2023 代组第二次作业

2000013058 杨仕博

2023年3月7日

29

(1)

 $\forall x \in Z, \phi(\Delta x) = \phi(x+1) = (x+1) \mod 2 = (x \mod 2 + 1) \mod 2 = \bar{\Delta}\phi(x)$

因而, ϕ 是 V_1 到 V_2 的同态

(2)

对于 ϕ 引出的等价关系 \sim ,

$$x \sim y \Leftrightarrow \phi(x) \sim \phi(y)$$

 $\Leftrightarrow x \equiv y \mod 2$

因而 ϕ 导出的划分是 $\{2Z+1,2Z\}$

30

(1)

由 $\forall x \in A_k, nx \ge m \Rightarrow nx \in A_m$ 并且 $\forall x, y \in A_k, \phi(x+y) = n(x+y) = nx + ny = \phi(x) + \phi(y)$ 知 ϕ 是 V_1 到 V_2 的同态

(2)

对于 $a, b \in V_1$,

$$a \sim b \Leftrightarrow \phi(a) = \phi(b)$$

 $\Leftrightarrow na = nb$
 $\Leftrightarrow a = b \lor n = 0$

故

$$V_1/\sim = \begin{cases} <\{\{x\} | x \in Z \land x \ge k\}, \bigoplus >, \{x\} \bigoplus \{y\} = \{x+y\} & (n \ne 0) \\ <\{A_k\}, \bigoplus >, A_k \bigoplus A_k = A_k & (n=0) \end{cases}$$

7

由 (a*b)*(a*b) = a*(b*a)*b = a*(a*b)*b = (a*a)*(b*b) = a*b知 a*b 是幂等元。

(1)

对于 V 的子半群 W,

若 $3 \in W$,则 $3 \bigotimes 3 = 1 \in W$,此时若 $2 \in W$,则 $2 \bigotimes 2 = 0 \in W$, $W = Z_4$;若 $2 \notin W \land 0 \in W$,则 $W = \{1,3,0\}$,其中元素的乘积均在 W 中,从而构成子半群;若 $2 \notin W \land 4 \notin W$,则 $W = \{1,3\}$,其中元素的乘积均在 W 中,从而构成子半群。

若 $3 \notin W$,同样的,若 $2 \in W$,则 $2 \bigotimes 2 = 0 \in W$, $W = \{0,1,2\} \lor W = \{0,2\}$,上述两种可能中 W 的任两个(可以相同)的元素的积均在 W 中,构成子半群;若 $2 \notin W$,则 $W = \{0\} \lor W = \{1\} \lor W = \{0,1\}$,上述三种可能中 W 的任两个(可以相同)的元素的积均在 W 中,构成子半群

因此, $W=\{1,3,0\}$ 或 $W=\{1,3\}$ 或 $W=\{0,1,2\}$ 或 $W=\{0,2\}$ 或 $W=\{0\}$ 或 $W=\{1\}$ 或 $W=\{0,1\}$

(2)

在上述子半群中,有 1 在的 W 或者只有一个元素的 W 必然是子独异点,剩余的 $W = \{0,2\}$ 中任何两数相乘皆不为 2,因此不是子独异点。

因此对于子独异点 W, $W=\{1,3,0\}$ 或 $W=\{1,3\}$ 或 $W=\{0,1,2\}$ 或 $W=\{0\}$ 或 $W=\{1\}$ 或 $W=\{0,1\}$