

Effects of dopant on depoling temperature in modified BiScO₃ – PbTiO₃

Ben Kowalski Alp Sehirlioglu

Introduction

- Piezoelectrics for high temperature applications
- Fuel/gas modulation, ultrasonic drilling, etc.
- Tolerance factor (t) acts as guide for selection of non-PT member
- BiScO₃ PbTiO₃:
- T_c: 450°C, d₃₃: 460 pm/V for morphotropic phase boundary (MPB)
 composition

- A-site modification: La, Ba
- B-site modification: Ga, Mn,
 Zr, Zn_{0.5}Ti_{0.5}, Nb, etc.
- DC conductivity, tan δ , d₃₃, T_c, T_d, etc.

A different metric

- Curie temperature (T_c)
 doesn't tell whole story
- Many piezoelectric
 materials depole before T_c
- Why do they depole?
 Domain rotation, phase transitions, inhomogeneities
- Dope to change depoling temperature

Upper right – Zhang et al, J. Am. Cer. Soc., 2010

Dopant effects on depoling temperature in BS-PT

Compositions

Previous success with aliovalent Zr_{Sc} and compensated Zn_{0.5}Zr_{0.5}

500 | Paraelectric - Cubic

400-

 $2\% \text{ Zr}_{Sc}$ increases T_d by 20°C for 37BS - 63PT, with a decrease in T_c

FE-Tetragonal

200

(C°) emperature

100-

rhombohedral and tetragonal Compositions chosen from regions around MPB

- - - Estimated phase fields

90

85

8

65

55

0+ 20

x mol% PbTiO,

Single crystal data Tilt transition

- Aliovalent Zn_{Sc} chosen for high ferroelectric activity; hybridizes similiarly to Ti
- Conventional solid state processing
- Calcine: 3hrs @ 750°C
- Sinter: 1hr @ 1100°C Zr_{Sc} doping – Sehirlioglu et al, J. Am. Cer. Soc., 2010

Zn_{0.5}Zr_{0.5} doping – Kowalski et al, J. Am. Cer. Soc., 2013

Phase diagram – Eitel et al, J. Appl Phys., 2004

	Nomen	Nomenclature	
0% Zn	1% Zn	2% Zn	5% Zn
BSPT58	Ī	ł	ł
BSPT60	ŀ	ł	1
BSPT62	BSPT621	BSPT622	BSPT625
BSPT64	BSPT641	BSPT642	BSPT645
BSPT66	ŀ	ŀ	1

X-ray Diffraction Comparison

- BSPT62: Shifting rhombohedral/tetragonal ratio
- BSPT64: Increasing c/a ratio (1.011 to 1.013) with Zn addition
- ★: Pb_xBi_(1-x)O phase

Optical Microscopy

Grain Size: tends to increase with Zn addition

- Size distribution: possible promotion of abnormal grain growth with Zn addition
- $Pb_xBi_{(1-x)}O$ observed in clusters at grain boundaries

Weak Field Measurements

	%0	1%	7%	2%
ε, 50°C	1349	836	675	643
ε _r 300°C	3854	3071	2686	2408
tano 50°C	0.009	900.0	0.007	0.005
tanő 300°C	0.49	0.782	0.844	0.952
e" 50°C	12.14	5.02	4.73	3.22
€" 300°C	1888	2402	2267	2292

0.008

0.007

0.009

0.01

tan 550°C

2686

1635

1686

1448

ε_r 300°C

865

633

629

550

ε, 50°C

0.389

0.526

0.586

0.730

tan 300°C

9

1046

860

686

1058

€" 300°C

6.92

4.43

5.93

5.5

€" 50°C

Weak Field Measurements

	%0	1%	2%	2%
E, 50°C	1349	836	675	643
ε _r 300°C	3854	3071	2686	2408
tanô 50°C	0.009	900.0	0.007	0.005
tan 300°C	0.49	0.782	0.844	0.952
€" 50°C	12.14	5.02	4.73	3.22
€″ 300°C	1888	2402	2267	2292

	%0	1%	2%	2%
ε, 50°C	550	629	633	865
ε _r 300°C	1448	1686	1635	2686
tano 50°C	0.01	0.009	0.007	0.008
tanő 300°C	0.730	0.586	0.526	0.389
e" 50°C	5.5	5.93	4.43	6.92
€" 300°C	1058	686	860	1046

9

High Field Measurements

- Poled at 100°C under 40kV/cm for 30 min.
- BSPT62: Increased E_c, P_r with Zn addition
- Assymetric hysteresis
- Doesn't fully depole upon switching; Possible pinning from defects

Phase angle (θ) – BSPT58

9

80

4

-50

9

80

9

20

Phase angle: 100Hz to 3MHz

Width in phase angle peak related to coupling coefficients

Phase angle (θ) – BSPT58

9

80

4

-50

9

80

4

20

Phase angle: 100Hz to 3MHz

Width in phase angle peak related to coupling coefficients

Phase angle (θ) – BSPT

Dopant effects on depoling temperature in BS-PT

Phase angle (θ) - Transitions

Dopant effects on depoling temperature in BS-PT

Zn_{0.5}Zr_{0.5} for Sc

BZZ2: $60PbTiO_3 - 40Bi[0.9375Sc, 0.0625(Zn_{0.5}Zr_{0.5})]O_3$

BZZ5: 62.5PbTiO₃ – 37.5Bi[0.933Sc,0.066(Zn_{0.5}Zr_{0.5})]O₃

Dopant effects on depoling temperature in BS-PT

Zn_{0.5}Zr_{0.5} for Sc

BZZ2: $60PbTiO_3 - 40Bi[0.9375Sc, 0.0625(Zn_{0.5}Zr_{0.5})]O_3$

BZZ5: 62.5PbTiO₃ – 37.5Bi[0.933Sc,0.066(Zn_{0.5}Zr_{0.5})]O₃

Conclusions

- We looked at the effects of Zn_{Sc} on T_d and relevant properties
- Zn_{Sc} increases T_{d,onset} for BSPT62 compositions while also slightly enhancing electromechanical properties
- Structure specific tan behavior for Znsc
- Zn_{0.5}Zr_{0.5} increases electromechanical properties and Id, onset
- Combine with other aliovalent dopants to tailor properties further

Would like to thank:

Fred Dynys, Tom Sabo – NASA GRC Jon Mackey - University of Akron

Funded by:

NASA GSRP Fellowship: NNX11AL17H

AFOSR: FA9550-0601-1-0260