Amendments to the Claims:

Claim I canceled.

Claim 2 (currently amended) A compound of formula (I)

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{5}
 \mathbb{R}^{5}

according to claim 1 wherein X is O; R1 is C6-14 aryl substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, -CN, -SR⁶, -S(O)₂R⁶; or heterocycle, optionally substituted with one or more substituents selected from the group consisting of C₁₋₈alkyl, -CN, and C₆₋₁₄arylC₁₋₈alkyl; R⁶ is C₁₋₈alkyl, optionally substituted with halogen; R^7 is $C_{1.9}$ alkyl optionally substituted with one or more substituents selected from the group consisting of hydroxy; -NH₂, or heterocycle; R² is hydrogen; R³ is hydrogen or C_{1.8} alkyl; R4 is heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo, halogen, C1.8 alkyl, -OR11 and -SR10N(R10), S(O), NR8R9; or C6. 14 aryl substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, C₁₋₈alkyl, hydroxyC₁₋₈alkyl, -CN, -NO₂, -C(O)NH₂, -S(O)R⁷, - $S(O)_2R^7$, $-S(O)_2NR^8R^9$, $-OR^{11}$, $-C(O)NR^{11}$, $-C(O)OR^{11}$, $-NR^{11}$, $-NC(O)R^{11}$, and heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C₁₋₂alkyl and heterocycleC₁₋₂alkyl; R³and R⁹ are the same or different and are selected from the group consisting of hydrogen, Cisalkyl, Cisalkylheterocycle, heterocycle, and C3-cycloalkyl; R10 is C1-salkyl; R11 is C1-salkyl, optionally substituted with -SO₂NR⁸R⁹; and R⁵ is halogen or -NO₂; or a pharmaceutically acceptable derivative thereof.

Claim 3 (currently amended) A compound of formula (I) according to claim [[1]] 2 wherein X is O; R^1 is C_{6-14} aryl substituted with one or more substituents selected from the group consisting of halogen, $-CF_3$, C_{1-8} alkyl, and -CN; R^2 and R^3 are hydrogen; R^4 is C_{6-14} aryl substituted with one or more substituents selected from the group consisting of halogen, C_1 .

₈alkyl, -CN, -NO₂, -S(O)R⁷, -S(O)₂R⁷, -NS(O)₂R⁷, wherein R⁷ is -NH₂; and R⁵ is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 4 (currently amended) A compound of formula (I)

$$\begin{array}{c|c}
R^{2} & N \\
\hline
R^{3} & R^{4}
\end{array}$$
(I)

according to claim 1 wherein X is O; R^1 is $C_{6.14}$ aryl which may be optionally substituted with one or more substituents selected from the group consisting of halogen, $C_{1.8}$ alkyl, CF_3 , -CN; R^2 and R^3 are hydrogen; R^4 is $C_{6.14}$ aryl substituted with one or more substituents selected from the group consisting of $C_{1.8}$ alkyl and $S(O)_2NR^8R^9$, wherein R^6 and R^9 are independently selected from the group consisting of hydrogen, $C_{2.6}$ cycloalkyl, $C_{1.8}$ alkyl optionally substituted with one or more substituents selected from the group consisting of oxo, heterocycle, CN and $C_{6.14}$ aryl optionally substituted with alkoxy, $C_{1.8}$ alkylamino, $C_{1.8}$ alkylheterocycle, heterocycle $C_{1.8}$ alkyl, $C_{2.6}$ cycloalkyl, and $C_{3.6}$ cycloalkyl.

Claim 5 (currently amended) A compound of formula (I)

$$\mathbb{R}^{1}$$
 \mathbb{R}^{5}
 \mathbb{R}^{2}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{3}

according to claim-1 wherein R^1 is $C_{6.14}$ aryl substituted with one or more substituents selected from the group consisting of halogen, -CF₃, $C_{1.8}$ alkyl, and -CN; R^2 and R^3 are hydrogen; R^4 is $C_{6.14}$ aryl substituted with one or more substituents selected from the group consisting of halogen, $C_{1.8}$ alkyl, -CN, -NO₂, -S(O)₂ R^7 , -NS(O)₂ R^7 , wherein R^7 is -NH₂; and R^5

is halogen; or a pharmaceutically acceptable derivative thereof provided that when X is C; R^2 and R^3 are hydrogen; R^4 is C_{6-14} aryl substituted with halogen, CN, C_{1-8} alkyl, -NO₂; and R^5 is halogen, then R^1 cannot be C_{6-10} aryl substituted with alkoxy.

Claim 6 (original) A compound of formula (IA)

$$R^{1}$$
 R^{5}
(IA)

wherein:

X is C, O, or N;

R¹ is C₆₋₁₄aryl which may be optionally substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C₁₋₈alkyl, C₁₋₈alkylamino, alkoxy, C₃₋₆cycloalkylC₂₋₆alkenyl, C₆₋₁₄arylC₂₋₆alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)_R⁷, -S(O)₂R⁷, -C(O)R⁷, C₂₋₆alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle and C₂₋₆alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl, and heterocycle;

R⁶ is C_{1-s}alkyl optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, -CF₃, aryl, and heterocycle;

R⁷ is C_{1.8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, aryl, C_{3.6}cycloalkyl and heterocycle; -NH₂; or heterocycle;

R² is hydrogen, halogen, or C_{1.4}alkyl;

R3 is hydrogen:

R⁴ is C₅₋₁₄aryl-substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, C₁₋₈alkyl, hydroxyC₁₋₈alkyl, -CN, -NO₂, C₁₋₈alkylamino, heterocycleC₁₋₈alkyl, -C(O)NH₂, -S(O)₂R⁷, -S(O)₂R⁷, -C(O)R⁷, -NS(O)₂R⁷, -S(O)₂NR⁶R⁹, -S(O)₂NHR¹¹, -S(O)₂R¹¹, -S(O)₂NR⁷COR¹¹, -S(O)₂NHCOR¹¹, -S(O)₂[COR¹¹]_n wherein n is

> 1, 2, or 3, $-OR^{11}$, $-OR^{11}OR^{11}$, $-C(O)R^{11}$, $-C(O)NR^{11}$, $-C(O)OR^{11}$, $-NR^{11}$, $-NC(O)R^{11}$, heterocycleC_{2-s}alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C₁₋₈alkyl, and C(O)OR¹¹, and C₁ galkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, C₃. 6cycloalkyl, C₁₋₈alkyl optionally substituted with one or more substituents selected from the group consisting of oxo, heterocycle, CN and C614 aryl optionally substituted with alkoxy, C₁₋₈ alkylamino, C₁₋₈ alkylheterocycle, heterocycle, heterocycleC₁₋₈ alkyl, C₃₋ cycloalkylC1.8alkyl, and C3.6cycloalkyl;

R¹¹ is C₁₋₈alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, hydroxy, halogen, C1.8alkyl, C3.ccycloalkyl, alkoxy, -S(O), NR⁸R⁹, NCONH₂, and heterocycle optionally substituted with one or more substituents selected from the group consisting of oxo, hydroxy, and C_{1-s}alkyl; heterocycle optionally substituted with heterocycleC_{1.8}alkyl; or C_{6.14}aryl optionally substituted with alkoxy;

R⁵ is hydrogen, halogen, C_{1-s}alkyl, -NO₂, -NH₂, C_{1-s}alkylamino, CF₃, or alkoxy; or a pharmaceutically acceptable derivative thereof provided that

- a) when X is C; R^2 is hydrogen, halogen or $C_{1,3}$ alkyl; R^3 is hydrogen; R^4 is $C_{6,1,4}$ aryl substituted with halogen, hydroxy, or C_{1.8}alkyl; R⁵ is hydrogen, halogen, C_{1.8}alkyl, or alkoxy; then R1 cannot be C1-8alkyl, C3-cycloalkyl, or C6-14aryl substituted with halogen, C₁₋₈alkyl, or C₆₋₁₄arylC₂₋₆alkenyl; and
- (b) when X is C; R² is hydrogen or alkyl; R³ is hydrogen; R⁴ is C_{6.14}aryl substituted with halogen, CN, alkyl, or -NO₂; R³ is hydrogen, -NO₂, or NH₂, then R¹ cannot be C₁₀₋₁₄ aryl substituted with alkoxy.

Claim 7 (original) A compound of formula (IA) according to claim 6 wherein X is O; R1 is C₆₋₁₄ aryl substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C₁₋₂alkyl, -CN, C₂₋₆alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle and C2-alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl, and heterocycle; R² and R³ are hydrogen; R4 is C6-14 aryl substituted with one or more substituents selected from the group consisting of C_{1.3}alkyl, -S(O)₂R⁷, -S(O)₂NR¹R⁹, -OR¹¹, heterocycleC_{2.6}alkenyl, and heterocycle which may be optionally substituted with oxo; and R5 is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 8 (canceled)

Claim 9 (currently amended) A compound of formula (IB)

$$R^1$$
 R^5
(IB)

according to claim 8 wherein X is O; R¹ is C₆₋₁₄ aryl substituted with one or more substituents selected from the group consisting of halogen, -CF₃, and -CN; R² is hydrogen; R³ is hydrogen; R⁴ is heterocycle; and R⁵ is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 10 (original) A compound of formula (IC)

$$R^1$$
 R^3
(IC)

wherein:

X is C, O, or N;

R¹ is heterocycle, optionally substituted with one or more substituents selected from the group consisting of C_{1.8}alkyl, halogen, -CN, C_{6.14}arylC_{1.8}alkyl and heterocycle;

R² is hydrogen, halogen, or C_{1.8}alkyl;

R³ is hydrogen;

R⁴ is C₆₋₁₄aryl substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, C₁₋₈alkyl, hydroxyC₁₋₈alkyl, -CN, -NO₂, C₁₋₈alkylamino, heterocycleC₁₋₈alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷,

-NS(O)₂R⁷, -S(O)₂NR⁸R⁹, -S(O)₂NHR¹¹, -S(O)₂R¹¹, -S(O)₂NR⁷COR¹¹, -S(O)₂NHCOR¹¹, -S(O)₂[COR¹¹]_n wherein n is 1, 2, or 3, -OR¹¹, -OR¹¹OR¹¹, -C(O)R¹¹, -C(O)NR¹¹, -C(O)OR¹¹, -NC(O)R¹¹, heterocycle C₂₋₆alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C₁₋₅alkyl, and C(O)OR¹¹, and C₁₋₈alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R⁷ is C_{1.8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, aryl, C_{3.6}cycloalkyl and heterocycle; -NH₂; or heterocycle;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, C_3 . 6cycloalkyl, $C_{1.8}$ alkyl optionally substituted with one or more substituents selected from the group consisting of oxo, heterocycle, CN and $C_{6.14}$ aryl optionally substituted with alkoxy, $C_{1.8}$ alkylamino, $C_{1.8}$ alkylheterocycle, heterocycle, heterocycle $C_{1.8}$ alkyl, C_3 . 6cycloalkyl $C_{1.8}$ alkyl, and $C_{3.6}$ cycloalkyl;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, alkoxy, $-S(O)_2NR^8R^9$, $-NR^8R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_{1-8} alkyl;

R⁵ is hydrogen, halogen, C_{1.8}alkyl, -NO₂, -NH₂, C_{1.8}alkylamino, CF₃, or alkoxy; or a pharmaceutically acceptable derivative thereof.

Claim 11 (original) A compound of formula (IC) according to claim 10 wherein X is O; R¹ is heterocycle, optionally substituted with -CN; R² and R³ are hydrogen; R⁴ is C₆₋₁₄aryl substituted with one or more substituents selected from the group consisting of C₁.

8alkyl, -S(O)₂NR⁸R⁹, -OR¹¹, and heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo; and R⁵ is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 12 (original) A compound of formula (ID):

(ID)

wherein:

X is C. O. or N;

R¹ is heterocycle, optionally substituted with one or more substituents selected from the group consisting of C_{1.8}alkyl, halogen, -CN, C_{6.14}arylC_{1.8}alkyl and heterocycle;

R² is hydrogen, halogen, or C_{1.8}alkyl;

R³ and R⁴ are independently hydrogen; hydroxy; heterocycle optionally substituted with one or more substituents selected from the group consisting of oxo, hydroxy, hydroxyC₁.

§alkyl, halogen, C₁₋₈alkyl, -OR¹¹, -S(O)₂NR⁸R⁹, and -SR¹⁰N(R¹⁰)₂; or R³ and R⁴ together with the nitrogen atom to which they are attached form a heterocycle which may be optionally substituted with C₆₋₁₄aryl, which may be optionally substituted with one or more substituents selected from the group consisting of C₁₋₈alkyl and -NO₂; provided that R³ and R⁴ cannot both be hydrogen or hydroxy;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, C_3 . 6cycloalkyl, $C_{1.9}$ alkyl optionally substituted with one or more substituents selected from the group consisting of oxo, heterocycle, CN and $C_{6.14}$ aryl optionally substituted with alkoxy, $C_{1.8}$ alkylamino, $C_{1.8}$ alkylheterocycle, heterocycle, heterocycle $C_{1.8}$ alkyl, C_3 6cycloalkyl $C_{1.8}$ alkyl, and $C_{3.6}$ cycloalkyl;

R10 is C1-8alkyl;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, and heterocycle optionally substituted with one or more substituents selected from the group consisting of oxo, and C_{1-8} alkyl;

R⁵ is hydrogen, halogen, C₁₋₈alkyl, -NO₂, -NH₂, C₁₋₈alkylamino, CF₃, or alkoxy; or a pharmaceutically acceptable derivative thereof.

Claim 13 (original) A compound of formula (ID) according to claim 12 wherein X is O; R¹ is heterocycle; R² and R³ are hydrogen; R⁴ is heterocycle; and R⁵ is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 14 (previously presented) A compound according to claim 6 wherein X is O.

Claim 15 (original) A compound of formula (II):

NOV. 10. 2003 2:50PM

Serial No. 10/070,084 Docket No. PU3517Usw Reply to Office Action of October 9, 2003

$$R^1$$
 R^5
(II)

wherein:

R¹ is C₆₋₁₄aryl which may be optionally substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C₁₋₃alkyl, C₁₋₈alkylamino, alkoxy, C₃₋₆cycloalkylC₂₋₆alkenyl, C₆₋₁₄arylC₂₋₆alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷, C₂₋₆alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C₂₋₆alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl, and heterocycle;

R⁶ is C_{1,8}alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, aryl, and heterocycle;

R⁷ is C₁₋₈ alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl and heterocycle; -NH₂; or heterocycle;

R² is hydrogen, halogen, or C_{1,2}alkyl;

 R^3 and R^4 form a heterocycle which may be optionally substituted with C_{6-14} aryl, which may be optionally substituted with one or more substituents selected from the group consisting of C_{1-8} alkyl and -NO₂;

provided that when R^1 is unsubstituted C_{6-14} aryl, then R^3R^4 is substituted. R^5 is hydrogen, halogen, C_{1-8} alkyl, -NO₂, -NH₂, C_{1-8} alkylamino, CF_3 , or alkoxy; or a pharmaceutically acceptable derivative thereof.

Claim 16 (original) A compound of formula (II) according to claim 15 wherein R^1 is $C_{6.14}$ aryl which is substituted with halogen; R^2 is hydrogen; R^3 and R^4 form a heterocycle which may be optionally substituted with $C_{6.14}$ aryl, which may be optionally substituted with one or more substituents selected from the group consisting of $C_{1.8}$ alkyl and $-NO_2$; and R^5 is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 17 (original) A compound of formula (III):

wherein:

R¹ is C₆₋₁₄aryl which may be optionally substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C₁₋₈alkyl, C₁₋₈alkylamino, alkoxy, C₃₋₆cycloalkylC₂₋₆alkenyl, C₆₋₁₄arylC₂₋₆alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷, C₂₋₆alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C₂₋₆alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl, and heterocycle; or heterocycle, optionally substituted with one or more substituents selected from the group consisting of C₁₋₈alkyl, -CN, C₆₋₁₄arylC₁₋₈alkyl and heterocycle;

 R^6 is C_{1-3} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, $-CF_3$, aryl, and heterocycle;

R⁷ is C₁₋₈ alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, aryl, C₁₋₆ cycloalkyl and heterocycle; -NH₂; or heterocycle;

R⁴ is heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo, hydroxy, hydroxyC₁₋₈alkyl, halogen, C₁₋₈alkyl, -OR¹¹ and -SR¹⁰N(R¹⁰)₂; or C₆₋₁₄aryl substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, C₁₋₈alkyl, hydroxyC₁₋₈alkyl, -CN, -NO₂, C₁₋₈alkylamino, heterocycleC₁₋₈alkyl, -C(O)NH₂, -S(O)₂R⁷, -S(O)₂R⁷, -C(O)R⁷, -NS(O)₂R⁷, -S(O)₂NR⁸R⁹, -OR¹¹, -S(O)₂NHR¹¹, S(O)₂R¹¹, OR¹¹OR¹¹, -C(O)R¹¹, -C(O)NR¹¹, -C(O)OR¹¹, -NC(O)R¹¹, heterocycleC₂₋₈alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C₁₋₈alkyl, and -C(O)OR¹¹, and C₁₋₈alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R⁸ and R⁹ are independently selected from the group consisting of hydrogen; C₃. 6cycloalkyl; C_{1.8} alkyl optionally substituted with on or more substituents selected from

the group consisting of oxo, heterocycle, CN and $C_{6.14}$ aryl optionally substituted with alkoxy, C_{1-8} alkylamino, C_{1-8} alkylheterocycle, heterocycle, heterocycle C_{1-8} alkyl, C_{3-6} cycloalkyl C_{1-8} alkyl, and C_{3-6} cycloalkyl; or $-C(O)NH_2$;

R10 is CLealkyl;

R¹¹ is C₁₋₈alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C₁₋₈alkyl, alkoxy, -S(O)₂NR⁸R⁹, -NR⁸R⁹ and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C₁₋₈alkyl;

R³ is hydrogen; halogen; C₁₋₈alkyl; -NO₂; -NH₂; C₁₋₈alkylamino; CF₃, or alkoxy; or a pharmaceutically acceptable derivative thereof, provided that:

- (a) when R^4 is $C_{6.14}$ aryl substituted with OR^{11} wherein R^{11} is NR^8R^9 wherein R^8 and R^9 are $C_{1.8}$ alkyl, and R^1 is $C_{6.14}$ aryl, then R^1 cannot be substituted in the para position, and
 - (b) R¹ and R⁴ cannot both be unsubstituted.

Claim 18 (original) A compound of formula (III) according to claim 17 wherein R¹ is C₆₋₁₄ arylsubstituted with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, -CN, -SR⁶, -S(O)₂R⁶; or heterocycle, optionally substituted with one or more substituents selected from the group consisting of C_{1.8}alkyl, -CN, and C_{6.14}arylC_{1.8}alkyl; R⁶ is $C_{1.8}$ alkyl, optionally substituted with halogen; R^7 is $C_{1.8}$ alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, -NH₂, or heterocycle; R⁴ is heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo, halogen, C_{1.8}alkyl, -OR¹¹ and -SR¹⁰N(R¹⁰)₂; or C_{6.14}aryl substituted with one or more substituents selected from the group consisting of hydroxy, -CF₃, C₁₋₈alkyl, hydroxy $C_{1,8}$ alkyl, -CN, -NO₂, -C(O)NH₂, -S(O)₂R⁷, -S(O)₂NR⁸R⁹, -OR¹¹, -C(O)NR¹¹, -C(O)OR¹¹, -NR¹¹, -NC(O)R¹¹, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo and C1-salkyl; R8 and R9 are the same or different and are selected from the group consisting of hydrogen, C₁₋₈alkyl, C₁. alkylheterocycle, heterocycle, and C, cycloalkyl; R10 is C, alkyl; R11 is C, alkyl, optionally substituted with -S(O)2NR²R²; and R⁵ is halogen or -NO2, or a pharmaceutically acceptable derivative thereof.

Claim 19 (original) A compound of formula (III) according to claim 17 wherein R¹ is C₆₋₁₄aryl substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, and -CN; R⁴ is C₆₋₁₄aryl substituted with one or more substituents selected from the group consisting of halogen, C_{1.8}alkyl, -CN, -NO₂, -S(O)₂R⁷, -NS(O)₂R⁷, wherein R⁷ is -NH₂; and R⁵ is halogen; or a pharmaceutically acceptable derivative thereof.

Claim 20 (previously presented) A compound according claim 4 wherein

R¹ is phenyl which is substituted in the *meta* position with one or more substituents selected from the group consisting of halogen, -CF₃, C₁₋₈alkyl, C₁₋₈alkylamino, alkoxy, C₃₋₆cycloalkylC₂₋₆alkenyl, C₆₋₁₄arylC₂₋₆alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)_R⁷, -S(O)₂R⁷, -C(O)R⁷, C₂₋₆alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C₂₋₆alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl, and heterocycle;

R² is hydrogen;

R³ is hydrogen;

R⁴ is phenyl substituted in the *ortho* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, or C_{1.8}alkyl and substituted at the *para* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, C_{1.8}alkyl, hydroxyC_{1.8}alkyl, -CN, -NO₂, C_{1.8}alkylamino, heterocycleC_{1.8}alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷, -NS(O)₂R⁷, -S(O)₂NR⁶R⁹, -S(O)₂NHR¹¹, -SO₂R¹¹, -OR¹¹, -C(O)R¹¹, -C(O)NR¹¹, -NC(O)R¹¹, heterocycleC_{2.6}alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C_{1.8}alkyl, and C(O)OR¹¹, and C_{1.8}alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R⁵ is a substituent in the *para* position relative to X and is selected from the group consisting of halogen, C_{1.8}alkyl, -NO₂, -NH₂, C_{1.9}alkylamino, CF₃, or alkoxy;

R¹¹ is C_{1.8}alkyl, optionally substituted with one or more substituents selected from the group

consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, $-NR^6R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_{1-8} alkyl; or a pharmaceutically acceptable derivative thereof.

Claim 21 (original) A compound of formula (IV)

$$\begin{array}{c|c}
 & R^2 \\
 & X \\
 & X$$

wherein:

X is C, O, or N;

Y is heterocycle optionally substituted with one or more substituents selected from the group consisting of halogen, C_{1.8}alkyl, -NO₂, -NH₂, C_{1.8}alkylamino, -CF₃, or alkoxy;

R¹ is C₁₋₈alkyl; C₂₋₆cycloalkyl; C₆₋₁₄aryl which may be optionally substituted with one or more substituents selected from the group consisting of halogen, -CF₃, C₁₋₈alkyl, C₁₋₈alkylamino, C₃₋₆cycloalkylC₂₋₆alkenyl, C₆₋₁₄arylC₂₋₆alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)₂R⁷, -S(O)₂R⁷, -C(O)R⁷, C₂₋₆alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C₂₋₆alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl, and heterocycle; or heterocycle, optionally substituted with one or more substituents selected from the group consisting of C₁₋₈alkyl, -CN, C₆₋₁₄arylC₁₋₈alkyl and heterocycle;

R⁶ is C_{1.8}alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, aryl, and heterocycle;

R⁷ is C₁₋₈ alkyl, optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, aryl, C₃₋₆cycloalkyl and heterocycle; -NH₂; or heterocycle;

R² is hydrogen, halogen, or C_{1.8} alkyl;

R³ and R⁴ are independently hydrogen; hydroxy; heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo, hydroxy, hydroxyC₁.

*alkyl, halogen, C_{1.8}alkyl, OR¹¹ and -SR¹⁰N(R¹⁰)₂; or C_{6.14}aryl substituted with one or more substituents selected from the group consisting of hydroxy, halogen, -CF₃, C_{1.8}alkyl, hydroxyC_{1.8}alkyl, -CN, -NO₂, C_{1.8}alkylamino, heterocycleC_{1.8}alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂R⁷, -S(O)₂NR⁸R⁹, -OR¹¹, -C(O)R¹¹, -C(O)NR¹¹, -C(O)OR¹¹, -NR¹¹, -NC(O)R¹¹, heterocycleC_{2.6}alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C_{1.8}alkyl, and C(O)OR¹¹, and C_{1.8}alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹; provided that R³ and R⁴ cannot both be hydrogen or hydroxy;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, C_{1-8} alkylamino, C_{1

R10 is C1-8alkyl;

R¹¹ is C₁₋₈alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C₁₋₈alkyl, -SO₂NR⁸R⁹, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C₁₋₈alkyl;

R⁵ is hydrogen, halogen, C_{1.8} alkyl, -NO₂, -NH₂, C_{1.8} alkylamino, CF₃, or alkoxy;

or a pharmaceutically acceptable derivative thereof.

Claim 22 (original) A compound of formula (IV) according to claim 21 wherein Y is a heterocycle substituted with one or more substituents selected from the group consisting of halogen, C₁₋₈alkyl, -NO₂, -NH₂, C₁₋₈alkylamino, -CF₃, or alkoxy; or a pharmaceutically acceptable derivative thereof. More preferred compounds of formula (IV) are compounds wherein X is O. Most preferred compounds of formula (IV) are those wherein X is O and Y is a heterocycle substituted with one or more substituents selected from the group consisting of halogen, C₁₋₈alkyl, -NO₂, -NH₂, C₁₋₈alkylamino, -CF₃, or alkoxy; or a pharmaceutically acceptable derivative thereof.

Claim 23 (original) A compound selected from the group consisting of:

- 2-[2-(1-benzothiophen-2-ylcarbonyl)-4-chlorophenoxy]-N-phenylacetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(1H-imidazol-1-yl)phenyl]acetamide;
- 2-[4-chloro-2-(2-thienylcarbonyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(1H-1,2,4-triazol-1-yl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(4-morpholinyl)phenyl]acetamide;
- N-[4-(aminosulfonyl)phenyl]-2-(2-benzoyl-4-chlorophenoxy)acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-{4-[(1,3-thiazol-2-ylamino)sulfonyl]phenyl}acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(4-methyl-1-piperazinyl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(hydroxymethyl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-{4-[(methylamino)sulfonyl]phenyl}acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide:
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(1,1-dioxo-1lambda~6~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[2-methyl-4-(4-morpholinyl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-{4-[3-(dimethylamino)propoxy]-2-methylphenyl}acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(1-hydroxyethyl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[4-(1-hydroxyethyl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;

- 2-(2-benzoyl-4-chlorophenoxy)-N-{2-methyl-4-[3-(1-pyrrolidinyl)propoxy]phenyl} acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-(1H-indazol-5-yl)acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-{2-methyl-4-[3-(4-morpholinyl)propoxy]phenyl}acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-{4-[3-(1H-imidazol-1-yl)propoxy]-2-methylphenyl} acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-(1H-indazol-6-yl)acetamide;
- 2-[4-chloro-2-(2-thienylcarbonyl)phenoxy]-N-(1H-indazol-5-yl)acetamide;
- 2-[4-chloro-2-(2-furoyl)phenoxy]-N-(1H-indazol-5-yl)acetamide;
- 2-[4-chloro-2-(3-thienylcarbonyl)phenoxy]-N-(1H-indazol-5-yl)acetamide;
- 2-[4-chloro-2-(2-thienylcarbonyl)phenoxy]-N-{2-methyl-4-[3-(4-morpholinyl)propoxy]phenyl} acetamide;
- 2-[4-chloro-2-(2-thienylcarbonyl)phenoxy]-N-[4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-(2-benzoyl-4-chlorophenoxy)-N-{2-methyl-4-[3-(1-oxo-1lambda~4~,4-thiazinan-4-yl)propoxy]phenyl}acetamide;
- 2-[4-chloro-2-(2-furoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-(2-benzoyl-4-chlorophenoxy)acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(2-thienylcarbonyl)phenoxy]acetamide;
- 2-[2-(1-benzofuran-2-ylcarbonyl)-4-chlorophenoxy]-N-phenylacetamide
- 2-[4-chloro-2-(1,3-thiazol-2-ylcarbonyl)phenoxy]-N-phenylacetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(2-furoyl)phenoxy]acetamide;
- 2-[4-chloro-2-(2-furoyl)phenoxy]-N-(1H-indazol-6-yl)acetamide;
- 2-[4-chloro-2-(3-furoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-thienylcarbonyl)phenoxy]-N-[4-(1-oxo-11ambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-thienylcarbonyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-{4-chloro-2-[(1-methyl-1H-pyrrol-2-yl)carbonyl]phenoxy}-N-phenylacetamide;
- 2-(4-chloro-2-{[5-(2-pyridinyl)-2-thienyl]carbonyl}phenoxy)-N-phenylacetamide;
- 2-[4-chloro-2-(1,3-thiazol-2-ylcarbonyl)phenoxy]-N-(1H-indazol-5-yl)acetamide;

- 2-[4-chloro-2-(1,3-thiazol-2-ylcarbonyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-pyridinylcarbonyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[2-(2-bromobenzoyl)-4-chlorophenoxy]-N-[2-methyl-4-(1-oxo-11ambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[2-(4-bromobenzoyl)-4-chlorophenoxy]-N-[2-methyl-4-(1-oxo-llambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[2-(2-bromobenzoyl)-4-chlorophenoxy]acetamide;
- 2-{4-chloro-2-[(5-methyl-3-isoxazolyl)carbonyl]phenoxy}-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-fluorobenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-chlorobenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-fluorobenzoyl)phenoxy]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-chlorobenzoyl)phenoxy]acetamide;
- 2-{4-chloro-2-[(4-cyano-2-thienyl)carbonyl]phenoxy}-N-[2-methyl-4-(1-ōxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[(4-cyano-2-thienyl)carbonyl]phenoxy}acetamide;
- 2-{4-chloro-2-[3-(trifluoromethyl)benzoyl]phenoxy}-N-[2-methyl-4-(1-oxo-1]ambda-4-,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[2-(3-bromobenzoyl)-4-chlorophenoxy]-N-[2-methyl-4-(1-oxo-1lambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[2-(3-bromobenzoyl)-4-chlorophenoxy]acetamide;
- 2-[4-chloro-2-(3-methylbenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda~4~,4-thiazinan-4-yl)phenyl]acetamide;
- 2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]-N-(5-methyl-1H-indazol-6-yl)acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-pyridinylcarbonyl)phenoxy]acetamide;

2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]-N-{2-methyl-4-[3-(1-pyrrolidinyl)propoxy]phenyl}acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[(1-methyl-1H-imidazol-2-yl)carbonyl]phenoxy}acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(1,3-thiazol-2-ylcarbonyl)phenoxy]acetamide;

2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-{2-methyl-4-[3-(1-pyrrolidinyl)propoxy]phenyl}acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]acetamide;

2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide

N-(1,3-benzothiazol-6-yl)-2-(2-benzoyl-4-chlorophenoxy)acetamide

2-(4-chloro-2-{3-[(trifluoromethyl)sulfanyl]benzoyl}phenoxy)-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide

2-[4-chloro-2-(3-ethynylbenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;

2-[4-chloro-2-(3,5-dichlorobenzoyl)phenoxy]-N-[2-methyl-4-(1-oxo-1lambda-4-,4-thiazinan-4-yl)phenyl]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5-dichlorobenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}acetamide;

N-(1,3-benzothiazol-6-yl)-2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]acetamide

2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]-N-(2-methyl-1,3-benzothiazol-5-yl)acetamide

N-[4-(aminosulfonyl)-2-methylphenyl]-2-(4-chloro-2-{3-[(trifluoromethyl)sulfanyl]benzoyl}phenoxy)acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-ethynylbenzoyl)phenoxy]acetamide;

2-(2-benzoyl-4-chlorophenoxy)-N-[4-(methylsulfonyl)phenyl]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[3-(2-cyclopentylethynyl)benzoyl]phenoxy}acetamide;

2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-(5-methyl-1H-indazol-6-yl)acetamide;

2-[4-chloro-2-(3,5-dichlorobenzoyl)phenoxy]-N-(5-methyl-1H-indazol-6-yl)acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[3-(2-phenylethynyl)benzoyl]phenoxy}acetamide;

- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-(5-methyl-1H-indazol-6-yl)acetamide;
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-[2-methyl-4-(methylsulfonyl)phenyl]acetamide;
- N-(1,2-benzisothiazol-5-yl)-2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]acetamide;
- 2-[4-chloro-2-(3,5-dichlorobenzoyl)phenoxy]-N-(5-methyl-1H-benzimidazol-6-yl)acetamide;
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-(5-methyl-1H-benzimidazol-6-yl)acetamide;
- 2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-(5-methyl-1H-benzimidazol-6-yl)acetamide
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-1-(2,3-dihydro-1H-indol-1-yl)-1-ethanone;
- 2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]-N-[2-methyl-4-(methylsulfonyl)phenyl]acetamide;
- 2-[4-chloro-2-(3-ethynylbenzoyl)phenoxy]-N-[2-methyl-4-(methylsulfonyl)phenyl]acetamide;
- N-{4-[3-(aminosulfonyl)propoxy]-2-methylphenyl}-2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]acetamide;
- 2-{2-[3,5-bis(trifluoromethyl)benzoyl]-4-chlorophenoxy}-N-(5-methyl-1H-benzimidazol-6-yl)acetamide;
- 2-{2-[(5-bromo-3-pyridinyl)carbonyl]-4-chlorophenoxy}-N-(5-methyl-1H-benzimidazol-6-yl)acetamide;
- 2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-(6-methyl-1,3-benzothiazol-5-yl)acetamide;
- N-{4-[3-(aminosulfonyl)propoxy]-2-methylphenyl}-2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-(4-chloro-2-{3-[(trifluoromethyl)sulfonyl]benzoyl}phenoxy)acetamide;
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-[4-(1,3-thiazol-2-yl)phenyl]acetamide
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-[4-(1,3-oxazol-2-yl)phenyl]acetamide
- 2-[4-chloro-2-(3,5-difluorobenzoyl)phenoxy]-N-{4-[(3-hydroxypropyl)sulfonyl]-2-methylphenyl}acetamide;
- 2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-(2-methyl-4-{3-[(methylamino)sulfonyl]propoxy}phenyl)acetamide;
- 2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-(4-{3-[(dimethylamino)sulfonyl]propoxy}-2-methylphenyl)acetamide;
- N-[4-(aminosulfonyl)-2-methylphenyl]-2-{2-[(5-bromo-3-pyridinyl)carbonyl]-4-chlorophenoxy}acetamide;

- 2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-{4-[3-(1H-imidazol-1-yl)propoxy]-2-methylphenyl}acetamide;
- 2-{4-chloro-2-[3-fluoro-5-(trifluoromethyl)benzoyl]phenoxy}-N-{2-methyl-4-[(E)-4-(1-pyrrolidinyl)-1-butenyl]phenyl}acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyano-5-fluorobenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyano-5-methylbenzoyl)phenoxy]acetamide;

N-[6-(aminosulfonyl)-4-methyl-3-pyridinyl]-2-[4-chloro-2-(3-cyano-5-methylbenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-chloro-5-cyanobenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5-dimethylbenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyano-5-ethylbenzoyl)phenoxy]acetamide;

2-[4-chloro-2-(3-cyano-5-methylbenzoyl)phenoxy]-N-{4-[3-(2,5-dihydro-1*H*-pyrrol-1-yl)propoxy]-2-methylphenyl}acetamide hydrochloride;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-chloro-5-methylbenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5-dichlorobenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[(6-cyano-2-pyridinyl)carbonyl]phenoxy} acetamide;

N-[6-(aminosulfonyl)-2-methyl-3-pyridinyl]-2-[4-chloro-2-(3-cyano-5-methylbenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5-dicyanobenzoyl)phenoxy]acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[3-cyano-5-(trifluoromethyl)benzoyl]phenoxy}acetamide;

and pharmaceutically acceptable derivatives thereof.

Claim 24 (original) A compound selected from the group consisting of compound number 7, 32, 33, 36, 38, 44, 45, 49, 51, 52, 61, 65, 66, 71, 75, 76, 111, 112, 115, 118, 119, 128, 129, 171, 172, 191, 192, 199, 200, 206, 207, 224, 225, 232, 233, 235, 236, 246, 247, 253, 254, 255, 256, 259, 260, 261, 262, 264, 265, 267, 268, 288, 289, 290, 409, 412, 428, 430, 431, 433, 491, 564, 587, 475, 478, 498, 593, 483, 637, 503, 601, 658 and pharmaceutically acceptable derivatives thereof.

```
Serial No. 10/070-084
Reply to Office Action of October 9, 2003
```

Claim 25 (original) A compound selected from the group consisting of: N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyanobenzoyl)phenoxy]acetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-fluoro-5-(trifluoromethyl)benzoyl]acetamide; N-{4-[3-(aminosulfonyl)propoxy] -2-methylphenyl}-2-{4-chloro-2-[3-fluoro-5-(trifluomethyl)benzoyl]phenoxy)acetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyano-5fluorobenzoyl)phenoxy]acetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyano-5methylbenzoyl)phenoxy]acetamide; N-[6-(aminosulfonyl)-4-methyl-3-pyridinyl]-2-[4-chloro-2-(3-cyano-5methylbenzoyl)phenoxylacetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-chloro-5cyanobenzoyl)phenoxylacetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3.5dimethylbenzoyl)phenoxy]acetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-cyano-5ethylbenzoyl)phenoxylacetamide; 2-[4-chloro-2-(3-cyano-5-methylbenzoyl)phenoxy]-N-{4-[3-(2,5-dihydro-1H-pyrrol-1 yl)propoxy]-2-methylphenyl}acetamide hydrochloride; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3-chloro-5methylbenzoyl)phenoxylacetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5dichlorobenzoyl)phenoxy]acetamide; N-[4-(aminosulfonyl)-2-methylphenyl]-2-{4-chloro-2-[(6-cyano-2pyridinyl)carbonyl]phenoxy}acetamide;

N-[4-(aminosulfonyl)-2-methylphenyl]-2-[4-chloro-2-(3,5dicyanobenzoyl)phenoxy]acetamide; and pharmaceutically acceptable derivatives thereof.

N-[6-(aminosulfonyl)-2-methyl-3-pyridinyl]-2-[4-chloro-2-(3-cyano-5-

methylbenzoyl)phenoxy]acetamide;

Claim 26 (previously presented) A compound according to claim 4 wherein R1 is C6-14 aryl substituted in the meta position, particularly with halogen and wherein R3 is hydrogen and R4 is C_{6-14} aryl substituted with C_{1-8} alkyl, in particular methyl.

Claim 27 (previously presented) A method of treatment of a viral infection in a mammal comprising administering to said mammal an antivirally effective amount of a compound according to claim 2.

Claim 28 (original) The method according to claim 27 wherein the viral infection is an HIV infection.

Claim 29 (previously presented) A method of inhibiting HIV reverse transcrptase comprising administering to a mammal an effective amount of a compound according to any of claim 2.

Claim 30 (previously presented) A method of preventing HIV infection, or of treating HIV infection, comprising administering to a mammal an effective amount of a compound according to claim 2.

Claim 31 (canceled)

Claim 32 (canceled)

Claim 33 (canceled)

Claim 34 (previously presented) A pharmaceutical composition comprising an effective amount of a compound according to claim 2 together with a pharmaceutically acceptable carrier.

Claim 35 (original) A pharmaceutical composition according to claim 34 in the form of a tablet or capsule.

Claim 36 (original) A pharmaceutical composition according to claim 34 in the form of a liquid.

Claim 37 (canceled)

Claim 38 (previously presented) A compound according to claim 6 wherein R¹ is phenyl which is substituted in the *meta* position with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, C_{1.8}alkylamino, alkoxy, C₃.

6cycloalkylC_{2.6}alkenyl, C_{6.14}arylC_{2.6}alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)_R⁷, -S(O)₂R⁷, -C(O)R⁷, C_{2.6}alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C₂.

6alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C_{3.6}cycloalkyl, and heterocycle;

R² is hydrogen;

R³ is hydrogen:

R⁴ is phenyl substituted in the *ortho* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, or C_{1.8}alkyl and substituted at the *para* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, C_{1.8}alkyl, hydroxyC_{1.8}alkyl, -CN, -NO₂, C_{1.8}alkylamino, heterocycleC_{1.8}alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂NR⁷, -S(O)₂NHR¹¹, -SO₂R¹¹, -OR¹¹, -C(O)R¹¹, -C(O)R¹¹, -C(O)NR¹¹, -NC(O)R¹¹, heterocycleC_{2.6}alkenyl, heterocycle which may

be optionally substituted with one or more substituents selected from the group consisting of oxo, $C_{1.3}$ alkyl, and $C(O)OR^{11}$, and $C_{1.3}$ alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O) R^{11} ;

 R^{5} is a substituent in the *para* position relative to X and is selected from the group consisting of halogen, C_{1-8} alkyl, -NO₂, -NH₂, C_{1-8} alkylamino, CF₃, or alkoxy;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, $-NR^8R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_1 . $_8$ alkyl; or a pharmaceutically acceptable derivative thereof.

Claim 39 (previously presented) A compound according to claim 7 wherein

R¹ is phenyl which is substituted in the *meta* position with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, C_{1.4}alkylamino, alkoxy, C_{3.6}cycloalkylC_{2.6}alkenyl, C_{6.14}arylC_{2.6}alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)_R⁷, -S(O)₂R⁷, -C(O)R⁷, C_{2.6}alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C_{2.6}alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C_{3.6}cycloalkyl, and heterocycle;

R² is hydrogen;

R³ is hydrogen;

R⁴ is phenyl substituted in the *ortho* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, or C_{1.8}alkyl and substituted at the *para* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, C_{1.8}alkyl, hydroxyC_{1.8}alkyl, -CN, -NO₂, C_{1.8}alkylamino, heterocycleC_{1.8}alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂NR⁸R⁹, -S(O)₂NHR¹¹, -SO₂R¹¹, -OR¹¹, -C(O)R¹¹, -C(O)NR¹¹, -C(O)NR¹¹, -NC(O)R¹¹, heterocycleC_{2.6}alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C_{1.8}alkyl, and C(O)OR¹¹, and C_{1.8}alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R³ is a substituent in the para position relative to X and is selected from the group consisting of halogen, C₁₋₈alkyl, -NO₂, -NH₂, C₁₋₈alkylamino, CF₃, or alkoxy;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, $-NR^8R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_1 . +alkyl; or a pharmaceutically acceptable derivative thereof.

Claim 40 (previously presented) A compound according to claim 17 wherein

R¹ is phenyl which is substituted in the *meta* position with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, C_{1.8}alkylamino, alkoxy, C_{3.6}cycloalkylC_{2.6}alkenyl, C_{6.14}arylC_{2.6}alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)_R⁷, -S(O)₂R⁷, -C(O)R⁷, C_{2.6}alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C_{2.6}alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C_{3.6}cycloalkyl, and heterocycle;

R² is hydrogen;

R³ is hydrogen;

R⁴ is phenyl substituted in the *ortho* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, or C_{1.8}alkyl and substituted at the *para* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, C_{1.8}alkyl, hydroxyC_{1.8}alkyl, -CN, -NO₂, C_{1.8}alkylamino, heterocycleC_{1.8}alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷, -NS(O)₂R⁷, -S(O)₂NR⁸R⁹, -S(O)₂NHR¹¹, -SO₂R¹¹, -OR¹¹, -C(O)R¹¹, -C(O)NR¹¹, -C(O)OR¹¹, -NC(O)R¹¹, heterocycleC_{2.6}alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C_{1.8}alkyl, and C(O)OR¹¹, and C_{1.8}alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

 R^5 is a substituent in the *para* position relative to X and is selected from the group consisting of halogen, $C_{1,2}$ alkyl, -NO₂, -NH₂, $C_{1,2}$ alkylamino, CF_3 , or alkoxy;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, $-NR^8R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_{1-8} alkyl; or a pharmaceutically acceptable derivative thereof.

Claim 41 (previously presented) A compound according to claim 18 wherein

R¹ is phenyl which is substituted in the *meta* position with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, C_{1.8}alkylamino, alkoxy, C_{3.6}cycloalkylC_{2.6}alkenyl, C_{6.14}arylC_{2.6}alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)_R⁷, -S(O)₂R⁷, -C(O)R⁷, C_{2.6}alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C_{2.6}alkynyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, C_{3.6}cycloalkyl, and heterocycle;

R² is hydrogen;

R3 is hydrogen;

R⁴ is phenyl substituted in the *ortho* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, or C₁₋₈alkyl and substituted at the *para* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, C₁₋₈alkyl, hydroxyC₁₋₈alkyl, -CN, -NO₂, C₁₋₈alkylamino, heterocycleC₁₋₈alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷, -NS(O)₂R⁷, -S(O)₂NR⁸R⁹, -S(O)₂NHR¹¹, -SO₂R¹¹, -OR¹¹, -C(O)R¹¹, -C(O)R¹¹, -C(O)R¹¹, -NC(O)R¹¹, heterocycleC₂₋₆alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C₁₋₈alkyl, and C(O)OR¹¹, and C₁₋₈alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R⁵ is a substituent in the *para* position relative to X and is selected from the group consisting of halogen, C_{1.8}alkyl, -NO₂, -NH₂, C_{1.8}alkylamino, CF₃, or alkoxy;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, $-NR^8R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_{1-8} alkyl; or a pharmaceutically acceptable derivative thereof.

Claim 42 (previously presented) A compound according to claim 19 wherein R¹ is phenyl which is substituted in the *meta* position with one or more substituents selected from the group consisting of halogen, -CF₃, C_{1.8}alkyl, C_{1.8}alkylamino, alkoxy, C_{3.6}cycloalkylC_{2.6}alkenyl, C_{6.14}arylC_{2.6}alkenyl, -CN, -NO₂, -NH₂, -SR⁶, -S(O)₂R⁶, -S(O)₂R⁶, -S(O)₂R⁷, -C(O)R⁷, C_{2.6}alkenyl which may be optionally substituted with a substituent selected from the group consisting of hydroxy, halogen, aryl, and heterocycle, and C_{2.6}

salkynyl which may be optionally substituted with a substituent selected from the group

consisting of hydroxy, halogen, aryl, Cascycloalkyl, and heterocycle;

R² is hydrogen;

R³ is hydrogen;

R⁴ is phenyl substituted in the *ortho* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, or C₁₋₈alkyl and substituted at the *para* position with a substituent selected from the group consisting of hydroxy, halogen, -CF₃, C₁₋₈alkyl, hydroxyC₁₋₈alkyl, -CN, -NO₂, C₁₋₈alkylamino, heterocycleC₁₋₈alkyl, -C(O)NH₂, -S(O)R⁷, -S(O)₂R⁷, -C(O)R⁷, -NS(O)₂R⁷, -S(O)₂NR⁸R⁹, -S(O)₂NHR¹¹, -SO₂R¹¹, -OR¹¹, -C(O)R¹¹, -C(O)R¹¹, -C(O)R¹¹, heterocycleC₂₋₆alkenyl, heterocycle which may be optionally substituted with one or more substituents selected from the group consisting of oxo, C₁₋₈alkyl, and C(O)OR¹¹, and C₁₋₈alkyl which may be optionally substituted with one or more substituents selected from the group consisting of -CN and heterocycle, optionally substituted with -C(O)R¹¹;

R⁵ is a substituent in the *para* position relative to X and is selected from the group consisting of halogen, C_{1.8}alkyl, -NO₂, -NH₂, C_{1.8}alkylamino, CF₃, or alkoxy;

 R^{11} is C_{1-8} alkyl, optionally substituted with one or more substituents selected from the group consisting of hydrogen, C_{1-8} alkyl, $-S(O)_2NR^8R^9$, $-NR^8R^9$, and heterocycle, optionally substituted with one or more substituents selected from the group consisting of oxo and C_{1-8} alkyl; or a pharmaceutically acceptable derivative thereof.

Claim 43 (previously presented) A compound according to claim 6 wherein R^1 is C_{6-14} aryl substituted in the meta position, particularly with halogen and wherein R^3 is hydrogen and R^4 is C_{6-14} aryl substituted with C_{1-8} alkyl, in particular methyl.

Claim 44 (previously presented) A compound according to claim 7 wherein R^1 is $C_{6.14}$ aryl substituted in the meta position, particularly with halogen and wherein R^3 is hydrogen and R^4 is $C_{6.14}$ aryl substituted with $C_{1.8}$ alkyl, in particular methyl.

Claim 45 (previously presented) A compound according to claim 17 wherein R^1 is C_{6-14} aryl substituted in the meta position, particularly with halogen and wherein R^3 is hydrogen and R^4 is C_{6-14} aryl substituted with C_{1-8} alkyl, in particular methyl.

Claim 46 (previously presented) A compound according to claim 18 wherein R^1 is C_{6-14} aryl substituted in the meta position, particularly with halogen and wherein R^3 is hydrogen and R^4 is C_{6-14} aryl substituted with C_{1-8} alkyl, in particular methyl.

Claim 47 (previously presented) A compound according to claim 19 wherein R^1 is C_{6-14} aryl substituted in the meta position, particularly with halogen and wherein R^3 is hydrogen and R^4 is C_{6-14} aryl substituted with C_{1-8} alkyl, in particular methyl.

Claim 48 (previously presented) A method of treatment of a viral infection in a mammal comprising administering to said mammal an antivirally effective amount of a compound according to claim 4.

Claim 49 (previously presented) A method of treatment of a viral infection in a mammal comprising administering to said mammal an antivirally effective amount of a compound according to claim 23.

Claim 50 (previously presented) A method of inhibiting HIV reverse transcrptase comprising administering to a mammal an effective amount of a compound according to claim 4.

Claim 51 (previously presented) A method of inhibiting HIV reverse transcrptase comprising administering to a mammal an effective amount of a compound according to claim 23.

Claim 52 (previously presented) A method of preventing HIV infection, or of treating HIV infection, comprising administering to a mammal an effective amount of a compound according to claim 4.

Claim 53 (previously presented) A method of preventing HIV infection, or of treating HIV infection, comprising administering to a mammal an effective amount of a compound according to claim 23.

Claim 54 (previously presented) A pharmaceutical composition comprising an effective amount of a compound according to claim 4 together with a pharmaceutically acceptable carrier.

Claim 55 (previously presented) A pharmaceutical composition comprising an effective amount of a compound according to claim 23 together with a pharmaceutically acceptable carrier.