560 Group Project: Descriptive Statistics

Brittany Jones, Tess Abrahamson-Richards, Natalie Turner, Hanyi Wang

2023-03-14

Population of Interest

Filter by women over 50 years old in the SIPP study, there are 163727 entries, and 13322 unique participants in our dataset.

Key Variables

Outcome: Monthly social service utilization

(The following variables are all binary variables with levels "Yes" or "No". We count each "Yes" as 1 point and calculate the monthly social service utilization for each participant.)

- RGA MNYN: Received GA benefits this month
- RSNAP_MNYN: Received SNAP benefits this month
- RSSI_MNYN: Received SSI benefits this month
- RTANF_MNYN: Received TANF benefits this month
- RWIC_MNYN: Received WIC benefits this month
- ECHLD_MNYN: Received child care service assistance to go to work or school training this month (1-12)
- ECVDMNYN: Received the EIP(s), or stimulus check(s) this month (1-12)
- EOTHAS MNYN: Received other (clothing or housing) assistance this month (1-12)
- ETRANS_MNYN: Received transportation assistance this month (1-12)
- EUC1MNYN: Received regular, government-provided Unemployment Compensation payments in this month of the reference period (1- 12)
- EUC2MNYN: Received supplemental, employer-provided Unemployment Compensation payments in this month of the reference period (1- 12)
- EUC3MNYN: Received other Unemployment Compensation payments, including union benefits, in this month of the reference period (1-12)

Overall (N=163727)ECHLD MNYN No 3786 (2.3%)Yes 93 (0.1%) 159848 (97.6%) Missing **ECVDMNYN** No 85708 (52.3%) Yes 13833 (8.4%) Missing 64186 (39.2%) **EUC1MNYN** No 5454 (3.3%) Yes 3393 (2.1%) 154880 (94.6%) Missing **EUC2MNYN** No 465 (0.3%) Yes 327(0.2%)Missing 162935 (99.5%)

As shown above, variables ECHLD_MNYN, ECVDMNYN, EUC1MNYN, EUC2MNYN, EUC3MNYN have a lot of missing values, so we exclude them from the calculation of social service utilization scores. Thus the monthly social service utilization score for a participant can be 0 to 7.

Covariates fitted in the models

23(0.0%)

25 (0.0%)

163679 (100.0%)

Demographic vairables:

EUC3MNYN

No

Yes

Missing

- ESEX: sex (all "female" based on our inclusion criteria, so will not be in the models)
- TRACE: detailed race
- EORIGIN: is Spanish, Hispanic, or Latino, or not
- EEDUC: highest level of school completed or the highest degree received by December of (reference year)
- $\bullet\,$ EHLTSTAT: self-reported health status (Confounder)

Individual's total cost of health care HI (sum of the following 2 variables)

- TMDPAY: non-premium medical out-of-pocket expenditures on medical care
- TOTCMDPAY: non-premium medical out-of-pocket expenditures for over-the-counter health-related products

Descriptive Statistics

We also studied the relationship of social service utilization for each individual and month. We first used a histogram and found that there's no significant difference for the distribution of social service utilization scores over different months. (Figure 3)

We then made a plot of all participants' social service utilization scores over months, and found a lot of overlapping. (Figure 4)

Table 1: Demographic charactersitics for older adult women in the SIPP study

	Overall
	(N=13322)
Detailed race	
American Indian or Alaska Native alone (AIAN)	106 (0.8%)
Asian alone	626~(4.7%)
Black alone	1548 (11.6%)
Black-AIAN	21 (0.2%)
Native Hawaiian or Other Pacific Islander alone (HP)	22(0.2%)
Other 2 or more races	30 (0.2%)
White alone	10809 (81.1%)
White-AIAN	108 (0.8%)
White-Asian	21 (0.2%)
White-Black	31 (0.2%)
Is Spanish, Hispanic, or Latino	(, , , ,
Is Spanish, Hispanic, or Latino	1385 (10.4%)
No	11937 (89.6%)
Highest degree	1100. (00.070)
1 or more years of college, no degree	1538 (11.5%)
10th grade	240 (1.8%)
11th grade	238 (1.8%)
12th grade, no diploma	161 (1.2%)
1st, 2nd, 3rd or 4th grade	127 (1.0%)
5th or 6th grade	215 (1.6%)
7th or 8th grade	266 (2.0%)
9th grade	223 (1.7%)
Associate's degree	1335 (10.0%)
Bachelor's degree	2480 (18.6%)
Doctorate degree	209 (1.6%)
High School Graduate	3861 (29.0%)
Less than 1st grade	48 (0.4%)
Master's degree	1395 (10.5%)
Professional School degree	` ,
Some college credit, but less than 1 year	209 (1.6%) 777 (5.8%)
	111 (3.670)
Health status	1504 (11 007)
Excellent	1584 (11.9%)
Fair	2414 (18.1%)
Good	4456 (33.4%)
Poor	968 (7.3%)
Very good	3674 (27.6%)
Missing	$226 \ (1.7\%)$

Table 2: Social service utilization for older adult women in the SIPP study

Overall
(N=163727)
thly social service utilization (score)
127733 (78.0%)
26394 (16.1%)
$7021 \ (4.3\%)$
2116 (1.3%)
410 (0.3%)
51 (0.0%)
2(0.0%)

Table 3: Health care spending for older adult women in the SIPP study

	Overall
	(N=163727)
Health care utilization (dollars)	
Mean (SD)	1230 (2530)
Median [Min, Max]	400 [0, 24500]

Figure 1: Social service utilization for different healthcare cost

Figure 2: Histogram of social service utilization for different races

Figure 3: Social service utilization distribution over 12 months

Figure 4: Social service utilization changes over 12 months for all participants

Figure 5: Social service utilization changes over 12 months for participants with a change

To study the difference in more details, we went ahead to make a single plot for the trend for each participant. After carefully screening, we found most participants have the trend of having a smaller score around summer, and a larger score over spring and fall. We randomly picked some of the participants shown here as an illustration of the trends. (**Figure 5**) This trend further instructed us to put month as a covariate in our models.

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE,message = FALSE,warning = FALSE)
library(tidyverse)
library(mlmRev)
library(lme4)
library(arm)
library(haven)
library(table1)
library(Hmisc)
library(ggplot2)
library(ggpubr)
library(expss)
library(dplyr)
library(gridExtra)
library(flextable)
## ----- working directories for Hanyi -----
wd_hanyi = '/Users/hanyiwang/Desktop/Social-Service-Participation-Among-Older-Adult-Women-in-Washington
path_hanyi = c("../SIPPdata/sipp.csv")
## ----- read data -----
setwd(wd hanyi)
sipp = read.csv(path_hanyi)
unique = sipp %>% distinct(UQID, .keep_all=TRUE) # unique participants
table1(~ECHLD_MNYN+ECVDMNYN+EUC1MNYN+EUC2MNYN+EUC3MNYN, data = sipp)
## ----- modify data set -----
sipp = sipp %>%
 mutate(SS_SCORE = factor(SS_SCORE)) %>%
 mutate(MONTHCODE = factor(MONTHCODE))
## ----- modify labels and units -----
unique = apply_labels(unique,
                   ESEX = "Sex",
                   ERACE = "Race",
                   TRACE = "Detailed race",
                   EORIGIN = "Is Spanish, Hispanic, or Latino",
                   EEDUC = "Highest degree",
                   EHLTSTAT = "Health status")
sipp = apply_labels(sipp,
                   SS_SCORE = "Monthly social service utilization",
                   HI = "Health care utilization")
```

```
units(sipp$HI) = "dollars"
units(sipp$SS_SCORE) = "score"
## ----- descriptive tables -----
demographic = table1(~+TRACE+EORIGIN+EEDUC+EHLTSTAT, data=unique, caption = "Demographic charactersitics
ss_score = table1(~(SS_SCORE), data=sipp, caption = "Social service utilization for older adult women in
hi = table1(~HI,data=sipp, caption = "Health care spending for older adult women in the SIPP study")
# t1flex(demographic) %>% save_as_docx(path="demographic.docx")
demographic
ss_score
hi
## ----- SS SCORE VS HI -----
ggplot(sipp,aes(x=HI,y=SS_SCORE)) +
 geom_point() +
 labs(y = "Social service utilization score", x = "Healthcare costs")
## ----- SS_SCORE VS race -----
ggplot(sipp, aes(x=(SS_SCORE), color=ERACE,fill=ERACE)) +
 geom_histogram(position = "dodge", binwidth=2,stat="count") +
 labs(x = "Social service utilization score") +
 theme(legend.position="top")
## ----- SS SCORE VS month -----
#### boxplot
ggplot(sipp, aes(x=(MONTHCODE), color=SS_SCORE,fill=SS_SCORE)) +
 geom_histogram(position = "dodge", binwidth=2,stat="count") +
 labs(x = "Social service utilization score") +
 theme(legend.position="top")
#### all individuals
sipp = sipp %>%
 mutate(SS_SCORE = as.numeric(SS_SCORE)) %>%
 mutate(MONTHCODE = as.numeric(MONTHCODE)) %>%
 mutate(UQID = factor(UQID))
ggplot(sipp, aes(x = MONTHCODE, y = SS_SCORE, color = UQID)) +
 geom_point()+ geom_line() +
 ylim(0,5) + theme(legend.position = "none") + scale_x_continuous(breaks=seq(0,12,by=1)) +
 labs(y = "Social service utilization score",x = "Month")
#### randomly pick individuals
\# rd = sample(nrow(unique), 30)
# sipp_rd = sipp[sipp$UQID %in% unique[rd,]$UQID,]
# sipp_rd = sipp_rd %>%
# mutate(SS_SCORE = as.numeric(SS_SCORE)) %>%
  mutate(MONTHCODE = as.numeric(MONTHCODE)) %>%
#
  mutate(UQID = factor(UQID))
```

```
\# ggplot(sipp\_rd, aes(x = MONTHCODE, y = SS\_SCORE, color = UQID)) +
  qeom_point()+
  geom_line() +
# ylim(0,5) +
  theme(legend.position = "none")
#### all individuals in seperate plots
\# p = list()
# for (i in 1:30){
  sipp_rd = sipp[sipp$UQID == factor(unique$UQID)[i+1000],]
   p[[i]] = ggplot(sipp\_rd, aes(x = MONTHCODE, y = SS\_SCORE)) +
      geom\_point() + geom\_line() + ylim(0,5) + scale\_x\_continuous(breaks=seq(0,12,by=3))
# do.call(grid.arrange,p)
# after carefully screening the individuals, we found most participants have this trend of having a sma
in_ch = c(9, 6, 16, 45, 57, 319, 71, 67, 80, 94, 95, 117, 315, 316, 1013, 1015)
p = list()
for (i in 1:length(in_ch)){
  sipp_rd = sipp[sipp$UQID == factor(unique$UQID)[in_ch[i]],]
  p[[i]] = ggplot(sipp_rd, aes(x = MONTHCODE, y = SS_SCORE)) +
    geom_point()+ geom_line() + ylim(0,5) + scale_x_continuous(breaks=seq(0,12,by=3)) +
    labs(y = "SS score",x = "Month")
}
do.call(grid.arrange,p)
```