· McCULLOCU-ATTS NEURON 4=0(W·X-T)

- FEEDFORWARD/RECURRENT (SUORT-TERM) PATTERN RECOGNITION
- PERCEPTRON LEARNING

ALGORITHI

FOR WRONG CUASSIFICATIONS OF XM $\vec{W}_{t+1} = \vec{W}_t + \eta \vec{x}^{n}$

SCONVERGENCE IN t < KE

(PROOF)

COVER GENERAL'SATIONS -> SIGN CONSTRUNED => CAPACITY

- · COVER LITITATIONS
- ->SLOWER LEARNING IF DATA IS UNBIASED
- NO WAY TO QUANTIFY ROBUSTNESS

LEARNING SHOULD BE ROBUST AGAINST NOISE

UNEAR SEPARABILITY ASSUMPTION

MAXINISE DISTANCE BETWEEN POINTS: PICK W ST. $\int w^T x_+ + b = 1$ $w_{x_{+}}^{++b=1}$ for x_{+}, x_{-} with $w_{x_{-}}^{++b=1}$ suppose vectors

OPTINISATION PROBLEM: max 2 (MARGIN)

ST. JW TXn ≥ 1 IF yn = +1 Wxn <-1 IF yn =-1

OR min liwll² st. y_n(w^Tx_n+b)≥1 (SESCENT)

TRACEOFF: MARGIN/# MISTANES

SOFT MARGIN (ALLOWS FOR SONE NISTAMES)

MIN 1/2 | WII 2 + C \sum_ \xi S = SACH FER WARABLE ST. $y_n(\underline{w}\cdot\underline{x}_n+b) \ge 1-\xi_n$

C REG. PARAMETER : LARGER C MEANS MORE SEVERE PENALISATION, SO NARROWER MARGIN

OR $f(x) = \underline{W} \cdot \underline{x} + b$ $\xi_n = \max(0, 1 - y_n f(x_n))$ $\int g_n f(x_n) \ge 1 - \xi_n$

JUST MINIMISE: min 1 || w ||2+c > max (0, 1-9, f(x)) REGULA'RISATION

THE PROBLEM IS CONVEX (> conu = conv)

> HINGE LOSS $\ell(t) = \max\{0, 1-t\}$ t = yf(x) = y(w·x+b)

CANNOT BE DIFFERENTIATED, ZERO-ONE COSS - DIFFICULT TO MINIMISE

GRADIENT DESCENT:

 $W_{t+1} = W_t - \eta_t \nabla_W C(W_t)$ g(w) TO BE

SGO USES MINI BATCHES INSTEAD OF ALL THE DATA

 $\frac{1}{2} W_t - \eta \frac{1}{N} \sum_{k=1}^{\infty} (\lambda_{\underline{W}_k} + \nabla_{w} \angle (x_k, y_k, \underline{w}_k))$

DUE TO HINGE LOSS, ONLY POINTS STRICTLY VIOLATING THE MARGIN CONTRIBUTE TO THE GRADIENT

9 SUPPORT VECTOR MACHINES I

SWORTCUT TO APPLY
THE NONLINEARITY
WHILE SHIPPING SOME
COMPUTATIONS AND
ONLY OBTAINING
THE $\int_{(x)} \cdot \int_{(y)} = ?$ INSTEAD OF EVAC.

SANPLE KERNELS

POLYN, DEC = $d \rightarrow K(x,y) = (x\cdot y)^d$ OEC = $d \rightarrow (4+x\cdot y)^d$

RANAL BASIS \rightarrow $Exp(-\frac{||x-y||^2}{2\sigma^2})$

NERNEL PROPERTY IS NEPT. $120 \rightarrow 3k_1$ $1k_1 + k_2$ $1k_1$, πA_1

10 RECURRENT NN

$$S_i(++1) = \phi \left(\sum_{j} w_{ij} S_j(+) + I_i(+)\right)$$

OFFSET DEPENDS ON I, E W MATRIX OF WEIGHTS FOR CROSS-BENAVIOUR

PARALLEL ASTINCHRONOUS UPDATES

DISCRETE/CONTINUOUS TIRE
$$\rightarrow r_i(t+1) = \cdots$$
 ϕ ACTIVATION (SIGNOID,)

FUNCTION (Relu)

 ϕ

11 HOPFIELD MODEL

DESCRIPTION: N BINARY (±1) NEURONS,

Si(±+1)=SGN(\(\subseteq\) Jij\(\subseteq\) (\(\subseteq\) Jij\(\subseteq\) (\(\subseteq\) (\(\subseteq\) \\

NETWORN

CONNECTS
INPUTS

PRITTERNS TO MEMORISE (\(\subseteq\) \\

INDITERNS

THATRIX

Jij = \(\subseteq\) \(\subseteq\) \\

SOME COSIC

IN THE LIMIT

STATE

NOISE, CROSS-INTERACTIONS

PATTERN IF THERE IS AN OVERAP WITH A STONED PATTERN, THE NETWORK CONVERGES TO IT IN ONE STEP

SYMMETRIC ENERGY: $-\frac{1}{2}\sum_{j\neq i}J_{ij}S_{i}S_{j}=E(S_{1}...S_{N})$ NETWORK FUNCTION: $-\frac{1}{2}\sum_{j\neq i}J_{ij}S_{i}S_{j}=E(S_{1}...S_{N})$ When the standard of the standa

12 RESTRICTED BOLTEMANN MACHINES

TRAIN MACUINES TO LEARN TUE DISTRIBUTION OF TUE DATA FEATURES

