A próxima propriedade de integrais diz que, se integrarmos a função constante f(x, y) = 1sobre uma região D, obteremos a área de D:

10

$$\iint\limits_{D} 1 \, dA = A(D)$$

A Figura 19 ilustra por que a Equação 10 é verdadeira: um cilindro sólido, cuja base é D e a altura é 1, tem volume $A(D) \cdot 1 = A(D)$, mas sabemos que também podemos escrever seu volume como $\iint_D 1 dA$.

Finalmente, podemos combinar as Propriedades 7, 8 e 10 para demonstrar a seguinte propriedade. (Veja o Exercício 61.)

FIGURA 19 Cilindro com base D e altura 1

11 Se $m \le f(x, y) \le M$ para todo (x, y) em D, então

$$mA(D) \le \iint\limits_D f(x, y) dA \le MA(D)$$

EXEMPLO 6 Utilize a Propriedade 11 para estimar a integral $\iint_D e^{\sin x \cos y} dA$, onde $D \notin O$ disco com centro na origem e raio 2.

SOLUÇÃO Como $-1 \le \text{sen } x \le 1 \text{ e } -1 \le \cos y \le 1, \text{ temos } -1 \le \text{sen } x \cos y \le 1 \text{ e, por-}$ tanto,

$$e^{-1} \le e^{\sin x \cos y} \le e^{1} = e^{-1}$$

Assim, usando $m = e^{-1} = 1/e$, M = e e $A(D) = \pi(2)^2$ na Propriedade 11, obtemos

$$\frac{4\pi}{e} \le \iint\limits_{\Omega} e^{\operatorname{sen} x \cos y} dA \le 4\pi e$$

1-6 Calcule a integral iterada.

Exercícios

- 1. $\int_0^4 \int_0^{\sqrt{y}} -xy^2 \, dx \, dy$ 2. $\int_0^1 \int_{2x}^2 (x y) \, dy \, dx$ 3. $\int_0^1 \int_{x^2}^{3x} (1 + 2y) \, dy \, dx$ 4. $\int_0^2 \int_y^{2y} xy \, dx \, dy$ 5. $\int_0^1 \int_0^{s^2} \cos(s^3) \, dt \, ds$ 6. $\int_0^1 \int_0^v \sqrt{1 v^2} \, du \, dv$
- 7–10 Calcule a integral dupla.
- 7. $\iint y^2 dA$, $D = \{(x, y) \mid -1 \le y \le 1, -y 2 \le x \le y\}$
- **8.** $\iint \frac{y}{x^5 + 1} dA, \quad D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le x^2\}$
- **9.** $\iint x \, dA$, $D = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \text{sen } x\}$
- **10.** $\iint_{\Omega} x^3 dA$, $D = \{(x, y) \mid 1 \le x \le e, \ 0 \le y \le \ln x\}$
- 11. Desenhe um exemplo de uma região que seja

- (a) do tipo I, mas não do tipo II
- (b) do tipo II, mas não do tipo I
- 12. Desenhe um exemplo de uma região que seja
 - (a) tanto do tipo I quanto do tipo II
 - (b) nem do tipo I nem do tipo II
- 13–14 Expresse D como a região do tipo I e também como uma região do tipo II. Em seguida, calcule a integral dupla de duas maneiras.
- **13.** $\iint x \, dA, D \text{ \'e limitada pelas retas } y = x, y = 0, x = 1$
- **14.** $\iint xy \, dA$, D é limitada pelas curvas $y = x^2$, y = 3x
- 15-16 Defina as integrais iteradas para ambas as ordens de integração. Então, calcule a integral dupla usando a ordem mais fácil e explique por que ela é mais fácil.
- **15.** $\iint_D y \, dA, D \text{ \'e limitada por } y = x 2, x = y^2$
- É necessário usar uma calculadora gráfica ou computador

SCA É necessário usar um sistema de computação algébrica

- **16.** $\iint y^2 e^{xy} dA, D \notin \text{limitada por } y = x, y = 4, x = 0$
- 17-22 Calcule a integral dupla.
- 17. $\iint x \cos y \, dA$, D é limitada por y = 0, $y = x^2$, x = 1
- **18.** $\iint (x^2 + 2y) dA$, *D* é limitada por y = x, $y = x^3$, $x \ge 0$
- **19.** $\iint y^2 dA$, *D* é a região triangular com vértices (0, 1), (1, 2), (4, 1)
- **20.** $\iint xy^2 dA, \quad D \text{ \'e limitada por } x = 0 \text{ e } x = \sqrt{1 y^2}$
- 21. $\iint (2x y) dA$, D é limitada pelo círculo de centro na origem e
- **22.** $\iint 2xy \, dA$, D é a região triangular com vértices (0, 0), (1, 2) e
- 23-32 Determine o volume do sólido dado.
- **23.** Abaixo do plano x 2y + z = 1 e acima da região limitada por $x + y = 1 e x^2 + y = 1$
- **24.** Abaixo da superfície $z = 2x + y^2$ e acima da região limitada por $x = y^2 e x = y^3$
- **25.** Abaixo da superfície z = xy e acima do triângulo e vértices (1, 1), (4, 1) e (1, 2)
- **26.** Limitado pelo paraboloide $z = x^2 + 3y^2$ e pelos planos x = 0, y = 1, y = x, z = 0
- 27. Limitado pelos planos coordenados e pelo plano 3x + 2y + z = 6
- **28.** Limitado pelos planos z = x, y = x, x + y = 2 e z = 0
- **29.** Limitado pelos cilindros $z = x^2$, $y = x^2$ e pelos planos z = 0,
- **30.** Limitado pelo cilindro $y^2 + z^2 = 4$ e pelos planos x = 2y, x = 0, z = 0 no primeiro octante
- **31.** Limitado pelo cilindro $x^2 + y^2 = 1$ e pelos planos y = z, x = 0, z = 0 no primeiro octante
- **32.** Limitado pelos cilindros $x^2 + y^2 = r^2$ e $y^2 + z^2 = r^2$
- 33. Utilize uma calculadora gráfica ou um computador para estimar a coordenada x dos pontos de intersecção da curva $y = x^4$ e $y = 3x - x^2$. Se D é a região limitada por essas curvas, estime $\iint_D x dA$.
- 34. Encontre o volume aproximado do sólido no primeiro octante limitado pelos planos y = x, z = 0 e z = x e pelo cilindro $y = \cos x$. (Utilize uma ferramenta gráfica para estimar os pontos de intersecção.)
- 35-36 Determine o volume do sólido por subtração de dois volumes.
- **35.** O sólido limitado pelos cilindros parabólicos $y = 1 x^2$, $y = x^2 - 1$ e pelos planos x + y + z = 2, 2x + 2y - z + 10 = 0
- **36.** O sólido limitado pelo paraboloide cilíndrico $y = x^2$ e pelos planos z = 3y, z = 2 + y
- 37-38 Esboce o sólido cujo volume é dado pela integral iterada.
- **37.** $\int_0^1 \int_0^{1-x} (1-x-y) \, dy \, dx$ **38.** $\int_0^1 \int_0^{1-x^2} (1-x) \, dy \, dx$
- 39-42 Use um sistema de computação algébrica para determinar o volume exato do sólido.

- SCA 39. Abaixo da superfície $z = x^2v^4 + xv^2$ e acima da região limitada pelas curvas $y = x^3 - x$ e $y = x^2 + x$ para $x \ge 0$
 - **40.** Entre os paraboloides $z = 2x^2 + y^2$ e $z = 8 x^2 2y^2$ e dentro do cilindro $x^2 + y^2 = 1$
 - **41.** Limitado por $z = 1 x^2 y^2$ e z = 0
 - **42.** Limitado por $z = x^2 + y^2$ e z = 2y
 - 43-48 Esboce a região de integração e mude a ordem de integração.

 - **43.** $\int_{0}^{1} \int_{0}^{y} f(x, y) dy dx$ **44.** $\int_{0}^{2} \int_{1}^{4} f(x, y) dy dx$

 - **45.** $\int_0^{\pi/2} \int_0^{\cos x} f(x, y) \, dy \, dx$ **46.** $\int_{-2}^2 \int_0^{\sqrt{4-2}} f(x, y) \, dx \, dy$
 - **47.** $\int_{1}^{2} \int_{0}^{\ln x} f(x, y) \, dy \, dx$ **48.** $\int_{0}^{1} \int_{\arctan x}^{\pi/4} f(x, y) \, dy \, dx$

 - 49-54 Calcule a integral trocando a ordem de integração.
 - **49.** $\int_{0}^{1} \int_{0}^{3} e^{x^{2}} dx dy$
- **50.** $\int_0^{\sqrt{\pi}} \int_y^{\sqrt{\pi}} \cos(x^2) \, dx \, dy$
- **51.** $\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} \, dy \, dx$ **52.** $\int_0^1 \int_x^1 e^{x/y} \, dy \, dx$
- **53.** $\int_0^1 \int_{\arccos y}^{\pi/2} \cos x \sqrt{1 + \cos^2 x} \, dx \, dy$
- **54.** $\int_{0}^{8} \int_{3/2}^{2} e^{x^4} dx dy$
- 55–56 Expresse D como a união de regiões do tipo I ou do tipo II e calcule a integral.
- $55. \iint_{D} x^2 dA$

- 57–58 Use a Propriedade 8 para estimar o valor da integral.
- **57.** $\iint e^{-(x^2+y^2)^2} dA$, Q é o quarto de círculo com centro na origem e raio $\frac{1}{2}$ no primeiro quadrante
- **58.** $\iint \sin^4(x+y) dA$, $T \in \text{ o triângulo limitado pelas retas } y=0$, v = 2x e x = 1
- 59-60 Encontre o valor médio de f na região D
- **59.** f(x, y) = xy, D é o triângulo com vértices, (0, 0), (1, 0) e (1, 3)
- **60.** $f(x, y) = x \operatorname{sen} y$, $D \in \text{limitada pelas curvas } y = 0$, $y = x^2 \operatorname{e} x = 1$
- 61. Demonstre a Propriedade 11.
- **62.** No cálculo de uma integral dupla sobre uma região D, obtivemos uma soma de integrais iteradas como a que segue:

$$\iint_{\mathbb{R}} f(x, y) dA = \int_{0}^{1} \int_{0}^{2y} f(x, y) dx dy + \int_{1}^{3} \int_{0}^{3-y} f(x, y) dx dy$$

Esboce a região D e expresse a integral dupla como uma integral iterada com ordem de integração contrária.

63-67 Use a geometria ou simetria, ou ambas, para calcular a integral dupla.

63.
$$\iint\limits_{D} (x+2) dA, \ D = \{(x,y) \mid 0 \le y \le \sqrt{9-x^2}\}$$

64.
$$\iint_D \sqrt{R^2 - x^2 - y^2} \, dA, D \neq 0 \text{ disco com centro na origem e raio } R$$

65.
$$\iint\limits_{D} (2x + 3y) dA, D \notin \text{ o retângulo } 0 \le x \le a, 0 \le y \le b$$

66.
$$\iint_{\mathbb{R}} (2 + x^2 y^3 + y^2 \operatorname{sen} x) \, dA, \ D = \{(x, y) \mid |x| \le |y| \le 1\}$$

65.
$$\iint_D (2x + 3y) dA$$
, $D \in \text{ o retângulo } 0 \le x \le a$, $0 \le y \le b$
66. $\iint_D (2 + x^2y^3 + y^2 \text{sen } x) dA$, $D = \{(x, y) || x | \le |y| \le 1\}$
67. $\iint_D (ax^3 + by^3 + \sqrt{a^2 - x^2}) dA$, $D = [-a, a] \times [-b, b]$

SCA 68. Desenhe o sólido limitado pelo plano x + y + z = 1 e pelo paraboloide $z = 4 - x^2 - y^2$ e determine seu volume exato. (Utilize seu SCA para fazer esse desenho, para achar as equações dos limites da região de integração e para calcular a integral dupla.)

Integrais Duplas em Coordenadas Polares

Suponha que queiramos calcular a integral dupla $\iint_R f(x, y) dA$, onde R é uma das regiões mostradas na Figura 1. Em qualquer dos casos, a descrição de R é complicada em coordenadas retangulares, mas a descrição de R fica mais fácil utilizando-se coordenadas polares.

FIGURA 1

(a)
$$R = \{(r, \theta) \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$$

(b)
$$R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$$

Lembre-se, a partir da Figura 2, de que as coordenadas polares (r, θ) de um ponto estão relacionadas com as coordenadas retangulares (x, y) pelas equações

$$r^2 = x^2 + y^2$$
 $x = r \cos \theta$ $y = r \sin \theta$

(Veja a Seção 10.3.)

As regiões da Figura 1 são casos especiais de um retângulo polar

$$R = \{ (r, \theta) \mid a \le r \le b, \alpha \le \theta \le \beta \}$$

que é apresentado na Figura 3. Para calcularmos a integral dupla $\iint_R f(x, y) dA$, onde R é um retângulo polar, dividimos o intervalo [a, b] em m subintervalos $[r_{i-1}, r_i]$ de larguras iguais $\Delta r = (b-a)/m$ e dividimos o intervalo $[\alpha, \beta]$ em n subintervalos $[\theta_{i-1}, \theta_i]$ de larguras iguais $\Delta \theta = (\beta - \alpha)/n$. Então, os círculos $r = r_i$ e os raios $\theta = \theta_i$ dividem o retângulo polar R nos retângulos polares menores R_{ij} mostrados na Figura 4.

FIGURA 2

CAPÍTULO 14 REVISÃO

Teste Verdadeiro-Falso

1. Verdadeiro **3.** Falso **5.** Falso 7. Verdadeiro 9. Falso

11. Verdadeiro

Exercícios

1. $\{(x, y) | y > -x - 1\}$

3.

5.

7.

11. (a) ≈ 3.5 °C/m, -3.0 °C/m (b) ≈ 0.35 °C/m pela Equação 14.6.9 (A Definição 14.6.2 dá ≈1,1°C/m.) (c) -0.25

13.
$$f_x = 32xy(5y^3 + 2x^2y)^7$$
, $f_y = (16x^2 + 120y^2)(5y^3 + 2x^2y)^7$

15.
$$F_{\alpha} = \frac{2\alpha^3}{\alpha^2 + \beta^2} + 2\alpha \ln(\alpha^2 + \beta^2), F_{\beta} = \frac{2\alpha^2\beta}{\alpha^2 + \beta^2}$$

17.
$$S_u = \arctan(v\sqrt{w}), S_v = \frac{v\sqrt{w}}{1 + v^2w}, S_w = \frac{uv}{2\sqrt{w}(1 + v^2w)}$$

19.
$$f_{xx} = 24x, f_{xy} = -2y = f_{yx}, f_{yy} = -2x$$

21.
$$f_{xx} = k(k-1)x^{k-2}y^lz^m, f_{xy} = klx^{k-1}y^{l-1}z^m = f_{yx},$$

 $f_{xz} = kmx^{k-1}y^lz^{m-1} = f_{zx}, f_{yy} = l(l-1)x^ky^{l-2}z^m,$
 $f_{yz} = lmx^ky^{l-1}z^{m-1} = f_{zy}, f_{zz} = m(m-1)x^ky^lz^{m-2}$

25. (a)
$$z = 8x + 4y + 1$$
 (b) $\frac{x-1}{8} = \frac{y+2}{4} = \frac{z-1}{-1}$

27. (a)
$$2x - 2y - 3z = 3$$
 (b) $\frac{x-2}{4} = \frac{y+1}{-4} = \frac{z-1}{-6}$

29. (a)
$$x + 2y + 5z = 0$$

(b)
$$x = 2 + t$$
, $y = -1 + 2t$, $z = 5t$

31.
$$(2, \frac{1}{2}, -1), (-2, -\frac{1}{2}, 1)$$

31.
$$(2, \frac{1}{2}, -1), (-2, -\frac{1}{2}, 1)$$

33. $60x + \frac{24}{5}y + \frac{32}{5}z - 120; 38,656$

35.
$$2xy^3(1+6p) + 3x^2y^2(pe^p + e^p) + 4z^3(p\cos p + \sin p)$$

37. −47, 108

43.
$$\langle 2xe^{yz^2}, x^2z^2e^{yz^2}, 2x^2yze^{yz^2} \rangle$$
 45. $-\frac{4}{5}$ **47.** $\sqrt{145}/2, \langle 4, \frac{9}{2} \rangle$ **49.** $\approx \frac{5}{8}$ nós/mi

47.
$$\sqrt{145/2}$$
, $\langle 4, \frac{9}{2} \rangle$ **49.** $\approx \frac{5}{8}$ nós/mi

51. Mínimo
$$f(-4, 1) = -11$$

53. Máximo
$$f(1, 1) = 1$$
; pontos de sela $(0, 0)$, $(0, 3)$, $(3, 0)$

55. Máximo
$$f(1, 2) = 4$$
, mínimo $f(2, 4) = -64$

57. Máximo
$$f(-1, 0) = 2$$
, mínimos $f(1, \pm 1) = -3$, pontos de sela $(-1, \pm 1)$, $(1, 0)$

59. Máximo
$$f(\pm\sqrt{2/3}, 1/\sqrt{3}) = 2/(3\sqrt{3}),$$

mínimo $f(\pm\sqrt{2/3}, -1/\sqrt{3}) = -2/(3\sqrt{3})$

61. Máximo 1, mínimo −1

63.
$$(\pm 3^{-1/4}, 3^{-1/4}\sqrt{2}, \pm 3^{1/4}), (\pm 3^{-1/4}, -3^{-1/4}\sqrt{2}, \pm 3^{1/4})$$

65.
$$P(2-\sqrt{3}), P(3-\sqrt{3})/6, P(2\sqrt{3}-3)/3$$

PROBLEMAS QUENTES

1. L^2W^2 , $\frac{1}{4}L^2W^2$ **3.** (a) x = w/3, base = w/3(b) Sim

7. $\sqrt{3/2}$, $3\sqrt{2}$

CAPÍTULO 15

EXERCÍCIOS 15.1

1. (a) 288 (b) 144 **3.** (a) 0,990 (b) 1,151

5. (a) 4 (b) -8 **7.** U < V < L

9. (a) ≈ 248 (b) ≈ 15.5 **11.** 60 **13**. 3

15. 1,141606, 1,143191, 1,143535, 1,143617, 1,143637, 1,143642

EXERCÍCIOS 15.2

1. $500y^3$, $3x^2$ **3.** 222 **5.** 2 **7.** 18

9. $\frac{21}{2} \ln 2$ **11.** $\frac{31}{30}$ **13.** π **15.** 0 **17.** 9 ln 2 **19.** $\frac{1}{2}(\sqrt{3}-1)-\frac{1}{12}\pi$ **21.** $\frac{1}{2}e^{-6}+\frac{5}{2}$

27. $\frac{166}{27}$ 31. $\frac{64}{3}$ **25**. 51 **29**. 2

33. 21e - 57

39. O Teorema de Fubini não se aplica. O integrando tem uma descontinuidade infinita na origem.

EXERCÍCIOS 15.3

3. $\frac{3}{10}$ **5.** $\frac{1}{3}$ sen 1 **1**. 32

11. (a)

13. Tipo I: $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le x\},$ tipo II: $D = \{(x, y) \mid 0 \le y \le 1, y \le x \le 1\}; \frac{1}{3}$

15. $\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} y \, dy \, dx + \int_1^4 \int_{x-2}^{\sqrt{x}} y \, dy \, dx = \int_{-1}^2 \int_{y^2}^{y+2} y \, dx \, dy = \frac{9}{4}$

17. $\frac{1}{2}(1-\cos 1)$ **19.** $\frac{11}{3}$ **21.** 0 **23.** $\frac{17}{60}$ **25.** $\frac{31}{8}$

- **31.** $\frac{1}{3}$ **33.** 0, 1,213; 0,713 **35.** $\frac{64}{3}$ **27**. 6
- **37**.

- **39.** 13 984 735 616/14 549 535
- **41**. $\pi/2$
- **43.** $\int_{0}^{1} \int_{0}^{1} f(x, y) dy dx$

45. $\int_0^1 \int_0^{\cos^{-1}y} f(x, y) dx dy$

47. $\int_0^{\ln 2} \int_{e^y}^2 f(x, y) dx dy$

- **49.** $\frac{1}{6}(e^9-1)$ **51.** $\frac{1}{3}\ln 9$ **53.** $\frac{1}{3}(2\sqrt{2}-1)$ **55.** 1
- **57.** $(\pi/16)e^{-1/16} \le \iint_{\mathcal{Q}} e^{-(x^2+y^2)^2} dA \le \pi/16$ **59.** $\frac{3}{4}$ **63.** 9π
- **65.** $a^2b + \frac{3}{2}ab^2$ **67.** πa^2b

EXERCÍCIOS 15.4

1. $\int_0^{3\pi/2} \int_0^4 f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$ **3.** $\int_{-1}^1 \int_0^{(x+1)/2} f(x, y) \, dy \, dx$ **5.**

- **7.** $\frac{1250}{3}$ **9.** $(\pi/4)(\cos 1 \cos 9)$
- **11.** $(\pi/2)(1-e^{-4})$ **13.** $\frac{3}{64} \pi^2$ **15.** $\pi/12$
- 17. $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$ 19. $\frac{16}{3}\pi$ 21. $\frac{4}{3}\pi$ 23. $\frac{4}{3}\pi a^3$
- **25.** $(2\pi/3)[1-(1/\sqrt{2})]$ **27.** $(8\pi/3)(64-24\sqrt{3})$
- **29.** $\frac{1}{2}\pi (1 \cos 9)$ **31.** $2\sqrt{2}/3$ **33.** 4,5951
- **35.** 37.5π m³ **37.** 2/(a+b) **39.** $\frac{15}{16}$
- **41**. (a) $\sqrt{\pi}/4$ (b) $\sqrt{\pi/2}$

EXERCÍCIOS 15.5

- **3.** 42k, $(2, \frac{85}{28})$ **5.** $6, (\frac{3}{4}, \frac{3}{2})$ **7.** $\frac{8}{15}k$, $(0, \frac{4}{7})$ **1**. 285 C
- **9.** L/4, $(L/2, 16/(9\pi))$ **11.** $(\frac{3}{8}, 3\pi/16)$ **13.** $(0, 45/14\pi))$
- **15.** (2a/5, 2a/5) se o vértice é (0, 0) e os lados estão ao longo dos eixos positivos
- **17.** $\frac{64}{315}k$, $\frac{8}{105}k$, $\frac{88}{315}k$
- **19.** $7ka^6/180$, $7ka^6/180$, $7ka^6/90$ se o vértice é (0, 0) e os lados estão ao longo dos eixos positivos
- **21.** $\rho bh^3/3$, $\rho b^3h/3$; $b/\sqrt{3}$, $h/\sqrt{3}$
- **23.** $\rho a^4 \pi / 16$, $\rho a^4 \pi / 16$; a/2, a/2

25.
$$m = 3\pi/64, (\overline{x}, \overline{y}) = \left(\frac{16384\sqrt{2}}{10395\pi}, 0\right),$$

$$I_x = \frac{5\pi}{384} - \frac{4}{105}, I_y = \frac{5\pi}{384} + \frac{4}{105}, I_0 = \frac{5\pi}{192}$$

- **27.** (a) $\frac{1}{2}$ (b) 0,375 (c) $\frac{5}{48} \approx 0,1042$
- **29.** (b) (i) $e^{-0.2} \approx 0.8187$
- (ii) $1 + e^{-1.8} e^{-0.8} e^{-1} \approx 0.3481$ (c) 2, 5
- **31.** (a) ≈ 0.500 (b) ≈ 0.632
- **33.** (a) $\iint_D (k/20)[20 \sqrt{(x-x_0)^2 + (y-y_0)^2}] dA$, onde $D \notin O$ disco com raio de 10 km centralizado no centro da cidade
- (b) $200\pi k/3 \approx 209k$, $200(\pi/2 \frac{8}{9})k \approx 136k$, na borda

EXERCÍCIOS 15.6

- 1. $15\sqrt{26}$ 3. $3\sqrt{14}$ **5.** $12 \text{ sen}^{-1}(\frac{2}{3})$
- **7.** $(\pi/6)(17\sqrt{17}-5\sqrt{5})$ **9.** $(2\pi/3)(2\sqrt{2}-1)$
- **11.** $a^2(\pi-2)$ **13.** 13,9783 **15.** (a) $\approx 1,83$ (b) $\approx 1,8616$ **17.** $\frac{45}{8}\sqrt{14} + \frac{15}{16}\ln[(11\sqrt{5} + 3\sqrt{70})/(3\sqrt{5} + \sqrt{70})]$
- **19.** 3,3213 **23.** $(\pi/6)(101\sqrt{101}-1)$

EXERCÍCIOS 15.7

- **1.** $\frac{27}{4}$ **3.** $\frac{16}{15}$ **5.** $\frac{5}{3}$ **7.** $-\frac{1}{3}$ **9.** 4 **13.** $\frac{65}{28}$ **15.** $\frac{1}{60}$ **17.** $16\pi/3$ **19.** $\frac{16}{3}$
- **23.** (a) $\int_0^1 \int_0^x \int_0^{\sqrt{1-y^2}} dz \, dy \, dx$ (b) $\frac{1}{4}\pi \frac{1}{3}$
- **25**. 0,985
- 27.

- **29.** $\int_{-2}^{2} \int_{0}^{4-x^2} \int_{-\sqrt{4-x^2-y/2}}^{\sqrt{4-x^2-y/2}} f(x, y, z) dz dy dx$ $= \int_0^4 \int_{-\sqrt{4-y}}^{\sqrt{4-y}} \int_{-\sqrt{4-x^2-y/2}}^{\sqrt{4-x^2-y/2}} f(x, y, z) dz dx dy$
 - $= \int_{-1}^{1} \int_{0}^{4-4z^2} \int_{-\sqrt{4-y-4z^2}}^{\sqrt{4-y-4z^2}} f(x, y, z) dx dy dz$
 - $= \int_0^4 \int_{-\sqrt{4-y/2}}^{\sqrt{4-y/2}} \int_{-\sqrt{4-y-4z^2}}^{\sqrt{4-y-4z^2}} f(x, y, z) \, dx \, dz \, dy$
 - $= \int_{-2}^{2} \int_{-\sqrt{4-x^2}/2}^{\sqrt{4-x^2}/2} \int_{0}^{4-x^2-4z^2} f(x, y, z) \, dy \, dz \, dx$
 - $= \int_{-1}^{1} \int_{-\sqrt{4-4z^2}}^{\sqrt{4-4z^2}} \int_{0}^{4-x^2-4z^2} f(x, y, z) \, dy \, dx \, dz$
- $=\int_{0}^{4}\int_{-\sqrt{y}}^{\sqrt{y}}\int_{0}^{2-y/2}f(x,y,z)\,dz\,dx\,dy$
 - $= \int_0^2 \int_0^{4-2z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) \, dx \, dy \, dz$

31. $\int_{-2}^{2} \int_{x^2}^{4} \int_{0}^{2-y/2} f(x, y, z) dz dy dx$

- $=\int_0^4 \int_0^{2-y/2} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) dx dz dy$
- $= \int_{-2}^{2} \int_{0}^{2-x^{2}/2} \int_{x^{2}}^{4-2z} f(x, y, z) dy dz dx$
- $= \int_0^2 \int_{-\sqrt{4-2z}}^{\sqrt{4-2z}} \int_{x^2}^{4-2z} f(x, y, z) \, dy \, dx \, dz$