Práctica 3: Estadística de trenes de spikes

Evelyn G. Coronel Redes Neuronales - Instituto Balseiro

(24 de marzo de 2020)

Soluciones a los ejercicios de la práctica 3 de la materia de Redes Neuronales. En esta práctica se estudia la estadística de los resultados obtenidos para un experimento. En mismo se excita una neurona con un estimulo oscilatorio.

ESTIMULO

Fig. 1: La intensidad del estimulo en función de tiempo. La misma representa un sonido que estimula a un insecto.

La varianza del estimulo es de $\sigma_s^2=31.649\,\mathrm{dB^2}$

DISTRIBUCIÓN DE INTERVALOS $P(\tau)$

Fig. 2: Distribución de probabilidad de los valores del ISI

La distribución tiene una media de $\langle ISI\rangle=84.68\,\rm ms$ y un varianza de $\sigma_{ISI}^2=3111.96\,\rm ms^2.$ El factor CV=0.659

DISTRIBUCIÓN DE NÚMERO DE SPIKES P(N)

Fig. 3: Distribución de probabilidad de la cantidad de spikes en cada realización del experimento.

La distribución tiene una media de $\langle N \rangle = 117.01$ y un varianza de $\sigma_N^2 = 183.195.$ El factor de Fano F=1.567

HISTOGRAMA DE LA TASA DE DISPARO r(t)

Fig. 4: Tasa de disparo subyacente

FILTRO ASOCIADO A LA NEURONAS $D(\tau)$

Considerando que la señal es ruido blanco, es decir que $Q_{s,s}(\tau,\tau') = \sum_{spikes} \sigma_s^2 \delta(\tau - \tau')$, se obtiene que el filtro asociado es

$$D(\tau) = \frac{Q_{r,s}(-\tau)}{\sigma^2},\tag{1}$$

$$D(\tau) = \frac{Q_{r,s}(-\tau)}{\sigma^2}, \qquad (1)$$

$$\operatorname{con} Q_{r,s}(-\tau) = \sum_{spikes} S(t_{spike} - \tau) \qquad (2)$$