Exercise 1

How would you generalize this game with arbitrary value of m_1 (minimum increment), m_2 (maximum increment), and N (the winning number)?

$M_1=1$	arbutrary
m2=1	Say that end number
N=21	; 128,25,22,19,16,13,10,
	1 7, 4, 17
	$\Rightarrow 3a+1 (a20).$
	1

Stochastic Processes and Simulation, 2021 Spring

5/20

Lecture D3. Dynamic Programming

Exercise 2

Two players are to play a game. The two players take turns to call out integers. The rules are as follows. Describe A's winning strategy.

- A must call out an integer between 4 and 8, inclusive.
- B must call out a number by adding A's last number and an integer between 5 and 9, inclusive.
- A must call out a number by adding B's last number and an integer between 2 and 6, inclusive.
- Keep playing until the number larger than or equal to 100 is called by the winner of this game.

Winning Stategy: To, make end number 89. In

Variation of policy

- There is a *deterministic* policy and a *random* policy, where the former gives an single action for each state and the latter may give a distribution of multiple action for each state.
- There is a *stationary* policy and a *non-stationary* policy. The stationary policy is what we have discussed, i.e. $\pi: \mathcal{S} \to \mathcal{A}$. On the other hand, the non-stationary policy is $\pi: \mathcal{S} \times \mathcal{T} \to \mathcal{A}$.
- Non-stationary policy means th output action may be different on the same state, if the current time step is diffferent.
- For a infinite horizon problems, the optimal policy is guaranteed to be a stationary policy. For a finite horizon problems, the optimal policy may be a non-stationary policy. Dealing with non-stationary policy is painful task in general. In this case, it is often desirable to include time information to state description.

Exercise 3

There is only finite number of deterministic stationary policy. How many is it?

$$|\Pi| =$$

Exercise 4

Formulate the first example in this lecture note using the terminology including state, action, reward, policy, transition. Describe the optimal policy using the terminology as well.

Gtate=
$$\{1,2,3,4...31\}$$

action state = $\{0,02\}$.

remark= $\{0,0,0\}$ = $\{0,02\}$.

transition $\{0,0\}$ = $\{0$