1. 표지양식

제목: 물질의 분자량 측정

실험일시 : 2020.4.23. (목) 1,2 교시

성 명 : 정 현 서 (학번: 32204233)

2. 내용

1) 목적

- 미지의 유기 성분이 함유된 수용액의 어는점 강하를 측정하여 그 유기 성 분의 분자량을 결정함.

2) 원리(이론)

- 비휘발성 용매가 녹아있는 용액의 어는점은 순수한 용매의 어는점보다 낮음. 어는점 강하 또는 변화는 아래의 식으로 주어질 수 있음.

$$\Delta T_r = K_f m --(1)$$

$$\Delta T_f = T_f - T^0 m --(2)$$

- 여기서, T_f 는 용액의 어는점(°C)이며, T_f^o 는 순수 용매의 어는점(°C)임. K_f 는 어는점 강하 상수이며, 단지 용매에 따라서만 변함. 물의 경우, K_f =1.86°C /molal, m은 몰랄농도(molal concentration)이며 식 (3)과 같이 정의할 수 있음.

$$m = \frac{(moles of solute)}{kg \ solvent} = \frac{(grams \ of \ soulte)/MW}{kg \ solvent} \quad --(3)$$

- MW는 용질의 분자량을 나타냄. 어는점 강하를 측정하여 미지 성분의 분자량을 계산하기 위해서는 순수한 용매와 미지의 성분이 들어있는 용액의 어는점을 측정하여야 함. 그러면 식 (2)로부터 ΔT_f 를 구할 수 있음. 용액의 몰랄 농도(molality)는 식 (1)로부터 계산이 가능함. 따라서 식 (3)을 다시 정리하여 MW에 대하여 계산하면 용질의 분자량을 계산할 수 있게 됨. 물질의 분자량은 아래와 같이 계산할 수도 있음.

$$MW = \frac{(grams \, of \, solute)}{(m)(kg \, solvent)}$$

- 본 실험을 실시하기 위해서는 순수한 용매, 물, 그리고 미지의 성분이 들어 있는 수용액의 어는점들을 각각 측정하여야 함. 순수한 물의 어는점은 물 시료를 냉각시키면서 시간에 따라 그 온도를 측정해보면 가능함. 결과적으로 얻어지는 냉각 곡선을 그림 14.1에 나타냄.

- 액체는 평형 어는점보다 낮은 온도로 냉각될 수 있음. 이와 같은 경우를 그림 14.1에 나타낸 바와 같이 초냉각(supercooling)이라고 함. 초냉각은 냉각 시, 연속적인 저어줌으로써 최소하 할 수 있음. 온도는 어는점에서 일정하게 유지되는데, 이는 액체가 고체화될 때 녹는열과 동일한 양의 열이 방출되기 때문임. 실제 어는점은 냉각 곡선의 수평 부분에 해당됨.
- 용액의 어는점도 용매의 어는점 결정과 같은 방법으로 결정할 수 있음. 그러나 이때의 냉각 곡선은 그림 14.2와 같이 다른 형태를 보임. 어는점에서의 곡선은 앞에서와 같이 수평한 상태를 나타내지 않음. 오히려 어는점에서 약간의 불연속이 발생하는 것을 볼 수 있음. 이 불연속은 초냉각에 의해 발생하는 것으로 알려져 있고, 만일 그것이 사실이라면, 선 ab를 그어 외삽하는 과정이 필요하게 됨.
- 어는점에서 냉각 곡선이 수평하지 않은 이유는 용액이 어는 과정에서 액체의 조성이 변하기 때문임. 어는점에서 발생하는 고체상은 순수한 용매에 의해형성되는 것임. 결과적응로, 결빙이 발생할 때, 용액의 농도는 증가하고 어는점은 감소함.

3) 기구 장치

- 증류수, 얼음, 미지시료, 염화나트륨(NaCl), 온도계, 스탠드 및 클램프, 비커, 초시계, 시험관, 고무마개(영상에서는 클램프로 대체), magnetic bar

4) 실험방법

- 용매의 어는점 측정을 위해서 증류수 20mL를 준비하고 시험관에 담아줌.
- 용매의 온도를 내려야함으로 얼음을 넣어줌.
- 그리고 주변열을 흡수할 수 있도록 NaCl도 넣어줌.
- 시험관 안에서 magnetic bar가 돌아가는 모습을 볼 수 있음.
- 이렇게 스탠드와 클램프, 온도계를 이용해서 장치한 다음 용매의 온도가 4℃가 되면 그때부터 30초마다 온도를 측정해줌.
- 이제부터는 증류수 20mL에 미지시료를 넣은 용액을 가지고 같은 과정을 반복해줌.
- 실험결과를 보고 같은 온도가 6번 이상 나오면 그 온도를 어는점이라고 결정함.

5) 실험결과

	Ĭ Ť	,	혼합 용액	물-미지시료		물			
온도(℃)	시간(분)	온도(℃)	시간(분)	온도(℃)	시간(분)	온도(°C)	시간(분)	온도(°C)	시간(분)
-1	19.0	0.8	9.5	4	0.0	1	9.5	4	0.0
-1.2	19,5	0.75	10.0	4	0.5	0.9	10.0	4	0.5
-1.5	20.0	0.5	10.5	3.8	1.0	0.9	10.5	3.9	1.0
-1.5	20.5	0.5	11,0	3.5	1,5	0.9	11.0	3.75	1.5
-1.5	21.0	0.25	11.5	3.2	2.0	0.75	11.5	3.1	2.0
-1.8	21.5	0.1	12.0	2.8	2.5	0.5	12.0	3	2.5
-2	22.0	0.1	12.5	2.5	3.0		1102211	3	
-2.2	22.5	0	13.0	2.1	3.5	0.5	12.5		3.0
-2.5	23.0	0	13.5	2	4.0	0.25	13.0	2,9	3.5
-2.5	23.5	0	14.0	2	4.5	0.1	13.5	2.75	4.0
-2,75	24,0	0	14.5	1.9	5.0	0.1	14.0	2.5	4.5
-2.9	24,5	-0.1	15.0	1.5	5.5	0	14.5	2.1	5.0
-2.9	25.0	-0.25	15.5	1,5	6.0	0	15.0	2	5.5
-3	25.5	-0.5	16.0	1.25	6.5	0	15.5	2	6.0
-3.1	26.0	-0.5	16.5	1	7.0	0	16.0	2	6.5
-3.2	26.5	-0.75	17,0	1	7.5	10711	0.000.00		5
-3.2	27.0	-0.8	17.5	0.9	8.0	0	16.5	1.9	7.0
-3.2	27.5	-0.9	18.0	0.8	I 8.5	0	17.0	1.75	7.5
-3.2	28.0	-1	18.5	0.8	9.0		17.5	1.5	8.0
-3.2	28.5						18.0	1,25	8.5
-3.2	29,0						18.5	1,1	9.0

6) 결과 및 토의

- 물과 물-미지시료 혼합 용액의 어는점 측정

물: 0℃ 물-미지시료 혼합 용액: -3.2℃

- 물과 물-미지시료 혼합용액의 몰랄농도 측정

물-미지시료 혼합 용액: (mol/g)

- 미지시료의 분자량 측정

물의 질량(g)	
물의 어는점(℃)	
물-미지시료 혼합 용액의 어는점(℃)	
어는점 내림(℃)	
물의 어는점 내림 상수(°Ckg/mol)	1.86
물에 녹아있는 미지시료의 질량(g)	2
미지시료의 분자량	

⁻ 미지시료는 무엇인가?