Final Project Report

Introduction to Bloomberg & Thomson-Reuters

Sai Preetham Pamisetty Chandrasekhar Prof. Agathe Sadeghi 19 December 2024

Assumption

The goal of this project is to evaluate the relationship between changes in Federal Reserve interest rates and the monthly returns of the S&P 500 index over the past 10 years. Specifically, the assumption is that changes in interest rates have a measurable impact on S&P 500 returns, with the hypothesis that increases in interest rates negatively affect stock market returns.

Data Sources and Gathering Process

Data Selection

To evaluate the assumption, the following datasets were required:

1. **S&P 500 Historical Prices:** monthly closing prices of the S&P 500 index for the past 10 years.

2. Federal Reserve Interest Rate Changes: Historical data on interest rate changes by the Federal Reserve over the same 10-year period.

Data Sources

1. S&P 500 Data:

- Data was obtained from the Bloomberg Terminal. Using the ticker symbol for the S&P 500 index ("SPX"), monthly historical closing prices and percentage changes were exported. [SPX INDEX HP]
- Relevant fields included:
 - PX_LAST: The closing price of the S&P 500.
 - PX_OPEN

2. Interest Rate Data:

- Data on Federal Reserve interest rate changes was also sourced from the Bloomberg Terminal. Using appropriate Bloomberg queries, historical rate changes and their respective dates were exported. [FDL01 INDEX HP]
- The exported data included:
 - PX_LAST: The latest Federal interest rate on a given day.
 - CHG_PCT_1D: monthly percentage change in the index.

Data Preparation

- 1. Data from both sources was exported as separate CSV files.
- 2. In Python, the datasets were loaded into Pandas DataFrames.
- 3. Dates were converted to a uniform datetime format to ensure proper merging of the datasets.
- 4. The datasets were merged based on the Date column, aligning the monthly S&P 500 returns with corresponding interest rate changes.
- 5. Derived variables included:
 - SP500_Return: The monthly percentage change in the S&P 500 index.
 - Rate_Change_Pct: The percentage change in Federal interest rates.

Load Libraries in Your Notebook

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
```

Step 2: Load Your Data ¶

Export the S&P 500 and Federal Interest Rates data from Bloomberg Terminal to CSV files.

```
[2]: # Load datasets
     sp500 = pd.read_csv('S&P_Month.csv') # Replace with your file name
     interest_rates = pd.read_csv('FED_Month.csv') # Replace with your file name
     # Display first few rows to verify
     print(sp500.head())
     print(interest_rates.head())
            Date PX_LAST PX_OPEN
     0 30/11/24 6032.38 5723.22
     1 31/10/24 5705.45 5757.73
     2 30/09/24 5762.48 5623.89
3 30/08/24 5648.40 5537.84
     4 31/07/24 5522.30 5471.08
            Date PX_LAST CHG_PCT_1D
11/24 4.64 -3.93
     0 30/11/24
     1 31/10/24
                     4.83
                                 -5.85
     2 30/09/24
3 30/08/24
                    5.13
5.33
                                -3.75
                                0.00
     4 31/07/24 5.33
                                0.00
```

```
sp500.dropna(subset=['Date'], inplace=True)
interest rates.dropna(subset=['Date'], inplace=True)
print(sp500.head())
print(interest rates.head())
       Date PX_LAST PX_OPEN
0 2024-11-30 6032.38 5723.22
1 2024-10-31 5705.45 5757.73
2 2024-09-30 5762.48 5623.89
3 2024-08-30 5648.40 5537.84
4 2024-07-31 5522.30 5471.08
       Date PX_LAST CHG_PCT_1D
0 2024-11-30 4.64
                         -3.93
              4.83
1 2024-10-31
                         -5.85
              5.13
2 2024-09-30
                         -3.75
                          0.00
3 2024-08-30
              5.33
4 2024-07-31
              5.33
                           0.00
sp500['Date'] = pd.to_datetime(sp500['Date'])
interest_rates['Date'] = pd.to_datetime(interest_rates['Date'])
```

Merge the Datasets: Align both datasets by date

```
# Merge on the Date column
data = pd.merge(sp500, interest_rates, on='Date', how='inner')
# Rename columns for clarity
data.rename(columns={'SP500_Close': 'S&P_500', 'Interest_Rate': 'InterestRate'}, inplace=True)
print(data.isnull().sum())
data.dropna(inplace=True) # Drop rows with missing values
Date
PX_LAST_x
             0
PX_OPEN
             0
PX_LAST_y
             0
CHG_PCT_1D
dtype: int64
print(data.head()) # merged data
       Date PX_LAST_x PX_OPEN PX_LAST_y CHG_PCT_1D
                                           -3.93
0 2024-11-30
             6032.38 5723.22
                                     4.64
               5705.45 5757.73
                                               -5.85
1 2024-10-31
                                     4.83
2 2024-09-30
             5762.48 5623.89
                                    5.13
                                               -3.75
3 2024-08-30
               5648.40 5537.84
                                     5.33
                                                0.00
4 2024-07-31
               5522.30 5471.08
                                     5.33
                                                0.00
```

replacing to avoid confusion

Calculate Returns: Compute monthly returns for S&P 500 and rate changes:

```
data.rename(columns={
          'PX_LAST_x': 'SP500_Close',
          'PX OPEN': 'SP500 Open'.
          'PX_LAST_y': 'InterestRate'
          'CHG_PCT_1D': 'Rate_Change_Pct'
      }, inplace=True)
      print(data.head())
             Date SP500_Close SP500_Open InterestRate Rate_Change_Pct
      0 2024-11-30
                    6032.38
                                5723.22
                                                  4.64
                                                                  -3.93
      1 2024-10-31
                       5705.45
                                   5757.73
                                                   4.83
                                                                   -5.85
      2 2024-09-30
                      5762.48
                                   5623.89
                                                   5.13
                                                                   -3.75
                       5648.40
                                   5537.84
      3 2024-08-30
                                                   5.33
                                                                    0.00
                     5522.30
                                                   5.33
      4 2024-07-31
                                   5471.08
                                                                    0.00
data['SP500_Return'] = (data['SP500_Close'] - data['SP500_Open']) / data['SP500_Open']
```

Analysis

Methodology

A simple linear regression was performed using the following variables:

- **Dependent Variable (Y):** monthly percentage change in S&P 500 returns (SP500_Return).
- Independent Variable (X): Percentage change in Federal interest rates (Rate_Change_Pct).

Exploratory Data Analysis (EDA)

```
print(data.describe()) #stats
                     Date SP500_Close
                                        SP500_Open InterestRate
                                       120.000000
count
                     120
                          120.000000
                                                     120.000000
      2019-12-15 00:36:00 3333.699167 3304.079833
                                                       1.746250
mean
      2014-12-31 00:00:00 1920.030000 1919.650000
                                                       0.050000
                                                       0.120000
25%
      2017-06-22 12:00:00 2420.507500 2408.862500
50%
      2019-12-15 00:00:00
                          2978.560000 2977.300000
                                                       1.150000
75%
      2022-06-07 12:00:00 4180.165000 4170.850000
                                                       2.400000
      2024-11-30 00:00:00 6032.380000 5757.730000
                                                       5.330000
max
                     NaN 1075.861823 1054.882210
                                                       1.862809
std
      Rate_Change_Pct SP500_Return
count
           120.000000
                       120.000000
mean
             6.895333
                         0.009075
min
           -92.310000
                         -0.131020
25%
             0.000000
                         -0.016068
50%
             0.415000
                          0.013670
75%
             8.362500
                          0.033979
max
           150.000000
                          0.165867
            26.214960
                          0.045348
std
```

Correlation Analysis: Check if there is any correlation between S&P 500 returns and interest rate changes:

```
print(data[['SP500_Return', 'Rate_Change_Pct']].corr())

SP500_Return Rate_Change_Pct
SP500_Return 1.000000 -0.129744
Rate_Change_Pct -0.129744 1.000000
```

Visualizations: Line Plot of S&P 500 Close and Interest Rate Over Time:

```
plt.figure(figsize=(12, 6))
plt.plot(data['Date'], data['SP500_Close'], label='S&P 500 Close', color='blue')
plt.plot(data['Date'], data['Rate_Change_Pct'], label='Rate_Change_Pct', color='red')
plt.xlabel('Date')
plt.ylabel('Value')
plt.title('S&P 500 Close vs. Rate_Change_Pct')
plt.legend()
plt.show()
```


Time Series Plot

2015

2016

2017

2018

2019

- A combined line chart of S&P 500 closing prices and Federal interest rate changes highlighted distinct trends:
 - S&P 500 exhibited a clear upward trend over the 10-year period.
 - o Interest rate changes remained flat with occasional adjustments, showing no direct correlation with major S&P 500 movements

2020

Date

2021

2022

2023

2024

2025

Scatter Plot Between S&P 500 Returns and Rate Change:

```
sns.scatterplot(data=data, x='Rate_Change_Pct', y='SP500_Return')
plt.title('S&P 500 Returns vs. Interest Rate Change')
plt.show()
```



```
sns.regplot(data=data, x='Rate_Change_Pct', y='SP500_Return', line_kws={'color': 'red'})
plt.title('Regression Line: S&P 500 Returns vs. Interest Rate Change')
plt.show()
```


Scatterplot with Regression Line

- A scatterplot showed the relationship between S&P 500 returns and interest rate changes, with a regression line overlaid.
- The near-horizontal slope of the line and the wide scatter of points confirmed the weak relationship between the variables.

Tools Used

1. Programming Environment: Python (Jupyter Notebook).

2. Libraries:

- Pandas and NumPy for data manipulation.
- Statsmodels for regression analysis.
- Matplotlib and Seaborn for data visualization.

Results

Statistical Summary

Regression Analysis

Prepare Data for Regression:

Independent Variable: Rate_Change_Pct

Dependent Variable: SP500_Return

```
import statsmodels.api as sm

X = data[['Rate_Change_Pct']] # Independent variable
y = data['SP500_Return'] # Dependent variable
X = sm.add_constant(X) # Add a constant term for the intercept

model = sm.OLS(y, X).fit()
print(model.summary())
```

Regression Output:

- **R-squared:** 0.017 (1.7% of the variance in S&P 500 returns is explained by interest rate changes).
- Adjusted R-squared: 0.009.
- **Coefficient for Rate_Change_Pct:** -0.0002 (indicating a very small inverse relationship).
- **P-value for Rate_Change_Pct:** 0.158 (not statistically significant).

Dep. Variable:	SP500 Return		P-squared:		0.017	
Model:	_		Adj. R-squared:		0.009	
Method:	Least Squares Thu, 19 Dec 2024		,		2.020 0.158 202.45	
Date:						
Time:						
No. Observations:			AIC:		-400.9	
Df Residuals:	118		BIC:		-395.3	
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	0.0106	0.004	2.491	0.014	0.002	0.019
Rate_Change_Pct	-0.0002	0.000	-1.421	0.158	-0.001	8.82e-05
======================================	7.309		======================================		2.395	
Prob(Omnibus):	0.026		Jarque-Bera (JB):		8.163	
Skew:	-0.395		Prob(JB):		0.0169	
Kurtosis:		4.005 Cond. No.			27.9	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Group Analysis: Group the data by periods of rate hikes (Rate_Change_Pct > 0) vs. no hikes:

plt.show()

Conclusion

Key Findings

- 1. The analysis revealed a very weak and statistically insignificant relationship between changes in Federal interest rates and S&P 500 daily returns.
- 2. The R-squared value of 0.017 indicates that interest rate changes explain only a small fraction of the variance in stock market returns.
- 3. The P-value for the Rate_Change_Pct variable (0.158) further suggests that the relationship is not significant.
- 4. Visualizations supported the regression analysis, showing no observable pattern linking interest rate changes to S&P 500 movements.

Implications

- The results suggest that while interest rates may impact the broader economy, their immediate influence on daily S&P 500 returns is minimal.
- Other factors, such as corporate earnings, global events, and investor sentiment, may play a more significant role in driving market returns.

Future Improvements

- 1. For further research, a more complex model (e.g., multivariate regression) could be used to account for additional variables influencing stock returns.
- 2. Consider the lagged effects of interest rate changes or applying time-series models to explore longer-term impacts.
- 3. Incorporate macroeconomic indicators such as GDP growth, inflation rates, and unemployment data to build a comprehensive model.