Dynamic Estimation of the Zero-Coupon Yield Curve

Research Seminar Statistics

Johannes Kepler University, Linz, Austria

Robert Ferstl¹ Josef Hayden¹

 1 Department of Finance University of Regensburg, Germany

June 5, 2008

Outline

1 Motivation

Multistage Model

- stochastic dynamic equilibrium model
- long-run economic effects of strategic investment decisions
- oligopolistic market structure
- multi-stage stochastic program with recourse
- uncertainty is reflected in future level of demand and strategic investment decisions
- solution as mixed complementarity problem (MCP) with GAMS and PATH solver
- lacksquare S-adapted open-loop information structure leads to Nash equilibria in each node

Scenario Tree

```
0.60 nodesep=0pt,labelsep=1pt,nrot=:U [colsep=3.0cm,rowsep=0.0cm]
                                                                          Hn_7
                                     Dn_3
                                     |n_8|
                                    Bn_1
                                     Jn_9
                                     En_4
                                     Kn_{10}
                                    An_0
                                     Ln_{11}
                                     Fn_5
                                    Mn_{12}
                                    Cn_2
                                    Nn_{13}
                                     Gn_6
                                    On_{14}
                          t = 0 t = 1 t = 2 t = 3
 [linewidth=1.5pt]AB50% [linewidth=1.5pt]AC50% [linewidth=1.5pt]BD25%
 [linewidth=1.5pt]BE25% [linewidth=1.5pt]CF25% [linewidth=1.5pt]CG25%
```

[linewidth=1.5pt]DH12.5% [linewidth=1.5pt]DI12.5%

Notation

ρ

```
i \in \mathcal{I}
j \in \mathcal{J}
m \in \mathcal{M}
p_n
F_n^j
P_n^m = \alpha_n^m - \beta^m \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}} q_{i,n}^{j,m}
\alpha_n^m
C_{j}
\nu
```

players, firms available technologies market states probability to reach a certain node probability of market state mproduction quantities investment quantities, for $n \in \{n_0\} \cup \mathcal{T}$ available capacity investment cost market equilibrium price intercept of demand function slope of demand function variable costs discount factor salvage value parameter depreciation rate

Optimization

$$\max_{q_{i,n}^{j,m},I_{i,n}^{j}} \sum_{n \in \mathcal{N}} p_{n} \delta_{n} \Pi_{i,n} \left(q_{i,n}^{j,m}, I_{i,n}^{j}, K_{i,n}^{j}, Q_{n}^{m} \right) + \sum_{n \in \mathcal{S}} p_{n} \delta_{n} \sum_{j \in \mathcal{J}} K_{i,n}^{j} F_{n}^{j} \nu \quad (1)$$

subject to

$$q_{i,n}^{j,m} - K_{i,n}^j \leq 0 \quad \forall i, j, m, n$$
 (2)

$$Q_n^m - \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} q_{i,n}^{j,m} = 0 \quad \forall m, n$$
 (3)

$$K_{i,n}^{j} - (1-\rho)K_{i,a(n)}^{j} - I_{i,a(n)}^{j} = 0 \quad \forall i, j, n$$
 (4)

$$q_{i,n}^{j,m}, K_{i,n}^{j}, I_{i,n}^{j}, Q_{n}^{m} \geq 0 \quad \forall i, j, m, n$$
 (5)

Installed Capacities

Source: International Energy Agency (2007)

Electricity Load

Source: UCTE (2006)

Electricity Prices

Source: EEX (2006); UCTE (2006)

Market Segments

Price	Average price	Average quantity	Number of	Percentage of
intervals	(Euro/MWh)	(MWh)	prices	of total prices
$0 \le p < 20$	12.67	46,111.63	611	6.98%
$20 \le p < 40$	31.35	54,103.50	3,003	34.28%
$40 \le p < 60$	49.00	64,806.04	2,626	29.98%
$60 \le p < 80$	68.46	72,385.56	1,588	18.13%
$80 \le p < 100$	88.40	75,991.21	665	7.59%
$100 \le p < \infty$	176.06	76,482.34	266	3.04%

Marginal and Investment costs

	Variable costs (Euro/MWh)	Investment costs (Euro/GW)
Hydro	7.6	3,500
Nuclear	9.5	1,841
Lignite	10.6	1,074
Hard coal	16.1	971
Gas (CCGT)	33.5	460
Oil	44	n/a
Pump	80	n/a

Source: Auer et al. (2006)

Scenario Generation

Production in the initial node $q_{i,0}^m$ (in MWh)

		m = 1	m = 2	m = 3	m = 4	m = 5	m = 6
	Rwe	10,945.21	13,590.03	17,150.64	20,586.19	21,872.07	21,984.52
	EON	10,945.21	13,592.14	17,150.64	20,586.09	21,871.99	21,984.48
V	attenfall	10,940.85	13,590.03	15,273.00	15,273.00	15,273.00	15,273.00
	EnBW	10,528.00	10,528.00	10,528.00	10,528.00	10,528.00	10,528.00

Sensitivity Analysis

■ Investment quantities in the initial node $I_{i,0}$ (in MW) with $\rho = 0.025$

	$\nu = 0.99$	$\nu = 0.95$	$\nu = 0.9$	$\nu = 0.85$
Vattenfall	5,015.93	4,832.23	4,626.18	4,516.54
EnBW	9,582.64	9,405.55	9,229.64	9,120.00

■ Investment quantities in the initial node $I_{i,0}$ (in MW) with $\nu=0.95$

	$\rho = 0.025$	$\rho = 0.03$	$\rho = 0.035$	$\rho = 0.04$
Vattenfall	4,832.23	4,908.60	4,984.96	5,061.33
EnBW	9,405.55	9,458.19	9,510.83	9,563.47

Motivation

- **■** €€€
- dynamic forecast of zero-coupon yield curves
- useful for bond portfolio management, hedging interest rate risk, identify arbitrage opportunities, ...
- further step towards arbitrage-free model with joint estimation procedure