Nesta Aula

- Apresentação das experiências LFEA II
- Regras e boas práticas
- Segurança
- Elementos de avaliação:
 - LogBook
 - Apresentações

54

Avaliação

- Laboratório LFEA I (3 Experiências 40%):
 - 1ª Exp Performance no laboratório / LogBook (20%)
 - 2^a e 3^a Exp Perf. Lab / LogBook (20%) + Trat. Dados (20%)
- Laboratório LFEA II (1 Experiência 60%):
 - Performance no laboratório / LogBook (30%)
 - Apresentações aos docentes (15 min) + Discussão (70%)

Comunicação em ciência

Na generalidade a comunicação em ciência tem uma estrutura bem definida (cronológica ou não):

- 1. **Introdução**: Resumo, introdução teórica, enquadramento, motivação, propósito/objectivos...
- 2. **Descrição dos métodos**: montagem experimental, parâmetros do estudo, técnicas matemáticas...
- 3. **Resultados e discussão**: analise dos dados, gráficos, comparação com modelos,...
- 4. **Conclusões**: comentários finais e globais, perspectivas futuras...

Lab. Logbook

O que é um Logbook

"Se usar este logbook (diário) daqui a um ano ou dois, existe suficiente informação para perceber o que foi feito, o porquê, e que resultados e conclusões obtive. Conseguirei reproduzir a experiência se necessitar?"

- Deve estar minimamente organizado e legível por terceiros (docente ou alunos)
- Deve ser completo e conter toda a informação relevante das sessões experimentais
- Deve conter os passos da análise de dados por forma a ser explicito o que foi feito: formulas de analise de erro; etc

60

Regras para os Logbook's

- O Logbook oficial deve ser um por grupo (embora aconselha-se redundância)
- Logbook do Lab (diário do lab) é um caderno sem folhas soltas que não sairá do laboratório
- A preparação das sessões devem vir em folhas soltas (1-2 pag. impressas/escritas só dum lado) para serem coladas no caderno
- O Logbook da Analise de Dados pode ser num ficheiro electrónico único (exportável para pdf) - não são permitidas folhas soltas ou vários ficheiros (ficheiros de dados referenciados) - seguindo as mesmas regras de registo de um normal Logbook
- Deste Logbook poderá ser entregue uma cópia todas as semanas com o seu progresso

O que deve conter o Logbook de analise de dados

Á semelhança de qualquer logbook deve conter toda a informação para perceber o que foi feito, o porquê, e que resultados e conclusões se obteve. Sendo assim deve ser estruturado por secções cada uma com informação completa:

- Dever começar por um **cabeçalho** (titulo, data, hora,...); **objectivo** (qual a questão que quero analisar); **intro/background** (as relações que quero verificar e dados experimentais relevantes usados para analise)
- O corpo principal deve conter a analise propriamente dita (analise de erros e suas formulas, tabelas dos dados, gráficos e ajustes numéricos...) com explicações curtas das opções tomadas na analise e pequenas avaliação dos resultados em comparação com teoria ou valores de referência.
- Por fim um sumário final/conclusão se haveria alguma questão a melhorar ou se os objectivos foram atingidos

62

Do's dos Logbooks

- Devem:
 - ter cabeçalho com identificação, data e hora
 - ter **objectivos** claros e concretos
 - fazer esquema da **montagem** realista (info do material usado)
 - ter todas as **regulações** e distâncias minimamente relevantes
 - conter dados completos: esboços das observações, tabelas ordenadas; incertezas; unidades; ficheiros de dados...
 - fazer alguns comentários aos dados tendo em conta os objectivos

Don'ts dos Logbooks

- Não devem:
 - ter objectivos genéricos
 - colocar esquemas dos textos de apoio
 - ter uma letra pouco legível
 - escrever num rascunho e passar a limpo
 - fazer entradas não cronológicas
 - saltar de assunto sem uma separação clara

64

Critérios para o LogBook

- Intro de preparação (só o essencial para a sessão experimental); Entradas datadas (cabeçalho); Identificação dos objectivos da sessão (ou de cada parte)
- Descrição do setup real (esboços do setup e das ligações mas não os esquemas dos guias); Dados do Setup e das medidas (distâncias importantes, níveis de regulação, escalas...)
- Verificação preliminar dos dados (esboços, pequenos comentários); Identificação de todos os dados definitivos (tabelas, ficheiros,...)
- Estruturado de forma clara (ser bem perceptível quando mudamos de assunto)
- Está completo? (incluir enganos, todos os dados, erros de leitura...); Está cuidado, limpo e legível?; Está claro? (cabeçalhos, figuras/esboços com info, unidades); É verdadeiro? (incluir o que é medido e não o que deveria ser)

Apresentações

O livro *Book of Lists* diz que falar para uma audiência é o **maior medo** dos humanos

A Morte é o 7°

Estrutura é fundamental

Uma apresentação deve **contar uma história** com principio, meio e fim

- Fazer um plano é fundamental
 - 1. Introdução
 - 2. Tópicos a desenvolver: Métodos; Resultados e Discussão
 - 3. Conclusões

68

Construir um bom slide

Os humanos são muito visuais logo é muito importante construir bons slides para transmitir as ideias

- role of thumb: um slide -> uma ideia
- · Ideia deve estar no titulo do slide
- Foco na ideia principal do slide
- Demasiado cheio tem muitas distrações
- Demasiado vazio n\u00e3o suporta o discurso

O que deve ter um slide

- Encontre um **bom** *template* e agarre-se a ele
- Usar sempre contraste muito elevado (fundo escuro e conteúdos claros ou vice-versa)
- Boa distribuição do espaço: alinhe o texto e os gráficos
- O texto tipo legenda e não texto corrido (frases e parágrafos completos)
- Apresente as referências quando as utiliza (citações, formulas e gráficos...)

70

O que deve ter um slide

- Utilise tamanho de letras bem visíveis (do fim da sala) mesmo nos gráficos
- Use **imagens** para suportar texto ou marcar uma ideia
- Use formas de enfatizar (cores, caixas, etc) para chamar a atenção
- Verifique que os videos funcionam (e as fotos têm contraste suficiente)
- Numere os slides

72

Alguns exemplos

INTRODUÇÃO FENOMENOLÓGICA

Ótica de Fourier

O princípio fundamental que rege a propagação de ondas eletromagnéticas, após serem difratadas, é o princípio de **Huygens**, e diz-nos que cada ponto da frente de onda comportase como uma fonte de ondas esféricas.

Deste modo, o campo elétrico E(x',y',z), no plano de Fourier, é dado pelo integral de Kirchhoff:

$$E(x',y',z) = \frac{1}{i\lambda} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E(x,y) \frac{e^{ikr}}{r} \cos(\hat{n},\hat{r}) \, dx \, dy$$

Por fim, realizando a aproximação **Fresnel/paraxial** $(|x|, |y| \ll z \ e|x'|, |x'| \ll z)$ e aproximação de **Fraunhofer** (ecrã encontra-se muito longe), a determinação do padrão de difração reduz-se à transformada de Fourier do campo logo a seguir à superfície difratada.

$$E(x', y', z) = A(\lambda z v_x, \lambda z v_y, z) F[E(x, y)](v_x, v_y)$$

Assim:

$$I(v_x,v_y)\approx \left|F[E(x,y)](v_x,v_y)\right|^2$$

2

74

Alguns exemplos

Variação ao longo de xx Aquisição

x (in)	t _{aq} (s)	N_A (cts)	N_B (cts)	$N_{C'}$ (cts)	R_A (cts/s)	R_B (cts/s)	R_C (cts/s)
-1.5	60.00 ± 0.01	79013 ± 281	29929 ± 173	11277 ± 106	1317 ± 5	499 ± 3	188 ± 2
-1	60.00 ± 0.01	63045 ± 251	34729 ± 186	12292 ± 111	1051 ± 4	579 ± 3	205 ± 2
-0.5	60.00 ± 0.01	54263 ± 233	40139 ± 200	$\textbf{13444} \pm \textbf{116}$	904 ± 4	669 ± 3	224 ± 2
0	20.00 ± 0.01	15504 ± 125	15183 ± 123	$\textbf{4647} \pm \textbf{68}$	775 ± 6	759 ± 6	232 ± 3
0.5	60.00 ± 0.01	40482 ± 201	52907 ± 230	13337 ± 115	675 ± 3	882 ± 4	222 ± 2
1	60.00 ± 0.01	34873 ± 187	62434 ± 250	12238 ± 111	581 ± 3	1041 ± 4	204 ± 2
1.5	60.00 ± 0.01	30597 ± 175	73639 ± 271	11433 ± 107	510 ± 3	1227 ± 5	191 ± 2

76

Alguns exemplos

Efeito AMR

- Observado num filme fino de NiFe com uma direção preferencial para a magnetização (de anisotropia);
- Variação da resistividade local consoante a direção relativa da corrente e magnetização;
- Resistência máxima para configuração paralela;
- Aplicações a sensores.

78

Alguns exemplos

Discurso e o tempo

É normal estar nervoso mas se **focar na mensagem** conseguirá estar "in the zone" e todo correrá bem

- Tom do discurso: não exaltado, não submisso, não monocórdico e não apressado
- Usar texto, imagens mas também gestos para comunicar
- Não falar sobre temas que domina mal
- Passar por tudo no slide (incluindo eixos de gráficos)
- Rule of thumb: 1 slide por minuto (se não tiver muita informação)
- Ensaiar e editar tempo -> poder de síntese (poder ter slides extra)

80

Fundamentos principais

- 1. Fazer uma apresentação agradável
- Não esquecer a estrutura: fio condutor (enfatizar e editar)
- Prender a atenção da audiência
- 4. NÃO ULTRAPASSAR O LIMITE DE TEMPO

Regras para apresentações

- A apresentação será de 15 min (+25min de discussão)
- Todos os elementos do grupo devem participar de forma homogénea na apresentação e sua discussão
- A ultrapassagem do tempo estipulado terá consequências na avaliação

82

Do's das apresentações

- Devem:
 - ter uma estrutura que ajude a contar uma história (principio, meio e fim)
 - transmitir uma só ideia (título) por slide
 - ter o espaço bem distribuído
 - ser o apoio visual ao discurso

Don'ts das apresentações

- Não devem:
 - conter refs em tabelas, figuras ou equações
 - conter demasiado texto
 - letras ou curvas pouco visíveis
 - conter bastante mais slides do que minutos
 - falar demasiado depressa ou sem suporte visual

84

Critérios Apresentação

- Apresentação: qualidade dos slides e sua estrutura;
 clareza da exposição; capacidade de síntese
- Qualidade dos Dados: qualidade e clareza dos dados apresentados; rigor científico/técnico
- Análise dos resultados: clareza dos objectivos; conteúdo da analise e tratamento dos dados e sua discussão; rigor científico; originalidade dos métodos
- **Discussão com os docentes:** Segurança; Capacidade de argumentação

Bom trabalho!