Preliminaries

Definition 1. Seien $U, V \subset \mathbb{R}^n$ offen, dann heißt $f: U \to V$ stetig differenzierbar, falls alle partiellen Ableitungen

$$\mathbb{R}^n \ni \frac{\partial f}{\partial x_i}(x) := \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}$$

für alle $x \in U$ exisiteren und die Abbildung $\partial_i f: U \to \mathbb{R}^n, \ x \mapsto \partial_i f(x)$ stetig ist.

Iterativ definieren sich so mehrfache Abbildungen. Eine Abbildung heißt α -mal stetig differenzierbar, falls für jeden Multiindex $\alpha \in \mathbb{N}^n$ die Ableitung $\partial^{\alpha} f$ existiert und $\partial^{\alpha} f : U \to \mathbb{R}^n, \ x \mapsto \partial^{\alpha} f(x)$ stetig ist.

Lemma 1. $U, V \subset \mathbb{R}^n$ offen, $f = (f_1, \ldots, f_n) : U \to V$, dann ist f genau dann (stetig) differenzierbar, wenn f_i (stetig) differenzierbar ist für $i = 1, \ldots, n$.

Beweis. Das liegt daran, dass der Vektor

$$\frac{f(x+he_i)-f(x)}{h}$$

für $h \to 0$ konvergiert genau dann, wenn alle seine Komponenten für $h \to 0$ konvergieren und diese sind gerade

$$\frac{f_j(x+he_i)-f_j(x)}{h}, \quad j=1,\ldots,n.$$

Sei $U \subset \mathbb{R}^n$ offen, dann ist $f: U \to \mathbb{R}^m$ genau dann stetig differenzierbar, wenn $f|_{\Omega}$ stetig differenzierbar ist für jede offene Teilmenge $\Omega \subset U$.

Eine Mannigfaltigkeit kann auf verschiedene Weisen betrachtet werden.

Definition 2. Eine Teilmenge $M \subset \mathbb{R}^n$ heißt k-dimensionale Untermannigfaltigkeit der Classe \mathscr{C}^{α} , falls für alle $a \in M$ eine offene Umgebung $U \subset \mathbb{R}^n$ und $f_1, \ldots, f_{n-k} \in \mathscr{C}^{\alpha}(U, \mathbb{R})$ existieren mit

(a)
$$M \cap U = \{x \in U : f_1(x) = \ldots = f_{n-k}(x) = 0\}$$

(b) Wir haben

Rang
$$\frac{\partial(f_1,\ldots,f_{n-k})}{\partial(x_1,\ldots,x_n)}(a) = n-k$$

wobei (b) äquivalent dazu ist, dass $\nabla f_1(a), \dots, \nabla f_{n-k}(a)$ linear unabhängig sind.

Mittels des Satzes von der impliziten Funktion kann man zeigen, dass k-dimennsionale Mftkt. lokal als Graph einer Funktion in k Variablen darstellen lässt.

Satz 1. $M \subset \mathbb{R}^n$ eine k-dimensionale \mathcal{C}^{α} -Mannigfaltigkeit und $a = (a_1, \ldots, a_n) \in M$. Nach evtl. Umnummerierung der Koordinaten gibt es offene Umgebungen

$$U' \subset \mathbb{R}^k \text{ von } a' \coloneqq (a_1, \dots, a_k)$$

 $U'' \subset \mathbb{R}^{n-k} \text{ von } a'' \coloneqq (a_{k+1}, \dots, a_n)$

und $g \in \mathscr{C}^{\alpha}(U', U'')$, sodass

$$M \cap (U' \times U'') = \{(x', x'') \in U' \times U'' : x'' = g(x')\}$$

Satz 2. Sei

$$E_k := \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_{k+1} = \dots = x_n = 0\}$$

dann ist $M \subset \mathbb{R}^n$ genau dann eine k-dimennsionale \mathcal{C}^{α} -Untermannigfaltigkeit, wenn es für alle $a \in M$ eine offene Umgebung $U \subset \mathbb{R}^n$ und einen \mathcal{C}^{α} -Diffeomorphismus $F: U \to V$ mit $V \subset \mathbb{R}^n$ offen gibt, s.d.

$$F(M \cap U) = V \cap E_k$$

Definition 3. Sei $T \subset \mathbb{R}^k$ offen und $\varphi : T \to \mathbb{R}^n$ stetig differenzierbar, dann heißt φ eine Immersion, falls Rang $D\varphi(t) = k$, $\forall t \in T$.

Bilder von Immersionen sind k-dimennsionale Untermannigfaltigkeiten.

Satz 3. Sei $\Omega \subset \mathbb{R}^k$ offen und $\varphi = (\varphi_1, \dots, \varphi_n) : \Omega \to \mathbb{R}^n$ eine Immersion der Klasse \mathscr{C}^{α} , dann gibt es für alle $c \in \Omega$ eine offene Umgebung $T \subset \mathbb{R}^k$, s.d. $\varphi(T) \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit und $\varphi : T \to \varphi(T)$ ist ein Homöomorphismus.

Beweis. Nach Umnummerierung der Koordinaten können wir annehmen

$$\det \frac{\partial(\varphi_1, \dots, \varphi_k)}{\partial(t_1, \dots, t_k)}(c) \neq 0$$

nach dem Satz von der Umkehrabb, gibt es offene Umgebungen $c \in T \subset \Omega \subset \mathbb{R}^k$ und $V \subset \mathbb{R}^k$ offen, s.d.

$$(\varphi_1,\ldots,\varphi_k):T\to V$$

ein \mathscr{C}^{α} -Diffeomorphismus ist mit Inversem $\psi = (\psi_1, \dots, \psi_k) : V \to T$. Wir definieren $\Phi = (\Phi_1, \dots, \Phi_n) : T \times \mathbb{R}^{n-k} \to V \times \mathbb{R}^{n-k}$ durch

$$\Phi_i(t_1, \dots, t_n) = \varphi_i(t_1, \dots, t_k), \quad 1 \le i \le k
\Phi_j(t_1, \dots, t_n) = \varphi_j(t_1, \dots, t_k) + t_j, \quad k + 1 \le j \le n$$

dann ist Φ ein \mathscr{C}^{α} -Diffeomorphismus (Umkehrabbildung findet man leicht) und

$$\Phi(T \times 0) = (\varphi(T) \times \mathbb{R}^{n-k}) \cap E_k$$

daher ist $\varphi(T)$ eine k-dimennsionale Untermannigfaltigkeit. Nun hat $\varphi = (\varphi_1, \dots, \varphi_n) : T \to \text{im } \varphi$ das Inverse $\hat{\psi}(t_1, \dots, t_k, \dots, t_n) = \psi(t_1, \dots, t_k)$ und $\hat{\psi} = \psi \circ (\mathbb{R}^n \xrightarrow{\pi} \mathbb{R}^k)$ und damit stetig.

Der nächste Satz sagt aus, dass Mannigfaltigkeiten lokal wie der euklidische Raum aussehen.

Satz 4. Es ist $M \subset \mathbb{R}^n$ genau dann eine k-dimennsionale Untermannigfaltigkeit der Klasse \mathscr{C}^{α} , wenn es für alle $a \in M$ eine relativ offene Umgegbung $V \subset M$ und $T \subset \mathbb{R}^k$ offen und eine \mathscr{C}^{α} -Immersion $\varphi : T \to \mathbb{R}^n$ gibt, die T homöomorph auf V abbildet.

Beweis. " \Rightarrow ": Sei $a \in M$, dann gibt es eine \mathscr{C}^{α} -Immersion $\varphi : T \subset \mathbb{R}^k \to V$ mit $V \subset M$ relativ offen, $T \subset \mathbb{R}^k$ offen. Nach Satz 3 ist $\varphi(T) \subset \mathbb{R}^n$ eine k-dimensionale \mathscr{C}^{α} -Untermannigfaltigkeit und $\varphi(T) = V$. Insbesondere ist $a \in \varphi(T)$. Daher ist M eine k-dim. \mathscr{C}^{α} -Untermannigfaltigkeit. " \Leftarrow ": Wir schreiben

$$M \cap (U' \times U'') = \{(x', x'') \in U' \times U'' : g(x') = x''\}$$

und setzen $V := M \cap (U' \times U'')$, T := U, dann ist

$$\varphi: T \to \mathbb{R}^n, \ \varphi(t) = (t, q(t))$$

eine \mathscr{C}^{α} -Immersion, die T homöomorph auf V abbildet, denn:

- φ hat das Inverse $\psi: \varphi(T) \to T, (x', x'') \in \varphi(T) \mapsto x'$.
- $\varphi \in \mathscr{C}^{\alpha}(T, \mathbb{R}^n) \Leftrightarrow$ alle Komponenten von φ sind α -mal stetig diff'bar, was offenbar der Fall ist. Und der erste $k \times k$ -Block von $\partial \varphi$ ist die $k \times k$ -Einheitsmatrix.

Die Abbildung φ in Satz 4 nennt man eine Karte von M. Nun sind Kartenwechsel stets \mathscr{C}^{α} :

Satz 5. Sei $M \subset \mathbb{R}^n$ eine k-dimensionale \mathscr{C}^{α} -Manniqfaltiqkeit und

$$\varphi_i: T_i \to V_i \subset M, \ j=1,2$$

zwei \mathscr{C}^{α} -Karten mit $V = V_1 \cap V_2 \neq \emptyset$, so sind $W_j = \varphi_j^{-1}(V)$ offen und

$$\tau \coloneqq \varphi_2^{-1} \circ \varphi_1 : W_1 \to W_2$$

ist ein \mathscr{C}^{α} -Diffeomorphismus.

Folgender Satz ist beim Beweis hilfreich:

Lemma 2. Seien $U, V \subset \mathbb{R}^n$ offen, $f \in \mathscr{C}^{\alpha}(U, V)$ und f bijektiv mit $\det Df \neq 0$, so ist f ein Diffeomorphismus.

Beweis. Die Umkehrabbildung sei $g:V\to U$ ist wohldefiniert. Es bleibt zu zeigen, dass $g\in \mathscr{C}^{\alpha}(V,U)$. Sei $y\in V$, so existert genau ein $x\in U$ mit f(x)=y, nach dem Satz von UA gibt es Umgegbungen $U_x\subset U$ und $V_y\subset V$, s.d. $f|_{U_x}\coloneqq f_x:U_x\to V_y$ ein Diffeomorphismus ist. Nun ist $f_x^{-1}=g|_{V_y}$ stetig differenzierbar. Also ist g stetig differenzierbar.

Tangential- und Normalenräume

Ein Tangentialvektor an einer Untermannigfaltigkeit ist ein Tangentenvektor an einer in der Mannigfaltigkeit verlaufenden Kurve.

Definition 4. Sei $M \subset \mathbb{R}^n$ eine Untermannigfaltigkeit, $a \in M$. So heißt $v \in \mathbb{R}^n$ ein Tangentialvektor von M an a, falls ein $\varepsilon > 0$ und $\psi : (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^n$ stetig differenzierbar existieren, s.d.

$$\psi(0) = a, \quad \psi'(0) = v$$

Die Menge aller Tangentialvektoren wird mit T_aM bezeichnet.

Der Tangentialraum zum Beispiel an einem Sattel ist intuitiv eine Ebene, d.h. er hat als Vektorraum dieselbe Dimension wie die Mannigfaltigkeit. Das verallgemeinert sich

Satz 6. Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit, $a \in M$. So gilt

- (a) T_aM ist ein k-dimensionaler reeller Vektorraum
- (b) Sei $\varphi: \Omega \to V \subset M$ eine Karte von M mit $\Omega \subset \mathbb{R}^k$ offen und V relativ offen in M. Weiter sei $c \in \Omega$ mit $\varphi(c) = a$, dann bilden die Vektoren

$$\frac{\partial \varphi}{\partial t_1}(c), \dots, \frac{\partial \varphi}{\partial t_k}(c)$$

eine Basis von T_aM .

(c) Sei $U \subset \mathbb{R}^n$ offene Umgebung von a und $f_1, \ldots, f_{n-k} : U \to \mathbb{R}$ stetig differenzierbar mit

$$M \cap U = \{x \in U : f_i(x) = 0, i = 1, \dots, n - k\}$$

und

Rang
$$\frac{\partial(f_1,\ldots,f_{n-k})}{\partial(x_1,\ldots,x_n)}(a) = n-k$$

so gilt

$$T_a M = \{ v \in \mathbb{R}^n \mid \langle v, \nabla f_i(a) \rangle = 0, \ j = 1, \dots, n - k \}$$

Der in (b) aufgespannte Vektorraum ist k-dimensional, denn der Rang der Jacobi-Matrix einer Immersion ist gerade k. Dasselbe gilt für den Vektorraum in (c), denn er ist das ortogonale Komplement von n-k linear unabhängigen Vektoren.

Definition 5. Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit, dann heißt $w \in \mathbb{R}^n$ ein Normalenvektor an T_aM , falls

$$\langle w, v \rangle = 0, \ \forall v \in T_a M$$

Wegen Satz 6 ist $N_a M = \{w \in \mathbb{R}^n : w \text{ ist Normalenvektor}\}$ ein n - k dimensionaler Vektorraum und wird (mit der Notation aus Satz 6) von den Vektoren

$$\nabla f_1(a), \ldots, \nabla f_{n-k}(a)$$

aufgespannt.

Definition 6. Sei $A \subset \mathbb{R}^n$ kompakt. A hat glatten Rand, falls für alle $a \in \partial A$ eine offene Umgebung $U \subset \mathbb{R}^n$ und $\psi : U \to \mathbb{R}$ existieren, s.d.

- (i) $A \cap U = \{x \in U : \psi(x) \le 0\}$
- (ii) $\nabla \psi(x) \neq 0, \ \forall x \in U$

Lemma 3. $A \subset \mathbb{R}^n$ kompakt mit glattem Rand, $a \in \partial A$ und $\psi : U \to \mathbb{R}$ wie oben, dann gilt

$$\partial A \cap U = \{ x \in U : \psi(x) = 0 \}$$

Beweis. Wegen A kompakt, ist $\partial A \subset A$, d.h. $\partial A \cap U \subset \{x \in U : \psi(x) \leq 0\}$. Sei $x \in U$ mit $\psi(x) < 0$, wegen der Stetigkeit von ψ gibt es eine offene Umgebung $V \subset U$ von x mit $\psi(y) < 0$, $\forall y \in V$, d.h. jedoch, dass $V \subset A$. Also $x \notin \partial A$. Also haben wir gezeigt, dass gilt $\partial A \cap U \subset \{x \in U : \psi(x) = 0\}$.

Sei $a \in U$ mit $\psi(a) = 0$. Sei $v \coloneqq \nabla \psi(x) \neq 0$, dann gilt

$$\psi(a+\xi) = \psi(a) + \langle \nabla \psi(a), \xi \rangle + o(\xi) = \langle v, \xi \rangle + o(\xi)$$

nach Taylor. Mit $\xi = tv, \ t \in \mathbb{R}$ ist

$$\psi(a+tv) = t||v||^2 + o(tv)$$

Für t < 0 erhalten wir

$$\lim_{t \to 0} \frac{\psi(a+tv)}{\|tv\|} = \lim_{t \to 0} \frac{t}{|t|} \|v\| + \frac{o(tv)}{\|tv\|} = -\|v\| < 0$$

analog für t > 0, daher gibt es ein $\varepsilon > 0$, s.d.

$$\psi(a+tv) > 0, \ \forall t \in (0,\varepsilon)$$

 $\psi(a+tv) < 0, \ \forall t \in (-\varepsilon,0)$

also $a+tv \notin A$, $\forall t \in (0,\varepsilon)$ und $a+tv \in A$, $\forall t \in (-\varepsilon,0)$, daher enthält jede Umgebung von a Punkte in A und dessen Komplement, also $a \in \partial A$.

Daraus sieht man direkt, dass der Rand eines Kompaktums mit glattem Rand eine (n-1)-dimensionale \mathscr{C}^1 -Untermannigfaltigkeit ist.

Satz 7. Sei $A \subset \mathbb{R}^n$ ein Kompaktum mit glattem Rand und $a \in \partial A$. Dann existiert genau ein Vektor $\nu(a) \in \mathbb{R}^n$ mit den folgenden Eigenschaften

- (1) $\nu(a)$ steht senkrecht auf $T_a(\partial A)$
- (2) $\|\nu(a)\| = 1$
- (3) $\exists \varepsilon > 0 \text{ mit } a + t\nu(a) \notin A, \ \forall t \in (0, \varepsilon)$

Beweis. Existenz: Sei $a\in\partial A,\ U\subset\mathbb{R}^n$ eine offene Umgebung von $a,\ \psi:U\to\mathbb{R}$ stetig differenzierbar mit $\nabla\psi\neq0$ und

$$A \cap U = \{x \in U : \psi(x) \le 0\}$$

Dann sei

$$\nu(a) \coloneqq \frac{\nabla \psi(a)}{\|\nabla \psi(a)\|}$$

Da wir wissen, dass $\partial A \cap U = \{x \in U : \psi(x) = 0\}$, folgt aus 6.(b), dass $\nu(a)$ ortogonal auf $T_a(\partial A)$ steht. Normiertheit ist klar und (3) folgt aus dem vorherigen Lemma. Eindeutigkeit: Der Normalenvektorraum im Punkt a ist ein-dimensional nach Satz 6.(c), daher $\nu(a) = \lambda \nabla \psi(a)$, $\lambda \in \mathbb{R}$. Es folgt

$$1 = \|\nu(a)\| = |\lambda| \|\nabla \psi(a)\| \implies |\lambda| = \frac{1}{\|\nabla \psi(a)\|}$$

Wegen Lemma 3 und Bedingung (3) ist aber $\lambda > 0$, das beendet den Beweis.

Lemma 4 (Lemma von Lebesgue). Sei $A \subset \mathbb{R}^n$ kompakt und $(U_\alpha)_{\alpha \in A}$ mit $U_\alpha \subset \mathbb{R}^n$, $\forall \alpha \in A$, eine offene Überdeckung von A. Dann gibt es ein $\lambda > 0$ mit der Eigenschaft, dass für jede Teilmenge $K \subset \mathbb{R}^n$ mit $K \cap A \neq \emptyset$ und diam $K \leq \lambda$ gilt, dass $K \subset U_\alpha$ für ein $\alpha \in A$.