

机器语言程序设计

Machine Language Programming

李杉杉

CONTENT

目录

- 01 指令集架构回顾
- 02 机器语言程序设计
- 03 示例

指令集架构

指令集架构

- 计算机硬件和软件之间的接口
- 计算机能够执行的指令集合
 - 操作码: 让计算机执行的操作
 - 操作数:每一步操作所需的数据
 - "数据类型":操作数在计算机中的表示方式
 - "寻址模式":如何计算操作数在存储器中的地址
 - 存储器
 - 地址空间: 计算机存储单元的数量(2ⁿ)
 - 寻址能力:每个存储单元存储信息的能力(m位)
 - 寄存器集(DLX包含32个整数寄存器)

算术/逻辑运算指令 数据传送指令 控制指令 浮点指令

DLX 二进制补码整数 (8/16/32位) 单/双精度浮点数 (32/64位)

DLX 基址+偏移量

不同的指令集结构规定的操作、操作数数据类型和寻址模式等是不同的。

高级语言

高级语言

- 与底层计算机指令集无关
- "独立于机器"
- 不能直接被计算机执行
- 被翻译为目标机器ISA的二进制指令序列

低级语言

低级语言

- 与执行程序的计算机指令集紧密相关
- 机器语言
 依据指令集使用二进制编码,直接在计算机上执行,不需要经过语言处理
- 汇编语言
 依据指令集的汇编语言格式编写,需经过语言处理,翻译为机器语言才能在计算机上执行

三种基本结构

- 顺序
- 选择
- 循环

结构化程序设计

顺序结构

结构化程序设计

结构化程序设计

选择结构

- 一组指令序列生成条件
 - 将某个寄存器Rx设置为零(假)/非零(真)
- 地址B2"条件分支指令"测试该寄存器
 - 条件为真 (BNEZ Rx, Y)
 - PC<-C2+4
 - 立即数Y:子任务2的指令数目加1后再乘以4
 - 条件为假
 - PC <- B2+4
 - 子任务2
 - 终止于C2中的无条件跳转指令
 - PC <- D2+4
 - J指令中的立即数: 子任务1的指令数目乘以4

结构化程序设计

循环结构

- 一组指令序列生成条件
 - 将某个寄存器Rx设置为零(假)/非零(真)
- 地址B3"条件分支指令"测试该寄存器
 - 条件为假 (BEQZ Rx, Y)
 - PC <- D3+4
 - 立即数Y: 子任务的指令数目加1后再乘以4
 - 条件为真
 - PC <- B3+4
 - 子任务
 - 结束于D3中的无条件跳转指令
 - PC <- A
 - 问题: J指令中的立即数应为多少?

- 根据键盘输入的数值n(0到9之间的整数,ASCII码x30 $\sim x$ 39),对文档进行加密
- 文档有一个个字符组成,终止标识EOT(x04)
- 加密算法:
 - 如果文档中的字符ASCII码值大于"126-n",将该字符减去"94-n",并替换原来的字符;
 - 而其他字符则加上*n*,进行替换;
 - 最后在显示器上显示字符 "Y"(x59), 加密结束。
 - 假设文档中的字符ASCII码值在33~126范围内。

Ċ.Mr	ASCII		ASCII			ċ-⁄m	AS	CII	<i>⇔</i>	ASCII	
字符	D	Н	字符	D	Н	字符	D	Н	字符	D	Н
NUL	0	00	SP	32	20	@	64	40		96	60
SOH	1	01	I	33	21	Α	65	41	а	97	61
STX	2	02	"	34	22	В	66	42	b	98	62
ETX	3	03	#	35	23	С	67	43	С	99	63
EOT	4	04	\$	36	24	D	68	44	d	100	64
ENQ	5	05	%	37	25	E	69	45	е	101	65
ACK	6	06	&	38	26	F	70	46	f	102	66
BEL	7	07	'	39	27	G	71	47	g	103	67
BS	8	80	(40	28	Н	72	48	h	104	68
HT	9	09)	41	29	T I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	0B	+	43	2B	K	75	4B	k	107	6B
FF	12	0C	9	44	2C	L	76	4C	I	108	6C
CR	13	0D	-	45	2D	М	77	4D	m	109	6D
SO	14	0E		46	2E	N	78	4E	n	110	6E
SI	15	0F	/	47	2F	0	79	4F	0	111	6F
DLE	16	10	0	48	30	Р	80	50	р	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	S	115	73
DC4	20	14	4	52	34	Т	84	54	t	116	74
NAK	21	15	5	53	35	U	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	V	118	76
ETB	23	17	7	55	37	W	87	57	W	119	77
CAN	24	18	8	56	38	Х	99	58	X	120	78
EM	25	19	9	57	39	Υ	89	59	У	121	79
SUB	26	1A		58	3A	Z	90	5A	Z	122	7A
ESC	27	1B	;	59	3B		91	5B	{	123	7B
FS	28	1C	<	60	3C	1	92	5C		124	7C
GS	29	1D	=	61	3D]	93	5D	}	125	7D
RS	30	1E	>	62	3E	۸	94	5E	~	126	7E
US	31	1F	?	63	3F	_	95	5F	DEL	127	7F

系统分解过程

- 分解为由4个子任务组成的顺序结构
 - 初始化:得到数值*n*,将指针指向被 检查文档中第一个字符的地址,然 后从被检查文档中提取第一个字符。

分解C

- 循环结构: 只要该文档还有字符需要加密
 - 文档结束,标志为EOT(传输结束, ASCII码为00000100)

分解C1

• 两个顺序的子任务C2和C3

分解C1

• 使用选择结构代替C2

顺序结构

地址	31 26	25 21	20 16	15 11	10 6	5 0		
x0400 0000	110000		000000 00	000 0000 0000	0000 0110		TRAP x06/IN	
x0400 0004	000011	00100	00100	00	00 0000 0011 0	SUBI R4, R4, x30		
x0400 0008	001100	00000	00011	00	01 0000 0000 0	LHI R3, x1000		
x0400 000C	010110	00011	00001	00	00 0000 0000 0	000	LB R1, 0(R3)	
x0400 0010	010100	00001	00010	00	00 0000 0000 0	100	SEQI R2, R1, #4	
x0400 0014	101001	00010		0000 0000	0 0011 0000		BNEZ R2, x30	
x0400 0018	000001	00000	00101	00	00 0000 0111 1	111	ADDI R5, R0, x7F	
x0400 001C	000000	00101	00100	00101	000000	000011	SUB R5, R5, R4	
x0400 0020	000000	00001	00101	00010	000000	010000	SLT R2, R1, R5	
x0400 0024	101001	00010		0000 0000	0 0000 1100	BNEZ R2, x0C		
x0400 0028	000011	00101	00101	00	00 0000 0010 0	SUBI R5, R5, x21		
x0400 002C	000000	00001	00101	00001 000000		000011	SUB R1, R1, R5	
x0400 0030	101100		000000 00	000 0000 0000	0000 0100	J x04		
x0400 0034	000000	00001	00100	00001	000000	000001	ADD R1, R1, R4	
x0400 0038	010111	00011	00001	00	00 0000 0000 0	000	SB 0(R3), R1	
x0400 003C	000001	00011	00011	00	00 0000 0000 0	001	ADDI R3, R3, #1	
x0400 0040	010110	00011	00001	00	00 0000 0000 0	LB R1, 0(R3)		
x0400 0044	101100		111111 11	J #-56				
x0400 0048	000001	00000	00100	ADDI R4, R0, x59				
x0400 004C	110000		000000 00	000 0000 0000	0000 0111		TRAP x07/OUT	
x0400 0050	110000		000000 00	TRAP x00/HALT				

循环结构

	(7)							
A	生成条件指令							
В3	条件分支指令							
	子任务							
D3	J指令							

地址	31	26	25	21	20	16	15	11	10	6	5	0			
x0400 0000	1100	00			000000 0000 0000 0000 0000 0110							T	RAP x06/II	N	
x0400 0004	000011		00100 0010		0100 0000 0000 0011 0000						SUBI R4, R4, x30				
x0400 0008	0011	00	00000		00011		0001 0000 0000 0000						LHI R3, x1000		
x0400 000C	0101	10	00011		00001			000	0 0000 0	0000	0000		LB R1, 0(R3)		
x0400 0010	0101	00	00001		000	10		000	0 0000 0	0000 (0100		SEQI R2, R1, x04		
x0400 0014	1010	01	000	10			00000	0000	0011 0	000			BNEZ R2, x30		
x0400 0018	0000	01	000	00	001	101		000	0 0000 0	0111	1111		ADI	OI R5, R0,	x7F
x0400 001C	0000	00	001	01	001	100	001	01	0000	000	00	00011	SUB R5, R5, R4		R4
x0400 0020	0000	00	000	01	001	101	000	10	000000		01	10000	SLT R2, R1, R5		R5
x0400 0024	1010	01	000	10	00000 0000 0000 1100						BN	NEZ R2, x0	C		
x0400 0028	0000	11	001	01	001	00101 0000 0000 0010 0001				0001		SUBI R5, R5, x2		x21	
x0400 002C	0000	00	000	01	001	101	000	01	000000		00	00011	SU	B R1, R1, I	R5
x0400 0030	1011	.00			0000	000 00	00 0000	0000	0000 01	100				J x04	
x0400 0034	0000	00	000	01	001	100	000	01	0000	000	00	00001	ADD R1, R		R4
x0400 0038	0101	11	000	11	000	001		000	0 0000 (0000 (0000		S	B 0(R3), R	1
x0400 003C	0000	01	000	11	000)11	0000 0000 0000 0001						AD	DI R3, R3,	#1
x0400 0040	0101	10	000	00011		001		000	0 0000 0	0000 (0000		L	B R1, 0(R3)
x0400 0044	1011	.00	111111 1111 1111 1111 1100 1000								J #-56				
x0400 0048	0000	01	000	00000 00100			0000 0000 0101 1001					ADI	DI R4, R0,	x59	
x0400 004C	1100	00		000000 0000 0000 0000 0000 0111							TR	AP x07/OU	JT		
x0400 0050	1100	00		000000 0000 0000 0000 0000 0000						TRA	AP x00/HA	LT			

C2选择结构

地址	31	26	25	21	20	16	15	11	10	6	5	0		
x0400 0000	1100	000			00000	00 000	0 0000	0000	0000	0110			TRAP x0	6/IN
x0400 0004	0000	011	001	00	001	00		0000	0000	0011	0000		SUBI R4, R	R4, x30
x0400 0008	001	100	000	00	000	11		0001	0000	0000	0000		LHI R3, x	1000
x0400 000C	0101	110	00011		00001			0000	0000	0000	0000		LB R1, 0	(R3)
x0400 0010	0101	100	000	01	000	10		0000	0000	0000	0100		SEQI R2, I	R1, #4
x0400 0014	1010	001	000	10			00000	0000	0011	0000			BEQZ R2	, x30
x0400 0018	0000	001	000	00	001	01		0000	0000	0111	1111	_	ADDI R5, F	R0, x7F
x0400 001C	0000	000	001	01	001	00	0010	01	0000	000	00	0011	SUB R5, R	25, R4
x0400 0020	0000	000	000	01	001	01	0001	10	0000	000	01	.0000	SLT R2, R	1, R5
x0400 0024	1010	001	000	10			00000	0000	0000	1100			BNEZ R2	, x0C
x0400 0028	0000	011	001	01	001	01		0000	0000	0010	0001		SUBI R5, R	R5, x21
x0400 002C	0000	000	000	01	001	01	0000	01	0000	000	00	0011	SUB R1, R	R1, R5
x0400 0030	1011	100			00000	00 000	0000	0000	0000	0100			J x04	
x0400 0034	0000	000	000	01	001	00	0000	01	0000	000	00	0001	ADD R1, F	R1, R4
x0400 0038	0101	111	000	11	000	01		0000	0000	0000	0000		SB 0(R3)	
x0400 003C	0000	001	000	11	000	11		0000	0000	0000	0001		ADDI R3,	R3, #1
x0400 0040	0101	110	000	11	000	01		0000	0000	0000	0000		LB R1, 0	(R3)
x0400 0044	1011	100			11111	11 111	1 1111	1111	1100	1000			J #-56	5
x0400 0048	0000	001	000	00	001	00		0000	0000	0101	1001		ADDI R4, F	R0, x59
x0400 004C	1100	000			00000	000	0000	0000	0000	0111			TRAP x07	/OUT
x0400 0050	1100	000			00000	00 000	0 0000	0000	0000	0000			TRAP x00/	HALT

示例: 判断连续存储单元内是否包含5

检查

- 从地址x3000 0000开始存储的10个整数
 - 有5, R1设置为1
 - 没有5, R1为0

示例: 判断连续存储单元内是否包含5

- 计数器控制的循环
 - R3, 计数器
- 子任务1
 - 选择结构

测试条件 R3==0

- 不需要生成条件指令
- 条件分支指令
 - BEQZ R3,D3+4

示例: 判断连续存储单元内是否包含5

测试条件 R2==5

- 生成条件指令
 - SEQI Rx,R2,#5
- 条件分支指令
 - BEQZ Rx,D2+4

示例: 判断连续存储单元内是否包含5

子任务1

D2

示例: 判断连续存储单元内是否包含5

选择结构

- 当R2为5时,设置R1为1
- 使用J指令跳出循环
- 机器语言程序如下:

31 26	25 21	20 16	15 11 10 6 5	0	解释		
001001	00001	00001	0000 0000 0000 0000		ANDI R1,R1,#0		
000001	00000	00011	0000 0000 0000 1010		ADDI R3,R0, #10		
001100	00000	00100	0011 0000 0000 0000		LHI R4, x3000		
011100	00100	00010	0000 0000 0000 0000		LW R2, 0(R4)		
101000	00011	00000	0000 0000 0010 0000		BEQZ R3, #32		
010100	00010	00101	0000 0000 0000 0101		SEQI R5, R2, #5		
101000	00101	00000	0000 0000 0000 1000		BEQZ R5, #8		
000001	00000	00001	0000 0000 0000 0001		ADDI R1,R0, #1		
101100		00 0000 00	000 0000 0000 0001 0000	J #16			
000001	00100	00100	0000 0000 0000 0100		ADDI R4,R4, #4		
011100	00100	00010	0000 0000 0000 0000		LW R2, 0(R4)		
000011	00011	00011	0000 0000 0000 0001	SUBI R3,R3, #1			
101100		11 1111 11	11 1111 1111 1101 1100	J #-36			

检查

- x3000 0000~x3000 0003中的字
- 找出第一个"1"(从左到右)
 - 存储到R1中
- 如果没有1
 - R1 <- -1
- 例如
 - 0010 0000 0000 0000 0000 0000 0000, R1=29
 - 0000 0000 0000 0000 0000 0010 0000, R1=5

选择结构

- 子任务2
 - 标志控制的循环
 - 标志
 - R2<0: R2[31]=1
 - 循环子任务
 - R2=R2<<1
 - R2[30],R2[29]...==1?

测试条件 R2==0

- 不需要生成条件指令
- 条件分支指令
 - BEQZ R2,C2+4

测试条件 R2<0

- 生成条件指令
 - SLTI Rx,R2,#0
- 条件分支指令
 - BNEZ Rx,D3+4

机器语言程序

31 26	25 21	20 16	15 11 10 6 5	0 解释			
000001	00000	00001	0000 0000 0001 1111	ADDI R1,R0, #31			
001100	00000	00100	0011 0000 0000 0000	LHI R4, x3000			
011100	00100	00010	0000 0000 0000 0000	LW R2, 0(R4)			
101000	00010	00000	0000 0000 0001 0100	BEQZ R2,#20			
010000	00010	00011	0000 0000 0000 0000	SLTI R3, R2, #0			
101001	00011	00000	0000 0000 0001 0000	BNEZ R3, #16			
000011	00001	00001	0000 0000 0000 0001	SUBI R1,R1, #1			
001101	00010	00010	0000 0000 0000 0001	SLLI R2,R2, #1			
101100		111111 11	11 1111 1111 1110 1100	J #-20			
001010	00000	00001	1111 1111 1111 1111	ORI R1,R0, #-1			
	•••••						

• 在第十一章 DLX汇编语言编程后,再做介绍

• 如下表存储器所示,当一段起始于单元x30000000的程序执行结束后,R1~R6 的值分别是多少?

地址	数据				
x30000000	0011000000000101000000000000				
x3000004	011100000010001000000000000000000000000				
x30000008	010110000010001100000000000000000000000				
x300000C	011101000010001000000000000000000000000				
x3000010	011100000100010000000000000000000000000				
x3000014	010110000010010100000000000000000000000				
x3000018	01011100010001000000000000011				
x300001C	0111000000100110000000000000000				
x3000020	011100001100011000000000000000				
x3000024	110000000000000000000000000000000000000				
•••••	•••••				
x4000000	100001110110010100001100100001				
x4000004	01000011001000010000000000000				
•••••	•••••				
x43210000	000000000000001000000000000				
x43210004	0000000000000100000000000000				

• 书面作业

- 9.9
- 9.10
- 9.11
- 10.1
- 10.2

谢谢

诚耀百世節 雄创一流