Reinforcement learning techniques in board games

D'Ambra Luca

Dipartimento di Scienze Statistiche Facoltà I3S Sapienza Università di Roma

Why board games?

- Very complex environment
- Easy measurement of the performance (result of the game)
- Comparison with humans
- Studied for hundreds or thousands of years
- Games are fun!

History of Reinforcement Learning in Board Games

HISTORICAL ACHIEVEMENTS:

- **Chinook** (Univeristy of Alberta, 1989) Solved the game of Checkers
- **TD-Gammon** (Tesauro, 1995) Superhuman level in the game of Backgammon
- KnightCap (Tridgell, 1996) International Master level in the game of Chess
- Alpha–go (Silver et al, 2016)
 Superhuman level in the game of Go

History of Reinforcement Learning in Board Games

HISTORICAL ACHIEVEMENTS:

- Chinook (Univeristy of Alberta, 1989) Solved the game of Checkers
- **TD-Gammon** (Tesauro, 1995) Superhuman level in the game of Backgammon
- KnightCap (Tridgell, 1996) International Master level in the game of Chess
- Alpha–go (Silver et al, 2016)
 Superhuman level in the game of Go

In this thesis:

- Ralpha-Toe
 A program for the game of Tic-Tac-Toe
- Ralpha-4
 A program for the game of Connect-4

Reinforcement Learning Problem (I)

Agent-Environment Interaction

In artificial intelligence, reinforcement learning (RL) is the problem of learning from experience.

AGENT-ENVIRONMENT INTERACTION:

- Agent: the learner and the decision-maker
- Environment: the thing the agent interacts with

Reinforcement Learning Problem (I)

Agent-Environment Interaction

In artificial intelligence, reinforcement learning (RL) is the problem of learning from experience.

AGENT-ENVIRONMENT INTERACTION:

- Agent: the learner and the decision-maker
- Environment: the thing the agent interacts with

Reinforcement Learning Problem (I)

Agent-Environment Interaction

In artificial intelligence, reinforcement learning (RL) is the problem of learning from experience.

AGENT-ENVIRONMENT INTERACTION:

- Agent: the learner and the decision-maker
- Environment: the thing the agent interacts with

Reinforcement Learning Problem (II)

Markov Decision Process

Def. Markov Decision Process (MDP)

An MDP is given by the tuple

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, p(\cdot | \cdot, \cdot), R(\cdot, \cdot)),$$

where:

- \mathcal{S} is a finite set of states, $(S_t \in \mathcal{S})$
- \mathcal{A} is a finite set of actions, $(A_t \in \mathcal{A})$
- p(s'|s,a) is a transition probability $(s,a \rightarrow s')$
- R(s,a) is a reward function, $(R_{t+1} \in \mathbb{R})$

Reinforcement Learning Problem (II)

Markov Decision Process

Def. Markov Decision Process (MDP)

An MDP is given by the tuple

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, p(\cdot | \cdot, \cdot), R(\cdot, \cdot)),$$

where:

- S is a finite set of states, $(S_t \in S)$
- \mathcal{A} is a finite set of actions, $(A_t \in \mathcal{A})$
- p(s'|s,a) is a transition probability $(s,a \rightarrow s')$
- R(s, a) is a reward function, $(R_{t+1} \in \mathbb{R})$

The agent acts according to a **policy**, $\pi: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$, such that:

$$\pi(a|s) = P(A_t = a \mid S_t = s), \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

Reinforcement Learning Problem (III)

Optimal policy & State-value function

Solution: Optimal policy (Informally...)

Find $\pi^* \in \Pi$ that maximize the expected value of the **discounted return**:

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where $\gamma \in [0,1]$ is called discount parameter.

Reinforcement Learning Problem (III)

Optimal policy & State-value function

Solution: Optimal policy (Informally...)

Find $\pi^* \in \Pi$ that maximize the expected value of the **discounted return**:

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where $\gamma \in [0,1]$ is called discount parameter.

STATE-VALUE FUNCTION $(V_{\pi}: \mathcal{S} \to \mathbb{R})$:

$$V_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \, \middle| \, S_{t} = s \right]$$
$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V_{\pi}(S_{t+1}) \, \middle| \, S_{t} = s \right]$$

Reinforcement Learning Problem (IV)

Function approximation

Problem: S is too large

- Not enough memory (e.g. Go: 10^{170} , Chess: 10^{43})
- Slow to learn the value of each state individually

Reinforcement Learning Problem (IV)

Function approximation

Problem: S is too large

- Not enough memory (e.g. Go: 10^{170} , Chess: 10^{43})
- Slow to learn the value of each state individually

Solution: Function approximation

- Linear combinations of features
- Neural network (Our case)
- Nearest neighbour
- · ·

$\mathsf{TD}(\lambda)$ Algorithm (I)

What is it?

 $TD(\lambda)$ algorithm (proposed by R. Sutton):

Goal: Improve the agent's policy π considering a **parameterized** and **differentiable** function

$$\widehat{v}: \mathcal{S} \times \Theta \to \mathbb{R},$$

$$(s, \theta) \leadsto \widehat{v}(s, \theta)$$

in order to approximate $V_{\pi}: \mathcal{S} \to \mathbb{R}$, where $\theta \in \Theta \subset \mathbb{R}^d$ and $d << |\mathcal{S}|$.

- ON-LINE: directly using own experience.
- MODEL-FREE: without knowing the dynamics of the environment; that is, $p(s' \mid a, s)$ and R(s, a).

$\mathsf{TD}(\lambda)$ Algorithm (I)

What is it?

 $\mathrm{TD}(\lambda)$ algorithm (proposed by R. Sutton):

Goal: Improve the agent's policy π considering a **parameterized** and **differentiable** function

$$\widehat{v}: \mathcal{S} \times \Theta \to \mathbb{R},$$

$$(s, \theta) \leadsto \widehat{v}(s, \theta)$$

in order to approximate $V_{\pi}: \mathcal{S} \to \mathbb{R}$, where $\theta \in \Theta \subset \mathbb{R}^d$ and $d << |\mathcal{S}|$.

- ON-LINE: directly using own experience.
- MODEL-FREE: without knowing the dynamics of the environment; that is, p(s' | a, s) and R(s, a).

How: Improving the current estimation \widehat{v} (\rightarrow update the parameter vector θ):

- Minimize the distance between $\widehat{v}(S_t, \boldsymbol{\theta})$ and $V(S_t)$ (...unknown...)
- Gradient Descend method

$\mathsf{TD}(\lambda)$ Algorithm (II)

Update rule

UPDATE RULE:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \left[R_{t+1} + \gamma \widehat{v}(S_{t+1}, \boldsymbol{\theta}_t) - \widehat{v}(S_t, \boldsymbol{\theta}_t) \right] \boldsymbol{\epsilon}_t$$

where:

- α is the **learning rate**
- ϵ_t is the eligibility trace:

$$egin{aligned} oldsymbol{\epsilon}_0 &= \mathbf{0} \ oldsymbol{\epsilon}_t &=
abla \widehat{v}(S_t, oldsymbol{ heta}) + oldsymbol{\gamma} oldsymbol{\lambda} oldsymbol{\epsilon}_{t-1} \end{aligned}$$

- $\lambda \in [0,1]$ is the decay parameter
- $\nabla \widehat{v}(S_t, \boldsymbol{\theta})$ is the gradient of \widehat{v} with respect to components of $\boldsymbol{\theta}$

$\mathsf{TD}(\lambda)$ algorithm (III)

 ϵ -greedy policy & Self-play

The agent acts according to an ϵ -greedy policy:

- ullet the greedy action is selected with probability $1-\epsilon$
- \bullet a random action is selected with probability ϵ

$\mathsf{TD}(\lambda)$ algorithm (III)

 ϵ -greedy policy & Self-play

The agent acts according to an ϵ -greedy policy:

- ullet the greedy action is selected with probability $1-\epsilon$
- ullet a random action is selected with probability ϵ

APPLICATION TO BOARD GAMES VIA SELF-PLAY RL

$\mathsf{TD}(\lambda)$ algorithm (IV)

Algorithm 1: $TD(\lambda)$ in board games

```
Input: a differentiable function \hat{v}: \mathcal{S} \times \mathbb{R}^n \to \mathbb{R};
Initialize the weights \theta arbitrarily;
for each game do
     S \leftarrow S_0 (starting position);
     \epsilon \leftarrow 0:
     while the game has not ended do
           A \leftarrow action selected according to \hat{v}(e.g. \epsilon-greedy);
            Perform the action A and observe R and S':
           \epsilon \leftarrow \gamma \lambda \epsilon + \nabla \hat{v}(S, \theta):
           \delta \leftarrow R + \gamma \hat{v}(S', \boldsymbol{\theta}) - \hat{v}(S, \boldsymbol{\theta});
           \theta \leftarrow \theta + \alpha \delta \epsilon:
           S \leftarrow S':
           Let the opponent perform an action;
     end
```

end

Output: $\pi \approx \pi^*$

Games

Tic-Tac-Toe and Connect-4

Tic-Tac-Toe

• 2 players: X and O

• grid: 3x3

• complexity: $|\mathcal{S}| = 5812$

• SOLVED: teoretically draw

Connect-4

2 players: Yellow and Red

• grid: 6x7

• complexity: $|\mathcal{S}| \approx 4.5 \cdot 10^{12}$

SOLVED: Yellow Wins

Experiment Setup (I)

Train & Test phase

The experiment is divided in 100 rounds. Each round is composed by two phases (Train and Test phase):

Train Phase:

- the program is trained for a certain number of games (Ralpha–Toe: 300, Ralpha–4: 10000)
- ullet the **exploration rate** ϵ is set equal to 0.1
- the **learning rate** α is decreased according to an exponential decay rule, starting from the value 0.05.

Experiment Setup (I)

Train & Test phase

The experiment is divided in 100 rounds. Each round is composed by two phases (Train and Test phase):

Train Phase:

- the program is trained for a certain number of games (Ralpha–Toe: 300, Ralpha–4: 10000)
- ullet the **exploration rate** ϵ is set equal to 0.1
- the **learning rate** α is decreased according to an exponential decay rule, starting from the value 0.05.

Test Phase:

- ullet the program is tested against a fixed opponent for 200 games.
- Ralpha-Toe: Random Player
- Ralpha-4: Benchmark Player
- No updates is performed.
- ullet the **exploration rate** ϵ is set equal to 0

Experiment Setup (II)

Hyper-parameters choice

Algorithm 2: Benchmark Player

- Get all possible moves and randomize the order;
- If there is an action that would win the game, perform the first action;
- Otherwise, if the opponent has any way to win next turn, block the first one found;
- Otherwise, do the first possible move which does not allow the opponent to win the game by placing a piece on top of it.

Experiment Setup (II)

Hyper-parameters choice

Algorithm 3: Benchmark Player

- Get all possible moves and randomize the order;
- If there is an action that would win the game, perform the first action;
- Otherwise, if the opponent has any way to win next turn, block the first one found;
- Otherwise, do the first possible move which does not allow the opponent to win the game by placing a piece on top of it.

NO GENERAL RULES FOR THE HYPER-PARAMETERS CHOICE

We tried 24 different setups in both the games:

- ullet The discount parameter γ is tested for values equal to 0.8, 0.9 and 1
- The decay rate λ is tested for values equal to 0, 0.2, 0.5 and 0.8
- Different neural network structures (Deep and Shallow).

Experiment Setup (III)

NN Structures

Ralpha-Toe:

MLP type	Layers size	N. of parameters
Shallow	9 - 100 - 1	1001
Deep	9 - 30 - 22 - 1	1005

Ralpha-4:

MLP type	Layers size	N. of parameters
Shallow	42 - 300 - 243 - 1	86286
Deep	42 - 250 - 250 - 50 - 1	86101

- ullet The bias parameters are initialized with the value 0.1
- The weights of the connection are randomly initialized according to a truncated normal distribution

Ralpha–Toe (I)

Results

	Shallow architecture		
	$\gamma = 1$	$\gamma = 0.9$	$\gamma = 0.8$
$\lambda = 0$	93.1% (95.5)	93.62% (96.5)	93.57% (96.5)
$\lambda = 0.2$	89.22% (93.5)	90.72% (95)	91.67% (94)
$\lambda = 0.5$	74.4% (88.5)	37.7% (43.5)	90.42% (93)
$\lambda = 0.8$	57.52% (65)	55.22% (62)	81.7% (88.5)

	Deep architecture		
	$\gamma = 1$	$\gamma = 0.9$	$\gamma = 0.8$
$\lambda = 0$	93.82% (97)	91.5% (96.5)	93.1% (96.5)
$\lambda = 0.2$	90.85% (94.5)	92.15% (96.5)	92.82% (95.5)
$\lambda = 0.5$	71.8% (81.5)	88.52% (93)	91.45% (95)
$\lambda = 0.8$	58.05% (64)	56.07% (67)	75.8% (82)

Table: Ralpha-Toe average win percentage (last 20 test phases)

Ralpha-Toe (II)

Worst Performance

Last 20 test phases: WINS (37.7%), LOSSES (46.15%) and DRAWS (16.15%)

Ralpha-Toe (III)

Delayed Improvement

Last 20 test phases: WINS (90.42%), LOSSES (0.8%) and DRAWS (8.78%)

Ralpha-Toe (IV)

Best Performance

Last 20 test phases: WINS (93.82%), LOSSES (0.77%) and DRAWS (5.41%)

Ralpha-4 (I)

Results

	Shallow architecture		
	$\gamma = 1$	$\gamma = 0.9$	$\gamma = 0.8$
$\lambda = 0$	66.92% (73.5)	78.22% (83.5)	66.97% (74.5)
$\lambda = 0.2$	23.3% (29.5)	80.77% (87)	78.3% (85)
$\lambda = 0.5$	71.17% (77.5)	54.07% (65)	72.7% (78)
$\lambda = 0.8$	1.47% (3)	59.4% (69)	68.8% (74)

	Deep architecture		
	$\gamma = 1$	$\gamma = 0.9$	$\gamma = 0.8$
$\lambda = 0$	75.95% (82)	73.07% (83)	73.02% (81)
$\lambda = 0.2$	75.3% (82)	69.8% (81.5)	70.67% (76.5)
$\lambda = 0.5$	$67.37\% \ (73.5)$	69.17% (74)	61.52% (69)
$\lambda = 0.8$	9.07% (15)	0.65% (2)	30.52% (40.5)

Table: Ralpha-4 average win percentage (last 20 test phases)

Ralpha-4 (II)

Irregular Improvement

Ralpha-4 (Deep, $\gamma = 0.8 , \lambda = 0.5$)

Last 20 test phases: WINS (61.52%), LOSSES (37.45%) and DRAWS (1.03%)

Ralpha-4 (III)

Best Performance

Ralpha–4 (Shallow, $\gamma = 0.9$, $\lambda = 0.2$)

Last 20 test phases: WINS (80.77%), LOSSES (18.95%) and DRAWS (0.28%)