Global patterns of root turnover for terrestrial ecosystems

RICHARD A. GILL* AND ROBERT B. JACKSON

Duke University, Department of Botany, Box 90340, Durham, NC 27708, USA Received 30 October 1999; accepted 14 February 2000

SUMMARY

Root turnover is a critical component of ecosystem nutrient dynamics and carbon sequestration and is also an important sink for plant primary productivity. We tested global controls on root turnover across climatic gradients and for plant functional groups by using a database of 190 published studies. Root turnover rates increased exponentially with mean annual temperature for fine roots of grasslands ($r^2 = 0.48$) and forests ($r^2 = 0.17$) and for total root biomass in shrublands ($r^2 = 0.55$). On the basis of the best-fit exponential model, the Q_{10} for root turnover was 1.4 for forest small diameter roots (5 mm or less), 1.6 for grassland fine roots, and 1.9 for shrublands. Surprisingly, after accounting for temperature, there was no such global relationship between precipitation and root turnover. The slowest average turnover rates were observed for entire tree root systems (10% annually), followed by 34% for shrubland total roots, 53% for grassland fine roots, 55% for wetland fine roots, and 56% for forest fine roots. Root turnover decreased from tropical to high-latitude systems for all plant functional groups. To test whether global relationships can be used to predict interannual variability in root turnover, we evaluated 14 yr of published root turnover data from a shortgrass steppe site in northeastern Colorado, USA. At this site there was no correlation between interannual variability in mean annual temperature and root turnover. Rather, turnover was positively correlated with the ratio of growing season precipitation and maximum monthly temperature ($r^2 = 0.61$). We conclude that there are global patterns in rates of root turnover between plant groups and across climatic gradients but that these patterns cannot always be used for the successful prediction of the relationship of root turnover to climate change at a particular site.

Key words: root turnover, root production, belowground cycling, terrestrial biomes, global change.

INTRODUCTION

Root turnover is a central component of ecosystem carbon and nutrient cycling, and will probably be sensitive to many of the factors considered in global change analyses (Aber et al., 1985; Bloomfield et al., 1996). In particular, discerning how plant attributes, soil processes, and climatic patterns influence rates of root turnover is important given current and projected future climate and vegetation change (Vitousek, 1994; Parton et al., 1995; Jackson et al., 2000). Although it is important to understand the mechanisms controlling root longevity and turnover for an individual root or plant, it is also desirable to identify broad-scale patterns in root turnover among plant functional types and across large climatic gradients. Understanding differences between plant

groups might be helpful in modeling how changes in plant functional types influence root standing crop, hydrology, and nutrient dynamics. In addition, examining how root turnover is related to temperature and precipitation regionally could help to identify which plant groups are most sensitive to climate change.

A number of studies have demonstrated that soil temperature, moisture status, and nutrient availability control, in part, the timing and duration of root growth (Nadelhoffer *et al.*, 1985; Vogt *et al.*, 1986; Pregitzer *et al.*, 1993, 2000; Hendrick & Pregitzer, 1997; Nadelhoffer, 2000). Individual root longevity is determined primarily by soil microsite conditions (Friend *et al.*, 1990; Pregitzer *et al.*, 1993, 2000; Joslin *et al.*, 2000), root development patterns (Marshall & Waring, 1985), growing season length, and plant mineral nutrient conservation (Eissenstat & Yanai, 1997; Eissenstat *et al.*, 2000). Soil temperature probably has a strong role in determining

^{*}Author for correspondence (tel +1 919 660 7290; fax +1 919 660 7425; e-mail rgill@duke.edu).

root turnover, given that the onset of production is often keyed by soil warming in the spring and that the costs of root maintenance increase exponentially with temperature (Ryan, 1991; Hendrick & Pregitzer, 1997; Fitter *et al.*, 1998; Atkin *et al.*, 2000). In addition, land cover change is altering the abundance and distribution of plant functional types globally, influencing belowground allocation patterns and regional carbon and nutrient cycles (Connin *et al.*, 1997; Gill & Burke, 1999).

Temperate grasslands allocate between 24% and 87% of net primary production belowground (Sims & Singh, 1978). In forests, belowground net primary productivity (BNPP) typically accounts for 30–50% of total net primary production (Vogt, 1991). Given that little, if any, retranslocation of nutrients occurs before fine-root senescence, root turnover is a strong nutrient sink for most plants (Aerts, 1990; Nambiar & Fife, 1991; Gordon & Jackson, 2000). Studies with minirhizotrons have shown that a subset of roots in both grasslands and forests is highly dynamic, having a lifespan of days to weeks (Hendrick & Pregitzer, 1997; Gill, 1998; Arnone et al., 2000; Tingey et al., 2000). Ryser (1996) hypothesized that plants growing in nutrient-poor environments might increase root lifespan to avoid nutrient loss. Potentially, if soils warm as a result of climate change, maintenance costs of roots and nutrient availability might increase and contribute to higher rates of root turnover. Furthermore, the efficiency of nutrient uptake for a single root over its lifetime might decrease with increasing temperature (Eissenstat & Yanai, 1997).

Our objectives in this paper are as follows: (1) to synthesize root turnover data for major biomes and plant life forms globally, (2) to generate broadscale patterns of root turnover along climatic gradients, and (3) to contrast regional and local environmental controls over root turnover. We illustrate this last objective by using regional patterns to predict sitelevel responses to global change.

MATERIALS AND METHODS

Building on prior analyses in Jackson *et al.* (1996, 1997), we assembled a database of approx. 190 papers from journals, book chapters, technical reports, and unpublished manuscripts that included information on live root standing crop and BNPP (Appendix 1). The papers described research on every continent except Antarctica, although most were from North America (Fig. 1). In the database, the plant functional type and biome coverage were most abundant for grasslands and temperate zones (Appendix 1). Coverage in South America, Australia and north central and eastern Asia was particularly sparse (Fig. 1). The data were categorized according to latitude, longitude, mean annual temperature, mean annual precipitation, maximum mean monthly

temperature, minimum mean monthly temperature, soil texture, sampling method, plant age, and root diameter class, although not all information was available for every study. In cases where authors did not differentiate between live and dead biomass, we recorded total root biomass. When climate variables were not reported, we used the CLIMATE database version 2.1 (W. Cramer, pers. comm.) to reconstruct mean climate values based on latitude and longitude coordinates. For each study, we recorded the dominant vegetation type and the vegetation sampled (i.e. forest, grassland, shrubland, wetland). When a single paper included information for multiple vegetation types, we averaged species within a type but reported turnover for each unique vegetation. We further categorized sites as tropical, temperate, or high latitude. Sites that included BNPP and standing crop values for more than a single year were averaged across years for the global comparison. If more than one method had been used to estimate BNPP, both turnover estimates were included. The data for a particular site were averaged when more than one equation had been used to calculate BNPP.

Several calculations have been used in previous studies to determine root turnover (Dahlman & Kucera, 1965; Aerts *et al.*, 1992; Hendrick & Pregitzer, 1993). We determined root turnover with a slight modification of the model initially proposed by Dahlman & Kucera (1965). We calculated root turnover by using the equation:

Root turnover =

with root turnover in units of yr⁻¹. Alternatives to the Dahlman & Kucera (1965) model include Aber *et al.* (1985) and Aerts *et al.* (1992), who defined turnover as BNPP/mean standing crop, or Hendrick & Pregitzer (1993), who defined turnover as BNPP/minimum standing crop. Other definitions of turnover were the equivalent of BNPP and were not considered for this analysis (Van Praag *et al.*, 1988; Schläpfer & Ryser, 1996). We chose the Dahlman & Kucera (1965) calculation because it is an extensively used model of root turnover and because of its heuristic value. In the Dahlman–Kucera model, an annual plant would have a turnover of 1.0 yr⁻¹ if all of the roots that it produced were to die at the end of the growing season.

Approximately one-third of the studies that included estimates of BNPP and root standing crop provided mean rather than maximum biomass. In consequence, we transformed mean root standing crop to maximum root standing crop by using a regression based on mean root biomass and belowground net primary productivity, using the 20 datasets that included both mean and maximum root biomass (Appendix 1). The following linear model

Fig. 1. The distribution of sites included in the root turnover database. Triangles, forest; squares, grassland; crosses, shrubland, stars, wetland.

Fig. 2. Modeled versus measured maximum root biomass based on the equation maximum biomass = $0.45 \times \text{belowground production} + \text{mean biomass } (r^2 = 0.90, P < 0.01).$

explained 90% of the variation for predicting maximum root biomass ($r^2 = 0.90$, P < 0.001; Fig. 2):

Maximum root biomass =

$$0.45 \times BNPP + mean root biomass$$
 Eqn 2

The 20 studies used to determine this relationship came from across all biome types, and the biomass estimates spanned the range of potential mean biomass reported.

To evaluate whether global patterns between climate and root turnover are applicable at smaller scales, we used a long-term dataset from the short-grass steppe long-term ecological research site in northeastern Colorado, USA (40° 49′ N, 104° 46′ W) (see Lauenroth & Milchunas (1992) for a description

of the site). We calculated turnover for 14 yr by using data from Sims & Singh (1978), Milchunas & Lauenroth (1992), D. G. Milchunas & W. K. Lauenroth (unpublished), and Gill (1998). Annual precipitation ranged between 264 and 557 mm, and mean annual temperature ranged from 7.6 to 10.9°C during the 14 yr reported. This interannual range in temperature is similar to the 2–3°C change in temperature that is predicted for the central grasslands region of the USA (Parton *et al.*, 1993). The site-level data allowed us to determine whether interannual variability in weather produced the same patterns in root turnover as those observed across regional and global climatic gradients.

We analyzed the relationship between climate variables and root turnover within and across plant life forms by using stepwise multiple regression (SAS, Cary, NC, USA). Climate variables considered in the model were mean annual temperature (MAT), mean maximum monthly temperature (MMXT) and minimum monthly temperature (MMNT), mean annual precipitation (MAP) or the ratios of MAP to MAT and MAP to MMXT. We log-transformed turnover before conducting our statistical analyses to linearize the metric and to normalize the distribution. Our access to reliable long-term weather data at the Central Plain Experimental Range (CPER) allowed us to include growing season precipitation as a possible variable in the site-level analysis. Within forests, we evaluated turnover for both fine and total root systems for live root biomass. We used all studies that reported fineroot production and standing crop where the diameter increment considered was 5 mm or less, although there was some variability in the maximum

root diameter considered 'fine'. We also compared turnover between plant life forms and across latitudinal zones by using unbalanced ANOVA and Fisher's LSD (SAS, Cary, NC, USA). In cases where there was an exponential relationship between temperature and root turnover, we calculated a Q_{10} (the increase in reaction rate for a 10° C increase in temperature) based on the Arrhenius equation (Winkler *et al.*, 1996).

We acknowledge that there are several problems associated with analyzing these data with standard parametric statistics. The nature of the dataset makes it difficult to apply standard meta-analytic statistics because very few studies provide a variance estimate for standing crop or BNPP. Therefore, the only variance that is considered in this analysis is variation between studies, potentially violating the assumption of absence of heteroscedasticity. In addition, the data might not be completely independent owing to non-phylogenetic independence between species, methodological bias, or habitat redundancy. The problems of applying inferential statistics to these data therefore make it necessary to be extremely conservative in the conclusions that can be drawn statistically.

RESULTS

There was a strong, positive exponential relationship between root turnover and mean annual temperature for grasslands, shrublands and all fine roots pooled together, with turnover increasing from boreal zones to the tropics (Fig. 3; $r^2 = 0.48$ for grasslands; $r^2 =$ 0.55 for shrublands; $r^2 = 0.40$ for all fine roots). There was also a weak relationship between MAT and fine-root turnover in forests ($r^2 = 0.17$ for forest fine roots). On the basis of the exponential models, the Q_{10} for root turnover was 1.6 for fine roots globally and in grasslands, 1.9 in shrublands, and 1.4 for forest fine roots. Total root turnover in forests (P < 0.09) and wetland belowground turnover (P < 0.16) showed no significant relationship to any of the climate variables (Fig. 3). In all regression models, once mean annual temperature was included, no other climate variables or ratios were significant, including precipitation. When we factored out all studies that reported root dynamics in periodically flooded or saturated soils, we found a weak correlation between mean annual precipitation and root turnover ($r^2 = 0.32$), although mean annual precipitation was not a significant component of the multiple regression model (Fig. 4). In the high latitudes, average root turnover for graminoids, shrubs, and tree fine roots was 13% of maximum root standing crop annually, with an increase to 40% in temperate zones, and nearly 73% in tropical zones.

Whole-tree root systems had the lowest turnover values of any of the plant functional types analyzed in this study (10%). Shrubland species had the next lowest root turnover (34%) followed by grasses and fine roots of trees (53% and 56%, respectively).

Fig. 3. Relationship between root turnover and mean annual temperature by vegetation type ($r^2 = 0.48$ for grasslands; $r^2 = 0.55$ for shrublands; $r^2 = 0.17$ for forest fine roots of 5 mm or less). Note that panel (b) has a different y-axis scale.

Fig. 4. Relationship between root turnover and mean annual precipitation by vegetation type.

Fig. 5. Root turnover for vegetation types separated by latitudinal zone.

Mean annual turnover rate for roots of wetland species was 55%. The relative order of turnover rate among plant functional types was maintained within latitudinal zones, with grasslands = tree fine roots = wetlands > shrublands > tree whole root system for high latitude, temperate, and tropical zones (Fig. 5). Not surprisingly, the diameter class used to define a fine root in forests had a strong role in determining fine-root turnover. As the diameter class increased, root turnover decreased (Fig. 6). In the 0–1 mm diameter class turnover was 1.2 yr⁻¹, decreasing to 0.10 yr⁻¹ in the 0–10 mm diameter class. Most of the studies in this review used 0–3 mm or 0–5 mm diameter classes to distinguish fine roots; these two classes were not significantly different with an

average turnover of 0.52 yr⁻¹. The average across all diameter classes was 0.56 yr⁻¹. The inconsistency in defining 'fine' roots in the forestry literature makes it difficult to compare turnover estimates across studies.

At the long-term ecological research site in northeastern Colorado, USA, mean annual temperature was not a significant factor in explaining root turnover (Fig. 7a). However, there was a strong, positive correlation between root turnover and the ratio of growing season precipitation: maximum mean monthly temperature ($r^2 = 0.61$; Fig. 7b). Thus, although temperature was the most important variable globally for explaining patterns of root turnover, it was not nearly as useful as was an index

Fig. 6. Root turnover for forest fine roots separated by diameter class.

Fig. 7. (a) Relationship between mean annual temperature and root turnover for grasslands globally (closed circles) $(r^2 = 0.45)$ and for the shortgrass steppe of northeastern Colorado, USA (open circles). (b) Relationship between root turnover and growing season precipitation/maximum monthly temperature at the Central Plains Experimental Range (CPER) for 16 yr (1970–71 and 1984–97) $(r^2 = 0.61)$.

of temperature and precipitation for explaining the year-to-year variation in root turnover at that particular site.

DISCUSSION

We found global and regional relationships between mean annual temperature and rates of root turnover in grasslands, shrublands, and forest fine roots. Potential explanations for an increase in turnover with higher temperatures include the following; (1) the exponential increase in maintenance respiration with temperature, (2) increased nutrient mineralization rates with higher temperatures, and (3) an increase in pathogen and herbivore load in warmer soils and in soils that do not freeze (Ryan, 1991; Eissenstat & Yanai, 1997). As maintenance respiration increases, the optimal lifespan for a root decreases, thus requiring higher root turnover rates in warmer climates. Microbial activity also shows an exponential increase with soil temperature, and might result in higher nutrient availability (Holland et al., 1995). In addition, the absence of a hard freeze in soils might allow populations of root-feeding herbivores to increase. This effect is particularly interesting within a climate change context, given that the strongest trend in warming trend is seen in daily minimum temperatures (Alward et al., 1999). The disproportionate increase in daily minimum temperature might increase parasite and herbivore loads in systems beyond what would be expected simply as a result of increased mean annual temperature. However, climate variables alone were insufficient predictors of root turnover for total root systems in forests and wetlands.

We found that, within plant functional types, root turnover increased consistently from boreal to tropical zones. This might reflect the influence of seasonality on root turnover, implying that tropical zones require a higher belowground productivity to maintain the same belowground biomass as temperate or boreal systems.

The strength of the relationship between mean annual temperature and turnover in grasslands and shrublands might be the result of a strong correlation between air and soil temperatures in systems with low leaf area. In forests and wetlands, the temperature experienced by an individual root might be moderated by the forest canopy or by site hydrology. In broadleaf forests, the forest canopy can cause a significant decrease in soil temperature compared with non-shaded soils. We were unable to analyze the influence of daily minimum temperatures on root turnover because the data were infrequently reported. Hendrick & Pregitzer (1997) found that soil temperature was a critical factor in determining fine-root lifespan in temperate forests, and therefore our ability to predict root turnover across regional gradients could be improved by including data on soil temperature.

Shifts in dominant plant life form have occurred globally and have been implicated in altered system hydrology and carbon and nutrient dynamics (Connin *et al.*, 1997; Gill & Burke, 1999). The differences that we found between plant functional types suggest that shifts in plant life form might also influence rates of root turnover in ecosystems. For instance, much of the semiarid and arid USA has

experienced an increase in shrub density in historically grass-dominated ecosystems (Bogusch, 1952; Schlesinger *et al.*, 1990; McClaran & McPherson, 1995). Given the differences in root turnover among shrubs and grasses we might expect that a lower proportion of root biomass would turn over annually in shrub-invaded ecosystems than in grasslands, influencing both carbon and nutrient cycling.

Our conclusion that the broad-scale patterns that we observed were not useful predictors of interannual variability at an individual site is not unique (Lauenroth & Sala, 1992). Gower et al. (1996) found that the global pattern of belowground carbon allocation used by Nadelhoffer & Raich (1992) was not a useful predictor of belowground allocation across years at individual sites. One potential reason for the divergence between correlative factors at different scales might be the resolution of the data necessary to predict root turnover at a local site. We found a strong relationship between the ratio of growing season precipitation to maximum monthly temperature and root turnover. Unfortunately, we could not test this same prediction with our database, because we lacked the data necessary to generate this ratio for most of the sites. Furthermore, turnover at a single site might be determined by the ability of a few species to respond to interannual variability and might be buffered by species-specific allocation patterns (Lauenroth & Sala, 1992). Previous reviews have used smaller datasets to show that climate and nutrient availability are valuable predictors of fineroot standing crop or belowground production in forests (Nadelhoffer et al., 1985; Vogt et al., 1986; Gower, 1987). However, many of the relationships found in smaller datasets were lost or changed when the numbers of studies included in the analysis were enlarged or when the number of taxa considered increased (Vogt et al., 1996). Vogt et al. (1996) found that the variables useful in predicting fine root standing crop were often different from variables useful in estimating belowground production.

The high variability in root turnover estimates might partly be explained by methodological constraints. The methods used to measure and calculate belowground biomass and production might have a strong role in determining estimates of root turnover. For instance, Aber et al. (1985) used both a maximum-minimum approach (McClaugherty et al., 1982) and a budgetary approach to determine belowground productivity. Their study illustrates that at a single site in a single year different methods can give estimates of turnover that vary by an order of magnitude. For a site to have a turnover rate greater than 1, there must be some factor included in the calculation that allows total annual production to exceed maximum biomass, something that is mathematically impossible with the traditional peaktrough methods. Several calculations have been proposed to account for concurrent production and death or some estimate of decomposition of roots during the growing season (Arthur & Fahey, 1992; Garcia-Moya & Montanez, 1992; Garkoti & Singh, 1995). Validating models that incorporate estimates of root turnover will be difficult as long as estimates of BNPP vary by more than an order of magnitude depending on the method used.

Understanding patterns and controls over root turnover is crucial, given the desire to predict consequences of climate and land cover change. We found that across broad climatic gradients, root turnover is positively correlated with mean annual temperature in many terrestrial ecosystems. Although it is unlikely that mean annual temperature is the proximate determinate of root turnover, particularly given the inability of the relationship to be predictive at an individual site, our results help to clarify important questions that need to be addressed. What is the role of temperature seasonality in root longevity? Does daily maximum or minimum temperature have a role in determining root maintenance cost or parasite load? What belowground characteristics are correlated with mean annual temperature that might be related to root turnover? The variability in data included in this model also indicates that refining methods of estimating root turnover and understanding sitespecific characteristics will be important for fully understanding controls over root turnover.

ACKNOWLEDGEMENTS

We thank Chantal Reid, Will Cook, Juan Loreti, Will Pockman, Miguel Gonzalez, Cynthia Wilson, Florence Perret, Peter Curtis, and one anonymous reviewer for valuable comments on an earlier version of this paper, and Jason Tullis for his help in making the site location map. The National Science Foundation, Department of Energy, and the Andrew W. Mellon Foundation supported this work.

REFERENCES

Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. *Oecologia* 66: 317–321.

Aerts R. 1990. Nutrient use efficiency in evergreen and deciduous species from heathlands. *Oecologia* **84**: 391–397.

Aerts R, Bakker C, De Caluwe H. 1992. Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem. *Biogeochemistry* **15**: 175–190.

Alward RD, Detling JK, Milchunas DG. 1999. Grassland vegetation changes and nocturnal global warming. *Science* **283**: 229–231.

Arnone JA III, Zaller JG, Spehn E, Hirschel G, Niklaus P, Körner C. 2000. Dynamics of root systems in native grasslands: effects of elevated atmospheric CO₂. New Phytologist 147: 73–85.

Arthur MA, Fahey TJ. 1992. Biomass and nutrients in an Englemann spruce-subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. *Canadian Journal of Forest Research* 22: 315–325.

Atkin OK, Edwards EJ, Byrne BR. 2000. Response of root

- respiration to changes in temperature and its relevance to global warming. *New Phytologist* **147**: 141–154.
- Bloomfield J, Vogt K, Wargo PM. 1996. Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkafi U, eds. *Plant roots:* the hidden half. New York, USA: Marcel Dekker, 363–381.
- Bogusch ER. 1952. Brush invasion of the Rio Grande Plains of Texas. Texas Journal of Science 4: 85-91.
- Connin SL, Virginia RA, Chamberlain CP. 1997. Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. *Oecologia* 110: 374–386.
- Dahlman RC, Kucera CL. 1965. Root productivity and turnover in native prairie. *Ecology* 46: 84–89.
- **Eissenstat DM, Wells CE, Yanai RD. 2000.** Building roots in a changing environment: implications for root longevity. *New Phytologist* **147**: 33–42.
- Eissenstat DM, Yanai RD. 1997. The ecology of root lifespan. Advances in Ecological Research 27: 1-60.
- Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K. 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. *Oecologia* 114: 20–30.
- Friend AL, Eide MR, Hinckley TM. 1990. Nitrogen stress alters root proliferation in Douglas-fir seedlings. *Canadian Journal of Forest Research* 20: 1524–1529.
- Garcia-Moya E, Montanez PC. 1992. Saline grassland near Mexico City. In: Long SP, Jones MB, Roberts MJ, eds. *Primary productivity of grass ecosystems of the tropics and subtropics*. London, UK: Chapman & Hall, 70–99.
- **Garkoti SC, Singh SP. 1995.** Variation in net primary productivity and biomass of forests in the high mountains of Central Himalaya. *Journal of Vegetation Science* **6**: 23–28.
- Gill RA. 1998. Biotic controls over the depth distribution of soil organic matter. PhD thesis, Colorado State University, USA.
- Gill RA, Burke IC. 1999. Ecosystem consequences of plant life form change at three sites in the semiarid United States. *Oecologia* 121: 551–563.
- Gordon WS, Jackson RB. 2000. Nutrient concentrations in fine roots. *Ecology* 81: 275–280.
- **Gower ST. 1987.** Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests. *Biotropica* **19**: 171–175.
- **Gower ST, Pongracic S, Landsberg JJ. 1996.** A global trend in belowground carbon allocation: can we use the relationship at smaller scales? *Ecology* **77**: 1750–1755.
- Hendrick RL, Pregitzer KS. 1993. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. *Canadian Journal of Forest Research* 23: 2507–2520.
- **Hendrick RL, Pregitzer KS. 1997.** The relationship between fine root demography and the soil environment in northern hardwood forests. *Ecoscience* **4**: 99–105.
- Holland EA, Townsend AR, Vitousek PM. 1995. Variability in temperature regulation of CO₂ fluxes and N mineralization from five Hawaiian soils: implications for a changing climate. Global Change Biology 1: 115–123.
- Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D. 1996. A global analysis of root distributions for terrestrial biomes. *Oecologia* 108: 389–411.
- Jackson RB, Mooney HA, Schulze E-D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, USA 94: 7362-7366.
- Jackson RB, Schenk HJ, Jobbagy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT. 2000. Belowground consequences of vegetation change and their treatment in models. Ecological Applications 9: 470-483.
- Joslin JD, Wolfe MH, Hanson PJ. 2000. Effects of altered water regimes on forest root systems. New Phytologist 147: 117-129.
- Lauenroth WK, Milchunas DG. 1992. Short-grass steppe. In: Coupland RT, ed. Natural grasslands: introduction and Western Hemisphere. New York, USA: Elsevier, 183–226.
- Lauenroth WK, Sala OE. 1992. Long-term forage production of North American shortgrass steppe. *Ecological Applications* 2: 397-403.

- Marshall JD, Waring RH. 1985. Predicting fine root production and turnover by monitoring root starch and soil temperature. *Canadian Journal of Forest Research* 15: 791–800.
- McClaran MP, McPherson GR. 1995. Can soil organic carbon isotopes be used to describe grass–tree dynamics at a savanna–grassland ecotone and within the savanna? *Journal of Vegetation Science* 6: 857–862.
- McClaugherty CA, Aber JD, Melillo JM. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. *Ecology* **63**: 1481–1490.
- **Milchunas DG, Lauenroth WK. 1992.** Carbon dynamics and estimates of primary production by harvest, ¹⁴C dilution, and ¹⁴C turnover. *Ecology* **73**: 593–607.
- Nadelhoffer KJ. 2000. The potential effects of nitrogen deposition on fine root production in forest ecosystems. *New Phytologist* 147: 131–139.
- **Nadelhoffer KJ, Aber JD, Melillo JM. 1985.** Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. *Ecology* **66**: 1377–1390.
- Nadelhoffer KJ, Raich JW. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. *Ecology* 73: 1139–1147.
- Nambiar EKS, Fife DF. 1991. Nutrient retranslocation in temperate conifers. *Tree Physiology* 9: 185-207.
- Parton WJ, Scurlock JMO, Ojima DS, Gimanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J-C, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JI. 1993.

 Observations and modeling of biomass ans soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7: 785-809.
- Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO, SCOPEGRAM Group Members. 1995. Impact of climate change on grassland production and soil carbon worldwide. *Global Change Biology* 1: 13–22.
- Piedade MTF, Junk WJ, De Mello JAN. 1992. A floodplain grassland of the central Amazon. In: Long SP, Jones MB, Roberts MJ, eds. *Primary productivity of grass ecosystems*. London, UK: Chapman & Hall, 127–158.
- Pregitzer KS, Hendrick RL, Fogel R. 1993. The demography of fine roots in response to patches of water and nitrogen. *New Phytologist* 125: 575-580.
- Pregitzer KS, King JS, Burton AJ, Brown SE. 2000. Responses of tree fine roots to temperature. New Phytologist 147: 105–115.
- Ryan MG. 1991. Effects of climate change on plant respiration. Ecological Applications 1: 157–167.
- **Ryser P. 1996.** The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. *Functional Ecology* **10**: 717–723.
- Schlapfer B, Ryser P. 1996. Leaf and root turnover of three ecologically contrasting grass species in relation to their performance along a productivity gradient. *Oikos* 75: 398–406.
- Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 247: 1043-1048
- **Sims PL, Singh JS. 1978.** The structure and function of ten western North American grasslands. III. Net primary production, turnover and efficiencies of energy capture and water use. *Journal of Ecology* **66**: 573–597.
- **Tingey DT, Phillips DL, Johnson MG. 2000.** Elevated CO₂ and conifer roots: effects on growth, life span, and turnover. *New Phytologist* **147**: 87–103.
- Van Praag HJ, Sougnez-Remy S, Weissen F, Carletti G. 1988. Root turnover in beech and a spruce stand of the Belgian Ardennes. *Plant and Soil* 105: 87–103.
- Vitousek PM. 1994. Beyond global warming: ecology and global change. *Ecology* 75: 1861–1876.
- Vogt KA. 1991. Carbon budgets of temperate forest ecosystems. Tree Physiology 9: 69–86.
- **Vogt KA, Grier CC, Vogt DJ. 1986.** Production, turnover, and nutrient dynamics of above- and belowground detritus of world forest. *Advances in Ecological Research* **15**: 303–377.
- Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O'Hara J, Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. *Plant and Soil* 187: 159–219.
- Winkler JP, Cherry RS, Schlesinger WH. 1996. The Q_{10} relationship of microbial respiration in a temperate forest soil. Soil, Biology, and Biochemistry 28: 1067–1072.

Vegetation type	Location	Lat. and long.	Mean annual temperature (°C)	Mean annual precipitation (mm)	Root collection method	BNPP calculation method	Root type	Fine-root size	Root turnover‡	Species	References
Tropical Mixed forest	Himalaya, India	30° 15′ N	15.3	1710	Monolith	Σ Δ biomass	Fine		0.443 (0.394-	Quercus leucotrichophora,	Sah <i>et al.</i> (1994)
Savanna	Kaimur Range, India	78- 25 E 24° 19' N 62° 50' E	24.3	1000	Monolith	Allometry	Total		0.073	Fmus roxburgnn	Singh et al. (1991)
Conifer	Puerto Rico	18° 9′ N 18° 9′ N 65° 40′ W	22.9	3810	Ingrowth/	Maximum growth into	Fine	≥2	0.736	Pinus caribaea	Cuevas et al. (1991)
	Kodayar, India	8° 29′ N 77° 15′ E	27	3146	Coring	ingrowin cylinder	Total; Fine	ne ≤3		Terminalia paniculata	Sundarapandian &
Broadleaf	Meghalaya, India	25° 34′ N 91° 56′ E	19	2500	Coring	Σ Δ biomass and necromass		<1; 1-2; 2-5; 5-10; 10-15	(<1) 0.60; (1-2) 0.69; (2-5) 0.73; (5-10) 0.75; (10-15) 0.78	Eupatorium adenophorum, Pinus kesiya, Quercus dealbata	Janana (1796), Arunachalam <i>et al.</i> (1996)
	Puerto Rico	18° 19′ N 65° 49′ W	22.9	3810	Ingrowth/ coring	Maximum growth into ingrowth cylinder	Fine	≥ 2	0.591	Tierra Firme Forest	Cuevas & Medina (1988); Cuevas <i>et al.</i> (1991)
	San Carlos de Rio	1° 54′ N 67° 03′ W	26	1961	Ingrowth	Σ in biomass in six media	Fine		0.036		Jordan & Escalante (1980)
	Puerto Vallarta,	19° 30′ N	24.9	748	Coring	Balancing transfer	Fine	1. 1.	2.644	Caesalpinia eriostachys,	Kummerow et al. (1990)
	Kakuma, Northern Kenya	3° 43′ N 34° 51′ E	27.2	318	Coring	Peak-trough; balancing transfer; compartment	Fine	₹5	1.33 (0.87– 1.97)	Acacia saligna	Lehman & Zech (1998)
	Ivory Coast	6° 17′ N	26.5	1285	Coring	Balance transfer	Fine	\$2	2.379	Terminalia superba	Schroth & Zech (1995)
	Varanasi, India	24° 54′ N 83° 07′ E	24.3	1057	Monolith		Fine	9 %	0.316	Anogeissus- Diospyros- Part, conserved	Singh & Singh (1981)
Savanna (herbaceous	Southern India	11° 47′ N 36° 50′ F	25	1098	Monolith	$\Sigma \Delta$ biomass			0.890 (0.563–	Dachaman Themeda triandra	Devidas & Puyravaud
()	Burla, India	21° 25′ N 83° 52′ E	24.9	1345	Monolith	$\Sigma \Delta$ biomass			0.891 (0.86– 0.94)	Morinda tomentosa, Butea monosperma, Boswellia	Joshi <i>et al.</i> (1990)
	Ivory Coast	6° 13′ N	26.6	1300	Monolith	$\Sigma \Delta$ biomass			0.766 (0.458–	Loudetia simplex,	Menaut & Csar (1979)
	Vindhyan Plateau, India	24° 19′ N 82° 59′ E	26.2	926–1145	Monolith	$\Sigma \Delta$ biomass			1.000)	Anaropogoneae Heteropogon contortus, Chrysopogon fulvus, Rothriochlog toetugo	Pandey & Singh (1992)
	Central Himalaya, India	29° 24′ N 79° 30′ E	18.7	201	Monolith	Σ significant Δ biomass				Donnochou perusa Understorey of Shorea robusta, Pinus roxburghii, Quercus leucotrichophora	Rana & Rikhari (1994)
	Calabozo, Venezuela	8° 56′ N 67° 25′ W	27	1300	Monolith	Σ significant Δ biomass using Mann Whitney U			0.935 (0.932– 0.937)	Trachopogon montufari, T. plumosus	San Jose et al. (1982)
	Kumarganj, India	26° 47′ N 87° 12′ F	24.8	1248	Monolith	$\Sigma \Delta$ biomass			0.350	Brachiaria mutica	Saxena et al. (1996)
	Nylsvley, South Africa	24° 39′ S 28° 42′ E	19	623		$\Sigma \Delta$ biomass and necromass			0.970	Eragrostis pallens, Digitaria eriantha, D	Scholes & Walker (1993); Scholes & Hall (1996)
	Uttar Pradesh, India	24° 36′ N 83° 03′ E	24.3	1035	Monolith	$\Sigma \Delta$ biomass			0.814	Chrysopogon fulvus	Singh (1993)
	Kaimur Range, India		24.3	1000	Monolith	Maximum root biomass			0.515		Singh et al. (1991)
Grassland	Texcoco, Mexico	19° 27′ N 98° 51′ W	15.1	579	Coring				1.535 (1.49– 1.58)	Distichlis spicata	Long et al. (1989); Garcia-Moya & Castro
	Kurukshetra, India	29° 58′ N 76° 51′ F	20	795	Monolith	$\Sigma \Delta$ biomass			0.839 (0.755-	Sebania bispinosa,	Gupta & Singh (1982)

Appendix 1 (cont.)

Vegetation type	Location	Lat. and long.	Mean annual temperature (°C)	Mean annual precipitation (mm)	Root collection method	BNPP calculation method	Root	Fine-root size	Root turnover‡	Species	References
Grassland (cont.)	Hat Yai District, Thailand	6° 20′ N 100° 56′ E	27	1130	Coring	$\Sigma \Delta$ biomass, necromass, and estimate			1.558 (Mean turnover of	Eulalia trispicata, Lophopogon intermedius	Kamnalrut & Evenson (1992)
	Nairobi National Park, Nairobi,	1° 20′ S 36° 50′ E	19.6	800	Coring	accomposition loss $\Sigma \Delta$ biomass, necromass, and estimate			7.7 months) 1.130 (0.95– 1.31)	Themeda triandra	Long et al. (1989): Kinyamario & Imbamba
	Kenya Serengeti National	2° 20° S	21.2	775 (350–	Coring	decomposition loss			0.821 (0.333-		(1992) McNaughton <i>et al.</i> (1998)
	rark Berhampur, India	34° 50 E 19° 16′ N	24.8	1200)	Monolith	Σ Δ biomass			0.661	Aristida setacea;	Misra & Misra (1984)
	Gujarat, India	22° 00′ N	26.5	353	Monolith	Σ Δ biomass			0.83	Bothriochioa odorata Suaeda fruiticosa,	Pandya & Sidha (1987)
	Adiopodoum, Ivory Coast	5° 30′ N 4° 30′ E	26.5	1257	Coring	Σ Δ biomass, necromass, and estimate			1.180	Aeturopus tagopotaes Panicum maximum	Picard (1979)
	Garhwal, Himalaya,	30° 00′ N	24.5	1674	Monolith	decomposition $\Sigma \Delta$ biomass			1.238 (1.038–	Crysopogon aciculatus,	Rajwar & Ramola (1990)
	India Kumaun, Himalaya, India	78, 00' E 29° 80' N 70° 20' F	17.3	2488	Monolith	Trough-peak+1/5 leaf			1.566) 1.07	Digitaria ciharis Arundinaria falcata	Rawat et al. (1994)
	Garhwal, Himalaya,	30° 15′ Z	15.3	1710	Monolith	Σ Δ biomass			0.408 (0.358-	Agrostis pilosa, Themeda	Sah et al. (1994)
	Kumarganj, India	26° 47′ N	24.0	1248	Monolith	Σ Δ biomass			0.350	anathera Brachiaria mutica	Saxena et al. (1996)
	Transkei, South	31° 17′ S 30° 00′ F	17	1200	Coring	Σ Δ biomass			0.340 (0.24-	Tristachya leucothrix,	Shackleton et al. (1988)
	Meghalaya, India	25° 04′– 26°03′ N 91° 42′–	21.5 (16.5–22)	7462 (2871– 16247)	Monolith	Trough-peak			0.762 (0.649– 0.853)	Cymoopogon canaus Setaria glauca, Arundinella nepalensis, A. khaseana	Shankar et al. (1993)
	Karnal, Haryana	91°50′ E 29° 58′ N	24.1	713	Monolith	Σ significant Δ biomass			0.969	Dichanthium annulatum,	Singh & Yadava (1974)
	India Rwenzori National	76° 51′ E 0° 11′ S	23	009	Coring	Peak-trough			0.770 (0.747-	Panicum miliare Themeda triandra,	Strugnell & Pigott (1978)
	Fark, ∪ganda Pauri City, India	29° 53° E 30° 10′ N	22	1294 (1226–1363)	Monolith	$\Sigma \Delta$ biomass			0.794) 1.238 (1.201–	Hyparrhema filipendula Erianthus rufipilus	Tiwari (1986)
Shrubland	Rajasthan, India	78° 47′ E 28° 23′ N	24.1	388	Monolith	Peak-trough	Total		1.272) 0.737	Capparis decidua,	Kumar & Joshi (1972)
	Kuman Himalaya,	75° 37' E 29° 45' N 77° 20' E	24.7	1711	Allometry		Total		0.732	Balamtes aegyptnaca Lantana camara	Rawat et al. (1994)
	Ivory Coast	6° 17' N 5° 13' W	26.6	1285	Coring	Balance transfer	Total		1.228	Hedgerow	Schroth & Zech (1995)
Wetland	Lake Naivasha,	0° 45′ S	15.3	889	Monolith		Total			Cyperus papyrus	Jones & Muthuri (1997)
	Amazonas, Brazil	3° 15′ S 60° 00′ W	23.3	2100	Ingrowth	Change in biomass+ change in dead material+ amount decommosed	Total			Echinochloa polystachya	Long <i>et al.</i> (1989); Piedade <i>et al.</i> (1992)
Tidal marsh	Paranagua Bay, Brazil	25° 16′ S 48° 25′ W	18	1577	Monolith		Total			Spartina alterniflora	Lana <i>et al.</i> (1991)
Temperate Broadleaf forest	Wisconsin, USA	43° 38′ N 89° 47′ W	×.5	950	Coring	Peak–trough	Fine	3	0.299 (0.177– 0.344)	Acer saccharum, Quercus alba, Q. boris,	Aber et al. (1985)
	Wisconsin, USA	43° 38′ N 89° 47′ W	8.5	950	Coring/N mineralization	N budget	Fine	3	0.937 (0.670– 1.12)	Acer saccharum, Quercus alba, Q. boris,	Aber et al. (1985); Hendricks et al. (1993); Nobelbergen et al. (1995)
	Massachusetts, USA	42° 29′ N 72° 11′ W	9.1	096	Coring	Peak–trough	Fine	₩ ₩	0.608	y. veratina Quercus–Acer	McClaugherty et al. (1982); Aber et al. (1982); Aber et al.
	Massachusetts, USA	42° 29′ N 72° 11′ W	9.1	096	Coring/N mineralization	N budget	Fine	₩	0.506	Quercus–Acer	(1982) McClaugherty <i>et al.</i> (1982); Aber <i>et al.</i> (1985)

Aber et al. (1985)	Aber et al. (1985)	Burke & Raynal (1994)	Edwards & Harris (1977)	Fabião <i>et al.</i> (1985)	Fahey & Hughes (1994)	Fredericksen & Zedaker	0	Hendrick & Pregitzer	Hendrick & Pregitzer	Joslin & Henderson	(1987) Keith <i>et al.</i> (1997)	Keith et al. (1997)	Kestemont (1982)	Powell & Day (1991), us Megonigal & Day (1988)	Powell & Day (1991), cus Megonigal & Day (1988)	Rana & Rikhari (1994)	Rana & Rikhari (1994)	Symbula & Day (1988)	Symbula & Day (1988)	Whittaker & Woodwell		tea us Aber et al. (1985)	us Aber et al. (1985); Hendricks et al. (1993); Nodella offens et al. (1995)	National et al. (1703) McClaugherty et al. (1982); Aber et al.	(105) McClaugherty <i>et al.</i> (1982); Aber <i>et al.</i> (1085)	74	sa Aber et al. (1985)	Arneth et al. (1998)
Quercus alba, Q. boris,	Acer saccharum Quercus alba, Q. boris,	Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer	Liriodendron tulipifer	Eucalyptus globulus	Acer saccharum, Fagus grandifolia, Betula	attegnamensis Acer rubrum, Robinia	pseuaoacacia Acer cappadocicum, Betula utilis, Rhododendron	campanulatum Acer saccharum	Acer saccharum	Quercus alba	Eucalyptus pauciflora	Eucalyptus pauciflora	Fagus sylvatica	Taxodium distichum, Nyssa aquatica, Quercus	taurijona Taxodium distichum, Nyssa aquatica, Quercus	Shorea robusta	Quercus floribunda	Nyssa aquatica-Acer	rubrum Nyssa aquatica–Acer	Quercus alba	Acer saccharum, Fagus	granathora, Betwa wtea Pinus resinosa, P. strobus	Pinus resinosa, P. strobus	Pinus resinosa	Pinus resinosa	Pinus strobus, P. resinosa	Pinus strobus, P. resinosa	Pinus radiata
0.425 (0.188-	0.574) 0.694 (0.398– 1.05)	0.653	0.829	0.968	0.990 (0.827– 1.256)	1.416	0.110 (0.089– 0.269)	0.560*	0.523*	0.208	0.019	0.862	0.022	0.214	0.189	0.819	0.841	1.119	1.555	0.064	0.085 (0.080-	0.092) 0.187 (0.171– 0.305 (0.443 (0.43- 0.463)	0.590	0.601	0.473 (0.447-	0.322 (0.301-	1.14
₩ 3	%	₩	%	≥ 5	₩	₹ 5		₹ 5	≥2	\\ \\ S		\\ \\ \\				≥2	≥2	\^ \^				%	₩ 3	3	₹3	₩	₩	%
Fine	Fine	Fine	Fine	Fine	Fine	Fine	Coarse	Fine	Fine	Fine	Coarse	Fine	Coarse	Coarse	Coarse	Fine	Fine	Fine	Total	Coarse	Coarse	Fine	Fine	Fine	Fine	Fine	Fine	Fine
Peak-trough	N budget	Peak-trough; ∑ significant Δ biomass and necromass; aboveground litterfall	Trough-peak		2×biomass in ingrowth cores		Σ Δ biomass + estimated mortality	Σ Δ length	Σ Δ length	$\Sigma \Delta$ biomass +	aecomposition	Soil CO ₂ efflux—litterfall		Σ Δ biomass		Σ significant Δ biomass			Peak-trough	N budget	Peak-trough	N budget	Peak-trough	N budget				
Coring	Coring/N mineraliz-	Coring	Core	Ingrowth	Ingrowth	Core	Coring	Minirhizotron	Minirhizotron	Coring	Allometry	Budget		Ingrowth	Coring	Monolith	Monolith	Coring	Coring	Allometry	Allometry	Coring	Coring/N mineralization	Coring	Coring/N mineralization	Coring	Coring/N	mineralization Allometry
800	800	1060	1265	463	1250	1240	749	850	810	939	1205	1205	1071	1170	1170	2076	2488	1170	1170	1088	1393	950	950	096	096	800	800	658
8.5	8.5	5.3	13.3	16.3	5.7	14	0.5	7.6	8.8	13	20.8	20.8	7.3	15.8	15.8	23	14.9	15	15.8	10.7	-3	8.5	8.5	9.1	9.1	8.5	8.5	10.8
43° 05′ N	89° 22 W 43° 05′ N 80° 22′ W	4° 00′ N 74° 13′ W	36° 01′ N	39° 21′ N	71° 45′ W	37° 00′ N	80° 00′ E 80° 00′ E	43° 40′ N 86° 09′ W	44° 23′ N	38° 40′ N	35° 23′ S	35° 23′ S	50° 02′ N	36° 30′ W 76° 30′ W	36° 30′ N 76° 30′ W	29° 24′ N	29° 24′ N	79-30' N 36°30' N	36° 30′ N 36° 30′ N	40° 54′ N	43° 56′ N	43° 38′ N	89° 47′ W	42° 29′ N 72° 11′ W	42° 29′ N 72° 11′ W	43° 05′ N	43° 05′ N	89 42 w 42° 52′ S
Wisconsin, USA	Wisconsin, USA	New York, USA	Tennessee, USA	Portugal	New Hampshire, USA	Virginia, USA	Central Himalaya, India	Michigan, USA	Michigan, USA	Missouri, USA	Canberra, Australia	Canberra, Australia	Mirwart, Belgium	Virginia/North Carolina, USA	Virginia/North Carolina, USA	Central Himalaya,	Central Himalaya,	Virginia/North	Virginia/North	New York, USA	New Hampshire,	USA Wisconsin, USA	Wisconsin, USA	Massachusetts, USA	Massachusetts, USA	Wisconsin, USA	Wisconsin, USA	Christchurch, New

Conifer fore

Appendix 1 (cont.)

Vegetation type	Location	Lat. and long.	Mean annual temperature (°C)	Mean annual precipitation (mm)	Root collection method	BNPP calculation method	Root	Fine-root size	Root turnover‡	Species	References
Conifer forest	Colorado, USA	40° 19′ N	1.5	1000	Allometry; coring	N budget	Coarse;	% 5	Coarse: 0.056;	Picea engelmannii; Abies	Arthur & Fahey (1992)
(com.)	Pukuri, New Zealand	36° 45′ S	12.5 (14, 11)	1400 (1300–1500)	Whole-plant harvest	Allometry	r me Fine	%	Fine: 0.137	tastocarpa Pinus radiata	Beets & Whitehead (1996)
	Quebec, Canada	172° 45° E 48° 30′ N 70° 30′ W	9.0	823	Ingrowth	$\Sigma \Delta$ biomass	Fine	≥2	0.613	Abies amabilis, Picea	Campbell et al. (1998)
	British Columbia,	50° 09′ N	-3.4	973	Monolith; coring	Allometry; $\Sigma \Delta$ biomass	Coarse;	%	Coarse: 0.097,	gauca, Derma papyrijera Pinus contorta	Comeau & Kimmins
	Oregon, USA	44° 32′ N	11.3	1312 (848–1775)	Coring	$\Sigma \Delta$ biomass + detritus	Coarse		0.123 (0.081-	Pseudotsuga menziesii	Fogel (1983); Fogel & H_{Dist} (1983)
	Virginia, USA	37° 00′ N 80° 00′ W	14	1240	Coring	Balance transfer	Fine	≤2	1.503	Pinus taeda	Fredericksen & Zedaker (1995)
	Florida, USA	30° 00′ N 82° 00′ W	21.1	1445	Coring	Σ significant Δ biomass using ANOVA	Range		(<1) 0.477, $(<1-5)$ 0.199, $(<5-10)$ 0.663, (<10)	Pinus elliottii	(1935) Gholz et al. (1986)
	New Mexico, USA	35° 15′ N	12.1	2080	Coring	Decision matrix	Coarse;	%	Coarse: 0.042;	Pseudotsuga menziesii	Gower et al. (1992)
	Oregon, USA	10, 34 W 44° 00′ N 123° 30′ W	8.5	2300	Allometry		Coarse	× ×	0.019 (0.016-	Pseudotsuga menziesii	Grier & Logan (1977)
	Washington, USA	47° 20′ N 122° 00′ W	ъ.	2300	Allometry		Coarse; fine	₹.	Coarse: 0.283 (0.085- 0.393);Fine: 0.680 (0.641-	Abies amabilis	Grier <i>et al.</i> (1981)
	Wisconsin, USA	46° 10′ N 89° 40′ W	4.55	3246	Excavation; core	Max-min; decision matrix	Coarse; fine	√	0.037;	Pinus resinosa	Haynes & Gower (1995)
	Washington, USA	46° 00′ N 122° 00′ W	6.7	1000	Rhizotron & core	Root biomass \times (no. of new roots/existing roots)	Coarse; fine	₹	Coarse: 0.094 (0.047– 0.141); Fine: 0.633 (0.556–	Pseudotsuga menziesii	Keyes & Grier (1981)
	Virginia/North Carolina, USA	36° 30′ N 76° 30′ W	15.8	1170	Ingrowth; coring	Σ biomass	Total		0.337	Chamaecyparis thyoides	Megonigal & Day (1988); Powell & Day (1991)
	Oregon, USA	44° 14′ N 122° 13′ W	5.2	2000	Core	Σ interval estimates	Fine		1.918 (1.524–2.569)	Tsuga heterophylla	Santantonio et al. (1977); Santantonio & Hermann (1985); Santantionio & Grace (1987)
	Washington, USA	46° 00′ N 122° 00′ W	4.	2730	Coring		Coarse; fine	₹5	Coarse: 0.356 (0.118– 0.594); Fine:	Abies amabilis	Vogt et al. (1982, 1986, 1987, 1996); Vogt (1991)
Savanna (herbaceous	Pilani, Rajasthan, Indie	28° 23′ N 75° 37′ F	24.1	388	Monolith	Trough-peak			0.601 (0.560-	Capparis decidua,	Kumar & Joshi (1972)
Grassland	Central Netherlands	5° 50′ E	8.2	700	Coring	Σ significant Δ biomass and necromass Tukey's Studentized Range test			0.828	Daumes aegyptaa Deschampsia flexuosa, Molinia caerulea	Aerts et al. (1992)
	Central Netherlands	50° 02′ N 5° 50′ E	8.2	700	Minirhizotron	Σ significant Δ biomass and necromass Tukey's			0.673	Deschampsia flexuosa, Molinia caerulea	Aerts et al. (1992)
	Minnesota, USA	45° 34′ N	6.5	069	Coring	Starcellized realige real			0.324	Poa pratensis	Bernard (1974)
	North Dakota, USA	46° 39′ N 99° 21′ W	8.4	446	Coring	Difference method			0.343 (0.212-0.479)	Poa pratensis, Agropyron smithii	Biondini et al. (1998)
	Missouri, USA	38° 57′ N	12.5	973	Coring				0.360	Andropogon gerardi,	Buyanovsky et al. (1987)
	Missouri, USA	38° 57′ N 99° 30′ W	12.5	973	C pool dilution	Regression			0.489	Schwachynum scoparium Andropogon gerardi, Schizachynium scoparium	Buyanovsky et al. (1987)
	Saskatchewan, Canada		3.6	388					0.267 (0.150– 0.387)	Agropyron dasystachyum, A. smithii, Stipa comata, S. spartea	Coupland (1992)

North Da	North Dakota, USA	46° 53′ N	4.1	403				0.330	Agropyron smithii, Stipa	Coupland (1992)
Missouri, USA		102° 49′ W 38° 57′ N	12.7	1016	Coring			0.265 (0.255-	spartea Andropogon gerardi,	Dahlman & Kucera
Missouri, USA		38° 57′ N	12.7	1016	C pool dilution	Regression		0.231	A.scoparns Andropogon gerardi,	(1965) Dahlman & Kucera
Moor House, UK		54° 03′ N 2° 48′ W	5.1	1883	Minirhizotron	Calibration of root number to biomass		0.634	A.scoparus Festuca ovina, Nardus stricta, Juncus	(1907) Fitter <i>et al.</i> (1997)
Kansas, USA		39° 10′ N	13	835	Coring	Σ significant Δ biomass		0.324	squarrosus Andropogon gerardi	Hayes & Seastedt (1987)
South Da	South Dakota, USA	43° 26′ N	9.2	402	Coring	Trough-peak		0.540 (0.420-	Agropyron smithii,	Ingham & Detling (1984)
South Da	South Dakota, USA	103 26 W 43° 57′ N 101° 52′ W	8.2	387	Coring	Σ significant Δ biomass		0.470	лиагородоп scoparus	Marshall (1977); Sims &
Colorado, USA		101 32 W 40° 49′ N 104° 46′ W	8.2	311	Coring	Σ significant Δ biomass		0.480	Bouteloua gracilis	Singh (1970); Sims & Singh (1978); Redmann
Kansas, USA		38° 52′ N	12	586	Coring	Σ significant Δ biomass		0.510		(1992) Marshall (1977); Bedemon (1993)
Washingt	Washington, USA	46° 24′ N	12.8	183	Coring	Σ significant Δ biomass		0.480		Nedmann (1992) Marshall (1977)
Oklahoma, USA		36° 56′ N	14.3	916	Coring	Σ significant Δ biomass		0.467	Scizachyrium scoparius	Marshall (1977); Sims &
New Mex	New Mexico, USA	32° 36′ N 106° 85′ W	14.4	262	Coring	Σ significant Δ biomass		0.727		Singn (1978) Marshall (1977)
Texas, USA		35° 18′ N 101° 32′ W	14.9	499	Coring	Σ significant Δ biomass		0.788 (0.530–1.047)	Bouteloua gracilis	Marshall (1977); Sims & Singh (1978); Redmann
California, USA	a, USA	38° 03′ N	15.3	484	Coring	Σ significant Δ biomass		1.180		(1992) Marshall (1977)
Colorado, USA		40° 46′ N	8.2	322	Coring	Σ significant Δ biomass		0.167 (0-	Bouteloua gracilis	Ares (1976); Milchunas &
Colorado, USA		104° 46′ W 104° 46′ W	8.2	322	C pool dilution	Regression		0.209	Bouteloua gracilis	Lauemon (1992) Milchunas <i>et al.</i> (1985); Milchunas & Lauenroth (1992)
Wyoming, USA	g, USA	41° 08′ N 104° 49′ W	6	365	Coring	Trough–peak		0.446	Agropyron cristatum, Bouteloua gracilis, Agropyron smithii, Stipa	Redente <i>et al.</i> (1989)
Palmersto	th,	40° 18′ S	8.7	1202	C pulse	Regression		0.314 (0.187-	capillaris, Lolium	Saggar et al. (1997)
Virginia, USA		37° 25′ N	14.3	1102	Coring, ingrowth core	Σ Δ biomass		1.12	Spartina patens,	Stevenson & Day (1996)
Nebraska, USA		75 41 W 40° 48' N 96° 42' W	8.	260	Monolith			(0.83–1.40) 1.122 (1.034– 1.417)	Ammopmua orevurguata Andropogon furcatus, A. scoparius, Bouteloua	Weaver & Zink (1946)
Utah, USA		41° 52′ N	7.1	244	Pool dilution		Total	0.21	graculis Atriplex confertifolia	Caldwell et al. (1977)
Utah, USA		41° 52′ N 113° 50′ W	7.1	244	Pool dilution		Total	0.123	Ceratoides lanata	Caldwell <i>et al.</i> (1977)
Southwest Spain		37° 07′ N 6° 12′ W	16.5	620	Coring		Total	0.348	anotis, Halimium lium, Lavandula	Martinez et al. (1998)
North Ca	North Carolina, USA	34° 38′ N	17.6	1170	Coring		Total	0.360 (0.339-	Aristida stricta, Vaccinium	Saterson & Vitousek
Michigan, USA		44° 00′ N	6	068			Total	0.362	e calyculata	(1904) Wentz & Chamie (1980)
Minnesota, USA		45° 34′ N	6.5	069	Coring			0.549	Carex rostrata	Bernard (1974)
New York,	$_{ m USA}$	42° 27′ N 76° 30′ W	8.8	912	Monolith		Total	0.393	Claudium mariscoides	Bernard et al. (1985)
Minnesota, USA		45° 43′ N 93° 35′ W	6.5	069	Monolith		Total	0.370	Sparganium eurycarpum, Trobba alauca	Bernard & Bernard (1973)
New York, USA		42° 27′ N 76° 30′ W	8.8	912	Monolith		Total	0.607	Carex rostrata	Bernard & Hankinson (1979)
Czechoslovakia		48° 50′ N 14° 48′ E	9.0	570			Total Rhizome	0.196	Phragmites communis	Fiala (1976); Kvêt & Westlake (1998)

Appendix 1 (cont.)

Vegetation		Lat. and	Mean annual		Root collection	BNPP calculation	Root	Fine-root	Root		,
type	Location	long.	temperature (°C)	precipitation (mm)	method	method	type	size	turnover‡	Species	References
Tidal marsh	Mississippi, USA	32° 22′ N	18.8	1483	Coring	Fit general periodic	Total		0.110	Juncus roemerianus	de la Cruz (1973); de la
	Mississippi, USA	32° 22′ N	18.8	1483	Coring	regression curve	Total		0.259	Spartina cynosuroides	Cruz & Hackney (1977) Hackney & de la Cruz
	Delaware 11SA	88° 42′ W 39° 34′ N	4	1039	Coring	Maximim-minim	Total		0.471	Shorting botons	(1986) Roman & Daiher (1984)
	Delawate, Con	75° 36′ W	+	601	8	Maximum - minimum	10141		17.50	S. alterniflora	Notition & Dailber (1704)
	Delaware, USA	38° 47′ N 75° 08′ W	14	1039	Coring	Maximum-minimum	Total		0.436	Phragmites australis;	Roman & Daiber (1984)
	Georgia, USA	31° 19′ N	20.6	1330	Coring		Total		0.737	Spartina alterniflora,	Schubauer & Hopkinson
	New Jersey, USA	39° 32′ N	8.4	1030	Coring		Total		0.230	s. cynosuroides Spartina alterniflora	(1984) Smith et al. (1979)
	Massachusetts, USA	74° 39′ W 41° 31′ N	6.4	1232	Coring		Fine		1.807	Spartina patens,	Valiela <i>et al.</i> (1976)
	Massachusetts, USA	70° 40′ W 41° 56′ N	6.4	1232	N budget		Fine		0.954	S. alterniflora Spartina alterniflora	White & Howes (1994)
Boreal/alpine Mixed forest	Quebec, Canada	48° 30′ N	9.0	823	Ingrowth	Σ live and dead biomass	Fine	≤10	0.077	Populus tremuloides, Abies	Finer et al. (1997)
Conifer forest	Hardangervidda	79° 20′ W 60° 36′ N	-2	1006	*		Coarse		0.102	balsamea *	Ostbye et al. (1975)
	Norway Orivesi, Finland	7° 30′ E 61° 48′ N	2.6	206	Coring	Σ significant Δ biomass	Fine	% 8>	0.495	Pinus sylvestris	Finer & Laine (1998)
		24° 19′ E			0	using ANOVA		,			
	Raakkyla, Finland	62° 14′ N 29° 50′ E	2.8	702	Coring	Σ significant Δ biomass using ANOVA	Coarse		0.382	Pinus sylvestris	Finer & Laine (1998)
	Quebec, Canada	48° 30′ N 79° 20′ W	9.0	823	Ingrowth	Σ live and dead biomass	Fine	≤10	0.077	Thuja occidentalis, Abies	Finer et al. (1997)
	Sweden	60° 46′ N 16° 39′ E	4.1	617	Core	Σ interval estimates	Fine	₹ 5	0.593 (0.07–1.217)	Pinus sylvestris, Calluna vulgaris, Vaccinium vitis-idaea	Persson (1978, 1980, 1983)
	Manitoba, Canada	49° 53′ N 95° 54′ W	2.3	515	Monolith	(Aerial production/aerial biomass) × belowground	Total		0.079	Picea mariana	Reader & Stewart (1972)
	Alaska, USA	64° 45′ N	-3.5	269	Coring	biomass	Fine	≥ 2	0.810	Picea glauca, P. mariana	Ruess et al. (1996, 1998)
		148° 15′ W							(0.52-1.05)		
	Saskatchewan, Canada		-1.1	405	Coring/ingrowth	Δ biomass in ingrowth	Fine	₹	0.087	Pinus banksiana, Picea	Steele et al. (1997)
	Saskatchewan, Canada		-1.1	405	Minirhizotron	$\Sigma \Delta \text{ length} \times \text{length to}$	Fine	%	0.294	Pinus banksiana, Picea	Steele et al. (1997)
	Manitoba, Canada	55° 56′ N	-4.7	536	Coring/ingrowth	Σ biomass in ingrowth	Fine	%	0.128	martana Pinus banksiana, Picea	Steele et al. (1997)
	Manitoba, Canada	98° 36′ W 55° 56′ N	7.4.	536	Minirhizotron	core $\Sigma \Delta \operatorname{length} \times \operatorname{length} \operatorname{to}$	Fine	% 5	0.372	martana Pinus banksiana, Picea	Steele et al. (1997)
	Belgium	98° 36′ W 50° 33′ N	6.1	1450	Core	biomass conversion factor Budget	Fine	1 1	0.507	mariana Picea abies	Van Praag et al. (1988)
Broadleaf forest	Greenland	6° 05′ E 61° 06′ N	-0.9	700	Allometry		Coarse		0.014	Betula pubescens	Elkington & Jones (1974)
	Ouebec Canada	45° 58′ W 48° 30′ N		823	Ingrowth	7. hiomass	Fine	018	0 200	Pobulus tremuloides	Finer et al (1997)
		79° 20′ W		, C			ζ			Betula papyrifera	NTH-1 -0 I I
	Nongalund, Sweden	13° 38′ W		067	Vilonieury		Coarse		2.042	ragus syrvanıca	(1977)
	Langarod, Sweden	55° 59′ N 13° 10′ W	9	800	Allometry		Coarse		0.046	Fagus sylvatica	Nihlgard & Lindgren (1977)
	Oved, Sweden	55° 45′ N 13° 55′ W	7	650	Allometry		Coarse		0.049	Fagus sylvatica	Nihlgard & Lindgren (1977)
	Manitoba, Canada	49° 53′ N 95° 54′ W	2.3	515	Monolith	(Aerial production/aerial biomass) × belowground	Total		0.334	Salix bebbiana, S. serissima	Reader & Stewart (1972)
	Alaska, USA	64° 45′ N 148° 15′ W	-3.5	269	Coring	Diomass	Fine	₹ 5	0.673 (0.330– 0.94)	Populus balsamifera, Betula papyrifera, Potulus tramuloidos	Ruess et al. (1996)
	Saskatchewan. Canada	a 53° 50′ N	1 1 1	405	Coring/ingrowth	Σ hiomass in ingrowth	Fine	\ \	0.072	D + 1	Steels of al (1997)

	Saskatchewan, Canada	53° 50′ N 104° 41′ W	-1.1	405	Minirhizotron	$\Sigma \Delta$ length × length to biomass conversion factor	Fine	€5	0.085	Populus tremuloides	Steele et al. (1997)
	Manitoba, Canada	55° 56′ N 98° 36′ W	-4.7	536	Coring/ingrowth	Σ biomass in ingrowth core	Fine	≤ 5	0.131	Populus tremuloides	Steele et al. (1997)
	Manitoba, Canada	55° 56′ N 98° 36′ W	-4.7	536	Minirhizotron	$\Sigma \Delta$ length × length to biomass conversion factor	Fine	€5	0.115	Populus tremuloides	Steele et al. (1997)
	Belgium	50° 33′ N 6° 05′ E	6.1	1450	Core	Budget	Fine	≤1	0.507	Fagus sylvatica	Van Praag et al. (1988)
Grassland	Devon Island, Canada		-17.6	267.1					0.137 (0.095- 0.188)	Carex stans, Eriophorum triste	Bliss (1975)
	Colorado, USA	40° 03′ N 105° 35′ W	-3	900	Ingrowth cores	Σ new roots			0.283 (0.200– 0.360)	Kobresia myosuroides, Acomastylis rossii, Carex scopulorum	Fisk et al. (1998)
	Moor House, UK	54° 39′ N 2° 27′ W	5.1	1883			Total		0.181	Calluna vulgaris	Heal et al. (1975)
	Moor House, UK	54° 39′ N 2° 27′ W	5.1	1883					0.246	Calluna vulgaris	Heal et al. (1975)
	Macquarie Island, Subantarctic	54° 00′ S 36° 50′ W	4.7	926					0.765	Poa foliosa	Hnatiuk (1993)
	Macquarie Island, Subantarctic	54° 00′ S 36° 50′ W	4.7	926	Coring				0.490 (0.254- 0.569)	Poa foliosa, Stilbocarpa polaris	Jenkin (1975)
	Alaska, USA	71° 17′ N 156° 47′ W	-12.6	170	Rhizotron	Cohort life span			0.365) 0.135 (0.119– 0.155)	potaris Carex–Eriphorum, Dupontia fisheri, Carex–Oncophorus, Carex–Poa	Miller et al. (1980)
	Manitoba, Canada	50° 11′ N 98° 19′ W	2.7	461	Ingrowth cores	Σ new roots			0.531 (0.119- 0.628)	Scolochloa festucacea	Neill (1992, 1994)
	Manitoba, Canada	50° 11′ N 98° 19′ W	2.7	461	Coring	Significant difference in max-min			0.531 (0.119– 0.628)	Scolochloa festucacea	Neill (1992, 1994)
	Hardangervidda Norway	60° 36′ N 7° 30′ E	-2	1006					0.304 (0.273– 0.374)	Descampsia flexuosa, Poa alpina, Anthoxanthum alpinum	Østbye et al. (1975)
	Himalaya, India	30° 28′ N 79° 20′ E	7	1586	Monolith	Peak–trough, Σ significant Σ biomass			0.245 (0.241- 0.249)	Danthonia cachemyriana	Ram et al. (1991)
	Himalayan Alpine, India	30° 11′ N 49° 40′ E	6	1557	Coring	Trough-peak			0.143 (0.100– 0.166)	Trachydium roylei, Danthonia cachemyriana, Kobresia duthei	Rikhari et al. (1992)
	Stordalen, Sweden	68° 22′ N 19° 03′ E	-0.7	300					0.06	Andromeda polifolia, Vaccinium uliginosum	Roswall et al. (1975)
	Alaska, USA	71° 17′ N 156° 47′ W	-22.3	162	Rhizotron	Cohort life span			0.116 (0.051- 0.167)	Carex aquatilis, Dupontia fischerii	Shaver & Billings (1975); Shaver & Chapin (1991)
	South Georgia, Subantarctic	54° 36′ S 158° 57′ E	1.8	1405					0.186 (0.183– 0.194)	Festuca contracta, Poa flabellata	Smith & Walton (1975)
	Garhwal, India	30° 30′ N 79° 15′ E	5.5	2170	Monolith	Trough-peak			0.587 (0.314– 0.911)	Anaphalis royleana, Geum elatum, Tanacetum longifolium	Singh & Joshi (1979); Sundriyal & Joshi (1990)
	Suwalki, Poland	54° 07′ N 22° 56′ E	6.6	583	Root ingrowth	$\boldsymbol{\Sigma}$ root growth into sand			0.051 (0.043- 0.061)	Dactylis glomerata, Arrhenatherion, Anthyllitrifolietum montani	Szanser (1997)
Tundra	Hardangervidda Norway	60° 36′ N 7° 30′ E	-2	1006			Total		0.313 (0.202- 0.424)		Østbye et al. (1975)
	Himalayan Alpine, India	30° 12′ N 79° 40′ E	2.2	1557	Coring		Total		0.079	$Rhododendron\ anthopogon$	Rikhari et al. (1992)
	Stordalen, Sweden	68° 22′ N 19° 03′ E	-0.7	300			Total		0.058	Dwarf shrub; forbs; minor graminoid	Roswall et al. (1975)
	South Georgia, Subantarctic	54° 36′ S 158° 57′ E	1.8	1405			Total		0.064	Acaena magellanica	Smith & Walton (1975)
Heath	Netherlands	52° 13′ N 5° 32′ E	9.2	788	Coring		Total		0.958 (0.796–1.071)	Molinia caerulea, Erica	Berendse et al. (1987)
	Devon Island, Canada		-17.6	267.1			Total		0.133	tetralix Cassiope tetragona	Bliss (1975)
	Barrow, Alaska	68° 38′ N 149° 34′ W	-12.6	170			Total		0.095	Salix spp., Luzula	Miller et al. (1980); Webber et al. (1980)
Tidal marsh	Quebec, Canada	149° 34° W 46° 59′ N 70° 33′ W	2.4	880	Coring	Maximum-minimum biomass or standing crop; Smalley method	Total		0.740	Eleocharis spp., Sagittaria spp., Scirpus americanus	, ,

\$\$ Values in italics were determined by using the equation: turnover = BNPP/(0.45 \times BNPP+mean root biomass). *Turnover = BNPP/initial root biomass. \$\$ Turnover = BNPP/mean root biomass.

REFERENCES (Appendix 1 (cont.))

- Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. *Oecologia* 66: 317–321.
- **Aerts R, Bakker C, De Caluwe H. 1992.** Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem. *Biogeochemistry* **15**: 175–190.
- Ares J. 1976. Dynamics of the root system of Blue Gramma. Journal of Range Management 29: 208–213.
- Arneth A, Kelliher FM, McSeveny TM, Byers JN. 1998. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a *Pinus radiata* plantation subject to soil water deficit. *Tree Physiology* 18: 785–793.
- Arthur MA, Fahey TJ. 1992. Biomass and nutrients in an Englemann spruce-subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. *Canadian Journal of Forest Research* 22: 315–325.
- **Arunachalam A, Pandey HN, Tripathi RS, Maithani K. 1996.** Biomass and production of fine and coarse roots during regrowth of a disturbed subtropical humid forest in north-east India. *Vegetatio* **123**: 73–80.
- Beets PN, Whitehead D. 1996. Carbon partitioning in *Pinus radiata* stands in relation to foliage nitrogen status. *Tree Physiology* 16: 131–138.
- Berendse F, Beltman B, Bobbink R, Kwant R, Schmitz M. 1987. Primary production and nutrient availability in wet heathland ecosystems. *Acta Oecologica* 8: 265–279.
- **Bernard JM. 1974.** Seasonal changes in standing crop and primary production in a sedge wetland and an adjacent dry old-field in central Minnesota. *Ecology* **55**: 350–359.
- Bernard JM, Bernard FA. 1973. Winter biomass in Typha glauca Godr. and Sparganium eurycarpum Engelm. Bulletin of the Torrey Botanical Club 100: 125-131.
- Bernard JM, Hankinson G. 1979. Seasonal changes in standing crop, primary production, and nutrient levels in a *Carex rostrata* wetland. *Oikos* 32: 328–336.
- Bernard JM, Seischab FK, Jacoby G. 1985. Life history and production of above- and belowground structures of *Cladium mariscoides* (Muhl.) Torr. in a western New York fen. *Bulletin of the Torrey Botanical Club* 112: 288–294.
- **Biondini ME, Patton BD, Nyren PE. 1998.** Grazing intensity and ecosystem processes in a northern mixed-grass prairie, USA. *Ecological Applications* 8: 469–479.
- Bliss LC. 1975. Devon Island, Canada. In: Rosswall T, Heal OW, eds. *Structure and function of tundra ecosystems*. Stockholm, Sweden: Ecology Bulletin, 17–60.
- **Burke MK, Raynal DJ. 1994.** Fine root growth phonology, production, and turnover in a northern hardwood forest ecosystem. *Plant and Soil* **162**: 135–146.
- **Buyanovsky GA, Kucera CL, Wagner GH. 1987.** Comparative analyses of carbon dynamics in native and cultivated ecosystems. *Ecology* **68**: 2023–2031.
- Caldwell MM, White RS, Moore RT, Camp LB. 1977. Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C₃ and C₄ species. *Oecologia* 29: 275–300.
- Campbell JJ, Finér L, Messier C. 1998. Fine-root production in small experimental gaps in successional mixed boreal forests. Journal of Vegetation Science 9: 537–542.
- Comeau PG, Kimmins JP. 1989. Above- and below-ground biomass and production of lodgepole pine on sites with differing soil moisture regimes. *Canadian Journal of Forest Research* 19: 447–454.
- Coupland RT. 1992. Mixed prairie. In: Coupland RT, ed. Grasslands of the World. Amsterdam, The Netherlands: Elsevier, 151–182.
- Cuevas E, Brown S, Lugo AE. 1991. Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. *Plant and Soil* 135: 257–268.
- Cuevas E, Medina E. 1988. Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. *Oecologia* 76: 222–235.
- Dahlman RC, Kucera CL. 1965. Root productivity and turnover in native prairie. *Ecology* 46: 84–89.
- Dahlman RC, Kucera CL. 1967. Carbon-14 cycling in the root

- and soil components of a prairie ecosystem. Proceedings of the 2nd National Symposium on Radioecology, 652-660.
- **de la Cruz AA. 1973.** The role of tidal marshes in the productivity of coastal marshes. *Association of SE Biology Bulletin* **20**: 147–156.
- de la Cruz AA, Hackney CT. 1977. Energy value, elemental composition and productivity of the belowground biomass of a *Juncus* tidal marsh. *Ecology* 58: 1165–1170.
- **Devidas S, Puyravaud JP. 1995.** Primary productivity of the herbaceous layer in a grazed savanna woodland, Bandipur National Park, southern India. *Acta Oecologica* **16**: 491–505.
- **Edwards NT, Harris WF. 1977.** Carbon cycling in a mixed deciduous forest floor. *Ecology* **58**: 431–437.
- Elkington TT, Jones BMG. 1974. Biomass and primary productivity of birch (*Betula pubescens*) in south-west Greenland. *Journal of Ecology* 62: 821–830.
- Fabião A, Persson HA, Steen E. 1985. Growth dynamics of superficial roots in Portuguese plantations of *Eucalyptus globulus* Labill. studied with a mesh bag technique. *Plant and Soil* 83: 233-242.
- **Fahey TJ, Hughes JW. 1994.** Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. *Journal of Ecology* **82**: 533–548.
- Fiala K. 1976. Underground organs of Phragmites communis, their growth, biomass and net production. Folia Geobotanica et Phytotaxonomica 11: 225–259.
- Finér L, Laine J. 1998. Root dynamics at drained peatland sites of different fertility in southern Finland. *Plant and Soil* 201: 27–36.
- Finér L, Messier C, De Grandpré L. 1997. Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. *Canadian Journal of Forest Research* 27: 304–314.
- Fisk MC, Schmidt SK, Seastedt TR. 1998. Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. *Ecology* 79: 2253–2266.
- Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield T. 1997. Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. *New Phytologist* 137: 247–255.
- **Fogel R. 1983.** Root turnover and productivity of coniferous forests. *Plant and Soil* **71**: 75–85.
- **Fogel R, Hunt G. 1983.** Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. *Canadian Journal of Forest Research* **13**: 219–232.
- Fredericksen TS, Zedaker SM. 1995. Fine root biomass, distribution, and production in young pine-hardwood stands. *New Forests* 10: 99–110.
- Garcia-Moya E, Castro PM. 1992. Saline grassland near Mexico City. In: Long SP, Jones MB, Roberts MJ, eds. *Primary productivity of grass ecosystems of the tropics and sub-tropics*. London, UK: Chapman & Hall, 70–99.
- Garkoti SC, Singh SP. 1995. Variation in net primary productivity and biomass of forests in the high mountains of central Himalaya. Journal of Vegetation Science 6: 23–28.
- Gholz HL, Hendry LC, Cropper WP Jr. 1986. Organic matter dynamics of fine roots in plantations of slash pine (*Pinus elliotti*) in north Florida. *Canadian Journal of Forest Research* 16: 529-538.
- **Giroux JF, Bédard J. 1988.** Estimating above-ground and belowground macrophyte production in *Scirpus* tidal marshes. *Canadian Journal of Botany* **66**: 368–374.
- **Gower ST, Vogt KA, Grier CC. 1992.** Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. *Ecological Monographs* **62**: 43–65.
- Grier CC, Logan RS. 1977. Old-growth *Pseudotsuga menziesii* communities of a western Oregon watershed: biomass distribution and production budgets. *Canadian Journal of Forest Research* 47: 373–400.
- Grier CC, Vogt KA, Keyes MR, Edmonds RL. 1981. Biomass distribution and above- and below-ground production in young and mature *Abies amabilis* zone ecosystems of the Washington Cascades. *Canadian Journal of Forest Research* 11: 155–167.
- **Gupta SR, Singh JS. 1982.** Influence of floristic composition on the net primary production and dry matter turnover in a tropical grassland. *Australian Journal of Ecology* **7**: 363–374.

- **Hackney CT, de la Cruz AA. 1986.** Belowground productivity of roots and rhizomes in a giant cordgrass marsh. *Estuaries* **9**: 112–116.
- Hayes DC, Seastedt TR. 1987. Root dynamics of tallgrass prairie in wet and dry years. Canadian Journal of Botany 65: 787-791.
- **Haynes BE, Gower ST. 1995.** Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. *Tree Physiology* **15**: 317–325.
- **Heal OW, Jones HE, Whittaker JB. 1975.** Moor House, UK. In: Rosswall T, Heal OW, eds. *Structure and function of tundra ecosystems*. Stockholm, Sweden: Ecology Bulletin, 295–320.
- Hendrick RL, Pregitzer KS. 1993. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23: 2507–2520.
- Hendricks JJ, Nadelhoffer KJ, Aber JD. 1993. Assessing the role of fine roots in carbon and nutrient cycling. *Trends in Ecological Evolution* 8: 174–178.
- Hnatiuk RJ. 1993. Grasslands of the sub-antarctic islands. In: Coupland RT, ed. Natural grasslands. Amsterdam, The Netherlands: Elsevier, 411–482.
- Ingham RE, Detling JK. 1984. Plant-herbivore interactions in a North American mixed-grass prairie. 3. Soil nematode populations and root biomass on *Cynomys ludovicianus* colonies and adjacent uncolonized areas. *Oecologia* 63: 307–313.
- **Jenkin JF. 1975.** Macquarie Island, Subantarctic. In: Rosswall T, Heal OW, eds. *Structure and function of tundra ecosystems*. Stockholm, Sweden: Ecology Bulletin, 375–397.
- Jones MB, Muthuri FM. 1997. Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. Journal of Tropical Ecology 13: 347–356.
- **Jordan CF, Escalante G. 1980.** Root productivity in an Amazonian rain forest. *Ecology* **61**: 14–18.
- Joshi SK, Pati DP, Behera N. 1990. Primary production of herbaceous layer in a tropical deciduous forest in Orissa, India. *Tropical Ecology* 31: 73–83.
- Joslin JD, Henderson GS. 1987. Organic matter and nutrients associated with fine root turnover in a white oak stand. Forest Science 33: 330–346.
- Kamnalrut A, Evenson JP. 1992. Monsoon grassland in Thailand. In: Long SP, Jones MB, Roberts MJ, eds. *Primary productivity of grass ecosystems of the tropics and sub-tropics*. London, UK: Chapman & Hall, 100–126.
- Keith H, Raison RJ, Jacobsen KL. 1997. Allocation of carbon in a mature eucalyptus forest and some effects of soil phosphorous availability. *Plant and Soil* 196: 81–99.
- Kestemont P. 1982. Belgium. In: Cannell MGR, ed. World forest biomass and primary production data. London, UK: Academic Press, 27.
- **Keyes MR, Grier CC. 1981.** Above- and belowground net production in 40-year-old Douglas-fir stands on low and high productivity sites. *Canadian Journal of Forest Research* **11**: 599–605.
- Kinyamario JI, Imbamba SK. 1992. Savanna at Nairobi National Park, Nairobi. In: Long SP, Jones MB, Roberts MJ, eds. *Primary productivity of grass ecosystems of the tropics and sub-tropics*. London, UK: Chapman & Hall, 25–69.
- **Kumar A, Joshi MC. 1972.** The effects of grazing on the structure and productivity of the vegetation near Pilani, Rajasthan, India. *Journal of Ecology* **60**: 665–674.
- Kummerow J, Castillanos J, Maas M, Larigauderie A. 1990.

 Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest. *Vegetatio* 90: 73–80.
- Kvêt J, Westlake DF. 1998. Primary production in wetlands. In: Westlake DF, Kvêt J, Szczepanski A, eds. The production ecology of wetlands. Cambridge, UK: Cambridge University Press, 78–168.
- Lana PDC, Guiss C, Disaró ST. 1991. Seasonal variation of biomass and production dynamics for above- and belowground components of a *Spartina alterniflora* marsh in the Euhaline sector of Paranagua Bay (SE Brazil). *Estuarine*, *Coastal and Shelf Science* 32: 231–242.
- Lehmann J, Zech W. 1998. Fine root turnover of irrigated hedgerow intercropping in northern Kenya. *Plant and Soil* 198: 19–31.
- Long SP, Garcia Moya E, Imbamba SK, Kamnalrut A, Piedade MTF, Scurlock JMO, Shen YK, Hall DO. 1989.

- Primary productivity of natural grass ecosystems of the tropics: a reappraisal. *Plant and Soil* 115: 155–166.
- Marshall JK. 1977. Biomass and production partitioning in response to environment in some North American grasslands. In: Marshall JK, ed. *The belowground ecosystem: a synthesis of plant-associated processes*. Fort Collins, CO, USA: Colorado State University, 73–84.
- Martínez F, Merino O, Martín A, Martín DG, Merino J. 1998. Belowground structure and production in a Mediterranean sand dune shrub community. *Plant and Soil* 201: 209–216.
- McClaugherty CA, Aber JD, Melillo JM. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. *Ecology* **63**: 1481–1490.
- McNaughton SJ, Banyikwa FF, McNaughton MM. 1998. Root biomass and productivity in a grazing ecosystem: the Serengeti. *Ecology* 79: 587–592.
- Megonigal JP, Day FP Jr. 1988. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp (USA). *American Journal of Botany* 75: 1334–1343.
- Menaut JC, César J. 1979. Structure and primary production of Lamto Savannas, Ivory Coast. *Ecology* **60**: 1197–1210.
- **Milchunas DG, Lauenroth WK. 1992.** Carbon dynamics and estimates of primary production by harvest, ¹⁴C dilution, and ¹⁴C turnover. *Ecology* **73**: 593–607.
- Milchunas DG, Lauenroth WK, Singh JS, Cole CV, Hunt HW. 1985. Root turnover and production by ¹⁴C dilution: implications of carbon partitioning in plants. *Plant and Soil* 88: 353–365.
- Miller PC, Webber PJ, Oechel WC, Tieszen LL. 1980. Biophysical processes and primary production. In: Brown J, Miller PC, Tieszen LL, Bunnell FL, eds. *An Arctic ecosystem: the coastal tundra at Barrow*, *Alaska*. Stroudsburg, PA, USA: Dowden, Hutchinson & Ross, 66–101.
- **Misra MK, Misra BN. 1984.** Biomass and primary production in an Indian grassland. *Tropical Ecology* **25**: 239–247.
- **Nadelhoffer KJ, Aber J, Melillo JM. 1985.** Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. *Ecology* **66**: 1377–1390.
- **Neill C. 1992.** Comparison of soil coring and ingrowth methods for measuring belowground production. *Ecology* **73**: 1918–1921.
- Neill C. 1994. Primary production and management of seasonally flooded prairie marshes harvested for wild hay. *Canadian Journal of Botany* 72: 801–807.
- Nihlgård B, Lindgren L. 1977. Plant biomass, primary production and bioelements of three mature beech forests in south Sweden. *Oikos* 28: 95–104.
- Østbye E, Berg A, Blehr O, Espeland M, Gaare E, Hagen A, Hesjedal O, Hågvar S, Kjelvik S, Lien L, Mysterud I, Sandhaug A, Skar H-J, Skartveit A, Skre O, Skogland T, Solhøy T, Stenseth NC, Wielgolaski FE. 1975. Hardangervidda, Norway. In: Rosswall T, Heal OW, eds. Structure and function of tundra ecosystems. Stockholm, Sweden: Ecology Bulletin, 225–264.
- Pandey C, Singh J. 1992. Rainfall and grazing effects on net primary productivity in a tropical Savanna, India. *Ecology* 73: 2007–2021.
- Pandya SM, Sidha VK. 1987. Seasonal variation in plant biomass and primary production in desert vegetation at Khavda of Kutch District (Gujarat), India. Tropical Ecology 28: 57–68.
- **Persson HÅ. 1983.** The distribution and productivity of fine roots in boreal forests. *Plant and Soil* **71**: 87–101.
- **Persson HÅ. 1978.** Root dynamics in a young Scots pine stand in Central Sweden. *Oikos* **30**: 508–519.
- **Persson HÅ. 1980.** Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. *Oikos* **34**: 77–87.
- Picard D. 1979. Evaluation of the organic matter supplied to the soil by the decay of the roots of an intensively managed *Panicum maximum* sward. *Plant and Soil* 51: 491–501.
- Piedade MTF, Junk WJ, De Mello JAN. 1992. A floodplain grassland in the central Amazon. In: Long SP, Jones MB, Roberts MJ, eds. *Primary productivity of grass ecosystems*. London, UK: Chapman & Hall, 127–158.
- Powell SW, Day FP Jr. 1991. Root production in four communities in the Great Dismal Swamp (Virginia, North Carolina, USA). American Journal of Botany 78: 288-297.

- **Rajwar GS, Ramola VC. 1990.** Variation in net primary production of east and west facing slope montane grasslands of Uttarkashi, Garhwal Himalaya. *Indian Forester* **116**: 717–722.
- Ram J, Singh SP, Singh JS. 1991. Effect of fertilizer on plant biomass distribution and net accumulation rate in an alpine meadow in central Himalaya, India. Journal of Range Management 44: 140–143.
- Rana BS, Rikhari HC. 1994. Biomass and productivity of different forest grazing lands in central Himalaya. Proceedings of the Indian National Science Academy B (Biological Sciences) 60: 129–135.
- Rawat YS, Bhatt YD, Pande P, Singh SP. 1994. Production and nutrient cycling in *Arundinaria falcata* and *Lantana camara*: the two converted ecosystems in central Himalaya. *Tropical Ecology* 35: 53–67.
- **Reader RJ, Stewart JM. 1972.** The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. *Ecology* **53**: 1024–1037.
- **Redente EF, Biondini ME, Moore JC. 1989.** Observations on biomass dynamics of a crested wheatgrass and native shortgrass ecosystem in southern Wyoming. *Journal of Range Management* **42**: 113–118.
- **Redmann RE. 1992.** Primary productivity. In: Coupland RT, ed. *Natural grasslands: introduction and Western Hemisphere*. New York, USA: Elsevier, 75–93.
- Rikhari HC, Negi GCS, Pant GB, Rana BS, Singh SP. 1992. Phytomass and primary productivity in several communities of a central Himalayan alpine meadow, India. *Arctic and Alpine Research* 24: 344–351.
- Roman CT, Daiber FC. 1984. Aboveground and belowground primary production dynamics of two Delaware Bay tidal marshes. *Bulletin of the Torrey Botanical Club* 111: 34-41.
- Rosswall T, Flower-Ellis JGK, Johansson LGJS, Rydén BE, Sonesson M. 1975. Stordalen (Abisko), Sweden. In: Roswall T, Heal OW, eds. Structure and function of tundra ecosystems. Stockholm, Sweden: Ecology Bulletin, 265–294.
- Ruess RW, Hendrick RL, Bryant JP. 1998. Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. *Ecology* 79: 2706–2720.
- Ruess RW, van Cleve K, Yarie J, Viereck LA. 1996. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Canadian Journal of Forest Research 26: 1326–1336.
- Saggar S, Hedley C, Mackay AD. 1997. Partitioning and translocation of photosynthetically fixed ¹⁴C in grazed hill pastures. *Biology and Fertility of Soils* 25: 152–158.
- Sah VK, Saxena AK, Singh V. 1994. Seasonal variation in plant biomass and net primary productivity of grazinglands in the forest zone of Garhwal Himalaya. *Tropical Ecology* 35: 115–131.
- San José JJ, Berrade F, Ramirez J. 1982. Seasonal changes of growth, mortality and disappearance of belowground root biomass in the Trachypogon savanna grass. *Acta Oecologia Plantarum* 3: 347–58.
- Santantonio D, Grace JC. 1987. Estimating fine root production and turnover from biomass and decomposition data: a compartment flow model. *Canadian Journal of Forest Research* 17: 900–908
- Santantonio D, Hermann RK. 1985. Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. *Annales des Sciences Forestières* 42: 113–142.
- Santantonio D, Hermann RK, Overton WS. 1977. Root biomass studies in forest ecosystems. *Pedobiologia* 17: 1–31.
- Saterson KA, Vitousek PM. 1984. Fine-root biomass and nutrient cycling in *Aristida stricta* in a North Carolina coastal plain savanna. *Canadian Journal of Botany* **62**: 823–829.
- Saxena AK, Rana BS, Rao OP, Singh BP. 1996. Seasonal variation in biomass and primary productivity of para grass (*Brachiaria mutica*) under a mixed tree stand and in an adjacent open area in northern India. *Agroforestry Systems* 33: 75–85.
- Scholes RJ, Hall DO. 1996. The carbon budget of tropical savannas, woodlands and grasslands. In: Breymeyer AI, Hall DO, Melillo JM, Agren GI, eds. *Global change: effects on coniferous forests and grasslands*. Chichester, New York, USA: John Wiley & Sons Ltd, 69–100.
- Scholes RJ, Walker BH. 1993. Primary production. In: Scholes RJ, Walker BH, eds. An African savanna: synthesis of the

- Nylsveley study. Cambridge, UK: Cambridge University Press, 144–167.
- **Schroth G, Zech W. 1995.** Above- and below-ground biomass dynamics in a sole cropping and an alley cropping system with *Gliricidia sepium* in the semi-deciduous rainforest zone of West Africa. *Agroforestry Systems* **31**: 181–198.
- Schubauer JP, Hopkinson CS. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. *Limnology and Oceanography* 29: 1052–1065.
- Shackleton CM, McKenzie B, Granger JE. 1988. Seasonal changes in root biomass, root/shoot ratios and turnover in two coastal grassland communities in Transkei. *South African Journal of Botany* 54: 465–471.
- Shankar U, Pandey HN, Tripathi RS. 1993. Phytomass dynamics and primary productivity in humid grasslands along altitudinal and rainfall gradients. Acta Oecologica 14: 197–209.
- Shaver GR, Billings WD. 1975. Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. *Ecology* 56: 401–409.
- **Shaver GR, Chapin FS III. 1991.** Production: biomass relationships and element cycling in contrasting arctic vegetation types. *Ecological Monographs* **61**: 1–31.
- Sims PL, Singh JS. 1978. The structure and function of ten western North American grasslands. III. Net primary production, turnover and efficiencies of energy capture and water use. *Journal of Ecology* 66: 573–597.
- Singh JS, Joshi MC. 1979. Tropical grasslands. Primary production. In: Coupland RT, ed. Grassland ecosystems of the World. Cambridge, UK: Cambridge University Press, 197–218.
- Singh JS, Singh L, Pandey CB. 1991. Savannization of dry tropical forest increases carbon flux relative to storage. *Current Science* 61: 477–480.
- Singh JS, Yadava PS. 1974. Seasonal variation in composition, plant biomass and net primary productivity of a tropical grassland at Kurukshetra, India. *Ecological Monographs* 44: 351–76
- Singh KP, Singh RP. 1981. Seasonal variation in biomass and energy of small roots in tropical dry deciduous forest, Varanasi, India. *Oikos* 37: 88–92.
- **Singh RS. 1993.** Effect of winter fire on primary productivity and nutrient concentration of a dry tropical savanna. *Vegetatio* **106**: 63–71.
- Smith KK, Good RE, Good NF. 1979. Production dynamics for above and belowground components of a New Jersey, USA, Spartina alterniflora tidal marsh. Estuarine and Coastal Marine Science 9: 189–202.
- Smith RIL, Walton DWH. 1975. South Georgia, subantarctic.
 In: Rosswall T, Heal OW, eds. Structure and function of tundra ecosystems. Stockholm, Sweden: Ecology Bulletin, 399–423.
- Steele SJ, Gower ST, Vogel JG, Norman JM. 1997. Root mass, net primary production and turnover in aspen, jack pine, and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology 17: 577-587.
- Stevenson MJ, Day FP. 1996. Fine-root biomass distribution and production along a barrier island chronosequence. *American Midland Naturalist* 135: 205–217.
- **Strugnell RG, Pigott CD. 1978.** Biomass, shoot-production and grazing of two grasslands in the Rwenzori National Park, Uganda. *Journal of Ecology* **66**: 73–96.
- **Sundarapandian SM, Swamy PS. 1996a.** Influence of herbaceous species composition on fine root biomass production in disturbed and undisturbed deciduous forests of Western Ghats in India. *Acta Oecologica* **17**: 163–176.
- Sundarapandian SM, Swamy PS. 1996b. Fine root biomass distribution and productivity patterns under open and closed canopies of tropical forest ecosystems at Kodayar in Western Ghats, South India. Forest Ecology and Management 86: 181–192.
- Sundriyal RC, Joshi AP. 1990. Effect of grazing on standing crop, productivity and efficiency of energy capture in an alpine grassland ecosystem at Tungnath (Garhwal Himalaya), India. *Tropical Ecology* 31: 84–97.
- Symbula M, Day FP Jr. 1988. Evaluation of two methods for estimating belowground production in a freshwater swamp forest. *American Midland Naturalist* 120: 405–415.

- Szanser M. 1997. Root production and biomass of *Arrhenatheretalia* meadows of different age. *Ekologia Polska* 45: 633–646.
- **Tiwari SC. 1986.** Variations in net primary production of Garhwal Himalayan grasslands. *Tropical Ecology* **27**: 166–173.
- Valiela I, Teal JM, Persson NY. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: belowground biomass. *Limnology and Oceanography* 21: 245–252.
- van Praag HJ, Sougnez-Remy S, Weissen F, Carletti G. 1988. Root turnover in a beech and a spruce stand of the Belgian Ardennes. *Plant and Soil* 105: 87–103.
- Vogt KA. 1991. Carbon budgets of temperate forest ecosystems. Tree Physiology 9: 69–86.
- Vogt KA, Grier CC, Meier CE, Edmonds RL. 1982. Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63: 370–380.
- Vogt KA, Grier CC, Vogt DJ. 1986. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forest. *Advances in Ecological Research* 15: 303–377.
- Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O'Hara J, Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. *Plant and Soil* 187: 159–219.

- Vogt KA, Vogt JD, Moore EE, Fatuga BA, Redlin MR, Edmonds RL. 1987. Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir ecosystems. Journal of Ecology 75: 857–870.
- Weaver JE, Zink E. 1946. Annual increase of underground materials in three range grasses. *Ecology* 27: 115–127.
- Webber PJ, Miller PC, Chapin FS III, McCown BH. 1980. 6. The vegetation: pattern and succession. In: Brown J, Miller PC, Tieszen LL, Bunnell FL, eds. *An Arctic ecosystem*. Stroudsburg, PA, USA: Dowden, Hutchinson & Ross, 186–218.
- Wentz WA, Chamie JPM. 1980. Determining the belowground productivity of *Chamaedaphne calyculata*, a peatland shrub. *International Journal of Ecology and Environmental Sciences* 6: 1-4.
- White DS, Howes BL. 1994. Translocation, remineralization, and turnover of nitrogen in the roots and rhizomes of Spartina alterniflora (Gramineae). American Journal of Botany 81: 1225–1234
- Whittaker RH, Bormann FH, Likens GE, Siccama TG. 1974. The Hubbard Brook ecosystem study: forest biomass and production. *Ecological Monographs* 44: 233–252.
- Whittaker RH, Woodwell GM. 1969. Structure, production and diversity of the oak-pine forest at Brookhaven, New York. *Journal of Ecology* 57: 155-174.