Circuitos Eulerianos

Prof. Leandro G. M. Alvim

Agenda

- Grafos Eulerianos
- Algoritmo de Fleury
- Detecção de Pontes

• É possível caminhar pela cidade passando por todas as pontes uma unica vez?

- Análise de Euler
 - Primeiro passo

- Análise de Euler
 - Segundo passo
 - Para que tenha solução, devemos ter um número par de arestas em cada terreno

- Teorema de Euler
 - Um grafo não dirigido G é euleriano se somente se G é conexo e cada vértice V tem grau par

• É euleriano?

Grafos Eulerianos

- Verificar se um grafo não dirigido G é euleriano
 - Verificar se G é conexo
 - Verificar se cada vértice de G tem grau par

Grafos Eulerianos

- Verificar se um grafo dirigido G é euleriano
 - Verificar se G é conexo
 - Verificar se cada vértice de G tem grau de saída igual ao grau de entrada

Circuitos Eulerianos

- Se um grafo é euleriano
 - Circuito Euleriano
 - Algoritmo de Fleury (1883)

- I. Escolha um vértice inicial
- 2. Escolha uma aresta e marque como visitada
- 3. Caminhe para o próximo vértice
- 4. Volte ao passo 2

- De preferência, a aresta escolhida não deve ser uma ponte
- A escolha de uma ponte deve ser a última opção

- De preferência, a aresta escolhida não deve ser uma ponte
- A escolha de uma ponte deve ser a última opção

E se escolhermos uma ponte como primeira opção?

Grafo Desconexo

D C E A F

- De preferência, a aresta escolhida não deve ser uma ponte
- A escolha de uma ponte deve ser a última opção

```
CiruitoEuleriano(u):
```

```
pos = 0
```

visita(u)

```
visita(u):
   Enquanto vizinhos(u):
    v=vizinho(u)
    Se grau(u)== I ou (grau(u)> I e não é ponte(u,v)):
      remove(u,v)
      visita(v)
circuito[pos++] = u
```

```
visita(u):
  Enquanto vizinhos(u):
    v=vizinho(u)
    Se grau(u)==I ou (grau(u)>I e não é ponte(u,v)):
      circuito[pos++] = u
      remove(u,v)
      u = v
```

Complexidade

- Fleury O(E^2)
 - Percorrer o Grafo O(E)
 - Para cada aresta, verificar pontes
 - Tarjan O(V+E)

Caminho Euleriano

- Seja um grafo G que possui apenas dois vértices de grau ímpar
- Como podemos encontrar um caminho euleriano qualquer?