3. Espacios vectoriales

3.1. Espacio y subespacio vectorial

Definición 3.1 Sea K un campo. Un espacio vectorial sobre K, o también llamado un K- espacio vectorial, consta de lo siguiente:

- 1. Un conjunto V, cuyos elementos se llaman vectores.
- 2. Una operación binaria en V, llamada suma de vectores, denotada por +, y que cumple lo siguiente:
 - a) Para todos $x, y \in V$, se cumple que x+y=y+x (conmutatividad).
 - b) Para todos $x, y \ y \ z \in V$, se cumple que (x + y) + z = x + (y + z) (asociatividad).
 - c) Existe un elemento en V llamado cero y denotado por 0 tal que 0 + x = x, pata todo $x \in V$ (existencia del neutro aditivo).
 - d) Para todo $x \in V$ existe un elemento -x tal que x + (-x) = 0 (existencia de elementos inversos).
- 3. Una operación binaria en V, llamada producto de vectores, denotada por \cdot , y que cumple lo siguiente:
 - a) Para todo $x \in V$, se tiene que 1x = x, con $1 \in K$.
 - b) Para todo $x \in V$ y para todo λ y $\mu \in k$, se tiene que $\lambda(\mu x) = (\lambda \mu)x$.
 - c) El producto por escalar es distributivo, es decir,

$$(\lambda + \mu)x = \lambda x + \mu x,$$
$$\lambda(x + y) = \lambda x + \lambda y,$$

para todos $\lambda, \mu \in K$ y para todos $x, y \in V$

Definición 3.2 Al conjunto V con la suma y el producto por escalar se le llama **espacio vectorial sobre** K.

Ejemplo 40 La operación de suma y producto por escalar en \mathbb{R}^3 se formulan como:

1. Dados (x_1, x_2, x_3) , $(y_1, y_2, y_3) \in \mathbb{R}^3$, se define:

$$(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

2. Dados $(x_1, x_2, x_3) \in \mathbb{R}^3$ y $c \in \mathbb{R}$, se define:

$$c(x_1, x_2, x_3) = (cx_1, cx_2, cx_3)$$

Entonces \mathbb{R}^3 con la suma y producto definidos anteriormente es un espacio vectorial. Para esto verifiquemos que \mathbb{R}^3 con la operación + cumple las siguientes propiedades

a) Para todos $x, y \in \mathbb{R}^3$, se cumple que x + y = y + x (conmutatividad). Sean $x = (x_1, x_2, x_3)$ y $y = (y_1, y_2, y_3)$, entonces

$$x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3) = (y_1 + x_1, y_2 + x_2, y_3 + x_3) = y + x_3$$

b) Para todos $x, y, z \in \mathbb{R}^3$, se cumple que (x + y) + z = x + (y + z) (asociatividad). Sean $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3), y = (z_1, z_2, z_3),$ entonces

$$(x+y) + z = ((x_1, x_2, x_3) + (y_1, y_2, y_3)) + (z_1, z_2, z_3)$$

$$= (x_1 + y_1, x_2 + y_2, x_3 + y_3) + (z_1, z_2, z_3)$$

$$= ((x_1 + y_1) + z_1, (x_2 + y_2) + z_2, (x_3 + y_3) + z_3)$$

$$= (x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), x_3 + (y_3 + z_3))$$

$$= (x_1, x_2, x_3) + ((y_1, y_2, y_3) + (z_1, z_2, z_3))$$

$$= x + (y + z)$$

c) Existe un elemento en \mathbb{R}^3 llamado cero y denotado por 0 tal que 0+x=x, pata todo $x \in \mathbb{R}^3$ (existencia del neutro aditivo). Sea 0=(0,0,0) entonces si $x=(x_1,x_2,x_3)$ tenemos

$$0 + x = (0, 0, 0) + (x_1, x_2, x_3) = (0 + x_1, 0 + x_2, 0 + x_3) = (x_1, x_2, x_3) = x$$

d) Para todo $x \in \mathbb{R}^3$ existe un elemento -x tal que x + (-x) = 0 (existencia de elementos inversos). Sea $x \in \mathbb{R}^3$, con $x = (x_1, x_2, x_3)$, definimos el inverso de x por $-x = (-x_1, -x_2, -x_3)$, entonces tenemos

$$x + (-x) = (x_1, x_2, x_3) + (-x_1, -x_2, -x_3)$$
$$= (x_1 + (-x_1), x_2 + (-x_2), x_3 + (-x_3))$$
$$= (x_1 - x_1, x_2 - x_2, x_3 - x_3) = (0, 0, 0) = 0$$

Ahora veamos que \mathbb{R}^3 con la operación producto \cdot cumple

a) Para todo $x \in \mathbb{R}^3$, se tiene que 1 x = x, con $1 \in \mathbb{R}$. Si $x \in \mathbb{R}^3$,

$$1 \cdot x = 1 \cdot (x_1, x_2, x_3) = (1 \cdot x_1, 1 \cdot x_2, 1 \cdot x_3) = (x_1, x_2, x_3) = x$$

b) Para todo $x \in \mathbb{R}^3$ y para todo λ y $\mu \in \mathbb{R}$, se tiene que $\lambda(\mu x) = (\lambda \mu)x$. Sea $x \in \mathbb{R}^3$, con $x = (x_1, x_2, x_3)$, tenemos

$$\lambda(\mu x) = \lambda(\mu(x_1, x_2, x_3)) = \lambda(\mu x_1, \mu x_2, \mu x_3) = (\lambda(\mu x_1), \lambda(\mu x_2), \lambda(\mu x_3))$$

= $((\lambda \mu) x_1, (\lambda \mu) x_2, (\lambda \mu) x_3) = (\lambda \mu) x$

c) El producto por escalar es distributivo, es decir,

$$(\lambda + \mu)x = \lambda x + \mu x,$$

$$\lambda(x + y) = \lambda x + \lambda y,$$

para todos $\lambda, \mu \in K$ y para todos $x, y \in V$.

Sea $x \in \mathbb{R}^3$, con $x = (x_1, x_2, x_3)$, tenemos

$$(\lambda + \mu) \cdot x = (\lambda + \mu) \cdot (x_1, x_2, x_3) = ((\lambda + \mu)x_1, (\lambda + \mu)x_2, (\lambda + \mu)x_3)$$

$$= (\lambda x_1 + \mu x_1, \lambda x_2 + \mu x_2, \lambda x_3 + \mu x_3)$$

$$= (\lambda x_1, \lambda x_2, \lambda x_3) + (\mu x_1, \mu x_2, \mu x_3) =$$

$$= \lambda x + \mu x.$$

$$\lambda \cdot (x+y) = \lambda \cdot ((x_1, x_2, x_3) + (y_1, y_2, y_3)) = \lambda \cdot (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$= (\lambda(x_1 + y_1), \lambda(x_2 + y_2), \lambda(x_3 + y_3))$$

$$= (\lambda x_1, \lambda x_2, \lambda x_3) + (\lambda y_1, \lambda y_2, \lambda y_3) =$$

$$= \lambda x + \lambda y.$$

para todos $\lambda, \mu \in K$ y para todos $x, y \in V$

Definición 3.3 Sea W un subconjunto no vacío de V, se dice que W es un subespacio vectorial de V, si satisface las siguientes propiedades:

1. Para todos x y $y \in W$, se tiene que $x + y \in W$, es decir, W es cerrado bajo la suma.

2. Para todo $x \in W$ y para todo $\lambda \in \mathbb{R}$, $\lambda x \in W$, es decir W es cerrado bajo producto por escalar.

Ejemplo 41 Sea

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 = 0\}$$

es decir, $x \in W$, entonces $x = (x_1, x_2, 0)$. Entonces W es un subespacio vectorial de \mathbb{R}^3 . Para esto verifiquemos que si $x, y \in W$, entonces $x + y \in W$. Como $x, y \in W$, $x = (x_1, x_2, 0)$ y $y = (y_1, y_2, 0)$, luego $x + y = (x_1 + y_1, x_2 + y_2, 0) \in W$. Ahora veamos que si $x \in W$ y $\lambda \in \mathbb{R}$, $\lambda x \in W$, lo cual se sigue de que si $x = (x_1, x_2, 0)$, entonces $\lambda x = \lambda(x_1, x_2, 0) = (\lambda x_1, \lambda x_2, 0) \in W$.

Ejemplo 42 Sea A una matriz 3 por 2. Entonces

- a) el espacio columna de A, el cual es el conjunto de todas las combinaciones lineales de las columnas de A y se le denota por C(A) es un subespacio de \mathbb{R}^3
- b) el espacio nulo de A, que consta de todos los vectores x tales que Ax = 0y se le denota por N(A) es un subespacio de \mathbb{R}^2
- c) el espacio renglón de A, generado por los renglones de A, el cual es el espacio columna de A^T y se le denota por $C(A^T)$ es un subespacio de \mathbb{R}^2
- d) el espacio nulo izquierdo de A el cual es espacio nulo de A^T , denotado por $N(A^T)$, es un subespacio de \mathbb{R}^3 .