

Introduction data source

Introduction Intersections distribution

Introduction data Volume

What do we aim to find out? How Does Traffic Flow Change in 24 hours of the day concerning each season of the year? Time Series Visualization What are The traffic flow trends in 24 hours of the day concerning each day of week? Research Questions At which hours of the day do peaks and valleys happen in traffic flow? Which intersections have similar behaviors? Intersection Clustering

Analysis Process PHASE 5 Time Series Clustering PHASE 4 Time Series Visualization PHASE 3 Traffic Values and Time Aggregation PHASE 2 Handling Missing Values PHASE 1 Data Cleaning and Intersection Separation

Comparison to Related Works

Quarterly Visualization Results

Quarterly Visualization Results

Quarterly Visualization Results

Week Days Visualization Result

Clustering Process

Algorithm

Finding the best algorithm for our problem

The Optimum k

Choosing the optimum number of clusters

Clusters Visualization

Visualizing each cluster to obtain patterns

Analysis

How intersections are separated and why?

The Optimum k

Optimum number of clusters is choosed via "The Elbow Method" that tries to minimize WCSS. This Algorithm resulted in k=5

Clusters Visualization

Cluster	Color on Map	Functionality
1	Green	North-South Connection/Transportation
2	Black	Out-of-City Transportation
3	Blue	Main Business/Entertainment Centers
4	Yellow	Out-of-City Transportation
5	Purple	Riverside Transportation

References

- W. Chen, F. Guo, and F. Y. Wang, "A Survey of Traffic Data Visualization," *IEEE Trans. Intell. Transp. Syst.*, vol. 16, no. 6, pp. 2970–2984, 2015, doi: 10.1109/TITS.2015.2436897.
- N. Hayashi and Y. Shiraishi, "A method for summarizing and visualizing city traffic data," 2014 7th Int. Conf. Mob. Comput. Ubiquitous Networking, ICMU 2014, pp. 165–170, 2014, doi: 10.1109/ICMU.2014.6799089.
- T. Tsuboi, "Traffic congestion visualization by traffic parameters in India," *Int. Conf. Innov. Comput. Commun.*, pp. 371–380, 2020.
- Z. Zamani, M. Pourmand, and M. H. Saraee, Application of Data Mining in Traffic Management: Case of City of Isfahan.
- H. Zhang, Y. Zhang, Z. Li, and D. Hu, "Spatial Temporal Traffic Data Analysis Based on Global Data Management Using MAS," *Ieee Trans. Intell. Transp. Syst.*, vol. 5, no. 4, pp. 267–275, 2004.
- C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko, "Stacking-based visualization of trajectory attribute data," *IEEE Trans. Vis. Comput. Graph.*, vol. 18, no. 12, pp. 2565–2574, 2012, doi: 10.1109/TVCG.2012.265.
- M. Picozzi, N. Verdezoto, M. Pouke, J. Vatjus-Anttila, and A. Quigley, "Traffic visualization: Applying information visualization techniques to enhance traffic planning," *GRAPP 2013 IVAPP 2013 Proc. Int. Conf. Comput. Graph. Theory Appl. Int. Conf. Inf. Vis. Theory Appl.*, pp. 554–557, 2013, doi: 10.5220/0004291605540557.
- J. Pu, S. Liu, Y. Ding, H. Qu, and L. Ni, "T-watcher: A new visual analytic system for effective traffic surveillance," *Proc. IEEE Int. Conf. Mob. Data Manag.*, vol. 1, pp. 127–136, 2013, doi: 10.1109/MDM.2013.23.
- L. Po, F. Rollo, C. Bachechi, and A. Corni, "From sensors data to urban traffic flow analysis," *5th IEEE Int. Smart Cities Conf. ISC2 2019*, pp. 478–485, 2019, doi: 10.1109/ISC246665.2019.9071639.

