Anderson Coelho Weller

Controladores de Rede

Universidade Estadual de Campinas Instituto de Computação

21 de outubro de 2013

SDN

Agenda

SDN

- SDN
- 2 Componentes
- OpenFlow
- Controladores
- Considerações

Introdução

- Redes Definidas por Software (SDN) é um novo paradigma no desenvolvimento de pesquisas em redes de computadores
- Grande interesse tanto da área acadêmica quanto industrial
- Principalmente por causa do OpenFlow
- Porém, SDN é muito mais do que OpenFlow

Introdução

Área de redes encontra-se em situação complexa:

- Grande sucesso da área
- Necessário estabilidade na Internet
- Pesquisas com novos protocolos tornaram-se arriscadas
- Tornando as redes pouco flexíveis

Introdução

- Mesmos pesquisas como a Internet2
- Têm dificuldades em justificar a adoção em larga escala de suas novas tecnologias
- Devido ao grau de ruptura com as tecnologias atuais

Introdução

- Existem várias pesquisas para a criação de redes com maiores recursos de programação
- Que permitam a inserção gradual de novas tecnologias
- Exemplos:
 - Active Networks
 - PlanetLab
 - GFNI

Custom code injected by

0000000000000 Introdução SDN

SDN

Introdução

Outra linha de pesquisa:

- Fazer pequenas modificações nas operações existentes
- Permitindo o desenvolvimento de hardware de alto desempenho
- Porém, possibilitando maior controle da rede (pelo administrador).

Introdução

Exemplo prático:

- Pequenas modificações na operação de encaminhamento de pacotes (que precisa de alto desempenho)
- Popularizado pelo MPLS (Multi-protocol Label Switching)
 - Chaveamento baseado em rótulos programáveis

0000000000000

SDN

Origens

- A iniciativa mais bem sucedida foi o OpenFlow.
- Nele, os elementos de encaminhamento permitem:
- Acesso e controle da tabela de encaminhamento.
 - Utilizada pelo hardware
- Porém, a decisão sobre o destino de cada pacote pode ser transferida para um nível superior

Origens

- Essa estrutura permite que a rede possa ser controlada através de aplicações (software)
- Esse novo paradigma ficou conhecido como:
 - SDN (Software Defined Networks)
 - Redes Definidas por Software

Motivação

Por que investir no SDN?

- Devido às diversas possibilidades de aplicação desse paradigma, tem atraído a atenção de pesquisadores e fabricantes.
- A comutação de pacotes não fica limitada aos princípios definidos pelo Ethernet ou IP.

Motivação

Outros motivos:

- Já existem implementações funcionais do OpenFlow:
 - Como processo de usuário
 - Ou, integrado ao Kernel, para ambientes virtualizados (Open vSwitch)
- Vários fabricantes já oferecem produtos com a interface
 OpenFlow: Juniper, NEC, HP, Netgear, Cisco, Ciena, etc.

Motivação

- Porém, o padrão OpenFlow é apenas uma parte das SDNs.
- Uma SDN pode apoiar-se no OpenFlow e criar novas aplicações para controle dos elementos de comutação.

Motivação

- Essas aplicações são conhecidas como:
 - Controladores de Redes
 - Sistemas Operacionais de Redes (Networks Hypervisors)

Motivação

- Os controladores de rede permitem:
 - Acessar as interfaces de rede compatíveis
 - Gerar comandos de controle da infraestrutura de chaveamento
- O que possibilita (por exemplo):
 - Criar novas políticas de segurança
 - Controle e monitoramento de tráfego mais sofisticados
 - Visões diferentes para cada usuário de um Datacenter

SDN

Resumindo SDN:

- É uma rede contendo um sistema de controle (software)
- Que disponibiliza métodos para aplicativos de rede
- Realizarem o controle do mecanismo de encaminhamento dos elementos de comutação.

Estrutura do Software

- O software poderia ser uma aplicação monolítica.
- Mas, normalmente é estruturado com:
 - Um controlador geral
 - E várias aplicações específicas

Estrutura do Software

- Outra possibilidade é ter um divisor de visões:
 - Com vários Controladores
 - E suas respectivas aplicações

Estrutura geral de uma SDN

- Uma SDN é composta pelos seguintes elementos:
 - Elementos de comutação programáveis
 - Divisor de recursos / visões
 - Controladores
 - Aplicações de rede

Elementos de comutação programáveis

- Lembrando da operação de encaminhamento nas redes baseadas em pacotes:
 - O pacote é recebido pela interface
 - Depois é inspecionado
 - É feita consulta à tabela de encaminhamento
 - Qual o destino (MAC, IP, etc)
 - Se destino foi identificado:
 - Envia pacote para a porta de destino
 - Se não foi encontrado:
 - O pacote é descartado, ou
 - é realizada uma operação Default

Elementos de comutação programáveis

- O hardware atual realiza o encaminhamento com alto desempenho.
 - ∴ É problemático acrescentar novas funcionalidades
- Então, como uma SDN pode modificar a rede sem modificar o hardware?

Elementos de comutação programáveis

- As SDNs se restringem à manipulação simples de pacotes
- Baseado no conceito de fluxos
 - Sequência de pacotes com mesmos valores em seus atributos.
- Dessa forma, basta:
 - Controlar o conteúdo da tabela de encaminhamento.
 - E indicar ao hardware a ação a ser tomada, ao detectar um padrão.

Divisores de recursos/visões

- Isso foi possível pois:
 - Manteve-se os "Fluxos de Operação" da rede
 - E estendeu-se o tratamento para os "Fluxos de Pesquisa"

Divisores de recursos/visões

- Com novos tipos de pesquisa trabalhando em paralelo:
 - É possível criar visões diferente da rede
 - Cada uma com sua cota de recursos
- Seguindo o princípio de particionamento de tráfego Internet

Controlador

- O que faz o elemento controlador ?
 - Oculta os detalhes internos da rede
 - Centraliza a comunicação com os elementos programáveis
 - Oferece uma visão unificada da rede

Controlador

- E pode trabalhar de forma distribuída
 - Através da divisão dos elementos de visão
 - Ou através de algoritmos distribuídos

Controlador

- Existem vários tipos de controladores diferentes
 - Ryu
 - NOX
 - Flowvisor
 - Routeflow
 - Trema
 - Maestro
 - Beacon
 - Onix

Aplicações de Rede

- São as funcionalidades acrescentadas às redes. Ex.:
 - Soluções de roteamento
 - Controle de interação entre os comutadores
 - Simulando um único Switch ou Roteador IP
 - Controle de acesso
 - Gerência de redes
 - Gerência de energia
 - Comutador Virtual
 - Roteador expansível de alta capacidade
 - Datacenters multi-usuários

OpenFlow

- É um padrão aberto para SDN
- Funciona como um protocolo de comunicação entre:
 - O controlador
 - E os equipamentos

OpenFlow

- A evolução das SDNs está diretamente ligada ao sucesso do OpenFlow.
- Ele permite a realização de pesquisas e testes de novos protocolos
- Em equipamentos de redes comerciais
- Em paralelo com a operação normal das redes

- Isso é possível através de uma API
- Que permite aos programadores controlar os elementos de encaminhamento de pacotes

Estrutura do OpenFlow

• Estrutura de um Switch tradicional [3]:

```
Ethernet Switch
```


Estrutura do OpenFlow

• Estrutura de um *Switch* tradicional [3]:

Control Path (Software)

Data Path (Hardware)

Estrutura do OpenFlow

• Estrutura de um Switch OpenFlow-Hybrid:

```
Controlador OpenFlow
Protoloco OpenFlow
       (SSL/TCP)
 Ctrl Path
              Cliente OpenFlow
      Data Path (Hardware)
```


Estrutura do OpenFlow

• Estrutura de um Switch OpenFlow-Only:

```
Controlador OpenFlow
Protoloco OpenFlow
       (SSL/TCP)
      Cliente OpenFlow
      Data Path (Hardware)
```


Estrutura do OpenFlow

- No OpenFlow existe uma separação bem definida entre:
 - Plano de Dados
 - Plano de Controle

OpenFlow - Plano de Dados

- Cuida do encaminhamento de pacotes
- Utiliza regras simples (Chamada de Ações):
 - Encaminhar pacote
 - Alterar parte do cabeçalho
 - Descartar pacote
 - Encaminhar para o controlador (inspeção)

OpenFlow - Plano de Controle

- Permite programar as entradas na tabela de encaminhamento
- Com padrões que identifiquem:
 - Os fluxos de interesse
 - E as regras associadas a eles

OpenFlow - Plano de Controle

- Esse módulo de software pode ser implementado de forma independente (em algum ponto da rede)
- Ou trabalhar distribuidamente

OpenFlow - Especificações

- Requisitos do Switch [5]:
 - Flow Tables
 - OpenFlow Channel
 - Tipos de Porta

OpenFlow - Especificações

Tipos de Mensagens:

Controller-to-Switch

Ethernet Switch

Features Configuration Read-State ...

Asynchronous

Ethernet Switch

....

Packet-in Flow-removed Port-status ...

Symmetric

Estrutura

- Cada entrada da tabela de fluxo contém [5]:
 - Match Fields: para comparar com o pacotes.
 - **Priority**: prioridade do fluxo de entrada.
 - Counters: estatísticas para o fluxo.
 - Instructions: ações a realizar.
 - *Timeouts*: tempo máximo ou tempo ocioso para excluir da tabela.
 - Cookie: utilizado somente pelo controlador.

Exemplo da Tabela de Fluxo

• Um Switch OpenFlow utiliza memórias TCAM (Ternary Content-Addressable Memory) para as tabelas de fluxo.

Nelas os bits podem ser representados com:

- 0 (Zero)
- 1 (Um)
- * (Não importa Don't care)

IN_PORT		ETH_DST	ETH_SRC		IPV4_SRC	IPV4_DST		INSTRUCTION
5	*	00:24:D7:63:2C:14	58:B0:35:F6:12:F1	*	*	01*	*	Action 1
1	*	*	*	*	010*	100*	*	Action 2
*	*	*	*	*	101*	011*	*	Action 3
*	*	*	*	*	*	*	*	Action 4

Funcionamento

 Quando o switch recebe um pacote ele deve compará-lo com a sua tabela de fluxo.

Funcionamento

• Se o cabeçalho não for compatível com nenhum fluxo em sua tabela, ele deve encaminhar o cabeçalho para o controlador.

Funcionamento

- Ao receber o cabecalho, o controlador toma uma decisão:
 - Enviar uma tabela de fluxos para o switch;
 - Ou indicar uma ação para o pacote (por exemplo: descartá-lo).

Estrutura de Match Fields I

```
/* OXM Flow match field types for OpenFlow basic class
   (oxm_class=OFPXMC_OPENFLOW_BASIC) */
enum oxm ofb match fields {
 OFPXMT OFB IN PORT = 0, // Switch input port
  OFPXMT_OFB_IN_PHY_PORT = 1, // Switch physical input port
 OFPXMT OFB METADATA
                        = 2, // Metadata passed between
                              // tables
 OFPXMT OFB ETH DST
                        = 3. // Ethernet destination
                              // address
 OFPXMT OFB ETH SRC
                        = 4. // Ethernet source address
 OFPXMT OFB ETH TYPE
                        = 5. // Ethernet frame type
  OFPXMT OFB VLAN VID
                        = 6. // VLAN id
  OFPXMT OFB VLAN PCP
                        = 7. // VLAN priority
 OFPXMT OFB IP DSCP
                        = 8, // IP DSCP (6 bits in ToS
                              // field)
                        = 9, // IP ECN (2 bits in ToS
 OFPXMT_OFB_IP_ECN
                              // field)
                        = 10, // IP protocol
 OFPXMT_OFB_IP_PROTO
 OFPXMT OFB IPV4 SRC
                        = 11, // IPv4 source address
  OFPXMT OFB IPV4 DST
                        = 12, // IPv4 destination address
```


Estrutura de Match Fields II

```
OFPXMT OFB TCP SRC
                      = 13, // TCP source port
OFPXMT OFB TCP DST
                      = 14, // TCP destination port
OFPXMT OFB UDP SRC
                      = 15, // UDP source port
OFPXMT OFB UDP DST
                      = 16, // UDP destination port
OFPXMT OFB SCTP SRC
                      = 17. // SCTP source port
OFPXMT OFB SCTP DST
                      = 18, // SCTP destination port
OFPXMT OFB ICMPV4 TYPE = 19, // ICMP type
OFPXMT OFB ICMPV4 CODE = 20, // ICMP code
OFPXMT OFB ARP OP
                      = 21, // ARP opcode
OFPXMT OFB ARP SPA
                      = 22, // ARP source IPv4 address
OFPXMT OFB ARP TPA
                      = 23, // ARP target IPv4 address
OFPXMT OFB ARP SHA
                      = 24, // ARP source hardware
                            // address
OFPXMT_OFB_ARP_THA
                      = 25, // ARP target hardware
                            // address
                      = 26, // IPv6 source address
OFPXMT_OFB_IPV6_SRC
OFPXMT OFB IPV6 DST
                      = 27, // IPv6 destination address
OFPXMT_OFB_IPV6_FLABEL = 28, // IPv6 Flow Label
OFPXMT_OFB_ICMPV6_TYPE = 29, // ICMPv6 type
OFPXMT OFB ICMPV6 CODE = 30, // ICMPv6 code
```


Estrutura de Match Fields III

```
OFPXMT_OFB_IPV6_ND_TARGET= 31, // Target address for ND
 OFPXMT OFB IPV6 ND SLL = 32, // Source link-layer for ND
  OFPXMT_OFB_IPV6_ND_TLL = 33, // Target link-layer for ND
 OFPXMT OFB MPLS LABEL
                          = 34, // MPLS label
  OFPXMT OFB MPLS TC
                          = 35, // MPLS TC
  OFPXMT OFP MPLS BOS
                          = 36. // MPLS BoS bit
 OFPXMT OFB PBB ISID
                          = 37, // PBB I-SID
  OFPXMT OFB TUNNEL ID
                          = 38, // Logical Port Metadata
  OFPXMT OFB IPV6 EXTHDR
                          = 39, // IPv6 Extension Header
                                // pseudo-field
 OFPXMT OFB PBB UCA
                          = 41, // PBB UCA header field
};
```


Limitações e futuras versões

- Desde a versão 1.0.0 (31/12/2009) até a atual 1.4.0 (14/10/2013, ver [5]), a especificação do OpenFlow já sofreu várias modificações.
- Porém, ainda existem algumas limitações, por exemplo:
 - Definição do padrão para circuitos ópticos e
 - Definição de fluxos que englobe protocolos fora do modelo TCP/IP.
- A versão 2.0 está sendo formulada com o intuito de eliminar essas limitações (entre outras).

Controladores de Rede

- Como apresentado, existem vários tipos de controladores de rede, como exemplo temos:
- OpenFlow Reference
 - Stanford/Nicira
 - Não é projetado para ser extensível
- RouteFlow
 - CPqD (Brasil)
 - Encaminhamento IP como um serviço (quagga)
- NOX
 - Nicira
 - Desenvolvendo ativamente
- Ryu
 - Nippon Telegraph and Telephone Corporation
 - Framework

NOX

- É o controlador original do OpenFlow.
- Possibilita o desenvolvimento de controladores em C++ ou Python
- Trabalha sobre o conceito de fluxos de dados
 - Checa o primeiro pacote de cada fluxo
 - E determina a política a ser aplicada

- É um sistema operacional de rede simples
- Provê primitivas para:
 - Gerenciamento dos eventos
 - Funções para a comunicação com os switches
- Os mesmos desenvolvedores do NOX desenvolveram o POX, com a premissa dele ser completamente escrito em Python.

Ryu

- É um *Framework* para desenvolvimento de aplicações SDN, ao invés de um controlador monolítico [7].
- Tem a filosofia de permitir um desenvolvimento ágil.
- É um software Open Source (Apache v2), totalmente escrito em Python.

Ryu

- Disponibiliza um conjunto de componentes para criação das aplicações SDN
- Esses componentes disponibilizam:
 - Interface para controle, consulta e geração de eventos.
 - Comunicação por troca de mensagens

Ryu

SDN

• As componentes e bibliotecas incluídas no Ryu são:

Considerações Finais

- A arquitetura SDN está apenas iniciando, porém há um grande interesse tanto acadêmico quanto empresarial, devido as possibilidades que ela abre para o futuro das redes de computadores.
- OpenFlow foi a peça que alavancou a SDN e serve como base para vários controladores atuais.
- Porém, não é interesse dos fabricantes deixar seus equipamentos abertos para software de outra empresa.
- Consequentemente, todas estão trabalhando em seus próprios projetos.
- Mais detalhes sobre o assunto podem ser encontrados a partir das referências bibliográficas.

Referências I

- D. Guedes, L. F. M. Vieira, M. M. Vieira, H. Rodrigues, and R. V. Nunes, "Redes definidas por software: uma abordagem sistêmica para o desenvolvimento de pesquisas em redes de computadores," in *Minicursos do XXX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos SBRC 2012*, Ouro Preto, MG, April 2012, pp. 160–210. [Online]. Available: http://sbrc2012.dcc.ufmg.br/app/p-04-f.html [Accessed: Sep. 16, 2013]
- N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "Openflow: Enabling innovation in campus networks," SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, March 2008. [Online]. Available: http://doi.acm.org/10.1145/1355734.1355746 [Accessed: Oct. 07, 2013]
- L. Bertholdo, "Tecnologias, conceitos e serviços emergentes: OpenFlow," PoP-RS/UFRGS, Ouro Preto MG, April 2012, 13° WRNP Workshop RNP. [Online]. Available: http://www.pop-rs.rnp.br/arquivos/2012/WRNP_Openflow.pdf [Accessed: Oct. 17, 2013]
- ONF, "OpenFlow Specifications," Open Networking Foundation, 2013. [Online]. Available: https://www.opennetworking.org/sdn-resources/onf-specifications/openflow [Accessed: Sep. 30, 2013]
- —, "OpenFlow Switch Specification: Version 1.4.0 (Wire Protocol 0x05)," Open Networking Foundation, October 2013. [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf [Accessed: Oct. 20, 2013]
- C. Marcondes, "Projeto de Desenvolvimento em OpenFlow: Tutorial de OpenFlow," Universidade Federal de São Carlos (UFSCar), Julho 2011. [Online]. Available: http://www.inf.ufes.br/~magnos/IF/if_files/Tutorial.pdf [Accessed: Oct. 18, 2013]

Referências II

Redes Definidas por Software (SDN), OpenFlow e outros Controladores de Rede

- A arquitetura SDN define uma nova forma de estruturar um sistema em rede, com isso, várias pesquisas são realizadas para aproveitar essa organização em aplicações de redes de computadores.
- Sabendo disso, pesquise um desses tipos de aplicação que pode ser melhorado com a utilização de uma SDN, e descreva sucintamente quais são as vantagens em relação a sua implementação tradicional.
- Para a pesquisa, utilize o artigo de Guedes et al. [1].

