SKUPINA — A

Na řešení je 60 minut. Pište jen na přední strany listů. (Zadní strany nebudou opraveny ani skenovány.) Veškeré odpovědi musí být zdůvodněny a výpočty musí být doprovozeny komentářem. (Řešení sestávající pouze z odpovědí budou považována za opsaná a hodnocena 0 body.)

1. (3.5 bodu) Podmnožina $M \subseteq \mathbb{R}^3$,

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 4, \ z \le 6, \ z \ge \frac{1}{2}(x^2 + y^2) \},\$$

je rotační oblast (tento fakt nedokazujte).

- a) Určete osu rotace a načrtněte průnik množiny M s rovinou y=0.
- b) Určete objem oblasti M.
- **2.** (4.5 bodu)
 - a) Popište všechna řešení diferenciální rovnice y'' + 3y' 4y = 0.
 - b) Najděte obecné řešení diferenciání rovnice $y'' + 3y' 4y = 8(x 1)^2$.
 - c) Určete řešení rovnice $y''+3y'-4y=8(x-1)^2$ splňující počáteční podmínky $y(0)=-\frac{13}{4}$ a y'(0)=0.
- 3. (2 body) Máme tři urny s míčky:
 - v urně I. je jeden černý, dva bílé a tři červené míčky,
 - v urně II. je jeden černý, jeden bílý a dva červené míčky,
 - v urně III. je dva černé, dva bílé a dva červené míčky.

Náhodně vybereme jednu z těchto uren a z ní tři míčky (bez vracení). Určete pravděpodobnost, že byla vybrána druhá urna, jestliže tři vybrané míčky byly různých barev.

SKUPINA — B

Na řešení je 60 minut. Pište jen na přední strany listů. (Zadní strany nebudou opraveny ani skenovány.) Veškeré odpovědi musí být zdůvodněny a výpočty musí být doprovozeny komentářem. (Řešení sestávající pouze z odpovědí budou považována za opsaná a hodnocena 0 body.)

1. (3.5 bodu) Podmnožina $M \subseteq \mathbb{R}^3$,

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 16, \ z \ge -1, \ z \le x^2 + y^2 \},\$$

je rotační oblast (tento fakt nedokazujte).

- a) Určete osu rotace a načrtněte průnik množiny M s rovinou y=0.
- b) Určete objem oblasti M.
- 2. (4.5 bodu)
 - a) Popište všechna řešení diferenciální rovnice y'' + 3y' 10y = 0.
 - b) Najděte obecné řešení diferenciání rovnice $y'' + 3y' 10y = 10x^2 + 14x + 24$.
 - c) Určete řešení rovnice $y'' + 3y' 10y = 10x^2 + 14x + 24$ splňující počáteční podmínky $y(0) = -\frac{11}{5}$ a y'(0) = 0.
- **3.** (2 body) Studenti tří oborů (matematiky, fyziky a informatiky) jsou rozmístěni v učebnách A, B a C následovně:
 - -v učebně A jsou tři studenti matematiky, jeden student fyziky a jeden student informatiky,
 - v učebně B jsou dva studenti matematiky, dva studenti fyziky a dva studenti informatiky,
 - v učebně C je jeden student matematiky, dva studenti fyziky a dva studenti informatiky.

Náhodně vybereme jednu z těchto učeben a z ní tři studenty (bez vracení). Určete pravděpodobnost, že byla vybrána učebna B, jestliže tři vybraní studenti byli z různých oborů.

SKUPINA — C

Na řešení je 60 minut. Pište jen na přední strany listů. (Zadní strany nebudou opraveny ani skenovány.) Veškeré odpovědi musí být zdůvodněny a výpočty musí být doprovozeny komentářem. (Řešení sestávající pouze z odpovědí budou považována za opsaná a hodnocena 0 body.)

1. (3.5 bodu) Podmnožina $M \subseteq \mathbb{R}^3$,

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 4, \ z \le 3, \ z \ge -2(x^2 + y^2) \},\$$

je rotační oblast (tento fakt nedokazujte).

- a) Určete osu rotace a načrtněte průnik množiny M s rovinou y=0.
- b) Určete objem oblasti M.

2. (4.5 bodu)

- a) Popište všechna řešení diferenciální rovnice y'' + 4y' 5y = 0.
- b) Najděte obecné řešení diferenciání rovnice $y'' + 4y' 5y = 25(x-1)^2$.
- c) Určete řešení rovnice $y'' + 4y' 5y = 25(x-1)^2$ splňující počáteční podmínky $y(0) = -\frac{22}{5}$ a y'(0) = 3.

3. (2 body) Máme tři urny s míčky:

- v urně I. je jeden černý, jeden bílý a dva červené míčky,
- v urně II. je dva černé, dva bílé a dva červené míčky,
- v urně III. je jeden černý, dva bílé a tři červené míčky.

Náhodně vybereme jednu z těchto uren a z ní tři míčky (bez vracení). Určete pravděpodobnost, že byla vybrána třetí urna, jestliže tři vybrané míčky byly různých barev.

SKUPINA — D

Na řešení je 60 minut. Pište jen na přední strany listů. (Zadní strany nebudou opraveny ani skenovány.) Veškeré odpovědi musí být zdůvodněny a výpočty musí být doprovozeny komentářem. (Řešení sestávající pouze z odpovědí budou považována za opsaná a hodnocena 0 body.)

1. (3.5 bodu) Podmnožina $M \subseteq \mathbb{R}^3$,

$$M = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ z \ge -2, \ z \le -\frac{1}{2}(x^2 + y^2) \right\},\,$$

je rotační oblast (tento fakt nedokazujte).

- a) Určete osu rotace a načrtněte průnik množiny M s rovinou y=0.
- b) Určete objem oblasti M.
- 2. (4.5 bodu)
 - a) Popište všechna řešení diferenciální rovnice y'' + 2y' 8y = 0.
 - b) Najděte obecné řešení diferenciání rovnice $y'' + 2y' 8y = 16(x+1)^2$.
 - c) Určete řešení rovnice $y'' + 2y' 8y = 16(x+1)^2$ splňující počáteční podmínky $y(0) = -\frac{11}{4}$ a y'(0) = -3.
- **3.** (2 body) Studenti tří oborů (matematiky, fyziky a informatiky) jsou rozmístěni v učebnách A, B a C následovně:
 - v učebně A jsou dva studenti matematiky, dva studenti fyziky a dva studenti informatiky,
 - v učebně B je jeden student matematiky, dva studenti fyziky a dva studenti informatiky,
 - v učebně C jsou tři studenti matematiky, jeden student fyziky a jeden student informatiky.

Náhodně vybereme jednu z těchto učeben a z ní tři studenty (bez vracení). Určete pravděpodobnost, že byla vybrána učebna B, jestliže tři vybraní studenti byli z různých oborů.

Popsané bodování používá i půlbody. Počet bodů, který vidíte v naskenovaném opraveném řešení, je desetinásobkem počtu skutečných bodů.

Skupina A:

- 1. a) [1b] Množina M je část válce s osou z o poloměrem 2, která je zespoda ohraničená paraboloidem $z=\frac{1}{2}(x^2+y^2)$ a seshora ohraničená rovinou z=6. Osa rotace je osa z, [0.5b], a průnik s rovinou y=0 je oblast mezi přímkami x=-2 a x=2 zespoda ohraničená parabolou $z=\frac{1}{2}x^2$ a seshora ohraničená přímkou z=6, [0.5b].
 - b) [2.5b] Použijeme válcové souřadnice, tj. provedeme transformaci do polárních souřadnic $(x,y)=(r\cos\varphi,r\sin\varphi),$ přičemž z-tová souřadnice se nemění. Tedy budeme integrovat přes oblast nových proměnných

$$0 \le \varphi \le 2\pi$$
, $0 \le r \le 2$ a $\frac{1}{2}(x^2 + y^2) \le z \le 6$,

 $[0.5\mathrm{b}].$ Determinant z Jacobiho matice je r, $[0.5\mathrm{b}],$ takže hledaný objem V je

$$V = \iiint_{M} dx dy dz = \int_{\varphi=0}^{2\pi} \int_{r=0}^{2} \int_{z=\frac{1}{2}r^{2}}^{6} r dz dr d\varphi = \left(\int_{\varphi=0}^{2\pi} d\varphi\right) \left(\int_{r=0}^{2} r(6 - \frac{1}{2}r^{2}) dr\right) = 2\pi \left[-\frac{1}{8}r^{4} + 3r^{2}\right]_{0}^{2} = 2\pi \cdot 10 = 20\pi,$$

[0.5b za správné pořadí integrace, 0.5b za postup integrování a 0.5b za správný výsledek].

- 2. a) [1b] Diferenciální rovnice y'' + 3y' 4y = 0 má charakteristický polynom $\lambda^2 + 3\lambda 4 = (\lambda + 4)(\lambda 1)$, [0.5b], který má kořeny -4 a 1. Tedy řešení jsou tvaru $C_1e^{-4x} + C_2e^x$, C_1 , $C_2 \in \mathbb{R}$, [0.5b].
 - b) [2.5b] Rovnice je $y'' + 3y' 4y = 8(x-1)^2$ má pravou stranu $4(x+1)^2 = 8x^2 16x + 8$, což je polynom stupně dva partikulární řešení $y_p(x)$ tedy budeme hledat ve tvaru polynomu stupně dva, [0.5b]. (Přesněji, pravá strana je tvaru $8(x^2 2x + 1) \cdot e^{0x}$, kde 0 není kořenem charakteristického polynomu.) Tedy $y_p(x) = ax^2 + bx + c$, tj. $y_p'(x) = 2ax + b$ a $y_p''(x) = 2a$, což po dosazení do rovnice dává

$$2a + 3(2ax + b) - 4(ax^{2} + bx + c) = -4ax^{2} + (6a - 4b)x + (2a + 3b - 4c) = 8x^{2} - 16x + 8,$$

[0.5b]. Porovnáním koeficientů polynomů dostaneme soustavu rovnic $-4a=8,\ 6a-4b=-16,\ 2a+3b-4c=8,\ [0.5b],$ která má řešení $a=-2,\ b=1,\ c=-\frac{9}{4},\ [0.5b].$ Tedy hledané partikulární řešení je $y_p(x)=-2x^2+x-\frac{9}{4}$ a obecné řešení je, [0.5b],

$$y(x) = C_1 e^{-4x} + C_2 e^x - 2x^2 + x - \frac{9}{4}, \quad C_1, C_2 \in \mathbb{R}.$$

c) [1b] Použitím počátečních podmínek pro $y(x) = C_1 e^{-4x} + C_2 e^x - 2x^2 + x - \frac{9}{4}$ dostaneme

$$y(0) = C_1 + C_2 - \frac{9}{4} = -\frac{13}{4}$$
 a $y'(0) = -4C_1 + C_2 + 1 = 0$,

[0.5b]. Tato soustava rovnic má řešení $C_1=0$ a $C_2=-1$, tedy hledané řešení je $y(x)=-e^x-2x^2+x-\frac{9}{4}$, [0.5b].

3. Pracujeme s jevem A, že budou vytaženy míčky různých barev, a také budeme potřebovat jevy U_i , že k výběru byla zvolena urna číslo $i \in \{1, 2, 3\}$. Chceme určit $P(U_2|A)$. Platí $P(U_i) = \frac{1}{3}$ a použijeme vztah $P(U_2|A) = \frac{P(A|U_2)P(U_2)}{P(A)}$, [0.5b]. Platí

$$P(A) = P(A|U_1)P(U_1) + P(A|U_2)P(U_2) + P(A|U_3)P(U_3) = \frac{6}{\binom{6}{3}} \cdot \frac{1}{3} + \frac{2}{\binom{4}{3}} \cdot \frac{1}{3} + \frac{8}{\binom{6}{3}} \cdot \frac{1}{3} = \frac{6}{20} \cdot \frac{1}{3} + \frac{2}{4} \cdot \frac{1}{3} + \frac{8}{20} \cdot \frac{1}{3} = \frac{12}{30} = \frac{2}{5},$$

[0.5b za postup a 0.5b za výsledek]. Tedy

$$P(U_2|A) = \frac{P(A|U_2)P(U_2)}{P(A)} = \frac{\frac{2}{\binom{4}{3}} \cdot \frac{1}{3}}{\frac{2}{5}} = \frac{\frac{1}{6}}{\frac{2}{5}} = \frac{5}{12},$$

Popsané bodování používá i půlbody. Počet bodů, který vidíte v naskenovaném opraveném řešení, je desetinásobkem počtu skutečných bodů.

Skupina B:

- 1. a) [1b] Množina M je část válce s osou z o poloměrem 4, která je zespoda ohraničená rovinou z=-1 a seshora ohraničená paraboloidem $z=x^2+y^2$. Osa rotace je osa z, [0.5b], a průnik s rovinou y=0 je oblast mezi přímkami x=-4 a x=4 zespoda ohraničená přímkou z=-1 a seshora ohraničená parabolou $z=x^2$, [0.5b].
 - b) [2.5b] Použijeme válcové souřadnice, tj. provedeme transformaci do polárních souřadnic $(x,y) = (r\cos\varphi, r\sin\varphi)$, přičemž z-tová souřadnice se nemění. Tedy budeme integrovat přes oblast nových proměnných

$$0 \le \varphi \le 2\pi$$
, $0 \le r \le 4$ a $-1 \le z \le x^2 + y^2$,

[0.5b]. Determinant z Jacobiho matice je r, [0.5b], takže hledaný objem V je

$$\begin{split} V = & \iiint_{M} dx dy dz = \int_{\varphi=0}^{2\pi} \int_{r=0}^{4} \int_{z=-1}^{r^{2}} r dz dr d\varphi = \left(\int_{\varphi=0}^{2\pi} d\varphi \right) \left(\int_{r=0}^{4} r (r^{2} + 1) dr \right) = \\ = & 2\pi \left[\frac{1}{4} r^{4} + \frac{1}{2} r^{2} \right]_{0}^{4} = 2\pi \cdot 72 = 144\pi, \end{split}$$

[0.5b za správné pořadí integrace, 0.5b za postup integrování a 0.5b za správný výsledek].

- 2. a) [1b] Diferenciální rovnice y''+3y'-10y=0 má charakteristický polynom $\lambda^2+3\lambda-10=(\lambda+5)(\lambda-2)$, [0.5b], který má kořeny -5 a 2. Tedy řešení jsou tvaru $C_1e^{-5x}+C_2e^{2x}$, $C_1,C_2\in\mathbb{R}$, [0.5b].
 - b) [2.5b] Rovnice je $y'' + 3y' 10y = 10x^2 + 14x + 24$ má pravou stranu $10x^2 + 14x + 24$, což je polynom stupně dva partikulární řešení $y_p(x)$ tedy budeme hledat ve tvaru polynomu stupně dva, [0.5b]. (Přesněji, pravá strana je tvaru $(10x^2 + 14x + 24) \cdot e^{0x}$, kde 0 není kořenem charakteristického polynomu.) Tedy $y_p(x) = ax^2 + bx + c$, tj. $y'_p(x) = 2ax + b$ a $y''_p(x) = 2a$, což po dosazení do rovnice dává

$$2a + 3(2ax + b) - 10(ax^{2} + bx + c) = -10ax^{2} + (6a - 10b)x + (2a + 3b - 10c) = 10x^{2} + 14x + 24,$$

[0.5b]. Porovnáním koeficientů polynomů dostaneme soustavu rovnic $-10a=10,\ 6a-10b=14,\ 2a+3b-10c=24,\ [0.5b],$ která má řešení $a=-1,\ b=-2,\ c=-\frac{16}{5},\ [0.5b].$ Tedy hledané partikulární řešení je $y_p(x)=-x^2-2x-\frac{16}{5}$ a obecné řešení je, [0.5b],

$$y(x) = C_1 e^{-5x} + C_2 e^{2x} - x^2 - 2x - \frac{16}{5}, \quad C_1, C_2 \in \mathbb{R}.$$

c) [1b] Použitím počátečních podmínek pro $y(x) = C_1 e^{-5x} + C_2 e^{2x} - x^2 - 2x - \frac{16}{5}$ dostaneme

$$y(0) = C_1 + C_2 - \frac{16}{5} = -\frac{11}{5}$$
 a $y'(0) = -5C_1 + 2C_2 - 2 = 0$,

[0.5b]. Tato soustava rovnic má řešení $C_1=0$ a $C_2=1$, tedy hledané řešení je $y(x)=e^{2x}-x^2-2x-\frac{16}{5}$, [0.5b].

3. Pracujeme s jevem D, že budou vybráni studenti různých oborů, a také budeme potřebovat jevy U_A , U_B a U_C , že k výběru byl zvolena učebna A, B nebo C. Chceme určit $P(U_B|D)$. Platí $P(U_A) = P(U_B) = P(U_C) = \frac{1}{3}$ a použijeme vztah $P(U_B|D) = \frac{P(D|U_B)P(U_B)}{P(D)}$, [0.5b]. Platí

$$P(D) = P(D|U_A)P(U_A) + P(D|U_B)P(U_B) + P(D|U_C)P(U_C) = \frac{3}{\binom{5}{3}} \cdot \frac{1}{3} + \frac{8}{\binom{6}{3}} \cdot \frac{1}{3} + \frac{4}{\binom{5}{3}} \cdot \frac{1}{3} = \frac{3}{10} \cdot \frac{1}{3} + \frac{8}{20} \cdot \frac{1}{3} + \frac{4}{10} \cdot \frac{1}{3} = \frac{11}{30},$$

[0.5b za postup a 0.5b za výsledek]. Tedy

$$P(U_B|D) = \frac{P(D|U_B)P(U_B)}{P(D)} = \frac{\frac{8}{\binom{6}{3}} \cdot \frac{1}{3}}{\frac{11}{20}} = \frac{\frac{4}{30}}{\frac{11}{20}} = \frac{4}{11},$$

Popsané bodování používá i půlbody. Počet bodů, který vidíte v naskenovaném opraveném řešení, je desetinásobkem počtu skutečných bodů.

Skupina C:

- 1. a) [1b] Množina M je část válce s osou z o poloměrem 2, která je zespoda ohraničená paraboloidem $z=-2(x^2+y^2)$ a seshora ohraničená rovinou z=3. Osa rotace je osa z, [0.5b], a průnik s rovinou y=0 je oblast mezi přímkami x=-2 a x=2 zespoda ohraničená parabolou $z=-2x^2$ a seshora ohraničená přímkou z=-1, [0.5b].
 - b) [2.5b] Použijeme válcové souřadnice, tj. provedeme transformaci do polárních souřadnic $(x,y)=(r\cos\varphi,r\sin\varphi)$, přičemž z-tová souřadnice se nemění. Tedy budeme integrovat přes oblast nových proměnných

$$0 \le \varphi \le 2\pi$$
, $0 \le r \le 2$ a $-2(x^2 + y^2) \le z \le 3$,

[0.5b]. Determinant z Jacobiho matice je r, [0.5b], takže hledaný objem V je

$$V = \iiint_{M} dx dy dz = \int_{\varphi=0}^{2\pi} \int_{r=0}^{2} \int_{z=-2r^{2}}^{3} r dz dr d\varphi = \left(\int_{\varphi=0}^{2\pi} d\varphi\right) \left(\int_{r=0}^{2} r(3+2r^{2}) dr\right) = 2\pi \left[\frac{1}{2}r^{4} + \frac{3}{2}r^{2}\right]_{0}^{2} = 2\pi \cdot 14 = 28\pi,$$

[0.5b za správné pořadí integrace, 0.5b za postup integrování a 0.5b za správný výsledek].

- 2. a) [1b] Diferenciální rovnice y'' + 4y' 5y = 0 má charakteristický polynom $\lambda^2 + 4\lambda 5 = (\lambda + 5)(\lambda 1)$, [0.5b], který má kořeny -5 a 1. Tedy řešení jsou tvaru $C_1e^{-5x} + C_2e^x$, C_1 , $C_2 \in \mathbb{R}$, [0.5b].
 - b) [2.5b] Rovnice je $y'' + 4y' 5y = 25(x-1)^2$ má pravou stranu $25(x-1)^2 = 25x^2 50x + 25$, což je polynom stupně dva partikulární řešení $y_p(x)$ tedy budeme hledat ve tvaru polynomu stupně dva, [0.5b]. (Přesněji, pravá strana je tvaru $25(x-1)^2 \cdot e^{0x}$, kde 0 neni kořenem charakteristického polynomu.) Tedy $y_p(x) = ax^2 + bx + c$, tj. $y'_p(x) = 2ax + b$ a $y''_p(x) = 2a$, což po dosazení do rovnice dává

$$2a + 4(2ax + b) - 5(ax^{2} + bx + c) = -5ax^{2} + (8a - 5b)x + (2a + 4b - 5c) = 25x^{2} - 50x + 25,$$

[0.5b]. Porovnáním koeficientů polynomů dostaneme soustavu rovnic $-5a=25,\ 8a-5b=-50,\ 2a+4b-5c=25,\ [0.5b]$, která má řešení $a=-5,\ b=2,\ c=-\frac{27}{5},\ [0.5b]$. Tedy hledané partikulární řešení je $y_p(x)=-5x^2+2x-\frac{27}{5}$ a obecné řešení je, [0.5b],

$$y(x) = C_1 e^{-5x} + C_2 e^x - 5x^2 + 2x - \frac{27}{5}, \quad C_1, C_2 \in \mathbb{R}.$$

c) [1b] Použitím počátečních podmínek pro $y(x) = C_1 e^{-5x} + C_2 e^x - 5x^2 + 2x - \frac{27}{5}$ dostaneme

$$y(0) = C_1 + C_2 - \frac{27}{5} = -\frac{22}{5}$$
 a $y'(0) = -5C_1 + C_2 + 2 = 3$,

[0.5b]. Tato soustava rovnic má řešení $C_1=0$ a $C_2=1$, tedy hledané řešení je $y(x)=e^x-5x^2+2x-\frac{27}{5}$, [0.5b].

3. Pracujeme s jevem A, že budou vytaženy míčky různých barev, a také budeme potřebovat jevy U_i , že k výběru byla zvolena urna číslo $i \in \{1, 2, 3\}$. Chceme určit $P(U_3|A)$. Platí $P(U_i) = \frac{1}{3}$ a použijeme vztah $P(U_3|A) = \frac{P(A|U_3)P(U_3)}{P(A)}$, [0.5b]. Platí

$$P(A) = P(A|U_1)P(U_1) + P(A|U_2)P(U_2) + P(A|U_3)P(U_3) = \frac{2}{\binom{4}{3}} \cdot \frac{1}{3} + \frac{8}{\binom{6}{3}} \cdot \frac{1}{3} + \frac{6}{\binom{6}{3}} \cdot \frac{1}{3} = \frac{2}{3} \cdot \frac{1}{3} + \frac{8}{20} \cdot \frac{1}{3} + \frac{6}{20} \cdot \frac{1}{3} = \frac{12}{30} = \frac{2}{5},$$

[0.5b za postup a 0.5b za výsledek]. Tedy

$$P(U_3|A) = \frac{P(A|U_3)P(U_3)}{P(A)} = \frac{\frac{6}{\binom{6}{3}} \cdot \frac{1}{3}}{\frac{2}{5}} = \frac{\frac{1}{10}}{\frac{2}{5}} = \frac{1}{4},$$

Popsané bodování používá i půlbody. Počet bodů, který vidíte v naskenovaném opraveném řešení, je desetinásobkem počtu skutečných bodů.

Skupina D:

- 1. a) [1b] Množina M je část válce s osou z o poloměrem 1, která je zespoda ohraničená rovinou z=-2 a seshora ohraničená paraboloidem $z=-\frac{1}{2}(x^2+y^2)$. Osa rotace je osa z, [0.5b], a průnik s rovinou y=0 je oblast mezi přímkami x=-1 a x=1 zespoda ohraničená přímkou z=-2 a seshora ohraničená parabolou $z=-\frac{1}{2}x^2$, [0.5b].
 - b) [2.5b] Použijeme válcové souřadnice, tj. provedeme transformaci do polárních souřadnic $(x,y) = (r\cos\varphi, r\sin\varphi)$, přičemž z-tová souřadnice se nemění. Tedy budeme integrovat přes oblast nových proměnných

$$0 \le \varphi \le 2\pi$$
, $0 \le r \le 1$ a $-2 \le z \le -\frac{1}{2}(x^2 + y^2)$,

[0.5b]. Determinant z Jacobiho matice je r, [0.5b], takže hledaný objem V je

$$\begin{split} V = & \iiint_{M} dx dy dz = \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} \int_{z=-2}^{-\frac{1}{2}r^{2}} r dz dr d\varphi = \Big(\int_{\varphi=0}^{2\pi} d\varphi\Big) \Big(\int_{r=0}^{1} r(-\frac{1}{2}r^{2}+2) dr\Big) = \\ = & 2\pi \left[-\frac{1}{8}r^{4} + r^{2}\right]_{0}^{1} = 2\pi \cdot \frac{7}{8} = \frac{7}{4}\pi, \end{split}$$

[0.5b za správné pořadí integrace, 0.5b za postup integrování a 0.5b za správný výsledek].

- 2. a) [1b] Diferenciální rovnice y'' + 2y' 8y = 0 má charakteristický polynom $\lambda^2 + 2\lambda 8 = (\lambda + 4)(\lambda 2)$, [0.5b], který má kořeny -4 a 2. Tedy řešení jsou tvaru $C_1e^{-4x} + C_2e^{2x}$, $C_1, C_2 \in \mathbb{R}$, [0.5b].
 - b) [2.5b] Rovnice je $y'' + 2y' 8y = 16(x+1)^2$ má pravou stranu $16(x+1)^2 = 16x^2 + 32x + 16$, což je polynom stupně dva partikulární řešení $y_p(x)$ tedy budeme hledat ve tvaru polynomu stupně dva, [0.5b]. (Přesněji, pravá strana je tvaru $16(x+1)^2 \cdot e^{0x}$, kde 0 není kořenem charakteristického polynomu.) Tedy $y_p(x) = ax^2 + bx + c$, tj. $y'_p(x) = 2ax + b$ a $y''_p(x) = 2a$, což po dosazení do rovnice dává

$$2a + 2(2ax + b) - 8(ax^{2} + bx + c) = -8ax^{2} + (4a - 8b)x + (2a + 2b - 8c) = 16x^{2} + 32x + 16$$

[0.5b]. Porovnáním koeficientů polynomů dostaneme soustavu rovnic -8a=16, 4a-8b=32, 2a+2b-8c=16, [0.5b], která má řešení a=-2, b=-5, $c=-\frac{15}{4}$, [0.5b]. Tedy hledané partikulární řešení je $y_p(x)=-2x^2-5x-\frac{15}{4}$ a obecné řešení je, [0.5b],

$$y(x) = C_1 e^{-4x} + C_2 e^{2x} - 2x^2 - 5x - \frac{15}{4}, \quad C_1, C_2 \in \mathbb{R}.$$

c) [1b] Použitím počátečních podmínek pro $y(x) = C_1 e^{-4x} + C_2 e^{2x} - 2x^2 - 5x - \frac{15}{4}$ dostaneme

$$y(0) = C_1 + C_2 - \frac{15}{4} = -\frac{11}{4}$$
 a $y'(0) = -4C_1 + 2C_2 - 5 = -3$,

[0.5b]. Tato soustava rovnic má řešení $C_1=0$ a $C_2=1$, tedy hledané řešení je $y(x)=e^{2x}-2x^2-5x-\frac{15}{4}$, [0.5b].

3. Pracujeme s jevem D, že budou vybráni studenti různých oborů, a také budeme potřebovat jevy U_A , U_B a U_C , že k výběru byl zvolena učebna A, B nebo C. Chceme určit $P(U_B|D)$. Platí $P(U_A) = P(U_B) = P(U_C) = \frac{1}{3}$ a použijeme vztah $P(U_B|D) = \frac{P(D|U_B)P(U_B)}{P(D)}$, [0.5b]. Platí

$$P(D) = P(D|U_A)P(U_A) + P(D|U_B)P(U_B) + P(D|U_C)P(U_C) = \frac{8}{\binom{6}{3}} \cdot \frac{1}{3} + \frac{4}{\binom{5}{3}} \cdot \frac{1}{3} + \frac{3}{\binom{5}{3}} \cdot \frac{1}{3} = \frac{8}{20} \cdot \frac{1}{3} + \frac{4}{10} \cdot \frac{1}{3} + \frac{3}{10} \cdot \frac{1}{3} = \frac{11}{30},$$

[0.5b za postup a 0.5b za výsledek]. Tedy

$$P(U_B|D) = \frac{P(D|U_B)P(U_B)}{P(D)} = \frac{\frac{4}{\binom{5}{3}} \cdot \frac{1}{3}}{\frac{11}{30}} = \frac{\frac{4}{30}}{\frac{11}{30}} = \frac{4}{11},$$