Devoir surveillé n°5 Version 1

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit G un groupe noté multiplicativement.

Pour $a \in G$, on note τ_a l'application de G vers G définie par $\tau_a : x \mapsto axa^{-1}$.

- 1) Soit $a \in G$, montrer que τ_a est un endomorphisme du groupe (G, \times) .
- 2) Vérifier que $\forall a, b \in G, \tau_a \circ \tau_b = \tau_{ab}$
- 3) Soit $a \in G$, montrer que τ_a est bijective et déterminer son application réciproque.
- 4) En déduire que $\mathcal{T} = \{\tau_a \mid a \in G\}$ muni du produit de composition est un groupe.

II. Étude d'une suite implicite.

Pour tout entier naturel n, on considère la fonction

$$\varphi_n: x \mapsto nx^{n+1} - (n+1)x^n.$$

On considère aussi la fonction

$$\psi: x \mapsto (x-1)e^x$$
.

1) Question préliminaire. Montrer que pour tout $\lambda > 0$:

$$\left(1+\frac{\lambda}{n}\right)^n \xrightarrow[n\to+\infty]{} \mathrm{e}^{\lambda}.$$

- 2) Soit $n \in \mathbb{N}^*$, dresser le tableau des variations de φ_n sur \mathbb{R}_+ .
- 3) Montrer que, pour tout $n \in \mathbb{N}^*$, l'équation $\varphi_n(x) = 1$ possède une unique solution sur \mathbb{R}_+ .

On note dorénavant x_n l'unique réel positif vérifiant $\varphi_n(x) = 1$: on vient donc de construire une suite $(x_n)_{n \in \mathbb{N}^*}$.

- **4)** Justifier que pour tout $n \in \mathbb{N}^*$, $1 + \frac{1}{n} \leqslant x_n \leqslant 1 + \frac{2}{n}$.
- 5) Que peut-on en déduire sur la suite $(x_n)_{n\in\mathbb{N}^*}$?
- 6) Montrer que l'équation $\psi(x) = 1$ admet une unique solution sur \mathbb{R} , que l'on notera dorénavant α .
- 7) Justifier que $1 < \alpha < 2$.
- 8) Montrer que, pour tout $\lambda > 0$, $\varphi_n \left(1 + \frac{\lambda}{n} \right) \xrightarrow[n \to +\infty]{} \psi(\lambda)$.
- 9) Soit $\varepsilon \in]0, \alpha 1[$.
 - a) Comparer $\psi(\alpha \varepsilon)$, $\psi(\alpha)$ et $\psi(\alpha + \varepsilon)$.

b) Justifier qu'il existe un rang n_0 à partir duquel on ait

$$\varphi_n\left(1+\frac{\alpha-\varepsilon}{n}\right) < 1 < \varphi_n\left(1+\frac{\alpha+\varepsilon}{n}\right).$$

c) Justifier qu'à partir d'un certain rang,

$$1 + \frac{\alpha - \varepsilon}{n} < x_n < 1 + \frac{\alpha + \varepsilon}{n}.$$

10) Que peut-on donc dire sur la suite de terme général $n(x_n - 1)$?

III. Une équation de Mordell.

On cherche déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solutions de l'équation (de Mordell) suivante :

$$y^2 = x^3 + 16. \tag{M}$$

On désigne par cube parfait tout cube d'entier. Ainsi, un entier $a \in \mathbb{Z}$ est un cube parfait s'il existe $n \in \mathbb{Z}$ vérifiant $a = n^3$.

- 1) Résultats préliminaires. Ces deux questions sont indépendantes, et leurs résultats pourront être utilisées dans le reste du devoir.
 - a) Soit $a \in \mathbb{Z}$. Montrer que a est pair si et seulement si a^2 est pair et que a est pair si et seulement si a^3 est pair.
 - b) Soit $a, b \in \mathbb{Z}$ deux entiers premiers entre eux, tels que ab soit un cube parfait. Montrer que a et b sont des cubes parfaits.

Indication: On pourra partir de la décomposition en produit de facteurs premiers du nombre dont ab est le cube.

- 2) Soit $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit impair.
 - a) Montrer que y^2 est impair et en déduire que x est impair.
 - b) Soit d un diviseur de y-4 et de y+4. Montrer que d est impair et que d divise 8.
 - c) En déduire que y-4 et y+4 sont premiers entre eux.
 - d) En déduire qu'il existe $a, b \in \mathbb{Z}$ tels que $y+4=a^3$ et $y-4=b^3$.
 - e) Montrer que a-b est pair et que a^2+ab+b^2 est impair.
 - f) En factorisant $a^3 b^3$, montrer que a = b + 8 et $3b^2 + 24b + 64 = 1$.
 - g) Conclure en donnant l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit impair
- 3) Soit $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit pair.
 - a) Montrer que si $y \equiv 0[4]$ alors $y^2 \equiv 0[16]$, et si $y \equiv 2[4]$ alors $y^2 \equiv 4[16]$.
 - b) En démontrant des résultats analogues concernant x^3 , montrer que x et y sont divisibles par 4.

On note alors x = 4x' et y = 4y'.

- c) Montrer que y' est impair.
- On note alors y' = 2n + 1.
- d) Montrer que n et n+1 sont premiers entre eux et sont des cubes parfaits.
- On note alors $n = c^3$ et $n + 1 = d^3$.
- e) Montrer que d = c + 1, et en déduire les valeurs de n, y', x', y et x.
- 4) Déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solutions de (\mathcal{M}) .