L'apprentissage d'automates et ses applications Mois du doctorant 2021

Gaëtan Staquet

http://informatique.umons.ac.be/staff/Staquet.Gaetan/

Service d'Informatique Théorique Département d'Informatique Faculté des Sciences Université de Mons Formal Techniques in Software Engineering
Departement Informatica
Faculteit Wetenschappen
Universiteit Antwerpen

10 mars 2021

- 1. Motivation
- 2. Automates finis
- 3. Apprendre un automate fini
- 4. Automates à un compteur

- 2. Automates finis
- 3. Apprendre un automate fin
- 4. Automates à un compteur

Motivation

000000

But du projet : implémente un jeu du pendu.

Gaëtan S. Motivation Apprentissage d'automates

Motivation

000000

- But du projet : implémente un jeu du pendu.
- ▶ 1^{re} étape : créer un cahier des charges qui reprend les règles du jeu.

Gaëtan S. Motivation Apprentissage d'automates

- ▶ But du projet : implémente un jeu du pendu.
- ▶ 1^{re} étape : créer un cahier des charges qui reprend les règles du jeu.
- ▶ 2^e étape : implémenter le jeu.

Gaëtan S. Motivation Apprentissage d'automates 4/

Motivation

000000

Motivation via un exemple de projet

- ▶ But du projet : implémente un jeu du pendu.
- ▶ 1^{re} étape : créer un cahier des charges qui reprend les règles du jeu.
- ▶ 2^e étape : implémenter le jeu.
- ▶ 3^e étape : vérifier l'implémentation.

Gaëtan S. Motivation Apprentissage d'automates

- ▶ But du projet : implémente un jeu du pendu.
- ▶ 1^{re} étape : créer un cahier des charges qui reprend les règles du jeu.
- ▶ 2^e étape : implémenter le jeu.
- ▶ 3^e étape : vérifier l'implémentation.

Comment faire la 3^e étape?

Model checking

Motivation

000000

Une solution est le « model checking ».

Model checking

Motivation

000000

Une solution est le « model checking ».

▶ On construit une abstraction, un modèle de l'implémentation.

Gaëtan S. Motivation Apprentissage d'automates

Model checking

Une solution est le « model checking ».

- On construit une abstraction, un modèle de l'implémentation.
- On vérifie le cahier des charges sur cette version plus simple.

Automates à un compteur

Un modèle pour le jeu du pendu

FIGURE 1 – Un modèle pour le jeu du pendu.

Gaëtan S. Motivation Apprentissage d'automates

Motivation

000000

Ce modèle est encore trop compliqué. On va retirer les questions :

On peut classer les lettres en 3 catégories :

- On peut classer les lettres en 3 catégories :
 - 1. Lettre déjà vue;

- ► On peut classer les lettres en 3 catégories :
 - Lettre déjà vue;
 - 2. Lettre nouvelle et présente dans le mot; ou

- ► On peut classer les lettres en 3 catégories :
 - Lettre déjà vue;
 - 2. Lettre nouvelle et présente dans le mot; ou
 - 3. Lettre nouvelle et pas présente dans le mot.

Motivation

000000

- On peut classer les lettres en 3 catégories :
 - 1. Lettre déjà vue;
 - 2. Lettre nouvelle et présente dans le mot; ou
 - 3. Lettre nouvelle et pas présente dans le mot.
- On suppose que le système envoie directement un signal « Trouvé » ou « Pas trouvé » après avoir dévoilé la lettre dans le mot.

Motivation

0000000

Simplifions le modèle

Ce modèle est encore trop compliqué. On va retirer les questions :

- On peut classer les lettres en 3 catégories :
 - 1. Lettre déjà vue;
 - 2. Lettre nouvelle et présente dans le mot; ou
 - 3. Lettre nouvelle et pas présente dans le mot.
- On suppose que le système envoie directement un signal « Trouvé » ou « Pas trouvé » après avoir dévoilé la lettre dans le mot.
- On n'est pas convaincu que l'implémentation du nombre d'erreurs soit correcte.
 - → On veut vérifier explicitement cette partie-là. On suppose qu'on perd après deux erreurs.

Gaëtan S. Motivation Apprentissage d'automates

Un modèle encore plus abstrait

Motivation

00000

FIGURE 2 – Un autre modèle plus abstrait.

Gaëtan S. Motivation Apprentissage d'automates

Un modèle encore plus abstrait

Motivation

00000

FIGURE 2 – Un autre modèle plus abstrait.

On obtient un modèle simple qui représente le système.

Gaëtan S. Motivation Apprentissage d'automates

Un modèle encore plus abstrait

FIGURE 2 – Un autre modèle plus abstrait.

On obtient un modèle simple qui représente le système. Ce type de modèle s'appelle automate fini.

Gaëtan S. Motivation Apprentissage d'automates

Automates à un compteur

- 2. Automates finis
 - Définitions
 - Relation de Myhill-Nerode

Automates à un compteur

Alphabets

Définition 1 (HOPCROFT et ULLMAN 1979)

Un alphabet, généralement noté Σ , est un ensemble fini et non-vide de symboles.

L'ensemble $\{0,1\}$ est l'alphabet sur les symboles binaires, tandis que $\{a, b\}$ est l'alphabet sur les lettres a et b.

Mots

Motivation

Définition 3 (HOPCROFT et ULLMAN 1979)

Soit Σ un alphabet. Un mot sur Σ est une séquence finie de symboles de Σ , i.e., $w = a_1 a_2 \dots a_n$ (avec $n \in \mathbb{N}$) est un mot si et seulement si $\forall i, a_i \in \Sigma$.

La séquence w = 00101010 est un mot sur $\{0, 1\}$.

Mots

Motivation

Définition 3 (HOPCROFT et ULLMAN 1979)

Soit Σ un alphabet. Un mot sur Σ est une séquence finie de symboles de Σ , i.e., $w = a_1 a_2 \dots a_n$ (avec $n \in \mathbb{N}$) est un mot si et seulement si $\forall i, a_i \in \Sigma$.

La séquence w = 00101010 est un mot sur $\{0, 1\}$.

Définition 5 (HOPCROFT et ULLMAN 1979)

La longueur d'un mot w, notée |w|, est le nombre de symboles dans w, i.e., |w| = n si et seulement si $w = a_1 \dots a_n$ (avec $n \in \mathbb{N}$).

Exemple 6

La longueur de w est huit, càd, |w| = 8.

Mots – suite

Motivation

Définition 7 (HOPCROFT et ULLMAN 1979)

Le nombre d'occurrences de $a \in \Sigma$ dans un mot w sur Σ est noté $|w|_a$.

Exemple 8

Soit w = 00101010, un mot sur $\{0, 1\}$. Il y a cinq 0 dans ce mot, i.e., $|w|_0 = 5$.

Mots – suite

Motivation

Définition 7 (HOPCROFT et ULLMAN 1979)

Le nombre d'occurrences de $a \in \Sigma$ dans un mot w sur Σ est noté $|w|_a$.

Exemple 8

Soit w = 00101010, un mot sur $\{0, 1\}$. Il y a cinq 0 dans ce mot, i.e., $|w|_0 = 5$.

Définition 9 (HOPCROFT et ULLMAN 1979)

Le mot vide, noté ε , est l'unique mot de longueur zéro.

Langages

Motivation

Définition 10 (HOPCROFT et ULLMAN 1979)

L'ensemble de tous les mots possibles sur un alphabet Σ est dénoté par Σ^* .

Exemple 11

Si on a $\Sigma = \{0, 1\}$, alors $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, \dots\}$.

Langages

Définition 10 (HOPCROFT et ULLMAN 1979)

L'ensemble de tous les mots possibles sur un alphabet Σ est dénoté par $\Sigma^*.$

Exemple 11

Si on a $\Sigma=\{0,1\}$, alors $\Sigma^*=\{\varepsilon,0,1,00,01,10,11,\dots\}$.

Définition 12 (HOPCROFT et ULLMAN 1979)

Un langage L sur Σ est un ensemble de mots sur Σ , i.e., $L \subseteq \Sigma^*$.

Exemple 13

Les ensembles $L_1 = \emptyset$, $L_2 = \{0,00\}$ et $L_3 = \{w \in \Sigma^* \mid |w| = 2\}$ sont trois langages sur Σ .

Langages

Motivation

Définition 10 (HOPCROFT et ULLMAN 1979)

L'ensemble de tous les mots possibles sur un alphabet Σ est dénoté par $\Sigma^*.$

Exemple 11

Si on a $\Sigma=\{0,1\}$, alors $\Sigma^*=\{\varepsilon,0,1,00,01,10,11,\dots\}.$

Définition 12 (HOPCROFT et ULLMAN 1979)

Un langage L sur Σ est un ensemble de mots sur Σ , i.e., $L \subseteq \Sigma^*$.

Exemple 13

Les ensembles $L_1 = \emptyset$, $L_2 = \{0,00\}$ et $L_3 = \{w \in \Sigma^* \mid |w| = 2\}$ sont trois langages sur Σ .

L'ensemble $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}$ est un langage sur $\{a, b\}$.

Automates finis

Définition 14 (HOPCROFT et ULLMAN 1979)

Un automate fini est un 5-tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ où

- Q est l'ensemble des états ;
- \triangleright Σ est l'alphabet;
- \bullet $\delta: Q \times \Sigma \to Q$ est la fonction de transition;
- ► q₀ est l'état initial; et
- F est l'ensemble des états acceptants.

Automates finis – Exemples

Motivation

FIGURE 3 – Un automate fini.

Automates finis – Exemples

Motivation

FIGURE 3 – Un automate fini acceptant $L_3 = \{w \in \{0,1\}^* \mid |w| = 2\}.$

Automates finis – Exemples

Prenons $L_4 = \{w \in \{a,b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$

FIGURE 4 – Automate fini acceptant L_4 .

Chemins et langage d'un automate

Définition 15 (HOPCROFT et ULLMAN 1979)

Soient Σ un alphabet et $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un automate. Pour tout mot $w = a_1 \dots a_n$ (avec $n \in \mathbb{N}$) sur Σ , on définit le chemin de w dans A comme :

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_n$$

avec $p_0 = q_0$ et $\forall i \in \{0, \dots, n-1\}, p_i \xrightarrow{a_{i+1}} p_{i+1}$ si et seulement si $\delta(p_i, a_{i+1}) = p_{i+1}$.

Chemins et langage d'un automate

Définition 15 (HOPCROFT et ULLMAN 1979)

Soient Σ un alphabet et $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ un automate. Pour tout mot $w=a_1\ldots a_n$ (avec $n\in\mathbb{N}$) sur Σ , on définit le chemin de w dans \mathcal{A} comme :

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_n$$

avec $p_0 = q_0$ et $\forall i \in \{0, \dots, n-1\}, p_i \xrightarrow{a_{i+1}} p_{i+1}$ si et seulement si $\delta(p_i, a_{i+1}) = p_{i+1}$.

Si $p_n \in F$, alors le chemin est dit acceptant et w est accepté par A.

Chemins et langage d'un automate

Définition 15 (HOPCROFT et ULLMAN 1979)

Soient Σ un alphabet et $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un automate. Pour tout mot $w = a_1 \dots a_n$ (avec $n \in \mathbb{N}$) sur Σ , on définit le chemin de w dans A comme :

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_n$$

avec $p_0 = q_0$ et $\forall i \in \{0, \dots, n-1\}, p_i \stackrel{d_{i+1}}{\longrightarrow} p_{i+1}$ si et seulement si $\delta(p_i, a_{i+1}) = p_{i+1}$.

Si $p_n \in F$, alors le chemin est dit acceptant et w est accepté par A. Le langage de \mathcal{A} , noté $\mathcal{L}(\mathcal{A})$, est l'ensemble des mots acceptés par \mathcal{A} , i.e.,

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists q \in F, q_0 \xrightarrow{w} q \}.$$

Relation de Myhill-Nerode

Définissons une relation d'équivalence en utilisant un langage.

Définition 16

Soit L un langage sur un alphabet Σ .

À partir de L, définissons la relation de Myhill-Nerode \sim_L comme suit : pour tout $u, v \in \Sigma^*$, u et v sont en relation, noté $u \sim_I v$, si et seulement si $\forall w \in \Sigma^*, uw \in L \iff vw \in L$.

On dénote la classe d'équivalence de w par $[w]_I$.

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$ Soit $w \in \{a, b\}^*$.

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$ Soit $w \in \{a, b\}^*$. La relation de Myhill-Nerode contient quatre classes d'équivalence, c'est-à-dire qu'on peut ranger w dans exactement une dans quatre catégories suivantes :

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$ Soit $w \in \{a, b\}^*$. La relation de Myhill-Nerode contient quatre classes d'équivalence, c'est-à-dire qu'on peut ranger w dans exactement une dans quatre catégories suivantes :

1. Le nombre de a est pair et le nombre de b est pair;

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$ Soit $w \in \{a, b\}^*$. La relation de Myhill-Nerode contient quatre classes d'équivalence, c'est-à-dire qu'on peut ranger w dans exactement une dans quatre catégories suivantes :

- 1. Le nombre de a est pair et le nombre de b est pair;
- 2. Le nombre de a est pair et le nombre de b est impair;

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$ Soit $w \in \{a, b\}^*$. La relation de Myhill-Nerode contient quatre classes d'équivalence, c'est-à-dire qu'on peut ranger w dans exactement une dans quatre catégories suivantes :

- 1. Le nombre de a est pair et le nombre de b est pair;
- 2. Le nombre de a est pair et le nombre de b est impair;
- 3. Le nombre de a est impair et le nombre de b est pair; et

Prenons $L_4 = \{w \in \{a,b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$ Soit $w \in \{a,b\}^*$. La relation de Myhill-Nerode contient quatre classes d'équivalence, c'est-à-dire qu'on peut ranger w dans exactement une dans quatre catégories suivantes :

- 1. Le nombre de *a* est pair et le nombre de *b* est pair ;
- 2. Le nombre de a est pair et le nombre de b est impair;
- 3. Le nombre de a est impair et le nombre de b est pair; et
- 4. Le nombre de *a* est impair et le nombre de *b* est impair.

De le relation de Myhill-Nerode vers un automate

Une fois toutes les classes d'équivalence de la relation de Myhill-Nerode pour un langage L identifiées, on peut construire un automate $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ acceptant L avec :

- ▶ $Q = \{ [w]_I \mid w \in \Sigma^* \};$
- $\forall w \in \Sigma^*, \forall a \in \Sigma, \delta(\llbracket w \rrbracket_I, a) = \llbracket wa \rrbracket_I;$
- $ightharpoonup q_0 = \llbracket \varepsilon \rrbracket_I$; et
- ► $F = \{ [w]_I \mid w \in L \}.$

De le relation de Myhill-Nerode vers un automate

Une fois toutes les classes d'équivalence de la relation de Myhill-Nerode pour un langage L identifiées, on peut construire un automate $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ acceptant L avec :

- ▶ $Q = \{ [w]_I \mid w \in \Sigma^* \};$
- $\forall w \in \Sigma^*, \forall a \in \Sigma, \delta(\llbracket w \rrbracket_I, a) = \llbracket wa \rrbracket_I;$
- $ightharpoonup q_0 = \llbracket \varepsilon \rrbracket_I$; et
- ► $F = \{ [w]_I \mid w \in L \}.$

Lemme 17 (HOPCROFT et ULLMAN 1979)

Soit L.

Il existe un automate fini A tel que $\mathcal{L}(A) = L$ si et seulement si le nombre de classes d'équivalence de \sim_I est fini.

On appelle un tel langage régulier.

Un exemple de construction

Motivation

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$

FIGURE 5 – Automate acceptant L_4 construit depuis \sim_{L_4} .

- 3. Apprendre un automate fini
 - Algorithme général
 - Intuition via un exemple

Apprendre un automate fini

Soit un alphabet Σ . On veut un algorithme qui prend en entrée un langage L sur Σ et retourne un automate fini.

FIGURE 6 – Représentation de l'algorithme.

Gaëtan S.

Apprendre un automate fini

Soit un alphabet Σ . On veut un algorithme qui prend en entrée un langage L sur Σ et retourne un automate fini.

FIGURE 6 – Représentation de l'algorithme.

Gaëtan S.

Framework d'Angluin (ANGLUIN 1987)

FIGURE 7 – Le modèle élève-professeur (ANGLUIN 1987).

Framework d'Angluin (ANGLUIN 1987)

Élève

Motivation

Va identifier les classes d'équivalence de \sim_I et construire un automate

Professeur

Connaît un automate acceptant L

FIGURE 7 – Le modèle élève-professeur (ANGLUIN 1987).

Références

Framework d'Angluin (ANGLUIN 1987)

FIGURE 7 – Le modèle élève-professeur (ANGLUIN 1987).

Framework d'Angluin (ANGLUIN 1987)

FIGURE 7 - Le modèle élève-professeur (ANGLUIN 1987).

Framework d'Angluin (ANGLUIN 1987)

FIGURE 7 – Le modèle élève-professeur (ANGLUIN 1987).

Motivation

Framework d'Angluin (ANGLUIN 1987)

FIGURE 7 – Le modèle élève-professeur (ANGLUIN 1987).

Élèves

Motivation

Il existe plusieurs algorithmes pour l'élève. Le transparent suivant donne l'intuition derrière l'élève L* (ANGLUIN 1987) sur un exemple.

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

Motivation

Pour chaque ligne r et chaque colonne c, l'élève pose une requête d'appartenance sur $r \cdot c$. On met un V si et seulement si $r \cdot c \in L$.

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

b n'a pas de représentant.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

FIGURE 9 – L'automate décrit par la table.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

FIGURE 9 – L'automate décrit par la table.

Une fois l'automate construit, l'élève pose une requête d'équivalence. Supposons que le professeur donne le contre-exemple *ab*.

Motivation

FIGURE 8 -Un automate acceptant L_4 connu du professeur.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

On a ε et a mais b et ab.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

On a ε et a mais b et ab. Donc, b sépare deux classes d'équivalence.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

Motivation

FIGURE 8 -Un automate acceptant L_4 connu du professeur.

On a a et ab mais aa et aba.

Motivation

FIGURE 8 -Un automate acceptant L_4 connu du professeur.

On a a et ab mais aa et aba. Donc, a sépare deux classes d'équivalence.

Motivation

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

Motivation

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$

FIGURE 8 – Un automate acceptant L_4 connu du professeur.

FIGURE 9 – L'automate décrit par la table.

Prenons $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ est pair et } |w|_b \text{ est impair}\}.$

Motivation

FIGURE 8 -Un automate acceptant L_4 connu du professeur.

FIGURE 9 – L'automate décrit par la table.

Suite à la requête d'équivalence, le professeur retourne « vrai ». L'élève a donc fini son travail.

•0000

- 4. Automates à un compteur
 - Pourquoi?
 - Apprendre un automate à un compteur

Retour du pendu

FIGURE 10 – L'automate fini construit précédemment pour le jeu du pendu.

Motivation

FIGURE 10 – L'automate fini construit précédemment pour le jeu du pendu.

On veut pouvoir supporter un nombre arbitraire d'erreurs.

00000

Motivation

Si on a un nombre arbitraire d'erreurs, on ne peut pas borner le nombre maximal d'erreurs.

00000

Un nombre arbitraire d'erreurs

Si on a un nombre arbitraire d'erreurs, on ne peut pas borner le nombre maximal d'erreurs.

Myhill-Nerode est infini.

00000

Un nombre arbitraire d'erreurs

Si on a un nombre arbitraire d'erreurs, on ne peut pas borner le nombre maximal d'erreurs.

- Myhill-Nerode est infini.
- \hookrightarrow Les automates finis ne suffisent pas \odot .

00000

Motivation

FIGURE 11 – Un automate à un compteur modélisant le jeu du pendu.

Comment apprendre un automate à un compteur?

00000

Comment apprendre un automate à un compteur?

C'est une bonne question...

Motivation

0000

C'est une bonne question... Rendez-vous d'ici quatre ans!

Motivation

Références L

ANGLUIN, Dana (1987). « Learning Regular Sets from Queries and Counterexamples ». In: Inf. Comput. 75.2, p. 87-106. DOI: 10.1016/0890-5401(87)90052-6. URL: https://doi.org/10.1016/0890-5401(87)90052-6.

HOPCROFT, John E. et Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages and Computation. Addison-Wesley. ISBN: 0-201-02988-X.