Accelerators (II)

Joel Emer

Massachusetts Institute of Technology Electrical Engineering & Computer Science

Many problems use Sparse Tensors

[Extensor, Hegde, et.al., MICRO 2019]

Exploiting Sparsity

Sparse data can be compressed

Can save space and energy by avoiding manipulation of zero values

$$anything \times 0 = 0$$

$$anything + 0 = anything$$

Can save time and energy by avoiding fetching unnecessary operands and avoiding ineffectual computations

Motivation in DNNs

Leverage CNN sparsity to improve energy-efficiency

SCNN, Parashar et.al., ISCA 2017

Exploitable Sparsity

Acceptable sparsity depends on target task and error tolerance

Error Tolerance

	≤0%	≤1%*	≤2%
ResNet-50	~90%	~90%	~91%
AlexNet			~93%
VGG-16	~80%	~88%	~92%
MobileNet V1	~72%	~79%	~82%
Inception V3	~50%	~62%	~73%
EfficientNet-B0			~52%
MobileNet V2			~25%

*MLPerf error tolerance

Hoefler et al. arXiv, 2021

Hardware Sparse Acceleration Features

Format:

Choose tensor representations to save storage space and energy associated with zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Separation of Concerns

Tensor Data Terminology

- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank H has coordinates 0, 1, 2
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point".
 So (1,2) -> "f"

Tree-based Tensor Abstraction

t_pos	h	t_h_pos	W	t_val
0	0	?	?	?
0	0	0	0	а
0	0	1	2	С
1	2	?	?	?

```
# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:
  for (w, t_val) in t_h:
    sum += t_val
```



```
# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:
  for (w, t_val) in t_h:
    sum += t_val
```



```
# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:
  for (w, t_val) in t_h:
    sum += t_val
```



```
# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:
  for (w, t_val) in t_h:
    sum += t_val
```


Example Fiber Representations

Each fiber has a set of (coordinate, "payload") tuples

Data in a fiber is accessed by its position or offset in memory

Fiber Representation Choices

- Implicit Coordinates
 - Uncompressed (no metadata required)
 - Compressed e.g., run length encoded
- Explicit Coordinates
 - E.g., coordinate/payload list
- Compressed vs Uncompressed
 - Compressed/uncompressed is an attribute of the representation*.
 - Uncompressed means size is proportional to maximum coordinate value
 - Compressed formats will have metadata overhead relative to uncompressed formats. For dense data, this may cost more than just using an uncompressed format.
 - Space efficiency of a representation depends on sparsity

*Note: sparsity/density is an attribute of the data.

Uncompressed/Compressed Representation

Tensor Traversal (CSR Style)

```
# 2-D Tensor Traversal (CSR)
t_segs = Array(H)
t coords = Array(W)
t vals = Array(W)
                                       For uncompressed
                                         rank coordinate
sum = 0
                                         equals position
for t h pos in [0,H):
  h = t h_pos
  t_w_start = t_segs[t_h_pos]
  t_w_len = t_segs[t_h_pos+1]-t_w_start
  for t_w_pos in [t_w_start, t_w_len):
     h = t_coords[t_w_pos] -
     t val = t_vals[t_w_pos]
                                            Coordinates not
     sum += t val
                                          actually used in this
                                               example
```

Separation of Concerns

Hardware Sparse Acceleration Features

Format:

Choose tensor representations to save storage space and energy associated with zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

1-D Output-Stationary Convolution

What opportunity(ies) exist if some of the filter weights are zero?

† Assuming: 'valid' style convolution

December 4, 2024 MIT 6.5900 Fall 2024 L24-29

1-D Output-Stationary Convolution

What did we save using the conditional execution?

What didn't we save using the conditional execution?

† Assuming: 'valid' style convolution

Eyeriss – Clock Gating

CONV: Exploiting Sparse Weights

Separation of Concerns

Hardware Sparse Acceleration Features

Format:

Choose tensor representations to save storage space and energy associated with zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Weight Stationary - Sparse Weights

$$O_q = I_{q+s} \times F_s$$

```
i = Array(W)  # Input activations
f = Tensor(S)  # Filter weights
o = Array(Q)  # Output activations

for (s, f_val) in f:
    for q in [0, Q):
    w = q + s
    o[q] += i[w] * f_val
Concordant traversal
```

Weight Stationary - Sparse Weights

Cambricon-X – Activation Access

Cambricon-X – Zhang et.al., Micro 2016

CONV: Exploiting Sparse Inputs & Sparse Weights

Einsum – Matrix Multiply

$$O_q = I_{q+s} \times F_s$$

Shared indices -> intersection

Einsum – Matrix Multiply

$$O_q = I_{q+s} \times F_s$$

- Shared indices -> intersection
- Contracted indices -> reduction

Einsum – Matrix Multiply

$$O_q = I_{q+s} \times F_s$$

- Shared indices -> intersection
- Contracted indices -> reduction
- Uncontracted indices -> populate output point

Einsum - Convolution

$$O_q = I_{q+s} \times F_s$$

- Shared indices -> intersection
- Contracted indices -> reduction
- Uncontracted indices -> populate output point
- Index arithmetic -> projection

[Extensor, Hegde, et.al., MICRO 2019]

Output Stationary - Sparse Weights & Inputs

$$O_q = I_{q+s} \times F_s$$

December 4, 2024 MIT 6.5900 Fall 2024 L24-43

Fiber Coordinate Projection

Fiber Intersection

Output Stationary - Sparse Weights & Inputs

To Extend to Other Dimensions of DNN

$$O_{p,q,m} = I_{c,p+r,q+s} \times F_{m,c,r,s}$$

- Need to add loop nests for traversing the iteration space of:
 - 2-D input activations and filters
 - Multiple input channels
 - Multiple output channels

Add parallelism...

Parallel Weight Stationary - Sparse Weights

December 4, 2024 MIT 6.5900 Fall 2024 L24-52

Separation of Concerns

Multi-head Attention (without initial embedding step)

$$K_{b,h,m,e} = I_{b,m,d} \times WK_{d,h,e}$$

$$Q_{b,h,m,e} = I_{b,m,d} \times WQ_{d,h,e}$$

$$QK_{b,h,m,p}^{B,H,M,P=M} = Q_{b,h,p,e}^{B,H,M,E} \times K_{b,h,m,e}$$

$$SN_{b,h,m,p} = exp(QK_{b,h,m,p})$$

$$SD_{b,h,p} = SN_{b,h,m,p}$$

$$A_{b,h,m,p} = SN_{b,h,m,p}/SD_{b,h,p}$$

$$V_{b,h,m,f} = I_{b,m,d} \times WV_{d,h,f}$$

$$AV_{b,h,p,f}^{B,H,P=M,F} = A_{b,h,m,p} \times V_{b,h,m,f}$$

$$C_{b,p,h\times F+f}^{B,P=M,G=H\times F} = AV_{b,h,p,f}$$

$$Z_{b,p,d} = C_{b,p,f} \times WZ_{g,d}$$

Passes of a Cascade of Einsums

Pass: a traversal of every element of a particular fiber of a particular rank and tensor; each time an element must be revisited after visiting every other element of that fiber, there is an additional pass

1D Softmax

$$N_m = e^{I_m}$$

$$D = N_m$$

$$A_m = N_m/D$$

Softmax for Numerically Stable Attention

$$GM_p = QK_{m,p} :: \bigvee_{m} \max(\cup)$$

$$SN_{m,p} = e^{QK_{m,p} - GM_p}$$

$$SD_p = SN_{m,p}$$

$$A_{m,p} = SN_{m,p}/SD_p$$

Many Attention Variants

3-pass cascade

$$QK_{m,p} = Q_{e,p} \times K_{e,m}$$

$$GM_p = QK_{m,p} :: \bigvee_{m} \max(\cup)$$

$$SN_{m,p} = e^{QK_{m,p} - GM_p}$$
$$SD_p = SN_{m,p}$$

$$A_{m,p} = SN_{m,p}/SD_p$$

$$AV_{f,p} = A_{m,p} \times V_{f,m}$$

1-pass cascade (FuseMax)

$$BQK_{m1,m0,p} = Q_{e,p} \times BK_{e,m1,m0}$$
 $LM_{m1,p} = BQK_{m1,m0,p} :: \bigvee_{m0} \max(\cup)$
 $RM_{m1+1,p} = \max(RM_{m1,p}, LM_{m1,p})$
 $SLN_{m1,m0,p} = e^{BQK_{m1,m0,p}-RM_{m1+1,p}}$
 $SLD_{m1,p} = SLN_{m1,m0,p}$
 $SLNV_{f,m1,p} = SLN_{m1,m0,p} \times BV_{f,m1,m0}$
 $PRM_{m1,p} = e^{RM_{m1,p}-RM_{m1+1,p}}$
 $SPD_{m1,p} = RD_{m1,p} \times PRM_{m1,p}$
 $RD_{m1+1,p} = SLD_{m1,p} + SPD_{m1,p}$
 $SPNV_{f,m1,p} = RNV_{f,m1,p} \times PRM_{m1,p}$
 $RNV_{f,m1+1,p} = SLNV_{f,m1,p} + SPNV_{f,m1,p}$
 $AV_{f,p} = RNV_{f,m1,p}/RD_{M1,p}$

Many Attention Variants

3-pass	2-pass	1-pass
PyTorch [42]	TileFlow [62]	FlashAttention [15]
TensorFlow [2]	Choi et al. [12]	FlashAttention-2 [14]
FLAT [28]		Rabe and Staats [47]
E.T. [6]		

TABLE I: Classifying prior attention algorithms.

Spatial Architectures for Transformers

FuseMax Architecture

Performance on End-to-End Inference

December 4, 2024 MIT 6.5900 Fall 2024 L23-61

Hardware Architecture for Deep Learning

Part I Understanding Deep Neural Networks

Introduction
Overview of Deep Neural Networks

Part II Design of Hardware for Processing DNNs

Key Metrics and Design Objectives
Kernel Computation
Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part III Co-Design of DNN Hardware and Algorithms

Reducing Precision
Exploiting Sparsity
Designing Efficient DNN Models
Advanced Technologies

6.593[01] – Coming Spring 2025

Thank you!