1 Summary of logical equivalences

Law	Form 1	Form 2
Commutative	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
Double negative	$\sim (\sim p) \equiv p$	
Idempotent	$p \wedge p \equiv p$	$p\vee p\equiv p$
Universal bound	$p ee \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
De Morgan's	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \vee q) \equiv \sim p \wedge \sim q$
Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Negation of \mathbf{t} and \mathbf{c}	$\sim {f t} \equiv {f c}$	$\sim { m c} \equiv { m t}$
Implication	$p \to q \equiv \sim p \vee q$	$\sim (p \to q) \equiv p \land \sim q$
Variant absorption law	$p \wedge (\sim \vee q) \equiv p \wedge q$	$p \lor (\sim p \land q) \equiv p \lor q$

Note associative law only applies to expressions with the same logical connectives **Note** works for $\sim p$ and $\sim q$

2 Rules of inference

Rule of inference is a form of argument that is valid and modus ponens and modus tollens are examples of rules of inference

1. Modus Ponens

$$p \to q$$

p

 $\therefore q$

Note type of syllogism and also known as method of affirming

2. Modus Tollens

$$p \rightarrow q$$

 $\sim q$

∴ $\sim p$

Note uses proof by contradiction and also known as method of denying

- 3. Generalization (since at least one variable is true, the \vee must be true)
 - **a.** *p*
 - $\therefore p \lor q$
 - **b.** *q*
 - $\therefore p \lor q$
- 4. **Specialization** (implies that both p and q are true)
 - **a.** $p \wedge q$
 - $\therefore p$
 - **b.** $p \wedge q$
 - $\therefore q$
- 5. Conjunction
 - p
 - q
 - $\therefore p \land q$
- 6. **Elimination** (in an \vee statement, at least one variable must be true, so we are determining which is true)
 - **a.** $p \lor q$
 - $\sim q$
 - $\therefore p$
 - **b.** $p \vee q$
 - $\sim p$
 - $\therefore q$
- 7. Transitivity
 - $p \to q$
 - $q \rightarrow r$
 - $\therefore p \to r$
- 8. Proof by Division into Cases
 - $p \vee q$
 - $p \rightarrow r$
 - $q \rightarrow r$
 - $\therefore r$
- 9. Contradiction Rule
 - $\sim p \rightarrow \mathbf{c}$
 - $\therefore p$

3 Rules of inference for quantified statements

1. Universal instantiation

$$\forall x \in D, P(x)$$

$$\therefore P(a) \text{ if } a \in D$$

2. Universal generalization

$$P(a)$$
 for every $a \in D$

$$\therefore x \in D, P(x)$$

3. Existential instantiation

$$\exists x \in D, P(x)$$

$$\therefore P(a)$$
 for some $a \in D$

4. Existential generalization

$$P(a)$$
 for some $a \in D$

$$\therefore x \in D, P(x)$$

4 Properties of sets

4.1 Subset relations

- Inclusion of intersection: $A \cap B \subseteq A$ or $A \cap B \subseteq B$
- Inclusion of union: $A \subseteq A \cup B$ or $B \subseteq A \cup B$
- Transitive property of subsets: $A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$

(L5 S39)

4.2 Procedural versions of set definitions

Let X and Y be subsets of a universal set U and suppose $a, b \in U$

- $a \in X \cup Y \Leftrightarrow a \in X \lor a \in Y$
- $a \in X \cap Y \Leftrightarrow a \in X \land a \in Y$
- $a \in X \setminus Y \Leftrightarrow a \in X \land a \notin Y$
- $\bullet \ \ a \in \overline{X} \Leftrightarrow a \not \in X$
- $(a,b) \in X \times Y \Leftrightarrow a \in X \land b \in Y$

4.3 Set identities

Law	Form 1	Form 2
Commutative	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Associative	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributive	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Identity	$A \cap U = A$	$A \cup \emptyset = A$
Complement	$A \cup \overline{A} = U$	$A\cap \overline{A}=\emptyset$
Double complement	$\overline{\overline{A}} = A$	
Idempotent	$A \cap A = A$	$A \cup A = A$
Universal bound	$A \cup U = U$	$A\cap\emptyset=\emptyset$
De Morgan's	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
Absorption	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Complements of U and \emptyset	$\overline{U}=\emptyset$	$\overline{\emptyset} = U$
Set difference	$A \setminus B = A \cap \overline{B}$	