Exploring the sign problem with Complex Langevin

Aleksandra Rylund Glesaaen with S. Zafeiropoulos (Frankfurt U.), J. Verbaarschot (Stony Brook U.)

> Palaver July 4th 2016

Introduction

- Complex Langevin and Random Matrix Theory
- 3 Results and analysis
- 4 Conclusions and outlook

Introduction

QCD in the dense regime

The sign problem Conceptual challenges

The QCD integration measure:

$$\exp(-S_{\text{QCD}}) = \det Q_{\text{uark}}(\mu_B) \exp(-S_g)$$

Monte Carlo methods rely on sampling configuration with a probability distribution

$$P(\text{conf}) \sim \exp(-S(\text{conf}))$$

However for $\operatorname{Re}(\mu_B) \neq 0$: $\det Q_{\operatorname{uark}}(\mu_B) \in \mathbb{C}$

The sign problem Conceptual challenges

The sign problem Numerical approaches

Conventional/Monte Carlo methods:

- Reweighting
- lacksquare Taylor expansion around $\mu_B=0$
- Imaginary chemical potential
- Strong coupling expansions
- Mean field analyses

The sign problem Numerical approaches

Alternative methods:

- Stochastic quantisation / Complex Langevin
- Lefschetz thimble
- Canonical ensembles
- Dual variables
- Density of states

The sign problem Numerical approaches

Alternative methods:

- Stochastic quantisation / Complex Langevin
- Lefschetz thimble
- Canonical ensembles
- Dual variables
- Density of states

Current study

Complex Langevin and Random Matrix Theory

Stochastic quantisation

Introduce a fictional flow time α

$$\phi_i(\mathbf{x}) \to \phi_i(\mathbf{x}, \alpha)$$

and the stochastic flow in α

$$\frac{\partial \phi_i(\mathbf{x}, \alpha)}{\partial \alpha} = -\frac{\delta S[\phi_i]}{\delta \phi_i} + \eta(\mathbf{x}, \alpha)$$

then if $rac{\delta S}{\delta \phi} \in \mathbb{R}$ [Damgaard and Huffel, 1987]

$$\lim_{\alpha \to \infty} \left\langle O[\phi(x, \alpha)]_i \right\rangle_{\eta} = \left\langle O[\phi(x)]_i \right\rangle$$

Stochastic quantisation

Introduce a fictional flow time α

$$\phi_i(\mathbf{x}) \to \phi_i(\mathbf{x}, \alpha)$$

and the stochastic flow in α

$$\frac{\partial \phi_i(x,\alpha)}{\partial \alpha} = -\frac{\delta S[\phi_i]}{\delta \phi_i} + \eta(x,\alpha)$$

then if $rac{\delta S}{\delta \phi} \in \mathbb{R}$ [Damgaard and Huffel, 1987]

$$\lim_{\alpha \to \infty} \left\langle O[\phi(x,\alpha)]_i \right\rangle_{\eta} = \left\langle O[\phi(x)]_i \right\rangle$$

Complex Langevin

Much the same as Real Langevin, however

$$\frac{\delta S}{\delta \phi} \in \mathbb{C} \quad \Rightarrow \quad \phi_i(x, \alpha) \in \mathbb{C}$$

proof for convergence to the right theory no longer holds, exceptions have been found [Ambjørn and Yang, 1985]

Why stochastic quantisation?

How the CL converges to the wrong theory not well understood

Much interest in methods for "repairing" CL

- Gauge cooling
- Utilising the Lefschetz thimbles
- **...?**

Need a signal for failure applicable to QCD

Random matrix theory

Start with a simpler system that also suffer from a strong sign problem

Same flavour symmetries as QCD (in the ϵ -regime)

Numerically a lot cheaper than full lattice studies

First attempts studying the Osborn model

[Mollgaard and Splittorff, 2013-2014; Nagata, Nishimura and Shimasaki, 2015-2016]

The Stephanov model Definition [Stephanov, 1996]

$$\mathcal{Z} = \int \left[dW
ight] e^{-N \Sigma^2 \operatorname{tr} W^\dagger W} \det^{N_f} \left(egin{matrix} M & iW + \mu \ iW^\dagger + \mu & M \end{matrix}
ight)$$

For random matrices $W \in M_{\mathbb{C}}(N,N)$

Define chiral condensate and baryon number density

$$egin{aligned} \langle ar{\eta} \eta
angle &= \partial_M \log \mathcal{Z} \ \langle \eta^\dagger \eta
angle &= \partial_\mu \log \mathcal{Z} \end{aligned}$$

The Stephanov model Properties

Solvable via bosonisation

[Stephanov, 1996; Halasz, Jackson and Verbaarschot, 1997]

$$\mathcal{Z} = \int \mathrm{d}\sigma \mathrm{d}\sigma^* \, e^{-N\sigma^2} (\sigma^*\sigma + m(\sigma + \sigma^*) + m^2 - \mu^2)^N$$

where
$$\sigma \in M_{\mathbb{C}}(N_f,N_f)$$
, for $N_f=1$

$$\mathcal{Z}=\pi e^{-Nm^2}\int_0^\infty \mathrm{d}u\,(u-\mu^2)^N I_0(2mN\sqrt{u})e^{-Nu}$$

The Stephanov model Properties

The model has a phase transition as it develops non-zero baryon number density

Solvable in the thermodynamic limit via a saddle point approximation

In the chiral limit one finds $\mu_c=0.572...$ and $\mu_c=i$

- Results and analysis

Numerical validity, matrix size

Numerical validity, step size

Mass scans (a) $\mu=0.2$

Mass scans @ $\mu=1.0$

Chemical potential scans @ m = 0.0

Chemical potential scans @ m = 0.2

Converge to the wrong theory

Which theory do we converge to?

The phase quenched theory

$$\mathcal{Z}_{ ext{PQ}} = \int [ext{d}U] \, ig| \det Q_{ ext{uark}}(\mu_B) ig| \exp(-S_g)$$

For $N_f=2$ it corresponds to studying finite isospin chemical potential

Has a very different phase diagram than QCD

Mass scans (a) $\mu=0.2$

Mass scans @ $\mu=1.0$

Chemical potential scans @ m = 0.0

Chemical potential scans @ m = 0.2

Conclusions and outlook

Conclusion

- Studied Complex Langevin for an interesting random matrix theory
- Compared to analytical results for said theory
- Observed that CL converges to the phase quenched theory

Outlook

- Still an open question how to repair CL
- Currently working on various gauge cooling methods
- Looking into Lefschetz thimbles
- Open to suggestions!