Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024 IT3CO37 Compiler Design

Programme: B.Tech. Branch/Specialisation: IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

Q.1 i. Cross compiler is used for:

architecture

- 1 (a) Converting source code into machine code for the same
- (b) Converting source code into machine code for a different architecture
- (c) Converting machine code into source code
- (d) Debugging programs
- Input buffering in lexical analysis refers to:
 - (a) Storing the entire source code in memory
 - (b) Dividing the source code into tokens
 - (c) Reading characters from the input source one at a time
 - (d) None of these
- Bottom-up parsers are also known as:
 - (a) Top-down parsers
- (b) Left-to-right parsers
- (c) Shift-reduce parsers
- (d) Recursive descent parsers
- What does LALR stand for in LALR parsing?
 - (a) Lookahead-LR
 - (b) Leftmost-Rightmost
 - (c) Lookahead-LALR
 - (d) Left-to-Right, Rightmost derivation
- What is the primary purpose of Syntax Directed Translation (SDT)? 1
 - (a) To check the syntax of a programming language
 - (b) To translate high-level source code into machine code
 - (c) To associate semantic actions with the productions of a grammar
 - (d) To optimize the code generated by the compiler

P.T.O.

1

1

1

[2]

	vi.	In the context of syntax-directed translation, what is the purpose of a dependency graph?		
			l structure of syntax trees	
		• /	•	
		•	_	
		•	-	
	vii.	_		1
	, 111	-		_
		(c) Loop optimization	•	
	viii.	, , <u> </u>	chical structure of syntax trees dencies between attributes in a grammar adence of operators in an expression control in a translation scheme de generation are often used for: nent (b) Control flow analysis (d) Reducing redundancy in the code typically stored in an activation record? (b) Local variables (d) Compiler directives de context of code optimization? 1 pees not contain any control flow statements a single-entry point and a single exit point multiple entry points and multiple exit point aultiple entry points and multiple exit points as a typical optimization performed during ans? computations outside the loop computations inside the loop conditional statements	
	VIII.	(a) Program instructions	-	_
		(c) Global variables		
	ix.	` '	•	1
13.	IA.		-	1
			-	
	(b) A block of code with a single-entry point and a single exit point			
		•		
		- · ·	• •	1
	х.	Which of the following is a ty loop invariant computations?	pical optimization performed during	1
		(a) Moving loop-invariant comp	putations outside the loop	
		(b) Moving loop-varying comp	utations inside the loop	
		(c) Converting loops into condi	tional statements	
		(d) Eliminating loops from the	code entirely	
Q.2	i.	Describe the role of lexical and input buffering.	alyzer and also explain the concept of	4
	ii.	Explain different phases of com	piler with example in detail.	6
OR	iii.	_	_	6
Q.3	i.	Explain left recursion and left f	actoring with example	4
Q .5	ii.	_		_
	11.	$E \rightarrow E + T \mid T$	rammar is LL (1) or not:	U
		$T \rightarrow T^* F / F$		
OB		$F \rightarrow (F) a b$	(0)	,
OR	iii.		(0) item sets and draw the goto graph ϵ . Indicate the conflicts (if any) in the	6

[3]

- Q.4 i. Write difference between L-attribute definition and S-attribute 4 definition.
 - ii. What is the function of semantic analysis? How it will work and what **6** will be the output?
- OR iii. Construct the syntax tree for the expression x*y-5+7 using mknode, 6 mkleaf functions.

Q.5 Attempt any two:

- i. Explain various storage allocation strategies with their advantages and 5 disadvantages.
- ii. Explain various parameter passing techniques which are used by 5 compiler, with example.
- ii. Write the three-address code for the following expression and represent in quadruple, triple, indirect triple.

```
for(i = 1; i<=10; i++)
{
    a[i] = x * 5;
}
```

Q.6 Attempt any two:

- i. Define basic blocks with example and explain their significance in 5 code optimization.
- ii. Define directed acyclic graph and its use. Also draw the DAG for the sexpression-

$$(a*b) + (c-d) * (a*b) + b.$$

5

iii. Discuss various methods for loop optimization with example.

[4]

Marking Scheme

COMPILER DESIGN (CD) IT3CO37

Q.1	1)	architecture			
	ii)	c) Reading characters from the input source	e one at a time	1	
	iii)	c) Shift-reduce parsers		1	
	iv)	a) Lookahead-LR		1	
	v)	c) To associate semantic actions with the pro-	oductions of a grammar	1	
	vi)	b) To visualize the dependencies between a	=	1	
	vii)	d) Reducing redundancy in the code	C	1	
	viii)	b) Local variables		1	
	ix)	b) A block of code with a single-entry point and a single exit point			
	x)	a) Moving loop-invariant computations out	side the loop	1	
Q.2	i.	role of Lexical Analyzer	2 Marks	4	
		input buffering.	2 Marks		
	ii.	phases of compiler with example in detail	1 Mark of each phase	6	
OR	iii.	Cross compiler	3 Marks	6	
		bootstrap compiler	3 Marks		
Q.3	i.	Left Recursion and Left Factoring	2 Marks each	4	
	ii.	Verify whether the following grammar is LL (1) or not?			
		$E \rightarrow E + T \mid T$			
		$T \rightarrow T^* F / F$ $F \rightarrow (F) a b$	6 Marles		
OR	iii.	$F \rightarrow (F)$ lalb Complete solution	6 Marks 6 Marks	6	
OK	111.	Complete solution	O WILLIAMS	•	
Q.4	i.	difference	1 Mark each	4	
	ii.	function of semantic analysis	3 Marks	6	
		How it will work	2 Marks		
ΩD	•••	what will be the output.	1 Marks	,	
OR	iii.	syntax tree	6 Marks	6	
Q.5	i.	allocation strategies	3 Marks	5	
		Advantage & disadvantages	2 marks	_	
o	ii.	parameter passing techniques	5 Marks	5	
OR	iv.	three-address code	2 Marks	5	
		representation	1 Mark each		

Q.6		Attempt any two questions:		
	i.	basic blocks with example	3 Marks	5
		significance in code optimization	2 Marks	
	ii.	Directed Acyclic Graph	1 Marks	5
		use	2 Marks	
		DAG for the expression		
		(a*b) + (c-d)*(a*b) + b.	2 Marks	
	iii.	various methods for loop optimization with example	5 Marks	5

P.T.O.