TD0: Anneaux et Idéaux

11/09/2024

Sauf mention explicite du contraire, les anneaux seront toujours supposés commutatifs, unitaires et non réduits à 0. Un morphisme d'anneaux $f: A \to A'$ vérifiera toujours $f(1_A) = 1_{A'}$.

On rappelle les définitions suivantes :

Définition 1. Un idéal I d'un anneau A est un sous-groupe additif de A stable par multiplication par A. On dit qu'un idéal est

- premier si c'est un idéal propre et $\forall a, b \in A, ab \in I \Rightarrow (a \in I) \lor (b \in I)$.
- maximal si c'est un élément maximal de l'ensemble des idéaux propres de A pour la relation \subseteq .
- de type fini si il est engendré par un nombre fini d'élements, et principal si il est engendré par un seul élément.

Exercice 1 : Idéaux premiers et maximaux

- 1. Soit A un anneau et I un idéal. Montrer que I est premier (resp. maximal) si et seulement si A/I est un anneau intègre (resp. un corps).
- **2.** Soit A un anneau et I un idéal. Montrer que I est premier (resp. maximal) si et seulement si il est le noyau d'un morphisme (resp. d'un morphisme surjectif) $\phi: A \to B$ où B est un anneau intègre (resp. un corps).

Correction:

Voir cours. On peut aussi remarquer pour la question 2, que I est premier ssi il est le noyau d'un morphisme dont le but est un corps. En effet on peut écrire $A \to A/I \to \operatorname{Frac}(A/I)$ où $\operatorname{Frac}(A/I)$ est le corps des fractions de l'anneau intègre A/I.

Exercice 2 : Etude de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \ge 2$.

- 1. Quels sont les éléments inversibles, les éléments nilpotents, les diviseurs de 0 de $\mathbb{Z}/n\mathbb{Z}$?
- 2. Quels sont les idéaux, les idéaux premiers, les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$?
- **3.** Quels sont les morphisme d'anneaux de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{Z} ? de \mathbb{Z} dans $\mathbb{Z}/n\mathbb{Z}$? de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$ pour $n, m \in \mathbb{N}$?

Correction:

1. On note $\pi: k \in \mathbb{Z} \mapsto [k] \in \mathbb{Z}/n\mathbb{Z}$ la projection canonique.

Soit $k \in \mathbb{Z}$. On montre que [k] est inversible dans $\mathbb{Z}/n\mathbb{Z}$ ssi $n \wedge k = 1$ (ca ne dépend bien que de la classe [k]). Par Bézout $n \wedge k = 1$ ssi $\exists u, v \in \mathbb{Z}, nu + kv = 1$ ssi $\exists v \in \mathbb{Z}, [k][u] = 1$ dans $\mathbb{Z}/n\mathbb{Z}$, ie ssi [k] est inversible.

On appelle radical de n et noté $\operatorname{rad}(n)$ le produit des nombres premiers qui divisent n. On montre que [k] est nilpotent ssi $\operatorname{rad}(n)|k$ (comme $\operatorname{rad}(n)|n$ c'est toujours bien indépendant du choix de k). Si $\operatorname{rad}(n)|k$, on a $n|\operatorname{rad}(n)^l$ pour $l=\max\{\nu_p(n),p\in\mathcal{P}\}$, alors $n|\operatorname{rad}(n)^l|k^l$ donc $[k]^l=[0]$ et [k] est nilpotent. Réciproquement si [k] est nilpotent, alors $n|k^l$ pour l assez grand et tout premier qui divise n divise k^l et donc divise k. Par Gauss, $\operatorname{rad}(n)|k$.

On montre que [k] divise 0 ssi $n \wedge k \neq 1$. Si $d = n \wedge k \neq 1$, on écrit n = dn' et k = dk' et alors [k][n'] = [k'][n] = 0 avec $[n'] \neq 0$. Réciproquement si [k] divise 0 alors k est non inversible (car $\mathbb{Z}/n\mathbb{Z}$ n'est pas l'annéeau nul) et $n \wedge k \neq 1$ par la discussion précédente.

2. Soit $I \subset \mathbb{Z}/n\mathbb{Z}$ un idéal, alors $\pi^{-1}(I)$ est un idéal de \mathbb{Z} . Il existe alors $d \in \mathbb{Z}$ tel que $\pi^{-1}(I) = d\mathbb{Z}$. De plus $n \in \pi^{-1}([0]) \subset \pi^{-1}(I)$ donc d|n. Comme $I = \pi \pi^{-1}(I)$ (car π est surjectif, voir cours), I = ([d]). Réciproquement un tel I est bien un idéal de $\mathbb{Z}/n\mathbb{Z}$. Alors les seuls idéaux de $\mathbb{Z}/n\mathbb{Z}$ sont les idéaux principaux, les idéaux premiers sont ceux engendrés par les premier p tels que p|n et tous ces idéaux premiers sont maximaux.

3. Un morphisme d'anneaux $\phi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$ doit envoyer $1_{\mathbb{Z}/n\mathbb{Z}}$ sur $1_{\mathbb{Z}}$, mais $\phi(n[1]) = \phi([0]) = 0 \neq n\phi([1]) = n$. Alors $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}) = \emptyset$.

Un morphisme de $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ est déterminé par l'image de 1. Il y a donc au plus un morphisme. Alors $\operatorname{Hom}(\mathbb{Z},\mathbb{Z}/n\mathbb{Z})=\{\pi\}.$

De même un morphisme de $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ est déterminé par l'image de 1, il a donc au plus un morphisme d'anneau. L'image de 1 doit être de n torsion, alors si un tel morphisme existe m|n. Ainsi $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = \emptyset$ si m ne divise pas n et $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) = \{\pi\}$ sinon.

Exercice 3 : Principalité de A[X]

Soit A un anneau. Montrer que A[X] est principal si et seulement si A est un corps.

Correction:

Si A est un corps alors A[X] est principal par l'argument de la division euclidienne.

Supposons A[X] principal. Alors par définition d'un anneau principal, A[X] est intègre et $A \hookrightarrow A[X]$ aussi : on peut donc utiliser le degré d'un polynôme qui vérifie les propriétés attendues. On sait que A est un corps ssi son seul idéal maximal est (0). Supposons par l'absurde que m soit un idéal maximal non nul de A, et notons mA[X] = (a) par hypothèse de principalité. a est alors dans m (voir par exemple le degré) et est non nul car m l'est.

Soit I = (a, X) = (P). Alors d'une part $a \in (P)$ donc $P = p \in A$ et a = pq, et p = aU + XV soit en évaluant en 0, p = aU(0). Par intégrité, on a donc a(1 - U(0)q) = 0 ie U(0)q = 1, donc (a) = (p), puis $X \in (a) = mA[X]$, et donc $1 \in m$ absurde. D'où m = 0 et A est un corps.

Remarque 2. On aurait pu regarder A[X]/(a) = (A/m)[X] pour en déduire que (a) est maximal dans l'ensemble des idéaux principaux de A et donc a est irréductible et conclure, car si $(a) \subset (b) = bA[X]$, alors A[X]/(bA[X]) = (A/(b))[X] et forcément A/(b) = A/(a) car le second est déja un corps, donc en fait (a) = (b) en tant qu'idéaux de A, puis de A[X].

Exercice 4 : Éléments inversibles de A[X]

- 1. Vérifier que si A est un anneau intègre, alors A[X] est intègre et $A[X]^{\times} = A^{\times}$.
- **2.** A est désormais un anneau quelconque, et $f := \sum_{i=0..n} a_i X^i$ un élément de A[X].
- a. Montrer que si a_0 est inversible dans A et a_1, \ldots, a_n sont nilpotents, alors f est inversible dans A[X].
- b. Réciproquement, supposant f inversible dans A[X], montrer successivement que $a_0 \in A^{\times}$, puis $a_n \in \text{Nil}(A)$, puis $a_{n-1}, \ldots, a_1 \in \text{Nil}(A)$.
- c. Retrouver le résultat précédent en utilisant le fait que Nil(A) est l'intersection des idéaux premiers de A.

Correction:

1. Si A est intègre, l'application $\deg: (A[X], \times) \to (N \cup \{-\infty\}, +)$ est un morphisme (car le coefficient dominant de PQ est le coefficient dominant de P fois le coefficient dominant de Q donc non nul sauf si l'un des deux polynômes était déja le polynôme nul). En particulier $A[X]^{\times} \subset A^{\times}$ car si PQ = 1 alors $\deg P + \deg Q = 0$ et donc $\deg P = 0$ et $P \in A^{\times}$. Réciproquement $A^{\times} \subset A[X]^{\times}$ et on a bien l'égalité voulue.

2.

a. On utilise le Lemme suivant :

Lemme 0.3.

Soit B un anneau, u un inversible et h un élément nilpotent. Alors u-h est inversible.

Démonstration. On peut supposer u=1 quitte à multiplier par u^{-1} . Alors si n est tel que $h^n=0$, on a $\left(\sum_{k=0}^{n-1}h^k\right)(1-h)=1-h^n=1$.

D'après le Lemme, comme
$$f = \underbrace{a_0}_{\in A^{\times}} + \underbrace{\left(\sum_{i \geq 1} a_i X^i\right)}_{\text{pilpotent}}$$
 alors f est inversible.

b. Supposons fg = 1 dans A[X] avec $f = \sum_{k=0}^{n} a_k X^k$. Alors en regardant le coefficient en X^0 de fg = 1, on en déduit $a_0b_0 = 1$ où $g = \sum_{i=0}^{m} b_i X^i$. Ecrivons les autres relations que nous donne l'écriture par coordonnée de fg = 1:

$$\begin{cases} X^{n+m} : & a_n b_m = 0 \\ X^{n+m-1} : & a_n b_{m-1} + a_{n-1} b_m = 0 \\ \vdots & \vdots \\ X^{n+m-k} : & \sum_{i=0}^k a_{n-i} b_{m-k+i} = 0 \end{cases}$$

En particulier, en multipliant la ligne 2 par a_n , comme par ligne 1 $a_nb_m=0$, on en déduit $a_n^2b_{m-1}=0$. Supposons qu'on ait $a_n^ib_{m-(i-1)}=0$ pour $i\leqslant k$. Alors $0=a_n^k\left(\sum_{i=0}^k a_{n-i}b_{m-k+i}\right)=a_n^{k+1}b_{m-k}+\sum_{i=1}^k a_{n-i}\underbrace{a_n^kb_{m-k+i}}_{=0\text{car }k-i\leqslant k}$ d'où $a_n^{k+1}b_{m-k}=0$. On a donc montré le résultat par récurrence, jusqu'à k=m qui

fournit $a_n^{m+1}b_0=0$ et comme b_0 est inversible, a_n est nilpotent. Finalement, comme a_nX^n est nilpotent, $f-a_nX^n$ est aussi inversible par le Lemme et donc par récurrence immédiate on en déduit que a_{n-1},\ldots,a_1 sont nilpotents.

c. Soit $\mathfrak p$ un idéal premier. Notons $\pi:A\to A/\mathfrak p$ la réduction modulo $\mathfrak p$, et de même $\pi:A[X]\to A/\mathfrak p[X]$ la réduction modulo $\mathfrak p$ des coefficients. Alors si f est inversible, $\pi(f)$ l'est aussi. Mais $A/\mathfrak p$ est intègre, donc $\pi(f)$ est inversible ssi $\pi(f)$ est constant et inversible dans $A/\mathfrak p$. En particulier, a_0 n'est pas dans $\mathfrak p$ et $a_1,\ldots,a_n\in\mathfrak p$. Comme cela est valable pour tout idéal premier, on en déduit que $a_1,\ldots,a_n\in\bigcap_{\mathfrak p\in\operatorname{Spec} A}\mathfrak p$ ie sont nilpotents, et a_0 n'appartient à aucun idéal maximal donc est inversible.

Exercice 5 : Un exemple d'idéal premier mais non maximal

Montrer que l'idéal $(x^2 - 2)$ est premier mais pas maximal dans $\mathbb{Z}[x]$.

Correction:

On calcule le quotient $\mathbb{Z}[X]/(X^2-2)=\mathbb{Z}[\sqrt{2}]$. Soit $\phi:\mathbb{Z}[X]\to\mathbb{Z}[\sqrt{2}]$ le morphisme définit par $X\mapsto\sqrt{2}$. Clairement ϕ est surjectif, pour avoir l'isomorphisme voulu, il suffit de vérifier que $\ker(\phi)=(X^2-2)$. Soit $P\in\ker(\phi)$, on écrit la DE de P par X^2-2 dans $\mathbb{Z}[X]$ comme $P=(X^2-2)Q+R$ et R est de degré $\leqslant 1$. D'où R=a+bX, comme $(1,\sqrt{2})$ est \mathbb{Q} -libre, on a a=b=0.

Ce qui montre que le quotient est intègre et donc (X^2-2) est premier. On vérifie ensuite que 3 n'est pas inversible dans $\mathbb{Z}[\sqrt{2}]$. Sinon $3(a+b\sqrt{2})=1$, ce qui implique $a=\frac{1}{3}$ et b=0. Donc 3 n'est pas inversible dans $\mathbb{Z}[\sqrt{2}]$.

Exercice 6: Image réciproque d'un idéal maximal

Soient $f: A \to B$ un homomorphisme d'anneaux et M un idéal maximal de B. Soit $N:=f^{-1}(M)$. Montrer que N n'est pas nécessairement un idéal maximal de A, mais que c'est le cas si f est surjectif.

Correction:

Soit $f:A\to B$ un morphisme d'anneau et $M\subset B$ un idéal maximal. La composée $A\to B\to B/M$ se factorise par A/N et l'application induite $A/N\to B/M$ est injective.

Si f est surjective, alors $A \to B/M$ l'est aussi, et par conséquent $A/N \to B/M$ aussi, donc A/N est un corps et N est maximal.

Un contre exemple est donné par l'inclusion $\mathbb{Z} \to \mathbb{Q}$, m=0 et n=0 n'est pas maximal.

Exercice 7 : Entiers algébriques

Soit $x \in \mathbb{C}$. Montrer que les propositions suivantes sont équivalentes :

- (i) x est racine d'un polynôme non nul unitaire à coefficients dans \mathbb{Z} .
- (ii) $\mathbb{Z}[x]$ est un groupe abélien de type fini.

En déduire que l'ensemble des entiers algébriques de \mathbb{C} est un anneau.

Correction:

- $(i) \Rightarrow (ii)$ Si $x^n = a_{n-1}x^{n-1} + \cdots + a_0$, alors $\mathbb{Z}[x]$ est généré par $(1, x, \dots, x^{n-1})$ et c'est bien un groupe abélien de type fini.
- $(ii) \Rightarrow (i)$ Si $\mathbb{Z}[x]$ est un groupe abélien de type fini, alors on peut extraire une famille génératrice finie de la famille de génératrice $(x^k, k \ge 0)$. Alors $\mathbb{Z}[x]$ est générée par $1, \ldots, x^n$ et $x^{n+1} = a_n x^n + \cdots + a_0$.

Par un raisonnement analogue on a, pour x,y des entiers algébriques, $\mathbb{Z}[x,y]$ est un groupe abélien de type fini. Alors $\mathbb{Z}[xy] \subset \mathbb{Z}[x,y]$ et $\mathbb{Z}[x+y] \subset \mathbb{Z}[x,y]$ sont des groupes abéliens de type fini et l'ensemble des entiers algébriques est un sous anneau de \mathbb{C} .

Exercice 8: Division euclidienne

Soit A un anneau et A[X] l'anneau des polynômes à coefficients dans A.

1. Montrer que si $D \in A[X]$ a un coefficient dominant inversible, alors pour $P \in A[X]$ il existe $R, Q \in A[X]$ tel que P = QD + R et $\deg R < \deg D$. Si A est intègre, montrer que le couple P, Q est unique.

Correction:

Voir une preuve pour A un corps, et voir pourquoi on a besoin que le coefficient dominant soit inversible.

Exercice 9 : Une caractérisation de l'intégrité

Soit A un anneau distinct de $\{0\}$, de $\mathbb{Z}/4\mathbb{Z}$, et de $\mathbb{F}_2[X]/(X^2)$. Montrer que les propriétés suivantes sont équivalentes :

- (i) A est intègre.
- (ii) Tout polynôme unitaire de degré n à coefficients dans A a au plus n racines dans A.
- (iii) Tout polynôme unitaire de degré 2 à coefficients dans A a au plus 2 racines dans A.

Correction:

L'implication $(ii) \Rightarrow (iii)$ ne pose pas de problème.

- $(i) \Rightarrow (ii)$. Soit P un polynôme unitaire à coefficients dans A. Si a est une racine de P, on peut considérer la division euclidienne de P par X-a qui existe car le coefficient dominant de X-a est inversible, et s'écrit alors P=(X-a)Q+b avec b un polynôme constant, puis b=0 en évaluant en a. Par intégrité, deg $Q=\deg P-1$, et en particulier P a bien au plus $\deg P$ racines.
 - $(iii) \Rightarrow (i)$ On montre d'abord le lemme suivant :

<u>Lemme</u>: Soit A un anneau non intègre tel que $\forall a,b \in A$ non nuls, $ab = 0 \Rightarrow a = b$, alors $A = \mathbb{Z}/4\mathbb{Z}$ ou $A = \mathbb{F}_2[X]/X^2$.

Démonstration. Si a un diviseur de 0, qui par hypothèse vérifie $a^2=0$, alors a est en particulier est nilpotent. Alors l'anneau réduit $A/\mathcal{N}(A)$ où $\mathcal{N}(A)$ est le nilradical de A est intègre (si $ab \in \mathcal{N}(A)$, $a^nb^n=0$ pour un certain n et par l'hypothèse $a^n=b^n$, donc $a^{2n}=0$ et $a\in \mathcal{N}(A)$). Soit $[c]\neq 0$ un élément de $A/\mathcal{N}(A)$, et a un diviseur de 0 (non nul) fixé. lors $ca^2=0$ donc ca=a (en effet il faut vérifier que $ca\neq 0$ pour appliquer l'hypothèse mais c'est le cas car sinon c=a et [c] serait nul) puis (c-1)a=0. On a donc soit c=1, soit c-1 et a sont non nuls et par hypothèse c=a+1. Dans les deux cas [c]=1, et on a la liste de tous les éléments de $A=\{0,a,1,1+a\}$. (en effet un élément $x\in A$ vaut soit 1 dans le quotient et on a décrit ces éléments, soit 0, mais dans ce cas 1+x vaut 1...). Finalement, suivant si a=2 ou non, on peut conclure.

Si A est non intègre et A différent de $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{F}_2[X]/X^2$. Alors il existe a, b distincts et non nuls tels que ab = 0. Alors (X - a)(X - b) a trois racines distinctes a, b, 0.

Exercice 10: Anneaux d'entiers

Montrer que si un nombre rationnel est racine d'un polynôme non nul unitaire à coefficients entiers, alors c'est un entier.

Correction:

Soit $r = \frac{p}{q} \in \mathbb{Q}$ avec $p \wedge q = 1$ vérifiant

$$r^n + a_{n-1}r^{n-1} + \dots + a_0 = 0$$

On multiplie l'équation par q^n , celle-ci devient :

$$p^{n} + qp^{n-1}a_{n-1} + \dots + q^{n}a_{0} = 0$$

Si $q \neq 1$, on regarde mod q, ce qui devient $p^n = 0$ et contredit l'hypothèse $p \wedge q = 1$. Alors q = 1 et $r \in \mathbb{Z}$.

Exercice 11 : Théorème des deux carrés

On rappelle que les anneaux des entiers de Gauss est l'anneau $\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\}$. On définit $N : \mathbb{Z}[i] \to \mathbb{N}$ par $N(z) := |z|^2$.

1.

a. Montrer que N est multiplicative, i.e. pour tous $z, z' \in \mathbb{Z}[i]$ on a

$$N(zz') = N(z)N(z')$$

- b. Montrer que $\mathbb{Z}[i]^{\times} = \{z \in \mathbb{Z}[i], N(z) = 1\}.$
- **2.** Soit p un nombre premier différent de 2.
 - a. Montrer que -1 est un carré modulo p si et seulement si $p \equiv 1[4]$.
 - b. Montrer l'équivalence des propriétés suivantes :
- (i) p est irréductible dans $\mathbb{Z}[i]$.
- (ii) $p \equiv 3[4]$
- (iii) p n'est pas somme de deux carrés d'entiers naturels.

Correction:

1.

a. Le module complexe est multiplicatif.

b. Si z est inversible, il existe z' tel que zz'=1 alors N(z)N(z')=1, puis forcément $N(z)=a^2+b^2=1$ donc $z\in\{\pm 1,\pm i\}$. Réciproquement ces éléments sont clairement inversibles dans $\mathbb{Z}[i]$.

a. Considérons le morphisme de groupes $\varphi: x \in (\mathbb{Z}/p\mathbb{Z})^* \mapsto x^2 \in (\mathbb{Z}/p\mathbb{Z})^*$, de noyau $\{-1, +1\}$. Alors son image est de cardinal $\frac{|(\mathbb{Z}/p\mathbb{Z})^*|}{|\ker \varphi|} = \frac{p-1}{2}$. De plus, tout élément $x \in (\mathbb{Z}/p\mathbb{Z})^*$ vérifie $x^{p-1} = 1$. En particulier, $\operatorname{im}(\varphi) \subset \{x \in (\mathbb{Z}/p\mathbb{Z})^*, x^{\frac{p-1}{2}} = 1\}$. Or ce second ensemble est précisément l'ensemble des racines du polynôme à coefficients dans le corps $\mathbb{Z}/p\mathbb{Z}$ $X^{\frac{p-1}{2}} - 1$, et est donc de cardinal au plus $\frac{p-1}{2}$. Par égalité des cardinaux, on conclue que x est un carré mod p ssi $x^{\frac{p-1}{2}} = 1$ mod p. Alors -1 est un carré mod p ssi $(-1)^{\frac{p-1}{2}} = 1$ ssi p = 1[4].

h

- $(i) \Rightarrow (iii)$ Si p est une somme de deux carrés, alors $p = a^2 + b^2 = (a + ib)(a ib)$ n'est pas irréductible dans $\mathbb{Z}[i]$.
- $(iii) \Rightarrow (i)$ Si p n'est pas irréductible p = zz' avec z, z' non inversibles. Mais alors $p^2 = N(z)N(z')$ et comme z et z' ne sont pas inversibles, N(z) = N(z') = p et p = N(z) est une écriture de p comme somme de deux carrés.
- $(i) \Leftrightarrow (ii)$ Calculons $\mathbb{Z}[i]/(p) = \mathbb{Z}[X]/(p, X^2 + 1) = \mathbb{F}_p[X]/(X^2 + 1)$. Ce dernier anneau est intègre ssi -1 n'est pas un carré mod p. En effet, si $-1 = a^2$, alors $X^2 1 = (X a)(X + a)$ et donc cet anneau n'est pas intègre. Si réciproquement on suppose que $\mathbb{F}_p[X]/(X^2 + 1)$ n'est pas intègre, on dispose d'une relation du type $(aX + b)(cX + d) = X^2 + 1[p]$ (on peut prendre des représentants de degré 1 en simplifiant avec le X^2 , puis multiplier par un inverse si nécessaire) avec aX + b et cX + d non nuls dans $\mathbb{F}_p[X]$. Mais alors

$$\begin{cases} ac = 1\\ ad + bc = 0\\ db = 1 \end{cases}$$

On déduit alors $ad + ba^{-1} = 0$ et $a^2d = -b$, et en reportant dans la dernière équation : $d^2a^2 = -1[p]$. (on peut aussi dire que cet anneau est intègre ssi $X^2 - 1$ est irréductible ssi il n'a pas de racine car c'est un polynôme de degré 2). Finalement, on a bien l'équivalence :

p est irréductible \iff (p) est premier \iff $\mathbb{Z}[i]/p$ est intègre \iff -1 n'est pas un carré modulo $p \iff p \equiv 3[4]$.

(pour la première équivalence : si (p) est premier, et p=zz', alors disons $z\in(p)$, puis $p^2=N(z)N(z')$ avec $p^2|N(z)$ donc N(z')=1 et z' est inversible. Réciproquement, p irréductible \iff (p) est maximal dans l'ensemble des idéaux principaux de $\mathbb{Z}[i]$, or $\mathbb{Z}[i]$ est principal (montrer qu'on peut faire une "division euclidienne" avec N, donc en fait (p) est maximal donc à fortiori premier.)

Exercice 12: Exemples d'entiers algébriques?

Parmi ces nombres algébriques, lesquels sont des entiers algébriques?

$$\frac{3+2\sqrt{6}}{(1-\sqrt{6})}, \frac{\sqrt{3}+\sqrt{5}}{2}, \frac{\sqrt{3}+\sqrt{7}}{2}, \frac{1+^3\sqrt{10}+^3\sqrt{100}}{3}, \frac{1+i}{2}, \frac{\sqrt{a}+\sqrt{b}}{n}$$

avec $a, b \in \mathbb{Z} \setminus \{0, 1\}$ des entiers distincts sans facteur carré et $n \in \mathbb{N}^*$.

Correction: