- 1. (Rotation) For a symmetric matrix A, can there be a nonzero vector x such that Ax is nonzero and orthogonal to x? Either prove that this is impossible, or explain under what condition on the eigenvalues of A such a vector exists. Let $x \in V, x \neq 0$, an inner product space, by the spectral theorem there exists an orthonormal basis of V, consisting of eigenvectors of A, let u_1, \ldots, u_n be the eigenbasis of A, and $\lambda_1, \ldots, \lambda_n$ the eigenvalues for each of these eigenvectors. $x \in \text{span}\{u_1, \ldots, u_n\} \Rightarrow x = \sum_{i=1,n} \alpha_i u_i, \alpha_i \neq 0$. $x^T(Ax) = (\sum_{i=1,n} \alpha_i u_i)(\sum_{j=1,n} \alpha_j Au_j) = (\sum_{i=1,n} \alpha_i u_i)(\sum_{j=1,n} \alpha_j \lambda_j u_j) = \sum_{i=1,n} \alpha_i^2 \lambda_i \text{ since } u_i^T u_j = 0 \text{ for } i \neq j \text{ and } u_i^T u_i = 1$. Ax is orthogonal to x: $x^T(Ax) = 0 \Rightarrow \sum_{i=1,n} \alpha_i^2 \lambda_i = 0$.
- 2. (Matrix decomposition) The trace can be used to define an inner product between matrices:

$$\langle A, B \rangle := \operatorname{tr} \left(A^T B \right), \quad A, B \in \mathbb{R}^{m \times n},$$
 (1)

where the corresponding norm is the Frobenius norm $||A||_{F} := \langle A, A \rangle$.

- (a) Express the inner product in terms of vectorized matrices and use the result to prove that this is a valid inner product. $(AB)_{ij} = (\sum_k A_{ik} B_{kj})_{ij}$, and $(A^TB)_{ij} = (\sum_k A_{ki} B_{kj})_{ij}$. $\operatorname{tr}(A) = \sum_i A_{ii} \Rightarrow \operatorname{tr}(A^TB) = \sum_i \sum_k A_{ki} B_{ki} = \sum_i \sum_j A_{ij} B_{ij} = \operatorname{vec}(A)^T \operatorname{vect}(B) = \langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle$. The trace is then the inner product between vectors in \mathbb{R}^{mn} thus is a valid inner product.
- (b) Prove that for any $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{tr}(A^T B) = \operatorname{tr}(BA^T)$. $\operatorname{tr}(BA^T) = \sum_i \sum_k B_{ik} A_{ik} = \sum_i \sum_i A_{ij} B_{ij} = \operatorname{tr}(A^T B)$.
- (c) Let u_1, \ldots, u_n be the eigenvectors of a symmetric matrix A. Compute the inner product between the rank-1 matrices $u_iu_i^T$ and $u_ju_j^T$ for $i \neq j$, and also the norm of $u_iu_i^T$ for $i = 1, \ldots, n$. For $i \neq j$, $\langle u_iu_i^T, u_ju_j^T \rangle = \operatorname{tr}\left(u_iu_i^Tu_ju_j^T\right) = 0$, if u_i, u_j are two eigenvectors for different eigenvalues. if i = j then $\langle u_iu_i^T, u_iu_i^T \rangle = \operatorname{tr}\left(u_iu_i^Tu_iu_i^T\right) = \operatorname{tr}\left((u_i^Tu_i)^2\right) = (u_i^Tu_i)^2 \Rightarrow ||u_iu_i^T||_F = u_i^Tu_i$ and $||u_iu_i^T||_F = 1$ if the eigenvectors are also orthonormal.
- (d) What is the projection of A onto $u_iu_i^T$? The projection of A onto $u_iu_i^T$ is $\langle A, u_iu_i^T \rangle$. If A is a symmetric matrix, by the spectral theorem, $A = UDU^T = \sum_i \lambda_i u_i u_i^T$ where $\lambda_i, i = 1, \ldots, n$ are the eigenvalues of A. If u_1, \ldots, u_n form an eigenbasis then $\langle A, u_i u_i^T \rangle = \lambda_i$. $u_i u_i^T$ is the matrix for the orthogonal projection onto span (u_i) .
- (e) Provide a geometric interpretation of the matrix $A' := A \lambda_1 u_1 u_1^T$, which we defined in the proof of the spectral theorem, based on your previous answers. From the previous question the orthogonal projection of A in $u_i u_i^T$ is $\lambda_i u_i u_i^T$ so $A' = \sum_i \lambda_i u_i u_i^T$, $i \neq 1$ has row or column subspaces contained in $(u_1)^{\perp}$.
- 3. (Quadratic forms) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and let $f(x) := x^T A x$ be the corresponding quadratic form. We consider the 1D function $g_v(t) = f(tv)$ obtained by restricting the quadratic form to lie in the direction of a vector v with unit ℓ_2 norm.

- (a) Is $g_v(t)$ a polynomial? If so, what kind? $g_v(t) = f(tv) = (tv)^T A(tv) = t^2 v^T A v = v^T A v t^2$, $g_v(t)$ is a second-order polynomial in t.
- (b) What is the curvature (i.e. the second derivative) of $g_v(t) = f(tv)$ at an arbitrary point t? $g'_v(t) = 2v^T Av t$ and the curvature is $g''_v(t) = 2v^T Av$
- (c) What are the directions of maximum and minimum curvature of the quadratic form? What are the corresponding curvatures equal to? By the spectral theorem, $A = U \operatorname{diag}(\lambda) U^T$ where $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n$ are the eigenvalues and u_1, \ldots, u_n the eigenvectors. $\lambda_1 = \max_{\|v\|_2=1} v^T A v$ and $u_1 = \arg\max_{\|v\|_2=1} v^T A v$, and the minimum is given by $\lambda_n = \max_{\|v\|_2=1} v^T A v$, $u_n = \arg\max_{\|v\|_2=1} v^T A v$. Thus the maximum curvature is given by the largest eigenvalue λ_1 and is in the direction of the corresponding eigenvector u_1 . The smallest curvature is given by the smallest eigenvalue λ_n and is in the direction of the corresponding eigenvector u_n .
- 4. (Projected gradient ascent) Projected gradient descent is a method designed to find the maximum of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ in a constraint set \mathcal{S} . Let $\mathcal{P}_{\mathcal{S}}$ denote the projection onto \mathcal{S} , i.e.

$$\mathcal{P}_{\mathcal{S}}(x) := \arg\min_{y \in \mathcal{S}} ||x - y||_2^2.$$
 (2)

The kth update of projected gradient ascent equals

$$x^{[k]} := \mathcal{P}_{\mathcal{S}}(x^{[k-1]} + \alpha \nabla f(x^{[k-1]})), \qquad k = 1, 2, \dots,$$
(3)

where α is a positive constant and $x^{[0]}$ is an arbitrary initial point.

- (a) Use the same arguments we used to prove Lemmas 5.1 and 5.2 in the notes on PCA to derive the projection of a vector x onto the unit sphere in n dimensions.
- (b) Derive an algorithm based on projected gradient ascent to find the maximum eigenvalue of a symmetric matrix $A \in \mathbb{R}^{n \times n}$.
- (c) Let us express the iterations in the basis of eigenvectors of A: $x^{[k]} := \sum_{i=1}^n \beta_i^{[k]} u_i$. Compute the ratio between the coefficient corresponding to the largest eigenvalue and the rest $\frac{\beta_i^{[k]}}{\beta_i^{[k]}}$ as a function of k, α , and $\beta_1^{[0]}, \ldots, \beta_n^{[0]}$. Under what conditions on α and the initial point does the algorithm converge to the eigenvector u_1 corresponding to the largest eigenvalue? What happens if α is extremely large (i.e. when $\alpha \to \infty$)?
- (d) Implement the algorithm derived in part (b). Support code is provided in main.py within Q4.zip. Observe what happens for different sizes of α . Report the plots generated by the script.