Gradient Descent Towards Neural Networks

Justin Stevens

Outline

- Decision Making
 - Perceptrons
 - Activation Functions
- 2 Classifying Digits through MNIST

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

- Are the tickets cheap or expensive?
- Do I have the time to go?
- Do I care about the team they're playing?

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

- Are the tickets cheap or expensive?
- Do I have the time to go?
- Do I care about the team they're playing?

We'll make my decision by encoding each possible input as a vector \bar{x} :

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

- Are the tickets cheap or expensive?
- Do I have the time to go?
- Do I care about the team they're playing?

We'll make my decision by encoding each possible input as a vector \bar{x} :

Ticket Prices	Availability	Interest	\bar{x}
Cheap	Yes	Yes	(1, 1, 1)
Cheap	No	No	(1,0,0)
Cheap	Yes	No	(1, 1, 0)
Cheap	No	Yes	(1,0,1)
Expensive	Yes	Yes	(0,1,1)
Expensive	No	No	(0,0,0)
Expensive	No	Yes	(0,0,1)
Expensive	Yes	No	(0, 1, 0)

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{w} = (1, 6, 3)$.

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{w}=(1,6,3)$. We can then compute the dot product $\bar{w}\cdot\bar{x}$ for each possible input:

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{w}=(1,6,3)$. We can then compute the dot product $\bar{w}\cdot\bar{x}$ for each possible input:

Ticket Prices	Availability	Interest	\bar{x}	$ \bar{w}\cdot\bar{x} $
Cheap	Yes	Yes	(1, 1, 1)	10
Cheap	No	No	(1, 0, 0)	1
Cheap	Yes	No	(1, 1, 0)	7
Cheap	No	Yes	(1, 0, 1)	4
Expensive	Yes	Yes	(0, 1, 1)	9
Expensive	No	No	(0,0,0)	0
Expensive	No	Yes	(0,0,1)	3
Expensive	Yes	No	(0, 1, 0)	6

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{w}=(1,6,3)$. We can then compute the dot product $\bar{w}\cdot\bar{x}$ for each possible input:

Ticket Prices	Availability	Interest	\bar{x}	$\bar{w} \cdot \bar{x}$
Cheap	Yes	Yes	(1, 1, 1)	10
Cheap	No	No	(1,0,0)	1
Cheap	Yes	No	(1, 1, 0)	7
Cheap	No	Yes	(1, 0, 1)	4
Expensive	Yes	Yes	(0, 1, 1)	9
Expensive	No	No	(0,0,0)	0
Expensive	No	Yes	(0,0,1)	3
Expensive	Yes	No	(0, 1, 0)	6

We can now define my **activation threshold**, *t*, which will determine whether or not I go to the game, represented in binary.

Formula for Decision Making

The general formula for my decision to go to the Oilers game is

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{w} \cdot ar{x} < t \ 1 & \mathsf{if} \ ar{w} \cdot ar{x} \geq t. \end{cases}$$

Formula for Decision Making

The general formula for my decision to go to the Oilers game is

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{w} \cdot ar{x} < t \ 1 & \mathsf{if} \ ar{w} \cdot ar{x} \geq t. \end{cases}$$

For instance, if t=9, we see I'll only go if I'm both available and interested.

Formula for Decision Making

The general formula for my decision to go to the Oilers game is

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{w} \cdot ar{x} < t \ 1 & \mathsf{if} \ ar{w} \cdot ar{x} \geq t. \end{cases}$$

For instance, if t = 9, we see I'll only go if I'm both available and interested. If t = 7, I'll also go if the tickets are cheap and I'm available:

Ticket Prices	Availability	Interest	\bar{x}	$\bar{x} \cdot \bar{w}$
Cheap	Yes	Yes	(1, 1, 1)	10
Cheap	No	No	(1, 0, 0)	1
Cheap	Yes	No	(1, 1, 0)	7
Cheap	No	Yes	(1, 0, 1)	4
Expensive	Yes	Yes	(0, 1, 1)	9
Expensive	No	No	(0, 0, 0)	0
Expensive	No	Yes	(0, 0, 1)	3
Expensive	Yes	No	(0, 1, 0)	6

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

Each of these lines collect evidence and are weighted to produce an output.

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

Each of these lines collect evidence and are weighted to produce an output. In practice, our inputs and outputs don't necessarily have to be binary; they can be real-valued. We therefore have to define a new activation function.

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

Each of these lines collect evidence and are weighted to produce an output. In practice, our inputs and outputs don't necessarily have to be binary; they can be real-valued. We therefore have to define a new activation function. First, we make a slight modification to our model by adding bias.

Instead of comparing our weighted sum to a threshold, we instead *add* a bias, *b*, to our weighted sum.

Instead of comparing our weighted sum to a threshold, we instead *add* a bias, b, to our weighted sum. We write this as $\bar{w} \cdot \bar{x} + b$ instead.

Instead of comparing our weighted sum to a threshold, we instead add a bias, b, to our weighted sum. We write this as $\bar{w} \cdot \bar{x} + b$ instead. Then

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{w} \cdot ar{x} + b < 0 \ 1 & \mathsf{if} \ ar{w} \cdot ar{x} + b \geq 0. \end{cases}$$

Instead of comparing our weighted sum to a threshold, we instead add a bias, b, to our weighted sum. We write this as $\bar{w} \cdot \bar{x} + b$ instead. Then

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{w} \cdot ar{x} + b < 0 \ 1 & \mathsf{if} \ ar{w} \cdot ar{x} + b \geq 0. \end{cases}$$

Sometimes we'll need to calculate a value as an intermediate step in a calculation. In this case, we use various **activation functions**.

Instead of comparing our weighted sum to a threshold, we instead add a bias, b, to our weighted sum. We write this as $\bar{w} \cdot \bar{x} + b$ instead. Then

$$ext{output} = egin{cases} 0 & ext{ if } ar{w} \cdot ar{x} + b < 0 \ 1 & ext{ if } ar{w} \cdot ar{x} + b \geq 0. \end{cases}$$

Sometimes we'll need to calculate a value as an intermediate step in a calculation. In this case, we use various **activation functions**. The one presented above is known as the *heaviside step function*. There's also the **rectified linear unit**, which is defined by $f(x) = \max\{0, x\}$.

Instead of comparing our weighted sum to a threshold, we instead add a bias, b, to our weighted sum. We write this as $\bar{w} \cdot \bar{x} + b$ instead. Then

$$ext{output} = egin{cases} 0 & ext{ if } ar{w} \cdot ar{x} + b < 0 \ 1 & ext{ if } ar{w} \cdot ar{x} + b \geq 0. \end{cases}$$

Sometimes we'll need to calculate a value as an intermediate step in a calculation. In this case, we use various **activation functions**. The one presented above is known as the *heaviside step function*. There's also the **rectified linear unit**, which is defined by $f(x) = \max\{0, x\}$. Graphically,

Figure 2: Rectifier, and a smooth approximation $log(1 + e^x)$. (Source: Wikipedia).

Sigmoid Function

As we saw above, our output doesn't necessarily have to be a 0 or 1; using a rectified linear unit, it can be any non-negative number.

Sigmoid Function

As we saw above, our output doesn't necessarily have to be a 0 or 1; using a rectified linear unit, it can be any non-negative number. However, for computational purposes, it's easiest if our outputs live in the range (0,1).

Sigmoid Function

As we saw above, our output doesn't necessarily have to be a 0 or 1; using a rectified linear unit, it can be any non-negative number. However, for computational purposes, it's easiest if our outputs live in the range (0,1).

Outline

- Decision Making
- Classifying Digits through MNIST
 - Defining the Problem
 - References

Example Images

Figure 3: How would you devise a system for a **computer** to classify the digits? What assumptions do we have to make about the data set, known as MNIST?

• The MNIST database contains thousands of handwritten digits.

- The MNIST database contains thousands of handwritten digits.
- Each data-point contains both an image, and the desired digit.

- The MNIST database contains thousands of handwritten digits.
- Each data-point contains both an image, and the desired digit.
- Each image contains pixels ranging 0 to 255, with 8 bits used.
- An individual image is a 28×28 array of pixels.

- The MNIST database contains thousands of handwritten digits.
- Each data-point contains both an image, and the desired digit.
- Each image contains pixels ranging 0 to 255, with 8 bits used.
- An individual image is a 28×28 array of pixels.
- The desired digit is represented as a number from 0 to 9.

- The MNIST database contains thousands of handwritten digits.
- Each data-point contains both an image, and the desired digit.
- Each image contains pixels ranging 0 to 255, with 8 bits used.
- An individual image is a 28×28 array of pixels.
- The desired digit is represented as a number from 0 to 9.
- 60,000 images are designated for training, and 10,000 for testing.

- The MNIST database contains thousands of handwritten digits.
- Each data-point contains both an image, and the desired digit.
- Each image contains pixels ranging 0 to 255, with 8 bits used.
- An individual image is a 28×28 array of pixels.
- The desired digit is represented as a number from 0 to 9.
- 60,000 images are designated for training, and 10,000 for testing.

We'll build a model from the training images that will learn to classify digits!

What we're building towards

Figure 4: A simple neural network structure. The input vectors on the left hand side have $28 \times 28 = 784$ inputs for each pixel, and the output layer has 10 digits.

References

- Michael Nielsen: Using neural nets to recognize handwritten digits
- Towards Data Science: A Beginner's Guide to Neural Networks
- Paul's Online Math Notes, Calculus III