Random Matrix Theory for Neural Networks

Ph.D. Mid-Term Evaluation

Zhenyu Liao

Laboratoire des Signaux et Systèmes CentraleSupélec Université Paris-Saclay

> Salle sd.207, Bâtiment Bouygues Gif-sur-Yvette, France

Outline

- Curriculum Vitae
- Introduction
- 3 Summary of main results
- Conclusion

Curriculum Vitae

Education

 Ph.D. in Statistics and Signal Processing, L2S, CentraleSupélec, France 2016-present Thesis: Random Matrix Theory for Neural Networks.

Supervisor: Prof. Romain Couillet. Prof. Yacine Chitour.

M.Sc. in Signal and Image Processing, CentraleSupélec/Paris-Sud, France	2014-2016
▶ B.Sc. in Electronic Engineering, Paris-Sud, France	2013-2014
▶ B.Sc. in Optical & Electronic Information, HUST, Wuhan, China	2010-2014

Ph.D. training

- Scientific training [completed]
 - Random matrix theory and machine learning application: 27 hours.
 - Summer school of signal and image processing in Peyresq: 21 hours.
- Professional training [completed]
 - Law and intellectual property: 18 hours.
 - European projects Horizon 2020: 18 hours.
 - ▶ Techniques for scientific writing and associated softwares: 15 hours.

Teaching

2017-2018: Lab work of Signal and System 1, with Prof. Laurent Le Brusquet, Department of Signal and Statistics, CentraleSupélec: 54 hours.

Curriculum Vitae

- Review activities
 - ▶ IEEE Transactions on Signal Processing
 - ► Neural Processing Letters
- Publications
 - Conferences
 - Z. Liao, R. Couillet, "The Dynamics of Learning: A Random Matrix Approach", (submitted to) The 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 2018.
 - Z. Liao, R. Couillet, "On the Spectrum of Random Features Maps of High Dimensional Data", (submitted to) The 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 2018.
 - Z. Liao, R. Couillet, "Une Analyse des Méthodes de Projections Aléatoires par la Théorie des Matrices Aléatoires (in French)", Colloque GRETSI'17, Juan Les Pins, France, 2017.
 - Z. Liao, R. Couillet, "Random Matrices Meet Machine Learning: A Large Dimensional Analysis of LS-SVM", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.
 - Journals
 - C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", (in press) Annals of Applied Probability, 2017.
 - Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", (submitted to) Journal of Machine Learning Research, 2017.

Motivation: features in machine learning

Learning = Representation + Evaluation + Optimization.¹

Features: representation of the data that contains crucial information.

Various methods for feature extraction:

- feature selection by hand
- feature learned via backpropagation
- random feature maps

How to study and understand these features? \Rightarrow Sample Covariance Matrix

$$SCM \equiv \frac{1}{T} \mathbf{X} \mathbf{X}^\mathsf{T}$$

of some data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$.

SCM in feature space \Rightarrow feature Gram matrix G:

$$\mathbf{G} \equiv \frac{1}{T} \mathbf{F}^\mathsf{T} \mathbf{F}$$

with $\mathbf{F} = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_T)]$ feature matrix of data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T]$.

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Motivation: in random feature maps (RFM)

SCM in feature space \Rightarrow feature Gram matrix G:

$$\mathbf{G} \equiv \frac{1}{T} \mathbf{F}^\mathsf{T} \mathbf{F}$$

with $\mathbf{F} \in \mathbb{R}^{n \times T}$ feature matrix of data \mathbf{X} .

In RFM, ${f G}$ determines training and test performance via its resolvent

$$\mathbf{Q}(z) \equiv (\mathbf{G} - z\mathbf{I}_T)^{-1}.$$

Example 1:

MSE of RFM-based ridge regression (also called extreme learning machines):

$$\begin{split} E_{\text{train}} &= \frac{1}{T} \|\mathbf{y} - \boldsymbol{\beta}^\mathsf{T} \mathbf{F}\|_F^2 = \frac{\gamma^2}{T} \mathbf{y}^\mathsf{T} \mathbf{Q}^2 (-\gamma) \mathbf{y} \\ E_{\text{test}} &= \frac{1}{\hat{\tau}} \|\hat{\mathbf{y}} - \boldsymbol{\beta}^\mathsf{T} \hat{\mathbf{F}}\|_F^2 \end{split}$$

with ridge regressor $\beta \equiv \frac{1}{T} \mathbf{F} (\mathbf{G} + \gamma \mathbf{I}_T)^{-1} \mathbf{y}^\mathsf{T} = \frac{1}{T} \mathbf{F} \mathbf{Q} (-\gamma) \mathbf{y}^\mathsf{T}$ and regularization $\gamma > 0$. \mathbf{y} associated target of training data \mathbf{X} and $\hat{\mathbf{y}}$ target of test data $\hat{\mathbf{X}}$.

Motivation: gradient descent dynamics

Example 2:

Feature matrix ${\bf F}$ with associated labels ${\bf y},$ a classifier trained by GD is to minimize

$$L(\mathbf{w}) = \frac{1}{2T} \|\mathbf{y} - \mathbf{w}^\mathsf{T} \mathbf{F} \|^2$$

with constant small learning rate α , GD dynamics yields:

$$\frac{\partial \mathbf{w}(t)}{\partial t} = -\alpha \Delta_{\mathbf{w}} L = \frac{\alpha}{T} \mathbf{F} (\mathbf{y} - \mathbf{F}^\mathsf{T} \mathbf{w}(t)) \Rightarrow \mathbf{w}(t) = e^{-\frac{\alpha t}{T} \mathbf{F} \mathbf{F}^\mathsf{T}} \mathbf{w}_0 + \left(\mathbf{I}_p - e^{-\frac{\alpha t}{T} \mathbf{F} \mathbf{F}^\mathsf{T}} \right) (\mathbf{F} \mathbf{F}^\mathsf{T})^{-1} \mathbf{F} \mathbf{y}.$$

Generalization performance of new feature $\hat{\mathbf{f}}$ related to:

$$\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{f}} = -\frac{1}{2\pi i} \oint_{\gamma} f_t(z)\hat{\mathbf{f}}^{\mathsf{T}} \tilde{\mathbf{Q}}(z) \mathbf{w}_0 \ dz - \frac{1}{2\pi i} \oint_{\gamma} \frac{1 - f_t(z)}{z} \hat{\mathbf{f}}^{\mathsf{T}} \tilde{\mathbf{Q}}(z) \frac{1}{T} \mathbf{F} \mathbf{y} \ dz$$

with $f_t(z) = \exp(-\alpha t z)$, $\tilde{\mathbf{Q}}$ resolvent of $\tilde{\mathbf{G}} = \frac{1}{T} \mathbf{F} \mathbf{F}^\mathsf{T}$, γ contours all eigenvalues of $\tilde{\mathbf{G}}$.

Important remark

Both examples: study of eigenspectrum through resolvent of SCM-like matrices (\mathbf{G} or $\tilde{\mathbf{G}}$), especially in high dimensional regime today where n, p, T are comparably large.

⇒ Random Matrix Theory (RMT) is the answer!

Motivation: difficulty from nonlinearity

However,

- ▶ highly nonlinear and abstract nature of real-world problems ⇒ classical RMT results cannot apply directly
- ▶ in need of new tools to adapt to nonlinear models

Example: random feature maps

Figure: Illustration of random feature maps

with random matrix $\mathbf{W} \in \mathbb{R}^{n \times p}$ with i.i.d. entries and (nonlinear) activation function $\sigma(\cdot)$.

Classical RMT results essentially based on trace lemma: for $\mathbf{A} \in \mathbb{R}^{n \times n}$ of bounded operator norm and random vector $\mathbf{w} \in \mathbb{R}^n$ with i.i.d. entries

$$\left| \frac{1}{n} \mathbf{w}^\mathsf{T} \mathbf{A} \mathbf{w} - \frac{1}{n} \operatorname{tr}(\mathbf{A}) \right| \to 0$$

almost surely as $n \to \infty$.

Motivation: difficulty from nonlinearity

Example: random feature maps

$$\begin{array}{c} \textbf{data} & \textbf{W} \in \mathbb{R}^{n \times p} \\ \hline \sigma(\cdot) \text{ entry-wise} & \\ \textbf{x} \in \mathbb{R}^p & \sigma(\textbf{W}\textbf{x}) \in \mathbb{R}^n \end{array}$$

Figure: Illustration of random feature maps

Classical RMT results are essentially based on the trace lemma: for $\mathbf{A} \in \mathbb{R}^{n \times n}$ of bounded operator norm and random vector $\mathbf{w} \in \mathbb{R}^n$ with i.i.d. entries

$$\left| \frac{1}{n} \mathbf{w}^\mathsf{T} \mathbf{A} \mathbf{w} - \frac{1}{n} \operatorname{tr}(\mathbf{A}) \right| \to 0$$

almost surely as $n \to \infty$.

However, object under study $\frac{1}{n}\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})\mathbf{A}\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})$:

- loss of independence between entries
- more elusive due to $\sigma(\cdot)$
 - \Rightarrow One major objective of the thesis: handle nonlinearity in RMT

Handle nonlinearity in RMT: concentration

Lemma: Concentration of quadratic forms

For $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, $\|\mathbf{X}\|, \|\mathbf{A}\|$ bounded and $\sigma(\cdot)$ Lipschitz, as $n, p \to \infty$ with $\frac{p}{n} \to c$,

$$P\left(\left|\frac{1}{n}\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})\mathbf{A}\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}) - \frac{1}{n}\operatorname{tr}(\mathbf{\Phi}\mathbf{A})\right| > t\right) \leq Ce^{-c\mathbf{n}\min(t,t^2)}$$

where $\boldsymbol{\Phi} \equiv \mathbb{E}_{\mathbf{w}} \left[\sigma(\mathbf{X}^\mathsf{T} \mathbf{w}) \sigma(\mathbf{w}^\mathsf{T} \mathbf{X}) \right].$

$$\begin{split} \boldsymbol{\Phi}(\mathbf{a},\mathbf{b}) &\equiv \mathbb{E}_{\mathbf{w}} \left[\sigma(\mathbf{w}^\mathsf{T} \mathbf{a}) \sigma(\mathbf{w}^\mathsf{T} \mathbf{b}) \right] = (2\pi)^{-\frac{p}{2}} \int_{\mathbb{R}^p} \sigma(\mathbf{w}^\mathsf{T} \mathbf{a}) \sigma(\mathbf{w}^\mathsf{T} \mathbf{b}) e^{-\frac{1}{2} \|\mathbf{w}\|^2} d\mathbf{w} \\ &= \frac{1}{2\pi} \int_{\mathbb{R}^2} \sigma(\tilde{\mathbf{w}}^\mathsf{T} \tilde{\mathbf{a}}) \sigma(\tilde{\mathbf{w}}^\mathsf{T} \tilde{\mathbf{b}}) e^{-\frac{1}{2} \|\tilde{\mathbf{w}}\|^2} d\tilde{\mathbf{w}} \quad (\text{projection on span}(\mathbf{a}, \mathbf{b})) \end{split}$$

For $\sigma(t) = \max(t, 0) \equiv \text{ReLU}(t)$,

$$\Phi(\mathbf{a}, \mathbf{b}) = \frac{1}{2\pi} \int_{\mathbb{R}} \tilde{\mathbf{w}}^\mathsf{T} \tilde{\mathbf{a}} \cdot \tilde{\mathbf{w}}^\mathsf{T} \tilde{\mathbf{b}} \cdot e^{-\frac{1}{2} \|\tilde{\mathbf{w}}\|^2} d\tilde{\mathbf{w}} = \frac{1}{2\pi} \|\mathbf{a}\| \|\mathbf{b}\| \left(\sqrt{1 - \angle^2} + \angle \arccos\left(-\angle\right) \right)$$

where $S \equiv \min \left(\tilde{\mathbf{w}}^\mathsf{T} \tilde{\mathbf{a}}, \tilde{\mathbf{w}}^\mathsf{T} \tilde{\mathbf{b}} \right) > 0$, $\angle \equiv \frac{\mathbf{a}^\mathsf{T} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$.

Handle nonlinearity in RMT: concentration

Behavior of Φ as a function of X: "concentration" phenomenon for large n, p, TFor ReLU function,

$$\Phi(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{2\pi} \|\mathbf{x}_i\| \|\mathbf{x}_j\| \left(\sqrt{1 - \angle^2(\mathbf{x}_i, \mathbf{x}_j)} + \angle(\mathbf{x}_i, \mathbf{x}_j) \arccos\left(-\angle(\mathbf{x}_i, \mathbf{x}_j)\right) \right)$$

Assumption: GMM data

For $i=1,\ldots,T$, $\mathbf{x}_i\sim\mathcal{N}\left(\frac{1}{\sqrt{p}}\boldsymbol{\mu}_a,\frac{1}{p}\mathbf{C}_a\right)$ and $\mathbf{x}_i=\frac{1}{\sqrt{p}}\boldsymbol{\mu}_a+\boldsymbol{\omega}_i$, with $\boldsymbol{\omega}_i\sim\mathcal{N}(\mathbf{0},\frac{1}{p}\mathbf{C}_a)$, class \mathcal{C}_a has cardinality T_a , for $a=1,\ldots,K$.

$$\begin{aligned} \mathbf{x}_i^\mathsf{T} \mathbf{x}_j &= \left(\boldsymbol{\mu}_a^\mathsf{T} / \sqrt{p} + \boldsymbol{\omega}_i^\mathsf{T} \right) (\boldsymbol{\mu}_b / \sqrt{p} + \boldsymbol{\omega}_j) = \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b / p + (\boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_j + \boldsymbol{\mu}_b^\mathsf{T} \boldsymbol{\omega}_i) / \sqrt{p} + \boldsymbol{\omega}_i^\mathsf{T} \boldsymbol{\omega}_j \\ \mathbf{x}_i^\mathsf{T} \mathbf{x}_i &= \left(\boldsymbol{\mu}_a^\mathsf{T} / \sqrt{p} + \boldsymbol{\omega}_i^\mathsf{T} \right) (\boldsymbol{\mu}_a / \sqrt{p} + \boldsymbol{\omega}_i) = \|\boldsymbol{\mu}_a\|^2 / p + 2\boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_i / \sqrt{p} + \|\boldsymbol{\omega}_i\|^2 \end{aligned}$$

Growth rate [Neyman-Pearson Minimal]

As $n, p, T \to \infty$, let $\mathbf{C}^{\circ} \equiv \sum_{a=1}^{K} \frac{T_a}{T} \mathbf{C}_a$ and for $a = 1, \dots, K$, $\mathbf{C}_a^{\circ} \equiv \mathbf{C}_a - \mathbf{C}^{\circ}$,

- the Euclidean norm $\|\mu_a\| = O(1)$
- the operator norm $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a^{\circ}) = O(\sqrt{p})$

Handle nonlinearity in RMT: concentration

Growth rate [Neyman-Pearson Minimal]

As $n,p,T\to\infty$, let $\mathbf{C}^{\circ}\equiv\sum_{a=1}^{K}\frac{T_{a}}{T}\mathbf{C}_{a}$ and for $a=1,\ldots,K$, $\mathbf{C}_{a}^{\circ}\equiv\mathbf{C}_{a}-\mathbf{C}^{\circ}$,

- ▶ the Euclidean norm $\|\mu_a\| = O(1)$
- ▶ the operator norm $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a^{\circ}) = O(\sqrt{p})$

$$\begin{split} \mathbf{x}_i^\mathsf{T} \mathbf{x}_j &= \left(\frac{1}{\sqrt{p}} \boldsymbol{\mu}_a^\mathsf{T} + \boldsymbol{\omega}_i^\mathsf{T}\right) \left(\frac{1}{\sqrt{p}} \boldsymbol{\mu}_b + \boldsymbol{\omega}_j\right) = \underbrace{\frac{1}{p} \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b + \frac{1}{\sqrt{p}} (\boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_j + \boldsymbol{\mu}_b^\mathsf{T} \boldsymbol{\omega}_i)}_{O(p^{-1})} + \underbrace{\boldsymbol{\omega}_i^\mathsf{T} \boldsymbol{\omega}_j}_{O(p^{-1/2})} \\ \mathbf{x}_i^\mathsf{T} \mathbf{x}_i &= \left(\frac{1}{\sqrt{p}} \boldsymbol{\mu}_a^\mathsf{T} + \boldsymbol{\omega}_i^\mathsf{T}\right) \left(\frac{1}{\sqrt{p}} \boldsymbol{\mu}_a + \boldsymbol{\omega}_i\right) = \frac{1}{p} \|\boldsymbol{\mu}_a\|^2 + \frac{2}{\sqrt{p}} \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_i + \|\boldsymbol{\omega}_i\|^2 \\ &= \underbrace{\frac{1}{p} \|\boldsymbol{\mu}_a\|^2 + \frac{2}{\sqrt{p}} \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_i}_{O(p^{-1})} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \frac{1}{p} \operatorname{tr}(\mathbf{C}_a) + \frac{1}{p} \operatorname{tr}(\mathbf{C}_a^\circ)}_{O(p^{-1/2})} + \underbrace{\boldsymbol{\tau}}_{O(1)} \end{split}$$

with $\mathbb{E}_{\omega_i} \|\omega_i\|^2 = \operatorname{tr}(\mathbf{C}_a)/p$ and $\tau \equiv \operatorname{tr}(\mathbf{C}^\circ)/p$.

 $\Rightarrow g(\mathbf{x}_i^\mathsf{T} \mathbf{x}_i)$ concentrates around $g(\tau) \Rightarrow \mathsf{Taylor}$ expansion

Main results

Theorem (Asymptotic equivalent of Φ_c)

Recenter $\Phi \equiv \mathbb{E}_{\mathbf{w}}\left[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})\right]$ to get $\Phi_c \equiv \mathbf{P}\Phi\mathbf{P}$, with $\mathbf{P} \equiv \mathbf{I}_T - \frac{1}{T}\mathbf{1}_T\mathbf{1}_T^\mathsf{T}$. As $T \to \infty$, $\|\Phi_c - \tilde{\Phi}_c\| \to 0$

almost surely, with $ilde{\mathbf{\Phi}}_c \equiv \mathbf{P} ilde{\mathbf{\Phi}} \mathbf{P}$ and

$$\tilde{\mathbf{\Phi}} \equiv d_1 \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right)^\mathsf{T} \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right) + d_2 \mathbf{U} \mathbf{B} \mathbf{U}^\mathsf{T} + d_0 \mathbf{I}_T$$

as well as

$$\mathbf{U} \equiv \begin{bmatrix} \mathbf{J} \\ \sqrt{p} \end{bmatrix}, \quad \mathbf{B} \equiv \begin{bmatrix} \mathbf{t}\mathbf{t}^\mathsf{T} + 2\mathbf{S} & \mathbf{t} \\ \mathbf{t}^\mathsf{T} & 1 \end{bmatrix}$$

where $\Omega \equiv \left[\omega_1,\dots,\omega_T\right], \quad \phi \equiv \left\{\|\omega_i\|^2 - \mathbb{E}\left[\|\omega_i\|^2\right]\right\}_{i=1}^T$, and data statistics²,

$$\mathbf{M} \equiv \left[\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K \right], \quad \mathbf{t} \equiv \left\{ \operatorname{tr} \mathbf{C}_a^{\circ} / \sqrt{p} \right\}_{a=1}^K, \quad \mathbf{S} \equiv \left\{ \operatorname{tr} (\mathbf{C}_a \mathbf{C}_b) / p \right\}_{a,b=1}^K, \quad \mathbf{J} \equiv \left[\mathbf{j}_1, \dots, \mathbf{j}_K \right]$$

where $\mathbf{j}_a \in \mathbb{R}^T$ denotes the canonical vector of class \mathcal{C}_a such that $(\mathbf{j}_a)_i = \delta_{\mathbf{x}_i \in \mathcal{C}_a}$.

 $^{^2\}mathbf{M}$ for means, \mathbf{t} for (difference in) traces while \mathbf{S} for the "shapes" of covariances.

Coefficients d_i for different activation functions

Table:
$$\Phi(\mathbf{a}, \mathbf{b})$$
 for different $\sigma(\cdot)$, $\angle(\mathbf{a}, \mathbf{b}) \equiv \frac{\mathbf{a}^\mathsf{T} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$.

$\sigma(t)$	$\Phi(\mathbf{a},\mathbf{b})$
t	$\mathbf{a}^T\mathbf{b}$
$\max(t,0) \equiv \mathrm{ReLU}(t)$	$\frac{1}{2\pi} \ \mathbf{a}\ \ \mathbf{b}\ \left(\angle(\mathbf{a}, \mathbf{b}) \arccos\left(-\angle(\mathbf{a}, \mathbf{b})\right) + \sqrt{1 - \angle(\mathbf{a}, \mathbf{b})^2} \right)$
t	$\frac{2}{\pi} \ \mathbf{a}\ \ \mathbf{b}\ \left(\angle(\mathbf{a}, \mathbf{b}) \arcsin(\angle(\mathbf{a}, \mathbf{b})) + \sqrt{1 - \angle(\mathbf{a}, \mathbf{b})^2} \right)$
$1_{t>0} \\ sign(t)$	$\frac{1}{2} - \frac{1}{2\pi}\arccos\left(\angle(\mathbf{a}, \mathbf{b})\right)$ $\frac{2}{\pi}\arcsin\left(\angle(\mathbf{a}, \mathbf{b})\right)$
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	$ \left \begin{array}{c} \sigma_2^2 \left(2 \left(\mathbf{a}^T \mathbf{b} \right)^2 + \ \mathbf{a}\ ^2 \ \mathbf{b}\ ^2 \right) + \varsigma_1^2 \mathbf{a}^T \mathbf{b} + \varsigma_2 \varsigma_0 \left(\ \mathbf{a}\ ^2 + \ \mathbf{b}\ ^2 \right) + \varsigma_0^2 \end{array} \right $
$\cos(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{a}\ ^2 + \ \mathbf{b}\ ^2\right)\right)\cosh(\mathbf{a}^T\mathbf{b})$ $\exp\left(-\frac{1}{2}\left(\ \mathbf{a}\ ^2 + \ \mathbf{b}\ ^2\right)\right)\sinh(\mathbf{a}^T\mathbf{b})$
$\sin(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{a}\ ^2 + \ \mathbf{b}\ ^2\right)\right)\sinh(\mathbf{a}^T\mathbf{b})$
$\operatorname{erf}(t)$	$\frac{2}{\pi}\arcsin\left(\frac{2\mathbf{a}^{T}\mathbf{b}}{\sqrt{(1+2\ \mathbf{a}\ ^2)(1+2\ \mathbf{b}\ ^2)}}\right)$
$\exp(-\frac{t^2}{2})$	$\frac{1}{\sqrt{(1+\ \mathbf{a}\ ^2)(1+\ \mathbf{b}\ ^2)-(\mathbf{a}^T\mathbf{b})^2}}$

Coefficients d_i for different activation functions

Table: Coefficients d_i in $\tilde{\Phi}_c$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_0	d_1	d_2
t	0	1	0
$\max(t,0) \equiv \text{ReLU}(t)$	$\left(rac{1}{4}-rac{1}{2\pi} ight) au$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	$\left(1-\frac{2}{\pi}\right)\tau$	0	$\frac{1}{2\pi\tau}$
$1_{t>0} $ sign (t)	$\frac{1}{4} - \frac{1}{2\pi}$	$\frac{1}{2\pi\tau}$	0
sign(t)	$1-\frac{2}{\pi}$	$\frac{2}{\pi \tau}$	0
$\varsigma_2 t^2 + \varsigma_1 t + \varsigma_0$	$2 au_2^2 \varsigma_2^2$	$\frac{\frac{1}{2\frac{\tau}{5}\tau}}{\frac{\pi_{7}}{\varsigma_{1}}}$	ς_2^2
$\cos(t)$	$\frac{1}{2} + \frac{e^{-2\tau}}{2} - e^{-\tau}$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$\frac{1}{2} - \frac{e^{-2\tau}}{2} - \tau e^{-\tau}$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{2}{\pi} \left(\arccos \left(\frac{2\tau}{2\tau+1} \right) - \frac{2\tau}{2\tau+1} \right)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	$\frac{1}{\sqrt{2\tau+1}} - \frac{1}{\tau+1}$	0	$\frac{1}{4(\tau+1)^3}$

\Rightarrow three types of function $\sigma(\cdot)$:

- ▶ mean-oriented, $d_1 \neq 0$ while $d_2 = 0$: t, $1_{t>1}$, sign(t), sin(t) and erf(t)
- covariance-oriented, $d_1 = 0$ while $d_2 \neq 0$: |t|, $\cos(t)$, $\exp(-t^2/2)$
- ▶ balanced, $d_1, d_2 \neq 0$: the ReLU function and quadratic function

Example 1: MSE of the random feature-based ridge regression:

$$E_{\text{train}} = \frac{1}{T} \|\mathbf{y} - \boldsymbol{\beta}^\mathsf{T} \mathbf{F}\|_F^2 = \frac{\gamma^2}{T} \mathbf{y}^\mathsf{T} \mathbf{Q}^2(-\gamma) \mathbf{y}, \quad E_{\text{test}} = \frac{1}{\hat{T}} \|\hat{\mathbf{y}} - \boldsymbol{\beta}^\mathsf{T} \hat{\mathbf{F}}\|_F^2$$

with the ridge regressor $\beta \equiv \frac{1}{T} \mathbf{F} (\mathbf{G} + \gamma \mathbf{I}_T)^{-1} \mathbf{y}^{\mathsf{T}} = \frac{1}{T} \mathbf{F} \mathbf{Q} (-\gamma) \mathbf{y}^{\mathsf{T}}.$

Figure: Performance for MNIST data (number 7 and 9), $n=512, T=\hat{T}=1024, p=784.$

Example 2: Random-feature based spectral clustering

Figure: Eigenvalue distribution of Φ_c and $\tilde{\Phi}_c$ and leading eigenvector for MNIST data, with ± 1 standard deviations (from 500 trials). With the ReLU function, p=784, T=128 and $c_1=c_2=1/2$.

Example 2: Random-feature based spectral clustering

Table: Empirical estimation of (normalized) statistics of the MNIST and epileptic EEG datasets.

	$\ \mathbf{M}^T\mathbf{M}\ $	$\ \mathbf{t}\mathbf{t}^{T} + 2\mathbf{S}\ $
MNIST data	172.4	86.0
EEG data	1.2	182.7

Table: Classification accuracies for random feature-based spectral clustering with different $\sigma(t)$ on the MNIST dataset.

	$\sigma(t)$	T = 64	T = 128
mean- oriented	t	88.94 %	87.30%
	$1_{t>0}$	82.94%	85.56%
	sign(t)	83.34%	85.22%
	$\sin(t)$	87.81%	87.50 %
	$\operatorname{erf}(t)$	87.28%	86.59%
cov- oriented	t	60.41%	57.81%
	$\cos(t)$	59.56%	57.72%
	$\exp(-t^2/2)$	60.44%	58.67%
balanced	ReLU(t)	85.72%	82.27%

Table: Classification accuracies for random feature-based spectral clustering with different $\sigma(t)$ on the epileptic EEG dataset.

	$\sigma(t)$	T = 64	T = 128
mean- oriented	t	70.31%	69.58%
	$1_{t>0}$	65.87%	63.47%
	sign(t)	64.63%	63.03%
	$\sin(t)$	70.34%	68.22%
	$\operatorname{erf}(t)$	70.59%	67.70%
COV-	t	99.69%	99.50%
oriented	$\cos(t)$	99.38%	99.36%
oriented	$\exp(-t^2/2)$	99.81 %	99.77 %
balanced	ReLU(t)	87.91%	90.97%

⇒Much better than ReLU in both cases

Example 3: Temporal evolution of training and generalization performance

Figure: Training and generalization performance for MNIST data (number 1 and 7) with n=p=784, $c_1=c_2=1/2$, $\alpha=0.01$ and $\sigma^2=0.1$. Simulation results obtained by averaging over 100 runs.

Conclusion

Take-away messages:

- ▶ SCMs or Gram-like matrices naturally appear in neural nets
- ▶ RMT is a powerful tool in the double-asymptotic regime
- difficulty from the nonlinear structure:
 - ⇒ handled with the "concentration" approach
- performance analyses and improvements of different algos
 - fast tunning of hyper-parameters
 - wise choice of activation vis-à-vis the data structure
 - more insights into training neural nets

Future work:

- lacktriangle deeper study of inner product kernels and activations in neural nets (relate $\sigma(\cdot)$ to d_1,d_2)
- ▶ the loss landscape of deep networks (beyond single-layer)

References

- On random feature maps and neural nets:
 - C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", (in press) Annals
 of Applied Probability, 2017.
 - Z. Liao, R. Couillet, "On the Spectrum of Random Features Maps of High Dimensional Data", (submitted to) The 35th International Conference on Machine Learning (ICML'18), Stockholm, Sweden, 2018.
- On the learning dynamics of neural nets:
 - Z. Liao, R. Couillet, "The Dynamics of Learning: A Random Matrix Approach", (submitted to) The 35th International Conference on Machine Learning (ICML'18), Stockholm, Sweden, 2018.
 - a journal in preparation with the co-supervisor Prof. Yacine CHITOUR
- On the kernel methods:
 - Z. Liao, R. Couillet, "Random Matrices Meet Machine Learning: A Large Dimensional Analysis of LS-SVM", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), New Orleans, USA, 2017.
 - Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", (submitted to) Journal of Machine Learning Research, 2017

Merci!