

Análise e Desenvolvimento de Sistemas

Sistemas para Internet

Aula Anterior

Estruturas de Decisão

- Simples
- Composta
- Múltipla

Estruturas de Repetição

• Para

Aula de Hoje

Aula de Hoje

Unidade III

Estruturas de Repetição

Unidade IV

Vetores

Pré-requisitos:

Unidades I, II, III e IV do livro

Estruturas de Repetição

Relembrando...

Estrutura de Repetição por Condição

- Enquanto... Faça...
 - Enquanto a condição for verdadeira, faça a execução dos comandos
- Repita... Até que...
 - Repita a execução dos comandos até que a condição seja verdadeira

Exercício 1 – Estruturas de Repetição

Desenvolva um algoritmo que peça para o usuário informar um número ${\tt N}$, inteiro e positivo. O algoritmo deverá imprimir a tabuada de ${\tt N}$.

Exercício 1: Pseudocódigo

```
Algoritmo tabuada
     var N, res, i: inteiro
Início
     escreva ("Insira o número:")
     leia(N)
     i ← 1;
     Enquanto (i \le 10) faça
        res ← N * i
        escreva(N, "x", i, "=", res)
        i ← i + 1
     Fim enquanto
```


Tela:

Algoritmos e Lógica de Programação

Exercício 1: Teste de Mesa

leia(N) i ← 1; Enquanto ($i \le 10$) faça res ← N * i escreva(N, "x", i, "=", res) $i \leftarrow i + 1$

i

Fim enquanto

res

Estruturas de Dados Homogêneas

Relembrando...

- Estruturas de Dados Homogêneas
 - Vetores

Matrizes

Exercício 2 - Vetores

Desenvolva um algoritmo que, dado um vetor VET, de tamanho 5, (*já populado*), encontre e mostre a posição P de um elemento X, informado pelo usuário.

Entrada: vetor, elemento X

Saída: posição P

Solução:

- Vasculhar o vetor, posição a posição,
- 2) Para cada posição P comparar VET [P] com X
- 3) Caso VET[P] seja igual a X, informar P

Exercício 2: Pseudocódigo

```
Algoritmo buscaSequencial
   var X, P: inteiro
     VET: vetor[1..5] de inteiro
Início
   escreva ("Informe o elemento:")
   lelia(X)
   Para P de 1 até 5 passo 1 faça
      Se (VET[P] = X) então
         escreva ("Posição: ", P)
      Fim se
   Fim para
Fim
```

VET	
Índice	Valor
P	VET[P]
	2
	10
	3
	7
	11

Teste de Mesa

Exercícios: Pratique!

Exercícios

2 – Modificado: Desenvolva um algoritmo que, dado um vetor VET (já populado), encontre e mostre a posição P de um elemento X, informado pelo usuário. Caso nenhum elemento de VET seja igual a X, escrever "Não encontrado", na tela.

Entrada: vetor, elemento X

<u>Saída</u>: posição P ou "Não encontrado"

Solução:

- 1) Vasculhar o vetor, posição a posição,
- **2)** Para cada posição ₽ comparar VET[₽] com X
- 3) Caso VET[P] seja igual a X, informar P
- 4) Caso VET não tenha elemento igual a X, "Não encontrado" ➤A mensagem "Não encontrado" deve ser impressa apenas uma vez, durante toda a execução

Exercícios

1) Desenvolva um algoritmo que preencha o conteúdo de uma matriz MAT 3×3. O algoritmo deverá solicitar que o usuário informe cada elemento presente em cada linha i & coluna j da matriz. Após os elementos terem sido informados, o algoritmo deverá imprimir toda a matriz.

Entrada: elementos MAT [i, j]

Saída: elementos MAT [i,j] inseridos pelo usuário

Exercícios

2) Desenvolva um algoritmo que, dada uma matriz MAT, já populada, encontre e mostre a linha *i* e a coluna j de um elemento X, informado pelo usuário. Caso o elemento não esteja presente, exibir a mensagem "elemento ausente".

Entrada: matriz, elemento X

Saída: linha i e coluna j ou "elemento ausente"

Exercícios

- 3) Criar o tipo de dados (*registro*) "conta bancária", que deve conter os campos:
 - Número da conta
 - Agência
 - Saldo
 - O programa deverá criar uma variável do tipo "conta bancária" e também deverá preencher todos os campos desta variável e depois imprima os dados inseridos na tela.

Resumindo...

O que vimos hoje?

Estrutura de Repetição

- Por condição
 - Enquanto... Faça...

Estruturas de Dados Homogêneas

Vetores

