Podstawy Elektroniki – zajęcia laboratoryjne Sprawozdanie z ćwiczenia			
Nr ćwiczenia	Temat		Rok akademicki
1	Sup	perpozycja i wzajemność w obwodach elektrycznych	2017/2018
Data wykonania ćwi	czenia	Kierunek, rok, semestr, grupa	Ocena
2018-03-17 Informatyka, rok II, sem. 2, 1A			
Skład grupy laboratoryjnej, nr albumu			
1. 2. 3.			

1. Wprowadzenie

Ćwiczenie ma na celu praktyczne zilustrowanie zasad superpozycji i wzajemności jako metod analizy obwodów elektrycznych.

Wiadomości teoretyczne

Zasada superpozycji:

Układ fizyczny nazywamy liniowym, gdy spełnia zasadę superpozycji. Zasadę tę formułujemy następująco: odpowiedź fizycznego układu liniowego na kilka wymuszeń działających równocześnie równa jest sumie odpowiedzi na każde z tych wymuszeń, działające oddzielnie.

Prawo napięciowe Kirchhoffa:

Suma algebraiczna spadków napięć w oczku jest równa sumie algebraicznej sił elektromotorycznych działających w oczku.

Prawo prądowe Kirchhoffa:

Suma algebraiczna prądów wypływających z węzła jest równa zeru.

Prawo Ohma:

Natężenie prądu stałego I jest proporcjonalne do całkowitej siły elektromotorycznej w obwodzie zamkniętym lub do różnicy potencjałów (napięcia elektrycznego) między końcami części obwodu niezawierającej źródeł siły elektromotorycznej.

Twierdzenie o wzajemności:

Jeśli źródło napięcia znajduje się w n-tej gałęzi liniowego, pasywnego obwodu elektrycznego powoduje przepływ prądu I_k w gałęzi k-tej, wtedy to samo źródło napięcia umieszczone w gałęzi k-tej wywoła w gałęzi n-tej przepływ takiego samego prądu I_k.

Analogiczna zasada obowiązuje, gdy wymuszeniem będzie prąd, zaś odpowiedzią różnica potencjałów między dowolnymi punktami układu. Oznacza to, że zawsze spełnione są równości transmitancji $y_{kn} = y_{nk}$ oraz $z_{km} = z_{mk}$.

2. Przebieg ćwiczenia

2.1. Badanie zasady superpozycji

Zestaw pomiarowy do badania właściwości superpozycji z dwoma źródłami napięcia.

Parametry obwodu:

$$V_1 = 5,0 \text{ [V]}$$

 $V_2 = 3,2 \text{ [V]}$
 $R_1 = R_2 = R_3 = 1,0 \text{ [k}\Omega\text{]}$

Wartości rzeczywiste rezystorów zmierzono omomierzem. Uzyskano następujące wyniki:

$$R_1 = 0.99 [k\Omega]$$

 $R_2 = 0.99 [k\Omega]$
 $R_2 = 0.98 [k\Omega]$

2.1.2. Przebieg pomiarów

Dokonano połączenia układu przedstawionego w punkcie 2.1. Zgodnie ze wskazaniem prowadzącego, zmierzono napięcia na poszczególnych rezystorach pod wpływem wszystkich wymuszeń (źródeł) działających jednocześnie i pod wpływem każdego wymuszenia (źródła) działającego oddzielnie.

2.1.3. Wyniki pomiarów

		Pomiar		
$V_1[V]$	$V_2[V]$	U _{R1} [V]	$U_{R2}[V]$	$\mathrm{U}_{\mathrm{R2}}\left[\mathrm{V}\right]$
5,0	3,2	2,28	-1,675	2,15
5,0	-	2,753	1,679	1,063
-	3,2	-0,482	-3,351	1,072

2.1.4. Obliczenia

Dysponując wartościami rezystorów oraz spadków napięć na nich w poszczególnych gałęziach trzech rozpatrywanych obwodów możemy na podstawie prawa Ohma wyliczyć prądy, przepływające przez te elementy.

$$R = \frac{U}{I} \Longrightarrow I = \frac{U}{R}$$

a) Schemat obwodu do badania właściwości superpozycji z dwoma źródłami napięcia.

Obliczenia:

• dla wartości zadanych w ćwiczeniu

$$I_1 = \frac{U_{R1}}{R_1} = \frac{2,28}{1 \cdot 10^3} = 2,28 \cdot 10^{-3} [A]$$

$$I_2 = \frac{U_{R2}}{R_2} = \frac{-1,675}{1 \cdot 10^3} = -1,675 \cdot 10^{-3} [A]$$

$$I_3 = \frac{U_{R3}}{R_3} = \frac{2,15}{1 \cdot 10^3} = 2,15 \cdot 10^{-3} [A]$$

• dla wartości rzeczywistych rezystorów

$$I_1 = \frac{U_{R1}}{R_1} = \frac{2,28}{0,99 \cdot 10^3} = 2,3 \cdot 10^{-3} [A]$$

$$I_2 = \frac{U_{R2}}{R_2} = \frac{-1,675}{0,99 \cdot 10^3} = -1,69 \cdot 10^{-3} [A]$$

$$I_3 = \frac{U_{R3}}{R_3} = \frac{2,15}{0,99 \cdot 10^3} = 2,17 \cdot 10^{-3} [A]$$

b) Schemat obwodu do badania właściwości superpozycji z jednym źródłem \mathbf{V}_1

Obliczenia:

• dla wartości zadanych w ćwiczeniu

$$I_1 = \frac{U_{R1}}{R_1} = \frac{2,753}{1 \cdot 10^3} = 2,753 \cdot 10^{-3} [A]$$

$$I_2 = \frac{U_{R2}}{R_2} = \frac{1,678}{1 \cdot 10^3} = 1,678 \cdot 10^{-3} [A]$$

$$I_3 = \frac{U_{R3}}{R_3} = \frac{1,063}{1 \cdot 10^3} = 1,063 \cdot 10^{-3} [A]$$

• dla wartości rzeczywistych rezystorów

$$I_1 = \frac{U_{R1}}{R_1} = \frac{2,753}{0,99 \cdot 10^3} = 2,78 \cdot 10^{-3} [A]$$

$$I_2 = \frac{U_{R2}}{R_2} = \frac{1,678}{0,99 \cdot 10^3} = 1,69 \cdot 10^{-3} [A]$$

$$I_3 = \frac{U_{R3}}{R_3} = \frac{1,063}{0.98 \cdot 10^3} = 1.08 \cdot 10^{-3} [A]$$

c) Schemat obwodu do badania właściwości superpozycji z jednym źródłem V_2

Obliczenia:

• dla wartości zadanych w ćwiczeniu

$$I_1 = \frac{U_{R1}}{R_1} = \frac{-0.482}{1.10^3} = -0.482 \cdot 10^{-3} [A]$$

$$I_2 = \frac{U_{R2}}{R_2} = \frac{-3,351}{1 \cdot 10^3} = -3,351 \cdot 10^{-3} [A]$$

$$I_3 = \frac{U_{R3}}{R_3} = \frac{1,072}{1 \cdot 10^3} = 1,072 \cdot 10^{-3} [A]$$

• dla wartości rzeczywistych rezystorów

$$I_1 = \frac{U_{R1}}{R_1} = \frac{-0.482}{0.99 \cdot 10^3} = -0.487 \cdot 10^{-3} [A]$$

$$I_2 = \frac{U_{R2}}{R_2} = \frac{-3,351}{0,99 \cdot 10^3} = -3,38 \cdot 10^{-3} [A]$$

$$I_3 = \frac{U_{R3}}{R_3} = \frac{1,072}{0,98 \cdot 10^3} = 1,094 \cdot 10^{-3} [A]$$

Powyższe obliczenia przedstawia tabela:

• dla wartości zadanych w ćwiczeniu

		Obliczenia		
$V_1[V]$	$V_2[V]$	I _{R1} [A]	I _{R2} [A]	I _{R3} [A]
5,0	3,2	2,28·10 ⁻³	-1,675·10 ⁻³	$2,15\cdot10^{-3}$
5,0	-	$2,753\cdot10^{-3}$	1,678·10 ⁻³	1,063·10 ⁻³
-	3,2	-0,482·10 ⁻³	-3,351·10 ⁻³	$1,072\cdot10^{-3}$

• dla wartości rzeczywistych rezystorów

		Obliczenia		
$V_1[V]$	$V_2[V]$	I _{R1} [A]	I _{R2} [A]	I _{R3} [A]
5,0	3,2	$2,3\cdot10^{-3}$	-1,69·10 ⁻³	$2,17\cdot10^{-3}$
5,0	-	$2,78\cdot10^{-3}$	1,69·10 ⁻³	1,08·10 ⁻³
-	3,2	-0,487·10 ⁻³	-3,38·10 ⁻³	1,094·10 ⁻³

Zgodnie z zasadą superpozycji:

$$I(V_1) + I(V_2) = I(V_1,V_2)$$

W przypadku badanego w ćwiczeniu obwodu:

$$I_{R1}(V_1) + I_{R1}(V_2) = I_{R1}(V_1, V_2)$$

$$I_{R2}(V_1) + I_{R2}(V_2) = I_{R2}(V_1, V_2)$$

$$I_{R3}(V_1) + I_{R3}(V_2) = I_{R3}(V_1, V_2)$$

• dla wartości zadanych w ćwiczeniu

$$I_{R1}(V_1) + I_{R1}(V_2) = I_{R1}(V_1, V_2)$$

$$I_{R1}(V_1, V_2) = 2,753 \cdot 10^{-3} + (-0,482 \cdot 10^{-3}) = 2,271 \cdot 10^{-3} [A]$$

$$I_{R2}(V_1) + I_{R2}(V_2) = I_{R2}(V_1, V_2)$$

$$I_{R2}(V_1, V_2) = 1,678 \cdot 10^{-3} + (-3,351 \cdot 10^{-3}) = -1,673 \cdot 10^{-3} [A]$$

$$I_{R3}(V_1) + I_{R3}(V_2) = I_{R3}(V_1, V_2)$$

$$I_{R3}(V_1, V_2) = 1,063 \cdot 10^{-3} + 1,072 \cdot 10^{-3} = 2,135 \cdot 10^{-3} [A]$$

• dla wartości rzeczywistych rezystorów

$$I_{R1}(V_1) + I_{R1}(V_2) = I_{R1}(V_1, V_2)$$

$$I_{R1}(V_1, V_2) = 2.78 \cdot 10^{-3} + -0.487 \cdot 10^{-3} = 2.293 \cdot 10^{-3} [A]$$

$$I_{R2}(V_1) + I_{R2}(V_2) = I_{R2}(V_1, V_2)$$

$$I_{R2}(V_1, V_2) = 1,69 \cdot 10^{-3} + (-3,38 \cdot 10^{-3}) = -1,69 \cdot 10^{-3} \, [A]$$

$$I_{R3}(V_1) + I_{R3}(V_2) = I_{R3}(V_1, V_2)$$

$$I_{R3}(V_1, V_2) = 1.08 \cdot 10^{-3} + 1.094 \cdot 10^{-3} = 2.174 \cdot 10^{-3} [A]$$

Powyższe obliczenia przedstawia tabela:

Prądy			
	parametry zadane	wartości rzeczywiste	
$I_{R1}(V_1,V_2)$ [A]	$2,271\cdot10^{-3}$	$2,293\cdot10^{-3}$	
$I_{R2}(V_1, V_2)$ [A]	-1,673·10 ⁻³	-1,69·10 ⁻³	
$I_{R3}(V_1,V_2)$ [A]	$2,135\cdot10^{-3}$	$2,174\cdot10^{-3}$	

Porównanie prądów obliczonych w obwodzie na podstawie prawa Ohma i zasady superpozycji:

• dla parametrów zadanych w ćwiczeniu:

Prądy			
	Prawo Ohma	Superpozycja	
$I_{R1}(V_1,V_2)$ [A]	2,28·10 ⁻³	2,271·10 ⁻³	
$I_{R2}(V_1,V_2)$ [A]	-1,675·10 ⁻³	-1,673·10 ⁻³	
$I_{R3}(V_1,V_2)$ [A]	2,15·10 ⁻³	$2,135\cdot10^{-3}$	

• dla wartości rzeczywistych rezystorów:

Prądy			
	Prawo Ohma	Superpozycja	
$I_{R1}(V_1,V_2)$ [A]	$2,3\cdot 10^{-3}$	2,2931·10 ⁻³	
$I_{R2}(V_1,V_2)$ [A]	-1,69·10 ⁻³	-1,69·10 ⁻³	
$I_{R3}(V_1,V_2)$ [A]	2,17·10 ⁻³	$2,174\cdot10^{-3}$	

2.2. Badanie zasady wzajemności

Układ pomiarowy dla badania własności wzajemności

Parametry obwodu:

$$V = 0...5 [V]$$
 $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 1,0 [k\Omega]$

2.2.1. Przebieg pomiarów

Dla tej części nie udało się wykonać pomiarów na zajęciach. Zostały one zasymulowane w programie PSpice. W programie został zbudowany układ według schematu przedstawionego w punkcie 2.2. Wykonano serię 10-u pomiarów prądu i napięcia w obwodzie, zmieniając wartości napięć zasilania w zakresie 0...5 V. Następnie zamieniono miejscami źródło z miernikiem i czynności powtórzono.

2.2.2. Wyniki pomiarów

a) Obwód 1

E [V]	Ι _Α [μΑ]	U [mV]
0,5	45,46	45,46
1,0	90,91	90,91
1,5	136,36	136,36
2,0	181,82	181,82
2,5	227,27	227,27
3,0	272,73	272,73
3,5	318,18	318,18
4,0	363,64	363,64
4,5	409,09	409,09
5,0	454,55	454,55

Obwód symulacyjny w programie PSpice

b) Obwód 2

E [V]	Ι _Α [μΑ]	U [mV]
0,5	45,46	45,46
1,0	90,91	90,91
1,5	136,36	136,36
2,0	181,82	181,82
2,5	227,27	227,27
3,0	272,73	272,73
3,5	318,18	318,18
4,0	363,64	363,64
4,5	409,09	409,09
5,0	454,55	454,55

Obwód symulacyjny w programie PSpice

3. Wnioski

Cel ćwiczenia, jakim było praktyczne zilustrowanie zasad superpozycji i wzajemności jako metod analizy obwodów elektrycznych, został zrealizowany.

Ćwiczenie potwierdziło prawidłowość zasady superpozycji jako sposobu obliczania liniowych obwodów prądu stałego.

Porównując wartości prądów w poszczególnych gałęziach uzyskanych z obliczeń na podstawie prawa Ohma oraz z zasady superpozycji widzimy, że różnią się one nieznacznie. Różnica ta może być spowodowana:

- niedokładnością mierników, używanych do wykonania pomiarów,
- niedokładnością w odczycie pomiarów,
- pominięciem rezystancji przewodów w obliczeniach.

Udowodniona została również zasada wzajemności. Źródło napięcia znajdujące się w gałęzi z opornikiem R_5 wywołuje przepływ pewnego prądu I_A (w zależności od wartości napięcia źródłowego) w gałęzi z opornikiem R_1 . Kiedy źródło napięcia umieszczono w gałęzi z opornikiem R_1 a amperomierz w gałęzi z opornikiem R_5 to zmierzono przepływ takiego samego prądu I_A co do wartości (w zależności od wartości napięcia źródłowego). Przedstawia to charakterystyka prądowo – napięciowa (wykresy dla obu obwodów pokrywają się). Gdyby jednak uwzględnić kierunek przepływu prądu to mają one przeciwne znaki (prąd I_A w obwodzie 2 ma znak ujemny). Wówczas charakterystyka prądowo – napięciowa dla drugiego przypadku przyjmuje na osi rzędnych wartości ujemne.