

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE CORSO DI LAUREA IN INGEGNERIA ELETTRONICA

PROGETTO DI UN SINTETIZZATORE MUSICALE CONTROLLATO IN TENSIONE

Relatore: Prof. Matteo Meneghini

Laureando: Filippo Gottardo

Matricola: 1220991

Indice

In	trodu	zione e Specifiche di Progetto	4		
1	Gen	erazione dei Segnali Principali	7		
	1.1	Rampa	7		
	1.2	Triangolo	10		
	1.3	Adattamento dei Segnali di Clock	11		
2	Con	vertitore Tensione-Frequenza	14		
3	Con	dizionamento dell'Ingresso	17		
	3.1	Convertitore Lineare-Esponenziale	17		
	3.2	Somma di più Ingressi	19		
	3.3	Clipper	19		
4	Mod	lalità di Funzionamento	20		
5	Gen	erazione dei Segnali Secondari	21		
	5.1	Onda Quadra	21		
	5.2	Dente di Sega	22		
	5.3	Sinusoide	23		
	5.4	Impulso	23		
6	Stac	li di Uscita	25		
7	Pro	tezione del Circuito	26		
8	Composizione delle Schede				
Co	onside	erazioni Finali e Conclusioni	28		
Bi	bliog	rafia	29		

Introduzione e Specifiche di Progetto

In questa tesi viene discussa la progettazione di un sintetizzatore musicale compatibile con lo standard modulare più diffuso al giorno d'oggi, ovvero Eurorack [9]. Più precisamente si vuole realizzare un generatore di segnali che offra la possibilità di essere controllato in tensione (Voltage Controlled Oscillator, o VCO in breve). In questo modo, applicando dei segnali variabili nel tempo in ingresso al modulo, si è in grado di variare dinamicamente la frequenza dei segnali in uscita.

Il range scelto per tale variazione comprende la fascia di frequenze utili nello spettro audio, quindi da poche decine di Hz a circa 7kHz. Si desidera inoltre, la possibilità di convertire a piacere il funzionamento del modulo in oscillatore a bassa frequenza (Low Frequency Oscillator, o LFO), spostando quindi il range di frequenze disponibili da frazioni di Hz a qualche decina di Hz.

Figura 1: Range di funzionamento in scala logaritmica

In modalità VCO quindi, il modulo produrrà dei segnali che attraverso un adeguato sistema potranno essere ascoltati, mentre in modalità LFO il circuito produrrà dei segnali lentamente variabili nel tempo, utili per la modulazione e il controllo di parametri in altri moduli eventualmente presenti nel sistema.

Le forme d'onda desiderate sono quelle base, ovvero:

- Sinusoide:
- Onda Quadra;
- Triangolo;
- Rampa;

• Dente di sega (sebbene nel range VCO non risulti particolarmente differente dalla rampa in termini di suono, per quanto riguarda il funzionamento LFO la differenza è radicale, poichè il segnale viene solitamente utilizzato come modulante);

inoltre, come verrà illustrato più avanti, risulta piuttosto semplice anche estrarre un segnale a impulso, rigorosamente alla stessa frequenza di quelli già generati. Tale segnale può essere utilizzato per scopi simili a quelli dei segnali in uscita in modalità LFO.

Per quanto riguarda le specifiche sui livelli di tensione, si vogliono imporre i seguenti intervalli di valori:

- Segnali audio (i 5 elencati poco sopra): $\pm 5V$;
- Segnali logici (impulso): (0V, 5V);
- Tensione di ingresso: (0V, 8V) in modalità 1V/Octave, ovvero facendo in modo che ad un incremento di 1V corrisponda un raddoppio di frequenza, cioè un'ottava;
- Alimentazioni: $\pm 12V$ e +5V;

Le specifiche sopra riportate sono prese dallo standard Eurorack.

Altre caratteristiche volute sono:

- Manopole per il controllo del "volume" di segnali in ingresso e uscita, ad eccezione dell'impulso;
- Manopole per il controllo manuale della frequenza;

Raccogliendo tutti questi dettagli possiamo iniziare a pensare ad una interfaccia utente, riportata in figura 2, in modo da rendere più chiaro al lettore il prodotto finale.

Si decide di realizzare l'intero circuito senza l'utilizzo di microcontrollori o sistemi programmabili. Tale scelta viene presa per mettere alla prova più competenze possibili tra quelle acquisite durante gli anni di studio. Si potrebbe infatti realizzare il tutto con un microcontrollore dotato di forme d'onda densamente campionate salvate in memoria. Altro motivo per il quale si sceglie questa strada è per avere ogni segnale su un canale a sè in modo da poter usufruire di ognuno contemporaneamente.

Figura 2: Pannello frontale del modulo

1. Generazione dei Segnali Principali

Per la realizzazione del segnale a rampa e a triangolo si decide di procedere in ogni caso per via digitale, utilizzando dei contatori binari abbinati ad un convertitore digitale-analogico.

Figura 1.1: Schema a blocchigenerale di un generatore di segnale

1.1 Rampa

Principio di Funzionamento

Per la generazione del segnale a rampa, si fa uso di un contatore unidirezionale, ovvero in grado di contare automaticamente da 0 a 2^n , dove n corrisponde al numero di bit, semplicemente fornendo un segnale di clock adeguatamente dimensionato. Maggiore il numero di bit n, maggiore sarà la precisione del nostro segnale e quindi minore l'intensità del rumore generato.

Figura 1.2: Confronto tra contatori unidirezionali con diverso numero di bit

Tuttavia aumentando il numero di bit del contatore, è facile intuire che, a parità di frequenza del segnale in uscita, la frequenza del segnale di clock debba necessariamente aumentare.

Vale quindi la seguente relazione:

$$f_{signal} = \frac{f_{clk}}{2^n}$$

poichè il contatore deve effettuare un conteggio completo in un periodo del segnale in uscita. Questo implica un limite massimo al numero di bit del contatore. Un valore ottimale per il numero di bit è 8, valore che ci consente infatti di limitare al MHz la frequenza do clock, contare fino a 255 e dividere l'intervallo di tensione d'uscita in altrettanti livelli, ottenendo quindi una variazione di

$$V_{step} = \frac{2V_{ref}}{2^n} = \frac{10V}{256} \approx 39mV$$

per ogni singolo bit (scegliendo $V_{ref} = +5V$).

Lo schema a blocchi diventa quindi il seguente:

CLK
$$0$$
 DAC Vout

Figura 1.3: Schema a blocchi del sottosistema per la generazione della rampa

A questo punto possiamo calcolare le frequenze del segnale di clock da generare, andando a vedere quali sono le frequenze desiderate:

- Valore minimo (nota A0): $f_{signal-min} = 27.5Hz \rightarrow f_{clk-min} \approx 7kHz$ a cui corrisponderà un ingresso di 0V;
- Valore massimo (nota A8): $f_{signal-max} \approx 7kHz \rightarrow f_{clk-max} \approx 1.8MHz$ a cui corrisponderà un ingresso di 8V;

estendendo quindi il range di funzionamento lungo 8 ottave.

Componenti Utilizzati e Schemi Elettrici

Si passa ora alla scelta dei componenti per la realizzazione del blocco circuitale.

- Contatore: 74HC590 [1];
- DAC: DAC0800 [2];

Per il circuito DAC si utilizza lo schema a pg.10 del relativo datasheet del componente. Tale configurazione ci permette infatti di convertire il dato binario in un valore compreso nell'intervallo $\pm V_{ref} = \pm 5V$ e $-V_{ref} = -5V$, tuttavia si utilizzano un amplificatore operazionale e dei resistori di valore differente (rispettivamente TL074 [5] e $R_L = \bar{R}_L = R_{ref} = 3.3k\Omega$). Si noti che anche V_{ref} viene scelta diversa rispetto allo schema nel datasheet (+5V), in modo da garantire le specifiche di progetto sul segnale in uscita.

Figura 1.4: Schema elettrico del DAC, $\pm V_{cc} = \pm 12V$

Il DAC eroga una corrente I_{out} proporzionale all'ingresso binario x, la quale viene poi convertita in una tensione con un operazionale, in questo modo la tensione d'uscita sarà legata al valore digitale in ingresso secondo la seguente relazione:

$$V_{out} = V_{ref} \left(\frac{2x - 255}{256} \right) = 5 \left(\frac{2x - 255}{256} \right) [V]$$

Il contatore invece viene collegato nel seguente modo:

Figura 1.5: Schema elettrico del contatore per l'onda a rampa, $V_{dd}=\pm 5V$

Si noti l'uscita "Pulse" in figura 1.5 dalla quale viene prelevato il segnale a impulso precedentemente accennato, di cui si parlerà più in dettaglio nei successivi capitoli.

Collegando i due blocchi insieme quindi, l'andamento della tensione V_{out} sarà simile a quello rappresentato in figura 1.2b e ad ogni impulso di clock corrisponderà un gradino di tensione di circa 40mV come calcolato precendentemente.

- (a) Acquisizione del segnale a rampa reale
- (b) Zoom degli step della rampa acquisita + clock

Figura 1.6: Acquisizioni del segnale a rampa

Risultati Pratici

1.2 Triangolo

Principio di Funzionamento

Il principio di funzionamento è del tutto analogo a quello del contatore per il segnale a rampa, tuttavia in questo caso, il contatore utilizzato è bidirezionale e necessita di un segnale che determini la direzione di conteggio (up o down).

Figura 1.7: Schema a blocchi del sottosistema per la generazione del triangolo

Figura 1.8: Confronto tra contatori bidirezionali con diverso numero di bit

Anche la configurazione del DAC rimane quella rappresentata in figura 1.4, utilizzata per la rampa.

Va tuttavia fatta notare una importante differenza, poichè in questo caso il numero di cicli di clock per il conteggio è doppio rispetto a quello del contatore per la rampa. Infatti dovranno essere eseguiti 256 conteggi verso l'alto e 256 conteggi verso il basso per effettuare un singolo

periodo di onda triangolare. Ne consegue quindi che la frequenza di clock in ingresso a questo sottosistema dovrà essere doppia rispetto a quella della sezione per la rampa, come risulta evidente in figura 1.9.

Figura 1.9: Confronto del conteggio tra contatori unidirezionali e bidirezionali

Componenti Utilizzati e Schemi Elettrici

L'unico componente diverso rispetto al circuito per la rampa è il contatore, che come detto deve essere bidirezionale. Si utilizzano due 74LS169 [8] in cascata, con la seguente configurazione:

Figura 1.10: Schema elettrico dei contatori per l'onda triangolare, $V_{dd} = +5V$

Il componente utilizzato presenta anche degli ingressi per il preset del numero di partenza (pin da 3 a 6), che però nel nostro caso non vengono utilizzati.

L'uscita denominata RCO2 verrà utilizzata per pilotare il verso del conteggio, utilizzando una soluzione circuitale meglio descritta nella sezione successiva.

Risultati Pratici

1.3 Adattamento dei Segnali di Clock

Si è visto come, per avere la stessa frequenza di segnale d'uscita, il contatore per il segnale a triangolo deve avere una frequenza di clock doppia rispetto a quella del contatore per il segnale

- (a) Acquisizione del segnale a triangolo reale
- (b) Zoom degli step del triangolo acquisito + clock

Figura 1.11: Acquisizioni del segnale a triangolo

a rampa. Questo problema si risolve facilmente utilizzando un divisore di frequenza, ottenuto con un semplice toggle flip-flop (TFF).

Figura 1.12: Schema a blocchi del divisore di frequenza

Le specifiche sul segnale di clock ci impongono allora di generare un segnale a onda quadra con frequenza variabile tra $\approx 14kHz$ e $\approx 3.6MHz$.

Invece, per fare in modo che il contatore del triangolo cambi effettivamente verso di conteggio è necessario utilizzare un altro TFF collegato al segnale RCO2 invertito, poichè attivo a livello logico basso, e all'ingresso U/D.

Figura 1.13: Schema a blocchi del sistema per il segnale di pilotaggio

I componenti utilizzati per questo scopo sono:

- Flip-Flop: 74HC73 [4];
- MOSFET: 2N7000 [6];

Il chip utilizzato per i flip-flop fornisce esattamente le 2 unità necessarie al nostro scopo.

Lo schema elettrico per l'inverter è rappresentato in figura 1.14, dove il MOSFET utilizzato è compatibile con le tensioni logiche presenti nel circuito.

Figura 1.14: Schema elettrico dell'inverter logico, $V_{dd} = +5V$

A questo punto collegando tutti i pezzi discussi finora, otteniamo il nucleo fondamentale del modulo,che ci permette di ottenere rampa e triangolo (e anche impulso) ad una frequenza proporzionale a quella del segnale di clock in ingresso.

Figura 1.15: Schema a blocchi del capitolo

2. Convertitore Tensione-Frequenza

Si vuole ora progettare la sezione per la generazione del segnale di clock, con le specifiche ottenute dal capitolo precedente, ovvero:

• Frequenza minima: $\approx 14kHz$;

• Frequenza massima: $\approx 3.6MHz$;

• Livello logico basso: 0V;

• Livello logico alto: +5V;

Principio di Funzionamento

Ciò di cui abbiamo bisogno è un circuito in grado di convertire una tensione in un segnale a onda quadra con frequenza proporzionale alla tensione stessa, ovvero un convertitore tensione-frequenza.

In commercio è possibile trovare chip in grado di svolgere questa funzione con l'aggiunta di una manciata di componenti di contorno, anche se la maggior parte di questi non arriva a coprire l'intero range di funzionamento di cui abbiamo bisogno (come ad esempio il noto LM331 [7]). Nel nostro caso si utilizza un VFC110 [3], circuito integrato che vanta un'ottima linearità e in grado di arrivare a fornire una frequenza in uscita di 4MHz in corrispondenza di una tensione di ingresso di 10V, esattamente ciò che la nostra applicazione richiede.

Figura 2.1: Estratto della struttura interna di un VFC110

Il circuito fa uso di un integratore, la quale uscita è proporzionale alla carica immagazzinata in C_{int} . Una tensione in ingresso V_{in} sviluppa una corrente $I_{in} = \frac{V_{in}}{R_{in}}$ e che viene forzata in C_{int} , caricandolo e causando l'uscita dell'integratore a diminuire linearmente. Non appena l'uscita dell'integratore arriva a 0V, il comparatore scatta, attivando il timer one-shot. Quindi un generatore di corrente I_{ref} (circa 1mA) viene connesso all'uscita dell'integratore durante il periodo del timer T_{OS} causando l'uscita dell'integratore a crescere linearmente fino alla fine di T_{OS} . Successivamente il ciclo ricomincia.

L'oscillazione è regolata dall'equilibrio tra corrente in ingresso I_{in} e la corrente di reset media.

Figura 2.2: Schema elettrico del VFC110 utilizzato

Per uno studio più approfondito sul funzionamento del componente si rimanda al datasheet del componente, dal quale si ricava anche la configurazione del circuito da utilizzare per sfruttare l'intero range offerto, modificando però i valori di alimentazione con quelli dello standard scelto $(\pm 12V)$.

Si noti che gli unici componenti aggiunti sono condensatori di filtro e un resistore di pull-up per l'uscita a collettore aperto.

Le relazioni tra le grandezze in gioco sono le seguenti:

$$I_{in} = I_{ref} \cdot \delta \rightarrow \delta = \frac{I_{in}}{I_{ref}} = \frac{V_{in}}{R_{in} \cdot I_{ref}}$$

$$\frac{V_{in}}{R_{in}} = I_{ref} \cdot f_{out} \cdot T_{OS} \to f_{out} = \frac{V_{in}}{R_{in} \cdot I_{ref} \cdot T_{OS}} = \frac{\delta}{T_{OS}}$$

Risultati Pratici e Misure

Figura 2.3: Acquisizione dell'uscita dell'integratore (pin 12) e f_{out} corrispondente

3. Condizionamento dell'Ingresso

3.1 Convertitore Lineare-Esponenziale

Vogliamo ora analizzare la sezione di circuto che soddisfa la specifica sulla modalità 1V/Octave dell'ingresso, ovvero il circuito in grado di convertire una tensione lineare in una esponenziale.

Analisi del Circuito

Per l'applicazione si sfrutta la caratteristica esponenziale intrinseca del transistor bipolare:

$$i_e \approx i_c = I_s e^{\left(\frac{v_{be}}{V_T} - 1\right)} \approx I_s e^{\left(\frac{v_{be}}{V_T}\right)}$$

dove V_T (o potenziale termico) e I_s (o corrente di saturazione) sono variabili in funzione della temperatura.

Nella nostra analisi considereremo V_T costante a 26mV, mentre per rimuovere dall'equazione I_s , si collegano 2 transistor (il più possibile simili tra loro e termicamente accoppiati) in configurazione a coppia differenziale.

Possiamo quindi scrivere la seguente relazione:

$$\frac{i_{c2}}{i_{c1}} = \frac{I_s e^{\left(\frac{v_{be2}}{V_T}\right)}}{I_{ce}^{\left(\frac{v_{be1}}{V_T}\right)}} \rightarrow i_{c2} = i_{c1} e^{\left(\frac{v_{be2} - v_{be1}}{V_T}\right)} = i_{c1} e^{\left(\frac{v_{b2} - v_{b1}}{V_T}\right)}$$

dove risulta evidente che la dipendenza da \mathcal{I}_s viene completamente rimossa.

A questo punto, apportando qualche modifica al circuito possiamo scrivere la relazione

$$i_{freq} = I_{ref} e^{-\frac{v_{b1}}{V_T}}$$

dove l'operazionale di sinistra si occupa di invertire il segno della tensione di ingresso per avere un valore positivo all'esponente, mentre quello di destra si occupa di mantenere costante la corrente di riferimento I_{ref} . Vale quindi:

$$I_{ref} = \frac{V_{HR} - V_{LR}}{R_{ref}}$$

Ora per completare il tutto basta aggiungere un convertitore corrente-tensione al collettore di Q_2 , legando cosi V_{in} a V_{out} con la seguente relazione:

$$V_{out} = R_f \cdot i_{freq} = R_f \cdot I_{ref} e^{-\frac{v_{b1}}{V_T}} = R_f \cdot I_{ref} e^{-\frac{s \cdot V_{in}}{V_T}} = R_f \cdot \frac{V_{HR} - V_{LR}}{R_{ref}} e^{-\frac{s \cdot V_{in}}{V_T}}$$

Dimensionamento dei Componenti

Passiamo quindi al dimensionamento dei componenti, in modo da imporre al circuito il comportamento voluto.

Come prima cosa impostiamo il valore del guadagno s dell'amplificatore invertente. Si vuole:

$$i_{freq} = I_{ref} e^{-\frac{s \cdot V_{in}}{V_T}} \rightarrow 2i_{freq} = I_{ref} e^{-\frac{s \cdot [V_{in} + \Delta V_{in}]}{V_T}}$$

qundi un raddoppio della corrente i_{freq} ad ogni variazione di $\Delta V_{in}=1V$. Allora possiamo riscrivere le due relazioni nel seguente modo:

$$2 = e^{-\frac{s \cdot \Delta V_{in}}{V_T}} \to ln2 = -\frac{s \cdot \Delta V_{in}}{V_T} \to -s = \frac{V_T \cdot ln2}{\Delta V_{in}}$$

e sostituendo i valori otteniamo:

$$-s = \frac{26mV \cdot 0.6931}{1V} \approx -0.018 \approx -\frac{1}{55.5}$$

valore che può essere diviso nel seguente modo:

$$s = \bar{s} \cdot \hat{s} = \frac{2k\Omega}{100k\Omega} \cdot \frac{440\Omega}{490\Omega} \approx 0.018$$

quindi:

- $R_f = 2k\Omega$;
- $R_{in} = 100k\Omega$;

- $R_{pot} = 100\Omega$;
- $R = 390\Omega$;

impostiamo i valori di $V_{HR} = +12 V$ e $V_{LR} = 0 V$.

Risultati Pratici e Misure

testo

3.2 Somma di più Ingressi

testo

3.3 Clipper

testo

Risultati Pratici e Misure

4. Modalità di Funzionamento

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

5. Generazione dei Segnali Secondari

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.1 Onda Quadra

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.2 Dente di Sega

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit

purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.3 Sinusoide

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

5.4 Impulso

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

6. Stadi di Uscita

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

7. Protezione del Circuito

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

8. Composizione delle Schede

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Considerazioni Finali e Conclusioni

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Bibliografia

- [1] 8-Bit Binary Counter With 3-State Output Registers. SN54HC590A, SN74HC590A. Rev. F. Texas Instruments. 15 Sep 2003. URL: https://www.ti.com/product/SN74HC590A?keyMatch=74HC590#tech-docs.
- [2] 8-Bit Digital-to-Analog Converters. DAC0800/DAC0802. Rev. C. Texas Instruments. 19
 Feb 2013. URL: https://www.ti.com/product/DAC0800?keyMatch=
 DAC0800#tech-docs.
- [3] High Frequency Voltage-to-Frequency Converter. VFC110. Rev. A. Texas Instruments. 25 Apr 2007. URL: https://www.ti.com/product/VFC110?keyMatch=VFC110.
- [4] High Speed CMOS Logic Dual Negative-Edge-Triggered J-K Flip-Flops with Reset. CDx4HC73, CD74HC73. Texas Instruments. 31 Jan 2022. URL: https://www.ti.com/product/CD74HC73?keyMatch=CD74HC73&tisearch=search-everything&usecase=GPN.
- [5] Low-Noise FET-Input Operational Amplifiers. TL07xx. Rev. T. Texas Instruments. 13

 Dec 2021. URL: https://www.ti.com/product/TL074A?keyMatch=
 &tisearch=search-everything&usecase=partmatches.
- [6] N-Channel Enhancement Mode Field Effect Transistor 60V, 200mA, 5 ohm. 2N7000, 2N7002, NDS7002A. Rev. 7. ON Semiconductor. July 2022. URL: https://www.onsemi.com/products/discrete-power-modules/mosfets/2n7000.
- [7] Precision voltage-to-frequency converter with 1-Hz to 100-kHz full scale frequency. LMx31x. Rev. C. Texas Instruments. 29 Sep 2015. URL: https://www.ti.com/product/LM331?keyMatch=LM331.
- [8] Synchronous 4-Bit Up/Down Binary Counters. SN54LS169B, SN54S169, SN74LS169B, SN74LS169B. Texas Instruments. 1Mar 1988. URL: https://www.ti.com/product/SN74LS169B?keyMatch=SN74LS169B&tisearch=search-everything&usecase=GPN.
- [9] Wikipedia. Eurorack. URL: https://en.wikipedia.org/wiki/Eurorack.