Problems from Hartshorne Chapter 2.2

Isaac Martin

Last compiled November 8, 2022

EXERCISE 2.7. Let X be a scheme. For any $x \in X$, let \mathcal{O}_x be the local ring at x, and \mathfrak{m}_x its maximal ideal. We define the *residue field* of x on X to be the field $k(x) = \mathcal{O}_x/\mathfrak{m}_x$. Now let K be any field. Show that to give a morphism of Spec K to X it is equivalent to give a point $x \in X$ and an inclusion map $k(x) \to K$.

Proof: Suppose first that we have a map $f:\operatorname{Spec} K\to X$. Topologically, this is determined solely by choosing an image $x\in f(P)$ for the sole point $P\in\operatorname{Spec} K$. Sheaf theoretically, this consists of a map $f^\sharp:\mathcal O_X\to f_*\mathcal O_K$ (by $\mathcal O_K$ we mean $\mathcal O_{\operatorname{Spec} K}$). This induces a local ring map on the stalk at $P\colon f_P^\sharp:\mathcal O_{X,x}\to (f_*\mathcal O_K)_P=K$, meaning that the maximal ideal $\mathfrak m_x$ in $\mathcal O_{X,x}$ is sent to the maximal ideal $(0)\subseteq K$, meaning that $\mathfrak m_x=\ker f_P^\sharp$. This in turn implies that f_P^\sharp factors through the quotient $\pi:\mathcal O_{X,x}\mapsto k(x)=\mathcal O_{X,x}/\mathfrak m_x$ and hence induces a map $k(x)\to K$. This map is necessarily an inclusion since every ring homomorphism of fields is injective.

Now suppose we have an injection $p:k(x)\hookrightarrow K$. We can then define a map $f_x^\sharp:\mathcal{O}_{X,x}\to K$ by $f^\sharp=p\circ\pi$, where $\pi:\mathcal{O}_{X,x}\to k(x)$ is the quotient map. This is precisely a map on between the stalks $\mathcal{O}_{X,x}$ and $\mathcal{O}_{K,P}$. If we define $f:\operatorname{Spec} K\to X$ by $P\mapsto x$ and $f^\sharp(U):\mathcal{O}_X(U)\to f_*\mathcal{O}_K(U)=K$ by $f^\sharp(U)=f_x^\sharp\circ\iota$ where $\iota:\mathcal{O}_X(U)\to\mathcal{O}_{X,x}$ is the natural localization map, then (f,f^\sharp) is a map of schemes. Note that for any open set $U\subseteq X$ not containing x the map $f^\sharp:\mathcal{O}_X(U)\to f_*\mathcal{O}_K(U)$ is necessarily the zero map, since $f_*\mathcal{O}_K(U)=\mathcal{O}_K(f^{-1}(U))=\mathcal{O}_K(\varnothing)=0$.

EXERCISE 2.11. Let $k = \mathbb{F}_p$ be the finite field with p elements. Describe k[x]. What are the residue fields of its points? How many points are there with a given residue field?

Proof: The ring k[x] is a PID since k is a field, so the prime ideals are all principally generated by irreducible polynomials $f \in k[x]$.