MESTRADO INTEGRADO EM ENGENHARIA INFORMÀTICA E COMPUTAÇÃO | 3º ANO EICO029 | *INTELIGÊNCIA* ARTIFICIAL | 2011-2012 - 2º SEMESTRE

Prova com consulta. Duração: 2h30m.

- 3. [4 valores] Um sistema pericial concluiu que choveria devido a: i) informação meteorológica; ii) céu nublado. No entanto acredita mais na primeira inferência (70%) do que na segunda (50%).
 - a) Qual a "certeza" com que o sistema concluiu que iria chover no caso de:
 - i. Ter aplicado o modelo de "Dempster-Shafer".
 - ii. Ter aplicado o modelo dos "Fatores de Certeza".
 - b) Posteriormente, o céu fica azul (sem nuvens) o que leva a uma certeza de 80% de que não choverá. Qual a plausibilidade de chover? E qual o valor do intervalo correspondente à ignorância (crença potencial)?
 - c) Explique porque é que o modelo Dempster-Shafer distingue incerteza de ignorância.
- 4. [8 valores] Responda a seis (6) das seguintes sete (7) questões (cada uma em 5-10 linhas).
 - a) No algoritmo "arrefecimento simulado", explique bem o raciocínio probabilístico para tentar ultrapassar o problema das funções "mal comportadas".
 - b) Considere um jogo de dois adversários, sendo a árvore de jogo, em determinado instante, a ilustrada na figura (A-F representam valores inteiros). Assuma que os nós são explorados da esquerda para a direita e que é usado o algoritmo minimax com cortes alfa-beta.
 - Quais os valores admissíveis de A que levam ao corte do ramo B?
 - ii. Quais os valores admissíveis para A e B que levam ao corte da subárvore que contém C e D?
 - iii. Supondo que A-F podem assumir qualquer valor, qual o número máximo de folhas que podem ser cortadas? Quais?

- c) Pretende-se usar Algoritmos Genéticos na resolução do problema do caixeiro-viajante, que deve visitar 6 cidades (cada cidade é visitada apenas uma vez). Defina uma estrutura para representação do indivíduo e explique os métodos a usar na determinação da população inicial, na seleção, cruzamento e mutação.
- d) Ao explicar nas aulas a Regra de Bayes, usámos a regra: "médico conhece meningite → pescoço rígido (70%)". Poderemos dizer que esta é uma regra de diagnóstico? Porquê? Qual o perigo de juntar regras causais e de diagnóstico no processo de inferência?
- e) Use uma gramática tipo DCG que teste as concordâncias de género e número e faça um teste semântico quando recebe o predicado *frase([o, luis, não, toca, guitarra],[])*.
- f) Explique que conceitos retiraria da aplicação do algoritmo da "Indução sobre as Explicações" ao 1° e 3° exemplos seguintes:

Atributo Ex.1: bola futebol Ex.2: bo		Ex.2: bola basquetebol	Ex.3: bola hóque	
Forma	esférica			
Material	couro	plástico	esférica madeira	
Tamanho	médio	grande	pequeno	
Exterior	leve	pesado	pesado	
Interior leve		Leve	pesado	

g) Considere um perceptrão com 3 entradas e uma saída, o qual pretendemos que aprenda a função de paridade (caso o número de entradas a um seja par o resultado deve ser 1, no caso contrário deve ser 0). Será possível ao perceptrão aprender a função descrita? Explique.

Prova com consulta. Duração: 2h30m.

Notas:

- Responder a cada questão (1, 2, 3 e 4) em folhas de exame separadas.

 [4 valores] Num exame de uma unidade curricular há um conjunto de problemas propostos, dos quais se sabe o tempo estimado para resolver e a sua cotação, conforme a tabela. É também conhecido que a duração do exame é de 15 unidades de tempo. Pressupõe-se que um estudante tem i

Problema:	1	2	3	4	5	6
Cotação:	8	9	12	15	5	11
Tempo:	2	5	6	8	3	5

15 unidades de tempo. Pressupõe-se que um estudante tem igual apetência para resolver qualquer um dos problemas, e que a classificação obtida em cada problema será de 100% no caso de resolução ou 0% no caso de não resolução.

- a) Com vista a maximizar a classificação obtida, pretende-se saber que problemas um estudante deve escolher resolver. Usando como função de mérito o rácio cotação/tempo, aplique a estratégia de pesquisa branch and bound para determinar a solução. Apresente a árvore de pesquisa (não esqueça a restrição temporal), indique a ordem de análise de cada estado e identifique a solução encontrada. (Nota: pode ignorar estados repetidos, que corresponderão a caminhos com o mesmo conjunto de nós, independentemente da ordem.)
- b) Aplique a estratégia de pesquisa primeiro em largura para determinar uma solução que permita resolver, no tempo máximo do exame, o maior número possível de problemas (independentemente das suas cotações). Apresente a árvore de pesquisa e a solução encontrada. (Sugestão: construa a solução supondo que inicialmente todos os problemas serão resolvidos, e vá retirando problemas que não poderão ser resolvidos em tempo útil.)
- 2. [4 valores] Foi enviado um robô ao planeta Marte, para verificar a existência de vida nesse planeta. O robô identificou oito entidades, tendo recolhido os valores apresentados na tabela seguinte (uma entidade é considerada um marciano se apresentar sinais de vida, i.e., TemVida=sim).

	Forma	Cor	NOlhos	TemVida
C1	redonda	verde	. 1	não
C2	redonda	verde	3	sim
C3	redonda	verde	2	sim
C4	redonda	vermelho	2	não
C5	redonda	vermelho	3	não
C6	triangular	verde	3	sim -
C7	triangular	verde	1	não
C8	?	verde	3	sim _

- a) Considerando o algoritmo C4.5, calcule a informação média para identificar se uma entidade é um marciano (tem vida ou não). Apresente todos os cálculos (não esqueça que os logaritmos a usar são de <u>base 2</u>).
- b) Calcule o valor da razão do ganho para os atributos Forma e Cor. Apresente todos os cálculos.
- c) Sabendo que o valor da razão do ganho para o atributo NOlhos é igual a 0,23 e com base no algoritmo C4.5, construa uma árvore de decisão que permita classificar os exemplos da tabela. A árvore de decisão após o nível 1 pode ser determinada sem efetuar cálculos, mas explicando.
- d) Suponha que a árvore é podada e tem agora profundidade igual a 1. Apresente a árvore alterada e calcule o valor da razão do erro (confiança) em todas as folhas.