Foundations of Lie Theory

Chi Zhang

E-mail: zhangchi2018@itp.ac.cn

ABSTRACT: These are notes for the course *Foundations of Lie Theory* in Fall 2020. Despite the somewhat confusing name of the course, it was mainly about the theory of algebraic groups. The course covered almost all of the book [OV]. These notes were live-Laged and unedited, thus it is more appropriate to consider them as a syllabus for *Foundations of Lie Theory*. All errors introduced are mine.

Contents

Contents		
1	The Jordan Decomposition	8
2	Lie Algebras of Algebraic Groups	13
3	Weights and Root System	21
4	Representations of $\mathfrak{sl}_2(\mathbb{C})$	23
5	Root System of Reductive Lie Algebras	24
6	Jacobson-Morozov Theorem	26
7	Root Systems	27
	7.1 Weyl Chamber and Simple Root System	28
	7.2 Weyl groups	29

Let k be an algebraically closed field and put $V = k^n$.

Proposition 0.1. Let $X \subseteq V$ be an algebraic set.

- (i) The Zariski topological of X is T_1 , id est, points are closed.
- (ii) Any family of closed subsets of X contains a minimal one.
- (iii) If $X_1 \supseteq X_2 \supseteq ...$ is a descending sequence of closed subsection of X, there is an h such that $X_i = X_h$ for $i \ge h$.
- (iv) Any open covering of *X* has a finite subcovering.

Proof. A point in V corresponds precisely to a maximal ideal of the coordinate ring $k[T_1, \ldots T_n]$, by the Nullstellensatz we know that it is closed, hence (i) follows. Since k is a field and hence is Noetherian, by the Hilbert's Basis Theorem $k[T_1, \ldots, T_n]$ is Noetherian, and using the fact that the algebraic sets in V are bijectively in correspondence to the ideals of $k[T_1, \ldots, T_n]$, (ii) and (iii) follow.

To show (iv), we just need to show its closed version, that if $\{I_{\alpha}\}_{\alpha\in A}$ is a family of ideals such that $\cap_{\alpha\in A}V(I_{\alpha})=\varnothing$, there is a finite subset $B\subseteq A$ such that $\cap_{\alpha\in B}V(I_{\alpha})=\varnothing$. But the assumption $\cap_{\alpha\in A}V(I_{\alpha})=\varnothing$ implies that $V(\cup_{\alpha\in A}I_{\alpha})=\varnothing$, that is, $k[T_1,\ldots,T_n]$ is generated by $\{I_{\alpha}\}_{\alpha\in A}$. Hence there are finitely many I_1,\ldots,I_h such that 1 lies in $I_1+\cdots I_h$, implying $\bigcap_{i=1}^h V(I_i)=\varnothing$.

A topological space with the property (ii) in the above proposition is called Noetherian.

Lemma 0.2. A closed subset of a Noetherian space is Noetherian for the induced topology.

X is irreducible if and only if any two non-empty open subsets of X have a non-empty intersection.

Lemma 0.3. Let X be a topological space.

- (i) $A \subseteq X$ is irreducible if and only if its closure \overline{A} is irreducible.
- (ii) Let $f: X \to Y$ be a continuous map to a topological space Y. If X is irreducible then so is the image of f(X).

Proof. Let A be irreducible. If \overline{A} is the union of two closed subsets A_1 and A_2 then A is the union of the closed subsets $A \cap A_1$ and $A \cap A_2$. By the irreducibility of A, we have, say $A = A \cap A_1$, hence $A \subseteq A_1$ and $\overline{A} \subseteq A_1$, which shows that \overline{A} is irreducible.

Conversely, assume that \overline{A} is irreducible. If A is the union of $A \cap B_1$ and $A \cap B_2$, where B_1, B_2 are closed subsets of X, we have $A = (A \cap B_1) \cup (A \cap B_2) = A \cap (B_1 \cup B_2)$, thus $A \subseteq B_1 \cup B_2$ and $\overline{A} \subseteq B_1 \cup B_2$. By the irreducibility of \overline{A} , we have, say $\overline{A} = B_1$. Hence $A \subset B_1$ and $A = A \cap B_1$, the irreducibility of A follows.

For (ii), if f(X) is the union of two closed subsets $f(X) \cap Y_1$, $f(X) \cap Y_2$, where Y_1, Y_2 are closed subsets of Y. Thus $X = f^{-1}(Y_1) \cup f^{-1}(Y_2)$. By the continuity of f, $f^{-1}(Y_1)$, $f^{-1}(Y_2)$ are closed subsets in X and by the irreducible of X we have $X = f^{-1}(Y_1)$, which says that $f(X) \subseteq Y_1$ and $f(X) = f(X) \cap Y_1$, the irreducibility of f(X) follows. \square

Proposition 0.4. Let X be a Noetherian topological space. Then X has finitely many maximal irreducible subsets. These are closed and cover X.

Proof. From Lemma 0.3 we know that maximal irreducible subsets of X are closed. Next we will show that X has finitely many irreducible closed subsets, and these closed subsets cover X. We argue by *reductio ad absurdum*. Denote by $\mathcal S$ the class of closed subsets in X that are not a union of finitely many irreducible closed subsets. If the property of X in question were not true, then $\mathcal S$ is not empty since it contains X. Recall that X is Noetherian iff any family of closed subsets of X has a minimal element, thus there is a minimal closed subset A in $\mathcal S$, that is, we can find a minimal closed subset A in X that is not a finite union of irreducible closed subsets. Immediately we know that A is reducible. Thus $A = A_1 \cup A_2$ with A_1, A_2 the closed subsets of X. But at least one of A_1, A_2 is not the union of finitely many irreducible closed subsets, otherwise A is not in $\mathcal S$. But $A_1 \subset A$ is a contradiction to the minimality of A, which shows that X is a union of finitely minimality irreducible closed

Now let $X = X_1 \cup \cdots \cup X_n$, where X_i are irreducible and closed. We may assume that there are no inclusions among them. If Y is an irreducible subset of X, then $Y = (Y \cap X_1) \cup \cdots \cup (Y \cap X_n)$. The irreducibility of Y tells us that $Y = Y \cap X_i$ for some i and hence $Y \subseteq X_i$, id est, any irreducible subset of X is contained in one of the X_i . This implies that the X_i are the maximal irreducible subsets of X. The proposition follows. \square

The maximal irreducible subsets are called the **irreducible components** of X.

Proposition 0.5. A closed subset X of V is irreducible if and only if $\mathcal{I}(X)$ is a prime ideal.

Proof. Let X be irreducible and let $f,g \in k[T_1,\ldots,T_n]$ such that $fg \in \mathcal{I}(X)$, thus we have $X \subseteq V(fg)$ and $X = X \cap V(fg) = X \cap (V(f) \cup V(g)) = (X \cap V(f)) \cup (X \cap V(g))$. The irreducibility says that $X \subset V(f)$, which means that $f \in I(X)$. It follows that I(X) is a prime ideal.

Conversely, assume I(X) is prime and let $X = V(I_1) \cup V(I_2) = V(I_1 \cap I_2)$. If $X \neq V(I_1)$ there is $f \in I_1$ but $f \notin I(X)$. Since $I_1I_2 \subseteq I_1 \cap I_2$, we have $fg \in I(X)$ for all $g \in I_2$. By the primeness of I(X) we have $I_2 \subseteq I(X)$, whence $X = V(I_2)$. So X is irreducible. \square

Recall that a topological space is **connected** if it is not the union of two disjoint proper closed subsets. The following lemmas given some resultson connectedness and the ralation with the notion of irreducibility.

Lemma 0.6. Let X be a Noetherian topological space.

- (i) X is a disjoint union of finitely minimality connected closed subsets, its connected components. They are uniquely determined.
- (ii) A connected component of X is a union of irreducible components.

Proof. The proof of (i) is similar as the proof of Proposition 0.4, with the modification of the definition of S to

 $\mathcal{S} = \{ \text{closed subsets in } X \text{ that is not a finite disjoint union of connected closed subsets} \}.$

For (ii), let X^0 be a connected component of X. Note that X^0 is both open and closed in X. Taking the Noether decomposition $X = X_1 \cup \cdots \cup X_s$ of X, with $X_1, \ldots X_s$ the irreducible component of X, we have $X^0 = (X^0 \cap X_1) \cup \cdots \cup (X^0 \cap X_s)$. But $X^0 \cap X_i$ are both open and closed in the X_i , so are their complements, thus $X^0 \cap X_i = X_i$ or $X^0 \cap X_i = \emptyset$, whence (ii) follows.

Let $X \subseteq V$ be an algebraic set. The restriction of the polynomial functions of S forms

a k-algebra isomorphic to S/I(X), which we denote by k[X]. This algebra has the following properties:

- (i) k[X] is a **finitely generated** k**-algebra**, id est, there is a finite subset $\{f_1, \ldots, f_r\}$ of k[X] such that $k[X] = k[f_1, \ldots, f_r]$.
- (ii) k[X] is **reduced**, *id est*, 0 is the only nilpotent element of k[X].

A k-algebra with these two properties is called an **affine** k-algebra. Conversely, given an affine k-algebra A, there is an algebraic subset X of some k^r such that $A \simeq k[X]$. For $A \simeq k[T_1, \ldots, T_r]/I$, where I is the kernel of the homeomorphism sending the T_i to the generator of A, then A is reduced if and only if I is a radical ideal. We call k[X] the **affine algebra** of X.

If I is an ideal in k[X] let $V_X(I)$ be the set of the $x \in X$ with f(x) = 0 for all $f \in I$. If Y is a subset of X let $I_X(Y)$ be the ideal in k[X] of the f such that f(y) = 0 for all $y \in Y$. If A is any affine algebra, let MaxSpec A be the set of its maximal ideals. If X is as before and $x \in X$, then $M_x = I_X(\{x\})$ is a maximal ideal.

Proposition 0.7. 1. The map $x \mapsto M_x$ is a bijection of X onto $\mathrm{MaxSpec} k[X]$, moreover $x \in V_X(I)$ if and only if $I \subseteq M_x$.

2. The closed sets of X are the $V_X(I)$, I running through the ideals of k[X].

Proof. By the mighty Nullstellensatz.

If $f \in k[X]$ put

$$D_X(f) = D(f) = \{x \in X | f(x) \neq 0\}.$$

This is an open subset, and is the complement of V(f). We have

$$D(fg) = D(f) \cap D(g), D(f^n) = D(f).$$

The D(f) are called **principal open subsets** of X.

Lemma 0.8. 1. If $f, g \in k[X]$ and $D(f) \subseteq D(g)$ then $f^n \in (g)$ for some $n \ge 1$.

2. The principal open sets form a basis of the topology of X.

Proof. $D(f) \subseteq D(g)$ if and only if $V(g) \subseteq V(f)$ if and only if $\sqrt{(f)} \subseteq \sqrt{(g)}$, which implies (i). (ii) is equivalent to saying that every closed subset in X is an intersection of the form $V_X(f)$, this follows because every closed subset $V_X(I)$ corresponds to a radical ideal $I \subseteq k[X]$, which is finitely generated by the Noether property. \square

Let F be a subfield of k. We say that F is a **Field of definition** of the closed subset X of $V=k^n$ if the ideal I(X) is generated by polynomials with coefficients in F. In this situation we put $F[X]=F[T]/I(X)\cap F[T]$. Then the inclusion $F[T]\to k[T]$ induces an isomorphism of F[X] onto an F-subalgebra of S and an isomorphism of K-algebras $K \otimes_F F[X] \to K[X]$.

Let A=k[X] be an affine algebra. An F-structure on X is an F-subalgebra A_0 of A which is of finite type over F and which is such that the homomorphism induced by multiplication

$$k \otimes_F A_0 \to k[X]$$

is an isomorphism. We then write $A_0 = F[X]$. The set X(F) of F-rational points for our given F-structure is the set of F-homomorphisms $F[X] \to F$. More generally, if W is any vector

space over k, an F-structure on W is an F-vector subspace W_0 of W such that the canonical homomorphism

$$k \otimes_F W_0 \to W$$

is an isomorphism. A subspace W' of W is **defined over** F if it is spanned by $W' \cap W_0$. Then $W' \cap W_0$ is an F-structure on W'.

Let $x \in X$. A k-valued function f defined in a neighborhood U of x is called **regular in** x if there are $g, h \in k[X]$ and an open neighborhood $V \subseteq U \cap D(h)$ of x such that $f(y) = g(y)h(y)^{-1}$ for $y \in V$.

A function f defined in a non-empty open subset U of X is **regular** if it is regular in all points of U. So for each $x \in U$ there exist g_x, h_x with the properties stated above. Denote by $\mathcal{O}_X(U)$ or \mathcal{O} the k-algebra of regular functions in U. The ringed space (X, \mathcal{O}_X) are called **affine** k-varieties.

Let (X, \mathcal{O}_X) be an algebraic variety. It follows from the definitions that there is a homomorphism $\phi: k[X] \to \mathcal{O}_X(X)$.

Theorem 0.9. ϕ is an isomorphism.

Proof. Same arguements as in the class.

Lemma 0.10. Let A and B be k-algebras of finite type. If A and B are reduced (resp. integral domains) then the same holds for $A \otimes_k B$.

Proof. Assume that A and B are reduced. Let $\sum_i^n a_i \otimes b_i$ be a nilpotent element of $A \otimes B$. For any homomorphism $h:A \to k$, $h \otimes \operatorname{id}$ is a homomorphism $A \otimes B \to B$. Then $\sum_{i=1}^n h(a_i)b_i$ is a nilpotent element of B, which must be zero since B is integral. But since b_i are linearly independent, all $h(a_i)$ are zero. Since h is arbitrary, a_i lie in all maximal ideals of A. Since $A = k[f_1, \ldots, f_n]$, by the Hilbert's basis Theorem, we have all $a_i = 0$, which shows that $A \otimes B$ is reduced.

Next let A and B be integral domains. Let $f, g \in A \otimes B$, fg = 0. write $f = \sum_i a_i \otimes b_i$, $g = \sum_j c_j \otimes d_j$, the sets $\{b_i\}$ and $\{d_j\}$ being linearly independent. An argument similar to the one just given then shows that $a_i c_j = 0$, from which it follows that f or g equals 0.

Theorem 0.11. Let X and Y be two affine k-varieties.

- (i) A product variety $X \times Y$ exists. It is unique upto isomorphism.
- (ii) If X and Y are irreducible then so is $X \times Y$.

A **prevariety** over k is a quasi-compact ringed space (X, \mathcal{O}_X) such that any point of X has an open neighborhood U with the property that the ringed space $U, \mathcal{O}|_U$ is isomorphic to an affine k-variety. Such a U is called an **affine open subset** of X. A morphism of prevarieties is a morphism of ringed spaces.

Proposition 0.12. A product of two prevarieties exists and is unique up to isomorphism.

A subset $U \subseteq \mathbb{P}^n$ is defined to be open if $U \cap U_i$ is open in the affine variety for $0 \le i \le n$. Let X be a prevariety, denote by Δ_X the diagonal subset of $X \times X$, and denote by $i: X \to \Delta_X$ the obvious map, and endow Δ_X with the induced topology. **Lemma 0.13.** $i: X \to \Delta_X$ defines a homomorphism of topological spaces for any prevariety X.

Proof. We can cover Δ_X by open sets of the form $U \times U$ with U affine open in X. Since being homeomorphism is a local property, we only need to consider the case that X is affine, in which the Lemma follows.

The prevariety is said to be a **variety** if Δ_X is closed in $X \times X$.

Proposition 0.14. Let X be a variety and Y a prevariety.

- (i) If $\phi: Y \to X$ is a morphism, then its graph $\Gamma_{\phi} = \{(y, \phi(y)) | y \in Y\}$ is closed in $Y \times X$.
- (ii) If $\phi, \psi: Y \to X$ are two morphisms which coincide on a dense set, then $\phi = \psi$.

Proof. For (i), consider the continuous map $Y \times X \to X \times X$ sending (y,x) to $(\phi(y),x)$. Then Γ_{ϕ} is the preimage of Δ_X in $X \times X$, hence is closed. For (ii), let W be a dense set of Y and consider the subset

$$Z = \{ y \in Y | \phi(y) = \psi(x) \}$$

of Y. The assumption that ϕ and ψ coincide on W is equivalent to saying $W \subset Z$. But notice that Z is the preimage of Δ_X in $X \times X$ under the continuous map $\phi \times \psi : Y \times Y \to X \times X$, we know that Z is closed. So $Y = \overline{W} \subseteq Z$, implying Y = Z, hence the assertion follows.

Proposition 0.15. (i) Let X be a varieties and let U, V be affine open structures in X. Then $U \cap V$ is an affine open set and the images under restriction of $\mathcal{O}_X(U)$ and $\mathcal{O}_X(V)$ in $\mathcal{O}_X(U \cap V)$ generate the last algebra.

(ii) Let X be a prevariety and let $X = \bigcup_{i=1}^m U_i$ be a covering by affine open sets. Then X is a variety if and only if the following holds: for each pair (i,j) the intersection $U_i \cap U_j$

Let $S=k[T_0,\ldots,T_n]$ be the polynomial ring in n+1 indeterminates. If I is a proper homogeneous ideal in S, then if $x\in k^{n+1}$ is a zero of I, the same is true for all $ax,a\in k^*$. Hence we can define a set $V^*(I)\in\mathbb{P}^n$ by

$$V^*(I) = \{x^* \in \mathbb{P}^n | x \in V_{k^{n+1}}(I)\}.$$

Proposition 0.16. The closed sets in \mathbb{P}^n coincide with the sets $V^*(I)$, I running through the homogeneous ideals of S.

Lemma 0.17. Let $\phi: X \to Y$ be a morphism of affine varieties and let $\phi^*: k[Y] \to k[X]$ be the associated algebra homomorphism.

- 1. If ϕ^* is surjective, then ϕ maps X onto a closed subset of Y.
- 2. ϕ^* is surjective if and only if $\phi(X)$ is dense in Y

Proposition 0.18. i There is a unique irreducible component G^0 of G that contains the identity element e, which is a closed normal subgroup of finite index.

- ii G^0 is the unique connected component of G containing e.
- iii Any closed subgroup of G of finite index contains G^0 .

Proof. Let X, Y be irreducible components of G containing e. If μ and ι are the group multiplication and inversion of G, then $XY = \mu(X \times Y)$ is irreducible and hence its closure \overline{XY} is so, $X = Y = \overline{XY}^1$, so X. is closed under multiplication. ι is topologically a homeomorphism, so X^{-1} is also irreducible and contains e, thus must coincide with X. X is a closed subgroup. Using that inner automorphisms define homeomorphisms 2 , we have $xXx^{-1} = X$ for any $x \in X$, so that X is normal. The cosets are components of G, and by some proposition 3 the number of cosets is finite. We have proved (i).

irreducible components are mutually disjoint. It then follows ⁴ that the irreducible components must coincide with the connected components. This implies (ii).

If H is a closed subgroup of G of finite index, then H^0 is a closed subgroup of finite index of G^0 . Then H^0 is both open 5 and closed in G^0 . Since G^0 is connected, we have $G^0 = H^0$, which proves (iii).

1 Why?

² References?

3 Which?

⁴ From where?

⁵ Why?

Lemma 0.19. Let U and V be dense open subsets of G. Then UV = G.

Lemma 0.20. Let H be a subgroup of G.

- 1. The closure \overline{H} is a subgroup of G.
- 2. If H contains a non-empty open subset of \overline{H} then H is closed.

Proposition 0.21. Let $\phi: G \to G'$ be a homeomorphism of algebraic groups.

- 1. $\ker \phi$ is a closed normal subgroup of G.
- 2. $\phi(G)$ is a closed subgroup of G'.
- 3. If G and G' are F-groups and ϕ is defined over F then $\phi(G)$ is an F-subgroup of G'.
- 4. $\phi(G^0) = (\phi G)^0$.

Proof. (i) $\ker \phi = \phi^{-1}(e)$, thus is closed. (ii) $\phi(G)$ contains a non-empty open subset of its closure, by Lemma 0.20 (ii) follows.

(iv) $\phi(G^0)$ is a closed subgroup of G' by (ii), which is connected and of finite index ⁶.

6 Why?

Proposition 0.22. Let $\{X_i,\phi_i\}_{i\in I}$ be a family of irreducible varieties together with morphism $\phi_i:X_i\to G$. Denote by H the smallest closed subgroup of G containing the images $Y_i=\phi_i(X_i)$. Assume that all Y_i contain the identity element e.

- 1. H is connected.
- 2. There exists an integer $n\geq 0$, $a=(a(1),\ldots,a(n))\in I^n$ and $\epsilon(h)=\pm 1, 1\leq h\leq n$ such tht $H=Y_{a(1)}^{\epsilon(1)}\ldots Y_{a(n)}^{\epsilon(n)}$.
- 3. Assume, moreover, that G is an F-group, that all X_i are F-varieties and that the morphisms ϕ_i are defined over F. Then H is an F-subgroup.

Proof. Use a lot of previous results.

- **Corollary 0.23.** 1. Assume that $\{G_i\}_{i\in I}$ is a family of closed, connected, subgroups of G. Then the subgroup H generated by them is closed and connected. There is an integer $n\geq 0$ and $a=(a(1),\ldots,a(n))\in I^n$ such that $H=G_{a(1)}\ldots G_{a(n)}$.
 - 2. If, moreover, G is an F-group and all G_i are F-subgroups then H is an F-subgroup.

If H and K are subgroups of G, we denote by (H,K) the subgroup generated by the commutators $xyx^{-1}y^{-1}$ with $x \in H, y \in K$.

- **Corollary 0.24.** 1. If H and K are closed subgroups of G one of which is connected, then (H, K) is connected.
 - 2. If, moreover, G is an F-group and H, K are F-subgroups then (H, K) is a connected F-subgroup.

Proof. Assume that H is connected. (i) follows by applying Proposition 0.22 which I=K, all X_i being H, with $\phi_i(x)=xix^{-1}i^{-1}$.

A G-variety or a G-space, is a variety X on which G acts as a permutation group, the action being given by a morphism of varieties. A **homogeneous space** for G is a G-space on which G acts transitively.

Lemma 0.25. 1. An orbit Gx is open in its closure.

2. There exists closed orbits.

Proof. Gx contains a non-empty open subsection U of its closure. Since Gx is the union of the open sets $gU,g\in G$, (i) follows. It implies that for $x\in X$, the set $S_x=\overline{Gx}-Gx$ is closed.

From now on we assume that G is a linear algebraic group. Let X be an affine G-space, which $a:G\times X\to X$. We have $k[G\times X]=k[G]\otimes_k k[X]$ and a is given by an algebra homomorphism $a^*:k[X]\to k[G]\otimes k[X]$. For $g\in G, x\in X, f\in k[X]$ define

$$(s(g))f(x) = f(g^{-1}x).$$

Then s(g) is an invertible linear map of the (in general infinite dimensional) vector space k[X] and s is a representation of abstract groups $G \to \operatorname{GL}(k[X])$. The next result will imply that s can be built up from rational representations.

Proposition 0.26. Let V be a finite dimensional subspace of k[X].

- (i) There is a finite dimensional subspace W of k[X] which contains V and is stable under all $s(g),g\in G$.
- (ii) V is stable under all s(g) if and only if $a^*V \subset k[G] \otimes V$. If this is so, s defines a map $s_V: G \times V \to V$ which is a rational representation of G.
- (iii) If, moreover, G is an F-group, X is an F-variety, V is defined over F and a is an F-morphism then in (i) W can be taken to be defined over F.

Now we consider the case that G acts by left or right translations on itself. For $g, x \in G, f \in$

k[G] define

$$(\lambda(g)f)(x) = f(g^{-1}x), (\rho(g)f)(x) = f(xg).$$

Then λ and rho are representations of G in $\mathrm{GL}(k[G])$. If ι is the automorphism of k[G] defined by inversion, then $\rho = \iota \circ \lambda \circ \iota^{-1}$. The representations λ and ρ has trivial kernel.

Theorem 0.27. (i) There is an isomorphism of G onto a closed subgroup of some GL_n .

(ii) If G is an F-group the isomorphism of (i) may be taken to be defined over F.

Lemma 0.28. Let H be a closed subgroup of G. Then

$$H = \{g \in G | \lambda(g)\mathcal{I}_G(H) = \mathcal{I}_G(H)\} = \{g \in G | \rho(g)\mathcal{I}_G(H) = \mathcal{I}_G(H)\}\$$

Proof. If $g, h \in H, f \in \mathcal{I}_G(H)$ then $(\lambda(g)f)(h) = f(g^{-1}h) = 0$, whence $\lambda(g)f \in \mathcal{I}_G(H)$. On the other hand, if $f \in \mathcal{I}_G(H)$, we have $0 = f(g^{-1}) = (\lambda(g)f)(e)$ for all $f \in \mathcal{I}_G(H)$ and $g \in H$.

1 The Jordan Decomposition

Let k be an algebraically closed field, V a k-vector space, an endomorphism $\phi \in \operatorname{End}(V)$ is called **locally finite**, if $V = \cup_i V_i$ and $\phi(V_i) \subseteq V_i$, where $V_i \subseteq V$ are finite-dimensional subspaces of V.

In particular, if dim $V < \infty$, then every $\phi \in \text{End}(V)$ is locally finite.

Definition 1.1. Let U be a finite-dimensional k-vector space, $\phi \in \operatorname{End}(U)$ is called **semi-simple**, if it is diagonalizable, or equivalently, the minimal polynomial of ϕ is separable over k. ϕ is called **nilpotent**, if there exist some n > 0 such that ϕ^n , and ϕ is called **unipotent** if ϕ — id is nilpotent.

Let V be a k-vector space, $\phi \in \operatorname{End}(V)$ a locally finite endomorphism, ϕ is said to be **semi-simple**, if $\phi|_W$ is semi-simple for any finite-dimensional ϕ -stable subspace $W \subset V$. ϕ being **nilpotent** or **unipotent** is defined similarly.

Lemma 1.1. Let V and W be finite-dimensional k-vector spaces, V_1, V_2 subspaces of V, $\phi \in \operatorname{End}(V)$. Then

- i If ϕ is semi-simple (resp. nilpotent, unipotent) and $\phi(V_i) \subseteq V_i$, so is $\phi|_{V_i} \in \operatorname{End}(V_i)$. Conversely, if $\phi|_{V_i}$ are semi-simple (resp. nilpotent, unipotent), and $V = V_1 + V_2$, then ϕ is semi-simple (resp. nilpotent, unipotent).
- ii If ϕ is semi-simple (resp. nilpotent, unipotent), $\phi(V_1) \subseteq V_1$, then so are $\phi|_{V_1}$ and $\phi|_{V/V_1}$.
- iii If $\psi \in \operatorname{End}(V)$ and $\phi \psi = \psi \phi$, then $\phi \psi$ is semi-simple (resp. nilpotent, unipotent), if both ϕ and ψ are so.
- iv If $\psi \in \operatorname{End}(W)$, ϕ and ψ are both semi-simple, nilpotent, unipotent, then so are $\phi \oplus \psi$ and $\phi \otimes \psi$.
- v If $\psi \in \operatorname{End}(W)$, ϕ and ψ are both semi-simple (resp. nilpotent), then so is $\phi \otimes \operatorname{id} + \operatorname{id} \otimes \psi$.

Proposition 1.2. Let V be a k-vector space, $\phi \in \operatorname{End}(V)$ locally finite. Then

$$\phi = \phi_s + \phi_n \tag{1.1}$$

where ϕ_s is semi-simple, ϕ_n is nilpotent, and $\phi_s\phi_n=\phi_n\phi_s$. Moreover,

- i The decomposition (1.1) is unique.
- ii If $\phi \in GL(V)$, then ϕ has a unique decomposition

$$\phi = \phi_s \phi_u, \tag{1.2}$$

where ϕ_s semi-simple, ϕ_u unipotent, $\phi_s\phi_u=\phi_u\phi_s$.

iii If $W \subseteq V$ is ϕ -stable, then $\phi_s(W) \subset W$, $\phi_n(W) \subset W$

$$\phi|_W = \phi_s|_W + \phi_n|_W \tag{1.3}$$

is the Jordan decomposition of $\phi|_W$, and

$$\phi|_{V/W} = \phi_s|_{V/W} + \phi_n|_{V/W} \tag{1.4}$$

is also the Jordan decomposition of $\phi|_{V/W}$.

iv If $\alpha: V \to W$ is a k-linear map, $\psi \in \operatorname{End}(W)$, such that the diagram

$$\begin{array}{c} V \stackrel{\alpha}{\longrightarrow} W \\ \downarrow^{\phi} & \downarrow^{\psi} \\ V \stackrel{\alpha}{\longrightarrow} W \end{array}$$

commutes, then

$$\psi_s \circ \alpha = \alpha \circ \phi_s$$

and

$$\psi_n \circ \alpha = \alpha \circ \phi_n.$$

Proof. For ii, if we have $\phi = \phi_s + \phi_n \in GL(V)$, then we have $\phi_s \in GL(V)$. Indeed, since ϕ_n is nilpotent, the expansion of the formal expression

$$(\phi - \phi_s)^{-1}$$

is well-defined. Thus we take

$$\phi = \phi_s + \phi_n = \phi_s (1 + \phi_s^{-1} \phi_n) = \phi_s \phi_u.$$

Theorem 1.3. Let G be an algebraic group, $\rho:G\to \mathrm{GL}(k[G])$ be the representation corresponding to the right translation. Then

i There exist $g_s, g_u \in G$, such that $\rho(g)_s = \rho(g_s)$ and $\rho(g)_u = \rho(g_u)$ with $g = g_s g_u = g_u g_s$.

ii If $\phi:G\to G$ is a morphism of algebraic groups, then $\forall g\in G$

$$\phi(g_s) = \phi(g)_s,$$

$$\phi(g_u) = \phi(g)_u.$$

iii If $G = GL_n(k)$, then $g = g_s g_u$ is the Jordan decomposition of g as in Proposition 1.2

The elements g_s and g_u of (i) are the **semi-simple part** and **unipotent part** of $g \in G$.

Proof. Let A=k[G] and let $m:A\otimes A\to A$ be the homomorphism defined by multiplication of polynomials. Since $\rho(g):A\to A$ is a homomorphism of algebras, it's easy to verify that

$$m \circ (\rho(g) \otimes \rho(g)) = \rho(g) \circ m$$

Applying Proposition 1.2 (iv) to m, we have

$$\rho(g)_s \circ m = m \circ (\rho(g) \otimes \rho(g))_s = m \circ (\rho(g)_s \otimes \rho(g)_s),$$

which shows that $\rho(g)_s$ is an automorphism of the ring A. Hence $f \mapsto (\rho(g)_s f)(e)$ defines a ring homomorphism $A \to k$, which is further more a point $g_s \in G$. Since $\rho(g)$ commutes with all $\lambda(x), x \in G$, again by Proposition 1.2 (iv) we have $\rho(g)_s$ commuting with all $\lambda(x), x \in G$:

$$(\rho(g)_s f)(x) = (\lambda(x^{-1})\rho(g)_s f)(e)$$

$$= (\rho(g)_s \lambda(x^{-1})f)(e)$$

$$= (\lambda(x^{-1})f)(g_s)$$

$$= f(xg_s)$$

$$= (\rho(g_s)f)(x),$$

showing that $\rho(g)_s = \rho(g_s)$.

In a similar way, one can also show that there is a $g_u \in G$ such that $\rho(g)_u = \rho(g_u)$.

The proof of (ii) uses 1.9.1.

Recall that an abstract group H is **nilpotent** if there is an integer n such that all sommutators equal e. Such a group is solvable.

Corollary 1.4. A unipotent linear algebraic group is nilpotent, hen

Definition 1.2. A **Borel subgroup** of an algebraic group G is a connected closed solvable subgroup of maximal dimension.

A **parabolic subgroup** of G is a closed subgroup of G containing a Borel subgroup.

The **radical** of G is the maximal connected closed solvable normal subgroup of G, and is denoted by R(G).

The **unipotent radical** of G is the unipotent maximal connected closed solvable normal subgroup of G, and is denoted by $R_u(G)$.

If $R(G) = \{e\}$, then G is called semi-simple.

If $R_u(G) = \{e\}$, then G is called **reductive**.

Example. Take $G = GL_n(k)$. The subgroup $B_n(k) \subset GL_n(k)$ consists of the upper diagonal matrix is a Borel subgroup.

A parabolic subgroup of G consists of the upper block-wise diagonal matrix. $R(\operatorname{GL}_n(k)) = \operatorname{diag}(\lambda, \dots, \lambda), \lambda \neq 0$, which implies that $\operatorname{GL}_n(k)$ is not semi-simple. $R_u(\operatorname{GL}_n(k)) \subseteq R(G)_u = \{e\}$, which implies that $\operatorname{GL}_n(k)$ is reductive.

Definition 1.3. A **maximal torus** of G is a commutative connected closed subgroup T of G with maximal dimension such that $T_u = \{e\}$.

A **Cartan subgroup** of G is the centralizer subgroup $Z_G(T)$ of a maximal torus T of G.

Theorem 1.5. Let G be an algebraic group, B be a Borel subgroup of G, then

- 1. G/B is a projective variety,
- 2. Every two Borel subgroups of G are G-conjugate.
- 3. If G is connected, then $N_G(B) = B$
- 4. G is the union of all Borel subgroups of G, if G is connected.

Proof.

ii Let B', B be two Borel subgroups of G, and let B' act on G/B. Since B is Borel, by i G/B is projective, hence is complete. Again since B' is Borel, thus is connected and solvable. So by Borel's fixed point theorem, there exists an $x \in G$ such that $xB \in G/B$ satisfying

$$b'xB = xB, \forall b' \in B',$$

which implies $x^{-1}B'x \subseteq B$. Since the group $x^{-1}B'x$ is again connected and solvable and of maximal dimension, thus we have $x^{-1}B'x = B$.

iii $N_G(B)$ is a closed subgroup of G, and since B is a normal subgroup in $N_G(B)$, we have $N_G(B)/B$ being an affine variety by the quotient theorem. On the other hand, $N_G(B)/B$ is a projective variety, since B is connected, closed and solvable of maximal dimension in G, it is easy to see that B is connected, closed and solvable of maximal dimension in $N_G(B)$, which means that B is Borel in $N_G(B)$. $N_G(B)/B$ has finitely many points. And by the fact that $N_G(B)$ is connected, we have $N_G(B)/B = 1$.

Corollary 1.6. Let G be a connected algebraic group. Then

- i There is a one-to-one correspondence between the set of all Borel subgroups of G and G/B viewed as a set.
- ii Z(G) = Z(B).
- iii Let P be a parabolic subgroup of G. Then P is connected and $N_G(P) = P$
- iv Let P and Q be two conjugate parabolic subgroups of G, if $P \cap Q$ is also parabolic, then P = Q.

Proposition 1.7. Let G,H be diagonalizable groups and let V be a connected affine k-variety. Assume that

$$\phi:G\times V\to H$$

is a morphism of varieties such that

$$\phi_v: G \to H,$$

$$g \mapsto \phi(g, v)$$

is a morphism of algebraic groups for all $v \in V$. Then

$$\phi_v = \phi_{v'}, \forall v, v' \in V.$$

Proof. k[G] has a k-basis $\chi(G)$, k[H] has a k-basis $\chi(H)^{7}$.

⁷ Why?

$$\phi^*: k[H] \to k[G] \otimes k[V],$$

 $\forall X \in \chi(H), \phi^*(X) = \sum_{\lambda \in \chi(G)} \lambda \otimes a_{\lambda,\chi}.$

Claim 1.8. $a_{\lambda,\chi}$ is either zero or identity in k[V], and there exists a unique 8 γ , such that

⁸ Not so sure

$$a_{\gamma,\chi} \neq 0$$
.

With the Claim, we have

$$\phi^*(X)$$

Corollary 1.9. Let G be an algebraic group, $H \leq G$ a diagonalizable subgroup. Then

- i $N_G(H)^\circ = Z_G(H)^{\circ 9}$,
- ii $N_G(H)/Z_G(H)$ is finite.

⁹ Meaning of the notation $N_G(H)^{\circ}$?

Proof. $N_G(H)$ is a closed subgroup of G, hence is an affine variety. Consider the morphism

$$\phi: N_G(H)^{\circ} \times H \to H,$$

 $(x, h) \mapsto xhx^{-1}.$

Fix $x\in N_G(H)^\circ$, $\phi_x:H\to H$ mapping h to xhx^{-1} is a morphism of diagonalizable groups. By Proposition 1.7 10 , we have

¹⁰ What if $N_G(H)^{\circ}$ is not connected?

$$\phi_x = \phi_e \forall x \in N_G(H)^\circ$$

thus $x\in Z_G(H)$, hence $N_G(H)^\circ\subseteq Z_G(H)^\circ\subseteq N_G(H)^\circ$, implying $N_G(H)^\circ=Z_G(H)^\circ$.

Proposition 1.10. Let G be a connected solvable algebraic group. Then

- i (G, G) is a connected, closed, unipotent, normal subgroup.
- ii G_u is a closed connected nilpotent normal subgroup of G, G/G_u is a torus.
- iii Each semi-simple element in G is contained in a (maximal) torus of G.
- iv $\forall x \in G$ that is semi-simple, $Z_G(x)$ is connected.
- v Two maximal tori of G are G-conjugate.

- vi If T is a maximal torus of G, the product map $T \times G_u \to G$ is an isomorphism of varieties, so that $G = T \rtimes G_u$
- vii If H is a subgroup, $H=H_s$, then H is contained in a maximal torus. Moreover, $N_G(H)=Z_G(H)$.

Proposition 1.11. Let G be a connected algebraic group, T a maximal torus. Then

- i $Z_G(T)$ is a connected nilpotent subgroup of G
- ii There exists a $t \in T$, such that t lies in finitely many G-conjugates of $Z_G(T)$
- iii The union of Cartan subgroups of G, contains a dense open subset of G
- iv Let $S \subseteq G$ be a subtorus, then $Z_G(S)$ is connected.

Proof. i, iv Pick $g \in Z_G(s)$, let B be a Borel subgroup of G containing g^{-11} . Consider the morphism

$$\psi_g: G/B \to G/B \times G/B,$$

$$xB \mapsto (xB, qxB)$$

 $\psi_q^{-1}(\Delta)$ is a closed subvariety in G/B, and S acts on $\phi_q^{-1}(\Delta)$.

Since S is connected solvable, thus by Borel's fixed point theorem, there exists $xB\in\psi_a^{-1}(\Delta)$ that is an S-fixed point. ¹²

¹² Get confused from here. Lecture Note 23.

2 Lie Algebras of Algebraic Groups

Let G be an algebraic group over $k,\,\lambda,\rho$ be the left left translation and right translation action on $k[G]^{-13}$

¹³ On G or k[G]

Let $\Omega_G = I/I^2$, where I is the kernel of the multiplication map

$$0 \longrightarrow I \longrightarrow k[G] \otimes k[G] \stackrel{m}{\longrightarrow} k[G] \longrightarrow 0.$$

Then G acts on Ω_G , diagonally via left or right translation. ¹⁴

¹⁴ Verify that λ, ρ commute with $d: k[G] \to \Omega_G$.

Theorem 2.1. There exists an isomorphism of k[G]-modules

$$\Phi: \Omega_G \stackrel{\sim}{\to} k[G] \otimes (T_eG)^*$$

such that the following diagrams commute for all $x \in G$

$$\Omega_G \xrightarrow{\Phi} k[G] \otimes (T_e G)^*$$

$$\downarrow^{\lambda(x)} \qquad \qquad \downarrow^{\lambda(x) \otimes \mathrm{id}} ,$$

$$\Omega_G \xrightarrow{\Phi} k[G] \otimes (T_e G)^*$$

$$\Omega_{G} \xrightarrow{\Phi} k[G] \otimes (T_{e}G)^{*}
\downarrow^{\rho(x)} \qquad \downarrow^{\rho(x) \otimes \operatorname{Ad}_{x}^{*}},
\Omega_{G} \xrightarrow{\Phi} k[G] \otimes (T_{e}G)^{*}$$

where $\operatorname{Ad}_x^*: (T_eG)^* \to (T_eG)^*$ is the dual map of $\operatorname{Ad}_x: T_eG \to T_eG$, and for $f \in k[G]$,

$$\Phi(df) = -\sum_{i} f_{i} \otimes \delta(g_{i})$$

with $\delta(g_i)$ the image of $g_i - g_i(e)$ in $(T_*G)^* \simeq \mathfrak{m}_e/\mathfrak{m}_e^2$.

Proof. Identify $k[G] \otimes_k k[G] \simeq k[G \times G]$ and $m: k[G \times G] \to k[G]$, which is the dual of the diagonal map $\Delta: G \to G \times G$. In particular, I is then the defining ideal of $\Delta(G)$ in $G \times G$.

Consider the morphism

$$\psi: G \times G \to G \times G,$$
$$(x,y) \mapsto (x,xy),$$

thus $\psi^{-1}(\Delta(G)) = G \times \{e\}$. In particular, $\psi^* : k[G] \otimes k[G] \to k[G] \otimes k[G]$ sends I to the defining ideal of $G \times \{e\} \subseteq G \times G$, that is

$$\phi^*(I) \subset k[G] \otimes_k \mathfrak{m}_e$$

which induces a morphism $I/I^2 \to k[G] \otimes_k \mathfrak{m}_e/\mathfrak{m}_e^2$ 15. This is the morphism Φ in the statement of the theorem.

¹⁵ How?

It remains to check the rest of the equalities.

Recall that $\mathcal{D}_G = \operatorname{Der}_k(k[G], k[G])$ is a Lie algebra. Moreover, if $\operatorname{char} k = p \geq 0$, \mathcal{D}_G is further a p-Lie algebra, which is a Lie algebra \mathfrak{g} with the p-operation $[p] : \mathfrak{g} \to \mathfrak{g}, x \mapsto x^{[p]}$ satisfying

- 1. $(\alpha X)^{[p]} = \alpha^p X^{[p]}$,
- 2. $\operatorname{ad}_{X^{[p]}} = (\operatorname{ad}_X)^p$ with $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}, Y \mapsto [X, Y]$,
- 3. $(X+Y)^{[p]} = X^{[p]} + Y^{[p]} + \sum_{i=1}^{p-1} s_i(X,Y)/i$, $s_i(X,Y)$ is the coefficient of t^i in the expansion of $\operatorname{ad}_{tX+Y}^{p-1}(Y)$.

Example. Let k be a field with chark = p > 0, $\mathfrak{gl}_n(k)$ is a p-Lie algebra with the p-operation

$$\mathfrak{gl}_n(k) \to \mathfrak{gl}_n(k),$$

$$A \mapsto A^p.$$

Note that $\mathcal{D}_G = \operatorname{Hom}_{k[G]}(\Omega_G, k[G])$, left translation and right translation act on Ω_G and k[G], thus act on \mathcal{D}_G . For all $D \in \mathcal{D}_G$, we define ¹⁶

 16 Note that elements of the form df generate Ω_G .

$$(\lambda(x) \cdot D)(df) = \lambda(x)D(\lambda(x)^{-1} \cdot df)$$
$$(\rho(x) \cdot D)(df) = \rho(x)D\rho(x)^{-1}(df)$$

Definition 2.1. The **Lie algebra** of the algebraic group G is defined as

$$L(G) = \{ D \in \mathcal{D}_G \mid \lambda(x) \cdot D = D, \forall x \in G \}.$$

Proposition 2.2. Notations as above.

i L(G) is a subalgebra of \mathcal{D}_G

- ii L(G) is stabilized under $\rho(x), \forall x \in G$
- iii There exists an isomorphism of k[G]-modules

$$\Psi: \mathcal{D}_G \stackrel{\simeq}{\to} k[G] \otimes (TeG)$$

such that the diagrams

$$\mathcal{D}_{G} \xrightarrow{\Psi} k[G] \otimes T_{e}G$$

$$\downarrow^{\lambda(x)} \qquad \downarrow^{\lambda(x) \otimes \mathrm{id}},$$

$$\mathcal{D}_{G} \xrightarrow{\Psi} k[G] \otimes T_{e}G$$

$$\mathcal{D}_{G} \xrightarrow{\Psi} k[G] \otimes T_{e}G$$

$$\downarrow^{\rho(x)} \qquad \downarrow^{\rho(x) \otimes \mathrm{Ad}_{x}^{*}}$$

$$\mathcal{D}_{G} \xrightarrow{\Psi} k[G] \otimes T_{e}G$$

commute.

iv Let $\alpha: \mathcal{D}_G \to T_eG$ be the linear map, $\alpha(D)(f) = D(f)(e)$. Then by restricting α to the Lie subalgebra $L(G) \subseteq T_eG$, we get an isomorphism of k-vector spaces

$$L(G) \xrightarrow{\sim} T_e G$$

such that $\forall x \in G$,

$$\alpha \circ \rho(x) \circ \alpha^{-1} = \mathrm{Ad}_x.$$

In particular, $\dim L(G) = \dim G$.

v Let H be a closed subgroup of G, with the defining ideal I> Then

$$L(H) = \{ D \in L(G) \mid D(I) \subseteq I \}$$

vi Let $\phi: G \to H$ be a morphism of algebraic groups. Then

$$(d\phi)_e: T_eG \to T_eH$$

is a morphism of Lie algebras (resp. p-Lie algebras, if char k = p > 0.)

vii The Lie algebra of $GL_n(k)$ is $\mathfrak{gl}_n(k)$, with the Lie bracket

$$[X,Y] = XY - YX, \forall X,Y \in \mathfrak{gl}_n(k).$$

Proof. 17

iii Using the isomorphism

$$\mathcal{D}_G := \operatorname{Der}_k(k[G], k[G]) \simeq \operatorname{Hom}_{k[G]}(\Omega_G, k[G])$$

and applying the functor $\mathrm{Hom}_{k[G]}(-,k[G])$ to the diagrams in Theorem 2.1, by the Yoneda Lemma.

¹⁷ I'm not sure I can repeat all the computations in the proof. Lecture Note 24.

Definition 2.2. X is a k-variety defined over \mathbb{F}_q , if X has an affine open cover Y_i , such that $k[Y_i] = \mathbb{F}_q[Y_i] \otimes_{\mathbb{F}_q} k$, where $\mathbb{F}_q[Y_i]$ is a \mathbb{F}_q -structure of $k[Y_i]$. Now, the Frobenius map on X is defined, precisely via

$$k[Y_i] = \mathbb{F}_q[Y_i] \otimes_{\mathbb{F}_q} k \to \mathbb{F}_q[Y_i] \otimes_{\mathbb{F}_q} k = k[Y_i]$$
$$\sum_i f_i \otimes \lambda_i \mapsto \sum_i f_i^q \otimes \lambda_i. \tag{2.1}$$

Proposition 2.3. Let $\mathfrak{g} = T_e G$ be the Lie algebra of G.

i $\operatorname{Ad}:G\to GL(\mathfrak{g})$ is the adjoint representation, which satisfies

$$(\mathrm{Ad}_x X)(f) = \sum_1 f_1(x) X(f_2) f_3(x^{-1})$$
 (2.2)

where $(\Delta \otimes id)\Delta(f) = \sum f_1 \otimes f_2 \otimes f_3$.

ii For $m: G \times G \to G$, $dm_{(e,e)}: \mathfrak{g} \oplus \mathfrak{g} \to \mathfrak{g}$ satisfies

$$dm_{(e,e)}(X,Y) = X + Y, \forall X, Y \in \mathfrak{g}.$$

And for the inversion $\iota: G \to G$, $(d\iota)_e(X) = -X, \forall X \in \mathfrak{g}$.

iii ad = $(dAd)_e : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is the adjoint representation of \mathfrak{g} , such that

$$ad(X)(Y) = [X, Y].$$

iv (Lang's Theorem) Let $\sigma:G\to G$ be a morphism of varieties. Let $\phi:G\to G$ such that $\phi(x)=\sigma(x)x^{-1}$, then $(d\phi)_e=(d\sigma)_e$ — id. In particular, if G is an algebraic group, defined over \mathbb{F}_q , and $F:G\to G$ is the Frobenius morphism, then $\phi(x)=F(x)x^{-1}$ is a surjective map.

Proof. iv Lang's Theorem. Consider the morphism

$$\phi: G \xrightarrow{\Delta} G \times G \xrightarrow{\sigma \times \iota} G \times G \xrightarrow{m} G$$

Claim 2.4. $(d\phi)_x$ is bijective for all $x \in G$.

To see it, consider the following commutative diagram

$$\begin{array}{ccc} G & \stackrel{\rho(x)}{\longrightarrow} G & \stackrel{\phi}{\longrightarrow} G \\ \downarrow^{\Delta} & & m \\ G \times G & \stackrel{\sigma \times \iota}{\longrightarrow} G \times G & \stackrel{\rho(\phi(x))}{\longrightarrow} G \times G \end{array}$$

Claim 2.5. Let X be the closure of $\phi(G)$, and let $\phi(x)$ be a simple point in X

Since $(d\phi)_x$ is bijective, we have $\dim X = \dim G$. Assume that G is connected, then $X = G^{18}$ Why?

Let G be a complex algebraic group. It is known ¹⁹ that G has the unique structure of complex ¹⁹ From where? Lie group. To distinguish the topologies, we denote the Lie group by G^{an}

Proposition 2.6. $T_eG=T_eG^{\mathrm{an}}$ and G is irreducible iff G^{an} is connected.

Proof. $T_eG = T_eG^{an}$ as vector spaces, follows from the construction of the complex manifold structure 20 on G.

²⁰ From where?

The structures of Lie algebras coincide, since $G \hookrightarrow \operatorname{GL}_n(\mathbb{C})$, as both an algebraic group and a Lie group, while the Lie brackets on $\operatorname{Lie}(\operatorname{GL}_n(\mathbb{C}))$ and on $\operatorname{Lie}(\operatorname{GL}_n(\mathbb{C})^{\operatorname{an}})$ coincide. If G^{an} is connected, take G° as the identity component of G, then G is a disjoint union of irreducible components, each being a G° -coset in G. In particular, G° is both open and closed in the Zariski topology G° is both open and closed in real topology G° is G° and G° is both open and closed in real topology G° is G° is both open and closed in real topology G° is G° is both open and closed in real topology G° is G° is both open and closed in real topology G° is G° is both open and closed in real topology G° is G° is G° is both open and closed in real topology G° is G° i

22 Why?

Conversely, if G is irreducible, take a Basis $\{X_i\}_{i\in I}$ of $T_eG=T_eG^{\mathrm{an}}$. Let P_i be the one-parameter subgroup of G^{an} , corresponding to X_i . Let G_i be the Zariski closure of P_i in G. Then

Claim 2.7. G_i is a commutative, irreducible, closed algebraic subgroup of G.

Claim 2.8. Every irreducible closed commutative complex algebraic group is connected. In particular, G_i 's are connected.

Let \hat{G} be the closed subgroup of G generated by G_i . Note that $X_i \in \text{Lie}(P_i) \subseteq \text{Lie}(G_i^{\text{an}}) \Longrightarrow \text{Lie}(\hat{G}) \supseteq \text{Lie}(G) \Longrightarrow \hat{G} = G, G_i^{\text{an}} \subset (G^{\text{an}})^{\circ}, G^{\text{an}} = \langle G_i^{\text{an}} \mid i \in I \rangle \Longrightarrow G^{\text{an}} \subseteq (G^{\text{an}})^{\circ} \Longrightarrow G^{\text{an}} \text{ is connected.}$

Corollary 2.9. If B is a Borel subgroup of G, then $B^{\rm an}$ is a Borel subgroup of $G^{\rm an}$, which means that $B^{\rm an}$ is a maximal connected solvable closed Lie subgroup of $G^{\rm an}$.

Proof. By Proposition 2.6, $B^{\rm an}$ is a connected, solvable²³ and closed Lie subgroup of $G^{\rm an}$. Assume that B' is a Borel subgroup of $G^{\rm an}$ containing $B^{\rm an}$. Let H be the Zariski closure of B', then one may check that

²³ Why?

Claim 2.10. H is also solvable.

Claim 2.11. $B^{\mathrm{an}} \subseteq B' \subseteq H^{\mathrm{an}}, B' \subseteq H^{\circ}$.

Hence $B' = H^{\circ} \implies B^{\mathrm{an}} = \overline{B'}$

Definition 2.3. A subalgebra \mathfrak{h} of $\mathfrak{g} = \text{Lie}(G)$, is called an **algebraic subalgebra**, if there exists closed algebraic subgroup H of G, such that $\text{Lie}(H) = \mathfrak{h}$.

Similar to the construction of the Malcev closure, we define that for each subalgebra $\mathfrak{h} \subset \mathfrak{g}$, the **algebraic closure** \mathfrak{h}^a is defined to be the algebraic subalgebra of smallest dimension containing \mathfrak{h} of \mathfrak{g} .

Theorem 2.12. Let G be a connected complex algebraic group, $\mathfrak{g} = \text{Lie}(G)$.

- i Let H be an algebraic subgroup of G, generated by connected algebraic subgroups $\{H_{\alpha}|\alpha\in I\}$. Then $\mathrm{Lie}(H)$ is generated by $\mathfrak{h}_{\alpha},\alpha\in I$. In particular, the subalgebra of \mathfrak{g} generated by a family of algebraic subalgebras is algebraic.
- ii Let \mathfrak{h}^a be the algebraic closure of \mathfrak{h} , then $[\mathfrak{h}^a, \mathfrak{h}^a] = [\mathfrak{h}, \mathfrak{h}]$.

iii If \mathfrak{h} is a commutative (resp. solvable) ideal of \mathfrak{g} , then so is \mathfrak{h}^a . In particular, any Borel subalgebra is algebraic.

Proof. Let $\hat{\mathfrak{h}}$ be the subalgebra of \mathfrak{g} , generated by $\operatorname{Lie}(H_{\alpha}), \alpha \in I$. Let $\hat{H}^{\operatorname{an}}$ be the Lie subgroup of G^{an} , corresponding to $\hat{\mathfrak{h}}$ corresponding to $\hat{\mathfrak{h}}$ (by Lie group theory). Using exponential map, $\forall x \in \mathfrak{H}_{\alpha} \subseteq \hat{\mathfrak{h}}$, we have

$$H_{\alpha}^{\mathrm{an}} \subset \hat{H}^{\mathrm{an}},$$

hence $H^{\mathrm{an}} \subseteq \hat{H}^{\mathrm{an}}$ which implies $\mathrm{Lie}(H) \subseteq \hat{\mathfrak{h}}$.

On the other hand, since H is generated by H_{α} , $\operatorname{Lie}(H_{\alpha}) \subseteq \operatorname{Lie}(H) \implies \hat{\mathfrak{h}} \subset \operatorname{Lie}(H)$, then $\hat{\mathfrak{h}} = \operatorname{Lie}(H)$, and hence $H^{\operatorname{an}} = \hat{H}^{\operatorname{an}}$, which means that \hat{H} is an algebraic group²⁴. ii Repeating the proof for Malcev closure. Consider the Lie subgroup

$$H_1 := G(\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]) = \{ x \in G \mid (\mathrm{Ad}_x - \mathrm{id})(\mathfrak{h}) \subseteq [\mathfrak{h}, \mathfrak{h}] \}.$$

We claim that H_1 is a closed algebraic subgroup of G. Indeed, consider the adjoint representation

$$Ad: G \to GL(\mathfrak{g}),$$

and denote

$$GL(\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]) = \{ A \in GL(g) \mid (A - id)(\eta) \subseteq [\mathfrak{h}, \mathfrak{h}] \},$$

which is an algebraic subgroup of $GL(\mathfrak{g})$. And H_1 is an algebraic subgroup of G. The Lie algebra of H_1 is

$$\mathfrak{H}_1 = \{ X \in \mathfrak{g} \mid \mathrm{ad}_X(\mathfrak{h}) \subseteq [\mathfrak{h}, \mathfrak{h}] \}$$

 $\mathfrak{h} \subseteq \operatorname{Lie}(H_1) \implies \mathfrak{h}^a \subseteq \operatorname{Lie}(H_1) \implies [\mathfrak{h}^a, \mathfrak{h}] \subseteq [\mathfrak{h}, \mathfrak{h}],$ continue this type of argument, we get $[\mathfrak{h}^a, \mathfrak{h}^a] \subseteq [\mathfrak{h}, \mathfrak{h}].$

iii If \mathfrak{h} is commutative, then by ii $[\mathfrak{h}^a, \mathfrak{h}^a] = [\mathfrak{h}, \mathfrak{h}] = 0$, thus \mathfrak{h}^a is commutative. If \mathfrak{h} is an ideal of \mathfrak{g} consider the algebraic subgroup

$$H_3 := \{ g \in G | (\mathrm{Ad}_q - \mathrm{id})(\mathfrak{g}) \subseteq \mathfrak{h}^a \}$$

 $\operatorname{Lie}(H_3) = \{X \in \mathfrak{g} | \operatorname{ad}_X(\mathfrak{g}) \subset \mathfrak{h}^a \}$. Obviously, $\mathfrak{h} \subseteq \operatorname{Lie}(H_3)$ since $[\mathfrak{h}, \mathfrak{g}] \subset \mathfrak{h} \subset \mathfrak{h}^a$

Theorem 2.13. [OV] Let G be a connected complex algebraic group, with $(G,G)\subseteq G$. Then

- 1. If H is a complex algebraic group, $\phi:G^{\mathrm{an}}\to H^{\mathrm{an}}$ is a Lie group morphism, then $\phi:G\to H$ is an algebraic group morphism.
- 2. Every finite-dimensional \mathbb{C} -representation of G^{an} is a rational G-module.

In particular, for a connected complex Lie group, with (G,G)=G, and a faithful linear representation, there exists a unique algebraic group structure on G, such that the Lie group structure is induced from this algebraic structure. ²⁵

²⁵ G^{an} is determined by $\mathrm{GL}(V)^{\mathrm{an}}$.

²⁴ Why?

Proof. Consider the graph of the morphism

$$\Gamma_{\phi} = \{ (x, y) \in G \times H \mid y = \phi(x) \} \subset G^{\mathrm{an}} \times H^{\mathrm{an}}$$

which is a closed Lie subgroup of $G^{\mathrm{an}} \times H^{\mathrm{an}}$, and $p_1 : \Gamma_\phi \simeq G^{\mathrm{an}}$, where p_1 is the projection to the first factor.

In particular, $\mathrm{Lie}(\Gamma_\phi)\simeq\mathrm{Lie}(G^\mathrm{an})=[\mathrm{Lie}(G^\mathrm{an}),\mathrm{Lie}(G^\mathrm{an})],$ since $(G^\mathrm{an},G^\mathrm{an})=G^\mathrm{an}.$ Hence $\mathrm{Lie}(\Gamma)$ is an algebraic subalgebra of $\mathrm{Lie}(G^\mathrm{an}\times H^\mathrm{an}).$ Then Γ_ϕ is an algebraic subgroup of $G\times H^{26}.$ Consider

²⁶ Why Why Why

$$\Gamma_{\phi} \stackrel{p_1}{\to} G$$

which is a morphism of algebraic groups and is bijective. This implies that p_1 is an isomorphism of algebraic groups.

The most important representation for a Lie algebra g is the adjoint representation.

Theorem 2.14 (Schur's Lemma). Let V be an irreducible \mathfrak{g} -representation. Then every \mathfrak{g} -morphism $f:V\to V$ is either 0 or isomorphic.

Definition 2.4. A Lie algebra \mathfrak{g} is called **solvable** if $\mathfrak{g}^{[i]} = 0$ for some large enough i, where

$$egin{aligned} \mathfrak{g}^{[0]} &= \mathfrak{g}, \ \mathfrak{g}^{[1]} &= [\mathfrak{g},\mathfrak{g}], \ \mathfrak{g}^{[2]} &= [\mathfrak{g}^{[1]},\mathfrak{g}^{[1]}], \ \cdots, \ \mathfrak{g}^{[i]} &= [\mathfrak{g}^{[i-1]},\mathfrak{g}^{[i-1]}]. \end{aligned}$$

 \mathfrak{g} is called **nilpotent**, if $\mathfrak{g}^{(i)} = 0$ for some large enough i, where

$$\begin{split} &\mathfrak{g}^{(0)}=\mathfrak{g},\\ &\mathfrak{g}^{(1)}=[\mathfrak{g},\mathfrak{g}],\\ &\mathfrak{g}^{(2)}=[\mathfrak{g},\mathfrak{g}^{(1)}],\\ &\cdots,\\ &\mathfrak{g}^{[i]}=[\mathfrak{g},\mathfrak{g}^{(i-1)}]. \end{split}$$

If $\mathfrak g$ is a Lie subalgebra of $\mathfrak{gl}(V)$, then $\mathfrak g$ is called **unipotent**, if there is a basis of V, under which the image of $\mathfrak g$ in $\mathfrak{gl}(V)$ is of the form

$$\begin{pmatrix} 0 & * \\ & \ddots \\ 0 & 0 \end{pmatrix}$$

If $\mathfrak{g} \subseteq \mathfrak{gl}(V)$ is a subalgebra, we called \mathfrak{g} a **commutative diagonalizable subalgebra** of $\mathfrak{gl}(V)$, if there is a basis of V, under which the elements of \mathfrak{g} are all diagonal.

A finite dimensional Lie algebra \mathfrak{g} over \mathbb{C} is called **semi-simple**, if $rad(\mathfrak{g}) = 0$. \mathfrak{g} is called **simple**, if \mathfrak{g} has no proper ideals.

Let $\mathfrak{g} \subseteq \mathfrak{gl}(V)$ be a subalgebra, we call \mathfrak{g} a **reductive** Lie algebra, if $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{g}'$, where \mathfrak{z} and \mathfrak{g}' are both ideals of \mathfrak{g} , and $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ is a semi-simple Lie algebra, $\mathfrak{z} = \operatorname{rad}(\mathfrak{g})$ is a commutative diagonalizable subalgebra. (Humphrey's book, p.30.)

Definition 2.5. Given a Lie algebra \mathfrak{g} , the **radical** of \mathfrak{g} , denoted by $\mathrm{rad}(\mathfrak{g})$ is the largest solvable ideal of \mathfrak{g} .

There is a symmetric non-degenerate bilinear form $(-,-): \mathrm{GL}_n(\mathbb{C}) \times \mathrm{GL}_n(\mathbb{C}) \to \mathbb{C}$ defined as

$$(X,Y) = \text{tr}XY.$$

This pair has some basic properties.

- i $([X,Y],Z) = (X,[Y,Z]), \forall X,Y,Z \in \mathfrak{gl}_n(\mathbb{C}).$
- ii If \mathfrak{n} is an ideal of $\mathfrak{gl}_n(\mathbb{C})$, then $\mathfrak{n}^{\perp} = \{X \in \mathfrak{gl}_n(\mathbb{C}) | (X,\mathfrak{n}) = 0\}$ is also an ideal.
- iii If $\mathfrak g$ is a subalgebra of $\mathfrak{gl}_n(\mathbb C)$, then $\mathfrak z(\mathfrak g)\subseteq [\mathfrak g,\mathfrak g]^\perp$. If the restricted bilinear form $(-,-):\mathfrak g\times\mathfrak g\to\mathbb C$ is also non-degenerate. Then

$$\mathfrak{z}(\mathfrak{g}) = [\mathfrak{g},\mathfrak{g}]^{\perp} \cap \mathfrak{g}.$$

- iv If $\mathfrak g$ is a commutative and diagonalizable subalgebra of $\mathfrak{gl}_n(\mathbb C)$, then $(-,-):\mathfrak g\times\mathfrak g\to\mathbb C$ is non-degenerate, positive definite over $\mathbb R.$
- v If $\mathfrak{n} \subset \mathfrak{gl}_n(\mathbb{C})$ is a subalgebra such that $(\mathfrak{n},\mathfrak{n})=0$, then \mathfrak{n} is unipotent if \mathfrak{n} is algebraic, and is solvable in general.
- vi If \mathfrak{n} is a unipotent ideal of $\mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{C})$, then $\mathfrak{n} \subset \mathfrak{g}^{\perp} = \{ x \in \mathfrak{g} \mid (x,\mathfrak{g}) = 0 \}$
- vii If $\mathfrak{g} \subseteq \mathfrak{gl}_n(\mathbb{C})$ is semi-simple, then (-,-) is non-degenerate.
- viii If $\mathfrak g$ is a simple Lie algebra, then up to scalar, there is a unique non-degenerate, symmetric, associative bilinear form on $\mathfrak g$.
- **Theorem 2.15.** 1. Every semi-simple complex Lie algebra, has a non-degenerate invariant bilinear form. In particular, the Cartan-Killing form on g is non-degenerate
 - 2. Let $\mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{C})$ be an algebraic subalgebra, TFAE
 - (a) g is reductive
 - (b) $(-,-): \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ is non-degenerate.
- **Proof.** \Longrightarrow Let $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{g}'$, where \mathfrak{z} is a commutative diagonal ideal, \mathfrak{g}' is a semi-simple ideal, which implies that $\mathfrak{z} = \mathfrak{z}(\mathfrak{g})$, $\forall z = x + y, x \in \mathfrak{z}, y \in \mathfrak{g}'$. Note that $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}'$, $\mathfrak{z}(\mathfrak{g}) \subseteq [\mathfrak{g}, \mathfrak{g}]^{\perp} = (\mathfrak{g}')^{\perp 27}$

If $y \neq 0$, since $(-,-): \mathfrak{g}' \times \mathfrak{g}' \to \mathbb{C}$ is non-degenerate, thus there exists some $y' \in \mathfrak{g}'$ such that $(y,y') \neq 0$

$$(z, y') = (x, y') + (y, y') \neq 0.$$

If y=0, note that $(-,-): \mathfrak{z} \times \mathfrak{z} \to \mathbb{C}$ is non-degenerate, there is an $x' \in \mathfrak{z}$ such that $(x,x') \neq 0$, which means $(z,x') \neq 0$.

 $\Leftarrow \mathfrak{z}(\mathfrak{g}) = \operatorname{Lie}(Z(G)^{\circ})$, where G is a closed algebraic subgroup of $\operatorname{GL}_n(\mathbb{C})$ such that $\mathfrak{g} = \operatorname{Lie}(G)$, since \mathfrak{g} is algebraic. Now $\operatorname{Lie}(Z(G)^{\circ})_u$ is a unipotent ideal of \mathfrak{g} . By the non-degeneracy of the invariant form, $\operatorname{Lie}(Z(G)_u^{\circ}) = 0 \implies Z(G)_u^{\circ} = \{e\}$, which means that $Z(G)^{\circ}$ is a torus. Thus $\mathfrak{z}(\mathfrak{g})$ is a commutative diagonalizable ideal of \mathfrak{g} . Note that $(-,-):\mathfrak{z}(\mathfrak{g})\times\mathfrak{z}(\mathfrak{g})\to\mathbb{C}$ is non-degenerate, we have

$$\mathfrak{g} = \mathfrak{z}(\mathfrak{g}) \oplus [\mathfrak{g},\mathfrak{g}]$$

as vector spaces. (Non degenerate assumption $\implies \mathfrak{z}(\mathfrak{g}) = [\mathfrak{g},\mathfrak{g}]^{\perp}, \mathfrak{z}(\mathfrak{g}) \cap [\mathfrak{g},\mathfrak{g}] = (0)$

²⁷ Are $rad(\mathfrak{g})$ and $\mathfrak{z}(\mathfrak{g})$ the same thing?

To show that $[\mathfrak{g},\mathfrak{g}]$ is semi-simple, note

$$(-,-):[\mathfrak{g},\mathfrak{g}]\times[\mathfrak{g},\mathfrak{g}]\to\mathbb{C}$$

is also non-degenerate, if $\mathfrak n$ is a solvable ideal of $[\mathfrak g,\mathfrak g]$, here we may assume that $\mathfrak n$ is algebraic, since the algebraic closure of a solvable ideal is solvable. Let N be a closed algebraic subgroup of (G,G) with $\mathrm{Lie}(N)=\mathfrak n$. Then $N_u=\{e\}$, since $\mathrm{Lie}(N_u)$ is a unipotent ideal of $[\mathfrak g,\mathfrak g]$ which implies that $\mathrm{Lie}(N_u)=0$.

N is a torus, $\mathfrak n$ is a commutative diagonalizable ideal, $[\mathfrak g,\mathfrak g],\mathfrak n^\perp$ is also ideal, $\mathfrak n\cap\mathfrak n^\perp=(0),\mathfrak n\cap\mathfrak n^\perp=(0)$, $\mathfrak n\cap\mathfrak n^\perp=(0)$.

$$[\mathfrak{g},\mathfrak{g}]=\mathfrak{n}\oplus\mathfrak{n}^{\perp},$$

 $\implies \mathfrak{n} \subseteq \mathfrak{z}(\mathfrak{g}) \cap [\mathfrak{g},\mathfrak{g}] \implies \mathfrak{n} = 0, [\mathfrak{g},\mathfrak{g}]$ is semi-simple. Altogether, \mathfrak{g} is a reductive Lie algebra.

3 Weights and Root System

Let T be a complex algebraic torus, id est $T \simeq \mathbb{C}^* \times \cdots \mathbb{C}^*$. Let $\mathfrak{h} = \mathrm{Lie}(T)$ which is a complex diagonalizable linear Lie algebra.

For a character $\chi:T\to\mathbb{C}^*$, consider the differential map

$$d\chi_e:\mathfrak{h}\to\mathbb{C},$$

thus we know that $d\chi_e \in \mathfrak{h}^*$. We write $\chi(T) = \mathbb{Z}[\chi_1, \dots, \chi_n]$, a polynomial ring in χ_1, \dots, χ_n , $d\chi_1, \dots, d\chi_n$ makes a basis of \mathfrak{h}^* ,

$$\chi_i: \mathbb{C}^* \times \dots \times \mathbb{C}^* \to \mathbb{C}^*,$$

 $(x_1, \dots, x_n) \mapsto x_i$

Let $\mathfrak{h}_{\mathbb{Z}}^* = \mathbb{Z} d\chi_1 \oplus \cdots \oplus \mathbb{Z} d\chi_n$, a lattice in \mathfrak{h}^* , $\mathfrak{h}_{\mathbb{R}}^* = \mathfrak{h}_{\mathbb{Z}}^* \otimes_{\mathbb{Z}} \mathbb{R} \hookrightarrow \mathfrak{h}^*$, $\mathfrak{h}_{\mathbb{Z}} = \{x \in \mathfrak{h} | (x, \mathfrak{h}_{\mathbb{Z}}^*) \in \mathbb{Z} \}$, $\mathfrak{h}_{\mathbb{R}} = \mathfrak{h}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$.

Let G be a connected complex algebraic group, $T\subseteq G$ is a torus, $\rho:G\to \mathrm{GL}(V)$, rational representation. By the Jordan decomposition theorem ²⁸, $\rho(T)$ is a subgroup, consisting only semi-simple elements

²⁸ precise statement of the Jordan decomposition theorem?

$$V = \bigoplus_{\chi \in \chi(T)} V_{\chi}$$

where $V_{\chi} = \{ v \in V \mid t \cdot v = \chi(t)v, \forall t \in T \}.$

Consider the differential $d\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ of ρ . In this case, we have

$$V = \bigoplus_{\lambda \in \operatorname{Lie}(T)^*_{\pi}} V_{\lambda} = \{ v \in V \mid h \cdot v = \lambda(h)v, \forall h \in \operatorname{Lie}(T) \}.$$

Let Λ_V be the \mathbb{R} -span of $d\chi, \chi \in \chi(T)$ with $V_\chi \neq 0$. V_χ is called a χ -weight space of V.

Claim 3.1. $\Lambda_V = \{ \ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \lambda(h) = 0, \forall h \in \mathrm{Lie}(T) \cap \ker d\rho \ \}.$ In particular, if V is a faithful rational representation, that is, ρ is injective, $\Lambda_V = \mathfrak{h}_{\mathbb{R}}^*$

A more interesting case is the adjoint representation, $\mathrm{Ad}:G\to\mathrm{GL}(\mathfrak{g}).$ Here we assume that T is a maximal torus

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \big(\bigoplus_{\alpha \in R(G,T) \subset \chi(T)} \mathfrak{g}_{\alpha}\big)$$

called the root space decomposition of g, where

$$\mathfrak{g}_0 = \{ x \in \mathfrak{g} \mid \mathrm{Ad}_t x = x, \forall t \in T \} = \{ x \in \mathfrak{g} \mid [h, x] = 0, \forall h \in \mathfrak{h} \subset \mathrm{Lie}(T) \},$$
$$\mathfrak{g}_{\alpha} \{ x \in \mathfrak{g} \mid \mathrm{Ad}_t x = \alpha(t)x, \forall t \in T \} = \{ x \in \mathfrak{g} \mid [h, x] = (d\alpha)(h), \forall h \in \mathfrak{h} \},$$

We call R(G,T) the set of **roots** of \mathfrak{g} with respect to T. Also, we call $\{d\alpha | \alpha \in R(G,T)\}$ the roots of \mathfrak{g} and regard $R(G,T) \subseteq \mathfrak{h}_{\mathbb{Z}}^*$, \mathfrak{g}_{α} is called the α -root space.

Often we are more interested in the reductive case, where there is a non-degenerate invariant form on \mathfrak{g} , say $(-,-):\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$.

i
$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}, [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = 0 \text{ if } \alpha + \beta \notin R(G,T).$$

ii $\alpha, \beta \in R(G,T), \alpha + \beta \neq 0, (\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}) = 0, (\mathfrak{g}_{\alpha}, \mathfrak{g}_{0}) = 0.$ In particular, $\forall \alpha \in R(G,T) \implies -\alpha \in R(G,T)$, and hence

$$(-,-):(\mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{-\alpha})\times(\mathfrak{g}_{\alpha}\oplus\mathfrak{g}_{-\alpha})\to\mathbb{C}$$

is non-degenerate.

iii $(-,-):\mathfrak{g}_0\times\mathfrak{g}_0\to\mathbb{C}$ is non-degenerate.

Proof. i $\forall h \in \mathfrak{h} = \operatorname{Lie}(T), x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$

$$[h, [x, y]] = [[h, x], y] + [x, [h, y]] = \alpha(h)[x, y] + \beta(h)[x, y] = (\alpha + \beta)(h)[x, y]$$

if $\alpha + \beta \in R(G,T) \Longrightarrow [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}$ and zero if $\alpha + \beta \notin R(G,T)$ ii $\forall h \in \mathfrak{h}, \forall x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$

$$\alpha(h)(x,y) = ([h,x],y) = -([x,h],y) = -(x,[h,y]) = -\beta(h)(x,y)$$

If $\alpha + \beta \neq 0$, $\exists h \in \mathfrak{h}$ such that $\alpha(h) \neq -\beta(h) \implies (x, y) = 0$,

Remark. By Theorem 2.15, $\mathfrak g$ is reductive since we assume that there is a non-degenerate pairing on $\mathfrak g$. By product $Z_G(T)=T$, where G is a reductive complex algebraic group. By general theory on algebraic groups, $Z_G(T)$ is connected, which is known as the **Cartan subgroup**, thus $Z_G(T) \simeq T \times Z_G(T)_u$, and moreover

$$\mathfrak{g}_0 = \{ x \in \mathfrak{g} \mid \mathrm{Ad}_t x = x, \forall t \in T \} = \mathrm{Lie}(Z_G(T))$$

 $\operatorname{Lie}(Z_G(T)_u)$ is a unipotent ideal of $\operatorname{Lie}(Z_G(T))=\mathfrak{g}_0, \Longrightarrow \operatorname{Lie}(Z_G(T)_u)=0, \Longrightarrow Z_G(T)=T \Longrightarrow \mathfrak{g}_0=\mathfrak{h}.$

Now, \mathfrak{g} is a reductive Lie algebra, with $\mathfrak{h} = \operatorname{Lie}(T)$, a maximal torus subalgebra

$$\mathfrak{g}=\mathfrak{h}\oplus (\bigoplus_{lpha\in R(G,T)}\mathfrak{g}_lpha).$$

Since $(-,-): \mathfrak{h} \times \mathfrak{h} \to \mathbb{C}, \mathfrak{h}^* \stackrel{\sim}{\to} \mathfrak{h}$ as vector spaces, $\alpha \in R(G,T) \subset \mathfrak{h}^*$

$$\mathfrak{h}_{\mathbb{R}}^* \supseteq \mathfrak{h}_{\mathbb{Z}}^* \ni \alpha \to U_{\alpha}.$$

Introduce the coroot:

$$h_{\alpha} := \frac{2u_{\alpha}}{(u_{\alpha}, u_{\alpha})} = \frac{2u_{\alpha}}{(\alpha, \alpha)}$$

iv $\forall x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{-\alpha}$

$$[x,y] = (x,y)u_{\alpha} = (x,y)(\alpha,\alpha) \cdot \frac{h_{\alpha}}{2}$$

v $\sum_{\alpha \in R(G,T)} \mathbb{C}\mathfrak{h}_{\alpha} = \mathfrak{h} \cap [\mathfrak{g},\mathfrak{g}]$, which is the maximal torus subalgebra of $[\mathfrak{g},\mathfrak{g}]$.

4 Representations of $\mathfrak{sl}_2(\mathbb{C})$

 $\mathfrak{sl}_2(\mathbb{C}) = \mathbb{C}e \oplus \mathbb{C}f \oplus \mathbb{C}h$, where

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h$$

Let $\rho:\mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ be a finite dimensional representation. Then

i Jordan decomposition theorem 29 implies that $\rho(h)$ is a semi-simple operator

²⁹ How?

ii If V is irreducible, then $\dim V=n+1$ for some $n\geq 0$ and V has a basis $\{v_0,v_1,\ldots,v_n\}$, such that

$$\begin{cases} hv_i &= (n-2i)v_i \\ ev_i &= (n+1-i)v_{i-1} \\ fv_i &= (i+1)v_{i+1} \end{cases}$$

Proof. By i, $V = \bigoplus_{\lambda} V_{\lambda}$, $V_{\lambda} = \{ v \in V \mid hv = \lambda v \}$, $\lambda \in \mathbb{C}$, V is irreducible, V is generated by any $o \pm v \in V_{\lambda}$,

$$hv = \lambda v$$

$$h(ev) = ([h, e] + eh)v = (2e + eh)v = (\lambda + 2)ev$$

$$h(fv) = (\lambda - 2)fv$$

thus we have $ev \in V_{\lambda+2}$ and $fv = V_{\lambda-2}$. Since $\dim V = n+1 < \infty$, there exist $r, s \in \mathbb{Z}_+$ such that

$$e^r v \neq 0, e^{r+1} v = 0,$$

 $f^s v \neq 0, f^{s+1} v = 0.$

Then $e^r v \in V_{\lambda+2r}$, $f^s V_{\lambda-2s}$. In this case, we write $v_o = e^r v$, and call it a highest weight vector. Then V is generated by v_0

$$V = \mathbb{C}v_0 \oplus \mathbb{C}fv_0 \oplus \mathbb{C}f^2v_0 \oplus \cdots \oplus \mathbb{C}f^nv_0.$$

Now
$$f^{n+1}v_0 = 0 \implies ef^{n+1}v_0 = eff^nv_0 = ([e, f] + fe)f^nv_0 = \dots = (n+1)$$

After some annihilating and creating tricks, we have $\lambda \in \mathbb{Z}$ and $v_0 \in V_n$.

For simplicity, we also write V(n) for this irreducible representation. The actions of h, e, f on the basis $\{v_0, fv_0, \dots, f^nv_0\}$ is exactly given above.

Remark. An alternative construction of V_n is given as $\mathbb{C}[x,y]$. Then $\mathfrak{sl}_2(\mathbb{C})$ acts on $\mathbb{C}[x,y]$ via

$$(Af)(x,y) = f(Ax,Ay),$$

where we regard X as $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and Y as $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Let V(n) be the homogeneous component of $\mathbb{C}[x,y]$ of degree n. This is an irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$ isomorphic to the irreducible representation V(n) above. And the dimension of the homogeneous-n component as a complex vector space can be computed as $\binom{n+1}{1}$, where we use the identification used in algebraic geometry

$$\operatorname{Spec}\mathbb{C}[x,y] = \operatorname{Proj}\mathbb{C}[x,y] = \mathbb{P}^1_{\mathbb{C}}.$$

Every finite-dimensional irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$ is **completely reducible**, *id* est, a direct sum of irreducible representations.

Recall, for a representation $\rho:\mathfrak{sl}_2(\mathbb{C})\to\mathfrak{gl}(V)$, we consider the dual representation V^* , such that $\forall x\in\mathfrak{sl}_2(\mathbb{C}), f\in V^*, v\in V$,

$$(X \cdot f)(v) = -f(X \cdot v).$$

Then it is easy to check that, $V(n)^* \simeq V(n), \forall n \geq 0$. Now we want to show that $\operatorname{Ext}^1(V(m), V(n)) = 0$. When $m \geq n$, any elements in $\operatorname{Ext}^1(V(m), V(n))$ corresponds to a short exact sequence

30 I can't understand the following argu-

ment. Lecture Note 28

$$0 \longrightarrow V(n) \longrightarrow V \longrightarrow V(m) \longrightarrow 0.$$

30

When $m \leq n$, we have

$$\operatorname{Ext}^{1}(V(m), V(n)) \simeq \operatorname{Ext}^{1}(V(n)^{*}, V(m)^{*}) \simeq \operatorname{Ext}^{1}(V(n), V(m)) = 0.$$

To summarize,

i Every finite-dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$ has a weight decomposition

$$V = \bigoplus_{\lambda \in \mathbb{Z}} V_{\lambda}$$

and is completely reducible.

ii f.d irreducible $\mathfrak{sl}_2(\mathbb{C})$ -representation mod isomorphisms bijectively corresponds to $\mathbb{Z}_{\geq 0}$.

iii $\dim V_{\lambda} = \dim V_{-\lambda}$ in i.

Let $\rho:\mathfrak{sl}_2\to\mathfrak{gl}(V)$ be a representation. Since $\mathrm{SL}_2(\mathbb{C})$ is simply-connected as a Lie group, there exists a lift $\tilde{\rho}:\mathrm{SL}_2(\mathbb{C})\to\mathrm{GL}(V)$ of ρ , such that $(dr\tilde{h}o)_e=\rho$.

5 Root System of Reductive Lie Algebras

G connected, reductive complex algebraic group. $T \subseteq G$ is a maximal torus, $\mathfrak{g} = \mathrm{Lie}(G)$, $\mathfrak{h} = \mathrm{Lie}(T)$.

$$\mathfrak{g} = \mathfrak{h} \oplus (\bigoplus_{\alpha \in R(G,T)} \mathfrak{g}_{\alpha}).$$

Claim 5.1. For all $\alpha \in R(G,T)$, $\dim \mathfrak{g}_{\alpha} = 1$ and $\mathfrak{h}_{\alpha} \in \mathfrak{h}_{\mathbb{Z}}$ and that $c_{\alpha} \in R(G,T)$ implies $c = \pm 1$.

Proof. $\forall \alpha inR(G,T), \mathfrak{g}_{\alpha} \neq 0$. Take $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $[X_{\alpha}, Y_{\alpha}] = 1/2(x_{\alpha}, y_{\alpha})(\alpha, \alpha)h_{\alpha} = h_{\alpha}$. Then

$$\begin{cases} [h_{\alpha}, X_{\alpha}] = \alpha(h_{\alpha}) X_{\alpha} = 2X_{\alpha} \\ [h_{\alpha}, y_{\alpha}] = -\alpha(h_{\alpha}) y_{\alpha} = -2y_{\alpha} \\ [x_{\alpha}, y_{\alpha}] = h_{\alpha} \end{cases}$$

id est, $\mathbb{C}x_{\alpha} \oplus \mathbb{C}y_{\alpha} \oplus \mathbb{C}h_{\alpha} \simeq \mathfrak{sl}_{2}(\mathbb{C}).$

Let $\mathfrak{g}^{(\alpha)} = \mathbb{C}x_{\alpha} \oplus \mathbb{C}y_{\alpha} \oplus \mathbb{C}h_{\alpha}$, then $[\mathfrak{g}^{(\alpha)}, \mathfrak{g}^{(\alpha)}] = \mathfrak{g}^{(\alpha)}$, id est, $\mathfrak{g}^{(\alpha)}$ is an algebraic subalgebra of \mathfrak{g} , id est, there exists a connected closed algebraic subgroup $G^{(\alpha)} \subseteq G$ such that $\mathfrak{g}^{(\alpha)} = \mathrm{Lie}(G^{(\alpha)})$. Using the fact that $\mathrm{SL}_2(\mathbb{C})$ is simply connected³¹, there are morphisms of Lie groups

32 What general fact it is?

 $\phi: \mathrm{SL}_2(\mathbb{C}) \twoheadrightarrow G^{(\alpha)} \hookrightarrow G$

which is a morphism of algebraic groups. By a general fact³² that

$$(d\phi)_e(h) - h_\alpha \in \mathfrak{h}_\mathbb{Z}.$$

Now, for $\alpha \in R(G,T)$, if $c\alpha \in R(G,T)$, then $h_{\alpha}, h_{c\alpha} \subset \mathfrak{h}_{\mathbb{Z}}$, so

$$\alpha(\frac{2u_{c\alpha}}{(c\alpha,c\alpha)}) = \alpha(\frac{2cu_{\alpha}}{c^2(u_{\alpha},u_{\alpha})}) = \frac{1}{c}\alpha(h_{\alpha}) = \frac{2}{c} \in \mathbb{Z},$$

and similarly $(c\alpha)(h_\alpha) \in \mathbb{Z}$, which implies $2c \in \mathbb{Z}$. So we have $c = \pm 1, \pm \frac{1}{2}, \pm 2$.

Let $\tilde{\mathfrak{g}}_{\alpha} = \{ x \in \mathfrak{g}_{\alpha} \mid (x, y_{\alpha}) = 0 \}$ and

$$\mathcal{M} = \begin{cases} \tilde{\mathfrak{g}} \oplus \mathfrak{g}_{2\alpha}, & \text{if } 2\alpha \in R(G, T) \\ \tilde{\mathfrak{g}}_{\alpha}, & \text{if } 2\alpha \notin R(G, T). \end{cases}$$

Claim 5.2. \mathcal{M} is an \mathfrak{sl}_2 -representation via the isomorphism $\mathfrak{sl}_2(\mathbb{C}) \simeq \mathbb{C}x_\alpha \oplus \mathbb{C}y_\alpha \oplus \mathbb{C}h_\alpha$.

Proof. If $2\alpha \in R(G,T)$

$$[x_{\alpha}, \mathfrak{g}_{2\alpha}] \subseteq \mathfrak{g}_{3\alpha} = 0,$$

$$[x_{\alpha}, \tilde{\mathfrak{g}}_{\alpha}] \subset \mathfrak{g}_{2\alpha},$$

$$[\mathfrak{h}_{\alpha}, \mathcal{M}] \subset \mathcal{M}$$

$$(5.1)$$

take $z\in \tilde{\mathfrak{g}}_{\alpha}, \ [y_{\alpha},z]=-\frac{1}{2}(z,y_{\alpha})(\alpha,\alpha)h_{\alpha}=0, \ [y_{\alpha},\mathfrak{g}_{2\alpha}]\in \tilde{\mathfrak{g}}_{\alpha} \text{ since } ([y_{\alpha},\mathfrak{g}_{2\alpha}],y_{\alpha})=-(\mathfrak{g}_{2\alpha},[y_{\alpha},y_{\alpha}])=0.$ If $2\alpha\notin R(G,T)$,

$$\begin{cases} [x_{\alpha}, \tilde{\mathfrak{g}}_{\alpha}] = 0\\ [h_{\alpha}, \tilde{\mathfrak{g}}_{\alpha}] \subset \tilde{\mathfrak{g}}_{\alpha}\\ [y_{\alpha}, \tilde{\mathfrak{g}}_{\alpha}] = 0 \end{cases}$$

Moreover, the weights in $\mathcal M$ is 2,4 if $2\alpha\in R(G,T)$ and is 2 if $2\alpha\notin R(G,T)$.

By the representation theory ³³ of \mathfrak{sl}_2 , we have $\mathcal{M}=0$. As a result, $\dim \mathfrak{g}_{\alpha}=1$ and $c\alpha \in R(G,T)$ imply $c=\pm 1$.

33 How?

Claim 5.3. $\forall \alpha, \beta \in R(G,T)$ and $\alpha \neq \beta$, there are $p,q \in \mathbb{N}$ such that

$$\beta - p\alpha, \beta - (p-1)\alpha, \cdots, \beta, \beta + \alpha, \cdots, \beta + q\alpha$$

belongs to R(G,T). Moreover

$$(\beta + \mathbb{Z}[\alpha]) \cap R(G,T) =$$
the α string through $beta$

and $p-1=\beta(h_{\alpha})\in\mathbb{Z}$.

Claim 5.4. $[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}]=\mathbb{C}h_{\alpha}$,

$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \begin{cases} 0 & \alpha + \beta \notin R(G,T) \\ \mathfrak{g}_{\alpha+\beta} & \alpha + \beta \in R(G,T). \end{cases}$$
 (5.2)

6 Jacobson-Morozov Theorem

[OV, pp. 150]

Theorem 6.1. Assume that \mathfrak{g} is semi-simple, then for any unipotent $0 \neq X \in \mathfrak{g}$, there is a semi-simple element H and a unipotent element Y, such that

$$[X, Y] = H, [H, X] = 2X, [H, Y] = -2Y.$$

That is, (H, X, Y) is an $\mathfrak{sl}_2(\mathbb{C})$ -triple.

Proof. $X \in \mathfrak{g}$ non-zero unipotent element. Let $N = \{ g \in G \mid \mathrm{Ad}_g X \in \mathbb{C}X \}$, which is an algebraic subgroup of G. Let T_1 be a maximal torus of N, then $\mathfrak{g}_1 = \mathrm{Lie}(T_1) \hookrightarrow \mathrm{Lie}(N) \subset \mathfrak{G}$

By Lemma 6.3 T_1 is non-trivial. Then we consider the decomposition of $\mathfrak g$ with respect to T_1 -weight spaces

$$\mathfrak{g} = \mathfrak{g}_0 \oplus (\oplus_{\alpha \in R(G,T_1)} \mathfrak{g}_{\alpha}).$$

By the definition of N, we know $(X \in \mathfrak{g}_{\alpha} \text{ for some } \alpha \in T(G, T_1)$. To finish the proof, we claim that $X \notin [\tilde{\mathfrak{g}}_{\alpha}, X]$, by Lemma 6.4.

If $X \in [\tilde{\mathfrak{g}}_0, X]$ id est, X = [Z, X] for some $Z \in \tilde{\mathfrak{g}}_0$. Let

$$Z = Z_s + Z_n$$

be the Jordan decomposition, thus we have $[Z_s, X] = X$ and $[Z_n, X] = 0$.

Note that $Z \in \tilde{\mathfrak{g}}_0$ implies $[Z,\mathfrak{h}_1] = [Z_s,\mathfrak{h}_1] = [Z_n,\mathfrak{h}_1] = 0^{34}$

By the maximality of T_1 in N, we have $Z_s \in \mathfrak{h}_1$. Since $\mathfrak{h}_1 \times \mathfrak{h}_1 \to \mathbb{C}$ is non-degenerate, there is an $H \in \mathfrak{h}_1$ such that $(Z_s, H) = 0$.

As a result, $(Z, H) = (Z_s, H) + (Z_n, H) \neq 0$, which contradicts to the choice of Z.

Lemma 6.2. For $X \in \mathfrak{g}$, $\ker(\operatorname{ad}_X) = [\mathfrak{g}, X]^{\perp}$ with respect to the Cartan-Killing form.

Lemma 6.3. For any non-zero unipotent $X \in \mathfrak{g}$, there is a semi-simple element $H \in \mathfrak{g}$, such that [H, X] = X.

³⁴ Very important! The definition of $\tilde{\mathfrak{g}}_0$ and $R(G,T_1)$.

Lemma 6.4. Let T_1 be a torus of G (not necessarily maximal). Then

$$\mathfrak{g} = \mathfrak{g}_0 \oplus (\oplus_{\alpha \in R(G,T_1)} \mathfrak{g}_{\alpha}),$$

where $\mathfrak{g}_0 = \{X \in \mathfrak{g} | [X, H] = 0, \forall H \in \text{Lie}(T_1) \}.$

7 Root Systems

Let E be a finite-dimensional \mathbb{R} -vector space, with an inner product $(-,-): E \times E \to \mathbb{R}$. For a non-zero $\alpha \in E$, let $H_{\alpha} := \{ x \in E \mid (x,\alpha) = 0 \}$, called the α -reflection hyperplane. Let $s_{\alpha} \in \mathrm{GL}(E)$, defined as

$$s_{\alpha}(x) = x - 2\left(x, \frac{\alpha}{\|\alpha\|}\right) \frac{\alpha}{\|\alpha\|}$$
$$= x - 2\left(x, \frac{\alpha}{(\alpha, \alpha)}\right) \alpha$$
$$= x - \left(x, \alpha^{\vee}\right) \alpha,$$

where $\alpha^{\vee} = \frac{2\alpha}{(\alpha,\alpha)}$.

Definition 7.1. [OV, pp. 153] A subset $\Phi \subseteq E$, is called a **reduced root system**, if the followings are satisfied

- i $0 \notin \Phi, |\Phi| < \infty$,
- ii $\forall \alpha \in \Phi, s_{\alpha}(\Phi) = \Phi,$
- iii $\forall \alpha, \beta \in \Phi, (\beta, \alpha^{\vee}) \in \mathbb{Z}$,
- iv $\forall \alpha \in \Phi, c \in \mathbb{R}, c\alpha \in \Phi \text{ iff } c = \pm 1.$

If iv is not satisfied, it is called a **root system** in [OV].

Let $E' = \operatorname{span}_{\mathbb{R}}(\Phi)$. Then Φ is a root system in E'. Let W be the subgroup of $\operatorname{GL}(E)$ generated by $s_{\alpha}, \alpha \in \Phi$, called the **Weyl group** of the root system. $W \simeq W|_{E'}$.

Example. Let G be a reductive³⁵ complex algebraic group, and $T \subseteq G$ a maximal torus, $R(G,T) \subset \mathfrak{h}_{\mathbb{Z}}^* \hookrightarrow \mathfrak{h}_{\mathbb{R}}^* = \mathfrak{h}_{\mathbb{Z}}^* \otimes_{\mathbb{Z}} \mathbb{R}$. It's easy to check that R(G,T) is a (reduced) root system in $\mathfrak{h}_{\mathbb{R}}^*$. Moreover, $\operatorname{span}_{\mathbb{R}}(R(G,T)) = \mathfrak{h}_{\mathbb{R}}^*$ iff \mathfrak{G} is semi-simple. Indeed,

³⁵ The same as reduced?

$$\operatorname{span}_{\mathbb{R}}(R(G,T)) = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \lambda(\mathfrak{z}(\mathfrak{g})) = 0 \}.$$

Definition 7.2. Let $(\Phi_1, E_1), (\Phi_2, E_2)$ be two root systems. A **morphism** from (Φ_1, E_1) to (Φ_2, E_2) is an \mathbb{R} -linear map $f: E_1 \to E_2$ such that

- 1. $f(\Phi_1) \subseteq \Phi_2$,
- 2. $\forall \alpha, \beta \in \Phi_1, \langle \alpha, \beta \rangle_{E_1} = \langle f(\alpha), f(\beta) \rangle_{E_2}$.

Denote $Aut(\Phi)$ as the automorphism group of (Φ, E) .

A root system (Φ, E) is called **indecomposable**, if there are no non-empty root systems (Φ_1, E) and (Φ_2, E) , such that $(\Phi_1, \Phi_2) = 0$ and $\Phi = \Phi_1 \cup \Phi_2$.

The dual root system of (Φ, E) is the root system (Φ^{\vee}, E^*) , where E^* is the dual vector space

of E, and

$$\Phi^{\vee} = \{ \alpha^{\vee} \mid \alpha \in \Phi \}$$

and $\alpha^{\vee} \in E^*, \alpha^{\vee}(x) = (x, \alpha^{\vee}) \in \mathbb{R}, \forall x \in E$.

Properties of root system.

i Let θ be the angle between two roots $\alpha, \beta \in \Phi$, id est

$$\cos \theta = \frac{(\alpha, \beta)}{\|\alpha\| \|\beta\|}.$$

Then

$$\langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = \frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\beta, \alpha)}{(\alpha, \alpha)} = 4\cos^2 \theta \in \mathbb{Z}.$$

If $\theta \geq \frac{\pi}{2}$ and $\|\beta\| \geq \|\alpha\|$.

ii Let $\alpha, \beta \in \Phi$ be two non-parallel. Then

(a)
$$(\alpha, \beta) > 0 \implies \alpha - \beta \in \Phi$$

(b)
$$(\alpha, \beta) < 0 \implies \alpha + \beta \in \Phi$$

iii Let $\alpha, \beta \in \Phi$ be two non-parallel roots. Then there are $p, q \in \mathbb{N}$ such that the α -string through β belongs to Φ .

7.1 Weyl Chamber and Simple Root System

Assume that Φ spans E, Let H_{α} be the α -reflection hyperplane,

$$E \setminus \bigcup_{\alpha \in \Phi} H_{\alpha} = \{ s \in E | (x, \alpha) \neq 0, \forall \alpha \in \Phi \}.$$

This is a disjoint union of convex cones, and each connected component is called a **Weyl chamber**.

Definition 7.3. A subset $\Delta \subseteq \Phi$ is called a **simple root system** if

i The roots in Δ are \mathbb{R} -linearly independent

ii $\forall \alpha \in \Phi$, either $\alpha \in \mathbb{Z}_{>0}\Delta$ or $\alpha \in \mathbb{Z}_{<0}\Delta$.

Theorem 7.1. For a root system $\Phi \subset E$ with rank $\Phi = \dim E$. Then a simple root system exists.

More precisely, there exists a bijection

Wely chambers $\stackrel{1:1}{\longleftrightarrow}$ Simple root systems.

Proof. Let C be a Weyl chamber, \overline{C} the closure of C, $\overline{C} \setminus C = H_{\alpha_1} \cup \cdots \cup H_{\alpha_n}$ for some $\alpha_1, \ldots, \alpha_n \in \Phi^{36}$. Notice tht $H_{\alpha} = H_{-\alpha}, H_{\alpha} = H_{c\alpha}, \forall c \in \mathbb{R}$. We may assume that n is minimal, and $C \subset H_{\alpha_i}^+$. In particular,

$$C = H_{\alpha_1}^+ \cap \cdots \cap H_{\alpha_n}^+ = \{x \in E | (x, \alpha_i) > 0, \forall i\}.$$

Claim 7.2. $\forall i \neq j, (\alpha_i, \alpha_j) \leq 0$.

Claim 7.3. $\alpha_1, \ldots, \alpha_n$ are \mathbb{R} -linearly independent, and make an \mathbb{R} -basis of E

Definition 7.4. Let $\Delta \subseteq \Phi$ be a simple root system, $\alpha \in \Phi$ is called a **positive root** if $\alpha \in \mathbb{Z}_{\geq 0}\Delta$, denoted as $\alpha > 0$. α is called a **negative root** if $\alpha \in \mathbb{Z}_{\leq 0}\Delta$, denoted as $\alpha < 0$.

Remark. Decomposition of semi-simple Lie algebras into simple Lie algebras corresponds to the decomposition of root systems into indecomposable simple root systems.

Let G be a reductive complex algebraic group, $T \subset G$ a maximal torus,

$$\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{\alpha \in R(G,T)} \mathfrak{g}_{\alpha}),$$

 $R(G,T) \subseteq \mathfrak{h}_{\mathbb{Z}}^*$, and $(R(G,T),\mathfrak{h}_{\mathbb{R}}^*)$ is a root system, though $\operatorname{rank} R(G,T) \leq \dim \mathfrak{h}_{\mathbb{R}}^*$. Let Δ be a simple root system of R(G,T) and write

$$\mathfrak{n}^+ = \sum_{\alpha \in R(G,T), \alpha > 0} \mathfrak{g}_{\alpha}, \mathfrak{n}^- = \sum_{\alpha \in R(G,T), \alpha < 0} \mathfrak{g}_{\alpha}$$

and

$$\mathfrak{b}^+ = \mathfrak{h} \oplus \mathfrak{n}^+,$$

then \mathfrak{b}^+ is a Borel subalgebra of \mathfrak{g} . Hence, we have

Weyl chambers $\stackrel{1:1}{\longleftrightarrow}$ simple root systems $\stackrel{\theta}{\to}$ Borel subalgebra of $\mathfrak g$ containing $\mathfrak h \stackrel{1:1}{\longleftrightarrow}$ Borel subgroups of G containing T.

Theorem 7.5. θ is also a bijection.

Proof. Given a Borel subalgebra $\mathfrak{b} \subseteq \mathfrak{g}$ containing \mathfrak{h} , then we have

$$\mathfrak{b} = \mathfrak{h} \oplus (\oplus_{\alpha \in R} \mathfrak{g}_{\alpha}), R \subset R(G, T)$$

and

$$\mathfrak{n} = \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha},$$

thus $\mathfrak{n}/[\mathfrak{n},\mathfrak{n}] = \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$

7.2 Weyl groups

Let $\Phi \subset E$ be a root system the W the Weyl group of Φ . For any $s_{\alpha} \in W$, we have $s_{\alpha}H_{\beta} = H_{s_{\alpha}(\beta)}$, so W acts on the set $E \setminus \bigcup_{\alpha \in \Phi} H_{\alpha}$, id est, W acts on the set of Weyl chambers.

Let C be a Weyl chamber, we say that the hyperplane H_{α} is a wall of C if $\overline{C} \cap H_{\alpha} \neq (0)$, and we write $C \subset H_{\alpha}^+$ if $(\lambda, \alpha) > 0$, for all $\lambda \in C$.

To memorize the orientation of H_{α} , we sometimes write P_{α} instead of H_{α} , then we know that

$$C = P_{\alpha_1}^+ \cap \cdots \cap P_{\alpha_n}^+$$

where $P_{\alpha_1}, \ldots, P_{\alpha_n}$ are walls of C. We say two Weyl chambers C_1, C_2 are **separated** by a hyperplane P_{α} , if $C_1 \subseteq P_{\alpha}^+, C_2 \subseteq P_{\alpha}^-$ or $C_1 \subseteq P_{\alpha}^-, C_2 \subseteq P_{\alpha}^+$.

For two Weyl chambers, C_1 , C_2 , define

 $d(C_1, C_2) = \#\{\text{non-oriented hyperplanes separating } C_1 \text{ and } C_2\}$

Lemma 7.6. Let P_{α} be the wall of the Weyl chamber C. Then

$$d(C, s_{\alpha}C) = 1.$$

Corollary 7.7. Let $C_1 \neq C_2$ be two Weyl chambers, there exists a wall P_{α} of C_2 , such that

$$d(C_1, C_2) = d(C_1, s_{\alpha}C_2) + 1.$$

Theorem 7.8. [OV, pp. 162] Let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ be a simple root system of the root system Φ . Then $W = \langle s_{\alpha_1}, \ldots, s_{\alpha_n} \rangle$, and for each $\beta \in \Phi$ there is a $w \in W$ such that $w(\beta) \in \Delta$ or $\frac{1}{2}w(\beta) \in \Delta$.

Proof.

Definition 7.5. Let $w \in W$, if there is an expression

$$w = s_{\alpha_{i_1}} s_{\alpha_{i_2}} \cdots s_{\alpha_{i_k}}, \alpha_{i_i} \in \Delta$$

such that k is minimal among all such expressions, in this case k is called the **length** of w, denoted by l(w), the expression above is called a **reduced expression**.

Example. A_2 -root system, $\Delta = \{\alpha, \beta\}, \Phi = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}.$

$$W = \langle s_{\alpha}, s_{\beta} \rangle, s_{\alpha}^2 = 1, s_{\beta}^2 = 1, s_{\alpha}s_{\beta}s_{\alpha} = s_{\beta}s_{\alpha}s_{\beta}.$$

 $w = s_{\alpha} s_{\beta} s_{\alpha}$ is a reduced expression and l(w) = 3.

Proposition 7.9. Let $w = s_{\alpha_{i_1}} \cdots s_{\alpha_{i_k}} \in W$ be reduced expression. Then

$$\{\alpha_{i_k}, s_{\alpha_{i_k}}(\alpha_{i_{k-1}}), \dots, s_{\alpha_{i_k}} \cdots s_{\alpha_{i_2}}(\alpha_{i_1})\}$$

are the only possible positive roots $\alpha \in R^+$ such that $w(\alpha) < 0$. In particular, the hyperplanes C_0 and $w^{-1}C_0$ Are separated exactly by $\{H_\alpha\}$ with α in the list above.

Theorem 7.10. The Weyl group acts simply-transitively on the set of Weyl chambers. Let C_0 be the fundamental Weyl chamber with respect to a simple root system Δ . Then

- i For each $\lambda \in C_0$, $\operatorname{Stab}_W(\lambda) = \{1\}$.
- ii For $\lambda \in \overline{C_0} \setminus C_0$, $\operatorname{Stab}_W(\lambda) = \langle s_\alpha \mid (\lambda, \alpha^\vee) = 0, \alpha \in \mathbb{R}^+ \rangle$
- iii For any $\lambda \in E$, the W-orbit of λ intersects $\overline{C_0}$ at a single point.

Let G be a reductive connected complex algebraic group, $T \subset G$ a maximal torus, $N_G(T) = \{g \in |gTg^{-1} = T\}, Z_G(T) = T, N_G(T)^\circ = Z_G(T), W'' = N_G(T)/N_G(T)^\circ = N_G(T)/T,$ called the Weyl group of the pair (G,T), denoted by W(G,T).

For each $n \in N_G(T)$, consider the adjoint action $\mathrm{Ad}_n:\mathfrak{h}_{\mathbb{Z}} \to \mathfrak{h}_{\mathbb{Z}}$, which extends to a morphism $\mathrm{Ad}_n:\mathfrak{h}_{\mathbb{R}} \to \mathfrak{h}_{\mathbb{R}}$. Then we get ³⁷

³⁷ Lecture Note 31. I don't know wether $W \hookrightarrow \mathrm{GL}(\mathfrak{h}_{\mathbb{R}})$ is invertible.

Theorem 7.11. Let W'' be the image of ν . Then

1.
$$W'' \simeq N_G(T)/T$$

2.
$$W = W''$$
.

Theorem 7.12. Let (Φ_1, E_1) and (Φ_2, E_2) be two root systems with $\operatorname{rank}\Phi_1 = \operatorname{rank}\Phi_2$. Let Δ_1 be a simple root system of Φ_i , $\theta : \operatorname{span}_{\mathbb{R}}(\Phi_1) \to \operatorname{span}_{\mathbb{R}}(\Phi_2)$ be a linear isomorphism, such that $\theta(\Delta_1) \subseteq \Phi_2$ and

$$(\alpha, \beta)_1 = (\theta(\alpha), \theta(\beta))_2, \forall \alpha, \beta \in \Delta_1.$$

If Φ_1 is a reduced root system , then $\theta(\Phi_1)$ is a root subsystem of Φ_2 . If Φ_1 and Φ_2 are both reduced, then $\theta(\Phi_1) = \Phi_2$, $\theta(\Delta_1)$ is a simply root system of Φ_2 .

Given a root system $\Phi\subseteq E$ with Δ a simple root system. The associated **Cartan matrix** is the matrix

$$C = (c_{ij}) \in M_n(\mathbb{Z})$$

with $c_{ij} = \alpha_i^{\vee}(\alpha_j) = \frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)} \in \mathbb{Z}$

$$a^2 + b^2 = c^2 (7.1)$$

References

[OV] Arkadij L. Onishchik and Ernest B. Vinberg. *Lie Groups and Algebraic Groups*. Springer Series in Soviet Mathematics. Springer Berlin Heidelberg.