Chapter 4A.

Relational

Algebra I

CSIS0278 / COMP3278

Department of Computer Science, The University of Hong Kong

Motivation

(Query 5 in Chapter 3B) Find the dept. names where employees named Smith work.

SELECT D.name

FROM Employees E, Works_in W, Departments D
WHERE E.name = 'Smith' AND

E.employee_id = W.employee_id AND
W.department_id = D.department_id;

How does the DBMS execute this SQL query?

Join which two tables first?

Which constraint is applied first?

Employees

employee_id	name	salary
1	Jones	26000
2	Smith	28000
3	Parker	35000
4	Smith	24000

Works_in

employee_id	department_id	since
1	1	2001-1-1
2	1	2002-4-1
2	2	2005-2-2
3	3	2003-1-1
4	3	2005-1-1

Departments

department_id	name	budget
1	Toys	122000
2	Tools	239000
3	Food	100000

Relational Algebra

- Relational Algebra is similar to normal algebra (as in 2+3*x-y), except it uses relations (tables) as operand, and a new set of operators.
- The inner, lower-level operations of a relational DBMS are (or are similar to) relational algebra operations.
- We need to know about relational algebra to understand query execution and optimization in a relational DBMS.

Section 1

Basic operators

Basic operators

- Select (σ)
- Project (π)
- igotimes Union (igcup)
- Set difference (-)
- Cartesian product (x)
- Rename (ρ)

That is to say, there should be programs (or functions) implemented in the DBMS for each of these relational operators

Selection

- Example
 - Consider the relation Author (<u>authorID</u>, name, date of birth)
 - Select all authors called "May".

Author

authorID	name	date of birth
101	May	Nov 16
102	Bonnie	Jan 15
103	May	Jul 11
104	Raymond	Apr 30
105	Tiffany	Oct 10

$\sigma_{\text{name}=\text{"May"}}(Author)$

authorID	name	date of birth
101	May	Nov 16
103	May	Jul 11

Projection

- - A copy of R with only listed attributes A1 to Ak.
- Example
 - Consider the relation Book (bookID, title, publisher)
 - Report only the bookID and title of all the books.

bookID	title	publisher
115	Stuffy doll	ABC
116	Angel's feather	MTG
117	Little girl	MGH
118	Myr	ABC

bookID	title
115	Stuffy doll
116	Angel's feather
117	Little girl
118	Myr

Union

- \bigcirc R \cup S = { t | t \in R \vee t \in S }
 - R and S must have the same number of attributes and attribute domains compatible.
- Example
 - Find the name of all products in Audio_CD and DVD tables.

Audio CD

name	#tracks
One Heart	14
Miracle	14

SQL

DVD

name	length	subtitle
Prince of Persia	110	English, Chinese
Villon's Wife	90	Japanese
Legend is born: Ip Man	90	Chinese

Union

name
One Heart
Miracle
Prince of Persia
Villon's Wife
Legend is born: Ip Man

 $\frac{\pi_{\text{name}}}{\pi_{\text{name}}}$ (Audio_CD)

name

One Heart

Miracle

Audio_CD

name	#tracks
One Heart	14
Miracle	14

$\frac{\pi_{\text{name}}}{\pi_{\text{name}}}$

name

Prince of Persia

Villon's Wife

Legend is born: Ip Man

DVD

name	length	subtitle
Prince of Persia	110	English, Chinese
Villon's Wife	90	Japanese
Legend is born: Ip Man	90	Chinese

Set difference

- \bigcirc R-S = { t | t \in R \land t \notin S }
 - R and S must have the same number of attributes and attribute domains compatible.
- Example
 - Find the ID of the students who haven't submitted the assignment.

Student

SQL

student_id	name	gender	major
123	Kit	М	CS
456	Yvonne	F	CS
789	Paul	М	CS

Submit

student_id	assignment_id	date
456	1	28/9
789	1	25/9

Set difference

π _{student_id} (Subi	mit)
student_id	
456	
789	

Student

student_id	name	gender	major
123	Kit	М	CS
456	Yvonne	F	CS
789	Paul	М	CS

Submit

student_id	assignment_id	date
456	1	28/9
789	1	25/9

- \bigcirc R \times S = { t q | t \in R \land q \in S }
 - No attributes with a common name in R and S.
- Example
 - Display the date of the tutorials of the course "Introduction to Database Management Systems".

```
SELECT Tutorial.date
FROM Course, Tutorial
WHERE
Coruse.name="Introduction to
Database Management Systems" AND
Course.course_id = Tutorial.course_id;
```



```
\pi_{\text{Tutorial.date}} \ ( \\ \sigma_{\text{Course.name="Introduction to Database Management Systems"}} \ ( \\ \sigma_{\text{Course.course\_id=Tutorial.course\_id"}} \ ( \text{Course} \times \text{Tutorial} ) \\ ) \ )
```

SQL

Relational algebra

Course

course_id	name
c1119	Data Structures and Algorithms
c0278a	Introduction to Database Management Systems

Tutorial

tutorial_id	course_id	date
1	c1119	5/9
1	c0278a	7/9
2	c0278a	15/9

Course × **Tutorial**

Course.course_id	Course.name	Tutorial .tutorial_id	Tutorial .course_id	Tutorial .date
c1119	Data Structures and Algorithms	1	c1119	5/9
c1119	Data Structures and Algorithms	1	c0278a	7/9
c1119	Data Structures and Algorithms	2	c0278a	15/9
c0278a	Introduction to Database Management Systems	1	c1119	5/9
c0278a	Introduction to Database Management Systems	1	c0278a	7/9
c0278a	Introduction to Database Management Systems	2	c0278a	15/9

Course

course_id name c1119 Data Structures and Algorithms c0278a Introduction to Database Management Systems

Tutorial

tutorial_id	course_id	date
1	c1119	5/9
1	c0278a	7/9
2	c0278a	15/9

Course × **Tutorial**

Course.course_id	Course.name	Tutorial .tutorial_id	Tutorial .course_id	Tutorial .date
c1119	Data Structures and Algorithms	1	c1119	5/9
c1119	Data Structures and Algorithms	1	c0278a	7/9
c1119	Data Structures and Algorithms	2	c0278a	15/9
c0278a	Introduction to Database Management Systems	1	c1119	5/9
c0278a	Introduction to Database Management Systems	1	c0278a	7/9
c0278a	Introduction to Database Management Systems	2	c0278a	15/9

$\sigma_{\text{Course.course_id}=\text{Tutorial.course_id}}$ (Course \times Tutorial)

Course.course_id	Course.name	Tutorial .tutorial_id	Tutorial .course_id	Tutorial .date
c1119	Data Structures and Algorithms	1	c1119	5/9
c0278a	Introduction to Database Management Systems	1	c0278a	7/9
c0278a	Introduction to Database Management Systems	2	c0278a	15/9

Tutorial.date
7/9
15/9

1

 $\sigma_{\text{Course.name}="Introduction to Database Management Systems"}(\sigma_{\text{Course.course}_id}=\sigma_{\text{Course}})$

Course.course_id	Course.name	Tutorial .tutorial_id	Tutorial .course_id	Tutorial .date
c0278a	Introduction to Database Management Systems	1	c0278a	7/9
c0278a	Introduction to Database Management Systems	2	c0278a	15/9

$\sigma_{Course_id=Tutorial.course_id} \text{ (Course} \times \text{Tutorial)}$

Course.course_id	Course.name	Tutorial .tutorial_id	Tutorial .course_id	Tutorial .date
c1119	Data Structures and Algorithms	1	c1119	5/9
c0278a	Introduction to Database Management Systems	1	c0278a	7/9
c0278a	Introduction to Database Management Systems	2	c0278a	15/9

Rename

- Notation: $\rho_x(E)$
- Rename operator allows us to name and refer to the results of relational-algebra expressions
- \bigcirc ρ_X (E) returns the expression E under the name X

```
SELECT Tutorial.date
FROM Course, Tutorial
WHERE
Coruse.name="Introduction to Database
Management Systems" AND
Course.course_id = Tutorial.course_id;
```

SQL

```
\pi_{\text{Tutorial.date}} (
\sigma_{\text{Course.name="Introduction to Database Management Systems"}} (
\sigma_{\text{Course.course\_id=Tutorial.course\_id"}} (\textbf{Course} \times \textbf{Tutorial})
)
```

Relational algebra (Without rename)

```
SELECT T.date
FROM Course C, Tutorial T
WHERE
C.name="Introduction to Database
Management Systems" AND
C.course_id = T.course_id;
```

```
\pi_{\text{T.date}} ( \\ \sigma_{\text{C.name="Introduction to Database Management Systems"}} ( \\ \sigma_{\text{C.course\_id=T.course\_id"}} ( \rho_{\text{C}} (\text{Course}) \times \rho_{\text{T}} (\text{Tutorial}) )
```

Section 2

Exercises

- Given the following relational schema:
 - Student (<u>UID</u>, name, age).
 - Course (CID, title).
 - Enroll (<u>UID</u>, <u>CID</u>) with <u>UID</u> referencing Student and <u>CID</u> referencing Course.
 - *UID and CID, age are interger; name and title are varchar.
- Which of the following is (are) valid Relational Algebra expression(s)?
 - $\rightarrow \pi_{UID}(Student)-\pi_{CID}(Course)$
 - **Ourse**- π_{UID} (Enroll)

The left and right parts of Set difference have to be **comparable** (same number of attributes).

- Given the following relational schema:
 - Student (UID, name, age).
 - Course (CID, title).
 - Enroll (UID, CID) with UID referencing Student and **CID** referencing **Course**.

- Which of the following is (are) valid Relational Algebra expression(s)?

 - $\sigma_{\text{age}<18}(\pi_{\text{UID, name}}(\text{Student}))$

Student and Course have different

No attribute "age" for selection.

^{*}UID and CID, age are interger; name and title are varchar.

SELECT employee id,name **FROM** Employee **WHERE** employee id < 100; SOL

Find the employeeIDs and names of employees whose employeeID < 100.

σ_{employeeID<100}(Employee)

employeeID	name	start_date
97	May	Nov 16, 1997
98	Felix	Jun 30, 2003
99	May	Sep 18, 2007

Employee employeeID name start date 97 Nov 16, 1997 May 98 Felix Jun 30, 2003 Sep 18, 2007 99 May

Query processer George Jan 1, 2008 100

Option 2

 $\pi_{\text{name, employeeID}}(\text{Employee})$

employeeID	name
97	May
98	Felix
99	May
100	George

 $\frac{\pi_{\text{name, employeeID}}}{\sigma_{\text{employeeID}}} (\sigma_{\text{employeeID} < 100} (\text{Employee}))$

employeeID	name
97	May
98	Felix
99	May

Which one is better?

employeeID	name
97	May
98	Felix
99	May

 $\sigma_{\text{employeeID} < 100}(\pi_{\text{name, employeeID}}(\text{Employee}))$

 (Query 4 in Chapter 3B) Find the dept. id(s) where employees named Smith work.

Option 1

 $\pi_{\text{W.department_id}}(\sigma_{\text{E.name="Smith"}}(\sigma_{\text{E.employee_id=W.employee_id}}(\rho_{\text{E}}(\text{Employees}) \times \rho_{\text{W}}(\text{Works_in}))))$

Now we compute the Cartesian product between **Employees** and **Works_in** first, which creates an **intermediate relation** with 10,000*5 = 50,000 tuples! Can we reduce the size of intermediate relation?

Employees

employee_id	name	salary
1	Jones	26000
2	Smith	28000

10000		

Employees (10000 tuples)

Works in

employee_id	department_id	since
1	1	2001-1-1
2	1	2002-4-1
2	2	2005-2-2
3	3	2003-1-1
4	3	2005-1-1

(Query 4 in Chapter 3B) Find the dept. id(s) where employees named Smith work.

Option 1

 $\pi_{\text{W.department_id}}(\sigma_{\text{E.name="Smith"}}(\sigma_{\text{E.employee_id=W.employee_id}}(\rho_{\text{E}}(\text{Employees}) \times \rho_{\text{W}}(\text{Works_in}))))$

Option 2

$$\pi_{\text{W.department_id}}(\sigma_{\text{E.employee_id=W.employee_id}}(\sigma_{\text{E.name="Smith"}}(\rho_{\text{E}}(\text{Employees})) \times \rho_{\text{W}}(\text{Works_in})))$$

We apply selection on Employees before the Cartesian product. If there is only two employee named Smith, the **intermediate relation** can be reduced to 2*5 = 10 tuples!

Employees

• •		
employee_id	name	salary
1	Jones	26000
2	Smith	28000

10000		
	440000	

Employees (10000 tuples)

Works in

employee_id	department_id	since
1	1	2001-1-1
2	1	2002-4-1
2	2	2005-2-2
3	3	2003-1-1
4	3	2005-1-1

Banking example

Find the names of all customers who have a loan, an account, or both in a bank.

SELECT customer_id
FROM Borrower
UNION
SELECT customer_id
FROM Depositor

 $\pi_{ ext{customer_id}}$ (Borrower) $\cup \pi_{ ext{customer_id}}$ (Depositor)

Find the names of all customers who have both a loan and an account in a bank.

FROM Borrower
INTERSECT
SELECT customer_id
FROM Depositor

 $\pi_{\text{customer id}}$ (Borrower) $\cap \pi_{\text{customer id}}$ (Depositor)

Wait! Do we have set intersection in relational algebra ©?

 $\pi_{\text{customer_id}}$ (Borrower) – ($\pi_{\text{customer_id}}$ (Borrower) – $\pi_{\text{customer_id}}$ (Depositor))

Additional operators

- These operations do not add any power to relational algebra, but simplify common queries.
 - Set intersection (∩)
 - Natural join ()
 - Division (÷)
 - Assignment (←)

Chapter 4A.

END

CSIS0278 / COMP3278
Introduction to
Database Management Systems