Μαθηματικά Γ' Λυκείου - Πετρίδης Κωνσταντίνος Homework Solutions 6-10-25

69. Να βρείτε τα τοπικά ακρότατα, αν υπάρχουν, των συναρτήσεων:

i.
$$f(x) = -x^2 + 2x + 5$$

ii.
$$f(x) = (x+1)^3$$

iii.
$$f(x) = (x+1)e^x$$

iv.
$$f(x) = \frac{x-1}{x-2}$$

Λύση: 2/58

i. $f(x) = -x^2 + 2x + 5$, $\Pi.O.: \mathbb{R}$.

$$f'(x) = -2x + 2 = -2(x - 1),$$
 $f''(x) = -2 < 0.$

Το f'(x) = 0 δίνει x = 1. Αφού f''(1) < 0, υπάρχει τοπικό μέγιστο στο

$$(1, f(1)) = (1, 6).$$

$$\begin{array}{c|cccc} x & -\infty & 1 & +\infty \\ \hline f'(x) & + & 0 & - \\ f(x) & \nearrow & TM & \searrow \end{array}$$

ii. $f(x) = (x+1)^3$, $\Pi.O.: \mathbb{R}$.

$$f'(x) = 3(x+1)^2 \ge 0,$$
 $f''(x) = 6(x+1).$

Στο x=-1: f'(-1)=0, f''(-1)=0 και $f^{(3)}(-1)=6\neq 0 \Rightarrow$ οριζόντια εφαπτομένη και όχι τοπικό ακρότατο. Η f είναι γνησίως αύξουσα σε όλο το \mathbb{R} . \Rightarrow κανένα τοπικό ακρότατο.

iii. $f(x) = (x+1)e^x$, $\Pi.O.: \mathbb{R}$.

$$f'(x) = e^x(x+2),$$
 $f''(x) = e^x(x+3).$

 $f'(x)=0 \iff x=-2$. Επειδή $f''(-2)=e^{-2}>0$, στο x=-2 υπάρχει τοπικό $\epsilon \lambda \dot{a} \chi$ ιστο.

$$(-2, f(-2)) = (-2, -e^{-2}).$$

$$\begin{array}{c|cccc} x & -\infty & -2 & +\infty \\ \hline f'(x) & - & 0 & + \\ f(x) & \searrow & \text{TE} & \nearrow \end{array}$$

iv. $f(x) = \frac{x-1}{x-2}$, $\Pi.O.: \mathbb{R} \setminus \{2\}$.

$$f'(x) = \frac{(x-2) - (x-1)}{(x-2)^2} = \frac{-1}{(x-2)^2} < 0 \quad (\forall x \neq 2).$$

Η f είναι γνησίως φθίνουσα στα $(-\infty,2)$ και $(2,+\infty)$. Δεν μηδενίζεται η f' και στο x=2 δεν ορίζεται \Rightarrow κανένα τοπικό ακρότατο.

2. Να μελετήσετε ως προς την κυρτότητα τις συναρτήσεις:

i.
$$f(x) = x^3 - x^2 - x + 1$$

ii.
$$f(x) = \frac{e^x}{x}$$

iii.
$$f(x) = \eta \mu x, x \in [0, 2\pi]$$

iv.
$$f(x) = \ln(x^2 + 4)$$

Λύση:

i. $f(x) = x^3 - x^2 - x + 1$, $\Pi.O.: \mathbb{R}$.

$$f'(x) = 3x^2 - 2x - 1, \qquad f''(x) = 6x - 2.$$

$$f''(x) = 0 \iff x = \frac{1}{3}.$$

$$\frac{x \quad -\infty \quad \frac{1}{3} \quad +\infty}{f''(x) \quad -0 \quad +}$$

$$f(x) \quad \cap \quad \Sigma.K. \quad \cup$$

Η f είναι κοίλη στο $(-\infty,\frac{1}{3}]$ και κυρτή στο $[\frac{1}{3},+\infty)$. Σημείο καμπής: $(\frac{1}{3},f(\frac{1}{3}))=(\frac{1}{3},\frac{16}{27})$.

ii. $f(x) = \frac{e^x}{x}$, $\Pi.O.: \mathbb{R} \setminus \{0\}$.

$$f'(x) = \frac{e^x(x-1)}{x^2}, \qquad f''(x) = \frac{e^x((x-1)^2+1)}{x^3}.$$

Εφόσον $e^x>0$ και $(x-1)^2+1>0$, το πρόσημο του f'' είναι το πρόσημο του x^3 :

$$f''(x) \begin{cases} < 0, & x < 0, \\ > 0, & x > 0. \end{cases}$$

$$\frac{x -\infty + \infty}{f''(x) - + + \cdots}$$

Κοίλη στο $(-\infty,0)$, κυρτή στο $(0,+\infty)$. Στο x=0 δεν ορίζεται \Rightarrow δεν υπάρχει σημείο καμπής.

iii. $f(x) = \eta \mu x$, $\Pi.O.: [0, 2\pi]$.

$$f'(x) = \sup x, \qquad f''(x) = -\eta \mu x.$$

$$f''(x) = 0 \iff \eta \mu x = 0 \iff x = 0, \ \pi, \ 2\pi.$$

$$\frac{x \quad 0 \quad \pi \quad 2\pi}{f''(x) \quad 0 \quad - \quad 0 \quad + \quad 0}$$

$$f(x) \quad \cap \quad \Sigma.K. \quad \cup$$

Η f είναι κοίλη στο $[0,\pi]$ και κυρτή στο $[\pi,2\pi]$. Σημείο καμπής στο εσωτερικό: $(\pi,0)$. (Στα άχρα $0,2\pi$ δεν θεωρούμε Σ .Κ.)

iv. $f(x) = \ln(x^2 + 4)$, $\Pi.O.: \mathbb{R}$.

$$f'(x) = \frac{2x}{x^2 + 4}, \qquad f''(x) = \frac{2(4 - x^2)}{(x^2 + 4)^2}.$$

$$f''(x) = 0 \iff 4 - x^2 = 0 \iff x = \pm 2.$$

$$\frac{x}{f''(x)} \begin{vmatrix} -\infty & -2 & 2 & +\infty \\ -\infty & 0 & + & 0 & -k \\ f(x) & 0 & \Sigma.K. & 0 \end{vmatrix}$$

Κοίλη στα $(-\infty, -2]$ και $[2, +\infty)$, κυρτή στο [-2, 2]. Σημεία καμπής: $(-2, \ln 8)$ και $(2, \ln 8)$.

3. Να μελετήσετε ως προς την κυρτότητα και τα σημεία καμπής τις συναρτήσεις:

i.
$$f(x) = x^3 - 3x^2 + 5$$

ii.
$$f(x) = xe^x$$

iii.
$$f(x) = \frac{x^2}{x+1}$$

iv.
$$f(x) = \frac{\ln x}{x}$$

 Λ ύση: 3/72

i. $f(x) = x^3 - 3x^2 + 5$, II.O.: \mathbb{R} .

$$f'(x) = 3x^2 - 6x, \qquad f''(x) = 6x - 6 = 6(x - 1).$$

$$f''(x) = 0 \iff x = \frac{1}{3}.$$

$$\frac{x \quad | -\infty \quad \frac{1}{3} \quad +\infty}{f''(x) \quad - \quad 0 \quad +}$$

$$f(x) \quad | \cap \quad \Sigma.K. \quad \cup$$

Η f είναι κοίλη στο $(-\infty, \frac{1}{3}]$ και κυρτή στο $[\frac{1}{3}, +\infty)$.

Σημείο καμπής: $\left(\frac{1}{3}, f\left(\frac{1}{3}\right)\right) = \left(\frac{1}{3}, \frac{16}{27}\right)$.

ii. $f(x) = xe^x$, $\Pi.O.: \mathbb{R}$.

$$f'(x) = e^{x}(x+1), \qquad f''(x) = e^{x}(x+2).$$

$$f''(x) = 0 \iff x = -2.$$

$$\begin{array}{c|c} x & -\infty & -2 & +\infty \\ \hline f''(x) & - & 0 & + \\ f(x) & \cap & \Sigma.K. & \cup \end{array}$$

Κοίλη στο $(-\infty,-2]$, χυρτή στο $[-2,+\infty)$.

Σημείο καμπής: $(-2, f(-2)) = (-2, -2e^{-2})$.

iii.
$$f(x) = \frac{x^2}{x+1}$$
, $\Pi.O.: \mathbb{R} \setminus \{-1\}$.

$$f'(x) = \frac{x(x+2)}{(x+1)^2}, \qquad f''(x) = \frac{2}{(x+1)^3}.$$

$$\frac{x \quad |-\infty \quad -1 \quad +\infty}{f''(x) \quad - \quad \| \quad +}$$

$$f(x) \quad \cap \qquad \cup$$

Κοίλη στο $(-\infty,-1)$, χυρτή στο $(-1,+\infty)$.

 Σ το x=-1 δεν ορίζεται \Rightarrow δεν υπάρχει σημείο καμπής.

iv.
$$f(x) = \frac{\ln x}{x}$$
, $\Pi.O.: (0, +\infty)$.
$$f'(x) = \frac{1 - \ln x}{x^2}, \qquad f''(x) = \frac{2 \ln x - 3}{x^3}.$$

$$f''(x) = 0 \iff 2 \ln x - 3 = 0 \iff x = e^{3/2}.$$

$$\frac{x}{f''(x)} \begin{vmatrix} 0^+ & e^{3/2} & +\infty \\ \hline f''(x) & - & 0 & + \\ \hline f(x) & \cap & \Sigma.K. & \cup \end{vmatrix}$$

Κοίλη στο $(0, e^{3/2}]$, χυρτή στο $[e^{3/2}, +\infty)$.

Σημείο καμπής:
$$\left(e^{3/2},\,f(e^{3/2})\right)=\left(e^{3/2},\frac{3}{2e^{3/2}}\right)$$
.