A Proposal for Stripe's Data Architecture

Stripe is a financial services company which provides payment processing solutions through APIs that web developers can use in their websites or mobile applications. The company processes billions of transactions annually, supporting millions of merchants worldwide.

The sensitive nature of the data managed by Stripe, along with the need of efficient

Data Pipeline

Les données recueillies sont transférées depuis l'API de paiement utilisée par les sites marchands. On en distingue deux types:

- A chaque transaction bancaire effectuée, un relevé est envoyé
- Des données de télémétrie sont transférées

Online Transaction Processing Model

Our proposed OLTP database architecture is presented in figure 1. The core of the database is a registry of all financial transactions occurring within Stripe scope. Additional tables contain information about merchants and customers. Fraud indicators are stored in a dedicated table in a one-to-one correspondence with the main transactions table. The rationale behind this choice is that fraud indicators do not originate from the same source as transactions, and are not produced at the same time.

Online Analytical Processing Model

Pour l'analyse et la préparation de features pour la détection de fraude, on utilisera une base

NoSQL Model

L'entreprise doit aussi gérer des données semi-structurées telles que les fichiers de log, les reçus de transactions ou encore la télémétrie effectuée sur la plateforme de paiement. Les contraintes pour chaque catégorie de données sont diverses et on adoptera une solution adaptée à chacune.

- Les informations de session ayant principalement des contraintes de disponibilité associée à des requêtes simples, on s'orientera vers une database de type key-value.
- Les fichiers de log sont structurés comme une succession d'évènements. Ceux-ci doivent être stockés de façon à pouvoir alimenter en temps réel des algorithmes de détection d'anomalies, afin d'assurer une réponse rapide en cas d'incident. Il est aussi nécessaire qu'ils soient lisibles par un humain pour une analyse approfondie. On s'orientera donc naturellement vers une document-based NoSQL database pour ce cas d'usage.
- Les fichiers non sensibles peuvent être stockés dans un espace approprié (Amazon S3) et indexés par une document-based database qui contiendra aussi les métadonnées.
- La télémétrie dans une column database
- Les features pour le machine learning peuvent être stockés dans une graph database.

Figure 1: Proposed OLTP database structure.

Figure 2: Proposed OLAP database structure.

Table 1: Data dictionary for the transactions OLTP schema.

Field Name	Type	Description	Example		
		transactions table			
transaction_id	bigint	Unique transaction id	123456789		
merchant_id	bigint	Merchant id	12345		
customer_id	bigint	Customer id	234567		
time	datetime	${ m UTC}\ { m transaction}\ { m timestamp}$	2023-11-18 17:43:02.4		
amount	decimal(10,2)	Transaction amount (in currency unit)	43.15		
currency_code	char(3)	Currency code (ISO 4217)	'GBP'		
payment_method	varchar(16)	Payment method	'credit_card'		
device_type	varchar(16)	Device used for payment	'mobile'		
status	varchar(16)	Transaction status	'sucess'		
ip_latitude	float	IP-based geolocation latitude	49.6833300		
ip_longitude	float	IP-based geolocation longitude	10.5333300		
		merchants table			
merchant_id	bigint	Unique merchant id	12345		
name	varchar	Merchant name	'Amazon UK'		
iban	varchar	Merchant IBAN	'GB82WEST12345678765432'		
country_code	char(2)	Merchant registration country code	'GB'		
		customers table			
customer_id	bigint	Unique customer id	234567		
name	varchar	Customer name	'John Doe'		
iban	varchar	Customer IBAN	'GB82WEST12345678765432'		
country_code	char(2)	Customer country code	'GB'		
fraud_indicators table					
transaction_id	bigint	Transaction id	123456789		
<pre>fraud_probability</pre>	float	Fraud probability	0.12		

Security and Compliance

The company stores sensitive user data such as banking information. Il est important de sécuriser ces donnees pour deux raisons. D'une part, pour etre en accord avec la legislation locale (eg GDPR). D'autre part, la fuite de ces données impacterait la confiance accordée à l'entreprise par ses clients, avec en conséquence une baisse potentielle des revenus. Afin de limiter la surface d'attaque possible, les données sensibles sont confinées dans la base OLTP, et chiffrées à l'interieur de celle-ci.

Il est nécessaire de reporter en partie de ces données dans la base OLAP, notamment pour l'étude des délits financiers (fraude, blanchiment, etc). Afin de limiter les risques, la base OLAP ne continent que des éléments anonymisés de ces données, telles que la localisation ou le nom de la banque. Afin de maintenir la performance du système, ces données ne sont pas chiffrées et on se limitera à en sécuriser l'accès et le transfert (définition de roles pour limiter l'accès, etc). De la même façon, aucune donnée sensible n'est stockée directement dans la base NoSQL.

On distinguera les fichiers selon leurs contraintes en termes de sécurité. Les fichiers sensibles tels que les reçus bancaires seront stockés dans un datalake dédié avec un accès restreint. Ils seront indexés exclusivement dans la base OLTP (non indiqué sur le schéma). Les autres fichiers seront de la même façon enregistrés dans un datalake et indexés dans la base NoSQL dédiée.

Des backups chiffrés sont mis à jour à intervalles réguliers afin d'assurer le rétablissement du service en cas d'incident majeur.

Enfin, un système de log est mis en place afin d'enregistrer toutes les connexions aux serveurs, les accès aux données, les requêtes effectuées, etc. Un service additionnel peut être mis en place afin de détecter les anomalies en temps réel.

Table 2: Data dictionary for the main tables in transactions OLAP schema.

Field Name	Type	Description	Example
		transactions table	
transaction_id	bigint	Unique transaction id	123456789
time_id	bigint	Transaction time id	123456789
merchant_id	bigint	Merchant id	12345
customer_id	bigint	Customer id	234567
currency_code	char(3)	Currency code (ISO 4217)	'GBP'
ip_geo_id	bigint	IP geolocalization id	1234567
payment_method_id	integer	Payment method id	1
cayment_status_id	integer	Payment status id	2
device_type_id	integer	Device id	3
amount	decimal(10,2)	Transaction amount (in currency unit)	43.15
		time table	
time_id	bigint	Unique transaction time id	123456789
timestamp	datetime	UTC transaction	2023-11-18 17:43:02.4
1		timestamp	
timezone	integer	Timezone offset in minutes	-120 for UTC-02:00
date	date	Transaction date	2023-11-18
time	time	UTC transaction time	17:43:02.4
year	mediumint	Transaction year	2023
month	tinyint	Transaction month	11
week_day	tinyint	Transaction week day (0 is	6 (saturday)
_ · · J	J	sunday)	(4.1.1.1.1.1.1.1)
quarter	tinyint	Transaction quarter	4
		merchants table	
merchant_id	bigint	Unique merchant id	12345
country_code	char(2)	Merchant registration	'GB'
J = ****		country code	
		customers table	
customer_id	bigint	Unique customer id	234567
country_code	char(2)	Customer country code	'GB'
J =		raud_indicators table	
transaction_id		Transaction id	123456789
fraud_probability	bigint float	Fraud probability	0.12
irauu_probabiiity	TIUGU		V.12
		ip_geography table	,
ip_geo_id	bigint	Geolocation id	123456789
latitude	float	IP-based geolocation latitude	49.6833300
longitude	float	IP-based geolocation longitude	10.5333300
country_code	char(2)	country code (ISO 3166-1 alpha-2)	'DE'
nrovinco	varchar(255)	Province name	'Darmstadt'
province	varchar (200)	1 TOVINCE HAIRE	Daime caut.

Table 3: Data dictionary for the reference tables in transactions OLAP schema.

Field Name	Type	Description	Example		
		currencies table			
currency_code	char(3)	Currency code (ISO 4217)	'GBP'		
currency_name	varchar(255)	Currency name	'Pound sterling'		
usd_change_rate	decimal(6,4)	${\it currency/USD\ change\ rate}$	1.2479		
		countries table			
country_code	char(3)	Country code (ISO 3166-1	'GB'		
		alpha-2)			
country_name	varchar(255)	Country name	'United Kingdom'		
payment_methods table					
<pre>payment_method_id</pre>	integer	Unique payment method id	1		
payment_method	varchar(16)	Payment method	'credit_card'		
	ŗ	payment_statuses table			
payment_status_id	integer	Unique payment status id	1		
payment_status	varchar(16)	Payment status	'sucessful'		
		device_types table			
device_type_id	integer	Unique device type id	1		
device_type	varchar(16)	Device type	'mobile'		
		months table			
month	tinyint	Month number	11		
payment_status	varchar(9)	Month name	'november'		
		week_days table			
week_day	tinyint	Week day number	6		
week_day_name	varchar(9)	Day name	'saturday'		