CS 480 – Introduction to Artificial Intelligence

TOPIC: INFERENCE IN FOL

CHAPTER: 9

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

WHAT'S THE DIFFERENCE?

- Can we use propositional logic inference (resolution, forward chaining, etc) techniques directly?
- No, because FOL has
 - Variables
 - Functions
 - Quantifiers

PROPOSITIONALIZE?

- o Can we convert FOL into propositional logic as a pre-processing step? Because if we can, then we can use the same inference techniques...
- Not directly and easily, because
 - Functions can be applied infinitely many times
 Mother(Mother(...
 - Variables have to be replaced with all possible assignments from the vocabulary

GODEL'S COMPLETENESS THEOREM

- FOL entailment is only semi-decidable
- If a sentence is entailed
 - There is a procedure that will find it
- Else
 - There is no guarantee that the procedure will halt

4

ALGORITHMS WE DISCUSSED FOR PL

- 1. Model checking
- 2. Logical equivalence rules
- 3. Proof-by-contradiction
 - Resolution
- 4. Forward chaining
- 5. Backward chaining

ALGORITHMS WE WILL DISCUSS FOR FOL

- 1. Forward chaining
- 2. Resolution

VARIABLES

- To be able to reason with a FOL KB, we need procedures to deal with the variables
- We will discuss two procedures:
 - $Subst(\theta, P)$
 - Unify(P, Q)

Subst(θ , P)

- \circ θ specifies a substitution for a variable in P
- The result is P with the variable substituted with the specified term (i.e., constant/variable/function)
- Examples
 - $Subst(\{x/John\}, P(x))$
 - P(John)
 - $Subst(\{x/Mary\}, P(x) \vee Q(x,y))$
 - \circ P(Mary) \vee Q(Mary, y)
 - $Subst(\{x/z\}, P(x) \vee Q(x,y))$
 - \circ P(z) \vee Q(z,y)

Unify(P, Q)

- Unification: Finding substitutions that make different logical expressions look identical
- *Unify* takes two sentences and returns a substitution if one exists
- $Unify(P, Q) = \theta$ where
 - $Subst(\theta, P) = Subst(\theta, Q)$

Unify(P, Q) Examples

- \circ *Unify*(Knows(John, x), Knows(John, Jane)) =
 - {*x*/Jane}
- \circ *Unify*(Knows(John, x), Knows(y, Bill)) =
 - $\{x/\text{Bill}, y/\text{John}\}$
- \circ *Unify*(Knows(John, x), Knows(y, Mother(y)) =
 - {*y*/John, *x*/Mother(John)}
- \circ *Unify*(Knows(John, x), Knows(x, Elizabeth)) =
 - fail

MOST GENERAL UNIFIER

- Unify(Knows(John, x), Knows(y, z)) =
 - $\{y/John, x/z\}$
 - $\{y/John, x/John, z/John\}$
 - •
- Most general unifier: $\{y/John, x/z\}$

GENERALIZED MODES PONENS

- $\circ \forall x \operatorname{King}(x) \land \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
- King(John)
- Greedy(John)
- What can you conclude and why?

GENERALIZED MODES PONENS

- For atomic sentences p_i , p_i , and q, if there is a substitution θ such that $Subst(\theta, p_i) = Subst(\theta, p_i)$ for all i,
- Given
 - $p_1', p_2', ..., p_n'$ and
 - $p_1 \wedge p_2 \wedge ... \wedge p_n \Rightarrow q$
- Conclude
 - $Subst(\theta, q)$

GENERALIZED MODES PONENS

- \circ $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
- King(John)
- Greedy(John)
- $p_1' = \text{King}(x), p_1 = \text{King}(\text{John}),$
- p_2 ' = Greedy(x), p_2 = Greedy(John)
- Conclude
 - $Subst(\theta, q) = Subst(\{x/John\}, Evil(x)) = Evil(John)$

FORWARD CHAINING

- 1. Use Generalized Modes Ponens to add new facts
- 2. Stop when proved or no facts can be added
- The KB has to consist of definite clauses
 - Definite clause: disjunction of literals of which exactly one is positive.
 - How are they related to Horn clauses?
- Sound and complete for definite clause KBs
- If functions are included
 - semi-decidable

RESOLUTION

- Need to convert into CNF
- Procedure is very similar to the propositional case,
 - Except quantifiers have to be handled

CNF CONVERSION

- 1. Eliminate biconditionals (⇔)
- 2. Eliminate implications (\Rightarrow)
- 3. Move \neg inwards
- 4. Standardize variables
- 5. Skolemize ← What's this?
- 6. Drop universal qualifiers
- 7. Distribute \vee over \wedge

SKOLEMIZE

- Drop ∃ by replacing the variable with either
 - A new constant, something not in your current domain
 - Or a new function
- Examples
 - $\exists y \text{ Crown}(y) \land \text{OnHead}(y, \text{John})$
 - \circ Crown(A) \wedge OnHead(A, John)
 - $\exists y \ \forall x \ \text{Loves}(x,y)$
 - $\circ \forall x \text{ Loves}(x, B)$
 - $\forall x \, \exists y \, \text{Loves}(x, y)$
 - $\forall x \text{ Loves}(x, C)$ ---- Incorrect! Why?
 - \circ $\forall x \text{ Loves}(x, F(x))$

CNF EXAMPLE

- "Everyone who loves all animals is loved by someone"
- $\lor x \ [\forall y \ \text{Animal}(y) \Rightarrow \text{Loves}(x, y)] \Rightarrow [\exists y \ \text{Loves}(y, x)]$
- Eliminate implications
- $\circ \forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x, y)] \lor [\exists y \ Loves(y, x)]$
- o Move ¬ inwards
- $\lor \forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists y \ Loves(y, x)]$
- Standardize variables
- $\lor \forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists z \ Loves(z, x)]$

CNF Example - Continued

- $\lor \forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists z \ Loves(z, x)]$
- **Skolemize:** Eliminate ∃ by replacing it with a constant or a function
- $y=A, z=B: \forall x [Animal(A) \land \neg Loves(x, A)] \lor [Loves(B, x)]$
 - Incorrect! Why?
- \circ $\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor [Loves(G(x), x)]$
 - What are F(x) and G(x)?
- Drop universal quantifiers
- [Animal(F(x)) $\land \neg Loves(x, F(x))$] \lor [Loves(G(x), x)]
- o Distribute ∨ over ∧
- [Animal(F(x)) \vee Loves(G(x), x)] \wedge [\neg Loves(x, F(x))] \vee Loves(G(x), x)]

RESOLUTION PROOF

- Very much the same process we did for propositional logic
- Use unification to substitute variables
- Example on page 348 and 349

RESOLUTION EXAMPLE

- 1. Everyone who loves all animals is loved by someone.
- 2. Anyone who kills an animal is loved by no one.
- 3. Jack loves all animals.
- 4. Either Jack or Curiosity killed the cat, who is named Tuna.
- 5. Tuna is a cat.
- 6. All cats are animals.
- 7. Did Curiosity kill Tuna?

First, convert these English sentences to FOL using Animal(.), Loves(.,.), Kills(.,.), and Cat(.) predicates. Then, convert it to CNF. Finally, run resolution.

CURIOSITY CNF (PAGE 349)

- A. $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$
- B. $\forall x \ [\exists z \ Animal(z) \land Kills(x,z)] \Rightarrow [\forall y \ \neg Loves(y,x)]$
- C. $\forall x \ Animal(x) \Rightarrow Loves(Jack, x)$
- D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
- E. Cat(Tuna)
- F. $\forall x \ Cat(x) \Rightarrow Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

Now we apply the conversion procedure to convert each sentence to CNF:

- A1. $Animal(F(x)) \vee Loves(G(x), x)$
- A2. $\neg Loves(x, F(x)) \lor Loves(G(x), x)$
 - B. $\neg Loves(y, x) \lor \neg Animal(z) \lor \neg Kills(x, z)$
- C. $\neg Animal(x) \lor Loves(Jack, x)$
- D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
- E. Cat(Tuna)
- F. $\neg Cat(x) \lor Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

CURIOSITY RESOLUTION

