TRANSFORMASI LAPLACE : Sifat dan Penggunaannya

REFERENSI TAMBAHAN FUNDAMENTAL OF DIFFERENTIAL EQUATION DAN BOUNDARY VALUE PROBLEM

(NAGLE, SAFF, DAN SNIDER: ADDISON WESLEY 2012)

Bagaimana mengubah bentuk persamaan diferensial menjadi persamaan biasa???

t-Domain

(5) $x'(t) + \frac{3}{500}x(t) = g(t)$, x(0) = 30; $sX(s) - 30 + \frac{3}{500}X(s) = G(s)$

where G(s) is the Laplace transform of g(t). solution is simply

(6)
$$X(s) = \frac{30}{s + 3/500} + \frac{G(s)}{s + 3/500}$$
.

s-Domain

$$sX(s) - 30 + \frac{3}{500}X(s) = G(s)$$

Transformasi Laplace untuk solusi PD

TRANSFORMASI LAPLACE:

Laplace Transform

Definition 1. Let f(t) be a function on $[0, \infty)$. The **Laplace transform** of f is the function F defined by the integral

(1)
$$F(s) := \int_0^\infty e^{-st} f(t) dt .$$

The domain of F(s) is all the values of s for which the integral in (1) exists. The Laplace transform of f is denoted by both F and $\mathcal{L}\{f\}$.

Example 1 Determine the Laplace transform of the constant function $f(t) = 1, t \ge 0$.

Solution Using the definition of the transform, we compute

$$F(s) = \int_0^\infty e^{-st} \cdot 1 \, dt = \lim_{N \to \infty} \int_0^N e^{-st} dt$$
$$= \lim_{N \to \infty} \frac{-e^{-st}}{s} \Big|_{t=0}^{t=N} = \lim_{N \to \infty} \left[\frac{1}{s} - \frac{e^{-sN}}{s} \right].$$

Since $e^{-sN} \to 0$ when s > 0 is fixed and $N \to \infty$, we get

$$F(s) = \frac{1}{s} \quad \text{for} \quad s > 0 \ .$$

When $s \le 0$, the integral $\int_0^\infty e^{-st} dt$ diverges. (Why?) Hence F(s) = 1/s, with the domain of F(s) being all s > 0.

Example 2 Determine the Laplace transform of $f(t) = e^{at}$, where a is a constant.

Solution Using the definition of the transform,

$$F(s) = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{-(s-a)t} dt$$

$$= \lim_{N \to \infty} \int_0^N e^{-(s-a)t} dt = \lim_{N \to \infty} \frac{-e^{-(s-a)t}}{s-a} \Big|_0^N$$

$$= \lim_{N \to \infty} \left[\frac{1}{s-a} - \frac{e^{-(s-a)N}}{s-a} \right]$$

$$= \frac{1}{s-a} \quad \text{for} \quad s > a .$$

Again, if $s \le a$ the integral diverges, and hence the domain of F(s) is all s > a.

Example Determine the Laplace transform of

$$f(t) = \begin{cases} 2 , & 0 < t < 5 , \\ 0 , & 5 < t < 10 , \\ e^{4t} , & 10 < t . \end{cases}$$

Since f(t) is defined by a different formula on different intervals, we begin by breaking up the integral in (1) into three separate parts. Thus,

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= \int_{0}^{5} e^{-st} \cdot 2 dt + \int_{5}^{10} e^{-st} \cdot 0 dt + \int_{10}^{\infty} e^{-st} e^{4t} dt$$

$$= 2 \int_{0}^{5} e^{-st} dt + \lim_{N \to \infty} \int_{10}^{N} e^{-(s-4)t} dt$$

$$= \frac{2}{s} - \frac{2e^{-5s}}{s} + \lim_{N \to \infty} \left[\frac{e^{-10(s-4)}}{s-4} - \frac{e^{-(s-4)N}}{s-4} \right]$$

$$= \frac{2}{s} - \frac{2e^{-5s}}{s} + \frac{e^{-10(s-4)}}{s-4} \quad \text{for} \quad s > 4 . \quad \bullet$$

TABLE 7.1 Brief Table of Laplace Transforms

$$f(t) F(s) = \mathcal{L}\{f\}(s)$$

$$\frac{1}{s}, \qquad s > 0$$

$$e^{at}$$
 $\frac{1}{s-a}$, $s>a$

$$t^n$$
, $n = 1, 2, \dots$ $\frac{n!}{s^{n+1}}$, $s > 0$

$$\frac{b}{s^2 + b^2} , \qquad s > 0$$

$$\frac{s}{s^2 + b^2} , \qquad s > 0$$

$$e^{at}t^n$$
, $n = 1, 2, ...$ $\frac{n!}{(s-a)^{n+1}}$, $s > a$

$$e^{at}\sin bt \qquad \qquad \frac{b}{(s-a)^2+b^2} \;, \qquad s>a$$

$$e^{at}\cos bt \qquad \qquad \frac{s-a}{(s-a)^2+b^2} \;, \qquad s>a$$

Sifat-sifat Transformasi Laplace:

Linearity of the Transform

Theorem 1. Let f, f_1 , and f_2 be functions whose Laplace transforms exist for $s > \alpha$ and let c be a constant. Then, for $s > \alpha$,

$$\mathcal{L}\lbrace f_1 + f_2 \rbrace = \mathcal{L}\lbrace f_1 \rbrace + \mathcal{L}\lbrace f_2 \rbrace ,$$

(3)
$$\mathcal{L}\{cf\} = c\mathcal{L}\{f\} .$$

Conditions for Existence of the Transform

Theorem 2. If f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α , then $\mathcal{L}\{f\}(s)$ exists for $s > \alpha$.

Sifat-sifat Transformasi Laplace

Translation in S

Theorem 3. If the Laplace transform $\mathcal{L}\{f\}(s) = F(s)$ exists for $s > \alpha$, then

(1)
$$\mathscr{L}\left\{e^{at}f(t)\right\}(s) = F(s-a)$$

for $s > \alpha + a$.

Determine the Laplace transform of $e^{at} \sin bt$.

we found that

$$\mathcal{L}\{\sin bt\}(s) = F(s) = \frac{b}{s^2 + b^2}.$$

Thus, by the translation property of F(s), we have

$$\mathcal{L}\lbrace e^{at}\sin bt\rbrace(s) = F(s-a) = \frac{b}{(s-a)^2 + b^2} . \quad \blacklozenge$$

Sifat-sifat Transformasi Laplace:

Laplace Transform of the Derivative

Theorem 4. Let f(t) be continuous on $[0, \infty)$ and f'(t) be piecewise continuous on $[0, \infty)$, with both of exponential order α . Then, for $s > \alpha$,

(2)
$$\mathscr{L}\lbrace f'\rbrace(s) = s\mathscr{L}\lbrace f\rbrace(s) - f(0) .$$

Laplace Transform of Higher-Order Derivatives

Theorem 5. Let $f(t), f'(t), \ldots, f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be piecewise continuous on $[0, \infty)$, with all these functions of exponential order α . Then, for $s > \alpha$,

(4)
$$\mathscr{L}\left\{f^{(n)}\right\}(s) = s^n \mathscr{L}\left\{f\right\}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0) .$$

Using Theorem 4 and the fact that

$$\mathcal{L}\{\sin bt\}(s) = \frac{b}{s^2 + b^2} ,$$

determine $\mathcal{L}\{\cos bt\}$.

Let $f(t) := \sin bt$. Then f(0) = 0 and $f'(t) = b \cos bt$. Substituting into equation (2), we have

$$\mathcal{L}\lbrace f'\rbrace(s) = s\mathcal{L}\lbrace f\rbrace(s) - f(0) \ ,$$

$$\mathcal{L}\{b\cos bt\}(s) = s\mathcal{L}\{\sin bt\}(s) - 0,$$

$$b\mathscr{L}\{\cos bt\}(s) = \frac{sb}{s^2 + b^2} .$$

Dividing by b gives

$$\mathcal{L}\{\cos bt\}(s) = \frac{s}{s^2 + b^2} . \quad \bullet$$

Sifat-sifat Transformasi Laplace:

Derivatives of the Laplace Transform

Theorem 6. Let $F(s) = \mathcal{L}\{f\}(s)$ and assume f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α . Then, for $s > \alpha$,

(6)
$$\mathscr{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n \frac{d^n F}{ds^n}(s) .$$

Determine $\mathcal{L}\{t \sin bt\}$.

We already know that

$$\mathscr{L}\{\sin bt\}(s) = F(s) = \frac{b}{s^2 + b^2}.$$

Differentiating F(s), we obtain

$$\frac{dF}{ds}(s) = \frac{-2bs}{(s^2 + b^2)^2}$$
.

Hence, using formula (6), we have

$$\mathcal{L}\left\{t\sin bt\right\}(s) = -\frac{dF}{ds}(s) = \frac{2bs}{(s^2 + b^2)^2} . \quad \diamond$$

Tabel transformasi Laplace

NO	F(t)	$L{F(t)}=f(s)$	Syarat	Catatan
1.	1	1_	s >0	
		S		
2.		$\frac{1}{s^2}$	s >0	Fungsi Gamma:
	t		s > 0 dan n > -1	$\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dx$
	t ⁿ	$\frac{\Gamma(n+1)}{s^{n+1}} = \frac{n!}{s^{n+1}}$		$\Gamma(n+1)=n!$
	·	3 3		$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
3.	e ^{at}	$\frac{1}{s-a}$	s > a	a=konstanta sebarang
4.	Sin at	$\frac{a}{s^2 + a^2}$	s > 0	
5.	Cos at	$\frac{s}{s^2 + a^2}$	s > 0	
6.	Sinh at	$\frac{a}{s^2 - a^2}$	s > a	$\sinh t = \frac{e^t - e^{-t}}{2}$
7.	Cosh at	$\frac{s}{s^2 - a^2}$	s > a	$\cosh t = \frac{e^t + e^{-t}}{2}$