Intervalos de Confianza

1. Un intervalo de confianza del $(1-\alpha)100\%$ para el **parámetro media poblacional** μ :

2. Un intervalo de confianza del $(1-\alpha)100\%$ para el **parámetro proporción poblacional** p:

3. Un intervalo de confianza del $(1-\alpha)100\%$ para el **parámetro varianza poblacional** σ^2 :

Variable a utilizar: $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$ y sigue una distribución $\chi^2(n-1)$

$$\left] \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}} , \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \right[$$

4. Un intervalo de confianza del $(1-\alpha)100\%$ para el **parámetro diferencia de medias** $d=\mu_1-\mu_2$:

Considere las poblaciones X_1 , X_2 con media respectivas μ_1 y μ_2 y varianzas σ_1^2 y σ_2^2 . Considere $\overline{X_1}$, $\overline{X_2}$ que siguen distribuciones normales. Intervalo de confianza:

(a) Si se conocen σ_1 y σ_2 :

$$(\overline{x_1} - \overline{x_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(b) Si no se conocen σ_1 y σ_2 pero se suponen iguales:

$$(\overline{x_1} - \overline{x_2}) \pm t_{\frac{\alpha}{2},v} \cdot \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$

donde
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{v}$$
 y $v = n_1 + n_2 - 2$

(c) Si no se conocen σ_1 y σ_2 pero se suponen diferentes :

$$(\overline{x_1} - \overline{x_2}) \pm t_{\frac{\alpha}{2}, v} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

donde

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

5. Un intervalo de confianza del $(1 - \alpha)100\%$ para el **parámetro diferencia de proporciones** $d = p_1 - p_2$:

Considere las poblaciones X_1 , X_2 con proporciones respectivas p_1 y p_2 . Considere \hat{P}_1 , \hat{P}_2 que siguen distribuciones normales. Se consideren muestras grandes. Intervalo de confianza:

$$(\hat{p_1} - \hat{p_2}) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p_1}\hat{q_1}}{n_1} + \frac{\hat{p_2}\hat{q_2}}{n_2}}$$

6. Un intervalo de confianza del $(1-\alpha)100\%$ para el **parámetro razón entre dos varianzas poblacionales** $R=\frac{\sigma_2^2}{\sigma_1^2}$:

Variable a utilizar: $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2 \cdot S_1^2}{\sigma_1^2 \cdot S_2^2}$ y sigue una distribución $F(n_1 - 1, n_2 - 1)$