CS 4650: Natural Language Processing Spring 2022 Problem Set 2

Instructor: Dr. Wei Xu

TAs: Chao Jiang, Chase Perry, Rucha Sathe

Piazza: https://piazza.com/gatech/spring2022/cs4650a

Due: Tuesday, Mar 1, 11:59pm ET

1 Word Embeddings

The Word2Vec algorithm revolutionized the field of NLP by providing a high-quality, but cheaply computable means for producing continuous vector representations of words learned from a large, unlabelled corpus. Here, we will investigate the objectives used in the Word2Vec algorithm. This question may require you to refer to Chapters 14.5, 14.6 of the Eisenstein readings.

Here is a sentence for which the algorithm will make a prediction for the missing word. The word embedding for each word in the context has been given.

Index Position	Word	Embedding
0	apples	[-2, 10, -18]
1	and	[8, -2, 4]
2	?	?
3	are	[0, -2, 4]
4	closely	[-2,-2,2]
5	related	[0, 4, 2]
6	to	[0, -6, 10]
7	each	[4, -2, 10]
8	other	[0, 12, -16]

Table 1: Word Embeddings for the Input Sentence.

- 1. (2 pt) Compute the Continuous Bag-of-Words (CBOW) vector representation of the missing word for a context window h of size 2. Show your work.
- 2. (5 pts) We've subset the vocabulary down to the words in Table 2. Fill in the scores of each word being the missing word in Table 2. Use the base-2 exponent and round to 2 decimal places. Hint: use dot products for this, not traditional vector-space similarity.

Word	Embedding	Unnormalized Score	Normalized Score (P(Word))
oranges	[-6, 4, -4]		
pineapples	[-8, 1, -6]		
pies	[0, -4, -3]		
doctors	[3,0,-1]		
witches	[2, 1, 0]		

Table 2: A subset of the vocabulary of the CBOW model.

3. (1 pt) Which word would be predicted by the CBOW algorithm to be the missing word?

2 Hidden Markov Models and the Viterbi Algorithm

We have a toy language with 2 words - "cool" and "shade". We want to tag the parts of speech in a test corpus in this toy language. There are only 2 parts of speech — NN (noun) and VB (verb) in this language. We have a corpus of text in which we the following distribution of the 2 words:

	NN	VB
cool	4	8
shade	6	2

Assume that we have an HMM model with the following transition probabilities (* is a special start of the sentence symbol).

Figure 1: HMM model for POS tagging in our toy language.

- 1. (2 pts) Compute the emission probabilities for each word given each POS tag.
- 2. (3 pts) Draw the Viterbi trellis for the sequence "cool shade.". Highlight the most likely sequence. Here is an example of Viterbi trellis.

3 Named Entity Recognition

Consider a sentence that contains three named entities (organization name, person name, location name) and the predictions from four automatic name entity recognition systems. What is the entity-level Precision, Recall, and F1-score of each system's performance? Here, we do not consider giving any credits to partial matches.

Sentence	Microsoft	founder	Bill	Gates	grew	up	in	Seattle
Gold Labels	B-ORG	О	B-PER	I-PER	О	О	О	B-LOC
System #1	B-ORG	O	B-PER	О	О	О	О	B-LOC
System #2	B-ORG	O	B-PER	I-PER	О	О	О	B-LOC
System #3	B-ORG	B-PER	О	O	О	О	О	B-LOC
System #4	B-ORG	О	О	B-PER	О	О	О	B-LOC

For each system compute:

- (a) (2 pts) Precision
- (b) (2 pts) Recall
- (c) **(2 pts)** F-1 score

You may refer to Chapter 8.3 of the Eisenstein readings to learn more about the concept and notations used in NER.