Research Article Spring 2017 - I524 1

Detection of street signs in videos in a robot swarm

SUNANDA UNNI^{1,*} AND GREGOR VON LASZEWSKI^{1,**}

Project: S17-IO-3022, September 11, 2017

Extracting and identifying traffic signals from the videos captured by Robot swarms to help in recognizing the pattern and benchmarking the performance of the setup. © 2017 https://creativecommons.org/licenses/. The authors verify that the text is not plagiarized.

Keywords: Cloud, I524

Report: https://github.com/cloudmesh/sp17-i524/tree/master/project/S17-IO-3022/report/report.pdf

Code: https://github.com/cloudmesh/sp17-i524/tree/master/project/S17-IO-3022/code

1. INTRODUCTION

For test purpose we created some mobile videos of traffic in a simulated traffic setup. All saved video files are uploaded on the Hadoop HDFS [1]. Batch processing is enabled on the input video files to search for key images, namely the red, green and yellow signals in the images using the OpenCV [2] library's Template matching functionality. Hadoop Map reduce [1] is used for processing and analysis of the images in the videos and getting a count of the how many red or green or yellow signals are encountered. Test 23.

- a
- b

collectd [3] is used for benchmarking of the setup with Apache Hadoop using various sized data sets and number of nodes.

2. TECHNOLOGY USED

tar	ables need a begin table end table		
	Technology Name	Purpose	
	Hadoop [1]	map reduce	
	OpenCV [2] Pattern matching in video		
	ansible [4]	Automated deployment	
	collectd [3]	Collection of statistics of setup for benchmarking	

3. PLAN

tables need a begin table end table

Week	Work Item	Status
week1	Ansible deployment script for Hadoop setup	planned
week2	Ansible deployment script for OpenCV setup	planned
week3	Creating sample videos	planned
week4	OpenCV template matching script	planned
week5	Deployment and test of basic setup	planned
week6	Ansible deployment of collectd	planned
week7	Performance measurement of setup and report creation	planned
week8	Exploring different setup	planned

4. DESIGN

TBD

5. DEPLOYMENT

TBD

6. BENCHMARKING

TBD

7. DISCUSSION

TBD

8. CONCLUSION

TBD

9. ACKNOWLEDGEMENT

REFERENCES

[1] Apache Software Foundation, "Apache hadoop," Web Page, 2014. [Online]. Available: http://hadoop.apache.org/

¹ School of Informatics and Computing, Bloomington, IN 47408, U.S.A.

^{*}Corresponding authors: suunni@indiana.edu

^{**} Corresponding authors: laszewski@gmail.com

Research Article Spring 2017 - I524 2

[2] itseez.com, "Opencv- open source computer vision," Web Page, 2017. [Online]. Available: http://opencv.org/

- [3] "collectd the system statistics collection daemon," Web Page. [Online]. Available: https://collectd.org/
- [4] "Ansible, deploy apps. manage systems. crush complexity," Web Page. [Online]. Available: https://www.ansible.com/