Assignment 2

Assignment #2 - VGP248

If the 50-kg crate starts from rest and achieves a velocity of v = 4 m/s when it travels a distance of 5 m to the right, determine the magnitude of force **P** acting on the crate. The coefficient of kinetic friction between the crate and the ground is $\mu_k = 0.3$.

2 The coefficient of static friction between the 200-kg crate and the flat bed of the truck is $\mu_v=0.3$. Determine the shortest time for the truck to reach a speed of $60\,\mathrm{km/h}$, starting from rest with constant accelerate does not slip.

The 400-lb cylinder at A is hoisted using the motor and the pulley system shown. If the speed of point B on the cable is increased at a constant rate from zero to v_B = 10 ft/s in t = 5 s, determine the tension in the cable at B to cause the motion. 3. The 400-lb cylinder at A is hoisted

1. Given:	Step 1: Divide by s, and solve for P
* m = 50 kg	$P(\cos\theta + \mu_{\rm K} \sin\theta) = \frac{2m^2}{5} + \mu_{\rm K} mq$
v = 4.0 m/s	Step 1: Divide by s and solve for P $P(\cos\theta + \mu_K \sin\theta) = \frac{1}{5}mv^2 + \mu_K mg$ $P = \frac{1}{5}mv^2/5 + \mu_K mg$ $\cos\theta + \mu_K \sin\theta$
* s = 5.0 m	
и_к = 0.3	Step 2: Pluggin given values $P \approx \frac{(0.5)(40)(4^2)}{\cos 30^2 + 0.3 \sin 30^2} \approx 223.4 \text{ N}.$
angle θ = 30°	Final Answer:
g = 9.8 mls2	The pulling force is approximately

P≈ 2.23 × 10° N (about 223 N.)

2. Given:

- · Mass of crote m = 200kg
- *Coefficient of static friction us = 0.3
- · Target speed v = 60 Km/h = 60 × 3600 = 16.67 m/s
- Starts from rest u=0
- · Aim, croate does not slip

Step 1: Find maximum possible acceleration (before crate slip)

static friction formula: fs = ma, maximum static friction: fs.max = usmg at the limit: mamax = usmg - amax = usg - amax = 0.3.9.8=2.94 m/s Step 2: Use kinematics to find the shortest time to reach v = 1b.67 m/s $V = U + at \rightarrow t = \frac{v - u}{a_{\text{max}}} = \frac{1b.67 - 0}{2.94} = 5.675$

Final Answer:

- Maximum acceleration: amax = 2.94 m/s²
- Shortest time: tmin = 5.673
- The truck must accelerate no faster than 2.94 m/s², and it will take about 5.7 seconds to reach 60 Km/h without the crate falling

3. Assuming the rope is massless and the pulleys are frictionless

Step 1: Kinematics (lenght constraint)

$$\downarrow \qquad \qquad \downarrow_A = \frac{1}{2} \Upsilon B \rightarrow a_A = \frac{1}{2} \alpha B$$

Given VB goes from 0 to 10 ftls in
$$t = 5s$$

 $L = \frac{10-0}{5} = 2.0 \text{ ftls}^2$, $a_A = \frac{1}{2}(2.0) = 1.0 \text{ ftls}^2$

Step 2: Dynamics (Newton's 2nd law)

- ·Let] = tension in the cable (same everywhere)
- *The movable pulley (and cylinder) is supported by two upward tensions = 2T
- · Downward weight W = 400lb.

· Using m= W/g, with g= 32.2 4+1s2

Solve for
$$T \rightarrow T = \frac{1}{2} \left(W + \frac{W}{g} a A \right) = \frac{W}{2} \left(1 + \frac{aA}{g} \right)$$

$$m = \frac{400}{322} = 12.422 \text{ slugs} \rightarrow T = \frac{1}{2} (400 + 12.422 \text{ cl.0}) = \frac{412.422}{2} \approx 206.21 \text{ lb}.$$

tinal Answer: The tension in the cable at B is approximately 206.2 lb.