

1。为什么要学习这门课程?

--本课程的目的与任务

目的:

在控制系统研制过程中,对自动控制系统的构成、所需传感、执行元件的选择和使用具备系统的分析能力。 具备与电气、机械结构、计算机等其他专业技术人员进行交流与协作的能力。

任务:

掌握控制系统中主要的传感、执行部件和线路的原理、特点和应用注意事项。

系统开发的流程

- 一、需求分析(目的,功能,指标,成本,时间)
- 二、方案论证选型 (结构, 能源, 电机, 传感, 控制)
- 三、详细设计(系统分解,环节与部件计算,分析仿真与校核,工艺设计,调试设计,生产设计)

讨论

控制系统总体设计流程中:

- 1 技术指标的分析与确定
- 2 实现方案的制定与部件选择

哈尔滨工业大学航天学院 控制与仿真中心

控制系统总体设计

总体设计: 根据系统总体功能和性能要求,论证选择合适的系统各子系统实现方案; /掌握各种实现技术的特征

- * 分析确定各子系统能够组成为一个完整的、合理协调地工作的系统,达到机构、驱动、传感、控制的匹配;/掌握主要控制部件特性、型别、接口需求
- * 各个部件在系统运行中处于合理/较佳工作状态;
- * 采取必要的控制方法消除总体系统存在的不足;
- * 兼顾人机接口及控制软件的设计,使系统便于操作。

控制系统总体设计

实现方案的选择考虑:

1 以能否满足技术/性能指标来评估技术实现手段, 包括可靠性、维修性、应用条件等要求。

技术手段: 软件/硬件, 直流/交流,开环/闭环, 补偿/反馈, 单回路/多回路, 数字/模拟, ...。

2 评估实现的经济性,预估费效比、性价比,评估技术的成熟度与普及性。

哈尔滨工业大学航天学院 控制与仿真中心

控制系统总体设计

实现方案分析与确定中应注意:

1 希望: 稳定性好, 响应快, 精度高, 长寿可靠。

2 避免盲目的追好求高,必须从应用实际、当前的 技术实现水平综合考虑;充分论证技术指标的正确性、合 理性、可行性。对系统技术指标的深入、正确分析,是确 定系统实现方案的前提,也是系统开发实现的关键。

控制系统总体设计

哈尔滨工业大学航天学院 控制与仿真中心

技术指标的确定与分析

伺服控制系统的技术指标:

- 1 运动极限指标:最大运行范围、最大速度、最大加速度、满足一定平稳性要求的最低速度、运动的最小当量…。
- 2 运动的动态性能指标: 如对阶跃响应: 超调量、过渡时间、振荡次数...,对正弦响应: 剪切频率、相角裕量、增益、滞后角...。
- 3 运动精度指标: 动态与静态下的位置精度、速度 精度、加速度精度、增益误差...。

技术指标的确定与分析

4 鲁棒性/敏感性指标:负载变化、环境变化、参数 变化等等条件下,对系统稳定性与精度的指标要求。

5 可靠性与维修性指标:寿命、MTBF、MTPR...。

6 应用指标:电源形式与功率、体积、质量、成本、 外观、运输形式、存储形式等等。

7环境要求: 温度、湿度、气压、腐蚀耐受...。

部件选择

- 一个合理的伺服控制系统方案须考虑以下几个方面:
- 1。明确负载情况:负载类型,负载变化特性、惯量特性。
- 2。根据指标要求进行计算,确定电机与传动机构的搭配结构。 确定减速器、电机、驱动器、位置检测装置的类型和规格
- 3。根据控制要求、功能需求、电气接口等,选择合适的运动 控制器:
- 4。开发应用程序:根据工作运动轨迹和速度、位置等参数进行合理的运动规划编程。

部件选择-电机

(1) 电机类型——应用场合

力矩/速度/位置控制用电机

- a. 直流伺服电机
- b. 感应伺服电机
- c. 步进电机
- d. 无刷直流伺服电机
- e. 永磁同步伺服电机
- f. 开环同步电动机
- q. 开关磁阻电机

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-电机

(2) 常用的无刷化电机

- 感应电机 (IM) ——低速性能差,功率因数低,成本低;
- •永磁同步电机 (PMSM) ——动静态伺服性能好,成本高;
- 无刷直流电机(BLDCM)——中高速伺服性能好,成本较低;
- ·步进电机 (Stepper) ——功率小,开环位置伺服,成本低

部件选择-电机

(3) 常用位置控制电机

控制用电机 (控制方式)	优 点	缺 点
步进电机 (开环控制)	驱动控制电路简单; 可靠性 高; 维护容易	动作慢;振动、噪音大;效率低
DC伺服电机	驱动控制电路不太复杂; 效 率高; 动作快	碳刷需要保护
交流永磁伺服电机 (AC伺服电机)	响应速度与DC伺服电机一样 快;可靠性高;效率高	控制电路复杂,价格稍贵

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-电机

电机选择的考虑

从电机侧看

$$J = J_m + \frac{1}{N^2} J_L$$
 $T_f = \frac{1}{N} T_L$ $\alpha = N\alpha_L$

J_L-负载转动惯量; T_L-负载力矩; J_m-电机转动惯量; N-传动减速比

部件选择-电机

(1) 额定力矩和峰值力矩

$$T_p \ge (J_m + J_L)a + T_f$$

$$T_c \ge \sqrt{\frac{1}{T} \int_0^T T_{em}^2 dt} = T_{RMS}$$

 J_m -电机转动惯量 J_L -负载折算转动惯量 a -加速度 T_f -摩擦力矩

- (2) 额定转速 转矩*转速=功率
- (3) 力矩常数Kt—电流, 电势常数Ke—电压;
- (4) 尺寸和质量

部件选择-驱动器

驱动器/变频器的选择:

(1) 容量选择: 电压/电流/功率/过载能力

(2) 控制方式: V/F恒定、矢量控制、直接转矩控制

(3) 控制接口与辅助线路: 模拟/数字, 反馈/指令

(4) 供电/主回路:交流,直流/交交、交直交

(5) 防护等级/电磁兼容性等指标: IP等级, EMC标准...

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-驱动器 直流电机的调压控制电路:

部件选择-传感器

检测传感器分类

从检测的 信号分

直线感应同步器、长光栅、 直线型

长磁栅、激光干涉仪

旋转变压器、圆感应同步器、 回转型

圆光栅、圆磁栅、编码盘

模拟式 旋转变压器、感应同步器

从传感器 输出信号分

光栅检测装置、脉冲编码盘 数字式

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-传感器

分类	增量式	绝对式
	回转型—脉冲编码器、 自整角机、旋转变压器、圆	多极旋转变压器、 绝对脉冲编码器、绝对
位移	感应同步器、光栅角度传感	值式光栅、三速圆感应
传感器		同步器、磁阻式多极旋 转变压器
	直线型-直线应同步器	三速感应同步器、
	、光栅尺、磁栅尺、激光干	绝对值磁尺、光电编码
	涉仪、霍耳位置传感器	尺、磁性编码器
速度	交、直流测速发电机、	速度-角度传感器
传感器	数字脉编码式速度传感器、	、数字电磁、磁敏式速
	霍耳速度传感器	度传感器

部件选择-传感器

检测元件	误差范围	
电位器	几度 (°)	
自整角机	≤1度 (°)	
旋转变压器	几角分 (′)	
圆盘式感应同步器	几角秒(")	
直线式感应同步器	几微米 (μm)	
光电码盘	360/N (°)	

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-传感器 运动传感器的主要性能指标 1.精度: 线性度,重复性,迟滞误 差… 2.分辨率 3.响应速度 4.稳定性 温度误差… 迟滞误差 哈尔滨工业大学航天学院 控制与仿真中心

部件选择-传感器

位置传感器选择考虑事项:

- 1. 分辨率与精度:根据系统的计算位长和控制精度要求,确 定分辨率和精度要求。
- 2. 带宽与截止频率: 位置检测器件的工作带宽和截止频率要 满足伺服工作中最大速度的要求。
- 3. 信号传输特性:系统应用中对传输接口形式,传输距离, 电磁兼容性的要求。
- 4. 使用中的环境要求:不同方向最大冲击耐受能力,耐污能力,电源波动耐受性等等。

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-控制器

控制器需要完成的任务:

- (1) 实现与上、下位控制环节的软硬件信号接口
- (2) 实现控制算法,产生控制指令,使系统输出信号跟踪参考指令

功能性! 总线结构! 开放性!

部件选择-运动控制器

Step 1: Choose Motion Controller Technology (RTOS, DSP, FPGA) By Specifications:					
by Specifications.	RTOS-based Motion Control	DSP-based Motion Control	FPGA-based Motion Control		
Development Time	Better	Best	Good		
Development Tools	NI LabVIEW Real- Time, NI LabVIEW Control Design and Simulation Toolkit, NI SoftMotion Development Module for LabVIEW	NI Motion Assistant, NI LabVIEW for Windows, NI LabVIEW Real-Time, NI LabWindows/CVI, Visual Basic, Visual C++	NI LabVIEW Real- Time, NI LabVIEW FPGA, NI SoftMotion Development Module for LabVIEW		
Operating Systems	LabVIEW Real-Time (ETS, RTX)	Windows, LabVIEW Real-Time (ETS), VxWorks, MacOS X, Linux	LabVIEW Real-Time		
Typical Update Rate from Host	1 millisecond	10 milliseconds	1 millisecond		
Typical Servo Control Loop Update Rate	1 millisecond	62 microseconds	5 microseconds		
Control Algorithm	Enhanced PID, Custom using LabVIEW Control Design and Simulation Toolkit	Enhanced PID (Feedforward, Velocity Feedback, Dual-loop, Stiction Compensation)	Enhanced PID, <u>Model-Free Adaptive Control</u> (Cybosoft), Custom using LabVIEW FPGA		
Supported Hardware Platforms	PCI, Single Board Computer, PXI, Compact FieldPoint, CompactRIO	PCI, PXI	CompactRIO, PCI, PXI		
Example Applications	Research, Prototyping machines	Laser, semiconductor, biomedical, packaging	Semiconductor, biomedical, MEMS		

哈尔滨工业大学航天学院 控制与仿真中心

部件选择-运动控制器

	RTOS-based Motion Control	DSP-based Motion Control	FPGA-based Motion Control
Smart Contouring for High- Speed Profiling / Scanning	No	Yes	No
Teach Pendant/Joystick Control	No	Yes	No
High-Speed I/O Synchronization with Captures, Breakpoints, RTSI	No	Yes	Yes
Advanced Step Generation for Jitter-Free Velocity Profile	No	Yes	No
Pixels to Motion in a Single Environment for Vision Guided Motion	Yes	Yes	No
Soft Motion and Control Design Integration for Custom Control	Yes	No	Yes
FPGA-Based Motion Control for 200 kHz Servo Update Rates	No	No	Yes
Interactive Prototyping and Conversion to LabVIEW VIs or C code	No	Yes	No
High-Performance I/O	Yes	Yes	Yes
Advanced Feedback Techniques	No	Yes	Yes

课程重点回顾!

哈尔滨工业大学航天学院 控制与仿真中心

课程重点回顾

1-绪论:

*磁场基本定律与磁路分析基础。

2—直流电机:

- *直流电机结构—定子/转子部件
- *直流电机原理—基本方程(动态静态)/电枢反应/换向过程
- *直流电机特性与调速控制—机械特性/调速/四象限运行
- *直流电机选用—电机选择的步骤

课程重点回顾

3-功率放大电路:

*基本知识—常见器件特性/工作区域/防止直通/续流二极管/损耗/泵升泻放

*基本电路— H桥电路,T型电路

*PWM驱动—基本原理/种类与特点/四象限宏观与微观状态/电流纹波。

4-变压器:

* 4.44公式/平衡关系: 电压平衡/磁势平衡。

哈尔滨工业大学航天学院 控制与仿真中心

课程重点回顾

5-异步电动机:

*交流绕组产生旋转磁场—整距绕组/一相分布绕组/ 多相合成磁场/反电势

*运行原理与特性一转速公式/滑差率/平衡关系/力矩公式

*调速运行—基本调速方法与特点

*单相异步电动机—本质的两相运行(电容分相/罩极)

课程重点回顾

6-步进电动机:

- *运行原理--单双拍/正反转序列/细分驱动。
- *运行特性--矩角特性/矩频特性

7-同步电动机:

- *开环运行的同步电机--四种电机的基本特性;
- *闭环运行的同步电机--无刷直流电机/永磁同步伺服电机的原理、驱动实现与特性

哈尔滨工业大学航天学院 控制与仿真中心

课程重点回顾

8-传感测量元件:

- * 传感测量的基本概念与特性--静态动态特性/精度/分辨率/ 重复误差
- *电压电流传感器--线性霍尔电流传感器/电阻采样
- *位移传感器—电磁式:旋转变压器/感应同步器的结构特点

测量原理、信号处理与应用特性

--光电式: 绝对式/增量式码盘/光栅的原理、信 号处理与应用特性

课程重点回顾

8-传感测量元件:

- *转速测量—测速发电机/位置信号处理: M法/T法/M/T法
- *阻容感传感器的基本应用
- *温度传感器的基本应用

哈尔滨工业大学航天学院 控制与仿真中心

结束语

"假如我们停止科学的进步,而只留意科学的应用,我们很快就会退化成中国人那样,多少代人以来他们都没有什么进步,因为他们只满足于科学的应用,却从来没有追问过他们所做事情中的原理。这些原理就构成了纯科学。

中国人知道火药的应用已经若干世纪,如果他们用正确的方法 探索其特殊应用的原理,他们就会在获得众多应用的同时发展出 化学,甚至物理学。因为只满足于火药能爆炸的事实,而没有寻 根问底,中国人已经远远落后于世界的进步,以至于我们现在只 将这个所有民族中最古老、人口最多的民族当成野蛮人。"

美国物理学会会长亨利•奥古斯特•罗兰 1883《科学》

