Calculus I, Tutorial Problem Sheet, Week 3

Functions: Even, odd and inverse functions

- Q1. Are the following functions even, odd or neither? Justify your answers.
 - (a) f(x) = (x-1)(x-2)
 - (b) $f(x) = \sum_{k=0}^{n} x^{2k+1}$
 - (c) $f(x) = \frac{x}{(x^2+1)\cos x}$

Solution. (a) $f(x) = x^2 - 3x + 2$, so $f(-x) = x^2 + 3x + 2$. Since $f(x) \neq f(-x)$ and $f(x) \neq -f(-x)$ this function is neither even nor odd.

- (b) $f(-x) = \sum_{k=0}^{n} (-1)^{2k+1} x^{2k+1} = -\sum_{k=0}^{n} x^{2k+1} = -f(x)$ hence this function is odd.
- (c) x is odd, but both $x^2 + 1$ and $\cos x$ are even, hence f(x) is the product of one odd function and two even functions and is therefore an odd function.
- Q2. If $f: \mathbb{R} \to \mathbb{R}$ is an even function and $g: \mathbb{R} \to \mathbb{R}$ is an odd function then determine whether the following functions are even, odd or neither? Justify your answers.

(a)
$$f_1(x) = \begin{cases} f(x) & \text{if } x > 0 \\ -f(x) & \text{if } x < 0 \end{cases}$$

(d)
$$f_2(x) = (g \circ g)(x)$$

Solution.

(a) On $\mathbb{R}\setminus\{0\}$

$$f_1(-x) = \begin{cases} f(-x) & \text{if } -x > 0 \\ -f(-x) & \text{if } -x < 0 \end{cases} = \begin{cases} f(x) & \text{if } x < 0 \\ -f(x) & \text{if } x > 0 \end{cases} = -f_1(x), \text{ since } f \text{ is } f(x) = f(x), \text{ since } f \text{ is$$

(b)
$$f_2(-x) = (g \circ g)(-x) = g(g(-x)) = g(-g(x)) = -g(g(x)) = -(g \circ g)(x) = -f_2(x)$$
, hence this function is odd.

- Q3. Which of the following functions are injective? Find the inverses of those which are and specify the domain of the inverse.
 - (a) $f(x) = (1-x)^2$ in [1, 2]
 - (b) f(x) = (x-1)/(x+2) in $\mathbb{R} \setminus \{-2\}$
 - (c) $f(x) = x^2 + 2x 1$ in [-2, 2]

Solution.

(a) One can check f(x) is injective on this domain using the horizontal line test.

1

To find the inverse function, we write
$$y=f^{-1}(x)$$
 and use $f(y)=x$. We therefore have $f(y)=(1-y)^2=x$. Now since we have $y\in {\rm Dom}\, f$, we need $y\in [1,2]$, so $(1-y)\leq 0$

and we therefore need to take the negative square root to obtain $1-y=-\sqrt{x}$. We therefore find $y = 1 + \sqrt{x} = f^{-1}(x)$.

 $Dom f^{-1} = Ran f = [0, 1].$

(b) One can check f(x) is injective on this domain using the horizontal line test.

To find the inverse function, we write $y = f^{-1}(x)$ and use f(y) = x.

So f(y) = (y-1)/(y+2) = x, and by rearranging we obtain y = (2x+1)/(1-x) = $f^{-1}(x)$.

 $Dom f^{-1} = Ran f = \mathbb{R} \setminus \{1\}.$

(c) The function f(x) is not injective. We can see this by applying horizontal line test or for example noting that f(-2) = -1 = f(0).

Limits

Q4. Consider the given graph of the function f(x). Are the following statements true or false?

- f(x) for Q4
- (a) $\lim_{x\to 2} f(x)$ does not exist, (b) $\lim_{x\to 2} f(x) = 1$, (c) $\lim_{x\to 1} f(x)$ does not exist.
- (d) $\lim_{x\to a} f(x)$ exists $\forall a \in (-1,1)$ (e) $\lim_{x\to a} f(x)$ exists $\forall a \in (1,3)$.

Solution.

- (b) true, (a) false,
 - (c) true, (d) true,
- (e) true.
- Q5. In each case either evaluate the limit, or state that no limit exists

- (a) $\lim_{x \to \pi/2} x \sin x$, (b) $\lim_{x \to 1} \frac{x^4 1}{x^3 1}$, (c) $\lim_{x \to \pi} \frac{\cos x}{1 \pi}$, (d) $\lim_{x \to 1} \frac{x 1}{\sqrt{x + 3} 2}$,

- (e) $\lim_{x\to 0} \frac{x^2}{1-\cos 2x}$ (f) $\lim_{x\to 3} \frac{(x^2+x-12)}{(x-3)^2}$, (g) $\lim_{h\to 0} \frac{1+1/h}{1+1/h^2}$.

Solution.

(a) $\lim_{x\to\pi/2} x \sin x = \pi/2$, since the function is continuous at the point $x=\pi/2$.

2

(b) $\lim_{x\to 1} \frac{x^4-1}{x^3-1} = \lim_{x\to 1} \frac{(x^2+1)(x+1)(x-1)}{(x-1)(x^2+x+1)} = \lim_{x\to 1} \frac{(x^2+1)(x+1)}{x^2+x+1} = 4/3$, as this final expression is continuous at x=1.

(c) $\lim_{x\to\pi}\frac{\cos x}{1-\pi}=\frac{1}{\pi-1}$, since the function is continuous at the point $x=\pi$.

(d) $\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2} = \lim_{x\to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(\sqrt{x+3}-2)(\sqrt{x+3}+2)} = \lim_{x\to 1} \frac{(x-1)(\sqrt{x+3}+2)}{x+3-4} = 4$, as this final expression is continuous at x=1.

(e) $\lim_{x\to 0} \frac{x^2}{1-\cos 2x} = \lim_{x\to 0} \frac{x^2(1+\cos 2x)}{(1-\cos 2x)(1+\cos 2x)} = \lim_{x\to 0} \frac{(2x)^2(1+\cos 2x)}{4\sin^2 2x} = 1/2$, as this final expression is continuous at x=0.

(f) $\lim_{x\to 3} \frac{(x^2+x-12)}{(x-3)^2} = \lim_{x\to 3} \frac{(x+4)(x-3)}{(x-3)^2} = \lim_{x\to 3} \frac{x+4}{x-3}$. Therefore no limit exists, as in any small interval around x=3, one can make the function arbitrarily large by considering values close to 3.

(g) $\lim_{h\to 0} \frac{1+1/h}{1+1/h^2} = \lim_{h\to 0} \frac{h^2+h}{h^2+1} = 0$, as this final expression is continuous at h=0.

Q6. If $f(x) > 0 \ \forall \ x \neq a$ and $\lim_{x \to a} f(x) = L$, can we conclude that L > 0? Justify your answer.

Solution.

No. An example is provided by $f(x) = x^2$ with a = 0 so that L = 0 which is not positive.

Q7. Does $\lim_{x\to 0} \frac{\sin(x+|x|)}{x}$ exist?

If the limit exists then find it.

Solution. For x > 0, $\frac{\sin(x+|x|)}{x} = \frac{\sin 2x}{x}$.

Hence $\lim_{x\to 0^+} \frac{\sin(x+|x|)}{x} = \lim_{x\to 0^+} \frac{\sin 2x}{x} = \lim_{x\to 0^+} \frac{2\sin 2x}{2x} = 2.$

For x < 0, $\frac{\sin(x+|x|)}{x} = 0$. Hence $\lim_{x \to 0^-} \frac{\sin(x+|x|)}{x} = 0$.

The left-sided and right-sided limits exist but are not equal, hence the limit does not exist.

Q8. Calculate the limit as $x \to \infty$ of the following

(a)
$$\frac{6x+7}{1-2x}$$
, (b) $\frac{x^2}{x^2+\sin^2 x}$.

Solution.

(a)
$$\lim_{x\to\infty} \frac{6x+7}{1-2x} = \lim_{x\to\infty} \frac{6+\frac{7}{x}}{\frac{1}{x}-2} = -3.$$

(b) First note that $0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$.

As $\lim_{x\to\infty}\frac{1}{x^2}=0$ then by the pinching theorem $\lim_{x\to\infty}\frac{\sin^2x}{x^2}=0$.

3

Thus $\lim_{x\to\infty} \frac{x^2}{x^2+\sin^2 x} = \lim_{x\to\infty} \frac{1}{1+\frac{\sin^2 x}{x^2}} = 1$.