Ex 2.1:

The hypothesis space in EnjoySport is 973 because there are six attributes with a total of 18 possible values in the form: [3, 2, 2, 2, 2, 2]

A hypothesis space also contains "?" values meaning any possible value for the attribute is acceptable for a hypothesis, and a " \emptyset " value indicating no possible value for the attribute is acceptable.

Representing this in the vector showing possible values, the \emptyset only needs to appear once, as any appearance is semantically identical. This means that semantically distinct combinations are limited to:

[4,3,3,3,3,3]+1 possible combinations, as the "?" value is added to the possible values and the " \emptyset " is added a single time.

```
(4*3*3*3*3*3)+1 = 973.
```

An additional attribute, A, with k possible values, impacts the hypothesis space, H, as: $H_1 = ((H_0-1)^*(k+1))+1$

Or, the new hypothesis space, H_1 , is equal to the old Hypothesis space, H_0 , less the one possible expression containing any number of "Ø" values (-1), times the new variable's quantity of possible values plus the possibility that any value will satisfy the hypothesis (*(k+1)), then adding back the possibility of a single "Ø" in any position, (+1).

In the example in the book, this is reflected by taking:

973-1 = 972

972 * 4 = 3.888

3,888+1 = 3,889, which is the new hypothesis space for an additional attribute, WaterCurrent, with possible values [Light, Moderate, Strong].

Ex 2.2:

 $S0 = [\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset]$

G0 = [?,?,?,?,?,?]

S1 = [Sunny, Warm, High, Strong, Cool, Change]

G1 = [?,?,?,?,?,?]

S2 = [Sunny, Warm, ?, ?, Cool, ?]

G2 = [Sunny,?,?,?,?,?], [Cloud,?,?,?,?,?], [?,Warm,?,?,?,?,?], [?,?,?,?,Cool,?]

S3 = [Sunny, Warm, ?, ?, ?, ?]

G3 = [Sunny,?,?,?,?,?], [Cloud,?,?,?,?,?], [?,Warm,?,?,?,?,?]

S4 = [Sunny, Warm, ?, ?, ?, ?]

G4 = [Sunny,?,?,?,?,?,], [Cloud,?,?,?,?,?,], [?,Warm,?,?,?,?,?]

The final boundary sets will be identical because they are sets determined from each instance. If a set is [1,1] and you subtract one from a value, and then another, the final set [0,0] exists regardless of which value is changed first.

In this set, placing example 4 before example 3 would mean the general set would not split into a collection of 4 sets, which would reduce the size of the boundary sets if the training occurred in the original order.

Ex 2.5 (a,b):

Part A:

Data Dictionary for Table:

- Sex:
 - M = Male
 - F = Female
- Hair:
 - o BI = Black
 - O Br = Brown
 - Blo = Blonde
- Height:
 - T = Tall
 - O M = Medium
 - S = Short
- Nation:
 - US = US
 - FR = French
 - DE = German
 - IN = Indian
 - IE = Ireland
 - JP = Japanese
 - PT = Portugese

Person	P1				P2				Result
Attr	Sex	Hair	Height	Nation	Sex	Hair	Height	Nation	
Obs1	М	Br	Т	US	F	ВІ	S	US	+
Obs2	М	Br	S	FR	F	ВІ	S	US	+
Obs3	F	Br	Т	DE	F	ВІ	S	IN	-
Obs4	М	Br	Т	IE	F	Br	S	IE	+

Part B:

Given the set [<M, Bl, S, PT>, <F, Blo, T, IN>], there can be no "Ø" values. A hypothesis containing any other value than those listed would not be consistent, thus the only acceptable values are those shown and "?".

[<?,?,?,>,<?,?,!E>], [<?,?,?,>,<?,?,JP>], [<?,?,?,>,<?,?,?,PT>]

$$2^8 = 256$$

Ex 2.7:

There are infinitely many numbers between 4.5 and 6.1.

If I were to claim that 4.51 is the lowest number > 4.5, I could disprove my claim by showing that 4.501 is > 4.5, then show an even lower number 4.5001 is > 4.5.

The use of <= or => instead of inequalities alone would solve this.