Образац ДЦВ-**PEL-1001** Form CAD- PEL -1001

ПИТАЊА ИЗ ТЕОРИЈСКОГ ДЕЛА ИСПИТА ЗА СТИЦАЊЕ ДОЗВОЛА ВАЗДУХОПЛОВНОГ ОСОБЉА

ВРСТА ДОЗВОЛЕ: PPL(A_s)

ПРЕДМЕТ: Теорија летења

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 1 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 1 / 20
		•	

080 - Теорија летења					
		ДИСТРИБУЦИЈА			
ПОГЛАВЉЕ	НАЗИВ ПОГЛАВЉА	ПИТАЊА ТОКОМ			
		ПОЛАГАЊА ИСПИТА			
080.01		3			
080.02		3			
080.03		3			
080.04		3			
080.05		2			
080.06		6			
	TOTAL	20			

Напомене:

- Тачни одговори су под а. Приликом полагања испита редослед понуђених одговора биће другачији
- База питања је на српском језику

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 2 / 20
CAD-PEL-OB-1001	Issue 01	<i>Effective date: 25.08.2018.</i>	Page 2 / 20

080.01 -

- 1. Aeroprofil je dizajniran tako da pravi uzgon koji je posledica razlike:
 - a. Višeg vazdušnog pritiska ispod površine i nižeg vazdušnog pritiska iznad površine aeroprofila.
 - b. Negativnog vazdušnog pritiska ispod i vakuma iznad površine aeroprofila.
 - c. Vakuma ispod površine i višeg vazdušnog pritiska iznad površine.
 - d. Višeg vazdušnog pritiska na napadnoj ivici i nižeg vazdušnog pritiska na izlaznoj ivici.
- 2. Aeroprofil sa pozitivnom zakrivljenošcu srednje linije pocinje da proizvodi uzgon pri napadnom uglu od otprilike:
 - a. Minus 4 stepena.
 - b. 0 stepeni.
 - c. 4 do 6 stepeni.
 - d. 16 stepeni.
- 3. Ako u odredenom danu temperatura vazduha na 4000ft iznosi 23°C ,kolika je približna razlika izmedu stvarne i temperature u međunarodnoj standardnoj atmosferi (ISA):
 - a. 16°C.
 - b. 7°C.
 - c. 15°C.
 - d. 8°C.
- 4. Ako je aerodinamicki centar krila ispred centra težišta:
 - a. Promene u uzgonu izazivaju momenat koji pokušava da poveca promenu u uzgonu.
 - b. Promene u uzgonu izazivaju momenat koji pokušava da smanji promenu u uzgonu.
 - c. Promena u uzgonu ne pravi promenu u momentu na krilu.
 - d. Kada je avion u traverzi po pravcu, centar težišta izaziva okretanje nosa u pravcu traverze i tako primenjuje momenat vracanja.
- 5. Ako je brzina vazdušne mase povecana:
 - a. Kineticka energija se povecava, dinamicki pritisak raste, a staticki se smanjuje.
 - b. Dinamicki pritisak se smanjuje, a staticki se povecava.
 - c. Staticki pritisak ostaje konstantan, a kineticka energija se povecava.
 - d. Masa protoka vazduha ostaje ista, dinamicki pritisak se smanjuje, a staticki se povecava.
- 6. Ako je indikovana brzina vazduhoplova povecana sa 50 cvorova na 100 cvorova, parazitni otpor ce se:
 - a. Povecati cetiri puta.
 - b. Povecati šest puta.
 - c. Povecati dva puta.
 - d. Smanjiti za cetvrtinu.
- 7. Ako je napadni ugao povecan preko kriticnog napadnog ugla, krilo više nece proizvoditi dovoljan uzgon potreban da održi avion u horizontalnom letu:
 - a. Bez obzira na brzinu ili položaj u propinjanju.
 - b. Ukoliko brzina nije veca od brzine svaljivanja.
 - c. Ukoliko je ugao propinjanja na ili ispod horizonta.
 - d. U tom slucaju palicu treba povuci na sebe odmah.
- 8. Ako je napadni ugao povecan preko kriticnog napadnog ugla:
 - a. Uzgon ce se smanjiti, a otpor povecati.
 - b. Uzgon i otpor ce se smanjiti.
 - c. Uzgon ce se povecati, a otpor smanjiti.
 - d. Uzgon i otpor ce se povecati.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 3 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 3 / 20

9. Ako je palica gurnuta napred i u levo:

- a. Levi eleron ide gore, desni eleron ide dole, kormilo visine ide dole.
- b. Levi eleron ide gore, desni eleron ide dole, kormilo visine ide gore.
- c. Levi eleron ide dole, desni eleron ide gore, kormilo visine ide dole.
- d. Levi eleron ide dole, desni eleron ide gore, kormilo visine ide gore.

10. Ako je palica pomerena levo, servo krilce na levom eleronu ce se:

- a. Pomeriti gore u odnosu na eleron.
- b. Pomeriti dole u odnosu na eleron.
- c. Nece se pomerati ukoliko tocak trimera nije pomeren.
- d. Otici u neutralnu poziciju.

11. Avion ima tendenciju spuštanja desnog krila kada su komande slobodne. Trimovano je sa trimerom koji se nalazi na levom eleronu. Trimer ce se:

- a. Pomeriti na dole, uzrokujuci da se levi eleron pomeri na gore, a desni na dole.
- b. Pomeriti na gore, uzrokujuci da levi eleron pomeri na gore, a desni na dole.
- c. Pomeriti na dole, uzrokujuci da se levi eleron pomeri na gore, a desni da ostane u neutrali.
- d. Pomeriti na gore, uzrokujuci da se levo krilo spusti, a da eleroni ostanu neutralni.

12. Avion je pobuden sa svog originalnog pravca leta iznenadnim udarom vetra. Ako ima tendenciju da se vrati na originalni pravac leta bez komandovanja pilota onda je taj avion ima:

- a. Pozitivnu dinamicku stabilnost.
- b. Nestabilnost.
- c. Negativnu dinamicku stabilnost.
- d. Neutralnu dinamicku stabilnost.

13. Ako je površina poprecnog preseka vazdušne struje mehanicki kontrolisana i smanjena:

- a. Masa protoka vazduha ostaje konstantna, a brzina protoka vazduha se povecava.
- b. Brzina protoka ostaje konstantna, ali se masa vazduha povecava.
- c. Masa protoka vazduha ostaje konstantna, a staticki pritisak se povecava.
- d. Brzina protoka vazduha ostaje ista, a kineticka energija se povecava.

14. Ako napadni ugao i drugi faktori ostaju konstanti, pri duplom povecanju brzine, uzgon ce se:

- a. Ucetvorostruciti.
- b. Udvostruciti.
- c. Smanjiti na cetvrtinu od onoga što je bilo.
- d. Ostati isti.

15. Ako određena sila izaziva valjanje kod aviona:

- a. V-forma krila ce izazvati momenat valjanja koji teži ispravljanju traverze po pravcu.
- b. Vertikalni rep izaziva momenat skretanja koji smanjuje traverzu po pravcu.
- c. V-forma krila izaziva momenat skretanja koji teži ispravljanju traverze po pravcu.
- d. V-forma krila ce izazvati momenat dizanja nosa.

16. Ako se poveca težina aviona, bez promene u centru težišta, kritican napadni ugao ce:

- a. Ostati isti.
- b. Smanjiti se.
- c. Povecati se.
- d. Ostati isti, pozicija centra težišta ne utice na brzinu svaljivanja.

17. Ako se slece bez izvucenog flapsa, onda brzina sletanja mora biti:

- a. Povecana.
- b. Smanjena.

ДЦВ-РЕL-ОБ-1001 издање 01		Датум примене: 25.08.2018.	Страна 4 / 20	
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 4 / 20	

- c. Ista kao i brzina sa izvucenim flapsom.
- d. Ista kao i brzina sa izvucenim flapsom, ali sa strmijim prilazom.

18. Ako se u pravolinijskom letu brzina smanji ispod one koja obezbeduje maksimalan odnos UZGON/OTPOR, efekat ce biti:

- a. Povecanje otpora zbog povecanog indukovanog otpora.
- b. Smanjenje otpora zbog smanjenog indukovanog otpora.
- c. Povecanje otpora zbog povecanja parazitnog otpora.
- d. Smanjenje otpora zbog smanjenja parazitnog otpora.

19. Avion ima tendenciju obaranja nosa zbog odnosa uzgona/težine, i tendenciju podizanja nosa zbog odnosa potiska/otpora. Kada je dodat gas:

- a. Nos ce se podici.
- b. Nos ce pasti.
- c. Magnitude sila se povecavaju ali ostaju u ravnoteži.
- d. Magnitude sila se smanjuju ali ostaju u ravnoteži.

080.02 -

20. Avion koji je po prirodi stabilan ce:

- a. Sam po sebi imati tendenciju vracanja u pocetno stanje posle bilo kakve pobude.
- b. Zahtevati manje napora prilikom kontrole.
- c. Biti teži za prevlacenje.
- d. Nemoguce svaljivati u kovit.

21. Avion sa klipnim motorom leti u sloju atmosfere koji se naziva:

- a. Troposfera.
- b. Stratosfera.
- c. Mezosfera.
- d. Tropopauza.

22. Brzina pri kojoj pilot sa naglim otklonom kormila visine na gore ne može preopteretiti konstrukciju vazduhoplova je :

- a. VA.
- b. VB.
- c. VFE.
- d. VS.

23. Brzina svaljivanja aviona u pravolinijskom letu je 80 cvorova, kolika je brzina svaljivanja prilikom zaokreta sa nagibom od 45 stepeni:

- a. 95 knots.
- b. 33 knots.
- c. 86 knots.
- d. 113 knots.

24. Brzina svaljivanja nekog aviona, pod pretpostavkom da je težina konstantna, je funkcija:

- a. Kvadratnog korena faktora opterecenja.
- b. Inverznog faktora opterecenja.
- c. Indikovane brzine.
- d. Kvadrata težine.

25. Centar težišta koji je blizu zadnje granice ce dati:

- a. Povecanu efektivnost kormila visine.
- b. Povecanu longitudinalnu stabilnost.
- c. Vece sile prilikom komandovanja.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 5 / 20	
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 5 / 20	

d. Dužu stazu potrebnu za poletanje.

26. Definicija uzgona je:

- a. Aerodinamicka sila koja deluje pod uglom od 90° stepeni u odnosu na relativni pravac strujanja vazduha.
- b. Aerodinamicka sila koja deluje upravno u odnosu na tetivu aeroprofila.
- c. Aerodinamicka sila koja je rezultat razlika u pritiscima oko aeroprofila.
- d. Aerodinamicka sila koja deluje upravno na gornjaku aeroprofila.

27. Deo ukupnog otpora aviona, koji je prateca pojava stvaranja uzgona se naziva:

- a. Indukovani otpor, koji u mnogome zavisi od promene brzine.
- b. Parazitni otpor, koji u mnogome zavisi od promene brzine.
- c. Indukovani otpor, na koji promena brzine nema uticaj.
- d. Parazitni otpor, koji je inverzno proporcionalan kvadratu brzine.

28. Diferencijalni eleroni su dizajnirani tako da sprecavaju:

- a. Kontra skretanje.
- b. Tendenciju stabilnosti po uzdužnoj osi.
- c. Tendenciju pozitivne stabilnosti.
- d. Kontra valjanje.

29. Dinamicki pritisak je jednak:

- a. Totalni pritisak minus staticki pritisak.
- b. Totalni pritisak plus staticki pritisak.
- c. Staticki pritisak minus totalni pritisak.
- d. Totalni pritisak podeljen sa statickim pritiskom.

30. Dinamicki pritisak je:

- a. Kolicina pritiska za koju se pritisak uveca u tacki gde je vazdušna struja dovedena u stanje mirovanja.
- b. Totalni pritisak u tacki gde je vazdušna struja dovedena u stanje mirovanja.
- c. Pritisak koji nastaje zbog mase vazduha koja pritiska vazduh ispod.
- d. Promena u pritisku izazvana grejanjem vazduha kada se vazduh dovede u stanje mirovanja.

31. Dinamicki pritisak koji deluje na avion u toku leta jednak je:

- a. Polovina gustine puta stvarna brzina na kvadrat.
- b. Gustina puta brzina na kvadrat.
- c. Polovina stvarne brzine puta gustina na kvadrat.
- d. Polovina gustine puta indicirana brzina na kvadrat.

32. Dinamicki pritisak može biti izražen formulom:

- a. O=1/2pV2.
- b. Q=1/3pV2.
- c. Q = pV.
- d. Q = 2pV.

33. Eleron može biti aerodinamicki izbalansiran tako što ce:

- a. Imati osu rotacije iza napadne ivice kontrolne površine.
- b. Eleron koji ide na gore imati veci ugao otklona nego eleron koji ide na dole.
- c. Se prikaciti teg na eleron ispred ose rotacije.
- d. Se obezbediti opruge u kontrolnom sistemu koje ce pomoci pri komandovanju.

34. Eleroni obezbeduju:

- a. Poprecnu kontrolu oko uzdužne ose.
- b. Poprecnu kontrolu oko poprecne ose.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 6 / 20	
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 6 / 20	

- c. Uzdužnu kontrolu oko poprecne ose.
- d. Direkcionalnu kontrolu oko vertikalne ose.

35. Fenomen flatera je opisan kao:

- a. Oscilatorno kretanje dela ili delova aviona relativno na ostatak strukture aviona.
- b. Brzo oscilatorno kretanje koje se dešava na kontrolnim površinama, a vezano je za udarne talase koji se javljaju oko kontrolnih površina.
- c. Brzim vibracijama u trupu koje se javljaju usled vibracija motora.
- d. Promena uloge elerona izazvana torzionom fleksibilnošcu krila.

36. Fiksni trimeri na eleronima:

- a. Mogu biti namešteni na zemlji posle probnog leta kako bi se lakše održavao horizontalan let.
- b. Mogu biti namešteni u toku leta.
- c. Nikada se ne pomeraju.
- d. Mogu biti namešteni na zemlji posle probnog leta kako bi se obezbedilo lakše skretanje.

080.03 -

37. Glatko strujanje vazduha, kada svaki molekul prati putanju prethodnog molekula je definicija:

- a. Laminarnog strujanja.
- b. Turbulentnog strujanja.
- c. Slobodnog strujanja vazduha.
- d. Vetra.

38. Granicni sloj ima:

- a. Laminarno i turbulentno strujanje.
- b. Laminarno strujanje.
- c. Turbulentno strujanje.
- d. Turbulentno strujanje samo pri malim brzinama.

39. Gustina:

- a. Opada sa povecanjem visine.
- b. Ne menja se sa promenom temperature.
- c. Raste sa povecanjem visine.
- d. Opada se sa smanjenjem temperature .

40. Izvlacenje flapsa tokom prilaza za sletanje:

- a. Povecava ugao prilaza, bez povecanja brzine.
- b. Obezbeduje prilaz pri vecoj indikovanoj brzini.
- c. Smanjuje ugao prilaza, bez dodatka gasa.
- d. Eliminiše lebdenje.

41. Jedinica za silu je:

- a. Njutn.
- b. Njutn-metar.
- c. Džul.
- d. Masa-kilogram.

42. Kada je avion pobuden iz pravolinijskog mirnog leta, na primer turbulencijom, kaže se da je stabilan ukoliko:

- a. Se vrati u svoj originalan položaj bez pomoci pilota.
- b. Ostane u novom položaju u letu.
- c. I sam poveca promenu u odnosu na originalan položaj.
- d. Nastavi da se pomera u pravcu pobude do momenta kada se zaustavi kontra komandom.

ДЦВ-РЕL-ОБ-1001	ДЦВ-РЕL-ОБ-1001 издање 01		Страна 7 / 20	
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 7 / 20	

43. Kada je avion pobuden iz svog trimovanog položaja, na primer turbulencijom, kaže se da ima neutralnu stabilnost ukoliko:

- a. Ostane u novom položaju.
- b. Osciluje oko svog pocetnog položaja dok se ne vrati u isti.
- c. Odmah se vrati u pocetni položaj.
- d. Nastavi da se pomera u pravcu pobude do momenta kada se zaustavi kontra komandom.

44. Kada je avion u kovitu, smer obrtanja je najsigurnije određen:

- a. Pokazivacem skretanja.
- b. Veštackim horizontom.
- c. Pokazivacem klizanja.
- d. Žiro-direkcionalom.

45. Kada je avion u penjanju bez promene režima, aerodinamicka sila je_____ nego težina.

- a. Manja.
- b. Izbalansirana.
- c. Jednaka.
- d. Veca.

46. Kada je centar težišta blizu prednje granice :

- a. Vrlo je velika sila na palici po visini zbog toga što je avion vrlo stabilan.
- b. Vrlo male sile su potrebne na palici da bi se promenila visina.
- c. Longitudinalna (uzdužna) stabilnost je smanjena.
- d. Sile na palici su iste kao i kod centra težišta pri zadnjoj granici.

47. Kada je indikovana brzina (IAS) smanjena, da bi se održavala visina, pilot mora:

- a. Povecati napadni ugao da bi se zadržala odredena sila uzgona.
- b. Smanjiti napadni ugao da bi se smanjio otpor.
- c. Izvuci vazdušne kocnice da bi povecao otpor.
- d. Smanjiti potisak.

48. Kada je palica gurnuta napred, servo krilce na kormilu visine ce se:

- a. Pomeriti na gore u odnosu na komandnu površinu.
- b. Pomeriti na dole u odnosu na komandnu površinu.
- c. Samo pomerati ukoliko se trimer pomera.
- d. Pomeriti u neutralnu poziciju.

49. Kada posmatramo vazduh:

- 1-Vazduh ima masu
- 2-Vazduh nije moguce sabiti
- 3- Vazduh ima mogucnost strujanja ili promene oblika kada je izražen i najmanjoj promeni pritiska
- 4- Viskozitet vazduha je vrlo veliki
- 5- Vazduh koji se krece ima kineticku energij
 - a. 1,3 i 5.
 - b. 1,2,3 i 5.
 - c. 2,3 i 4.
 - d. 1 i 4.

50. Kada se avion leti sa brzinom dizajniranom za manevrisanje VA:

- a. Nije moguce prekoraciti strukturalna ogranicenja.
- b. Nije moguce dovesti avion u opterecenje vece nego strukturalno ogranicenje prilikom manevara sa velikim G opterecenjem.
- c. Moguce je dovesti avion u opterecenje vece nego dozvoljeno samo prilikom izvodenja naglih pokreta komandama kao što je naglo izvlacenje iz obrušavanja.
- d. Mora se odmah usporiti ukoliko se leti u turbulenciji.

ДЦВ-РЕL-ОБ-1001	ЦЦВ-РЕL-ОБ-1001 издање 01		Страна 8 / 20	
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 8 / 20	

51. Kada se brzina povecava, indukovani otpor se:

- a. Smanjuje.
- b. Povecava.
- c. Zavisi od težine aviona.
- d. Ostaje nepromenjen.

52. Kada se eleroni pomeraju iz neutralnog položaja.

- a. Eleron koji ide na dole povecava indukovani otpor.
- b. Eleron koji ide na gore povecava indukovani otpor.
- c. Indukovani otpor ostaje isti a eleron koji ide na gore uzrokuje povecanje otpora oblika u odnosu na eleron koji ide na dole.
- d. Oba elerona uzrokuju povecanje indukovanog otpora.

53. Kada su flapsovi spušteni, kritican napadni ugao krila se:

- a. Smanjuje, ali CLMAX raste.
- b. Ostaje isti, ali CLMAX raste.
- c. Raste i CLMAX raste.
- d. Smanjuje se, ali CLMAX ostaje isti.

54. Kakav mora biti odnos sila koje deluju na avion u letu, da bi taj avion leteo konstantnom brzinom i bez promene visine?

- a. Uzgon mora biti jednak težini, a potisak mora biti jednak otporu.
- b. Uzgon mora biti jednak otporu, a potisak mora biti jednak težini.
- c. Uzgon mora biti jednak zbiru potiska i otpora.
- d. Uzgon mora da bude jednak potisku, a težina mora biti jednaka otporu.

080.04 -

55. Kako se brzina p	povecava, indukovani otpor se	, parazitni otpor se	a totalni otpor se,

- a. Smanjuje / Povecava / Smanjuje pa povecava.
- b. Povecava / Povecava / Povecava.
- c. Povecava / Smanjuje / Povecava pa smanjuje.
- d. Smanjuje / Smanjuje / Smanjuje.

56. Kod aviona sa obicnim krilcem za trimovanje na komandnoj površini, kada je površina pomerena, krilce za trimovanje ostaje u istoj poziciji u odnosu na :

- a. Komandnu površinu.
- b. Relativni pravac strujanja vetra.
- c. Granicni sloj strujanja vazduha.
- d. Horizontalnu ravan aviona.

57. Kod dvostrukog povecanja brzine opstrujavanja vazduha, koeficijent aerodinamickog otpora tela se:

- a. Povecava se 4 puta.
- b. Dvostruko povecava.
- c. Ne menja se.
- d. Povecava se 6 puta.

58. Koja je važnost brzine koja se naziva VNO:

- a. Određuje gornju granicu normalne operativne anvelope leta.
- b. Maksimalna je brzina prilikom koje nagli pokreti komandi mogu da rezultiraju svaljivanjem, pre nego što je granica pozitivnog opterecenja prekoracena.
- c. To je brzina preko koje ce doci do loma strukture.
- d. Oznacava brzinu koja se nikada ne sme prekoraciti.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 9 / 20	
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 9 / 20	

59.	Koja	komandna	površina	obezbeduje	e kontrolu d	oko vertikalne	ose aviona:

- a. Kormilo pravca.
- b. Eleroni.
- c. Kormilo visine.
- d. Flaps.
- 60. Koja od oznacenih tacaka na slici polare krila predstavlja režim kriticnog napadnog ugla (Pogledajte sliku PPL PoF-2.):
 - a 6
 - b. 1.
 - c. 4.
 - d. 5.
- 61. Koja od oznacenih tacaka na slici polare krila predstavlja režim napadnog ugla najbolje finese (Pogledajte sliku PPL PoF-
- 2.):
- a. 4.
- b. 2.
- c. 5.
- d. 6.
- 62. Koja od oznacenih tacaka na slici polare krila predstavlja režim napadnog ugla najmanjeg otpora (Pogledajte sliku PPL PoF-2.):
 - a. 3.
 - b. 4.
 - c. 5.
 - d. 7.
- 63. Koje komandne površine obezbeduju uzdužnu kontrolu?
 - a. Kormilo visine.
 - b. Kormilo pravca.
 - c. Eleroni.
 - d. Flapsovi.
- 64. Koje od sledece cetiri opcije opisuje posledicu poletanja sa stepenom flapsa koji je preporucen od strane proizvodaca:
 - a. Smanjenje dužine potrebne za poletanje u odnosu na poletanje bez flapsa.
 - b. Povecanje dužine potrebne za poletanje u odnosu na poletanje bez flapsa.
 - c. Veci ugao penjanja.
 - d. Lakše izbegavanje prepreka na kraju piste.
- 65. Koji je najveci dozvoljeni nagib u zaokretu, ako je preopterecenje + 3.8 G (Pogledajte sliku PPL PoF-1.):
 - a. 75°.
 - b. 70°.
 - c. 67°.
 - d. 53°.
- 66. Koji je to napadni ugao krila, pri kojem ocekujemo slom uzgona:
 - a. 10° 18°.
 - b. 3° 5°.
 - c. 5° 10°.
 - d. Veci od 25°.
- 67. Koji oblik krila ima najveci indukovani otpor :
 - a. Pravougaono.
 - b. Trapezasto.
 - c. Elipticno.
 - d. Dvostruki trapez.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 10 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 10 / 20

68. Koji od cetiri ponudena odgovora najtacnije dovršava sledecu recenicu: Povecanje brzine leta ima za posledicu povecanje uzgona zbog:

- a. Povecana brzina vazduha koji prelazi preko gornjake krila smanjuje staticki pritisak iznad krila, cime se povecava razlika u pritiscima gornjake i donjake krila.
- b. Uzgon je direktno proporcionalan brzini vazdušne struje.
- c. Povecana brzina relativne vazdušne struje prevazilazi povecanje otpora.
- d. Povecanje brzine smanjuje otpor.

080.05 -

69. Koji od ponudenih odgovora je tacan,a odnosi se na promenu gustine vazduha sa visinom:

- a. Smanjenje pritiska sa povecanjem visine dovodi do smanjenja gustine.
- b. Rast temperature sa povecanjem visine dovodi do povecanja gustine.
- c. Opadanje temperature sa povecanjem visine dovodi do povecanja gustine.
- d. Povecanje pritiska sa povecanjem visine dovodi do smanjenja gustine.

70. Koji od ponudenih odgovora najbolje dovršava recenicu? Kolicina uzgona koju neko krilo pravi direktno je proporcionalna:

- a. Gustini vazduha.
- b. Razlici dinamickog i statickog pritiska.
- c. Korenu brzine vazduha koji struji preko krila.
- d. Temperaturi vazduha.

71. Koliko približno iznosi povecanje minimalne brzine vazduhoplova, ako mu povecamo masu za 20%:

- a. 10%.
- b. 0%.
- c. 120%.
- d. 20%.

72. Komande površine su balansirane tegovima da bi se:

- a. Eliminisao flater na komandnim površinama.
- b. Pomoglo pilotu aerodinamickim silama prilikom pomeranja komandnih površina.
- c. Obezbedile jednake sile prilikom komandovanja u sve tri komande.
- d. Komande vratile u neutralan položaj kada su slobodne.

73. Komandna površina može biti balansirana tegom:

- a. Kacenjem tega ispred ose rotacije komandne površine.
- b. Montiranjem servo krilca.
- c. Montiranjem anti-servo krilca.
- d. Kacenjem tega iza ose rotacije komande površine.

74. Komandna površina može imati balansiranje tegom kako bi se:

- a. Sprecila brza i nekontrolisana oscilacija koja se naziva flater.
- b. Održavale komandne površine u neutralnom položaju.
- c. Smanjile sile potrebne za kontrolu aviona.
- d. Obezbedio pilotu osecaj komandovanja.

75. Kormilo pravca na avionu je opremljeno servo krilcem. Pomeranje kormila pravca u desno ce uzrokovati pomeranje servo krilca:

- a. Levo, a kormila pravca u desno.
- b. Desno, a kormila pravca u levo.
- c. Desno i pomeranje kormila pravca u desno.
- d. Levo i kormila pravca u levo.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 11 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 11 / 20

76. Krila 4.600 lb teškog vazduhoplova moraju ostvariti u zaokretu nagiba 50%, bez gubitka visine silu uzgona od (Pogledajte sliku PPL PoF-1.):

- a. 7,160 lbs.
- b. 5,400 lbs.
- c. 9.200 lbs.
- d. 8,180 lbs.

77. Krila koja su nagnuta na dole gledano od korena krila ka vrhu su krila sa:

- a. Negativnom V formom.
- b. Negativnom vitoperenošcu.
- c. Suženjem.
- d. Strelom.

78. Krilo aviona je dizajnirano sa pozitivnom V-formom kako bi se obezbedila:

- a. Poprecna stabilnost oko uzdužne ose.
- b. Uzdužna stabilnost oko poprecne ose.
- c. Poprecna stabilnost oko vertikalne ose.
- d. Direkciona stabilnost oko vertikalne ose.

79. Longitudinalna (uzdužna) stabilnost je dobijena zahvaljujuci:

- a. Horizontalnom repu.
- b. Vertikalnom repu.
- c. V-formi krila.
- d. Eleronima.

80. Maksimalan ugao penjanja nekog aviona je određen:

- a. Viškom potiska motora.
- b. Težinom aviona.
- c. Brzinom vetra.
- d. Viškom brzine.

81. Maksimalna brzina sa kojom avion sme da se leti sa izvucenim flapsovima se zove:

- a. VFE.
- b. VYSE.
- c. VNE.
- d. VNO.

82. Maksimalna dozvoljena brzina sa izvucenim flapsovima (Vfe) je manja nego brzina krstarenja zbog:

- a. Na vecim brzinama od Vfe, aerodinamicke sile mogu preopteretiti strukturu krila i flapsa.
- b. Flaps se koristi samo kada se slece.
- c. Zbog toga što je previše otpora proizvedeno.
- d. Flaps ce izgubiti uzgon, ako je izvucen na prevelikoj brzini.

83. Maksimalna razdaljina jedrenja sa visine od 6000 fita, za avion u cistoj konfiguraciji sa finesom od 8:1 je otprilike 8 milja. Ukoliko se flaps izvuce:

- a. Maksimalna dužina jedrenja ce biti manja.
- b. Maksimalna dužina jedrenja ce biti veca.
- c. Finesa ce ostati nepromenjena, ali ce biti postignuta na manjoj brzini.
- d. Maksimalna dužina jedrenja ce ostati nepromenjena.

080.06 -

84. Svrha anti-servo krilca je:

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 12 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 12 / 20

- a. Da obezbedi da se sila prilikom kontrole povecava sa povecanjem otklona komandi.
- b. Da trimuje avion.
- c. Smanji silu potrebnu za kontrolisanje aviona na svim brzinama.
- d. Smanji silu potrebnu za kontrolisanje aviona na velikim brzinama.

85. Svrha diferencijalnih elerona je da:

- a. Smanji momenat skretanja u kontra pravcu kada je avion u zaokretu.
- b. Poveca momenat skretanja koji se suprotstavlja zaokretu.
- c. Poveca momenat propinjanja kako bi se sprecila tendencija padanja nosa u zaokretu.
- d. Poboljša brzinu valjanja.

86. Svrha sistema trimera opremljenih oprugom je:

- a. Da smanji na nulu silu potrebnu pilotu da pobedi silu na palici, posle komandovanja.
- b. Da se održava konstantna zategnutost u komandnom kolu trimera.
- c. Da se poveca osecaj u kontrolnom kolu.
- d. Da kompenzuje sile zatezanja u kablovima prilikom temperaturnih promena.

87. Svrha trimera je:

- a. Da izbalansira sile na pilotskim komandama u željenom režimu leta.
- b. Da pomogne pilotu prilikom pocetnog pokretanja komandi.
- c. Da obezbede osecaj na komandama prilikom velikih brzina.
- d. Da poboljša efikasnost komandnih površina.
- 88. Tendencija aviona da razvije sile koje ga vracaju u prvobitan položaj, kada je pobuden iz pravolinijskog mirnog leta je poznata kao:
 - a. Stabilnost.
 - b. Manevribilnost.
 - c. Kontrolabilnost.
 - d. Nestabilnost.
- 89. Tipican napadni ugao kod aviona pri kojem nastaje slom uzgona je:
 - a. 16°.
 - b. 4°.
 - c. 30°.
 - d. 45°.
- 90. Tokom manevra, eleroni su otklonjeni i vraceni u neutralni položaj kada je avion dostigao mali nagibni ugao. Ako se avion vrati u horizontalni položaj bez dodatnih pokreta komandi, onda je:
 - a. Staticki i dinamicki stabilan.
 - b. Neutralno stabilan.
 - c. Staticki stabilan, ali dinamicki neutralan.
 - d. Staticki stabilan.
- 91. U podzvucnom strujanju, kada vazduh prolazi kroz venturi tubu, masa protoka ______, brzina protoka ______, a staticki pritisak
 - a. Ostaje konstantna / raste pa opada / opada pa raste.
 - b. Opada pa raste / ostaje konstantna / raste pa opada.
 - c. Ostaje konstantna / raste pa opada / raste pa opada.
 - d. Opada pa raste / raste pa opada / raste pa opada.
- 92. U pravolinijskom letu, pritisak u slobodnoj vazdušnoj struji u poredenju sa pritiskom u vazdušnoj struji koja prolazi odmah ispod krila je:
 - a. Manji.
 - b. Jednak.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 13 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 13 / 20

- c. Veci.
- d. Jednak pritisak, ali veca brzina.
- 93. U pravolinijskom letu, vazdušna struja preko gornjake krila poredena sa vazdušnom strujom koja nije ometena krilom ce imati:
 - a. Vecu brzinu.
 - b. Vecu gustinu.
 - c. Manju brzinu.
 - d. Istu brzinu.
- 94. Posle trimovanja za miran let po pravcu i visini, u avionu sa centrom težišta blizu prednje granice i kormilom visine opremljenim sa obicnim trimerom :
 - a. Efektivnost dizanja nosa ce biti smanjena.
 - b. Efektivnost spuštanja nosa ce biti smanjena.
 - c. Uzdužna stabilnost ce biti smanjena.
 - d. Opterecenje repa na dole ce biti smanjeno.
- 95. Posle uzdužne pobude, avion koji je poprecno-smerno nestabilan ce:
 - a. Razviti simultane oscilacije po valjanju i pravcu.
 - b. Upasti u spiralu.
 - c. Razviti oscilacije po visini.
 - d. Razviti nekontrolisano valjanje.
- 96. Površina koja avionu pruža direkcionu stabilnost je:
 - a. Vertikalni rep.
 - b. Kormilo pravca.
 - c. Horizontalni rep.
 - d. Trimer na kormilu pravca.
- 97. Pravac kretanja vazduhoplova je poremecen iznenadnim udarom vetra. Neutralna stabilnost je kada bez komandovanja pilota avion:
 - a. Održava novi pravac kretanja.
 - b. Vrati se na predašnju putanju bez oscilacije.
 - c. Vrati se na predašnju putanju sa oscilacijama.
 - d. Nastavi da se udaljava od originalnog pravca.
- 98. Preopterecenje vazduhoplova u zaokretu nagiba 60° je (Pogledajte sliku PPL PoF-1.):
 - a. 2.0 G.
 - b. 1.5 G.
 - c. 0.5 G.
 - d. 1 G.
- 99. Pretpostavljajuci da je pritisak na nivou mora po standardnoj međunarodnoj atmosferi(ISA), a temperatura 10°C veca nego temperature po ISA, gustina ce biti:
 - a. Manja od ISA.
 - b. Kao po ISA.
 - c. Veca od ISA.
 - d. Nepromenjena.
- 100. Pri konstantnom napadnom uglu, smanjenje brzine ce za posledicu imati:
 - a. Smanjenje uzgona i otpora.
 - b. Povecanje uzgona, a smanjenje otpora.
 - c. Povecanje otpora, a smanjenje uzgona.
 - d. Moguce i povecanje i smanjenje uzgona i otpora u zavisnosti od brzine.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 14 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 14 / 20

101. Pri određenoj indikovanoj brzini, kakav efekat ce povecanje gustine vazduha imati na uzgon i otpor?

- a. Uzgon i otpor ce ostati nepromenjeni.
- b. Uzgon ce se povecati a otpor smanjiti.
- c. Uzgon i otpor ce se povecati.
- d. Uzgon i otpor ce se smanjiti.

102. Pri povecanju opterecenja krila za 15%, minimalna brzina se povecava približno za :

- a 7%
- b. 0%.
- c. 15%.
- d. 20%.

103. Približno koliko uzgona moraju ostvariti krila 3.000 lb teškog vazduhoplova u zaokretu nagiba 20° bez gubitka visine (Pogledajte sliku PPL PoF-1.):

- a. 3,180 lbs.
- b. 4,000 lbs.
- c. 3,350 lbs.
- d. 3,000 lbs.

104. Prilikom penjanja sa konstantnom brzinom, potisak je:

- a. Veci nego aerodinamicka sila.
- b. Jednak aerodinamickoj sili.
- c. Manji od aerodinamicke sile.
- d. Jednak komponenti težine u pravcu leta.

105. Prilikom svaljivanja, centar pritiska koji se pomera unazad ce izazvati da nos______, a smanjen uzgon da avion_____

- a. Padne / izgubi visinu.
- b. Skrene / smanji brzinu.
- c. Podigne / propadne.
- d. Padne / smanji brzinu.

106. Primarni i sekundarni efekat davanje samo leve noge je:

- a. Skretanje u levo i valjanje u levo.
- b. Skretanje u levo i valjanje u desno.
- c. Skretanje u desno i valjanje u levo.
- d. Skretanje u desno i valjanje u desno.

107. Primarni i sekundarni efekti kormila pravca su:

- a. Skretanje i valjanje.
- b. Skretanje i propinjanje.
- c. Propinjanje i skretanje.
- d. Valjanje i skretanje.

108. Primarni sekundarni efekti komandovanja eleronima su:

- a. Valjanje i skretanje.
- b. Valjanje i propinjanje.
- c. Propinjanje i skretanje.
- d. Skretanje i valjanje.

109. Prisustvo vodene pare:

- a. Smanjice gustinu vazduha.
- b. Povecace gustinu vazduha.
- c. Povecace snagu klipnog motora u datoj atmosferi.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 15 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 15 / 20

d. Povecace uzgon aviona u datoj atmosferi.

110. Promenom napadnog ugla krila, pilot može da kontroliše:

- a. Uzgon, brzinu i otpor.
- b. Uzgon i brzinu, ali ne i otpor.
- c. Uzgon, ukupnu težinu i otpor.
- d. Uzgon i otpor, ali ne i brzinu.

111. Pun otklon flapsa bi trebalo selektovati:

- a. Kada se donese odluka o sletanju.
- b. Kada se ude u final.
- c. Prilikom go-around.
- d. Kada se slece sa jakim ceonim vetrom.

112. Punjenje aviona tako da centar težišta prede svoju zadnju granicu može rezultirati:

- a. Gubitkom longitudinalne stabilnosti, i tendencijom dizanja nosa na malim brzinama.
- b. Prevelikom silom na gore na repu i tendencijom obaranja nosa.
- c. Prevelikim faktorom opterecenja u zaokretu.
- d. Velikim silama na palici.

113. Razlog zbog koga je krilo iskrivljeno samom konstrukcijom je:

- a. Da izazove da sekcija krila u korenu izgubi uzgon prva.
- b. Poveca efektivnost flapsa.
- c. Da izazove da sekcija krila pri vrhu izgubi uzgon prva.
- d. Smanji efikasnost elerona.

114. Relativni protok vazduha je _____ i ____ u odnosu na smer kretanja aviona:

- a. Paralelan / Suprotan.
- b. Normalan / Suprotan.
- c. Normalan / Istog smera.
- d. Paralelan / Istog smera.

115. Rotiranje aviona oko vertikalne ose je poznato kao:

- a. Rotiranje po pravcu.
- b. Valjanje.
- c. Rotiranje po visini.
- d. Traverza po pravcu.

116. Sa centom težišta na prednjoj granici, avion ce imati:

- a. Smanjenu efektivnost kormila visine tokom leta.
- b. Smanjenu longitudinalnu stabilnost.
- c. Lakše sile prilikom komandovanja.
- d. Krace staze potrebne za poletanje.

117. Sa spuštenim flapsovima, brzina svaljivanja se:

- a. Smanjuje.
- b. Povecava.
- c. Povecava, ali se dešava na vecem napadnom uglu.
- d. Ostaje nepromenjena.

118. Simbol za dinamicki pritisak je:

- a. Q.
- b. P.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 16 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 16 / 20

- c. R.
- d. D.

119. Skretanja je rotacija oko:

- a. Vertikalne ose, komandovana kormilom pravca.
- b. Poprecne ose, komandovana kormilom pravca.
- c. Uzdužne ose, komandovana eleronima.
- d. Vertikalne ose, komandovana kormilom visine.

120. Skretanje je pokretanje oko _____ose.

- a. Vertikalne.
- b. Uzdužne.
- c. Poprecne.
- d. Horizontalne.

121. Slom uzgona na krilu nastaje kada:

- a. Je prekoracen kriticni napadni ugao.
- b. Indikovana brzina je premala.
- c. Laminarno strujanje postane turbulentno.
- d. Kada je avion izložen velikim G silama.

122. Stabilnost oko vertikalne ose:

- a. Je povecana ukoliko je površina repa iza centra težišta povecana.
- b. Je definisana lateralnom V-formom.
- c. Zavisi od longitudinalne V-forme.
- d. Je veca ukoliko strela na krilu ne postoji.

123. Maksimalna vrednost koeficijenta uzgona se nalazi na napadnom uglu od otprilike:

- a. 16 stepeni.
- b. Minus 4 stepena.
- c. 0 stepeni.
- d. 4 to 6 stepeni.

124. Maksimalna vrednost koeficijenta uzgona se nalazi:

- a. Kod kriticnog napadnog ugla.
- b. Kod negativnih napadnih uglova.
- c. Kad je uzgon jednak otporu.
- d. Prilikom oštrih zaokreta.

125. Masa vazduha koji se krece poseduje kineticku energiju. Kada se neki objekat nade na putu tog vazduha onda na njega deluje:

- a. Staticki plus dinamicki pritisak.
- b. Staticki pritisak.
- c. Dinamicki pritisak.
- d. Dinamicki pritisak minus staticki pritisak.

126. Masa vazduhoplova je rezultat:

- a. Koliko materije sadrži.
- b. Njegove težine.
- c. Njegove velicine.
- d. Njegove zapremine.

127. Na sekciju aeroprofila, uzgon deluje normalno, a sila otpora paralelno sa:

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 17 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 17 / 20

- a. Pravcem leta.
- b. Longitudinalnom osom.
- c. Srednjom linijom.
- d. Gornjakom aeroprofila.
- 128. Najveci dozvoljeni nagib u zaokretu sa preopterecenjem od + 2.5 G je (Pogledajte sliku PPL PoF-1.):
 - a. 66°.
 - b. 55°.
 - c. 60°.
 - d. 50°.

129. Napadni ugao je ugao izmedu:

- a. Tetive i pravca kretanja relativne vazdušne struje.
- b. Srednje krive linije i slobodne vazdušne struje.
- c. Tetive i longitudinalne (uzdužne) ose aviona.
- d. Tetive i linije horizonta.

130. Napadni ugao prilikom koga se avion svaljuje:

- a. Ostaje isti bez obzira na težinu aviona.
- b. Bice manji kada se leti niz vetar nego uz vetar.
- c. Zavisi od brzine strujanja vazduha preko krila.
- d. Je funkcija brzine i gustine vazduha.

131. Osobine Zemljine atmosfere koje uticu na performanse aviona su:

- a. Njen sadržaj vodene pare, temperatura, pritisak i gustina.
- b. Njena temperature, pritisak i vlažnost vazduha.
- c. Njen sadržaj kiseonika, pritisak i kolicina vodene pare.
- d. Njen sadržaj azota, kiseonika, temperature i pritisak.

132. Otpor ili trenje po površini, zbog viskoziteta vazduha koji struji po površini krila je tip:

- a. Parazitnog otpora.
- b. Indukovanog otpora.
- c. Otpor oblika.
- d. Interferentni otpor.

133. Pilot izvlaci flaps dok održava konstantnu brzinu. Da bi održao let na istoj visini, napadni ugao:

- a. Mora biti smanjen.
- b. Mora biti povecan.
- c. Mora ostati isti, ali gas mora biti dodat.
- d. Mora ostati isti, a potrebna snaga ce ostati ista.

134. Po nacinu konstrukcije, centar pritiska na određenom avionu je iza centra težišta. Ako je avion longitudinalno (uzdužno) stabilan i pobuden nosem na dole od strane turbulencije:

- a. Horizontalni rep ce generisati silu na dole.
- b. Horizontalni rep ce generisati silu na gore.
- c. Ni sila na gore ni sila na dole nece biti generisana, jer ce avion vec biti u stanju ravnoteže.
- d. Avion ce održavati položaj nosa na dole.

135. Poprecna osa aviona je zamišljena linija koja:

- a. Prolazi kroz centar težišta, paralelna sa linijom koja prolazi kroz vrhove krila.
- b. Prolazi kroz vrhove krila.
- c. Prolazi kroz centar pritiska, pod pravim uglom u odnosu na pravac strujanja vazduha.
- d. Prolazi kroz cetvrtinu tetive u korenu krila, pod pravim uglom u odnosu na uzdužnu osu.

136. Posle pobude po visini, avion kome se povecava amplituda oscilacije je:

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 18 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 18 / 20

- a. Staticki stabilan, a dinamicki nestabilan.
- b. Staticki i dinamicki nestabilan.
- c. Staticki nestabilan, a dinamicki stabilan.
- d. Staticki i dinamicki stabilan.

137. U toku leta na avion deluju sledece sile:

- a. Vucna sila, uzgon, otpor, težina.
- b. Vucna sila, uzgon, težina.
- c. Vucna sila, uzgon, otpor.
- d. Uzgon, otpor, težina.

138. Ugao penjanja je proporcionalan:

- a. Razlici potiska i otpora.
- b. Razlici uzgona i težine.
- c. Razlici potiska i težine.
- d. Napadnom uglu krila.

139. Ukoliko je brzina svaljivanja u pravolinijskom letu 60 cvorova, koja je brzina svaljivanja prilikom zaokreta sa nagibom od 60°:

- a. 85 kt.
- b. 60 kt.
- c. 43 kt.
- d. 120 kt.

140. Ukoliko je centar težišta aviona na granici prilikom poletanja:

- a. Granica centra težišta za sletanje mora biti proverena zbog potrošnje goriva.
- b. Centar težišta ce uvek biti u granicama za sletanje.
- c. Centar težišta se nece promeniti tokom leta.
- d. Posada je sigurna da ce uvek moci da prilagodi centar težišta tokom leta kako bi bio u dozvoljenim granicama.

141. Uredaji na napadnoj ivici krila, kao što su pretkrilca, dizajnirani su tako da omoguce let na vecim napadnim uglovima tako što:

- a. Dodaju dodatnu energiju vazduhu koji struji preko krila cime se odlaže separacija.
- b. Dodaju ekstra površinu koja proizvodi uzgon cime se povecava kolicina uzgona.
- c. Menjaju oblik i time uzgonske karakteristike krila.
- d. Smanjuju uzgon i time smanjuju indukovani otpor.

142. Uzimajuci u obzir sile koje deluju na avion prilikom konstantne brzine, koja je tvrdnja tacna:

- a. Težina uvek deluje vertikalno na dole, prema centru zemlje.
- b. Uzgon deluje upravno na tetivu profila, uvek mora biti veci nego težina.
- c. Potisak deluje paralelno u odnosu na relativnu vazdušnu struju i veci je nego otpor.
- d. Sila uzgona generisana krilima, uvek deluje suprotno od smera sile težine aviona.

143. Vazduhoplov rotira oko:

- a. Svog centra težišta.
- b. Svojih krila.
- c. Glavnog stajnog trapa.
- d. Kormila pravca.

144. Vazdušni pritisak koji deluje na telo koje se nalazi u njemu :

- a. Poznat je kao staticki pritisak.
- b. Poznat je kao dinamicki pritisak.
- c. Veci je na visini nego na nivou mora.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 19 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 19 / 20

d. Poznat je kao totalni pritisak.

145. Vazdušni pritisak:

- a. Deluje u svim pravcima.
- b. Deluje samo vertikalno naniže.
- c. Meri se u Paskalima po kvadratnom incu.
- d. Raste sa visinom.

146. V-forma krila produkuje stabilizirajuci momenat valjanja tako što povecava uzgon:

- a. Na nižem krilu kada je avion u traverzi po pravcu.
- b. Na krilu koje se podiže kada se avion valja.
- c. Na krilu koje se podiže kada je avion u traverzi po pravcu.
- d. Na nižem krilu kad god je avion u nagnutom položaju.

147. Visokokrilac bez ikakve V-forme, u poredenju sa niskokrilcem bez ikakve V-forme ce imati:

- a. Vecu poprecnu stabilnost.
- b. Vecu uzdužnu stabilnost.
- c. Isti nivo uzdužne stabilnosti kao i bilo koja druga konfiguracija, jer V-forma daje uzdužnu stabilnost.
- d. Manju poprecnu stabilnost.

148. VNE je:

- a. Maksimalna brzina sa kojom avion može da se leti.
- b. Brzina koja ne sme biti prekoracena osim u obrušavanju.
- c. Maksimalna brzina pri kojoj manevri koji uzrokuju svaljivanje mogu biti izvodeni.
- d. Maksimalna brzina preko koje se flaps ne sme izvlaciti.

149. Zamišljana prava linija, koja se proteže od središnje tacke napadne ivice aeroprofila pa do izlazne ivice istog se naziva:

- a. Tetiva.
- b. Srednja linija.
- c. Debljina profila.
- d. Maksimalna krivina.

ДЦВ-РЕL-ОБ-1001	издање 01	Датум примене: 25.08.2018.	Страна 20 / 20
CAD-PEL-OB-1001	Issue 01	Effective date: 25.08.2018.	Page 20 / 20