

Gowin Programmer

ユーザーガイド

SUG502-1.8J,2024-10-25

著作権について(2024)

著作権に関する全ての権利は、Guangdong Gowin Semiconductor Corporation に留保されています。

GOŴIN高云、

※ 、Gowin、及びLittleBeeは、当社により、中国、米国特許商標庁、及びその他の国において登録されています。商標又はサービスマークとして特定されたその他全ての文字やロゴは、それぞれの権利者に帰属しています。何れの団体及び個人も、当社の書面による許可を得ず、本文書の内容の一部もしくは全部を、いかなる視聴覚的、電子的、機械的、複写、録音等の手段によりもしくは形式により、伝搬又は複製をしてはなりません。

免責事項

当社は、GOWINSEMI Terms and Conditions of Sale(GOWINSEMI取引条件)に規定されている内容を除き、(明示的か又は黙示的かに拘わらず)いかなる保証もせず、また、知的財産権や材料の使用によりあなたのハードウェア、ソフトウェア、データ、又は財産が被った損害についても責任を負いません。当社は、事前の通知なく、いつでも本文書の内容を変更することができます。本文書を参照する何れの団体及び個人も、最新の文書やエラッタ(不具合情報)については、当社に問い合わせる必要があります。

バージョン履歴

日付	バージョン	説明		
2017/04/06	1.0J	初版。		
2017/08/06	1.1J	デバイスのプログラミングに関する内容を変更。		
2019/10/28	1.2J	Slave SPIモードを追加。SVFファイルの作成の情報を追加。User Flashの初期化の情報を追加。		
2020/02/17	1.3J	Programmerのインストールと起動の情報を追加。		
2022/05/30	1.4J	セクション「2.1 Programmerのツールチェーンの概要」を追加。チャプター「4 Programmer_cliでのダウンロード手順」を追加。		
2023/06/08	1.5J	 Linux OSにおけるケーブルの権限の構成に関する説明を追加。 Gowin USB Cable (GWU2X)の構成に関する説明を追加。 表3-1 Deviceに対する操作の説明からSRAM Program JTAG 114 削除。 ソフトウェアのスクリーンショットを更新。 		
2024/05/09	1.6J	 「3.6セキュリティ」における説明を更新。 SRAMまたはFlashのコンフィギュレーション・プログラミングのコマンド形式の説明を更新。 「3.9 I²C の Slave アドレスに対する操作」を追加。 		
2024/06/28	1.7J	ステータスコード分析の説明を追加。		
2024/10/25	1.8J	「3.10 MSPI 2nd Bootアドレスに対する操作」を追加。一部のスクリーンショットを更新。		

<u>i</u>

目次

	次i
図	一覧iii
表	一覧v
1	本マニュアルについて 1
	1.1 マニュアルの内容1
	1.2 関連ドキュメント1
	1.3 用語、略語1
	1.4 テクニカル・サポートとフィードバック2
2	概要3
	2.1 Programmer のツールチェーンの概要
	2.1.1 Programmer.exe
	2.1.2 Programmer_cli.exe3
	2.1.3 JTAGLoading.exe
	2.1.4 jtagserver.exe
	2.1.5 Cable5.uid.up.exe
	2.1.6 Gowin_USB_Cable_Installer.sh、Makefile
	2.2 Programmer のツールチェーンのインストールと起動
	2.2.1 インストール方法 1
	2.2.2 インストール方法 2
	2.2.3 Programmer のツールチェーンの起動
	2.3 ソフトウェアの画面
	2.4 ソフトウェアバージョンの確認9
	2.5 Linux OS におけるケーブルの権限の構成9
	2.5.1 Makefile9
	2.5.2 Gowin_USB_Cable_Installer.sh10
3 (GUI 版 Programmer でのダウンロード手順11
	3.1 ダウンロードケーブルの設定11
	3.2 デバイスのデイジーチェーンのスキャン 13
	3.3 デバイスのデイジーチェーンの構成13

	3.3.1 デバイスの追加	. 13
	3.3.2 デバイスの取り外し	. 14
	3.3.3 チェーン内のデバイス位置の変更	. 14
	3.4 プログラミングの構成	. 14
	3.4.1 SRAM モードの構成	. 16
	3.4.2 LittleBee ファミリーFPGA での組み込み Flash モードの構成	. 16
	3.4.3 オフチップ Flash モードの構成	. 17
	3.4.4 Slave SPI モード	. 18
	3.5 ピンの状態の編集	. 18
	3.6 セキュリティ	. 19
	3.7 ダウンロード	20
	3.8 SVF ファイルの作成	20
	3.9 I ² C Slave アドレスに対する操作	. 21
	3.10 MSPI 2nd Boot アドレスに対する操作	. 22
	3.11ステータスコードの分析	. 22
	3.12 User Flash の初期化	. 23
4 F	Programmer_cli でのダウンロード手順	25
	4.1 プレビューとヘルプ	. 25
	4.2 USB Cable デバイスのスキャン	. 28
	4.3 USB Cable の種類とポートの指定	. 29
	4.4 USB Cable の場所または UID の指定	. 29
	4.5 FPGA デバイスのスキャン	. 29
	4.6 Programmer 実行モードの指定	. 30
	4.7 SRAM のコンフィギュレーション	. 33
	4.8 LittleBee ファミリーFPGA の組み込み Flash の構成	. 33
	4.8.1 Flash のみの構成	. 33
	4.8.2 Flash および UserFlash 初期化ファイルの構成	. 34
	49 オフチップ SPI Flash の構成	34

図一覧

図 2-1 Gowin ソフトウェアのインストール際のコンポーネントの選択	4
図 2-2 Programmer のドライバーのインストール	5
図 2-3 programmer.exe の起動	6
図 2-4 programmer_cli.exe の起動	7
図 2-5 Gowin ソフトウェア上の Programmer ショートカットキー	7
☑ 2-6 Programmer Main Window	8
図 2-7 バージョンの確認	9
図 2-8 ファイル一覧	9
図 2-9 Makefile のインストール例(一般ユーザー)	10
図 2-10 Makefile のインストール例(root ユーザー)	10
図 2-11 スクリプトのインストール例	10
☑ 3-1 Gowin USB Cable (FT2CH)	12
図 3-2 LPT	12
☑ 3-3 Gowin USB Cable (GWU2X)	13
☑ 3-4 Device Table	13
☑ 3-5 Device Configuration Interface	14
☑ 3-6 I/O State Editor	19
図 3-7 Security Configuration	19
☑ 3-8 Create SVF File	21
図 3-9 I ² C Slave アドレスに対する操作	21
図 3-10 MSPI 2nd Boot アドレスに対する操作	22
図 3-11 ステータスコード分析の画面	23
☑ 3-12 User Flash Initialization	24
図 4-1 CMD で programmer_cli を開く	25
図 4-2 ヘルプ情報	26
図 4-3 USB Cable デバイスのスキャン	28
図 4-4 ヘルプ情報	29
図 4-5 ヘルプ情報	29
図 4-6 FPGA デバイスのスキャン	30

図 4-7 ヘルプ情報	30
図 4-8 ヘルプ情報	
図 4-9 例	33
図 4-10 例	34

SUG502-1.8J iv

表一覧

表 1-1 用語、略語	1
表 3-1 Device に対する操作の説明	15
表 3-2 User Flash の情報一覧	24

SUG502-1.8J v

1 本マニュアルについて 1.1 マニュアルの内容

1本マニュアルについて

1.1 マニュアルの内容

本マニュアルでは GOWIN セミコンダクターのプログラミングツール である Gowin Programmer の使用方法について説明します。本マニュアル に記載のスクリーンショットとサポートされる製品リストは、1.9.10.03 Beta バージョンの場合のものです。ソフトウェアのアップデートにより、一部の内容が変更される場合があります。

1.2 関連ドキュメント

GOWIN セミコンダクターのホームページ <u>www.gowinsemi.com/ja</u>から、以下の関連ドキュメントをダウンロード及び閲覧できます。

- Gowin ソフトウェア ユーザーガイド(SUG100)
- Gowin FPGA 製品 JTAG コンフィギュレーション ユーザーガイド (TN653)
- Gowin FPGA 製品プログラミング・コンフィギュレーション ユーザー ガイド(<u>UG290</u>)

1.3 用語、略語

本マニュアルで使用される用語、略語、及びその意味を表 **1-1** に示します。

表 1-1 用語、略語

用語、略語	正式名称	意味
BSDL	Boundary Scan Description Language	バウンダリスキャ ン記述言語
FPGA	Field Programmable Gate Array	フィールド・プログ ラマブル・ゲート・ アレイ
GAO	Gowin Analyzer Oscilloscope	Gowinアナライザ オシロスコープ
I/O	Input/Output	入力/出力

SUG502-1.8J 1(35)

用語、略語	正式名称	意味
SRAM	Static Random Access Memory	スタティックRAM

1.4 テクニカル・サポートとフィードバック

GOWIN セミコンダクターは、包括的な技術サポートをご提供しています。使用に関するご質問、ご意見については、直接弊社までお問い合わせください。

ホームページ: www.gowinsemi.com/ja

E-mail: support@gowinsemi.com

SUG502-1.8J 2(35)

2 概要

2.1 Programmer のツールチェーンの概要

2.1.1 Programmer.exe

グラフィカルツールの Programmer.exe は、Gowin FPGA ダウンロード用ソフトウェアであり、グラフィカル操作画面を持ち、データストリームのコンフィギュレーションまたはダウンロード機能を便利かつ直感的に提供します。

2.1.2 Programmer_cli.exe

Programmer_cli は、Programmer のコマンドライン版です。

2.1.3 JTAGLoading.exe

Gowin SVF コマンドラインソフトウェアであり、現在は Windows 版のみあります。現在のバージョンは USB Cable Version 3.0 および 4.0 のみをサポートします。

2.1.4 jtagserver.exe

jtagserver.exe および jtagserver_lpt.exe¥jtagserver_u2x.exe は GAO ツールチェーンの一部です。

2.1.5 Cable5.uid.up.exe

Gowin USB Cable Version 5.0 UID 構成ツール。

2.1.6 Gowin_USB_Cable_Installer.sh、Makefile

Linux OS におけるケーブルの権限の変更に使用されます。

2.2 Programmer のツールチェーンのインストールと起動

2.2.1 インストール方法 1

Gowin ソフトウェアをインストールする際にコンポーネントとして Gowin Programmer を選択します(図 2-1)。Gowin ソフトウェアのインスト ールについては、『Gowin ソフトウェア ユーザーガイド($\underline{SUG100}$)』を参

SUG502-1.8J 3(35)

照してください。

図 2-1 Gowin ソフトウェアのインストール際のコンポーネントの選択

2.2.2 インストール方法 2

ホームページから Gowin Programmer のインストールパッケージをダウンロードしてインストールします。また、programmer2 \pm driver ディレクトリで対応するドライバーを選択してインストールする必要があります (図 2-2)。

注記:

Windows XP システムに GWU2X ドライバーをインストールする場合は、まず対応する USB デバイスを挿入する必要があります。

SUG502-1.8J 4(35)

図 2-2 Programmer のドライバーのインストール

2.2.3 Programmer のツールチェーンの起動

● Programmer のインストールが完了したら、 ¥x.x¥Programmer¥bin¥programmer.exe をダブルクリックして Programmer を起動します(図 2-3)。

SUG502-1.8J 5(35)

図 2-3 programmer.exe の起動

■ コマンドライン版の場合、CMD 内で起動できます。例えば、 programmer_cli.exe を起動します。

SUG502-1.8J 6(35)

2.3 ソフトウェアの画面

図 2-4 programmer_cli.exe の起動

● さらに、図 2-5 に示すように、Gowin ソフトウェアのショートカット キーを使用してソフトウェアを起動できます。

図 2-5 Gowin ソフトウェア上の Programmer ショートカットキー

2.3 ソフトウェアの画面

Gowin Programmer の画面には、メニューバー、ツールバー、デバイステーブル、および出力パネルがあります(図 2-6)。

SUG502-1.8J 7(35)

2.3 ソフトウェアの画面

図 2-6 Programmer Main Window

デバイステーブルには、プログラムされるデイジーチェーンのデバイスがすべて表示されます。これらのデバイスは自動スキャンにより検出されるか、手動で追加できます。デバイスはテーブルで行として配列されています。Enable をチェックすると、プログラミングすることになります。

テーブルには、Enable、Family、Device、Operation、FS File、Checksum、User Code、および IDCODE が含まれています。そのうち Enable、Family、Device、Operation、および FS File はクリックして編集できます。 ほかの編集不可オプションをダブルクリックすると、デバイスコンフィギュレーションダイアログ(Device Configuration Dialog)が表示され、プログラミングを構成できます。 詳細は、3.4 プログラミングの構成を参照してください。

出力パネルには、**Output**、**Error**、**Warning**、および **Info** などの情報が含まれます。

注記:

デバイスが Enable 列にチェックを入れていない場合、エディタはデバイスがチェーンにないと判断し、行がグレーアウトします。

SUG502-1.8J 8(35)

2.4 ソフトウェアバージョンの確認

Gowin Programmer と Gowin ソフトウェアには別々のソフトウェアバージョン番号があります。図 2-7 に示すように、ソフトウェア画面で [About]メニューを開くとバージョン番号を確認できます。

図 2-7 バージョンの確認

2.5 Linux OS におけるケーブルの権限の構成

図 2-8 に示すように、 $Gowin_USB_Cable_Installer.sh$ はスクリプトファイル、Makefile はテキストファイルです。どちらもケーブルの権限の変更に使用できます。

図 2-8 ファイル一覧

- 50-programmer_usb.rules
- Gowin USB Cable Installer.sh
- Makefile
- readme.txt

2.5.1 Makefile

ターミナルを開き、sudo make コマンドを入力するか、root 権限に切り替えて make コマンドを入力し、"File 50-programmer_usb.rules has been copied to /etc/udev/rules/d/"と表示されればインストール成功です (一部の CentOS 6 では再起動が必要)。図 2-9 と図 2-10 に示すとおりです。

SUG502-1.8J 9(35)

図 2-9 Makefile のインストール例(一般ユーザー)

```
File Edit View Search Terminal Help

[fzq@localhost cable_linux_privileges_20230417] $\frac{1}{2}$ sudo make

We trust you have received the usual lecture from the local System Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.

#2) Think before you type.

#3) With great power comes great responsibility.

[sudo] password for fzq:
File 50-programmer usb.rules has been copied to /etc/udev/rules.d/
[fzq@localhost cable_linux_privileges_20230417]$
```

図 2-10 Makefile のインストール例(root ユーザー)

```
File Edit View Search Terminal Help

[fzq@localhost:/home/fzq/Desktop/cable_linux_privileges_20230414]$ su

Password:

[root@localhost cable_linux_privileges_20230414]$ make

Please restart the system later to complete the setup

File 50-programmer_usb.rules has been copied to /etc/udev/rules.d/

[root@localhost cable_linux_privileges_20230414]$ 

[root@localhost cable_linux_privileges_20230414]$ 

[root@localhost cable_linux_privileges_20230414]$ 

[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@localhost cable_linux_privileges_20230414]$ 
[root@local
```

2.5.2 Gowin_USB_Cable_Installer.sh

まず programmer があるフォルダを開き、図 2-8 の 4 つのファイルが全て存在するかを確認します。その後、ターミナルを開き、root 権限に切り替えて Gowin_USB_Cable_Installer.sh に権限を与えます。次に Gowin_USB_Cable_Installer.sh を実行し、complete と表示されればインストール成功です(図 2-11)。

図 2-11 スクリプトのインストール例

SUG502-1.8J 10(35)

3 GUI版 Programmer でのダウンロード 手順

ダウンロードとは、ダウンロードケーブルを介してデータストリーム・ファイルを FPGA デバイスの SRAM、オンチップ Flash、またはオフチップ Flash に伝送するプロセスです。具体的な手順は次のとおりです。

1. ダウロードケーブルの設定(オプション): ダウンロード用のケーブルの 種類、ポート、周波数などを設定します。

注記:

デフォルトでは、Programmer は最初に表示されるポートを使用します。デフォルトの周波数は 2.5MHz です。

- 2. デイジーチェーンとプログラミング操作の構成:デイジーチェーンの 実際の物理接続と一致するようにデイジーチェーンを構成し、各デバイスに必要なプログラミング操作とデータファイルを選択します。最上層は Programmer 側にあります。
- 3. ダウンロード:構成済みデイジーチェーンにダウンロードし、最終結果が出力パネルに表示されます。

3.1 ダウンロードケーブルの設定

ダウンロードケーブルの設定とは、利用可能なダウンロードケーブルの種類、ポート、周波数などを選択することを意味します。メニューバーから「Edit > Setting > Cable Setting」ダイアログを開きます。現在、Gowin USB Cable(FTDI)、Gowin USB Cable(GWU2X)、および LPT の 3 種類のダウンロードケーブルがサポートされています。

- 1. Gowin USB Cable (FT2CH)を図 3-1 に示します。
 - Cable: Gowin USB Cable を選択します。
 - Port: デフォルトでは最初の使用可能なポートを使用します。最後の英語の文字 A は、チャネルの番号を示します。S、A、および B の 3 つのチャネルがあります。
 - Frequency: JTAG の周波数であり、2MHz, 2.5MHz, 15MHz, または

SUG502-1.8J 11(35)

10MHz を選択できます。デフォルトでは 2.5MHz です。

図 3-1 Gowin USB Cable (FT2CH)

- 2. パラレルポート(LPT)を図 3-2 に示します。
 - Cable: Parallel Port (LPT)を選択します。
 - Port:使用可能なポート。PCのデバイス・マネージャーのPCIプロパティに従って選択します。
 - Frequency:周波数、150KHz。

図 3-2 LPT

₩ Cable Sett	ing	?	×
Cable:	Parallel Port(LPT)		•
Port:	LPT3(61180)		•
Frequency:	150 KHz		•
	Custom LPT	Que	ry
	Save	Can	el

- 3. Gowin USB Cable (GWU2X)を図 3-3 に示します。
 - Cable: Gowin USB Cable(GWU2X)を選択します。
 - Port: デフォルトでは最初の使用可能なポートを使用します。最後 の英語の文字 A は、チャネルの番号を示します。S、A、および B の 3 つのチャネルがあります。
 - Frequency:周波数、デフォルトでは 1.33MHz。

SUG502-1.8J 12(35)

図 3-3 Gowin USB Cable (GWU2X)

3.2 デバイスのデイジーチェーンのスキャン

Programmer は、コンピュータに接続されたデバイスのデイジーチェーンを自動的にスキャンすることをサポートしています。「 をクリックしてスキャンします。スキャン完了後、すべてのデバイスはチェーン内の順序で Gowin Programmer のデバイステーブルにリストされます(図 3-4)。

図 3-4 Device Table

注記:

一部のデバイスが同じ ID を有しているため(例: GW2A-18/GW2AR-18)、スキャン後、プロンプトに従って対応するデバイスを選択する必要があります。

Programmer では、デバイスのデイジーチェーンを手動で構成できます。これにはデバイスの追加と取り外し、チェーン内の位置の変更などの操作が含まれます。

3.3 デバイスのデイジーチェーンの構成

3.3.1 デバイスの追加

- 1. メニューバーで「Edit>Add Device」またはツールバーで「¹」をクリックして新しいデバイスを追加します。
- 2. 「Family」列のセルをクリックし、プルダウンメニューからデバイスファミリーを選択します。
- 3. 「Device」列のセルをクリックし、プルダウンメニューからデバイス を選択します。

SUG502-1.8J 13(35)

注記:

デバイスが選択されている場合、新しいデバイスは選択された位置に追加されます。それ 以外の場合、デイジーチェーンの最後に追加されます。

3.3.2 デバイスの取り外し

デバイスの行を選択し、メニューバーで「Edit> Remove Device」、またはツールバーで「 をクリックしてデバイスを削除します。

3.3.3 チェーン内のデバイス位置の変更

デバイスの行を選択し、メニューバーで「Edit> Up(Down)」、または ツールバーで「 \uparrow (\downarrow)」をクリックしてデバイスのチェーン内の位置を 調整します。

3.4 プログラミングの構成

デバイスの行を選択し、メニューバーで「Edit > Configure Device」またはツールバーで「 \bigcirc 」をクリックするか、「Operation」列のセルをダブルクリックして「Device Configuration」ダイアログを開きます(図 3-5)。

図 3-5 Device Configuration Interface

- Access Mode:デバイスのプログラミングモードを選択します。
- Operation: デバイスのプログラミング操作を選択します。 詳細は表 3-1 を参照してください。
- Instruction Register Length: デバイスとして JTAG-NOP が選択された場合、デバイスの命令レジスタの長さを選択します。

SUG502-1.8J 14(35)

- Programming File:プログラミング用のファイルを選択します。
- Device: プログラミングモードとして External Flash Mode が選択された場合、オフチップ Flash の型番を選択する必要があります。
- Start Address: プログラミングモードとして External Flash Mode が選択された場合、オフチップ Flash の開始アドレスを指定する必要があります。

表 3-1 Device に対する操作の説明

アクセスモード	操作	説明
	Bypass	Bypass
	Read Device Code	デバイスのID、User Code、Status Codeを 読み出します
	Read User Code	デバイスのUser Codeを読み出します
SRAM Mode	Read Status Register	デバイスの状態を読み出します
SKAWI Wode	Reprogram	-
	SRAM Erase	SRAMデータを消去します
	SRAM Program	FPGA SRAMにビットストリームファイル をダウンロードします
	SRAM program and Verify	データをSRAMに書き込み、検証を行います
	embFlash Erase, Program	オンチップFlashを消去した後、データを書 き込みます。
Embedded Flash Mode	embFlash Erase, Program, Verify	オンチップFlashを消去した後、データを書 き込み、検証を行います。
	EmFlash Erase Only	オンチップFlashのみを消去します。
	exFlash Erase, Program	オフチップFlashを消去した後、データを書 き込みます。
	exFlash Erase, Program, Verify	オフチップFlashを消去した後、データを書 き込み、検証を行います。
	exFlash Program Without Erasure	消去せずにオフチップFlashにデータを書き 込みます。
	exFlash Bulk Erase	オフチップFlashを消去します。
	exFlash Verify	オフチップFlashのデータを検証します。
External Flash Mode	exFlash Erase, Program in bscan	bscanモードを使用して、オフチップFlash を消去した後にデータを書き込みます。
	exFlash Erase, Program, Verify in bscan	bscanモードを使用して、オフチップFlash を消去した後にデータを書き込んで検証し ます。
	exFlash Verify in bscan	_
	exFlash Program in bscan without erasure.	bscanモードを使用して、消去せずにオフチップFlashにデータを書き込みます。
	exFlash Bulk Erase in bscan	bscan モードを使用して、オフチップ Flash のデータを検証します。

SUG502-1.8J 15(35)

アクセスモード	操作	説明
	exFlash C Bin Erase, Program	オフチップFlashを消去した後、RISC-VのbinファイルをオフチップFlashに書き込みます。
	exFlash C Bin Erase, Program, Verify	オフチップFlashを消去した後、RISC-Vのbin ファイルをオフチップFlashに書き込んで検 証します。
	exFlash C Bin Program	RISC-VのbinファイルをオフチップFlashに 書き込みます。
	Slave SPI Read ID Code	SSPIモードでデバイスIDを読み出します。
Slave SPI Mode	Slave SPI Scan exFlash	SSPIモードでオフチップFlashをスキャン します。
	Slave SPI Program SRAM	SSPIモードでデータをSRAMに書き込みます。

注記:

GW2A/GW2AR シリーズには組み込み Flash がないため、Embedded Flash Mode はサポートされていません。

3.4.1 SRAM モードの構成

- 1. デバイスの行を選択し、メニューバーで「Edit > Configure Device」またはツールバーで「 」をクリックするか、「Operation」列のセルを ダブルクリックして「Device Configuration」ダイアログを開きます。
- 2. 「Access Mode」のドロップダウン・リストから「SRAM Mode」を選択します。
- 3. 必要に応じて「Operation」のドロップダウン・リストから欲しい操作を選択します。
- 4. デバイスが GOWIN デバイスでない場合、手動で命令レジスタの長さを指定するか、デバイスの BSDL ファイルを指定して Programmer に命令レジスタの長さを読み出させる必要があります。
- 5. 「Save」をクリックして構成を完了します。

注記:

他社デバイス(JTAG-NOP)の場合、Bypass 操作のみがサポートされます。

3.4.2 LittleBee ファミリーFPGA での組み込み Flash モードの構成

GW1N/GW1NZ シリーズ FPGA 製品は、オンチップ Flash を備えているため、組み込み Flash モードが使用できます。

- 1. デバイスの行を選択し、メニューバーで「Edit > Configure Device」またはツールバーで「 」をクリックするか、「Operation」列のセルを ダブルクリックして「Device Configuration」ダイアログを開きます。
- 2. 「Access Mode」のドロップダウン・リストから「Embedded Flash

SUG502-1.8J 16(35)

Mode」を選択します。

- 3. 必要に応じて「Operation」のドロップダウン・リストから欲しい操作を選択します。
- **4.** Programming File で対応するプログラミングデータファイルを選択します。
- 5. 「Save」をクリックして構成を完了します。

3.4.3 オフチップ Flash モードの構成

GOWIN プログラマは、オフチップ Flash を使用したプログラミングをサポートします。オフチップ Flash モードの構成プロセスは次のとおりです。

- 1. デバイスの行を選択し、メニューバーで「Edit > Configure Device」またはツールバーで「 」をクリックするか、「Operation」列のセルを ダブルクリックして「Device Configuration」ダイアログを開きます。
- 2. 「Access Mode」のドロップダウン・リストから「External Flash Mode」を選択します。
- 3. 必要に応じて「Operation」のドロップダウン・リストから欲しい操作を選択します。
- 4. 「Operation」で「exFlash Program」を選択する場合、「Programming File」で対応するプログラミングデータストリーム・ファイルを選択する必要があります。
- 5. LittleBee と Arora ファミリーは、読み出しコマンドが 0x03 または 0x0B の SPI Flash をサポートしています。
- 6. 使用される Flash がメニューにない場合は、Generic Flash を選択して プログラミングすることを試してください。
- 7. オフチップ Flash の開始アドレスを選択します。現在のデフォルト値は 0x000000 です。
- 8. 「Save」をクリックして構成を完了します。

SUG502-1.8J 17(35)

3.4.4 Slave SPI モード

Slave SPI モードでは、ダウンロードケーブルを SSPI 専用ピンに接続する必要があります。『Gowin FPGA 製品プログラミング・コンフィギュレーション ユーザーガイド(*UG290*)』を参照してください。

- 1. デバイスの行を選択し、メニューバーで「Edit > Configure Device」またはツールバーで「 」をクリックするか、「Operation」列のセルを ダブルクリックして「Device Configuration」ダイアログを開きます。
- 2. 「Access Mode」のドロップダウン・リストから「Slave SPI Mode」 を選択します。
- 3. 必要に応じて「Operation」のドロップダウン・リストから欲しい操作を選択します。
- 4. 「Operation」で「Slave SPI Program SRAM」を選択する場合、「Programming File」で対応するプログラミング用データストリーム・ファイルを選択する必要があります。
- 5. 「Save」をクリックして構成を完了します。

3.5 ピンの状態の編集

Programmer は I/O State Editor ツールを使用して入力及び出力ピンの値を編集し、ダウンロード前のピンの状態を設定できます。

- 1. デバイスの行を選択してから、メニューバーで「Edit > I/O State」を クリックするか、「I/O State」 を右クリックして I/O State Editor を開きます。
- 2. デバイス型番とパッケージに一致する BSM ファイルを選択します。
- 3. セルをクリックしてピンの状態を変更するか、右クリックしてすべて のピンを同じ状態に設定することができます。

SUG502-1.8J 18(35)

🚧 I/O State Editor I/O State Custom F:/gw_wzy/BSDL/BSDL/GW1N_4/gw1n_4_pg256m.bsdl BSDL File x x VCCIO0 X VCCI00 Х х X X vcc x X х vcc Х X Х X X X Х VCCIO2 X X X X X X VCCIO2 X Description BSDL Defaul Output High Save Capture Cancel Output Low Input High Input Low

図 3-6 I/O State Editor

3.6 セキュリティ

暗号化されたビットストリームファイルを使用する場合、ビットストリームファイルの復号化キー(key)を FPGA に書き込む必要があります。デバイスの行を選択し、メニューバーで「Edit > Security Key Setting」をクリックするか、右クリックメニューから「Security Key Setting」をクリックして「Security Configuration」ダイアログを開きます(図 3-7)。

図 3-7 Security Configuration

● Manual input: キーをプレーンテキストで入力するかどうか選択しま

SUG502-1.8J 19(35)

す。

- .ekey:キーファイルを開きます。
- Write: 指定された key 値を FPGA に書き込みます。
- Read: ロックしていない状況で、FPGA 内の key 値を読み出し、表示します。
- Lock: FPGA内のkeyをロックすると、読み出しと書き込みができなくなります。

復号化キーを書き込む方法は2つあります。

クリアテキストでのキー書き込み

復号化キーが書き込まれた後、検証のために画面上の読み出し(read) 命令を選択して書き込まれたキーをリードバックすることができます。

キーが書き込まれた後、ユーザーは lock 命令を使用してキーを FPGA 内にロックすることができます。これにより、キーの読み出しと書き込みはすべて無効になります:キーの値は変更できず、読み出されたビットは全部「1」となります。

キーファイルによる書き込み

キーファイルを開き、「Write」ボタンをクリックすると、キーは開発ボードに書き込まれます。次に検証のためにキーを読み出します。検証に成功すると、キーは FPGA 内にロックされます。

復号化キーが設定された後、暗号化されたビットストリームデータは、 復号化キーとの照合に成功した後にのみ利用可能です。暗号化されていな いビットストリームデータのコンフィギュレーションは、キーの影響を受 けません。

注記:

3.7 ダウンロード

ダウンロードケーブルとデイジーチェーンの構成が完了した後、メニューバーで「Design>Run」を選択するか、ツールバーで「▶」をクリックし、デバイスをコンフィギュレーションします。最終結果は出力パネルに表示されます。

3.8 SVF ファイルの作成

fs ファイルで SVF ファイルを作成することがサポートされています。

SUG502-1.8J 20(35)

現在、GW1N-4の SVF ファイルのみがサポートされています。

- 「LittleBee ファミリーFPGA での組み込み Flash モードの構成」を参照しながら構成します(GW1N4 を選択)。
- 2. デバイスチェーンを選択し、メニューバーで「Edit > SVF File Create」をクリックするか、右クリックして「SVF File Create」を選択してCreate SVF file ダイアログを開きます。
- 3. File name フィールドで SVF ファイルのファイル名と保存パスを編集できます(図 3-8)。
- 4. 「OK」ボタンをクリックして SVF ファイルの作成を完了します。

図 3-8 Create SVF File

3.9 I²C Slave アドレスに対する操作

 I^2C Slave アドレスの読み出し、書き込み、設定などの操作がサポートされます。現在、この操作は GW2AN-18X と GW2AN-9X でのみサポートされています。

図 3-9 I²C Slave アドレスに対する操作

₩ GW2AN FPGA I2C Address Management		×		
Address: 7' b1010101				
Read OTP Address Save as OTP Address				
Set the USB Cable Address				

- Read OTP Address: I²C Slave アドレスを読み出します。
- Save as OTP Address: 指定された I²C Slave アドレスを FPGA に書き 込みます。
- Set the USB Cable Address: FPGA を I²C モードで操作する場合、I²C Slave アドレスを設定する必要があります。

注記:

 I^2C Slave アドレスに対しては、2 ビットのみが変更可能です。デフォルトのアドレスは 7'b1010 $\frac{0}{0}$ 00 です。黄色のビットを 0 から 1 に変更でき、ただし、1 に変更した場合、0 に戻すことはできません。

SUG502-1.8J 21(35)

3.10 MSPI 2nd Boot アドレスに対する操作

Golden Image アドレスの読み出しと書き込みがサポートされます。アドレスの範囲は 0x000000-0xF00000 です。現在、この操作は GW5A-25(A バージョン)でのみサポートされています。

図 3-10 MSPI 2nd Boot アドレスに対する操作

● Read: MSPI 2nd boot アドレスを読み出します。

● Write:指定された MSPI 2nd boot アドレスを FPGA に書き込みます。

3.11 ステータスコードの分析

開発ボードの現在のステータスを確認する必要がある場合、ステータスコードを分析することで開発ボードのステータスを取得できます。メニューバー上の「Tools > Analyzer Viewer」オプションをクリックするか、ステータスコード表示行を右クリックして「Analyze Status Code」をクリックして、「Status Code Analyzer」ダイアログ ボックスを開きます(図 3-11)。

SUG502-1.8J 22(35)

図 3-11 ステータスコード分析の画面

まず開発ボードを選択し(device リストから選択)、次にステータスコードを入力します。こうすると、ステータスコードの各ビットの結果は以下のリストに出力されます。

3.12 User Flash の初期化

LittleBee ファミリーの製品は、ユーザーに User Flash を提供しています。Programmer は、オンチップ Flash への書き込みと同時に User Flash データを User Flash に書き込むことができます。しかし、セキュリティのために、Programmer では User Flash プログラミングのみがサポートされ、リードバックはサポートされていません。プログラミングの際に、拡張子が.fi のファイルを User Flash の初期化ファイルとして使用できます(図 3-12)。

SUG502-1.8J 23(35)

図 3-12 User Flash Initialization

表 3-2 User Flash の情報一覧

Series	Device	Flash Type	Address	Data Width
GW1N	GW1N-1	FLASH96K	48*64	32Bits
	GW1N-1S			
	GW1N-2	- FLASH256K	128*64	
	GW1N-2B			
	GW1N-4			
	GW1N-4B			
	GW1N-6	FLASH608K	304*64	
	GW1N-9			
GW1NR	GW1NR-4	FLASH256K	128*64	
	GW1NR-4B			
	GW1NR-9	FLASH608K	304*64	
GW1NS	GW1NS-2	FLASH128K	32786	
GW1NSR	GW1NSR-2	FLASH128K	32786	
GW1NZ	GW1NZ-1	FLASH64KZ	32*64	

SUG502-1.8J 24(35)

4 Programmer_cli でのダウンロード手順

4.1 プレビューとヘルプ

CMD で programmer_cli ツールを開いた後、パラメーターが使用されていない場合、デバイスが指定されていないというメッセージと簡単なヘルプの説明が表示されます。

図 4-1 CMD で programmer_cli を開く

```
Microsoft Vindows [Version 10.0.19044.3086]
(c) 2019 Microsoft Corporation. All rights reserved.

3:\history\Programmer\bin\programmer_cli.exe
Error: No device specified
usage: programmer_cli.exe [-h] [--device \( \text{GWxx-x} \)] [--operation_index \(int)]
[--chain_index \(int) \] [--frequency \( \text{string} \)]
[--chain_index \(int) \] [--frequency \( \text{string} \)]
[--fs\( \text{File bitstream.} fs\)] [--a\text{File ac.} bin]
[--cst\( \text{File is userflash.} fi\)] [--pind\( \text{ord} fi\) 00000000
[--cutput output.txt]
[--key 000000000-00000000-00000000]
[--keywad] [--keywrite] [--keylock]
[--keywritefile] [--key\( \text{File byteskey.} \) ekey]
[--m\( \text{gired fada} fs\( \text{ord} fi\)] [--svf_reate] [--vme]
[--svf_requency \( \text{float} fi\)] [--channel \( \text{int} \)]
[--cable \( \text{Gowin USB CableTZCH'} \)
[--cable \( \text{-read-ord-paddr} \) [--sve-otp-addr]
[--read-otp-addr] [--save-otp-addr]
[--read-otp-addr] [--save-otp-addr]
[--read-otp-addr] [--save-otp-addr]
[--read-otp-addr] [--golden-addr] \( \text{-read-oxendey} \)
[--debug [C:\]]

C:\history\Programmer\bin\)
```

パラメータ--help を使用して詳細なヘルプ情報を取得することができます。

SUG502-1.8J 25(35)

図 4-2 ヘルプ情報

C:\Windows\System32\cmd.exe

```
Gowin FPGA Programmer command-line interface. Version V1.9.10.03 (64-bit) build(41017);
Copyright (C) 2014-2024 Gowin Semiconductor Corporation
optional arguments:
         -h, --help show thi
--device <GWxx-x>, -d <GWxx-x>
                                                                                                                                                         show this help message and exit
                                                                                                                                                   | Since this help message and exit | Colored |
         --operation_index <int>, --run <int>, -r <int>
0: Read Device Codes;
                                                                                                                                                          1: Reprogram;
2: SRAM Program;
3: SRAM Read;
                                                                                                                                                        4: SRAM Program and Verify;
5: embFlash Brase, Program;
6: embFlash Brase, Program, Verify;
7: embFlash Brase Only;
                                                                                                                                                       7: embFlash Erase Only;
8: exFlash Erase, Program;
9: exFlash Erase, Program, Verify;
10: exFlash Bulk Erase;
11: exFlash Verify;
12: exFlash Erase, Program in bscan;
13: exFlash Erase, Program, Verify in bscan;
14: exFlash Bulk Erase in bscan;
15: exFlash Verify in bscan;
16: SRAM Program JTAG 1149;
17: SRAM Program, Verify JTAG 1149;
18: bsdl read:
                                                                                                                                                           18: bsdl read
                                                                                                                                                         19: embFlash 2nd Erase, Program;
20: embFlash 2nd Erase, Program, Verify;
21: embFlash 2nd Erase Only;
                                                                                                                                                          22: -R-;
                                                                                                                                                         23: Connect to JTAG of MCU;
24: SRAM Erase;
                                                                                                                                                        24: SRAM Brase;
25: Authentication Code Brase, Program, Verify;
26: Authentication Code Read;
27: Firmware Brase, Program Securely;
28: Firmware Brase Only;
29: Firmware Brase, Program;
30: Firmware Brase, Program, Verify;
31: exFlash C Bin Brase, Program;
32: exFlash C Bin Brase, Program, Verify;
33: -R-
                                                                                                                                                         33: MFG Write iRef;
35: CSR File Brase, Program, Verify;
36: exFlash Brase, Program thru GAO-Bridge;
37: exFlash Brase, Program, Verify thru GAO-Bridge;
```

SUG502-1.8J 26(35)

```
35: CSR File Erase, Program, Verify;
36: exFlash Brase, Program thru GAO-Bridge;
37: exFlash Brase, Program, Verify thru GAO-Bridge;
38: exFlash C Bin Brase, Program thru GAO-Bridge;
39: exFlash C Bin Brase, Program, Verify thru GAO-Bridge;
40: DK-GoAI-GW1NSR4C_QN48 v1. 1;
41: DK-GoAI-GW1NSR4C_QN48 v2. 2;
42: DK-GoAI-GW2AR18_QN88P v1. 1;
43: -R-;
44: sFlash Frace Program, Verify thru GAO-Bridge;
44: sFlash Frace Program, Verify;
                                                                                  42: DK-GGAI-GWZAKIB_QNOSF VI.1.
43: -R-;
44: sFlash Erase, Program;
45: sFlash Erase, Program, Verify;
46: sFlash Sulk Erase;
47: sFlash Bulk Erase;
48: sFlash Background Erase, Program;
49: sFlash Background Erase, Program, Verify;
50: sFlash Erase, Program, Verify thru GAO-Bridge;
51: exFlash Detect ID;
52: exFlash Bulk Erase 5A;
53: exFlash Erase, Program 5A;
54: exFlash Erase, Program, Verify 5A;
55: exFlash C Bin Erase, Program, Verify 5A;
56: exFlash C Bin Erase, Program, Verify 5A;
57: I2C Program Flash;
58: I2C Program Flash;
59: I2C Erase Flash Only;
60: I2C Erase Flash Only;
61: I2C Erase, Program Flash thru I2C-SPI;
62: EBR Read;
63: sFlash Background Erase, Program, Verify thru (Mathewshill)
                                                                                     52: BBK Read;
63: sFlash Background Erase, Program, Verify thru GAO-Bridge;
64: sFlash Bulk Brase in bscan;
65: sFlash Erase, Program in bscan;
66: exFlash Verify 5A;
67: exFlash Verify thru GAO-Bridge 5A;
68: exFlash Erase, Program thru GAO-Bridge 5A;
69: exFlash Erase, Program, Verify thru GAO-Bridge 5A;
70: exFlash Erase, Program, Frace Program,
                                                                                       70: embFlash Background Erase, Program;
71: embFlash Background Erase, Program, Verify;
72: embFlash Background Erase Only;
                                                                                      72: embflash Background Brase U
73: Read User Code;
74: Read Status Register;
75: Set Flash QE For 9x/18x;
76: Set ExFlash QE For GW5A(T);
77: -R-;
78: -R-;
  --chain_index <int>, -i
                                                                                      Define the device index on the chain. The default is 0. It must be used in combination with option: "--chain_si
                                                                                                                                                                                                                                                                         --chain_size".
      -chain_size <int>, -1
                                                                                   Define the device index on the chain. The minimum length is 1.

It must be used in combination with option: "--chain_index".

Define the IR_LENGTH of every device. example: 8, 8, 8, 8

--freq <string>
default is 2.5MHz. More options:

2.5MHz; 2MHz; 15MHz; 10MHz; 1.5MHz; 1.1MHz; 0.9MHz; 0.75MHz; 0.5MHz; 0.3MHz; 0.4MHz; 0.1MHz; 0.02MHz;

3, --fs bitstream.fs, -f bitstream.fs

Define the fs file math
--chain ir <string>
--frequency <string>,
--fsFile bitstream.fs,
--isfile bitstream is, --is bitstream is, I bitstream is
Define the .fs file path.
--acFile ac.bin, --ac ac.bin, -a ac.bin
Define the Authentication-Code file path.
--csrFile csr.bin
Define the CSR file path.
--mcuFile mcu.bin, --fw mcu.bin, --mcu mcu.bin, -m mcu.bin
Define firmware file path of MCU.
      -fiFile userflash.fi
                                                                                      Define Userflash initialization file path.
```

SUG502-1.8J 27(35)

```
Write key to FPGA
Lock key setting
Write key to FPGA through ekey file
     -keywrite
-keylock
 --keylock
--keywritefile Write key to FPON through
--keyFile byteskey.ekey
Define the byteskey(.ekey) file path.
--mfgiref data[9:0] Write data[9:5] to tune iref;data[9:0]=itrim[9:5]+freq[4:0]
--svfcreate Create SVF file only.
--vme Create VME file after SVF file created.
                                                             Define a frequency for SVF, default is 2.5 (MHz).
Define download cable channel. Default is 0. Only works for Gowin USB Cable(FT2CH)
Define location number of USB Cable.
  --channel <int>
                                                                                    when use location option, programmer will open the corresponding cable. Default works for Gowin USB Cable (FT2CH) .
                                                                                    Will ignore --channel option
  --uid UID, --unique-id UID
                                                              Define Unique-ID of USB Cable.
                                                                                    when use this option, programmer will open the corresponding cable.

Default works for Gowin USB Cable(FT2CH).

Will ignore --location and --channel option
when the Be this option, programmer will open the
Default works for Gowin USB Cable(FT2CH).

Will ignore --location and --channel option

--lpt_address (int) Define GOWIN LFT cable address. Default is 0x0378.

--cable "Gowin USB Cable(FT2CH)"

Select a type of USB cable(including quotation marks):

"Gowin USB Cable(FT2CH)"

"Parallel Port(LPT)"

"Digilent USB Device"

"USB Debugger A"

"Gowin USB Cable(WINUSB)"

Default cable is "Gowin USB Cable(FT2CH)"

--cable-index (int) Select a number for USB cable:

0: Gowin USB Cable(GWUZX);

1: Gowin USB Cable(GWUZX);

2: Parallel Port(LPT);

3: Digilent USB Device;

4: USB Debugger A;
                                                              4: USB Debugger A;
5: Gowin USB Cable(WINUSB);
  Higher priority than --cable, default cable-index is 0
--scan-cables [{F,L}], --show-channel [{F,L}]

List GOWIN USB download cables, F means using ft2xx driver, L means using libusb driver
--scan
Scan and list GOWIN FPGA devices
                                                            1: Convert/Merge .fs to .bin;
2: Convert/Merge .bin(binary) to .hex(HEX);
3: Convert/Merge .bin(binary) to .h(hpp);
4: Convert .bin(binary) to .intelhex(Intel HEX);
5: Merge multiple ".fs" files to one ".fs";
6: Append User Flash Init File(.fi) to a BitStreamFile(.bin);
7: Append a MCU FW File(.bin) to a BitStreamFile(.bin);
8: Append GWINS4C M3 Core File(.bin) to a BitStreamFile(.fs);
Used with the parameter --filestransform together, multiple files are separated by ",", such as: file1.fs, file2.fs
Read OTP I2C Address
Save as OTP I2C Address
Set the USB Cable address of I2C interface
Read golden image Address
Save as golden image Address
  --filestransform <int>
  --files (string)
      -read-otp-addr
  --save-otp-addr
--i2c-addr 1010000
       -read-golden-addr
                                                              Save as golden image Address
  --save-golden-addr
--golden-addr 0x800000
                                                             Set the address of the golden image , the range is 0x000000-0xF00000, the default is 0x800000 Output address of the file during debugging
  --debug [C:\]
:\history\Programmer\bin>
```

4.2 USB Cable デバイスのスキャン

スキャンして接続されている USB Cable 情報を表示します。

利用方法: programmer cli.exe --scan-cables

図 4-3 USB Cable デバイスのスキャン

```
G:\history\Programmer\bin>programmer_c1i.exe --scan-cables
Cable found: Gowin USB Cable(FT2CH)/0/99091/GW2OLCRZ (USB 1ocation:99091) (SN: GW2OLCRZ)
Cost 0.05 second(s)
```

- Gowin USB Cable(FT2CH)はケーブルタイプです。
- /0/は channel 番号です。
- 99091 は USB location です。

SUG502-1.8J 28(35)

- /GW20LCRZ は USB Cable UID(USB location:99091)です
- (SN: GW20LCRZ)は説明情報です

4.3 USB Cable の種類とポートの指定

FPGA をスキャンまたはコンフィギュレーションする場合、パラメータ「--cable-index」を使用して USB Cable のタイプを指定できます。
-cable-index を 0 として指定した場合、Cable 種類は Gowin USB Cable (GWU2X) です。-cable-index を 1 として指定した場合、Cable 種類は Gowin USB Cable (FT2CH) などです。デフォルトでは、--cable-index の値は 0 です。

FTDI タイプのケーブルなどのマルチポートケーブルを使用する場合は、複数のポートから選択できます。パラメータ「--channel」を使用してポートを指定できます。--channel のデフォルト値は 0 です。詳細なヘルプ情報を次の図に示します

図 4-4 ヘルプ情報

4.4 USB Cable の場所または UID の指定

複数の USB Cable を使用する場合は、USB ポートまたは Cable UID を指定することで特定の USB Cable デバイスを指定できます。ヘルプ情報を次の図に示します。

図 4-5 ヘルプ情報

```
--location <int>
Define location number of USB Cable.
when use location option, programmer will open the corresponding cable.
Default works for Gowin USB Cable(FT2CH).
Will ignore --channel option

--uid UID, --unique-id UID
Define Unique-ID of USB Cable.
when use this option, programmer will open the corresponding cable.
Default works for Gowin USB Cable(FT2CH).
Will ignore --location and --channel option
```

4.5 FPGA デバイスのスキャン

次のコマンドでデバイスをスキャンします。

programmer_cli.exe - scan

SUG502-1.8J 29(35)

図 4-6 FPGA デバイスのスキャン

```
G:\history\Programmer\bin>programmer_cli.exe --scan
Scanning!
Target Cable: Gowin USB Cable(FT2CH)/O/None/nul1@2.5MHz
Device Info:
Family: GW1NRF
Name: GW1N-4D GW1NR-4D GW1N-4B GW1NR-4B GW1NRF-4B (One of them)
ID: 0x1100381B
1 device(s) found!
Cost 0.08 second(s)
```

4.6 Programmer 実行モードの指定

パラメータ「--operation_index」、「--run」、または「-r」を使用して、SRAM のコンフィギュレーション、Flash のプログラミングなどの実行モードを指定します。ヘルプ情報を次の図に示します。

図 4-7 ヘルプ情報

```
operation_index <int>,
                         --run <int>, -r <int>
                      0: Read Device Codes;
                      1: Reprogram;
                      2: SRAM Program;
                      3: SRAM Read;
                      4: SRAM Program and Verify;
                      5: embFlash Erase, Program;
                      6: embFlash Erase, Program, Verify;
                      7: embFlash Erase Only;
                      8: exFlash Erase, Program;
                      9: exFlash Erase, Program, Verify;
                      10: exFlash Bulk Erase;
                      11: exFlash Verify;12: exFlash Erase, Program in bscan;
                      13: exFlash Erase, Program, Verify in bscan;
                      14: exFlash Bulk Erase in bscan;
                      15: exFlash Verify in bscan;
                      16: SRAM Program JTAG 1149;
                      17: SRAM Program, Verify JTAG 1149;
                      18: bsdl read;
                      19: embFlash 2nd Erase, Program;
20: embFlash 2nd Erase, Program, Verify;
                      21: embFlash 2nd Erase Only;
                      22: -R-;
                      23: Connect to JTAG of MCU;
                      24: SRAM Erase;
                      25: Authentication Code Erase, Program, Verify;
                      26: Authentication Code Read;
                      27: Firmware Erase, Program Securely;
                      28: Firmware Erase Only;
                      29: Firmware Erase, Program;
                      30: Firmware Erase, Program, Verify;
                      31: exFlash C Bin Erase, Program;
                      32: exFlash C Bin Erase, Program, Verify;
                      33: -R-;
                      34: MFG Write iRef;
```

SUG502-1.8J 30(35)

FPGA をコンフィギュレーションするときは、パラメータ「--device」を使用して FPGA Device タイプを指定します。ヘルプ情報を次の図に示します。

図 4-8 ヘルプ情報

```
--device (GWxx-x), -d (GWxx-x)

Define a GOWIN FPGA device from:

GW1N-1 GW1N-1P5 GW1N-1P5B GW1N-1P5C

GW1N-1S GW1N-2 GW1N-2B GW1N-2C

GW1N-4 GW1N-4B GW1N-4D GW1N-9

GW1N-9C GW1NR-1 GW1NR-2 GW1NR-2B

GW1NR-2C GW1NR-4 GW1NR-4B GW1NR-4D

GW1NR-9 GW1NR-9C GW1NRF-4B GW1NS-2

GW1NS-2C GW1NS-4 GW1NS-4C GW1NSE-2C

GW1NSER-4C GW1NSR-2 GW1NSR-2C GW1NSR-4

GW1NSR-4C GW1NZ-1 GW1NZ-1C GW2A-18

GW2A-18C GW2A-55 GW2A-55C GW2AN-18X

GW2AN-55C GW2AN-9X GW2ANR-18C GW2AR-18

GW2AR-18C
```

SRAM または Flash をコンフィギュレーション・プログラミングするためには、通常次のコマンド形式が使用されます。

programmer_cli.exe --device <GWxx-x> --run <int> --fsFile <bitstream.fs> --cable-index <int> --location <int> --uid <UID> --chain_index <int> --chain_ir <string> --frequency <string>

- --frequency は JTAG 周波数を指定するために使用されます。現在、FTDI タイプのケーブルにのみ適用されます。 U2X タイプのケーブルの周波 数は 1.33MHz に固定されています。
- --chain_index <int>、--chain_size <int>、および--chain_ir <string> を 併用することにより、デイジーチェーン内のターゲットデバイスの位置を指定できます。
- --chain_index <int>は、デイジーチェーン内のターゲットデバイスの位置を指定するために使用されます。例:--chain_index n は、n+1 番目のデバイスを指定します。
- --chain_size <int>は、デイジーチェーン内のデバイスの合計数を示す ために使用されます。例:--chain_size n は、デイジーチェーン内のデ バイスの合計数が n であることを示します。
- --chain_ir <string>は、デイジーチェーン内の JTAG 状態機械の IR の長さを指定するために使用されます。例: --chain_ir 8,8 は、デイジーチェーン内の両方のデバイスの IR の長さが 8 であることを意味します (デフォルトでは 8)。
- --location は、ターゲットデバイスが配置されている USB ポートを指 定するために使用され、優先度は UID よりも高くなります。
- --uid は、ターゲットデバイスが使用する USB Cable を指定するために

SUG502-1.8J 31(35)

使用されます。

- --cable-index <int>は、USB Cable の種類を指定するために使用されます。
- --fsFile <bitstream.fs>は、データストリーム・ファイルのパスを指定するために使用されます。
- --run <int>は--operation_index と同じで、実行モードを指定するために 使用されます。
- --device<GWxx-x>はターゲットデバイス名を指定するために使用されます(大文字と小文字を区別)。

SUG502-1.8J 32(35)

4.7 SRAM のコンフィギュレーション

データストリーム・ファイル、対応するデバイス、および SRAM コンフィギュレーション・モードを指定します。例えば、

SRAM Program を構成します。--operation_index パラメータの「SRAM Program」に対応する値は 2 であるため、この操作のコマンドは次のようになります。

programmer_cli.exe --device <GWxx-x> --run <int> --fsFile
<bitstream.fs> --cable-index <int> --location <int>

--cable-index および--location が指定されていない場合、デフォルト値が使用されるため、省略できます。

例:

programmer_cli.exe --device GW1N-4B --run 2 --fsFile d:\u00e4bitstream.fs --cable-index 1

図 4-9 例

```
G:\history\Programmer\bin>programmer_cli.exe --device GV1N-4B --run 2 --fsFile d:\bitstream.fs --cable-index 1
Target Cable: Gowin USB Cable(FT2CH)/0/None/null@2.5MHz
Target Device: GV1N-4B(0x1100381B)
Operation "SRAM Program" for device#1...
Programming...: [####################### 100%
User Code is: 0x000054C9
Status Code is: 0x0001F020
Finished.
Cost 1.94 second(s)
```

パラメータの意味は次のとおりです:

- --device GW1N-4B はターゲット FPGA デバイスを指定します。デバイス名はスキャンの時に出力されます。
- --fsFile d:¥bitstream.fs は、データストリーム・ファイル(d:¥bitstream.fs) を指定するために使用されます。
- --cable-index 1 は、USB Cable を「Gowin USB Cable(FT2CH)」として指定するために使用されます。

4.8 LittleBee ファミリーFPGA の組み込み Flash の構成

4.8.1 Flash のみの構成

Flash をプログラムするための--operation_index 番号は次のとおりです。

5: embFlash Erase, Program;

6: embFlash Erase, Program, Verify;

7: embFlash Erase Only;

例:

programmer_cli --run 5 --fsFile d:\u00e4bitstream.fs --device GW1N-4B --cable-index 1

SUG502-1.8J 33(35)

図 4-10 例

4.8.2 Flash および UserFlash 初期化ファイルの構成

パラメータ「--fiFile userflash.fi」を使用して UserFlash 初期化ファイルを指定し、Flash をプログラムすると同時に UserFlash を構成します。 例えば、

programmer_cli --run 5 --fsFile d:\footsbitstream.fs --fiFile d:\userflash.fi --device GW1N-4B --cable-index 1

4.9 オフチップ SPI Flash の構成

オフチップ SPI Flash をプログラムするための--operation_index 番号は次のとおりです。「thru GAO-Bridge」タイプを使用することをお勧めします。

- 8: exFlash Erase, Program;
- 9: exFlash Erase, Program, Verify;
- 10: exFlash Bulk Erase:
- 11: exFlash Verify;
- 12: exFlash Erase, Program in bscan;
- 13: exFlash Erase, Program, Verify in bscan;
- 14: exFlash Bulk Erase in bscan;
- 15: exFlash Verify in bscan;
- 36: exFlash Erase, Program thru GAO-Bridge; (推奨)
- 37: exFlash Erase, Program, Verify thru GAO-Bridge;
- 38: exFlash C Bin Erase, Program thru GAO-Bridge;
- 39: exFlash C Bin Erase, Program, Verify thru GAO-Bridge;

例:

programmer_cli --run 36 --fsFile d:\u00e4bitstream.fs --device GW1N-9 --cable-index 1

注記:

詳細については、programmer_cli--help を参照してください。

SUG502-1.8J 34(35)

