Expérience 1

Résumé

Reproduction et approfondissement des résultats de la première expérience 1 dans l'article [Cleeremans Alex, 2007].

But

Comprendre de quelles manières peuvent émerger des représentations et métareprésentations dans un réseau de neurone connexionniste, en particulier sur des perceptrons multicouches.

Architecture

Description Un premier réseau de perceptron multicouche apprend à discrétiser des chiffres représentés par 20 neurones d'entrées. Il est composé d'une couche cachée de 5 neurones.

Un second réseau de perceptron multicouche apprend à dupliquer toutes les couches du premier réseau en n'ayant que sa couche cachée en entrée.

Schéma

Paramètres

- momentum : 0.9 sur les 2 réseau
- taux d'apprentissage : 0.1 sur les 2 réseau
- poids initialisés sur [-0.25; 0.25]
- 10 chiffres différents présentés
- taux d'apprentissage constant
- apprentissage 10 (formes) Х 1000 (époques)
- entrées valent 0 ou 1

- utilisation de biais

- sigmoïde à température 1

Résultats

Principaux Analyse des performances

Notes

- la courbe violette est la somme des 3 courbes des couches à reproduire.
- 0.3 est le seuil de tolérance pour l'erreur sur un neurone de la couche cachée

Conclusion

- la couche cachée et la couche de sortie ne posent aucun problèmes d'apprentissage
- les performances du second réseau dépendent principalement de sa capacité à reproduire les entrées
- le second réseau apprend plus rapidement que le premier

Secondaires Discrétisation de la couche cachée du premier réseau

Notes

- une couleur équivaut à un chiffre présenté
- une valeur discretisée correspond à un certain encodage de la couche cachée (cf Algorithmes)

Conclusion Les neurones se stabilisent très rapidement (autour de la 50^{ième} époque en moyenne), le tout permettant au second réseau d'avoir des entrées très peu variables, favorisant son apprentissage.

Conclusion

EXPÉRIENCE 1 RÉFÉRENCES

Formules

 \mathbf{RMS} Pour une époque e:

$$rms \ proportion_e = \frac{rms_e = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (o_{i,e} - d_i)^2}}{max(rms_{e'}), \ \forall e' \in epochs}$$
 with
$$\begin{cases} n : number \ of \ neurons \ on \ the \ output \ layer \\ o_{i,e} : value \ obtained \ for \ the \ i^{th} \ neuron \ at \ the \ e^{th} \ epoch \\ d_i : value \ desired \ for \ the \ i^{th} \ neuron \end{cases}$$

Discrétisation Pour la couche cachée hiddenNeuron de n neurones, un neurone pouvant être encodé par $number_cutting$ valeurs différentes :

$$\sum_{i=0}^{n} number_cutting^{i} \times cutting(hiddenNeuron[i])$$

Exemple
$$400 \leftarrow [0; 0, 25] [0; 0, 25] [0, 25; 0, 5] [0, 5; 0, 75] [0, 25; 0, 5]$$

 $400 \leftarrow 0 \times 4^0 + 0 \times 4^1 + 1 \times 4^2 + 2 \times 4^3 + 1 \times 4^4$

Descente de gradient [Touzet, 1992]

Construction de l'erreur :

$$y_i = f'(a_i) \times (d_i - x_i)$$
 si i neurone de sortie $y_i = f'(a_i) \times \sum_k (w_{ki} \times y_k)$ si i neurone cache

Mise à jour des poids :

$$w_{ij}(t+1) = w_{ij}(t) + learning_rate \times y_i \times x_j + momentum \times (w_{ij}(t) - w_{ij}(t-1))$$

Variables:

 $\begin{cases} f: fonction \ sigmoide \\ x_i: valeur \ du \ neurone \ i \\ d_i: valeur \ desire pour \ le \ neurone \ i \\ a_i: somme \ pondere \ des \ poids \ du \ neurone \ i \end{cases}$

Références

[Cleeremans Alex, 2007] Cleeremans Alex, Timmermans Bert, P. A. (2007). Consciousness and metarepresentation: A computational sketch. doi:10.1016/j.neunet.2007.09.011.

[Touzet, 1992] Touzet, C. (1992). Les réseaux de neurones artificiels - introduction au connexionnisme.