4.7 DVB 标准的 MPEG-2 基带接口

DVB 为数字电视广播系统前端设备间的连接定义了三种类型的 MPEG-2 基带接口,广泛应用在普通数字电视设备。我国参照 DVB 接口标准,在广电行业标准 GY/T170-2001《有线电视广播信道编码与调制规范》中的附录 A 规定了相同类型的三种接口: 同步并行接口(SPI)、同步串行接口(SSI)和异步串行接口(ASI),其中,异步串行接口是目前数字电视广播系统设备的主流接口。这些接口可以传输三种格式的 TS 包: 188 字节 TS 包、带 16空字节的 204 字节数据包和 RS 编码的 204 字节数据包。本节将简要介绍这三种接口。

4.7.1 同步并行接口(SPI)

同步并行接口用于中短距离内传输数据码率可变的 MPEG-2 TS 流,由 TS 流中的字节时钟实现数据信号同步传输。物理链路采用 25 芯的同轴电缆,接插件为 25 针 D 型超小型连接器,电信号为平衡型输出、输入的地电压差分信号(LVDS),图 4-22 所示为 DVB 并行传输系统,其中的 12 对为双绞线,另有一根电缆屏蔽线。25 针连接器的引脚如表 4-1 所示。

图 4-22 MPEG-2 并行传输接口

引脚	信号线	引脚	信号线
1	时钟 A	14	时钟 B
2	系统地	15	系统地
3	数据 7A	16	数据 7B
4	数据 6A	17	数据 6B
5	数据 5A	18	数据 5B
6	数据 4A	19	数据 4B
7	数据 3A	20	数据 3B
8	数据 2A	21	数据 2B
9	数据 1A	22	数据 1B
10	数据 0A	23	数据 0B
11	DVALID A	24	DVALID B
12	PSYNC A	25	PSYNC B
13	电缆屏蔽		

表 4-1、25 针连接器信号分配表

传输数据为 188 字节或 204 字节的 TS 流数据, 204 字节时后面的 16 字节可以是填充字节或者 RS 编码纠错字节,如图 4-23 所示,时钟、数据 (0~7)和同步信号都是 8 个比特并行传输,码型为 NRZ 不归零自然码。数据有效指示(DVALID)为高电平时表示接口上为有效数据,在 188 字节的 TS 流传输包格式下数据有效指示(DVALID)恒为高,在 204 字节的 TS 流传输包格式下,RS 纠错码期间数据有效指示(DVALID)为低电平表示空 RS 纠错码。传输包同步指示 (PSYNC)为高电平指明 TS 包的起始位置。

11 个平衡输出和平衡输入的线路驱动器和线路接收器间的连接如图 4-24 所示, A 端电位高于 B 端电位时表示逻辑 "1", 反之为逻辑 "0"。

图 4-24 同步并行接口驱动器与接收器间的连接

其中的线路驱动器输出时钟频率为 f_p 的方波信号,时钟从0到1跳变为数据读取时刻。时钟频率 f_p 与有用比特率 R_u 的数据率满足公式4-2。

$$f_p = \begin{cases} rac{R_u}{8}, TS$$
传输包为 188 字节
$$\left(rac{204}{188} \right) \cdot rac{R_u}{8}, TS$$
传输包为 188 字节 (式 4-2)

4.7.2 同步串行接口(SSI)

同步串行接口是同步并行接口的变型,它对 SPI 的数据流实施并/串转换并经过双向标志编码后通过单芯线缆进行传输。传输码率直接锁定在 TS 流码率上,传输的 TS 数据包格式与同步并行接口中的 TS 数据包格式相同,由于存在同步字节,无需比特对齐操作,即使几个串联链路级联时,依靠时钟再生电路也能确保线路时钟的高稳定度要求。

图 4-25 所示是使用电缆和光缆为传输线的 SSI-C 和 SSI-O 传输链路。电缆场合下,双

相编码的信号经过放大、缓冲和驱动电路后通过耦合网络实现直流隔离和阻抗匹配,再传输至电缆连接器。光缆场合下,串行比特流通过光发射机经光连接器将光信号耦合至光缆上。

图 4-25 SSI 传输链路

在 SSI-C、SSI-O 中实现压缩视频或压缩音频的信号处理设备间点对点链接时,其信号链路上信号协议分为三层结构。

1. 第2层

第 2 层信号协议以 MPEG-2 TS 流包作为基本信息单元,其中包含数据包同步字节,而数据包格式包括图 4-7-2 中的三种格式。

2. 第1层

第 1 层的作用是借助 SYNC1(47H)或 SYNC1 SYNC1(B7H)识别三种信号格式,二是实现 8 比特字节的并串转换(MSB 先传输),三是将 NRZ 不归零自然码变换成隐含时钟信息的双相标志编码,然后将串行比特流传输到第 0 层通路。

3. 第0层

第 0 层为电缆或光缆传输物理层,规定了基于电缆介质和光纤介质的点到点链接规范。

4.7.3 异步串行接口(ASI)

DVB-ASI 接口即 DVB 的异步串行接口,已经成为 DVB 数字电视广播前端专业设备之间连接的主流接口,DVB-ASI 是一种固定码率的串行接口,时钟速率为 270Mbps,以包异步方式传输 MPEG-2 数据。ASI 接口的传输链路可采用电缆或光缆,链路上的信号协议分为三层,如图 4-26 所示。

1. 第2层

ASI 接口的链路上的第 2 层是信号的输入层,采用 MPEG-2 TS 流数据包作为基本信息单位,TS 流数据包可以是连续字节的数据块,也可以是用于填充的专用数据字符 K28.5,或者是连续字节和填充字符的任意组合。第 2 层在采用 MPEG-2 TS 流数据包的句法基础上,规定每个 TS 流数据包前至少要有两个同步用的填充字符 K28.5。

图 4-26 ASI 传输链路

2. 第1层

第 1 层可以称为 ASI 接口传输数据的格式协议层。为了适应 SDI 中 10 比特码字、270Mb/s 的传输码率和附加传输差错控制能力,在第一层首先将 MPEG-2 TS 流传输包中原本 8 比特字节编码映射成 10 比特码字,8 比特字节映射为 10 比特码字应遵循码字中"1"、"0"的游程长度不大于 4 比特且直流偏置最小的原则进行编码。具体的 8bit/10bit 的编码的基本规定如表 4-2 所示,原数据字节为 $d_7 \sim d_0$,其对应的 8 比特信息字符是 HGF EDCBA,编码后的 10 比特传输字符是 abcdei fgbj,比特 a 先传输。

表 4-2 8bit/10bit 编码基本规定

元数据字节	d ₇	d ₆	d ₅		d ₄	d ₃	d_2	d ₁	d_0		
8 比特信息字符	Н	G	F		Е	D	С	В	A		
10 比特传输字符	a	b	c	d	e	i		f	g	h	j

根据上述编码规则可以得到包括 256 个码字的 8bit/10bit 编码表 4-7-2, 其中 DX. Y 中 X 是 EDCBA 的十进制数值, Y 是 HGF 的十进制值, RD-和 RD+则根据码字中"1"、"0"的 游程长度不大于 4 比特且直流偏置最小的原则来确定的。这样,实际的 8bit/10bit 编码和解码只要查表 4-3 就可以了。

表 4-3 8bit/10bit 编码表

数据	比特	当前 RD-	当前 RD+	数 据	比特	当前 RD-	当前 RD+	
Dx.y	HGF EDCBA	abcdei fghj	abcdi fghj	Dx.y	HGF EDCBA	abcdei fghj	abcdi fghj	
D0.0	000 00000	100111 0100	011000 1011	D16.1	001 10000	011011 1001	100100 1001	
D1.0	000 00001	011101 0100	100010 1011	D17.1	001 10001	100011 1001	100011 1001	
D2.0	000 00010	101101 0100	010010 1011	D18.1	001 10010	010011 1001	010011 1001	
D3.0	000 00011	110001 1011	110001 0100	D19.1	001 10011	110010 1001	110010 1001	
D4.0	000 00100	110101 0100	001010 1011	D20.1	001 10100	001011 1001	001011 1001	
D5.0	000 00101	101001 1011	101001 0100	D21.1	001 10101	101010 1001	101010 1001	
D6.0	000 00110	011001 1011	011001 0100	D22.1	001 10110	011010 1001	011010 1001	
D7.0	000 00111	111000 1011	000111 0100	D23.1	001 10111	111010 1001	000101 1001	

D8.0	000 01000	111001 0100	000110 1011	D24.1	001 11000	110011 1001	001100 1001
D9.0	000 01001	100101 1011	100101 0100	D25.1	001 11001	100110 1001	100110 1001
D10.0	000 01010	010101 1011	010101 0100	D26.1	001 11010	010110 1001	101010 1001
D27.6	110 11011	110110 0110	001001 0110	D27.7	111 11011	110110 0001	001001 1110
D28.6	110 11100	001110 0110	001110 0110	D28.7	111 11100	001110 1110	001110 0001
D29.6	110 11101	101110 0110	010001 0110	D29.7	111 11101	101110 0001	010001 1110
D30.6	110 11110	011110 0110	100001 0110	D30.7	111 11110	011110 0001	100001 1110
D31.6	110 11111	101011 0110	010100 0110	D31.7	111 11111	101011 0001	010100 1110

8bit/10bit 编码以后,根据 270Mb/s 的接口数据码率的要求,需要插入填充字符,DVB 标准规定了两种插入填充字符的传输方式。如图 4-27 所示,一种是带有数据包和填充字符的传输方式,另一种是数据字节和填充字符任意组合的传输方式。插入填充字符后,经过并/串转换输出码率为 270Mb/s 的比特流。

(b) 突发数据的传输格式

图 4-27 同步并行接口的三种传输包格式

接收端接收到该比特流后,忽略填充字符,再经过8bit/10bit解码,可以还原出原始数据码流。

3. 第0层

第 0 层为接口链路的物理层,主要规定了传输介质、驱动器、接收器和传输码率,物理接口分为电缆和光缆链接,基本码率 270Mb/s。电缆链接时,第 1 层形成的串行比特流通过缓冲/驱动器和耦合/阻抗匹配网络经电缆连接器馈送到同轴电缆;光缆链接时,第 1 层形成的串行比特流通过缓冲/驱动器和 LED 光发射器经光连接器馈送至光纤上。

本章要点:

- 1、MPEG-2 码流的构成及特点。
- 2、MPEG-2 码流中的时间信息及作用。
- 3、MPEG-2码流中的节目专有信息及作用。
- 4、码流复用过程中的码率控制方式。
- 5、MPEG-2 的三种地带传输接口。

思考题与习题:

- 1、为什么要定义节目流和传输流,分别针对哪种应用场合而设计的?
- 2、在数字电视码流中为什么要设计传送时间信息?
- 3、什么是 PCR? 它在数字电视码流的什么位置传输? 有什么作用?

- 4、数字电视码流复用和再复用时,需要对哪些信息进行重组和调整?
- 5、在数字电视传输码流中,通过什么机制描述码流中各信息之间的逻辑关系?
- 6、简要叙述解码器利用 PSI 信息对 TS 流进行解复用的过程。
- 7、帧平移复用法属于哪种编码复用方式?阐述其复用的其本思路和方法。
- 8、简述 MPEG-2 系统中码率控制原理。
- 9、DVB-ASI 接口所用的 270Mb/s 传输速率的时钟与系统时钟有无直接关系? 机顶盒在接收端分别如何恢复系统时钟?
- 10、DVB-ASI接口的最大数据传输码率是多少?说明如何得到的。
- 11、请分别说明 DVB-ASI、DVB-SSI、DVB-SPI 接口的特点,以及它们各自的接口码率与数据传输码率的关系。

参考文献:

- [1] ISO/IEC 13818-1:2000 Information technology -- Generic coding of moving pictures and associated audio information: Systems
- [2] GB/T17975.1-2000 信息技术"运动图像及其伴音信息的通用编码"第 1 部分
- [3] EUROPEAN STANDARD EN 50083-9 Cabled distribution systems for television, sound and interactive multimedia signals Part 9: Interfaces for CATV/SMATV headends and similar professional equipment for DVB/MPEG-2 transport streams
- [4] GY/T170-2001《有线电视广播信道编码与调制规范》附录 A
- [5] 惠新标、郑志航,数字电视技术基础,北京:电子工业出版社,2005