ANNO ACCADEMICO 2024/2025

Sistemi Operativi

Teoria

Dione's Notes

DIPARTIMENTO DI INFORMATICA

CAPITOLO 1	Introduzione	_Pagina 5
1.1	Prima Lezione	5
	Architetture Single/Multi-Core — 5 • Gestione delle Interruzioni — 6 • Memoria e Cache —	6
1.2	Multitasking e Time-sharing	6
1.3	Protezione della Memoria	6

Premessa

Licenza

Questi appunti sono rilasciati sotto licenza Creative Commons Attribuzione 4.0 Internazionale (per maggiori informazioni consultare il link: https://creativecommons.org/version4/).

Formato utilizzato

Box di "Concetto sbagliato":

Concetto sbagliato 0.1: Testo del concetto sbagliato

Testo contente il concetto giusto.

Box di "Corollario":

Corollario 0.0.1 Nome del corollario

Testo del corollario. Per corollario si intende una definizione minore, legata a un'altra definizione.

Box di "Definizione":

Definizione 0.0.1: Nome delle definizione

Testo della definizione.

Box di "Domanda":

Domanda 0.1

Testo della domanda. Le domande sono spesso utilizzate per far riflettere sulle definizioni o sui concetti.

Box di "Esempio":

Esempio 0.0.1 (Nome dell'esempio)

Testo dell'esempio. Gli esempi sono tratti dalle slides del corso.

Box di "Note":

Note:-

Testo della nota. Le note sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive.

Box di "Osservazioni":

Osservazioni 0.0.1

Testo delle osservazioni. Le osservazioni sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive. A differenza delle note le osservazioni sono più specifiche.

1 Introduzione

1.1 Prima Lezione

Un Sistema Operativo (SO) agisce come intermediario tra l'utente e l'hardware, fornendo gli strumenti per un uso corretto delle risorse della macchina (CPU, memoria, periferiche). Ha due obiettivi principali:

- Dal punto di vista dell'utente: rendere il sistema facile da usare.
- Dal punto di vista della macchina: ottimizzare l'uso delle risorse in modo sicuro ed efficiente.

1.1.1 Architetture Single/Multi-Core

Negli anni 2000 si è passati da processori single-core a multi-core, con CPU dotate di più core in grado di eseguire istruzioni di programmi diversi simultaneamente. La figura 1.1 illustra una tipica architettura dual-core.

Figure 1.1: Architettura di un processore dual-core

1.1.2 Gestione delle Interruzioni

Il SO è un sistema "event-driven", ossia viene attivato quando si verificano eventi come *interrupt* (hardware) o *eccezioni* (software). Ogni interruzione attiva una porzione specifica di codice del SO. La figura ?? rappresenta un esempio di gestione delle interruzioni.

1.1.3 Memoria e Cache

La gerarchia delle memorie include registri, cache, RAM e memoria secondaria. I dati più frequentemente utilizzati vengono spostati in memorie più veloci, come la cache. In figura 1.2 si può osservare la gerarchia delle memorie.

Figure 1.2: Gerarchia delle memorie

1.2 Multitasking e Time-sharing

Il SO gestisce più programmi contemporaneamente, assegnando la CPU a ciascuno quando disponibile. Il timesharing permette di distribuire il tempo della CPU tra più utenti, dando l'impressione di simultaneità.

1.3 Protezione della Memoria

Il SO protegge la memoria primaria da accessi non autorizzati attraverso il meccanismo di registri base e limite, come mostrato in figura ??.