Blockade

Relatório Final

Mestrado Integrado em Engenharia Informática e Computação

Programação em Lógica

Grupo:

João Barbosa - up201406241 José Martins - up201404189

Faculdade de Engenharia da Universidade do Porto Rua Roberto Frias, sn, 4200-465 Porto, Portugal vspace1cm

12 de Novembro de 2016

Resumo

Resumo sucinto do trabalho com 150 a 250 palavras (problema abordado, objetivo, como foi o problema resolvido/abordado, principais resultados e conclusões).

Conteúdo

1	Introdução												
2	O Jogo Blockade												
3	Lógica do Jogo3.1Representação do Estado do Jogo3.2Visualização do Tabuleiro3.3Lista de Jogadas Válidas3.4Execução de Jogadas3.5Avaliação do Tabuleiro3.6Final do Jogo	6 7 7 8 8 8											
	3.7 Jogada do Computador	8											
Bibliografia													
A		9											

1 Introdução

Este trabalho foi desenvolvido no âmbito da unidade curricular "Programação em Lógica" do 3º ano do Mestrado Integrado em Engenharia Informática e Computação da Faculdade de Engenharia da Universidade do Porto. O seu objetivo é o de implementar em Prolog um jogo de tabuleiro de 2 jogadores de forma a possibilitar o jogo Humano vs. Humano, Humano vs. Computador e Computador vs. Computador. Neste relatório será descrito o jogo que escolhemos para a nossa implementação – o "Blockade" – assim como as suas regras. De seguida, serão detalhadas algumas funcionalidades e características da nossa implementação, desde a representação do jogo e visualização do tabuleiro até a avaliação de jogadas pelo computador e final do jogo. Por fim, serão apresentadas as conclusões que obtivemos da realização deste trabalho, bem como a sua bibliografia.

2 O Jogo Blockade

Blockade trata-se de um jogo de tabuleiro produzido pela primeira vez em 1975 pela Lakeside Games. O jogo é desenhado para 2 jogadores sendo que cada um possui:

- 2 Peões
- 9 Parede verdes (que só podem ser colocadas verticalmente)
- 9 Paredes azuis (que só podem ser colocadas horizontalmente)

O tabuleiro do jogo é um quadriculado com dimensões 11x14, com 2 pontos amarelos e dois pontos laranja que representam a base, e as posições iniciais, dos dois peões de cada jogador. Estes pontos distam 4 quadrículas de cada canto na diagonal.

Trata-se de um jogo de turnos, em que em cada turno um jogador pode mover um dos seus peões, uma ou duas quadrículas (horizontalmente, verticalmente ou uma combinação das duas), e posicionar uma parede de modo a tentar bloquear os movimentos do adversário. As paredes ocupam sempre duas quadrículas e devem ser posicionadas de acordo com a sua cor. Peões podem saltar por cima de outros peões que estejam a bloquear o seu caminho. O objetivo do jogo é levar um dos seus peões até à base de um dos peões do adversário. Quando os jogadores ficarem sem paredes para colocar, continuam a mover-se até que alguém vença o jogo.

3 Lógica do Jogo

3.1 Representação do Estado do Jogo

O jogo possui uma representação interna, utilizada para o processamento e armazenamento de informação, e uma representação externa, para tornar a visualização do jogo mais apelativa e intuitiva. A simbologia utilizada é a seguinte:

Elemento	Dimensão	Representação interna	Representação externa
Célula livre	3x3	square	
Peça 1 (J1)	3x3	[orange, 1]	<u> </u>
Peça 2 (J1)	3x3	[orange, 2]	
Base (J1)	3x3	[orange, base]	 O
Peça 1 (J2)	3x3	[yellow, 1]	<u> </u>
Peça 2 (J2)	3x3	[yellow, 2]	Y ^^^
Base 2 (J2)	3x3	[yellow, base]	 Y
Parede vertical (espaço)	3x3	[vertical,empty]	
Parede vertical (colocada)	3x3	[vertical,placed]	x x x
Parede horizontal (espaço)	6x1	[horizontal,empty]	· (
Parede horizontal (colocada)	6x1	[horizontal,placed]	ʻxxxxx ʻ

3.2 Visualização do Tabuleiro

O tabuleiro será visualizado através da utilização de caracteres ASCII para representar os peãos, paredes e bases de cada jogagor, exemplo:

*	*******	******	*****	*****	BLOCKAL	DE****	*****	*****	*****	******	
	0 1 2	3 4	5 6	7 8	9 10 1	11 12 1	13 14	15 16	17 18	19 20	
į										. [
ł	:	:	:					:		:	0
ì											1
į			:					:		:	2
ı	·····	·	·					·	٠	٠	3
l	:	:	:	:				:	:	:	4
į					-					. i	5
į											
ł	:	:	. [0]	:			[0]	:	:	:	6
ĺ								х			7
į	:	. 01	:	:				X	:		8
				•				х	٠	٠١	9
ł							02	X X		:	10
İ	:	:	:	:			. ^^^	X	:	:	
i								. xxxxx			11
I			•				Y2			:	12
i			·					·		·	13
i		:	:	:		.)		:	:	:	14
						.)		•	•		15
ļ						.)				. [
i		:	:			.)		:	:	:	16
ì											17
į										.	18
ľ		·	·xxxxx	xxxxx			· 	·	٠	·!	19
ł	:	:	. Y1				[Y]	:	:	:	20
İ										. i	21
į											
ł	:	:	:	:				:	:	:	22
í											23
į	:	:	:					:		:	24
	·····	·	·				· 	•	٠	٠١	25
l	:	:	:					:		:	26
İ										.	

3.3 Lista de Jogadas Válidas

As jogadas são obtidas através do input do jogador ou através dos algoritmos implementados para permitir calcular a jogada do computador, sendo posteriormente verificada a sua validade.

3.4 Execução de Jogadas

Depois de obtidas as coordenadas para a movimentação do jogador é utilizado o predicado validPosition(+Pawn,+ Board, +X,+ Y,-Nx,-Ny), este predicado recebe o offset (X,Y) para onde o jogador se quer mover em relação á sua posição atual e falha quando as coordenadas finais da "futura" posição do jogador se encontram fora das dimensões do tabuleiro ou quando existe uma parede a bloquear a movimentação para as novas coordenadas.

Assim que a jogada se encontra validada é chamado o predicado move OneSpace(+Pawn, +X, +Y, +Board, -NewBoard), que move o peão num offset (X,Y) criando um novo tabuleiro.

Existe tambem outro predicado para validar e posicionar as paredes. Este denomina-se placeWall(+Player,+X,+Y,+O,+Board, -NewBoard), o predicado é bem sucedido quando as coordenadas da parede são validas, criando assim um novo tabuleiro.

No entanto o predicado fallha quando as coordenadas são invalidas devido a um dos motivos:

- A parede está para lá dos limites do tabuleiro
- A parede está cruzada com outra parede
- A parede bloqueia completamente o jogador (ou seja quando o posicionamente da parede impossibilita que um dos peões deixe de ter um caminho para as bases adversárias)

Validação e execução de uma jogada num tabuleiro, obtendo o novo estado do jogo. Exemplo: move(+Move, +Board, -NewBoard).

3.5 Avaliação do Tabuleiro

Avaliação do estado do jogo, que permitirá comparar a aplicação das diversas jogadas disponíveis. Exemplo: value(+Board, +Player, -Value).

3.6 Final do Jogo

Verificação do fim do jogo, com identificação do vencedor. Exemplo: $game_over(+Board, -Winner)$.

3.7 Jogada do Computador

Escolha da jogada a efetuar pelo computador, dependendo do nível de dificuldade. Por exemplo: choose_move(+Level, +Board, -Move).

4 Interface com o Utilizador

Descrever o módulo de interface com o utilizador em modo de texto.

5 Conclusões

Que conclui deste projecto? Como poderia melhorar o trabalho desenvolvido?

A Anexo Código

Código Prolog implementado devidamente comentado e outros elementos úteis que não sejam essenciais ao relatório.