Normal forms (Exercises)

- Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (B \rightarrow C, D \rightarrow A)$
 - → Identify the candidate key(s) for R.
 - → Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key is BD

Relation R is in 1NF but not 2NF. In above FDs, there is a partial dependency (As per FD B \rightarrow C, C depends only on B but Key is BD so C is partial depends on key (BD)) (As per FD D \rightarrow A, A depends only on D but Key is BD so A is partial depends on key (BD))

- Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (C \rightarrow D, C \rightarrow A, B \rightarrow C)$
 - → Identify the candidate key(s) for R.
 - → Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key is B

Relation R is in 2NF but not 3NF. In above FDs, there is a transitive dependency (As per FDs B \rightarrow C & C \rightarrow D then B \rightarrow D so D is transitive depends on key (B)) (As per FDs B \rightarrow C & C \rightarrow A then B \rightarrow A so A is transitive depends on key (B))

- ▶ Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (A \rightarrow B, BC \rightarrow D, A \rightarrow C)$
 - Identify the candidate key(s) for R.
 - → Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key is A

Relation R is in 2NF but not 3NF. In above FDs, there is a transitive dependency (As per FDs A \rightarrow B & A \rightarrow C then A \rightarrow BC using union rule) and

(As per FDs A \rightarrow BC & BC \rightarrow D then A \rightarrow D so D is transitive depends on key (A))

- Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (ABC \rightarrow D, D \rightarrow A)$
 - Identify the candidate key(s) for R.
 - Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key are ABC & BCD

Relation R is in 3NF but not BCNF.

In the above FDs, both FDs have prime attribute (**D** and **A**) in dependent (right) side.

Normal Form [Exercise]

Q.) R (A, B, C, D, E), $F = (AB \rightarrow CE, E \rightarrow AB, C \rightarrow D)$, Identify the highest normal form.

Q.) R (X, Y, Z, W), $F = (X \rightarrow W, W \rightarrow X, XY \rightarrow Z, Identify the highest normal form.$

Normal forms 4NF (Forth Normal Form)

Multivalued dependency (MVD)

 For a dependency X → Y, if for a single value of X, multiple values of Y exists, then the table may have multi-valued dependency.

Student				
RNO	<u>Subject</u>	<u>Faculty</u>		
101	DS	Patel		
101	DBMS	Patel		
101	DS	Shah		
101	DBMS	Shah		

- Multivalued dependency (MVD) is denoted by →→
- Multivalued dependency (MVD) is represented as X → → Y

4NF (Forth Normal Form)

- Conditions for 4NF
- A relation R is in fourth normal form (4NF)
 - if and only if it is in BCNF and
 - has no multivalued dependencies

tude	ent		Subje	ct
<u>RNO</u>	<u>Subject</u>	<u>Faculty</u>	RNO	<u>Subject</u>
101	DS	Patel	101	DS
101	DBMS	Patel	101	DBMS
101	DS	Shah		1
101	DBMS	Shah		

 Above student table has multivalued dependency. So student table is not in 4NF.

Functional dependency & Multivalued dependency

- A table can have both functional dependency as well as multi-valued dependency together.
 - RNO → Address
 - RNO $\rightarrow \rightarrow$ Subject
 - RNO $\rightarrow \rightarrow$ Faculty

Stude	nt			
RNO	Address		<u>Subject</u>	<u>Faculty</u>
101	C. G.	Road, Rajkot	DS	Patel
101	C. G.	Road, Rajkot	DBMS	Patel
101	C. G.	Road, Rajkot	DS	Shah
101	C. G.	Road, Rajkot	DBMS	Shah

Faculty		
RNO	<u>Faculty</u>	
101	Patel	
101	Shah	

Address			
RNO	Address		
101	C. G.	Road, Rajkot	

Normal forms 5NF (Fifth Normal Form)

5NF (Fifth Normal Form)

- Conditions for 5NF
- A relation R is in fifth normal form (5NF)
 - if and only if it is in 4NF and
 - it should not have a lossless decomposition in to any number of smaller tables (relations).

Student_Result		sult		
RID	RNO	Name	Subject	Result
1	101	Raj	DBMS	Pass
2	101	Raj	DS	Pass
3	101	Raj	DF	Pass
4	102	Meet	DBMS	Pass
5	102	Meet	DS	Fail
6	102	Meet	DF	Pass
7	103	Suresh	DBMS	Fail
8	103	Suresh	DS	Pass

Student_Result relation is **further decomposed** into sub-relations.