Data augmentation in the general epidemic model

SISMID/July 20-22, 2020

Instructors: Vladimir Minin, Kari Auranen, Elizabeth Halloran

Outline

- ► The general epidemic model
 - ► A simple Susceptible—Infected—Removed (SIR) model of an outbreak of infection in a closed population
- Likelihood function for the infection and removal rates
 - Complete data: both infection and removal times are observed
 - Under Gamma priors for the infection and removal rates, their full conditionals are also Gamma, so Gibbs updating steps can be used
- Incomplete data: only removal times are observed
 - Augment the unknown infection times
 - Additional Metropolis-Hastings steps for sampling infection times, requiring explicit computation of the complete data likelihood

The SIR model

- Consider a closed population of M individuals
- One introductory case (infective) introduces the infection into a population of initially susceptible individuals, starting an outbreak
- Once the outbreak has started, the hazard of infection for a still susceptible individual depends on the number of infectives in the population: $(\beta/M)I(t)$
- If an individual becomes infected, the hazard of clearing infection (and stopping being infective) is γ , i.e., he/she remains infective for an exponentially distributed period of time. He/she then becomes *removed* and does not contribute to the outbreak any more
- ► There is no latency

Transitions in the state space

The complete data

- Assume one introductory case whose infection takes place at time t = 0 (this fixes the time origin)
- For M individuals followed from time 0 until the end of the outbreak at time T (after which time the number of infectives I(t) = 0), the *complete data* record all event times
- ▶ This is equivalent to observing n-1 infection times and n removal times, and the fact the M-n individuals escaped infection throughout the outbreak

$$\overbrace{\left\{0 = i_1 < i_2 < \ldots < i_n\right\}}^{\text{infection times}} \text{ and } \overbrace{\left\{r_1 < \ldots < r_{n-1} < r_n = T\right\}}^{\text{removal times}}$$

N.B. Here, the i_k and r_k do not correspond to the same individual (we will discuss this assumption later; see p. 19)

Counting infectives and susceptibles

- Denote the ordered event times i_1, \ldots, i_n and r_1, \ldots, r_n jointly as $0 = u_1 < u_2 < \ldots < u_{2n} = T$
- ▶ Denote the indicators of time u_k being an infection or removal time by D_k and R_k , respectively
- ightharpoonup Denote the number of infectives at time t by I(t)
 - it is a piecewise constant (left-continuous) function, assuming values in the set $\{0, 1, \dots, M\}$
 - ightharpoonup it jumps at times $u_2 < \ldots < u_{2n}$
- ▶ Denote the number of susceptibles at time t by S(t)
 - it is a piecewise constant (left-continuous) function, jumping at times $i_2 < ... < i_n$
- ▶ Both I(t) and S(t) are determined by the complete data

Example S(t)4 3 21 1 3 **I** *I(t)* 2 1 Time t i_4 $i_1 = 0$ i_2 i_3 $r_4 = T$ r_1 r_2 $u_1 = 0$ u_2 U_4 U_5 u_6 U_3 U_7 $u_8 = T$ $D_k = 0$ 1 0 0 1 0

0

0

 R_k 0

The process of infections

- The model of new infections is a non-homogeneous Poisson process with rate $\beta I(t)S(t)/M$
 - the rate is a piecewise constant (left-continuous) function
 - it jumps at times $u_2 < \ldots < u_{2n}$, with levels $\beta I(u_2)S(u_2)/M$, $\beta I(u_3)S(u_3)/M$, \ldots , $\beta I(u_{2n})S(u_{2n})/M$
- ► The probability density of the infection events is thus proportional to

$$\prod_{k=2}^{2n} \left[((\beta/M)I(u_k)S(u_k))^{D_k} e^{-(\beta/M)I(u_k)S(u_k)(u_k-u_{k-1})} \right]$$
total time for "infectious pressure"
$$-(\beta/M) \sum_{k=2}^{2n} I(u_k)S(u_k)(u_k-u_{k-1})$$

$$\propto \prod_{k=2}^{2n} (\beta I(u_k)S(u_k))^{D_k} \times e$$

The process of removals

- ► The model of removals is a non-homogeneous Poisson process with rate $\gamma I(t)$
 - ▶ the rate is a piecewise constant (left-continuous) function
 - it jumps at times $u_2 < \ldots < u_{2n}$, with levels $\gamma I(u_2), \gamma I(u_3), \ldots, \gamma I(u_{2n})$
- ► The probability density of the removal events is thus proportional to

$$\prod_{k=2}^{2n} \left[(\gamma I(u_k))^{R_k} e^{-\gamma I(u_k)(u_k - u_{k-1})} \right]$$

$$= \prod_{k=2}^{2n} (\gamma I(u_k))^{R_k} \times e^{-\gamma I(u_k)(u_k - u_{k-1})}$$

$$= \prod_{k=2}^{2n} (\gamma I(u_k))^{R_k} \times e^{-\gamma I(u_k)(u_k - u_{k-1})}$$

Complete data likelihood

▶ The joint likelihood of parameters β and γ , based on the complete data:

$$\widehat{L(\beta, \gamma; \boldsymbol{i}, \boldsymbol{r})} = \prod_{k=2}^{2n} (\beta I(u_k) S(u_k))^{D_k} \prod_{k=2}^{2n} (\gamma I(u_k))^{R_k}$$

$$\times e^{-\sum_{k=2}^{2n} ((\beta/M) I(u_k) S(u_k) + \gamma I(u_k))(u_k - u_{k-1})}$$

$$= \prod_{k=2}^{n} \{\beta I(i_k) S(i_k)\} \prod_{k=1}^{n} \{\gamma I(r_k)\}$$

$$\times e^{-\sum_{k=2}^{2n} ((\beta/M) I(u_k) S(u_k) + \gamma I(u_k))(u_k - u_{k-1})}$$

Simplifying the notation

- Note that $\sum_k I(u_k)S(u_k)(u_k-u_{k-1})=\int_0^T I(u)S(u)du$
- Similarly $\sum_{k} I(u_k)(u_k u_{k-1}) = \int_0^T I(u) du$
- ▶ The likelihood function can thus be written as

$$\prod_{k=2}^{n} \{\beta I(i_k) S(i_k)\} \prod_{k=1}^{n} \{\gamma I(r_k)\}$$

$$\times \exp\left(-\int_{0}^{T} \{(\beta/M) I(u) S(u) + \gamma I(u)\} du\right)$$

Poisson likelihood and Gamma priors

- \blacktriangleright This above likelihood is the so called Poisson likelihood for parameters β and γ
- In particular, Gamma distributions can be used as conjugate priors for β and γ
- It follows that the full conditional distributions of β and γ are also Gamma and can be updated by Gibbs steps

Gamma prior distributions

lacktriangle Rate parameters eta and γ are given independent Gamma priors

$$f(eta) \propto eta^{
u_eta-1} \exp(-\lambda_eta eta)$$

 $f(\gamma) \propto \gamma^{
u_\gamma-1} \exp(-\lambda_\gamma \gamma)$

► This allows easy updating of these parameters using Gibbs sampling (the next two pages)

The full conditional of β

ightharpoonup Parameter β can be updated through a Gibbs step

$$f(\beta|\mathbf{i},\mathbf{r},\gamma) \propto f(\beta,\gamma,\mathbf{i},\mathbf{r}) \propto f(\mathbf{i},\mathbf{r}|\beta,\gamma)f(\beta)$$

$$\propto \beta^{n-1} \exp\left(-(\beta/M) \int_0^T I(u)S(u)du\right) \beta^{\nu_{\beta}-1} \exp(-\lambda_{\beta}\beta)$$

► This means that

$$eta|(oldsymbol{i},oldsymbol{r},\gamma)\sim\Gamma\left(n-1+
u_eta,(1/M)\int_0^TI(u)S(u)du+\lambda_eta
ight)$$

The full conditional of γ

lacktriangle Parameter γ can be updated through a Gibbs step:

$$f(\gamma|\mathbf{i},\mathbf{r},\beta) \propto f(\beta,\gamma,\mathbf{i},\mathbf{r}) \propto f(\mathbf{i},\mathbf{r}|\beta,\gamma)f(\gamma)$$

$$\propto \gamma^n \exp\left(-\gamma \int_0^T I(u) du\right) \gamma^{\nu_\gamma - 1} \exp(-\lambda_\gamma \gamma)$$

▶ This means that

$$\gamma|(oldsymbol{i},oldsymbol{r},eta)\sim\Gamma\left(n+
u_{\gamma},\int_{0}^{T}I(u)du+\lambda_{\gamma}\right)$$

Computation of the integral terms

▶ In practice, the integral terms can be calculated as follows:

 $\underbrace{\int_0^T I(u)du}_{\text{time spent infective}} = \sum_{k=1}^n (r_k - i_k)$

total time for "infectious pressure"

$$\int_{0}^{T} I(u)S(u)du = \sum_{k=1}^{n} \sum_{j=1}^{M} (\min(r_{k}, i_{j}) - \min(i_{k}, i_{j}))$$

where $i_j = \infty$ for j > n, i.e., for those never infected

▶ These expressions are invariant to choice of which r_k corresponds to which i_k

Incomplete data

- Assume that only the removal times $\mathbf{r} = (r_1, \dots, r_n)$ have been observed
- Augment the set of unknowns (β and γ) with infection times $\mathbf{i} = (i_2, \dots, i_n)$
- The aim is to do statistical inference about rates β and γ (and times i), based on their posterior distribution $f(\beta, \gamma, i|r)$
- The posterior distribution is proportional to the joint distribution of all model quantities:

$$f(\beta, \gamma, \boldsymbol{i} | \boldsymbol{r}) \propto f(\beta, \gamma, \boldsymbol{i}, \boldsymbol{r}) = \overbrace{f(\boldsymbol{i}, \boldsymbol{r} | \beta, \gamma)}^{\text{complete data likelihood}} \overbrace{f(\beta) f(\gamma)}^{\text{prior}},$$

Updating infection times

- lacktriangle The full conditional distributions of eta and γ are as above
- ► The unknown infection times *t* require a Metropolis–Hastings step, including explicit evaluations of the Poisson likelihood
- ▶ If the current iterate of i_k is $i_k^{(j)}$, a new value \tilde{i}_k is first proposed (e.g.) from a uniform distribution on [0, T]
- ▶ The proposal is then accepted, i.e., $i_k^{(j+1)} := \tilde{i}$, with probability

$$\min\{1, \frac{f(\tilde{\pmb{i}}, \pmb{r}|\beta, \gamma)}{f(\pmb{i}, \pmb{r}|\beta, \gamma)}\}$$

lackbox Here $ilde{i}$ is i except for the kth entry which is $ilde{i}_k$ (instead of $i_k^{(j)}$)

Augmenting individual histories

- ► The likelihood above was constructed for the aggregate processes, i.e., to count the total numbers of susceptibles and infectives
- ▶ In such case, the corresponding augmentation model must not consider individuals
 - ▶ In particular, times i₂,..., i_n must not be tied to particular removal times, i.e., individual event histories must not be reconstructed
- If one considers individual event histories as pairs of times (i_k, r_k) for individuals $k = 1, \ldots, M$, the appropriate complete data likelihood is

$$\gamma^n \prod_{k=2}^n \{\beta I(i_k)\} \exp\left(-\int_0^T (\gamma I(u) + (\beta/M)I(u)S(u))du\right)$$

Example: a smallpox outbreak

- The Abakaliki smallpox outbreak
 - A village of M = 120 inhabitants
 - One introductory case
 - ▶ 29 subsequent cases; this means that n = 1 + 29 = 30
- We will assume that the index case started being infectious on day 0 and that she/he entered the village starting the outbreak at the same day
- ► The observed data are the 30 removal times (in days) with respect to the time origin:

 \blacktriangleright The problem: to estimate rates β and γ from these data; see the computer lab data

A useful reference

- The computer lab analysis of the Abakaliki data is not realistic as it omits
 - the relevant stages of infection (incubation time from exposure to infectiousness, possibly varying infectiousness during fever and the subsequent rash/symptoms)
 - the fact that isolation of cases at their symptomatic stage was only implemented at some point during the outbreak
 - community structure (compounds in the village and the larger community)
 - two more cases that occurred outside the particular group of faith with the 30 cases considered here
- ► For example, we assumed for simplicity that removal occurred at the time of symptoms although in reality removal only occurred at recovery/death or isolation, and only after some delay since symptom onset
- ► A proper analysis is given by Stockdale et al. (2017)

References

- [1] O'Neill Ph. and Roberts G. Bayesian inference for partially observed stochastic processes. Journal of the Royal Statistical Society, Series A, 1999; 162: 121–129.
- [2] O'Neill Ph. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Mathematical Biosciences 2002; 180:103-114.
- [3] Becker N. Analysis of infectious disease data. Chapman and Hall, New York 1989.
- [4] Andersen et al. Statistical models based on counting processes. Springer Verlag, New York, 1993.
- [5] Stockdale J, Kypraios Th., O'Neill Ph. Modelling and Bayesian analysis of the Abakaliki smallpox data. Epidemics 2017; 19:13–23.