Classification and Regression Trees

David Rosenberg

New York University

March 20, 2017

Trees

Tree Terminology

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

A Binary Decision Tree

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

Binary Decision Tree on \mathbb{R}^2

• Consider a binary tree on $\{(X_1, X_2) \mid X_1, X_2 \in R\}$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James. D. Witten, T. Hastie and R. Tibshirani.

Binary Regression Tree on \mathbb{R}^2

• Consider a binary tree on $\{(X_1, X_2) \mid X_1, X_2 \in \mathbf{R}\}$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James. D. Witten, T. Hastie and R. Tibshirani.

Fitting a Regression Tree

ullet The decision tree gives the partition of ${\mathfrak X}$ into regions:

$$\{R_1,\ldots,R_M\}.$$

• Recall that a partition is a disjoint union, that is:

$$\mathcal{X} = R_1 \cup R_2 \cup \cdots \cup R_M$$

and

$$R_i \cap R_j = \emptyset \quad \forall i \neq j$$

Fitting a Regression Tree

• Given the partition $\{R_1, \ldots, R_M\}$, final prediction is

$$f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)$$

- How to choose c_1, \ldots, c_M ?
- For loss function $\ell(\hat{y}, y) = (\hat{y} y)^2$, best is

$$\hat{c}_m = \operatorname{ave}(y_i \mid x_i \in R_m).$$

Complexity of a Tree

- Let |T| = M denote the number of terminal nodes in T.
- We will use |T| to measure the complexity of a tree.
- For any given complexity,
 - we want the tree minimizing square error on training set.
- Finding the optimal binary tree of a given complexity is computationally intractable.
- We proceed with a greedy algorithm
 - Means build the tree one node at a time, without any planning ahead.

Root Node, Continuous Variables

- Let $x = (x_1, ..., x_d) \in \mathbb{R}^d$.
- Splitting variable $j \in \{1, ..., d\}$.
- Split point $s \in R$.
- Partition based on *i* and *s*:

$$R_1(j,s) = \{x \mid x_j \le s\}$$

 $R_2(j,s) = \{x \mid x_i > s\}$

Root Node, Continuous Variables

For each splitting variable j and split point s,

$$\hat{c}_1(j,s) = \operatorname{ave}(y_i | x_i \in R_1(j,s))$$

 $\hat{c}_2(j,s) = \operatorname{ave}(y_i | x_i \in R_2(j,s))$

• Find *j*, *s* minimizing

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{c}_1(j,s))^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{c}_2(j,s))^2$$

How?

Then Proceed Recursively

- We have determined R_1 and R_2
- 2 Find best split for points in R_1
- ullet Find best split for points in R_2
- Continue...
 - When do we stop?

Complexity Control Strategy

- If the tree is too big, we may overfit.
- If too small, we may miss patterns in the data (underfit).
- Typical approach:
 - **1** Build a really big tree (e.g. until all regions have ≤ 5 points).
 - Prune the tree.

Tree Terminology

- Each internal node
 - has a splitting variable and a split point
 - corresponds to binary partition of the space
- A terminal node or leaf node
 - corresponds to a region
 - corresponds to a particular prediction
- A subtree $T \subset T_0$ is any tree obtained by pruning T_0 , which means collapsing any number of its internal nodes.

Tree Pruning

• Full Tree T₀

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James. D. Witten. T. Hastie and R. Tibshirani.

Tree Pruning

• Subtree $T \subset T_0$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James. D. Witten. T. Hastie and R. Tibshirani.

Emprical Risk and Tree Complexity

- Suppose we want to prune a big tree T_0 .
- Let $\hat{R}(T)$ be the empirical risk of T (i.e. square error on training)
- Clearly, for any $T \subset T_0$, $\hat{R}(T) \geqslant \hat{R}(T_0)$.
- Let |T| be the number of terminal nodes in T.
- \bullet |T| is our measure of complexity for a tree.

Cost Complexity (or Weakest Link) Pruning

Definitions

The cost complexity criterion with parameter α is

$$C_{\alpha}(T) = \hat{R}(T) + \alpha |T|$$

- Trades off between empirical risk and complexity of tree.
- Cost complexity pruning:
 - For each α , find the tree $T \subset T_0$ minimizing $C_{\alpha}(T)$.
 - Use cross validation to find the right choice of α .
- $C_{\alpha}(T)$ has familiar regularized ERM form, but
 - Cannot take the gradient w.r.t. T.

Greedy Pruning is Sufficient

- Find subtree $T_1 \subset T_0$ that minimizes $\hat{R}(T_1) \hat{R}(T_0)$.
- Then find $T_2 \subset T_1$.
- Repeat until we have just a single node.
- If N is the number of nodes of T_0 (terminal and internal nodes), then we end up with a set of trees:

$$\mathfrak{T} = \left\{ T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_{|N|} \right\}$$

• Breiman et al. (1984) proved that this is all you need. That is:

$$\left\{ \underset{T \subset T_0}{\mathsf{arg\,min}} \, C_{\alpha}(T) \, | \, \alpha \geqslant 0 \right\} \subset \mathfrak{T}$$

Regularization Path for Trees

SPAM dataset: Blue curve is cross-validation estimate of misclassification rate as a function of tree size. Orange curve is test error. The cross-validation is indexed by values of α , shown above. The tree sizes shown below refer to $|T_{\alpha}|$, the size of the original tree indexed by α .

Trees in General

Missing Features (or "Predictors")

- Features are also called covariates or predictors.
- What to do about missing features?
 - Throw out inputs with missing features
 - Impute missing values with feature means
 - If a categorical feature, let "missing" be a new category.
- For trees, can use surrogate splits
 - For every internal node, form a list of surrogate features and split points
 - Goal is to approximate the original split as well as possible
 - Surrogates ordered by how well they approximate the original split.

Trees vs Linear Models

• Trees have to work much harder to capture linear relations.

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James. D. Witten, T. Hastie and R. Tibshirani.

Interpretability

- Trees are certainly easy to explain.
- You can show a tree on a slide.
- Small trees seem interpretable.
- For large trees, maybe not so easy.

Trees for Nonlinear Feature Discovery

- Suppose tree T gives partition R_1, \ldots, R_m .
- Predictions are

$$f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)$$

• If we make a feature for every region R:

$$1(x \in R)$$
,

we can view this as a linear model.

Trees can be used to discover nonlinear features.

Comments about Trees

- Trees make no use of geometry
 - No inner products or distances
 - called a "nonmetric" method
 - Feature scale irrelevant
- Predictions are not continuous
 - not so bad for classification
 - may not be desirable for regression