Московский физико-технический институт (МФТИ-Физтех)

Лабораторная работа 2.4.1: Определение теплоты испарения жидкости

Иванов Артём, Б05-409

19 мая 2025 г.

Цель работы

- 1. Измерение давления насыщенного пара жидкости при различной температуре.
- 2. Вычисление теплоты испарения с помощью уравнения Клайперона- Клаузиуса.

Оборудование Термостат, герметичный сосуд, заполненный исследуемой жидкостью, отсчетный микроскоп.

1 Теоретическая часть

Для теплоты испарения можно записать уравнение Клайперона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)},\tag{1}$$

где V_2 – объем газа, V_1 – объем жидкости.

В данном случае мы используем модель идеального газа применительно к парам исследуемой жидкости:

$$V = \frac{RT}{P} \tag{2}$$

Объединяя 1 и 2, получим:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{3}$$

Или в интегральной форме:

$$P = P_0 \exp\left(\frac{L}{R} \left(\frac{1}{T_0} - \frac{1}{T}\right)\right) \tag{4}$$

2 Установка

Схема экспериментальной установки приведена на рисунке 1. Погрешности: термостат -0.1 °C, манометр -0.1 мм. рт. ст..

3 Ход работы

- 1. Измерим разность уровней в ртутном U-образом манометре с помощью микроскопа.
- 2. Включим термостат.
- 3. Будем измерять давление насыщенного пара с интервалом 1 °C до 40 °C. Данные занесем в таблицу 1.

Рис. 1: Схема установки для определения удельной теплоты испарения

4. Теперь установим термостат на комнатную температуру и снимем еще немного точек при охлаждении с интервалом 2 °C для верификации результатов предыдущего пункта. Результаты в таблице 2. Систематические погрешности для величин 1/T и $\ln P$ много меньше случайных.

T, °C	P, mm. pt. ct.	$1/T, K^{-1}$	$\ln P$
23	47.70	3.38	3.86
24	49.96	3.37	3.91
25	52.05	3.36	3.95
26	54.19	3.34	3.99
27	58.38	3.33	4.07
28	61.95	3.32	4.13
29	66.56	3.31	4.20
30	70.81	3.30	4.26
31	74.65	3.29	4.31
32	79.05	3.28	4.37
33	84.40	3.27	4.44
34	89.56	3.26	4.49
35	93.99	3.25	4.54
36	97.62	3.24	4.58
37	104.13	3.23	4.65
38	110.42	3.22	4.70
39	116.00	3.21	4.75
40	121.86	3.19	4.80

Таблица 1: Измерения P(T) при нагревании

T, °C	P, mm. pt. ct.	$1/T, K^{-1}$	$\ln P$
40	121.86	3.19	4.80
38	108.81	3.22	4.69
36	99.01	3.24	4.60
34	89.86	3.26	4.50

Таблица 2: Измерения P(T) при охлаждении

5. Построим графики по полученным данным в координатах P(T) на рис. 2 и $\ln P(1/T)$ на рис. 3. Для графика P(T) проведем наилучшую кривую, соответветствующую формуле 4, пользуясь методом МНК.

Рис. 2: Зависимость P(T)

Рис. 3: Линеаризованная зависимость $\ln P(1/T)$

6. По линеаризованному графику:

$$\frac{d(\ln P)}{d(1/T)} = (-5.3 \pm 0.1) \cdot 10^3 \text{ K}, \ \varepsilon = 2\%$$

При этом погрешность считалась равной случайной погрешности аппроксимации, в силу малости приборных: $\sigma \approx \sigma^{\text{случ}}$. Отсюда по формуле 3 получим:

$$L = (44.0 \pm 0.9) \; \text{кДж/моль}, \; \varepsilon = 2\%$$

7. Получим L из изначального графика. Для этого проведем касательные к графику в начале, в середине и в конце (см. рис. 2). Из аппроксимации получим:

$$L=(43.6\pm0.9)$$
 кДж/моль, $\varepsilon=2\%$

Усреднив полученные значения, найдем:

$$\overline{L}=(43.8\pm0.9)$$
 кДж/моль, $\varepsilon=2\%$

4 Вывод

Полученные нами разными методами значения теплты испарения L лежат в пределах погрешности друг друга. Табличное значение для нормальных условий $L_{\text{табл}} = 40.7 \text{ кДж/моль}$. Это не слишком отличается от измеренного нами. Значит, эксперимент можно считать довольно качественным.