Estudo da Cinemática de um Robô Hexápode (Plataforma de Stewart)

Matheus Dantas Pereira | Estagiário | Laboratório Nacional de Luz Síncrotron

Geração de Dataset

Resultados

Regressão Linear:

Estimativa Inicial

Introdução

Hexápode ou plataforma de Stewart trata-se de um robô manipulador paralelo que possui seis braços atuadores capazes de movimentar uma plataforma nos seis graus de liberdade: Ux, Uy, Uz, Rx, Ry, Rz. Possuem diversas aplicações industriais e os modelos de maior precisão são largamente utilizados em experimentos laboratoriais que envolvem alinhamento e manipulação de amostras. Este trabalho tem como foco o estudo da modelagem matemática da cinemática de um hexápode para o desenvolvimento do controle em malha fechada a ser implementado utilizando o controlador padrão das linhas de luz do Sirius, Delta Tau. Esse projeto de estudo nasceu a partir da necessidade de controle do modelo de hexápode Bora da Symetrie, que faz parte do projeto da Linha de Luz Cateretê, sem a utilização do controlador do fabricante. A utilização do controlador padrão oferece flexibilidade de customização e de integração em EPICS. Ainda, o desenvolvimento de um método de controle próprio do laboratório evita a dependência do uso de controladores feitos pelos fabricantes e suas limitações. Grande parte do desafio desse estudo se dá pela dificuldade da resolução do problema da cinemática direta de um hexápode, o qual é um problema matemático sem solução fechada, necessitando-se buscar alternativas utilizando combinações de métodos computacionais, visando maior resolução e menor custo de processamento.

Figura 1: Hexápode Bora Symetrie.

Figura 2: Modelos de Hexápode PI.

Regressão Linear:

Solução Analítica da

Cinemática Inversa

Método Numérico de

Newton-Raphson

Grau de Liberdade	Erro Quadrático Médio
Ux	0.99 (mm)
Uy	0.95 (mm)
Uz	0.92 (mm)
θх	0.95 (grau)
θу	0.94 (grau)
θz	0.72 (grau)

Tabela 1: Erro quadrático médio - Regressão Linear.

Solução da

Cinemática Direta

Figura 6: Gráficos de performance da Regressão Linear.

Modelagem do Sistema

Figura 3: Modelagem Vetorial da geometria do Hexápode.

$$R_0^1 = RZ^TRY^TRX^T$$

$$RX = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_X & \sin\theta_X \\ 0 & -\sin\theta_X & \cos\theta_X \end{bmatrix}$$

$$RY = \begin{bmatrix} \cos\theta_Y & 0 & -\sin\theta_Y \\ 0 & 1 & 0 \\ \sin\theta_Y & 0 & \cos\theta_Y \end{bmatrix}$$

$$RZ = \begin{bmatrix} \cos\theta_Z & \sin\theta_Z & 0 \\ -\sin\theta_Z & \cos\theta_Z & 0 \end{bmatrix}$$

Figura 4: Matrizes de rotação.

$\left(\left \left(\vec{P} + R_0^1 \overrightarrow{b_1} - \overrightarrow{a_1}\right)\right - \left \overrightarrow{S_1}\right = 0\right)$
$\left (\overrightarrow{P} + R_0^1 \overrightarrow{b_2} - \overrightarrow{a_2}) \right - \overrightarrow{S_2} = 0$
$\int (P + R_0^1 b_3 - \overline{a_3}) - S_3 = 0$
$ (P + R_0^1 b_4 - \overrightarrow{a_4}) - S_4 = 0$
$\left \left (\vec{P} + R_0^1 \vec{b_5} - \vec{a_5}) \right - \left \vec{S_5} \right = 0$
$\left \left (\vec{P} + R_0^1 \vec{b_6} - \vec{a_6}) \right - \left \vec{S_6} \right = 0$

Figura 5: Sistema de equações não lineares da cinemática direta.

• Método de Newton-Raphson:

Grau de Liberdade	Erro Máximo: Método de Newton
Ux	9.69x10 ⁻¹¹ (mm)
Uy	1.08x10 ⁻¹⁰ (mm)
Uz	2.14x10 ⁻¹³ (mm)
θх	8.75x10 ⁻¹¹ (grau)
θу	5.85x10 ⁻¹¹ (grau)
θz	7.00x10 ⁻¹¹ (grau)

Tabela 2: Erro máximo para cada grau de liberdade. Tolerância de 1x10⁻¹⁰.

Erro Tolerado	Número Mínimo de Iterações	Número Máximo de Iterações
1x10 ⁻¹⁰	2	4
1x10 ⁻¹²	2	5

Tabela 3: Número de iterações registrado nos testes de validação.

	Menor Tempo de Execução em C obtido:
Cálculo da Cinemática Inversa	12 μs
Cálculo da estimativa via função de regressão	3 μs
Cálculo da Cinemática Direta	599 μs

Tabela 4: Menores tempos de execução obtidos em C para cada cálculo.

Conclusões

A utilização da combinação da regressão linear com o método de Newton-Raphson se mostrou capaz de resolver o problema do cálculo da cinemática direta de um Hexápode, e também como um método promissor para a solução de sistemas não lineares em problemas de controle e que pode vir a ser aplicado em outros casos em que não exista solução análitica para uma das cinemáticas do sistema. Os próximos passos são o controle em malha fechada dos atuadores de um Hexápode real e a implementação da cinemática utilizando as funções matemáticas de operações matriciais da biblioteca do controlador Delta Tau que são otimizadas para o seu hardware e verificar o comportamento do sistema com essa solução em prática.

