Варіант 7

3 нормально розподіленої генеральної сукупності витягнуто вибірку об'ємом n=95. Побудувати довірчі інтервали для математичного сподівання та дисперсії з надійністю $\mathcal{Y}=0.95$.

91	95	85	85	96	87	98	92	90	89
98	97	117	88	91	119	85	77	94	89
79	108	94	112	96	93	98	112	97	88
107	95	99	101	104	81	102	105	104	103
107	100	85	105	112	93	92	106	108	84
113	98	120	94	92	85	101	108	96	94
92	102	109	113	99	98	115	105	86	87
92	96	89	97	100	99	97	89	99	90
79	91	103	109	108	88	91	98	99	77
72	99	84	82	96					

1) Знайдемо для подальших обчислень вибіркову дисперсію за відомою формулою

$$D^*x = \frac{1}{n} \sum_{j=1}^n (x_j - \overline{x})^2$$

def dispersion(xs: List[N]) -> float:

length = len(xs)

avg = average(xs)

res = sum([(x - avg)**2 for x in xs]) / length

return res

2) За допомогою цього можемо вирахувати довірчий інтервал для математичного сподівання.

$$\left(\bar{x} - \frac{t \cdot \sigma}{\sqrt{n}}, \bar{x} + \frac{t \cdot \sigma}{\sqrt{n}}\right)$$
, де \bar{x} – вибіркове середнє, t визначається з рівняння $\Phi(t) = \frac{\gamma}{2}$, Φ – функція

T

Лапласа, γ – довірча ймовірність.

Сігму можна знайти як корінь з дисперсії.

3 рівняння $\Phi(t) = y/2 = 0.4750$ знайдемо t = 1.96 за табличними даними.

def convidence interval expected value(

xs: List[N], t: float

) -> Tuple[float, float]:

d = dispersion(xs)

sigma = math.sqrt(d)

x = average(xs)

n = len(xs)

k = t * sigma / math.sqrt(n)

return (x - k, x + k)

Результат – довірчий інтервал: (94.47, 98.45)

3) Довірчий інтервал для дисперсії знайдемо за формулою

$$\left(\frac{nD_x^*}{\chi_2^2}, \frac{nD_x^*}{\chi_1^2}\right)$$
, де D_x^* – вибіркова дисперсія,

Оскільки кількість ступенів вільности n-1 = 94 > 30, то

$$\chi_1^2 = \frac{1}{2} \left(\sqrt{2k-1} - t \right)^2, \ \chi_2^2 = \frac{1}{2} \left(\sqrt{2k-1} + t \right)^2$$

Якщо перевести це в код, то вийде наступна функція

def convidence_interval_dispersion(

xs: List[N], t: float

) -> Tuple[float, float]:

```
n = len(xs)
k = n - 1
x1_2 = ((math.sqrt(2*k - 1) - t) ** 2)/2
x2_2 = ((math.sqrt(2*k - 1) + t) ** 2)/2
Dx = dispersion(xs)
return (n*Dx / x1_2, n*Dx / x2_2)
Отриманий довірчий інтервал: (76.26, 135.84)
```