Criação de regras de associação a partir da navegação de usuários em sites Web

Fabrício J. Barth

Faculdades BandTec e VAGAS Tecnologia

Junho de 2013

Processo de mineração de padrões na Web

na Web

Exemplo típico de log

```
2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
  http://dataminingresources.blogspot.com/
2 | 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
  http://maya.cs.depaul.edu/~classes/cs589/papers.html
3 | 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200
  318814 HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1)
  http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey
4 | 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
  http://maya.cs.depaul.edu/~classes/cs480/
5 | 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
  http://maya.cs.depaul.edu/~classes/cs480/announce.html
6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
  http://maya.cs.depaul.edu/~classes/cs480/announce.html
```

Pré-processamento do log: identificação de usuários

Time	IP	URL	Ref	Agent
0:01	1.2.3.4	Α	-	IE5;Win2k
0:09	1.2.3.4	В	Α	IE5;Win2k
0:10	2.3.4.5	С	-	IE6;WinXP;SP1
0:12	2.3.4.5	В	С	IE6;WinXP;SP1
0:15	2.3.4.5	E	С	IE6;WinXP;SP1
0:19	1.2.3.4	С	Α	IE5;Win2k
0:22	2.3.4.5	D	В	IE6;WinXP;SP1
0:22	1.2.3.4	Α	-	IE6;WinXP;SP2
0:25	1.2.3.4	E	С	IE5;Win2k
0:25	1.2.3.4	С	Α	IE6;WinXP;SP2
0:33	1.2.3.4	В	С	IE6;WinXP;SP2
0:58	1.2.3.4	D	В	IE6;WinXP;SP2
1:10	1.2.3.4	E	D	IE6;WinXP;SP2
1:15	1.2.3.4	Α	-	IE5;Win2k
1:16	1.2.3.4	С	Α	IE5;Win2k
1:17	1.2.3.4	F	С	IE6;WinXP;SP2
1:26	1.2.3.4	F	С	IE5;Win2k
1:30	1.2.3.4	В	Α	IE5;Win2k
1:36	1.2.3.4	D	В	IE5;Win2k

	0.0.	1.2.0.1	, ,	
	0:09	1.2.3.4	В	Α
	0:19	1.2.3.4	С	Α
Jser 1	0:25	1.2.3.4	Е	С
)SET 1	1:15	1.2.3.4	Α	-
	1:26	1.2.3.4	F	C
	1:30	1.2.3.4	В	Α
	1:36	1.2.3.4	D	В

1.2.3.4

User 2	0:10	2.3.4.5	C	-
	0:12	2.3.4.5	В	С
	0:15	2.3.4.5	Е	С
	0:22	2.3.4.5	D	В

0:22	1.2.3.4	MΑ	-
0:25	1.2.3.4	С	Α
0:33	1.2.3.4	В	С
0:58	1.2.3.4	D	В
1:10	1.2.3.4	E	D
1:17	1.2.3.4	F	С

User 3

Pré-processamento do log: identificação das seções

IΡ Ref **URL** Time 1.2.3.4 0:01 1.2.3.4 0:09 Α 1.2.3.4 0:19 0:25 1.2.3.4 Ε User 1 1:15 1.2.3.4 1:26 1.2.3.4 1:30 1.2.3.4 1:36 1.2.3.4 В

 0:01
 1.2.3.4
 A

 0:09
 1.2.3.4
 B
 A

 0:19
 1.2.3.4
 C
 A

 0:25
 1.2.3.4
 E
 C

 Session 2

 1:15
 1.2.3.4
 A

 1:26
 1.2.3.4
 F
 C

 1:30
 1.2.3.4
 B
 A

 1:36
 1.2.3.4
 D
 B

Matriz de transações

Matriz de transações com meta-informações sobre as páginas

usuário	$oxed{ categoria_1 }$	$categoria_2$	$igg categoria_3$		$categoria_{\it m}$
$user_1$	0	2	0		1
$user_2$	1	1	0		0
$user_3$	2	0	1		0
$user_4$	0	1	0		0
$igg user_n$	1	1	0		1

- Cada página pode pertencer a uma categoria (i.e., tipo de livro, tipo de estabelecimento comercial)
- Cada página pode estar associada a uma cidade (i.e., um estabelecimento, uma vaga de emprego)

Regras de Associação

- Caso do supermercado (fralda → cerveja)
- Quem acessa a página sobre futebol também acessa a página de volei em 90% dos casos (futebol \rightarrow volei).
- Quem acessa a página de ofertas e a página de material de construção também finaliza a compra em 83% dos casos (ofertas ∧ material_construção → compra)

Algoritmo para criação de regras

Mineração de itens frequentes

Dado:

- \star um conjunto $A = \{a_1, \dots, a_m\}$ de itens,
- \star uma tabela $T=(t_1,\cdots,t_n)$ de transações sobre A,
- * um número β_{min} que $0 < \beta_{min} \le 1$, o suporte mínimo.

Objetivo 1:

* encontrar o conjunto de **itens frequentes**, tais que o **suporte** de cada conjunto de itens é maior ou igual ao β_{min} definido pelo usuário.

Exemplo de transações

	Itens
1	{a,d,e}
2	{b,c,d}
3	{a,c,e}
4	{a,c,d,e}
5	{a,e}
6	{a,c,d}
7	{b,c}
8	{a,c,d,e}
9	{b,c,e}
10	{a,d,e}

0 itens	1 item	2 itens	3 itens
{}: 10	{a}: 7	{a,c}: 4	{a,c,d}: 3
	{b}: 3	{a,d}: 5	{a,c,e}: 3
	{c}: 7	{a,e}: 6	{a,d,e}: 4
	{d}: 6	{b,c}: 3	
	{e}: 7	{c,d}: 4	
		{c,e}: 4	
		{d,e}: 4	

Figure 1: Um banco de dados de transações, com 10 transações, e a enumeração de todos os conjuntos de itens frequentes usando o suporte mínimo = 0.3

Mineração de itens frequentes

- Objetivo 2:
 - * encontrar o conjunto de regras de associação com confiança maior que um mínimo definido pelo utilizador.

Suporte e Confiança

O suporte de um conjunto de itens Z, suporte(Z), representa a porcentagem de transações na base de dados que contêm os itens de Z.

O suporte de uma regra de associação $A \to B$, $suporte(A \to B)$, é dado por $suporte(A \cup B)$.

$$confianca(A \to B) = \frac{P(A \cup B)}{P(A)} = \frac{suporte(A \cup B)}{suporte(A)}$$
(1)

Exemplo de regras geradas

Premises	Conclusion	Support	Confidence ▼
b	С	0.300	1
e, d	a	0.400	1
e	a	0.600	0.857
a	e	0.600	0.857
d	a	0.500	0.833
a, d	e	0.400	0.800

Figure 2: Regras extraídas com confiança maior que 0,8

Exemplo básico de uso

http://rpubs.com/fbarth/regraAssociacao

Medida Lift

Dada uma regra de associação $A \to B$, esta medida indica o quanto mais freqüente torna-se B quando ocorre A.

- Se $Lift(A \rightarrow B) = 1$, então A e B são independentes.
- Se $Lift(A \rightarrow B) > 1$, então A e B são positivamente independentes.
- Se $Lift(A \rightarrow B) < 1$, A e B são negativamente dependentes.

Esta medida varia entre 0 e ∞ e possui interpretação simples: quanto maior o valor de Lift, mais interessante a regra, pois A aumenta B.

Dados de click-stream de um site da Hungria

Dados anonimizados fornecidos por Ferenc Bodon -

http://fimi.ua.ac.be/data/kosarak.dat

http://rpubs.com/fbarth/regrasAssociacaoClickStream

Material de consulta

- Fabrício Barth. Mineração de regras de associação em servidores Web com RapidMiner^a.
- Iah H. Witteh and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques (Third Edition), 2011.
- Gonçalves. Regras de Associação e suas Medidas de Interesse Objetivas e Subjetivas. INFOCOMP Journal of Computer Science, 2005, 4, 26-35.

^ahttp://fbarth.net.br/materiais/webMining/webUsageMining.pdf

- Data Mining Algorithms in R Apriori Algorithm.
 http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/
 Frequent_Pattern_Mining/The_Apriori_Algorithm.
 Acessado em 13 de junho de 2013.
- RDataMining.com: Association Rules.
 http://www.rdatamining.com/examples/association-rules. Acessado em 13 de junho de 2013.