Foreword 1

Author: Anderson Chau

Disclaimer: This notes is written only for my own memorization purpose after I have studied online lecture notes and blogs.

2 K-Means Clustering

Simple Description: Identify clusters by finding the centroid of data points

Algorithm:

1. Initialize $\mu_1, \mu_2, \dots, \mu_k$ randomly (k is hyper-parameter)

2. Repeated until converge:

(i) $c^{(i)} := \arg\min_j ||x^{(i)} - \mu_j||^2, j \in [1:k]$, (i.e. $c^{(i)}$ denote which μ the $x^{(i)}$ is linked to. Link each data point to nearest μ_j . If $x^{(i)}$ is nearest to μ_s , then $c^{(i)} = j$. Thus, k partitions are created.)

(ii) $\mu_j:=\frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}}$, (i.e. For each data point in each partition from (i), find the new centroid and assign to μ_k

Proof of convergence of the algorithm: consider

$$J(c, \mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c(i)}||^2$$

 $J(c,\mu)=\sum_{i=1}^m||x^{(i)}-\mu_{c^{(i)}}||^2$ Observation : J must be monotonically decreasing. It is because for step (i) It is adjusting c(i) to reduce J, for step (ii) we are adjusting μ_i to reduce J J is non-convext, it may get to local minimum. To try several random initial values, and choose the lowest J.

Linear Regression(MSE approach) 3

Hypothesis:

$$h_{\theta}(x) = \sum_{j} \theta_{j} x_{j} = \theta^{\top} x$$

We want to minimize MSE (Mean Square Error)

$$J(\theta) = \frac{1}{2} \sum_{i} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{2} \sum_{i} \left(\theta^{\top} x^{(i)} - y^{(i)} \right)^{2}$$

Gradient of J:

$$\frac{\partial J(\theta)}{\partial \theta_j} = \sum_{i} x_j^{(i)} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

Each θ_j is updated for each step by gradient descent algorithm.

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Practically:

- (i) Learning rate α is hyperparameter and data dependent , larger, fewer steps to get to min. but may miss the minimum. (Monitor the loss curve, J value vs iteration).
- (ii) Batch GD is slow, may be Mini-Batch GD or Stochastic GD.
- (iii) If α is small but the loss oscillate, converged and stop learning.

4 Linear Regression(MLE approach)

5 Logistic Regression

$$P(y = 1|x) = h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^{\top}x)} \equiv \sigma(\theta^{\top}x)$$
$$P(y = 0|x) = 1 - P(y = 1|x) = 1 - h_{\theta}(x)$$

Loss function is

$$J(\theta) = -\sum_{i} \left[y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Again , BGD for following gradient of J :

$$\frac{\partial J(\theta)}{\partial \theta_j} = \sum_i x^{(i)} j \left(h \theta(x^{(i)}) - y^{(i)} \right)$$

Interpretation : For a particular sample : if h return 1/0 and y return 1/0, the term is 0. if h return 1/0 and y return 0/1, the term is positive infinity.

6 Logistic Regression(MLE approach)

7 Softmax Regression(Multi-Class Logistic)

k classes, n x k parameters , and the hypothesis is :

$$h_{\theta}(x) = \begin{bmatrix} P(y=1|x;\theta) \\ P(y=2|x;\theta) \\ \vdots \\ P(y=K|x;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}x)} \begin{bmatrix} \exp(\theta^{(1)\top}x) \\ \exp(\theta^{(2)\top}x) \\ \vdots \\ \exp(\theta^{(K)\top}x) \end{bmatrix}$$
(1)

Below Loss function is simple to understand: By referencing to previous hpothesis, we want to maximize the y=k associated probility.

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{k=1}^{K} 1\{y^{(i)} = k\} \log \left(\frac{\exp(\theta^{(k)\top} x^{(i)})}{\sum_{j=1}^{K} \exp(\theta^{(j)\top} x^{(i)})} \right) \right]$$

Gradient of J is, we solve the problem by GD:

$$\nabla_{\theta^{(k)}} J(\theta) = -\sum_{i=1}^{m} \left[x^{(i)} \left(1\{y^{(i)} = k\} - P(y^{(i)} = k | x^{(i)}; \theta) \right) \right]$$

Where:

$$P(y^{(i)} = k | x^{(i)}; \theta) = \frac{\exp(\theta^{(k)\top} x^{(i)})}{\sum_{i=1}^{K} \exp(\theta^{(j)\top} x^{(i)})}$$

BGD variation: Mini BGD/SGD 8

BGD use all training data in a single step, which is exteremely costly.

9 Loss function in Classification(Binary) Problem - General treatment

General Hypothesis: $h_{\theta}(x) = x^T \theta$

Adjustment for binary classification:

Adjustment for binary classification:
$$\operatorname{sign}(h_{\theta}(x)) = \operatorname{sign}(\theta^{T}x) = \operatorname{sign}(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -1 & \text{if } t < 0 \end{cases}$$
Measure of confidence: $h_{\theta}(x) = x^{T}\theta$ gives larger to

Measure of confidence : $h_{\theta}(x) = x^T \theta$ gives larger value, more confident

Margin ($yx^T\theta$): (i) if $h_{\theta}(x)$ classify correctly, margin is positive, otherwise

(ii) Therefore our objective is to maximize the margin (we want both correct classification and be confident)

Consider the following loss function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \phi\left(y^{(i)} \theta^{T} x^{(i)}\right)$$

We want penalize wrong classfication and encourage correct one , we design ϕ as $\phi(z) \to 0$ as $z \to \infty$, while $\phi(z) \to \infty$ as $z \to -\infty$ where $z = yx^T \theta$, and examples are:

logistic loss : $\phi_{\text{logistic}}(z) = \log(1 + e^{-z})$, used in logistic regression

hinge loss : $\phi_{\text{hinge}}(z) = [1-z]_+ = \max 1 - z, 0$, used in SVM

Exponential loss $\phi_{\rm exp}(z) = e^{-z}$, used in boosting

10 Kernel Mapping

(I) Purpose : To x map from lower higher dimension. Useful when data are non-linearly separable(Transform to a curve)

(II) Computation complexity does not necessarily increase proportionately.

(III) Example: a mapping function $\varphi: R \to R^4$, $x \to [1, x, x^2, x^3]$, and h is $\theta^T x$ having $\theta = [\theta_1, \theta_2, \theta_3, \theta_4]$

(IV) Terms: x is called attribute, $x \to [1, x, x^2, x^3]$ called feature, φ feature map, $\varphi: R^1 \to R^4$ in this case. d =1 p = 4

(IV) Another Example: a mapping function $\varphi: R^3 \to R^{1000}$, $x \to [1, x_1, x_1^2, x_1^3, x_1x_2, x_1x_2^2, ...]$ (*), let d = 3, p = 1000. If we exhaust all possibilities, then $p = 1 + d + d^2 + d^3$ (**)

Recall GD stepping :

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$$

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} x^{(i)}) x^{(i)}$$

Putting kernel mapping to the equation:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

We pause here to evaluate the cost of computing each of update (Curse of Demensionality...), considering (**). If we just use the kernel direction, we suffer the curse of demensionality: Suppose d (data dimension) = 1000, then by using the mapping in (**) we have p = 10^9 . $\theta^T \phi(x^{(i)})$ need O(p) (dot product), and O(np) for summing up all data in each step. Going back to BGD.

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

, assuming $\theta = \sum_{i=1}^{n} \beta_i \phi(x^{(i)})$ at some point, with initialization $\theta = 0 = \beta$. It becomes

$$\theta := \sum_{i=1}^{n} \beta_i \phi(x^{(i)}) + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^T \phi(x^{(i)})) \phi(x^{(i)})$$

 ${\it Rearranging}:$

$$\theta := \sum_{i=1}^{n} (\beta_i + \alpha(y^{(i)} - \theta^T \phi(x^{(i)}))) \phi(x^{(i)})$$

Therefore it is equivalent to updating β_i instead of θ_i by

$$\beta_i := \beta_i + \alpha(y^{(i)} - \theta^T \phi(x^{(i)}))$$

$$\beta_i := \beta_i + \alpha \left(y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$