МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Кафедра дискретного аналізу та інтелектуальних систем

Індивідуальне завдання №2

з курсу "Теорія ймовірності та математична статистика"

Виконав: студент групи ПМі-21 Урдейчук Ростислав Ігорович

Оцінка

Перевірила: доц. Квасниця Г.А.

Постановка задачі:

- 1. Зчитати дані з текстового файлу, побудувати полігон або гістограму частот;
- 2. На основі графічного представлення сформулювати гіпотезу про закон розподілу досліджуваної ознаки генеральної сукупності;
- 3. Передбачити можливість користувачу задати параметри розподілу вручну або оцінити на основі даних вибірки;
- 4. Для заданого користувачем рівня значущості перевірити сформульовану гіпотезу за критерієм $\chi 2$.

Варіант 16

ЗАДАЧА 3 (варіанти 12-16). Для вдосконалення організації праці на підприємствах торгівлі були зібрані дані про реалізацію за місяць товарів у магазинах міста. Розподіл кількості n_i магазинів залежно від обсягу реалізації X наведено в таблиці

<i>X</i> , ум.од.	28- 30	30- 32	32- 34	34- 36	36- 38	38- 40	40- 42	42- 44	44- 46	46- 48
n_i (варіант 12)	1	2	10	51	88	85	45	15	3	1
n_i (варіант 13)	1	2	10	48	88	91	45	13	3	1
n_i (варіант 14)	1	2	8	51	94	85	42	15	3	1
n_i (варіант 15)	1	2	12	51	82	85	48	15	3	1
n_i (варіант 16)	1	2	10	54	88	79	45	17	3	1

ЗАДАЧА 9 (варіанти 16-20) Для покращення обслуговування пасажирів реєстрували час очікування автобусів на зупинці. Розподіл за день кількості пасажирів n_i залежно від часу T, який вони очікували на автобус, відображено в таблиці.

Т, час	0-1,5	1,5-3	3-4,5	4,5-6	6-7,5	7,5-9	9-	10,5-	12-	13,5-
очікування (хв)							10,5	12	13,5	15
n _i (варіант 13)	143	138	139	142	143	138	139	143	142	140
n _i (варіант 14)	119	122	131	118	122	123	118	117	132	124
n _i (варіант 15)	108	115	112	107	108	111	113	114	116	104
n _i (варіант 16)	142	141	138	136	137	142	143	154	144	135
n _i (варіант 20)	138	159	147	143	148	175	190	147	123	134

Короткі теоретичні відомості:

<u>Перевірка гіпотез</u> про закон розподілу випадкової величини — це процес, в ході якого статистично перевіряється відповідність спостережуваних даних певному теоретичному розподілу.

Він проходить у кілька етапів:

- 1. *Формулювання гіпотез*: висувається гіпотеза Н0 про закон розподілу, яким керується вибірка
- 2. *Визначення рівня значущості*: ймовірність відхилення нульової гіпотези, виражена у відсотках
- 3. *Обчислення тестової статистики*: цей процес залежить від того, який метод ми обираємо. Наприклад, за критерієм Пірсона, ми обчислюємо величину хі-квадратичне
- 4. *Прийняття рішення*: порівнюючи отримані значення з критичним значенням, ми приймаємо або відхиляємо початкову гіпотезу

Для критерія Пірсона ми обчислюємо величину хі-критичне, використовуючи рівень значущості та ступені свободи.

Програмна реалізація:

Для написання коду я використав мову програмування Python, середовище Jupyter Notebook і наступні бібліотеки: pandas, numpy, matplotlib, scipy

Спочатку я зчитую дані вибірки з файлу за допомогою методів pandas, показую їх у вигляді таблиці та будую гістограму за допомогою бібліотеки matplotlib. Потім показую висунуту гіпотезу. Користувач може або ввести дані розподілу самостійно, або вибрати, щоб вони були оцінені. Він також вводить значення рівня значущості.

Потім обчислюю ймовірності для кожного проміжку в окремій функції. Для першої задачі, з неперервним випадком, я використовую функцію лапласа; для другої, з рівномірним випадком, я використовую F(x) для рівномірного закону розподілу.

Після цього я перевіряю, чи для всіх рядків виконується критерій Пірсона, і якщо ні, то об'єдную ті з них, де це потрібно. Роблю це в окремій функції, використовуючи методи pandas — iloc та concat.

В кінці обчислюю значення хі квадрат емпіричного та критичного. Емпіричне рахую за формулою, а критичне — за допомогою функції chi2.ppf(). Якщо емпіричне значення менше за критичне, то гіпотеза приймається, якщо ні — відхиляється.

Аналіз отриманих результатів:

Перша задача:

0	(28.0, 30.0)	1
1	(30.0, 32.0)	2
2	(32.0, 34.0)	10
3	(34.0, 36.0)	54
4	(36.0, 38.0)	88
5	(38.0, 40.0)	79
6	(40.0, 42.0)	45
7	(42.0, 44.0)	17
8	(44.0, 46.0)	3
9	(46.0, 48.0)	1

Гіпотеза НО - нормальний закон розподілу avg_interval хi ni рi 29.0 0 (28.0, 30.0) 0.001359 (30.0, 32.0) 2 31.0 0.010856 2 (32.0, 34.0) 10 33.0 0.054245 35.0 3 (34.0, 36.0) 0.158640 54 (36.0, 38.0) 88 37.0 0.271917 4 5 (38.0, 40.0) 79 39.0 0.273371 6 (40.0, 42.0) 45 41.0 0.161200 7 (42.0, 44.0) 17 43.0 0.055713 8 (44.0, 46.0) 3 45.0 0.011270 (46.0, 48.0) 1 47.0 0.001427 9

	хi	ni	pi
0	(28.0, 34.0)	13	0.066461
1	(34.0, 36.0)	54	0.158640
2	(36.0, 38.0)	88	0.271917
3	(38.0, 40.0)	79	0.273371
4	(40.0, 42.0)	45	0.161200
5	(42.0, 48.0)	21	0.068411

X2 емпіричне: 4.138308452359137 X2 критичне: 7.406880043103224

Емпіричне < критичне — гіпотезу Н0 приймаємо

Друга задача:

	хi	ni
0	(0.0, 1.5)	143
1	(1.5, 3.0)	138
2	(3.0, 4.5)	139
3	(4.5, 6.0)	142
4	(6.0, 7.5)	143
5	(7.5, 9.0)	138
6	(9.0, 10.5)	139
7	(10.5, 12.0)	143
8	(12.0, 13.5)	142
9	(13.5, 15.0)	140

Гіпотеза Н0 — рівномірний закон розподілу

	хi	ni	avg_interval	pi
0	(0.0, 1.5)	143	0.75	0.098189
1	(1.5, 3.0)	138	2.25	0.100390
2	(3.0, 4.5)	139	3.75	0.100390
3	(4.5, 6.0)	142	5.25	0.100390
4	(6.0, 7.5)	143	6.75	0.100390
5	(7.5, 9.0)	138	8.25	0.100390
6	(9.0, 10.5)	139	9.75	0.100390
7	(10.5, 12.0)	143	11.25	0.100390
8	(12.0, 13.5)	142	12.75	0.100390
9	(13.5, 15.0)	140	14.25	0.098689

	хi	ni	pi
0	(0.0, 1.5)	143	0.098189
1	(1.5, 3.0)	138	0.100390
2	(3.0, 4.5)	139	0.100390
3	(4.5, 6.0)	142	0.100390
4	(6.0, 7.5)	143	0.100390
5	(7.5, 9.0)	138	0.100390
6	(9.0, 10.5)	139	0.100390
7	(10.5, 12.0)	143	0.100390
8	(12.0, 13.5)	142	0.100390
9	(13.5, 15.0)	140	0.098689

X2 емпіричне: 0.452058917276914 X2 критичне: 10.59623206131937

Емпіричне < критичне — гіпотезу Н0 приймаємо

Висновок:

Виконуючи це індивідуальне завдання, я отримав більше розуміння теми перевірки гіпотез щодо розподілу випадкової величини за допомогою методу Пірсона. Отримав навички у обчисленні емпіричного та критичного значень статистики хі-квадрат, а також пригадав, як обчислювати ймовірності для різних розподілів.