3.3 Derivative Rules Power Rule Let f(x) = X! variable is in base The $f'(x) = n x^{n+1}$. $Ex f(x) = x^2, f'(x) = 2x$ $f(x) = \frac{1}{x} = x^{-1}, \quad f'(x) = -1 \cdot x^{-2} = -x^{-2} \left(= \frac{-1}{x^2} \right)$ Constant Multiple Rule Let c eR. Let f(x) be a differentiable function. If g(x)=c.f(x) then $g'(x) = c \cdot f'(x)$. $E \times f(x) = 5x^4, f'(x) = 5(4x^3) = 20x^3$ $f(x) = 7x^5$ $f'(x) = 7(5x^4) = 35x^4$ $f(x) = 7x^5$ $f'(x) = 7(5x^4) = 35x^4$ Q Which grows fasteric x2 or 5x2? A 5x2 grows faster 4 f(x)=x, then f(x)=2x 67 g(x) = 5x, then g'(x) = 5(2x) = 10x

Sum Rule Let f(x), g(x) be differentiable at CER. If h(x)=f(x)+g(x), then h(x) is also differentia, at c, with derivative h'(c) = f'(c) + g'(c) Ex f(x) = 5x4+ 7x3+ 11x2+ 13x+17 f(x) = 20x3 + 21x2 + 13 + 0 Proob of Sum Rule K(x) = f(x) + g(x), where f(x), g(x)are differentiable at x=c. $=\lim_{h \to 0} f(c+h) - f(c) + \lim_{h \to 0} g(c+h) - g(c)$ = F'(c) + g'(c). Exponentials Let a >0, a = 1. Let f(x) = a. Then f'(x) = In(a) ax. Ex $f(x) = 2^{x}$ = variable in exponent $f'(x) = \ln(2) 2^{x}$

Ex
$$f(t) = e^t$$
, $f'(t) = \ln(e) e^t = e^t$
Ex $f(x) = x^2 + 2^x$
 $f'(x) = 2x + \ln(2) 2^x$

Log Rules Let a > 0, a + 1. Let
$$f(x) = log_a(x)$$
.

Then: $f'(x) = \frac{1}{x \ln(a)}$

Ex #
$$f(x) = log_3(x)$$
, $f'(x) = \frac{1}{x \ln(3)}$
 $f(x) = \ln(x)$ $f'(x) = \frac{1}{x \ln(e)} - \frac{1}{x}$

Derivatives of Esin and Cos

Thun I in Sin(x) = 1.

The
$$\lim_{X \to 0} \frac{1 - \cos(x)}{X} = 0$$
.

PF $\lim_{X \to 0} \frac{1 - \cos(x)}{X} = \lim_{X \to 0} \frac{(1 - \cos(x))}{X} \cdot \frac{(1 + \cos(x))}{(1 + \cos(x))}$

$$= \lim_{X \to 0} \frac{1 - \cos^2(x)}{X} = \lim_{X \to 0} \frac{\sin^2(x)}{X(1 + \cos(x))}$$

$$= \lim_{X \to 0} \frac{\sin(x)}{X} \cdot \frac{\sin(x)}{1 + \cot(x)}$$

$$= \lim_{X \to 0} \frac{\sin(x)}{X} \cdot \frac{\sin(x)}{1 + \cot(x)}$$

$$= \lim_{X \to 0} \frac{\sin(x)}{X} \cdot \frac{\sin(x)}{1 + \cot(x)}$$

Thu Let f(x) = Sin(x). Then f(x) = cos(x). Pf f(x) = lim Sin(x+h) - Sin(x) = lim Sin(x)dos(h) + cos(x) Sin(h) - Sin(x)
hoo hoo $=\lim_{h\to 0} Sin(x) \left(cos(h) - 1 \right)$ + lim cos(x) sin(h)
h>0 = Sin(x) lim (cos(h)-1) h>0 h + + Cos(x) lim Sin(h). = Sin(x).0 $+ \cos(x).$ = cos(x), T) Thm f(x) = Cos(x), then f'(x) = -Sin(x). Pf Exercise for students,

Thun (Product Rule). Suppose f(x), g(x) are differentiable at the point c. Let $h(x) = f(x) \cdot g(x)$. Then: h'(G) = f'(G|g(R) + f(c)g'(c))

 $Ex h(x) = (x^2+1)(x^3+3),$ $h'(x) = 2x (x^3+3) + (x^2+1)(3x^2),$

 $f(x) = x^{2} \cdot 2^{x}$ $f'(x) = 2x \cdot 2^{x} + x^{2} \left(\ln(2) 2^{x} \right)$

 $E^{x} f(x) = \frac{e^{x}}{x} = e^{x} x^{-1}$ $f'(x) = e^{x} x^{-1} + e^{x} (-x^{-2})$

Thm (Chain Rule). Suppose H(X) is differentiable at x=c, and suppose 2(x) is differentiable at f(c), If h(x) = g(f(x)), then h(x)is differentiable at x=c with derivative; h'(c) = g (f(c)) , f'(c). $Ex f(x) = (x^2 + 5)^{100} f'(x) = 100(x^2 + 5)^{44}$. 2xLyx2+5 is inside Ly u as outside #AXEAM $Ex f(t) = ln(t^3 + 3t + 5)$ Ly t3+3t+5 is inside.
Ly In(u) is outside; g(u)=In(u), g'(u)=u $f'(t) = \frac{1}{t^3 + 3t + 5} (3t^2 + 3)$ $f'(t) = \frac{1}{t^3 + 3t + 5} (3t^2 + 3)$

Ex
$$f(t) = 2^{3}$$
 $f(u) = 2^{u}$ $f(s(t)) = 2^{st}$
 $f'(t) = \ln(2) 2^{3} \ln(3) 3t$
Ex $f(x) = \sin(\cos(x))$
 $f'(x) = \cos(\cos(x)) \cdot (-\sin(x))$