Probability

PART-2

DISTRIBUTIONS

Distributions

- A distribution describes all of the probable outcomes of a variable.
- In a discrete distribution, the sum of all the individual probabilities must equal 1
- In a continuous distribution, the area under the probability curve equals 1

Discrete Probability Distributions

Discrete Distributions

 Discrete probability distributions are also called probabilitymass functions:

Uniform Distribution

Binomial Distribution

Poisson Distribution

Uniform Distribution

Uniform Distribution

 Rolling a fair die has 6 discrete, equally probable outcomes

- You can roll a 1or a 2, but not a 1.5
- The probabilities of each outcome are evenly distributed across the sample space

Uniform Distribution

Rolling a fairdie:

heights are all the same, add up to 1

Binomial Distribution

Binomial Distribution

• "Binomial" means there are two discrete, mutually exclusive outcomes of a trial.

heads ortails
on or off
sick or healthy

success or failure

Bernoulli Trial

- A Bernoulli Trial is a random experiment in which there are only two possible outcomes
 - success orfailure
- A series of trials n will follow a binary distribution so long as
 - a) the probability of success p is constant
 - b) trials are independent of one another

Binomial Probability Mass Function

- Gives the probability of observing
 x successes in n trials
- The probability of success on a single trial is denoted by p
- Assumes that p is fixed for all trials

$$P(x:n,p) = {n \choose x} (p)^x (1-p)^{(n-x)}$$

Binomial Distribution

Binomial Distribution

Binomial Distribution Exercise

- If you roll a die 16 times, what is the probability that a five comes up 3 times?
- Based on the chart, it should be just shy of 0.25
- x = 3, n = 16, p = 1/6

Binomial Distribution Exercise

$$P(x:n,p) = {n \choose x} (p)^{x} (1-p)^{(n-x)}$$

$$= {n! \over x! (n-x!)} (p)^{x} (1-p)^{(n-x)}$$

$$= {16! \over 3! (13)!} (1/6)^{3} (5/6)^{(13)}$$

$$= {16 \cdot 15 \cdot 14 \over 3 \cdot 2} {13! \over 63} {513 \over 613} = 0.242$$

Using Excel

- If you roll a die 16times, what is the probability that a five comes up 3 times?
 - =BINOM.DIST(3,16,1/6,FALSE)

returns 0.242313760337131

Using Python

 If you roll a die 16times, what is the probability that a five comes up 3 times?

```
>>> from scipy.stats import binom
```

- >>> binom.pmf(3,16,1/6)
- 0.24231376033713251

Continuous Probability Distributions

Continuous Distributions

• Continuous probability distributions are also called *probability density functions*:

Normal Distribution

Exponential Distribution

Beta Distribution

- Many real life data points follow a normal distribution:
- People's Heights and Weights
- Population Blood Pressure
- Test Scores
- Measurement Errors

 These data sources tend to be around a central value with no bias left or right, and it gets close to a "Normal Distribution" like this:

Normal Distribution

- We use a continuous distribution to model the behavior of these data sources.
- Notice the continuous line and area in this PDF.

Normal Distribution

 Unlike discrete distributions, where the sum of all the bars equals one, in a normal distribution the

area under the curve equals one

Binomial Distribution

Normal Distribution

 also called the Bell Curve or

Gaussian Distribution

always symmetrical

asymmetrical curves display skew and are not normal

- the probability of a specific outcome is zero
- we can only find probabilities over a specified intervalor range of outcomes

- All normal curves exhibit the same behavior:
 - symmetry about themean
 - 99.73% of values fall within three standard deviations
- However, the mean does not have to be zero, and σ does not have to equal one.

Normal Distribution Formula

Other populations can be normal as well:

 If we determine that a population approximates a normal distribution, then we can make some powerful inferences about it once we know its mean and standard deviation

Normal Distribution Formulas and ZScores

- In the Statistics section, we used sampling, standard error, and hypothesis testing to evaluate experiments.
- A large part of this process is understanding how to "standardize" a normal distribution.

 We can take any normal distribution and standardize it to a standard normal distribution.

 We'll be able to take any value from a normal distribution and standardize it through a Zscore.

 Using this Z Score, we can then calculate a particular x value's percentile.

- Recall that a percentile is a way of saying "What percentage falls below this value".
- Meaning a 95 percentile value indicates that 95 percent of all other data points fall below this value.

• For example if a student scores a 1700 on their SATs and this score is in the 90 percentile, than we know 90% of all other students scored less than 1700.

 If we can model our data as a normal distribution, we can convert the values in the normal distribution to a standard normal distribution to calculate a percentile.

- For example, we can have a normal distribution of test point scores with some mean and standard deviation.
- We can then use a Z score to figure out the percentile of any particular test score.

Normal Distribution Formula

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Where:

 μ =mean e=2.71828

 σ =standarddeviation π = 3.14159

Normal Distribution Formula

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

This produced our plot with a mean of 0 and a standard deviation of 1:

Z-Scores and Z-Table

 To gain insight about a specific value x in other normal populations, we standardize
 x by calculating a z-score:

$$z = \frac{x - \mu}{\sigma}$$

• We can then determine x's percentile by looking at az-table

How to Look Up Z-Scores

- A z-table of Standard Normal Probabilities maps a particular z-score to the area under a normal distribution curve to the left of the score.
- Since the total area under the curve is 1, probabilities are bounded by 0 and 1

How to Look Up Z-Scores

Different tables serve different purposes:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141

Z-Scores in MSExcel

 In Microsoft Excel, the following functions return z-scores and probabilities:

Input	Input Value	Formula	Output	Output Value
Z	0.70	=NORMSDIST(B2)	р	0.758036
р	0.95	=NORMSINV(B3)	Z	1.644854

Z-Scores in Python

```
>>> from scipy import stats
>>> z = .70
>>> stats.norm.cdf(z)
0.75803634777692697
>>> p = .95
>>> stats.norm.ppf(p)
1.6448536269514722
```

Z-Score Exercise

- A company is looking to hire a new database administrator.
- They give a standardized test to applicants to measure their technical knowledge.
- Their first applicant, Amy, scores an 87
- Based on her score, is Amy exceptionally qualified?

Z-Score Exercise

- To decide how well an applicant scored, we need to understand the population.
- Based on thousands of previous tests, we know that the mean score is 75 out of 100, with a standard deviation of 7 points.

Z-Score Exercise Solution

 First, convert Amy's score to a standardized z-score using theformula

$$Z = \frac{x - \mu}{\sigma}$$

$$= \frac{87 - 75}{7} = 1.7143$$

Z-Score Exercise Solution

Next, look up 1.7143 on a z-table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
				0.9582						
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Z-Score Exercise Solution

- 0.9564represents
 the area to the
 left of Amy's score
- This means that Amy outscored

95.64% of others who took the same test.