

Binary to Octal

Decimal Octal

Binary Hexadecimal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

Example

 $1011010111_2 = ?_8$

 $1011010111_2 = 1327_8$

Binary to Hexadecimal

Decimal

Octal

Binary

Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

Example

 $1010111011_2 = ?_{16}$

 $1010111011_2 = 2BB_{16}$

Octal to Hexadecimal

Decimal Octal Binary Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

Example

$$1076_8 = ?_{16}$$

$$1076_8 = 23E_{16}$$

Hexadecimal to Octal

Decimal

Binary

Octal

Hexadecimal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Example

 $1F0C_{16} = ?_{8}$

 $1F0C_{16} = 17414_{8}$

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Skip answer

Answer

Exercise - Convert ...

Answer

Decim al	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1 <i>C</i> 3
431	110101111	657	1AF

Common Powers (1 of 2)

Base 10

Power	Preface	Symbol	Value
10-12	pico	р	.00000000001
10-9	nano	n	.00000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10 ³	kilo	k	1000
10 ⁶	mega	M	1000000
10 ⁹	giga	G	100000000
10 ¹²	tera	Т	1000000000000

Common Powers (2 of 2)

Base 2

Power	Preface	Symbol	Value
210	kilo	k	1024
2 ²⁰	mega	M	1048576
2 ³⁰	Giga	G	1073741824

- What is the value of "k", "M", and "G"?
- In computing, particularly w.r.t. memory, the base-2 interpretation generally applies

Example

Exercise - Free Space

 Determine the "free space" on all drives on a machine in the lab

	Free space		
Drive	Bytes	GB	
A:			
C:			
D:			
E:			
etc.			

Review — multiplying powers

For common bases, add powers

$$a^b \times a^c = a^{b+c}$$

$$2^6 \times 2^{10} = 2^{16} = 65,536$$

or...

$$2^6 \times 2^{10} = 64 \times 2^{10} = 64 k$$

Binary Addition (1 of 2)

Two 1-bit values

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10 🦴

"two"

Binary Addition (2 of 2)

- Two n-bit values
 - Add individual bits
 - Propagate carries
 - E.g.,

Multiplication (1 of 3)

Decimal (just for fun)

$$\begin{array}{r}
 35 \\
 \times 105 \\
 \hline
 175 \\
 000 \\
 \hline
 35 \\
 \hline
 3675 \\
 \end{array}$$

Multiplication (2 of 3)

· Binary, two 1-bit values

Α	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication (3 of 3)

- Binary, two n-bit values
 - As with decimal values
 - E.g.,

1110
x 1011
1110
1110
0000
1110
10011010

Fractions

· Decimal to decimal (just for fun)

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$

$$1 \times 10^{-1} = 0.1$$

$$3 \times 10^{0} = 3$$

$$3.14$$

Fractions

Binary to decimal

```
10.1011 => 1 x 2^{-4} = 0.0625

1 x 2^{-3} = 0.125

0 x 2^{-2} = 0.0

1 x 2^{-1} = 0.5

0 x 2^{0} = 0.0

1 x 2^{1} = 2.0

2.6875
```


Fractions

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Don't use a calculator!

Skip answer

Answer

Exercise - Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1 <i>C</i>
12.5078125	1100.10000010	14.404	<i>C</i> .82

Thank you

