§1.8-1.9: Linear Transformations

Goal: think of the equation $A\mathbf{x} = \mathbf{b}$ in terms of the "multiplication by A" function: its input is x and its output is b.

$$2^2 = 4$$

 $3^2 = 9$

Think of this as:
$$2$$
 3
 \longrightarrow 9

$$\begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 9 \end{bmatrix}$$
 Think of this as:
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 multiply by $A \rightarrow \begin{bmatrix} 10 \\ 9 \end{bmatrix}$

Think of this as:
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
 multiply

$$\begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{\text{multiply by } A} \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

Definition: A function f from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $f(\mathbf{x})$ in \mathbb{R}^m . We write $f: \mathbb{R}^n \to \mathbb{R}^m$.

 \mathbb{R}^n is the *domain* of f.

 \mathbb{R}^m is the *codomain* of f.

f(x) is the *image of* x *under* f.

The range is the set of all images. It is a subset of the codomain.

Example: $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$.

Its domain = codomain = \mathbb{R} , its range = {zero and positive numbers}.

Examples:

$$f:\mathbb{R}^2 o\mathbb{R}^3$$
, defined by $f\left(egin{bmatrix}x_1\\x_2\end{bmatrix}
ight)=egin{bmatrix}x_1^3x_2\\2x_2\\0\end{bmatrix}$.

The range of f is the plane z = 0.

$$h: \mathbb{R}^3 \to \mathbb{R}^2$$
, given by the matrix transformation $h(\mathbf{x}) = \begin{vmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{vmatrix} \mathbf{x}$.

Examples:

 $g: \mathbb{R}^2 \to \mathbb{R}^2$, given by reflection through the x_2 -axis.

 $k: \mathbb{R}^2 \to \mathbb{R}^2$, given by dilation by a factor of 3.

$$k(\mathbf{x}) = 3\mathbf{x}.$$

In this class, we will concentrate on functions that are linear.

Definition: A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and for all \mathbf{u} in the domain of T.

For your intuition: the name "linear" is because these functions preserve lines: A line through the point \mathbf{p} in the direction \mathbf{v} is the set $\mathbf{p} + s\mathbf{v}$, where s is any number. If T is linear, then the image of this set is

$$T(\mathbf{p} + s\mathbf{v}) \stackrel{1}{=} T(\mathbf{p}) + T(s\mathbf{v}) \stackrel{2}{=} T(\mathbf{p}) + sT(\mathbf{v}),$$

the line through the point $T(\mathbf{p})$ in the direction $T(\mathbf{v})$. (If $T(\mathbf{v}) = \mathbf{0}$, then the image is just the point $T(\mathbf{p})$.)

In this class, we will concentrate on functions that are linear.

Definition: A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and for all \mathbf{u} in the domain of T.

For your intuition: the name "linear" is because these functions preserve lines:

A line through the point p in the direction v is the set p + sv, where s is any number. If T is linear, then the image of this set is

$$T(\mathbf{p} + s\mathbf{v}) \stackrel{1}{=} T(\mathbf{p}) + T(s\mathbf{v}) \stackrel{2}{=} T(\mathbf{p}) + sT(\mathbf{v}),$$

the line through the point $T(\mathbf{p})$ in the direction $T(\mathbf{v})$. (If $T(\mathbf{v}) = \mathbf{0}$, then the image is just the point $T(\mathbf{p})$.)

Fact: A linear transformation T must satisfy $T(\mathbf{0}) = \mathbf{0}$.

Proof: Put c = 0 in condition 2.

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T.

Example:
$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^3 x_2 \\ 2x_2 \\ 0 \end{bmatrix}$$

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T.

Example:
$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^3 x_2 \\ 2x_2 \\ 0 \end{bmatrix}$$
 is not linear:

Take
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $c = 2$:

$$f\left(2\begin{bmatrix}1\\1\end{bmatrix}\right) = f\left(\begin{bmatrix}2\\2\end{bmatrix}\right) = \begin{bmatrix}16\\4\\0\end{bmatrix}.$$

$$2f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = 2\begin{bmatrix}1\\2\\0\end{bmatrix} = \begin{bmatrix}2\\4\\0\end{bmatrix} \neq \begin{bmatrix}16\\4\\0\end{bmatrix}.$$

So condition 2 is false for f.

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T.

Example:
$$g\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$$
 (reflection through the x_2 -axis) is linear:

1.
$$g\left(\begin{bmatrix} u_1+v_1\\u_2+v_2\end{bmatrix}\right)=\begin{bmatrix} -u_1-v_1\\u_2+v_2\end{bmatrix}=\begin{bmatrix} -u_1\\u_2\end{bmatrix}+\begin{bmatrix} -v_1\\v_2\end{bmatrix}=g\left(\begin{bmatrix} u_1\\u_2\end{bmatrix}\right)+g\left(\begin{bmatrix} v_1\\v_2\end{bmatrix}\right).$$

2.
$$g\left(\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\right) = \begin{bmatrix} -cu_1 \\ cu_2 \end{bmatrix} = c \begin{bmatrix} -u_1 \\ u_2 \end{bmatrix} = cg\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right)$$
.

Alternatively, we can combine the two conditions at the same time, and check just one statement: $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$, for all scalars c, d and all vectors \mathbf{u}, \mathbf{v} .

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T.

Alternatively, we can combine the two conditions at the same time, and check just one statement: $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$, for all scalars c, d and all vectors \mathbf{u}, \mathbf{v} .

Example: $k(\mathbf{x}) = 3\mathbf{x}$ (dilation by a factor of 3) is linear:

$$k(c\mathbf{u} + d\mathbf{v}) = 3(c\mathbf{u} + d\mathbf{v}) = 3c\mathbf{u} + 3d\mathbf{v} = k(c\mathbf{u}) + k(d\mathbf{v}).$$

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} , in the domain of T.

Alternatively, we can combine the two conditions at the same time, and check just one statement: $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$, for all scalars c, d and all vectors \mathbf{u}, \mathbf{v} .

Example: $k(\mathbf{x}) = 3\mathbf{x}$ (dilation by a factor of 3) is linear:

$$k(c\mathbf{u} + d\mathbf{v}) = 3(c\mathbf{u} + d\mathbf{v}) = 3c\mathbf{u} + 3d\mathbf{v} = k(c\mathbf{u}) + k(d\mathbf{v}).$$

Important Example: All matrix transformations $T(\mathbf{x}) = A\mathbf{x}$ are linear:

$$T(c\mathbf{u} + d\mathbf{v}) = A(c\mathbf{u} + d\mathbf{v}) = A(c\mathbf{u}) + A(d\mathbf{v}) = cA\mathbf{u} + dA\mathbf{v} = cT(\mathbf{u}) + dT(\mathbf{v}).$$

In general:

Write e_i for the vector with 1 in row i and 0 in all other rows.

For example, in
$$\mathbb{R}^3$$
, we have $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$\{{f e_1},\ldots,{f e_n}\}$$
 span \mathbb{R}^n , and ${f x}=egin{bmatrix} x_1\ dots\ x_n \end{bmatrix}=x_1{f e_1}+\cdots+x_n{f e_n}.$

So, if $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then

$$T(\mathbf{x}) = T(x_1 \mathbf{e_1} + \dots x_n \mathbf{e_n}) = x_1 T(\mathbf{e_1}) + \dots x_n T(\mathbf{e_n}) = \begin{bmatrix} | & | & | & | \\ T(\mathbf{e_1}) & \dots & T(\mathbf{e_n}) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Theorem 10: The matrix of a linear transformation: Every linear

transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation: $T(\mathbf{x}) = A\mathbf{x}$ where A is the *standard matrix for* T, the $m \times n$ matrix given by

$$A = \begin{bmatrix} | & | & | \\ T(\mathbf{e}_1) & \dots & T(\mathbf{e}_n) \\ | & | & | \end{bmatrix}.$$

Example: $k: \mathbb{R}^2 \to \mathbb{R}^2$, given by dilation by a factor of 3, $k(\mathbf{x}) = 3\mathbf{x}$.

$$k(\mathbf{e_1}) = k\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 3\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\0\end{bmatrix}, \quad k(\mathbf{e_2}) = k\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = 3\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\3\end{bmatrix}.$$

So the standard matrix of k is $\begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix}$, i.e. $k(\mathbf{x}) = \begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} \mathbf{x}$.

Example:
$$g\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$$
 (reflection through the x_2 -axis):

The standard matrix of g is $\begin{bmatrix} | & | \\ g(\mathbf{e}_1) & g(\mathbf{e}_2) \\ | & | \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

Indeed,
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$$
.

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* (surjective) if each \mathbf{y} in \mathbb{R}^m is the image of at least one \mathbf{x} in \mathbb{R}^n .

Other ways of saying this:

- ullet The range is all of the codomain \mathbb{R}^m ,
- The equation $f(\mathbf{x}) = \mathbf{y}$ always has a solution.

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* (injective) if each \mathbf{y} in \mathbb{R}^m is the image of at most one \mathbf{x} in \mathbb{R}^n .

Other ways of saying this:

- ??? (something that only works for linear transformations),
- The equation $f(\mathbf{x}) = \mathbf{y}$ has no solutions or a unique solution.

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* (surjective) if each \mathbf{y} in \mathbb{R}^m is the image of at least one \mathbf{x} in \mathbb{R}^n .

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* (injective) if each \mathbf{y} in \mathbb{R}^m is the image of at most one \mathbf{x} in \mathbb{R}^n .

Example:
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, defined by $f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^3 x_2 \\ 2x_2 \\ 0 \end{bmatrix}$.

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* (surjective) if each \mathbf{y} in \mathbb{R}^m is the image of at least one \mathbf{x} in \mathbb{R}^n .

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* (injective) if each \mathbf{y} in \mathbb{R}^m is the image of at most one \mathbf{x} in \mathbb{R}^n .

Example:
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, defined by $f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^3 x_2 \\ 2x_2 \\ 0 \end{bmatrix}$.

f is not onto, because $f(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ does not have a solution. Indeed, the range of f is the plane z=0.

$$f$$
 is one-to-one: the solution to $f(\mathbf{x})=egin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix}$ is $x_2=\frac{1}{2}y_2$, $x_1=\sqrt[3]{\frac{2y_1}{y_2}}$.

Definition: The *kernel* of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of solutions to $T(\mathbf{x}) = \mathbf{0}$.

Fact: If $T(\mathbf{v_1}) = T(\mathbf{v_2})$, then $\mathbf{v_1} - \mathbf{v_2}$ is in the kernel of T.

Example: Let T be projection onto the x_1 -axis.

The kernel of T is

Definition: The *kernel* of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of solutions to $T(\mathbf{x}) = \mathbf{0}$.

Fact: If $T(\mathbf{v_1}) = T(\mathbf{v_2})$, then $\mathbf{v_1} - \mathbf{v_2}$ is in the kernel of T.

Example: Let T be projection onto the x_1 -axis.

The kernel of T is the x_2 -axis.

$$T\left(\begin{bmatrix}2\\2\end{bmatrix}\right) = T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}2\\0\end{bmatrix}.$$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, which is in the kernel.

Proof of Fact: If $T(\mathbf{v_1}) = T(\mathbf{v_2}) = \mathbf{y}$, then $T(\mathbf{v_1} - \mathbf{v_2}) = T(\mathbf{v_1}) - T(\mathbf{v_2}) = \mathbf{y} - \mathbf{y} = \mathbf{0}$.

Definition: The *kernel* of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of solutions to $T(\mathbf{x}) = \mathbf{0}$.

Fact: If $T(\mathbf{v_1}) = T(\mathbf{v_2})$, then $\mathbf{v_1} - \mathbf{v_2}$ is in the kernel of T.

Theorem: A linear transformation is one-to-one if and only if its kernel is $\{0\}$.

Warning: this only works for linear transformations. For other functions, the solution sets of $f(\mathbf{x}) = \mathbf{y}$ and $f(\mathbf{x}) = \mathbf{0}$ are not related.

Definition: The *kernel* of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of solutions to $T(\mathbf{x}) = \mathbf{0}$.

Fact: If $T(\mathbf{v_1}) = T(\mathbf{v_2})$, then $\mathbf{v_1} - \mathbf{v_2}$ is in the kernel of T.

Theorem: A linear transformation is one-to-one if and only if its kernel is $\{0\}$.

Warning: this only works for linear transformations. For other functions, the solution sets of $f(\mathbf{x}) = \mathbf{y}$ and $f(\mathbf{x}) = \mathbf{0}$ are not related.

Proof:

Suppose T is one-to-one. So $T(\mathbf{x}) = \mathbf{0}$ has at most one solution. Since $\mathbf{0}$ is a solution, it must be the only one. So its kernel is $\{\mathbf{0}\}$.

Suppose the kernel of T is $\{0\}$. Then, from the Fact, if there are vectors $\mathbf{v_1}, \mathbf{v_2}$ with $T(\mathbf{v_1}) = T(\mathbf{v_2}) = \mathbf{y}$, then $\mathbf{v_1} - \mathbf{v_2} = \mathbf{0}$, i.e. $\mathbf{v_1} = \mathbf{v_2}$.

For a linear transformation T whose standard matrix is A Theorem: Uniqueness of solutions to linear systems: For a matrix A, the following are equivalent:

- a. $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution.
- b. If $A\mathbf{x} = \mathbf{b}$ is consistent, then it has a unique solution.
- c. The columns of A are linearly independent.
- d. rref(A) has a pivot in every column (i.e. all variables are basic).
- e. T is a one-to-one function.

The range of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of images, i.e. the set of y in \mathbb{R}^m with $T(\mathbf{x}) = \mathbf{y}$ for some x.

So, if A is the standard matrix of T, then the range of T is the set of \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ has a solution.

The range of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of images, i.e. the set of \mathbf{y} in \mathbb{R}^m with $T(\mathbf{x}) = \mathbf{y}$ for some \mathbf{x} .

So, if A is the standard matrix of T, then the range of T is the set of \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ has a solution.

So the range of T is the span of the columns of A.

Example: The standard matrix of projection onto the x_1 -axis is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Its range is the x_1 -axis, which is also Span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.

So the range of T is the span of the columns of A.

For a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ whose standard matrix is A Theorem 4: Existence of solutions to linear systems: For an $m \times n$ matrix

- A_{r} , the following statements are logically equivalent (i.e. for any particular matrix
- A, they are all true or all false):
- a. For each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each b in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m .
- d. rref(A) has a pivot in every row.
- e. T is onto