

Tables

Table 1: Ensembles in statistical mechanics

Ensemble	Partition function	Thermodynamic potential
Microcanonical	$\Delta\Omega(E, V, N)$	$S(E, V, N) = k_B \ln \Delta\Omega(E, V, N)$
Canonical	$Z(T, V, N)$ $= \sum_i e^{-E_i(V, N)/k_B T}$ $= \int \Delta\Omega(E, V, N) e^{-E(V, N)/k_B T} dE$ $Y(T, p, N)$	$F(T, V, N) = -k_B T \ln Z(T, V, N)$ $G(T, p, N) = -k_B T \ln Y(T, p, \mu)$
Grand canonical	$\Xi(T, V, \mu)$ $= \sum_N e^{\mu N / k_B T} Z(T, V, N)$	$J(T, V, \mu) = F - \mu N = -pV$ $= -k_B T \ln \Xi(T, V, \mu)$

Table 2: Thermodynamic functions

Thermodynamic functions (Definition)	Natural variables	Total differential
Entropy S	$\langle E \rangle, V, N$	$dS = d\langle E \rangle / T + p dV / T - \mu dN / T$
Internal energy $\langle E \rangle$	S, V, N	$d\langle E \rangle = T dS - p dV + \mu dN$
Enthalpy $H = \langle E \rangle + pV$	S, p, N	$dH = T dS + V dp + \mu dN$
Helmholtz free energy $F = \langle E \rangle - TS$	T, V, N	$dF = -SdT - pdV + \mu dN$
Gibbs free energy $G = F + pV = N\mu$	T, p, N	$dG = -SdT + Vdp + \mu dN$
Grand potential $J = F - G = -pV$	T, V, μ	$dJ = -SdT - pdV - N\mu d\mu$

Table 3: Relations of different thermodynamic quantities to the partition function

