Equation Sheet

Heat Transfer Exam 1

Conduction:

Conduction: Convection: Radiation:
$$q_k = -kA\frac{dT}{dx} \qquad \bullet \quad q_c = \bar{h}_c A \Delta T \qquad \bullet \quad q_r = A_1 \varepsilon_1 \sigma (T_1^4 - T_2^4) \\ \bullet \quad \text{Plane wall: } q_k = \frac{\Delta T}{R_k} = K_k \Delta T \qquad \bullet \quad R_c = \frac{1}{\bar{h}_c A} \qquad \bullet \quad q_r = A\bar{h}_r \Delta T \\ \bar{h}_c = \frac{1}{\bar{h}_c A} \qquad \bar{h}_r \Delta T \qquad \bar{h}_r \Delta T$$

$$\bullet \quad R_k = \frac{L}{Ak}$$

Convection:

•
$$q_c = \bar{h}_c A \Delta T$$

$$\bullet \quad a_{rr} = A \overline{h}_{rr} \wedge 7$$

$$R_c = \frac{1}{\overline{h}_c A}$$

$$\bullet \quad \bar{h}_r = \frac{\varepsilon_1 \sigma (T_1^4 - T_2^4)}{T_1 - T_2^4}$$

$$\sigma = 5.67 \times 10^{-8} \left(\frac{W}{m^2 K^4} \right)$$

Resistance in Parallel:

$$R_{total} = \frac{R_A R_B}{R_A + R_B}$$

 $Overall\ Heat\ Transfer\ Coefficient:$

$$UA = \frac{1}{R_{total}}$$

Conduction Equation:
$$\nabla * (k\nabla T) + \dot{q}_G = \rho c \frac{\partial T}{\partial t}$$

• Rectangular Coordinates: $\frac{d^2T}{dx^2} = 0$

• Cylindrical Coordinates: $\frac{d}{dr}(r\frac{dT}{dr}) = 0$

• Spherical Coordinates: $\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0$

Plane wall:

•
$$T(x) = \left(\frac{T_1 - T_2}{L}\right)x + T_1$$
 (w/o \dot{q}_G)

•
$$T(x) = -\frac{\dot{q}_G}{2k}x^2 + \frac{T_2 - T_1}{L}x + \frac{\dot{q}_G L}{2k}x + T_1$$
 (w/ uniform \dot{q}_G)

$$\circ T_{max} = T_1 + \frac{\dot{q}_G L^2}{8k}$$

Cylinder:

$$\bullet \quad \frac{T(r) - T_i}{T_o - T_i} = \frac{\ln\left(\frac{r}{r_i}\right)}{\ln\left(\frac{r_o}{r_i}\right)}$$

$$\bullet \quad R_{th} = \frac{\ln\left(\frac{r_o}{r_i}\right)}{2\pi L k}$$

•
$$T = T_o + \frac{\dot{q}_G r_o^2}{4k} \left[1 - \left(\frac{r}{r_o}\right)^2\right]$$
 (solid cyl. w/ uniform \dot{q}_G)
$$\circ \frac{T(r) - T_o}{T_{max} - T_o} = 1 - \left(\frac{r}{r_o}\right)^2$$

•
$$T(r) = T_o + \frac{\dot{q}_G}{4k}(r_0^2 - r^2) + \frac{\ln\left(\frac{r}{r_o}\right)}{\ln\left(\frac{r}{r_i}\right)} \left[\frac{\dot{q}_G}{4k}(r_0^2 - r_i^2) + T_o - T_i\right]$$
 (hallow cyl.)

•
$$\frac{T(r)-T_{\infty}}{T_{\infty}} = \frac{\dot{q}_G r_o}{4\bar{h}_c T_{\infty}} \left\{ 2 + \frac{\bar{h}_c r_o}{k} \left[1 - \left(\frac{r}{r_o} \right)^2 \right] \right\}$$
 (solid cyl. immersed in Fluid)

•
$$r = r_{cr} = \frac{k}{h_{\infty}}$$
 (cylinder) $r = r_{cr} = \frac{2k}{h_{\infty}}$ (sphere)

Sphere:

•
$$T(r) - T_i = (T_o - T_i) \frac{r_o}{r_o - r_i} \left(1 - \frac{r_i}{r}\right)$$

$$\bullet \ R_{th} = \frac{r_o - r_i}{4\pi k r_o r_i}$$

Fins:

TABLE 2.2 Equations for temperature distribution and rate of heat transfer for fins of uniform cross section^a

Case	Tip Condition $(x = L)$	Temperature Distribution, θ/θ_s	Fin Heat Transfer Rate, q_{fin}
1	Infinite fin $(L \to \infty)$:	e^{-mx}	М
	$\theta(L) = 0$		
2	Adiabatic: $\left. \frac{d\theta}{dx} \right _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	<i>M</i> tanh <i>mL</i>
3	Fixed temperature: $ heta(L) = heta_L$	$\frac{(\theta_L/\theta_s)\sinh mx + \sinh m(L-x)}{\sinh mL}$	$M\frac{\cosh mL - (\theta_L/\theta_s)}{\sinh mL}$
4	Convection heat transfer: $\overline{h}_c \theta(L) = -k \frac{d\theta}{dx} \bigg _{x=L}$	$\frac{\cosh m(L-x) + (\overline{h}_c/mk) \sinh m(L-x)}{\cosh mL + (\overline{h}_c/mk) \sinh mL}$	$M \frac{\sinh mL + (\overline{h}_c/mk) \cosh mL}{\cosh mL + (\overline{h}_c/mk) \sinh mL}$

$$a\theta \equiv T - T_{\infty}$$

$$\theta_{s} \equiv \theta(0) = T_{s} - T_{\infty}$$

$$m^{2} \equiv \frac{\overline{h_{c}P}}{kA}$$

$$M = \sqrt{\overline{h_{c}PAk}} \theta_{s}$$

Transient Conduction - Negligible Internal Resistance (Lumped Cap.)

$$\begin{array}{l} \bullet \quad \frac{T-T_{\infty}}{T_{0}-T_{\infty}}=\exp\left[-\left(\frac{\overline{h}A_{S}}{c\rho V}\right)t\right]=\exp(-Bi*Fo)\\ \\ \tau_{t}=\left(\frac{1}{\overline{h}A_{S}}\right)(c\rho V) \qquad \qquad Bi=\frac{\overline{h}l_{c}}{k} \qquad \qquad Fo=\frac{\alpha t}{l_{c}^{2}}\\ \\ \text{Slab: } l_{c}=\frac{L}{2} \qquad \qquad \text{Cylinder: } l_{c}=\frac{r_{o}}{2} \qquad \text{Sphere: } l_{c}=\frac{r_{o}}{3} \end{array}$$

Transient Conduction - Spatial Temperature Distribution (one-term app.)

Situation	Infinite Plate or Slab, Width 2L	Infinitely Long Cylinder, Radius r_0	Sphere, Radius <i>r</i> o
Biot number	$\frac{\overline{h}_c L}{k}$	$\frac{\overline{h}_c r_0}{k}$	$\frac{\overline{h}_c r_0}{k}$
Fourier number	$\frac{\alpha t}{L^2}$	$\frac{\alpha t}{r_0^2}$	$\frac{\alpha t}{r_0^2}$

Infinite Slab or Plane Wall:

•
$$\theta = \frac{T_{(x,t)} - T_{\infty}}{T_o - T_{\infty}} = C_1 e^{-\delta_1^2 \left(\frac{\alpha t}{L^2}\right)} \cos\left(\delta_1 \frac{x}{L}\right)$$
 $C_1 = \frac{2 \sin \delta_1}{\delta_1 + \sin \delta_1 \cos \delta_1}$

Infinite Cylinder:

•
$$\theta = \frac{T_{(r,t)} - T_{\infty}}{T_0 - T_{\infty}} = C_1 e^{-\delta_1^2 \left(\frac{\alpha t}{r_0^2}\right)} J_0\left(\delta_1 \frac{r}{r_0}\right)$$
 $C_1 = \frac{2J_1(\delta_1)}{\delta_1[J_0^2(\delta_1) - J_1^2(\delta_1)]}$

Sphere:

$$\bullet \quad \theta = \frac{T_{(r,t)} - T_{\infty}}{T_o - T_{\infty}} = C_1 e^{-\delta_1^2 \left(\frac{\alpha t}{r_o^2}\right)} \frac{\sin\left(\delta_1 \frac{r}{r_o}\right)}{\delta_1 r / r_o} \qquad C_1 = \frac{2(\sin\delta_1 - \delta_1 \cos\delta_1)}{\delta_1 - \sin\delta_1 \cos\delta_1}$$

$$\begin{array}{ll} \bullet & \frac{Q}{Q_o} = 1 - \frac{sin\delta_1}{\delta_1} C_1 e^{-\delta_1^2 \tau} & \text{Infinite Slab} \\ \bullet & \frac{Q}{Q_o} = 1 - \frac{2J_1(\delta_1)}{\delta_1} C_1 e^{-\delta_1^2 \tau} & \text{Infinite Cylinder} \\ \bullet & \frac{Q}{Q_o} = 1 - \frac{3(sin\delta_1 - \delta_1 cos\delta_1)}{\delta_1^3} C_1 e^{-\delta_1^2 \tau} & \text{Sphere} \\ & Q_o = c\rho V(T_0 - T_\infty) \end{array}$$

TABLE 3.1 Eigenvalues and coefficients used in the one-term approximate solutions for one-dimensional transient heat conduction in an infinite slab or plate of thickness 2L (Bi $= \overline{h}L/k$), an infinite cylinder of radius $r_o(\text{Bi} = \overline{h}r_o/k)$, and a sphere of radius $r_o(\text{Bi} = \overline{h}r_o/k)$.

	Infinite Slab		Infinite Slab Infinite Cylinder	Cylinder	Sphere	
Bi	δ_1	\mathcal{C}_1	δ_1	\mathcal{C}_1	δ_1	\mathcal{C}_1
0.01	0.0998	1.0017	0.1412	1.0025	0.1730	1.0030
0.02	0.1410	1.0033	0.1995	1.0050	0.2445	1.0060
0.04	0.1987	1.0066	0.2814	1.0099	0.3450	1.0120
0.06	0.2425	1.0098	0.3438	1.0148	0.4217	1.0179
0.08	0.2791	1.0130	0.3960	1.0197	0.4860	1.0239
0.1	0.3111	1.0161	0.4417	1.0246	0.5423	1.0298
0.2	0.4328	1.0311	0.6170	1.0483	0.7593	1.0592
0.3	0.5218	1.0450	0.7465	1.0712	0.9208	1.0880
0.4	0.5932	1.0580	0.8516	1.0931	1.0528	1.1164
0.5	0.6533	1.0701	0.9408	1.1143	1.1656	1.1441
0.6	0.7051	1.0814	1.0184	1.1345	1.2644	1.1713
0.7	0.7506	1.0918	1.0873	1.1539	1.3525	1.1978
0.8	0.7910	1.1016	1.1490	1.1724	1.4320	1.2236
0.9	0.8274	1.1107	1.2048	1.1902	1.5044	1.2488
1.0	0.8603	1.1191	1.2558	1.2071	1.5705	1.2732
2.0	1.0769	1.1785	1.5995	1.3384	2.0288	1.4793

TABLE 43 The zeroth- (J_0) and first-order (J_1) Bessel functions of the first kind.

δ	$J_0(\delta)$	$J_1(\delta)$
0	1	0
0.1	0.9975	0.0499
0.2	0.9900	0.0995
0.3	0.9776	0.1483
0.4	0.9604	0.1960
0.5	0.9385	0.2423
0.6	0.9120	0.2867
0.7	0.8812	0.3290
0.8	0.8463	0.3688
0.9	0.8075	0.4059
1	0.7652	0.4401

Convection Heat Transfer

$$Re_x=rac{
ho U_\infty x}{\mu}=rac{U_\infty x}{v} \qquad \qquad Pr=rac{c_p \mu}{k}=rac{v}{lpha} \ Nu_x=rac{h_c x}{k_f} \qquad \qquad St_x=rac{Nu_x}{Re_x\,Pr} \$$
 Friction coefficient: $C_{fx}=rac{ au_s}{
ho U_\infty^2/2} \qquad \qquad \overline{C_f}=rac{\overline{ au}}{
ho U_\infty^2/2} \$

Flat Plate:

$$C_{fx} = \frac{0.664}{\sqrt{Re_x}} \qquad \overline{C_f} = \frac{1}{L} \int_0^L C_{fx} dx = \frac{1.33}{\sqrt{Re_L}} \qquad \frac{\delta}{\delta_{th}} = Pr^{1/3}$$

$$q_c'' = -0.332k \frac{Re_x^{1/2}Pr^{1/3}}{x} (T_{\infty} - T_s)$$

$$q = 0.664kRe_L^{1/2}Pr^{1/3}b(T_s - T_{\infty})$$

$$h_{cx} = 0.332 \frac{k}{x} Re_x^{1/2}Pr^{1/3} \qquad \overline{h}_c = 2h_{c(x=L)}$$

$$Nu_x = \frac{h_{cx}x}{k} 0.332Re_x^{1/2}Pr^{1/3} \qquad \overline{Nu}_L = 0.664Re_L^{1/2}Pr^{1/3}$$

• For Pr < 1:
$$Nu_x = 0.565\sqrt{Re_xPr}$$

Turbulent Flow over Plane Surfaces

urbulent Flow over Plane Surfaces
$$St_{x}Pr^{2/3} = \frac{c_{fx}}{2}$$
 $C_{fx} = \frac{0.0576}{Re^{1/5}}$ $\overline{C_{f}} = \frac{1}{L} \int_{0}^{L} C_{fx} dx = \frac{0.072}{Re^{1/5}}$ $(\delta/x) = 0.37/Re_{x}^{0.2}$

Mixed Laminar-Turbulent Boundary Layer

$$\overline{C_f} = \frac{0.072}{Re_L} (Re_L^{4/5} - 23,200) \qquad Nu_x = \frac{h_{cx}x}{k} = 0.0288 Pr^{1/3} \left(\frac{U_\infty x}{v}\right)^{0.8}$$
For fully turbulent B.L.:
$$\overline{Nu}_L = \frac{\overline{h}_c L}{k} = 0.036 Pr^{1/3} Re_L^{0.8}$$

For mixed laminar-turbulent B.L.: $\overline{Nu}_L = 0.036Pr^{\frac{1}{3}}(Re^{\frac{4}{5}} - 23,200)$