Standard notations for Deep Learning

This document has the purpose of discussing a new standard for deep learning mathematical notations.

Neural Networks Notations.

General comments:

· superscript (i) will denote the i^{th} training example while superscript [l] will denote the l^{th} layer

Sizes:

 $\cdot m$: number of examples in the dataset

 $\cdot n_x$: input size

 $\cdot n_y$: output size (or number of classes)

 $n_h^{[l]}$: number of hidden units of the l^{th} layer

In a for loop, it is possible to denote $n_x = n_h^{[0]}$ and $n_y = n_h^{[\text{number of layers } +1]}$.

 $\cdot L$: number of layers in the network.

Objects:

 $X \in \mathbb{R}^{n_x \times m}$ is the input matrix

 $x^{(i)} \in \mathbb{R}^{n_x}$ is the i^{th} example represented as a column vector

 $Y \in \mathbb{R}^{n_y \times m}$ is the label matrix

 $y^{(i)} \in \mathbb{R}^{n_y}$ is the output label for the i^{th} example

 $\cdot W^{[l]} \in \mathbb{R}$ number of units in next layer imes number of units in the previous layer weight matrix, superscript [l] indicates the layer

 $b^{[l]} \in \mathbb{R}^{\text{number of units in next layer}}$ is the bias vector in the l^{th} layer

 $\hat{y} \in \mathbb{R}^{n_y}$ is the predicted output vector. It can also be denoted $a^{[L]}$ where L is the number of layers in the network.

Common forward propagation equation examples:

 $a = g^{[l]}(W_x x^{(i)} + b_1) = g^{[l]}(z_1)$ where $g^{[l]}$ denotes the l^{th} layer activation function

$$\hat{y}^{(i)} = softmax(W_h h + b_2)$$

• General Activation Formula: $a_i^{[l]} = g^{[l]}(\sum_k w_{ik}^{[l]} a_k^{[l-1]} + b_i^{[l]}) = g^{[l]}(z_i^{[l]})$

· J(x, W, b, y) or $J(\hat{y}, y)$ denote the cost function.

Examples of cost function:

Cross-Entropy Loss (classification):

 $\cdot \ J_{CE}(\hat{y},y) = -\sum_{i=0}^m y^{(i)} \log \hat{y}^{(i)} \quad \ \ \text{-1. single class (0/1, sigmoid activation)} \\ \quad \ \ -2. \ \text{multi-class (one-hot encoding, softmax activation)}$

 $J_1(\hat{y}, y) = \sum_{i=0}^m |y^{(i)} - \hat{y}^{(i)}|$

Mean squared error (regression)

Deep Learning representations

For representations:

- · nodes represent inputs, activations or outputs
- · edges represent weights or biases

Here are several examples of Standard deep learning representations

Figure 1: Comprehensive Network: representation commonly used for Neural Figure 2: Simplified Network: a simpler representation of a two layer neural Networks. For better aesthetic, we omitted the details on the parameters $(w_{ij}^{[l]}$ and $b_i^{[l]}$ etc...) that should appear on the edges

network, both are equivalent.