Transmission Phase through Finite-sized Electron Systems

Philippe Jacquod - HES-SO

PJ and M Büttiker, PRB 88, 241409(R) (2013)

R Molina et al., PRB 88, 045419 (2013)

PJ, R Whitney, J Meair, and M. Büttiker, PRB 86, 155118 (2012)

R Molina, R Jalabert, D Weinmann, and PJ, PRL 108, 076803 (2012)

JP Bergfield, PJ and CA Stafford, PRB 82, 205405 (2010)

R Whitney and PJ, PRL 103, 247002 (2009); EPL 91, 67009 (2010)

Scattering Phases

Extended scatterer connected to two semi-infinite 1D conductors

What is α ? Can we measure it?

Certainly not with the conductance (Landauer-Büttiker)

$$G = \frac{2e^2}{h}|t|^2 = \frac{2e^2}{h}T$$

Scattering Phases

Extended scatterer connected to two semi-infinite 1D conductors

Solution: embedding into an interferometer

$$G_{41} = \frac{2e^2}{h}T(1-T)[2+2\cos(2\pi\phi/\phi_0+\alpha)]$$

Measuring Scattering Phases (Heiblum & Co)

0.8

0.4

-15

-10

10

Magnetic field, B (mT)

15

Quantum dot in Aharonov-Bohm interferometer

Transmission through

*vs. chem. potential on the dot

*vs. magnetic field

at 4 different charging - determines $oldsymbol{eta}_1$ in

$$g = g_0 + \sum_n g_n \cos(2\pi n\phi/\phi_0 + \beta_n)$$

Yacoby et al., PRL '95 Schuster et al., Nature '97 Avinum-Kalish et al., Nature '05

Measuring Scattering Phases

Friedel Sum Rule

"The transmission phase at energy E jumps by π each time E crosses a bound state in the scatterer."

DoS vs. Green's fcn

$$\rho(\omega) = \frac{1}{\pi} \operatorname{Im} \operatorname{Tr} \left[\hat{G}^{a}(\omega) \right]$$

Fisher-Lee relation

$$S_{\alpha,\beta}(\omega) = \delta_{\alpha,\beta} - 2i\sqrt{\Gamma_{\alpha}\Gamma_{\beta}}G^r_{j_{\alpha},j_{\beta}}(\omega)$$

Define the phase

$$\theta_F(\omega) = \text{ImlnDet} \left[\omega - \hat{H}_{dot} - \hat{\Sigma}^a(\omega) \right]$$

$$ightarrow \ rac{\partial heta_F}{\partial \omega} = \pi
ho(\omega)$$
 and thus $N_{dot} = rac{1}{\pi} heta_F(E_F)$

$$N_{dot} = \frac{1}{\pi} \theta_F(E_F)$$

Also
$$heta_F(\omega) = rac{1}{2i} ext{lnDet} \left[\hat{S}(\omega)
ight]$$
 is a scattering phase

Levy Yeyati and Büttiker '00

Friedel Sum Rule

"The transmission phase at energy E jumps by π each time E crosses a bound state in the scatterer."

Ex.: resonant tunnel barriers (isolated resonances; 1D)

We still need to understand the phase slips in between each consecutive resonance!

$$E - E_n + i\Gamma/2$$

$$\alpha(E) = \alpha_n + \arctan[2(E - E_n)/\Gamma]$$

Taniguchi and Büttiker '99; Lee '99

Scattering Phase and Transmission Zeros

Smooth vanishing of $t=|t|\exp[i\alpha]$

Phase jump of π !

May occur, e.g. in molecular transport via interference of two different transmission paths

Taniguchi and Büttiker '99; Lee '99

Bergfield, PJ, Stafford, PRB '10

Connection to 1D external leads -> via only two points

·Fisher-Lee relation

$$t(\epsilon) = -2i(\Gamma_l \Gamma_r)^{1/2} G_{1M}(\epsilon)$$

· Green's function

$$G(\epsilon) = (\epsilon - H_{\rm D} - \Sigma(\epsilon))^{-1}$$

 $\Sigma(\epsilon)$: self-energy due to the leads

 H_D : dot's Hamiltonian

$$C_{1M}\{\epsilon - H_D - \Sigma(\epsilon)\} = 0$$

► Green's function from site 1 to

site M of the scatterer

Levy Yeyati and Büttiker, PRB '00

Vanishing of t is equivalent to

$$C_{1M} \left\{ \epsilon - H_D + \sum_{i=1}^{N} (\epsilon_i) \right\} = 0$$

Self-energy due to leads vanish except at 1 and M

cofactor does not depend on it!

$$\mathcal{C}_{1M}\{\epsilon - H_D\} = 0$$

- Occurrence of zeros depends on the isolated dot only!
- → Relate zeros to wave functions of the isolated dot

Levy Yeyati and Büttiker, PRB '00

Vanishing of t is equivalent to

$$\mathcal{C}_{1M}\{\epsilon - H_D\} = 0$$

Ralata ranca to more functions of the isolated date

How can we systematically have
$$D_m > 0$$
?
$$G_{1M}(\epsilon) - \sum_{m} \psi_m(1)\psi_m(M)/[\epsilon - \epsilon_m + \iota_{11}]$$

→ Condition for zero between resonance #m and #m+1:

$$D_m = \psi_m(1)\psi_m(M)\psi_{m+1}(1)\psi_{m+1}(M) > 0$$

Experimental dots are ballistic and irregularly shaped

Use statistical method to calculate average of D_m

$$\langle D_m \rangle = \langle \psi_m(1)\psi_m(M)\psi_{m+1}(1)\psi_{m+1}(M) \rangle$$
$$\simeq \langle \psi_m(1)\psi_m(M)\rangle \langle \psi_{m+1}(1)\psi_{m+1}(M)\rangle$$

Berry '77: wavefunctions in ballistic systems have long-range correlations

$$\langle \psi_m(1)\psi_m(M)\rangle = J_0(k_m|\mathbf{r}_1 - \mathbf{r}_M|)/A$$

Note: to be compared with exp. small correlations in diffusive systems!

$$\langle \psi_m(1)\psi_m(M)\rangle \sim \exp[-k_m\ell]$$

$$\langle D_m \rangle = J_0(k_m |\mathbf{r}_1 - \mathbf{r}_M|) J_0(k_{m+1} |\mathbf{r}_1 - \mathbf{r}_M|) / A^2$$

Fluctuations are small (not shown) -> neglect them When $\langle D_m \rangle > 0$ -> t=0 somewhere between resonance #m and #m+1

Grey regions have $\langle D_m \rangle \langle 0$ (change in sign of Bessel function from k_m to k_{m+1})

Molina, Jalabert, Weinmann and PJ, PRL '12

$$\langle D_m \rangle = J_0(k_m |\mathbf{r}_1 - \mathbf{r}_M|) J_0(k_{m+1} |\mathbf{r}_1 - \mathbf{r}_M|) / A^2$$

Take finally 2D spacing + asymptotic of Bessel function

$$k_{m+1} - k_m \simeq \pi/(kL^2)$$

$$J_0(kL) \simeq \sqrt{2/(\pi kL)}\cos(kL - \pi/4)_1$$

Probability not to have a transmission zero is

$$\mathcal{P} \simeq (kL)^{-1}$$

Molina, Jalabert, Weinmann and PJ, PRL '12

$$\langle D_m \rangle = J_0(k_m |\mathbf{r}_1 - \mathbf{r}_M|) J_0(k_{m+1} |\mathbf{r}_1 - \mathbf{r}_M|) / A^2$$

→ Probability NOT to have a transmission zero is

$$\mathcal{P} \simeq (kL)^{-1}$$

Numerics on chaotic dot at kL ~ 100

Molina, Jalabert, Weinmann and PJ, PRL '12

Semiclassical Crossover

Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots

M. Avinun-Kalish¹, M. Heiblum¹, O. Zarchin¹, D. Mahalu¹ & V. Umansky¹

Few electrons ~ small kL missing phase slips aka mesoscopic behavior

More electrons ~ large kL systematic phase slips aka universal behavior

Scattering Phases w. superconductor

What is Andreev reflection

· low-energy electron quasiparticle approaches superconductor from normal region

"Charge-reversing retro-reflection"

Andreev, '64; sidenote: Andreev reflection ~ Hawking radiation

Scattering Phases w. superconductor

Superconductivity:

- electrons enter by pair only
- → Andreev reflection of e into holes+injection of a Cooper pair

 \rightarrow Friedel sum rule -> transmission phase = 0 (mod 2 π)

$$N_{dot} = \frac{1}{\pi} \theta_F(E_F)$$

Good news: Friedel sum rule holds!

Andreev interferometer; Whitney and PJ, '09, '10

Bad news : ...kind of trivially...

Symmetry classes - the 10-fold way

"Dyson's 3-fold way + particle-hole symmetry"

Time-reversal symmetry
Particle-hole symmetry

Antiunitary symmetries $P^2, T^2 = -1, 0, 1$

3x3=9 and two possibilities for P=T=0 -> 10-fold way

F Dyson

J Verbaarschot

Symmetry class		TRS	PHS	SLS
Wigner-Dyson	A (unitary)	0	0	0
	AI (orthog.)	+1	0	0
	AII (sympl.)	-1	0	0
Chiral	AIII (unitary)	0	0	1
	BDI (orthog.)	+1	+1	1
	CII (sympl.)	-1	-1	1
Altland-Zirnbauer	D	0	+1	0
	C	0	-1	0
	DIII	-1	+1	1
	CI	+1	-1	1

M Zirnbauer

A Altland

Classification of nontrivial topological states vs. symmetries

PHYSICAL REVIEW B 78, 195125 (2008)

Classification of topological insulators and superconductors in three spatial dimensions

Andreas P. Schnyder, 1 Shinsei Ryu, 1 Akira Furusaki, 2 and Andreas W. W. Ludwig³

		TRS	PHS	SLS	d=1	d=2	d=3
Standard	Standard A (unitary)		0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	_	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	_	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z	-	-
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-
	C	0	-1	0	_	${\mathbb Z}$	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbf{Z}
	CI	+1	-1	1		lander of the second	Z

Topological superconductors

Topological superconductor: definition

"Material that is superconducting in the bulk - with a quasiparticle excitation gap - but with zero-energy gapless surface states."

Those surface states are Majorana fermions

-> possibility to have odd # of electrons in a SC

E Majorana

Kitaev's chain: 1D p-wave superconductor

Majorana operators

$$\gamma_{i,1} = c_i^{\dagger} + c_i,$$

$$\gamma_{i,2} = i \left(c_i^{\dagger} - c_i \right)$$

$$\mathcal{H}_{\text{chain}} = -it \sum_{i=1}^{N-1} \gamma_{i,2} \gamma_{i+1,1}$$

(special case μ =0 and Δ =t)

Kitaev's chain: 1D p-wave superconductor

$$\mathcal{H}_{\text{chain}} = -it \sum_{i=1}^{N-1} \gamma_{i,2} \gamma_{i+1,1}$$

Fermion operators

$$\tilde{c}_i = (\gamma_{i+1,1} + i\gamma_{i,2})/2$$

$$ilde{c}_1$$
 $ilde{c}_2$ $ilde{c}_{N-1}$

$$\mathcal{H}_{\text{chain}} = 2t \sum_{i=1}^{N-1} \tilde{c}_i^{\dagger} \tilde{c}_i$$

Kitaev's chain: 1D p-wave superconductor

Absence of
$$\tilde{c}_M = (\gamma_{N,2} + i\gamma_{1,1})/2$$
 !!! -> zero-energy state ("two half-fermions")

Majorana platforms: how to generate a 1D p-wave superconductor

- •Fu and Kane: Interface between SC and TI
- Lutchyn, Sau, Sarma; Oreg, Refael, von Oppen:
 Proximity-coupled nanowire with spin-orbit

$$H = (p_y^2/2m - \mu)\tau_z + up_y\sigma_z\tau_z + B_z\sigma_x + \Delta\tau_x$$

Majorana fermions in transport

Electron Teleportation via Majorana Bound States in a Mesoscopic Superconductor

Liang Fu

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 23 October 2009; published 2 February 2010)

Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor–quantum-spin-Hall-insulator–magnetic-insulator hybrid system.

I.e. Green's function

sign change with n->n+1

$$G^{e,o}(x, t \to \infty; y, 0) = \mp i \xi_2^*(y) \xi_1(x) \sim O(1)$$

"long-range coherence"

- -> tunneling of single electron
- -> needs fixed parity

Friedel sum rule

- -> Connection between a scattering phase and the number of occupied states in the scatterer
- -> For Coulomb blockade, this works for the transmission phase

$$N_{dot} = \frac{1}{\pi} \theta_F(E_F)$$

i.e. additional phase of π when n->n+1

Not observable for trivial superconductor (N=2,4,6,...)

Observable for topological superconductor:

-: MS empty

+: MS occupied

$$G^{e,o}(x, t \to \infty; y, 0) = \mp i \xi_2^*(y) \xi_1(x)$$

 $G^{e,o}(x,t o \infty;y,0) = \mp i \xi_2^*(y) \xi_1(x)$ e: MS empty [Fisher-Lee connection t_{ab} = -2 i $(\Gamma_a \Gamma_b)^{1/2} G_{ab}$]

o: MS occupied

Pj and M Büttiker, prb '13

The setup:

Normal metallic ring interrupted by a Coulomb blockaded

superconducting segment

- -> fix parity on the SC:
- •n, n+2, n+4... electrons in the trivial phase
- •n, n+1, n+2, n+3... electrons in the topological phase

General idea:

- -ring pierce by B-flux
- -low enough T
- -QM: p -> p-eA

-> ground-state current with period h/p q (p integer; q charge of the transferred particle)

Büttiker and Klapwijk: ring with superconducting segment

 $L \gg \xi$: h/pq=h/2e, h/4e..

 $L < \xi : h/pq=h/e, h/2e ...$

General idea:

-> ground-state current with period h/p q (p integer; q charge of the transferred particle)

Can one detect the presence of Majorana bound states via the periodicity of persistent currents?

Effective Hamiltonian

$$H = H_{\text{ring}} + \delta(f^{\dagger}f - 1/2) + (\lambda_1 c_{\text{L}}^{\dagger}f + \text{H.c.})$$
$$+ [-i\lambda_2(-1)^{f^{\dagger}f} c_{\text{R}}^{\dagger}f \exp(i\varphi) + \text{H.c.}].$$

C: fermions on the ring f: fermion on the topological SC

 λ : hopping on SC from left/right

 δ : energy difference between N and N+1 states (tunable)

$$\phi = \hbar \varphi / e$$

Additional projection onto |# e in ring, # e on SC> = |M,n> and |M-1,n+1>

$$H_{\text{red}} = \begin{pmatrix} \epsilon_M & \tilde{\lambda}_1 - i\tilde{\lambda}_2(-1)^{n_0}e^{i\varphi} \\ \tilde{\lambda}_1 + i\tilde{\lambda}_2(-1)^{n_0}e^{-i\varphi} & \delta \end{pmatrix}$$

$$I(\varphi) = -(e/\hbar)\partial_{\varphi}E_{-}$$

$$I(\varphi) = \frac{e}{\hbar} \frac{(-1)^{n_0} \tilde{\lambda}_1 \tilde{\lambda}_2 \cos \varphi}{\sqrt{(\epsilon_M - \delta)^2 / 4 + \tilde{\lambda}_1^2 + \tilde{\lambda}_2^2 + 2\tilde{\lambda}_1 \tilde{\lambda}_2 (-1)^{n_0} \sin \varphi}}$$

$$I(\varphi) = \frac{e}{\hbar} \frac{(-1)^{n_0} \tilde{\lambda}_1 \tilde{\lambda}_2 \cos \varphi}{\sqrt{(\epsilon_M - \delta)^2 / 4 + \tilde{\lambda}_1^2 + \tilde{\lambda}_2^2 + 2\tilde{\lambda}_1 \tilde{\lambda}_2 (-1)^{n_0} \sin \varphi}}$$

- (i) finite current at zero flux
- (ii) parity-dependence
- (iii) h/e harmonics despite SC

Free energy symmetry

Generally: $I(\phi) = -\partial_{\phi} \mathcal{F}$ with free energy even in B-field

How can one get a finite I(0)?

Answer:
$$\mathfrak{F}(\phi, B_{\mathrm{Z}}) = \mathfrak{F}(-\phi, -B_{\mathrm{Z}})$$

i.e. F even in total field (flux + Zeeman)

Proof: take wire hamiltonian

$$H = (p_y^2/2m - \mu)\tau_z + up_y\sigma_z\tau_z + B_Z\sigma_x + \Delta\tau_x$$

 $B_{\rm Z}
ightarrow -B_{\rm Z}$ is equivalent to space inversion in y-direction

~ interchanges Majorana operators

$$\star \phi \to -\phi$$

Onsager symmetry

Aharonov-Bohm conductance setup

Fixed B_Z -> antisymmetric conductance

But NOT a violation of Onsager, i.e.

$$G(\phi, B_{\rm Z}) = G(-\phi, -B_{\rm Z})$$

In Memoriam Markus Büttiker (1950-2013)

