FA 2.4 - 1 Temperaturskala - MC - BIFIE

1. Temperaturen werden bei uns in °C (Celsius) gemessen; in einigen anderen Ländern ist die Messung in °F (Fahrenheit) üblich.

Die Gerade f stellt den Zusammenhang zwischen °C und °F dar.

Welche der folgenden Aussagen kannst du der Abbildung entnehmen? Kreuze die beiden zutreffenden Aussagen an!

$160^{\circ}C$ entsprechen doppelt so vielen $^{\circ}F$.	\boxtimes
$140^{\circ}F$ entsprechen $160^{\circ}C$.	
Eine Zunahme um 1° C bedeutet eine Zunahme um 1,8° F .	\boxtimes
Eine Abnahme um 1° F bedeutet eine Abnahme um 18° C .	
Der Anstieg der Geraden ist $k = \frac{x_2 - x_1}{f(x_2) - f(x_1)} = \frac{100}{180}$.	

FA 2.4 - 2 Charakteristische Eigenschaften einer linearen Funktion - MC - BIFIE

2. Gegeben ist eine reelle Funktion f mit f(x) = 3x + 2.

Kreuze die beiden Eigenschaften an, die auf die Funktion f zutreffen!

FA 2.4

f(x+1) = f(x) + 3	
f(x+1) = f(x) + 2	
$f(x+1) = 3 \cdot f(x)$	
$f(x+1) = 2 \cdot f(x)$	
$f(x_2) - f(x_1) = 3 \cdot (x_2 - x_1) \text{ für } x_1, x_2 \in \mathbb{R} \text{ und } x_1 \neq x_2$	

FA 2.4 - 3 Eigenschaften linearer Funktionen - OA - BIFIE

3. Gegeben ist eine lineare Funktion f mit der Gleichung f(x) = 4x - 2.

Wähle zwei Argumente x_1 und x_2 mit $x_2 = x_1 + 1$ und zeige, dass die Differenz $f(x_2) - f(x_1)$ gleich dem Wert der Steigung k der gegebenen linearen Funktion f ist!

$$f(x) = 4x - 2 \rightarrow k = 4$$

 $x_1 = 3 \text{ und } f(x_1) = 10$
 $x_2 = 4 \text{ und } f(x_2) = 14$
 $f(x_2) - f(x_1) = 14 - 10 = 4 = k$

Es können beliebige Argumente gewählt werden, die sich um 1 unterscheiden! Jedoch muss die Argumentation in jedem Fall korrekt wiedergegebenen werden!

FA 2.4 - 4 Charakteristische Eigenschaft - OA - BIFIE

4. Gib den Term einer Funktion f an, welche die Eigenschaft f(x+1) = f(x) + 5 ______/1 erfüllt!

$$f(x) =$$

f(x) = 5x + c mit einem beliebigen Wert von c

Alle Terme, die eine lineare Funktion mit k=5 beschreiben, sind als richtig zu werten.

FA 2.4 - 5 Eigenschaften einer linearen Funktion - MC - Matura 2013/14 1. Nebentermin

5. Eine Funktion f wird durch die Funktionsgleichung $f(x) = k \cdot x + d$ mit $k, d \in \mathbb{R}$ und $k \neq 0$ beschrieben.

Kreuze die für f zutreffende(n) Aussage(n) an!

f kann lokale Extremstellen besitzen.	
f(x+1) = f(x) + k	×
f besitzt immer genau eine Nullstelle.	×
$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = k \text{ für } x_1 \neq x_2$	\boxtimes
Die Krümmung des Graphen der Funktion f ist null.	×