ASD Laboratorio 04

The A(SD)-Team

UniTN

2023-11-28

03/10	Introduzione
17/10	Ad-hoc
14/11	
	Grafi 1
28/11	Grafi 2
11/12	Presentazione Progetto 1
12/12	Lab Progetto 1
14/12	Lab Progetto 1

PROGETTO GRAFI

- Dal 11 al 18 dicembre (consegna ore 18:00);
- Iscrizione dei gruppi al progetto entro venerdì 8 dicembre https://bit.ly/ASDprog_2023-2024 (dovete essere loggati con l'account UniTN)

SOLUZIONI: VISITA

- Basta una qualunque visita (in ampiezza, in profondità, ecc...)
- Implementazioni sul sito:

https://judge.science.unitn.it/slides/asd20/soluzioni_lab03.zip.

```
struct nodo{
  vector<int> vic;
  bool visited = false;
};
vector<nodo> grafo;
in >> N;
grafo.resize(N);
for (int i=0; i<M; i++) {</pre>
  int from, to;
  in >> from >> to;
  grafo[from].vic.push_back(to);
```

Con grafo variabile globale (*caveat emptor*):

```
void visit(int n) {
  grafo[n].visited=true;
  count++;
  for(int v:grafo[n].vic)
    if(!grafo[v].visited)
      visit(v);
}
```

Passando grafo per reference:

```
void visit(int n, vector<nodo>& grafo, int& count) {
   grafo[n].visited = true;
   count++;
   for(int v:grafo[n].vic)
      if(!grafo[v].visited)
      visit(v, grafo);
}
```

```
stack<int> s:
s.push(S);
while(!s.empty()){
  int n = s.top();
  s.pop();
  // se un nodo è già stato visitato lo ignoriamo!
  if(grafo[n].visited) { continue; }
  grafo[n].visited = true;
  count++;
  // visita tutti i vicini
  for(int v: grafo[n].adj) {
    s.push(v);
```

6/12

```
queue<int> q;
q.push(S);
while(!q.empty()) {
  int n = q.front();
 q.pop();
  // se un nodo è già stato visitato lo ignoriamo!
  if(grafo[n].visited) { continue; }
  grafo[n].visited = true;
  count++;
  // visita tutti i vicini
  for(int v: grafo[n].adj) {
   q.push(v);
```

SOLUZIONI: DIAMETRO

- Per ogni nodo di partenza, trovare il nodo più lontano.
- La distanza in un grafo non pesato si può calcolare utilizzando una BFS.

ESEMPIO: CAMMINI MINIMI

9/12

SOLUZIONE NUMERO DI CAMMINI MINIMI

IDEA

- Stiamo calcolando il numero di diversi cammini minimi da s a t
- Sia P(v) l'insieme di predecessori di v, ovvero di tutti i w tali che:
 - $(w, v) \in E$ d(s, v) = d(s, w) + 1
- $NUMPATH(v) = \sum_{w \in P(v)} NUMPATH(w)$
- Calcoliamo NUMPATH(t)

ESERCIZI (I)

DIMENSIONE MASSIMA COMPONENTE FORTEMENTE CONNESSA

Dato un grafo orientato trovare la **dimensione** della massima componente fortemente connessa.

ORDINAMENTO TOPOLOGICO

Dato un grafo diretto aciclico, trovare un suo ordinamento topologico.

CAMMINO PIÙ LUNGO

Dato un grafo diretto aciclico, trovare la lunghezza del suo cammino più lungo.

ESERCIZI (II)

CICLI CICLABILI

Primo progetto dell'a.a. 2019/2020

AMONGASD

Primo progetto dell'a.a. 2022/2023