

### MATEMÁTICAS

#### Fundamentos de Matemáticas

## Bono 3

Alexander Mendoza 12 de junio de 2023

# Índice general

1 Bono 3 2

### Capítulo 1

### Bono 3

Demuestre que no existen sucesiones estrictamente decrecientes de números naturales.

Una sucesión  $(x_n)$  es estrictamente decreciente si  $x_n < x_m$  si n > m. Si la sucesión es finita, ciertamente existen sucesiones decrecientes en los números naturales, por ejemplo,  $\{5,4,3,2,1\}$ . Sin embargo, si la sucesión es infinita contradice al principio del buen orden. La sucesión  $(x_n)$  es un subconjunto de  $\mathbb{N}$ , por el principio del buen orden existe un  $m \in (x_n)$  tal que m < a para todo  $a \in (x_n)$ , lo cual es una contracción ya que m sería el maximal de  $(x_n)$ , llamemos  $x_a$  a m, luego  $x_{a+1} < x_a$  lo cual es una contracción.

Demuestre que los números racionales satisfacen la propiedad arquimediana. Propiedad Arquimediana: Si  $x,y\in\mathbb{Q}$  y x>0, entonces existe un número entero positivo  $n\in\mathbb{N}$  tal que nx>y.

Sean y y x números racionales tal que x>0, si  $y\leq 0$  como x>0 existe  $n=1\in\mathbb{Q}$ , así x>yn. Si y>0, como y y x son racionales podemos reescribirlos como  $y=\frac{a}{b}$  y  $x=\frac{c}{d}$  donde a,b,c y  $d\in\mathbb{Z}$ , luego existe  $n\in\mathbb{Q}$  tal que  $n>\frac{y}{x}=\frac{bc}{ad}$ , así  $nx>\frac{bc}{ad}x=\frac{bc}{ad}\cdot\frac{a}{b}=\frac{c}{d}=y$ . De esta manera demostramos que los números racionales satisfacen la propiedad Arquimediana.