MIMOSIS Characterization Software

September 30, 2024

1 Introduction

Comments by Roma Bugiel:

- For laboratory characterization runs the data format will not change, clustering decoding will be done in the DAQ SW.
 - For laboratory characterization runs the data format will not change, clustering decoding will be done in the DAQ SW. For beam test run files, I don't know yet, but it is most probable that again clustering decoding will be done by DAQ. (Gilles Claus)
- For beam test run files, I don't know yet, but it is most probable that again clustering decoding will be done by DAQ.

Characterization for MIMOSIS-1:

- Create a workspace (folder) named "Mimosis_Characterization"
 - mkdir Mimosis_Characterization
 - cd Mimosis_Characterization
- Create a folder for the input data and a txt file for run list.
 - mkdir inputData
 - touch run_list.txt
- Get some data from the server
- Clone repositories (forked from RomaBugiel/MIMOSIS1_PhysicsAnalysis_unix)
 - https://github.com/AltingunAli/MIMOSIS1_DataConverter_unix
 - https://github.com/AltingunAli/MIMOSIS1_PhysicsAnalysis_unix
- MIMOSIS1_DataConverter_unix: it is a macro needed for changing .dat format (output of DAQ) into ROOT files
- MIMOSIS1_PhysicsAnalysis_unix: it is a macro that makes S-curves, calculates thresholds and so on
- compile (starting from to Mimosis_Characterization directory)
 - make -j12
 - cd ..
 - cd MIMOSIS1_PhysicsAnalysis_unix
 - make -j12

- Modify run_list.txt in Mimosis_Characterization folder (you can find and example in MIMO-SIS1_PhysicsAnalysis_unix folder).
 - Run_No : Run number
 - Chip No : Chip number
 - Matrix: Matrix of interest (A, B, C, D)
 - HV : High Voltage
 - BB : Backbias voltage
 - VCASN2 : VCASN2 value
 - VCLIP : VCLIP value
 - VPL : VPL value
 - VPH: VPH value
 - INPUT[e] : Input value in e
 - Step size: Size of one step (in general it is 5)
 - Nb steps: Total number of steps
 - VCASN: VCASN in DAC
 - VCASN[mV]: VCASN in mV, (not used at the moment) can be set to 0
 - Row_Start : The First pixel row to start
 - Row_End: The pixel row to end
 - Clean_Plot: If you require clean and well-organized S-curve plots, set the value to 1; otherwise, set it to 0. While the results improve when set to 1, the overall change is not significant.
 - VPH_Fine[mV]: VPH fine value in mV.
- Please check the LogFile.txt for any changes made to Roma's version.
- cd MIMOSIS1_DataConverter_unix
- ./run_all.sh ../run_list.txt
- cd ../MIMOSIS1_PhysicsAnalysis_unix
- ./run_all.sh ../run_list.txt
- The analysis is done at this point.
- Results:
 - MIMOSIS1_PhysicsAnalysis_unix folder, output_results.txt: you can copy the results from
 here and paste into https://sbgpicselpcb.in2p3.fr. You can also find a text file named
 Results.txt in the outputData folder located in MIMOSIS1_PhysicsAnalysis_unix, which
 makes copying the results to the website easier and faster.
 - In the output_results.txt, there is a "respond" column. It means how much pixel in % have S-curve fitted. If low %, it means that data has been take with wrong VPH-VPL or just something is not good with this run.
 - for each run MIMOSIS1_PhysicsAnalysis_unix/outputData there are control plot stored. Have a look on h2_mu especially, which is a 2D map of thresholds. You will see if there are some dead rows, columns, patterns and so on. Similar plot for noise is stored.