

davidcorzo@ufm.edu (Sign out)

Home My Assignments

Grades

Communication

Calendar

My eBooks

6.2 - 6.3 Volú menes (Homework)

Due Date

DECEMBER 21 11:59 PM CST

i Description

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

1. 3/3 points Previous Answers SCalcET8 6.2.001.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = x + 1$$
, $y = 0$, $x = 0$, $x = 5$; about the x-axis

2. 3/3 points Previous Answers SCalcET8 6.2.003.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = \sqrt{x-1}$$
, $y = 0$, $x = 9$; about the x-axis

3. 3/3 points Previous Answers SCalcET8 6.2.005.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$x = 2\sqrt{5y}$$
, $x = 0$, $y = 3$; about the y-axis

V =

4. 3/3 points Previous Answers SCalcET8 6.2.007.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = 6x^6$$
, $y = 6x$, $x \ge 0$; about the x-axis

Step 1

Rotating a vertical strip between $y = 6x^6$ and y = 6x around the x-axis creates a washer washer

Step 2

The inner radius of the washer is r_1 =

Step 3

The cross-sectional area of the washer is

$$A = 36\pi \left(\\ \$\$x2 \right)$$

$$\checkmark \quad \boxed{x^2 - x^{12}}.$$

Step 4

The two curves intersect at the origin and at the point \checkmark 1, 6

Step 5

Now we can say that the volume of the solid created by rotating the shaded area around the x-axis is

$$V = \int_{a}^{b} A(x) dx = \int_{0}^{a} \frac{\$ x^{2} - x^{12}}{x^{2} - x^{12}} dx.$$

Step 6

So, the volume of our solid is

You have now completed the Master It.

5. 3/3 points Previous Answers SCalcET8 6.2.013.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = 2 + \sec(x), \frac{-\pi}{3} \le x \le \frac{\pi}{3}, y = 4;$$
 about $y = 2$

V =

V

6.

3/3 points Previous Answers SCalcET8 6.3.005.MI.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$y = 5e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

V =

Sketch the region and a typical shell.

7. 3/3 points Previous Answers SCalcET8 6.3.005.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$y = 12e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

Sketch the region and a typical shell.

Step 1

Rotating a vertical strip around the y-axis creates a cylinder with radius r =

\$\$*x*

Step 2

Now we can say that the volume of the solid created by rotating the region under $y = 12e^{-x^2}$ and above the x-axis between x = 0 and x = 1 around the y-axis is

$$V = \int_{a}^{b} 2\pi r h \, dx$$

$$1 \checkmark 1 2\pi x \left($$

$$= \int$$

$$0 \checkmark 12e^{-x^{2}} \right) dx.$$

Step 3

The integral $2\pi \int 12xe^{-x^2} dx$ can be done with the substitution u =

Step 4

$$2\pi \int 12xe^{-x^2} dx = -$$

$$\$\$12\pi$$
With the substitution, we have
$$\boxed{12\pi} \int e^u du = -$$

$$\$\$12\pi e^u + C.$$

Step 5

\$\$12п*еи*

Going back to x, the volume of our solid is \checkmark You have now completed the Master It.

8. 3/3 points Previous Answers SCalcET8 6.3.007.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis.

$$y = 3x^2$$
, $y = 18x - 6x^2$

_____24π

Need Help?

Watch It

Talk to a Tutor

9. 3/3 points Previous Answers SCalcET8 6.3.019.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume *V* generated by rotating the region bounded by the given curves about the specified axis.

$$x = 4y^2, y \ge 0, x = 4$$
; about $y = 2$

V =

Need Help? Talk to a Tutor

3/3 points Previous Answers SCalcET8 6.3.029. 10.

Ask Your Teacher

The integral represents the volume of a solid. Describe the solid.

$$\int_0^3 2\pi x^8 dx$$

- The solid is obtained by rotating the region $0 \le y \le x^8$, $0 \le x \le 3$ about the x-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le x^7$, $0 \le x \le 3$ about the x-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le x^8$, $0 \le x \le 3$ about the y-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le x^7$, $0 \le x \le 3$ about the y-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le 2\pi$, $0 \le x^8 \le 3$ about the y-axis using cylindrical shells.

Need Help?

Watch It

Talk to a Tutor

Submit Assignment

Save Assignment Progress

Home

My Assignments

Copyright 2019 Cengage Learning, Inc. All Rights Reserved