Aufgabe 37 Ein Modul ohne Dimension

Zeigen sie:

(a) \mathbb{Z} ist ein Modul (über \mathbb{Z})

Dass $\{\mathbb{Z}, +, *\}$ ein Ring ist, haben wir bereits in der Vorlesung gelernt. Daraus folgt, dass $\{\mathbb{Z}, +\}$ eine abelsche Gruppe ist.

(M1) m * (r * s) = (m * r) * s

Dies folgt aus Geltung des Assoziativgesetzes bezgl. Multiplikation für Ringe.

- (M2) (r+s)*m = r*m + s*m
- (M3) r*(m+n) = r*m + r*nDies (und M2) folgt aus der Geltung des Distributivgesetzes für Ringe.
- (M4) 1 * m = mDies folgt aus der Existenz des Einselementes für Ringe.
- (b) Ebenso sind $2\mathbb{Z}$ und $3\mathbb{Z}$ Moduln (über \mathbb{Z})

Beweis: $\lambda \mathbb{Z}, \lambda \in \mathbb{Z}$ ist ein Modul (im Folgenden gilt: $m, r, s \in \mathbb{Z}, m, n \in \lambda \mathbb{Z}$

- (M1) m * (r * s) = m * (r * s)Dies folgt daraus, dass \mathbb{Z} ein Ring ist.
- (M2) (r+s)*m = r*m + s*m $\forall m \in \lambda \mathbb{Z} : \exists x \in \mathbb{Z} : m = \lambda x \Rightarrow (r+s)*m = (r+s)*\lambda *x = r*\lambda *x + s*\lambda *x = r*m + s*m$
- (M3) r*(m+n) = r*m + r*n $m = \lambda x, n = \lambda y \Rightarrow r*(m+n) = r*(\lambda x + \lambda y) = \lambda rx + \lambda ry = rm + rn$
- (M4) 1 * m = m $m = \lambda x \Rightarrow 1 * m = 1 * \lambda x = \lambda x = m$

Für $\lambda = 2$ oder $\lambda = 3$ folgt die Behauptung

(c) $\{1\}$ ist ein unverkürztes Erzeugendensystem von \mathbb{Z}

Damit ein Erzeugendensystem vorliegt, muss gelten, dass $\forall x \in \mathbb{Z} : \exists \lambda \in \mathbb{Z} : \lambda * 1 = x \Rightarrow \lambda = x$. Dies ist trivial, da \mathbb{Z} alle Zahlen in \mathbb{Z} enthlt. Dass 1 unverkrzbar ist, ist ebenfalls klar, da \emptyset natürlich nichts erzeugen kann.

(d) $\{2,3\}$ ist ebenso ein unverkürztes Erzeugendensystem von \mathbb{Z}

Dies lässt sich zeigen, indem man festlegt, dass $\lambda_2 = -\lambda_3 \Rightarrow \forall x \in \mathbb{Z} : \exists \lambda_2, \lambda_3 \in \mathbb{R} : \lambda_2 * 2 + \lambda_3 * 3 = x \Rightarrow -\lambda_3 * 2 + \lambda_3 * 3 = x.$ Damit ist $\{2,3\}$ ebenfalls ein Erzeugendensystem und unverkürzbar, da $\{2\}$ oder $\{3\}$ z.B. nicht die 1 erzeugen können.

Aufgabe 38 Strukturen auf $Hom_K(V, V)$

Sei V ein K-Vektorraum. Zeigen sie:

(a) $End_K(V)$, mit Punktweise Addition und Verkettung als Multiplikation, ist ein Ring, und $\forall f, g \in End_K(V), \forall \lambda \in K : (\lambda f) \circ g = \lambda(f \circ g) = f \circ (\lambda g)$; ein K-Vektorraum, der außerdem eine Ringstruktur trägt, so dass diese Verträglichkeitsbedingung gilt, heißt K-Algebra. $E := End_K(V)$. Für einen Ring muss gelten:

$\{E, +\}$ ist eine abelsche Gruppe

(f+g)(x)=f(x)+g(x). Da die Addition in E auf die Addition in K zurückgeführt werden kann und $\{K,+\}$ eine abelsche Gruppe ist, ist $\{E,+\}$ ebenfalls eine abelsche Gruppe

Die Multiplikation ist assoziativ

$$(f \circ g) \circ h = f(g(h)) = f(g \circ h) = f \circ (g \circ h)$$

Das Distributivgesetz gilt

$$(f \circ (g+h))(x) = f((g+h)(x)) = f(g(x) + h(x)) = f(g(x)) + f(h(x)) = (f \circ g)(x)) + (f \circ h)(x)$$

$$((f+g) \circ h)(x) = (f+g)(h(x)) = f(h(x)) + g(h(x)) = (f \circ h)(x) + (f \circ g)(x)$$

Zusatz:
$$(\lambda f) \circ g = \lambda (f \circ g) = f \circ (\lambda g)$$

$$(\lambda f) \circ g = (\lambda f)(g) = f(\lambda g) = f \circ (\lambda g) = \lambda f(g) = \lambda (f \circ g)$$

(b) $A := Aut_K(V)$ ist eine Gruppe bezgl. Verkettung, aber für $V \neq \{0\}$ kein K-Vektorraum. $1.\{A, \circ\}$ ist eine Gruppe:

Geltung des Assoziativgesetzes $(f \circ g) \circ h = f \circ (g \circ h)$

$$(f \circ g) \circ h = (f(g)) \circ h = f(g(h)) = f(g \circ h) = f \circ (g \circ h)$$

Neutrales Element $e: V \rightarrow V, x \rightarrow x$

$$\Rightarrow (f \circ e)(x) = f(e(x)) = f(x)$$

Inverses Element

Da jedes
$$f$$
 bijektiv ist, existiert $f^{-1}:V{\rightarrow}V$ mit $f(f^{-1}(x))=x$

$$\Rightarrow f \circ f^{-1}(x) = x = e(x) \Rightarrow (f \circ f^{-1}) = e$$

Kommutativität

Die Gruppe ist nicht abelsch, da im Allgemeinen die Komposition von Abbildungen nicht kommutiert.

Beispiel:
$$K = \mathbb{R}, V = \mathbb{R}^1, f(x) = x + 1, g(x) = x^3, f(g(x)) = x^3 + 1, g(f(x)) = (x + 1)^3 = x^3 + 3x^2 + 3x + 1 \neq f(g(x))$$

Sei
$$G, F \in Aut_K(V) : G(x) = -F(x) \Rightarrow (G+F)(x) = G(x) + F(x) = G(x) - G(x) = 0$$
 und somit nicht surjektiv für $V \neq \{0\}$

Aufgabe 39 U, V, W seien Vektorräume, $F \in Hom_K(V, W), G \in Hom_K(U, V)$. Zeigen sie:

- (a) Falls F ein Vektorraum-Isomorphismus ist, dann gilt $F^{-1} \in Hom_K(W, V)$ Da F bijektiv ist, existiert eine Abbildung $F^{-1}: W \to V$. $\forall x, y \in W: \exists a, b \in V: x = F(a), y = F(b) \Rightarrow F^{-1}(x+y) = F^{-1}(F(a)+F(b)) = F^{-1}(F(a+b)) = a+b = F^{-1}(F(a))+F^{-1}(F(b)) = F(x) + F(y)$. Somit ist F^{-1} ein Homomorphismus $W \to V$.
- (b) Ist I eine Indexmenge und $(v_i)_{i \in I} \in V$, dann gilt:
 - (i) $(v_j)_{j\in I}$ ist linear abhängig $\Rightarrow (F(v_j))_{j\in I}$ ist linear abhängig. $\exists (\lambda_j)_{j\in I}: \sum_{j\in I} \lambda_j v_j = 0 \Rightarrow \sum_{j\in I} F(\lambda_j v_j) = F(\sum_{j\in I} \lambda_j v_j) = F(0) = 0$
 - (ii) $(F(v_j))_{j\in I}$ ist linear unabhängig $\Rightarrow (v_j)_{j\in I}$ ist linear unabhängig. In (i) haben wir $A \Rightarrow B$ bewiesen. Daraus folgt direkt $\neg B \Rightarrow \neg A$, also genau die geforderte Aussage.

(c)

- (i) Ist $\tilde{V} \subset V$ ein Untervektorraum, dann ist auch $F(\tilde{V}) \subset W$ ein Untervektorraum; Insbesondere ist $F(V) = im(F) \subset W$ ein Untervektorraum.

 Dass $F(\tilde{V})$ eine Teilmenge von W ist, ist klar. Da $\tilde{V} \neq \emptyset$, ist auch $F(\tilde{V}) \neq \emptyset$. Weiterhin gilt: $\forall v, w \in F(\tilde{V}) : \exists a, b \in \tilde{V} : F(a) = v, F(b) = w \Rightarrow v + w = F(a) + F(b) = F(a + b) \in F(\tilde{V})$, da $a + b \in \tilde{V}$ $\forall w \in F(\tilde{V}) : \exists a \in \tilde{V} : F(a) = w \Rightarrow \lambda w = \lambda F(a) = F(\lambda a) \in F(\tilde{V})$, da $\lambda a \in \tilde{V}$.

 Beweis für F(V) Untervektorraum von W erfolgt analog.
- (ii) Ist $\tilde{W} \subset W$ ein Untervektorraum, dann ist auch $F^{-1}(\tilde{W}) \subset V$ ein Untervektorraum; insbesondere ist $\ker(F) = F^{-1}(0) \subset V$ ein Untervektorraum. Dass $F^{-1}(\tilde{W})$ eine Teilmenge von V ist, ist klar. Da $\tilde{W} \neq \emptyset$, ist auch $F^{-1}(\tilde{W}) \neq \emptyset$ $\forall a, b \in F^{-1}(\tilde{W}) : a + b = F^{-1}(F(a)) + F^{-1}(F(b)) = F^{-1}(F(a) + F(b)) \in F^{-1}(\tilde{W})$, da $(F(a) + F(b)) \in \tilde{W}$ und $(F(F^{-1}(\tilde{W})) = \tilde{W}$ $\forall a \in F^{-1}(\tilde{W}), \forall \lambda \in K : \lambda * a = F^{-1}(F(\lambda * a)) = F(\lambda F^{-1}(a)) \in F^{-1}(\tilde{W})$, da $a \in \tilde{W}$ ker(F) ist nicht leer, da $0 \in \ker(F)$. $\forall a, b \in \ker(F) : F(a) = F(b) = 0 \Rightarrow F(a + b) = F(a) + F(b) = 0 + 0 = 0 \Rightarrow (a + b) \in \ker(F)$ $\forall a \in \ker(F), \lambda \in K : F(\lambda * a) = \lambda * F(a) = \lambda * 0 = 0 \Rightarrow \lambda * a \in \ker(F)$
- (iii) Ist F ein Isomorphismus, dann gilt $F(\tilde{V}) \cong \tilde{V}$ für jeden Untervektorraum $\tilde{V} \subset V$ Da F bijektiv ist, existiert die Abbildung $G := F^{-1}, G(F(x)) = x$, die ebenfalls bijektiv und somit ein Isomorphismus ist. Somit existiert ein Isomorphismus von \tilde{V} auf einen Untervektorraum $\tilde{W} \subset W$ und der Isomorphismus G von $\tilde{W} = F(\tilde{V})$ auf \tilde{V} . Somit sind $F(\tilde{V})$ und \tilde{V} isomorph.

(d) $\dim(im(F)) = \dim(F(V)) \leq \dim(V)$ $n := \dim(V)$ somit existieren in V genau n linear unabhängige Vektoren, die eine Basis von V bilden. Diese Vektorenfamilie nennen wir $(v_k)_{k < n}$. Damit ist für jeden Vektor $w \in V$ $(v_k)_{k < n} \cup w$ linear abhängig und somit auch $F(v_k)_{k < n} \operatorname{cup} F(w)$. Somit ist $F(v_k)_{k < n}$, falls es linear unabängig ist, auch maximal. Ist $F((v_k)_{k < n})$ linear abhängig, so können wir Reihenweise Vektoren entfernen, bis lienare unabhängigkeit gegeben ist. Daraus folgt $\dim(F(V)) \leq \dim(V)$.