Maximum numeric output for data type ...

- 1: ±10¹⁰⁰¹ with full 1001-digit precision (though you can see and read a maximum of 294 digits "only" of such a number (cf. SHOW on p. 74).
- 2, 3, 8, and 9: The maxima are as specified for input above. Any (partial) result exceeding $-10^{RANGE} < x < 10^{RANGE}$ will be assessed as $-\infty$ or $+\infty$, respectively, and will then be treated according to the actual system settings at display time; if SPCRES is clear, an overflow error will be thrown else >- ∞ or $<\infty$ will be displayed. On the other hand, any result within $-10^{-RANGE} < x < 10^{-RANGE}$ will be displayed as >0.
- 4: For angular conversions, the maxima are as specified for input above. The functions ARCSIN, ARCCOS, and ARCTAN return values between $-\pi$ and π (or their equivalents) only.

• 5: xxx

• 6: xxx

• 10: The maxima are as specified for input above.

Special Results (as of 2020-04-05)

Within this chapter, SPCRES is presumed to be set. Thus, infinities and non-numeric results are legal – no error message will be thrown if such results happen to occur (cf. the end of previous chapter). In this chapter, results were crosschecked against the *WP 34S* wherever possible. Deviations are highlighted. Additionally, *Wolfram Alpha* was used for checking results with finite arguments.

The following monadic functions, if called with \mathbb{R} lit (i.e. CPXRES clear), return either ω , $-\omega$, or NaN under the conditions stated below:

Input x	Operation(s)	Output for R lit
-1.	artanh	
0 or 0.	In, Ig, lb x	-8

Input x	Operation(s)	Output for R lit
0.	1/x	
1.	artanh	00
0 or 0.	Γ(x)	
$\operatorname{Re}(x) < 1$	arcosh	
$ \operatorname{Re}(x) > 1$	arccos <mark>,</mark> arcsin <mark>,</mark> artanh	NaN
±90° or equivalents in other <i>ADM</i>	tan	

And the following monadic functions operate also on infinities:

Input x	Operation(s)	Output for R lit
	x³, ∛ x̄	
	arctan	-90.° or equivalents
	tanh	-1.
	1/x, e x, 10x, 2x, sinc	0.
	🗷, arsinh	œ
	arcosh	NaN
$-\infty \le x < 0$	In, Ig, lb x	NaN
	⅓, sinc	0.
	tanh	1.
α	arctan	90.° or equivalents
	In, e^x , x^2 , x , y	ω
−∞ or ∞	cos <mark>, s</mark> in, tan, artanh	NaN

Page 174 of 315 --- WP 43S R v0.15

For <u>dyadic</u> functions, we combined the respective tables:

Input y	x	Op.(s)	Output for R lit
00	arbitrary $x \neq -\infty$	·	00 68
	arbitrary $x \neq \infty$	+	−∞ ⁶⁸
-ω	ω	+	NaN ⁶⁸
00	arbitrary $x \neq \infty$		0 69
-00	arbitrary $x \neq -\infty$		−∞ ⁶⁹
	-ω		NaN
00	œ	•	INAIN
00	arbitrary $x > 0$		00 68
	arbitrary $x < 0$	X	00 00
00	arbitrary $x < 0$	X	− ∞ ⁶⁸
	arbitrary $x > 0$	<	-w °°
0 or 0.	−∞ or ∞	X	NaN ⁶⁸
$0 < y \le \infty$	0.		80
$-\infty \le y < 0$	υ.	/	-∞
−∞ or ∞	−∞ or ∞	7	NaN
0 or 0.	0.	\nearrow , y^x	NaN
−∞ or ∞	0. or 0	y ^x	NaN
$-\infty < y < 0$	non-integer x	<u>y</u> x	NaN
	odd $x > 0$	(LEX	
	even $x > 0$	<u>y</u> x	œ
∞ arbitrary $x > 0$		y ^x	00
arbitrary w + 0	-ω	(IX)	0.
arbitrary $y \neq 0$	α	<u>y</u> x	00
0.	0 < <i>x</i> <∞	log _× y	-ω

 $^{^{68}}$ Swapping x and y will return the same result here.

 $^{^{69}}$ Swapping x and y will return this result times -1.

The functions printed on light yellow background in the three tables above will return NaN (or NaN+i×NaN) also with *complex* results allowed (i.e. CPXRES set). Others will change their output when C is lit.

For $\mathbb C$ lit, some particular returns of elementary transient functions operating at the edge of the complex plain at $\pm \infty$ (or returning $\pm \infty$) are listed in the table below:⁷⁰

$ \begin{array}{c} \text{Input}^{71} \\ \text{Re}(x) \end{array} $	Im(x)	r(x)	$\varphi(x)$	Op.	Output for C lit
-00	_	_			, 00° 0 .•
-∞	0	80	180°	√x	$\omega \not\leq 90^{\circ} = 0.+i \times \omega$
0.	80	80	90°	x ²	$\omega \neq 180^{\circ} = -\omega + i \times 0.$
-∞	_	_			-ω
-∞		8			$\omega \not 45^{\circ} = \omega + i \times \omega $ (34S: NaN+i×NaN)
-10999	0	10999	180°	. ∛x	1.×10 ³³³ $ 4 60^{\circ} $ = 5.×10 ³³² + i×8.660 254 037×10 ³³² = 5 × 10 ³³² (1 + i × $\sqrt{3}$)
— ₁₀ 333 6		60°	x ³	$-1.\times10^{999} + i\times0. \rightarrow -\infty + i\times0$	
-00		Y		x ³	
-∞	0	80	180°	X	-\u00fa+i\u20.
-∞	0	00	180°		$-\omega + i \times 3.141 \ 592 \ 65 = \infty + i\pi$
-&	-	-		În	NaN (WA returns ∞)
-00	80	00	135°		ϖ +ix2.356 194 49 = ∞ + $i^{3\pi}/_4$
0.	8	80	90°	<u>In</u>	ω +ix1.570 796 32 = $\infty + i^{\pi}/_2$
00	00	00	45°		ω +ix0.785 398 16 = $\infty + i^{\pi}/_4$

⁷⁰ Red results in the tables are considered wrong although they may concur with the *WP 34S*.

⁷¹ Following an article of HP about the HP-71, complex infinities should be treated in polar notation (see http://hparchive.com/Journals/HPJ-1984-07.pdf, p. 27 left for the reasons).

$ \begin{array}{c} \text{Input}^{71} \\ \text{Re}(x) \end{array} $	Im(x)	r(x)	$\varphi(x)$	Ор.	Output for C lit
00	_	_		ln -	00
œ	0	00	0°	(iii)	∞+iר.
œ	-00	00	-45°		ω -ix0.785 398 16 = $\infty - i^{\pi}/_4$
0.	-80	00	-90°	<u>In</u>	ω -i×1.570 796 32 = $\infty - i \pi/2$
-∞	-8	00	-135°		ω -i×2.356 194 49 = $\infty - i \frac{3\pi}{4}$
0.	0.	0.	0.		-∞+i×0.
0.	_	_			− ∞
-∞	0	00	180°	e ^x	0.+i×0.
₋₁₀ 999	₁₀ 999	10999	1250	135° e×	0.+i × 0.
-00	00	00	133		NaN+i×NaN
0.	8	œ	90°	e ^x	
80	8	Ø	45°		NaN+i×NaN
80	-8	00	-45°		Ivalv+1×Ivalv
0.	-8	00	-90°		
-∞	-8	00	1250	.35° e ^x	NaN+i×NaN
₋₁₀ 999	₋₁₀ 999	10999	-135		0.+i×0.

Computation of \boxed{g} and \boxed{b} x is derived from \boxed{n} . The same applies for $\boxed{e^x}$, $\boxed{0^x}$, and $\boxed{2^x}$.

At the bottom line, we hope confusion is limited (and recommend keeping off $\pm \infty$ in *complex* plane).

WP 43S R v0.15 --- Page 177 of 315