伴随函子的 unit 与 counit

伴随函子 : 对任意 c 和 d 有 $(d \xrightarrow{D} cR) \stackrel{Set}{\cong} (dL \xrightarrow{C} c)$ 。如此

• 不难看出这其实蕴含着一个二元的自然同构 ϕ_2 , 见下

套用反变米田引理我们便可获得

由反变米田引理的证明可知:对每个左侧集合中的自然同构 $(_.c)^{\phi_2}$ 右侧集合中都有一个箭头与之对应,即 $:c_R^{\circ}$ id $(c_R^{\circ}.c)^{\phi_2} = c^{\varepsilon}$ 。如此

不难看出这其实蕴含着一个二元的自然同构 ϕ_1 , 见下:

套用协变米田引理我们便可获得

由协变米田引理的证明可知:对每个左侧集合中的自然同构 $(\mathbf{d}_{-})^{\phi_1}$ 右侧集合中都有一个箭头与之对应,即 $_{\mathrm{id}_{L}}\mathrm{id}(\mathbf{d}_{-})^{\phi_1}=\mathbf{d}^{\eta}$ 。如此。

η 构成自然变换。

同样 , 给定自然同构 ε , η , 我们也可以推出自然同构 ϕ_2 和 ϕ_1 。

考虑任意 $f^{\operatorname{op}}: \operatorname{\mathsf{d}} \xrightarrow{\mathsf{c}} \operatorname{\mathsf{c}} R$:

于是我们可以根据上图定义 $(\mathbf{d} \cdot \mathbf{c})^{\phi_2}$ 。

考虑任意 $g: \mathsf{d} \overset{\mathsf{D}}{L} \overset{\mathsf{D}}{ o} \mathsf{c}$:

于是我们可以根据上图定义 $(\mathbf{d} \cdot \mathbf{c})^{\phi_1}$ 。

但是这里面怎么体现了用到了 ε 和 η 为自然变换的性质呢?