

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, DECANA DE AMERICA)

FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA

Escuela Académico Profesional de Ingeniería de Sistemas

SILABO

1. ESPECIFICACIONES GENERALES

Nombre del Curso : Física Electrónica y Sistemas Digitales

Código del Curso : 2010407 Duración del Curso : 17 Semanas

Forma de Dictado : Teórico – práctico - experimental

Horas Semanales : Teoría: 3h – Práctica: 2h Naturaleza : Formación especifica

Número de Créditos : Cuatro (4)

Prerrequisitos : 20118036 – Series y Ecuaciones Diferenciales

Semestre Académico : 2021-II

Profesor : Gilberto Yactayo Yactayo

2. SUMILLA

Esta asignatura pertenece al área de formación específica, es de naturaleza teórica y practico, tiene el propósito de conocer la física electrónica, los circuitos digitales. Los contenidos principales son: Elementos de electricidad y magnetismo, carga eléctrica y ley de coulomb, campo eléctrico, ley de gauss, potencial eléctrico, condensadores, corriente eléctrica, semiconductores, circuitos eléctricos, magnetismo, campo magnético, inducción magnética, circuitos de corriente alterna y ondas electromagnéticas. Lógica Programable, Memorias semiconductoras, Mapas de Memoria Semiconductoras, Diseño de circuitos de decodificación de Memorias semiconductoras, Memoria Cache, Memorias Externas, Transferencia entre registros y Ruta de Datos basados en Multiplexores, Transferencia entre Registros y Ruta de Datos basado en bus, ALU, Operaciones en Transferencias entre Registros y Ruta de Datos, Diseño del Computador simple. Estudio de la Arquitectura del Microprocesador: Fundamentos, set de instrucciones, sistemas de entrada/salida.

3. COMPETENCIA GENERAL

Concluida la asignatura el alumno estará capacitado para las siguientes competencias:

- Capacidad de Análisis
- Comunicación oral y escrita
- Pensamiento Critico
- Actitud creativa e innovadora
- Aplica metodologías, métodos Técnicas
- Uso de herramientas de software baso en estándares internacionales de calidad

4. PROGRAMACION

UNIDAD DIDACTICA Nº 1.- Introducción los Circuitos Eléctricos Digitales.

Competencia específica: El estudiante comprende los principios eléctricos de la lógica digital logrando la capacidad de distinguir entre señales analógicas y señales digitales y los instrumentos que se utilizan.

Sem.	Contenidos Conceptuales	Estrategias	Estrategias Didácticas		Evaluación	
Sciii.	Contenidos Conceptuares	Criterio	Técnica	Criterio	Instrumentos	
1	 TEORICO Organización de una Computadora. Señales analógicas y digitales. Intensidad de densidad de corriente. Velocidad de arrastre en los Conductores. Ley de Ohm. Resistencias. Resistencias en serie y en paralelo. Instrumentos electrónicos de Verificación y corrección de fallas. 	Deductivo, flexible y activo.	Expositiva y participativa	Comprensión y solución de problemas	Ficha técnica	
	PRACTICO • Analógico vs. digital. Herramientas CAD. • Instrumentos de medición. Voltímetro, amperímetro, potenciómetro.					
2	 TEORICO Corriente eléctrica. Fuerza electromotriz. Ley de Joule. Caída de potencial. Leyes de Kirchhoff. Capacitancia de cuerpos cargados. Capacitancia de condensadores. Unidades de medida. El Campo Magnético. Introducción. Vector de inducción magnética. Líneas de inducción magnética. Fuerza magnética sobre partículas cargadas. Unidades de medida. Ecuación de Lorente. PRACTICO Elementos de electricidad y magnetismo Circuitos RC simples. Problemas de aplicación. 	Deductivo, y activo.	Expositiva y participativa	Comprensión y solución de problemas	Ficha técnica y Practica laboratorio	

UNIDAD DIDACTICA Nº 2.- Introducción los Circuitos Electrónicos Digitales.

Competencia específica: El estudiante comprende los principios eléctricos de la lógica digital logrando la capacidad de representarlos mediante circuitos electrónicos.

Sem.	Contenidos Conceptuales	Estrategias Didácticas		Evaluación	
Sciii.		Criterio	Técnica	Criterio	Instrumentos
3	TEORICO Tecnología de Computadores Tubos de Vacío Semiconductores: Transistores Circuitos Integrados Digitales. Tamaños, Tipos, Identificación PRACTICO Ley de gauss, potencial eléctrico, condensadores, corriente eléctrica, semiconductores Circuitos Electrónicos Digitales básicos	Deductivo, y activo.	Expositiva y participativa	Comprensión y solución de problemas	Ficha técnica y Practica laboratorio
4	TEORICO Representación de la Información. Bases: Binario, Octal, Hexadecimal. Conversión entre Bases. Números con Magnitud y Signo. Complementos a una Base. Códigos: BCD, ASCII, Gray. Códigos para Detección y Corrección de Errores PRACTICO Ejercicios con sistemas de numeración binario y hexadecimal. Códigos	Deductivo, y activo.	Expositiva y participativa	Comprensión y solución de problemas	Ficha técnica y Practica laboratorio

UNIDAD DIDACTICA Nº 3.- Lógica combinatoria.

COMPETENCIA

• Aplica los principios de la lógica combinatoria.

CAPACIDADES

- Distingue el comportamiento de las diferentes compuertas lógicas.
- Utiliza el álgebra de Boole.
- Utiliza las funciones lógicas y sus principios.
- Describe el funcionamiento de la lógica combinatoria.

Sem.	Contenidos Conceptuales	Estrategias Didácticas		Evaluación	
		Criterio	Técnica	Criterio	Instrumentos
5	TEORICO • Funciones Lógicas. • Tablas de Verdad. • Compuertas Lógicas: AND, OR, NOT, NAND, NOR, XOR, XNOR. • Diagramas de tiempo. PRACTICO • Funciones lógicas. Software CAD. • Detección de campo magnético, inducción magnética.	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica

Ī		TEORICO	Deductivo,	Expositiva	Comprensión	Ficha técnica
		Algebra de Boole.	flexible y	Participativa	y solución de	
		Teoremas de Morgan.	Activo		problemas.	
		Formas Canónicas SOP y				
	6	POS.				
	U	• Funciones con especificación Incom-				
		pleta.				
		PRACTICO				
		• Ejercicios con el álgebra de Boole.				
		Formas canónicas.				
		• CAD BOOLE.				

UNIDAD DIDACTICA Nº 4.- Simplificación de Funciones.

COMPETENCIA

• Aplica los principios de simplificación de funciones lógicas.

CAPACIDADES

- Distingue los métodos de simplificación de funciones lógicas.
- Utiliza el álgebra de Boole simplificada.
- Utiliza los mapas Karnaugh.
- Describe el funcionamiento de subsistemas combinatorios.

	Contenidos Conceptuales	Estrategias Didácticas		Evaluación	
Sem.		Criterio	Técnica	Criterio	Instrumentos
7	TEORICO • Mapas Karnaugh. • Quine-McCluskey. • Espresso PRACTICO • Simplificación de funciones lógicas.	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica
8	TEORICO • Decodificadores, Codificadores Multiplexores, Demultiplexores. • Sumadores. • Comparadores. • ALU PRACTICO • Ejercicios de análisis y diseño con subsistemas combinatorios.	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica

UNIDAD DIDACTICA Nº 5.- Lógica secuencial.

COMPETENCIA

• Aplica los principios de la lógica secuencial.

CAPACIDADES

- Comprende el comportamiento de las máquinas de estado finitas.
- Analiza y diseña sistemas secuenciales síncronos.
- Analiza y diseña secuenciales asíncronos.

• Comprende el funcionamiento de contadores y registros de desplazamiento.

	Contenidos Conceptuales	Estrategia	Estrategias Didácticas		Evaluación	
Sem.		Criterio	Técnica	Criterio	Instrumentos	
9	TEORICO • Flips-Flops: SR, D, T, JK. • Tablas y diagramas de estado. • Modelos Mealy y Moore. • Máquinas de Estado Finitas. PRACTICO • Modelos Mealy y Moore con softward CAD.	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica	
10	TEORICO	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica	
11	TEORICO • Análisis de sistemas secuenciales asíncronos. • Síntesis de sistemas secuenciales asíncronos. PRACTICO • Ejercicios de análisis y síntesis	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica	

UNIDAD DIDACTICA Nº 6.- Lógica Programable.

COMPETENCIA

- Comprende el funcionamiento de las memorias.
- Aplica los principios de la lógica programable.

CAPACIDADES

- Explica el funcionamiento de las memorias RAM y ROM
- Construye mapas de memoria.
- Explica el funcionamiento de los dispositivos lógicos programables.

Sem.	Contenidos Conceptuales	Estrategias Didácticas		Evaluación	
		Criterio	Técnica	Criterio	Instrumentos
12	TEORICO RAM ROM Mapeo de memoria. PRACTICO Mapeo de memoria.	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica
13	TEORICO • PLD: PLA,PAL PRACTICO • FPGA, CPLD.	Deductivo, flexible y Activo	Expositiva Participativa	Comprensión y solución de problemas.	Ficha técnica

5. ESTRATEGIA DIDACTICA

Por parte del docente, desarrollará su asignatura siguiendo los **criterios** deductivos, inductivos, flexible con la participación activa del estudiante, en este sentido, se utilizará las **técnicas** de exposición participativa, talleres y desarrollo de solución de problemas.

Por **parte del estudiante**, participará activamente a través de intervenciones en las sesiones de teoría y mediante desarrollo de soluciones a problemas con el uso de computadora en las sesiones de laboratorio, individualmente y en equipos.

6. EVALUACION DEL APRENDIZAJE

CONCEPTO PORCENTAJE

Exámenes (EP y EF) 40% Prácticas Calificadas 20%

(PC)

Prácticas de laborato- 10%

rio(PL)

Proyecto final (PY) 30%

7. REFERENCIAS BIBLIOGRÁFICAS

Básica:

- Sears, Francis W. Zemansky, Mark W. Young, Hugh D. Freedman, J Física Universitaria. Addison-Wesley Iberoamericana. 9° edición Wilmington, Delaware, E.U.A. 1998.
- Serway, Raymond A. Física. Vol. 2. 6° edición. Mc. Graw-Hill. México. 1998.
- Kip Artur Fundamentos de Electricidad Y Magnetismos. Mc. Graw-Hill. México. 1981.
- Resnick, R. -Halliday D. -Krane, K. Física. Vol. 2. 5° edición Ed. ECPSA. México. 2002.
- Brown y Vranesic (2006). Fundamentos de lógica digital con diseño VHDL. 2da edición. McGraw-Hill/Interamericana Editores SA de CV. México.
- Nelson et al. (1996). Análisis y diseño de circuitos lógico digitales. 1ra edición. Prentice Hall Hispanoamericana S.A. México.
- Wakerly (1992). Diseño digital. Principios y prácticas. 1ra edición. Prentice Hall Hispanoamericana S.A. México.
- Baena et al. (1997). Problemas de circuitos y sistemas digitales. 1ra edición. McGraw-Hill/Interamericana de España S.A. España.

Complementaria:

- Mc Kelvey Broth. Física para Ciencias e Ingeniería. Vol. 2. Ed. Harla. México. 1980.
- Alonso, Marcelo Finn, Edward. Física. Vol. 2. Fondo Educativo. Madrid. 1970.
- Tippler, Paúl A. Fisica. Editorial Reverté S. A. 3° edición. 1995.
- Hewitt, Paul G. Fisica Conceptual. Pearson Addison Wesley Longman. México. 1999.
- Brey (2000). Microprocesadores Intel, 5ta edición. Pearson Educación. México
- Stallings (2000). Organización y arquitectura de computadores, 5ta edición. Pearson Educación. España.