Calculate norms, distances and scalar products Ioannis Demetriou

EXERCISE 1

Question 1 Calculate the Euclidean, Manhattan and Maximum norm of the following vectors:

	Euclidean	Manhattan	Maximum
a = (1, 1)	$\sqrt{1^2 + 1^2} = \sqrt{2}$	1 + 1 = 2	Max(1+1) = 2
b = (1, 2, 3, 4, 5)	$\sqrt{1^2 + 2^2 + 3^2 + 4^2 + 5^2} = \sqrt{55}$	1+2+3+4+5=15	Max(1,2,3,4,5)=5
$\mathbf{c} = (0, 0, 0, 0)$	$\sqrt{0^2 + 0^2 + 0^2 + 0^2} = 0$	0+0+0+0=0	0
d = (0)	0	0	0
d1 = (2)	$\sqrt{2^2} = 2$	2	2
e = (12, -4)	$\sqrt{12^2 + (-4)^2} = \sqrt{160}$	12+4=16	12
f = (-2, 2, 1000, 1)	$\sqrt{(-2)^2 + 2^2 + 1000^2 + 1^2}$	2+2+1000+1=1005	1000
	$=\sqrt{1000009}$		
g = (1, -1, 100, 1.1, -1000)	$\sqrt{1+1+100^2+1.1^2+1000^2}$	1+1+100+1.1+1000	1000
	= 1010003.21	=1103.1	
h = (1, 1, 100, 1.1, 0)	$ \sqrt{1+1+100^2+1.1^2+0} \\ = 10003.21 $	1+1+100+1.1+0= 103.1	100

Question 2 Calculate the Euclidean, Manhattan and Maximum distances between the vectors:

	Euclidean	Manhattan	Maximum
a and e	$\sqrt{(12-1)^2 + (-4-1)^2} = \sqrt{146}$	12 - 1 + 4 - 1 = 16	Max(12-1 , -4-1)=11
c and f	Since $c=(0,0,0,0) \rightarrow f-c=\sqrt{1000009}$	1005	1000
g and h	$\sqrt{0+2^2+0+0+1000^2}$	0+2+0+0+1000=1002	1000
	$=\sqrt{1000004}$		
d and d1	$\sqrt{0+2^2}=2$	2	2

Question 3 Plot points of Question 1, whenever possible.

Plotting 1-D: (d, d1)

Plotting 2-D: (a, e)

No 3-D vector

Question 4 What is the angle between

- a) (1,1,1) and (-1,-1,-1) in degrees?
- b) (1, 1) and (12, -4)?
- c) (2,3) and (4,5)?
- d) (3,4) and (4,3) in degrees by using math.acos in Python
- e) (1,2,2) and (2,2,1) in degrees by using math.acos in Python

We use the formula

$$a^T \cdot b = a1 \times b1 + a2 \times b2 + \dots = \big| |a| \big| \times \big| |b| \big| \times \cos(\theta) \Rightarrow \cos(\theta) = \frac{a^T \cdot b}{\big| |a| \big| \times \big| |b| \big|}$$

In python:

```
import numpy as np
from math import acos, degrees

# Define the vectors
v1 = np.array(<vector_coords>)
v2 = np.array(<vector_coords>)
# Compute the dot product and magnitudes
dot_product = np.dot(v1, v2)
magnitude_v1 = np.linalg.norm(v1)
magnitude_v2 = np.linalg.norm(v2)
# Calculate the cosine of the angle
cos_theta = dot_product / (magnitude_v1 * magnitude_v2)
# Compute the angle in degrees
angle_degrees = degrees(acos(max(min(cos_theta,1),-1)))
print(f'{angle_degrees:.2f} degrees')
```

- a) 180°
- b) 63.43°
- c) 4.97°
- d) 16.26°
- e) 27.27°

Question 5

- a) Let u and v be two vectors in the n-space. If $\mathbf{u}^T\mathbf{v} = \mathbf{0}$, what is your conclusion? U and V are orthogonial to eachother
- b) Let u=(1,-1,-1) and v=(0,0,2). What is the result of $u + \frac{1}{2}(v u)$ $(1,-1,-1) + \frac{1}{2}(0-1,0+1,2+1) = (1,-1,-1) + \left(-\frac{1}{2},\frac{1}{2},\frac{3}{2}\right) = (1/2,-1/2,1/2)$
- c) What is the scalar product of (-1,-1,1) and (1,2,1)? Are these separated by more than 90°, less than 90°, or exactly 90°?

$$(-1,-1,1)^T \cdot (1,2,1) = -1 \times 1 - 1 \times 2 + 1 \times 1 = -1 - 2 + 1 = -2$$

Since the scalar product is < 0 the $cos(\theta)$ < 0 \Rightarrow **0** > **90**°