MaCS Calculus and Vectors Exam Study Guide

Vincent Macri

2017 - 2018 — Semester 1

Contents

1	\mathbf{E}	quatic	ons of Lines and Planes	1		
	8.1	Vector	and Parametric Equations of a Line in \mathbb{R}^2	2		
		8.1.A	Vector Equation of a Line in \mathbb{R}^2	2		
		8.1.B	Parametric Equations of a Line in \mathbb{R}^2	2		
		8.1.C	Parallel Lines	3		
		8.1.D	Perpendicular Lines	3		
		$8.1.\mathrm{E}$	2D Perpendicular Vectors	3		
		8.1.F	Special Lines	3		
	8.2	Cartes	sian Equation of a Line	4		
		8.2.A	Symmetric Equation	4		
		8.2.B	Normal Equation	4		
		8.2.C	Cartesian Equation	4		
		8.2.D	Slope y -intercept Equation	5		
		$8.2.\mathrm{E}$	Angle between Two Lines	5		
	8.3	Vector	r, Parametric, and Symmetric Equations of a Line in \mathbb{R}^3	6		
		8.3.A	Vector Equation	6		
		8.3.B	Specific Lines	6		
		8.3.C	Parametric Equations	6		
		8.3.D	Symmetric Equations	7		
		8.3.E	Intersections	7		
	8.4	Vector	and Parametric Equations of a Plane	8		
		8.4.A	Planes	8		
		8.4.B	Vector Equation of a Plane	8		
		8.4.C	Parametric Equations of a Plane	8		
	8.5	Cartes	sian Equation of a Plane	9		
		8.5.A	Normal Equation of a Plane	9		
		8.5.B	Cartesian Equation of a Plane	9		
		8.5.C	Angle between Two Planes	9		
_	-			10		
2	Relationships between Points, Lines, and Planes					
	9.1		ection of Two Lines	11		
		9.1.A	Relative Position of Two Lines	11		
		9.1.B	Intersection of Two Lines (Algebraic Method)	11		
		9.1.C	Unique Solution	11		

A Credi	t		13
9	.1.G	Classifying Lines (Vector Method)	12
9	.1.F	No Solution (Skew Lines)	12
9	.1.E	No Solution (Parallel Lines)	12
9	.1.D	Infinite Number of Solutions	11

Unit 1

Equations of Lines and Planes

8.1 Vector and Parametric Equations of a Line in \mathbb{R}^2

8.1.A Vector Equation of a Line in \mathbb{R}^2

Consider the line L that passes through the point $P_0(x_0, y_0)$ and is parallel to the vector \overrightarrow{u} . The point P(x, y) is a generic point on the line.

$$\overrightarrow{OP} = t\overrightarrow{u}$$

$$\overrightarrow{OP} - \overrightarrow{OP_0} = t\overrightarrow{u}$$

$$\overrightarrow{r} - \overrightarrow{r_0} = t\overrightarrow{u}$$

The vector equation of the line is:

$$\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$$

Where:

- $\overrightarrow{r} = \overrightarrow{OP}$ is the position vector of a generic point P on the line.
- $\overrightarrow{r_0} = \overrightarrow{OP_0}$ is the position vector of a specific point P_0 on the line.
- \overrightarrow{u} is a vector parallel to the line called the *direction vector* of the line.
- t is a real number corresponding to the generic point P.

Note: The vector equation of a line is *not unique*. It depends on the specific point P_0 and on the direction vector \vec{u} that are used.

8.1.B Parametric Equations of a Line in \mathbb{R}^2

We can rewrite the vector equation of a line:

$$\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$$

as:

$$(x,y) = (x_0, y_0) + t(u_x, u_y) \mid t \in \mathbb{R}$$

Split this vector equation into the parametric equations of a line in \mathbb{R}^2 :

$$\begin{cases} x = x_0 + tu_x \\ y = y_0 + yu_y \end{cases} \quad t \in \mathbb{R}$$

8.1.C Parallel Lines

Two lines L_1 and L_2 with direction vectors $\overrightarrow{u_1}$ and $\overrightarrow{u_2}$ are parallel $(L_1 \parallel L_2)$ if:

$$\overrightarrow{u_1} \parallel \overrightarrow{u_2}$$

or, there exists $k \in \mathbb{R}$ such that:

$$\overrightarrow{u_2} = k\overrightarrow{u_1}$$

or:

$$\overrightarrow{u_1} \times \overrightarrow{u_2} = \overrightarrow{0}$$

or scalar components are *proportional*:

$$\frac{u_{2x}}{u_{1x}} = \frac{u_{2u}}{u_{1u}} = k$$

8.1.D Perpendicular Lines

Two lines L_1 and L_2 with direction vectors $\overrightarrow{u_1}$ and $\overrightarrow{u_2}$ are perpendicular $(L_1 \perp L_2)$ if:

$$\overrightarrow{u_1} \perp \overrightarrow{u_2}$$

or:

$$\overrightarrow{u_1} \cdot \overrightarrow{u_2} = 0$$

or:

$$u_{1x}u_{2x} + u_{1y}u_{2y} = 0$$

8.1.E 2D Perpendicular Vectors

Given a 2D vector $\vec{u} = (a, b)$, two 2D vectors perpendicular to \vec{u} are $\vec{v} = (-b, a)$ and $\vec{w} = (b, -a)$.

Indeed:

$$\overrightarrow{u}\cdot\overrightarrow{v}=(a,b)\cdot(-b,a)=-ab+ab=0\implies\overrightarrow{u}\perp\overrightarrow{v}$$

8.1.F Special Lines

A line parallel to the x-axis has a direction vector in the form $\vec{u} = (u_x, 0) \mid u_x \neq 0$. A line parallel to the y-axis has a direction vector in the form $\vec{u} = (0, u_y) \mid u_y \neq 0$.

8.2 Cartesian Equation of a Line

8.2.A Symmetric Equation

The parametric equations of a line in \mathbb{R}^2 :

$$\begin{cases} x = x_0 + tu_x \\ y = y_0 + tu_y \end{cases} \quad t \in \mathbb{R}$$

may be written as:

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} = t \mid t \in \mathbb{R}$$

The *symmetric equation* of the line is (if it exists):

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y}$$

Note: The symmetric equations only exists if $u_x \neq 0$ and $u_y \neq 0$.

8.2.B Normal Equation

Consider a line L that passes through the specific point $P_0(x_0, y_0)$ and has the direction vector $\vec{u} = (u_x, u_y)$.

The vectors $\vec{n} = (-u_y, u_x) = (A, B)$ or $\vec{n} = (u_y, -u_x) = (A, B)$ are perpendicular to the vector \vec{u} and so they are perpendicular to the line L. These are called *normal* vectors to the line L.

Let P(x,y) be a generic point on the line L. So:

$$\overrightarrow{P_0P} \parallel \overrightarrow{u} \implies \overrightarrow{P_0P} \perp \overrightarrow{n} \implies \overrightarrow{P_0P} \cdot \overrightarrow{n} = 0$$

$$(\overrightarrow{r} - \overrightarrow{r_0}) \cdot \overrightarrow{n} = 0$$

The *normal equation* of a line is given by:

$$(\overrightarrow{r} - \overrightarrow{r_0}) \cdot \overrightarrow{n} = 0$$

8.2.C Cartesian Equation

The normal equations can be written as:

$$\overrightarrow{r} \cdot \overrightarrow{n} - \overrightarrow{r_0} \cdot \overrightarrow{n} = 0$$

$$(x, y) \cdot (A, B) - (x_0, y_0) \cdot (A, B) = 0$$

$$Ax + By - Ax_0 - By_0 = 0$$

$$Ax + By + C = 0 \quad \text{where } C = -Ax_0 - By_0$$

The Cartesian equation of a line is given by:

$$Ax + By + C = 0$$

where $\overrightarrow{n} = (A, B)$ is a *normal vector* and the constant C depends on a specific point of the line.

8.2.D Slope y-intercept Equation

Solve the symmetric equation of a line:

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} \mid t \in \mathbb{R}$$

for y:

$$y - y_0 = u_y \frac{x - x_0}{u_x}$$
$$y = \frac{u_y}{u_x} x + y_0 - \frac{u_y}{u_x} x_0$$

The slope y-intercept equation of a line in \mathbb{R}^2 is given by:

$$y = mx + b$$

$$m = \frac{u_y}{u_x}$$

where m is the *slope* and b is the *y-intercept* which depends on a specific point of the line.

8.2.E Angle between Two Lines

The angle between two lines is determined by the angle between the direction vectors:

$$\cos \theta = \frac{\overrightarrow{u_1} \cdot \overrightarrow{u_2}}{\|\overrightarrow{u_1}\| \|\overrightarrow{u_2}\|}$$

Note: There are two pairs of equal angles between the two lines. There is a pair of the angle θ_1 , and a pair of the angle θ_2 . $\theta_1 + \theta_2 = 180^{\circ}$

8.3 Vector, Parametric, and Symmetric Equations of a Line in \mathbb{R}^3

8.3.A Vector Equation

The vector equation of the line is:

$$\vec{r} = \vec{r_0} + t\vec{u} \mid t \in \mathbb{R}$$

where:

- $\overrightarrow{r} = \overrightarrow{OP}$ is the position vector of a *generic* point P on the line.
- $\overrightarrow{r_0} = \overrightarrow{OP_0}$ is the position vector of a *specific* point P_0 on the line.
- \overrightarrow{u} is a vector parallel to the line called the *direction vector* of the line.
- t is a real number corresponding to the generic point P.

8.3.B Specific Lines

A line is parallel to the x-axis if $\vec{u} = (u_x, 0, 0) \mid u_x \neq 0$. In this case, the line is also perpendicular to the yz-plane.

A line with $\vec{u} = (0, u_y, u_z) \mid u_y \neq 0 \land u_z \neq 0$ is parallel to the yz-plane.

8.3.C Parametric Equations

Rewrite the vector equation of a line:

$$\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{u} \mid t \in \mathbb{R}$$

as:

$$(x, y, z) = (x_0, y_0, z_0) + t(u_x, u_y, u_z) \mid t \in \mathbb{R}$$

The parametric equations of a line in \mathbb{R}^3 are:

$$\begin{cases} x = x_0 + tu_x \\ y = x_0 + tu_y \\ z = x_0 + tu_z \end{cases} \quad t \in \mathbb{R}$$

8.3.D Symmetric Equations

The parametric equations of a line may be written as:

$$\begin{cases} x = x_0 + tu_x \\ y = x_0 + tu_y \\ z = x_0 + tu_z \end{cases} \quad t \in \mathbb{R}$$

From here, the *symmetric equations* of the line are:

$$\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} = \frac{z - z_0}{u_z}$$

$$u_x \neq 0 \quad u_y \neq 0 \quad u_z \neq 0$$

8.3.E Intersections

A line intersects the x-axis when y = z = 0.

A line intersects the xy-plane when z = 0.

8.4 Vector and Parametric Equations of a Plane

8.4.A Planes

A plane may be determined by points and lines. There are four main possibilities:

- 1. Plane determined by three points.
- 2. Plane determined by two parallel lines.
- 3. Plane determined by two intersecting lines.
- 4. Plane determined by a point and a line.

8.4.B Vector Equation of a Plane

Consider a plane π .

Two vectors \vec{u} and \vec{v} , parallel to the plane π but not parallel to each other, are called *direction vectors* of the plane π .

The vector $\overrightarrow{P_0P}$ from a specific point $P_0(x_0, y_0, z_0)$ to a generic point P(x, y, z) of the plane is a *linear combination* of direction vectors \overrightarrow{u} and \overrightarrow{v} :

$$\overrightarrow{P_0P} - s\overrightarrow{u} + t\overrightarrow{v} \mid s, t \in \mathbb{R}$$

The vector equation of the plane is:

$$\pi: \overrightarrow{r} = \overrightarrow{r_0} + s\overrightarrow{u} + t\overrightarrow{v} \mid s, t \in \mathbb{R}$$

8.4.C Parametric Equations of a Plane

We write the vector equation of the plane as:

$$(x, y, z) = (x_0, y_0, z_0) + s(u_x, u_y, u_z) + t(v_x, v_y, v_z)$$

or:

$$\begin{cases} x = x_0 + su_x + tv_x \\ y = y_0 + su_y + tv_y \\ z = z_0 + su_z + tv_z \end{cases} \quad s, t \in \mathbb{R}$$

These are the *parametric equations* of a plane.

8.5 Cartesian Equation of a Plane

8.5.A Normal Equation of a Plane

A plane may be determined by a point $P_0(x_0, y_0, z_0)$ and a vector perpendicular to the plane \vec{n} called the normal vector.

If P(x, y, z) is a generic point on the plane, then:

$$\overrightarrow{P_0P} \perp \overrightarrow{n}$$

and:

$$\overrightarrow{P_0P} \cdot \overrightarrow{n} = 0$$

This is the *normal equation* of a plane.

8.5.B Cartesian Equation of a Plane

We write the normal vector of a plane in the form:

$$\overrightarrow{n} = (A, B, C)$$

Then, the normal equation may be written as:

$$(x - x_0, y - y_0, z - z_0) \cdot (A, B, C) = 0$$

$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0$$

or:

$$Ax + By + Cz + D = 0$$

which is called the *Cartesian equation* of a plane.

Note: A normal vector to the plane is:

$$\vec{n} = \vec{u} \times \vec{v}$$

where \vec{u} and \vec{v} are the direction vectors of the plane.

8.5.C Angle between Two Planes

The angle between two planes is defined as the angle between their normal vectors:

$$\cos \theta = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\|\overrightarrow{n_1}\| \|\overrightarrow{n_2}\|}$$

Note: Using this formula, you may get an *acute* or an *obtuse* angle depending on the normal vectors which are used.

Unit 2

Relationships between Points, Lines, and Planes

9.1 Intersection of Two Lines

9.1.A Relative Position of Two Lines

Two lines may be:

- 1. Parallel and distinct.
- 2. Parallel and coincident.
- 3. Intersecting (not parallel).
- 4. Skew (not parallel, not intersecting).

9.1.B Intersection of Two Lines (Algebraic Method)

The point of intersection of two lines $L_1: \overrightarrow{r} = \overrightarrow{r_{01}} + t\overrightarrow{u_1} \mid t \in \mathbb{R}$ and $L_2: \overrightarrow{r} = \overrightarrow{r_{02}} + s\overrightarrow{u_2} \mid s \in \mathbb{R}$ is given by the *solution* of the following system of equations (if it exists):

$$\begin{cases} x_{01} + tu_{x1} = x_{02} + su_{x2} \\ y_{01} + tu_{y1} = y_{02} + su_{y2} \\ z_{01} + tu_{z1} = z_{02} + su_{z2} \end{cases} \quad s, t \in \mathbb{R}$$

Hint: Solve by *substitution* or *elimination* the system of two equations and *check* if the third is satisfied.

9.1.C Unique Solution

If by solving the system you end by getting a unique value for t and s satisfying this system, then the lines have a unique point of intersection. To get this point, substitute either the t value into the line L_1 equation or substitute the s value into the line L_2 equation.

9.1.D Infinite Number of Solutions

If by solving the system you end by getting two true statements (like 2 = 2) and one equation in s and t, then there exist an *infinite number of solutions* of the system. Therefore the lines intersect at an *infinite number of points*. In this case the lines are parallel and coincident.

9.1.E No Solution (Parallel Lines)

If by solving the system you get at least one false statement (like 0 = 1) then the system has no solution. Therefore, the lines have no point of intersection. If, in addition, the lines are parallel $(\overrightarrow{u_1} \times \overrightarrow{u_2} = \overrightarrow{0})$, then the lines are parallel and distinct.

9.1.F No Solution (Skew Lines)

If by solving the system you get at least one false statement (like 0 = 1) then the system has no solution. Therefore, the lines have no point of intersection. If, in addition, the lines are not parallel $(\overrightarrow{u_1} \times \overrightarrow{u_2} \neq \overrightarrow{0})$, then the lines are skew.

9.1.G Classifying Lines (Vector Method)

Parallel lines
$$(\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \times \overrightarrow{u_1} = \overrightarrow{0}$$
Parallel coincident lines
Parallel distinct lines

Nonparallel lines
$$(\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \cdot (\overrightarrow{u_1} \times \overrightarrow{u_2}) = 0$$
Nonparallel intersecting lines
$$(\overrightarrow{r_{01}} - \overrightarrow{r_{02}}) \cdot (\overrightarrow{u_1} \times \overrightarrow{u_2}) \neq 0$$
Nonparallel skew lines

Appendix A

Credit

Thank you for everything, Mrs. Gugoiu.