Artem Maevskiy

Linear Regression

Analytical solution, gradient descent, feature expansion

2021

Why study linear models?

Linear models in a nutshell

Regression:

$$\hat{f}(x) = \theta^{\mathrm{T}} x$$

Classification:

$$\hat{f}(x) = \mathbb{I}[\theta^{\mathsf{T}} x > 0]$$

Outputs linear in inputs

Linear models in a nutshell

Regression:

Classification:

$$\hat{f}(x) = \mathbb{I}[\theta^{\mathsf{T}} x > 0]$$

Outputs linear in inputs

Linear models in a nutshell

Regression:

Classification:

Outputs linear in inputs

The hidden power

► Linearly inseparable → separable by transforming the features

The hidden power

► Linearly inseparable → separable by transforming the features

Building block for deep models

Neural network

Better intuition for deep neural networks training

Linear Regression

Linear Regression model

Mean squared error (MSE):

$$\frac{1}{N} \sum_{i=1...N} \left(y_i - \hat{f}_{\theta}(x_i) \right)^2$$

Mean squared error (MSE):

$$\frac{1}{N} \sum_{i=1...N} \left(y_i - \hat{f}_{\theta}(x_i) \right)^2$$

Mean absolute error (MAE):

$$\frac{1}{N} \sum_{i=1\dots N} |y_i - \hat{f}_{\theta}(x_i)|$$

Mean squared error (MSE):

$$\frac{1}{N} \sum_{i=1...N} \left(y_i - \hat{f}_{\theta}(x_i) \right)^2$$

Mean absolute error (MAE):

$$\frac{1}{N} \sum_{i=1\dots N} \left| y_i - \hat{f}_{\theta}(x_i) \right|$$

Mean absolute percentage error (MAPE):

$$\frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{f}_{\theta}(x_i)}{y_i} \right|$$

Mean squared logarithmic error (MSLE):

$$\frac{1}{N} \sum_{i=1,...,N} (\log(y_i + 1) - \log(\hat{f}_{\theta}(x_i) + 1))^2$$

Mean squared error (MSE):

$$\frac{1}{N} \sum_{i=1\dots N} \left(y_i - \hat{f}_{\theta}(x_i) \right)^2$$

Mean absolute error (MAE):

$$\frac{1}{N} \sum_{i=1\dots N} \left| y_i - \hat{f}_{\theta}(x_i) \right|$$

Mean absolute percentage error (MAPE):

$$\frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{f}_{\theta}(x_i)}{y_i} \right|$$

Mean squared logarithmic error (MSLE):

$$\frac{1}{N} \sum_{i=1...N} (\log(y_i + 1) - \log(\hat{f}_{\theta}(x_i) + 1))^2$$

 Different loss functions also are related to different assumptions about the data

Recall the design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix}$$
 objects

Recall the design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix}$$
 objects

We can use it to rewrite the MSE loss:

$$\mathcal{L}_{MSE} = \frac{1}{N} \sum_{i=1...N} (y_i - \theta^T x_i)^2 = \frac{1}{N} ||y - X\theta||^2$$

$$y = (y_1, y_2, ..., y_N)^T - \text{vector of targets}$$

$$\mathcal{L}_{\mathsf{MSE}} \sim \|y - X\theta\|^2 \rightarrow \min_{\theta}$$

$$\begin{cases} \frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} = 0\\ \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \mathcal{L}_{\text{MSE}} > 0 \text{ (pos. def.)} \end{cases}$$

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{\text{T}} (y - X\theta)$$

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{MSE} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{T} (y - X\theta) = -2X^{T} (y - X\theta) = 0$$

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{MSE} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{T} (y - X\theta) = -2X^{T} (y - X\theta) = 0$$
$$X^{T} y - X^{T} X\theta = 0$$

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{MSE} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{T} (y - X\theta) = -2X^{T} (y - X\theta) = 0$$

$$X^{\mathrm{T}}y - X^{\mathrm{T}}X\theta = 0$$

Solution:

$$\theta = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}y$$

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{MSE} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{T} (y - X\theta) = -2X^{T} (y - X\theta) = 0$$

$$X^{\mathrm{T}}y - X^{\mathrm{T}}X\theta = 0$$

Solution:

$$\theta = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Note that this matrix needs to be invertible

^{*}some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix calculus#Identities

2nd derivative:

$$\frac{\partial^2}{\partial\theta\partial\theta^{\mathrm{T}}}\mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}}X$$

2nd derivative:

$$\frac{\partial^2}{\partial\theta\partial\theta^{\mathrm{T}}}\mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}}X$$

► This needs to be **positive definite**

2nd derivative:

For some non-zero vector v:

 $\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$

$$v^{\mathrm{T}}X^{\mathrm{T}}Xv = (Xv)^{\mathrm{T}}(Xv) = \|Xv\|^2 \ge 0$$

► This needs to be **positive definite**

2nd derivative:

$$\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$$

For some non-zero vector v:

$$v^{\mathrm{T}}X^{\mathrm{T}}Xv = (Xv)^{\mathrm{T}}(Xv) = \|Xv\|^2 \ge 0$$

 $\neq 0$
when columns of X are
linearly independent

This needs to be positive definite

2nd derivative:

$$\frac{\partial^2}{\partial\theta\partial\theta^{\mathrm{T}}}\mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}}X$$

For some non-zero vector v:

$$v^{\mathrm{T}}X^{\mathrm{T}}Xv = (Xv)^{\mathrm{T}}(Xv) = \|Xv\|^2 \ge 0$$

 $\neq 0$
when columns of X are
linearly independent

- This needs to be positive definite
- ► True when all the features (columns of the design matrix) are linearly independent

2nd derivative:

$$\frac{\partial^2}{\partial\theta\partial\theta^{\mathrm{T}}}\mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}}X$$

For some non-zero vector v:

$$v^{\mathrm{T}}X^{\mathrm{T}}Xv = (Xv)^{\mathrm{T}}(Xv) = \|Xv\|^2 \ge 0$$

 $\neq 0$
when columns of X are
linearly independent

- This needs to be positive definite
- ► True when all the features (columns of the design matrix) are linearly independent
- ightharpoonup This also makes X^TX invertible

Feature correlations matter!

MSE level maps

Bias term

a.k.a. intercept term

$$\hat{f}_{\theta}(x) = \theta^{T}x + \theta_{0}$$

$$\theta \in \mathbb{R}^{d}$$

$$\theta_{0} \in \mathbb{R}$$

$$x \in \mathcal{X} \subset \mathbb{R}^{d}$$

No need to redo the math – just add a constant feature to the design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \longrightarrow X = \begin{bmatrix} 1 & x_1^1 & x_1^2 & \cdots & x_1^d \\ 1 & x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix}$$

Numerical & Stochasic Optimization

Gradient

- ► Gradient: $\nabla_x f(x) \equiv \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_d}\right)$
- Points towards steepest function increase

Gradient Descent Optimization

Can optimize functions starting at some initial point $x^{(0)}$ and moving opposite to the gradient:

$$x^{(k)} \leftarrow x^{(k-1)} - \alpha \nabla_x f(x^{(k-1)})$$
 with $\alpha \in \mathbb{R}$, $\alpha > 0$ – learning rate.

For smooth **convex** functions with a single minimum x^* :

$$f(x^{(k)}) - f(x^*) = \mathcal{O}\left(\frac{1}{k}\right)$$

Gradient descent for non-convex functions

- May get to a minimum which is not global
- Result depends on the starting point

Gradient descent as means for regularisation

- Large parameter values typically mean overfitting
- You may avoid this problem by initializing parameters with small values and early stopping the gradient descent

Stochastic Gradient Descent (SGD)

In machine learning we optimize loss functions which are typically averages over objects:

$$L = \frac{1}{N} \sum_{i=1...N} \mathcal{L}\left(y_i, \widehat{f_{\theta}}(x_i)\right)$$

Stochastic Gradient Descent (SGD)

In machine learning we optimize loss functions which are typically averages over objects:

$$L = \frac{1}{N} \sum_{i=1...N} \mathcal{L}\left(y_i, \widehat{f_{\theta}}(x_i)\right)$$

► For large *N*, gradient descent is computationally inefficient and may be unfeasible in terms of memory consumption

Stochastic Gradient Descent (SGD)

In machine learning we optimize loss functions which are typically averages over objects:

$$L = \frac{1}{N} \sum_{i=1...N} \mathcal{L}\left(y_i, \widehat{f_{\theta}}(x_i)\right)$$

- ► For large N, gradient descent is computationally inefficient and may be unfeasible in terms of memory consumption
- Aternative:
 - At each step k pick $l_k \in \{1, ..., N\}$ at random
 - Optimize: $\theta^{(k)} \leftarrow \theta^{(k-1)} \alpha \nabla_{\theta} \mathcal{L}\left(y_{l_k}, \widehat{f_{\theta}}(x_{l_k})\right) \bigg|_{\theta = \theta^{(k-1)}}$

Stochastic Gradient Descent (SGD)

Feature Expansion

Feature expansion

• One can perform **feature transformations** with any function $\Phi: \mathbb{R}^d \to \mathbb{R}^{d'}$

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \longrightarrow \Phi(X) = \begin{bmatrix} \Phi^1(x_1^1, \dots, x_1^d) & \cdots & \Phi^{d'}(x_1^1, \dots, x_1^d) \\ \Phi^1(x_2^1, \dots, x_2^d) & \cdots & \Phi^{d'}(x_2^1, \dots, x_2^d) \\ \vdots & \ddots & \vdots \\ \Phi^1(x_N^1, \dots, x_N^d) & \cdots & \Phi^{d'}(x_N^1, \dots, x_N^d) \end{bmatrix}$$

Feature expansion

▶ One can perform **feature transformations** with any function $\Phi: \mathbb{R}^d \to \mathbb{R}^{d'}$

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \longrightarrow \Phi(X) = \begin{bmatrix} \Phi^1(x_1^1, \dots, x_1^d) & \cdots & \Phi^{d'}(x_1^1, \dots, x_1^d) \\ \Phi^1(x_2^1, \dots, x_2^d) & \cdots & \Phi^{d'}(x_2^1, \dots, x_2^d) \\ \vdots & \ddots & \vdots \\ \Phi^1(x_N^1, \dots, x_N^d) & \cdots & \Phi^{d'}(x_N^1, \dots, x_N^d) \end{bmatrix}$$

- Finding the best function Φ is called feature engineering
 - It is an important part of machine learning and requires deep understanding of the underlying problem and the data

Example: polynomial features

Can't be solved with the only
 linear feature (x)

Example: polynomial features

Introducing another feature does the job:

$$(x_1, x_2) \equiv (x, x^2)$$

Now our estimate is:

$$\hat{f}(x) = \theta_1 x + \theta_2 x^2$$

Polynomial features of degree p (general case)

For the original features:

$$(x_i^1, x_i^2, \dots, x_i^d)$$

introduce all unique multiplicative combinations of the form:

$$(x_i^{k_1})^{p_1} \cdot (x_i^{k_2})^{p_2} \cdot \dots \cdot (x_i^{k_m})^{p_m}$$

with
$$p_1 + p_2 + ... + p_m \le p$$

Example: degree 3 polynomial features

For the original features (a, b, c):

 $(1, a, b, c, a^2, ab, ac, b^2, bc, c^2, a^3, a^2b, a^2c, ab^2, abc, ac^2, b^3, b^2c, bc^2, c^3)$

Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- ► Linear Regression with MSE loss allows for **analytical solution**

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution
- The stability of the solution depends on the feature correlations

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- ► Linear Regression with MSE loss allows for **analytical solution**
- The stability of the solution depends on the feature correlations
- Linear models can be optimized with gradient descent and stochastic gradient descent
 - In some cases this can regularize the solution

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- ► Linear Regression with MSE loss allows for **analytical solution**
- The stability of the solution depends on the feature correlations
- Linear models can be optimized with gradient descent and stochastic gradient descent
 - In some cases this can regularize the solution
- Feature transformations allow for very powerful use of the linear models

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution
- The stability of the solution depends on the feature correlations
- Linear models can be optimized with gradient descent and stochastic gradient descent
 - In some cases this can regularize the solution
- Feature transformations allow for very powerful use of the linear models
- ► Food for thought: how does polynomial feature expansion affect the complexity of the model?

Thank you!

Artem Maevskiy