- --8. A method for connecting armature windings in an electrical machine, wherein the armature windings include a plurality of phase windings, said method comprising the steps of:
- a. segmenting each of the plurality of phase windings into a first winding segment and a second winding segment by establishing a connection point at one of a plurality of available connection points on said phase winding;
- b. at the established connection point, connecting an end of the first winding segment in each phase winding to an end of the first winding segment in another of said phase windings to form a Delta winding topology, and
- c. at the established connection point, connecting a first end of one of said second winding segments to a plurality of connected ends of said each of said first winding segments to form a Wye topology about each connection point.
- 9. A method as in claim 8 wherein the available connection points are at end turns of the phase winding, and the established connection point is a contact tap at a selected end turn of the phase winding.
- 10. A method as in claim 8 wherein the first and second winding segments are in-phase.
- 11. A method as in claim 8 wherein an opposite end of said second winding segment is connected to an external terminal of said windings.

FOGARTY Serial No. (to be assigned)

12. A method as in claim 8 where said plurality of phase windings include three phase windings, and each of said three phase windings has an established connection point, and further comprising forming an external connection at an opposite end of each of the second winding segments to establish a three-phase power connection to the phase windings.

Control
Allin
for

13. A method as in claim 8 further comprising the step of establishing a line-to-line output level (V_{LL}) between each of said phase windings in accordance with the following expression:

$$V_{LL} = |Xe^{j\pi/6} + \sqrt{3} (1 - X)|$$

where: " V_{LL} " is the line-to-line voltage as a proportion of a phase winding voltage level;

"X" is a fraction of a phase winding arranged in a Delta topology, and

"j" is a complex operator, wherein $j^2 = -1$.--

REMARKS

This preliminary amendment serves to present non-elected parent claims 8 through 13 for examination in this divisional application.