Computação Autonômica em Redes de Computadores

Luciano Jerez Chaves

Universidade Estadual de Campinas

4 de março de 2009

Conteúdo

- Introdução
 - A Tecnologia da Informação nos dias atuais
 - Perspectivas para o futuro
- 2 Computação autonômica
 - Solução e benefícios
 - Implantação e cenários
 - Considerações de projeto
 - Considerações de arquitetura
- Redes autonômicas
 - Monitoramento
 - Políticas
 - Teoria de controle
 - Auto-configuração e auto-organização
 - Descentralização
- Pesquisa e mercado
 - Focos de pesquisa e interesse de mercado
 - Desafios
- Conclusão

Em que mundo vivemos?

A proliferação de dispositivos computacionais tem crescido exponencialmente nas últimas duas décadas

- Este fenômeno intensificou com o advento da internet
- Nova era de acessibilidade
 - pessoas
 - sistemas
 - informação

Evoluir por que?

Evoluir por que?

- Os fabricantes continuam criando sistemas computacionais incrivelmente poderosos
- O objetivo é tornar indivíduos e empresas mais produtivos, automatizando as tarefas fundamentais

Evoluir por que?

- Os fabricantes continuam criando sistemas computacionais incrivelmente poderosos
- O objetivo é tornar indivíduos e empresas mais produtivos, automatizando as tarefas fundamentais

Por que?

"Civilization advances by extending the number of important operations which we can perform without thinking about them."

Alfred North Whitehead

Perspectivas para o futuro

No mundo da computação:

- Arquiteturas altamente sofisticadas
- Sistemas complexos gerenciados por softwares
- Milhares de linhas de código escritas por inúmeros programadores em qualquer lugar
- Internet: integrar hardware e software diversos

Perspectivas para o futuro

- A indústria da tecnologia da informação gosta de mostrar que é possível construir o impossível
- Entretanto, estamos diante de um problema que atinge o núcleo do sucesso destas empresas

Perspectivas para o futuro

- A indústria da tecnologia da informação gosta de mostrar que é possível construir o impossível
- Entretanto, estamos diante de um problema que atinge o núcleo do sucesso destas empresas
- O obstáculo é a complexidade
- Próximo grande desafio

Quem controla tudo isso?

- Até agora temos apoiado basicamente na intervenção e administração humana para gerenciar esta complexidade
- Alguns problemas eminentes
 - Falta de mão de obra qualificada
 - Complexidade além da capacidade humana de gerenciá-la

Quem controla tudo isso?

- Até agora temos apoiado basicamente na intervenção e administração humana para gerenciar esta complexidade
- Alguns problemas eminentes
 - Falta de mão de obra qualificada
 - Complexidade além da capacidade humana de gerenciá-la

Solução?

Paradoxalmente, para tornar as tarefas simples para administradores e usuários precisamos criar sistemas mais complexos!

Como isso é possível?

- Embutindo a complexidade do sistema em sua infra-estrutura e deixando que ele gerencie a si mesmo
- Os usuários não precisam preocupar como o gerenciamento será feito, apenas manifestam seus interesses

 Funções autonômicas do sistema nervoso central humano

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz
 - Lágrimas formando em razão da poeira

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz
 - Lágrimas formando em razão da poeira
 - Diminuindo o ritmo do coração

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz
 - Lágrimas formando em razão da poeira
 - Diminuindo o ritmo do coração
 - Ajustando a respiração

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz
 - Lágrimas formando em razão da poeira
 - Diminuindo o ritmo do coração
 - Ajustando a respiração
 - Digerindo o café da manhã

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz
 - Lágrimas formando em razão da poeira
 - Diminuindo o ritmo do coração
 - Ajustando a respiração
 - Digerindo o café da manhã
 - Suando para manter a temperatura

- Funções autonômicas do sistema nervoso central humano
 - Pupilas ajustando à luz
 - Lágrimas formando em razão da poeira
 - Diminuindo o ritmo do coração
 - Ajustando a respiração
 - Digerindo o café da manhã
 - Suando para manter a temperatura
 - Avaliando o açúcar no sangue

Quem teve essa idéia?

Paul Horn, vice-presidente sênior da IBM, cunhou o termo "Computação Autonômica" em um manifesto sobre a perspectiva da empresa em relação ao estado da Tecnologia da Informação, publicado em 2001

Mas o que tem de legal?

O corpo humano faz todas essas coisas sem que você tenha que se esforcar para isso

Mas o que tem de legal?

O corpo humano faz todas essas coisas sem que você tenha que se esforçar para isso

Implicações para a computação

É possível ter um grupo de componentes "espertos" que nos dão o que queremos, quando queremos, sem esforço da nossa parte

• Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

- Curto prazo
 - Diminuição da dependência humana na configuração e gerenciamento
 - Redução de custos na manutenção de sistemas
 - Melhor uso dos recursos disponíveis
 - Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

• Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

Curto prazo

- Diminuição da dependência humana na configuração e gerenciamento
- Redução de custos na manutenção de sistemas
- Melhor uso dos recursos disponíveis
- Mais estabilidade e confiabilidade

- Criar sistemas mais úteis, levando o dinheiro economizado para a área de negócios
- Elevar o gerenciamento para uma abordagem fim-a-fim
- Gerar sistemas colaborativos para solução global de problemas

Hora da mudança

Estamos na época certa para essa mudança:

- Dispositivos móveis de acesso como celulares, PDA's, notebooks, etc., precisam ser gerenciados e integrados aos tradicionais desktops e mainframes
- Produtos colocados no mercado também devem oferecer recursos de gerenciamento
- Emergente padronização dos serviços Web e a necessidade de integração destes serviços

A implantação é simples?

Focar simplesmente na automação das partes não é suficiente:

 Gerar autonômia para armazenamento de dados é, com certeza, uma melhoria. Mas não tornar a busca nesses dados um processo autonômico, faz com que existam muitos dados com pouca usabilidade

A implantação é simples?

Segundo Paul Horn...

"Autonomic computing is thus a 'holistic' vision that will enable the whole of computing to deliver much more automation than the sum of its individually selfmanaged parts."

A implantação é simples?

- Facilitar o "lado" do usuário faz com que ele utilize mais a tecnologia, gerando avanços
- Deixe as pessoas interagirem com o sistema como se estivessem interagindo com pessoas
- Você tem simplesmente que dizer o que quer...

Exemplo

Centro médico emergencial

- Centro médico emergencial
 - Paciente inconsciente

- Centro médico emergencial
 - Paciente inconsciente
 - Plano de saúde

- Centro médico emergencial
 - Paciente inconsciente
 - Plano de saúde
 - Integração entre diferentes clínicas e hospitais

- Centro médico emergencial
 - Paciente inconsciente
 - Plano de saúde
 - Integração entre diferentes clínicas e hospitais
 - Histórico de prescrições

- Centro médico emergencial
 - Paciente inconsciente
 - Plano de saúde
 - Integração entre diferentes clínicas e hospitais
 - Histórico de prescrições
 - Simulações de tratamento com DNA

- Centro médico emergencial
 - Paciente inconsciente
 - Plano de saúde
 - Integração entre diferentes clínicas e hospitais
 - Histórico de prescrições
 - Simulações de tratamento com DNA
 - Informações armazenadas com segurança

Definindo um sistema computacional

- Podemos pensar em um conjunto de recursos acoplados para produzir um conjunto específico de funções
- Sistemas menores integram-se aos sistemas maiores

Definindo um sistema computacional

- Podemos pensar em um conjunto de recursos acoplados para produzir um conjunto específico de funções
- Sistemas menores integram-se aos sistemas maiores
- O princípio da computação autonômica governa todos esses sistemas mas...

Definindo um sistema computacional

- Podemos pensar em um conjunto de recursos acoplados para produzir um conjunto específico de funções
- Sistemas menores integram-se aos sistemas maiores
- O princípio da computação autonômica governa todos esses sistemas mas...
- ... em algum nível eles devem ser capazes de gerenciar seus próprios processos

Existem oito elementos:

- Auto-conhecimento
- 2 Auto-configuração
- Auto-otimização
- Auto-cura
- Auto-proteção
- Adaptativo
- Não proprietário
- Transparente

Auto-conhecimento

- Conhecimento de seus componentes:
 - status atual
 - capacidade
 - conexões com outros sistemas
- O que é possível emprestar e pegar emprestado
- O que é possível compartilhar e o que deve ser exclusivo

Auto-configuração

- Sistemas Plug-and-Play:
 - autônomo
 - dinâmico
- Em diferentes ambientes, até mesmo imprevisíveis
- Reconfigurável

Auto-otimização

- Otimizar o trabalho
- "Ajuste fino" para atingir os objetivos de alto nível
- Necessário para prover computação ubíqua
 - Qualidade de serviço (QoS)
 - Reserva extra de recursos

Auto-cura

- Descobrir e/ou prever problemas
- Recuperar de eventos que causam o mal funcionamento de alguma parte do sistema
- Já existem mecanismos de cura:
 - Código de verificação de erros
 - Dificuldade em identificar qual o erro e corrigir

Auto-proteção

- Detectar, identificar e proteger contra vários tipos de ataques para manter a segurança e a integridade do sistema
- Internet contribui para falta de proteção

Adaptativo

- Descobrir e criar regras para interagir com os vizinhos
- Fornecer e solicitar recursos
- Conhecer o ambiente de execução

Não proprietário

- Os sistemas podem ser independentes
- O sistema autonômico precisa funcionar em ambientes heterogêneos
- Implementar padrões abertos

Transparente

- Diminuir o "gap" entre os interesses do usuário e a implementação do sistema
- Solução por antecipação
- Usuário não sabe o que acontece

1 - Básico

- Múltiplas fontes de geração de dados no sistema
- Requer equipe de TI grande e altamente hábil

2 - Gerenciado

- Consolidação dos dados através de ferramentas de gerenciamento
- Equipe de TI analiza e toma ações

2 - Gerenciado

- Consolidação dos dados através de ferramentas de gerenciamento
- Equipe de TI analiza e toma ações
- √ Maior conhecimento do sistema
- ✓ Melhora a produtividade

3 - Preditivo

- Sistema monitora, correlaciona e recomenda ações
- Equipe de TI aprova e inicia ações

3 - Preditivo

- Sistema monitora, correlaciona e recomenda ações
- Equipe de TI aprova e inicia ações
- ✓ Dependências em grandes habilidades da equipe de TI reduzida
- √ Tomada de decisão mais rápida e melhor

4 - Adaptativo

- Sistema monitora, correlaciona e toma ações
- Equipe de TI gerencia performance frente ao acordo do nível de serviço

4 - Adaptativo

- Sistema monitora, correlaciona e toma ações
- Equipe de TI gerencia performance frente ao acordo do nível de serviço
- ✓ Agilidade e elasticidade de TI com mínima interação humana

5 - Autonômico

- Componentes integrados dinamicamente, gerenciados por políticas/regras de negócio
- Equipe de TI foca na capacitação das necessidades do negócio

5 - Autonômico

- Componentes integrados dinamicamente, gerenciados por políticas/regras de negócio
- Equipe de TI foca na capacitação das necessidades do negócio
- ✓ Políticas de negócio dirigem o gerenciamento de TI
- ✓ Agilidade e elasticidade do negócio

Arquitetura de um sistema autonômico

- Um sistema autonômico é composto por um grupo de elementos autonômicos
- Elementos autonômicos gerenciam seu comportamento interno e seus relacionamentos
- Comportamento baseado em políticas de alto nível definidas pelo usuário
- É preciso uma infra-estrutura distribuída para suporte

Elemento autonômico

Ciclo de controle

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão Monitoramento Políticas Teoria de controle Auto-configuração e auto-organização Descentralização

E as redes de computadores?

Vários elementos autonômicos

Monitoramento da rede

Ferramentas para obter conhecimento acerca do estado da rede como entrada para a decisão autonômica

- Perspectiva de observação
 - Único ponto (passivo)
 - Dois pontos (ativo)
 - Conhecimento amplo da rede
- Monitoramento de fluxos

Ponto único de observação

- Monitoramento passivo
- Contagem de pacotes
- Captura de pacotes
- Monitoramento de fluxos

Ponto único de observação

Ponto único de observação

Dois pontos de observação

- Monitoramento ativo
- Round Trip Time RTT
- One Way Delay OWD
- Perda de pacotes
- Gargalo do caminho
- Capacidade disponível no caminho

Dois pontos de observação

Conhecimento amplo da rede

- Pós-processamento de algum dos modelos anteriores
- Considera outras informações da rede, como roteamento, topologia, etc.

Monitoramento de fluxos

- Fluxos são grupos de pacotes de redes compartilhando alguma característica
 - Mesmo IP origem/destino
 - Mesmo TOS (Type of Service)
 - Mesmo protocolo

Monitoramento de fluxos

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão Monitoramento Políticas Teoria de controle Auto-configuração e auto-organização Descentralização

Desafios

- Monitoramento de alta velocidade
- Monitoramento inter-domínios

Gerenciamento baseado em políticas

Controle e gerenciamento da rede levando em consideração políticas no nível do negócio

- Ferramenta para permitir automação das tarefas de gerenciamento especificando regras e restrições
- Refletem o interesse humano

Visão geral

Especificação baseada em regras

[EM evento] SE condição/filtro ENTÃO ação

- Gerênciamento de configuração
 - SE srcIPAddr = 1.2.3.4 E destIPAddr = 5.6.7.8 ENTÃO marque com DSCP EF
- Controle de comportamento
 - SE usuário = Marcus ENTÃO negar acesso

Motivação

- Automação das tarefas
- Suporte de alto nível no gerenciamento e operação das redes
- Configuração consistente de todos os elementos

Gerenciamento baseado em políticas

Padronização

SNMPconf Gerenciamento de configuração com SNMP

Policy Based Management MIB

RAP Resource Allocation Protocol

COPS para RSVP, COPS-PR, etc.

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão Monitoramento Políticas Teoria de controle Auto-configuração e auto-organização Descentralização

SNMPconf

- Utiliza o SNMP para a comunicação entre PDP e PEP
- Atua nas MIBs dos agentes SNMP para armazenamento e execução

SNMPconf

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão Monitoramento Políticas Teoria de controle Auto-configuração e auto-organização Descentralização

COPS

- Common Open Policy Service
- Comunicação entre PDP e PEP utiliza TCP
- PEP inicia a conexão

COPS

Dois modelos:

- outsourcing (Ex. COPS para RSVP ReSerVation Protocol)
 - modelo requisição resposta
 - PEP delega responsabilidade para o PDP
- configuration (Ex. COPS-PR Provisioning)
 - Modelo pró-ativo
 - Requisições descrevem a capacidade do elemento
 - Respostas contém informações de políticas relevantes

COPS para RSVP - ReSerVation Protocol

COPS-PR - Provisioning

Configuration Request
- type, vendor etc
- interface types

Policy Server (PDP)

COPS-configuration (continuously)
Policy Information Base (PIB)

Luciano Jerez Chaves

Router (PEP)

Desafios

- Detecção e resolução de conflitos
- Modificar modelo baseado em regras para um modelo mas agradável
 - FACA alguma coisa
 - OTIMIZE alguma métrica

Teoria de controle

Planejamento e tomada de decisão em função das entradas dos sistemas dinâmicos

- Abordagem sistemática para análise e projeto
- Predição de resposta do sistema para alguma entrada
- Exemplos:
 - Ajuste da janela TCP com base no feedback da rede

Propriedades

- Estabilidade
- Acurácia
- Tempo de resposta pequeno
- Mudanças rápidas

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão Monitoramento Políticas T**eoria de controle** Auto-configuração e auto-organização Descentralização

Desafios

- Só funciona bem para pequeno número de variáveis
- Complexo de compreender e implementar

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão Monitoramento Políticas Teoria de controle **Auto-configuração e auto-organização** Descentralização

Auto-configuração e auto-organização

Instalação, configuração e otimização do sistema sem direta intervenção humana

- DHCP Dynamic Host Configuration Protocol
 - Somente atua em hosts
 - Precisa de configuração manual do servidor
 - Não é integrada com o resto do sistema (Ex. DNS)
 - Precisa de infra-estrutura do servidor

- IPv6 autoconf
 - Atua somente no endereço IP
- Protocolos de roteamento
 - Indentifica automaticamente as rotas pela rede
 - Configura tabela de repasse dos roteadores
 - Completamente distribuido e executa nos elementos da rede

- Engenharia de tráfego
 - Otimização tipicamente centralizada
- P2P / Overlay network systems
 - Organizam-se em estruturas de redes
 - São tipicamente auto-configuráveis

Ainda não está resolvido...

- Múltiplos dispositivos por usuário
- Cada dispositivo possui várias interfaces de redes
- Esses dispositivos são de alta mobilidade
- Computação ubíqua envolve usuários sem conhecimentos técnico

Auto-configuração em redes

Desafios

- Não somente hosts, mas também roteadores, estações-base e outros equipamentos precisam ser configurados
- Redes inteiras podem se compor ou decompor
- Elementos de redes entram e saem dinamicamente da rede

Descentralização

Construção de sistemas sem elementos centralizadores, que permitem escalabilidade e confiabilidade

- É necessário para a auto-configuração dos elementos
- Várias estruturas possíveis

Estrutura hierárquica

Estrutura hierárquica

Estrutura distribuída

- Protocolos de roteamento
 - Completamente distribuído OSPF/RIP/...
 - …já foi centralizado

Desafios

- Executar funcionalidades de gerenciamento no elemento da rede
 - Reduz flexibilidade para mudança nos algoritmos
 - Conhecimento avançado sobre cada elemento

Desafios

- Executar funcionalidades de gerenciamento no elemento da rede
 - Reduz flexibilidade para mudança nos algoritmos
 - Conhecimento avançado sobre cada elemento
- Algoritmos distribuídos são difíceis
 - Corretude na especificação e implementação
 - Devem ser robusto contra diversas falhas

Computação autonômica tem futuro?

Pesquisa

A realização da computação autonômica vai necessitar de energia e recursos dos pesquisadores e laboratórios em todo o planeta

Projetos de pesquisa da IBM

LEO DB2's Learning Optimizer

correção automática de erros em otimização de *queries*

ST Storage Tank

sistema de arquivos para compartilhamento de dados heterogêneos baseados em políticas e altamente escalável

Instituições de ensino e pesquisa

Berkeley OceanStore

Mecanismo de armazenamento de dados global capaz de atender à bilhões de usuários

Recovery-Oriented Computing

Recuperação de falhas em sistemas que rodam na internet

Carnegie Self-securing Storage

Proteção de dados baseado em histórico de utilização

Instituições de ensino e pesquisa

Columbia Autonomizing Legacy Systems

Permiti melhorias nos sistemas legados

Cornell Astrolabe

Opera criando um banco de dados herárquico virtual global para armazenamento de dados

Georgia Qfabric

Integração entre aplicação e gerenciamento de recursos para provisão de QoS

Conferências

- 2004 IEEE International Conference on Autonomic Computing
- 2005 International Conference on Autonomic and Autonomous Systems
- 2006 International Workshop on Distributed Autonomous Network Management Systems
 - International Workshop on Self-Organizing Systems
- 2007 International Conference on Autonomic Computing and Communication Systems
 - International Conference on Self-adaptive and Self-organizing Systems
 - International Conference on Complex Distributed Systems

Interesse de mercado

Redução de custo e incremento da qualidade dos sistemas através da automação.

O grande desafio

É necessário juntar conhecimento de múltiplas áres técnicas e científicas, assim como empresas e instituições que enxergam a urgência e o propósito deste paradigma

O grande desafio

No nível conceitual, a maneira como definimos e projetamos sistemas computacionais precisa mudar:

- Mudança no paradgima de um modelo baseado em poder computacional para um voltado aos dados
- Mudança na análise de performance da velocidade do processador para o tempo de resposta
- Computadores individuais ficarão menos importantes do que o sistema

O grande desafio

As funcionalidades dos componentes individuais irão mudar e devem incluir:

- Armazenamento escalável e poder de processamento para acomodar as mudanças necessárias
- Transparência no transporte e compreensão de dados entre dispositivos distintos
- Funções de monitoramento de redes confiáveis
- Construção de processadores "espertos" capazes de detectar erros e antecipar falhas

Introdução Computação autonômica Redes autonômicas Pesquisa e mercado Conclusão

Conclusão

 Computação autonômica visa sistemas computacionais auto-gerenciáveis, baseado em políticas de alto nível definidas por administradores e no conhecimento adquirido ao longo do tempo

- Computação autonômica visa sistemas computacionais auto-gerenciáveis, baseado em políticas de alto nível definidas por administradores e no conhecimento adquirido ao longo do tempo
- Envolve uma mudança no modo de projetar os sistemas computacionais

- Computação autonômica visa sistemas computacionais auto-gerenciáveis, baseado em políticas de alto nível definidas por administradores e no conhecimento adquirido ao longo do tempo
- Envolve uma mudança no modo de projetar os sistemas computacionais
- As redes de computadores são cenários onde a computação autonômica pode ser facilmente aplicada, principalmente pelo crescimento resultante da internet

- Computação autonômica visa sistemas computacionais auto-gerenciáveis, baseado em políticas de alto nível definidas por administradores e no conhecimento adquirido ao longo do tempo
- Envolve uma mudança no modo de projetar os sistemas computacionais
- As redes de computadores são cenários onde a computação autonômica pode ser facilmente aplicada, principalmente pelo crescimento resultante da internet
- Os sistemas verdadeiramente autonômicos estão distantes, entretanto, funcionalidades autonômicas estarão presente em um futuro bem próximo

- Computação autonômica visa sistemas computacionais auto-gerenciáveis, baseado em políticas de alto nível definidas por administradores e no conhecimento adquirido ao longo do tempo
- Envolve uma mudança no modo de projetar os sistemas computacionais
- As redes de computadores são cenários onde a computação autonômica pode ser facilmente aplicada, principalmente pelo crescimento resultante da internet
- Os sistemas verdadeiramente autonômicos estão distantes, entretanto, funcionalidades autonômicas estarão presente em um futuro bem próximo
- É uma solução promissora, e é foco de pesquisa de várias universidades e empresas, principalmente a IBM

Referências

- P. Horn. Autonomic computing: IBM's Perspective on the State of Information Technology, Oct 2001. Also known as IBM's Autonomic Computing Manifesto. Available http://www.research.ibm.com/ autonomic/manifesto/autonomic_computing.pdf
- R. Sterritt; M. Parashar; H. Tianfield; e R. Unland. A Concise Introduction to Autonomic Computing. Advanced Engineering Informatics, 19(3):181–187, 2005
- T. Braga; F. Silva; L. Ruiz; e H. Assunção. Redes Autonômicas.
 Em E. Madeira, editor, Anais dos Minicursos do 26 Simpósio
 Brasileiro de Redes de Computadores, p. 159–208. SBC, 2006
- M. Brunner. Towards Autonomic Network Management. Em 4th Latin American Network Operations and Management Symposium, 2005

Dúvidas?

