

Procise 约束手册

(版本号: V2.1)

上海复旦微电子集团股份有限公司

(86-21)6565 5050

(86-21)6565 9115

200433

上海市国泰路 127 号复旦国家大学科技园 4 号楼

Procise 约束手册 I 上海复旦微电子版权所有

修订记录

日期	修订版本	描述	作者
2021-08-10	1.0	初稿	
2022-03-01	2.1	增加了 IOBDELAY 约束	
2023-04-01	2.1	修改 set_clock_groups 命令的一处错误	宋功明

目录

1	关于手册	1
2	约束的组织	1
	2.1 使用 FDC 约束文件	1
	2.2 约束文件的组织	1
	2.3 约束文件加载顺序	1
	2.4 约束文件作用范围	2
	2.5 指定约束文件的生效阶段	
3	对象获取	
	3.1 网表对象	2
	3.1.1 get_ports	2
	3.1.2 get_nets	
	3.1.3 get_cells	
	3.1.4 get_pins	
	3.1.5 all_inputs	3
	3.1.6 all_outputs	4
	3.1.7 all_clocks	4
	3.2 器件对象	4
	3.2.1 get_iobanks	4
	3.2.2 get_sites	4
	3.2.3 get_bels	5
	3.3 使用建议	5
4	时序约束	5
	4.1 定义时钟	5
	4.1.1 create_clock	5
	4.1.2 create_generated_clock	7
	4.1.3 set_clock_uncertainty	9
	4.1.4 set_clock_latency	10
	4.1.5 set_clock_groups	. 11
	4.1.6 set_external_delay	12

4.2 设置输入/输出延时	13
4.2.1 set_input_delay	13
4.2.2 set_output_delay	14
4.3 时序例外	16
4.3.1 set_false_path	16
4.3.2 set_multicycle_path	
4.3.3 set_max _delay	18
4.3.4 set_min_delay	20
4.4 时序约束优先级	20
5 物理约束	20
5.1 I/O 约束	20
5.1.1 PACKAGE_PIN	21
5.1.2 IOSTANDARD	21
5.1.3 DRIVE	24
5.1.4 SLEW	24
5.1.5 IN_TERM	24
5.1.6 DIFF_TERM	24
5.1.7 PULLTYPE	25
5.1.8 VCCAUX_IO	25
5.1.9 DCI_CASCADE	25
5.1.10 INTERNAL_VREF	26
5.1.11 IODELAY_GROUP	26
5.1.12 IOBDELAY	26
5.2 布局约束	27
5.2.1 LOC	27
5.2.2 BEL	27
5.3 配置约束	27
5.3.1 PROHIBIT	27
5.3.2 CLOCK DEDICATED ROUTE	28

1 关于手册

本手册旨在向 Procise 用户说明该软件支持的约束语法,包括时序约束和物理约束两大类。

2 约束的组织

2.1 使用 FDC 约束文件

FDC 是 Fudan Design Constraints 的简称。

FDC 约束是行业标准 SDC (Synopsys Design Constraints, version 1.9)的一个子集和复旦微专有物理约束的组合。FDC 约束本质上是一系列 Tcl 命令,和其他 Tcl 命令一样被 Procise 软件解析执行。可以通过以下几种方式使用 FDC 约束:

- 1. 将约束保存于 FDC 约束文件,通过工程向导或 read fdc 命令添加 FDC 文件。
- 2. 将约束保存于 FDC 约束文件,通过 source 命令执行 FDC 文件。
- 3. 输入单个约束命令执行。

2.2 约束文件的组织

用户可以添加多个 FDC 约束文件,比如有的文件定义时序,有的文件定义物理约束等。可以指定其中一个为 active 的 FDC 文件,用户通过 Procise 软件的约束向导工具修改的约束文件是指定的 active 的 FDC 约束文件。

2.3 约束文件加载顺序

当存在多个约束文件时,需要注意加载次序。有的约束依赖于别的约束,因此有的需要先加载,有的后加载。Procise 软件无法帮用户分析约束文件的优先顺序,需要用户特别注意。 软件默认情况是根据用户添加的 FDC 文件依次加载。

2.4 约束文件作用范围

Procise 软件暂不支持约束文件的作用范围。

2.5 指定约束文件的生效阶段

Procise 软件暂不支持约束文件的指定生效阶段。

3 对象获取

用户在使用时序约束命令和物理约束命令之前,需要通过对象获取命令来得到被约束的对象,这些对象包括用户网表中的引脚(Port)、线网(Net)、单元(Cell)以及单元引脚(Pin),还包括 FPGA 器件的 Site、Bel、IO bank。

3.1 网表对象

3.1.1 get_ports

获取用户网表中的引脚。

命令格式为:

```
get_ports [-regexp] [-nocase] [-of_objects <args>] [-quiet] [-verbose] [<patterns>] 命令示例 1 (单个 pattern):
    get_ports clk
    get_ports *clk*
命令示例 2 (多个 pattern):
    get_ports {data_in? sys*}
命令示例 3 (指定 of_objects):
    get_ports -of objects [get_nets_clk]
```


3.1.2 get_nets

```
获取用户网表中的线网。
```

命令格式为:

```
get_nets [-regexp] [-nocase] [-of_objects <args>] [-quiet]
[-verbose] [<patterns>]
```

命令用法同上。

3.1.3 get_cells

获取用户网表中的单元。

命令格式为:

```
get_cells [-regexp] [-nocase] [-of_objects <args>] [-quiet]
[-verbose] [<patterns>]
```

命令用法同上。

3.1.4 get_pins

获取用户网表中的单元引脚。

命令格式为:

```
get_pins [-regexp] [-nocase] [-of_objects <args>] [-quiet]
[-verbose] [<patterns>]
```

命令用法同上。

3.1.5 all_inputs

获取用户网表中的所有输入引脚。

命令格式为:

```
all inputs [-quiet] [-verbose]
```


3.1.6 all_outputs

```
获取用户网表中的所有输出引脚。
```

命令格式为:

```
all outputs [-quiet] [-verbose]
```

3.1.7 all_clocks

获取用户网表中的所有时钟。

命令格式为:

```
all_clocks [-quiet] [-verbose]
该命令等同于
get clocks *
```

3.2 器件对象

3.2.1 get_iobanks

获取当前器件的 IO banks。

命令格式为:

```
get_iobanks [-quiet] [-verbose] [<patterns>]
命令示例:
get_iobanks 12
```

3.2.2 get_sites

获取当前器件的 sites。

命令格式为:

```
get_sites [-quiet] [-verbose] [<patterns>]
```

Procise 约束手册

命令示例:


```
get_sites LC_X10Y20
get sites LC X1*Y*
```

3.2.3 get_bels

获取当前器件的 bels。

命令示例:

```
get_sites ALUT5
get sites AFF -of objects [get sites LC X10Y20]
```

3.3 使用建议

当用户知道某一对象的名字时,建议用户用精确匹配,可以提高命令的效率。

4 时序约束

4.1 定义时钟

4.1.1 create_clock

create_clock 命令对 FPGA 主时钟(primary clock)和虚拟时钟(virtual clock)进行约束。 命令格式为:

各参数定义如下:

-period 定义时钟周期。

-name 定义 clock 名称,若不指定-name 值,则 clock 名称为 objects 名。

-waveform 定义时钟波形占空比和相移,参数值个数为偶数个,第一个值对应上升 沿,第二个值对应下降沿。若不指定-waveform 值,等同于-waveform {0 period/2}。

-add 使用 add 参数给同一个端口定义多个时钟,若不添加-add 参数则以本次 定义的时钟来覆盖已经定义在时钟源上的所有时钟。

<objects> 定义时钟源,可以是 pins 或 ports,若不指定时钟源,则为虚拟时钟约束。

约束举例:

- 1. 全局时钟管脚作为主时钟(primary clock)
- 1) 定义时钟周期为 20ns, 占空比为 50%, 相移为 0 的时钟约束:

```
create clock -period 20 [get ports clk in]
```

2) 定义时钟周期为 8ns,占空比为 25%,相移为 90 度的时钟约束:

3) 同一个时钟源产生多种时钟:

```
create_clock -name C1 -period 10 [get_ports CLK]
create clock -name C2 -period 15 -add [get ports CLK]
```

2. 千兆位高速收发器引脚的输出作为主时钟(primary clock)

定义高速收发器 gt0 的引脚 RXOUTCLK 生成时钟周期为 5ns 的时钟:

```
create clock -name rxclk0 -period 5 [get pins gt0/RXOUTCLK]
```

3. 虚拟时钟 (virtual clock)

定义时钟周期为 10ns 的虚拟时钟:

```
create clock -name clk virt -period 10
```


4.1.2 create_generated_clock

用于创建生成时钟或对系统自动推断出的生成时钟做重命名。

命令格式为:

-name	指定生成时钟(generated clock)名称。
-source	指定主时钟(master clock)传播的端口(port)或引脚(pin)。
-edges	-edges 接的参数是一个包含三个整数值的索引列表,指定生成时钟(generated clock)的第1个上升沿,第1个下降沿和第2个上升沿对应主时钟的第几个沿(从1开始计数)。
-divide_by	对主时钟频率进行分频。
-multiply_by	对主时钟频率进行倍频。
-combination	创建 "-divide_by 1"的生成时钟
-duty_cycle	配合-multiply_by 选项使用,用以调节占空比。
-invert	使生成时钟的波形反转。
-edge_shift	将指定-edges 选项中三条时钟沿的偏移量,因此

	将包含 3 个正负皆可的浮点数,单位为基本时间单位 ns
-master_clock	如果主时钟的源点上定义了多个时钟,则需要指定哪个
	时钟作为本生成时钟的主时钟。
-add	表示不要覆盖 <objects>上已经定义的时钟,将新时钟添加进去。</objects>
	不使用-add 表示以本生成时钟去覆盖 <objects>上已经定义的所有</objects>
	时钟。
<objects></objects>	指定生成时钟的源点。

约束举例:

1. 用-divide_by 参数使生成时钟频率为主时钟频率的一半。

2. 用-edges 参数使生成时钟为主时钟频率的一半。

3. 用-edges 和-edge_shift 参数调节生成时钟的占空比和相移。

4.1.3 set_clock_uncertainty

用于定义时钟的不确定度,用于增加时序裕量,也可以只定义某些特定的方向和时序路径。 命令格式为:

各参数定义如下:

-setup	表示时钟不确定性是用在建立时序分析过程
-hold	表示时钟不确定性是用在保持时序分析过程。
-from	表示 source clock
-rise_from	表示 source clock 的活动沿是上升沿
-fall_from	表示 source clock 的活动沿是下降沿
-to	表示 dest clock
-rise_to	表示 dest clock 的活动沿是上升沿
-fall_to	表示 dest clock 的活动沿是上升沿
<uncertainty></uncertainty>	定义时钟不确定的值,单位 ns。
<objects></objects>	指定 uncertainty 应用到哪些时钟上。

约束举例:

说明:复杂的时钟不确定性优于简单的时钟不确定性,尽管后面一个约束限制了 clk1 1ns 的时钟不确定性约束,从 clk1 到 clk2 依旧有 2ns clock uncertainty 的约束限制。

4.1.4 set_clock_latency

用于定义时钟或者 port 的 source latency。

命令格式为:

-clock	指定〈latency〉作用在哪些时钟上,如果不指定次选项,则 表示作用在〈objects〉上定义的所有时钟。
-rise	指定 clock rise 时的 latency。
-fall	指定 clock fall 时的 latency。
-max/ -min	指定最大的/最小的 latency。
-source	选项说明指定的为 source latency, 否则为 network latency。
-late	表示时钟沿到得多晚。

-early	表示时钟沿到得多早。
--------	------------

-latency 时钟延迟总量。

-objects 指定 lantency 适用的对象,可以是 clock, port, pin。

约束举例:

1. 定义 sysClk 时钟最小的时钟延迟为 0.2ns:

```
set_clock_latency -source -early 0.2 [get_clocks sysClk]
```

2. 定义 sysClk 时钟最大的时钟延迟为 0.5ns:

```
set clock latency -source -late 0.5 [get clocks sysClk]
```

4.1.5 set_clock_groups

设置不同的时钟组,不同组内的不做时序分析,同组内的同步关系,包括单时钟点上 overlap 的情况等。

命令格式为:

-name	时钟组名称。
-logically_exclusive	表示这些时钟组在逻辑上不会同时出现。
-physically_exclusive	表示这些时钟组在物理上不会同时出现。
-asynchronous	完全不相干的时钟。

-group 时钟列表。

约束举例:

4.1.6 set_external_delay

用于设置片外输出到输入的反馈延时。

命令格式为:

各参数定义如下:

-from	输出端口名称。	
-to	输入端口名称。	
-min	为 hold time 设置最小延迟时间。	
-max	为 setup time 设置最大延迟时间。	
-add	添加额外的延迟时间。	
delay_value	反馈延迟时间,单位为 ns,默认为 0。	

约束举例:

定义 ClkOut 和 ClkFb 之间的反馈延迟为 1ns。

4.2 设置输入/输出延时

4.2.1 set_input_delay

设置输入端口的片外延时。

命令格式为:

-clock	输入延时相对于哪些时钟的活动沿。缺省指上升沿,
	但是可以用-clock_fall 来指定下降沿
-reference_pin	输入延时相对于哪些 pin 上出现的时钟信号活动沿
-clock_fall	表明输入延时相对于时钟的下降沿
-rise	表明输入延时在 <objects>上的信号 rise 时起作用</objects>
-fall	表明输入延时在 <objects>上的信号 fall 时起作用</objects>
-max	表明输入延时仅在做 setup 分析时用到
-min	表明输入延时仅在做 hold 分析时用到

-add_delay	将 <delay>加到<objects>已经定义的 delay 上,不用</objects></delay>
	此选项表示替代 <objects>已经定义的 delay。</objects>
-network_latency_included	表示 delay 里面已经包含了 clock 的 network 延时
-source_latency_included	表示 delay 里面已经包含了 clock 的 source 延时
<delay></delay>	延迟时间。单位 ns
<objects></objects>	表示 <delay>作用在哪些输入端口。</delay>

约束举例:

约束虚拟时钟 clk port virt 到达 DIN 输入端口的时钟延迟。

```
create_clock -name clk_port_virt -period 10
set_input_delay -clock [get_clocks clk_port_virt] 2 [get_ports
DIN]
```

注意指定-clock 选项时要使用[get clocks clkname], 不要仅仅使用 clkname

4.2.2 set_output_delay

设置输出端口的片外延时。

命令格式为:

-clock 输出延时相对于哪些时钟的活动沿。缺省指上升沿,

但是可以用-clock fall 来指定下降沿

-reference_pin 输出延时相对于哪些 pin 上出现的时钟信号活动沿

-clock fall 表明输出延时相对于时钟的下降沿

-rise 表明输出延时在<objects>上的信号 rise 时起作用

-fall 表明输出延时在<objects>上的信号 rise 时起作用

-max 表明输出延时仅在做 setup 分析时用到

-min 表明输出延时仅在做 hold 分析时用到

-add_delay 将<delay>加到<objects>已经定义的 delay 上,不用

此选项表示替代<objects>已经定义的 delay。

-network latency included 表示 delay 里面已经包含了 clock 的 network 延时

-source latency included 表示 delay 里面已经包含了 clock 的 source 延时

<delay> 延迟时间。单位 ns

<objects> 表示<delay>作用在哪些输出端口。

约束举例:

约束系统时钟 sysClk 到达输出端口 DOUT 的输出延迟。

create_clock -name sysClk -period 10 [get_ports CLK0]

set_output_delay -clock [get_clocks sysClk] 6 [get_ports DOUT]

注意指定-clock 选项时要使用[get_clocks clkname], 不要仅仅使用 clkname

4.3 时序例外

4.3.1 set_false_path

忽略定路径的时序分析。

命令格式为:

```
set_false_path [-setup] [-hold] [-rise] [-fall] [-reset_path]

[-from <objs>] [-rise_from <objs 指>]

[-fall_from <objs>] [-to <objs>]

[-rise_to <objs>] [-fall_to <objs>]

[-through <objs>] [-rise_through <objs>]

[-fall_through <objs>]

[-quiet] [-verbose]
```

-setup/-hold	指定在 setup/hold check 时不分析指定路径。
-rise	表示在 path 的信号 rise 时不做分析
-fall	表示在 path 的信号 fall 时不做分析
-reset_path	先清除 path 上的约束,然后添加此约束
-from	指定 path 的起点或 clock。
-rise_from	指起点信号 rise, 或 clock rise
-fall_from	指起点信号 fall, 或 clock fall
-to	指定 path 的终点或 clock。
-rise_to	指终点信号 rise, 或 clock rise

-fall_to 指终点信号 fall, 或 clock fal	. 1
----------------------------------	-----

-through 指定时序路径必须通过的中间点, pin, cell, net 的列表。

-rise through 指中间点信号 rise

-fall_through 指中间点信号 fall

约束举例:

将所有从 reset 端口出发的时序路径不做分析。

```
set false path -from [get port reset]
```

4.3.2 set_multicycle_path

用来改变默认的单周期 setup/hold 关系分析,且 hold 关系是与 setup 紧密联系的。因此,在大部分情况下,setup 关系调整后,hold 也要做相应地调整。主要的一个例外是相移时钟间同步的 CDC path,只有 setup 需要调整。

命令格式为:

-setup	只设定 setup 的多周期数。
-hold	只设定 hold 的多周期数。

-rise 指 path 终点 rise 时约束起作用

-fall 指 path 终点 fall 时约束起作用

-start/end 指多周期数对应于路径的起点/终点

-from 指定 path 的起点或 clock。

-rise from 指起点信号 rise, 或 clock rise

-fall from 指起点信号 fall, 或 clock fall

-to 指定 path 的终点或 clock。

-rise_to 指终点信号 rise, 或 clock rise

-fall to 指终点信号 fall, 或 clock fall

-through 指定时序路径必须通过的中间点, pin, cell, net 的列表。

-rise through 指中间点信号 rise

-fall through 指中间点信号 fall

<multiplier> 时钟周期数。

约束举例:

set multicycle path 2 -from [all inputs] -to [get clocks clk1]

4.3.3 set_max_delay

用于设定对应 timing path 间的最大延时。

命令格式为:

[-to <objs>] [-rise to <objs>]

[-fall to <objs>] [-through <objs>]

[-rise through <objs>] [-fall through <objs>]

[-datapath only] [-quiet] [-verbose] <delay>

各参数定义:

-rise 〈delay〉适用于 path 的终点 rise

-fall <delay>适用于 path 的终点 fall

-from 指定 path 的起点或 clock。

-rise_from 指起点信号 rise, 或 clock rise

-fall from 指起点信号 fall, 或 clock fall

-to 指定 path 的终点或 clock。

-rise to 指终点信号 rise, 或 clock rise

-fall to 指终点信号 fall, 或 clock fall

-through 指定时序路径必须通过的中间点, pin, cell, net 的列表。

-rise through 指中间点信号 rise

-fall_through 指中间点信号 fall

-datapath_only 计算时不考虑 clock skew 与 jitter

<delay> 延时数值。

约束举例:

定义路径之间的最大延迟为 15ns。

4.3.4 set_min_delay

用于设定对应 timing path 间的最小延时,同 set_max_delay。

4.4 时序约束优先级

Procise 软件支持的时序约束命令的优先级从高到低为:

- ° clock group (set clock groups)
- ° false path (set false path)
- ° Maximum/Minimum Delay Path(set max/min delay)
- ° multicycle path (set multicycle path)

对于同一优先级的命令,按先后次序,后出现的命令会覆盖前面的命令。

5 物理约束

Procise 支持的所有的物理约束都通过 set property 命令来设置。

可以每次设置一个属性:

```
set property -dict {<property> <value> ...} <object list>
```

5.1 I/O 约束

用户可以给 I/O 引脚 (Port) 或连接引脚的线网 (Net) 添加 I/O 约束。

Procise 软件支持的 I/O 约束如下:

5.1.1 PACKAGE_PIN

设置 I/O 引脚的位置。

具体的管脚位置信息根据芯片封装的不同而不同。

LOC 约束示例:

set property PACKAGE PIN B8 [get ports STATUS]

5.1.2 IOSTANDARD

设置 I/O 引脚的电气标准。

Procise 软件支持的 I/O 标准有:

BLVDS 25

DIFF_HSTL_I_DCI

DIFF_HSTL_I_DCI_18

DIFF HSTL II DCI

DIFF_HSTL_II_DCI_18

DIFF_HSTL_II_T_DCI

DIFF_HSTL_II_T_DCI_18

DIFF_HSUL_12_DCI

DIFF_MOBILE_DDR

DIFF SSTL12

DIFF_SSTL12_DCI

DIFF_SSTL12_T_DCI

DIFF_SSTL135_DCI

DIFF_SSTL135_R

DIFF SSTL135 T DCI

DIFF_SSTL15_DCI

DIFF_SSTL15_R

DIFF_SSTL15_T_DCI

DIFF_SSTL18_I_DCI

DIFF_SSTL18_II_DCI

DIFF_SSTL18_II_T_DCI

HSLVDCI_15

HSLVDCI_18

HSTL_I_12

HSTL_I_DCI

HSTL_I_DCI_18

HSTL_II_DCI

HSTL_II_DCI_18

HSTL_II_T_DCI

HSTL_II_T_DCI_18

HSUL_12_DCI

LVCMOS12

LVCMOS15

LVCMOS18

LVCMOS25

LVCMOS33

LVDCI_15

LVDCI_18

LVDCI_DV2_15

LVDCI_DV2_18

LVDS

LVDS_25

LVTTL

MINI_LVDS_25

 $MOBILE_DDR$

PCI33_3

PPDS_25

RSDS_25

SSTL12

SSTL12_DCI

SSTL12_T_DCI

SSTL135_DCI

SSTL135_R

SSTL135_T_DCI

SSTL15_DCI

SSTL15_R

SSTL15_T_DCI

SSTL18_I_DCI

SSTL18_II_DCI

SSTL18_II_T_DCI

TMDS_33

IOSTANDARD 约束示例:

set_property IOSTANDARD LVCMOS12 [get_ports STATUS]

5.1.3 DRIVE

设置 I/O 引脚的驱动能力。

Procise 软件支持的 DRIVE 值为 < 2 | 4 | 6 | 8 | 12 | 16 | 24 >

DRIVE 约束示例:

set property DRIVE 4 [get ports STATUS]

5.1.4 **SLEW**

设置 I/O 引脚的抖动速率。

Procise 软件支持的 SLEW 值为 < SLOW | FAST >

SLEW 约束示例:

set property SLEW FAST [get ports STATUS]

5.1.5 IN_TERM

设置 I/O 引脚的内部阻抗。支持固定 40 欧、50 欧和 60 欧。

Procise 软件支持的 IN TERM 值为:

- ° UNTUNED SPLIT 40
- ° UNTUNED SPLIT 50
- ° UNTUNED SPLIT 60

IN TERM 约束示例:

set property IN TERM UNTUNED SPLIT 40 [get ports IN]

5.1.6 DIFF_TERM

设置 I/O 引脚的内置差分电阻(100 欧)。

Procise 软件支持的 DIFF TERM 值为 < TRUE | FALSE>, 默认为 FALSE

设置该约束的前提是 I/O 引脚的电气标准必须为以下几种:

- °LVDS, LVDS_25, MINI_LVDS_25
- ° PPDS 25
- ° RSDS 25

DIFF TERM 约束示例:

set property DIFF TERM TRUE [get ports IN]

5.1.7 PULLTYPE

设置 I/O 引脚的弱上拉/弱下拉/弱保持电阻。

Procise 软件支持的 PULLTYPE 值为 < PULLUP | PULLDOWN | KEEPER> PULLTYPE 约束示例:

set_property PULLTYPE PULLUP [get_ports IN]

5.1.8 VCCAUX_IO

设置 VCCAUX IO 管脚的工作电压。

在一个 bank 中,如果 VCCAUX_IO 管脚供电为 2.0V,则在该 bank 至少一个 I/O 管脚将 VCCAUX_IO 属性约束为 HIGH,其他所有 I/O 可以约束为 HIGH 或者 DONTCARE。

Procise 软件支持的 VCCAUX_IO 值为 < DONTCARE | NORMAL | HIGH> VCCAUX IO 约束示例:

set property VCCAUX IO HIGH [get ports IN]

5.1.9 DCI_CASCADE

设置高速(HP)I/O banks 之间的主从(master-slave)关系。

DCI CASCADE 约束格式为:

set property DCI CASCADE {slave banks} [get iobanks master bank]

DCI_CASCADE 约束示例:

```
set property DCI CASCADE {15 16} [get iobanks 14]
```

5.1.10 INTERNAL_VREF

设置 I/O bank 的内部参考电压值。

Procise 软件支持的 INTERNAL VREF 值为: 0.6, 0.675, 0.75, 0.9

INTERNAL VREF 约束示例:

```
set property INTERNAL VREF 0.75 [get ports IN]
```

5.1.11 IODELAY_GROUP

当存在多个 IDELAYCTRL 单元时,用户可以将 IDELAYCTRL 单元和它关联的 IDELAY 单元、ODELAY 单元放到一个群组(IODELAY_GROUP)中。以便于 Procise 的布局工具能合理布局这些单元。

IODELAY GROUP 约束示例:

```
set_property IODELAY_GROUP GRP1 [get_cells MY_IDELAYCTRL_inst]
set_property IODELAY_GROUP GRP1 [get_cells MY_IDELAY_inst]
set_property IODELAY_GROUP GRP1 [get_cells MY_ODELAY_inst]
```

5.1.12 IOBDELAY

IOBDELAY 约束决定了在处理系统同步输入数据时,hold 分析时是否考虑 ILOGIC 块的延时。

该约束作用的对象可以是 cell, net, port。其取值有 4 种:

NONE:不计算 IBUF 的延时,不计算 IFD 的延时.

IBUF: 计算 IBUF 的延时,不计算 IFD 的延时.

IFD:不计算 IBUF 的延时,计算 IFD 的延时.

BOTH: 计算 IBUF 的延时, 计算 IFD 的延时.

IOBDELAY 约束示例:

```
set_property IOBDELAY BOTH [get_cells my_cell]
set_property IOBDELAY NONE [get_ports my_port]
set_property IOBDELAY NONE [get_nets my_net]
```

5.2 布局约束

用户可以给任意逻辑单元(Cell)加布局约束。

Procise 软件支持的布局约束如下:

5.2.1 LOC

指定逻辑单元在器件上的 site 位置。

LOC 约束示例:

```
set property LOC LC X0Y0 [get cells u ctrl0/lut1]
```

5.2.2 BEL

指定逻辑单元在器件上的 BEL 位置。

LOC 约束示例:

```
set property BEL CLUT5 [get cells u ctrl0/lut1]
```

建议 BEL 和 LOC 一起使用,不要单独使用 BEL 约束。

5.3 配置约束

5.3.1 PROHIBIT

指定器件上的 SITE 或 BEL 不允许使用。

PROHIBIT 约束示例:

```
set property PROHIBIT TRUE [get sites LC X1Y32]
```


5.3.2 CLOCK_DEDICATED_ROUTE

该约束用来指导软件是否遵循时钟配置规则。

Procise 软件支持的 CLOCK_DEDECATED_ROUTE 值为 <TRUE | FALSE> 默认取值为 TRUE。

如果由普通的 IO 管脚驱动全局时钟资源,则需设置为 FALSE。

CLOCK_DEDECATED_ROUTE 约束示例:

set property CLOCK DEDICATED ROUTE FALSE [get nets net1]