	Contract of the Contract of th
	week 3: course 1
	One hidden layer Neural Notronk:
	$\frac{1}{n_2} \Rightarrow \hat{y} = \alpha \text{(no hidden layers)}$ $\frac{1}{n_3} = \alpha \text{(no hidden layers)}$
tol=n	A. (4,3) (4,1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
	$\frac{g}{2} = \frac{g}{2} = \frac{g}{2}$ $\frac{g}{3} = \frac{g}{2} = \frac{g}{2}$ $\frac{g}{3} = \frac{g}{2} = \frac{g}{2}$ $\frac{g}{3} = \frac{g}{2} = \frac{g}{2}$
	layer layer layer generate y)
	In supervised learning, whatever calculations cure done in hidden layer are not seen during training phase, hence the name hidden.
	Computing NN's output:
	$Z_{1} = \omega_{1} + \omega_{1}$ $Z_{1} = \omega_{1} + \omega_{2}$ $Z_{1} = \omega_{1} + \omega_{2}$ $Z_{2} = \omega_{1} + \omega_{2}$ $Z_{3} = \omega_{1} + \omega_{2}$
MILA	$\frac{n_2}{n_2} = \frac{(1)}{2} = $

$$a^{[i]} = \begin{bmatrix} a_1^{[i]} \\ a_2^{[i]} \end{bmatrix} = \sigma \left(Z^{[i]} \right)$$

(niver input n:

$$(2,1)$$
 = $(3,1)$ $(4,1)$ $(4,1)$ $(4,1)$

 $\frac{1}{z^{(2)}} = w^{(2)} + v^{(2)}, \quad a^{(2)} = \overline{c}(z^{(2)})$ $(1,1) \quad (1,1) \quad (1,1) \quad (1,1)$

4- K lined codes is all you need for a NN with one hidden layer.

	Date
/	rectanizing across multiple emangles:
	For single training anamples: [2] Z[1] = W[1] n + b[1]
	X = 9 7 = W(2) 017 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	for 'm' thaining enamples:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$a^{(m)} = a^{(m)} = a^{(2)}(m)$
10/1	# man construction of the state
	for i=1 to m,
	$Z^{(i)}(i) = w^{(i)}(i) + b^{(i)}, a^{(i)}(i) = \sigma(Z^{(i)}(i))$
	$z^{(2)}(i) = w^{(2)}n(i) + v^{(2)}, a^{(2)}(i) = \sigma(z^{(2)}(i))$
	Vertonizing across multiple enamples:
12	$X = \begin{bmatrix} \chi_{(1)} & \chi_{(2)} & \chi_{(3)} & \chi_{(m)} \\ \chi_{(n)} & \chi_{(m)} & \chi_{(m)} & \chi_{(m)} \end{bmatrix}$

Page No.

A [0] = J (Z[2]) form Z(1) = [Z(1)(1) Z(1)(2) tija) a[1](2) a cis(m) # raden units As we move down, different activation values are stoned in any particular solumn because there are multiple rades for in a hidden layer - training country whilestonfor vectorized implementation: 2(1)(1) = W[] n(1) + [[], Z[](2) = [](2) + [(1)] Z[](3) [](3) []

W(1) n(1) = | . | W(1) n(2) : | -> column vectors $= \underbrace{\sum_{i} (i) \sum_{j} (i) \sum_{i} (i) \sum_{j} (i) \sum_{j} (i) \sum_{i} (i) \sum_{j} (i) \sum_{i} (i) \sum_{j} (i)$ Advation function: Sigmoid is an activation of faci = g (z[i]) = my h(z[i]) -Sing this function as activation of the mean shifts to I dosen to zero hence when the algorithm requires to center the data, we would have

Leaky RelV = maa (0.012, 2) when we talk about binary dassification, we would want is to range between 021, for which sigmoid would be preferred by compared to se tanh. Also activation for can be different for different rayers. like git zus, I punh gras (zus) = out (tanh) tunk of ReLU (Redified linear uni+) derivative = 1/0 A tree values a=man(0,a)if Binary classification sigmoid ese ReLU/tunh more preferred because fast learning as compared to others as stope = 1 inmost cases

Why do you need non linear activation 1 "5? a (1) = g (1) (2(1)) "linear activation fy" = Z['] / identity activation / a = z (1) = & W (1) A + b [1] a (1) = z [2] = w [2] a [1] + b [2] ace = w (2) (w [] n + 6 []) + 6 [2] = (w [2] w[1])2 + (w [2] [1] + b [2] = w'a+b' model becomes useless because the composition of two linear functions is itself a linear function. We may use linear activation of sorty in output layer like estimating the house prices in which the hidden layer may contain the activation of say kell on tanh. Denivatives of activation functions:

	Date
Z=10, tan h(z) 21	
g'(z) 20	
	1
$z=-10$, $tanh(z)\approx -1$	
g'(z)≈0	,
bush = = 0	+
z=0, tanhz =0	,
g'(z) = 1	
- : " W	
A ReLU and Laky Rell)
g(z)=man(0, Z)	
$g'(z) = \begin{cases} 0, & \text{if } z < 0 \\ 1, & \text{if } z > 0 \end{cases}$ $\text{undefined}, & \text{if } z = 0 \end{cases}$	q'(2) - 10.01, if 200
1, 1, 270) / 1, 1/2/0
undefined, if Z=01	undfined, 7=0
्रेट्य है । ट्य	- (19)
Gradient descent for NN	(I hidden layon)
	In view
parameters: w(1), b(1), (12), (12)	M MONEY - ALLEY
19	= n(0) (nput (Paturer)
(ost 1) : J (w[1], b[1], w[2], b[2]) n[1]	(Gidden units)
n Ce	(output units)
$=\frac{1}{m} \leq L(\hat{y},y)$	(in sus enamples)
1=1 ([2]	02 2

Repeat 1 Compute Medictions (g (i), i=1,...m) dw [1] = dJ, db[1] = dJ dwc13 woj:= woj- a dwoj 60) := 60) - x db(1) Formulas for computing derivatives Formulas for forward prof: $Z^{(1)} = W^{(1)} \times + V^{(1)}$ $A^{(1)} = G^{(1)} \times + V^{(2)}$ $Z^{(2)} = W^{(2)} \times + V^{(2)}$ $A^{(2)} = G^{(2)} \times + V^{(2)}$ Back Mopogation: y (2) y (m) Similar to logistic Mg: dZ = A[2] - Y JW[2] = m dZ[2] AUJT dZ = W[2]T Z[2] X g[1], Keepdins= db[2] = m np. sum (dZ[2]

dw = m dz [] xT db = (n0), 1) in np. sum (d zti), anis = 1, kcepdins = True Random Initialization $W^{[1]} = (2,2) = [0]$: a, [i] = a, [i] dZ, [i] = dZ2 i.e. the hidden units of layer I are enactry identical (they are symmetric) dw=[uV] after which, = w = w - x dw w [] = [...] In summary, when initialized with zero,

it is actually pointless to have more than one hidden writs in the hidden layer as all of them would be conjuting the same thing. Solution to this is initialize the parameter W[] = np. Nandon. Nandon ((2,2)) * 0.01 to make it smaller beganse it has to be a to the further gives to the activation functions... as w is nandomly initiatized because it dejects the symmetry problem encountered. w(2) = np. Nand 8m. Nandn ((1,2)) \$ 0.01 I will touch and signoid so we may entered the slope / gradient is very small ie.

gradient descent will be slow hence
learning will be slow. so we may and like I where slow hence,