BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2007 Môn: TOÁN, khối D

(Đáp án - Thang điểm gồm 04 trang)

Câu	Ý	Nội dung	Điểm
I			2,00
	1	Khảo sát sự biến thiên và vẽ đồ thị của hàm số $(1,00 \text{ diễm})$ Ta có $y = \frac{2x}{x+1} = 2 - \frac{2}{x+1}$. • Tập xác định: $D = \mathbb{R} \setminus \{-1\}$. • Sự biến thiên: $y' = \frac{2}{(x+1)^2} > 0, \forall x \in D$.	0,25
		Bảng biến thiên $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
		2 $-\infty$ • Tiệm cận: Tiệm cận đứng $x = -1$, tiệm cận ngang $y = 2$.	0,25
		• Đồ thị: 2 -1 O x	0,25
-	2	Tìm tọa độ điểm M (1,00 điểm)	
		Vì $M \in (C)$ nên $M\left(x_0; \frac{2x_0}{x_0+1}\right)$. Phương trình tiếp tuyến của (C) tại M là:	
		$y = y'(x_0)(x - x_0) + \frac{2x_0}{x_0 + 1} \Leftrightarrow y = \frac{2}{(x_0 + 1)^2} x + \frac{2x_0^2}{(x_0 + 1)^2}.$ $\Rightarrow A(-x_0^2; 0), B(0; \frac{2x_0^2}{(x_0 + 1)^2}).$	0,25
		Từ giả thiết ta có: $\left \frac{2x_0^2}{(x_0 + 1)^2} \right \cdot \left -x_0^2 \right = \frac{1}{2} \iff \left \frac{2x_0^2 + x_0 + 1 = 0}{2x_0^2 - x_0 - 1 = 0} \right \iff \left \frac{x_0 = -\frac{1}{2}}{x_0 = 1} \right $	0,50

	1		
		$V \acute{o}i \ x_0 = -\frac{1}{2} \ ta \ c\acute{o} \ M\left(-\frac{1}{2}; -2\right).$	
		Với $x_0 = 1$ ta có $M(1;1)$.	0,25
		Vậy có hai điểm M thỏa mãn yêu cầu bài toán là: $M\left(-\frac{1}{2};-2\right)$ và $M\left(1;1\right)$.	
II			2,00
	1	Giải phương trình lượng giác (1,00 điểm)	,
		Phương trình đã cho tương đương với	
		$1 + \sin x + \sqrt{3}\cos x = 2 \Leftrightarrow \cos\left(x - \frac{\pi}{6}\right) = \frac{1}{2}$	0,50
		$\Leftrightarrow x = \frac{\pi}{2} + k2\pi, x = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$	0,50
	2	Tìm m để hệ phương trình có nghiệm (1,00 điểm).	
		Đặt $x + \frac{1}{x} = u$, $y + \frac{1}{y} = v$ ($ u \ge 2$, $ v \ge 2$). Hệ đã cho trở thành:	
		$\int \mathbf{u} + \mathbf{v} = 5$	0,25
		$\begin{cases} u+v=5 \\ u^3+v^3-3(u+v)=15m-10 \end{cases} \Leftrightarrow \begin{cases} u+v=5 \\ uv=8-m \end{cases}$	
		\Leftrightarrow u, v là nghiệm của phương trình: $t^2 - 5t + 8 = m$ (1).	
		Hệ đã cho có nghiệm khi và chỉ khi phương trình (1) có hai nghiệm	
		$t = t_1, t = t_2$ thoả mãn: $ t_1 \ge 2, t_2 \ge 2$ $(t_1, t_2 \text{ không nhất thiết phân biệt}).$	
		Xét hàm số $f(t) = t^2 - 5t + 8$ với $ t \ge 2$:	
		Bảng biến thiên của f(t):	
		bung often unter out 1 (t).	
		$t -\infty$ -2 2 $5/2$ $+\infty$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,50
			3,2 3
		$f(t) = \frac{1}{22} \left(\frac{1}{2} \right)^{1/2} $	
		Từ bảng biến thiên của hàm số suy ra hệ đã cho có nghiệm khi và chỉ khi	
			0,25
		$\frac{7}{4} \le m \le 2 \text{ hoặc } m \ge 22.$	
III	4		2,00
	1	Viết phương trình đường thẳng d (1,00 điểm)	0.25
		Tọa độ trọng tâm: $G(0;2;2)$.	0,25
		Ta có: $\overrightarrow{OA} = (1;4;2), \overrightarrow{OB} = (-1;2;4).$	0,50
		Vector chỉ phương của d là: $\vec{n} = (12, -6, 6) = 6(2, -1, 1)$.	- ,- ~
		Phương trình đường thẳng d: $\frac{x}{2} = \frac{y-2}{-1} = \frac{z-2}{1}$.	0,25
	2	2 - 1 1 Tìm tọa độ điểm M (1,00 điểm)	
		Vì $M \in \Delta \Rightarrow M(1-t;-2+t;2t)$	0,25
			- ,==

		$\Rightarrow MA^{2} + MB^{2} = \left(t^{2} + (6 - t)^{2} + (2 - 2t)^{2}\right) + \left((-2 + t)^{2} + (4 - t)^{2} + (4 - 2t)^{2}\right)$	
		$=12t^2-48t+76=12(t-2)^2+28.$	0,50
		$MA^2 + MB^2$ nhỏ nhất $\Leftrightarrow t = 2$.	
		Khi đó M(-1;0;4).	0,25
IV	1	Tính tính nhận (1 00 điểm)	2,00
	1	Tính tích phân (1,00 điệm) Đặt $u = \ln^2 x$, $dv = x^3 dx \Rightarrow du = \frac{2 \ln x}{x} dx$, $v = \frac{x^4}{4}$. Ta có:	
		$I = \frac{x^4}{4} \cdot \ln^2 x \Big _1^e - \frac{1}{2} \int_1^e x^3 \ln x dx = \frac{e^4}{4} - \frac{1}{2} \int_1^e x^3 \ln x dx.$	0,50
		Đặt $u = \ln x, dv = x^3 dx \Rightarrow du = \frac{dx}{x}, v = \frac{x^4}{4}$. Ta có:	
		$\int_{1}^{e} x^{3} \ln x dx = \frac{x^{4}}{4} \ln x \Big _{1}^{e} - \frac{1}{4} \int_{1}^{e} x^{3} dx = \frac{e^{4}}{4} - \frac{1}{16} x^{4} \Big _{1}^{e} = \frac{3e^{4} + 1}{16}.$	0,50
		$V_{ay}^{2} I = \frac{5e^{4} - 1}{32}.$	
	2	Chứng minh bất đẳng thức (1,00 điểm) Bất đẳng thức đã cho tương đương với	
			0,50
		$\left(1+4^{a}\right)^{b} \leq \left(1+4^{b}\right)^{a} \Leftrightarrow \frac{\ln\left(1+4^{a}\right)}{a} \leq \frac{\ln\left(1+4^{b}\right)}{b}.$	0,50
		Xét hàm $f(x) = \frac{\ln(1+4^x)}{x}$ với $x > 0$. Ta có:	
		$f'(x) = \frac{4^{x} \ln 4^{x} - (1 + 4^{x}) \ln (1 + 4^{x})}{x^{2} (1 + 4^{x})} < 0$	0,50
		\Rightarrow f(x) nghịch biến trên khoảng $(0,+\infty)$.	
		Do $f(x)$ nghịch biến trên $(0; +\infty)$ và $a \ge b > 0$ nên $f(a) \le f(b)$ và ta có điều phải chứng minh.	
V.a	4		2,00
	1	Tìm hệ số của x^5 (1,00 điểm) Hệ số của x^5 trong khai triển của $x(1-2x)^5$ là $(-2)^4$. C_5^4 .	
		Hệ số của x^5 trong khai triển của $x^2(1+3x)^{10}$ là 3^3 . C_{10}^3 .	0,50
		Hệ số của x^5 trong khai triển của $x(1-2x)^5 + x^2(1+3x)^{10}$ là	0,50
	2	$(-2)^4 C_5^4 + 3^3 \cdot C_{10}^3 = 3320.$ Tìm m để có duy nhất điểm P sao cho tạm giáo PAP đầu (1.00 điểm)	
		Tìm m để có duy nhất điểm P sao cho tam giác PAB đều (1,00 điểm) (C) có tâm I(1;-2) và bán kính R = 3. Ta có: ΔPAB đều nên	
		$IP = 2IA = 2R = 6 \Leftrightarrow P \text{ thuộc đường tròn } (C') \text{ tâm I, bán kính } R' = 6.$	0,50
		Trên d có duy nhất một điểm P thỏa mãn yêu cầu bài toán khi và chỉ khi d tiếp xúc với (C') tại P \Leftrightarrow d(I;d)=6 \Leftrightarrow m=19, m=-41.	0,50

V.b			2,00
	1	Giải phương trình logarit (1,00 điểm)	-
		Điều kiện: $4.2^x - 3 > 0$. Phương trình đã cho tương đương với:	
		$\log_2(4^x + 15.2^x + 27) = \log_2(4.2^x - 3)^2 \iff 5.(2^x)^2 - 13.2^x - 6 = 0$	0,50
		$\Leftrightarrow \begin{bmatrix} 2^{x} = -\frac{2}{5} \\ 2^{x} = 3 \end{bmatrix}$	0,50
		Do $2^x > 0$ nên $2^x = 3 \Leftrightarrow x = \log_2 3$ (thỏa mãn điều kiện).	
	2	Chứng minh ΔSCD vuông và tính khoảng cách từ H đến (SCD) (1,00 điểm)	
		Gọi I là trung điểm của AD. Ta có: $IA = ID = IC = a \Rightarrow CD \perp AC$. Mặt khác, $CD \perp SA$. Suy ra $CD \perp SC$ nên tam giác SCD vuông tại C.	
		H A I D	0,50
		Trong tam giác vuông SAB ta có: $\frac{SH}{SB} = \frac{SA^2}{SB^2} = \frac{SA^2}{SA^2 + AB^2} = \frac{2a^2}{2a^2 + a^2} = \frac{2}{3}$ Gọi d ₁ và d ₂ lần lượt là khoảng cách từ B và H đến mặt phẳng (SCD) thì $\frac{d_2}{d_1} = \frac{SH}{SB} = \frac{2}{3} \Rightarrow d_2 = \frac{2}{3}d_1.$ Ta có: $d_1 = \frac{3V_{B,SCD}}{S_{SCD}} = \frac{SA.S_{BCD}}{S_{SCD}}.$ $S_{BCD} = \frac{1}{2}AB.BC = \frac{1}{2}a^2.$ $S_{SCD} = \frac{1}{2}SC.CD = \frac{1}{2}\sqrt{SA^2 + AB^2 + BC^2}.\sqrt{IC^2 + ID^2} = a^2\sqrt{2}.$ Suy ra d ₁ = $\frac{a}{2}$. Vậy khoảng cách từ H đến mặt phẳng (SCD) là: $d_2 = \frac{2}{3}d_1 = \frac{a}{3}.$	0,50

4/4