Coursework (3) for Introductory Lectures on Optimization

Your name Your ID

Nov. 17, 2022

Excercise 1. Prove the following resuls. Define

$$\psi_Q(\boldsymbol{g}) = \sup\{\langle \boldsymbol{g}, \ \boldsymbol{x} \rangle \mid \boldsymbol{x} \in Q\}.$$

Let Q_1 and Q_2 be two closed convex sets.

- 1. If for any $g \in \text{dom } \psi_{Q_2}$ we have $\psi_{Q_1}(g) \leq \psi_{Q_2}(g)$, then $Q_1 \subseteq Q_2$.
- 2. Let dom $\psi_{Q_1} = \text{dom } \psi_{Q_2}$ and for any $\mathbf{g} \in \text{dom } \psi_{Q_1}$, we have $\psi_{Q_1}(\mathbf{g}) = \psi_{Q_2}(\mathbf{g})$. Then $Q_1 \equiv Q_2$.

Proof of Excercise 1:

1. Assume that there exists $x_0 \in Q_1$ and $x_0 \notin Q_2$. Since Q_2 is a closed convex set, x_0 is strongly separable from Q_2 , which means

$$\langle \boldsymbol{g}, \boldsymbol{x} \rangle < \gamma < \langle \boldsymbol{g}, \boldsymbol{x}_0 \rangle, \quad \forall \boldsymbol{x} \in Q_2, \text{ and } \boldsymbol{x} \in Q_1.$$

Obviously it is contradict with $\psi_{Q_1}(\mathbf{g}) \leq \psi_{Q_2}(\mathbf{g})$. Thus, in this case we have $Q_1 \subseteq Q_2$.

- 2. Based on the first statement:
 - (a) $\forall g \in \text{dom } \psi_{Q_1}, \ \psi_{Q_1}(\mathbf{g}) = \psi_{Q_2}(\mathbf{g}) \implies Q_1 \subseteq Q_2;$
 - (b) $\forall g \in \text{dom } \psi_{Q_2}, \ \psi_{Q_2}(\mathbf{g}) = \psi_{Q_1}(\mathbf{g}) \implies Q_2 \subseteq Q_1.$

Above all, we can get $Q_1 \equiv Q_2$.

Excercise 2. Prove the following result. Let f be a closed convex function. For any $x_0 \in \text{int}(\text{dom } f)$ and $p \in \mathbb{R}^n$ we have

$$f'(\boldsymbol{x}_0; \boldsymbol{p}) = \max\{\langle \boldsymbol{g}, \boldsymbol{p} \rangle \mid \boldsymbol{g} \in \partial f(\boldsymbol{x}_0)\}.$$

Proof of Excercise 2: According to related definitions:

$$f'(\boldsymbol{x}_0; \boldsymbol{p}) = \lim_{\alpha \to 0} \frac{1}{\alpha} [f(\boldsymbol{x}_0 + \alpha \boldsymbol{p}) - f(\boldsymbol{x}_0)].$$

and

$$f(y) \ge f(x_0) + \langle g, y - x_0 \rangle, \quad \forall g \in \partial f(x_0).$$

Obviously, we have

$$f'(\boldsymbol{x}_0, \boldsymbol{p}) = \lim_{\alpha \to 0} \frac{1}{\alpha} [f(\boldsymbol{x}_0 + \alpha \boldsymbol{p}) - f(\boldsymbol{x}_0)]$$
$$\geq \lim_{\alpha \to 0} \frac{1}{\alpha} \langle \boldsymbol{g}, \ \alpha \boldsymbol{p} \rangle = \langle \boldsymbol{g}, \ \boldsymbol{p} \rangle.$$

Here \mathbf{g} is from $\partial f(\mathbf{x}_0)$. Therefore, the subdifferential of the function $f'(\mathbf{x}; \mathbf{p})$ at $\mathbf{p} = 0$ is not empty and $\partial f(\mathbf{x}_0) \subseteq \partial_2 f'(\mathbf{x}_0; 0)$.

Since f'(x; p) is convex in p, we have

$$f(y) \ge f(x_0) + f'(x_0; y - x_0) \ge f(x_0) + \langle g, y - x_0 \rangle.$$

where $\mathbf{g} \in \partial_2 f'(\mathbf{x}_0; 0) \subseteq \partial f(\mathbf{x}_0)$ and we can get $\partial f(\mathbf{x}_0) = \partial_2 f(\mathbf{x}; 0)$.

Consider $\mathbf{g} \in \partial_2 f'(\mathbf{x}_0; 0)$. Thus for $\tau > 0$

$$\tau f'(\boldsymbol{x}_0; \boldsymbol{v}) = f'(\boldsymbol{x}; \tau \boldsymbol{v}) \ge f'(\boldsymbol{x}_0; \boldsymbol{p}) + \langle \boldsymbol{g}, \ \tau \boldsymbol{v} - \boldsymbol{p} \rangle.$$

Considering $\tau \to \infty$ we get $f'(x_0; p) - \langle g, p \rangle \leq 0$. Thus we conclude that $\langle g, p \rangle = f'(x; p)$.

Excercise 3. Let f be closed and convex. Assume that it is differentiable on its domain. Then $\partial f(x) = \{\nabla f(x)\}\$ for any $x \in \operatorname{int}(\operatorname{dom} f)$.

Proof of Excercise 3: For any direction p, we have

$$f'(\boldsymbol{x}; \boldsymbol{p}) = \langle \nabla f(\boldsymbol{x}), \boldsymbol{p} \rangle.$$

Since $f(x + p) \ge f(x) + f'(x; p) \ge f(x) + \langle \nabla f(x), p \rangle$, we can get $\nabla f(x) \in \partial f(x)$. In the meanwhile

$$f'(\boldsymbol{x}; \boldsymbol{p}) = \max\{\langle \boldsymbol{g}, \ \boldsymbol{p} \rangle \mid \boldsymbol{g} \in \partial f(\boldsymbol{x}_0)\} = \langle \nabla f(\boldsymbol{x}), \ \boldsymbol{p} \rangle$$

Similarly, according to the statement in Exercise. 1, we can get $\partial f(x) = {\nabla f(x)}$.

Excercise 4. Let Δ be a set and $f(x) = \sup\{\phi(y, x) \mid y \in \Delta\}$. Suppose that for any fixed $y \in \Delta$ the function $\phi(y, x)$ is closed and convex in x. Then f(x) is closed convex.

Moreover, for any \boldsymbol{x} from

dom
$$f = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \exists \gamma : \phi(\boldsymbol{y}, \boldsymbol{x}) \leq \gamma, \ \forall \boldsymbol{y} \in \Delta \}$$

we have

$$\partial f(\boldsymbol{x}) \supseteq \operatorname{Conv} \{ \partial \phi_{\boldsymbol{x}}(\boldsymbol{y}, \boldsymbol{x}) \mid \boldsymbol{y} \in I(\boldsymbol{x}) \},$$

where $I(\mathbf{x}) = \{ \mathbf{y} \mid \phi(\mathbf{y}, \mathbf{x}) = f(\mathbf{x}) \}.$

Proof of Excercise 4: Here we define

$$\hat{Q} = \left\{ \boldsymbol{x} \in Q \mid \sup_{\boldsymbol{y} \in \Delta} \phi(\boldsymbol{x}, \boldsymbol{y}) < +\infty \right\}.$$

According to last equation, it is without any doubt that $f(x) < +\infty \ \forall x \in \hat{Q}$ and we can conclude that $Q \in \text{dom } f$. In addition, it is obvious that $x, t \in \text{epi}_{Q}(f)$ if and only if

$$x \in Q$$
, $t \ge \phi(x, y)$, $\forall y \in \Delta$.

This means that

$$\mathrm{epi}_Q(f) = \bigcap_{\boldsymbol{y} \in \Delta} \mathrm{epi}_Q(\phi(\cdot, \boldsymbol{y})).$$

Since each set $\operatorname{epi}_Q(\phi(\cdot, \boldsymbol{y}))$ is closed and convex, $\operatorname{epi}_Q(f)$ is also closed and convex. Thus, f is closed and convex on \hat{Q} .

In the meanwhile, for all $x \in \hat{Q}$, $y_0 \in I(x_0)$, and $g_0 \in \partial_{Q,x}\phi(x_0, y_0)$, we have

$$f(x) > \phi(x, y_0) > \phi(x_0, y_0) + \langle q_0, x - x_0 \rangle = f(x_0) + \langle q_0, x - x_0 \rangle$$

Therefore, we can prove the second statement.

Excercise 5. Caculate the subdifferentials of the following functions.

1.
$$f(x) = |x|, x \in \mathbb{R}^1$$
.

2.
$$f(\boldsymbol{x}) = \sum_{i=1}^{m} |\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle - \boldsymbol{b}_i|$$

3.
$$f(x) = \max_{1 \le i \le n} x^{(i)}$$
.

4.
$$f(x) = ||x||$$
.

5.
$$f(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^n |\mathbf{x}^{(i)}|.$$

Solution of Excercise 4:

1.
$$f(\boldsymbol{x}) = |\boldsymbol{x}| = \max\{-\boldsymbol{x}, \boldsymbol{x}\} \quad \Rightarrow \quad \partial f(\boldsymbol{x}) = [-1, 1].$$

$$I_{+}(\boldsymbol{x}) = \{i \mid \langle \boldsymbol{a}_{i}, \ \boldsymbol{x}_{i} \rangle - \boldsymbol{b}_{i} > 0\},$$

$$I_{-}(\boldsymbol{x}) = \{i \mid \langle \boldsymbol{a}_{i}, \ \boldsymbol{x}_{i} \rangle - \boldsymbol{b}_{i} < 0\},$$

$$I_{0}(\boldsymbol{x}) = \{i \mid \langle \boldsymbol{a}_{i}, \ \boldsymbol{x}_{i} \rangle - \boldsymbol{b}_{i} = 0\}.$$

Then we have

$$\partial f(oldsymbol{x}) = \sum_{i \in I_+(oldsymbol{x})} oldsymbol{a}_i - \sum_{i \in I_-(oldsymbol{x})} oldsymbol{a}_i + \sum_{i \in I_0(oldsymbol{x})} [-oldsymbol{a}_i, oldsymbol{a}_i].$$

3. Here we define $I(\boldsymbol{x}) = \{i \mid \boldsymbol{x}^{(i)} = f(\boldsymbol{x})\}$. Then

$$\partial f(\boldsymbol{x}) = \begin{cases} \operatorname{Conv}\{\boldsymbol{e}_i \mid 1 \le i \le n\}, & \boldsymbol{x} = 0, \\ \operatorname{Conv}\{\boldsymbol{e}_i \mid i \in I(\boldsymbol{x})\}, & \boldsymbol{x} \ne 0. \end{cases}$$

4.

$$\partial f(\boldsymbol{x}) = \begin{cases} B_2(0,1) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x}|| \le 1 \}, & \boldsymbol{x} = 0, \\ \{ \boldsymbol{x}/||\boldsymbol{x}|| \}, & \boldsymbol{x} \ne 0. \end{cases}$$

5. Here we define

$$I_{+}(\mathbf{x}) = \{i \mid \mathbf{x}^{(i)} > 0\},\$$

 $I_{-}(\mathbf{x}) = \{i \mid \mathbf{x}^{(i)} < 0\},\$
 $I_{0}(\mathbf{x}) = \{i \mid \mathbf{x}^{(i)} = 0\}.$

Then we have

$$\partial f(\mathbf{x}) = \begin{cases} B_{\infty}(0,1) = \{ \mathbf{x} \in \mathbb{R}^n \mid \max_{1 \le i \le n} |\mathbf{x}^{(i)}| \le 1 \}, & \mathbf{x} = 0, \\ \sum_{i \in I_{+}(\mathbf{x})} \mathbf{e}_i - \sum_{i \in I_{-}(\mathbf{x})} \mathbf{e}_i + \sum_{i \in I_{0}(\mathbf{x})} [-\mathbf{e}_i, \mathbf{e}_i], & \mathbf{x} \ne 0. \end{cases}$$