Metaphor as Semantic Encryption:

Zero Knowledge Proof Using Dream of the Red Chamber as an Example

Lian, Zihe Zhao, Ayizuorehe AI Thrust, Info Hub, HKUST(GZ) xlian289@connect.hkust-gz.edu.cn

Agenda

Motivation

• Crisis in digital creativity

Methodology

- Similarity between metaphor and ciphertext
- Combine Zero-knowledge proofs (ZKP) with system

Implementation

- An example of *Dream of the Red Chamber*
- Encryption and decryption of prophecies
- Constraint system generation

Results

- Zero knowledge proof process
- Circuit performance

Applications

Unlocking creation

Dual Crisis in Digital Creativity

- Encryption: Traditional methods secure content, but not creative value texts "naked" during evaluation
- Validation: Subjective judgments; no way to prove value without revealing content

Copyright & Research

- Piracy Risk: Share drafts → stolen
- Exclusion: Non experts can't verify credibility

Eg.

Subjective Dream of the Red Chamber version checks

- Secure IP
- Quantify creativity
- Build trust across domains

The Game - Changing Solution

• Metaphor - ZKP Integration

Similarity between metaphor and ciphertext

Cryptography and metaphor share a three-stage information transformation structure of "plaintext - ciphertext - decryption":

- Origin: Homesickness
- Encode : Via imagery/metaphor
- Metaphor : Moon & Longing
- Decode: With context & culture
- Restore: Back to homesickness

- Info Conversion:
 - Plaintext Metaphor Orig Semantics;
 - Encrypt Semantic Encode;
 - Ciphertext Metaphor Text;
 - Decrypt Semantic Decode
- Uncertainty: Key Space Variability vs. Interpretive Ambiguity
- Domain Diff: Mathematical Operations vs. Cognitive Linguistic Processes

Zero-knowledge proofs (ZKP) & metaphor

Zero - Knowledge Proofs (ZKP) Basics

• Definition: Do not disclose plaintext, only prove that 'I know' certain information.

- Key Elements:
 - Prover generates proof(zk-SNARKs/R1CS circuits and polynomial commitments)
 - The verifier checks whether the proof is valid(elliptic curve pairings and hash-based challenges)
 - The information itself is not exposed(cryptographic commitments)

ZKP in Metaphor:

• Just as ZKP protects digital secrets, metaphors protect the original semantic meaning of a message.

An example of Dream of the Red Chamber

- The authorship of the last 40 chapters has been debated for centuries(Chenggao version VS Guiyou version).
- We hope to design a system that can both protect text privacy and verify logical authentication.
- Use NLP to extract text features and analyze the semantic consistency.
- Use ZKP to implement privacy protection verification.

ZKP Concept	Dream of the Red Chamber Scenario Correspondence
Plaintext	True Ending Ideas of Latter 40 Chapters, the fate of the main characters
Ciphertext	Prophecies (Portraits, Poems, Foreshadowing) in First 80 Chapters
Prover	Creator/Holder of Latter 40 Chapters' Version
Verifier	Redology Researchers, Readers, Automated Verification System
Commitment	Logical Mapping Declaration of Latter 40 Chapters' Version to Prophecies
Proof	Corresponding Plot Segments in the Version and Their Analysis

Encryption of prophecies

e.g. The class metaphor/prophecy in "金簪雪里埋" - "gold hairpin buried in snow"

Analysis Dimension	Guixiu Version	Chengjia Version	Difference					
Symbolic Structure Matching Degr	ree							
Core Image Correspondence	0.500	0.500	0.000					
Situation Description Matching	0.002	0.002	0.000					
Symbolic Connotation Consistency	0.000	0.000	0.000					
Subtotal	0.251	0.251	0.000					
Profound Meaning Coherence								
Causal Chain Completeness	0.333	0.333	0.000					
Fate Trajectory Consistency	0.667	0.333	0.334					
Theme Echo Degree	1.000	0.750	0.250					
Subtotal	0.600	0.417	0.183					
Knowledge Network Mapping Deg	ree							
Entity Correspondence Degree	0.000	0.000	0.000					
Relationship Mapping Degree	0.844	0.844	0.000					
Metaphorical Hierarchy Degree	0.700	0.700	0.000					
Subtotal	0.562	0.562	0.000					
Comprehensive Score	0.453	0.379	0.073					

Decryption of prophecies

Expand the dataset to include all core prophecies

人物	谶语原文	谶语类型	程高本实现	癸酉本实现	情感匹配度(程)	情感匹配度(癸)	情节复杂度(程)	情节复杂度(癸)	主题深度(程)	主题深度(癸)
林黛玉	两株枯木, 木上 悬着一围玉带	诗谶	焚诗稿泪尽病逝	误杀小红后自缢	0.85	0.92	0.8	0.9	0.82	0.88
薛宝钗	一堆雪,雪下一 股金簪	物象谶	独守空闺	贪污被发配	0.82	0.89	0.75	0.85	0.78	0.85
贾元春	虎兕相逢大梦归	政治谶	痰症病逝	被乱刀砍死	0.8	0.95	0.7	0.92	0.75	0.9
史湘云	湘江水逝楚云飞	命运谶	守寡终老	沦为乞丐重逢宝 玉	0.78	0.88	0.72	0.88	0.8	0.86
贾宝玉	出家为僧	行为谶	出家为僧	跳海自尽被救	0.85	0.9	0.78	0.85	0.82	0.88
李纨	桃李春风结子完	命运谶	教子成才	封官后病逝	0.75	0.82	0.7	0.8	0.75	0.82
王熙风	机关算尽太聪明	性格谶	积劳成疾	狱中自缢	0.88	0.92	0.85	0.9	0.82	0.88
妙玉	欲洁何曾洁	讽刺谶	被掳下落不明	沦为妓女	0.82	0.9	0.75	0.85	0.8	0.88
贾探春	千里东风一梦遥	政治谶	远嫁他乡	和亲岛国	0.78	0.85	0.72	0.82	0.75	0.85
贾惜春	独卧青灯古佛旁	宗教谶	出家修行	拒认刘姥姥	0.8	0.85	0.75	0.8	0.78	0.82
贾迎春	一载赴黄粱	婚姻谶	忧郁而死	被毒打致死	0.75	0.88	0.7	0.85	0.72	0.82
巧姐	巧得遇恩人	救赎谶	嫁农家	被卖青楼后获救	0.82	0.9	0.78	0.88	0.8	0.85

谶语id		情节上下文	情节摘要	关键词	人物关联	情感倾向	类型
玉带林中挂	谶语原文	林黛玉判词配画"两棒	朱枯木,木上悬着一围	玉带"(第五回)			诗谶
	程高本续	黛玉因宝玉成婚消息悲痛过度,焚诗稿后泪尽病逝(第 97回)	临终前焚毁诗稿, 紫鹃守候,宝玉未 能见最后一面	焚稿、泪尽、病 榻	紫鹃(贴身侍 女)、贾母(默许 婚事)、王熙凤 (调包计策划)	凄美哀婉	诗谶+行为谶
	癸酉本续	黛玉献上贾蓉令 牌, 诬陷小红与贼	死前得知自己是绛 珠仙草转世,一生 泪已还尽。后被安		宝玉(痴情恋人)、 鸳鸯(谐言者)、小 红(冤死者)、紫鹃 (忠仆)	悲剧性, 误解导致 自责, 泪尽而终	图谶+政治谶
金簪雪里埋	谶语原文	薛宝钗判词配画"一块	住雪,雪下一股金簪"	(第五回)			诗谶
金替賞里理	程高本续	宝钗与宝玉成婚后,宝玉出家,宝 贺独守空闺(第120 回)	宝钗独守蘅芜苑, 屋内陈设如雪洞, 守寡至终老。虽有 荣华富贵,却终是 孤独凄凉,形同守 活寡	身居高位,后因	薛姨妈(病逝前托 孤)、莺儿(贴身 丫鬟)、贾兰(科 举中举后探望)	隐忍的悲凉	物象谶
	癸酉本续	嫁给贾雨村。雨村 官场腐败,夫妻二人	在风雪蛮荒之地,宝 钗一病不起,临终埋 怨雨村,感叹自己命 运多舛,因无冷香丸 调治,不久死去,葬在 雪地中。"真是人生 难料,世事无常。"	东北、雪中埋 骨、冷香丸、命	贾雨村、莺儿	功利主义反噬,怨恨、悔恨、无奈	政治谶+物象谶

Table	1:	Overall	Version	Com	parison	Anal	ysi

Dimension	Weight	Geng Cheng	Gui You	Difference
Symbolic Structure	0.4	0.61 (±0.20)	0.69 (±0.09)	+0.08
Semantic Coherence	0.4	0.66 (±0.21)	0.73 (±0.05)	+0.07
Knowledge Network	0.2	0.67 (±0.22)	0.73 (±0.07)	+0.07
Weighted Average	1.0	0.65 (±0.21)	0.72 (±0.07)	+0.07

Table 2: Detailed Dimension Analysis

	101C 2. DCI	anca Difficusion	i Allaiysis						
Sub-dimension	Weight	Geng Cheng	Gui You	Difference					
Symbolic Structure	e (0.4)								
Core Imagery	0.16	0.65 (±0.18)	0.72 (±0.08)	+0.07					
Visual Alignment	0.12	0.60 (±0.22)	0.68 (±0.10)	+0.08					
Text Interpretation	0.12	0.58 (±0.20)	0.67 (±0.09)	+0.09					
Semantic Coherence (0.4)									
Causal Chain	0.16	0.68 (±0.19)	0.74 (±0.06)	+0.06					
Fate Trajectory	0.12	0.65 (±0.22)	0.72 (±0.05)	+0.07					
Theme Resonance	0.12	0.65 (±0.22)	0.73 (±0.04)	+0.08					
Knowledge Networ	k (0.2)								
Entity Mapping	0.08	0.68 (±0.21)	0.74 (±0.07)	+0.06					
Relation Mapping	0.08	0.66 (±0.23)	0.72 (±0.07)	+0.06					
Metaphor Analysis	0.04	0.67 (±0.22)	0.73 (±0.07)	+0.06					

Table 3: Statistical Analysis of Version Performance

Statistical Measure	Symbolic	Semantic	Knowledge	Overall
Mean Score	0.65	0.70	0.70	0.68
Standard Deviation	±0.15	±0.13	±0.15	± 0.14
Maximum Score	0.73	0.77	0.77	0.76
Minimum Score	0.00	0.00	0.00	0.00
Score Range	0.73	0.77	0.77	0.76

Constraint system generation

Prophecy Ambiguity and Threshold Calculation

 $\begin{aligned} & \text{Ambiguity}(p) = \text{Base} + \text{Length Factor} + \text{Imagery Factor} + \text{Abstraction Factor} + \text{Contrast Factor} \\ & \text{Adjusted Threshold}(p) = \max(0.3, \text{Base Threshold} - \text{Ambiguity}(p)) \end{aligned}$

Based on each prophecy

- dynamically generate its ambiguity data to determine the threshold
- threshold = 0.7 + 0.2 * ambiguity

Ambiguity Calculation Example: "Yu D	Ambiguity Calculation Example: "Yu Dai Lin Zhong (Varia						
Factor	Value	$\overline{w_1}$	Constant	1			
Base ambiguity	0.20	w_2	Base Ambiguity	0.20			
Short text (3 characters)	+0.15	w_3	Short Text Bonus	0.15			
Rich imagery (jade belt, forest)	+0.16	w_4	Rich Imagery Bonus	0.16			
High abstraction	+0.15	w_5	Abstract Bonus	0.15			
Contrasting image description High ambiguity prophecy trait	$+0.24 \\ +0.10$	w_6	Contrasting Image Bonus	0.24			
		w_7	High Ambiguity Bonus	0.10			
Total Ambiguity	0.80	w_8	Total Ambiguity	0.80			
Base threshold	0.70	w_9	Base Threshold	0.70			
Adjusted threshold (0.70 - 0.80)	-0.10	w_{10}	Adjusted Threshold	-0.10			
Final threshold (minimum bound)	0.30	w_{11}	Final Threshold	0.30			

Formulating R1CS Constraints

For each constraint: $(\mathbf{A} \cdot \mathbf{w}) \times (\mathbf{B} \cdot \mathbf{w}) = \mathbf{C} \cdot \mathbf{w}$

Constraint 1: Total Ambiguity

Vector	Variable Coefficients										
	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_{10}	w_{11}
A	1	0	0	0	0	0	0	0	0	0	0
\mathbf{B}	0	1	1	1	1	1	1	0	0	0	0
\mathbf{C}	0	0	0	0	0	0	0	1	0	0	0

Table 2: Total Ambiguity Constraint Matrix

Constraint 2: Threshold Adjustment

Vector	Variable Coefficients										
	$ w_1 $	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_{10}	w_{11}
A	1	0	0	0	0	0	0	0	0	0	0
\mathbf{B}	0	0	0	0	0	0	0	-1	1	0	0
\mathbf{C}	0	0	0	0	0	0	0	0	0	1	0

Table 3: Threshold Adjustment Constraint Matrix

Verification Results

ID	Ambiguity	Threshold	$\mathbf{C}\mathbf{G}$	GY	Better
P1	0.80	0.30	0.71	0.74	GY
P2	0.80	0.30	0.71	0.73	GY
P3	0.80	0.30	0.71	0.74	GY

Table 4: Verification Results Summary

Zero knowledge proof process

R1CS to QAP Transformation

$$Z_i(x) = \prod_{j=1, j \neq i}^m \frac{x - r_j}{r_i - r_j}$$

$$A_i(x) = \sum_{j=1}^m a_{j,i} \cdot Z_j(x)$$

$$B_i(x) = \sum_{j=1}^m b_{j,i} \cdot Z_j(x)$$

$$C_i(x) = \sum_{j=1}^m c_{j,i} \cdot Z_j(x)$$

- Z_i (x) is a Lagrange basic polynomial, which is equal to 1 at a specific point and 0 at other points
- $B_i(x) = \sum_{j=1}^m b_{j,i} \cdot Z_j(x)$ A_1(x), B_1(x), and (x) are polynomials obtained through ma • A_i (x), B_i (x), and C_i obtained through matrix transformation

Table 4. Verification Results for All Prophecies

Prophecy	Ambiguity	Threshold	Chenggao	Guiyou	Chenggao	Guiyou	Better
No.			Score	Score	Pass	Pass	Version
1	0.80	0.30	0.71	0.74	Yes	Yes	Guiyou
2	0.80	0.30	0.71	0.73	Yes	Yes	Guiyou
3	0.80	0.30	0.71	0.74	Yes	Yes	Guiyou
4	0.75	0.30	0.71	0.70	Yes	Yes	Chenggao
5	0.70	0.30	0.71	0.72	Yes	Yes	Guiyou
6	0.65	0.30	0.72	0.70	Yes	Yes	Chenggao
7	0.80	0.30	0.71	0.71	Yes	Yes	Equal
8	0.55	0.30	0.72	0.73	Yes	Yes	Guiyou
9	0.80	0.30	0.67	0.72	Yes	Yes	Guiyou
10	0.61	0.30	0.00	0.71	No	Yes	Guiyou
11	0.71	0.30	0.71	0.71	Yes	Yes	Equal

QAP Polynomial System

$$P(x) = \left(\sum_{i=0}^{n} w_i \cdot A_i(x)\right) \cdot \left(\sum_{i=0}^{n} w_i \cdot B_i(x)\right) - \left(\sum_{i=0}^{n} w_i \cdot C_i(x)\right)$$

$$Z(x) = \prod_{i=1}^{m} (x - r_i)$$

$$H(x) = \frac{P(x)}{Z(x)}$$

- P (x) represents the validation polynomial, which checks whether the R1CS constraint is satisfied
- Z (x) is a vanishing polynomial, equal to 0 at all constraint points
- H (x) is a quotient polynomial, and the constraint is only satisfied when P (x) can be divided by Z(x)

Trusted Setup and Key Generation

$$\tau \leftarrow \mathbb{F}_p$$

$$\{\tau^i\}_{i \in [d]} \leftarrow \{\tau, \tau^2, \tau^3, \dots, \tau^d\}$$

$$\begin{aligned} & \text{pk} = \{g^{\tau^k}, \{g^{A_i(\tau) \cdot \tau^k}, g^{B_i(\tau) \cdot \tau^k}, g^{C_i(\tau) \cdot \tau^k}\}_{i \in [n]}\}_{k \in [d-1]} \\ & \text{vk} = \{g^{\tau^k}\}_{k \in \{0,d\}}, \{g^{A_i(\tau)}, g^{B_i(\tau)}, g^{C_i(\tau)}\}_{i \in I_p} \end{aligned}$$

Proof Generation Process

Zero-Knowledge 1 1001 Generation and Vermeation					
Prover	Verifier				
Public Inputs: prophecyId, ambiguity, threshold					
1. Calculate witness values	1. Receive the proof				
 Compute all ambiguity factors 	 Obtain the four elliptic curve points 				
- Determine intermediate results	- Fortunat mublic automate				
• Determine intermediate results	• Extract public outputs				
2. Compute polynomials	2. Verify using pairing				
• Transform constraints to polynomials	Apply bilinear pairing operation				
• Evaluate at secret point τ	• Check if equation holds				
3. Hide values using secret	3. Accept or reject				
• Apply elliptic curve operations	• If pairing check passes: Accept				
• Create the four proof elements	Otherwise: Reject				
Production Production	200,000				
Proof: $\pi=(g^{A(au)},g^{B(au)},g^{C(au)},g^{H(au)})$					

Zero-Knowledge Proof Generation and Verification

Circuit performance and results

Performance data of the system processing prophecies

• Generate once, verify multiple times

Table 3: 2	ZKP	Performance	Metrics	for	All	Prophecies
------------	-----	-------------	---------	-----	-----	------------

Prophecy	Proof Size	Proving Time	Verification Time	Memory Usage	R1CS Size
1	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
2	1.1 KB	2.2s	0.05s	$76~\mathrm{MB}$	8
3	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
4	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
5	1.1 KB	2.2s	0.05s	$76~\mathrm{MB}$	8
6	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
7	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
8	1.1 KB	2.2s	0.05s	$76~\mathrm{MB}$	8
9	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
10	1.1 KB	2.3s	0.05s	$76~\mathrm{MB}$	8
11	1.1 KB	2.2s	0.05s	$76~\mathrm{MB}$	8

Verification Equation

$$e(g^{A(\tau)}, g^{B(\tau)}) = e(g, g^{C(\tau)}) \cdot e(g^{H(\tau)}, g^{Z(\tau)})$$

Verification job:

• Just calculate whether this equation holds or not

No need for raw data:

• validators do not need to know any private computing details

Prophecy ID	Ambiguity (Public)	Threshold (Public)	Version Comparison CG vs GY	Result
P1	0.80	0.30	0.71 vs 0.74	Guiyou Better
P2	0.80	0.30	0.71 vs 0.73	Guiyou Better
P3	0.80	0.30	0.71 vs 0.74	Guiyou Better
P4	0.75	0.30	0.71 vs 0.70	Chenggao Better
P5	0.70	0.30	0.71 vs 0.72	Guiyou Better
P6	0.65	0.30	0.72 vs 0.70	Chenggao Better
P7	0.80	0.30	0.71 vs 0.71	Equal
P8	0.55	0.30	0.72 vs 0.73	Guiyou Better
P9	0.80	0.30	0.67 vs 0.72	Guiyou Better
P10	0.61	0.30	0.00 vs 0.71	Guiyou Better
P11	0.71	0.30	0.71 vs 0.71	Equal

Table 1: Prophecy Comparison Results (Cryptographically Verified via ZKP)

Prophecy	Proof Status	Proof Hash (Truncated)	Constraints
P1	✓ VALID	0x7a2be91c	Satisfied
P2	✓ VALID	0x6c3f512d	Satisfied
P3	✓ VALID	0x9e7df38a	Satisfied
P4	✓ VALID	0x5d1ec47b	Satisfied
P5	✓ VALID	0x4a8cd23f	Satisfied
P6	✓ VALID	0x3b2a918e	Satisfied
P7	✓ VALID	0x8f6d320c	Satisfied
P8	✓ VALID	0x2e5b746d	Satisfied
P9	✓ VALID	0x1c7a592e	Satisfied
P10	✓ VALID	0x0d4cb19f	Satisfied
P11	✓ VALID	0xab3e729d	Satisfied

Table 2: Proof Verification Status

Metric	Count	Percentage
Guiyou Version Superior	7	63.6%
Chenggao Version Superior	2	18.2%
Equal Performance	2	18.2%
Failed Threshold (CG)	1	9.1%
Failed Threshold (GY)	0	0.0%

Table 3: Statistical Analysis of Verification Results

Further applications

Cultural Heritage Preservation

- Validates provenance of historical texts without exposing fragile or sacred original materials.
- Measure feasibility and restoration.

Commercial Bidding

- Define evaluation factors for bids.
- Ensure fairness and choose suitable bids.

Criminal Investigation

- Assess clues with the model.
- Analyze reliability and relevance. Verify clues privately like the model does, aiding investigations.

Blockchain Transactions

• Verify transactions without disclosing sensitive info like amounts and identities, ensuring security and preventing fraud.

Thanks for your listening Q&A

Lian, Zihe Zhao, Ayizuorehe AI Thrust, Info Hub, HKUST(GZ) xlian289@connect.hkust-gz.edu.cn