MLR Diagnostics: outliers

Stat 230

April 28 2022

Overview

Today:

Assessing "outliers" in regression

- leverage
- standardized residuals
- Cook's distance

Outliers

For one variable, outliers are often found by measuring how different value is from a mean or median value.

Outliers in Regression

For two or more variables, outliers can be cases that have

- an unusual y value
- ullet an unusual x_1 value
- an unusual combination of (x_1, y) values
- an unusual combination of (x_1, x_2) values
- an unusual combination of (x_1, x_2, x_3) values
- and so on ...

- Measures how unusual a case's predictor values are compared to average predictor values for all cases.
 - does not depend on the response
- **SLR**: the leverage of case *i* equals

$$h_i = rac{1}{n-1}igg(rac{x_i-ar{x}}{s_x}igg)^2 + rac{1}{n}$$

• MLR: h_i measures the distance of case i's predictors from the center of the predictor "point cloud"

In MLR, we look at the distance between a case's predictor values (red dot) and the point cloud center (green pluses)

Mathematically,

- $rac{1}{n} \leq h_i < 1$
- for all cases, mean leverage is always $\bar{h}=(p+1)/n$

Guidelines for "large" leverage

- $h_i > 2(p+1)/n$: potential for some influence $h_i > 3(p+1)/n$: potential for large influence

- A case with high leverage has the potential to be influential
- influential: regression line/surface is pulled towards the case

Why?

• The SE of each observed residual $r_i = y_i - \hat{y}_i$ is inversely related to leverage:

$$SE\left(r_{i}
ight) =\hat{\sigma}\sqrt{1-h_{i}}$$

$$SE\left(r_{i}
ight) =\hat{\sigma}\sqrt{1-h_{i}}$$

Large $h_i pprox 1$: residual has little variability and \hat{y}_i will be very close to Y_i

• If Y_i for case i is not following the "trend" of the other n-1 cases, then this case will pull the regression line/surface towards it.

Small $h_i pprox 1/n$: residual has variability of about σ and \hat{y}_i that can vary widely from Y_i .

ullet The ratio of a residual to its SE:

$$studr_{i}=rac{r_{i}}{SE\left(r_{i}
ight)}=rac{y_{i}-\hat{y}_{i}}{\hat{\sigma}\sqrt{1-h_{i}}}$$

• also known as internally *studentized* residuals

$$studr_{i}=rac{r_{i}}{SE\left(r_{i}
ight)}=rac{y_{i}-\hat{y}_{i}}{\hat{\sigma}\sqrt{1-h_{i}}}$$

The reasons for a case with a large standardized residual are

- a large r_i value (just poorly predicted) but "regular" leverage value. These cases will have typical predictor values but an unusual response.
- ullet a "regular" r_i value but a small SE due to a large leverage value.

Guidelines to flag unusual cases are

- $|studr_i| > 2$ for smaller data sets
- ullet $|studr_i| > 4$ for larger data sets

Which red case below will have large standardized residual?

Cook's distance: a measure of a case's influence on the fitted regression line/surface.

$$D_i = \sum_{i=1}^n rac{\left(\hat{Y}_{j(-i)} - \hat{Y}_j
ight)^2}{(p+1)\hat{\sigma}^2} = rac{studr_i^2}{p+1}rac{h_i}{1-h_i}.$$

- $\hat{Y}_{j(-i)} = \text{predicted response for case } j \text{ using a model fit that excludes case } i.$
- $\hat{Y}_j = \text{predicted response for case } j \text{ using a model fit that uses all cases.}$
- If these two predictions deviate a lot, overall all cases, then we would say that case i is influential in the regression fit.
- ullet $\frac{h_i}{1-h_i}$ can be shown to be the distance from x_i to the centroid of remaining data

$$D_i = \sum_{j=1}^n rac{\left(\hat{Y}_{j(-i)} - \hat{Y}_j
ight)^2}{(p+1)\hat{\sigma}^2} = rac{studr_i^2}{p+1}rac{h_i}{1-h_i}$$

Cases have large Cook's distance if it has

- high standardized residual,
- high leverage,
- or a combination of both.

Largest Cook's distance case?

Y outlier (1st from left): This red case has a very large residual value r_i but it doesn't have high leverage. It is not very influential.

X outlier (2nd): This red case has a large negative standardized residual and large leverage, so it is very influential ($D_i \approx 100$).

X and Y outlier (3rd and 4th):

- The left case doesn't have an unusual standardized residual value though it has large leverage, so it isn't very influential because it follows the trend of the other cases.
- The right case has the same leverage as the left case, but this time it has a larger standardized residual than the left case and it is deemed to be influential $(D_i > 3)$.

Guidelines for possible influence:

- Flag cases whose D_i is really unusual (sticks out from the rest)
- Flag cases whose $D_i>1$ for large data sets or $D_i>qf(0.5,p+1,n-p-1)$ for smaller data sets
- for really big data sets: will be hard for one case to be overly influential
- ggResidpanel uses another common cutoff: 4/n

Outlier strategy

- (1) After EDA, fit potential model
- (2) Check residual plots, make transformations if needed, repeat 1-2
- (3) Check case-influence statistics. If an "outlier" is found, fit model with and without the case
 - Keep the case if conclusions don't change

If conclusions change:

- Omit case if part of a different population
- if not in a different population, omit case if it has high leverage and report reduced predictor range
- else, may need to learn more about the data collection to understand what makes the case different

Base-R options

- Cook's distance vs. row number: plot(my_lm, which = 4)
- Standardized residuals (y-axis) against leverage (x-axis) with contours given by Cook's distance: plot (my_lm, which=5)
- add id.n to get row numbers for the n most "extreme" cases

```
ggResidpanel package resid_panel(my_lm, plots =c("cookd", "lev")):
```

- cookd: Cook's distance vs. row number
- lev: Standardized residuals (y-axis) against leverage (x-axis) with contours given by Cook's distance

```
resid_interact(my_lm, plots = c("cookd", "lev")):
```

clickable plots

ggplot2 + broom Option

```
# is not possible using moderndive yet!
data_aug <- augment(my_lm) # variables used in the lm
# all variables in the lm data set
regression_points <- augment(data = mydata, my_lm)</pre>
```

What is added?

- hat: leverage
- cooksd: Cook's distance
- .std.resid: standardized residuals

GGally Case influence stats vs. predictors:

```
ggnostic (my_lm, columnsY =c(".std.resid", ".hat", ".cooksd"))
```

- .std.resid: standardized residual
- .hat: leverage
- .cooksd: Cook's distance

```
penguins <- penguins %>% drop_na(bill_length_mm, body_mass_g)
peng_interaction_lm <- lm(body_mass_g ~ bill_length_mm * species, data= penguins)
plot(peng_interaction_lm, which = 4)</pre>
```



```
plot(peng_interaction_lm, which = 5, id.n = 5)
```


Interactive plots

```
library(ggResidpanel)
resid_interact(peng_interaction_lm, plots = c("cookd", "lev"))
```



```
regression_points <- augment(peng_interaction_lm)
regression_points <- regression_points %>% mutate(ID = row_number())
```

ID 292 has the largest Cook's distance and 2nd largest leverage

- case 292 (largest Cook's D) has the second largest bill length
- case 185 has larger leverage (largest bill length) but smaller std. residual

 Case 292 does not have a concerning Cook's distance, but what if we want to check by fitting a model that excludes this case?


```
# remove 292 and refit the model
peng_interaction_lm_no292 <- update(peng_interaction_lm, subset = -292)
get_regression_table(peng_interaction_lm_no292)</pre>
```

```
# A tibble: 6 \times 7
 term
                    estimate std_error statistic p_value lower_ci upper_ci
 <chr>
                       <dbl>
                               <dbl>
                                       <dbl>
                                             <dbl> <dbl>
                                                            <dbl>
1 intercept
                        34.9
                               442.
                                       0.079
                                             0.937
                                                    -835. 904.
2 bill_length_mm
                      94.5
                            11.4
                                       8.31
                                             0 72.1 117.
3 species: Chinstrap
                 426. 831. 0.513
                                                          2060.
                                             0.608 - 1208.
4 species: Gentoo
                  -159. 681. -0.233
                                             0.816 - 1499. 1182.
5 bill_length_mm:species... -27.3 18.4 -1.49
                                             0.138 -63.4 8.81
6 bill length mm:species... 15.0
                            15.7 0.95
                                             0.343 -16.0 45.9
```

- Removing case 292 makes the effect of bill length on mass larger for Chinstrap
- closer to the slope of Adelie!

```
get_regression_table(peng_interaction_lm)
```

```
# A tibble: 6 \times 7
                       estimate std_error statistic p_value lower_ci upper_ci
 term
                                  <dbl>
                                                  <dbl>
                                                       <dbl> <dbl>
 <chr>
                         <dbl>
                                           <dbl>
                                  443.
                                           0.079
1 intercept
                          34.9
                                                  0.937
                                                         -837.
                                                                907.
2 bill_length_mm
                          94.5
                               11.4
                                           8.29
                                                           72.1 117.
3 species: Chinstrap
                         811.
                                  800. 1.01
                                                  0.311 -762. 2385.
4 species: Gentoo
                    -159. 683.
                                          -0.232
                                                  0.816 - 1503. 1185.
5 bill_length_mm:species...
                       -35.4 17.7
                                          -1.99
                                                  0.047 \quad -70.3 \quad -0.474
6 bill length mm:species...
                        15.0
                                   15.8
                                                  0.344 - 16.1 46.0
                                        0.948
```

- Removing this one case makes the interaction between species and bill length marginally insignificant (${
 m F}=2.74, {
 m df}=2,335, {
 m p}=0.066$)!
- This case does seem to have some influence on the model.

```
anova(peng_interaction_lm_no292)
```