Complex Network Analysis Jan. 18th, 2018

Gene Expression Regulatory Network Analysis

Akihiko Konagaya School of Computing

Contents

- What is gene?
- What is gene expression?
- Gene expression regulatory network
- Complex Network Analysis
- Summary

What is gene?

Gene expression regulation

From DNA to Protein

https://www.youtube.com/watch?v=gG7uCskUOrA 2m:41s

Signal transduction => Gene expression

https://www.youtube.com/watch?v=vi-zWoobt_Q 3m:37s

Transcription factors

https://www.youtube.com/watch?v=MkUgkDLp2iE 2m:55s

Issues

- Measurement of genome wide expression data
- Construction of gene expression regulatory network
- Biologically meaningful interpretation of the gene expression regulation network

DNA Micro Array

DNA Hybridization

Experimental Protocol

http://en.wikipedia.org/wiki/DNA_microarray

Genome-wide Gene Expression Analysis

Gene Expression Regulation

- (A) 25° C to 37° C 37° C to 25° C
- (B) Low Osmotic Pressure ⇒ HighHigh Osmotic Pressure ⇒ Low
- (C) Average Expression Levels in (A)
- (D) Average Expression Levels in (B)

Clustering is useful to identify genes responsible for the stimuli

Gasch AP, Spellman PT,..., Botstein D, Brown PO: Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes, Molecular Biology of the Cell, vol. 11, 4241-4257, (2000)

Limitation of Co-expression Analysis

Genes which have a similar expression profile may be regulated by the same transcription factors.

Issues: There are at least three regulation mechanisms even if X, Y and Z show the same expression profile.

Florian Markowetz: BMC Bioinformatics 2007, 8(Suppl 6):S5 doi:10.1186/1471-2105-8-S6-S5

Discovery of Driver Genes

How to identify driver genes such as

Yap1p (Transcription factor for oxidant stress)

Msn2p / Msn4p (Transcription factor for heat and osmotic stress) from Gene Expression Data

Knock out of A affects to B, C, D and E

RNA Sequencing

Ex) Next Generation Sequencer illumine NextSeq 550

>10 M Reads (75bp) 40 samples 11 hours for sequencing

Visualization of reads alignment with genome reference

Visualization of reads alignment with genome reference (zoomed)

Alignment coverage of normal and cancer if gene LEF1 (upregulated in cancer)

Gene Regulatory Network of WNT Signaling pathway with RNA Seq. Data

Reverse engineering of regulatory networks in human B cells

Identification of a master transcription regulation factor (MYC) with ARACNe (algorithm for the reconstruction of accurate cellular networks) which uses mutual information to eliminate indirect interactions.

Basso K, Margolin AA, ..., Dalla-Favera R, Califano A: Reverse Engineering of Regulatory Networks in Human B Cells, Nature Genetics, vol.37, no.4, pp.382-389 (2005)

Comparison between Bayesian network and ARACNe on the synthetic network

Bayesian network:

Blue arrows: correct detection Red arrows: incorrect detection Black arrows: correct but opposite

direction

Synthetic network:

Black arrows: up regulation Red arrows: down regulation

Blue lines: correct detection Red lines: incorrect detection

Gene simulator

$$Y_t + 1 = f(Y_t) = A(Y_t - T) + \varepsilon$$

Good for test data generation and evaluation of network extraction algorithms

Y_t: gene expression level at t (from 0 to 100)

A: a matrix for gene interaction

T: a vector of threshold regulating values (50)

 ϵ : white noise (-10 to 10)

Jing Yu, et al: Using Bayesian Network Inference Algorithms to Recover Molecular Genetic Regulatory Networks, in 3rd International Conference on Systems Biology, Sweden (2002)

Bayesian Network

$$p(x_1, x_2, \dots, x_N) = \prod_{i=1}^{N} p(x_i | x_1, x_2, \dots, x_{i-1})$$
 Good for node dependencies

$$p(x_0 = 1) = 0.5$$

Conditional probability of node 2 only depend on the state of node 1.

p
$$(X_2=1 | x_0 = 0) = 0.5$$

p $(X_2=1 | x_0 = 1) = 0.2$

Conditional probability of node 4 only depend on the state of node 2.

$$p(x_4 = 1 | x_2 = 0) = 0.7$$

 $p(x_4 = 1 | x_2 = 1) = 0.4$

Conditional probability of node 3 only depend on the state of node 1 and node 2.

ARACNe: Improves gene network considering "indirect interaction" between genes

Two genes, x and y, as indirectly interacting through a third gene, z, if the conditional mutual information I(x,y|z) is equal to zero.

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X,Y)$

H(X): entropy of X; ambiguity of X H(X|Y): conditional entropy of X of Y; ambiguity of X when Y is available

X, Y: independent Ambiguity

$$\Leftrightarrow$$
 H(X|Y) = H(X) not decrea
 \Leftrightarrow I(X; Y) = 0 we know Y

Ambiguity of X does not decrease even if

B-cell lymphoma (B細胞リンパ腫)

https://www.youtube.com/watch?v=Y-HaTwHdSM4

(1m 37s)

Data set

Normal B cell 正常B細胞

Genome—wide an a panel of 336 B cell phenotypes to produce antibodies with high affinity

Sample code	Description						
Normal B cells							
CB 2-23	purified CB				_		
CB 3-10	purified CB		Centroblasts 胚中心細胞				
CB 3-30	purified CB						
CB 3-7	purified CB						
CB 6-8	purified CB		カエー・ログル回りに				
CC 3-28	purified CC		Centrocites 中心細胞				
CC 4-14	purified CC						
CC 4-6	purified CC						
CC 7-25	purified CC						
CC 7-7	purified CC						
M 4-12	purified M		N 4 - 1				
M 4-14	purified M	רן ו־	Mantle zone				
M 4-26	purified M	7		_ /.			
M 5-2	purified M	7 7	│ マントル細胞 │				
M 6-8	purified M		Naive B cell 抗原未認識B細				
N 4-13	purified N						
N 4-14	purified N						
N 4-7	purified N	Т.					_
N1 4-21	purified N] ł					门.
N2 4-21	purified N		West I he had a				
Cord 26-2	purified B cells from Cord blood			C	ما ما امم		
Cord 511	purified B cells from Cord blood			Cord blood			ן
Cord 512	purified B cells from Cord blood					<i>1</i> . 4 .	
Cord 1171	purified B cells from Cord blood			ヘ	その	紺	
Cord 1193	purified B cells fi	purified B cells from Cord blood			()	4'H	
Primary tumor samples and	cell lines						
CLL1269	B-CLL unmutate	d					
CLL1275	B-CLL unmutate	d	R	cell	unn	11 I t	at
CLI 1282	B-CLL unmutate	d				IUL	.u

Primary tumor samples and cell	lines	
CLL1269	B-CLL unmutated	
CLL1275	B-CLL unmutated	
CLL1282	B-CLL unmutated	
CLL1318	B-CLL unmutated	
CLL1310	B-CLL unmutated	
CLL4	B-CLL unmutated	
CLL14	B-CLL unmutated	
CLL1304	B-CLL unmutated	1
P-CLL1268	purified B-CLL unmutated	
P-CLL1285	purified B-CLL unmutated	
P-CLL1302	purified B-CLL unmutated	
P-CLLB3	purified B-CLL unmutated	
P-CLLB4	purified B-CLL unmutated	1
P-CLLB7	purified B-CLL unmutated	
P-CLLB14	purified B-CLL unmutated	
P-CLLB15	purified B-CLL unmutated	Ξ
CLL1208	B-CLL mutated	
CLL1255	B-CLL mutated	
CLL1259	B-CLL mutated	
CLL1333	B-CLL mutated	
CLL1270	B-CLL mutated	

B cell unmutated 非変異B細胞

Purified B cell unmutated 精製非変異B細胞

B cell mutated 変異B細胞

A MYC-specific subnetwork was obtained by including all the genes that have $P < 10^{-7}$

56 genes directly connected (first neighbors; red, pink, white)

444 most statistically significant genes (second neighbors; yellow)

Green node: MYC

Red node: ChIP seq data available

Pink node: not available

White nodes: no information available about MYC relationship

Hub of hubs

MYC plays a role of hub of hubs which regulates more than 2000 genes in total.

The sizes of circles are proportional to the number of connections.

Power law in gene expression regulatory network

Log-log scale plot with regards to the number of genes and interactions

Summary

- Gene expression is regulated by complex network.
- Estimation of causality is more important than finding co-expressions.
- Bayesian Network and mutual information are effective to extract gene expression regulatory networks.
- Complex network analysis is also applicable to gene expression regulatory networks.

Report Issues

- Due date Jan 25th (Thu) Noon
- Submission through OCW
- Subject Protein-protein interaction network
- Style a PDF file A4 1 or 2 pages

Issue

 Impression or investigation report on the issue of gene expression regulatory network held on Jan. 18th.