Practice Problems 2

Question 1. Write down the equation for a pure seasonal S-AR(1) model. Describe how its AC and PAC functions look like.

See lec11slides.pdf.

Question 2. Write down the equation for a model with regular AR(1) and seasonal S-AR(1) components and describe how its AC and PAC functions look like.

See lec11slides.pdf.

Question 3. Explain the difference between estimation sample and prediction sample.

See lec13slides.pdf and also slide 15 from lec06slides.pdf.

Question 4. Explain the difference between in-sample evaluation and out-of-sample evaluation.

See lec13slides.pdf.

Question 5. Explain how Mean Squared Error, Mean Absolute Error, and Mean Loss are used in the assessment of forecasts.

See lec13slides.pdf

Question 6. Give an example of a deterministic trend g(t) other than a linear trend and plot its graph. Write the model equation for this trend.

See lec16slides.pdf

Question 7. Write the equation for pure random walk process and the equation for a random walk process with a drift. Explain the main difference between the two.

See lec18slides.pdf

Question 8. Draw a typical correlogram for a random walk process.

See lec18slides.pdf

Question 9. Explain the difference between a trend stationary time series and a difference stationary time series.

See lec18slides.pdf

Question 10. Explain the idea behind the Dickey Fuller unit root test.

See lec18slides.pdf

Question 11. Explain what it means that a time series process is I(1), and what it means that a process is I(0).

See lec18slides.pdf

Question 12. Consider the data for monthly changes in U.S. residential construction for the period January 2002-January 2011 shown below. Discuss what kind of model would you estimate for this time series and explain why.

See lec11slides.pdf.

Question 13. Consider two candidate models for change in private residential construction spending, AR(1)+SAR(1) and AR(2)+SAR(1), the results for which are below. Discuss which of these models would be preferred based on plots and correlograms of residuals, AIC and BIC, and statistical significance of coefficients.

See hw05sol.pdf Problem 1

Question 14. Consider a regression for the test of equal predictive ability for fixed scheme forecast vs simple four quarter moving average forecast

$$\Delta L_{t+j,1} = \beta_0 + u_{t+j}$$
 with $j = 0, 1, 2, \dots, T - t - 1$

where $\Delta L_{t+j,1} = (e_{t+j,1}^{ma})^2 - (e_{t+j,1}^{fixed})^2$, the results of which are below. Explain the idea behind this test test and interpret the results below.

Dependent Variable: DL_MA
Method: Least Squares
Date: 04/08/17 Time: 19:21
Sample: 2009Q1 2016Q4
Included observations: 32
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8.81E-05	3.96E-05	2.224905	0.0335
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.000237 1.75E-06 222.1821 2.025517	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion rion	8.81E-05 0.000237 -13.82388 -13.77808 -13.80870

See hw05sol.pdf Problem 2 and lec13slides.pdf.

Question 15. Discuss the choice of a trend when developing models for the two series plotted below.

See lec16slides.pdf.

Relative employment-population ratio - women/men

Question 16. The following figure shows the multistep forecasts for the U.S. real GDP, from the deterministic model and from the stochastic trend model, both for the period 2010Q1-2035Q4. Discuss the main difference in the behavior of the forecast and explain the reason for this difference.

See lec18slides.pdf and hw06sol.pdf.

Question 17. Consider a model for quarterly earnings per share of the Johnson and Johnson company

$$JNJ_t = \beta_0 + \beta_1 e^{\beta_2 t} + \varepsilon_t$$

Given the plot with actual values, fitted values, and residuals below, explain how you would proceed with modifying/developing the model further.

See lec16slides.pdf.

Question 18. Interpret the below results of the Augmented Dickey-Fuller test for unemployment rate UNRATE and its first difference DUNRATE, determine whether unemployment is I(0) or I(1). Explain why only constant was used in both tests.

DUNRATE 1.2 0.8 0.4 0.0 -0.4 -0.8 1960:1 1970:1 1980:1 1990:1 2000:1 2010:1

Null Hypothesis: UNRATE has a unit root

Exogenous: Constant

Lag Length: 4 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-3.057041	0.0304
Test critical values:	1% level 5% level	-3.439682 -2.865549	
	10% level	-2.568961	

^{*}MacKinnon (1996) one-sided p-values.

Null Hypothesis: D(UNRATE) has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-7.891697	0.0000
Test critical values:	1% level	-3.439682	
	5% level	-2.865549	
	10% level	-2.568961	

^{*}MacKinnon (1996) one-sided p-values.

Question 19. Below are the results for the Augmented Dickey-Fuller unit root test for log transformed earnings per share $\log JNJ_t$, and for the first difference of the log transformed earnings per share $\Delta \log JNJ_t$. Interpret the results, and determine whether $\log JNJ_t$ is I(0) or I(1). Explain why trend and constant were used in the test for $\log JNJ_t$ but only constant was used in the test for $\Delta \log JNJ_t$.

Null Hypothesis: LJNJ has a unit root Exogenous: Constant, Linear Trend

Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-1.696535 -4.090602 -3.473447 -3.163967	0.7428

^{*}MacKinnon (1996) one-sided p-values.

Null Hypothesis: D(LJNJ) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu		-19.93554	0.0001
Test critical values:	1% level	-4.090602	
	5% level	-3.473447	
	10% level	-3.163967	

^{*}MacKinnon (1996) one-sided p-values

See lec18slides.pdf and hw07sol.pdf.

Question 20. Consider two models for U.S. real GDP, used to construct forecast for the period 2010Q1-2016Q4:

(A) deterministic trend model

$$\log rGDP_t = \beta_0 + \beta_1 t + u_t$$
$$u_t = \phi_1 u_{t-1} + \phi_2 u_{t-2} + \varepsilon_t$$

for which the sequence of 1-step ahead forecasts has RMSE=103.459 and the multistep forecast has RMSE=1649.069

(B) stochastic trend model

$$\Delta \log rGDP_t = \beta_0 + u_t$$
$$u_t = \phi_1 u_{t-1} + \varepsilon_t$$

for which the sequence of 1-step ahead forecasts has RMSE=77.3231 and the multistep forecast has RMSE=905.1898.

Discuss how we would choose which model is preferred based on this information. How would we conduct a formal test that one of the models produces more precise forecasts?

See lec13slides.pdf and hw06sol.pdf.