MECH 222 THERMODYNAMICS FORMULAE

KEY CONSTANTS AND CONVERSION FACTORS

$$R_{air} = 287 \,\mathrm{J/kg/K}$$
 1 atm = 101.325 kPa
 [K] = [°C] + 273.15 1 bar = 100 kPa

GIBBS' PHASE RULE

TRANSPORT EQUATIONS

Energy Balance

$$\begin{array}{c} \text{Local Change} \\ \hline \text{Id}(U+KE+PE) = \sum_{i} \overleftarrow{\delta Q_{i}} - \sum_{j \neq P, \vec{g}} \overleftarrow{\delta W_{j}} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \overleftarrow{Q_{i}} - \sum_{j \neq P, \vec{g}} \overleftarrow{\delta W_{j}} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} Q_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{j} \\ \hline \\ \Delta(U+KE+PE) = \sum_{i} \dot{Q}_{i} - \sum_{j \neq P, \vec{g}} \dot{W}_{$$

Mass and Entropy Balances

Local Change
$$dm = \sum_{k} \delta m_{k}$$

$$\frac{d}{dt} m = \sum_{k} \dot{m}_{k}$$

$$\Delta m = \sum_{k} \dot{m}_{k}$$

$$\Delta m = \sum_{k} \int \delta m_{k}$$

$$\Delta m = \sum_{k} \int \delta m_{k}$$

$$\Delta S = \sum_{i} \frac{\dot{Q}_{i}}{T_{i}} + \sum_{k} \dot{m}_{k} s_{k} + \dot{S}_{gen}$$

$$\Delta S = \sum_{i} \frac{\dot{Q}_{i}}{T_{i}} + \sum_{k} \int \delta m_{k} s_{k} + \hat{S}_{gen}$$

FORMULA-BASED PROPERTY EVALUATION

		Constant- (c_P,c_v) approximation of			
Phase	Identities	Δu	Δh	Δs	
Incompressible Solid / Liquid	$c_P = c_v \equiv c$	$c\Delta T$	$c\Delta T + v\Delta P$ (often $\approx c\Delta T$)	$c \ln \left(\frac{T_2}{T_1} \right)$	
Ideal Gas	$c_P = c_v + R$	$c_v \Delta T$	$c_P \Delta T$	$c_{P} \ln \left(\frac{T_{2}}{T_{1}}\right) - R \ln \left(\frac{P_{2}}{P_{1}}\right)$ or $c_{v} \ln \left(\frac{T_{2}}{T_{1}}\right) + R \ln \left(\frac{v_{2}}{v_{1}}\right)$ or $c_{v} \ln \left(\frac{P_{2}}{P_{1}}\right) + c_{P} \ln \left(\frac{v_{2}}{v_{1}}\right)$	

TABLE-BASED PROPERTY EVALUATION

Phase	v	$(u-u_{\rm ref})$	$(h-h_{ m ref})$	$(s - s_{ref})$
Liquid	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c } u(P,T) & \\ & \text{or} \\ & u_f(T) & \end{array}$	$h(P,T)$ or $v_f(T) \cdot (P - P_{\mathbf{sat}}(T)) + h_f(T)$	$s(P,T)$ or $s_f(T)$
Saturated Mixture	$\phi_f(T \text{ or } P) + x \cdot \phi_{fg}(T \text{ or } P)$ (where ϕ represents $v, u, h, \text{ or } s$)			
Vapour (Non-Ideal Gas)	$\phi(P,T)$ (where ϕ represents $v,u,h,{ m or}s$)			
[Ideal] Gas	$\frac{RT}{P}$	u(T)	h(T)	$s^{\circ}(T) - R \ln \left(\frac{P}{P_{\text{ref}}}\right)$

EFFICIENCY

	Conversion Efficiency			
Device	General	Reversible		
Heat Engine	$\eta_{ m HE} \equiv rac{W_{ m net}^{ m out}}{Q_{ m hi}^{ m in}}$	$\eta_{ m HE}^{ m rev} = 1 - rac{T_{ m lo}}{T_{ m hi}}$		
Heat Pump	$\beta_{\rm HP} \equiv \frac{Q_{\rm hi}^{\rm out}}{W_{\rm net}^{\rm in}}$	$\beta_{\rm HP}^{\rm rev} = \frac{T_{\rm hi}}{T_{\rm hi} - T_{\rm lo}}$		
Refrigerator	$eta_{ m R} \equiv rac{Q_{ m lo}^{ m in}}{W_{ m net}^{ m in}}$	$eta_{ m R}^{ m rev} = rac{T_{ m lo}}{T_{ m hi}-T_{ m lo}}$		

Adiabatic Device	Isentropic Efficiency
Nozzle	$\eta_s^{ extbf{nozz}} \equiv rac{ke_{ extbf{out}}^{ extbf{a}}}{ke_{ extbf{out}}^{ extbf{s}}}$
Pump	$\eta_s^{ exttt{pump}} \equiv rac{\dot{W}_{ ext{in}}^s}{\dot{W}_{ ext{in}}^a}$
Compressor	$\eta_s^{ m comp} \equiv rac{\dot{W}_{ m in}^s}{\dot{W}_{ m in}^a}$
Turbine	$\eta_s^{ extsf{nozz}} \equiv rac{\dot{W}_{ ext{out}}^{ ext{a}}}{\dot{W}_{ ext{out}}^{ ext{s}}}$

REVERSIBLE STEADY-FLOW WORK

$$\dot{W}^{\text{rev}} = \dot{m} \left[\int_{\text{out}}^{\text{in}} v dP + (ke_{\text{in}} - ke_{\text{out}}) + (pe_{\text{in}} - pe_{\text{out}}) \right]$$

REVERSIBLE HEAT TRANSFER

$$q = \frac{Q^{\text{rev}}}{m} = \int_{1}^{2} T ds$$
$$q = \frac{\dot{Q}^{\text{rev}}}{\dot{m}} = \int_{1}^{2} T ds$$

(Closed system)

(Open system, steady flow)

AIR-STANDARD POWER CYCLES

		Property held constant during				Conversion
Cycle	System	Compression	Heating	Expansion	Cooling	Efficiency
Carnot	Closed	8	T	s	T	$1 - rac{T_{ m lo}}{T_{ m hi}}$
Otto	Closed	s	v	s	v	$1-r^{1-\gamma}$
Diesel	Closed	${\cal S}$	P	${\cal S}$	v	$1 - r^{1-\gamma} \left[\frac{r_c^{\gamma} - 1}{\gamma \left(r_c - 1 \right)} \right]$
Brayton	Steady-Flow	s	P	s	P	$1-r_p^{\frac{1-\gamma}{\gamma}}$

THE POLYTROPIC MODEL PROCESS

Applicability

	Process	
Substance	Conditions	n
Any	Isobaric (const. P)	0
Ideal Gas	Isothermal (const. T)	1
Ideal Gas	Adiabatic, only boundary work <i>or</i> Isentropic (const. <i>s</i>)	$\gamma \equiv \frac{c_p}{c_v}$
Any	Isochoric (const. V)	∞

Property Ratios

$$\left(\frac{P_2}{P_1}\right)^{\frac{1}{n}} = \left(\frac{v_2}{v_1}\right)^{\frac{1}{-1}} \underbrace{= \left(\frac{T_2}{T_1}\right)^{\frac{1}{n-1}}}_{\text{Ideal gas only}}$$

Work-Related Integrals

$$\int_{1}^{2} P dv = \begin{cases} \frac{1}{1-n} \left(P_{2}v_{2} - P_{1}v_{1} \right) = \frac{R}{1-n} \left(T_{2} - T_{1} \right) & (n \neq 1) \\ -Pv \ln \left(\frac{P_{2}}{P_{1}} \right) = Pv \ln \left(\frac{v_{2}}{v_{1}} \right) & (n = 1) \end{cases}$$

$$\int_{\text{out}}^{\text{in}} v dP = \begin{cases} \frac{n}{1-n} \left(P_{\text{out}}v_{\text{out}} - P_{\text{in}}v_{\text{in}} \right) = \frac{nR}{1-n} \left(T_{\text{out}} - T_{\text{in}} \right) & (n \neq 1) \\ -Pv \ln \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right) = Pv \ln \left(\frac{v_{\text{out}}}{v_{\text{in}}} \right) & (n = 1) \end{cases}$$

Where, when
$$n = 1$$
, $Pv = P_1v_1 = P_2v_2 \underbrace{= RT_1 = RT_2}_{\text{Ideal gas only}}$