

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

BERNARDO FLORES DALLA ROSA E JOÃO EDUARDO PELEGRINI FERRARI

RELATÓRIO: BANCO DE REGISTRADORES E ULA

CHAPECÓ

INTRODUÇÃO

Nesse trabalho foram utilizados os conteúdos nas aulas práticas de Circuitos Digitais (Banco de Registradores e ULA), para a elaboração do projeto no software Logisin, dessa maneira apresentaremos o desempenho do circuito solicitado pelo professor Luciano Caimi. Ademais, a atividade possui como propósito demonstrar o funcionamento dos registradores e da unidade lógica e aritmética por meio de diversas operações e equações.

Em torno disso, a construção do projeto foi realizada com os recursos digitais do simulador lógico Logisin, o qual permite o desenho e simulação de circuitos através de uma interface gráfica.

DESENVOLVIMENTO

Para a realização do trabalho o circuito solicitado está representado na figura abaixo.

Figura 1: Circuito solicitado para a elaboração do trabalho

Primeiramente, foi realizado a construção de um registrador, utilizando oito flip-flops do tipo D, conforme demonstrado na figura a seguir.

Figura 2: Registrador

Em seguida foi replicado em um novo arquivo quatro registradores do mesmo modelo apresentado anteriormente, com o incremento de dois demultiplexadores (determinam o sinal de ESCREVE e de VW), dois multiplexadores (escolhem quais registradores são as entradas de VA e VB), uma entrada e duas saídas de oito bits, além da conexão dos respectivos seletores: SEL_RW(controla em qual registrador será armazenado o valor de entrada), SEL_RA e SEL_RB (escolhem de qual registrador será "puxado" o valor de saída), constituindo dessa forma o banco de registradores.

Figura 3: Banco de registradores

A partir disso foi iniciada a construção da Unidade Lógica e Aritmética (ULA), possuindo como base a ordem de operações definidas pela tabela do grupo 19, a qual foi elaborada pelo professor Luciano Caimi.

SelOp	Grupo 19:
000	A OR B
001	A/B
010	A + B
011	A AND B
100	A XOR B
101	~B
110	A - B
111	A * B

Tabela 1: Sequência de controle para as operações na ULA

O desenvolvimento das operações foi realizado utilizando as portas lógicas disponíveis do software Logisin, usando complemento de dois para a construção da operação de negação e para as operações de multiplicação e divisão foram aproveitados os módulos prontos da ferramenta, conforme orientado pelo professor, as demais operações foram efetuadas bit a bit. A seguir será apresentado as operações OR, adição, AND, XOR, negação e subtração respectivamente.

Figura 4: Operação OR

Figura 5: Somador (Operação de adição)

Figura 6: Operação AND

Figura 7: Operação XOR

Para a construção da operação de negação foi utilizado o subcircuito somador.

Figura 8: Operação de negação

Figura 9: Subtrador (Operação de subtração)

Na operação de adição foram utilizados o meio somador e o somador completo, já na operação de subtração foi usado apenas o somador completo, conforme é apresentado a seguir.

Figura 10: Meio somador

Figura 11: Somador completo

Assim, após a elaboração das operações de modo individual, acrescentando duas entradas e uma saída de 8 bits cada, dois multiplexadores (possuem a função de selecionar a operação), duas portas OR (as quais são responsáveis pelo Overflow, em união com um dos multiplexadores), uma porta NOR (responsável pela flag zero) e um seletor das operações (SEL_OP), é possível apresentar a ULA de modo completo de acordo com a ilustração abaixo.

Figura 12: ULA

A parte em que é apresentado a "união" do banco de registradores e da ULA é apresentada a seguir, tendo as entradas "INSERE_VALOR" de oito bits (sendo o input do usuário), "SEL_VALOR" (indica se o valor que entrará no banco de registradores será o resultado da ULA ou da entrada "INSERE_VALOR"), "RW" (define qual registrador será armazenado o valor de entrada), "RA" e "RB" (determinam os valores da saída VA e VB para serem usados na ULA) e "ESCREVE"(clock). Ademais, na ULA existe a entrada "SEL_OP" a qual é responsável por escolher qual operação irá ser efetuada conforme valores definidos na Tabela 1, além dos valores de saída C (overflow/underflow), Z(flag zero) e o valor da saída final, junto com os respectivos leds.

Figura 13: Banco de registradores e ULA

Dispondo do circuito completo é possível realizar as duas equações solicitadas, sendo uma de primeiro grau e outra de segundo grau, em concordância com as tabelas abaixo.

Equação: 2x+8						
Entrada x1 para variável x: 4						
Resultado da Equação: 16						
Passo	Entrada	Controle	Resultado			
1	Insere_valor= 2	sel_valor = 1 sel_RW = 00; escreve = 0->1->0	Coloca 'A' em R0			
2	Insere_valor= 8	sel_valor = 1 sel_RW = 01; escreve = 0->1->0	Coloca 'B' em R1			
3	Insere_valor= 4	sel_valor = 1 sel_RW = 10; escreve = 0->1->0	Coloca 'X' em R2			
4		sel_RA= 00 sel_RB = 10 sel_OP = 111 escreve = 0->1->0	Realiza a multiplicação 2x4			
5		sel_valor = 0 sel_RW = 11; escreve = 0->1->0	Coloca 'A.X' (Resultado de 2x4, ou seja 8) em R3			
6		$sel_RA = 01$ $sel_RB = 11$ $sel_OP = 010$ $escreve = 0->1->0$	Realiza a adição 'A.X' + 'B' (8+8) e finaliza a equação resultando em 16(10000)			

Tabela 2: Equação do primeiro grau

Equação: 5x²+6x+7						
Entrada x1 para variável x: 3						
Resultado da Equação: 70						
Passo	Entrada	Controle	Resultado			
1	Insere_valor =	$sel_valor = 1$	Coloca 'X' em R0			
	3	$sel_RW = 00;$				
		escreve = 0 -> 1 -> 0				
2	Insere_valor =	$sel_valor = 1$	Coloca 'A' em R1			
	5	$sel_RW = 01;$				
		escreve = 0 -> 1 -> 0				
3	Insere_valor =	$sel_valor = 1$	Coloca 'B' em R2			
	6	$sel_RW = 10;$				
		escreve = 0 -> 1 -> 0				
4		$sel_RA = 00$	Realiza a multiplicação 3x3			
		$sel_RB = 00$				
		$sel_OP = 111$				
		escreve = 0 -> 1 -> 0				
5		$sel_valor = 0$	Coloca 'X.X'(Resultado de			
		$sel_RW = 11;$	3x3, ou seja 9) em R3			
		escreve = 0 -> 1 -> 0				
6		$sel_RA = 01$	Realiza a multiplicação 5x9			
		$sel_RB = 11$				
		$sel_OP = 111$				
		escreve = 0 -> 1 -> 0				
7		$sel_valor = 0$	Coloca 'A.x²'(Resultado de			
		$sel_RW = 11;$	5x9, ou seja 45) em R3			
		escreve = 0 -> 1 -> 0				
8		$sel_RA = 10$	Realiza a multiplicação 6x3			
		$sel_RB = 00$				
		$sel_OP = 111$				
		escreve = 0 -> 1 -> 0				
9		$sel_valor = 0$	Coloca 'B.x'(Resultado de 6x3,			
		$sel_RW = 10;$	ou seja 18) em R2			
		escreve = 0 -> 1 -> 0				
10	Insere_valor =	$sel_valor = 1$	Coloca 'C' em R1			
	7	$sel_RW = 01;$				
		escreve = 0 -> 1 -> 0				
11		$sel_RA = 01$	Realiza a adição 7+18			
		$sel_RB = 10$				
		$sel_OP = 010$				
		escreve = 0 -> 1 -> 0				
12		$sel_valor = 0$	Coloca 'B.x+C'(Resultado de			
		$sel_RW = 00;$	18+7, ou seja 25) em R0			
		escreve = 0 -> 1 -> 0				
33		$sel_RA = 00$	Realiza a adição			
		$sel_RB = 11$	'A.x²+(B.x+C)',(45+25) e			
		$sel_OP = 010$	finaliza a equação resultando			
		escreve = $0 - > 1 - > 0$	em 70(1000110)			

Tabela 3: Equação do segundo grau

CONCLUSÃO

Em suma, o trabalho foi entregue de maneira funcional possuindo o banco de registradores e a ULA finalizados com todos as operações e modos solicitados. Ademais, as maiores dificuldades encontradas foram o processo das operações individuais e as equações, as quais necessitou uma melhor compreensão do circuito externo. Nesse contexto, o objetivo da atividade foi cumprido entregando o circuito completo e eficiente, realizando todos os procedimentos e cálculos necessários que o usuário desejar.

REFERÊNCIAS

Logisin. Blog Software Livre na Educação. 2022. Disponível em: ">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/soft-livre-edu/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/software-educacional-livre-na-wikipedia/logisim/>">https://www.ufrgs.br/

CAIMI, Luciano, **Trabalho de Circuitos Digitais: Banco de Registradores e ULA.** Apresentação em PDF;