SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 02 – Códigos Binários

Prof. João Fernando Mari joaof.mari@ufv.br

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A
- ICEA, Sistemas Numéricos e Códigos.
 - Disponível em:
 - http://www.icea.gov.br/ead/anexo/21401.htm
 - Acesso em: Mar/2011.

Roteiro

- Códigos Binários
- Código BCD 8421
 - Conversão binário para BCD
- Código ASCII
 - Conversão em ASCII
- Exercícios

Códigos Binários

- Conversão de um número decimal em seu equivalente binário
 - Codificação
- Sistema numérico binário como conhecemos
 - Aula anterior!!!
 - Código Binário PURO
 - Diferenciar dos outros códigos binários

Códigos Binários

- Sistema numérico decimal
 - Conveniente para os seres humanos.
- Sistema numérico binário
 - Conveniente para computadores.
 - (BEM) menos conveniente para os seres humanos.
- Exemplo:
 - 1010011₂ em decimal ???
 - Processo de conversão simples, porém tedioso → consome muito tempo.
- BCD Forma especial de código binário MAIS compatível com o sistema decimal.

Código BCD 8421

- BCD Binary Coded Decimal
 - Binário Codificado em Decimal.
 - Representa os dígitos decimais de 0 a 9 com um código binário de 4 dígitos.
 - Usa o sistema de pesos posicionais 8421 do código binário puro
 - $d_B \times 2^3 + d_B \times 2^2 + d_B \times 2^1 + d_B \times 2^0$
 - $d_B \times 8 + d_B \times 4 + d_B \times 2 + d_B \times 1$
 - Exemplo: Decimal → BCD
 - 834₁₀ em BCD= 1000 0011 0100
 - 0.764 em BCD = 0.0111 0110 0100
 - Exemplos: BCD → Decimal
 - 0110 0010 1000.1001 0101 0100 = 628.954

- Vantagens BCD
 - Simples manipulação e conversão
- Desvantagens
 - Menos eficiente que o código binário puro. Utiliza maior número de bits.
 - Maior complexidade dos circuitos, maior consumo de energia, ...
 - As operações aritméticas consomem mais tempo.

Código BCD 8421

Codigo DCD 0421	
	DECIM
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

DECIM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BINÁRIO

Conversão BCD -> Binário

- Converte de BCD para Binário puro
 - 1) Converte BCD para decimal
 - 2) Decimal é convertido para binário
 - <u>Exemplo:</u>
 - 1001 0110.0110 0010 0101 = 96,625

Inteiro	Resto	Posição	Fração	Inteiro	Posição	
96 ÷ 2 = 48	0	-> LSB	$0,625 \times 2 = 1,25 = 0,25$	1	<- MSB	
48 ÷ 2 = 24	0		$0,250 \times 2 = 0,50 = 0,50$	0		
24 ÷ 2 = 12	0		$0,500 \times 2 = 1,00 = 0$	0	<- LSB	
$12 \div 2 = 06$	0					
$06 \div 2 = 03$	0					
$03 \div 2 = 01$	1					
$01 \div 2 = 00$	1	<- MSB				
$96_{10} = 1100000_2$			$0,625_{10} = 0.101_2$			

 $96,625_{10} = 96_{10} + 0,625_{10} = 1100000_2 + 0.101_2 = 1100000.101_2$

Código ASCII

- "American Standart Code for Information Interchange" ASCII
 - Forma especial de código binário.
 - Largamente utilizado.
 - 7 bits pode-se representar um total de 2^7 = 128 caracteres diferentes.
 - Números decimais de 0 até 9
 - Letras maiúsculas e minúsculas do alfabeto
 - Outros caracteres especiais usados para pontuação e controle de dados.

Tabela ASCII completo ou ASCII estendido

NULL	Null	DLE	Data Link Escape			
SOH	Start of Heading	DC1	Device Control 1			
STX	Start of Text	DC2	Device Control 2			
ETX	End of Text	DC3	Device Control 3			
EOT	End of Transmission	DC4	Device Control 4			
ENQ	Enquiry	NAK	Negative Acknowledge			
ACK	Acknowledge	SYN	Synchronous Idle			
BEL	Bell (audible signal)	ETB	End Transmission Block			
BS	Backspace	CAN	Cancel			
НТ	Horizontal Tabulação (punched card skip)	EM	End of Medium			
		SUB	Substitute			
LF	Line Feed	ESC	Escape			
VT	Vertical Tabulation	FS	File Separator			
FF	Form Feed	GS	Group Separato			
CR	Carriage Return	RS	Record Separator			
SO	Shift Out	US	Unit Separator			
SI	Shift In	DEL	Delete			
SP	SP Space (blank)					

1	coluna								
	bits	0	1	2	3	4	5	6	7
linha	7654321	000	001	010	011	100	101	110	111
0	0000	NUL	DLE	SP	0	@	P	•	p
1	0001	SOH	DC1	!	1	Α	Q	a	q
2	0010	STX	DC2	"	2	В	R	b	r
3	0011	ETX	DC3	#	3	C	S	C	S
4	0100	EOT	DC4	\$	4	D	T	d	t
5	0101	ENQ	NAK	%	5	E	U	e	u
6	0110	ACK	SYN	&	6	F	V	f	v
7	0111	BEL	ETB	•	7	G	W	g	w
8	1000	BS	CAN	(8	Н	X	h	x
9	1001	HT	EM)	9	I	Y	i	y
10	1010	LF	SUB	*	:	J	Z	j	Z
11	1011	VT	ESC	+	;	K	[k	{
12	1100	FF	FS	,	<	L	\	I	I
13	1101	CR	GS	-	=	М]	m	}
14	1110	SO	RS		>	N	^	n	~
15	1111	SI	US	/	?	O	_	o	DEL

Conversão em ASCII

- Composto por 2 grupos:
 - Um de 4 bits e outro de 3 bits.
- O grupo de 4 bits está a direita e o bit 1 é o LSB.
 - LSB: Bit Menos Significativo. MSB: Bit Mais Significativo

- <u>Exemplo:</u> Código ASCII para a letra L é 1001100.
 - Localizado na coluna 4, linha 12.
 - O grupo de 3 bits é 100 e o grupo de 4 bits é 1100.
 - Código ASCII: 100 1100.

Conversão em ASCII

- No código ASCII de 7 bits,
- O oitavo bit é geralmente usado como um <u>bit de paridade.</u>
 - Para determinar se o dado (caractere) foi transmitido corretamente.
 - Determinado pelo tipo de paridade desejado.
 - Paridade par → a soma de todos os 1's, incluindo o bit de paridade, é um número par.
 - EXEMPLO:
 - Caractere G código ASCII é 1000111
 - 4 bits UM 0 bit de paridade é 0 \rightarrow 01000111

FIM – Aula 02