THE DOLD-KAN CORRESPONDENCE

ARPON RAKSIT

1. Introduction

1.1. **Definition.** A simplicial object in a category \mathcal{C} is a contravariant functor $\Delta \to \mathcal{C}$. We denote the category $\operatorname{Fun}(\Delta^{\operatorname{op}}, \mathcal{C})$ of simplicial objects in \mathcal{C} by s \mathcal{C} . E.g., s \mathcal{S} et is the category of simplicial sets and s \mathcal{A} b is the category of simplicial abelian groups.

Recall we have a functor Sing : $\operatorname{Top} \to \operatorname{sSet}$, sending $X \mapsto \operatorname{Hom}_{\operatorname{Top}}(|\Delta^{\bullet}|, X)$. Lately we've been talking about Sing for two reasons:

- (1) It's a right adjoint to geometric realisation |-|: sSet \to Top.
- (2) $\operatorname{Sing}(X)$ is a Kan complex for all $X \in \operatorname{Top}$. In this sense, "Kan complexes are like spaces".

But this isn't the first place one sees Sing, probably. Indeed, the singular homology functors are essentially defined by a composition

$$\mathrm{H}_n(-;\mathbb{Z}) \coloneqq \mathrm{Top} \xrightarrow{\quad \mathrm{Sing} \quad} \mathrm{s} \mathrm{Set} \xrightarrow{\quad \mathbb{Z} \quad} \mathrm{s} \mathcal{A} \mathrm{b} \xrightarrow{\sum (-1)^i d_i} \mathrm{Ch}_{\geq 0} \xrightarrow{\quad \mathrm{H}_n \quad} \mathcal{A} \mathrm{b}.$$

Here \mathbb{Z} denotes the functor which takes free abelian groups level-wise, from which we get the *singular chain complex* by letting the boundary map be given by $\partial := \sum (-1)^i d_i$.

This was just to remind us that we've seen a natural functor $sAb \rightarrow Ch$ relating simplicial abelian groups and chain complexes. We'll look at it a bit more carefully in a second, and develop this relationship much further.

2. The correspondence

We fix \mathcal{A} any abelian category—but we'll probably be imagining $\mathcal{A} = \mathcal{A}$ b or $\mathcal{A} = R$ -Mod (for some commutative ring R).

2.1. **Notation.** We denote the category of nonnegatively graded chain complexes in \mathcal{A} (and chain maps) by $\operatorname{Ch}_{>0}(\mathcal{A})$.

Let's now make precise the $\partial := \sum (-1)^i d_i$ business with which we started this discussion.

2.2. **Definition.** Let $A_{\bullet} \in sA$ a simplicial object in A (e.g., a simplicial abelian group). We define the associated chain complex $C_{\bullet}(A) \in \mathcal{C}h_{\geq 0}(A)$ by

$$C_n(A) := A_n$$
 and $\partial_n := \sum_{i=0}^n (-1)^i d_i : C_n(A) \to C_{n-1}(A)$

for $n \geq 0$. Note that the simplicial identities clearly imply $\partial^2 = 0$, so $C_{\bullet}(A)$ is indeed a chain complex. Moreover, this evidently defines a functor $C : sA \to \mathfrak{Ch}_{\geq 0}(A)$.

This is perhaps the most natural—or familiar, at least—functor $sA \to Ch_{\geq 0}(A)$, but it turns out not to be the cleanest to use when discussing the relationship between the two categories. In fact, we will want to use the following alternative.

Date: October 22, 2013.

2.3. **Definition.** Again let $A_{\bullet} \in sA$ a simplicial object in A. We define the normalised chain complex $N_{\bullet}(A) \in Ch_{>0}(A)$ by

$$N_n(A) := \bigcap_{i=0}^{n-1} \ker(d_i) \subseteq A_n$$
 and $\partial_n := (-1)^n d_n : N_n(A) \to N_{n-1}(A)$

for $n \geq 0$. Again the simplicial identities imply $\partial^2 = 0$, and we have a functor $N : sA \to \mathcal{C}h_{\geq 0}(A)$.

What is this unmotivated nonsense? Have no fear, for C and N are intimately related! For instance we can note immediately from the definitions that the natural inclusion $N_{\bullet}(A) \to C_{\bullet}(A)$ is in fact a chain map for $A \in \mathcal{SA}$. But there's more!

2.4. **Definition.** Let $A \in \mathcal{SA}$. We define the degenerate subcomplex $D_{\bullet}(A)$ of $C_{\bullet}(A)$ by

$$D_0(A) := 0$$
 and $D_n(A) := \sum_{i=0}^{n-1} \operatorname{im}(s_i)$

for $n \ge 1$. That is, $D_{\bullet}(A)$ is generated by the images of the degeneracy maps. Note that by the simplicial identities

$$\partial s_j = \sum_{i=0}^n (-1)^i d_i s_j = \sum_{i=0}^{j-1} (-1)^i s_{j-1} d_i + \sum_{i=j+2}^n (-1)^i s_j d_i,$$

so $D_{\bullet}(A)$ is indeed a subcomplex.

2.5. **Proposition.** Let $A \in sA$. For n > 0 the natural map

$$\phi: N_n(A) \oplus D_n(A) \to C_n(A)$$

induced by the inclusions is an isomorphism. Therefore we have a natural isomorphism

$$N_{\bullet}(A) \simeq C_{\bullet}(A)/D_{\bullet}(A).$$

Proof. Fix $n \ge 0$. For $0 \le i \le n-1$, the simplicial identity $d_i s_i = \text{id}$ implies that we have a canonical splitting

$$A_n \simeq \ker(d_i) \oplus \operatorname{im}(s_i).$$

It follows easily that $N_n(A) \cap D_n(A) \simeq 0$, so we're just left to show that ϕ is surjective. We prove by downward induction on $0 \leq j \leq n-1$ that

$$\operatorname{im}(\phi) \supseteq N_j := \bigcap_{i < j} \ker(d_i).$$

The base case j = n - 1 is tautological and the final case j = 0 will finish the proof. Now consider the map

$$\psi := \mathrm{id} - s_i d_i : C_n \to C_n.$$

Observe by the simplicial identities that

$$d_i \psi = d_i - d_i s_i d_i = d_i - d_i = 0$$
 and $d_i \psi = d_i - d_i s_i d_i = d_i - s_{i-1} d_{i-1} d_i$

for i < j, implying that $\psi(N_{j+1}) \subseteq N_j$. So by induction $\operatorname{im}(\psi \circ \phi) \supseteq N_j$. But it's easy to see that $\operatorname{im}(\psi \circ \phi) \subseteq \operatorname{im}(\phi)$, since $\operatorname{im}(s_j d_j) \subseteq D_n(A)$ by definition.

References

- 1. Paul G. Goerss and John F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, 1999.
- 2. Akhil Mathew, The Dold-Kan correspondence, people.fas.harvard.edu/~amathew/doldkan.pdf.
- $3. \ \ Emily \ Riehl, \ \textit{A leisurely introduction to simplicial sets}, \ \texttt{www.math.harvard.edu/~eriehl/ssets.pdf}.$
- 4. Charles A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.