# Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

#### ОТЧЕТ

## По практической работе №1 Дисциплины «Алгоритмизация»

Выполнил:

Пустяков Андрей Сергеевич

2 курс, группа ИВТ-б-о-22-1,

09.03.01 «Информатика и вычислительная техника (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения

(подпись)

Руководитель практики:

Воронкин Р. А. кандидат технических наук, доцент, доцент кафедры инфокоммуникаций

\_\_\_\_\_

(подпись)

## Ход работы:

Задание 16.

Необходимо найти значения функции F(n) где n — натуральное число (рис. 1).

```
39 Тип 16 № 5970 i
Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями: F(n) = 1 при n \le 2; F(n) = F(n-1) + 3 \cdot F(n-2) при n > 2. Чему равно значение функции F(7)? В ответе запишите только натуральное число.
```

Рисунок 1 – Условия задачи № 16 (5970).

Код программы на языке Python данной задачи (рис. 2).

```
print("Введите наруральное число n:")
n = int(input())

# Функция поиска значения F(n):
3 usages new *
def function_f(n):
    if n <= 2:
        return 1
    else:
        return function_f(n -1) + 3 * function_f(n - 2)</pre>
print("F(", n, ") =", function_f(n))
```

Рисунок 2 – Код программы решения задачи №16.

Результаты работы программы (ввод значения «7» по условию) (рис.

3).

```
C:\Users\Andrey\AppData\Local\Programs\Python\Python39\python.exe "C:`
Введите наруральное число n:
7
F( 7 ) = 97
Process finished with exit code 0
```

Рисунок 3 – Результат работы программы.

Блок-схема алгоритма работы программы и алгоритма функции (рис.



Рисунок 4 – Блок-схема алгоритма.

## Задание 17.

Необходимо найти количество троек элементов последовательности в текстовом файле, удовлетворяющих некоторому условию и найти максимальную из сумм таких троек (рис. 5).



Рисунок 5 – Условия задачи № 17 (60259).

Код программы данной задачи (рис. 6).

следовательности.

```
max element = 0
max sum = 0
s = f.readlines()
    s[i] = int(s[i])
    bit_depth_2 = 0
   bit depth 3 = 0
    number_module_1 = s[i - 2]
    number module 3 = s[i]
    while number module 1 > 0:
        bit depth 3 = bit_depth_3 + 1
    if ((bit_depth_1 == 3 and bit depth_2 == 3 and bit depth_3 != 3)
            or (bit depth 1 == 3 and bit depth 2 != 3 and bit depth 3 ==
            or (bit depth 1 != 3 and bit depth 2 == 3 and bit depth 3 ==
f.close()
```

Рисунок 6 – Код программы решения задачи №17.

Результаты работы программы после помещения файла с числовой последовательностью в рабочую директорию файла (рис. 7).

C:\Users\Andrey\AppData\Local\Programs\Python\Python39\python. Количество троек чисел: 959 Максимальная из сумм троек: 97471 Process finished with exit code 0

Рисунок 7 – Результат работы программы задачи №17.

Блок-схема алгоритма работы программы задачи №17 (рис. 8).



Рисунок 8 – Блок-схема алгоритма работы задачи №17.

### Задание 18.

Необходимо определить минимальную и максимальную суммы, которые может собрать «робот сборщик монет» в квадрате N на N клеток

из первого элемента двумерного списка в последний. Робот может переходить либо из верхней клетки в нижнюю или вправо (робот не может проходить через внутренние стены) (рис. 9).



Рисунок 9 – Условия задачи №18.

Таблица с номиналами монет и стенками для робота-сборщика монет (рис. 10).

|   | Α  | В  | C  | D  | E  | F  | G  | Н  | 1  | J  | K  | L  | M  | N  | 0  | P  | Q  | R  | S  | T  |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 3  | 36 | 74 | 75 | 85 | 44 | 68 | 39 | 45 | 42 | 35 | 39 | 75 | 46 | 52 | 39 | 46 | 37 | 55 | 25 |
| 2 | 35 | 41 | 35 | 55 | 46 | 25 | 85 | 72 | 88 | 65 | 48 | 69 | 57 | 86 | 86 | 54 | 37 | 68 | 62 | 78 |
| 3 | 85 | 67 | 27 | 51 | 44 | 85 | 62 | 80 | 27 | 68 | 40 | 35 | 34 | 84 | 57 | 67 | 79 | 74 | 52 | 72 |
| 4 | 83 | 33 | 38 | 90 | 79 | 80 | 77 | 49 | 84 | 35 | 57 | 68 | 26 | 44 | 25 | 53 | 75 | 84 | 70 | 80 |
| 5 | 36 | 67 | 33 | 72 | 27 | 60 | 63 | 81 | 37 | 69 | 80 | 25 | 36 | 50 | 48 | 80 | 72 | 32 | 31 | 46 |
| 5 | 37 | 55 | 64 | 66 | 73 | 26 | 75 | 85 | 74 | 38 | 58 | 57 | 61 | 25 | 66 | 59 | 84 | 39 | 47 | 63 |
| 7 | 54 | 84 | 38 | 80 | 52 | 32 | 57 | 83 | 68 | 62 | 51 | 68 | 57 | 90 | 27 | 55 | 38 | 27 | 52 | 61 |
| 3 | 81 | 55 | 74 | 75 | 26 | 78 | 83 | 34 | 46 | 90 | 74 | 67 | 54 | 88 | 33 | 70 | 76 | 35 | 56 | 62 |
| 9 | 59 | 63 | 90 | 26 | 31 | 83 | 63 | 46 | 70 | 47 | 58 | 72 | 58 | 41 | 34 | 66 | 28 | 60 | 50 | 51 |
| 0 | 75 | 59 | 84 | 57 | 31 | 36 | 66 | 87 | 70 | 70 | 37 | 77 | 80 | 65 | 53 | 78 | 61 | 39 | 25 | 76 |
| 1 | 61 | 60 | 76 | 36 | 56 | 73 | 71 | 69 | 50 | 50 | 44 | 55 | 48 | 58 | 90 | 59 | 71 | 37 | 70 | 67 |
| 2 | 71 | 36 | 72 | 50 | 67 | 64 | 83 | 42 | 62 | 50 | 62 | 27 | 29 | 77 | 75 | 39 | 36 | 31 | 31 | 84 |
| 3 | 87 | 63 | 88 | 36 | 54 | 41 | 35 | 67 | 44 | 69 | 64 | 32 | 42 | 38 | 62 | 83 | 71 | 31 | 63 | 39 |
| 4 | 86 | 33 | 38 | 50 | 57 | 66 | 67 | 73 | 69 | 60 | 27 | 38 | 32 | 33 | 53 | 73 | 42 | 36 | 86 | 57 |
| 5 | 42 | 42 | 70 | 60 | 79 | 65 | 81 | 45 | 33 | 88 | 62 | 71 | 61 | 89 | 54 | 51 | 34 | 44 | 64 | 64 |
| 6 | 85 | 89 | 66 | 84 | 80 | 73 | 47 | 50 | 67 | 86 | 59 | 75 | 83 | 51 | 75 | 83 | 68 | 39 | 73 | 75 |
| 7 | 52 | 46 | 30 | 79 | 62 | 53 | 82 | 79 | 40 | 34 | 79 | 61 | 50 | 71 | 66 | 87 | 59 | 47 | 58 | 58 |
| 8 | 41 | 37 | 25 | 54 | 52 | 77 | 76 | 30 | 39 | 41 | 57 | 79 | 88 | 81 | 59 | 52 | 73 | 41 | 85 | 40 |
| 9 | 55 | 48 | 49 | 55 | 89 | 68 | 75 | 90 | 76 | 72 | 34 | 72 | 78 | 78 | 78 | 39 | 47 | 63 | 76 | 42 |
| 0 | 73 | 78 | 25 | 90 | 49 | 42 | 78 | 45 | 71 | 29 | 71 | 36 | 76 | 60 | 49 | 84 | 34 | 88 | 36 | 51 |

Рисунок 10 – Таблица к задаче №18.

Код программы задачи №18 (рис. 11).

```
44, 55, 48, 58, 90, 59, 71, 37, 70, 67],
          64, 32, 42, 38, 62, 83, 71, 31, 63, 39],
                                                                                                                                                                   64, 64],
          34, 72, 78, 78, 78, 39, 47, 63, 76, 42],
          71, 36, 76, 60, 49, 84, 34, 88, 36, 51]]
max list = copy.deepcopy(original list) # Копирование списка в список макс.
min list = copy.deepcopy(original list) # Копирование списка в список мин.
                   \max  list[0][i] = \max  list[0][i - 1] + \max  list[0][i]
                   \max_{i=1}^{n} [i] = \min_{i=1}^{n} [i] = \min_{i=1}^{n
                   min = list[0][i] = max = list[0][i - 1] + max = list[0][i]
                   \min_{i=1}^{n} \text{list}[i][0] = \max_{i=1}^{n} \text{list}[i-1][0] + \max_{i=1}^{n} \text{list}[i][0]
                                                          max_list[i][j] = max_list[i - 1][j] + original_list[i][j]
min_list[i][j] = min_list[i - 1][j] + original_list[i][j]
                                                         # Учет верхних стенок для робота-сборщика
max_list[i][j] = max_list[i][j - 1] + original_list[i][j]
min_list[i][j] = min_list[i][j - 1] + original_list[i][j]
min list[i - 1][j])
```

Рисунок 11 – Код задания №18.

Результаты работы программы задания №18 (рис. 12).

Максимальная денежная сумма = 2656 Минимальная денежная сумма = 1668 Process finished with exit code 0

Рисунок 12 – Результат работы программы.

Блок-схема алгоритма работы программы задания №18 (рис. 13).



Рисунок 13 – Блок-схема алгоритма задачи №18.

Вывод: в ходе выполнения лабораторной работы были прорешены задачи ЕГЭ по информатике (тип 16, 17 и 18) на создание рекурсивного алгоритма, обработки строк и поиска максимального и минимального путей в таблице. Были созданы блок-схемы к задачам данного типа по ГОСТ-у 19.701-90. Были изучены особенности создания блок-схем по данному стандарту.