Deep Q-Networks

Nolan Bogumill

Q-Learning

Impractical to compute Q-values in high-dimensional action spaces

Solution: approximate Q-values instead!

3 key concepts:

- DNNs
- Experience replay buffer
- Epsilon greedy exploration

Q-Values in Pong

Off-Policy Methods

On-Policy vs. Off-Policy

Are we learning from data collected by the *current* policy, or data from <u>any</u> policy?

- Off-policy updates learn from any transition
 - More sample efficient
 - Implemented with experience replay buffer

Epsilon Greedy

Problem: Exploration vs. exploitation trade-off

DQNs:

• With $(1-\epsilon)$ probability, select action with max Q-value:

$$a_t = \max_a Q^*(\phi(s_t), a; \theta)$$

Else sample random action

 a_t

→ Sample random actions to explore action space for high-reward actions

Experiments

DQN achieves more than
75% of the human score on
29/49 Atari games

From DQN to Actor-Critic

- 2015 A3C (Asynchronous Advantage Actor-Critic) from the same team at DeepMind
 - DQN (Q-value approximation) + REINFORCE (direct policy optimization)
- Key idea: Combine policy-based and value-based methods
 - **Critic** takes states (or states+actions) and predicts values (or Q-values)
 - Actor takes states and predicts actions

Actor-Critic Methods

Two common reasons to use an actor-critic over DQNs:

1. Learning high-dimensional continuous actions

- Actor directly represents actions
- As opposed to learning values and searching for actions at test-time

2. Reducing variance in a policy gradient

- Critic approximates a baseline function (usually advantage) that informs actor
- Based to control variate methods from Monte Carlo literature

Hyperparameters

Hyperparameter	Value	Description
minibatch size	32	Number of training cases over which each stochastic gradient descent (SGD) update is computed.
replay memory size	1000000	SGD updates are sampled from this number of most recent frames.
agent history length	4	The number of most recent frames experienced by the agent that are given as input to the Q network.
target network update frequency	10000	The frequency (measured in the number of parameter updates) with which the target network is updated (this corresponds to the parameter C from Algorithm 1).
discount factor	0.99	Discount factor gamma used in the Q-learning update.
action repeat	4	Repeat each action selected by the agent this many times. Using a value of 4 results in the agent seeing only every 4th input frame.
update frequency	4	The number of actions selected by the agent between successive SGD updates. Using a value of 4 results in the agent selecting 4 actions between each pair of successive updates.
learning rate	0.00025	The learning rate used by RMSProp.
gradient momentum	0.95	Gradient momentum used by RMSProp.
squared gradient momentum	0.95	Squared gradient (denominator) momentum used by RMSProp.
min squared gradient	0.01	Constant added to the squared gradient in the denominator of the RMSProp update.
initial exploration	1	Initial value of ϵ in ϵ -greedy exploration.
final exploration	0.1	Final value of ϵ in ϵ -greedy exploration.
final exploration frame	1000000	The number of frames over which the initial value of ϵ is linearly annealed to its final value.
replay start size	50000	A uniform random policy is run for this number of frames before learning starts and the resulting experience is used to populate the replay memory.
no-op max	30	Maximum number of "do nothing" actions to be performed by the agent at the start of an episode.