Universidade Federal de Uberlândia

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Universidade Federal de Uberlândia

Relatório de Experimental de Circuitos Elétricos

2

VERIFICAÇÃO DA SEQUÊNCIA DE FASES DAS TENSÕES

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Conteúdo

1	Objetivos	2					
2	Introdução	2					
3	Preparação						
	3.1 Materiais e ferramentas	5					
	3.2 Montagem	5					
4	Análise sobre segurança	6					
5	Análise	7					
	5.1 Dados	7					
	5.2 Questões	11					
6	Simulação	12					
7	Conclusão	13					

1 Objetivos

Encontrar a sequência de fase correta utilizando o método do voltímetro.

2 Introdução

Diz-se que a sequência de fase é ABC quando a defasagem de tensão da fase B em relação a fase A seja de 120° e a defasagem da fase c em relação a B seja de 120° Tendo os fasores na forma da figura abaixo.

Figura 1: Fasores em sequencia ABC

Ao girar no sentido ante-Horário a sequencia de giro fica ABC. O mesmo não acontece para sequencia CBA.

Figura 2: Fasores em sequência CBA

Graficamente:

Figura 3: Gráfico de saída de um sistema trifásico

Considerando a Fase A a curva em azul, se a curva em verde for a Fase C então a sequencia é ABC já que a fase C esta 120° adiantada ou 240° atrasada.Ou se a fase vermelha fosse a Fase C então a sequencia seria CBA.

Saber a sequencia de fase correta é importante para controle de motores, uma vez que esta determina o sentido de giro do motor trifásico. Em cargas monofásicas a sequencia de fase pode determinar aumentar a tensão de deslocamento de neutro e/ou aumentar a corrente de neutro.

O método do voltímetro consiste em montar um circuito desequilibrado conhecido e de acordo com a tensão medida determinar a sequencia de fase.

3 Preparação

3.1 Materiais e ferramentas

- Regulador de tensão(Varivolt)
- Resistores banana de 50Ω
- Capacitor de 45.9 μF
- Medidor Trifásico Kron Mult-K

3.2 Montagem

Figura 4: circuito utilizando voltímetros analógicos

Neste experimento será utilizado voltímetros digitais.

Figura 5: circuito utilizando voltímetros digitais

Para realizar a montagem deve seguir a figura 1, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

4 Análise sobre segurança

Antes de montar o experimento é importante o uso de equipamentos de proteção, estar com calça, sapatos fechados, sem acessórios metálicos e se o cabelo for grande, este deve estar preso.

A bancada deve estar desenergizada durante a montagem. Durante o experimento não ter contato com nenhum fio ou elemento energizado do circuito além do risco de choque elétrico. Certifique-se de que os equipamentos estão na escala adequada para realizar as medições.

Deixe o capacitor na horizontal para que fique melhor apoiado na bancada, este é muito leve e pode cair com facilidade.

Realizar as medidas em um tempo curto evitando que o circuito fique energizado por um longo período de tempo, pois os resistores estarão dissipando potência assim esquentando.

Deve-se manter uma distância segura do circuito quando o mesmo está energizado assim evitando queimaduras e choque elétrico.

5 Análise

5.1 Dados

Fase A e C conectadas						
	Sequê	ncia ABC	Sequência CBA			
	I_{ac}	$V_m = V_{bn}$	I_{ac}	$V_m = V_{bn}$		
Teórico	1.309	136.7	1.309	37.81		
Medido	1.297	139.7	1.278	39.10		
Erro(%)	0.9	2.19	0.9	3.41		

Fase A desconectada							
	Seq	uência ABC	Sequência CBA				
	I_{ac}	$V_m = V_{bn}$	I_{ac}	$V_m = V_{bn}$			
Teórico	0	100	0	100			
Medido	0	102	0	102			
Erro(%)	0	2	0	2			

Fase C desconectada							
	Sequência ABC		Sequência CBA				
	I_{ac}	$V_m = V_{bn}$	I_{ac}	$V_m = V_{bn}$			
Teórico	0	100	0	100			
Medido	0	101.8	0	100.4			
Erro(%)	0	1.8	0	0.4			

Para obter os valores teóricos nas tabelas acima foram feitos os seguintes cálculos.

$$I_{ac} = \frac{V_{ca}}{\sqrt{R^2 + 4\pi^2 f^2 C^2}}$$

$$V_{bn'} = V_{bc} - I_{ac} \cdot R$$

Para encontrar os fasores foi considerado para ABC:

$$\begin{bmatrix} E_{ab} \\ E_{bc} \\ E_{ca} \end{bmatrix} = \begin{bmatrix} 100 \angle 0^{\circ} \\ 100 \angle -120^{\circ} \\ 100 \angle 120^{\circ} \end{bmatrix}$$

$$\begin{bmatrix} E_{an} \\ E_{bn} \\ E_{cn} \end{bmatrix} = \begin{bmatrix} 57.7 \angle -30^{\circ} \\ 57.7 \angle -150^{\circ} \\ 57.7 \angle 90^{\circ} \end{bmatrix}$$

Figura 6: Representação gráfica dos fasores

Determinando a corrente I_{ac}

$$-E_{an} + I_{ac}X_c + I_{ac}R + E_{cn} = 0$$

$$I_{ac} = \frac{-E_{ca}}{R + X_c}$$

$$I_{ac} = \frac{-100 \angle 120^{\circ}}{50 + \frac{1}{377 \cdot 45.9E - 6j}}$$

$$I_{ac} = 1.309 \angle -10.87^{\circ} \text{ [A]}$$

Determinando a Tensão V_{nN}

$$V_{nN} = -I_{ac}R + E_{cn}$$

 $V_{nN} = 78.677 \angle -144.76^{\circ} \text{ [V]}$

Determinando $V_{f'N}$

$$\begin{bmatrix} E_{a'N} \\ E_{b'N} \\ E_{c'N} \end{bmatrix} = \begin{bmatrix} 57.7 \angle -30^{\circ} \\ 57.7 \angle -150^{\circ} \\ 57.7 \angle 90^{\circ} \end{bmatrix} - VnN \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} E_{a'N} \\ E_{b'N} \\ E_{c'N} \end{bmatrix} = \begin{bmatrix} 115.45 \angle 8.23^{\circ} \\ 136.27 \angle -144.98^{\circ} \\ 65.433 \angle 169.13^{\circ} \end{bmatrix}$$

Assim obtemos os fasores

Figura 7: Representação gráfica dos fasores de tensão nos pontos a, b' e c' para sequência ABC

Fazendo o mesmo equacionamento para a sequencia CBA, obtém-se:

Figura 8: Representação gráfica dos fasores de tensão nos pontos a, b' e c' para sequência CBA

5.2 Questões

a) Na impossibilidade de ter voltímetros, amperímetros e sequencímetro, como você poderia encontrar a solução desse problema (abc ou cba)?

Utilizando lampadas incandescentes, em que a que estiver sujeita a maior tensão brilhará mais.

b) Aponte a importância de encontrar a correta sequência de fase em um circuito elétrico.

Determinar o sentido de giro de um motor.

6 Simulação

Simulação ABC

Figura 9: Simulação do circuito em abc

Simulação CBA

Figura 10: Simulação do circuito em cba

Os valores mostrados na simulação são muito próximos ao do experimento, e apresenta a mesma característica.

7 Conclusão

Este método (método do voltímetro) é eficiente e preciso para determinar a sequencia de fase. Mesmo com a ausência de um voltímetro ainda é possível determinar a sequencia, substituindo-o por lampadas incandescentes.

Observando os diagramas fasoriais pode-se perceber que a sequencia de fase tem uma grande influencia na tensão de deslocamento de neutro[1]. Devido a isso é possível determinar a sequencia de fase. Em sequencia Abc o deslocamento do neutro é menor, deixando a tensão $\nabla b' n$ maior.

A simulação mostrou medidas muito semelhantes as obtidas durante o experimento, de modo que tenha mesma analise e conclusão que os dados obtidos experimentalmente.

Em comparação dos dados analíticos com os obtidos experimentalmente e simulados mostraram erro máximo de 2%, este gerado pela precisão do aparelho que controla a tensão(Varivolt). Levando em consideração esse Fator pode-se concluir que a teoria agiu 100% de acordo com a pratica.

Referencias

ALEXANDER, C.K.; SADIKU, M.N. Fundamentos de Circuitos Elétricos. 5ª ed. Porto

Alegre: Mc Graw-Hill, 2015

Diagramas Fasorial- LIMA, H.S.; Desenhando Fasores https://xx220xx.github.io/FASORES/index.html acesso em 30/11/2019