

Introduction

Prof. Pattabiraman.V

SCSE, VIT, Chennai

Outline

- •What is Data Visualization?
- •Why do we need Data Visualization?
- Goals of Data Visualization
- Characteristics of effective graphical displays
- Different Types of Data

01:54

What is Data Visualization?

- Data visualization is a general term that describes any effort to help people understand the significance of data by placing it in a visual context.
- Patterns, trends and correlations that might go undetected in text-based data can be exposed and recognized easier with data visualization software.

- Did you know that 25% of your brain power is connected to visual stimulus, and 70% of our sensory receptors are in our eyes?
- No wonder we "get the picture" faster when presenting information visually

- A picture is worth 1000 words.
- A picture can also be worth 1000 data points.
 - In 1973, the statistician Francis Anscombe demonstrated the importance of graphing data.
 - The Anscombe's Quartet shows how four sets of data with identical simple summary statistics can vary considerably when graphed.

i	1		II		II	I	IV		
	X	у	X	У	X	у	Х	у	
	10	8,04	10	9,14	10	7,46	8	6,58	
	8	6,95	8	8,14	8	6,77	8	5,76	
	13	7,58	13	8,74	13	12,74	8	7,71	
	9	8,81	9	8,77	9	7,11	8	8,84	
	11	8,33	11	9,26	11	7,81	8	8,47	
	14	9,96	14	8,1	14	8,84	8	7,04	
	6	7,24	6	6,13	6	6,08	8	5,25	
	4	4,26	4	3,1	4	5,39	19	12,5	
	12	10,84	12	9,13	12	8,15	8	5,56	
	7	4,82	7	7,26	7	6,42	8	7,91	
	5	5,68	5	4,74	5	5,73	8	6,89	
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51	
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50	
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03	

 Simple Summary Statistics of Anscombe's Quartet Data Table

Property	Value
Mean of x of each data set	9 (exact)
Variance of x in each data set	11 (exact)
Mean of y in each data set	7.50 (to 2 decimal places)
Variance of y in each data set	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each data set	0.816 (to 3 decimal places)
Linear regression line for each data set	y = 3.00 + 0.500x (to 2 and 3 decimal places, respectively)

Graph of Anscombe's Quartet Data Table

Goals of Data Visualization

- A primary goal of data visualization is to communicate information clearly and efficiently via statistical graphics, plots and information graphics.
- Numerical data may be encoded using dots, lines, or bars, to visually communicate a quantitative message.

Goals of Data Visualization

- Effective visualization helps users analyze and reason about data and evidence. It makes complex data more accessible, understandable and usable.
- Users may have particular analytical tasks, such as making comparisons or understanding causality, and the design principle of the graphic follows the task.
- Tables are generally used where users will look up a specific measurement, while charts of various types are used to show patterns or relationships in the data for one or more variables

Characteristics of effective graphical displays

- show the data
- induce the viewer to think about the substance rather than about methodology, graphic design, the technology of graphic production or something else
- avoid distorting what the data has to say
- present many numbers in a small space

Characteristics of effective graphical displays

- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the fine structure
- serve a reasonably clear purpose: description, exploration, tabulation or decoration
- be closely integrated with the statistical and verbal descriptions of a data set

Characteristics of effective graphical displays

 The greatest value of a picture is when it forces us to notice what we never expected to see. - John Tukey

Qualitative (Descriptive)

Quantitative (Numerical)

Nominal

Data has no natural order. Includes objects, names, and concepts.

Examples: gender, race, religion, sport

Ordinal

Data can be arranged in order or rank

Examples: sizes (small, medium, large), attitudes (strongly disagree, disagree, neutral, agree, strongly agree), house number.

Continuous

Data is measured on a continuous scale.

Examples: Temperature, length, height

Discrete

Data is countable, and exists only in whole numbers

Examples:
Number of
people taking
this class,
Number of
candy bars
collected on
Halloween.

- Use sparingly
- No more than six components.

Not useful when values of each component are

similar

- Bar graph
- Best for comparing categories.
- Best Practices

- Do not allow grid lines to pass through columns or bars.
- Use a single font type on a graph.

Stacked bar graph

Group Bar Plot or Clustered bar graph

Bubble Charts

- Pictogram Chart
 - For discrete data

- Line Charts
 - For identifying
 - trends.

Copyright © 2007 Mrs. Glosser's Math Goodies, Inc. All Rights Reserved.

Smalltown Teens With Cells Phones

- Line Charts
 - For identifying
 - trends

Scatter Plots- For testing and identifying relationships, and statistical correlations

Surface plots

Topography, Density Functions that have two dependent

Surface plots

Topography, Density Functions that have two dependent

variables

Heat Map

Co-occurrence matrix/ Heat map

Fund Category	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 YTT
Total Equity Funds	4%	3%	3%	1%	-3%	2%	2%	-1%	1%	3.4%
Total Developed Market Equity Funds	4%	2%	2%	-1%	-3%	-1%	0%	0%	0%	3.8%
International Equity Funds	8%	6%	7%	6%	-4%	4%	1%	1%	1%	3.8%
US Equity Funds	1%	-1%	-1%	0%	0%	4%	0%	0%	-1%	3.5%
Western Europe Equity Funds	1%	-1%	7%	1354	1211	1%	-3%	-2%	-2%	0.4%
Japan Equity Funds	52%	44%	0%	2714	18%	TBW	-3%	5%	10%	24.75
Pacific Equity Funds	7%	-3%	12%	-1%	105	17%	8%	8%	1%	7.9%
Total Emerging Market Equity Funds	3%	16%	19%	12%	-7%	27%	16%	-5%	7%	0.4%
Global Emerging Market Equity Funds	-10%	3%	4%	10%	-4%	32%	23%	-1%	12%	2.5%
EMEA Equity funds	27%	40%	-6%	-2%	8%	17%	20%	10000	-4%	7.4%
Latin America Equity Funds	10%	815	27%	46%	12%	485	4%	12%	-1%	-8,5%
Asia Pacific Ex-Japan Funds	21%	22%	27%	14%	-9%	21%	10%	-7%	3%	0.29
Total Bond Funds	14%	4%	8%	-2%	10%	24%	16%	4%	115	1.5%
International Bond Funds	12%	12%	10%	-2%	265	25%	23%	3%	6%	1.1%
Corporate High Yield Bond Funds	NA	1814	2%	4%	5%	40%	15%	4%	18%	1.4%
US Bond Funds	NA	37%	9%	4%	-2%	23%	10%	6%	12%	2.29
Western Europe Bond funds	NA	1%	58%	-8"	46%	29%	-7%	28%	2%	-3.4%
Germany Bond funds	NA	NA	NA	NA	NA	NA	29%	25%	3.0%	-5.7%
Switzerland Bond funds	NA.	NA	NA	NA	NA	NA	96%	19%	-2%	-2.0%
United Kingdom Bond funds	NA	22%		134335	2614	64%	8%	-3%	0%	-4.19
Emerging Markets Debt Funds	12%	24/5	18%	9%	2312	19%	54%	7%	25%	2.4%
Asia ex-Japan Bond funds	NA	4%	3%	16%	3014	2%	71%	25%	12%	2.29
Emerging Europe Bond funds	NA	40%	12%	-18%	2714	1919	-8%	.39%	-9%	0.1%
Lat-Am Bond funds	NA	-28%		33%	20%	19%	46%	38%	68%	2.8%
Money Market Funds	NA	NA	NA	NA	31%	0.796	-35%	-4%	-1%	-2.79
DX (FAV)	Co	four Legend						.0.		
		13%	8%	3%	3%	8%	400			

Quantitative Relational and Comparison

Area Graph

Quantitative Relational and Comparison Stacked Area Graph

TRAFFIC ACCIDENTS 2005

Number of Persons Involved in Traffic Accidents by Mode of Transportation

Distributions

Box and Whisker Plot

Distributions

Crime Rates in US

Distributions

Histograms

 A histogram is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a set of continuous data.

5.0-

4.0-

2.0-

1.0=

Frequency 3.0-

60 50

Age

70

30 40

Distributions

Different Types of Data

Qualitative Data: Textual Structures

Qualitative Data: Textual Structures

Different Types of Data

Qualitative Relational Structures

Qualitative Relational Structures

Qualitative Relational Structures

Chord Diagram

- visualises the inter-relationships between entities.
 The connections between entities are used to display that they share something in common.
- The size of the arc is proportional to the importance of the flow.

Different Types of Data

- Multi-Directional
- Trees
- Websites as Graphs

 Radial Trees Treasure Auditor Finance Accounts Private Secretary President Vice Vice President President Production Secretar

Rectangular Tree Maps

Circular Tree Maps

Different Types of Data

Temporal Structures

Time Lines

Contract Visualization: the Trajectory

Temporal Structures

Timeline Chart

WW II Timeline Chart

Temporal Structures

Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780.

The Bottom line is divided into Years, the Right hand line into L10,000 each.

Published as the Act directs, 18t May 1766, by W. Playfair

Neele sculpt 352, Strand, London.

Different Types of Datas

Spatial Structures: Maps

Spatial Structures: Maps

Spatial Structures: HeatMap

Different Types of Data

Spatial-Temporal Structures

Charles Minard's map of Napoleon's disastrous Russian campaign of 1812. The graphic is notable for its representation in two dimensions of six types of data: the number of Napoleon's troops; distance; temperature; the latitude and longitude; direction of travel; and location relative to specific dates

Spatial-Temporal Structures

Class Activity

- Find a visualization online.
- Answer the following questions:
 - In one or two sentences, what story does it tell?
 Identify the data.
 - What type of data is it?
 - How many dimensions are being visually mapped? Identify the visual variables used.
 - Identify the type of visualization, or methods used.
 - If it is interactive, describe the interaction, and the data revealed.

Chart Suggestions—A Thought-Starter

Thank You