

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA **FACULTAD DE INGENIERÍA** LABORATORIO DE HIDRÁULICA CANALES

FORMATO 5. ENERGÍA ESPECÍFICA EN UN CANAL ABIERTO

Grupo:	
Equipo #:	
Fecha:	
Maestro:	
Calificación:	

Integrantes	Matricula		

Datos de la sección	
Profundidad hidráulica (d ₁):	m
Profundidad hidráulica (d ₂) :	m
Longitud entre sección (L):	m
Carga de posición (Z ₁):	m
Carga de posición (Z ₂):	m
Ángulo de inclinación (0) :	0
Área total sección ($oldsymbol{A_1}$):	m²
Área total sección (A_2):	m²
Gasto total sección (Q):	m³/s
Velocidad ($oldsymbol{V_1}$):	m/s
Velocidad (V ₂):	m/s

Calculos de energía específica	
Carga de presión (\mathbf{Y}_1):	m
Carga de presión (Y ₂) :	m
Carga de velocidad (V ₁ ² /2g):	m
Carga de velocidad (V ₂ ²/2g):	m
Coeficiente de energía (α):	-
Energía específica (E ₁):	m
Energía específica (E 2):	m
Pérdidas de energía (ΔE):	m
Pendiente fondo canal (So):	m/m
Superficie de agua (Sw):	m/m
Línea de energía (Sf):	m/m

Formulas

$$Z_1 + d_1 \cos \theta + \alpha \frac{V_1^2}{2g} = Z_2 + d_2 \cos \theta + \alpha \frac{V_2^2}{2g} + \Delta E$$

$$\alpha = 1 + 3\varepsilon^2 - 2\varepsilon^3 \qquad \varepsilon = \frac{V_{m\acute{a}x}}{V_{media}} - 1$$

Conclusión:			