PROBABILITÉS ET STATISTIQUES

Sujet (durée : 6 heures)

On s'efforcera de désigner les variables aléatoires par des lettres majuscules et les valeurs qu'elles prennent par des lettres minuscules.

DÉFINITIONS, NOTATIONS ET RAPPELS

1º Dans tout le problème $\mathbb N$ désigne l'ensemble des entiers naturels, $\mathbb R$ l'ensemble des nombres réels et $\overline{\mathbb R}_+$ l'ensemble $[0,\infty]$. Ces deux derniers ensembles sont munis de leur tribu borélienne $\mathscr B(\mathbb R)$ et $\mathscr B(\overline{\mathbb R}_+)$ respectivement. (On rappelle que la tribu borélienne sur un espace topologique est la tribu engendrée par les ouverts de cette topologie.)

 $\mathbb{R}^{\mathbb{N}}$ désigne l'espace vectoriel (pour les opérations usuelles) de toutes les suites de nombres réels :

 $x \in \mathbb{R}^{\mathbb{N}}$ si $x = (x_n)_{n \in \mathbb{N}}$ est une suit. $x_n \in \mathbb{R}$ pour tout n.

 $\mathbb{R}^{\mathbb{N}}$ désigne le sous-espace vectoriel des suites telles que $x_n=0$ sauf pour un nombre fini d'indices. $\mathbb{R}^{\mathbb{N}}$ est muni de la topologie produit usuelle qu'on peut définir de la façon suivante : soit $\Phi(\mathbb{N})$ l'ensemble des parties de \mathbb{N} de cardinal fini ; si $\mathbf{J} \in \Phi(\mathbb{N})$ on désigne par $\Pi_{\mathbf{J}}$ la projection canonique de $\mathbb{R}^{\mathbb{N}}$ sur $\mathbb{R}^{\mathbf{J}}$ définie par : $x=(x_n)_{n\in\mathbb{N}} \cdots \Pi_{\mathbf{J}}(x)=x_{\mathbf{J}}=(x_j)_{j\in\mathbb{J}}.$

Une base d'ouverts de la topologie dont on munit $\mathbb{R}^{\mathbb{N}}$ est alors constituée par les cylindres ouverts c'est-à-dire les ensembles de la forme $\Pi_1^{-1}(O_1)$ où 1 décrit $\Phi(\mathbb{N})$ et O_1 la famille des ouverts de \mathbb{R}^1 .

On notera ${\mathcal B}$ la tribu borélienne de ${\mathbb R}^{\mathbb N}$ correspondant à cette topologie. On rappelle que ${\mathcal B}$ est la plus petite tribu rendant mesurables les applications $\Pi_{\mathtt J} (\mathtt J \in \Phi ({\mathbb N}))$ quand chaque ${\mathbb R}^{\mathtt J}$ est muni de sa sibu borélienne.

2º Soit (Ω, \mathcal{F}, P) un espace probabilisé, une variable aléatoire X (en abrégé v. a.) sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ sera appelée variable eléatoire réelle (en abrégé v. a. r.). Une v. a. sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ sera appelée v. a. positive. Le symbole E(X) désigne, quand elle existe, l'espérance mathématique de X relativement à la probabilité P.

Toute suite $(X_n)_{n\in\mathbb{N}}$ de v.a.r. sur un espace (Ω, \mathcal{F}, P) définit une v.a. X a valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$. Réciproquement une v.a. X sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ définit une suite de v.a.r. $(X_n)_{n\in\mathbb{N}}$ sur (Ω, \mathcal{F}, P) par les relations : $X_n = \prod_{\{n\}} X$ où $\{n\}$ désigne la partie de \mathbb{N} réduite à l'entier n. Les v.a.r. X_n seront appelées les coordonnées de X. On identifiera ainsi les notions de suite de v.a.r. sur (Ω, \mathcal{F}, P) et de v.a. sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$.

On rappelle que la loi P_X d'une v. a. X à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$, c'est-à-dire la mesure image de P par X, est uniquement déterminée par ses valeurs sur les cylindres $\Pi_{\mathbf{I}}^{-1}(O_{\mathbf{I}})$ où $O_{\mathbf{I}}$ est un borélien de $\mathbb{R}^{\mathbf{I}}$.

On dira qu'une v. a. X à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ est une v. a. gaussienne centrée si $\forall j \in \Phi(\mathbb{N})$, X_{J} est un vecteur gaussien centré. On conviendra qu'une v. a. constante est gaussienne.

Une v.a. X est dite suite de Bernoulli si la suite $(X_n)_{n\in\mathbb{N}}$ de ses coordonnées est une suite de v.a. r. indépendantes de même loi de Bernoulli donnée par $P(X_n=1)=P(X_n=-1)=\frac{1}{2}$.

PARTIE I

1º Vérifier que l'application $(x, y) \sim (x + y)$ de $\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ dans $\mathbb{R}^{\mathbb{N}}$ est mesurable relativement à $\mathbb{G} \times \mathbb{G}$ et \mathbb{G} .

Soient X et Y deux v. a. sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ et indépendantes, soient P_{X}, P_{Y} et P_{X+Y} les lois respectives de X, Y et X + Y, soit f une fonction mesurable de $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ dans $(\overline{\mathbb{R}}_{+}, \mathcal{B}, (\overline{\mathbb{R}}_{+}))$ démontrer que :

$$E f(X + Y) = \int_{\mathbb{R}^{\mathbb{N}}} E f(X + y) P_{Y} (dy) = \int_{\mathbb{R}^{\mathbb{N}}} E f(x + Y) P_{X} (dx)$$

Énoncer un résultat analogue si f n'est pas positive.

2º Démontrer que les sous-ensembles suivants de R appartiennent à la tribu $\mathcal{B}:\mathbb{R}_0^{\mathbb{N}}$, l^{∞} (espace des suites bornées), l^c (espace des suites convergentes dans \mathbb{R}).

3° Soit α la fonction de $\mathbb{R}^{\mathbb{N}}$ dans $\overline{\mathbb{R}}_+$ définie par :

$$x \rightsquigarrow \alpha(x) = \sup_{n \in \mathbb{N}} \Big| \sum_{j=0}^{n} x_j \Big|$$
 où $x = (x_n)_{n \in \mathbb{N}}$; démontrer que α est borélienne.

Soit β la fonction de $\mathbb{R}^{\mathbb{N}}$ dans $\widetilde{\mathbb{R}}_+$ définie par :

$$x \rightsquigarrow \beta(x) = \begin{cases} \left| \sum_{n \in \mathbb{N}} x_n \right| & \text{si la série } \sum_{n \in \mathbb{N}} x_n \text{ est convergente dans } \mathbb{R}; \\ \infty & \text{si cette série diverge}; \end{cases}$$

démontrer que \beta est borélienne.

PARTIE II

Les résultats de cette partie ne seront pas utilisés dans la suite

1º Soit (Ω, \mathcal{F}, P) un espace probabilisé et V un vecteur gaussien sur Ω à valeurs dans \mathbb{R}^n , soit μ sa loi et Λ un sous-espace vectoriel de \mathbb{R}^n . Montrer que $\mu(\Lambda) = 0$ ou $\mu(\Lambda) = 1$.

2º Soit $X = (X_n)_{n \in \mathbb{N}}$ une v. a. gaussienne centrée sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$.

Soit k un entier fixé. Pour tout n de $\mathbb N$ on désigne par $Z_n^k = \mathbb E\left[X_n \mid X_0, \ldots, X_k\right]$ une version de l'espérance conditionnelle de X_n par rapport à la tribu engendrée par le vecteur (X_0, \ldots, X_k) . On posera

$$\mathbf{Y}_n^k = \mathbf{X}_n - \mathbf{Z}_n^k$$
; $\mathbf{Y}^k = (\mathbf{Y}_n^k)_{n \in \mathbb{N}}$ et $\mathbf{Z}^k = (\mathbf{Z}_n^k)_{n \in \mathbb{N}}$

Démontrer que Y^k est indépendante du vecteur (X_0, \ldots, X_k) et que pour tout n il existe des réels $A_{n,j}^k$ tels que $Z_n^k = \sum_{j=0}^k A_{n,j}^k X_j$. A quelle condition ces coefficients sont-ils uniques pour tout n?

3° Soit
$$y = (y_n)_{n \in \mathbb{N}}$$
 un élément de $\mathbb{R}^{\mathbb{N}}$ et $T(y) = \left\{\theta \in \mathbb{R}^{k+1}; \left(y_n + \sum_{j=r}^k A_{n,j}^k \theta_j\right)_{n \in \mathbb{N}} \in l^{\infty}\right\}$

Comparer les ensembles $\{Z^k \in l^{\infty}\}\$ et $\{(X_0, \ldots, X_k) \in T(0)\}$.

En déduire que P $\{Z^k \in l^{\infty}\} = 0$ ou P $\{Z^k \in l^{\infty}\} = 1$.

- 4° Si $T(0)^{\circ}$ désigne le complémentaire de T(0), vérifier que pour tout y de $\mathbb{R}^{\mathbb{N}}$ l'ensemble $T(y) \cap T(0)^{\circ}$ rencontre en au plus un point toute droite de \mathbb{R}^{k+1} . En déduire que $T(y) \cap T(0)^{\circ}$ est négligeable pour la loi de tout vecteur gaussien centré sur (Ω, \mathcal{F}, P) à valeurs dans \mathbb{R}^{k+1} .
 - 5° On suppose que $P\{Z^k \in l^{\infty}\} = 0$; démontrer que $P\{X \in l^{\infty}\} = 0$.
- 6° On suppose que $P\{Z^k \in l^{\infty}\} = 1$; on pose $B_k = \{Y^k \in l^{\infty}\}$ et $B = \{X \in l^{\infty}\}$. On désigne par $B \Delta B_k$ l'ensemble $[B \cap B_k^c] \cup [B_k \cap B^c]$; démontrer que $P(B \Delta B_k) = 0$. En déduire que si $P\{Z^p \in l^{\infty}\} = 1$ $\forall p \in \mathbb{N}$, P(B) = 0 ou P(B) = 1.
- 7º Donner un exemple simple de v. a. gaussienne X dans $\mathbb{R}^{\mathbb{N}}$ telle que $P\{X \in l^{\infty}\} = 1$. Soient $(X_n)_{n \in \mathbb{N}}$ une suite de v. a. r. indépendantes, gaussiennes et centrées et X la v. a. gaussienne correspondante dans $\mathbb{R}^{\mathbb{N}}$. On suppose que $\sum_{n \in \mathbb{N}} E(X_n^2) < \infty$. Démontrer que $P\{X \in l^{\infty}\} = 1$.
- 8° Soit $\tilde{X} = (\tilde{X}_n)_{n \in \mathbb{N}}$ une suite de v.a.r. indépendantes et de même loi de densité $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$ par rapport à la mesure de Lebesgue sur \mathbb{R} (notée du).

Démontrer que $P_{\widetilde{X}}\{l^{\infty}\}=0$. Quelle est la probabilité $P\{\sup X_n<0\}$?

PARTIE III

Une v. a. $X = (X_n)_{n \in \mathbb{N}}$ de (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ est dite symétrique si les v. a. X et -X ont même loi. Elle est dite strictement symétrique si pour toute suite $(\varepsilon_n)_{n \in \mathbb{N}}$ de $\{(-1), (+1)\}^{\mathbb{N}}$ les v. a. X et $\varepsilon X = (\varepsilon_n X_n)_{n \in \mathbb{N}}$ ont même loi.

- 1º Donner un exemple simple de v. a. symétrique qui n'est pas strictement symétrique.
- 2º Soit $(X_n)_{n \in \mathbb{N}}$ une suite de v. a. r. indépendantes et X la v. a. correspondante dans $\mathbb{R}^{\mathbb{N}}$, montrer que X est strictement symétrique si et seulement si elle est symétrique.
- 3° Soit $X = (X_n)_{n \in \mathbb{N}}$ une v. a. de (Ω, \mathcal{F}, P) dans $\mathbb{R}^{\mathbb{N}}$ et W une v. a. strictement symétrique sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ et indépendante de X. Démontrer que la v. a. $Z = (X_n W_n)_{n \in \mathbb{N}}$ est strictement symétrique.
- 4° Soit $X=(X_n)_{n\in\mathbb{N}}$ une v. a. sur $(\Omega,\,\mathcal{F},\,P)$ à valeurs dans $(\mathbb{R}^\mathbb{N},\,\mathcal{B})$ et $B=(B_n)_{n\in\mathbb{N}}$ une v. a. de Bernoulli définie sur le même espace et indépendante de X. On suppose X strictement symétrique. Démontrer que les v. a. X, $BX=(B_nX_n)_{n\in\mathbb{N}}$ et $B\mid X\mid=(B_n\mid X_n\mid)_{n\in\mathbb{N}}$ ont même loi .
- 5° Soit X une v. a. sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ et de loi $P_{\mathbf{X}}$. Soient X' et X" deux v. a. indépendantes à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ et de même loi $P_{\mathbf{X}}$. Démontrer que Y = X' X'' est symétrique. On appelle symétrisée de X toute v. a. obtenue par ce procédé. Démontrer que toutes les symétrisées de X ont même loi .
 - 6° On suppose X symétrique ; soit \tilde{X} une symétrisée de X ; \tilde{X} a-t-elle même loi que X ?

7º Soit X une v. a. sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$, Y une symétrisée de X. Soit W une v. a. strictement symétrique sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ indépendante de X. Soit Z la v. a. définie à la question 3º. Z et Y ont-elles même loi?

8° Soit X une v. a. r. sur (Ω, \mathcal{F}, P) dont la loi est une loi de Poisson de paramètre λ . Soit Y une symétrisée de X, quelle est la loi de Y? Déterminer sa fonction caractéristique $t \leadsto \phi(t) = E(e^{itX})$.

9° Soient $u_1, u_2, ..., u_n$ n nombres réels et $a_1, a_2, ..., a_n$ n réels positifs, soit $\psi_n(t)$ la fonction $t \leftrightarrow \exp\left(\sum_{i=1}^n \frac{\cos u_i t - 1}{a_i}\right)$; montrer que ψ_n est la fonction caractéristique d'une v. a. Y_n .

10° Soit r un réel tel que 0 < r < 2. Soit $I(t) = \int_0^\infty \frac{1 - \cos ut}{u^{1+r}} du$ et $\psi(t) = \exp[-I(t)]$.

En utilisant le fait que I(t) est limite de « sommes de Riemann » montrer que $\psi(t)$ est la fonction caractéristique d'une v. a. r. Y; expliquer comment Y s'obtient à partir de v. a. de Poisson.

PARTIE IV

Soit $x=(x_n)_{n\in\mathbb{N}}$ un élément de $\mathbb{R}^{\mathbb{N}'}$ et k un entier, on désignera par H_k l'application de $\mathbb{R}^{\mathbb{N}}$ dans lui-même définie par $H_k(x)=(x_0\,,\,x_1\,,\,\ldots'\,,\,x_k\,,\,0\,,\,0\,\ldots)$.

Soient X une v. a. sur (Ω, \mathcal{F}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$, q une application mesurable de $(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$ dans $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ et n un entier. On posera $U_n = q(H_k(x))$, $M_n = \max_{0 \le j \le n} U_j$ et $M_n = \sup_{p} U_p$.

Soit t un réel $0\leqslant t<\infty$ et $\mathrm{T}_t(\omega)=\inf\left(j\in\mathbb{N}\;,\;\mathrm{U}_j>t\right)$ (on conviendra que inf $\varnothing=+\infty$) .

La fonction q est dite quasi convexe si pour tout $(x, y) \in \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} : q\left(\frac{x+y}{2}\right) \leq \max\left[q(x), q(y)\right]$. Dans toute la suite q désignera une fonction borélienne quasi convexe.

1º Pour tout couple d'entiers (j, n) $0 \le j \le n$ on pose :

$$Z_{n,j} = (X_0, X_1, \ldots X_j, -X_{j+1}, -X_{j+2}, \ldots, -X_n, 0, 0, \ldots);$$

démontrer que pour tout $t \geqslant 0$

$$P\{T_t = j\} \le P\{T_t = j ; U_n > t\} + P\{T_t = j ; q(Z_{n,j}) > t\}.$$

2º On suppose désormais X strictement symétrique.

Comparer $P\{T_t = j\}$ et $2P\{T_t = j; U_n > t\}$; démontrer que pour tout n de \mathbb{N} :

 $\mathrm{P}\left\{\,\mathrm{M}_{n}\,>\,t\,\right\}\,\leqslant\,2\;\mathrm{P}\left\{\,\mathrm{U}_{n}\,>\,t\,\right\}\,,\quad\text{en déduire que}\quad\mathrm{P}\left\{\,\mathrm{M}\,>\,t\,\right\}\,\leqslant\,2\quad\lim_{n}\,\inf\,\,\mathrm{P}\left\{\,\mathrm{U}_{n}\,>\,t\,\right\}\,.$

3º Soit $\varphi: \overline{\mathbb{R}}_+ \to \overline{\mathbb{R}}_+$ une fonction croissante, continue à gauche. Soit v la mesure sur $(\overline{\mathbb{R}}_+, \mathcal{B}(\overline{\mathbb{R}}_+))$ définie par $v[s, t[=\varphi(t)-\varphi(s) \text{ si } 0 \leqslant s \leqslant t \text{ (on convient que } \infty-\infty=0)$.

a. Soit Y une v. a. r. positive sur (Ω, F, P) démontrer que

 $E[\varphi(Y)] = \varphi(0) + \int_{[0,\infty]} P[Y > t] d\nu(t);$ que devient cette formule si φ est continue?

b. φ n'étant plus supposée continue démontrer que :

$$\forall n \in \mathbb{N}$$
 $E[\varphi(M_n)] \leq 2 E[\varphi(U_n)]$ et que $E[\varphi(M)] \leq 2 \lim \inf_{n} E[\varphi(U_n)]$.

- 4º Démontrer l'équivalence des deux propriétés suivantes :
 - a. $E[\varphi(M)] < \infty$
 - b. $\sup_{n} \mathbb{E} [\varphi(\mathbf{U}_{n})] < \infty$
- 5° On dit qu'une suite $\{V_n\}_{n\in\mathbb{N}}$ de v. a. r. est bornée en probabilités si

$$\forall \; \epsilon > 0 \qquad \exists \; A \in \;] \; 0 \; \infty \; [\; : \qquad \forall \; n \qquad P \; \{ \; | \; V_n \; | \; > \; A \} \; \leqslant \; \epsilon \; .$$

Démontrer l'équivalence des deux propriétés suivantes :

- a. La suite $(U_n)_{n\in\mathbb{N}}$ est bornée en probabilités.
- b. $M < \infty$ presque sûrement.
- 6º On suppose que $(U_n)_{n\in\mathbb{N}}$ converge en loi vers une v. a. U. On sait qu'alors, pour tout ouvert O de $\overline{\mathbb{R}}_+: \mathrm{P}\{U\in \mathrm{O}\}\leqslant \liminf_n \mathrm{P}\{U_n\in \mathrm{O}\}$. Démontrer que pour tout $t\in[0,\infty[:]\mathrm{P}\{U>t\}\leqslant \mathrm{P}\{M>t\}\leqslant 2\;\mathrm{P}\{U\geqslant t\}$; en supposant φ continue, comparer $\mathrm{E}[\varphi(\mathrm{U})]$, $\mathrm{E}[\varphi(\mathrm{M})]$ et $2\;\mathrm{E}[\varphi(\mathrm{U})]$.
 - 7º Soit $S_n = X_0 + X_{1+} \dots + X_n$. Démontrer l'équivalence des deux propriétés suivantes :
 - a. $(S_n)_{n \in \mathbb{N}}$ est bornée en probabilités.
 - b. $(S_n)_{n \in \mathbb{N}}$ est bornée presque sûrement (c'est-à-dire $\sup_n |S_n| < \infty$ presque sûrement).

Démontrer également celle des deux suivantes :

- a'. $(S_n)_{n \in \mathbb{N}}$ est convergente en probabilités.
- b'. $(S_n)_{n \in \mathbb{N}}$ converge presque sûrement.
- 8º Soit $r \in]0 \infty[$, démontrer l'équivalence des deux propriétés suivantes :
 - a. $\sup_{n} E[|S_n|^r] < \infty$
 - b. $\mathbb{E}\left[\sup_{n} \mid S_{n} \mid^{r}\right] < \infty$

PARTIE V

Cette partie est indépendante de la partie IV et fait suite aux questions 80 et 90 de la partie III.

Soit
$$r$$
 un réel tel que $0 < r < 2$, $I(t) = \int_0^\infty \frac{1 - \cos ut}{u^{1+r}} du$ et $\Psi(t) = \exp[-I(t)]$

1º Soit s > 0, comparer les fonctions $t \rightsquigarrow I(t)$ et $t \rightsquigarrow I(st)$

Démontrer que $t \rightsquigarrow \exp[-\mid t\mid^r]$ est une fonction caractéristique.

On appelle v. a. r. r-stable toute v. a. r. dont la fonction caractéristique est $\exp\left(-|t|^r\right)$.

 $2^{\rm o} \ \ {\rm Soit} \ \ r_{\scriptscriptstyle 1} \in \] \ 0 \ , 2 \ [\ \ {\rm un} \ \ {\rm r\'eel} \ \ {\rm et} \ \ X \ \ {\rm une} \ \ {\rm v. \ a. \ r.} \ \ {\rm Comparer \ les} \ \ {\rm quantit\'es} \ \ E \ [\ | \ X \ |^{r_{\scriptscriptstyle 1}}] \ \ {\rm et}$ $\int_0^\infty \ \ [\ 1 - {\mathcal R}e \ \Psi_{\rm X}(t) \] \ \frac{dt}{t^{r_{\scriptscriptstyle 1}+1}} \ {\rm o\`u} \ \ {\mathcal R}e \ \Psi_{\rm X}(t) \ \ {\rm d\'esigne} \ \ {\rm la} \ \ {\rm partie} \ \ {\rm r\'eelle} \ \ {\rm de} \ \ {\rm la} \ \ {\rm fonction} \ \ {\rm caract\'eristique} \ \Psi_{\rm X} \ \ {\rm de} \ {\rm X} \ .$

Si X est r-stable en déduire toutes les valeurs de r_1 telles que $\mathbb{E}[|X|^{r_1}] < \infty$.

 $\mathfrak{z}^{\mathrm{o}}$ Soit X r-stable, démontrer que sa loi admet une densité f_r par rapport à la mesure de Lebesgue et que f_r est indéfiniment dérivable.

4° Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v. a. r. r-stables indépendantes, soit $x\in\mathbb{R}^\mathbb{N}$ et $\Sigma_n=\sum_{k=0}^n x_k X_k$.

Donner une condition nécessaire et suffisante relativement à x pour que Σ_n converge en loi.

5° Soit $(Y_n)_{n \in \mathbb{N}}$ une suite de v. a. r. indépendantes positives; démontrer l'équivalence des deux propriétés suivantes :

a.
$$\sum_{n} Y_{n} < \infty$$
 presque sûrement.

$$b. \sum_{n} P \left\{ Y_{n} \geqslant 1 \right\} < \infty \quad \text{et} \quad \sum_{n} \int_{\left\{ Y_{n} \leqslant 1 \right\}} Y_{n} dP < \infty.$$

6° Soit X_n une suite de v. a. r. indépendantes r-stables et x un élément de $\mathbb{R}^{\mathbb{N}}$. Démontrer l'équivalence des deux propriétés suivantes :

a.
$$\sum_{n} |x_n X_n|^r < \infty$$
 presque sûrement.

$$b. \sum_{n} |x_n|^r \left(1 + \operatorname{Log} \frac{1}{|x_n|}\right) < \infty.$$

On pourra utiliser le fait que $\int_{|u| \ge t} f_r(x) dx$ est équivalent à $\frac{1}{t^r}$ quand t tend vers $+\infty$.