IIT Jodhpur

Biological Vision and Applications Module 08-01: Applications

Hiranmay Ghosh

Application areas

- We have reviewed 13 papers (2005 2019)
 - Visual Query Answering
 - Semantic Labeling
 - Content Adaptation
 - Content Recommendation
 - Surveillance
 - Photo Enhancement
 - Image Restoration
 - Scene Reconstruction
 - Human Robot Interaction

Common thread

Physical world

- Transform visual signals as humans would perceive them
- Decide what is important what should be processed and what should be ignored
- Context and human intention
- Fast and intuitive (hard real-time for some applications)

Recognize "Semantic Gap"

- Visual signals (features) and "semantics" do not correspond to each other
- Need for in-context abstraction of media features
 - Video summarization
 - Foreground-background separation
 - "Semantic" features (face, music, ...)
 - Painting Restoration
 - Cracks vs. lines
- The most difficult challenge in computer vision

Contrast conveys information

- Principle of early vision
 - ► Contrasts: Color (R-G, B-Y) & illumination
 - Edge detection & perceptual grouping
 - Natural Scene Statistics
- Used in initial feature extraction / preprocessing
 - Crack detection (Painting, pipeline, railway track, ...)
 - Model of quality & aesthetics
 - Computational photography
- Convolution is a universal tool

Contextual Semantics is conveyed through a very small fraction of the scene

- Decide what is important in a given context
 - Identification of important concepts in visual contents (robotics)
 - ► Fast & real-time processing (surveillance)
 - Semantic labeling and (visual) query answering
 - Video compression (storage & transmission)
 - "Signal-level fidelity" vs. "Semantic fidelity"
- Drastic reduction in information precessing
- Principle of attention is crucial for cognitive vision

Glas, et al. 2012

Cavallaro, et al. 2005

Use contextual information

- Context disambiguates
- Context can be found elsewhere not in the image alone
 - Caption (image / video)
 - ► Metadata (date/time, camera parameters, ...)
 - ► Markers in the environment
- Applications:
 - Semantic labelling & VQA
 - Robotics

He & Hu, 2019

Principle of Inductive Generalization

- Apply knowledge from one task to another
 - Transfer learning
 - Few-shot or one-shot learning
 - Zero-shot learning
 - Multi-task learning
- Methods
 - Use of structured knowledge (machine learned)
 - Hierarchical Bayesian Model
- Applications:
 - Dealing with rare concepts / new queries
 - Cross-recommendation
 - Face region detection
 - Surveillance (railway track monitoring)

More examples

Other principles

- 6. Use of emergent knowledge
 - Where reliable models do not exist / difficult to codify
 - Examples: aesthetics, cracks in paintings
 - ML techniques (Clustering, Neural networks, ...)
- 7. Global workspace
 - Multiple processes working in parallel
 - Cognition to action (robotics)
- 8. Social networking
 - Learn from each other
 - Collaborative learning (robotics)
 - ► Imitation learning

Summary

Key takeaways from this course

- "Cognitive vision" encompassed all computer vision tasks
 - There are no specific applications of cognitive vision
 - Application of principles of biological vision in computer vision tasks
- There is no unified theory / framework for Cognitive Vision yet
 - Each topic covered in the course is an isolated dot
 - Cognitive Vision is like a vast ocean We have explored some islands in the ocean

Your presentations, participations & reviews

Some common improvement suggestions

Presentation

- The key points (with respect to our class) need to be brought out clearly
- Need to go beyond the paper (important methods used / critical thoughts)
- Verbatim reading from the slides/notes makes a presentation drab
- Need to generate enough interest in the audience discussions
- ► Time management neither too short, not too long

Participation & Review

- Interactions required during/after presentation
- Summary should be of optimal length need to bring out key points crisply
- Need professional assessment dispersion of awarded marks
- Specific comments (strengths/weaknesses)
- Ratings should be adequately justified especially very high and low ones
 - "Could not follow the presentation". but awarded high scores.

No quiz for module 08-01

End of Module 08-01