

Regles de Kirchhoff

O. Fision

Data: 14-10 - 2020

Grup: 34

Cognoms: Durces

Lloc de treball (A1,B2,...):

Nom: Hase

Qualificació:

Mesura de resistències i forces electromotrius

$R_1(200\Omega) = 198.95\Omega$	$R_4(50\Omega) = 50'84 \Omega$
$R_2(25\Omega) = 26.95 \text{ s}$	$R_{5}(200\Omega) = 19817 $
	$R_6(50\Omega) = 50'8 \Omega$

$$\varepsilon_1 (15 \text{ V}) = 45'084 \text{ V}$$

$$\varepsilon_2 (5 \text{ V}) = 5'088 \text{ V}$$

1. Intensitats teòriques i experimentals. Comprovació de la llei d'Ohm

I1 = 56'21 mA	$I_1^{ex} = 56'39 \text{ mA}$
I2 = 37 87 mA	I2ex = 37 43 m A
I3 = 27 22 mA	I=x = 27,10 mA
14 = 45'S6 mA	
Is = 18' 34 mA	Iex = 18174 mA

$V_1^{ex} = \Lambda \Lambda' \Lambda S \Lambda \ \sqrt{}$	$R_1 I_1^{ex} = \Lambda \Lambda' 2 \Lambda 8 $
$V_2^{ex} = \Lambda' \circ \Lambda \cup \sqrt{}$	$R_2I_2^{ex}=1.005$
$V_3^{ex} = 2'735 \checkmark$	$R_3I_3^{ex}=2'705 \vee$
V4 = 2'349 V	$R_4 I_4^{ex} = 2'327 \vee$
$V_5^{ex} = 3'755V$	$R_5 I_5^{ex} = 3' 723 $
Vex = 21867 V	$R_6 I_6^{ex} = 2.85 $

2. Verificació de les regles de Kirchhoff

Regla dels nusos

Nus A	$I_1^{ex} + I_3^{ex} = 83 \text{49 mA}$	$I_2^{ex} + I_4^{ex} = 83.21 \text{ mA}$
	$I_5^{ex} + I_3^{ex} = 45'84_{mA}$	

Regla de les malles

Malla 1	$R_1 I_1^{ex} + R_2 I_2^{ex} + R_6 I_1^{ex} = \wedge 5' \circ 7 > \vee$	$\varepsilon_1 = 15.084 \text{ V}$
Malla 2	$R_2 I_2^{ex} + R_3 I_3^{ex} = 2.74 $	$R_5 I_5^{ex} = 3.723 V$
Malla 3	$R_4 I_4^{ex} + R_3 I_3^{ex} =$	E2 = 5'032 V

3. Comprovació del principi de conservació de l'energia

P _{R1} = 0'6326 W	$P_{R_2} = 0'0377 $ w.	$P_{R_3} = \circ $	PR4 = 0' NO 65 W
PRS = 0'06978 W	PRG = O' NGOS W	$P_{\varepsilon_1} = 0'$ suple w	P = 0'2329 W
$P_{R_1} + P_{R_2} + P_{R_3} + P_{R_4} + P_{R_5} + P_{R_6} = \text{1.0804}$		$P_{\varepsilon_1} + P_{\varepsilon_2} = \wedge' \circ \otimes \omega$	