

The University of Manchester

Human Evaluation & Ethics

Research Skills and Professional Issues

Dr Simon Harper

School of Computer Science

Why Are You Here?

- Testing is key to science and research
- Testing with humans is normally done really badly
- Understanding the problems takes time and experience
- Building good methodologies allows our systems to be tested better, and therefore BE better
- Good Ethics makes: good methodologies; strong science; better systems

 4h Face to Face + 6h Post Lecture Practical

Introducing Human Evaluation

Your Past Experiences (P)

Methods for Evaluation

- BREAK
- Augmenting Your Past Experiences (P)
- Ethical Applications

Re Building Your Past Work

* Practical over Week

Human Evaluation

- Human Computer
 Interaction
- Evaluation is the final part of the HCI process
- Often in a Usability Lab
- Based on WellUnderstood Science
- Participant is...
- Experimenter is...

Refutability

Assertion must have the possibility of being Falsified

- Does NOT mean it IS False
- Just that it can be REFUTED

Egs

MANCHESTER

- XThe interface will render in about 10ms
- ✓ The interface renders in 10ms

Hypothesis Testing

- 1. Create a refutable hypothesis
 - 'All Swans are White'
- 2. Empirical observations which are aimed at Refuting the hypothesis
 - Observe as many Swans as possible in all countries and continents
- 3. Hypothesis is **Supported** (not proved) until a counter case is found
 - Arriving in Australia we find a Black Swan!
- 4. Therefore, 'All Swans are White' is false.

Requirements Analysis

- Most HCI collection and evaluation protocols are based on software engineering techniques
- Elicitation
 - * Gather data pre-implementation
- Analysis
 - * Analyse gathered data to create a systems design
- Systems approaches are often inflexible

- Where is the SE User Testing?
 - * Models created in system design are tested often without further human intervention

Significance of HCI

- Humans are First-Class Citizens
 - * Not after-thoughts
- System Conforms to User
 - * Humans should not need to conform to the system
- Humans should be involved at All Stages
 - * Not Just the Requirements Analysis
- SE Modelling techniques are sometimes not best suited to HCI - Too Engineering Focused
 - * Methods from the Human Sciences often are suited
- Build flexible bespoke methods conforming to the scientific method

1. You have 45 minutes to:

- * Think back to your last implementation/project for a system or interface to be used by a human.
- * Think about how you either, tested it, or came up with the user requirements.
- * Try not to embellish at this point just tell-it as it happened.

2. Create a 1 to 2 page document (Bullet Points):

- * Giving a brief overview of the project and its aims.
- * What data collection / testing techniques you used?
- * What kinds of things did you measure?
- * How did you analyse the data?
- * Did you make any changes based on the data?
- * What would you do differently?
- I'll be picking on some of you for your analysis, next.

Feedback...

The University of Manchester

- ✓ What where the important things you DID RIGHT?
- X What where the important things you DID WRONG?

One View of the HCI Process

- 1. Understanding Users
- 2. Creating a Design
- 3. Testing a Design
- 4. Building a Prototype
- 5. Testing the Prototype
- 6. Building the Interface or System
- 7. Evaluating the Interface or System
- 8. Changing the Interface or System Back to 1.

Really About: Testing and evaluating our understanding of users, captured within the design, prototype, or implementation.

How to Understand

- Research Methodologies
- Methods for Pre Design Data Collection
 - * In the Field Qualitative
 - * In Between Quantitative
- Methods for Post Design Evaluation
 - * In Between Quantitative
 - * In the Laboratory Experimental
 - * Hybrid Experimental with aspects of Qualitative & Quantitative

In the Field

- Participant Observation
- Interviewing or Conversation with a Purpose
- Focus Groups
- Archival Methods
- Unobtrusive Methods
- Key-point: Field Notes
 - * A/V or Text
 - * Immediate
 - * Minor Delay
 - * Day-Delay
 - * Impressionistic

In Between

Survey

MANCHESTER

- Questionnaires
- Walkthrough
- Key-point: Drawing the Sample
 - Random (p)
 - Systematic (p)
 - Stratified (p)
 - Multistage (p)
 - Quota (np)

In Between

- Think-Aloud
- Co-Operative Evaluation
- Participatory Design

- + Combinations of All
- Key-point: Involve People
 - * Talk Out Loud
 - * Participation
 - * 'Extreme Evaluation'

In the Laboratory

- Single Group, Post Test
- Single Group Pre & Post Test
- Natural Control Group Pre & Post Test
- Random Control Group Pre & Post Test
- Within Subjects

Key-point: Sample

- Population Definition
- Population
 - * Census
- Sample Frame
 - * Sample
- Probabilistic
 - * Random
 - * Systematic
 - * Stratified
 - * Multistage
- Non-Probabilistic
 - * Quota
 - Demographics (Age, Gender, etc to match Popn Defn)

Key-point: Variables

- Subject, Behavioural, Stimulus, and Response
- Independent Variables
 - Thing Under Investigation (being manipulated or changed)
- Dependent Variables
 - * Things that Depend (the observed result)
- Confounding Variables
 - * Things that can lead to incorrect responses.
- Constants
 - * Variables which may affect the others but which can be maintained as constant

Key-point: Measurement

- Nominal
 - * Denotes identity
 - eg Rod, Jane, Freddy
- Ordinal
 - * Denotes identity and magnitude
 - eg Enum {1, 20, 80}
- Interval
 - * Denotes identity, magnitude, and has equal intervals
 - eg Sequence
- Ratio / Score
 - Denotes identity, magnitude, has equal intervals, and a true zero point
 - eg Integers

Key-point: Validity

Internal Validity

- * Descriptive
- * Internal Consistency
- * Measuring Outliers

External Validity

- * Inferential
- * Show your experiment can be generalized to a population
- * Measuring goodness of fit to that population

Instruments

Performance

- Time required by the user to complete a task
- Time spent navigating the interface
- Number of incorrect choices or errors created
- Number of jobs completed, either correctly or incorrectly *
- * Number of observations of user frustration
- * Frequency of interface components or behaviour that is never used.
- Eye Tracking
- Facial Expressions
- Biofeedback
 - * GSR
 - * Temperature
 - * Blood Pressure
 - * Heart Rate

Data Analysis (Experimental)

- Inferential (Not Covered Any Further)
 - * Parametric
 - * Non-Parametric
- Descriptive
 - * Normal Distribution

Descriptive #1

Central Tendency

- * Mode Most frequent
- * Median Middle Score
- * Mean Arithmetic Average

Variability

- * Skew negative / positive
- * Kurtosis mesokurtic / leptokurtic / platykurtic
- * Range
- * Standard Deviation
- * Average Deviation
- * Variance (Average Squared Distance from the Mean)

Standard (Z-) Score

* Describes how a single participant score relative to the rest of the participants (in relation to the mean)

Descriptive #2

Relationships

- * Correlation
 - Correlation does not imply causation
 - Pearson Product Moment for Score Data (Describes Linear Relationship)
 - Spearman Rank-Order for Ordered Data
- * Regression
 - Predicts the value of one variable from the value of another
 - Scatter Plots
 - Line is called the Regression Line
 - Computationally easy on SPSS / PSPP

1. You have 1 hour to:

- Take the result of Practical #1; addressed in a laboratory setting
- Augment it with actual testable hypotheses
- Augment your methodology with descriptions of how you will make it conform to the scientific method
- What will be the variables tested etc.
- Demonstrate how you would support your hypotheses

 I'll be picking on some of you for your analysis, next.

Back in 20 minutes - PROMPT

Practical #2 RECAP

1. You have 40 minutes to:

- Take the result of Practical #1; addressed in a laboratory setting
- Augment it with actual testable hypotheses
- Augment your methodology with descriptions of how you will make it conform to the scientific method
- What will be the variables tested etc.
- Demonstrate how you would support your hypotheses

 I'll be picking on some of you for your analysis, next.

Feedback...

- ✓ What are the important things to CONSIDER?
 - What did you MISS in your Original Methodology?

Ethics & Users

- Morals
- Ethics
- Standards Bodies
- Institutional Review Board
- Risk Assessment
- Informed Consent
- Privacy

Why Care?

Abuse

Subjects and Participants

Keeping Us Honest

Competency

* Keep up to date, know your limitations, ask for advice

Integrity

* Have no axe to grind, or desired outcome;

Scientific

- * Follow the Scientific Method
- * benefit from the results of that research

Principles #2

Respect

* Assess your participants autonomy and capability of selfdetermination, treat participants as equals, ensure their welfare

Benefits

* Maximising benefits and minimising possible harms according to you best judgement, seek advice from your organisations ethics committee

Justice

* Research should be undertaken with participants who will benefit from the results of that research

Trust

* Maintain trust, anonymity, confidentiality and privacy, ensure participants fully understand their roles and responsibilities and those of the experimenter

Responsibility

* You have a duty of care, not only to your participants, but also to the community from which they are drawn, and your own community of practice

Post Lecture Practical

- Read the hand out, and go over the Self Assessment Questions
- Divide into groups of 5
- From your 5 pick the most appropriate
 Practical #2 result
- Adapt the methodology to take into account the ethical procedures in the Handout
- Paying particular attention to Section 5.4
- Respond to each of the itemised points (there may be some duplication)
- Prepare to discuss this at length.