Producto punto con ejemplos en 2D

Enviar preguntas a gmunoz@udistrital.edu.co

Definición de producto punto

Definición:

El producto punto o producto escalar entre dos vectores \vec{u} y \vec{v} de \Re^n da el escalar dado por

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$= a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

Ejemplo:

$$\begin{bmatrix} 4 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} = (4)(2) + (7)(-3) = -13$$

Propiedades del producto punto

Teorema:

Sean
$$\vec{u}, \vec{v} \in \mathbb{R}^n$$
, $c \in \mathbb{R}$ y $A \in M_{n \times n}$

$$-\vec{u}\cdot\vec{v} = \vec{v}\cdot\vec{u}$$

$$-\vec{u}\cdot(\vec{v}+\vec{w}) = \vec{v}\cdot\vec{u} + \vec{v}\cdot\vec{w}$$

$$-c(\vec{u}\cdot\vec{v}) = (c\vec{v})\cdot\vec{u} = \vec{v}\cdot(c\vec{u})$$

-
$$\vec{u} \cdot \vec{u} \ge 0$$
. Además, $\vec{u} \cdot \vec{u} = 0$ si y sólo si $\vec{u} = 0$

$$- (A\vec{u}) \cdot \vec{v} = \vec{u} \cdot (A^T \vec{v})$$

Definición de magnitud

Definición:

La <u>norma</u>, <u>longitud</u> o <u>magnitud</u> de un vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ es

$$|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$$
 que equivale a

$$|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}} \quad \text{que equivale a} \quad \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

corresponde con el teorema de pitágoras

Propiedades de la magnitud

Teorema:

Si $\vec{u}, \vec{v} \in \mathbb{R}^n$ y $c \in \mathbb{R}$, se cumple que

- $|c\vec{u}| = abs(c)|\vec{u}|$
- $|\vec{u}| \ge 0$. Además, $|\vec{u}| = 0$ si y sólo si $\vec{u} = 0$
- $|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + 2\vec{u} \cdot \vec{v}$
- $|\vec{u} \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 2\vec{u} \cdot \vec{v}$
- $abs(\vec{u} \cdot \vec{v}) \leq |\vec{u}| |\vec{v}|$
- $\bullet |\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$

Vector unitario

Dado $\vec{v} \in \Re^n$ y $\vec{v} \neq \vec{0}$, el <u>vector unitario</u> de \vec{v} es $\hat{v} = \frac{1}{|\vec{v}|} \vec{v}$

Ejemplo:

Definición:

Si
$$\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 entonces $\hat{v} = \frac{1}{\sqrt{3^2 + 4^2}} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix}$

Teorema:

Si $\vec{v} \in \Re^n$ con $\vec{v} \neq \vec{0}$, se cumple:

$$-|\hat{v}| = 1$$

$$- \vec{v} = |\vec{v}|\hat{v}$$

Nota:

Todos los vectores unitarios forman un crculo centrado en el origen de radio 1

Distancia entre vectores

Definición:

La <u>distancia</u> entre dos vectores $\vec{u}, \vec{v} \in \Re^n$ est dada por

$$dist(\vec{u}, \vec{v}) := |\vec{u} - \vec{v}|$$

Ejemplo:

$$dist\left(\begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 2\\6 \end{bmatrix}\right) = \begin{bmatrix} 3\\4 \end{bmatrix} - \begin{bmatrix} 2\\6 \end{bmatrix} = \begin{bmatrix} 1\\-2 \end{bmatrix} = \sqrt{1+4} = \sqrt{5}$$

Propiedades de la distancia

Teorema:

Si $\vec{u}, \vec{v}, \vec{w} \in \Re^n$

- $dist(\vec{u}, \vec{v}) \ge 0$
- $dist(\vec{u}, \vec{v}) = 0$ si y slo si $\vec{u} = \vec{v}$
- $dist(\vec{u}, \vec{v}) = dist(\vec{v}, \vec{u})$
- $dist(\vec{u}, \vec{v}) \leq dist(\vec{u}, \vec{w}) + dist(\vec{w}, \vec{v})$

Teorema del coseno

(Otro) significado del producto punto

Ley del coseno
$$|\vec{v} - \vec{u}| = |\vec{v}|^2 + |\vec{u}|^2 - 2|\vec{v}||\vec{u}|\cos(\alpha)$$
Propiedades de la magnitud
$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v}$$

Teorema:

Sean $\vec{v}, \vec{u} \in \Re^2$ y α el ángulo entre \vec{v} y \vec{u} entonces $\vec{u} \cdot \vec{v} = |\vec{v}| |\vec{u}| \cos(\alpha)$

Coseno

Definición:

Sean $\vec{u}, \vec{v} \in \mathbb{R}^n$, el coseno del ángulo entre los vectores es:

$$\cos(\alpha) = \hat{u} \cdot \hat{v} = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|}$$

Perpendicular y paralelo

Definición:

Dos vectores $\vec{u}, \vec{v} \in \Re^n$ son ortogonales o perpendiculares si

$$\vec{u} \cdot \vec{v} = 0$$

Recordemos:

Dos vectores $\vec{u}, \vec{v} \in \Re^n$ son paralelos si

$$\vec{u} = c\vec{v}$$
, para algún $c \in \Re$

Ejercicio:

Determine cuales vectores son paralelos u ortogonales.

$$\vec{v}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 5 \\ 10 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_5 = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$$

Luego grafique los vectores y compare los resultados obtenidos.

Proyección

Definición:

Sean $\vec{u}, \vec{v} \in \mathbb{R}^n$ y α el ángulo entre \vec{u}, \vec{v} .

La proyección de \vec{u} sobre \vec{v} está dada por:

$$proy_{\vec{v}}\vec{u} = |\vec{u}|\cos(\alpha)\hat{v}$$

$$proy_{\vec{v}}\vec{u} = \frac{\vec{u}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\vec{v}$$

Ejercicios

Ejercicios:\\ Sección 2.2 de Nakos