

Prof. Dr.-Ing. Timo Gerkmann

Digital Media Signal Processing

Formulas

The z-Transform

z-Transform:
$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

inverse z-Transform: $x(n) = \frac{1}{2\pi i} \oint_C X(z)z^{n-1} dz$

Frequency Analysis of Continuous-Time Periodic Signals: Fourier series

Synthesis equation:
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

Analysis equation: $c_k = rac{1}{T_p} \int_{T_-} x(t) e^{-j2\pi k F_0 t} dt$

Frequency Analysis of Continuous-Time Aperiodic Signals:

Fourier transform

Synthesis equation:
$$x(t) = \int_{-\infty}^{\infty} X(F)e^{j2\pi Ft}dF$$

Analysis equation:
$$X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$$

Frequency Analysis of Discrete-Time Periodic Signals:

Discrete-Time Fourier Series (DTFS)

Synthesis equation:
$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

Analysis equation:
$$c_k = \frac{1}{N} \sum_{i=1}^{N-1} x(n) e^{-j2\pi k n/N}$$

3

Frequency Analysis of Discrete-Time Aperiodic Signals:

Discrete-Time Fourier Transform (DTFT)

Synthesis equation:
$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$

Analysis equation:
$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Properties of the z-Transform

Property	Time Domain	z-Domain	ROC
Notation	$x(n)$ $x_1(n)$	X(z) X ₁ (z)	ROC: $r_2 < z < r_1$ ROC ₁
	$x_2(n)$	$X_2(z)$	ROC ₂
Linearity	$a_1x_1(n)+a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	At least the intersection of ROC ₁ and ROC ₂
Time shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the z-domain	a''x(n)	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$ ROC
Conjugation	x*(n)	X*(z*)	ROC
Real part	$Re\{x(n)\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Includes ROC
Imaginary part	$Im\{x(n)\}$	$\frac{1}{2}[X(z)-X^{\bullet}(z^{\bullet})]$	Includes ROC
Differentiation in the z-domain	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC ₁ and ROC ₂
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$		At least $r_{11}r_{21} < z < r_{1u}r_{2u}$
Parseval's relation	$\sum_{n=0}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_C$	$(X_1(v)X_2^*(1/v^*)v^{-1}dv$	

Properties of the DTFT

Property	Time Domain	Frequency Domain
Notation	x(n)	$X(\omega)$
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(\omega)+a_2X_2(\omega)$
Time shifting	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlation	$r_{x_1 x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-w)$
		$=X_1(\omega)X_2^*(\omega)$ if $x_2(n)$ real
Wiener-Khintchine th.	$r_{xx}(l)$	$S_{xx}(\omega)$
Frequency shifting	$e^{j\omega_0 n}x(n)$	$X(\omega-\omega_0)$
Modulation	$x(n)\cos\omega_0 n$	$\frac{1}{2}\left(X(\omega+\omega_0)+X(\omega-\omega_0)\right)$
Multiplication	$x_1(n)x_2(n)$	$rac{1}{2\pi}\int_{-\pi}^{\pi}X_1(\lambda)X_2(\omega-\lambda)d\lambda$
Freq Differentiation	nx(n)	$jrac{dX(\omega)}{d\omega}$
Conjugation	$x^*(n)$	$X^*(-\omega)$
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n)$	$=rac{1}{2\pi}\int_{-\pi}^{\pi}X_1(\omega)X_2^*(\omega)d\omega$

DTFT
$X(\omega)$
$X^*(-\omega)$
$X^*(\omega)$
$X_e(\omega) = \frac{1}{2} \left[X(\omega) + X^*(-\omega) \right]$
$X_o(\omega) = \frac{1}{2} \left[X(\omega) - X^*(-\omega) \right]$
$X_R(\omega)$
$jX_I(\omega)$

Real signals

Any real-valued signal $X(\omega) = X^*(-\omega)$ $X_R(\omega) = X_R(-\omega)$ $X_I(\omega) = -X_I(-\omega)$ $|X(\omega)| = |X(-\omega)|$ $|X(\omega)| = |X(-\omega)|$ $Z_I(\omega) = -Z(-\omega)$ $Z_I(\omega) = -Z(-\omega)$ $Z_I(\omega) = -Z(-\omega)$ $Z_I(\omega) = -Z(-\omega)$ $Z_I(\omega) = -Z(-\omega)$

7

Symmetry Properties of the DTFT II

Figure 4.4.2 Summary of symmetry properties for the Fourier transform.

Some Common *z*-Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n) u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\sin \omega_0 n) u(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
9	$(a^n\cos\omega_0\pi)u(\pi)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	2 > 4

Useful Transform Pairs

TABLE 6 Some Useful Fourier Transform Pairs for Discrete-Time Aperiodic Signals

