Lab 03 Basic OPAMP Circuit: Gain and Bandwidth

[Purpose]

Understand the relation between the gain and bandwidth of basic negative feedback OP amplifier.

[Theory]

Linear OPAMP circuit: Voltage amplifier

Voltage gain (A) of an amplifier is defined as the ratio of output to the input with values usually displayed in dB

$$A = \frac{v_{out}}{v_{in}} = \frac{R_2}{R_1} + 1$$
 and $A_{dB} = 20log|A|$

The upper cutoff frequency of the voltage gain (f_{CL}) is the frequency when gain drops to $1/\sqrt{2}$ (0.707) of its maximum value ($A/\sqrt{2}$). For OPAMP, the gain bandwidth product is a constant. For example, the 741C has gain bandwidth product around 1MHz, which means $f_{CL}A_{CL} = constant = 1MHz$. The plot of gain versus frequency is shown in the figure.

[Instruments]

Oscilloscope(示波器)、Function generator(訊號產生器)、Power supply(電源供應器)、resistor ($1K\Omega x2$, $10K\Omega$, $47K\Omega$, $100K\Omega$)、OPAMP (ua741C)

[Steps]

Voltage amplifier

- 1. Connect the circuit.
- 2. Set AC generator to sinusoid wave at 1000 Hz. Adjust signal level to get V_{p-p} = 10.0 V at the output voltage (pin6).
- 3. Measure and record the peak-to-peak input voltage (pin3) in table
- 4. Increase the frequency until the output voltage decrease to $V_{p-p} = 7.0 \text{ V}$. This is the cutoff frequency (f_{CL}) or this circuit. Record it in the table.
- 5. Repeat steps 2 and 3 for values listed in the table
- 6. Change another OPAMP (741C) and repeat steps 2 to 5. Record data in the table.
- 7. Calculate the close loop voltage gain (A), equivalent decibel gain (A_{db}) and gain bandwidth product (A*f_{CL}) in the table.

(Questions)

- 1. What is the theoretical voltage gain (A) in this circuit? Does it match what you measure in the experiment?
- 2. Is the gain bandwidth product a constant in this experiment? Is it close to the theoretical value?
- 3. Are two OPAMP showing similar gain and the gain bandwidth product in your experiment?
- 4. If you change R_2 to 240 K Ω in the circuit. What should be the voltage gain (A) and bandwidth (f_{CL}) of this circuit?

CL: closed loop

[Supplement]

Table

R2, KΩ	V _{out, p-p}	V _{in, p-p}	A	A _{db}	f _{CL}	A*f _{CL}
10	10	0.92	10.86	20.72	33kHz	358.38k
47	10	0.22	45.45	33.15	18kHz	818.1 K
100	10	0.10	100	4000	8 KHz	800 K