Quiz 4

Started: Oct 28 at 9:20pm

Quiz Instructions

Question 1	1 pts
Consider a multi-class classification problem with 10 classes and 14 featuruse linear models $m{w}^T m{x} + m{b}$ (e.g. logistic regression) as a binary classifier. be the total number of parameters for using one-vs-one strategies for classifier.	. What will
<u></u>	
O 150	
675	

Question 2	1 pts
Consider a multi-class classification problem with 10 classes and 14 features. Use linear models ${\pmb w}^T{\pmb x}+{\pmb b}$ (e.g. logistic regression) as a binary classifier. When the total number of parameters for using one-against-all strategies for classification?	
○ 1260	
O 200	
O 675	
150	

Question 3 1 pts

Consider a multi-class classification problem with 3 classes. The distribution of the points is shown in the figure (Blue - Class 1, Orange - Class 2, Green - Class 3). We are using a 3-NN (KNN) algorithm as the binary classifier. Suppose we have a new test point (shown in Yellow). When there is no clear winner, we output "None" as the answer. What would be the predictions by one-vs-one and one-vs-all strategies for this point?

One-vs-one: None and One-vs-all: Blue

Question 4 1 pts

Which of the following statement(s) are true about the PAC-learnability of the monotone conjunction class?

- ✓ If we expect to get a function with lower error rate, we need more training samples.
- ✓ If we expect to get a good function with higher probability, we need more training samples.
- ✓ If the dimension of the inputs is higher (i.e., more variables), we need more training samples.
- If there are more test samples, to achieve the same error rate, we need more training samples.

Question 5 1 pts

In the lecture, we analyze monotone conjunction class. In the following, we consider learning a 5-variable *monotone disjunction* function (e.g.,

 $f=x_1 \lor x_2 \lor x_3, \quad f=x_3 \lor x_5$, etc) from the following data.

x_1	x_2	x_3	x_4	x_5	$\mid y \mid$
1	0	0	0	1	0
0	1	1	1	0	1
0	1	0	1	0	1

The data is generated by the target monotone disjunction function f^* . Which of the following statement(s) are true:

✓ There are in total 32 monotone disjunction functions in the 5-variable disjunction function class.

✓ Based of	n the data, x_2 may or may not be part of	the target monotone disjunction function f
☐ Based o	n the data, x_2 must be part of the target	monotone disjunction function f*

Quiz saved at 9:32pm

Submit Quiz