Neural system identification and control for Formula Student Driverless Cars Final presentation

Tudor Oancea

EPFL Racing Team

June 2023

Introduction

Goals:

- Produce a system model that is more precise than the first-principles models currently used by the EPFL RT Driverless team to create more lightweight and realistic (MiL) tests.
- Devise a control scheme that approximated well the existing MPC scheme while having a lighter computational and memory footprint.

Introduction

Goals:

- Produce a system model that is more precise than the first-principles models currently used by the EPFL RT Driverless team to create more lightweight and realistic (MiL) tests.
- Devise a control scheme that approximated well the existing MPC scheme while having a lighter computational and memory footprint.

2/18

Introduction

Figure: Our test platform: the Formula Student Driverless Simulator (FSDS)

Outline

- System identification
 - Bicycle model
 - Neural Ordinary Differential Equations
 - Dataset creation
 - Numerical experiments
- Control
 - Original NMPC controller
 - Differentiable Predictive Control
 - Dataset creation
 - Numerical experiments
- Conclusion & Outlook

Bicycle model - Notations

Bicycle model - Equations

Dynamic bicycle model (Dyn6)

$$\begin{split} \dot{X} &= v_x \cos(\varphi) - v_y \sin(\varphi) \\ \dot{Y} &= v_x \sin(\varphi) + v_y \cos(\varphi) \\ \dot{\varphi} &= r \\ \dot{v}_x &= \frac{1}{m} (F_x - F_{y,F} \sin(\delta) + m v_y r) \\ \dot{v}_y &= \frac{1}{m} (F_{y,R} + F_{y,F} \cos(\delta) - m v_x r) \\ \dot{r} &= \frac{1}{I_z} (F_{y,F} I_F \cos(\delta) - F_{y,R} I_R) \\ \text{with } F_x &= (C_{m1} - C_{m2} v_x) T - C_{r0} \tanh(C_{r3} v_x) - C_{r2} v_x^2 \\ F_{y,j} &= D_j \sin(C_j \arctan(B_j \alpha_j)), j \in \{R, F\} \end{split}$$

Bicycle model - Equations

Kinematic bicycle model (Kin4)

$$\begin{split} \dot{X} &= v \cos(\varphi + \beta) \\ \dot{Y} &= v \sin(\varphi + \beta) \\ \dot{\varphi} &= \frac{v}{I_R} \sin(\beta) \\ \dot{v} &= \frac{F_x}{m} \cos(\beta) \\ \text{with } \beta &= \arctan\left(\frac{I_R}{I_R + I_E} \tan(\delta)\right) \end{split}$$

Neural Ordinary Differential Equations - Architecture

Graybox NODE model (NeuralDyn6)

$$\dot{\tilde{x}} = \begin{pmatrix} v_x \cos(\varphi) - v_y \sin(\varphi) \\ v_x \sin(\varphi) + v_y \cos(\varphi) \\ r \\ v_\theta(v_x, v_y, r, T, \delta) \end{pmatrix}$$

$$\text{FNN} \quad \nu_\theta : \begin{pmatrix} \mathbb{R}^5 & \to \mathbb{R}^3 \\ (v_x, v_y, r, T, \delta) & \mapsto & (\dot{v}_x, \dot{v}_y \dot{r}) \end{pmatrix}$$

RK4 discretization:
$$\tilde{x}^+ = \tilde{f}_1(\tilde{x}, \tilde{u}) \implies \tilde{x}_{1:N_f} = \tilde{f}_{N_f}(\tilde{x}_0, \tilde{u}_{0:N_f-1})$$

$$a_{i:j} := (a_i, a_{i+1}, \dots a_j)$$

June 2023

Neural Ordinary Differential Equations - Architecture

Graybox NODE model (NeuralDyn6)

$$\dot{ ilde{x}} = egin{pmatrix} v_x \cos(arphi) - v_y \sin(arphi) \ v_x \sin(arphi) + v_y \cos(arphi) \ r \ v_{ heta}(v_x, v_y, r, T, \delta) \end{pmatrix}$$
FNN $v_{ heta} : egin{pmatrix} \mathbb{R}^5 & \to \mathbb{R}^3 \ (v_x, v_y, r, T, \delta) & \mapsto & (\dot{v}_x, \dot{v}_y \dot{r}) \end{pmatrix}$

RK4 discretization:
$$\tilde{x}^+ = \tilde{f}_1(\tilde{x}, \tilde{u}) \implies \tilde{x}_{1:N_f} = \tilde{f}_{N_f}(\tilde{x}_0, \tilde{u}_{0:N_f-1})$$

$$a_{i:j}:=(a_i,a_{i+1},\ldots a_j)$$

June 2023

Neural Ordinary Differential Equations - Problem

Sysid dataset

$$\widetilde{\mathcal{D}} = \left\{ \left(\widetilde{x}_0^i, \widetilde{u}_{0:N_f-1}^i, \widetilde{x}_{1:N_f}^i \right) \right\}_{i=1,\dots,I}$$

Sysid problem

$$\begin{split} & \underset{\theta}{\min} & \ \frac{1}{IN_f} \sum_{i=1}^I \sum_{k=1}^{N_f} \| \tilde{x}_k^i - \tilde{x}_k^{\mathrm{pred},i} \|_P^2 \\ & \text{s.t.} & \ \tilde{x}_{1:N_f}^{\mathrm{pred},i} = \tilde{f}_{N_f} (\tilde{x}_0^i, \tilde{u}_{0:N_f-1}^i), \ i = 1, \dots, I \end{split}$$

s.t.
$$\tilde{x}_{1.N_c}^{\text{pred},i} = \tilde{f}_{N_c}(\tilde{x}_0^i, \tilde{u}_{0.N_c-1}^i), i = 1, \dots, I$$

- Time-series collected at 20Hz in FSDS with a video-game controller \implies transcription in the form $\tilde{x}_0^i, \tilde{u}_{0:N_f-1}^i, \tilde{x}_{1:N_f}^i$ with a sliding window
- Pre-processing: yaw signal φ made continuous by appropriately translating each value by multiple of 2π .

- Time-series collected at 20Hz in FSDS with a video-game controller \implies transcription in the form $\tilde{x}_0^i, \tilde{u}_{0:N_f-1}^i, \tilde{x}_{1:N_f}^i$ with a sliding window
- ullet Crowdsourced data collection during the EPFL open days \Longrightarrow high volume of data from a wide range of operating scenarios.

- Time-series collected at 20Hz in FSDS with a video-game controller \implies transcription in the form $\tilde{x}_0^i, \tilde{u}_{0:N_{\epsilon}-1}^i, \tilde{x}_{1:N_{\epsilon}}^i$ with a sliding window
- ullet Crowdsourced data collection during the EPFL open days \Longrightarrow high volume of data from a wide range of operating scenarios.
- Pre-processing: yaw signal φ made continuous by appropriately translating each value by multiple of 2π .

Numerical experiments - Training

Figure: Training and validation losses in system identification training for $N_f \in \{1, 5, 10, 20\}$

Numerical experiments - Average errors

		Kin4		NeuralDyn6 with Nf=1		NeuralDyn6 with Nf=5		NeuralDyn6 with Nf=10		NeuralDyn6 with Nf=20	
		mean	std	mean	std	mean	std	mean	std	mean	std
ſ	XY	7.3967	7.8335	0.6877	1.7896	0.6205	1.6938	0.5944	1.5599	0.5718	0.7547
Γ	φ	1.1875	1.2385	0.0713	0.1840	0.0571	0.1702	0.0544	0.1532	0.0496	0.1405
ſ	V_X	0.4330	0.6145	0.1844	0.3425	0.1696	0.3263	0.1632	0.3048	0.1835	0.2965
ſ	Vy	N/A	N/A	0.0718	0.0944	0.0714	0.0932	0.0756	0.0941	0.0845	0.1059
[r	N/A	N/A	0.2873	0.7396	0.2646	0.7384	0.2619	0.7375	0.2666	0.7547

Table: L^2 errors distributions of Kin4 and NeuralDyn6 by variable

Variable	XY	φ	V _X	
Improvement	91.96%	95.42%	62.31%	

Table: Improvements in mean error of NeuralDyn6 with $N_f=10$ over Kin4

Numerical experiments - Average errors

Figure: Average L^2 errors of Kin4 and NeuralDyn6 by stage

Numerical experiments - Open loop trajectories

Figure: Open loop trajectories of Kin4 and NODE models

Original NMPC controller

Lifted state and dynamics

$$x_k = (X_k, Y_k, \varphi_k, v_{x,k}, v_{y,k}, r_k, \delta_{k-1}), u_k = (T_k, d\delta_k)$$

$$\implies x_{k+1} = f_1(x_k, u_k) = \begin{pmatrix} \tilde{f}_1(X_k, Y_k, \varphi_k, v_{x,k}, v_{y,k}, r_k, T_k, \delta_{k-1} + d\delta_k) \\ \delta_{k-1} + d\delta_k \end{pmatrix}$$

Original NMPC controller

Lifted state and dynamics

$$x_{k+1}=f_1(x_k,u_k)$$

NMPC

$$\min_{\mathsf{x},\mathsf{u}} \sum_{k=0}^{N_f-1} \underbrace{\|x_k - x_k^{\mathrm{ref}}\|_Q^2 + \|u_k\|_R^2}_{=:I(x_k,u_k)} + \underbrace{\|x_{N_f} - x_{N_f}^{\mathrm{ref}}\|_{Q_{N_f}}^2}_{=:F(x_{N_f})}$$

s.t.
$$x_0 = \hat{x}_0$$

 $x_{k+1} = f_1(x_k, u_k), k = 0, ..., N_f - 1$
 $\underline{x} \le x_k \le \overline{x}, k = 0, ..., N_f$
 $u < u_k < \overline{u}, k = 0, ..., N_f - 1$

Differentiable Predictive Control

Control dataset

$$\mathcal{D} = \left\{ \left(x_0^j, x_{0:N_f}^{\text{ref}, j} \right) \right\}_{j=1,\dots,J}$$

DPC

$$\min_{\vartheta} \quad \frac{1}{JN_{f}} \sum_{j=1}^{J} \sum_{k=1}^{N_{f}} I(x_{k}^{j}, u_{k}^{j}) + p_{S_{x}}(x_{k}^{j}, \underline{x}, \bar{x}) + p_{S_{u}}(u_{k}^{j}, \underline{u}, \bar{u}) \\
+ F(x_{N_{f}}^{j}) + p_{S_{x}}(x_{N_{f}}^{j}, \underline{x}, \bar{x}) \\
\text{s.t.} \quad u_{0:N_{f}-1}^{j} = \pi_{\vartheta}(x_{0}^{j}, x_{0:N_{f}}^{\text{ref}, j}) \\
x_{1:N_{f}}^{j} = f_{N_{f}}(x_{0}^{j}, u_{0:N_{f}-1}^{j}) \right\} j = 1, \dots, J$$

- Time-series collected at 20Hz in FSDS while running NMPC \Longrightarrow transcription in the form $x_0^j, x_{0:N_{\it F}}^{{\rm ref},j}$ with a sliding window
- Pre-processing: yaw signal $\varphi, \varphi^{\mathrm{ref}}$ made continuous by appropriately translating each value by multiple of 2π .

- Time-series collected at 20Hz in FSDS while running NMPC \Longrightarrow transcription in the form $x_0^j, x_{0:N_{\epsilon}}^{\mathrm{ref},j}$ with a sliding window

Numerical experiments - Constraint violation losses

Constraint	δ lower bound	δ upper bound	v _x lower bound	v_x upper bound
Violation	1.03e-5	2.14e-5	0	0

Table: Mean constraint violation committed by DPC on the validation set

Numerical experiments - Open loop behavior

Figure: Open-loop predictions of different pairs of controllers and system models. *Remark*: in the subplots T, δ and $d\delta$, the blue and yellow curves are overlapping.

Numerical experiments - Closed loop behavior

Figure: Closed-loop trajectories of MPC followed by DPC in FSDS

- Significant progress in the system identification, as demonstrated by the improved robustness and accuracy of NeuralDyn6 compared to Kin4.
- However, in the realm of control, we encountered challenges with the deployment of DPC in closed-loop scenarios and not enough robustness yet.
- Further improvement strategies:
 - Naive data augmentation
 - Combination of DPC with imitation learning methods such as DAgger.
 is use (predictive) safety filters for safe deployment and training on the real car

- Significant progress in the system identification, as demonstrated by the improved robustness and accuracy of NeuralDyn6 compared to Kin4.
- However, in the realm of control, we encountered challenges with the deployment of DPC in closed-loop scenarios and not enough robustness yet.
- Further improvement strategies:
 - Naive data augmentation
 - Combination of DPC with imitation learning methods such as DAgger.
 use (predictive) safety filters for safe deployment and training on the real car

- Significant progress in the system identification, as demonstrated by the improved robustness and accuracy of NeuralDyn6 compared to Kin4.
- However, in the realm of control, we encountered challenges with the deployment of DPC in closed-loop scenarios and not enough robustness yet.
- Further improvement strategies:
 - Naive data augmentation
 - ► Combination of DPC with imitation learning methods such as DAgger.

 ⇒ use (predictive) safety filters for safe deployment and training on the real car

- Significant progress in the system identification, as demonstrated by the improved robustness and accuracy of NeuralDyn6 compared to Kin4.
- However, in the realm of control, we encountered challenges with the deployment of DPC in closed-loop scenarios and not enough robustness yet.
- Further improvement strategies:
 - Naive data augmentation
 - ► Combination of DPC with imitation learning methods such as DAgger.

 ⇒ use (predictive) safety filters for safe deployment and training on the real car

