Laboratório de Transformadores Ensaio 1: Transformador Monofásico

Felipe Bandeira da Silva Engenharia Elétrica Unifor - Universidade de Fortaleza Email: felipeband18@gmail.com

Resumo—Conhecer as relações de tensão de um transformador. Estudar as correntes de excitação, a capacidade em volts amperes, e as correntes de curto-circuito.

I. Introdução

Quando se estabelece um fluxo mútuo entre duas bobinas ou enrolamentos, uma variação na corrente que passa por um deles induz uma FEM no seu próprio enrolamento e no outro uma FEM induzida, proporcional ao fluxo mútuo, o número de espiras e a frequência. Um transformador clássico possui um enrolamento(s) primário(s) e secundário(s). O enrolamento primário recebe a energia elétrica de uma ou mais fonte de alimentação e o diferencial de energia própria devido aos dipolos magnéticos do material que compõe o núcleo. A energia magnética líquida entregue ao secundário tem que se subtrair a energia irrecuperável perdida no núcleo pelo efeito Joule. A variação do fluxo mútuo no tempo induz portanto uma FEM no secundário, desta forma pronta para fornecer energia novamente convertida para energia elétrica de saída mediante a aplicação de uma carga no secundário do transformador.

Quando um transformador está funcionando circula uma corrente alternada por um dos enrolamentos(vazio) ou em ambos os enrolamentos(em carga) e se estabelece um campo magnético alternado no núcleo. Como resultado, aparecem as perdas de cobre e ferro que representam potência real e que fazem com que o transformador aqueça. Para se estabelecer um campo magnético é necessário uma potência reativa que é obtida na linha de alimentação, por essa e outras condições é que a potência total entregue ao enrolamento primário é sempre ligeiramente maior que a potência total entregue pelo enrolamento secundário.

Agosto 30, 2013

A. Identificação e Caracterização dos enrolamentos

Primeira parte da experiência é a identificação dos enrolamentos do transformador(EMS 8341) disponível no laboratório.

Tensões nominais da cada um dos três enrolamentos.

Terminais	VCA[V]
1 a 2	120
3 a 4	208
5 a 6	120

Tensão entre os seguintes terminais de conexão,

Terminais	VCA[V]
7 a 8	76
3 a 8	180
5 a 6	120
8 a 4	28
7 a 4	104
9 a 6	60

Corrente nominal de cada uma das seguintes conexões,

Terminais	ACA[A]
1 a 2	0.5
5 a 6	0.5
8 a 4	0.3
3 a 4	0.3
3 a 7	0.3

Resistência de cada um dos enrolamentos,

Terminais	Resistência[Ohm]
1 a 2	16.7
3 a 7	12.2
8 a 4	5.1
5 a 8	11.4
3 a 4	18.5
7 a 8	18.0
5 a 6	17.8
9 a 6	8.4

B. Ligação 1

Teste em vazio com as seguinte configuração, terminais 1 e 2 como primários do transformador. Terminais 5 e 6 como secundário. As tensões de entrada(Vp), saída(Vs) e corrente(Io) de entrada foram medidas.

Vp	118.5 [V]
Vs	115.0 [V]
Io	30.0 [mA]

Medição de tensão para os enrolamentos restantes foram,

Terminais	Tensão [V]
5 a 6	118.3
7 a 8	75.0
5 a 9	59
3 a 7	102.5
8 a 4	27.3
9 a 6	59

Os valores medidos foram próximos aos nominais, qualquer variação é proveniente da resistência dos enrolamentos, interação térmica com ambiente que provoca variações no material que o transformador foi produzido. E uma inspeção visual, mostrou que a ferrugem pode ser um grande problema. Relação de transformação, os enrolamentos 1 a 2 e 5 a 6 têm 500 espiras. O enrolamento 3 a 4 tem 865 espiras. As seguintes relações de transformações pode ser obtidas,

Terminais	Relação transformação
1 a 2 e 5 a 6	0.578
1 a 2 e 3 a 4	0.578

C. Teste de corrente do secundário

Transformador com o secundário em curto, com as seguinte configuração, terminais 1 e 2 como primários do transformador. Terminais 5 e 6 como secundário. As tensões de entrada(Vp), saída(Vs) e corrente(Io) de entrada foram medidas. Para a medição da corrente do secundário foi colocado um amperímetro. Os seguintes valores foram medidos,

Vp	13.5 [V]
Io	0.387 [A]
Is	0.410 [A]

Com esses valores é possível concluir que a relação de transformação é 0.9439 o que está próximo ao valor de 1 que seria a relação calculada. Mostrando que esse transformador não é um equipamento ideal, mostrando que existem perdas na transformação de corrente.

Agora, mudando a configuração do secundário para 3 e 4 do transformador com isso os seguintes valores foram medidos,

Vp	8.1 [V]
Io	0.20 [A]
Is	0.23 [A]

Novamente esse teste é mostra que a relação de transformação é próxima a 1. Novamente foi encontrado uma leve variação, também provocada pelas perdas resistivas do transformador não ideal.

D. Saturação do núcleo

E1 é a tensão de entrada no primário, I1 a corrente do primário e E2 a tensão de saída.

E1 [V]	I1 [mA]	E2 [V]
0	0	0
80	0	80
100	0	100
120	33	120
160	47	160
180	65	180
200	85	200

Testa tabela é possível obter o gráfico a seguir,

O facilmente notado que a corrente de magnetização aumenta rapidamente após um valor de tensão 100 V.

II. CONCLUSÃO

Este laboratório mostrou como um transformador pode ser inicialmente ensaiado, com esses valores em mão é possível analisar as perdas na transformação inerentes na construção do transformador. O laboratório proporciona o primeiro contato do estudante com o maior e mais usado componente da engenharia elétrica.