SÈRIE 2

Primera part

Exercici 1

Q1 a **Q2** a **Q**

Q3 d **Q4** b

Q5 c

Exercici 2

Segona part

OPCIÓ A

a)
$$R_{\text{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = 18 \ \Omega$$

b)
$$I = \frac{U}{R_{eq}} = 12, \hat{7} \text{ A}$$

c)
$$P = \frac{U^2}{R_{eq}} = 2,93\hat{8} \text{ kW}$$

d)
$$c = E p = P t p = 0.5114 \in$$

Exercici 4

a)
$$P = \Gamma \omega = cI\omega = \frac{cU}{R}\omega - \frac{c^2}{R}\omega^2 = (0.54\omega - 900 \cdot 10^{-6}\omega^2)$$
 W

c) $E = P_{elec} t = U I t = 1,4 MJ = 388,8 W \cdot h$

OPCIÓ B

Exercici 3

a)
$$\phi_1 = \arcsin \frac{L}{4L} = 14,48^{\circ}$$
 $\phi_2 = \arcsin \frac{L}{3L} = 19,47^{\circ}$

b)
$$\sum \mathbf{F}_{ext} = 0 \rightarrow \begin{cases} F_1 \cos \varphi_1 - F_2 \cos \varphi_2 = 0 \\ F_1 \sin \varphi_1 + F_2 \sin \varphi_2 - mg = 0 \end{cases}$$

$$F_1 = mg \frac{\cos \varphi_2}{\sin (\varphi_1 + \varphi_2)} = 745,1 \text{ N}$$

$$F_2 = mg \frac{\cos \varphi_1}{\sin (\varphi_1 + \varphi_2)} = 765,2 \text{ N}$$

c)
$$\sigma_1 = \frac{F_1}{S}$$
; $\sigma_2 = \frac{F_2}{S}$ $\rightarrow \frac{\sigma_1}{\sigma_2} = \frac{F_1}{F_2} = 0.9737$

a)
$$E_{\text{elèc}} = m p \eta_{\text{elèc}} = 64,85 \text{ MW} \cdot \text{h}$$

$$P_{\text{elèc}} = \frac{E_{\text{elèc}}}{\Delta t} = 2,702 \text{ MW}$$

b)
$$E_{\text{tèrmica}} = m \, p \, (1 - \eta_{\text{elèc}}) \, \eta_{\text{tèrmic}} \rightarrow m_{\text{aigua}} = \frac{E_{\text{tèrmica}}}{c_{\text{e}} \, \Delta t} = \frac{m \, p \, (1 - \eta_{\text{elèc}}) \, \eta_{\text{tèrmic}}}{c_{\text{e}} \, \Delta t} = 2,93 \cdot 10^6 \, \text{kg} \, .$$

c)
$$q = \frac{m_{\text{aigua}}}{24 \cdot 3600} \frac{1}{\rho_{\text{aigua}}} = 33,91 \text{ l/s}$$

SÈRIE 1

Primera part

Exercici 1

Q1 a

Q2 b

Q3 d

Q4 d

Q5 b

Exercici 2

Segona part

OPCIÓ A

a)
$$\varphi = \arctan \frac{2L}{3L} = 33,69^{\circ}$$

b)
$$\sum$$
 M (O) = 0 \rightarrow $3LT \sin \varphi - 2Lmg = 0 \rightarrow $T = \frac{2}{3} \frac{mg}{\sin \varphi} = 176.8 \text{ N}$$

c)
$$\sum F_{\text{ext}} = 0 \rightarrow \begin{cases} F_{\text{h}} - T\cos\varphi = 0 \\ F_{\text{v}} + T\sin\varphi - mg = 0 \end{cases} \rightarrow \begin{cases} F_{\text{h}} = \frac{2}{3}\frac{mg}{\sin\varphi}\cos\varphi = mg = 147,1 \text{ N} \\ F_{\text{v}} = mg - T\sin\varphi = 49,04 \text{ N} \end{cases}$$

d)
$$\sigma = \frac{T}{s} = 14,14 \text{ MPa}$$

Exercici 4

a)
$$P = q \rho_{\text{aigua}} c_{\text{aigua}} \Delta t = 24,04 \text{ kW}$$

b)
$$\eta = \frac{P}{p_{c} q_{comb}} = 0,7726$$

c)
$$t = \frac{V}{q} = 10,87 \text{ min} = 652,2 \text{ s}$$
 $m = t q_{comb} = 332,6 \text{ g}$

$$m = t q_{comb} = 332,6 g$$

OPCIÓ B

Exercici 3

a)
$$P = \frac{U^2}{R} \rightarrow R = \frac{U^2}{P} = 26,45 \Omega$$

b)
$$R = \rho \frac{L}{S} \rightarrow L = \frac{RS}{\rho} = 3,324 \text{ m}$$

c)
$$E = P t = 2,25 \text{ kW} \cdot \text{h} = 8,1 \text{ MJ}$$

a)
$$\omega = \frac{U - cI}{R} \rightarrow I = \frac{U - c\omega}{R}$$

b)
$$\Gamma_{\text{max}} = c I_{\text{max}} = 0.18 \text{ Nm}$$
. Es produeix per a $\omega = 0$, és a dir en arrencar.

c)
$$E_{\text{elèc}} = P_{\text{elèc}} \Delta t = UI\Delta t = 3,456 \text{ kJ} = 0,96 \text{ W} \cdot \text{h}$$