통계분석 Statistical Analysis

Joint Distribution

- We have discussed an univariate probability distribution of a <u>single</u> random variable.
- We can extend the probability theory to the case of more than two random variables
- The probability distribution involving more than two random variables is called the **joint distribution (multivariate distribution)**.

Joint Distribution

Joint Distribution

Tossing a coin twice

 $HH \longrightarrow (x,y) = (2,0)$

 $\operatorname{HT} \longrightarrow (x,y) = (1,1)$

 $TH \longrightarrow (x, y) = (1, 1)$

 $TT \longrightarrow (x,y) = (0,2)$

• Sample space

$$S = \{HH, HT, TH, TT\}$$

Random variables

$$X = \text{the number of heads} \in \{0, 1, 2\}$$

 $Y = \text{the number of tails} \in \{0, 1, 2\}$

Joint Probability Table: p(x, y)

Bivariate Distribution (Discrete)

 \bullet Two discrete random variables X, Y

$$X = x \in D_1 = \{x_1, x_2, \dots, x_m\}$$

 $Y = y \in D_2 = \{y_1, y_2, \dots, y_n\}$

• Joint distribution (joint probability mass function)

$$P(X = x_i, Y = y_j) = p(x_i, y_j)$$

The probability of the joint outcome $X = x_i, Y = y_j$

$$0 \le p(x_i, y_j) \le 1$$

$$\sum_{x \in D_1} \sum_{y \in D_2} p(x, y) = 1$$

Bivariate Distribution: Example

Two fair dices

$$X = x \in D = \{1, 2, 3, 4, 5, 6\}$$

 $Y = y \in D = \{1, 2, 3, 4, 5, 6\}$

For any x and y in D
$$p(x,y)=rac{1}{36}$$

Example 1. Roll two dice. Let X be the value on the first die and let Y be the value on the second die. Then both X and Y take values 1 to 6 and the joint pmf is p(i,j) = 1/36 for all i and j between 1 and 6. Here is the joint probability table:

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Bivariate Distribution: Example

Example 2. Roll two dice. Let X be the value on the first die and let T be the total on both dice. Here is the joint probability table:

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36

Two fair dices

$$X = x \in D_1 = \{1, 2, 3, 4, 5, 6\}$$

 $T = t \in D_2 = \{2, 3, 4, \dots, 11, 12\}$

Marginal Probability Mass Function

• Marginal probability mass function (pmf) of X

$$p_X(x) = \sum_{y \in D_2} p(x, y)$$

• Marginal probability mass function (pmf) of Y

$$p_Y(y) = \sum_{x \in D_1} p(x, y)$$

Marginal PMF: Example

Example 1. Roll two dice. Let X be the value on the first die and let Y be the value on the second die. Then both X and Y take values 1 to 6 and the joint pmf is p(i,j) = 1/36 for all i and j between 1 and 6. Here is the joint probability table:

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

$$p_X(x) = \sum_{y \in D_2} p(x, y) = 6 \cdot \frac{1}{36} = \frac{1}{6}$$

$$p_Y(y) = \sum_{x \in D_1} p(x, y) = 6 \cdot \frac{1}{36} = \frac{1}{6}$$

Marginal PMF: Example

Example 2. Roll two dice. Let X be the value on the first die and let T be the total on both dice. Here is the joint probability table:

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36
	1	2	3	4	5	6	5	4	3	2	1
	$\overline{36}$										

$$p_X(x) = \sum_{y \in D_2} p(x, y) = 6 \cdot \frac{1}{36} = \frac{1}{6}$$
$$p_Y(y) = \sum_{x \in D_1} p(x, y)$$

Joint Bivariate Distribution (Continuous)

Two continuous random variables X,Y $\begin{cases} X = x \in (-\infty, \infty) \\ Y = y \in (-\infty, \infty) \end{cases}$

 $f(x,y) = \text{joint probability } \underline{\text{density}} \text{ at } (x,y)$

$$dp(x,y) = f(x,y)dxdy$$

= probability that $X \in (x, x + dx), Y \in (y, y + dy)$

MIT 18.05

Joint Bivariate Distribution (Continuous)

Probability from Joint Distribution

$$P[(x,y) \in A] = \int \int_{A} f(x,y) dx dy$$

probability that $(x,y) \in A$ for some subset A of range

Example 4. Suppose X and Y both take values in [0,1] with uniform density f(x,y) = 1. Visualize the event 'X > Y' and find its probability.

The event X > Y in the unit square.

Marginal Probability Density Function

• Marginal probability density function (pdf) of X

$$p_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

X=x is fixed when y is integrated out.

• Marginal probability density function (pdf) of Y

$$p_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Y=y is fixed when x is integrated out.

Independent Random Variables

• Recall the Independence of probabilities

$$P(A \cap B) = P(A) \cdot P(B)$$

For
$$\forall x, y \ p(x, y) = p_X(x) \cdot p_Y(y)$$
 [discrete]

For
$$\forall x, y \ f(x, y) = f_X(x) \cdot f_Y(y)$$
 [continuous]

Random variables X and Y are independent.

If the above relation is not satisfied for all x and y, X and Y are NOT dependent.

Independent Random Variables: Example

Example 1. Roll two dice. Let X be the value on the first die and let Y be the value on the second die. Then both X and Y take values 1 to 6 and the joint pmf is p(i,j) = 1/36 for all i and j between 1 and 6. Here is the joint probability table:

$X \backslash Y$	1	2	3	4	5	6	$p_X(x)$
1	1/36	1/36	1/36	1/36	1/36	1/36	1/6
2	1/36	1/36	1/36	1/36	1/36	1/36	1/6
3	1/36	1/36	1/36	1/36	1/36	1/36	1/6
4	1/36	1/36	1/36	1/36	1/36	1/36	1/6
5	1/36	1/36	1/36	1/36	1/36	1/36	1/6
6	1/36	1/36	1/36	1/36	1/36	1/36	1/6
$\rho_Y(y)$	1/6	1/6	1/6	1/6	1/6	1/6	

For all $x, y, p(x, y) = p_X(x) \cdot p_Y(y) \to X$ and Y are independent.

Independent Random Variables: Example

Example 2. Roll two dice. Let X be the value on the first die and let T be the total on both dice. Here is the joint probability table:

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36
	1	2	3	4	5	6	5	4	3	2	1
	$\overline{36}$										

For some (x,y), $p(x,y) \neq p_X(x) \cdot p_Y(y) \to X$ and Y are dependent.

Conditional Distributions

• Recall the conditional probability.

$$P(A|B) = P(A \cap B)/P(B)$$

For discrete random variables X and Y, when X = x, the conditional probability mass function of Y is

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$$

For continuous random variables X and Y, When X = x, the conditional probability density function of Y is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

More than Two Random Variables

• Discrete random variables X_1, X_2, \cdots, X_n

$$P(X_1 = x_1, \cdots, X_n = x_n) = p(x_1, \cdots, x_n)$$

• Continuous random variables X_1, X_2, \dots, X_n

$$P[(X_1, \dots, X_n) \in A] = \int_A f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Expectation Values

Expected values of a function h(X,Y)

•
$$\mu_{h(X,Y)} = E\left[h(X,Y)\right] = \sum_x \sum_y h(x,y) \cdot p(x,y)$$
 [discrete]
$$= \int_{-\infty}^\infty \int_{-\infty}^\infty h(x,y) \cdot f(x,y) dx dy$$
 [continuous]

• If h(X, Y) = h(X),

$$E[h(X)] = \sum_x \sum_y h(x) p(x,y) = \sum_x h(x) p_X(x) \qquad \text{[discrete]}$$

$$= \int_{-\infty}^\infty h(x) f_X(x) dx \qquad \text{[continuous]}$$

Covariance

When
$$h(X,Y) = (X - \mu_X) \cdot (Y - \mu_Y)$$

$$\operatorname{Cov}(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) p(x,y) \qquad \text{[discrete]}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f(x,y) dxdy \quad \text{[continuous]}$$

$$\mu_X = E[X] = \sum_{x} \sum_{y} x \cdot p(x,y) = \sum_{x} x \cdot \left(\sum_{y} p(x,y)\right) = \sum_{x} x \cdot p_X(x)$$

$$\mu_Y = E[Y] = \sum_{x} \sum_{y} y \cdot p(x,y) = \sum_{y} y \cdot \left(\sum_{x} p(x,y)\right) = \sum_{x} x \cdot p_Y(y)$$

Covariance

When
$$h(X,Y) = (X - \mu_X) \cdot (Y - \mu_Y)$$

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y)p(x, y)$$
 [discrete]

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f(x, y) dx dy$$
 [continuous]

Properties of Covariance

- Cov(aX + b, cY + d) = acCov(X, Y) for constants a, b, c, d
- $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- $Cov(X, X) = Var(X) = \sigma_X^2$
- $Cov(X,Y) = E(XY) \mu_X \mu_Y$
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
- If X and Y are independent, then Cov(X, Y) = 0But, Cov(X, Y) = 0 does not mean that X and Y are independent.

$$(X+Y)^2 = X^2 + Y^2 + 2XY$$

Properties of Covariance

- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
- If X and Y are independent, then Cov(X, Y) = 0But, Cov(X, Y) = 0 does not mean that X and Y are independent.

$$egin{aligned} \operatorname{Cov}(X,Y) &= \sum_{x} \sum_{y} (X - \mu_X)(Y - \mu_Y) p(x,y) & \qquad & ext{For } orall x,y \ &= \sum_{x} \sum_{y} (X - \mu_X)(Y - \mu_Y) p_X(x) p_Y(y) & \qquad & = \sum_{x} \sum_{y} (X - \mu_X) p_X(x) \sum_{y} (Y - \mu_Y) p_Y(y) & \qquad & = 0 \cdot 0 = 0 \end{aligned}$$

Properties of Covariance

- If X and Y are independent, then Cov(X,Y) = 0
- In other words, if $Cov(X,Y)\neq 0$, then X and Y are NOT independent.
- But, Cov(X, Y)=0 does not mean that X and Y are independent.

Properties of Covariance: Example (1)

Sample space

Tossing a fair coin three times

Example 1. Flip a fair coin 3 times. Let X be the number of heads in the first 2 flips and let Y be the number of heads on the last 2 flips (so there is overlap on the middle flip). Compute Cov(X,Y).

$X \backslash Y$	0	1	2	$p(x_i)$	$\mu_X = E(X) = \sum_{x,y} xp(x,y)$
0	1/8	1/8	0	1/4	
1	1/8	2/8	1/8	1/2	$= \sum_{x} x \left(\sum_{y} p(x, y) \right) = \sum_{x} x p_{X}(x) = 0$
2	0	1/8	1/8	1/4	
$p(y_j)$	1/4	1/2	1/4	1	$\mu_Y = E(Y) = \sum y p(x, y)$
					x,y
					$= \sum_{y} y \left(\sum_{x} p(x, y) \right) = \sum_{y} y p_{Y}(y) = 1$
					$\frac{z}{y}$ $\frac{z}{x}$ $\frac{z}{y}$

Properties of Covariance: Example (1)

Example 1. Flip a fair coin 3 times. Let X be the number of heads in the first 2 flips and let Y be the number of heads on the last 2 flips (so there is overlap on the middle flip). Compute Cov(X,Y).

$$X \setminus Y = 0$$
 1 2 $p(x_i)$ $Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y))$
0 1/8 1/8 0 1/4 $= \sum_{x,y} p(x,y)(x-1)(y-1) = \frac{1}{4}$
1 1/8 2/8 1/8 1/2 $= \sum_{x,y} p(x,y)(x-1)(y-1) = \frac{1}{4}$
2 0 1/8 1/8 1/4 $= \sum_{x,y} p(x,y)(x-1)(y-1) = \sum_{x,y} p(x-1)(y-1) = \sum_{x$

$$Cov(X,Y) = E(XY) - \mu_X \mu_Y$$

$$= 1 \cdot 1 \cdot \frac{2}{8} + 1 \cdot 2 \cdot \frac{1}{8} + 2 \cdot 1 \cdot \frac{1}{8} + 2 \cdot 2 \cdot \frac{1}{8} - 1$$

$$= \frac{5}{4} - 1 = \frac{1}{4}$$

Here, since Cov(X,Y) is NOT zero, so X and Y are NOT independent. You can confirm this by comparing p(x,y) and a product of marginal probability functions of X and y.

Properties of Covariance: Example (2)

If Cov(X,Y)=0, X and Y are independent?

Example 2. (Zero covariance does not imply independence.) Let X be a random variable that takes values -2, -1, 0, 1, 2; each with probability 1/5. Let $Y = X^2$. Show that Cov(X, Y) = 0 but X and Y are not independent.

$Y \backslash X$	-2	-1	0	1	2	p(
0	0	0	1/5	0	0	1
1	0	1/5	0	1/5	0	2
4	1/5	0	0	0	1/5	2
$p(x_i)$	1/5	1/5	1/5	1/5	1/5	

Properties of Covariance: Example (2)

If Cov(X,Y)=0, X and Y are independent?

Example 2. (Zero covariance does not imply independence.) Let X be a random variable that takes values -2, -1, 0, 1, 2; each with probability 1/5. Let $Y = X^2$. Show that Cov(X, Y) = 0 but X and Y are not independent.

$$Y \setminus X$$
 -2
 -1
 0
 1
 2
 $p(y_j)$
 $E(X) = 0$
 $E(Y) = 2$

 0
 0
 0
 1/5
 0
 0
 1/5
 $Cov(X, Y) = \frac{1}{5}(-8 - 1 + 1 + 8) - \mu_X \mu_y = 0$.

 1
 0
 1/5
 0
 0
 1/5
 2/5
 $Cov(X, Y) = \frac{1}{5}(-8 - 1 + 1 + 8) - \mu_X \mu_y = 0$.

 $p(x_i)$
 1/5
 1/5
 1/5
 1/5
 1
 1

$$p(x = -2, y = 0) = 0 \neq p_X(x = -2) \cdot p_Y(y = 0) = \frac{1}{25}$$

X and Y are **NOT** independent

Correlation

The correlation coefficient of X and Y

$$\operatorname{Corr}(X, Y) = \rho_{X,Y} = \rho = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$$

- The covariance is not dimensionless.
- The correlation is dimensionless.
 - \rightarrow If units of X and Y change, their covariance also changes.
 - \rightarrow But, their correlation does not change.
 - \rightarrow The correlation is a standardized covariance.

Properties of Correlation

• For constants $a(\neq 0), b, c(\neq 0), d$

$$\operatorname{Corr}(aX + b, cY + d) = \frac{a}{|a|} \frac{c}{|c|} \operatorname{Corr}(X, Y)$$

- If X and Y are independent, then Corr(X, Y) = 0But, Corr(X, Y) = 0 does not mean the independence of X and Y.
- $-1 \le \operatorname{Corr}(X, Y) \le 1$ Corr(X, Y) = +1 if and only if Y = aX + b with a > 0 Corr(X, Y) = -1 if and only if Y = aX + b with a < 0

Meaning of Covariance and Correlation

Positive Unit Correlation

X and Y have a perfect linear relationship.

A measure that implies whether X and Y have a strong relationship

positive $(x - \mu_X)(y - \mu_Y)$ negative $(x - \mu_X)(y - \mu_Y)$ almost cancel out each other.

$$Cov(X, Y) \approx 0$$

X and Y are not strongly related.

- $-1 \le \operatorname{Corr}(X,Y) \le 1$ $\operatorname{Corr}(X,Y) = +1$ if and only if Y = aX + b with a > 0 $\operatorname{Corr}(X,Y) = -1$ if and only if Y = aX + b with a < 0
- Maximum(1) and Minimum(-1) of correlation
 = perfect linear relationship between X and Y
- $|\rho| < 1$ implies that there is some relationship between X and Y but, not completely linear.
 - Possibly there may be a strong nonlinear relationship.