Chapter 4

代数系统

Algebra System

§4.1 代数系统的引入

- 一个代数系统需要满足下面三个条件:
 - (1) 有一个非空集合S;
 - (2) 有一些建立在S上的运算;
 - (3) 这些运算在集合S上是封闭的。

4. 2. 1 运算的概念

定义

假设A是一个集合,A×A 到A的映射称为A上的二元运算。

一般地,An到A的映射称为A上的n元运算。

4. 2. 2 运算的性质

假设 *, + 都是集合 A 上的运算

(1) 封闭性

如果 $S\subseteq A$,对任意的 $a,b\in S$,有 $a*b\in S$,则称 S 对运算 * 是封闭的。

4. 2. 2 运算的性质

(2) 交换律

如果对任意的 a,b∈A,都有 a*b=b*a,则 称运算 * 是可交换的。

(3) 结合律

如果对任意的 a,b,c∈A,都有 (a*b)*c=a*(b*c),则称运算 * 是可结合的。

(4) 分配律

如果对任意的 a,b,c \in A,都有a*(b+c)=(a*b)+(a*c)则称 * 对 + 运算满足左分配; 如果对任意的a,b,c \in A,都有(b+c)*a=(b*a)+(c*a)则称 * 对 + 运算满足右分配。 如果运算 * 对 + 既满足左分配又满足右分配,则称运算 * 对 + 满足分配律。

(5) 消去律

如果对任意的 $a,b,c \in A$,当 a*b=a*c,必有 b=c,则称运算 * 满足左消去律;如果对任意的 $a,b,c \in A$,当 b*a=c*a,必有 b=c,则称运算 * 满足右消去律;如果运算 * 既满足左消去律又满足右消去律,则称运算 * 满足消去律。

(6) 吸收律

如果对任意的 a,b∈A,都有a*(a+b)=a,则称运算 * 关于运算 + 满足吸收律。

(7) 等幂律

如果对任意的 a∈A,都有 a*a=a,则称运算 * 满足等幂律。

Δ	a	b	c	
a	a	b	c	
b	b	c	a	
c	c	a	b	

- (1) 封闭性 √
- (2) 交换律 √
- (3) 结合律 √
- (4) 分配律 √
- (5) 消去律 ×
- (6) 吸收律 ×
- (7) 等幂律 ×

4.3.1 代数系统的概念

定义

假设 A 是一个非空集合, $f_1,f_2,...,f_n$ 是 A 上的运算(运算的元素可以是不相同的),则称 A 在运算 $f_1,f_2,...,f_n$ 下构成一个代数系统,记为: <A, $f_1,f_2,...,f_n>$

4.3.1 代数系统的概念

定义

假设 <A,*> 是一个代数系统, $S\subseteq A$,如果 S 对* 是封闭的,则称 <S,*> 为 <A,*>的子代数系统。

4.3.2 代数系统中的特殊元素

(1) 单位元(幺元)

假设 <A,*> 是一个代数系统,如果 $\exists e_{L} \in A,$ 对于任意元素 $x \in A$,都有 $e_{L}*x = x$,则称 e_{L} 为 A 中关于运算*的左单位元;

如果 $\exists e_r \in A_r$ 对于任意元素 $x \in A_r$ 都有 $x^*e_r = x_r$ 则称 e_r 为 A 中关于运算 * 的右单位元;

如果 A 中一个元素 e 既是左单位元又是右单位元,则称 e 为 A 中关于运算 * 的单位元。

Δ	a	b	c	\Diamond	a	b	c	•	a	b	c
a	a	b	c	a	a	a	a	a	a	b	c
b	a	b	c	b	b	b	b	b	b	c	a
c	a	b	c	c	c	c	c	c	c	a	b

$$e_i = a,b,c$$

$$e_r = a,b,c$$

$$e_L=a,b,c$$
 $e_r=a,b,c$ $e_L=a$ $e_r=a$

- 4.3.2 代数系统中的特殊元素
 - (1) 单位元(幺元)

定理

假设 <A,*> 是代数系统,并且 A 关于运算 * 有左单位元 e_L 和右单位元 e_r ,则 $e_L=e_r=e$ 并且单位元唯一。

4.3.2 代数系统中的特殊元素

(2) 零元

假设 <A,*> 是一个代数系统,如果 $\exists \theta_L \in A,$ 对于任意元素 $x \in A$,都有 $\theta_L * x = \theta_L$,则称 θ_L 为 A 中关于运算 * 的左零元;

如果 $\exists \theta_r \in A_r$ 对于任意元素 $x \in A_r$ 都有 $x^*\theta_r = \theta_r$ 则称 θ_r 为 A 中关于运算 * 的右零元;

如果 A 中一个元素 θ 既是左零元又是右零元,则称 θ 为 A 中关于运算 * 的零元。

找出下列代数系统的左零元,右零元,零元。

Δ	a	b	c	\Diamond	a	b	c	
a	a	b	c	a	a	a	a	
b	a	b	c	b	b	b	b	
c	a	b	c	c	c	c	c	

•	a	b	c	
a	a	b	c	
b	b	b	b	
c	c	b	b	

$$\theta_r = a,b,c$$

$$\theta_L = a,b,c$$

$$\theta_r = b$$
 $\theta_L = b$

4.3.2 代数系统中的特殊元素

(2) 零元

定理

假设 <A,*> 是代数系统,并且 A 关于运算 * 有左零元 θ_L 和右零元 θ_r ,则 $\theta_L = \theta_r = \theta$ 并且零元 唯一。

4.3.2 代数系统中的特殊元素

(3) 逆元

假设 <A,*> 是一个代数系统,e 是 <A,*>的单位元。对于元素 $a \in A$,如果存在 $b \in A$,使得 b*a=e,则称 a 为左可逆的,b 为 a 的左逆元;如果存在 $c \in A$,使得 a*c=e,则称元素 a 是右可逆的,c 为 a 的右逆元。如果存在 $a' \in A$,使得 a'*a=a*a'=e,则称 a 是可逆的,a'为 a 的逆元。a 的逆元记为: a^{-1} 。

分析下列代数系统中各元素的逆元情况。

•	a	b	С	
a	a	b	С	
b	b	c	a	
c	C	a	b	

 $b^{-1} = c \quad c^{-1} = b$

4.3.2 代数系统中的特殊元素

(3) 逆元

定理

设 <A,*> 是一个代数系统,且 A 中存在单位元 e,每个元素都存在左逆元。如果运算 * 是可结合的, 那么,任何一个元素的左逆元也一定是该元素的右逆 元,且每个元素的逆元唯一。

4.3.2 代数系统中的特殊元素

(4)幂等元

定义:

在代数系统<A,*>中,如果元素 a 满足a*a=a,那么称 a 是 A 中的幂等元。

分析下列代数系统中幂等元的情况。

*	a	b	c	*	a	b	c	
a	a	b	С	 a	a	b	С	_
b	b	c	a	b	b	a	c	
c	c	a	b	c	c	c	c	
	运	算 1			运	算 2		
*	a	b	c	*	a	b	c	
a	a	b	c	a	a	b	c	
b	a	b	c	b	b	b	c	
c	a	b	c	c	c	c	b	
	į	运算 3				运算	4	

运算1 幂等元 a

运算2 幂等元 a, c

运算3幂等元a,b,c

运算4 幂等元 a, b

小结

1、运算及运算的性质:封闭性,交换律,结合律,分配律,消去律,吸收律,等幂律

2、 $<A, f_1, f_2, ..., f_n>$,代数系统

3、<A, f_1 , f_2 ,..., $f_n>$,单位元(幺元),零元, 逆元,幂等元