Drug Consumption

Python for data analysis Arthur VINOT and Alexis SOK

The data

- IN : The dataset is composed with different informations of people such as : ID, Age Gender, Education, Country, Ethnicity and personality.
- OUT: Moreover we have information about their drugs consumption such as alcohol, amphet, amyl, benzos. These features have values between 0 to 6 to evaluate their habits (never used the drug, used it over a decade ago, or in the last decade, year, month, week, or day).

The problems

This dataset is really rich and a lot of problem could be resolved, for instance:

- Predict if someone will have an addiction to drugs
- Predict which drugs they will be consum
- Predict for each drug, if someone will try it or be a drug addict

Data Cleaning

- Our data has no missing values
- For the drugs, their values are strings so we convert them into numerical values
- Moreover, we had to map values of age, gender, ethnicities, countries, educations because their were numerical values that have no signification

Data exploration and analysis - people analysis

	N	%
18-24	643	34.11
25-34	481	25.52
35-44	356	18.89
45-54	294	15.60
55-64	93	4.93
65+	18	0.95

	N	%	
UK	1044	55.38	
USA	557	29.55	
Other	118	6.26	
Canada	87	4.62	
Australia	54	2.86	
Ireland	20	1.06	
New Zealand		0.27	

	N	%
White	1720	91.25
Other	63	3.34
Black	33	1.75
Asian	26	1.38
Mixed-White/Asian	20	1.06
Mixed-White/Black	20	1.06
Mixed-Black/Asian		0.16

Our dataset is composed by 50% male and 50% female.

Most of people are white and they came from english speaking countries.

Age range Countries Ethnicities

N %

Some college or university, no certificate or degree 506 26.84

M 943 50.03F 942 49.97		N	%
F 942 49.97	M	943	50.03
	F	942	49.97

Gender

	N	%
Some college or university, no certificate or degree	506	26.84
University degree	480	25.46
Masters degree	283	15.01
Professional certificate/ diploma	270	14.32
Left school at 18 years	100	5.31
Left school at 16 years	99	5.25
Doctorate degree	89	4.72
Left school at 17 years	30	1.59
Left school before 16 years	28	1.49

Remarks: Beside gender, we think that the rests of the features are unbalanced and not representative.

Educations

Data exploration and analysis - people analysis

Data analysis - Correlation

As we can see the Sensation and the impulsiveness are correlated

Machine learning - data spliting

For the data prediction we use the alcohol consumption:
 so we create a matrix 7x7 that evaluate with a 1 their alcohol consumption from the first index to the 7th index e.g.:

These are going to be our actual values

- We scale our data and split them into 70% for the training set and 30% for the test set
- For each model we created function that evaluate our model: confusion matrix, precision, recall, score ...

```
[[0 0 0 ... 0 1 0]

[0 0 0 ... 0 1 0]

[0 0 0 ... 0 0 1]

...

[0 0 0 ... 1 0 0]

[0 0 0 ... 0 1 0]
```

Machine learning - SVM

Confusion Mad [[0 22] [0 544]]	trix:			
Classification	on Report:			
	precision	recall	f1-score	support
0	0.00	0.00	0.00	22
1	0.96	1.00	0.98	544
			0.05	566
accuracy			0.96	566
macro avg	0.48	0.50	0.49	566
weighted avg	0.92	0.96	0.94	566

Observations:

- This model has a good score and precision = 0.98
- Among 566 observation, 544 were True

Machine learning - Decision Tree

Confusion [[2 20 [4 540		‹ :				
Classific	ation F	Report:				
	pı	recision	recall	f1-score	support	
				2.33		
		0.33	0.09	0.14	22	
		0.96	0.99	0.98	544	
accur	acv			0.96	566	
macro		0.65	0.54	0.56	566	
weighted	avg	0.94	0.96	0.95	566	

Observations:

- In comparison to the SVM, this one is less precise and accurate.

Machine learning - KNN

Confusion Mat [[0 22] [0 544]]	rix:			
Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.00	0.00	0.00	22
1	0.96	1.00	0.98	544
accuracy			0.96	566
macro avg	0.48	0.50	0.49	566
weighted avg	0.92	0.96	0.94	566

Observations:

- We tried the different values for the neighbors (2,5,6,7).
- Our best value were 5 because over this value the result were the same.
- This model is the same to SVM

Machine learning - RandomForest

Confusion Mat [[0 22] [0 544]]	rix:			
Classificatio	n Report:			
	precision	recall	f1-score	support
	0.00	0.00	0.00	22
1	0.96	1.00	0.98	544
accuracy			0.96	566
macro avg	0.48	0.50	0.49	566
weighted avg	0.92	0.96	0.94	566

Observations:

This model is the same to SVM

Machine learning - Logistic Regression

Confusion Mat [[0 22] [0 544]]	rix:			
Classification	n Report:			
	precision	recall	f1-score	support
	0.00	0.00	0.00	22
1	0.96	1.00	0.98	544
accuracy			0.96	566
macro avg	0.48	0.50	0.49	566
weighted avg	0.92	0.96	0.94	566

Observations:

This model is the same to previous

Machine learning - models

- Every model were good and gave the same result except for decision tree.
- All of them were quiet quick less than 2 seconds

Conclusion of the project

This project was really interesting because we could practice everything we learnt in your courses and also in other courses such as Machine Learning.

This kind of project is the proof that data is a real treasure and we can make relevant prediction that could surprise us.