Adaptive Importance Sampling meets Mirror Descent: a Bias-variance tradeoff

Anna Korba ¹ François Portier ²

¹CREST/ENSAE, Institut Polytechnique de Paris ²CREST/ENSAI

This paper

Problem: sample from a target distribution f over \mathbb{R}^d , whose density is typically known only up to a normalization constant, to compute quantities of the form $\int_{\mathbb{R}^d} gf$.

Adaptive Importance Sampling (AIS) idea is to sample from an alternative, simpler proposal probability density q_k at time k of the algorithm to approximate f.

We propose a new non parametric AIS method, that

- (i) introduces a new regularization strategy which raises adaptively the importance sampling weights to a certain power ranging from 0 to 1
- •(ii) uses a mixture between a kernel density estimate of the target and a safe reference density as proposal.

Naive vs Regularized IS

Let $X \sim q$ where $f \ll q$. The basic idea of IS is to reweight g(X) by **the importance weight** W(X) = f(X)/q(X).

Since $\mathbb{E}[W(X)g(X)] = \int gf$ and using i.i.d. samples $X_1, \ldots, X_n \sim q$, one can build an (unbiased) IS estimator of $\int gf$ as

$$\int gf \approx \frac{1}{n} \sum_{k=1}^{n} \frac{f(X_k)}{q(X_k)} g(X_k) = \frac{1}{n} \sum_{k=1}^{n} W(X_k) g(X_k).$$

Remark: if f is known up to a normalization constant, use normalized weights $\sum_{k=1}^{n} W(X_k) g(X_k) / \sum_{k=1}^{n} W(X_k)$.

Problem: if q is far from the target f, the importance weights may have a large variance!

Idea: use regularized weights $W(X)^{\eta}$, $\eta \in (0,1)$.

Lemma: For all $\eta \in (0, 1]$:

$$\mathbb{E}[W(X)^{\eta}] \le 1$$
 and $\operatorname{Var}[W(X)^{\eta}] \le \operatorname{Var}[W(X)]$.

- choosing η enables to balance bias and variance !
- $\mathbb{E}[W(X)^{\eta}g(X)] = \int f^{\eta}q^{1-\eta}g \implies$ it corresponds to mirror descent with step-size η_k : $q_{k+1} \propto q_k^{1-\eta_k}f^{\eta_k}$

Safe and Regularized Adaptive Importance Sampling (SRAIS)

We propose an $Adaptive\ Importance\ Sampling\ (AIS)$ method which uses a sequence of proposals $(q_k)_{k\geq 0}$. More specifically, as in [1] we choose:

$$q_k = (1 - \lambda_k) f_k + \lambda_k q_0, \quad \forall k \ge 1$$

i.e. a mixture between

- a safe density q_0 (with heavy tails compared to f), preventing too small values of q_k and high variance of IS weights,
- •a **KDE** estimate f_k of the target f, accelerating the convergence to f:

$$f_k(x) = \sum_{j=1}^k W_{k,j}^{\eta_j} K_{h_k}(x - X_j), \quad \forall x \in \mathbb{R}^d,$$

where for all $j = 1, \dots, k$:

$$W_{k,j}^{\eta_j} \propto W_j^{\eta_j} = \left(\frac{f(X_j)}{q_{j-1}(X_j)}\right)^{\eta_j}, \quad \sum_{j=1}^k W_{k,j}^{\eta_j} = 1.$$

SRAIS algorithm

Algorithm 1 Safe and Regularized Adaptive Importance sampling (SRAIS)

Inputs: The safe density q_0 , the sequences of bandwidths $(h_k)_{k=1,...,n}$, mixture weights $(\lambda_k)_{k=1,...,n}$, learning rates $(\eta_k)_{k=1,...,n}$.

For k = 0, 1, ..., n - 1:

- (i) Generate $X_{k+1} \sim q_k$.
- (ii) Compute (a) $W_{k+1} = f(X_{k+1})/q_k(X_{k+1})$ and (b) $(W_{k+1,j}^{(\eta_j)})_{1 \le j \le k+1}$.
- (iii) Return $q_{k+1} = (1 \lambda_{k+1}) f_{k+1} + \lambda_{k+1} q_0$ where $f_{k+1} = \sum_{j=1}^{k+1} W_{k+1,j}^{(\eta_j)} K_{h_{k+1}}(\cdot X_j).$

Remarks:

- this algorithm can be used with a batch of m_k particles at each k.
- it can be seen as a stochastic approximation of the mirror descent iteration. Indeed,

$$\mathbb{E}_{X_{j} \sim q_{j-1}}[W_{j}^{\eta_{j}}K_{h_{k}}(x-X_{j})] = (f^{\eta_{j}}q_{j-1}^{1-\eta_{j}} \star K_{h_{k}})(x),$$
 which approximates $f^{\eta_{j}}q_{j-1}^{1-\eta_{j}}$ when the bandwidth h_{k} is small.

Uniform convergence of the scheme

- (**A**₁)(i) The sequence $(\lambda_k)_{k\geq 1}$ is valued in (0,1], nonincreasing, and $\lim_{k\to\infty} \lambda_k = 0$ and $\lim_{k\to\infty} \log(k)/(k\lambda_k) = 0$.
 - (ii) The sequence $(h_k)_{k\geq 1}$ is valued in \mathbb{R}^+ , nonincreasing, and $\lim_{k\to\infty} h_k = 0$ and $\lim_{k\to\infty} \log(k)/(kh_k^d\lambda_k) = 0$.
- (iii) The sequence $(\eta_k)_{k\geq 1}$ is valued in (0,1], and $\lim_{k\to\infty} \eta_k = 1$, $\lim_{k\to\infty} (1-\eta_k)\log(h_k) = 0$ and $\lim_{k\to\infty} (1-\eta_k)\log(\lambda_{k-1}) = 0$.
- (**A**₂) The density q_0 is bounded and there exists c > 0 such that for all $x \in \mathbb{R}^d$, $q_0(x) \ge cf(x)$.
- (A₃) The function f is nonnegative, L-Lipschitz and bounded by $U \in \mathbb{R}^+$.
- (A₄) $\int K = 1$, $\int ||u|| K(u) du < \infty$, $\int K^{1/2} < \infty$ and $\int ||u|| K(u)^{1/2} du < \infty$. The kernel K is bounded by $K_{\infty} \geq 0$ and is L_K -Lipschitz with $L_K > 0$, i.e. :

$$|K(x+u) - K(x)| \le L_K ||u||$$
 for all $x, u \in \mathbb{R}^d$.

Proposition: Assume **A1-A4**. Then, $\forall r > 0$: $\sup_{\|x\| \le k^r} |f_k(x) - f(x)| \to 0 \quad \text{as } k \to \infty \text{ a.s.}$

Adaptive Choice of Regularization (RAR)

Our conditions for uniform convergence require that the sequence $(\eta_k)_{k\geq 1}$ converges to 1. We propose an adaptive way to construct it.

Idea: Draw m_k i.i.d $X_{k,1},\ldots,X_{k,m_k} \sim q_{k-1}$.

Let
$$\mathbb{P} = \sum_{l=1}^{m_k} W_{k,l} \delta_{X_{k,l}}$$
, $\mathbb{Q} = \sum_{l=1}^{m_k} \frac{1}{m_k} \delta_{X_{k,l}}$

the reweighted and uniform distribution on particles.

$$\implies$$
 If $q_{k-1} = f$, IS weights = 1 and $\mathbb{P} = \mathbb{Q}$.

 \Longrightarrow penalize the divergence between $\mathbb{P}, \mathbb{Q}!$

We propose to use Renyi's α -divergences and set:

$$\eta_{k,\alpha} = 1 - \frac{D_{\alpha}(\mathbb{P}||\mathbb{Q})}{\log(m_k)},$$

where
$$D_{\alpha}(\mathbb{P}||\mathbb{Q}) = \frac{1}{\alpha - 1} \log \left(\sum_{\ell=1}^{m_k} W_{k,\ell}^{\alpha} m_k^{\alpha - 1} \right)$$
.

Prop: $\lim_{k\to\infty} \eta_{k,\alpha} \to 1$ (in L^1) if $\lim_{k\to\infty} |q_k(x) - f(x)| = 0$ a.e.

Toy Experiment

Figure 1:Logarithm of the average squared error for SRAIS for constant values of η or Adaptive η , over 50 replicates. 4×10^4 particles sampled from initial density, then $m_k = 18 \times 10^3$ particles from q_k at each $k \geq 1$.

Different target densities $(\phi_{\Sigma} = \mathcal{N}(0_d, \Sigma))$, initial densities have different means/variance than the target:

- "Cold Start" $f_1(x) = \phi_{\Sigma}(x 5\mathbf{1}_d/\sqrt{d}), \ \Sigma = (0.16/d)\mathbf{I}_d$
- "Gaussian Mixture" $f_2(x) = 0.5\phi_{\Sigma}(x \mathbf{1}_d/(2\sqrt{d})) + 0.5\phi_{\Sigma}(x + \mathbf{1}_d/(2\sqrt{d}))$
- "Anisotropic Gaussian Mixture" $f_3(x)=0.25\phi_V(x-\mathbf{1}_d/(2\sqrt{d}))+0.75\phi_V(x+\mathbf{1}_d/(2\sqrt{d})),\ V=(.4/\sqrt{d})^2\mathrm{diag}(10,1,\ldots,1)$

Evolution of Adaptive Regularization

Figure 2:Boxplot of the values of $(\eta_{k,\alpha})_{k\geq 1}$ obtained from RAR (Adaptive η), with $\alpha = 0.5$.

- at the beginning of the algorithm when the policy is poor, the value of η_k is automatically small
- when the policy becomes better the value of $\eta_{k,\alpha} \to 1$.

Conclusion

Contributions:

- •We proposed a new algorithm for Adaptive Importance Sampling, that regularizes the importance weights by raising them to a certain power
- This algorithm is related to mirror descent on the space of probability distributions
- It outperforms numerically constant values of η

[1] Bernard Delyon and François Portier. Safe adaptive importance sampling: A mixture approach. *The Annals of Statistics*, 49(2):885–917, 2021.