

Machine Learning for Facial Expression Recognition: A review

Course: Problems in Machine Learning // ECE-551 // Fall 2022

Prepared by: Silas Curfman

Instructor: Dr. Marios Pattichis

Outline

- I. Motivation
- II. Background and History
- III. State of the Art
- IV. Emerging Methods
- V. Demonstration
- VI. Future Modifications
- VII. Conclusion
- **VIII.Question & Answer**

Motivation

- What is Machine Learning for 'Facial Expression Recognition'?
 - Computer based
 - Digital Images / Video
 - Human Faces
 - Input [Expression]
 - Output [Emotion]

- Why do we care?
 - Communication = 10%(verb) + 90%(nonverbal)

- 75% nonverbal misinterpreted
- Universality, transcendant problem.
- ROI (little more effort, big payoff)
- Applies everywhere, every field

Application / Use Cases

- Societal
 - Public relations
 - Politics
 - Customer / Client
 - Public safetly / Law enforcement
 - Foreign relations, diplomacy

- Interpersonal
 - Healthcare. Doctor / Patient
 - Behavioral sciences
 - Caregiving for nonverbal or semiverbal individuals
 - Strokes, dementia, schizophrenia, autism, etc.
 - Hearing / Speech impairments
 - Language translation / interpretation

History

- Pre-Digital Revolution / Analog
 - Emotions 'coded' into ancient art. Sculptures, masks, paintings.
 - 1872 Darwin publishes 'The Expression of the Emotions in Man and Animals'.
 - 1957 Paul Eckman publishes methods for measuring nonverbal comms.
 Deception detection
 - 1989 Gottman & Krokoff introduce Specific Affect Coding System (SPAFF). Marriage & Family counseling, improve communication.

AUs 4+5, with lip press, associated with Anger, Criticism, Contempt

Unilateral AU14, associated with Contempt

Unilateral AU14 with eye roll, associated with Contempt

AUs 4+10, associated with Disgust and Contempt

AU 2 ("the horns") associated with Domineering

AU 2 ("the horns") with head forward, associated with Domineering

Present Age

- Post-Digital Revolution
 - 1964 Bledsoe experiments with computers detecting faces
 - 1970's Harmon & Lesk extend detection to recognition.
 - 1980's Sirovich & Kirby apply linear algebra, 'Eigenface'
 - 1989 LeCun publishes backpropogation method (Deep Learning)
 - 1990's DARPA & NIST introduce Face Recognition Technology (FERET)

- 2000's Social Media explosion, sudden availability of large datasets.
- 2015 Google releases Tensorflow as open source technology.
- **2016** PyTorch machine learning framework released.
- Present: Open source expression based datasets freely available, both shallow and deep FER methods established, increased access to

Emerging Concepts / Models

- Deep Learning Long Short-Term Memory (LSTM) + Reinforcement Learning
- Affordable access to HPC & Cloud Computing
- Increased availability of large datasets

30,000ft view

- Machine Learning is not
 - Exact
 - One size fits all
 - Deterministic
 - Proofs and axioms
- "DETERMINISTIC"

- Machine Learning is ...
 - Approximate
 - Multiple tools can do same job
 - Generalistic
 - Statistical patterns
- "STOCHASTIC"

Where to start?

- Define the problem. Prediction
- Predict what? Quality or Quantity?
- How many features, classes, labels outputs are we interested in?
- With what resources, datasets, hardware?
- At what cost. Time == \$\$\$

3 FER Datasets

(7 labeled emotions)

• JAFFE

- Small dataset, 213 labeled images
- Preprocessed: 8-bit greyscale, 256 x 256.
- Highly regularized
 - Uniform age, ethnicity, sex,
 & pose
- Very low entropy

• CK+

- Moderate complexity,
 5,876 labeled images
- RGB color images, 640 x 480
- Generalized
 - Multipe ages, ethnicities, sex
- Medium entropy

• FER-2013

- Large dataset, 30,000 labeled images
- Greyscale images, 48 x 48
- Generalized
 - Multipe ages, ethnicities, sex
- High entropy

3 FER Models

• SVM's

- Easy to construct
- Small datasets = OK
- Best for binary classification but can be multi-class
- Single layer

• MLP'S

- Moderate complexity
- Getting into neural nets
- Combining multiple classifiers for better output
- Multiple classes = OK
- Multiple layers
 Neural Network

• CNN's

- High complexity
- Best with large dataset
- Inputs tensors instead of vectors, retains special relations between pixels
- Nonlinear = OK
- Multiple hidden layers

Data Preprocessing

Load it ...

```
# Load the dataset from the disk

def get_label_from_filename(filename):
    """ Given a filename of the format 'NM.NE2.93.tiff', return the label 'NE'."""
    index = filename.find('.')
    return filename[index+1:index+3]
```

Label it...

```
emotion_to_int = {"AN":0, "DI":1, "FE":2, "NE":3, "SA":4, "SU":5, "HA":6}
int_to_emotion = {0:"AN", 1:"DI", 2:"FE", 3:"NE", 4:"SA", 5:"SU", 6:"HA"}
emotion_list = emotion_to_int.keys()

img_data_list = []
labels_list = []
```

Flatten it...

```
img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data = img_data/255 # Normalize between [0-1]
img_data = img_data.reshape((len(img_data), -1)) # Flatten the images
labels = np.array(labels_list)
```

Split it...

```
# Split the data into train and test set
train_size = int(num_images*0.8) # reserve 80% for training, 20% for testing
train_images = img_data[0:train_size]
train_labels = labels[0:train_size]
test_images = img_data[train_size:]
test_labels = labels[train_size:]
```


Display it...

```
# Create an NxN display of samples
N = 5
fig, axs = plt.subplots(N, N)

for i in range(5):
   for j in range(5):
    index = random.randint(0, 213-1) # pick a random index
    img = img_data[index]
    img = img.reshape(cols, rows, channels)
    label = labels[index]
    axs[i, j].imshow(img)
    axs[i, j].set_title("label is " + int_to_emotion[label])
```


SVM FER Demo (JAFFE)

SVM Setup...


```
from sklearn import svm, metrics

# Create a classifier: a support vector classifier
# This is with RBF kernel
classifier = svm.SVC(gamma=0.001)

print("classifier: ", classifier)
# C: # OVR: One-versus-rest (alternative: ovo -- One-versus-one)
# Kernel (RBF): Radial Basis Functions
# Probability (False): Estimate the probability for class membership from scores
# class_weight (None): Give more weight to some classess
# coef0: Constant r in the kernel definition (see above)
```

SVM Train & Predict...

```
# Train the SVM model on the training data
classifier.fit(train_images, train_labels)

# Now predict on the test data
predicted = classifier.predict(test_images)
expected = test_labels
```

SVM Measure Performance...

Initial Configuration

• C: 1.0

• Kernel: rbf

• Gamma: 0.001

• Multiclass: one vs one

• Initial Results

Score	SVM (0)
Precision	0.86
Recall	0.81
F1	0.80

Gridsearch

HyperParam	MLP
С	1.0e(-7)
Kernel	rbf
gamma	1.0e(-6)

Optimized

Score	SVM (0)
Precision	0.94
Recall	0.91
F1	0.91

MLP FER Demo (JAFFE)

MLP Setup...

from sklearn.neural_network import MLPClassifier

mlp_classifier = MLPClassifier(solver='lbfgs', alpha=1e-5,
hidden_layer_sizes=(1000, 200), random_state=1, verbose=True)

print(mlp_classifier)
 # alpha: L2 penalty (regularization term) parameter.
 # beta_1, beta_2: parameters for first-order and second-order moments of Adam
 # loss: cross-entropy loss.

MLP Train & Predict...

We learn the SVM model on the training data
mlp_classifier.fit(train_images, train_labels)

Now predict on the test data
predicted = mlp_classifier.predict(test_images)
expected = test_labels

MLP Measure Performance...

Output

MLP FER Demo (JAFFE) Results

Initial Configuration

Solver: lbfgs

• Alpha: 0.0001

Hidden Layers / Nodes: H1:1000N, H2:200N

• Split: 80% Train, 10% Test, 10% Validate

Initial Results

Score	SVM (0)
Precision	0.86
Recall	0.81
F1	0.80

Gridsearch

HyperParam	MLP
Solver	SGC
Alpha	0.0001
Layers	H1:200N H2:200N H3:200N H4:200N H5:200N

Final Results

Score	SVM (0)
Precision	0.94
Recall	0.91
F1	0.91

Proposed Modifications

Deep learning, CNN

 Kernel decomposition of images to retain special relationships to better handle randomly framed images.

 Host via cloud computing platform for real time access

Conclusion / Remarks / References

- SVM / MLP Python Notebook https://github.com/blueCollarSysadmin/ECE551/blob/804b4f886939938ff6c1686463e1e70e07fa77f2/ece551fe rSvmMlp.ipynb
- CNN Demo Notebook (FER-2013 data set)
 https://github.com/blueCollarSysadmin/ECE551/blob/804b4f886939938ff6c1686463e1e70e07fa77f2/ece551fe
 rCnnTflow.ipynb
- JAFFE Dataset https://zenodo.org/record/3451524#.Y04IXnbMJhE
- CK+ Datset https://ieeexplore.ieee.org/document/5543262/references#references
- FER-2013 Dataset https://www.kaggle.com/datasets/msambare/fer2013
- Written version of this report:
 https://github.com/blueCollarSysadmin/ECE551/blob/d751edfbeea0ed1d2606f99995499021984245c7/unmEce551 machineLearningForFER silasCurfman fall 2022.pdf