

Mathématiques

Classe: BAC

Chapitre: Fonctions logarithmes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

7 pt

I— Soit
$$f$$
 la fonction définie sur $\left[0,+\infty\right[$ par $\begin{cases} f(x)=x\left(1+\ln^2\left(x\right)\right) & \text{si } x>0\\ f(0)=0 \end{cases}$

On désigne par C sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- 1°) a) Montrer que f est continue à droite en 0.
 - **b)** Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$. Interpréter graphiquement le résultat obtenu.
- **2°)** Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat obtenu.
- 3°) a) Montrer que pour tout x>0 , $f'(x)=(1+\ln(x))^2$.
 - **b)** Dresser le tableau de variation de f.
- **4°) a)** Montrer que la courbe \mathbb{C} de f admet un point d'inflexion d'abscisse e^{-1} .
 - **b)** Donner une équation de la tangente au à la courbe $extbf{C}$ au point d'abscisse 1.
 - c) Etudier la position de \mathbb{C} par rapport à \mathcal{T} .
- **5°)** Dans la figure ci-dessous on a représenté dans le repère $(0,\vec{i},\vec{j})$ la courbe Γ de la fonction $x\mapsto \ln x$.

- a) Construire le point $A(e^{-1}, f(e^{-1}))$.
- **b)** Tracer la tangente T ainsi que la courbe $\, C. \,$
- **6°) a)** Justifier que f réalise une bijection de $[0,+\infty[$ sur un intervalle J que l'on précisera. On note g^{-1} sa fonction réciproque.
 - **b)** Tracer dans le même repère la courbe \mathbb{C}' représentative de g^{-1} .
- II– On considère la suite (u_n) définie sur *IN* par : $\begin{cases} u_0 = e^{-1} \\ u_{n+1} = f(u_n), \text{ pour tout } n \in IN \end{cases}$
- **1°)** Montrer que pour tout entier n, $e^{-1} \le u_n < 1$.

- **2°)** Montrer que la suite (u_n) est croissante.
- **3°)** En déduire que (u_n) est convergente et calculer sa limite.
- III– Soit F la fonction définie sur $\left[0,+\infty\right[$ par : $F(x)=\int_{1}^{x}f(t)dt$.
- **1°)** Montrer que la fonction *F* est continue sur $[0,+\infty[$.
- **2°) a)** Montrer que la fonction $H: x \mapsto -\frac{1}{4}x^2 + \frac{1}{2}x^2 \ln(x)$ est une primitive de la fonction $h: x \mapsto x \ln(x)$ sur $]0, +\infty[$.
 - **b)** Montrer que pour tout x > 0 : $\int_1^x t \ln^2(t) dt = \frac{x^2}{2} \ln^2(x) \int_1^x t \ln(x) dt$.
 - c) En déduire que tout x > 0, $F(x) = -\frac{3}{4} + \frac{3}{4}x^2 \frac{1}{2}x^2 \ln(x) + \frac{1}{2}x^2 \ln^2(x)$.
- 3°) a) Calculer $\lim_{x\to 0^+} F(x)$ et en déduire $\int_0^1 f(t)dt$.
 - b) Calculer alors l'aire de la partie du plan limitée par $\,C\,$ et $\,C\,'$.

Exercice 2

6 pt

Soit f la fonction définie sur $]0,+\infty[$ par $f(x)=\ln\left(\frac{x^2}{x+1}\right)$.

On désigne par C sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- **1°) a)** Calculer $\lim_{x \to 0^+} f(x)$. Interpréter graphiquement le résultat obtenu.
- **b)** Calculer $\lim_{x\to +\infty} f(x)$ et montrer que $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$. Interpréter graphiquement le résultat obtenu.
- 2°) a) Montrer que pour tout x de $]0,+\infty[$, $f'(x)=\frac{x+2}{x(x+2)}$.
 - **b)** Dresser le tableau de variation de f.
 - c) Montrer que f réalise une bijection de $]0,+\infty[$ sur un intervalle J que l'on précisera.
- **3°) a)** Résoudre dans IR l'équation : $x^2 = x + 1$.
 - **b)** On note lpha la solution positive . Vérifier que la deuxième solution est égale à $-rac{1}{lpha}$.
 - c) Montrer que la courbe $\, {f C} \,$ coupe l'axe des abscisses au point A d'abscisse $\, lpha \,$.
 - **d)** Montrer qu'une équation de la tangente T à C au point A est $y = \left(\frac{1}{\alpha} + \frac{1}{\alpha^3}\right)(x \alpha)$.
 - e) Vérifier que la tangente T passe par le point $B\left(0,-1-\frac{1}{\alpha^2}\right)$.
- **4°) a)** Dans un repère $(0,\vec{i},\vec{j})$, tracer la droite (D) d'équation : y=x+2 et la courbe Γ de la fonction : $x\mapsto x^2+1$.
 - b) Construire les points ${\it A}$ et ${\it B}$, la tangente ${\it T}$ et tracer la courbe ${\it C}$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000