Programare logică și funcțională examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului - determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(integer, integer), având modelul de flux (i, o):

f(100, 1):-!.

f(K,X):-K1 is K+1, $\underline{f(K1,Y)}$, Y>1, !, K2 is K1-1, X is K2+Y. f(K,X):-K1 is K+1, $\underline{f(K1,Y)}$, Y>0.5, !, X is Y.

f(K,X):-K1 is K+1, $\underline{f(K1,Y)}$, X is Y-K1.

Rescrieți această definiție pentru a evita apelul recursiv **f(J,V)** în clauze. Nu redefiniți predicatul. Justificați răspunsul.

C. Să se scrie un program PROLOG care generează lista aranjamentelor de **k** elemente dintr-o listă de numere întregi, pentru care produsul elementelor e mai mic decât o valoare **V** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [1, 2, 3], $\mathbf{k}=2$ și $\mathbf{V}=7 \Rightarrow [[1,2],[2,1],[1,3],[3,1],[2,3],[3,2]]$ (nu neapărat în această ordine)

D. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2). Se cere să se determine numărul de noduri de pe nivelul k. Nivelul rădăcinii se consideră 0. Se va folosi o funcție MAP.

 <u>Exemplu</u> pentru arborele (a (b (g)) (c (d (e)) (f)))
 a) k=2 => nr=3 (g d f)
 b) k=4 => nr=0 ()