Markov chain Monte Carlo

$$y_t = x_t \beta + \varepsilon_t$$

max. $f(y|eta) o \widehat{eta}$

$$y_t = x_t \beta + \varepsilon_t$$

$$y_t = x_t \beta + \varepsilon_t$$
$$\beta \sim N(\mu_{\beta}, \sigma_{\beta}^2)$$

$$y_t = x_t \beta + \varepsilon_t$$
$$\beta \sim N(\mu_{\beta}, \sigma_{\beta}^2)$$

Bayesian inference

$$\pi(eta|y) \propto f(y|eta) imes \pi(eta)$$
 posterior likelihood prior

max. $f(y|eta) o \widehat{eta}$

$$(\alpha, \beta)^{(i)} \sim \pi(\alpha, \beta|y)$$

$$(\alpha, \beta)^{(i)} \sim \pi(\alpha, \beta|y)$$

MCMC algorithm

- 1. Initialize $\alpha^{(0)}$, $\beta^{(0)}$
- 2. Sample $\alpha^{(1)} \sim \pi(\alpha | \beta^{(0)}, y)$
- 3. Sample $\beta^{(1)} \sim \pi(\beta | \alpha^{(1)}, y)$
- 4. Sample $\alpha^{(2)} \sim \pi(\alpha|\beta^{(1)}, y)$...

1. Initialize
$$\alpha^{(0)}$$
, $\beta^{(0)}$

2. Sample
$$\alpha^{(1)} \sim \pi(\alpha|\beta^{(0)}, y)$$

3. Sample
$$\beta^{(1)} \sim \pi(\beta | \alpha^{(1)}, y)$$

4. Sample
$$\alpha^{(2)} \sim \pi(\alpha|\beta^{(1)}, y)$$
 ...

$$\rightarrow (\alpha, \beta)^{(i)} \sim \pi(\alpha, \beta|y)$$

$$(\alpha, \beta, \gamma)^{(i)} \sim \pi(\alpha, \beta, \gamma|y)$$

- 1. Initialize α , β , γ
- 2. Sample $\alpha \sim \pi(\alpha|\beta, \gamma, y)$
- 3. Sample $\beta \sim \pi(\beta|\alpha,\gamma,y)$
- 4. Sample $\gamma \sim \pi(\gamma | \alpha, \beta, y)$
- 5. Go to 2.

1. Initialize
$$\alpha^{(0)}$$
, $\beta^{(0)}$

2. Sample
$$\alpha^{(1)} \sim \pi(\alpha|\beta^{(0)}, y)$$

3. Sample
$$\beta^{(1)} \sim \pi(\beta | \alpha^{(1)}, y)$$

4. Sample
$$\alpha^{(2)} \sim \pi(\alpha|\beta^{(1)}, y)$$
 ...

$$\rightarrow (\alpha, \beta)^{(i)} \sim \pi(\alpha, \beta|y)$$

Convergence

Markov chain

$$x_{t+1} = Px_t$$

Markov chain

$$x_{t+1} = Px_t$$

$$P = \Pr(x_{t+1}|x_t)$$

Markov chain

x = Px

stationary distribution