Curvas e Superfícies 2021.1

Escola de Matemática Aplicada, Fundação Getulio Vargas Professora Asla Medeiros e Sá Monitor Lucas Machado Moschen

Entrega 13/05/2021

Lista 5

Exercício 1 Seja $F: \mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação linear. Mostre que: F é injetora se, e só se, a imagem da base canônica de \mathbb{R}^2 forma um conjunto de vetores linearmente independentes de \mathbb{R}^3 ou, equivalentemente, se a matriz associada de F tem posto 2. (obs.: Repare que este resultado está sendo usado para o conceito de superfície regular descrito acima).

Solução 1.

Exercício 2 Mostre que o paraboloide hiperbólico $S = \{(x, y, z) \in \mathbb{R}^3; z = x^2 - y^2\}$ é uma superfície regular. Desenhe o paraboloide em um ambiente gráfico juntamente com o plano tangente e um vetor normal à superfície. Faça o des enho de forma a poder variar o ponto aonde o plano tangente é exibido.

Solução 2.

Exercício 3 Mostre que, se f(u,v) é uma função real diferenciável, onde $(u,v) \in U$, aberto de \mathbb{R}^2 , então a aplicação X(u,v) = (u,v,f(u,v)) é uma superfície parametrizada regular, que descreve o gráfico da função f.

Solução 3.

Exercício 4 Considere o hiperbolóide de uma folha

$$S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1\}$$

Mostre que, para todo θ , a reta

$$(x-z)\cos(\theta) = (1-y)\sin(\theta), (x+z)\sin(\theta) = (1+y)\cos(\theta)$$

está contida em S, e que, todo ponto do hiperboloide está em alguma dessas linhas. Desenhe o hiperbolóide e as linhas em um ambiente gráfico. Deduza que a superfície pode ser coberta por uma única parametrização.

Solução 4.

Exercício 5 Considere uma curva regular $\alpha(s) = (x(s), y(s), z(s)), s \in I \subset \mathbb{R}$. Seja o subconjunto de \mathbb{R}^3 gerado pelas retas que passam por $\alpha(s)$, paralelas ao eixo O_z . Dê uma condição suficiente que deve satisfazer a curva α para que S seja o traço de uma superfície parametrizada regular.

Solução 5.

Exercício 6 Extra: Mostre que o cilindro circular

$$S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$$

pode ser descrito por uma parametrização global, isto é, que existe um atlas composto só por uma única carta.

 $\bf Solução~6.~https://math.stackexchange.com/questions/1664320/showing-a-circular-cylinder-is-a-surface$