

به نام خدا دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

درس الكترونيك ديجيتال

نيمسال اول (02-01)

استاد درس: دكتر شقايق وحدت

تمرین کامپیوتری اول:

شبیه سازی مدار تمام جمع کننده (Full-Adder)

محمدمهدى عبدالحسينى 810 198 434

Digital Electronic Circuits

فهرست مطالب

1	ں مدار تمام جمع کنندہ :) شبیهسازې	الف
3	امترهای تأخیر، توان پویای متوسط و توان ایستا :	محاسبه پار	ب)
9	. دما :	ب سے تأثب	ج) د

الف) شبیهسازی مدار تمام جمع کننده:

در این بخش قصد داریم ساختار مدار تمام جمع کننده CMOS در شکل 1 را در HSPICE شبیهسازی کنیم.

شكل 1) مدار تمام جمع كننده CMOS

قطعه کد زده شده در این بخش بصورت زیر میباشد.

```
*nnnnnnnnnnnnnnnnnnnnnnnnnn*
     ==> LIBRARY
*uuuuuuuuuuuuuuuuuuuuu
.lib
     'mm018.1' tt
*nnnnnnnnnnnnnnnnnnnnnnnnnnnn*
     ==> PARAMETERS
*uuuuuuuuuuuuuuuuuuuuuu*
.param Wmin = 220n
     Lmin = 180n
     Wnmos = '2*Wmin'
     Wpmos = '6*Wmin'
     vdd = 1.8
     gnd = 0
     t = 10p
*nnnnnnnnnnnnnnnnnnnnnnnnnnnn*
     ==> INVERTER
*uuuuuuuuuuuuuuuuuuuuu*
.SUBCKT
          Inverter
                    in
                         out
vdd
     vdd
          gnd
               vdd
Мр
     out
          in
               vdd
                    vdd
                         pmos
                              w = Wnmos
```

1 | Digital Electronic Circuits | CA#2

Mn .ENDS	out	in Invert	gnd	gnd	nmos	w = Wmin	1 = Lmin
· LINDS		Inverc	Ci				
* / / / / /	// // / // /	, , , , , , , , , , , , , , , , , , ,	// // // // //	() ((())	/\ /\ <i>/</i> \\ /		
					/\/\//\//	/\/\/\/\/	\/\\//\/\/\/\/\\/\\/\\/\\/\\/\\/\\/\\/\
**		Innnnnnnn		I⊓™ *			
		OMPONENTS					
		ıuuuuuuuu					
vdd M=1	vdd -1	gnd	dc	1.8v			1 1
Mp1	n1	В	vdd	vdd	pmos	w = Wpmos	1 = Lmin
Mp2	n2	A	vdd	vdd	pmos	w = Wpmos	1 = Lmin
Mp3	n1	A	n2	vdd	pmos	w = Wpmos	1 = Lmin
Mp4	n3	C	n1	vdd	pmos	w = Wpmos	l = Lmin
Mp5	n3	В	n2	vdd	pmos	w = Wpmos	l = Lmin
Mn6	n3	C	n4	gnd	nmos	w = Wnmos	l = Lmin
Mn7	n3	В	n5	gnd	nmos	w = Wnmos	l = Lmin
Mn8	n4	A	n5	gnd	nmos	w = Wnmos	l = Lmin
Mn9	n4	В	gnd	gnd	nmos	w = Wnmos	1 = Lmin
Mn10	n5	Α	gnd	gnd	nmos	w = Wnmos	1 = Lmin
Mp11	n6	С	vdd	vdd	pmos	w = Wpmos	l = Lmin
Mp12	n7	n3	vdd	vdd	pmos	w = Wpmos	l = Lmin
Mp13	n6	Α	n7	vdd	pmos	w = Wpmos	l = Lmin
Mp14	n8	n3	n6	vdd	pmos	w = Wpmos	l = Lmin
Mp15	n8	В	n7	vdd	pmos	w = Wpmos	l = Lmin
Mn16	n8	n3	n9	gnd	nmos	w = Wnmos	l = Lmin
Mn17	n8	В	n10	gnd	nmos	w = Wnmos	l = Lmin
Mn18	n9	Α	n10	gnd	nmos	w = Wnmos	l = Lmin
Mn19	n9	C	gnd	gnd	nmos	w = Wnmos	1 = Lmin
Mn20	n10	n3	gnd	gnd	nmos	w = Wnmos	l = Lmin
X1	n3	Cout	Invert	er			
X2	n8	SUM	Invert	er			

در ادامه میخواهیم تمامی 64 حالت ممکن برای ورودی را شبیه سازی کنیم. برای اینکار مقادیر ورودی را بصورت زیر اعمال میکنیم.

```
*nnnnnnnnnnnnnnnnnnnnnnnnnnnn*
       ==> TNPUTS
*uuuuuuuuuuuuuuuuuuuuu*
Vina A 0 PWL 0n 0, '15n-t' 0, 15n vdd, '35n-t' vdd, 35n 0, '50n-t' 0, 50n vdd, '52.5n-t' vdd, 52.5n 0,
'55n-t' 0, 55n vdd,
+ '57.5n-t' vdd, 57.5n 0, '60n-t' 0, 60n vdd, '62.5n-t' vdd, 62.5n 0, '65n-t' 0, 65n vdd, '67.5n-t' vdd,
67.5n 0,
+ '80n-t' 0, 80n vdd, '100n-t' vdd, 100n 0, '102.5n-t' 0, 102.5n vdd, '105n-t' vdd, 105n 0, '107.5n-t'
0, 107.5n vdd,
  '110n-t' vdd, 110n 0, '112.5n-t' 0, 112.5n vdd, '115n-t' vdd, 115n 0, '117.5n-t' 0, 117.5n vdd, '125n-
t' vdd, 125n 0,
+ '127.5n-t' 0, 127.5n vdd, '130n-t' vdd, 130n 0, '132.5n-t' 0, 132.5n vdd, '135n-t' vdd, 135n 0,
'137.5n-t' 0, 137.5n vdd,
+ '140n-t' vdd, 140n 0, '142.5n-t' 0, 142.5n vdd, '145n-t' vdd, 145n 0, '147.5n-t' 0, 147.5n vdd, '150n-
t' vdd, 150n 0,
+ '152.5n-t' 0, 152.5n vdd, '155n-t' vdd, 155n 0, 162.5n 0
Vinb B 0 PWL 0n 0, '7.5n-t' 0, 7.5n vdd, '12.5n-t' vdd, 12.5n 0, '20n-t' 0, 20n vdd, '32.5n-t' vdd,
32.5n 0, '37.5n-t' 0, 37.5n vdd,
+ '47.5n-t' vdd, 47.5n 0, '50n-t' 0, 50n vdd, '52.5n-t' vdd, 52.5n 0, '55n-t' 0, 55n vdd, '57.5n-t' vdd,
57.5n 0,
+ '62.5n-t' 0, 62.5n vdd, '65n-t' vdd, 65n 0, '72.5n-t' 0, 72.5n vdd, '75n-t' vdd, 75n 0, '77.5n-t' 0,
77.5n vdd,
+ '87.5n-t' vdd, 87.5n 0, '97.5n-t' 0, 97.5n vdd, '112.5n-t' vdd, 112.5n 0, '120n-t' 0, 120n vdd,
'122.5n-t' vdd, 122.5n 0,
+ '125n-t' 0, 125n vdd, '127.5n-t' vdd, 127.5n 0, '135n-t' 0, 135n vdd, '137.5n-t' vdd, 137.5n 0, '140n-
t' 0, 140n vdd,
+ '142.5n-t' vdd, 142.5n 0, '147.5n-t' 0, 147.5n vdd, '150n-t' vdd, 150n 0, '152.5n-t' 0, 152.5n vdd,
162.5n vdd
Vinc C 0 PWL 0n 0, '2.5n-t' 0, 2.5n vdd, '5n-t' vdd, 5n 0, '25n-t' 0, 25n vdd, '30n-t' vdd, 30n 0,
'37.5n-t' 0, 37.5n vdd,
```

```
+ '42.5n-t' vdd, 42.5n 0, '45n-t' 0, 45n vdd, '47.5n-t' vdd, 47.5n 0, '55n-t' 0, 55n vdd, '62.5n-t' vdd,
62.5n 0,
+ '67.5n-t' 0, 67.5n vdd, '72.5n-t' vdd, 72.5n 0, '75n-t' 0, 75n vdd, '87.5n-t' vdd, 87.5n 0, '90n-t'
0, 90n vdd,
+ '95n-t' vdd, 95n 0, '97.5n-t' 0, 97.5n vdd, '102.5n-t' vdd, 102.5n 0, '107.5n-t' 0, 107.5n vdd, '110n-
t' vdd, 110n 0,
+ '112.5n-t' 0, 112.5n vdd, '115n-t' vdd, 115n 0, '117.5n-t' 0, 117.5n vdd, '120n-t' vdd, 120n 0,
'122.5n-t' 0, 122.5n vdd,
+ '127.5n-t' vdd, 127.5n 0, '130n-t' 0, 130n vdd, '132.5n-t' vdd, 132.5n 0, '140n-t' 0, 140n vdd,
'147.5n-t' vdd, 147.5n 0,
+ '150n-t' 0, 150n vdd, '155n-t' vdd, 155n 0, 157.5n 0
*nnnnnnnnnnnnnnnnnnnnnnnnnn*
      ==> SIMULATIONS
*uuuuuuuuuuuuuuuuuuuuuu*
.option post=2
.TRAN 10p 180n
.end
```

شکل موجهای رسم شده برای ورودیها و خروجیها به شکل زیر خواهد بود.

شكل 2) شبيهسازى 64 حالت ممكن براى يك Full-Adder

ب) محاسبه پارامترهای تأخیر، توان پویای متوسط و توان ایستا:

برای محاسبه تأخیر، زمان صعود و نشست سیگنالهای خروجی را اندازه گیری میکنیم. با توجه به حالتهای مختلف ورودی، ممکن است مقادیر متفاوت باشد. بنابراین بهتر است به ازای تمامی حالات این مقادیر را حساب کرده و سپس بیشترین مقدار آن را به عنوان زمان صعود و نشست در نظر بگیریم.

با توجه به ورودیهای داده شده، قطعه کد زیر برای محاسبه زمان صعود و نشست سیگنالهای خروجی نوشته

*//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
" ==> MEASUKEMENIS" **uuuuuuuuuuuuuuuuuuuuuuuu* **********							
.MEASURE TRAN		t rise sum 1					
+trig	V(SUM)	td = 2n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 2n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	V (3011)	t rise sum 2	vai = 0.5 vaa	1130 - 1			
+trig	V(SUM)	td = 7n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 7n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	(/	t_rise_sum_3					
+trig	V(SUM)	 td = 13n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 13n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN		t_rise_sum_4					
+trig	V(SUM)	td = 24n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 24n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN		t_rise_sum_5					
+trig	V(SUM)	td = 32n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 32n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	\//CUM\	t_rise_sum_6		mina 1			
+trig	V(SUM)	td = 42n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 42n	val = '0.9*vdd'	rise = 1			
.MEASURETRAN +trig	V(SUM)	t_rise_sum_7 td = 54n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 54n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	V (3011)	t_rise_sum_8	vai = 0.5 vaa	1130 - 1			
+trig	V(SUM)	td = 57n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 57n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	(,	t_rise_sum_9					
+trig	V(SUM)	td = 62n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 62n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	, ,	t_rise_sum_10					
+trig	V(SUM)	td = 78n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 78n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN		t_rise_sum_11					
+trig	V(SUM)	td = 94n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 94n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	\//CIM\	t_rise_sum_12					
+trig	V(SUM)	td = 104n	val = '0.1*vdd'	rise = 1			
<pre>+targ .MEASURETRAN</pre>	V(SUM)	td = 104n	val = '0.9*vdd'	rise = 1			
+trig	V(SUM)	t_rise_sum_13 td = 126n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 126n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN	1 (30.1)	t_rise_sum_14	141 015 144	. 150 1			
+trig	V(SUM)	td = 144n	val = '0.1*vdd'	rise = 1			
+targ	v(SUM)	td = 144n	val = '0.9*vdd'	rise = 1			
.MEASURE TRAN		t_rise_sum_15					
+trig	V(SUM)	td = 149n	val = '0.1*vdd'	rise = 1			
+targ	V(SUM)	td = 149n	val = '0.9*vdd'	rise = 1			
******	******	****** FALL Time (SUM	1) **********	******			
*********	******	********	*********	*******			
.MEASURE TRAN		t_fall_sum_1					
+trig	V(SUM)	td = 4n	val = '0.9*vdd'	fall = 1			
+targ	V(SUM)	td = 4n	val = '0.1*vdd'	fall = 1			
.MEASURE TRAN		t_fall_sum_2		6.11			
+trig	V(SUM)	td = 12n	val = '0.9*vdd'	fall = 1			
+targ	V(SUM)	td = 12n	val = '0.1*vdd'	fall = 1			
.MEASURE TRAN	V/CIIMN	t_fall_sum_3	val = '0 0*v44'	foll = 1			
+trig	V(SUM)	td = 19n +d = 19n	val = '0.9*vdd'	fall = 1 fall = 1			
<pre>+targ .MEASURETRAN</pre>	V(SUM)	td = 19n t_fall_sum_4	val = '0.1*vdd'	I QTT = T			
+trig	V(SUM)	t_raii_suii_4 td = 29n	val = '0.9*vdd'	fall = 1			
+targ	V(SUM)	td = 29n	val = '0.1*vdd'	fall = 1			
.MEASURE TRAN	(=3)	t_fall_sum_5	7.2				

```
val = '0.9*vdd'
                                                                          fall = 1
                V(SUM)
+trig
                                td = 34n
                                                 val = '0.1*vdd'
                V(SUM)
                                td = 34n
                                                                          fall = 1
+targ
.MEASURE TRAN
                         t fall sum 6
                V(SUM)
                                                 val = '0.9*vdd'
                                                                          fall = 1
                                td = 44n
+trig
                                                 val = '0.1*vdd'
                V(SUM)
                                td = 44n
                                                                          fall = 1
+targ
.MEASURE TRAN
                         t_fall_sum_7
                V(SUM)
                                td = 57n
                                                 val = '0.9*vdd'
                                                                          fall = 1
+trig
                                                 val = '0.1*vdd'
+targ
                V(SUM)
                                 td = 57n
                                                                          fall = 1
.MEASURE TRAN
                         t_fall_sum_8
                V(SUM)
                                td = 59n
                                                 val = '0.9*vdd'
                                                                          fall = 1
+trig
                                                 val = '0.1*vdd'
                V(SUM)
                                td = 59n
                                                                          fall = 1
+targ
.MEASURE TRAN
                         t_fall_sum_9
                                                 val = '0.9*vdd'
                V(SUM)
                                td = 75n
                                                                          fall = 1
+trig
                V(SUM)
                                td = 75n
                                                 val = '0.1*vdd'
                                                                          fall = 1
+targ
.MEASURE TRAN
                         t fall sum 10
                                                 val = '0.9*vdd'
                V(SUM)
                                td = 89n
                                                                          fall = 1
+trig
                                                 val = '0.1*vdd'
                V(SUM)
                                td = 89n
                                                                          fall = 1
+targ
.MEASURE TRAN
                         t_fall_sum_11
                                                 val = '0.9*vdd'
                V(SUM)
                                td = 99n
                                                                          fall = 1
+trig
                                                 val = '0.1*vdd'
+targ
                V(SUM)
                                td = 99n
                                                                          fall = 1
.MEASURE TRAN
                         t_fall_sum_12
                V(SUM)
                                                 val = '0.9*vdd'
                                                                          fall = 1
                                td = 112n
+trig
                                                 val = '0.1*vdd'
                V(SUM)
                                td = 112n
                                                                          fall = 1
+targ
.MEASURE TRAN
                         t fall sum 13
                V(SUM)
                                                 val = '0.9*vdd'
                                td = 139n
                                                                          fall = 1
+trig
                V(SUM)
                                td = 139n
                                                 val = '0.1*vdd'
                                                                          fall = 1
+targ
                         t_fall_sum_14
.MEASURE TRAN
                                                 val = '0.9*vdd'
                V(SUM)
+trig
                                td = 146n
                                                                          fall = 1
                V(SUM)
                                td = 146n
                                                 val = '0.1*vdd'
+targ
                                                                          fall = 1
.MEASURE TRAN
                        t_rise_cout_1
                V(Cout)
                                                 val = '0.1*vdd'
                                td = 18n
                                                                          rise = 1
+trig
                                td = 18n
                                                 val = '0.9*vdd'
+targ
                V(Cout)
                                                                          rise = 1
.MEASURE TRAN
                        t_rise_cout_2
                V(Cout)
                                td = 35n
                                                 val = '0.1*vdd'
                                                                          rise = 1
+trig
                                                 val = '0.9*vdd'
                                td = 35n
+targ
                V(Cout)
                                                                          rise = 1
.MEASURE TRAN
                        t_rise_cout_3
                V(Cout)
                                td = 44n
                                                 val = '0.1*vdd'
                                                                          rise = 1
+trig
                                td = 44n
                                                 val = '0.9*vdd'
+targ
                V(Cout)
                                                                          rise = 1
.MEASURE TRAN
                        t_rise_cout_4
                                td = 49n
                                                 val = '0.1*vdd'
                V(Cout)
                                                                          rise = 1
+trig
                                                 val = '0.9*vdd'
                                td = 49n
+targ
                V(Cout)
                                                                          rise = 1
.MEASURE TRAN
                         t_rise_cout_5
+trig
                V(Cout)
                                td = 54n
                                                 val = '0.1*vdd'
                                                                          rise = 1
                                td = 54n
                                                 val = '0.9*vdd'
+targ
                V(Cout)
                                                                          rise = 1
.MEASURE TRAN
                        t_rise_cout_6
                V(Cout)
                                td = 59n
                                                 val = '0.1*vdd'
                                                                          rise = 1
+trig
                                                 val = '0.9*vdd'
+targ
                V(Cout)
                                td = 59n
                                                                          rise = 1
.MEASURE TRAN
                         t_rise_cout_7
                                td = 75n
                                                 val = '0.1*vdd'
                V(Cout)
                                                                          rise = 1
+trig
                                                 val = '0.9*vdd'
                V(Cout)
                                td = 75n
                                                                          rise = 1
+targ
.MEASURE TRAN
                         t rise cout 8
                V(Cout)
                                td = 89n
                                                 val = '0.1*vdd'
                                                                          rise = 1
+trig
                                td = 89n
                                                 val = '0.9*vdd'
                V(Cout)
                                                                          rise = 1
+targ
.MEASURE TRAN
                         t_rise_cout_9
                                td = 96n
                V(Cout)
                                                 val = '0.1*vdd'
+trig
                                                                          rise = 1
                                                 val = '0.9*vdd'
                V(Cout)
                                td = 96n
                                                                          rise = 1
+targ
.MEASURE TRAN
                        t rise cout 10
                V(Cout)
                                                 val = '0.1*vdd'
                                td = 106n
                                                                          rise = 1
+trig
                                                 val = '0.9*vdd'
                V(Cout)
                                td = 106n
                                                                          rise = 1
+targ
.MEASURE TRAN
                         t_rise_cout_11
                V(Cout)
                                td = 111n
                                                 val = '0.1*vdd'
+trig
                                                                          rise = 1
                                                 val = '0.9*vdd'
                V(Cout)
                                td = 111n
                                                                          rise = 1
+targ
.MEASURE TRAN
                         t_rise_cout_12
                                                 val = '0.1*vdd'
                V(Cout)
                                td = 116n
                                                                          rise = 1
+trig
                                                 val = '0.9*vdd'
                V(Cout)
                                td = 116n
                                                                          rise = 1
+targ
.MEASURE TRAN
                         t_rise_cout_13
                V(Cout)
                                td = 139n
                                                 val = '0.1*vdd'
+trig
                                                                          rise = 1
                                td = 139n
                                                 val = '0.9*vdd'
                                                                          rise = 1
+targ
                V(Cout)
.MEASURE TRAN
                        t rise cout 14
```

```
val = '0.1*vdd'
                                                                        rise = 1
+trig
               V(Cout)
                               td = 146n
                                                val = '0.9*vdd'
                V(Cout)
                               td = 146n
                                                                        rise = 1
+targ
.MEASURE TRAN
                       t rise cout 15
                                                val = '0.1*vdd'
                V(Cout)
                               td = 151n
                                                                        rise = 1
+trig
                                                val = '0.9*vdd'
               V(Cout)
                               td = 151n
                                                                        rise = 1
+targ
**********************************
. MFASURF TRAN
                        t_fall_cout_1
               V(Cout)
                              td = 31n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
               V(Cout)
                               td = 31n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_2
                                                val = '0.9*vdd'
               V(Cout)
                               td = 41n
                                                                        fall = 1
+trig
               V(Cout)
                               td = 41n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_3
               V(Cout)
                               td = 47n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
                               td = 47n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
               V(Cout)
.MEASURE TRAN
                        t_fall_cout_4
               V(Cout)
                               td = 51n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
               V(Cout)
                               td = 51n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_5
               V(Cout)
                               td = 57n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
               V(Cout)
                               td = 57n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_6
               V(Cout)
                               td = 61n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
                               td = 61n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
               V(Cout)
.MEASURE TRAN
                        t_fall_cout_7
               V(Cout)
                               td = 86n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
               V(Cout)
                               td = 86n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_8
                V(Cout)
                               td = 92n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
               V(Cout)
                               td = 92n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_9
               V(Cout)
                               td = 105n
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
                                                val = '0.1*vdd'
                                                                        fall = 1
               V(Cout)
                               td = 105n
+targ
.MEASURE TRAN
                        t_fall_cout_10
                V(Cout)
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
                               td = 109n
               V(Cout)
                               td = 109n
                                                val = '0.1*vdd'
                                                                        fall = 1
+targ
.MEASURE TRAN
                        t_fall_cout_11
                V(Cout)
                                                val = '0.9*vdd'
                                                                        fall = 1
+trig
                               td = 114n
               V(Cout)
                                                val = '0.1*vdd'
                                                                        fall = 1
                               td = 114n
+targ
.MEASURE TRAN
                        t_fall_cout_12
+trig
                V(Cout)
                               td = 125n
                                                val = '0.9*vdd'
                                                                        fall = 1
                                                val = '0.1*vdd'
               V(Cout)
                                                                        fall = 1
+targ
                               td = 125n
.MEASURE TRAN
                        t_fall_cout_13
                V(Cout)
                                                val = '0.9*vdd'
+trig
                               td = 142n
                                                                        fall = 1
                                                val = '0.1*vdd'
                                                                        fall = 1
               V(Cout)
                               td = 142n
+targ
.MEASURE TRAN
                        t_fall_cout_14
                V(Cout)
                                                val = '0.9*vdd'
+trig
                               td = 149n
                                                                        fall = 1
                               td = 149n
                                                val = '0.1*vdd'
                                                                        fall = 1
                V(Cout)
+targ
.MEASURE TRAN
                        t_fall_cout_15
                V(Cout)
                                                val = '0.9*vdd'
+trig
                               td = 154n
                                                                        fall = 1
                                               val = '0.1*vdd'
                                                                        fall = 1
+targ
               V(Cout)
                               td = 154n
```

نتایج شبیهسازی به صورت زیر خواهد بود.

```
t_rise_sum_1 = 55.8884p targ = 2.6402n
                                          trig= 2.5843n
t_rise_sum_2
              = 41.5404p targ=
                                           trig=
                                 7.5874n
                                                  7.5459n
t_rise_sum_3
              = 57.6743p
                          targ= 15.1508n
                                           trig= 15.0931n
              = 61.6159p targ= 25.1639n
t_rise_sum_4
                                           trig= 25.1023n
t_rise_sum_5
              = 62.6236p targ= 32.8117n
                                           trig= 32.7490n
t_rise_sum_6
              = 49.4199p
                          targ=
                                 42.7509n
                                           trig= 42.7015n
t_rise_sum_7
              = 36.4732p targ= 55.0667n
                                           trig= 55.0302n
                                           trig= 57.6373n
t_rise_sum_8
              = 48.3036p targ= 57.6856n
              = 47.1508p
                                 62.7714n
                                           trig=
                                                 62.7242n
t rise sum 9
                          targ=
t_rise_sum_10
              = 57.2608p
                          targ= 80.1597n
                                           trig= 80.1024n
              = 59.9525p targ= 95.2996n
                                           trig= 95.2397n
t_rise_sum_11
t_rise_sum_12
              = 48.5904p
                          targ= 105.3100n
                                           trig= 105.2614n
t_rise_sum_13
              = 67.3805p targ= 127.7668n
                                           trig= 127.6994n
t_rise_sum_14 = 55.4746p targ= 145.2821n trig= 145.2267n
```

```
t_rise_sum_15 = 54.0212p targ= 150.2711n trig= 150.2171n
              = 49.7198p targ=
                                  5.1744n
                                                   5.1247n
t_fall_sum_1
                                            trig=
              = 46.4794p
                                            trig= 12.5618n
t_fall_sum_2
                          targ= 12.6083n
t_fall_sum_3
              = 39.9531p targ=
                                 20.2221n
                                            trig= 20.1821n
t_fall_sum_4
t_fall_sum_5
              = 40.4260p
                                 30.1228n
                                            trig=
                                                  30.0824n
                          targ=
              = 50.8546p
                                                  35.1050n
                          targ=
                                 35.1559n
                                            trig=
t_fall_sum_6
              = 48.5106p targ= 45.2165n
                                            trig= 45.1680n
t_fall_sum_7
              = 40.4247p targ=
                                 57.5940n
                                            trig=
                                                  57.5536n
t_fall_sum_8
              = 45.6117p
                          targ= 60.2721n
                                            trig= 60.2265n
t_fall_sum_9
              = 50.1649p targ= 77.7884n
                                            trig= 77.7383n
t_fall_sum_10
              = 44.8301p targ= 90.2336n
                                            trig= 90.1888n
t_fall_sum_11
              = 51.4411p
                          targ= 100.1576n
                                            trig= 100.1061n
              = 44.4735p
                                            trig= 112.6843n
t_fall_sum_12
                          targ= 112.7288n
              = 48.1463p
t_fall_sum_13
                          targ= 140.2452n
                                            trig= 140.1970n
              = 43.3875p
t_fall_sum_14
                          targ= 147.7265n
                                            trig= 147.6831n
             = 55.9106p targ= 20.1434n
                                            trig= 20.0875n
t rise cout 1
t_rise_cout_2
              = 47.8511p
                          targ=
                                 37.6149n
                                            trig=
                                                  37.5671n
t_rise_cout_3
              = 52.3898p targ= 45.1259n
                                            trig= 45.0735n
t_rise_cout_4
              = 50.1861p targ=
                                 50.1507n
                                                  50.1005n
                                            trig=
                                            trig= 55.0466n
t_rise_cout_5 = 36.4120p
                          targ=
                                 55.0830n
                                            trig= 60.1448n
             = 70.8367p targ= 60.2156n
t_rise_cout_6
t_rise_cout_7
              = 54.2229p targ=
                                 77.6319n
                                            trig=
                                                  77.5776n
t_rise_cout_8 = 74.7793p
                          targ= 90.1947n
                                            trig= 90.1199n
t_rise_cout_9 = 37.4548p targ= 97.5813n
                                            trig= 97.5438n
t_rise_cout_10 = 37.4192p targ= 107.5822n
                                            trig= 107.5448n
t_rise_cout_11 = 75.0937p
                          targ= 112.6971n
                                            trig= 112.6220n
                 61.8038p targ= 117.7059n
                                            trig= 117.6441n
t_rise_cout_12 =
t_rise_cout_13 =
                 52.2077p
                          targ= 140.1164n
                                            trig= 140.0642n
t_rise_cout_14 =
                 56.1232p
                          targ= 147.6463n
                                            trig= 147.5902n
t_rise_cout_15 = 37.6289p
                          targ= 152.5821n
                                            trig= 152.5445n
t_fall_cout_1 = 41.2917p targ= 32.6094n
                                            trig= 32.5681n
t_fall_cout_2 = 69.3640p
                          targ= 42.6729n
                                            trig= 42.6036n
              = 29.5055p targ=
t_fall_cout_3
                                 47.5758n
                                            trig= 47.5463n
              = 30.3956p
t_fall_cout_4
                          targ=
                                 52.5880n
                                            trig= 52.5576n
t_fall_cout_5
             = 40.1374p targ= 57.6178n
                                            trig= 57.5777n
t_fall_cout_6 = 69.0259p targ= 62.6949n
                                            trig= 62.6259n
t_fall_cout_7
             = 36.6833p targ= 87.5807n
                                            trig= 87.5441n
t_fall_cout_8
             = 48.2460p targ= 95.1184n
                                            trig= 95.0701n
t_fall_cout_9 = 70.0932p targ= 105.2252n
                                            trig= 105.1551n
t_fall_cout_10 =
                 60.7430p
                          targ= 110.1633n
                                            trig= 110.1025n
t_fall_cout_11 = 30.3223p targ= 115.0886n
                                            trig= 115.0582n
t_fall_cout_12 = 41.3514p targ= 127.5841n
                                            trig= 127.5427n
t_fall_cout_13 = 44.3934p
                          targ= 145.1367n
                                            trig= 145.0923n
t_fall_cout_14 = 44.2155p targ= 150.1298n
                                            trig= 150.0856n
t_fall_cout_15 = 60.7407p targ= 155.1623n
                                           trig= 155.1016n
```

بیشترین مقدار را به عنوان زمان صعود و نشست در نظر می گیریم.

Outputs	T_{Rise}	T _{Fall}	
SUM	67.3805 ps	51.4411 ps	
Cout	75.0937 ps	70.0932 ps	

در ادامه به محاسبه توان پویای متوسط میپردازیم. به این منظور قطعه کد زیر نوشته شده است.

نتیجه شبیهسازی برای محاسبه توان یوپای متوسط به صورت زیر خواهد بود.

```
pow= 13.2545u from= 1.0000n to= 170.0000n
```

برای محاسبه توان ایستا به ازای ورودیهای A,B,C هشت حالت برای محاسبه توان ایستا به ازای ورودیهای A,B,C هشت حالت توان را حساب میکنیم.

```
*nnnnnnnnnnnnnnnnnnnnnnnnnnnn*
     ==> INPUTS
*uuuuuuuuuuuuuuuuuuuuu*
Vina
                PWL
                                 , '10n-t'
                                                  10n
                                                       vdd
                            0 , '5n-t'0,
'15n-t' 0, 15n
                PWL
                                                  vdd.
     '10n-t' vdd,
                10n
                      0,
                                            vdd
Vinc
           0
                PWL
                      0n
                                 '2.5n-t'0,
                                            2.5n
                                                  vdd.
     '5n-t' vdd,
                            '7.5n-t'0,
                5n
                      0,
                                      7.5n
                                            vdd,
     '10n-t' vdd,
                           '12.5n-t'
                10n
                      0,
                                            12.5n
                                                  vdd.
     '15n-t' vdd,
                            '17.5n-t'
                                      0,
                15n
                      0,
                                            17.5n
                                                  vdd
*nnnnnnnnnnnnnnnnnnnnnnnnn*
     ==> SIMULATIONS
*uuuuuuuuuuuuuuuuuuuuuuuuu
.option post=2
.TRAN 1p
*nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
     ==> MEASUREMENTS *
*uuuuuuuuuuuuuuuuuuuuuuuu
******************************
           static_power_1 AVG
                                 from = 0ns
                                            to = 2.5ns
.measuretran
                           power
           static_power_2 AVG
                           power
                                 from = 2.5ns
                                          to = 5ns
.measuretran
           static_power_3
                      AVG
                           power
                                 from = 5ns
                                            to = 7.5ns
.measuretran
           static_power_4 AVG
                                 from = 7.5ns
                                            to = 10ns
.measuretran
                           power
.measuretran
           static_power_5
                      AVG
                           power
                                 from = 10ns
                                            to = 12.5ns
           static_power_6
                      AVG
                           power
                                 from = 12.5ns
                                            to = 15ns
.measuretran
.measuretran
           static_power_7
                                 from = 15ns
                                            to = 17.5 ns
                      AVG
                           power
           static_power_8 AVG
                                 from = 17.5ns
                                           to = 20ns
.measuretran
                           power
```

نتیجه شبیهسازی برای محاسبه توان ایستا بصورت زیر خواهد بود.

```
***** transient analysis tnom= 25.000 temp= 25.000 *****
                                            to= 2.5000n
static_power_1= 875.5234n from=
                                 2.5000n
                                                  5.0000n
static_power_2= 16.8370u from=
                                            to=
static_power_3=
                4.1274u
                         from=
                                 5.0000n
                                            to=
                                                  7.5000n
static_power_4= 20.1386u
                          from=
                                 7.5000n
                                            to= 10.0000n
static_power_5= 21.9501u from=
                                10.0000n
                                            to= 12.5000n
static_power_6= 24.2993u from=
                                12.5000n
                                            to=
                                                 15.0000n
static_power_7=
                5.6427u from=
                                15.0000n
                                            to= 17.5000n
static_power_8= 11.5726u from= 17.5000n
                                         to= 20.0000n
```

میانگین هشت حالت بدست آمده، توان ایستای متوسط خواهد بود.

 $P_{STATIC_AWG} = 13.1804 \text{ uW}$

ج) بررسی تأثیر دما:

در این بخش مجددا پارامترهای تأخیر، توان پویای متوسط و توان ایستا را در دما 0 و 100 درجه شبیهسازی میکنیم. انتظار داریم افزایش دما، سبب افزایش تأخیر سیستم و توان مصرفی شود.

```
***** transient analysis tnom= 25.000 temp= 0.000 *****
t_rise_sum_1= 53.0132p targ=
                                         trig=
                                2.6320n
                                                 2.5790n
t_rise_sum_2= 40.4945p targ=
                                7.5845n
                                          trig=
                                                 7.5440n
              54.7455p targ= 15.1415n
t_rise_sum_3=
                                          trig= 15.0868n
t_rise_sum_4=
              57.6874p targ= 25.1529n
                                         trig= 25.0952n
t_rise_sum_5=
              66.1377p targ=
                               32.7872n
                                          trig=
                                                32.7210n
t_rise_sum_6=
              49.3124p targ= 42.7430n
                                          trig= 42.6937n
              35.4069p targ= 55.0640n
t_rise_sum_7=
                                         trig= 55.0285n
t_rise_sum_8=
              44.5192p targ=
                               57.6768n
                                          trig=
                                                57.6323n
t_rise_sum_9= 50.1854p targ= 62.7616n
                                          trig= 62.7115n
t_rise_sum_10= 57.8475p targ= 80.1488n
                                          trig= 80.0910n
t_rise_sum_11= 53.0560p
                         targ= 95.2861n
                                           trig= 95.2330n
                                           trig= 105.2495n
                         targ= 105.2992n
t_rise_sum_12= 49.7027p
t_rise_sum_13= 66.1402p
                         targ= 127.7589n
                                           trig= 127.6928n
                         targ= 145.2663n
t_rise_sum_14=
               55.5514p
                                           trig= 145.2107n
               50.1558p targ= 150.2621n
                                           trig= 150.2120n
t_rise_sum_15=
t_fall_sum_1= 45.3896p targ=
                               5.1708n
                                          trig=
                                                 5.1254n
                                          trig= 12.5594n
t_fall_sum_2=
              42.8402p targ= 12.6022n
              38.8979p targ=
t_fall_sum_3=
                                          trig=
                               20.2130n
                                                20.1741n
t_fall_sum_4=
              38.1761p targ=
                               30.1179n
                                          trig=
                                                30.0797n
                                          trig= 35.1060n
t_fall_sum_5=
              47.4418p targ= 35.1535n
t_fall_sum_6= 45.8516p targ= 45.2065n
                                         trig= 45.1607n
t_fall_sum_7=
              38.2413p targ= 57.5916n
                                          trig= 57.5534n
                                          trig= 60.2172n
t_fall_sum_8= 41.4011p targ= 60.2586n
                                          trig= 77.7345n
t_fall_sum_9= 46.1595p targ= 77.7806n
t_fall_sum_10= 41.3483p
                        targ= 90.2207n
                                          trig= 90.1794n
                         targ= 100.1538n
                                           trig= 100.1057n
t fall sum 11=
               48.0685p
               42.1278p
t_fall_sum_12=
                         targ= 112.7178n
                                           trig= 112.6757n
t_fall_sum_13= 46.5480p
                         targ= 140.2357n
                                           trig= 140.1892n
                         targ= 147.7171n
t_fall_sum_14= 42.3588p
                                           trig= 147.6747n
t_rise_cout_1= 49.4811p
                         targ= 20.1392n
                                           trig= 20.0897n
t_rise_cout_2= 47.1954p
                         targ= 37.6109n
                                           trig= 37.5637n
                         targ= 45.1198n
t_rise_cout_3= 48.8023p
                                           trig= 45.0710n
t_rise_cout_4= 47.1496p
                         targ=
                                50.1441n
                                           trig=
                                                 50.0970n
                                           trig= 55.0432n
t_rise_cout_5= 35.8211p
                         targ=
                                55.0790n
t_rise_cout_6= 66.1669p
                         targ=
                                60.2068n
                                           trig=
                                                 60.1406n
t_rise_cout_7= 49.1008p
                         targ=
                                77.6257n
                                           trig=
                                                 77.5766n
                         targ=
                                           trig= 90.1126n
t_rise_cout_8= 68.9281p
                                90.1816n
t_rise_cout_9= 35.6824p targ= 97.5775n
                                           trig= 97.5418n
t_rise_cout_10= 35.5708p
                         targ= 107.5784n
                                           trig= 107.5428n
                         targ= 112.6839n
                                           trig= 112.6147n
t_rise_cout_11= 69.1769p
t_rise_cout_12= 54.9513p
                         targ= 117.6925n
                                           trig= 117.6376n
t_rise_cout_13=
                 49.8880p
                          targ= 140.1116n
                                            trig= 140.0617n
t_rise_cout_14=
                53.6446p targ= 147.6401n
                                            trig= 147.5865n
                35.7410p targ= 152.5782n
t_rise_cout_15=
                                           trig= 152.5425n
                                           trig= 32.5643n
t_fall_cout_1= 41.5813p targ= 32.6058n
t_fall_cout_2= 65.3862p targ= 42.6713n
                                          trig= 42.6059n
                29.3986p
                                47.5738n
                                           trig= 47.5444n
t_fall_cout_3=
                         targ=
                         targ=
                                           trig= 52.5561n
t_fall_cout_4=
               28.9940p
                                52.5851n
t_fall_cout_5=
               37.0811p
                         targ=
                                57.6125n
                                          trig= 57.5754n
                         targ= 62.6918n
               65.2555p
t_fall_cout_6=
                                           trig= 62.6265n
                                           trig= 87.5429n
t fall cout 7=
               35.8195p
                         targ=
                                87.5787n
t_fall_cout_8= 46.1838p
                                           trig= 95.0680n
                         targ= 95.1142n
t_fall_cout_9= 65.9004p targ= 105.2168n
                                           trig= 105.1509n
t_fall_cout_10= 57.6148p targ= 110.1582n
                                           trig= 110.1006n
t_fall_cout_11=
                29.9993p
                         targ= 115.0849n
                                            trig= 115.0549n
                 37.5955p
                          targ= 127.5797n
                                            trig= 127.5421n
t_fall_cout_12=
                         targ= 145.1314n
                                            trig= 145.0886n
t_fall_cout_13=
                42.7774p
t_fall_cout_14= 41.2297p
                         targ= 150.1243n
                                            trig= 150.0830n
t_fall_cout_15= 60.3050p
                         targ= 155.1593n
                                            trig= 155.0990n
pow= 13.0862u from= 1.0000n
                                   to= 170.0000n
```

```
***** transient analysis tnom= 25.000 temp= 100.000 *****
                               2.6665n
t_rise_sum_1= 66.9687p targ=
                                         trig=
                                                 2.5996n
t_rise_sum_2=
               49.6327p targ=
                                7.6017n
                                          trig=
                                                 7.5521n
                                          trig= 15.1120n
t_rise_sum_3= 66.6984p targ= 15.1787n
                                         trig= 25.1319n
t_rise_sum_4= 67.1380p targ= 25.1991n
t_rise_sum_5=
                                          trig= 32.7630n
               84.2479p targ= 32.8473n
t_rise_sum_6= 54.3629p targ= 42.7745n
                                          trig= 42.7201n
t_rise_sum_7= 43.1970p targ= 55.0780n
                                         trig= 55.0348n
t_rise_sum_8= 60.6464p targ= 57.7135n
                                          trig= 57.6528n
t_rise_sum_9= 53.6675p targ= 62.7964n
                                          trig= 62.7428n
t_rise_sum_10= 67.3373p targ= 80.1932n
                                          trig= 80.1259n
t_rise_sum_11= 87.2973p targ= 95.3539n
                                           trig= 95.2666n
                                           trig= 105.2795n
t_rise_sum_12= 62.5150p targ= 105.3420n
                                           trig= 127.7170n
t_rise_sum_13= 85.7365p targ= 127.8027n
t_rise_sum_14= 66.6782p targ= 145.3129n
                                           trig= 145.2462n
t_rise_sum_15= 68.3848p targ= 150.3085n
                                           trig= 150.2401n
t_fall_sum_1= 56.9145p targ=
                                5.1911n
                                                 5.1342n
                                          trig=
                                          trig= 12.5636n
t_fall_sum_2=
              52.7061p targ= 12.6163n
t_fall_sum_3=
               46.4994p targ= 20.2520n
                                          trig= 20.2055n
t_fall_sum_4=
t_fall_sum_5=
              44.6740p targ= 30.1339n
                                          trig= 30.0893n
                                          trig= 35.1127n
              57.1478p targ= 35.1699n
t_fall_sum_6= 55.0890p targ= 45.2461n
                                          trig= 45.1910n
t_fall_sum_7=
               45.8303p targ= 57.6019n
                                          trig= 57.5560n
t_fall_sum_8=
              56.0418p targ= 60.3185n
                                          trig= 60.2625n
t_fall_sum_9= 56.8747p targ= 77.8276n
                                          trig= 77.7708n
t_fall_sum_10= 55.3344p targ= 90.2759n
                                          trig= 90.2206n
                                           trig= 100.1132n
t_fall_sum_11= 57.0818p
                        targ= 100.1702n
t_fall_sum_12= 53.8162p targ= 112.7716n
                                           trig= 112.7178n
t_fall_sum_13= 54.9475p targ= 140.2770n
t_fall_sum_14= 48.4811p targ= 147.7512n
t_fall_sum_13= 54.9475p
                                           trig= 140.2220n
trig= 147.7028n
t_rise_cout_1= 70.8458p
                         targ= 20.1693n
                                           trig= 20.0985n
t_rise_cout_2= 57.9901p
                         targ=
                                37.6337n
                                           trig= 37.5757n
                         targ= 45.1452n
                                           trig= 45.0810n
t_rise_cout_3= 64.2845p
t_rise_cout_4= 56.8995p
                         targ=
                                           trig=
                                                 50.1114n
                                50.1683n
t_rise_cout_5= 40.9162p
                         targ=
                                55.0910n
                                           trig=
                                                 55.0501n
t_rise_cout_6= 92.4316p
                         targ=
                                60.2603n
                                           trig= 60.1679n
t_rise_cout_7= 64.3109p
                         targ= 77.6535n
                                           trig= 77.5892n
                                           trig= 90.1531n
t_rise_cout_8= 83.6404p
                         targ=
                                90.2367n
                                           trig= 97.5487n
t_rise_cout_9= 43.5330p targ= 97.5923n
t_rise_cout_10= 43.6673p targ= 107.5932n
                                           trig= 107.5495n
t_rise_cout_11= 82.8450p targ= 112.7394n
                                           trig= 112.6565n
t_rise_cout_12= 75.7527p targ= 117.7436n
                                           trig= 117.6679n
t_rise_cout_13= 59.6469p targ= 140.1329n
                                           trig= 140.0732n
t_rise_cout_14= 60.0305p targ= 147.6670n
                                           trig= 147.6070n
t_rise_cout_15= 44.1748p targ= 152.5938n
                                           trig= 152.5496n
t_fall_cout_1= 52.9887p targ= 32.6250n
                                           trig= 32.5720n
               76.5095p targ= 42.6867n
t_fall_cout_2=
                                           trig= 42.6102n
t_fall_cout_3= 34.7647p targ= 47.5829n
                                           trig= 47.5482n
t_fall_cout_4= 35.8040p
                         targ= 52.5982n
                                           trig= 52.5624n
                                           trig= 57.5856n
t_fall_cout_5= 44.4441p targ= 57.6300n
t_fall_cout_6= 80.8752p targ= 62.7139n
                                           trig= 62.6330n
t_fall_cout_7= 41.7686p
                         targ= 87.5935n
                                           trig= 87.5517n
t_fall_cout_8= 59.1102p targ= 95.1340n
                                           trig= 95.0749n
                                           trig= 105.1674n
t_fall_cout_9= 80.4111p targ= 105.2478n
t_fall_cout_10= 72.7504p targ= 110.1824n
                                           trig= 110.1097n
t_fall_cout_11= 35.0873p targ= 115.0968n
                                           trig= 115.0617n
t_fall_cout_12= 43.2369p targ= 127.5897n
                                           trig= 127.5464n
t_fall_cout_13= 48.9350p targ= 145.1470n
                                            trig= 145.0981n
t_fall_cout_14=
                48.5500p targ= 150.1419n
                                            trig= 150.0933n
t_fall_cout_15= 72.8817p targ= 155.1827n
                                           trig= 155.1098n
pow= 13.5667u from= 1.0000n to= 170.0000n
***** transient analysis tnom= 25.000 temp=
                                              0.000 *****
```

```
2.5000n
static_power_1= 845.4677n from=
                                            to=
static_power_2= 16.6562u from=
                                 2.5000n
                                                 5.0000n
                                            to=
static_power_3= 4.0241u from=
                                 5.0000n
                                                 7.5000n
                                            to=
                                7.5000n
                                            to= 10.0000n
static_power_4= 19.9207u from=
static_power_5= 21.7680u from= 10.0000n
                                         to= 12.5000n
```

```
static_power_6= 23.9067u from= 12.5000n
                                                 to= 15.0000n
static_power_7=
                  5.6293u from= 15.0000n
                                                 to= 17.5000n
static_power_8= 11.4024u from= 17.5000n
                                                 to=
                                                      20.0000n
***** transient analysis tnom= 25.000 temp= 100.000 *****
static_power_1= 818.0188n from=
static_power_2= 17.2474u from=
                                     0.
                                                 to=
                                                        2.5000n
                                     2.5000n
                                                        5.0000n
                                                 to=
                                     5.0000n
                                                        7.5000n
static_power_3=
                  4.3233u from=
                                                 to=
static_power_4= 20.9875u from=
static_power_5= 22.4476u from=
                                     7.5000n
                                                 to= 10.0000n
                                    10.0000n
                                                 to= 12.5000n
static_power_6= 25.4120u from=
                                    12.5000n
                                                 to= 15.0000n
static_power_7=
                  5.7687u from=
                                    15.0000n
                                                 to= 17.5000n
static_power_8= 11.9261u from= 17.5000n
                                                 to= 20.0000n
```

Parameters	0°C	25°C	100°C
T _{Rise} (SUM)	66.1402 ps	67.3805 ps	87.2973 ps
T _{FALL} (SUM)	48.0685 ps	51.4411 ps	57.1478 ps
$T_{Rise}(C_{out})$	69.1769 ps	75.0937 ps	92.4316 ps
T _{FALL} (C _{out})	65.9004 ps	70.0932 ps	80.8752 ps
Dynamic Power	13.0862 uW	13.2545 uW	13.5667 uW
Static Power	13.0191 uW	13.1804 uW	13.6163 uW

همانطور که مشاهده میشود، با افزایش دما، تأخیر سیستم و توان مصرفی افزایش میابد.