CS 677: Parallel Programming for Many-core Processors Lecture 10

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

Logistics

- Project progress reports due next week
- 1. What is the status of the CPU version? If you are using existing code for this part, cite the source of the code.
- 2. What is the status of the GPU version in terms of completeness? Which functionalities have been implemented and what is missing?
- 3. What is the status of the GPU version in terms of correctness? Is the, potentially unoptimized, GPU version correct? If not, what is your plan for achieving correctness?

Outline

- Sparse matrix and vector operations
- Summed area tables
- Parallel Sorting

Sparse Matrix-Vector Multiplication

slides by Jared Hoberock and David Tarjan (Stanford CS 193G)

Overview

- GPUs deliver high Sparse Matrix Vector (SpMV) performance
- No one-size-fits-all approach
 - Match method to matrix structure

- Exploit structure when possible
 - Fast methods for regular portion
 - Robust methods for irregular portion

Characteristics of SpMV

- Memory bound
 - FLOP : MemOp ratio is very low
- Generally irregular & unstructured
 - Unlike dense matrix operations

Finite-Element Methods

- Discretized on structured or unstructured meshes
 - Determines matrix sparsity structure

Objectives

- Expose sufficient parallelism
 - Develop 1000s of independent threads

- Minimize execution path divergence
 - SIMD utilization

- Minimize memory access divergence
 - Memory coalescing

Sparse Matrix Formats

Compressed Sparse Row (CSR)

- Rows laid out in sequence
- Inconvenient for fine-grained parallelism

CSR (scalar) kernel

- One thread per row
 - Poor memory coalescing
 - Unaligned memory access

CSR (vector) kernel

- One SIMD vector or warp per row
 - Partial memory coalescing
 - Unaligned memory access

ELLPACK (ELL)

- Storage for K nonzeros per row
 - Pad rows with fewer than K nonzeros
 - Inefficient when row length varies

Hybrid Format

- ELL handles typical entries
- COO handles exceptional entries
 - Implemented with segmented reduction

Exposing Parallelism

- DIA, ELL & CSR (scalar)
 - One thread per row

- CSR (vector)
 - One warp per row

- COO
 - One thread per nonzero

Exposing Parallelism

Execution Divergence

- Variable row lengths can be problematic
 - Idle threads in CSR (scalar)
 - Idle processors in CSR (vector)

- Robust strategies exist
 - COO is insensitive to row length

Memory Access Divergence

- Uncoalesced memory access is costly
 - Sometimes mitigated by cache
- Misaligned access is suboptimal
 - Align matrix format to coalescing boundary
- Access to matrix representation
 - DIA, ELL and COO are fully coalesced
 - CSR (vector) is partially coalesced
 - CSR (scalar) is seldom coalesced

Performance Comparison

System	Cores	Clock (GHz)	Notes
GTX 285	240	1.5	NVIDIA GeForce GTX 285
Cell	8 (SPEs)	3.2	IBM QS20 Blade (half)
Core i7	4	3.0	Intel Core i7 (Nehalem)

Sources:

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors N. Bell and M. Garland, Proc. Supercomputing '09, November 2009

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms Samuel Williams et al., Supercomputing 2007.

Performance Comparison

ELL kernel

```
__global__ void ell_spmv(const int num_rows,
                                            const int num_cols,
                        const int num_cols_per_row, const int stride,
                        const double * Ai.
                                                const double * Ax,
                        const double * x,
                                                          double * v)
   {
       const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
       const int grid_size = gridDim.x * blockDim.x;
       for (int row = thread_id; row < num_rows; row += grid_size) {
           double sum = y[row];
           int offset = row;
           for (int n = 0; n < num_cols_per_row; n++) {
               const int col = Ai[offset];
               if (col != -1)
                   sum += Ax[offset] * x[col];
               offset += stride;
           y[row] = sum;
```

```
#include <cusp/hyb_matrix.h>
#include <cusp/io/matrix_market.h>
#include <cusp/krylov/cq.h>
int main(void)
{
   // create an empty sparse matrix structure (HYB format)
   cusp::hyb_matrix<int, double, cusp::device_memory> A;
   // load a matrix stored in MatrixMarket format
   cusp::io::read_matrix_market_file(A, "5pt_10x10.mtx");
   // allocate storage for solution (x) and right hand side (b)
   cusp::array1d<double, cusp::device_memory> x(A.num_rows, 0);
   cusp::array1d<double, cusp::device_memory> b(A.num_rows, 1);
   // solve linear system with the Conjugate Gradient method
   cusp::krylov::cq(A, x, b);
   return 0:
}
```


cusplibrary.github.com

A library for **sparse linear algebra** and **graph** computations on CUDA

Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2011

Gabriel Zachmann
University of Bremen
Massively Parallel Algorithms - 2018

 Summed Area Table (SAT): 2D table where each element stores the sum of all elements in an input image between the lower left corner and the entry location.

Example:

$$(1+1+0)+(1+2+1)+(0+1+2)=9$$

Benefit

- Used to compute different width filters at every pixel in the image in constant time per pixel
- Just sample four pixels in SAT:

$$s_{filter} = \frac{s_{ur} - s_{ul} - s_{lr} + s_{ll}}{w \times h},$$

- Uses
 - Glossyenvironmentreflections andrefractions
 - Approximate depth of field

Input image

- 2 1 0 0
- 0 1 2 0
- 1 2 1 0
- 1 1 0 2

SAT

Input image

- 2 1 0 0
- 0 1 2 0
 - 1 2 1 0
- 1 1 0 2

SAT

Input image

- 2 1 0 0
- 0 1 2 0
- 1 2 1 0
- 1 1 0 2

SAT

Input image

- 2 1 0 0
- 0 1 2 0
 - 1 2 1 0
- 1 1 0 2

SAT

1 2 2

Input image

- 2 1 0 0
- 0 1 2 0
- 1 2 1 0
- 1 1 0 2

SAT

1 2 2 4

Input image

- 2 1 0 0
- 0 1 2 0
- 1 2 1 0
- 1 1 0 2

SAT

2 5

1 2 2 4

How would you implement this on the GPU?

Recall Inclusive Scan:

Step 1 of 2:

One inclusive scan for each row

Step 2 of 2:

One inclusive scan for each Column, bottom to top

Issues

- Caveat: precision of integer/floating-point arithmetic
 - Assumption: each T_{ij} needs b bits
 - Consequence: number of bits needed for $S_{wh} = logw + logw + b$
 - Example: 1024x1024 grey scale input image,each pixel = 8 bits
 - 28 bits needed in S-pixels

Increasing Precision (1)

- Signed offset representation:
- Set $T'(i,j) = T(i,j) \bar{t}$ where $\bar{t} = \text{average of } T = \frac{1}{wh} \sum_{1}^{w} \sum_{1}^{h} T(i,j)$
- Effectively "removes the DC component from the signal"

Increasing Precision (1)

• Consequence:
$$S'(i,j) = \sum_{k=1}^{i} \sum_{l=1}^{j} T'(k,l) = S(i,j) - i \cdot j \cdot \bar{t}$$

i.e., the values of S' are now in the same order as the values of T (fewer bits have to be thrown away during the summation)

- Note 1: we need to set aside 1 bit (sign bit)
- Note 2: S'(w,h) = 0 (modulo rounding errors)

Example

Input image

Original summed area table

With improved precision using "offset" representation

Increasing Precision (2)

- Move the "origin" of the *i,j* "coordinate
- frame
- Compute 4 different S-tables, one for each quadrant
- Result: each S-table comprises only ¼ of the pixels of T
- For computation of T(k,l) do a simple case switch

47

Application: Depth of Field

The (simple) idea:

- Move sliding window across image (all possible locations, all possible sizes)
- Check, whether a face is in the window
- We are interested only in windows that are filled by a face

Observation:

- Image contains 10s of faces
- But ≈ 10⁶ candidate windows

Consequence:

 To avoid having a false positive in every image, our false positive rate has to be < 10⁻⁶

- Feature types used in the Viola-Jones face detector:
 - 2, 3, or 4 rectangles placed next to each other
 - Called Haar features
- Feature value: g_i = pixel-sum(white rectangle(s))
 - pixel-sum(black rectangle(s))

- Constant time per feature extraction
 - In a 24x24 window (e.g., one of the sliding windows), there are ≈ 160,000 possible features

All variations of type, size, location within

the window

 Define a weak classifier for each feature

$$f_i = egin{cases} +1 & ext{, } g_i > heta_i \ -1 & ext{, else} \end{cases}$$

- "Weak" because such a classifier is only slightly better than a random "classifier"
- Goal: combine lots of weak classifiers to form one strong classifier

$$F(\text{window}) = \alpha_1 f_1 + \alpha_2 f_2 + \dots$$

Parallel Sorting

Scott B. Baden UCSD, CSE 160 Winter 2013

Parallel Sorting

- We'll consider in-memory sorting of integer keys
 - Bucket sort
 - Sample sort
 - Bitonic sort (later)

Rank Sorting

- Compute the rank of each input value
- Move each value in sorted position according to its rank
- Makes idealizing assumptions
 - An ideal parallel computer with no memory contention and an infinite number of processors
 - The forall loops parallelize perfectly

```
forall i=0:n-1, j=0:n-1

if (x[i] > x[j]) then rank[i] += 1 end if

forall i=0:n-1

y[rank[i]] = x[i]
```

In Search of a Fast and Practical Sort

- Rank sorting is impractical on real hardware
- Let's borrow the concept: compute the thread owner for each key
- Shuffle data in sorted order in one step
- But how do we know which thread should be the owner?
- Subdivide the key space

First Attempt: Bucket Sort

- Divide the range of keys into equal subranges and associate a bucket with each range
- Each processor maintains p local buckets
 - Assigns each key to a bucket: $\lfloor p \times \frac{key}{(K_{max}-1)} \rfloor$
 - Routes the buckets to the correct owner (each local bucket has ≈ n/p² elements)
 - Sort all incoming data in each bucket

Runtime

- Assume that the keys are distributed uniformly over 0 to Kmax-1
- Local bucket assignment: O(n/p)
- Route each local bucket to the correct owner O(n)
- Local sorting (using radix sort): O(n/p))
 http://users.monash.edu/~Iloyd/tildeAlgDS/
 Sort/Radix/

Worst Case Behavior

- The assignment of keys to threads is based solely on the knowledge of Kmax
- If the keys are integers in the range [0,Q-1]thread k has keys in the range $\left[k\frac{Q}{P},(k+1)\frac{Q}{P}\right]$

• E.g. for $Q=2^{30}$, P=64, each thread gets $2^{24} = 16$ M elements

- For a non-uniform distribution, we need more information to balance keys (and communication) over the processors
- In the worst case, all the keys could go to one processor

Improving on Bucket Sort

Sample sort

- Uses a heuristic to estimate the distribution of the global key range over the p threads
- Each processor gets about the same number of keys
- Sample the keys to determine a set of p-1 splitters that partition the key space into p disjoint regions (buckets)

Sample Selection

Introduction to Parallel Computing, 2nd Ed,, A.Grama, A.1 Gupta, G. Karypis, and V. Kumar, Addison-Wesley, 2003.

Splitter Selection: Regular Sampling

- Shi and Schaeffer [1992]
- Each processor sorts its local keys, then selects s evenly spaced samples
- These candidate splitters are collected by one thread
 - Sorted
 - Sampled at uniform positions to generate a p-1 element splitter list

Performance

- Assuming $n \ge p3$...
- $T_P = O((n/p) \log n)$
- If s= p, each processor will merge no more than 2n/p + n/s p elements
- If s > p, each processor will merge no more than
- (3/2)(n/p) (n/(ps)) + 1 + d elements
- Duplicates d do not impact performance unless d = O(n/p)
- Tradeoff: increasing s ...
 - Spreads the final distribution more evenly over the processors
 - Increases the cost of determining the splitters
- For some inputs, communication patterns can be highly irregular with some pairs of processors communicating more heavily than others, lowering performance

Radix Sort

- We need a stable sorting algorithm to do the local sorts: the output preserves the order of inputs having the same associated key
- radix sort meets our needs: sort the keys in passes, choosing an r-bit block at a time, O(n) running time
- Explanation with a demo <u>www.csse.monash.edu.au/~lloyd/tildeAlgDS/</u> Sort/Radix/

Radix Sort Example

- Consider the input keys
 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
- Use 4 buckets
- Sort on each digit in succession, least significant to most significant

Radix Sort Example

- Consider the input keys
 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
- Use 4 buckets
- Sort on each digit in succession, least significant to most significant
- After pass 1
 41 11 12 42 32 32 23 34 44 34

41 11 <u>12 42 32 32</u> 23 <u>34 44 34</u>

Radix Sort Example

- Consider the input keys
 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
- Use 4 buckets
- Sort on each digit in succession, least significant to most significant
- After pass 1
 41 11 12 42 32 32 23 34 44 34
- After pass 2
 11 12 23 32 32 34 34 41 42 44