1. Stochastic process

Definition 0.1. A stochastic process is a collection of random variables $\{X_t\}_{t\in T}$, where T is an index set.

2. Markov Property

Definition 0.2. A stochastic process $\{X_t\}_{t\in T}$ has the Markov property if

$$P(X_{t_{n+1}} = x_{n+1} | X_{t_1} = x_1, \dots, X_{t_n} = x_n) = P(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n)$$
(1)

3. Markov Chain

Definition 0.3. A Markov chain is a stochastic process with the Markov property.

4. Time-homogeneous Markov Chain

Definition 0.4. A Markov chain is time-homogeneous if the transition probabilities are independent of time.

5. Transition Probability

Definition 0.5. The transition probability P_{ij} is the probability of transitioning from state i to state j.

6. Transition Probability Matrix

Definition 0.6. The transition probability matrix P is a matrix where P_{ij} is the probability of transitioning from state i to state j.

7. n-step Transition Probability Matrix

Definition 0.7. The n-step transition probability matrix $P^{(n)}$ is a matrix where $P_{ij}^{(n)}$ is the probability of transitioning from state i to state j in n steps.

$$P_{ij}^{(n)} = P(X_{t_n} = j | X_{t_0} = i)$$
(2)

where $t_n = t_0 + n$.

8. Chapman-Kolmogorov Equation

Theorem 0.1. The Chapman-Kolmogorov equation is given by

$$P_{ij}^{(n+m)} = \sum_{k} P_{ik}^{(n)} P_{kj}^{(m)} \tag{3}$$

9. Hitting Probability

Definition 0.8. The hitting probability f_{ij} is the probability of reaching state j in the future starting from state i.

$$P_i(hit\ j) = f_{ij} = P(reach\ state\ j|start\ at\ state\ i)$$
 (4)

$$\sum_{n=1}^{\infty} P(\text{first reach state } j \text{ in } n \text{ steps} | \text{start at state } i)$$
 (5)

10. First Visit Probability

Definition 0.9. The first visit probability $f_{ij}^{(n)}$ is the probability of reaching state j in exactly n steps starting from state i.

$$f_{ij}^{(n)} = P(reach \ state \ j \ in \ exactly \ n \ steps|start \ at \ state \ i)$$
 (6)

11. Hitting Time

Definition 0.10. Given a stochastic path $\{X_t\}_{t\in T}$, the hitting time T_i^j is the first time the path reaches state j starting from state i.

We use T^{j} to denote the hitting time of state j starting from the current state.

12. Communicate

Definition 0.11. Two states i is said to Communicate with j and is written as $i \to j$ if there exists a natural number n such that $P_{ij}^{(n)} > 0$.

13. Inter Communicate

Definition 0.12. Two states i and j are said to Inter Communicate and are written as $i \leftrightarrow j$ if $i \rightarrow j$ and $j \rightarrow i$.

Example 0.1. $i \leftrightarrow i$ as $P_{ii}^{(0)} = 1$.

14. Irreducible Class of States

Definition 0.13. A class of states $C = \{i_1, i_2, \dots, i_n\}$ is said to be Irreducible if for all $i, j \in C, i \leftrightarrow j$.

15. Closed Class of States

Definition 0.14. A class of states $C = \{i_1, i_2, \dots, i_n\}$ is said to be Closed if for all $i \in C$, there is no $j \notin C$ such that $i \to j$.

16. Absorbing State

Definition 0.15. A state i is said to be Absorbing if $P_{ii} = 1$.

17. Recurrent (Persistent) State

Definition 0.16. A state i is said to be Recurrent or Persistent if the hitting probability $f_{ii} = 1$.

18. Transient State

Definition 0.17. A state i is said to be Transient if it is not Recurrent.

19. Recurrent Markov Chain

Definition 0.18. A Markov chain is said to be Recurrent if all states are Recurrent.

20. Transient Markov Chain

Definition 0.19. A Markov chain is said to be Transient if all states are Transient.

21. Identification of Recurrent States

Theorem 0.2. A state i is Recurrent if and only if the series

$$\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty \tag{7}$$

Theorem 0.3. If a state i is Transient, then

$$\lim_{n \to \infty} P_{ji}^{(n)} = 0, \forall j \tag{8}$$

Note, that the converse of this theorem is not true.

22. There is at least one Recurrent State for finite state space

Theorem 0.4. For a finite class of closed state space, there is at least one Recurrent State.

Proof. Let I be a finite class of closed state space. If all states are Transient, then

$$\lim_{n \to \infty} P_{ii}^{(n)} = 0, \forall i \in I \tag{9}$$

Given some $i \in I$, we have

$$P_{ii}^{(n)} = \sum_{j \in I} P_{ij} P_{ji}^{(n-1)} \tag{10}$$

For all $j \in I$ such that $P_{ij} > 0$, we have

$$\lim_{n \to \infty} P_{ji}^{(n-1)} = 0 \tag{11}$$

if not, equation 10 will not hold.

Thus, for all $i \in I$, and all $j \in I$ such that $P_{ij} > 0$, we have

$$\lim_{n \to \infty} P_{ii}^{(n)} = 0 \tag{12}$$

Then, for all n > 1 we have

$$1 = \sum_{j \in I} P_{ij}^{(n)} \tag{13}$$

$$\lim_{n \to \infty} 1 = \lim_{n \to \infty} \sum_{j \in I} P_{ij}^{(n)} \tag{14}$$

$$1 = \sum_{j \in I} \lim_{n \to \infty} P_{ij}^{(n)}$$

$$1 = \sum_{j \in I} 0$$
(15)

$$1 = \sum_{i \in I} 0 \tag{16}$$

$$1 = 0 \tag{17}$$

This is a contradiction. Thus, there is at least one Recurrent State.

23. Inter Communicate Classes have the same Recurrence

Theorem 0.5. If two states i and j Inter Communicate, then i is Recurrent if and only if j is Recurrent.

24. Number of visits to a state

Definition 0.20. Given a stochastic path $\{X_t\}_{t\in T}$, the number of visits to state j is given by

$$N_j = \sum_{n=1}^{\infty} 1_{\{X_n = j\}} \tag{18}$$

25. Number of visits to a state at infinity

Theorem 0.6.

$$P(N_i = \infty) = 1, \forall i \ Recurrent$$
 (19)

$$P(N_i = \infty) = 0, \forall i \ Transient$$
 (20)

26. Decomposition of State Space

Theorem 0.7. The state space can be decomposed into a set of Irreducible Closed Recurrent classes and a set of Transient classes.

Proof. Given state space I, as the InterCommunicate relation is an equivalence relation, we have a partition of I into Inter Communicate classes. Let the classes be I_{α} , $\alpha \in A$.

As all states in an InnerCommunicate class have the same Recurrence, let

$$B = \{ \alpha \in A | I_{\alpha} \text{ is Transient} \}$$
 (21)

Let C = A - B. Then, for all $\alpha \in C$, I_{α} is Recurrent.

We then prove that I_{α} is Closed for all $\alpha \in C$, which finished the proof of this theorem.

If I_{α} is not closed, then there exists $i \in I_{\alpha}$ and $j \notin I_{\alpha}$, and $n \in \mathbb{N}$ such that $P_{ij}^{(n)} > 0$. Also, as $i \in I_{\alpha}$, i is Recurrent, and thus

$$f_{ii} = 1 (22)$$

Also, in this case, j can not Communicate with i, as if it does, j will be in I_{α} , which means

$$f_{ji} = 0 (23)$$

Then we have

$$1 = f_{ii}
= \sum_{k \in I} P_{ik}^{(n)} f_{ki}
= P_{ij}^{(n)} * f_{ji} + \sum_{k \in I, k \neq j} P_{ik}^{(n)} f_{ki}
= \sum_{k \in I, k \neq j} P_{ik}^{(n)} f_{ki}
\leq \sum_{k \in I, k \neq j} P_{ik}^{(n)}
= 1 - P_{ij}^{(n)}
< 1$$

This is a contradiction. Thus, I_{α} is closed.

27. Mean Recurrence Time

Definition 0.21. The mean recurrence time μ_i is the expected number of steps to return to state i starting from state i.

$$\mu_i = \begin{cases} \sum_{n=1}^{\infty} n f_{ii}^{(n)} & \text{if i is Recurrent} \\ \infty & \text{if i is Transient} \end{cases}$$
 (24)

28. Generating Function of Mean Recurrence Time

Definition 0.22. Define

$$F_{ij}(s) = \sum_{n=1}^{\infty} f_{ij}^{(n)} s^n$$
 (25)

Then we have

$$\mu_i = F'_{ii}(1) \tag{26}$$

29. Positive Recurrent and Null Recurrent

Definition 0.23. A state i is said to be Positive Recurrent if

$$\mu_i < \infty \tag{27}$$

A state i is said to be Null Recurrent if

$$\mu_i = \infty \tag{28}$$

30. Identification of Positive Recurrent States

Theorem 0.8. A state i is Null Recurrent if and only if

$$\lim_{n \to \infty} P_{ii}^{(n)} = 0 \tag{29}$$

31. Item in the same Irreducible Class have the same Recurrence

Theorem 0.9. If two states i and j are in the same Irreducible class, then i is Positive Recurrent if and only if j is Positive Recurrent.

i is Null Recurrent if and only if j is Null Recurrent.

32. Finite State Class has at least one Positive Recurrent State

Theorem 0.10. For a finite class of closed state space, there is at least one Positive Recurrent State.

33. The Expected First Hit Time

Definition 0.24. The expected first hit time β_{ij} is the expected number of steps to reach $state\ j\ starting\ from\ state\ i.$

$$\beta_{ij} = \begin{cases} \sum_{n=1}^{\infty} n f_{ij}^{(n)} & \text{if } i \neq j \\ \mu_i & \text{if } i = j \end{cases}$$
 (30)

34. Periodicity

Definition 0.25. A state i is said to be periodic if the greatest common divisor of the set

$$\{n \in \mathbb{N} | P_{ii}^{(n)} > 0\} \tag{31}$$

is greater than 1.

If the greatest common divisor is 1, then the state is said to be aperiodic.

35. State in Irreducible State Class Have Same Periodicity

Theorem 0.11. Given two states $i \leftrightarrow j$, then i and j have the same period.

36. Equilibrium (Stationary) Distribution of a Markov Chain

Definition 0.26. A distribution π is said to be an equilibrium distribution if

$$\sum_{i \in S} \pi_i = 1 \tag{32}$$

$$\pi = \pi P \tag{33}$$

$$\pi = \pi P \tag{33}$$

37. Relationship Between Stationary State and Mean Recurrence Time

Theorem 0.12. An Irreducible Markov Chain is Positive Recurrent if and only if there exists a unique stationary distribution π .

In this case, the stationary distribution is given by

$$\pi_i = \frac{1}{\mu_i} \tag{34}$$

38. Ergodic Markov Chain Limiting Distribution

Definition 0.27. A Markov Chain is said to be Ergodic if it is Irreducible, Positive Recurrent, and Aperiodic.

Theorem 0.13. For an Ergodic Markov Chain, the limiting distribution exists and is given by

$$\lim_{n \to \infty} P_{ij}^{(n)} = \pi_j, \forall i, j$$
 (35)

39. Passage Time to a Closed State Space

Definition 0.28. Given a closed state space A, and given a path $\{X_t\}_{t\in T}$, where $X_0=i$ the first passage time to A is given by

$$T_i^A = \inf\{t > 0 | X_t \in A\} \tag{36}$$

40. Absorption Probability to a Closed State Space

Definition 0.29. Given a closed state space A, and given a path $\{X_t\}_{t\in T}$, where $X_0=i$ the absorption probability to A is given by

$$\alpha_i^A = P(T_i^A < \infty) \tag{37}$$

41. Mean Passage Time to a Closed State Space

Definition 0.30. Given a closed state space A, and given a path $\{X_t\}_{t\in T}$, where $X_0=i$ the mean passage time to A is given by

$$\beta_i^A = E[T_i^A] \tag{38}$$