# AMOSTRAGEM ...



Objetivo da Estatística: fornecer informação (conhecimento), utilizando quantidades numéricas.

- 1. Obtenção dos dados ⇒ Amostragem
- 2. Descrição, classificação e apresentação dos dados ⇒ Estatística descritiva
- 3. Conclusão a tirar dos dados ⇒ Inferência Estatística



<u>Amostragem Aleatória</u>: processo que garante que todos os elementos da população têm as mesmas hipóteses de ser integrados na amostra.

Estatística Descritiva: síntese e representação de uma forma compreensível da informação contida num conjunto de dados – construção de tabelas, gráficos ou cálculo de medidas centrais e de dispersão.

<u>Inferência Estatística</u>: a partir de um conjunto limitado de dados (amostra), pretende-se caracterizar o todo a partir do qual os dados foram obtidos (população).

3



### Procedimento estatístico





### População

Coleção de unidades individuais, com uma ou mais características comuns, que se pretendem analisar.

#### • Exemplos:

- Alunos da Universidade do Minho
- Potenciais eleitores para as eleições presidenciais



#### Parâmetros

Características numéricas que descrevem a população. Estas características são, em geral desconhecidas.

#### • Exemplos:

- Alunos da Universidade do Minho
  - Altura média dos alunos
  - Classificações médias obtidas a Estatística Aplicada...
- Potenciais eleitores para as eleições presidenciais
  - Proporção de eleitores decididos a votar
  - Idade média dos eleitores...

O



#### Amostra

Subconjunto da população, que se observa com o objetivo de tirar conclusões para a população de onde foi retirada.

#### • Exemplos:

- Alunos da Universidade do Minho
  - Amostra de 100 alunos inscritos na Universidade do Minho
- Potenciais eleitores para as eleições legislativas
  - Amostra de 1000 potenciais eleitores recenseados.



#### Estatística

Característica numérica que descreve a amostra. Calcula-se o valor da estatística a partir dos valores observados na amostra. Utiliza-se a estatística para estimar um parâmetro desconhecido.

#### • Exemplos:

- Alunos da Universidade do Minho
  - Altura média de 100 alunos da amostra
- Potenciais eleitores para as eleições legislativas
  - Proporção de eleitores que estão decididos a votar dos 1000 eleitores da amostra



#### Recenseamento ou censo

Estudo científico de um universo de pessoas, instituições ou objetos físicos com o propósito de adquirir conhecimentos, observando todos os seus elementos, e fazer juízos quantitativos acerca das características importantes desse universo.

#### • Exemplo:

 XV Recenseamento Geral da População Portuguesa (2011) (Instituto Nacional de Estatística – INE)
 http://www.ine.pt

6



### Sondagem

Estudo científico de uma parte de uma população com o objetivo de estudar atitudes, hábitos e preferências da população relativamente a acontecimentos, circunstâncias e assuntos de interesse comum.

#### Exemplos:

- Sondagens para obter informação acerca da atitude dos eleitores
- Sondagens para testar as preferências dos consumidores



### Fases de uma sondagem

- Escolha da amostra (amostragem)
- Obtenção de informação
- Análise dos dados
- Relatório final

11

### Representatividade da amostra



A amostra deve ser tão representativa quanto possível da população que se está a estudar – deve-se evitar o enviesamento.

- Exemplos de amostras enviesadas ou tendenciosas:
  - Amostragem por conveniência
    - Utilizar uma amostra de sócios do SCP para prever o vencedor de um "derby" Benfica-Sporting
    - Utilizar uma amostra de alunos de um curso para tirar conclusões acerca do aproveitamento dos alunos universitários
  - Amostragem por resposta voluntária
    - Certas "sondagens" realizadas pelas estações de televisão utilizando respostas voluntárias, por exemplo, por SMS



### Amostra aleatória simples

Dada uma população, uma amostra aleatória simples de dimensão *n* é um conjunto de *n* unidades da população, tal que qualquer outro conjunto de *n* unidades teria igual probabilidade de ser selecionado.

- Minimiza o enviesamento
- Tem em conta o princípio da aleatoriedade
- Recolha sem reposição

13

### ESCALAS DE MEDIDA





### **ESCALAS**

- Nominal
- Ordinal
- Intervalar
- Proporcional

15



### NOMINAL

- Dados em categorias não ordenadas
- Variáveis classificadas por uma qualidade que possuem, um atributo
- Podem ser representadas por números sem significado
- Exemplos:
  - Preferência musical; cor dos olhos; sexo; classes sociais...



#### **ORDINAL**

- Ordem das categorias é importante
- Diferenças relativas e não quantitativas
- Podem ser representadas por números sem significado a não ser pela ordem
- Exemplos:
  - Classificação de ferimentos: 1-fatal, 2-grave, 3-moderado, 4-ligeiro; queimaduras, graus 1,2 e 3; alturas ou pesos ordenados em classes; classificação nos exames: 1-mau, 2insuficiente, 3-suficiente, 4-bom e 5-muito bom

17



#### INTERVALAR

- Escalas que possuem um intervalo constante mas não têm um zero absoluto
- Não é possível calcular razões porque o zero é arbitrário
- Exemplos:
  - Temperaturas em graus Celsius ou Fahrenheit – 20°C(68°F), 25°C(77°F), 5°C(41°F),10°C(50°F); dados circulares, tempo ou orientação



### **PROPORCIONAL**

- Existe um intervalo de tamanho constante entre unidades adjacentes
- Existe um zero com significado físico
- Exemplos:
  - Comprimentos 30 cm (11,8 in), 60 cm (23,6 in); pesos; contagens, volumes, capacidades, velocidades, tempos de duração

19



#### DADOS

- Contínuos existe um valor possível entre dois valores possíveis
  - um comprimento pode tomar uma qualquer valor entre dois limites
- Discretos a variável só pode tomar certos valores
  - número de folhas de uma planta, o número de glóbulos brancos

# ESTATÍSTICA DESCRITIVA



# ※ 〇

### DISTRIBUIÇÕES DE FREQUÊNCIA

- Tabelas de Frequência
  - listagem de todos os valores observados e determinação do número de vezes que um valor é observado

# EXEMPLO



 Número de peixes tabulados de acordo com a pigmentação preta

| Classe | Pigmentação | Ν° |
|--------|-------------|----|
| 0      | Sem         | 13 |
| 1      | Ligeira     | 68 |
| 2      | Moderada    | 44 |
| 3      | Forte       | 21 |
| 4      | Cheia       | 8  |

23



# FREQUÊNCIAS

#### Pigmentação

|       |          | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|----------|-----------|---------|---------------|-----------------------|
| Valid | Sem      | 13        | 8.4     | 8.4           | 8.4                   |
|       | Ligeira  | 68        | 44.2    | 44.2          | 52.6                  |
|       | Moderada | 44        | 28.6    | 28.6          | 81.2                  |
|       | Forte    | 21        | 13.6    | 13.6          | 94.8                  |
|       | Cheia    | 8         | 5.2     | 5.2           | 100.0                 |
|       | Total    | 154       | 100.0   | 100.0         |                       |



# GRÁFICOS DE BARRAS





25

### **EXEMPLO**



 A tabela apresenta os tempos de espera (X) numa fila de supermercado de sujeitos selecionados aleatoriamente

| 4   | 18  | 8    | 25 | 5,5 | 7   |
|-----|-----|------|----|-----|-----|
| 7   | 26  | 8    | 16 | 2   | 1   |
| 12  | 3   | 2    | 9  | 16  | 4   |
| 21  | 7   | 13   | 27 | 8   | 8   |
| 27  | 4   | 34,5 | 19 | 7   | 5   |
| 18  | 9   | 12   | 16 | 2   | 6   |
| 12  | 10  | 7    | 21 | 3   | 1   |
| 0,5 | 11  | 10   | 13 | 4   | 5   |
| 20  | 1,5 | 5    | 7  | 12  | 2   |
| 8,5 | 12  | 5    | 10 | 18  | 0,5 |

# CONSTRUÇÃO



- Número de observações, n
- Amplitude, R
- Número de classes, k
   Regra de Sturges

$$k = 1 + 3.3\log(n)$$

- Intervalo de classe, R/k
- Extremos de classe

| n    | k     |
|------|-------|
| 25   | 5-6   |
| 50   | 6-7   |
| 100  | 7-8   |
| 500  | 9-10  |
| 1000 | 10-11 |

27

# CONSTRUÇÃO



- Número de observações, n=60
- Amplitude, R=34.5-0.5=34.0
- Número de classes, k=7
- Intervalo de classe, R/k=34/7≈4.8≈5.0
- Extremos de classe, min=0.5

| 0-  5 (0≤X<5) | 15 |
|---------------|----|
| 5-  10        | 19 |
| 10-  15       | 11 |
| 15-  20       | 7  |
| 20-  25       | 3  |
| 25-  30       | 4  |
| 30- 35        | 1  |



# ESTATÍSTICAS SUMÁRIAS

#### Statistic

| N         Valid Missing         60 Missing         0           Mean         10.267         8.000           Std. Deviation         7.7462         60.0040           Variance         60.0040         34.0           Range         34.0         34.5           Minimum         34.5         2.000           Percentiles         10         2.000           20         4.000         25           30         5.000         40           40         7.000         50           80         10.000           75         15.250           80         17.600 | TEMPO          |         |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|---------|
| Mean         10.267           Median         8.000           Std. Dev lation         7.7462           Variance         60.0040           Range         34.0           Minimum         34.5           Percentiles         10         2.000           20         4.000           25         4.250           30         5.000           40         7.000           50         8.000           60         10.000           70         12.000           75         15.250                                                                                 | N              | Valid   | 60      |
| Median         8.000           Std. Dev iation         7.7462           Variance         60.0040           Range         34.0           Minimum         .5           Maximum         20           20         4.000           25         4.250           30         5.000           40         7.000           50         8.000           60         10.000           70         12.000           75         15.250                                                                                                                                   |                | Missing | 0       |
| Std. Deviation         7.7462           Variance         60.0040           Range         34.0           Minimum         .5           Maximum         34.5           Percentiles         10         2.000           20         4.000           25         4.250           30         5.000           40         7.000           50         8.000           60         10.000           70         12.000           75         15.250                                                                                                                  | Mean           |         | 10.267  |
| Variance         60.0040           Range         34.0           Minimum         .5           Maximum         34.5           Percentiles         10         2.000           20         4.000           25         4.250           30         5.000           40         7.000           50         8.000           60         10.000           70         12.000           75         15.250                                                                                                                                                          | Median         |         | 8.000   |
| Range     34.0       Minimum     .5       Maximum     34.5       Percentiles     10     2.000       20     4.000       25     4.250       30     5.000       40     7.000       50     8.000       60     10.000       70     12.000       75     15.250                                                                                                                                                                                                                                                                                             | Std. Deviation |         | 7.7462  |
| Minimum     .5       Maximum     34.5       Percentiles     10     2.000       20     4.000       25     4.250       30     5.000       40     7.000       50     8.000       60     10.000       70     12.000       75     15.250                                                                                                                                                                                                                                                                                                                  | Variance       |         | 60.0040 |
| Maximum         34.5           Percentiles         10         2.000           20         4.000           25         4.250           30         5.000           40         7.000           50         8.000           60         10.000           70         12.000           75         15.250                                                                                                                                                                                                                                                       | Range          |         | 34.0    |
| Percentiles 10 2.000 20 4.000 25 4.250 30 5.000 40 7.000 50 8.000 60 10.000 70 12.000 75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum        |         | .5      |
| 20 4.000<br>25 4.250<br>30 5.000<br>40 7.000<br>50 8.000<br>60 10.000<br>70 12.000<br>75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum        |         | 34.5    |
| 25 4.250 30 5.000 40 7.000 50 8.000 60 10.000 70 12.000 75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Percentiles    | 10      | 2.000   |
| 30 5.000 40 7.000 50 8.000 60 10.000 70 12.000 75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 20      | 4.000   |
| 40 7.000<br>50 8.000<br>60 10.000<br>70 12.000<br>75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 25      | 4.250   |
| 50 8.000<br>60 10.000<br>70 12.000<br>75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 30      | 5.000   |
| 60 10.000<br>70 12.000<br>75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 40      | 7.000   |
| 70 12.000<br>75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 50      | 8.000   |
| 75 15.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 60      | 10.000  |
| 10.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 70      | 12.000  |
| 80 17.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 75      | 15.250  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 80      | 17.600  |
| 90 21.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 90      | 21.000  |

29

### HISTOGRAMA







### CAIXA DE BIGODES



31

### MEDIDAS DE LOCALIZAÇÃO



- Mediana  $Med = \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}$  n par

$$Med = x_{\left(\frac{n+1}{2}\right)}$$
 n impar

$$Med = LI + \frac{0.5 - F_{r_A}^{-}}{F_{r_{Med}}^{+} - F_{r_A}^{-}} \Delta$$
 representação histograma

Moda

$$Mod = LI + \frac{d_1}{d_1 + d_2} \Delta$$
 com  $d_1 = f_{Mod} - f_A^-, d_2 = f_{Mod} - f_D^+$ 

### MEDIDAS DE LOCALIZAÇÃO



Quartis

$$Q_1 = X_{(n+1)/4}$$
  $Q_2 = Med$   $Q_3 = X_{(n+1-\text{subscrito de }Q_1)}$ 

Percentis



33



#### Comparação entre as medidas de localização



### MEDIDAS DE DISPERSÃO



Amplitude

$$R = x_{(n)} - x_{(1)}$$

• Distância interquartílica  $DIQ = Q_3 - Q_1$ 

$$DIQ = Q_3 - Q_1$$

Variância

$$s^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}$$

 $V = \frac{s}{\overline{X}}$ 

Desvio padrão

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Coeficiente de variação

# DISTRIBUIÇÃO NORMAL





- Distribuição simétrica em forma de sino, centrada em μ.
- 68% das observações pertencem a ] μ σ ; μ + σ [;
- ${\color{red} \diamondsuit}$  95% das observações pertencem a ]  $\mu$   $2\sigma$  ;  $\mu$  +  $2\sigma$  [;
- 99,7% das observações pertencem a ] μ 3σ ; μ + 3σ [



### Densidade e box-plot



37



### Alguns sites interessantes...

- ALEA Acção Local de Estatística Aplicada
  - http://alea-estp.ine.pt/
- INE Instituto Nacional de Estatística
  - http://www.ine.pt/