Principles of Biosignals and Biomedical Imaging

Master on Biomedical Engineering

 P_3 , 2nd Semester 2022/2023

Vectors

Lab Session 1

João Miguel Sanches

Bioengineering Department (DBE) Instituto Superior Técnico / University of Lisbon

In this lab some basic concepts on vector spaces of signals are addressed

1) Synthetic data

a) Implement a function to generate a column vector containing a sine wave, $sin(2\pi f(t)t)$, with a growing frequency, f(t) from $f(0) = f_1$ to $f(T) = f_2$. The inputs of the function are the duration, T in seconds, the frequencies, f_1 and f_2 , in Hz and the sampling rate, f_s , in samples per second

$$x = chirpTone(T, f_1, f_2, f_s)$$
(1)

b) Listen the sound produced in the previous item with $f_1 = 100$, $f_2 = 2000$ and $f_s = 4000$ Hz using the MatLab function *soundsc*.

c) Save the sound vector in an audio file to be read in normal audio players (use the MatLab function audiowrite).

2) Real Data

- a) Audio (1D)
 - i) Read the audio file "Let It Be.mp3" from the Data section of the webpage of the discipline, using the MatLab function *audioread*. Read carefully the help documentaion of this function.
 - ii) Compute the length of the file in seconds. Explain the approach you used.
 - iii) Reproduce the music backwards.
- b) Electrocardiogram (1D)
 - i) Read the *.mat file "116m(2).mat" containing a real ECG trace.
 - ii) Visualize the ECG trace and comment.
 - iii) Estimate the sampling frequency that leads to a realistic ECG trace.
 - iv) Detect the R peaks and estimate the heart rate (HR) from the inter-peak intervals.
- c) Images (2D)
 - i) Load the image House8000.png and creatively find hidden information in it ("...As the philosopher Jagger once said: You Can't Always Get What You Want".
 - ii) Suggest and implement a method to improve the quality of that information.
 - iii) Suggest and implement a method to recover the original image. Compute the Signal-to-noise ratio of the recovered image comparing it with the original one.

1