Audio based Activity Recognition

Chandhini Grandhi, A53272378 Sivasankar Palaniappan, A53275703

Key idea and System Design

- Key idea: Detect sound based activities using a simple and cheap microphone based setup.
- System Design:

HW and SW components

- Hardware:
 - Raspberry pi 3 Model B
 - Computer USB Microphone
- Software:
 - Python
 - Frameworks:
 - Mic : Alsa Audio, Pyaudio
 - ML algorithms Scikit-Learn, Numpy
 - GUI Tkinter

Results:

- Non-Real Time Processing:
 - Detected 5 activities
 with 10sec audio
 samples 50 audio files
 for each activity.
 - Compared different ML classification algorithms based on accuracy and time for Raspberry Pi.

ML algorithm	Accuracy Percentage	Time taken to execute (in seconds)
Logistic Regression	73.01%	95.17
SVM- Linear Kernel	66.67%	7.58
SVM – RBF Kernel	66.67%	110
KNN	79.36%	3.192
Decision Tree	100%	7.6s
MLPC	47%	23.28
Random Forest	100%	0.6
Boosting – Ada Boost	99.92%	185

GUI - Non-Real Time Processing Process
Find activity

Recording done
Calculating frame size and number of frames
Calculating mel banks
Calculating frames
Calculating power spectra
Getting MFCC
Done storing
Typing

- Built feature vector comprising of 3 features MFCC, Delta, DDelta
- Predicted the model using Random Forest as it gave a better accuracy with better execution time in non-real time processing

Laundry – Non Real Time:

https://youtu.be/0m3kBEFjWR4

Laundry – Real Time:

https://youtu.be/Ud1WwnJU2n0

Vacuum- Non Real Time:

https://youtu.be/f9YrJ3E30Mk

Vacuum- Real Time:

https://youtu.be/93BD09TxFtk