Homework 1

1. Let $A, B \subset X$. Prove the following two versions of the De-Morgan law:

$$(A \cap B)^c = A^c \cup B^c,$$

$$(A \cup B)^c = A^c \cap B^c.$$

- 2. Define the following operation: $A B = \{x : x \in A \text{ and } x \notin B\}$. Prove the following:
 - (a) $(A B) \cap C = (A \cap C) B$.
 - (b) $(A \cup B) (A \cap B) = (A B) \cup (B A)$.
 - (c) $A (B C) = (A B) \cup (A \cap B \cap C)$.
 - (d) $(A B) \times C = (A \times C) (B \times C)$.
- 3. Let $f:X\to Y$ be a function. Let $A,B\subset X$ and $C,D\subset Y$. Prove the following:
 - (a) $f(A \cup B) = f(A) \cup f(B)$.
 - (b) $f(A \cap B) \subset f(A) \cap f(B)$, is the opposite inclusion true as well. If yes prove it, if no give a counter example.
 - (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
 - (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 4. Prove that composition of injective functions is injective. Prove that composition of surjective functions is surjective.
- 5. Let X be a set with n elements. How many functions from X to itself? How many injective functions? How many surjective functions?
- 6. Let $f: \mathbb{R} \{1\} \to \mathbb{R}$, given by $f(x) = \frac{x+1}{x-1}$. Prove that f is injective. Compute its image. Consider the bijective function $f: \mathbb{R} \{1\} \to \operatorname{Im} f$ and compute the inverse function $f^{-1}: \operatorname{Im} f \to \mathbb{R} \{1\}$.