	Week: NO / Lab ~> MAS 439.				
11/10/2-10					
11/18/2019	e config of ions. largert n				
	cations: remove valence es				
	anions: add valence e's				
	1 1221 // 1222				
	ex: $sLi ls^2 2s^1 0 ls^2 2s^2 2p^4$ $Li^2 ls^2 0^{2-} ls^2 2s^2 2p^6$				
	or [He] or [Ne]				
	transmit transition metal ions "tricky"				
	valence es				
	ex: V: LAr) 4523d3				
	ex: V: [Ar] 4s23d3 V2+: [Ar] 3d3				
	valence! (n=4!)				
	Zn [A1] 4523a10				
	Zn [A1] 45 ² 3a ¹⁰ Zn ²⁺ [A1] 3d ¹⁰				
	why not: Zn2+ [Ar] 4323d8?				
	orbibal [Ar] 4523d8 vs [Ar] 45°3d1°				
	diagrams: Zn2+				
	[A,] [76 74741411] vs. [A,) [7 741141414141414141414141414141414141414				
	4s 3d 4s 3d				
	Some (2) unpaired (11) es) all paired (11) es				
	when we have attracted INTO a pained es				
	unpaired es: magnetic field. slightly repelled by a				
	- PARAMAGNETIC magnetic field.				
	- DIA MAGNETIC				
	$\left(Z_{n}^{2+}\right)$				

Ionic radii

Cahions... loss es, e cloud shrinks, radius l

r=152pm

1=60pm

r=85pm

r=23pm

Anions... gain es, e cloud expands, radius ?

r=73pm

1=140pm

consider au	n isoelectro	nic sen'es	of ions			
Ca ²⁺	K ⁺	α^{-}	52-			
20p+	19p+	. 17p+	16pt			
	18e-	18e-	1Be-			
99pm	133pm	181pm	184pm			
				ger radius		
Smaller adi	A)					
		1				
Ionization	Energy, IE					
E to sem	nove (mol és	Lon mol	gas atoms			
			3			
ex: IE	for Li:	Li(a)	→ Litg1 + et	•		
	3	IE, = .	+ 520 KJ/mol.			
			,	11		
Li+(q1 -> Li2+(q) + e-						
IE, = +7298KJ/mol						
	Li ²	+g1 - Li	3+ (g) +e-			
IE3 = 411,815 KJ/mol						

Trends in Successive Ionization Energies

- Removal of each successive electron costs more energy.
 - Shrinkage in size due to having more protons than electrons
 - Outer electrons closer to the nucleus; therefore harder to remove
- There's a regular increase in energy for each successive valence electron.
- There's a large increase in energy when core electrons are removed.

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

85

Trends in Second and Successive Ionization Energies

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

86

Electron Affinity, EA E when we add I mole to I mol of gaseous atoms. ex: EA for a: le+ alg) -> alg); EA = -349 k7 EA > 0 (+uc) trend in EA: EA is more -ve Zeff 1-EAis

93

Periodic Trends Summary Reason for Trend Moving Trend Moving Reason for Trend Trend Down a Column **Moving Down** Across a Row **Moving Across Property** Atomic Radii Increasing Size of outermost Decreasing Effective nuclear occupied orbital charge increases increases First Ionization Effective nuclear Decreasing Outermost Increasing Energy electrons further charge increases away from nucleus (and therefore easier to remove) Electron No definite trend Decreasing Effective nuclear Affinity charge (more negative) increases Metallic Ionization energy Increasing Decreasing Ionization energy Character decreases increases Pearson Copyright © 2020 Pearson Education, Inc. All Rights Reserved

101