

29th Linear Accelerator Conference LINAC18, Beijing, China

Design Validation of a Chopping and Deflecting System for the High Current Injector at IUAC

Amplitude

-1.0

Sanjay Kumar Kedia, Rajeev Mehta, Rajesh Kumar, Rajeev Ahuja Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067

Salient Features of the Design

4 pairs

15 mm

24 mm

39 mm

750 mm

Variable

32 ns

50-70 ns

7.0x10⁴ -

180-200 ns

Variable (15, 18, 21, 24mm)

250, 500ns, 1,2,4,8 μs

Poster Id -THPO080

Date: 20/09/2018

- >The Low Energy Beam Transport (LEBT) section of the High Current Injector (HCI) incorporates a Chopping and Deflecting System (CDS).
- > The CDS has been designed in such a way that it can produce the maximum transmission within the same voltage conditions.
- >The semi-circular contour has been incorporated to increase the linearity in the transient region and to maximize the effective electric field.
- >The distinguishing feature of the CDS structure is the multiplate deflecting structure with low capacitance to optimize the electric field.
- >A Python code has been has been developed to validate the design parameters of CDS. The design parameters match well with simulations.
- >The CDS has been fabricated, assembled, and tested. The design, development and test are discussed as below.

12

>Experimentalists in IUAC require pulsed beam with various repetition rates 250 ns, 500 ns, 1 μ s, 2 μ s, 4 μ s, and 8 μ s. > A compact chopper and deflector is required, to provide the pulsed beam with various repetition rates at target locations. > Due to the space constraint, both the device has to combined together. Generation of Saw-tooth @ 12 MHz wave after optimization of coefficient $V(t) = \sin(wt) - 0.40\sin(2wt) + 0.18\sin(3wt) - 0.06\sin(4wt)$ 4th Component Saw-tooth 60ns-___ 2 nd Component 1.0 ___ 1 St Componen

83ns

Phase

Motivation

➤No of deflecting plates: > Plate separation:

Physical Geometry

≻Plate Length: >Centre distance pair n-pair n+1

>Gap between plates

>Slit / Aperture size

> Slit Location

Electronic Requirement

➤ Required Repetition Rate:

> Delay b/w pair of plates: **➤ Width of deflecting pulses (On time):**

> Width of deflecting pulses (Off time):

> Requirement of deflecting voltage: $\pm 350 \mathrm{V}$

Layout of LEBT Section of the High Current Injector

CST Simulations

Incorporation of Contours (CST)

Theoretically Calculated

Comparison b/w single pair plate chopper and CDS **Compared output of** TRACE 3D and Python **Python** $\beta x = 0.73463$ $\alpha_{\rm x} = 0.94709$ $\beta y = 0.73624$ $\alpha_{\rm V} = 0.94757$ Time (ns) Z (mm) X (mm) Z (mm) Time (ns)

1.14E-09 mbar*1/s

CDS ready for beam test in the LEIBF

Increment	Input	Output		
	No of Charged particles traced	Theoretically calculated @ 4 MHz (24%)	Python	% Increment in current
Single Pair Plate Chopper	5000	1200	850 (17%)	35%
CDS	5000	1200	1150 (23%)	

Results

Conclusion

The CDS has been designed and developed to provide the pulsed beam with various repetition rates (250 ns, 500 ns, 1 μs, 2 μs, 4 μs, 8 μs) to IUAC experimental facilities. The Design Mechanical development has been completed; the development and procurement of electronics is under way

References

[1] WEI KY. Transport of Charged particle Beams, Science, 1986. [2] Huachang Liu et al., Nucl. Instr. and Meth. A 654 (2011) 2. [3] T.K. Fowler et al., Nucl. Instr. and Meth. 7 (1960) 245. [4] S K Kedia, Rajeev Mehhta, Nucl. Instr. and Meth. A 889 (2018)