

Разработка системы с webинтерфейсом для сопоставления характеристик товаров маркетплейса с их эталонными значениями

Московские зайцы

Данные

- Очистка от спецсимволов
- Эталон эталона он сам
- Честное разделение на данные для обучения и отложенную тестовую выборку
- Название + характеристики для создания эмбеддинго

```
{'product_id': '0007302f2fe1d54d',
  'name': 'Классическая сплит-система ROYAL CLIMA PANDORA RC-PD28HN,
иса, комплект',
  'props': ['Класс энергоэффективности\tA',
  'Мощность кондиционера\t9 BTU',
  'Уровень шума внутреннего блока\t21.5 дБ - 38 дБ',
  'Режим работы\tохлаждение / обогрев',
  'Фильтр тонкой очистки\tесть',
  'Доп. режимы турбо, экорежим, осушение, ночной, вентиляция'],
  'is_reference': False,
  'reference_id': 'f497219eb0077f84'}
```

Пример данных

Структура алгоритма

Получение эмбеддингов при помощи предобученных моделей

2

Обучение KNN на базе данных

3

Получение результатов для тестовых данных

KNN – поиск ближайшего соседа

- Мера близости косинусная
- Поиск и среди продуктов, и среди эталонов. Экспериментально доказано, что так получается лучшая метрика.
- Общий алгоритм для всех моделей эмбеддингов.
- После обучения не требует эмбеддингов базы данных, нужны только правильно проиндексированные ID эталонов.
- Скорость работы моментальная. Крайне простая имплементация.

Модели эмбеддингов

Название модели	Accuracy
fasttext (cc.ru.300)	0.471
fasttext (unsupervised)	0.389
DeepPavlov/rubert-base-cased-conversational	0.361
sberbank-ai/ruBert-base	0.426
bert-base-multilingual-uncased	0.428
all-MiniLM-L6-v2	0.602
labse (sentece-transformers)	0.842
tfidf	0.883

Лучший вариант

Сломается от любой буквы

Как улучшить эмбеддинги? ААЕ или ArcFace.

В схеме ArcFace убирается этап retrieve field vector и заменяется на модуль классификации и ArcFaceLoss.

ArcFace - один из наиболее эффективных подходов для задач поиска и идентификации.

attribute 1 u^1 u^2 u^2 u^2 u^3 u^3 u^3 u^3 u^3 u^4 u^4

Схема Attention Auto-Encoder

Вместо обычного ArcFace использовалась модификация ElasticFace.

Название модели	Accuracy
arcface (elastic) with labse	0.963

Прирост > 14%

Самое важное для данных аугментации

name_embedding

prop_embedding_1

prop_embedding_2

•••

prop_embedding_3

prop_embedding_4

...

name_embedding

prop_embedding_8

prop_embedding_3

•••

prop_embedding_16

prop_embedding_1

•••

Без аугментаций модель обучалась до Accuracy ~ **0.35**

С аугментациями Accuracy ~ **0.95**

Про АРІ

API написано на Flask и полностью готово к использованию. Запускается как с GPU, так и без, но с потерей скорости.

Сервер	Скорость
CPU + 8GB RAM	14 секунд / 100 товаров
CPU + GPU + 16GB RAM (Colab)	2 секунды / 100 товаров

Возможности для дальнейшего улучшения алгоритма

- Протестировать большее количество моделей для получения эмбеддингов.
- Обучить ААЕ для чистоты эксперимента.
- Обогатить набор данных для обучения модели.
- Оптимизировать API.

Материалы:

- https://arxiv.org/pdf/1904.05985.pdf
- https://www.kaggle.com/code/lextoumbourou/happywhale-tpu-baselineto-0-804-elasticface/notebook
- https://github.com/UKPLab/sentence-transformers

Команда

Степанов Даниил

ML Engineer & Data Scientist PCXБ-Интех & НИТУ "МИСиС"

Беляева Анна

Data Scientist, ui/ux-дизайнер. РЭУ им. Г.В. Плеханова