

NOVEMBER 202<mark>1 - MARCH 20</mark>22

THE DATA SCIENCE CHALLENGE BRIDGING INDIAN AGRICULTURAL PROTECTION GAP

SCOR The Art & Science of Risk

GLOBAL ADVISOR FOR CHANG

Please note all questions you might have during the presentation.

You will have the opportunity to ask them to the team at the end of the presentation.

EMERGING RISKS RADAR

Example: Drought 2009

Percentage rainfall departure per subdivision, 2009

PRESENTATION OF AGRICULTURE IN INDIA

PRESENTATION OF THE DATA

2017_Andhra Pradesh_Kharif.xlsx

2017_Andhra Pradesh_Rabi.xlsx

2017_Bihar_Kharif.xlsx

2017_Bihar_Rabi.xlsx

2017_Chhattisgarh_Rabi.xlsx

2017_Gujarat_Kharif.xlsx

2017_Gujarat_Rabi.xlsx

Each file traces yields insured provided in a given year, in a given state, for a given season

A **glossary** will be provided with further definition of the dataset

State	Cluster	District	ub-Distric	Block GP	Season	Crop	ea Sown (H	rea Insured (H	Per Ha (Inr/	lm Insured (I	lemnity Le	2010 Yield	2011 Yield	2012 Yield	2013 Yield 2	2014 Yield 2	015 Yield
Andhra Pradesh	1	Anantapu	AGALI	AGALI	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	70	295	89
Andhra Pradesh	1	Anantapu	AGALI	AKKAGAL	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	58	232	120
Andhra Pradesh	1	Anantapu	AGALI	HULIKERA	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	67	295	89
Andhra Pradesh	1	Anantapu	AGALI	INAGALOF	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	62	232	120
Andhra Pradesh	1	Anantapu	AGALI	KODIHALL	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	70	295	89
Andhra Pradesh	1	Anantapu	AGALI	MADHUDI	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	58	232	120
Andhra Pradesh	1	Anantapu	AGALI	NARASAN	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	58	232	120
Andhra Pradesh	1	Anantapu	AGALI	P.BYADIGI	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	82	295	89
Andhra Pradesh	1	Anantapu	AGALI	RAVUDI	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	62	232	120
Andhra Pradesh	1	Anantapu	AMADAG	JR AMADAGI	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	343	257	548
Andhra Pradesh	1	Anantapu	AMADAG	UR CHEEKIRE	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	343	257	548
Andhra Pradesh	1	Anantapu	AMADAG	UR CHINAGAI	Kharif	Arhar	41	1	25000	32058	0.8	165	88	161	98	273	394

Geographical & Seasonal data

Crop & Insurance data

Historical yield data

THE DATATHON OBJECTIVE IS TO...

BUILD A CLUSTERING MODEL SEGMENTING INDIAN AGRICULTURAL ZONES HIGHLIGHTING SIMILAR FACTORS AND BEHAVIORS FOR LOSSES

- Find clusters which maximize as much as possible dependence within a cluster
- Use the data we provided, but also search for additional / external data
- Clustering will be **evaluated** at **two levels**:
 - 1. Independent of administrative level (i.e., clustering can be performed at any level of granularity)
 - 2. At state level (i.e. a clustering of states will be expected)
- Clustering for 2 seasons (Kharif / Rabi) independently
- Remaining dependencies between clusters and season should be estimated
- Last (but not least!), you should be able to explain the factors that are driving your clusters

THE CHALLENGE IN A NUTSHELL

Prizes will be delivered to top 3 teams, based on 2 major criteria

To deliver those awards the jury will assess all along the challenge during the different touch points the following criteria

THE TIME FRAME

Challenge presentation and opening ceremony 04/11 - Kick off Data exploration and topic understanding 25/11 – Follow-up #1 First modelling approach based on the provided data set 16/12 – Mid term check-point Exploration of external datasets and follow-up on your approach 21/01 – Follow-up #2 Final code submission 07/03 - Final Code Submission Final presentation and award ceremony 10/03 – Final presentation

Q&A WILL BE CENTRALIZED ON THE SLACK CHANNEL

LOGISTICS

A slack channel to centralize all communications

You will receive an invite right after the event.

Teams should be formed by November 12th

Please send us your team members names and name a primary contact in each team.

The primary dataset will be published on November 04th

Submission in practice

We'll set up a git repository for you:

- One repository for each team.
- You will receive credentials to access to this repository
- You will be evaluated on the code and predictions pushed on this repository.

Credentials will be sent to each team as well as a tutorials.

MULTIDISCIPLINARY TEAMS REQUESTED!

