Position Estimation of BLDC Motors Using Gaussian Processes

Bachelor Student: Fabian Sordon

Supervisors: Ajit Basarur, Jana Mayer

Referee: Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

http://isas.uka.de

Motivation

Target: We want to estimate the position and speed of BLDC motors by measuring the magnetic field of the rotor

Typical BLDC Motor:

FEM Simulation of B-field in X-/Y-Direction

→ B-field within the area of the rotor is weakly affected by the stator current

Sources: [1] https://www.researchgate.net/publication/236667263 Electrically Actuated Thrusters for Autonomous Underwater Vehicle

Motivation

Target: We want to estimate the position and speed of BLDC motors by measuring the magnetic field of the rotor

Typical BLDC Motor:

FEM Simulation of B-field in X-/Y-Direction

Sources:

[1] https://www.researchgate.net/publication/236667263 Electrically Actuated Thrusters for Autonomous Underwater Vehicle

Agenda

- 1. State of the Art
- 2. The Position Estimation Approach
 - Experimental Setup
 - Regression of Training Data
 - The Kalman Filter
- 3. Evaluation
- 4. Conclusion
- 5. Outlook

1. State of the Art - Angular Position Sensors

	Inbuilt Hall Sensors	Magnetic Resolver	Optical Encoder
Sensing Principle	Hall-effect	Hall-effect	Optical sensing through code disc
Accuracy	Middle	High	Very high
Speed Sensing?	No	No	No

Sources:

- [1] https://www.mouser.de/datasheet/2/588/ams_AS5048-EK-AB-STM1-1214674.pdf
- [2] https://www.trinamic.com/fileadmin/assets/Products/Encoder_Documents/TMCS-28_datasheet_Rev1.00.pdf

2. The Position Estimation Approach - Overview

2. Experimental Setup: Sensor Selection

TinyShield Compass HMC5883L

- 3-axis measurement of the magnetic field
- +/- 8 gauss range
- Digital output, 200 Hz sample rate

HMC1052L Analog Sensor

- 2-axis measurement of the magnetic field
- +/- 6 gauss range

Analog output, 3 MHz bandwidth

No high speed applications

High speed application

Reference Sensor: Optical Encoder 10000PPR

ABZ-Interface

Resolution: 40,000 steps per rotation

→ Assumption: Ground truth

[2]

Sources:

[1] https://www.mouser.de/datasheet/2/588/ams AS5048-EK-AB-STM1-1214674.pdf

[2] https://www.trinamic.com/fileadmin/assets/Products/Encoder Documents/TMCS-28 datasheet Rev1.00.pdf

2. Experimental Setup: Overview

2. Experimental Setup: Overview

Visualization of a Training Set D

2. Experimental Setup: Sensor Positioning (1)

Target: Optimize signal-to-noise ratio (SNR) for Measurements

In axial direction (z-axis)

2 tendencies:

- → ↑ distance → ↑ measurement noise
- ↓ distance → ↑ high signal amplitude

→ Compromise: $\|\underline{\mathbf{z}}\| = 13mm$

In radial direction (x-/y-axis)

2 tendencies:

- ↑ distance → ↓ amplitude, ↑ noise
- ↓ distance → ↓ amplitude

Sources:

[1] https://www.researchgate.net/publication/236667263_Electrically_Actuated_Thrusters_for_Autonomous_Underwater_Vehicle

2. Experimental Setup: Sensor Positioning (2)

Choice: Position at Z=13mm, r=10.6

2. Regression and Kalman Filter

Regression Approaches

We identify a function mapping the position to the magnetic measurements

Gaussian processes

Kalman Filter

Using this measurement function we estimate the position and speed from the current magnetic measurement and the previous estimation

- Extended Kalman Filter
- Unscented Kalman Filter

2. Regression – Gaussian Processes (1)

Training Set and Measurement Model

- 2 regression functions required due to 2-dimensional measurement
 → Here we only consider one measurement dimension
- Training set $\mathbf{D} = \langle \underline{\theta}, \underline{y} \rangle$
- Measurement equation

$$y_k = h(\theta_k) + e_k$$
, $e_k \sim \mathcal{N}(0, \sigma_n^2)$

Regression: Gaussian Processes

- Advantage of GP:
 - →Nonparametric regression technique
 - → Probability distribution over functions
- Prediction equations for Gaussian processes for a scalar test input θ_*

$$\mu_{h_*}(\theta_*) = \mathbf{K}(\theta_*, \underline{\theta}) [\mathbf{K}(\underline{\theta}, \underline{\theta}) + \sigma_n^2 \mathbf{I}]^{-1} y$$

$$\sigma_{\mathbf{h}_*}(\theta_*) = \mathbf{K}(\theta_*, \theta_*) - \mathbf{K}(\theta_*, \underline{\theta}) [\mathbf{K}(\underline{\theta}, \underline{\theta}) + \sigma_n^2 \mathbf{I}]^{-1} \mathbf{K}(\underline{\theta}, \theta_*)$$

- ightharpoonup Covariance matrix $\mathbf{K}(\underline{\theta},\underline{\theta}')$ specified by kernel function
- Gaussian kernel function for 1-dimensional input

$$k(\theta_n, \theta'_m) = \sigma_f * e^{-\frac{1}{2l^2}(\theta_n - \theta'_m)^2}$$

2. Regression – Gaussian Processes (2)

Operating Condition: 100 RPM, no load torque

2. Regression – Gaussian Processes (3)

→ Observed dependency of the magnetic field with respect to the speed

2. Regression – Gaussian Processes (4)

 \rightarrow We identify the measurement function with respect to the speed and position $\underline{h}(\theta, \omega)$

Input: Angular position, speed

Output: Magnetic field B_y

2. The Kalman Filter

The Kalman Filter

Measurement equation (non-linear):

$$\underline{y}_k = \underline{h}(\underline{x}_k) + \underline{v}_k$$

System equation (linear):

$$\underline{x}_{k} = \begin{pmatrix} \theta_{k} \\ \omega_{k} \end{pmatrix} = \mathbf{A}\underline{x}_{k-1} + \underline{w}_{k-1} = \begin{pmatrix} 1 & \Delta T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{k-1} \\ \omega_{k-1} \end{pmatrix} + \underline{w}_{k-1}$$

 \rightarrow Measurement function $\underline{h}(\underline{x}_k)$ is given from regression approach!

Magnetic Measurement \underline{y}^m Kalman Filter Position θ and Speed ω Measurement Function $h(\theta, \omega)$

Position θ , Speed ω , Covariance

Concept – The Extended Kalman Filter

If we have a non-linear relationship in the system/ measurement equation, we can approximate this relationship with a linearization!

→ Identify Jacobi-matrix for measurement function:

$$\mathbf{H_k} = \frac{\partial \underline{h}(\underline{x}_k)}{\partial x}$$

 \underline{v}_k : Measurement noise with constant covariance \mathbf{R} \underline{w}_k : System noise with constant covariance \mathbf{Q}

3. Evaluation: GP and EKF - Position Estimation

Operational Condition:

- No load torque (friction brake)
- Angular speeds around 1700 rpm

3. Evaluation: GP and EKF – Speed Estimation

Operational Condition:

- No load torque (friction brake)
- Angular speeds around 1700 rpm

3. Evaluation: Estimation Error for Real Operation

- We performed tests for different angular speeds
 - $\omega_{mot}/\text{rpm} \in [100, ..., 2000]$
- We applied different load torques on the motor shaft
 - $M_L \in [0, mid, high]$
- Compare EKF and UKF for 1000 test points
- Evaluation of the estimation error standard deviation:
 - $\sigma_{\theta,err} = 0.8^{\circ} 1.6^{\circ}$
 - $\sigma_{\omega,err} = 10$ rpm 90rpm
- Computing time/ estimation
 - EKF: $T_c = 1.3 \text{ ms}$
 - UKF: $T_c = 1.6 \text{ ms}$

Position estimation error $\sigma_{\theta,err}$, 1000 points

Speed estimation error $\sigma_{\omega,err}$, 1000 points

4. Conclusion

- We developed a new technique to estimate the position and the speed of a BLDC motor
- We observed a dependency of the magnetic field with respect to the angular position and speed
- We successfully integrated a multivariate input GP function into the EKF and the UKF
- Estimation error standard deviation:
 - $\sigma_{\theta,err} = 0.8^{\circ} 1.6^{\circ}$
 - $\sigma_{\omega,err} = 10$ rpm 90rpm
- Computing time per estimation step
 - EKF: $T_c = 1.3 \text{ ms}$
 - UKF: $T_c = 1.6 \text{ ms}$

5. Outlook

- A higher estimation accuracy can be achieved by decreasing the time interval between two measurements!
 - Currently: $\Delta T = 2.2 \text{ ms}$ → only 13.6 measurements per rotation at 2000 rpm
- Ground truth angular speed can be optimized
- A better speed estimation can possibly be achieved by using an array of magnetic sensors
 - Paper: Skog, I., Hendeby, G., Gustafsson, F. Magnetic Odometry A Model-Based Approach Using A Sensor Array. FUSION 2018.
- Topic for further research: Why is the magnetic field dependent with respect to the angular speed?
 - Eddy-current in surrounding material could affect the magnetic field

Thank you for your attention

Sensor-Actuator-Systems

Appendix - References

- Standard reference work for Gaussian processes:
 - [1] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning. The MIT Press, Massachusetts, 2006.
- Standard reference work for optimal state estimation
 - [2] Dan Simon. Optimal State Estimation. Wiley Interscience, Hoboken, New Jersey, 2006.
- Integration of Gaussian processes into Bayes filters
 - [3] Jonathan Ko, Dieter Fox. Bayesian Filtering Using Gaussian Process Prediction and Observation Models. In Autonomous Robots, Volume 27, pp. 75-90, SpringerScience+Business Media, 2009.

Implementation in Matlab

- Kalman Filter: "The Nonlinear Estimation Toolbox"
- Gaussian Processes: "GP Regression and Classification Toolbox"

Appendix – Noise Terms of the Kalman Filter

System noise $w_k \sim \mathcal{N}(0, \mathbf{Q})$

$$\underline{w}_k \sim \mathcal{N}(0, \mathbf{Q})$$

- Zero-mean additive Gaussian noise
- Constant diagonal covariance matrix **Q**

$$\mathbf{Q} = \begin{pmatrix} (0.01 \text{ rad})^2 & 0\\ 0 & (6\frac{\text{rad}}{\text{s}})^2 \end{pmatrix}$$

→ Using an iterative approach

Measurement noise $v_k \sim \mathcal{N}(0, \mathbf{R})$

$$v_k \sim \mathcal{N}(0, \mathbf{R})$$

- Zero-mean additive Gaussian noise
- Constant diagonal covariance matrix R

$$\mathbf{R} = \begin{pmatrix} \sigma_{n,x}^2 & 0 \\ 0 & \sigma_{n,y}^2 \end{pmatrix}$$

 \rightarrow Using hyperparameters $\sigma_{n,x}$ from GP

Nearly constant predicted covariance! (Example from digital sensor)

Appendix – GP for Multivariate Inputs

Reasons for dependency of the B-field with respect to the speed

1) Latency of the microcontroller **×** ?

Accuracy of sensor is affected by strongly fluctuating magnetic field → Magnetic bias

- Material within the area between sensor and rotor can affect magnetic field 3) → Eddy-currents

GP predictive functions with multivariate inputs

GP predictive mean function

$$\mu_{h_*}(\underline{x}_*) = K(\underline{x}_*, X)[K(X, X) + \sigma_n^2 \mathbf{I}]^{-1}\underline{y}$$

GP predictive covariance function

$$\sigma_{h_*}(\underline{x}_*) = K(\underline{x}_*, \underline{x}_*) - K(\underline{x}_*, X)[K(X, X) + \sigma_n^2 I]^{-1}K(X, \underline{x}_*)$$

Gaussian kernel function

$$k(\underline{x}_n, \underline{x}_m) = \sigma_f * e^{-\frac{1}{2l^2}|\underline{x}_n - \underline{x}_m|^2}$$

$$\underline{x}_* = (\theta_*, \omega_*)^T$$
: Test input $\omega_* = \omega_{true}/200$: Alignment of input space boundaries σ_n, σ_f , l : Hyperparameters of GP

Appendix – Analog Magnetic Sensor Setup

Analog Magnetic Sensor - Amplification

- Using potentiometers (0-2000kOhm) in feedback loop of OP-amplifier
- Selection of ~700kOhm for optimal dynamic range
- → Magnetic field as dimensionless quantity from -1 to 1

