Define-se ganho de teneão pela relação entre a variação na na teneão de saída (em $R_{\rm h}$) e a respectiva variação na teneão de entrada (em R) que provocou a primeira. Av = $\frac{\Delta V_{\rm m}}{\Delta V_{\rm h}}$

Dado que R_L tem valor elevado, qualquer pequena variação da corrente I_0 produz nela grande variação de tensão.

O ganho de teneão nesta montagem atinge a ordem dos 1500.

3.1.16.1

O transistor da figura

a)	está na co	nfigur	ação d	8	colector	comm		• • •		• • •	 • •	
b)	a n	41	ı	"	emissor	н		• • •			 • •	X
0)	apresenta	baixo	ganho	de	tensão		•••	• •	,	• • •	 	
d)	14	11	u ·	**	corrente					. , .	 	

Nota: O sinal de entrada aplica-se entre base e emissor e o sinal de saída obtém-se entre colector e emissor, pelo que o emissor é comum à entrada e à saída.

A polarização entre base e emissor (polarização directa) obtém-se pela queda de tensão em R₁ que torna a base positiva em relação ao emissor (transistor NPN).

R, e R constituem um divisor de tensão.