Model Rocket Telemetry and Launch Control

Colin McKinney

Chase Engle
Chris Silman
Collin Hoffman
Brandon Crudele
Cole Thornton
William Li

ECE 568 Embedded SystemsResearch Project Presentation
30 April 2025

Project Goals

- Create two embedded systems for model rocketry: a ground station and flight computer, linked by RF, to control launch and collect and transmit flight telemetry.
- Outperform an existing consumer-grade product (JollyLogic) at a lower cost than an existing professional-grade product (Multitronix).

Ground: Sensors, UI, Custom PCB

Flight: MCU, Sensors, Rocket

Methodology: Hardware and Software

Hardware

- MCUs: Adafruit RP2040 Feathers w/ STEMMA QT and LoRa 915 MHz radio.
- 915 MHz RF is within unlicensed ISM band (FCC Part 15). Low power, long range.
- Ground: sensors, user interface, safety switch, launch control, antenna, custom PCB and housing.
- Flight: sensors, antenna, ignition control, parachute, custom payload housing.

Software

- Used C++/Arduino IDE instead of MicroPython, due to RF library.
- Modular class structure for reusability.
- Rocket and ground station operate as a linked state machine. Synchronous state transitions.
- DOF sensor information used to detect flight status changes.
- One-shot timer used to detect ignition failures.

Methodology: Safety

- Rocket motors and igniters are flammable and explosive.
- Critical that systems are fail safe.
- Arming and launching required a multi-step and human-centered process, with active verification

Subset of UML State Diagram

Test and Evaluation

- **Build-up approach** including iterative hardware and software debug and integration for val/ver.
 - o e.g. ignition interlocks, RF link
- Multiple static and dynamic ground and flight tests
 - o e.g. commands, states, telemetry
- Comparison with existing COTS solutions for size, weight, power, cost, performance

• "Truth data" from OpenRocket simulations, with ride-along data from a JollyLogic unit.

Video: BOILER 7 mission launch (COREC Park, Purdue, 28 April 2025)

Selected Results

Mission	Result	Details
Boiler 4	Partial Success	Apogee ~25 m. Data collection failure. Parachute deployment occurred too late. Action: Changed motor, improved code and data retention methods.
Boiler 7	Success	Apogee 16.1 m (flight computer) 22.6 m (Jolly Logic) 18.8 m (OpenRocket) Peak velocity 7.51 m/s (flight computer) 19.4 m/s (Jolly Logic) 16.5 m/s (OpenRocket)

Costs excluding rocket, motors, misc. parts:

Our units: ~\$250 (\$125 each)

JollyLogic: ~\$100Multitronix: ~\$3,000

Future Work

- RF reliability was a significant challenge. Opportunity for growth!
- Design system to require two separate human operators.
- Develop PCBs with IC components.
- Improve sensor calibration and simulation parameters.
- Utilize auxiliary storage for enhanced data logging and reliability.

Questions?

Thank you for your attention!

