HW1

Xinwei Zhang xz2663 2/4/2018

P3

(a)

```
set.seed(1)
x = rnorm(100, mean=0, sd=1)
```

(b)

```
eps = rnorm(100, mean=0, sd=sqrt(0.25))
```

(c)

```
y = -1 + 0.5*x + eps
```

Length of y is 100. β_0 is -1, β_1 is 0.5.

(d)

plot(x,y) 0.5 0 0 0 0 0.0 0 0 -0.5 0 0 000 0 0 0 0 -2.5 0 -2 -1 1 2 0

Χ

There is a linear relationship between x and y with a slope of positive value and variance.

(e)

```
lm.fit = lm(y~x)
summary(lm.fit)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -0.93842 -0.30688 -0.06975 0.26970 1.17309
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.01885
                           0.04849 -21.010 < 2e-16 ***
                0.49947
                           0.05386
                                    9.273 4.58e-15 ***
## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4814 on 98 degrees of freedom
## Multiple R-squared: 0.4674, Adjusted R-squared: 0.4619
## F-statistic: 85.99 on 1 and 98 DF, p-value: 4.583e-15
```

The linear regression fits a model close to the true value of the coefficients as was constructed. The model has a large F-statistic and a near-zero p-value so the null hypothesis can be rejected.

(f)

```
plot(x,y)
abline(lm.fit, lwd=3, col=2)
abline(-1, 0.5, lwd=3, col=3)
legend(-1, legend = c("model fit", "pop. regression"), col=2:3, lwd=3)
```


(g)

```
lm.fit_sq = lm(y~x+I(x^2))
summary(lm.fit_sq)
##
## Call:
## lm(formula = y \sim x + I(x^2))
##
## Residuals:
##
                       Median
                                    3Q
       Min
                  1Q
                                            Max
  -0.98252 -0.31270 -0.06441 0.29014
                                        1.13500
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.97164
                           0.05883 -16.517
                                            < 2e-16 ***
## x
                0.50858
                           0.05399
                                     9.420
                                            2.4e-15 ***
## I(x^2)
               -0.05946
                           0.04238
                                    -1.403
                                              0.164
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.479 on 97 degrees of freedom
## Multiple R-squared: 0.4779, Adjusted R-squared: 0.4672
## F-statistic: 44.4 on 2 and 97 DF, p-value: 2.038e-14
```

There is evidence that this model fit increased given the slight increase in R^2 and decrease in RSE. Although, the p-value suggests that there isn't a relationship between y and x^2 .

(h)

```
set.seed(1)
eps1 = rnorm(100, 0, 0.125)
x1 = rnorm(100)
y1 = -1 + 0.5*x1 + eps1
plot(x1, y1)
lm.fit1 = lm(y1~x1)
summary(lm.fit1)
##
## Call:
## lm(formula = y1 ~ x1)
## Residuals:
       Min
                 1Q
                     Median
                                           Max
## -0.29052 -0.07545 0.00067 0.07288 0.28664
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.98639
                          0.01129 -87.34
                                            <2e-16 ***
## x1
               0.49988
                          0.01184
                                    42.22
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1128 on 98 degrees of freedom
## Multiple R-squared: 0.9479, Adjusted R-squared: 0.9474
## F-statistic: 1782 on 1 and 98 DF, p-value: < 2.2e-16
abline(lm.fit1, lwd=3, col=2)
abline(-1, 0.5, lwd=3, col=3)
legend(-1, legend = c("model fit", "pop. regression"), col=2:3, lwd=3)
```


Observed RSE decreased and R^2 increased.

(i)

```
set.seed(1)
eps2 = rnorm(100, 0, 0.8)
x2 = rnorm(100)
y2 = -1 + 0.5*x2 + eps2
plot(x2,y2)
lm.fit2 = lm(y2~x2)
summary(lm.fit2)
##
## Call:
## lm(formula = y2 ~ x2)
## Residuals:
       \mathtt{Min}
                 1Q Median
                                   3Q
                                           Max
## -1.85933 -0.48289 0.00429 0.46644 1.83453
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.91292
                        0.07228 -12.631 < 2e-16 ***
                          0.07578 6.588 2.23e-09 ***
              0.49925
## x2
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7222 on 98 degrees of freedom
## Multiple R-squared: 0.307, Adjusted R-squared: 0.2999
## F-statistic: 43.41 on 1 and 98 DF, p-value: 2.235e-09
abline(lm.fit2, lwd=3, col=2)
abline(-1, 0.5, lwd=3, col=3)
legend(-1, legend = c("model fit", "pop. regression"), col=2:3, lwd=3)
```


Observed RSE increased and R^2 decreased.

(j)

```
confint(lm.fit)
##
                    2.5 %
                              97.5 %
## (Intercept) -1.1150804 -0.9226122
                0.3925794 0.6063602
confint(lm.fit1)
##
                   2.5 %
                             97.5 %
## (Intercept) -1.008805 -0.9639819
                0.476387 0.5233799
confint(lm.fit2)
##
                    2.5 %
                              97.5 %
## (Intercept) -1.0563524 -0.7694842
                0.3488766 0.6496316
## x2
```

All intervals centered around 0.5. The interval of fit1 (less noisy) is narrower than that of fit (original). The interval of fit2 (noisier) is wider than that of fit (original).

P4

```
model_TV = lm(sales~TV, data=Advertising)
model_radio = lm(sales~radio, data=Advertising)
confint(model_newspaper, , 0.92)
##
                       4 %
                                  96 %
## (Intercept) 11.25788302 13.44493112
## newspaper
                0.02552451 0.08386169
confint(model_TV, , 0.92)
##
                      4 %
                                96 %
## (Intercept) 6.22691926 7.83826784
## TV
               0.04280193 0.05227135
confint(model_radio, , 0.92)
##
                     4 %
                               96 %
## (Intercept) 8.3210922 10.3021840
## radio
               0.1665776 0.2384139
plot(Advertising$newspaper,Advertising$sales, xlab = "newspaper", ylab = "sales",
     main = "sales versus newspaper")
abline(model_newspaper, lwd=3, col=2)
confint_newspaper = predict(model_newspaper, newspaper = data.frame(Advertising$newspaper),
                            interval = "confidence", level=0.92)
lines(Advertising$newspaper, confint_newspaper[,2], col="purple")
lines(Advertising$newspaper, confint_newspaper[,3], col="purple")
```

sales versus newspaper

sales versus TV

sales versus radio

P5

(a)

pairs(Auto)

(b)

```
cor(subset(Auto, select=-name))
```

```
##
                      mpg cylinders displacement horsepower
                                                               weight
                1.0000000 -0.7776175
                                      -0.8051269 -0.7784268 -0.8322442
## mpg
## cylinders
               -0.7776175 1.0000000
                                       ## displacement -0.8051269 0.9508233
                                       1.0000000 0.8972570 0.9329944
## horsepower
               -0.7784268 0.8429834
                                       0.8972570
                                                 1.0000000 0.8645377
## weight
               -0.8322442 0.8975273
                                       0.9329944 0.8645377
                                                            1.0000000
## acceleration 0.4233285 -0.5046834
                                      -0.5438005 -0.6891955 -0.4168392
## year
                0.5805410 -0.3456474
                                      -0.3698552 -0.4163615 -0.3091199
## origin
                0.5652088 -0.5689316
                                      -0.6145351 -0.4551715 -0.5850054
                                 year
##
               acceleration
                                          origin
## mpg
                 0.4233285 0.5805410 0.5652088
## cylinders
                 -0.5046834 -0.3456474 -0.5689316
## displacement
                 -0.5438005 -0.3698552 -0.6145351
## horsepower
                 -0.6891955 -0.4163615 -0.4551715
## weight
                 -0.4168392 -0.3091199 -0.5850054
## acceleration
                 1.0000000 0.2903161 0.2127458
## year
                  0.2903161 1.0000000 0.1815277
## origin
                 0.2127458 0.1815277 1.0000000
```

(c)

```
lm.fit1 = lm(mpg~.-name, data=Auto)
summary(lm.fit1)
```

```
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               -17.218435
                             4.644294
                                       -3.707 0.00024 ***
                 -0.493376
                             0.323282
                                       -1.526 0.12780
## cylinders
## displacement
                 0.019896
                             0.007515
                                        2.647
                                              0.00844 **
## horsepower
                 -0.016951
                             0.013787
                                       -1.230 0.21963
                 -0.006474
                                       -9.929 < 2e-16 ***
## weight
                             0.000652
## acceleration
                 0.080576
                             0.098845
                                        0.815
                                              0.41548
                  0.750773
                             0.050973
                                       14.729 < 2e-16 ***
## year
                  1.426141
                             0.278136
                                        5.127 4.67e-07 ***
## origin
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

(i)

There is a relationship between the predictors and the response by testing the null hypothesis of whether all the regression coeffcients are zero. F statistic is large with small p value, which is againest the null hypothesis.

(ii)

Displacement, weight, year and origin have significant relationship to the response.

(iii)

The coefficient for year, 0.750773, suggests that for every year, mpg increases by 0.750773. Cars become more fuel efficient every year.

(d)

```
lm.fit2 = lm(mpg~log(weight)+sqrt(horsepower)+I(acceleration^2), data=Auto)
summary(lm.fit2)
##
## Call:
  lm(formula = mpg ~ log(weight) + sqrt(horsepower) + I(acceleration^2),
##
##
       data = Auto)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                              Max
```

```
## -11.1438 -2.5491 -0.4078 2.1189 15.6233
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
                   166.362313 10.374037 16.036 < 2e-16 ***
## (Intercept)
## log(weight)
                   -16.219953 1.709524 -9.488 < 2e-16 ***
## sqrt(horsepower) -1.340211 0.332448 -4.031 6.68e-05 ***
## I(acceleration^2) -0.001329 0.003620 -0.367
                                                0.714
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.045 on 388 degrees of freedom
## Multiple R-squared: 0.7335, Adjusted R-squared: 0.7314
## F-statistic: 355.9 on 3 and 388 DF, p-value: < 2.2e-16
```

From p values, log(weight) and sqrt(horsepower) have significant relationship to mpg.