

Charge distributions

- Charge densities are objects that have different amounts of charge depending on where you are on the object.
- High charge repels electrons strongly, low charge repels electrons weakly:

Charge distributions

If we plot the distribution in the previous slide, we get this distribution – a Gaussian (or Normal).

Probability distributions

- Instead of charge density, we can look at how likely the value of something is
- This probability density distribution shows the height of human males:

Generating new data

- Suppose now we want to generate new examples
- One idea might be to just draw randomly from this distribution.
- olf the distribution is simple (such as a Gaussian), this is easy because we can write down the exact form of the distribution:

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

So if we know the mean, μ , and the standard deviation, σ , then we can use some well-known (and very fast) algorithms for drawing from this distribution.

The training data

- In our previous example, we gathered the heights of people and plotted the distribution.
- In doing so, we also calculated the mean and standard deviation.
- Our "model" can therefore be captured by only two pieces of information: μ and σ .
- This gathered data was the "training data".
- We fit a model to this data.
- We can use this model to generate new examples of heights.

But what if the distributions are more complicated...

More complicated distributions

- Here is a plot of the height and weight distributions of cats and dogs
- Cats are typically smaller and lighter than dogs
- We don't really see much variety in the size and shapes of cat, but dogs can vary quite a lot!

More complicated distribution...

- But how am I supposed to write down the equation to this distribution!
- I could guess, and say that it looks like a mixture of two Gaussians.
- But what about when we step into higher dimensions and I can't physically look at the distribution of the data...?

Let's revisit the idea of data as a charge distribution...

- We have a complicated probability distribution
- Let's now imagine that this is a charge distribution instead
- Areas of high charge are strongly repellent
- This will cause the distribution to "repel itself" and spread out
- As we let this happen for a very long time, it will be very difficult to make out any structure
- Here is an example:

Start with a complicated distribution...

Another example, this time from statistical physics

Regardless of where we place the initial milk drop, the end result is the same...

Coffee or pixels in an image...

This is great, but why does it help us...?

- We saw with the cats and dogs, that it is difficult to sample from this distribution, because we cannot write down the equation of the distribution...
- But we can sample from a Normal distribution very easily...

