<u>LambdaNetworks: Modeling long-range</u> <u>Interactions without Attention</u>

Anonymous authors
Paper under double-blind review

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Introduction

Using Self Attention to obtain contextual information is indeed helpful to improve the accuracy of the model.

However, the amount of memory to be consumed makes it difficult to apply to very long sequences and multi-dimensional (such as images) tasks.

Introduction

Therefore, the author proposes the architecture of lambda network, which can obtain contextual information while reducing memory consumption and increasing computing speed.

Content Lambda + Position Lambda

Matching to Feature [Map]

Matching to Feature [Vector]

Experiments

- vs Baseline
- Content vs Position
- Normalization
- Other

Experiments

Classification vs Baseline

Layer	Params (M)	top-1
Conv (He et al., 2016) [†]	25.6	$76.9_{+0.0}$
Conv + channel attention (Hu et al., 2018b) [†]	28.1	$77.6_{+0.7}$
Conv + linear attention (Chen et al., 2018) Conv + linear attention (Shen et al., 2018) Conv + relative self-attention (Bello et al., 2019)	33.0 - 25.8	$77.0 \\ 77.3_{+1.2} \\ 77.7_{+1.3}$
Local relative self-attention (Ramachandran et al., 2019) Local relative self-attention (Hu et al., 2019) Local relative self-attention (Zhao et al., 2020)	18.0 23.3 20.5	$77.4_{+0.5} 77.3_{+1.0} 78.2_{+1.3}$
Lambda layer ($ u $ =4)	15.0 16.0	78.4 _{+1.5} 78.9 _{+2.0}

Detection

vs Baseline

Backbone	AP^{bb}_{coco}	${ m AP}^{bb}_{s/m/l}$
ResNet-101	48.2	29.9 / 50.9 / 64.9
ResNet-101 + SE	48.5	29.9 / 51.5 / 65.3
LambdaResNet-101	49.4	31.7 / 52.2 / 65.6
ResNet-152	48.9	29.9 / 51.8 / 66.0
ResNet-152 + SE	49.4	30.0 / 52.3 / 66.7
LambdaResNet-152	50.0	31.8 / 53.4 / 67.0

Segmentation

vs Baseline

Backbone	AP^{mask}_{coco}	$\mathrm{AP}^{mask}_{s/m/l}$
ResNet-101	42.6	24.2 / 45.6 / 60.0
ResNet-101 + SE	42.8	24.0 / 46.0 / 60.2
LambdaResNet-101	43.5	25.9 / 46.5 / 60.8
ResNet-152	43.2	24.2 / 46.1 / 61.2
ResNet-152 + SE	43.5	24.6 / 46.8 / 61.8
LambdaResNet-152	43.9	25.5 / 47.3 / 62.0

Training

vs Baseline

Experiments

Content vs Position

Content	Position	Params (M)	FLOPS (B)	top-1
\checkmark	×	14.9	5.0	68.8
×	\checkmark	14.9	11.9	78.1
	\checkmark	14.9	12.0	78.4

Position Lambda is more important than Content Lambda.

Experiments

Normalization

Normalization	top-1
Softmax on keys (default)	78.4
Softmax on keys and queries	78.1
L2-normalized keys	78.0
Non-normalized keys	70.0
No batch normalization on queries and values	76.2

It is necessary to regulate K.

Other

Architecture	Params (M)	Throughput	top-1
$\begin{array}{c} \textbf{C} \rightarrow \textbf{C} \rightarrow \textbf{C} \rightarrow \textbf{C} \\ \textbf{L} \rightarrow \textbf{C} \rightarrow \textbf{C} \rightarrow \textbf{C} \\ \textbf{L} \rightarrow \textbf{L} \rightarrow \textbf{C} \rightarrow \textbf{C} \\ \textbf{L} \rightarrow \textbf{L} \rightarrow \textbf{C} \rightarrow \textbf{C} \end{array}$	25.6 25.5 25.0 21.7	7240ex/s 1880ex/s 1280ex/s 1160ex/s	76.9 77.3 77.2 77.8
$\begin{array}{c} \mathbf{L} \rightarrow \mathbf{L} \rightarrow \mathbf{L} \rightarrow \mathbf{C} \\ \mathbf{L} \rightarrow \mathbf{L} \rightarrow \mathbf{L} \rightarrow \mathbf{L} \\ \mathbf{C} \rightarrow \mathbf{L} \rightarrow \mathbf{L} \rightarrow \mathbf{L} \\ \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{L} \rightarrow \mathbf{L} \\ \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{L} \end{array}$	15.0 15.1 15.4 18.8	1160ex/s 1160ex/s 2200ex/s 4980ex/s 7160ex/s	78.4 78.3 78.3 77.3

Lambda Layer will have better results after Convolution.

Experiments

Other

Layer	Complexity	Memory (GB)	Throughput	top-1
Global self-attention Axial self-attention Local self-attention (7x7)	$\Theta(blhn^2) \\ \Theta(blhn\sqrt{n}) \\ \Theta(blhnm)$	120 4.8 -	OOM 960ex/s 440ex/s	OOM 77.5 77.4
Lambda layer ($ k $ =8) Lambda layer (shared embeddings) Lambda convolution (7x7)	$egin{array}{l} \Theta(lkn^2) \ \Theta(lkn^2) \ \Theta(lknm) \end{array}$	0.96 0.48 0.31	1160ex/s 1640 ex/s 1210ex/s 1100ex/s	78.4 77.9 78.0 78.1

Lambda has higher speed, accuracy and lower memory consumption than Self Attention.

Other

Config	Params (M)	Throughput	top-1
ResNet101 - 22	24x224		
Baseline	44.6	4600 ex/s	81.3
+ SE	63.6	4000 ex/s	81.8
+ 3 lambda	36.9	4040 ex/s	82.3
+ all lambdas	26.0	2560 ex/s	82.6
ResNet152 - 2:	56x256		
Baseline	60.2	2780 ex/s	82.5
+ SE	86.6	2400 ex/s	83.0
+ 6 lambdas	51.4	2400 ex/s	83.4
+ all lambdas	35.1	1480 ex/s	83.4

Experiments

Receptive Field

Other

Scope size $ m $	3x3	7x7	15x15	23x23	31x31	global
FLOPS (B)	5.7	6.1	7.8	10.0	12.4	19.4
Top-1 Accuracy	77.6	78.2	78.5	78.3	78.5	78.4

In the experiment, the receptive field of Position Lambda is not the bigger the better.

Conclusion

- Lambda Layer can be understood as a better Channel
 + Spatial Attention.
- Compared with Linear Attention, Lambda Layer has the ability to focus better position.
- Lighter and faster than Self Attention.