ML0101EN-Proj-Loan-py-v1

January 25, 2023

Classification with Python

In this notebook we try to practice all the classification algorithms that we have learned in this course.

We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods.

Let's first load required libraries:

```
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
```

```
[4]: #notice: Disable all warnings
import warnings
warnings.filterwarnings('ignore')
```

0.0.1 About dataset

This dataset is about past loans. The **Loan_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Field	Description					
Loan_status	Whether a loan is paid off on in collection					
Principal	Basic principal loan amount at the					
Terms	Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule					
T	~ · · · · · · · · · · · · · · · · · · ·					
Effective_date	When the loan got originated and took effects					
Due_date	Since it's one-time payoff schedule, each loan has one single due date					
Age	Age of applicant					
Education	Education of applicant					
Gender	The gender of applicant					

Let's download the dataset

```
[5]: | wget -0 loan_train.csv https://cf-courses-data.s3.us.cloud-object-storage.
      -appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/
      ⇒FinalModule_Coursera/data/loan_train.csv
    --2023-01-25 05:46:57-- https://cf-courses-data.s3.us.cloud-object-
    storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-
    SkillsNetwork/labs/FinalModule_Coursera/data/loan_train.csv
    Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-
    courses-data.s3.us.cloud-object-storage.appdomain.cloud)... 169.63.118.104
    Connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-
    courses-data.s3.us.cloud-object-storage.appdomain.cloud)|169.63.118.104|:443...
    connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 23101 (23K) [text/csv]
    Saving to: 'loan_train.csv'
    loan_train.csv
                       in 0.001s
    2023-01-25 05:46:57 (26.4 MB/s) - 'loan_train.csv' saved [23101/23101]
    0.0.2 Load Data From CSV File
```

	= pd.read_ .head()	csv('	loan_train	n.csv')				
6]:	Unnamed: 0	Unn	amed: 0.1	loan_status	Principal	terms	effective_date	\
0	0		0	PAIDOFF	1000	30	9/8/2016	
1	2		2	PAIDOFF	1000	30	9/8/2016	
2	3		3	PAIDOFF	1000	15	9/8/2016	
3	4		4	PAIDOFF	1000	30	9/9/2016	
4	6		6	PAIDOFF	1000	30	9/9/2016	
	due_date	age		education	Gender			
0	10/7/2016	45	High Scho	ool or Below	male			
1	10/7/2016	33		Bechalor	female			
2	9/22/2016	27		college	male			
3	10/8/2016	28		college	female			
4	10/8/2016	29		college	male			

[7]: df.shape

[7]: (346, 10)

0.0.3 Convert to date time object

```
[8]: df['due_date'] = pd.to_datetime(df['due_date'])
    df['effective_date'] = pd.to_datetime(df['effective_date'])
    df.head()
```

[8]:	Unnamed: 0	Unnamed:	0.1	loan_status	Principal	terms	effective_date	\
0	C)	0	PAIDOFF	1000	30	2016-09-08	
1	2	!	2	PAIDOFF	1000	30	2016-09-08	
2	3	;	3	PAIDOFF	1000	15	2016-09-08	
3	4	:	4	PAIDOFF	1000	30	2016-09-09	
4	ϵ	;	6	PAIDOFF	1000	30	2016-09-09	

	due_date	age	education	Gender
0	2016-10-07	45	High School or Below	male
1	2016-10-07	33	Bechalor	female
2	2016-09-22	27	college	male
3	2016-10-08	28	college	female
4	2016-10-08	29	college	male

1 Data visualization and pre-processing

Let's see how many of each class is in our data set

```
[9]: df['loan_status'].value_counts()
```

[9]: PAIDOFF 260 COLLECTION 86

Name: loan_status, dtype: int64

260 people have paid off the loan on time while 86 have gone into collection

Let's plot some columns to underestand data better:

```
Requirement already satisfied: seaborn in
```

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (0.9.0)

Requirement already satisfied: scipy>=0.14.0 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from seaborn) (1.7.3)

Requirement already satisfied: pandas>=0.15.2 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from seaborn) (1.3.5)

Requirement already satisfied: matplotlib>=1.4.3 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from seaborn) (3.5.3)

```
Requirement already satisfied: numpy>=1.9.3 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from seaborn)
     (1.21.6)
     Requirement already satisfied: python-dateutil>=2.7 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (2.8.2)
     Requirement already satisfied: packaging>=20.0 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (21.3)
     Requirement already satisfied: cycler>=0.10 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (0.11.0)
     Requirement already satisfied: pyparsing>=2.2.1 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (3.0.9)
     Requirement already satisfied: pillow>=6.2.0 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (8.1.0)
     Requirement already satisfied: kiwisolver>=1.0.1 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (1.4.4)
     Requirement already satisfied: fonttools>=4.22.0 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     matplotlib>=1.4.3->seaborn) (4.38.0)
     Requirement already satisfied: pytz>=2017.3 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     pandas>=0.15.2->seaborn) (2022.6)
     Requirement already satisfied: typing-extensions in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
     kiwisolver>=1.0.1->matplotlib>=1.4.3->seaborn) (4.4.0)
     Requirement already satisfied: six>=1.5 in
     /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from python-
     dateutil>=2.7->matplotlib>=1.4.3->seaborn) (1.16.0)
[11]: import seaborn as sns
      bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
      g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", __

col wrap=2)
      g.map(plt.hist, 'Principal', bins=bins, ec="k")
      g.axes[-1].legend()
      plt.show()
```


2 Pre-processing: Feature selection/extraction

2.0.1 Let's look at the day of the week people get the loan

We see that people who get the loan at the end of the week don't pay it off, so let's use Feature binarization to set a threshold value less than day 4

```
[14]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
df.head()
```

0 Unnamed:	0.1	loan_status	Principal	terms	effective_date	\
0	0	PAIDOFF	1000	30	2016-09-08	
2	2	PAIDOFF	1000	30	2016-09-08	
3	3	PAIDOFF	1000	15	2016-09-08	
4	4	PAIDOFF	1000	30	2016-09-09	
6	6	PAIDOFF	1000	30	2016-09-09	
	0 2 3 4	0 0 2 2 3 3 4 4 6 6	0 0 PAIDOFF 2 2 PAIDOFF 3 3 PAIDOFF 4 4 PAIDOFF 6 6 PAIDOFF	0 0 PAIDOFF 1000 2 2 PAIDOFF 1000 3 3 PAIDOFF 1000 4 4 PAIDOFF 1000 6 6 PAIDOFF 1000	0 0 PAIDOFF 1000 30 2 2 PAIDOFF 1000 30 3 3 PAIDOFF 1000 15 4 4 PAIDOFF 1000 30 6 6 PAIDOFF 1000 30	0 0 PAIDOFF 1000 30 2016-09-08 2 2 PAIDOFF 1000 30 2016-09-08 3 3 PAIDOFF 1000 15 2016-09-08 4 4 PAIDOFF 1000 30 2016-09-09 6 6 PAIDOFF 1000 30 2016-09-09

	due_date	age		education	Gender	dayofweek	weekend
0 20	16-10-07	45	High Schoo	l or Below	male	3	0
1 20	16-10-07	33		Bechalor	female	3	0
2 20	16-09-22	27		college	male	3	0

3 2016-10-08	28	college	female	4	1
4 2016-10-08	29	college	male	4	1

2.1 Convert Categorical features to numerical values

Let's look at gender:

```
[15]: df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)
```

[15]: Gender loan_status

 female
 PAIDOFF
 0.865385

 COLLECTION
 0.134615

 male
 PAIDOFF
 0.731293

 COLLECTION
 0.268707

Name: loan_status, dtype: float64

86 % of female pay there loans while only 73 % of males pay there loan

Let's convert male to 0 and female to 1:

```
[16]: df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)
    df.head()
```

[16]:	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	\
0	0	0	PAIDOFF	1000	30	2016-09-08	
1	2	2	PAIDOFF	1000	30	2016-09-08	
2	3	3	PAIDOFF	1000	15	2016-09-08	
3	4	4	PAIDOFF	1000	30	2016-09-09	
4	6	6	₽≬TDOFF	1000	30	2016-09-09	

	aue_aate	age	education	Gender	aayorweek	weekend
0	2016-10-07	45	High School or Below	0	3	0
1	2016-10-07	33	Bechalor	1	3	0
2	2016-09-22	27	college	0	3	0
3	2016-10-08	28	college	1	4	1
4	2016-10-08	29	college	0	4	1

2.2 One Hot Encoding

How about education?

```
[17]: df.groupby(['education'])['loan_status'].value_counts(normalize=True)
```

PAIDOFF 0.500000 college PAIDOFF 0.765101 COLLECTION 0.234899

Name: loan_status, dtype: float64

Features before One Hot Encoding

```
[18]: df[['Principal','terms','age','Gender','education']].head()
```

education	Gender	age	terms	Principal	[18]:
High School or Below	0	45	30	1000	0
Bechalor	1	33	30	1000	1
college	0	27	15	1000	2
college	1	28	30	1000	3
college	0	29	30	1000	4

Use one hot encoding technique to conver categorical variables to binary variables and append them to the feature Data Frame

```
[19]: Feature = df[['Principal','terms','age','Gender','weekend']]
   Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
   Feature.drop(['Master or Above'], axis = 1,inplace=True)
   Feature.head()
```

[19]:	Principal	terms	age	Gender	weekend	Bechalor	High School	or Below	\
0	1000	30	45	0	0	0		1	
1	1000	30	33	1	0	1		0	
2	1000	15	27	0	0	0		0	
3	1000	30	28	1	1	0		0	
4	1000	30	29	0	1	0		0	

2.2.1 Feature Selection

Let's define feature sets, X:

```
[20]: X = Feature
X[0:5]
```

```
[20]:
                                                   Bechalor High School or Below \
         Principal
                    terms
                            age
                                 Gender
                                         weekend
              1000
      0
                        30
                             45
                                      0
                                                0
                                                          0
                                                                                  1
              1000
                                      1
      1
                        30
                             33
                                                0
                                                          1
                                                                                  0
```

2 3 4	1000 1000 1000	15 30 30	27 28 29	0 1 0	0 1 1	0 0 0	0 0 0
	college						
0	0						
1	0						
2	1						
3	1						

What are our lables?

1

4

```
[21]: y = df['loan_status'].values
y[0:5]
```

2.3 Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

```
[22]: X= preprocessing.StandardScaler().fit(X).transform(X)
    X[0:5]
```

```
[22]: array([[ 0.51578458,  0.92071769,  2.33152555, -0.42056004, -1.20577805,  -0.38170062,  1.13639374, -0.86968108],  [ 0.51578458,  0.92071769,  0.34170148,  2.37778177, -1.20577805,  2.61985426, -0.87997669, -0.86968108],  [ 0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,  -0.38170062, -0.87997669,  1.14984679],  [ 0.51578458,  0.92071769, -0.48739188,  2.37778177,  0.82934003,  -0.38170062, -0.87997669,  1.14984679],  [ 0.51578458,  0.92071769, -0.3215732, -0.42056004,  0.82934003,  -0.38170062, -0.87997669,  1.14984679]])
```

3 Classification

Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the accuracy of the model You should use the following algorithm:

- K Nearest Neighbor(KNN)
- Decision Tree
- Support Vector Machine
- Logistic Regression

Notice:

- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.
- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.
- You should include the code of the algorithm in the following cells.

Train set: (276, 8) (276,) Test set: (70, 8) (70,)

$4 ext{ K Nearest Neighbor(KNN)}$

Notice: You should find the best k to build the model with the best accuracy.

warning: You should not use the loan_test.csv for finding the best k, however, you can split your train loan.csv into train and test to find the best k.

```
[29]: from sklearn.neighbors import KNeighborsClassifier
    k = 3
    #Train Model and Predict
    kNN_model = KNeighborsClassifier(n_neighbors=k).fit(X_train,y_train)
    kNN_model
```

```
[29]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=3, p=2, weights='uniform')
```

```
[30]: yhat = kNN_model.predict(X_test)
yhat[0:5]
```

```
[31]: # Best k
Ks=15
mean_acc=np.zeros((Ks-1))
std_acc=np.zeros((Ks-1))
ConfustionMx=[];
for n in range(1,Ks):
#Train Model and Predict
```

```
kNN_model = KNeighborsClassifier(n_neighbors=n).fit(X_train,y_train)
          yhat = kNN_model.predict(X_test)
          mean_acc[n-1]=np.mean(yhat==y_test);
          std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0])
      mean_acc
[31]: array([0.67142857, 0.65714286, 0.71428571, 0.68571429, 0.75714286,
             0.71428571, 0.78571429, 0.75714286, 0.75714286, 0.67142857,
                      , 0.72857143, 0.7
                                                           1)
                                              , 0.7
[32]: # Building the model again, using k=7
      from sklearn.neighbors import KNeighborsClassifier
      k = 7
      #Train Model and Predict
      kNN_model = KNeighborsClassifier(n_neighbors=k).fit(X_train,y_train)
      kNN model
[32]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                metric params=None, n jobs=None, n neighbors=7, p=2,
                 weights='uniform')
     5 Decision Tree
[33]: from sklearn.tree import DecisionTreeClassifier
      DT_model = DecisionTreeClassifier(criterion="entropy", max_depth = 4)
      DT_model.fit(X_train,y_train)
      DT model
[33]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=4,
                 max_features=None, max_leaf_nodes=None,
                 min_impurity_decrease=0.0, min_impurity_split=None,
                 min_samples_leaf=1, min_samples_split=2,
                  min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                  splitter='best')
[34]: | yhat = DT_model.predict(X_test)
      yhat
[34]: array(['COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
             'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION',
             'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
             'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
             'PAIDOFF', 'COLLECTION', 'COLLECTION', 'COLLECTION', 'PAIDOFF',
```

```
'COLLECTION', 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
'COLLECTION', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION',
'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION',
'PAIDOFF', 'COLLECTION', 'PAIDOFF'], dtype=object)
```

6 Support Vector Machine

```
[36]: from sklearn import svm
     SVM model = svm.SVC()
     SVM_model.fit(X_train, y_train)
[36]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
       decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
       kernel='rbf', max_iter=-1, probability=False, random_state=None,
       shrinking=True, tol=0.001, verbose=False)
[37]: | yhat = SVM_model.predict(X_test)
     yhat
[37]: array(['COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'COLLECTION',
            'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'],
           dtype=object)
[]:
```

7 Logistic Regression

```
[38]: from sklearn.linear model import LogisticRegression
     LR_model = LogisticRegression(C=0.01).fit(X_train,y_train)
     LR model
[38]: LogisticRegression(C=0.01, class weight=None, dual=False, fit intercept=True,
               intercept_scaling=1, max_iter=100, multi_class='warn',
               n jobs=None, penalty='12', random state=None, solver='warn',
               tol=0.0001, verbose=0, warm_start=False)
[39]: | yhat = LR_model.predict(X_test)
     yhat
[39]: array(['COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'COLLECTION',
            'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION',
            'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
            'PAIDOFF', 'PAIDOFF'], dtype=object)
```

8 Model Evaluation using Test set

```
[41]: from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import f1_score from sklearn.metrics import log_loss
```

First, download and load the test set:

```
[42]: | wget -0 loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/
cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv
```

```
--2023-01-25 05:57:15-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv
Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.196
Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.196|:443... connected.
HTTP request sent, awaiting response... 200 OK
```

```
Length: 3642 (3.6K) [text/csv]
     Saving to: 'loan_test.csv'
                        100%[========>]
                                                     3.56K --.-KB/s
                                                                        in Os
     loan test.csv
     2023-01-25 05:57:15 (18.2 MB/s) - 'loan_test.csv' saved [3642/3642]
     8.0.1 Load Test set for evaluation
[43]: test df = pd.read csv('loan test.csv')
     test df.head()
[43]:
        Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \
                               1
                                     PAIDOFF
                                                   1000
                                                                     9/8/2016
                 1
                                                            30
                               5
                                                    300
                                                                     9/9/2016
     1
                 5
                                     PAIDOFF
                                                            7
     2
                21
                              21
                                     PAIDOFF
                                                   1000
                                                            30
                                                                    9/10/2016
     3
                24
                              24
                                                   1000
                                                            30
                                     PAIDOFF
                                                                    9/10/2016
     4
                35
                              35
                                     PAIDOFF
                                                    800
                                                            15
                                                                    9/11/2016
         due_date
                                   education Gender
                   age
     0 10/7/2016
                    50
                                    Bechalor female
     1 9/15/2016
                    35
                             Master or Above
                                                male
     2 10/9/2016
                    43 High School or Below female
     3 10/9/2016
                                     college
                    26
                                                male
     4 9/25/2016
                    29
                                    Bechalor
                                                male
[44]: ## Preprocessing
     test_df['due_date'] = pd.to_datetime(test_df['due_date'])
     test_df['effective_date'] = pd.to_datetime(test_df['effective_date'])
     test_df['dayofweek'] = test_df['effective_date'].dt.dayofweek
     test_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
     test_df['Gender'].replace(to_replace=['male', 'female'],__
      ⇔value=[0,1],inplace=True)
     test_Feature = test_df[['Principal','terms','age','Gender','weekend']]
     test_Feature = pd.concat([test_Feature,pd.get_dummies(test_df['education'])],__
     test_Feature.drop(['Master or Above'], axis = 1,inplace=True)
     test_X = preprocessing.StandardScaler().fit(test_Feature).
       test_X[0:5]
[44]: array([[ 0.49362588, 0.92844966, 3.05981865, 1.97714211, -1.30384048,
              2.39791576, -0.79772404, -0.86135677],
             [-3.56269116, -1.70427745, 0.53336288, -0.50578054, 0.76696499,
             -0.41702883, -0.79772404, -0.86135677],
```

[0.49362588, 0.92844966, 1.88080596, 1.97714211, 0.76696499,

```
-0.41702883, 1.25356634, -0.86135677],
             [0.49362588, 0.92844966, -0.98251057, -0.50578054, 0.76696499,
              -0.41702883, -0.79772404, 1.16095912],
             [-0.66532184, -0.78854628, -0.47721942, -0.50578054, 0.76696499,
              2.39791576, -0.79772404, -0.86135677]])
[45]: test_y = test_df['loan_status'].values
      test_y[0:5]
[45]: array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'],
            dtype=object)
[46]: knn_yhat = kNN_model.predict(test_X)
      print("KNN Jaccard index: %.2f" % jaccard_similarity_score(test_y, knn_yhat))
      print("KNN F1-score: %.2f" % f1_score(test_y, knn_yhat, average='weighted') )
     KNN Jaccard index: 0.67
     KNN F1-score: 0.63
[47]: DT_yhat = DT_model.predict(test_X)
      print("DT Jaccard index: %.2f" % jaccard_similarity_score(test_y, DT_yhat))
      print("DT F1-score: %.2f" % f1_score(test_y, DT_yhat, average='weighted') )
     DT Jaccard index: 0.72
     DT F1-score: 0.74
[48]: SVM_yhat = SVM_model.predict(test_X)
      print("SVM Jaccard index: %.2f" % jaccard_similarity_score(test_y, SVM_yhat))
      print("SVM F1-score: %.2f" % f1_score(test_y, SVM_yhat, average='weighted') )
     SVM Jaccard index: 0.80
     SVM F1-score: 0.76
[49]: LR_yhat = LR_model.predict(test_X)
      LR_yhat_prob = LR_model.predict_proba(test_X)
      print("LR Jaccard index: %.2f" % jaccard_similarity_score(test_y, LR_yhat))
      print("LR F1-score: %.2f" % f1_score(test_y, LR_yhat, average='weighted') )
      print("LR LogLoss: %.2f" % log_loss(test_y, LR_yhat_prob))
     LR Jaccard index: 0.74
     LR F1-score: 0.66
     LR LogLoss: 0.57
```

9 Report

You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm	Jaccard	F1-score	LogLoss
KNN	?	?	NA
Decision Tree	?	?	NA
SVM	?	?	NA
${\bf Logistic Regression}$?	?	?

Want to learn more?

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio

Thanks for completing this lesson!

Author: Saeed Aghabozorgi

Saeed Aghabozorgi, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients' ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

9.1 Change Log

Date (YYYY-		Changed	
MM-DD)	Versio	on By	Change Description
2020-10-27	2.1	Lakshmi Holla	Made changes in import statement due to updates in version of sklearn library
2020-08-27	2.0	Malika Singla	Added lab to GitLab

##

© IBM Corporation 2020. All rights reserved.