Assignment 2

January 29, 2017

1 Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records

Created by: Paz Bunis (pazbunis@gmail.com) #### based on: Beata Strack, Jonathan P. DeShazo, Chris Gennings, et al., "Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records," BioMed Research International, vol. 2014, 11 pages, 2014.

1.1 0. Imports and Initialization

```
In [422]: from matplotlib import style as style
    import matplotlib.pyplot as plt
    %matplotlib inline
    style.use('ggplot')
    import pandas as pd
    import numpy as np
    import scipy.stats as stats
    from kmodes import kmodes
    from sklearn.model_selection import KFold
    from sklearn.ensemble import RandomForestClassifier
    encounters = pd.read_csv('dataset/diabetic_data.csv')
    msk = np.random.rand(len(encounters)) < 0.9
    encounters_train = encounters[msk]
    encounters_test = encounters[~msk]</pre>
```

1.2 1. Descriptive Statistics

1.2.1 1.1. Gender vs. other attributes

1.1.1. Gender vs. Age

1.1.2. Gender vs. Race

```
In [424]: females_race_grouping = encounters_train[encounters_train.gender == 'Female'].groupby('race')
    males_race_grouping = encounters_train[encounters_train.gender == 'Male'].groupby('race').siz
    fig, axs = plt.subplots(1,2, figsize=(9,3))
    axs[0].set_ylabel("encounters")
    axs[1].set_ylabel("encounters")
    fig.tight_layout(pad=4)
    females_race_grouping.plot.bar(ax = axs[0], title = 'Females')
    males_race_grouping.plot.bar(ax = axs[1], title = 'Males', color='b')
```

Out[424]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9eb82f898>

1.1.3. Gender vs. Readmission Value

```
axs[1].set_ylabel("encounters")
fig.tight_layout(pad=4)
females_readmission_grouping.plot.bar(ax = axs[0], title = 'Females')
males_readmission_grouping.plot.bar(ax = axs[1], title = 'Males', color='b')
```

Out[425]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9eb9967f0>

1.1.4. Gender vs. Most Frequently Used ICD-9 Codes (All three diagnosis types are combined to one column)

```
In [426]: fem_diags_projection = encounters_train[encounters_train.gender == 'Female'][['diag_1', 'diag_fem_diags_arr = [fem_diags_projection[['diag_1']],fem_diags_projection[['diag_2']],fem_diags_fem_comb_diags = pd.concat(fem_diags_arr, axis=1).stack().reset_index(drop=True)

male_diags_projection = encounters_train[encounters_train.gender == 'Male'][['diag_1', 'diag_male_diags_arr = [male_diags_projection[['diag_1']],male_diags_projection[['diag_2']],male_diags_projection[['diag_2']],male_diags_arr, axis=1).stack().reset_index(drop=True)

fig, axs = plt.subplots(1,2, figsize=(9,4))
    axs[0].set_ylabel("encounters")
    axs[0].set_ylabel("encounters")
    axs[1].set_ylabel("encounters")
    axs[1].set_ylabel("encounters")
    axs[1].set_ylabel("encounters")
    fig.tight_layout(pad=4)
    fem_comb_diags.value_counts().head().plot.bar(ax = axs[0], title = 'Females')
    male_comb_diags.value_counts().head().plot.bar(ax = axs[1], title = 'Males', color='b')
```

Out[426]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9b604ce10>

1.2.2 1.2. Days in Hospital and A1c Test Results

1.2.1. Days in Hospital vs. Gender

```
In [427]: females_hospital_time_grouping = encounters_train[encounters_train.gender == 'Female'].groupby
    males_hospital_time_grouping = encounters_train[encounters_train.gender == 'Male'].groupby('t
    fig, axs = plt.subplots(1,2, figsize=(9,3))
    axs[0].set_ylabel("encounters")
    axs[0].set_xlabel("days")
    axs[1].set_ylabel("encounters")
    axs[1].set_xlabel("days")

fig.tight_layout(pad=4)
    females_hospital_time_grouping.plot.bar(ax = axs[0], title = 'Females')
    males_hospital_time_grouping.plot.bar(ax = axs[1], title = 'Males', color='b')
```

Out[427]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9cd967a20>

1.2.2. Days in Hospital vs. Age Group

```
group1_hospital_time = age_group1.groupby('time_in_hospital').size()
group2_hospital_time = age_group2.groupby('time_in_hospital').size()
group3_hospital_time = age_group3.groupby('time_in_hospital').size()

fig, axs = plt.subplots(1,3, figsize=(9,3))
# axs[0].set_ylabel("encounters")
# axs[0].set_xlabel("days")
# axs[1].set_ylabel("encounters")
# axs[1].set_ylabel("encounters")
# axs[1].set_xlabel("days")

fig.tight_layout(pad=4)
group1_hospital_time.plot.bar(ax = axs[0], title = '[0-40)')
group2_hospital_time.plot.bar(ax = axs[1], title = '[40-70)')
group3_hospital_time.plot.bar(ax = axs[2], title = '[70-100)')
```

Out[428]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9cd800be0>

1.2.3. A1c test results vs. Gender

```
In [429]: females_A1C_grouping = encounters_train[encounters_train.gender == 'Female'].groupby('A1Cresu males_A1C_grouping = encounters_train[encounters_train.gender == 'Male'].groupby('A1Cresult')
    fig, axs = plt.subplots(1,2, figsize=(9,3))
    axs[0].set_ylabel("encounters")
    axs[0].set_xlabel("days")
    axs[1].set_ylabel("encounters")
    axs[1].set_xlabel("days")

fig.tight_layout(pad=4)
    females_A1C_grouping.plot.bar(ax = axs[0], title = 'Females')
    males_A1C_grouping.plot.bar(ax = axs[1], title = 'Males', color='b')
Out [429]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9cd619358>
```


1.2.4. A1c test results vs. Age Group

Out[430]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9cd2d75f8>

1.3 2. Hypothesis Testing

1.3.1 2.1. Is Testing HbA1c Associated With a Reduced Rate of Readmission?

Our null hypothesis H_0 is that there is no correlation between the HbA1c test and the rate of readmission. In order to test this, we will use the Fisher exact test and the Chi-square test (which is supposed to be better for larger numbers).

```
In [432]: proj = encounters_train[['A1Cresult', 'readmitted']]
          ct = pd.crosstab(proj.A1Cresult, proj.readmitted, margins=True)
          ct['readmitted'] = ct['<30']</pre>
          ct['not_readmitted'] = ct['>30'] + ct['NO']
          ct = ct[['readmitted', 'not_readmitted', 'All']]
          N_readmitted_tested = ct.readmitted.All - ct.readmitted['None']
          N_readmitted_not_tested = ct.readmitted['None']
          N_not_readmitted_tested = ct.not_readmitted.All - ct.not_readmitted['None']
          N_not_readmitted_not_tested = ct.not_readmitted['None']
          print(ct)
readmitted readmitted not_readmitted
                                          All
A1Cresult
>7
                   337
                                  3095
                                         3432
>8
                                  6655
                                        7391
                   736
                  8713
                                  67442 76155
None
Norm
                   435
                                  4045
                                         4480
All
                 10221
                                 81237 91458
```

Fisher Exact Test

Odds ratio: 0.846140267672 P-value: 8.80623124871e-09

As we see here, we get p < 0.001 and an odds-ratio which is significantly lower than 1, so we should reject the null hypothesis.

Chi-Square Test

We got a high χ^2 value and p < 0.001, so we again conclude that we should reject the null hypothesis.

1.3.2 2.2. Is Drug Prescription or Dosage Change Associated With a Reduced Rate of Readmission?

Our null hypothesis H_0 is that there is no correlation between drug prescription or dosage change and the rate of readmission. As before, we use the Fisher exact test and the Chi-square test for added robustness.

```
In [437]: drug_change_columns = ['metformin', 'repaglinide', 'nateglinide', 'chlorpropamide', 'glimepir
                                 'glipizide', 'glyburide', 'tolbutamide', 'pioglitazone', 'rosiglitazon
                                 'miglitol', 'troglitazone', 'tolazamide', 'examide', 'citoglipton', 'i
                                 'glyburide-metformin', 'glipizide-metformin', 'glimepiride-pioglitazon
                                 'metformin-rosiglitazone', 'metformin-pioglitazone', 'diabetesMed']
          drug_df = encounters_train[drug_change_columns]
          indicators = drug_df.apply(lambda x: ("Up" in x) or (x.diabetesMed == "Yes"), axis=1)
          df = pd.DataFrame(data = {'prescribed_or_upped': indicators, 'readmitted': encounters_train[':
          ct = pd.crosstab(df.prescribed_or_upped, df.readmitted, margins=True)
          ct['readmitted'] = ct['<30']
          ct['not_readmitted'] = ct['>30'] + ct['NO']
          ct = ct[['readmitted', 'not_readmitted', 'All']]
          print(ct)
          N_readmitted_prescribed_or_upped = ct.readmitted[True]
          N_readmitted_not_prescribed_or_upped = ct.readmitted[False]
          N_not_readmitted_prescribed_or_upped = ct.not_readmitted[True]
          N_not_readmitted_not_prescribed_or_upped = ct.not_readmitted[False]
readmitted
                     readmitted not_readmitted
                                                   All
prescribed_or_upped
False
                           2028
                                          18986 21014
True
                                          62251 70444
                           8193
A11
                          10221
                                          81237 91458
```

Fisher Exact Test

Odds ratio: 1.23214593449 P-value: 5.47127442969e-16

As we see here, we get p < 0.001 and an odds-ratio which is significantly higher than 1, so we should reject the null hypothesis.

Chi-Square Test

P-value: 1.44059978458e-15

We got a high χ^2 value and p < 0.001, so we again conclude that we should reject the null hypothesis.

1.4 3. Clustering and Similarity

1.4.1 3.1. Defining a Metric

Since we are clustreting categorical data, one logical option is using the following metric:

Let X, Y be two rows of length k in the data set. Assume that for all $i \in [k]$, $X_i, Y_i \in A_i$ (A_i is a categorical field, for example the 'readmitted' field).

Then: $d(X,Y) = \sum_{i} \mathbb{1}[X_i \neq Y_i]$

Init: initializing clusters

A cluster centroid will be a point $C \in A_1 \times A_2 \times ... \times A_k$.

1.4.2 3.2. Using K-Modes to Cluster Patients

K-modes is a clustering algorithm which uses the metric defined above, and is closely related to K-Means.

It uses the same type of expectation-maximization steps, but updates the centroids at each iteration by the "mode" of the categories, which is the category that has the highest count (within the cluster).

For example, if $\{X^1, X^2, X^3\}$ are one cluster with centroid C, then our update will be:

$$C_i = argmax_{c \in A_i} (\mathbb{1}[X_i^1 = c] + \mathbb{1}[X_i^2 = c] + \mathbb{1}[X_i^3 = c])$$

```
In [440]: # cluster_df = pd.DataFrame({'res': encounters_train[['A1Cresult']]}, dtype="category")
          diag_1 = encounters_train[['diag_1']]['diag_1'].astype("category")
          diag_2 = encounters_train[['diag_2']]['diag_2'].astype("category")
          diag_3 = encounters_train[['diag_3']]['diag_3'].astype("category")
          A1Cres = encounters_train[['A1Cresult']]['A1Cresult'].astype("category")
          readmitted = encounters_train[['readmitted']]['readmitted'].astype("category")
          cols = {'diag_1': diag_1, 'diag_2': diag_2, 'diag_3': diag_3,
                  'A1Cres': A1Cres, 'readmitted': readmitted}
          cluster_df = pd.DataFrame(data = cols, dtype="category")
          c1 = np.array(cluster_df.diag_1.cat.codes)
          c2 = np.array(cluster_df.diag_2.cat.codes)
          c3 = np.array(cluster_df.diag_3.cat.codes)
          c4 = np.array(cluster_df.A1Cres.cat.codes)
          c5 = np.array(cluster_df.readmitted.cat.codes)
          t = np.matrix([c1, c2, c3, c4, c5]).transpose()
          km = kmodes.KModes(n_clusters=4, init='Huang', n_init=5, verbose=1)
          clusters = km.fit_predict(t)
          print(km.cluster_centroids_)
Init: initializing centroids
Init: initializing clusters
Starting iterations...
Run 1, iteration: 1/100, moves: 7824, cost: 266384.0
Run 1, iteration: 2/100, moves: 0, cost: 266384.0
Init: initializing centroids
Init: initializing clusters
Starting iterations...
Run 2, iteration: 1/100, moves: 10468, cost: 265376.0
Run 2, iteration: 2/100, moves: 0, cost: 265376.0
Init: initializing centroids
Init: initializing clusters
Starting iterations...
Run 3, iteration: 1/100, moves: 9550, cost: 286030.0
Run 3, iteration: 2/100, moves: 0, cost: 286030.0
Init: initializing centroids
```

```
Starting iterations...
Run 4, iteration: 1/100, moves: 11208, cost: 277867.0
Run 4, iteration: 2/100, moves: 2152, cost: 277867.0
Init: initializing centroids
Init: initializing clusters
Starting iterations...
Run 5, iteration: 1/100, moves: 11448, cost: 285525.0
Run 5, iteration: 2/100, moves: 0, cost: 285525.0
Best run was number 2
[[272 258 83 2 1]
 [259 76 83 2 2]
 [393 76 240 2 1]
 [233 131 386 2 2]]
  Since we are going to cluster categorical data, a logical choice is to use the K-Modes algorithm. The
algorithm uses the following metric: Let
  The specificts are at:
(1, 2) Huang, Z.: Clustering large data sets with mixed numeric and categorical values, Proceedings of
In [441]: # get index<->category mappings:
          A1Cres_dict = dict( enumerate(cluster_df.A1Cres.cat.categories) )
          readmitted_dict = dict( enumerate(cluster_df.readmitted.cat.categories) )
In [442]: centroids = pd.DataFrame(km.cluster_centroids_)
          print('Clusters (rows are clusters, columns are diag_1, diag_2, diag_3, A1Cresult, readmitted
          print(centroids)
          # Cluster info:
          cluster_labels = pd.Series(clusters, dtype="category")
          print('\nCluster sizes:')
          cluster_labels.groupby(cluster_labels).count()
Clusters (rows are clusters, columns are diag_1, diag_2, diag_3, A1Cresult, readmitted):
               2 3 4
 272
       258
              83 2 1
Ω
             83 2 2
  259
        76
        76 240 2 1
2 393
  233
       131 386 2 2
Cluster sizes:
Out[442]: 0
               41670
               41250
          1
          2
                3589
                4949
          dtype: int64
  We got 4 pretty big clusters, and their centroids are described above (each row is a centroid).
```

1.5 4. Prediction

Divide the training data into 10 folds for cross-validation:

1.5.1 4.1. Naïve Bayes

4.1.1. Binary Classification

Validation

```
In [444]: from sklearn.naive_bayes import MultinomialNB
          clf = MultinomialNB()
          scores = []
          for fold in fold_idxs:
              train_facts = encounters_train.iloc[fold['train']].copy()
              test_facts = encounters_train.iloc[fold['test']].copy()
              cats_to_factorize = ['race', 'gender', 'age', 'weight', 'change', 'diabetesMed', 'A1Cresu
              train_facts[cats_to_factorize] = train_facts[cats_to_factorize].apply(lambda x: pd.factor
              test_facts[cats_to_factorize] = test_facts[cats_to_factorize].apply(lambda x: pd.factoriz
              features = ['race', 'gender', 'age', 'weight', 'change', 'diabetesMed', 'A1Cresult']
              y_train_bool = train_facts.readmitted == '<30'</pre>
              y_train = y_train_bool.values
              X_train = train_facts[features].values
              y_test_bool = test_facts.readmitted == '<30'</pre>
              y_test = y_test_bool.values
              X_test = test_facts[features].values
              clf.fit(X_train,y_train)
              scores.append(clf.score(X_test, y_test))
          print('Average: ' + str(np.average(scores)))
          print('Variance: ' + str(np.var(scores)))
Average: 0.888243821121
Variance: 6.30739300437e-06
  Test
In [445]: clf = MultinomialNB()
          train_facts = encounters_train.copy()
          test_facts = encounters_test.copy()
          cats_to_factorize = ['race', 'gender', 'age', 'weight', 'change', 'diabetesMed', 'A1Cresult']
          train_facts[cats_to_factorize] = train_facts[cats_to_factorize].apply(lambda x: pd.factorize()
          test_facts[cats_to_factorize] = test_facts[cats_to_factorize].apply(lambda x: pd.factorize(x)
          features = ['race', 'gender', 'age', 'weight', 'change', 'diabetesMed', 'A1Cresult']
          y_train_bool = train_facts.readmitted == '<30'</pre>
          y_train = y_train_bool.values
          X_train = train_facts[features].values
          y_test_bool = test_facts.readmitted == '<30'</pre>
          y_test = y_test_bool.values
          X_test = test_facts[features].values
          clf.fit(X_train,y_train)
          print('Test accuracy: ' + str(clf.score(X_test, y_test)))
Test accuracy: 0.889794334497
  We got test accuracy of 0.89.
```

4.1.2. General Classification

```
In [446]: from sklearn.naive_bayes import MultinomialNB
          from sklearn.metrics import confusion_matrix
          clf = MultinomialNB(class_prior = [0.05,0.6,0.35])
          conf_mat = np.zeros((3,3))
          for fold in fold_idxs:
              train_facts = encounters_train.iloc[fold['train']].copy()
              test_facts = encounters_train.iloc[fold['test']].copy()
              cats_to_factorize = ['A1Cresult', 'diabetesMed', 'readmitted']
              train_facts[cats_to_factorize] = train_facts[cats_to_factorize].apply(lambda x: pd.factor
              test_facts[cats_to_factorize] = test_facts[cats_to_factorize].apply(lambda x: pd.factoriz
              features = ['A1Cresult']
              y_train = train_facts.readmitted.values
              X_train = train_facts[features].values
              y_test = test_facts.readmitted.values
              X_test = test_facts[features].values
              clf.fit(X_train,y_train)
              conf_mat += confusion_matrix(y_test, clf.predict(X_test))
          print(conf_mat)
]]
       0.
          36169.
                       0.]
 0.
           37358.
                       0.]
                       0.]]
           17931.
```

After trying many different combinations of features, it seems that naïve bayes isn't the right choice for this task.

```
In [447]: clf = MultinomialNB(class_prior = [0.05,0.6,0.35])
          conf_mat = np.zeros((3,3))
          train_facts = encounters_train.copy()
          test_facts = encounters_test.copy()
          cats_to_factorize = ['A1Cresult', 'diabetesMed', 'readmitted']
          train_facts[cats_to_factorize] = train_facts[cats_to_factorize].apply(lambda x: pd.factorize(
          test_facts[cats_to_factorize] = test_facts[cats_to_factorize].apply(lambda x: pd.factorize(x)
          features = ['A1Cresult']
          y_train = train_facts.readmitted.values
          X_train = train_facts[features].values
          y_test = test_facts.readmitted.values
          X_test = test_facts[features].values
          clf.fit(X_train,y_train)
          conf_mat += confusion_matrix(y_test, clf.predict(X_test))
          print(conf_mat)
[[
      0. 5508.
                    0.]
      0. 3664.
                    0.]
         1136.
                    0.]]
```

We see that also on the test data our naïve bayes classifier isn't very accurate.

1.5.2 4.2. K-Nearest Neighbors

For this task I am going to convert all the data to numerical data so I can use the Euclidean distance as a metric. This will be accomplished by defining "dummy variables" for the categorial data and leaving the numeric data as is.

In addition, I divide the ICD-9 codes from the table into 20 categories according to: https://en.wikipedia.org/wiki/List_of_ICD-9_codes

```
In [448]: def icd9_to_cat(icd9_code):
              try:
                  num = float(icd9_code)
                  if 1 <= num and num <= 139:</pre>
                      return 0
                  if 140 <= num and num <= 239:
                      return 1
                  if 240 <= num and num <= 279:
                      return 2
                  if 280 <= num and num <= 289:
                      return 3
                  if 280 <= num and num <= 289:
                      return 4
                  if 290 <= num and num <= 319:
                      return 5
                  if 320 <= num and num <= 359:
                      return 6
                  if 360 <= num and num <= 389:
                      return 7
                  if 390 <= num and num <= 459:
                      return 8
                  if 460 <= num and num <= 519:
                      return 9
                  if 520 <= num and num <= 579:
                      return 10
                  if 580 <= num and num <= 629:
                      return 11
                  if 630 <= num and num <= 679:
                      return 12
                  if 680 <= num and num <= 709:
                      return 13
                  if 710 <= num and num <= 739:
                      return 14
                  if 740 \le num and num \le 759:
                      return 15
                  if 760 <= num and num <= 779:
                      return 16
                  if 780 \le num and num \le 799:
                      return 17
                  if 800 <= num and num <= 999:
                      return 18
              except ValueError:
                  return 20
          def het_data_to_numerical(sample_data, numer_features, cat_features):
              df = pd.DataFrame()
              cat_dfs = []
              for cat_feat in cat_features:
                  cat_dfs.append(pd.get_dummies(sample_data[cat_feat], prefix=cat_feat))
              raw_cat = pd.concat([sample_data[numer_features]] + cat_dfs + [sample_data['readmitted']
              return raw_cat.fillna(-1)
```

4.2.1. Binary Classification

Validation

```
In [449]: from sklearn.neighbors import KNeighborsClassifier
          cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          accs = []
          for fold in fold_idxs:
              train = encounters_train.iloc[fold['train']].copy()
              test = encounters_train.iloc[fold['test']].copy()
              train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
              train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
              train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
              test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
              test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
              test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
              train_reduced = het_data_to_numerical(train, numer_features, cat_features)
              test_reduced = het_data_to_numerical(test, numer_features, cat_features)
              comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns))
              X_train = train_reduced[comb_feat]
              y_train = train.readmitted == '<30'</pre>
              y_train = y_train
              X_test = test_reduced[comb_feat]
              y_test = test.readmitted == '<30'</pre>
              y_test = y_test
              neigh = KNeighborsClassifier(n_neighbors=3)
              print('train fold')
              neigh.fit(X_train, y_train)
              print('test fold')
              accs.append(neigh.score(X_test, y_test))
train fold
test fold
```

```
In [450]: print('Average: ' + str(np.average(accs)))
          print('std: ' + str(np.std(accs)))
Average: 0.861040093534
std: 0.0045513168534
  test
In [451]: from sklearn.neighbors import KNeighborsClassifier
          cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          train = encounters_train.copy()
          test = encounters_test.copy()
          train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
          train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
          train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
          test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
          test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
          test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
          train_reduced = het_data_to_numerical(train, numer_features, cat_features)
          test_reduced = het_data_to_numerical(test, numer_features, cat_features)
          comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns)) - {'
          X_train = train_reduced[comb_feat]
          y_train = train.readmitted == '<30'</pre>
          y_train = y_train
          X_test = test_reduced[comb_feat]
          y_test = test.readmitted == '<30'</pre>
          y_test = y_test
          neigh = KNeighborsClassifier(n_neighbors=3)
          print('train final')
          neigh.fit(X_train, y_train)
          print('test final')
          print('accuracy: ' + str(neigh.score(X_test, y_test)))
train final
test final
accuracy: 0.863019014358
4.2.2. General Classification
  validation
In [452]: cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          conf_mat = np.zeros((3,3))
          for fold in fold_idxs:
              train = encounters_train.iloc[fold['train']].copy()
              test = encounters_train.iloc[fold['test']].copy()
```

```
train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
              train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
              train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
              test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
              test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
              test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
              train_reduced = het_data_to_numerical(train, numer_features, cat_features)
              test_reduced = het_data_to_numerical(test, numer_features, cat_features)
              comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns))
              X_train = train_reduced[comb_feat]
              y_train = train.readmitted
              X_test = test_reduced[comb_feat]
              y_test = test.readmitted
              neigh = KNeighborsClassifier(n_neighbors=3)
              print('train fold')
              neigh.fit(X_train, y_train)
              print('test fold')
              accs.append(neigh.score(X_test, y_test))
              conf_mat += confusion_matrix(y_test, neigh.predict(X_test))
          print(conf_mat)
train fold
test fold
[[ 1790.
          3503.
                  4928.]
 [ 5363. 11032. 15486.]
 [ 7521. 14858. 26977.]]
  test
In [453]: cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          conf_mat = np.zeros((3,3))
          train = encounters_train.copy()
```

```
train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
          train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
          train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
          test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
          test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
          test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
          train_reduced = het_data_to_numerical(train, numer_features, cat_features)
          test_reduced = het_data_to_numerical(test, numer_features, cat_features)
          comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns)) - {'
          X_train = train_reduced[comb_feat]
          y_train = train.readmitted
          X_test = test_reduced[comb_feat]
          y_test = test.readmitted
          neigh = KNeighborsClassifier(n_neighbors=3)
          print('train final')
          neigh.fit(X_train, y_train)
          print('test final')
          accs.append(neigh.score(X_test, y_test))
          conf_mat += confusion_matrix(y_test, neigh.predict(X_test))
          print(conf_mat)
train final
test final
[[ 196. 374.
                  566.1
[ 609. 1192. 1863.]
 [ 842. 1569. 3097.]]
1.5.3 4.3. Random Forest
4.3.1. Binary Classification
  validation
In [454]: r = RandomForestClassifier(n_estimators=100)
          cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          accs = \Pi
          for fold in fold_idxs:
              train = encounters_train.iloc[fold['train']].copy()
              test = encounters_train.iloc[fold['test']].copy()
              train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
              train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
              train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
              test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
              test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
              test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
              train_reduced = het_data_to_numerical(train, numer_features, cat_features)
              test_reduced = het_data_to_numerical(test, numer_features, cat_features)
              comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns))
              X_train = train_reduced[comb_feat]
              y_train = train.readmitted == '<30'</pre>
```

test = encounters_test.copy()

```
y_train = y_train
              X_test = test_reduced[comb_feat]
              y_test = test.readmitted == '<30'</pre>
              y_test = y_test
              print('train fold')
              r.fit(X_train, y_train)
              print('test fold')
              accs.append(r.score(X_test, y_test))
          print('Average: ' + str(np.average(accs)))
          print('std: ' + str(np.std(accs)))
train fold
test fold
Average: 0.878523543173
std: 0.00318218775574
   test
In [455]: r = RandomForestClassifier(n_estimators=100)
          cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          train = encounters_train.copy()
          test = encounters_test.copy()
          train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
          train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
          train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
          test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
          test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
          test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
          train_reduced = het_data_to_numerical(train, numer_features, cat_features)
          test_reduced = het_data_to_numerical(test, numer_features, cat_features)
          comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns)) - {'
          X_train = train_reduced[comb_feat]
```

```
y_train = train.readmitted == '<30'
y_train = y_train

X_test = test_reduced[comb_feat]
y_test = test.readmitted == '<30'
y_test = y_test

print('train final')
r.fit(X_train, y_train)
print('test final')
print('accuracy: ' + str(r.score(X_test, y_test)))

train final
test final
accuracy: 0.87980209546

And our accuracy is 0.88</pre>
```

4.3.2. General Classification

validation

```
In [456]: from sklearn.metrics import confusion_matrix
          r = RandomForestClassifier(n_estimators=50)
          cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          conf_mat = np.zeros((3,3))
          for fold in fold_idxs:
              train = encounters_train.iloc[fold['train']].copy()
              test = encounters_train.iloc[fold['test']].copy()
              train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
              train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
              train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
              test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
              test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
              test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
              train_reduced = het_data_to_numerical(train, numer_features, cat_features)
              test_reduced = het_data_to_numerical(test, numer_features, cat_features)
              comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns))
              X_train = train_reduced[comb_feat]
              y_train = train.readmitted
              X_test = test_reduced[comb_feat]
              y_test = test.readmitted
              print('train fold')
              r.fit(X_train, y_train)
              print('test fold')
              conf_mat += confusion_matrix(y_test, r.predict(X_test))
          print('Confusion matrix:')
          print(conf_mat)
```

```
train fold
test fold
Confusion matrix:
   349. 2653.
                  7219.]
           8273. 22753.]
 Γ
   855.
 [ 1035. 9522. 38799.]]
  We see that the sum of the confusion matrices isn't ideal.
  test
In [459]: r = RandomForestClassifier(n_estimators=50)
          cat_features = ['A1Cresult', 'insulin', 'change', 'diabetesMed', 'diag_1', 'diag_2']
          numer_features = ['number_emergency', 'num_procedures']
          all_features = cat_features + numer_features
          conf_mat = np.zeros((3,3))
          train = encounters_train.copy()
          test = encounters_train.copy()
          train['diag_1'] = train['diag_1'].apply(icd9_to_cat)
          train['diag_2'] = train['diag_2'].apply(icd9_to_cat)
          train['diag_3'] = train['diag_3'].apply(icd9_to_cat)
          test['diag_1'] = test['diag_1'].apply(icd9_to_cat)
          test['diag_2'] = test['diag_2'].apply(icd9_to_cat)
          test['diag_3'] = test['diag_3'].apply(icd9_to_cat)
          train_reduced = het_data_to_numerical(train, numer_features, cat_features)
          test_reduced = het_data_to_numerical(test, numer_features, cat_features)
          comb_feat = list(set.intersection(set(train_reduced.columns), set(test_reduced.columns)) - {';
          X_train = train_reduced[comb_feat]
          y_train = train.readmitted
          X_test = test_reduced[comb_feat]
          y_test = test.readmitted
          print('train final')
          r.fit(X_train, y_train)
          print('test final')
```

This already looks good - the main diagonal has the highest values with a big gap!