

Contents

ΒI	ENVENIDA	Ę
	Objetivo	Ę
	Alcances del curso	ļ
	Instructores	Ę
	Duración y evaluación del curso	10
	Recursos y dinámica de clase	11

BIENVENIDA

Objetivo

Capacitar y brindar acompañamiento al equipo de analítica de ASERTA en temas relacionados con Ciencia de Datos para la correcta implementación de proyectos y toma de decisiones basadas en la evidencia de datos internos y externos a la empresa para lograr un beneficio operativo y económico.

Alcances del curso

El participante conocerá los conceptos teóricos alrededor de esta ciencia y sabrá implementar correctamente un análisis exploratorio estadístico y gráfico que le permita conocer a mayor profundidad los datos a usar. Conocerá y sabrá implementar los modelos predictivos de Machine Learning más usados y de mayor impacto en la industria de seguros y fianzas. Finalmente, sabrá tomar decisiones sobre el correcto uso e implementación de los modelos para aumentar el beneficio comercial dentro de la institución.

Instructores

ACT. ARTURO BRINGAS

LinkedIn: arturo-bringas Email: act.arturo.b@ciencias.unam.mx

Actuario egresado de la Facultad de Ciencias y Maestría en Ciencia de Datos por el ITAM. Se especializa en modelos predictivos y de clasificación de machine learning aplicado a seguros, marketing, deportes y movilidad internacional. Es jefe de departamento en Investigación Aplicada y Opinión de la UNAM, donde realiza estudios estadísticos de impacto social. Ha sido consultor Sinior Data Scientist para empresas y organizaciones como GNP, El Universal, UNAM, Sinnia, Geekend, la Organización de las Naciones Unidas Contra la Droga y el Delito (UNODC), entre otros. Actualmente es profesor de Ciencia de datos y

Machine Learning en AMAT y se desempeña como consultor independiente en diferentes proyectos contribuyendo a empresas en temas de análisis estadístico y ciencia de datos con machine learning.

ACT. KARINA LIZETTE GAMBOA

LinkedIn: KaLizzyGam Email: lizzygamboa@ciencias.unam.mx

Actuaria egresada de la Facultad de Ciencias, por la UNAM y candidata a Maestra en Ciencia de Datos por el ITAM.

Experiencia en áreas de analítica predictiva e inteligencia del negocio. Lead y Senior Data Scientist en consultoría en diferentes sectores como tecnología, asegurador, financiero y bancario. Es experta en entendimiento de negocio para la correcta implementación de algoritmos de inteligencia y explotación de datos. Actualmente se desarrolla como Arquitecta de Soluciones Analíticas en Merama, startup mexicana clasificada como uno de los nuevos unicornios de Latinoamérica. Senior Data Science en CLOSTER y como profesora del

diplomado de Metodología de la Investigación Social por la UNAM así como instructora de cursos de Ciencia de Datos en AMAT.

Empresas anteriores: GNP, Activer Banco y Casa de Bolsa, PlayCity Casinos, RakenDataGroup Consulting, entre otros.

Temario:

Módulo 1: Introducción a R (22 hrs)

Objetivo: A través de este módulo se adquirirán los conocimientos necesarios para la operación del software estadístico y la manipulación ágil de datos. Al finalizar, el participante desarrollará análisis exploratorios y reportes automatizados.

- Estructuras de almacenamiento de datos
 - Almacenamiento
 - Vectores
 - Matrices

- Listas
- DataFrames
- Funciones y estructuras de control
 - Librerías y funciones
 - Condicionamiento
 - Ciclos
- Manipulación de estructuras de datos
 - Importación de tablas
 - Consultas y transformación de estructuras
 - Iteraciones
 - Manipulación de texto y datos temporales
- Análisis exploratorio y visualización de datos
 - Guía de visualización
 - Análisis Exploratorio de Datos (EDA)
 - Análisis Gráfico Exploratorio de Datos (GEDA)
 - Reportes con markdown
- Consultoría y aplicaciones con datos institucionales

Módulo 2: Introducción a Ciencia de Datos (18 hrs)

Objetivo: Este módulo presenta los conceptos teóricos clave para conocer los términos, objetivo y alcances de proyectos con enfoque en ciencia de datos. Se presenta el flujo de trabajo y organización que deberá seguir un equipo para obtener el mayor beneficio posible. Adicionalmente, se propone presentar el software git y github para implementar correctamente el trabajo en equipo que garantice la reproducibilidad y seguridad del desarrollo realizado.

- Introducción a ciencia de datos
 - ¿Qué es la ciencia de datos?
 - Objetivo de ciencia de datos
 - Requisitos y aplicaciones
 - Tipos de algoritmos
 - Ciclo de vida de un proyecto
 - Taller de scoping
 - Perfiles de un equipo de ciencia de datos
- Concepto de Ciencia de Datos
 - Machine learning

- Análisis supervisado
- Análisis no supervisado
- Sesgo y varianza
- Pre-procesamiento e ingeniería de datos
- Partición de datos
- Colaboración y reproducibilidad
 - Git & Github
 - Ambiente de desarrollo
- Consultoría y aplicaciones con datos institucionales

Módulo 3: Machine Learning: Supervisado (38 hrs)

Objetivo: Este módulo está diseñado para adquirir los conocimientos técnicos para conocer e implementar los distintos modelos de aprendizaje supervisado que son aplicados en ciencia de datos a la industria de los seguros y fianzas.

- Modelos de aprendizaje Supervisado
 - Regresión Lineal
 - Regresión logística
 - Regularización Ridge & Lasso
 - Elasticnet
 - KNN
 - Árbol de decisión
 - Bagging
 - Random Forest
 - Boosting
 - Stacking
- Toma de decisiones enfocadas a negocio
 - Comparación de modelos
 - Balance entre sesgo y cobertura
 - Cuantificación de sesgo e inequidad
 - Cuantificación de ganancia comercial
 - Diseño experimental
- Consultoría y aplicaciones con datos institucionales

Módulo 4: Machine Learning: No Supervisado

Objetivo: Este módulo permite al participante conocer técnicas de clustering para clasificar clientes de acuerdo con la utilidad y riesgo para la empresa. Adicionalmente, se presentan aplicaciones de clustering enfocadas a la estratificación de acuerdo con el riesgo geográfico.

- Técnicas de reducción de dimensión
 - Análisis de componentes principales
 - Creación de índices
- Clustering
 - Liga simple, compleja y promedio
 - Dendogramas & heatmaps
 - Kmeans &
 - Kmedoids
 - DBSCAN
- Consultoría y aplicaciones con datos institucionales

Requisitos:

Computadora con al menos 4Gb Ram.

Instalación de R con versión >= 4.1.0

Instalación de Rstudio con versión >= 1.4.17

Conocimientos generales de probabilidad, estadística y álgebra lineal

Duración y evaluación del curso

- El programa tiene una duración de 90 hrs.
- Las clases serán impartidas los días lunes a viernes, de 7:00 am a 9:00 pm
- Serán asignados ejercicios que el participante deberá resolver entre una semana y otra.
- Al final del curso se solicitará un proyecto final, el cual **deberá ser entregado para ser acreedor a la constancia de participación**.

Recursos y dinámica de clase

En esta clase estaremos usando:

- R (descargar)
- RStudio (descargar)
- Zoom Clases
 - Pulgar arriba: Voy bien, estoy entendiendo!
 - Pulgar abajo: Eso no quedó muy claro
 - Mano arriba: Quiero participar/preguntar ó Ya estoy listo para iniciar
- Google Drive
- Notas de clase
- Finalmente, se dejarán ejercicios que serán clave para el éxito del aprendizaje de los capítulos, por lo que se trabajará en equipo para lograr adquirir el mayor aprendizaje.