L14: Immagine (27)

Argomenti lezione:

- Immagine di un omomorfismo
- Calcolo dell'immagine
- Esercizi

Ricordiamo che, data un'applicazione tra insiemi $f: A \to B$, l'<u>immagine</u> di f è il sottoinsieme f(A) dell'insieme B formato dalle immagini degli elementi di A tramite f. Vale a dire da **tutti gli elementi** b **di** B **per cui esiste** a **in** A **tale che** f(a) = b.

Esempio: Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita da: f(x, y) := (x+2y, x+y, x-y).

L'immagine di f si determina tramite i w := (a, b, c) di R^3 per cui esiste v := (x, y) tale che f(v) = w. Cioè: (x+2y, x+y, x-y) = (a, b, c).

Da cui il vettore *v* esiste se e solo se il seguente sistema è risolubile:

$$\begin{cases} x + 2y = a & \longrightarrow \\ x + y = b & \text{metodo} \\ x - y = c & \text{di Gauss} \end{cases} \begin{cases} x + 2y = a \\ - y = a - b \\ 0 = 2a - 3b + c \end{cases}$$

Il sistema è risolubile se e solo se 2a - 3b + c = 0.

Ricordiamo che, data un'applicazione tra insiemi $f: A \to B$, l'<u>immagine</u> di f è il sottoinsieme f(A) dell'insieme B formato dalle immagini degli elementi di A tramite f. Vale a dire da **tutti gli elementi** b di B per cui esiste a in A tale che f(a) = b.

Esempio: Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita da: f(x, y) := (x+2y, x+y, x-y).

L'immagine di f si determina tramite i w := (a, b, c) di R^3 per cui esiste v := (x, y) tale che f(v) = w. Cioè: (x+2y, x+y, x-y) = (a, b, c).

Da cui il vettore *v* esiste se e solo se il seguente sistema è risolubile:

 $f(\mathbb{R}^2) = \{(a,b,c) \mid 2a - 3b + c = 0\}$ è un sottospazio vettoriale di \mathbb{R}^3

<u>Teorema</u>: Se $f: V \to W$ è un omomorfismo di spazi vettoriali, allora f(V) è un sottospazio vettoriale di W.

<u>Dimostrazione</u>: Osserviamo per prima cosa che f(V) è non vuoto. Preso un qualsiasi v in V, il vettore w := f(v) appartiene a f(V).

- Dobbiamo ora mostrare che se w_1 e w_2 appartengono a f(V), allora la loro somma $w_1 + w_2$ appartiene a f(V).
- Sappiamo che esistono v_1 e v_2 in V tali che $f(v_1) = w_1$, $f(v_2) = w_2$. $f(v_1 + v_2) = f(v_1) + f(v_2) = w_1 + w_2$. Segue $w_1 + w_2 \in f(V)$.
- Dobbiamo anche mostrare che se w appartiene a f(V), e dato uno scalare k, allora kw appartiene a f(V).
- Si ha che esiste $v \in V$ tale che f(v) = w. Segue f(k v) = k f(v) = k w.
- Da cui kw è l'immagine tramite f del vettore kv. Segue $kw \in f(V)$.

<u>Domanda</u>: Se abbiamo un'applicazione <u>non lineare</u> $f: V \rightarrow W$ tra spazi vettoriali, cosa possiamo dire dell'immagine di f?

Risposta: Se abbiamo un'applicazione non lineare $f: V \to W$ tra spazi vett., non possiamo (a priori) dire nulla sull'immagine di $f: V \to W$

- Né che sia un sottospazio vettoriale di W.
- Né che non lo sia.

Bisogna valutare caso per caso come è fatto il sistema risultante.

Esempi:

- Sia $f: R^2 \to R^2$ l'applicazione non lineare $f(x, y) := (x^2, x + y)$
- Si può verificare che in questo caso $non \ \hat{e}$ un sottospazio di R^2
- Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione non lineare f(x, y) := (xy, 2xy)
- Si può verificare che in questo caso \hat{e} un sottospazio di R^2

<u>Teorema</u>: Se $f: V \to W$ è un omomorfismo di spazi vettoriali e se lo spazio vettoriale V è generato dai vettori v_1, v_2, \ldots, v_n , allora f(V) è generato dai vettori $f(v_1), f(v_2), \ldots, f(v_n)$.

<u>Dimostrazione</u>: Dobbiamo mostrare che ogni w dell'immagine di f si può esprimere come combin. lineare di $f(v_1)$, $f(v_2)$, ..., $f(v_n)$.

Sappiamo che esiste un vettore v di V tale che w = f(v). Possiamo ora esprimere v come combinazione lineare di v_1, v_2, \ldots, v_n :

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

Ma allora
$$f(v) = k_1 f(v_1) + k_2 f(v_2) + ... + k_n f(v_n)$$

Poiché w = f(v) abbiamo dunque espresso w come combinazione lineare dei vettori $f(v_1)$, $f(v_2)$, ..., $f(v_n)$, come volevamo.

- Abbiamo mostrato che $f(v_1), f(v_2), \dots, f(v_n)$ generano f(V), non tutto W (ciò è vero solo se f(V) = W, ovvero f è suriettivo).
- Notiamo poi che, anche nel caso in cui i vettori v_1, v_2, \ldots, v_n formano una base per V, non è detto che $f(v_1), f(v_2), \ldots, f(v_n)$ formano una base per f(V).

Contro-esempio: Sia dato l'omomorfismo $f: \mathbb{R}^3 \to \mathbb{R}[x]$ definito da:

$$f(a, b, c) := (a - b) + (b - c) x + (c - a) x^2$$

 $f(R^3)$ è generato dalle immagini dei vettori di una base di R^3 .

Presa la base canonica, $f(R^3)$ è generato dai polinomi:

$$f(1, 0, 0) = 1 - x^2$$
, $f(0, 1, 0) = -1 + x$, $f(0, 0, 1) = -x + x^2$.

Questi tre polinomi sono linearmente dipendenti:

$$-x + x^2 = -(1 - x^2) - (-1 + x)$$

Dunque, non formano una base per $f(R^3)$.

Corollario: Se $f: V \to W$ è un omomorfismo di spazi vettoriali e se la dimensione di V è finita, allora la dimensione di f(V) è finita e dim $f(V) \le \dim V$. (Invece non sappiamo nulla sulla dim W.)

<u>Dimostrazione</u>: Se i vettori v_1, v_2, \ldots, v_n formano una base per V (e, dunque, dim V = n), allora f(V) è generato dagli n vettori $f(v_1)$, $f(v_2), \ldots, f(v_n)$, e, pertanto, la sua dimensione è al più n.

Osservazioni: Se $f: V \to W$ è un omomorfismo di spazi vettoriali e dim $V < \dim W$ allora f non può essere suriettivo (ovvero $f(V) \neq W$).

Nel caso in cui dim $V \ge \dim W$ non possiamo dire nulla a priori: dobbiamo valutare caso per caso.

Esercizio: Sia V uno spazio vettoriale con una base formata dai vettori e_1 , e_2 , e_3 , e_4 . Sia W un altro spazio vettoriale con una base formata dai vettori f_1 , f_2 , f_3 . Sia $f: V \to W$ l'omomorfismo:

$$f(e_1) := f_1 + f_2 + f_3;$$
 $f(e_2) := f_1 + 2f_2 + 3f_3;$ $f(e_3) := 3f_1 + 4f_2 + 5f_3;$ $f(e_4) := -f_2 - 2f_3.$

Vogliamo determinare una base per l'immagine di f.

Consideriamo la matrice A le cui colonne danno le componenti di $f(e_1)$, $f(e_2)$, $f(e_3)$, $f(e_4)$ rispetto alla base formata da f_1 , f_2 , f_3 :

$$A := \begin{pmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 4 & -1 \\ 1 & 3 & 5 & -2 \end{pmatrix} \xrightarrow{\text{riduciamo}} B := \begin{pmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Poiché gli scalini sono in I e II posizione troviamo che una base per f(V) è data dai vettori $f(e_1)$ e $f(e_2)$, ovvero $f_1+f_2+f_3$ e $f_1+2f_2+3f_3$

<u>Teorema</u>: Sia $f: V \to W$ un omomorfismo di spazi vettoriali di dimensione finita. Fissiamo una base per V, formata dai vettori e_1, e_2, \ldots, e_n , e una base per W, formata dai vettori f_1, f_2, \ldots, f_m . Prendiamo la matrice A rappresentativa di f rispetto alle basi date. Risulta: dim $f(V) = \operatorname{rk} A$. In particolare, abbiamo che f è suriettivo (i.e. f(V) = W) se e solo se $\operatorname{rk} A = \dim W$.

Osservazioni: Per determinare una base dell'immagine di f notiamo che le colonne della matrice A forniscono le componenti rispetto alla base f_1, f_2, \ldots, f_m dei vettori $f(e_1), f(e_2), \ldots, f(e_n)$ che generano f(V). Possiamo quindi determinare una base di f(V) calcolando il rango r della matrice A e scegliendo opportunamente r vettori tra $f(e_1), f(e_2), \ldots, f(e_n)$.

Esercizio: Prendiamo l'omomorfismo $f: R^3 \to R^4[x]$ definito da: $f(a, b, c) := (2a + b + 8c) + (3a - b + 7c) x + (-a - 3c) x^2 + (b + 2c) x^3$ Determinare una base per $f(R^3)$.

La matrice A rappresentativa di f rispetto alle basi canoniche è :

$$A := \begin{pmatrix} 2 & 1 & 8 \\ 3 & -1 & 7 \\ -1 & 0 & -3 \\ 0 & 1 & 2 \end{pmatrix} \Longrightarrow B \coloneqq \begin{pmatrix} 2 & 1 & 8 \\ 0 & -\frac{5}{2} & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

La matrice ha rango 2: dim $f(R^3) = 2$. Poichè gli scalini sono in I e II posizione, una base per $f(R^3)$ è formata dall'immagine dei primi due vettori della base canonica di R^3 , cioè da f(1, 0, 0) e f(0, 1, 0).

Una base per $f(R^3)$ è formata dai vettori: $2 + 3x - x^2$ e $1 - x + x^3$.

Esercizio: Stabilire se i seguenti omomorfismi sono suriettivi:

a. $f: \mathbb{R}^3 \to \mathbb{R}[x]$ definito da

$$f(a,b,c) \coloneqq a + ax + bx^2 + (c-b+a)x^5.$$

Possiamo dire subito che f non è suriettivo (i.e. $f(V) \neq W$): R^3 ha dimensione finita, mentre R[x] non ha dimensione finita.

Esercizio: Stabilire se i seguenti omomorfismi sono suriettivi:

b. $f: M(2,2,\mathbb{R}) \to \mathbb{R}^3$ definite da:

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} \coloneqq (a+b+2c, a+2b+c, c+d).$$

La matrice A rappresentativa di f rispetto alle basi canoniche é:

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Si verifica facilmente che questa matrice ha rango 3 e, quindi, dim $f(R^3) = 3$. Pertanto f è suriettivo (i.e. f(V) = W).

Esercizio: Stabilire se i seguenti omomorfismi sono suriettivi:

c. $f: \mathbb{R}^3 \to M(2, 2, \mathbb{R})$ definite da:

$$f(a,b,c) := \begin{pmatrix} a-4b & b-2c \\ a+3c & a+b+c \end{pmatrix}.$$

Possiamo dire subito che f non è suriettivo (i.e. $f(V) \neq W$): infatti dim $R^3 < \dim M$ (2, 2, R).

Esercizio: Sia $f: M(2, 2, R) \rightarrow R^2$ l'applicazione definita da:

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} := (a+b,c+d)$$
 Mostrare che f è un omomorfismo e stabilire se f è suriettivo.

L'applicazione f è un omomorfismo visto che (a + b) e (c + d)sono polinomi omogenei di grado 1 in a, b, c, d.

Non escludiamo che f è suriettivo, perchè dim $M(2, 2, R) \ge \dim R^2$ La matrice rappresentativa di f rispetto alle basi canoniche è:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
 Questa matrice ha rango 2. Dunque, f è suriettivo.

Esercizio: Mostrare che le seguenti condizioni definiscono un unico omomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^2$. Poi, stabilire se f è suriettivo.

$$f(1,2,1) = (0,1)$$
 $f(1,0,1) = (2,1)$
 $f(0,0,1) = (0,1)$
 $f(0,0,1) = (0,1)$
 $f(0,0,1) = (0,1)$
 $f(0,0,1) = (0,1)$
 $f(0,0,1) = (0,1)$

I tre vettori (1, 2, 1), (1, 0, 1), (0, 0, 1) costituiscono una base per R^3 , abbiamo definito un unico omomorfismo $f: R^3 \to R^2$.

dim $R^3 \ge \dim R^2$ e quindi <u>non</u> escludiamo che f è suriettivo.

La matrice rappresentativa di f rispetto alla base data di R^3 e dalla base canonica di R^2 è la seguente:

$$\begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 \end{pmatrix}$$
 Questa matrice ha rango 2. Dunque, f è suriettivo.