Introduction to Deep Learning

Review of Logistic Regression

Example

- Problem: decision supporting for loan program
- Input: Having data about salary and working time of employees as in table 1 below

Salary	Working Time	Loan Decision
10	1	1
9	0.5	1
5	2	1
8	0.1	0
6	0.3	0
7	0.15	0

Table 1: Dataset for loan decision

Visualization of table 1 data

Model Definition

- With the row i in the data table, let $x_1^{(i)}$ be the salary and $x_2^{(i)}$ be the working time of the profile i
- Prediction model is defined as follows:

$$\hat{y}_i = w_0 + w_1 * x_1^{(i)} + w_2 * x_2^{(i)}$$

Model Visualization

Separation line (green) and new data point prediction (at 6 salary)

→ Result: profile at salary = 6 is not loaned

More Constraint

- Requirement: estimate the probability that a new profile should be loaned or not
- Output:
 - if the estimated loan probability >= threshold t,
 then the new profile should be loaned
 - Otherwise, it should be refused

Sigmoid function

- Continuous function with real values in the interval (0,1)
- Have derivative at every point (for applying gradient descent)

Model Definition (next)

• Estimated loan probability \widehat{y}_i is defined as follows:

$$\hat{y}_i = \sigma(\hat{y}_i) = \sigma(w_0 + w_1 * x_1^{(i)} + w_2 * x_2^{(i)})$$

Model Definition (next)

• In detail, the estimated loan probability \widehat{y}_i is written as:

$$\hat{y}_i = \sigma(w_0 + w_1 * x_1^{(i)} + w_2 * x_2^{(i)}) = \frac{1}{1 + e^{-(w_0 + w_1 * x_1^{(i)} + w_2 * x_2^{(i)})}}$$

 Consider the probability that the model predicts that the profile i will be loaned as follows:

$$p(x^{(i)} = 1) = \hat{y}_i$$

• Consider that the probability that the model predicts that the profile i will not be loaned as follows:

$$p(x^{(i)} = 0) = 1 - \hat{y_i}$$

• In total, we have:

$$p(x^{(i)} = 1) + p(x^{(i)} = 0) = 1$$

 For each data point (x⁽ⁱ⁾, y_i), loss function L is defined as:

$$L = -(y_i * log(\hat{y}_i) + (1 - y_i) * log(1 - \hat{y}_i))$$

$$L = -(y_i * log(\hat{y}_i) + (1 - y_i) * log(1 - \hat{y}_i))$$

loss function when $y_i = 1$

$$L = -(y_i * log(\hat{y}_i) + (1 - y_i) * log(1 - \hat{y}_i))$$

loss function when $y_i = 0$

For all data points, loss function J is defined as:

$$J = -\frac{1}{N} * \sum_{i=1}^{N} (y_i * log(\hat{y}_i) + (1 - y_i) * log(1 - \hat{y}_i))$$

→ J is called binary cross-entropy loss

Given the loss function J:

$$J = -\frac{1}{N} * \sum_{i=1}^{N} (y_i * log(\hat{y}_i) + (1 - y_i) * log(1 - \hat{y}_i))$$

 \rightarrow Apply gradient descent algorithm to find parameters {w₀, w₁, w₂} which minimize J

New profile prediction

• Given a new profile $(x_{new}, y_{new}) \rightarrow$ calculate predicted loan probability \hat{y}_{new} using found parameters $\{w_0, w_1, w_2\}$

Loan decision is defined as follows:

If \hat{y}_{new} >= threshold t, the profile is loaned, otherwise, it is refused

Tool Installation

- Online with Google colab
- Local with Anaconda
- IDE: Jupyter notebook, VS code, spyder, etc.
- Framework: Pytorch, Keras, Tensorflow, etc.

→ Do it by yourself to complete the labworks

Exercises 1

- Given data of exercise_1 in the google drive folder of the course
- Draw the graph of exercise 1 in the slide 19, then add the red line similar to the slide 20
- Upload your codes in the google drive folder of the course

Graph of exercise 1

Relationship between house selling price and house area

Graph of exercise 1

Estimated price of 50-m2 house

Exercises 2

- Given data of exercise_2 in the google drive folder of the course
- Draw the graph of exercise 2 in slides 22, then add the green line similar to the slide 23
- Upload your codes in the google drive folder of the course

Graph of exercise 2

Graph of exercise 2

Separation line (green) and new data point prediction (at 6 salary)

