FMI, Info, Anul I Logică matematică și computațională

Examen

1 Partea I

- (P1) [2 puncte] Să se arate că pentru orice formule $\varphi,\,\psi,\,\chi$ din logica propozițională, avem:
 - (i) $\varphi \wedge (\varphi \vee \psi) \sim \varphi$;
 - (ii) $\varphi \to (\psi \land \chi) \sim (\varphi \to \psi) \land (\varphi \to \chi);$
- (iii) $\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi)$.
- $(\mathbf{P2})$ [1,5 puncte] Să se aducă următoarea formulă la FNC prin transformări sintactice:

$$(\neg((v_3 \to \neg v_4) \land v_5) \land (\neg v_4 \to v_5)) \lor (v_4 \land \neg v_3).$$

(P3) [1,5 puncte] Fie ${\mathcal E}$ o mulțime de evaluări și

$$\Gamma := \{ \psi \in Form \mid e \vDash \psi \text{ pentru orice } e \in \mathcal{E} \}.$$

Presupunem că \mathcal{E} are cel puţin două elemente. Demonstrați că există o formulă φ cu proprietatea că $\varphi \notin \Gamma$ şi $\neg \varphi \notin \Gamma$.

- **(P4)** [2 puncte]
 - (i) Să se definească, folosind Principiul recursiei pe formule, funcția $l:Form\to\mathbb{N}$ care asociază fiecărei formule φ lungimea sa.
 - (ii) Să se demonstreze că pentru orice $\varphi \in Form$, $c(\varphi) \leq \frac{l(\varphi)-1}{3}$, unde $c(\varphi)$ este numărul conectorilor din φ .

(P5) [1 punct] Fie $H:\{0,1\}^3 \to \{0,1\}$ definită, pentru orice $x,y,z \in \{0,1\}$, prin:

$$H(x, y, z) := \begin{cases} 1, & \text{dacă } x \cdot y \leq z, \\ 0, & \text{altminteri.} \end{cases}$$

Să se găsească o formulă φ în FND și una ψ în FNC cu $F_{\varphi}=F_{\psi}=H.$

2 Partea a II-a

- **(P6)** [2 puncte]
 - (i) Să se aplice algoritmul Davis-Putnam pentru mulțimea de clauze:

$$\mathcal{S} := \{\{v_4, v_1\}, \{\neg v_1, \neg v_2, v_3\}, \{v_2, v_5\}, \{\neg v_3, v_6\}, \{\neg v_4\}, \{\neg v_5\}, \{\neg v_6\}\}.$$

Ce concluzie tragem?

(ii) Folosind primul subpunct și eventual alte proprietăți, să se arate că:

$$\{v_4 \lor v_1, v_1 \to (\neg v_2 \lor v_3), \neg v_2 \to v_5, v_3 \to v_6\} \vDash v_4 \lor v_5 \lor v_6.$$

- (P7) [2 puncte] Fie \mathcal{L} un limbaj de ordinul întâi. Să se arate că pentru orice formule φ , ψ , χ ale lui \mathcal{L} și orice variabilă x cu $x \notin FV(\chi)$,
 - (i) $\varphi \vDash \exists x \varphi$;
 - (ii) $\forall x(\psi \to \chi) \exists x\psi \to \chi$.
- (P8) [1,5 puncte] Să se dea exemplu de limbaj de ordinul întâi \mathcal{L} și de formulă φ a lui \mathcal{L} astfel încât:

$$\not\models \varphi \to \forall v_0 \varphi.$$

(P9) [1,5 puncte] Să se dea exemplu de mulţime de $\mathcal{L}_{=}$ -enunţuri Γ ce are proprietatea că pentru orice $\mathcal{L}_{=}$ -structură finită \mathcal{A} , avem:

 $\mathcal{A} \vDash \Gamma \iff \mathcal{A}$ conţine un număr par de elemente.

Este Γ completă?