Advanced Optimization Methods - Single-state methods

❖ Objective function:

min.
$$f(x1, x2) = (3x_1 + 14x_2 - 17)^2 + (6x_1 + 7x_2 - 19)^2, -6 \le x_1 \le 6$$
 and $-6 \le x_2 \le 6$.

Optimization methods: Single-state methods

- > 1. Exhaustive Enumeration
- > 2. Random methods
 - A. Random jump
 - B. Random walk
- > 3. Gradient-based methods
 - A. Steepest Gradient Descent (SGD)
 - B. Newton's method
 - C. Marquardt's method
- > 4. Stochastic Local Search methods
 - A. Iterated Local Search (ILS) method
 - B. Simulated Annealing (SA) method
 - C. Tabu Search (TS) method

Input (Initial settings) & Output

1. Exhaustive Enumeration

Input:

Grid interval: 0.01

Output:

Optimal point: (2.3269, 0.7156)

Optimum: 0.000853

Number of iterations: 7215

2. Random methods

A. Random jump

Input:

Expected optimal point: (2.33, 0.72) # Exhaustive Enumeration

Tolerate error: 0.05

Random seed: 1

Random interval: 20

Grid size scale: 1/3

Jump times per grid: 20

Output:

Optimal point: (2.3433, 0.7207)

Optimum: 0.025215

Number of iterations: 320

Number of used random seeds: 640

B. Random walk

B.1 Random walk 1 - decaying lambda

Input:

Initial point: (0, 0)

Number of iterations per random seed: 100

Number of random seeds: 5

Random seed: 0
Random interval: 1

Lambda: 1 Epsilon: 0.05

Output:

Optimal point: (0.3318, 1.4628)

Optimum: 65.849032

Number of iterations: 1000

Number of used random seeds: 1000

B.2 Random walk 2 - optimal lambda

Input:

Initial point: (0, 0)

Number of iterations per random seed: 100

Number of random seeds: 5

Random seed: 0

Random interval: 1

Lambda: 1

Epsilon: 0.05

Number of iterations: 1000

Output:

Optimal point: (0.3246, 1.431)

Optimum: 65.558849

Number of iterations: 1000

Number of used random seeds: 1000

3. Gradient-based methods

A. Steepest Gradient Descent (SGD)

Input:

Initial point: (0, 0)

Epsilon: 0.01

Output:

Optimal point: (2.3333, 0.7143)

Optimum: 0.0

Number of iterations: 10

B. Newton's Method

Input:

Initial point: (0, 0)

Epsilon: 0.01

Output:

Optimal point: (2.3333, 0.7143)

Optimum: 0.0

Number of iterations: 2

C. Marquardt's Method

Input:

Initial point: (0, 0)

Epsilon: 0.01

alpha = 10000

c1 = 0.25

c2 = 2

Output:

Optimal point: (2.3333, 0.7143)

Optimum: 0.0

Number of iterations: 9

4. Stochastic Local Search Methods

A. Iterated Local Search (ILS) method

Input:

Initial point: (0, 0) Random seed: 1

Random interval: 20

Alpha: 1

Scale: 0.999

Ratio: 0.8

Number of iterations: 500

Number of search: 20

Output:

Optimal point: (2.3422, 0.7095)

Optimum: 0.002006

Number of iterations: 500

B. Simulated Annealing (SA) method

Input:

Initial point: (0, 0)

Random seed: 1

Random interval: 20

Alpha: 1

Scale: 0.999

Ratio: 0.8

Number of iterations: 500

Number of initial seeds: 5

Temperature reduction factor: 0.5

Output:

Optimal point: (2.3374, 0.7068)

Optimum: 0.009437

Number of iterations: 500

C. Tabu Search (TS) method

Input:

Initial point: (0, 0) Random seed: 1

Random interval: 20

Alpha: 1

Scale: 0.999

Ratio: 0.8

Number of iterations: 500 Number of initial seeds: 5

Temperature reduction factor: 0.5

Maximal size of tabu list: 7

Neighborhood size: 20

Output:

Optimal point: (2.3335, 0.7141)

Optimum: 0.000002

Number of iterations: 500

* Comparison of results I. Effectiveness & Efficiency

Method	Optimal point	Optimum	Number of iterations
1. Basic method			
Exhaustive Enumeration	(2.3269, 0.7156)	0.000853	7215
2. Random methods			
Random Jump	(2.3433, 0.7207)	0.025215	320 (num of random seeds = 640)
Random Walk - decaying lambda	(0.3318, 1.4628)*	65.849032*	1000
Random Walk - optimal lambda	(0.3246, 1.4310)*	65.558849*	1000
3. Gradient-based metho	ds		
Steepest Gradient Descent (SGD)	(2.3333, 0.7143)	0.0	10
Newton's method	(2.3333, 0.7143)	0.0	2
Marquardt's method	(2.3333, 0.7143)	0.0	9
4. Stochastic Local Sear	ch methods		
Iterated Local Search (ILS) method	(2.3422, 0.7095)	0.002006	500
Simulated Annealing (SA) method	(2.3374, 0.7068)	0.009437	500
Tabu Search (TS) method	(2.3335, 0.7141)	0.000002	500

^{*}Trapped into the local minimum.

^{*}ILS based on the perturbation scheme can be regarded as the improved version of Random Walk.

❖ Comparison of results II. Pros & Cons

Method	Pros & Cons		
1. Basic methods			
Exhaustive Enumeration	Pros - Simple & intrinsic Cons - Grid search - High complexity - O(#grids^2)		
2. Random methods			
Random Jump	Pros - Lower complexity by random sampling Cons - Result is determined by chosen seeds - Expected optimum should be first known for stopping criterion		
Random Walk - decaying lambda	Pros - Lower complexity by random sampling Cons - Result is determined by the <i>initial point</i> - Each step is based on the previous step (<i>local minimum</i> - more significant than the gradient-based methods due to the randomness)		
Random Walk - optimal lambda	Pros - Lower complexity by random sampling Cons - Result is determined by the initial point - Each step is based on the previous step (local minimum - more significant than the gradient-based methods due to the randomness)		
3. Gradient-based methods			
Steepest Gradient Descent (SGD)	Pros - Fast & effective Cons - The gradients or Hessian matrix (Jacobian) should be known		

Newton's method Marquardt's method	- Each step is based on the previous step (<i>local minimum</i> - not that significant as Random Walk due to the criterion - the steepest direction) - <i>Greedy search</i>		
4. Stochastic Local Search methods			
Iterated Local Search (ILS) method	Pros - Alleviation of the local minimum problem (vs. Random Walk & Gradient-based methods) Cons - Perturbation scheme (local search) design		
Simulated Annealing (SA) method	Pros - Alleviation of the local minimum problem (vs. Random Walk & Gradient-based methods) Cons - Perturbation scheme (local search) design - Temperature reduction mechanism design		
Tabu Search (TS) method	Pros - Alleviation of the local minimum problem (vs. Random Walk & Gradient-based methods) Cons - Perturbation scheme (local search) design - Temperature reduction mechanism design - Tabu list design		