

CHOC1

Tarek El-Hajjaoui, Micah Fadrigo, Sheldon Gu, Cecilia Nguyen

UCI

- Juvenile dermatomyositis (JDM)
- Rare
- No cure → improve disease management
- Expensive labs

Project Description

Nailfold Capillaroscopy (NFC)

GOAL

Simple, quick & inexpensive pre-screening on Juvenile Dermatomyositis (JDM)

1. Data

2. Machine Learning Models

- a. Logistic Regression + Lasso Model
- b. Random Forest
- c. Support Vector Machine

3. Next Steps

Data Description

Image Level:

<u>JDM</u>: **1120** images

Control: **321** images

Patient Level:

JDM: 111 patients

Control: **31** patients

Response variable: JDM & Control

EDA

Obstructed Images

https://www.stylecraze.com/articles/8-simple-nail-art-designs/

https://laurenbbeauty.com/blogs/blog/how-to-remove-nail-polish-from-skin-around-nails

Imbalance: Not all patients represented equally between case/control and within.

Imbalance: Not all patients represented equally between case/control and within.

Data Issue - Solution

Input image

Histogram of Oriented Gradients

- Large image size → Interpolation
- Absence of feature → Histogram of Oriented Gradients (HOG)

Data Preprocess

initial image [16px x 16px]

PIL.Image.resize [4px x 4px]

tf.image.resize_bicubic [4px x 4px] <u>CHOC</u>: Manually examined and corrected orientation of NFCs.

Our Steps:

1. **Downscale** to size: 128, 64, 32

2. Scale input pixels between (-1, 1)

3. **Vectorize** images

4. **HOG** transformation

5. 10-Fold Stratified Cross-Validation

Histogram of Oriented Gradients (HOG)

What is HOG

- Computer vision feature descriptor technique.
- Distribution of edge orientations.

Why is this useful

- Learn structural and spatial patterns of images.
- Reduces noise of images (for classification or object detection tasks).
- Generally preferred over vectorized images.

HOG Example

Which features of these images can be used to differentiate these objects?

HOG Example

- The objects can distinguished using only their shapes & edges.
- No need for color, background, etc.

HOG Explained

How HOG works

- Gradient magnitude & orientation is computed for each pixel in an image.
- Similar to a Convolutional layer, the image is divided into smaller cells.

HOG Example

Example from scikit-image (library used)

Input image

Histogram of Oriented Gradients

1. Data

2. Machine Learning Models

- a. Logistic Regression + Lasso Model
- b. Random Forest
- c. Support Vector Machine

3. Next Steps

Convolution Neural Networks

Widely used for computer vision tasks

- Standard Architectures:
 - Batch normalization is sensitive to large variation in the data
 - Uninterpretable

- CHOC developed NFC-Net = lightweight CNN = 3 layers
 - Working on explainability

Why Pursue Simpler Models?

- ★ Baseline Measurement & Reference
 - Are simple models able to achieve similar scores to NFC-Net?

- ★ Quicker Deployment to Mobile Devices
 - Automate clinical analyses of NFC
 - Accelerate JDM data collection & research

- ★ Robustness
 - Deals with high-level of noise

Logistic Regression + Lasso Regularization

- Simple baseline for model for binary classification task
- Predict probability of JDM given NFC image
- Automatic feature selection in high-dimensional spaces
- Simplifies model → improves interpretability

Complexity

Logistic Regression + Lasso Results

	Accuracy	Precision	Recall	F1 Score	ROC AUC	Class 0 Accuracy
(Vectorized) Logistic [32x32]	0.848	0.893	0.914	0.903	0.767	0.62
(HOG) Logistic [32x32]	0.809	0.855	0.908	0.881	0.686	0.464
(Vectorized) Logistic [64x64]	0.84	0.888	0.908	0.898	0.756	0.604
(HOG) Logistic [64x64]	0.826	0.876	0.905	0.889	0.728	0.551
(Vectorized) Logistic [128x128]	0.842	0.89	0.908	0.899	0.759	0.61
(HOG) Logistic [128x128]	0.818	0.869	0.901	0.885	0.715	0.53

Logistic Regression + Lasso Results

Logistic Regression: Challenges

- Real-world settings: Assumptions may be violated
- Image data: **Non-linear relationships** between outcome & predictors
- Images within patient may yield similar risk of JDM
 - → Remove highly-correlated images
- Highly-correlated features undermines:
 - Model interpretability
 - Reliability of coefficient estimate
 - Statistical significance of features
 - → Lasso regularization
 - → Variance Inflation Factor
- ★ May not be suitable approach for this problem

Random Forest

 An ensemble of decision trees, in which randomly selected subsets of data are trained in each decision tree

Why Random Forest?

- Classification Model
- No assumptions underlying distribution
- Robust to Overfitting
- Might capture complex relationships in data, works with non-linear data
- Robust to outliers/noises in training data

Random Forest Results

						Class 0
Weight (1.5:1)	Accuracy	Precision	Recall	F1 Score	ROC AUC	Accuracy
(Vectorized) RF						
[32x32]	0.869	0.877	0.968	0.920	0.748	0.529
(HOG) RF						
[32x32]	0.824	0.818	0.995	0.89	0.614	0.234
(Vectorized) RF						
[64x64]	0.869	0.874	0.971	0.920	0.743	0.514
(HOG) RF						
[64x64]	.839	0.832	0.993	0.905	0.649	0.305
(Vectorized) RF						
[128x128]	0.863	0.872	0.966	0.916	0.735	0.504
(HOG) RF						
[128x128]	0.819	0.814	0.994	0.895	0.603	0.212

Random Forest Results

Random Forest Challenges

Why are we not pursuing to optimize this model?

- Low overall performance
- Not as explainable for spatial data
 - Determine which pixels important
- Inefficient Computational efficiency, high-dimensional data

Support Vector Machine (SVM)

SVM Main Concepts

Decision Boundary, Margins,
Support Vectors & Kernel.

Why SVM?

- Suits binary classification.
- SVM with HOG is proven effective for computer vision.
- Computationally efficient.
- Robust to overfitting.

SVM with Linear Kernel Function Results

	Accuracy	Precision	Recall	F1 Score	ROC AUC	Class 0 Accuracy
(Vectorized) SVM Linear [32x32]	0.830	0.892	0.889	0.890	0.756	0.624
(HOG) SVM Linear [32x32]	0.807	0.838	0.933		0.653	0.374
(Vectorized) SVM Linear [64x64]	0.825	0.888	0.887	0.887	0.749	0.610
(HOG) SVM Linear [64x64]	0.809	0.876	0.880	0.878	0.722	0.564
(Vectorized) SVM Linear [128x128]	0.823	0.883	0.891	0.887	0.74	0.589
(HOG) SVM Linear [128x128]	0.828	0.885	0.895	0.890	0.745	0.595

SVM with RBF Kernel Function Results

	Accuracy	Precision	Recall	F1 Score	ROC AUC	Class 0 Accuracy
(Vectorized) SVM RBF [32x32]	0.853	0.858	0.971	0.911	0.707	0.442
(HOG) SVM RBF [32x32]	0.865	0.860	0.987	0.919	0.714	0.442
(Vectorized) SVM RBF [64x64]	0.852	0.858	0.971	0.911	0.705	0.439
(HOG) SVM RBF [64x64]	0.876	0.873	0.983	0.925	0.744	0.505
(Vectorized) SVM RBF [128x128]	0.852	0.858	0.971	0.911	0.705	0.439
(HOG) SVM RBF [128x128]	0.867	0.862	0.987	0.920	0.719	0.452

SVM Results (Cont)

SVM Improvements

- HOG tuning: orientations, pixels_per_cell, & cells_per_block
- More dimension sizes: 16 & 256
- Model Explainability

Goal: create an equivalent of CNN explainability but for Linear SVM models:

1. Data

2. Machine Learning Models

- a. Logistic Regression + Lasso Model
- b. Random Forest
- c. Support Vector Machine

3. Next Steps

Next Steps

- Building and improve CNN
 - hyperparameter
 - different activation
 - different constructions

Explainable Neural Network

Image Augmentation

Timeline

Q&A