Abstract Algebra Homework 2

Zachary Meyner

41. Prove that

$$G = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } a \text{ and } b \text{ are not both zero}\}$$

is a subgroup if \mathbb{R}^* under the group operation of multiplication.

Proof. Let
$$n, m \in G$$
 s.t. $n = a + b\sqrt{2}$ and $m = c + d\sqrt{2}$. (WTS: $n \cdot m \in G$ and $n^{-1} \in G$)
Multiplying $m \cdot n$ we have

$$(a+b\sqrt{2})\cdot(c+d\sqrt{2})=ac+ad\sqrt{2}+bc\sqrt{2}+bd\sqrt{2}^2$$
 (Distributive Property)
$$=ac+ad\sqrt{2}+bc\sqrt{2}+2bd$$
 (Distributive Property)
$$=ac+\sqrt{2}(ad+bc)+2bd$$
 (Distributive Property)
$$=(ac+2bd)+(ad+bc)\sqrt{2}$$
 (Commutative and Associative Property)

and $(ac+2bd)+(ad+bc)\sqrt{2}$ is clearly an in G, so $n\cdot m$ must be in G. Now if we take n^{-1} we get

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \cdot \frac{(a-b\sqrt{2})}{(a-b\sqrt{2})} \qquad \text{(Multiplying by 1)}$$

$$= \frac{a-b\sqrt{2}}{(a+b\sqrt{2}) \cdot (a-b\sqrt{2})}$$

$$= \frac{a-b\sqrt{2}}{a^2-b\sqrt{2}^2} \qquad \text{(Distributive Property)}$$

$$= \frac{a+(-b)\sqrt{2}}{a^2-2b} \qquad \text{(Simplifying)}$$

$$= \frac{a}{a^2-2b} + \frac{-b}{a^2-2b}\sqrt{2} \qquad \text{(Commutative and Associative Propety)}$$

Because a and b are in \mathbb{Q} we know $\frac{a}{a^2-2b}$ and $\frac{-b}{a^2-2b}$ must also be in \mathbb{Q} , so n^{-1} must be in G.

 \therefore by the 2 step test G is a subgroup of \mathbb{R}^* under the operation of multiplication.

45. Prove that the intersection of two subgroups of a group G is also a subgroup of G.

Proof. Let $P \leq G$ and $H \leq G$. We know that at least the identity element $e \in P \cap H$ Let $a, b \in P \cap H$ (WTS: $ab^{-1} \in P \cap H$). Because $a, b \in P \cap H$ we know

$$a \in P \cap H$$

$$\implies a \in P \text{ and } a \in H$$

$$b \in P \cap H$$

$$\implies b \in P \text{ and } b \in H$$

Since P and H are subgroups of G we have

$$ab^{-1} \in P \text{ and } ab^{-1} \in H$$

 $\implies ab^{-1} \in P \cap H$

Thus $P \cap H$ is also a subgroup of G.