Numerical Analysis Assignment 6

1) Integral using trapezoidal Rule:

(harla H3;
$$6x: 16, c, d \neq 3$$
.

1) Integral using trapezoidal Rule:

 $f(0) = \frac{2}{x-4} + \frac{1}{x^2} +$

J)
$$\int_{0}^{1} x^{2}e^{-x} dx = \int_{0}^{1} 2 dx$$

$$\int_{0}^{1} x^{2}e^{-x} dx = \int_{0}^{1} 2 dx$$

Formular: $\int_{0}^{1} \int_{0}^{1} dx = (b - a) \frac{1}{2}(a) - \frac{1}{2}(a)$

$$\int_{0}^{1} x^{2}e^{-x} dx = (a - a) \frac{1}{2}(a) - \frac{1}{2}(a)$$

So $\int_{0}^{1} x^{2}e^{-x} dx = (a - a) \frac{1}{2}(a) - \frac{1}{2}(a)$

The penting using Simpson's rule

b) $\int_{0}^{1} \frac{1}{2} \frac{1}{2} dx = \int_{0}^{1} \frac{1}{2} \frac{1}$

3). () \(\int \frac{155}{\chi^2 \left| n\chi d\chi \text{where } f(u) = \chi^2 \left| n\chi \text{ while } \chi_0 = 1 \Per \chi_1 = 1,5 h = 210-10 = 1,5-1 - 0,25 . . By formular !-=> 0,25 [tw +hy(1,25)+ + (1,5)] = 1/2 [(2,25)6,4654651)] = 0,192245 d) $\int_{0}^{1} x^{2}e^{-x} dx$ where $f(x) = x^{2}e^{-x}$ while $x_{0} = 0$ $P_{x_{1}} = 1$ $h = \frac{x_1 - x_0}{2} = \frac{1 - 0}{2} = 0.5$ By primilar: - 0,5 [+(0)+4+(0,5)+14)] =7 /6 (0+0,6065+0,3+68) =7 0,162901681