Föreläsning 6, vektorrum

1) Definition Def: Ett vektorrum (V, +, ., 0) är i) en mängd V av "vektorer" ii) som kan adderas med +, iii) som kan skalas med reella skalärer iv) som innehåller en "nollvektor"

Definition 5.2.1. En icke-tom mängd \mathbb{V} säges vara ett *vektorrum över de reella talen* om följande gäller:

I. Det finns i \mathbb{V} en operation kallad *addition*, betecknad + sådan att

$$\mathbf{u}, \mathbf{v} \in \mathbb{V} \Longrightarrow \mathbf{u} + \mathbf{v} \in \mathbb{V}.$$

För $\mathbf{u},\mathbf{v},\mathbf{w}\in\mathbb{V}$ har denna addition egenskaperna

$$\mathrm{ADD}\,1.\ \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \tag{Kommutativa lagen}$$

ADD 2.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$
 (Associativ lag)

ADD 3. I
$$\mathbb{V}$$
 finns ett nollelement, $\mathbf{0}$ så att $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (Neutralt element)

ADD 4. Till varje
$$\mathbf{u} \in \mathbb{V}$$
 finns ett element $-\mathbf{u}$ så att $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (Additiv invers)

II. Det finns i $\mathbb V$ en operation kallad $multiplikation\ med\ tal,$ betecknad \cdot sådan att

$$\lambda \in \mathbb{R}, \ \mathbf{u} \in \mathbb{V} \Longrightarrow \lambda \cdot \mathbf{u} \in \mathbb{V}.$$

För $\lambda, \mu \in \mathbb{R}$ och $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ har denna multiplikation egenskaperna

$$MULT 1. 1 \cdot \mathbf{u} = \mathbf{u}$$
 (Neutralt tal)

MULT 2.
$$\lambda \cdot (\mu \cdot \mathbf{u}) = (\lambda \mu) \cdot \mathbf{u}$$
 (Associativ lag)

MULT 3.
$$(\lambda + \mu) \cdot \mathbf{u} = \lambda \cdot \mathbf{u} + \mu \cdot \mathbf{u}$$
 (Distributiv lag)

MULT 4.
$$\lambda \cdot (\mathbf{u} + \mathbf{v}) = \lambda \cdot \mathbf{u} + \lambda \cdot \mathbf{v}$$
 (Distributiv lag)

Vi kommer i fortsättningen inte att skriva ut multiplikationspunkten mellan tal och vektor, dvs vi skriver $\lambda \mathbf{u}$ istället för $\lambda \cdot \mathbf{u}$.

2) Delrum

Def: Antag $(V,+,\cdot,\delta)$ V.4, $U \subseteq V$

Då äy U ett delyum till V, U € V,

0m (i) 0 EU

 $\begin{array}{ccc}
(ii) & u \in U & c \in \mathbb{R} \implies c u \in U \\
(iii) & u, v \in U \implies u + v \in U
\end{array}$

Foljd: $\overline{u}, \overline{u}, \epsilon U \Longrightarrow |u, +1, \overline{u}, \epsilon U$,

mer allmännt: varje linj. komb.

EX V = punktey i planet, addens

ABOUTE Linje genom 04,90

Oz linje ej genon onigo

 $O_1 \leq V$, $O_2 \not\leq V$

 $\mathbb{E} \times \mathbb{V} = \mathbb{R}^2$, $\mathbb{V}_1 = \{ \pm (\frac{1}{2}) : \pm \in \mathbb{R}^3 \}$ del you

 $U_2 = \{(0) + t(0) : t \in \mathbb{R}\}$

 $E \times \{f(x) \in \mathbb{P} : deg f(x) = n\}$ a lelyom (ty nollrolyronal ej med) noll (5) +0 +1, 52 noll & 0 ej del uom.

3) Lösningsmängder som delrum

Sats (i) Lösningsmänglen & X: AX=03 6:11 ett

homogent linj. ekusys är ett delun U & Rh

(ii) Om B # O så L = { X : A X = B} g Lelron,

men L = Xp+ U, U delrumet ovan

(iii) Vayie delrum DERn är lösningsyum till AX=0, ng+ Anxn. losning snansduft (3): LER

deluon

X y Z | X | 1 | 1 | 2 | 1 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | -2 | 0 | 0 | | -2 | 0

Ouigo spinnt av

N= UXV

 $\lim_{N\to\infty} \frac{1}{2} \exp\left(\frac{2}{1}\right) = 0$ $\lim_{N\to\infty} \frac{1}{2} \exp\left(\frac{2}{1}\right) = 0$

3) Linjärkombinationer, linjärt hölje

Def VV.4, V, v, EV, C,, Cm ER

Dr. W = S. Cj. Vinjaykombinskan

on demnt iV, WEV.

1 Vi, ..., Vm] = alle linjkomb. "linjar holjet"

SM: $[v_1,..,v_m] \leq V$

B: \overline{W} , $\overline{W} \in [V_1, V_1]$. $D_{\alpha}^{\alpha} \overline{W} = [X_1, V_2]$ $\overline{W} = [X_2, V_3]$ $\overline{W} = [X_1, V_2]$ $\overline{$

P.S.S. Foy Stalning.

Lx V= R.4

 $\overline{V} = (O_{i}, I, I) \quad \overline{V} = (2, I_{i}, 2)$

 $\overline{W} = 3\overline{1} + \sqrt{3} = (0.3.3.3) + (5.1.05)$

= (2,4,3,5)

 $\begin{bmatrix} \overline{V}_1, \overline{V}_2 \end{bmatrix} \rightarrow (a_1 b_1 c_1 d)$ om

 $(\sqrt{1}, +(\sqrt{1})) = (a,b,c,d)$ dishaq

del 40m: \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\fr

Obs: Linjankombinationen än ändliga! [X V = C°(R), S= \{1,x,x\}...\} om SEV, Vvy, Soandly $[S] = \{ \sum_{\xi \in S} (\tau, t) | c_{\xi} \in \mathbb{R},$ nistan alla (= 0) 5 6 E S J altid Ey $\overline{O} = \sum_{f \in S} G \cdot \overline{E}$ Obs. Om SateV S_{α}^{α} [S] \leq [T] \leq V

 $\begin{bmatrix} S \end{bmatrix} = P \neq e^{x} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ S = {t(1,1): telk}

4) Löjliga element

Sats: Om $\overline{W} \in [\overline{V}_1, ..., \overline{V}_n] = V_1$, $[\overline{V}_1, ..., \overline{V}_n, \overline{W}] = V_2$, $SA = V_2$

BU, = 02 uppenbart. Tag tie 02,

dus a = Cv+...cnvn+Ew Men w cv, sa

W = d, V + .. + d, Vn. AM3&

 $\nabla = C_1 \vee + \cdots + C_n \vee + C_n \vee + C_n + C_$

Sa 4 E (),.

W kalles (ög "løjligt dement"

Sate OM $U_1 = U_2$ så är \overline{V}_1 , \overline{V}_n .

Bevis W & Oz = U, = Ly, un]

/= R

S = \{ (1,0,1,0), (0,1,1,1), (2,1,3,1) \}

Vi berikan [S]

 $S_{\alpha} = S_{\alpha}(A, S, C, \alpha) \cdot (A - S - S, \alpha - B - S)$

Vi beriknay [(1,0,1,0),(0,1,1,1)]

1 6 9 1 0 a 1 0 9
0 1 b 0 1 b 0 1 b
1 1 (0 1 C-9 0 0 C-9-6) Samus
0 1 d 0 1 d 0 0 d-6

Så (2,1,3,1) löjligt.

102 102 102 000

 $(2,1,3,1) = 2 \cdot (1,0,1,0) + 1 \cdot (0,1,1,1)$

5) Snitt av delrum

$$\frac{Satsom}{()NN} = \frac{1}{Sa}$$

BOOK

$$E \times 0 = [(1,0,1,0), (1,1,1,1)], W = [(1,2,3,4)]$$

