Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \tag{1}$$

## 1 Vectors

| parameters                                                                             | values                                   | description      |  |
|----------------------------------------------------------------------------------------|------------------------------------------|------------------|--|
| m <sub>1</sub>                                                                         | $\begin{pmatrix} -2 \\ -5 \end{pmatrix}$ | AB               |  |
| $\mathbf{m}_2$                                                                         | $\begin{pmatrix} -1\\8 \end{pmatrix}$    | ВС               |  |
| m <sub>3</sub>                                                                         | $\begin{pmatrix} 3 \\ -3 \end{pmatrix}$  | CA               |  |
| $  \mathbf{A} - \mathbf{B}  $                                                          | 5.38                                     | length of AB     |  |
| $\ \mathbf{B} - \mathbf{C}\ $                                                          | 8.06                                     | length of BC     |  |
| $\ \mathbf{C} - \mathbf{A}\ $                                                          | 4.24                                     | length of CA     |  |
| $rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$ | 3                                        | non collinear    |  |
| n <sub>1</sub>                                                                         | $\begin{pmatrix} -5\\2 \end{pmatrix}$    | AB               |  |
| $c_1$                                                                                  | -10                                      |                  |  |
| n <sub>2</sub>                                                                         | $\binom{8}{1}$                           | ВС               |  |
| $c_2$                                                                                  | -5                                       |                  |  |
| n <sub>3</sub>                                                                         | $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$ | CA               |  |
| <i>c</i> <sub>3</sub>                                                                  | -6                                       |                  |  |
| Area                                                                                   | 10.5                                     | Area of Triangle |  |
| ∠A                                                                                     | 113.19°                                  | Angles           |  |
| ∠B                                                                                     | 28.92°                                   |                  |  |
| ∠C                                                                                     | 37.874°                                  |                  |  |

TABLE 1: Vectors.



Fig. 1: triangle plotted using python

#### 2 Median

| parameters                                                                                                                           | value                                         | description                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|--|--|
| D                                                                                                                                    | $\begin{pmatrix} -0.5 \\ -1 \end{pmatrix}$    | BC midpoint                |  |  |
| E                                                                                                                                    | $\begin{pmatrix} 0.5 \\ 1.5 \end{pmatrix}$    | CA midpoint                |  |  |
| F                                                                                                                                    | $\begin{pmatrix} 1 \\ -2.5 \end{pmatrix}$     | AB midpoint                |  |  |
| m <sub>4</sub>                                                                                                                       | $\begin{pmatrix} -2.5 \\ -1 \end{pmatrix}$    | AD                         |  |  |
| n <sub>4</sub>                                                                                                                       | $\begin{pmatrix} -1\\2.5 \end{pmatrix}$       |                            |  |  |
| C4                                                                                                                                   | -2                                            |                            |  |  |
| m <sub>5</sub>                                                                                                                       | $\begin{pmatrix} 0.5 \\ 6.5 \end{pmatrix}$    | BE                         |  |  |
| n <sub>5</sub>                                                                                                                       | $\begin{pmatrix} 6.5 \\ -0.5 \end{pmatrix}$   |                            |  |  |
| c <sub>5</sub>                                                                                                                       | 2.5                                           |                            |  |  |
| m <sub>6</sub>                                                                                                                       | $\begin{pmatrix} 2 \\ -5.5 \end{pmatrix}$     | CF                         |  |  |
| n <sub>6</sub>                                                                                                                       | $\begin{pmatrix} -5.5 \\ -2 \end{pmatrix}$    |                            |  |  |
| c <sub>6</sub>                                                                                                                       | -0.5                                          |                            |  |  |
| G                                                                                                                                    | $\begin{pmatrix} 0.33 \\ -0.66 \end{pmatrix}$ | Centroid                   |  |  |
| $\begin{array}{c} \underline{BG} \\ \overline{GE} \\ \underline{CG} \\ \overline{GF} \\ \underline{AG} \\ \overline{GD} \end{array}$ | 2                                             | Division ratio by <b>G</b> |  |  |
| $ \begin{array}{c cccc}                                 $                                                                            | 2                                             | collinear                  |  |  |
|                                                                                                                                      |                                               |                            |  |  |

TABLE 2: Median.







Fig. 3: altitudes plotted using python

#### 4 Perpendicular Bisector

description

value

parameters

## 3 ALTITUDE

|                       |         |                                | parameters                    | varue                                    | description                |
|-----------------------|---------|--------------------------------|-------------------------------|------------------------------------------|----------------------------|
|                       |         |                                | m <sub>10</sub>               | $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$  | 4.0                        |
|                       | 1       | 1                              | n <sub>10</sub>               | $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$ | $AD_1$                     |
| parameters            | value   | description                    |                               | ,                                        |                            |
| $\mathbf{D_1}$        | (-0.58) | Foot of altitude from <b>A</b> | c <sub>10</sub>               | -7.5                                     |                            |
| <i>D</i> <sub>1</sub> | (-0.32) | Tool of unitade from 12        | $\mathbf{m}_{11}$             | $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$   |                            |
| $\mathbf{E_1}$        | (3.5)   | Foot of altitude from B        |                               | (-3)                                     | $BE_1$                     |
|                       | (-1.5)  |                                | n <sub>11</sub>               | 1 1                                      |                            |
| $\mathbf{F_1}$        | (2.62)  | Foot of altitude from C        |                               | (3)                                      |                            |
| -1                    | (1.55)  | Tool of <b>anniage</b> from C  | $c_{11}$                      | 3                                        |                            |
|                       | (-2.58) |                                | $\mathbf{m}_{12}$             | $\left(-5\right)$                        |                            |
| $\mathbf{m}_7$        | (-0.32) | 1.5                            | III 12                        | (-2)                                     | CE                         |
|                       | (-0.32) | $AD_1$                         |                               | (2)                                      | $CF_1$                     |
| n <sub>7</sub>        | 2.58    |                                | n <sub>12</sub>               | (-5)                                     |                            |
| $c_7$                 | -0.64   |                                | $c_{12}$                      | -10.5                                    |                            |
| m                     | (3.5)   | D.F.                           | 0                             | (1.83)                                   | Circumcentre               |
| $\mathbf{m_8}$        | (3.5)   |                                |                               | (2.83)                                   | Circumcentre               |
|                       | (3.5)   | $BE_1$                         | $\ \mathbf{O} - \mathbf{A}\ $ |                                          |                            |
| $n_8$                 | (-3.5)  |                                | $\ \mathbf{O} - \mathbf{B}\ $ | 2.83                                     | OA = OB = OC = R           |
| <i>C</i> <sub>8</sub> | 17.5    |                                | O - C                         |                                          |                            |
|                       | (3.62)  |                                | R                             |                                          |                            |
| $\mathbf{m}_{9}$      | (-1.44) | $CF_1$                         | ∠BOC                          | 46.39°                                   | ADOC O DAC                 |
|                       | (-1.44) |                                | ∠BAC                          | 23.19°                                   | $\angle BOC = 2\angle BAC$ |
| n <sub>9</sub>        | (-3.62) |                                | ∠AOC                          | 96.7°                                    | (AOC - 2 (ABC              |
| <i>C</i> 9            | -9.41   |                                | ∠ABC                          | 48.36°                                   | $\angle AOC = 2\angle ABC$ |
| Н                     | (5.42)  | Orthocentre                    | ∠AOB                          | 216.86°                                  | $\angle AOB = 2\angle BCA$ |
| 11                    | (0.42)  |                                | ∠BCA                          | 108.43°                                  |                            |

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

# 

Fig. 4: perpendicular bisectors plotted using python

### 5 Angle Bisector

| parameters      | value                                          | description               |  |
|-----------------|------------------------------------------------|---------------------------|--|
| m <sub>13</sub> | $\begin{pmatrix} 1.07 \\ -0.22 \end{pmatrix}$  | AI                        |  |
| n <sub>13</sub> | $\begin{pmatrix} 0.22 \\ -1.07 \end{pmatrix}$  |                           |  |
| $c_{13}$        | 0.44                                           |                           |  |
| m <sub>14</sub> | $\begin{pmatrix} 0.24 \\ 1.92 \end{pmatrix}$   | DI.                       |  |
| n <sub>14</sub> | $\begin{pmatrix} -1.92\\0.24 \end{pmatrix}$    | BI                        |  |
| $c_{14}$        | -1.23                                          |                           |  |
| m <sub>15</sub> | $\begin{pmatrix} -0.831 \\ 1.69 \end{pmatrix}$ | CI                        |  |
| n <sub>15</sub> | $\begin{pmatrix} -1.69 \\ -0.83 \end{pmatrix}$ |                           |  |
| $c_{15}$        | -0.79                                          |                           |  |
| I               | $\begin{pmatrix} 0.60 \\ -0.28 \end{pmatrix}$  | Incentre                  |  |
| $\mathbf{D}_3$  | $\begin{pmatrix} -0.57 \\ -0.43 \end{pmatrix}$ | Point of contact with BC  |  |
| $\mathbf{E_3}$  | $\begin{pmatrix} 1.44 \\ 0.55 \end{pmatrix}$   | Point of contact with AC  |  |
| $\mathbf{F_3}$  | $\begin{pmatrix} 1.70 \\ -0.72 \end{pmatrix}$  | Point of contact with AB  |  |
| $\ I-D_3\ $     |                                                |                           |  |
| $\ I-E_3\ $     |                                                | $ID_3 = IE_3 = IF_3 = r$  |  |
| $  I-F_3  $     | 0.43                                           |                           |  |
| r               |                                                |                           |  |
| ∠BAI            | 56.500                                         | (DAI (CAI                 |  |
| ∠CAI            | 56.59°                                         | $\angle BAI = \angle CAI$ |  |
| ∠ABI            | 14.460                                         | (ADI (CDI                 |  |
| ∠CBI            | 14.46°                                         | $\angle ABI = \angle CBI$ |  |
| ∠ACI            | 10.020                                         | ACI PCI                   |  |
| ∠BCI            | 18.93°                                         | $\angle ACI = \angle BCI$ |  |

TABLE 5: Angle Bisectors.



Fig. 5: Angle bisectors plotted using python