2. Sequences and Series

2.1 Sequences and limits & 2.2 Facts about limits of sequences

Given $f:D o\mathbb{R}$, we say f is bounded if there exists $B\in\mathbb{R}$ such that $|f(x)|\leq B$ for all $x\in D$ If $f:D o\mathbb{R}$ is bounded, we define $\sup_{x\in D}f(x):=\sup f(D)$, $\inf_{x\in D}f(x):=\inf f(D)$

A sequence (of real numbers) is a function $x:\mathbb{N} \to \mathbb{R}$.

- we write $x_n = x(n)$
- we denote the entire sequence by $\{x_n\}_{n=1}^\infty$, or $\{x_n\}$
- $\{x_n\}$ is bounded if there exists $B\in\mathbb{R}$ s.t. $|x_n|\le B$, $\forall n\le N$ Equivalently, if $\{x_n:n\le N\}$ is bounded as a set; if $x:N\to R$ is bounded as a function

A sequence $\{x_n\}$ converges to a number $L\in\mathbb{R}$ if

for all $\epsilon>0$, there exists $M\in\mathbb{N}$ such that $|x_n-L|<\epsilon$ for all $n\geq M$

Symbolically: x_n converges to L means $orall \epsilon>0$, $\exists M\in\mathbb{N}$: $orall n\geq M$, $|x_n-L|<\epsilon$

A sequence that converges is convergent, otherwise it is divergent.

We call L the limit of $\{x_n\}$ as $n \to \infty$, and write $\lim_{n \to \infty} = L$

Prop. A convergent sequence is bounded.

Cor. An unbounded sequence is divergent.

Note: bounded does not imply convergent e.g. $\{(-1)^n\}$ bounded divergent

Pf. Convergent
$$\Rightarrow$$
 for all $n \geq M$, $|x_n| = |x_n - L + L| \leq |x_n - L| + |L| < 1 + |L| = B$

Define $B_2 = \max\{|x_1|, |x_2|, ..., |x_{M-1}|\}$

Take $B = \max\{B_1, B_2\}$

Prop. The limit of a convergent sequence is unique.

Pf. "give yourself an ϵ of room" (pf: $\epsilon' = \frac{\epsilon}{2}$, tri inequality)

Prop. (Continuity of +, -, imes, \div 2.2.5) Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences.

1.
$$z_n=x_n\pm y_n$$
, then $\{z_n\}$ converges with limit (pf: $\epsilon'=rac{\epsilon}{2}$) $\lim_{n o\infty}(x_n\pm y_n)=\lim_{n o\infty}x_n\pm\lim_{n o\infty}y_n$

2.
$$z_n=x_ny_n$$
, then $\{z_n\}$ converges with limit (pf. $\epsilon'=\min\{rac{\epsilon}{3|x|},rac{\epsilon}{3|y|},rac{\epsilon}{3},1\}$) $\lim_{n o\infty}(x_ny_n)=(\lim_{n o\infty}x_n)(\lim_{n o\infty}y_n)$

3. If
$$y_n
eq 0$$
 for all n and $\lim_{n o \infty} y_n
eq 0$, $z_n = \frac{x_n}{y_n}$, then $\{z_n\}$ converges with limit $\lim_{n o \infty} (\frac{x_n}{y_n}) = \frac{\lim_{n o \infty} x_n}{\lim_{n o \infty} y_n}$

Prop. (limits preserve \leq , \geq 2.2.3) Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences.

If
$$x_n \leq y_n \ orall n \in \mathbb{N}$$
, then $\lim_{n o \infty} x_n \leq \lim_{n o \infty} y_n$. (pf: $\epsilon' = rac{\epsilon}{2}$)

A sequence $\{x_n\}$ is monotone increasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$.

 $(x_n < x_{n+1}$ — strictly monotone)

A sequence $\{x_n\}$ is monotone decreasing if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$.

Monotone Convergence Theorem (MCT). A monotone sequence $\{x_n\}$ is bounded \iff it is convergent.

monotone increasing and bounded: $\lim_{n o \infty} x_n = \sup\{x_n : n \in \mathbb{N}\}$

monotone decreasing and bounded: $\lim_{n o \infty} x_n = \inf\{x_n : n \in \mathbb{N}\}$

For a sequence $\{x_n\}$, we call a sequence $\{x_{n_i}\}$ a subsequence if $\{n_i\}$ s a strictly increasing sequence of natural numbers.

Prop. If $\{x_n\}$ is a convergent sequence, then every subsequence $\{x_{n_i}\}$ is also convergent, and $\lim_{n\to\infty}x_n=\lim_{i\to\infty}x_{n_i}$

For a sequence $\{x_n\}$, the K-tail of $\{x_n\}$ for $k\in\mathbb{N}$ is the subsequence

$$\{x_{n+k}\}_{n=1}^\infty$$
 or $\{x_n\}_{n=K+1}^\infty$.

Prop. (Tail control convergence) Given a sequence $\{x_n\}$, the following are equivalent:

- 1. $\{x_n\}$ converges.
- 2. $\{x_{n+k}\}_{n=1}^\infty$ converges for all $K\in\mathbb{N}$.
- 3. $\{x_{n+k}\}_{n=1}^\infty$ converges for some $K\in\mathbb{N}$.

If exists, $\lim_{n o \infty} x_n = \lim_{n o \infty} x_{n+K}$

Convergence Tests

Let c > 0.

- 1. If c<1, then $\{c^n\}$ converges and $\lim_{n\to\infty}c^n=0$. (pf. monotone+bounded)
- 2. If c>1, then $\{c^n\}$ is unbounded (hence divergent). (pf. using $\{\frac{1}{c^n}\}$)

Ratio test. Let $\{x_n\}$ be a sequence such that $x_n
eq 0$ for all n and the limit

$$L:=\lim_{n o\infty}rac{|x_{n+1}|}{|x_n|}$$
 exists.

- 1. If L < 1, then $\{x_n\}$ converges and $\lim x_n = 0$.
- 2. If L>1, then $\{x_n\}$ is unbounded (hence diverges).

Squeeze Lemma. Suppose $\{a_n\}$, $\{b_n\}$, $\{x_n\}$ satisfy $a_n \leq x_n \leq b_n \ \forall n \in \mathbb{N}$.

If $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$, then $\{x_n\}$ converges and

 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

2.3 Limit superior, limit inferior, and Bolzano-Weierstrass

 $\operatorname{\mathsf{Lim}}$ Sup/Inf. Let $\{x_n\}$ be a bounded sequence. Define

$$a_n = \sup\{x_k, k \ge n\}$$

$$b_n = \inf\{x_k, k \ge n\}$$

Define

 $\limsup_{n o\infty}x_n:=\lim_{n o\infty}a_n$

$$\liminf_{n o\infty}x_n:=\lim_{n o\infty}b_n$$

Prop.

- 1. $\{a_n\}$ is bounded monotone decreasing and $\{b_n\}$ is bounded monotone increasing, so $\limsup_{n\to\infty}x_n$ and $\liminf_{n\to\infty}x_n$ exist. (existence)
- 2. $\limsup_{n o \infty} x_n = \inf\{a_n : n \in \mathbb{N}\}$

$$\liminf_{n \to \infty} x_n = \sup\{b_n : n \in \mathbb{N}\}$$
 (formula)

3. $\liminf_{n \to \infty} x_n \leq \limsup_{n \to \infty} x_n$ (inequality)

Thm 2.3.4 (existence of convergent sequences) or Thm 2.3.8 (Bolzano-Weierstrass theorem) (first part).

Suppose $\{x_n\}$ is a bounded sequence (not necessarily convergent). Then there exists a convergent subsequence $\{x_{n_i}\}$ satisfying

$$\lim_{k o\infty}x_{n_k}=\limsup_{n o\infty}x_n$$

Similarly, there exists a (possibly different) subsequence $\{x_{n_i}\}$ satisfying

$$\lim_{k o\infty}x_{m_k}=\liminf_{n o\infty}x_n$$

Pf. Construct a subsequence inductively

Prop. (lim sup/inf convergence test)

Let $\{x_n\}$ be a bounded sequence. Then $\{x_n\}$ converges \iff

$$\liminf_{n o \infty} x_n = \limsup_{n o \infty} x_n$$

Furthermore, if so,

$$\lim_{n o\infty}x_n=\liminf_{n o\infty}x_n=\limsup_{n o\infty}x_n$$

Pf. \rightarrow : Bolzano–Weierstrass theorem; \leftarrow : $a_n \leq x_n \leq b_n$, squeeze lemma

2.4 Cauchy sequences

A sequence $\{x_n\}$ is a Cauchy sequences if for all $\epsilon>0$ there exists $M\in\mathbb{N}$ such that for all $n,k\geq M$, we have $|x_n-x_k|<\epsilon$.

(Cauchy conpleteness of \mathbb{R}) A sequence of real numbers is Cauchy \iff it converges.

Prop. Cauchy $_{ o}$ bounded ($\epsilon=1, B=\max\{|x_1|,...,|x_{M-1}|,1+|x_M|\}$)

Pf. Cauchy
$$\leftarrow$$
 convergent ($|x_n-L|<rac{\epsilon}{2} riangledown|x_n-x_k|\leq |x_n-L|+|x_k-L|<\epsilon$)

Cauchy \rightarrow convergent (bounded \rightarrow by thm 2.3.4, exists subsequences and let $a=\lim_{k\to\infty}x_{n_k}=\lim_{n\to\infty}\sup x_n,\,b=\lim_{k\to\infty}x_{m_k}=\lim_{n\to\infty}\sup x_n$

$$|x_n-x_k|<rac{\epsilon}{3},\,|x_{n_k}-a|<rac{\epsilon}{3},\,|x_{m_k}-b|<rac{\epsilon}{3}$$
 , $|a-b|<\epsilon$ $ightarrow a=b$ $ightarrow$ convergent)

2.5 Series

Given a sequence $\{x_n\}$, we write the "formal object"

$$\sum_{n=1}^{\infty} x_n$$
 or $\sum x_n$

and call it a series.

A series converges if the sequence of partial sums $\{s_k\}$

$$s_k = \sum_{n=1}^k x_n$$

converges. In this case, we write

$$\sum_{n=1}^{\infty} x_n = \lim_{k o \infty} s_k$$

If $\{s_k\}$ diverges, we say Σx_n diverges.

Prop. (Convergence of geometric series) Suppose -1 < r < 1, then the geometric series $\sum_{n=0}^{\infty} r^n$ converges, and $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$.