Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

1

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny l}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny I}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

9

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

11

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- $_{\mbox{\tiny \square}}$ Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13