PHYS 20323/60323: FALL 2019 - LaTeX Example

1. Consider a particle confined in a two-dimensional infinite square well

$$V(x,y) = \begin{cases} 0, & 0 \le x \le a, 0 \le y \le a \\ \infty, & \text{otherwise} \end{cases}$$

The eigenfuctions have the form:

$$\Psi(x,y) = \frac{2}{a} sin(\frac{n\pi x}{a}) sin(\frac{m\pi y}{a})$$

with the corresponding energies being given by:

$$E_{nm} = (n^2 + m^2) + \frac{\pi^2 \hbar}{2ma^2}$$

- (a) (5 points) What are the levels of degeneracy of the five lowest energy levels?
- (b) (5 points) Consider a perturbation given by:

$$\hat{H}' = a^2 V_0 \delta(x - \frac{a}{2}) \delta(y - \frac{a}{2})$$

Calculate the first order correction to the ground state energy

2. The following questions refer to stars in the Table bellow.

Note: There may be multiple answers

Name	Mass	Luminosity	Lifetime	Temperature	Radius
Zeta	60. M _{sun}	$10^6 L_{sun}$	$8.0 \times 10^5 years$		
Epsilon	$6.0~\mathrm{M}_{sun}$	$10^3 L_{sun}$		20,000 K	
Delta	$2.0~\mathrm{M}_{sun}$		$5.0 \times 10^8 years$		$2 R_{sun}$
Beta	$1.3~\mathrm{M}_{sun}$	3.5 L _{sun}			
		•	•	'	'
Alpha	$1.0~\mathrm{M}_{sun}$				$1 R_{sun}$
Gamma	$0.7~\mathrm{M}_{sun}$		$4.5 \times 10^{10} years$	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula at the end of their life.
- (b) (4 points) Elements heavier than Carbon will be produces in which stars