CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 15 FEBBRAIO 2024

Svolgere i seguenti esercizi,

______ giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Le formule $A: \exists x(\forall y(\theta(x,y))) \in B: \forall y(\exists x(\theta(x,y)))$ sono (per un arbitrario predicato binario θ) tra loro equivalenti?

Esercizio 2. Definire le nozioni di applicazione, applicazione iniettiva, applicazione suriettiva da un insieme a ad un insieme b. Assumendo |a| = 25 e |b| = 32, indicare quante sono le applicazioni da a a b, quante tra queste sono iniettive e quante suriettive. (Per cortesia, non cercare di calcolare questi numeri.)

Esercizio 3. Sia ρ la relazione binaria definita in \mathbb{Z} da $\forall a, b \in \mathbb{Z} (a \ \rho \ b \iff a+b\equiv_4 1)$. Stabilire se ρ è la relazione di adiacenza di un grafo (semplice) su \mathbb{Z} e, nel caso lo sia, quante componenti connesse ha questo grafo e se esso è una foresta.

Esercizio 4. Siano \oplus e * le operazioni binarie definite in \mathbb{Z}_{100} da: $\forall a, b \in \mathbb{Z}_{100}$,

$$a \oplus b = a + b - \overline{25}$$
 e $a * b = \overline{7}ab + \overline{25}(a + b)$.

- (i) Dare la definizione di anello e, dando per noto che * è associativa, verificare che ($\mathbb{Z}_{100}, \oplus, *$) è un anello commutativo.
- (ii) Determinare tutti gli $a \in \mathbb{Z}_{100}$ tali che $a * \bar{4} = \bar{4}$; usando questa informazione decidere poi se $(\mathbb{Z}_{100}, \oplus, *)$ è un anello unitario specificando, nel caso, la sua unità.
- (iii) Di ciascuno degli elementi $\bar{0}$, $\bar{1}$, $\bar{2}$ di \mathbb{Z}_{100} decidere se in questo anello è o non è invertibile, idempotente, cancellabile, un divisore dello zero.

Esercizio 5.

(i) Siano α e β le relazioni binarie definite in $\mathcal{P}(\mathbb{Z})$ da: $\forall x, y \in \mathcal{P}(\mathbb{Z})$

$$(x \ \alpha \ y \iff x \cup y \in \mathcal{P}(\mathbb{N})) \qquad \qquad \land \qquad (x \ \beta \ y \iff x \ \triangle \ y \in \mathcal{P}(\mathbb{N})).$$

Decidere quali tra α e β sono di equivalenza e, rispetto a quelle che lo sono, descrivere esplicitamente la classe di equivalenza di $\{2,15,87\}$, stabilendo anche se questa classe è finita o infinita.

(ii) Siano γ e δ le relazioni binarie definite in \mathbb{Q} da: $\forall x, y \in \mathbb{Q}$

$$(x \gamma y \iff x - y \in \mathbb{N})$$
 \wedge $(x \delta y \iff x + y \in \mathbb{N}).$

Decidere quali tra γ e δ sono di relazioni d'ordine e, rispetto a quelle che lo sono, determinare l'insieme dei minoranti di $\{0,1/2\}$, gli eventuali elementi massimali, minimali, minimo, massimo dell'insieme ordinato descritto da questa relazione in $\mathbb Q$ ed infine se questo insieme ordinato è un reticolo.

Esercizio 6. Vero o falso (e perché)?

- (i) Per ogni parte finita T di \mathbb{Q} esiste un polinomio $f \in \mathbb{Q}[x]$ tale che gli elementi di T siano tutte e sole le radici di f.
- (ii) Detto F l'insieme delle parti finite di \mathbb{Q} , l'applicazione $h: \mathbb{Q}[x] \setminus \{0\} \to F$ che ad ogni $f \in \mathbb{Q}[x] \setminus \{0\}$ associa l'insieme delle radici di f è suriettiva.
- (iii) L'applicazione h definita al punto precedente è iniettiva.
- (iv) Detto ancora F l'insieme delle parti finite di \mathbb{Q} , è ben definita l'applicazione $k \colon \mathbb{Q}[x] \to F$ che ad ogni $f \in \mathbb{Q}[x]$ associa l'insieme delle radici di f.
- (v) Ogni polinomio di grado dispari in $\mathbb{R}[x]$ ha radici in \mathbb{R} .
- (vi) Ogni polinomio in $\mathbb{R}[x]$ che sia privo di radici in \mathbb{R} è irriducibile in $\mathbb{R}[x]$.
- (vii) Ogni polinomio irriducibile in $\mathbb{R}[x]$ è privo di radici in \mathbb{R} .

Infine:

- (viii) Quali sono gli elementi di $A := \{n \in \mathbb{N} \mid \text{esiste un polinomio irriducibile di grado } n \text{ in } \mathbb{R}[x]\}$ e quali quelli di $B := \{n \in \mathbb{N} \mid \text{esiste un polinomio irriducibile di grado } n \text{ in } \mathbb{Q}[x]\}$?
- (ix) Per definizione, cosa è un polinomio irriducibile?

FEB-24 ES 1

Esercizio 1. Le formule $A: \exists x(\forall y(\theta(x,y))) \in B: \forall y(\exists x(\theta(x,y)))$ sono (per un arbitrario predicato binario θ) tra loro equivalenti?

Dinario θ) tra loro equivalenti?

A olice che existe vina × che per ogni y percii cole θ

B olice che per ogni y existe alnero una × per exi vale θ

FEB-24 ES2

Esercizio 2. Definire le nozioni di applicazione, applicazione iniettiva, applicazione suriettiva da un insieme a ad un insieme b. Assumendo |a| = 25 e |b| = 32, indicare quante sono le applicazioni da a a b, quante tra queste sono iniettive e quante suriettive. (Per cortesia, non cercare di calcolare questi numeri.)

$$\mathsf{MAP}(a,b) = \frac{|b|!}{(|b|-|a|)!}$$

SURCIETIVE:

FEB-24 ES 3

Esercizio 3. Sia ρ la relazione binaria definita in \mathbb{Z} da $\forall a,b \in \mathbb{Z} (a \ \rho \ b \iff a+b\equiv_4 1)$. Stabilire se ρ è la relazione di adiacenza di un grafo (semplice) su \mathbb{Z} e, nel caso lo sia, quante componenti connesse ha questo grafo e se esso è una foresta.

GRAFO? SI

SIGNETAICA: SI

$$a pb = bpa$$
 s. pachi + i commutativo

Auto aifzessiva: SI

 $a + a = 1 = 2a = 41$
 $a + a = 41 = 2a = 41$

FEB-24

Esercizio 5.

(i) Siano $\alpha \in \beta$ le relazioni binarie definite in $\mathcal{P}(\mathbb{Z})$ da: $\forall x, y \in \mathcal{P}(\mathbb{Z})$

 $(x \beta y \iff x \triangle y \in \mathcal{P}(\mathbb{N})).$ $(x \alpha y \iff x \cup y \in \mathcal{P}(\mathbb{N}))$ Λ

Decidere quali tra α e β sono di equivalenza e, rispetto a quelle che lo sono, descrivere esplicitamente la classe di equivalenza di {2,15,87}, stabilendo anche se questa classe è finita o infinita.

(ii) Siano γ e δ le relazioni binarie definite in \mathbb{Q} da: $\forall x, y \in \mathbb{Q}$

$$(x \gamma y \iff x - y \in \mathbb{N})$$
 \wedge $(x \delta y \iff x + y \in \mathbb{N}).$

Decidere quali tra γ e δ sono di relazioni d'ordine e, rispetto a quelle che lo sono, determinare l'insieme dei minoranti di $\{0, 1/2\}$, gli eventuali elementi massimali, minimali, minimo, massimo dell'insieme ordinato descritto da questa relazione in Q ed infine se questo insieme ordinato è un reticolo.

REL. EQUIVALENZA: SOLOB

SIMMETRICA: ENTRANBE d: x a y = y a x, Veno, wome è comutativa

ii	REL. DIORDINE Y & DI ORDINE LARGO
	ANT SIMMETRIA SOLD 8 X + y EN y + x EN
	& FACO + S STATE
	r: VENO - non à communation x-y EN y-x EN
	TRANSITIVITÀ SOCO 8
	$Y: \forall x, y, z (x y \land y z => x z)$
	PIELESSIVITA SOLO & VERD PERCHI - à TRONS. TIPO VERD XXX => X - X \in IN O \in IN
	r: Veno x x x => x - x \in N O \in N
	VENO X X X >> X - X E IN O E IN
	MINORANTI T= {0, 1/2} NESSUNO
	m 6 (D
	Va ∈ T (a × m ← a - m ∈ IN), musica elemento.
	MASSIMALE NON C'E
	Mc O.
	VacQ ((asMVMxa)=>asM)
	$\left(\left(\alpha-M\in\mathbb{N}V\ M-\alpha\in\mathbb{N}\right)\Rightarrow\alpha-M\in\mathbb{N}\right)$
	MINIMAZE NON C'E
	me Ol
	$\forall \alpha \in \mathbb{Q} \left(\left(\alpha \times m \vee m \times \alpha \right) \Rightarrow \alpha \times m \right)$
	$\left(\left(\circ - m \in \mathbb{N} \vee m - \circ \in \mathbb{N} \right) \Rightarrow m - \circ \in \mathbb{N} \right)$
	MININO U MASSIMO NON CI SONO
	711 101710 0 3530 551 50 70 55 5
	Rencozo NO
	Nonostante sa ontisimetra, transitiva e riflusiva,
	non ha sup ed inf