Optimizavimo metodai. Paskaitų konspektas Rimantas Grigutis

9 paskaita. Skaitiniai besąlyginiai optimizavimo metodai. Daugiamatė optimizacija. Baudų metodas

Uždavinys.

Duota dukart tolydžiai diferencijuojama tikslo funkcija $f(x) = f(x_1, ..., x_n)$ ir galimų reikšmių sritį X lygybėmis apribojančios funkcijos $g_j(x) = g_j(x_1, ..., x_n)$, j = 1, ..., p.

Rasti tikslo funkcijos f(x) lokaliųjį minimumą x^* aibėje X:

$$f\left(x^{*}\right) = \min_{x \in X} f\left(x\right),$$

čia
$$X = \left\{ x \middle| \begin{array}{l} g_j(x) = 0, j = 1, ..., m; m < n \\ g_j(x) \le 0, j = m + 1, ..., p \end{array} \right\}.$$

Sprendimo startegija

1. Metodo idėja yra ta, kad sąlyginio minimumo paieška pakeičiama besąlyginio minimumo paieška pagalbinei funkcijai:

$$F(x, r^k) = f(x) + P(x, r^k) \rightarrow \min_{x \in \mathbf{R}^n},$$

čia $P\left(x,r^{k}\right)$ - baudos funkcija, o r^{k} - baudos parametras, apibrėžiamas kiekviename iteracijos žingsnyje.

Baudos funkcijos turi tenkinti šias sąlygas:

$$P\left(x, r^{k}\right) = \begin{cases} 0, & \text{jei apribojimai tenkinami} \\ > 0, & \text{jei apribojimai netenkinami} \end{cases},$$

beto, jei apribojimai yra netenkinami ir $r^k \to \infty, k \to \infty$ teisinga $P\left(x, r^k\right) \to \infty$. Kuo didesnis r^k , tuo didesnė apribojimo netenkinimo bauda.

2. Pradinis paieškos taškas x^0 paprastai parenkamas už galimų sprendinių aibės X ribų. Kiekviename k-ajame iteracijos žingsnyje randamas pagalbinės funkcijos $F\left(x,r^k\right)$ minimumo taškas $x^*\left(r^k\right)$, kuris būna pradiniu tašku sekančiame iteracijos žingsnyje, kuriame baudos parametras jau didesnis. Kai $r^k \to \infty$, tai $x^*\left(r^k\right)$ artėja prie sąlyginio minimumo taško x^* .

Algoritmas

 $\check{Z}ingsnis$ 1. Pasirenkame: pradinį tašką x^0 , pradinį baudos parametrą $r^0>0$, parametro pokyčio reikšmę C>0, algoritmo pabaigos mažą reikšmę $\varepsilon>0$. Priskiriame k=0.

Žingsnis 2. Konstruojame pagalbinę funkciją

$$F(x, r^{k}) = f(x) + \frac{r^{k}}{2} \left(\sum_{j=1}^{m} (g_{j}(x))^{2} + \sum_{j=m+1}^{p} (g_{j}^{+}(x))^{2} \right),$$

čia

$$g_j^+(x) = \max\{0, g_j(x)\} = \begin{cases} g_j(x), g_j(x) > 0, \\ 0, g_j(x) \le 0. \end{cases}$$

 $\check{Z}ingsnis$ 3. Rasti kuriuo nors metodu funkcijos $F\left(x,r^{k}\right)$ besąlyginio minimumo tašką $x^{*}\left(r^{k}\right)$:

$$F\left(x^{*}\left(r^{k}\right), r^{k}\right) = \min_{x \in \mathbf{R}^{n}} F\left(x, r^{k}\right).$$

Pasirinktame metode parinkti pradinius duomenis: pradiniu tašku bus x^k . Suskaičiuoti baudos funkcijos reikšmę $P\left(x^*\left(r^k\right), r^k\right)$, čia

$$P(x, r^{k}) = \frac{r^{k}}{2} \left(\sum_{j=1}^{m} (g_{j}(x))^{2} + \sum_{j=m+1}^{p} (g_{j}^{+}(x))^{2} \right)$$

baudos funkcija.

Žingsnis 4. Patikrinti algoritmo pabaigos salygas:

a) jei $P\left(x^{*}\left(r^{k}\right), r^{k}\right) \leq \varepsilon$, tai algoritmas baigiamas ir

$$x^* = x^* (r^k), \qquad f(x^*) = f(x^* (r^k));$$

b) jei
$$P\left(x^{*}\left(r^{k}\right), r^{k}\right) > \varepsilon$$
, tai priskirti

$$r^{k+1} = Cr^k$$
, $x^{k+1} = x^* (r^k)$, $k = k+1$

ir pereiti prie *Žingsnio 2*.

Pastaba 9.1

Paprastai renkamės $r^0=0,01;~0,1;~1,$ o $C\in[4;10]$. Kartais renkamės $r^0=0$ ir sprendžiame besąlyginio minimumo paieškos uždavinį.

Pavyzdys 9.2

Pavyzdys 9.3

Pavyzdys 9.4