Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator.

13 Mayıs 2019 [11:00-12:30]

MAT113 - Final Sınavı

Saufa 1/4

Adi:					Soru	Puan	Puanınız
Soyadi:					1	20	
Öğrenci No:					2	30	
BÖLÜM:					3	30	
Öğr. Üyesi:	☐ Neil Course	☐ Vasfi Eldem	✓ Asuman Özer	Sezgin Sezer	4	20	
İMZA:					Toplam	100	

- Sınav süresi 90 dakika.
- Cevaplarınızı, aksi istenmedikçe, tam olarak (örneğin, $\frac{\pi}{3}$ veya $5\sqrt{3}$) yazınız.
- Sınav esnasında öğrenciler arasında, sözlü ya da sözsüz, her türlü iletişim kesinlikle yasaktır.
- Sınav esnasında hesap makinesi, cep telefonu, akıllı saat ve dijital bilgi alışverişi yapılan her türlü malzemelerin kullanımı ile diğer silgi, kalem, vb. alışverişlerin yapılması kesinlikle yasaktır.
- Bir sorudan tam puan alabilmek için,

işlemlerinizi açıklamak zorundasınız. Bir cevapta "gidiş yolu" belirtilmemişse, sonucunuz doğru bile olsa, ya çok az puan verilecek ya da hiç puan verilmeyecek.

- Cevabınızı kutu içine alınız.
- Yukarıdaki tabloya hiçbir şey yazmayınız.
- 1. (a) $\lim_{x \to \sqrt{5}} \frac{1}{x + g(x)} = 2$ olsun. $x \to \sqrt{5}$ iken g(x)' in limitini bulunuz.

Çözüm:

$$\lim_{x \to \sqrt{5}} \frac{1}{x + g(x)} = \frac{\lim_{x \to \sqrt{5}} 1}{\lim_{x \to \sqrt{5}} x + \lim_{x \to \sqrt{5}} g(x)} = 2$$

$$\Rightarrow \frac{1}{\sqrt{5} + \lim_{x \to \sqrt{5}} g(x)} = 2 \Rightarrow \frac{1}{2} - \sqrt{5}$$

(b) 10 puan Kendisi ve çarpmaya göre tersinin toplamı minimum (en küçük) olan pozitif sayıyı bulunuz.

Çözüm: İstenen sayıya x diyelim. O halde onun çarpmaya göre tersi $\frac{1}{x}$ olur.

$$f(x) = x + \frac{1}{x} = \frac{x^2 - 1}{x^2}$$
$$f'(x) = \frac{x^2 - 1}{x} = \frac{(x - 1)(x + 1)}{x^2} = 0$$

Kritik noktalar (critical points): x = -1, x = 0, x = 1. Sayı pozitif olduğundan x = 1 istenen sayıdır. Toplam da f(1) = 2 dir.

2. (a) 15 puan $y = \frac{x^3}{3} - x$ hiperbolü ve $y = \frac{x}{3}$ doğrusu arasındaki bölgenin $-2 \le x \le 3$ aralığındaki toplam alanını bulunuz.

Çözüm:

$$\begin{split} A &= \left| \int\limits_{-2}^{0} [(\frac{x^3}{3} - x) - \frac{x}{3}] dx \right| + \left| \int\limits_{0}^{2} [\frac{x}{3} - (\frac{x^3}{3} - x)] dx \right| + \left| \int\limits_{2}^{3} [(\frac{x^3}{3} - x) - x] dx \right| \\ &= \left| \int\limits_{-2}^{0} [\frac{x^3}{3} - \frac{4x}{3}] dx \right| + \left| \int\limits_{0}^{2} [\frac{4x}{3} - \frac{x^3}{3}] dx \right| + \left| \int\limits_{2}^{3} [\frac{x^3}{3} - \frac{4x}{3}] dx \right| \\ &= \left| \frac{x^4}{12} - \frac{2x^2}{3} \right|_{-2}^{0} + \left| \frac{2x^2}{3} - \frac{x^4}{12} \right|_{0}^{2} + \left| \frac{x^4}{12} - \frac{2x^2}{3} \right|_{3}^{3} = \left| -\frac{4}{3} \right| + \left| \frac{4}{3} \right| + \left| \frac{51}{3} \right| = \frac{59}{3} \end{split}$$

(b) 15 puan $x = 2\sqrt{4-y}$, $0 \le y \le \frac{15}{4}$ eğrisinin y - ekseni etrafında döndürülmesiyle elde edilen yüzeyin alanını bulunuz.

Çözüm:

$$\frac{dx}{dy} = \frac{-1}{\sqrt{4-y}} \Rightarrow A = \int_{0}^{\frac{15}{4}} 2\pi x \sqrt{1 + (\frac{dx}{dy})^2} dy = \int_{0}^{\frac{15}{4}} 2\pi (2\sqrt{4-y}) \sqrt{1 + \frac{1}{4-y}} dy$$

$$= 4\pi \int_{0}^{\frac{15}{4}} \sqrt{4-y} \frac{5-y}{\sqrt{4-y}} dy = 4\pi \int_{0}^{\frac{15}{4}} (5-y) dy = 4\pi (5y - \frac{y^2}{2}) \Big|_{0}^{\frac{15}{4}} = 15\frac{25}{8}\pi = \frac{375}{8}\pi$$

- 3. 30 puan y = x ve $y = x^2$ ile sınırlanan bölgenin **y-ekseni** etrafında döndürülmesiyle üretilen dönel cismin hacmini aşağıdaki yöntemlerle bulunuz;
 - (i). kabuk yöntemi
 - (ii). pul yöntemi.

Çözüm:

(i). the shell method Shell radius: x Shell high: $x - x^2$

$$V = \int_{0}^{1} 2\pi x (x - x^{2}) dx = 2\pi \int_{0}^{1} (x^{2} - x^{3}) dx$$
$$= 2\pi \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right) \Big|_{0}^{1} = 2\pi \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{\pi}{6}$$

(ii). the washer method Outer radius: $R(y) = \sqrt{y}$ İnner radius: r(y) = y

$$V = \int_{0}^{1} \pi [(R(y))^{2} - (r(y))^{2}] dy = \pi \int_{0}^{1} [(\sqrt{y})^{2} - y^{2}] dy$$
$$= \pi \int_{0}^{1} [y - y^{2}] dy = \pi \left(\frac{y^{2}}{2} - \frac{y^{3}}{3}\right) = \frac{\pi}{6}$$

4. 20 puan $y = x^{2/3}(x-5)$ fonksiyonunun grafiğini çiziniz: $y' = \frac{5(x-2)}{3x^{\frac{1}{3}}}, \quad y'' = \frac{10}{9} \frac{x+1}{x^{\frac{4}{3}}}.$

Çözüm:

- (i). Critical Points: x = 0 and x = 2.
- (ii). Local max: f(0) = 0, Local min: $f(2) = -3\sqrt[3]{4}$, inf. point: f(-1) = -6
- (iii). There is no asymptotes!

x	$-\infty$	-1 0		2 ∞
f'(x)	+	+	-	+
f''(x)	-	+	+	+
f(x)				

