# SURE Project

September 06, 2022

#### Objective

Compare spatial predictions of kelp to "in situ" survey data. Compare each year and location for 150, 300, 900 resolutions.

#### Extraction

Extract the predicted log kelps density of every year (2004 - 2021) for each site in the North Coast.

```
##
    site_name year transect zone latitude longitude den_NERLUE log_den_NERLUE
## 1
       Caspar 2018
                      1 INNER 39.36173 -123.822
                                                              0
                                                                         -Inf
## 2
       Caspar 2018
                          2 INNER 39.36173 -123.822
                                                              0
                                                                         -Inf
## 3
       Caspar 2018
                         3 INNER 39.36173 -123.822
                                                              0
                                                                         -Inf
## 4
       Caspar 2018
                          4 OUTER 39.36173 -123.822
                                                              0
                                                                         -Inf
                          5 OUTER 39.36173 -123.822
## 5
       Caspar 2018
                                                              0
                                                                          -Inf
## 6
       Caspar 2018
                          6 OUTER 39.36173 -123.822
                                                                         -Inf
```

Note that  $\log(0)$  returns -Inf. How to deal with  $\log(0)$ ?

```
df$log_den_NERLUE <- replace(df$log_den_NERLUE, df$log_den_NERLUE == -Inf, 0)</pre>
```

Calculate the mean and standard error of kelps density of every year for each site by zone (INNER/OUTER).

```
obs <- df %>%
  group_by(site_name, year, zone) %>%
  summarise_at(vars(log_den_NERLUE), list(mean = mean, se = std.error), na.rm = TRUE) %>%
  pivot_wider(names_from = zone, values_from = c(mean, se))
head(obs)
```

```
## # A tibble: 6 x 6
## # Groups:
              site_name, year [6]
    site name year mean INNER mean OUTER se INNER se OUTER
##
     <fct>
              <fct>
                          <dbl>
                                    <dbl>
                                               <dbl>
                                                        <dbl>
## 1 Caspar
               2008
                          4.38
                                      3.03
                                             0.150
                                                        0.996
## 2 Caspar
               2010
                                             0.0664
                                                        0.586
                          4.37
                                      4.17
## 3 Caspar
                          0.799
                                             0.799
               2014
                                      0
## 4 Caspar
               2015
                          0
                                      0
                                             0
                                                        0
## 5 Caspar
               2016
                          0
                                      0
                                             0
                                                        0
                          0
                                      0
                                             0
                                                        0
## 6 Caspar
               2017
```

Frolic Cove 2006 0.8228083 -123.8239 39.35503

Extract the predicted log kelps density of every year for each site at different resolutions.

```
# kelp density predictions at 300m resolution
pred_300m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions.csv', sep ='/')) %>%
 mutate_at(vars(year, site_name), list(as.factor))
head(pred_300m)
##
          site_name year
                               fit longitude latitude
## 1
             Caspar 2006 0.5090384 -123.8220 39.36173
## 2
       Caspar North 2006 0.5003366 -123.8213 39.36443
         Dark Gulch 2006 0.5309656 -123.7762 39.24030
## 4 Flat Iron Rock 2006 0.7382968 -124.1578 41.05942
## 5
         Fort Ross 2006
                                NA -123.2450 38.51060
```

```
# kelp density predictions at 900m resolution
# read the .csv file
site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))</pre>
# convert from .csv to .shp
site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')</pre>
# declaring an empty data frame
pred <- data.frame(site_name = character(),</pre>
                    year = numeric(),
                    fit = numeric())
for (i in c(2006:2021)) {
  rast <- rast(paste0(r1.dir, paste0('/', i, '_Log_Nereo_NC.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
 pred <- rbind(pred, ext)</pre>
}
head(pred)
```

```
## site_name year fit
## 1 Caspar 2006 0.07573552
## 2 Caspar North 2006 0.07573552
## 3 Dark Gulch 2006 0.32145628
## 4 Flat Iron Rock 2006 0.17760107
```

## 6

```
# write to cus
merge_df <- left_join(pred,</pre>
                     site %>% select(c(site_name, longitude, latitude)),
                     by = 'site_name')
Comparison
kelp_data_300m <- left_join(pred_300m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_300m)
## # A tibble: 6 x 9
## # Groups:
              site_name [1]
##
    site_name year longitude latitude mean_INNER mean_OUTER se_IN~1 se_OU~2
##
    <fct>
              <fct>
                       <dbl>
                                           <dbl>
                                                             <dbl>
                                                                     <dbl> <dbl>
                                <dbl>
                                                     <dbl>
## 1 Caspar
                       -124.
                                 39.4
                                                                          0.509
              2006
                                           NA
                                                     NA
                                                           NA
                                                                   NA
## 2 Caspar
              2007
                       -124.
                                 39.4
                                                     NA
                                                           NA
                                                                   NA
                                                                          0.827
                                          NΑ
                                 39.4
                                                                   0.996 1.83
## 3 Caspar
              2008
                       -124.
                                           4.38
                                                     3.03 0.150
## 4 Caspar
              2009
                       -124.
                                 39.4
                                          NA
                                                     NA
                                                           NA
                                                                   NA
                                                                          1.62
## 5 Caspar
              2010
                       -124.
                                 39.4
                                           4.37
                                                      4.17 0.0664
                                                                   0.586 0.554
              2011
                       -124.
                                 39.4
## 6 Caspar
                                                                   NA
                                                                          0.857
                                          NA
                                                     NA
                                                           NA
## # ... with abbreviated variable names 1: se_INNER, 2: se_OUTER
# kelp density predictions at 900m resolution
pred_900m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_900m_resolution.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
head(pred_900m)
##
         site_name year
                              fit longitude latitude
## 1
            Caspar 2006 0.07573552 -123.8220 39.36173
## 2
      Caspar North 2006 0.07573552 -123.8213 39.36443
        Dark Gulch 2006 0.32145628 -123.7762 39.24030
## 4 Flat Iron Rock 2006 0.17760107 -124.1578 41.05942
         Fort Ross 2006
                               NA -123.2450 38.51060
## 6
       Frolic Cove 2006 0.24542649 -123.8239 39.35503
kelp_data_900m <- left_join(pred_900m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
 relocate(fit, .after = last col())
head(kelp_data_900m)
```

## 5

## 6

Fort Ross 2006

Frolic Cove 2006 0.24542649

```
## # A tibble: 6 x 9
## # Groups:
             site_name [1]
    site_name year longitude latitude mean_INNER mean_0U~1 se_IN~2 se_0U~3
##
    <fct>
              <fct>
                        <dbl>
                                 <dbl>
                                            <dbl>
                                                      <dbl> <dbl>
                                                                     <dbl>
                                                                             <dbl>
## 1 Caspar
              2006
                        -124.
                                  39.4
                                            NA
                                                      NA
                                                            NA
                                                                     NA
                                                                            0.0757
## 2 Caspar
              2007
                        -124.
                                  39.4
                                                      NA
                                            NΑ
                                                            NA
                                                                     NA
                                                                            1.50
## 3 Caspar
                        -124.
                                  39.4
                                            4.38
                                                      3.03 0.150
                                                                     0.996 3.58
              2008
              2009
                                                                            5.59
## 4 Caspar
                        -124.
                                  39.4
                                            NA
                                                      NA
                                                            NA
                                                                     NA
## 5 Caspar
              2010
                        -124.
                                  39.4
                                             4.37
                                                       4.17 0.0664
                                                                      0.586 0.348
                        -124.
                                  39.4
## 6 Caspar
              2011
                                            NA
                                                      NA
                                                            NA
                                                                     NA
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
```

### Plotting

Plot log of kelps density vs year for each site at different resolutions.

```
sites <- unique(kelp_data_300m$site_name)</pre>
kelp_longer_300m <- kelp_data_300m %>%
  select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
    names_to = c('.value', 'zone'),
    names_sep = '_
    ) %>%
  mutate(resolution = as.factor(300))
kelp_longer_900m <- kelp_data_900m %>%
  select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
    names_to = c('.value', 'zone'),
    names_sep = '_'
    ) %>%
  mutate(resolution = as.factor(900))
kelp_longer <- rbind(kelp_longer_300m, kelp_longer_900m)</pre>
for (i in sites) {
  plot <- kelp_longer %>%
    filter(site_name == i) %>%
    ggplot() +
    geom_pointrange(aes(
      x = year, y = mean, group = zone, color = zone,
      ymin = mean - se, ymax = mean + se
      ), alpha = 0.5, size = 0.3) +
    geom_bar(aes(x = year, y = fit,
                 fill = ifelse(!is.na(fit) & fit >= 6.6, 'YES', 'NO')),
             stat = 'identity', position = 'dodge', alpha = 0.2) +
    facet_grid(. ~ resolution) +
    theme_bw() +
    theme(axis.text.x = element_text(angle = 90, size = 8),
          plot.title = element text(hjust = 0.5),
```

```
panel.grid.major = element_blank(),
    legend.title = element_text(size = 9),
    legend.text = element_text(size = 7)) +
    labs(y = 'log of kelp density', title = i, fill = 'fit >= 6.6')
    print(plot)
}
```

## Caspar



















## Mendocino Headlands

































