

Introduction à l'optimisation

MU4MEN01: CALCUL SCIENTIFIQUE - 3 ECTS

RESPONSABLE D'UE ET COURS : FLORENCE OSSART

Présentation du projet

DIMENSIONNEMENT D'UN STOCKAGE EMBARQUÉ DANS UN TRAMWAY — POSITIONNEMENT D'UNE SOUS-STATION D'ALIMENTATION

Système étudié

→ Principe de la traction ferroviaire électrique

Tramway alimenté en 750 V DC

Calcul de la puissance du train au cours d'un trajet

Position

Vitesse

Accélération

Principe fondamentale de la dynamique

Forces appliquées au train

Puissance

Circuit équivalent pour un train sur une ligne avec 2 SST

Tension et courant au cours d'un trajet

→ Pour une SST réversible : renvoi d'énergie vers le réseau possible

Tension U_{train} variable Norme : $U_{train} \ge 500 \text{ V}$

Tension et courant au cours d'un trajet

→ Pour une SST irréversible : renvoi d'énergie vers le réseau impossible

Tension U_{train} variable Norme : $U_{train} \ge 500 \text{ V}$

Ajout d'un stockage embarqué (batterie)

Quand $P_{train}(t) \ge 0$: $P_{train}(t) = P_{LAC}(t) + P_{batterie}(t)$

alimentation par LAC + batterie

Quand $P_{train}(t) \leq 0$: $P_{train}(t) \leq 0$

$$P_{train}(t) = P_{batterie}(t) - P_{rh\acute{e}ostatt}(t)$$

freinage rhéostatique + charge batterie

Besoin d'un algorithme de gestion de la batterie – Ici, gestion à base de règles

Notre problème : dimensionner le système d'alimentation

→ Cahier des charges :

- Alimenter les trains pour qu'ils réalisent leur mission (profil x(t) donné)
- Respecter les normes ferroviaires, en particulier $U_{train} \geq 500 \text{ V}$

→ Choix techniques :

- Capacité de la batterie embarquée
- Paramètres de la loi de gestion de la batterie (typiquement des seuils de décision)

→ Objectifs d'optimisation :

- Minimiser la capacité de la batterie
- Minimiser la chute de tension $V_{sst} V_{train}$, qui caractérise la robustesse de l'alimentation

Optimisation bi-objectifs

- → Situation courante en conception, avec des objectifs contradictoires
- → Objectif 1 : minimiser le coût de la solution technique choisie
- → Objectif 2 : maximiser la performance de la solution technique choisie (ou minimiser ses défauts)
- → En général, pas de surprise, plus c'est performant, plus c'est cher...
- → Le problème est de déterminer les meilleurs compromis coût/performance

Représentation dans l'espace des objectifs

L'ensemble des solutions non dominées constitue l'ensemble des solutions Paréto-optimales.

Ce sont les meilleurs compromis possibles entre l'objectif 1 et l'objectif 2.

L'optimisation bi-objectif a pour but de déterminer l'ensemble des solutions non-dominées.

Parmi les solutions non-dominées, on recherche celles qui minimisent le mieux les 2 objectifs simultanément.

Choix du meilleur compromis parmi les compromis?

Choix du meilleur compromis parmi les compromis ?

Résolution par critère agrégé

Résolution par algorithme génétique

Principe de NSGA2 (non sorted genetic algorithm)

- → Population initiale de N solutions choisies aléatoirement
- → Chaque individu est caractérisé par ses gènes, i.e ses variables de décision (en gros, 1 variable de décision = 1 gène chromosome = ensemble des gènes)
- → A chaque génération (i.e chaque itération) :
 - Classement des individus (non dominés, puis non-dominés de rang 1, ...)
 - Sélection des 50% meilleurs individus
 - Génération de nouveaux individus par croisement et mutation des individus sélectionnés
- → Arrêt après un certain nombre de générations, fixé a priori

Retour à notre problème...

→ Cahier des charges :

- Alimenter les trains pour qu'ils réalisent leur mission (profil x(t) donné)
- $^{\circ}$ Respecter les normes ferroviaires, en particulier $U_{train} \geq 500 \,
 m V$

→ Choix techniques :

- Capacité de la batterie embarquée
- Paramètres de la loi de gestion de la batterie (typiquement des seuils de décision)

→ Objectifs d'optimisation :

- Minimiser la capacité de la batterie
- Minimiser la chute de tension $V_{sst}-V_{train}$, qui caractérise la robustesse de l'alimentation

Buts du projet

- → Dimensionner une batterie embarquée dans un tramway et optimiser sa commande. Dans un 2ème temps : placer une 3ème SST
- → Optimisation bi-objectifs : capacité de la batterie vs chute de tension dans la ligne
- → Mise en œuvre d'un algorithme génétique

Etapes du projet

- → Comprendre et implanter le modèle de système => AVANT LE TP4
- → Analyser le problème d'optimisation bi-objectif par la méthode de Monte-Carlo (exploration bête et méchante de l'espace de décision, par tirage aléatoire d'un grand nombre de points) => TP4
- → Recherche bibliographique sur l'optimisation bi-objectifs et NSGA2
- → Mettre en œuvre l'algorithme NSGA2
- → Etudier le positionnement d'une 3ème sous-station pour renforcer la ligne

Modalités

- → Travail en groupe de 3 au sein du même parcours
- → Groupes à constituer par vous pour le 8 novembre
- → Sujet pdf en ligne, sera régulièrement complété
- → Rendu intermédiaire pour le TP4 : modèle du système (précisé dans sujet)
- → Rendu final le 23 décembre 2024.