Algorithms

Network Flow

Hee-Kap Ahn
Graduate School of Artificial Intelligence
Dept. Computer Science and Engineering
Pohang University of Science and Technology (POSTECH)

Flows in Networks

We are given

- a directed graph G = (V, E);
- two special nodes $s,t\in V$, a source and a sink of G, respectively; and
- capacities $c_e > 0$.

We want to send as much flow as possible from s to t such that

- $-0 \le f_e \le c_e$ for all $e \in E$.
- flow is conserved : $\sum_{(w,u)\in E} f_{wu} = \sum_{(u,z)\in E} f_{uz}$.
- $\operatorname{size}(f) = \sum_{(s,u)\in E} f_{su} = \sum_{(v,t)\in E} f_{vt} = \operatorname{size}(f).$

The maximum flow problem reduces to linear programming!

Residual Networks

The general simplex algorithm would

- start with zero flow
- repeat: choose an appropriate path from s to t, and increase flow along the edges of the path as much as possible.

Each iteration of simplex looks for an s-t path whose edges (v, w) can be of two types:

- $-(v,w) \in E$ and $f_{vw} < c_{vw}$.
- $-(w,v) \in E$ and $f_{wv} > 0$.

 $(a,b) \in E$ and $f_{ab} = 1$. Path sbat is chosen.

Input graph G = (V, E) vs. Residual graph $G^f = (V, E^f)$.

For an edge $(v,w) \in E$ with $f_{vw} \leq c_{vw}$, $G^f = (V,E^f)$ has two edges (v,w), (w,v) with residual capacities

$$c_{vw}^f = c_{vw} - f_{vw},$$

$$c_{wv}^f = f_{vw}.$$

Current flow

Residual graph

A s-t path scbdet of flow 1.

Current flow

Residual graph

A s-t path sabt of flow 1.

Current flow

A s-t path sdet of flow 4.

Residual graph

Current flow

A s-t path sacbt of flow 1.

Residual graph

Current flow

Residual graph

The final flow and the Residual graph.

Current flow

Residual graph

The final flow and the Residual graph.

Flow and (s,t)-cut

A certificate of optimality Partition the nodes of the network into two groups. In the following residual graph, let $L = \{s, a, c\}$ and $R = \{b, d, e, t\}$, for example.

Residual graph G^f

(L,R) of G

An (s,t)-cut partitions the vertices into two disjoint groups L and R s.t. $s \in L$ and $t \in R$. Its capacity is the total capacity of edges $\in G$ from L to R.

Pick any flow f and any (s, t)-cut. Then $\operatorname{size}(f) \leq \operatorname{capacity}(L, R)$.

Max-flow Min-cut Theorem

The size of the maximum flow in a network equals the capacity of the smallest (s,t)-cut.

Suppose f is the final flow when the algorithm terminates. Then t is no longer reachable from s in G^f .

Let L be the set of nodes reachable from s in G^f , and R = V - L. We claim that $\operatorname{size}(f) = \operatorname{capacity}(L, R)$.

Consider any edge $e \in E$ from a node in L to a node in R. Then $f_e = c_e$. Consider now any edge $e' \in E$ from a node in R to a node in L. Then $f_{e'} = 0$. Do you see why? Therefore, (L,R) is the smallest (s,t)-cut!

Flows in Networks

Efficiency Each iteration of our maximum-flow algorithm is efficient, requiring O(|E|) time, if a DFS or BFS is used to find an s-t path. But how many iterations are there?

Is there a way to avoid C|E| iterations, when C is a huge number?

We have a set of people P and a set of jobs J. Each person can do some of the jobs. We can model this as a bipartite graph.

A matching gives an assignment of people to jobs such that

- a person is assigned to at most one job and
- at most one person is assigned to a job.

Given an instance of bipartite matching, we can find a maximum matching by the following reduction.

- Replace each edge to a directed edge from a person to a job of capacity 1.
- Add a special node s and connect s to every node in People by directed edge of capacity 1.
- Add a special node t and connect every node in Jobs to t by directed edge of capacity 1.

Given an instance of bipartite matching, we can find a maximum matching by the following reduction.

- Replace each edge to a directed edge from a person to a job of capacity 1.
- Add a special node s and connect s to every node in People by directed edge of capacity 1.
- Add a special node t and connect every node in Jobs to t by directed edge of capacity 1.

Given an instance of bipartite matching, we can find a maximum matching by the following reduction.

- Replace each edge to a directed edge from a person to a job of capacity 1.
- Add a special node s and connect s to every node in People by directed edge of capacity 1.
- Add a special node t and connect every node in Jobs to t by directed edge of capacity 1.

The edges used in the maximum flow correspond to the maximum matching.

- all capacities are integers, so the maximum flow is integral.
- all capacities are 1, so an edge is used (flow 1) or not.

Let M be the set of edges used in the maximum flow of value k. Then M is a matching because there is at most one edge in M leaving any person and entering any job. Moreover, M consists of k edges.

If there is a matching consisting of more than k edges, there must be a flow of value larger than k, which is a contradiction.

For n people and m edges, the running time is?

