ДЗ по мат. анализу на 6.10.2021

Кожевников Илья 2112-1

3 октября 2021 г.

№1

 \mathbf{a}

$$a_{n+1} = \sqrt{2a_n}, a_1 = \sqrt{2}$$

Докажем сходимость последовательности методом математической индукции. Для этого докажем индукцией сначала то, что последовательность возрастает (1), а затем, что она ограничена сверху (2).

- (1) 1) База: $a_1 < a_2 \Leftrightarrow \sqrt{2} < \sqrt{2\sqrt{2}} \Leftrightarrow a^{\frac{1}{2}} < 2^{\frac{3}{4}} \Leftrightarrow \frac{1}{2} < \frac{3}{4} \Rightarrow$ база доказана.
- 2) Шаг: $a_{n+1} > a_n$, доказать: $a_{n+2} > a_{n+1}$ $a_{n+2} = \sqrt{2a_{n+1}} > a_{n+1} = \sqrt{2a_n} \Rightarrow \sqrt{2a_{n+1}} > \sqrt{2a_n} \Rightarrow$ по предположению индукции, шаг доказан. Значит, последовательность возрастает.
- (2) 1) База: $a_1 < 2 \Rightarrow \sqrt{2} < 2 \Rightarrow$ база доказана.
- 2) Шаг: $a_n < 2$, доказать: $a_{n+1} < 2$ $a_{n+1} = \sqrt{2a_n} < 2$. Подставим $a_n = 2$. Тогда $\sqrt{2 \cdot 2} = 2$, но т.к. мы подставили $a_n = 2$, а $a_n < 2$, то и $\sqrt{2a_n} < 2 \Rightarrow a_{n+1} < 2 \Rightarrow$ шаг доказан \Rightarrow последовательность ограничена сверху двойкой. Тогда из (1) и (2) по теореме Вейерштрасса следует, что последовательность сходится. Ч.Т.Д.

b)

$$a_{n+1} = \sqrt{6 + a_n}, a_1 = 0$$

Докажем сходимость последовательности методом математической индукции. Для этого докажем индукцией сначала то, что последовательность возрастает (1), а затем, что она ограничена сверху (2).

- (1) 1) База: $a_1 < a_2 \Rightarrow 0 < \sqrt{6} \Rightarrow$ база доказана.
 - 2) Шаг: $a_{n+1} > a_n$, доказать: $a_{n+2} > a_{n+1}$

 $a_{n+2} = \sqrt{6 + a_{n+1}} > \sqrt{6 + a_n} = a_{n+1} \Rightarrow a_{n+2} > a_{n+1} \Rightarrow$ по предположению индукции, шаг доказан. Значит, последовательность возрастает.

- (2) 1) База: $a_1 < 3 \Rightarrow 0 < 3 \Rightarrow$ база доказана.
 - 2) Шаг: $a_n < 3$, доказать: $a_{n+1} < 3$

Подставим $a_n = 3$ в a_{n+1} . Тогда $a_{n+1} = 3$, но т.к. на самом деле $a_n < 3$, то и $a_{n+1} < 3 \Rightarrow$ шаг доказан \Rightarrow последовательность ограничена сверху.

Тогда из (1) и (2) по теореме Вейерштрасса следует, что последовательность сходится. Ч.Т.Д.

 $\mathbf{c})$

$$a_{n+1} = \frac{1}{3}(2a_n + \frac{3}{a_n^2}), a_1 = 3$$

Докажем сходимость последовательности методом математической индукции. Для этого докажем индукцией сначала то, что последовательность убывает (1), а затем, что она ограничена снизу нулем(2). (1) 1) База: $a_1 > a_2 \Leftrightarrow 3 > 2\frac{1}{9} \Rightarrow$ база доказана.

2) Шаг:
$$a_{n+1} < a_n$$
, доказать: $a_{n+2} < a_{n+1}$

2) Шаг:
$$a_{n+1} < a_n$$
, доказать: $a_{n+2} < a_{n+1}$ $a_{n+2} = \frac{1}{3}(2a_n + \frac{3}{a_n^2}) > \frac{1}{3}(2a_{n+1} + \frac{3}{a_{n+1}^2})$

 $\frac{2}{3}a_n + \frac{1}{a_n^2} > \frac{2}{3}a_{n+1} + \frac{1}{a_{n+1}^2}$ Заметим, что, по предположению индукции, $\frac{2}{3}a_n > \frac{2}{3}a_{n+1}$, а $\frac{1}{a_n^2} > \frac{1}{a_{n+1}^2}$ (т.к. а - всегда положительно (см. (2))) Значит, $\frac{2}{3}a_n + \frac{1}{a_n^2} > \frac{2}{3}a_{n+1} + \frac{1}{a_{n+1}^2} \Rightarrow$ шаг доказан, значит последовательность убывает.

(2) 1) База: $a_1 > 0 \Rightarrow 3 > 0 \Rightarrow$ база доказана.

2) Шаг: $a_n > 0$, доказать: $a_{n+1} > 0$

 $a_{n+1}=rac{2}{3}a_n+rac{1}{a_n^2}$. Заметим, что по предположению индукции, $rac{2}{3}a_n>0,rac{1}{a_n^2}$. Значит и $rac{2}{3}a_n+rac{1}{a_n^2}>0$ $0 \Rightarrow$ шаг доказан \Rightarrow последовательность ограничена снизу нулем.

Тогда из (1) и (2) по теореме Вейерштрасса следует, что последовательность сходится. Ч.Т.Д.

№3

a)
$$a_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n} \ b_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n+1}$$

а) $a_n=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}-2\sqrt{n}\ b_n=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}-2\sqrt{n+1}$ Исследуем последовательности a_n и b_n на предмет монотонного убывания или возрастания. (a_n) :

База: $a_1 \lor a_2 \Leftrightarrow -1 > 1 + \frac{1}{\sqrt{2}} - 2\sqrt{2} \Rightarrow a_1 > a_2 \Rightarrow$ в шаге надо доказать, что a_n убывает.

Шаг:
$$a_n > a_{n+1}$$
,доказать: $a_{n+1} > a_{n+2}$
$$a_{n+1} = a_n + \frac{1}{\sqrt{n+1}} + 2\sqrt{n} - 2\sqrt{n+1}$$

$$a_{n+1} = a_n + \frac{1}{\sqrt{n+1}} + 2\sqrt{n} - 2\sqrt{n+1}$$

$$a_{n+2} = a_{n+1} + \frac{1}{\sqrt{n+2}} + 2\sqrt{n+1} - 2\sqrt{n+2}$$

Заметим, что $a_n > a_{n+1}$ (по предположению индукции), а т.к. n+1 > n, n+2 > n+1, то $a_{n+1} > a_{n+2} \Rightarrow$ шаг доказан $\Rightarrow a_n$ не возрастает. Ч.Т.Д.

 (b_n) :

База: $b_1 \lor b_2 \Leftrightarrow 1 - 2\sqrt{2} < 1 + \frac{1}{\sqrt{2}} - 2\sqrt{3} \Rightarrow b1 < b2 \Rightarrow$ в шаге надо доказать, что $b_{n+1} < b_{n+2}$. База доказана.

Шаг:
$$b_n < b_{n+1}$$
, доказать: $b_{n+1} < \underline{b_{n+2}}$

Шаг:
$$b_n < b_{n+1}$$
, доказать: $b_{n+1} < b_{n+2}$
 $b_{n+1} = b_n + \frac{1}{\sqrt{n+1}} + 2\sqrt{n+1} - 2\sqrt{n+2}$

$$b_{n+2} = b_{n+1} + \frac{1}{\sqrt{n+2}} + 2\sqrt{n+2} - 2\sqrt{n+3}$$

Но $b_n < b_{n+1}$ (по предположению индукции), а $n+1 < n+2, n+2 < n+3 \Rightarrow b_{n+2} > b_{n+1} \Rightarrow$ шаг доказан ⇒ последовательность не убывает.

3)
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n} \vee \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n+1}$$

$$2\sqrt{n} \wedge 2\sqrt{n+1}$$

$$2\sqrt{n} \le 2\sqrt{n+1} \Rightarrow b_n \le a_n$$

Ч.Т.Д.