Deep Learning

Deep learning attracts lots of attention.

 I believe you have seen lots of exciting results before.

Deep learning trends at Google. Source: SIGMOD/Jeff Dean

Ups and downs of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough) restricted Boltzmann Machine processing proce
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition

Three Steps for Deep Learning

Deep Learning is so simple

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define *a function set*

Fully Connect Feedforward Network

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer

Feature extractor replacing feature engineering \mathcal{X}_1 · **y**₁ Softmax **y**₂ \mathcal{X} x_{K} y_{M} Input = Multi-class Output Layer **Hidden Layers** Classifier Layer

Example Application

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

 Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Deep Learning is so simple

Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} C^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u>

parameters <u>\theta^*</u> that

minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple

Gradient Descent

Gradient Descent

Gradient Descent

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image

Actually

I hope you are not too disappointed :p

Backpropagation

• Backpropagation: an efficient way to compute $\frac{\partial L}{\partial w}$ in neural network

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20b ackprop.ecm.mp4/index.html

Concluding Remarks

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

(next lecture)

"深度學習深度學習"

- My Course: Machine learning and having it deep and structured
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLSD15_2. html
 - 6 hour version: http://www.slideshare.net/tw_dsconf/ss-62245351
- "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://neuralnetworksanddeeplearning.com/
- "Deep Learning"
 - written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - http://www.deeplearningbook.org

Acknowledgment

• 感謝 Victor Chen 發現投影片上的打字錯誤