

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 11

MAT1106 — Introducción al Cálculo Fecha: 2020-10-05

Problema 1:

Sean x_n e y_n dos sucesiones tales que $x_n \leq y_n$ para todo $n \in \mathbb{N}$. Demuestre que si x_n no es acotada superiormente entonces y_n no es acotada superiormente.

Solución problema 1: Se recuerda la definición de que x_n no este acotada superiormente

$$\forall M \in \mathbb{R} \exists n \in \mathbb{N} : x_n > M$$

Sea $M \in \mathbb{R}$, por definición existe un $n \in \mathbb{N}$ tal que $M < x_n \le y_n$, por lo que y_n no es acotada superiormente.

Problema 2:

Demuestre que para todo par de números reales x, y distintos existe un racional z tal que x < z < y. Hint: Usar propiedad arquimediana y parte entera.

Solución problema 2: Sea $w = \frac{x+y}{2} = x + \frac{y-x}{2}$, se ve que se tienen las siguientes desigualdades:

$$\lfloor nx\rfloor \leq nx < \lfloor nx\rfloor + 1 \leq nx + 1$$

Y al dividir por n se tiene

$$\frac{\lfloor nx \rfloor}{n} \le x < \frac{\lfloor nx \rfloor + 1}{n} \le x + \frac{1}{n}$$

Ahora, por propiedad arquimediana se tiene que existe un $n \in \mathbb{N}$ tal que $\frac{1}{n} < y - x$, por lo que $x + \frac{1}{n} < y$, entonces $x < \frac{\lfloor nx \rfloor + 1}{n} < y$ y $\frac{\lfloor nx \rfloor + 1}{n} \in \mathbb{Q}$.

Problema 3:

Demuestre que la sucesión

$$x_n = \sum_{k=1}^n \frac{1}{k}$$

cumple que $x_{2^n} \ge \frac{n+1}{2}$ para todo $n \in \mathbb{N}$.

Solución problema 3: Por inducción, para n = 0 se tiene que $x_1 = 1 \ge \frac{0+1}{2}$. Para el paso inductivo, se ve lo siguiente:

$$x_{2^{n}} = \sum_{k=1}^{2^{n}} \frac{1}{k}$$

$$= \sum_{k=1}^{2^{n-1}} \frac{1}{k} + \sum_{k=2^{n-1}+1}^{2^{n}} \frac{1}{k}$$

$$= x_{2^{n-1}} + \sum_{k=2^{n-1}+1}^{2^{n}} \frac{1}{k}$$

$$\geq \frac{(n-1)+1}{2} + \sum_{k=2^{n-1}+1}^{2^{n}} \frac{1}{k}$$

$$\geq \frac{(n-1)+1}{2} + \sum_{k=2^{n-1}+1}^{2^{n}} \frac{1}{2^{n}}$$

$$\geq \frac{(n-1)+1}{2} + 2^{n-1} \cdot \frac{1}{2^{n}}$$

$$\geq \frac{(n-1)+1}{2} + \frac{1}{2}$$

$$\geq \frac{n+1}{2}$$

Problema 4:

Demuestre que todo sucesión creciente y no acotada x_n cumple que su límite existe y $\lim_{n\to\infty}x_n=\infty$.

Solución problema 4: Se nota que toda sucesión creciente es acotada inferiormente, por lo que x_n es no acotada superiormente. Se recuerda la definición de ser creciente y de no

acotada superiormente:

Creciente:
$$\forall n \in \mathbb{N} \quad x_n \leq x_{n+1}$$

No acotada superiormente:
$$\forall M \in \mathbb{R} \exists n \in \mathbb{N}$$
 $x_n > M$

Por lo que dado un R > 0 existe un $n_0 \in \mathbb{N}$ tal que $x_{n_0} > R$, más aún para $n \ge n_0$ se tiene que $x_n \ge x_{n_0} > R$. Por lo que se tiene que $\lim_{n \to \infty} x_n = \infty$.

Problema 5:

Sea x_n una sucesión se denota s_n a la sucesión de las sumas parciales:

$$s_n = \sum_{k \le n} x_k$$

Demuestre que si todos los términos de x_n son positivos, entonces s_n es creciente. Demuestre también que si para todo $n \in \mathbb{N}$ se tiene que $x_n > \varepsilon$ para algún $\varepsilon > 0$, entonces $\lim_{n \to \infty} s_n = \infty$.

Solución problema 5: Se ve que $s_{n+1} - s_n = x_{n+1} > 0$ por lo que s_n es creciente.

Si $x_n > \varepsilon$ entonces $s_n = \sum_{k \le n} x_k \ge \sum_{k \le n} \varepsilon \ge n\varepsilon$, por ayudantía anterior se tiene que $\lim_{n \to \infty} n\varepsilon = \infty$ y por otra ayudantía anterior se tiene que $\lim_{n \to \infty} s_n = \infty$.