Definition. (Henselian ring) Let (R, \mathfrak{m}, k) be a local ring. Hensel's lemma states that for any monic polynomials $F \in R[t]$ and $g, h \in k[t]$ such that (g, h) = (1) and $\overline{F} = gh$, there are monic polynomials $G, H \in R[t]$ such that F = GH and $\overline{G} = g, \overline{H} = h$. If Hensel's lemma holds, we say that R is Henselian. If in addition k is separably closed, we say that R is strictly Henselian.

Theorem 0.1. Let (R, \mathfrak{m}, k) be a local ring. Then the following conditions are equivalent:

- (i) R is Henselian;
- (i)' for a monic polynomial $F(t) \in R[t]$ and an $x \in k$ such that $\overline{F}(x) = 0$ and $\overline{F'}(x) \neq 0$, there is an $a \in R$ such that $\overline{a} = x$ and F(a) = 0;
- (ii) every finite R-algebra A is a finite product of local rings;
- (ii)' (ii) holds for A = R[t]/(F(t)) for a monic polynomial F(t);
- (iii) for every finite R-algebra A, $A \to A/\mathfrak{m}A$ gives a bijection between idempotent elements;
- (iii)' (iii) holds for A = R[t]/(F(t)) for a monic polynomial F(t);
- (iv) for every etale morphism $X \to \operatorname{Spec} R$, the section of the closed fiber $X_s \to \operatorname{Spec} k$ can be lifted to a section of $X \to \operatorname{Spec} R$.

Remark 0.1. If R is a Henselian ring and A is a finite R-algebra, then $A = \prod_{\mathfrak{m}} A_{\mathfrak{m}}$ where \mathfrak{m} runs over (finitely many) maximal ideals of A.

Theorem 0.2. A complete local ring is Henselian.

Theorem 0.3. Let (R, \mathfrak{m}, k) be a local ring. Then the following conditions are equivalent:

- (i) R is strictly Henselian;
- (ii) R is Henselian and every finite etale scheme over $S = \operatorname{Spec} R$ is a finite disjoint union of copies of S;
- (iii) for every etale morphism $f: X \to S$ and a point $x \in X$ which is mapped to the closed point s of x, there is a section of f which maps s to x.

Definition. Let A, A' be local rings and $\phi: A \to A'$ a local homomorphism. We say that A' is essentially etale over A if there is an etale A-algebra B and a prime ideal P of B lying over the maximal ideal of A such that A' is isomorphic to B_P over A. If in addition the homomorphism between the residue field is an isomorphism, we say that A' is strictly essentially etale over A.

Theorem 0.4. Compositions of essentially etale morphisms is again essentially etale.

(Proof). Let $A \to A' \to A''$ be two essentially etale morphisms. There are etale A-algebra B, A'-algebra B' and a prime ideal P of B lying over the maximal ideal of A, a prime ideal P' of B' lying over the maximal ideal of A' such that A' is isomorphic to B_P over A, A'' is isomorphic to $B'_{P'}$.

Since $B_P = \varinjlim_{f \notin P} B_f$ and each B_f has finitely presentation over A, by the "direct

limit of schemes," there is an etale B_f -algebra C such that $B' = C \otimes_{B_f} B_P$ over B_f $(f \notin P)$.

Replacing B by B_f , we have etale morphisms $A \to B \to C$ such that $B_P = A'$ and $C_{P'} = A''$.

Theorem 0.5. Let $(A, \mathfrak{m}, k) \to (A', \mathfrak{m}', k')$ be an essentially etale homomorphism and let (R, \mathfrak{n}, l) be a Henselian ring over A. Given a k-homomorphism $k' \to l$, this can be lifted to a unique A-homomorphism $A' \to R$.

Theorem 0.6. Let (A, \mathfrak{m}, k) be a local ring and let K/k be a field extension. Let \mathcal{C}_K be the category whose objects are pairs $((A', \mathfrak{m}', k'), \beta')$ of essentially etale A-algebra and a k-homomorphism $\beta: k' \to K$ and whose morphisms $((A', \mathfrak{m}', k'), \beta') \to ((A'', \mathfrak{m}'', k''), \beta'')$ are local A-homomorphisms $\phi: A' \to A''$ such that $\beta''\overline{\phi} = \beta'$ where $\overline{\phi}: k' \to k''$ is induced from ϕ .

Then C is a directed category, i.e.,

- (i) for any two objects λ and μ , there is an object ν together with morphisms $\lambda \to \nu$ and $\mu \to \nu$;
- (ii) for any objects λ and μ , there exist at most one morphism $\lambda \to \mu$.

Definition. Let (A, \mathfrak{m}, k) be a local ring and let K/k be a separable field extension. We write

$$A^K = \lim_{A' \in \mathcal{C}_K} A'.$$

We define the Henselization to be $A^h=A^k$ and the strict Henselization to be $A^{hs}=A^{k^{\rm sep}}$.

Remark 0.2. If A' is an essentially etale A-algebra and $\alpha: k(A') \to K$ is a k(A)-homomorphism, there is an A-homomorphism $A' \to A^K$ which lifts α .

Theorem 0.7. Let $(A_{\lambda}, \phi_{\lambda\mu})$ be a directed system of local rings $(A_{\lambda}, \mathfrak{m}_{\lambda}, k_{\lambda})$ and local homomorphisms $\phi_{\lambda\mu} : A_{\lambda} \to A_{\mu}$. Let $A = \varinjlim_{\lambda} A_{\lambda}$. Then:

- (i) A is a local ring with the maximal ideal $= \varinjlim_{\lambda} \mathfrak{m}_{\lambda}$ and the residue filed $k = \varinjlim_{\lambda} k_{\lambda}$;
- (ii) if A_{μ} is flat over A_{λ} for every $\mu \geq \lambda$, then A is flat over A_{λ} ;
- (iii) if $\mathfrak{m}_{\mu} = A_{\lambda}\mathfrak{m}_{\lambda}$ for every $\mu \geq \lambda$, then $\mathfrak{m} = A\mathfrak{m}_{\lambda}$;
- (iv) if (ii) and (iii) hold and A_{λ} is Noetherian, then so is A.

Theorem 0.8. Let (A, \mathfrak{m}, k) be a local ring and let K/k be a separable field extension. Then:

- (i) A^K is a faithfully flat Henselian local ring over A with the maximal ideal $A^K\mathfrak{m}$ and the residue field K;
- (ii) for a Henselian ring (R, \mathfrak{n}, l) and a local homomorphism $f: A \to R$ and a homomorphism $\alpha: K \to l$ which agrees with $\overline{f}: k \to l$ on k, there is a unique local homomorphism $F: A^K \to R$ extending f such that $\overline{F} = \alpha$; in particular $\operatorname{Aut}(A^K/A) = \operatorname{Gal}(K/k)$; note that \Box^K defines a functor on the category local rings and local homomorphisms;
- (iii) if A is Noetherian, then so is A^K ;
- (iv) $A^h \simeq A^h$:
- (v)? for a deirected system of local rings and local homomorphisms (R_{λ}) , we have $(\varinjlim_{\lambda} R_{\lambda})^{K} \simeq \varinjlim_{\lambda} R_{\lambda}^{K}$;

(Proof). (i): Let $f: X \to S = \operatorname{Spec} A^K$ be an etale morphism and let $s \in S$ be the closed point and let $g: \operatorname{Spec} K \to X_s$ be a section of the closed fiber f_s . Shrinking X and using direct limit descent, we may assume that there is an etale morphism $f': X' \to S' = \operatorname{Spec} A'$ for an $A' \in \mathcal{C}_K$ such that f is the base change of f' to S. We may assume that $X' = \operatorname{Spec} B'$ is affine. Set $B = B' \otimes_{A'} A^K$ and $X = \operatorname{Spec} B$. Consider $\operatorname{Spec} K \xrightarrow{g} X_s \to X \to X'$. Let x = g(s) and $x' \in X'$ be the image of s to X'. Then this corresponds to a k(A)-homomorphism $\alpha: k(P') \to K$. Therefore we have a A-homomorphism $\phi: B'_{P'} \to A^K$ such that $\overline{\phi} = \alpha$. This gives a morphism $S \to X'$ and consider the graph $\Gamma: S \to X' \times_{S'} S = X$. This is a section of f. This agrees with g_s on the closed fiber. Γ brings s to the point of X over x' and s; it induces a homomorphism $\Gamma^{\sharp}: k(P') \otimes_{k(A')} K \to K$. g also induces a homomorphism $g^{\sharp}: k(P') \otimes_{k(A')} K \to K$. By $\overline{\phi} = \alpha$, $\Gamma^{\sharp} = \alpha \times 1_K = g^{\sharp}$. Therefore $\Gamma(s) = g(s)$. The section of an etale morphism is determined by a single point, so $\Gamma = g$.

(ii): It suffices to show that if $A \to A'$ is an essentially etale homomorphism, R is a Henselian ring and $\alpha: k(A') \to k(R)$ is a k(A)-homomorphism, then there exists a unique A-homomorphism $\phi: A' \to R$ such that $\overline{\phi} = \alpha$. Let $A' = B_P$ for an etale A-algebra B and a prime ideal P over the maximal ideal of A. Consider $k(R) \otimes_A B \to k(R) \otimes_{k(A)} k(A') \to k(R)$ and the corresponding morphism $\operatorname{Spec} k(R) \to \operatorname{Spec} k(R) \otimes_A B$. This is a section of the closed fiber of the etale morphism $\operatorname{Spec} R \otimes_A B \to \operatorname{Spec} R$. Lifting to $\operatorname{Spec} R \to B$, we

obtain a homomorphism $B \to R$. This gives the existence of $A' \to R$. To show the uniqueness, construct the section and use the fact that sections of etale morphisms is determined by a single point.

(iv): Note that A^K is faithfully flat over A. $\mathfrak{m}^n A^h/\mathfrak{m}^{n+1}A^h=\mathfrak{m}^n/\mathfrak{m}^{n+1}\otimes_A A^h=\mathfrak{m}^n/\mathfrak{m}^{n+1}\otimes_{A/\mathfrak{m}} A^h/\mathfrak{m}A^h=\mathfrak{m}^n/\mathfrak{m}^{n+1}$. Therefore $A^h/\mathfrak{m}^n A^h=A/\mathfrak{m}^n$.

Corollary 0.9. Let (A, \mathfrak{m}, k) be a local ring.

- (i) $A^{h(s)}$ is a faithfully flat Henselian local ring over A with the maximal ideal $A^{h(s)}\mathfrak{m}$ and the residue field $k^{(\text{sep})}$;
- (ii) for a Henselian ring R, loc.Hom $(A,R) \simeq \text{loc.Hom}(A^h,R)$ and $\text{Aut}(A^{hs}/A)$ is the absolute Galois group of k;
- (ii)' the functor $\Box^{h(s)}$ is the left adjoint to the inclusion of the full subcategory of (strict) Henselian rings into the category of local rings and local homomorphisms;
- (ii)' the functor $\Box^{h(s)}$ is the left adjoint to the inclusion of the full subcategory of (strict) Henselian rings into the category of local rings and local homomorphisms:

Theorem 0.10. Let R be a Henselian ring and let $S = \operatorname{Spec} R$. for every etale morphism $X \to S$, the section of the closed fiber $X_s \to \operatorname{Spec} k$ can be lifted to a section of $X \to S$.

Theorem 0.11. Let A be a local ring, B a finite A-algebra with maximal ideals $\mathfrak{n}_1, \dots, \mathfrak{n}_k$. Then $B \otimes_A A^h = (B_{\mathfrak{n}_1})^h \times \dots \times (B_{\mathfrak{n}_k})^h$.

Theorem 0.12. Let A be a local ring, B a finite A-algebra. Let \mathfrak{n}' be a maximal ideal of $B' = B \otimes_A A^{hs}$. Then $\mathfrak{n} = \mathfrak{n}' \cap B$ is a maximal ideal of B and $B'/\mathfrak{n}' = k(\mathfrak{n}')$ is a separable closure of $B/\mathfrak{n} = k(\mathfrak{n})$ and $B'_{\mathfrak{n}}$ is the strict Henselization of $B_{\mathfrak{n}}$.

1 References

[LF]