Decision Tree problems

Problem 2 :- To create a decision tree with information gain.

Solution:

Taking 12 vandom entries as training data and 12 vandom entires as testing data from given dataset to explain the working of code

	SLOPE	HEART DISEASE	
	3	0	entropy of target variable i.e. E(reast disease)
	2	1	i.e. E(neart disease)
	2	0	
	3	1	E(n) = 5 - P? log & P?
-	1	0	7-1
-	1	0	E(H) = -pylogopy-pwlogopn
	3		· ·
1)	0	where 'pi' is probability of
	2	1	close ?
	3	0	•
	1	1	$F(n) = -5 \log_{12} \frac{5}{12} - 7 \log_{12} \frac{7}{12}$
	3	0	12 12 12

E(4) = 0.98 almost even!

Now, calculating information going due to the jeature named "slope".

Ibr (Y,X) = E(Y) - E(Y/X)
where E(Y) is the entropy of target
Variable Y and E(Y/X) is the entropy
of Y given X as a feature

In this way we calculate reduction of uncertainty about 4 given an additional place of enformation x about 4.

This is called Information crain.

	Slope	Heast Disease			
1		Yes	No	Total	
-		1	3	4	
-	2	2		3	
-	3	2	3	5	
	Total	5	7	12	
					-

How, I will calculate entropy for each of them and then take the weighted overage of the three values.

$$E(4|S=1) = -1 \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} \approx 0.811$$

$$F(H|S=2) = -2 \log_2 2 - 1 \log_2 1 \simeq 0.918$$

$$E(H(S=3) = -2 \log_2 2 - 3 \log_2 3 \simeq 0.970$$

Weighted aneroge.

$$\frac{F(H|S) = \frac{4 \times 0.811 + 3 \times 0.918 + 5 \times 0.970}{12}$$

Information Gain:

$$IG(H,S) = E(H) - E(H|S)$$

Merre the value of information gain of target variable for flature "slope" is 0.08

	(SLOPE)	
NO	N N	
sloke=1	YES Slope =	Vo
<u></u>	of J	3
MEART DISTAGE	HENRTDISEASE	MEARTOISEASE
YES No	YES NO	YES NO
, 3	2 1	@ 3
p(YES) = 0.25 p(No) = 0.75	p(YES) = 0.67	p(YES) = 0.4
b(100) - 0.43	p(No)= 0.33	p(NO) = 0.6
		1

Testing data

1							
	SLOPE	MEART DISEASI	POTIONATION				
				1			
		0	0	\ <u>\</u>			
		O	0	~			
	2						
		0	0	~			
	2		1	~	ACCUANA - 02		
	2	D	1	X	Accuracy = 82		
	3	D	0	~	= 0.6667		
	1	1	0	X	- 0.6067		
-	3		0	X	66.67%		
	2	0		X	00.07%		
	3	0	^				
		0	0				