Azzolini Riccardo 2019-02-18

Ripasso sugli insiemi

1 Notazioni

 \forall : per ogni

∃: esiste

∄: non esiste

∈: appartiene

∉: non appartiene

∃!: esiste ed è unico

⇒: implica

 \iff : se e solo se

 \wedge : e (AND)

∨: oppure (OR inclusivo)

2 Insieme

Un **insieme** è un concetto intuitivo. Si può descrivere come una "collezione di oggetti", che vengono chiamati **elementi** dell'insieme.

Un insieme può essere descritto in vari modi, tra cui:

• elencandone tutti gli elementi (purché ce ne siano un numero finito)

$$A = \{-1, 4, 3\}$$

• elencando solo alcuni elementi, in modo che sia chiaro quali sono gli altri

$$P = \{0, 2, 4, 6, 8, 10, \ldots\}$$

• descrivendo le proprietà dei suoi elementi

$$P = \{ n \in \mathbb{N} : n = 2m, \, m \in \mathbb{N} \}$$

L'insieme che non contiene elementi è l'**insieme vuoto**: \varnothing .

3 Sottoinsieme

Un insieme A si dice **sottoinsieme** di un insieme B se

$$\forall x \in A \implies x \in B$$

Ciò si indica con $A \subseteq B$. In questo caso, è ammesso anche che A = B. Per specificare, invece, che $A \subseteq B$ e $A \neq B$, cioè che A è un **sottoinsieme proprio** di B, si scrive $A \subset B$.

4 Unione

Dati due insiemi A e B, l'**unione** di A e B è un nuovo insieme

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Come caso particolare, $A \subseteq B \implies A \cup B = B$.

5 Intersezione

Dati due insiemi A e B, si definisce loro **intersezione** l'insieme

$$A \cap B = \{x : x \in A \land x \in B\}$$

Come caso particolare, $A \subseteq B \implies A \cup B = A$.

6 Differenza

Siano A e B due insiemi. La loro **differenza** è

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

Come caso particolare, $A \subseteq B \implies A \setminus B = \emptyset$.

7 Complementare

Sia M un insieme e sia A un sottoinsieme di M. Il **complementare** di A rispetto a M è l'insieme

$$A^C = \overline{A} = \mathscr{C}(A) = M \setminus A = \{x : x \in M \land x \notin A\}$$

7.1 Esempi

- $M = \{\text{poligoni}\}\$
 - $A = \{ \text{triangoli} \}$

 $A^C = \{ \text{poligoni con almeno 4 lati} \}$

- $M = \{ \text{triangoli, quadrilateri} \}$
 - $A = \{ \text{triangoli} \}$

 $A^C = \{\text{quadrilateri}\}\$

8 Prodotto cartesiano

Siano $A \in B$ insiemi. Il **prodotto cartesiano** di $A \in B$ è l'insieme delle *coppie ordinate*

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

In generale, $(a, b) \neq (b, a)$, e quindi $A \times B \neq B \times A$.

8.1 Esempio

$$A = \{1, 2, 3\}$$
 $B = \{0, 1\}$

$$A \times B = \{(1,0), (1,1), (2,0), (2,1), (3,0), (3,1)\}$$

$$B \times A = \{(0,1), (0,2), (0,3), (1,1), (1,2), (1,3)\}$$

9 Insiemi numerici

N: numeri **naturali** (incluso lo 0, per comodità)

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

 \mathbb{Z} : numeri **interi** (o *relativi*)

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$$

$$\mathbb{N} \subset \mathbb{Z}$$

Q: numeri razionali

$$\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, \ q \neq 0 \right\}$$

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O}$$

La scrittura $\frac{p}{q}$ non è unica (ad esempio, $\frac{3}{9} = \frac{1}{3}$): se si vuole una scrittura unica bisogna imporre che p e q siano $relativamente \ primi$ (cioè che non abbiano fattori comuni).

 \mathbb{R} : numeri **reali**

Contiene i numeri razionali $\mathbb Q$ e i numeri *irrazionali*, cioè quelli che non sono razionali (ne esistono infiniti, tra cui ad esempio $\sqrt{2}$, $\sqrt{3}$, π , e).

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$