Proof of Divergence Theorem

Ameer Qaqish

September 2022

1 Introduction

In this note we prove the divergence theorem.

Divergence Theorem Let $\overline{\Omega}$ be a C^2 compact manifold with boundary with C^1 metric tensor g. Let Ω denote the manifold interior of $\overline{\Omega}$ and let $\partial\Omega$ denote the manifold boundary of $\overline{\Omega}$. Let (\cdot, \cdot) denote L^2 inner products of functions and $\langle \cdot, \cdot \rangle$ denote inner products of vectors. Suppose $u \in C^1(\overline{\Omega}, \mathbb{R})$ and X is a C^1 (real valued) vector field on $\overline{\Omega}$. Then

$$(\operatorname{grad} u, X) = -(u, \operatorname{div} X) + \int_{\partial\Omega} u \langle X, N \rangle dS,$$

where N is the outward normal vector field on $\partial\Omega$.

Proof. We use the Einstein summation convention. By using a partition of unity, we may assume that u and X have compact support in a coordinate patch $O \subset \overline{\Omega}$. First consider the case where the patch is disjoint from $\partial\Omega$. Then O is identified

with an open subset of \mathbb{R}^n and integration by parts produces no boundary terms:

$$(\operatorname{grad} u, X) = \int_{O} \langle \operatorname{grad} u, X \rangle \sqrt{g} \, dx \tag{1}$$

$$= \int_{O} \partial_{j} u X^{j} \sqrt{g} \, dx \tag{2}$$

$$= -\int_{\Omega} u \partial_j(\sqrt{g}X^j) \, dx \tag{3}$$

$$= -\int_{O} u \frac{1}{\sqrt{g}} \partial_{j} (\sqrt{g} X^{j}) \sqrt{g} \, dx \tag{4}$$

$$= (u, -\frac{1}{\sqrt{g}}\partial_j(\sqrt{g}X^j)) \tag{5}$$

$$= (u, -\operatorname{div} X). \tag{6}$$

Here we used the Voss-Weyl formula for the divergence (alternatively, we can use this identity to define – div invariantly as the formal adjoint of grad). Now suppose O intersects $\partial\Omega$. Then O is identified with an open set in $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_n \geq 0\}$. We zero extend u and X to \mathbb{R}^n_+ and perform integration by parts to obtain

$$(\operatorname{grad} u, X) = \int_{O} \langle \operatorname{grad} u, X \rangle \sqrt{g} \, dx \tag{7}$$

$$= \int_{\mathbb{R}^n} \partial_j u X^j \sqrt{g} \, dx \tag{8}$$

$$= (u, -\operatorname{div} X) - \int_{\mathbb{R}^{n-1}} u(x', 0) X^n(x', 0) \sqrt{g(x', 0)} \, dx', \tag{9}$$

where $dx' = dx_1 \dots dx_{n-1}$. By a variant of the straightening out theorem, we may choose O so that $\frac{\partial}{\partial x_n}$ is the inward unit normal -N at $\partial\Omega$. In this case $\sqrt{g(x',0)} dx' = \sqrt{g_{\partial\Omega}(x')} dx' = dS$ is the volume element on $\partial\Omega$ and the above formula reads

$$(\operatorname{grad} u, X) = (u, -\operatorname{div} X) + \int_{\partial \Omega} u \langle X, N \rangle dS.$$

This completes the proof.