THUPC2022 背包

ltst

THU IIIS

2023年2月25日

简要题意

有 n 种物品,第 i 种物品单个体积为 v_i 、价值为 c_i 。 q 次询问,每次给出背包的容积 V,你需要选择若干个物品,每种物品可以选择任意多个(也可以不选),在选出物品的体积的和恰好为 V 的前提下最大化选出物品的价值的和。 $1 \le n \le 50$, $1 \le v_i \le 10^5$, $1 \le c_i \le 10^6$, $1 \le q \le 10^5$, $10^{11} < V < 10^{12}$ 。

V 很大,一个很直观的想法是:大部分选 $\frac{C_4}{v_i}$ 最大的物品,边角用其他物品填满。我们先假设 V 非常非常非常大并考察一个解法,再证明题目中 V 的下界保证了该算法的正确性。

V 很大,一个很直观的想法是:大部分选 $rac{Ci}{vi}$ 最大的物品,边角 用其他物品填满。我们先假设 V 非常非常非常大并考察一个解 法,再证明题目中 V 的下界保证了该算法的正确性。 设 (c_0, v_0) 为 $\frac{c_i}{v_0}$ 最大的物品的参数。根据 $\operatorname{mod} v_0$ 的不同,边角 有不同方案,而 V 足够大时, $\operatorname{mod} v_0$ 相同的询问的边角选择方 案总会相同。因此计算出每种边角的最优方案即可 O(1) 得到答 案。

为此,设 f_i 为最优物品以外的物品的完全背包数组,并设 $g_i = \max_{k \geq 0} f_{i+kv_0} - kc_0$ 。那么 $\mathrm{mod}\,b_0 = i$ 的边角最优方案的收益就是 g_i 。注意每当 k 增大 1 时会占用一个最优物品所以需要 减掉一个 c_0 。

为此,设 f_i 为最优物品以外的物品的完全背包数组,并设 $g_i = \max_{k \geq 0} f_{i+kv_0} - kc_0$ 。那么 $\operatorname{mod} b_0 = i$ 的边角最优方案的收益就是 g_i 。注意每当 k 增大 1 时会占用一个最优物品所以需要减掉一个 c_0 。

沿用完全背包的 dp 思路计算 g_{i} 。加入一个 (c_{i},v_{i}) ,转移为

$$g_{(j+v_i) \bmod v_0} \leftarrow \max \left(g_{(j+v_i) \bmod v_0}, g_j + c_i - \lfloor \frac{j+v_i}{v_0} \rfloor c_0 \right).$$

为此,设 f_i 为最优物品以外的物品的完全背包数组,并设 $g_i = \max_{k \geq 0} f_{i+kv_0} - kc_0$ 。那么 $\operatorname{mod} b_0 = i$ 的边角最优方案的收益就是 g_i 。注意每当 k 增大 1 时会占用一个最优物品所以需要 减掉一个 c_0 。

沿用完全背包的 dp 思路计算 g_i 。加入一个 (c_i, v_i) ,转移为

$$g_{(j+v_i) \bmod v_0} \leftarrow \max \left(g_{(j+v_i) \bmod v_0}, g_j + c_i - \lfloor \frac{j+v_i}{v_0} \rfloor c_0 \right).$$

注意到转移成环,但由于 (c_0, v_0) 的最优性,转移不可能无限进行,所以 dp 规则是良定义的。转移构成若干个圈,沿着每个圈转移两次即可计算出正确的 dp 值。以上算法复杂度 $O(q + n \max v_i)$ 。

正确性证明

我们还需要证明 V 确实足够大,也就是说 q_i 对应的方案的容积 不超讨 V 的下界。

注意到上面的动态规划也可以视为最短路,根据最短路不重复经 过单点的性质,每个 g_i 对应的方案都一定有不超过 v_0 个物品, 所以总容积不超过 $\max v_i^2 = 10^{10}$,因此在本题设定下该算法是 正确的。