitory neurons (static)	
Neuron model		
	 excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integration (dendritic action potentials) 	
	inhibitory neurons: leaky integrate-and-fire (LIF)	
Synapse model	exponential or alpha-shaped postsynaptic currents (PSCs)	
Plasticity	spike-timing dependent structural plasticity and weight decay in excitatory to excitatory connections	
Input	external spike sources, connected to excitatory neurons	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 1: Summary of the network model. Parameter values are given in Table Tab. 9.

Populations		
$\mathcal{E} = \cup_{i=k}^{M} \mathcal{M}_k$	excitatory (E) neurons	N_{E}
\mathcal{I}	inhibitory (I) neurons	N_{I}
\mathcal{M}_k	excitatory neurons in subpopulation k , $\mathcal{M}_k \cap \mathcal{M}_l = \emptyset \ (\forall k \neq l \in [1, M])$	n_{E}

 $\textbf{Table 2:} \ \ \mathsf{Description} \ \ \mathsf{of} \ \mathsf{the} \ \mathsf{populations}. \ \ \mathsf{Parameter} \ \mathsf{values} \ \mathsf{are} \ \mathsf{given} \ \mathsf{in} \ \mathsf{Tab.} \ \mathsf{9}$

	Connectivity		
Source population	Target population	Pattern	
ε	ε	random; fixed in-degrees $K_i=K_{\rm EE}$, delays $d_{ij}=d_{\rm EE}$, and synaptic time constants $\tau_{ij}=\tau_{\rm EE}$, plastic synaptic weights J_{ij} ($\forall i\in\mathcal{E},\forall j\in\mathcal{E};$ "EE connections")	
\mathcal{E}	\mathcal{I}	all-to-all; fixed delays $d_{ij}=d_{\text{IE}}$, synaptic time constants $\tau_{ij}=\tau_{\text{IE}}$, and weights $J_{ij}=J_{\text{IE}}$ ($\forall i\in\mathcal{I}, \forall j\in\mathcal{E};$ "IE connections")	
\mathcal{I}	ε	all-to-all; fixed delays $d_{ij}=d_{\rm EI}$, synaptic time constants $\tau_{ij}=\tau_{\rm EI}$, and weights $J_{ij}=J_{\rm EI}$ ($\forall i\in\mathcal{E}, \forall j\in\mathcal{I};$ "EI connections")	
\mathcal{I}	\mathcal{I}	none ("II connections")	
all	all	no self-connections ("autapses"), no multiple connections ("multapses")	

 Table 3: Description of the connectivity. Parameter values are given in Table Tab. 9.

	Neuron	
Туре	leaky integrate-and-fire (LIF) dynamics	
Description	dynamics of membrane potential $V_i(t)$ and spiking activity $s_i(t)$ of neuron i	
	$ullet$ emission of the k th spike of neuron i at time t_i^k if	
	$V_i(t_i^k) \ge \theta_i \tag{1}$	
	with somatic spike threshold $ heta_i$	
	$ullet$ spike train: $s_i(t) = \sum_k \delta(t-t_i^k)$	
	• reset and refractoriness:	
	$V_i(t) = V_{r} \forall k, \; \forall t \in \left(t_i^k, t_i^k + au_{ref,i} ight]$	
	with refractory time $ au_{{ m ref},i}$ and reset potential $V_{ m r}$	
	subthreshold dynamics:	
	$\tau_{m,i}\dot{V}_i(t) = -V_i(t) + R_{m,i}I_i(t) \tag{2}$	
	with membrane resistance $R_{{ m m},i}=rac{ au_{{ m m},i}}{C_{{ m m},i}}$, membrane time constant $ au_{{ m m},i}$, and	
	total synaptic input current $I_i(t)$ (see Tab. 5)	
	• excitatory neurons: $ au_{m,i} = au_{m,E}, C_{m,i} = C_{m}, heta_i = heta_{E}, au_{ref,i} = au_{ref,E} \; (\forall i \in \mathcal{E})$	
	• inhibitory neurons: $ au_{m,i} = au_{m,I}$, $C_{m,i} = C_{m}$, $\theta_i = \theta_{I}$, $\tau_{ref,i} = au_{ref,I}$ ($\forall i \in \mathcal{I}$)	

 Table 4: Description of the neuron model. Parameter values are given in Tab. 9.

	Synapse
Туре	continuous, exponential, or alpha-shaped postsynaptic currents (PSCs)
Description	total synaptic input current
	excitatory neurons: $I_i(t) = I_{ED,i}(t) + I_{EX,i}(t) + I_{EI,i}(t), \ \forall i \in \mathcal{E}$ inhibitory neurons: $I_i(t) = I_{IE,i}(t), \ \forall i \in \mathcal{I}$ (3)
	with dendritic, inhibitory, excitatory, and external input currents $I_{\mathrm{ED},i}(t)$, $I_{\mathrm{EI},i}(t)$, $I_{\mathrm{EX},i}(t)$ evolving according to
	$I_{ED,i}(t) = \sum_{j \in \mathcal{E}} (\alpha_{ij} * s_j)(t - d_{ij}) \tag{4}$
	with $\alpha_{ij}(t) = J_{ij} \frac{e}{\tau_{\rm ED}} t e^{-t/\tau_{\rm ED}} \Theta(t)$ and $\Theta(t) = \begin{cases} 1 & t \geq 0 \\ 0 & {\rm else} \end{cases}$
	$\tau_{EI}\dot{I}_{EI,i} = -I_{EI,i}(t) + \sum_{j \in \mathcal{I}} J_{ij}s_j(t - d_{ij}) \tag{5}$
	$\tau_{IE}\dot{I}_{IE,i} = -I_{IE,i}(t) + \sum_{j\in\mathcal{E}} J_{ij}s_j(t - d_{ij}) \tag{6}$
	$I_{EX,i}(t) = I_{S,i}(t) + I_{B,i}(t)$ (7)
	where $I_{S,i}(t)$ is the stimulus input (see Tab. 7:Input).
	 suprathreshold dynamics of dendritic currents (dAP generation):
- emission of k th dAP of neuron i at time $t_{dAP,i}^k$ if $I_{ED,i}(t_{dAP,i}^k)$ - dAP current plateau:	
	$I_{ED,i}(t) = I_{dAP} \forall k, \ \forall t \in \left(t_{dAP,i}^k, t_{dAP,i}^k + \tau_{dAP}\right)$ (8)
	with dAP current plateau amplitude $I_{\rm dAP}$, dAP current duration $\tau_{\rm dAP}$, and dAP activation threshold $\theta_{\rm dAP}$
	- reset: $I_{ED,i}(t^k_{dAP,i} + au_{dAP}) = 0 \; (\forall k)$
- reset and refractoriness in response to emission of l th somatic spike of i at time t^l_i :	
	$I_{ED,i}(t) = 0 \forall l, \ \forall t \in \left(t_i^l, \ t_i^l + \tau_{ref,i}\right)$ (9)

 Table 5: Description of the synapse model. Parameter values are given in Tab. 9.

	Plasticity	
Туре	spike-timing dependent structural plasticity and permanence decay	
EE synapses	$ullet$ dynamics of synaptic permanence $P_{ij}(t)$ (maturity) in EE connections during learn-	
	ing:	
	$orall P_{min} < P_{ij} < P_{max}$:	
	$\frac{dP_{ij}}{dt} = P_{max} \lambda_+ \sum_{\{t_i^*\}'} \delta(t - [t_i^* + d_{EE}]) I_+(x_j(t), t_i^*, \Delta t_{min}, \Delta t_{max})$	
	$-P_{max}\lambda_{-}\sum_{\{t_j^*\}'}\delta(t-[t_j^*+d_{EE}])I_{-}(x_i(t),t_j^*,\Delta t_{max})$	
	$+\left(P_{min}-P\right)\frac{1}{ au_{P}}$	
	$\forall \{t P_{ij}(t) < P_{min}\}: P_{ij}(t) = P_{min}$	
	$\forall \{t P_{ij}(t) > P_{\text{max}}\}: P_{ij}(t) = P_{\text{max}} $	
	(10) with	
	- list of presynaptic spike times $\{t_j^*\}$,	
	- list of postsynaptic spike times $\{t_i^*\}' = \{t_i^* \forall t_j^*: t_i^* - t_j^* + d_{EE} \geq \Delta t_{min}\}$	
	increment functions	
	$I_{+}(x_{j}(t), t_{i}^{*}, \Delta t_{\min}, \Delta t_{\max}) = R_{+}(t_{i}^{*} - t_{j}^{+} + d_{EE})$	
	$\int x_j(t) \qquad \Delta t_{\min} < \tau < \Delta t_{\max}$	
	with $R_+(au) = \begin{cases} x_j(t) & \Delta t_{\sf min} < au < \Delta t_{\sf max} \\ (x_j(t) - 1) & au < \Delta t_{\sf min} \end{cases}$	
	$(0) \qquad \text{cisc}, \qquad (11)$	
	$I_{-}(x_{i}(t), t_{j}^{*}, \Delta t_{max}) = R_{-}(t_{j}^{*} - t_{i}^{-} + d_{EE})$	
	with $R(au) = egin{cases} x_i(t) & au < \Delta t_{\sf max} \ 0 & {\sf else}, \end{cases}$	
	– maximum permanence P_{max} , minimum permanence P_{max} , potentiation and depression rates λ_+ , λ , decay time constant τ_{P} , delay d_{EE} , minimum Δt_{min} and maximum Δt_{max} time lags between pairs of pre- and postsynaptic spikes at which synapses are potentiated or depressed, nearest presynaptic spike time t_j^+ preceding t_i^* , nearest postsynaptic spike time t_i^- preceding t_j^* ,	
	- spike trace of presynaptic neuron j , evolving according to	
	$\frac{dx_j}{dt} = -\tau_+^{-1} x_j(t) + \sum_{t_j^*} \delta(t - t_j^*)$	
	with presynaptic spike times t_j^* and potentiation time constant $ au_+$,	
	 spike trace of postynaptic neuron i, evolving according to 	
	$\frac{dx_i}{dt} = -\tau^{-1} x_i(t) + \sum_{t_i^*} \delta(t - t_i^*)$	
	with postynaptic spike times t_i^* and depression time constant $ au$.	
	$ullet$ dynamics of synaptic weights $J_{EE,ij}$ according to	
	$J_{EE,ij} = egin{cases} J_{\max} & P_{ij} > P_{ heta} \ 0 & else, \end{cases}$	
	with maximum synaptic weight $J_{ extsf{max}}$ and synapse maturity threshold $P_{ heta}.$	
all other synapses	non-plastic	

 $\textbf{Table 6:} \ \ \mathsf{Description} \ \ \mathsf{of} \ \ \mathsf{the} \ \ \mathsf{plasticity} \ \ \mathsf{model}. \ \ \mathsf{Parameter} \ \ \mathsf{values} \ \ \mathsf{are} \ \ \mathsf{given} \ \ \mathsf{in} \ \ \mathsf{Tab}. \ 9.$

Input

- repetitive stimulation of the network using the same set $\mathcal{S}=\{s_1,\ldots,s_S\}$ of sequences $s_i=\{\zeta_{i,1},\,\zeta_{i,2},\ldots,\,\zeta_{i,C_i}\}$ of ordered discrete items $\zeta_{i,j}$ with number of sequences S and length C_i of ith sequence
- presentation of sequence element $\zeta_{i,j}$ at time $t_{i,j}$ modeled by a single spike $x_k(t) = \delta(t t_{i,j})$ generated by the corresponding external source x_k
- generated current as a response to the presentation of the sequence elements:

$$\tau_{\mathsf{S}}\dot{I}_{\mathsf{S},i} = -I_{\mathsf{S},i}(t) + \sum_{j \in \mathcal{X}} J_{i,j}x_j(t - d_{ij}) \tag{12}$$

- inter-stimulus interval $\Delta T = t_{i,j+1} t_{i,j}$ between subsequent sequence elements $\zeta_{i,j}$ and $\zeta_{i,j+1}$ within a sequence s_i
- ullet inter-sequence time interval $\Delta T_{
 m seq} = t_{i+1,1} t_{i,C_i}$ between subsequent sequences s_i and s_{i+1}
- example sequence sets:
 - sequence set I: $S = \{\{A,F,B,D\}, \{A,F,C,E\}\}$
 - sequence set II: $S = \{ \{A,F,B,D\}, \{A,F,C,E\}, \{A,F,G,H\}, \{A,F,I,J\}, \{A,F,K,L\} \}$
- sequence i of length C_i is generated by uniformly and independently drawing C_i elements from a vocabulary of A unique token with equal probability

Output

- somatic spike times $\{t_i^k | \forall i \in \mathcal{E}, k = 1, 2, \ldots\}$
- dendritic currents $I_{\mathsf{ED},i}(t)$ ($\forall i \in \mathcal{E}$)

 Table 7: Description of the input and the output. Parameter values are given in Tab. 9.

Initial conditions and network realizations

• membrane potentials: $V_i(0) = V_r \ (\forall i \in \mathcal{E} \cup \mathcal{I})$

• dendritic currents: $I_{\mathsf{ED},i}(0) = 0 \ (\forall i \in \mathcal{E})$

• external currents: $I_{\mathsf{EX}}(0) = 0 \ (\forall i \in \mathcal{E})$

• inhibitory currents: $I_{\mathsf{EI},i}(0) = 0 \ (\forall i \in \mathcal{E})$

• excitatory currents: $I_{\mathsf{IE},i}(0) = 0 \ (\forall i \in \mathcal{I})$

• synaptic permanences: $P_{ij}(0) \sim \mathcal{U}(P_{0,\min}, P_{0,\max})$ (uniform distribution; $\forall i, j \in \mathcal{E}$)

• synaptic weights: $J_{ij}(0) = 0 \ (\forall i, j \in \mathcal{E})$

• spike traces: $x_i(0) = 0 \ (\forall i \in \mathcal{E})$

• connectivity and initial weights are randomly and independently drawn for each network realization

Simulation details

- network simulations performed in NEST (Gewaltig & Diesmann, 2007) version 3.6 (Villamar et al., 2023).
- definition of excitatory neuron model and plastic synapse model using NESTML (Plotnikov et al., 2016; Linssen et al., 2025) version 8.0.0 (Linssen et al., 2024).
- \bullet synchronous update using exact integration of system dynamics on discrete-time grid with step size Δt Rotter & Diesmann (1999)

Table 8: Description of the initial conditions and simulation details. Parameter values are given in Tab. 9.

1.1 Model and simulation parameters

Name	Value	Description
		Network
N_{E}	6240	number of excitatory neurons
N_{I}	26	number of inhibitory neurons
M	26	number of subpopulations
n_{E}, n_{I}	240,1	number of excitatory and inhibitory neurons per subpopulation
ρ	20	(target) number of active neurons per subpopulation after learning = minimal number of coincident excitatory inputs required to trigger a spike in postsynaptic inhibitory neurons
N_{X}	26	number of external spike sources
	(Po	otential) Connectivity
K_{EE}	936	number of excitatory inputs per excitatory neuron (EE in-degree)
p	$K_{EE}/N_{E} = 0.15$	connection probability
K_{EI}	1	number of inhibitory inputs per excitatory neuron (El in-degree)
K_{IE}	n_{E}	number of excitatory inputs per inhibitory neuron (IE in-degree)
K_{II}	0	number of inhibitory inputs per inhibitory neuron (II indegree)
	ı	Excitatory neurons
$ au_{m,E}$	$10\mathrm{ms}$	membrane time constant
$ au_{ref,E}$	$10\mathrm{ms}$	absolute refractory period
C_{m}	250 pF	membrane capacity
V_{r}	0.0 mV	reset potential
θ_{E}	$20\mathrm{mV}$	somatic spike threshold
$I_{\sf dAP}$	200 pA	dAP current plateau amplitude
$ au_{dAP}$	60 ms	dAP duration
$ heta_{dAP}$	59 pA	dAP threshold
Inhibitory neurons		
$ au_{m,l}$	5 ms	membrane time constant
$ au_{ref,I}$	$2\mathrm{ms}$	absolute refractory period
C_{m}	$250\mathrm{pF}$	membrane capacity
V_{r}	$0.0\mathrm{mV}$	reset potential
θ_{I}	$15\mathrm{mV}$	spike threshold

Table 9: Model and simulation parameters (continued on next page).

Name	Value	Description
		Synapse
J_{IE}	$\sim 581.19\mathrm{pA}$	weight of IE connections (EPSC amplitude)
J_{EI}	$\sim -12915.49{ m pA}$	weight of El connections (IPSC amplitude)
J_{EX}	$\sim 4112.20\mathrm{pA}$	weight of EX connections (EPSC amplitude)
$ au_{EE}$	5 ms	synaptic time constant of EE connections
$ au_{EI}$	1 ms	synaptic time constant of EI connections
$ au_{EX}$	2 ms	synaptic time constant of EX connection
$ au_{IE}$	$0.5\mathrm{ms}$	synaptic time constant of IE connections
d_{EE}	2 ms	delay of EE connections (dendritic)
d_{IE}	0.1 ms	delay of IE connections
d_{EI}	0.1 ms	delay of El connections
d_{EX}	0.1 ms	delay of EX connections
	<u> </u>	Plasticity
λ_{+}	0.6	potentiation rate
λ_{-}	{0.1, 0.8}	depression rate
P_{ij}	$[P_{min}, P_0]$	synaptic permanence
P_{θ}	20	synapse maturity threshold
$P_{\sf max}$	20	permanence upper bound
P_{min}	1	permanence lower bound
$P_{0,\max}$	8	permanence initialization upper bound
$P_{0,\min}$	0	permanence initialization upper bound
$J_{\sf max}$	12.98 pA	maximum weight
τ_{+}	20 ms	plasticity time constant (potentiation)
au	20 ms	plasticity time constant (depression)
$ au_{ m P}$	80 s	permanence leak time constant
$\Delta t_{\sf min}$	4 ms	minimum time lag between pairs of pre- and postsynap-
		tic spikes at which synapses are potentiated given the
		spike trace of the presynaptic neuron of the current time
		step
$\Delta t_{\sf max}$	$50\mathrm{ms}$	maximum time lag between pairs of pre- and postsynap-
		tic spikes at which synapses are potentiated
		Input
S	1	number of sequences per sequence set
C_i	[10, 150]	number of characters per sequence
A	26	alphabet length
ΔT	$50\mathrm{ms}$	inter-stimulus interval (during training)
ΔT_{seq}	$\mathcal{U}(100,105)ms$	inter-sequence interval
	(uniform distribution)	
Simulation		
Δt	0.1ms	time resolution

Table 9: Model and simulation parameters.

References

Gewaltig, Marc-Oliver and Diesmann, Markus Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEural Simulation Tool). ScholarpediaJ, 4, 1430, https://doi.org/10.4249/scholarpedia.1430

Villamar, J., Vogelsang, J., Linssen, C., Kunkel, S., Kurth, A., Schöfmann, C. M., Benelhedi, M. A., Babu, P. N., Eppler, J. M., de Schepper, R., Mitchell, J., Morrison, A., Haug, N., Diaz, S., Acimovic, J., Graber, S., Jiang, H.-J., Terhorst, D., Spreizer, S., Welle Skaar, J.-E., Stapmanns, J., Manninen, T., Krüger, M., Lehtimäki, M., Ito, S., Lee, A. Y., Lindahl, M. & Plesser, H. E. NEST 3.6

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Rumpe, B., Morrison, A. NESTML: a modeling language for spiking neurons. Modellierung 2016, P-254, pages 93-108

Linssen, C., Babu, P. N., Eppler, J. M., Koll, L., Rumpe, B., Morrison, A. NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules. Frontiers Neuroinformatics, 19, 10.3389/fninf.2025.1544143

- Linssen, C., Bouhadjar, Y., Ewert, L., Lober, M., Babu, P., Feller, F., Wybo, W., Morrison, A., Rumpe, B. NESTML (v8. 0.0)
- Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. *Biol. Cybern.* 81(5-6), 381–402.