DIFFERENTIAL AND INTEGRAL CALCULUS ASSIGNMENT 7

AAKASH JOG ID: 989323563

Exercise 1.

Check pointwise and uniform convergence of the following series of functions

(1)
$$\sum_{n=0}^{\infty} (x^{n+1} - x^n)$$
 in $[0, 1]$.
(2) $\sum_{n=0}^{\infty} x^n$ in $[0, 1]$.

(2)
$$\sum_{n=0}^{\infty} x^n$$
 in $[0,1]$.

(3)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n}$$
 in \mathbb{R}

(4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^3}$$
 in \mathbb{R} .

(3)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n} \text{ in } \mathbb{R}.$$
(4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^3} \text{ in } \mathbb{R}.$$
(5)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n^2 + x^2}\right) \text{ in } \mathbb{R}.$$

(6)
$$\sum_{n=1}^{\infty} \frac{1}{3^n \sqrt[3]{1+n^2 x^2}} \text{ in } \mathbb{R}.$$
(7)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^2}{(1+x^2)^n} \text{ in } \mathbb{R}.$$

(7)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^2}{(1+x^2)^n}$$
 in \mathbb{R}

Solution 1.

(1)

$$S_k = \sum_{n=0}^{k} x^{n+1} - x^n$$
$$= x^{k+1} - x^0$$
$$= x^{k+1} - 1$$

Therefore

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} x^{k+1} - 1$$

If
$$0 \le x < 1$$
,

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} x^{k+1} - 1$$
$$= 0 - 1$$
$$= -1$$

Date: Thursday 21st May, 2015.

If
$$x = 1$$
,

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} 1^{k+1} - 1$$
$$= 0$$

Therefore,

$$S(x) = \begin{cases} -1 & ; & 0 \le x < 1 \\ 0 & ; & x = 1 \end{cases}$$

Therefore, $S_n(x)$ converges pointwise to S(x).

As S(x) is not continuous in [0,1] but all $x^{n+1}-x^n$ are, the convergence cannot be uniform.

(2)

$$S_k = \sum_{n=0}^k x^n$$

Therefore,

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=0}^k x^n$$
$$= \frac{x^{n+1} - 1}{x - 1}$$

If
$$0 \le x < 1$$
,

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \frac{x^{k+1} - 1}{0 - 1}$$

$$= \lim_{k \to \infty} 0$$

$$= 0$$

If
$$x = 1$$
,

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=0}^k 1^n$$
$$= \lim_{k \to \infty} k + 1$$
$$= \infty$$

Therefore,

$$S(x) = \begin{cases} 0 & ; \quad 0 \le x < 1 \\ \infty & ; \quad x = 1 \end{cases}$$

Therefore, $S_n(x)$ does not converge pointwise to S(x) as S(x) is not defined at x = 1.

Hence, there is no uniform convergence.

(3)

$$\lim_{n \to \infty} \frac{1}{x^2 + n} = 0$$

Therefore, as $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n}$ is a Leibniz series, and as $\lim_{n\to\infty} \frac{1}{x^2+n} = 0$, the series converges pointwise.

$$\left| \frac{(-1)^n}{x^2 + n} \right| \le \frac{1}{n}$$

Therefore, by the Weierstrass M-test, as $\sum \frac{1}{n}$ converges, the series converges uniformly on \mathbb{R} .

(4)

$$\lim_{n \to \infty} \frac{1}{x^2 + n^3} = 0$$

Therefore, as $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n^3}$ is a Leibniz series, and as $\lim_{n\to\infty} \frac{1}{x^2+n^3} = 0$, the series converges pointwise.

$$\left| \frac{(-1)^n}{x^2 + n^3} \right| \le \frac{1}{n^3}$$

Therefore, by the Weierstrass M-test, as $\sum \frac{1}{n^3}$ converges, the series converges uniformly on \mathbb{R} .

(5)

$$\left| \ln \left(1 + \frac{1}{n^2 + x^2} \right) \right| \le \frac{1}{n^2 + x^2}$$

$$\therefore \ln \left(1 + \frac{1}{n^2 + x^2} \right) \le \frac{1}{n^2}$$

Therefore, by the Weierstrass M-test, as $\sum \frac{1}{n^2}$ converges, the series converges uniformly on \mathbb{R} .

Hence, the series also converges pointwise on \mathbb{R} .

(6)

$$\left| \frac{1}{3^n \sqrt[3]{1 + n^2 x^2}} \right| \le \frac{1}{3^n}$$

Therefore, by the Weierstrass M-test, as $\sum \frac{1}{3^n}$ converges, the series converges uniformly on $\mathbb R$

Hence, the series also converges pointwise on \mathbb{R} .

(7)

$$\lim_{n \to \infty} \frac{x^2}{(1+x^2)^n} = 0$$

Therefore, as $\sum_{n=1}^{\infty} \frac{(-1)^n x^2}{(1+x^2)^n}$ is a Leibniz series, and as $\lim_{n\to\infty} \frac{1}{x^2+n} = 0$, the series converges pointwise.

$$\sup_{\mathbb{R}} |f_n(x) - f(x)| = \sup_{\mathbb{R}} \left| \frac{x^2}{(1+x^2)^n} - 0 \right|$$
$$= \sup_{\mathbb{R}} \frac{x^2}{(1+x^2)^n}$$

Therefore, differentiating, the critical points are

$$x = 0$$
$$x = \pm \frac{1}{\sqrt{n^2 + 1}}$$

Therefore, the maximum value of the function is at $x = \pm \frac{1}{\sqrt{n^2+1}}$. Therefore,

$$\lim_{n \to \infty} \sup_{\mathbb{R}} |f_n(x) - f(x)| = \lim_{n \to \infty} \frac{\frac{1}{n^2 + 1}}{\left(1 + \frac{1}{n^2 + 1}\right)^2}$$
= 0

Therefore, the convergence is uniform.

Exercise 2.

Let $\{f_n(x)\}\$ be a sequence of functions defined in the domain I.

- Prove that if the series ∑_{n=1}[∞] |f_n(x)| converges uniformly on I then ∑_{n=0}[∞] f_n(x) converges uniformly on I.
 Show that the converse is not true, i.e. uniform convergence of
- (2) Show that the converse is not true, i.e. uniform convergence of $\sum_{n=0}^{\infty} f_n(x)$ does not imply uniform convergence of $\sum_{n=0}^{\infty} |f_n(x)|$.

Solution 2.

(1) As $\sum |f_n(x)|$ converges uniformly,

$$\lim_{k \to \infty} \sum_{n=1}^{k} |f_n(x)| = 0$$

Therefore, as $|f_n(x)| = \pm f_n(x)$,

$$\lim_{k \to \infty} \sum_{n=1}^{k} f_n(x) = \pm \lim_{k \to \infty} \sum_{n=1}^{k} |f_n(x)|$$

$$\therefore \lim_{k \to \infty} \sum_{n=1}^{k} f_n(x) = \pm 0$$

$$\therefore \lim_{k \to \infty} \sum_{n=1}^{k} f_n(x) = 0$$

Therefore, $\sum f_n(x)$ converges uniformly on I.

(2) Let

$$f_n(x) = \frac{(-1)^n}{n}$$
$$\therefore f_n(x) = \frac{1}{n}$$

Therefore, $\sum \frac{(-1)^n}{n}$ converges, but $\sum \frac{1}{n}$ diverges.

Hence, uniform convergence of $\sum_{n=0}^{\infty} f_n(x)$ does not imply convergence

of
$$\sum_{n=0}^{\infty} |f_n(x)|$$
.

Exercise 3.

Let $f(x) = \sum_{n=1}^{\infty} (-1)^n \frac{\cos(\frac{x}{n})}{n^2+1}$. Show that f(x) is continuous on \mathbb{R} . Is it possible to differentiate f(x) term by term?

Solution 3.

$$\lim_{n \to \infty} \frac{\cos\left(\frac{x}{n}\right)}{n^2 + 1} = 0$$

Therefore, as $\sum_{n=1}^{\infty} (-1)^n \frac{\cos(\frac{x}{n})}{n^2+1}$ is a Leibniz series, and as $\lim_{n\to\infty} \frac{\cos(\frac{x}{n})}{n^2+1} = 0$, the series converges pointwise.

$$\left| \frac{\cos\left(\frac{x}{n}\right)}{n^2 + 1} \right| \le \frac{1}{n^2 + 1}$$

$$\therefore \left| \frac{\cos\left(\frac{x}{n}\right)}{n^2 + 1} \right| \le \frac{1}{n^2}$$

Therefore, by the Weierstrass M-test, as $\sum \frac{1}{n^2}$ converges, the series converges uniformly. Therefore, the limit function f(x) is continuous.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\cos\left(\frac{x}{n}\right)}{n^2 + 1} \right) = \frac{-\frac{1}{n}\sin\left(\frac{x}{n}\right)}{n^2 + 1}$$
$$= -\frac{\sin\left(\frac{x}{n}\right)}{n^3 + n}$$

As the derivative exists and is continuous on \mathbb{R} , it is possible to differentiate f(x) term by term.

Exercise 4.

Define $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{2+n}$. Find the domain of convergence of this series. In what domain can we use term by term differentiation to show that $(x^2 f(x))' = \frac{x}{1-x}$?

Solution 4.

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{2 + (n+1)}{2 + n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n+3}{n+2} \right|$$

$$= 1$$

If x = -1,

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2+n}$$

Therefore, as the series is a Leibniz series, and as $\lim_{n\to\infty} \frac{1}{2+n} = 0$, the series converges pointwise. If x = 1,

$$f(x) = \sum_{n=0}^{\infty} \frac{1^n}{2+n}$$
$$= \sum_{n=0}^{\infty} \frac{1}{2+n}$$

Therefore, the series diverges.

Therefore, the domain of convergence is [-1, 1).

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^2}{2+n} \right) = \frac{2x}{2+n}$$

As the derivative is continuous on [-1,1) and the series converges in [-1,1), we can use term by term differentiation in [-1,1).