Wprowadzenie teoretyczne:

Co to jest Maszyna Turinga?

Odpowiedź:

Maszyną Turinga nazywamy siódemkę uporządkowaną $MT = (Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ})$, gdzie:

- *Q* jest skończonym zbiorem stanów
- Σ jest alfabetem wejściowym (nie zawierającym symbolu pustego □)
- Γ jest alfabetem taśmy ($\square \in \Gamma$ oraz $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ jest funkcją przejścia
- q_0 jest wyróżnionym stanem początkowym
- q_{ACC} jest wyróżnionym stanem akceptującym
- q_{REJ} jest wyróżnionym stanem odrzucającym ($q_{ACC} \neq q_{REJ}$)

Zadanie 1

Skonstruować maszynę Turinga, która prawidłowo oblicza funkcję f(x) = x + 1.

Rozwiązanie

$$q_0 \ 0 \ \rightarrow \ q_{ACC} \ 1 \ S$$

$$q_0 1 \rightarrow q_2 1 R$$

$$q_2 \ 0 \rightarrow q_2 \ 0 \ R$$
 - q_2 - szuka końca

$$q_2 1 \rightarrow q_2 1 R$$

$$q_2 \square \rightarrow q_3 \square L$$

$$q_3 0 \rightarrow q_4 1 L$$

$$q_4 \ 0 \ \rightarrow \ q_4 \ 0 \ L$$
 - q_4 - szuka początku

$$q_4 1 \rightarrow q_4 1 L$$

$$q_4 \square \rightarrow q_{ACC} \square R$$

$$q_3 1 \rightarrow q_3 0 L$$

$$q_3 \square \rightarrow q_{ACC} \mid S \qquad -q_{ACC} - \operatorname{stan} \operatorname{końcowy}$$

Zadanie 2

Skonstruować maszynę Turinga, która prawidłowo oblicza funkcję f(x) = 2x + 1.

Rozwiązanie

$$q_0 1 \rightarrow q_0 1 R$$

$$q_0 0 \rightarrow q_0 0 R$$

$$q_0 \square \rightarrow q_1 1 L$$

$$q_1 1 \rightarrow q_1 1 L$$

$$q_1 0 \rightarrow q_1 0 L$$

$$q_1 \square \rightarrow q_{ACC} \square R$$

Zadanie 3

Skonstruować maszynę Turinga, która prawidłowo oblicza poniższe funkcje (kod argumentów – unarny; alfabet = {1}).

a)
$$f(x) = 0$$

b)
$$f(x) = x+1$$

c)
$$f(x,y) = x$$

d)
$$f(x,y) = x+y$$

Rozwiązanie

- a) $\boxed{\square\uparrow 111\square}$ $q_0 \ 1 \rightarrow q_0 \ 1 \ R$ $q_0 \ \square \rightarrow q_1 \ \square \ L$ $q_1 \ 1 \rightarrow q_1 \ \square \ L$ $q_1 \ \square \rightarrow q_{ACC} \ \square \ R$
- b) $\begin{array}{c} \boxed{\square \uparrow 111 \square} \\ q_0 \ 1 \ \rightarrow \ q_0 \ 1 \ R \\ q_0 \ \square \ \rightarrow \ q_1 \ 1 \ L \\ q_1 \ 1 \ \rightarrow \ q_1 \ 1 \ L \\ q_1 \ \square \ \rightarrow \ q_{ACC} \ \square \ R \end{array}$
- c) $\begin{array}{|c|c|c|c|c|}\hline q_0 & 1 & \rightarrow & q_0 & 1 & R \\ q_0 & \square & \rightarrow & q_1 & \square & R \\ q_1 & 1 & \rightarrow & q_1 & \square & R \\ q_1 & \square & \rightarrow & q_2 & \square & L \\ q_2 & \square & \rightarrow & q_2 & \square & L \\ q_2 & 1 & \rightarrow & q_3 & 1 & L \\ q_3 & \square & \rightarrow & q_{ACC} & \square & R \end{array}$
- d) $\begin{array}{|c|c|c|c|c|}\hline q_0 & 1 & \rightarrow & q_0 & 1 & R \\ q_0 & \square & \rightarrow & q_1 & 1 & R \\ q_1 & 1 & \rightarrow & q_1 & 1 & R \\ q_1 & \square & \rightarrow & q_2 & \square & L \\ q_2 & 1 & \rightarrow & q_3 & \square & L \\ q_3 & 1 & \rightarrow & q_4 & 1 & L \\ q_4 & \square & \rightarrow & q_{ACC} & \square & R \end{array}$

Zadanie 4

Skonstruować maszynę Turinga, która prawidłowo oblicza następującą funkcję (kod argumentów – binarny; alfabet = $\{0,1\}$) f(x) = 0.

Rozwiązanie

Zadanie domowe

- 1. Skonstruować maszynę Turinga, która prawidłowo oblicza funkcje (zapis liczb binarny):
 - a) $f(x) = x \mod 4$ (reszta z dzielenia x przez 4)
 - b) g(x) = x div 4 (część całkowita z dzielenia x przez 4).
- 2. Skonstruować maszynę Turinga, która prawidłowo oblicza poniższe funkcje (kod $argumentów - unarny; alfabet = \{1\}$):

a)
$$f(x,y) = x \div y = \begin{cases} x - y & x \ge y \\ 0 & x < y \end{cases}$$

b) $f(x) = \operatorname{sg} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$

b)
$$f(x) = \operatorname{sg} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$$