ГУАП

КАФЕДРА № 24

ОТЧЕТ ЗАЩИЩЕН С ОЦЕ	НКОЙ		
ПРЕПОДАВАТЕЛЬ			
ассистент			А.А. Сафронова
должность, уч. степе	нь, звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛА	АБОРАТОРНОЙ РАБО	OTE №1
	-	цеформированного и к ца с бляшкой ранней с	критического состояний тадии развития
по курсу: Информационные основы биомеханики			
РАБОТУ ВЫПОЛН	ИЛ		
СТУДЕНТ гр. №	2247	подпись, дата	Я.С. Верещагин инициалы, фамилия

Вариант 2. Венечная артерия правая

Цель работы: определить давление в гибком баллоне, необходимое для дилатации кровеносного сосуда с бляшкой ранней стадии развития в зависимости от ее длины.

Параметры:

Внешний диаметр кровеносного сосуда — 4 мм

Толщина стенки — 1,1 мм

Длина бляшки — 2...5 мм

Отношение радиуса бляшки $R_{\rm 6}$ к радиусу сосуда $R_{\rm BC}$ — 0.6

Отношение модуля нормальной упругости бляшки E_6 к модуля нормальной упругости $E_{BC} \longrightarrow 0,3$

Модуль упругости сосуда Е — 2 Мпа

Модуль упругости бляшки Е — 0,6 Мпа

Сделали эскиз и вытянутую бобышку сосуда и бляшки.

После выставления материалов и их физических свойств приступиликсимуляции. Подбираем давление в сосуде, чтобы после дилатации внутреннийрадиус R сегмента сосуда в зоне расположения бляшки должен находиться в пределах 5-10% внутреннего радиуса сосуда R вс.

1) Длина бляшки 2 мм:

Давление 0,2 МПа

2) Длина бляшки 3мм:

Давление 0,2 МПа

3) Длина бляшки 4 мм:

Давление 0,2 МПа

4) Длина бляшки 5 мм:

Давление 0,2 МПа

Вывод: рассчитали допустимое давление для различных длин сосуда и бляшки, при которых изменение внутреннего радиуса не превышает 10% и составляет не меньше 5%.