Анализ данных

Семинар 4. Производные и градиентный спуск.

2 февраля 2016

Говорят, что на множестве X задана функция f, принимающая значения из Y, если каждому элементу x из множества X поставлен в соответствие некоторый элемент y из множества Y.

Функцию обозначают также следующими способами:

$$y = f(x); \quad f: X \to Y.$$

$$ullet$$
 $f(x)=x^3, X=\mathbb{R}$ (вещ. числа), $Y=\mathbb{R}$;

▶
$$f(x) = x^3, X = \mathbb{R}$$
 (вещ. числа), $Y = \mathbb{R}$;

•
$$f(x) = sin(x), X = \mathbb{R}, Y = [-1; 1];$$

- ▶ $f(x) = x^3, X = \mathbb{R}$ (вещ. числа), $Y = \mathbb{R}$;
- $f(x) = sin(x), X = \mathbb{R}, Y = [-1; 1];$
- $f(x,y)=sin(xy), X=\mathbb{R} imes\mathbb{R}=\mathbb{R}^2$ (пары вещ. чисел), Y=[-1;1];

- ▶ $f(x) = x^3, X = \mathbb{R}$ (вещ. числа), $Y = \mathbb{R}$;
- $f(x) = \sin(x), X = \mathbb{R}, Y = [-1; 1];$
- $f(x,y)=sin(xy), X=\mathbb{R} imes\mathbb{R}=\mathbb{R}^2$ (пары вещ. чисел), Y=[-1;1];
- ▶ моном *п*-ой степени:

$$f(x) = C * x^n, X = \mathbb{R}, Y = \mathbb{R}, C$$
 — константа;

Примеры математических функций:

- ▶ $f(x) = x^3, X = \mathbb{R}$ (вещ. числа), $Y = \mathbb{R}$;
- $f(x) = sin(x), X = \mathbb{R}, Y = [-1; 1];$
- $f(x,y)=sin(xy), X=\mathbb{R} imes\mathbb{R}=\mathbb{R}^2$ (пары вещ. чисел), Y=[-1;1];
- ▶ моном *п*-ой степени:

$$f(x) = C * x^n, X = \mathbb{R}, Y = \mathbb{R}, C$$
 — константа;

полином *п*-ой степени:

$$f(x) = \frac{\alpha_n * x^n + \dots, +\alpha_1 * x + \alpha_0, X = \mathbb{R}, Y = \mathbb{R}, \alpha_i, i = \overline{0, n},$$
 — константы.

Примеры математических функций:

- ▶ $f(x) = x^3, X = \mathbb{R}$ (вещ. числа), $Y = \mathbb{R}$;
- $f(x) = sin(x), X = \mathbb{R}, Y = [-1; 1];$
- $f(x,y)=sin(xy), X=\mathbb{R} imes\mathbb{R}=\mathbb{R}^2$ (пары вещ. чисел), Y=[-1;1];
- ▶ моном *n*-ой степени:

$$f(x) = C * x^n, X = \mathbb{R}, Y = \mathbb{R}, C$$
 — константа;

полином *п*-ой степени:

$$f(x) = \alpha_n * x^n + \dots, +\alpha_1 * x + \alpha_0, X = \mathbb{R}, Y = \mathbb{R},$$
 $\alpha_i, i = \overline{0, n},$ — константы.

▶ и т.д.

Пусть в некоторой окрестности точки $x_0 \in \mathbb{R}$ определена функция f. Производной функции f в точке x_0 называется предел (если он существует)

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Смысл производной — наклон касательной к графику функции в данной точке.

Производная функции — это функция!

Если функция получена при помощи арифметических операций и композиции из более простых, её производная может быть найдена при помощи следующих правил:

- 1. (c * f(x))' = c * f'(x), c константа;
- 2. $(f(x) \pm g(x))' = f'(x) \pm g'(x);$
- 3. (f(x) * g(x))' = f'(x)g(x) + f(x)g'(x);
- 4. $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)};$
- 5. f(g(x)) = g'(x) * f'(g(x)).

Для большинства широко используемых функций производные известны и могут быть найдены в таблицах производных.

1.
$$C' = 0$$
;
2. $x' = 1$;
3. $(x^2)' = 2x$;
4. $(x^n)' = n \cdot x^{n-1}$;
5. $(a^x)' = a^x \cdot \ln a$;
5* $(e^x)' = e^x$;
6. $(\log_a x)' = \frac{1}{x \ln a}$;
6*. $(\ln x)' = \frac{1}{x}$;

9.
$$(tg x)' = \frac{1}{\cos^2 x}$$
;
10. $(ctg x)' = -\frac{1}{\sin^2 x}$;
11. $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$;
12. $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$;
13. $(arctg x)' = \frac{1}{1 + x^2}$;
14. $(arcctg x)' = -\frac{1}{1 + x^2}$.

7. $(\sin x)' = \cos x$; 8. $(\cos x)' = -\sin x$:

Частная производная — обощение понятия производная на случай функции нескольких переменных.

Частная производная функции $f(x_1,\ldots,x_n)$ по переменной x_k в точке (a_1,\ldots,a_n) — это предел

$$\frac{\partial f}{\partial x_k}(a_1,\cdots,a_n)=$$

$$= \lim_{\Delta x \to 0} \frac{f(a_1, \dots, a_k + \Delta x, \dots, a_n) - f(a_1, \dots, a_k, \dots, a_n)}{\Delta x}$$

 $rac{\partial f}{\partial x_k}$ — это обозначение, а не деление!

Градиентом функции $f(x_1, \dots, x_n)$ называется n-мерный вектор, составленный из частных производных

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right).$$

В каждой точке (a_1,\ldots,a_n) градиент функции принимает конкретное значение.

Кроме того, градиент — вектор, своим направлением указывающий направление наибольшего возрастания функции многих переменных.

Пусть у нас есть некоторая функция $f(x_1,\ldots,x_n)$. Наша цель — найти точку $x^*=(x_1^*,\ldots,x_n^*)$, в которой достигается её минимальное значение.

- Рассмотрим произвольную точку $a^{(0)}$. Значение градиента $\nabla f(a^{(0)})$ в этой точке направление наибольшего роста функции.
- ▶ Поэтому попробуем сдвинуться в ровно противоположном направлении (по вектору антиградиента) в новую точку $a^{(1)}$.
- ...И так до тех пор, пока не найдём точку, в которой любое направление движения будет бессмысленным.

Как далеко нужно «сдвигаться» на каждой итерации алгоритма?

- ▶ Пусть $a^{(i)}$ полученное на i-ой итерации приближение.
- Тогда положим

$$a^{(i+1)} = a^{(i)} - \alpha \nabla f(a^{(i)}).$$

Параметр α называется **темпом обучения**.

Когда нужно остановиться?

после определенного количества итераций;

Когда нужно остановиться?

- после определенного количества итераций;
- когда значение точки на соседних итерациях практически не меняется;

Когда нужно остановиться?

- после определенного количества итераций;
- когда значение точки на соседних итерациях практически не меняется;
- когда значение оптимизируемой функции на соседних итерациях практически не меняется;
- ▶ и т.д.

Тем не менее:

1. При неудачном выборе начального приближения метод градиентного спуска может найти локальный, а не глобальный оптимум.

Тем не менее:

- 1. При неудачном выборе начального приближения метод градиентного спуска может найти локальный, а не глобальный оптимум.
- 2. При неудачном выборе темпа обучения α метод может разойтись.

Зачем это нужно?

Напоминание:

- X пространство объектов,
 - Y пространство ответов,
 - X^{ℓ} обучающая выборка,
 - $a: X \to Y$ восстановленная по обучающей выборке зависимость.

Зачем это нужно?

Напоминание:

- ▶ X пространство объектов,
 - Y пространство ответов,
 - X^{ℓ} обучающая выборка,
 - $a: X \to Y$ восстановленная по обучающей выборке зависимость.
- $Q(a, X^{\ell})$ оптимизируемый функционал качества. Алгоритм a, как правило, характеризуется набором параметров $\alpha = (\alpha_1, \dots, \alpha_s)$.
 - Т.о., необходимо решить задачу: $Q(\alpha, X^\ell) o min_\alpha$.

Зачем это нужно?

Напоминание:

- lacktriangledown X пространство объектов, Y пространство ответов, X^{ℓ} обучающая выборка, a: X o Y восстановленная по обучающей выборке зависимость.
- $Q(a,X^\ell)$ оптимизируемый функционал качества. Алгоритм a, как правило, характеризуется набором параметров $\alpha=(\alpha_1,\dots,\alpha_s)$. Т.о., необходимо решить задачу: $Q(\alpha,X^\ell)\to min_\alpha$.
- В качестве метода оптимизации можно (иногда нет другого выхода) использовать итерационные методы оптимизации (в частности, метод градиентного спуска).

Пример: решаем задачу предсказания стоимости квартиры в зависимости от её площади.

Задача регрессии

Пример: решаем задачу предсказания стоимости квартиры в зависимости от её площади.

- Задача регрессии
- $lacksymbol{ iny} X^\ell = (x_i, y_i)_{i=1}^\ell$ пары (площадь, стоимость) для ℓ квартир.

Пример: решаем задачу предсказания стоимости квартиры в зависимости от её площади.

- Задача регрессии
- $igwedge X^\ell = (x_i, y_i)_{i=1}^\ell$ пары (площадь, стоимость) для ℓ квартир.
- Будем восстанавливать линейную зависимость, т.е. использовать модель: $a(x) = \alpha_1 x + \alpha_0$.

Пример: решаем задачу предсказания стоимости квартиры в зависимости от её площади.

- Задача регрессии
- $igwedge X^\ell = (x_i, y_i)_{i=1}^\ell$ пары (площадь, стоимость) для ℓ квартир.
- Будем восстанавливать линейную зависимость, т.е. использовать модель: $a(x) = \alpha_1 x + \alpha_0$.
- Будем оптимизировать среднеквадратичную ошибку:

$$Q(\alpha, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 = \frac{1}{\ell} \sum_{i=1}^{\ell} (\alpha_1 x_i + \alpha_0 - y_i)^2 \rightarrow \textit{min}_{\alpha_0, \alpha_1}$$

Пример: решаем задачу предсказания стоимости квартиры в зависимости от её площади.

- Задача регрессии
- $igwedge X^\ell = (x_i, y_i)_{i=1}^\ell$ пары (площадь, стоимость) для ℓ квартир.
- Будем восстанавливать линейную зависимость, т.е. использовать модель: $a(x) = \alpha_1 x + \alpha_0$.
- Будем оптимизировать среднеквадратичную ошибку:

$$Q(\alpha, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 = \frac{1}{\ell} \sum_{i=1}^{\ell} (\alpha_1 x_i + \alpha_0 - y_i)^2 \rightarrow \textit{min}_{\alpha_0, \alpha_1}$$

▶ Можем выписать градиент функции Q по переменным α и применить метод градиентного спуска.