PROOF OF A LORENTZ AND LEVI-CIVITA THESIS

ANGELO LOINGER

ABSTRACT. A formal proof of the thesis by Lorentz and Levi-Civita that the left-hand side of Einstein field equations represents the real energy-momentum-stress tensor of the gravitational field.

Summary -1. Introduction. Aim of the paper. -2. Mathematical preliminaries. -3. Proof that the left-hand side of the Einstein field equations gives the true energy-momentum-stress tensor of the gravitational field. -4. A fundamental consequence. -Appendix: On the pseudo energy-tensor.

PACS 04.20 - General relativity.

1. – As it has been remarked [1], if I is the *action* integral of any field (of any tensorial nature) – say $\varphi(x)$, $x \equiv (x^0, x^1, x^2, x^3)$ – acting in a pseudo-Riemannian spacetime, and we perform the variation of I – say $\delta_g I$ – generated by the variation δg_{jk} , (j, k = 0, 1, 2, 3), of the metric tensor $g_{jk}(x)$ (possibly interacting with $\varphi(x)$),

(1)
$$\delta_g I = \int_D (\ldots)^{jk} \, \delta g_{jk} \, \sqrt{-g} \, \mathrm{d}^4 x \quad ,$$

– where D is a fixed spacetime domain – , the expression $(\ldots)^{jk}$ is a symmetrical tensor, which represents the energy-momentum-stress tensor of $\varphi(x)$. This statement has been *verified* for various fields [1]. And its *general* validity can be intuitively understood bearing in mind that I is an action integral, with the Lagrange density of $\varphi(x)$ as integrand.

We shall prove that the above statement holds also if $\varphi(x) \equiv g_{jk}(x)$, thus corroborating a famous (and debated!) thesis by Lorentz [2] and Levi-Civita [3] – see also Pauli [4] (and the references therein).

The essential merit of the following demonstration is its *independence* of the Einstein field equations (and of the Bianchi relations).

2. – Let $\sqrt{-g}$ S $[g_{jk}(x), g_{jk,m}(x), g_{jk,mn}(x), \ldots]$ be a generic scalar density which is a function of the metric $g_{jk}(x)$ and of a finite number of its ordinary derivatives [5]. We do **not** assume that $\sqrt{-g}$ S is a Lagrange density, and therefore the integral

(2)
$$\mathcal{J} = \int_D S \sqrt{-g} \, \mathrm{d}^4 x$$

is not an action integral. We have:

(3)
$$\delta_g \mathcal{J} = \int_D \frac{\delta(S\sqrt{-g})}{\delta g_{jk}} \, \delta g_{jk} \, \mathrm{d}^4 x \quad ;$$

the variational derivative $\delta(S\sqrt{-g})/\delta g_{ik}$ is equal to

(4)
$$\frac{\partial (S\sqrt{-g})}{\partial g_{jk}} - \frac{\partial}{\partial x^m} \left[\frac{\partial (S\sqrt{-g})}{\partial g_{jk,m}} \right] + \frac{\partial^2}{\partial x^m x^n} \left[\frac{\partial (S\sqrt{-g})}{\partial g_{jk,mn}} \right] - \dots ;$$
 putting $\delta(S\sqrt{-g})/\delta g_{jk} := P^{jk}\sqrt{-g}$, we can write:

(3')
$$\delta_g \mathcal{J} = \int_D P^{jk} \sqrt{-g} \, \delta g_{jk} \, \mathrm{d}^4 x \quad .$$

Let us now consider the particular δg_{jk} – say $\delta^* g_{jk}$ –, which is generated by an infinitesimal change of the co-ordinates x:

(5)
$$x^{\prime j} = x^j + \varepsilon^j(x) \quad ;$$

we assume that $\varepsilon^{j}(x)$ is zero on the bounding surface ∂D . The corresponding variation of \mathcal{J} – say $\delta_{g}^{*}\mathcal{J}$ – will be equal to zero, because \mathcal{J} is an invariant.

We have:

(6)
$$g_{mn}(x) = \frac{\partial x^{\prime j}}{\partial x^m} \frac{\partial x^{\prime k}}{\partial x^n} g_{jk}'(x^{\prime}) ,$$

and we consider the $\delta^* g_{jk}$ for fixed values of the coordinates, i.e.:

(6')
$$\delta^* g_{jk} := g'_{jk}(x') - g_{jk}(x') = g'_{jk}(x') - g_{jk}(x) - g_{jk,s}(x) \varepsilon^s$$
 It follows immediately from eqs.(5), (6), (6') that

(7)
$$\delta^* g_{mn} = -g_{mn,j} \, \varepsilon^j - g_{mj} \, \varepsilon^j_{,n} - g_{nj} \, \varepsilon^s_{,m} \quad ;$$
 from eq.(3') we get:

$$\delta_{g}^{*} \mathcal{J} = \int_{D} P^{mn} \sqrt{-g} \, \delta^{*} g_{mn} \, \mathrm{d}^{4} x =$$

$$= \int_{D} P^{mn} \left(-g_{m}; \varepsilon_{,n}^{j} - g_{nj} \varepsilon_{,m}^{j} - g_{mn,j}; \varepsilon^{j} \right) \sqrt{-g} \, \mathrm{d}^{4} x =$$

$$= \int_{D} \left[2 \left(P_{j}^{n} \sqrt{-g} \right)_{,n} - g_{mn,j} P^{mn} \sqrt{-g} \right] \varepsilon^{j} \, \mathrm{d}^{4} x =$$

$$= 2 \int_{D} P_{j:m}^{m} \varepsilon^{j} \sqrt{-g} \, \mathrm{d}^{4} x = 0 \quad ,$$

$$(8)$$

if the colon denotes a covariant derivative; in the last passage we use the following property of any symmetrical tensor S^{mn} :

(8')
$$S_{j:m}^{m} \sqrt{-g} = \left(S_{j}^{n} \sqrt{-g}\right)_{,n} - \frac{1}{2} g_{mn,j} S^{mn} \sqrt{-g} .$$

Accordingly:

(9)
$$P_{j:m}^m = 0 \quad ; \quad (j = 0, 1, 2, 3) \quad .$$

3. – The result (9) has a mere mathematical interest. It becomes physically significant when \mathcal{J} is the action integral, say A, given by

$$A = \int_D R \sqrt{-g} \, \mathrm{d}^4 x \quad ,$$

where $R = R^{jk}g_{jk}$ is the Ricci scalar. We shall not use the fact that the g_{jk} 's are (a priori) independent variables, because we do not wish to deduce from the action A the Einstein field equations.

Standard procedures (see, e.g., Hilbert's method in Appendix, β)) tell us that

(11)
$$\delta_g A = \int_D \left(R^{jk} - \frac{1}{2} g^{jk} R \right) \sqrt{-g} \, \delta g_{jk} \, \mathrm{d}^4 x \quad ;$$

the analogue of eq.(8) is:

(12)
$$\delta_g^* A = 2 \int_D \left(R_j^k - \frac{1}{2} \delta_k^j R \right)_{i,k} \varepsilon^j \sqrt{-g} \, \mathrm{d}^4 x = 0 \quad ,$$

from which:

(13)
$$\left(R^{jk} - \frac{1}{2} g^{jk} R \right)_{,k} = 0 \quad , \quad (j = 0, 1, 2, 3) \quad .$$

Thus, quite independently of the field equations, we see that the symmetrical tensor $R^{jk} - (1/2)g^{jk}R$ satisfies four conservation equations. Of course, eqs.(13) are identically satisfied by virtue of Bianchi relations, but the above method – which is essentially due to the conceptions of Emmy Noether [6] – evidences the conservative property of $R^{jk} - (1/2)g^{jk}R$, and attributes it the nature of an energy-momentum-stress tensor. Properly speaking, $[R^{jk} - (1/2)g^{jk}R]/\kappa$, if κ is the Newton-Einstein gravitational constant, represents the Einsteinian energy tensor, as it was emphasized by Lorentz [2] and Levi-Civita [3]. And the fact that this tensor is a function only of the potential g^{jk} implies that it is the unique energy-momentum-stress tensor of the gravitational field.

4. – The fact that $[R^{jk} - (1/2)g^{jk}R]/\kappa$ is the true energy-momentum-stress tensor of the gravitational field has a very important consequence [3]: the mathematical undulatory solutions of the equations $R^{jk} - (1/2)g^{jk}R = 0 = R^{jk}$ are quite devoid of physical meaning, because they do not transport energy, momentum, stress. This was the *first* demonstration of the physical non-existence of the gravitational waves. Quite different demonstrations have been given in recent years, see e.g. [7], and references therein.

In his fundamental memoir [3], Levi-Civita proved also the nature of mere mathematical fiction (Eddington [8]) of the well-known pseudo energy-tensor of the metric field g_{ik} .

A useful discussion with Dr. T. Marsico is gratefully acknowledged.

APPENDIX

 α) The full illogicality of the notion of pseudo energy-tensor can be seen also in the following way. The usual definition of this pseudo tensor is:

(A.1)
$$\sqrt{-g} \ t_m^{\ n} \stackrel{DEF}{=} \frac{\partial (L\sqrt{-g})}{\partial g_{jk,n}} g_{jk,m} - \delta_m^n L \sqrt{-g} \quad ;$$

the function L:

(A.2)
$$L \equiv g^{mn} \left(\Gamma^s_{mn} \, \Gamma^r_{sr} - \Gamma^r_{ms} \, \Gamma^s_{nr} \right)$$

yields the Lagrangean field equations:

(A.3)
$$\frac{\partial (L\sqrt{-g})}{\partial g_{jk}} - \frac{\partial}{\partial x^n} \left[\frac{\partial (L\sqrt{-g})}{\partial g_{jk,n}} \right] = 0 .$$

Now, the left-hand side of (A.3) is **not** equal to

$$-\left(R^{jk} - \frac{1}{2}g^{jk}R\right)\sqrt{-g}$$

as it is commonly affirmed. Indeed:

- i) A non tensor entity cannot be equal to a tensor density –
- ii) The above affirmed equality has its origin in a "negligence": in the customary variational deduction of the Einstein field equations the variation of $\int_D R\sqrt{-g} \,\mathrm{d}^4x$ is "reduced" to the variation of $\int_D L\sqrt{-g} \,\mathrm{d}^4x$. But in his "reduction" two perfect differentials in the integrand have been omitted, because on the boundary ∂D the variations of the g_{jk} and of their first derivatives are zero (by assumption): this omission destroys the tensor-density character of the initial expressions. –
- β) It is likely that the pseudo energy-tensor would not have been invented if the authors had followed Hilbert's procedure [9]. This Author started from the fact that (with our previous notations) the explicit evaluation of

the variational derivative $\delta(R\sqrt{-g})/\delta g^{mn}$ gives the following Lagrangean expressions:

$$(A.5) \qquad \frac{\partial (R\sqrt{-g})}{\partial g^{mn}} - \frac{\partial}{\partial x^k} \left[\frac{\partial (R\sqrt{-g})}{\partial g^{mn}_{,k}} \right] + \frac{\partial^2}{\partial x^k x^l} \left[\frac{\partial (R\sqrt{-g})}{\partial g^{mn}_{,kl}} \right]$$

Hilbert wrote: "... specializiere man zunächst das Koordinatensystem so, daß für den betrachteten Weltpunkt die $g_{,s}^{mn}$ sämtlich verschwinden.". *I.e.*, he chose a *local* coordinate-system for which the *first* derivatives of g^{mn} are equal to zero. Thus, only the first term of (A.5) gives a non-zero contribution, and we have that (A.5) is equal to

$$(A.6) \sqrt{-g} \left(R_{mn} - \frac{1}{2} g_{mn} R \right)$$

There is no room in this procedure for false (pseudo) tensor entities.

References

- W. Pauli, Teoria della Relatività (Boringhieri, Torino) 1958, sect. 55. See also: V. Fock, The Theory of Space, Time and Gravitation, Second Revised Edition (Pergamon Press, Oxford, etc) 1964, sects. 31*, 48, 60; A. Loinger, Nuovo Cimento, 110A (1997) 341
- [2] H.A. Lorentz, Amst. Versl., 25 (1916) 468; (this memoir is written in Dutch an English translation would be desirable).
- [3] T. Levi-Civita, Rend. Acc. Lincei, **26** (1917) 381; an English translation in arXiv:physics/9906004 (June 2nd, 1999). See also: Idem, ibid., **11** (s.6^a) (1930) 3 and 113.
- [4] See Pauli [1], sects. 23 and 61.
- [5] E. Schrödinger, Space-Time Structure (Cambridge University Press, Cambridge) 1960,
 Chapt. XI; P.A.M. Dirac, General Theory of Relativity (J. Wiley and Sons, New York,
 etc) 1975, sect.30.
- [6] E. Noether, Gött Nachr., (1918) 235 ("Invariante Variationsprobleme").
- [7] A. Loinger and T. Marsico, arXiv:1006.3844 [physics.gen-ph] 19 Jun 2010.
- [8] A. S. Eddington, The Mathematical Theory of Relativity, Second Edition (Cambridge University Press, Cambridge) 1960, p.148. See also H. Bauer, Phys. Z., 19 (1918) 163.
- [9] D. Hilbert, Gött Nachr.: Erste Mitteilung, vorgelegt am 20. Nov. 1915; zweite Mitteilung, vorgelegt am 23. Dez. 1916 Math. Annalen, 92 (1924) 1.

A.L. – Dipartimento di Fisica, Università di Milano, Via Celoria, 16 - 20133 Milano (Italy)

E-mail address: angelo.loinger@mi.infn.it