Lecture 1 : 강의 소개/집합과 함수 Fastcampus Math Camp

신승우

Wednesday 23rd May, 2018

Outline

- ① 수업 소개
- ② 집합
- ③ 함수
- ④ 다양한 함수와 그 성질

Outline

- ① 수업 소개
- ② 집힙
- ③ 함수
- ④ 다양한 함수와 그 성질

수업 목표

This lecture is about...

- 수학적 개념의 이해
- 기초적인 Computer Algebra System의 구현
 - symbolic implementation
 - numerical implementation
- 학습한 수학적 개념의 응용법 살펴보기

This lecture is **NOT** about...

• 라이브러리 사용법 - We will re-invent the Wheel!

본 수업에서 만들 것들은 대부분 sympy나 numpy에 포함되어 있습니다.

수업 진행 방식

- 수학적 개념을 배운다.
- ② 구현 가능한 부분을 구현한다. ¹
- ❸ 구현한 부분을 일부 사용하고, 기존 라이브러리(numpy 등)의 도움을 받아서 실제 공학적 문제를 해결해 본다.

모든 구현 결과와 수업자료는 깃헙에 올라갑니다.

¹구현 불가능한 부분을 정확하게 구분하고 싶으면, 나중에 Computable Analysis 같은 부분을 공부하면 됩니다. 여기서는 다루지 않습니다.

구현에서의 이슈들

본격적으로 수업 전에, 구현에서 많이 있을 이슈들을 짚고 넘어갑니다.

- 무한을 다루는 법
 - 무한집합
 - 실수 / 무리수
- symbolic한 식을 다루는 법

Handling Infinite

기본적으로 컴퓨터나 우리의 시간은 유한하므로, 무한을 다루는 것은 불가능합니다. 따라서 우리는 무한을 다음과 같은 근사적인 형태로 다룹니다.

- 최대 수를 정해놓고 유한으로 근사하기
- semi-decidable loop 사용
- lazy evaluation 사용 : 파이썬에서 제공하므로 명시적으로 구현할 필요는 없음

Outline

- 1 수업 소개
- ② 집합
- ③ 함수
- ④ 다양한 함수와 그 성질

집합의 정의

집합은 다음과 같이 정의됩니다.

집합

특정 조건에 맞는 원소들의 모임. 임의의 한 원소가 그 모임에 속하는지를 알 수 있고, 그 모임에 속하는 임의의 두 원소가 다른가 같은가를 구별할 수 있는 명확한 표준이 있는 것을 이른다.

여기서 집합을 이루는 것은 두 가지임을 알 수 있습니다.

- 임의의 한 원소가 그 모임에 속하는지를 알 수 있고
- 그 모임에 속하는 임의의 두 원소가 다른가 같은가를 구별할 수 있는 명확한 표준

이를 조금 더 구현 가능한 말로 바꿔보겠습니다.

집합의 정의

- 임의의 원소가 그 모임에 속하는지 판단하는 함수 : isinstance 함수
- 두 원소가 같은지 판단하는 함수: __eq__ 함수

위에서 나와있듯이, 이 둘은 파이썬의 클래스에서 이미 구현되어 있습니다. 즉, 우리는 파이썬의 클래스를 집합으로 간주할 수 있습니다. 본 수업에서는 숫자의 집합만을 고려할 예정이므로, 두번째 함수는 구현하지 않을 것입니다.

집합의 연산

- 집합의 크기 |A|
- 합집합 A ∪ B
- 교집합 A ∩ B
- 차집합 A B
- 데카르트 곱 *A* × *B*

집합의 종류

여기서는 집합의 크기 2 에 따른 분류와, 집합의 순서 여부에 따른 분류를 배웁니다.

- 크기에 따라
 - 유한집합
 - 가산집합
 - 비가산집합
- 순서 여부에 따라
 - Orderless Set
 - Partially Ordered Set
 - Ordered Set

가산집합

가산집합은 그 수를 셀 수 있는 집합을 말합니다. 여기서 센다는 것은, 집합의 각 원소에 일련번호를 붙일 수 있다는 말과 같습니다. 센다는 것을 프로그래밍에서 생각해보면, iterator³의 개념과 흡사하다는 것을 알 수 있습니다. 즉, 센다는 행위를 iterator에서 next() 함수를 호출하는 것과 같이 생각할 수 있습니다. 어민하게는 가사지하은 자연스 진하고 인데인데우이 가는하 진하은

엄밀하게는, 가산집합은 자연수 집합과 일대일대응이 가능한 집합을 말합니다.

가산집합의 예시

- 자연수
- 짝수/홀수
- 정수
- 유리수

비가산집합

그렇다면, 셀 수 없는 집합이 있을까요? 대표적으로 실수는 셀 수 없습니다.

• 실수

실수는 전산상으로 완벽하게 구현이 불가능함을 보일 수 있습니다. 따라서 여기서는 실수를 구현하지 않고, 그냥 유리수로 실수를 대체하여 사용합니다.

Ordered Set

일반적으로 집합은 순서가 없습니다. 하지만, 집합에 순서를 부여하는 것은 가능합니다. 예를 들어서, 어떤 사전에 있는 단어들의 집합을 생각해 보면, 집합의 두 가지 조건을 만족하면서 동시에 순서도 있습니다. 특히, 사전에 있는 단어는 모든 단어가 다 순서를 가지고 있습니다. 즉, 임의의 두 단어간에 사전에서 더 앞에 오는 단어가 있습니다. 이런 경우 Totally Ordered Set이라고 합니다.

반면, 항상 모든 원소간에 항상 순서가 잘 정의되는 것은 아닙니다. 이런 경우를 Partially Ordered Set이라고 합니다.

집합의 구현

이제 위에서 배운 개념들을 구현해 보겠습니다.

- 집합과 그 연산
- 유한집합/가산집합
- Ordered/Partially Ordered Set
- 자연수/유리수

Outline

- ① 수업 소개
- ② 집합
- ③ 함수
- ④ 다양한 함수와 그 성질

함수의 정의

함수는 다음과 같이 정의됩니다.

함수

함수는 정의역(X, domain), 공역(Y, codomain), 그리고 대응관계(f, function)로 정의됩니다.

정의역과 공역은 집합이며, 대응관계는 정의역의 한 원소를 공역의 한 원소로 대응시킵니다. 이 때, 다음의 공역의 부분집합을 치역이라고 하고 다음과 같이 씁니다. $f(X) = \{y | \forall x \in X, y = f(x)\}$

함수의 정의

위 내용을 프로그래밍적으로 생각해 보면

- 정의역 : 함수의 input argument의 type
- 치역 : 함수의 return value의 type
- 대응관계 : 함수 내부 body

로 볼 수 있습니다. 예를 들어서 자바의 함수 헤더의 경우, public int methodName(int a, int b) 으로 쓰이는데, 이는 정확하게 함수의 수학적 정의와 일치함을 볼 수 있습니다.

함수의 종류

- 단사함수 : 공역과 치역이 같은 함수
- 전사함수 : 정의역의 각자 다른 원소를 공역의 각자 다른 원소로 대응시키는 함수
- 전단사함수 : 단사이면서 전사인 함수

합성함수의 정의

두 함수 f,g에 대하여 합성함수는 다음과 같이 정의됩니다.

합성함수

합성함수 f • g는 f(g(x))로 정의됩니다.

이 때 g의 공역과, f의 정의역이 일치해야 두 함수를 합성할 수 있습니다. 프로그래밍으로 비유하자면, TypeError가 안 나게 해야 하는 것과 같습니다.

역함수

함수 f에 대하여 역함수는 다음과 같이 정의됩니다.

역함수

함수 f의 역함수 f^{-1} 는 $\forall x \in X, f(f^{-1}(x)) = x$ 를 만족하는 함수를 말한다.

함수의 구현

이제 위에서 배운 함수의 개념들을 구현해 보겠습니다.

- 함수
- 합성함수
- 역함수

Outline

- 1 수업 소개
- ② 집합
- ③ 함수
- ④ 다양한 함수와 그 성질

다항함수

 $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0 = \sum_{i=0}^n a_i x^i$ 와 같은 함수를 다항함수라 하고, n차함수라고도 한다.

삼각함수의 정의

Sine 함수

Cosine 함수

삼각함수의 성질

•
$$tan(x) = \frac{sin(x)}{cos(x)}$$
 5

•
$$sin^2(x) + cos^2(x) = 1$$

삼각함수의 성질

세 변의 길이가 a,b,c이고 각 변을 바라보는 각이 각각 α, β, γ 인 넓이가 S 인 삼각형에 대해서 다음이 성립합니다.

- $S = \frac{1}{2}bcsin(\alpha)$
- $c^2 = a^2 + b^2 2abcos(\gamma)$

삼각함수의 합차공식

세 변의 길이가 a,b,c인 삼각형에 대해서

•
$$sin(x + y) = sin(x)cos(y) + sin(y)cos(x)$$

•
$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

•
$$tan(x + y) = \frac{tan(x)tan(y)}{1 - tan(x)tan(y)}$$

지수법칙

정수 n,m에 대해서 다음이 성립합니다.

- $x^n x^m = x^n (n+m)$
- $(x^n)^m = x^{nm}$

지수함수

지수법칙을 실수로 연장하여 생각하면, 다음과 같은 함수를 생각할 수 있습니다.

지수함수

상수 a에 대해서, 다음과 같은 함수를 지수함수라고 합니다. $f(x) = a^x$

여기서 a를 함수의 밑이라고 합니다. 지수함수는 지수법칙의 연장이므로, 지수법칙이 성립합니다.

지수함수

