PROCESAMIENTO DE IMAGENES

Francisco J. Hernández López fcoj23@cimat.mx

PROCESAMIENTO DE IMÁGENES

- Proceso computacional que transforma una o más imágenes de entrada en una imagen de salida.
- Se utiliza para analizar e interpretar la imagen, por medio de algoritmos que permiten resaltar sus principales características:
 - Bordes
 - Contraste
 - Puntos de interés
 - Etc.

Corke, Peter. *Robotics, vision and control: fundamental algorithms in MATLAB*. Vol. 73. Springer Science & Business Media, 2011.

APLICACIONES MÉDICAS

APLICACIONES EN LA INDUSTRIA

Detección de pilas defectuosas

https://www.youtube.com/watch?v=y6wzRThO7vM

APLICACIONES DE SEGURIDAD-VIGILANCIA

ENTRETENIMIENTO

IMAGEN

- Arreglo rectangular de elementos (pixeles)
- En escala de gris es una función de dos variables:
 - l para columnas ("c")
 - l para renglones ("r")

IMAGEN RGB

- Es una función de tres variables:
 - l para columnas ("c")
 - l para renglones ("r")

Estructura de una imagen de 3 dimensiones: fila, columna y color. Peter Corke. 2011.

Imagen Binaria

Imagen en escala de grises

Marques, O. (2011). Practical image and video processing using MATLAB. Hoboken, NJ: Wiley-IEEE Press.

Imagen a color RGB

(a) Imagen en RGB. (b) Canal R. (c) Canal G. (d) Canal B

Marques, O. (2011). Practical image and video processing using MATLAB. Hoboken, NJ: Wiley-IEEE Press.

OBTENER UNA IMAGEN

- A partir de archivos
 - MatLab:
 - > Il=imread('flowers8.png');
 - OpenCV:
 - > Image = cv::imread("flowers8.png");
- A partir de una cámara
 - MatLab:
 - > obj=videoinput('winvideo', 1);
 - > frame = getsnapshot(obj);
 - OpenCV:
 - cv::VideoCapture capture;
 - > capture.open(0);

OBTENER UNA IMAGEN (C1)

- A partir de un archivo de video
 - MatLab:
 - video=VideoReader('highway.avi');
 - > frame=read(video,frame_number);
 - OpenCV:
 - > cv::VideoCapture capture;
 - capture.open("highway.avi");

UMBRAL

$$O(x,y) = \begin{cases} 1 & si \ I(x,y) > T \\ 0 & si \ I(x,y) \le T \end{cases}$$

Con T un valor dentro del rango dinámico de I.

OPERACIONES MONÁDICAS

- El resultado es una imagen del mismo tamaño que la imagen de entrada
- Cada pixel de salida es una función del correspondiente pixel de entrada:

$$O[u, v] = f(I[u, v]), \forall (u, v) \in I$$

Ejemplos:

- *I* * *escalar*
- abs(I)
- *sqrt(I)*
- Etc.

Operaciones monádicas. Peter Corke. 2011.

CAMBIAR EL BRILLO A UNA IMAGEN

I + escalar

CAMBIAR EL CONTRASTE A UNA IMAGEN

I * escalar

OPERACIONES DIÁDICAS

 Cada pixel de salida es una función de los correspondientes pixeles en las dos imágenes de entrada:

$$O[u, v] = f(I_1[u, v], I_2(u, v)), \forall (u, v) \in I_1$$

Ejemplos:

- $I_1 + I_2$
- $I_1 I_2$
- *I*₁ .* *I*₂
- Etc.

Operaciones diádicas. Peter Corke. 2011.

SUMAR DOS IMÁGENES $I_3 = I_1 + I_2$

 I_3 con uint8

 I_3 con double

OPERACIONES DE VENTANA

 Cada pixel de salida es una función de los pixeles de una cierta ventana o región:

$$O[u, v] = f(I[u + i, v + j]), \forall (i, j) \in \mathcal{W}, \forall (u, v) \in I, i, j \in [-h, h]$$

Lineales:

- Suavizadores
- Detección de bordes, etc.

No lineales:

- Filtro de rango
- Emparejamiento
- Etc.

Operaciones espaciales. Peter Corke. 2011.

CORRELACIÓN

Operador espacial lineal:

$$O[u,v] = \sum_{(i,j) \in \mathcal{W}} I[u+i,v+j]K[i,j], \ \forall (u,v) \in I, i,j \in [-h,h]$$

donde $K \in \mathbb{R}^{w \times w}$ es un kernel.

• Para una imagen de tamaño $N \times N$, se requiere w^2N^2 multiplicaciones y sumas

CONVOLUCIÓN

• Operador espacial lineal $O = I \otimes K$:

$$O[u, v] = \sum_{(i,j) \in \mathcal{W}} I[u - i, v - j] K[i,j], \ \forall (u, v) \in I, i, j \in [-h, h]$$

donde $K \in \mathbb{R}^{w \times w}$ es un kernel de convolución

- Si el kernel es simétrico entonces la convolución es igual a la correlación
- Propiedades:
 - Conmutativo $A \otimes B = B \otimes A$
 - Asociativo $A \otimes B \otimes C = (A \otimes B) \otimes C = A \otimes (B \otimes C)$
 - Distributivo $A \otimes (\alpha B) = \alpha (A \otimes B)$
 - Lineal $A \otimes (B + C) = A \otimes B + A \otimes C$

CORRELACIÓN

0(1,1)	0(1,2)	0(1,3)	0(1,4)	0(1,5)	0(1,6)					
0(2,1)	0(2,2)	0(2,3)	0(2,4)	0(2,5)	0(2,6)					
0(3,1)	0(3,2)	0(3,3)	0(3,4)	0(3,5)	0(3,6)					
0(4,1)	0(4,2)	0(4,3)	0(4,4)	0(4,5)	0(4,6)					
0(5,1)	0(5,2)	0(5,3)	0(5,4)	0(5,5)	0(5,6)					
0										

```
O(3,3) = I(2,2) * K(1,1) + I(2,3) * K(1,2) + I(2,4) * K(1,3) + I(3,2) * K(2,1) + I(3,3) * K(2,2) + I(3,4) * K(2,3) + I(4,2) * K(3,1) + I(4,3) * K(3,2) + I(4,4) * K(3,3)
```

CONVOLUCIÓN

0(1,1)	0(1,2)	0(1,3)	0(1,4)	0(1,5)	0(1,6)					
0(2,1)	0(2,2)	0(2,3)	0(2,4)	0(2,5)	0(2,6)					
0(3,1)	0(3,2)	0(3,3)	0(3,4)	0(3,5)	0(3,6)					
0(4,1)	0(4,2)	0(4,3)	0(4,4)	0(4,5)	0(4,6)					
0(5,1)	0(5,2)	0(5,3)	0(5,4)	0(5,5)	0(5,6)					
0										

```
O(3,3) = I(4,4) * K(1,1) + I(4,3) * K(1,2) + I(4,2) * K(1,3) + I(3,4) * K(2,1) + I(3,3) * K(2,2) + I(3,2) * K(2,3) + I(2,4) * K(3,1) + I(2,3) * K(3,2) + I(2,2) * K(3,3)
```

CONVOLUCIÓN

correlación con kernel girado

$$O(3,3) = I(4,4) * K(1,1) + I(4,3) * K(1,2) + I(4,2) * K(1,3) + I(3,4) * K(2,1) + I(3,3) * K(2,2) + I(3,2) * K(2,3) + I(2,4) * K(3,1) + I(2,3) * K(3,2) + I(2,2) * K(3,3)$$

¿QUÉ HACER CUANDO ESTAMOS PROCESANDO UN PIXEL DE ALGUNA ORILLA DE LA IMAGEN?

K										K											
K(1,1)	K(1,2)	K(1,3)								K(1,1)	K(1,2)	K(1,3)									
K(2,1)	K(2,2)	K(2,3)	I(1,3)	I(1,4)	I(1,5)	I(1,6)		I(1,1)	I(1,2)	K(2,1)	K(2,2)	K(2,3)	I(1,6)		I(1,1)	I(1,2)	I(1,3)	I(1,4)	I(1,5)	I(1,6)	K
K(3,1)	K(3,2)	K(3,3)	I(2,3)	I(2,4)	I(2,5)	I(2,6)		I(2,1)	I(2,2)	K(3,1)	K(3,2)	K(3,3)	I(2,6)		I(2,1)	I(2,2)	I(2,3)	I(2,4)	K(1,1)	K(1,2)	K(1,3)
	I(3,1)	I(3,2)	I(3,3)	I(3,4)	I(3,5)	I(3,6)		I(3,1)	I(3,2)	I(3,3)	I(3,4)	I(3,5)	I(3,6)		I(3,1)	I(3,2)	I(3,3)	I(3,4)	K(2,1)	K(2,2)	K(2,3)
	I(4,1)	I(4,2)	I(4,3)	I(4,4)	I(4,5)	I(4,6)		I(4,1)	I(4,2)	I(4,3)	I(4,4)	I(4,5)	I(4,6)		I(4,1)	I(4,2)	I(4,3)	I(4,4)	K(3,1)	K(3,2)	K(3,3)
	I(5,1)	I(5,2)	I(5,3)	I(5,4)	I(5,5)	I(5,6)		I(5,1)	I(5,2)	I(5,3)	I(5,4)	I(5,5)	I(5,6)		I(5,1)	I(5,2)	I(5,3)	I(5,4)	I(5,5)	I(5,6)	
	I							I					-							,	

- a) Dejar un margen del tamaño del radio de K
- b) Asignar ceros a los lugares donde no hay información
- c) Considerar que la imagen es circular, ej. I(1,7) = I(1,1)
- d) Considerar que la imagen se refleja, ej. I(1,7) = I(1,6)

CORTAR IMAGEN

- >Image=imread('tenis.bmp');
- >subImage=Image(50:210,200:270,:);

CAMBIAR DE TAMAÑO (ESCALAR)

>Image_new = imresize(Image,2.0);

PIRAMIDE DE UNA IMAGEN

- ▶I2 = impyramid(Image, 'reduce');
- ▶I3 = impyramid(I2, 'reduce');
- >I4 = impyramid(I3, 'reduce');

HISTOGRAMA DE UNA IMAGEN

- Inicializar con ceros el vector h_I de tamaño 256.
- Para todos los pixeles \vec{x} de la imagen I
 - $idx = I(\vec{x}) \rightarrow \text{en C/C++ o } idx = I(\vec{x}) + 1 \rightarrow \text{en MatLab}$
 - $\bullet \ h_I(idx) = h(idx) + 1$

Sonka, Milan, Vaclav Hlavac, and Roger Boyle. Image processing, analysis, and machine vision. Cengage Learning, 2014.

Moeslund, T. B. (2012). Introduction to video and image processing: Building real systems and applications. Springer Science & Business Media.

Nota: Cuando se calcula el histograma, no se considera la posición espacial de los pixeles, entonces:

- a) Muchas imágenes tienen el mismo histograma
- b) Una imagen no se puede reconstruir a partir del histograma

Moeslund, T. B. (2012). Introduction to video and image processing: Building real systems and applications. Springer Science & Business Media.

GRACIAS POR SU ATENCIÓN

Francisco J. Hernandez-Lopez

fcoj23@cimat.mx

WebPage:

www.cimat.mx/~fcoj23

