Féidearthachtaí as Cuimse Infinite Possibilities

Programming for Analytics

Lecture 1: Introduction

Bojan Božić School of Computer Science TU Dublin, Grangegorman

bojan.bozic@tudublin.ie

Overview

- Administrivia
- Module Outline
- What is Python?
- Python Development Environments
- Variables, Expressions and Data Types
- How to write Python programs?

About me

- My name is Bojan (born in Croatia)
- PhD in Semantic Web from the University of Vienna
- TU Dublin Lecturer since 2019
- Research Areas: Knowledge Graphs (Semantic Web),
 Machine Learning (Neural Networks), LLMs

Administrivia

- Lecture and Lab:
 - Tuesday: 1pm to 3pm for lectures
 - Thursday: 1pm to 3pm for labs
 - Attendance for all labs and lectures is mandatory!
 - No lecture on week 5 (27.02.2025)!
- All notes, lecture recordings, tutorials, lab work, and assignments will be available on Brightspace (but can also be found on github: github.com/bozicb/programming-for-analytics)
- For all module queries please contact: bojan.bozic@tudublin.ie

Usage of AI Tools

- You are free to use AI Tools (such as ChatGPT) to help you understand materials or explain coding concepts
- Not recommended to use generated code!
- Keep in mind: Understanding of elementary coding concepts cannot be replaced by code generators and can cost you your future job and career.

Assessment

Assessment is based on labs + assignment:

Percentage	Activity			
70%	Assignment - due in week 13			
30%	5 Lab Assessments (6% each)			

Course Overview

Week	Lecture	Learning Outcomes	Lab Number	Lab Topic	Lab Marks	Assign ment Specified	Assign ment Due
1	Introduction	MLO1, ML02	1	Basic Programming			
2	Programming Constructs	MLO1, ML02	2	Setting up Github			
3	String Manipulation	ML01, ML03	3	String Parsing	6%		
4	Python Data Structures	ML01, ML03	4	Data Structures			
5	Working with Files	ML02, ML03, ML04	5	Reading/writing files	6%		
6	Introduction to NumPy	ML01, ML03	6	NumPy arrays and ops			
7	Review Week	R	eview Week				
8	Pandas	ML01, ML03	7	Datasets in Pandas	6%	70%	
9	Preprocessing	ML04	8	Data Cleaning			
10	APIs	ML04	9	Fetching and Parsing JSON	6%		
11	Matplotlib and Seaborn	ML05	10	Creating and customising plots			
12	Statistical Analysis	ML05	11	Summary Statistics	6%		<u></u>
13	Ethics and Summary	All		·			70%

What is Python and why use it?

- High-level, interpreted programming language
- Great support for data analysis and machine learning
- Large ecosystems: NumPy, Pandas, Matplotlib,
 Scikit-learn
- Easy to learn, readable syntax

Setting up the Environment

- Install Anaconda (recommended) or Python via python.org
- Use Jupyter notebooks or your Editor/IDE of choice
- Set up Git for version control
- Test your setup by running some code

Anaconda

Swiss knife for data analytics with Python

Jupyter Lab

 Data Analytics environment with code and output (including graphs) all in one place

GitHub

Version control repository for your Python code

Your First Python Script

- Open your Python environment or Jupyter notebook
- Type: print ("Hello World!")
- Run the cell or script
- Reflect on basic syntax and output

Variables and Data Types

- Variables store values (e.g. $\times = 5$)
- Common data types: int, float, str, bool
- Use type () to check a variable's data type
- Python is dynamically typed

Expressions and Operators

- Arithmetic operators: +, -, *, /, %, **
- Comparison operators: ==, !=, >, <, >=, <=
- Logical operators: and, or, not
- Use expressions to perform calculations and comparisons

Input and Output

- Use input () to get user input
- Use print() to display output
- Example:

```
name = input("Enter your name: ")
```

• Example:

```
print("Hello, ", name)
```


Recap and Next Steps

- We introduced Python and basic programming concepts
- Set up your development environment
- Practice variables, expressions, input/output
- Next week: control structures (if, for, while, etc.), writing functions.

Installing Python with Anaconda

Sign up and download from: anaconda.com (or use Web UI)

Includes Pyton, Jupyter Notebooks and essential

libraries

Anaconda

 navigator for
 managing
 environments

Using Jupyter Notebooks

- Web-based (or desktop) environment for interactive coding
- Code cells and markdown cells
- Great for data exploration and analysis
- Shortcut: Shift + Enter to Run a cell

```
[3]: 1 + 1
[3]: 2
```


Github and Version Control

- Track changes to code and collaborate with others
- Key commands: git init, git add, git commit, git push
- We will use GitHub to manage our code!

Working with Strings

Strings are sequences of characters:

```
name = "Karsa Orlong"
```

- Use + to concatenate, * to repeat
- Common methods: upper(), lower(), strip(), split(), replace()
- Use f-strings for formatting:

```
f"Hello, {name}"
```


Common Python Errors

- Syntax Error: Typo or incorrect code structure
- NameError: Using a variable that hasn't been defined
- TypeError: Incompatible data types in operations
- Use tracebacks to understand where errors happen

```
$ python example.py
Traceback (most recent call last):
  File "/path/to/example.py", line 4, in <module>
     greet('Chad')
  File "/path/to/example.py", line 2, in greet
     print('Hello, ' + someon)
NameError: name 'someon' is not defined
```

Best Practices for Beginners

- Use clear variable names (e.g. total_sales instead of ts)
- Write comments to explain your code
- # like this
- Test your code in small pieces
- Save and back up your work regularly using Git

Mini Lab Activity

- Task 1: Write a program that takes a user name + age and prints a message.
- Task 2: Create three variables (int, float, str) and print their types.
- Task 3: Use arithmetic operators to calculate the area of a rectangle.
- Bonus: Use string formatting to print a custom message.

Questions?

