ME 3109: Measurement & Instrumentation

Azmir Hasan Mojumder

Lecturer

Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology

ME 3109: Measurement & Instrumentation

Topic_03: Analogue Signal Processing ^[2]	
1	Ideal Operational Amplifier (Op Amp)
2	Real Op Amp
3	Practical Example

[2] Histand, "Introduction to Mechatronics & Measurement Systems", 4th Edition

(C) AHM

1. Ideal Op Amp: Op Amp Jungle

Reasons for Selecting Op Amp:

- ✓ Transducer converts physical quantities into analogue voltage or current
- ✓ These Signals are often too small, noisy, possess DC offset
- ✓ Op Amp is used to process these analogue signals
- ✓ Op Amp is an IC and active device; usually require ± 15 V
- ✓ Building block of many important circuits such as Amplifiers; Integrator; Differentiator; Summer; Comparator; A/D and D/A converter; Active filter; Sample and Hold circuit etc.
- ✓ Op Amp are very easy to work with
- ✓ High input impedance and low output impedance
- ✓ Don't connect to power supply incorrectly! Might blow up

Ideal Model of Op Amp:

Op Amp Assumptions:

Figure 5.4 Op amp equivalent circuit.

It has infinite impedance at both inputs; hence, no current is drawn from the
input circuits. Therefore,

$$I_{+} = I_{-} = 0 ag{5.4}$$

It has infinite gain. As a consequence, the difference between the input voltages
must be 0; otherwise, the output would be infinite. This is denoted in Figure 5.4
by the shorting of the two inputs. Therefore,

$$V_{+} = V_{-} \tag{5.5}$$

Even though we indicate a short between the two inputs, we assume no current may flow through this short.

It has zero output impedance. Therefore, the output voltage does not depend on the output current.

> 4 This "illogical" ideal Op Amp provides close approximation of real of Amp.

Inverting Amplifier:

Non-inverting Amplifier:

- ✓ Positive gain greater than or equal to 1 (Don't forget get low of the modynamics)!
- ✓ Useful in isolating one portion of a circuit from another

Buffer of Follower:

- ✓ R_F =0 and R=∞
- ✓ It has a high input impedance and low output impedance
- ✓ This circuit is useful in applications where you need to couple to a voltage signal without loading the source of the voltage

Summer:

$$V_{\text{out}} = -\frac{R_3}{R_1} V_1 - \frac{R_3}{R_2} V_2 = -\left(\frac{R_3}{R_1} V_1 + \frac{R_3}{R_2} V_2\right)$$
Let: $R_1 = R_2 = R_3$

$$V_{\text{out}} = -\left(V_1 + V_2\right)$$

Summer:

Difference Amplifier:

Difference Amplifier:

2nd, V₁ Shoreted and R₁
gnounded

$$= \bigvee_{\substack{P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \\ P_7 \\ P_8 \\ P_8$$

Instrumentation Amplifier:

✓ Large Common Mode Rejection Ratio (CMRR). Ideal amplifier CMRR is infinite.

Difference Mode Gain -> Amplification of average of Vins

- ✓ Very high input impedance
- ✓ Low-level signals in a noisy environment
- ✓ Consistent bandwidth over a large range of gains
- ✓ A single external resistor is used to set the gain.
- ✓ This gain can be higher and more stable

Integrator:

Integrator:

- ✓ The resistor R_s placed across the feedback capacitor is called a shunt resistor whose purpose is to limit the low-frequency gain of the circuit
- ✓ The circuit on the right acts as an integrator only for a range of frequencies
- \checkmark Any DC offset due to the input bias current is minimized by R_2

Differentiator:

$$I_{C} = C \frac{dV}{dt} = C \frac{d(V_{in} - V_{-})}{dt} = C \frac{d(V_{in} - 0V)}{dt} = C \frac{dV_{in}}{dt}$$

$$I_{R} = \frac{V_{out} - V_{-}}{R} = \frac{V_{out} - 0V}{R} = \frac{V_{out}}{R}$$

$$I_{R} + I_{C} = 0$$

$$V_{out} = -RC \frac{dV_{in}}{dt}$$

Differentiator:

An additional input-bias compensation resistor placed between the noninverting input and ground may be needed to avoid offset error caused by input bias current

Comparator:

$$V_{\text{out}} = \begin{cases} +V_{\text{sat}} & V_{\text{in}} > V_{\text{ref}} \\ -V_{\text{sat}} & V_{\text{in}} < V_{\text{ref}} \end{cases}$$

Sample and Hold Circuit:

- ✓ Used extensively in analog-to-digital (ADC) conversion to stabilize the signal during conversion
- ✓ Low leakage capacitor is a good choice

2. Real Op Amp

Two important characteristics of a real op amp are associated with its response to a

square wave input:

☐ Slew rate → 44

☐ Rise time

Input Resistance
Max. Output Voltage
Gain-Bandwidth Product (GBP)
CMRR

2. Real Op Amp

3. Practical Example

Kilian, "Modern Control Technology", 2nd Edition

Problems

1. Calculate the output voltage (V_o) if $V_1 = V_2 = 0.15V$

2. Determine the output voltage (V_o) for this circuit with a sinusoidal input of 2.5 mV.

Problems

3. Determine the output voltage (V_0) when $V_1 = V_2 = 1$ V

Problems

4. Calculate the input voltage (V_1) if the final output (V_0) is 10.08 V

Reading

Introduction to Mechatronics and Measurement Systems, 4th Edition, *David G. Alciatore & Michael B. Histand*

Chapter 5

(C) AHM

ME 3109: Measurement & Instrumentation

Thank you