

Orchestrating Docker containers at scale

Maciej Lasyk Jesień Linuksowa 2014 Szczyrk, 2014-11-09

Join Fedora Infrastructure!

- learn Ansible
- learn Docker with Fedora Dockerfiles

http://fedoraproject.org/en/join-fedora

Agenda

- Why use Docker?
- Brief history of envs evolution
- Docker what is it?
- To PaaS or not to PaaS
- Orchestration at scale

- How many of you...

- How many of you...
 - Knows what Docker is?

- How many of you...
 - Knows what Docker is?
 - Played with Docker?

- How many of you...
 - Knows what Docker is?
 - Played with Docker?
 - Runs it on production?

With Docker we can solve many problems

- "it works on my machine"

- "it works on my machine"
- reducing build & deploy time

- "it works on my machine"
- reducing build & deploy time
- Infrastructure configuration spaghetti automation!

- "it works on my machine"
- reducing build & deploy time
- Infrastructure configuration spaghetti automation!
- Libs dependency hell

- "it works on my machine"
- reducing build & deploy time
- Infrastructure configuration spaghetti automation!
- Libs dependency hell
- Cost control and granularity

- classical approach (for & scp/ssh & conf.d)

- classical approach (for & scp/ssh & conf.d)
- configuration management

- classical approach (for & scp/ssh & conf.d)
- configuration management
- Bare vs IaaS vs PaaS

- classical approach (for & scp/ssh & conf.d)
- configuration management
- Bare vs laaS vs PaaS
- Continuous Integration

- classical approach (for & scp/ssh & conf.d)
- configuration management
- Bare vs laaS vs PaaS
- Continuous Integration
- So when to use Docker?

"automates the deployment of any application as a lightweight, portable, self-sufficient container that will run virtually anywhere"

Java's promise: Write Once. Run Anywhere.

Java's promise: Write Once. Run Anywhere.

Even on Windows now!

https://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/

Docker is lightweight

Docker is lightweight

Package	======= Arch 	======================================	Repository	======= Size
Installing: docker-io	×86_64	1.3.0-1.fc20	updates	4.3 M

VMs vs. Containers

- LXC & libcontainer

- LXC & libcontainer
- control groups

- LXC & libcontainer
- control groups
- kernel namespaces

- LXC & libcontainer
- control groups
- kernel namespaces
- layered filesystem
 - btrfs
 - devmapper thin provisioning & loopback mounts
 - no more AUFS
 - http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/

- images
 - read only
 - act as templates

- images
 - read only
 - act as templates
- Dockerfile
 - like a makefile
 - commands order & cache'ing
 - extends the base image
 - results in a new image

- images
 - read only
 - act as templates
- Dockerfile
 - like a makefile
 - commands order & cache'ing
 - extends the base image
 - results in a new image
- Containers: instances running apps

- images
 - read only
 - act as templates
- Dockerfile
 - like a makefile
 - commands order & cache'ing
 - extends the base image
 - results in a new image
- Containers: instances running apps

dockerfile + base image = docker container

Dockerfile

FROM fedora MAINTAINER scollier < scollier@redhat.com>

RUN yum -y update && yum clean all RUN yum -y install nginx && yum clean all RUN echo "daemon off;" >> /etc/nginx/nginx.conf RUN echo "nginx on Fedora" > /srv/www/index.html

EXPOSE 80

CMD ["/usr/sbin/nginx"]

Docker - registry

Docker - registry

- git like semantics
- pull, push, commit
- private and public registry
- https://github.com/dotcloud/docker-registry
- yum install docker-registry

- \$ docker pull
- \$ docker push
- \$ docker commit

Docker - images hierarchy

base image

- -> child image
 - -> grandchild image

Docker - images hierarchy

base image

-> child image

-> grandchild image

Git's promise: Tiny footprint with lightning fast performance

Docker - images hierarchy

Docker - security

- Isolation via kernel namespaces
- Additional layer of security: SELinux / AppArmor / GRSEC
- Each container gets own network stack
- control groups for resources limiting

```
f20 policy: https://git.fedorahosted.org/cgit/selinux-policy.git/tree/docker.te?h=f20-contrib
What's there?
seinfo -t -x | grep docker
sesearch -A -s docker_t (and the rest)
or just unpack docker.pp with semodule_unpackage
```

Docker – use cases

Sample Docker Workflow

Docker – use cases

Continuous Integration

- local dev
 - with Docker it's easy to standardize envs
- deployment
 - rolling updates (e.g. w/Ansible)
- testing
 - unit testing of any commit on dedicated env
 - don't worry about cleaning up after testing
 - parrarelized tests across any machines

Docker – use cases

- version control system for apps
- microservices
 - Docker embraces granularity
 - Services can be deployed independently and faster
 - parallelized tests across any machines
- continuous delivery
- PaaS

Docker - history

- 2013-01: dotCloud worked on own PaaS (Python based)
- 2013-03: Docker went public (AUFS, LXC)
- middle 2013: Red Hat joined, devmapper, SELinux
- late 2013: removed LXC, rewritten in Go
- 2014-02: stable 1.0

Docker - popularity

Docker - popularity

This might be a little problem

	Big Data	Cloud Platform	laaS	Data Center OS	Docker OS	Docker Mgmt.	PaaS	Orch. Config Mgmt.
Ansible & Docker								х
Amazon EC2 & Docker		x						
Apache Brooklyn & Docker								х
Apache Hadoop & Docker	x							
Apache Storm & Docker	x							
AppScale & Docker							X	
Atomic Hosts & Docker					х			
Chef & Docker								x
Clocker & Docker								x
Cloud Foundry & Docker	x						X	
CloudStack & Docker			х					
CoreOS & Docker					x			
Deis & Docker							X	
Decker & Docker							X	
Docker & Docker			x		X	x	X	X
Dokku & Docker							X	
Eucalyptus & Docker			x					
Flynn & Docker							X	
Google Compute Platform & Docker		X						
IBM Bluemix & Docker	x						X	
Kubernetes & Docker			x			x	X	x
Mesos, Mesosphere & Docker	x			x		x	X	x
Microsoft Azure & Docker		X						
OpenCamp & Docker		X	x			x	X	
OpenShift & Docker							X	
OpenStack & Docker			x					
Panamax & Docker						x		
Puppet & Docker								x
SaltStack & Docker							X	x
Shipyard & Docker						x		
Stackato & Docker							X	
Tsuru & Docker							X	
VMware & Docker			X					

http://www.cloudssky.com/en/blog/Docker-Is-Not-Enough

- you think PaaS will solve your problems?

- you think PaaS will solve your problems?
- it will rather clone them:)

- you think PaaS will solve your problems?
- it will rather clone them:)
- running PaaS might be easy

- you think PaaS will solve your problems?
- it will rather clone them:)
- running PaaS might be easy
- operating PaaS will be tough

- you think PaaS will solve your problems?
- it will rather clone them:)
- running PaaS might be easy
- operating PaaS will be tough
- so is operating your apps tough enough to move?

- you think PaaS will solve your problems?
- it will rather clone them:)
- running PaaS might be easy
- operating PaaS will be tough
- so is operating your apps tough enough to move?
- private PaaS or not?

- you think PaaS will solve your problems?
- it will rather clone them :)
- running PaaS might be easy
- operating PaaS will be tough
- so is operating your apps tough enough to move?
- private PaaS or not?
- Rainbow and Unicorn Piss:

http://blog.lusis.org/blog/2014/06/14/paas-for-realists/

- flynn.io
 - Open source PaaS (Go)
 - Uses Docker to manage containers
 - Git push deployment
 - https://flynn.io

- flynn.io
 - Open source PaaS (Go)
 - Uses Docker to manage containers
 - Git push deployment
 - https://flynn.io
- dokku
 - The smallest PaaS implementation you've ever seen
 - Less than 100 lines of Bash
 - Git push deployment
 - https://github.com/progrium/dokku

- flynn.io
 - Open source PaaS (Go)
 - Uses Docker to manage containers
 - Git push deployment
 - https://flynn.io
- dokku
 - The smallest PaaS implementation you've ever seen
 - Less than 100 lines of Bash
 - Git push deployment
 - https://github.com/progrium/dokku
- deis.io
 - Open source PaaS (Python)
 - Git push deployment
 - On top of CoreOS w/ Docker
 - http://deis.io/

Remember, that PaaS might fail; plan & test for disaster!

Docker & CLI

- \$ docker run -t -i fedora /bin/bash
- > yum -y update
- > yum -y install nginx
- \$ docker commit 73fa45674fd docent/fedora

Docker & CLI

Or via Dockerfile:

- \$ docker build -t fedora -rm.
- \$ docker run --name=nginx fedora

- http://www.fig.sh
- for single host env

- http://www.fig.sh
- for single host env

FROM python:2.7
ENV PYTHONUNBUFFERED 1
RUN mkdir /code
WORKDIR /code
ADD requirements.txt /code/
RUN pip install -r requirements.txt
ADD . /code/

```
db:
 image: postgres
web:
 build: .
 command: python manage.py
runserver 0.0.0.0:8000
 volumes:
  - /srv/app/code:/code
 ports:
  - "8000:8000"
 links:
  - db
```

- \$ fig run web django-admin.py startproject figexample.
- \$ fig up

Management during runtime?

\$ fig run web python manage.py syncdb

Docker & Ansible

Ansible + Docker

Vs

Docker + Ansible

Docker & Ansible

Ansible docker core module: http://docs.ansible.com/docker_module.html

```
- hosts: web
 sudo: yes
 tasks:
 - name: run tomcat servers
  docker: >
      image=centos
      command="service tomcat6 start"
      ports=8080
      count=5
      memory limit=128MB
      link=mysql
      expose=8080
      registry=...
      volume=...
```

Docker & Ansible

Building image with Ansible:

FROM ansible/centos7-ansible:stable
ADD ansible /srv/example/
WORKDIR /srv/example
RUN ansible-playbook web.yml -c local
EXPOSE 80
ENTRYPOINT ["/usr/sbin/nginx", "-DFOREGROUND"]

Docker & Ansible

Building image with Ansible:

```
FROM ansible/centos7-ansible:stable
ADD ansible /srv/example/
WORKDIR /srv/example
RUN ansible-playbook web.yml -c local
EXPOSE 80
ENTRYPOINT ["/usr/sbin/nginx", "-DFOREGROUND"]
ansible/web.yml:
- hosts: localhost
tasks:
- yum: pkg=nginx state=latest
- copy:
   src: web.conf
   dest: /etc/nginx/conf.d/web.conf
   group: "nginx"
   mode: "0644"
```

- Designed for massive server deployments
- Support Docker container out of the box
- Available on Linux, Mac, and Windows
- It's a Chrome OS fork
- Consists of couple of components:
 - SystemD not just a init system;)
 - Fleet cluster level manager & scheduler
 - etcd light & distributed key / value store
 - Docker the only packaging method in CoreOS

Fleet - cluster level manager & scheduler

etcd – light & distributed key / value store (used for configuration store)

Docker – the only packaging method in CoreOS

Cluster management with Fleet & SystemD

```
[Unit]
Description=My Service
After=docker.service
```

Cluster management with Fleet & SystemD

```
$ fleetctl load hello.service
Unit hello.service loaded on 8145ebb7.../10.10.1.3
$ fleetctl start hello.service
Unit hello.service launched on 8145ebb7.../10.10.1.3
$ fleetctl list-machines
MACHINE
                                    METADATA
148a18ff-6e95-4cd8-92da-c9de9bb90d5a 10.10.1.1
491586a6-508f-4583-a71d-bfc4d146e996 10.10.1.2
c9de9451-6a6f-1d80-b7e6-46e996bfc4d1 10.10.1.3
```

```
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
```

hello.service c9de9451.../10.10.1.3 active running

- scheduler
- HA
- dependencies

https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

Kubernetes

- https://github.com/GoogleCloudPlatform/kubernetes
- Advanced cluster manager (more than 1k hosts is a fit)
- Architecture:
 - master
 - minion
 - pod
 - replication controller
 - label

- automated service discovery and registration framework
- ideal for SOA architectures
- ideal for continuous integration & delivery
- solves "works on my machine" problem

- automated service discovery and registration framework
- ideal for SOA architectures
- ideal for continuous integration & delivery
- solves "works on my machine" problem

haproxy + nerve + synapse + zookeper = smartstack

Synapse

- discovery service (via zookeeper or etcd)
- installed on every node
- writes haproxy configuration
- application doesn't have to be aware of this
- works same on bare / VM / docker

Nerve

- health checks (pluggable)
- register service info to zookeper (or etcd)

Summary

Summary

w/ Docker Sky is the limit!

Freenode #docker Krk DevOPS meetups (http://www.meetup.com/Krakow-DevOps/) https://github.com/docker/docker

sources?

- docker.io documentation
- dockerbook.com
- slideshare!
- and some experience;)

Thank you:)

Orchestrating Docker containers at scale

Maciej Lasyk

Jesień Linuksowa 2014

2014-11-09, Szczyrk

http://maciej.lasyk.info

maciej@lasyk.info

@docent-net