Lesson 14: Proposition 1.9 & 1.10

Proposition 1.9 (Problem): Bisect a given rectilineal angle.

Construct

- 1. Let $\angle ABC$ be the given angle.
- 2. Let point D be on line \overline{AB} .
- 3. Cut off from \overline{BC} a line equal to \overline{BD} , and let it be \overline{BE} (**Prop 1.3**). Therefore, $\overline{BD} = \overline{BE}$.
- 4. Join points D and E (P1).
- 5. Using \overline{DE} , construct an equilateral triangle, $\triangle DEF$ (**Prop 1.1**).
- 6. Join points B and F (P1).
- 7. \overline{BF} bisects $\angle ABC$

Proof

1. Since $\overline{BD} = \overline{BE}$, $\overline{DF} = \overline{EF}$ (**Def 20**), and $\overline{AF} = \overline{AF}$, then $\angle DBF = \angle EBF$ (**Prop 1.8**).

Q.E.F.

Practice

Bisect $\angle CAT$.

Math 101: Lesson 14

Proposition 1.10 (Problem): Bisect a given finite straight line.

Given: a finite straight line

Construct: a point on the line that cuts it into two lines

Prove: the two lines are equal

Construct

- 1. Let \overline{AB} be the given finite straight line.
- 2. Using \overline{AB} , construct an equilateral triangle, $\triangle ABC$ (**Prop 1.1**).
- 3. Bisect $\angle ACB$ by the straight line \overline{CD} , such that point D is on line \overline{AB} (**Prop 1.9**). Therefore, $\angle ACD = \angle BCD$.
- 4. Point D bisects \overline{AB} .

Proof

1. Since $\overline{AC} = \overline{BC}$ (**Def 20**), $\overline{CD} = \overline{CD}$, and $\angle ACD = \angle BCD$, then the bases are equal, $\overline{AD} = \overline{BD}$ (**Prop 1.4**)

Q.E.F

Т

Practice

Bisect \overline{IT} .