AI & Chatbots DISRUPT21 – 2ª Entrega

FIAP

Turma: 1TDSF Grupo: Toppo

Data: 20/11/2020

Aluno	RM
Artaxerxes Antônio	86180
Carla Hilst	84998
Fernanda Ribeiro	85800
Leandro Guidon	85756
Lucas Godoy	85216

Introdução

No filme *De Volta para o Futuro*, de 1985, dirigido por Robert Zemeckis, o protagonista vive no ano de 1985 e faz uma viagem no tempo para o ano de 1955, e tanto no presente quando no passado são mostradas várias tecnologias. Como o personagem viaja para o passado, ele leva consigo tecnologias de 1985, que terminam por afetar a realidade de 1955.

Dentre as tecnologias presentes no filme, podemos citar:

- o carro Delorean, que se transforma na máquina do tempo;
- o plutônio;
- o capacitor de fluxo;
- o uso de 1,21 gigawatts;
- o relógio da torre;
- o relógio eletrônico de circuitos de tempo;
- o velocímetro digital;
- a extensão de para-raios;
- o dispositivo Mr. Fusion, que converte lixo em energia para o capacitor de fluxo;
- o carro se tornar voador ao final do filme;

 o escapamento, que libera ar gelado para resfriar o reator nuclear usado pelo capacitor de fluxo.

Análise dos dados

Para analisar o uso destas tecnologias no filme, decidimos usar a técnica de regressão linear, que, dentro de Machine Learning, é uma das técnicas supervisionadas, ou seja, preditivas, para a qual são providos exemplos com resposta para que o algoritmo crie um modelo que faça uma predição de valor. Ela é utilizada para mostrar ou predizer a relação entre dois fatores através desta predição (Devault, 2020).

Uma vez que no primeiro filme da trilogia o personagem principal leva consigo algumas tecnologias do futuro, como a máquina do tempo, e nos filmes seguintes há uma interação ainda maior entre tecnologias do futuro e do passado, uma forma de utilizar esses dados seria analisar quais tecnologias são utilizadas em cada ano e, assim, descobrir quais influenciam cada época do filme. Assim, poderíamos descobrir quantas vezes o carro, por exemplo, é utilizado em 1955 em comparação com outra tecnologia do futuro, como o Mr. Fusion, e estabelecer uma comparação entre a frequência de uso e a relevância dessas duas tecnologias naquela época.

A partir desses dados, poderíamos averiguar o nível de influência de cada época sobre as outras, o que nos permitiria observar a conexão entre a cronologia, as épocas e as tecnologias da história. Como o foco deste estudo é o primeiro filme, cujo conjunto de dados é escasso, não teríamos uma análise aprofundada sobre essa conexão; no entanto, a partir do segundo filme há a introdução de inúmeras tecnologias. Isso nos permitiria analisar o impacto das tecnologias de 1985 em 1955 comparado às tecnologias de 2015 utilizadas em épocas passadas, o que nos traria uma visão mais clara de sua relevância no desenvolvimento da história.

Como a viagem no tempo é o tema central da trama, o impacto que as tecnologias de uma época têm sobre as outras pode ser considerado um fator importante do filme, e o resultado dessa análise nos permitiria entender melhor a relação entre cada época da história.

Regressão linear

Uma vez que o primeiro filme se foca na viagem ao passado, decidimos nos focar no impacto do futuro no passado. Para analisar a influência de cada tecnologia, decidimos atribuir um quociente de impacto de roteiro para as tecnologias citadas, que definimos de acordo com a relevância que julgamos que cada uma delas tem na trama. Definimos também a idade de cada tecnologia em relação a 1955, a época mais antiga e foco do primeiro filme. Tecnologias criadas antes de 1955 tiveram sua idade definida como 0, pois sua idade não é um fator relevante para a história, já que os personagens de todos os anos mostrados no filme já estavam habituados à sua presença.

Tecnologia	Idade	Impacto	Justificativa
Capacitor de fluxo	30	5	Sem ele, o carro não
			viajaria no tempo,
			porém não é um
			fator determinante
			na história.
Máquina do tempo	30	10	Sem ele, não haveria
			a viagem no tempo,
			o ponto principal da
			história.
Carro voador	60	3	Ilustra o nível de
			inovação de Doc e os
			caminhos que se
			abrirão do segundo
			filme em diante,
			porém não tem
			grande impacto no
			primeiro.
Escapamento de ar	30	5	Sem ele, o carro não
gelado			viajaria no tempo,
			porém não é um

			fator determinante
			na história.
Extensão de para-	0	9	É um dos pontos de
raios			maior tensão do
			filme e permite que
			Marty volte ao
			futuro.
Mr. Fusion	60	2	Ilustra o nível de
			inovação de Doc,
			porém não tem um
			grande impacto no
			primeiro filme.
Plutônio	0	8	Causa a morte de
			Doc e incentiva
			Marty a viajar no
			tempo, sendo,
			portanto, um fator
			de grande relevância
			para a trama.
Relógio da torre	0	7	Sem ele, Doc
			provavelmente não
			teria uma fonte de
			energia para fazer o
			carro viajar ao
			futuro.
Relógio eletrônico de	30	5	Permite que os
circuitos de tempo			personagens
			indiquem a época a
			que desejam ir,
			porém não é um
			fator determinante
			na trama.

Uso de 1,21	30	7	Obriga Doc a usar
gigawatts			plutônio no início do
			filme e a buscar uma
			fonte de energia no
			final dele.
Velocímetro digital	21	1	Ilustra uma
			modernidade de
			1985, porém não é
			um fator
			determinante da
			trama.

A partir desses dados, fizemos a análise das figuras 1 e 2 e obtivemos o resultado da figura 3.

```
import numpy as np
import scipy
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
idade=[30,30,60,30,0,60,0,0,30,30,21] # idade das tecnologias
impacto=[5,10,3,5,9,2,8,7,5,7,1] # quociente de impacto de roteiro
xData = np.array(idade)
yData = np.array(impacto)
def equacaoLinear(x, a, b):
    return a * x + b
parametrosIniciais = np.array([1.0, 1.0])
# otimização através do erro médio quadrado (MSE)
parametrosOtimizados, pcov = curve_fit(equacaoLinear, xData, yData, parametrosIniciais)
previsaoModelo = equacaoLinear(xData, *parametrosOtimizados)
erroAbsoluto = previsaoModelo - yData # (valor previsto - valor real)
```

Figura 1: Início do código

```
SE = np.square(erroAbsoluto)
MSE = np.mean(SE)
print('SE: ', SE)
print('MSE: ', MSE)
# MSE: 4.864239075841287
Rsquared = 1.0 - (np.var(erroAbsoluto) / np.var(yData))
print('Coeficiente de Determinação:', Rsquared)
# mostra os parâmetros da regressão
print('Y = {}X {}'.format(parametrosOtimizados[0],parametrosOtimizados[1]))
# Y = -0.08084714549038652X 7.775138121561744
f = plt.figure(figsize=(4, 4), dpi=100)
axes = f.add_subplot(111)
axes.plot(xData, yData, 'ro')
xModel = np.linspace(min(xData), max(xData))
yModel = equacaoLinear(xModel, *parametrosOtimizados)
axes.plot(xModel, yModel)
plt.xlabel("Idade")
plt.ylabel("Impacto")
```

Figura 2: Final do código

Figura 3: Resultado

Análise do resultado

Como podemos ver o gráfico obtido, as tecnologias mais relevantes em 1955 são as deste próprio ano, com algumas de 1985 tendo um impacto em nível similar, e uma em particular, a máquina do tempo, tendo o maior nível de relevância. Podemos ver também que as tecnologias de 2015, 60 anos à frente, não têm grande nível de influência na trama, apesar de ainda serem mais relevantes do que a tecnologia 21 anos à frente de 1955, o velocímetro digital.

Acreditamos que, caso analisássemos o segundo e o terceiro filmes, veríamos uma interação consideravelmente maior entre as épocas, o que nos traria uma compreensão maior sobre a relação entre os anos do filme.

Com os dados atuais, fica claro que, apesar do grande nível de influência das tecnologias de 1985 em 1955, as próprias inovações da época mais antiga são, por si só, uma grande força motora da história.

Referências bibliográficas

Devault, G. What A Simple Linear Regression Model Is and How It Works. Califórnia: 09 de janeiro de 2020. Disponível em: https://www.thebalancesmb.com/what-is-simple-linear-regression-2296697. Acesso em 13 de novembro de 2020.