| Miejsce na identyfikację szkoły |
|---------------------------------|

# ARKUSZ PRÓBNEJ MATURY **Z OPERONEM MATEMATYKA**

#### POZIOM PODSTAWOWY

Czas pracy: 170 minut

#### Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1.–35.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.
- 3. W zadaniach zamkniętych (1.–28.) zaznacz jedną poprawną odpowiedź.
- 4. W rozwiązaniach zadań otwartych (29.–35.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Zapisy w brudnopisie nie będą oceniane.
- 8. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

wszystkich zadań można otrzymać łącznie 45 punktów.

**KOD** 

**ZDAJĄCEGO** 

### Życzymy powodzenia!

Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione. Za rozwiązanie

2021/2022

N7699\_PP\_arkusz\_1.indd 1 2021-10-08 14:35:33

# Więcej arkuszy znajdziesz na stronie: arkusze.pl

#### ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 28. wybierz i zaznacz jedną poprawną odpowiedź.

#### **Zadanie 1.** (0–1)

Wyrażenie  $\frac{10^{13} \cdot 7^{13}}{14^{13} \cdot 5^{10}}$  jest równe:

**A.** 
$$7^2$$

**B.** 
$$2^{10}$$

$$C. 5^3$$

**D.** 
$$10^5$$

#### **Zadanie 2.** (0–1)

Liczbą odwrotną do liczby  $\frac{1+\sqrt{3}}{2}$  jest liczba:

**A.** 
$$-\frac{1+\sqrt{3}}{2}$$

**B.** 
$$3\sqrt{3} + 1$$

**B.** 
$$3\sqrt{3} + 1$$
 **C.**  $\frac{3 - \sqrt{3}}{2}$ 

**D.** 
$$\sqrt{3} - 1$$

#### **Zadanie 3.** (0–1)

Najmniejsza wartość wyrażenia (x - y)(x + y) dla  $x, y \in \{2, 3, 4\}$  jest równa:

$$A. -12$$

### **Zadanie 4.** (0–1)

Laptop kosztował 1500 zł. Jego cenę obniżono o 20%, a następnie podwyższono o 20%. Po tych operacjach laptop kosztuje:

# **Zadanie 5.** (0–1)

Wartość wyrażenia  $3\log_4 2 + \log_4 32$  jest równa:

## **Zadanie 6.** (0–1)

Największą liczbą całkowitą spełniającą nierówność  $\sqrt{2} - \frac{x}{3} \ge 0$  jest: **A.**  $-3\sqrt{2}$  **B.** 4 **C.**  $3\sqrt{2}$ 

**A.** 
$$-3\sqrt{2}$$

**C.** 
$$3\sqrt{2}$$

## **Zadanie** 7. (0–1)

Suma pierwiastków równania  $x(x^2 + 16)(x - 11)(x + 12) = 0$  wynosi:

$$\mathbf{C}$$
.  $-1$ 

**D.** 
$$-2$$



#### **Zadanie 8.** (0–1)

Wykresem funkcji kwadratowej  $f(x) = -2(x+3)^2 - 4$  jest parabola, a osią symetrii tej paraboli jest prosta o równaniu:

**A.** 
$$x = 3$$

**B.** 
$$x = -3$$

**C.** 
$$x = 4$$

**D.** 
$$x = -4$$

#### **Zadanie 9.** (0–1)

Funkcja liniowa  $f(x) = (m - \sqrt{2})x + 11$  jest rosnąca dla:

**A.** 
$$m \ge \sqrt{2}$$

**B.** 
$$m \le \sqrt{2}$$

**C.** 
$$m < \sqrt{2}$$

**D.** 
$$m > \sqrt{2}$$

### **Zadanie 10. (0–1)**

Prostą równoległą do prostej k: 3x + 2y - 5 = 0, przechodzącą przez punkt P = (2, -5), jest pro-

**A.** 
$$l: y = -\frac{3}{2}x - 2$$

**B.** 
$$l: y = \frac{3}{2}x - 2$$

**A.** 
$$l: y = -\frac{3}{2}x - 2$$
 **B.**  $l: y = \frac{3}{2}x - 2$  **C.**  $l: y = -\frac{3}{2}x + 2$  **D.**  $l: y = \frac{3}{2}x + 2$ 

**D.** 
$$l: y = \frac{3}{2}x + 2$$

### Zadanie 11. (0-1)

Wierzchołkiem paraboli będącej wykresem funkcji  $f(x) = 3x^2 - 30x + 82$  jest punkt:

**A.** 
$$W = (-5,7)$$

**B.** 
$$W = (5, -7)$$

**C.** 
$$W = (5,7)$$

**B.** 
$$W = (5, -7)$$
 **C.**  $W = (5, 7)$  **D.**  $W = (-5, -7)$ 

## Zadanie 12. (0-1)

W rosnącym ciągu arytmetycznym spełniony jest warunek  $a_3 + a_7 = 28$ , więc:

**A.** 
$$a_5 = 14$$

**B.** 
$$a_5 = 7$$

**C.** 
$$a_5 = 21$$

**D.** 
$$a_5 = 12$$

# Zadanie 13. (0-1)

Dany jest trzywyrazowy ciąg geometryczny (3, 6, 5x + 2). Zatem:

**A.** 
$$x = -6$$

**B.** 
$$x = 2$$

**C.** 
$$x = 6$$

**D.** 
$$x = -2$$

## **Zadanie 14.** (0–1)

W ciągu liczbowym  $a_n = \left(-1\right)^{2n+1} \cdot \left(2^{n-1}-1\right)$  dla  $n \ge 1$  suma  $a_5 + a_{11}$  jest równa:

$$C. -1024$$



# Więcej arkuszy znajdziesz na stronie: arkusze.pl

### Zadanie 15. (0-1)

Zbiorem wartości funkcji, której wykres przedstawiono na rysunku, jest zbiór:



**B.** 
$$(-6, 6)$$

**C.** 
$$(-6, 3)$$

**D.** 
$$\langle -6, 3 \rangle$$



### Zadanie 16. (0-1)

Miara kata wewnętrznego wielokata foremnego wynosi 156°. Ten wielokat, to:

A. dziesięciokąt

B. dwunastokat

C. piętnastokat

D. dwudziestokat

### Zadanie 17. (0-1)

Zaznaczone na rysunku kąty  $\alpha, \beta, \gamma$  mają miary:

**A.** 
$$\alpha = 60^{\circ}$$
,  $\beta = 30^{\circ}$ ,  $\gamma = 30^{\circ}$ 

**B.** 
$$\alpha = 50^{\circ}$$
,  $\beta = 40^{\circ}$ ,  $\gamma = 40^{\circ}$ 

**C.** 
$$\alpha = 70^{\circ}$$
,  $\beta = 20^{\circ}$ ,  $\gamma = 20^{\circ}$ 

**D.** 
$$\alpha = 30^{\circ}$$
,  $\beta = 60^{\circ}$ ,  $\gamma = 60^{\circ}$ 



### Zadanie 18. (0-1)

Pole trapezu równoramiennego o wysokości 5 jest równe 45. Odcinek łączący środki ramion tego trapezu ma długość:

**A.** 
$$5\sqrt{3}$$

**B.** 
$$9\sqrt{3}$$

# **Zadanie 19.** (0–1)

W trójkącie KLM punkt A leży na boku KM, a punkt B leży na boku LM. Odcinek AB jest równoległy do boku KL oraz |KL| = 9, |KA| = 3, |AB| = 4 (zobacz rysunek).

Odcinek AM ma długość:



#### Zadanie 20. (0-1)

Wartość wyrażenia  $(tg\alpha - tg^2\alpha) \cdot \cos\alpha$  dla kąta ostrego  $\alpha$ , dla którego  $\sin\alpha = \frac{3}{5}$ , wynosi:

**A.** 
$$\frac{16}{25}$$

**B.** 
$$\frac{3}{10}$$

$$C.\frac{3}{20}$$

**D.** 
$$\frac{1}{10}$$



#### **Zadanie 21.** (0–1)

Punkty A = (3, -2) i C = (-2, 3) są przeciwległymi wierzchołkami kwadratu *ABCD*.

Obwód tego kwadratu jest równy:

**A.** 
$$25\sqrt{6}$$

**B.** 
$$5\sqrt{2}$$

**C.** 
$$10\sqrt{3}$$

#### Zadanie 22. (0-1)

Objętość sześcianu, którego suma długości krawędzi jest równa 72, wynosi:

### Zadanie 23. (0-1)

Objętość prostopadłościanu, którego każda następna krawędź jest dwa razy dłuższa od poprzedniej, wynosi 216. Pole powierzchni tego prostopadłościanu jest równe:

#### Zadanie 24. (0-1)

Przekątna graniastosłupa prawidłowego czworokątnego o długości d jest nachylona do płaszczyzny podstawy pod kątem  $\alpha$  takim, że  $\sin \alpha = \frac{\sqrt{2}}{2}$ . Objętość tego graniastosłupa wyraża się

wzorem:

**A.** 
$$\frac{\sqrt{2}}{2}d^3$$

**B.** 
$$\frac{\sqrt{2}}{4}d^3$$

**B.** 
$$\frac{\sqrt{2}}{4}d^3$$
 **C.**  $\frac{\sqrt{2}}{8}d^3$  **D.**  $\frac{\sqrt{2}}{10}d^3$ 

**D.** 
$$\frac{\sqrt{2}}{10}d^3$$

## Zadanie 25. (0-1)

Na diagramie słupkowym przedstawiono oceny końcowe ucznia.



Mediana ocen ucznia jest równa:

**A.** 3

**B.** 3,5

**C.** 4

**D.** 4,5

## Zadanie 26. (0-1)

Mediana zestawu danych: 1, 1, 2, 2, x, 4, 6, 7, 9, 11, wynosi 3,5.

Zatem średnia arytmetyczna tego zestawu jest równa:

**A.** 4,6

**B.** 6.5

C. 7,25

**D.** 8,75



#### Zadanie 27. (0-1)

Wyniki dwukrotnego rzutu sześcienną kostką do gry zapisujemy jako liczby dwucyfrowe. Prawdopodobieństwo otrzymania liczby podzielnej przez 4 wynosi:

**A.** 
$$\frac{1}{3}$$

**B.** 
$$\frac{1}{4}$$

C. 
$$\frac{3}{4}$$

**D.** 
$$\frac{2}{3}$$

### Zadanie 28. (0-1)

Rzucamy dwa razy monetą i dwa razy sześcienną kostką do gry. Wyniki zapisujemy w kolejności rzutów: moneta, moneta, kostka, kostka. Prawdopodobieństwo otrzymania dokładnie dwóch orłów i tych samych liczb oczek wynosi:

**A.** 
$$\frac{1}{24}$$

**B.** 
$$\frac{1}{72}$$

$$C.\frac{1}{6}$$

**D.** 
$$\frac{1}{12}$$



#### **ZADANIA OTWARTE**

Rozwiązania zadań 29.–35. należy zapisać w wyznaczonych miejscach pod treścią zadania.

## **Zadanie 29.** (0-2)

Rozwiąż nierówność  $(x-1)^2 \le \frac{3}{2}$ .



Odpowiedź: .....

# **Zadanie 30.** (0–2)

Uzasadnij, że dla każdej dodatniej liczby naturalnej n liczba  $4^{n+1} - 3^{n+2} + 4^n - 3^n$  jest podzielna przez 5.



#### Zadanie 31. (0-2)

Suma sześciu początkowych wyrazów ciągu arytmetycznego wynosi 72, a szósty wyraz tego ciągu jest równy 22. Oblicz pierwszy wyraz tego ciągu.



Odpowiedź:

#### Zadanie 32. (0-2)

Oblicz miary kątów równoległoboku o bokach długości 5 i 12 oraz o polu równym 30.



Odpowiedź:

#### Zadanie 33. (0-2)

Przekątna AC rombu ABCD o wierzchołkach A(-7,2), B(5,-3) ma długość 24. Oblicz długość przekątnej BD tego rombu.



Odpowiedź:

16

N7699\_PP\_arkusz\_1.indd 16 2021-10-08 14:35:58

#### Zadanie 34. (0-3)

Krawędzie prostopadłościanu wychodzące z jednego wierzchołka mają długości będące kolejnymi liczbami nieparzystymi. Suma długości wszystkich krawędzi tego prostopadłościanu wynosi 60. Oblicz objętość i pole powierzchni tej bryły.



Odpowiedź: .....

#### Zadanie 35. (0-4)

Funkcja kwadratowa  $f(x) = ax^2 + bx + c$  ma dwa miejsca zerowe  $x_1 = -2\frac{1}{2}$  i  $x_2 = 1$ . Wykres funkcji f przechodzi przez punkt A(-3,8). Wyznacz najmniejszą wartość funkcji f.



Odpowiedź: .....



