(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平9-509024

(43)公表日 平成9年(1997)9月9日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			
H 0 4 N	7/32		4228-5C	H04N	7/137	Z	
	5/92		9382-5K	H03M	7/36		
∥ H03M	7/36		9563-5C	H 0 4 N	5/92	H	

審査請求 未請求 予備審査請求 有 (全172頁)

(21)出願番号	特膜平7-520098	(71)出職人	ピーティージー ユーエスエー インコー
(86) (22)出願日	平成7年(1995)1月20日		ポレイテッド
(85)翻訳文提出日	平成8年(1996)7月26日		アメリカ合衆国 19406 ペンシルベニア
(86)国際出願番号	PCT/US95/00773		州 ガルフミルズ ルネッサンスビジネス
(87)国際公開番号	WO95/20863		パーク ルネッサンスプールパード2200
(87)国際公開日	平成7年(1995)8月3日	(72)発明者	リー, ジョンウ
(31)優先権主張番号	08/187, 595		アメリカ合衆国 ニュージャージー州 マ
(32)優先日	1994年1月28日		ーサー郡 プリンストン プラッドリーコ
(33)優先権主張国	米国 (US)		- h1403
		(74)代理人	弁理士 高月 猛

最終頁に続く

(54) 【発明の名称】 時間適応型動き補間を用いる両像データの圧縮方法ならびにその装置

(57) 【要約】

ビデオデータを圧縮するためのシステムにおいて、基準 フレームを帯定し間隔を決める際に使用するため、複数 の連続フレーム間のグローバルモーションの度合を、フ レームのいくつかの間の動きの所定のしきい値またはレ ベルを越える全体的な動きに対して決定する。

【特許請求の範囲】

- 1. フレーム間のグローバルモーションの度合を決定するステップと、
- 前記フレーム間で測定したグローバルモーションの度合に応じて基準フレーム 間のスペーシングを調節するステップと、を含むビデオデータ圧縮方法。
- 2. 画面変化の異なる種類を表わすように、フレーム間の動きの大きさ又はレベルについて異なるしきい値を設定するステップと、
- 前記予め設定したフレーム間の動きに対するしきい値レベルに基づいて個々の フレームに異なるビットレートを割り当てるステップと、をさらに含む請求の範 囲1に記載のビデオデータ圧縮方法。
- 3. フレーム間で測定したグローバルモーションの度合に基づいて、各フレーム のビデオ符号化のためのビットレートを割り当てるステップをさらに含む請求の 範囲」に記載のビデオデータ圧縮方法。
- 4. 前記しきい値設定ステップは、
- 前記一対の連続フレーム間の1型画面変化を、一対の連続フレーム間の測定された動きが実質的な画面乃至ピクチャの変化に関する T_1 しきい値を超える場合に生じるものとして指定するステップと、
- 1型画面変化に続き、最初に生じるフレーム乃葉条行するフレームをP2フレームとして指定し、また2番目に生じるフレーム乃至後のフレームを12フレームとして指定し、それぞれを前記割り当てステップによる所定のピットレートとするステップと、をさらに含む酵来の範囲2に記載のピデオデータ圧輸方法。
- 5. 前記しきい値設定ステップは、
- 前記一対の連続フレーム間の0型画面変化を、一対の連続フレーム間の測定された動きが実質的な画面乃至ピクチャの変化に関する T_0 しきい値を超える場合に生じるものとして指定するステップと、
- 直前の基準フレームと連続フレームからの積算した動きがT_の、しきい値を越えるときを検出し、前記速航フレームの直前のフレームを、前記割り当てステップによる所定のピットレートの基準フレームであるP1フレームとして指定するステップと、をさらに含む情求の範囲2に記載のビデオデータ圧縮方法。
- 6. 前記しきい値設定ステップは、

前記一対の連続フレーム間の0型画面変化を、一対の連続フレーム間の測定された動きが実質的な画面乃至ピクチャに関する T_0 しきい値を超える場合に生じるものとして指定するステップと、

直前の基準フレームと連続フレームからの積算した動きがT_oしきい値を越え るときを検出し、前記連続フレームの直前のフレームを、前記割り当てステップ による所定のビットレートの基準フレームであるP1フレームとして指定するス テップと、をさらに含む情末の範囲4に記載のビデオデータ圧縮方法。

- 7. 基準フレーム間の連続フレームをそれぞれBフレームに指定するステップを さらに含む請求の範囲6に記載の方法。
- 8. 所定数の連続フレームをピクチャグループ (GOP) に設定することで、前 記連続フレームを複数の連続GOPにグループ化するステップと、

前記複数のGOPのそれぞれの第1フレームを前記割り当てステップによる所 定のビットレートのI1フレームとして指定するステップと、をさらに含む請求 の範囲6に記載の方法。

9. 少なくとも1つの0型画面変化が検出された前記複数のGOPのそれぞれに ついて、複数のフレームを基準フレーム間のB1フレームとして指定し、前記B 1フレームのそれぞれは前記制り当てステップによる所定のピットレートを有す るようにオるステップと、

○型画画変化が検出されなかった前記複数のGOPのそれぞれについて、複数のフレームを基準フレーム間のB2フレームとして指定し、前記B2フレームはそれぞれが前記割り当てステップによる所定のピットレートを有するようにするステップと、をさらに含む請求の範囲8に記載の方法。

10. 前記I1とI2フレームは内部フレームであり、前記P1及びP2フレームは予測フレームであり、そして前記B1とB2フレームは双方向補間フレームである請求の範囲9に記載の方法。

11. 前記割り当てステップは、

相対的に高いビットレートを I 1 に指定のフレームに割り当てるステップと、 第 2 に高いビットレートを P 1 に指定のフレームに割り当てるステップと、 第 3 に高いビットレートを B 2 に指定のフレームに割り当てるステップと、 相対的に低いビットレートを12、P2、B1に指定のフレームに割り当てる ステップと、をさらに含む請求の範囲9に記載の方法。

- 12. 前記割り当てステップは、
- I 1 フレームにはビットレート200キロバイト/毎秒、P1フレームには1 00キロバイト/毎秒、B2フレームには10キロバイト/毎秒以上、そしてB 1、I2、P2フレームには10キロバイト/毎秒をそれぞれ割り当てるステップを含む速めの範囲11に記載の方法。
- 13. 前記割り当てステップでは、人間の視覚における前方向時間マスキングを 利用する方法で前記フレームにピットレートを割り当てることで、画面変化にお ける直後のフレームが相く符号化される請求の範囲 2 に記載の方法。
- 14. 前記割り当てステップでは、得られた符号化方式において後方向時間マス キング効果を利用する方法で前記アレームにピットレートを割り当てることで、 画面変化が連続する2つのフレーム間の比較的大きな動きを含む場合に、画面変 化の直前のフレームと直後のフレームを比較的低いビットレートの割り当てによ り粗く符号化する請求の範囲とに記載の方法。
- 15. フレーム間で測定したグローバルモーションの度合に基づいて基準フレームを内部 (I) と予測 (P) に割り当てるステップをさらに含む請求の範囲3に 記載の方法。
- 16. 基準フレーム間に双方向補間フレーム (B) を割り当てるステップをさら に含む請求の範囲15に記載の方法。
- 17. 前記 T_1 しきい値の大きさは前記 T_0 、しきい値の大きさの約4倍大きくしておき、前記 T_1 しきい値が一対の連続フレーム間の完全な両面乃至ピクチャ変化を奏わすようにした論求の範囲6に記載の方法。
- 18. 画面変化に続くフレームの画質低下が感知されないようにするために、画 面変化に続くフレームの前記ピットレートを最大ピットレートまで徐々に増加さ せるステップをさらに含む請求の範囲9に記載の方法。
- 19. P1および/またはP2と、B1および/またはB2フレームの前配指定 した部分を使用して動き補償補間符号器により前記フレームを処理し、前配関連 するビデオデータを符号化乃至圧縮するステップをさらに含む請求の範囲11に

記載の方法。

- 20. フレーム間の動きを決定するためにテレスコピック動きベクトル検索を使用するステップをさらに含む請求の範囲19に記載の方法。
- 21. 前記符号器でフレーム処理に使用している前記ピットレートを検出するス

前記符号器で実際のピットレートと目標ピットレートの間の偏差乃至エラーに 比例してフレームの量子化の粗さを調節するステップと、をさらに含む請求の範 用19に記載の方法。

- 22. 前記得られたピクチャの両質を実質的に最大にするために、P1フレームをB1フレームに置き換えることで、フレーム間の動きの大きなセグメントにおいて量子化したP1フレームの個数を制限するステップをさらに含む請求の範囲21に沿線の方法。
- 23. GOP間について、指定された I1、I2、P1、P2の各フレームに同数のビットをそれぞれ割り当てるステップをさらに含む請求の範囲 11 に記載の 方法.
- 24. 指定された I 1、 I 2、 P 1、 P 2、 B 1、 B 2の各フレームに割り当て たビット数を検索された 0型画面変化の個数に応じてそれぞれ G O P間について 変化させるステップと、

指定されたI1、I2、P1、P2、B1、B2の各フレーム間のビット割り 当ての比率をGOP内のフレーム間について一定に維持するステップと、をさら に合む請求の範囲11に記載の方法。

25. 前記調節ステップが式:

TB=XTB [TBRGOP/ABRGOP]

にしたがい、TBは目標ビット割り当て、XTBは直前のフレームでの目標ビット割り当て、ABRGOP は実際のビットレート、TBRGOP は目標GOPビットレートである請求の範囲21に記載の方法。

26. デフォルトとして各GOPの構造内にn個(nは整数1、2、……)のP 1フレームを挿入して基準フレーム間の符号化遅延および距離を減少させるステップと、 連続フレームの最初のフレームを第1のデフォルトP1に、次の連続フレーム の最初のフレームを次に発生するデフォルトP1にと、全てのフレームが符号化 するまで反復的に符号化することにより、前記符号器で各GOPを処理するステ ップと、をさらに含む請求の範囲19に記載の方法。

27. Nが奇数の時は偶数個のフレームを有するように各GOPを調節するステップと、

Nが偶数の時は奇数個のフレームを有するように各GOPを調節するステップと、をさらに含む請求の範囲26に記載の方法。

28. B2フレームについてのビット割り当てを式:

$$| B2 | = | B1 | + \frac{| P1 | - | B1 |}{M - N - 1}$$

式中のNは | P1 | フレームの個数、Mは各GOP内のフレーム個数、| B1 | はB1フレームのビット割り当て、| P1 | はP1フレームのビット割り当て; により計算するステップをさらに含む糖求の範囲9に記載の方法。

- 29. 時間的に変化がはげしい領域に余分にP1フレームを挿入してさらに一定 した知覚的なピクチャ画質を生成するステップをさらに含む請求の範囲24に記 歳の方法。
- 30. 前記挿入ステップは式:

$$R = \frac{30}{M} [R_{i1} + k R_{i1} + (M-1-k) R_{i1}]$$

を満たすステップを含み、式中のkはP1を割り当てたフレームの個数、MはG OPの大きさ、 R_{11} 、 R_{p1} 、 R_{b1} はそれぞれI1、P1、B1フレームへのビットレート割り当て、Rは毎秒のチャンネルビットレートであり、そして R_{11} 、 R_{b1} がRを所望の一定値に維持するように調整される請求の範囲 29 に配載の方法。

31. 前記グローバルモーション決定ステップでは、ヒストグラムの差 (DOH)、差分のヒストグラム (HOD)、ブロックヒストグラムの差 (BH)、プロック変勢の差 (BV)、動き補償エラー (MCE)を含む5種類の異なる距離測定のいずれか1つを時間的セグメンテーションのために用いる請求の範囲1に

記載の方法。

32. 前記割り当てステップは、所定のしきい値レベルを越える関連フレーム間 の動きの大きさに基づいて内部フレーム (I) および/または予測フレーム (P) として個別のフレームを割り当てるステップを含む請求の範囲2に記載の方法

,

33. I1、I2、P1、P2基準フレーム間のフレームスペーシングを実質的 に最適化するために前記P1に指定のフレームを最適スペーシングにするステッ ブをさらに含む請求の範囲6に記載の方法。

34. 前記最適スペーシングにするステップは、

0型しきい値検出で初期にP1に指定したフレーム位置と1型しきい値検出で それぞれI2とP2に指定した一対のフレーム位置の間の距離平均からの偏差を 最小にするステップと.

最適スペーシングのP1フレームに基づいて各GOPの構造を決定するステップと、を含む請求の範囲33に記載の方法。

35. 前記最適スペーシングのステップは、動きベクトルを決定するために各フレームを排他的検索するステップを含む請求の範囲34に記載に方法。

36. 前記最適スペーシングのステップは、フレーム間の動きベクトル情報を決定するために後ろ向きテレスコピック検索を使用するステップを含む請求の範囲34に記載の方法。

37. GOP間について、I1、I2、P1、P2、B1 フレームの各形式についてピット割り当てを変化させるステップと、

前記フレーム形式のそれぞれについて前記ピットレートを一定に維持するステップと、

をさらに含む請求の範囲11に記載の方法。

38. 前記ビット割り当てを変化させるステップにおいて、式:

$$D_{\tau} = C_{\tau} \frac{R}{2(C_{\tau_1} + NC_{P_1} + (M - N - 1)C_{B_1})}$$

にしたがって各GOPについての目標ピット割り当てを割り当てるステップをさらに含み、式中の D_{τ} はピクチャタイプ t についての前記目標ピット割り当て、

- 39. 前記最適スペーシングにするステップは、フレーム間の2進検索を行ない、0型しさい値変化のP1を指定したフレームについて実質的に等距離の位置を見つけるステップを含む請求の範囲33に記載の方法。
- 40. 前記フレームが表わすビデオデータから空間サブパンドを形成するステップをさらに合み、このステップに、連続フレームの選択された空間サブパンドを用いてグローバルモーションの度合を決定するための前記グローバルモーション 決定ステップが続く請求の範囲 I に記載の方法。
- 41. 前記空間サブバンド形成ステップは、
- 各フレームの前記ビデオデータの1つの空間方向に対してローパスまたはハイ パス空間周波成分と第2の空間方向についてローパスまたはハイパス空間周波成 分からなる派生画像を形成するステップと、
- 両方の空間方向で各画像について前記派生画像をサブサンプリングして前記空 間サブパンドを取得するステップと、を含む請求の範囲40に記載の方法。
- 42. 前記空間サブバンド形成ステップは、
- 各フレームの前記ビデオデータを連続してローパスフィルタおよびハイパスフィルタそれぞれに通して、各空間方向に2つのフィルタ処理画像を取得するステップと、
- 各空間方向に2の倍数でサブサンプリングし各フレームについて1つのフィル タ処理画像をそれぞれサンプリングするステップであって、それぞれの得られた 部分画像がこれの派生した元の画像の1/4の画業数を有するようにするステッ プと、を含む酵収の範囲40に記載の方法。
- 43. 前記空間サブバンド形成ステップは、
- 各フレームの前配ビデオデータをローバスおよびハイパスフィルタの両方の第 1段と第2段に連続して通し、最低の第1段サブバンドの1つの空間方向について前配ローバスまたはハイパス周波数成分と第2の空間方向について前配ローパスまたはハイパス空間周波数成分とからなる第2段サブパンド画像を取得するステップと、

各フレームについて各空間方向それぞれで前記第2段サブバンド画像をサブサンプリングし、それぞれの得られた部分画像がこれの派生した元の画像の1/1 6の画素数を有するようにするステップと、

前記第2段サブバンド画像の最低のサブバンドを用いて前記グローバルモーションを決定するステップを実行するステップと、を含む請求の範囲40に記載の方法。

44. 連続フレームの所定個数をピクチャグループ (GOP) として設定することで、連続フレームを複数の連続GOPにグループ分けするステップと、

フレーム間のグローバルモーションの所定のしきい値を設定し、IおよびP型 基準フレームを指定し、その間の他のフレームは全てB型フレームに指定するス テップレ

1つのフレーム形式から前記1つのフレーム形式の次の連続フレームへ変化する画面の複雑さに対応する各フレーム形式で前記目標ビット割り当てを変化させるステップと、をさらに含む請求の範囲40に記載の方法。

45. MPEG標準に準拠してI、P、Bフレームを用いるビデオデータ圧縮システムにおいて、

ピクチャグループ (GOP) のフレーム間の時間的動きのしきい値を予め設定 して I およびP フレームを指定するステップと、

IフレームとPフレーム、Iフレームどうし、またはPフレームどうしの対の いずれかIつの間にそれぞれ配置したフレームをBフレームに指定するステップ と、を含む方法。

46. 所定数のフレームを含むピクチャグループ (GOP) により関連させられたビデオデータからなるビデオデータを圧縮するシステムであって、

前記フレーム間のグローバルモーションの度合を決定するための動き検出手段と、

前記動き検出手段からの前記グローバルモーションの測定値に応じて、基準フレーム間のスペーシングを指定し調節するための手段と、

前記基準フレームを符号化するための符号化手段と、を含むシステム。

47. 前記指定手段は、フレーム間のグローバルモーションに対して前記基準フ

レームを1および/またはP、およびBフレームとして符号化するための手段を含む請求の範囲46に記載のシステム。

- 48. 前記動き検出手段は、直前の基準フレームと後続フレームからの積算した 動きが所定のTo_しきい値を越える時点を検出し、前記指定手段が前記後続フレ ームの直前のフレームをP1フレームに指定することで応答するようにするため の0型両面変化検出器手段を含む請求の範囲 46に記載のシステム。
- 49. 前記動き検出手段は、2〜の連続フレーム間のグローバルモーションが実質的な両面が五ピクチャの変化を表わず所定のT」とい 植を越える時点を検出 、前記指生下段が前記2〜の連続フレームの第1に発生するフレームをP2フレームに、また前記2〜の連続フレームの能力乃至第2に発生するフレームを I 2フレームに指定することで応答するようにするための1型両面変化検出器手段を含む結束の数m46に認動のシステム。
- 50. 前記動き検出手段は、2つの連続フレーム間のグローバルモーションが実質的な歯両分所ピクチャの変化を表わす所定の7.1 とい値を超える時点を検出し、前記指揮主段が前記2つの連続フレームの第1に発生するフレームをフェンレームに、また前記2つの連続フレームの他方乃至第2に発生するフレームを I 2フレームに指定することで応答するようにするための1型両面変化検出器手段を含らに含さ度取の変額μ 8 ほご戦争のシステム
- 51. 前記フレームはピクチャグループ (GOP) に構成されそのそれぞれが所 定数の連続フレームからなり、前記符号器手設はさらに、任意のGOPを符号化 するために使用するピット数が前記システムのピット容量を越えないようにする ためのピットレート制御事数会合む請求の範囲を 5 に記載のシステム。 52. 薬準フレームを含むフレームのグループに含まれるピデオデータを圧縮す
- 52. 基準フレームを含むフレームのグループに含まれるビデオデータを圧縮するための装置であって、
- フレーム間のグローバルモーションを決定するための手段と、
- 決定した前配グローバルモーションに応じて前配グループ内のフレームの形式 を分類するための手段と、
- 分類に基づいてフレームを処理するための動き補償符号器手段と、を含む装置

ムに、前記隣接するフレームの後のものを I 2 フレームに、これらの間の前記グ ローバルモーションが両面変化を表わす任意の値を越える場合に分類することを 含む詰求の範囲 5 2 に記載の装置。

54. 直前の基準フレームに対して任意の値を越えるグローバルモーションを有 するフレームに先行するフレームがP1フレームに指定されることを含む請求の 範囲52に記載の装置。

55. 前記グループ内のN個のフレームをデフォルトのP1フレームとして分類 するための手段をさらに含む請求の範囲52に記載の装置。

56. P1として分類された前記N個のフレームは任意のフレーム間隔で発生することを含む請求の範囲55に記載の装置。

57. デフォルトのP1フレームとして分類された隣接フレームがこれらの間に 同じ量のグローバルモーションを有することを含む請求の範囲55に記載の装置

58. 所定数のフレームを含むピクチャグループ (GOP) により関連させられたビデオデータからなるビデオデータを圧縮するシステムであって、

前記ビデオデータを受信し、それぞれ個別のフレームのサブサンブリングした 画素を全体として表わす複数の空間サブバンドを前記ビデオデータから抽出する ためのサブバンドビデオ符号化手段と、

前記フレームの前記空間サブバンドのサブサンプリングした対応画素それぞれ の間のグローバルモーションの度合を決定するための動き検出手段と、

前記動き検出手段からの前記グローバルモーション測定値に応じて基準フレー ム間のスペーシングを指定し関節するための手段と、

前記基準フレームの前記空間的サブバンドをそれぞれ符号化するためのサブバ ンド符号化手段と、を含むシステム。

59. 前記指定手段は、前記フレームの別々の前記空間サブパンド間についての グローバルモーションに関係させて前記基準フレームを I および/または Pおよび びBフレームとして符号化するための手段をさらに含む糖求の範囲に 58 に記載

のシステム。

60. 前記動き検出手段は、連続したフレームの空間サブバンドからの累積した 動きとこれに対応する直前の基準フレームの空間サブバンドとが所定のT0しき

い値を越える時点を検出するための0型画面変化検出器手段をさらに含み、そして前記指定手段が前記連続フレームの直前のフレームをP1フレームに指定する ことにより応答する請求の範囲58に記載のシステム。

61. 前記動き検出手段は、2つの連続するフレームの対応する空間サブパンドの間のグローバルモーションが実質的な画面が落とグチャの変化を表わす所定の T1しきい値を越える時点を検出するための1型画面変化検出器半段をさらに含み、これにより前記指定手段は、前記2つの連続フレームの第1に発生するフレームをP2フレームとして、また前記2つの連続フレームの他力万至第2に発生するフレームを12フレームとして指定することにより応答する訴求の範囲58に配載のシンテム。

62. 前記動き検出手段は、2つの連続するフレームの対応する空間サブバンド の間のグローバルモーションが実質的な両面またはピクチャ変化を表わす所定の T1しきい値を越える時点を検出するための1型両面変化検出器手段をさらに含 み、これにより前記指定手段は、前記2つの連続フレームの第1に発生するフレ ームをP2フレームとして、また前記2つの連続フレームの他カ万至第2に発生 するフレームを12フレームとして指定することにより応答する請求の範囲60 に記載のシステム。

【発明の詳細な説明】

時間適応型動き補間を用いる画像データの圧縮方法ならびにその装置

技術分野

本発明は、一般にデジタルデータの圧縮技術に関し、さらに特定すれば、選択 的に拡張データ圧縮を提供する方法でビデオデータの連続フレームの符号化技術 に関する。

背景技術

高速デジタル装置と大容量高速メモリが利用で能となることにより、連続フレームまたはフレーム群の間の変化を表わす符号化デジタル信号だけを返信することによって、ピデオ伝送のための任意の常練幅をいっそう効率的に使用する、と言う古くからのアイデアを具現化することが可能になった。高圧縮を実現するには、冗長性の減少だけではなく、不適別性の減少及び人間の視覚的認識特性を活用する大まかな符号化も解決する必要がある。人間の視覚の空間的限すは多くのシステムで流間に活用されており、特に離散・サイン変換(DCT: Descrete CostineTransform)を用いる適応量子化(例えばDCT量子化マトリクスにおいて)や、その他の技術、例えばサブバンド符号化やマルチ解像度表現においても活用されてきた。

時間データの減少は、ビデオ画像の連続したフレーム間に高い相関が存在する、 という認識に基づいている。しかしながら、人間の税免の時間的特性を面像だ 身化システムへ応用する点では、例えばフレーム運産の例えば24〜60フレー ム/秒に決定する、といった最も基本的な方法を除いてほとんど業績が見られな かった。これは部分的には空間処理より時間処理に高い複雑性が予想されるため であり、またビデオシーケンスの認知画質の標準測定法を定義する上で時間的時 点を含めることの困難さによるものでもある。

動画エキスパートグループにより1991年11月に公表された規格つまり(1SO-1EC/JTC1/SC2/WG12)と機別されるMPEG規格では、複数の生画像データフレームのシーケンスを複数の連続したグループ、即ち

GOP(グループオブピクチャ)にそれぞれ分割し、そして符号化したGOPに

I, B, B, P, B, B, P, B, B, P, B, B, P, B, B.

第1のPフレームは直前の1フレームに由来し、残りのPフレームは直前の先行するPフレームに由来する。 IおよびPフレームは基準フレームである。各Bフレームは、そのどちらかの側で最も近くにある基準フレームに由来するので、直接関係するPフレームはその前のBフレームを派生させる前に派生させる必要がある。

各 GO P の初めにある高温松の独立フレーム I は、フレーム差分符号化を用いて積算エラーを同避するために必要とされる。 量子化の目的は、フレーム間つ変化を表わすために用いるピット数を制御することである。 複数のフレーム同士で対応する部分は、基準フレーム内のプロックが、この基準フレームから減生するフレーム内のグこに配置されることになるかを表す力動きベクトルによって伝ごもれる。フレーム間の差分は一般的に動きによって起こり、トレによってムーBフレーム間よりもPフレームどうしの方がより多くの動きが起こり得るので、Pフレームのどちらかの側でPフレームからBフレームを派生させるよりもPフレームのどちらかの側でPフレームからBフレームを派生させるよりもPフレームのどちらかの側でPフレームからBフレームを派生させるよりもPフレームの必ちアンレームを発生させる方がより多くのビットを必要とする。

典型的なMPEGシステムでは、多数のピットを使用する基準フレームについて3フレームのスペーシングが充分に動きを伝達するために必要とされる。しかし、動きが少ないかまたは動きがない場合には、これらのフレームを表わすために用いられるピット数は余分なものとなる。

発明の要約

本発明の1つの目的は、ビデオ圧縮のための方法ならびに装置の改良を提供することである。

本発明の他の目的は、現在のビデオ符号化規格と互換性のあるビデオ圧縮用の 動き補償補間符号化のための方法ならびに装置の改良を提供することである。

本発明の1つの実施形態において、時間的セグメンテーションは、ビデオ圧縮 のための動き補間構造に動的に対応するように用いられる。入力ビデオ信号の時 間的変化は、基準フレーム間の間隔を調節するために用いられる。動的なグループオブビクチャ (GOP) 構造のためのビットレート制御は、人間の程覚における時間のロスキングに基づいて行われる。好適実施能において、基準フレーム 間のスペーシングは、異なる時間的間隔についての異なる測定値に基づいており、それは時間適応型動き補間 (TAMI) のためのアルゴリズムを使用してなされる。本差明によるこれらの実施形態と他の実施形態は、以下のパラグラフで詳細に要約する

従来のMPEGシステムのようにGOP内で基準フレームを固定的に配慮する のに代えて、本発明においては、基準フレームの位置及び使用ビクト数は、フレーム間でのグローバルモーションの量に依存している。本発明で用いるこのグローバルモーションというのは、全体としてのフレーム間の動きと定義する。そしてこの動きは、多数の周知の方法、例えばヒストグラム差、差分のヒストグラム、プロックセストグラムの差、ブロックを効差、および動き補償エラーなどで測定できる。

以下の説明において、MPEGoI、P、Bフレームに対応するフレームは<math>I1、P1、B1フレームと標記する。

あるフレームと I 1 即与第1のフレームとの間のグローバルモーションが経験 的に決定した他T_のを据えるようなフレームがGOPに含まれていない場合には 、残りのフレームは全てB型であり、そしてこれら残りのフレームはこのGOP のI 1 フレームと次のGOPの I 1 フレームとから派生する。したがって、本発 明のこの実施形態では、P 1 型のフレームは使用されず、多くのビットを節約で さることになる。

あるフレームとそのフレームの前にある基準フレームとの間のグローバルモーションが Γ_0 を越える場合、当該基準フレームは、本明細書においてP1フレームとする。つまりP1フレームは、動きを充分に伝達するのに必要な場合に使用される。

隣接するフレーム間のグローバルモーションも測定する。これが経験的に決定 した値丁」を越える場合は、急激な両面変化がフレーム間に発生したことを示し ている。この場合、本発明の実施形態において、隣接するフレームのうち後のフ レームは12フレームとし、これは11フレームより少ないビット数で独立して 処理され、そして12フレームの直前のフレームはP2フレームとし、これはP フレームより少ないビット数を有する。P2フレームの相対的な第さは肉眼的 に観察されないが、これは後方マスキカングとして公知の現象によるものである。 また12フレームの相対的な策され関眼的に観察されないが、これは前方マスキ ングとして公知の現象によるものである。

従来のMPEGシステムならびに本発明のシステムの両方において、基準フレームを処理したあとでこれらの間のBまたはB1フレームを処理する必要があることは明らかである。

前述した演算方法ではグローバルモーションで必要とされるビットだけを使用 しており、時間適応型動き補間(TAMI)と略称される。

例えばデジタルテレビで使用される送信チャンネルで本システムを使用する場合、ビットレートは、処理済みビッをバッファに読み込み、パッファ内の任意のビット数を維持するように量子化回路で使用されるレベル数を制御することによって制御することができる。2つ又はそれ以上の連続フレームがToを越えるグローバルモーションを有しており、これら連続フレームの直前のフレームが高熔像度のP1フレームとして指定される場合には、ビットレートを制御すれば求められるより少ないビット数で第2のP1フレームを処理することが可能になる。このような場合、本発明の別の実施形態においては、第1のP1フレームだけを処理し、そしてこの第1のP1フレームと次の基準フレームとの間のフレームは、P1フレームとして分類されるような場合であっても、B1フレームとして処理される。

量子化回路を制御して固定ビットレートを越えないようにする別の方法は、指 定したフレームの処理に公称ビット数を使用するような場合であれば、GOPで 要求されるほど・ト数を採し、また固定ビットレートを越えるビットレートを求 求されるような場合であれば、公称ビット数を必要に応じて比例的に引き下げる ことである。そのため、もし非常に多くのP1フレームが存在するような場合、 本発明の別の実施形態においては、これら複数のP1フレームを全て処理する際 に少ないビット数を使用することができるように量子化レベルを被少させる。 本発明の符号化システムを、例えば非同則施送モード(ATM)や広帯域統合 サービスデジタル回路側(ISDN)といった概念で使用する分配システムに結 合した場合、別の実施形態において可変ピットレート符号化(VBR)をTAM Iと組み合せて使用すると、このようなチャンネルの非常に広い有効帯域幅のた めにVBRーTAMIシステムを形成できる。このシステムは、P1フレームの 個数が削限されないと言う点だけでTAMIと異なている。

固定ピットレートTAMI (FBRーTAMI) では、全てのプロック動き補 値符号化システムと同様に、例えばTaを観えるグローバルモーションが見られ ないようなときに基準フレームが離れすぎてしまい、動きのあるエッジで認識的 に不快な符号化エラーを発生させてしまう傾向がある。

さらに、FBR-TAMI又はVBR-TAMIで最も長い符号化遅延は、G OPの時間長に等しく、15フレームからなるGOPの場合では1/2秒となり 、長寸ぎることがある。

上述の問題を和らげるためには、本発明のさらに別の実施形態において、N個のP1基準フレームをデフォルトとしてあえてGOPに挿入する。 へまりグロー バルモーションが関係して必要とされているのではないフレームを、GOP精造に挿入する。これによってGOPをN+1のセグメントに分割し、これを順次処理して、基準フレーム間の時間を減少させ、さらに良存な動きの表現を提供すると同時に、処理時間を減少することができる。Nを増大させるにつれて符号化選延は減少するが、ピットレートの節約度の減少はそれほどでない。

$$| B 2 | = | B 1 | + \frac{| P 1 | - | B 1 |}{M - N - 1}$$

ここでMはGOPの大きさ、Nは挿入したP1フレームの個数である。

GOPのフレームをP1およびB1またはB2フレームと指定したあと、本発明のいずれかのシステムまたは実施形態において、B1またはB2フレームの補間に必要な計算は通常の動き補償エンコーダで実現できるが、テレスコピック動きベクトル検索(telescopic motion vector serching)及び差分ピットレート制御システムで使用するエンコーダを使用するのが好ましい。

本発明の好選実施形態において、P1フレームは先行の基準フレームに対する Tるを超える動きを有するフレームに配置するのではなく、フレーム間の動きの 追ができるだけ同じになるように配置する。各フレームの動きのをが生成たい、 そして前途のように12及びP2フレームをフレーム間の動きがT₁を越える 場合の両面変化で指定される。使用すべきP1フレームの数Nを仮定し、これら といずれかの側の基準フレーとの間の時間内間について、間側の位置の全ての 組み合せで計算を行なって、これらの測定値全部の半均に最も近い位置を選択する。未発明のこの実施形態はOSA、つまり最適スペーシングアルゴリズム(optimal spacing algorithm)を持する。

本発明の別の実施形態では、Pフレームの最も有利な個数Nを各GOPにおけるフレーム指定から動的に決定する。

また、本発明の別の実施形態では、TAMIをサプバンドビデオ符号にに応用 する。高精度の動きベクトル情報が本発明の各種実施影態に関連したアルゴリズ ムを実施する上で必要とされないことに鑑み、両方の空間方向に面素サンプリン グを用いることで計算回数を減少することができ、より一層の計算回数の減少を 図りたい場合には、前方デレスコピック検索ではなく後カテレスコピック検索を 用いるようにすればよい。

図面の簡単な説明

本発明の各種実施形態は図面を参照して説明し、図面において実質的に同じ要素は同じ参照番号で識別される。図面において、

図1は、ブロッホの法則の元で人間の肉眼による光の認識を表わす等価強度パルスを示す。

図2Aは、人間の肉眼の時間的周波数応答の1次ローバスフィルタモデルの周 波数応答関数のプロットである。

図2Bは、典型的な時間変調伝達関数のコントラスト感受性対時間周波数を示 す曲線である。

図3は、本発明の1つの実施形態でグループオブピクチャ (GOP) の時間適 応型動き補間 (TAM1) を提供するビデオ符号器のブロック図である。

図4は、本発明の1つの実施形態で図3のビデオ符号器に関連したTAMIプログラミングまたはアルゴリズムのフローチャートである。

図5は、P1フレーム偶数が制限されていない場合に0~P処理を比較するための信号対差常比(S/N比)対フレーム番号と、本発明の1実施形態でP1フレーム偶数が制限されている場合に得られた信号対雑音比とのプロット又は曲線を示す。

図6は、本発明の1つの実施形態で使用する連続フレーム間の動き予測のテレ スコピック検索を示す。

図7Aから図7Dは、それぞれN=0、1、2、3として、本発明の実施形態で使用するN個のP1フレームでのグループオブピクチャ構造(GOP)のデフォルトを示す。

図8Aは、本発明の1つの実施形態における1型または0型の画面変化を有する1-P方式でのGOP構造を示す。

図8Bは、1型の画面変化だけで0型画面変化が検出されない1-P方式での GOP構造を示す。

GOP構造を示す。 図9は、本発明の別の実施形態の可変ピットレートTAMI符号器を示す。

図10は、図9の可変ビットレートTAMI符号器に関連した可変ビットレートTAMIアルゴリズムのフローチャートである。

図11は、本発明の別の実施形態における最適スペーシングアルゴリズムを提供するためのフローチャートである。

図12は、1型の両面変化が見られる場合に図11の2-P最適スペーシング アルゴリズムを用いるGOP構造を示す。

図13は、本発明の各種実施形態の最適スペーシングアルゴリズムで使用する

後方テレスコピック検索を示す。

図14 (a) から図14 (e) は、平均ピットレート736.5 Kbit/秒 (テニス) の場合で、ほとんど動きがない画像での信号対雑音比を、従来の固定 4-P方式、0-P方式、1-P方式、2-P方式、3 P方式とそれぞれ比較す スをかじぶよ

図15 (a) から図15 (e) は、図14 (a) から図14 (e) のそれぞれのS/N比曲線に関連して、平均ピットレート736.5Kbit/秒 (テニス) での対応するフレーム当たりのピットレートを示す。

図16 (a) から図16 (e) は、それぞれ本発明の実施形態による4-P方 式、0-P方式、1-P方式、2-P方式、3-P方式について、平均ピットレート736.5 Kbit/秒(テニス)を育する両面変化でのGOPの連続する 稼数フレームから取り出したS/N比曲線である。

図17 (a) から図17 (e) は、平均ピットレート736.5 Kb1t/秒 (テニス) の場合に、それぞれ図17 (a) から図17 (e) に対応した急激な 画面変化のある時間的高効領域でのピットレート対連続フレームの数の曲線を示

図18 (a) から図18 (e) は、ビットレート300Kbit/砂 (テニス) の時に従来の固定4-P方式と本発明の実施形態での0-P方式、1-P方式、2-P方式、3-P方式それぞれで、わずかな動きの画像のS/N比曲線対連続フレーム数を示す。

図19 (a) から図19 (e) は、それぞれ図18 (a) から図18 (e) に 対応するピットレート対連続フレーム数を示す。

図20は、従来の固定4-Pと本発明の0-P方式、1-P方式、2-P方式 、3P方式の実施形態で、平均ピットレート736.5Kbit/秒のわずかな 動きを有する画像で異なる補間方式の性能を示す表である。

図21は、平均ビットレート736.5Kbit/秒で画面変化を含む画像の 異なる補間方式の性能を示すための表である。

図22は、平均ピットレート300Kbit/秒でわずかな動きを含む画像の 異なる補間方式の性能を示すための表である。

図23(b)は、それぞれ同じ平均ピットレート663Kbit/秒のFBR -TAMIとVBR-TAMIの性能を比較するためのS/N比曲線である。

図24 (a) から図24 (e) は、それぞれDOH, HOD、BH、BV、M CE測定法を用いてフレーム番号120から180での第1フレームと現在フレ ームの間の間隔を示す。

図25 (a) から図25 (e) は、それぞれDOH, HOD、BH、BV、M CE測定法を用いた本発明の最適スペーシングアルゴリズム (OSA) のS/N 比曲線を示す。

図26は、5種類の別の間隔測定法と3種類の別のフレーム数範囲でB2フレ ームのない本発明のOSA実施形態を用いたS/N比の結果とピットレートの結 果を作表するための表を示す。

図27は、5種類の別の間隔測定法と3種類の別のフレーム数範囲でB2フレームのない本発明のOSA実施形態を用いたS/N比とピットレート結果を作表 するための表を示す。

図28 (a) から図28 (e) は、それぞれDOH, HOD、BH、BV、M CE測定法を用いB2フレームのない適応型最適スペーシングアルゴリズム (O SA) の本発明の実施形態の使用によるフレーム番号90から150とS/N比 との曲線である。

図29 (a) から (c) は、本発明のTAMIとOSAを比較するための合成 曲線を示す。

図30は、τに設定した0型しきい値を用いた時間セグメントに対する1つの フレームと他のフレームの間隔を示す。

図31は、BS E-TAMI (2進検索等間隔TAMI) と呼ばれる本発明 の他の実施形態によるアルゴリズムを示す。

図32は、本発明におけるTAMIとOSAの両方に関連するフローチャートを示す。

図33は、図32のフローチャートで一般に要求される画面変化検出ステップ に関連のあるステップのフローチャートを示す。

図34は、図32のフローチャートの画面検出ステップに関連してN-P T AMI と呼ばれる本発明の他の実施形態による画面変化検出方法のフローチャールカム

図35は、図32、図36A、図36Bのフローチャートに図示した1つまた はそれ以上の一般化した符号化ステップに関連する符号化ステップを詳細に説明 したフローチャートである。

図36Aと図36Bは、それぞれ本発明の別の実施形態において図32のフローチャートの「MAIN」ステップに関連する処理ステップの一部を示す。

図37は、図36AのフローチャートのMEP (ステップ268) の詳細を示すフローチャートである。

図38は、図36AのフローチャートのMEI (ステップ276) を示すフローチャートである。

図39は、本発明の各種実施形態を実現するためのハードウェア構成を示す概 略ブロック図である。

図40は、図39に一般化して示した画面変化検出器310の一部を示す概略 ブロック図である。

図41は、図40の観略図に一般化して示した距離計算ユニット338の概略 ブロック図である。

図42は、図40に一般化して示した1型画面変化検出器340の概略プロック図である。

図43は、図40に一般化して示した0型画面変化検出器342を示す概略プロック図である。

図44は、図40に一般化して示したGOP構造生成ユニット344の概略プロック図である。

図45は、図40に一般化して示した画面検出器制御装置モジュール346の 概略プロック図である。

図46は、図39に一般化して示した動き補償モジュール318の概略プロッ

ク図である。

図47は、図46に図示した動き補償モジュール318のスイッチ制御ブロック又はモジュールの真理値表を示す。

図48は、図46に図示した動き補償モジュール318の動き予測モジュールの概略プロック図である。

図 4 9 は、図 4 8 の 概略図に図示したテレスコピック動き予測制御装置 4 2 4 の 概略 ブロック図である。

図50は、図39に図示したハードウエアシステムのピットレート制御モジュール326についての概略プロック図と表444を示す。

図51は、本発明のBS E-TAMIによる図39の符号器に関連する両面 変化輸出器310の構成を示す概略プロック図である。

図52は、図51の画面変化検出器310に付属する2進検索ユニット450の概略プロック図である。

図53は、本発明の他の実施形態によるTAMIを含む一般化したサブバンド ビデオ符号器460の軽略ブロック図である。

図54は、図53の符号器460に関連した多解像度動き予測法を示す概略説 明図である。

明図である。 図55は、差分バルス符号変調方式 (DPCM) で左から水平方向の予測、第 1の桁から垂直方向の予測を利用するブロック走客モードを示す。

図56は、図53のサブバンド符号化システムに関連するブロック走査水平走 畜モードを示す。

図57は、図53のサブパンド符号化システムに関連する垂直プロック走査モードを示す。

図58は、本発明の各種実施形態の間の性能比較の表である。

図59は、本発明のサブバンドビデオ符号化の実施形態によるシステムに関する詳細な説明を提供するための図53を追加説明するための概略ブロック図である。

図60は、図59のサブパンドビデオ符号化システムのサブパンド分析モジュ ール4164の概略ブロック図である。

本発明による好適実施例の詳細な説明

本発明の符号化方式の1つの実施形態で活用している認識要因の1つは時間マ スキングで、これは低レベル認知における時間加重に密接に関連するが、これと は異なる。時間的マスキングの画像符号化における活用についてはほとんど従来 の業績が見られない。

時間加重はプロッホの法則として1世紀以上前から知られている。プロッホの 法則では、約100ms (ミリ秒) の離界時間、即ち持続時間(丁)以下のとき 、人間の内眼による輝度認識は、持続時間(丁)と輝度(1)の積が一定に保た れる限り一定であるとしている。すなわち。

(1)

$I \times T = K$

これは一種の時間加重(積分)が人間の視覚系に発生することを表わしている。図1は時間加重効果を示したもの、輝度認識はベルス1、2、3の合計画がただけななし、位別のベルスの特殊時間や環境の強さとは無関係である。時間加重が神経現象であり光受容器(photoreceptor)レベルでは発生しないことが分っているが、これが神経節細胞レベルで、側膝状体核(14teral geniculatenucleus にが)で、又は皮質で発生しているのかどうかはまだ分っていない。持続臨界時間は、黒い電景に対して光少の点を見た場合(構想野条件)に約100msである。自然な投資条件(明視野条件)では臨界特練時間はもっと短く、約面を内の物体の方向をいうことができる等で、臨界特殊時間は、数百ms程度まで長くなることがある。この時間加重が作用するため、人間の視覚は時間解像度が制限され、臨ア・対策時間に関係を表され、をより表すの場所に影響を表されるの理的時間解像度が制限され、これが映画やテレビのフレームを表すの選択に影響を考えたまなの理的時間を関である。このマレームを展り

本発明は、視覚の時間的マスキングの態様に関する。簡単なローバスフィルタ モデルを用いることでこの現象は特徴付けられる。人間の時間的処理を洩れの多 い積分器、すなわち1次ローバスフィルタとしてモデル化すれば充分である。 ラブラン変換として表現される時間的伝達関数は、次のようにモデル化する。

とができる。

$$H(S) = \frac{1}{1 + ST} \tag{2}$$

ここでTは復元時間(臨界持続時間)で、約100から200ミリ秒である。 フーリエ変縁の項で表現される周波数応答は次式で与えられる:

$$|H(j\omega)| = \frac{1}{\sqrt{(1+\omega^2 T^2)}}$$
 (3)

この応答は大まかに時間的変素心護関数 (MTF) を反映しており、見えるか 見えないかのサイン波変調振幅の連数として定義される。これは刺激の時間周波 数に対する6期の感度応答関数である。図 2 Aは強丸の多い積分器モデルの周波 数応答曲線27を示し、図2 Bはそれぞれ空間周波数0.5 サイクル/秒と16 サイクル/秒を有する曲線31、33で典型的な時間的MTFの周波数応答曲線 を示す。

時間的マスキングは2種類あり、前方向と後方向である。到着する刺激が時間 に対して前方向で作用して後続の刺激に影響する場合には前方マスキングであり 、後に到着こた刺激がすでに刺着しすぎまった刺激に影響する場合が後カマスキ ングである。符号化方式におけるこれらの効果のため、後続のフレームの場合と 同様に画面変化の直前のフレームを担く符号化することができる。この効果は実 酸で確認されており、オリジナルフレームがと、担く符号化した直前プレームを 含むフレーム群との間の認識上の品質に少しも差が検出されていない。通常のフ レームのビット数を20%ほど減らしてフレームを符号化した場合であっても、 わずかな影響したの差が検出される程度であった。

一般に、これらの前方及び後方マスキング効果は、時間マスキングの基礎となる2つの作用により説明することができる。1つは光によるマスキングで、輝度に急激な変化がある場合に発生する。この効果は調酸上の側方類圧に起因さる考えられている。もう1つは複髪処理雑音によるマスキングで、複覧パターンの

急激な変化があった場合に発生する。これは時間的加算によって空間コントラストが劣化することで説明することができる。両面変化が生じる場合にはこれら2 練鎖のマスキング作用の組み合せ効果によって、前方及び後方マスキング効果を 発生する。

時間適応型動き補間(TAMI)アルゴリズム

固定ビットレート符号化(FBR-TAMI):

本発明による新規な動き補間符号化技術は、I (内部フレーム)、P (予測フレーム)、B (双方向補間フレーム)を含む幾かめの需語をMPEC機準から採り入れており、現在のビデオを介化規格に準拠する装置と一般的に互換性を有する。本発明の1つの実施形態では、時間適応型動き補間アルゴリズム (以下では TAM 1 アルゴリズムと称する) が開発された。TAM 1 アルゴリズムの1つの変態例では、固定ビットレート符号化を使用し、後述するFBR-TAM 1 を提供する。

TAMIアルゴリズムでは、2つの基準フレームの間の間隔は、入力ビデオの 時間的変動にしたがって対応させるようにする。また、ビットレート制御は、人 間の観覚の時間的マスキングを活用している。この方法の重要な問題点は、グル ープオブビクチャ (GOP) 構造が動的に変化することによるビットレート制御 の問題である。

画面変化が起こったとき、画面変化後の最初のフレームをIフレーム、つまり 内部フレームとして符号化するのが望ましいが、現実的ではない。というのは1 つのGOP内にこのような多くの画面変化が存在するとすれば、ピットレートは 急激に増加することになってしまうからである。

この問題は、新規の1フレーム、即も内部フレームを通常のBフレームで使用 するピット数と同じビット数で根く量子化することで解決できる。これによるピ クチャ品質の多化は、前方時間マスキング効果のためシーケンスが進徳表示され るときには起こらない。画面変化に続くフレームのピットレート(帯域側)が最 大ットレート(帯域側)まで除ない増加して戻るならば、画面変化後のフレー ムの劣化は対策できないことが知られている。

低品質の内部フレームを画面変化後に使用すると、新しい内部フレームが使用

されるまで後続フレームのピクチャ品質に直接影響が及び、後続フレームの品質 は相次ぐフレームを経るにしたがって高くなる。このステップ的なフレーム品質 の改善は、フレームごとを基礎とする明示的なビット割り当て制御を行う複雑な 方法を用いなくても実現される。

入力ビデオの有意な時間的変動を検出するために、本発明を開発するに当たって、様々な時間的間隔の測定を考慮した。これらの様々な時間的間隔は、実際にはフレーム間のグローバルモーションの測定量である。これらののあきの測定は、ヒストグラムの差(DOH)、差分のヒストグラム(HOD)、ブロックを動(BV)或いは動き補償エラー(MCE)のそれぞれによって決定することができる。これらについては詳細に後述する。本発明のTAMTアルゴリズムでは、6種類の異なるフレーム形式、11、12、P1、P2、B1及びB2を使用する。フレーム形式、11、P1及びB1は、MPE G標準で定義されているのと同じ通常フレーム形式、つフレーム形式12とP2とは、1812と日本によりによりといったというによりによった。12とP2とはそれぞれ手能に担く量子化とた内部フレームとで削フレームである。一方B2は、通常のB1フレームよりビット数の多い補間フレームで、一般にP1フレームよりビット数か多い補間フレームで、一般にP1フレームよりビット数の多い補間フレームで、一般にP1フレームよりビット数か少ない。11とするフレームは完全なフレームであり、詳細に量子化される。

TAMIの1つの実施形態において、I1フレームは、各GOPで常に第1フレームとなる。 直前の基準フレームとGOP内の連続フレームとからの累積した 動き又は測定した関隔がのしまい情を越える場合、その連続フレームの直前のフレームは、R1フレームに指定される。2つの連続したフレーム(直前のフレームと直接のフレーム)間の動き又は測定した関隔が1型しきい値を越える場合に は、第1フレーム、即ち直前のフレームがP2フレームと指定され、第2フレーム、即ち直接のフレームが12フレームと特定される。

11、12、P1及びP2フレームは、B1及びB2フレームを補関する際に 使用される基準フレームである。0型画面変化を発生するGOPでは、基準フレ ームの間にB1フレームが指定される。0型画面変化を発生しないGOPでは、 基準フレーム間でB2フレームが、詳細に後述するように指定される。検査すれ

ば、GOP内で0型画面変化が検出されない場合にはB2フレームが使用され、

可能なデフォルトP1フレーム以外のP1フレームは発生しない。したがって、 追加のP1フレームを必要としないことで節約されるピットがB1フレーム間に 分配されて、これらが大きい解像度のB2となることになる。したがってB2フ レームは基本的にはB1フレームと同じであるが、割り当てられるピット数がわ ずかに大きいちのである。

本発明の他の実施形態では、1つのGOPにおいて第1に発生するPフレーム は、直前の1フレームから予測される。続けて発生するPフレームは、直前のP フレーム又は12フレームどちらか近い方から予測される。

図3はTAM1アルゴリズムのブロックダイアグラム10を示す。TAM1アルゴリズムは、まず第1に現在のGOP内の全てのフレームを検索して1型両面変化を供用し1型両面変化検用器(SCD14)を使用する)、そして0型両面変化を検用し12型両面変化を検用とのCD14)を使用する)。次のステップでGOP(グループオブビケチャ) 構造内でのPフレームとBフレームの位置を使用して、効き能解論間符号器18によりフレームを処理する。この助き補償補間符号器18は、典型的な動き補償符号器と類似のものだが、この何ではテレスコビック動きベクトル検索及び異なるビットレート制制機構とを使用する点で異なる。動き補償補間符号器18は、農業サイン変換(DCT)まで点で異なる。動き補償補間符号器18は、農業サイン変換(DCT)なりではテレスコビック動きベクトル検索及び異なるビットレート制制機構とを使用する点で異なる。動き補償補間符号器18は、農業サイン変換(DCT)なりまでは、農力化のではテレスコビック動きベクトル検索及び異なるビットレート制制機構とを使用する点で異なる。動き補償補間符号器18は、農業サイン変換(DCT)なりまでは、10で198、(2⁷)8、逆能数コサイン変換をジュール(IDCT)9、動き予測回路(ME)15、第1と第2の加算結合17、19を含む。DCT4は従来技術で公知のように、時間ドメインからのデータを周波数ドメインに変換する。

TAM1アルゴリズムのフローチャート10が図4に図示してあり、これには 両面変化検出器12、14で実行するプログラミングの詳細が含まれる。アルゴ リズム10はマイクロプロセッサをプログラミングして、例えば1つのGOPを 処理ユニットとして使用して、以下のように一般化されるステップを実行するた めのステップ100~110及び16を含む:

A: 1つのGOPからマイクロプロセッサ内に含まれる関連フレームメモ

リヘフレームを読み込む (ステップ101、102)。

- B: 1型画面変化の位置を1型SCD12で検出する(ステップ103、 106、107)。
- C: 0型画面変化の位置を0型SCD14で検出する(ステップ104、
- D: GOP構造を決定する、すなわちI、P、Bフレーム全部の位置をG S16で決定する(ステップ105、16)。
- E: 動き補償符号器18ヘステップDで生成した情報を出力する。

図示したアルゴリズムを処理するためには、2種類の両面変化検出器12、14が必要である。図4では、第1の両面変化検出器12は、現在のフレーム f。とその直的のフレーム f。はの間の間隔に対は対対かる動きの大きさがしまい値下、より大きい場合に、現在フレームに1型両面変化があることを宣言する(ステップ103)。この形式の画面変化は実際の画面内容の変化に対応し、12フレームとして符号化され(非常に粗く量子化される内部フレーム)、そして直前のフレーム「e」はステップ106でP2フレームとして符号化される(学常に粗く量子化された予測フレーム)。12フレームの符号化は、前方時間マスキング効果を活用しており、P2フレーム符号化では後方時間マスキング効果を利用している。

第2の画面液化検出器 14は、0型画面変化を検出する。ここでは、処理のために時間的セグメンテーションアルゴリズムを実施する。図 4に示すように、たっアルゴリズムは、現在フレーム f_{col} を機をの基準フレーム f_{col} の間で消度した間隔又は相対的な動きがしまい値 T_{col} の大きい場合に、現在アレーム f_{col} の間面変化があることを宣言する。(ステップ 10 4 5 mg)。この場合には直前のフレーム f_{col} では一部でのデカフレームであるP1フレームになる。時間的セグメンテーションのビット割り当て方法では、各時間的セグメントの終了フレームが P1フレームになり、そしてその間のフレームは、余分なP1フレームが使用されるか否かによってB1又はB2フレームとなるようにする。

実験の結果、1つの変更を行なった。2つ以上の余分なP1フレームが画質劣 化を招くことが分ったため、余分なP1フレームの個数を1に設定した。ただし 余分なP1フレーム0個は適応性なLを表わす。多数のP1フレー人を使用した 場合の劣化の理由については以下に説明する。パンファ7と量子化回路 (Q) 5 切間のフィードバックループ21を用いた固定ピットレート符号化を使用してい るため (図3参照)、連続するP1フレームでのピットレートは、フィードバッ クループ21によりステップ的に減少する(すなわち粗く量子化される)。とこ ろが、親いP1フレームを関手すると、P1フレームの両管を劣化させるが)か 、P1フレーム間のBフレームの両質をも劣化させる、という副作用を生じる。 動きの多い部分では相く量子化したP1フレームの側数を制限し、除外的数を 制限しない場合における、P1フレームによる両質劣化の影響は、P1フレームの の偶数を制限する方式と比較して、それぞれ曲線23、25に関連しており、図 5で容易に思ることができる。

2種類の現たるビット割り当て方式を使用することができる。第1の方式は一 定ビット割り当て方式で、B型を除く各ビクチャ形式に応じたビット割り当ては 、検出されたSSP (画面セグメンテーションポイント、すなわちの型の画面変 化)の側数とは無関係であり、GOP間で常に一定している。一定ビット割り当 て方式は、2つの理由からある種の用途でより対策のある。第1に、1フレーム 及びPフレームの回答の変動より事でジット割り当て方式を使用したと きのBフレームの画質の変動よりも大きい。第2に、1フレームは15フレーム ごと(1/2歩ごと)に反接するので、もし1フレームのビット割り当てが可変 とされると、2ペルツのプリンクの問題がでてくることがあり割り当てが可変 とされると、2ペルツのプリンクの問題がでてくることがあり割り当てが可変 とされると、2ペルツのプリンクの問題がでてくることがあり割り当てが可変

第2の方式は可変ビット割り当て方式で、各ビクチャ形式に対応するビット割り当では、機比したSSPの欄繋にしたがってGOP間で変化できるようにしているが、異なるビクチャ形式間でのビット比は常に一定である。一定ビット割り当て方式を使用した場合、ビット資源の制約のため (固定ビットレート符号化なは一定ビットレート符号化のため)、Pフレーム側数を大幅に変化させることができない。それ故、ある程度の遺応性を持たせるため、1つの実施形態で、Pフレーム側数の変化は1に制限されるが、これはBフレーム(B1B)2に2種類の異なるビット割り当てを行なっことで容易に実現することができる。つまり

余分なPフレームが使用される場合にはB1フレームを使用し、そうでない場合 にはB2プレームを使用するようにすればよい。可変ピット割り当て方式は、後 述のように、GOP内でPフレーム個数に可変をもたせるために、Pフレームの 個数を適合させるのに用いられる。以下の節では一定ピットレート割り当てを詳 細に説明する。

固定ビットレート符号化 (FBR-TAMI):

本発明のTAMIアルゴリズムは、簡単なレート制御方法を使用しており、こ れはバッファ7に入力されたビット数 (図3参照)を調整することに基づくもの で、1つのフレームの符号化の最中にバッファ7が一杯になり始めた場合、次の フレームの符号化で生成されるビット数を自動的に減少するようにシステムがプ ログラムしてある。異なるピクチャ形式(I1、I2、P1、P2、B1、B2) のためにビットをGS出力16を介して割り当てたあと、1つのスライスを設 定するための目標ビットが動き補償補間符号器18を介して計算される。 スライ スはMPEG標準で一連のマクロブロックとして定義されている(符号化シンタ ックスの層の1つ) ことに注意する。またマクロプロックも同様にMPEGにお いて「ピクチャの16×16区画の輝度成分からそれぞれ由来する8×8の4個 の輝度データブロックと、8×8の2つの色差データブロック」と定義されてい る。各スライスの終端で、バッファ7の内容をモニタする。目標バッファ内容以 上または以下の場合には、QP(量子化パラメータ)はそれぞれ減少または増加 される (スライスレベルのビットレート制御) 。入力ビデオシーケンスの変化す る符号化の問題に適応させるため、現在のピクチャで作成されるビットは、同じ ピクチャ形式のフレームが次に発生する際の目標ビットとして用いる。直前のフ レームで作成したビットが目標ビットより多いか又は少ない場合には、次のピク チャへのビット割り当てを所定の方程式により調節して毎秒ビットレートの受け 入れ可能な範囲を維持する (フレームレベルのレイト制御):

$$TB = XTB \left[\frac{TBR_{GOP}}{ABR_{GOP}} \right]$$
 (4)

TBR $_{GOP}$ は目標GOPビットレート、XTBは直前フレームの目標ビット割り当てである。

現在のフレームと基準フレームの間のフレーム間隔は最大15までになる(G OPのサイズ15のとき)ため、動き予測に困難が生じる。これは、隣接フレー ム間での検索領域が7だと仮定すると、動きベクトルの検索領域が最大105に なり得ることを意味する。全検索に対応する一致基準として平均絶対差(MAD) を用いると、CIFフォーマット(352×240両素、毎秒30フレーム) のシーケンスで毎秒約2. 5×10^{11} 回の演算を必要とする。こうした繁雑な計 算を減少するには、MPEG標準に記載されているようなテレスコピック検索を 使用する。というのは、テレスコピック検索は基準フレーム間の長い間隔を検索 するのに最も好適であると思われるためと、コンピュータシミュレーションで非 常に良好な動き補償性能を提供するためである。4つのフレーム間の動きベクト ルを検索する一例を図6に図示してある。テレスコピック検索の基本的アイデア は、現在フレームのブロックで検索ウィンドウの中心位置を、直前のフレームに おいて対応するマクロブロックで得られた動きベクトルによって移動させ、これ を最終フレームに達するまで反復することである。したがって、図示したように ベクトル22は、プロック20の中心からプロック24の中心へフレーム1で検 索ウィンドウの中心を移動し、またベクトル26はブロック24の中心からブロ ック28の中心へとフレーム2で検索ウインドウの中心を移動し、更にベクトル 30はブロック28の中心からブロック32の中心へフレーム3で検索ウインド ウの中心を移動する。

N=P TAMIアルゴリズム

TAM 「アルゴリズムには2つの問題がある。その1つは基準フレー人間に長 い間暦を発生しやすい傾向があることである。このことは移動するエッジの周囲 に知覚的に好ましくない符号化エラーを窓起するが、これはブロッシ動き補償符 号化に典型的に関連するものとして広く知られている。このエラーは、マクロブ ロックが2つのカブジェクト (高電子)が影響するオッジェクトで曲かが高い ある)からなり、これらが2つの別の方向に移動していることに起因する。各ブロックが単一の動きベクトルで動き補償されるため、高周波DCT係数での粗い

量子化のために量子化ステップで失われた主に高限設成分を有する表送を発生させる。このアルゴリズムのもう1つの問題は、TAMIアルゴリズムの実行前に 1つのGOP内の全フレームを保存する必要があるため、長い遅延が下可避であることである。この場合最長の符号化遅延は、通常15フレームで構成する1G OP分の大きさで、フレーム速度が毎秒30フレームである場合には、1/2秒に相当する。

これらの問題を緩和するため、TAMIアルゴリズム又はプログラミングステ ップの一般化が開発された。符号化遅延と基準フレーム間の間隔を減少するため にN個のP1フレームをGOP構造内にデフォルトとして挿入する。変更したプ ログラムは、本明細書においてN-PTAMIプログラミングステップ又はアル ゴリズムと称する。「N」は、デフォルトPフレームの個数である。この変更し たアルゴリズムはNの値として0から3までを選択でき、4種類の異なる方式を 発生する。すなわち、0-P方式 (IBBBBBBBBBBBBBB)、1-P BPBBBB)、3-P方式(IBBBPBBBPBBBPBBB) である。偶 数のNでは、GOPの大きさは、基準フレーム間を等間隔にするため15フレー ムとする。奇数Nでは、GOPの大きさは、同じ理由から16フレームとしなけ ればならない。図7Aから図7Dでは、それぞれN=0、1、2、3のときのデ フォルトGOP構造が図示してある。N=4では、MPEG規格の従来の実施と 等しい。図8Aも、本発明による1-PTAMIアルゴリズムで生成したGOP 構造の一例を示しており、1型画面変化と、そして少なくとも1回の0型画面変 化が存在している。

前述のように、B1フレームはどのような基準フレームの組合せであっても、 該基準フレーム対の間に指定されている、すなわち、この例では11、12、P 1、及び/又はP2の間にある。図8Bに図示したように、0型両面変化が検出 されない場合は、例えばB2フレームは基準フレーム間に指定されて、図8Aの 例に対して少なくとも1つ少ないP1フレームが指定され、Bフレームに多くの ビットを使用できるようになる。Nが増加すると、さらに小さい符号化遅延とさ らに小さい基準フレーム間インターバル (s) が得られるが、ビットレートの節

約程には分が減少することになる。

ビット割り当て (Kbit/フレーム) が | I1 | = 180.0、 | I2 | = 6, 75, |P1|=100, 5, |P2|=6, 75, |B1|=6, 75# としたとき、B2とB1の間の関係は次のようになる。

$$|B2| = |B1| + \frac{|P1| - |B1|}{M - N - 1}$$
 (5)

ここでNは使用するP1フレームの個数、MはGOPの大きさである。

上記4方式での毎秒ビットレートBRは、例えば次の計算による割り当てから 求められる:

- · 1 従来の固定4-PGOP構造(IBBPBBPBBPBBPBB):BR=1299Kbit/毎秒
- II 0-P方式:

BR=736.5Kbit/毎秒、固定方式の56.7%

- III 1-P方式: BR=878.9Kbit/毎秒、固定方式の67.7%
- IV 2-P方式:

BR=1111.5Kbit/毎秒、固定方式の88.5%

IV 3-P方式:

BR=1230Kbit/毎秒、固定方式の94.7% 可変ピットレート符号化 (VBR-TAMI)

B-ISDN (広帯域チャンネル統合サービスデジタル回線網) 技術のATM (非同期転送モード) 概念の最近の発展により、可変ピットレート符号化 (バケ ットビデオ)がネットワーク指向のビデオ伝送で非常に有力な方式になりつつあ る。この方式は、符号器のビットレート制御の制約を緩和し、一定ビットレート の代わりに一定ピクチャ画質伝送を可能にする。

前述のFBR-TAMIでの固定ビットレート符号化の実施形態では、P1フレームの個数は、固定出力ビットレートの制限により制限されている。

その結果、出力ビットレートは、大きな動きが見られるインターバル間隔におけ るビグチャー画質を犠牲にして維持される。P1フレーム側数の制限とピットレートを制御するフィードバックループが除去されると、TAM1アルゴリズムはV BR (Variable Bit Rate: 可変ピットレート) 符号器となり、より多くのP11 フレームを使制的に集中している領域に挿入することで、一定したピクチャー回 (知覚上のピクチャー両官であって、一定S/N比に関してではない)を発生する したがってVBRーTAM1 符号器は、FBRーTAM1 符号器のための従来 の間定(G) P4済谷号架とりたまなどデオデータ F6額等で耐たする。

図9は、本発明のVBR一TAMI符号器3401つの実施形態のプロック図を示す。図3のFBR一TAMI符号器18と比較して、VBR一TAMI符号器34はパンファア、つまり間定ビットレートを維持するための速度制御フィードバック21を含まない。その代わり、ネットワーク36がパッファとして機能し、ネットワークチ側回路35がネットワーク36と重子化回路5及び可変長符号器6の間でオットワークフィードバックループ37内に含まれている。

VBR-TAMIアルゴリズム38のフローチャートが図10に図示してある。図4のFBR-TAMIアルゴリズム10のステップ104に図ける、P1フレーム数を制限するためのP1フレームの数についてのステートメントは、図10のVBR-TAMIアルゴリズム38のステップ104'には不要である。これがアルゴリズム10とアルゴリズム38の間の唯一の相違である。B2フレームの使用は、VBR-TAMIアルゴリズム38においては、P1フレームの個数をいくつにしようとも許容されるため、意味がない。

VBR-TAMIアルゴリズム38 において、1型画面変化がある場合、時間マスキングが画面変化における2つのフレームに対して適用される(すなわち先行フレームが<math>P2フレームで、後続フレームがP2フレームである)。

以下はVBR-TAMI符号器34の簡単なビットレート性能分析である。単 純化するため、P1イベント(すなわち0型両面変化の宣言)はベルヌーイのラ ンダム変数であると仮定する。次にGOP内のP1フレーム個数が次の方程式に 示すように2項分布のあるランダム変数Kであるとする:

$$P \ [K=k] = P_{M-1}(k) = (\begin{array}{cc} M-1 \\ t \end{array}) \ P^{k} \ (1-P)^{M-k-1} \ \ (6)$$

ここでMはGOPの大きさ、kはP1イベント個数、pは1フレームにおいてP

1 イベントを有する確率である。分布の確率の平均が K = E [K] = (M-1) Pである。(M-1) は、GO Pの第1フレームが常に 11フレームでなければ ならないので、P1について考えられる位置の個数である。GO P内の第1フレームの除分のために必ずしも正確ではないが、P1の到着についての到着関隔分 布は次のように幾何学的分布でモデル化することができる。

P (T) = P (1-P) $^{(T-1)}$ (7) ここでT=0、1、2、……は、連続するP1フレームの到着間隔の時間である

この分布の平均は、2項分布からE [T] = 1/pかつ $p = \overline{k}$ (M-1) で与えられる。ここから $\overline{k} = (M-1)$ E [T] が得られる。

ここにパラメータとして反を有する出力ビットレートの平均と変動は簡単に計

算でき、入力ビデオの動き活動の大まかな測定値が得られる。例えば、1つのG OPにk 個P1フレームイベントが存在すると仮定する。そして1つのGOPに 1つのI1フレーム、k 個のP1フレーム、(M-1-k) 個のB1フレームが 存在すると、ビットレートは次のように計算される:

$$R_{GOP}(k) = R_{11} + k R_{P1} + (M-1-K) R_{b1}$$
 (8)

$$R(k) = \frac{30}{M} R_{GOP}(k) \tag{9}$$

ここで $R_{GOP(R)}$ はGOPビットレート、 R_{11} 、 R_{0} 及び R_{b1} はI1、P1及びB1フレームでのビット割り当て、またR(k)は毎秒ビットレートである。ビットレートの平均と変動は次の方程式で与えられる:

$$E[R] = \sum_{k=0}^{m-1} P_{m-1}(k)R(k) = \frac{30}{M} (R_{P1} - R_{b+}\bar{k} + R_0)$$
 (10)

$$\sigma^{2} [R] = \frac{30^{2} (R_{Pl} - R_{bl})^{2}}{M^{2} (M-1)} \overline{k} (M-1-\overline{k})$$
 (11)

ここで R_0 = R_{11} + (M-1) R_{b1} であり、これはP1フレームが存在しない時のビットレートである。これはつまり、平均ビットレートは予想される到着偶数に直線的に比例し、そして変動は、到着が最も不確実な場合に(すなわちp 与 1/2)最大になることを表わしている。

ー例として、M=15、K=2、 $R_{1i}=180$ 、 $R_{2i}=100$ 、5及び $R_{b1}=6$ 、75のとき、E[R]=924Kbit/物、かつ $\sigma 2[R]=245$.5Kbit/物である。同様に1-P方式では、次の方程式が適用され、

 $R_{GOP}(k) = R_{11} + (k+1) R_{P1} + (M-1-1-K) R_{P1}$ (12)

$$R(k) = \frac{30}{M} R_{GOP}(k) \tag{1.3}$$

次のような平均E [R] と変動 σ^2 についての方程式も適用される。

$$E[R] = \frac{30}{M} ((R_{P1} - R_{b1}) \overline{k} + R_{0}(1)) \qquad (14)$$

$$\sigma^{2} [R] = \frac{30^{2} (R_{P1} - R_{b1})^{2}}{M^{2} (M - 1 - 1)} \overline{k} (M - 1 - 1 - \overline{k})$$
 (15)

ここで R_0 (1) = R_{ii} +1 R_{pi} + (M-1-1) R_{bi} であり、これはP1フレームが1つのときのビットレートである。

時間的セグメンテーションのための間隔の測定

例として、時間的セグメンテーションのための5種類の間隔測定について考察 する。第1に記号を定義する必要がある。両像の両素数はNpsで標記し、輾W 、高さ日、照度レベルの個数 q、フレーム番号インデックス n、とする画像シー ケンスは次のように定義する:

$$F = \{f_n \mid f_n : L \times L \to F, n = 0, 1, 2, \dots \}$$
 (16)

ここで $L_x = \{0, 1, \cdots, W-1\}$ 、 $L_y = \{0, 1, \cdots, H-1\}$ 、また $F = \{0, 1, \cdots, (q-1)\}$ である。対応するヒストグラムのシーケンスは次のように定義する:

 $H = \{h_n \mid h_n : F \rightarrow Z^+ \setminus n = \emptyset \setminus 1 \setminus 2 \setminus \dots \setminus (q-1)\}$ (17) ここで Z^+ は、細分を子事負の整数である。画像からヒストグラムへのヒストグラム演算子日は次のように定義する:

ここでH:F→H. である。

 $h_n = H f_n$

1) ヒストグラムの差分 (DOH) : f_nとf_mの間の間隔の測定は、次のようなヒストグラム差分の11項で定義する:

$$D(f_{n}, f_{m}) = ||h_{n} - h_{n}||_{1}$$

$$= \sum_{i=0}^{q-1} |h_{n}(i) - h_{m}(i)|$$
(19)

照度ヒストグラムが画像内容について非常に有効なインデックスであると報告 されている。2つのピクチャの間のヒストグラム差分は、これらの間の内容的な

相関を示す良い測定となり得る。DOH間隔測定を用いる別の重要な利点は、局部的な動き活動に対する非感受性であり、例えばズーム、パン、画面変化といったグローバルモーション活動に対する感受性と比較した場合に、動きの速度とは関係しない(例えば固定した配景に対して移動するオブジェクト)。なぜならば、良好な時間的セグメンテーションが全体的変化を効率的に検出し、そして典型的な動き予測アルゴリズムによって補償され得る局部的な動きに対して感受性が高すぎないととによる。

DOHは、局部的な動きよりもむしろ全体的な変化の検出に良好である。

2) 差分画像のヒストグラム (HOD): 2つの画像の間の差分のヒストグラムは、次のように標記される:

ここでHODはhodとして定義される関数である。即り

$$\{-(q-1), -(q-2), \cdots, -1, 0, 1, \cdots, \cdots, q-1\} \rightarrow Z^{+}.$$

これは対角線と平行な線に沿った共発生マトリクスのエントリの合計と基本的 に同じ量である。もしHOD原点から遠くに画素が多く存在するようた場合には 、画像に多くの変化があることを表わす。動きの基準は、非ゼロ位置におけるカ ウントとHODのカウント機数との比率で大まかに定義できる。したがって開隔 の測定は次のように定義される。

$$D(f_{n}, f_{m}) = \frac{\sum_{i \in \{1, \dots, n\}} h \circ d(i)}{\sum_{i \in \{1, \dots, n\}} h \circ d(i)}$$
(21)

ここでαは、ゼロへの位置の近さを決定するためのしきい値である。このHO D測定は、DOHとは幾らか異なる特性を有する。HODはDOHよりも一層、 局部的動きに敏感である。

$$\begin{array}{ll} h_n\left(b, \ \cdot \ \right) = H_b \ f_n \\ \text{2.27} H_b \text{dib}_{th} \text{relevent} & (2\ 2\) \end{array}$$

, 1, ・・・, mbnum-1] である。間隔の測定は次のように定義される:

$$D(f_{n}, f_{m}) = \sum_{b} \sum_{i} |h_{n}(b, i) - h_{m}(b, i)| \qquad (23)$$

ここで $b \in [0, 1, \cdots, (mbnum-1)]$ はマクロブロックのインデックス番号であり、また $i \in [0, 1, \cdots, (q-1)]$ である。 4) ブロック変動差分(BV): この測定を用いるアイデアはブロックヒス トグラム差分と同じであるが、変動がヒストグラムの代わりに用いられている点 で異なっている。和を用いる間隔は2つのフレームの間のブロック変動の絶対差 の和で定義され、次のように与えられる:

$$D (f_n, f_m) = \sum_{i} |var_n(b) - var_m(b)|$$
 (24)

ここでb ϵ $[0, 1, \cdots, (mbnum-1)]$ である。プロックヒストグ ラムの差分と同様に、この方法はプロックごとの差分を計算することで局部的な 動き活動に対して敏感になる。

5) 動き補償エラー (MCE): フレーム f mが動き予測により f nから予

測されるとする。符号化の困難さは、fnとfnからの予測であるfnとの間の

エラーによって直接求めることができる。動き補償エラーは、f n と f n の間の エラー画像の符号化を測定する方法を提供することができる。したがってこの動 ※補償エラーを用いる間隔の測定は、※の方段式で管条される:

$$D (f_{m}, f_{m}) = \sum_{(i,j) \in L_{x} \times L_{y}} |f_{m}(i,j) - f_{m}(i,j)| (2.5)$$

この測定は予測エラーから直接計算されるので、予測エラーの符号化の困難さ についてほとんど理想的な測定である。しかし、最も良い測定はこの画像符号器 により生成されるビット数であるうが、これは前処理ステップで符号化の結果を を要とするので、実現不可能である。動き補償エラーを使用するこの方法はほと んど最適だが、欠点はこれの計算が高価なことである。

最適スペーシングアルゴリズム

本発明の別の実施形態において、基本的となるTAM1アルゴリズムを0型面 面変化の検出用に改良した。固定のGOPの大きさが使用されているので、基本 的TAM1アルゴリズムは最も良いと思われるスペーシングを基準フレーム間に 作成しないことが分った。以下の説明は好適実施形態において、最適スペーシン グアルゴリズムを提供することによって、設けるスペーシングを改善するために 開発した変更である。因示したように、最適スペーシングアルゴリズム (OSA) を使用する上で、0型両面変化検出回路は使用されない。つまり1型両面変化 だけが徐出まけることになる。 2-P方式でのOSAアルゴリズム60のフローチャートを図11に図示した アルゴリズム60は次のステップによる:

- 1. ステップ61で、GOPフレームがメモリに読み込まれ、GOP内の各フレームの差分測定値がステップ61で生成される。
- 2. 2つの隣接フレーム間の間隔測定値を用いて、1型画面変化をステップ 62で検出する。両面変化直前のフレームはP2フレームとして宣言し、両面変 化直後のフレームはI2フレームとして宣言する「すなわち、この方式でも時間 的マスキングを使用している」。図4と図10は1型両面変化検出回路によりP 2及び12フレームを決定するためのステップ106

と107を示している。これらのポイントに対応するPフレームは、Pフレームの総数 (すなわちP1フレーム) に含まれない。

3. 排他的検索(ステップ63~69)を用いて等間隔でP1フレームの最 良の位置を発見する、すなわちし型検出で指定されたであろう候補P1フレーム を含む位置とGOP構造が決定される(ステップ70)1型両面変化のポイント との間の平が間隔からの偏等を掛かにする。

ステップ [3] で平均からの偏差は、次のような構能を用いて定義することが できる。それぞれのセグメントが2つの基準フレームからなるセグメントにGO Pが分割されているとする。この1番目のセグメントの第1のフレームと最後の フレームの番号をfpn(i)と1pn(i)とで定義すると、i番目の区間の 間隔は次のように表現することができる

$$d_i = D(f_{fpn(i)}, f_{lpn(i)})$$
 (26)

ここでDは間隔測定値である。したがって偏差devは:

$$dev = \sum_{i=1}^{s} |d_i - \overline{d}| \qquad (2.7)$$

ここで

$$\overline{d} = \frac{1}{S} \sum_{i=1}^{S} d i$$
 (28)

図12は、1型画面変化が起こった場合に2-P最適スペーシングアルゴリズ

ムを用いるGOP構造の例を示している。

GOPの大きさがMに等しいと仮定し、使用するP1フレームの個数をNとし、1型画面変化の回数をuとし、そして隣接する1型画面変化の対の個数をvとすれば、検索の回数Sは次のようになる:

$$S = \begin{pmatrix} M - 2 & u + v - 1 \\ N & \end{pmatrix}$$
 (29)

これはP1型のフレームN側の全ての組み合せを検索する。検索される位置の 個数は (M-2u+v-1)である。なぜならば、第1のフレームは常にIフレ ムとして符号化され、各1型画面変化について2つの隣接フレームが持定され あからである。しかし、両面変化について2つの隣接フレームが持定され るからである。しかし、両面変化の組が、だけ存在する場合には、共通に隣接す るフレームが、だけ存在するので、両面変化による排除の総数は(2u-v)と なる。Nは5以下の一定数なので、これは多項信様アルゴリズムである。GO Pの大きさMは一般に20以下で(2u-v)は常に正なので、このような場合 に排他的検索でも計算が高値にならない(Sはおよそ100の桁にある)。幾つ かの最適な解案が存在する場合には、基準フレーム間の間隔(フレーム番号の差) が最も等しく分布するような、即ち間隔の大きさの平均からの偏差が最小とな るような解決力法を選択する。

OSA(最高スペーシングアルンJソスム)は、他の実施形態において、1つ余分に予約したP1フレームをTAMIアルゴリメン使用することにより、さらに適応性を改善させることが可能である。ここでB2フレームは、局部的な動き活動にしたがって使用する。もし基準フレーム間の平均関隔がしきい値以上の場合には、1つ多いP1フレームがデフォルトで割り当てられる(すなわち、B1フレームを使用する [(N+1) − P]方式になる)。一方、基準プレーム的の平均関係がしきい値以下の場合には、B2フレームを使用する(マオントンとを関する)。また、更なる改良を得たい場合には、P1フレームを使用するN−P方式になる)。また、更なる改良を得たい場合には、P1フレームの概要を無能動き変動の表態に対応されば、対応されば、

OSAアルゴリズム60の演算は、OSAアルゴリズム60のステップ61~ 66(図11)で間隔測定にヒストグラム又は変動方式が用られる場合には、過 頼に高価にならない。すなわちフレーム当たりの演算回数の桁は、 $N_{\rm pix}$ を画素数とすると、 $O(N_{\rm pix})$ 与 10^5 程度となり、したがって 352×240 の画像寸法だとOSAアルゴリズムでの演算はおよそ $S\times10^6$ 与 10^8 となる。こ

こでSは、式29に与えた検索の回数である。しかし、動き補償エラー方式を用いる場合(式25以下参照)、後継きは、Sを 10^2 と仮定すればおよそS $\times 1$ 0^{11} $\approx 10^{13}$ $\approx 10^{13}$

セグメンテーションについては高精度の動きベクトル情報を必要としない。そのため、画素サンプリングにより両方向で2の作数だけ演算回数を減少することができる。 すなわち、1/4ほど演算回数を強約することが実現される。演算回数を更に少なくさせるには、図13に示すように、後五テレスコピック検索を用いるようにすればよい。この後カテレスコピック検索と用いるようにすればよい。この後カテレスコピック検索は別の方向に時間的に対向して後ろ向きに実行する。後ろ向き動きベクトルの精度は、通常の前方テレスコピック検索より良好である。現在の検索の予測として用いる直前の動きベクトルは、前力検索に対けるよりもを入りを発しまれていて、現在のマクロプロックとの相間がより一層強い。なぜなら、一致すべき現在のマクロプロックは常に固定されているのに対して、前方検索の現在マクロプロックは前方検索において気能である。

実験結果:

FBR-TAMIアルゴリズム;

FBR-TAMIアルゴリズム10 (図4 参照) の対験を行うため、CIFフォーマット (352×240 画素) のテニスシーケンスを用い、N=0、1、2、3での異なるN-P方式でシミュレーションを支行した。MPEC標準 (MPEG91) におけるハフマン符号化テーブルを可変長符号化に使用した。ヒストグラム差 (DOH) をその単純さからTAMIアルゴリズムでのシミュレーションの関係順定に使用した。

図5はP1を無制限とした場合(VBR-TAMI)とP1を制限した場合(

FBR一TAMI)の実施形態におけるS/N比を示している。B1フレームを使用する方がP2フレームを使用するより良好で、非常に動き活動がはげしいた め0型の画面変化が多く検出される場合であってもB1フレームを使用する方が 良好であることを示している。それ故、VBR一TAMI以外のシミュレーシ

ョンについては、制限つきP1方式を使用している。図14(a)から図14(e) では時間的平滑領域でのS/N比の結果を示しており、これに対応するフレ ーム毎のビットレートも図15 (a) から図15 (e) に提供してある。より詳 しくは、図14(a)から図14(e)は、通常の4-Pと、0-P、1-P、 2-P、3-P方式それぞれで平均ビットレート736,5Kbit/毎秒のテ ニス画面で、それぞれがわずかな動きのフレームまたは画像に対するS/N比を 示している。図15 (a) から図15 (e) は、図14 (a) から図14 (e) のそれぞれに対応するわずかな動きの画像でのビットレートを示す。図14(a) と図14 (e) から、幾つかのそれぞれのN-P方式のうちでも、1-P方式 がS/N比と対象の画質について最高で、1-P方式のS/N比は従来の4-P 固定方式に対して約1dB良好である。図16(a)から図16(e)は、急激 な画面変化のある時間的な活動が大きな領域での結果で、対応するビットレート の結果がそれぞれ図17(a)から図17(e)に示してある。1-P方式のS /N比は、画面変化のある場合で従来の4-P方式よりもわずかに良かった(約 0.5dB)。1-P方式での複合化した画質は、従来の方法の4-P方式のそ れと好適に比較するために決定してある。1-P方式を用いる性能の改善は、低 いビットレート符号化 (300Kbit/毎秒-テニス) で顕著であり、目標ビ ットレートでのS/N比とピットレートの結果が図18 (a) から図18 (e) と図19 (a) から図19 (e) にそれぞれ示してある。図14、図16、図1 8でのS/N比の平均とビットレートの平均は、図20、図21、図22にそれ ぞれ図示してある表に示す。本発明の1-P方式FBR-TAMIアルゴリズム は多くの場合で従来の固定4-P方式を凌駕することが分る。 VBR-TAMITNAJUKA:

図23 (a) と図23 (b) は、VBR-TAMIと0-P方式FBR-TA

MIとのS/N比とピットレートの比較で、この例の場合では同じ半均ピットレート663Kbit/矩秒を有している。したがって画質には時間砂寒化が少ない。予想されるように、VBRーTAMIなのS/N比は、FBRーTAMIより安定している。可変ピットレート出力の引き替えとして、本発明のVBR符号化方式では顕著な画質損失なしに念激な動きのある画画を扱うことができる。

最適スペーシングアルゴリズム:

図24 (a) から図24 (e) は、現在フレームと第1フレーム(フレーム 120) の間で、例えばDOH、HOD、BH、BV、MCE園産法といった5種 類の異なる測定方法をそれぞれ用いた場合の相対間隔を示す。プロットにおいて、DOHとMC 基準が局部的か動きよりもグローバルモーションに対して飲感であることが分る。さらに群しくは、図25 (a) から図25 (c) がら/N比と、それぞれ間係測定法としてDOH、HOD、BH、BV、MCEを用いたOSAのフレーム番号との曲線を示している。HODは最も優れた結果となっている。なぜならフレーム120とフレーム180との間でグローバルモーションがなく、ある程度の部的な動きだけしかないときには、局部的動きに対する感度が重要であるからである。

図26の表では、MCE基準が、各種動きの活動で全体として最高の性能を発揮することを示している。同表において、フレーA89~149は動きのある顔面を表わし、フレーA10~1480は急激な両面変化がフレーA148で記さった両面、またフレーA0~60は非常に全体としての動きがはげしい両面(フレーA30からフレーA60でズーAフウトしている)である。MCEの性能が良好なのはMCEがほぼ理想に近い間隔測定であり各種の動き活動に対していっそう強靭であると予想されるためである。

図28(a)から図28(e)は5種類の異なった間隔測定法DOH、HOD、BH、BV、MCEそれぞれによるB2フレームの適応型最適スペーシングアルゴリズムを使用したS/N比の結果を示す。BHは、局部的動きの良好な測定でもあり、そしてフレーム120から180の間にはグローバルモーションがな

いことから最高である。しかし図27の表では、BH基準が各種動きの活動で全体として最高の性能を発揮することを示している。図26と図27の表を比較すると、異なる間隔測定の性能では互いに類似してあることが示される。図20と図27の表を比較すると、FBR-TAMIとOSAの性能も類似しており、どの間隔測定法を使用するかによる差は僅かしか見れない。

前述の説明で示したように、本発明は、ビデオ基準フレームの位置が入力ビデ

水動き活動に適応し、そしてビットレート制御を用いて視覚的認識におけるマスキング効果を活用することを提供する。3種類の主な別々のアルゴッズ、FBRーTAMI、VBR、OSAが示され、固定GOP構造での従来の動き補間符号化に対して好適な比較を示している。FBRーTAMIとOSAは性能的に類似しているが、TAMIはアルゴリズムの複雑さが少ない。この方法では、小数の予測マレーとを有する方式が大きな符号化運延と引き替えに良好な圧縮比を行することが兼ね合いとなる。本幕明の実施形態は幾つかの異なる領域で、例えば可変ピットレート符号化、低ビットレート符号化、CDーROMへの保存用符号化、及び時間適応3 Dサブバンド符号化などで有用であると予測される。FBRーTAMIアルゴリズムは、ビデオ会議またはテレビ電話などの急激な動きがほとんどない方が非常に有利であるような低ビットレート符号化に特に好適で、符号化の比較的大きな運延が許常できるようなCDーROM等への保存用途でも好適である。

図29では、3つの曲線の組み合せが画像の動きに対する本発明のTAMIと
OS A実施形態の間の比較を示している。いちばん上の曲線120は画像の動き
に対する15フレームのGOPでのフレーム番号のプロットを示す。この例では
、画像の動きの曲線122はフレーム1と7の間の「時間的に活動が多い」領域
124と、フレーム8から15の間の「時間的な動きが低い」領域126を示し
ている。図示してあるように、領域124では、Pフレームは頻繁に発生し或い
はこの領域で互いに接近してい0るが、これは多くのデータ変化が存在している
ためで、フレームごと大きな画像の移動があることを示している。これと逆に
(領域126では画像の移動があることを示している。これと逆に
(領域126では画像の移動があることを示している。

または互いにもっと離れているが、これはフレーム間でのデータ変化または画像の動きが小さいことによる。 血線部分128では、フレーム符号化のためのTAM1処理がフレーム間隔のプロットとして図示してある。これはフレーム番号にサオウスレーム間の全体的なピグチャの動きである。 0型しきい値が検出されたフレーム間隔または動きが破線130で図示してある。 図示したように、フレーム間のフレーム間隔または画像の動きが0型しきい値を越えるたびに、0型しきい値の発生直前のフレームがP2フレームに指定される。 前述したように、この例

において、GOPは15フレームから構成され、フレーム番号「0」から「14 」で指定され、「15番目」に指定されるフレームは実際には次のGOPの第1 フレームになる。第1フレームは常に「1」フレームに指定される。いずれか2 つの基準フレームの間に配置される次のフレーム、例えばPフレームとIフレー ムは図示したように「B」フレームに指定される。曲線部分128に図示したよ うにTAMI処理を用いる場合、Pフレームは、時間的活動がはげしい領域12 4に比べ時間的活動が小さい領域126でさらに離れる。OSA処理を用いるこ とで、曲線部分132に図示したように、Pフレームの幾つかの指定は、できる だけPフレームを等間隔にすべく右または左にシフトするように変更される。し たがって、図示したようにTAMIではフレーム10をPフレームに指定するが OSA処理では、この例において、Pフレームはフレーム10からフレーム9 へ左に移動される。同様に、TAMI曲線128では、フレーム13がPフレー ムに指定されるか、OSA処理では、曲線部分132に図示してあるようにPフ レームがフレーム13からフレーム12へ移動される。またこの移動の結果とし て、TAMIでBフレームに指定されるフレーム9は、OSAではPフレームに 指定され、TAMIでPフレームに指定されたフレーム10はOSAでBフレー ムに指定され、TAMIでPフレームに指定されたフレーム13はOSAでBフ レームに指定される。結果として、領域126のPフレームは互いに等間隔に近 く配置され、TAMIに対してOSAによるビット割り当てが効率的に行なえる ようになる。

基準フレームの個数 (N) の適応選択;

主としてTAMIで、本発明による他の実施形態のための変数れた合音容するようなピットレート制御アルゴリズムについて説明する。前途したようにNはPI フレームの個数である。Nを適合させる1つの単純な方法は、0型画面変化の検 出に一定のしきい値を使用することと、それぞれの検出された変化に1つのPフ レームを使用することである。Nを強いて固定ピットレートに適合させるには、 前途したような可変ピット割り当てを使用する。異なるピクチャ形式に対応する 目標ピット割り当ては、これにあわせて更新される。

アルゴリズムを説明するために、チャンネルビットレートをR(ビット/毎

珍)で表わし、GOPの大きさをM、子割されるGOPビットレートをG、ピクチャ形式 t での目標ビット刺り当てをD_cとする。I1、I2、P1、P2、B 1フレームのビット割り当ては、それぞれ $D_{11}=C_{11}$ x、 $D_{12}=C_{12}$ x、 $D_{P1}=C_{P1}$ x、 $D_{P1}=C_{P2}$ x、 $D_{P1}=C_{P1}$ x、 $D_{P1}=C_{P1}$ x、 $D_{P1}=C_{P1}$ x $D_{P1}=C_{P1}$ x $D_{P1}=C_{P1}$ x $D_{P1}=C_{P1}$ x $D_{P1}=C_{P1}$ x $D_{P1}=C_{P1}$ x $D_{P1}=C_{P2}=C_{P2}=C_{P2}=C_{P1}$ c $D_{P1}=C_{P1}$ x $D_{P1}=C_{P1}=C_{P2}=C_{P2}=C_{P2}=C_{P1}$ x $D_{P1}=C_{P2}=C_{P2}=C_{P2}=C_{P2}=C_{P2}=C_{P2}=C_{P2}=C_{P3}=C_{P4}$ x $D_{P1}=C_{P2}=C_{P3}=C_{P4}$

$$D_{t} = C_{t} \frac{R}{2(C_{11} + NC_{P1} + (M-N - 1)C_{P1})}$$
 (30)

このビット割り当ては、式(30)を各GOPの先頭で使用して更新する。 位置決めの高速ヒューリマティックアプローチ(BS E-TAMI)

BS E-TAMIと呼ばれる本発明の他の実施形態 (2進検索等間隔TAM 1) について説明する。n 倒のSSP (両面をグメンテーションポイント、即ち 0型両面変化) が一定しきい値を用いて両面変化検問アルゴリズム14 (図4参照) により参出される。間隔額を紹が整数であり、ヒューリマティックアプロー

チを展開するためのペースとして2つのフレームの間で時間分離に対して一様に 増加する関数だと仮定する。HOD (差分のヒストグラム) は、一般に関隔測定 値が一様になり易いことから、間隔測定値によって動きを測定するシミュレーシ ョンで使用される。

問題は、SSP即ち0型画面変化のほぼ等関隔についての位置を発見することである。本発明の高速ヒューリマティックアプロー手検索は、最良位置に近い位置についてのものである。図30は、初期しまい値。2を使用して、2つのSSP即ちの型画面変化をSSP検出器14で検出する例を示しており、これは「個のSSPを発生する。最後のSSPとGOPの最終フレームの間の間隔は4

 τ) で表わす。また $\alpha_0 = \alpha (\tau_0)$ とも表わす。問題は、 $\tau_0 > \alpha (\tau_0) = \alpha$ で開始し、 $\tau \ge \alpha (\tau)$ を満たす $[\alpha_0, \tau_0]$ で最小の $\tau \ge 2\pi$ から減少した。 時隔棚度は一様であると仮定しているので、 $\alpha (\tau)$ は、 τ が τ_0 から減少した時に増加するか一定に留まる。さらに詳しくは、 τ が τ_0 から減少すると、最終的に τ $\alpha (\tau)$ に可論する。後きすれば、点んがしきい値の減少により(図30条例)何らかの点で点日に受定は打動する)。

 τ は整数であり $\begin{bmatrix} \mathbf{a}_0, & \mathbf{r}_0 \end{bmatrix}$ の有限範囲を有するので、2 進検索を解 τ . に使用する。言い換えれば、 $\mathbf{a}_0 \in \mathbf{r}_{\mathrm{new}}$ は中点を用いて計算し、

$$\tau_{\text{new}} = \frac{\tau + a (\tau)}{2} \tag{3.1}$$

また τ_{new} と a (τ_{new}) を比較する。 τ_{new} > a (τ_{new}) なら、 $[a_0, \tau_0]$ の後半について検索を行ない、 τ_{new} < a (τ_{new}) なら前半を検索する。新規の検索領域の新規中点について停止基準が満たされるまで a (τ) を計算することで縁終する。

- BS E-TAMIアルゴリズムで使用すべき術語は次のように定義する:
 - b:検索領域の底辺
 - t:検索領域の上辺
 - ・m:検索領域の中点
 - ·SSPDET (N, τ):しきい値τを用いるSSP検出器

ここでSSPの最大許容数はNである。

- ・N (τ) : SSPDET (N, τ) で検出されたSSPの個数 ここで、N (τ) < Nである。
- · pos(τ): SSPDET(N, τ)で検出されたSSPの位置
- ・dτ:m>a(m)を満たす直前のしきい値m
- dpos:dτに対応する直前の位置
- n個の位置を発見するアルゴリズムは、一般に次のように説明される。
 - n個のSSPを作成する初期しきい値τ0を取り出す。
 - SSPDET (N, τo) を実行し、ao=a(τo) を計算する。

d τ←t 0またdpos←pos (τ0) に設定する。

- 2. τo≤aoなら、ステップ6へ進み、それ以外では {b←ao; t←τo}
- m←(b+t)/2
 SSPDET (N, m) を実行し、a (m) を計算する。
- SSPDEI (N, m) を実行し、a (m) を計算する 4. m>a (m) なら、{t←m-1;
- N (m) =Nなら、 $\{d\tau \leftarrow m : dpos \leftarrow pos (m)\}$ それは外では、 $\{b \leftarrow m-1\}$
- 5. m=a (m) またはb>tになるまでステップ4を反復する。
- 6. τ. ← d τ で停止する。
 - dposはSSPの所望の位置であり、τ. に対応する。

ステップ6で、d τ は所望の解になるが、これは τ がa (τ) より大きくなる 位置の直轄に位置するためであり、 τ はa (τ) に最も近いことになる。BSE - TAM1のアルゴリズムのさらに詳細な説明は、図31のステップ133から145に示してある。

τ. についての強力な検索を用いた場合、必要な計算は、 τ_0 与 10^4 かつ a_0 ± 0 とすると 10^4 oがにのぼる。2 進検索を用いて行う必要な計算は、データの大きさがLの場合に $[(1o_{82}L)+1]$ で、 $L=10_4$ のときか15 になる。2 進検索を使用することによって、ほぼ1000 6 の計算を節約することができることになる。例えば、周期的な動きのため一様性が得られない時、ヒューリ

スティックアプローチは初期SSP位置pos (τα) を使用することになる。

2 進検索を使用する方法は、前途した適応性N方式と容易に組み合せることが できる。この2 遺検索法の利点は、高速であり且つE一TAMI (等間隔TAM 1) と比較して非常に単純なことである。欠点は、一様性の仮定が満たされない 場合に失敗することである。しかし、通常のビデオ素材では大半のGOPで仮定 が有効である。

ハードウェアシステム/ソフトウェアの実装:

本発明者は、本発明によるTAMI及びOSAの実施形態のソフトウェアによ

る実装を図32から図38に図示したように考案した。これについて以下で説明 する。本発明のTAM1実施形態のハードウェアによる実装は、すでに説明した ように図3に図示してある。

TAMIとOSA実施形態の双方のソフトウェア実装による実施形態のフロー チャートは、図32において示すように、ステップ150から161を含む。こ のソフトウェア実装は、標準的なTAMI、VBR-TAMI及びFBR-TA MIを含む全てのTAMI実施形態に応用可能である。より詳しくは、ステップ 150でソフトウェアルーチンを開始したあと、画面変化検出ステップ151に 入り精算した低速変化又は完了した低速変化を検出している。それによって、本 発明の各種実施形態では別のソフトウェアルーチンが必要とされることがある。 次のステップ152、即ちソフトウェアルーチン「11ピクチャ符号化」では、 ピクチャのグループ又は処理しているGOPの初期化を提供する。第1フレーム は、MPEG標準に連携して「フレームとして符号化する。しかし本業明におい て、第1フレームは、さらに特別な符号化が、最大解像度符号化を提供する I1 ピクチャとしてなされ、その一方で前述したように1型画面変化の検出に関連す る処理中のGOP内部の他のフレームにはI2符号化を用いることができ、それ によって 12符号化は 11符号化より粗くなる。次のステップ 153では、現在 のピクチャインデックス又は実際のピクチャ番号 (CPICI) がGOPの第1 フレームに対応する時点を決定する。このステップでは、変数が第1ピクチャ番 号(FPN)になるよう設定される。次のステップ154では、画面セグメント についてインデックス「i」を提供し、このインデックスは第1の画面セグメントでゼロに初期設定され、さらなる画面セグメント又はフレームを処理するごとに1つづつ順次増加されていく。

次のステップ155では、後述するように本発明者により考案された新規ステップを追加した形のMPE G標準の幾つかが含まれる符号化アルゴリズム (MAIN) によりデータを処理する。

次のステップ156では、処理を次の両面セグメントに進めるために、両面セ グメント「i」のインデックスが1つ増加させられる。 次のステップ157は、インデックス「i」が両面セグメント個数(SCNU

M)よりも小さいか又はステップ151で画面変化の検出により決定したように ループするかを決定するための決定ステップである。多数の画面変化が存在する 場合、多数のセグメントが割り当てられる。検言すれば、セグメントの個数は、 検出した画面変化の個数に直接比例するので、本システムが適応型システムにな る。

ステップ155から157を含むループを通じて最後の両面セグメントを処理 した後、決定ステップ157は、最後の両面セグメントを処理したと判定してか 、処理ループを抜けてステップ158に進む。ここでは、処理したばかりのG OPの第1フレームに対応する実際のピクチャ番号を15ずつ増加させる。この 実施形態では、前述したように、選択したGOPの大きさが本発明の好選実施形 能では15であるが、MPGの機事では15以外のことも有り得る。

次のステップ159のSCDETは、次の15フレーム、即ち次に処理するG OPのフレームでの画面変化を検出する。

次のステップ160では、15ずつ増加させて現在のピクチャインデックス又 は実際のピクチャ番号CPIC1が最後のピクチャ番号LPNより小さいかどう かを調べる。小さい場合には、現在処理しているフレームのデータをステップ1 54に供給し、ステップ154から160で表わされるループでの処理を継続す る。最後のピクチャ番号LPNを処理したら、決定エテップ160はループから 抜け、ステップ161の符号化処理を終了する。 図33には、FBR-TAMI、即ち固定ビットレートTAMIでの両面変化 検出処理SCDETが関示してある。このフローチャートは、関4のフローチャ トに類似しているが、処理のさらに細部を提供している。VBR-TAMI用 のSCDETが関示してあり、そして図10との関連で前述したことに注意する。同様に、本発明のOSA実施推想のためのSCDETの実施形態を関示し図1 1との関連で説明してある。

図33において、FBRーTAMI、即ち闊定ピットレートTAMIのSCD ETは、ステップ170でメモリへGOPのフレームの読み込みを行うことで始 まる。ステップ171では、システム内のカウンタを初期化する。図示した実施 形態のステップ172では、両面変化の両面インデックスが2に設定されるよう

に図示してあり、処理中のフレームについての画面ピグメントにおける第1フレームのピクチャ番号は0に設定されるように図示してあり、そして画面ピグメントのインデククスは次のステップに進む前に1だけ増加される。ステップ173では、画面セグメントデータ foをフレーム基準メモリ for に渡りし、現在のピクチャフレームカウンタを 1に設定する。次に、決定ステップ174では、現在フレーム for の間の間隔又は動きが1型画面で放したい値で1より大きいか否かを決定する。大きい場合には、ステップ178に進む。大きくない場合には、ステップ175に進み、現在フレームと直前の基準フレームの間の動きが0型しきい値で1なデップ175に進み、それ以外ではステップ176に進む。

ステップ 174からステップ 178に進んだ楊合、画面変化の種類を1に設定し、画面セグメントの第1フレームのピクチャ番号。を識別し、 直前の画面セグメントの人という。 またいる 175 1

レームに連か。その処理はステップ 174 にルーブバックする。しかし、該処理 が終了している場合、すなわちGOP内のワンームを処理し終わっている場合、 ステップ 184 に進み次のGOPを処理する。図 3 3 において図示した設定では 、「D(、)」の部分はフレーム間の動き量の関係制定を表わしている。ま た、ステップ 181.にいう「Cond.A」とは、つまり「sct[scindex-1]=1e; (PNSCL[scindex-1]-1%CF[scindex-1])=0)を意味し、これは直前のセグメント の両面変化の模類が 1 であり、そしてその両面持続が 0 であることを表わしてい ス

図34は、図32のTAMI符号器ルーチンで使用する「N-P TAMI SCDET」両面変化検出器を表わす。N-P TAMI SCDETについて の図34のフローチャートにおけるステップの実質数は、図33のフローチャートの一部に図示したステップと同じで、これらのステップでの基準の指定は関

である。例えば、初期化のステップ170から173は、図33と図34のフローチャートで同一である。図34のNーP TAM1のフローチャートでステップ200から205は、図33のSCDET FBR-TAM1のフローチャートとは異なる。図34のフローチャートでは、ステップ1774、178、201、202が1型画面変化を検出するが、ステップ180から183と200位型の画面変化を機由する。また、1型及び0型の画面変化を機供するために指示したこれらのステップは、ステップ179とあわせて特権的論理和限数を提供することにも注意すべきである。さらにステップ203からステップ205からことにも注意すべきである。利便のため、本実施形能においてこのようなデフォルトボジションは、2型画面変化として特定してある。

図32に図示したTAMI符号器のフローチャートのピクチャ符号化ステップ 152が、図35にさらに詳細に図示してある。ステップ250からステップ2 56では、図示のようにI1、I2、P1、P2、B1、B2符号化を行う。ステップ250では、データの離散コサイン変換(DCT)を行う。ステップ251では、まデータ圧縮を実行し、そして異なる量子化レベルを提供するのに適し 得るステップサイズを有する量子但回路を示している。ステップ252では、例えばハフマン符号化などの可変長符号化VLCを実行する。ステップ255で行うバッファ制御は、出力ビットレートを一定にするためにMPEG標準のビットレート制御の一部として含まれており、これにより過剰ビットを使用する場合に量子化回路を担い量子化に制御し使用するビットを強少させる。ステップ253 ステップ264では、逆量子化と、逆離散コサイン変換処理をそれぞれ行う。ステップ253に、逆離散コサイン変換254から復合化の結果をメモリ内に保存欠は記憶し、この結果は彼に動き補償に使用する。例に図示してあるように、本発明の発明者は、ステップ251の量子化回路に6種類の異なるQSレベルを提示してこれらを選択できるようにし、QSの値が大きくなる程ステップ251で行う量子化が収入なる、つまり解像皮が低くなるようにしている。この例に図示してあるように、「1及びP1として指定されるフレームはそれぞれが指定されての名の電子化レベルを有している。双方向フレームはそれぞれが指定されて

されるフレームは、それぞれ2QSの量子化レベルを有する。 I2に指定されるフレームは10QSの量子化レベルを有し、P2に指定されるフレームは3QSの量子化レベルを有する。

TAM I 香号繋のために図32のステップ155に図示するMA I N脊号化アルゴリズムは、図36Aと図36Bのフローチャートではそれぞれステップ260から285において詳細に示してある。さらに詳しく説明すると、ステップ260において、NP1として指定される過去のPコレームのカウント値は、図示のように「0」カウントを初期値として持つように設定される。ステップ261では、1型両面変化が発生したかつ判定を行る。1型両面変化が発生した場合には、ステップ262に進み、現在のセクチャ号号下のに、決定ステップ263に進み、ビステップ263に進み、ビステップ263に進み、ビステップ263に進み11フレームを表けた、大学なステップ263に進み「グラチャ号号がGOPの最終フレームを表けたのでは、決定ステップ261に、直端内1フレームとしてフレームを符号化し、遠う場合はステップ264に進み11フレームとしてフレームを符号化し、遠う場合はステップ261に連み12フレームとしてクフレームを符号化する。ステップ261で、1型両面変化が現在処理している

フレームで検討されないと、ステップ 2 7 3 に連み、現在処理しているフレームでフレーム間の動きが 0 型画面液化か、つまり 0 型画面液化が得られたかどうか を調べる。0 型画面液化が得られた場合には、ステップ 2 6 5 に遊む。0 型画面液化が得られた場合には、ステップ 2 7 4 に進み、図示のように現在の画面セグメントの第1 ビクチャ番号を1 だけ減少させる。ステップ 2 6 4 の 1 1 符号化のステップと、ステップ 2 7 5 の 1 2 符号化ステップについてのさらなる処理ステップと、ステップ 2 6 3 5 以降のフローデャートに図示してある。

ステップ265では、現在処理している画面セグメントの持続がゼロか否かを 開べる。もし両面セグメントの持続がゼロである場合には、図32に図示したフ ローチャートのステップ156に進む。一方、両面セグメントの持続がゼロでな い場合は、ステップ266に進み、処理している両面セグメントの最終フレーム 番号にピクチャ番号を設定する。次に、現在処理しているフレームがGOPの最 終フレームに位置しているかどうかを調べるために決定ステップ267を実行す る。最終フレームである場合には、ステップ276に進み、関連ピグチャ番号の

最初と長後の画面セグメントの間にある全てのBフレームに対してテレスコピック動き予測を実行する。そしてその後ステップ2 7 7 に進み、フローチャート (以 3 5) のステップ2 5 0 から2 5 6 で 1 1 フレームの符号化を実行する。しかし、ステップ2 6 7 でフレームの位置が最終フレームの位置ではないと判断した場合には、ステップ2 6 7 で 2 9 で 3 7 のステップ2 9 7 のステップ2 9 7 のステップ2 9 7 のステップ2 9 7 のステップ2 6 9 に 連み、MPBG標準にしたがって予測処理を行なる。次に、決定ステップ (ステップ2 7 7) に進み、次両面が1 型画面変化を有するか否か、また既に P 1 フレームがいくつか検出されたか否か、を決定する。そして答えが否定でもれば、図 3 5 のステップ2 5 0 から2 5 6 において、P 1 フレームの符号化を実行し、次にこれまでのP 1 フレームのの分りに値を実行する。逆に答えが肯定であれば、図 3 5 のステップ2 5 0 から2 5 6 において、P 1 フレームの符号化を実行し、次にこれまでのP 1 フレームのの分りとは色 2 5 6 において、P 1 フレームの符号化を実行し、次にこれまでのP 1 フレームのの分りとは色 2 5 6 6 を 1 5 1 で 3

次に、ステップ280(図36B)に進み、1 だけインクリメントされた最終画面セグメントにおける第1フレームのピクチャ番号に現在のピクチャ番号を設定する。次に、補間ステップ281に進み、MPEC標準に関した補間を実行した後、ステップ282に進み、P1フレームの開数が0と等しいかを調べる。0 と等しい場合には、B2フレームの符号化ステップ28名に進む。一方、0以外の場合には、B1フレームの符号化ステップ28名に進む。一方、0以外の場合には、B1フレームの符号化ステップ250から256は、図35のフローチャートにプしてあることに注意する。次に、決定ステップ28名と実行し、現在のピクチャ番号PNが両面セグメント「i」の最終フレームのピクチャ番号タいがある。ため結果からい場合には、ステップ281、イループバックして処理が構然され、逆に大きい場合には、ステップ156(図32多瓶)へして処理が構然され、逆に大きい場合には、ステップ156(図32多瓶)へ進み、両面セグメントのインデックス「i」を1だけインクリメントする。

図36A及び図36Bのフローチャートで説明したように、MAINステップ 155(図32参照)、即ちMAIN符号化アルゴリズムでは、Pフレームに関連する動きを決定するための動き予測ステップ268の詳細は、図37のフロー

ゲャートに示してある。その第1ステップ290では、現在のフレー本番号FNを1だけインクリメントされた「1」画面セグメントのピクチャ番号に送出する。次に、ステップ291で、現在フレームを長める基準フレームのピクチャ番号。画面セグメントとの間で、前方動きペクトル検索を計算する。次に、ステップ293で選在のフレーム番号を1だけインクリメントする。この後、ステップ293で進み、現在のフレームが画面セグメントの最終フレームのピクチャ番号はりからいかを関べる。もし小さい場合にはループを拒由してステップ291に進み、逆に小さくない場合にはステップ294に進ルで1だけデクリメントされた最後の画面セグメントのピクチャ番号に設在のフレーム番号FNを設定する。次に、ステップ295で進み、現在のフレーム番号FNを1だけデクリメントする。この例ではMPEのプレーム番号FNを1だけデクリメントする。この後、ステップ297に進み、現在のフレーム番号FNを1だけデクリメントする。この後、ステップ297に進み、現在のフレーム番号FNを1だけデクリメントする。この後、ステップ297に進み、ロフレーム番号FNを1だけデクリメントする。この後、ステップ297に進み、現在のフレーム番号FNを1だけデクリメントする。この後、ステップ1フレームに表する。この後、ステップ1フレームと表する。この後、ステップ1フレームと表する。この後、ステップ1フレームを対する。この後、ステップ1フレームを対すると

クチャ番号より大きいかを調べる。もし大きい場合には、処理はステップ295 ヘループバックし、大きくない場合には、処理は図36Aに示す予測ステップ2 69へ進また。

TAM I 符号器(図32)によるMAIN符号化アルゴリズムを示け図36A のフローチャートにおいて、1フレームの動き予測ステップ276の詳細につい では、図38のフローチャートに示すステップ300からステップ307で図示 してある。Pフレームの動き予測ステップについての図37のフローチャートは 、図38のフローチャートとほとんど同一である。検言すれば、図37のステッ グ290から292及びステップ294から297は、それぞれ図38のフロー チャートのステップ300から302及びステップ304から307と同一であ る。MEPおよびMEI処理での唯一の差は、前者のステップ293と後者のス テップ303との間にある。ステップ293は関連する決定ステップにおける最 終フレームを含み、一方ステップ303は最終フレームを含まず、そのため現在 のフレームを含が最終フレームより小さいかの決定だけしか行なわない。

前述した本発明の各種実施形態を実現可能とするためのハードウェアシステム について、図3及び図9のシステムよりさらに詳細に説明する。図39を参照す

ると本システムは、ビデオデータを受情するための画面変化検出器310を含み、 、これは、0型および/または1型画面変化により各種フレームを1、P、又は Bに指定する。相関するGOPは、画面変化検出器310に記憶される。制御信 号CSは、前述したように、必要とされるステップを実行すべくプログラムされ たマイクロプロセッサ334から入力される。ラインA1上の1つの出力信号は ボグチャモード信号(PMS)で、これは1、P、或いはBフレームのいずれ かとして処理されているフレームの指定を課別する制御信号である。この信号は 入力信号として動き補償回路318に接続されている。動き補償回路318の時 組は後述する。ラインA2に沿った他の出力信号は、フレーム出力信号である。 この信号は加算結合312と、ラインG1経由で動き補償モジュール318とに 接続されている。ラインG162つからき補償の部318からの出力は、加算結 る312~接続されている。再算合318からの出力信号、即ちデータは、離底サイ

ン変換(DCT)モジュール314へ接続され、そしてこのDCTモジュール3 14は、量子化(Q)モジュール316、可変長符号化(VLC)モジュール3 24、マルチプレクサ (MPX) モジュール328、ピットカウンタモジュール 330、バッファ332とカスケード接続してある。フィードバックライン 11 及び」2は、バッファ332とビットカウンタ330とからそれぞれビットレー ト制御装置326に接続されており、このビットレート制御装置326の出力は ライン10を伝って量子化モジュール316へ接続されている。量子化モジュー ル316の他の出力は逆量子化回路320 (Q^{-1}) に接続してあり、この出力は 逆離散コサイン変換モジュール322への入力として接続してある。逆離散コサ イン変換 (IDCT) モジュール322の出力は加算結合323に接続し、また この加算結合323にはラインG0経由を経由して動き補償モジュール318の 出力信号も伝送される。加算結合323からの出力は、ラインG2を経由して動 き補償モジュール318の入力に接続される。308で示した破線の領域内部に 含まれる符号器の部分は、従来技術で周知の典型的なMPEGビデオ符号器を表 わすことに注意する。本発明の発明者は、従来技術の符号器に画面変化検出器モ ジュール310、ビットレート制御装置326及び動き補償モジュール318を 追加しこれを改良して、本発明の各種実施形態を実現するようにしている。動き 紺

画面変化検出器モジュール310について図40から図45を参照し実質的に 更なる詳細を説明する。また前述したアルゴリズム、特に図32のアルゴリズム も参照する。図40に図示してあるように、画面変化検出回路310は、距離計 簋ユニット338に接続したフレームメモリ336と、画面変化輸出回路制御装 置346とを含んでいる。フレームメモリ336は、画面変化輸出回路制御信号 (SCDCS) にも応答する。フレームメモリ336は、16フレーム用の標準 フレームメモリであり、この例では15フレームのGOPを仮定している。距離 計算ユニット338は、現在のフレームと後続または次のフレームの間の距離や 動きを計算する。この距離計算ユニット338もまた、SCDCS信号に応答す る。距離計算ユニット338は、図示したように、0型画面変化検出器モジュー ル342からの又は1型画面変化検出器モジュール340からの基準フレーム番 号信号F_{ref}にも応答する。フィードバック信号F_{ref}は、前述したように、フレ 一ム間の距離計算又は動き計算に使用する基準フレームの位置を再設定するため 距離計算ユニット338が応答するフィードバック信号である。1型画面変化検 出モジュール340は、図示したように、0型画面変化検出回路342とGOP 構造生成ユニット344の両方に出力信号を提供する。前記2つの画面変化輸出 モジュール340、342の詳細は後述する。GOP構造生成ユニット344は 、SCDCS制御信号で制御され、そしてラインE3を伝って画面変化検出器制 御装置346への出力する一方で、ラインE2を伝って当該制御装置346から の出力信号を受信する。画面変化検出器制御装置346は、ラインF0を伝って フレームメモリモジュール336からの信号も受信し、ライン即ちパスA2にフ レーム出力信号を、また信号線A1にピクチャモード信号PMSをそれぞれ提

供する。GOP構造生成ユニット344は、MPEG標準にしたがって完全なG OP構造又はマップを生成するために使用される位置を検出する。また、SCD 制御モジュール346は、小型マイクロプロセッサによって、又は結線論理回路 によってタイミング、データフロー、同期その他のために提供できることにも注 資する。

距離計算ユニット338の更なる詳細が図41に図示してある。図示のように 、距離計算ユニット338にはヒストグラムモジュール348が含まれており、 これにより、B1を伝って送られるデータに基づいて直前の基準フレームのヒス トグラムを定成する一方で、他のヒストグラムモジュール350も含まれており 図42を参照して1型画面変化検出モジュール340について説明する。1型 画面変化検出モジュール340は、コンパレータ358を含んでおり、距離計算 ユニット338からラインB2を伝って受信した距離信号又は動き信号と、1型 しさい値信号T₁とを比較する。そしてラインB2からの信号がT₁より大きい場 合にはコンパレータ出力はデジタル値の「1」を要わし、ラインB2からの信号 がT₁より小さい場合にはコンパレータ出力358はデジタル値「0」を表わす ようになる。コンパレータ358からの出力は、図中下端がC2で又上端がB

1で表わしてある各ラインに沿って、パッファとして機能する検出信券コニット 360と、F。(現在のフレーム番号)に設定されるF_{ve}を生成するためのフレーム番号生成回路として機能する位置出力ユニット362の両方へ供給される、パッファ360は、非反転パッファであることに注意する。したがって、デジタル値「1」が入力信号として提供された場合、検出信号生成ユニット360からの出力信号もデジタル値「1」になる。

図43を参照して0型画面変化検出モジュール342について詳細に説明する。 図示のように、0型画面変化検出モジュール342にはコンパレータ364が 含まれており、距離または動き測定信号B2をT₀しきい値信号と比較し、B2 がT₀より大きい場合にはデジタル値「1」の出力を発生し、距離B2がT₀しきい値も分かっ値「9」の出力を発生し、距離B2がT₀しきい値よりで値よりでは、1型画面変化検出モジュール340からD1を通じて1型検出信号も受信する。この信号はコンパレータ364の動作を停止させるための信号である。そして1型画面変化をセジュール342の動作を停止させる。コンパレータ364の出力は、直前のフレーム番号に対してF_{(C-1})に等しいド_{Te}信号をB1に鉛って提供する位置出力コニット366への入力として接続される。また、位置出力ニニット366は、0型画面変化がフレーへ間で検出されたかを表わす信号をD3に出力する。

図4 4を参照して、図4 0のGOP構造生成ユニット3 4 4 をさらに詳細に説明する。図示したように、GOP構造生成ユニット3 4 4 は、0型両面変化位置とをそれぞれ記憶するための2つの3・4 9 3 6 8、3 7 0 を 含む構成となっている。これものメモリ3 6 8、3 7 0 は、基準フレーム位置ユニット3 7 2 の入力へ側別に接続されており、検団もれた画面変化に基づいて I 及びPフレームの位置を決定する。基準フレーム位置ユニットからの1つの出力は、Bフレーム位置ユニット3 7 4 へ接続してあり、I フレーム又はPフレームに指定されていない残りのフレームをBフレームに指定する。基準フレーム位置ユニット3 7 2 は、PMODEメモリ3 7 8 にも接続してある。PMODEメモリ3 7 8 にも接続してある。PMODEメモリ3 7 8 にも接続してある。PMODEメモリ3 7 8 にもを続してある。PMODEメモリ3 7 8 にもを含むした。処理中のGOPについてのI、P、Bフレーム位置を記憶する。この実施形態では、P

MODEメモリ378は、フレーム「0」から「15」にそれぞれ対応する0から15のレジスタとして指定された16額のレジスタを含む構成となっている。 PMODEメモリ378は、ラインE2を通じてPMODE制御信号を受信し、 ラインE3に対してPMODEリード信号を出力する。

図40の画面変化検出器制御モジュール346について図45を参照してさら に詳細に説明する。画面変化検出器制御装置346は、小型プロセッサを含むか 又は結練論理回路で提供される制御回路380を含む。制御回路380は、E3 を通じてPMODEリード信号を受信し、E2を通じてGOP構造生成ユニット 344 (図40参照) に対してPMODEメモリ制御信号を出力する。制御回路 380は、両面変化検出制御信号SCDCSも出力する。さらに図示してあるように、制御回路 380は、ビクチャモード信号 (PMS) 生成ユニット 384と、プレームシーケンスユニット 382は、バッファとして機能し、プレームメモリ 336からラインド 0を通じてフレームデータを受信する。そして、このフレームデータを処理中のフレームの実際の画像データを表むすので、フレームシーケンスユニット 382は、理中のフレームを表力す出力としてライン人を参加でフレームデータを出力する。また、ビクチャモード信号生成ユニット 384は、処理中のフレームの詳細な機別ができるようにするために、ラインA1に対してスイッチ制御信号を表わせてチャモード信号と開め、マインA1に対してスイッチ制御信号を表わせて

図46では、図39に図示した動き補償モジュール318を詳細に示してある。 破練の四角い部分385に囲まれた各構成部は、従来技術で周知の動き補償の整を表わす。本発明の発明者は、周知の動き補償者トワークに2つのモジュールを追加し、これらモジュールは図示したようにアレスコビック動き予測(ME)モジュール396とスイッケ制御プロックモジュール408とを含んでいる。 従来技術の動き予測ネットワーク385は、1つの1MODE、即ちフレーム間 モードスイッチ386と、4つのBMODEスイッチ388、394、400、402をそれぞれ合む。他に3つのデータ転送スイッチ398、410、412 も図示したように含まれている。これらのスイッチのそれぞれは、A1を通じて受信したピクチャモード信号PMSに応じてスイッチ制御プロック408により生

成されるモードスイッチ制御信号、すなわちMSCによって制御される。図47 には表414としてスイッチ制御プロック408の真理値表を示す。また、図示 したように、スイッチのそれぞれはMSC信号になて「0」と「1接点の間 で関連する切り換えアームを切り換えるように動作する。Bフレーム補便の3 90は、スイッチ388、394、400、402~それぞれ接続されている。 Pフレーム補償回路 39 2は、スイッチ388、394、398のそれぞれに傾別に接続されている。スイッチ394は、テレンコンク動き予測キビシュール396に接続されている切り換えアームを備えている。スイッチ398は、アレンーム補償回路 392ヘアームが接続してあり、「1」及び「0」接点がスイッチ400の「0」接点とスイッチ402の「0」接点とにそれぞれ接続してある。スイッチ402のスイッチアームは、フレームメモリF0(404)へ共通接続してあり、ラインH2を経由して動き予測モジュール396へ接続してある。スイッチ402のスイッチアームは、フレームメモリF1(406)に共通接続してあり、ラインH3を経由して動き予測モジュール396へ接続してある。フレームメモリ404と42の「1」接点にも接続してある。ス102412の「1」接点にも接続してある。410と412のスイッチアームは、ラインG2終由で加算結合323(個298年)に対応経験に大める。310位の38年)に対応を経験してある。410と412のスイッチアームは、ラインG2終由で加算結合323(個298年)に対応接続してある。310位の398年)に対応接続とする。323(個298年)に対応接続と

助き船債モジュール3 1 8 の動作について図 4 6 と図 4 7 を参照して認明する。 B フレーム網債モジュール3 9 0 と P フレーム網債モジュール3 9 2 は、それ それ B フレームと使更するための必要網問関数を提供するように動作する。 P M S 信号が「0, 1」の時、I M O D E スイッチ 3 8 6 は0 信号を加算結合 3 1 2 に接続する。スイッチ 4 1 0、4 1 2 は、フレームメモリF 0(404)またはフレームメモリF 0(404)またはフレームメモリF 0(404)またはフレームメモリF 1(406)のどちらかの人力を刺撃給うる。 交互に接続するように動作する。これらのスイッチは、ピクチャモード信号 P M S の値が 0、1、2、3 のいずれかである間、メモリ 4 0 4、4 0 6 を加算結合 3 2 3 へ変互に接続するように交互に切り換る。しかし、P M S 信号の値が 4 または5 の どちらかの大の番組合、スイッチ 4 1 0、4 1 2 は、P M S 信号が 4 又は5 である張り、最後のスイッチ位置に留まる。P M S 信号の値が 0 または1 0 場合、スイッチ 3 8 6 が動作して 0 V を信号ライン G 0 を通じて加算結合 3 1 2 に

接続する。またBモードスイッチ388が動作してPフレーム補償回路392の 出力を回路又はネットワークから切り離す。更にBモードスイッチ394が動作 してPフレーム補償回路392への入力として動き予測モジュール396の出力 を接続し、スイッチ398が動作してPフレーム補償回路392の入力をそれぞれフレームメモリ404、406へ、これらのフレームメモリのどちらがデータをもっとも新しく認み込んだかによってスイッチ400、402が動作してフレームメモリ404、406の出力をBフレーム補償回路399の入力に接続する。PMS信号の値が「2」又は「3」に変化すると、スイッチ386、388が動作して加算結合312にPフレーム補償回路392の出力を接続し、そしてスイッチ400、402が動作してメモリ400、406の出力をスイッチ398%就会あつで、それによってスイッチ398が動作してメモリ404と406からフレームメモリ出力の一力を、その時点のスイッチ398のスイッチアームの位置にしたがってアフレーム補償回路392の入力に接続する。

動き予測モジュール396についてさらに詳細に認明する。図48を参照する
た、動き予測に対立ール396は、動きベクトルメモリ420がテレスコピック
動き予測に開発に424と予測モジュール4260時に接続してある。フレーム
メモリ422は、予測モジュール4260時に接続してある。フレーム
はに接続される。別のフレームメモリ428は、予測モジュール426と制理設置
位424に接続される。第3のフレームメモリ430もテレスコピック動き予測制測接匿424と予測モジュール426に接続される。動きベクトルメモリ420は、現在フレームを基準として前方と後方にある基準フレームについての動きベクトルとを要情するためのものであり、テレスコピック動き予測削算装置424により制御アクセスされる。フレームメモリ42は、現在のフレームデークを使 上り制御アクセスされる。フレームメモリ42は、現在のフレーボークを使 上り制御アクセスされる。フレームメモリ42は、現在のフレーボークを使 はり制御アクセスされる。フレームメモリ42は、現在のフレーボークを使 出するように要求されるまで、該現在のフレームデータを一時的に記憶する。予 割モジュール426は、実際の動きペクトル検索を実行し、この際、全検索法を 含む何らかの従来の動き予測方法又は本用細書で前途したようなその他の従来技 係の方法のいずれかの方法を使用する。テレスコピック動き予測側算装置

は、関連する動き予測モジュール396の他のモジュールのタイミングを制御し 、動きベクトルメモリ420から動きベクトルを読み取り、信号線H1を経由し

てBフレーム補償回路390以はPフレーム補債回路392へ予測した動きベクトルを出力する。フレームメモリ428、430は、基準フレームを記憶するために使用され、任意の時刻にこれらのメモリの内の1つが直前の基準プレームを記憶し、これらのメモリの他のメモリは、後方の基準プレームを記憶する。フレームデータは、信号線日2を基由してフレームメモリ428へ入力されるほか、他の信号線日2を経由してフレームメモリ428へ入力されるほか、他の信号線日2を経由してフレームメモリ430へ入りされる。

テレスコピック動き予測モジュール396のテレスコピック動き予測制御装置 424について図49を参照してさらに詳細に説明する。図示したように、テレスコピック動き予測制御装置 424は、前御回路 436は接続されたメモリ432を含む。制御回路 436は、2つのROM 434、438にそれぞれ接続してある。ROM 434は、前が動き予測(FME)シーケンスに関連する。側御回路 436は、前が動き予測(FME)シーケンスに関連する。側御回路 436は、信号線13に沿って予測制卵信号を、信号線11に沿って動きベクトルメモリ制御信号を、12に沿ってフレームメモリ制御信号をそれぞれ出力するように動作る。

ビットレート制御装置3 2 6 について図5 0 を参照してさらに詳細に説明する。図示したように、ビットレート制御装置3 2 6 は、最子化パラメーク(Q P) 測節年ジュール4 4 0 と、目標ビット調節モジュール4 4 2 とを含む。東部接 4 4 4 が図示してあり、これでは各ピクチャ形式でのスケーリング倍率X が量子化パラメーク調節モジュール4 4 0 で受信したピクチャモード信号P M S の 値に対応してどのように変化するかを表わしている。このモジュールは、式 Q_p = 3 1 X (F/J) を計算するためにプログラムされている。この量子化パラメーク の式の3 1 ステップを用いることで、5 ピットでこれを表わすことができる。パッファ溝(水量) F とパッファの大きさ J との比は、どれくらいのピットがパッファ カス 3 2 (図 9 多 参照)に関連しているかに応じて0 と 1 の間になる。すなわち0 から J までで、典型的には J は、ピットレートが約 1 . 5 メガバイト/ 年秒程度の時に 5 ピクチャ (2 5 0 キロバイト) 程の符号化に必要な平均ビット数を表力 た。

さらに真理値な444を参照して、PMSが値「0」を有する時に、スケーリング倍率1がI1フレームに相対することに注意する。PMS信号が「1」の時、スケーリング信率Xは10で、I2フレームに関連し、このフレームはこの例では粗く量子化されたフレームである。PMS信号が値「2」を有する場合、スケーリング倍率はスプロ・P1フレームに関連し、これは幾ちか報く量子化されたフレームに関連する。PMS信号が「3」の時、スケーリング倍率は3で、P2フレームに関連する。PMS信号が「5」の時、スケーリング倍率は3とで、B1フレームに関連する。PMS信号が「5」の時、スケーリング倍率は2で、B1フレームに関連する。PMS信号が「5」の時、スケーリング倍率は2でX B1フレームに関連する。目標ビット測防モジュール442は、式D₁=X₁T_{8の0}を指奪するように動作し、これによって図50の実施形態では、ストリックでの。

図31に示したアルゴリズムとの脚連で示したBSE-TAMI(2連検素等 距離TAMI)の本発明の実施形態は、図39の一般的ハードウェア設定を用い で実現できる。しかし画面変化機相器(SCD)310は、本発明の他の実施形 態のために別に設けられるものである。画面変化機相器(SCD)310で必要 とする設定を一般化したプロック図が図51に図示してある。フレームメモリ3 36、GS「GOP構造)生成ユニット344及びSCD制御装置346は、図 40の実施形態で前途したとおりである。相違点はアレームメモリ336とGO 保護学性エニット344の使用に関連する。

2準検索ユニット450の設定を図52にさらに詳細に図示してある。しきい 慎ユニット452は、検索するフレームの検索無機の中点面についてしきい慎を 計算するように動作する。フレームデータは、フレームメモリ336からパスB 0に転送されることに注意する。制御ユニット454は、適切なタイミング信号 及び2準検索制御信号BSCSを生成するように動作する。制御ユニット454 は、両面変化検出器340、342の出力に応じて、出力線D3に0型両面変化 と、線C2に沿って0型両面変化のフレーム位置を表わす信号を出力する。検索 領域計算エニット456は、1つのステップから別の関連するアルゴリズムのス テップに 2 進検索を導くための次の検索領域を決定し、図 3 1 に図示したように 反復的に検索を行なう。

TAMIによるサブバンドビデオ符号化

この分野で、離散的な時刻信号をローパス及びハイパス周波数成分を分離する ステップでサブサンプリングすることが広く知られている。この技術は、2つの 空間方向のそれぞれでサブサンプリングを適用することによる画像またはビデオ フレームの処理に主で拡張されている。適切なハイパス及びローパスフィルタに 後続する場合、各空間方向に2の倍数でサブサンプリングすると画像を4つの部 分画像に分解することになり、そのそれぞれが元の画像の1/4の量の画素を有 することになる。部分画像(サブバンド画像)は、(L,, L,) (L,, H,)、 (H., L.)及び(H., H.)と標識され、大文字がフィルタの種類を表わし(H=ハイパス、L=ローパス) 、添字が空間処理方向 (v=垂直、h=水平) を 表わす。サブバンド画像は補間とフィルタ処理で再結合されてこれらを取り出し た元の画像を再構成することができる。サブバンド画像のどれか又は全部に対し 同じステップの処理を更に実施してより小さいサブバンド画像を作成できる。転 送又は記憶システムのアプリケーションを用いれば、一つ一つの異なるサブバン ド画像に異なる符号化方法を用いることで周波数選択画像符号化を実現できる。 本発明のさらに別の実施形態において、時間適応型動き補間を有する新規のサ ブバンドビデオ符号化アルゴリズムを提供する。この実施形態では、動き予測の ための基準フレームがビデオ信号の最も低い空間サブバンドにおける時間的セグ

ブバンドビデオ符号化アルゴリズムを提供する。この実施形態では、動き予測のための基準フレームがビデオ信号の最も低い空間サブバンドにおける時間的セグメンテーションを用い遠応がに選択される。ピクチャグループトリの各ピッテタイプに対する可変目標ピット割り当てを用いることで、一定出力ピットレートの制約をもつ基準フレームの可変数使用が可能となる。プロック単位でのDPCM、PCM、ランレングス存号化を入めハフマン符号化(比中にactedHaffeancoding)と組み合せて使用し、サブパンド内の量子化データを符号化する。以下に示すように、1型及びの型面面変化のしきい値はフレーム内でサブサンブリングした両素数に直接比例して調節する。適応方式のシミュレーション結果を非適応方式のそれと好適に比較する。

サブバンド符号化は、ATMネットワーク内の像先順位のあるパケット化ビデオに好適な固有の階層化解像度構造を有するとして関知である。ビデオ符号化で 別の周知の力法はMPEG標準で最近規格化された動き補償である。サブバンドを使用する時間的な冗長性を減少する法としては、2つの方法に分類することができる。その1つは3月空間一時間サブバンド符号化(30 spatio-temporal sub band coding)で、もう1つは動き結構22リサバンド符号化(20 subband coding)である。図53に図示した本発明による固定出力ピットレートサブバンドビデオ符号器と実現するに当たって、来来明のサブバンドの実施形態は、後者の方法を適用し、数きによる時間的な冗長性を終まする性能の気を推断する。

より具体的には、本発明のサブパンドの実施形態でのアルゴリズムは前述のT AMIをわずかに変更したものである。これは、各GOP (グループオブピクチャ) におけるPフレームの可変数を与える変更である。この新娘のサブパンドT AMIアルゴリズムは、各GOPについて沈のステップを取る:

- (1) 1型画面変化の位置を検出する。
- (2) 0型画面変化の位置を検出する。
- (3) I、P、Bフレーム全部の位置を決定する。

本実施形態では、全ビット割り当てのあるI、P及びBフレームは、I1、P

1、Bと表わし、減少ビット割り当てした1フレームは12、減少ビット割り当てをしたPフレームをP2として、本発明の他の実施形態と同様に標記する。

本発明の他の実施形態ですでに説明したように、2種類の画面検出器がアルゴリズムで必要とされる。第10検出器は、現在のフレーム「₈と直前フレーム「_n。」の間の距離測定がしきい値下」以上の場合に現在フレームについて1型画面変化を宣言する。この種の両面変化は、現実の両面が容の変化に対応する。これを12フレーム (非常に粗く量子化した内部フレーム)として符号化し、直前のフレーム「_n。」をP2フレーム (非常に粗、量子化した予測プレーム)として符号化さる。12フレームの体力化は、前が時間マスキンが効果を活用しており、P2フレームの符号化は後方時間マスキング効果を利用する。第2の検出器は、現在のフレームと最後の基準フレームの間の距離測定がしきい値下。を越える場合に現在のフレームについて0型両面変化を宣言する。この場合直前のフレーム 「元」はア1フレームになる。

すでに示したように、○型画面変化検出を実行する際の基準フレームの割り当 て方法としては、○型画面変化により決定される各時間的セグメントのエンドフ レームはP1フレームとし、その間のフレームはBフレームとすべきものである。 TAM1アルゴリズムで生成したGOP構造の例は、図8Aと図8Bで既に図 示してある。

図53において、TAMIを使用するサブパンド符号化システム460のプロック図が図示してある。マルケ新像度動き予測を使用するTAMIアルゴリズムは、SCD310と動き予測回路462経由で、サブパンド分析をジェール464によるサブパンド分離された後の最も低い空間サブパンドに適用される。動き補償データはそのとき、量子化回路316で量子化され、そして何えばハフマン符号方式を使用したVLCモジュール324で可変更符号化により符号化される。バッファ332は可変速度から一定チャンネルビットレートまで出力符号化データを変換するために必要である。

サブパンドフィルタリングの2つのステップを使用して7種類の空間帯域「1」から「7」を図54に図示したように生成する。この実施形態では、D. Le GallとA. Tabatabajが論文「対称カーネルフィルタと算術符号

化技術を使用するデジタル画像のサブパンド符号化」 (Proc. ICASSP 88, 761 ~763 ページ、1988年4月) で教示しているように、フィルタは、ローバス及びハイバス両直交フィルタを使用する分離2Dフィルタである。サブパンド分析では、

$$H_1(z) = \frac{1}{8} (-1 + 2 z^{-1} + 6 z^{-2} + 2 z^{-3} - z^{-4})$$
 (32)

$$H_1(z) = \frac{1}{2} (1 - 2 z^{-1} + z^{-2})$$
 (3 3)

ローバスフィルタに関する式(3 2)の定数項 1/8は、DC利得 1を提供するために選択されたものである。対応する合成ローバス及びハイバスフィルタは、 $G_1(z)=H_1(-z)$ かの $G_h(z)=H_1(-z)$ である。これものフィルタ対は、それぞれが 3種類のサンブル遅延を有する完全な再構成属性を有している。 言い後えれば、

$$\hat{X}(z) = z^{-3}X(z)$$
 (34)

で簡単に示される。ここでX(z)は入力、 $\hat{X}(z)$ は再構成信号である。

時間的セグメンテーション (画面変化検出) アルゴリズムは、最低のサブパンドに適用され、最低のパンドの減少されたピクチャ寸法である16の係数によって計算量を減少させることができることになる。

MRME 4 6 2 が提供する動き予測のためのマルチ解像度方法について説明する。サブパンドフィルタリング段階に対応する解像度レベルを s に設定する。最大フィルタリング段階を5で表わすこととし、これが図5 4 では2 になっている。図5 4 ではバンド(1、2、3、4)で s = 2、またそれ以外では s = 1 である。初期の動きベクトルはパンド1でのみ予測され、他のサブパンドの動きベクトルを生成するように次のように伸縮される:

$$\overrightarrow{d}_{i}(x, y) = \overrightarrow{d}_{s}(x, y) 2^{s-2} + \overrightarrow{\Delta}_{i}(x, y)$$
 (35)

GOP内のP1基準フレーム数を可変とするためには、前述したように基準フレームの適応遊れについて各GOPの始まりにおいて、可変目標ピット割り当てスキーム(a variable target bit allocation schem)を更新する。つまり、目標ピット割り当ての方式は、前述のま (3の)と同一である。

GOP内で、各ビクチャ形式に対応する目標ビット割り当てもまた、実際のビ オシーケンスの画面変化の複像法に適応できるように変化させられる。同じ クチャ形式を有する直前のビクチャで生成されたビット数は、目標ビット割り当 てとして使用される。1つのフレームについて生成されたビット数が目標ビット 数から外れた場合には、次式に続い、次のビクチャのビット割り当てが調整され てビットレートの受入れ可能な顧用を維持する。

$$D_{t} = X_{t} \times \frac{T_{GOP}}{E_{GOP}} \tag{3.6}$$

ここでtはピクチャ形式で、t \in $\{11$ 、12、P1、P2、 $P\}$ 、D,はピクチャ形式 t σ 面前アレームで の生成ピット数、 E_{cor} は各フレーム形式で生成した最新のピットゲータにより 計算した予測されるG OP U ヴァレート、そして T_{cor} は目標G OP U ヴァレートである。 T_{cor} はM (R/3 0) で計算し、ここでMiG OP D がっと、ま

たRは目標ビットレート (ビット/秒) である。Ecopは次式で計算できる:

$$E_{\text{SOP}} = \sum_{t \in \Lambda_{\text{GOP}}} \mathbf{n}_{t} X_{t} \tag{3.7}$$

ここでAcopは現在のGOPで使用される全ピクチャ形式の組、n+はGOP内

のピクチャ形式 t のフレーム数、X_tは形式 t の直前フレームで生成したピット 数又はピクチャがG O P の始めにある場合にピクチャ形式 t での初期ピット割り 当てである。

ビットレート制御には他にも2つの社意点がある。1つは実験の称号化ビットを目標ビット割り当てに調節することであり、もう1つはバッファ332についてバッファのオーバーフロー又はアンダーフローの問題を防止する内容指側を行うことである。これら制御のどちらも次のアルゴリズムで取り扱う。各スライスの終わりで、バッファ332の内容はド=ドキ8genーち、により更新する。ここで下はバッファ332の内容、Sgenはそのスライスで生成したビット数、Sgはそのスライスの目標ビット数である。安定したバッファ動作を維持し、フレーム当たりの目標ビット割り当てに近似できるように生成ビットストリームを調整するため、量子ビバラメータQpを次の関係を用いてバッファの満杯度にしたがって調節する。

$$Q = 3.1 \times \frac{F}{I} \tag{3.8}$$

ここで J は3から5ピクチャ程度のローデータ (raw data) の量としてみたパッファサイズ、数31は5ピットで符号化される31の異なる非ゼロステップのサイズがあることを意味する。

Iフレームのサブパンド1だけにブロック全体のDPCMと均一量子化回路を 用いる。DPCMでは、上からの発度予測を図55のように用いる第1カラムを 除き、左からの水平予測を用いる。Iフレームの最も低いサブパンドを除く全て のサブパンドは、ピクチャ形式に関係なく、ハイパスフィルタを通したサブパン

ドも動き補償した残りの両像も協かな空間的相関しかないため、デッドソーン量子化回路によりPCM (パルス符号変調)で符号化される。木平及び乗庫走壺モードは、ローバスフィルタ処理した方向にあわせて選択する。つまり、図56の木平走壺モードはパンド2及びパンド5(図54参照)に使用される。このモードは、デフォルトにより両方向にハイパスフィルク処理されるパンド4及びパンド7(図54参照)にも使用される。このでの乗車モードは、パンド3及びパン

ド6に対して使用される(図54参照)。

これらの走金モードの選択は、ハフマン符号化と組み合せたランレングス符号化による統計的冗長性を減少させるのに寄与する。ハフマン符号化テーブルは、テニス、フットボール、フラワーガーデンを含む2機つかのトレーニング画像シーケンスから得られたランレングスヒストグラムデータに基づいて生成する。丸めハフマン符号化(Truncated Haffman coding)は、符号語の長さを制限するために実際に使用されている。17ビットを越えるビット長を有する符号部ニントリは、MPE 信標で定義されている20又は28ビットどちらかの固定良符号語に置き換える。

テニスとフットボールのシーケンスを用いてTAMIアルゴリズムを固定スキームと比較するシミュレーションを行なった。MPEGと同様のPフレームとBフレームでのブロック形式の決定は、s=1で4×4ブロックサイズ、そして動き予測のために半分の画素特度を有するテレスコピック検索を使用する。2つの時間的セグメンデーションアルゴリズムとして、グレーレベルのヒストグラムの遊を距離測定に選択した。使用したしきい値は 四型検出に0、25 $N_{\rm pla}$ 、0型検出に0、 $1N_{\rm pla}$ で、 $N_{\rm pla}$ は非ーフレーム内の画素数である。3色成分全部(Y、U、V) を符号化し、ピットレートの結果は3色の成分についての圧縮データピット、量子化グラメータのピット、動きベクトルピット、ヘッダピットを加算して計算するが、SNR曲線はY成分についてだけである。

図58は平均SNRとピットの能力比較の表を示す。TAMIは、閩定スキームよりもテニスで0.9dBまたフットボールで0.7dB良好なことが示されている。<math>2つのスキーム間のSNRの差は僅かであるように示されているが、T

AMIは固定スキームより安定したピクチャ両質を有している。TAMIは、例 えばズーミングのようなグローバルモーションを検出することによりさらにPフ レームを自動的に挿入する。

テニスとフットボールの再構成シーケンスのリアルタイム表示では、TAMI と固定スキームとの画質の差はさらに顕著だった。TAMIの画質は明瞭で、固 定スキームよりプリンキングが少ないことが示された。

実験により、サブパンド動き葡萄のための基準フレームの適応選択が主観的画質と客観的測定SNRについて固定スキームよりも右利に比較されることが示された。これと引き替えに、符号化まではGOPフレームで先認みする必要があるためいくらかの符号化遅延が必要とされる。本実施形態は、サブパンドドメインにおいて動き葡萄を使用し時間的冗長性を除去するための良好な両面適応方式を掲出する。

図59において、図53を補完し拡張するプロック図が図示してあり、本発明 によるサブバンドビデオ符号化の実施形態のためのシステムについてさらに詳細 を提供している。図示したシステムは、図39に図示した符号化システムと非常 に類似しており、図59においては図39のシステムと同様の部分が同じ参照番 号で図示してあり、これらの部分は図39で説明したのと同じ機能を提供する。 相違点は、図39の動き補償モジュール318がマルチ解像度動き予測モジュー ル462に置き換えられていることである。マルチ解像度動き予測モジュール4 62は従来技術で周知であり、前述のY. Q. ZhangとS. Zafarの論 文で説明されている。また、図39の離散コサイン変換モジュール322、逆離 散コサイン変換モジュール314は、図59のシステムには含まれていない。別 の相違点は、図59では走査モードスイッチ321が量子化回路316と可変長 符号化モジュール324の間に含まれていることである。走査モードスイッチ3 21の目的は、各サブバンドの処理のために各種走査モードを切り換えることで ある。最後に、別の相違点は、サブバンド分析モジュール464が図59のシス テムにおいて画面変化検出器310の前に含まれており、図39のシステムでは 含まれていないことである。

図53と図59のサブバンド分析モジュール464は、図60にさらに詳細に

図示してある。図示してあるように、サブパンド分析モジュール464は、制御 信号CSに応じて、図示したシステムの残りの部分の各種モジュールの全部を制 刺するために使用するタイミング制御信号TCを出力するためのタイミングコン トローラモジュール526を含む。ラインK0で受信したビデオデータは水平ハ イバスフィルタ500を通り、水平ローバスフィルタ502を通過する。水平ハイバスフィルタ500の出力はサブサンブリングモジュールまたはデシメータまたはダウンサンブラ505を通過し、従来技術で周知のように、フィルタリングレステップの後で冗長なデータサンブルを1つおきに除去する。サブサンブリングレフィルタを通したビデオデータは垂直ハイパスフィルタ504を揺れているのである。サブサンブリングマイルタ506をそれぞれ通過し、これらのそれぞれの出力はサブサンブリング モジュール505を通過して、それぞれ「パンド7」及び「パンド6」と標記した出力線解由でフィルタしたサブバンドデータを要性する。

水平ローバスフィルタ502からのフィルタを通ったビデオデータは、サブサンプリングキジュール505を通過し、垂直ハイパスフィルタ508を垂直ローバスフィルタ510の両方に入力データとして提供される。垂直ハイパスフィルタ508からのフィルタを通ったビデオ出力データはサブサンプリングモジュール505を通り、「パンド5」と標記した出力線にビデオサブパンドデータとして出力される。

垂直ローパスフィルタ510からのフィルタを過ごた出力データは、サブサンプリングモジュール505を通り、本半ハイパスフィルタ514と水半ローパスフィルタ516の両方に入力ビデオデータとして設約される。水平ハイパスフィルタ514からのフィルタビデオ出力データはサブサンブリングモジュール50を通り、銀売ハイパスフィルタ518を乗取ローパスフィルタ520の両方0を通り、銀売ハイパスフィルタ518と乗取ローパスフィルタ520の両方フィルタビデオ入力データとして提供され、これ6の出力それぞれがそれぞれサブサンブリングモジュール505を通り、それぞれ「パンド4」、「パンド5」として示したサバンドラインの書きれる。

水平ローパスフィルタ516からのフィルタビデオ出力データはサブサンブリングモジュール505を通り、ここから垂直ハイパスフィルタ522と垂直ローパスフィルタ524行れたフィルタ入力ビデオデータとして提供される。そ

れぞれの出力はサブサンプリングモジュール505を通り、ここからサブパンド ライン「パンド2」と「パンド1」にそれぞれ出力される。破線で示した領域4 99に囲まれた前赤した水平及び垂直のハイパス及びローパスフィルタの全部は 十でに示したように、2 重フィルタリングを提供するための周知のサブバンドフィルタリングシステムを表わす。 本発明の発明者は、サブバンドライン「バンド」から「バンドア」を受けるためのマルチプレクサ512を追加した。 多重化した出力データはマルチプレクサ512から の出力線 A 0 を経由して図59に関示したように両面変化検出器310に入力データとして姿態するために提供される。

本発明の各種実施形態について本明細書で図示し説明したか、本発明による実 施形態はそれらに限定されるものではない。これらの実施形態に対して、添付の 請求の範囲の精神と範囲に含まれる幾多の変更が可能であることが当業者には理 解されよう。

図面翻訳文

図番

原文	翻訳文

図 2 B

CONTRAST SENSITIVITY	コントラスト感度
- SPACIAL FREQ. =0.5 CYCLE/SEC SPACIAL FREQ. =0.5 CYCLE/SEC	空間周波数 0.5 サイクル/秒空間周波数 1.6 サイクル/秒

ステップ101	1つのGOPからマイクロプロセッサ 内に含まれる関連フレームメモリヘフ レームを読み込む
ステップ102	 画面セグメントデータf。をllフレームとする 画面セグメントデータf。をフレーム基準メモリf。に複写する 第1フレームのピクチャ番号cをlとする
ステップ103	現在フレームf。とその直前にある基 準フレームf。、の間の間隔又は動き Dが1型画面変化のしきい値T。より 大きいか否か比較する
ステップ104	・P1フレームの数を0とする ・現在フレームf。と最後の基準フレームf。cの間で側定した間隔又は 相対的な動きDがしきい値T。より 大きいか否かを比較する
ステップ105	ピクチャ番号cを参照して現在処理実 行中のGOPの15番目のフレームの 処理が実行されているかを調べる
ステップ 1 0 6	・現在フレームfcを12フレームとする ・直前にある基準フレームfc-tをP 2フレームとする
ステップ107	現在のフレームデータ f c を最後の基 準フレームデータ f , 。, に複写する

「図4の続き」

(IN 4 OWES)	
ステップ108	直前にある基準フレーム f e-1 を P 1 フレームとする
ステップ109	・基準フレーム f e を最後の基準フレーム f r e t に複写する ・ P l フレームのカウント値を l イン クリメントする
ステップ110	ピクチャ番号を1インクリメントし、 次のフレームに進む
ステップ16	GOP構造を決定する

図 6

⊠ 0			
□CURRENT MACRO BROCK POSITION I N FRAME 3 □ (点線表示) MATCHED MACRO BROC K POSITION IN FRAME 0	□フレーム 8 での現在のマクロブロックの位置 □ (点線表示) フレーム 0 での対応するマクロブロックの位置		
→ (点線表示) MV IN THB PREVIOUS FRAME-OFFSET MV → ADJUSTING MV PROM THB OFFSET CURRENT TRUB MV → MV ESTIMATE FOR THB CURRENT PR AME	→ (点線表示) 現在のフレームの動き ベクトル=オフセット動きベクトル → 現在のオフセット動きベクトルに 基づいてモーションベクトルを誤整 ー動きベクトルが現在のフレームを予 測		

図8 A B

FRAME NUMBER	・フレーム番号
CODING PICTURE TYPE	・符号化するピクチャの形式
SCENE CHANGE TYPE=0 DEFAULT INSERTION OF P1 FRAME FO R 1-P SCHEME SCENE CHANGE TYPE=1	・ 0 型画面変化 ・ 1 - P方式でのP1フレームを挿入 するデフォルト ・ 1 型画面変化

ステップ104'	現在フレームfcと最後の基準フレームfrerの間で測定した間隔又は相対的な動きDがしきい値T。より大きいか否かを比較する
----------	--

図 i 1

ステップ61	GOPフレーム群をメモリに読み込む
ステップ62	2 つの隣接フレーム間の間隔測定値を 用いて1型画面変化を検出する
ステップ63	FOR(1 ← i < (GOP-1))
ステップ64	FOR((i+1) ← j < GOP)
ステップ 6 5	i番目の区間の間隔を計算
ステップ66	GOPの大きさMと偏差de vを計算
ステップ68	Plフレームをiとjとに割り当てる
ステップ70	GOP構造を決定する

図12

Pl FOUND BY OSA SCENE CHANGE TYPE=1 OSAによりPlフレーム・ 1型画面変化	OSAによりP1フレームを検出 Ⅰ型画面変化	
--	---------------------------	--

図13

DIRECTION OF TELESCOPIC SERCH	テレスコピック動き予測による検索方 向

図14, 23, 25, 28

FRAME NUMBER SNR	・フレーム番号 ・S N 比	
---------------------	-------------------	--

図15~図19, 23

FRAME NUMBER BIT RATE	・フレーム番号 ・ビットレート	

図20~22

STATISTICS TARGET BITS	・統計表・目標ビット数・平均使用ビット数
AVARAGE BITS USED AVARAGE SNR(Y)	・平均SNR (Y)
AVARAGE SNR(U) AVARAGE SNR(V)	・平均 S N R (U) ・平均 S N R (V)

図 2 4

PRAME NUMBER ・フレーム番号 DISTANCE ・距離	
--------------------------------------	--

図29 (a) (b) (c)

ı	IMAGE MOVEMENT	・画像の移動
	REGION AT BUSY TEMPORAL ACTIVITY	・時間的に活動の多い領域
į	REGION AT LOW TEMPORAL ACTIVITY	・時間的に活動の少ない領域
ı	P FRAMES ARE CLOSER BECAUSE THER	・データ変化が多いためPフレームど
ı	E 1S MORE DATA CHANGE	うしが近接している
į	P FRAMES ARE PLACED APART BECAUS	・データ変化が少ないためPフレーム
i	E THERE IS LESS DATA CHANGE	どうしが離れている
	THRESHOLD (TYPE 0)	- しきい値 (0型)
	FRAME DISTANCE	・フレーム問距離
	FRAME NUMBER	フレーム番号
	EQUIDISTANT FRAME DISTANCE	・等間隔のフレーム間距離
į	CODING PICTURE TYPE	・ピクチャの符号化形式

⊠ 3 0

DISTANCE FRAME NUMBER	・間隔・フレーム番号

図31

ステップ133	・初期しきい値τ 0 を取り出す ・ a _n = a (τ ₀) を計算する。
ステップ138	・SSPDET(N. m)の実行 ・a(m)を計算

⊠ 3 2

ステップ151	画面変化の検出
ステップ152	I 1ピクチャ符号化
ステップ153	CPICIがGOPの第1フレームに 対応する時点を決定する
ステップ154	i = 0 に初期設定
ステップ155	符号化アルゴリズムによりデータ処理
ステップ156	画面セグメント「i」のインデックス を1インクリメントする
ステップ157	インデックス「i」が画面セグメント 個数 (SCNUM) よりも小さいか否 かを比較
ステップ158	ピクチャ番号を15インクリメントす る
ステップ159	次に処理するGOPの画面変化を検出

[図32の続き]

ステップ160	CPICIをLPNと比較

ステップ170	GOPフレームをメモリに読み込む
ステップ171	P フレームカウンタ、画面変化検出器 を初期化
ステップ172	・ 画面変化インデックスを2に設定・ PNSCFを0に設定・ 画面変化インデックスを1インクリメントする
ステップ173	 ・ 画面セグメントデータを f 。をフレーム基準メモリ f 、。 に復写する ・ 現在のピクチャ番号カウンタを l に設定する
ステップ174	・現在フレームf。と直前の基準フレームf。-」の間の間隔又は動きが1型画面変化のしきい値T,より大きいか否かを判断する
ステップ175	・Pフレームのカウント値を 0 に設定する。 ・現在フレーム f。と直前の基準フレーム f。、 との間の間隔又は動きが り型画面変化のしきい値 T。より大 きいか否かを判断する
ステップ176	現在処理しているGOPの終端のフレ ームに達しているか否かを判断
ステップ117	・次のフレームの処理を行う (ピクチャ番号を1インクリメントする)
ステップ178	 両面変化インデックスを1に設定する PNSCFのピクチャ番号cを識別する PNSCLのピクチャ番号c-1を 識別する 両面変化インデックスを1インクリメントする
ステップ179	・現在フレーム f 。のフレームデータ を基準フレーム f rer に複写する

[図33の続き]

ステップ180	 画面変化インデックスを 0 に設定する PNSCFのピクチャ番号cを識別する PNSCLのピクチャ番号c-1を 識別する
ステップ181	COND. A
ステップ182	Pフレームのカウント値を1インクリ メントする
ステップ183	・画面変化インデックスを1インクリメントする ・f, のフレームデータをf *** に 複写する
ステップ184	次のGOPの処理を実行する

⊠34A. B

ステップ200	DP-pcount>=0 D(fref.fe) > Ta
ステップ201	c mod(GOP/N+1)=0
ステップ202	DP=DP+1
ステップ203	c< GOP c mod(GOP/N+1)=0
ステップ204	 一両面変化インデックスを2に設定する PNSCFのピクチャ番号cを識別する PNSCLのピクチャ番号c-1を識別する 一両面変化インデックスを1インクリメントする
ステップ205	・現在フレーム f 。のフレームデータ を基準フレーム f rer に複写する

⊠ 3 6 A

A 3 0 K	
ステップ260	NP1フレームのカウント値を 0 に設 定する
ステップ261	1型画面変化が発生したか否か判断
ステップ262	現在のピクチャ番号PNを画面セグメ ントの i 番目のフレームのピクチャ番 号と等しくする
ステップ263	ピクチャ番号がGOPの最終フレーム を表すか否かを判断
ステップ264	I 1フレームの符号化
ステップ265	PNSCF[i]=PNSCL[i]
ステップ266	処理中の画面セグメントの最終フレー ム番号にピクチャ番号を設定する
ステップ267	現在処理中のフレームのピクチャ番号 がGOPの最フレームに位置している か否か判断
ステップ268	MEPの実行
ステップ269	MPEG標準に基づく予測処理
ステップ270	次画面が1型画面変化を有するか、既 にP1フレームが検出されているか判 断
ステップ271	P 1 フレーム符号化
ステップ272	P 1 フレームのカウント値を1 インク リメント
ステップ273	0 型画面変化を検出
ステップ274	現在の画面セグメントの第1ピクチ番 号を1デクリメントする
ステップ275	I 2 フレームの符号化
ステップ276	Bフレームについてテレスコピック動 き予測を実行
ステップ277	[1 フレーム符号化
ステップ278	P 2 フレーム符号化

図36B

ステップ280	第1フレームのピクチャ番号に現在ピ クチャ番号を設定する
ステップ281	フレーム補間処理
ステップ282	P 1 フレーム数が 0 かを判断する
ステップ283	B2フレーム符号化
ステップ284	Blフレーム符号化
ステップ285	現在のピクチャ番号が画面セグメンi の最終フレームのピクチャ番号より小 さいか比較する

⊠37

ステップ290	現在のフレーム番号を1インクリメントされた!画面セグメントのピクチャ番号に送出する
ステップ291	前方動きベクトル検索を実行
ステップ292	現在のフレーム番号を1インクリメン トする
ステップ293	現在のフレームが最終フレームのピク チャ番号より小さいかを判断する
ステップ294	現在のフレーム番号を1 デクリメンさ れた最後の画面セグメントのピクチャ 番号に設定する
ステップ295	後方動き予測を実行
ステップ296	現在のフレーム番号を1デクリメント
ステップ297	現在のフレーム番号が第1フレームの 画面セグメントの第1フレームに対す るビクチャ番号より大きいか判断

図38

ステップ300	現在のフレーム番号を1インクリメントされた i 画面セグメントのピクチャ 番号に送出する
ステップ301	前方動きベクトル検索を実行
ステップ302	現在のフレーム番号を1インクリメン トする
ステップ303	現在のフレームが最終フレームのピク チャ番号より小さいかを判断する
ステップ304	現在のフレーム番号を1 デクリメンさ れた最後の画面セグメントのピクチャ 番号に設定する
ステップ305	後方動き予測を実行
ステップ306	現在のフレーム番号を1デクリメント
ステップ307	現在のフレーム番号が第1フレームの 画面セグメントの第1フレームに対す るピクチャ番号より大きいか判断

図39

l	VIDEO IN	・ビデオ画像入力 ・制御信号
	PMS	・ピクチャモード信号
	M V	・動きベクトルビット

図40

図41

PREVIOUS REFFERENCE FRAME	・直前の基準フレーム
CURRENT FRAME	・現在のフレーム
HISTOGRAM DIFFERENCE	・ヒストグラム差

図43

図 4 4

TYPE 0 POSITION TYPE 1 POSITION PNODE MEMORY CONTROL PNODE READ	- 0 型画面変化位置 - 1 型画面変化位置 - PMODE制御信号 - PMODEリード信号
---	---

図45

PMODE MEMORY CONTROL PMODE READ FRAME MEMORY PMS	・PMODE制御信号 ・PMODEリード信号 ・フレームメモリ ・ピクチャモード信号
FRAME OUTPUT	・フレームデータ出力

X 4 6

MI V 1 MI B D	MSC PMS MV	・モードスイッチ制御信号 ・ビクチャモード信号 ・動きベクトル信号
-----------------	------------------	---

☑ 4 8

CURRENT FRAME	・現在フレーム
REFERENCE FRAME	・基準フレーム

图 4 9

MY MEMORY CONTROL FRAME MEMORY CONTROL F M E S E Q U E N C E B M E S E Q U E N C E	・動きベクトルメモリ制御信号 ・フレームメモリ制御信号 ・前方動き予測シーケンス ・後方動き予測シーケンス
ESTIMATOR CONTROL SIGNAL	・予測制御信号

図 5 1

S C D C S P M S		・画面変化検出回路制御信号 ・ピクチャモード信号	
FRAME	OUTPUT	・フレームデータ出力	Ì

BSCS	· 2 進檢索制御信号	
	1	

図59

VIDEO IN	・ビデオ画像入力
CS	・制御信号
PMS	・ピクチャモード信号
MV	・動きベクトルビット

図60

T C	・タイミング制御信号
C S	・制御信号

[図1]

FIG. 5

-93-

FIG. 9

-96-

FIG. 11

[図20]

STATISTICS	FIXED	0-P	.1-P	2-P	3-P
TARGET BITS	24.55	24.55	24.55	24.55	24.55
AVERAGE BITS USED	24,783	26,070	26,368	24,561	24,664
AVERAGE SNR(Y)	33.47	34.40	34.51	34.03	33.88
AVERAGE SNR(U)	39.37	40.57	40.45	39.93	39.28
AVERAGE SNR(V)	38.48	39.04	39.27	38.95	38.90

FIG. 20

[図21]

STATISTICS	FIXED	0-P	1-P	2-P	3-P
TARGET BITS	24.55	24.55	24.55	24.55	24.55
AVERAGE BITS USED	25,902	26,503	26,432	26,177	24,446
AVERAGE SNR(Y)	32.45	32.65	32.97	32.69	32.46
AVERAGE SNR(U)	39.26	40.24	40.10	39.68	39.45
AVERAGE SNR(V)	38.12	38.47	38.59	38.37	38.20

FIG. 21

[図22]

STATISTICS	FIXED	0-P	1-P	2-P	3-P
TARGET BITS	10.00	10.00	10.00	10.00	10.00
AVERAGE BITS USED	9,557	10,705	10,708	9,827	9,887
AVERAGE SNR(Y)	29.30	30.12	30.47	30.09	30.03
AVERAGE SNR(U)	36.43	37.50	37.61	37.25	37.16
AVERAGE SNR(V)	35.53	35.64	36.12	35.91	35.94

FIG. 22

FBR-TAMI VBR-TAMI 0 [FRAME NUMBER FIG. 23(b)

MCE	BIT	27450	26932	27760	27380
	SNR	1.40 2	32.93	31.38 2	32.90 2
	Ś	26994 34.40			
BV	BH	2699	26462	27942	2713
	SNR	34.26	32.81	30.66	32.57 27132
BH	BIT	27238 34.43 27362 34.39 27486	26527	27293	27102
	SNR	34.39	32.89	31.32	32.86
HOD	BIT	27362	26692	27080	27044
	SNR	34.43	32.77	27139 31.28 27080	32.82
DOH.	BIT	27238	26510		26962
	SNR	34.29	32.91	31.42	32.87
FRAME		89-149	120-180	09-0	AVERAGE

-128-

Fig. 28(e)

-134-

FIG. 32

FIG. 34A

FIG. 36B

FIG. 45

[図47]

PMS	PMODE	IMODE	BMODE	
0,1	I1, I 2	1	0	414
2,3	P1,P2	0	0	
4,5	B1,B2	0	1	

FIG. 47

FIG. 49

-155-

FIG. 51

[図52]

FIG. 53

[図54]

FIG. 54

FIG. 55

[図56]

[**2**57]

STATISTIC	FIXED		TAMI		
	YSNR	BIT	YSNR	BIT	
TENNIS	30.41	33,302	31.34	34,031	
F00TBALL	29.43	33,925	30.12	33,696	
AVERAGE	29.92	33,614	30.73	33,864	

FIG. 58

FIG. 59

【手続補正書】特許法第184条の8第1項 【提出日】1996年3月19日 【補正内容】

補正請求の範囲

1. フレーム間の全体的な動きであるグローバルモーションの度合をビデオデー タにおけるフレーム間について決定するステップと、

前記グローバルモーションの前記度合に基づいて基準フレームを割り当てるステップと、

基準フレーム間の時間的スペーシングを、フレーム間について測定されたグロ ーバルモーションの度合に対し、人間の視覚における時間的マスキングと関係さ せて調節することで、ピクチャグループ (GOP) 構造を決定するステップと、 を含むビデオデータ圧縮方法。

4. 前記しきい値設定ステップは、

前記一対の連続フレーム間の1型画面変化を、一対の連続フレーム間の測定された動きが実質的な画面乃至ピクチャの変化に関する T_1 しきい値で定められる値を超える場合に生じるものとして指定するステップと、

をさらに含む請求の範囲2に記載のビデオデータ圧縮方法。

5. 前記しきい値設定ステップは、

前記一対の連続フレーム間の0型両面変化を、一対の連続フレーム間の測定された動きが実質的な両面乃至ピクチャの変化に関する T_0 しきい値で定められる値を超える場合に生じるものとして指定して確定するステップと、

直前の基準フレームと連続フレームからの積算した動きがToしきい値を越えるときを検出し、前記連続フレームの直前のフレームを、前記割り当てステップ による所定のビットレートの基準フレームであるP1フレームと指定して確定するステップと、 をさらに含む結束の範囲2に記載のビデオデータ圧縮方法。

6. 前記しきい値設定ステップは、

前記一対の連続フレーム間の0型画面変化を、一対の連続フレーム間の測定された動きが実質的な画面乃至ピクチャに関するToしきい値で定められる値を超える場合に生じるものとしてて指定するステップと、

直前の基準フレームと連続フレームからの積算した動きがT_oしきい値を越え るときを検出し、前記連続フレームの直前のフレームを、前記割り当てステップ による所定のビットレートの基準フレームであるP1フレームと指定して確定す るステップと、

をさらに含む請求の範囲4に記載のビデオデータ圧縮方法。

- 7. 基準フレーム間の連続フレームをそれぞれ双方向Bフレームに指定するステップをさらに含む請求の範囲6に記載の方法。
- 9. 少なくとも1つの0型画画変化が検出された前記複数のGOPのそれぞれに ついて、複数のフレームを11基準フレームとP1基準フレームの間のB1フレ ームと指定して確定し、前記B1フレームのそれでは前記割り当てステップに よる所定のピットレートを有するようにするステップと、

0型両面変化が検出されなかった前記複数のGOPのそれぞれについて、複数のフレームを基準フレーム間のB2フレームと指定して確定し、前記B2フレームはそれぞれが前記割り当てステップによる所定のピットレートを有するようにするステップと、

をさらに含む請求の範囲8に記載の方法。

- 13. 前記割り当てステップでは、人間の視覚における前方向時間マスキングを 利用して前記フレームにピットレートを割り当てることで、両面変化における直 後のフレームが粗く符号化される請求の範囲 2 に記載の方法。
- 16. 基準フレーム間に双方向補間フレーム (B) を割り当てるステップをさらに含む請求の範囲 15 に記載の方法。
- 45. MPEG標準に準拠して内部 (I)、予測 (P)、双方向 (B) フレームを用いるビデオデータ圧縮システムにおいて、

ビクチャグループ(GOP)のフレーム間の時間的動きのしきい値を予め設定 してIおよびP基準フレームを、基準フレーム間の可変的間隔を決定するために 指定するステップと、

IフレームとPフレーム、Iフレームどうし、またはPフレームどうしの対の いずれか1つの間にそれぞれ配置したフレームをBフレームに指定するステップ ょ

を含む方法。

46. 所定数のフレームを含むピクチャグループ (GOP) により関連させられたビデオデータからなるビデオデータ圧縮システムであって、

前記フレーム間の全体的な動きであるグローバルモーションの度合を決定するための動き検出手段と、

前記動き検出手段からの前記グローバルモーションの測定値に応じて、前記フレームを基準フレームと確実に指定すること、および基準フレーム間の時間的スペーシングを調節するための手段と、

前記基準フレームを符号化するための符号化手段と、

を含むシステム。

48. 前記動き検出手段は、直前の基準フレームと後続フレームからの積算した 動きが所定のT₀しきい値で定められる値を超える時点を検出し、前記指定手段 が前記後続フレームの直前のフレームをP1フレームと指定して確定することで

応答するようにするための0型画面変化検出器手段を含む請求の範囲46に記載 のシステム。

49. 前記動き検出手段は、2つの連続フレーム間の測定されたグローバルモーションのレベルが実質的な順面が至ジチャの変化を表わす所定のT₁しきい値で定められる値を越える時点を検出し、前記指定手段が前記2つの連続フレームの第1に発生するフレームをP2フレームに、また前記2つの連続フレームのカ万至第2に発生するフレームを12フレームと指定して確定することで応答するようにするための1型両面変化検出器手段を含む請求の範囲46に記載のシステム。

52. 基準フレームを含むフレームのグループに含まれるビデオデータを圧縮するための装置であって。

フレーム間の全体的な動きであるグローバルモーションの度合をフレーム間に ついて決定するための手段と、

決定した前記グローバルモーションに応じて前記グループ内のフレームの形式 を分類するための手段と、

分類に基づいてフレームを処理し、これにより前記GOP構造を決定するため の動き補償符号器手段動き補償符号器手段と、 を含む装置。

53. 前記分類するための手段は、隣接するフレームの第1のものをP2フレームに、前記録按するフレームの後のものをI2フレームに、これらの間の前記グローバルモーションが急激な両面変化を表わす任意の値を越える場合に分類し、それ以外の全てのIフレームおよびPフレームはI1およびP1フレームとして指定することを含む請求の範囲52に記載の装置。

58. 所定数のフレームを含むビクチャグループ (GOP) により関連させられたビデオデータからなるビデオデータを圧縮するシステムであって、

前記ビデオデータを受信し、それぞれ個別のフレームのサブサンブリングした 画素を全体として表わす複数の空間サブパンドを前記ビデオデータから抽出する ためのサブパンドビデオ符号化手段と、

前記フレームの前記空間サブバンドのサブサンプリングした対応画素それぞれ の間のグローバルモーションの度合を決定するための動き検出手段と、

前記動き検出手段からの前記グローバルモーション測定値に応じて基準フレー ム間の時間的スペーシングを指定し調節するための手段と、

前記基準フレームの前記空間的サブバンドをそれぞれ符号化するためのサブバ ンド符号化手段とを含み、

前記指定手段は、前配空間サブバンド間のグローバルモーションに関係させて 前記基準フレームの幾つかをPフレームとして符号化するための手段を含み、

前記動き検出手段は、前記Pフレームを相対的な動きの内容によって異なるビ

- ット数で符号化するための画面変化輸出器手段を含むシステム。
- 59. 前記指定手段は、前記フレームの別々の前記空間サブバンド間についての グローバルモーションに関係させて前記基準フレームを1および/またはPおよ びBフレームとして符号化するための手段をさらに含む請求の範囲58に記載の ジュテム
- 60. 前記動き検出手段は、連続したフレームの空間サブパンドからの累積した 動きとこれに対応する直前の基準フレームの空間サブパンドとが所定の丁0しき い値を越える時点を検出するための0型両面変化検出器手段をさらに含み、そし て前記指定手段が前記連続フレームの直前のフレームをP1フレームに指定する ことによりた窓牛る請求の範囲 58 に記載のシステム。
- 61. 前記動き検出手段は、2つの連続するフレームの対応する空間サブパンドの間のグローバルモーションが実質的な両面乃至ピクチャの変化を変わす所定の T1しきい値を超える時点を検出するための1型両面変化検出器手段をさらに合み、これにより前記指定手段は、前記2つの連続フレームの第1に発生するフレームをP2フレームとして、また前記2つの連続フレームの他方乃至第2に発生するフレームを12フレームとして指定することにより応答する請求の範囲58に影動のシステム。
- 62. 前記動き検出手段は、2つの連続するフレームの対応する空間サナバンドの間のグローバルモーションが実質的な画面乃至ピクチャの変化を表わす所定の 11 しきい値を超える時点を検出するための1型画面変化検出器手段をさらに合 み、これにより前記指定手段は、前記2つの連続フレームの第1に発生するフレームをP2フレームとして、また前記2つの連続フレームの他方乃至第2に発生 するフレームを12フレームとして指定することにより応答する請求の範囲60 に記載のシステム
- 63. 前記複数のフレームは、それぞれ所定数の連続フレームからなるビクチャ グループ (GOP) として配列され、そして前記符号化手段は、与えられたGO Pのサブバンドの符号化に用いるビット数がシステムのビット容量を超えないこ とを保証するためのビットレート制御手段をさらに含む請求の範囲 62 に配載の システム。

INTERNATIONAL SEARCH REPORT insen nal Application No PCT/US 95/00773 A. CLASSIFICATION OF SUBJECT MATTER TPC 6 H04N7/26 H04N7/36 H04N7/46 H04N7/50 According to informational Patent Classification (IPC) or to both national classification and IPC B. FIELDS SHARCHED Minimum documentation searched (classification bystem followed by classification symbols) IPC 6 HO4N Documentation searched other than manymum documentation to the extent that such documents are included in the fields searched Electronic data have convolted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category * Citation of document, with indication, where appropriate, of the relevant passages EP, A, 0 520 789 (SONY CORP.) 30 December 1-3, 45-47, 1992 58,59 see column 2, line 35 - column 4, line 18: 4-44, 48-57, claim 9 60-63 US.A.4 999 704 (ANDO) 12 March 1991 1-63 see the whole document P,X EP, A, 0 597 647 (SONY CORP.) 18 May 1994 1-3. 45-47. 58,59 P.A see the whole document 4-44. 48-57. 60-63 -/--Further documents are listed in the continuation of box C. Y Patent family members are listed in annex. T' Inter document published after the international filling date or priority date and not in conflict with the application but cated to understand the practiple or theory underlying the invention. Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international filing date "X" document of particular relevance: the claimed invention carried by completed povel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication data of another mattern or other special reason (as specified) "Y" document of particular relevance, the claimed invention carnot be contineed to invoice an invention may wish document in combined with one or more other such documents, such combination being obvious to a person skilled as the art. "O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed. "&" document member of the same patent family Date of the actual completion of the international murch Date of mailing of the international search report 1 9 06 95 24 May 1995 Name and mailing address of the ISA Authorized officer Funneau Patent Office, P.B. SHS Patentinan 2 NL - 2230 HV R; rwsk Tci. (- 31-70) 340-2040, Tz. 31 651 spo ni, f-ax (+ 31-70) 340-301 fi Foolia, P

Porm PCT/(SA/210 (second (bee:) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter and Application No PCT/US 95/00773

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category | Criation of document, with and cation, where appropriate, of the relevant passages Relevant to claim No. US,A,5 134 476 (ARAVIND ET AL.) 28 July 1,45 1992 see column 8. line 11 - line 18 2-44. 46-63 EP.A.O 444 839 (SONY CORP.) 4 September 1-4.6-9. 13,14, 1991 17,18 see page 10, paragraph 2 - page 15, paragraph 3 P.A PATENT ABSTRACTS OF JAPAN 1,2,14 vol. 18 no. 286 (E-1556) ,31 May 1994 & JP,A,06 054319 (HITACHI LTD.) 25 February 1994, see abstract EP,A,0 540 961 (IBM CORP.) 12 May 1993 1-63 see the whole document PATENT ABSTRACTS OF JAPAN 1,2,13, vol. 13 no. 34 (E-708) ,25 January 1989 & JP,A,63 232691 (FUJITSU LTD.) 28 September 1988. see abstract EP, A, 0 474 388 (MATSUSHITA ELECTRIC IND. 1-3. CO. LTD.) 11 March 1992 13-16 see the whole document PATENT ABSTRACTS OF JAPAN 1-3. vol. 17 no. 494 (E-1428) ,7 September 1993 & JP.A.05 122684 (HITACHI LTD.) 18 May 13-16 1993. see abstract GB, A, 2 153 625 (KOKUSAI DENSHIN DENWA CD. 1-11.19 LTD.) 21 August 1985 20,33-36 see the whole document 1-11, 19. EP.A.O 518 314 (MITSUBISHI DENKI K.K.) 16 December 1992 20,33-36 see the whole document EP,A,D 584 840 (VICTOR COMPANY OF JAPAN, 1-11,19, P,A LTD.) 2 March 1994 21.22 see the whole document US.A.4 383 272 (NETRAVALI ET AL.) 10 May 1-11, 19, 1983 21,22 see the whole document EP, A, D 414 113 (DEUTSCHE THOMSON-BRANDT 1.31 GMBH) 27 February 1991 see the whole document -/--

Form PCT/ISA/218 (canterwaters of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

RCH REPORT Inter and Application No

PCT/US 95/00773 C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Calegory * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP, A, O 405 842 (MATSUSHITA ELECTRIC IND. 1,31 CO. LTD.) 2 January 1991 see the whole document US, A, 4 996 594 (MURAYAMA) 26 February 1991 A 1-31 see the whole document EP,A,O 472 806 (INSTITUTE FOR PERSONALIZED INFORMATION ENVIRONEMENT) 4 March 1992 A 1.31 see the whole document WO.A.93 09637 (AWARE, INC.) 13 May 1993 1.40-44, 58-63 see the whole document PATENT ABSTRACTS OF JAPAN 1,40~44, vol. 17 no. 437 (E-1413) ,12 August 1993 & JP,A,05 091498 (MITSUBISHI ELECTRIC 58-63 CORP.) 9 April 1993, see abstract PATENT ABSTRACTS OF JAPAN 1.40-44, vol. 17 no. 169 (E-1344) ,31 March 1993 & JP,A,04 326680 (CANON INC.) 16 58-63 November 1992, see abstract

Perm PC7/85A/210 (continuation of second sheet) (July 1992)

*****	ERNATIONAL SEA		intery 14	95/00773
Patent document sted in search report	Publication date		family ber(s)	Publication date
EP-A-520789	30-12-92	JP-A-	5183872	23-07-93
US-A-4999704	12-03-91	JP-A-	2172389	03-07-90
EP-A-597647	18-05-94	JP-A-	6153152	31-05-94
JS-A-5134476	28-07-92	NONE		
EP-A-444839	04-09-91	JP-A- JP-A- JP-A- US-A-	3247191 3250811 3250884 5164828	05-11-91 08-11-91 08-11-91 17-11-92
EP-A-540961	12-05-93	US-A- CA-A- JP-A-	5231484 2077058 5252507	27-07-93 09-05-93 28-09-93
P-A-474388	11-03-92	JP-A- US-A-	4117882 5136378	17-04-92 04-08-92
GB-A-2153625	21-08-85	JP-C- JP-A- US-A-	1842914 60158786 4695882	12-05-94 20-08-85 22-09-87
EP-A-518314	16-12-92	JP-A- AU-B- AU-A- US-A-	5227038 658889 1813292 5251030	03-09-93 04-05-95 17-12-92 05-10-93
EP-A-584840	02-03-94	JP-A- DE-D- DE-T- EP-A- US-A-	2285816 69012405 69012405 0395440 4982285	26-11-90 20-10-94 23-02-95 31-10-90 01-01-91
US-A-4383272	10-05-83	NONE		

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONAL SEARCH REPORT

automation on pasent family members

Inten sal Application No PCT/US 95/00773

Patent document ited in search report	Publication date	Patent		Publication date
EP-A~405842	02-01-91	JP-A- JP-A- US-A-	3029479 3162178 5028996	07-02-91 12-07-91 02-07-91
S-A-4996594	26-02-91	JP-A-	2020185	23-01-90
P-A-472806	04-03-92	JP-A- US-A-	4111181 5083860	13-04-92 28-01-92
/0-A-9309637	13-05-93	US-A- AU-A- US-A-	5272530 2900392 5301020	21-12-93 07-06-93 05-04-94

Form PCT/SSA/218 (patent family annex) (July 1992)

フロントページの続き

EP(AT, BE, CH, DE, (81)指定国 DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), OA(BF, BJ, CF, CG , CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(KE, MW, SD, SZ), AM, AT, AU, BB, BG, BR, BY, CA, CH, C N, CZ, DE, DK, EE, ES, FI, GB, GE , HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, M X, NL, NO, NZ, PL, PT, RO, RU, SD , SE, SI, SK, TJ, TT, UA, UZ, VN (72) 発明者 ディキンソン, ブラッドリー ダブリュ. アメリカ合衆国 ニュージャージー州 マ ーサー郡 ローレンスピル アピードライ ブ7

METHOD AND APPARATUS FOR VIDEO DATA COMPRESSION USING TEMPORALLY ADAPTIVE MOTION INTERPOLATION

Data supplied from the esp@cenet database — Worldwide
