CHELTENHAM GIRLS BW II

Question 1 (15 marks) Start a NEW page

(a) Let $\alpha = 3 + 4i$ and $\beta = 1 - i$ Express in the form x + iy where x and y are real

(i) $\alpha\beta$	
-------------------	--

(ii)
$$\frac{\alpha}{\beta}$$

(iii)
$$(\overline{\beta})^2$$

- (b) Consider the equation $z^2 + \gamma z + (2 i) = 0$ Find the complex number γ , given that 2i is a root of the given equation.
- (c) Let $\beta = -1 i\sqrt{3}$
 - (i) Express β in modulus-argument form.
 - (ii) Express β^{-10} in modulus-argument form.
 - (iii) Hence express β^{-10} in the form x+iy
- (d) Shade the region in the number plane described by $\frac{\pi}{3} < \arg z < \pi \quad \text{and} \quad 1 \le |z| \le 3$

-1-

Question 2 (15 marks) Start a NEW page

(a) (i) Find real numbers a and b such that $\frac{1}{(3-x)(1+x)} \equiv \frac{a}{(3-x)} + \frac{b}{(1+x)}$

(ii) Hence find
$$\int \frac{1}{(3-x)(1+x)} dx$$

(b) Find
$$\int \frac{1}{e^x + e^{-x}} dx$$
 3

(c) By completing the square, find
$$\int \frac{3}{\sqrt{x^2 + 6x + 13}} dx$$

(d) (i) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos x + \sin x} dx,$$
 using the substitution $t = \tan \frac{x}{2}$

(ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{x}{1 + \cos x + \sin x} dx,$$
 using the substitution $u = \frac{\pi}{2} - x$

Question 3 (15 marks) Start a NEW page

(a) The diagram shows the graph of $f(x) = \sin x$, for $-\pi \le x \le \pi$

Draw separate one-third page sketches of the graphs of the following:

$$(i) y = \frac{1}{f(x)}$$

(ii)
$$y = (f(x))^2$$

2

(iii)
$$|y| = f(x)$$

2

1

(iv)
$$y = \sin^{-1} f(x)$$

 $=\sin^{-1}f(x)$

Question 3 continues on page 4

(b) (i) Sketch on the same number plane:

2

2

$$y = |x| - 2 \text{ and}$$
$$y = -x^2 + 3x$$

(ii) Hence or otherwise solve $\frac{|x|-2}{-x^2+3x} > 0$

2

- (c) α , β , γ are the roots of the equation $x^3 + bx^2 + 12x + 4 = 0$, where b is a real constant.
 - i) Find an equation with α^{-1} , β^{-1} , γ^{-1} as roots.

2

2

(ii) Hence, or otherwise, find the value of b, given that

 $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$ are in arithmetic progression.

End of Question 3

Question 4 (15 marks) Start a NEW page

(a) The area bounded by the curve $y = e^{-\frac{1}{2}x^2}$ and the x-axis, between x = 0 and x = 2 is rotated about the y-axis. Using the method of cylindrical shells, find the volume of the solid formed. (Leave your answer in exact form)

3

$$y = e^{-\frac{1}{2}x^2}$$

Not to Scale

- (b) Consider the conic defined by the equation $\frac{x^2}{19-l} + \frac{y^2}{7-l} = 1$
 - (i) Determine the real value of *l* for which the equation defines: 2
 - (α) an ellipse
 - (β) an hyperbola
 - (ii) Sketch the curve corresponding to l = 3. Show the foci and the x and y intercepts. You are NOT required to show the directrices.
 - (iii) Describe how the shape of this curve changes as l increases from 3 towards 7.
 - (iv) Describe the limiting shape of the curve as l approaches 7.

Question 4 continues on page 6

(c) A circle is drawn to pass through the vertices of $\triangle ABC$. AM bisects $\angle BAC$ and meets BC at P as shown in the diagram.

Not to Scale

Copy or trace this diagram onto your answer sheet.

- (i) Prove that $\triangle ABM$ and $\triangle ACP$ are similar.

(ii) Prove that AB.AC = AP.AM

- 1
- (iii) Hence prove that $AB.AC BP.PC = AP^2$

3

End of Question 4

Question 5 (15 marks) Start a NEW page

- (a) (i) Show that $2\cos A \sin B = \sin(A+B) \sin(A-B)$
 - (ii) Hence, or otherwise, show that $(1+2\cos\theta+2\cos 2\theta+2\cos 3\theta)\sin\frac{\theta}{2} = \sin\frac{7\theta}{2}$
 - (iii) Let $A = 1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta$ 1 Show that if $\theta = \frac{2\pi}{7}$, then A = 0
 - (iv) Express A in terms of $\cos \theta$ You may assume $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. Do NOT prove this.

1

(v) Hence or otherwise prove that $\cos \frac{2\pi}{7}$ is a solution of the polynomial equation $8x^3 + 4x^2 - 4x - 1 = 0$

Question 5 continues on page 8

- (b) (i) Let $I_n = \int_1^{\epsilon} x(\ln x)^n dx$, n = 0,1,2,....

 Use integration by parts to show that $I_n = \frac{e^2}{2} \frac{n}{2} I_{n-1} \quad n = 1,2,3,....$
 - (ii) The area bounded by the curve $y = \sqrt{x} (\ln x)$, $x \ge 1$, the x-axis and the line x = e is rotated about the x-axis. Find the exact volume of the solid of revolution so formed.

2

- (c) 20 teachers volunteer to be considered for a special 50th anniversary celebrations committee. These consist of 4 Maths teachers, 4 Art teachers, 6 English teachers and 6 History teachers. 9 teachers are to be randomly chosen to form the committee.
 - (i) If there are no restrictions, in how many ways can the 9 teachers be chosen?
 - (ii) In how many ways can the θ teachers be chosen if no Art or Maths teachers are included?
 - (iii) What is the probability that no more than 1 Maths teacher and no more than 1 Art teacher are on the committee?

End of Question 5

Question 6 (15 marks) Start a NEW page

- (a) A body of mass m is falling from rest and experiences air resistance of kv^2 per unit mass. k is a constant, g is gravity under acceleration and v is the velocity of the body.
 - (i) Show that the equation of motion of the body is given by $\ddot{x} = g kv^2$
- (ii) If V is the terminal velocity, show that $V = \sqrt{\frac{g}{k}}$
 - (iii) Show that $x = \frac{1}{2k} \ln \left(\frac{g}{g kv^2} \right)$, where x is the distance travelled.
 - (iv) If W is the velocity of the body when it reaches the ground, show that the distance, S, fallen is given by $S = \frac{1}{2k} \ln \left(\frac{V^2}{V^2 W^2} \right)$

Question 6 continues on page 10

(b) The Bundeena Voluntary Firefighters have a massive water storage tank. The tank has a rectangular base with sides 16 metres and 10 metres. Its top is also rectangular with dimensions 20 metres and 12 metres. The tank has a depth of 4 metres and each of its four side faces is an isosceles trapezium. Each horizontal cross section parallel to the base of the tank is a rectangle.

Not to Scale

(i) Consider a cross section of the tank x metres by z metres and height y above the base. Show that the area of this cross section is given by

$$\frac{1}{2}y^2 + 18y + 160$$

(ii) Hence find the volume of the tank.

2

3

Ouestion 6 continues on page 11

3

The diagram shows the graph of y = f'(x), the gradient function of y = f(x)

Copy or trace this diagram onto your answer sheet.

Sketch, on a separate number plane and underneath your copy, the graph of y = f(x), given that f(0) = 1 and f(x) < 0 for x < -1. Show all relevant asymptotes.

End of Question 6

Question 7 (15 marks) Start a NEW page

Let P, Q, R and S be four points with parameters t_1 , t_2 , t_3 and t_4 on the hyperbola x = ct, $y = \frac{c}{t}$, as shown in the diagram.

The hyperbola is intersected by a circle whose equation is $(x-g)^2 + y^2 = r^2$

P, Q, R and S lie on the circle, as shown and C is the centre of the circle.

- Show that $t_1 + t_2 + t_3 + t_4 = \frac{2g}{c}$ 2
- If C is the midpoint of PQ, show that 2
- Hence, or otherwise, show that the origin is the midpoint of RS. 2

Question 7 continues on page 13

The quadrilateral ACBD has sides AC = 4, CB = 5, BD = 6 and DA = 3. $\angle DAC = \alpha$ and $\angle DBC = \beta$. DC = x, as shown.

- Show that the area of ACBD is given by (i) $A = 6 \sin \alpha + 15 \sin \beta$

2

3

By equating expressions for x^2 , show that (ii) $2\cos\alpha - 5\cos\beta = -3$

A

- Differentiate the identity in part (ii) implicitly, with respect to α , to find an expression for $\frac{d\beta}{d\alpha}$.
- Prove that the area of the quadrilateral is a maximum when the quadrilateral is cyclic. You need NOT prove the relevant stationary point is a maximum.
- If the quadrilateral is cyclic, find the exact area.

End of Question 7

Question 8

(15 marks) Start a NEW page

- Find a general solution for the equation (a) (i) $\cos A = \cos B$ Write the answer in terms of A and B.
 - Hence, or otherwise, solve 3 $\cos 2\theta = \sin 3\theta$, for $0 \le \theta \le \pi$
- (b) Use Mathematical Induction to show that 3 (i) $\sum_{n=1}^{n} \frac{1}{\sqrt{r}} > 2(\sqrt{n+1}-1)$, where n=1, 2, 3,

You may assume the inequality: $2k+3 > 2\sqrt{(k+1)(k+2)}$ Do NOT prove this.

Use the graph of $y = \frac{1}{\sqrt{x}}$ to show that 2 $\sum_{r=1}^{n} \frac{1}{\sqrt{r}} < 1 + \int_{1}^{n} \frac{1^{*}}{\sqrt{x}} dx$

3

Hence show that $198 < \sum_{r=1}^{10\,000} \frac{1}{\sqrt{r}} < 199$

Question 8 continues on page 15

The points Z_1, Z_2, Z_3 represent the complex numbers z_1, z_2, z_3 and the points W_1, W_2, W_3 represent the complex numbers w_1, w_2, w_3 .

If
$$\frac{z_2 - z_1}{z_3 - z_1} = \frac{w_2 - w_1}{w_3 - w_1}$$
 prove that $\Delta Z_1 Z_2 Z_3$ and $\Delta W_1 W_2 W_3$ are similar.

Not to Scale

End of Paper

- D. 2- 3+4i 1 1-i
- (i) db = (3+4i) (1-i) = 3-11+41+4 = 7 + i.
- (ii) $\frac{2}{\beta} = \frac{3+4i}{1-i} \times \frac{1+i}{1+i}$ $= \frac{2+3i+4i-4}{1+1i}$ $= -\frac{1}{2} + \frac{1}{2}i$ $= -\frac{1}{2} + \frac{1}{2}i$ 2
- (111) (B)= (1+i) = 21

- Solutions.

(2i) + 8, 2i + 2-i = 0. -4 + 2ir + 2-1 = 0 -2i - 27 + 1 = 0. +2r=1-2i 2 (x+ iy) = 1 - 4'

- arg p = 217 $\beta = 2 \operatorname{cis}\left(-\frac{1}{3}\right)$ (ii) $\beta^{-10} = 2^{-10} \operatorname{cis}\left(\frac{10}{3}\right)$
- (III) $\beta^{-10} = 2^{-10} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$ = 2 10 (-1 + 1 5) = -2"+ 2(5)2"

= + x 64 + 9x16. + 160x4. = 7943 m3.


```
(1) rus xu xi + 4 m nocos
                                                           = 15 sin & + 6 sin x
                                               (11) x= 3(+25-2×30 cos $=9+16-2×12 cor.
                                                         24 word = 60 work = -36
                                                      in 2 wit - 5 wip = - 7.
                                               (111) -2 sind + 5 sing. dp = 0
                                                (1V) dh = 1 cosh + 15 cost db = 0 for a hage
                                                    ie 0 = boost + it cosp, 2 sint
                                                         o = 6 (sin Booset sin L cos B) (3)
                                                          0 = sin (2+B)
                                                         => d+ B=0,77,277 + 0 impossible since
                                                         2st injossible since in let $ = 2
                                                           : . the grad is cyclic (opp his supp
= 2 (2 - 2) = 0, since tyte= 2 - (t, tt.)
```


