计算机视觉实践——练习 2_LeNet5 实验报告

目录

1	实	验	目的		• • • •		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 • • • • •	2
2	实	验几	原理				• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 	2
2	2.1	模	型结	构	• • •		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 • • • • •	2
	2.1	.1	整包	⋭框	架		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 • • • • •	2
	2.1	.2	卷秒	层	• • •		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 	3
	2.1	.3	池仙	比层			• • •	 • • •	 	 • • •		• • •				• • • •	• • • •	 • • • •	• • • •	 • • • • •	3
	2.1	.4	激活	医函	数		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 • • • • •	3
	2.1	.5	全进	E接	层		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 • • • • •	…4
4	2.2	损	失函	数	• • •		• • •	 • • •	 	 • • •		• • •	• • • •	• • • •	• • • •	• • • •	• • • •	 • • • •	• • • •	 • • • • •	5
2	2.3	优	化器	• • • •			• • •	 • • •	 	 • • •	• • • •	• • •	• • • •			• • • •	• • • •	 • • • •	• • • •	 	5
3	实	验					• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 	5
3	3.2	实	验细	节	• • •		• • •	 • • •	 	 • • •		• • •				• • • •		 • • • •	• • • •	 • • • • •	6
2	3.3	实	验结	果	• • •		• • •	 • • •	 	 • • •		• • •				• • • •	• • • •	 • • • •	• • • •	 	6
																				• • • • •	
陈	录		—代	码原	曼力	₹	• • •	 • • •	 	 • • •		• • •	• • • •			• • • •	• • • •	 • • • •	• • • •	 • • • • •	7

1 实验目的

- 熟悉早期卷积神经网络的基本结构,包括卷积层、池化层、激活函数、全连接层等。
- 学习经典手写数字识别网络 LeNet。
- 在 MNIST 数据集上完成图像分类任务,包括训练与测试。

2 实验原理

主要包括模型结构、损失函数和优化器 3 个部分。

2.1 模型结构

2.1.1 整体框架

(a)

1	Layer	Feature Map	Size	Kernel Size	Stride	Activation	
Input	Image	1	32x32	-	-	-	
1	Convolution	6	28x28	5x5	1	tanh	
2	Average Pooling	6	14x14	2x2	2	tanh	
3	Convolution	16	10×10	5x5	1	tanh	
4	Average Pooling	16	5x5	2x2	2	tanh	
5	Convolution	120	1x1	5x5	1	tanh	
6	FC	-	84	-	-	tanh	
Output	FC	_	10	_	-	softmax	

(b)

图 1 LeNet5 框架

本次实验中,对 LeNet5 做了大致的复现,取消了最后一个全连接层后的激活函数(即图 1(b)中最后一个 FC 中的 softmax),取消 softmax 激活函数是因为本次实验使用的损失函数为 Pytorch 自带的交叉熵损失函数,其中自带 softmax。

2.1.2 卷积层

卷积层(Convolutional Layer)通过将输入特征图与一组可学习的卷积核(也称为滤波器)进行卷积操作(严格来说为互相关运算)来产生输出特征图。卷积操作可以看作是将卷积核在输入特征图上滑动,并计算在每个位置上卷积核与输入特征图的乘积之和。

图 2 卷积层的互相关运算

2.1.3 池化层

本次实验使用的池化层为平均池化层。

平均池化层的作用是提取输入特征图的平均特征,同时降低特征图的空间分辨率。由于每个池化区域的像素平均值只是输入特征图的一个近似值,因此平均池化可能会损失一些信息。然而,在某些情况下,这种信息的损失可以被认为是有益的,因为它可以防止过拟合和提高模型的泛化能力。

图 3 平均池化层的运算

2.1.4 激活函数

激活函数是深度神经网络中的一个非线性函数,它的作用是给神经网络增加非线性变换的能力。激活函数通常被放置在每个神经元的输出上,以便通过激活函数将神经元的输出转换为非线性形式。常见的激活函数有 sigmoid、ReLU、tanh 等。

激活函数的作用是引入非线性变换,使神经网络可以更好地逼近复杂函数。例如,在没有激活函数的情况下,多个线性变换的组合仍然是线性的,这样神经网络就无法处理非线性模式。激活函数的引入可以将线性模型转换为非线性模型,

从而使神经网络可以更好地逼近非线性函数。

本次实验中,使用的激活函数为 Tanh。Tanh 函数可以看作是 sigmoid 激活函数的变形,它的输出值也在 0 到 1 之间,但是当输入值为负时,它的输出值为负,可以产生更大的负梯度,因此在一些场景下具有优势。与 sigmoid 函数相比,Tanh 函数的输出值范围更广,因此它可以对输入数据的分布进行更多的变换。但是,当输入值很大或很小时,Tanh 函数的梯度会接近于 0,这也会导致梯度消失的问题。因此,在深度神经网络中,通常使用 ReLU 或其变体作为激活函数,但本次实验中为复现 LeNet5,故采用 Tanh 激活函数。

图 4 Tanh 激活函数图像

2.1.5 全连接层

全连接层(Full Connected Layer,FC)是神经网络中的一种基本层,也被称为密集连接层(Dense Layer),它的每个输入神经元都连接到输出层的每个神经元,因此全连接层的权重矩阵是一个二维矩阵。卷积神经网络中全连接层的作用主要是作为分类器,将学到的特征映射到对应的样本类别。

在 Pytorch 中,全连接层由 nn.Linear()即线性层实现。

图 5 全连接层

2.2 损失函数

本次实验选取的损失函数为交叉熵损失函数(Cross Entropy Loss),由 Pytorch中的 nn.CrossEntropyLoss 实现。

Cross Entropy 公式如下:

$$L = -\sum_{c=1}^C y_c \; log(p_c)$$

此处的 p_c 也即网络输出层的输出经 softmax 后的结果, y_c 为 one-hot 编码,用于单标签多分类, C为标签总共的类别数。

在网络训练过程中,对损失函数进行梯度下降进行优化,训练网络中的参数。

2.3 优化器

在深度学习中,优化器(Optimizer)是一种用于优化神经网络参数的算法,它的主要目标是通过调整神经网络的权重和偏置,使神经网络的输出尽可能接近真实标签,从而最小化损失函数。

优化器的工作原理是通过计算损失函数对参数的梯度,并根据梯度的方向和大小来更新参数。常见的优化算法包括:随机梯度下降(Stochastic Gradient Descent, SGD)、动量(Momentum)、AdaGrad、Adam 等。

本次实验中,使用了 Adam 优化器,Adam 是一种自适应学习率算法,它结合了动量和自适应学习率的优点,具有收敛速度快、精度高等优点。

3 实验

3.1 数据集

本次实验的数据集为 MNIST,实验中采用 Pytorch 内置的 MNIST 数据集函数读取,不过实验外也附带了解码 MNIST 源数据集文件的代码。

图 6 MNIST 数据集

3.2 实验细节

对训练集进行了数据增强——随机翻转,并对输入的图片调整到大小为 32 \times 32。训练的轮次为 300,每次训练的 mini-batch 为 128,对训练的数据进行打乱。学习率初始为 10^{-5} 。

3.3 实验结果

本次实验中,训练的模型对 MNIST 的测试结果的准确为 97.1%,如图 7 所示。

```
accuracy = round((correct / total).item(), 3)
accuracy
在 15ms 中执行, 16 Apr at 17:51:39
```

图 7 测试结果准确率

3.4 实验分析

本次实验的模型为复现模型,故没有使用现在较好的激活函数如 ReLU 或 SiLU 等;同时并未在网络中加入批归一化层(Batch Normalization Layer),此方 法为用于深度神经网络的正则化方法,旨在解决神经网络训练过程中的梯度消失和梯度爆炸问题,并加速神经网络的收敛速度。

另外,如果在网络中使用 resnet 结构也许会有更好的效果。

附录——代码展示

仅展示主要代码。 模型代码:

训练代码:

```
epochs = 300
for epoch in range(epochs):
    train_model.train()
    mloss = torch.zeros(1, device=device)  # mean_loss
    pbar = tqdm(enumerate(train_loader), total=len(train_loader), desc=f'Epoch {epoch}/{epochs}', unit='batches')

for i, (imgs, labels) in pbar:
    imgs, labels = imgs.to(device), labels.to(device)
    preds = train_model(imgs)
    loss = loss_fn(preds, labels)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    mloss = (mloss * i + loss) / (i + 1)
    mem = f'{torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0:.3g}6'  # GPU_mem
    pbar.set_postfix(loss=mloss.item(), GPU_mem=mem)

ckpt = {     # checkpoint
          'epoch': epoch,
          'model': deepcopy(train_model).half(),
           'optimizer': optimizer.state_dict(),
}
torch.save(ckpt, 'LeNet5.pt')
```

测试代码及结果: