

RFM23A020 Sub-G 远距离无线收发模块

产品概述

RFM23A020是一款高性能,远距离,高性价比的无线收发模块。RFM23A020模块的高集成度简化了系统设计中所需的外围物料。它支持1.8V到3.8V的宽电压输入,并提供多个通用IO,可进行多方位的开发。高达20dBm的发射功率,提升了应用的链路性能,高性能的Sub-G射频信号提供远距离通信,并且不容易受到Wi-Fi等2.4GHz信号的干扰,是智能家居、安防、照明、楼宇自动化和计量等Sub-G"物联网"应用的理想解决方案。

RFM23A020

产品特性

- 超强的抗干扰能力,适合复杂干扰环 境的情景使用
- 工作频率: 868MHz, 915MHz
- 调制方式: OOK, (G) FSK, (G) MSK, OQPSK
- 电压范围: 1.8V 至 3.8V
- 接收灵敏度: -118dBm @868MHz、2.4kbps、 GFSK
- 发射电流: 77mA @20dBm, 868MHz, 73mA @20dBm, 915MHz
- 接收电流: 5mA
- 静态电流: 1.2uA

订购信息

模块型号	工作频率
RFM23A020-868S2	868MHz
RFM23A020-915S2	915MHz

应用范围

- 智能抄表
- 智能家居
- 楼宇自动化
- 工业自动化
- 街道照明
- 无线遥控器

产品脚位

图 1. RFM23A020 模块正视图

表1. RFM23A020模块脚位定义

脚位	名称	I/0	功能描述
1	ANT ^[1]		RF 信号输入/输出,接 50 Ω 天线
2	GND		电源地
3	PB01		通用 10
4	PB00		通用 10
5	PA00		通用 10
6	SWCLK ^[2]		烧录时钟接口
7	SWDIO ^[3]		烧录数据接口
8	PA03		通用 10
9	VCC		1.8V-3.8V 电源正极输入
10	GND		电源地
11	PA04		通用 10
12	PA05		通用 10
13	PA06		通用 10
14	PA07		通用 10
15	PA08		通用 10
16	PD03		通用 10
17	PD02		通用 10
18	PD01		通用 10
19	PD00		通用 10
20	PC00		通用 10
21	PC01		通用 10
22	PC02		通用 10
23	PC03		通用 10
24	PC04		通用 10
25	PC05		通用 10
26	PC06		通用 10

27	RST		硬件复位脚,低电平有效			
注意:	注意:					
[1]建议在模块的 ANT 引脚外部预留 π 型匹配电路,			π 型匹配电路参数请专业射频工程师进行匹配。			
[2]SWCLK 引脚可作为通用 IO 口 PA01 使用。						
[3]SWDIO 引	[3]SWDIO 引脚可作为通用 IO 口 PA02 使用。					

电气参数

测试条件:除另加说明的情况,工作电压 3.3V,工作温度 25℃,晶振频率 39MHz。

绝对最大额定值

表 2. 绝对最大额定值[1]

参数	符号	条件	最小	典型	最大	单位
电源电压	V_{DD}		-0.3		3.8	V
接口直流电压	$V_{\rm IN}$		-0.3		3.8	V
结温	T_{J}		-40		105	$^{\circ}$ C
储藏温度	T_{STG}		-50		150	$^{\circ}$ C
复位脚直流电压[2]	T_{SDR}		-0.3		3.8	V
电源电压斜率	VDD _{RAMPMAX}				1	V/us
输入总电流	I_{vDDMAX}				200	mA

注意:

- [1] 超过绝对最大额定值可能会对模块造成永久性损坏。这个值是最大承受值,模块短时间在此条件下功能不会受到影响,但如果长时间暴露在绝对最大额定值,可能会影响模块的可靠性。
- [2] 复位引脚芯片内部有一个上拉连接到 VDD 电源。为了使漏电最小,RESET 引脚电压不应超过 VDD 的电压。

警告! ESD 敏感器件。对芯片进行操作的时候应注意做好 ESD 防范措施, 以免芯片的性能下降或者功能丧失。

直流特性

表 3. 直流特性

符号	条件	最小	典型	最大	单位
$V_{\scriptscriptstyle DD}$		1.8		3.8	V
D	季		868		MHz
工作频率 F _c	而安小凹的匹配网络		915		MHz
MOD			GFSK		
D	RFM23A020-868S2		20		dBm
P_{out}	RFM23A020-915S2		20		dBm
т	868MHz band, Pout=20dBm		77	85	mA
1_{TX}	915MHz band, Pout=20dBm		73	85	mA
CENC	868MHz, DR=2.4kbps, F_{DEV} =1.2kHz		-118		dBm
接收灵敏度 SENS	915MHz, DR=2.4kbps, F _{DEV} =1.2kHz		-116		dBm
т	868MHz		5	7. 5	mA
\mathbf{L}_{RX}	$915 \mathrm{MHz}$		5	7. 5	mA
$I_{\scriptscriptstyle \mathrm{Sleep}}$	EM2 深度睡眠模式下		1.2		uA
T_{oP}		-40		85	$^{\circ}\! \mathbb{C}$
	V_{DD} F_{C} MOD P_{out} I_{TX} $SENS$ I_{RX} I_{Sleep}	V_{DD}	V_{DD}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} V_{\text{DD}} \\ F_{\text{C}} \\ \hline \\ RFM23A020-868S2 \\ P_{\text{out}} \\ \hline \\ RFM23A020-915S2 \\ \hline \\ RFM23A020-915S2 \\ \hline \\ 20 \\ \hline \\ 868MHz \ band, \ Pout=20dBm \\ \hline \\ 77 \\ 85 \\ \hline \\ 915MHz \ band, \ Pout=20dBm \\ \hline \\ 73 \\ \hline \\ 85 \\ \hline \\ 868MHz, \ DR=2. \ 4kbps, \ F_{\text{DEV}}=1. \ 2kHz \\ \hline \\ 915MHz, \ DR=2. \ 4kbps, \ F_{\text{DEV}}=1. \ 2kHz \\ \hline \\ 915MHz, \ DR=2. \ 4kbps, \ F_{\text{DEV}}=1. \ 2kHz \\ \hline \\ 116 \\ \hline \\ R_{\text{K}} \\ \hline \\ 118 \\ \hline \\ 12 \\ \hline \\ 12 \\ \hline \\ 118 \\ \hline \\ 138 \\ \hline \\ 148 \\ \hline \\ 148 \\ \hline \\ 158 \\ \hline \\ 148 \\ \hline \\ 158 \\ \hline \\ 148 \\ \hline \\ 158 \\ \hline \\ 148 \\ \hline \\ 148 \\ \hline \\ 148 \\ \hline \\ 158 \\ \hline \\ 148 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

注意: 由于 RFM23A020 发射功率达 20dBm, 当持续发射数据时,温升较大,会影响电路板上晶振在无线传输过程中的精度,可能导致通讯失败。

对于极低数据率、工作环境处于高温(75℃以上)或低温(-25℃以下)、窄带通信等应用场景,建议选择带 TCXO 晶振的模块,可以使通讯性能更加稳定。

典型应用电路

图2. 典型应用电路

注意: 上图 ANT 引脚的 π型匹配电路参数为默认值,具体参数请根据对应的天线进行匹配。

通信距离测试

测试条件:工作电压 3.3V,温度 25 °C,湿度 74%,晶振频率 39MHz,工作频率 915MHZ,调制模式 0QPSK 速率9.6kbps。天线为胶棒天线,增益3dBi。实测通信距离为1.3km。

图3. 通信距离实测效果

模块外形尺寸图

图 4. 模块尺寸图 (单位: mm)

推荐封装尺寸

图 5. 推荐封装尺寸图 Top view (单位: mm)

文档变更记录

文档版本	更新日期	更新内容
V1. 0	2023. 5. 6	初版
V1. 1	2024. 2. 18	更新描述信息
V1. 2	2024. 3. 21	更新模块尺寸图
V1. 3	2024. 4. 10	增加推荐封装尺寸