STAT 3690 Lecture Note

Week Four (Jan 30, Feb 1, & 3, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

Multivariate normal (MVN) distribution (con'd, J&W Sec 4.2)

Definition

- Standard MVN
 - $-\mathbf{Z} = [Z_1, \dots, Z_p]^{\top} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \Leftrightarrow Z_1, \dots, Z_p \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ pdf

$$f_{\boldsymbol{Z}}(\boldsymbol{z}) = (2\pi)^{-p/2} \exp(-\boldsymbol{z}^{\top} \boldsymbol{z}/2) \cdot \mathbf{1}_{\mathbb{R}^p}(\boldsymbol{z})$$

- General MVN
 - $-\boldsymbol{X} = [X_1, \dots, X_p]^{\top} \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \text{there exists } \boldsymbol{\mu} \in \mathbb{R}^p, \, \mathbf{A} \in \mathbb{R}^{p \times p} \text{ and } \boldsymbol{Z} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \text{ such that } \boldsymbol{X} = \mathbf{A}\boldsymbol{Z} + \boldsymbol{\mu} \text{ and } \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$
 - * Limited to non-degenerate cases, i.e., invertible $\mathbf{A}~(\Leftrightarrow \mathbf{\Sigma} > 0)$

- pdf

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = (2\pi)^{-p/2} (\text{det}\boldsymbol{\Sigma})^{-1/2} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\} \cdot \boldsymbol{1}_{\mathbb{R}^p}(\boldsymbol{x})$$

• Exercise: Density of $MVN_2(\mu, \Sigma)$ evaluated at (4,7), where

$$\boldsymbol{\mu} = [3, 6]^{\top}, \quad \boldsymbol{\Sigma} = \left[\begin{array}{cc} 10 & 2 \\ 2 & 5 \end{array} \right].$$

```
options(digits = 4)
(Mu = matrix(c(3, 6), ncol = 1, nrow = 2))
(Sigma = matrix(c(10, 2 ,2, 5), ncol = 2, nrow = 2))
(x = c(4,7))
# Method 1: following the pdf
(2*pi)^{-length(Mu)/2}*det(Sigma)^{-.5}*exp(-drop(t(x-Mu)%*%solve(Sigma)%*%(x-Mu))/2)
# Method 2: via mutnorm::dmunorm()
mvtnorm::dmvnorm(x, mean = Mu, sigma = Sigma)
```

Properties of MVN

- X is of MVN $\Leftrightarrow a^{\top}X$ is normally distributed for ALL non-zero $a \in \mathbb{R}^p$.

 Warning: the marginal normality do not imply the joint normality.
- If $X \sim \text{MVN}_p(\mu, \Sigma)$, then $\mathbf{A}X + \mathbf{b} \sim \text{MVN}_q(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma \mathbf{A}^\top)$ for $\mathbf{A} \in \mathbb{R}^{q \times p}$ of full-row-rank. Specifically, if $X \sim \text{MVN}_p(\mu, \Sigma)$, then
 - $-\mathbf{\Sigma}^{-1/2}(\hat{\mathbf{X}}-\boldsymbol{\mu})\sim \mathrm{MVN}_p(\mathbf{0},\mathbf{I}) \; \mathrm{AND}$

- (Stochastic representation of MVN) there is $\mathbf{Z} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I})$ such that $\mathbf{X} = \mathbf{\Sigma}^{1/2} \mathbf{Z} + \boldsymbol{\mu}$. • $(\mathbf{X} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$ if $\mathbf{X} \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Exercise: Generate six iid samples following bivariate normal $\text{MVN}_2(\mu, \Sigma)$ with

$$\boldsymbol{\mu} = [3, 6]^{\mathsf{T}}, \quad \boldsymbol{\Sigma} = \left[\begin{array}{cc} 10 & 2 \\ 2 & 5 \end{array} \right].$$

```
options(digits = 4)
set.seed(1)
(Mu = matrix(c(3, 6), ncol = 1, nrow = 2))
(Sigma = matrix(c(10, 2, 2, 5), ncol = 2, nrow = 2))
n = 10
# Method 1: following the stochastic representation
sample1 = matrix(0, nrow = n, ncol = length(Mu))
for (i in 1:n) {
    sample1[i, ] = t(
        expm::sqrtm(Sigma) %*%
        matrix(rnorm(length(Mu)), nrow = length(Mu), ncol = 1) +
        Mu
)
}
sample1
# Method 2: via MASS::mvrnorm()
(sample2 = MASS::mvrnorm(n, Mu, Sigma))
```

• Exercise: Suppose $X_1 \sim \mathcal{N}(0,1)$. In the following two cases, verify that $X_2 \sim \mathcal{N}(0,1)$ as well. Does $\boldsymbol{X} = [X_1, X_2]^{\top}$ follow an MVN in both cases? a. $X_2 = -X_1$; b. $X_2 = (2Y - 1)X_1$, where $Y \sim \text{Ber}(p)$ and $Y \perp \!\!\! \perp X_1$.

```
options(digits = 4)
set.seed(1)
xsize = 1e4L
x1 = rnorm(xsize)
# case a
x2 = -x1
plot3D::hist3D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # 3d histogram of (x1, x2)
plot3D::image2D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # plot the support of joint pdf
# case b
Y = rbinom(n = xsize, 1, .3)
x2 = (2 * Y - 1) * x1
plot3D::hist3D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # 3d histogram of (x1, x2)
plot3D::image2D(z=table(cut(x1, 100), cut(x2, 100)), border = "black") # plot the support of joint pdf
```

Marginal and conditional MVN

• If $X \sim \text{MVN}_p(\mu, \Sigma)$, where

$$m{X} = \left[egin{array}{c} m{X}_1 \ m{X}_2 \end{array}
ight], \quad m{\mu} = \left[egin{array}{c} m{\mu}_1 \ m{\mu}_2 \end{array}
ight] \quad ext{and} \quad m{\Sigma} = \left[egin{array}{c} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{array}
ight]$$

with

- random p_i -vector X_i , i = 1, 2,
- $-p_i$ -vector $\boldsymbol{\mu}_i$, i=1,2,
- $-p_i \times p_i$ matrix $\Sigma_{ii} > 0$, i = 1, 2,
- then
 - (Marginals of MVN are still MVN) $X_i \sim \text{MVN}_{p_i}(\mu_i, \Sigma_{ii})$
 - $\boldsymbol{X}_i \mid \boldsymbol{X}_j = \boldsymbol{x}_j \sim \text{MVN}_{p_i}(\boldsymbol{\mu}_{i|j}, \boldsymbol{\Sigma}_{i|j})$
 - $*~oldsymbol{\mu}_{i|j} = oldsymbol{\mu}_i + oldsymbol{\Sigma}_{ij}^{-1} (oldsymbol{x}_j oldsymbol{\mu}_j)$
 - $* \ oldsymbol{\Sigma}_{i|j} = oldsymbol{\Sigma}_{ii} oldsymbol{\Sigma}_{ij} oldsymbol{\Sigma}_{jj}^{-1} oldsymbol{\Sigma}_{ji} \ \ oldsymbol{X}_1 \perp \!\!\! \perp oldsymbol{X}_2 \Leftrightarrow oldsymbol{\Sigma}_{12} = oldsymbol{0}$
 - - * Warning: the prerequisite for this equivalence is the joint normal of X_1 and X_2 .
- Exercise: The argument $X_1 \perp \!\!\! \perp X_2 \Leftrightarrow \Sigma_{12} = 0$ is based on $[X_1^\top, X_2^\top]^\top \sim \text{MVN}$. That is, if X_1 and X_2 are both MVN BUT they are not jointly normal, the zero Σ_{12} doesn't suffice for the independence between X_1 and X_2 . Recall the case b. in the previous exercise: $X_1 \sim \mathcal{N}(0,1)$ and $X_2 = (2Y-1)X_1$, where $Y \sim \text{Ber}(p)$ and $Y \perp \!\!\! \perp X_1$. Verify that X_1 and X_2 are not independent of each other. (Hint: assume the independence and then check the support of $[X_1, X_2]^{\perp}$.)

Checking normality (J&W Sec 4.6)

- Checking the univariate marginal distributions
 - Normal Q-Q plot
 - * qqnorm(); car::qqPlot()
 - Univariate normality test
 - * shapiro.test(); nortest::ad.test(); MVN::mvn()
- Testing the multivariate normality
 - MVN::mvn()
- Checking the quadratic form
 - $-\chi^2$ Q-Q plot
 - * $D_i^2 = (\boldsymbol{X}_i \bar{\boldsymbol{X}})^{\top} \mathbf{S}^{-1} (\boldsymbol{X}_i \bar{\boldsymbol{X}}) \approx \chi^2(p) \text{ if } \boldsymbol{X}_i \stackrel{\text{iid}}{\sim} \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - * qqplot(); car::qqPlot()

Detecting outliers (J&W Sec 4.7)

- Scatter plot of standardized values
- Check the points farthest from the origin in χ^2 Q-Q plot

Improving normality (J&W Sec 4.8)

• (Original) Box-Cox (power) transformation: transform positive x into

$$x^* = \begin{cases} (x^{\lambda} - 1)/\lambda & \lambda \neq 0\\ \ln(x) & \lambda = 0 \end{cases}$$

with λ selected with certain criterion

- If x < 0, change it to be positive first.
- See J. Tukey (1977). Exploratory Data Analysis. Boston: Addison-Wesley.
- Multivariate Box-Cox transformation

Maximum likelihood (ML) estimation of μ and Σ (J&W Sec 4.3)

- Sample: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mu, \Sigma), n > p$
- Likelihood function

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{(2\pi)^{p} \det(\boldsymbol{\Sigma})}} \exp\left\{ -\frac{1}{2} (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \right\} \right]$$
$$= \frac{1}{\sqrt{(2\pi)^{np} \{\det(\boldsymbol{\Sigma})\}^{n}}} \exp\left\{ -\frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \right\}$$

· Log likelihood

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \ln L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{np}{2} \ln(2\pi) - \frac{n}{2} \ln\{\det(\boldsymbol{\Sigma})\} - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{X}_i - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_i - \boldsymbol{\mu})$$

ML estimator

$$(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}}) = \arg\max_{\boldsymbol{\mu} \in \mathbb{R}^p, \boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}, \boldsymbol{\Sigma} > 0} \ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\bar{\boldsymbol{X}}, \frac{n-1}{n} \mathbf{S})$$

- Consistency: $(\hat{\boldsymbol{\mu}}_{\mathrm{ML}}, \widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}})$ approaches $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ (in certain sense) as $n \to \infty$
- Efficiency: the covariance matrix of $(\hat{\mu}_{\text{ML}}, \widehat{\Sigma}_{\text{ML}})$ is approximately optimal (in certain sense) as $n \to \infty$
- Invariance: for any function g, the ML estimator of $g(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is $g(\hat{\boldsymbol{\mu}}_{\text{ML}}, \hat{\boldsymbol{\Sigma}}_{\text{ML}})$.

Sampling distributions of \bar{X} and S (J&W Sec 4.4)

- Recall the univariate case
 - $-X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ $S^2 \perp \perp \bar{X}$
 - * Sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$
 - $-\sqrt{n}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1)$
 - $-(n-1)S^{2}/\sigma^{2} \sim \chi^{2}(n-1)$
 - $-\sqrt{n}(\bar{X}-\mu)/S \sim t(n-1)$
- The multivariate case
 - $-\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n\sim \overset{\text{ind}}{\mathrm{MVN}}_p\;(\boldsymbol{\mu},\boldsymbol{\Sigma}),\;n>p$
 - $-\mathbf{~S} \perp \!\!\! \perp \bar{X}, ext{ i.e., } \widehat{oldsymbol{\Sigma}}_{ ext{ML}} \perp \!\!\! \perp \hat{oldsymbol{\mu}}_{ ext{ML}}$
 - $-\sqrt{n}\Sigma^{-1/2}(\bar{X}-\mu)\sim \text{MVN}_n(\mathbf{0},\mathbf{I})$
 - $-(n-1)\mathbf{S} = n\widehat{\boldsymbol{\Sigma}}_{\mathrm{ML}} \sim W_p(\boldsymbol{\Sigma}, n-1)$
 - $-n(\bar{X}-\mu)^{\top}\mathbf{S}^{-1}(\bar{X}-\mu) \sim \text{Hotelling's } T^2(p,n-1)$
- Wishart distribution
 - $W_p(\mathbf{\Sigma}, n)$ is the distribution of $\sum_{i=1}^n \mathbf{Y}_i \mathbf{Y}_i^{\top}$ with $\mathbf{Y}_1, \dots, \mathbf{Y}_n \stackrel{\text{iid}}{\sim} \text{MVN}_p(\mathbf{0}, \mathbf{\Sigma})$ * A generalization of χ^2 -distribution: $W_p(\mathbf{\Sigma}, n) = \chi^2(n)$ if $p = \mathbf{\Sigma} = 1$

 - - $*\mathbf{A}\mathbf{A}^{\top} > 0 \text{ and } \mathbf{W} \sim W_p(\mathbf{\Sigma}, n) \Rightarrow \mathbf{A}\mathbf{W}\mathbf{A}^{\top} \sim W_p(\mathbf{A}\mathbf{\Sigma}\mathbf{A}^{\top}, n)$

*
$$\mathbf{W}_i \stackrel{\text{iid}}{\sim} W_p(\mathbf{\Sigma}, n_i) \Rightarrow \mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n_1 + n_2)$$

$$\label{eq:weights} \begin{array}{l} * \ \mathbf{W}_i \overset{\text{iid}}{\sim} W_p(\mathbf{\Sigma}, n_i) \Rightarrow \mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n_1 + n_2) \\ * \ \mathbf{W}_1 \perp \!\!\! \perp \mathbf{W}_2, \ \mathbf{W}_1 + \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n) \ \text{and} \ \mathbf{W}_1 \sim W_p(\mathbf{\Sigma}, n_1) \Rightarrow \mathbf{W}_2 \sim W_p(\mathbf{\Sigma}, n - n_1) \end{array}$$

* $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n)$ and $\mathbf{a} \in \mathbb{R}^p \Rightarrow$

$$\frac{\boldsymbol{a}^{\top} \mathbf{W} \boldsymbol{a}}{\boldsymbol{a}^{\top} \boldsymbol{\Sigma} \boldsymbol{a}} \sim \chi^{2}(n)$$

* $\mathbf{W} \sim W_p(\mathbf{\Sigma}, n), \ \boldsymbol{a} \in \mathbb{R}^p \text{ and } n \geq p \Rightarrow$

$$\frac{\boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{a}}{\boldsymbol{a}^{\top}\mathbf{W}^{-1}\boldsymbol{a}} \sim \chi^{2}(n-p+1)$$

*
$$\mathbf{W} \sim W_p(\mathbf{\Sigma}, n) \Rightarrow$$

$$\operatorname{tr}(\mathbf{\Sigma}^{-1}\mathbf{W}) \sim \chi^2(np)$$

- Hotelling's T^2 distribution
 - A generalization of (Student's) t-distribution
 - If $X \sim \text{MVN}_p(\mathbf{0}, \mathbf{I})$ and $\mathbf{W} \sim W_p(\mathbf{I}, n)$, then

$$\boldsymbol{X}^{\top} \mathbf{W}^{-1} \boldsymbol{X} \sim T^2(p, n)$$

–
$$Y \sim T^2(p,n) \Leftrightarrow \frac{n-p+1}{np}Y \sim F(p,n-p+1)$$

- Wilk's lambda distribution
 - Wilks's lambda is to Hotelling's T^2 as F distribution is to Student's t in univariate statistics.
 - Given independent $\mathbf{W}_1 \sim W_p(\Sigma, n_1)$ and $\mathbf{W}_2 \sim W_p(\Sigma, n_2)$ with $n_1 \geq p$,

$$\Lambda = \frac{\det(\mathbf{W}_1)}{\det(\mathbf{W}_1 + \mathbf{W}_2)} = \frac{1}{\det(\mathbf{I} + \mathbf{W}_1^{-1}\mathbf{W}_2)} \sim \Lambda(p, n_1, n_2)$$

* Resort to an approximation in computation: $\{(p-n_2+1)/2-n_1\}\ln\Lambda(p,n_1,n_2)\approx\chi^2(n_2p)$

Inference on μ

Hypothesis testing

• Is it a squirrel?

Figure 1: Squirrel (Photograph by the Lacoste Garden Centre)

Figure 2: Flying Squirrel (Photograph by Joel Sartore)

Figure 3: Flying Squirrel (Photograph by Alex Badyaev)

- Null and alternative hypotheses, say H_0 and H_1 , resp.
- · Name of approach
- Test statistic (not unique) and corresponding level α rejection region R_{α}

 - $\begin{array}{l} \ \operatorname{Pr}(\operatorname{test} \ \operatorname{statistic} \in R_{\alpha} \mid H_0) \leq \alpha \\ \ \operatorname{Reject} \ H_0 \ \text{if the value of test statistic} \in R_{\alpha} \end{array}$
 - * Type I error: H_0 is incorrectly rejected; i.e., H_0 is correct but rejected

- * Type II error: H_0 is incorrectly accepted i.e., H_0 is wrong but NOT rejected
- p-value: a special test statistic with a default level α rejection region $[0,\alpha]$
- Necessary components in reporting a testing result
 - 1. Hypotheses
 - 2. Name of approach
 - 3. Level α
 - 4. (Value of test statistic AND rejection region) OR p-value
 - 5. Conclusion: e.g., at the α level, we reject/do not reject H_0 , i.e., we believe that...

Likelihood ratio test (LRT)

- Minimize the type II error rate subject to a capped type I error rate (under certain classical circumstances)
- Test statistic

$$\lambda(oldsymbol{x}) = rac{L(\hat{oldsymbol{ heta}}_0; oldsymbol{x})}{L(\hat{oldsymbol{ heta}}; oldsymbol{x})}$$

- \boldsymbol{x} : all the observations
- L: the likelihood function
- $-\theta$: the unknown parameter(s)
- $-\hat{\boldsymbol{\theta}}_0$: ML estimator for $\boldsymbol{\theta}$ under H_0
- $-\hat{\boldsymbol{\theta}}$: ML estimator for $\boldsymbol{\theta}$
- (Asymptotic) rejection region

$$R_{\alpha} = \{ \boldsymbol{x} : -2 \ln \lambda(\boldsymbol{x}) \ge \chi^2_{\nu, 1-\alpha} \}$$

- I.e., reject H_0 when $-2 \ln \lambda(\boldsymbol{x}) \geq \chi^2_{\nu,1-\alpha}$ $\chi^2_{\nu,1-\alpha}$ is the $(1-\alpha)$ -quantile of $\chi^2(\nu)$ ν : the difference in numbers of free parameters between H_0 and H_1
- (Asymptotic) p-value

$$p(\mathbf{x}) = 1 - F_{\chi^2(\nu)} \{ -2 \ln \lambda(\mathbf{x}) \}$$

- $F_{\chi^2(\nu)}(\cdot)$ is the cdf of $\chi^2(\nu)$