

PQ070XNA1ZPH

Low Voltage Operation, Compact Surface Mount type Low Power-Loss Voltage Regulators

Features

1.Low voltage operation (Minimum operating voltage: 2.35V)

2.Output current: 1A

3.Low dissipation current

(Dissipation current at no load: MAX. 2mA Output OFF-state dissipation current: MAX.5µA)

4. Compliant Ceramic capacitors

5.Built-in ON/OFF function

6.Built-in overcurrent and overheat protection functions

7. Correspond to flow soldering

8.RoHS directive compliant

Applications

- 1.Personal computers and peripheral equipment
- 2. Power supplies for various digital electronic equipment such as DVD player or STB

Absolute Maximum Ratings

(Ta=25°C)

		•	,
Parameter	Symbol	Rating	Unit
*1 Input voltage	Vin	10	V
*1 Output control voltage	ge Vc 10		V
*1 Output adjustment pin voltage	Vadj 5		V
Output current	lo	1	Α
*2 Power dissipation	PD	8	W
*3 Junction temperature	Tj	150	°C
Operating temperature	Topr	-40 to +85	°C
Storage temperature	Tstg	-40 to +150	°C
Soldering temperature	Tsol	260(10s)	°C

*1 All are open except GND and applicable terminals.

*2 Po:With infinite heat sink

*3 There is case that over heat protection operates at the temperature Tj:125°C to 150°C, so this item cannot be used in this temperature range.

Outline Dimensions

(Unit: mm)

Lead finish:Lead-free solder plating (Composition: Sn2Cu)

■ Electrical Characteristics

 $(Unless \ otherwise \ specified, condition \ shall \ be \ V_{IN}=5V, V_O=3V(R1=1k\Omega), I_O=0.5A, V_C=2.7V, Ta=25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	Vin	-	2.35	-	10	V
Output voltage	Vo	-	1.5	-	7	V
Load regulation	RegL	Io=5mA to 1A	-	0.2	1.0	%
Line regulation	Regl	VIN=4 to 8V,Io=5mA	-	0.2	1.0	%
Ripple rejection	RR	Refer to Fig.2	-	60	-	dB
Dropout voltage	VI-O	VIN=2.85V, Io=0.5A	-	-	0.5	V
Reference voltage	VREF	-	1.206	1.23	1.254	V
Temperature coefficient of reference voltage	TcVref	Tj=0 to +125°C, Io=5mA	-	±1.0	-	%
ON-state voltage for control	VC(ON)	*4	2.0	-	-	V
ON-state current for control	IC(ON)	-	-	-	200	μA
OFF-state voltage for control	Vc(off)	Io=0A	-	-	0.6	V
OFF-state current for control	IC(OFF)	Io=0A, Vc=0.4V	-	-	5	μA
Quiescent current	lq	Io=0A	-	1	2	mA
Output OFF-state dissipation current	Iqs	Vc=0.4V	-	-	5	μA

^{*4} In case of opening control terminal ②, output voltage turns off

Fig.1 Test Circuit

Fig.2 Test Circuit for Ripple Rejection

Sheet No.: OP06077

Fig.3 Power Dissipation vs. Ambient Temperature

Note) Oblique line portion: Overheat protection may operate in this area.

Fig.5 Output Voltage vs. Ambient Temperature

Fig.7 Quiescent Current vs. Ambient Temperature

Fig.4 Overcurrent Protection Characteristics

Fig.6 Dropout Voltage vs. Ambient Temperature

Fig.8 Output Voltage vs. Input Voltage

Sheet No.: OP06077

Fig.9 Circuit Operating Current vs. Input Voltage

Fig.11 Ripple Rejection vs. Input Ripple Frequency

Fig.13 Power Dissipation vs. Ambient Temperature (Typical Value)

Fig.10 Dropout Voltage vs. Output Current

Fig.12 Ripple Rejection vs. Output Current

Cu thickness : 35µm

Fig.14 Output Voltage Adjustment Characteristics

Typical Application

Setting of Output Voltage

Output voltage is able to set from 1.5V to 7V when resistors R_1 and R_2 are attached to (3,4), (5) terminals. As for the external resistors to set output voltage, refer to the figure below and Fig.14.

Sheet No.: OP06077