1

NCERT Discrete-10.5.3-7

EE22BTECH11004 - Allu Lohith

1) Find the sum of the first 22 terms of an AP in which d = 7 and the 22nd term is 149. **Solution:**

Parameter	Description	Value	Formulae
f	Frequency of sound	1000 <i>KHz</i>	
v_a	Speed of sound in air	340 <i>ms</i> ⁻¹	
V_{w}	Speed of sound in water	1486ms ⁻¹	
λ_a	Wavelength of sound wave in air	-	v _a /f
λ_w	Wavelength of sound wave in water	-	v_w/f
K_a	Wavenumber of sound wave in air	-	$\lambda_a/2\pi$
K_w	Wavenumber of sound wave in water	-	$\lambda_w/2\pi$

TABLE 1 PARAMETERS

Now, the 22^{nd} term means x(21), so

$$x(21) = x(0) + nd (1)$$

$$149 = x(0) + 21(7) \tag{2}$$

$$x(0) = 2 \tag{3}$$

The general term is x(n) = 2 + 7n The z

transform of the general term is

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
 (4)

$$= \frac{2}{1 - z^{-1}} + \frac{7z^{-1}}{\left(1 - z^{-1}\right)^2} \tag{5}$$

$$=\frac{2+5z^{-1}}{(1-z^{-1})^2};\quad (z^{-1})\neq 1 \qquad (6)$$

(7)

On convolution for finding the sum

$$y(n) = x(n) * u(n)$$
 (8)

On z-transform,

$$Y(z) = X(z) \cdot U(z) \tag{9}$$

$$= \left(\frac{2 + 5z^{-1}}{(1 - z^{-1})^2}\right) \cdot \frac{1}{1 - z^{-1}} \tag{10}$$

$$\implies Y(z) = \frac{2 + 5z^{-1}}{(1 - z^{-1})^3}; \quad (z^{-1}) \neq 1 \quad (11)$$

(12)

Using Contour integration to find the inverse z-transform,

$$Y(z) = \oint_C y(z) \cdot z^{n-1} dz \tag{13}$$

$$Y(21) = \oint_{c} \frac{2 + 5z^{-1}}{(1 - z^{-1})^{3}} \cdot z^{20} dz$$
 (14)

We can observe there are three poles and thus m = 3,

$$R = \frac{1}{(n-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
(1)

$$= \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{2 + 5z^{-1}}{(1 - z^{-1})^3} \cdot (z^{20}) \right)$$
(16)

$$=\frac{1}{2}(1012+2310)\tag{17}$$

$$\implies R = 1661 \tag{18}$$

Parameter	Description	Formula	value
λ_a	Wave length of the reflected sound	v _a /f	0.34 <i>mm</i>
λ_w	Wave length of the reflected sound	v_w/f	1.486mm
K_w	Wavenumber of sound wave in air	$\lambda_a/2\pi$	$54 \times 10^{-6} m^{-1}$
K _a	Wavenumber of sound wave in water	$\lambda_w/2\pi$	$236 \times 10^{-6} m^{-1}$

TABLE 1 RESULTS

Fig. 1. Sum of terms