TD 11 - Chaînes de Markov : récurrence et transience

Exercice 1. Suite de 1

On considère $(U_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant une loi de Bernouilli de paramètre $p\in[0,1]$. On note $p_{k,n}$ la probabilité d'obtenir au moins k 1 consécutifs dans $U_1\ldots U_n$. Donner une formule pour $p_{k,n}$ en utilisant le formalisme des chaînes de Markov.

Exercice 2. Récurrence et Transience

1. Soit $S = \{0, 1, ..., n\}$ et $0 . On considère <math>M_1$ la chaîne de Markov de matrice de transition P donnée par :

pour
$$0 \le x < n$$
, $P(x,y) =$

$$\begin{cases} p & \text{si } y = x + 1 \\ 1 - p & \text{si } y = 0 \\ 0 & \text{sinon} \end{cases}$$
et $P(n,y) =$

$$\begin{cases} 1 & \text{si } y = n \\ 0 & \text{sinon} \end{cases}$$

Dessiner le graphe associé à M_1 . Quels sont ses états récurrents et ses états transients?

2. Soit $S = \{1, ..., 6\}$. Compléter la matrice suivante pour qu'elle corresponde à la matrice de transition d'une chaîne de Markov.

$$M = \begin{pmatrix} 1/2 & . & 0 & 0 & 0 & 0 \\ . & 2/3 & 0 & 0 & 0 & 0 \\ 0 & 0 & . & 0 & 7/8 & 0 \\ 1/4 & 1/4 & 0 & . & 1/4 & 1/4 \\ 0 & 0 & 3/4 & 0 & . & 0 \\ 0 & 1/5 & 0 & 1/5 & 1/5 & . \end{pmatrix}$$

Déterminer quels sont ses états transitoires et récurrents.

3. Montrer que la chaîne de Markov précédente contient deux ensembles fermés (*i.e.* aucun état en dehors de l'ensemble n'est accessible depuis un état dans l'ensemble) irréductibles non vides C_1 et C_2 . Calculer, pour $i \in \{1,2\}$, la probabilité

P {
$$X_n$$
 ∈ C_i à partir d'un certain temps | X_0 = 6}.

Exercice 3. Chaines de Markov?

Soit $M_0 = (X_n)_{n \in \mathbb{N}}$ une chaîne de Markov associée à une matrice de transition P sur un ensemble d'états S. On définit les suites M_i suivantes :

- **1.** Soit $r \in N$. On pose $M_1 = (X_{r+n})_{n \in \mathbb{N}}$.
- **2.** On pose $M_2 = (X_{2n})_{n \in \mathbb{N}}$.
- **3.** On suppose $S \subset \mathbb{Z}$, et on pose $M_3 = (2X_n + 1)_{n \in \mathbb{N}}$.
- **4.** Toujours en supposant $S \subset \mathbb{Z}$, on pose $M_4 = (\lfloor X_n/10 \rfloor)_{n \in \mathbb{N}}$.
- **5.** On pose $M_5 = (X_n, X_{n+1})_{n \in \mathbb{N}}$.
- **6.** On suppose les états de S numérotés avec $S = \{S_1, S_2, ...\}$. On définit $S' = \{T_{12}, S_3, S_4, ...\}$ (on a remplacé les deux premiers états de S par un nouvel état T_{12}). On définit $Y_n = X_n$ si $X_n \in S \setminus \{S_1, S_2\}$ et $Y_n = T_{12}$ sinon (on a fusionné les deux premiers états de la chaîne). On pose $M_6 = (Y_n)_{n \in \mathbb{N}}$.

Pour chaque M_i , on vous demande de dire :

- **a.** Est-ce que M_i est une chaîne de Markov? On demande une preuve ou un contre-exemple.
- **b.** Si oui, donner la matrice de transition de M_i .

On dispose de trois chaînes de Markov définies par les matrices de transition suivantes :

$$A = \begin{pmatrix} 2/3 & 0 & 1/3 \\ 1/4 & 1/2 & 1/4 \\ 1/2 & 0 & 1/2 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 \\ 1/4 & 0 & 0 & 3/4 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 0 & 1/2 & 1/2 \\ 1/4 & 0 & 3/4 \end{pmatrix} .$$

Pour chacune d'entre elles :

- 1. Donner sa représentation graphique.
- 2. Partitionner les états en composantes irréductibles.
- 3. Pour chaque état, dire s'il est transient ou récurrent.
- 4. Pour chaque état, dire s'il est périodique ou apériodique.
- 5. Donner la distribution stationnaire.
- 6. Pour chaque état, donner le temps de retour moyen.

Exercice 5.

Marche aléatoire sur Z non biaisée

Soit $\{X_k\}$ des variables aléatoires discrètes indépendantes et identiquement distribuées. Chaque X_k prend la valeur 1 avec probabilité 1/2 et -1 avec probabilité 1/2. On définit alors une marche aléatoire dans \mathbb{Z} par $S_n = \sum_{k=1}^n X_k$. On s'intéresse à la probabilité d'un retour à l'origine (en un temps fini).

- **1.** S'il y a eu un retour à l'origine au temps m, que peut-on dire de m? Montrer qu'un retour à l'origine au temps 2n arrive avec une probabilité $u_{2n} = \binom{2n}{n} 2^{-2n}$.
- **2.** On définit de même la probabilité f_{2n} qu'un premier retour à l'origine se fasse au temps 2n. Montrer que pour n > 0 les probabilités $\{f_{2k}\}$ et $\{u_{2k}\}$ vérifient la relation $u_{2n} = f_0u_{2n} + f_2u_{2n-2} + \cdots + f_{2n}u_0$ (on pose $u_0 = 1$ et $f_0 = 0$).
- 3. On définit les fonctions génératrices :

$$U(x) = \sum_{m=0}^{\infty} u_{2m} x^m \text{ et } F(x) = \sum_{m=0}^{\infty} f_{2m} x^m$$

Déduire de la question précédente une relation simple entre U(x) et F(x).

4. Montrer que $U(x) = \frac{1}{\sqrt{1-x}}$. En déduire que $F(x) = 1 - \sqrt{1-x}$.

Indication: on rappelle que $(1+x)^{\alpha}=1+\sum_{k=1}^{+\infty}\frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}x^k$.

- 5. Montrer que $f_{2m} = \frac{\binom{2m}{m}}{(2m-1)2^{2m}}$. Indication : considérer F'.
- **6.** Définissons w_n la probabilité qu'un retour à l'origine se fasse au plus tard au temps n. Notre but est de savoir si l'on va revenir en un temps fini, c'est-à-dire déterminer $w_* = \lim_{n \to \infty} w_n$. Montrer que $w_* = F(1)$. Conclure.

2