Rapport TDP6: Onduleur de tension monophasés

3. Onduleur de tension monophasé commande pleine onde.

Schéma onduleur de tension monophasé + sondes de mesures

1) Mise en oeuvre.

Courbe jaune: V1; Courbe bleue: V2; Courbe rose: V

 $\alpha = 50\%$

Nous mesurons une tension efficace de 57.67V pour V. La valeur théorique est alors $V=\sqrt{2\times\alpha}\times U=60V$.

La valeur pratique est donc cohérente avec la valeur théorique.

La courbe verte est le courant I_S et est l'intégrale de la tension de sortie.

Comparée à la taille du circuit de commande et à l'onduleur en lui-même, on souhaiterais que le filtrage réalisé par l'inductance soit bon, voir excellent. Cependant, on pourrait le considéré ce filtrage comme étant à peine passable.

4. Onduleur de tension monophasé à commandes décalées.

1) Mise en oeuvre.

On règle $\alpha = 33\%$. La tension V_S est maintenant en régime discontinue.

6. Onduleur de tension monophasé commande en MLI

3) Expérimentation.

• Tension Vs avant filtre:

Tension Vs après filtre:

• Vs (bleu) et Vs1 (Vert)

Vs (bleu) et Vs2 (vert)

On peut voir que les courbes de V_{S1} et V_{S2} sont déphasé de $\frac{\pi}{2}$.

$$V_{\text{Seff}} = \frac{35^2}{80} = 15.3V$$

- $P = 60 \times 0.6 \times 0.23 = 15W$
- La valeur maximale de l'ondulation de courant est relevée pour $\alpha = 50\%$. Sa valeur est 25mA.

Pour rappel: $V_S = U_e \times m \times \sin(2 \times \pi \times f \times t)$ avec m le Taux de Modulation, Ue la tension d'entrée et f la fréquence de modulation.

En orange, le courant i_S ; en vert la tension V_S et en rose le signal de commande des transistors. En rose, le produit du courant et de la tension, la puissance.

- En faisant varier la <u>Fréquence de Découpage</u> de l'ondulateur, on fait varier le lissage du signal de sortie: plus cette fréquence est petite, moins le signal sera fin (et donc précis).
- Modifier la Fréquence de Modulation aura un impact sur la fréquence du signal de sortie de l'onduleur.
- Le <u>Taux de Modulation</u> de l'onduleur détermine l'amplitude du signal de sortie.