AE 41 Ecoulements Compressibles

Emmanuel Benard ISAE/SupAéro emmanuel.benard@isae.fr

Elements extraits des cours de: ENSICA/SupAéro/ENSMA

- 1. Remerciements
- 2. Présentation du cours, des TD et du contrôle de connaissance
- 3. Un peu d'histoire
- 4. Applications industrielles
- 5. Compressibilité
- 6. Régimes d'écoulements
- 7. Rappels thermodynamiques et formes isentropiques.

Remerciements

✓ Ce cours est dédié à la mémoire de Pierre Comte (ENSMA)

✓ Les présentations et le cours sont entièrement le travail :

Xavier CARBONNEAU (ENSICA)

<u>Pierre COMTE</u> (ENSMA)

Jean DELERY (ONERA)

Laurent JOLY (ENSICA)

Stéphane JAMME (ENSICA)

Nicolas BINDER (ENSICA)

Thierry ALZIARY DE ROQUEFORT (ENSMA)

✓ Livres utilisés: (1) ANDERSON (2) CANDEL (3) DELERY

Articulation des cours

C1-C2	Généralités. Plan du cours. Régimes d'écoulement. Rappels thermodynamiques. Relations isentropiques;
C3	Equations de continuité, quantité de mouvement, énergie;
C4	Ecoulement monodimensionnel. Simplifications. Vitesse du son. Formes d'énergie;
C5	Ondes de choc droites. Equations de Rankine-Hugoniot. Apport de chaleur. Prise en compte du frottement;
C6	Écoulements quasi-monodimensionnels. Relation entre Mach et section de passage. Écoulements dans une tuyère;
C7	Ondes de choc obliques;
C8	Détentes de Prandtl-Meyer;
C9	Intersections et réflexions ondes de choc;
C10	Écoulements supersoniques linéarisés. Application sur un profil. Introduction aux caractéristiques;
C11	Entrées d'air;
C12	Couches limite compressible. Rappels de régime incompressible;
C13	Couche limite avec dissipation. Formes d'équations;
C14	Approche qualitative des interactions. Méthodes quantitatives de prédiction des décollements;
C15	Tuyères;
C16	Résumé. Questions.

Articulation des TD et Contrôles des connaissances

ARTICULATION DES TD:

TD1 Écoulement dans une canalisation d'air comprimé; TD2 Une tuyère amorcée; Écoulement dans une vanne; **TD3&4** TD5 **Écoulement dans un divergent;** Écoulement isotherme d'un gaz compressible; TD6 Écoulement compressible avec dégagement de chaleur dans un **TD7&8** super statoréacteur; Ondes de choc obliques sur un coin; TD9 Écoulement supersonique dans un convergent; **TD10** Théorie choc-détente; **TD11** Écoulement autour d'une plaque plane en incidence; TD12&13 Poussée d'une tuyère et décollement dans une tuyère; **TD14&15**

CONTRÔLE DES CONNAISSANCES:

Contrôle intermédiaire???

Examen final: semaine 6 ou 7, 1h45

Un peu d'histoire

1893:

Présentation de la 1^{ière} turbine à vapeur par de Laval. Origine des souffleries supersoniques ou propulsion supersonique.

24 octobre 1947:

1^{ier} vol supersonique du BELL XS-1 à Mach 1.06

lucqu' ou YYe sià do : liquido o

Jusqu' au XX^e siècle : liquide ou gaz basse vitesse : utilisation de l' équation de Bernouilli

Ces 2 exemples sont à l'origine des études sur la compressibilité.

Dans le monde industriel

Aérodynamique externe

Écoulements compressibles

• La compressibilité est une propriété du fluide qui évalue la diminution de v en réponse à un accroissement de P

v = volume spécifique (volume /unité de masse)

$$\tau = -\frac{1}{v}\frac{dv}{dp}$$

- Assure la propagation des ondes sonores
- Compressibilité isotherme

Eau
$$au_T^{eau} = 5.10^{-10} m^2/N$$

Air

$$\tau_T^{air} = 10^{-5} m^2 / N$$

• La densité / masse volumique s'écrit : $\rho =$

densité
$$d = \left(\frac{\rho_{gaz}}{\rho_{air}}\right)_{P,T}$$

Écoulements compressibles

La définition de la compressibilité donne : d
ho =
ho au dp

Pour les liquides : variation de pression \longrightarrow peu de variation de densité « Écoulements » supposés incompressibles (ρ = Cte)

Si vitesse écoulement < 30% vitesse du son dp faible —————— dp faible Écoulements de gaz faibles vitesses supposés incompressibles

.... – 1939 Avions faibles vitesse

1940 – Approche compressible indispensable (couplage avec le cours d'aérodynamique)

Régimes d'écoulements

Nombre de Mach:

$$M = \frac{V}{a}$$

Régimes d'écoulements

Viscosité : décollements, transferts de chaleur, traînée de frottement ...

Couche limite dynamique et thermique + interactions

Rappels thermodynamiques

Énergie cinétique par unité de masse V²/2

- Rôle central dans les écoulements compressibles (souvent synonymes d'écoulements à grande vitesse)
- Thermodynamique = Étude de l'énergie et de l'entropie

Compréhension et analyse physique des écoulements

Gaz parfait : pas de forces intermoléculaires (négligées).

$$Pv = RT \\ \rho = \frac{1}{v}$$

$$P = RT$$

$$R = \frac{\mathcal{R}}{\mathcal{M}} = \frac{8.314 \ J/mol/K}{28,96.10^{-3} \ kg/mol} = 287 \ J/kg/K$$

Air – Conditions standards

Enthalpie et Énergie interne

Pour un système en équilibre : h(T, P) = e(T, v) + Pv

Pour un gaz parfait sans réaction chimique (thermiquement parfait) h = h(T) et e = e(T)

Si les chaleurs spécifiques sont constantes, le gaz est alors *calorifiquement* parfait:

$$h = Cp.T$$
 et $e = Cv.T$

Air: $T < 1000 \, \text{K}$ Gaz calorifiquement parfait $T > 1000 \, \text{K}$ Vibration des molécules de O_2 et N_2 Corps de rentrée $T > 2500 \, \text{K}$ Dissociation de l'oxygène $T > 4000 \, \text{K}$ Dissociation du nitrogène (diazote-azote) Rappels thermodynamiques

Évolution du Co fonction de T

$$C_p = -3.10^{-14}T^5 + 2.10^{-10}T^4 - 7.10^{-7}T^3 + 9.10^{-4}T^2 - 0,3177T + 1032.6$$

Rappels thermodynamiques

Chaleurs spécifiques :
$$C_p = \left(\frac{\partial h}{\partial T}\right)_P$$

$$C_v = \left(\frac{\partial e}{\partial T}\right)_v$$

Or on a la relation
$$C_p - C_v = R$$
 et en posant $\gamma = \frac{C_p}{C_v}$

$$\gamma = \frac{C_p}{C_v}$$

On obtient

$$C_p = \frac{\gamma R}{\gamma - 1} \qquad C_v = \frac{R}{\gamma - 1}$$

$$C_v = \frac{R}{\gamma - 1}$$

Pour de l'air sous des conditions standards : $\gamma = 1.4$

$$T_{ref} = 288.15K$$

$$P_{ref} = 101325Pa$$

Rappels thermodynamiques

Premier principe

$$\delta q + \delta w = de$$

e variable d'état différentielle exacte ne dépend que de l'état initial (I) et final (F)

 δw et δq dépendent du processus conduisant de (I) à (F)

Différents processus:

Adiabatique : aucun apport / extraction de chaleur du système

Réversible : pas de phénomène dissipatif (effets de viscosité ...)

Isentropique: adiabatique et réversible

Rappels thermodynamiques

Deuxième principe et Entropie

$$ds \ge 0$$

Après quelques calculs :

$$ds = C_P \; \frac{dT}{T} - R \; \frac{dP}{P}$$

En intégrant :

$$s_2 - s_1 = \int_{T_1}^{T_2} C_p \, \frac{dT}{T} - R \, \ln \frac{P_2}{P_1}$$

Si C_p est constant (gaz calorifiquement parfait)

Entropie –

Traceur des pertes

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

$$s_2 - s_1 = C_v \ln \frac{T_2}{T_1} + R \ln \frac{\rho_1}{\rho_2}$$

Rappels thermodynamiques

Relations isentropiques

Isentropique = Adiabatique + Réversible

$$ds = \frac{\delta q}{T} + ds_{irreversible} \qquad \qquad \delta q = 0 \qquad \qquad ds_{irr} = 0$$

$$ds = 0$$

$$0 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

$$0 = C_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$$

$$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_2}{\rho_1} = \frac{v_1}{v_2} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma - 1}}$$

$$\frac{P_2}{P_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}}$$

(gaz calorifiquement parfait)

En résumé...

Problématique supersonique commune (internes ou externes)

$$\tau = -\frac{1}{v}\frac{dv}{dp} \qquad \qquad d\rho = \rho\tau dp \qquad \qquad \tau_T^{eau} = 5.10^{-10}m^2/N \quad \text{Eau}$$

$$\tau_T^{air} = 10^{-5}m^2/N \quad \text{Air}$$

•
$$\frac{P}{\rho} = RT$$
 $R = \frac{\mathcal{R}}{\mathcal{M}} = \frac{8.314 \ J/mol/K}{28,96.10^{-3} \ kg/mol} = 287 \ J/kg/K$

$$C_p = \frac{\gamma R}{\gamma - 1} \qquad \gamma = \frac{C_p}{C_v}$$

- Adiabatique : aucun apport / extraction de chaleur du système
- Réversible pas de phénomène dissipatif (effets de viscosité ...)

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

•
$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

$$\frac{P_2}{P_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}}$$