Zero-Knowledge Proofs

263-4665-00L

Lecturer: Jonathan Bootle

Lecturer

- Jonathan Bootle
- jonathan.bootle@inf.ethz.ch

- PhD on zero-knowledge at UCL
- Now at IBM Research Zurich

 Started studying cryptography to make a secure secret-santa protocol!

Teaching assistant

- Karen Klein
- karen.klein@inf.ethz.ch

- PhD at ISTA
- Postdoc in the Foundations of Cryptography group
- Started studying cryptography for cool applications of number theory and combinatorics.

Teaching assistant

- Varun Maram
- vmaram@inf.ethz.ch

- MSc at ETHZ
- PhD in the Applied Cryptography group

 Started studying cryptography after reading "Digital Fortress" by Dan Brown.

Teaching assistant

- Antonio Merino Gallardo
- antonio.merinogallardo@inf.ethz.ch

MSc at ETHZ

 Started studying cryptography after reading about the threats posed by quantum computers.

Time and Location

- Lectures on Fridays, 12:00-14:00, CHN G 42.
- Remote only on 24/11/2023.
- Exercise sessions on Fridays, 15:00-16:00, in CHN F 42.
- Online on Zoom, and recorded.
- Office hours poll closes 23:59, 25/09

Materials

- Posted on Moodle
- Lecture slides, shortly before each lecture
- Exercise sheets, about a week before each exercise session
- Lecture and exercise session recordings, once processed
- Links to external resources such as papers and notes

Examination

• This course = 5 ECTS credits

- 70% session examination, 2 hour written exam
 - Practice exam questions available later in the course

- 30% graded exercise sheets
 - 10% week 5 submit through Moodle on or before 20/10/2023
 - 10% week 9 submit through Moodle or before 17/11/2023
 - 10% week 13 submit through Moodle on or before 15/12/2023
- Other weeks ungraded, but essential for practice and final exam

Course Outline (13 lectures)

- 1. Introduction and definitions ~2 lectures
- 2. Sigma protocols ~3 lectures
- 3. ZK arguments with short proofs ~4 lectures
- 4. Non-interactive zero-knowledge ~3 lectures
- 5. Bonus material? ~1 lecture

Goals of the course

• To understand what it means for a zero-knowledge proof to be secure

To construct and analyse various types of zero-knowledge proofs

To understand some applications of zero-knowledge proofs

Prerequisites

- Familiarity with cryptography (e.g. security games, p.p.t. adversaries, indistinguishability as in IND-CPA security)
- Groups, finite fields, modular arithmetic
- Vectors and matrices
- Polynomial arithmetic over e.g. $\mathbb{F}[X]$, $\mathbb{F}[X_1, X_2, X_3]$
- Probability
- May use all of the above at the same time
- Proofs: deep difficult dirty
- Review maths at https://shoup.net/ntb/ntb-v2.pdf

Why you should study zero-knowledge proofs

• Philosophy: new perspectives on proof, knowledge and learning

Theory: simulation techniques, links to complexity theory

• Practice: used in digital signatures, e-voting, mix nets, verifiable computation, blockchains and more...

- Because they are interesting!
- If you are ready for a challenge...

Lecture 1: Interactive proofs and zero-knowledge

What happens when you add interaction, randomness, and cryptographic assumptions to mathematical proofs?

Types of proof

Proof:

"the process or an instance of establishing the validity of a statement especially by derivation from other statements in accordance with principles of reasoning"

https://www.merriam-webster.com/dictionary/proof

Real life

JUDICIAL PANEL

CLERK INTERPRETER

DEFENDANT

DEFENDANT

DEFENSE COUNSEL

GALLERY

Formal

Static Deterministic

This course

Interactive Randomised

Known for over 2000 years!

Mathematical proofs

 $\sqrt{2} \notin \mathbb{Q}$ Statement to prove

Prover 'proof writer'

All errors detectable by V

1.	Suppose $\sqrt{2} =$	$\frac{a}{b} \in$	\mathbb{Q} , $\gcd(a,b) =$
	• •	h	

Proof

- 2. $\sqrt{2}b = a \text{ so } 2b^2 = a^2$
- 3. $2 | a^2 \text{ so } 2 | a$
 - 4. $\exists c \text{ with } a = 2c$
 - 5. $2b^2 = 4c^2$ so $b^2 = 2c^2$
 - 6. $2 | b^2 \text{ so } 2 | b$
 - 7. Contradiction to gcd(a, b) = 1
 - Sequence of logical assertions
 - Each must be implied by earlier ones

Verifier 'proof checker'

The same 1-directional message every time

Interactive proofs (IP)

Statement to prove

Proof Prover 'proof writer'

- Most errors detectable by V
- Randomised, adaptive, 2-directional messages

"The Knowledge Complexity of Interactive Proof Systems", 1985

Verifier 'proof checker'

- 1. Increased proving power
- 2. Counterintuitive properties
- 3. Drastic efficiency gains

Agenda

• Definitions of complexity classes and IPs

• IP for graph non-isomorphism – increased proving power

• IP for graph isomorphism – counterintuitive properties

Course Outline (13 lectures)

- 1. Introduction and definitions ~2 lectures
- 2. Sigma protocols ~3 lectures
- 3. ZK arguments with short proofs ~4 lectures ~
- 4. Non-interactive zero-knowledge ~3 lectures
- 5. Bonus material? ~1 lecture

Drastic

efficiency

gains

Complexity classes

increased proving power = proofs for larger classes of statements complexity classes

Definition:

binary encoding of a YES/NO

• A statement/instance is an element $x \in \{0,1\}^*$. problem statement

• A *language* is a set $\mathcal{L} \subseteq \{0,1\}^*$. collection of problems

• A complexity class is a set of languages.

problem types with similar properties

Example:

• $\mathcal{L}_{G3C} = \{\text{graphs } G \text{ which have a } 3\text{--colouring}\}.$

Problem: decide whether *G* has a 3-colouring or not

The complexity class P

Definition:

- **P** is the set of languages \mathcal{L} for which
- \exists decision algorithm M and polynomial q such that $\forall x \in \{0,1\}^*$,

i.e. Turing Machine

- $M(x) = 1 \Leftrightarrow x \in \mathcal{L}$; and
- M finishes in $\leq q(|x|)$ steps on input x. i.e. polynomial time, efficient

Problems which are easy to solve Efficient checks that $x \in \mathcal{L}$

The complexity class NP

Definition:

NP is the set of languages \mathcal{L} for which

 \exists language $\mathcal{R}_{\mathcal{L}}$ and polynomial q such that

- $\forall x \in \mathcal{L}$, $\exists w \text{ with } |w| \leq q(|x|) \text{ and } (x, w) \in \mathcal{R}_{\mathcal{L}}$;
- $\forall x \notin \mathcal{L}$, $\not\exists w$ with $(x, w) \in \mathcal{R}_{\mathcal{L}}$; and
- $\mathcal{R}_L \in \mathbf{P}$.

We call w the witness to x.

a solution to x

Problems whose YES solutions are easy to check Efficient checks that $(x, w) \in \mathcal{R}_{\mathcal{L}}$

It could be hard to find w (if $P \neq NP$).

Traditional proofs and complexity classes

Task: prove that $x \in \mathcal{L}$.

 $\mathcal{L} \in \mathbf{P} \longleftrightarrow x \in \mathcal{L}$ is obvious and needs no proof!

 $\mathcal{L} \in \mathbf{NP} \longleftrightarrow x \in \mathcal{L}$ has a proof which is easy to check w may be hard to find

Efficient checks that $(x, w) \in \mathcal{R}_{\mathcal{L}}$ $x \notin \mathcal{L} \Rightarrow (x, w) \notin \mathcal{R}_{\mathcal{L}}$

Interactive algorithms

Definition: Functions, Turing machines, circuits

Let $P, V : \{0,1\}^* \to \{0,1\}^*$. Let $k : \{0,1\}^* \to \mathbb{N}$.

A k(x)-move interaction between P and V on input $x \in \{0,1\}^*$ is defined by:

- $a_1 = P(x,r)$
- $a_2 = V(x, a_1, s)$
- $a_3 = P(x, a_1, a_2, r)$:
- $a_{k(x)} = V(x, a_1, ..., a_{k(x)-1}, s)$

The *transcript* is $(x, a_1, ..., a_{k(x)})$.

The result

The complexity class IP

Definition:

P need not be efficient!

 $\mathcal{L} \in \mathbf{IP}$ if $\exists P$ and V with V efficient (polynomial time in |x|) satisfying:

Completeness

$$\forall x \in \mathcal{L}, \Pr_{r,s}[\langle P(r), V(s) \rangle(x) = 1] \ge \frac{3}{4}$$

"True statements usually accepted"

Soundness

$$\forall x \notin \mathcal{L}, \forall P^*, \Pr_{r,s}[\langle P^*(r), V(s) \rangle(x) = 1] \leq 1/2$$

"False statements usually rejected"

If so, we say that (P, V) is an *interactive proof system* for \mathcal{L} .

Any constants with a gap define the same complexity class

Agenda

Definitions of complexity classes and IPs

• IP for graph non-isomorphism – increased proving power

• IP for graph isomorphism – counterintuitive properties

Graph Non-Isomorphism Problem

Definitions:

• Two graphs G_0 and G_1 on vertex set [n] are isomorphic (written $G_0 \cong G_1$) if there exists a permutation $\pi: [n] \to [n]$ such that $G_0 = \pi(G_1)$.

•
$$\mathcal{L}_{GNI} \coloneqq \left\{ egin{aligned} (G_0, G_1) : G_0, G_1, & \text{vertex set } [n] \\ G_0 \ncong G_1 \end{aligned} \right\}$$

 \exists an interactive proof for \mathcal{L}_{GNI} $\not\in$ **NP** (as far as we know) Evidence that **NP** \neq **IP**.

Interactive proof for \mathcal{L}_{GNI}

Security analysis:
Traditional mathematical proofs of completeness and soundness

Completeness: $G_0 \ncong G_1$

- $(H \cong G_0) \land (H \cong G_1) \Rightarrow G_0 \cong G_1 \#$
- So $H \cong G_b$ and $H \ncong G_{1-b}$
- P must choose B = b so V accepts

Always accepts

Soundness:

$$G_0 \cong G_1$$

- $\pi(G_0)$, $\pi(G_1)$ identically distributed
- B, b independent
- $Pr[B = b] = \frac{1}{2} \le \frac{1}{2}$

Agenda

Definitions of complexity classes and IPs

• IP for graph non-isomorphism – increased proving power \checkmark

• IP for graph isomorphism – counterintuitive properties

Transfer of knowledge

$$\sqrt{2} \notin \mathbb{Q}$$

- 1. Suppose $\sqrt{2} = \frac{a}{b} \in \mathbb{Q}$, gcd(a, b) = 1
- 2. $\sqrt{2}b = a \text{ so } 2b^2 = a^2$
- 3. $2 \mid a^2 \text{ so } 2 \mid a$
- 4. $\exists c \text{ with } a = 2c$
- 5. $2b^2 = 4c^2$ so $b^2 = 2c^2$
- 6. $2 | b^2 \text{ so } 2 | b$
- 7. Contradiction to gcd(a, b) = 1

Hard to produce if you didn't know it already

Transfers knowledge from P to V

You can now generalise to $\sqrt{3}$, $\sqrt{5}$, ...

Can we avoid this?

Easy to produce if you did know it already

knowledge gained

Now easy to produce and generalise

no knowledge gained

Working definition of algorithmic knowledge

Informal Definition:

IP definition: P unbounded, V efficient

An algorithm's knowledge is anything that it can compute efficiently.

Examples:

- 1. Your birthday
- 2. 100th decimal digit of $\frac{\text{your birth month}}{\text{your birth year}} \cdot \sqrt{2}$
- 3. 43^{rd} digit of π
- 4. 3-colouring of a large graph

NP-complete

Every-day Algorithmic

Yes Yes

No Yes

Not usually Yes

No Probably not

Zero-knowledge

No knowledge gained by verifiers who could already produce the proof by themselves.

V may not follow the protocol

Definition:

Let (P, V) be an IP for \mathcal{L} .

everything V sees

- The *verifier's view* is $\text{View}_V^P = (x, s, a_1, \dots, a_{k(x)})$. expected probabilistic polynomial time
- (P, V) is perfect zero-knowledge if \forall efficient V^* , \exists efficient simulator S such that $\forall x \in \mathcal{L}$, we have $\{\text{View}_{V^*}^P\} = \{S(V^*, x)\}$. equal as probability
- If so, (P, V) is a perfect zero-knowledge proof (perfect ZKP).

Life lessons

• Interaction is more powerful. You can achieve more by asking questions and having discussions.

- Don't have conversations that you can already simulate in your head
 - you won't learn anything!

Next time:

- Variations on soundness and zero-knowledge.
- Zero-knowledge for an NP-complete problem.