Temat projektu: Symulator układów planetarnych

Skład grupy projektowej:

Damian Mucha - lider zespołu Michał Sujewicz

Opis zadania symulacji w języku naturalnym:

Użytkownik tworząc nowy układ podaje nazwę układu, liczbę planet i planetoid w układzie, okres trwania symulacji. W czasie trwania symulacji może manipulować między innymi jej tempem i powiększeniem wyświetlanych obiektów. Na końcowy wynik mają wpływ zdarzenia losowe takie jak kolizje obiektów lub ewolucja gwiazdy. Program zwraca między innymi informacje o rodzajach wygenerowanych układów, które z planet skalistych są zdatne do skolonizowana przez człowieka oraz dane gazowych olbrzymów. Użytkownik może na koniec przeanalizować wyniki i zapis przebiegu symulacji lub rozpocząć symulację kolejnego układu.

Analiza czasownikowo-rzeczownikowa:

Zaprojektowaliśmy prostą symulację agentową, w której tworzymy układy planetarne i spośród wielu rodzajów planet szukamy takich, które są zdatne do skolonizowania przez człowieka. Dla uproszczenia przyjmujemy że wszystkie obiekty poruszają się w jednej płaszczyźnie. W trakcie trwania symulacji występują zdarzenia losowe mające wpływ na stan końcowy układu.

- 1. Zachowanie się obiektów:
- wszystkie planety orbitują wokół gwiazdy i oddziałują na siebie wzajemnie;
- planetoidy mają swoją prędkość początkową i mogą zderzać się z planetami;
- kolizje z planetoidą powodują zmniejszenie współczynnika kolonizacji planety.
- 2. Parametry symulacji:
- liczba analizowanych układów;
- zakres ilości planet w układach;
- zakres ilości planetoid w układach;
- czas trwania symulacji.

Diagram obiektów

SredniaTemp = 72

Grawitacja = 11,15

WspolczynnikKolonizacji = 63,2

q1: Gwiazda Nazwa = Merkury Nazwa = Slonce Promien = 2 439,7 *10^3 Promien = 696 342 *10^3 PozycjaX = 5791E9 Masa = 1,98E30PozycjaY = 214 PozycjaX = 0 PrzyspieszenieY= 6E5 PozycjaY = 0 PrzyspieszenieX= 2,3E5 PredkoscX= 0 PredkoscX= 2778 p2: PlanetaSkalista PredkoscY= 0 PredkoscY=234 Nazwa = Ziemia PrzyspieszenieX= 0 Masa = 3.285E23Promien = 6371 *10^3 PrzyspieszenieY= 0 Woda = true PredkoscY=2.14E6 Temperatura = 5778 Grawitacja = 3,7 PredkoscX= 2.8883E4 WspolczynnikKolonizacji = 15,7 PrzyspieszenieX= 2,3E5 pl50: Planetoida SredniaTemp = 442PrzyspieszenieY= 6E5 Nazwa = RandomName(50) PozycjaY = 21395E12PozycjaX = 7.9E10 u1: UkladPlanetarny PozycjaX = 6,54E11 PozycjaY = 234E7 NazwaUkladu = Sloneczny Masa = 5,97E24PrzyspieszenieY= 26366 listaGwiazdZyjacych = {...} Woda = true PrzyspieszenieX= 253 listaGwiazdZdegradowanych = {... SredniaTemp = 288 PredkoscY= 23341 listaPlanetSkalistych = {...} WspolczynnikKolonizacji = 35948,34 PredkoscX= 42414 listaPlanetGazowych = {...} Grawitacja = 9,81 Promien = 7,1 *10^3 listaPlanetoid = {...} Masa = 1,39E16czas = 5263617RzadkiePierwiastki = true p4: PlanetaGazowa Nazwa =Neptun p3: PlanetaSkalista Promien = 24 622 *10^3 Nazwa = Mars pl1 : Planetoida PozycjaX = 4,54E12Promien = 3389 *10^3 Nazwa = RandomName(1) PozycjaY = 21395 PozycjaX = 5791E9 PozycjaX = 2.1E10PrzyspieszenieY= 66E5 PozycjaY = 535E3 PozycjaY = 2.34E8 PrzyspieszenieX= 2,543E5 PrzyspieszenieY= 634 RzadkiePierwiastki = true PredkoscX= 2353 PrzyspieszenieX= 5.3243E3 Masa = 5,69E15PredkoscY=21984 PredkoscX= 2.8883E4 Promien = 1,1 *10^3 Masa = 1,024E26PredkoscY=2.14E6 PredkoscX= 46814 Wodor= true Masa = 6.39E23PredkoscY= 241 Tlen = false Woda = true

PrzyspieszenieX= 2314

PrzyspieszenieY= 24446

SredniaTemp = 210

Grawitacja=3,71

WspolczynnikKolonizacji = 678,12

p1 : PlanetaSkalista

Diagram przypadków użycia

Classname: CialoNiebieskie		
Superclasses: none		
Subclass(es): Planeta, Gwiazda, Planetoida		
Responsibilities:	Collaboration:	
- generuje pozycje	-UkladPlanetarny	
- generuje mase		
- generuje promien		
- nazywa cialo		

Classname: Planeta		
Superclasses: CialoNiebieskie		
Subclass(es): PlanetaSkalista, PlanetaGazowa		
Responsibilities:	Collaboration:	
- generuje grawitacje	- UkladPlanetarny	
- generuje predkosc		
- generuje czas obiegu		

Classname: Gwiazda		
Superclasses: CialoNiebieskie		
Subclass(es): GwiazdaZyjaca, GwiazdaZdegradowana		
Responsibilities: Collaboration:		
- generuje temperature	- UkładPlanetarny	

Classname: Planetoida		
Superclasses: CialoNiebieskie)	
Subclass(es): none		
Responsibilities:	Collaboration:	
- generuje rzadkie pierwiastki	UkładPlanetarny	
- generuje predkosc		

Classname: GwiazdaZyjaca		
Superclasses: Gwiazda		
Subclass(es): none		
Responsibilities:	Collaboration:	
- generuje typ gwiazdy	- UkladPlanetarny	

Classname: GwiazdaZdegradowana		
Superclasses: Gwiazda		
Subclass(es): none		
Responsibilities:	Collaboration:	
- generuje promieniowanie	- UkladPlanetarny	

Classname: PlanetaSkalista	
Superclasses: Planeta	
Subclass(es): none	
Responsibilities:	Collaboration:
- generuje wode	- UkladPlanetarny
- generuje srednia temperature	
- generuje wspolczynnik kolonizacji	

Classname: PlanetaGazowa		
Superclasses: Planeta		
Subclass(es): none		
Responsibilities:	Collaboration:	
- generuje ilosc wodoru	- UkladPlanetarny	
- generuje ilosc tlenu		
- generuje ilosc metanu		

Classname: UkladPlanetarny		
Superclasses: none		
Subclass(es): none		
Responsibilities:	Collaboration:	
- nazywa uklad	- CialoNiebieskie	
- tworzy obiekty	- Planeta	
- zapisuje przebieg symulacji	- Gwiazda	
- zarzadza ewolucja gwiazdy	- Planetoida	
	- GwiazdaZyjaca	
	- GwiazdaZdegradowana	
	- PlanetaSkalista	
	- PlanetaGazowa	

Diagram aktywności planety:

Diagram aktywności symulacji:

Solaris

Generated by Doxygen 1.8.18

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

SialoNiebieskie	?
Gwiazda	?
GwiazdaZdegradowana	?
GwiazdaZyjaca	?
Planeta	?
PlanetaGazowa	?
PlanetaSkalista	?
Planetoida	?
JkladPlanetarnv	?

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Ciaioniedieskie	
Klasa z ktorej dziedzicza niemal wszystkie pozostale	??
Gwiazda	
Kazda gwiazda ma swoja temperature	??
GwiazdaZdegradowana	
Gwiazda (p. ??) zdegradowana powstaje w wyniku ewolucji gwiazdy zyjacej	??
GwiazdaZyjaca	
Gwiazda (p. ??) zyjaca zawsze powstaje w srodku ukladu	??
Planeta	
Planeta (p. ??) posiada swoj czas obiegu gwiazdy i grawitacje	??
PlanetaGazowa	
Planeta (p. ??) gazowa moze posiadac takie pierwiastki jak wodor, tlen czy metan	??
PlanetaSkalista	
Planeta (p. ??) Skalista moze posiadac wode, ma swoja srednia temperature i wspolczynnik	
kolonizacji	??
Planetoida	
Planetoida (p. ??) moze posiadac rzadkie pierwiastki	??
UkladPlanetarny	
Uklad planetarny to najwieksza klasa ktora zarzadza wszystkimi obiektami i ich interakcjami	??

4 Class Index

Chapter 3

Class Documentation

3.1 CialoNiebieskie Class Reference

Klasa z ktorej dziedzicza niemal wszystkie pozostale.

#include <CialoNiebieskie.h>

Inheritance diagram for CialoNiebieskie:

Public Member Functions

- CialoNiebieskie (long double masa, long double promien)
- CialoNiebieskie (long double masa, long double promien, long double pozycjax, long double pozycjay)
- long double getPozycjaX ()

Funkcja zwraca pozycje X.

• long double getPozycjaY ()

Funkcja zwraca pozycje Y.

• long double getMasa ()

Funkcja zwraca mase cia³a.

• long double getPromien ()

Funkcja zwraca promien cia³a.

• long double getPredkoscX ()

Funkcja zwraca predkosc X.

• long double getPredkoscY ()

Funkcja zwraca prdkolJ Y

long double getPrzyspieszenieX ()

Funkcja zwraca przyspieszenie X.

• long double getPrzyspieszenieY ()

Funkcja zwraca przyspieszenie Y.

• char * getNazwa ()

Funkcja zwraca nazwe.

void setPozycjaX (long double x)

Przyjmuje wartosc i ustawia ja jako pozycje X dla ciala.

• void **setPozycjaY** (long double y)

Przyjmuje wartosc i ustawia ja jako pozycj Y dla ciala.

void setPrzyspieszenieX (long double x)

Przyjmuje wartosc i ustawia ja jako przyspieszenie X dla ciala.

void setPrzyspieszenieY (long double y)

Przyjmuje wartosc i ustawia ja jako przyspieszenie y dla ciala.

void setPredkoscX (long double x)

Przyjmuje wartosc i ustawia ja jako predkosc X dla ciala.

void setPredkoscY (long double y)

Przyjmuje wartosc i ustawia ja jako predkosc Y dla ciala.

Protected Attributes

- · long double Masa
- · long double Promien
- char **Nazwa** [32]
- · long double PozycjaX
- · long double PozycjaY

3.1.1 Detailed Description

Klasa z ktorej dziedzicza niemal wszystkie pozostale.

Kazde cialo posiada mase, promien, nazwe, pozycje X i Y, predkosc X i Y oraz przyspieszenie X i Y.

The documentation for this class was generated from the following files:

- · PO-master/CialoNiebieskie.h
- PO-master/CialoNiebieskie.cpp

3.2 Gwiazda Class Reference

Kazda gwiazda ma swoja temperature.

#include <Gwiazda.h>

Inheritance diagram for Gwiazda:

Public Member Functions

• int getTemperatura ()

Zwraca temperature gwiazdy.

Protected Attributes

· int Temperatura

3.2.1 Detailed Description

Kazda gwiazda ma swoja temperature.

The documentation for this class was generated from the following files:

- · PO-master/Gwiazda.h
- PO-master/Gwiazda.cpp

3.3 GwiazdaZdegradowana Class Reference

Gwiazda (p. ??) zdegradowana powstaje w wyniku ewolucji gwiazdy zyjacej.

#include <GwiazdaZdegradowana.h>

Inheritance diagram for GwiazdaZdegradowana:

Public Member Functions

- GwiazdaZdegradowana ()
- GwiazdaZdegradowana (long double masa, long double posX, long double posY, long double promien)
- double getPromieniowanie ()

Zwraca wartosc promieniowania.

Additional Inherited Members

3.3.1 Detailed Description

Gwiazda (p. ??) zdegradowana powstaje w wyniku ewolucji gwiazdy zyjacej.

Dodatkowo posiada tez promieniowanie.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 GwiazdaZdegradowana()

```
GwiazdaZdegradowana::GwiazdaZdegradowana ( )
```

Konstruktor gwiazdy ustala jej pozycje, zawsze w srodku ukladu na miejsce gwiazdy zyjacej, losuje jej promieniowanie, mase i promien.

The documentation for this class was generated from the following files:

- PO-master/GwiazdaZdegradowana.h
- PO-master/GwiazdaZdegradowana.cpp

3.4 GwiazdaZyjaca Class Reference

Gwiazda (p. ??) zyjaca zawsze powstaje w srodku ukladu.

```
#include <GwiazdaZyjaca.h>
```

Inheritance diagram for GwiazdaZyjaca:

Public Member Functions

- GwiazdaZyjaca ()
- char * getTypGwiazdy ()

Funkcja zwraca typ gwiazdy.

Additional Inherited Members

3.4.1 Detailed Description

Gwiazda (p. ??) zyjaca zawsze powstaje w srodku ukladu.

Dodatkowo posiada tez swoj typ.

3.5 Planeta Class Reference 9

3.4.2 Constructor & Destructor Documentation

3.4.2.1 GwiazdaZyjaca()

```
GwiazdaZyjaca::GwiazdaZyjaca ( )
```

Konstruktor gwiazdy ustala jej pozycje w srodku ukladu, generuje losowa nazwe, typ gwiazdy, oraz wlasciwa dla gwiazd zyjacych promien, mase i temeprature.

The documentation for this class was generated from the following files:

- PO-master/GwiazdaZyjaca.h
- PO-master/GwiazdaZyjaca.cpp

3.5 Planeta Class Reference

Planeta (p. ??) posiada swoj czas obiegu gwiazdy i grawitacje.

```
#include <Planeta.h>
```

Inheritance diagram for Planeta:

Public Member Functions

- double getGrawitacja ()
 - Funkcja zwraca grawitacje planety.
- int getCzasObieguGwiazdy ()

Funkcja zwraca czas obiegu gwiazdy planety.

Additional Inherited Members

3.5.1 Detailed Description

Planeta (p. ??) posiada swoj czas obiegu gwiazdy i grawitacje.

The documentation for this class was generated from the following files:

- PO-master/Planeta.h
- PO-master/Planeta.cpp

3.6 PlanetaGazowa Class Reference

Planeta (p. ??) gazowa moze posiadac takie pierwiastki jak wodor, tlen czy metan.

#include <PlanetaGazowa.h>

Inheritance diagram for PlanetaGazowa:

Public Member Functions

• void wypiszdane (std::ofstream &gazowe)

Wypisuje dane o planecie do pliku tekstowego.

PlanetaGazowa ()

Konstruktor generujacy losowa nazwe planety i własciwe dla planet gazowych parametry.

bool getWodor ()

Funkcja zwraca informacje o tym czy na planecie jest wodor.

· bool getTlen ()

Funkcja zwraca informacje o tym czy na planecie jest tlen.

• bool getMetan ()

Funkcja zwraca informacje o tym czy na planecie jest metan.

Additional Inherited Members

3.6.1 Detailed Description

Planeta (p. ??) gazowa moze posiadac takie pierwiastki jak wodor, tlen czy metan.

The documentation for this class was generated from the following files:

- PO-master/PlanetaGazowa.h
- PO-master/PlanetaGazowa.cpp

3.7 PlanetaSkalista Class Reference

Planeta (p. ??) Skalista moze posiadac wode, ma swoja srednia temperature i wspolczynnik kolonizacji.

#include <PlanetaSkalista.h>

Inheritance diagram for PlanetaSkalista:

Public Member Functions

· PlanetaSkalista ()

Konstruktor generujacy losowa nazwe planety i własciwe dla planet skalistych parametry.

• int getSredniaTemp ()

Funkca zwraca srednia temperature.

· bool getWoda ()

Funkcja zwraca informacje o tym czy na planecie jest woda.

• double getWspolczynnikKolonizacji ()

Funkcja zwraca wartosc wspolczynnika kolonizacji.

void wypiszdane (std::ofstream &wynik)

Funkcja wypisuje planety zdatne do kolonizacji do pliku tekstowego.

Additional Inherited Members

3.7.1 Detailed Description

Planeta (p. ??) Skalista moze posiadac wode, ma swoja srednia temperature i wspolczynnik kolonizacji.

The documentation for this class was generated from the following files:

- PO-master/PlanetaSkalista.h
- PO-master/PlanetaSkalista.cpp

3.8 Planetoida Class Reference

Planetoida (p. ??) moze posiadac rzadkie pierwiastki.

#include <Planetoida.h>

Inheritance diagram for Planetoida:

Public Member Functions

· Planetoida ()

Konstruktor nadajacy planetoidzie losowa nazwe i własciwe dla tego typu ciala parametry.

• bool getRzadkiePierwiastki ()

Funkcja zwraca informacje o wystepowaniu rzadkich pierwiastkow.

Additional Inherited Members

3.8.1 Detailed Description

Planetoida (p. ??) moze posiadac rzadkie pierwiastki.

The documentation for this class was generated from the following files:

- · PO-master/Planetoida.h
- PO-master/Planetoida.cpp

3.9 UkladPlanetarny Class Reference

Uklad planetarny to najwieksza klasa ktora zarzadza wszystkimi obiektami i ich interakcjami.

#include <UkladPlanetarny.h>

Public Member Functions

void wypiszgazowe (std::ofstream &gazowe)

Funkcja wypisuje dane gazowych olbrzymow do pliku tekstowego.

· void nazwij ()

Funkcja nazywa uklad planetarny.

void wypiszplanety (std::ofstream &wynik, bool gwiazda)

Funkcja wypisuje planety zdatne do kolonizacji do pliku tekstowego.

void AktualizujPrzyspieszenie (std::vector< CialoNiebieskie * > &listaCial)

Funkcja wylicza i aktualizuje przyspieszenie dla wszystkich cial.

void AktualizujPredkosc (std::vector< CialoNiebieskie * > &listaCial, double Tempo)

Funkcja wylicza i aktualizuje predkosc dla wszystkich cial.

void AktualizujPozycje (std::vector< CialoNiebieskie * > &listaCial, double Tempo)

Funkcja wylicza i aktualizuje pozcyje dla wszystkich cial.

void StworzUklad (std::vector< CialoNiebieskie * > *ciala, unsigned int lloscGwiazdZyjacych, unsigned int lloscPlanetSkalistych, unsigned int lloscPlanetGazowych, unsigned int lloscPlanetoid)

Funkcja inicjalizuje wszystkie obiekty.

• int LiczLata (double Tempo)

Funkcja przelicza czas ktory uplynal niezaleznie od tempa symulacji.

void posprzataj ()

Funkcje przed stworzeniem nowego ukladu czysci vectory z cialami.

void SprawdzKolizje (std::vector< CialoNiebieskie * > &listaCial, unsigned int &nObiektow, std::ofstream &zapis, int &liczbakolizji)

Funkcja sprawdza kolizje poszczegolnych cial.

void WypiszObiekty (bool gwiazda)

Funkcja wypisuje ilosc obiektow koncowych.

- void ewolucja (std::vector< CialoNiebieskie *> &ciala, int &kontrola, bool &gwiazda)

Funkcja zarzadza ewolucja gwiazdy zyjacej i jej przemiana w gwiazde zdegradowana.

3.9.1 Detailed Description

Uklad planetarny to najwieksza klasa ktora zarzadza wszystkimi obiektami i ich interakcjami.

Tworzy obiekty, rozmieszcza je w przestrzeni, oblicza ich predkosc i przyspieszenie. Posiada swoja nazwe ktora wybiera uzytkownik.

The documentation for this class was generated from the following files:

- PO-master/UkladPlanetarny.h
- PO-master/UkladPlanetarny.cpp