1. U circuito abaixo é composto por uma latel D
clocked (A), um flip - flop triggered em flanco
positivo (B) e um feip - flop triggered em flanco
negativo (c). Determine as formas de on de PAII),
QB(t) e Qc(t), supondo os sinais D(t) e Clock(t)
especificados.

D

D

Q

A

Clock

Cl

2. Determine as forman de onda $Q_a(t)$ e $Q_b(t)$ dos flip-flops (a-b) indicados abaixo, supondo os sinais A(t), B(t) e Clock(t) especificados.

3. Un circuito sequencial é construído a partir de três flip-flops D triggued em flanco positivo, com:

$$D_0 = Q_2$$
 , $D_1 = Q_2 \oplus Q_0$, $D_2 = Q_1$

a) Desenhe o circuito

b) Suponha que o circuito começa com todos os flip-flops SET ($\varphi_0 = \varphi_1 = \varphi_2 = 1$). Desenhe o diagrama temporal das saidas φ_0 , φ_1 e φ_2 .

Resolução:

b) Tabela de estados

,					
Clock	Estadoatual	Entradas	Próximo estado		
	909,92	Do D1D2	909192		
0 0	111	101	101		
1 1	101	100	100		
2 1	100	0 10	0 1 0		
3 1	010	001	001		
4 1	0 0 1	1 1 0	1 10		
5 1	1 1 0	0 1 1	011		
61	011	111	111		
7 1	111	101	101		

repete-se ao fim de

4. Efetue as seguintes conversois de flip-flops:

b)
$$T \rightarrow D$$

Resolução:

a)
$$Q_{n+1}^{D} = D$$
; $Q_{n+1}^{TK} = TQ_{n} + KQ_{n}$

$$Q_{n+1}^{D} = Q_{n+1}^{TK} \iff D = TQ_{n} + KQ_{n}$$

$$\int Q_{n+1}^{D} = Q_{n+1}^{TK} \iff Q_{n} = Q_{n}^{TK} \iff Q_{n} = Q_{n}^{TK$$

D	Qm	anti	LT
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

$$T = \overline{DQ_m} + \overline{DQ_m}$$
$$= \overline{D} \oplus \overline{Q_m}$$

c) SR -> T

(-	Qm	(Qn+1	S	R
O	0	0	0	X
0	1	1	×	0
1	0	1	1	0
1	1	0	0	1

<u> </u>	5	an	Qm
	T		X S=TQm
~	T	1	

R	Qm	Qu
T	X	
T		(1)

9m

5. De duza a tabela de estados do circuito sequencial da figura abaixo.

Resolução:

$$T = X$$

$$J = Q_1 \overline{Q_0}$$

$$K = \overline{Q_0} + \overline{Q_1}$$

$$Y = Q_0 + Q_1$$

90 90	T	Punti	J	K	Quinti	Y
00	0	0	0	1	Ó	0
00	1	1	0	1	0	0
01	0	ð	0	1	0	1
01	1	1	0	1	0	1
10	0	1	1	1	1	, 1
10	1	0	1	1	1	1
11	0	1	0	0	1	1
11	1	0	0	0	1	1

ا	9,90	Qinti	Point 1	Y	
-		X=O	X=1	×=0	X = 1
1	00	00	10	0	0
	01	00	10	1	1
	10	11	01	1	1
	11	11	01	1	1

(tabela de estados)

6. Analise o circuito sequencial seguinte, explicando a sua funças.

7. Analise o circuito sequencial seguinte, explicando a sua funcas.

