Contents

0.1	Infinitum and supremum			
	0.1.1	Infinitum	1	
	0.1.2	Supremum	1	
	0.1.3	Max and min	1	

0.1 Infinitum and supremum

0.1.1 Infinitum

Consider a subset S of a partially ordered set T.

The infinitum of S is the greatest element in T that is less than or equal to all elements in S.

For example:

 $\inf[0,1] = 0$

 $\inf(0,1) = 0$

0.1.2 Supremum

The supremum is the opposite: the smallest element in T which is greater than or equal to all elements in S.

 $\sup[0,1] = 1$

 $\sup(0,1) = 1$

0.1.3 Max and min

If the infinitum of a set S is in S, then the infinimum is the minimum of set S. Otherwise, the minimum is not defined.

 $\min[0, 1] = 0$

 $\min(0,1)$ isn't defined.

Similarly:

 $\max[0,1] = 1$

 $\max(0,1)$ isn't defined.