4.1.1. Изучение центрированных оптических систем

Цель работы: изучить методы определения фокусных расстояний линз и сложных оптических систем; определить характеристики оптической системы, составленной из тонких линз; изучить недостатки реальных линз – сферическую и хроматическую аберрации.

Оборудование: оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, осветитель с ирисовой диафрагмой, зрительная труба, светофильтры, кольцевые диафрагмы, линейка.

Теоретическая часть

Измерение фокусного расстояния по методу Аббе основано на определении поперечного увеличения для нескольких (не менее двух) различных положений предмета, находящегося на оптической оси исследуемой оптической системы. На рис. 1 представлена соответствующая схема эксперимента. фокусное расстояние системы можно выразить

Рис. 1:

через положения предмета и соответствующие увеличения следующим образом:

$$f = \frac{\Delta x}{\Delta(y/y')} = -\frac{\Delta x'}{\Delta(y'/y)}.$$

Здесь $\Delta x = x_2 - x_1$ – смещение предмета, $\Delta x' = x_2' - x_1'$ – соответствующее ему перемещение изображения, $\Delta(y'/y) = y_2/y_2' - y_1/y_1'$ – приращение поперечного увеличения, а $\Delta(y/y')$ — приращение величины, обратной поперечному увеличению. Для повышения точности измерений следует выбирать такие смещения Δx , чтобы увеличения заметно отличались друг от друга. С целью уменьшения случайной ошибки, возникающей при фокусировке изображения, измерения следует проводить несколько раз, усредняя полученные данные.

Определение фокусного расстояния собирающих линз и сложных оптических систем по методу Бесселя. Схема метода Бесселя для случая, когда n=n' и f'=-f, представлена на рис. 2. Она основана на том, что при заданном расстоянии L между предметом и экраном представляет собой квадратное уравнение относительно расстояния s от главной плоскости пространства предметов до предмета (s<0):

$$-\frac{1}{s} + \frac{1}{L - \delta + s} = \frac{1}{f},$$

имеющее при условии $L > 4f + \delta$ решения s_1 и s_2 , показанные на рис. 2, где δ – расстояние между главными плоскостями системы (линзы).

Рис. 2:

С учётом симметрии и направлений измерения расстояний, положения предметов определяются соотношениями $s_2' = -s_1$ и $s_1' = -s_2$. Для расстояния L между предметом и экраном и расстояния l между двумя положениями системы (линзы) получаем: $L - \delta = s'1 - s1$, $l = -s_2 + s_1 = s_1 + s_1'$. Отсюда следует, что

$$s_1 = -\frac{1}{2}(L - \delta - l), \quad s'_1 = \frac{1}{2}(L - \delta + l).$$

После несложных преобразований находим выражение

$$f = \frac{(L-\delta)^2 - l^2}{4(L-\delta)}$$

Результаты и обработка

1. Измеряем фокусы линз, полученные данные приведены в таблице 1. Для рассеивающей линзы $4.5\ l=197\ {\rm mm}\ a_0=290\ {\rm mm}$

$$f = l - a_0 = (-93 \pm 2)$$
 mm.

2. Для линзы 4.2 измерим фокусное расстояние методом Бесселя (L=600 мм), полученные данные собраны в таблице 2. Оценка по формуле тонкой линзы:

$$f_{\text{tm}} = \frac{1}{\frac{1}{s_1} + \frac{1}{L - s_1}} = (126.3 \pm 0.2) \text{ mm};$$

оценка методом Бесселя:

$$f_{\text{M6}} = \frac{L^2 - l^2}{4L} = (124.8 \pm 0.6) \text{ mm}.$$

3. Для той же линзы 4.2 измерим фокусное расстояние методом Аббе, полученные данные собраны в таблице 3.

$$f_1 = \frac{\Delta x'}{\frac{y_1}{y_0} - \frac{y_2}{y_0}} = (123 \pm 2) \text{ mm}; \quad f_2 = \frac{\Delta x}{\frac{y_0}{y_2} - \frac{y_0}{y_1}} = (127 \pm 3) \text{ mm}$$

Тогда:

$$f = rac{f_1 + f_2}{2} = (125 \pm 2) \; \mathrm{mm}$$

4. Определим увеличение телескопа Галилея, собранного из исследуемых линз (линзы $4.5,\,4.3$)

$$\begin{split} \gamma_{\text{эксп}} &= \frac{a}{a_0} = \frac{100/300}{57/310} = (1.8 \pm 0.1) \\ \gamma_{\text{теор}} &= \frac{f_{\text{o6}}}{f_{\text{ok}}} = \frac{180}{93} = (1.9 \pm 0.1) \\ D_{\text{o6}} &= (14.0 \pm 0.5) \text{ мм}, \ D_{\text{ok}} = (7.0 \pm 0.5) \text{ мм} \quad \gamma = \frac{D_{\text{o6}}}{D_{\text{ok}}} = (2.0 \pm 0.1) \end{split}$$

5. Оценим увеличение микроскопа, собранного из исследуемых линз (линзы 4.1, 4.2, $L=(38.00\pm0.05)$ см, $a=(40.0\pm0.5)$ мм, $a_0=(17\pm0.5)$ мм)

$$\gamma_{\text{эксп}} = \frac{a}{a_0} \frac{L}{f_{\text{кол}}} = (2.3 \pm 0.1)$$

$$\gamma_{\rm np} = \frac{L - f_{\rm ok}}{f_{\rm ok}} \frac{\Delta}{f_{\rm o6}} = (2 \pm 0.1)$$

Таблица 1: Фокусы собирающих линз

adovinger in a only obtational peromain vining							
№	f_1 MM	f_2 mm	f mm	Δ mm			
4.1	80	83	81.5	2			
4.2	130	132	131.0	1			
4.3	183	179	181.0	2			
4.4	257	252	254.5	3			

Таблица 2: Метод Бесселя

	s_1 MM	s_2 MM	l mm
ĺ	181	430	249
	180	423	243

Таблица 3: Метод Аббе

y_0 MM	y_1 MM	y_2 MM	Δx	$\Delta x'$
20	72	46	20	160