#### 1990 HKCE Additional Mathematics I

| 1990                                                                                           | HKCE Additional Mathematics                                                                                      | <u>.</u> | ı                                                                     |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|
| Solutions                                                                                      |                                                                                                                  | Marks    | Remarks                                                               |
| 1. $f'(x) = \sqrt{x^2 + k} \frac{d}{dx} \sin 2x + s$                                           | $\sin 2x - \frac{d}{dx} \sqrt{x^2 + k}$                                                                          | 1M ·     | For product rule.                                                     |
| $= 2\sqrt{x^2 + k} \cos 2x +$                                                                  | $\frac{x\sin 2x}{\sqrt{x^2 + k}}$                                                                                | 1A+1A    | ,                                                                     |
| f'(0) = 1                                                                                      |                                                                                                                  |          |                                                                       |
| $2\sqrt{k} = 1$                                                                                |                                                                                                                  | 1M       | For substituting x = 0 in f'(x)                                       |
| $k = \frac{1}{4}$                                                                              |                                                                                                                  | 1A 5     |                                                                       |
| 2. (a) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$                       |                                                                                                                  |          | Omit vector sign                                                      |
| $= -\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$                                                      |                                                                                                                  | 1A       | (pp - 1)                                                              |
| $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$                              |                                                                                                                  | 1M       | $\overrightarrow{OB} + \overrightarrow{BP}$                           |
| $= \overrightarrow{OA} + \overrightarrow{tAB}$                                                 |                                                                                                                  |          | acceptable                                                            |
| $= -t\hat{i} + (2t +5)\hat{j}$                                                                 |                                                                                                                  | 1 A      |                                                                       |
| Alt. Solution                                                                                  | and the second |          |                                                                       |
| $ \overrightarrow{AP} : \overrightarrow{PB} =t:1-t$                                            |                                                                                                                  | 1 A      | ĀP : PB =                                                             |
| $\overrightarrow{OP} = \frac{\overrightarrow{tOB} + (1 - t) \overrightarrow{OA}}{t + (1 - t)}$ |                                                                                                                  | 1M       | $\overrightarrow{AP} : \overrightarrow{PB} = $ $t : 1 - t$ $(pp - 1)$ |
| $= t(-\hat{i} + 7\hat{j}) + (1 - i)$                                                           | t) (5ĵ)                                                                                                          |          |                                                                       |
| $= -t\hat{\mathbf{i}} + (2t + 5)\hat{\mathbf{j}}$                                              |                                                                                                                  | 1 A      |                                                                       |
| (b) (i) $\overrightarrow{OP}$ . $\overrightarrow{AB} = 0$                                      |                                                                                                                  | 1M       | Omit dot sign                                                         |
| -t(-1) + (2t -                                                                                 | + 5) (2) = 0                                                                                                     |          | (pr -1)                                                               |
| t = -2                                                                                         | •                                                                                                                | 1 A      |                                                                       |
| $(ii)  \overrightarrow{OP} = 2\hat{1} + \hat{j}$                                               |                                                                                                                  | 1A 6     |                                                                       |
|                                                                                                |                                                                                                                  |          | ·                                                                     |
|                                                                                                |                                                                                                                  |          |                                                                       |
|                                                                                                |                                                                                                                  |          |                                                                       |

| $ \frac{\text{Alt. Solution}}{\frac{1+\sqrt{3}i}{1-\sqrt{3}i}} = \frac{1+\sqrt{3}i}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i} \\ = \frac{1}{2}(-1+\sqrt{3}i) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} $ $ (\frac{1+\sqrt{3}i}{1-\sqrt{3}i})^{\frac{1}{3}} = (\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})^{\frac{1}{3}} $ $ = \cos\frac{(3k+1)2\pi}{9} + i\sin\frac{(3k+1)2\pi}{9},  IA $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ILDINIO: 12 IVA                                                                                                                    |       |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------|
| 3. (a) $\frac{1 + 1 \tan \theta}{1 - 1 \tan \theta} = \frac{\cos \theta + 1 \sin \theta}{\cos \theta - 1 \sin \theta} \cdot \frac{\cos \theta + 1 \sin \theta}{\cos \theta - 1 \sin \theta}$ $= \frac{(\cos^2 \theta - \sin^2 \theta) + 2 \sin \theta \cos \theta i}{\cos^2 \theta + \sin^2 \theta}$ $= \cos^2 \theta + i \sin^2 \theta$ $= \frac{\cos \theta + i \sin \theta}{1 - 1 \tan \theta} = \frac{\cos \theta + i \sin \theta}{\cos \theta - 1 \sin \theta}$ $= \frac{\cos \theta + i \sin \theta}{\cos \theta - 1 \sin \theta}$ $= \frac{\cos^2 \theta + i \sin \theta}{\cos^2 \theta - 1 \sin \theta}$ $= \cos^2 \theta + i \sin^2 \theta$ (b) $\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{1 + i \tan \frac{\pi}{3}}{1 - i \tan \frac{\pi}{3}}$ $= \cos^2 \frac{\pi}{3} + i \sin^2 \frac{\pi}{3}$ 1A Accept $\cos^2 \frac{\pi}{3} + i \sin^2 \frac{\pi}{3}$ or $\cos^2 $ | Solutions                                                                                                                          | Marks | Remarks                                          |
| $ \begin{array}{c} = \cos 2\theta + i \sin 2\theta & 1A \\ \hline \frac{Alt. \ Solution}{1 - i \tan \theta} = \frac{\cos \theta + i \sin \theta}{\cos \theta - i \sin \theta} & 1M \\ = \frac{\cos \theta + i \sin \theta}{\cos (-\theta) + i \sin (-\theta)} & 1M \\ = \cos 2\theta + i \sin 2\theta & 1A \\ \hline \\ (b) \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{1 + i \tan \frac{\pi}{3}}{1 - i \tan \frac{\pi}{3}} & 1A \\ = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} & 1A \\ \hline \\ \frac{Alt. \ Solution}{1 - \sqrt{3}i} = \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i} & 1A \\ \hline \\ (\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i}) = \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i} & 1A \\ \hline \\ (\frac{1 + \sqrt{3}i}{9})^{\frac{1}{3}} = (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^{\frac{1}{3}} & 1A \\ \hline \\ = \cos \frac{(3k + 1)2\pi}{9} + i \sin \frac{(3k + 1)2\pi}{9}, & 1A \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    | 1M    | $\frac{1 + i \tan \theta}{1 + i \tan \theta}$    |
| $\frac{1 + i \tan \theta}{1 - i \tan \theta} = \frac{\cos \theta + i \sin \theta}{\cos \theta - i \sin \theta}$ $= \frac{\cos \theta + i \sin \theta}{\cos (-\theta) + i \sin (-\theta)}$ $= \cos 2\theta + i \sin 2\theta$ $(b) \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{1 + i \tan \frac{\pi}{3}}{1 - i \tan \frac{\pi}{3}}$ $= \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $= \cos \frac{4\pi}{3} + i \sin \frac{2\pi}{3}$ $\frac{1A}{1 - \sqrt{3}i} = \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i}$ $= \frac{1}{2}(-1 + \sqrt{3}i) = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $(\frac{1 + \sqrt{3}i}{2})^{\frac{1}{3}} = (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^{\frac{1}{3}}$ $= \cos \frac{(3k + 1)2\pi}{9} + i \sin \frac{(3k + 1)2\pi}{9}$ $IA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    | 1A    |                                                  |
| $ = \frac{\cos\theta + i\sin\theta}{\cos(-\theta) + i\sin(-\theta)} $ $ = \cos 2\theta + i\sin 2\theta $ $ = \cos 2\theta + i\sin 2\theta $ $ = \cos^2 \frac{\theta}{3} + i\sin^{\frac{\pi}{3}} $ $ = \cos^{\frac{2\pi}{3}} + i\sin^{\frac{2\pi}{3}} $ $ = \cos^{\frac{2\pi}{3}} + i\sin^{\frac{2\pi}{3}} $ $ = \cos^{\frac{2\pi}{3}} + i\sin^{\frac{2\pi}{3}} $ $ = \frac{1}{1 - \sqrt{3}i} = \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i} $ $ = \frac{1}{2}(-1 + \sqrt{3}i) = \cos^{\frac{2\pi}{3}} + i\sin^{\frac{2\pi}{3}} $ $ = \cos^{\frac{(3k + 1)2\pi}{9}} + i\sin^{\frac{(3k + 1)2\pi}{9}} $ $ = \cos^{\frac{(3k + 1)2\pi}{9}} + i\sin^{\frac{(3k + 1)2\pi}{9}} $ $ = \cos^{\frac{(3k + 1)2\pi}{9}} + i\sin^{\frac{(3k + 1)2\pi}{9}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alt. Solution                                                                                                                      |       |                                                  |
| $= \cos 2\theta + i \sin 2\theta$ $(b) \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{1 + i \tan \frac{\pi}{3}}{1 - i \tan \frac{\pi}{3}}$ $= \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $= \cos \frac{8\pi}{3} + i \sin \frac{8\pi}{3}$ or $\cos \frac{8\pi}{3} + i \sin \frac{8\pi}{3}$ or $\cos \frac{4\pi}{3} - i \sin \frac{4\pi}{3}$ $= \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i}$ $= \frac{1}{2}(-1 + \sqrt{3}i) = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i})^{\frac{1}{3}} = (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^{\frac{1}{3}}$ $= \cos \frac{(3k + 1)2\pi}{9} + i \sin \frac{(3k + 1)2\pi}{9},$ IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1 + i \tan \theta}{1 - i \tan \theta} = \frac{\cos \theta + i \sin \theta}{\cos \theta - i \sin \theta}$                    |       |                                                  |
| $(b) \frac{1+\sqrt{3}i}{1-\sqrt{3}i} = \frac{1+i\tan\frac{\pi}{3}}{1-i\tan\frac{\pi}{3}}$ $= \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ $= \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ or $\cos\frac{4\pi}{3} - i\sin\frac{4\pi}{3}$ etc. $\frac{A1t. \ Solution}{1+\sqrt{3}i} = \frac{1+\sqrt{3}i}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i}$ $= \frac{1}{2}(-1+\sqrt{3}i) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ $(\frac{1+\sqrt{3}i}{1-\sqrt{3}i})^{\frac{1}{3}} = (\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})^{\frac{1}{3}}$ $= \cos\frac{(3k+1)2\pi}{9} + i\sin\frac{(3k+1)2\pi}{9}, \qquad IA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $= \frac{\cos\theta + i\sin\theta}{\cos(-\theta) + i\sin(-\theta)}$                                                                | 1M    | Can be omitted                                   |
| $= \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $= \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ or $\cos \frac{4\pi}{3} + i \sin \frac{8\pi}{3}$ or $\cos \frac{4\pi}{3} - i \sin \frac{4\pi}{3}$ $= \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} = \frac{1 + \sqrt{3}i}{1 - \sqrt{3}i} \cdot \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i}$ $= \frac{1}{2}(-1 + \sqrt{3}i) = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $= \frac{1}{2}(-1 + \sqrt{3}i) = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $= \cos \frac{(3k + 1)2\pi}{9} + i \sin \frac{(3k + 1)2\pi}{9}$ IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= \cos 2\theta + i \sin 2\theta$                                                                                                  | 1A    |                                                  |
| $\frac{\text{Alt. Solution}}{\frac{1+\sqrt{3}i}{1-\sqrt{3}i}} = \frac{1+\sqrt{3}i}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i}$ $= \frac{1}{2}(-1+\sqrt{3}i) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ $= \frac{1}{2}(-1+\sqrt{3}i)^{\frac{1}{3}} = (\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})^{\frac{1}{3}}$ $= \cos\frac{(3k+1)2\pi}{9} + i\sin\frac{(3k+1)2\pi}{9},$ IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) $\frac{1+\sqrt{3}i}{1-\sqrt{3}i} = \frac{1+i\tan\frac{\pi}{3}}{1-i\tan\frac{\pi}{3}}$                                          |       |                                                  |
| $ \frac{\text{Alt. Solution}}{\frac{1+\sqrt{3}i}{1-\sqrt{3}i}} = \frac{1+\sqrt{3}i}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i} \\ = \frac{1}{2}(-1+\sqrt{3}i) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} $ $ \frac{(\frac{1+\sqrt{3}i}{3})^{\frac{1}{3}}}{1-\sqrt{3}i} = (\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})^{\frac{1}{3}} $ $ = \cos\frac{(3k+1)2\pi}{9} + i\sin\frac{(3k+1)2\pi}{9},  IA $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$                                                                                       | 1A    |                                                  |
| $\frac{1+\sqrt{3}i}{1-\sqrt{3}i} = \frac{1+\sqrt{3}i}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i}$ $= \frac{1}{2}(-1+\sqrt{3}i) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ $(\frac{1+\sqrt{3}i}{1-\sqrt{3}i})^{\frac{1}{3}} = (\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})^{\frac{1}{3}}$ $= \cos\frac{(3k+1)2\pi}{9} + i\sin\frac{(3k+1)2\pi}{9},$ IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |       | or $\cos \frac{4\pi}{3} - i \sin \frac{4\pi}{3}$ |
| $= \frac{1}{2}(-1 + \sqrt{3}1) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ $(\frac{1 + \sqrt{3}1}{1 - \sqrt{3}1})^{\frac{1}{3}} = (\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})^{\frac{1}{3}}$ $= \cos\frac{(3k + 1)2\pi}{9} + i\sin\frac{(3k + 1)2\pi}{9},$ IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alt. Solution                                                                                                                      |       |                                                  |
| $\frac{\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{\frac{1}{3}}}{1-\sqrt{3}i} = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^{\frac{1}{3}}$ $= \cos\frac{(3k+1)2\pi}{9} + i\sin\frac{(3k+1)2\pi}{9}, \qquad 1A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1+\sqrt{3}i}{1-\sqrt{3}i} = \frac{1+\sqrt{3}i}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i}$                          |       |                                                  |
| $= \cos \frac{(3k+1)2\pi}{9} + i\sin \frac{(3k+1)2\pi}{9},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= \frac{1}{2}(-1 + \sqrt{3}i) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$                                                         | 1A    |                                                  |
| $= \cos \frac{(3k+1)2\pi}{9} + i\sin \frac{(3k+1)2\pi}{9},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{\frac{1}{3}} = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^{\frac{1}{3}}$ |       |                                                  |
| 2A 2A for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    | IA    |                                                  |
| k = 0, 1, 2 $k = 0, 1, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k = 0, 1, 2                                                                                                                        | ·2A   | 2A for k = 0, 1, 2                               |
| $OR = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $OR = \cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}$                                                                                    | ·     |                                                  |
| $\cos \frac{8\pi}{9} + i\sin \frac{8\pi}{9},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    |       |                                                  |
| $\frac{\cos 14\pi + i\sin 14\pi}{9} \text{ (or } \cos \frac{-4\pi}{9} + i\sin \frac{-4\pi}{9}) \qquad \frac{1A+1A}{4} \text{ Angles in degree}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\cos 14\pi}{9} + i\sin \frac{14\pi}{9}  (\text{or } \cos \frac{-4\pi}{9} + i\sin \frac{-4\pi}{9})$                          | +1A   |                                                  |

|     | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                        | Marks      | Remarks                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|----------------------------|
| (a) | $\begin{array}{ccc} x + \beta &= k+2 \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\$ |                          | 1 <b>A</b> |                            |
| (b) | $(\alpha + 1) (\beta + 2) = 4$ (1)<br>$\alpha \beta + (\alpha + \beta) + \alpha + 2 = 4$<br>$k + k + 2 + \alpha + 2 = 4$<br>= -2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 1M<br>1    | For eliminating $\beta$ .  |
|     | Subs. into the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            |                            |
|     | $(-2k)^2 - (k + 2) (-2k) + k = 0$<br>$6k^2 + 5k = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 1 M        |                            |
|     | k = 0  or  -5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 1A+1A      |                            |
| Γ   | Alt. Solution 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |            |                            |
|     | Subs. $\propto = -2k$ into (*) $\begin{cases} -2k + \beta = k + 2 \\ -2k \beta = k \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 1M         |                            |
|     | $k = 0$ or $\int_{-2k}^{3} = -\frac{1}{2}$ $-2k - \frac{1}{2} = k + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                        | 1A         | •                          |
|     | $k = \frac{-5}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 1A         |                            |
| 1   | Alt. Solution 2<br>Subs. $x = -2k$ , $\beta = 3k + 2$ into (<br>(-2k + 1) $(3k + 2 + 2) = 46k^2 + 5k = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1)                       | 1M         |                            |
|     | $k = 0 \text{ or } \frac{-5}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 1A+1A      |                            |
|     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit circle              | 6_<br>1A   | Axes or curves             |
|     | Imaginary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correct centre           | 1A         | not labelled (pp - 1)      |
| -   | 121=12-211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Horizontal straight line | 1A         | Separate diagrams (pp - 1) |
| C   | 12-31-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Position correct         | 1A         | ·                          |
| Cir | cle and line touch at correct po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | int.                     | 1 A        | Solve $(x - 3)^2 + y^2 =$  |
| The | intersection is the complex no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 + i                    | 1A<br>6    | y = 1<br>Ans.: 3 + i //    |

Provided by dse.life Provided by dse.life

|     | Solutions                                                                           | Marks      | Remarks                                                             |
|-----|-------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|
| · . | $(x + 2)^2 - 8  x + 2  + 15 \ge 0$                                                  |            |                                                                     |
|     | $ x + 2 ^2 - 8  x + 2  + 15 \ge 0$                                                  | 2M         |                                                                     |
|     | $( x + 2  - 3) ( x + 2  - 5) \ge 0$                                                 | 1A         |                                                                     |
|     | $ x + 2  \geqslant 5$ or $ x + 2  \leq 3$                                           |            | Omit 'or' (pp - 1)<br>use 'and' (no mark)                           |
|     | $(x \geqslant 3 \text{ or } x \leqslant -7) \text{ or } -5 \leqslant x \leqslant 1$ | 1A+1A<br>6 | use ',' (pp - 1)                                                    |
|     | Alt. Solution                                                                       |            |                                                                     |
|     | Case (i) $x \geqslant -2$ (or $x > -2$ )                                            | 1M         | $\frac{\text{Notes}}{(1) \times \geqslant -2}, \times \leqslant -2$ |
|     | $(x + 2)^2 - 8(x + 2) + 15 \ge 0$                                                   | 1 A        | (deduct no mark)                                                    |
|     | $(x - 1) (x - 3) \ge 0$                                                             |            | (2) Solve without                                                   |
|     | $x \ge 3$ or $x \le 1$                                                              |            | stating range of x (no mark)                                        |
|     | Since $x \ge -2$ $x \ge 3$ or $-2 \le x \le 1$                                      | 1A         | OI X (NO MAIX)                                                      |
|     | Case (ii) $x < -2$ (or $x \leq -2$ )                                                |            |                                                                     |
|     | $(x + 2)^2 + 8(x + 2) + 15 \ge 0$                                                   | 1A         |                                                                     |
|     | $(x + 5) (x + 7) \ge 0$                                                             |            |                                                                     |
|     | $x \geqslant -5$ or $x \leqslant -7$                                                | ·          |                                                                     |
|     | Since $x < -2$ , $x \le -7$ or $-2 > x \ge -5$                                      | 1A         |                                                                     |
|     | Combining the 2 cases,                                                              |            |                                                                     |
|     | $x \geqslant 3$ or $x \leqslant -7$ or $-5 \leqslant x \leqslant 1$                 | 1A         |                                                                     |
| 7.  | $2x + 4y + 4x \frac{dy}{dx} + 10y \frac{dy}{dx} = 0$                                | 1M         | For implicit                                                        |
|     | dx dx                                                                               |            | differentiation                                                     |
|     | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-(x+2y)}{2x+5y}$                           | 1A         |                                                                     |
|     | $\frac{-(x+2y)}{2x+5y}=\frac{-1}{2}$                                                | 1M         |                                                                     |
|     | y = 0                                                                               | 1A         |                                                                     |
|     | Subs. into the equation,                                                            |            |                                                                     |
|     | $x = \pm 1$                                                                         | 1A         |                                                                     |
|     | The equations are                                                                   |            | x + 2v + 1 = 0                                                      |
|     | $y = -\frac{1}{2}x + \frac{1}{2}$ and $y = -\frac{1}{2}x - \frac{1}{2}$             | 1A+1A      | x + 2y + 1 = 0<br>x + 2y - 1 = 0                                    |
|     |                                                                                     |            | Provided by dse.                                                    |

|    |     |       | Solutions                                                                                                | Marks | Remarks                                               |
|----|-----|-------|----------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|
| 3. | (a) | (i)   | $\vec{x} \cdot \vec{z} =  \vec{x}   \vec{z}  \cos\theta$                                                 | 1 A   | Omit vector sign (pp - 1)                             |
|    |     |       | $=  \vec{z}  \cos \theta$                                                                                | 1A    | Omit dot sign                                         |
|    |     |       | $\vec{y} \cdot \vec{z} =  \vec{y}   \vec{z}  \cos\theta$                                                 |       | (pp - 1)                                              |
|    |     |       | $=  \vec{z}  \cos \theta$                                                                                | ,     |                                                       |
|    |     |       | $\vec{x} \cdot \vec{z} = \vec{y} \cdot \vec{z}'$                                                         | 1     |                                                       |
|    |     | (ii)  | $\vec{x} \cdot \vec{z} = \vec{x} \cdot (\vec{m}\vec{x} + \vec{n}\vec{y})$                                |       |                                                       |
|    |     |       | $= m\vec{x} \cdot \vec{x} + n\vec{x} \cdot \vec{y}$                                                      |       |                                                       |
|    |     |       | $= m + n\cos 2\theta$                                                                                    | 1A    |                                                       |
|    |     |       | $\vec{y} \cdot \vec{z} = \vec{y} \cdot (m\vec{x} + n\vec{y})$                                            |       |                                                       |
|    |     |       | $= m\cos 2\theta + n\vec{y} \cdot \vec{y}$                                                               |       |                                                       |
|    |     |       | $= m\cos 2\theta + n$                                                                                    | 1 A   |                                                       |
|    |     |       | From (1), $m + n\cos 2\theta = m\cos 2\theta + n$                                                        | 1M    |                                                       |
|    |     |       | $(m - n) (1 - \cos 2\theta) = 0$                                                                         | 1A    | Accept $(m - n)$<br>$(1 - \vec{x} \cdot \vec{y}) = 0$ |
|    |     |       | $\therefore m = n  (\forall \cos 20 \neq 1)$                                                             | 1     | Accept omitting cos 20 # 1                            |
|    |     |       |                                                                                                          | 8_    | -                                                     |
|    | (b) | (i)   | $\overrightarrow{OC} = \frac{\lambda (\overrightarrow{bv}) + (\overrightarrow{au})}{1 + \lambda}$        | 1A    |                                                       |
|    |     | (ii)  | Using (a) (ii)                                                                                           |       |                                                       |
|    |     |       | $\frac{\mathbf{a}}{\lambda + 1} = \frac{\mathbf{b} \lambda}{\lambda + 1}$                                | 1M    |                                                       |
|    |     |       | $\lambda = \frac{a}{b}$                                                                                  | 1     |                                                       |
|    |     | (111) | $ \overrightarrow{OA}  = \sqrt{3^2 + 4^2} = 5$                                                           | 1A    | $\overrightarrow{OA} = 5 (pp - 1)$                    |
|    | •   |       | $\frac{AC}{CB} = \frac{5}{25/3}$                                                                         | 1M    |                                                       |
|    |     |       | $=\frac{3}{5}$                                                                                           | 1A    |                                                       |
|    |     |       | $\overrightarrow{OC} = \frac{\frac{3}{5}(\frac{25}{3}\hat{i}) + (3\hat{i} + 4\hat{j})}{\frac{3}{5} + 1}$ |       |                                                       |
|    |     |       | $\frac{3}{5}$ + 1                                                                                        | 1M    | 1                                                     |
|    |     |       | $= 5\hat{1} + \frac{5}{2}\hat{j}$                                                                        | 1A 8  |                                                       |

|    |     |                                                   |                                                   | 1            | 1                                  |
|----|-----|---------------------------------------------------|---------------------------------------------------|--------------|------------------------------------|
|    |     |                                                   | Solutions                                         | Marks        | Remarks                            |
| 9. | (a) | (i)                                               | $f(x) = x^2 + 4x + 1$                             |              |                                    |
|    |     |                                                   | $= (x + 2)^2 - 3$                                 | 1A           |                                    |
|    |     |                                                   | Vertex of $C_1$ is $(-2, -3)$                     | 1A           |                                    |
|    |     | (ii)                                              | $x^2 + 4x + 1 = 0$                                |              | Answerin decimal                   |
|    |     |                                                   | $x = -2 \pm \sqrt{3}$                             | 1A           | - no mark                          |
|    |     |                                                   | $PQ = (-2 + \sqrt{3}) - (-2 - \sqrt{3})$          | 1M           | For subtraction                    |
|    |     |                                                   | <b>=</b> 2√3                                      | 1A           | Accept PQ = $\sqrt{12}$            |
|    |     | Alt.                                              | Solution                                          |              |                                    |
|    |     | ( ×                                               | $-\beta)^2 = (\infty + \beta)^2 - 4 \times \beta$ | 1M           |                                    |
|    |     |                                                   | $= (-4)^2 - 4 = 12$                               | 1A           |                                    |
|    |     | PO =                                              | $ \times -\beta  = 2\sqrt{3}$                     | 1A           | Accept PQ = $\checkmark$ - $\beta$ |
|    |     | <del>• • • • • • • • • • • • • • • • • • • </del> |                                                   |              |                                    |
|    | (b) | (i)                                               | Vertex of $C_2$ is $(-2, -3 - m)$                 | 1M           |                                    |
|    |     |                                                   | $g(x) = (x + 2)^2 - (3 + m)$                      | 1A           | $x^2 + 4x + 1 - m$                 |
|    |     | (ii)                                              | $x^2 + 4x + 1 - m = 0$                            |              |                                    |
|    |     |                                                   | $x = -2 \pm \sqrt{m+3}$                           | 1A           |                                    |
|    |     |                                                   | $P'Q' = 2\sqrt{m+3}$                              | 1 A          | Accept P'Q' = $\sqrt{4m + 12}$     |
|    |     | Alt.                                              | Solution                                          |              |                                    |
|    |     | (x'                                               | $-\beta')^2 = 4m + 12$                            | 1A           |                                    |
|    |     | P'Q'                                              | $=  x' - \beta'  = 2\sqrt{m+3}$                   | 1A           |                                    |
|    |     | (111)                                             | $2\sqrt{m+3} = 2(2\sqrt{3})$                      | 1A           |                                    |
|    |     |                                                   | m = 9                                             | 1 <u>A</u> 6 |                                    |
|    | (c) | (i)                                               | Vertex of $C_3$ is $(-2 + n, -3)$                 | 1M           |                                    |
|    |     |                                                   | $h(x) = (x + 2 - n)^2 - 3$                        | 1 <b>A</b>   |                                    |
|    |     | (ii)                                              | h(0) = 0                                          |              |                                    |
|    |     |                                                   | $0 = (2 - n)^2 - 3$                               | 1M           |                                    |
|    |     |                                                   | $n = 2 \pm \sqrt{3}$                              | 1A+1A<br>5   | 3.73, 0.268                        |
|    |     | ه څنه                                             | . PECTALOTER did                                  | 7            | Provided by dse.li                 |

| ş!  |     |               | MEGITTO 125 TORISON                                                               | •          |                                           |
|-----|-----|---------------|-----------------------------------------------------------------------------------|------------|-------------------------------------------|
|     |     |               | Solutions                                                                         | Marks      | Remarks                                   |
| .0. | (a) | (1) <u>d</u>  | $\frac{dy}{dx} = \frac{2(x^2 + 2) - 2x(2x + 1)}{(x^2 + 2)^2}$                     | 1A         |                                           |
|     |     | 2             | $= \frac{-2(x^2 + x - 2)}{(x^2 + 2)^2}$ $\frac{-2(x^2 + x - 2)}{(x^2 + 2)^2} < 0$ | IM         | € 0, no mark.                             |
|     |     | >             | $x^2 + x - 2 > 0$                                                                 | 1A         |                                           |
|     |     | >             | x > 1 or x <-2                                                                    | 1A         |                                           |
|     | •   | (ii) <u>-</u> | $\frac{-2(x^2 + x - 2)}{(x^2 + 2)^2} = 0$                                         | iM         |                                           |
|     |     | >             | x = 1  or  -2                                                                     | 1A ·       |                                           |
|     |     | 2             | x = 1, $y = 1$ (1, 1) is a maximum point.                                         | 1A         |                                           |
|     |     | >             | $x = -2$ , $y = \frac{-1}{2}(-2, \frac{-1}{2})$ is a minimum point.               | 1A<br>8    |                                           |
|     | (b) | Curve C       | l: Shape                                                                          | 1A         | Curve not labelled but position correct   |
|     |     |               | Intercepts                                                                        | 1A         | - deduct 1 mark only                      |
|     |     |               | End points                                                                        | 1A         |                                           |
|     |     |               | Turning points                                                                    | 1 <u>A</u> | Pure plotting without part (a) - no mark. |
|     | (c) | Curve C       | 2 : Shape                                                                         | 1A         |                                           |
|     |     |               | Intercepts                                                                        | 1A         |                                           |
|     |     |               | End points                                                                        | 1 <b>A</b> |                                           |
| •   |     |               | Turning points $(-2, 1\frac{1}{2})$ , $(1, 0)$                                    | 1 <u>A</u> |                                           |
|     |     |               |                                                                                   |            |                                           |
|     |     |               |                                                                                   |            |                                           |
|     |     |               |                                                                                   |            |                                           |
|     |     |               |                                                                                   |            |                                           |

| • • •            |               |     |             |              |  |
|------------------|---------------|-----|-------------|--------------|--|
|                  |               | 1   |             | ŀ            |  |
|                  | ] ]           | 1   |             |              |  |
|                  | 1 1           |     |             | Total Marks  |  |
| 1                | 1 1           | Į į |             |              |  |
| Candidate Number | Centre Number | 1   | Seat Number | on this page |  |
| 1                | 1 1           |     |             |              |  |

10. If you attempt Question 10, fill in the details in the first three boxes above and tie this sheet into your answer book.



| Solutions                                                                                                                                   | Marks        | Remarks                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| . (a) By Sine Law,                                                                                                                          |              |                                                                                                                                                           |
| $\frac{x}{\sin(\hat{\eta} - \frac{2\hat{\eta}}{3} - \theta)} = \frac{3}{\sin^2 \frac{\eta}{3}}$                                             | 1M           |                                                                                                                                                           |
| $x = 2\sqrt{3}\sin\left(\frac{\pi}{3} - \theta\right)$                                                                                      | 1 <u>A</u> 2 | $x = 3\cos\theta - \sqrt{3}\sin\theta$                                                                                                                    |
| (b) $S = \frac{1}{2} 3x \sin \theta$                                                                                                        | 1A           |                                                                                                                                                           |
| $= 3\sqrt{3} \sin(\frac{\pi}{3} - \theta) \sin\theta$                                                                                       | 1A           | $S = \frac{9}{2} \sin \theta \cos \theta - \frac{9}{2}$                                                                                                   |
|                                                                                                                                             |              | $\frac{3\sqrt{3}}{\sin^2\theta}$                                                                                                                          |
|                                                                                                                                             |              | $\begin{array}{c} 3 = -\sin\theta\cos\theta - \frac{2}{3} \\ \frac{3\sqrt{3}}{3}\sin^2\theta \\ = -\frac{3\sqrt{3}}{4} + \frac{3\sqrt{3}}{2} \end{array}$ |
|                                                                                                                                             |              | $\cos(\frac{\pi}{2}-2\theta)$                                                                                                                             |
| $\frac{dS}{d\theta} = 3\sqrt{3}[\cos\theta\sin(\frac{\pi}{3} - \theta) - \sin\theta\cos(\frac{\pi}{3} - \theta)]$                           |              |                                                                                                                                                           |
| $= 3 \sqrt{3} \sin(\frac{\pi}{3} - 2\theta)$                                                                                                | 1            |                                                                                                                                                           |
| $\frac{dS}{d\theta} = 0 \text{ when } \theta = \frac{\hat{\pi}}{6} \qquad ( \cdot \cdot \cdot \cdot 0 \le \theta \le \frac{\hat{\pi}}{3} )$ | 1M+1A        | Accept omitting $0 \le \theta \le \frac{\pi}{3}$                                                                                                          |
| $\frac{\mathrm{d}^2 S}{\mathrm{d}\theta^2} = -6 \sqrt{3} \cos(\frac{\pi}{3} - 2\theta)$                                                     | 1A           | ·                                                                                                                                                         |
| $\left. \frac{\mathrm{d}^2 S}{\mathrm{d}\theta^2} \right _{\theta = \frac{\pi}{6}} = -6 \sqrt{3} \qquad \text{ max.}$                       | 1M           | Awarded only when the 2nd derivative is correct.                                                                                                          |
| Alt. Solution for checking maximum                                                                                                          |              | <br>                                                                                                                                                      |
| $\frac{dS}{d\theta} > 0  \text{for}  0 < \theta < \frac{\pi}{6}$                                                                            |              |                                                                                                                                                           |
| $\frac{dS}{d\theta} > 0  \text{for}  \frac{\pi}{6} < \theta < \frac{\pi}{3}$                                                                | 1A           | for correct ranges of $	heta$                                                                                                                             |
| $\theta = \frac{\pi}{6}$ is a maximum                                                                                                       | 1M           | for slope change from +ve to -ve.                                                                                                                         |
| $S_{\text{max}} = 3\sqrt{3} \sin(\frac{\pi}{3} - \frac{\Gamma}{6}) \sin\frac{\pi}{6}$                                                       |              |                                                                                                                                                           |
| $=\frac{3\sqrt{3}}{4}.$                                                                                                                     | 1 <u>A</u> 8 | Only awarded if if max. is checked.                                                                                                                       |
|                                                                                                                                             |              |                                                                                                                                                           |

| Solutions $x = 2\sqrt{3}\sin(\frac{\pi}{3} - \theta)$                                                           | Marks                                                          | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                                                               | I .                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{\mathrm{dx}}{\mathrm{dt}} = -2 \sqrt{3} \cos(\frac{n}{3} - \theta) \frac{\mathrm{d}\theta}{\mathrm{dt}}$ | 1A                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Since $\frac{dx}{dt} = -\frac{\sqrt{3}}{3}$                                                                     | 1 A                                                            | Omit -ve sign (no mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{6\cos(\frac{\pi}{3} - \theta)}$                                | 1                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $0 \le \theta \le \frac{\pi}{3}$                                                                                | 1A                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{1}{2} \leq \cos(\frac{\pi}{2} - \theta) \leq 1$                                                          |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                                                                               | , IA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 | } 1A                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ατ σ                                                                                                            |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                 | $\frac{d\theta}{dt} = \frac{1}{6\cos(\frac{\pi}{3} - \theta)}$ | $\frac{d\theta}{dt} = \frac{1}{6\cos(\frac{\pi}{3} - \theta)}$ $0 \le \theta \le \frac{\pi}{3}$ $\frac{1}{2} \le \cos(\frac{\pi}{3} - \theta) \le 1$ $\cos(\frac{\pi}{3} - \theta) \le 1$ $1A$ $\cos(\frac{\pi}{3} - \theta) \le 1$ $\cos($ |

|    |           | Solutions                                                                                                                   | Marks         | Remarks                                                                                                     |
|----|-----------|-----------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------|
| 2. | (a)       | Let $z = x + yi$                                                                                                            |               |                                                                                                             |
|    |           | (i) $z\bar{z} = (x + yi) (x - yi) = x^2 + y^2$                                                                              | real 1        |                                                                                                             |
|    |           | (ii) $z + \overline{z} = (x + yi) + (x - yi) = 2x = 2R$                                                                     | $\frac{1}{2}$ |                                                                                                             |
|    | (b)       | (i) (1) By (a) (ii)                                                                                                         |               |                                                                                                             |
|    |           | $Re(p\bar{r}) = \frac{1}{2}(p\bar{r} + p\bar{r})$                                                                           | 1A            |                                                                                                             |
|    |           | $= \frac{1}{2}(p\bar{r} + \bar{p}r)$                                                                                        | 1A            |                                                                                                             |
|    |           | = 0                                                                                                                         | 1             |                                                                                                             |
|    |           | (2) $\operatorname{Re}\left(\frac{p}{r}\right) = \frac{1}{2}\left(\frac{p}{r} + \left(\frac{\overline{p}}{r}\right)\right)$ | 1A            | $\operatorname{Re}(\frac{p}{r}) = \operatorname{Re}(\frac{p\overline{r}}{r\overline{r}}) 1$                 |
|    |           | $= \frac{1}{2}(\frac{p}{r} + \frac{\overline{p}}{\overline{r}})$                                                            |               | $Re(\frac{p}{r}) = Re(\frac{p\overline{r}}{r\overline{r}}) 1$ $= \frac{Re(p\overline{r})}{r\overline{r}} 1$ |
|    |           | $= \frac{1}{2} \frac{p\bar{r} + \bar{p}r}{r\bar{r}}$                                                                        | 1A            | = 0 1                                                                                                       |
|    |           | <b>=</b> 0                                                                                                                  | 1             |                                                                                                             |
|    | <u>A1</u> | t. Solution                                                                                                                 |               |                                                                                                             |
|    | L         | et $p = a + bi$ , $r = c + di$                                                                                              |               |                                                                                                             |
|    | (         | 1) $p\bar{r} + \bar{p}r = 0$                                                                                                |               |                                                                                                             |
|    |           | (a + bi) (c - di) + (a - bi) (c + di) = 0                                                                                   |               |                                                                                                             |
|    |           | ac + bd = 0                                                                                                                 | 1A            |                                                                                                             |
|    |           | $Re(p\bar{r}) = ac + bd$                                                                                                    | 1A            |                                                                                                             |
|    |           | . = ()                                                                                                                      | 1             |                                                                                                             |
|    | (         | $\frac{p}{r} = \frac{a + bi}{c + di} \cdot \frac{c - di}{c - di}$                                                           | 1M            |                                                                                                             |
|    |           | $= \frac{(ac + bd) + (bc - ad)1}{c^2 + d^2}$                                                                                |               |                                                                                                             |
|    |           | $Re(\frac{p}{r}) = \frac{ac + bd}{c^2 + d^2}$                                                                               | 1A            |                                                                                                             |
|    |           | = 0                                                                                                                         | 1             |                                                                                                             |
|    |           |                                                                                                                             |               |                                                                                                             |

| Solutions                                                                             | Marks | Remarks                              |
|---------------------------------------------------------------------------------------|-------|--------------------------------------|
| (b) (ii) Method 1                                                                     | ·     |                                      |
| $Re\left(\frac{\mathbf{p}}{\mathbf{r}}\right) = 0$                                    |       |                                      |
| $\arg(\frac{p}{r}) = \pm \frac{\pi}{2}$                                               | 1A    | Accept omitting<br>± sign            |
| $arg p - arg r = \pm \frac{\pi}{2} or \pm \frac{3\pi}{2}$                             | 1 A   | Accept omitting $\pm \frac{3\pi}{2}$ |
| ·, OA <u></u> OC                                                                      |       | 2                                    |
| .`, OABC is a rectangle                                                               | 1     |                                      |
| Method 2                                                                              |       |                                      |
| $ AC ^2 = (p-r) (\overline{p-r})$                                                     |       |                                      |
| $= p\overline{p} - p\overline{r} - \overline{p}r + r\overline{r}$                     |       |                                      |
| $= p\bar{p} + r\bar{r}$                                                               | 1A    |                                      |
| $ OB ^2 = q\overline{q} = (p + r) (\overline{p + r}) = p\overline{p} + r\overline{r}$ | 1A    |                                      |
| AC = OB OABC is a rectangle                                                           |       |                                      |
|                                                                                       | 1     |                                      |
| Alt. Solution                                                                         |       |                                      |
| Method 1                                                                              |       |                                      |
| Slope of OC = $\frac{d}{c}$ (p = a + bi, r = c + di)                                  | 1A    |                                      |
| Slope of $OA = \frac{b}{a}$                                                           |       |                                      |
| Product of slope = $\frac{d}{c} \cdot \frac{b}{a}$                                    |       |                                      |
| = -ac/ac (from (i))                                                                   |       |                                      |
| = -1                                                                                  | 1A    | Accept the                           |
| OC LOA : OABC is a rectangle                                                          | 1     | negligence of considering            |
| Method 2                                                                              |       | a = 0 or c = 0                       |
| $OA^2 = a^2 + b^2, OC^2 = c^2 + d^2$                                                  | 1,,   |                                      |
| $AC^2 = (a - c)^2 + (b - d)^2$                                                        | 1A    |                                      |
| $= a^2 + c^2 + b^2 + d^2 - 2(ac + bd)$                                                |       |                                      |
| $= (a^2 + b^2) + (c^2 + d^2)$                                                         |       |                                      |
| $= OA^2 + OC^2 $                                                                      | 1A    |                                      |
| OA LOC (Converse of Pythagoras Theorem)                                               |       |                                      |
| . OABC is a rectangle.                                                                | 1     | Provided by dse.life                 |

| KLSIK                                   | ICIED P | ואיוםו |          | 1.15                                               |
|-----------------------------------------|---------|--------|----------|----------------------------------------------------|
| Solutions                               |         |        | Marks    | Remarks                                            |
| (b) (iii) p = 2ri                       |         |        |          |                                                    |
| $\frac{p-r}{p+r} = \frac{2ri-r}{2ri+r}$ |         |        |          |                                                    |
| $= \frac{-1 + 21}{1 + 21}$              |         |        | 1A       |                                                    |
| $=\frac{3}{5}+\frac{4}{5}1$             | ,       |        | 1A       | Accept $\frac{3+41}{5}$                            |
| $\arg(\frac{p-r}{p+r}) = \theta$        |         |        | 1 A      |                                                    |
|                                         |         |        |          | arg (p - r) - $arg (p + r) = 0$ $(can be omitted)$ |
| $\tan \theta = \frac{4/5}{3/5}$         |         |        | 1M       |                                                    |
| $=\frac{4}{3}$                          |         |        | 1A<br>14 |                                                    |
|                                         |         | -      |          | ·                                                  |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         | •      |          |                                                    |
| ,                                       |         |        |          |                                                    |
|                                         |         | ·      |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |
|                                         |         |        |          |                                                    |

#### 1990 HKCE Additional Mathematics II

| IM  1A  1A  1M | Deduct 1 mark for missing              |
|----------------|----------------------------------------|
| 1 A<br>1 A     | •                                      |
| 1 A            | •                                      |
| 1 A            |                                        |
| 1 A            |                                        |
|                |                                        |
| 1M             |                                        |
|                |                                        |
| ·              |                                        |
| 1A<br>         |                                        |
|                |                                        |
|                |                                        |
| 1              |                                        |
| 1              |                                        |
|                |                                        |
|                |                                        |
| 1 .            |                                        |
|                |                                        |
|                |                                        |
|                |                                        |
| 1              |                                        |
| 15             | Awarded if previous steps all correct. |
|                | 1                                      |

| Solution                                                                                                                                                                                                                                      | Marks      | Remarks                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|
| 3. $du = 2\sin x \cos dx$ $\int \frac{\sin x \cos x}{\sqrt{9\sin^2 x + 4\cos^2 x}} dx = \int \frac{1}{2\sqrt{5u + 4}} du$                                                                                                                     | 1A<br>2A   | Integrated must<br>be in terms of u |
| $= \frac{1}{5} \sqrt{5u + 4} + c$ $= \frac{1}{5} \sqrt{5\sin^2 x + 4} + c$ $(or \frac{1}{5} \sqrt{9\sin^2 x + 4\cos^2 x} + c)$                                                                                                                | 1A 1A 5    | Deduct l mark for omitting c        |
| 4. $\int_{0}^{\pi/2} [\cos x - k(x - \frac{\pi}{2})^{2}] dx$                                                                                                                                                                                  | 1 <b>A</b> |                                     |
| $= \left[\sin x - \frac{k}{3}(x - \frac{\pi}{2})^{3}\right]_{0}^{\pi/2}$                                                                                                                                                                      | 1A .       |                                     |
| $=1-\frac{k\eta^3}{24}=2$                                                                                                                                                                                                                     | 1A+1M      |                                     |
| $k = \frac{-24}{\pi 3} (-0.774)$                                                                                                                                                                                                              | 1A<br>5    |                                     |
| Alt. Solution $\int_{0}^{\frac{\pi}{2}} \cos x dx = \left[\sin x\right]_{0}^{\frac{\pi}{2}}$ $= 1$ $\int_{0}^{\frac{\pi}{2}} k\left(x - \frac{\pi}{2}\right)^{2} ds = \frac{k}{3}\left(x - \frac{\pi}{2}\right)^{3} \int_{0}^{\frac{\pi}{2}}$ | 1A         |                                     |
| $=\frac{k\pi^3}{24}$ $1-\frac{k\pi^3}{24}=2$                                                                                                                                                                                                  | 1A         |                                     |
| $k = \frac{-24}{\pi 3}  (-0.774)$                                                                                                                                                                                                             | 1A+1M      | •                                   |

| Solution                                                                                      | Marks    | Remarks                                  |
|-----------------------------------------------------------------------------------------------|----------|------------------------------------------|
| $2\sin\frac{x}{2}\sin\frac{3x}{2} = 1$                                                        |          |                                          |
| cosx - cos2x = 1                                                                              | 1 A      |                                          |
| $\cos x - (2\cos^2 x - 1) = 1$                                                                | 1A       |                                          |
| $2\cos^2 x - \cos x = 0$                                                                      |          |                                          |
| $cosx = 0 \text{ or } \frac{1}{2}$                                                            | 1A       |                                          |
| $x = 2n \pi \pm \frac{\pi}{2} \qquad \left(\frac{2n+1}{2}\widehat{i}\right)$                  | 1A       | 360n° ± 90°,<br>(2n + 1) 90°             |
| or $2n^{\pi} \pm \frac{\pi}{3}$ where $n \in \mathbb{Z}$                                      | 1A<br>   | 360n° ± 60° use different units (pp - 1) |
|                                                                                               |          |                                          |
| Alt. Solution                                                                                 |          |                                          |
| Let $\sin \frac{x}{2} = t$                                                                    |          |                                          |
| $t(3t - 4t^3) = \frac{1}{2}$                                                                  | 1A       |                                          |
| $t(3t - 4t^3) = \frac{1}{2}$ $8t^4 - 6t^2 + 1 = 0$                                            | 1A -     |                                          |
| $(2t^2 - 1) (4t^2 - 1) = 0$                                                                   |          |                                          |
| $t = \pm \frac{\sqrt{2}}{2} \text{ or } \pm \frac{1}{2}$                                      | 1A       |                                          |
| $\frac{x}{2} = n \pi \pm \frac{\pi}{4}  \text{or}  n \pi \pm \frac{\pi}{6}$                   |          |                                          |
| $x = 2n\pi \pm \frac{\pi}{2}  \text{or}  2n\pi \pm \frac{\pi}{3}$                             | 1A+1A    |                                          |
|                                                                                               | • •      |                                          |
| 6. (a) $r = \sqrt{1^2 + (\sqrt{3})^2} = 2$<br>$tan = \sqrt{3}$ $\therefore \alpha = 60^\circ$ | 1A<br>1A | no mark if in<br>radian                  |
| (b) $x = \frac{1}{2\cos(\theta - 60^{\circ}) + 5}$                                            |          |                                          |
| $-1 \leq \cos(\theta - 60^{\circ}) \leq 1$                                                    | 1M       |                                          |
| $\frac{1}{7} \leqslant x \leqslant \frac{1}{3}$                                               | 1A+1A    |                                          |
|                                                                                               | ,        |                                          |

| Solution                                                                                                                                   | Marks      | Remarks                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|
| Equation of CD : y = mx+1 (1)                                                                                                              | 1 A        |                                                                         |
| Equation of AB: $\frac{x}{3} + \frac{y}{5} = 1$ (2)                                                                                        | 1 <b>A</b> |                                                                         |
| Subs. (1) into (2): $\frac{x}{3} + \frac{mx + 1}{5} = 1$                                                                                   |            |                                                                         |
| $x = \frac{12}{5 + 3m}$                                                                                                                    | 1A         |                                                                         |
| Area of $\triangle BCD = \frac{1}{2} (5 - 1) (\frac{12}{5 + 3m})$ $\frac{24}{5 + 3m} = \frac{1}{2} \cdot \frac{15}{2} = \frac{24}{5 + 3m}$ | 1A         |                                                                         |
| $\frac{24}{5 + 3m} = \frac{1}{2} \cdot \frac{13}{2}$ $m = \frac{7}{15}$                                                                    | 1M         |                                                                         |
| Equation of CD is $y = \frac{7x}{15} + 1$                                                                                                  | 1A<br>6    | 7x - 15y + 15 = 0                                                       |
| Alt. Solution                                                                                                                              |            |                                                                         |
| Let coordinates of D be (x, y)                                                                                                             |            |                                                                         |
| $\frac{4x}{2} = \frac{1}{2} \cdot \frac{15}{2}$                                                                                            | 1M         |                                                                         |
| $x = \frac{15}{8}$                                                                                                                         | 1 A        |                                                                         |
| Equation of AB: $\frac{x}{3} + \frac{y}{5} = 1$                                                                                            | 1A         | $\frac{y}{\frac{15}{8} - 3} = \frac{5}{-3}$ 1A<br>$y = \frac{15}{8}$ 1A |
| Subs. $x = \frac{15}{8}$ , $y = \frac{15}{8}$                                                                                              | 1 A        | $y = \frac{15}{8}$ 1A                                                   |
| ·• Equation of CD                                                                                                                          |            |                                                                         |
| $\frac{y-1}{x} = \frac{\frac{15}{8} - 1}{15/8}$                                                                                            | 1M         |                                                                         |
| $y = \frac{7}{15}x + 1$                                                                                                                    | 1A         |                                                                         |
|                                                                                                                                            |            |                                                                         |

Provided by dse.life

|   | Solution                                                   | Marks      | Remarks         |
|---|------------------------------------------------------------|------------|-----------------|
| • | Let coordinates of S and T be (a, 0), (b, b) respectively  | 1 A        |                 |
|   | coordinates of mid-point is $(\frac{a+b}{2}, \frac{b}{2})$ | 1A         |                 |
|   | Let $x = \frac{a+b}{2}$ , $y = \frac{b}{2}$                |            |                 |
|   | b = 2y, $a = 2(x - y)$                                     | 1M         | For making a, b |
|   | $(a - b)^2 + (b - 0)^2 = 4$                                | 1M         | as subjects     |
|   | $(2x - 4y)^2 + (2y)^2 = 4$                                 | 1 A        |                 |
|   | $(x - 2y)^2 + y^2 = 1$                                     |            |                 |
|   | $x^2 - 4xy + 5y^2 - 1 = 0$                                 | 1A<br>6    |                 |
|   | Alt. Solution                                              |            |                 |
|   | Let coordinates of P be (x, y)                             |            |                 |
|   | then coordinates of T is (2y, 2y)                          | 1 <b>A</b> |                 |
|   | coordinates of S is (2x - 2y, 0)                           | 2A         |                 |
|   | $(2x - 4y)^2 + 4y^2 = 4$                                   | 1M+1A      |                 |
|   | $x^2 - 4xy + 5y^2 - 1 = 0$                                 | 1A         |                 |
|   |                                                            | ļJ         | 1               |

|        | Solution                                                                                             | Marks      | Remarks                         |
|--------|------------------------------------------------------------------------------------------------------|------------|---------------------------------|
| 9. (a) | (i) $\int_{c}^{\pi} \cos^{2}x dx = \int_{c}^{\pi} \frac{1}{2} (1 + \cos 2x) dx$                      | 1A         |                                 |
|        | $= \left[\frac{1}{2}(x + \frac{\sin 2x}{2})\right]_{0}^{\pi}$                                        | 1 A        |                                 |
|        | $= \pi/2$ (ii) Put $x = \pi - y$                                                                     | 1A         |                                 |
|        | $\int_0^{\pi} x \cos^2 x dx = \int_{\pi}^{0} (\pi - y) \cos^2 (\pi - y) - dy$                        | 1A .       |                                 |
|        | $= \widehat{\eta} \int_{0}^{\widehat{\eta}} \cos^2 y dy - \int_{0}^{\widehat{\eta}} y \cos^2 y dy$   | 1M         | For separating into 2 integrals |
|        | $2 \int_{c}^{\pi} x \cos^{2}x dx = \pi \int_{c}^{\pi} \cos^{2}x dx$ $= \pi^{2}/2$                    | 1M         |                                 |
|        | $\int_0^{\pi} x \cos^2 x dx = \sqrt{1/4}$                                                            | 1A 7       |                                 |
| (b)    | (i) Put $x = \widehat{y} + y$                                                                        | 1A         |                                 |
|        | $\int_{\tau}^{2\pi} x \cos^2 x dx = \int_{0}^{\pi} (\pi + y) \cos^2 (\pi + y) dy$                    | 1 <b>A</b> |                                 |
|        | $= \Re \int_0^{\Re} \cos^2 y  dy + \int_0^{\Re} y \cos^2 y  dy$                                      |            |                                 |
|        | $= \widehat{\pi} \int_0^{\pi} \cos^2 x dx + \int_0^{\infty} x \cos^2 x dx$                           | 1          |                                 |
|        | (ii) $\int_0^{2\pi} \cos^2 x dx = \int_0^{\pi} \cos^2 x dx + \int_{\pi}^{2\pi} \cos^2 x dx$          | 1 <b>A</b> |                                 |
|        | $= \int_0^{\pi} x \cos^2 x dx + \pi \int_0^{\pi} \cos^2 x dx$                                        |            |                                 |
|        | $+\int_{0}^{\pi} x\cos^{2}x dx$                                                                      | 1M         | For subs. (6)(i)                |
|        | $= \frac{\pi^2}{4} + \pi(\frac{\pi}{2}) + \frac{\pi^2}{4}$                                           |            |                                 |
|        | = \(\bar{\eta}^2\)                                                                                   | 1 6        |                                 |
| (c) I  | Put $x^2 = y$                                                                                        | 1A         |                                 |
| :      | 2xdx = dy                                                                                            |            |                                 |
| J,     | $\int_{0}^{\sqrt{2\pi}} x^{3} \cos^{2} x^{2} dx = \int_{0}^{2\pi} y \cos^{2} y \cdot \frac{1}{2} dy$ | 1A         |                                 |
| C      | $= \frac{1}{2} \int_{\Omega}^{\Omega f} y \cos^2 y dy$                                               |            |                                 |
|        | $=\frac{\pi^2}{2}$                                                                                   | 1A         | • 1 11 1 1                      |

|          | Solution                                                                  | Marks        | Remarks                     |
|----------|---------------------------------------------------------------------------|--------------|-----------------------------|
| 10.      | (a) $\frac{dy}{dx} \Big _{x = t} = 2t - 2$                                | 1A           |                             |
|          | y-coordinates of $P = t^2 - 2t + 3$                                       | 1A           |                             |
|          |                                                                           | I A          |                             |
|          | Equation of tangent : $y - (t^2 - 2t + 3)$                                |              |                             |
|          | = (2t - 2) (x - t)                                                        | 1M           |                             |
|          | $y = (2t - 2)x - t^2 + 3(*)$                                              | 1A<br>4      |                             |
|          | Alt. Solution                                                             |              |                             |
|          | Using the formula $\frac{y + y_1}{2} = xx_1 - (x + x_1) + 3$              |              |                             |
|          | Equation of tangent: $y + (t^2 - 2t + 3)$                                 | ·            |                             |
| •        | = tx - (t + x) + 3                                                        | 1M+1A<br>+1A | 1A for $y_1 = t^2 - 2t + 3$ |
|          | $y = (2t - 2)x - t^2 + 3$                                                 | 1A .         |                             |
|          | (b) (i) Put $t = \frac{1}{3}$ in (*)                                      |              |                             |
|          | Equation of $T_1 : y = \frac{-4}{3}x + \frac{26}{9}$                      | 1A           |                             |
| y within | (ii) Coordinates of C: (1, 2)                                             | 1A .         |                             |
|          | Coordinates of D: $(1, \frac{14}{9})$                                     | 1A           |                             |
|          | (iii) Subs. $(1, \frac{14}{9})$ into (*)                                  |              |                             |
|          | $\frac{14}{9} = 2t - 2 - t^2 + 3$                                         | 1 M          |                             |
|          | $9t^2 - 18t + 5 = 0$                                                      |              |                             |
|          | $t = \frac{1}{3} \text{ or } \frac{5}{3}$                                 |              | •                           |
|          | $\therefore x-coordinate of B = \frac{5}{3}$                              | IA           |                             |
|          | y-coordinate of B = $(\frac{5}{3})^2 - 2(\frac{5}{3}) + 3 = \frac{22}{9}$ |              |                             |
|          | Coordinates of B = $(\frac{5}{3}, \frac{22}{9})$                          | <u>1A</u>    |                             |

Provided by dse.life

| Solution                                                                                                  | Marks         | Remarks |
|-----------------------------------------------------------------------------------------------------------|---------------|---------|
| Alt. Solution  (iii) Since S is symmetrical about x = 1 and                                               |               |         |
| x-coordinate of A = $\frac{1}{3}$ , by symmetry x coordinate of B = 1 + $(1 - \frac{1}{3}) = \frac{5}{3}$ | 1M+1A         |         |
| coordinates of B = $(\frac{5}{3}, \frac{22}{9})$                                                          | 1 A           |         |
| (c) Centre of circle lies on x = l                                                                        |               |         |
| let its coordinates be (1, a)                                                                             | 1A            |         |
| Radius = Distance to $T_1$                                                                                |               |         |
| $= \begin{vmatrix} -\frac{4}{3} - a + \frac{26}{9} \\ \sqrt{1 + (\frac{4}{3})^2} \end{vmatrix}$           |               |         |
| $= \left  \frac{14 - 9a}{15} \right $                                                                     | 1A ·          |         |
| Since the circles pass through C (1, 2)                                                                   |               |         |
| Radius = $\begin{vmatrix} 2 - a \end{vmatrix}$                                                            | 1M            |         |
| $\begin{vmatrix} 2 - \mathbf{a} \end{vmatrix} = \left  \frac{14 - 9\mathbf{a}}{15} \right $               | 1M            |         |
| $a = \frac{8}{3} \text{ or } \frac{11}{6}$                                                                |               |         |
| Coordinates of centres are $(1, \frac{8}{3})$ or $(1, \frac{11}{6})$                                      | 1 <u>A+1A</u> |         |
|                                                                                                           |               |         |

| Solution                                                                                                                                               | Marks          | Remarks                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. (a) Equation of family of circles $2x^2 + 2y^2 - 4x + 8y - 13 + k(x - y) = 0$ $2x^2 + 2y^2 + (k - 4)x + (8 - k)y - 13 = 0$                          | 1A             | $x^{2} + y^{2} - 2x + 4y$ $-\frac{13}{2} + k(x - y) = 0$ $(x - y) + k(2x^{2} + 2y^{2} - 4x + 8y - 13) = 0$                                         |
| $(\text{Radius})^2 = (\frac{k-4}{4})^2 + (\frac{8-k}{4})^2 + \frac{13}{2}$                                                                             | 1M<br>1M+1A    | Area A = $\pi r^2$ $= \frac{\pi}{2}(k^2 - 12k)$                                                                                                    |
| $= \frac{1}{8}(k - 6)^2 + 7$ For minimum area, $k = 6$                                                                                                 |                | $= \frac{\pi}{8} (k^2 - 12k + 92) \text{ 1M}$ $\frac{dA}{dA} = \frac{\pi}{4} (k - 6) \text{ 1M}$                                                   |
| Equation of $C_1$ is $2x^2 + 2y^2 + 2x + 2y - 13 = 0$                                                                                                  | 1A<br>——6      | $\frac{dA}{dk} = \frac{\pi}{4} (k - 6)  1M$ $\frac{dA}{dk} = 0  \text{at } k = 6$ $\frac{d^2A}{dk^2} = \frac{\pi}{4}$ $k = 6 \text{ is a min. } 1$ |
| Alt. Solution  The centre of $C_1$ lies on $y = x$ Centre of $C_1$ is $(\frac{4-k}{2}, \frac{k-8}{2})$ The circle is smallest if $C_1$ lies on $y = x$ | 1A             |                                                                                                                                                    |
| $\frac{4-k}{2} = \frac{k-8}{2}$ $k = 6$                                                                                                                | 2M<br>1A<br>1A |                                                                                                                                                    |

| Solution                                                                                                 | Marks      | Remarks             |
|----------------------------------------------------------------------------------------------------------|------------|---------------------|
| (b) (i) Let equation of $L_1$ be $y = mx + 2$                                                            | 1 A        |                     |
| centre of $C_1$ is $(-\frac{1}{2}, -\frac{1}{2})$ , radius $r = \sqrt{7}$                                | 1A         |                     |
| Distance from centre to $\dot{L_1}$                                                                      |            |                     |
| $d = \left  \frac{m(\frac{-1}{2}) - (\frac{-1}{2}) + 2}{\sqrt{1 + m^2}} \right $                         | 1 M        |                     |
| $= \frac{5 - m}{2\sqrt{1 + m^2}}$                                                                        |            |                     |
| Since $d^2 = r^2 - (\frac{\sqrt{2}}{2})^2$                                                               | 1M         |                     |
| $\left(\frac{5-m}{2\sqrt{1+m^2}}\right)^2 = \left(\sqrt{7}\right)^2 - \left(\frac{\sqrt{2}}{2}\right)^2$ |            |                     |
| $25 m^2 + 10 m + 1 = 0$                                                                                  |            |                     |
| $(5 m + 1)^2 = 0$                                                                                        |            | ·                   |
| $m = \frac{-1}{5}$                                                                                       |            |                     |
| Equation of $L_1$ is $y = \frac{1}{5}x + 2$                                                              | 1 A        | x + 5y - 10 = 0     |
| Alt. Solution                                                                                            |            |                     |
| Let equation of $L_1$ be $y = mx + 2$                                                                    | 1A         |                     |
| Subs. into C <sub>1</sub>                                                                                |            |                     |
| $2x^{2} + 2(mx + 2)^{2} + 2x + 2(mx + 2) - 13 = 0$                                                       | 1 M        |                     |
| $(2m^2 + 2)x^2 + (10m + 2)x - 1 = 0$                                                                     |            |                     |
| Let coordinates of intersecting points be $(x_1, y_1), (x_2, y_2)$                                       |            |                     |
| $x_1 + x_2 = \frac{-(5m + 1)}{1 + m^2}$ , $x_1 x_2 = \frac{-1}{2(1 + m^2)}$                              | 1 M        |                     |
| $AB^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$                                                                   |            |                     |
| $= (1 + m^2) (x_1 - x_2)^2$                                                                              | 1 A        |                     |
| $= (1 + m^2) [(x_1 + x_2)^2 - 4x_1x_2]$                                                                  |            |                     |
| $= \frac{(5m + 1)^2}{1 + m^2} + 2 = 2$                                                                   |            |                     |
| $m = \frac{-1}{5}$                                                                                       |            |                     |
| Equation of L <sub>1</sub> is $y = \frac{-1}{5}x + 2$                                                    | la P       | rovided by dse.life |
| TO TOP TOP CTO AND TO                                                                                    | μ <u>ι</u> | To vided by doc.    |

| Solution                                                                                 |                                                        | Marks         | Remarks |
|------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|---------|
| (ii) The locus is the perpo                                                              | endicular bisector of                                  | 2M            |         |
| Since AB is a chord of bisector of AB passes $C_1(-\frac{1}{2}, -\frac{1}{2})$           | f C <sub>l</sub> , the perpendicular through centre of | 2M            |         |
| Equation of locus                                                                        | is $y + \frac{1}{2} = 5(x + \frac{1}{2})$              |               | ·       |
|                                                                                          | y = 5x + 2                                             | 1 <u>A</u> 10 |         |
| Alt. Solution                                                                            |                                                        | ·             |         |
| $x^2 + y^2 + x + y - \frac{13}{2} + k(\frac{1}{5}x)$                                     | + y - 2) = 0                                           | 1M            |         |
| $x^2 + y^2 + (1 + \frac{k}{5})x + (1 + k)$                                               | $y - (2k + \frac{13}{2}) = 0$                          |               |         |
| coordinate of centre is (-(                                                              | $\frac{1+\frac{k}{5}}{2}$ , $-\frac{(k+1)}{2}$ )       | 1M+1A         |         |
| Let coordinates of centre b                                                              | e (x, y)                                               |               |         |
| $\begin{cases} x = -\frac{1}{2}(1 + \frac{k}{5}) \\ y = -\frac{1}{2}(k + 1) \end{cases}$ |                                                        | 1M            |         |
| Eliminating k,                                                                           |                                                        |               |         |
| y = 5x + 2                                                                               |                                                        | 1A            |         |
|                                                                                          |                                                        |               |         |

|     |     |        | Solution                                                                                                         | Marks      | Remarks                       |
|-----|-----|--------|------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|
| 12. | (a) | Volume | $= \pi \int_{-b}^{-(b-h)} x^2 dy$                                                                                | 1A+1A      | lA for n∫x²dy<br>lA for limit |
|     |     |        | $= \pi \int_{-b}^{-(b-h)} a^{2}(1-\frac{y^{2}}{b^{2}}) dy$                                                       | 1M         |                               |
|     |     |        | $= \pi a^{2} \left[ y - \frac{y^{3}}{3b^{2}} \right]^{-(b-h)}$                                                   | 1A         |                               |
|     |     |        | $= \pi a^{2}[-b + h + (\frac{b - h}{3b^{2}})^{3} + b - \frac{b^{3}}{3b^{2}}]$                                    |            |                               |
|     |     |        | $= \frac{\pi a^2}{3b^2} h^2 (3b - h)$                                                                            | 15         |                               |
|     | (b) | (i)    | Put $a = b = 2$                                                                                                  | 1M         |                               |
|     |     |        | h = 2k                                                                                                           | 1M         | ,                             |
|     |     |        | Vol. of water = $\frac{\pi}{3}(2k)^2[3(2) - 2k]$                                                                 |            |                               |
|     |     |        | $= \frac{8\pi}{3}k^2(3 - k)$                                                                                     | 1 <b>A</b> |                               |
|     |     | (ii)   | Depth of object immersed = $\frac{3}{4}k + \frac{1}{4}k$                                                         |            |                               |
|     |     |        | = k                                                                                                              | 1A         |                               |
|     |     |        | Put $a = 1$ , $b = h = k$                                                                                        | 1M         |                               |
|     |     |        | Vol. of object immersed = $\frac{\hat{k}^2}{3k^2}k^2(3k - k)$                                                    |            |                               |
|     |     |        | $=\frac{2}{3}\widehat{n}k$                                                                                       | 1          |                               |
|     |     |        | $\frac{8\pi}{3}k^{2}(3-k) + \frac{2}{3}\pi k = \frac{\pi}{3}(2k + \frac{k}{4})^{2}$ $[3(2) -(2k + \frac{k}{4})]$ | 1M+1A      | lA for RHS                    |
|     | •   |        | $8k^2(3 - k) + 2k = k^2(\frac{9}{4})^2(6 - \frac{9k}{4})$                                                        |            |                               |
|     |     |        | $128 + 1536k - 512k^2 = 81k(24 - 9k)$                                                                            |            |                               |
|     |     |        | $217k^2 - 408k + 128 = 0$                                                                                        | 2A         | ·                             |
|     |     |        | k = 0.40 or 1.48 (rejected)                                                                                      | 1A11       |                               |

|          | Solution                                                                                                                                                                             | Marks      | Remarks           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|
| 3. (a)   | By Sine Law                                                                                                                                                                          |            |                   |
|          | $\frac{AB}{\sin \theta} = \frac{AQ}{\sin \angle ABQ}$                                                                                                                                |            |                   |
|          | $\sin \angle ABQ = \frac{AQ}{AB} \sin \theta$                                                                                                                                        | 1A         |                   |
|          | $\sin \angle APQ = \frac{AQ}{PQ}$                                                                                                                                                    | 1 <b>A</b> |                   |
|          | $\angle APQ = \angle ABQ$                                                                                                                                                            | 1A         |                   |
|          | $\frac{AQ}{AB} \sin\theta = \frac{AQ}{PQ}$                                                                                                                                           |            |                   |
|          | $PQ = \frac{AB}{\sin \theta}$                                                                                                                                                        | 1A 4       |                   |
| (b)      | By Cosine Law,                                                                                                                                                                       |            |                   |
| •        | $AB^2 = AP^2 + BP^2 - 2AP \cdot BP\cos(\pi - \theta)$                                                                                                                                | 1M         |                   |
|          | $= AP^2 + BP^2 + 2AP \cdot BP\cos\theta$                                                                                                                                             | 1A         |                   |
|          | $\therefore PQ = \frac{\sqrt{AP^2 + BP^2 + 2AP \cdot BP\cos\theta}}{\sin\theta}$                                                                                                     | 13         |                   |
| (c)      | $\cot^2 \phi = \frac{PQ^2}{VP^2}$                                                                                                                                                    | 1 <b>A</b> |                   |
|          | $= \frac{AP^2 + BP^2 + 2AP \cdot BP\cos\theta}{VP^2\sin^2\theta}$                                                                                                                    | 1 <b>M</b> |                   |
|          | $= \frac{1}{\sin^2 \theta} \left[ \left( \frac{AP}{VP} \right)^2 + \left( \frac{BP}{VP} \right)^2 + 2 \left( \frac{AP}{VP} \right) \left( \frac{BP}{VP} \right) \cos \theta \right]$ | 1M         |                   |
|          | $= \frac{\cot^2 \alpha + \cot^2 \beta + 2\cot \alpha \cot \beta \cos \theta}{\sin^2 \theta}$                                                                                         | 1          |                   |
|          | (11) $\cot^2 \frac{\pi}{6} = \frac{1}{\sin^2 \theta} (\cot^2 \frac{\pi}{4} + \cot^2 \frac{\pi}{3})$                                                                                  |            |                   |
| •        | + 2 $\cot \frac{\pi}{4} \cot \frac{\pi}{3} \cos \theta$ )                                                                                                                            |            |                   |
|          | $3\sin^2\theta = \frac{4}{3} + \frac{2}{\sqrt{3}}\cos\theta$                                                                                                                         | 1 <b>A</b> |                   |
|          | $9\cos^2\theta + 2\sqrt{3}\cos\theta - 5 = 0$                                                                                                                                        | 1 <b>A</b> |                   |
|          | $\cos\theta = \frac{\sqrt{3}}{3}  \text{or}  \frac{-5\sqrt{3}}{9}$                                                                                                                   | 1 <b>A</b> |                   |
|          | $\theta = 0.955$ or 2.87 (rejected)                                                                                                                                                  | 1A         |                   |
|          | . 0 = 0.955                                                                                                                                                                          | <u>1A</u>  |                   |
| <b>.</b> | RESTRICTED 负率文/                                                                                                                                                                      | <u> </u>   | rovided by dse.li |