Lecture22: NMOS inverter (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

After all,

- As much as we have AND, OR, and NOT gates, we can implement any Boolean function.
 - For example, x XOR y = (x AND (NOT y)) OR ((NOT x) AND y)
 - With <u>NAND</u>, <u>NOR</u>, <u>and NOT gates</u>, we can, too.

Inverter and NAND

NOR can be implemented similarly.

x	NOT
0	1
1	0

x	y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

In circuit,

- How can we represent 0 and 1?
 - V_{DD} is assigned to the logical value, 1.
 - GND is assigned to the logical value, 0.

NMOS inverter

- How can we have an output, 0?
 - Only when the input is high. <u>You have seen it before!</u>

Vin	Vout
0	1
1	0

Voltage transfer

- When $V_{in} < V_{TH}$, trivially, $V_{out} = V_{DD}$.
- When V_{in} is slightly larger than V_{TH} , the NMOSFET is in the saturation region.

$$V_{out} = V_{DD} - I_D R_D$$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

• When V_{in} is further increased, the NMOSFET is in the triode region.

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D [2(V_{in} - V_{TH})V_{out} - V_{out}^2]$$

Draw it! (1/2)

Parameters in Example 17. 14 (Razavi) w/o modification.

$$\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$$
, $V_{TH} = 0.5 \ \text{V}$, $\frac{W}{L} = \frac{10}{0.18}$, $R_D = 1k\Omega$ and $V_{DD} = 1.8 \ \text{V}$

GIST Lecture on June 3, 2020 (Internal use only)

Draw it! (2/2)

With a wider NMOSFET

$$\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$$
, $V_{TH} = 0.5 \ \text{V}$, $\frac{W}{L} = \frac{50}{0.18}$, $R_D = 1k\Omega$ and $V_{DD} = 1.8 \ \text{V}$

 V_{in}

GIST Lecture on June 3, 2020 (Internal use only)

Noise margin

Verbatim

- "(It) is the maximum amount of degradation (noise) at the input that can be tolerated before the output is affected significantly."

GIST Lecture on June 3, 2020 (Internal use only)

Noise margin of CS stage

- Let's calculate $NM_L = V_{IL}$.
 - In this case, (blue curve)

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

- Taking the differentiation w. r. t. V_{in} ,

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})$$

- At $V_{in} = V_{IL}$, the slope becomes -1,

$$NM_L = V_{IL} = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_D} + V_{TH}$$

- (Stronger NMOS yields a reduces NM_L .)

Common-source

- Common-source configuration
 - It can be used as an inverter.
 - It can be used as an amplifier.
 - $\frac{dV_{out}}{dV_{in}}$ is the voltage gain.

RC circuit

- Consider a serial RC circuit.
 - The KCL states

$$\frac{V_{out} - V_{in}}{R} + C \frac{dV_{out}}{dt} = 0$$

- Assume a step-wise change of V_{in} at t=0. It becomes V_{DD} .
- Initial output voltage is V_0 .
- Its solution is given by

$$V_{out}(t) = V_{DD} + (V_0 - V_{DD}) \exp\left(-\frac{t}{RC}\right)$$

Speed of inverter (1/4)

- VTC merely describes the DC behavior.
 - Input voltages with different frequencies (1 kHz, 1 MHz, 1 GHz, ...)
 - Time-dependent behavior

Speed of inverter (2/4)

- A rapid transition of V_{in} from V_{DD} to 0
 - The capacitor should be charged.

Speed of inverter (3/4)

- Simply, it is a RC circuit.
 - Then, the solution is simply

$$V_{out}(t) = V_{out}(0^{-}) + [V_{DD} - V_{out}(0^{-})] \left(1 - \exp\frac{-t}{R_D C_L}\right)$$

- Since $\exp(-3) \approx 0.05$, after $3R_DC_L$, V_{out} reaches 0.95 V_{DD} .
- Yes, it takes time to get the stable output voltage...
- The delay restricts the maximum signal frequency.

Speed of inverter (4/4)

- A rapid transition of V_{in} from 0 to V_{DD} to 0
 - At the initial phase, the resistor does not conduct.
 - Also the MOSFET is operated in its saturation mode. Then,

$$I_{D,sat} + C_L \frac{dV_{out}}{dt} = 0$$

Origin of C_L ?

- Consider an inverter chain.
 - Then, what is the load capacitance for the first stage?

Interconnect