Math 307: Homework 03

Due Wednesday, September 24 (at the beginning of class)

Problem 1 (Important). Let A be a 3×3 matrix. Suppose x_1, x_2 , and x_3 are column vectors such that

$$Ax_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $Ax_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $Ax_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

If the three solutions x_1, x_2 and x_3 are columns of a matrix X, what is AX?

Problem 2. Given an $m \times n$ matrix $A = (a_{ij})$, the **transpose** of A, denoted A^{\top} , is the $n \times m$ matrix $A^{\top} = (a_{ji})$. For example,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \text{and} \quad A^{\top} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Prove the following theorem.

Theorem. (Properties of the transpose). Suppose A, B are matrices. Then whenever defined, the following properties hold:

- (i.) $(A^{\top})^{\top} = A$
- (ii.) $(A+B)^{\top} = A^{\top} + B^{\top}$
- (iii.) $(cA)^{\top} = cA^{\top}$
- (iv.) $(AB)^{\top} = B^{\top}A^{\top}$ (this is sort of like the socks and shoes property)
- $(v.) (A^{\top})^{-1} = (A^{-1})^{\top}$

(This is Theorem 1.13 in the textbook. The textbook offers a proof of part (iv.), so if you understand that proof, you can use it in your answer. Hint for part (v.): by Theorem 22 (in Lecture 8), all you need to prove is $(A^{-1})^{\top}A^{\top} = I$.

Problem 3. If $A = A^{\top}$, then we say that A is a **symmetric matrix**. An example:

$$\begin{bmatrix} -5 & 1 & 2 \\ 1 & 4 & 3 \\ 2 & 3 & 6 \end{bmatrix}$$

Note that symmetric matrices are always square.

- (a) Let A be any matrix. Show that $A^{\top}A$ and AA^{\top} are both symmetric matrices. Hint: use property (iv.) from the Theorem in Problem 2.
- (b) Let A be a symmetric matrix. Show that if A is invertible, then A^{-1} is also symmetric. Hint: use property (v.) from the Theorem in Problem 2.

Problem 4. An *involution* is a function f such that f(f(x)) = x for all x. In other words, an involution is a function which is its own inverse. By Part (i.) in the theorem from Problem 2, we know that matrix transposition is an involution, since if $f(A) = A^{\top}$, then

$$f(f(A)) = f(A^{\top}) = (A^{\top})^{\top} = A.$$

Another example is matrix inversion, since $(A^{-1})^{-1} = A$. Give some other examples of involutions (from any area of math).

1

Problem 5. Let

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 1 & -2 \\ -3 & 2 & 1 \end{bmatrix}$$

- (a) Find det(A) by expanding about row 1
- (b) Find det(A) by expanding about row 2
- (c) Find det(A) by expanding about column 1
- (d) Find det(A) by expanding about column 3

Problem 6. Find the inverse of the matrix

$$\begin{bmatrix} 0 & -2 & 1 \\ 2 & 4 & -1 \\ 2 & 1 & 2 \end{bmatrix}$$

Problem 7. Solve the following linear system:

$$2x - 4y + 6z = 2$$
$$-3x + 6y - 9z = 3$$

Interpret your results geometrically. Provide a sketch or an image (e.g., using Desmos) of the the solution.

Problem 8. The technical definition of "nonsingular" is the following:

Definition. An $n \times n$ matrix A is said to be **nonsingular** if the only solution to the system of linear equations $AX = \mathbf{0}$ is $X = \mathbf{0}$.

In other words, A produces the output **0** only for the input **0**. Note that in the above definition,

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

Prove that a matrix A is nonsingular if and only if $\det A = 0$. (Hint: use the key theorem of linear algebra from lecture 9).

Problem 9 (More determinants).

(a) Compute the determinant by doing a cofactor expansion across an approriate row or column.

$$\begin{vmatrix} -3 & 0 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 5 \end{vmatrix}$$

(b) Compute the determinant by doing a cofactor expansion across an approriate row or column.

$$\begin{vmatrix} 6 & -5 & 1 & 3 \\ 3 & 1 & -2 & -1 \\ 0 & 7 & 0 & 0 \\ 3 & 3 & 0 & 9 \end{vmatrix}$$

Hint: Don't try to brute force this calculation. Be clever. See Example 1 in section 1.5 of the textbook.

2

Problem 10 (Permutation Matrices). A square matrix called a **permutation matrix** if exactly one entry in each row and column is equal to 1 and all other entries are 0. Multiplication by such matrices affects a permutation of the rows or columns of the matrix multiplied. For example,

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Left multiplication permutes the rows (as shown above). Right multiplication permutes the columns.

(a) Consider the set $\{1, 2, 3, 4, 5\}$. One permutation of this set is (3, 2, 4, 1, 5). Find the permutation matrix P such that

$$\begin{array}{ccc}
 \begin{bmatrix}
 1 \\
 2 \\
 3 \\
 4 \\
 5
 \end{bmatrix} = \begin{bmatrix}
 3 \\
 2 \\
 4 \\
 1 \\
 5
 \end{bmatrix}$$

(b) Find a permutation matrix Q such that

$$Q \begin{bmatrix} 3 \\ 2 \\ 4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

- (c) What do you notice about the relationship between P and Q?
- (d) Give a geometric argument for why the determinant of a permutation matrix is always +1 or -1. (You don't need to give a proof, but try to be convincing.)

Problem 11. Solve the following linear system:

$$2x + 3y = 5$$
$$2x + y = 2$$
$$x - 2y = 1$$

Interpret your results geometrically. Provide a sketch or an image (e.g., using Desmos) of the the solution.

3