

Capstone Project

Bike Sharing Demand Prediction By Anurag Taiskar

Problem statement

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes.

Index

Discussion points

- Data description
- Exploratory data analysis
- Correlation Analysis
- Multicollinearity Detection
- ☐ All models Evaluation Metrics
- Model Selection
- Conclusion

hutterstock.com - 1616400925

Data Description

- Date: year-month-day
- Rented Bike count -Count of bikes rented at each hour
- Hour -Hour of he day
- Temperature-Temperature in Celsius
- Humidity -%
- Wind speed -m/s
- Visibility -10m
- Dew point temperature Celsius
- Solar radiation -MJ/m2
- Rainfall -mm
- Snowfall -cm
- Seasons Winter, Spring, Summer, Autumn
- Holiday -Holiday/No holiday
- Functional Day -NoFunc(Non Functional Hours), Fun(Functional hours)

Data Overview

There are 8760 observation

There are 14 feature variable

There is no null values

Rented Bike Count is the target variable

```
# Dataset Info
bike.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8760 entries, 0 to 8759
Data columns (total 14 columns):
    Column
                            Non-Null Count
                                            Dtype
                                            object
    Date
                            8760 non-null
    Rented Bike Count
                                            int64
                            8760 non-null
    Hour
                            8760 non-null
                                            int64
                            8760 non-null
                                            float64
    Temperature
    Humidity
                            8760 non-null
                                            int64
    Wind speed
                            8760 non-null
                                            float64
    Visibility
                                            int64
                            8760 non-null
    Dew point temperature
                            8760 non-null
                                            float64
    Solar Radiation
                                            float64
                            8760 non-null
    Rainfall
                                            float64
                            8760 non-null
    Snowfall
                                            float64
                            8760 non-null
                                            object
    Seasons
                            8760 non-null
    Holiday
                            8760 non-null
                                            object
 13 Functioning Day
                            8760 non-null
                                            object
dtypes: float64(6), int64(4), object(4)
memory usage: 958.2+ KB
```


EDA

Values Counts on Seasons

Value Counts on Holiday

Values Counts on Functioning Day

Values Counts on Weekdays

Target Variable Distribution

Rented Bike on Seasons wise

Rented Bike on Holiday wise

Rented Bike on Different Days

Rented Bike Demand on Hourly Basis Vs Holiday wise

Rented Bike Demand on Hourly Basis Vs Weekdays

Al

Rented Bike Demand on Hourly Basis Vs Seasons

Rented Bike Demand on Hourly Basis Vs Weekend

ΑI

Rented Bike Demand on Hourly Basis Vs Months

Rented_Bike_Count	1	0.41	0.54	0.2	0.12	0.2	0.38	0.26	0.12	0.14	0.071	0.047	0.032	
Hour -	0.41	1	0.12	0.24	0.29	0.099	0.0031	0.15	0.0087	0.022	le-15	4.2e-16	2.3e-17	
Temperature -	0.54	0.12	1	0.16	0.036	0.035	0.91	0.35	0.05		0.05	0.081	0.013	
Humidity -		0.24	0.16	1	0.34	0.54	0.54	0.46	0.24	0.11	0.048	0.007	0.037	
Wind_speed	0.12	0.29	0.036	0.34	1	0.17	0.18	0.33	0.02	0.0036	0.082	0.061	0.022	
Visibility -	0.2	0.099	0.035	0.54	0.17	1	0.18	0.15	0.17	0.12	0.078	0.11	0.031	
Dew_point_temperature	0.38	0.0031	0.91	0.54	0.18	0.18	1	0.094	0.13	0.15	0.065	0.07	0.029	
Solar_Radiation -	0.26	0.15	0.35	0.46	0.33	0.15	0.094	1	0.074	0.072	0.03	0.0034	0.0083	
Rainfall -	0.12	0.0087	0.05	0.24	0.02		0.13	0.074	1	0.0085	0.023	0.012	0.014	П
Snowfall -	0.14	0.022	0.22	0.11	0.0036	0.12	0.15	0.072	0.0085	1	0.055	0.1	0.023	
month -	0.071	1e-15	0.05	0.048	0.082	0.078	0.065	0.03	0.023	0.055	1	0.012	0.0092	
day -	0.047	4.2e-16	0.081	0.007	0.061	0.11	0.07	0.0034	0.012	0.1	0.012		0.011	
weekend -	0.032	2.3e-17	0.013	0.037	0.022	0.031	0.029	0.0083	0.014	0.023	0.0092	0.011	1	
	Bike_Count	Hour	emperature	Humidity	Mind_speed	Visibility	mperature	r_Radiation	Rainfall	Snowfall	month	day	weekend	

VIF Factor for Remove Multicollinearity

Sc
0

Algorithms for Machine Learning

- Linear Regression
- Lasso Regression
- Ridge Regression
- Elastic Net Regression
- Decision Tree Regressor
- Decision Tree Regressor (Hyper Parameter Tuning)
- Random Forest Regressor
- Random Forest Regressor (Hyper Parameter Tuning)
- XGB Regressor

Performance Matrix for Training Dataset

	Model	MAE	MSE	RMSE	R2_score
0	Linear Regression	5.8764	60.5631	7.7822	0.6108
1	Lasso Regression	5.8916	60.7245	7.7926	0.6098
2	Ridge Regression	5.8774	60.5640	7.7823	0.6108
3	ElasticNet Regression	5.9144	61.1002	7.8167	0.6073
4	Decision Tree Regression	2.8591	18.1307	4.2580	0.8835
5	Decision Tree Regression(Hyper Tuning)	2.8591	18.1307	4.2580	0.8835
6	Random Forest Regression	0.8783	1.8861	1.3733	0.9879
7	Random Forest Regression(Hyper Tuning)	2.6034	14.5180	3.8102	0.9067
8	Xgb Regression	3.1336	19.9235	4.4636	0.8720

Performance Matrix for Training Dataset

	Model	MAE	MSE	RMSE	R2_score
0	Linear Regression	5.7825	57.4847	7.5819	0.6247
1	Lasso Regression	5.8016	58.0120	7.6166	0.6213
2	Ridge Regression	5.7836	57.5201	7.5842	0.6245
3	ElasticNet Regression	5.8247	58.7112	7.6623	0.6167
4	Decision Tree Regression	3.3791	23.9906	4.8980	0.8434
5	Decision Tree Regression(Hyper Tuning)	3.3836	24.0634	4.9054	0.8429
6	Random Forest Regression	2.3530	13.7106	3.7028	0.9105
7	Random Forest Regression(Hyper Tuning)	2.9873	19.3790	4.4022	0.8735
8	Xgb Regrssion	3.2462	21.2370	4.6084	0.8614

Feature Importance On Random Forest

Regression

Report

Dep. Variable:	Rented_B	ike_Count	R-squared (0.916				
Model:		OLS	Adj. R-squa	Adj. R-squared (uncentered):				
Method:		t Squares	F-statistic	6307. 0.00 -30612. 6.125e+04				
Date:	Wed, 01	Feb 2023	Prob (F-sta					
Time:		03:14:02	Log-Likelih					
No. Observations:		8760	AIC:					
Df Residuals:		8746	BIC:			6.135e+0		
Df Model:		14						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
Hour	0.5504	0.013	41.765	0.000	0.525	0.576		
Temperature	0.2762	0.015	18.517	0.000	0.247	0.305		
Wind speed	0.0195	0.091	0.214	0.831	-0.159	0.198		
Solar_Radiation	1.3851	0.115	12.012	0.000	1.159	1.611		
Rainfall	-2.1000	0.076	-27.588	0.000	-2.249	-1.951		
Snowfall	-1.0854	0.204	-5.333	0.000	-1.484	-0.686		
Holiday	-2.7992	0.398	-7.034	0.000	-3.579	-2.019		
Functioning_Day	20.6356	0.346	59.560	0.000	19.956	21.315		
month	-0.1814	0.025	-7.293	0.000	-0.230	-0.133		
day	-0.0388	0.010	-4.017	0.000	-0.058	-0.020		
weekend	-1.0568	0.187	-5.659	0.000	-1.423	-0.691		
Seasons_Spring	-4.7452	0.262	-18.126	0.000	-5.258	-4.232		
Seasons_Summer	-2.5191	0.314	-8.020	0.000	-3.135	-1.903		
Seasons_Winter	-10.0377	0.350	-28.668	0.000	-10.724	-9.351		
mnibus: 171.376		===== Durbin-Wats	======= on:	·	0.508			
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	305.142			
Skew:		0.150	Prob(JB):		5.48e-67			
Kurtosis:		3.864	Cond. No.		145.			

Model Report

Linear Regression, Lasso Regression, Ridge Regression, Elastic Net Regression performance is almost same on both training data and test data which is likely 60% but this is not sufficient

Decision Tree performance is around 90% on training data and 85% on test data in both case before tuning and after tuning

Xtreme Gradient Boosting performance is good but the test accuracy is not much as compare to Random Forest

Random Forest performance is very good on training data that means it tends to overfit on training data but also his test accuracy is very good which is highest in all comparison. But after tuning the hyper parameter its performance goes down

Default Values of Random Forest algorithm is performing very good with 98% accuracy on training data and 91% accuracy on test data So i choose Random Forest for this dataset

Conclusion

- People prefer Bike in slightly High temperature
- Around 8 AM at morning and 6 PM at evening people demand bike which is obviously due to office hours
- Bike Demand is higher in Weekdays as comparison to Weekdays
- Bike demand is very less on Holidays because all wants to enjoy the holiday
- Bike Demand goes high on Summer season and very less in winter season
- Random Forest Regressor algorithm with default parameter gives accuracy of 98% on training data and 91% on test data which is highest in all the algorithms So Random Forest Regressor
- Is the best Algorithm to predict Bike Demand in Future

THANK YOU