Сидоров Дмитрий

17 сентября 2021 г.

№ 1

Доказать, что $(A \to B) \lor (B \to C)$ - тавтология.

Д-во:

$$(A \to B) \lor (B \to C) \equiv (\bar{A} \lor B) \lor (\bar{B} \lor C) \equiv \bar{A} \lor C \lor B \lor \bar{B}$$

Заметим, что $B \lor \bar{B} \equiv 1$ при любом B. Значит, $\bar{A} \lor C \lor B \lor \bar{B} \equiv 1$ при любых значениях A, B, C, т. е. истинно при любых значениях входящих в него элементарных высказываний, т. е. является тавтологией.

чтд

N_2

$$(A \to (B \to C)) \equiv ((A \to B) \to C) - ?$$

$$A \to (B \to C) \equiv \bar{A} \lor (\bar{B} \lor C) \equiv \bar{A} \lor \bar{B} \lor C \ (1)$$

$$(A \to B) \to C \equiv (\bar{A} \lor \bar{B}) \lor C \equiv (A \land \bar{B}) \lor C \ (2)$$
 Пусть $A = 0, B = 0, C = 0$, тогда $(1) = 1$, а $(2) = 0 \Rightarrow A \to (B \to C) \not\equiv (A \to B) \to C$.

Ответ: нет.

№3

$$(A \wedge (B \to C)) \equiv ((A \wedge B) \to (A \wedge C)) - ?$$

$$A \wedge (B \to C) \equiv A \wedge (\overline{B} \vee C) \ (1)$$

$$(A \wedge B) \to (A \wedge C) \equiv (\overline{A} \vee \overline{B}) \vee (A \wedge C) \equiv \overline{A} \vee \overline{B} \vee (A \wedge C) \ (2)$$
 При $A = 0$: $(1) \equiv 0$, $(2) \equiv 1$, значит, $(1) \not\equiv (2) \Rightarrow (A \wedge (B \to C)) \not\equiv ((A \wedge B) \to (A \wedge C))$ Ответ: нет.

№4

$$(A \to (B \to C)) \equiv ((A \to B) \to (A \to C))$$
 - ?

$$A \to (B \to C) \equiv \overline{A} \lor (\overline{B} \lor C) \equiv \overline{A} \lor \overline{B} \lor C \ (1)$$

$$(A \to B) \to (A \to C) \equiv \overline{(\overline{A} \lor B)} \lor (\overline{A} \lor C) \equiv (A \land \overline{B}) \lor (\overline{A} \lor C) \equiv (A \land \overline{B}) \lor \overline{A} \lor C \ (2)$$
 Пусть $A = 1$: $(1) \equiv 0 \lor \overline{B} \lor C \equiv \overline{B} \lor C$, $(2) \equiv (1 \land \overline{B}) \lor \overline{1} \lor C \equiv \overline{B} \lor C \Rightarrow (1) \equiv (2)$. Пусть $A = 0$: $(1) \equiv \overline{0} \lor \overline{B} \lor C \equiv 1$, $(2) \equiv (0 \land \overline{B}) \lor \overline{0} \lor C \equiv 1 \Rightarrow (1) \equiv (2)$. Значит, $(A \to (B \to C)) \equiv ((A \to B) \to (A \to C))$.

Ответ: да.

№5

Если истинны более половины высказываний A, B, C, то истинны или 2, или 3 высказывания, таким образом, это высказывание можно записать как:

$$((A \land B \land \overline{C}) \lor (A \land C \land \overline{B}) \lor (C \land B \land \overline{A}) \lor (A \land B \land C)) \equiv 1$$

№6

Д-ть: $a \times b = n \rightarrow (a \le \sqrt{n}) \lor (b \le \sqrt{n})$

Д-во:

По методу контрапозии если $(a>\sqrt{n}) \wedge (b>\sqrt{n}) \rightarrow a \times b \neq n$, то $a\times b=n \rightarrow (a\leq \sqrt{n}) \vee (b\leq \sqrt{n})$.

Если $(a>\sqrt{n}) \wedge (b>\sqrt{n}),$ то $a\times b>n \Rightarrow a\times b\neq n,$ значит, $a\times b=n \rightarrow (a\leq \sqrt{n}) \vee (b\leq \sqrt{n}).$

чтд

№7

Д-ть:
$$(n^{25} + n^{64})$$
 : $2 \forall n > 0, n \in \mathbb{Z}$

Д-во:

Если $n > 0, n \in \mathbb{Z}$, то n = 2p или n = 2p + 1, где $p > 0, p \in \mathbb{Z}$.

$$1)n = 2p: (2p)^{25} + (2p)^{64} = 2^{25}p^{25} + 2^{64}p^{64} = 2(2^{24}p^{25} + 2^{63}p^{64}) \stackrel{.}{:} 2$$

 $2)n=2p+1:(2p+1)^{25}+(2p+1)^{64}.$ Нечетное число при умножении на нечетное число даёт нечетное число (тк количество множителей, кратных 2, равно $0)\Rightarrow(2p+1)^{25}$ - нечет, $(2p+1)^{64}$ - нечет $\Rightarrow(2p+1)^{25}+(2p+1)^{64}$

- чет (тк нечет + нечет = чет) $\div 2$

Значит, $(n^{25} + n^{64}) \stackrel{.}{:} 2 \ \forall \ n > 0, n \in \mathbb{Z}$

чтд

№8

A - w чётное, B - все числа x,y,z чётные. $x^2+y^2+z^2=w^2$

Д-ть: $A \equiv B$

Д-во:

Если $A \to B \land B \to A$, то $A \equiv B$ (и наоборот) (1)

- 1) Если все числа x,y,z чётные (выполняется B), то $x^2+y^2+z^2$ чётное число (тк x^2,y^2,z^2 чёт) $\Rightarrow w^2$ \vdots $2 \Rightarrow w$ \vdots 2 (тк $x,y,z,w\in Z$ по усл и, если w нечет, то w=2p+1 $(p\in Z),w^2=(2p+1)^2=4p^2+2p+1$ нечет число) \Rightarrow выполняется $A\Rightarrow B\to A$
 - 2) Еслиwчётное (выполняется A), то $w=2p\ (p\in Z), w^2=4p^2\Rightarrow x^2+y^2+z^2\stackrel{.}{:}4$

Целое число в квадрате при делении на 4 может давать остаток 0 (если оно чётное) или остаток 1 (если оно нечётное). Таким образом, если сумма 3 квадратов целых чисел делится на 4 (т.е. даёт остаток 0), то каждое из 3 квадратов целых чисел даёт остаток $0 \Rightarrow$ делится на $4 \Rightarrow$ это целое число делится на $2 \Rightarrow$ является чётным \Rightarrow числа x,y,z чётные $\Rightarrow A \rightarrow B$

Из 1), 2) и (1) следует, что $A \equiv B$.

чтд