

The Effect of Nose Shape on Depleted Uranium (DU) Long-Rod Penetrators

by Wendy Leonard

ARL-TR-1505 September 1997

19971014 117

DTIC QUALITY INSPECTED 3

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1505

September 1997

The Effect of Nose Shape on Depleted Uranium (DU) Long-Rod Penetrators

Wendy Leonard

Weapons and Materials Research Directorate, ARL

DIIC COALITY INVESTIGATED S

Abstract

The ballistic performance of model scale U-3/4%Ti long-rod penetrators with three different nose-shape designs (blunt nose, conical nose, and frustum cone) were evaluated. The target matrix included semi-infinite rolled homogeneous armor (RHA) and two finite RHA targets, one at normal incidence and one at high obliquity, but with the same line-of-sight thickness. The results reflected the same trends as observed for a previous tungsten alloy penetrator study, demonstrating that the nose-shape effects are independent of penetrator material.

Acknowledgments

Dr. Lee Magness and Mr. Tim Farrand are acknowledged for their guidance during the planning and execution of the test series. The author would also like to recognize Mrs. Eleanor Deal (Experimental Facility Manager), Mr. Bernard McKay, Mr. Jack Koontz, Mr. Maurice Clark, Mr. Vaughn Torbert, and Mr. Richard English, the U.S. Army Research Laboratory (ARL) Experimental Facility 110 technicians who performed the actual testing.

Table of Contents

		Page
	Acknowledgments	iii
	List of Figures	vii
	List of Tables	ix
1.	Introduction	1
2.	Projectile Characteristics	2
3.	Target Matrix	2
4.	Test Procedure	5
5.	Ballistic Test Results	7
6.	Discussion	10
7.	Conclusions	16
8.	References	19
	Appendix A: Explanation of Data Summary Tables	21
	Appendix B: Data Summary Tables and Limit Velocity Curves	27
	Distribution List	47
	Report Documentation Page	51

List of Figures

Figure		Page
1.	Dimensions and Geometries of the U-3/4% Ti Nose-Shape Projectiles	3
2.	Dimensions and Geometries of the WHA Nose-Shape Projectiles	4
3.	Schematic of the Range and X-ray Setup	6
4.	Plot of Semi-Infinite Penetration as a Function of Velocity	8
5.	Plot of Normalized Penetration as a Function of Velocity	9
6.	U-3/4% Ti Nose-Shape Projectile Semi-Infinite Penetration Channels	12
7.	WHA Nose-Shape Projectile Semi-Infinite Penetration Channels	12
8.	Overlay of U-3/4% Ti and WHA Nose-Shape Penetration Channels	14
A-1.	Primary Preimpact and Postimpact Radiographic Measures	23
A-2.	Target Plate Measures: Partial Penetration	24
A-3.	Target Plate Measures: Complete Penetration	24
A-4.	Radiographic Behind-Armor Debris Measures	25
A-5.	Penetration Measures in Semi-Infinite Target	26
B-1.	Vs-Vr Curve for Blunt-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity	30
B-2.	Vs-Vr Curve for Blunt-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity	32
B-3.	Vs-Vr Curve for Frustum-Cone-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity	35
B-4.	Vs-Vr Curve for Frustum-Cone-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity	37

Figure		<u>Page</u>
	Vs-Vr Curve for Conical-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity	41
	Vs-Vr Curve for Conical-Nose-Shape Penetrator vs. 25.4-mm RHA	44

List of Tables

<u>Table</u>		<u>Page</u>
1.	Semi-Infinite Results at Normal Incidence	7
2.	Limit Velocities (m/s) for U-3/4% Ti Penetrators vs. Finite RHA Targets	11
3.	Limit Velocities (m/s) for WHA Penetrators vs. Finite RHA Targets	11
B-1.	Individual Shot Data for the Blunt-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity	29
B-2.	Individual Shot Data for the Blunt-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity	31
B-3.	Individual Shot Data for the Blunt-Nose-Shape Penetrator vs. Semi-Infinite RHA	33
B-4.	Individual Shot Data for the Frustum-Cone-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity	34
B-5.	Individual Shot Data for the Frustum-Cone-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity	36
B-6.	Individual Shot Data for the Frustum-Cone-Nose-Shape Penetrator vs. Semi-Infinite RHA	38
B-7.	Individual Shot Data for the Conical-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity	39
B-8.	Individual Shot Data for the Conical-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity	42
B-9.	Individual Shot Data for the Conical-Nose-Shape Penetrator vs. Semi-Infinite RHA	45

1. Introduction

Kinetic energy (KE) penetrators have long been used as the primary munition for the U.S. Army main battle tank. As a result, many research dollars have been expended to understand the principles that make a good projectile. Studies have been done to examine penetrator materials and mechanical properties, as well as overall optimum physical characteristics, such as length-to-diameter (L/D) ratio, fin design, and nose-shape design (Zukas et al. 1992). A previous study examined the influence of nose shape on the performance of model scale tungsten heavy alloy (WHA) long-rod penetrators interacting with single plate metallic targets (Zook 1984, 1985). It concluded that, for WHA penetrators, a conical-nose-shape design performed better against a target at 0° obliquity than for a target with the same line-of-sight thickness at a high obliquity. It was also found that the inverse was true for the other nose shapes (short frustum, hemispheric, and blunt nose) tested.

Since the mid-1970s, however, the U-3/4% Ti alloy has been the material of choice for fielded KE tank round ammunition, due to its superior ballistic performance. The difference in terminal ballistic performance between the materials is rooted in a fundamental difference in the deformation and failure behaviors exhibited by the uranium and the tungsten alloys during the penetration process (Magness and Farrand 1990). Large mushroomed heads are routinely observed on residual penetrators of conventional WHAs, whereas recovered residual uranium alloy penetrators always lack this mushroomed head and, instead, have a chiseled head. Metallographic examinations reveal that early localized adiabatic shear failures occur in the uranium alloys, preventing the large bulk plastic deformation that results in the large mushroomed head observed on WHAs.

This study was conducted to determine the effect of nose shape on the performance of U-3/4% Ti penetrators against rolled homogeneous armor (RHA). It was speculated that, due to the differences in penetrator material flow and deformation characteristics, a penetrator that exhibits early shear failures may not show as much dependence on nose-shape design.

2. Projectile Characteristics

The penetrators used in this evaluation were manufactured from M-833 specification U-3/4% Ti, which has a density of 18.6 g/cm³ and a Rockwell C hardness of approximately 40.5. Due to the higher density of the U-3/4% Ti rods, the dimensions of the final penetrators are different than the 91% W-6.3% Ni-2.7% Fe penetrators used in the earlier study (density = 17.3 g/cm³) for the same L/D geometry. Each of the U-3/4% Ti penetrators had a L/D ratio of 10 with a diameter of 7.70 mm and a nominal mass of 66 g. All of the rods were right circular cylinders with nose shapes selected from the two extremes and also the midperformer of the WHA penetrator designs tested by Zook. The chosen nose shapes included a blunt nose, a frustum cone that was truncated at 0.6 of the diameter, and a full cone with a total apex angle of 15.5°. Similar to the test series with the WHA nose-shape projectiles, the lengths of the cylindrical portion of the rods were adjusted so that the mass and diameter remained constant for the three nose-shape designs. This eliminated the need to correct for effective length when comparing terminal ballistic performance. Figures 1 and 2 illustrate the dimensions of each of the chosen penetrator designs for the U-3/4% Ti and WHA penetrators, respectively.

3. Target Matrix

The test matrix included both semi-infinite and finite monolithic RHA targets. Semi-infinite targets are those where penetration is not influenced by free surface effects (from the side or rear). This type of test examines the actual penetration capability of the rod. Finite targets, on the other hand, are used to quantify perforation capabilities. The finite targets selected, a 76.2-mm RHA plate at 0° obliquity and a 25.4-mm RHA plate at 70.5° obliquity, have the same line-of-sight thickness. To eliminate any variability in performance due to target hardness, the 25.4-mm RHA plate was heat-treated to the same hardness as the 76.2-mm RHA plate (Brinell hardness number [BHN] = 269–286). The BHN of each of the target plates was checked prior to testing to guarantee the correct target hardness.

(a) Blunt-Nose-Design Penetrator.

(b) Frustum-Nose-Design Penetrator.

(c) Conical-Nose-Design Penetrator.

Figure 1. Dimensions and Geometries of the U-3/4% Ti Nose-Shape Projectiles.

(a) Blunt-Nose-Design Penetrator.

(b) Frustum-Nose-Design Penetrator.

(c) Conical-Nose-Design Penetrator.

Figure 2. Dimensions and Geometries of the WHA Nose-Shape Projectiles.

4. Test Procedure

Testing was conducted using an approximate 26-mm-diameter smoothbore laboratory gun system at the U.S. Army Research Laboratory's (ARL's) Experimental Facility 110. Each penetrator was supported in the barrel during launch by a polypropulux sabot, a four-piece design with a concave front-end design that helps separate the petals after exiting the gun. This quick discard of the sabot does not interfere with the penetrator/target interaction. Following the sabot is a steel pusher plate embedded in a polypropulux obturator. The pusher plate distributes the launch forces over a wider area, thereby preventing the rod from setting back into the soft plastic obturator. The back end of the obturator is machined to a slightly larger outer diameter than the sabot to seal the propellant gases behind the launch package, which accelerates the package to the required velocity. The short distance from the muzzle of the gun to the target of about 3 m helped to ensure acceptable yaw values upon impact.

Two pairs of orthogonal x-ray tube stations, located in front of the target, record images of the penetrator prior to target impact. Preimpact conditions of the projectile, such as pitch, yaw, and velocity, are determined from these radiographs (Grabarek and Herr 1966). For finite thickness plate tests, an additional pair of tube heads is placed behind the target, solely in the vertical plane, to capture images of the residual penetrator and behind-armor debris exiting the target. Residual velocities, masses, and flight characteristics are calculated using these images. A schematic of the range and x-ray setup is presented in Figure 3.

Terminal ballistic evaluations typically begin by determining the depth of penetration into semi-infinite armor. A semi-infinite target is of sufficient thickness and width so that the penetration event is not influenced by any free-surface effects, and the test solely examines the penetration capabilities of the rod. Cubes of 152-mm RHA, with BHN hardness of 255–269, were fired into at velocities of 900 m/s to 1,500 m/s in 200-m/s increments. These targets were later sectioned down the midline of the penetration channel, and the final penetration depths were measured.

Figure 3. Schematic of the Range and X-ray Setup.

Once the semi-infinite performance is quantified, limit velocities into finite targets are determined. A limit velocity is the velocity at which a penetrator will just perforate a target with a residual velocity of zero. Each limit velocity is calculated using a least-squares fit of the Lambert-Jonas (1976) equation to the striking velocity and residual velocity data pairs (Vs, Vr) measured from the radiographs. Approximately six shots were fired for each limit velocity determination. These tests provide additional insight into the capabilities of the penetrator nose-shape designs, since they involve both the penetration and perforation phases.

All of the preimpact, in-flight, and postimpact parameters recorded in each test are described in Appendix A. For each of the shots, various target measurements, including entrance/exit hole size, depth of penetration, bulge characteristics, and center hole dimensions, are listed in Appendix B. When appropriate, limit velocity curves are included with the finite target data.

5. Ballistic Test Results

The results of the effectively semi-infinite RHA target tests at normal incidence are given in Table 1. These data points are also graphically represented in Figure 4, a plot of U-3/4% Ti nose-shape, rod-penetration data as a function of impact velocity. At all velocities, the conical-nose-shape penetrator, the longest projectile design, is the best performer against these normal-incidence targets. The second best performer is the frustum cone, and the worst performer is the blunt-nose penetrator design, the shortest of these penetrator designs.

Table 1. Semi-Infinite Results at Normal Incidence

Nose Shape	Striking Velocity (m/s)	Penetration (mm)
Blunt	941 1,046 1,252 1,492	34.9 43.8 62.9 83.2
Frustum Cone	924 1,070 1,331 1,493	31.1 47.6 71.8 85.7
Conical	915 1,101 1,299 1,505	43.8 60.3 79.4 103.5

A vastly different effect is seen in Figure 5, a plot of normalized penetration as a function of velocity, as compared to Figure 4. In this plot, penetration is normalized by the actual length of the rod, since the penetrators were of equal mass and diameter. All the semi-infinite data, when normalized, lie on the same line. This result reflects that the greater penetration of the conical-nose-shape projectile is due to its increased length and not a direct result of nose shape.

Figure 4. Plot of Semi-Infinite Penetration as a Function of Velocity.

Figure 5. Plot of Normalized Penetration as a Function of Velocity.

The results of the ballistic tests with the U-3/4% Ti penetrators vs. the finite monolithic targets are listed in Table 2. For the normal-incidence, 76.2-mm RHA target, the same trend in performance observed for the semi-infinite targets is evident. The conical-nose penetrator is the best performer, delivering the lowest limit velocity of 1,239 m/s. In comparison, the limit velocities of the other nose-shape penetrators are remarkably higher at 1,324 m/s for the frustum cone and 1,373 m/s for the blunt-nose rod. An inverse ranking is seen for the high-obliquity, 70.5° target. The blunt-nose penetrator is the best performer, with a limit velocity of 1,088 m/s, and the worst performer is the conical-nose-shape design at 1,355 m/s. Once again, the performance of the frustum cone falls between the two.

The difference in the performance of the various U-3/4% Ti nose-shape penetrators is similar to the data collected previously for the WHA designs. These data points are given in Table 3 for comparison. Again, the conical-nose-shape design performed the best of the three nose-shape designs vs. the normal-incidence target with a limit velocity of 1,333 m/s and the worst against the high-obliquity target at 1,470 m/s. Similar to the U-3/4% Ti penetrators, there is a spread of approximately 120 m/s between the WHA conical- and frustum-cone-nose-shape designs against the normal-incidence finite target. In the case of the high-obliquity target, the difference in performance is approximately 275 m/s for both materials.

6. Discussion

The penetration process begins when the projectile impacts the front of the target. The nose of the rod displaces just enough target material for the remaining penetrator section to pass through. A large amount of plastic deformation occurs as the penetrator burrows into the armor. The front of the penetrator is eroded by a continuous process of building up and shearing away of the nose. As a result, the last part of the rod to be eroded is the tail. The degree of the erosion process on the projectile is determined by the material properties of the rod. The displacement of target material is caused by the moving penetrator-target interface. Finally, when the residual penetrator and the interface come to rest, the penetration process is complete, and a penetration tunnel remains.

Table 2. Limit Velocities (m/s) for U-3/4% Ti Penetrators vs. Finite RHA Targets

Nose Shape	25.4-mm RHA at 70.5°	76.2-mm RHA at 0°
Blunt	1,088	1,373
Frustum Cone	1,164	1,324
Conical	1,355	1,239

Table 3. Limit Velocities (m/s) for WHA Penetrators vs. Finite RHA Targets

Nose Shape	25.4-mm RHA at 70.5°	76.2-mm RHA at 0°
Blunt	1,186	1,440
Frustum Cone	1,246	1,415
Conical	1,470	1,333

Sectioning of the semi-infinite RHA targets revealed that the penetration channels of the three nose shapes had unique characteristics. Sketches of each penetration channel, for impacts at a velocity around 1,500 m/s, are given in Figures 6 and 7, for WHA (unpublished WHA data, Zook and Frank 1985) and U-3/4% Ti rods, respectively. For both material types, the blunt-nose-shape projectile appears to create a cavity of an almost constant diameter. In comparison, the frustum-cone-nose-shape rod creates a cavity that is slightly narrower at the entrance of the channel (the entrance hole dimensions are 16 mm \times 16 mm, as compared to 21 mm \times 21 mm) and then quickly widens to the uniform diameter of the blunt-nose cavity when the main body of the projectile begins to back-extrude and erode. The energy partitioning of the frustum-cone-nose-shape projectile, in terms of the penetration cavity shape, results in penetration that is slightly greater than that for the blunt-nose-shape design.

In comparison to the blunt-nose-shape projectile, the rod with a conical-nose-shape design burrows a deeper and initially narrower channel into the target at normal incidence. An examination of the sectioned target revealed a "bottleneck" or half-hourglass cavity early in the penetration process. This characteristic cavity is created by the slender nose shape entering the target. The

Figure 6. U-3/4% Ti Nose-Shape Projectile Semi-Infinite Penetration Channels.

Figure 7. WHA Nose-Shape Projectile Semi-Infinite Penetration Channels.

cavity widens only as the main body of the projectile begins to penetrate. Less energy is expended to move target material away from the penetrator-target interface at the entrance area of channel. The long, conical-nose design requires that only a minimal amount of target material be displaced by the projectile as it enters the armor. The resulting entrance hole dimensions are only 11 mm × 11 mm. Later in the process, as the main body of the projectile begins to penetrate, the cavity becomes wider, consistent with projectiles of the other nose-shape designs.

Due to the way that the three nose-shape penetrators initially engage the target, there are additional differences in postmortem target measurements. The average diameter of the cavity produced by a conical-nose-shape rod at 1,500 m/s is lower at approximately 8.3 mm, whereas the average diameter displaced by the blunt-nose rod is much higher, at approximately 12.3 mm. It is evident that the early difference in the width of the penetration channel greatly influences the overall average diameter. Again, the frustum-nose-shape penetrator falls in the middle, with an average cavity diameter of 11.1 mm.

Additional differences are seen when directly comparing the performance of the WHA and U-3/4% Ti nose-shape penetrators, since the flow and failure behaviors of the two materials are fundamentally different. For U-3/4% Ti alloy penetrators, the high-pressure, high-rate loading conditions of the penetration event help the thermal softening of the penetrator material to overcome the strengthening mechanisms of deformation, such as strain hardening and strain-rate hardening. Once the penetrator softens rather than strengthens with strain, the deformation rapidly localizes as adiabatic shear bands, allowing for a quick discard of penetrator material, or chiseled nose appearance. Conventional WHAs do not flow-soften as quickly as U-3/4% Ti, and plastic localizations form only after undergoing a very large amount of plastic strain. As a result, the WHAs develop large mushroomed heads at the penetrator-target interface.

Traditionally, U-3/4% Ti projectiles outperform similar WHA projectiles. Since the eroding material is discarded earlier, and a large mushroomed head is not formed on the penetrating U-3/4% Ti rod, the volume of target material that must be displaced by the moving penetrator-target interface is minimized. Therefore, the KE is expended to displace a narrower, yet deeper, tunnel in the target.

This effect is also seen in all the nose-shape tests and is graphically represented in Figure 8, which overlays the penetration channels of the two materials. The penetration channels of the U-3/4% Ti penetrators are more narrow than the WHA penetrator channels.

Figure 8. Overlay of U-3/4% Ti and WHA Nose-Shape Penetration Channels.

For finite plate targets, there is a well-reported difference in limit velocity between U-3/4% Ti and WHA penetrators (Magness and Farrand 1990). This effect is also seen in these tests, resulting in a consistent shift of approximately 100 m/s in the limit velocities of WHA and depleted uranium (DU) materials. The generalized ranking of nose-shape performance is also preserved for the two

materials. The similar shifts in performances against finite and semi-infinite target imply that the nose-shape effects witnessed are independent of penetrator material.

For targets presented at obliquity, the difference in limit velocities between the blunt- and conical-nose-shape WHA penetrators was 107 m/s. A similar shift in performance, 134 m/s, was found for the U-3/4% Ti nose-shape penetrators. The consistency in the shifts between the two materials show that the early initation of shear in the U-3/4% Ti penetrators does not reduce the loss of performance at obliquity.

Nose shape is an important aspect in the overall systems approach when designing a projectile. A projectile with a conical-nose-shape design exhibits less drag resistance and reduced velocity decay in flight. Therefore, the projectile impacts the target with a greater striking velocity and has a greater available energy to defeat the target. The conical-nose-shape design on a projectile, although important to the reduction of aerodynamic drag, is also a serious liability in the defeat of an oblique target, as seen in the data results presented. This is extremely important, since most of the targets impacted by projectiles in the field are presented at obliquity. Instead of quickly embedding into the face of the target, the conical-nose-shape penetrator has the tendency to deflect against high-obliquity targets.

One approach that has been recommended in the past to combine the advantages of a conical-nose-shape design for aerodynamics and penetration performance vs. normal-incidence targets and the advantages of a more blunt-nose design vs. higher obliquity targets is to add a notch on the conical-nose-shape design (Farrand, Magness, and Leonard 1991). This design allows the nose tip to enhance normal-incidence penetration and also decrease drag resistance. When impacting high-obliquity targets, the notch provides a sacrificial section that is designed to quickly break off with only a negligible loss in penetrator mass. Tests are necessary, of course, to optimize the placement of the notch.

Another method to combine the advantages from the various nose shapes is to use a low-density (low weight), conical-shaped windscreen over a blunt-nose penetrator. The conical windscreen helps

aerodynamically (with minimal effect on terminal ballistic performance), and the blunt-nose penetrator will perform better ballistically against high-obliquity targets.

7. Conclusions

The ranking of performance of the various nose-shape U-3/4% Ti projectiles is the same as the ranking of WHA rods tested previously by Zook. Against the finite normal-incidence target, 76.2-mm RHA at 0° obliquity, the conical-nose projectile is the best performer, delivering the lowest limit velocity. The long conical nose easily engages the face of a low-obliquity target and displaces the least amount of target material. However, against a high-obliquity target, the conical-nose projectile proved to be the worst performer. Instead of readily digging into the face of the target, the conical-nose-shape design has a greater tendency to ricochet off the face of the target.

The performance of the blunt-nose penetrator acts inversely to that of the conical-nose penetrator. For both penetrator materials, it performs best against high-obliquity targets and performs the worst against low-obliquity targets. The performance of the short frustum cone, a compromise of the other two designs, fell between that of the other nose shapes for all the targets evaluated.

The consistency in the performance ranking of nose-shape designs and the delta between the two penetrator materials, demonstrates that the nose-shape effect is largely independent of penetrator material. The vastly different modes of failure, large plastic deformation for the WHA, and early adiabatic shear for the DU material did not change the overall performance ranking for the geometries evaluated.

The nose shape of a fielded munition must be a compromise of all aspects of ballistics, including aerodynamic qualities and terminal ballistic performance. Although the long conical-nose-shape design is ideal aeroballistically, these same features prove to be detrimental when impacting a high-obliquity target. This is extremely important because the most common target found on the battlefield will be impacted at obliquity. A reasonable choice to incorporate the advantages of each

design is to field a blunt-nose penetrator covered by a low-density, expendable conical windscreen. A second alternative is to place a notch on the front of a conical-nose projectile that will help aerodynamically and will also offer potentially greater performance against normal-incidence targets.

8. References

- Grabarek, C. L., and E. L. Herr. "X-Ray Multi-Flash System for Measurement of Projectile Performance at the Target." BRL-TN-1634, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1966.
- Farrand, T., L. Magness, and W. Leonard. "A Terminal Ballistic Evaluation of a Nominally 0.60 Caliber, Mass-Stabilized, Dual Density, Electromagnetically Launched, Rodman Cone Projectile." BRL-MR-3895, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, February 1991.
- Lambert, J. P., and G. H. Jonas. "Toward Standardization in Terminal Ballistic Testing: Velocity Representation." BRL-MR-1852 (ADA021389), U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, January 1976.
- Magness, L., and T. Farrand. "Deformation Behavior and Its Relationship to the Penetrator Performance of High Density KE Penetrator Materials." Proceeding from the 1990 Army Science Conference, Durham, NC pp. 465–479, May 1990.
- Zook, J., C. Brown, and C. Grabarek. "The Penetration Performance of Tungsten Alloy L/D=10 Long Rods With Different Nose Shapes Fired at Rolled Homogenous Armor." BRL-MR-03350, U.S. Army Research laboratory, Aberdeen Proving Ground, MD, April 1984.
- Zook, J., and K. Frank. "Comparative Penetration Performance Of Tungsten Alloy L/D=10 Long Rods With Different Nose Shapes Fired at Rolled Homogeneous Armor." BRL-MR-3480, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, November 1985.
- Zukas, J., T. Nicholas, H. Swift, L. Greszczuk, and D. Curran. *Impact Dynamics*. Krieger Publishing Company, Malabar, FL, 1992.

Appendix A:

Explanation of Data Summary Tables

Figure A-1. Primary Preimpact and Postimpact Radiographic Measures.

ENTRANCE THROUGH HOLE CENTER TARGET SURFACE PERPENDICULAR EXIT PARALLEL LENGTH (L) / WIDTH (W) HEIGHT (H) / DEPTH (D) MEASURE PENETRATION BULGE

Figure A-2. Target Plate Measures: Partial Penetration.

Figure A-3. Target Plate Measures: Complete Penetration.

Figure A-4. Radiographic Behind-Armor Debris Measures.

Figure A-5. Penetration Measures in Semi-Infinite Target.

Appendix B:

Data Summary Tables and Limit Velocity Curves

INTENTIONALLY LEFT BLANK.

Table B-1. Individual Shot Data for the Blunt-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity

			Se	ries	Fired	1 .	- 1990)			
Sh.#	Alpha (deg)		Gamma (deg)		Ms) (g)		EtaR deg)	AlphaR (deg)		Mr (g)	Pen. (cm)
-4093	1.00U	1.75R	2.01	. 1372	66.2	23	NA	NA	0	0.00	6.3
4094	1.25U	1.00R	1.60	1405	66.2	25	0.8D	NA	293	5.54	CP
4095	0.25D	0.25R	0.34	1383	66.3	2	0.8D	NA	360	6.38	CP
4096	0.25D	0.25L	0.34	1368	66.3	0	NA	NA	0	0.00	6.6
4097	1.50U	0.50R	1.58	1378	66.3	3	2.0U	NA	196	4.37	CP
4098	0.500	0.75R	0.89	1437	66.3	8	4.2U	NA	647	6.21	CP
Sh.#	M.rec		Vpl (m/s)		_	L.p (W.p I	Th. EHI	L EHW E	_	t.L (g)
-4093	0.00	NA	0	0.00	0.00	0.0	0.0	0.0 0.	0.0	1.5	13
4094	BHN= 3 None				None	0.0	0.9	.8 1.	5 1.5	NR.	7
4095	BHN= 3 None	12.1U		1.46 4.98 0.38	None None	1.0	1.0 0	0.7 1.	3 1.3	NR.	11
4096	BHN= 3 0.00 BHN= 3	NA	0	0.00	0.00	0.0	0.0	0.0 0.	0.0	1.2	4
4097	None			4.14 3.69	None None	1.0	0.8 0	.7 1.	5 1.0	NR.	3
4098	BHN= 3 None	02 3.5D	684	2.33	None None	0.9	0.6 0	.6 2.	0 2.4	NR.	17
	BHN= 3	02									
Sh.#		CoFS (deg)			CenL C		#Pcs	. M.R.D			3W cm)
-4093 4094 4095	NA 51.6 19.3	NA 6.2D 2.4U	2.3 2.3 2.1	2.3 2.3 2.1	NM 2.0 1.4	NM 2.0 1.4		0.31 0.31			3.2 NM NM

NM

1.8

1.5

MM

1.8

1.5

PP

1

1

PP

0.30

0.31

3.0

MM

MN

3.0

MИ

NM

2.0

2.2

2.0

4096

4097

4098

NA

18.0

20.4

NA

6.9D

6.0D

2.0

2.2

2.1

Figure B-1. Vs-Vr Curve for Blunt-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity.

Table B-2. Indivisual Shot Data for the Blunt-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity

		Series 1	Fired 1	- 1991			
Sh.#	Alpha Beta (deg)		Ms) (g)	EtaR (deg)	AlphaR (deg) (Vr Mr m/s) (g)	Pen. (cm)
4116	0.25D 0.75	R 0.79 1123	66.20	37.3U	NA	360 9.26	CP
4117	0.25D 0.50	R 0.56 1108	66.29	32.6U	NA	359 7.89	CP
4118	0.25U 0.25	R 0.34 1089	66.37	30.2U	NA	91 6.91	CP
4119	0.25U 0.50	L 0.56 1081	66.21	NA	NA	0 0.00	3.1
4120	0.25D 0.75	R 0.79 1083	66.27	NA	NA	0 0.00	2.2
Sh.#	M.rec EtaP (g) (deg)	_	Mpr L.			EHW Blg W cm) (cm)	rt.L (g)
4116	None 84.8U	116 3.62 237 3.93	None 1.	1 0.6 0	.6 2.0	1.8 NR.	16
4117	BHN= 269 None 70.6U	315 4.37 255 4.04	None 1.	1 0.8 0	.6 2.0	1.5 NR.	62
4118	BHN= 269 None 32.5U	101 0.74	None 0.	5 0.5 0	.4 1.4	1.3 NR.	36
		115 0.98	None				
4119	BHN= 269 0.00 NA	0 0.00	0.00 0.	0 0.0 0	0.0	0.0 0.6	18
4120	BHN= 269 0.00 NA BHN= 269	0 0.00	0.00 0.	0 0.0 0	0.0	0.0 0.5	38
Sh.#	Cone CoFS (deg)	EntHL EntW (cm) (cm)		••	. M.R.Di (inch		BW (cm)
4116 4117 4118	75.4 47.1U 45.8 47.7U 19.5 22.8U		1.0 1	.0 1 .1 1	0.30	NM NM NM	NM NM NM

MK

NM

2.5

2.4

6.6

7.2

4119

4120

NA

NA

NA

NA

PP

PP

MИ

MM

PP

PP

3.2

3.0

5.5

5.5

Figure B-2. Vs-Vr Curve for Blunt-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity.

Table B-3. Individual Shot Data for the Blunt-Nose-Shape Penetrator vs. Semi-Infinite RHA

		T. /1		ies Fir D						
		ווענ	<i>J</i> – 10	D	ensic	y 15	10.0		Norm	Norm
Sh.#	Gam	na '	vs 1	Ms K	.E.	Area	M/A	KE/A		
	(de	g) (m	/s) (q	3) (J) (scm)	(g/scm)	(J/sci	n)	(mm)
4121	0.3	35 9	41 66.	.39 29	394 0	.465	143	6318	4 0.45	34.9
4140	1.8	32 10	46 66.	.18 36	204 0	.465	142	7782	5 0.57	43.8
4143	0.9	90 12	52 66	.31 51	971 0	.464	143	11208	0.82	62.9
4146	1.3	12 149	92 66.	.32 73	816 0	.464	143	159200	0 1.08	83.2
Sh.#	Rise	e Vol	Vol	KE/Vt	KE/	Vh	2 plV	Dt/Dp	Area	M/A
	I(ID)		total	RD/ VO	111		*10^6	Delb	hole	hole
	(cm)			(J/cc)	(J/c		10 0		(scm) (
4121	0.44 BHN=	15.56 255	18.03	1630	18	89	126	1.51	1.06	62.82
4140		13.35	14.30	2532	27	12	156	1.40	0.92	72.24
4143	0.32 BHN=	7.99 255	8.44	6158	65	04	224	1.63	1.23	54.03
4146		22.22	25.95	2845	33	22	318	1.84	1.56	42.47

Table B-4. Individual Shot Data for the Frustum-Cone-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity

		Series	Fired 1	- 1991		
Sh.#	Alpha Beta (deg) (deg			-	naR Vr eg) (m/s)	Mr Pen. (g) (cm)
4099	1.25D 0.50	OL 1.35 1322	65.86	NA 1	0 AI	0.00 6.4
4100	0.00 0.29	5R 0.25 1330	65.78	1.2D	NA 318	6.55 CP
4101	0.25D 0.50	OL 0.56 1344	65.79	0.3D	NA 383	7.56 CP
4102	0.25D 0.25	5R 0.34 1334	65.74	NA 1	1A 0	0.00 5.5
4103	0.500 0.50	OL 0.70 1371	65.88	4.7U 1	NA 473	5.73 CP
Sh.#	M.rec EtaP (g) (deg)	Vpl Mpl (m/s) (g)	Mpr L.p (g) (W.p Th.	EHL EHW E	Blg Wt.L (cm) (g)
4099	0.00 NA BHN= 302	0 0.00	0.00 0.0	0.0 0.0	0.0 0.0	1.3 1
4100	None 13.60 BHN= 302	J 335 4.84	None 1.0	1.0 0.6	1.5 2.0	NR34
4101	None 1.90	J 384 2.26 218 3.83	None 0.8	0.6 0.6	1.6 1.3	NR22
	BHN= 302					
4102	0.00 NA BHN= 302	0 0.00	0.00 0.0	0.0 0.0	0.0 0.0	1.4 -13
4103	None 7.8I	373 5.20 359 4.24	None 0.9	0.9 0.8	1.5 1.7	NR7
	BHN= 302					
Sh.#	Cone CoFS (deg) (deg)	S EntHL EntW (cm) (cm)				BL BW
4099 4100 4101 4102 4103	NA NA 14.8 6.20 28.2 9.40 NA NA 15.8 3.20	1.3 1.3 1.3 1.3	NM NM 1.0 1.0 NM NM) 1 (PP	0.31 0.31 PP 3	0.2 3.2 NM NM NM NM 0.1 3.1 NM NM

Figure B-3. Vs-Vr Curve for Frustum-Cone-Nose-Shape Penetrator vs. 76.2-mm RHA at 0° Obliquity.

Table B-5. Individual Shot Data for the Frustum-Cone-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity

			Se	ries F	ired	1 -	199	1					
Sh.#	Alpha (deg)	Beta (deg)	Gamma (deg)	Vs (m/s)	Ms (g)		taR eg)		haR leg)	Vr (m/s)	Mr (g		en. em)
4104	1.000	0.00	1.00	1285	65.7	⁷ 5 1	2.8U		NA	824	10.	90	CP
4122	0.500	0.25R	0.56	1232	65.8	30 4	0.6U		NA	772	10.	96	CP
4123	1.50U	0.25R	1.51	1168	65.8	32 2	5.9U		NA	536	7.	39	CP
4124	0.00	0.50L	0.50	1089	65.7	76	NA		NA	C	0.	00 0	8.0
4125	0.25U	0.25L	0.34	1140	65.7	79	NA		NA	C	0.	00 2	2.8
4126	0.25D	0.25R	0.34	1163	65.7	73	NA		NA	C	0.	00 1	1.6
4127	0.50U	1.25R	1.35	1176	65.8	34	NA		NA	Lost	Lo	st	CP
4134	0.500	0.00	0.50	1164	66.3	10	NA		NA	(0.	00 1	1.9
Sh.#	M.rec	EtaP (deg)	Vpl (m/s)	Mpl (g)	Mpr (g)	L.p	W.p	Th.		EHW (cm)	Blg (cm)	Wt.I	
4104	None	83.80	180 682	7.41 2.95	None None	1.6	0.9	0.7	4.	0 2	.3 NF	ł. 3	38
4122	BHN= None	269 77.8U	408 214	4.51 7.95	None None		0.8	0.5	3 .	7 3	.o NF	· :	34
4123	BHN= None	269 38.1U	356 362	1.57 3.82	None None		0.4	0.4	3 .	.1 2	.0 NF	٤. :	32
4124	BHN= 0.00	269 NA	0	0.00	0.00	0.0	0.0	0.0	0.	.0 0	.0 0.	0 :	16
4125	BHN= 0.00	269 NA	0	0.00	0.00	0.0	0.0	0.0	0	.0 0	.0 0	.5	37
4126	BHN= 0.00	269 NA	0	0.00	0.00	0.0	0.0	0.0	0	.0 0	.0 0	.3	55
4127	BHN= None	269 Lost	Lost	Lost	None		-NM-		1	.8 1	.3 NI	٦.	20
4134	BHN= 0.00 BHN=	NA	0	0.00	0.00	0.0	0.0	0,0	0	.0 0	.0 0	.7	38
Sh.#	Cone (deg	CoFS) (deg)	EntHL (cm)	EntW (cm)	CenL (cm)	CenW		cs.	M.R.I	Dia. ch)	BL (cm		
4104 4122 4123 4124 4125 4126 4127 4134	71.3 54.6 32.1 NA NA NA Lost	NA NA NA	5.7 5.5 5.5 7.0 7.9 4.5 0.0	2.4 2.2 2.5	2.0 1.9 NM NM NM	1. 1. NM NM NM	5 5 5 5 Lo	1 0 1 PP PP PP st	0.3 0.3 0.3 PP PP PP Los	0 0	NM NM 0.0 6.0 4.5 NM 5.0	3 2 NM	.0

Figure B-4. Vs-Vr Curve for Frustum-Cone-Nose-Shape Penetrator vs. 25.4-m RHA at 70.5° Obliquity.

Table B-6. Individual Shot Data for the Frustrum-Cone-Nose-Shape Penetrator vs. Semi-Infinite RHA

		L/I	Seri		ed 1 - : ensity is			N	W = 2222
Sh.#	Gamm (deg		Vs M			a M/A)(g/scm)		P/L	Norm Pene. (mm)
4138 4141 4144 4147	1.2 0.7 1.0 0.5	1 10° 3 13°	70 65. 31 65.	71 376 93 584	034 0.464 516 0.464 100 0.464 103 0.464	4 142 4 142	81126 12595	1 0.39 6 0.59 1 0.90 8 1.07	31.1 47.6 71.8 85.7
Sh.#	Rise	vol base	Vol total	KE/Vt	KE/Vb	2 plV *10^6	Dt/Dp	Area hole (scm)(M/A hole g/scm)
4138	0.13 BHN=	5.34 255	7.01	3999	5250	127	1.54	1.09	60.05
4141	0.57	6.21	6.69	5623	6057	170	1.55	1.11	59.08
4144	BHN= 0.66 BHN=	255 13.31 255	13.31	4388	4388	264	1.51	1.06	62.38
4147	0.32 BHN=	12.49 255	12.64	5807	5877	332	1.74	1.41	46.70

Table B-7. Individual Shot Data for the Conical-Nose-Shape Penetrator vs. 76.2-m RHA at 0° Obliquity

			S	eries	Fired	1	- 19	91				
Sh.#	Alpha (deg)	Beta (deg)	Gamm (deg		Ms		EtaF (deg)		phaR deg)	Vr (m/s)	Mr (g)	Pen.
4105	0.25U	0.50L	0.5	6 1254	66.	22	0.0)	NA	618	10.45	CP
4106	1.25U	0.25R	1.2	6 1207	66.	06	NA		NA	0	0.00	1.9
4107	1.000	0.75R	1.2	5 1239	65.	62	NA		NA	0	0.00	3.1
4108	0.500	0.25L	0.5	6 1220	66.	12	NA		NA	0	0.00	3.3
4109	0.00	1.75R	1.7	5 1271	66.	01	NA		NA	0	0.00	2.0
4110	1.50U	0.50R	1.58	3 1288	66.	05	5.3	U	NA	419	7.24	CP
4111	0.75U	0.00	0.75	5 1265	66.	03	10.7	U	NA	561	9.09	CP
4112	1.00U	0.50L	1.12	2 1274	66.	18	NA		NA	0	0.00	5.8
4113	0.75U	0.50R	0.89	1361	65.	97	3.8	U	NA	801	7.74	CP
	•											
Sh.#	M.rec (g)		Vpl (m/s)	(d) Wbl	Mpr (g)	L.p	W.p	Th.		EHW B	lg Wt cm) (J.L
4105	None	1.9U	637 338	3.54 7.28	None None	1.1	0.9	0.5	2.0	1.8	NR.	6
	BHN= 3	02	338	7.20	None							
4106	0.00 BHN= 30	NA O2	0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.6	- 39
4107	0.00 BHN= 30	NA 02	0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.6	- 36
4108	0.00 BHN= 30	NA 02	0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.5	- 25
4109	0.00 BHN= 30	NA 02	0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	1.1	- 39
4110	None	0.0	409 406		None None	0.8	0.7	0.6	1.3	1.3	NR.	-14
	BHN= 30	2										
4111	None				None None	0.8	0.6	0.6	1.3	1.8	NR.	- 5
	BHN=30	2										
4112	0.00 BHN= 30		.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.4	-8
4113	None		691 722		None None	1.1	0.7	0.5	2.5	2.2	NR.	4
	BUN- 20											

BHN= 302

Table B-7. Individual Shot Data for the Conical-Nose-Shape Penetrator vs. 76.2-m RHA at 0° Obliquity (continued)

Sh.#	Cone (deg)	CoFS (deg)	EntHL (cm)	EntW (cm)	CenL (cm)	CenW	#Pcs.	M.R.Dia. (inch)	BL (cm)	BW (cm)
4105	43.1	12.3U	1.5	1.5	5 1.3	3 1.3	1	0.31	NM	NM
4106	NA	NA	1.2	1.2	MN S	NM	PP	PP	3.5	3.5
4107	NA	NA	1.1	1.2	NM S	NM	PP	PP	3.0	3.0
4108	NA	NA	1.0	1.0	NM (MM	PP	PP	3.5	3.5
4109	NA	NA	1.2	1.2	NM	NM	PP	PP	3.5	3.5
4110	8.3	1.2U	1.2	1.0	0.9	1.0	1	0.30	NM	NM
4111	33.5	17.0U	1.2	1.2	1.0	1.0	1	0.30	NM	NM
4112	NA	NA	1.2	1.2	NM	MM	PP	PP	3.2	3.2
4113	8.1	NM	1.1	1.1		1.0	1	0.30	NM	NM

Figure B-5. Vs-Vr Curve for Conical-Nose-Shape Penetrator vs. 76.2-m RHA at 0° Obliquity.

Table B-8. Individual Shot Data for the Conical-Nose-Shape Penetrator vs. 25.4-m RHA at 70.5° Obliquity

Ser	ries F	ired	1 - 199	1
 Gamma (deg)			EtaR (deg)	A

Sh.#	Alpha (deg)	Beta (deg)	Gamma (deg)		Ms) (g)		EtaR (deg)		phaR deg)		Mr (g)	Pen. (cm)
4128	0.50D	0.25L	0.56	1144	66.	15	NA		NA	0	0.00	1.0
4129	0.00	1.00R	1.00	1196	65.	96	NA		NA	0	0.00	0.8
4130	0.25D	1.25R	1.26	1214	66.	10	NA		NA	0	0.00	1.1
4131	0.25U	0.75R	0.79	1327	66.	06	NA		NA	0	0.00	1.5
4132	0.500	0.75R	0.89	1384	66.	23	6.31	IJ	NA	1046	15.80	CP
4133	0.00	0.50R	0.50	1343	65.9	92	NA		NA	0	0.00	1.9
4135	0.25D	0.50L	0.56	1370	66.	10	14.80	J	NA	655	6.40	CP
4136	0.25U	0.25L	0.34	1353	66.	80	NA		NA	0	0.00	2.0
4137	0.25U	0.25R	0.34	1365	66.	80	NA		NA	Lost	10.10	CP
Sh.#	M.rec		Vpl (m/s)	Mpl (g)	Mpr (g)	L.p	W.p	Th.		EHW (Cm)	_	t.L (g)
4128	0.00 BHN= 2	NA	0	0.00	0.00	0.0	0.0	0.0	0.	0 0.	0.0	26
4129	0.00 BHN= 2	NA	0	0.00	0.00	0.0	0.0	0.0	0.	0 0.	0.0	26
4130	0.00 BHN= 2	NA	0	0.00	0.00	0.0	0.0	0.0	0.	0 0.	0.0	37
4131	0.00 BHN= 2	NA	0	0.00	0.00	0.0	0.0	0.0	0.	0 0.	0.2	83
4132	None	17.6U		5.58 2.75	None None	1.3	8.0	0.7	3.	7 3.4	4 NR.	38
4133	BHN= 20 0.00 BHN= 20	NA	0	0.00	0.00	0.0	0.0	0.0	0.	0 0.0	0.2	56
4135	None :	34.9U			None None	1.3	0.9	0.7	5.	8 3.	7 NR.	30
4136	BHN= 20 0.00 BHN= 20	NA			0.00	0.0	0.0	0.0	0.	0 0.0	0.9	21
4137		Lost	442	8.83	None	1.6	1.0	0.7	3.	7 2.8	3 0.0	50

Table B-8. Individual Shot Data for the Conical-Nose-Shape Penetrator vs. 25.4-mm RHA at 70.5° Obliquity (continued)

Sh.#	Cone (deg)	CoFS (deg)	EntHL (cm)	EntW (cm)	CenL (cm)	CenW (cm)	#Pcs.	M.R.Dia. (inch)	BL (cm)	BW (cm)
4128	NA	NA	6.0	2.0) NM	MM	PP	PP	0.0	0.0
4129	NA	NA	7.2	2.2	NM S	NM	PP	PP	0.0	0.0
4130	NA	NA	10.1	2.8	NM	NM	PP	PP	0.0	0.0
4131	NA	NA	10.9	3.0) NM	NM	PP	PP	7.0	2.0
4132	11.3	12.0U	6.5	2.8	2.5	1.5	1	0.31	NM	NM
4133	NA	NA	10.2	2.8	NM	NM	PP	PP	6.5	3.0
4135	20.2	24.9U	6.5	2.5	2.2	1.8	1	0.30	NM	NM
4136	NA	NA	7.5	2.6	NM	NM	PP	PP	8.5	2.5
4137	Lost	Lost	6.0	2.8	2.0	1.5	Lost	Lost	0.0	0.0

Figure B-6. Vs-Vr Curve for Conical-Nose-Shape Penetrator vs. 25.4-m at 70.5° Obliquity.

Table B-9. Individual Shot Data for the Conical-Nose-Shape Penetrator vs. Semi-infinite RHA

Series Fired 1 - 1991										
		L/1	0 = 10	D	ensity i	s 18.6				
								Norm	Norm	
Sh.#	Gamn	na '	Vs 1	Ms K	.E. Are	ea M/A	KE/A	P/L	Pene.	
	(deg	g) (m	/s) (g	g) (J) (scm	1) (g/scm)	(J/scm)	(mm)	
4139	1.0)3 9:	15 66.	.10 27	670 0.46	55 142	59480	0.46	43.8	
-4142	3.8	108	37 66 d	.20 39	110 0.46		84071			
4145	0.2	25 129	99 66		802 0.46		119953			
4148	1.2				938 0.46		161087			
4149	0.5	50 110	01 66.	.16 40	100 0.46	55 142	86198	0.63	60.3	
						2			•	
Sh.#	Rise		Vol	KE/Vt	KE/Vb	_	Dt/Dp		-	
			total			*10^6		hole	hole	
	(cm)	(cc)	(cc)	(J/cc)	(J/cc)		(scm) (g/scm)	
4100		- 4-		4456	5050	4.40	1 10		70 04	
4139		5.47	6.21	4456	5059	148	1.42	0.93	70.84	
4140		255	10 00	2062	2707	200	1 75	1 42	46 25	
-4142		10.30	13.20	2963	3797	209	1.75	1.43	46.25	
4145	BHN=		0.25	E0.00	6001	200	1 20	0 00	74 05	
4145		8.11	9.35	5968	6881	298	1.38	0.88	74.95	
4140	BHN=	255	16 40	A E A 7	1517	400	1.53	1.09	60.51	
4140	0.06 BHN=	16.48 269	10.40	4547	4547	400	1.55	1.09	60.51	
4140		7.23	7 22	5546	5546	214	1.48	1.02	64.82	
4149	BHN=	269	1.23	5546	5546	214	1.40	1.02	04.02	
	DUN-	203								

INTENTIONALLY LEFT BLANK.

NO. OF COPIES ORGANIZATION

- 2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 HQDA
 DAMO FDQ
 DENNIS SCHMIDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460
- 1 CECOM
 SP & TRRSTRL COMMCTN DIV
 AMSEL RD ST MC M
 H SOICHER
 FT MONMOUTH NJ 07703-5203
- 1 PRIN DPTY FOR TCHNLGY HQ
 US ARMY MATCOM
 AMCDCG T
 M FISETTE
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 PRIN DPTY FOR ACQUSTN HQS
 US ARMY MATCOM
 AMCDCG A
 D ADAMS
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 DPTY CG FOR RDE HQS
 US ARMY MATCOM
 AMCRD
 BG BEAUCHAMP
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 DPTY ASSIST SCY FOR R&T SARD TT T KILLION THE PENTAGON WASHINGTON DC 20310-0103
- 1 OSD
 OUSD(A&T)/ODDDR&E(R)
 J LUPO
 THE PENTAGON
 WASHINGTON DC 20301-7100

NO. OF COPIES ORGANIZATION

- INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS AT AUSTIN
 PO BOX 202797
 AUSTIN TX 78720-2797
- DUSD SPACE 1E765 J G MCNEFF 3900 DEFENSE PENTAGON WASHINGTON DC 20301-3900
- 1 USAASA MOAS AI W PARRON 9325 GUNSTON RD STE N319 FT BELVOIR VA 22060-5582
- 1 CECOM PM GPS COL S YOUNG FT MONMOUTH NJ 07703
- 1 GPS JOINT PROG OFC DIR COL J CLAY 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500
- 1 ELECTRONIC SYS DIV DIR CECOM RDEC J NIEMELA FT MONMOUTH NJ 07703
- 3 DARPA L STOTTS J PENNELLA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714
- 1 SPCL ASST TO WING CMNDR 50SW/CCX CAPT P H BERNSTEIN 300 O'MALLEY AVE STE 20 FALCON AFB CO 80912-3020
- 1 USAF SMC/CED DMA/JPO M ISON 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500

NO. OF COPIES ORGANIZATION

- 1 US MILITARY ACADEMY
 MATH SCI CTR OF EXCELLENCE
 DEPT OF MATHEMATICAL SCI
 MDN A MAJ DON ENGEN
 THAYER HALL
 WEST POINT NY 10996-1786
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AL TP
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AL TA
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

3 DIR USARL AMSRL CI LP (305)

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	COMMANDER US ARMY ARDEC G FLEMING PICATINNY ARSENAL NJ 07806-5000	1	DIRECTOR DARPA LAND SYSTEMS OFFICE 3701 N FAIRFAX DR ARLINGTON VA 22201-1714
3	COMMANDER US ARDEC AMSTA AR CCH A R CARR BLDG 354 D VO BLDG 65 S MUSALLI BLDG 65 PICATINNY ARSENAL NJ	1	COMMANDER USA MICOM AMSMI RD W MCCORKLE REDSTONE ARSENAL AL 35898-5010
	07806-5000	2	COMMANDER USA MICOM
1	COMMANDER US ARDEC AFAE ASM TMA MS B KOWALSKI BLDG 354 PICATINNY ARSENAL NJ 07806-5000		AMSMI RD ST WF M SCHEXNAYDER D LOVELACE REDSTONE ARSENAL AL 35898-5010
1	SOUTHWEST RSRCH INSTITUTE C ANDERSON J LANKFORD PO DRAWER 28510 SAN ANTONIO TX 78228-0510	1	COMMANDER NSWC TECH LIB CHINA LAKE CA 93555
1	INSTITUTE FOR ADVANCED TECH UNIVERSITY OF TEXAS AUSTIN S BLESS M NORMANDIA	1	COMMANDER NSWC TECH LIB DAHLGREN VA 22448-5000
2	AUSTIN TX 78759 DIRECTOR	1	AIR FORCE WRIGHT LAB TECH LIB DR J FOSTER
	LOS ALAMOS NATIONAL LAB P DUNN B HOGAN P O BOX 1663 G 770 LOS ALAMOS NM 87545	1	ARMAMENT DIVISION 101 EGLIN AVE STE 239 EGLIN AFB FL 32542 LANL
1	BRIGS CO J BACKOFEN 2668 PETER SBOROUGH ST		D RABERN GROUP MEE 13 MSJ576 LOS ALAMOS NM 87545
	HERDON VA 20171-2443	1	LANL TECH LIB
1	DEFENSE NUCLEAR AGENCY TECH LIB 6801 TELEGRAPH RD ALEXANDRIA VA 22192		P O BOX 1663 LOS ALAMOS NM 87545

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION		
3	LLNL R GOGOLEWSKI L321		ABERDEEN PROVING GROUND		
	R YOUNG L 282	24	DIR USARL		
	C CLINE		AMSRL WM TC		
	P O BOX 808		T BJERKE		
	LIVERMORE CA 94550		B DEROSSET		
			F GRACE		
2	SANDIA NATIONAL LAB		E KENNEDY		
	A ROBINSON		M LAMPSON		
	R NELLUMS		R MUDD		
	ALBUQUERQUE NM 87185-5800		R SUMMERS		
			W WALTERS		
1	JOHNS HOPKINS UNIV		L MAGNESS		
	DEPT MECH ENGINEERING		B PHILLABAUM		
	K RAMESH		R COATES B SORENSEN		
	CHARLES AND 33 ST				
	BALTIMORE MD 21218	AMSRL WM TD			
			K FRANK		
1	PENN STATE UNIVERSITY		T FARRAND		
	COLLEGE OF ENGINEERING		G BOYCE		
	T KRAUTHAMMER		D DIETRECH		
	R QUNEEY		AMSRL WM TA		
	R GERMAN		M KEELE		
	UNIVERSITY PARK PA		W ROWE		
	16802-6809		D HACKBARTH		
			M BURKINS		
1	KAMAN SCIENCES CORP		M ZOLTOSKI		
	N ARI		E RAPACKI		
	S DIEHL		N RUPERT		
	1500 GARDEN OF THE GODS RD		J RUNYEON		
	COLORADO SPRINGS CO 80907				

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Dayls Highway. Sulte 1204, Affindron, VA 22202-4392, and to the Office of Management and Budget. Paperwork Reduction Project(0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) September 1997 Final, Feb 90 - May 97 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE The Effect of Nose Shape on Depleted Uranium (DU) Long-Rod Penetrators 1L162618AH0 6. AUTHOR(S) Wendy Leonard 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER U.S. Army Research Laboratory ARL-TR-1505 ATTN: AMSRL-WM-TC Aberdeen Proving Ground, MD 21005-5066 10.SPONSORING/MONITORING 9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 12a, DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) The ballistic perfromance of model scale U-3/4%Ti long-rod penetrators with three different nose-shape designs (blunt nose, conical nose, and frustum cone) were evaluated. The target matrix included semi-infinite rolled homogeneous armor (RHA) and two finite RHA targets, one at normal incidence and one at high obliquity, but with the same line-of-sight thickness. The results reflected the same trends as observed for a previous tungsten alloy penetrator study, demonstrating that the nose-shape effects are independent of penetrator material. 15. NUMBER OF PAGES 14. SUBJECT TERMS U-3/4%Ti, terminal ballistic performance, model scale, limit velocity, nose-shape designs 16. PRICE CODE 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION **OF ABSTRACT** OF THIS PAGE OF REPORT UNCLASSIFIED UNCLASSIFIED UL UNCLASSIFIED

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory under to the items/questions	takes a continuing effort to improve the q below will aid us in our efforts.	uality of the reports it publishes	s. Your comments/answers
1. ARL Report Numb	per/Author <u>ARL-TR-1505 (Leonard)</u>	Date of Repo	ort September 1997
2. Date Report Recei	ved		
-	isfy a need? (Comment on purpose, related		
	s the report being used? (Information sou		
avoided, or efficiencie	on in this report led to any quantitative sares achieved, etc? If so, please elaborate.	vings as far as man-hours or do	llars saved, operating costs
	. What do you think should be changed to nat, etc.)	improve future reports? (Indica	ate changes to organization,
	Organization		
CURRENT ADDRESS	Street or P.O. Box No.	E-mail Name	
	City, State, Zip Code		
7. If indicating a Char or Incorrect address b	nge of Address or Address Correction, plea elow.	se provide the Current or Correc	t address above and the Old
	Organization		
OLD ADDRESS	Name		
	Street or P.O. Box No.		
	City, State, Zip Code		
	(Remove this sheet, fold as indic (DO NOT ST	-	

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL WM TC
ABERDEEN PROVING GROUND MD 21005-5066

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES