Homework Assignment 1

Matthew Tiger

September 11, 2016

Problem 3.7. Suppose p(x, y, z), the joint probability mass function of the random variables X, Y, and Z, is given by

$$p(1,1,1) = \frac{1}{8}, \quad p(2,1,1) = \frac{1}{4},$$

$$p(1,1,2) = \frac{1}{8}, \quad p(2,1,2) = \frac{3}{16},$$

$$p(1,2,1) = \frac{1}{16}, \quad p(2,2,1) = 0,$$

$$p(1,2,2) = 0, \quad p(2,2,2) = \frac{1}{4}.$$

What is E[X|Y=2]? What is E[X|Y=2,Z=1]?

Solution. Recall that the conditional probability mass function of X given that Y = y is given by

$$p_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{P\{X = x, Y = y\}}{P\{Y = y\}}.$$

As a natural extension, we have that the conditional expectation of X given that Y = y is given by

$$E[X|Y = y] = \sum_{x} xP\{X = x|Y = y\} = \sum_{x} xp_{X|Y}(x|y).$$

Thus, in order to find the conditional expectation of X given that Y = 2, i.e. E[X|Y = 2], we first need to determine $p_{X|Y}(x|2)$. We note from the above joint probability mass function that

$$P\{Y=2\} = \sum_{x,z} p(x,2,z) = p(1,2,1) + p(2,2,1) + p(1,2,2) + p(2,2,2) = \frac{5}{16}.$$

Similarly, we have from the above joint probability mass function that

$$P{X = x, Y = 2} = \sum_{z} p(x, 2, z) = p(x, 2, 1) + p(x, 2, 2).$$

Thus, the conditional probability mass function of X given that Y=2 is given by

$$p_{X|Y}(x|2) = \frac{P\{X = x, Y = 2\}}{P\{Y = 2\}} = \begin{cases} \frac{p(1,2,1) + p(1,2,2)}{5/16} = \frac{1}{5} & \text{if } x = 1\\ \frac{p(1,2,1) + p(1,2,2)}{5/16} = \frac{4}{5} & \text{if } x = 2. \end{cases}$$

Using $p_{X|Y}(x|2)$, we readily see that

$$E[X|Y=2] = \sum_{x} x p_{X|Y}(x|2) = 1 \cdot p_{X|Y}(1|2) + 2 \cdot p_{X|Y}(2|2) = \frac{9}{5}.$$

In order to find the conditional expectation of X given that Y=2 and Z=1, i.e. E[X|Y=2,Z=1], we proceed in a similar manner as previously by first finding $p_{X|Y,Z}(x|2,1)$. We note from the above joint probability mass function that

$$P{Y = 2, Z = 1} = \sum_{x} p(x, 2, 1) = p(1, 2, 1) + p(2, 2, 1) = \frac{1}{16}$$

Similarly, we have from the above joint probability mass function that

$$P{X = x, Y = 2, Z = 1} = p(x, 2, 1).$$

Thus, the conditional probability mass function of X given that Y=2 and Z=1 is given by

$$p_{X|Y,Z}(x|2,1) = \frac{P\{X = x, Y = 2, Z = 1\}}{P\{Y = 2, Z = 1\}} = \begin{cases} \frac{p(1,2,1)}{1/16} = 1 & \text{if } x = 1\\ \frac{p(2,2,1)}{1/16} = 0 & \text{if } x = 2. \end{cases}$$

Using $p_{X|Y,Z}(x|2,1)$, we readily see that

$$E[X|Y=2,Z=1] = \sum_{x} x p_{X|Y,Z}(x|2,1) = 1 \cdot p_{X|Y,Z}(1|2,1) + 2 \cdot p_{X|Y,Z}(2|2,1) = 1.$$

Problem 3.8. An unbiased die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a six and a five. Find:

- a. E[X],
- b. E[X|Y = 1],
- c. E[X]Y = 5].

Solution.

Problem 3.9. Show in the discrete case that if X and Y are independent, then

$$E[X|Y=y]=E[X]$$
 for all y.

 \Box

Problem 3.10. Suppose X and Y are independent continuous random variables. Show that

$$E[X|Y=y]=E[X]$$
 for all y.

 \Box

Problem 3.13. Let X be exponential with mean $1/\lambda$; that is,

$$f_X(x) = \lambda e^{-\lambda x}, \quad 0 < x < \infty.$$

Find E[X|X>1].

 \square

Problem 3.14. Let X be uniform over (0,1). Find E[X|X<1/2]. Solution. \Box