PROBLEMAS PROPUESTOS, CHOQUES

Dadas las siguientes afirmaciones indique sí es verdadero o falso

- 1. En un choque, la parte de energía asociada al movimiento del centro de masa no varía.
- 2. En un choque perfectamente inelástico o plástico toda la energía cinética de las partículas que colisionan se pierde.

Dadas las siguientes situaciones, seleccione la opción que usted considere correcta

SP1. Un saco de arena de masa M se encuentra colgado como se ve en la figura.

Un proyectil de masa m es disparada contra el saco con una velocidad \vec{v}_{0B} (velocidad inicial de la bala) y se incrusta dentro del saco de arena de masa M, haciendo que el conjunto saco y bala, adquiera una velocidad final \vec{v}_f .

Entonces, la velocidad inicial del proyectil (\vec{v}_{0B}) se puede expresar como:

a) $\frac{M\vec{v}_f}{m}$

 $\mathbf{b)} \ \frac{(M+m)\vec{v}_j}{M}$

c) $\frac{m\vec{v}_f}{M}$

d) $\frac{(M+m)\vec{v}_f}{m}$

SP2.

Un muchacho de masa M (en gramos) se encuentra sentado en un columpio. Una pelota de masa m (en gramos) se suelta por el tobogán de manera que baje y llegue con una cierta velocidad \vec{v}_{0B} al final de la rampa. El muchacho atrapa la pelota haciendo que el conjunto (muchacho-pelota)) adquiera una velocidad final \vec{v}_f .

a) $\frac{m\vec{v}_f}{M}$

b) $\frac{(M+m)\vec{v}_f}{m}$

c) $\frac{M\vec{v}_f}{M+m}$

 $\mathbf{d)} \ \frac{(M+m)\vec{v}_f}{M}$

SP3.

Sobre

a) Menor que la que tenía el carrito solo

b) Igual a la que tenía el carrito solo

 Mayor que la que tenía el carrito solo d) Cero

PROBLEMAS GENERALES

PROBLEMA 1. Un bloque de masa m1 se mueve con una rapidez Sobre una superficie inclinada rugosa con ángulo de elevación $\theta=30^{\circ}$ con un coeficiente de fricción $\mu=0$,3 del cual se desliza desde una altura h=5m. un bloque de masa $m_l=2~kg$. al finalizar este plano inclinado se encuentra un plano horizontal lizo en donde va a ocurrir un choque debido a que un péndulo de masa $m_2=2~kg$ que oscila desde una altura igual a la longitud de 3~m.

Si toda la superficie AB es rugosa

- 1. Cuando los dos cuerpos impactan y se produce un choque perfectamente elástico, en esta situación determine la altura alcanzada por el cuerpo m2.
- 2. Si los dos cuerpos chocan y cada uno de ellos suben hasta una altura de 2 m. determine el coeficiente de deformación.
- 3. Si en cambio el cuándo el péndulo va a chocar con el bloque de masa m1se corta la cuerda y después del choque los dos cuerpos siguen unidos determine la altura hasta donde suben los dos cuerpos.
- 4. en esta situación con respecto a la energía mecánica total se puede afirmar:

a. Se conserva	b. Se acaba	c. Disminuye	d. No se puede
----------------	--------------------	---------------------	-----------------------

PROBLEMA 2. Una bala de masa $m_B = 0.01 kg$ se mueve con cierta velocidad horizontal y choca con un taco de masa $m_T = 0.2 kg$, quedando incrustada en él. El taco estaba unido a un resorte de constante k = 40 N/m que se comprime x = 0.2 m después de la colisión.

- 1. ¿Cuál es la velocidad del taco-bala después de la colisión?
- 2. ¿Cuál es la velocidad de la bala antes de chocar con el taco?
- 3. Se puede afirmar que durante el choque de la bala con el taco:

a) Se conserva la energía cinética	b) La Energía cinética asociada al centro de masas es constante
c) Se conserva la energía mecánica	d) La velocidad del centro de masas cambia

4. ¿Cuál es el valor de la Energía cinética después del choque?

a) Se conserva la energía cinética	b) La Energía cinética asociada al centro de masas es constante
c) Se conserva la energía mecánica	d) La velocidad del centro de masas cambia

PROBLEMA 3. Considere una pista sin fricción ABC como la que se muestra en la figura. Un bloque de masa m_1 se suelta desde el punto A y choca frontalmente y de manera perfectamente elástica con un bloque de masa m_2 en el punto B, inicialmente en reposo.

Datos
$$m_1 = 10kg$$
; $m_2 = 5kg$; $\vec{g} = 9.8 \frac{m}{c^2}$

Determinar:

1. Con respecto a la velocidad del centro de masa antes y después del choque, se puede afirmar que:

a)	Permanece Constante	b) Se hace cero	c) Disminuye	d) Aumenta
----	---------------------	------------------------	--------------	-------------------

Sí la Velocidad del bloque m_1 justo después del choque es de $2^{m}/s$.

- **2.** La altura h_0 desde donde fue soltado m_1 (en m) es:
- **3.** La energía asociada al centro de masa (en *J*) es:

Sí el choque que ocurre entre ambas masas es plástico y m_1 es soltado desde la misma altura h_0

4. La velocidad del sistema $m_1 - m_2$ después del choque (en m/s) es:

PROBLEMA 4. Un muchacho de masa $m_2 = 40 \text{kg}$ está firmemente amarrado a un columpio y se deja caer desde una altura h = 3,26 m. Cuando el columpio está en la parte más baja de su trayectoria choca con una pelota de masa $m_1 = 4 \text{kg}$ que fue lanzada horizontalmente contra él. (Considere el columpio de masa despreciable).

SI EL CHOQUE ES PERFECTAMENTE ELÁSTICO y la pelota rebota con velocidad de -22,73m/s

1. ¿Cuál era la velocidad inicial de la pelota?

Si en cambio el muchacho se deja caer desde la misma altura y la pelota se lanza horizontalmente a 4m/s y el muchacho la atrapa (en la parte más baja del recorrido del columpio)

2. Entonces podemos afirmar que:

a) Hay una pérdida de la energía asociada	b) La energía final es	c) Se pierde toda la	d) Hay energía cinética
al movimiento del centro de masas	$1/2$ M v_{CM}^2	energía cinética	relativa después del choque

3. La velocidad con la que salen el muchacho y la pelota después de que la agarre es:

PROBLEMA 5. Dos bloques de masas m_1 y m_2 se encuentran inicialmente como se ve en la figura. El choque entre ambos se produce en la superficie horizontal de la pista. Considere que la pista ABC es totalmente lisa. **Datos:**

$$m_1 = 6 kg$$
; $m_2 = 9 kg$; $v_2 = 10 \text{ m/s}$; $AB = 14 \text{ m}$; $g = 9.8 \text{ m/s}^2$

Si el choque es elástico entre los bloques.

1. Las velocidades después del choque son:

Si en cambio después de chocar, los dos bloques se mueven juntos.

2. Entonces comparando la energía cinética antes y después del choque, se puede afirmar que:

a) Hay una pérdida	b) La energía cinética	c) Se pierde toda la energía	d) No hay energía
parcial de la energía	final es ½.M. Vcm.	cinética asociada al	cinética relativa al
cinética relativa al		movimiento del centro de	centro de masa
centro de masa.		masa.	después del choque.

- 3. La velocidad con la que se mueven los bloques inmediatamente después del choque.
- 4. La altura que alcanzan a subir los bloques antes de quedar momentáneamente en reposo después del choque.

PROBLEMA 6. Juanito y Pedrito están en la nueva atracción de un parque de diversiones, Juanito de masa m_1 se encuentra a una altura h de una plataforma inclinada rugosa y comienza a descender con una rapidez inicial $v_{m_1} = 2 \ m/s$. y Pedrito de masa m_2 se mueve por un plano horizontal liso con una velocidad de $v_{m_2} = 10 \ \hat{\imath} \ m/s$

Datos:

$$m_1 = 60 \ kg;$$
 $m_2 = 40 \ kg;$ $g = 9.8 \ m/s^2$
 $\theta = 30^{\circ};$ $h = 4 \ m;$ $\mu_k = 0.25$

Si en el momento en que Juanito y Pedrito se encuentran ocurre un choque perfectamente elástico

- 1. Entonces el valor de las velocidades de m1 y m2 después del choque es:
- 2. Y el valor de la energía cinética relativa al centro de masas justo después del choque es

Si el choque que ocurre entre Juanito y Pedrito es perfectamente inelástico y al final del plano horizontal existe un resorte de constante $k=400\ N/m$, entonces:

- 3. Se puede afirmar que la deformación que experimenta el resorte tiene un valor de:
- 4. En cuanto a la energía cinética se puede afirmar que:

a) Hay una pérdida de	b) Hay una pérdida	c) Se pierde toda	d)Se pierde	e) La energía cinética antes
la energía cinética	de la energía	la energía	toda la	y después del choque es
asociada al	cinética relativa al	cinética relativa	energía	igual a la energía
moviendo del centro	centro de masas	al centro de	cinética	cinética asociada al
de masas		masas		centro de masas.