

FIG. 1

FIG. 2

(A) EXAMPLE OF SETTING KEY CHARACTER STRING WHEN VALUE OF KEY ITEM IS CHARACTER STRING '富士通' (THREE JAPANESE CHARACTERS)

		NUMBER OF BITS OF CHARACTER UNIT	16	8	4
SJIS CODE 9578 OF CHARACTER '富' (ONE JAPANESE CHARACTER)	KEY CHARACTER STRING k-str	FIRST CHARACTER SECOND CHARACTER THIRD CHARACTER FOURTH CHARACTER	92CF	95 78 8E 6D	9 5 7 8
SJIS CODE 8E6D OF CHARACTER '士' (ONE JAPANESE CHARACTER)		FIFTH CHARACTER SIXTH CHARACTER •	•	92 CA •	8 E •
SJIS CODE 92CF OF CHARACTER '通' (ONE JAPANESE CHARACTER)	MAXIMUM NUMBER OF TRANSITIO	ON STATES	65536	256	16

(B) EXAMPLE OF CONFIGURATION OF p-TH CHARACTER RECEPTION STATE TRANSITION TABLE WHEN KEY CHARACTER STRING k-str IS A 4-BIT CHARACTER

(A) EXAMPLE OF STRUCTURE OF DATA d

RECORD IDENTIFIER rid = 1 → <PART CODE>15<NAME>安倍太郎(FOUR JAPANESE CHARACTERS) <FISCAL YEAR IN WHICH THE PERSON JOINED THE COMPANY>90 <SALES>900<R-END> RECORD IDENTIFIER rid = 2 → <PART CODE>01<NAME>松浦一郎(FOUR JAPANESE CHARACTERS) <FISCAL YEAR IN WHICH THE PERSON JOINED THE COMPANY>90 <SALES>900<R-END> <PART CODE>15<NAME>田端花子(FOUR JAPANESE CHARACTERS) <FISCAL YEAR IN WHICH THE PERSON JOINED THE COMPANY>92 <SALES>605<R-END> <PART CODE>07<NAME>永田正夫(FOUR JAPANESE CHARACTERS) <FISCAL YEAR IN WHICH THE PERSON JOINED THE COMPANY>95 <SALES>850<R-END> <PART CODE>02<NAME>原裕太(THREE JAPANESE CHARACTERS) <FISCAL YEAR IN WHICH THE PERSON JOINED THE COMPANY>97 <SALES>605<R-END> • • • • • • • • <R-END> RECORD IDENTIFIER rid = Rmax **EOF**

(B) EXAMPLE OF SETTING KEY CONDITION kc

KEY PRIORITY	1	2	3
KEY ITEM NAME	<sales></sales>	<pre><fiscal company="" in="" joined="" person="" the="" which="" year=""></fiscal></pre>	<part code=""></part>
SORT MODE	DESCENDING ORDER	ASCENDING ORDER	ASCENDING ORDER
DATA TYPE	DECIMAL NUMBER CAN BE SET POSITIVE/NEGATIVE SIGN CAN BE SET ARGUMENT INDEX REPRESENTATION CAN BE SET	POSITIVE/NEGATIVE SIGN CANNOT BE SET ARGUMENT INDEX REPRESENTATION CANNOT BE SET SPACE INSERTION CANNOT BE SET	TYPE = CHARACTER STRING
MAXIMUM NUMBER OF CHARACTERS	10	_	_

(C) EXAMPLE OF PRE-PROCESSING KEY DATA BASED ON KEY CONDITION KC

KEY CONDITION kc		INPUT CHARACTER STRING	KEY CHARACTER STRING k-str	NUMBER OF CHARACTERS
TYPE = CHARACTER STRING	-123. 456	x2D3132332E343536	x2D3132332E343536	16
TYPE = NUMBER	2 15 03 -123. 456	x32 x3135 x3033 x2D3132332E343536	xC0000002 xC080000F xC0000003 x4181E240	8 8 8

INTERNAL CHARACTER STRING CHANGE SPECIFICATION OF NUMBER TYPE: FLOATING POINT FORMAT

SIGN PORTION

1 BIT NEGATIVE = 0, POSITIVE = 1 (*)

INDEX PORTION

INDEX SIGN PORTION

1 BIT NEGATIVE = 0, POSITIVE = 1 (*) 7 BITS

INDEX ABSOLUTE NUMBER ARGUMENT PORTION ARGUMENT INTEGER VALUE 23 BITS

(*) INDICATES DIFFERENCE FROM COMMON ANSI/IEEE STANDARD 754 FLOATING POINT FORMAT.

(A) EXAMPLE OF DATA STRUCTURE OF ORDER VALUE TUPLE j-tp1 AND PLURAL ORDER VALUE TUPLE

DECODE	CIDAT DOLLOSITY WELL		
RECORD	IFIRST PRIORITY KEY	SECOND PRIORITY KEY	K-TH PRIORITY KEY
IDENTIFIED	00000	PEOGRA LICIONALL IVE	[v_iu tvioviii VEI
IDENTIFIER rid	TORDER VALUE (1)	ORDER VALUE jval (2)	··· ORDER VALUE jval (K)
	Total (1)	OUDER AVERT TAGE (S)	I TOUDER ANTOE TAST (V) I

(B) EXAMPLE OF STRUCTURE OF SORT ORDER SORT TABLE s-st

ORDER VALUE jval	RECORD IDENTIFIER rid
1	301
2	158
3	23
3	1687
5	14
•	·

NOTE) NORMALLY, SAME ORDER VALUE jval CAN CORRESPOND TO A PLURALITY OF RECORD IDENTIFIERS rid

(C) EXAMPLE OF STRUCTURE OF RECORD ORDER SORT TABLE r-st

RECORD	FIRST PRIORITY KEY		SECOND PRIORITY KEY		K-TH PRIORITY KEY	
IDENTIFIER rid	LOST KEY FLAG	ORDER VALUE jval	LOST KEY FLAG	ORDER VALUE jval	LOST KEY FLAG	ORDER VALUE jval
1		251		68		106
2		38		497		184
3	LOSING	max(1)		711		992
4		574		25		78
5		398		56	 LOSING	max (K)
. 6		16	LOSING	max (2)		532
•	•	•	•	•	 •	•

NOTE) VALUES OF $\max(1)$, $\max(2)$, ..., $\max(K)$ ARE DETERMINED IN ORDER VALUE TUPLE GENERATING STEP

(A) EXAMPLE OF OPERATIONS IN INITIALIZING STEP (STEP S11 IN FIG. 1)

RECORD IDENTIFIER SETTING UNIT 1 SETS AREA OF RECORD IDENTIFIER SETTING TABLE rid-t, AND RESETS READ RECORD NUMBER VARIABLE rr (rr ←0).

KEY DATA PRE-PROCESSING UNIT 2 READS AND STORES KEY CONDITION kc.

NUMBER OF KEY ITEMS IS OBTAINED FROM KEY DATA PRE-PROCESSING UNIT 2, AND AREA OF RECORD ORDER SORT TABLE r-st IS SET.

AREA OF SORT ORDER SORT TABLE s-st IS SET.

k-TH PRIORITY KEY INITIAL STATE TRANSITION TABLE tid-k(0) IS SET. tid-k(0) = iiii(k)

(B) EXAMPLE OF OPERATION IN RECORD IDENTIFIER SETTING STEP (STEP S14 SHOWN IN FIG. 1)

READ RECORD NUMBER VARIABLE rr←[rr] + 1 (INCREMENT).

RECORD IDENTIFIER rid←[rr], STARTING ADDRESS OFFSET VALUE, AND RECORD LENGTH ARE SET IN

RECORD IDENTIFIER SETTING TABLE rid-t.

RECORD IDENT!FIER rid←[rr] IS ENTERED IN RECORD ORDER SORT TABLE r-st.

(C) EXAMPLE OF OPERATIONS IN LOST KEY PROCESSING STEP (S110 IN FIG. 1)

LOST KEY FLAG IS SET IN RECORD IDENTIFIER rid ROW OF RECORD ORDER SORT TABLE r-st. ADDING 1 TO FINAL TRANSITION STATE FLAG COLUMN OF K-TH PRIORITY KEY INITIAL STATE TRANSITION TABLE tid-k(0), AND RECORD IDENTIFIER rid IS APPENDED TO RECEIVED RECORD IDENTIFIER LIST COLUMN.

(D) EXAMPLE OF STRUCTURE OF RECORD IDENTIFIER SETTING TABLE rid-t

RECORD IDENTIFIER rid	STARTING ADDRESS OFFSET VALUE	RECORD LENGTH
1	0	45
2 -	45	40
3	85	45
4	130	38
5	168	38
6	•	•
	•	

F I G. 7

INPUT: ORDER VALUE INDEX jind, SORT MODE FLAG sm(k), TABLE POINTER tp
OUTPUT: ORDER VALUE TUPLE j-tp! (ORDER VALUE TUPLE WORK j-tp!wk)
RECORD ORDER SORT TABLE r-st, SORT ORDER SORT TABLE s-st (OPT!ONAL)
ORDER VALUE INDEX jind

FIG. 9