	Algorithm and Data Stouctures
11	Problem Solving is a skill that can be developed via
	fractice"
\rightarrow	Define the Problem. - what exactly is the possiem we are toying to solve?
	I dent by the froblem - How and why did this forother hoppin!
	what are the formible solutions? The ideal solution could be one of the many possible solutions.

Detter than no decision.

- 80% of problems should be solved at the moment they (one up. only 20% will need time & Tepearch. Awign nesponsiblies to Carey out the decision. - If a teem, who will do what and when. - It alone, still decide what I when. - set a schedule. - without a schedule of deadline, its just a disussion. Core Components of Computational Thinking. - Decomposition complexe postolems - Breck down

wito smaller, simpler froblems. -> Pattern recognition. - Make connections between similar problems & experience - Abstraction - I dentity vin for tent in for motion and igrore irre levent details. - Algorithm -> Sequential ouls to follow in order to solve a feeplan.

Algorithm "finite segmence" of "well defined" computational steps that to any form "tugter" ofin "tugen" Basic construct of also the -> lineer Sequence: - statements that follow one after the Conditional - "if then else" Losp - se quence of statements that are repeated numbra Atimes.

Data Stouchure A dot stouture is a way store and organise data in order to facilitate access and modifications. Array => Sequential data structure. Linear data stondure. Storm data in a segnentiel roanner. 1 2 3 4 5 Index/ 2 2 3 4 5 Index/ 0 1 2 3 4 Subscript All elements are stored in a single memorg block.

Every element of array is of

seme type. Fant Binefit : - Random accem. i x size of stert location + array element type. Insect / Delete is in efficient in are ay. Is 9 3 between 5 dq, 1. smif 3 to right Smft 9 to 8'8ht 119131

of Fetch element est PSp() -> 1 Psp() -> 9 I set top to frevious element Return the fetched element. Is Full () IN EMPTY () In it took steen p if stack has space a clement then stuck is not empty for atteast one more dement Stack is else otnek is eno pty. stack is full. ADT - Abstract Detines WHAT Dota S & NOT HOW. Type 2 AVB ADT v Define viter face. Reg wood → .WR

viterface Btzck Int } wid Push (wit); wit PSP ()) booken Is Full (); pooleen to Emph (); Add Q (clem) Make space et Qyeul 1 Store element $\sqrt{}$ at secs. FIFO First Im First out element toom front front - Remore eller Tear - Adding of element is done et reer of queve. J58 9 70 front to ex occió Add G (S) Add (9)

to More front to neget element La Remove element from front. Det Q() 510 Delete Q() > 5 Delated () > 9 Is Full() IO Empto) to It no space p of front equals then greve guene is empty i ful Jelse grene is not full. else queux is not empty? 0 1 2 3 4 5 210 Add 6(5) front of I Add Q (9) reer > -1 \$ \$ 2 Add (10) Deleti Q() > 5 Delib Q() -> 9

Add Q (10)

Deleta ()

linear Queul -> Has problem toot Queue can be empt I full at the score time. 0 1 2 3 Ad (4) [x/2/9/10] queue is empts Add Q(2) Add (a) feart 2 = 707 8/3 Adda (10) Tear - 2012/3 & queue in full. Delete Q() > 4 Delli Q () 3 2 Della Q () > 9 Delta A() → 10 Ma Array Siza 5 Queul Cir alex 1 9 20 E rear 3 25 1 = front front - - 2 front > 0 Jean rear > 0

rear > 4 Increment Teco by 1 MOD N TREADS => 0 Value ormain in ocargo dt 0 + N-1 Add Q(S) rear >0 TRAG = (TRAG +1) MOD N rear of 1 Add Q (10) Teen 7 8 2 Deleted () > front > 0

front = (front + 1) MoD N front > 1 Add Q (3) recr 7 \$ 3 Add Q(9) rear > 34 Add Q (29) rear -1 X (5 M-DS) Add Q (1) rear - 1 & x

(ocas + 1) MODN Equals front queue full m circular D. In circular quem, we end up Storing masa (NI-1) element. 35 front N = 4

Front = 24 0

Tear = -4 0 x 23

Add A (2)

Add A (3) Add (3) Add (4) Add & (S) if front equals -1 AND rear equels l'ast element then quem ful Deleti Q() -> 2 Add Q(10) X Queen in full.