TD 2

September 9, 2024

Exercise 1

We want to model positions of fallen tree leaves on the ground.

Firstly, we assume that leaves are distributed uniformly inside a disk B_1 of radius 1 m. We denote (Z_1, Z_2) the 2-dimensional random variable corresponding to their coordinates.

- 1 Generate N=1000 samples of (X,Y) uniformly in $[-1,1]\times[-1,1]$ and plot them.
- 2 Use (X,Y) to generate N=100 samples of (Z_1,Z_2) and plot them.
- 3 What is $\mathbb{P}((X,Y) \in B_1)$? How can we use that to get an approximated value of π ?
- 4 Plot a horizontal line of height π and its approximation with n from 10 to 500.

Consider $(X_1, Y_1), \ldots, (X_n, Y_n)$ independent variables following the same distribution as (X, Y) and $C_i = 1$ if $(X_i, Y_i) \in B_1$ and $C_i = 0$ otherwise. $\overline{C_n} = \frac{1}{n} \sum_{i=1}^n C_i$.

- 5 What is the distribution of C_i ? Distribution of $\sum_{i=1}^n C_i$?
- 6 Compute and plot these discrete probabilities for n = 10, n = 100 and n = 1000. (Use scipy.special.binom for binomial coefficients and barplot for plots.)
- 7 What is $\mathbb{P}(a \leq \overline{C_n} \leq b)$?
- 8 What would be an exact symmetric confidence interval for $\mathbb{E}[C_i]$ of level $1-\alpha$? Define a Python function that computes it depending on α and n.
- 9 From which Gaussian distribution these barplots get closer while n gets big? Add the corresponding Gaussian curve to each of your previous barplots.
- What would be an asymptotic symmetric confidence interval? Define a Python function that computes it and compare results.

Now assume leaves are more likely to fall close to the tree in such a way that $(Z_1, Z_2) \sim \mathcal{N}((0,0), I_2)$

- 11 What is the distribution of (Z_1^2, Z_2^2) and $Z_1^2 + Z_2^2$?
- **12 Deduce** $\mathbb{P}((Z_1, Z_2) \in B_1)$.
- 13 How can we approximate π using samples from Z_1 or Z_2 random variables? Finally assume that $\sigma_1^2 = \text{Var}(Z_1)$ and $\sigma_2^2 = \text{Var}(Z_2)$ are unknown (while being still independent and centered).
- Write a Python function that returns estimators of these parameters with associated confidence intervals?