Question Number	Answer		Mark
18a	Flux linkage	(1) 2	2
	weber / Wb	(1)	
18b	Evidence of attempt to determine maximum gradient of graph	(1)	6
	Use of $\Delta B / \Delta t$	(1)	
	use of area of coil = πr^2	(1)	
	use of $\emptyset = BA$	(1)	
	Use of $\varepsilon = \frac{d(N\emptyset)}{dt}$	(1)	
	<i>E</i> = 1.4 V range 1.2 to 1.6 V	(1)	
	Example of calculation		
	gradient = $0.6 \text{ T} / 0.006 \text{ s} = 100 \text{ T s}^{-1}$		
	Area of coil = $\pi (0.003 \text{ m})^2 = 2.83 \times 10^{-5} \text{ m}^2$		
	$\varepsilon = 500 \times 100 \mathrm{Ts^{-1}} \times 2.83 \times 10^{-5} \mathrm{m^2}$		
	<i>E</i> = 1.4 V		
18c	There is a change in the magnetic flux (linkage with aluminium disc) Or disc is cutting magnetic field/flux	(1)	6
	So an <u>e.m.f.</u> is <u>induced</u>	(1)	
	Leads to a current (in the disc) (accept eddy current)	(1)	
	Force acts on the disc, as there is a current in a magnetic field (accept reference to motor effect, FLHR or $F = BII$ if current in disc has been mentioned)		
	Or field due to current in disc interacting with field due to magnet to cause force on disc	(1)	
	According to Lenz's law Or the direction of e.m.f./current is such to oppose (the cause of) the change in flux	(1)	
	The disc moves to reduce this change (the same direction as the magnet) so correct suggestion	(1)	
	Total for question 18		14