

Chapter 6: Relations

Learning Objectives

After studying this topic, you should be able to:

- 1. Understand the concept of binary relation
- 2. Classify the relation and function
- 3. Identify the properties of relations.
- 4. Understand the combination of relations.

6.1 Binary relation

- **Definition** Let A and B be two sets. A binary relation from A to B is a subset of Cartesian product *A* x *B*.
- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- The notation used is a**R**b to denote $(a,b) \in R$. a**R**b is said as a is related to b by **R**.

Example:

Let
$$A = \{a,b,c\}$$
 and $B = \{1,2,3\}$.

- ➤ Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B?
- ightharpoonup Is Q = {(1,a),(2,b)} a relation from A to B?
- ightharpoonup Is $P = \{(a,a),(b,c),(b,a)\}$ a relation from A to A?
- Relations can be represented graphically by using arrows and table to represent ordered pairs.

Example:

Let $A = \{0,1,2\}$, $B=\{u,v\}$ and $R=\{(0,u),(0,v),(1,v),(2,u)\}$. Represent this relation by drawing the arrow and construct the table.

Arrow	Table

6.2 Relations and functions

Relations represent one to many relationships between elements in A and B.

Example:

- What is the difference between a relation and a function from A to B?
- A function defined on sets A, B.
- $A \rightarrow B$ assigns to each element in the domain set A exactly one element from B. So it is a special relation.

Function

• A relation on the set A is a relation from A to itself.

Example:

- 1. Let $A = \{1,2,3,4\}$ and $R_{div} = \{a,b\} \mid a \ divides b\}$. List all the relations and represent the relations in the table.
- 2. Let $A = \{1,2,3,4\}$. Define $aR_{\neq}b$ if and only if $a \neq b$ and represent the relations in the table.

6.3 Properties of Relations

Reflexive

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example:

Let A =
$$\{1,2,3,4\}$$
 and $R_{div} = \{a,b\} \mid a \text{ divides } b\}$. Is R_{div} reflexive?

Irreflexive

A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

Example:

Let A = {1,2,3,4}. Define
$$aR_{\neq}b$$
 if and only if $a \neq b$. Is R_{\neq} irreflexive?

Sym m etric

A relation R on a set A is called symmetric if $\forall a,b \in A, (a,b) \in R \rightarrow (b,a) \in R$.

Example:

1. Let A =
$$\{1,2,3,4\}$$
 and $R_{div} = \{a,b\} \mid a \ divides \ b\}$. Is R_{div} symmetric?

2. Let
$$A = \{1,2,3,4\}$$
. Define $aR_{\pm}b$ if and only if $a \neq b$. Is R_{\pm} symmetric?

Transitive

A relation R on a set A is called transitive if $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R$ for all $a,b,c \in A$.

Example:

1. Let A =
$$\{1,2,3,4\}$$
 and $R_{div} = \{a,b \mid a \text{ divides } b\}$. Is R_{div} transitive?

2. Let A = $\{1,2,3,4\}$. Define $aR_{\neq}b$ if and only if $a \neq b$. Is R_{\neq} transitive?

6.4 Combining Relation

- Two relations from A to B can be combined in any way because relations from A to B are subsets of $A \times B$
- Relations can be combined via set operations of union, intersection, difference and symmetric difference.

Example:

Let A = {1,2,3} and B = {1,2,3,4}. The relations
$$R_1 = \{(1,1),(2,2),(3,3)\}$$
 and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$. Find $R_1 \cup R_2, R_1 \cap R_2, R_1 - R_2$, and $R_2 - R_1$.

Tutorial Questions.

- 1. List the ordered pairs in the relation R from $A = \{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$, where $(a,b) \in R$ if and only if
 - a) a = b
 - b) a + b = 4
 - c) a > b
 - d) a | b
 - e) gcd(a,b) = 1
 - f) lcm(a,b) = 2.
- 2. Represent each relation in Question 1 by drawing the arrow and construct the table.
- 3. For each of these relations on the set {1,2,3,4}, decide whether it is reflexive, whether it is symmetric, and whether it is transitive.
 - a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
 - b) {(1,1),(1,2),(2,1)(2,2),(3,3),(4,4)}
 - c) $\{(2,4),(4,2)\}$
 - d) $\{(1,2),(2,3),(3,4)\}$
 - e) $\{(1,1),(2,2),(3,3),(4,4)\}$
 - f) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
- 4. Let $R_1 = \{(1,2),(2,3),(3,4)\}$ and $R_2 = \{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4)\}$ be relations from $\{1,2,3\}$ to $\{1,2,3,4\}$. Find
 - a) $R_1 \cup R_2$
 - b) $R_1 \cap R_2$
 - c) $R_1 R_2$
 - d) $R_2 R_1$