Algebre Lineaire I

David Wiedemann

Table des matières

1	Le l	language des Ensembles	9
	1.1	Notations	9
	1.2	Ensembles	10
		1.2.1 Exemples	10
	1.3	Sous-Ensembles	10
	1.4	$\mathcal{P}(E)$ l'ensemble des sous-ensembles $\ \ldots \ \ldots \ \ldots \ \ldots$	10
		1.4.1 Exercice	11
	1.5	Operations sur les ensembles	11
	1.6	\times : Produit cartesien	11
	1.7	Applications entre ensembles	11
		1.7.1 Graphe	12
	1.8	Composition/Associativite	12
		1.8.1 Associativite	13
	1.9	Image,Preimage	13
	1.10	Relation de composition par les applications reciproques	16
2	Gro	oupes	18
	2.1	Le groupe Symmetrique	18
3	Sou	s-Groupe	22
	3.1	Groupe engendre par un ensemble	23
	3.2	Morphismes de Groupes	25
4	Noy	vau et Image	29
5	Anı	neaux	33
	5.1	Elément inversible	35
	5.2	Sous-Anneau	36
	5.3	Morphismes d'anneaux	36
	5.4	Noyau/Image	37
	5.5	Modules sur un Anneau	38
	5.6	Sous-Module	40

	5.7	Module engendré par un ensemble	41
	5.8	Morphismes de Modules	42
	5.9	Structures Algebriques des espaces de morphismes $\ \ \ldots \ \ \ldots$	44
6	Cor	ps	46
	6.1	Corps des fractions	46
	6.2	Caractéristique des Corps	49
	6.3	Arithmétique des corps de caractéristique $p>0$	51
7	Espa	aces Vectoriels	52
	7.1	Familles génératrices	54
	7.2	Famille Libre	56
	7.3	Bases	59
	7.4	Espaces vectoriels de dimension infinie	61
	7.5	Formes linéaires	65
	7.6	Espaces d'applications linéaires	65
	7.7	Formes linéaires et dualité	67
	7.8	Représentation paramétrique d'unn sev cartesienne	68
	7.9	Une base de $Hom_k(V, W)$	69
	7.10	Composition d'applications linéaires	71
8	Mat	rices	72
	8.1	Produit de Matrices	73
	8.2	Rang d'une Matrice	74
	8.3	Transposition	75
	8.4	Les matrices carrées	77
	8.5	Le groupe lineaire \dots	78
	8.6	Changement de Base	79
	8.7	Conjugaison	81
9	Le C	Corps des Nombres Complexes	85
10	Ope	rations Elementaires Sur Les Matrices	90
	10.1	Echelonage	91
	10.2	Engendrement du groupe lineaire	92
	10.3	Extraction d'une base \dots	93
	10.4	Resolution de systemes lineaires	93
11	Dete	erminants	95
	11.1	Formes multilineaires	95
	11.2	Formes Symmetriques/Alternees $\dots \dots \dots \dots$	97
	11.3	Calculs de Determinants	104
		11.3.1 Blocs de Matrices	104

	11.3.2 Operations sur les lignes/Colonnes	05
	11.3.3 Developpement de Lagrange suivant une colonne /ligne $$. $$ 10 $$	06
11.4	Le polynome caracteristique	06
List o	of Theorems	
1	Theorème (Composition de fonctions)	13
1	Definition (Injectivite)	14
2	Definition (Surjectivite)	14
3	Definition (Bijectivite)	15
2	Proposition (Injectivite et cardinalite)	15
3	Proposition (Surjectivite et cardinalite)	15
4	Proposition (injectivite et condition)	15
5	Proposition (Surjectivite et condition)	15
7	Lemme (Composition d'applications surjectives et injectives)	16
8	Proposition (Inverse d'une composition)	17
4	Definition (Notations Injection)	18
5	Definition (Notations Surjection)	18
6	Definition (Notations Bijection)	18
7	Definition (Groupe abstrait)	19
8	Definition (Groupes commutatifs)	20
9	Definition (Notation additive)	20
9	Proposition (Lois de Groupe)	20
10	Definition (Notation exponentielle)	21
11	Definition (exponentielle)	21
12	Definition (Notation multiple)	21
13	Definition (Sous-groupe)	22
11	Proposition (Critere de Sous-groupe)	22
14	Theorème (Sous groupe de \mathbb{Z})	23
15	Proposition (Intersection de sous-groupes)	24
14	Definition (Sous-groupe engendre)	24
17	Theorème	24
15	Definition (Morphisme de Groupe)	25
18	Theorème	25
16	Definition (Notations)	26
21	Proposition	27
22	Proposition	28
17	Definition (Groupes Isomorphes)	28
24	Theorème	29
25	Proposition	29
18	Definition	30

26	Theorème (Critere d'injectivite)	30
19	Definition (Anneaux)	33
30	Lemme	33
20	Definition (Element Inversible)	35
33	Proposition	35
21	Definition (Sous-Anneau)	36
35	Lemme (Critère de sous-anneau)	36
22	Definition (Morphisme d'anneaux)	36
39	Proposition (Noyau d'un morphisme d'anneau)	37
40	Theorème	38
23	Definition (Modules sur un Anneau)	38
24	Definition (A-Algebre)	39
25	Definition (Sous-Module)	40
26	Definition (Ideal)	40
45	Lemme (Critère de Sous-Module)	40
47	Proposition	41
27	Definition	41
48	Theorème	41
28	Definition (Morhpismes de Module)	42
50	Lemme (Critere de l'application lineaire)	43
51	Proposition	43
29	Definition	44
53	Proposition	44
54	Proposition	45
55	Theorème	45
30	Definition (Corps)	46
57	Proposition	46
58	Lemme	47
31	Definition	47
59	Proposition	47
32	Definition	47
33	Definition (Caractéristique)	49
61	Lemme	50
34	Definition	50
62	Lemme	50
63	Lemme	51
35	Definition	51
65	Proposition	51
36	Definition	51
66	Lemme	52
37	Definition (Espace Vectoriel)	52

38	Definition (Produit)	52
39	Definition	52
68	Proposition (Critere de SEV)	53
40	Definition	53
70	Proposition (Critere d'application linéaire)	53
71	Proposition	53
72	Proposition	53
41	Definition (Notations)	53
42	Definition	53
73	Proposition	54
43	Definition	54
44	Definition	54
74	Lemme	54
45	Definition (Notations)	55
75	Proposition	55
46	Definition (Famille génératrice)	55
47	Definition (Espace vectoriel fini)	55
76	Theorème	56
48	Definition (Famille Libre)	56
49	Definition	56
79	Proposition	57
80	Theorème	57
81	Corollaire	58
50	Definition	59
83	Theorème	59
84	Theorème (Dimension de SEV)	61
51	Definition	61
52	Definition	61
53	Definition	61
86	Theorème	62
87	Lemme (Lemme de Zorn)	62
88	Proposition	62
54	Definition	62
89	Corollaire	63
90	Theorème (Le théorème noyau-image)	63
91	Corollaire	64
92	Corollaire	65
93	Theorème	65
55	Definition	67
56	Definition	67
06	Proposition	87

57	Definition (Application linéaire duale)	68
98	Proposition	68
99	Lemme	69
100	Theorème	70
101	Proposition	70
102	Proposition	71
103	Theorème	71
58	Definition	72
59	Definition	73
60	Definition (Multiplication Matricielle)	73
104	Theorème	73
61	Definition (Rang d'une matrice)	74
105	Proposition	74
107	Theorème	75
62	Definition	75
108	Proposition	75
109	Proposition	75
110	Theorème	77
111	Theorème	78
112	Proposition (Critere d'inversibilite)	78
114	Proposition	79
115	Proposition (Formule de changement de base)	79
63	Definition (Matrice de Passage)	79
117	Proposition	80
64	Definition	80
118	Proposition	81
119	Proposition	81
65	Definition	81
121	Proposition	81
66	Definition (Application Adjointe)	82
122	Proposition	82
123	Lemme	83
67	Definition	84
124	Proposition	84
68	Definition	85
126	Theorème	85
69	Definition	86
129	Proposition	87
130	Proposition	87
70	Definition	88
131	Proposition (Formules de trigonometrie)	88

132	Theorème	39
71	Definition	39
72	Definition	39
133	Theorème	90
134	Theorème (Gauss-Wantzel)	90
73	Definition (Operations Elementaires)	90
135	Proposition	90
136	Proposition	90
74	Definition	91
137	Proposition	91
138	Proposition	91
75	Definition	91
76	Definition	91
139	Theorème	92
140	Proposition	92
141	Proposition	92
142	Proposition	92
143	Corollaire	92
144	Proposition	93
145	Lemme	94
146	Corollaire	94
77	Definition	95
78	Definition	95
79	Definition	95
147	Proposition	95
148	Proposition	95
80	Definition	97
149	Theorème	97
150	Proposition	98
151	Theorème	99
152	Theorème	99
153	Corollaire	00
154	Theorème	00
81	Definition)1
155	Proposition)1
82	Definition)1
156)1
83	Definition)3
84)3
158)4
159		14

160	Theorème	104
162	emme	105
163	Corollaire	106
85	Definition	106
164	Theorème	106
86	Definition	106
165	Proposition	106
166	Proposition	107
87	Definition	107
00	Official	107

Lecture 1: Le language des Ensembles

Mon 14 Sep

1 Le language des Ensembles

Le terme "Algebre" est derive du mot arabe al-jabr tire du tire d'un ouvrage. Al-jabr signifie restoration.

Par exemple : 2x - 4 = 0 Ce qu'on veut c'est trouver x. Il faut donc transformer cette egalite en effectuant des operations de part et d'autres de l'egalite.

$$2x = 4$$
 | + 4
 $x = \frac{4}{2} = 2$ | : 2

Le but de l'ouvrage etait de resoudre des soucis administratifs, comment partager des champs etc.

Le but c'est d'introduire les espaces vectoriels a partir de 0.

Il y aura besoin d'introduire des groupes, anneaux, corps (anneaux particuliers), modules et des ensembles.

Il faut donc commencer avec les objets les plus simples, i.e. les groupes. Ici, on introduit de maniere moins rigoureuse qu'avec les systemes algebriques.

1.1 Notations

- "Il existe" ∃, "Il existe un unique" ∃!
- "Quel que soit", "Pour tout", \forall
- "Implique", \Rightarrow
- "est equivalent" \iff , ou "ssi"
- "sans perte de generalite" "spdg", "wlog"
- "on peut supposer" "ops, wma"
- "tel que" t.q. ou |

On ne va pas parler de logique mathematique dans ce cours, ni de definition rigoureuse des ensembles

1.2 **Ensembles**

Un ensemble est une collection d'elements "appartenant" a E

$$e \underset{\text{"appartient à"}}{\underbrace{\in}} E$$

1.2.1 Exemples

- ∅ ne contient aucun element
- $--\mathbb{N} = \{0, 1, 2\}$
- $\mathbb{Z} = \{-2, -1, 0, 1, 2\}$

1.3 Sous-Ensembles

Un sous-ensemble A d'un ensemble E est un ensemble t.q. tout element de A appartient a E. Formellement :

$$a \in A \Rightarrow a \in E$$

$$A \underbrace{\subset}_{\text{inclut dans } E} E$$

L'ensemble vide est un sous-ensemble de E pour tout ensemble E.

$$\emptyset \subset E \forall E$$

Deux ensembles E et F sont egaux si ils ont les mêmes élements, ssi E est inclus dans F et F est inclus dans E (regarder notations)

$$E \subset F \land F \subset E \Rightarrow E = F$$
.

$\mathcal{P}(E)$ l'ensemble des sous-ensembles

C'est l'ensemble des $A \in E$, aussi appelé l'ensemble des parties de E.

Remarque : L'ensemble de TOUS les ensembles n'est pas un ensemble et c'est du au paradoxe de Russell (Logicien anglais) Si c'etait le cas, on considererait

 $Ncont = \{ L'ensemble des E tq E n'est pas contenu dans lui meme. \}$

Cet ensemble Ncont est-il contenu dans lui meme ou pas?

1.4.1 Exercice

Ncont est il contenu dans lui meme ou pas? 🖠

1.5 Operations sur les ensembles

 $--A,B\subset E$

$$A \cup B = \{e \in E \text{ tq } e \in A \text{ ou bien } e \in B\}$$

Réunion de A et B.

 $--A\cap B=\{e\in E|e\in Ae\in B\}$

Difference : A - B ou $A \setminus B$

$$= \{A \in A \land \not\in B\}$$

Difference symmetrique :

$$A\Delta B = (A - B) \cup (B - A)$$

Si $A \cap B = \emptyset$ on dit que A et B sont disjoints. $A_1, \ldots, A_n \subset E$ $n \geq 1$

On peut noter une grande reunion ainsi :

$$A_1 \cup A_2 \cup \ldots \cup A_n = A_1 \cup (A_2 \cup \ldots \cup A_n)$$

$$= \{e \in E | \exists i \in \{1, \ldots, n\} \text{avec} e \in A_i\}$$

$$= \bigcup_{i=1}^n A_i$$

$1.6 \times : Produit cartesien$

Si A et B sont des ensembles

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

On peut bien sur iterer

$$A_1 \times ... \times A_n = \prod_{i=1}^n A_i = \{a_1, a_2, ..., a_n \text{ avec } a_i \in A_i\}$$

1.7 Applications entre ensembles

Soient X et Y deux ensembles.

Une application (fonction) f est la donnee pour chaque element $x \in X$ (L'espace de depart) d'un element $f(x) \in Y$ (l'espace d'arrivee)

$$f: X \to Y$$

Figure 1 – Schema de la composition de 2 applications

1.7.1 Graphe

Se donner une application

$$f:X\to Y$$

equivaut a se donner un graphe G (graphe de f)

$$G \subset X \times Y = \{(x, y) | x \in Xy \in Y\}$$

tq pour $x_0 \in X$ l'ensemble des elements du graphe G de la forme (x_0, y) possede exactement un element (x_0, y_0) . $y_0 = f(x_0) = l$ 'image de x_0 par l'application f. On associe simplement au premier element un autre element.

1.8 Composition/Associativite

Soient

$$f: X \to Y$$

$$g:Y\to Z$$

$$\begin{split} g\circ f: X &\longrightarrow Z | x \in X \longrightarrow f(x) \in Y \\ &\longrightarrow g(f(x)) \in Z \end{split}$$

Cette application s'appelle la composee de f et g.

1.8.1 Associativite

$$\begin{split} f: X &\longrightarrow Y \\ g: Y &\longrightarrow Z \\ h: Z &\longrightarrow W \end{split}$$

Alors

$$(g \circ f): X \longrightarrow Z \circ h: Z \xrightarrow{\quad} W$$
$$\Rightarrow h \circ (g \circ f)$$

$$f: X \longrightarrow Y \circ h \circ g: Y \longrightarrow W$$

On a que

Theorème 1 (Composition de fonctions)

$$h \circ (g \circ f) = (h \circ g) \circ f = h \circ g \circ f$$

Preuve

$$\begin{split} h\circ(g\circ f): x &\longrightarrow h((g\circ f)(x))\\ &= h(g(f(x))) \in W\\ (h\circ g)\circ f: x &\longrightarrow (h\circ g)(f(x))\\ h(g(f(x))) \in W & \Box \end{split}$$

1.9 Image, Preimage

$$f: X \longrightarrow Y$$

A l'application f sont associes deux applications impliquant $\mathcal{P}(X), \mathcal{P}(Y)$.

$$--Im(f): \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$$
$$A \subset X \longrightarrow Im(f)(A) = f(A)$$

C'est ce qu'on appelle l'image de A par f

$$= \{ f(a) \in Y | a \in A \} \subset Y \in \mathcal{P}(Y)$$

L'image de
$$f \ Im(f) := f(X) = \{f(x) \in Y | x \in X\}$$

— Preimage de f : Preim(f) :

$$Preim(f): \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$$

$$B \longrightarrow Preim(f)(B) = f^{-1}(B) \quad = \text{preimage de l'ensemble } B \text{ par } f.$$

$$f^{-1}(B) = \{x \in X | f(x) \in B\}$$

Exemples

$$f_1(\{1,2\}) = \{2,4\}$$

$$f_1^{-1}(\{1,2,3,4\}) = \{1,2,3,4\}$$

Lecture 2: Injectivite, Surjectivite et Bijectivite

Tue 15 Sep

Definition 1 (Injectivite)

Une application $f: X \mapsto Y$ est injective (injection) si $\forall y \in Yf^{-1}(\{y\})$ ne possede pas plus d'un element. On note

$$f: X \hookrightarrow Y$$

Remarque : Une condition equivalente d'injectivite :

$$\forall x \neq x' \in X \Rightarrow f(x) \neq f(x')$$

Definition 2 (Surjectivite)

Une application $f:X\mapsto Y$ est surjective (surjection) si $\forall y\in Yf^{-1}(\{y\})$ possede au moins un element.

 $On\ note$

Soit $f^{-1}(\{y\}) \neq \emptyset$, il existe au moins $x \in X$ tq f(x) = yDe maniere equivalente

surjectif
$$\iff Im(f) = f(X) = Y$$

Alors on a une application

$$"f": X \mapsto Y$$
$$x \mapsto f(x)$$

Cette application est toujours surjective.

Definition 3 (Bijectivite)

Une application $f: X \mapsto Y$ est bijective (bijection) si elle est injective et surjective, cad si $\forall y \in Y, f^{-1}(\{y\} \ (\ l'ensemble\ des\ antecedents\ de\ y\ par\ f)$ possede exactement un element. On note la bijectivite par

$$f: X \simeq Y$$

Si $f: X \simeq Y$, alors on peut identifier les els de X avec ceux de Y :

$$x \in X \leftrightarrow f(x) \in Y$$

Remarque : Si $f: X \hookrightarrow Y$

Y' = f(X) l'application

$$f: X \twoheadrightarrow Y' = f(x)$$

et toujours surjective, et comme f est injective, on obtient une bijection $f: X \simeq$ Y' = f(X) entre X et f(X).

X peut etre identifie a f(X).

- $-Id_X: \underbrace{X \mapsto X}_{x \mapsto x} \text{ est bijective}$ $-x \in \mathbb{R}_{\geq 0} \mapsto x^2 \in \mathbb{R}_{\geq 0} \text{ est inj et bijective.}$ $-\mathcal{P} \simeq \{0,1\}^X = \mathcal{F}(X,\{0,1\})$

Exercice

 $C: \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$

$$(m,n) \simeq \frac{1}{2}((m+n)^2 + m + 3n)$$

Montrer la bijectivite.

Dans ce qui suit, soient X et Y des ensembles finis possedant respectivement |X| et |Y| elements et $f:X\mapsto Y$ une application entre ces ensembles. On a les proprietes suivantes:

Proposition 2 (Injectivite et cardinalite)

 $Si\ f: X \hookrightarrow Y \ est \ injective \ alors \ |X| \le |Y|$

Proposition 3 (Surjectivite et cardinalite)

Si $f : \rightarrow Y$ est surjective alors $|X| \ge |Y|$.

Proposition 4 (injectivite et condition)

Si $f: X \hookrightarrow Y$ et $|X| \ge |Y|$ alors |Y| = |X| et f bijective.

Proposition 5 (Surjectivite et condition)

 $Si\ f: X \twoheadrightarrow Y \ et \ |X| \le |Y| \ alors \ |Y| = |X| \ et \ f \ bijective.$

Propriete 6 (Bijectivite)

 $Si\ f\ bijective,\ on\ peut\ lui\ associer\ une\ application\ reciproque:$

$$f^{-1}:Y\mapsto X$$

$$y \mapsto x$$

tel que $f^{-1}(\{y\}) = \{x\}$, x unique.

1.10 Relation de composition par les applications reciproques

—
$$f: X \simeq Y$$
 et $f^{-1}: Y \simeq X$

$$f^{-1} \circ f : X \mapsto Y \mapsto X = Id_X.$$

En effet, $\forall x \in X$ si on pose y = f(x)

on a
$$f^{-1}(y) = x = f^{-1}(f(x)) = x$$

$$-- f \circ f^{-1}: Y \mapsto X \mapsto Y$$
$$f \circ f^{-1} = Id_Y$$

$$-(f^{-1})^{-1}=f$$

$$-f: X \simeq Y \text{ et } g: Y \simeq Z$$

Alors $g \circ f : X \mapsto Z$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Lemme 7 (Composition d'applications surjectives et injectives)

- 1. Si f et g sont injectives, $g \circ f$ est injective.
- 2. Si f et g sont surjectives, $g \circ f$ est surjective.
- 3. Si f et g sont bijectives, $g \circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Preuve

1.
$$g \circ f : X \mapsto Y \mapsto Z$$

$$x \mapsto g(f(x))$$

 $\forall z \in Z \text{ on veut montrer que } (g \circ f)^{-1}(\{z\}) \text{ a au plus un element}$

$$(g\circ f)^{-1}(\{z\})=\{x\in X|g(f(x))=z\}$$

$$si\ g(f(x)) = z \Rightarrow f(x) \in g^{-1}(\{z\})$$

l'ensemble $\{x \in X | g(f(x)) = z\}$ est contenu dans $g^{-1}(\{z\})$ et donc possede au plus 1 element. Si cet ensemble est vide on a fini $(g \circ f)^{-1}(\{z\}) =$

$$\emptyset. \ Si \ g^{-1}(\{z\}) \neq \emptyset \ alors \ g^{-1}(\{z\}) = \{y\}$$
 et $x \in (g \circ f)^{-1}(\{z\}) \ verifie$

$$f(x) = y \Rightarrow x \in f^{-1}(\{y\})$$

Comme f^{-1} est injective $f^{-1}(\{y\})$ possede au plus un element. Et donc $g^{-1}(f^{-1}(\{z\})$ a au plus 1 element car g est surjective

- 2. Surjectivite: Exercice
- 3. Bijectivite: si f et g sont bijectives $g \circ f$ est bijective. f et g sont $inj \Rightarrow g \circ f$ inj. f et g sont $surj \Rightarrow g \circ f$ surj Si f et g sont $bij \Rightarrow g \circ f$ est injective et surjective $g \circ f$ bijective.

Proposition 8 (Inverse d'une composition)

On veut montrer que $\forall z \in Z$

$$X := (g \circ f)^{-1}(z) = f^{-1} \circ g^{-1}(z) \underbrace{=}_? f^{-1}(g^{-1}(z)) = x'$$

Preuve

$$g \circ f(x) = g(f(x)) = z$$
$$g \circ f(f^{-1}(g^{-1}(z))) = g(f(f^{-1}(g^{-1}(z))))$$
$$= g(f \circ f^{-1}(g^{-1}(z)))$$

 $Or\ on\ sait\ que$

$$f \circ f^{-1} = g \circ g^{-1} Id_Y$$

 $et\ donc$

$$g(f \circ f^{-1}(g^{-1}(z))) = g(g^{-1}(z)) = z = (g \circ f)(x)$$

On a donc montre que

$$(g \circ f)(x) = z = (g \circ f)(x')$$

 \Rightarrow x et x' on la meme image par $g \circ f$ et comme $g \circ f$ est injective x = x'. Donc $\forall z \in Z(g \circ f)^{-1}(z) = f^{-1} \circ g^{-1}(z)$.

L'ensemble des applications entre X et Y seran note

$$\mathcal{F}(X,Y) = HOM_{ENS}(X,Y) = Y^X$$

Definition 4 (Notations Injection)

L'ensemble des applications injectives sera note

$$INJ_{ENS}(X,Y)$$

Definition 5 (Notations Surjection)

L'ensemble des applications surjectives sera note

$$SURJ_{ENS}(X,Y)$$

Definition 6 (Notations Bijection)

L'ensemble des applications bijectives sera note

$$BIJ_{ENS}(X,Y) = Iso_{ENS}(X,Y)$$

 $Si\ il\ s'agit\ d'une\ bijections\ de\ X\ vers\ Y=X\ alors$

$$Hom_{ENS}(X, X) = END_{ENS}(X) = AUT_{ENS} = ISO_{ENS}(X)$$

On appelle cet ensemble aussi parfois l'ensemble des permutations de X.

2 Groupes

2.1 Le groupe Symmetrique

Voici un exemple d'un groupe, le groupe des bijections muni de la composition.

X ensemble

$$Bij(X, X) = Bij(X)$$

Clairement $\{Id_X\} \subset Bij(X) \Rightarrow Bij(X) \neq \emptyset$.

Supposons $f, g \in Bij(X)$, alors

$$f, g \mapsto g \circ f \in Bij(X)$$

On dispose donc de cette loi de composition :

$$\circ: \frac{Bij(X) \times Bij(X) \longrightarrow Bij(X)}{(g,f) \longrightarrow g \circ f}$$

 \circ est associative :

 $f, g, h \in Bij(X)$, alors

$$(f\circ g)\circ h=f\circ (g\circ h)=f\circ g\circ h$$

 Id_X est neutre : $\forall f \in Bij(X)$

$$f \circ Id_X = Id_X \circ f = f$$

Donc

$$x \in X(f \circ Id_X)(x) = f(Id_X(x)) = f(x)$$

Pour chaque element f on trouve une reciproque notee f^{-1} tel que

$$f^{-1} \circ f = Id_X = f \circ f^{-1}$$

Toutes ces proprietes font de

$$Bij(X) = Aut_{ENS}(X)$$

un groupe

Definition 7 (Groupe abstrait)

Un groupe $(G, \star, e_G, \cdot^{-1})$ est la donnee d'un quadruple forme

- d'un ensemble G non-vide
- d'une application (appellee loi de composition interne) \star tq

$$\star: \begin{matrix} G \times G \mapsto G \\ (g,g') \mapsto \star (g,g') =: g \star g' \end{matrix}$$

- d'un element $e_G \in G$ (element neutre)
- de l'application d'inversion \cdot^{-1}

$$\cdot^{-1}: \frac{G \mapsto G}{g \mapsto g^{-1}}$$

 $ay ant\ les\ proprietes\ suivantes$

- Associativite: $\forall g, g', g'' \in G, (g \star g') \star g'' = g \star (g' \star g'').$
- Neutralite $e \ e_G : \forall g \in G, g \star e_G = e_G \star g = g$.
- Inversibilite: $\forall g \in G, g^{-1} \star g = g \star g^{-1} = e_G$.

Quelques exemples :

- $(Bij(X), \circ, Id_X, \cdot^{-1})$ est un groupe.
- $(\mathbb{Z}, +, 0, -\cdot)$ est un groupe.
- $(\mathbb{Q} \setminus \{0\}, \times, 1, \cdot^{-1})$ est un groupe.
- $-(\{1,-1\},\times,1,\cdot^{-1})$ est un groupe.

Definition 8 (Groupes commutatifs)

Un groupe $(G, \star, e_G, \cdot^{-1})$ est dit commutatif si \star possede la propriete supplementaire de commutativite :

$$\forall g, g' \in Gg \star g' = g' \star g$$

Exemple Les groupes $(\mathbb{Z}, +)$ ou $(\mathbb{Q} \setminus \{0\}, x)$ sont des groupes commutatifs. Par contre si X possede au moins 3 elements Bij(X) n'est pas commutatif.

Lecture 3: Groupes, Anneaux, Corps

Tue 22 Sep

$$\exists \sigma, \tau \in Bij(x) \text{ tq. } \sigma \circ \tau \neq \tau \circ \sigma$$

Definition 9 (Notation additive)

Si un groupe est commutatif on pourra utiliser une notation "additive":

- La loi sera notee +.
- L'element neutre sera note 0_G .
- L'inversion sera appele oppose et notee $-gg + (-g) = 0_G$.

Proposition 9 (Lois de Groupe)

- Involutivite de l'inversion : $\forall g, (g^{-1})^{-1} = g, g^{-1} \star g = e_G$.
- L'element neutre est unique, si $\exists e'_G \ tq \ g \in G \ verifiant \ g \star e'_G = g$, alors e'_G est l'element neutre.
- Unicite de l'inverse : si $g' \in G$ verifie $g \star g' = e_G$, alors $g' = g^{-1}$.
- On $a (g \star g')^{-1} = g'^{-1} \star g^{-1}$

Preuve

La preuve de toutes les proprietes est donnee dans le support de cours. On montre l'unicite de l'element neutre.

Si e'_G est telle que pour un certain $g \in G$, tq

$$g \star e'_G = g$$

Alors on \star a gauche par $g^{-1}g^{-1} \star g \star e'_G = g^{-1} \star g$

$$=e_G\star e'_G=e_G=e'_G$$

Admettons que l'inverse est unique et montrons que si $g, g' \in G(g \star g')^{-1} =$ $g'^{-1} \star g^{-1}$

On calcule

$$(g \star g') \star (g'^{-1} \star g^{-1}) = g \star g' \star g'^{-1} \star g^{-1}$$

= $g \star e_G \star g^{-1} = g \star g^{-1}$

de meme:

$$(g'^{-1} \star g^{-1}) \star (g \star g') = e_G$$

Donc $g'^{-1} \star g^{-1}$ a les meme proprietes d'inversion que $(g \star g')$ et par unicite c'est $(g \star g')^{-1}$.

Definition 10 (Notation exponentielle)

 (G,\cdot) un groupe et $g\in G$. On peut :

$$g \to g^{-1} \ g \cdot g, g \cdot g \cdot g, g \cdot g \cdot g \cdot g \cdot g \dots$$

On peut faire ca n fois $n \ge 1$ un entier, on notera :

$$g \cdot g \cdot g \cdot g = g^n$$

 $si \ n < 0$:

$$g^n := (g^{-1})^n = \underbrace{g^{-1} \cdot g^{-1} \cdot \dots g^{-1}}_{|n| fois}$$

$$et\ g^0 := e_G$$

Exercice 10

Verifier que : $g^{m+n} = g^m \cdot g^n$

Definition 11 (exponentielle)

$$\exp_g: \frac{\mathbb{Z} \to G}{n \to g^n}$$

On l'appelle l'exponentielle de n en base g.

$$\exp_{a}(m+n) = \exp_{a}(m) \cdot \exp_{a}(n)$$

Definition 12 (Notation multiple)

 $Si\ G\ est\ commutatif\ et\ que\ le\ groupe\ est\ note\ additivement$

$$n \ge 1 \underbrace{g + \ldots + g}_{n \text{ fois}} = n \cdot g$$

 $Si \ n < 0$

$$n \cdot g := \underbrace{(-g) + \ldots + (-g)}_{|n| \ fois}$$

Donc on a la notation

$$\forall m,n \in \mathbb{Z}(m+n) \cdot g = m \cdot g + n \cdot g$$

3 Sous-Groupe

Definition 13 (Sous-groupe)

Soit $(G, \star, e_g, \cdot^{-1})$ un groupe. Un sous-groupe $H \subset G$ est un sous-ensemble de G tq

- 1. $e_G \in H$
- 2. H est stable par la loi de composition

$$\forall h, h' \in H, h \star h' \in H$$

3. H est stable par l'inversion

$$\forall h \in H, h^{-1} \in H$$

 (H,\star,e_q,\cdot^{-1}) forme un groupe

Proposition 11 (Critere de Sous-groupe)

Pour montrer que $\emptyset \neq H \subset G$ est un sous groupe il suffite de verifier l'une ou l'autre de ces proprietes :

1.
$$a. \forall h, h' \in H, h \star h' \in H$$

 $b. \forall h \in H, h^{-1} \in H$

2.
$$\forall h, h' \in H, h \star h'^{-1} \in H$$
.

Preuve

Montrons que H verifie le point 1 de la definition.

Comme $H \neq \emptyset$ il existe $h \in H$. Par hypothese $h \star h^{-1} \in H$.

On verifie la stabilite par inversion

Soit $h \in H$ et par hypothese $e_G \in H$ $e_G \star h^{-1} \in H$

On verifie la stabilite par produit

Soit $h, h' \in H$ alors $(h')^{-1} \in H$ et $h \star ((h')^{-1})^{-1} \in H$. Or

$$((h')^{-1})^{-1} = h' \Rightarrow h \star h' \in H$$

Exemple

 $(G,\cdot)g\in G \ et \ g^{\mathbb{Z}}=\exp_q(\mathbb{Z})=\{g^n,n\in\mathbb{Z}\} \ \textit{Forme un sous groupe}.$

Preuve

Soit $h, h' \in H = q^{\mathbb{Z}}$ alors

$$h = q^m h' = q^{m'} m, m' \in \mathbb{Z}$$

Alors

$$h \cdot h' = g^m \cdot g^{m'} = g^{m+m'} \in g^{\mathbb{Z}}$$

Soit $h \in g^{\mathbb{Z}}h = g^m$ comme $h^{-1} = g^{-m}$ alors $h^{-1} \in g^{\mathbb{Z}}$

Exemple

- 1. $\{e_G\} \subset G$ est un sous groupe de G on l'appelle le sous groupe trivial de G.
- 2. $G \subset G$ est un sous groupe
- 3. $(\mathbb{Z}, +)q \in \mathbb{Z}$

4.
$$q \cdot \mathbb{Z} = \{a, a = q \cdot k, k \in \mathbb{Z}\}$$

Preuve

 $On\ prouve\ la\ derniere\ propriete$

$$- \ 0 \in q \mathbb{Z} \ car \ 0 = q \cdot 0$$

$$-qk \ et \ q \cdot k' \in q\mathbb{Z} \Rightarrow qk + qk' = q(k+k') \in q \cdot \mathbb{Z}$$

$$-qk \in q\mathbb{Z}$$

Theorème 14 (Sous groupe de \mathbb{Z})

Reciproqueme tout sousgroupe de \mathbb{Z} est de la forme $q \cdot \mathbb{Z}$.

Preuve

Soit $H \subset \mathbb{Z}$ un sous groupe

$$- si h = \{0\}, H = 0 \cdot \mathbb{Z}.$$

$$-si H \neq \{0\} soit q \in H \neq 0$$

Alors, sans perte de generalite, on peut supposer que q>0 ($si\,q<0$ on remplace $q\ par-q\in H$)

Sans perte de generalite on peut supposer que q est le plus petit el strictement positif contenu dans H

$$q = q_{min} = \min(h \in H, h > 0)$$

On va montrer que $H = q\mathbb{Z}$.

Soit $h \in H$ par division euclidienne il existe $k \in \mathbb{Z}$ et $r \in \{0, \dots, q-1\}$ tq

$$\begin{aligned} h &= qk + r \\ r &= h - qk \in H \end{aligned} \qquad \Box$$

 $Donc \ 0 \ge r < q \Rightarrow r = 0 \ par \ def \ de \ q.$

Donc $h = q \cdot k \in q\mathbb{Z}$.

3.1 Groupe engendre par un ensemble

Proposition 15 (Intersection de sous-groupes)

Soit G un groupe et $H_1, H_2 \subset G$ deux sous groupes alors $H_1 \cap H_2$ est un sous groupe. Plus generalement l intersection de sous groupes est un sous-groupe.

Preuve

Cas $H_1 \cap H_2$. On veut montrer que c'est un sous groupe. On utilise la deuxieme version du critere de la proposition 11.

$$\forall h, h' \in H_1 \cap H_2 \Rightarrow ?h \star h'^{-1} \in H_1 \cap H_2$$

Comme $h, h' \in H_1 h \star h'^{-1} \in H_1$ et $h, h' \in H_2 h \star h'^{-1} \in H_2$ Donc $h \star h'^{-1} \in H_1 \cap H_2$

 $\Rightarrow H_1 \cap H_2$ est un sous-groupe

Definition 14 (Sous-groupe engendre)

G un groupe et $A \subset G$ un sous-ensemble de G.

Le sous-groupe engendre par A, note $< A > \subset G$ est par definition le plus petit sous groupe de G contenant A.

Soit

$$G_A = \{ H \subset G, H \text{ est un sous groupe et } A \subset H \}$$

 G_A est non-videcar il contient G.

Par la proposition precedente, on considere

$$\langle A \rangle := \bigcap_{H \in G_A} H$$

Par la proposition cette intersection est un sous groupe qui contient A et c'est le plus petit possible au sens ou si $H \subset G$ est un sous groupe contenant A alors

$$\langle A \rangle = \bigcap_{H \in G_A} H \subset H'$$

Exemple

Si
$$g \in G \langle \{g\} \rangle = g^{\mathbb{Z}} = \{g^n, n \in \mathbb{Z}\}\$$

Lecture 4: Groupes et Anneaux

Mon 28 Sep

Theorème 17

Soit $A \subset G$ un ensemble, si $A = \emptyset$ alors $\langle A \rangle = \{e_G\}$, sinon on pose

$$A^{-1} = \left\{ g^{-1}, g \in A \right\} \subset G$$

l'image de A par l'inversion alors

$$\langle A \rangle = \{ g_1 \star \ldots \star g_n, g_i \in A \cup A^{-1} \}$$

En d'autres termes, $\langle A \rangle$ est l'ensemble des elements de G qu'on peut former en multipliant ensemble des elements de A et de son invers A^{-1} de toutes les manieres possibles.

Preuve

Pour montrer que c'est $\langle A \rangle$, on procede par double inclusion.

 \supset : soit $H \subset G$ un ssgpe tq

$$A \subset H \subset G$$

Alors commme H est stable par \bullet^{-1}

$$A^{-1} \subset H^{-1} = H$$

Donc, $A \cup A^{-1} \subset H$ comme H est stable par \star , si $g_1, \ldots, g_n \in A \cup A^{-1}$ Le produit $g_1 \star g_2 \star \ldots \star g_n \in H$

 $Donc\left\{g_1\star g_2\star\ldots\star g_n,g_i\in A\cup A^{-1}\right\}\subset H\ et\ donc\left\{g_1\star g_2\star\ldots\star g_n,g_i\in A\cup A^{-1}\right\}\subset\bigcap_{A\subset H}H\subset\langle A\rangle$

 \subset : il suffit de mq $\{...\}$ et un sous groupe de G. En effet, $\{g_1 \star ... \star g_n, n \geq 1, g_i \in A \cup A^{-1}\} \supset A$

Critere de ss-groupe :

- a) Soit $g \in A \Rightarrow g^{-1} \in A^{-1}, g \star g^{-1} = e_G \in \{g_1 \star ... \star g_n, ...\}$
- b)Soit $g = g_1 \star g_2 \star \star \ldots \star g_n$ et $g' = g'_1 \star g'_2 \star \star \ldots \star g'_n$

$$n, n' \ge 1, g_i, g'_i \in A \cup A^{-1}$$

Alors

$$g \star g' = g_1 \star \ldots \star g_n \star g'_1 \ldots g'_n \in \{\ldots\}$$

c) soit $g = g_1 \star \ldots \star g_n$ comme ci-dessus

$$g^{-1} = g_n^{-1} \star g_{n-1}^{-1} \star \ldots \star g_1^{-1} \in \{\ldots\}$$

 $\{\ldots\}$ est un sousgroupe de G contenant A donc il contient $\langle A \rangle$.

3.2 Morphismes de Groupes

Definition 15 (Morphisme de Groupe)

Soient (G,\star) et (H,\bullet) deux groupes, un morphisme de groupes $\phi:G\to H$ est une application telle que

$$\forall g, g' \in G, \phi(g \star g') = \phi(g) \bullet \phi(g')$$

Theorème 18

Soit $\phi: G \to H$ un morphisme de groupes alors

1.
$$\phi(e_G) = e_H$$

2.
$$\forall g \in G, \phi(g^{-1}) = \phi(g)^{-1}$$

3.
$$\forall g, g' \in G, \phi(g \star g') = \phi(g) \bullet \phi(g')$$

Preuve

Il suffit de demontrer 1 et 2, 3 est vrai par definition.

1)

Soit $g \in G$, $\phi(g) = \phi(g \star e_G) = \phi(g) \bullet \phi(e_G)$.

Donc $\phi(g) = \phi(g) \star \phi(e_G)$ et donc

$$h = h \bullet \phi(e_G)$$
$$h^{-1} \bullet h = h^{-1} \bullet h \bullet \phi(e_G)$$

2)

$$\phi(g) \bullet \phi(g)^{-1} = e_H$$

$$\phi(g) \bullet \phi(g^{-1}) = \phi(g \star g^{-1})$$

$$= \phi(e_G) = e_H$$

On conclut en utilisant l'unicite de l'inverse

$$\phi(g^{-1}) = \phi(g)^{-1} \qquad \Box$$

Definition 16 (Notations)

- $Hom_{Gr}(G, H)$ l'ensemble des morphismes de groupe entre G et H.
- $End_{Gr}(G) = Hom_{Gr}(G,G)$ les endomorphismes du groupe G.
- $Isom_{Gr}(G, H)$ l'ensemble des morphismes bijectifs
- $Aut_{Gr}(G) = Isom_{Gr}(G,G)$ l'ensembles des automorphismes du groupe G.

Exemple

$$e_H: \begin{cases} G o H \\ g o e_h \end{cases}$$

— Soit $g \in G$

$$\exp_G: \begin{cases} \mathbb{Z} \to G \\ n \to g^n \end{cases}$$

 $Si\ G\ est\ commutatif\ note\ additivement$

$$\bullet.g: \begin{cases} \mathbb{Z} \to G \\ n \to n.g \end{cases}$$

Conjugaison dans un groupe : (G, .)

$$h \in C$$

$$Ad_h: \begin{cases} G \to G \\ g \to h.g.h^{-1} \end{cases}$$

Preuve

On veut montrer que $\forall g, g' \in G$

$$Ad_h(g.g') = Ad_h(g).Ad_h(g')$$

$$\begin{split} Ad_h(g).Ad_h(g') &= (h.g.h^{-1}).(h.g.h^{-1}) \\ &= h.g.h^{-1}.h.g'.h^{-1} \\ &= h.g.e_G.g'.h^{-1} \\ &= h.g.g'.h^{-1} = Ad_h(g.g') \end{split}$$

Terminologie:

$$Ad_h(g) = h.g.h^{-1}$$

Le conjugue de g par g.

Remarque

 $Ad_h: G \to G$ est bijectif. Ad_h admet une application reciproque qui est Ad_h^{-1}

Preuve

$$Ad_{h^{-1}} \circ Ad_h? = Id_G$$

$$Ad_h \circ Ad_{h^{-1}}? = Id_G$$

Il suffit de montrer le premier.

$$Ad_{h^{-1}} \circ Ad_h(g) = h^{-1}.(h.g.h^{-1}).h$$

= $h^{-1}.h.g.h^{-1}.h$
= $g = Id_G(g)$

$$car (h^{-1})^{-1} = h$$

 $\forall h \in G,$

$$Ad_h \in Aut_{Gr}(G)$$

Proposition 21

Soient $(G,\star),(H,*),(K,\bullet)$) des groupes et $\phi:G\to H$ et $\psi:H\to K$ des morphismes de groupes alors la composee $\psi\circ\phi:G\to K$ est un morphisme de groupes

Preuve

On veut montrer que

$$\psi \circ \phi(g \star g') = ?\psi \circ \phi(g) \bullet \psi \circ (g')$$

 $on \ a :$

$$\psi \circ \phi(g \star g') = \psi(\phi(g \star g'))$$

$$= \psi(\phi(g) \star \phi(g'))$$

$$= \psi(\phi(g)) \bullet \psi(\phi(g'))$$

Proposition 22

Soit $\phi: G \to H$ un morphisme de groupe bijectif alors l'application reciproque ϕ^{-1} est un morphisme bijectif.

Preuve

Soit $\phi: G \to H$ un morphisme de groupe bijectif (en tant qu'application), on veut montrer que $\phi^{-1}: H \to G$ verifie

$$\phi^{-1}(h \star h') = ?\phi^{-1}(h) \star \phi^{-1}(h'), \forall h, h' \in H$$

 $On\ calcule$

$$\begin{split} \phi(\phi^{-1}(h) * \phi^{-1}(h')) &= \phi(\phi^{-1}(h)) \star \phi(\phi^{-1}(h')) \\ &= h \star h' \\ \Rightarrow \phi^{-1}(h) * \phi^{-1}(h') \end{split}$$

est un antecedent de $h \star h'$ mais le seul antecedent de $h \star h'$ c'est $\phi^{-1}(h \star h')$ $\Rightarrow \phi^{-1}(h) * \phi^{-1}(h') = \phi^{-1}(h \star h')$

Definition 17 (Groupes Isomorphes)

 $Soient\ G\ et\ H\ deux\ groupes\ si$

$$Isom_{ar}(G, H) \neq \emptyset$$

On dit que G et H sont isomorphes (comme groupes)

$$G \simeq_{Gr} H$$

et si $Isom_{gr}(G.H) \neq \emptyset$ alors $Isom_{Gr}(H,G) \neq 0, H \simeq_{Gr} G$

La relation "etre isomorphe" dans la categorie des groupes est une relation d'equivalence :

$$-G \simeq_{Gr} G (Isom_{Gr(G,G)\ni Id_G})$$

— Si
$$G \simeq_{Gr} H \Rightarrow H \simeq_{Gr} G$$

— Si
$$G \simeq_{Gr} H$$
 et $H \simeq_{Gr} K \Rightarrow G \simeq_{Gr} K$

Exemple

Le groupe des automorphismes d'un groupe

$$Aut_{Gr}(G) = Isom_{Gr}(G,G) \subset Bij(G)$$

Theorème 24

 $Aut_{Gr}(G)$ est un sous-groupe de $(Bij(G), \circ, Id_G, \bullet^{-1})$

Preuve

Si ϕ et $\psi \in Isom_{Gr}(G,G)$, alors $\psi \circ \phi$ est un morphisme et $\psi \circ \phi$ est bijectif $\Rightarrow \in Isom_{Gr}(G,G)$

 $Si \ \phi \in Isom_{Gr}(G,G) \cup Bij(G,G) \ alors \ \phi^{-1} \ est \ un \ morphisme \ donc$

$$Isom_{Gr}(G,G) = Aut_{Gr}(G)$$

Lecture 5: Noyau et Image

Tue 29 Sep

4 Noyau et Image

Proposition 25

Soit $\phi \in Hom_{Gr}(G, H)$ un morphisme de groupes.

— Soit $K \subset G$ un sous groupe alors $\phi(K) \subset H$ est un sous-groupe. En particulier l'imaged de ϕ ,

$$Im(\phi) = \phi(G)$$

— Soit $L \subset H$ un sous-groupe de H, alors l'image inverse

$$\phi^{-1}(L) = \{ g \in G, \phi(g) \in L \} \subset G$$

est un sous-groupe de G. En particulier, $\phi^{-1}(\{e_H\})$ est un sous-groupe

Preuve

Soit $K \subset G$ un sous-groupe.

Soit

$$h, h' \in \phi(K)$$

On veut montrer que $h \star h'^{-1} \in \phi(K)$.

Il existe $k, k' \in K$ tel que $\phi(k) = h, \phi(k') = h'$

$$h \star h'^{-1} = \phi(k) \star \phi(k')^{-1}$$
$$= \phi(k) \star \phi(k'^{-1})$$

$$=\phi(k*k'^{-1}), \ k*k'^{-1} \in K$$

car K sous-groupe.

$$h \star h'^{-1} \in \phi(K)$$

Soit $L \subset H$ un sous-groupe, on veut montrer que

$$\phi^{-1}(L) \subset G$$

est un sous-groupe Soient $g, g' \in \phi^{-1}(L)$, alors $\phi(g) = h \in L, \phi(g') = h' \in L$

$$q \star q'^{-1} \in \phi^{-1}(L)$$
?

on a

$$\phi(g \star g'^{-1}) = \phi(g) \star \phi(g')^{-1}$$

$$= h \star h'^{-1} \in L \ car \ L \ sous-groupe \qquad \Box$$

Definition 18

Le sous-groupe $\phi^{-1}(\{e_H\})$ s'appelle le noyau de ϕ et est note

$$\ker(\phi) = \phi^{-1}(\{e_H\}) = \{g \in G, \phi(g) = e_H\}$$

L'importance du noyau vient du fait qu'il permet de tester facilement si un morphisme est injectif.

Theorème 26 (Critere d'injectivite)

Soit $\phi \in Hom_{Gr}(G, H)$ un morphisme de groupes alors les proprietes suivantes sont equivalentes

- $-\phi$ est injectif
- $\ker(\phi) = \{e_G\}$

Preuve

 $1 \rightarrow 2$

si ϕ est injectif, l'image reciproque de $\{e_H\}$ possede au plus un seul element. Mais comme ϕ est un morphisme $\phi(E_G) = e_H \Rightarrow \phi^{-1}(\{e_H\}) = \{e_G\}$

 $2 \rightarrow 1$

On se donneun $h \in H$ et on veut montrer que $\phi^{-1}(\{h\}) = \{g \in G, \phi(g) = h\}$ n'a pas plus d'un element.

$$Si \phi^{-1}(\{h\}) = \emptyset OK$$

Si $\phi^{-1}(\{h\}) \neq \emptyset$, soient $g, g' \in \phi^{-1}(\{h\})$ on veut montrer que g = ?g'.

Par definition,
$$\phi(g) = \phi(g') = h$$

$$\phi(g) * \phi(g')^{-1} = e_H$$

$$=\phi(g*g'^{-1})\ car\ \phi\ morphisme$$

 $Donc, \ g*g'^{-1} \in \ker(\phi) = \{e_G\},\$

$$\Rightarrow g * g'^{-1} = e_G \Rightarrow g = g'$$

Exemple

Ordre d'un element $Soit g \in G$ groupe

$$\exp_q: \mathbb{Z} \to Gn \in (\mathbb{Z}, +) \to g^n \in G$$

est un morphisme de groupes.

$$\ker(\exp_q) \subset \mathbb{Z}q \cdot \mathbb{Z}, q \in \mathbb{Z}$$

 $Si\ q = 0,\ \ker(\exp_q) = \{0\}$

$$\Rightarrow \mathbb{Z} \to G$$

$$n \to g^n \ est \ injective$$

 \mathbb{Z} est isomorphe a $g^{\mathbb{Z}}(\mathbb{Z} \simeq g^{\mathbb{Z}})$

$$G\supset g^{\mathbb{Z}}\simeq \mathbb{Z}$$

donc g est d'ordre infini.

 $Si \ q > 0$, alors

$$g^{\mathbb{Z}} = \{g^0 = e_G, g, g^2, \dots, g^{q-1}\}$$

est un sous-groupe de cardinal q (a demontrer en exercice) et donc G contient un sous-groupe d'ordre q

$$q := ordre de g = ord(g)$$

q est le plus petit entier > 0 tel que

$$g^q = e_G$$

Exemple (Conjugaison)

 $G\ni h$

$$Ad_h: g \to h.g.h^{-1}$$

On a montrer que $Ad_h \in Aut_{Gr}(G)$

On considere l'application

$$h \in G \to Ad_h \in Aut_{Gr}(G)$$

Cette application est un morphisme de groupes :

On doit verifier que : $\forall h, h' \in G$

$$Ad_{h,h'} = Ad_h \circ Ad_{h'}$$

On veut montrer que pour tout $g \in G$

$$Ad_{h.h'} = Ad_h(Ad_{h'}(g))$$

$$h.h'.g.(h.h')^{-1} = h.h'.g.h'^{-1}.h^{-1}$$

$$= h.(h'.g.h'^{-1}).h^{-1}$$

$$= Ad_h(Ad_{h'}(g))$$

$$\ker(Ad) = \{h \in G | Ad_h = Id_G\}$$

$$= \{h \in G | \forall g \in GAd_h(g) = g\}$$

$$= \{h \in G | \forall g \in G, h.g.h^{-1} = g\}$$

$$h.g.h^{-1} = g \iff h.g = g.h$$

On dit que h commute avec g.

 $\ker(Ad) = \{$ l'ensemble des h dans G qui commutent avec tous les elements de de G $\}$

= Centre de G

$$=Z(G)=Z_G$$

 Z_G est un groupe commutatif de G

Exemple (Translation)

Soit $h \in G$ la translation a gauche par h

$$t_h: \begin{cases} G \to G \\ g \to h.g \end{cases}$$

Attention t_h n'est pas un morphisme de groupes, car l'element neutre ne va pas sur lui meme (sauf si $h=e_G, t_h=t_{e_G}=Id_G$)

Par contre t_h est bijective de reciproque t_{h-1}

 $t_{\bullet}: h \in G \to t_h \in Bij(G)$ est un morphisme de groupe injectif, l'image s'appelle le groupe des translations (a gauche) de G.

 $Donc\ G \simeq t_G \subset Bij(G)$

Tout groupe G abstrait peut s'identifier (est isomorphe) a un sous-groupe d'un groupe de bijections d'un ensemble.

5 Anneaux

Definition 19 (Anneaux)

Un anneau $(A, +, ., 1_A)$ est la donce, d'un groupe commutatif (A, +) (note additivement) d'element neutre note 0_A , d'une loi de composition interne (dite de multiplication)

$$\bullet. \bullet \begin{cases} A \times A \to A \\ (a,b) \to a.b \end{cases}$$

et d'un element unite $1_A \in A$ ayant les proprietes suivantes

1. Associativite de la mutliplication

$$\forall a, b, c \in A, (a.b).c = a.(b.c) = a.b.c$$

2. Distributivite

$$\forall a, b, c \in A(a+b).c = a.c + b.c, c.(a+b) = c.a + c.b$$

3. Neutralite de l'unite

$$\forall a \in A, a.1_A = 1_A.a = a$$

Un anneau est dit commutatif si de plus la multiplication est commutative

$$\forall a, b \in A, a.b = b.a$$

Lemme 30

Pour tout $a, b \in A$, on a

$$0_A.a = a.0_A = 0_A$$

On dit que l'element neutre de l'addition 0_A est absorbant. Pour l'oppose, on a

$$(-a).b = -(a.b) = a.(-b)$$

Preuve

 $\forall a \in A$

$$a = a.1_A = a.(1_A + 0_A)$$

= $a.1_A + a.0_A$
 $0_A = a.0_A$

Exemple

-L'anneau $nul: \{0\}$

$$-\mathbb{Z}, (\mathbb{Q}, +, \bullet), (\mathbb{R}, +, \bullet)$$

— $\mathcal{F}(X,\mathbb{R})$ des fonctions d'un ensemble X a valeurs dans \mathbb{R} .

$$+: f+g: x \in X \to f(x)+g(x) = (f+g)(x)$$

$$0_{\mathcal{F}(X,\mathbb{R})}: x \to 0 \in \mathbb{R}$$

$$1_{\mathcal{F}(X,\mathbb{R}):x\to 1\in\mathbb{R}}$$

 $(\mathcal{F}(X,A),+,ullet)$ est un anneau (commutatif si A commutatif) generalisation du cas des fonctions reelles

$$-\mathbb{R}[x] = \{P(x) = a_0 + a_1 x + \dots + a_d x^d, a_0, a_1, \dots, a_d \in \mathbb{R}, d \ge 0\}$$

$$- A[x] = \{ P(x) = a_0 + a_1 x + \dots + a_d x^d, a_0, \dots a_d \in Ad \ge 0 \}$$

Anneau des polynomes a coefficients dans A.

-(M,+) un groupe commutatif

$$End(M) = End_Gr(M) = Hom_{Gr}(M, M)$$

$$+: \psi, \phi \in End(M)$$

$$\phi + \psi : m \to \phi(m) + \psi(m)$$

Soient $\phi, \psi \in End(M)$

$$\phi \circ \psi \in End(M)$$

Mon 05 Oct

$$0_{End(M)}: m \in M \to 0_M \in M$$

$$1_{End(M)}: Id_M: m \in M \to m \in M$$

 $(End(M), +, \circ, 0_M, Id_M)$ est un anneau

Lecture 6: Anneaux 2

Preuve

Soit $\phi, \psi \in End_{Gr}(M)$, on veut montrer que

$$\phi + \psi \in End_{Gr}(M)$$

Pour vérifier celà, on utilise le critère de morphisme : $\forall m, m' \in M$, alors

$$(\phi + \psi)(m + m') = (\phi + \psi)(m) + (\phi + \psi)(m')$$

$$(\phi + \psi)(m + m') = \phi(m + m') + \psi(m + m')$$

= $\phi(m) + \psi(m') + \psi(m) + \psi(m')$

 $+\ est\ commutative$

$$= \phi(m) + \psi(m') + \phi(m') + \psi(m')$$

= $(\phi + \psi)(m) + (\phi + \psi)(m')$

Soit $\phi, \psi, \psi' \in End_{Gr}(M)$ on veut montrer que

$$\phi \circ (\psi + \psi') = \phi \circ \psi + \phi \circ \psi'$$

On veut montrer que $\forall m \in M$

$$\phi \circ (\psi + \psi')(m) = (\phi \circ \psi + \phi \circ \psi')(m)$$

$$\phi((\psi + \psi')(m)) = \phi(\psi(m) + \psi'(m))$$
$$= \phi(\psi(m)) + \phi(\psi'(m))$$
$$= (\phi \circ \psi + \phi \circ \psi')(m)$$

Reste à faire : associativité de + 0_M est l'élément neutre de + Id_M est l'unité pour \circ

5.1 Elément inversible

Definition 20 (Element Inversible)

Un element $a \in A$ est inversible si il existe $b \in A$ tel que

$$a.b = b.a = 1_A$$
.

On dit alors que b est un inverse de a (pour la multiplication).

Remarque

Si l'inverse existe, l'inverse est unique, et on le note a^{-1} .

Notation:

On note A^{\times} l'ensemble des éléments inversibles de A.

Proposition 33

Soit A[×] l'ensemble des éléments inversibles, alors

$$(A^{\times}, ., 1_A, \bullet^{-1})$$

forme un groupe : le groupe des éléments inversibles de A.

Exemple

$$-- \mathbb{Z}^{\times} = \left\{\pm 1\right\}, \mathbb{Q}^{\times} = \mathbb{Q} \setminus \left\{0\right\}$$

$$--\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$$

$$-\mathcal{F}(X,\mathbb{R})^X = \{f: X \to \mathbb{R}^\times \subset \mathbb{R} | f(x) \neq 0_\mathbb{R} \text{ pour tout } x \in X\}$$

$$-\mathbb{R}[x]^{\times} = \{a_0 | a_0 \in \mathbb{R}^{\times}\}$$

$$-End_{Gr}(M)^{\times} = Aut_{Gr}(M) = Isom_{Gr}(M, M)$$

5.2 Sous-Anneau

Definition 21 (Sous-Anneau)

Soit (A,+,.) un anneau. Un sous-anneau $B\subset A$ est un sous-groupe de (A,+) qui est

- soit le sous-groupe trivial $\{0_A\}$,
- soit qui contient l'unité $\mathbf{1}_A$ et qui est stable par . :

$$\forall b, b' \in Bb.b' \in B$$

Ains (B, +, .) est un anneau.

Lemme 35 (Critère de sous-anneau)

Soit (A, +, .) un anneau et $B \subset A$ un sous-ensemble non-vide alors B est un sous-anneau ssi $B = \{0_B\}$ ou bien $1_A \in B$ et

$$\forall b, b', b'' \in B, b.b' - b'' \in B$$

Preuve

 $Si B = \{0_A\} \ c'est \ un \ sous-anneau.$

Sinon $1_A \in B$ si on prend $b \in B$ alors

$$0_A = 1_A.b - b \in B$$

Alors

$$\forall b, b' \in B$$

$$b - b' = 1_A \cdot b - b' \in B$$

Donc (B, +) est un sous-groupe.

Soient $b, b' \in B$ alors

$$b.b' - 0_A \in B$$

= b.b'.

Exemple

- $-\{0_A\}\subset A\subset A$
- $-\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$
- A un anneau

$$A.Id_A := \{a.Id_A : b \to a.b\} \subset End_{Gr}(A).$$

est un sous-anneau

5.3 Morphismes d'anneaux

Definition 22 (Morphisme d'anneaux)

Soient (A, +, .), et (B, +, .) des anneaux. Un morphisme d'anneaux $\phi : A \mapsto B$ est un morphisme de groupes commutatif $\phi : (A, +) \mapsto (B,)$ tel que

$$\phi(1_A) = 1_B$$
 ou bien $\phi(1_A) = 0_B$

$$\forall a, a' \in A, \phi(a.a') = \phi(a).\phi(a')$$

Remarque

 $Si \ \phi(1_A) = 0_B \ alors \ \phi = 0_B$ $Alors \ \forall a \in A$

$$\phi(a) = \phi(a.1_A)$$
$$= \phi(a)\phi(1_A) = 0_B$$

Notation : On note les morphismes d'anneaux de A vers B

 $Hom_{Ann}(A, B), End_{Ann}(A) = Hom_{Annn}(A, A), Isom_{Ann}(A, B), Aut_{Ann}(A) = Isom_{Ann}(A, A)$

Exemple (Le morphisme canonique)

 $Le\ morphisme\ cannonique:$

$$Can_A: (\mathbb{Z},+,.) \to (A,+,.)$$

$$n \rightarrow n.1_A = 1_A + 1_A + \ldots + 1_A$$
 n fois $si \ n \ge 0$ et $-n$ fois $si \ n < 0$

 $est\ un\ morphisme\ d'anneaux.$

On doit vérifier que Can_A est un morphisme entre les groups additifs.

On doit montrer que $\forall m, n \in \mathbb{Z}$

$$(m \times n).1_A = m.(n.1_A)$$

 $si\ m\ et\ n\geq 0$

$$(m \times n).1_A = \underbrace{1_A + \ldots + 1_A}_{m \times n \text{ fois}}$$

$$= \underbrace{1_A + \ldots + 1_A}_{n \text{ fois}} + \underbrace{1_A + \ldots + 1_A}_{n \text{ fois}} m \text{ fois}$$

$$= m.(n.1_A)$$

5.4 Noyau/Image

Proposition 39 (Noyau d'un morphisme d'anneau)

Soient $\phi \in Hom_{Ann}(A, B)$ un morphisme alors $\phi(A) \subset B$ est un sous-anneau. Par ailleurs le sous-groupe $\ker(\phi)$ est stable par multiplication par A:

$$\forall a \in A, k \in \ker(\phi) a.k \in \ker(\phi)$$

Preuve

Soit $k \in \ker \phi, a \in A$

$$a.k \in \ker \phi$$
?

$$\phi(a.k) = \phi(a).\phi(k) = \phi(a).0_B = 0_B$$

Theorème 40

 $\phi(A) \subset B$ est un sous-anneau de B.

Preuve

Si $\phi(1_A) = 0_B \Rightarrow \phi = \underline{0}_B$ et donc $\phi(A) = \{0_B\} \subset B$ Sinon $\phi(1_A) = 1_B$. $B' = \phi(A)$ alors $1_B \in B', \phi(A)$ est un sous-groupe de (B, +)Soit $b, b' \in B' = \phi(A)$.

$$b = \phi(a), b' = \phi(a')a, a' \in A$$

Alors

$$b.b' = \phi(a).\phi(a') = \phi(a.a')$$
 car ϕ est un morphisme d'anneaux

5.5 Modules sur un Anneau

Definition 23 (Modules sur un Anneau)

Soit A un anneau, un A-module (à gauche) est un groupe commutatif (M, +) muni d'une loi de multiplication externe

$$\bullet * \bullet : A \times M \mapsto M$$
$$(a, m) \mapsto a * m$$

(appelée multiplication par les scalaires) ayant lles propriétés suivantes

— Associativité: $\forall a, a' \in A, m \in M$,

$$(a.a') * m = a.(a' * m).$$

— Distributivité : $\forall a, a' \in A, m, m' \in M$,

$$(a + a') * m = a * m + a' * m, a * (m + m') = a * m + a * m'.$$

— Neutralité de 1_A : $\forall m \in M$,

$$1_A.m = m$$

Exemple

- $-\{0_A\} \subset A \ est \ un \ A\text{-module}$
- A est un A-module
- $-(M,+) = groupe \ commutatif \ est \ canonique ment \ un \ \mathbb{Z}$ -module

$$(n, \overrightarrow{m}) \to n * \overrightarrow{m} = \underbrace{\overrightarrow{m} + \overrightarrow{m} + \dots}_{n \text{ fois}}$$

Lecture 7: Anneaux Et Modules

Tue 06 Oct

$$A^{d} = \{(a_1, \dots, a_d)a_1, \dots, a_d \in A\}$$

C'est un A-module : le A-module libre de rang d. Soit

$$\overrightarrow{x'} = (a_1, \dots, a_d)$$

$$\overrightarrow{x'} = (a'_1, \dots, a'_d)$$

$$\in A^d$$

$$\overrightarrow{x'} + \overrightarrow{x'}(a_1 + a'_1, \dots)$$

Soit

$$a \in A, \overrightarrow{x} \in A^d$$
$$a.\overrightarrow{x} := (a.a_1, \dots, a.a_d)$$

On vérifie (en utilisant l'associativité de (A,+,.) et la distributivité dans A) que A^d est un A-module.

$$1_A \cdot \overrightarrow{x} = \overrightarrow{x}$$

Exemple

 $-\phi:A\to B$, ker ϕ est un A module pour la multiplication dans A.

•.• :
$$A \times \ker \phi \to \ker \phi$$

 $(a,k) \to a.k$

— $\mathcal{F}(X,A)$ fonctions de X (un ensemble quelconque) à valeurs dans A, on a vu que $\mathcal{F}(X,A)$ un groupe commutatif

$$A \times \mathcal{F}(X, A) \to \mathcal{F}(X, A)$$

 $(a, f) \to a.f : x \to a.f(x)$

Plus généralement, si M est un A-module $\mathcal{F}(X,M)$ est un A-module.

$$a \in Af: X \to M$$

$$a*f: x \to a*f(x) \in M$$

Remarque

Si X possède d éléments

$$\mathcal{F}(X,A) = A^{\times} \simeq A^d$$

Definition 24 (A-Algebre)

Une A-algebre est un anneau (B,+,.) possedant une structure de A-module qui verifie la propriete d'associativité suivante :

$$\forall a \in A, b, b' \in Ba * (b.b') = (a * b).b'$$

 $\mathbb{R}[x]$ est une \mathbb{R} -algèbre.

5.6 Sous-Module

Definition 25 (Sous-Module)

Un sous-module $N\subset M$ d'un A-module M est un sous-groupe de M qui est stable pour la mutliplication par les scalaires

$$\forall a \in A, n \in B, a * n \in N$$

Definition 26 (Ideal)

Un ideal de A est un sous-ensemble $I\subset A$ qui est un sous-module du module A. De manière équivalente, un idéal de A est un sous-groupe $I\subset A$ qui est stable par multiplication par les éléments de A:

$$\forall a \in a, b \in I, a.b \in I$$

Remarque

Tout $idéal\ I \subset A$ est un noyau d'un morphisme d'anneau.

Lemme 45 (Critère de Sous-Module)

Soit $N \subset M$ un sous-ensemble dûn A-module M alors N est un sous-module de M ssi

$$\forall a \in A, n, n' \in N, a * n + n' \in N.$$

Preuve

Si on prend $a = -1_A$, on a que

$$\forall n, n' \in N - 1_A * n + n' \in N$$
$$-n + n' \in N$$

Donc N vérifie le critère de sous-groupe, donc est un sous-groupe de (M,+). Comme N est un sous-groupe $0_M \in N$, et $\forall a \in A \forall n \in N$

$$a * n = a * n + 0_M \in N$$

N vérifie les 2 propriétés requises pour être un sous-module.

Exemple

 $\{0_M\} \subset M$ est clairement stable par multiplication

- $-d \le d', A[x]_{\le d} \le A[x]_{\le d'} \le A[x]$
- $\Delta A = \{(a,\ldots,a) = a.(1,\ldots,1)\} \subset A^d \ \Delta A \ \textit{est un sous-module de } A^d.$
- Plus généralement,

$$\overrightarrow{x} = (a_1, \dots, a_d), A.\overrightarrow{x} = \{a.\overrightarrow{x} = (a.a_1, \dots, a.a_n | a \in A\}$$

est un sous-module de A^d .

Preuve

Soient $a \in A, \overrightarrow{v}, \overrightarrow{v'} \in A.\overrightarrow{x}$

$$\overrightarrow{v} = a'.(a_1, \dots, a_d) = a'.\overrightarrow{x'}$$

$$\overrightarrow{v'} = a''(a_1, \dots, a_d) = a''.\overrightarrow{x'}$$

Critère de sous-module :

$$a.\overrightarrow{v} + \overrightarrow{v'} = a.a'.\overrightarrow{x} + a''.\overrightarrow{x} = (a.a' + a'').\overrightarrow{x} \in A.\overrightarrow{x}$$

5.7 Module engendré par un ensemble

Proposition 47

Soit M un A-module et M_1, M_2 des sous-modules alors

$$M_1 \cap M_2 \subset M$$

est un sous-module et plus généralement soit $(M_i)_{i\in I}$ une collection de sousmodules alors

$$\bigcap_{i\in I} M_i \subset M$$

est un sous-module.

Definition 27

Soit $X\subset M$ un sous-ensemble d'un A-module, le module engendré par X est le plus petit sous-mdoule de M contenatn X (l'intersection de tous les sous-modules contenant X)

$$\langle X \rangle := \bigcap_{X \subset N \subset M} N.$$

Theorème 48

Soit $X \subset M$ un ensemble alors $\langle X \rangle$ est soit le module nul $\{0_M\}$ si X est vide, soit l'ensemble des combinaisons linéaires d'éléments de X à coefficients dans A:

$$\langle X \rangle = CL_A(X) := \left\{ \sum_{i=1}^n a_i * x_i, n \ge 1, a_1, \dots, a_n \in A, x_1, \dots, x_n \in X \right\}.$$

Pour tout $n \ge 1$.

Preuve

 $CL_A(X)$ on va montrer que $CL_A(X)$ est un sous-module contenant X

$$\Rightarrow \langle X \rangle \subset CL_A(X)$$

ensuite on va montrer que si $X \subset N \subset M$ est un sous-module contenant X alors

$$N \supset CL_A(X)$$
$$\Rightarrow CL_A(X) \subset \langle X \rangle$$

On utilise le critère de sous-module : Soit $a \in A, u, v \in CL_A(X)$

$$a * u + v \in CL_A(X)$$

Or

$$u = a_1 x_1 + \ldots + a_n x_n, a_i \in A, x_i \in X$$

$$v = a'_1 x'_1 + \ldots + a'_m x'_m a'_j \in A, x'_j \in X$$

$$a * u + v = a.a_1 * x_1 + \ldots + a.a_n * x_n + a'_1 * x'_1 + \ldots + a'_m * x'_m \in CL_A(X)$$

$$X \subset CL_A(X)$$

car

$$x = 1_A.x = combinaison linéaire de longueur 1$$

Soit $X \subset N \subset M$ un sous-module et soit $n \geq 1, a_1, \ldots, a_n \in A$

$$x_1, \ldots x_n \in X$$

Alors comme N est stable par * et que $x_1, \ldots, x_n \in X \subset N$

$$\Rightarrow a_1 * x_1 + \ldots + a_n * x_n \in N$$

Lecture 8: Modules et Corps

Mon 12 Oct

5.8 Morphismes de Modules

Definition 28 (Morhpismes de Module)

Soit A un anneau et M, N des A-modules, un morphisme de A-modules entre M et N est un morphisme de groupes

$$\phi: M \to N$$

qui est compatible avec les lois de multiplication externes $*_M$ et $*_N$:

$$\forall a \in A, m \in M, \phi(a *_M m) = a *_N \phi(m)$$

On dit aussi que ϕ est une application A-linéaire.

Remarque

 $\forall a, a' \in A, m, m' \in M$

$$\phi(a *_{M} m + a' *_{M} m') = \phi(a * m) + \phi(a' * m') = a *_{N} \phi(M) + a' *_{N} \phi(m')$$

Lemme 50 (Critere de l'application lineaire)

Soit $\phi: M \to N$ une application entre deux modules alors ϕ est un morphisme si et seulement si

$$\forall a \in A, m, m' \in M, \phi(a *_M m + m') = a *_N \phi(m) + \phi(m')$$

Preuve

 \Rightarrow a été fait ci-dessus.

← :

Si on prend $a = -1_A$, on obtien

$$\forall m, m' \quad \phi(-m+m') = -\phi(m) + \phi(m')$$

en prenant m = m' on obtient $\phi(0) = 0$, et en prenant a = 1, on a

$$\phi(m+m') = \phi(m) + \phi(m')$$

 $\Rightarrow \phi$ est un morphisme de groupes additifs.

Si on prend $m' = 0_M$

$$\phi(a * m + 0_M) = \phi(a * m)$$

= $a * \phi(m) + \phi(0_M) = a * \phi(m)$

Proposition 51

Soit $\phi: M \to N$ un morphisme de A-module et $M' \subset M$ et $N' \subset N$ des sous-modules, alors

$$\phi(M') \subset Net\phi^{-1}(N') \subset M$$

sont des sous-modules de M et N respectivement. En particulier

$$\ker \phi = \phi^{-1} \{0_N\} \subset M \ et \ Im \phi(M) \subset N$$

Preuve

Comme ϕ est un morphisme de groupes $\phi(M') \subset N$ est un sous-groupe de N et $\phi^{-1}(N') \subset M$ est un sous-groupe de M Reste a vérifier la stabilité par *.

On veut montrer que si $m' \in \phi^{-1}(N')$ alors

$$\forall a \in A \quad a *_M m' \in \phi^{-1}(N')$$

$$m' \in \phi^{-1}(N') \Rightarrow \phi(m') \in N'$$

 $Comme\ N'\ est\ un\ sous-module$

$$a *_N \phi(m') \in N'$$

 $msid\ comme\ \phi\ est\ linéaire$

$$a *_N \phi(m') = \phi(a *_M m') \Rightarrow a * m' \in \phi^{-1}(N')$$

- Si $M' \subset M$ est un sous-module alors $\phi(M')$ est un sous-module.
- On sait que $\phi(M') \subset N$ est un sous-groupe Reste a verifier que $\phi(M')$ est stable par * dans A. Soit $n' \in \phi(M')$ alors $n' = \phi(m'), m' \in M'$ Soit $a \in A$, $a *_N n' = a * N\phi(m') = \phi(a *_M m')$

 $Comme\ M'\ est\ un\ sous-module$

$$a *_{M} m' \in M' \text{ et donc}$$

$$a *_{N} n' = \phi(a *_{M} m') \in \phi(M')$$

Remarque

Le critère d'injectivité s'applique ϕ un morphisme de A-modules est injectif ssi $\ker \phi = \{0_m\}$ C'est vrai parce que c'est vrai quand on voit ϕ comme un morphisme de groupes.

5.9 Structures Algebriques des espaces de morphismes Definition 29

 $On\ note$

$$Hom_{A-mod}(M,N), Isom_{A-mod}(M,N)$$

$$End_{A-mod}(M), = Hom_{A-Mod}(M,M)$$

$$Aut_{A-mod}(M) = GL_{A-mod}(M) = Isom_{A-mod}(M,M)$$

les ensembles de morphismes, morphismes bijectifs, d'endomorphismes et d'automorphismes des A-modules M et N

Proposition 53

Soient $\phi:L\to M$ et $\psi M\to N$ des morphisms de A-modules alors $\psi\circ\phi:L\to N$ un morphisme.

Preuve

Soit $\phi: L \to M$, $\psi: M \to N$ des applications lineaires alors

 $\psi \circ \phi$ est linéaire

On sait que $\psi \circ \phi$ est un morphisme de groupes.

Reste a voir que $\forall a \in A, l \in L$

$$\psi \circ \phi(a *_L l) = a *_N \psi \circ \phi(l)$$

$$\psi \circ \phi(a * l) = \psi(\phi(a * l)) = \psi(a *_M \phi(l)) = a *_N \psi \circ \phi(l)$$

Proposition 54

Soient M et N des A-modules alors $Hom_{A-mod}(M,N)$ a une structure naturelle de groupe commutatif.

Si de plus A est commutatif alors $Hom_{A-mod}(M,N)$ a une structure de A-module

Preuve

 $Si \ \phi \ et \ \psi \in Hom_{A-mod}(M,N), \ alors$

$$\phi + \psi : m \to \phi(m) + \psi(m)$$

on sait que $\phi + \psi$ est un morphisme de groupes et on montre que c'est meme un morphisme de modules.

$$(\phi + \psi)(a*m) = \phi(a*m) + \psi(a*m) = a*\phi(m) + a*\phi(m) = a*(\phi(m) + \psi(m))$$

Donc $\phi + \psi \in Hom_{A-mod}(M, N)$, donc la proposition est prouvee.

Theorème 55

Soit M un A-module. L'ensemble $End_{A-mod}(M)$ des endomorphismes de M est un sous-anneau de $(End, +, \circ)$ dont le groupe des unites est $Aut_{A-mod}(M)$;

de plus, si A est commutatif, $End_{A-mod}(M)$ possede une structure naturelle de A-module qui en fait une A-algebre.

 $End_{A-mod}(M)$ est appellee l'algebre des endomorphismes du A-module M

Preuve

On utilise le critère du sous-anneau.

On sait que $\phi \circ \psi + \Phi \in End_{Gr}(M)$, et on doit vérifier que c'est compatible avec la loi de multiplication externe *

$$(\phi \circ \psi + \Phi)(a * m) = ?a * (\phi \circ \psi + \Phi)(m)$$
$$(\phi \circ \psi + \Phi)(a * m) = \phi \circ \psi(a * m) + \Phi(a * m)$$
$$= a * \phi \circ \psi(m) + a * \Phi(m)$$
$$= a * (\phi \circ \psi(m) + \Phi(m))$$

6 Corps

Definition 30 (Corps)

Un corps K est un anneau commutatif possédant au moins deux éléments $0_k \neq 1_k$ et tel que tout element non-nul est inversible :

$$K^{\times} = K \setminus \{0_K\}$$

Exemple

- $-\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sont des corps.
- \mathbb{Z} n'est pas un corps, car $\mathbb{Z}^{\times} = \{\pm 1\}$
- $\mathbb{R}(x)$ Le corps des fractions rationelles à coefficients dans \mathbb{R}

$$= \left\{ f(x) = \frac{P(x)}{Q(x)}, P(x), Q(x) \in \mathbb{R}[x], Q \neq 0 \right\}$$

$$si\ f(x) = \frac{P(x)}{Q(x)} \neq 0, f(x)^{-1} = \frac{Q(x)}{P(x)}$$

Proposition 57

Soit K un corps, B un anneau et $\phi \in Hom_{Ann}(K, B)$ un morphisme. Alors, si ϕ n'est pas nul ($\phi \neq 0_B$) ϕ est injectif.

$$\phi: K \hookrightarrow B$$

Preuve

Soit $\phi: K \to B$ un morphisme d'anneaux, supposons $\phi \neq 0_B$.

Il existe $k \in K$ tel que $\phi(k) \neq 0_B$, alors $k \neq 0_k$ (sinon $\phi(k) = 0_B$)

Comme K est un corps, k est inversible et il existe k^{-1} tel que $k.k^{-1} = 1_K$.

Montrons que ϕ est injectif :

c'est à dire que

$$\ker \phi = \{0_K\}.$$

Supposons que non, alors soit $k \in \ker \phi$, tel que

$$\phi(k) = 0_B \ et \ k \neq 0_K$$

 $Comme \ k \ est \ inversible$

$$\phi(1_K) = \phi(k.k^{-1}) = \phi(k).\phi(k^{-1}) = 0_B$$

Donc si ker $\phi \neq \{0_K\}$, alors $\phi(1_K) = 0_B$, mais alors $\forall \lambda \in K$

$$\phi(\lambda) = \phi(\lambda . 1_K) = \phi(\lambda)\phi(1_K) = 0_B$$

Donc $\phi = 0_B$ ce qu'on a exclu. \nleq

6.1 Corps des fractions

Lemme 58

Soit $\{0\} \neq A \subset K$ un sous anneau non-nul commutatif d'un corps K, alors

$$\forall a,b \in A, a.b = 0 \iff a = 0 \ ou \ b = 0$$

Definition 31

Un anneau commutatif tq si $a.b = 0 \Rightarrow a = 0$ ou b = 0 est appelé integre.

Un corps est toujours intègre.

Preuve

Soit $a, b \in A \subset K$, tel que $a.b = 0_A = 0_K$, supposons que $a \neq 0_K$, alors a admet un inverse dans K, il existe $a^{-1} \in K$ tel que $a^{-1}.a = 1_K$.

$$a.b = 0_K \Rightarrow a^{-1}.a.b = a^{-1}.0_K \Rightarrow b = 0_K$$

Lecture 9: Corps

Tue 13 Oct

Proposition 59

Soit A un anneau integre, alirs il existe un corps K et un morphisme d'anneau injectif

$$\iota:A\hookrightarrow K$$

de sorte qu'on peut considerer A comme un sous-anneau de K en identifiant A à $\iota(A) \subset K$ et tel que K a la propriete de minimalite suivante : pout tout corps K' et tout morphisme injectif

$$\iota':A\hookrightarrow K'$$

de sorte que A peut etre identifie a un sous-crops de K', il existe un morphisme (necessairement injectif)

$$\iota': K \hookrightarrow K'$$

prologeant le morphisme ι' (ainsi A et K peuvent etre vus comme des sous-anneaux de K')

Definition 32

On appelle ce corps K le corps des fractions de A.

Exemple

- $Frac(\mathbb{Z}) = \mathbb{Q}$
- $-Frac(\mathbb{R}[X]) = \mathbb{R}(X)$ (défini comme avant)

Preuve

Construison K.

A est intègre.

On considère l'ensemble produit

$$A \times A \setminus \{0\} = \{(a,b)|a,b \in A, b \neq 0_A\}$$

On définit sur cet ensemble une relation.

 $(a,b) \sim (a',b')$ si et seulement si a.b' = a'.b, la relation \sim est une relation d'équivalence.

- Symmetrique : Si $a.b' = a'.b \iff a'.b = a.b' \iff (a',b') \sim (a,b)$
- $\ \textit{Reflexive} \, : (a,b) \sim (a,b) \iff a.b = a.b$
- Transitive: $(a,b) \sim (a',b')$ et $(a',b') \sim (a'',b'')$. On $a \ a.b' = a'.b$ et a'.b'' = a''.b'.

$$\implies ab'b'' = a'b'b''$$

$$\implies a.b''.b' = a.b''.b'$$

$$\implies a.b''b' = a'b''b = a''b'b = a''bb'$$

$$\implies (ab'' - a''b).b' = 0_A$$

Comme A est intègre,

$$ab'' - a''b = 0_A$$
 ou bien $b' = 0_A$

Donc

$$ab'' - a''b = 0_A$$

 $Donc(a,b) \sim (a'',b'')$

Soit $K = A \times A \setminus \{0\} / \sim l$ 'ensemble des classe d'équivalences.

On note $\frac{a}{b}$ la classe de l'élément (a,b).

On va munir K d'une addition et d'une multiplication d'un $\mathbf{0}_K$, d'une $\mathbf{1}_K$ ainsi que

$$\iota:A\hookrightarrow K$$

Il faut maintenant vérifier toutes les propriétés d'un corps.

$$+: \frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'}$$

 $b.b' \neq 0_A \ vrai \ car \ b, b' \neq 0 \ et \ A \ integre.$

On doit vérifier que cette définition ne dépend que des classes d'équivalence $\frac{a}{b}$ et $\frac{a'}{b'}$.

Si $(a'',b'') \sim (a',b')$ on veut voir que $\frac{a}{b} + \frac{a'}{b'} = \frac{a}{b} + \frac{a''}{b''}$. On doit vérifier que

$$\underbrace{(ab'+a'b)}_{abb'b''+a'b^2b''}.bb'' = \underbrace{(ab''+a''b)}_{abb'b''+a''b^2b'}.bb'$$

On sait que a'b'' = a''b'.

$$\Rightarrow a'b^2b'' = a''b^2b'$$

On fait pareil pour définir la multiplication ×

$$\frac{a}{b} \times \frac{a'}{b'} = \frac{a.a'}{b.b'}$$

et on doit vérifier que si $\frac{a''}{b''} = \frac{a'}{b'}$ alors $\frac{a}{b} \times \frac{a'}{b'} = \frac{a}{b} \times \frac{a''}{b''}$ sachant que a'b'' = a''b'. On vérifie que $+, \times$ sont commutatives, associatives, distributives.

On définit $0_k = \frac{0}{1_A}$ et $1_K = \frac{1_A}{1_A}$ Enfin, dire que $\frac{a}{b} \neq 0_K \iff a$ et $b \neq 0_A$ et alors si $\frac{a}{b} \neq 0_K$ $\frac{b}{a} \times \frac{a}{b} = \frac{1_A}{1_A} = 1_K$. On a un morphisme injectif

$$\iota:A\hookrightarrow K$$

donné par

$$\iota(a) = \frac{a}{1_A}$$

On vérifie que c'est un morphisme d'anneau et, si $\iota(a)=0_K=\frac{0_A}{1_A}\iff \frac{a}{1_A}=\frac{a}{1_A}$ $\frac{0_A}{1_A}\iff a=0_A,\ donc$

$$\ker \iota = \{0_A\}$$

donc ι est injectif.

6.2Caractéristique des Corps

K un corps,

$$Can_K : \mathbb{Z} \to A$$

 $n \to n.1_K = n_k$
 $\ker(Can_K) = p\mathbb{Z}, p \ge 0$

Definition 33 (Caractéristique)

L'entier p s'appelle la caractéristique du corps K et se note

Si p = 0: ker $Can_K = \{0_{\mathbb{Z}}\}$, donc Can_K est injectif et donc \mathbb{Z} peut être vu comme sous-anneau de K.

$$n \in \mathbb{Z} \to n_K \in K$$

Si $n \neq 0, n_K \neq 0$ et $\frac{1}{n_K}$ existe et pour tout $a,b \in \mathbb{Z}, b \neq 0$, on définit

$$(\frac{a}{b})_K = a_K/b_K \in K$$

On dispose d'un morphisme injectif

$$Can_K: \mathbb{Q} \hookrightarrow K$$
$$\frac{a}{b} \to \frac{a_K}{b_K}$$

Si Car(K) = 0, le corps \mathbb{Q} est un sous-corps de K.

Lemme 61

 $Si\ car(K) > 0$, alors car(K) = p est un nombre premier.

Preuve

 $Si p = 1, \ker Can_K = \mathbb{Z}$

$$\Rightarrow Can_K(1) = 1_K = 0_K$$

Donc $p \geq 2$.

Soit une factorisation

$$p = q_1 \cdot q_2$$

non-triviale ($q_1, q_2 \geq 2$)

$$0_K = Can_K(p) = Can_K(q_1 \cdot q_2) = Can_K(q_1) \cdot Can_K(q_2)$$

Comme K est intègre, $Can_K(q_1) = 0_K$

$$q_1 \in \ker Can_K = p\mathbb{Z}$$

$$q_1 = pk, k \in \mathbb{Z} \setminus \{0\}$$

 $Donc \ q_1 \ge p \ mais \ comme \ q_2 \ge 2$

$$q_2 \le \frac{p}{2} < p$$

Donc p est premier.

Definition 34

$$\mathbb{F}_p = Can_K(\mathbb{Z}) = \mathbb{Z}.1_K$$

Lemme 62

 $L'anneau\ \mathbb{F}_p\ est\ un\ corps\ fini\ de\ cardinal\ p.$

Preuve

 $Si \ n \in \mathbb{Z} \ et \ k \in \mathbb{Z}$

$$(n+pk)_K = n_K + p_k.k_K = n_k$$

Donc, si $r \in \{0, ..., p\}$ le reste de la division euclidienne de n par p

$$\mathbb{Z}.1_K = \{0_K, 1_K, \dots, (p-1)_K\}$$

 \mathcal{F}_p est de cardinal p.

Il faut montrer que si $0 < i \neq j \leq p-1$

$$i_K \neq j_K$$

mais

$$i_K - j_K = (i - j)_K$$

et comme $0 \le i, j \le p-1, \ 0 \ne |i-j| < p$ Donc i-j ne peut pas etre un multiple de p, donc $i-j \notin \ker Can_K$ Donc

$$(i-j)_K = i_K - j_K \neq 0_K \qquad \Box$$

Lemme 63

Un anneau commutatif integre et fini est un corps

Preuve

exercice

 $\mathbb F$ est integre car c'est un sous-anneau du corps K et il est fini de cardinal p.

Definition 35

Le corps $\mathbb{Q} \subset K$ si car(K) = 0 ou bien $\mathbb{F}_p \subset K$ (si car(K) = p > 0) s'appelle le sous-corps premier de K.

Remarque

Le corps

$$\mathbb{F}_p \simeq (\mathbb{Z}/p\mathbb{Z}, +, \times)$$

l'anneau des classes de congruences module p

6.3 Arithmétique des corps de caractéristique p > 0

Proposition 65

Soit K un corps de caractéristique p>0, alors l'application

$$\bullet^p: K \to K$$
$$x \to x^p$$

est un morphisme d'anneaux non-nul (donc nécessairement injectif).

Definition 36

Soit K un corps de caractersitique p, le morphisme d'anneau precedent s'appelle le morphisme de Frobenius (ou simplement le Frobenius) de K se note

$$frob_p: x \to x^p$$

Preuve

 $\forall x, y \in K$

$$(x.y)^p = x.y.x.y.x.y.x.y..$$
$$= x^p y^p$$

 $\forall x, y \in K$

$$(x+y)^p = x^p + y^p$$

Comme K est commutatif, on a la formule du binome de Newton

$$(x+y)^{p} = \sum_{k=0}^{p} {n \choose k} x^{k} y^{p-k}$$
$$= x^{p} + y^{p} + \sum_{k=1}^{p-1} {n \choose k} x^{k} y^{p-k}$$

Lemme 66

 $Si \ 1 \le k \le p-1, \ alors$

$$p | \binom{p}{k}$$

Or

$$\binom{p}{k}x^k y^{p-k} = \binom{p}{k}x^k y^{p-k} = 0_K \cdot x^k y^{p-k}$$

Lecture 10: EV

Mon 19 Oct

7 Espaces Vectoriels

Definition 37 (Espace Vectoriel)

Soit K un corps, in K-espace vectoriel V est simplement un K-module. Les éléments de V sont appelés vecteurs de V.

Exemple

 $\mathbb{Q}^d, \mathbb{R}^d, \mathbb{C}^d, d \ge 1$

Espaces de fonctions

$$\mathcal{F}(X;\mathbb{R}) \simeq \mathbb{R}^X$$

 $Plus\ g\'en\'eralement,\ si\ V\ est\ un\ K\text{-}ev$

$$\mathcal{F}(X;V) = V^X \ est \ un \ K-ev$$

Definition 38 (Produit)

 $Si\ V\ et\ W\ sont\ des\ K-ev$

$$V \times W = \{(v, w), v \in V, w \in W\}$$

Definition 39

Soit V un K-espace vectoriel, un sous-espace vectoriel (SEV) de V est un sous-K module $W \subset V$

Proposition 68 (Critere de SEV)

Un sous-ensemble $U \subset V$ d'un K-ev est un sev si

$$\forall \lambda \in K, \overrightarrow{v}, \overrightarrow{v'} \in U \Rightarrow \lambda \overrightarrow{v} + \overrightarrow{v'} \in U$$

Exemple

$$-\{0_V\}\subset V$$

$$-e \in V$$
 $K.e = {\lambda.e \mid \lambda \in K} \subset V \text{ est un SEV.}$

Definition 40

Soient V et W deux K-espaces vectoriels, un morphisme $\phi:V\to W$ de Kmodules est appelé une application K-linéaire.

Proposition 70 (Critere d'application linéaire)

Une application entre espaces vectoriels $\phi: V \to W$ est linéaire ssi

$$\forall \lambda \in K, \overrightarrow{v}, \overrightarrow{v'} \in V, \phi(\lambda.\overrightarrow{v} + \overrightarrow{v'}) = \lambda \phi(\overrightarrow{v}) + \phi(\overrightarrow{v'})$$

Preuve

C'est un cas particulier du critere de morphisme de modules.

Proposition 71

Le noyau et l'image d'une application linéaire est un sev

Preuve

C'est un cas particulier du critere de morphisme de modules.

Proposition 72

 ϕ une application linéaire. ϕ injective ssi

$$\ker \phi = \{0\}$$

Definition 41 (Notations)

 $On\ notera$

$$Hom_{K-ev}(V, W), Isom_{K-ev}(V, W), Aut_{K-ev}(V) = GL(V)$$

Les ensembles des applications bijectives.

Definition 42

Une forme linéaire sur V est une application linéaire a valeurs dans K

$$l: V \mapsto K$$
.

On note l'ensemble des formes linéaires

$$V^* := End_{K-ev}(V, K)$$

C'est le dual.

Proposition 73

Soit $l: V \mapsto K$, si $l \neq 0_K$, alors l est surjective

$$l(V) = K$$
.

Preuve

Comme $l \neq 0_K$, il existe

$$v \in V \ tel \ que \ l(v) = x \neq 0_K$$

Soit $y \in K$, on cherche v' tel que l(v') = y.

Comme $x \neq 0_K$, x est inversible d'inverse x^{-1} soit $v' = y.x^{-1}.v$, on a

$$l(v') = l(y.x^{-1}.v) = y.x^{-1}.l(v) = y.x^{-1}.x = y$$

7.1 Familles génératrices

Definition 43

Soit $\mathcal{F} \subset V$ un sous-ensemble, on note

$$\langle \mathcal{F} \rangle = Vect(\mathcal{F}) = CL_K(\mathcal{F})$$

le sous-espace vectoriel engendre par \mathcal{F} .

Definition 44

Soient $X,Y \subset V$ des sev d'un espace vectoriels. Leur somme $X+Y \subset V$ est

$$X+Y=\langle X\cup Y\rangle\subset V$$

est le sev engendré par les vecteurs de X et de Y.

Lemme 74

 $On \ a$

$$X + Y = \{x + y, x \in X, y \in Y\}$$

Preuve

Il suffit de montrer que $\{x+y, x \in X, y \in Y\}$ est un sev.

En effet, si c'est le cas, il contient X,Y, il contient donc $X\cup Y$ et donc il contient $\langle X\cup Y\rangle=X+Y$.

De plus, comme $\langle X \cup Y \rangle$ contient tout élément $x \in X$ et tout élément $y \in Y$, il contient x + y (car c'est un sev)

$$\Rightarrow \langle X \cup Y \rangle = \{x + y \mid x \in X, y \in Y\}$$

Soit $\lambda \in K, x + y$ et $x' + y' \in \{u + v \mid u \in X, v \in Y\}$.

$$\lambda(x+y) + (x'+y') = \lambda x + \lambda y + x' + y'$$
$$= (\lambda x + x') + (\lambda y + y') \in \{u + v, u \in X, v \in Y\}$$

Definition 45 (Notations)

 $Si\ X\cap Y$, on dit que X et Y sont en somme directe et on ecrit

$$X \oplus Y \subset V$$

pour leur somme.Si

$$X \oplus Y = V$$

on dit que V est somme directe de X et Y.

Proposition 75

Soit X et Y en somme directe. Soit $W=X\oplus Y$, alors $w\in W$ s'écrit comme combinaison linéaire unique de $x\in X$ et $y\in Y$

Preuve

Supposons w = x + y = x' + y', alors

$$\Rightarrow x + y = x' + y'$$
$$\Rightarrow X \ni x - x' = y' - y \in Y$$

$$Donc \ x - x' = y' - y = 0$$

Definition 46 (Famille génératrice)

Soit V un K-ev. Un sous-ensemble $\mathcal{F} \in V$ est une famille génératrice si

$$Vect(\mathcal{F}) = V$$

ie. tout élément $v \in V$ peut s'écrire sous la forme d'une combinaison linéaire

$$v = \sum_{i=1}^{n} x_i e_i$$

Definition 47 (Espace vectoriel fini)

Un K-espace vectoriel non-nul est dit de dimension finie si il est de type fini comme K-module : si il exist un ensemble $\mathcal F$ fini tel que

$$V = Vect(\mathcal{F})$$

La dimension de V est définie comme le minimum du cardinal de toutes les familles génératrices finies de V

$$\dim_K(V) = \min_{\mathcal{F} \text{ genératrice}} |\mathcal{F}|$$

Par convention, la dimension de l'espace vectoriel nul $\{0_V\}$ est

$$\dim_K(\{0_K\}) = 0$$

On peut prendre la famille vide comme famille génératrice

Theorème 76

Tout K-espace vectoriel de dimension finie est linre, c'est a dire isomorphe a K^d pour un certain $d \ge 0$

Remarque

 $d = \dim_K(V)$

Remarque

On verra à la fin ce qui arrive aux espaces vectoriels qui ne sont pas de dimension finie.

Lecture 11: Espaces Vectoriels 2

Tue 20 Oct

Soit V un K-ev de dimension finie et $G=\{e_1,\cdots,e_n\}$ une famille de vecteurs.

$$CL_G: K^d \to V$$

$$(x_1, \dots, x_d) \to x_1.e_1 + x_2e_2 + \dots + x_de_d$$

 CL_G est linéaire, suit du critere de combinaison linéaire.

Dire que G est génératrice $\iff CL_G$ est surjective, donc que $CL_G(K^d) = V$.

7.2 Famille Libre

Definition 48 (Famille Libre)

Soit $\mathcal{F} = \{e_1, \dots, e_d\} \subset V$ et définissons

$$CL_{\mathcal{F}}:K^d\mapsto V$$

une application pas forcément surjective.

Si cette application est injective, alors la famille \mathcal{F} est libre.

Comme $CL_{\mathcal{F}}$ est linéaire, $CL_{\mathcal{F}}$ est injective si et seulement si

$$\ker CL_{\mathcal{F}} = \{0_V\}$$

Donc $\overrightarrow{x} = (x_1, \dots, x_n)$ ssi

$$\sum_{i} x_i e_i = 0$$

Definition 49

Un sous-ensemble fini $\mathcal{F} = \{e_1, \dots, e_d\} \subset V$ d'un espace vectoriel forme une famille libre de V si et seulement si pour tous $x_1, \dots, x_d \in K$

$$\sum_{i} x_i e_i = 0_V \implies x_1 = \dots = x_d = 0$$

Une famille \mathcal{F} qui n'est pas libre est dite liée.

Proposition 79

Une famille à d éléments $\mathcal{F} = \{e_1, \dots, e_d\} \subset V$ est liée si et seulement si il existe $i \in \{1, \dots, d\}$ tel que e_i peut s'exprimer comme combinaison linéaire des autres éléments de \mathcal{F}

$$e_i \in CL(\mathcal{F} \setminus \{e_i\}) = CL(e_j, j \neq i)$$

Preuve

Supposons \mathcal{F} est liée, il existe $(x_1, \dots, x_d) \neq 0_V$ tel que

$$x_1e_1 + \dots + x_de_d = 0_V$$

un des $x_i \neq 0_K$ on peut suposer sans perte de géneralité que $x_d \neq 0$, donc

$$-x_d e_d = x_1 e_1 + \dots + x_{d-1} e_{d-1}$$

Or $x_d \neq 0$ donc innversible, on obtient donc

$$x(x_d)^{-1} \in K \setminus \{0\}$$

Donc

$$e_d = \frac{x_1}{-x_d}e_1 + \dots + \frac{x_{d-1}}{-x_d}e_d$$

 $Si\ e_d \in CL(\{e_1, \cdots, e_{d-1}\}), \ avec \ avec$

$$e_d = y_1 e_1 + \dots + y_{d-1} e_{d-1}, y_i \in K$$

Donc

$$0_V = y_1 e_1 + \dots + y_{d-1} e_{d-1} - e_d \neq 0$$

Theorème 80

Soit V un espace vectoriel non-nul de dimension d et $\mathcal{F} = \{v_1, \dots, v_f\} \subset V$ une famille finie et libre, alors $f \leq d$

Preuve

Par récurrence sur d.

Supposons que l'espace est engendré par un élément K.

$$d=1$$
 $V=K.e, e \neq 0$

Montrons que $\mathcal{F} = \{v_1, \dots, v_f\} \subset V = K.e$ avec $v_i = x_i.e$ $f \geq 2$ Comme $v_1 \neq v_2, x_1.e = v_1, x_2.e = v_2$, alors x_1 ou $x_2 \neq 0_k$.

Supposons $x_1 \neq 0$, alors $v_2 = x_2.e = \frac{x_2}{x_1}.x_1.e$

Alors \mathcal{F} est liée car v_2 est cl de v_1 .

Dimesions $\dim V = d \geq 2$ et on suppose le résultat démontré en dimension

< d - 1.

Soit $\mathcal{F} = \{v_1, \dots, v_f\} \subset V$ avec $f \geq d+1$, on veut montrer que \mathcal{F} est liée. Soit $G = \{e_1, \dots, e_d\}$ une famille génératrice de V pour $i = 1, \dots, f$

$$v_i = x_{i,1}e_1 + \dots + x_{i,d}e_d$$

avec $x_{i,j} \leq d \ dans \ K$.

Comme $f > d \ge 1$, il existe $x_{i,j} \ne 0_K$.

Quitte à permuter les e_j et les v_i on peut supposer que

$$x_{f,d} \neq 0_K$$

On pose : $i \leq f$

$$v_i' := v_i - \left(\frac{x_{i,d}}{x_{f,d}}.v_f\right)$$

$$Si \ i = f \quad v'_f = v_f - \frac{x_{f,d}}{x_{f,d}} v_f = 0_V.$$

Posons

$$v'_{i} = x'_{i,1}e_{1} + \dots + x'_{i,d-1}e_{d-1} + (x_{i,d} - \frac{x_{i,d}}{x_{f,d}}x_{f,d})e_{d}$$

On a construit f-1 vecteurs $\mathcal{F}'=\left\{v_1',v_2',\cdots,v_{f-1}'\right\}$ qui sont contenus dans l'espace vectoriel

$$V' = CL(\{e_1, \cdots, e_{d-1}\}) \subset V$$

Or

$$\dim V' \ge d - 1 \ comme \ f - 1 > d - 1$$

la famille \mathcal{F}' est liée par hypothèse de récurrence.

Donc l'un des v'_i est CL des autres $v'_{i'}i' \neq i$, On peut supposer que c'est v'_1

$$v_1' = y_2 v_2' + \dots + y_{f-1} v_{f-1}'$$

Or

$$v_1' = v_1 - \frac{x_{1,d}}{x_{f,d}} v_f = y_2(v_2 - ()v_f) + \dots + y_{d-1}(v_{d-1} - ()v_f)$$

Donc

$$v_1 = y_2(v_2 - ()v_f) + \dots + y_{d-1}(v_{d-1} - ()v_f) + \frac{x_{1d}}{x_{f,d}}v_f$$

Donc v_1 est cl de v_2, \dots, v_f , donc \mathcal{F} est liée.

Corollaire 81

 $\dim K^d = d$

\mathbf{Preuve}

On sait que pour K^d , la base canonique

$$B_d^0 = \left\{ e_1^0, \cdots, e_d^0 \right\}$$

est génératrice, donc dim $K^d \leq d$.

Est libre :
$$d \le \dim K^d$$

7.3 Bases

Definition 50

Soit V un espace vectoriel de dimnesion finie. Une famille $\mathcal{B} = \{e_1, \dots, e_d\}$ est une base de V si l'une des contions equivalentes suivantes est vérifiée :

- 1. B est génératrice et libre
- 2. L'application combinaison linéaire de \mathcal{B}

$$CL_{\mathcal{B}}:K^d\to V$$

est un isomorphisme.

3. Pour tout $v \in V$ il existe un unique uplet $(x_1, \dots, x_d) \in K^d$ tel que v s'écrit sous la forme

$$v = x_1 e_1 + \dots + x_d e_d$$

Remarque

$$|\mathcal{B}| = \dim V$$

Une base à travers l'isomorphisme $CL_{\mathcal{B}}$ permet d'identifier un espace vectoriel abstrait V avec un espace vectoriel concret K^d .

Theorème 83

Soit V un K-espace vectoriel de dimension $d=\dim V\geq 1$ alors V possède une base $\mathcal B$ et on a donc un isomorphisme de K-ev

$$V \simeq K^d$$

Plus précisément

- 1. Soit $K \subset V$ une famille génératrice alors K contient une base de V. Si de plus |K| = d, alors K est une base.
- 2. Si $\mathcal{L} \subset V$ est lire alors \mathcal{L} est contenue dans une base de V. Si $|\mathcal{L}| = d$, alors \mathcal{L} est une base.

Preuve

Soit G une famille génératrice

$$|G| = d' \ge d = \dim V$$

Soit $B \subset G$ une famille génératrice de G de taille minimale parmi les familles génératrices contenues dans G.

B est libre (et est donc une base)

$$G = \{e_1, \cdots e_n\}$$

Supposons que \mathcal{B} est liée, alors il existe $e_{|B|}$ qui est cl de $\{e_1, \dots e_{|B|-1}\}$ Mais alors

$$V = CL(\mathcal{B}) = CL(\{e_1, \cdots, e_{|B|}\})$$

mais comme $e_{|B|}$ est cl de $\{e_1, \dots e_{|B|-1}\}$

$$CL(\{e_1, \cdots, e_{|B|-1}\}) \supset \{e_1, \cdots, e_{|B|-1}, e_{|B|}\}$$

Ca contredit la minimalité de B. Donc B est libre et c'est une base.

Lecture 12: Espaces Vectoriels 3

Mon 26 Oct

Continuation de la preuve de 83

Preuve

Soit $\alpha \subset V$ libre. Soit $\mathcal{B} \subset V$ une base.

Alors $\alpha \cup \mathcal{B}$ est génératrice et contient α .

Soit \mathcal{B}' une famille génératrice contenant α et contenue dans $\alpha \cup \mathcal{B}$, de taille minimale.

On va montrer que \mathcal{B}' est libre et que ce sera une base contenant α (et même contenue dans $\alpha \cup \mathcal{B}$)

Si $\alpha = \mathcal{B}'$, on a fini : $|\alpha| = |\mathcal{B}'|$ et α est une base.

Quitte à renuméroter \mathcal{B}' on peut supposer que

$$\mathcal{B}' = \left\{ \underbrace{e_1, \dots, e_{|\alpha|}}_{\in \alpha}, e_{|\alpha|+1}, \dots \right\}$$

Soient $x_1, \ldots, x'_d \in K$ tel que

$$x_1e_1 + x_2e_2 + \ldots + x_{|\alpha|}e_{|\alpha|} + e_dx_d = 0_V$$

Si tous les $x_{|\alpha|+i} = 0$ pour $i \ge 1$, alors on a

$$0_V = x_1 e_1 + \ldots + e_{|\alpha|} x_{|\alpha|}$$

 $Mais\ comme\ \alpha\ est\ libre \Rightarrow$

$$x_1 = \ldots = x_{|\alpha|} = 0_K$$

Si il existe $x_{|\alpha|+i} i \geq 1$ qui est non nul, alors

$$e_{|\alpha|+1} = \frac{x_1}{-x_{|\alpha|+i}} e_1 + \ldots + \frac{x_{|\alpha|}}{x_{|\alpha|+i}} e_{|\alpha|} + \ldots$$

Ce qui implique que V est engendré par $\{e_1, \ldots, e_{|\alpha|}\} \setminus e_{|\alpha|+i}$ Ce qui contredit la minimalité de la famille génératrice \mathcal{B}' parce que

$$\mathcal{B}' - \left\{ e_{|\alpha|+i} \right\}$$

est génératrice et contient α

Theorème 84 (Dimension de SEV)

Soit V un espace vectoriel de dimension finie, et $W \subset V$ un sous-espace vectoriel alors

- 1. W est de dimension finie et dim $W \leq \dim V$
- 2. Si \mathcal{B}_W est une base de W, alors il existe une base \mathcal{B}_V de contenant \mathcal{B}_W
- 3. $Si \dim W = \dim V$, alors W = V

Preuve

 $Si W = \{0_V\}, on a fini$

Sinon, si $W \neq \{0_V\}$, alors W contient une famille non-vide α qui est libre.

Soit $\alpha \subset W$ libre et de cardinal maximal (parmi les familles libres) On va montrer que α est génératrice de W (et α sera une base de W).

Si α n'est pas génératrice, il existe $e \in W \setminus \langle \alpha \rangle$.

Ce qui implique que e n'est pas combinaison linéaire des éléments de $\alpha \Rightarrow \alpha \cup \{e\}$ est libre, et elle est contenue dans W, ce qui contredit la maximalité de $|\alpha|$.

Donc W est de dimension finie, $\dim W = |\alpha| \leq \dim V$

 $Si |\alpha| = \dim V$, α est libre dans V et de taille $\dim V$.

Donc α est une base de V, et donc W = V

7.4 Espaces vectoriels de dimension infinie

Exemple

- $-\mathcal{F}(\mathbb{R},\mathbb{R})=\mathbb{R}^{\mathbb{R}}$ n'est pas de dimension finie
- $\mathcal{C}(\mathbb{R}, \mathbb{R})$ fonctions continues
- $\mathbb{R}[x]$ fonctions polynomiales sur \mathbb{R} n'ont pas de dimension finie

Definition 51

Soit V un K-ev. Un sous-ensemble $G \subset V$ est une famille génératrice si

$$Vect(G) = V$$

ie. tout élément $v \in V$ peut s'écrire sous la forme d'une combinaison linéaire finie d'éléments de G il existe $e_1, \ldots e_D \in G$, $x_1, \ldots x_d \in K$ tq

$$v = x_1 e_1 + \ldots + x_d e_d$$

Definition 52

Soit V un K- ev, un sous-ensemble $\mathcal{L} \subset V$ est une famille libre si tout sous-ensemble fini $\mathcal{L}' \subset \mathcal{L}$ est libre : $\forall d \geq 1$ et tout $\{e_1, \ldots, e_d\} \subset \mathcal{L}$, on a

$$x_1e_1 + \ldots + x_de_d = 0_V \iff x_1 = \ldots = x_d = 0_k$$

Definition 53

Une base $\mathcal{B} \subset V$ est une famille libre et génératrice : tout élément de v est représentable comme combinaison linéaire finie d'éléments de \mathcal{B}

Theorème 86

Dans une théorie des ensembles contenant l'axiome du choix, tout espace vectoriel possède une base et toutes les bases de V ont le même cardinal : pour toutes bases $\mathcal{B}, \mathcal{B}'$, il exists une bijection

$$\mathcal{B}\simeq\mathcal{B}'$$

La dimension de V est de cardinal d'une base

$$\dim V = |\mathcal{B}|$$

Lemme 87 (Lemme de Zorn)

Soit E un ensemble ordonné tel que tout sous-ensemble $A\subset E$ totalement ordonné possède un majorant alors E possède un élément maximal.

Proposition 88

Soit $\phi: V \to W$ une application linéaire avec V de dimension finie. Soit $G = \{e_1, \dots, e_g\} \subset V$ une famille génératrice, alors

$$\phi(G) = \{\phi(e_1), \dots, \phi(e_q)\} \subset W$$

est une famille génératrice de $Im(\phi)$ et on a

$$\dim Im\phi \leq \dim V$$

Definition 54

Soit $\phi:V\to W$ une application linéaire. Le rang de ϕ est la dimension de $Im\phi:$

$$rg(\phi) = \dim Im\phi$$

Preuve

Soit $G = \{e_1, \dots, e_q\} \subset V$ génératrice et soit

$$\phi(G) = \{\phi(e_1), \dots, \phi(e_q)\} \subset W$$

Soit $w \in Im\phi$ on veut montrer que w est $CL(\phi(G))$.

Comme $w \in Im\phi$, $w = \phi(v), v \in V$ et comme G est génératrice de V

$$v = x_1 e_1 + \ldots + x_g e_G, \quad x_i \in K$$

Donc

$$w = \phi(v) = x_1 \phi(e_1) + \ldots + x_q \phi(e_q)$$

Soit G = B une base, alors

$$|B| = \dim V$$

et

$$\dim Im\phi(V) \le |phi(B)| \le |B|$$

Corollaire 89

Une application linéaire envoyant une base sur une base est un isomorphisme

Preuve

 $\phi: V \to W$

B une base de ϕ et on suppose que

$$\phi(B) = \{\phi(e_1), \dots, \phi(e_d)\} = Base \ de \ W$$

Alors $\phi: V \simeq W$.

 ϕ est surjective car $\phi(B)$ engendre l'image de ϕ et comme $\phi(B)$ est ube base de W

$$\langle \phi(B) \rangle = Im\phi = W$$

 ϕ est injective : Soit $v \in \ker \phi$

$$v = x_1 e_1 + \ldots + x_d e_d$$

$$\phi(v) = 0 = x_1 \phi(e_1) + \ldots + x_d \phi(e_d)$$

Mais car $\{\phi(e_1), \ldots, \phi(e_d)\}$ est libre dans W.

$$Donc \ x_1 = \ldots = x_d = 0 \Rightarrow v = 0$$

Theorème 90 (Le théorème noyau-image)

Soit $\phi: V \mapsto W$ une application linéaire avec V de dimension finie. On a

$$\dim V = \dim \ker \phi + \dim Im\phi$$

Preuve

Soit $\{e_1, \ldots, e_k\}$ une base de $\ker \phi$ ($k \leq \dim V$)

Soit $\{f_1, \ldots, f_r\}$ une base de $Im\phi$ ($r \leq \dim V$), alors

$$f_1 = \phi(e_1'), \dots, f_r = \phi(e_r')$$
 avec $e_i' \in V$

On va montrer que

$$\{e_1,\ldots,e_k,e'_1,\ldots,e'_r\}\subset V$$

c'est une base de V. Alors

$$\dim V = |\{...\}| = k + r$$

Montrons que la famille est libre :

Soit $x_1, \ldots, x_k, x'_1, \ldots, x'_r \in K$ tel que

$$x_1e_1 + \ldots + x_r'e_r' = 0_V$$

On a

$$\phi(0_V) = \phi(x_1 e_1 + \dots + x'_r e'_r) = 0_W$$
$$= x_1 \phi(e_1) + \dots x'_r e'_r$$
$$= x'_1 f_1 + \dots + x'_r f_r \Rightarrow x'_1 = \dots x'_r = 0$$

Il reste

$$0_V = x_1 e_1 + \ldots + x_k e_k$$

Donc $\{e_1, \ldots, e_k\}$ est linre $\Rightarrow x_1 = \ldots = x_k = 0_K$ Montrons que $\{e_1, \ldots, e_k, e'_1, \ldots, e'_r\}$ est génératrice. Soit $v \in V$ on veut montrer que v est cl de la famille.

$$\phi(v) = \underbrace{w}_{\in Im\phi} = x'_1 f_1 + \dots x'_r f_r$$
$$= x'_1 \phi(e'_1) + \dots + x'_r \phi(e'_r)$$
$$= \phi(x'_1 e'_1 + \dots + x'_r e'_r)$$

Donc $\phi(v) = \phi(v')$, or

$$v - v' \in \ker \phi \ car \ \phi(v - v') = \phi(v) - \phi(v') = 0_W$$

Donc

$$v - v' = x_1 e_1 + \dots + x_k e_k$$

 $donc$
 $= x_1 e_1 + \dots + x_k e_k + x'_1 e'_1 + \dots + x'_r e'_r$

Lecture 13: Applications lineaires

Tue 27 Oct

Corollaire 91

Soit $\phi: V \to W$ une application lineaire entre espaces de dimension finie

- Si ϕ est injective et dim $W = \dim V$, alors ϕ est bijective
- $Si \phi$ est surjective et $\dim W = \dim V$, alors ϕ est bijective

Preuve

Si ϕ est injective, alors $\ker \phi = \{0_V\}$, et donc

$$\dim V = \dim \ker \phi + \dim Im\phi = \dim Im\phi = \dim W$$

De $m\hat{e}me$, $si\ \phi$ surjective, alors

$$Im\phi = W$$
 et $donc$ $\dim Im\phi = \dim W$

Donc on a

$$\dim W = \dim V = \dim \ker \phi + \dim W \qquad \qquad \Box$$

Donc dim ker $\phi = 0$ et donc ϕ est innjective \Rightarrow bijective.

Corollaire 92

Deux espaces vectoriels de dimension finie sont isomorphes si et seulement si ils ont meme dimension

Preuve

Soit V et W de même dimension =d. En choisissant B une base de V et B' de WOn a les isomorphismes

$$CL_B: K^d \simeq V \ et \ CL_{B'} \simeq W$$

 $Donc\ V\ et\ W\ sont\ isomorphes.$

 $Si\ V \simeq W$, alors $\ker \phi = \{0_V\}$ et $Im\phi = W$, on a alors

$$\dim V = \dim \ker \phi + \dim Im\phi = 0 + \dim W$$

7.5 Formes linéaires

$$l:V\to K$$

On rappelle que si $l \neq \underline{0}_k$, alors l est surjective l(V) = K.

$$\dim V = \dim \ker l + \dim K = \dim \ker l + 1$$

Donc, si $l:V\to L, l\neq \underline{0}_K$, alors dim ker $l=\dim V-1$, alors ker l est un hyperplan vectoriel de V.

7.6 Espaces d'applications linéaires

Soient V, W de dim $< \infty$, alors

$$Hom_{K-ev}(V, W)$$
 a une structure de $K-ev$

donné par

$$(\phi + \psi)(v) = \phi(v) + \psi(v)$$

et que

$$\lambda \in K \quad (\lambda.\phi)(v) = \lambda(\phi(v))$$

Theorème 93

Si V et W sont de dimension finie, alors $Hom_K(V, W)$ est de dimension fini

$$\dim(Hom_K(V, W)) = \dim V \cdot \dim W$$

Preuve

On va montrer que

$$Hom(V, W) \simeq W^{\dim V}$$

Soit $B = \{e_1, \dots, e_d\}$ une base de V

$$eval_B: Hom(V, W) \to W^{\dim V}$$

$$\phi \to (\phi(e_1), \phi(e_2), \dots, \phi(e_d))$$

On va montrer que eval $_B$ est un isomorphisme d'espaces vectoriels. eval $_B$ est linéaire :

$$eval_B(\lambda\phi + \psi) = (\lambda\phi(e_1) + \psi(e_1), \dots, \lambda\phi(e_d) + \psi(e_d)) = \lambda eval_B(\phi) + eval_B(\psi)$$

Montrons que $eval_B$ est injective, si

$$eval_B(\phi) = (0_W, \dots, 0_W)$$

Implique

$$\forall v \in V \quad v = x_1 e_1 + \ldots + x_d e_d$$

Donc

$$\phi(v) = x_1 \phi(e_1) + \ldots + x_d \phi(e_d) = 0_W$$

Donc ϕ injectif.

Soit $(w_1, \ldots, w_d) \in W^{\dim V}$ et soit ϕ l'application définie pour tout $v \in V$ par

$$\phi(v) = x_1 w_1 + \ldots + x_d w_d$$

 $si\ v = x_1e_1 + \ldots + x_de_d.$

C'est bien défini car B est une base de V et la combinaison linéaire qui représente V est unique.

Alors φ est linéaire et

$$\phi(e_i) = w_i \quad i = 1 \dots d$$

Donc eval_B est surjective et donc bijective

Remarque

$$eval_B: Hom(V, W) \simeq W^{\dim V}$$

dépend du choix de B.

Remarque

 $Si \ on \ choisit \ B' \ une \ base \ de \ W,$

$$W \simeq K^{d'}$$

 $et\ donc\ on\ obtient\ un\ isomorphisme$

$$Hom_K(V, W) = (K^{d'})^d$$

7.7 Formes linéaires et dualité

Definition 55

On note l'espace des formes linéaires $l: V \to K$

$$V^* = Hom(V, K)$$

et on l'appelle le dual de VComme dim K = 1, on a

$$\dim(V^*) = \dim Hom(V, K) = \dim V$$

En particulier un espace vectoriel V et son dual sont isomorphes. Plus précisément, soit

$$B = \{e_1, \dots, e_d\}$$

une base de V, on a alors un isomorphisme

$$eval_B: l \to (l(e_1), \dots, l(e_d)) \in K^d$$

Definition 56

Soit B une base de V, la base duale de B, $B^* \subset V^*$ est l'image réciproque de la base canonique $B_d^0 = \{e_i^0, i \leq d\} \subset K^d$ par l'application eval_B. On pose

$$e_i^* = eval_B^{-1}(e_i^0)$$

De sorte que

$$B^* = \{e_i^*, i < d\}$$

et c'est une base (car image d'une base par un isomorphisme) .

Proposition 96

Soit $B = \{e_1, \ldots, e_d\} \subset V$ et $B^* = \{e_1^*, \ldots e_d^* \subset V^*\}$ la base duale. On a

$$\forall i, j \le d, \quad e_i^*(e_j) = \delta_{ij}$$

Preuve

Calculons $e_1^* = eval_B^{-1}((1,0,0\ldots))$

Donc

$$eval_B(e_1^* = (1, 0, 0 ...)) = (e_1^*(e_1), ...)$$

 $idem\ pour\ e_i^*$.

Remarque

L'application $eval_B$ donne

$$V^* \simeq K^d \simeq V$$

Donc l'isomorphisme composé $V^* \simeq V$ est celui qui envoie e_i sur e_i^* . Cet isomorphisme dépend du choix de B(pas canonique).

Definition 57 (Application linéaire duale)

Soit $\phi: V \to W$ à partie de ϕ , on construit (canoniquement) une application

$$\phi^*: W^* \to V^*$$
 (application linéaire duale de ϕ)

Soit $l' \in W^* \to \phi^*(l')$ donné par

$$\phi^*(l')(v) = l'(\phi(v)) = ' \circ \phi$$

 ϕ^* est linéaire et

$$\bullet^*: \phi \in Hom(V, W) \to \phi^* \in Hom(W^*, V^*)$$

est linéaire.

7.8 Représentation paramétrique d'unn sev cartesienne

 $W \subset V$, Soit $\{e_1, \ldots, e_{d'}\}$ une base de W, alors tout vecteur de W s'écrit

$$w = x_1 e_1 + \ldots + x_{d'} e_{d'}$$

Alors

$$W = \{w = x_1e_1 + \ldots\}$$

On a alors une représentation paramétrique de tout vecteur

$$w \in W$$
, $w = x_1 e_1 + \ldots + x_{d'} e_{d'}$

de paramètre $x_1, \ldots, x_{d'}$.

Note : Il n'est pas nécessaire que $\{e_1, \dots e_{d'}\}$ soit une base, il suffit que ce soit une famille génératricre de W.

Représentation cartésienne

Proposition 98

Soit $W \subset V$ un sev. Il existe $d_V - d_W$ formes linéaires

$$\mathcal{L}_W^* = \{l_1, \dots, l_{d_v - d_W}\} \subset V^*$$

linéairement indépendantes (ie tq \mathcal{L}_W^* soit libre) telles que

$$W = \{v \in V, l_1(v) = \ldots = l_{d_v - d_{vv}}(v) = 0\}$$

De maniere equivalente, $W = \ker \phi_{\mathcal{L}_W^*}$ avec

$$\phi_{\mathcal{L}_{W}^{*}}: v \in V \to (l_{1}(v), \dots, l_{d_{v}-d_{W}}(v)) \in K^{d_{v}-d_{w}}$$

Preuve

Soit $W \subset V$ et soit $\{e_1, \ldots, e_{d'}\}$ une base de W. Il existe $e_{d'+1}, \ldots, e_d \in V$ tel que

$$\{e_1, \dots e_d\}$$

forme une base de V.

W est l'ensemble des vecteurs V dont les coordonnées suivant les vecteurs $e_{d'+1}, \dots e_d$ sont nulles.

$$v = x_1 e_1 + \dots + x_d e_{d'} + \dots + x_d e_d$$

Donc

$$W = \{ v \in V | e_{d'+1}^*(v) = \dots = e_d^*(v) = 0_K \}$$

7.9 Une base de $Hom_k(V, W)$

Soit $B = \{e_1, \dots, e_d\} \subset V$ et B* la base duale

$$B' = \{f_1, \dots, f_{d'}\} | i \le d' = \dim W \quad j \le d = \dim V$$

Alors

$$e_{ij}: V \to W$$

 $v \to e_j^*(v).f_i$

On dispose de d.d' applications e_{ij}

Lemme 99

L'application $e_{ij}: V \to W$ est linéaire, de rang 1, d'image $K.f_i$ et de noyau

$$\ker e_{ij} = \langle () B - \{e_i\} \rangle$$

L'hyperplan vectoriel engendré par les vecteurs de la base B moins le vecteur e_j

Preuve

e_{ij} est linéaire car

$$e_i^*: V \to K$$

est linéaire.

Vérification simple avec critère.

On a

$$Im(e_{ij}) = Im(e_i^*).f_i = K.f_i$$

de dimension 1.

$$\ker e_{ij} = \left\{ v \in V \ tel \ que \ e_j^*(v).f_i = 0_W \right\}$$

mais comme $f_i \neq 0_W$ (car f_i fait partie d'une base).

$$e_i^*(v).f_i = 0_w$$

si et seulement si

$$e_i^* = 0_K$$

Donc

$$\ker e_{ij} = \left\{ v \in V \ tel \ que \ e_j^*(v) = 0_K \right\}$$

Theorème 100

La famille d'applications linéaires

$$B_{B,B'} = \{e_{ij}, i \le d', j \le d\} \subset Hom(V, W)$$

forme une base de Hom(V, W)

Preuve

 $B_{B,B'}$ est de taille $d.d' = \dim Hom(V,W)$ pour montrer que c'est une base, il suffit de montrer que $B_{B,B'}$ est libre.

Soient m_{ij} , $i \leq d'$, $j \leq d$ des scalaires tel que

$$\sum_{i=1}^{d'} \sum_{j=1}^{d} m_{ij} e_{ij} = \underline{0}_W$$

On veut montrer que $m_{ij} = 0_K$.

$$\left(\sum_{i,j} m_{ij} e_{ij}\right) (e_k)$$

$$= \sum_{i} \sum_{j} m_{ij} e_{ij} (e_k)$$

$$= \sum_{i} \sum_{j} m_{ij} e_{j}^* (e_k) . f_i$$

$$= \sum_{i=1}^{d'} m_{ik} f_i = 0$$

Donc $m_{ik} = 0$ car les f_i forment une famille libre.

Proposition 101

Soit $\phi: V \to W$ une application linéaire et (m_{ij}) les coordonnées dans la base $B_{B,B'}$. Alors pour $k=1,\ldots,d$ les

$$m_{i,k}$$

sont les coordonnées de $\phi(e_k)$ dans la base B'

Preuve

On a

$$e_{ij}(e_k) = \sum_{i \le d'} \sum_{j \le d} m_{ij} e_j^*(e_k).f_i$$
$$= \sum_{i \le d'} m_{ik}.f_i$$

Proposition 102

Avec les notations précédentes, si $v = \sum_{j=1}^{d} x_j e_j$, on a

$$\phi(v) = \sum_{i=1}^{d'} y_i f_i \text{ avec } y_i = \sum_{j < d} m_{ij} x_j$$

Preuve

$$\phi(v) = \phi(\sum_{k=1}^{d} x_k e_k) = \sum_{k=1}^{d} x_k \phi(e_k) = \sum_{k=1}^{d} x_k \phi(e_k) = \sum_{k=1}^{d} x_k \sum_{k \le d'} m_{ik} f_k = \sum_{i \le d'} \left(\sum_{k=1}^{d} m_{ik} x_k\right) f_i$$

et par définition

$$\sum_{i \le d'} y_i f_i \qquad \qquad \Box$$

Lecture 14: Applications Lineaires, Matrices

Mon 02 Nov

7.10 Composition d'applications linéaires

$$\phi: U \to V, \psi: V \to W \text{ et } \psi \circ \phi: U \to W$$

Soit

$$B = \{e_k, k \le d\}, B' = \{f_j, j \le d'\}, B'' = \{g_i, i \le d''\}$$

et finalement

$$B_{B,B'} = \{e_k^*.f_j\}, B_{B',B''} = \{f_j^*.g_i\}, B_{B,B''} = \{e_k^*.g_i\}$$

Theorème 103

Soient $(n_{jk})_{j \leq d', k \leq d}$ les coordonn ; es de ϕ dans la base $B_{B,B'}$ et $(m_{ij})_{i \leq d'', j \leq d'}$ les coordonnees de ϕ dans la base $B_{B',B''}$. Alors les coordonnees $(l_{ik})_{i \leq d'', k \leq d}$ de

 $\psi \circ \phi$ dans la base $B_{B,B''}$ sont données par

$$l_{ik} = \sum_{j=1}^{d'} m_{ij}.n_{jk}$$

Preuve

$$\phi = \sum_{j < d'} \sum_{k < d} n_{jk} e_k^* . f_j$$

et

$$\psi = \sum_{j < d'} \sum_{i < d''} m_{ij} f_j^* . g_i$$

On veut calculer

$$\psi \circ \phi(e_k) = \sum_{i \le d''} l_{ik} g_i$$

 $On\ voit\ que$

$$\phi(e_k) = \sum_{j \le d'} \sum_{k' \le d} n_{jk'} e_{k'}^*(e_k) f_j = \sum_{j \le d'} n_{jk} f_j$$

$$= \psi(\phi(e_k)) = \psi(\sum_{j \le d'} n_{jk} f_j)$$

$$= \sum_{j \le d'} n_{jk} \psi(f_j)$$

$$= \sum_{j \le d'} n_{jk} \sum_{i \le d''} m_{ij} g_i$$

$$= \sum_{i \le d''} \left(\sum_{j \le d'} n_{jk} m_{ij}\right) g_i$$

$$= \sum_{i \le d''} \left(\sum_{j \le d'} m_{ij} n_j\right) g_i$$

8 Matrices

On a donc défini l'application linéaire

$$CL_{B_{B,B'}}: (m_{ij})_{i \le d', j \le d} \in K^{d'd} \mapsto \phi = \sum_{i \le d'} \sum_{j \le d} m_{ij} e_{ij} \in \text{hom}(V, W)$$

Definition 58

Les système de coordonnées à 2 indices $i \le d'$ et $j \le d$ s' appellent des matrices. On le note

$$M_{d' \times d}(K) = \{(m_{ij})_{i \le d', j \le d}, m_{ij} \in K\}$$

Un element de $M_{d'\times d}(K)$ est appelé matrice de dimensions $d'\times d$ ou matrice $d'\times d$. On les notes sous forme de tableaux.

Definition 59

Soient $B \subset V$, $B' \subset W$ des bases comme ci-dessous et $B_{B,B'} \subset \text{hom}(V,W)$ la base de hom(V,W) associee. L'application reciproque $Cl_{B_{B,B'}}^{-1}$ sera également notee

$$Mat_{B',B}: hom(V,W) \to M_{d'\times d}(K)$$

Explicitement, si on a la décomposition $\phi == \sum_{i \leq d'} \sum_{j \leq d} m_{ij} e_{ij}$, alors on a

$$Mat_{B',B}(\phi) = (m_{ij}(\phi))_{i \le d', j \le d} = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ \vdots & \ddots & \ddots & \dots \\ m_{d'1} & m_{d'2} & \dots & m_{d'd} \end{pmatrix}$$

L'espace $M_{d'\times d}(K)=(K^{d'})^d$ est un K-ev : on définit la somme de 2 matrices en sommant les coefficients :

$$(m_{ij}) + (n_{ij}) = (m_{ij} + n_{ij}) < d', j < d'$$

On définit de la même manière la multiplication par les scalaires.

8.1 Produit de Matrices

On a introduit les matrices à partir d'applications linéaires. On se souvient que le produit de deux matrices m_{ij} et n_{jk} est défini par

$$l_{ik} = \sum m_{ij} n_{jk}$$

Definition 60 (Multiplication Matricielle)

Soient $d, d', d'' \geq 1$ et $M \in M_{d'' \times d'}(K), N \in M_{d' \times d}(K)$, on définit le produit des matrices M et N comme étant la matrice

$$L = M.N = M \times N$$

avec

$$L = (l_{ik})_{i \le d'', k \le d} = (\sum_{j=1}^{d'} m_{ij} n_{jk})_{i \le d'', k \le d} \in M_{d'' \times d}(K)$$

Theorème 104

Le produit de matrices ainsi défini a les propriétés suivantes

1. Distributive à gauche : pour $\lambda \in K$, $M, M' \in M_{d'' \times d'}(K)$

$$(\lambda.M + M').N = \lambda.M.N + M'.N.$$

2.

3. distributive à droite pour $\lambda \in K$, $M, M' \in M_{d'' \times d'}(K)$

$$N.(\lambda.M + M') = \lambda.N.M + N.M'.$$

4. Neutralité de l'identité : Pour $M \in M_{d'' \times d'}(K), N, N' \in M_{d' \times d}(K)$

$$Id_{d^{\prime\prime}}.M = M$$

5. La matrice nulle est absorbante : pour $M \in M_{d'' \times d'}(K)$

$$0_{d''d'}.M = 0_{d''d'}$$

6. Associativité

$$(L.M).N = L.(M.N)$$

Preuve

Par le calcul direct.

Lecture 15: Matrices

Tue 03 Nov

8.2 Rang d'une Matrice

On a déjà défini le rang d'une application linéaire.

Definition 61 (Rang d'une matrice)

Soit $M \in M_{d' \times d}(K)$.

Le rang de M

 $rg(M) = dimension de l'espace engendré par les colonnes de M dans l'espace <math>Col_d(K)$

Proposition 105

Soit $\phi: V \to W$ et $M = mat_{B'B}\phi$, alors

$$rg(M)=rg(\phi)=\dim\phi(V)$$

Preuve

M est formée de colonnes dont les coordonnées sont celle des $\phi(e_j)j \leq d$ dans la base $B' = \{f_i, i \leq d'\}.$

Remarque

Le rang de M est $\leq min(d, d')$.

 $rang\ de\ M=\ dimension\ d'un\ espace\ engendré\ par\ d\ vecteurs$

Sa dimension sera toujours $\leq d$.

Cet espace est contenu dans $Col_{d'}(K)$ qui est de dim d'

8.3 Transposition

Soient $\phi: V \to W$ et $\phi^*: W^* \to V^*$.

Theorème 107

Soit $(m_{ij}) = Mat_{B,B'}(\phi), (m_{ij}^*) = Mat_{B',B}(\phi^*)$. Alors on a

$$m_{ij} = m_{ji}^*$$

On dit que $mat(\phi^*)$ est la transposée de $mat(\phi)$ et on la note $tmat(\phi)$

Definition 62

La transposition est l'application des matrices $d' \times d$ vers les matrices $d \times d'$ définie par

$$^{t} \bullet : (m_{ij})_{i \leq d', j \leq d} \mapsto (m_{ji})_{j \leq d, i \leq d'}$$

Proposition 108

La transposition est

- 1. Linéaire
- 2. Involutive: ${}^{t}({}^{t}M) = M$
- 3. Multiplicativité : pour deux matrices M et N, alors on a

$$^{t}(M.N) = ^{t} N.^{t}M$$

Preuve

Il suffit de montrer que

$$\phi: U \mapsto V \quad \psi: V \to W$$

et

$$\psi \circ \phi : U \mapsto W$$

Alors

$$(\psi \circ \phi)^* = \phi^* \circ \psi^*$$

On a

$$(\psi \circ \phi)^* : l'' \to l'' \circ \psi \circ \phi = (l'' \circ \psi) \circ \phi = \phi^*(l'' \circ \psi) = \phi^*(\psi^*(l''))$$

Proposition 109

Soit $M \in M_{d' \times d}(K)$ on a

$$rg(M) = rg({}^{t}M).$$

Soit $\varphi \in Hom(V, W)$, on a

$$rg(\phi) = rg(\phi^*)$$

Preuve

Soit une base $B = \{e_1, \ldots, e_d\} \subset V$, alors on a

$$\phi(B) = \{\phi(e_1), \dots, \phi(e_d)\}\$$

engendre $\phi(V)$ si $\dim \phi(V) = r = rg\phi$ oon peut extraire de $\phi(B)$ une base de $\phi(V)$.

Supposons que cette base soit

$$\{\phi(e_1)=f_1,\ldots,\phi(e_r)=f_r\}\subset W$$

C'est une famille libre de W.

On peut la compléter pour former une base de W:

$$B' = \{f_1, \dots, f_r, f_{r+1}, \dots, f_{d'}\}$$

 $On\ regarde$

$$B' = \{f_1, \dots, f_r, f_{r+1}, \dots, f_{d'}\}$$

 $et\ on\ lui\ associe$

$$B'^* = \{f_1^*, \dots, f_d^*\}$$

On considère donc

$$\phi^*:W^*\to V^*$$

On a

$$rg\phi^* = \dim \phi^*(W^*) = \dim \langle \phi^*(f_1^*), \ldots \rangle$$

On va montrer que

$$\{\phi^*(f_1^*),\ldots\}\subset V^*$$

est libre.

Soient $x_1, \ldots, x_r \in K$ tel que

$$x_1 \phi^*(f_1^*) + \ldots = 0_K$$

On a que $\forall j \leq d \ et \ \forall e_j \in B$

$$(x_1\phi^* + \dots)(e_j)$$

= $x_1\phi^*(f_1^*)e_j + \dots = x_jf_j^*(\phi(e_j)) = x_jf_j^*(f_j) = x_j$

Et donc

$$rg(\phi^*) \le rg(\phi)$$

Donc pour toute matrice M, on a $rg(^tM) \ge rg(M)$.

Donc en particulier

$$rg(^t(^t(M))) \ge rg(^t(M))$$

Et donc

$$rg(M) = rg({}^tM)$$

Et donc

$$rg(\phi) = rg(^*\phi)$$

8.4 Les matrices carrées

On note

$$M_d(K) = M_{d \times d}(K)$$

On remarque que la multiplication des matrices induit sur les matrices carrées de taille d une loi de composition interne.

Cette loi est

- distributive
- associative
- Id_d est neutrre pour la multiplication
- $0_d = 0_{d \times d}$ est absorbante

Donc

$$(M_d(K),+,\cdot)$$

est un anneau non-commutatif.

Et de plus comme $M_d(K)$ est un K-ev, donc

$$M_d(K)$$

est une K-algebre.

Soit V de dim d, B = base et B' = B une base

$$End(V) = Hom(V, W) \rightarrow M_d(K)$$

 $\phi \rightarrow mat_{B,B}(\phi)$

 $mat_{B,B}(\bullet)$ est un isomorphisme de K-ev mais c'est également un isomorphisme d'anneaux.

On a

$$mat_{B,B}(\psi \circ \phi) = mat_{B,B}(\psi) \cdot mat_{BB}(\phi)$$

Lecture 16: lundi

Mon 09 Nov

Theorème 110

L'espace $M_d(K)$ muni de l'addition des matrices et de la multiplication est un anneau (non-commutatif en general) dont l'element neutre est la

 $matrice\ carree\ nulle\ 0_d=0_{d imes d}\ et\ dont\ l'unite\ est\ la\ matrice\ identite\ Id_d$

Theorème 111

Soit V de dimension finie d et B une base de V, l'application

$$Mat_B : End(V) \mapsto M_d(K)$$

est un isomorphisme d'anneaux (et donc de K-algebres) pour les lois d'addition et de multiplication decrites precedemment.

De plus, on a que

$$^{t} \bullet : M_d(K) \mapsto M_d(K)$$

est un endomorphisme.

8.5 Le groupe lineaire

 $End(V)^{\times} = \{ \phi \in End(V) \text{ qui sont bijectifs et donc inversible pour la composition } \}$

On note

$$M_d(K)^{\times} = GL_d(K) =$$
 le groupe lineaire de K^d

Donc

$$mat_B: GL(V) \mapsto GL_d(K)$$

 $\phi \mapsto mat_B(\phi)$

Proposition 112 (Critere d'inversibilite)

Pour qu'une matrice carree $M = (m_{ij})_{i,j \leq d} \in M_d(K)$ soit inversible il faut et il suffit que la famille des collonnes Col(M) forme une famille libre.

Preuve

 $Si\ M = mat_B(\phi)\phi \in End(V).$

 $Si\ Col(M)$ est une famille libre, l'ensemble des images des elements de B forme une famille libre, elle est de taille d, donc elle est generatrice.

Donc ϕ est surjective et injective.

Remarque

Dans ce critere, il est equivalent de regarder la famille des lignes.

Proposition 114

La transposition est une bijection de $GL_d(K)$ sur lui-meme qui verifie

$$\forall M,N \in GL_{d}(K)^{t}M^{-1} = ^{t}M^{-1}, ^{t}(M.N) = ^{t}N.^{t}M$$

Preuve

 $Si\ M\ est\ inversible$

$$\exists N=M^{-1}$$

tel~que

$$M.M^{-1} = Id \quad M^{-1}M = Id$$

On utilise la formule de transposition sur $M.M^{-1}$

8.6 Changement de Base

Soient $B \subset V$ et $B' \subset W$ et $\phi : V \to W$.

A nouveau, supposons que $B_n \subset V$ et $B'_n \subset W$, avec

$$\phi \to mat_{B'_n B_n}(\phi) = M_n$$

Quelle est la relation entre M et M_n .

Proposition 115 (Formule de changement de base)

Soient $B, B_n \subset V$ et $B', B'_n \subset W$ des bases de V et W. On a la relation

$$Mat_{B_n'B_n}(\phi) = Mat_{B_n'B'}(\operatorname*{Id}_w)Mat_{B'B}(\phi).Mat_{B,B_n}(\operatorname*{Id}_v)$$

Preuve

On a

$$\phi = \mathop{\operatorname{Id}}_w \circ \phi \circ \mathop{\operatorname{Id}}_v$$

On utilise le calcul des matrices associee a des compositions d'applications lineaires dans ces bases convenables.

On a

$$\phi: V \to V \to W$$

avec

$$mat_{B'B'}(\phi \circ \operatorname{Id}_{v}) = mat_{B'B}(\phi)mat_{BB_{n}}(\phi)$$

Definition 63 (Matrice de Passage)

 $M_{BB_n} = M_{BB_n}(\mathrm{Id}) = la \ matrice \ exprimant \ les \ coordonnees \ de \ \left\{ \mathrm{Id}(e_{nj}j \leq d) \right\} = B_n$ exprimes dans la base B.

Remarque

Les M_{BB_n} sont inversibles.

Proposition 117

Soit trois bases $B, B_1, B_2 \subset V$, on a

1. Formule d'inversion

$$Mat_{BB_1}Mat_{BB_1} = \operatorname{Id}_d$$

En particulier une matrice de passage est inversible (dans $M_d(K)$) et son inverse est la matrice de passage de la base initiale a la nouvelle base

2. Formule de transitivite

$$Mat_{BB_2} = Mat_{BB_1} Mat_{B_1B}$$

Preuve

Consequence directe de la formule de la matrice associee a la composition de 2 applications lineaires appliquees a

$$\phi = \operatorname{Id}_{V} \quad \psi = \operatorname{Id}$$

Si on applique la formule a $B_2 = B$ on trouve le resultat desire.

Le cas des endomorphismes si W = V, B' = B et $B'_n = B_n$. Soit $\phi \in End(V)$

$$mat_{B_nB_n}(\phi) = mat_{B_nB}mat_{BB}(\phi)mat_{BB_n}$$

On a vu que

$$mat_{B_nB} = mat_{BB_n}^{-1}$$

Donc la formule de changement de base de ϕ .

$$mat_{B_nB_n}(\phi) = mat_{BB_n}^{-1} mat_{BB}(\phi) mat_{BB_n}$$

Si la base de depart egal a la base d'arrivee, on le note

$$mat_{B_n}(\phi) = mat_{B_nB} mat_B(\phi) mat_{B_nB}^{-1}$$

Definition 64

Deux matrices M et $N \in M_{d' \times d}(K)$ sont dites equivalentes si il existe des matrices inversibles $A \in GL_{d'}(K), B \in GL_{d}(K)$ telles que

$$N = A.M.B$$

Proposition 118

Deux matrices sont equivalents si et seulement si il existe V de dimension d et W de dimension d', des bases $B, B_n \subset V$ et $B'B'_n \subset W$ et une application lineaire $\phi > V \to W$ telles que

$$M = mat_{B'B}(\phi)N = mat_{B'_nB_n}(\phi)$$

Preuve

Si $M = mat_{B'B}(\phi)$ et $N = mat_{B'_nB_n}(\phi)$, alors

$$N = mat_{B'_n B'} M.mat_{BB_n}$$

Proposition 119

 $Si\ M\ et\ N\ sont\ equivalents\ alors$

$$rg(M) = rg(N)$$

Preuve

$$rg(M) = rg(\phi) = rg(N)$$

Remarque

La relation "etre equivalent" est une relation d'equivalence.

8.7 Conjugaison

Definition 65

Soit $C \in GL_d(K)$ une matrice inversible. On note Ad(C) l'application dite de conjugaison par C:

$$Ad(C): M \mapsto C.M.C^{-1}$$

Proposition 121

La conjugaison Ad(C) est un automorphisme de l'algebre $M_d(K)$

Preuve

$$C.(\lambda M + N).C^{-1} = \lambda Ad(C).M + Ad(C).N$$

Multiplicativite

$$CMNC^{-1} = CM \operatorname{Id} NC^{-1} = CMC^{-1}CNC^{-1}$$

Identite

$$C^{-1}CMC^{-1}C = M$$

Definition 66 (Application Adjointe)

$$Ad: C \in GL_d(K) \to Ad(C) \in GL(M_d(K))$$

Ad est un morphisme de groupe.

On le verifie...

On donne un nom a $\Im(Ad) = Ad(GL_d)$, on l'appelle le groupe des automorphismes interieurs.

Proposition 122

L'application adjointe $Ad(\bullet)$ est un morphisme de groupes. Son noyau est forme par les matrices scalaires

$$\ker Ad = K^{\times}\operatorname{Id}$$

Preuve

 $Si~C=\lambda.\,\mathrm{Id},~avec~\lambda\neq0,~\lambda\in K^{\times},~alors$

$$C^{-1} = \lambda^{-1} \operatorname{Id}$$

Donc

$$CMC^{-1} = M$$

Donc

$$K^{\times} \operatorname{Id} \subset \ker Ad(\bullet)$$

Soit Donc $C \in GL_d(K)$ telle que

$$\forall M \in M_d(K)$$

on a

$$CMC^{-1} = M$$

Il suit

$$CM = MC \Rightarrow CM - MC = 0$$

Donc

$$\forall M[C,M] = CM - MC = 0$$

L'application $M \to [C, M]$ est lineaire et dire que pour tout M

$$[C, M] = 0 \iff [C, E] = 0$$

pour E une base des matrices carrees.

On prend la base canonique.

Lemme 123

$$E_{ij}E_{kl} = \delta_{jk}E_{il}$$

Preuve (du lemme)

$$E_{ij} = mat_{B_0} E_{ij}$$

Donc

$$E_{ij}(v) = e_i^*.e_i$$

Donc

$$E_{ij}E_{kl}(v) = E_{ij}(E_l^*(v)e_k) = e_l^*(v)E_{ij}(e_k) = e_l^*(v)e_j^*(e_k)e_i$$

Or
$$e_j^*(e_k) = \delta_{jk}$$
.

Donc

$$E_{ij}E_{kl}(v) = \delta_{jk}e_l^*(v)e_i = \delta_{jk}E_{il}(v)$$

Soit C tel que pour tout E_{ij} on a

$$CE_{ij} = E_{ij}C$$

Donc

$$C = \sum_{k,l \le d} c_{kl} E_{kl}$$

Donc

$$E_{ij}.C = E_{ij} \left(\sum_{k,l} c_{kl} E_{kl} \right)$$

$$= \sum_{k,l} c_{kl} E_{ij} E_{kl}$$

$$= \sum_{k,l} c_{kl} \delta_{jk} E_{il}$$

$$= \sum_{l \le d} c_{jl} E_{il}$$

De meme

$$C.E_{ij} = \sum_{k,l \le d} c_{kl} E_{kl} E_{ij}$$
$$= \sum_{k,l \le d} c_{kl} \delta_{li} E_{kj}$$
$$= \sum_{k \le d} c_{ki} E_{kj}$$

Seule possibilite pour l'egalite est que $c_{ki} = 0$ sauf si k = i de meme $c_{jl} = 0$ sauf si l = j.

Donc

$$CE_{ij} = E_{ij}C$$

 $si\ et\ seulement\ si$

$$c_{ii}E_{ij} = C_{jj}E_{ij}$$

et les $c_{ki} = 0$ si $k \neq i$ et $c_{jl} = 0$ si $l \neq j$. Donc $c_{ii} = c_{jj}$ valable $\forall i, j \leq d$ et $C_{ii} \neq 0$ car C inversible.

Definition 67

On dit que deux matrices M.N sont semblables on conjuguees si il existe $C \in GL_d(K)$ tel que

$$N = CMC^{-1}$$

Proposition 124

 $La\ relation\ et re\ semblable\ est\ une\ relation\ d'equivalence.$

Preuve

-- Reflexive

$$M = \operatorname{Id} M \operatorname{Id}^{-1}$$

— Symmetrique si $N = CMC^{-1}$

$$M = C^{-1}NC$$

- Transitive

$$N = CMC^{-1} \ et \ O = DND^{-1}$$

Alors

$$O = DCMC^{-1}D^{-1} = (DC)M(DC)^{-1}$$

La classe d'equivalence de M s'appelle la classe de conjugaison de M.

Remarque

M et $N \in M_d(K)$ sont semblables si et seulement il existe V de dim d, deux bases B, B_n de V et $\phi \in End(V)$ tel que

$$M = mat_B \phi$$

et

$$N = mat_{B_n} \phi$$

Lecture 17: Changements de Base

Lecture 18: Corps des Nombres Complexes

Tue 10 Nov

Mon 16 Nov

9 Le Corps des Nombres Complexes

Prenons $K = \mathbb{R}$ et $\mathcal{M} = M_2(\mathbb{R})$. Soit I la matrice

$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Definition 68

L'espace des nombres complexes $\mathbb C$ est le sous-espace vectoriel engendre par Id et I

$$\mathbb{C} = \mathbb{R}. \operatorname{Id} + \mathbb{R}.I$$

Theorème 126

L'espace des nombres complexes est de dimension 2 et $\{Id, I\}$ en forme une base.

De plus \mathbb{C} est une sous-algebre commutative de $M_2(\mathbb{R})$ et est en fait un corps. Le corps des nombres reel s'injecte dans \mathbb{C} via l'application

$$x \in \mathbb{R} \mapsto x$$
. Id $\in \mathbb{C}$

(les nombres reels s'identifient aux matrices scalaires).

Preuve

La famille {Id, I} est libre \Rightarrow base de \mathbb{C} .

 \mathbb{C} est un sev de $M_2(\mathbb{R})$, pour montrer que \mathbb{C} est un sous-anneau de $M_2(\mathbb{R})$, il suffit de montrer que \mathbb{C} est stable par produit.

Remarque

$$I^2 = -\operatorname{Id}$$

En particulier, I est inversible et

$$I^{-1} = -I = I$$

Soit $z = x \operatorname{Id} + yI$ et $z' = x' \operatorname{Id} + y'I$.

$$z.z' = xx' \operatorname{Id} + x'yI + xy'I - yy' \operatorname{Id}$$
$$= (xx' - yy') \operatorname{Id} + (xy' + yx')I$$

Donc \mathbb{C} est un sous-anneau de $M_2(\mathbb{R})$.

Montrons que \mathbb{C} est un corps.

 \mathbb{C} est un corps : $0_2 = 0_{\mathbb{C}} \neq \mathrm{Id} = 1_{\mathbb{C}}$.

Il reste a montrer que $z \in \mathbb{C} \setminus 0_{\mathbb{C}}$ est inversible.

$$z^2 - 2xz = (x^2 - y^2) \operatorname{Id} + 2xyI - 2x(x \operatorname{Id} + yI)$$

= $-(x^2 + y^2) \operatorname{Id}$

Or $z \neq 0_2 \iff (x, y) \neq (0, 0) \iff x^2 + y^2 \neq 0$.

Et donc

$$Id = \frac{-1}{x^2 + y^2}(z^2 - 2xz)$$

Donc

$$z^{-1} = \frac{-1}{x^2 + y^2}(z - 2x)$$

On trouve, en developpant que

$$\frac{1}{x^2 + y^2} \quad ^t z = z^{-1}$$

Remarque

On peut identifier \mathbb{R} avec l'algebre \mathbb{R} Id des matrices scalaires

$$x \in \mathbb{R} \to x \operatorname{Id}$$

Definition 69

Le reel x est appele partie reelle de z et le reel y est la partie imaginaire de z

$$x = \operatorname{Re} z, y = \operatorname{Im} z$$

Dans la notation matricielle, la transposition $z \mapsto^t z$ envoie

$$x + iy \mapsto x - iy$$

Avec la notation simplifiee, on note

$$\bar{z} = x - iy$$

et s'appelle la conjugaison complexe de z. On a alors

$$z.\bar{z} = x^2 + y^2 \ge 0$$

Le nombre $(z.\bar{z})^{\frac{1}{2}}$ se note

$$|z| = (x^2 + y^2)^{\frac{1}{2}}$$

et s'appelle le module de z. On a donc

$$z\bar{z} = |z|^2$$

Proposition 129

On a les proprietes suivantes

- 1. Les applications partie reelle et imaginaire sont lineaires
- 2. La conjugaisonn complexe est un automorphisme du corps \mathbb{C} . De plus $\bar{z}=z$ et on a

$$\bar{z} = z \iff z = x \in \mathbb{R}$$

3. Le module $z \mapsto |z|$ est multiplicatif :

$$|z.z'| = |z|.|z'|$$

et on a

$$z=0\iff |z|=0$$

Preuve

Re, Im sont lineaires car ce sont les formes lineaires 1 ere et 2 eme coordonnees $de\ z\in\mathbb{C}$ dans la base $\{\mathrm{Id},I\}$.

De meme $z \mapsto \bar{z}$ est lineaire.

arphi tc

On remarque que | • | est un morphisme de groupe multiplicatif

Proposition 130

 $On\ a\ un\ isomorphisme\ de\ groupes$

$$pol: \mathbb{C}^{\times} \simeq \mathbb{R}_{>0} \times \mathbb{C}^{(1)}$$

donne par

$$z \in \mathbb{C}^{\times} \mapsto pol(z) = (|z|, \frac{z}{|z|})$$

Preuve

 $On\ a\ que$

$$\frac{z.z'}{|z.z'|} = \left(\frac{z}{|z|}\right)\left(\frac{z'}{|z'|}\right)$$

et

$$\left|\frac{z}{|z|}\right| = \frac{(x^2 + y^2)^{\frac{1}{2}}}{|(x^2 + y^2)^{\frac{1}{2}}|} \qquad \Box$$

Donc l'application pol est un morphisme.

Lecture 19: Nombres Complexes 2

Tue 17 Nov

Definition 70

pol(z) s'appelle la decomposition polaire de z. Le premier terme |z| est le module et se note aussi $\rho(z)$ et le second terme $\frac{z}{|z|}$ est appele argument complexe de z et on le note

$$\frac{z}{|z|} = e^{i\theta(z)}$$

Si on decompose l'argument complexe en partie reelle et imaginaire

$$\frac{z}{|z|} = e^{i\theta(z)} = c(z) + is(z)$$

On a donc

 $c(z) \in [-1, 1]$ s'appelle le cosinus de z

 $s(z) \in [-1,1]$ s'appelle le sinus de z

Proposition 131 (Formules de trigonometrie)

On retrouve les formules habituelles de trigonometrie

— Formules de produit : pour $z, z' \in \mathbb{C}^{\times}$

$$c(z.z') = c(z)c(z') - s(z)s(z'), s(z.z') = s(z).c(z') + s(z')c(z)$$

— Formule d'inveresion

$$e^{i\theta(\frac{1}{z})} = c(z) - is(z)$$

— Formule de l'angle double

$$c(z^2) = c(z)^2 - s(z)^2, s(z^2) = 2s(z)c(z)$$

et plus generalement

— Formules de Moivre : pour $n \ge 0$

$$c(z^n) + is(z^n) = (c(z) + is(z))^n = \sum_{k=0}^n C_n^k c^{n-k} s^k$$

Preuve

Pour les formules de Moivre, on a

$$\begin{split} e^{i\theta(z^n)} &= (e^{i\theta(z)})^n = (c(z) + is(z))^n \\ &= c(z)^n + nc(z)^{n-1} is(z) + \sum_{k=2}^n C_n^k c(z)^{n-k} (is(z))^k \\ &= \sum_{k=0}^n C_n^k c(z)^{n-k} (is(z))^k \end{split}$$

$$= \sum_{k=0}^{n} C_n^k i^k c(z)^{n-k} s(z)^k$$

En posant

$$k' = 2\left[\frac{k}{2}\right], \quad k = k' + \begin{cases} 0 \text{ si pair} \\ 1 \text{ si impair} \end{cases}$$

on obtient que

$$\begin{split} e^{i\theta(z^n)} &= (e^{i\theta(z)})^n = (c(z) + is(z))^n \\ &= \sum_{k'=0}^{\frac{n}{2}} C_n^{2k'} (-1)^{k'} c(z)^{n-2k'} s(z)^{2k'} + \sum_{k'=0}^{\frac{n}{2}} C_n^{2k'+1} (-1)^{k'} ic(z)^{n-(2k'+1)} s(z)^{2k'+1} \end{split}$$

Theorème 132

Il existe un unique morphisme de groupe

$$\theta \in (\mathbb{R}, +) \mapsto \exp i\theta \in (\mathbb{C}^{(1)}, \times)$$

qui est derivable et qui verifie

$$e^{i\bullet'}(0) = i$$

Ce morphisme est surjectif et son noyau est de la forme

$$\ker e^{i\bullet} = 2\pi.\mathbb{Z}$$

On dit que $\theta \to e^{i\theta}$ est derivable si les fonctions partie reelle et partie imaginaires sont derivables

$$(e^{i\theta})' = (\operatorname{Re} e^{i\theta})' + i(\operatorname{Im} e^{i\theta})'$$

Theoreme sans preuve.

Definition 71

Soit z un nombre complexe de module 1.

L'argument de z

$$arg(z) = \theta(\mod 2\pi)$$

Plus generalement, pour $z \in \mathbb{C}^{\times}$, on definit son argument par

$$\arg z = \arg \frac{z}{|z|}$$

Definition 72

Soit $\theta \in \mathbb{R}$, on a

$$e^{i\theta} = \cos\theta + i\sin\theta$$

De ceci, on retrouve les formules d'addition.

Lecture 20: Operations Elementaires

Mon 23 Nov

Theorème 133

Soit P(X) un polynome reel non-constant alors l'equation admet au moins une solution dans \mathbb{C} .

Theorème 134 (Gauss-Wantzel)

On peut exprimer les parties reelles et imaginaires du nombre complexe $\omega_n = e^{i2\pi/n}$ par extraction successive de racines carrees si et seulement si

$$n=2k$$
 ou bien $n=2^k\prod_i p_i$

ou $\prod_i p_i$ est un produit (non-vide) de nombres premiers tous distincts et "de Fermat": on dit qu'un nombre premier p_i est de Fermat si $p_i = F_{f_i} = 2^{2^{f_i}} + 1$, avec $f_i \geq 0$ un entier

10 Operations Elementaires Sur Les Matrices

Definition 73 (Operations Elementaires)

- 1. T_{ij} $L_i \rightleftharpoons L_j$ $i, j \le d'$
- 2. $D_{i,\lambda}\lambda \neq 0L_i \rightarrow \lambda L_i$
- 3. $CL_{ij,\mu}: L_i \to L_i + \mu L_j$

Proposition 135

Ces operations sont des applications lineaires bijectives

Proposition 136

Les trois operations elementaires sont obtenues par multiplication a gauche de M par des matrices convenables : pour $1 \le i, j \le d'$

- $-T_{i}$
- $-D_{i,\lambda}$
- $-Cl_{ij,\mu}$

ou les matrices carrees $T_{ij}, D_{i\lambda}, Cl_{ij,\mu}$ sont definies par

$$T_{ij} = \operatorname{Id} - E_{ii} - E_{jj} + E_{ij} + E_{ji}$$
$$D_{i,\lambda} = \operatorname{Id} + (\lambda - 1)E_{ii}, \lambda \neq 0$$
$$Cl_{ij,\mu} = \operatorname{Id} + \mu \cdot E_{ij}$$

Lecture 21: Matrices Elementaires

Tue 24 Nov

Les matrices ci-dessus s'appellent les matrices de transformation elementaire, ce sont tous des matrices inversibles.

Definition 74

On dit que N est ligne-equivalente a M si et seulement si il existe une suite de transformations elementaires qui transforme M en N.

Proposition 137

La relation etre "ligne-equivalente" est une relation d'equivalence sur $M_{d'\times d}(K)$. De plus deux matrices M,N ligne-equivalentes sont equivalentes au sens de la notion d'equivalence de deux matrices.

Preuve

La "ligne-equivalence" est reflexive $M \sim M$ car l'identite est une transformation elementaire.

Elle est symetrique : si N est obtenue a partir de M par une suite de transformations elementaires M est obtenue a partir de N en appliquant la suite des transformations inverses dans l'ordre oppose.

C'est transitif, car si $N \sim M$ et M et $O \sim N$, alors $O \sim M$. Si $N \sim M$, alors $N = T_1 T_2 \dots T_k M$, et donc N = TM Id.

Proposition 138

Si $N \in M_{d' \times d}(K)$ est ligne equivalente a M, alors toute ligne de N est combinaison lineaire des lignes de M.

$$\forall i \leq d', Lig_i(N) \in \langle L_1, \dots, L_{d'} \rangle \subset K^d$$

et inversement les lignes de M sont combinaisons lineaires des lignes de N.

10.1 Echelonage

Definition 75

Une matrice $M = (m_{ij}) \in M_{d' \times d}(K)$ est echelonnee si elle est nulle ou bien si

- 1. Il existe $1 \le j_1 \le j_r \le d$ tels que
 - Pour la ligne L_1 , le premier terme non-nul est le j_1 -ieme : on a $m_{1j}=0$ pour tout $j< j_1$ et $m_{1j_1}\neq 0$
 - Pour la ligne L_2 , le premier terme non-nul est le j_2 -ieme : on a $m_{2j}=0$ pour tout $j< j_2$ et $m_{2j_2}\neq 0$

2. Si r < d les lignes $L_{r+1,...,L_{d'}}$ sont toutes nulles.

Les $j_1 < \ldots < j_r$ sont appeles les echelons de M et les m_{ij_i} sont les pivots

Definition 76

Si de plus

$$m_{ij_1} = m_{2j_2} = \ldots = 1$$

 $La\ matrice\ est\ echelonnee\ reduite$

Theorème 139

Toute matrice est ligne-equivalente a une matrice echelonnee reduite.

Preuve

 $M \in M_{d' \times d}(K)$.

 $Si\ M=0,\ on\ a\ fini.$

Si $M \neq 0$, soit $j_1 \leq$, le plus petit indice d'une colonne qui est non-nul.

Par definition, il existe $i \leq d'$ tel que $m_{ij_1} \neq 0$.

On echange la ligne L_1 , avec la ligne L_i .

On remplace $L_2L_3 \dots L_{d'}$ par $L_2 - m_{2j_1}L_1, \dots$

En appliquant ceci recursivement, on trouve une matrice echelonnee.

Proposition 140

Deux matrices ligne-equivalentes et echelonnees reduites sont egales.

Lecture 22: Engendrement du groupe lineaire

Mon 30 Nov

Proposition 141

Si M et N sont lignes equivalents

$$rg(M)=rg(N)$$

Preuve

$$Si \ M \sim_{lig} N \Rightarrow M \sim N.$$

10.2 Engendrement du groupe lineaire

Proposition 142

Soit $M \in M_d(K)$ une matrice carree alors M est inversible si et seulement si M est ligne equivalente a la matrice identite Id.

Preuve

M est inversible si et seulement si rg(M) = d, et donc M inversible si et seulement si M est ligne equivalente a R, $R \in M_d(K)$ une matrice a d echelons. $R = \mathrm{Id}$.

Corollaire 143

Le groupe lineaire $GL_d(K)$ est engendre par les matrices de transformation

elementaires.

Preuve

Soit $M \in GL_d(K)$, donc

$$M \sim_{lig} \mathrm{Id}$$

Donc, il existe T_1, \ldots, T_k des matrices de transformations elementaires tel que

$$\mathrm{Id} = T_k \dots T_1 M$$

Donc

$$M = T_1^{-1} \dots T_k^{-1}$$

10.3 Extraction d'une base

Soit

$$G = \{w_1, \ldots, w_l\} \subset K^d$$

et $W = \langle G \rangle$.

Proposition 144

Soit $M \in M_{l \times d}(K)$ la matrice dont les l lignes sont formees des vecteurs lignes $w_i, i \leq l$. Soit R la matrice echelonee reduite associee a M et

$$w_i' = Lig_I(R)$$

Les lignes de R possedent r echelons on a

$$\dim W = r$$

 $et\ les\ r\ premieres\ lignes$

$$\mathcal{B}_W = \{w_i', i \le r\}$$

forment une base de W.

Preuve

On a vu que les lignes de R sont CL des lignes de M. Mais on sait que les w_i' , $i \le r$ forment une famille libre et

$$rgR = rgM = \dim W$$

10.4 Resolution de systemes lineaires

Soit $\phi: V \to W$ et $w \in W$, on cherche l'ensemble des $v \in V$ tel que

$$\phi(v) = w$$

On cherche l'ensemble des antecedents de $w \in W$ par l'application $\phi.$ On cherche

$$\phi^{-1}(\{w\}) = \{v \in V \mid \phi(v) = w\}$$

C'est un cas particulier d'une question sur les groupes

$$\phi: (G, \cdot) \to (H, \cdot)$$

Lemme 145

Soit $\phi: G \mapsto H$ un morphisme de groupes, alors pour tout $h \in H$, on pose

$$Sol_{\phi}(h) = \phi^{-1}(\{h\}) = \{g \in G, \phi(g) = h\} \subset G$$

la preimage de h par ϕ . En particulier, $Sol_{\phi}(e_H) = \ker \phi$. Alors $Sol_{\phi}(h)$ est

- soit l'ensemble vide (ssi $h \notin \phi(G)$)
- soit il existe $g_0 \in Sol_{\phi}(h)$ et

$$Sol_{\phi}(h) = g_0 Sol_{\phi}(e_H) = g_0 \ker \phi = \{g_0.k, \phi(k) = e_H\}$$

Preuve

Si $h \notin \phi(G)$, il n'existe pas de g tel que

$$\phi(g) = h$$

et

$$Sol_{\phi}(h) = \emptyset$$

Si $h \in \phi(G)$, alors $\exists g_0 \in G$ tel que $\phi(g_0) = h$, donc l'ensemble n'est pas vide. Alors

$$\phi(g) = h = \phi(g_0)$$

et donc

$$\phi(g_0)^{-1}\phi(g) = e_h$$

Donc

$$g_0^{-1}g = k \in \ker \phi = Sol_\phi(e_H)$$

Reciproquement, soit $g = g_0 k, k \in \ker \phi$, alors

$$\phi(g) = \phi(g_0)\phi(k) = \phi(g_0) = h$$

Corollaire 146

 $G = (V, +), H = (W, +), \phi : V \to W$ une application lineaire.

Si $w \notin \phi(W)$, l'ensemble des solutions est vide.

Sinon, $w \in \phi(V)$, soit v_0 , un antecedent, alors

$$Sol_{\phi}(w) = \{v \in V | \phi(v) = w\} = v_0 + \ker \phi$$

Definition 77

Les inconnues v_{j_i} pour j_i etant un echelon sont appellees inconues principales du système. Les inconnues v_j pour $j \leq d$ qui n'est pas un echelon sont appellees inconnues libres dy système.

Lecture 23: Determinant

Tue 01 Dec

11 Determinants

11.1 Formes multilineaires

Definition 78

Soit V un K-espace vectoriel et $n \geq 1$ un entier. Une forme multilineaire en n variables sur V est une application Λ

$$V^n \mapsto K$$
$$(v_1, \dots, v_n) \mapsto \Lambda(v_1, \dots, v_n)$$

telle que pour tout i = 1, ..., n et tous $v_j \in V$, $j \neq i$, l'application "restricition a la i-ieme composante" est lineaire.

L'ensemble des formes multilineaires en n variables sur V est note

$$Mult^{(n)}(V,K)$$
 ou bien $(V^*)^{\otimes n}$

Definition 79

Soit $l_1, \ldots, l_n \in V^*$, on note

$$l_1 \otimes \ldots \otimes l_n : (v_1, \ldots, v_n) \to l_1(v_1) \ldots l_n(v_n)$$

Le produit tensoriel des n formes lineaires.

Proposition 147

L'ensemble $Mult^{(n)}(V,K)$ des formes multilineaires en n variables est un K-espace vectoriel quand on le munit de l'addition et de la multiplication par les scaleurs usuelle pour les fonction a valeurs dans K.

Preuve

exercice

Proposition 148

Soit $d = \dim V$ et B une base, B^* une base du dual. Alors $V^{*\otimes n}$ est de dimension finie egale a d^n ; une base de $V^{*\otimes n}$ est donne par l'ensemble des

formes multilineaires de la forme

$$e_{j_1}^* \otimes \ldots \otimes e_{j_n}^*$$
 quand j_1, \ldots, j_n parcourent $\{1, \ldots d\}$.

On note cette base $B^{*\otimes n}$.

Preuve

Soit V un espace vectoriel.

Pour i un indice entre 1 et n, v_i .

$$\Lambda(v_1,\ldots,v_i,\ldots,v_n)$$

On a

$$v_i = \sum_{j=1}^{d} x_{ij} e_j = \sum_{j=1}^{d} e_j^*(v_i) e_j$$

On a donc

$$\Lambda(v_1, \dots, v_n) = \Lambda\left(\sum e_j^*(v_1)e_j, \dots\right)
= \sum_{j_1=1}^d \dots \sum_{j_n=1}^d \Lambda(e_{j_1}, \dots, e_{j_d}) \times e_{j_1}^*(v_1) \dots e_{j_n}^*(v_n)
= \sum_{(j_1, \dots, j_n) \in \{1, \dots, d\}} \Lambda(e_{j_1}, \dots, e_{j_d})e_{j_1}^* \otimes \dots \otimes e_{j_d}^*(v_1, \dots, v_n)$$

Donc, la famille des formes multilineaires

$$\left\{e_{j_1}^* \otimes \ldots \otimes e_{j_n}^*(j_1,\ldots,j_n) \in [1,\ldots,d]\right\}$$

est generatrice de $V^{*\otimes n}$.

Montrons que la famille est libre.

Soient $\lambda_{j_1...j_n} \in K$ et supposons que

$$\sum_{j_1=1}^{d} \dots \sum_{j_n=1}^{d} \lambda_{j_1 \dots j_n} e_{j_1}^* \otimes \dots \otimes e_{j_n}^* = 0$$

Prenons

$$(v, e_1, e_1, \ldots, e_1)$$

Alors

$$\Lambda(v, e_1, e_1, \dots, e_1) = \sum_{i_1 = 1}^d \lambda_{j_1, 1, 11, 1} e_{j_1}^*(v) = 0$$

On a une expression d'une forme lineaire

$$v \to \sum_{j_1=1}^d \lambda_{j_1,1,\dots,1} e_{j_1}^*(v) = 0$$

En changeant les vecteurs de toutes les manieres possibles, on deduit que tous les coefficients sont nuls. \Box

Lecture 24: Determinants

Mon 07 Dec

11.2 Formes Symmetriques/Alternees

Definition 80

 $Une\ forme\ multilineaire$

$$\Lambda: V^n \mapsto K$$

 $est\ dite$

— Symetrique si $\forall i \neq j \leq n$

$$\Lambda(v_1,\ldots,v_i,\ldots v_i) = \Lambda(v_1,\ldots,v_i,\ldots,v_i,\ldots)$$

Autrement dit si sa valeur ne change pas quand on echange deux composantes.

— Alternee $si \ \forall i \neq j \leq n$

$$\Lambda(v_1, \dots, v_i, \dots v_j) = -\Lambda(v_1, \dots, v_j, \dots v_i)$$

Autrement dit si sa valeur est changee en son opposee si on echange deux composantes distinctes.

Theorème 149

On suppose que $car(K) \neq 2$. Soit $d = \dim V$. On a

$$\dim Alt^n(V;K) = \begin{cases} 0 \text{ si } n > d \\ 1 \text{ si } n = d \\ C_d^n \text{ si } n \le d \end{cases}$$

Preuve

Soit Λ qui est alternee, alors $\forall i \neq j$

$$\Lambda(v_1,\ldots,v,\ldots,v,\ldots v_n)$$

Donc

$$2\Lambda(v_1,\ldots,v\ldots,v,\ldots)=0$$

Donc

$$\Lambda(v_1,\ldots,v,\ldots,v,\ldots,v_n)=0$$

Plus generalement, si la famille

$$\{v_1,\ldots,v_n\}$$

est liee alors

$$\Lambda(v_1,\ldots,v_n)=0$$

Si la famille est liee, un des vecteurs s'exprime en fonction des autres. Supposons que c'est v_n .

Alors

$$v_n = \sum \lambda_i v_i$$

Donc

$$\Lambda(v_1,\ldots,v_n) = \lambda_1 \Lambda(v_1,\ldots,v_1) + \ldots + \lambda_{n-1} \Lambda(v_1,\ldots,v_{n-1}) = 0$$

Si n > d, toute famille $\{v_1, \ldots, v_n\}$ de n vecteurs dans un espace de $\dim d < n$ est liee et donc

$$\Lambda(v_1,\ldots,v_n)=0$$

 $Cas \ d = n.$

On va montrer que dim $Alt^{(d)}(V, K) \leq 1$.

Comme Λ est multilineaire,

$$\Lambda = \sum_{j_1=1} \dots \sum_{j_d=1} \Lambda(e_{j_1}, \dots, e_{j_d}) e_{j_1}^* \otimes \dots \otimes e_{j_d}^*$$

Si pour $l, l' \leq d$, on a

$$j_l = j_{l'} \Rightarrow e_{j_l} = e_{j'_l}$$

et comme la forme est alternee

$$\Lambda(\ldots, e_{j_l}, \ldots, e_{j_{l'}}, \ldots) = 0$$

Donc les seuls termes non nuls de la decomposition precedente sont ceux tels que $j_1 \neq j_2 \neq \dots$ et donc les coefficients sont des $\lambda(e_1, \dots, e_d)$ et des permutations de ces vecteurs.

La forme Λ est determinee des qu'on connait la valeur de

$$\Lambda(e_1,\ldots,e_d)\in K$$

Donc

$$\dim Alt^{(d)}(V,K) \le 1$$

Pour montrer que dim $Alt^d(V;K) = 1$, il suffit de construire une forme alternee en d variables qui est $\neq 0$.

Soit σ une permutation, on note alors $\Lambda_{|\sigma}$ est la forme lineaire associee a la permutation des index.

Proposition 150

Pour tou $\sigma \in S_n$ l'application $\bullet_{|\sigma}$ definit un endomorphisme du K-ev $Mult^n(V;K)$.

L'application

$$\sigma \in S_n \mapsto \bullet_{|\sigma}$$

verifie

$$\forall \Lambda, \Lambda_{|Id_n} = \Lambda$$

 $\forall \Lambda, \forall \sigma \tau \in S_n$, on a

$$\Lambda_{|\sigma \circ \tau} = (\Lambda_{|\tau})_{\sigma}$$

Preuve

$$\Lambda_{|\sigma \circ \tau}(v_1, \dots, v_n)$$

$$= \Lambda(v_{\sigma(\tau(1))}, \dots)$$

De meme

$$\bullet_{|\sigma}(\bullet_{|\tau}(\Lambda))(v_1, \dots)
= \Lambda_{\sigma}(v_{\tau(1)}, \dots,)
= \Lambda(v_{\sigma(\tau(1))}, \dots)$$

Theorème 151

Les formes multilineaires alternees $Alt^n(V;K)$ sont exactement les formes multilineaires verifiant $\forall \sigma \in S_n \Lambda_{|\sigma} = sgn(\sigma)\Lambda$

Preuve

Pour les formes alternees, si Λ verifie $\forall \sigma \Lambda_{|\sigma} = sgn(\sigma)\Lambda$, en particulier si $\sigma = \tau_{ij}$ est la transposition qui permute i et j sa signature vaut -1.

Reciproquement $si \ \forall i \neq j$

$$\Lambda_{|_{\tau_{ij}}} = -\Lambda$$

Alors $\forall \sigma \in S_n$

$$\sigma = \tau_1 \circ \ldots \circ \tau_t$$

Alors

$$\Lambda_{|\sigma} = \Lambda_{\tau_{t-1}...|\tau_1} = (-1)^t \Lambda = sgn(\sigma)(\Lambda)$$

Theorème 152

Soit K un corps, (G, \cdot) un groupe fini, V un K-ev de dimension finie et

$$\iota:G\mapsto GL(V)$$

 $un\ morphisme\ de\ groupe\ de\ G\ vers\ le\ groupe\ des\ automorphismes\ de\ V.$ Soit

$$\Xi: G \mapsto (K^{\times}, \times)$$

un morphisme de G vers le groupe multiplicatif de K. Soit $v \in V$, alors le

vecteur

$$v_{\Xi} = \sum_{h \in G} \Xi^{-1}(h)\iota(h)(v)$$

 $verifie pour tout g \in G$

$$\iota(g)(v_{\Xi}) = \Xi(g)v_{\Xi}$$

Preuve

Abus de notation : on notera $g \in G, v \in V$, g.v pour $\iota(g)(v)$.

$$v_{\Xi} = \sum_{h \in G} \Xi(h)^{-1} . h(v)$$

Soit $g \in G$

$$g(v_{\Xi}) = g\left(\sum_{h \in G} \Xi(h)^{-1} h(v)\right)$$
$$= \sum_{h \in G} \Xi(h)^{-1} g(h(v))$$
$$= \sum_{h \in G} \Xi(h)^{-1} (g.h)(v)$$

On pose h' = g.h

$$g(v_{\Xi}) = \sum_{h' \in G} (\Xi(g)^{-1}\Xi(h'))h'(v)$$
$$= \Xi(g) \sum_{h' \in G} \Xi(h')^{-1}h'(v)$$

Donc

$$g(v_{\Xi}) = \Xi(g)v_{\Xi}$$

Tue 08 Dec

Lecture 25: Determinant d'une matrice

Corollaire 153

Soit Λ une forme multilineaire en n variables sur V, alors

$$\Lambda_{sgn} = \sum_{\sigma \in S_n} sgn(\sigma) \Lambda_{|\sigma}$$

est alternee.

Theorème 154

L'espace $Alt^d(V;K)$ est de dimension 1 exactement et on a

$$Alt^d(V;K) = K(e_1^* \otimes \ldots \otimes e_d^*)_{san}$$

Preuve

Soit

$$\Lambda = e_1^* \otimes \ldots \otimes e_d^*$$

et $\Lambda_{|sgn}$ la forme correspondante symmetrisee.

Montrons qu'elle est non nulle. On montre deux methodes. Calculons

$$\Lambda_{|sgn}(e_1, \dots, e_d) = \sum_{\sigma \in S_n} sgn(\sigma) e_{\sigma(1)}^*(e_1) \dots e_{\sigma(d)}^*(e_d)$$
$$= sgn(\mathrm{Id}) \qquad \Box$$

Donc la forme est non-nulle.

Definition 81

La forme alternee $(e_1^* \otimes \ldots \otimes e_d^*)$ est appellee le determinant de V relatif a la base $B = \{e_1, \ldots, e_d\}$ et est notee \det_B . C'est l'unique forme lineaire alternee satisfaisant

$$\Lambda(e_1,\ldots,e_d)=1$$

Proposition 155

On a la formule suivante

$$det_B(v_1, \dots, v_d) = \sum_{\sigma \in S_d} sgn(\sigma) \prod_{i=1}^d x_{i\sigma(1)} = \sum_{\sigma \in S_d} x_{1\sigma(1)} \dots x_{d\sigma(d)}$$

Preuve

$$det_B(v_1, \dots, v_d) = \sum_{\sigma \in S_d} sgn(\sigma) e^*_{\sigma(1)} \dots$$

Soit $\phi: V \to V$ et $\phi^*(\Lambda) \in Alt^n(V; K)$ tel que

$$\phi^*(\Lambda)(v_1,\ldots,v_n) = \Lambda(\phi(v_1),\ldots)$$

Definition 82

Le determinant de ϕ est le scalaire verifiant

$$\phi^*(det_B) = det(\phi)det_B$$

Theorème 156

Soit $\phi: V \to V$ un endomorphisme. Pour tout $\Lambda \in Alt^d(V, K)$, on a

$$\phi^*(\Lambda) = det(\phi)\Lambda$$

En particulier $det(\phi)$ ne depend pas du choix de la base B.

 $L'application\ det\ a\ les\ proprietes\ suivantes$

1. Homogeneite : soit $\lambda \in K$, alors

$$det(\lambda\phi) = \lambda^d det(\phi)$$

2. Multiplicativite: on a

$$det(\psi \circ \phi) = det(\phi)det(\psi)$$

3. Critere d'inversibilite : on a

$$det(\phi) \neq 0 \iff \phi \in GL(V)$$

4. Morphisme: L'application

$$det: GL(V) \to K^{\times}$$

est un morphisme de groupes. En particulier $det(Id_V) = 1$.

Preuve

Soit $\Lambda \in Alt^d(V; K)$, alors $\Lambda = \lambda det_B$.

On a

$$\phi^*(\Lambda) = \phi^*(\lambda det_B) = \lambda \phi^*(det_B)$$

De meme

$$\phi^*(\lambda det_B)(v_1,\ldots,v_d) = \lambda det(\phi(v_1),\ldots)$$

1.

$$det(\lambda\phi)$$

$$= (\lambda.\phi)^*(\Lambda)(v_1, ...)$$

$$= \lambda^d \phi^*(\Lambda)(v_1, ...)$$

$$= \lambda^d det(\phi)\Lambda(v_1, ...)$$

2. Soit $\Lambda \in Alt^{(d)}(V;K)$.

$$(\psi \circ \phi)^*(\Lambda) = \det(\psi \circ \phi)\Lambda$$

$$= \Lambda(\psi \circ \phi(v_1), \ldots)$$

$$= \psi^*(\Lambda)(\phi(v_1), \ldots)$$

$$= \det\psi\Lambda(\phi(v_1), \ldots)$$

$$= \det\psi\det\phi\Lambda(v_1, \ldots)$$

3. $Si \phi est inversible$

$$\phi \circ \phi^{-1} = \mathrm{Id}$$

Donc

$$det\phi\circ\phi^{-1}=1$$

Donc $det \phi \neq 0$.

4. $Si \ det \phi \neq 0$.

On va montrer que si ϕ n'est pas inversible $det\phi = 0$. Si $\{\phi(e_1), \ldots\}$ est liee, donc

$$det_B(\phi(e_1),\ldots)=0$$

5. Morphisme resulte du critere d'inversibilite et de multiplicativite.

Lecture 26: Calcul de Determinants Definition 83

Mon 14 Dec

Le noyau du morphisme det est appele groupe speciale lineaire de V et on le note

$$SL(V) = \ker \det$$

 $C\'est\ un\ sous-groupe\ normal.$

Remarque

Soit $\phi, \psi \in GL(V)$, alors

$$\det(Ad(\psi)(\phi)) = \det \phi$$

Definition 84

Soit $M \in M_d(K)$ une matrice carree. Le determinant det M de M est

1. Le scalaire

$$\det M = \det \phi$$

ou ϕ est est l'application lineaire associe a M.

- 2. Le determinant relativement a la base canonique des vecteurs d colonnes de M dans l'espace des vecteurs colonnes.
- 3. Le determinant relativement a la base canonique dans l'espace des vecteurs lligne
- 4. La somme

$$\det M = \sum_{\sigma \in S_d} sgn(\sigma) m_{\sigma(1)1} \dots$$

5. La somme

$$\det M = \sum_{\sigma \in S_d} sgn(\sigma) m_{1\sigma(1)} \dots$$

Preuve

2) C'est tautologique, les colonnes de M C_i sont les coordonnees de $\phi(e_i)$ mises en colonnes

$$\det M = \det \phi = \det(C_1, \ldots)$$

4)

$$v_i = \phi(e_i)$$

On applique la formule generale a $m_{ij} = x_{ji}$, on a

$$\det_{B}(v_{1},\ldots) = \sum_{\sigma} sign(\sigma)m_{\sigma(1)1}\ldots$$

5) On fait un changement de variable, on pose i = 1, ..., d, on pose $j = \sigma(i)$, alors $i = \sigma^{-1}(j)$, et quand i parcourt $\{1, ..., d\}$, j parcourt egalement cet ensemble. Donc

$$\det M = \sum_{\sigma} sgn(\sigma) \prod_{i=1}^{d} m_{\sigma(i)i} = \sum_{\sigma} sgn(\sigma) \prod_{j=1}^{d} m_{j\sigma^{-1}(j)}$$

Cet expression est precisement le determinant dans la base canonique de K^d

Corollaire 158

soit $\phi: V \to V$ et $\phi^*: V^* \to V^*$, alors

$$\det \phi^* = \det \phi$$

Preuve

On $a \det \phi = \det M = \det^t M$

Corollaire 159

Soit M et N deux matrices semblables, alors

$$\det M = \det N$$

11.3 Calculs de Determinants

11.3.1 Blocs de Matrices

Theorème 160

Supposons que la matrice $M \in M_d(K)$ s'ecrit sous forme triangulaire superieure par blocs

$$M = \begin{pmatrix} M_1 & * \\ 0 & M_2 \end{pmatrix}$$

Alors

$$\det M = \det M_1 \det M_2$$

Preuve

Soit $M = (m_{ij})$, alors

$$\det M = \sum_{\sigma \in S_d} sign(\sigma) m_{\sigma(1)1} \dots$$

Dans la somme ci-dessus, on a alors

$$j \leq d_1, \sigma(j) > d_1$$

La contribution de ces termes sera donc nulle.

Il ne reste donc dans la somme que les termes correspondant aux permutations σ telles que $\forall j \leq d_1, \sigma(j) \leq d_1$.

Donc σ laisse $\{1, \ldots, d_1\}$ et definit donc une permutation

$$\sigma_1: \{1, \ldots, d_1\} \to \{1, \ldots, d_1\}$$

Comme σ est une permutation de $\{1, \ldots, d\}$, donc σ laisse stable $\{d_1, \ldots, d\}$, et induit donc une permutation de cet ensemble.

Lecture 27: Fin Determinants

Tue 15 Dec

Remarque

Les resultats precedents valent aussi si M est "triangulaire superieure par bloc".

11.3.2 Operations sur les lignes/Colonnes

Lemme 162

Soient T_{ij} , $D_{i,\lambda}$, $CL_{ij,\mu}$ les matrices des transformations elementaires des lignes d'une matrice, on a

$$\det T_{ij} = -1$$
$$\det D_{i,\lambda} = \lambda$$

$$\det CL_{ij,\mu} = 1$$

Preuve

 T_{ij} est une matrice de transposition

$$\det T_{ij} = sign(ij) = -1$$

 $D_{i,\lambda}$ est une matrice diagonale avec des 1 sur la diagonale sauf a la i eme ligne ou on a λ .

 $CL_{ij,\mu}$ est triangulaire superieure ou inferieure, donc

$$\det CL_{ij,\mu} = 1$$

Corollaire 163

Supposons que N soit deduite de M par un des trois types de transformations elementaires sur les lignes de M, alors on a

- $\det M = -\det N$
- $\det M = \lambda^{-1} \det N$
- $-\det M = \det N$

Preuve

immediat par lemme.

11.3.3 Developpement de Lagrange suivant une colonne /ligne

Soit M une matrice, on definit M(k|l) contient tous les indices de $M=(m_{ij})$, pour $i \neq k$ ou $i \neq j$

Definition 85

 $Pour \ k, l \leq d$

- Le determinant de M(k|l) est le (k,l) mineur de M.
- $-(-1)^{k+l}\det(M(k|l))$ est le (k,l) cofacteur de M.

Theorème 164

On a pour tout $j \leq d$

$$\det M = \sum_{i=1}^{d} m_{ij} (-1)^{i+j} \det(M(i|j))$$

11.4 Le polynome caracteristique

Definition 86

Le polynome caracteristique de M est le determinant

$$P_{car,M}(X) = \det(X.\operatorname{Id} - M) = \sum_{\sigma} \operatorname{sign}(\sigma) \prod_{i=1}^{d} (X\delta_{i\sigma(i)} - m_{i\sigma(i)}) \in K[X]$$

Proposition 165

Le polynome caracteristique est un polynome unitaire de degre d et si on ecrit

$$\det(X. \operatorname{Id} - M) = X^d + a_{d-1}X^{d-1} + \ldots + a_d$$

On a

$$a_0 = P(0) = (-1)^d \det M$$

 $a_{d-1} = -tr(M) = m_{11} + \dots$

Preuve

$$P_{car,M}(X) = \sum_{\sigma} sign(\sigma) \prod_{i=1}^{d} (X\delta_{i\sigma(i)} - m_{i\sigma(1)})$$

On trouve que $P_{car,M}(X)$ a son terme de plus haut degre provenant de $\sigma = \operatorname{Id}$ et donc $P_{car,M}(X)$ est unitaire de degre d.

Si $\sigma \neq \text{Id}$, $\exists i \text{ tel que } \sigma(i) = j \neq i$, mais alors $\sigma(j) \neq j$.

 $Donc\ le\ produit$

$$sign(\sigma) \prod_{i=1}^{d} (X \delta_{i\sigma(i)} - m_{i\sigma(i)})$$

contient au moins 2 facteurs de degre ≤ 0 et le produit est donc de degre $\leq d-2$, et donc

$$P_{car,M}(X) = X^d + a_{d-1}X^{d-1} + \dots + a_0$$

Proposition 166

Le polynome est invariant de la classe de conjugaison de la matrice M

Preuve

$$\det(XP\operatorname{Id} P^{-1} - PMP^{-1})$$

$$= \det(P(X\operatorname{Id} - M)P^{-1})$$

$$- \det(X\operatorname{Id} - M)$$

Definition 87

Soit $\phi \in End(V)$ une application lineaire, on definit son polynome caracteristique par

$$P_{car,\phi}(X) = P_{car,M}(X)$$

ou $M = Mat(\phi)$ est la matrice de ϕ dans une base quelconque de V.

Definition 88

On definit la trace de ϕ comme etant la trace de M

$$tr(\phi) = tr(M) = m_{11} + \dots$$

et cette definition ne depend pas du choix de la base B.