МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Інститут **ІКНІ** Кафедра **ПЗ**

3BIT

До лабораторної роботи №1

3 дисципліни: "Теорія ймовірностей та математична статистика" На тему: "Побудова статистичних рядів і обчислення їх статистичних характеристик"

Лектор:
зав. каф. вищої математики
Філевич П.В.
Виконав:
ст. гр. ПЗ-22
Солтисюк Д.А.
Прийняв:
асист. каф. вищої математики
Бакса В.П.
«» 2022 p.
Σ=

Завдання

- 1) побудувати дискретний статистичний ряд;
- 2) обчислити розмах вибірки; моду та медіану дискретного ряду;
- 3) побудувати полігон частот (або полігон відносних частот);
- 4) для даної вибірки утворити інтервальний статистичний ряд, знайти його моду та медіану;
- 5) побудувати гістограму частот (або гістограму відносних частот);
- 6) побудувати емпіричну функцію розподілу та її графік;
- 7) обчислити середні значення дискретного та інтервального статистичних рядів.
- Завдання 8 11 виконати лише для інтервального статистичного ряду:
- 8) обчислити дисперсію і середньоквадратичне відхилення статистичного ряду;
- 9) обчислити коефіцієнт варіації;
- 10) обчислити центральні емпіричні моменти третього і четвертого порядків;
- 11) обчислити асиметрію та ексцес.

Хід роботи

Дано вибірку (вона отримана за варіантом №22):

25,13,30,26,22,23,17,21,24,10,29,37,23,11,34,15,27,13,33,25,20,26,21,28,33,24,14,3 5,31,16,24,38,27,25,22,17,29,23,23,30,13,34,26,18,31,25,19,36,26,15,27,35,24,12,23, 18,28,32,21,25,20,28,22,29,17,24,16,26,36,23,23,27,19,26,37,30,31,25,25,17,30,24,3 2,38,27,18,23,22,21,27,10,28,33,29,36,15,26,24,31,21.

1. Побудуємо дискретний статистичний ряд частот та відносних частот Таблиця 1

1 солиця 1												
x_i	10	11	12	13	14	15	16	17	18			
n_i	2	1	1	3	1	3	2	4	3			
w_i	0.02	0.01	0.01	0.03	0.01	0.03	0.02	0.04	0.03			

x_i	19	20	21	22	23	24	25	26	27
n_i	2	2	5	4	7	7	7	7	6
w_i	0.02	0.02	0.05	0.04	0.07	0.07	0.07	0.07	0.06

x_i	28	29	30	31	32	33	34	35	36	37	38
n_i	4	4	4	4	2	4	2	2	3	2	2

14?	0.04	0.04	0.04	0.04	0.02	0.04	0.02	0.02	0.03	0.02	0.02
vv_i	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.03	0.02	0.02

Обсяг вибірки – 100.

2. Розмах вибірки r = 38 - 10 = 28

Мода цього ряду $M_0(x) = 23$, 24, 25, 26, оскільки цим значенням відповідають найбільші частоти – 7. Цей ряд ϵ мультимодальним.

Знайдемо медіану
$$M_e(\mathbf{x}) = \frac{x_{50} + x_{51}}{2} = \frac{25 + 25}{2} = 25.$$

3. Побудуємо полігон частот.

4. Для побудови інтервального статистичного ряду визначимо оптимальну кількість проміжків s = 1 + 3, $2 \cdot \lg 100 = 7$, 4. Оскільки розмах вибірки r = 28, то доцільно весь відрізок, на якому задана вибірка, розбити на 7 однакових проміжків, довжина кожного з яких h = 28 / 7 = 4 Інтервальний статистичний ряд має вигляд:

Таблиця 2

Δ_j	[10; 14)	[14;18)	[18;22)	[22;26)	[26;30)	[30;34)	[34;38)
n_j	7	10	12	25	21	14	11

5. Побудуємо гістограму частот. Обчислимо висоту кожного з прямокутників: H1 = 7/4 = 1,75; H2 = 10/4 = 2,5; H3 = 12/4 = 3; H4 = 25/4 = 6,25;

$$H5 = 21/4 = 5,25$$
; $H6 = 14/4 = 3,5$; $H7 = 9/4 = 2,25$.

Модальним є інтервал [22;26), оскільки у нього найбільша щільність частоти –

H4 = 6,25.

Визначимо медіану:

$$M_e(x) = 22 + \frac{26 - 22}{26} \left(\frac{100}{2} - 29\right) = 25,23$$

6. Побудуємо графік емпіричної функції розподілу $F^*(x)$ для інтервального статистичного ряду. Визначимо функцію $F^*(x)$ у точках, що відповідають кінцям проміжків Δ_j .

$$F^*(10) = 0;$$
 $F^*(14) = 0.07;$ $F^*(18) = 0.17;$ $F^*(22) = 0.29;$ $F^*(26) = 0.54;$ $F^*(30) = 0.75;$ $F^*(34) = 0.89;$ $F^*(38) = 1.$

Графік функції F*(х):

7. Вибіркове середнє значення x_b дискретного статистичного ряду (табл. 1) обчислюється:

$$x_b = \frac{1}{100}$$

(20+11+12+39+14+45+32+68+54+38+40+105+88+161+168+175+182+162+112+116+120+124+64+132+68+70+108+74+76)=24.78.

Для знаходження вибіркового середнього значення x_b інтервального статистичного ряду побудуємо спочатку відповідний дискретний статистичний ряд:

Таблиця 3

x_i	12	16	20	24	28	32	36
n_i	7	10	12	25	21	14	11

Тоді
$$x_b = \frac{1}{100} (84 + 160 + 240 + 600 + 588 + 448 + 396) = 25.56$$

8. Дисперсію D_b інтервального статистичного ряду обчислимо за даними відповідного дискретного ряду (табл. 3)

$$D_b = \frac{1}{100} \left(\sum_{i=1}^{100} (x_i^2 * n_i) - x_b^2 \right)$$

$$D_b = \frac{1}{100} (67824 - 653.31) = 67.17$$

Середнє квадратичне відхилення = $\sqrt{67,17} = 8.19$.

9. Коефіцієнт варіації V є:

V = 8.19/25.26 = 0.32

10. Центральні емпіричні моменти третього та четвертого порядків обчислюються згідно з формулою:

$$\mu_3 = \frac{1}{100} (-9831,16) = -98,31$$

$$\mu_3 = \frac{1}{100} (487311,11) = 4873,11$$

11. Обчислимо асиметрію та ексцес:

$$A = -98,31 / 8.19^3 = -0.17;$$

$$E = (4873,11 / 8.19^4) - 3 = -0.78;$$