Computed Tomography (CT) Image Reconstruction with Filter

SRS Presentation

Qianlin (Maris) Chen

CAS 741

Overview

Terminology, Definition and What is the problem?

Goal Statements, Theoretical Models, Instance Models and Examples

System Constraints

CAS 741 2 / 14

Tomography

An imaging technique that reconstructs internal structures without physically

cutting the object.

"Tomos" (τόμος) → meaning slice.

• "Graphia" (γραφή) → meaning representation.

Figure 1. CT Scanner

Attenuation Coefficient A(x)

Attenuation: How much X-ray are being blocked from reaching the detector

Figure 2. CT Scan

Figure 3. CT Image of Brain

CAS 741 4/14

What is the **problem** in CT Image Reconstruction with Back-projection (BP) without filter?

- Raw data (scanned slices collected) -> BP -> Image view (A(x))
- Natural drawback of BP: blurry image

Figure 4. Back projection of a Square in 5, 25, 100, and 1000 directions

CAS 741 5 / 14

Filter Technique: low-pass filter and high-pass filter

All image are made from wave of frequency (a rate of intensity change in space)

Fourier transform split image into continuous frequency (Fourier space)

Figure 5. High-frequency image

Figure 6. Low-frequency image

- 1. High-pass filter removes low-frequency blurring-> image sharper
- 2. Low-pass filter get rid of high frequency noise -> image clear

CAS 741

Goal Statements

Given a set of raw intensity data measured by a detector:

• GS1: High-Pass Filtered Reconstruct into a sharper edge image.

• GS2: Low-Pass Filtered Reconstruct into an overall smoother image.

CAS 741 7 / 14

Theoretical Models

TM 1: Beer-Lambert Law

$$I(x) = e^{-A(x)x}$$

- *I(x)* : Intensity of beam at distance x from origin (raw scanned data)
- A(x): Attenuation Coefficient at at distance x from origin

Manipulate to:

$$\ln\left(\frac{I_0}{I_1}\right) = \int_{x_0}^{x_1} A(x) dx$$

TM2: Radon Transform (Rf aka Sinogram)

$$Rf(t,\theta) = \int_{-\infty}^{\infty} f(x(s), y(s)) ds$$

- $f(t, \theta)$: A function determines the **density** along a given line l.
- x, y: position in the spatial coordinate.
- θ : The angle at which the projection is taken.
- t: The position along the detector.

No assumption needed to refine the scope!

Theoretical Models continue

TM 3: Back Projection (aka Inverse Radon Transform)

$$BRf(x,y) = \frac{1}{\pi} \int_0^{\pi} Rf(x\cos\theta + y\sin\theta, \theta)d\theta$$

• BRf(x,y): The back projection of Rf in point (x,y) in the spatial coordinate. -> A(x)

TM4: Ramp Filter (high pass filter)

$$HR(k_x, ky) = k = (k_x^2 + k_y^2)^2$$

- K_x , K_v : Wave-like pattern in image.
- RHS: Determines how much each frequency is amplified.

TM5: Sheep-logan Filter(low pass filter)

$$S(f) = \frac{2fm}{\pi(\sin|f|\frac{\pi}{2fm})}$$

- f: Determines how much a given frequency is affected.
- f_m : Defines the bandwidth of filter.

Theoretical Models continue

TM6: Fourier Transform

$$F[Rf(t,\theta)]$$

• Convert the Rf(x, y) to Fourier space

TM7: Inverse Fourier Transform

$$F^{-1}{F[Rf(t,\theta)] * filter}$$

Convert the filtered projection back into the Spatial domain

CAS 741

Instance Models

Number	IM1 (Ramp FBP)	Number	IM2 (Sheep-logan FBP)
Equation	$A(x,y) = rac{1}{\pi} \int_0^\pi \mathcal{F}^{-1} \left\{ \mathcal{F}[Rf(s, heta)] \cdot H_R(k) ight\} d heta$	Equation	$A(x,y) = rac{1}{\pi} \int_0^\pi \mathcal{F}^{-1} \left\{ \mathcal{F}[Rf(s, heta)] \cdot S(f) ight\} d heta$
Input	 Rf(s, θ) (Sinogram): 2D array (M * N matrix) M: number of detector position s; N: number of projection angle θ H_R(k_x, ky): 1D array consists of frequency-dependent values θ: 1D array containing N angles in degrees or radians 	Input	 Rf(s, θ) (Sinogram): 2D array (M * N matrix) M: number of detector position s; N: number of projection angle θ S(f): 1D array consists of frequency-dependent values θ: 1D array containing N angles in degrees or radians
Output	A(x) (reconstructed image): 2D array (P * P) P: Image resolution (e.g. 256 * 256 pixels)	Output	A(x) (reconstructed image): 2D array (P * P) P: Image resolution (e.g. 256 * 256 pixels)
Description	This equation first applies a ramp filter in Fourier space, then inverse back to spatial domain. The Ramp FBP reconstructs the image and maintains edge sharpness.	Description	This equation first applies the Sheep-Logan in Fourier space, then inverse back to spatial domain. The Sheep-logan FBP reconstructs the image and maintains an overall smoother image.

CAS 741 11/14

Examples

Image reconstructed using simple BP

Ramp filter BP

Sheep-logan filter BP

CAS 741 12/14

System Constraints

Modern desktop systems, such as those equipped with Intel 14th generation CPUs and NVIDIA RTX-series GPUs (typically support **32 to 128 GB of RAM**) which is sufficient for standard **512 × 512 resolution reconstructions**.

Higher-resolution imaging (e.g., **1024 × 1024 or 3D volumetric reconstruction**) requires significantly more memory, often necessitating **research computing clusters**.

CAS 741 13/14

Any Questions? ©