Code No: R201221

SET - 1

I B. Tech II Semester Regular/Supplementary Examinations, August-2022 DIGITAL LOGIC DESIGN

(CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit **All Questions Carry Equal Marks UNIT-I** 1 a) Convert the following (9M)i) 110001.1010010 into hexadecimal ii) $(AB)_{16} = ()_{10}$ iii) (1234)8 = ()2b) Explain the BCD, Excess 3, alphanumeric codes with examples. (5M)Or a) Represent the decimal number 4608 in (6M) i) BCD ii) Excess-3 code. b) Perform (-20)-(-10) in binary using the signed-2's complement and 1's (8M)complement. **UNIT-II** Simplify the Boolean expressions to minimum number of literals 3 (7M)i) A+B+A'B'C ii) AB + A (B + C) + B'(B+D)b) Simplify the Boolean expression using K-MAP (7M) $F(A,B,C,D) = \pi (3,5,6,7,11,13,14,15) + d(9,10,12)$ Or Reduce the expression $f(x,y,z,w) = \pi(0,2,7,8,9,10,11,15) + d(3,4)$ using K-Map. (7M) b) Prove that the sum of all minterms of Boolean function for three variables is 1. (7M) **UNIT-III** Design a binary full adder with two half adders and basic gates. 5 (7M)b) Given 32×8 ROM with enable input, Show the external connections necessary to (7M)construct a 128×8 ROM with 4 chips and a decoder. Write the functions of a decoder and multiplexer. (7M) b) Write the HDL model of a 4:16 decoder. (7M)

T	NI	Π	r_1	IV

		OMI-IV	
7	a)	Explain the Logic diagram of JK flip-flop? Draw the Truth table and Excitation Table.	(7M)
	b)	Convert a D flip flop into SR flip flop.	(7M)
		Or	
8	a)	Write the differences between Combinational & Sequential circuits.	(7M)
	b)	Convert a T flip flop to D flip flop.	(7M)
		UNIT-V	
9	a)	Explain synchronous and ripple counters compare their merits and demerits.	(7M)
	b)	With neat sketch explain a 4-bit bidirectional shift register.	(7M)
		Or	
10	a)	Design a modulo -13 up synchronous counter using SR- flip flops and draw circuit diagram.	(7M)
	b)	Explain a 4- bit left shift register with JK flip flops.	(7M)

2 of 2

Code No: R201221

SET - 2

(7M)

I B. Tech II Semester Regular/Supplementary Examinations, August-2022 DIGITAL LOGIC DESIGN

(CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit **All Questions Carry Equal Marks UNIT-I** 1 a) Convert the following numbers. (9M)(423.25)10 into Hexadecimal. i) ii) (11001101.0101)2 to base-8 and base-4 b) Represent the decimal number 8620 in i) BCD ii) Excess-3 code. (5M)Or a) Determine the value of base x if $(211)x=(152)_8$. 2 (5M)b) Perform binary subtraction using 1's & 2's complement methods. (9M)**UNIT-II** Implement the Boolean function F(A,B,C,D)= A'B'+C'D'+B'C' using two input (7M)NAND gates and NOR gates only. b) Convert the following to canonical forms (7M)i) $F(x,y,z,w) = \sum (1,3,7,9,11,12)$ ii) $F(A,B,C) = \pi (0,3,6,7)$ a) Simplify the Boolean function using K-map method. 4 (7M) $F=\sum (1,3,4,5,10,11,12,13,14,15).$ b) Derive and Implement Exclusive OR function involving three variables using (7M)only NAND function **UNIT-III** Construct the PROM using the conversion from BCD code to Excess-3 code. 5 (7M) Implement 4x16 decoder using two 3x8 decoders. (7M)Or 6 Explain about Priority Encoder. (7M) a) b) Design PAL for a combinational circuit that squares a 3 bit number. (7M)**UNIT-IV** 7 What is race-around condition? How does it eliminated in Master –slave J-K flip-(7M)flop?

b) How do you convert one type of flip-flop into another? Explain with an Example.

SET - 2

Or

8 a	ı)	Write the differences between latches and flip flops? Write the truth table of clocked JK- Flip Flop?	(7M)
ł)	Realize D-latch using S-R latch.	(7M)

UNIT-V

9 a) What is a register? What are the different classifications of Shift Registers? (7M) Discuss the applications of shift registers?

b) Design and draw the 3 bit up-down synchronous counter? (7M)

Or

10 a) Draw the logic diagram for a 4-bit binary ripple counter using positive edge (7M) triggered JK flip-flops

b) Explain a right shift register with an example. (7M)

2 of 2

Code No: R201221 (**R20**) (SET - 3

I B. Tech II Semester Regular/Supplementary Examinations, August- 2022 DIGITAL LOGIC DESIGN

(CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) What is the use of complements? Perform subtraction using 9's complement for (5M) the given numbers i. (565)-(666) ii. (763) –(567)
 - b) Convert the following numbers

(9M)

- i) $(41.6875)10 = ()_{16}$
- ii) $(4567)10 = ()_2$
- iii) $(101110.01)2=()_8$

Or

- 2 a) Subtract the following using 1's and 2's complement (101)2 (10110)2. (5M)
 - b) Convert the following

(9M)

- i) 110001.1010010 in to decimal.
- ii) Convert (423.25)₁₀ into Hex.
- iii) $(7 \text{ A } 69)_{16}$ into decimal

UNIT-II

- 3 a) Obtain the simplified expression in SOP form of (7M) $F(a,b,c,d,e)=\sum (1,2,4,7,12,14,15,24,27,29,30,31)$ using K-maps.
 - b) Simplify the following expression using Boolean algebra rules

(7M)

 $\overline{AB} + \overline{ABC} + A(B + \overline{AB})$

Or

4 a) simplify the Boolean expression using K-MAP $F(A,B,C,D) = \sum m(1,2,3,8,9,10,11,14) + d(7,15)$

(7M)

b) Implement the function $f(a,b,c)=\pi(0,1,3,4)$ using NAND-NAND two level gate (7M) structure

UNIT-III

Or

5 a) Design the combinational circuit of Binary to Excess-3 code convertors?

(7M)

(7M)

b) Implement the following Boolean functions using PLA with 3 AND gates. F1 (ABC) = $\sum (3,5,7)$, F2 = $\sum (4,5,7)$

a) Discuss about HDL Models of Combinational Circuits

(7M)

b) Implement the following Boolean function using 8:1 multiplexer (7M) F(A, B, C, D) = A'BD' + ACD + A'C' D + B'CD

1of 2

SET - 3

(7M)

		UNII-IV	
7	a)	Define Flip-flop and various types of flip flops? Explain the working of S- R flip-flop Using NAND Gate.	(7M)
	b)	Convert an JK Flip-Flop into D Flip-Flop.	(7M)
		Or	
8	a)	Draw and explain the operation of D Flip-Flop? Draw the Truth and Excitation Tables	(7M)
	b)	Convert an SR Flip-Flop into T Flip-Flop.	(7M)
		UNIT-V	
9	a)	What is the function of shift register? With the help of simple diagram explain its working.	(7M)
	b)	Design 4 bit binary synchronous counter Using JK-flip flop.	(7M)
		Or	
10	a)	Design and explain Johnson counter.	(7M)

2of 2

b) Explain the working of SIPO shift register with logic diagram and waveforms

Code No: R201221

SET - 4

(7M)

I B. Tech II Semester Regular/Supplementary Examinations, August-2022 DIGITAL LOGIC DESIGN

(CSE-CS&T, CSE-AI&ML, CSE-AI, CSE-DS, CSE-AI&DS, CSE-CS, CSE-IOT&CS INCL BCT, CSE-CS&BS,CSE-IOT, AI&DS, Cyber Security)

Max. Marks: 70

Time: 3 hours Answer any five Questions one Question from Each Unit **All Questions Carry Equal Marks UNIT-I** 1 a) Convert the following (9M)i. $(BA69)_{16}$ to base 2, base 4, and base 8. b) Subtract (111001)₂ from (101011) using 1's complement? (5M)Or 2 Convert the following (7M)(657)₈ into decimal. i) ii) Convert (2348)₁₀ into hexa decimal b) Add (+48) and (-27) using 2's complement. (7M)**UNIT-II** 3 Simplify the Boolean expressions to minimum number of literals (7M)AB + (AC)' + AB'C(AB + C)ii) (A+B)'(A'+B')'b) Convert the given expression in standard POS and SOP forms Y = A.(A+B+C)(7M)Or Simplify the Boolean expression using K-map and implement using NOR gates 4 (7M) $F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14).$ b) Obtain the simplified expression in sum of products for the following Boolean (7M)function. a) $F(A,B,C,D) = \sum (2,3,12,13,14,15)$. b) BDE+B'C'D+CDE+A'B'CE+A'B'C+B'C'D'E' **UNIT-III** Design a 4 bit magnitude comparator 5 (7M)b) Implement the following functions using PLA. $A(x,y,z) = \sum m(1,2,4,6) B(x,y,z) = (7M)$

Or

a) Design a 4 bit adder-subtractor circuit and explain the operation in detail.

b) Define a multiplexer? Draw a 4:1 multiplexer for the function (7M) $f(a,b,c,d)=\sum (0, 4,5,10,11,12,15)$

1 of 2

 $\sum m(0,1,6,7) c(x,y,z) = \sum m(2,6)$

UNIT-IV

7	a)	Draw and explain the operation of T Flip-Flop? Draw the Truth and Excitation Tables.	(7M)
	b)	Convert an SR Flip-Flop into JK Flip-Flop.	(7M)
		Or	
8	a)	Explain about a NOR Latch in detail, with a neat diagram.	(7M)
	b)	Convert an T Flip-Flop into JK Flip-Flop.	(7M)
		UNIT-	
9	a)	Explain the design of a 4 bit binary counter with parallel load in detail?	(7M)
	b)	Explain about Ring counter.	(7M)
		Or	
10	a)	Design 5 -bit counter using D flip flops.	(7M)
	b)	With a neat diagram explain about Universal shift register.	(7M)