CAMBRIDGE BETTET OF TELESCOPE

CAMBRIDGE INSTITUTE OF TECHNOLOGY

CAMERIDOS LIQAC

Department of Basic Sciences

Question bank

- 1. Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ such that T(-1,1) = (-1,0,2) and T(2,1) = (1,2,1)
- 2. Verify the Rank-nullity theorem for the linear transformation $T:V_3(R) \to V_2(R)$ defined by T(x,y,z) = (y-x,y-z).
- 3. Determine the dimension and basis of the subspace spanned by the vectors $\{(0,1,-3,-1)(1,0,1,1)(3,1,0,2)(1,1,-2,0)\}$ in \mathbb{R}^3 .
- 4. Prove that T: $R^3 \to R^3$ be defined by T(a,b,c) = (3a,a-b,2a+b+c) is a linear transformation.
- 5. Prove that in $V_3(R)$, the vectors $\{(1,2,1) \ (2,1,0) \ (1,-1,2)\}$ are linearly independent.
- 6. If W is the set of all points in R^3 satisfying the equation lx + my + nz = 0 then prove that W is subspace of R^3 .
- 7. Express the vector (3,5,2) as a linear combination of the vectors $\{(1,1,0)(2,3,0)(0,0,1)\}$ of V^3 .
- 9. Determine the dimension and basis of the subspace spanned by the vectors $\{(2,4,2)(1,-1,0)(1,2,1)(0,3,1)\}$ in \mathbb{R}^3 .
- 10. Express the polynomial $f(x) = x^2 + 4x 3$ as a linear combination of polynomials $f_1(x) = x^2 2x + 5$, $f_2(x) = 2x^2 3x$, $f_3(x) = x + 3$.
- 11. Verify the Rank-nullity theorem $T(e_1) = (0,1,0,2); T(e_2) = (0,1,1,0); T(e_3) = (0,1,-1,4)$
- 12. Show that the vectors are mutually orthogonal,

$$a = (2,1,3); b = \left(\frac{-6}{7}, \frac{15}{14}, \frac{3}{14}\right), c = \left(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3}\right)$$

13. Show that the vectors are mutually orthogonal,

$$a = (1,1,0,0); b = \left(\frac{-1}{2}, \frac{1}{2}, 2, 0\right), c = \left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}, 4\right)$$