Importing Libraries

In [1]:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Importing Datasets

In [2]:

df=pd.read_csv("stations.csv")
df

Out[2]:		id	name	address	lon	lat	elevation
	0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
	1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
	2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
	3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
	4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
	5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
	6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
	7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
	8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
	9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
	10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
	11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
	12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
	13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
	14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
	15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
	16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
	17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
	18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
	19	28079056	Pza. Fernández	Pza. Fernández Ladreda - Avda.	-3.718728	40.384964	604

	id	name	address	lon	lat	elevation
		Ladreda	Oporto			
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

Data Cleaning and Data Preprocessing

```
In [3]:
          df=df.dropna()
 In [8]:
          df.columns
 Out[8]: Index(['id', 'name', 'address', 'lon', 'lat', 'elevation'], dtype='object')
 In [9]:
          df.info()
          <class 'pandas.core.frame.DataFrame'>
         Int64Index: 24 entries, 0 to 23
         Data columns (total 6 columns):
                         Non-Null Count Dtype
              Column
          0
              id
                          24 non-null
                                          int64
              name
                          24 non-null
                                          object
          1
          2
              address
                          24 non-null
                                          object
          3
                          24 non-null
                                          float64
              lon
          4
                          24 non-null
                                          float64
              lat
              elevation 24 non-null
                                          int64
          dtypes: float64(2), int64(2), object(2)
         memory usage: 1.3+ KB
In [10]:
          data=df[['id' ,'lon']]
          data
Out[10]:
                           lon
           0 28079004 -3.712247
           1 28079008 -3.682319
           2 28079011 -3.677356
          3 28079016 -3.639233
           4 28079017 -3.713322
           5 28079018 -3.731853
            28079024 -3.747347
             28079027 -3.580031
             28079035 -3.703172
          9 28079036 -3.645306
```

	id	lon
10	28079038	-3.707128
11	28079039	-3.711542
12	28079040	-3.651522
13	28079047	-3.686825
14	28079048	-3.690367
15	28079049	-3.682583
16	28079050	-3.688769
17	28079054	-3.612117
18	28079055	-3.580747
19	28079056	-3.718728
20	28079057	-3.660503
21	28079058	-3.774611
22	28079059	-3.609072
23	28079060	-3.689761

Line chart

```
In [11]: data.plot.line(subplots=True)
```

Out[11]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [12]: data.plot.line()
```

Out[12]: <AxesSubplot:>

Bar chart

Histogram

```
In [15]: data.plot.hist()
```

Out[15]: <AxesSubplot:ylabel='Frequency'>

Area chart

Out[16]: <AxesSubplot:>

Box chart

In [17]: data.plot.box()

Out[17]: <AxesSubplot:>

Pie chart

```
In [19]: b.plot.pie(y='id')
```

Out[19]: <AxesSubplot:ylabel='id'>

Scatter chart

```
In [106... data.plot.scatter(x='id',y='lon')
```

Out[106... <AxesSubplot:xlabel='id', ylabel='lon'>

```
-3.575
  -3.600
  -3.625
  -3.650
등 -3.675
  -3.700
  -3.725
  -3.750
  -3.775
                  10
                             20
                                       30
                                                 40
                                                                     60
                                                           50
                                                               +2.8079e7
                                         id
```

```
In [22]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 24 entries, 0 to 23
        Data columns (total 6 columns):
         #
            Column
                      Non-Null Count
                                    Dtype
         0
            id
                      24 non-null
                                    int64
                      24 non-null
         1
                                    object
            name
         2
            address
                      24 non-null
                                    object
         3
                                    float64
                      24 non-null
            lon
         4
                      24 non-null
                                    float64
            lat
            elevation 24 non-null
                                    int64
        dtypes: float64(2), int64(2), object(2)
        memory usage: 1.3+ KB
In [19]:
         df.columns
        Out[19]:
                           'TOL', 'station'],
             dtype='object')
In [17]:
         df.describe()
```

BEN CO **EBE NMHC** NO NO₂ 10916.000000 10916.000000 10916.000000 10916.000000 10916.000000 10916.000000 10916.00 count mean 0.784014 0.279333 0.992213 0.215755 18.795529 31.262642 44.23 0.632755 0.167922 0.804554 0.075169 40.038872 27.234732 29.53 std min 0.100000 0.100000 0.100000 0.050000 0.000000 1.000000 1.00 25% 0.400000 0.200000 0.500000 0.160000 1.000000 9.000000 18.00 **50**% 0.600000 0.200000 0.800000 0.220000 3.000000 24.000000 44.00 **75%** 0.900000 0.300000 1.200000 0.250000 18.000000 47.000000 65.00 max 7.000000 2.500000 9.700000 0.670000 525.000000 225.000000 157.00

```
In [23]: df1=df[['id', 'name', 'address', 'lon', 'lat', 'elevation']]
```

Out[17]:

EDA AND VISUALIZATION

In [24]: sns.pairplot(df1[0:50])

Out[24]: <seaborn.axisgrid.PairGrid at 0x190514fe400>

In [26]: sns.distplot(df1['id'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarn
ing: `distplot` is a deprecated function and will be removed in a future version. Pl
ease adapt your code to use either `displot` (a figure-level function with similar f
lexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[26]: <AxesSubplot:xlabel='id', ylabel='Density'>


```
In [27]: sns.heatmap(df1.corr())
```

Out[27]: <AxesSubplot:>


```
In [29]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24 entries, 0 to 23
Data columns (total 6 columns):
 #
     Column
                Non-Null Count Dtype
                24 non-null
 0
     id
                                int64
 1
                24 non-null
                                object
 2
                24 non-null
                                object
     address
 3
                24 non-null
                                float64
     lon
 4
                24 non-null
                                float64
     lat
     elevation 24 non-null
                                int64
dtypes: float64(2), int64(2), object(2)
memory usage: 1.3+ KB
```

TO TRAIN THE MODEL AND MODEL BULDING

```
In [30]: x=df[['id']]
y=df['elevation']
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [32]:
           from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
         LinearRegression()
Out[32]:
In [33]:
           lr.intercept
         4206047.767358211
Out[33]:
In [34]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
             Co-efficient
Out[34]:
          id
                -0.14977
In [35]:
           prediction =lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[35]: <matplotlib.collections.PathCollection at 0x190528c32e0>
          658
          657
          656
          655
          654
          653
          652
                    640
                             660
                                      680
                                               700
                                                         720
```

ACCURACY

```
In [36]: lr.score(x_test,y_test)
Out[36]: -0.25910603716409164
In [37]: lr.score(x_train,y_train)
```

```
Out[37]: 0.004162373438242106
```

Ridge and Lasso

```
In [38]:
         from sklearn.linear_model import Ridge,Lasso
In [39]:
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[39]: Ridge(alpha=10)
        Accuracy(Ridge)
In [40]:
         rr.score(x_test,y_test)
```

```
In [41]:
          rr.score(x_train,y_train)
```

-0.2590389528358372

0.004162352167841776

```
In [42]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
```

```
Lasso(alpha=10)
Out[42]:
```

Out[40]:

Out[41]:

```
In [43]:
          la.score(x_train,y_train)
```

0.003918492372358862 Out[43]:

Accuracy(Lasso)

```
In [44]:
          la.score(x_test,y_test)
Out[44]: -0.2524587869827213
```

Elastic Net

```
In [45]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[45]: ElasticNet()
In [46]:
          en.coef_
```

```
Out[46]: array([-0.14768952])
In [47]: en.intercept_
Out[47]: 4147633.394964873
In [48]: prediction=en.predict(x_test)
In [49]: en.score(x_test,y_test)
Out[49]: -0.2586953411650055
```

Evaluation Metrics

```
from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

29.966904852713924
1350.2654272347597
```

Logistic Regression

36.74595797138455

```
In [58]:
          from sklearn.linear_model import LogisticRegression
In [59]:
          feature_matrix=df[['id']]
          target_vector=df['elevation']
In [60]:
          feature_matrix.shape
         (24, 1)
Out[60]:
In [61]:
          target_vector.shape
         (24,)
Out[61]:
In [62]:
          from sklearn.preprocessing import StandardScaler
In [63]:
          fs=StandardScaler().fit_transform(feature_matrix)
In [64]:
          logr=LogisticRegression(max iter=10000)
          logr.fit(fs,target_vector)
```

```
LogisticRegression(max_iter=10000)
Out[64]:
In [70]:
          observation=[[1]]
In [71]:
          prediction=logr.predict(observation)
          print(prediction)
          [604]
In [72]:
          logr.classes_
Out[72]: array([599, 604, 615, 618, 621, 627, 630, 635, 642, 659, 660, 662, 670,
                 674, 676, 677, 685, 693, 698, 700, 708, 715, 728], dtype=int64)
In [73]:
          logr.score(fs,target_vector)
         0.1666666666666666
Out[73]:
In [74]:
          logr.predict_proba(observation)[0][0]
         0.05149080255479361
Out[74]:
In [75]:
          logr.predict_proba(observation)
Out[75]: array([[0.0514908, 0.07628281, 0.06459573, 0.06111161, 0.02846647,
                  0.05992926, 0.01982391, 0.00955813, 0.02542849, 0.03721458,
                  0.06573175, 0.05391838, 0.01206135, 0.04186834, 0.05270507,
                   0.04305319, \ 0.03836362, \ 0.0181069 \ , \ 0.04069126, \ 0.06344616, 
                  0.01416966, 0.06685293, 0.05512959]])
```

Random Forest

```
In [76]:
          from sklearn.ensemble import RandomForestClassifier
In [77]:
          rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
         RandomForestClassifier()
Out[77]:
In [95]:
          parameters={'max_depth':[1,2,3,4,5],
                       'min_samples_leaf':[5,10,15,20,25],
                       'n_estimators':[10,20,30,40,50]
          }
In [96]:
          from sklearn.model selection import GridSearchCV
          grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy
          grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:666: Us
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection_split.py:666: Us
erWarning: The least populated class in y has only 1 members, which is less than n_s

Conclusion

Scores

Linear Regression

```
In []: lr.score(x_test,y_test)
In []: lr.score(x_train,y_train)
```

Lasso

```
In [ ]: la.score(x_test,y_test)
```

Ridge

Elastic Net

```
In [85]: en.score(x_test,y_test)
Out[85]: -0.2586953411650055
```

Logistic Regression

In [86]:	<pre>logr.score(fs,target_vector)</pre>
Out[86]:	0.1666666666666666666666666666666666666

Random Forest

In [87]:	grid_search.best_score_
Out[87]:	0.125
	From the above data, we can conclude that logistic regression is preferrable to other regression types
In []:	