Chapitre 5- Vecteurs, Droites et Plans de l'espace

Terminale Spé Maths

1 Caractérisation vectorielle

Les définitions et les calculs sur les vecteurs du plan se généralisent à l'espace. Les règles de calcul, y compris la relation de Chasles, sont les mêmes qu'avec les vecteurs du plan.

Propriété 1.1. 1. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** si et seulement si $\vec{v} = k\vec{u}$ où k est un réel.

Le vecteur nul est colinéaire à tous les vecteurs.

- 2. Les points A,B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- 3. Les droites (AB) et (CD) sont **parallèles** si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont **colinéaires**.

1.1 Caractérisation vectorielle d'une droite

A,B sont deux points de l'espace. La droite (AB) est l'ensemble des points M définis par :

$$\overrightarrow{AM} = x\overrightarrow{AB}, x$$
 étant un réel quelconque

Remarque : tout vecteur \overrightarrow{u} colinéaire au vecteur \overrightarrow{AB} est un vecteur directeur de la droite (AB).

1.2 Caractérisation vectorielle d'un plan

A,B et C sont 3 points non alignés. Le plan (ABC) est l'ensemble des points M définis par :

 $\overrightarrow{Demonstration}$. Puisque \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère du plan et donc si M est dans ce plan, il existe x et y tels que : $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$.

Réciproquement, soit x et y deux réels et M le point défini par : $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$. Comme $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère du plan (ABC), il existe dans ce plan un point N tel que :

 $\overrightarrow{AN} = x\overrightarrow{AB} + y\overrightarrow{AC}$ d'où $\overrightarrow{AM} = \overrightarrow{AN}$ et M = N, M est bien dans le plan (ABC).

On dit que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont des vecteurs directeurs du plan (ABC)

CQFD

Conséquences

- 1. Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires.
- 2. Deux plans ayant même couple de vecteurs directeurs sont parallèles.
- 3. Une droite D et un plan P sont parallèles si, et seulement si, un vecteur directeur de D est un vecteur du plan P.

1.3 Définition de vecteurs coplanaires

On dit que trois vecteurs \vec{u}, \vec{v} et \vec{w} de l'espace sont **coplanaires** s'il existe 4 points A, B, C et D appartenant à un même plan et tels que : $\vec{u} = \overrightarrow{AB}, \vec{v} = \overrightarrow{AC}$ et $\vec{w} = \overrightarrow{AD}$.

Soit \vec{u}, \vec{v} et \vec{w} trois vecteurs de l'espace tels que \vec{u} et \vec{v} ne sont pas colinéaires.

Les vecteurs \vec{u}, \vec{v} et \vec{w} sont **coplanaires** si et seulement si, il existe deux réels x et y tels que :

Démonstration. Soit A,B,C et D des points tels que : $\vec{u} = \overrightarrow{AB}, \vec{v} = \overrightarrow{AC}$ et $\vec{w} = \overrightarrow{AD}$. \vec{u} et \vec{v} étant non colinéaires, les points A,B et C définissent un plan dont $(A;\vec{u},\vec{v})$ est un repère.

 \vec{u}, \vec{v} et \vec{w} sont coplanaires équivaut à D appartient au plan (ABC). D'après la caractérisation vectorielle d'un plan, il existe deux réels x et y tels que : $\overrightarrow{AD} = x\vec{u} + y\vec{v} = \vec{w}$ CQFD

Repère dans l'espace

Choisir un repère de l'espace, c'est donner un point O et un triplet $(\vec{i}, \vec{j}, \vec{k})$ de vecteurs non coplanaires. On note $(O; \vec{i}, \vec{j}, \vec{k})$ le repère.

Définition 1.1.

Soit $\vec{u}, \vec{v}, \vec{w}$ trois vecteurs de l'espace. On dit que les vecteurs sont linéairement indépendants lorsqu'ils ne sont pas coplanaires. C'est à dire qu'il existe 3 réels a,b,c tels que si $a.\vec{u}+b.\vec{v}+c\vec{w}=0 \Rightarrow a=b=c=0$. Dans ce cas, $(\vec{u}, \vec{v}, \vec{w})$ forment une base de l'espace.

Coordonnées

 $(O; \vec{i}, \vec{j}, \vec{k})$ est un repère de l'espace. Pour tout point M il existe un unique triplet (x; y; z) tel que :

 $\vec{i}, \vec{j}, \vec{k}$ étant non coplanaires, le plan $(O; \vec{i}, \vec{j})$ et la droite Δ passant par M et de Démonstration. vecteur directeur \vec{k} sont sécants. Soit M' leur point d'intersection.

Comme M' est un point du plan $(O; \vec{i}, \vec{j})$ il existe deux nombres x et y tels que : $\overrightarrow{OM'} = x\vec{i} + y\vec{j}$. Les vecteurs $\overrightarrow{M'M}$ et \overrightarrow{k} sont colinéaires, il existe donc un nombre z tel que $\overrightarrow{M'M} = z\overrightarrow{k}$. D'après la relation de Chasles : $\overrightarrow{OM} = \overrightarrow{OM'} + \overrightarrow{M'M}$ donc : $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$

On admet l'unicité de cette écriture.

(x;y;z) sont les coordonnées de M dans le repère $(O;\vec{i},\vec{j},\vec{k})$.

x est l'abscisse, y est l'ordonnée et z la cote de M

CQFD

Définition 1.2.

 $(O; \vec{i}, \vec{j}, \vec{k})$ est un repère. Au vecteur \vec{u} on associe le point M tel que $\overrightarrow{OM} = \vec{u}$. Par définition, les coordonnées de \vec{u} sont les coordonnées (x; y; z) de M.

Donc : \vec{u} s'écrit de manière unique : $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$

Définition 1.3.

Soit $(O; \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace et I, J et K les points tels que : $\overrightarrow{OI} = \vec{i}, \overrightarrow{OJ} = \vec{j}, \overrightarrow{OK} = \vec{k}$. Ce repère est **orthonormé** lorsque les droites (OI),(OJ) et (OK) sont deux à deux perpendiculaires et OI = OJ = OK = 1

2 Droites et plans de l'espace

Définition 2.1.

Dans l'espace, deux droites peuvent être coplanaires ou non. Si elles sont coplanaires, elle peuvent être sécantes ou parallèles

Définition 2.2. • Position relative de deux plans

• Position relative d'une droite et d'un plan

Théorème 2.1.

Parallélisme dans l'espace :

- Une droite d est parallèle au plan \mathcal{P} si et seulement si, il existe une droite Δ du plan \mathcal{P} parallèle à d.
- Un plan \mathcal{P}' est parallèle à un plan \mathcal{P} si et seulement si il existe deux droites sécantes de \mathcal{P} parallèles à deux droites sécantes de \mathcal{P}'

• Soient \mathcal{P} et \mathcal{P}' deux plans strictement parallèles. Tout plan coupant \mathcal{P} coupe \mathcal{P}' et les deux droites d'intersection sont parallèles.

Théorème 2.2.

Théorème du toit Soient deux droites d et d' parallèles. Soie un plan \mathcal{P} contenant d sécant à un autre plan \mathcal{P}' contenant d'. Alors la droite Δ intersection de \mathcal{P} et \mathcal{P}' est parallèle à d et d'.

EXERCICE 1

vecteurs coplanaires

EXERCICE 2

Combinaisons linéaires de vecteurs- Y.MONKA Exprimer une décomposition de vecteurs

Propriété 2.1.

Dans un repère quelconque $(O; \vec{i}, \vec{j}, \vec{k})$, \vec{u} et \vec{v} ont pour coordonnées (x; y; z) et (x'; y'; z') A et B ont pour coordonnées $(x_A; y_A; z_A)$ et $(x_B; y_B; z_B)$

1. Le vecteur
$$\vec{u} + \vec{v}$$
 a pour coordonnées : $\begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$

2. Pour tout réel
$$k$$
, $k\vec{u}$ a pour coordonnées $(kx; ky; kz)$ $\begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$

3. Le vecteur
$$\overrightarrow{AB}$$
 a pour coordonnées :
$$\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

4. Le milieu
$$I$$
 du segment $[AB]$ a pour coordonnées : $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$

5. Si, de plus, le repère est
$${\bf orthonorm\acute{e}}$$
 alors :

$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}$$
 et $AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$

Représentation paramétrique d'une droite

Dans un repère $(O; \vec{i}, \vec{j}, \vec{k})$, la droite **D** passant par $A(x_A; y_A; z_A)$ et dirigée par le vecteur $\vec{u}(a; b; c)$ est l'ensemble des points M(x; y; z) tels que : $\overrightarrow{AM} = t\vec{u}$, avec $t \in \mathbb{R}$. On obtient donc le système :

(S)
$$\begin{cases} x = x_A + at \\ y = y_A + bt, t \in \mathbb{R} \\ z = z_A + ct \end{cases}$$

6

(S) est une représentation paramétrique de la droite $\ {f D}$