Proyecto: Simulación gravitacional de N-cuerpos FÍSICA COMPUTACIONAL

Enrique Pazos

1. Objetivo

Simular la interacción de 100 cuerpos bajo su mutua interacción gravitacional, dada una distribución inicial de posiciones y velocidades.

2. Planteamiento

Se tiene un número N de cuerpos cuyas masas iniciales m_i son todas iguales y con un valor de 10^{18} kg. Se habla de masa iniciales ya que en la simulación se tomarán en cuenta colisiones inelásticas que van a alterar su valor. Cada partícula es atraída por la acción de la fuerza gravitacional que todos los objetos ejercen entre sí. La magnitud de la fuerza entre dos masas m_i y m_j está dada por la ley de gravitación universal de Newton

$$F = \frac{Gm_im_j}{r^2},\tag{1}$$

donde $G=6.67\times 10^{-11}~\rm Nm^2kg^{-2}$. La dirección de la fuerza está dada por el vector unitario a lo largo de la línea que une las masas, dependiendo sobre cuál de las dos se calcule la fuerza. Se considera que las partículas se mueven en el plano xy y no hay movimiento en la dirección z

2.1. Posiciones iniciales

Las N partículas están distribuidas en posiciones aleatorias sobre un cuadrado de lado L=2 unidades astronómicas (UA), con el origen en el centro del cuadrado. Una unidad astronómica, $1 \text{ UA} = 1.5 \times 10^{11} \text{ m}$, es la distancia media entre la Tierra y el Sol. Para generar números aleatorios se utiliza la función rand().

2.2. Velocidades iniciales

La velocidad de cada partícula es escogida para darle una cierta cantidad de momentum angular a todo el sistema. Para esto vamos a suponer que las partículas forman una distribución homogénea de masa. Si una partícula de masa m_i tiene una posición inicial (x_{i0}, y_{i0}) , vamos a suponer que tiene una órbita circular debida a la atracción gravitacional de las partículas que se encuentran en el interior de un círculo de radio $r_i = \sqrt{x_{i0}^2 + y_{i0}^2}$. Igualando la fuerza centrípeta a la fuerza gravitacional tenemos

$$\frac{m_i v_i^2}{r_i} = \frac{GMm_i}{r_i^2},\tag{2}$$

donde M es la masa contenida en el círculo de radio r_i . La masa M se puede calcular asumiendo que la densidad superficial de masa σ es la masa total del sistema dividida entre

el área que ocupa, es decir, $\sigma = Nm_i/L^2$. De esta forma obtenemos que $M = \sigma \pi r_i^2 = Nm_i \pi r_i^2/L^2$. Sustituyendo esto en (2) obtenemos

$$v_i = \frac{\sqrt{G\pi N m_i r_i}}{L}. (3)$$

Esta es la magnitud de la velocidad. La dirección está dada por un vector unitario perpendicular al vector posición. De esta forma, la velocidad inicial de la masa m_i será

$$\mathbf{v}_{i0} = \frac{\sqrt{G\pi N m_i r_i}}{L} \left(-\frac{y_{i0}}{r_i}, \frac{x_{i0}}{r_i} \right). \tag{4}$$

Aparte de esta velocidad, a cada partícula se le agrega un valor adicional en cada dirección, el cual será un valor aleatorio en el intervalo $(-v_i, v_i)$, tanto para la componente x como y de la velocidad.

2.3. Ecuaciones de movimiento

La fuerza \mathbf{F}_i que experimenta la masa m_i ubicada en una posición \mathbf{r}_i , debido al resto de las masas, se expresa en forma general de la siguiente manera

$$\mathbf{F}_{i} = \sum_{j \neq i} -Gm_{i}m_{j} \frac{\mathbf{r}_{i} - \mathbf{r}_{j}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|^{3}},\tag{5}$$

donde $|\mathbf{r}_i - \mathbf{r}_j| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$. La segunda ley de Newton $\mathbf{F} = m\ddot{\mathbf{r}}$ se expresa como

$$\begin{split} m_i \ddot{\mathbf{r}}_i &= \sum_{j \neq i} -G m_i m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}, \\ \ddot{x}_i \hat{\mathbf{x}} + \ddot{y}_i \hat{\mathbf{y}} &= \sum_{j \neq i} -\frac{G m_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} \left[(x_i - x_j) \hat{\mathbf{x}} + (y_i - y_j) \hat{\mathbf{y}} \right]. \end{split}$$

Igualamos cada lado por componentes para obtener

$$\ddot{x}_i = \sum_{j \neq i} -\frac{Gm_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} (x_i - x_j),$$

$$\ddot{y}_i = \sum_{j \neq i} -\frac{Gm_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} (y_i - y_j).$$
(6)

2.4. Solución

La solución del problema consiste en calcular las siguientes cantidades en función del tiempo, siguiendo la evolución del sistema por un período de *por lo menos* 5,000 años.

- 1. Posición y velocidad de cada partícula
- 2. Energía mecánica del sistema
- 3. Momentum angular del sistema
- 4. Momentum lineal del sistema

3. Reporte

El informe de los resultados del proyecto tendrá la siguientes secciones: Introducción, Métodos, Resultados y discusión, Conclusiones y Referencias. Los resultados esperados son por lo menos los siguientes:

- 1. Código de las funciones creadas en C++
- 2. Animación en formato MP4 del movimiento del sistema
- 3. Gráfica de la energía mecánica del sistema en función del tiempo
- 4. Gráfica del momentum angular del sistema en función del tiempo
- 5. Gráfica del momentum lineal del sistema en función del tiempo

4. Pruebas

Antes de calcular el movimiento de 100 cuerpos es bueno verificar si el programa funciona en un caso conocido. Se sugiere fuertemente probar el programa para N=3 e inicializar el sistema con las posiciones y velocidades del Sol, la Tierra y la Luna. Dicho ejercicio ya se hizo en clase. Este sistema debe conservar perfectamente la energía, el momentum angular y el momentum lineal.

5. Gnuplot

Para hacer la animación en Gnuplot, se puede graficar varias columnas de forma sencilla. Si el archivo tiene 101 columnas y la primera es el tiempo, una forma de utilizar todas las columnas en una sola línea es la siguiente

```
plot for [i=2:101] 'solucion.dat' u 1:i
```