마당효과 3 극소자의 회복시간에 대한 연구

강철주, 남광원

위대한 수령 김일성동지께서는 다음과 같이 교시하시였다.

《…원자력부문의 과학자들이 원자력에 대한 연구사업을 더 적극적으로 하도록 하여 이 합니다.》(《김일성전집》제60권 352폐지)

론문에서는 마당효과3극소자(FET)와 발광2극소자(LED)를 결합한 빛재설정전하수감 예비증폭기를 개발하는데서 중요한 문제의 하나로 제기되는 FET의 회복시간에 대하여 고찰하였다.

1. 리론적기초

전통적인 저항재설정전하수감예비증폭기에서는 귀환콘덴샤에 쌓이는 전하량이 그것과 병렬로 련결된 귀환저항을 통하여 방전된다. 이때 방전시간은 시상수에 의하여 결정된다. 따라서 신호간격이 방전시간보다 짧을 때 즉 높은 계수속도를 요구하는 예비증폭기에서는 이러한 저항재설정방식을 리용할수 없다.

빛재설정방식의 전하수감예비증폭기에서는 귀환쿈덴샤에 적분되는 전하량을 입구에 설 치한 FET의 조종극에 빛을 쪼여주어 조종극—원천극통로를 여는 방법으로 방전시켜버린다.

검출기로부터 들어오는 전하량은 귀환콘덴샤에 충전되는데 빛재설정방식에서는 귀환저항이 없으므로 련이어 들어오는 전하임풀스들에 의하여 출구신호가 계단모양으로 증가한다. 이 값이 이미 설정해놓은 어떤 턱값을 넘는 순간에 비교기가 동작하면서 LED를 구동시킨다. LED에서 나오는 빛은 FET의 조종극에 쪼여지면서 빛전기효과 등에 의하여 전하나르개를 발생시킨다. 이 전하나르개들에 의하여 조종극—원천극통로가 열리며 귀환콘덴샤에 충전되였던 전하량은 방전되고 재설정이 진행된다.

빛재설정방식에서는 LED와 FET사이의 전기적결합이 없으므로 저항재설정방식이나 3극소자재설정방식[1]보다 분해능이 더 좋다. 그러나 빛을 쪼인 다음 FET가 정상상태로 돌아가는데는 일정한 시간이 요구된다.[2]

실험에서는 FET가 빛을 받은 다음 얼마만한 시간이 지나서 정상상태로 회복되는가 하는것을 측정하였다.

2. FET의 빚회복특성

실험에서는 2N4416의 빛회복특성을 고찰하였다. 2N4416의 금속밀봉함웃면을 벗기고 그것과 마주하여 LED를 설치함으로써 LED에서 나오는 빛이 소편에 직접 쪼여지도록 하 였다. 실험에서 리용한 측정회로는 그림 1과 같다.

그림 1에서 C_1 은 전하수감예비증폭기의 귀환쿈덴샤 C_{7} 를 모의한것이다. 실제로 전하수감예비증폭기에서 C_{7} 에 전하량이 쌓일 때 FET의 조종극쪽 극판이 부극성으로 충전되는것을 모의하여 C_1 에는 R_1 을 통하여 부극성전압을 걸어주었다.

그림 1. 실험에서 리용한 측정회로

2극소자 D_1 (1N4148)라 D_2 (1N4148)는 T_1 (2N4416)의 조종극에 지나치게 높은 전압이 걸리지 않도록 보호하기 위하여 설치한것이며 R_2 는 T_1 의 짐저항이다.

 T_1 의 조종극에 부의 전압이 걸리면 이 전압은 반전 및 증폭되여 배출극전압으로 나타나며 비교기 $U_1(\text{TL}082)$ 의 입구로 들어가게 된다.

 R_3 , R_4 , R_5 , R_6 은 비교기의 턱전압을 설정하기 위한것으로서 이 턱전압은 실지 전하수감예비증폭기가 포화되기 시작하는 전압으로 설정해놓는다.

 T_2 (2N3906)는 반전기의 역할을 수행한다. T_3 (2N3904)과 T_4 (2N3904), R_{10} , R_{11} 은 다 링톤회로를 구성하고있는데 그것은 LED를 구동시키는데 필요한 전류를 얻기 위해서이다. C_2 는 다링톤회로와 반전기사이의 분리콘덴샤의 역할을 수행한다. C_2 와 R_{10} 은 미분회로로서 LED의 구동신호를 발생시키다.

실험에서는 조명용으로 리용하는 일반LED(백색)를 리용하였다. FET와 LED사이의 간격은 1mm로 하였고 LED로는 13mA의 전류가 흐르도록 하였다.

 C_1 에 부의 전하량이 쌓이면 FET의 배출극전압 즉 U_1 의 입구전압이 그만큼 높아지게 된다. 이 전압이 이미 설정한 턱값을 넘는 순간 U_1 의 출구전압은 반전기 T_2 와 분리콘덴샤 C_2 를 통하여 LED구동회로를 동작시키게 된다.

LED는 C_1 에 충전되였던 전하량이 다 방전되여 T_1 의 배출극전압이 U_1 의 아래틱값 보다 더 낮아지게 될 때까지 구동된다.

그림 2. 실험에서 측정한 FET의 배출극전압 U = 1V, t = 0.5 ms

실험에서 측정한 FET의 배출극전압은 그림 2와 같다.

그림 2에서 t_1 은 C_1 의 충전시간이고 t_2 는 FET의 조종극-원천극통로를 통한 C_1 의 방전시간이다. C_1 에는 부의 전압이 걸려있으므로 C_1 의 방전이 끝나면 다시 충전이 시작되고 배출극에는 C_1 에 충전되는 전압이 증폭되여 나타나야 한다. 그러나 그림 2에서 볼수 있는것처럼 FET가 빛을 받아서 정상동작상태에 들어가기 전까지는 이 전압이 나타나지 않았다.

LED구동이 끝난 후로부터 충전이 다시 시작될 때까지의 시간 t_3 이 FET의 회복시간 이라고 볼수 있는데 오씰로그라프로 반복측정한 결과 $(380\pm5)\mu s$ 로 측정되였다.

그림 2에서 볼수 있는바와 같이 배출극전압은 FET의 빛회복이 끝난 후 처음부터 다시 증가하였다. 이것은 귀환콘덴샤에 충전되였던 전하량이 회복시간동안 FET를 통하여계속 방전되였다는것을 의미한다.

맺 는 말

실험에서는 슈미트방아쇠회로와 다링톤회로로 구성된 LED구동회로를 리용하여 2N4416의 회복시간을 측정하였다.

백색LED에 대하여 2N4416의 회복시간은 (380±5)µs이다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 61, 4, 64, 주체104(2015).
- [2] M. A. Baturitsky et al.; Nucl. Instrum. and Method in Phys. Res., A 399, 113, 1997.

주체108(2019)년 9월 5일 원고접수

Research on the Recovery Time of the Field Effect Transistor

Kang Chol Ju, Nam Kwang Won

In general, the field effect transistor cannot work for a while after irradiation and this is important for improving the count rating. We researched the recovery time of the field effect transistor, which was important for developing the photo-reset charge sensitive preamplifier.

Keywords: charge sensitive preamplifier, photo reset, FET