Seinaleak eta Sistemak, 2016/17 Ekaineko azterketa

2017ko Ekainaren 20a

- 1. Izan bedi $x(t) = e^{-\mathbf{a}t} \sin(2\pi t) u_s(t)$ seinalea,
 - (a) Lortu **a** parametroaren balioa seinalearen energia $E_x = \frac{1}{5a}$ izateko.
 - (b) Lortu seinalearen anplitude espektroaren adierazpen bat. Zein maiztasunean lortzen du espektroak bere maximoa? Lortu a parametroaren balioa maximo hori $\frac{1}{4\pi}$ izateko. a parametroaren balio honetarako, zein da energi espektralaren dentsitate maximoa? Zein maiztasunean agertzen da maximo hori?
 - (c) x(t) seinalea lagintzen da $T_s = \frac{1}{4}$ periodoarekin. Lortu **a** parametroaren balioa lagindutako seinalearen energia 2 izateko.

2. Izan bitez hurrengo sistema

eta seinalea,

- (a) Lortu x(t) seinalearen anplitude espektroa.
- (b) Lortu sistemaren transferentzi funtzioa.
- (c) Lortu sistemaren irteera-seinalea denbora eremuan sarrera x(t) izanik.
- (d) Lortu sistemaren irteera-seinalea denbora eremuan sarrera bada,

$$x(t) = 10\cos(0.1t).$$

3. x(t) seinalearen anplitude espektroa da,

eta fase espektroa nulua da.

Seinale hori lagintzen da T_s periodoarekin. Gero berreraikitzen da iragazki ideala erabiliz $x_{con}(t)$ lortzeko. $x_{con}(t)$ berreraikitako seinalearen anplitude espektroa da,

Posible al da berreraikitako seinalearen anplitude espektroa aurrekoa izatea? Eztabaidatu erantzuna. Erantzuna baiezkoa izan bada, zein izango da T_s aren balioa?