DS 1

Durée 3h

- Les calculatrices sont <u>interdites</u> durant les cours, TD et *a fortiori* durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amenés à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1. Résoudre pour $x \in \mathbb{R}$ l'inéquation

$$\frac{1}{x+1} \le \frac{x}{x+2}. \quad (I)$$

Ecrire un script Python, qui demande à l'utilisateur un nombre flottant x et qui affiche True si x vérifie l'inéquation (I) et False sinon.

Exercice 2. Soit f la fonction définie par :

$$f: x \mapsto \frac{e^{2x} - 1}{e^{2x} + 1}$$

- 1. Etudier la parité de f.
- 2. Donner les limites de f en $+\infty$ et $-\infty$.
- 3. Dresser le tableau de variations de f

Exercice 3. On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left[2x - \sqrt{5x - 1}\right] = 0 \qquad (E)$$

- 1. Déterminer le domaine de définition de (E).
- 2. Dire si les réels suivants sont solutions ou non de (E)

$$x_1 = \frac{1}{5}, x_2 = \frac{1}{2}, x_3 = 1, x_4 = 12$$

- 3. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 4. Montrer que résoudre (E) est équivalent à résoudre le système :

$$\begin{cases} \sqrt{5x-1} > 2x-1 & (E_1) \\ \sqrt{5x-1} \le 2x & (E_2) \end{cases}$$

- 5. Résoudre les deux inéquations obtenues à la question précédente.
- 6. Résoudre (E).

Exercice 4. On considère les nombres réels $\alpha = \sqrt[3]{2 + \sqrt{5}}$ et $\beta = \sqrt[3]{2 - \sqrt{5}}$. On rappelle que pour tout réel y on note $\sqrt[3]{y}$ l'unique solution de l'équation $x^3 = y$ d'inconnue x.

Le but de l'exercice est de donner des expressions simplifiées de α et β .

- 1. Ecrire un script Python qui permet d'afficher une valeur approchée de α .
- 2. (a) Calculer $\alpha\beta$ et $\alpha^3 + \beta^3$.
 - (b) Vérifier que $\forall (a,b) \in \mathbb{R}^2$, $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.
 - (c) En déduire que $(\alpha + \beta)^3 = 4 3(\alpha + \beta)$
- 3. On pose $u = \alpha + \beta$ et on considère la fonction polynomiale $P: x \mapsto x^3 + 3x 4$.
 - (a) A l'aide de la question précédente montrer que u est une racine de P c'est-àdire que P(u)=0.
 - (b) Trouver une autre racine « évidente » de P.
 - (c) Trouver trois nombres réels a, b, et c tels que $\forall x \in \mathbb{R}, P(x) = (x-1)(ax^2 + bx + c)$
 - (d) Résoudre l'équation P(x) = 0 pour $x \in \mathbb{R}$.
 - (e) En déduire la valeur de u.
- 4. On considère la fonction polynomiale $Q: x \mapsto Q(x) = (x \alpha)(x \beta)$
 - (a) A l'aide des questions précédentes, développer et simplifier Q(x) pour tout nombre réel x.
 - (b) En déduire des expressions plus simples de α et β .