2016年实分析期中试题

整理: 张桐*

1、(15分)

设 $\{E_n\}_{n=1}^{+\infty}$ 是一列可数的 \mathbb{R}^d 的可测子集列,满足

$$\sum_{k=1}^{+\infty} m(E_k) < +\infty.$$

令

$$E = \{x \in R^d : x \in E_k, for \ infinite \ k\}$$

证明: E 为可测集且 m(E) = 0.

2、(15分)

请问:一族可测集的交集必是可测集吗?证明或者举出反例。

3、(15分)

设 $f \in C(\mathbb{R}^1)$, $g \in \mathbb{R}^1$ 上的可测函数。若对任意的零测集 Z, $f^{-1}(Z)$ 是可测集,试证明 g(f(x)) 是可测函数。

4、(15分)

设 $E \in \mathbb{R}^d$, $m(E) < +\infty$, $f_1, f_2...f_n...$ 是 E 是几乎处处有限的实值可测函数,试证明: $\{f_n\}$ 在 E 上依测度收敛于 f 的充分必要条件是:

$$\lim_{n \to +\infty} \inf_{\alpha \to 0} \{ \alpha + m(\{x \in E : |f_n(x) - f(x)| > \alpha \}) \} = 0$$

5、(15分)

设 f 为定义在 R^d 上的函数,若对任意的 $\epsilon>0$,存在 $g,h\in L^1(R^d)$,满足 $g(x)\leq f(x)\leq h(x), \forall x$,且使得

$$\int_{\mathbb{R}^d} h(x) - g(x) dx < \epsilon.$$

试证明: $f \in L^1(\mathbb{R}^d)$

6、(15分)

已知 $f_n, f \in L^1(\mathbb{R}^d)$, $f_n \to fa.e.$, 且有 $||f_n||_{L_1} \to ||f||_{L_1}$, 试证明:

- (a) 对任何可测集 $E \subset R^d$ 均有 $\int_E |f_n| \to \int_E |f|$
- (b) $||f_n f||_{L_1} \to 0$

7、(10分)

设 $E \subset R^d$, $f \in L^1(E)$,且 $0 < A = \int_E f < +\infty$,试证明:存在 E 中的可测子集 e 使得

$$\int_{0} f = \frac{A}{3}$$

^{*}mail:zt001062@mail.ustc.edu.cn phone:18856017324