# SEDRA/SMITH Microelectronic Circuits SEVENTH EDITION

Notes by Kevin Wang

June 2, 2023

# Contents

| Chapter 3 | Semiconductors                                         | Page 2 |
|-----------|--------------------------------------------------------|--------|
| 3.1       | Intrinsic Semiconductors                               | 2      |
| 3.2       | Doped Semiconductors                                   | 2      |
| 3.3       | Current Flow in Semiconductors                         | 2      |
| 3.4       | The $pn$ Junction with an Applied Voltage              | 2      |
|           | 3.4.1 Qualitative Description of Junction Operation    | 2      |
|           | 3.4.2 The Current-Voltage Relationship of the Junction | 2      |
|           | 3.4.3 Reverse Breakdown                                | 2      |
| 3.5       | Capacitive Effects in the pn Junction                  | 2      |
|           | 3.5.1 Depletion or Junction Capacitance                | 2      |
|           | 3.5.2 Diffusion Capacitance                            | 4      |

## Chapter 3

## Semiconductors

#### Introduction

- 3.1 Intrinsic Semiconductors
- 3.2 Doped Semiconductors
- 3.3 Current Flow in Semiconductors
- 3.4 The pn Junction with an Applied Voltage
- 3.4.1 Qualitative Description of Junction Operation
- 3.4.2 The Current-Voltage Relationship of the Junction
- 3.4.3 Reverse Breakdown

#### 3.5 Capacitive Effects in the pn Junction

2 ways charge can be stored in pn junction.

- 1. charge in depletion region (more visible when reverse bias)
- 2. minority charge in n and p material (more visible when forward bias)
  - concentration profile by injecting to n-dope
  - " to p-dope

#### 3.5.1 Depletion or Junction Capacitance

**Assumption:** pn junction reversed bias with  $V_R$ , charge on either side of junction:

$$Q_J = A\sqrt{2\epsilon_s q \frac{N_A N_D}{N_A + N_D} (V_0 + V_R)} = \alpha \sqrt{(V_0 + V_R)}$$
(3.1)

We denote  $\alpha$  as  $A\sqrt{2\epsilon_sq\frac{N_AN_D}{N_A+N_D}}$  and observe that  $Q_J\not\subset V_R$  (also not linearly related)

 $\bullet$  Hard to define capacitance that accounts for changing  $Q_J$  when  $V_R$  changes

**Assumption:** junction operates as a point Q and define

$$C_j = \frac{dQ_J}{dV_r} \bigg|_{V_R = V_Q} \tag{3.2}$$



Figure 3.1: The charge stored on either side of the depletion layer as a function of the reverse voltage  $V_R$ 

#### Note:-

The definition of capacitance

$$q = CV \implies C = q/V = \frac{\Delta q}{\Delta V}$$

- Equation 3.2 useful in electronic cct design
- This equation used in this book frequently
- Called the "incremental-capacitance approach"

Combining equations 3.2 with 3.1 we obtain:

$$C_j = \frac{\alpha}{2\sqrt{V_0 + V_R}} \tag{3.3}$$

We observe that  $C_j$  at reverse bias  $(V_R=0)$  is  $C_{j0}=\frac{\alpha}{2\sqrt{V_0}}$ , so we can write  $C_j$  as

$$C_j = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_0}}} \tag{3.4}$$

Substituting for  $\alpha$ , we obtain:

$$C_{j} = A\sqrt{\left(\frac{\epsilon_{s}q}{2}\right)\left(\frac{N_{A}N_{D}}{N_{A} + N_{D}}\right)\left(\frac{1}{V_{0}}\right)}$$
(3.5)

Before leaving concept of junction capacitance, we introduce

#### Definition 3.5.1: Terms

**Abrupt junction** pn junction, doping concentration changes abruptly at junction boundary (this is deliberately done)

**Graded junction:** pn junction, carrier concentration changes gradually from one side to another. Then  $C_i$  becomes:

$$C_j = \frac{C_{j0}}{\left(1 + \frac{V_R}{V_0}\right)^m}$$

where m is the **Grading coefficient** 

#### Note:-

- m ranges from 1/3 to 1/2
- m depends on manner in which concentration changes from p to n side

#### Question 1: Exercise 3.14

For the  $pn \dots cm^2$ .

Solution: Solution

#### 3.5.2 Diffusion Capacitance