Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z laboratorium 5

Kamil Gabryjelski, Paweł Rybak, Paweł Walczak

Spis treści

1.	Opis problemu	2
	1.1. Stanowisko grzejące 1.2. Obiekt Inteco	
	Zadanie 1	
	2.1. Sprawdzenie połączenia	
	Zadanie 2	
4.	Zadanie 3	6

1. Opis problemu

1.1. Stanowisko grzejące

Pierwszym z celów piątego laboratorium było zbadanie obiektu, a następnie implementacja, weryfikacja poprawności działania i dobór parametrów algorytmów regulacji obiektu na sterowniku firmy Mitsubishi, przy pomocy oprogramowania GX Works. Badania dotyczyły obiektu wielowymiarowego, o dwóch wejściach i dwóch wyjściach. Obiekt składał się z:

- sygnał wejściowy pierwszy grzałka G1
- sygnał wejściowy drugi grzałka G2
- sygnał wyjściowy pierwszy czujnik temperatury T1
- sygnał wyjściowy drugi czujnik temperatury T2
- zakłócenie pierwsze wentylator W1
- zakłócenie drugie wentylator W2.

Sygnały wejściowe G1 i G2 mogą przyjmować wartości w zakresie 0 - 100. Sygnały wyjściowe, zwracają pomiary temperatury w °C. Wentylatory W1 oraz W2 należy traktować jako cechę otoczenia. Mają one stałe wysterowanie na 50% swojej mocy. Ich użycie pozwala na bardziej dynamiczne schładzanie obiektu. Czas próbkowania obiektu wynosi 4s.

1.2. Obiekt Inteco

Drugim celem laboratorium było stworzenie regulatora dla obiektu firmy Inteco. W naszym przypadku obiekt składał się z trzech zbiorników umieszczonych, jeden nad drugim, wypełnianych wodą. Każda kolejna para zbiorników była połączona ze sobą zaworami, przez które woda mogła przepływać z jednego zbiornika do drugiego. Zawór z najniższego zbiornika był połączony ze zbiornikiem, będącym buforem nadmiarowej wody. Z owego bufora woda mogła być pompowana do najwyższego zbiornika. Z punktu widzenia zadania, które mieliśmy wykonać obiekt prezentował się następująco:

- pompa P1 stale wysterowane wejście wody do zbiornika pierwszego
- zawór V1 ujście wody z pierwszego zbiornika i jednocześnie wejście wody do zbiornika drugiego (pierwszy sygnał sterujący)
- zawór V2 ujście wody z drugiego zbiornika i jednocześnie wejście wody do zbornika trzeciego (drugi sygnał sterujący)
- zawór V3 ujście wody z trzeciego zbiornika (trzeci sygnał sterujący)
- pomiar M1 stan wody w pierwszym zbiorniku (pierwszy sygnał wyjściowy)
- pomiar M2 stan wody w drugim zbiorniku (drugi sygnał wyjściowy)
- pomiar M3 stan wody w trzecim zbiorniku (trzeci sygnał wyjściowy)

Wszelkie sygnały wejściowe sterowane były za pomocą PWM. Czas próbkowania obiektu wynosił 100ms.

2.1. Sprawdzenie połączenia

Zadanie pierwsze polegało na sprawdzeniu możliwości komunikacji ze stanowiskiem. Sprawdziliśmy to, modyfikując wybrane wejścia obiektu, oraz obserwując zmiany na obiekcie. Przy modyfikacji wejścia wiatraków widać i słychać było, iż wiatraki kręcą się wolniej lub szybciej, w zależności od wejścia. Przy sprawdzeniu działania grzałki polegaliśmy na diodach elektroluminescencyjnych, które świeciły mocniej lub słabiej w zależności od mocy grzania odpowiedniej grzałki. Nasza pewność w tej sprawie jest oparta na zaufaniu do konstruktora obiektu. Możliwość pomiaru wyjśc obiektu zoastała sprawdzona w oparciu o trendy pomiaru, w zależności od wysterowania wcześniej wspomnianych wejść. Otóż, przy zwiększeniu mocy grzałki lub zmniejszeniu mocy wiatraka temperatura na czujniku bliższym danej grzałce i wiatrakowi rośnie szybko, a na dalszym rośnie wolniej. Przy zwiększaniu mocy wiatraka lub zmniejszaniu mocy grzałki pomiar temperatur spadał. Podobnie jak wcześniej działo się to z szybkością odwrotnie proporcjonalną do odległości czujnika od wiatraka i grzałki których sterowanie jest zmieniane.

2.2. Punkt pracy

Punkt pracy naszego stanowiska wynosił $G1=27,\,G2=32,\,W1=50,\,W2=50.$ Przy tak ustawionych wejściach pozwoliliśmy obiektowi się ustabilizować. Z powodów różnych zakłóćeń pomiary temperatury nieustannie się wahały. Oszacowaliśmy arbitralnie iż, pomiary ustabilizowały się na wartościach $T1=35,\,T2=36.68.$ Pomiary wyjść przy takich ustawieniach sygnałów wejściowych przedstawia wykres 2.1.

Rys. 2.1. Punkt pracy obiektu.

W tym zadaniu należało stworzyć mechanizm zabezpieczający stanowisko przed przegrzaniem. Miał on polegać na tym, iż miał on wyłączyć grzałkę przy czujniku, jeżeli pomiar na tym ostatnim przekroczył 150°C. Osiągnęliśmy ten rezultat, poprzez sprawdzenie temperatury na każdym z czujników z osobna oraz, jeżeli któryś z nich spełniał wcześniej wymieniony warunek, wyzerowanie odpowiedniej wartości tymczasowej, w której zapisywaliśmy wyliczone sterowanie. Było to ostatnią czynnością w programie przed skopiowaniem wartości sterowania do rejestru z którego miała być ona wysyłana do obiektu.

Rys. 4.1. Regulacja regulatorem PID.