Indice

Introduzione 5	
Fisica Nucleare 7	
Le unità di misura della Fisica Nucleare e Subnucleare	7
Le proprietà generali dei nuclei 9	
La differenza di massa tra neutrone e protone 12	
Le carte dei nuclidi 12	
Lo studio del nucleo 13	
La sezione d'urto 13	
Calcoli di sezioni d'urto 17	

Introduzione

Valutare cosa mettere di introduzione

Fisica Nucleare

Le unità di misura della Fisica Nucleare e Subnucleare

La scelta della unità di misura è arbitraria ma, in accordo con i criteri che ispirano i moderni sistemi, soddisfa alcuni semplici requisiti di ordine generale:

- l'unità deve essere connessa ad un fenomeno naturale ritenuto stabile ed invariabile nel tempo piuttosto che ad un oggetto o manufatto particolare il quale potrebbe deteriorarsi o modificare le sue proprietà con il tempo;
- le unità non devono essere ridondanti e devono costituire un sistema di grandezze fisiche irriducibili dette fondamentali dalle quali ottenere tutte le altre che invece vengono dette derivate;
- l'unità deve essere riproducibile in laboratorio con una relativa facilità (in realtà è lavoro da professionisti quali sono i metrologi).

Un sistema di unità di misura più appropriato può essere costruito facendo riferimento alle costanti fisiche fondamentali che governano i fenomeni nucleari e subnucleari. Accanto alle grandezze fondamentali, ogni area della fisica introduce anche specifiche costanti fisiche.

Queste possono essere sia dimensionali che adimensionali, riferirsi a specifiche classi di fenomeni - e dunque di rango locale - oppure valide per ogni fenomeno fisico e quindi di rango universale. Mentre il valore numerico delle costanti dimensionali dipende dalla scelta del sistema di unità misura, quello delle costanti adimensionali ne è del tutto indipendente per cui si ritiene che siano dotate di un più profondo significato fisico anche se a tutt'oggi nessuna teoria è in grado di predirne il valore.

Fu Planck che propose di assumere come grandezze fisiche fondamentali le costanti fisiche universali introducendo i cosiddetti sistemi naturali di unità di misura. Lo scopo di tali sistemi è quello di dedurre le appropriate scale di lunghezze, tempi, masse e temperature direttamente dai fenomeni naturali piuttosto che da convenzioni di natura metrologica

La costruzione di un sistema di unità di misura le cui grandezze abbiano la scala appropriata per una certa classe di fenomeni richiede l'introduzione di specifici vincoli tra le grandezze fondamentali della descrizione macroscopica. Ad esempio, dato che i fenomeni nucleari e subnucleari sono al tempo stesso relativistici e quantistici ciò significa che le velocità, ovvero i quozienti tra lunghezze e tempi saranno dell'ordine di c, mentre le azioni, cioè i prodotti delle energie per i tempi caratteristici saranno dell'ordine di \hbar . Due costanti universali non sono però sufficienti per fissare la scala delle tre grandezze necessarie al Sistema Internazionale per descrivere la relatività e meccanica quantistica (L, T ed M). Il particolare ruolo giocato dalle macchine acceleratrici in fisica nucleare e delle particelle elementari suggerisce allora di assumere come terza grandezza (non costante) un fondamentale parametro costruttivo della macchina, l'energia E. In accordo con le convenzioni adottate nella ingegneria delle macchine acceleratrici si assume come unità l'elettronvolt (eV), ovvero l'energia cinetica acquisita da un elettrone accelerato da una differenza di potenziale di un volt. Si ottiene facilmente la sua conversione in joule: $E_{\rm cin} = eV$ da cui $1eV = 1.602 \times 10^{-19} \ J$.

Definite le unità del Sistema Naturale della Fisica Nucleare e Subnucleare (SNNS) possiamo facilmente calcolare i loro valori nel Sistema Internazionale (SI) attraverso le seguenti equazioni dimensionali (si noti che con le lettere minuscole indichiamo le grandezze fondamentali del SNNS e con le maiuscole quelle del SI)

$$c \sim \frac{L}{T} \qquad \epsilon \sim Mc^2 \qquad \epsilon T \sim \hbar$$

$$L \sim cT \qquad M \sim \frac{\epsilon}{c^2} \qquad T \sim \frac{\hbar}{\epsilon}$$

$$\Longrightarrow L \sim \frac{\hbar c}{\epsilon} \qquad M \sim \frac{\epsilon}{c^2} \qquad T \sim \frac{\hbar}{\epsilon}$$

Da queste deduciamo che le lunghezze possono essere misurate in unità di $\frac{\hbar c}{\epsilon}$ ($\hbar c/eV$ o 1/eV se =c=1), i tempi in unità di $\frac{\hbar}{\epsilon}$ (\hbar/eV o 1/eV se $\hbar=1$) ed infine le masse in unità di $\epsilon/c^2(eV/c^2$ o eV se c=1).

Tenendo ora presenti i valori delle costanti universali espresse nel Sistema Internazionale e della conversione tra Joule (J) ed elettronvolt (eV):

$$\hbar = 1.055 \times 10^{-34} J \cdot s \quad c = 2.998 \times 10^8 m/s \quad \hbar c = 3.162 \times 10^{-26} J \cdot m$$

$$1 eV = 1.602 \times 10^{-19} J$$

possiamo calcolare i coefficienti della conversione tra il Sistema Naturale della Fisica Nucleare e Subnucleare ed il Sistema Internazionale

(per quanto riguarda l'energia, piuttosto che gli eV, assumeremo la scala più appropriata dei MeV)

$$\begin{split} L &\sim \frac{\hbar c}{\epsilon} \qquad 1 \left(\frac{\hbar c}{MeV}\right) \sim 1.97 \times 10^{-19} m \\ M &\sim \frac{\epsilon}{c^2} \qquad 1 \left(\frac{MeV}{c^2}\right) \sim 1.78 \times 10^{-30} Kg \\ \frac{\hbar}{\epsilon} &\sim T \qquad 1 \left(\frac{\hbar}{MeV}\right) \sim 6.59 \times 10^{-22} s \end{split}$$

Le proprietà generali dei nuclei

Il nucleo è un sistema composto formato da neutroni e protoni spesso indicati con il nome generico di nucleoni - tenuti assieme dalla interazione forte, una delle interazioni fondamentali della natura(di cui non si ha traccia macroscopicamente).

In fisica nucleare si usa il termine 'nuclide' piuttosto che 'nucleo' più prossimo alla chimica. Si hanno le seguenti grandezze rilevanti:

- numero atomico Z, ovvero numero di protoni del nuclide ;
- il numero di neutroni non ha nome specifico e si indica con N;
- numero di massa A, ovvero il numero di nucleoni Z + N.

Ne consegue che una qualunque coppia dei numeri Z, N ed Aidentifica univocamente il nuclide. La notazione è la seguente:

$${}_{Z}^{A}X_{N}$$

Si parla di nuclidi

- 1. **isotopi** se hanno stesso Z ma diversi N ed A;
- 2. **isotoni** se hanno stesso N ma diversi Z ed A;
- 3. **isobari** se hanno stesso A ma diversi N ed Z;
 - se questi hanno N e Z scambiati si dicono speculari;
- 4. **isomeri** se sono identici ma in uno stato di energia differente.

Il neutrone ha una massa di 939.56MeV che eccede di soli 1.29MeVla massa del protone che ammonta a 938.27MeV. Spesso approssimate a 940MeV o addirittura ad 1GeV, i nucleoni risultano circa 1840 volte più massivi dell'elettrone (0.51MeV). La piccola differenza di massa gioca un ruolo chiave in molti fenomeni (vedi paragrafo sulla differenza di massa neutrone-protone).

Sia i **neutroni** che i protoni possiedono un momento angolare intrinseco di **spin** $s=\frac{1}{2}$ (in unità \hbar). Sulla base della meccanica quantistica, ciò significa che la proiezione del momento angolare lungo un

certo asse può assumere i due soli valori $\frac{1}{2}\hbar$ e $-\frac{1}{2}\hbar$. Lo spin interviene non solo negli aspetti specifici della dinamica dei nucleoni ma anche nella determinazione del loro comportamento collettivo. La meccanica quantistica impone ai sistemi di particelle identiche restrizioni peculiari che non hanno analogie nella fisica classica. Sulla base del teorema spin statistica i neutroni ed i protoni nucleari - che hanno spin semintero - si comportano collettivamente come **fermioni** e devono soddisfare il principio di Pauli, un fatto che gioca un ruolo decisivo nella stabilità e struttura del nucleo.

Nella fisica classica solo una particella estesa può possedere momento angolare intrinseco (spin). Se lo possiede ed è elettricamente carica allora possiede anche momento di dipolo magnetico. Ad esempio è facile mostrare che un anello di carica e' e superficie S, posto in rotazione attorno all'asse di simmetria, soddisfa la seguente relazione $\mu = eL$.

Nella fisica quantistica, non solo le particelle estese (composte) ma anche quelle puntiformi (elementari) possono essere dotate di spin per cui - se dotate di carica elettrica - possiederanno anche un momento di dipolo magnetico.

Vediamo da un conto esplicito che l'analogia classica-quantistica è fallimentare:

$$\mu = is = \frac{e}{T}\pi R^2 \to L = mvR = m\frac{2\pi R}{T}R$$

$$\pi R^2 = \frac{T}{2m} L \rightarrow m = \frac{e}{T} \frac{T}{2m} L = \frac{e \hbar}{2m} \left(\frac{L}{\hbar}\right)$$

dove la grandezza $\frac{e\hbar}{2m}$ viene detta **magnetone di Bohr** e vale 5.05 × $10^{-27}J/T.$ E' un fatto ben noto però che la relazione tra μ ed L differisce da quella classica per un fattore numerico. Ad esempio, nel caso di particelle puntiformi di spin 1/2, l'equazione quantomeccanica relativistica di Dirac conduce ad una relazione contenente un fattore q di valore 2.

Preso atto di questo fatto dobbiamo aggiungere che le teorie di campo quantizzato hanno dimostrato che il fattore g=2 delle particelle puntiformi deve subire piccole correzioni dovute a certi processi virtuali, soprattutto di natura elettromagnetica, di cui diremo

$$g = 2(1-a)$$
 $a = \frac{g-2}{2}$

La correzione a - detta momento magnetico anomalo o anche $\frac{g-2}{2}$ rappresenta uno dei parametri più importanti per un confronto di alta precisione tra previsioni teoriche e misure sperimentali. A titolo di esempio nel caso dell'elettrone si ha

$$a_{th} = 0.001159652181643(764)$$

Momento di dipolo magnetico dei nucleoni

$a_{ex} = 0.001159652180730(280)$

lo stupefacente accordo costituisce uno dei test più significativi a favore della QED.

Nel caso in cui la particella quantistica non sia puntiforme il fattore q=2 si modifica ben più pesantemente. Ad esempio, nel caso del protone deve essere moltiplicato per 2.79per cui si ha $g = 2 \times 2.79 = 5.58$ mentre nel caso del neutrone deve essere moltiplicato per -1.91per cui si ha $g = 2 \times (-1.91) = -3.82$.

Tali valori così diversi dal fattore 2 delle particelle puntiformi dimostrano la natura non elementare dei nucleoni, un fatto che troverà la sua conferma nel modello a quark degli adroni.

I nucleoni non possiedono invece momento di dipolo elettrico un fatto che ha importanti implicazioni sulle quali torneremo.

Il modello a quark degli adroni (particelle soggette alla interazione forte) chiarisce che i nucleoni non sono particelle elementari. Tralasciando per ora la complessa struttura prevista dalla teoria dei campi quantizzati, in prima approssimazione i nucleoni sono pensabili come stati legati di tre quark (i quark costituiscono una famiglia di 6 particelle elementari del modello standard) con 'carica forte' complessiva nulla (nel gergo della QCD di colore bianco) nello stato di minima energia. In particolare neutrone e protone sono stati legati dei quark (u, d, d) e (u, u, d) rispettivamente.

La natura composta dei nucleoni chiarisce anche la natura della forza forte che li lega all'interno del nucleo. Infatti, oggi sappiamo che le vere sorgenti della interazione forte sono le 'cariche forti' (cariche di colore) dei tre quark che compongono i nucleoni per cui la forza forte che li unisce nei nuclidi altro non è che il residuo esterno della interazione forte primaria tra i quark. Per questo motivo la forza forte tra nucleoni ha una struttura complicata e decade rapidamente con la distanza assumendo un carattere a corto raggio.

Da questo punto di vista è assai utile l'analogia con le forze elettromagnetiche nelle molecole, le forze di Van der Waals. Le interazioni primarie tra le cariche dei nuclei e degli elettroni interni alla molecola sono le interazioni elettromagnetiche a lungo raggio caratterizzate da una struttura relativamente semplice. All'esterno della molecola però, si osserva la risultante di tali interazioni che è attrattiva, ha un andamento spaziale complicato e decade rapidamente con la distanza.

In questo senso possiamo affermare che le forze forti tra nucleoni sono le forze di Van der Waals delle interazioni forti tra i quarks. Premesso che la comprensione delle forze forti tra nucleoni a partire dalle sottostanti interazioni forti tra quarks mediate da gluoni è un tema di assoluta frontiera non ancora risolto (QCD), il carattere essenzialmente attrattivo e a corto raggio della forza forte tra nucleoni è noto sin dagli anni '30.

[pag. 18-21 come approfondimento dalle dispense]

 $La\ differenza\ di\ massa\ tra\ neutrone\ e\ protone$

pag 21-23 dispense

Le carte dei nuclidi

qui roba lezione 3

Lo studio del nucleo

La sezione d'urto

In quale modo i fisici possono esplorare la struttura di oggetti così piccoli quali sono gli atomi, i nuclei e le particelle subatomiche? Quali sono le grandezze fisiche sperimentalmente misurabili e quale tipo di informazioni su tali oggetti microscopici è effettivamente possibile ottenere da tali misure?

Gli elementi fondamentali che caratterizzano l'esperimento di Rutherford(1909-1913) cosí come versioni più moderne sono i seguenti:

- 1. un fascio incidente di particelle proiettile;
- 2. un **bersaglio** contenente le particelle da studiare(atomi/nuclei /protoni/neutroni);
- 3. un **rivelatore** dietro/attorno al bersaglio capace di misurare le particelle emergenti¹.

Nell'esperimento di Rutherford:

- fascio: particelle α di 5.6 MeV
- bersaglio: gold foil con spessore di 8.6×10^{-6} cm
- rivelatore: vetro dipinto da ZnS scintillante al momento dell'incontro con particelle cariche.

Goal dell'esperimento: riconoscere le particelle emergenti e misurarne le grandezze cinematiche(energia, quantità di moto) al fine di ottenere informazioni sulla natura dell' **interazione** tra particella del fascio e particella del bersaglio.

Il termine **interazione** è un termine generico. Introduciamo la seguente notazione:

- Processi di diffusione: particelle emergenti dal bersaglio coincidono con quelle del raggio incidente
- Processi di produzione: non vale quanto sopra

Tra i processi di diffusione si distinguono processi

• elastici : energia della particella incidente = emergente

L'esperimento di Geiger-Mursden-Rutherford'

¹ Il progresso tecnologico nel campo delle macchine acceleratrici ha reso possibile una variante dello schema descritto dove la collisione avviene tra le particelle di due fasci contrapposti. I 'collider', certamente più difficili da costruire permettono però di raggiungere, a parità delle tecnologie di accelerazione delle particelle, una maggiore energia della collisione.

Dato che solitamente la particella proiettile è priva di struttura interna, a differenza di quella bersaglio, si ha diffusione

- elastica: il bersaglio non modifica la sua struttura e non assorbe energia
- anelastica: il bersaglio modifica la sua struttura e assorbe energia

Si parla di diffusione profondamente inelastica quando l'energia della particella proiettile è tale che la De Broglie wavelength associata risulta molto minore della dimensione della particella bersaglio \rightarrow si può definirne la struttura interna(che varia durante il processo).

Sulla base di questa terminologia è evidente che un processo di produzione è sempre inelastico.

Vogliamo ora domandarci quale grandezza fisica microscopica del bersaglio sia possibile misurare con un arrangiamento sperimentale alla Rutherford. Per cominciare, occorre tenere presente che nella pratica sperimentale si cerca di ottenere un fascio di particelle proiettile con densità e velocità uniformi e costanti da inviare su di un bersaglio materiale chimicamente omogeneo. In generale, in questa situazione, si ottengono informazioni sui componenti microscopici del bersaglio confrontando il fascio di particelle uscente con quello entrante. In particolare maggiore è il numero di grandezze fisiche del fascio emergente che vengono misurate (distribuzione spaziale, energia, quantità di moto, tipologia, etc. etc.) più dettagliata risulterà l'informazione sui componenti microscopici del bersaglio.

Le assunzioni che faremo sono le seguenti:

- 1. il fascio di sezione trasversale Σ sia costituito da corpuscoli massivi puntiformi in moto con la stessa velocità v e densità spaziale n_f uniforme e costante;
- 2. il bersaglio sia costituito da sferette massive di raggio dato, distribuite con densità n_b uniforme all'interno di un sottile strato materiale di spessore Δx e area maggiore di Σ (in modo da utilizzare tutte le particelle del fascio);
- 3. l'interazione tra particella proiettile e particella bersaglio sia assimilabile ad un urto meccanico;
- 4. a seguito di tale interazione la particella proiettile venga deviata e dunque rilevata in una direzione diversa da quella del fascio.

Date queste condizioni, la probabilità che una singola particella proiettile interagisca con una singola particella del bersaglio vale

dove σ è la sezione trasversale della particella bersaglio e Σ la sezione trasversale del fascio. Il numero di particelle deflesse dalla direzione del fascio a seguito dell'urto vale allora

$$\Delta N_{def} = \Delta N_f \Delta N_b \frac{\sigma}{\Sigma}$$

dove ΔN_f è il numero di particelle del fascio che nel tempo Δt hanno avuto la possibilità di interagire con le ΔN_b particelle del bersaglio.

Ora si noti che le ΔN_f particelle del fascio sono contenute all'interno di un parallelepipedo di area Σ ed altezza $v\Delta t$ mentre le ΔN_b particelle del bersaglio sono contenute all'interno di un parallelepipedo di area Σ ed altezza Δx . Ricordando allora che le densità volumetriche di particelle del fascio e del bersaglio valgono rispettivamente n_f e n_b , si ottengono le seguenti espressioni:

$$\Delta N_f = \underbrace{\Sigma v \Delta t}_{\text{Volume}} n_f \qquad \Delta N_b = \underbrace{\Sigma \Delta x}_{\text{Volume}} n_b$$

che sostituite forniscono il numero di particelle deflesse nel tempo Δt :

$$\Delta N_{def} = \Delta N_f \Delta N_b \frac{\sigma}{\Sigma} = (\Sigma v \Delta t \ n_f) (\Sigma \Delta x \ n_b) \frac{\sigma}{\Sigma}$$

e quindi un rate di deflessione

$$\frac{\Delta N_{def}}{\Delta t} = (vn_f)(\Sigma \Delta x n_b)\sigma$$

Invertendo la relazione, otteniamo infine l'espressione della sezione trasversale della particella bersaglio o sezione d'urto

$$\sigma = \frac{1}{(n_f v)(n_b \Sigma \Delta x)} \frac{dN_{def}}{dt}$$
 (1)

L'interesse di questa espressione risiede nel fatto che mette in relazione una grandezza fisica microscopica, quale la sezione trasversale σ della particella bersaglio, con grandezze fisiche macroscopiche misurabili quali sono i parametri geometrici $n_f, n_b, \Sigma, \Delta x$ e $\frac{\Delta N_{def}}{\Delta t}$.

La grandezza σ è detta sezione d'urto totale o sezione totale d'interazione ed è ciò che può essere misurato in un tipico arrangiamento alla Rutherford (questa affermazione va presa cum grano salis poiché disponendo di un adeguato apparato si possono misurare le sezioni d'urto in funzione di specifiche variabili d'interesse), ha le dimensioni di un'area (in questo caso coincidente con l'area trasversale della particella bersaglio) e dunque si misura in m^2 (più propriamente in suoi sottomultipli), ed è la grandezza fisica che caratterizza l'interazione tra la generica particella del fascio e la generica particella del bersaglio. Ci attendiamo infine che tale espressione abbia una validità generale e che possa essere applicata non solo nel

caso specifico dell'urto meccanico da noi esaminato (impossibile a livello microscopico!) ma anche nel caso più realistico in cui le particelle del fascio e del bersaglio interagiscono per mezzo di una interazione naturale.

Infatti, anche nel caso delle particelle subatomiche, nel quale la mutua interazione non è certo schematizzabile come un urto meccanico di sfere rigide, sarà sempre possibile introdurre la grandezza microscopica σ il cui valore, però, non sarà determinato dalla sezione trasversale della particella ma dalle proprietà della interazione e tra particella proiettile e particella bersaglio.

Dunque, in fisica nucleare e delle particelle elementari gli esperimenti su fasci misurano essenzialmente le sezioni d'urto della interazione elementare fascio-bersaglio. Quando si dispone di una teoria quantitativa di tale interazione la grandezza σ può essere calcolata anche teoricamente ed allora, attraverso il confronto con il valore determinato sperimentalmente, risulta possibile saggiare la bontà della teoria stessa. Nella fisica nucleare e delle particelle elementari il confronto tra teoria ed esperimento avviene quasi sempre attraverso le sezioni d'urto.

Se l'apparato sperimentale è costruito in modo opportuno risulta possibile andare oltre il semplice conteggio del numero di particelle deflesse e fornire informazioni sempre più stringenti. Ad esempio, con un apparato sperimentale disposto attorno al bersaglio e opportunamente segmentato, in un processo di diffusione risulta possibile misurare la distribuzione angolare delle particelle del fascio deflesse dal bersaglio acquisendo ulteriore informazione sperimentale sulle proprietà della interazione in gioco. In questo modo si potrà misurare la sezione d'urto d'interazione con la condizione ulteriore che la particella proiettile emerga all'interno di un certo angolo solido elementare $d\Omega$. Avremo allora la seguente d'urto elementare (poiché infinitesimo risulta l'elemento di angolo solido)

$$d\sigma = \frac{1}{(n_f v)(n_b \Sigma \Delta x)} d\left(\frac{dN_{def}}{dt} \text{ in } d\Omega\right)$$

in altri termini:

$$d\sigma = \frac{1}{(n_f v)(n_b \Sigma \Delta x)} \frac{d\dot{N}_{def\ in\ \Delta\Omega}}{d\Omega} d\Omega$$

dalla quale otteniamo l'espressione della sezione d'urto differenziale rispetto all'angolo solido che è la grandezza misurata dal nostro ipotetico esperimento. Va da sè che l'integrale di tale sezione d'urto differenziale rispetto all'angolo solido debba restituire la sezione d'urto totale

Sezione d'urto differenziale rispetto all'angolo solido

$$\sigma = \iint_{\Omega} \frac{d\sigma}{d\Omega} d\Omega \tag{2}$$

relazione che può essere assunta come definizione della sezione d'urto differenziale rispetto all'angolo solido. Se il rivelatore permette di misurare anche l'energia della particella proiettile sarà possibile misurare il numero di particelle del fascio che nella unità di tempo emergono nell'angolo solido elementare $d\Omega$ all'interno dell'intervallo elementare dE. Si ha infatti:

$$\frac{d\sigma}{d\Omega} = \frac{1}{(n_f v)(n_b \Sigma \Delta x)} \frac{d}{d\Omega} \left(\frac{dN_{def}}{dt} \text{ in } d\Omega \right)$$

$$\frac{d^2\sigma}{dEd\Omega} = \frac{1}{(n_f v)(n_b \Sigma \Delta x)} \frac{d}{dE} \frac{d}{d\Omega} \left(\frac{dN_{def}}{dt} \text{ in } d\Omega \in dE \right)$$

Il nostro ipotetico esperimento misurerà allora la seguente sezione d'urto doppiamente differenziale in funzione dell'angolo solido e della energia definita dalla relazione

$$\sigma = \iint_{\Omega} \int_{E} \frac{d^{2}\sigma}{dE d\Omega} d\Omega$$

Gli esempi citati, pur riferendosi a casi particolari chiariscono il fatto, di validità generale, che il tipo di sezione d'urto misurata dipende essenzialmente dalle caratteristiche tecniche del rivelatore.

Nel caso più semplice si misurerà una sezione d'urto totale di interazione ma, disponendo di rivelatori via via più sofisticati, risulterà possibile misurare sezioni d'urto differenziali di interazione in funzione di un insieme di variabili cinematiche sempre più ampio.

Calcoli di sezioni d'urto

Vediamo due esempi di calcolo di sezioni d'urto:

- i) Sezione d'urto differenziale rispetto all'angolo solido di un fascio di proiettili di sezione trascurabile su sfere di raggio R nella ipotesi che abbiano luogo urti classici elastici. ii). Sezione d'urto differenziale di Rutherford
- i) Senza entrare nel dettaglio della meccanica dell'urto assumendo un sistema di coordinate sferiche con asse z lungo l'asse centrale della sfera - sappiamo che sussiste una piena simmetria rispetto all'angolo e l'angolo di emergenza del proiettile è interamente determinato dal **parametro d'urto** b attarverso una relazione del tipo

$$b = b(\vartheta) \tag{3}$$

Figura 1: Sezione d'urto differenziale di una sfera rigida

che codifica i dettagli dell'urto stesso. Ciò significa che tutti i proiettili passanti per l'area elementare $bd\varphi db$ saranno deflessi dello stesso angolo solido elementare $d\Omega$ per cui, sulla base di (3.2), possiamo scrivere

$$d\sigma = \frac{d\sigma}{d\Omega}d\Omega = bd\varphi db$$

da cui segue

$$\frac{d\sigma}{d\Omega}\sin\vartheta d\varphi d\vartheta = bd\varphi \left|\frac{db}{d\vartheta}\right|d\vartheta$$

e dunque, infine, la sezione d'urto differenziale rispetto all'angolo solido

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin\theta} \left| \frac{db}{d\theta} \right| \tag{4}$$

valida classicamente non solo nel caso della sfera rigida ma in generale. Per calcolare la sezione d'urto differenziale rispetto all'angolo solido nel caso della sfera rigida di raggio R dobbiamo precisare la forma della (3.3). Si trova facilmente

$$\frac{b}{R} = \sin \alpha \qquad \vartheta = \pi - 2\alpha$$

da cui

$$b = R\cos\frac{\vartheta}{2}$$

Sostituendo nella (3.4) otteniamo

$$\frac{d\sigma}{d\Omega} = \frac{R\cos\frac{\vartheta}{2}}{\sin\vartheta} \left| \frac{d}{d\vartheta}R\cos\frac{\vartheta}{2} \right| = \frac{R\cos\frac{\vartheta}{2}}{\sin\vartheta} \frac{R}{2}\sin\frac{\vartheta}{2}$$

da cui, infine, la sezione d'urto differenziale della sfera rigida di raggio ${\cal R}$

$$\frac{d\sigma}{d\Omega} = \frac{R^2}{4} \tag{5}$$

E' immediato verificare che da questa espressione si ottiene una sezione d'urto totale $\sigma = \pi R^2$.

La formula (3.4) può essere utilizzata anche nel caso in cui l'interazione tra le particelle del fascio e quelle del bersaglio non consista in un urto meccanico ma in una interazione mediata da una forza naturale.

ii). Trattiamo allora il caso della **diffusione di Rutherford** di proiettili di carica elettrica positiva ze su bersagli di carica elettrica positiva Ze governata dalla forza

$$\boldsymbol{F} = \frac{zZe^2}{4\pi\epsilon_0} \frac{1}{r^2} \boldsymbol{i_r}$$

Come noto tale forza conserva il momento angolare del proiettile

$$m{r}\wedgem{F}=rac{d}{dt}m{l} \qquad rm{i_r}\wedgerac{zZe^2}{4\pi\epsilon_0}rac{1}{r^2}m{i_r}=m{0} \quad m{0}=rac{d}{dt}m{l} \quad m{l}=m{K}$$

Sezione d'urto differenziale di una sfera rigida

$$\mathbf{l}_{t=-\infty} = \mathbf{l}_t \quad (-x\mathbf{i} + y\mathbf{j}) \wedge (m\dot{x}\mathbf{i} + m\dot{y}\mathbf{j})_{t=-\infty} = r\mathbf{i}_r \wedge m(\dot{r}\mathbf{i}_r + r\dot{\varphi}\mathbf{i}_{\varphi}) \quad -\dot{x}y = r^2\dot{\varphi}$$
$$\dot{x}_{t=-\infty} = v_0 \quad \dot{y}_{t=-\infty} = 0 \quad y_{t=-\infty} = b$$

da cui

$$\dot{\varphi} = -\frac{v_0 \ b}{r^2} \tag{6}$$

e conserva l'energia del proiettile

$$\mathbf{F} \cdot \mathbf{v} = \frac{dT}{dt} \to -\nabla V \cdot \mathbf{v} = \frac{dT}{dt}$$

$$\frac{d(T+V)}{dt} = 0 \qquad E = T+V = K$$

$$T_{t=-\infty} + V_{t=-\infty} = T_{t=+\infty} + V_{t=+\infty}$$
 $V_{t=\pm\infty} = -\frac{zZe^2}{4\pi\epsilon_0} \frac{1}{r_{t=+\infty}} = 0$ $T_{t=-\infty} = T_{t=+\infty}$

da cui si ha

$$v_0 = v_{t=+\infty} \tag{7}$$

Fatte queste premesse conviene risolvere la sola equazione del moto trasversale:

$$F_y = \frac{d}{dt} m v_y \qquad \frac{zZe^2}{4\pi\epsilon_0} \frac{1}{r^2} \sin \varphi = \frac{d}{dt} m v_y$$

$$m v_{y,t=+\infty} - m v_{y,t=-\infty} = \int_{-\infty}^{+\infty} \frac{zZe^2}{4\pi\epsilon_0} \frac{1}{r^2} \sin \varphi \, dt$$

$$v_{y,t=+\infty} = v_{t=+\infty} \sin \vartheta \qquad v_{y,t=-\infty} = 0 \quad \varphi_{t=+\infty} = \vartheta \quad \varphi_{t=-\infty} = \pi$$

$$m v \sin \vartheta = -\int_{-\infty}^{+\infty} \frac{zZe^2}{4\pi\epsilon_0} \frac{1}{r^2} \sin \varphi \frac{r^2}{v_0 b} \, d\varphi = \frac{zZe^2}{4\pi\epsilon_0 v_0 b} (\cos \vartheta + 1)$$

da cui

$$b = \frac{zZe^2}{4\pi\epsilon_0 m v_0^2} \cot \frac{\vartheta}{2} \tag{8}$$

Ora possiamo derivare questa espressione

$$\left|\frac{db}{d\vartheta}\right| = \frac{1}{2} \frac{zZe^2}{4\pi\epsilon_0 m v_0^2} \frac{1}{\sin^2 \vartheta/2}$$

e sostituirla nella (3.4) assieme alla (3.7) ottenendo

$$\frac{d\sigma}{d\Omega} = \left(\frac{zZe^2}{4\pi\epsilon_0 m v_0^2}\right)\cot\frac{\vartheta}{2}\frac{1}{2\sin\vartheta/2\cos(\vartheta/2)}\frac{1}{2}\left(\frac{zZe^2}{4\pi\epsilon_0 m v_0^2}\right)\frac{1}{\sin^2\vartheta/2}$$

da cui la sezione d'urto differenziale di Rutherford

$$\frac{d\sigma}{d\Omega} = \frac{1}{4} \left(\frac{zZe^2}{4\pi\epsilon_0 m v_0^2} \right)^2 \frac{1}{\sin^4 \vartheta/2} \tag{9}$$

un risultato valido anche in meccanica quantistica.