Introduction Big Data

Pejman Rasti

Email: prasti@esaip.org

pejman.rasti@univ-angers.fr

Course Website: Access from your "Moodle" portal

1

Expectations

- · Please be on time.
- · Please pay attention.
- Students are expected and encouraged to ask questions in class!

Who am I?

- · Assoc. Prof. at ESAIP
- Researcher at the university of Angers
- Research Interests:
 - Artificial Intelligence
 - Deep learning
 - Data analysis

Webpage: http://perso-laris.univ-angers.fr/~rasti/

2

References

- · Main:
 - White, Tom. Hadoop: The definitive guide. " O'Reilly Media, Inc.", 2017. 4th edition
- Complementary:
 - Holmes, Alex. Hadoop in practice. Manning Publications Co., 2012.

3

Course Objective / Requirement

- Objective:
 - Understand the Big Data Platform and its Use cases
 - Provide an overview of Apache Hadoop
 - Provide HDFS Concepts and Interfacing with HDFS
 - Understand Map Reduce Jobs
 - Provide hands on Hodoop Eco System
 - Apply analytics on Structured, Unstructured Data.

Course Objective / Requirement

• Requirements:

-Project: 40%

-Final exam: 60%

6

Bonus (Class activity) 1 points (Directly on your final mark)

5

What Could I Learn from This Course?

- You will be able to:
- Identify Big Data and its Business Implications.
- List the components of Hadoop and Hadoop Eco-System
- Access and Process Data on Distributed File System
- Manage Job Execution in Hadoop Environment
- Develop Big Data Solutions using Hadoop Eco System

7 8

What launched the Big Data era?

New Opportunities

Data Science
#1 Catalyst for
economic growth!
-McKinsey

Changing Times

9

Big data – a growing torrent

McKinsey Report (2013)

10

McKinsey Report (2013)

11 12

McKinsey Report (2013)

McKinsey Report (2013)

13 14

15 16

17 18

What makes Big Data valuable

What makes Big Data valuable

19 20

What makes Big Data valuable

Personalized Marketing

21 22

Recommendation Engines

Sentiment Analysis

Natural Language Processing

23 24

Mobile Advertising

25 26

Mobile Advertising

Consumer Growth to Guide Product Growth

27 28

Consumer Growth to Guide Product Growth

Biomedical Applications

29 30

Personalized Cancer Treatment

Personalized Cancer Treatment

Perform large scale analysis of patient genes and tumor growth

Customized

treatment

31

32

Big Data-Driven Cities

- · Use city wide sensor datato
 - · Lower energy costs, pollution
 - · Improve services, traffic, safety, ...

How are other applications using Big Data?

33

34

Smart and personalized business!

Saving Lives with Big Data Wildfire Prediction

• San Diego County, May 14, 2014

\$60 million USD

Why can Big Data help?

Integration of diverse streams

see new things develop predictive analytics

37 38

Diverse Data Sources

Diverse Data Sources

39 40

Diverse Data Sources

41 42

43 44

Saving Lives with Big Data Precision Medicine and Health Informatics

Genome Data Storage

45 46

Health Records → Digital

120 Terabytes in 20132X more than in 2011

47 48

Why can Big Data help?

Sensor Data

50 51

Sensor Data

More sensors, More places Data →Storage & Analysis

Fitness Device Industry

Data Generated?

52

Save health care costs?

53

54 55

Organization Data

• Scientific Data and Knowledge-bases

Organization Data

• Scientific Data and Knowledge-bases

56 57

People Data

Mobile Health APP

The impact of novel people-generated data

58 59

Today --- Self-Reported Data Social Media

60 61

Big Data generated by Machine

Big Plane → Big Data???

Half a terabyte of data!

Big Data – Where does it come from?

62 63

Machine data is the largest source of big data!

Machine data is the largest source of big data!

Sensing → Smart

64 65

What makes a smart device smart?

Connect to other devices / networks

Collect and analyze data autonomously

Provide environmental context

Example Smart Device: Activity Tracker

Example Smart Device: Activity Tracker

68 69

Example Smart Device: Activity Tracker

70 71

Big Data generated by Machines: Why it's useful

Half a terabyte of data!

What produces data?

Accelerometers → turbulence

72 73

What produces data?

Sensors: temperature, pressure, etc. → turbulence

Design Differently!

75

Then (RDBMS) Data moved to computational

Now (In-Situ) **Bring computation** to data

Real-time Notification Enables **Real-time Actions**

77

nvironmenta Monitoring

76

74

Culture shift to real-time operations

- · Customer relations
- · Fraud detection
- System monitoring/control

Increased use of scalable computing

Supervisory Control and Data Acquisition (SCADA)

Remote monitoring / control industrial processes

Supervisory Control and Data Acquisition (SCADA)

Reduce waste, improve efficiency

Identify trends, patterns, and anomalies

80 81

Big Data generated by People: The Unstructured Challenge

A huge growth and volume of data!

82 83

A huge growth and volume of data!

Company	Data Processed Daily
еВау	100 Petabytes (PB)
Google	100 PB
Facebook	30+ PB
Twitter	100 Terabytes(=.1PB)
Spotify	64 Terabytes

The Unstructured Data Challenge

84 85

80%-90% of entire data is unstructured!

86 87

80%-90% of entire data is unstructured!

88 89

90 91

Big Data generated by People: How is it being used?

92 93

94 95

Traditional Data Warehouse

96 97

NoSQL Data Storage in the Cloud

· Beyond relational databases!

Organize data to suit the problem and objectives!

98 99

100 101

Guess, how much Twitter data companies analyze everyday to measure "sentiment" around their products?

Answer: 12 Terabytes/Day

You would need to listen continuously for ~ 2 years to finish 1 TB of music!

Collective Disaster Response

104 105

106 107

Can you list 3 things you can do from Big Data analysis

Big Data generated by Organizations: Structured but often siloed

How organizations produce data

108 109

Sale transaction data

110 111

Highly structured data

Sales Transaction Records

112 113

Sales Transaction Records

Data silos within an organization!

114 116

Hindered opportunity generation Outdated, unsynchronized, even invisible data

Course Objective / Requirement

• Requirements:

-Project: 40%

-Final exam: 60%

- Bonus (Class activity) 1 points (Directly on your final

mark)

117 118

Organization-Generated Data: Benefits come from combining with other types

Real-World Examples

The UPS success

119

16 Million Shipments per day

40 Million tracking request

UPS is estimated to have 16 PBs of data about its operations

Can you guess how much money UPS can save by reducing each driver's route by just 1 mile?

120

• Real-World Examples

- The Walmart success

250 Million customers

10,000 stores

2.5 petabytes data collected every 60 minutes!

121 122

Future Trends for Organizations

123 124

125 126

Integrating diverse data

• Getting Value from Big Data

Value comes from integrating different types of data sources

127 128

Insert Big Data Integration Here

129 130

Data Integration → Knowledge

Data Integration Process

131 132

Why do we need Data integration?

133 134

135 136

THANK YOU

Assoc. Prof. Pejman Rasti

Copyright: University of California San Diego