THE SQUARES IN THE SMARANDACHE HIGHER POWER PRODUCT SEQUENCES

Maohua Le

Abstract. In this paper we prove that the Smarandache higher power product sequences of the first kind and the second kind do not contain squares.

Key words. Smarandache product sequence, higher power, square.

Let r be a positive integer with r>3, and let A(n) be the n-th powew of degree r. Further, let

(1)
$$p(n) = \prod_{k=1}^{n} A(k) + 1$$

and

(2)
$$Q(n) = \prod_{k=1}^{n} A(k)-1$$
.

Then the sequences $P = \{P(n)\}_{n=1}^{\infty}$ and $Q = \{Q(n)\}_{n=1}^{\infty}$ are called the Smarandache higher power product sequences of the first kind and the second kind respectively. In this paper we consider the squares in P and Q. We prove the following result.

Theorm. For any positive integer r with r>3, the sepuences P and Q do not contain squares.

Proof. By (1), if P(n) is a square, then we have $(n!)^{r}+1=a^{2}$,

where a is a positive integer. It implies that the equation

(4) $x^m+1=y^2, m>3$

has a poitive integer solution (x,y,m)=(n!,a,r). However, by the result of [1], the equation (4) has no positive integer solution (x,y,m). Thus, the sequence P does not contain squares.

Similarly, by (2), if Q(n) is a square, then we have (5) $(n!)^{r}-1=a^{2}$,

where a is a positive integer. It implies that the equation

(6) $x^m-1=y^2,m>3$.

has a positive integer solution (x,y,m)=(n!,a,r). However, by the result of [2], it is impossible. Thus, the sequence Q does not contain squares. The theorem is proved.

References

- [1] C.Ko,On the diophantine equation $x^2=y^n+1,xy \neq 0$,Sci, Sinica, 14 (1964),457-460.
- [2] V.A.Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation $x^m=y^2+1$, Nouv. Ann. Math. (1), 9(1850), 178-181.

Department of Mathematics Zhanjiang Normal College Zhanjiang, Guangdong P.R.CHINA