Experimental validation of two semi-implicit homogeneous discretized differentiators on a cable-driven parallel robot

SYNOBS day - 6th December 2023 - CNAM Paris

L. Michel, M. Métillon, S. Caro, M. Ghanes, F. Plestan, J. P. Barbot, and Y. Aoustin

LS2N UMR CNRS 6004, Nantes Université, Ecole Centrale de Nantes

Interest of the discretized differentiators with projectors

The objectives

- Real-time discrete signal differentiation from a measured signal
- An alternative solution to the usual backward difference scheme to reduce
 - Chattering effect
 - Noise
 - Disturbances

Some application domains in engineering

- Robotics
- Automatic control
- Signal processing
- and so on...

The CRAFT parallel robot 1/2

A cable-driven parallel robot

- Base frame of CRAFT: 4 m long, 3.5 m wide, and 2.7 m high
- Suspended moving-platform (MP): 3-DoF translational, 3-DoF rotational motions, and 8 cables; 0.28 m long, 0.28 m wide and 0.2 m high; 5 kg mass

The CRAFT parallel robot 2/2

Dynamic model

$$\mathbb{I}_{p}\ddot{p} + C\dot{p} - w_{g} = W\tau + w_{e} \tag{1}$$

where:

.

$$\dot{\mathbf{p}} = \begin{bmatrix} \dot{\mathbf{t}} \\ \boldsymbol{\omega} \end{bmatrix} \quad \ddot{\mathbf{p}} = \begin{bmatrix} \ddot{\mathbf{t}} \\ \boldsymbol{\alpha} \end{bmatrix}, \tag{2}$$

 $\dot{\mathbf{t}} = [\dot{t}_x, \dot{t}_y, \dot{t}_z]^{\top}$ and $\ddot{\mathbf{t}} = [\ddot{t}_x, \ddot{t}_y, \ddot{t}_z]^{\top}$ MP linear velocity and acceleration, respectively; $\boldsymbol{\omega} = [\omega_x, \omega_y, \omega_z]^{\top}$ and $\boldsymbol{\alpha} = [\alpha_x, \alpha_y, \alpha_z]^{\top}$ MP angular velocity and acceleration

- ullet W wrench matrix that maps the cable tension vector $oldsymbol{ au}$ exerted by the cables onto MP
- External wrench w_e , a 6-dimensional vector / Wrench w_g due to gravity
- Matrix \mathbb{I}_p is the spatial inertia of the platform
- C is the matrix of the centrifugal and Coriolis wrenches

Problem statement 1/4

Continuous-time state model systems

• p(t) is a bounded perturbation, unknown such as:

$$p_M > 0$$
 such that $|p(t)| < p_M$ for all $t > 0$. (3)

• The continuous model under consideration:

$$\Sigma : \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = p(t) \\ y = x_1 \end{cases} \tag{4}$$

 x_1 and x_2 are respectively the angular variable and velocity; y is the measure of x_1 with additional noise η

Problem statement 2/4

Discretized state model systems

• Following notation for the discretized variable:

$$\begin{array}{rcl}
\bullet(t = (k+1)h) & = & \bullet^+ \\
\bullet(t = kh) & = & \bullet.
\end{array}$$
(5)

the implicit Euler discretization of the continuous-time model can be written

$$\begin{cases} x_1^+ = x_1 + h x_2^+ = x_1 + h(x_2 + hp^+) \\ x_2^+ = x_2 + hp^+ \\ y = x_1 \end{cases}$$
 (6)

where p(t) is assumed to be a constant parameter or a slowly variable

Problem statement 3/4

Homogeneous continuous-time differentiator

• Homogeneity approach, interesting: Due to the dilatation, this local property to global settings \Rightarrow continuous-time homogeneous differentiator is therefore chosen under the assumption $|p(t)| < p_M$

$$\begin{cases} \dot{z}_1 = z_2 + \lambda_1 \mu \lceil \epsilon_1 \rfloor^{\alpha} \\ \dot{z}_2 = \lambda_2 \mu^2 \lceil \epsilon_1 \rfloor^{2\alpha - 1} \\ \hat{y} = z_1 \end{cases}$$
 (7)

where

- ullet $\alpha\in]0.5$ 1[, $\epsilon_1=y-z_1$, and the notation $[ullet]^{lpha}=|ullet|^{lpha}\mathrm{sgn}(ullet)$
- ullet If lpha= 0.5, it becomes the classical super-twisting algorithm
- If $\alpha \searrow$ then accuracy \nearrow but noise rejection \nearrow

Problem statement 4/4

Existing Euler discretization schemes

• Explicit method: z_i and \dot{z}_i , known at t = kh, z_i^+ deduced from $z_i^+ = z_i + h\dot{z}_i$

$$\begin{cases}
z_1^+ = z_1 + h(z_2 + \lambda_1 \mu \lceil \epsilon_1 \rfloor^{\alpha}) \\
z_2^+ = z_2 + h \lambda_2 \mu^2 \lceil \epsilon_1 \rfloor^{2\alpha - 1}
\end{cases}$$
(8)

Chattering effect remains ⇒ the numerical solution is not attractive

• Implicit method: z_i is known, \dot{z}_i^+ is calculated such as z^+ is equal to $z_i^+ = z_i + h\dot{z}_i^+$.

$$\begin{cases}
z_1^+ = z_1 + h \left(z_2^+ + \lambda_1 \mu \lceil \epsilon_1^+ \rfloor^{\alpha} \right) \\
z_2^+ = z_2 + h \lambda_2 \mu^2 \lceil \epsilon_1^+ \rfloor^{2\alpha - 1}
\end{cases} \tag{9}$$

If $\epsilon_1^+=0$, $z_2^+=0\Longrightarrow z_2=0$ Hence, the two correction terms $\lambda_1\lceil\epsilon_1^+\rfloor^\alpha$ and $\lambda_2\lceil\epsilon_1^+\rfloor^{2\alpha-1}$ with $\epsilon_1^+=0$ become inoperative

Semi-implicit Homogeneous Euler differentiators 1/2

Semi-implicit Euler homogeneous differentiator (SIHD-1 version)

The first scheme SIHD1 allows to overcome the drawbacks of these two previous numerical schemes

$$\begin{cases}
z_1^+ = z_1 + h \left(z_2^+ + \lambda_1 \mu |\epsilon_1|^{\alpha} \mathcal{N}_1 \right) \\
z_2^+ = z_2 + \mathcal{E}_1^+ h \lambda_2 \mu^2 |\epsilon_1|^{2\alpha - 1} \mathcal{N}_1
\end{cases}$$
(10)

The def. of the single projector \mathcal{N}_1 (associated to the enabling flag E_1^+) reads:

$$\mathcal{N}_{1}(\epsilon_{1}) := \begin{cases} \epsilon_{1} \in SD & \rightarrow \mathcal{N}_{1} = \frac{\lceil \epsilon_{1} \rfloor^{1-\alpha}}{\lambda_{1}\mu h}, \quad \mathbf{E}_{1}^{+} = 1 \\ \epsilon_{1} \notin SD & \rightarrow \mathcal{N}_{1} = \operatorname{sign}(\epsilon_{1}), \quad \mathbf{E}_{1}^{+} = 0 \end{cases}$$

$$(11)$$

Semi-implicit Homogeneous Euler differentiators 2/2 Semi-implicit homogeneous Euler discretization (SIHD-2 version)

$$\begin{cases}
z_1^+ = z_1 + h \left(z_2^+ + \lambda_1 \mu |\epsilon_1|^{\alpha} \mathcal{N}_1 \right) \\
z_2^+ = z_2 + \mathcal{E}_1^+ h \lambda_2 \mu^2 |\epsilon_1|^{2\alpha - 1} \mathcal{N}_2
\end{cases}$$
(12)

with the projector \mathcal{N}_1 and the flag E_1^+ defined in (11) and when $\epsilon_1 \in SD$ $\epsilon_1 = h \, \epsilon_2$ holds, \mathcal{N}_2 reads as:

$$\mathcal{N}_{2} := \begin{cases} \epsilon_{1} \in SD' \to \mathcal{N}_{2} = \frac{\lceil \epsilon_{1} \rfloor^{2(1-\alpha)}}{\lambda_{2}h^{2}\mu^{2}} \\ \epsilon_{1} \notin SD' \to \mathcal{N}_{2} = \operatorname{sign}(\epsilon_{1}) \end{cases}$$
(13)

$$SD' = \{\epsilon_1 \in SD/\left|\epsilon_1\right| \le (\lambda_1 \mu^2 h^2)^{\frac{1}{2(1-\alpha)}} \equiv |\epsilon_2| \le (\lambda_1 \mu^2)^{\frac{1}{2(1-\alpha)}} h^{\frac{\alpha}{1-\alpha}} \}.$$

Experimental validation 1/4

Condition of data capture

- For each of the eight electrical motors an encoder sensor measures the angular variable of its shaft
- The eight motors with a gearbox reducer of ratio n = 8
- The measured value of the angular position at the output shaft of the gearbox reducer
- The sampling period of the acquisition data is equal to 1 ms
- The recording data in position are processed off-line in order to apply the semi-implicit homogeneous Euler discretized differentiators SIHD-1 and SIHD-2

Experimental validation 2/4

Attenuation noise projectors (SIHD $_{\theta}$ -1)

Measured angular positions noisy $y\Rightarrow y_m=x_1+\eta$ where η is a measurement noise (the output corrective term e_1 becomes $e_{1m}=y_m-z_1$) \Rightarrow a modified projector including a new parameter θ to extend SIHD-1 and SIHD-2 in order to mitigate the influence of noise

$$\begin{cases}
z_{1}^{+} = z_{1} + h \left(z_{2}^{+} + \lambda_{1} \mu | \epsilon_{1m} |^{\alpha} \mathcal{N}_{\theta_{1}} \right) \\
z_{2}^{+} = z_{2} + \mathcal{E}_{\theta_{1}}^{+} h \lambda_{2} \mu^{2} | \epsilon_{1m} |^{2 \alpha - 1} \mathcal{N}_{\theta_{1}}
\end{cases}$$
(14)

$$\mathcal{N}_{\theta_{\mathbf{1}}} := \begin{cases} (1-\theta)|\epsilon_{1m}|^{1-\alpha} < \lambda_{1}\mu h & \to \mathcal{N}_{\theta_{\mathbf{1}}} = \frac{(1-\theta)\lceil\epsilon_{1m}\rfloor^{1-\alpha}}{\lambda_{1}h\mu} \\ (1-\theta)|\epsilon_{1m}|^{1-\alpha} \ge \lambda_{1}\mu h & \to \mathcal{N}_{\theta_{\mathbf{1}}} = \operatorname{sign}(\epsilon_{1m}) \end{cases}$$

Experimental validation 3/4

Attenuation noise projectors (SIHD $_{\theta}$ -2)

$$\begin{cases}
z_{1}^{+} = z_{1} + h \left(z_{2}^{+} + \lambda_{1} \mu | \epsilon_{1m} |^{\alpha} \mathcal{N}_{\theta_{1}} \right) \\
z_{2}^{+} = z_{2} + \mathcal{E}_{\theta_{1}}^{+} h \lambda_{2} \mu^{2} | \epsilon_{1m} |^{2 \alpha - 1} \mathcal{N}_{\theta_{2}}
\end{cases}$$
(15)

$$\mathcal{N}_{\theta_2} := \begin{cases} (1-\theta) \left| \epsilon_{1m} \right|^{2(1-\alpha)} < \lambda_2 \mu^2 h^2 \to \mathcal{N}_{\theta_2} = \frac{(1-\theta) \left\lceil \epsilon_{1m} \right\rfloor^{2(1-\alpha)}}{\lambda_2 h^2 \mu^2} \\ (1-\theta) \left| \epsilon_{1m} \right|^{2(1-\alpha)} \ge \lambda_2 \mu^2 h^2 \to \mathcal{N}_{\theta_2} = \operatorname{sign}(\epsilon_{1m}) \end{cases}$$

Experimental validation 4/4

Parameter setting

- λ_i , i = 1, 2 parameters chosen such as the linear part stable
- Value of homogeneous exponent α is chosen between the coefficient of Levant's differentiator ($\alpha=0.5$) and the linear solution of the discretized differentiators SIHD-1 and SIHD-2 ($\alpha=1$)
- The parameter θ is chosen by numerical test trial and error allowing a good filtering of the noise *i.e.* $0.5 < \theta < 1$
- Numerical values:

$$\lambda_1 = 2 \ 10^4, \quad \lambda_2 = 1 \ 10^4, \quad \alpha = 0.81, \quad \theta = 0.9, \quad \mu = 1$$
 (16)

Experimental Results 1/5

Comparison between back. difference method, SIHD-1 and SIHD-2

Experimental Results 2/5

Comparison between back. difference method, SIHD-1 and SIHD-2

Experimental Results 3/5

Comparison between back difference method, SIHD-1 and SIHD-2

Experimental Results 4/5

Comparison between back difference method, SIHD-1 and SIHD-2

Experimental Results 5/5

Discussion

- Performances of these differentiators are almost uniform whatever the motor
- Angular velocities are smoother *i.e.* less noisy than the reference velocities obtained by backward difference
- Dynamics of the three signals are similar / Transient behavior of the velocity with SIHD-2 is better than with Euler differentiator SIHD-1
- No tachymeter sensor on the motor shaft ⇒ difficult to consider the backward difference signal as the reference velocity
- Evaluation of the sensitivity to noise, for example with motor 4

	angular velocity (rad/s)		
	σ , BD	σ , SIHD-1	σ SIHD2
motor 4	0.032	0.017	0.017

Conclusion, perspectives

Conclusion

- Cable-driven parallel robot CRAFT: a complex mechanical system
- CRAFT promising for handling, rescue, or personal assistance
- Two new semi-implicit homogeneous differentiators applied with success to estimate the angular velocity of the output shaft of the eight motors of CRAFT
- Good experimental results: less noisy that the one calculated with backward difference

Perspectives.

- Cascaded utilization to estimate the acceleration ;-)
- Semi-implicit homogeneous differentiators for identification tasks of model parameters
- Co-manipulation between its effector and human thanks to a force sensor

