Master Thesis

Recommender System for Galaxy Tools and Workflows

(Find similar tools and predict next tools in workflows)

Anup Kumar

Examiners: Prof. Dr. Rolf Backofen

Prof. Dr. Wolfgang Hess

Adviser: Dr. Björn Grüning

University of Freiburg
Faculty of Engineering
Department of Computer Science
Chair for Bioinformatics

July, 2018

Thesis period

10.01.2018 - 09.07.2018

Examiners

Prof. Dr. Rolf Backofen and Prof. Dr. Wolfgang Hess

Adviser

Dr. Björn Grüning

Declaration

Place, Date

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination

I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Signature

Acknowledgment

I express my gratitude to all the people who encouraged and supported me to accomplish this work. I am grateful to my mentor Dr. Björn Grüning who entrusted me with the task of building a recommendation system for Galaxy. He facilitated this work by providing me with all the indispensable means. Being specific, his pragmatic suggestions concerning the Galaxy tools and workflows helped me discern them better and improve the performance. His advice to create a visualizer for showing the similar tools worked wonders as it enabled me to find and rectify a few bugs which were tough to establish. For the next task, creating a separate visualizer for looking through the next predicted tools was conducive in all merits. I appreciate and thank Eric Rasche who extracted the workflows for me from the Galaxy Freiburg server. I offer thanks to Dr. Mehmet Tekman and Joachim Wolff for their expert feedback, insights and general advice. At length, I wish to thank all the other members of Freiburg Galaxy team for their continuous support and help.

Abstract

The study explores two concepts to devise a recommendation system for Galaxy. One idea is to find similar Galaxy tools for each tool and another is to predict a set of possible next tools in Galaxy workflows.

To find similarities among tools, we need to extract information about each tool from its attributes like name, description, input and output file types and help text. We take into account these attributes one by one and compute similarity matrices. We compute three similarity matrices, one each for input and output file, name and description and help text attributes. Each row in a similarity matrix holds similarity scores of one tool against all the other tools. These similarity scores depend on the similarity measures (jaccard index and cosine similarity) used to compute the score between a pair of tools. To combine these matrices, one simple solution is to compute an average. But, assigning equal importance weight to each matrix might be sub-optimal. To find an optimal combination, we use optimization to learn importance weights for the corresponding rows for each tool in the similarity matrices. To define a loss function for optimization, we use a true similarity value based on the similarity measures. The similarity scores are positive real numbers between 0 and 1. We take an array of 1.0 as the true value.

Next task analyzes workflows to predict a set of next tools at each stage of creating workflows. While creating workflows, it would be convenient to leaf through a set of next possible tools as a guide. It can assist the less experienced (Galaxy) users in creating workflows when they are unsure about which tools can further be connected. In addition, it can curtail the time taken in creating a workflow. To achieve that, we need to learn the connections among tools in order to be able to predict the next possible ones based on the previously connected tools. To preprocess the workflows to make them usable by downstream machine learning algorithms, we compute all the paths bridging the starting and end tools in all workflows. We follow a classification approach to predict the next tools and use LSTM (long short-term memory), a variant of recurrent neural networks. It performs well for learning long range, sequential and time-dependent data (tools connections) [1, 2]. We report the accuracy as precision.

Zusammenfassung

Contents

1	Intr	oductio	on	1			
	1.1	Galax	y	1			
	1.2	Galax	y tools	2			
	1.3	Motiv	ation	3			
2	Approach						
	2.1	Extra	ct data	5			
		2.1.1	Select tools attributes	5			
		2.1.2	Clean data	6			
	2.2	Docur	ment embeddings	9			
		2.2.1	Latent semantic indexing	9			
		2.2.2	Paragraph vectors	12			
	2.3	Simila	arity measures	15			
		2.3.1	Cosine similarity	15			
	2.4	Optim	nization	16			
3	Experiments 19						
	3.1	Latent	t Semantic Analysis	19			
		3.1.1	Frobenius Norm	19			
		3.1.2	One and two sources instead of three	19			
	3.2	Parag	raph Vector	19			
		3.2.1	Low dimensions	19			
		3.2.2	Dbow and dm	19			
		3.2.3	Gradient Descent and learning rates	19			
4	Res	ults and	d Analysis	20			
	4.1	Using	LSI	20			
		4.1.1	Screenshots	20			
		412	gradient drop and loss drop	20			

	4.2	Using doc2vec	20
		4.2.1 Screenshots	20
		4.2.2 gradient drop and loss drop	20
5	Con	clusion	21
	5.1	Data	21
6	Futi	ure Work	22
	6.1	Correlation	22
	6.2	Noise data removal	22
	6.3	Get true value	22
Bi	bliog	raphy	22

1 Introduction

1.1 Galaxy

Galaxy ¹ is an open-source biological data processing and research platform. It supports numerous types of extensively used biological data formats like FASTA, FASTAQ, GFF, PDB and many more. To process these datasets, Galaxy offers tools and workflows which either transform these datasets from one type to another or manipulate them. A simple example of data processing is to merge two compatible datasets to make one. Another example can be to reverse complement a sequence of nucleotides ².

Figure 1: Basic flow of dataset transformation: it shows the basic flow of dataset transformation using Galaxy tools and workflows

A tool is a data-transforming entity which allows one or more types of datasets, transforms these datasets and produces output datasets. The tools are classified into multiple categories based on their functions. For example, the tools which manipulate text like replacing texts and selecting first lines of a dataset are grouped together under "Text Manipulation" group.

These tools form the building blocks of workflows. The workflows are data processing pipelines where a set of tools are joined one after another. The connected tools need to be compatible with each other which means the output types of one tool should be present in the input types of the next tool. A workflow can have one or more starting and end tools.

¹https://usegalaxy.eu/

²https://usegalaxy.eu/?tool_id=MAF_Reverse_Complement_1&version=1.0.1&__identifer= zmk9dx9ivbk

1.2 Galaxy tools

A tool entails a specific function. It consumes datasets, brings about some transformations and produces output datasets which can be fed to other tools. A tool has multiple attributes which include its input and output file types, name, description, help text and so on. They carry more information about a tool. When we look at the collective information about all these attributes for multiple tools, we find that some tools have similar functionalities based on their similarities in their corresponding attributes. For example, there are tools which share similarities in their respective functions and the input and output dataset types they are glued to. For example, a tool "hicexplorer hicpca" ³ has an output type named "bigwig". Hence, if there is a tool or a set of tools which also has "bigwig" as their input and/or output type, we consider there could be some similarity between "hicexplorer hicpca" and the other tools as they do transformations on similar types of datasets. In addition, we can find similar functions of tools by analyzing their "name" and "description" attributes. Let's take an example of two tools (Figure 2):

Figure 2: Venn diagram: it shows common features extracted from multiple attributes for the two tools

In figure 2, we take two tools - "Linear Regression" and "Logistic Regression" and collect their respective information from their input, output file types, name and description attributes. We see that these tools share features in the venn diagram. They both do regression and few file types are also common. In the same way, if we

³https://usegalaxy.eu/?tool_id=toolshed.g2.bx.psu.edu/repos/bgruening/hicexplorer_hicpca/hicexplorer_hicpca/2.1.0&version=2.1.0&__identifer=5kcqmvb71gx

extrapolate this venn diagram and match one tool against all other tools, we hope to find a set of tools similar in nature to the former tool. While searching for the related tools for a tool, it is possible that we end up with an empty set.

1.3 Motivation

From figure 2, we see that there can be tools which share characteristics. Galaxy has thousands of tools having a diverse set of functions. Moreover, new tools keep getting added to the older set of tools. From a user's perspective, it is hard to keep knowledge about so many tools. It is important to make a user aware of the presence of new tools added. If there is a model which dispenses a clue that there is a set of say n tools which are similar to a tool, it would give more options to a user for her/his data processing.

Figure 3: Similarity knowledge network: it shows how the tools in the network are related. The real numbers show the relation strength

To elaborate it more, let's take an example of a tool "nugen nudup" ⁴. It is used to find and remove PCR duplicates. The similar tools for it can be "samtools rmdup" and "bctools merge pcr duplicates" which work on related concepts. These similar tools would further have their respective set of similar tools thereby making a network of related entities (tools). This "knowledge network" can help a user find multiple ways to process her/his data and exhibits "connectedness" among tools. The strength of this relation may vary from being small to large. To ascertain that, this study learns a continuous representation of the relation strength. Figure 2 shows how this knowledge graph can evolve. First, we find similar tools for "nugen nudup" and

⁴https://toolshed.g2.bx.psu.edu/repository?repository_id=4f614394b93677e3

connect them to their source tool specifying the similarity values as real numbers at the edges. These similar tools further have their own sets of similar tools and so on.

2 Approach

2.1 Extract data

There are multiple repositories of Galaxy tools stored at GitHub ¹. In each of the tool repository, there are xml files starting with a < tool > tag. We read all of these xml files, extract information from a few of the attributes and collect them in a tabular file.

2.1.1 Select tools attributes

A tool has multiple attributes like input and output file types, help text, name, description, citations and some more. But all of these attributes are not important and do not generally identify a tool exclusively. We consider some of these attributes:

- Input and output file types
- Name and description
- Help text

Moreover, we combine the input and output file types and name and description respectively as they are of similar nature. These two combined attributes give complete information about a tool file types and its functionality. We also consider help text attribute which is larger in size compared to the previous two. At the same time, they are empty for few tools. Apart from being large in size, this attribute is noisy as well. It provides more information about the usage of a tool. Generally, in the first few lines, it gives a detailed explanation of the tool functions. Further, it explains how the input data should be supplied to a tool or how an input data looks like. Hence, much of the information present in this attribute is not important. Because of noise present in this attribute, we decide to use only upto first 4 lines which illustrates the core functionality of the tool. The decision to select only first 4 lines is empirical. The rest of the information in help text is discarded.

 $^{{}^{1}\}mathrm{One}\;\mathrm{example:} \\ \mathsf{https://github.com/galaxyproject/tools-iuc/tree/master/tools}$

2.1.2 Clean data

Remove duplicates and stopwords

The collected data for tools is raw containing lots of commonplace and duplicate items which do not add value. These items should be removed to get tokens which are unique and useful. For example, a tool bamle ftalign has input files as bam, fasta and output file as bam. While combining the file types, we discard the repeated file types and in this case, we consider file types as bam, fasta. The other attributes we deal with are different from the file types. The files types are discrete items but in attributes like name and description and help text, the account is in a human language. The explanation contains complete or partially complete sentences in English. Hence, to process this information, we need startegies that are prevalent in natural language processing². The sentences we write in English contain many words and has different parts. These parts include subject, object, preposition, interjection, verbs, adjectives, adverbs, articles and many others. For our processing, we need only those tokens (words) which categorize a tool uniquely and do away with multiple parts of speech present in the statements. For example, a tool named tophat has name and description as "TopHat for Illumina Find splice junctions using RNA-seq data". The words like for, using and data do not give much value as they must be present for many tools. These words are called as "stop words" ³ and we selectively discard them. In addition, we remove numbers and convert all the tokens to lower case.

Use stemming

After removing duplicates and stop words, our data is clean and contain tokens which uniquely identify corresponding tools. When we frame sentences, we follow grammar which constrains us to use different forms of the same word in varying contexts. For example, a word regress can be used in multiple forms as regresses or regression or regressed. They share the same root and point towards the same concept. If many tools use this word in varying forms, it is beneficial to converge all the different forms of a word to one basic form. This is called stemming ⁴. We use nltk ⁵ package for stemming.

²https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168328/

³https://www.ranks.nl/stopwords

⁴https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1. html

⁵http://www.nltk.org/

Figure 4: Distribution of tokens: the plot shows the distribution of tokens for all the attributes. The help text has the most number of tokens for all tools and input and output has the least number of tokens.

Refine tokens

At this stage of tools preprocessing, we have a set of good tokens for each attribute whic are input and output file types, name and description and help text. Let's call these sets as documents. The tokens present in these documents do not carry equal importance. Some tokens are more relevant to the document and some not so relevant. We need to find out importance factor for all tokens in a document. Using these factors, we can arrange them in big, sparse documents-tokens matrix. In this matrix, each row represents a document and each column belongs to one token. To compute these relevance scores, we use bestmatch25. Let's associate some variables to be used in explaining this algorithm.

- Token frequency ⁶ tf
- Inverted document frequency idf
- Average document length $|D|_{avq}$
- \bullet Number of documents N

 $^{^6 {\}tt https://nlp.stanford.edu/IR-book/pdf/06vect.pdf}$

• Size of a document |D|

First of all, token frequency (tf) specifies the count of a token's occurrence in a document. If a token regress appears twice in a document, its tf is 2. This can also be understood as a weight given to this term. Inverted document frequency for a token is defined as:

$$idf = \log \frac{N}{df} \tag{1}$$

where df is the count of the documents in which this token is present and N is the total number of documents. If we randomly sample a document, then the probability of this token to be present in this document is $p_i = \frac{df}{N}$. From information theory, we can say that the information contained by this event is $-\log p_i$. The entity idf is higher when a token appears less number of documents which means that this token is a good candidate for representing the document and possesses higher power to distinguish between documents. The tokens which appear in many documents are not good representatives. Average document length is the average number tokens for all the documents. Size of a document is the count of all the tokens for that document [3].

$$\alpha = (1 - b) + \frac{b \cdot |D|}{|D|_{avg}} \tag{2}$$

$$tf^* = tf \cdot \frac{k+1}{k \cdot \alpha + tf} \tag{3}$$

$$BM25_{score} = tf^* \cdot idf \tag{4}$$

where k and b are hyperparameters. Using the equation 4, we compute the relevance score for each token in all the documents. Table 1 shows some sample scores for a few documents where the tokens are present with their respective relevance scores. In this way, we arrange document-tokens matrix for all the attributes of tools. For input and output file types, these matrix entries will have only two value, 1 if a token is present for a document and 0 if not. For other attributes, relevance scores are positive real numbers. This strategy of representing documents with their tokens is called vector space model as each document represents a vector of tokens.

Figure 4 shows the heatmaps for documents-tokens matrices that belong to input and output file types and name and description. We can see that these plots are sparse. Each entry in these matrices contain BM25 score for each token in every document.

Documents/tokens	regress	linear	gap	mapper	perform
LinearRegression	5.22	4.1	0.0	0.0	3.84
LogisticRegression	3.54	0.0	0.0	0.0	2.61
Tophat2	0.0	0.0	1.2	1.47	0.0
Hisat	0.0	0.0	0.0	0.0	0.0

Table 1: Document-tokens matrix: it stores relevance scores for each token for all the documents

The representation shows how to find tokens which are good representatives of documents with a weighted by their relevance factors. But, they do not tell un anything about the co-occurence of a few tokens in a document. It tells us that a token is important for a document if the BM25 score is higher but it does not tell us anything about its relation to other tokens. Due to this shortcoming, it does not acknowledge the presence of "concepts" or "context" hidden in a document. A concept in document can be realised when we see the relation among a few words. To illustrate this idea, let's take an example of three words - "New York City". These three words mean little or point to different things if looked at separately. But, if we see them together, it points towards a concept. This vector space model lacks the ability to find the correlation among tokens. To enable the vector space model to learn this hidden concepts and find correlation among multiple tokens, we explore two ideas

- Latent Semantic Indexing/Analysis ⁷
- Paragraph Vectors

Using these approaches, we learn dense, n dimensional vector for each document instead of using sparse vectors as shown in figure 5.

2.2 Document embeddings

2.2.1 Latent semantic indexing

It is statistical way to learn the hidden concepts in documents by computing a low-rank representation of a documents-tokens matrix. This low-rank matrix is dense (figure 6). We use singular value decomposition (SVD) to decompose the full-rank

⁷http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

Documents-tokens matrices for multiple tools attributes $Input_{\begin{subarray}{c} and \end{subarray}}$ types

Figure 5: Documents-tokens matrices: the heatmap shows the documents-tokens sparse matrices for two attributes.

matrix into a significantly lower rank matrix. The optimal rank to which a matrix to be decomposed is empirical in nature. The rank chosen still contains most of the singular values. This decomposition follows the equation:

$$X_{n \times m} = U_{n \times n} \cdot S_{n \times m} \cdot V_{m \times m}^{T} \tag{5}$$

where n is the number of documents and m is the number of tokens. S is a diagonal matrix containing the singular values in descending order. It contains the weights of the concepts present in the matrix. The matrices U and V and orthogonal matrices which satisfy:

$$U^T \cdot U = I_{n \times n} \tag{6}$$

$$V^T \cdot V = I_{m \times m} \tag{7}$$

Figure 6 explains 8 how SVD of a matrix is carried out. The matrix U contains information about how the tokens, arraged along the columns, are mapped to concepts and matrix V stores information about how the concepts are mapped to documents

 $^{^{8}}$ http://theory.stanford.edu/~tim/s15/1/19.pdf

Figure 6: Pictorial representation of SVD: the figure shows how singular value decomposition is done.

arranged along the rows.

Low-rank approximation

The low-rank approximation of a matrix is important to discard the features which are non-repeating or noise. Using this, we can collect the latent relations present in the documents-tokens matrices. We saw that our documents-tokens matrices suffer from sparseness and exhibit no relation among tokens. The approximation deals with these issues as well. The resulting matrices are dense and contain most of the singular values. The singular values which are small (the last entries of the s matrix along the diagonal) are discarded [4]. The low-rank approximated matrix X_k is computed as:

$$X_{nxm} = U_k \cdot S_k \cdot V_k^T \tag{8}$$

where U_k is the first k columns of U, V_k is the first k rows and S is the first k singular values. k is an empirical parameter. X_k is called as the rank-k approximation of the full rank matrix X. Figure 7 shows the variation of the sum of singular values with the percentage rank of matrices. The percentage rank is $k \div K$ where 1 <= k <= K and K is the original (full) rank of a matrix. We take it as the original ranks of the three matrices are not comparable. By doing this, we can show them on one plot. Similar idea we use for the sum of the singular values of each matrix. From figure 7, we can say that if we reduce the ranks of matrices to 70% of the full-rank, we can still capture $\approx 90\%$ of the singular values. The reduction to half of the full-rank achieves $\approx 80\%$ of the sum of singular values.

We reduce the rank of the original documents-tokens matrices and compute the dense and approximated low-rank matrices. Figure 8 shows the low-rank matrices for input and output file types and name and description attributes. For computing this,

Figure 7: Matrix rank and singular values: the plot shows how the sum of singular values vary with the rank of the documents-tokens matrix for all the attributes.

we use only 40% of the full-rank. We can compare it with figure 5 and deduce that figure 8 is denser than figure 5. In these low-rank matrices, we have dense vector representations for documents along the rows. In each matrix, each row contains a vector for one document. Using these documents vectors, we can compute the correlation or similarity using any similarity measure. There are multiple similarity measures that can be used like euclidean distance, cosine similarity, manhattan distance. We use cosine angle similarity to compute the correlation between vectors. By this, we get a positive real number between 0.0 and 1.0 specifying how similar a pair of documents are. The higher the score, higher is the similarity. Computing this similarity for all the documents give us a similarity matrix $S_{n\times n}$ where n is the number of documents. This square, symmetric matrix is called as similarity or correlation matrix. We compute three such matrices each corresponding to one attribute.

2.2.2 Paragraph vectors

Using latent semantic indexing (LSI), we learnt dense vectors to represent each document. It learns better vector representations for documents compared to using full-rank documents-tokens matrices. One main limitation is to assess the quantity by which we need to lower the rank of a matrix in order to find the optimal results. There are ways to find the optimal reduced rank optimizing the frobenius norm but it is not simple. We would see in the analysis section that similar tools are more

Figure 8: Documents-tokens matrices: the heatmap shows the documents-tokens low rank representation of the matrices.

dominated by the scores shared by the input and output file types due to which the tools which similar in their functions do not come up. In order to avoid these limitations, we use an approach known as doc2vec (document to vector). It learns a dense, fixed-size vectors for each document using neural networks. These vectors are unique in a way that captures the semantics present in the documents. The documents which share similar context are represented by similar vectors. When we compute cosine distance between these vectors sharing similar context, we get a higher number (close to 1.0). It allows the documents to have variable lengths.

Approach

Paragraph vectors approach learns vector representations for all the words present in a set of documents. The words which are used in a similar context have similar vectors. For example, words like "data" and "dataset" which are used, in general, in similar context have are represented by close vectors. The vector representations of words in a corpus is learnt by finding the maximum of the following equation:

$$\frac{1}{T} \cdot \sum_{t=k}^{T-k} \log p(w_t | w_{t-k,\dots,t+k})$$
 (9)

where T is the total number of words in a corpus, k is the window size. We take a few words which make a context and using this context we try to predict each word. The probability p is computed using a softmax classifier and backpropagation is used to compute the gradient and the vectors are optimized using stochastic gradient descent. To learn paragraph vectors, in addition to using words vectors, paragraph vectors are also used to learn probability of the next words in a context. The paragraph and word vectors are averaged to make the classifier which predict next words in a context. There are two way how to choose the context.

• Distributed memory: In this approach of learning paragraph vectors, fixed length window of words are choosen and paragraph vectors and word vectors are used to predict the words in this context. The words vectors are shared across all paragraphs and paragraph vector is unique to each paragraph.

Figure 9: Paragraph vectors distributed models: it shows the mechanism how the paragraph and words vectors contributed to predict next words in a context.

• Distributed bag of words: The words are randomly extracted from paragraphs and in this set of words, a word is chosen randomly and predicted using the paragraph vectors. The order of the randomly chosen words is ignored.

The second form of learning paragraph vectors is simple and we use it to learn documents (paragraphs) vectors for name and description and help text attributes. We learn only the paragraph vectors which makes it less computationally expensive [5].

Figure 10: Distributed bag of words: it shows how a paragraph vector is used to predict a randomly chosen word.

2.3 Similarity measures

We have vectors representing the documents for all the three attributes we consider to compute similar tools. To find the similarity in a pair of vectors, we need to apply a similarity measure to get a similarity score. This score quantifies how much similar a pair of documents are which means how close or distant these documents are.

2.3.1 Cosine similarity

It gives the cosine angle value between a pair of documents vectors. Let's say we have two vectors, x and y. We can write:

$$x \cdot y = |x| \cdot |y| \cdot \cos \theta \tag{10}$$

$$\cos \theta = \frac{x \cdot y}{|x| \cdot |y|} \tag{11}$$

where |.| is the norm of the vector x. If the norm is 0, we use 0 for the value of $\cos \theta$. The values emitted by this similarity follows a natural progression that if the documents are dissimilar, then it is 0 and if completely similar, it is 1.0. Otherwise it lies between 0.0 and 1.0. This score can also be understood as a kind of probability of similarity between a pair of documents 9 .

 $^{^9 \}texttt{https://nlp.stanford.edu/IR-book/html/htmledition/dot-products-1.html}$

2.4 Optimization

Using the paragraph vectors and applying cosine similarity, we get similarity or correlation matrices one each for input and output file types, name and description and help text attributes. The matrices have same dimensions $(n \times n, n)$ is the number of tools). To combine these matrices, one simple idea would be to take an average of the corresponding rows of scores from the matrices for a document. This would generate a matrix of the same dimension where each row would correspond to one document. This row would contain similarity scores of a document against all other documents. The diagonal entries of this matrix would be 1.0. All other entries would be a positive real number between 0.0 and 1.0. Another way to find the combination is to learn the weights on the rows from three matrices and them combine them to obtain optimal similarity scores for a tool. The weight would be a positive real number between 0.0 and 1.0. Instead of using a fixed importance factor (weights) of 1/3 (3 is the number of matrices), we use optimization to find these real numbers and then combine the matrices by multiplying with these weights.

$$S_k^{optimal} = w_{io}^k \cdot S_{io}^k + w_{nd}^k \cdot S_{nd}^k + w_{ht}^k \cdot S_{ht}^k \tag{12}$$

where w is a positive, real number and satisfy $w_{io}^k + w_{nd}^k + w_{ht}^k = 1$. S_{io}^k , S_{nd}^k and S_{ht}^k are the similarity scores (corresponding matrix rows) for k^{th} tool corresponding to input and output file types, name and description and help text attributes respectively.

We have these similarity scores. But we need to learn these importance weights. We use gradient descent optimizer to learn these weights against a loss function. If we look closely the similarity measure, we see that the maximum similarity between a pair of documents can be 1.0. Hence, the ideal similarity scores for one document against all other documents:

$$S_{ideal} = [1.0, 1.0, ..., 1.0] (13)$$

where S_{ideal} is the ideal similarity scores for one document against all other document. Using this ideal scores, we can compute the error we accrue for all the similarity scores from three attributes. After computing the error, we can verify which attribute is closer to the ideal score and which are not. The attributes which exhibit lower error get higher weights and those which score higher error get lower weights. The next section elaborates the online way to do the optimization.

Gradient descent

Gradient descent is a popular algorithm for optimizing an objective function with respect to its parameters. The parameters are the entities which we want to learn. In our case, these are the weights. The algorithm minimizes an error function. Let's frame the error function:

$$Error_{io}(w_{io}) = \frac{1}{2} \cdot (w_{io} \cdot S_{io} - S_{ideal})^2$$
(14)

$$Error_{nd}(w_{nd}) = \frac{1}{2} \cdot (w_{nd} \cdot S_{nd} - S_{ideal})^2$$
(15)

$$Error_{ht}(w_{ht}) = \frac{1}{2} \cdot (w_{ht} \cdot S_{ht} - S_{ideal})^2$$
(16)

$$Error(w) = \frac{1}{2} \cdot (w \cdot S - S_{ideal})^2$$
(17)

$$\underset{w}{\arg\min} Error(w) \tag{18}$$

where Error is a vector of $\langle Error_{io}, Error_{nd}, Error_{ht}, w \text{ is } \langle w_{io}, w_{nd}, w_{ht} \rangle$ and S is $\langle S_{io}, S_{nd}, S_{ht} \rangle$.

To minimize the equation 17, we need to compute the gradient. The gradient specifies the rate of change of error with respect to the weights.

$$Gradient(w) = \frac{\partial Error}{\partial w} = (w \cdot S - S_{ideal}) \cdot S$$
 (19)

Using the gradient vector, we update the weights. For this we need to set the learning rate.

$$w = w - \eta \cdot Gradient \tag{20}$$

To find the right learning rate is important as a high value can diverge the gradient learning and a low value can slow down the learning. For each iteration of gradient descent, we employ backtracking line search to find the right learning rate which assists in finding the update of the weights parameters.

Backtracking line search

We use backtracking line search method to find the necessary decrease along the gradient search direction. It enables us to avoid all the small steps generally taken by gradient descent to decrease the objective error function. At each step of gradient descent, we start with 1.0 as learning rate and gradually decrease it until the following condition is met or gradient decrease stabilizes with a tolerance factor ϵ . The decrease of learning rate is controlled by a hyperparameter β . The name backtracking comes from the fact that it starts with unit learning rate and gradually decreases the learning rate.

$$Error(w^*) \approx Error(w) - \eta \cdot |Gradient(w)|^2 < Error(w) - \alpha \cdot \eta \cdot |Gradient(w)|^2$$
 (21)
where $w^* = w - \eta \cdot Gradient(w)$ and α lies in the range $(0, 0.5)^{-10}$.

 $^{^{10}} http://users.ece.utexas.edu/^cmcaram/EE381V_2012F/Lecture_4_Scribe_Notes.final.pdf$

3 Experiments

- 3.1 Latent Semantic Analysis
- 3.1.1 Frobenius Norm
- 3.1.2 One and two sources instead of three
- 3.2 Paragraph Vector
- 3.2.1 Low dimensions
- 3.2.2 Dbow and dm
- 3.2.3 Gradient Descent and learning rates

4 Results and Analysis

- 4.1 Using LSI
- 4.1.1 Screenshots
- 4.1.2 gradient drop and loss drop
- 4.2 Using doc2vec
- 4.2.1 Screenshots
- 4.2.2 gradient drop and loss drop

5 Conclusion

5.1 Data

Noisy, no true value, some good, some bad results.

6 Future Work

- 6.1 Correlation
- 6.2 Noise data removal
- 6.3 Get true value

Bibliography

- [1] Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel, "Learning to diagnose with LSTM recurrent neural networks," *CoRR*, vol. abs/1511.03677, 2015.
- [2] H. Sak, A. W. Senior, and F. Beaufays, "Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition," CoRR, vol. abs/1402.1128, 2014.
- [3] S. Robertson and H. Zaragoza, "The probabilistic relevance framework: Bm25 and beyond," *Found. Trends Inf. Retr.*, vol. 3, pp. 333–389, Apr. 2009.
- [4] J. Yang, "Notes on low-rank matrix factorization," CoRR, vol. abs/1507.00333, 2015.
- [5] Q. V. Le and T. Mikolov, "Distributed representations of sentences and documents," CoRR, vol. abs/1405.4053, 2014.