Math 3B: Lecture 7

Noah White

October 13, 2017

• Learning assistants (usually Nick) will be holding office hours

- Learning assistants (usually Nick) will be holding office hours
- Fridays, 6-8pm in Covel Commons 237

- Learning assistants (usually Nick) will be holding office hours
- Fridays, 6-8pm in Covel Commons 237
- Big study room, second floor

- Learning assistants (usually Nick) will be holding office hours
- Fridays, 6-8pm in Covel Commons 237
- Big study room, second floor
- This Friday only: moved to 5-7pm

Bad news

• I will be away Thurs, Fri next week

Bad news

- I will be away Thurs, Fri next week
- office hours cancelled

Bad news

- I will be away Thurs, Fri next week
- office hours cancelled
- Nivedita Bhaskhar will take Friday's review

Bad news

- I will be away Thurs, Fri next week
- office hours cancelled
- Nivedita Bhaskhar will take Friday's review

Good news

• I will post notes online (no video)

Bad news

- I will be away Thurs, Fri next week
- office hours cancelled
- Nivedita Bhaskhar will take Friday's review

- I will post notes online (no video)
- Rescheduled office hours: Tue 10-11am, Wed 4-6pm

Bad news

- I will be away Thurs, Fri next week
- office hours cancelled
- Nivedita Bhaskhar will take Friday's review

- I will post notes online (no video)
- Rescheduled office hours: Tue 10-11am, Wed 4-6pm
- Office hour Sunday 10/22 TBA

Bad news

- I will be away Thurs, Fri next week
- office hours cancelled
- Nivedita Bhaskhar will take Friday's review

- I will post notes online (no video)
- Rescheduled office hours: Tue 10-11am, Wed 4-6pm
- Office hour Sunday 10/22 TBA
- Practice exams are at the extreme end of the spectrum of difficulty

Midterm 1

• Practice midterm

Midterm 1

- Practice midterm
- arrive on time

Midterm 1

- Practice midterm
- arrive on time
- calculators, cheat sheets

Midterm 1

- Practice midterm
- arrive on time
- calculators, cheat sheets
- expected average, grades

Antiderivatives

We will be concentrating on solving differential equations of the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

Antiderivatives

We will be concentrating on solving differential equations of the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

A solution y = F(x) is called an antiderivative of f(x).

Question

What is the antiderivative of f(x) = 2x?

Question

What is the antiderivative of f(x) = 2x?

$$F(x) = x^2$$

Question

What is the antiderivative of f(x) = 2x?

$$F(x) = x^2 + 4$$

Question

What is the antiderivative of f(x) = 2x?

$$F(x) = x^2 + 8$$

Question

What is the antiderivative of f(x) = 2x?

$$F(x) = x^2 + C$$

Question

What is the antiderivative of $f(x) = x^3 + 4x - 1$?

Question

What is the antiderivative of $f(x) = x^3 + 4x - 1$?

$$F(x) = \frac{1}{4}x^4$$

Question

What is the antiderivative of $f(x) = x^3 + 4x - 1$?

$$F(x) = \frac{1}{4}x^4 + 2x^2$$

Question

What is the antiderivative of $f(x) = x^3 + 4x - 1$?

$$F(x) = \frac{1}{4}x^4 + 2x^2 - x$$

Question

What is the antiderivative of $f(x) = x^3 + 4x - 1$?

$$F(x) = \frac{1}{4}x^4 + 2x^2 - x + C$$

Question

What is the antiderivative of $f(x) = e^{2x}$?

Question

What is the antiderivative of $f(x) = e^{2x}$?

$$F(x) = e^{2x}$$

Question

What is the antiderivative of $f(x) = e^{2x}$?

$$F(x) = \frac{1}{2}e^{2x}$$

Question

What is the antiderivative of $f(x) = \frac{1}{x}$ (for x > 0)?

Question

What is the antiderivative of $f(x) = \frac{1}{x}$ (for x > 0)?

$$F(x) = \ln x$$

Question

What is the antiderivative of $f(x) = \frac{1}{(1+x)^2}$?

Question

What is the antiderivative of $f(x) = \frac{1}{(1+x)^2}$?

Solution

Note that $f(x) = (1 + x)^{-2}$. So

$$F(x) = \frac{1}{1+x}$$

Question

What is the antiderivative of $f(x) = \frac{1}{(1+x)^2}$?

Solution

Note that $f(x) = (1 + x)^{-2}$. So

$$F(x) = -\frac{1}{1+x}$$

Question

What is the antiderivative of $f(x) = 2x \cos x^2$?

Question

What is the antiderivative of $f(x) = 2x \cos x^2$?

$$F(x) = \sin x^2$$

Question

What is the antiderivative of $f(x) = \frac{1}{\sqrt{x}}$?

Question

What is the antiderivative of $f(x) = \frac{1}{\sqrt{x}}$?

$$f(x) = x^{-\frac{1}{2}}$$

Question

What is the antiderivative of $f(x) = \frac{1}{\sqrt{x}}$?

$$f(x) = x^{-\frac{1}{2}}$$

Question

What is the antiderivative of $f(x) = \frac{1}{\sqrt{x}}$?

$$f(x) = x^{-\frac{1}{2}}$$

$$F(x) = x^{\frac{1}{2}}$$

Question

What is the antiderivative of $f(x) = \frac{1}{\sqrt{x}}$?

$$f(x) = x^{-\frac{1}{2}}$$

$$F(x)=2x^{\frac{1}{2}}$$

Slope fields

In some cases it is impossible to find the antiderivative (without special functions). E.g. $\,$

$$f(x) = e^{-x^2}$$

But we can still (approximately) graph the antiderivative! First we draw the slope field

How to draw a slope field for

$$\frac{\mathrm{d}y}{\mathrm{d}x}=f(x)$$

1. Draw the xy-plane.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

- 1. Draw the xy-plane.
- 2. At every point (x, y) what would the slope of y = F(x) be if it passed through that point?

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

- 1. Draw the xy-plane.
- 2. At every point (x, y) what would the slope of y = F(x) be if it passed through that point?
- 3. Answer given by differential equation above, slope is f(x)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

- 1. Draw the xy-plane.
- 2. At every point (x, y) what would the slope of y = F(x) be if it passed through that point?
- 3. Answer given by differential equation above, slope is f(x)
- 4. Draw a small arrow with slope f(x) and the point (x, y)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

- 1. Draw the xy-plane.
- 2. At every point (x, y) what would the slope of y = F(x) be if it passed through that point?
- 3. Answer given by differential equation above, slope is f(x)
- 4. Draw a small arrow with slope f(x) and the point (x, y)
- 5. Do this for a grid of points on the xy-plane.

$$f(x) = e^{-x^2}$$
 with $F(0) = -0.25$

$$f(x) = e^{-x^2}$$
 with $F(0) = -0.25$

$$f(x) = \sin(x^2)$$
 with $F(0) = 0.1$

$$f(x) = \sin(x^2)$$
 with $F(0) = 0.1$

Often we enconter problems involving accumulated change.

Often we enconter problems involving accumulated change.

Example

A rocket is accelerating at a rate of $a(t) = 0.3t^2$ metres per second squared. What is the rockets velocity at t = 30?

Often we enconter problems involving accumulated change.

Example

A rocket is accelerating at a rate of $a(t) = 0.3t^2$ metres per second squared. What is the rockets velocity at t = 30?

Example

A population grows at a rate of 0.5P(t) people per year. How much does the population increase over 10 years?

Often we enconter problems involving accumulated change.

Example

A rocket is accelerating at a rate of $a(t) = 0.3t^2$ metres per second squared. What is the rockets velocity at t = 30?

Example

A population grows at a rate of 0.5P(t) people per year. How much does the population increase over 10 years?

Often we enconter problems involving accumulated change.

Example

A rocket is accelerating at a rate of $a(t) = 0.3t^2$ metres per second squared. What is the rockets velocity at t = 30?

Example

A population grows at a rate of 0.5P(t) people per year. How much does the population increase over 10 years?

These problems involve finding the area under some curve.

If a car travels at a constand speed of 30 miles per hour, how much distance does it cover after 2.5 hours?

If a car travels at a constand speed of 30 miles per hour, how much distance does it cover after 2.5 hours?

Solution

We model the car's speed using the function s(t) = 30. So we can see that the area under this curve

is the distance travelled (75 miles)

If a car accellerates for 20 seconds at a rate of $2m/s^2$ and then decelerates for 30 seconds at a rate of $1m/s^2$, how far has it travelled?

If a car accellerates for 20 seconds at a rate of $2m/s^2$ and then decelerates for 30 seconds at a rate of $1m/s^2$, how far has it travelled?

Solution

The car's speed is given by s(t)=2t when $0 \le t \le 20$ and s(t)=60-t when $20 \le t \le 50$. So the graph looks like

More complicated rates of change

Suppose we have a car whose speed is descibed by the following curve. How far has it travelled in this time?

More complicated rates of change

Suppose we have a car whose speed is descibed by the following curve. How far has it travelled in this time?

• Suppose we know the rate of change f(t), of some quantity (distance, water flow, population, etc).

- Suppose we know the rate of change f(t), of some quantity (distance, water flow, population, etc).
- How do we find the total amount by which this changes between t = a and t = b?

- Suppose we know the rate of change f(t), of some quantity (distance, water flow, population, etc).
- How do we find the total amount by which this changes between t = a and t = b?
- Answer: area under f(t) between a and b.

Areas under general curves

We would like to calculate the area between a function f(x) and the x-axis, between x = a and x = b.

Areas under general curves

We would like to calculate the area between a function f(x) and the x-axis, between x = a and x = b.

A first approach to calculating the area under a curve is to approximate using rectangles:

Areas under general curves

We would like to calculate the area between a function f(x) and the x-axis, between x = a and x = b.

A first approach to calculating the area under a curve is to approximate using rectangles:

(Too hard to draw, lets look at an animation)

The definite integral

Defintion

The definite integral of a function f(x) is defined to be

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \Delta x \sum_{k=1}^{n} f(a + k \Delta x)$$

where $\Delta x = \frac{b-a}{n}$.

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{2}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{2}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

• $F(x) = \int_a^x f(t) dt$ is a function of x.

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

- $F(x) = \int_a^x f(t) dt$ is a function of x.
- every input x produces a number as an output.

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

Why?

Well $F(x) = \int_a^x f(t) dt + C$ for some a and C. So

$$F(b) - F(a) = \int_a^b f(t) dt + C - \int_a^a f(t) dt - C$$
$$= \int_a^b f(t) dt$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Solution

An antiderivative of $x^2 - 4$ is $\frac{1}{3}x^3 - 4x$ so

$$\int_0^1 x^2 - 4 \, dx = \frac{1}{3} \cdot 1^3 - 4 - \frac{1}{3} \cdot 0^3 + 4 \cdot 0$$
$$= \frac{1}{3} - 4 = -\frac{11}{3}$$

Question

Evaluate the definite integral

$$\int_0^\pi \sin x \, \mathrm{d}x$$

Question

Evaluate the definite integral

$$\int_0^\pi \sin x \, \mathrm{d}x$$

Solution

An antiderivative of $\sin x$ is $-\cos x$ so

$$\int_0^{\pi} \sin x \, dx = -\cos \pi + \cos 0$$
$$= -(-1) + 1 = 2$$