Data-driven End-to-End Equivalence Checking of HLS Synthesis (DEEQ) Review

Lakshita Singhal, Prashant Pandey, Chaitanya Tejaswi, Archisman Dey, Manchikatla Navya Sri

CS577: C-Based VLSI Design

Indian Institute of Technology, Guwahati April 23, 2022

Behavioral specification (e.g., C, C++) Preprocessing Scheduling Allocation and Binding Datapath and Controller generator RTL (VHDL, Verilog)

Is the problem of HLS Verification still relevant?

- Most works target "Scheduling", not "Allocation/Binding" & "Datapath Generation" phases.
- C/Verilog equivalence checking (using intermediate info) (6).
- v2c (Verilog to C) (7) generates incorrect C code using VivadoHLS.
- Fuzzy-Search suggested VivadoHLS generates 2.5% incorrect RTL from C (5).

C & RTL-C Equivalence Checking Workflow (1), (2)

Figure: C & RTL-C Equivalence Checking Workflow (1), (2)

C & RTL-C Equivalence Checking Workflow (1)

Figure: C & RTL-C Equivalence Checking Workflow (1)

C & RTL-C Equivalence Checking Workflow (1)

Figure: C & RTL-C Equivalence Checking Workflow (1), (2)

Equivalence Checking Example: if/else (1)

C-codeblock presented to SAT solver in CNF Form

Figure: Equivalence-Checking of FSMDs before/after pre-processing

Equivalence Checking Example: GCD (3)

Figure: Equivalence-Checking of FSMDs of GCD before/after scheduling

Setup

- DEEQ is written in Python
- 2 Tested on benchmarks CHStone (4)
- VivadoHLS generates RTL (verilog) from HLS-C (C code of benchmarks)
- o pyVerilog extracts AST from RTL; rewrite to form RTL-C using FastSim
- 5 Traces of both behaviours are obtained using Klee
- 6 Equivalence of two traces is verified using SMT Solver (Z3)

Benchmarks

CHStone

The CHStone benchmark suite has been developed for C-based high-level synthesis (HLS). The CHStone benchmark suite selected programs of various application domains, some of which originally belong to other benchmark suites. The CHStone suite includes the following programs.

- DFADD: Double-precision floating-point addition
- DFMUL: Double-precision floating-point multiplication
- · DFDIV: Double-precision floating-point division
- DFSIN: Sine function for double-precision floating-point numbers
- · MIPS: Simplified MIPS processor
- · ADPCM: Adaptive differential pulse code modulation decoder and encoder
- GSM: Linear predictive coding analysis of global system for mobile communications
- · JPEG: JPEG image decompression
- MOTION: Motion vector decoding of the MPEG-2
- · AES: Advanced encryption standard
- · BLOWFISH: Data encryption standard
- SHA: Secure hash algorithm

Results

Bench	#in	#out	C code		RTL code		RTL-C		Traces			Equivalent		Not Equivalent	
			#line	#var	#line	#regs	#line	#var	#C	#RTLC	#merged	time (s)	result	time (s)	result
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Waka	20	3	33	32	270	12	382	126	3	4	(3, 3)	1.709	Eq	0.669s	NEq
Arf	11	4	53	43	351	19	607	158	4	4	(3, 3)	1.890	Eq	0.949	NEq
Parker	6	- 1	62	14	196	10	275	100	12	23	(2, 2)	1.614	Eq	0.976	NEq
FindMin8	8	- 1	40	15	175	11	780	243	128	128	(8, 8)	22.246	Eq	17.141	NEq
MatrixAdd	2	1	48	7	734	44	2595	241	1	1	(1, 1)	1.684	Eq	0.749	NEq
SumArray	1	1	19	4	263	15	541	100	1	1	(1, 1)	0.754	Eq	0.706	NEq
Motion	10	3	52	43	413	29	881	235	1	1	(1, 1)	0.681	Eq	0.663	NEq
Dfadd	2	- 1	719	70	1975	113	9353	1041	67	68	(21,42)	1016.052	Eq	960.238	NEq

Figure: Results for CHStone Benchmarks

Usefulness

- Benchmarks consist of complex if-else (find-Min8), loops & arrays (matrixAdd, sumArray), complex arithmetic operations (arf and motion), and function calls (dfadd).
- 2 dfadd has 9k lines of RTL-C code.
- Since DEEQ merges compatible traces before checking equivalence, and uses a data-driven approach, it is expected to scale well to larger benchmarks.
- Oetects reported bug in VivadoHLS (5) a large int is shifted repeatedly by array values non-equivalence reported as 73741823 (HLS-C) and 6632959 (RTL-C).

pproach Examples Implementation References
00000 00 000 0

References

- [1] M. Abderehman, R. T. Reddy, and C. Karfa, "Deeq: Data-driven end-to-end equivalence checking of high-level synthesis," in 23rd International Symposium on Quality Electronic Design (ISQED'22), ACM/IEEE, 2022.
- [2] M. Abderehman, J. Patidar, J. Oza, Y. Nigam, T. A. Khader, and C. Karfa, "Fastsim: A fast simulation framework for high-level synthesis," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, pp. 1–1, 2021.
- [3] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, "An equivalence-checking method for scheduling verification in high-level synthesis," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 27, no. 3, pp. 556–569, 2008.
- [4] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, "Proposal and quantitative analysis of the chstone benchmark program suite for practical c-based high-level synthesis," *Journal of Information Processing*, vol. 17, pp. 242–254, 2009.
- [5] Y. Herklotz, Z. Du, N. Ramanathan, and J. Wickerson, "An empirical study of the reliability of high-level synthesis tools," in 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 219–223, 2021.
- [6] D. B. A. Leung and S. Lerner, "C-to-verilog translation validation," in *Proceedings of the 2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign*, MEMOCODE '15, (USA), p. 42–47, IEEE Computer Society, 2015.
- [7] R. Mukherjee, M. Tautschnig, and D. Kroening, "V2c a verilog to c translator," in Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume 9636, (Berlin, Heidelberg), p. 580–586, Springer-Verlag, 2016.

Thank You!