

Machine Learning & Deep Learning

손영두

e-mail: youngdoo@dongguk.edu

Recall: Underfitting and Overfitting

- 머신러닝 알고리즘이 train data에 충분히 적합하지 못하면 패턴을 잘 설명하지 못하는 underfitting (과소적합) 문제가 발생
- 머신러닝 알고리즘의 학습에서 train data에만 너무 적합하게 학습되면, generalization performance가 감소하는 overfitting (과적합) 문제가 발생

Machine Learning & Deep Learning

Recall: Underfitting and Overfitting

☑ 머신러닝 알고리즘을 학습할 때에는, (1) training error, (2) generalization gap
(training error와 generalization error의 차이), 두 가지를 최소화하여야 함

Overfitting in Deep Learning

- ☑ 모델의 복잡도가 큰 딥러닝에서는 overfitting 문제가 발생하기 쉬움
- ☑ 따라서 이를 해결하기 위한 많은 방법들이 regularization 연구됨
 - Parameter norm penalty
 - Data augmentation
 - Multitask learning
 - Early stopping
 - Dropout

Regularization

- ☑ Regularization(정규화, 정칙화)는 학습하고자하는 파라미터의 값에 제약을 주어 모델의 복잡도를 낮추는 방법
- ☑ 처음부터 적당한 복잡도의 모델을 선택하는 대신, 복잡도가 높은 모델의 파라미터에 적절한 제약을 주는 방식으로 최적적합 모형을 탐색
- Parameter Norm Penalty
 - 이러한 regularization 방법 중에는 학습하고자하는 parameter들의 norm penalty를 기존의 cost function에 더하여 새로운 objective function을 만드는 방법이 가장 널리 사용됨

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

Machine Learning & Deep Learning

Parameter Norm Penalty

$$\tilde{J}(\boldsymbol{\theta};\boldsymbol{X},\boldsymbol{y}) = J(\boldsymbol{\theta};\boldsymbol{X},\boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

$$\lambda = 0.$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \dots$$

Regularization을 최대치까지 활용

Parameter Norm Penalty

Parameter Norm Penalty in Deep Learning

- 일반적으로 신경망에서는 node 간의 연결의 가중치에만 penalty를 부여하고 bias는 penalty에 포함시키지 않음
- Bias를 penalty에 포함시킬 경우 underfitting이 심각하게 발생할 가능성이 높음
- 신경망에서 충별로 서로 다른 종류의 norm penalty를 적용하는 방식 또한 있으나, hyperparameter 선택에 관한 비용이 증가하기 때문에 일반적으로는 모든 층에 같은 종류의 penalty를 적용함

Parameter Norm Penalty

■ L₂-norm Regularization

regularization term
$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

- Ridge-style norm penalty
- Weight-decay (shrinkage)

Parameter Norm Penalty

■ L₁-norm Regularization

regularization term
$$\Omega(\boldsymbol{\theta}) = ||\boldsymbol{w}||_1 = \sum_i |w_i|$$

 $\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha ||\boldsymbol{w}||_1 + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}),$

- Lasso-style norm penalty
- Parameter selection (sparsity)

Parameter Norm Penalty

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Machine Learning & Deep Learning

Data Augmentation

- ☑ 기계학습 방법론의 학습에서 model의 generalization performance를 개선 하는 가장 좋은 방법 중 하나는 (아마도) 적절한 데이터를 추가하는 것
- ✓ 그러나 실제로 사용할 수 있는 데이터의 수는 한정적임
- Data Augmentation
 - 기존의 training data를 조작하여 새로
 운 (fake) training data를 생성
 - 예: 데이터의 random noise를 추가하여
 학습하여 robust model을 구축
 - 예: image data의 경우

Affine: Rotate

Affine: Shear

Multitask Learning

- ☑ Multitask learning은 같은 입력을 사용하는 여러 task들을 동시에 수행하는 방법론을 의미
- ☑ 일반적으로 모형이 여러 task를 동시에 수행하게 될 경우, 서로 연관되거나 공유하고 있는 부분이 하나의 task에 적합되지 않고 여러 task에 고르게 잘 작동하려고 학습되기 때문에 regularization 효과가 나타남

Early Stopping

- ☑ 신경망의 경우 training epoch이 길어질수록 training data에 과적합되는 현상이 강함
- ❤️ 이를 막기 위하여 별도의 validation set을 사용, validation set의 error가 감소하지 않는 경우 학습을 중단

Machine Learning & Deep Learning

Early Stopping

- ▼ 구체적으로 validation loss가 개선될 때마다 해당 지점에서의 모수들을 기억하고, validation loss가 개선되지 않으면 최저의 validation loss를 나타내었던 모수들을 호출하여 사용
- ▼ 가장 간단하며 기본적인 regularization 전략으로 널리 사용됨
- **■** Early stopping은 다른 regularization 방법과의 결합도 손쉬움
- **■** Early stopping은 모수의 탐색 공간을 초기값 주위의 작은 공간으로 한정하여 norm penalty와

비슷한 효과를 낼 수 있음

Ensemble

♥ 앙상블 방법 또한 overfitting을 막는 대표적인 방법으로 딥러닝에도 적용이 가능

$$\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2} + \sum_{j\neq i}\epsilon_{i}\epsilon_{j}\right)\right]$$
$$= \frac{1}{k}v + \frac{k-1}{k}c.$$

- 오차들의 상관관계가 작을수록 적은 기대오차 제곱값을 가짐
- Bagging의 경우 데이터셋에 어떤 데이터들이 포함 되었느냐에 따라 모형 학습의 결과가 달라짐

Machine Learning & Deep Learning

Dropout

- ₩ 가장 성공적인 딥러닝 regularization 방법 중 하나
- ☑ 여러 network 들의 ensemble을 현실적으로 구현하는 방법
- Output node가 아닌 다른 node들을 제거하여 만들 수 있는 subnetwork들로 구성된 ensemble model이 학습되도록 조절
- Node들을 일정확률로 선택/또는 선택하지 않고 weight를 학습하는 방식으로 수행

(b) After applying dropout.

Machine Learning & Deep Learning

Dropout

Machine Learning & Deep Learning

Dropout

Training phase : 각 iteration마다, hidden node를 일정 확률 p를 이용하여 보존

(1-p의 확률로 제거) (+1)

(a) Standard network

$$z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)},$$

 $y_i^{(l+1)} = f(z_i^{(l+1)}),$

(b) Dropout network

$$\begin{array}{rcl} r_j^{(l)} & \sim & \mathrm{Bernoulli}(p), \\ \widetilde{\mathbf{y}}^{(l)} & = & \mathbf{r}^{(l)} * \mathbf{y}^{(l)}, \\ z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)}, \\ y_i^{(l+1)} & = & f(z_i^{(l+1)}). \end{array}$$

Machine Learning & Deep Learning

Dropout

Test phase : 각 weight에는 p만큼 보정됨

Dropout

Hyperparameter

- **▼ Hyperparameter (초매개변수)** : 학습 과정에서 변경되지 않고, 모델의 학습을 위하여 미리 결정해야하는 값들
- ▼ 최종 학습이 완료된 모델의 성능을 결정
- ☑ 예: 신경망의 구조 (깊이, 넓이), step size, regularization hyperparameter 등
- 이러한 hyperparameter의 selection을 위하여 validation set을 이용
- ☑ 예: underfitting과 overfitting을 막기 위한 신경망의 구조
- **Logistic regression, SVM은 hyperparameter가 적은 모델들**
- 데이터의 수가 적어 validation set을 따로 나누기 어려운 경우에는 k-fold cross validation 방법이 널리 사용됨

K-fold cross validation

▼ 데이터를 k개의 서로 겹치지 않는 부분집합으로 분할

● 이 중 k-1개의 부분집합을 training, 나머지 1개의 부분집합을 test set으로 이용하여 오차를 추정

♥ 이를 서로 각기 다른 조합에 대하여 k번 반복하여 평균 오차를 확인

k=n : jack-knife CV

Machine Learning & Deep Learning

K-fold cross validation

Hyperparameters in Deep Learning

☑ 딥러닝에서는 일반적으로 다음과 같은 hyperparameter들을 조절

- 은닉층의 수와 포함된 node의 수: 은닉층의 수와 node의 수가 증가할수록 모델의 복잡도가 증가
- Step size: 너무 크거나 작은 step size를 사용할 경우 최적해를 도출하는 데에 실패할 수 있음
- Regularization coefficient: 정규화를 위한 계수를 적절히 선택하여 모델의 복잡도를 조절 가능
- Dropout rate: dropout 시 각 node가 학습에 사용될 확률을 조절

Hyperparameter Tuning

- Hyperparameter 및 model에 대한 깊은 이해가 있는 경우 이러한 hyperparameter들을 수동으로 결정 가능
- ☑ 그러나 일반적으로 자동화된 규칙을 통하여 최적 hyperparmeter를 탐색
- Grid search
 - Hyperparameter들 마다 적절한 값을 선택하고, 이들의 Catersian product (grid point)에 대하여 validation loss를 탐색
 - 탐색 하고자하는 hyperparameter의 수가 많아질수록 탐색의 수는 지수적으로 증가
 - 각 trial은 독립적이므로 쉽게 병렬화가 가능

Hyperparameter Tuning

Y Random search

- Hyperparameter space의 임의의 점에 대하여 random search
- 때때로 grid search보다 효과적임
- 각 trial은 독립적이므로 쉽게 병렬화가 가능

Hyperparameter Tuning

Model-based optimization

■ Hyperparameter selection을 하나의 optimization 문제로 바라볼 수 있음

Objective function: validation error

Decision variable : hyperparameters

- 일반적으로 위의 objective function은 미분이 불가능함
- 따라서 validation error에 expectation 대한 모델을 각 hyperparmaeter에 대한 함수 로 만들어 최적화를 수행하는 방법을 널리 사용 (Bayesian linear regression model 사용)
- 일반적으로 시간이 오래 걸리고 성과가 좋지 않아 널리 사용되지는 않음

Model Selection

🍑 문제의 복잡도에 따라 모델을 결정

- 문제가 복잡하지 않다면 로지스틱 회귀 등 단순한 통계 기반의 머신러닝 모형을 사용
- 물체 인식, 음성 인식, 기계 번역 등 복잡한 Al task인 경우 적절한 딥러닝 모형으로부터 시작

☑ 딥러닝 모형을 사용시 가이드라인

- 기본적인 MLP, CNN, LSTM 등의 모델로부터 시작하여 점점 복잡한 방법론들을 적용
- Regularization은 처음부터 사용하는 것을 추천
- Early stopping은 거의 모든 경우 하는 것이 좋으며, dropout 또한 많은 경우에 추천
- 기존 연구에서 좋은 알고리즘이 존재하면 이를 이용하여 시작 (transfer learning)

Model Selection

▼ 모수의 초기 값: 대칭성의 파괴가 필요

$$W_{i,j} \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right)$$

- ☑ 최적화 방법론
 - (full) Batch gradient
 - Stochastic gradient
 - Mini-batch gradient
 - Momentum methods

Machine Learning & Deep Learning

Model Selection

Batch gradient vs Stochastic gradient

Model Selection

Momentum

$$egin{aligned} oldsymbol{v} \leftarrow lpha oldsymbol{v} - \epsilon
abla_{oldsymbol{ heta}} \left(rac{1}{m} \sum_{i=1}^m L(oldsymbol{f}(oldsymbol{x}^{(i)}; oldsymbol{ heta}), oldsymbol{y}^{(i)})
ight) \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}. \end{aligned}$$

Momentum update

Nesterov momentum update

Machine Learning & Deep Learning

Model Selection

☑ 모수의 초기 값 : greedy layerwise pre-training (참고)

Data Gathering

- ▼ 많은 경우 데이터의 추가 수집이 모델의 수정보다 더 좋은 성능 개선을 만들어내는 효과가 있음
- ▼ 언제 데이터의 추가 수집이 효과적일까?

(1) train data로 학습한 결과가 괜찮은 지 판단

- Train data에 대한 결과가 좋지 못한 경우에는 현재 데이터에 대하여 model이 충분히 학습하지 못하고 있기 때문에 model의 복잡도를 증가 시켜야 함
 - => hyperparameter 조절
- 그래도 나아지지 않는다면 data의 품질에 대한 점검이 필요
 - => noise 제거, 더 많은 feature 등

(2) train data에서 학습한 결과가 괜찮다면 test data에서 판단

- Test data에서의 결과가 괜찮다면 모델 학습 완료
- 그렇지 않다면, 이 때 데이터의 추가 수집이 유의미할 수 있음

Machine Learning & Deep Learning

실습 _ 전체 프로세스

Machine Learning & Deep Learning

실습 _ 필수 module import

실습 _ 데이터 로드(MNIST)

data preprocess
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

- 0~9 사이의 숫자
- 이미지 파일

실습 _ 데이터 전처리

ऑ 데이터 전처리(사이즈 조절 및 scale 맞추기)

```
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
```

☑ 데이터 전처리(범주형 변수로 변경)

```
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
```


실습 _ 모델 생성 및 초기화

▼ 모델 선언(모델 구조 선언)

```
#model train
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dense(10, activation='softmax'))
```

- Hideen layer의 output 노드 수는 512개
- ✓ Activation function을 'relu'로 지정함
- 마지막 layer의 output 노드 수는 10으로 고정해야 함 (class가 10개)
- ▼ 모델의 loss 지정

■ 모델의 loss와 optimizer 설정

Machine Learning & Deep Learning

실습 _ 모델 생성 및 초기화

▼ 모델 구조 확인(선택적)

model.summary()		
Model: "sequential_2"		
Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 512)	401920
dense_4 (Dense)	(None, 10)	5130
Total params: 407,050 Trainable params: 407,050 Non-trainable params: 0		

3 6 0 9 7 8 6 9 8 7 9 0 7 4 4 6 8	1 2 2 1 2 4 1 0 5 6 1 3 9 8 1 4 5 6 1 3 0 2 1 7 8 3	3 1 4 3 8 6 9 M 3 2 7 3 0 7 6 1 5 3 3 3 9 4 7 4 1 0 0 1 7 7 7 9 9 0 4 6 8 3 7 5

Hidden layer(512)

Output layer(10)

실습 _ 모델 학습

▼ 모델의 학습과 관련된 매개변수 조절 및 학습

■ 밑에 표시되는 Train loss 와 Train accuracy를 토대로 학습 경과 확인 가능

Machine Learning & Deep Learning

실습 _ 모델 평가

▼ 학습된 모델의 Test accuracy를 토대로 모델 평가

```
#model test
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('test_acc: ', test_acc)
```

test_acc: 0.9836999773979187

실습 _ 전체 코드 - 1

```
#module import
from keras.datasets import mnist
from keras import models
from keras import layers
from keras.utils import to_categorical
# data preprocess
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
```


실습 _ 전체 코드 - 2

```
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
#model train
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop'.
                loss='categorical_crossentropy',
                metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10, batch_size=128)
#model test
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('test_acc: ', test_acc)
```


실습 Overfitting 확인하기

Y Epoch 수 증가

1 model.fit(train_images, train_labels, epochs=10, batch_size=128)

2 model.fit(train_images, train_labels, epochs=20, batch_size=128)

Machine Learning & Deep Learning

실습 _ Overfitting 확인하기

Train accuracy는 2번 모델이 높은 것을 확인

2

Chapter 11. 旨러닝 가이드라인 Machine Learning & Deep Learning

실습 _ Overfitting 확인하기

1 test_acc: 0.984000027179718

- test_acc: 0.9811999797821045
 - Overfitting 으로 인한 Test 성능의 저하를 확인할 수 있음

실습 _ Dropout

Machine Learning & Deep Learning

model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dense(10, activation='softmax'))

```
model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
model.add(layers.Dropout(0.2,noise_shape=None,seed=None))
model.add(layers.Dense(10, activation='softmax'))
```

■ Dropout layer 추가 (2번 모델 3번째 줄, dropout rate=0.2)

Machine Learning & Deep Learning

실습 _ Dropout

2

3

Dropout 추가 후 Train error는 안 좋아진 상황

Chapter 11. 달러닝 가이드라인 Machine Learning & Deep Learning

실습 _ Dropout

2 test_acc: 0.9811999797821045

- test_acc: 0.9837999939918518
- **☑** Dropout 추가 후 Test error의 향상이 있음을 확인할 수 있음

Chapter 11. 달러닝 가이드라인 Machine Learning & Deep Learning

실습 _ 3가지 모델 비교

1 test_acc: 0.984000027179718

test_acc: 0.9811999797821045

test acc: 0.9837999939918518