Design Theory: Functional Dependencies and Normal Forms, Part I

Instructor: Shel Finkelstein

Reference:

A First Course in Database Systems, 3rd edition, Chapter 3

Important Notices

- Final Exam is on Wednesday, March 22, noon-3pm in our usual classroom.
 - Final from Fall 2016 has been posted on Piazza (Resources → Exams).
 Answers to that Final will be posted during last week of classes.
- Lab4 assignment was posted on Monday, Feb 27.
 - Due by Sunday, March 12, 11:59pm (2 weeks).
 - Lab4 focusses on material in Lecture 10 (Application Programming), including JDBC and Stored Procedures/Functions.
 - If you don't attend Lectures and Labs, you probably will find Lab4 difficult.
- Gradiance Assignment #4 is due by Tuesday, March 7, 11:59pm.

Database Schema Design

- So far, we have learned database query languages:
 - SQL, Relational Algebra
- How can you tell whether a given database schema is "good" or "bad"?
- Design theory:
 - A set of design principles that allows one to determine what constitutes a "good" or "bad" database schema design.
 - A set of algorithms for modifying a "bad" design to a "better" one.

Example

 If we know that rank determines the salary scale, which is a better design? Why?

Employees(<u>eid</u>, name, addr, rank, salary_scale)

OR

Employees(<u>eid</u>, name, addr, rank)
 Salary_Table(<u>rank</u>, salary_scale)

Lots of Duplicate Information

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

- Lots of duplicate information
 - Employees who have the same rank have the same salary scale.

Update Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Update anomaly

 If one copy of salary scale is changed, then all copies of that salary scale (of the same rank) have to be changed.

Insertion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Insertion anomaly

- How can we store a new rank and salary scale information if currently, no employee has that rank?
- Use NULLS?

Deletion Anomaly

eid	name	addr	rank	salary_scale
34-133	Jane	Elm St.	6	70-90
33-112	Hugh	Pine St.	3	30-40
26-002	Gary	Elm St.	4	35-50
51-994	Ann	South St.	4	35-50
45-990	Jim	Main St.	6	70-90
98-762	Paul	Walnut St.	4	35-50

Deletion anomaly

- If Hugh is deleted, how can we retain the rank and salary scale information?
- Is using NULL a good choice?
 - (Why not?)

So What Would Be a Good Schema Design for this Example?

- salary_scale is dependent only on rank
 - Hence associating employee information such as name, addr with salary_scale causes redundancy.
- Based on the constraints given, we would like to refine the schema so that such redundancies cannot occur.
- Note however, that sometimes database designers may choose to live with redundancy in order to improve query performance.
 - Ultimately, a good design is depends on the query workload.
 - But understanding anomalies and how to deal with them is still important.

Functional Dependencies

- The information that rank determines salary_scale is a type of integrity constraint known as a *functional dependency (FD)*.
- Functional dependencies can help us detect anomalies that may exist in a given schema.
- The FD "rank → salary_scale" suggests that
 Employees(eid, name, addr, rank, salary_scale)
 should be decomposed into two relations:
 Employees(eid, name, addr, rank)
 Salary_Table(rank, salary_scale).

Meaning of an FD

- We have seen a kind of functional dependency before.
- Keys:
 - Emp(<u>ssn</u>, name, addr)
 - If two tuples agree on the ssn value, then they must also agree on the name and address values. (ssn \rightarrow name, addr).
- Let R be a relation schema. A functional dependency (FD) is an integrity constraint of the form:
 - $X \rightarrow Y$ (read as "X determines Y or X functionally determines Y") where X and Y are non-empty subsets of attributes of **R**.
- A relation instance r of R satisfies the FD X → Y if
 for every pair of tuples t and t' in r, if t[X] = t'[X], then t[Y] = t'[Y]

Denotes the X value(s) of tuple t, i.e., project t on the attributes in X.

Illustration of the Semantics of an FD

• Relation schema R with the FD A_1 , ..., $A_m \rightarrow B_1$, ..., B_n where $\{A_1, ..., A_m, B_1, ..., B_n\} \subseteq \text{attributes}(R)$.

	A ₁ A ₂ A _m	B ₁ B _n	the rest of the attributes in R, if any	
t	XXXXXXXXXXXXXXX	ууууууууу	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	
			The actual values do not matter, but they cannot be the same if R is a set.	
t' [XXXXXXXXXXXXX	ууууууууу	✓ WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	
	vvvvvvvvvvvv	ууууууууу	ииииииииииииииииииии	
	XXXXXXXXXXXXX	VVVVVVVV	นนนนนนนนนนนนนนนนนนนนนนน	
			VIOLATION!	

More on Meaning of an FD

- Relation R satisfies X → Y
 - Pick any two (not necessarily distinct) tuples t and t' of an instance r of R. If t and t' agree on the X attributes, then they must also agree on the Y attributes.
 - The above must hold for every possible instance r of R.
- An FD is a statement about all possible legal instances of a schema. We cannot look at an instance (or even a set of instances) to determine which FDs hold.
 - Looking at an instance may help us determine that some FDs are <u>not</u> satisfied.

Reasoning about FDs

```
R(A,B,C,D,E)
Suppose A \rightarrow C and C \rightarrow E. Is it also true that A \rightarrow E?
In other words, suppose an instance r satisfies A \rightarrow C and C \rightarrow E, is it true that r must also satisfy A \rightarrow E?
```

YES

Proof: ?

Implication of FDs

- We say that a set \mathcal{F} of FDs *implies* an FD F if for every instance r that satisfies \mathcal{F} , it must also be true that r satisfies F.
- Notation: $T \vdash F$
- Note that just finding some instance(s) r such that r satisfies \mathcal{F} and r also satisfies F is <u>not</u> sufficient to prove that $\mathcal{F} \models F$.
- How can we determine whether or not \mathcal{F} implies F?

Armstrong's Axioms

- Use Armstrong's Axioms to determine whether or not $\mathcal{F} \models F$.
- Let X, Y, and Z denote sets of attributes over a relation schema R.
- Reflexivity: If Y ⊆ X, then X → Y.
 ssn, name → name
 - FDs in this category are called trivial FDs.
- Augmentation: If X → Y, then XZ → YZ for any set Z of attributes.
 ssn, name, addr → name addr
- Transitivity: If X → Y and Y → Z, then X → Z.
 If ssn → rank and rank → sal_scale
 Then ssn → sal_scale.

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule: (to fill in)

Union and Decomposition Rules

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **Decomposition**: If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- Union and Decomposition rules are not essential. In other words, they can be derived using Armstrong's axioms.
- Derivation of the Union rule:

```
Since X \rightarrow Z, we get XY \rightarrow YZ (augmentation)
```

Since
$$X \rightarrow Y$$
, we get $X \rightarrow XY$ (augmentation)

Therefore, $X \rightarrow YZ$ (transitivity)

Additional Rules

Derivation of the Decomposition rule:

• We use the notation $\mathcal{F} \vdash \mathsf{F}$ to mean that F can be derived from \mathcal{F} using Armstrong's axioms.

Additional Rules

Derivation of the Decomposition rule:

```
X \rightarrow YZ (given)

YZ \rightarrow Y (reflexivity)

YZ \rightarrow Z (reflexivity)

Therefore, X \rightarrow Y and X \rightarrow Z (transitivity).
```

- We use the notation $\mathcal{F} \vdash F$ to mean that F can be derived from \mathcal{F} using Armstrong's axioms.
 - That's a lot of words, so we'll sometimes just read this as: " \mathcal{T} generates F".
 - What was the meaning of $\mathcal{F} \models F$ (\mathcal{F} implies F)?

Pseudo-Transitivity Rule

- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule: (to fill in)

Pseudo-Transitivity Rule

- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.
- Can you derive this rule using Armstrong's axioms?
- Derivation of the Pseudo-Transitivity rule:

```
X -> Y and WY -> Z
```

XW -> WY (augmentation)

WY -> Z (given)

Therefore XW -> Z (transitivity)

Completeness of Armstrong's Axioms

• Completeness: If a set \mathcal{F} of FDs implies F, then F can be derived from \mathcal{F} by applying Armstrong's axioms.

– If \mathcal{F} implies F, then one can prove F from \mathcal{F} using Armstrong's axioms (i.e., \mathcal{F} generates F).

For those familiar with Mathematical Logic:

- T = F is "model-theoretic"
- *T* ⊢ F is "proof-theoretic"

Soundness of Armstrong's Axioms

- Soundness: If F can be derived from a set of FDs \mathcal{T} through Armstrong's axioms, then \mathcal{T} implies F.
 - If \mathcal{F} ⊢ F, then \mathcal{F} ⊨ F.
 - That is, if $\mathcal F$ generates F, then $\mathcal F$ implies F.
 - Handwaving proof: If one can generate F from \mathcal{F} using Armstrong's axioms, then surely \mathcal{F} implies F. (Why?)
- Great! But how can we decide whether or not \mathcal{F} implies F?

Closure of a Set of FDs F

- Let \mathcal{F}^+ denote the set of all FDs implied by a given set \mathcal{F} of FDs.
 - \circ Also called the closure of \mathcal{F} .
- To decide whether \mathcal{F} implies F, first compute \mathcal{F}^+ , then see whether F is a member of \mathcal{F}^+ .
- Example: Compute \mathcal{T}^+ for the set $\{A \to B, B \to C\}$ of FDs.
- Trivial FDs
 - $\bigcirc \ \ \, \mathsf{A} \to \ \, \mathsf{A}, \, \mathsf{B} \to \ \, \mathsf{B}, \, \mathsf{C} \to \ \, \mathsf{C}, \, \mathsf{AB} \to \ \, \mathsf{A}, \, \mathsf{AB} \to \ \, \mathsf{B}, \, \mathsf{BC} \to \ \, \mathsf{B}, \, \mathsf{BC} \to \ \, \mathsf{C}, \, \mathsf{AC} \to \ \, \mathsf{A}, \\ \mathsf{AC} \to \ \, \mathsf{C}, \, \mathsf{ABC} \to \ \, \mathsf{A}, \, \mathsf{ABC} \to \ \, \mathsf{B}, \, \mathsf{ABC} \to \ \, \mathsf{C}, \, \mathsf{ABC} \to \ \, \mathsf{AB}, \, \mathsf{ABC} \to \ \, \mathsf{AC}, \\ \mathsf{ABC} \to \ \, \mathsf{BC}, \, \mathsf{ABC} \to \ \, \mathsf{AB$
- Augmentation and transitivity (non-trivial FDs)
 - \circ AC \rightarrow B, AB \rightarrow C
- Transitivity
 - \circ A \rightarrow C

Expensive and tedious! Let's find a better way.

Attribute Closure Algorithm

- Let X be a set of attributes and \mathcal{F} be a set of FDs. The attribute closure X^+ with respect to \mathcal{F} is the set of all attributes A such that $X \to A$ is derivable from \mathcal{F} .
 - That is, all the attributes A such that $\mathcal{F} \vdash X \rightarrow A$

```
Input: A set X of attributes and a set \mathcal{F} of FDs.
    Output: X<sup>+</sup>
    Closure = X; // initialize Closure to equal the set X
    repeat until no change in Closure {
     if there is an FD U \rightarrow V in \mathcal{F} such that U \subseteq Closure,
     then Closure = Closure \cup V;
    return Closure;
If A \in Closure (that is, if A \in X^+), then X \to A.
More strongly, \mathcal{F} \vdash X \rightarrow A if and only A \subseteq X^+
```

FD Example 1 using Attribute Closure

- $\mathcal{F} = \{ A \rightarrow B, B \rightarrow C \}.$
- Question: Does A → C?
- Compute A⁺
- Closure = { A }
- Closure = $\{A, B\}$ (due to $A \rightarrow B$)
- Closure = $\{A, B, C\}$ (due to $B \rightarrow C$)
- Closure = { A, B, C }
 - no change, stop
- Therefore A⁺ = {A, B, C }
- Since $C \subseteq A^+$, answer YES.

FD Example 2 using Attribute Closure

- $\mathcal{F} = \{ AB \rightarrow E, B \rightarrow AC, BE \rightarrow C \}$
- Question: Does BC → E?
- Compute BC⁺
- Closure = { B, C }
- Closure = $\{A, B, C\}$ (due to $B \rightarrow AC$)
- Closure = { A, B, C, E } (due to AB \rightarrow E)
- Closure = $\{A, B, C, E\}$ (due to $BE \rightarrow C$)
 - No change, so stop.
- Therefore BC⁺ = {A,B,C,E}
- Since $E \subseteq BC^+$, answer YES.

Algorithm for FDs ... and also for Keys/Superkeys

- To determine if an FD $X \to Y$ is implied by \mathcal{T} , compute X^+ and check if $Y \subseteq X^+$.
- Notice that Attribute Closure is less expensive to compute than \mathcal{T}^+ .
- Algorithm can be modified to compute candidate keys. How?
 - Compute the closure of a single attribute in X⁺. Then
 compute the closure of 2 attributes, 3 attributes and so on.
 - If the closure of a set of attributes contains all attributes of the relation, then it is a *superkey*.
 - If no proper subset of those attributes has a closure that contains all attributes of the relation, then it is a key.

Correctness of Algorithm

Is it correct?

Prove that the algorithm indeed computes X⁺.

- Show that for any attribute $A \subseteq X^+$, it is the case that $X \to A$ is derivable from \mathcal{F} .
- Show if $X \to A$ is derivable from \mathcal{F} , then it must be that $A \subseteq X^+$.

Proof of Correctness

<u>Claim</u>: If A \subseteq X⁺, then \mathcal{F} \vdash X \rightarrow A.

Proof: By induction on the number of iterations in the attribute closure algorithm.

(to fill in)

Soundness and Completeness of the Attribute Closure Algorithm

- Soundness: Hence, if A in X⁺, then $\mathcal{T} \vdash X \rightarrow A$. By the soundness of Armstrong's axioms, it follows that $\mathcal{T} \models F$.
- Is it true that if $T \models F$, where F is the FD X \rightarrow A, then A \subseteq X⁺?
- Completeness.
- Claim: If that if $\mathcal{F} \models F$, where F is the FD X \rightarrow A, then we must have that $A \subseteq X^+$.

Proof of Completeness

- Towards a contradiction, suppose $\mathcal{T} \models X \rightarrow A$ and $A \notin X^+$. Construct an instance I as follows. Define a relation r with attributes that consists of all attributes of \mathcal{T} . Create and instance r with two tuples t_1 and t_2 as follows:
 - Apply the attribute closure algorithm and set $t_1[X^+]=t_2[X^+]=1$. Then, insert 1 for every other attribute in t_1 . Then, insert 0 for every other attribute in t_2 .
- We first show that $r \models \mathcal{F}$. For every $U \rightarrow V \subseteq \mathcal{F}$, either $t_1[U] \neq t_2[U]$ or $t_1[U] = t_2[U]$.
- In the former case, r trivially satisfies $U \rightarrow V$. For the latter case, if $t_1[U]=t_2[U]$ then we have $U\subseteq X^+$. Hence, it follows that the attribute closure algorithm would have added V to X^+ . So $t_1[UV]=t_2[UV]$.
- Hence, $r \models \mathcal{T}$. However, since $A \notin X^+$, it follows that $r \not\models X \rightarrow A$ thus contradicting our assumption that $\mathcal{T} \models X \rightarrow A$. (That is, r is a counter example to $\mathcal{T} \models X \rightarrow A$.)

Practice Homework 6

- 1. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{T} = \{AB \rightarrow E, B \rightarrow AC, BE \rightarrow C\}$ be a set of FDs that hold over R.
 - a. Prove that $\mathcal{T} \models B \rightarrow E$ using Armstrong's axioms.
 - b. Compute the closure of B. That is, compute B⁺.
 - c. Give a key for R. Justify why your answer is a key for R.
 - d. Show an example relation that satisfy \mathcal{F} .
 - e. Show an example relation that does not satisfy \mathcal{F} .
- 2. Let R(A,B,C,D,E) be a relation schema and let $\mathcal{F} = \{ A \rightarrow C, B \rightarrow AE, B \rightarrow D, BD \rightarrow C \}$ be a set of FDs that hold over R.
 - a. Show that $B \rightarrow CD$ using Armstrong's axioms.
 - b. Show a relation of R such that R satisfies \mathcal{F} but R does not satisfy $A \rightarrow D$.
 - c. Is AB a key for R?