Машина Тьюринга.

<u>Пример.</u> Написать программу машины Тьюринга, применимую ко всем словам вида $x_1x_2...x_n$, где $x_i \in \{a;b\}, i=1,2,...,n, n \ge 2$, так, чтобы в результате получилось бы слово b, если $x_1=a$, и слово $x_1x_2...x_{n-1}$, если $x_1=b$.

Для упрощения записи внутренние состояния будем обозначать числами 1,2,...

Рассмотрим случаи:

1) $x_1 = a$.

Первоначальная конфигурация будет иметь вид: $a_1 x_2 ... x_n$. В случае, когда первый символ слова — буква a, нужно заменить её на b, а остальные символы исходного слова стереть.

После замены a на b нужно перейти в новое состояние 2 и сдви-

нуться вправо. Опишем это с помощью команды $a1 \to b\Pi 2$. Получаем конфигурацию $b_{X_2}...x_n$. Затем стираем все оставшиеся

символы с помощью команд $a2 \to \lambda \Pi 2$, $b2 \to \lambda \Pi 2$. Получим последовательность конфигураций $b \lambda x_3 ... x_n$, $b \lambda \lambda x_4 ... x_n$,..., $b \lambda \lambda ... \lambda x_n$, $b \lambda^{n-1} \lambda$. Все символы слова, кроме первого, стёрты, пора

останавливать работу машины Тьюринга с помощью команды $\lambda 2 \to \lambda H0$. Получаем заключительную конфигурацию $b\lambda^{n-1}\lambda$.

2) $x_1 = b$.

Первоначальная конфигурация будет иметь вид: $b_1 x_2 ... x_n$. В случае, когда первый символ слова — буква b, перейдём в новое состояние 3 и сдвинемся вправо: $b1 \to b\Pi 3$. Получаем конфигурацию $b_1 x_2 ... x_n x_n$.

Теперь пройдём до конца слова, не меняя его, с помощью команд $a3 \to a\Pi 3$, $b3 \to b\Pi 3$. Получим последовательность конфигураций $b \, x_2 x_3 \, ... x_n$, $b x_2 x_3 \, x_4 \, ... x_n$,..., $b x_2 ... x_n \, \lambda_3$. Слово пройдено до конца.

Делаем шаг влево: $\lambda 3 \to \lambda \mathcal{J} 4$, получаем конфигурацию $b x_2 \dots x_n$.

Стираем x_n и заканчиваем работу с помощью команд $a4 \to \lambda H0$, $b4 \to \lambda H0$. Итоговая конфигурация: $b\,x_2\,...x_{n-1}$.

Запишем программу машины Тьюринга в виде таблицы:

anniment upor paintry manning a proprint a B Bitg						
	$A\S$	1	2	3	4	
	λ	-	$\lambda H0$	$\lambda J I 4$	-	
	a	<i>b</i> Π2	$\lambda \Pi 2$	аП3	$\lambda H0$	
	b	<i>b</i> ∏3	$\lambda \Pi 2$	<i>b</i> П3	$\lambda H0$	

Проверим работу построенной машины Тьюринга над словами, начинающимися с разных букв. Запишем последовательности соответствующих конфигураций:

$$b_1$$
 $aabab$, b_2 $aabab$, $baab$ $baab$

Видим, что машина Тьюринга работает правильно.

В дальнейшем будем рассматривать функции многих переменных, каждый аргумент которых принимает значения из расширенного множества натуральных чисел $N_0 = \{0,1,2,...,n,...\}$, и сама функция принимает значения только из этого множества.

 $\frac{\mathbf{Y}_{ucлoвой}}{\mathbf{Y}_{ucлoвой}}$ функцией называется функция вида $f:N_0^n \to N_0$.

тельного числа k будем использовать k+1 единицу. Эту договорённость мы принимаем для того, чтобы отличать изображение числа 0 от изображения пустой ячейки. Набор чисел $(a_1, a_2, ..., a_n)$ будем изображать на ленте машины Тьюринга в виде слова

Для изображения на ленте машины Тьюринга любого неотрица-

 $1^{a_1+1}\lambda 1^{a_2+1}\lambda...\lambda 1^{a_n+1}.$ Числовая функция $f(x_1,x_2,...,x_n)$ называется вычислимой по

Тьюрингу, если существует машина Тьюринга, применимая ко всем

словам вида $1^{x_1+1}\lambda 1^{x_2+1}\lambda ...\lambda 1^{x_n+1}$, результатом работы которой над таким словом будет слово $1^{f(x_1,x_2,...,x_n)+1}$.

Другими словами, для функции $f(x_1,x_2,...,x_n)$, вычислимой по Тьюрингу, найдётся соответствующая машина Тьюринга, которая изображение $1^{x_1+1}\lambda 1^{x_2+1}\lambda...\lambda 1^{x_n+1}$ произвольного набора аргументов $(x_1,x_2,...,x_n)$ преобразует в изображение $1^{f(x_1,x_2,...,x_n)+1}$ значения функ-

ции $f(x_1, x_2, ..., x_n)$ на этом наборе. Пример. Доказать вычислимость по Тьюрингу функции f(x, y, z) = x + y + z.

f(x,y,z) = x + y + z. Напишем программу машины Тьюринга, которая любое слово вида $1^{x+1} \lambda 1^{y+1} \lambda 1^{z+1}$ преобразует в слово $1^{x+y+z+1}$. Начальная конфигурация должна иметь вид $1^{x+1} \lambda 1^{y+1} \lambda 1^{z+1}$. Пере-

местим считывающее устройство вправо с помощью команды $11 \to 1\Pi 1$. Получим последовательность конфигураций $1^{x+1} \ \lambda 1^{y+1} \ \lambda 1^{z+1}$,

 $11_{1}^{x} \lambda 1^{y+1} \lambda 1^{z+1}, 1111^{x-1} \lambda 1^{y+1} \lambda 1^{z+1}, ..., 1^{x+1} \lambda 1^{y+1} \lambda 1^{z+1}.$

 $1^{x+y+3} \lambda 1^{z+1}$.

Заменим разделяющий пустой символ единицей, перейдём в новое состояние 2, и продвинемся вправо до следующего разделяющего символа с помощью команд: $\lambda 1 \rightarrow 1\Pi 2, 12 \rightarrow 1\Pi 2$, получим последовательность конфигураций $1^{x+1} 111^{y} \lambda 1^{z+1}, 1^{x+3} 11^{y-1} \lambda 1^{z+1}, ...,$

Заменим последний разделяющий пустой символ единицей, перейдём в новое состояние 3, и продвинемся вправо до конца слова с помощью команд: $\lambda 1 \rightarrow 1\Pi 3, 13 \rightarrow 1\Pi 3$, получим последователь-

ность конфигураций 1^{x+y+4} 11^z ,..., $1^{x+y+z+5}$ λ . Для изображения числа x+y+z требуется x+y+z+1 единица, поэтому нужно двигаться влево и стирать лишние 4 единицы. Это можно сделать с помощью команд: $\lambda 3 \to \lambda J 4, 14 \to \lambda J 5, 15 \to \lambda J 6, 16 \to \lambda J 7, 17 \to \lambda H 0$.

Соответствующая последовательность конфигураций: $1^{x+y+z+4} 1 \lambda$, $1^{x+y+z+3}$ $\frac{1}{5}\lambda$, $1^{x+y+z+2}$ $\frac{1}{6}\lambda$, $1^{x+y+z+1}$ $\frac{1}{7}\lambda$, $1^{x+y+z+1}$ $\frac{\lambda}{0}$. Получено изображение

суммы x + y + z, работа машины Тьюринга закончена.

-мму машины Тьюринга в виде таблицы:

) a	апишем программу машины тьюринга в виде таолицы.							
	$A\S$	1	2	3	4	5	6	7
	λ	1 <i>Π</i> 2	1П3	λЛ4	_	_	_	_
	1	1 <i>∏</i> 1	1Π 2	1Π 3	$\lambda JI5$	$\lambda \overline{J}$	$\lambda JI7$	$\lambda H0$

Проверим работу машины Тьюринга над изображением набора аргументов (0,2,1), записываемом на ленте в виде слова $1\lambda 111\lambda 1$. Получим последовательность конфигураций: $\frac{1}{2}\lambda 1111\lambda 11$, $\frac{1}{2}\lambda 1111\lambda 11$, $\frac{11}{2}\lambda 11$, $\frac{11}{2}\lambda 11$, $\frac{1}{2}\lambda 11$, $\frac{1}{2}\lambda 11$, $\frac{1}{2}\lambda 11$

C другой стороны, f(0,2,1) = 0 + 2 + 1 = 3.

Видим, что изображение набора аргументов (0,2,1) построенная машина Тьюринга обработала правильно.

<u>Пример.</u> Написать формулу функции f(x, y), вычисляемой с по-

мощью машины Тьюринга, заданной программой

$A\S$	1	2	3	4
λ	1Π2	1Л3	1 <i>Π</i> 4	1 <i>H</i> 0
1	1∏1	1 <i>Π</i> 2	1Л3	1Π 4

Запишем последовательность конфигураций, возникающих при работе машины Тьюринга над словом $1^{x+1} \lambda 1^{y+1}$:

 $11^{x} \lambda 1^{y+1}, \ 111^{x-1} \lambda 1^{y+1}, \ \cdots, \ 1^{x+1} \lambda 1^{y+1}, \ 1^{x+2} 11^{y}, \ 1^{x+3} 11^{y-1}, \ \cdots, \ 1^{x+y+3} \lambda,$

 1^{x+y+2} 11, $\lambda_3 1^{x+y+4}$, 111^{x+y+3} , 1^{x+y+5} λ_4 , 1^{x+y+5} 1.

Получено слово, состоящее из x + y + 6 единиц, которое является изображением числа x + y + 5.

Проверим работу машины Тьюринга над изображением набора аргументов (0,1), записываемом на ленте в виде слова $1\lambda 11$. Получим последовательность конфигураций:

Кодировка машин Тьюринга.

Пусть дана машина Тьюринга $T=(A,S,\mu,\nu,\tau)$, где $A=\{\lambda,a_1,a_2,...,a_n\},\ S=\{s_0,s_1,s_2,...,s_m\}$. Покажем один из возможных способов кодировки машины T в алфавите $\{*;1\}$.

Закодируем символы входного алфавита, символы внутренних состояний и символы управления движением считывающего устройства.

Пусть $N(\Pi) = 1$, $N(\Pi) = 11$, $N(H) = 1^3$, $N(\lambda) = 1^4$, $N(a_1) = 1^5$, $N(a_2) = 1^6$, ..., $N(a_n) = 1^{n+4}$,

$$N(s_0) = 1^{n+5}, N(s_1) = 1^{n+6}, ..., N(s_m) = 1^{n+m+5}.$$

Команде $a_p s_i \to a_j D s_r$ поставим в соответствие слово $C(a_p s_i) = N(a_p) * N(s_i) * N(a_j) * N(D) * N(s_r),$ называемое

кодом команды.

Kodom машины T назовём слово $N(T) = C(\lambda s_1) **C(a_1s_1) **C(a_ns_1) **C(\lambda s_2) **... **C(a_ns_m)$

Для каждой машины Тьюринга можно построить соответствующий код и обратно, по каждому коду можно однозначно восстановить программу машины Тьюринга.

Машина Тьюринга называется *самоприменимой*, если она применима к собственному коду. В противном случае она называется *несамоприменимой*.

Алгоритмически неразрешимые проблемы.

Зададимся вопросом: существует ли алгоритм, который для любой машины Тьюринга выясняет: является машина самоприменимой или несамоприменимой? Так как в данном разделе под алгоритмом мы понимаем машину Тьюринга, то это приводит нас к постановке проблемы самоприменимости.

Проблема самоприменимости:

Существует ли машина Тьюринга L, применимая к коду N(T) произвольной машины Тьюринга T, такая, что в случае, если T — самоприменимая машина, то заключительная конфигурация машины L имеет вид $\mathbf{1}$, а если T — несамоприменима, то заключительная конфигура- \mathbf{s}_0

ция машины L имеет вид χ ?

<u>Теорема об алгоритмической неразрешимости проблемы самоприменимости.</u>

Не существует машины Тьюринга L, решающей проблему самоприменимости.

Допустим, нашлась машина Тьюринга L, решающая проблему са-

Доказательство. Докажем теорему от противного.

моприменимости. Построим на базе этой машины новую машину Тьюринга L'следующим образом: все внутренние состояния и команды машины L объявляются также внутренними состояниями и командами L', но множество внутренних состояний L' дополнено состоянием s_0 , которое объявляется заключительным состоянием машины L', а во множество команд машины L' добавляем ещё две команды: $1s_0 \to 1Hs_0$; $\lambda s_0 \to \lambda Hs_0$.

Рассмотрим процесс работы машины L' над кодами самоприменимых и несамоприменимых машин.

Пусть машина T несамоприменима. Запускаем L' над словом N(T). Так как вначале исполняются все команды машины L, решающей проблему самоприменимости, мы приходим к конфигурации λ , а

после применения команды $\lambda s_0 \to \lambda H s_0^{'}$ получаем конфигурацию

 λ . Машина перешла в своё заключительное состояние, значит она

применима к коду N(T) несамоприменимой машины T.

Пусть машина T самоприменима. Запускаем L' над словом N(T). Исполняя команды машины L, мы приходим к конфигурации 1, а

после исполнения команды $1s_0 \to 1Hs_0$ получаем ту же конфигурацию 1. Продолжая исполнять команду $1s_0 \to 1Hs_0$ мы будем по-

лучать одну и ту же конфигурацию 1, и машинаL' никогда не перейдёт в своё заключительное состояние $s_0^{'},$ значит L' неприменима

к коду N(T) самоприменимой машины T.

Итак, мы выяснили, что машина Тьюринга L'обладает свойствами:

- 1) L' применима к кодам несамоприменимых машин;
- 2) L' не применима к кодам самоприменимых машин. Запустим машину L' над её собственным кодом N(L').

Рассмотрим возможные результаты работы машины L' над своим кодом N(L').

- а) Машина L' не переходит в своё заключительное состояние s_0 , значит, машина L' несамоприменима, значит, она не применима к коду несамоприменимой машины (L'), что противоречит свойству 1);
- б) Машина L' переходит в своё заключительное состояние s_0 , значит, машина L' самоприменима, значит, она применима к коду самоприменимой машины (L'), что противоречит свойству 2).

Каждая машина Тьюринга либо самоприменима, либо нет, и это определяется результатом работы машины над её собственным кодом. Но для машины L' и предположение о её самоприменимости, и предположение о ей несамоприменимости приводит к противоречию. Источник противоречия — предположение о существовании машины Тьюринга L, решающей проблему самоприменимости. Значит, такой машины L не существует, и теорема доказана.