Matrix Analysis and Applications Chapter 4: Positive Semidefinite Matrices

Instructor: Kai Lu

(http://seit.sysu.edu.cn/teacher/1801)

School of Electronics and Information Technology Sun Yat-sen University

November 22, 2020

Table of Contents

1 Positive Definite and Positive Semidefinite Matrices

- 2 Properties
- Matrix Inequality

Table of Contents

1 Positive Definite and Positive Semidefinite Matrices

2 Properties

Matrix Inequality

Quadratic Form

Quadratic Form: given $A \in \mathbb{C}^{n \times n}$, the function

$$\boldsymbol{x}^{H}\boldsymbol{A}\boldsymbol{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{*} x_{j} a_{ij}, \quad \boldsymbol{x} \in \mathbb{C}^{n}$$
(1)

is called a quadratic form.

- $oldsymbol{\circ}$ for complex-valued Hermitian $oldsymbol{A}, \, oldsymbol{x}^H oldsymbol{A} oldsymbol{x}$ is real-valued for any $oldsymbol{x} \in \mathbb{C}^n.$
- ullet for the real-valued case, (1) is often replaced by $oldsymbol{x}^T oldsymbol{A} oldsymbol{x}, oldsymbol{x} \in \mathbb{R}^n.$

Notation:

 $\mathcal{H}^n \subseteq \mathbb{C}^{n \times n}$, the set of all $n \times n$ complex Hermitian matrices. $\mathcal{S}^n \subseteq \mathbb{R}^{n \times n}$, the set of all $n \times n$ real symmetric matrices.

Positive Semidefinite Matrices

1) A matrix $A \in \mathcal{H}^n$ (resp. $A \in \mathcal{S}^n$) is said to be **positive semidefinite** (PSD) if

$$x^H A x \ge 0 \text{ for all } x \in \mathbb{C}^n$$
 (2)

(resp.
$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$$
 for all $\mathbf{x} \in \mathbb{R}^n$) (3)

2) A matrix $A \in \mathcal{H}^n$ (resp. $A \in \mathcal{S}^n$) is said to be **positive definite** (PD) if

$$x^H Ax > 0$$
 for all $x \in \mathbb{C}^n, x \neq 0$ (4)

(resp.
$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$
 for all $\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$) (5)

3) A matrix $A \in \mathcal{H}^n$ or $A \in \mathcal{S}^n$ is said to be **indefinite** if it is not PSD.

Positive Semidefinite Matrices (cont'd)

Example 1 (Correlation Matrix)

Let $\{y_n\}$, $y_n \in \mathbb{C}^n$, be a WSS process. The correlation matrix $R_y = \mathbb{E}\{y_n\,y_n^H\}$ is PSD.

Proof:

$$oldsymbol{x}^H oldsymbol{R}_{oldsymbol{y}} oldsymbol{x} = \mathbb{E}\left\{ |oldsymbol{x}^H oldsymbol{y}_n|^2
ight\} \geq 0, ext{ for any } oldsymbol{x}.$$

The sample correlation matrix $\hat{R}_{m{y}} = \frac{1}{N} \sum_{n=1}^{N} m{y}_n m{y}_n^H$ is also PSD.

Positive Semidefinite Matrices (cont'd)

Example 1 (Correlation Matrix)

Let $\{y_n\}$, $y_n \in \mathbb{C}^n$, be a WSS process. The correlation matrix $R_y = \mathbb{E}\{y_n \, y_n^H\}$ is PSD.

Proof:

$$oldsymbol{x}^H oldsymbol{R}_{oldsymbol{y}} oldsymbol{x} = \mathbb{E}\left\{ |oldsymbol{x}^H oldsymbol{y}_n|^2
ight\} \geq 0, ext{ for any } oldsymbol{x}.$$

The sample correlation matrix $\hat{\boldsymbol{R}}_{m{y}} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{y}_n \boldsymbol{y}_n^H$ is also PSD.

Exercise: let $C_y = \mathbb{E}\left\{(y_n - \mathbb{E}\{y_n\})(y_n - \mathbb{E}\{y_n\})^H\right\}$ denote the covariance matrix of y_n . Verify that C_y is PSD.

Hessian Matrix of a Function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, and dom f be the domain of the function. Assume twice differentiable f.

1) Gradient:

$$\Delta f(\boldsymbol{x}) \triangleq \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$
 (6)

2) **Hessian**: $\Delta^2 f(x) \in \mathcal{S}^n$ is a matrix whose $(i,j)^{\text{th}}$ elements are

$$\left[\Delta^2 f(\boldsymbol{x})\right]_{ij} \triangleq \frac{\partial^2 f}{\partial x_i \, \partial x_j}.\tag{7}$$

Hessian Matrix of a Function (cont'd)

Fact: a twice differentiable function f is convex if (also only if)

$$\Delta^2 f(\boldsymbol{x})$$
 is PSD for all $\boldsymbol{x} \in \mathsf{dom} f$.

 The class of convex functions is important to many areas, esp., optimization.

Hessian Matrix of a Function (cont'd)

Fact: a twice differentiable function f is convex if (also only if)

$$\Delta^2 f(x)$$
 is PSD for all $x \in \text{dom} f$.

 The class of convex functions is important to many areas, esp., optimization.

Example 2 (Quadratic Function)

The quadratic function

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} + 2\boldsymbol{b}^T \boldsymbol{x} + c, \tag{8}$$

where $\pmb{A} \in \mathcal{S}^n, \pmb{b} \in \mathbb{R}^n, c \in \mathbb{R}$. Its gradient and Hessian are

$$\Delta f(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + 2\mathbf{b}, \quad \Delta^2 f(\mathbf{x}) = 2\mathbf{A}.$$
 (9)

ullet The quadratic function is convex if $oldsymbol{A}$ is PSD.

Illustration of Quadratic Functions

Table of Contents

Positive Definite and Positive Semidefinite Matrices

- 2 Properties
- Matrix Inequality

Principal Submatrices

A **principal submatrix** of $A \in \mathbb{C}^{n \times n}$, denoted by $A_{\mathcal{I}}$, where $\mathcal{I} = \{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}, m < n$, is a submatrix obtained by keeping only the rows and columns indicated by \mathcal{I} .

Property 1

If A is PSD (resp. PD), then any $A_{\mathcal{I}}$ is PSD (resp. PD).

Principal Submatrices

A **principal submatrix** of $A \in \mathbb{C}^{n \times n}$, denoted by $A_{\mathcal{I}}$, where $\mathcal{I} = \{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}, m < n$, is a submatrix obtained by keeping only the rows and columns indicated by \mathcal{I} .

Property 1

If A is PSD (resp. PD), then any $A_{\mathcal{I}}$ is PSD (resp. PD).

Some immediate results:

Partition A as

$$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{bmatrix},$$

if A is PSD, then both A_{11} and A_{22} are also PSD.

• If A is PSD, then $a_{ii} \geq 0$ for all i. If A is PD, then $a_{ii} > 0$ for all i.

Eigenvalues

Property 2

Let $A \in \mathcal{H}^n$ (or $A \in \mathcal{S}^n$) and let $\lambda_1, \dots, \lambda_n$ denote the eigenvalues of A. Then, A is PSD (resp. PD) if and only if

$$\lambda_i \ge 0 \ (resp. \ \lambda_i > 0 \ for \ all \ i).$$
 (10)

Some immediate results:

- If A is PSD (resp. PD), then $det(A) \ge 0$ (resp. det(A) > 0).
- If A is PSD (resp. PD), then $tr(A) \ge 0$ (resp. tr(A) > 0).
- If A is PD, then A is nonsingular (and invertible).

Example: Ellipsoid

Ellipsoid:

$$\varepsilon = \left\{ \boldsymbol{x} \in \mathbb{R}^n \,|\, \boldsymbol{x}^T \boldsymbol{P}^{-1} \boldsymbol{x} \le 1 \right\},\tag{11}$$

where $P \in \mathcal{S}^n$ is PD.

Let $P = Q\Lambda Q^T$ be the eigendecomposition.

- Q determines the directions of the semi-axes;
- $\lambda_1, \dots, \lambda_n$ determine the lengths of the semi-axes.

Example: Multivariate Gaussian Distribution

PDF for a Gaussian-distributed vector $x \in \mathbb{R}^n$:

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} (\det(\boldsymbol{\Sigma}))^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right), \quad (12)$$

where μ and Σ are the mean and covariance of x, resp.

- \bullet Σ is PD.
- ullet Σ determines how x is spread, by the same way as in ellipsoid.

Example: Multivariate Gaussian Distribution

(a)
$$\mu=0$$
, $\Sigma=\begin{bmatrix}1&0\\0&1\end{bmatrix}$.

(b)
$$\mu=0$$
, $\Sigma=\begin{bmatrix}1&0.8\\0.8&1\end{bmatrix}$.

Square-Root Factorization

Theorem 3 (Square-Root Factorization)

A matrix $A \in \mathcal{H}^n$ can be factorized as

$$A = B^H B, \tag{13}$$

for some B of appropriate dimension if and only if A is PSD.

• Eq. (13) is called a **square-root factorization** of A, and a B satisfying (13) is called a **square root** of A.

Square-Root Factorization

Theorem 3 (Square-Root Factorization)

A matrix $A \in \mathcal{H}^n$ can be factorized as

$$A = B^H B, \tag{13}$$

for some B of appropriate dimension if and only if A is PSD.

- Eq. (13) is called a **square-root factorization** of A, and a B satisfying (13) is called a **square root** of A.
- **Exercise 1**: For the square-root factorization in (13), does B have to be square?

Exercise 2: Suppose that A is PSD, and that the matrix dimension of its square root B is fixed. Is B unique? Can we find a PSD B?

Transformation

Theorem 4

Let $oldsymbol{A} \in \mathcal{H}^n$, $oldsymbol{B} \in \mathbb{C}^{n imes m}$ and

$$C \triangleq B^H A B. \tag{14}$$

The following properties hold:

- If A is PSD, then C is PSD.
- If A is PD, then C is PD if and only if rank(B) = m.
- If B is square and nonsingular, then C is PD (resp. PSD) if and only if A is PD (resp. PSD).

Table of Contents

Positive Definite and Positive Semidefinite Matrices

2 Properties

Matrix Inequality

Matrix Inequality

Notation: the symbols \succeq and \succeq mean that

$$A \succeq B \iff A - B \text{ is PSD.}$$

 $A \succ B \iff A - B \text{ is PD.}$

¹Dennis S. Bernstein, Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas (Revised and Expanded Edition), Princeton University Press, 2018.

Matrix Inequality

Notation: the symbols \succeq and \succ mean that

$$A \succeq B \iff A - B \text{ is PSD.}$$

 $A \succ B \iff A - B \text{ is PD.}$

Basic results (assuming $A, B, C \in \mathcal{H}^n$):

- If $A \succeq \mathbf{0}, \alpha \geq 0$ (resp. $A \succ \mathbf{0}, \alpha > 0$), then $\alpha A \succeq \mathbf{0}$ (resp. $\alpha A \succ \mathbf{0}$).
- ullet If $A\succeq 0, B\succeq 0$ (resp. $A\succ 0$), then $A+B\succeq 0$ (resp. $A+B\succ 0$).
- ullet If $A\succeq B, B\succeq C$ (resp. $B\succ C$), then $A\succeq C$ (resp. $A\succ C$).

¹Dennis S. Bernstein, Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas (Revised and Expanded Edition), Princeton University Press, 2018.

Matrix Inequality

Notation: the symbols \succeq and \succ mean that

$$A \succeq B \iff A - B \text{ is PSD.}$$

 $A \succ B \iff A - B \text{ is PD.}$

Basic results (assuming $A, B, C \in \mathcal{H}^n$):

- If $A \succeq \mathbf{0}, \alpha \geq 0$ (resp. $A \succ \mathbf{0}, \alpha > 0$), then $\alpha A \succeq \mathbf{0}$ (resp. $\alpha A \succ \mathbf{0}$).
- ullet If $A\succeq 0, B\succeq 0$ (resp. $A\succ 0$), then $A+B\succeq 0$ (resp. $A+B\succ 0$).
- ullet If $A\succeq B, B\succeq C$ (resp. $B\succ C$), then $A\succeq C$ (resp. $A\succ C$).

Exercise: Suppose $A \not\succeq B$, which means that A-B is not PSD. Does this imply $B \succeq A$?

Note: There are more results arising from the PSD matrix inequality. 1

¹Dennis S. Bernstein, *Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas (Revised and Expanded Edition)*, Princeton University Press, 2018.

Some Matrix Inequality Results

Denote $\lambda_1(\mathbf{A}), \cdots, \lambda_n(\mathbf{A})$ as the eigenvalues of $\mathbf{A} \in \mathcal{H}^n$.

Some results (assuming $A, B \in \mathcal{H}^n$)²:

- $A \succeq I$ (resp. $A \succ I$) $\iff \lambda_k(A) \ge 1$ (resp. $\lambda_k(A) > 1$) for all $k = 1, \dots, n$. $I \succeq A$ (resp. $I \succ A$) $\iff \lambda_k(A) \le 1$ (resp. $\lambda_k(A) < 1$) for all $k = 1, \dots, n$.
- If $A \succeq B$, then $\lambda_k(A) \geq \lambda_k(B)$, $k = 1, \dots, n$.
- $\bullet \ \mathsf{Suppose} \ A, B \succ \mathbf{0}, \ \mathsf{then} \ A \succeq B \Longleftrightarrow B^{-1} \succeq A^{-1}.$

²R. A. Horn and C. R. Johnson, *Matrix Analysis*, 2nd Ed., Cambridge University Press. 2013.

Some Matrix Inequality Results

Denote $\lambda_1(\mathbf{A}), \cdots, \lambda_n(\mathbf{A})$ as the eigenvalues of $\mathbf{A} \in \mathcal{H}^n$.

Some results (assuming $A, B \in \mathcal{H}^n$)2:

- $A \succeq I$ (resp. $A \succ I$) $\iff \lambda_k(A) \ge 1$ (resp. $\lambda_k(A) > 1$) for all $k = 1, \cdots, n$. $I \succeq A$ (resp. $I \succ A$) $\iff \lambda_k(A) \le 1$ (resp. $\lambda_k(A) < 1$) for all $k = 1, \cdots, n$.
- If $A \succeq B$, then $\lambda_k(A) \geq \lambda_k(B)$, $k = 1, \dots, n$.
- Suppose $A, B \succ 0$, then $A \succeq B \iff B^{-1} \succeq A^{-1}$.

Some results from the above results:

- If $A \succeq B$ and $B \succeq 0$, then $\det(A) \ge \det(B)$.
- If $A \succeq B$, then $tr(A) \ge tr(B)$.
- If $A, B \succ 0$ and $A \succeq B$, then $tr(A^{-1}) \le tr(B^{-1})$.

²R. A. Horn and C. R. Johnson, *Matrix Analysis*, 2nd Ed., Cambridge University Press. 2013.

Schur Complement

Let

$$m{X} \triangleq egin{bmatrix} m{A} & m{B} \\ m{B}^H & m{C} \end{bmatrix} \in \mathcal{H}^{m+n},$$
 (15)

where $A \in \mathcal{H}^m, B \in \mathbb{C}^{m \times n}, C \in \mathcal{H}^n, C \succ 0$.

Define $S \triangleq A - BC^{-1}B^H$, which is called the **Schur complement** of the block C of the matrix X. Then,

$$X \succeq \mathbf{0} \ (\text{resp. } X \succ \mathbf{0}) \Longleftrightarrow S \succeq \mathbf{0} \ (\text{resp. } S \succ \mathbf{0}).$$
 (16)

Likewise, $S' \triangleq C - B^H A^{-1} B$, called the **Schur complement** of the block A of the matrix X.

Schur Complement

Let

$$m{X} \triangleq egin{bmatrix} m{A} & m{B} \\ m{B}^H & m{C} \end{bmatrix} \in \mathcal{H}^{m+n},$$
 (15)

where $A \in \mathcal{H}^m, B \in \mathbb{C}^{m \times n}, C \in \mathcal{H}^n, C \succ 0$.

Define $S \triangleq A - BC^{-1}B^H$, which is called the **Schur complement** of the block C of the matrix X. Then,

$$X \succeq \mathbf{0} \ (\text{resp. } X \succ \mathbf{0}) \Longleftrightarrow S \succeq \mathbf{0} \ (\text{resp. } S \succ \mathbf{0}).$$
 (16)

Likewise, $S' \triangleq C - B^H A^{-1} B$, called the **Schur complement** of the block A of the matrix X.

Application: see https://en.wikipedia.org/wiki/Schur_complement

Thank you for your attention!

Kai Lu

E-mail: lukai86@mail.sysu.edu.cn

Web: http://seit.sysu.edu.cn/teacher/1801