Gravitational Solitons from Topology

Tasos Bouzikas

Supervised by: Bert Vercnocke (UvA)

Utrecht University

December 1, 2015

• Black Holes are solution to the Einstein Field Equations

- Black Holes are solution to the Einstein Field Equations
- Black Holes in General Relativity (d = 4)
 - ► Schwarzschild Black Hole (*M*)
 - Reissner Nordstrom Black Hole (Q)
 - ► Kerr Black Hole (*J*)

- Black Holes are solution to the Einstein Field Equations
- Black Holes in General Relativity (d = 4)
 - ► Schwarzschild Black Hole (*M*)
 - Reissner Nordstrom Black Hole (Q)
 - Kerr Black Hole (J)
- No-Hair Theorem: "All black hole solutions can be completely characterised by only three parameters: M, Q, J."

- Black Holes are solution to the Einstein Field Equations
- Black Holes in General Relativity (d = 4)
 - ► Schwarzschild Black Hole (*M*)
 - ▶ Reissner Nordstrom Black Hole (Q)
 - ► Kerr Black Hole (*J*)
- No-Hair Theorem: "All black hole solutions can be completely characterised by only three parameters: M, Q, J."
- ullet Add extra dimensions o Superstring Theory (d=10) (LATER!!!)

• Way to define these 3 quantities: M, Q, J (conserved charges)

• Way to define these 3 quantities: M, Q, J (conserved charges)

ullet Motivated by the easiest one: $Q_{
m Electric\ Charge}$

- Way to define these 3 quantities: M, Q, J (conserved charges)
- Motivated by the easiest one: Q Electric Charge
- Electrodynamics
 - ▶ Bianchi Identity: dF = 0

- Way to define these 3 quantities: M, Q, J (conserved charges)
- ullet Motivated by the easiest one: Q_{Electric} Charge
- Electrodynamics
 - ▶ Bianchi Identity: dF = 0
 - ▶ Equations of Motion: d*F = *j \rightarrow d*j = 0 (Conserved Current)

- Way to define these 3 quantities: M, Q, J (conserved charges)
- ullet Motivated by the easiest one: $Q_{\text{Electric Charge}}$
- Electrodynamics
 - ▶ Bianchi Identity: dF = 0
 - ▶ Equations of Motion: d*F = *j \rightarrow d*j = 0 (Conserved Current)
 - Conserved Charge:

$$Q = \int\limits_{\Sigma} *j = \int\limits_{\Sigma} d*F = \int\limits_{\partial \Sigma} *F = Q$$
 Electric Charge

- General Relativity
 - We would like to have a similar expression for M and J

- General Relativity
 - ▶ We would like to have a similar expression for M and J
 - ► (We are not going to deal with *J* in this project!)

- General Relativity
 - ▶ We would like to have a similar expression for M and J
 - ► (We are not going to deal with *J* in this project!)
 - $lackbox{Define } j^\mu = R^{\mu
 u} {\sf K}_
 u
 ightarrow
 abla_
 u j^\mu = 0 ext{ (Conserved Current)}$

General Relativity

- We would like to have a similar expression for M and J
- ▶ (We are not going to deal with *J* in this project!)
- lacksquare Define $j^\mu=R^{\mu
 u}K_
 u
 ightarrow
 abla_
 u j^\mu=0$ (Conserved Current)
- Conserved Charge:

$$Q = \int_{\Sigma} *j = \int_{\Sigma} d * dK = \int_{\partial \Sigma} *dK$$

General Relativity

- ▶ We would like to have a similar expression for M and J
- ▶ (We are not going to deal with *J* in this project!)
- lacksquare Define $j^\mu=R^{\mu
 u}K_
 u
 ightarrow
 abla_
 u j^\mu=0$ (Conserved Current)
- Conserved Charge:

$$Q = \int_{\Sigma} *j = \int_{\Sigma} d * dK = \int_{\partial \Sigma} *dK$$

Komar Integral

$$Q_K = \kappa_d \int_{\partial \Sigma} *dK$$

• Simplest Example: The Schwarzschild Black Hole

- Simplest Example: The Schwarzschild Black Hole
 - Schwarzschild Metric
 - Killing vector $K^{\mu} = (1, 0, 0, 0)$

- Simplest Example: The Schwarzschild Black Hole
 - Schwarzschild Metric
 - Killing vector $K^{\mu} = (1,0,0,0)$
 - ▶ By calculating *dK and by choosing $\kappa_d = \frac{1}{8\pi G_4}$, we end up having:

- Simplest Example: The Schwarzschild Black Hole
 - Schwarzschild Metric
 - Killing vector $K^{\mu} = (1,0,0,0)$
 - ▶ By calculating *dK and by choosing $\kappa_d = \frac{1}{8\pi G_4}$, we end up having:
- Komar Integral

$$M = \frac{1}{8\pi G_4} \int_{\partial \Sigma} *dK$$

- Simplest Example: The Schwarzschild Black Hole
 - Schwarzschild Metric
 - Killing vector $K^{\mu} = (1,0,0,0)$
 - ▶ By calculating *dK and by choosing $\kappa_d = \frac{1}{8\pi G_4}$, we end up having:
- Komar Integral

$$M = \frac{1}{8\pi G_4} \int_{\partial \Sigma} *dK$$

• Remember: $j_{\mu}=R_{\mu\nu}K^{\nu} \xrightarrow{{\sf Einstein}} T_{\mu\nu}K^{\nu} \xrightarrow{{\sf Temporal}} T_{00} o M$

• Include Cosmological Constant Λ (AdS Spacetime)

- Include Cosmological Constant Λ (AdS Spacetime)
- Include Topology

- Include Cosmological Constant Λ (AdS Spacetime)
- Include Topology
- Include Matter Fields (Non Empty Spacetime)

- Include Cosmological Constant Λ (AdS Spacetime)
- Include Topology
- Include Matter Fields (Non Empty Spacetime)
- Interpret the result. Why 4 dimensions are not enough!

- Include Cosmological Constant Λ (AdS Spacetime)
- Include Topology
- Include Matter Fields (Non Empty Spacetime)
- Interpret the result. Why 4 dimensions are not enough!
- Moving to String Theory

- Include Cosmological Constant Λ (AdS Spacetime)
- Include Topology
- Include Matter Fields (Non Empty Spacetime)
- Interpret the result. Why 4 dimensions are not enough!
- Moving to String Theory

Hilbert - Einstein Action

$$S_{HE} = \frac{1}{2\kappa} \int d^d x \sqrt{-g} \Big(R - 2\Lambda \Big)$$

Hilbert - Einstein Action

$$S_{HE} = \frac{1}{2\kappa} \int d^d x \sqrt{-g} \Big(R - 2\Lambda \Big)$$

• Einstein Equations: $R_{\mu\nu}=rac{2\Lambda}{d-2}g_{\mu
u}$

Hilbert - Einstein Action

$$S_{HE} = \frac{1}{2\kappa} \int d^d x \sqrt{-g} \Big(R - 2\Lambda \Big)$$

- Einstein Equations: $R_{\mu\nu}=rac{2\Lambda}{d-2}g_{\mu
 u}$
- Solution: AdS Spacetime

$$ds^2 = -\frac{r^2}{R^2}dt^2 + \frac{R^2}{r^2}dr^2 + r^2d\Omega_2^2, \qquad \frac{1}{R^2} = \frac{2\Lambda}{(d-1)(d-2)}$$

Hilbert - Einstein Action

$$S_{HE} = \frac{1}{2\kappa} \int d^d x \sqrt{-g} \Big(R - 2\Lambda \Big)$$

- Einstein Equations: $R_{\mu\nu}=rac{2\Lambda}{d-2}g_{\mu\nu}$
- Solution: AdS Spacetime

$$ds^2 = -\frac{r^2}{R^2}dt^2 + \frac{R^2}{r^2}dr^2 + r^2d\Omega_2^2, \qquad \frac{1}{R^2} = \frac{2\Lambda}{(d-1)(d-2)}$$

• The Komar integral diverges:

$$Q_{\mathcal{K}} = \int\limits_{\partial \Sigma} *d\mathcal{K} = \int\limits_{\partial \Sigma} d\Sigma_{\mu
u}
abla^{\mu} \mathcal{K}^{
u} = \int\limits_{\partial \Sigma} d\Sigma_{tr} rac{r}{R^2}
ightarrow \infty$$

ullet Way to deal with the divergence: Killing Potential $\omega^{\mu
u}$

- ullet Way to deal with the divergence: Killing Potential $\omega^{\mu
 u}$
 - Killing Equation: $abla_{(\mu} K_{
 u)} = 0
 ightarrow
 abla_{\mu} K^{\mu} = 0$

- ullet Way to deal with the divergence: Killing Potential $\omega^{\mu
 u}$
 - Killing Equation: $\nabla_{(\mu} K_{\nu)} = 0 \rightarrow \nabla_{\mu} K^{\mu} = 0$
 - We define the **fully antisymmetric** Killing Potential $K^{
 u}=
 abla_{\mu}\omega^{\mu
 u}$

- ullet Way to deal with the divergence: Killing Potential $\omega^{\mu
 u}$
 - Killing Equation: $\nabla_{(\mu}K_{\nu)}=0 \rightarrow \nabla_{\mu}K^{\mu}=0$
 - We define the **fully antisymmetric** Killing Potential $K^{
 u}=
 abla_{\mu}\omega^{\mu
 u}$
 - That way: $\nabla_{\mu} K^{\mu} = \nabla_{\mu} \nabla_{\nu} \omega^{\nu \mu} = 0$

- ullet Way to deal with the divergence: Killing Potential $\omega^{\mu
 u}$
 - Killing Equation: $\nabla_{(\mu} K_{\nu)} = 0 \rightarrow \nabla_{\mu} K^{\mu} = 0$
 - lacktriangle We define the **fully antisymmetric** Killing Potential $K^{
 u}=
 abla_{\mu}\omega^{\mu
 u}$
 - ▶ That way: $\nabla_{\mu} K^{\mu} = \nabla_{\mu} \nabla_{\nu} \omega^{\nu \mu} = 0$
 - Gauge Freedom: $\tilde{\omega}_{\mu\nu} = \omega_{\mu\nu} + \nabla_{\rho}\lambda^{\rho\mu\nu}$

- ullet Way to deal with the divergence: Killing Potential $\omega^{\mu
 u}$
 - Killing Equation: $\nabla_{(\mu}K_{\nu)}=0 \rightarrow \nabla_{\mu}K^{\mu}=0$
 - We define the **fully antisymmetric** Killing Potential $K^{
 u}=
 abla_{\mu}\omega^{\mu
 u}$
 - ▶ That way: $\nabla_{\mu} K^{\mu} = \nabla_{\mu} \nabla_{\nu} \omega^{\nu \mu} = 0$
 - Gauge Freedom: $\tilde{\omega}_{\mu\nu} = \omega_{\mu\nu} + \nabla_{\rho}\lambda^{\rho\mu\nu}$
 - Killing Potential works as a counterterm which we add to cancel the divergence.

$$Q_{\mathcal{K}} = \int\limits_{\partial \Sigma} d\Sigma_{\mu
u} \Bigl(
abla^{\mu} \mathcal{K}^{
u} + rac{2 \Lambda}{(d-2)} \omega^{\mu
u} \Bigr)$$

Cosmological Constant A

ullet We solve $K^
u =
abla_\mu \omega^{\mu
u}$ for AdS space

Cosmological Constant Λ

- \bullet We solve ${\it K}^{
 u}=
 abla_{\mu}\omega^{\mu
 u}$ for AdS space
- General Result

$$\omega_{\mathsf{AdS}}^{\mathit{rt}} = \frac{\mathit{r}}{\mathit{d}-1}$$

Cosmological Constant Λ

- ullet We solve $K^
 u =
 abla_\mu \omega^{\mu
 u}$ for AdS space
- General Result

$$\omega_{\mathsf{AdS}}^{\mathit{rt}} = \frac{\mathit{r}}{\mathit{d}-1}$$

Substituting back:

$$Q_{K} = \int_{\partial \Sigma} d\Sigma_{tr} \left(\frac{r}{R^{2}} - \frac{2\Lambda}{d-2} \frac{r}{d-1} \right) = 0$$

Cosmological Constant A

- ullet We solve $K^
 u =
 abla_\mu \omega^{\mu
 u}$ for AdS space
- General Result

$$\omega_{\mathsf{AdS}}^{\mathsf{rt}} = \frac{\mathsf{r}}{\mathsf{d}-1}$$

Substituting back:

$$Q_{K} = \int_{\partial \Sigma} d\Sigma_{tr} \left(\frac{r}{R^{2}} - \frac{2\Lambda}{d-2} \frac{r}{d-1} \right) = 0$$

ullet We manage to cancel the divergence coming from Λ

Cosmological Constant Λ

- ullet We solve $K^
 u =
 abla_\mu \omega^{\mu
 u}$ for AdS space
- General Result

$$\omega_{\mathsf{AdS}}^{\mathsf{rt}} = \frac{\mathsf{r}}{\mathsf{d}-1}$$

Substituting back:

$$Q_{K} = \int_{\partial \Sigma} d\Sigma_{tr} \left(\frac{r}{R^{2}} - \frac{2\Lambda}{d-2} \frac{r}{d-1} \right) = 0$$

- ullet We manage to cancel the divergence coming from Λ
- ullet We can still interpret Komar Integral as mass from the left over ${\cal T}_{\mu\nu}$

Overview

- Include Cosmological Constant Λ (AdS Spacetime) √
- Include Topology
- Include Matter Fields (Non Empty Spacetime)
- Interpret the result. Why 4 dimensions are not enough!
- Moving to String Theory

Spaces with two boundaries

- ▶ Outer Boundary $\partial \Sigma^{\text{out}}$
- Bulk Σ
- ▶ Inner Boundary $\partial \Sigma^{int}$

Spaces with two boundaries

- Outer Boundary $\partial \Sigma^{\text{out}}$
- Bulk Σ
- ▶ Inner Boundary $\partial \Sigma^{\text{int}}$

Stokes's Theorem:

$$\int\limits_{\Sigma} dA_{p} = \int\limits_{\partial \Sigma^{out}} A_{p} - \int\limits_{\partial \Sigma^{int}} A_{p}$$

Spaces with two boundaries

- Outer Boundary $\partial \Sigma^{\text{out}}$
- Bulk Σ
- ▶ Inner Boundary $\partial \Sigma^{\text{int}}$

Stokes's Theorem:

$$\int\limits_{\Sigma} d*dK = \int\limits_{\partial \Sigma^{out}} *dK - \int\limits_{\partial \Sigma^{int}} *dK$$

Spaces with two boundaries

- lacksquare Outer Boundary $\partial \Sigma^{ ext{out}}$
- Bulk Σ
- ▶ Inner Boundary $\partial \Sigma^{int}$

Stokes's Theorem:

$$\int_{\Sigma} d * dK = \int_{\underbrace{\partial \Sigma^{\text{out}}}} * dK - \int_{\partial \Sigma^{\text{int}}} * dK$$

Spaces with two boundaries

- Outer Boundary ∂Σ^{out}
- Bulk Σ
- ▶ Inner Boundary $\partial \Sigma^{int}$

$$Q_K = \int\limits_{\Sigma} d*dK + \int\limits_{\partial \Sigma^{int}} *dK$$

Spaces with two boundaries

- lacktriangle Outer Boundary $\partial \Sigma^{ ext{out}}$
- Bulk Σ
- $\underbrace{ \text{Inner Boundary } \partial \Sigma^{\text{int}} }_{\text{Event Horizon } \partial \Sigma^{\text{h}} }$

$$\left| Q_{K} = \int\limits_{\Sigma} d*dK + \int\limits_{\partial \Sigma^{h}} *dK \right|$$

$$Q_{K} = \int\limits_{\Sigma} d*dK + \int\limits_{\partial \Sigma^{h}} *dK$$

$$Q_K = \int d * dK + \int_{\partial \Sigma^h} * dK$$

Smarr Formula

$$Q_K = \int d * dK + \int_{\partial \Sigma^h} * dK$$

• $Q_K o \mathsf{Mass}$ (or Energy dE)

$$Q_K = \int d * dK + \int_{\partial \Sigma^h} * dK$$

- ullet $Q_K o \mathsf{Mass}$ (or Energy dE)
- $\int\limits_{\partial \Sigma^{\rm h}} *dK
 ightarrow {\sf Area} \; dA \;\;\;\; ({\sf Most general case:} \; dA, dQ, dJ)$

$$Q_K = \int d * dK + \int_{\partial \Sigma^h} * dK$$

- $Q_K o \mathsf{Mass}$ (or Energy dE)
- $\int\limits_{\partial\Sigma^{\rm h}}*dK
 ightarrow {\sf Area} \; dA \;\;\;\; ({\sf Most general case:} \; dA,dQ,dJ)$
- First Law of Black Hole Thermodynamics

$$dE \sim dA + dQ + dJ$$

$$Q_{K} = \int_{\Sigma} d * dK + \int_{\partial \Sigma^{h}} * dK$$

- $Q_K o \mathsf{Mass}$ (or Energy dE)
- $\int\limits_{\partial\Sigma^{\rm h}}*d{\sf K} o {\sf Area} \;d{\sf A} \qquad ({\sf Most general case:}\; d{\sf A},d{\sf Q},d{\sf J})$
- First Law of Black Hole Thermodynamics

$$dE \sim dA + dQ + dJ$$

$$\underbrace{Q_{\mathcal{K}}}_{\mathsf{No\ Divergence}} = \int\limits_{\Sigma} R^{\mu\nu} \mathit{K}_{\nu} \mathit{d}\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\mathsf{h}}} \nabla^{\mu} \mathit{K}^{\nu} \mathit{d}\Sigma_{\mu\nu}$$

$$\underbrace{Q_{K}}_{\text{No Divergence}} = \underbrace{\int\limits_{\Sigma} R^{\mu\nu} K_{\nu} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \nabla^{\mu} K^{\nu} d\Sigma_{\mu\nu}}_{\text{We expect no divergence}}$$

Smarr Formula

$$\underbrace{Q_{\mathcal{K}}}_{\text{No Divergence}} = \underbrace{\int\limits_{\Sigma} R^{\mu\nu} \mathcal{K}_{\nu} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\text{h}}} \nabla^{\mu} \mathcal{K}^{\nu} d\Sigma_{\mu\nu}}_{\text{We expect no divergence}}$$

Adding Killing Potential

$$Q_{\mathcal{K}} = \int\limits_{\Sigma} \Big(R^{\mu
u} \mathcal{K}_{
u} + \Lambda
abla_{
u} \omega^{\mu
u} \Big) d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\mathfrak{h}}} \Big(
abla^{\mu} \mathcal{K}^{
u} + \Lambda \omega^{\mu
u} \Big) d\Sigma_{\mu
u}$$

Smarr Formula

$$\underbrace{Q_{\mathcal{K}}}_{\text{No Divergence}} = \underbrace{\int\limits_{\Sigma} R^{\mu\nu} \mathcal{K}_{\nu} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \nabla^{\mu} \mathcal{K}^{\nu} d\Sigma_{\mu\nu}}_{\text{We expect no divergence}}$$

Adding Killing Potential

$$Q_{\mathcal{K}} = \int\limits_{\Sigma} \Big(R^{\mu\nu} \mathcal{K}_{\nu} + \Lambda \underbrace{\nabla_{\nu} \omega^{\mu\nu}}_{-\mathcal{K}^{\mu}} \Big) d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \Big(\nabla^{\mu} \mathcal{K}^{\nu} + \Lambda \omega^{\mu\nu} \Big) d\Sigma_{\mu\nu}$$

Smarr Formula

$$\underbrace{Q_{\mathcal{K}}}_{\text{No Divergence}} = \underbrace{\int\limits_{\Sigma} R^{\mu\nu} \mathcal{K}_{\nu} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \nabla^{\mu} \mathcal{K}^{\nu} d\Sigma_{\mu\nu}}_{\text{We expect no divergence}}$$

Adding Killing Potential

$$Q_{\mathcal{K}} = \int\limits_{\Sigma} \Big(R^{\mu\nu} \mathcal{K}_{\nu} + \Lambda \underbrace{\nabla_{\nu} \omega^{\mu\nu}}_{-\mathcal{K}^{\mu}} \Big) d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \Big(\nabla^{\mu} \mathcal{K}^{\nu} + \Lambda \omega^{\mu\nu} \Big) d\Sigma_{\mu\nu}$$

• Remember: $R_{\mu\nu} = \Lambda g_{\mu\nu} o R^{\mu\nu} K_{
u} = \Lambda K^{\mu}$

Smarr Formula

$$\underbrace{Q_{\mathcal{K}}}_{\text{No Divergence}} = \underbrace{\int\limits_{\Sigma} R^{\mu\nu} K_{\nu} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \nabla^{\mu} K^{\nu} d\Sigma_{\mu\nu}}_{\text{We expect no divergence}}$$

Adding Killing Potential

$$Q_{\mathcal{K}} = \int\limits_{\Sigma} \Big(R^{\mu\nu} \mathcal{K}_{\nu} + \Lambda \underbrace{\nabla_{\nu} \omega^{\mu\nu}}_{-\mathcal{K}^{\mu}} \Big) d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{h}} \Big(\nabla^{\mu} \mathcal{K}^{\nu} + \Lambda \omega^{\mu\nu} \Big) d\Sigma_{\mu\nu}$$

- Remember: $R_{\mu\nu} = \Lambda g_{\mu\nu} \to R^{\mu\nu} K_{\nu} = \Lambda K^{\mu}$
- Bulk → Free of divergences! √

Summing Up

- Putting everything together
 - ▶ Cosmological Constant → Killing Potential
 - ▶ Topology → Smarr Formula
 - Inner Boundary = Event Horizon
 - No divergence at infinity and in the bulk!

$$M = \int\limits_{\Sigma} R^{\mu
u} K_{
u} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\mathsf{h}}} \left(
abla^{\mu} K^{
u} + \Lambda \omega^{\mu
u} \right) d\Sigma_{\mu
u}$$

Overview

- Include Cosmological Constant Λ (AdS Spacetime) √
- Include Topology √
- Include Matter Fields (Non Empty Spacetime)
- Interpret the result. Why 4 dimensions are not enough!
- Moving to String Theory

ullet Non-Empty Spacetime o Contribution of the bulk to the mass!

- $\bullet \ \, \text{Non-Empty Spacetime} \to \text{Contribution of the bulk to the mass!}$
- We include Matter Fields
 - ► A set of scalar fields X¹.
 - ▶ A set of U(1) gauge fields A^I .

- Non-Empty Spacetime → Contribution of the bulk to the mass!
- We include Matter Fields
 - ► A set of scalar fields X¹.
 - ▶ A set of U(1) gauge fields A^I .
- The Action

$$S = \int d^4x \sqrt{-g} \left(R - \frac{1}{2} Q_{IJ} \partial_{\mu} X^I \partial^{\mu} X^J - \frac{1}{4} Q_{IJ} F^I_{\mu\nu} F^{J\mu\nu} \right) - \int C_{IJ} F^I \wedge F^J$$

- Non-Empty Spacetime → Contribution of the bulk to the mass!
- We include Matter Fields
 - \triangleright A set of scalar fields X^{I} .
 - ▶ A set of U(1) gauge fields A^I .
- The Action

$$S = \int d^4x \sqrt{-g} \Big(R - \frac{1}{2} Q_{IJ} \partial_\mu X^I \partial^\mu X^J - \frac{1}{4} Q_{IJ} F^I_{\mu\nu} F^{J\mu\nu} \Big) - \underbrace{\int C_{IJ} F^I \wedge F^J}_{\text{Chern-Simons Term}}$$

ullet Chern-Simons Term: Purely Topological o Topological Current

Remember

$$M = \int\limits_{\Sigma} R^{\mu
u} K_{
u} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{
m h}} \Big(
abla^{\mu} K^{
u} + \Lambda \omega^{\mu
u} \Big) d\Sigma_{\mu
u}$$

Remember

$$M = \int\limits_{\Sigma} R^{\mu
u} K_{
u} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\mathrm{h}}} \Big(
abla^{\mu} K^{
u} + \Lambda \omega^{\mu
u} \Big) d\Sigma_{\mu
u}$$

• We introduce dual field: $G_I = Q_{IJ} * F^J$

Remember

$$M = \int\limits_{\Sigma} R^{\mu
u} \mathsf{K}_{
u} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\mathsf{h}}} \Big(
abla^{\mu} \mathsf{K}^{
u} + \Lambda \omega^{\mu
u} \Big) d\Sigma_{\mu
u}$$

- We introduce dual field: $G_I = Q_{IJ} * F^J$
- Einstein Equations

$$R_{\mu\nu} = \frac{1}{2} Q_{IJ} \partial_{\mu} X^{I} \partial_{\nu} X^{J} + \frac{1}{4} Q_{IJ} F^{I}_{\mu\rho} F^{J\rho}_{\nu} + \frac{1}{4} Q^{IJ} G_{I\mu\rho} G^{\rho}_{J\nu}$$

Remember

$$M = \int\limits_{\Sigma} R^{\mu
u} {\sf K}_{
u} d\Sigma_{\mu} + \int\limits_{\partial \Sigma^{\sf h}} \Big(
abla^{\mu} {\sf K}^{
u} + \Lambda \omega^{\mu
u} \Big) d\Sigma_{\mu
u}$$

- We introduce dual field: $G_I = Q_{IJ} * F^J$
- Einstein Equations

$$R_{\mu\nu} = \frac{1}{2} Q_{IJ} \partial_{\mu} X^I \partial_{\nu} X^J + \frac{1}{4} Q_{IJ} F^I_{\mu\rho} F^{J\rho}_{\nu} + \frac{1}{4} Q^{IJ} G_{I\mu\rho} G^{\rho}_{J\nu}$$

ullet $R^{\mu
u}K_
u$ o We need to calculate: $K^\mu\partial_\mu X$, $K^\mu F_{\mu
u}$ and $K^\mu G_{\mu
u}$

Assumption: Matter Fields respect the isometries.

31 / 44

- Assumption: Matter Fields respect the isometries.
- If $\mathcal{L}_K g_{\mu\nu}=0$, then:

$$\mathcal{L}_K X^I = 0$$
 $\mathcal{L}_K F^I = 0$ $\mathcal{L}_K G_I = 0$

- Assumption: Matter Fields respect the isometries.
- If $\mathcal{L}_K g_{\mu\nu}=0$, then:

$$\mathcal{L}_K X^I = 0$$
 $\mathcal{L}_K F^I = 0$ $\mathcal{L}_K G_I = 0$

• $\mathcal{L}_K X^I = 0 o K^\mu \partial_\mu X = 0$ No contribution from scalar fields!

- Assumption: Matter Fields respect the isometries.
- If $\mathcal{L}_K g_{\mu\nu}=0$, then:

$$\mathcal{L}_K X^I = 0$$
 $\mathcal{L}_K F^I = 0$ $\mathcal{L}_K G_I = 0$

- $\mathcal{L}_K X^I = 0 o K^\mu \partial_\mu X = 0$ No contribution from scalar fields!
- $\mathcal{L}_K F^I = 0 \rightarrow d(i_K F^I) = 0 \implies \left[i_K F^I = \Lambda^I + d\lambda^I\right]$

- Assumption: Matter Fields respect the isometries.
- If $\mathcal{L}_K g_{\mu\nu}=0$, then:

$$\mathcal{L}_K X^I = 0$$
 $\mathcal{L}_K F^I = 0$ $\mathcal{L}_K G_I = 0$

- $\mathcal{L}_K X^I = 0 o \overline{K^\mu \partial_\mu X = 0}$ No contribution from scalar fields!
- $\mathcal{L}_K F^I = 0 \rightarrow d(i_K F^I) = 0 \implies i_K F^I = \Lambda^I + d\lambda^I$
- $\mathcal{L}_K G_I = 0 \rightarrow \left[i_K G_I = -2C_{IJ}\Lambda^J 2C_{IJ}d\lambda^J + H_I + dh_I \right]$

- Assumption: Matter Fields respect the isometries.
- If $\mathcal{L}_K g_{\mu\nu}=0$, then:

$$\mathcal{L}_K X^I = 0$$
 $\mathcal{L}_K F^I = 0$ $\mathcal{L}_K G_I = 0$

- $\mathcal{L}_K X^I = 0 o K^\mu \partial_\mu X = 0$ No contribution from scalar fields!
- $\mathcal{L}_K F^I = 0 \rightarrow d(i_K F^I) = 0 \implies i_K F^I = \Lambda^I + d\lambda^I$
- $\mathcal{L}_K G_I = 0 \rightarrow \left[i_K G_I = -2C_{IJ} \Lambda^J 2C_{IJ} d\lambda^J + H_I + dh_I \right]$
- Important: Λ^I and H^I are closed but not exact!

Substituting to Smarr Formula

$$M = \int\limits_{\Sigma} \Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H_I \wedge F^I + \int\limits_{\partial \Sigma^h} \text{"something"}$$

Substituting to Smarr Formula

$$M = \int\limits_{\Sigma} \Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H_I \wedge F^I + \int\limits_{\partial \Sigma^h} \text{"something"}$$

• "something": ∇K , $\Lambda \omega$, λ^I and h_I

Substituting to Smarr Formula

$$M = \int\limits_{\Sigma} \Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H_I \wedge F^I + \int\limits_{\partial \Sigma^h} \text{"something"}$$

- "something": ∇K , $\Lambda \omega$, λ^I and h_I
- Finally, we can remove the event horizon!

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \Lambda^{I} \wedge (G_I + 2C_{IJ} \wedge F^{J}) + H_I \wedge F^{I}$$

Overview

- Include Cosmological Constant Λ (AdS Spacetime) √
- Include Topology √
- Include Matter Fields (Non Empty Spacetime) √
- Interpret the result. Why 4 dimensions are not enough!
- Moving to String Theory

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \left(\Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H^I \wedge F_I \right)$$

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \left(\Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H^I \wedge F_I \right)$$

• $H^p(M) = \frac{\text{Group of Closed p-Forms}}{\text{Group of Exact p-Forms}}$

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \left(\Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H^I \wedge F_I \right)$$

- $H^p(M) = \frac{\text{Group of Closed p-Forms}}{\text{Group of Exact p-Forms}}$
- Cohomology $H^r(M)$ says which forms are allowed by the topology!

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \left(\Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H^I \wedge F_I \right)$$

- $H^p(M) = \frac{\text{Group of Closed p-Forms}}{\text{Group of Exact p-Forms}}$
- Cohomology $H^r(M)$ says which forms are allowed by the topology!
- e.g. Trivial Cohomology $H^1(M) = 0$

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \left(\Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H^I \wedge F_I \right)$$

- $H^p(M) = \frac{\text{Group of Closed p-Forms}}{\text{Group of Exact p-Forms}}$
- Cohomology $H^r(M)$ says which forms are allowed by the topology!
- e.g. Trivial Cohomology $H^1(M) = 0$
- Simply Connected Topological Space $o H^1(M) = 0 o M = 0$

$$M = \frac{1}{32\pi G_4} \int_{\Sigma} \left(\Lambda^I \wedge (G_I + 2C_{IJ} \wedge F^J) + H^I \wedge F_I \right)$$

- $H^p(M) = \frac{\text{Group of Closed p-Forms}}{\text{Group of Exact p-Forms}}$
- Cohomology $H^r(M)$ says which forms are allowed by the topology!
- e.g.: Trivial Cohomology $H^1(M) = 0$
- Simply Connected Topological Space $o H^1(M) = 0 o M = 0$
- Adding extra dimensions...

• 4-D: Just seen!

4-D: Just seen!

 5-D: (2014) Global Structure of Five-dimensional BPS Fuzzballs -Gibbons & Warner (arXiv:1305.0957v1)

- 4-D: Just seen!
- 5-D: (2014) Global Structure of Five-dimensional BPS Fuzzballs -Gibbons & Warner (arXiv:1305.0957v1)
- 6-D: (2015) Structure of Six-Dimensional Microstate Geometries -Lange, Mayerson & Vercnocke (arXiv:1504.07987v1)

- 4-D: Just seen!
- 5-D: (2014) Global Structure of Five-dimensional BPS Fuzzballs -Gibbons & Warner (arXiv:1305.0957v1)
- 6-D: (2015) Structure of Six-Dimensional Microstate Geometries -Lange, Mayerson & Vercnocke (arXiv:1504.07987v1)
- 11-D: (2014) Smarr's Formula in Eleven-Dimensional Supergravity -Haas (arXiv:1405.3708v1)

- 4-D: Just seen!
- 5-D: (2014) Global Structure of Five-dimensional BPS Fuzzballs -Gibbons & Warner (arXiv:1305.0957v1)
- 6-D: (2015) Structure of Six-Dimensional Microstate Geometries -Lange, Mayerson & Vercnocke (arXiv:1504.07987v1)
- 10-D: Current Project Supersting Theory
- 11-D: (2014) Smarr's Formula in Eleven-Dimensional Supergravity Haas (arXiv:1405.3708v1)

Overview

- Include Cosmological Constant Λ (AdS Spacetime) √
- Include Topology √
- Include Matter Fields (Non Empty Spacetime) √
- ullet Interpret the result. Why 4 dimensions are not enough! \checkmark
- Moving to String Theory

Superstring Theory

• Superstring Theory requires 10 dimensions.

Superstring Theory

- Superstring Theory requires 10 dimensions.
- Different types of Superstring Theories.

Superstring Theory

- Superstring Theory requires 10 dimensions.
- Different types of Superstring Theories.

• Current Project: IIA Superstring Theory Limit SUGRA

Fields in Type II Superstring Theory

- Fields in Type II Superstring Theory
 - NS-NS Sector

Low Energy Limit \rightarrow Massless Fields

$$\alpha_{\mu}^{-1}\alpha_{\nu}^{-1}\ket{0}\begin{cases} \text{Symmetric part without Trace} \to \text{Graviton } g_{\mu\nu}\\ \text{Antisymmetric part} \to \text{Antisymmetric 2-form } B_{\mu\nu}\\ \text{Trace} \to \text{Dilaton } \phi \end{cases}$$

Fields in Type II Superstring Theory

NS-NS Sector

Low Energy Limit \rightarrow Massless Fields

$$\alpha_{\mu}^{-1}\alpha_{\nu}^{-1}\ket{0}\begin{cases} \text{Symmetric part without Trace} \to \text{Graviton } g_{\mu\nu}\\ \text{Antisymmetric part} \to \text{Antisymmetric 2-form } B_{\mu\nu}\\ \text{Trace} \to \text{Dilaton } \phi \end{cases}$$

R-R Sector

Generalisation of gauge fields: C_p with Field Strengths $F_p=dC_{p-1}$ $(p=0,1,\dots 10)$

- Fields in Type II Superstring Theory
 - NS-NS Sector

Low Energy Limit \rightarrow Massless Fields

$$\alpha_{\mu}^{-1}\alpha_{\nu}^{-1}\ket{0}\begin{cases} \text{Symmetric part without Trace} \to \text{Graviton } g_{\mu\nu}\\ \text{Antisymmetric part} \to \text{Antisymmetric 2-form } B_{\mu\nu}\\ \text{Trace} \to \text{Dilaton } \phi \end{cases}$$

R-R Sector

Generalisation of gauge fields: C_p with Field Strengths $F_p = dC_{p-1}$ $(p = 0, 1, \dots, 10)$

- **Type IIA**: NS-NS: $g_{\mu\nu}$, B_2 , ϕ R-R: C_1 , C_3 , (C_5) , (C_7)

• Constructing an action: $S_{IIA} = S_{NS} + S_{RR} + S_{CS}$

- Constructing an action: $S_{IIA} = S_{NS} + S_{RR} + S_{CS}$

 - $S_{CS} = -rac{1}{4\kappa^2}\int B_2 \wedge ilde{F}_4 \wedge ilde{F}_4$

- Constructing an action: $S_{IIA} = S_{NS} + S_{RR} + S_{CS}$
 - $S_{NS} = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} \left(R \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \frac{1}{2} e^{-\phi} |H_3|^2 \right)$

 - $S_{CS} = -\frac{1}{4\kappa^2} \int B_2 \wedge \tilde{F}_4 \wedge \tilde{F}_4$
- Fast Forward: Repeat Process of 4 Dimensions √
 - ► Einstein Equation Bianchi Identities Equations of motion
 - ▶ Define the dual fields and rewrite everything in terms of them
 - \mathcal{L}_K (all fields) = 0 \rightarrow Solve the equations
 - Substitute everything into Smarr Formula

$$M = \int\limits_{\Sigma} \Lambda_2 \wedge f(\mathsf{fields}) + \Lambda_6 \wedge H_3^* + \sum_{n}^{1,3,5,7} \Omega_n \wedge \left(\tilde{F}_{9-n}^* + C_{6-n}^* \wedge H_3^* \right) \wedge e^{B_2}$$

$$M = \int\limits_{\Sigma} \Lambda_2 \wedge f(\mathsf{fields}) + \Lambda_6 \wedge H_3^* + \sum_{n}^{1,3,5,7} \Omega_n \wedge \left(\tilde{F}_{9-n}^* + C_{6-n}^* \wedge H_3^* \right) \wedge \mathsf{e}^{B_2}$$

- Λ_2 comes from H_3 . Assumption: $H^2(M) \neq 0$
- Λ_6 comes from H_7 . Assumption: $H^6(M) \neq 0$
- All Ω_n come from RR sector. Assumption: $H^{2n+1}(M) \neq 0$

$$M = \int\limits_{\Sigma} \Lambda_2 \wedge f(\mathsf{fields}) + \Lambda_6 \wedge H_3^* + \sum_{n}^{1,3,5,7} \Omega_n \wedge \left(\tilde{F}_{9-n}^* + C_{6-n}^* \wedge H_3^* \right) \wedge \mathsf{e}^{B_2}$$

- Λ_2 comes from H_3 . Assumption: $H^2(M) \neq 0$
- Λ_6 comes from H_7 . Assumption: $H^6(M) \neq 0$
- All Ω_n come from RR sector. Assumption: $H^{2n+1}(M) \neq 0$
- More Harmonic Forms give us more freedom on choosing the topology!

$$M = \int\limits_{\Sigma} \Lambda_2 \wedge f(\mathsf{fields}) + \Lambda_6 \wedge H_3^* + \sum_{n}^{1,3,5,7} \Omega_n \wedge \left(\tilde{F}_{9-n}^* + C_{6-n}^* \wedge H_3^* \right) \wedge \mathsf{e}^{B_2}$$

- Λ_2 comes from H_3 . Assumption: $H^2(M) \neq 0$
- Λ_6 comes from H_7 . Assumption: $H^6(M) \neq 0$
- All Ω_n come from RR sector. Assumption: $H^{2n+1}(M) \neq 0$
- More Harmonic Forms give us more freedom on choosing the topology!
- More dimensions can easily produce a non-zero mass!

- Komar Integral: A way to measure conserved quantities!
 - Modify in case of AdS spacetime. (Among solutions: Killing Potential)
 - Expand in order to include topology (Smarr Formula)

- Komar Integral: A way to measure conserved quantities!
 - Modify in case of AdS spacetime. (Among solutions: Killing Potential)
 - Expand in order to include topology (Smarr Formula)
- \bullet Add Matter Fields \to Contribution of the bulk to the conserved charge!

- Komar Integral: A way to measure conserved quantities!
 - Modify in case of AdS spacetime. (Among solutions: Killing Potential)
 - Expand in order to include topology (Smarr Formula)
- Add Matter Fields → Contribution of the bulk to the conserved charge!
- Cohomology shows that 4-d case is not that interesting!

- Komar Integral: A way to measure conserved quantities!
 - Modify in case of AdS spacetime. (Among solutions: Killing Potential)
 - Expand in order to include topology (Smarr Formula)
- Add Matter Fields → Contribution of the bulk to the conserved charge!
- Cohomology shows that 4-d case is not that interesting!
- Type IIA Supersting Theory in d=10

- Komar Integral: A way to measure conserved quantities!
 - Modify in case of AdS spacetime. (Among solutions: Killing Potential)
 - Expand in order to include topology (Smarr Formula)
- Add Matter Fields → Contribution of the bulk to the conserved charge!
- Cohomology shows that 4-d case is not that interesting!
- Type IIA Supersting Theory in d = 10
- Extra dimensions give us more freedom on choosing topological spaces!

 Behaviour of the solutions to the problem of AdS Komar Integral in the bulk (e.g: G,H Formalism)

- Behaviour of the solutions to the problem of AdS Komar Integral in the bulk (e.g: G,H Formalism)
- Repeat procedure for Type IIB Superstring Theory (Even Harmonic Forms)

- Behaviour of the solutions to the problem of AdS Komar Integral in the bulk (e.g. G,H Formalism)
- Repeat procedure for Type IIB Superstring Theory (Even Harmonic Forms)
- ullet Compactification of 10-d result o Obtain the 4-d, 5-d and 6-d results (Previous papers)

- Behaviour of the solutions to the problem of AdS Komar Integral in the bulk (e.g: G,H Formalism)
- Repeat procedure for Type IIB Superstring Theory (Even Harmonic Forms)
- ullet Compactification of 10-d result o Obtain the 4-d, 5-d and 6-d results (Previous papers)
- Apply specific geometries and calculate explicitly the mass!
 - e.g. Lin, Lunin, Maldacena Geometries $(AdS_5 \times S_5)$
 - e.g. Any geometry of the form $(AdS_p \times S_q)$
 - **Expectation**: $M \sim \sum_n Q_n$, where Q_n are the brane's charges

Thanks for your attention!