

氧化还原与电化学(一)

实验目的

1. 掌握电极电势与氧化还原反应方向的关系。

2. 理解介质的酸碱性对氧化还原反应的影响。

实验提要

氧化还原反应的实质是电子的得失和转移。物质氧化还原能力的强弱与其本性有关,一般可从电对的电极电势大小来进行判断。电极电势代数值越大,表示氧化还原电对中氧化态物质的氧化能力越强,还原态物质的还原能力越弱。

$$E_{I_2/I^-}^{\circ} = 0.535V$$

Fe³⁺ + e = Fe²⁺ $E_{Fe^{3+}/Fe^{2+}}^{\circ} = 0.77V$

Br₂+2e=2Br $E_{Fe^{3+}/Fe^{2+}}^{\circ} = 1.07V$

非标准状态, 电对的电势可用Nernst方程表示:

$$E_{\text{氧化态/还原态}} = E_{\text{氧化态/还原态}}^{\circ} + \frac{0.059}{n} \lg \frac{[氧化态]^{p}}{[还原态]^{q}}$$

实验内容

1. 氧化还原反应与电极电势的关系

实验内容	实验现象	解释与方程式
1) 3滴0.1mol·L ⁻¹ KI + 3滴0.1mol·L ⁻¹ FeCl ₃ +5滴CCl ₄	CCl4层: 无色变红色	$Fe^{3+} + I^- \rightarrow I_2 + Fe^{2+}$
2) 3滴0.1mol·L ⁻¹ KBr + 3滴0.1mol·L ⁻¹ FeCl ₃ +5滴CCl ₄	CCl ₄ 层: 无变化	
3) $0.1 \text{mol} \cdot \text{L}^{-1} \text{FeSO}_4 + \text{Br}_2(\text{aq}) + \text{CCl}_4$		$Fe^{2+} + Br_2 \rightarrow Br^- + Fe^{3+}$
4) $0.1 \text{mol} \cdot \text{L}^{-1} \text{FeSO}_4 + \text{I}_2(\text{aq}) + \text{CCI}_4$		

实验内容

2. 介质的酸碱性、离子浓度对电极电势和氧化还原反应的影响

实验内容	实验现象	解释与方程式
(1) 酸度对电极电势的影响		
3滴0.1mol·L ⁻¹ KClO ₃ + 3滴0.1mol·L ⁻¹ KI + CCl ₄ →		
3滴0.1mol·L ⁻¹ KClO ₃ +3滴0.1mol·L ⁻¹ Kl+CCl ₄ 2+2滴3mol·L ⁻¹ H ₂ SO ₄ →		$ClO_3^- + 6I^- + 6H^+ \rightarrow 3I_2 + Cl^- + 3H_2O$
(2) 酸度对产物的影响		
3滴0.01mol·L ⁻¹ KMnO ₄ + 10滴3mol·L ⁻¹ H ₂ SO ₄ + 5滴Na ₂ SO ₃ →		$2MnO_4^- + 5SO_3^{2-} + 6H^+ \rightarrow 5SO_4^{2-} + 2Mn^{2+} + 3H_2O$
3滴0.01mol·L ⁻¹ KMnO ₄ + 10滴去离子水+ 5滴Na ₂ SO ₃ →		$2MnO_4^- + 3SO_3^{2-} + 2H^+ \rightarrow 3SO_4^{2-} + 2MnO_2 + H_2O$
3滴0.01mol·L ⁻¹ KMnO ₄ +10滴6mol·L ⁻¹ NaOH+1滴Na ₂ SO ₃ →		$2MnO_4^- + SO_3^{2-} + 2OH^- \rightarrow SO_4^{2-} + 2MnO_4^{2-} + H_2O$
(3) 离子浓度对电极电势的影响		
4滴0.1mol·L ⁻¹ FeCl ₃ + 4滴0.1mol·L ⁻¹ KI+ CCl ₄ →		$Fe^{3+} + I^{-} \rightarrow I_2 + Fe^{2+}$
4滴0.1mol·L ⁻¹ FeCl ₃ +5滴10%NH ₄ F + 4滴0.1mol·L ⁻¹ KI+ CCl ₄ →		$Fe^{3+} + 6F^{-} \rightarrow [FeF_{6}]^{3-}$

实验结果与讨论

(略)