(12) DEMANDE NATERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 31 décembre 2003 (31.12.2003)

PCT

(10) Numéro de publication internationale WO 2004/000622 A1

- (51) Classification internationale des brevets⁷: B60T 11/10, B60K 41/20, B60T 7/04, 7/10, 13/66, 13/74, 7/12
- (21) Numéro de la demande internationale : PCT/FR2003/001897
- (22) Date de dépôt international: 20 juin 2003 (20.06.2003)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

02/07623

20 juin 2002 (20.06.2002) FR

- (71) Déposant (pour tous les États désignés sauf US): RE-NAULT S.A.S. [FR/FR]; 13-15, quai Alphonse le Gallo, F-92100 Boulogne Billancourt (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): DEPREZ, Philippe [FR/FR]; 3, rue des Missionnaires, F-78000 Versailles (FR). DEVAUD, Emmanuel [FR/FR]; 13, rue du Maine, F-92140 Clamart (FR). PLANCHON, Philippe [FR/FR]; 38, rue de Berri, F-75008 Paris (FR).
- (74) Mandataire: GUYON, Rodolphe; Renault Technocentre, Sce 0267 - TCR - AVA 056, 1, avenue du Golf, F-78288 Guyancourt (FR).
- (81) États désignés (national): JP, MX, US.

[Suite sur la page suivante]

(54) Title: METHOD AND DEVICE FOR AUTOMATICALLY RELEASING THE AUTOMATIC PARKING BRAKE WHEN **STARTING**

(54) Titre : DISPOSITIF ET PROCEDE DE DESSERRAGE AUTOMATIQUE DU FREIN DE PARKING AUTOMATIQUE AU **DEMARRAGE**

- 30...START-UP
- 31...TRANSMITTED TORQUE ESTIMATION THRESHOLD VALUE
- 32...TRANSMITTED TORQUE ESTIMATION + Δ TRANSMITTED TORQUE ESTIMATION
- 33...TRANSMITTED TORQUE ESTIMATION > TRANSMITTED TORQUE ESTIMATION THRESHOLD **VALUE**
- 34...RELEASE AUTOMATIC PARKING BRAKE

(57) Abstract: The invention concerns a method and a device for automatically releasing an automatic parking brake at start-up. According to the invention, a transmitted torque estimation threshold value (ECT_threshold) is determined which enables the vehicle movement to be balanced. Then, at start-up a loop for calculating the transmitted torque estimation (ECT) is carried out so long as the calculated value (ECT) does not exceed the threshold value (ECT_threshold). When the threshold is exceeded, an automatic parking brake release command is produced.

(57) Abrégé: L'invention concerne un procédé et un dispositif de desserrage automatique du frein de parking automatique au démarrage. Selon l'invention, une valeur de seuil d'estimation de couple transmis (ECT_seuil) est déterminée qui permet d'équilibrer le mouvement du véhicule. Puis, lors due démarrage une boucle pour calculer l'estimation de couple transmis (ECT) est effectuée tant que la valeur calculée (ECT) ne dépasse pas la valeur de seuil (ECT_seuil). Dès que le seuil est dépassé, un ordre de desserrement du Frein de Parking Automatique est produit.

(84) États désignés (régional): brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

15

20

25

30

"Dispositif et procédé de desserrage automatique du frein de parking automatique au démarrage"

La présente invention concerne un procédé et un dispositif de desserrage automatique du frein de parking automatique au démarrage.

Dans l'état de la technique, on a déjà proposé de réaliser des freins de parking électriques qui remplacent les freins de parking manuels.

Le frein de parking électrique est associé à un calculateur qui permet, en fonction de divers signaux de fonctionnement du véhicule, de réaliser son desserrage automatique sans intervention directe du conducteur.

Dans l'état de la technique, on a aussi proposé un système d'assistance au démarrage en côte, utilisant le frein de parking automatique, et qui se fonde sur la détection notamment du degré de l'enfoncement de la pédale de l'embrayage pour en déduire le couple moteur disponible à la roue d'une part, et d'autre part à l'intention du conducteur de réaliser un décollage du véhicule alors que ce dernier est maintenu dans la pente par l'actionnement du frein de parking automatique.

Le système ci-dessus fonctionne de manière correcte.

Cependant, les inventeurs ont constaté que la solution présentait un certain coût qu'il convenait de réduire. Ils se sont rendus compte que la suppression du capteur de position de la pédale d'embrayage est un moyen qui permet de réduire ce coût.

Dans le même ordre d'idées, dans la solution précédemment développée, l'utilisation de l'information de la position de la pédale d'embrayage doit être transformée en une valeur de couple transmis à la roue, ce qui complique notablement les moyens de calcul du contrôleur de desserrage du frein de parking automatique lorsque ce dernier travaille en assistance de démarrage en côte.

Pour porter remède à ces inconvénients de l'état de la technique, la présente invention concerne un procédé

10

15

20

25

30

d'assistance au démarrage d'un véhicule comportant un groupe motopropulseur et un Frein de Parking Automatique équipé d'un moyen pour exécuter un ordre de desserrage ou de désactivation du frein de parking. Le procédé de l'invention consiste à exécuter, au moins après une phase de démarrage du groupe motopropulseur :

- Une étape d'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente;
- Une boucle consistant à exécuter un calcul incrémental d'une estimation du couple transmis réellement à l'instant donné tant que l'estimation du couple transmis réellement est insuffisante à surpasser l'estimation de couple transmis ; puis
- Une étape de production d'un ordre de desserrage ou de désactivation du Frein de Parking Automatique.

Selon un aspect du procédé, l'étape d'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente comporte une étape pour calculer un modèle statique du véhicule dans la pente à partir d'une mesure d'un angle d'inclinaison délivrée par un capteur de pente et de la connaissance d'une valeur déterminée représentative du rapport de transmission.

Selon un aspect du procédé, la mesure d'un angle d'inclinaison étant inférieure à un seuil donné, l'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente est augmentée d'une valeur déterminée.

Selon un aspect du procédé, la valeur déterminée d'augmentation de l'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente dépend de la mesure de l'angle d'inclinaison.

Selon un aspect du procédé, l'étape de calcul incrémental comporte :

- une étape de lecture d'une valeur de couple moyen efficace associée à l'état dynamique du groupe motopropulseur ;
- une étape de lecture d'une valeur de régime du moteur;

10

15

20

25

30

- une étape de calcul de la dérivée temporelle du régime moteur;
- une étape de détermination du moment d'inertie du groupe motopropulseur et de calcul du couple résistant sous la forme d'un produit du moment d'inertie du groupe motopropulseur par la dérivée temporelle du régime moteur;
- une étape de détermination d'une estimation de couple transmis selon une relation de la forme : ECT = Cme Jmot x $\frac{dWm}{dt}$

đt

Selon un aspect du procédé, il est prévu une étape de re synchronisation de la lecture d'une valeur de couple moyen efficace et d'une valeur de régime du moteur de sorte que chaque couple de valeurs (Cme, Wm) corresponde à un même intervalle de temps.

Selon un aspect du procédé, il est prévu de rajouter un délai prédéterminé, préférentiellement égal à trois périodes de passage au Point Mort Haut du moteur thermique du groupe motopropulseur, sur la valeur de re-synchronisation de la valeur de couple moyen estimé pour tenir compte notamment du délai d'attente de remplissage du collecteur et de l'exécution de l'allumage.

Selon un aspect du procédé, l'étape de re synchronisation consiste à appliquer la re synchronisation sur la valeur dérivée D_Wm du régime moteur Wm entre deux échantillons séparés par une durée de re synchronisation notamment selon la relation : D_Wm = [Wm(8)-Wm(1)]/durée, dans laquelle « durée » détermine la période de re synchronisation et Wm(1) et Wm(8) les valeurs de début et de fin de période de re synchronisation.

Selon un aspect du procédé, l'étape d'estimation de couple transmis (ECT) comporte la comparaison d'une valeur d'estimation couple transmis (ECT) une valeur prédéterminée de seuil (ECTseuil) de sorte que si le seuil est dépassé un test d'un compteur incrémenté lors de chaque étape

10

15

20

25

30

d'estimation de couple transmis (ECT) par rapport à un seuil prédéterminé (Smin_loop_Delay), de sorte que si le seuil sur le compteur est dépassé un ordre d'autorisation de desserrage du Frein de Parking Automatique soit généré.

Selon un aspect du procédé, l'étape d'estimation de couple transmis ECT comporte de plus une étape de décalage prédéterminé de façon à réduire l'effet perturbateur de la mise en marche et de l'arrêt de certains consommateurs secondaires (Consommateurs) d'énergie ou de puissance fournie par le moteur thermique, en effectuant l'opération :

ECT_Corr_k = ECT_k+ g(Consommateurs)

de sorte que soit déterminée la plage dans laquelle le moteur peut être considéré comme au repos et la plage pendant laquelle un décalage g(Consommateurs) sur l'estimation de couple transmis peut être réalisé. Selon l'invention, quatre critères ou tests sont réalisés simultanément pour parvenir à un tel décalage.

Selon un aspect du procédé, le décalage est effectué à l'issue d'un test au cours duquel quatre conditions sont combinées :

Wm ≤ Smax_Wm_idle
ABS(D_Wm) ≤ Smax_D_M_idle
THETA_Acc ≤ Smax_acc_idle
D_Acc ≤ 0.

Conditions dans lesquelles :

Smax_Wm_idle représente une valeur de seuil en dessous de laquelle le régime moteur indique que le moteur est en état de repos ou régime de ralenti;

Smax_D_M_idle représente une valeur de seuil en dessous de laquelle la valeur absolue ABS(D_Wm) de la dérivée temporelle du régime moteur D_Wm indique que le moteur est en état de repos ou régime de ralenti;

Smax_acc_idle représente une valeur de seuil en dessous de laquelle le degré d'enfoncement de la pédale d'accélérateur

15

20

25

30

THETA_Acc indique que le moteur est en état de repos ou régime de ralenti;

D_Acc représente la dérivée temporelle du degré d'enfoncement THETA_Acc de la pédale d'accélérateur qui est négative lorsque le conducteur relève le pied de la pédale d'accélérateur;

de sorte que si le test est négatif, le contrôle retourne à l'initialisation d'un compteur CPTR, le groupe motopropulseur étant réputé non connecté aux roues motrices.;

et de sorte que si le test est positif, le contrôle passe à un test où on regarde si le compteur CPTR est inférieur à une valeur de seuil CPTR_seuil prédéterminée;

de sorte que si le test est positif, le contrôle passe à une étape au cours de laquelle une valeur de décalage « offset », initialement nulle lorsque le compteur CPTR est lui-même initialisé à l'étape, est augmentée de la valeur de l'estimation ECT en cours ;

puis, la valeur de compteur CPTR étant incrémentée d'un pas lors d'une étape et le contrôle retourne à l'étape de test; de sorte que si le test est négatif, la valeur offset est transmise à une routine de calcul d'une valeur de décalage de l'estimation de couple transmis ECT, valeur de décalage notée « offset_ECT » qui est égal au rapport de la valeur « offset » calculée lors de l'étape avec la valeur CPTR du compteur qui vaut, à ce moment là, CPTR_seuil.

Selon un aspect du procédé, une étape est exécutée pour produire une information d'activité du conducteur de sorte que soit refusé le desserrage du Frein de Parking Automatique en cas de remontée de la pédale d'accélérateur.

Selon un aspect du procédé, une étape est exécutée pour détecter une demande de démarrage alors que le groupe motopropulseur n'est pas embrayé.

Selon un aspect du procédé, l'étape consiste, sans utiliser de capteur d'enfoncement de la pédale d'embrayage, à détecter l'état embrayé à l'aide de deux cartographies de l'estimation de couple transmis en fonction du degré d'enfoncement de la pédale

15

20

25

30

d'accélérateur respectivement établies lorsque les roues sont embrayées et lorsque les roues ne sont pas embrayées et en comparant la valeur de l'estimation de couple transmis à chacune des valeurs de cartographies adressées par la mesure du degré d'enfoncement de la pédale d'accélérateur pour, si la comparaison à la première cartographie est positive produire une information caractéristique d'un état débrayé et si la comparaison à la seconde cartographie est positive produire une information caractéristique d'un état embrayé.

Selon un aspect du procédé, l'étape consiste, en utilisant un capteur d'enfoncement de la pédale d'embrayage en tout ou rien, à produire une information caractéristique d'un état embrayé ou débrayé.

Selon un aspect du procédé, une étape pour détecter le régime à vide consiste à :

- comparer l'information de couple moteur estimé Cme à deux fonctions d'estimation de régime à vide en rotation positive fp() et en rotation négative fn();
- à appliquer à la fonction fp() un gain G_Cme_PV à vide appliqué sur le couple moteur estimé Cme, un décalage Offset_Cme_PV sur la valeur de couple moteur estimé en position à vide, et la valeur en cours Cme pour produire une valeur de régime à vide en rotation positive a priori;
- à appliquer à la fonction fn() un gain G_Cme_NV à vide appliqué sur le couple moteur estimé Cme, un décalage Offset_Cme_NV sur la valeur de couple moteur estimé en position à vide, et la valeur en cours Cme pour produire une valeur de régime à vide en rotation négative a priori;
- à comparer la valeur du régime moteur (Wm) pour déterminer si on se trouve dans un régime à vide positif ou négatif;
 - à autoriser le desserrage du Frein de Parking Automatique seulement si aucun régime à vide n'est détecté.

Selon un aspect du procédé, une étape de détection de saturation du moteur thermique à haut régime est exécutée de

10

20

25

30

sorte que soit interdit le desserrage du frein de Parking Automatique en régime de saturation.

Selon un aspect du procédé, une étape pour produire un service de démarrage « à plat »sans seuil sur l'appui de la pédale d'accélérateur consiste :

- à produire un ordre de desserrage du frein de parking sur la seule détermination que l'estimation de couple transmis ECT est supérieure au seuil prédéterminé ECTseuil et, particulièrement sans tester un seuil sur l'appui de la pédale d'accélérateur;
- à initialiser une variable d'état lors du démarrage du véhicule pour indiquer que la pédale d'accélérateur n'a pas encore été enfoncée, la variable étant représentée par Acc Was NonZero = 0 :
- à lire une variable représentative de l'état de repos du moteur (Repos);
 - à traiter la variable Acc_Was_NonZero de sorte qu'elle reste
 à « 1 » dès que l'accélérateur a été appuyé et jusqu'à ce que la variable Repos retourne à « 1 » ;
 - et consiste alors à autoriser le démarrage « à plat » quand la variable Acc_Was_NonZero vaut « 0 » et à tester que l'estimation de couple transmis ECT est supérieure à une valeur de seuil ECTSeuil pour autoriser le desserrage du Frein de Parking Automatique et ainsi assurer le décollage du véhicule en le retenant sur une certaine plage d'accélération.

Selon un aspect du procédé, le service de démarrage « à plat » est étendu à un service de démarrage en descente, première vitesse engagée.

Selon un aspect du procédé, le service de démarrage « à plat » est étendu à un service de démarrage en descente, rapport de marche arrière engagé.

Selon un aspect du procédé, une étape de détection d'un excès de tangage et une étape pour interdire le desserrage du Frein de Parking Automatique en situation de démarrage si le

15

20

25

30

tangage du véhicule appliqué par exemple par un mouvement trop important des passagers du véhicule dépasse un certain seuil prédéterminé.

Selon un aspect du procédé, une étape pour déterminer un terme d'anticipation sur l'ordre de desserrage du Frein de Parking Automatique en fonction de valeurs prédéterminées d'anticipation qui consiste, lors de l'élaboration de l'ordre de desserrage du Frein de Parking Automatique, à exécuter aussi une étape de mesure du degré d'enfoncement de la pédale d'accélérateur Teta_Acc, puis à mesurer une dérivée temporelle du signal Teta_Acc de degré d'enfoncement, soit D_Acc, et à comparer cette valeur instantanée de dérivée D_Acc avec un seuil prédéterminé Seuil_Anticipe, de sorte que si la vitesse de variation du degré d'enfoncement D_Acc est supérieure à une valeur Seuil_Anticipe, la boucle d'incrémentation de la valeur d'estimation de couple transmis ECT soit interrompu avant que le test soit vrai et pour produire de manière anticipée l'ordre de desserrage du Frein de Parking Automatique.

L'invention concerne aussi un dispositif d'assistance au démarrage en côte d'un véhicule comportant un groupe motopropulseur et un Frein de Parking Automatique équipé d'un moyen pour exécuter un ordre de desserrage ou de désactivation du frein de parking. Le dispositif de l'invention comporte essentiellement un calculateur d'un ordre de desserrage connecté à un capteur du degré de pente dans laquelle se trouve engagé le véhicule et à un capteur délivrant une information sur le régime ou vitesse de rotation du groupe motopropulseur du véhicule.

L'invention se caractérise par le fait que le calculateur comporte un moyen d'estimation du couple transmis connecté à une première entrée d'un moyen de comparaison dont une seconde entrée est connectée à un moyen pour produire une valeur de seuil de couple transmis correspondant au maintien du véhicule, de sorte qu'une borne de sortie dudit moyen de

15

20

25

30

9

comparaison produise un ordre de desserrage à destination du frein de parking électrique selon le procédé de l'invention.

D'autres caractéristiques et avantages de l'invention seront mieux compris à l'aide de la description et des figures annexées qui sont :

- la figure 1 : un schéma bloc représentant un dispositif selon l'invention ;
- la figure 2 : un organigramme représentant les étapes principales du procédé de l'invention ;
- les figures 3 à 5 : des diagrammes expliquant un mode de réalisation permettant de préparer le calcul d'une estimation du couple transmis ;
 - les figures 6 et 7 : des moyens permettant d'élaborer un ordre de desserrage du frein de parking électrique ;
 - les figures 8 et 9 : un moyen pour traiter l'estimation du couple transmis générée selon l'enseignement de l'invention ;
 - la figure 10 : un moyen permettant de détecter un abandon de tentative de démarrage en côte par le conducteur ;
 - la figure 11 : un moyen permettant de prendre en compte le comportement de divers conducteurs sur un véhicule donné ;
 - la figure 12 : un moyen pour détecter un régime du moteur d'entraînement à vide ;
 - la figure 13 un moyen pour détecter la saturation du régime.

A la figure 1, on a représenté un dispositif d'assistance au démarrage en côte dans un mode de réalisation selon l'invention. Le véhicule sur lequel est installé le dispositif et le frein de parking électrique comporte un bus 1 sur lequel transitent des signaux provenant du reste du véhicule 2, d'un calculateur de contrôle du groupe motopropulseur 3 et d'un calculateur de contrôle du freinage 4, par exemple de type ABS TM. Le bus 1 est un bus de la norme CAN TM, dans un exemple de réalisation. Le groupe motopropulseur est composé d'un moteur thermique couplé à des roues motrices par un dispositif de transmission

10

15

20

25

30

comportant une boîte de vitesses et un embrayage qui peut être commandé par un automatisme et/ou par le conducteur. Dans d'autres modes de réalisation, le groupe motopropulseur peut comporter une ou plusieurs machines électriques avec ou sans un moteur thermique.

Le dispositif d'assistance au démarrage en côte coopère avec un calculateur 5 de contrôle du Frein de Parking Automatique 6 qui est aussi connecté au bus 1. Le calculateur 5 de contrôle est équipé, ainsi qu'il est connu d'un moyen pour produire un ordre de serrage du Frein de Parking Automatique, d'un moyen pour produire ún ordre de desserrage du Frein de Parking Automatique, lesdits ordres de serrage ou de desserrage étant générés sur une ligne de connexion 11 au Frein de Parking Automatique proprement dit. Le cas échéant, le calculateur 5 de contrôle est équipé aussi d'un moyen pour retourner sur le bus 1 du véhicule des informations d'état du Frein de Parking Automatique.

Le calculateur 5 de contrôle du Frein de Parking Automatique est connecté par une ligne convenable avec un capteur de pente 7. Dans d'autres modes de réalisation, une information sur le degré de pente étant disponible sur le bus 1, le capteur 7 est remplacé par un moyen équivalent qui prélève cette information sur le flux de données transitant sur le bus 1.

Le Frein de Parking Automatique utilisé dans l'invention comporte principalement un moteur électrique 7 qui est contrôlé par un contrôleur de moteur électrique 8 dont l'alimentation en énergie électrique est connectée au réseau de bord du véhicule 9 et à la masse électrique 10, et dont les paramètres de commande (courant, tension ou vitesse et couple) sont transmis par la ligne de commande 11 couplée au calculateur 5 de contrôle du Frein de Parking Automatique.

Le moteur électrique 7 coopère, ainsi qu'il est connu, avec un réducteur convenable (non représenté) qui entraîne un mécanisme 12 représenté schématiquement à la figure 1 sous la

10

15

20

25

30

forme d'une barre montée sur l'arbre moteur 13, et dont les extrémités portent des câbles respectivement 14 et 15 qui sont connectés à leurs extrémités respectivement à un organe de commande de freinage 16 pour une roue droite et à un organe de commande de freinage 17 pour une roue gauche.

Lorsque le calculateur 5 de contrôle du Frein de Parking Automatique produit un ordre de serrage, un ordre d'activation du moteur électrique 7 est transmis par la ligne 11 au contrôleur 8 qui réalise une mise en rotation du moteur électrique 7, de sorte que le levier 12 tend les câbles 14 et 15 avec un effort de serrage déterminé.

Les parties mobiles 18 et 19 des freins 16 et 17 viennent serrer les disques 20 et 21 de sorte que le Frein de Parking Automatique soit serré.

Lorsque le calculateur 5 de contrôle du Frein de Parking Automatique produit sur la ligne 11 un ordre de desserrage du Frein de Parking Automatique, la rotation du moteur électrique 7 est conduite dans l'autre sens et les parties mobiles 18 et 19 des freins 16 et 17 sont relâchés.

En utilisant le dispositif de l'invention, lorsque le véhicule se trouve arrêté dans une rampe, le capteur de pente 7 délivre un signal représentatif du degré de pente dans laquelle est arrêté le véhicule.

Par ailleurs, en situation de démarrage en côte, le groupe motopropulseur du véhicule produit un couple qui est ou non transmis aux roues selon que l'embrayage est actif ou non et selon une fraction qui dépend de la position d'embrayage.

Ainsi qu'on le verra par la suite, le principe de l'invention consiste à déterminer une condition de desserrage du Frein de Parking Automatique de sorte que le calculateur 5 de contrôle du Frein de Parking Automatique, en fonction de la pente mesurée par le capteur 7 et en fonction du régime moteur présenté sur le bus 1, produise un ordre de desserrage du Frein de Parking Automatique de sorte que l'effet de pente étant équilibré par le

10

15

20

25

30

couple moteur, le véhicule peut se trouver en situation de décollage dès que le seuil en est dépassé.

A la figure 2, on a représenté un organigramme représentatif des étapes principales du procédé d'assistance lors du démarrage en côte selon l'invention.

Dans une étape 30, on réalise une étape de démarrage du groupe motopropulseur, puis notamment lorsque le véhicule est à l'arrêt, Frein de Parking Automatique à l'état serré, une étape d'initialisation du calculateur 5 de contrôle du Frein de Parking Automatique.

Le contrôle passe ensuite à une étape 31 de détermination d'une estimation du couple transmis qui correspond au seuil à partir duquel le Frein de Parking Automatique peut être desserré sans que le véhicule subisse un mouvement de recul.

Le contrôle passe ensuite à une étape 32 au cours de laquelle est calculée une estimation du couple transmis à partir de l'instant de démarrage, d'une part, et un décalage ou augmentation de couple transmis qui permet d'équilibrer l'estimation de couple transmis de seuil et qui résulte à la fois de l'action d'accélération et de l'action d'embrayage dans le cas d'un véhicule classique à embrayage et pédale d'accélérateur, ou par des moyens équivalents dans les cas de véhicules d'autres types.

A cette fin, le contrôle passe à un test 33 où la nouvelle valeur d'estimation du couple transmis calculée lors de l'étape 32 est comparée à la valeur de seuil établie lors de l'étape 31. Si le test est positif, lors d'une étape 34, le calculateur 5 de contrôle du Frein de Parking Automatique est programmé pour produire un ordre de desserrage. Si le test est négatif, le calcul d'une nouvelle valeur de couple transmis estimée est exécuté lors de l'étape 32 et le test recommence en boucle.

On va maintenant détailler l'étape 31 de calcul d'une valeur de seuil sur l'estimation de couple transmis. Cette valeur de seuil est définie à partir d'un modèle statique du véhicule ainsi que sur l'idée que le rapport de transmission appliqué par le dispositif de

10

15

20

25

30

transmission intercalé entre les roues et le groupe motopropulseur se trouve placé sur une valeur déterminée de rapport de transmission, comme une première vitesse R1 de boîte de vitesses à rapports étagés.

Dans d'autres modes de réalisation, le dispositif d'assistance au démarrage en côte coopère avec un moyen de détection du rapport de transmission, et particulièrement pour une transmission à rapports étagés, un moyen de détection de la position du levier de vitesse, pour détecter si le véhicule se trouve placé en état de marche arrière ou dans d'autres rapports de transmission, ce qui permet d'augmenter la sensibilité du dispositif d'assistance en fonction de la détection de l'intention du conducteur, si l'on veut réaliser des démarrages dans d'autres rapports que le rapport de première.

En désignant par $\underline{\varrho}$ le rapport de transmission, R le rayon de la roue, α la pente dans laquelle se trouve le véhicule, M la masse du véhicule et g la constante de gravitation, la valeur de seuil de l'estimation de couple transmis est définie par un produit de termes de la forme :

 $ECT_{seuil} = M * g * sin(\alpha) * \rho$

La valeur de seuil ainsi calculée indique le couple qu'il est nécessaire d'appliquer à la roue de façon à maintenir en équilibre le véhicule dans la pente. Il est clair qu'à partir de cette valeur de seuil, toute augmentation du couple transmis permettrait un décollage du véhicule. Il est donc possible à partir de cette valeur de seuil produire un ordre de desserrage du frein de parking.

Le procédé et le dispositif d'assistance au démarrage en côte de l'invention permettent ainsi, par une estimation du couple transmis, de faire exécuter par le véhicule un démarrage en côte sans aucune intervention du conducteur sur la palette du frein de parking, d'une part, et sans aucun mouvement de recul du véhicule lors de ce démarrage, d'autre part.

15

20

25

30

Dans un mode de réalisation, on s'est aperçu que lorsque le capteur de pente produisait une valeur de degré de pente α très faible, c'est-à-dire quand la côte est très peu importante, le dispositif d'assistance trouve une valeur de seuil de l'estimation de couple de transmission ECT_{seuil} très proche de 0, et le véhicule peut alors, lorsque le frein est desserré, se mettre en mouvement de manière parasite.

Pour éviter cette situation, on aioute une valeur d'augmentation f qui dépend des valeurs de pente détectées et qui, lorsque les pentes sont faibles, permet d'augmenter la valeur de seuil de l'estimation de couple transmis. Dans ce mode de réalisation, le calculateur 5 comporte un moyen pour déterminer si le degré de pente est inférieur à une valeur donnée et, à la réponse positif de cette détermination, pour ajouter à la détermination du moyen déjà décrit de la valeur de seuil de l'estimation de couple transmis ECT_{seuil}, un terme déterminé en fonction du degré de pente α , soit $f(\alpha)$. Dans un mode d'exécution, le module de calcul de la valeur de seuil de l'estimation de couple transmis comporte donc de plus une mémoire de cartographie, qui comporte une pluralité d'adresses, une pour chaque valeur discrète produite par un capteur de pente convenable, et chaque adresse contenant une valeur numérique représentative de la valeur supplémentaire à ajouter au seuil de couple transmis lorsque le degré de pente α est faible, et un module additionnant la dite valeur supplémentaire lue sur la mémoire de cartographie avec la valeur précédemment calculée à partir des données statiques représentatives de la statique du véhicule dans la pente et pour produire une valeur corrigée de l'estimation du seuil de couple transmis d'équilibre.

Dans un mode particulier de réalisation, le terme $f(\alpha)$ est aussi validé en dehors des faibles pentes pour ajouter de l'agrément de conduite et/ou de la sécurité. Son effet est alors de retenir un peu plus le véhicule lors du décollage.

10

20

25

30

Pour exécuter l'étape 32 du procédé de l'invention, le calculateur 5 de contrôle du Frein de Parking Automatique comporte :

- un premier module de lecture du couple moyen efficace Cme qui est fourni par le calculateur du moteur 3 sous forme d'une information circulant sur le bus 1 du véhicule,
- un deuxième module de lecture de la vitesse instantanée Wm de rotation du moteur thermique qui est fourni par le calculateur du moteur 3 sous forme d'une information circulant sur le bus 1 du véhicule,
- un troisième module permettant de calculer la dérivée temporelle $\frac{dWm}{dt}$ de la vitesse de rotation à la sortie du groupe motopropulseur à partir de la donnée de la vitesse de rotation ou régime moteur prélevé par le deuxième module ;
- un quatrième module pour calculer le produit d'une valeur du moment d'inertie Jmot caractéristique de l'inertie du moteur ainsi que la valeur de sortie dudit troisième module;
 - un cinquième module pour soustraire la valeur de sortie du quatrième module, présentée à une entrée de soustraction du cinquième module, de la valeur de sortie du dit premier module de sorte qu'à sa sortie soit présentée une valeur instantanée de l'estimation de couple transmis instantanée produite selon

une relation : ECT = Cme - Jmot x
$$\frac{dWm}{dt}$$

A la figure 3, on a représenté un schéma explicatif d'une cause d'erreur sur l'estimation du couple transmis et sur le régime moteur.

Dans la partie supérieure de la figure 3, on a représenté un chronogramme 40 représentant des trames successives 41 et 42 correspondant à des périodes référencées #T et #T+1. A la fin de chacune de ces trames, un ensemble de données transmises sont disponibles sur les divers récepteurs.

. 10

15

25

Dans chaque trame, les données membres sont structurées selon un protocole enregistré par un circuit contrôleur de protocole sur le bus CAN, en mots numériques représentatifs de valeurs de paramètres transmis sur le bus et insérés avec des phases et des périodicités diverses.

Ainsi, dans l'exemple illustré à la figure 3, lors de trame 41 de la période #T, une premier mot Cme_T d'une première variable transmise et un second mot Wm_T d'une seconde variable transmise seront tous les deux disponibles à la fin de la trame #T. Mais, à cause de périodes T1 et T2 pour le premier et le second mots transmis différentes et/ou supérieures à la période de la trame, ou encore parce que cette dernière varie, seul le premier mot Cme_{T+1} est disponible à la fin de la trame #T+1. Le second mot prévu à la trame T+1 est reçu lors d'une trame ultérieure 43 sous le mot Wm_{T+1}.

Dans l'invention, il est nécessaire que le calculateur 3 de contrôle du groupe motopropulseur (voir Figure 2) produise :

- > une valeur estimée du couple moyen estimé, inscrite sous la forme d'un mot numérique Cme sur le bus CAN; et
- > une valeur du régime moteur inscrite sous forme d'un autre mot numérique Wm sur le bus CAN.

Du fait des mécanismes de production de chacune de ces deux valeurs, et du fait des occupations de la trame de transmission selon le protocole de bus CAN il en résulte que, à . une date t déterminée, le calculateur de contrôle du Frein de Parking Automatique FPA 5 pour exécuter un ordre 11 de desserrage du Frein de Parking Automatique en situation de démarrage en côte, ne reçoit pas au même moment les deux données correspondant à la même date et nécessaires, ce qui 30 : interdit de réaliser une estimation convenable.

Pour porter remède à ce problème, l'invention propose un moyen pour réaliser une correction sur les valeurs Cme du couple moyen estimé et Wm du régime moteur ainsi qu'un recalage des

15

20

25

30

informations disponibles en fonction du débit de ces données selon les trames transmises sur le bus CAN 1.

A la figure 4, un moyen de calcul de l'estimation du couple transmis 50 transmet une valeur instantanée du couple moyen estimé Cme à un module 51 d'écriture sur le bus CAN 1 de sorte que, à des instants déterminés, une valeur instantanée du couple moyen estimé soit disponible sur le bus CAN 1.

Par ailleurs, un module 52 de calcul d'estimation du régime moteur Wm est connecté à une entrée du module d'écriture 51 sur le bus CAN 1 de sorte que, à des instants déterminés, une valeur d'estimation ou de mesure du régime moteur soit disponible sur le bus CAN 1.

A cet effet, une information relative à un état particulier du moteur thermique, comme l'instant de point mort haut t_{PMH} , est fournie à des entrées convenables des modules 50 et 52 de façon à synchroniser les calculs du premier mot Cme et du second mot Wm.

Un contrôleur 53 des échanges sur le bus CAN 1 reçoit des modules 50 et 52 une information selon laquelle une donnée nouvelle est disponible, le module 51 d'écriture étant connecté au contrôleur 53 pour l'avertir d'une opération d'écriture sur le bus CAN 1 et une sortie de contrôleur du contrôleur 53 étant connectée à une entrée d'autorisation d'écriture sur le bus CAN 1 du module 51.

Le module 51 d'écriture sur le bus CAN 1 génère ainsi une trame de données en fonction des multiples données qu'il injecte sur le bus CAN.

Le moteur thermique représenté à la référence 54 est couplé à un capteur 55 de point mort haut pour générer à sa sortie 56 une information t_{PMH} du point mort haut de l'instant où ce dernier apparaît.

Un module 57 de lecture sur le bus CAN est disposé qui reçoit un ordre de lecture par une connexion 58 au contrôleur 53

10

15

20

25

30

de bus CAN et acquitte sur une ligne 59 la fin de la lecture d'une trame.

Une sortie 60 du module de lecture 57 permet de transmettre respectivement à un registre 61 les valeurs successives d'estimation du couple moteur estimé décodées sur les trames reçues par le module 67 et à un registre 62 les valeurs successives de régime moteur Wm décodées sur les trames reçues par le module 67.

Le circuit contrôleur 53 du bus CAN comporte des sorties de commande, respectivement une sortie de commande 63 connectée à une entrée d'autorisation de lecture du registre 62 de régime moteur et une sortie de commande 64 connectée à une entrée d'autorisation de lecture du registre 61 des estimations du couple transmis, de sorte que les sorties respectivement 65 du registre 61 et 66 du registre 62 sont connectées aux entrées convenables d'un circuit de re-synchronisation 67 qui permet à chaque instant de maintenir une valeur corrigée en fonction de l'indication de l'instant de point mort haut t_{PMH} fourni par la sortie 56 du capteur 55, des valeurs respectivement 68 instantanée du couple moyen estimé et 69 de régime moteur.

Le circuit de re-synchronisation 67 comporte une mémoire qui contient une table sur un cycle de paires de données de sorte que soit associé le numéro d'ordre d'une valeur représentative d'un premier mot reçu sur sa première entrée avec un numéro d'ordre d'une valeur représentative du numéro d'ordre d'un second mot reçu. Le circuit de re-synchronisation 68 comporte aussi des registres de suites de valeurs successives du premier mot et ou du second mot et un moyen, pour, en fonction des associations de numéros d'ordre de la mémoire précitée pour appliquer en sortie un couple d'un premier mot et d'un second mot correspondant à un seul et même instant de calcul. Le couple de mots re synchronisés est alors présenté aux sorties 68 et 69.

A la figure 5, on a représenté un mode de réalisation d'un circuit de re synchronisation 67 qui travaille essentiellement sur le

10

15

20

25

30

régime moteur et qui permet d'exploiter un décalage dans le mécanisme de mise à disposition de couples de mots (Cme, Wm) qui correspond à un effet caractéristique lors de l'accélération du moteur thermique, situation qui apparaît toujours lorsque le véhicule est maintenu dans la pente avec le Frein de Parking Automatique serré.

A la borne d'entrée 65 du module 67 de synchronisation des données sur le bus CAN 1, on a connecté l'entrée d'écriture d'un registre de synchronisation 70 de l'estimation de couple transmis.

A cet effet, un séquenceur 71 reçoit par une entrée convenable le signal indicatif de point mort haut 56 et transmet des ordres d'écriture sur une ligne 72 et de lecture sur une ligne 73 à destination de bornes d'écriture et de lecture du registre 70. Dans le cas d'un signal de lecture, le signal correspond au régime du moteur avec un décalage d'une période proportionnelle au régime moteur. Cette mesure permet de rendre le délai de rafraîchissement de l'information sur le régime du moteur fonction de la valeur du régime moteur lui-même.

A un instant de re-synchronisation prédéterminé par rapport à la disponibilité indiquée sur la ligne 72, la ligne 73 de lecture transmet la valeur maintenue dans le registre 70 à un registre 74. Le registre 74 présente en permanence à sa sortie 68 une valeur disponible d'estimation du couple transmis synchronisé.

La borne d'entrée 56 du module 67 de re-synchronisation est connectée à l'entrée d'une pile 76 de registres dans laquelle est maintenue une pluralité de valeurs successives du régime moteur Wm acquis à des instants successifs sur le bus CAN 1.

A cet effet, un séquenceur 71 comporte deux sortie de commande d'écriture et de lecture respectivement 77 et 78 qui permettent de maintenir la pluralité de valeurs en plaçant la valeur la plus à jour sur la première adresse notée « 1 » de la pile

10

15

20

25

30

76 et en poussant vers le bas les valeurs contenues dans les registres suivants de la pile 76.

Un circuit soustracteur 79 comporte:

- une entrée positive connectée à une sortie de lecture de la pile 76 sur laquelle est disponible la valeur la plus ancienne du régime moteur Wm maintenue dans la pile 76, et
- une entrée négative à laquelle est connectée la valeur la plus récente du régime moteur disponible aussi sur la borne d'entrée 66 du module 67.

Une entrée 80 du circuit soustracteur 79 reçoit une valeur représentative « durée » de la durée écoulée lors de l'acquisition entre la valeur la plus ancienne, comme la huitième valeur « 8 », notée Wm(1) et reçue dans un exemple particulier de réalisation, et de la valeur la plus récente « 1 » notée Wm(8) de sorte qu'à la sortie 81 du circuit soustracteur 79 est disponible une valeur représentative d'une valeur estimée corrigée du régime moteur :

 $D_Wm = [Wm(8)-Wm(1)]/durée$.

La valeur calculée disponible à la sortie du circuit 79 est chargée dans un registre 82 de sorte qu'à sa sortie 83 est disponible une valeur de la dérivée temporelle du régime moteur D_Wm_{sync} synchronisée.

La lecture et l'écriture des registres 74 et 82 sont effectuées sous le contrôle du séquenceur 71 qui présente respectivement une ligne de commande d'écriture 84 et une ligne de commande d'écriture 85.

La commande de l'écriture est réalisée sous la commande du séquenceur 71 que gère un registre 86 dans lequel est enregistrée une valeur de décalage temporel ou retard ΔT qui correspond à un retard désiré de transmission des valeurs synchronisées au reste de l'estimateur de sorte qu'on puisse tenir compte notamment :

- du délai de remplissage du collecteur du moteur thermique, et

15

20

25

30

 du délai d'allumage lorsque le moteur thermique est en phase d'accélération comme c'est le cas lors d'un démarrage en côte.

Dans un exemple de réalisation, les inventeurs ont trouvé un effet le meilleur lorsque était appliqué un retard ΔT équivalent à trois Points Mort Haut successifs avant de démarrer la synchronisation et le transfert des couples des premier Cme et second Wm ou D_Wm mots de valeurs re-synchronisées.

A la figure 6, on a représenté un mode particulier de réalisation du procédé de l'invention. Le procédé de l'invention consiste à, lors d'une phase de début S0, re-synchroniser les données concernant le régime moteur et le couple moyen estimé, à calculer la valeur de seuil de l'estimation du couple transmis selon ce qui a été décrit à l'aide de l'organigramme de la figure 2, puis à exécuter la répétition du test que l'estimation du couple transmis calculée à la date donnée est supérieure au seuil ECT_{seuil} pendant au moins un nombre prédéterminé d'échantillons Smin_Loop_delay.

A cet effet, le compteur CPTR est mis à une valeur initiale 0 lors d'une étape S1, puis le contrôle passe à un test d'attente S2 d'une valeur ECT_k représentative du calcul d'estimation du couple transmis.

Quand cette valeur est disponible, le contrôle passe à une étape S3 d'incrémentation du compteur CPTR et ensuite à un test S4 de l'estimation de couple transmis ECT_k relativement au seuil ECT_{seuil}.

Si le test est négatif, le contrôle retourne à l'initialisation du compteur CPTR = 0 de l'étape S1.

Si le test S4 est positif, le contrôle passe à un test S5 où on regarde si le compteur CPTR a atteint sa valeur maximale Smin_Loop_delay.

Si le test est positif, le contrôle passe à une étape S6 au cours de laquelle le calculateur 5 de contrôle du Frein de Parking

10

15

20

25

30

Automatique FPA donne un ordre d'autorisation de desserrage du frein de parking 7.

Si le test S5 est négatif, le contrôle retourne à l'entrée du test S2 en attente d'arrivée de l'échantillon suivant d'estimation du couple transmis ECT_k.

A la figure 7, on a représenté un mode de réalisation d'un moyen de calcul du calculateur 5 implémentant l'organigramme de la figure 6. Ce moyen de calcul du calculateur 5 comporte un compteur 90 qui maintient une valeur numérique CPTR et la met à jour à chaque événement présenté à son entrée notée « + » en l'augmentant d'une valeur prédéterminée comme « 1 ». La valeur CPTR du compteur 90 est alors disponible sur une borne de sortie de lecture.

Le moyen de calcul du calculateur 5 comporte une entrée 91 sur laquelle est chargée la valeur ECT_k et qui est connectée, d'une part, à l'entrée d'un circuit 93 de détection de l'arrivée d'une valeur ECT_k et à une première entrée d'un comparateur 92.

La sortie de détection du module 93 de détection d'arrivée d'un échantillon ECT_k est connectée à l'entrée '+' de commande d'incrémentation du compteur 90 dont la borne de sortie de lecture est connectée à une première entrée d'un comparateur 93.

Une valeur de seuil ECTseuil, maintenue dans un registre 94 est transmise à une seconde entrée du comparateur 92.

Le comparateur 92 comporte une première sortie 96 et une seconde sortie 95, complémentaires l'une de l'autre, de sorte que si le test réalisé par le comparateur 92 est positif, la première sortie 96 passe à l'état actif et est connectée à une première entrée d'une porte ET 97, tandis que la seconde sortie 95 passe à l'état inactif et est connectée à une borne d'entrée de remise à une valeur initiale comme la valeur '0' du compteur 90.

La valeur de comptage CPTR disponible dans le compteur 90 est transmise à une première entrée d'un second comparateur 98 dont une seconde entrée est connectée à un registre 99

15

20

25

maintenant la valeur de comptage maximale à l'issue de laquelle l'autorisation de desserrage peut être exécutée.

A cet effet, quand le test réalisé par le second comparateur 98 est positif, sa sortie passe à l'état actif et est connectée à une seconde entrée de la porte ET 97 de sorte que la sortie 100 de la porte ET 97 passe à l'état actif pour indiquer une autorisation de desserrage du Frein de Parking Automatique.

un mode de réalisation particulier, la valeur Dans Smin_Lop_Delay chargée en registre 99 est déterminée en fonction de la période d'échantillonnage ou cadence de boucle de l'algorithme de la figure 6 et du délai ou retard désiré entre le premier dépassement par la valeur de couple transmis estimé ECT de la valeur de seuil ECT_{seuil} et la réalisation de l'ordre de desserrage du frein de parking FPA. Selon l'invention, le registre 99 comporte un moyen d'écriture d'une valeur ainsi déterminée de Smin_Lop_Delay qui est activé lors de l'initialisation du véhicule ou bien lors de sa fabrication ou lors de sa maintenance à l'aide d'un outil de production connu de l'homme de métier, ou bien lors de la détection d'un type de conducteur réalisée à l'aide du calculateur de bord 1 qui transmet sur le bus 1 une valeur caractéristique de Smin_Lop_Delay associée au conducteur détecté à l'aide par exemple de la clé de démarrage ou du type de conducteur selon un algorithme de détection du type de conduite effectué par le conducteur.

Dans un autre mode de réalisation particulier non représenté aux dessins, la valeur d'estimation de couple transmis ECT reçue à la borne 91 du module de la figure 7 reçoit de plus un décalage prédéterminé de façon à réduire l'effet perturbateur de la mise en marche et de l'arrêt de certains consommateurs secondaires d'énergie ou de puissance fournie par le moteur thermique. Un tel décalage est effectué en amont du circuit 91 de détection et de l'entrée du comparateur 92, à l'aide d'un additionneur qui effectue l'opération :

ECT_Corr_k = ECT_k + g(Consommateurs)

10

15

20

Le procédé de l'invention apporte un moyen pour déterminer la plage dans laquelle le moteur peut être considéré comme au repos et la plage pendant laquelle un décalage g(Consommateurs) sur l'estimation de couple transmis peut être réalisé. Selon l'invention, quatre critères ou tests sont réalisés simultanément pour parvenir à un tel décalage.

A la figure 8, on a représenté un organigramme du procédé de l'invention. Le point d'entrée de calcul de décalage 101 permet de placer, lors d'une étape 102, un compteur particulier CPTR à une valeur initiale comme la valeur 0. Puis, le contrôle passe à l'étape de test 103 au cours duquel quatre conditions sont combinées :

Wm ≤ Smax_Wm_idle
ABS(D_Wm) ≤ Smax_D_M_idle
THETA_Acc ≤ Smax_acc_idle
D_Acc == 0.

Conditions dans lesquelles :

Smax_Wm_idle représente une valeur de seuil en dessous de laquelle le régime moteur indique que le moteur est en état de repos ou régime de ralenti;

Smax_D_M_idle représente une valeur de seuil en dessous de laquelle la valeur absolue ABS(D_Wm) de la dérivée temporelle du régime moteur D_Wm indique que le moteur est en état de repos ou régime de ralenti;

25 Smax_acc_idle représente une valeur de seuil en dessous de laquelle le degré d'enfoncement de la pédale d'accélérateur THETA_Acc indique que le moteur est en état de repos ou régime de ralenti;

D_Acc représente la dérivée temporelle du degré d'enfoncement 30 THETA_Acc de la pédale d'accélérateur qui est négative lorsque le conducteur relève le pied de la pédale d'accélérateur.

Si le test 103 est négatif, le contrôle retourne à l'initialisation 102 du compteur CPTR. Le groupe motopropulseur est réputé non connecté aux roues motrices.

· 15

20

25

30

Si le test 103 est positif, le contrôle passe à un test 104 où on regarde si le compteur CPTR est inférieur à une valeur de seuil CPTR_seuil prédéterminée.

Si le test 104 est positif, le contrôle passe à une étape 105 au cours de laquelle une valeur de décalage « offset », initialement nulle lorsque le compteur CPTR est lui-même initialisé à l'étape 102, est augmentée de la valeur de l'estimation ECT en cours.

Puis, la valeur de compteur CPTR est incrémentée d'un pas lors d'une étape 106 et le contrôle retourne à l'étape de test 103.

Si le test 104 est négatif, la valeur offset est transmise à une routine 107 de calcul d'une valeur de décalage de l'estimation de couple transmis ECT, valeur de décalage notée « offset_ECT » qui est égal au rapport de la valeur « offset » calculée lors de l'étape 105 avec la valeur CPTR du compteur qui vaut, à ce moment là, CPTR_seuil.

A la figure 9, on a représenté un mode de réalisation d'un dispositif mettant en œuvre le procédé de l'organigramme de la figure 8.

Le circuit de la figure 9 comporte trois registres d'entrée respectivement :

- le registre 110 de la valeur Wm de régime moteur instantané,
- le registre 111 de degré d'enfoncement de la pédale d'accélérateur dans une variable THETA_acc,
- le registre 112 qui maintient la valeur instantanée d'estimation du couple transmis ECT.

Le registre 110 comporte une sortie de lecture connectée respectivement à une première entrée d'un comparateur 113 dont une seconde entrée est connectée à un registre 114 qui maintient une valeur de seuil supérieur Smax_Wm_idle représentative du régime limite de décollage.

Le registre 110 est aussi transmis à une entrée d'un circuit 115 de calcul de la dérivée D_Wm de la vitesse de rotation ou du

15

20

25

30

régime moteur W_m dont une sortie sur laquelle est maintenue la valeur absolue de la dérivée temporelle du régime moteur est connectée à une première entrée d'un comparateur 116 dont une seconde entrée est connectée à la sortie de lecture d'un registre 117 dans lequel est maintenue la valeur de seuil de variation ou de dérivée temporelle du régime moteur Smax_D_Wm_idle de décollage du véhicule.

Le registre 111 qui maintient l'angle d'enfoncement ou l'appui de la pédale d'accélérateur THETA_acc est connecté à une première entrée d'un comparateur 118 dont une seconde entrée est connectée à la sortie de lecture d'un registre 119 dans lequel est enregistrée une valeur de seuil Smax_acc_idle correspondant à un degré maximal d'enfoncement de la pédale d'accélérateur en situation de décollage du véhicule.

La valeur THETA_acc est aussi transmise à un circuit 120 de calcul de la dérivée temporelle de l'enfoncement de la pédale d'accélérateur D_acc dont une sortie est transmise à une première entrée d'un comparateur 121.

Une seconde entrée du comparateur 121 est connectée à la sortie de lecture d'un registre 122 dans lequel est maintenue une valeur de seuil de la dérive de l'accélération comme une valeur nulle ou sensiblement nulle de façon à détecter une situation dans laquelle le conducteur réalise un maintien de l'enfoncement de la pédale de l'accélérateur en position stable.

Les sorties des quatre comparateurs 116, 113, 118, 121 sont connectées aux entrées correspondantes d'une porte ET 124 dont la sortie est connectée à une entrée d'incrémentation d'un compteur 129 dont la valeur de comptage de sortie 130 est connectée respectivement à une première entrée d'un comparateur 131 et à une borne d'entrée d'un circuit tampon 132.

La seconde entrée du comparateur 131 est connectée à la sortie de lecture d'un registre 133 dans lequel est enregistrée une valeur maximale de comptage pour le compteur CPTR.

10

15

20

25

30

La sortie du compteur 131 est connectée à une borne de commande 134 du circuit tampon 132 de sorte qu'une borne de sortie 135 du tampon 132 recopie la valeur présentée à son entrée 130 quand la borne de commande 134 est à l'état haut, et la transmet à une entrée de dénominateur d'un circuit arithmétique diviseur 136.

Le registre 112 qui maintient la valeur instantanée d'estimation du couple transmis ECT est fournie à une première entrée d'un additionneur 137 dont une seconde entrée est connectée à la sortie de lecture d'un registre 138 maintenant une valeur partielle de somme accumulée.

Une entrée d'écriture 139 du registre 138 est connectée à la sortie 140 d'addition instantanée de l'additionneur 137 de sorte, qu'à chaque instant, le registre 138 contienne une valeur sommée des valeurs successives d'estimation de couple transmis ECT_k pendant l'évolution positive du compteur CPTR 129.

La sortie 140 de l'additionneur 137 est aussi connectée à une entrée de numérateur du circuit arithmétique diviseur 136 de sorte que, lorsque le signal 134 de sortie du comparateur passe à l'état haut, la valeur accumulée par l'additionneur 137 est divisée par la valeur du compteur 129 et de sorte que cette valeur accumulée soit fournie en sortie à un registre 141 maintenant une valeur d'estimation de couple transmis avec décalage selon le principe de l'algorithme de la figure 8.

A la figure 10, on a représenté un autre circuit mettant en œuvre une disposition de l'invention permettant, à l'aide de l'information fournie par le capteur de degré d'enfoncement de la pédale d'accélérateur, de produire une information concernant l'activité du conducteur.

Dans un mode de réalisation, le circuit de mesure de l'activité du conducteur de l'invention permet de refuser le desserrage du frein de parking en cas de remontée de la pédale d'accélérateur. Dans une telle situation, on peut considérer que la

10

15

20

25

30

remontée de la pédale d'accélérateur indique l'abandon de la tentative de démarrage par le conducteur.

Dans un autre mode de réalisation, on ajoute un filtrage d'une remontée trop forte de la pédale d'accélérateur, considérant que la détection d'une dérivée temporelle de l'angle d'enfoncement de la pédale d'accélérateur est une mesure d'une action de premier démarrage du moteur.

A cette fin, le dispositif de l'invention comporte un registre 150 dans lequel est maintenu la valeur instantanée de dérivée temporelle D_Acc du degré d'enfoncement THETA_Acc de la pédale d'accélérateur produit à l'aide du circuit 120 précité à la figure 9.

La valeur de lecture du registre 150 est transmise aux premières entrées de deux comparateurs, respectivement 151 et 152, dont les secondes entrées sont respectivement connectées à des sorties de lecture de registres 153 et 154. Le registre 153 maintient une valeur de seuil inférieure Smin_D_Acc_TakeOff, caractéristique d'une limite supérieure de vitesse d'enfoncement de la pédale d'accélérateur. Si la dérivée temporelle D_Acc est moins élevée que la valeur enregistrée, le comparateur 151 produit une valeur active à sa sortie qui est transmise à une première entrée d'une porte ET 155. De même, si cette dérivée temporelle D_Acc est plus petite ou égale à une valeur de seuil inférieure Smax_D_Acc_TakeOff, enregistrée dans le registre 154, le circuit comparateur 152 passe à l'état actif et place sa sortie connectée à la seconde entrée de la porte ET 155 à la valeur active.

La sortie de la porte ET 155 est connectée à une première entrée d'une seconde porte ET 156 dont une seconde entrée est connectée à la borne de sortie 100 du circuit de la figure 7. L'autorisation de desserrer le Frein de Parking Automatique est alors présentée à la sortie 157 du circuit de la figure 10 si la sortie de la porte ET 155 est active en même temps que la borne de sortie 102.

10

15

20

25

30

L'invention apporte aussi un moyen de détecter une demande de démarrage en côte alors que le moteur n'est pas embrayé, et ce pourtant sans présence de capteur de degré d'enfoncement de la pédale d'embrayage ou de l'état d'embrayage.

A cette fin, selon l'invention, deux cartographies 163 et 164 représentant respectivement le degré d'enfoncement de la pédale d'accélérateur et l'estimation de couple transmis sont réalisées lors de l'initialisation du calculateur. Les bases de ces deux cartographies permettent d'établir si le moteur est débrayé des roues motrices ou si le moteur thermique est connecté mécaniquement aux roues motrices.

A cet effet, plusieurs cartographies peuvent être chargées en fonction notamment du type de conducteur inscrit dans un registre d'identification de conducteur, ou en fonction du type de véhicule lorsque le circuit de l'invention est destiné à équiper des véhicules différents d'une gamme d'un même constructeur.

Le circuit du mode de réalisation de la figure 11 comporte essentiellement deux registres d'accès respectivement :

- un registre 160 pour maintenir la valeur instantanée du degré d'enfoncement de la pédale d'accélération THETA_Acc, et
- un registre 161 pour maintenir la valeur instantanée d'estimation d'un couple transmis ECT.

Par ailleurs, un module 162 de détection de l'identification du conducteur et/ou du véhicule permet de déterminer quelle cartographie utiliser lors de l'exécution du procédé de l'invention. Le circuit ou module 162 de détection de l'identification du conducteur et/ou du véhicule comporte une ligne de sortie de commande qui est connectée à des entrées de commande 165 et 166 respectivement d'une première mémoire de cartographie 163 et d'une seconde mémoire de cartographie 164. La première mémoire de cartographie 163 comporte une liste de valeurs de seuil sur le degré d'enfoncement de la pédale d'accélérateur qui permet de distinguer si le conducteur est en phase d'embrayage

10

15

20

25

30

ou non ; cette valeur de seuil étant déterminée par la détection du type de conducteur et/ou de véhicule du module 162.

La seconde mémoire de cartographie 164 contient une valeur de seuil à partir de laquelle on peut considérer le véhicule est embrayé sur l'estimation de couple transmis CT. A cet effet, les registres 160 et 161 sont connectés à des premières entrées d'un premier comparateur 167 et d'un second comparateur 168 dont les secondes entrées sont respectivement connectées à des sorties 169 de la première mémoire de cartographie 163 et 170 de la seconde mémoire de cartographie 164. Les sorties des deux comparateurs 167 et 168 sont connectées à des entrées d'une porte ET 171 dont la sortie est connectée 172 à un ordre de desserrage.

L'ordre de desserrage 172 peut être combiné avec l'ordre de desserrage issu de la sortie 157 du circuit de la figure 10 et/ou de la sortie 100 du circuit de la figure 7.

Dans la partie B de la figure 11, on a représenté les diagrammes de l'évolution de l'estimation de couple transmis ECT en ordonnée en fonction de l'angle d'enfoncement THETA_Acc de l'accélérateur. L'estimation de couple transmis est sensiblement constante à une valeur très faible selon le sens de rotation du moteur selon une courbe C1 quand le groupe motopropulseur est vide, c'est-à-dire quand l'embrayage n'est pas activé. La courbe d'évolution de l'estimation de couple transmis ECT est représentée par la droite C1, et plus généralement il s'agit d'une plage de valeurs ne dépendant pas de l'angle d'enfoncement de l'accélérateur de quelques Newton.mètres.

Dans une deuxième type de courbe comme la courbe C2, à partir d'un seuil S0 d'enfoncement de la pédale d'accélérateur, l'estimation de couple transmis augmente très rapidement. Ainsi, il est possible de déterminer un seuil S1 à partir duquel on peut commencer à tester l'estimation de couple transmis et un seuil S2 de couple transmis au-dessus duquel on peut être sûr que le moteur thermique est embrayé sur les roues motrices du véhicule.

10

15

20

25

30

Ces valeurs S1 et S2 sont enregistrées respectivement dans la première mémoire de cartographie 163 et la seconde mémoire de cartographie 164 en fonction du type de véhicule ou de type de conducteur ou de son identification pour un véhicule donné.

A la figure 12, on a représenté un moyen permettant de détecter le régime à vide lorsque le véhicule fonctionne à vide.

Le principe de cette partie de l'invention consiste à utiliser l'information de couple moteur estimé Cme, et d'effectuer une intégration de l'information afin d'estimer le régime du groupe motopropulseur et pour déterminer s'il fonctionne à vide. Le régime estimé à vide Wm_0 peut alors être comparé au régime réel moteur Wm et s'il reste inférieur au régime à vide Wm_0, on en déduit que le véhicule n'est pas à vide et on pourra alors autoriser un desserrage.

Dans un mode de réalisation, le circuit de la figure 12 comporte un registre d'entrée 180 dans lequel est maintenue la valeur Cme de couple moteur estimé produit sur le calculateur moteur. La valeur de couple moteur estimé 180 est transmise à des premières entrées de deux modules, respectivement 181 et 182, dans lesquels sont exécutées deux fonctions, respectivement fp() d'estimation de régime à vide en rotation avec un couple moteur estimé CME positif et fn() d'estimation de régime à vide en rotation avec un couple moteur estimé CME négatif.

Le module 181 permet d'estimer une valeur de régime à vide en fonction du couple moteur estimé Cme présenté à la borne ou registre 180 et en fonction d'un couple de paramètres estimés par avance par essais successifs d'accélérations à vide sur un échantillon de véhicules correspondant au type de véhicule sur lequel le dispositif de l'invention est monté. Dans un premier registre 183, on enregistre un gain appliqué sur le couple moteur estimé Cme, soit la valeur G_Cme_PV à vide. Dans un second registre 184, on enregistre un décalage sur la valeur de couple moteur estimé en position à vide, soit Offset_Cme_PV. La

15

20

25

30

fonction fp() enregistrée dans le module de calcul 181 utilise les trois arguments Cme du registre 180, G_Cme_PV du registre 183 et Offset_Cme_PV du registre 184.

A la borne de sortie 185 du module 181 de calcul de la fonction fp() est présente une valeur estimée de régime à vide W_vide_p égale à une valeur déterminée de la fonction fp() appliquée aux trois arguments d'entrée 180, 183 et 184 selon la relation :

 $W_vide_p = fp(G_Cme_PV, Offset_Cme_PV, Cme).$

Dans un mode de réalisation particulier, la fonction fp() est définie par la relation :

 $W_vide_p = G_Cme_PV \times Cme + Offset_Cme_PV$.

Le module 182 permet d'estimer une valeur de régime à vide en fonction du couple moteur estimé Cme présenté à la borne ou registre 180 et en fonction d'un couple de paramètres estimés par avance par essais successifs d'accélérations à vide sur un échantillon de véhicules correspondant au type de véhicule sur lequel le dispositif de l'invention est monté. Dans un premier registre 186, on enregistre un gain appliqué sur le couple moteur estimé Cme, soit la valeur G_Cme_NV à vide. Dans un second registre 187, on enregistre un décalage sur la valeur de couple moteur estimé en position à vide, soit Offset_Cme_NV. La fonction fn() enregistrée dans le module de calcul 181 utilise les trois arguments Cme du registre 180, G_Cme_NV du registre 186 et Offset_Cme_NV du registre 187.

A la borne de sortie 188 du module 182 de calcul de la fonction fn() est présente une valeur estimée de régime à vide W_vide_n égale à une valeur déterminée de la fonction fn() appliquée aux trois arguments d'entrée 180, 186 et 187 selon la relation :

 $W_vide_n = fn(G_Cme_NV, Offset_Cme_NV, Cme).$

Dans un mode de réalisation particulier, la fonction fn() est définie par la relation :

 $W_vide_n = G_Cme_NV \times Cme + Offset_Cme_NV$

15

20

25

30

33

Le circuit de la figure 12 comporte ensuite un registre 189 dans lequel est maintenu la valeur instantanée du régime moteur Wm et qui est fournie à des premières entrées, respectivement d'un premier comparateur 190 et d'un second comparateur 191, dont les secondes entrées sont respectivement connectées à la sortie 185 du module 181 et à la sortie 188 du module 182. Les comparateurs 190 et 191 commutent et passent à l'état actif quand le régime moteur est inférieur aux valeurs estimées de W_vide_n ou W_vide_p selon le type de régime en cours sur le moteur thermique du véhicule. Les sorties des comparateurs 190 et 191 sont connectées à des premières entrées de portes ET 192 et 193 dont les secondes entrées sont respectivement connectées à la sortie de lecture d'un registre 194 dans lequel est maintenue une valeur active de desserrage du Frein de Parking Automatique de l'invention. Les sorties des portes ET 192, 193 connectées à des entrées d'une porte QU 195 et dont la sortie est placée sur un registre de sortie qui maintient une valeur de desserrage en détection de régime à vide.

A la Figure 13, on a représenté un mode de réalisation d'un circuit pour exécuter une étape du procédé de l'invention. Lors de la mise au point de l'invention, les inventeurs ont reconnu que le système d'injection qui équipe le moteur thermique du groupe motopropulseur pouvait lors des hauts régimes, c'est-à-dire lorsque la vitesse de rotation du moteur est élevée, être coupé brusquement. Or, le module qui est associé au groupe motopropulseur et qui transmet sur le bus 1 la valeur Cme de couple moyen estimé qui est utilisé sur le calculateur de l'invention pour élaborer l'ordre de desserrage devient erronée. Dans cette situation, le procédé de l'invention consiste à effectuer le remplacement de la valeur représentative du Couple moyen estimé Cme du moteur thermique par une valeur particulière de correction en régime de saturation.

A cette fin, le circuit de la figure 13 comporte une borne d'entrée Wmot qui reçoit une valeur représentative du régime et

10

15

20

25

30

un registre 200 maintenant une valeur de seuil Smax_Wm_saturation au-delà de laquelle la coupure du système d'injection peut se produire.

Les deux valeurs précitées sont transmises aux bornes d'entrée d'un comparateur 201 dont la sortie est connectée à l'entrée 204 d'un circuit de commutation 203 dont une première borne d'entrée 205 reçoit une valeur représentative du couple moyen estimé Cme provenant du calculateur associé au groupe motopropulseur et dont une seconde borne d'entrée est connectée à une valeur de couple moyen estimé corrigée lors de la saturation du régime. Quand la borne de sortie du comparateur 201 passe à l'état actif parce que le régime du moteur a dépassé le seuil préfixé du registre 200, la valeur de correction du registre 202 est présentée à la sortie 206 du circuit de commutation 203 plutôt que la valeur Cme.

Le procédé de l'invention peut aussi comporter des options supplémentaires. Particulièrement, le procédé de l'invention trouve une application dans la situation d'un démarrage à plat, le véhicule étant à l'arrêt sur un terrain horizontal. Un tel service peut être implémenté à l'aide du dispositif de l'invention lors de la configuration du véhicule à la production, à la maintenance ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule.

Le caractère « horizontal » du terrain est défini par un test pour déterminer si le signal représentatif de la mesure de l'angle de pente est, en valeur absolue, inférieur à un seuil d'angle d'inclinaison ou de pente noté Smin_Slope_NonZero, ledit seuil étant enregistré dans un registre de seuil d'angle de pente, et ledit signal étant produit par le capteur de pente 7 (Figure 1).

Dans ce service, le procédé de l'invention consiste à produire un ordre de desserrage du frein de parking sur la seule détermination que l'estimation de couple transmis ECT est supérieure au seuil prédéterminé ECTseuil et, particulièrement sans tester un seuil sur l'appui de la pédale d'accélérateur comme

10

15

20

25

cela est imposé dans le démarrage en côte ainsi qu'il a été décrit plus haut.

A cette fin, le procédé de l'invention consiste à initialiser une variable d'état lors du démarrage du véhicule pour indiquer que la pédale d'accélérateur n'a pas encore été enfoncée, la variable étant représentée par Acc_Was_NonZero = 0.

Dans la suite de l'exécution du procédé de l'invention, si le service de démarrage « à plat » est implémenté, une variable représentative de l'état de repos du moteur, variable représentée par Repos, est à l'état Faux (« 0 ») quand l'une des quatre conditions déjà décrites suivantes au moins n'est pas vraie :

Wm ≤ Smax_Wm_idle

ABS(D_Wm) ≤ Smax_D_M_idle

THETA_Acc ≤ Smax_acc_idle

D Acc ≤ 0.

Et qui repasse ensuite à l'état Vrai (« 1 ») quand les quatre conditions sont vérifiées.

Selon le procédé de l'invention, la variable Acc_Was_NonZero reste à « 1 » dès que l'accélérateur a été appuyé et jusqu'à ce que la variable Repos retourne à « 1 ». Le procédé de l'invention consiste alors à autoriser le démarrage à plat » quand la variable Acc_Was_NonZero vaut « 0 ».

Il suffit alors de tester que l'estimation de couple transmis ECT est supérieure à une valeur de seuil ECTSeuil pour autoriser le desserrage du Frein de Parking Automatique et ainsi assurer le décollage du véhicule en le retenant sur une certaine plage d'accélération.

Le circuit du dispositif de l'invention qui met en œuvre le service de démarrage « plat » comporte essentiellement :

- un circuit pour activer le service de démarrage à plat lors de la configuration du véhicule à la production, à la maintenançe ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule qui produit un

10

15

20

25

30

signal logique à « 0 » si le service n'est pas implémenté et à « 1 » si le service est implémenté ; .

- un circuit de détection de situation « à plat » pour détecter que le signal représentatif de l'angle d'inclinaison produit par le capteur d'angle de pente 7 est en valeur absolue inférieure à une valeur de seuil enregistrée dans un registre convenable et représentative de la limite de situation « à plat »;
- une première porte ET pour combiner les signaux de sortie du circuit pour activer le service de démarrage à plat et du circuit de détection de situation « à plat »;
- un circuit pour élaborer la variable Acc_Was_NonZero qui comporte un comparateur du degré d'enfoncement de la pédale d'accélérateur à un seuil d'enfoncement très faible prédéterminé et un circuit de remise à zéro dès que la variable Repos issue du reste du dispositif de démarrage de l'invention retourne à « 0 »;
- un circuit pour tester la valeur de l'estimation de couple transmis ECT issue du reste du dispositif de démarrage de l'invention à une valeur de seuil ECTSeuil et pour produire un ordre de desserrage du Frein de Parking Automatique;
- une seconde porte ET pour combiner l'ordre de desserrage « à plat » issu du circuit pour tester la valeur de l'estimation de couple transmis ECT à la sortie de la première porte ET et dont la sortie est connectée au contrôleur du moteur électrique du Frein de Parking Automatique.

Le service de desserrage sur le plat sans accélérateur offre une amélioration du confort du service de décollage du véhicule en stationnement. Sans accélération, le décollage se fait plus lentement, le confort est amélioré.

Dans une première variante, le service de démarrage « à plat » est étendu au cas du démarrage en descente, première vitesse engagée.

10

15

20

25

30

A cette fin, le service de démarrage « à plat » est aussi activé quand on détecte une pente négative et que la première vitesse est engagée.

A cette fin, le dispositif de l'invention comporte :

- un circuit pour activer le service de démarrage « en descente, première vitesse engagée » lors de la configuration du véhicule à la production, à la maintenance ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule qui produit un signal logique à « 0 » si le service n'est pas implémenté et à « 1 » si le service est implémenté;
 - un circuit de détection de situation « en descente, première vitesse engagée » pour détecter que le signal représentatif de l'angle d'inclinaison produit par le capteur d'angle de pente 7 est inférieure à une valeur de seuil négative enregistrée dans un registre convenable et représentative de la limite de situation « en descente, première vitesse engagée » ;
 - une troisième porte ET pour combiner les signaux de sortie du circuit pour activer le service de démarrage « en descente, première vitesse engagée » et du circuit de détection de situation « en descente, première vitesse engagée »;
 - une quatrième porte ET pour combiner la sortie de la troisième porte ET et la sortie du circuit pour tester la valeur de l'estimation de couple transmis ECT issue du reste du dispositif de démarrage de l'invention à une valeur de seuil ECTSeuil et pour produire un ordre de desserrage du Frein de Parking Automatique de situation « en descente, première vitesse engagée ».

Dans une seconde variante, le service de démarrage « à plat » est étendu au cas du démarrage en descente en « marche arrière ».

A cette fin, le service de démarrage « à plat » est aussi activé quand on détecte une pente positive et que la vitesse de marche arrière est engagée.

10

15

20

25

30

A cette fin, le dispositif de l'invention comporte :

- un circuit pour activer le service de démarrage « en descente, vitesse de marche arrière engagée » lors de la configuration du véhicule à la production, à la maintenance ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule qui produit un signal logique à « 0 » si le service n'est pas implémenté et à « 1 » si le service est implémenté;
- un circuit de détection de situation « en descente, vitesse de marche arrière engagée » pour détecter que le signal représentatif de l'angle d'inclinaison produit par le capteur d'angle de pente 7 est supérieure à une valeur de seuil positive enregistrée dans un registre convenable et représentative de la limite de situation « en descente, vitesse de marche arrière engagée »;
 - une troisième porte ET pour combiner les signaux de sortie du circuit pour activer le service de démarrage « en descente, vitesse de marche arrière engagée » et du circuit de détection de situation « en descente, vitesse de marche arrière engagée » ;
 - une quatrième porte ET pour combiner la sortie de la troisième porte ET et la sortie du circuit pour tester la valeur de l'estimation de couple transmis ECT issue du reste du dispositif de démarrage de l'invention à une valeur de seuil ECTSeuil et pour produire un ordre de desserrage du Frein de Parking Automatique de situation « en descente, vitesse de marche arrière engagée ».

Dans un autre mode de réalisation, le véhicule étant doté d'un capteur de mesure de l'enfoncement de la pédale d'embrayage en tout ou rien, le signal issu de ce capteur étant à « 1 » quand l'embrayage est ouvert la situation « à vide » du véhicule est ainsi directement détectée sans avoir besoin de tester les diverses situations dans lequel le groupe motopropulseur a été séparé des roues motrices.

20

25

30

Dans un autre mode de réalisation, le procédé de l'invention comporte aussi une étape de détection d'un excès de tangage Dans une première application, le capteur de tangage permet de détecter que, alors que le véhicule accélère, les freins sont encore serrés et donc de confirmer dans une étape ultérieure un ordre de desserrage du frein de parking automatique. Dans une seconde application, l'étape de détection d'une valeur de tangage est suivie d'une étape pour interdire le desserrage du Frein de Parking Automatique en situation de démarrage si le tangage du véhicule appliqué par exemple par un mouvement trop important des passagers du véhicule dépasse un certain seuil prédéterminé.

A cette fin, le dispositif de l'invention comporte un circuit pour détecter un excès de tangage dont la sortie est active si l'excès de tangage dépasse un seuil prédéterminé dans un registre. La sortie du circuit pour détecter un excès de tangage est combinée par une première entrée inverseuse d'une porte ET, dont une autre entrée est connectée à la sortie du dispositif précédemment décrite sur laquelle se trouve l'ordre de desserrage du Frein de Parking Automatique, et la sortie de la porte ET produisant l'ordre de desserrage du Frein de Parking Automatique en dehors d'un excès de tangage.

Le circuit pour détecter un excès de tangage comporte une borne d'entrée qui reçoit un signal produit par le capteur d'angle de pente 7 qui présente une résolution suffisante pour détecter un excès de tangage. Le signal de détection de l'angle d'inclinaison est transmis à l'entrée d'un circuit pour produire un signal représentatif de la dérivée temporelle du signal de détection de l'angle d'inclinaison dont la sortie est connectée à une entrée d'un comparateur dont l'autre entrée est connectée à un registre maintenant une valeur de seuil d'excès de tangage. La sortie du comparateur est active quand la dérivée du signal représentatif de l'angle d'inclinaison du capteur 7 est supérieure au seuil prédéterminé.

10

15

20

25

30

La valeur de seuil d'excès de tangage est, dans un mode de réalisation produite par un générateur de valeurs de seuil d'excès de tangage en fonction de l'angle d'inclinaison produit par le capteur 7.

Dans un autre mode de réalisation, le générateur de valeurs de seuil d'excès de tangage comporte une première série de valeurs de seul dans un premier sens de démarrage et une seconde série de valeurs de seul dans un second sens de démarrage.

Le procédé de l'invention permet aussi d'apporter un service d'anticipation de la dynamique du démarrage. A cette fin, le procédé de l'invention comporte aussi une étape pour déterminer un terme d'anticipation sur l'ordre de desserrage du Frein de Parking Automatique en fonction de valeurs prédéterminées d'anticipation.

A cette fin, le procédé de l'invention consiste, lors de l'exécution du procédé d'élaboration de l'ordre de desserrage du Frein de Parking Automatique déjà décrit à exécuter aussi une étape de mesure du degré d'enfoncement de la pédale d'accélérateur Teta_Acc, puis à mesurer une dérivée temporelle du signal Teta_Acc de degré d'enfoncement, soit D_Acc, et à comparer cette valeur instantanée de dérivée D_Acc avec un seuil prédéterminé Seuil_Anticipe, de sorte que si la vitesse de variation du degré d'enfoncement D_Acc est supérieure à une valeur Seuil_Anticipe, la boucle d'incrémentation de la valeur d'estimation de couple transmis ECT soit interrompu avant que le test 33 (Figure 2) soit vrai et pour produire de manière anticipée l'ordre de desserrage du Frein de Parking Automatique.

Le dispositif de mise en œuvre du procédé de l'invention comporte à cette fin un circuit pour calculer la dérivée temporelle D_Acc du signal Teta_Acc de degré d'enfoncement fourni par le capteur d'angle de pente 7 (Figure 1). Le circuit de calcul de la dérivée D_Acc comporte une sortie qui est connectée à une première entrée d'un comparateur dont l'autre entrée est

15

20

25

30

connecté à un générateur d'une valeur prédéterminée d' une valeur Seuil_Anticipe, de sorte que sa sortie est active si la valeur Seuil_Anticipe est dépassée. Le signal de sortie du comparateur est alors transmise à une première entrée d'une autre porte ET dont la seconde entrée est connectée à un circuit pour détecter que l'estimation de couple transmis ECT est en cours d'incrémentation par exemple en détectant l'évolution du compteur CPTR (83, Figure 6). La sortie de l'autre porte ET est alors utilisée comme ordre de desserrage anticipé du Frein de Parking Automatique.

Dans un mode particulier de réalisation, le seuil prédéterminé Seuil_Anticipe est une fonction prédéterminée dépendant du degré de pente mesuré par le capteur d'angle de pente 7 (Figure 1).

Le dispositif de mise en œuvre de l'invention comporte à cette fin un générateur d'un seuil prédéterminé Seuil_Anticipe sous forme d'une table de valeurs de seuil adressée par la valeur du degré de pente mesuré par le capteur d'angle de pente 7. La valeur Seuil_Anticipe est alors transmise au comparateur précité du dispositif de l'invention.

Dans un mode de réalisation du procédé de l'invention, le service d'anticipation de la dynamique du démarrage comporte aussi une étape pour prendre en compte le temps de réponse du moteur électrique équipant le Frein de Parking Automatique ainsi que les différents jeux dans le mécanisme de freinage qu'il active.

Dans le procédé de l'invention, il est prévu une anticipation du démarrage du frein de parking pour prendre en compte la dynamique du conducteur et le temps de réponse du système électromécanique. Le temps de réponse du système électromécanique est connu par mesures préalables, le cas échéant avec une procédure d'étalonnage. Soit Tr, ce temps de réponse. A chaque instant, sont déterminées l'estimation de couple transmis ECT et ses dérivées temporelles, comme (d/dt).ECT. Ces dérivées temporelles permettent de prendre en

20

25

compte le dynamisme du conducteur, la valeur de la première dérivée temporelle augmentant avec le dynamisme du conducteur Selon l'invention, on exécute une étape de prédiction par extrapolation. Dans un mode de réalisation, on effectue alors une extrapolation ou prédiction sur la valeur de prédiction de l'estimation de couple transmis par une relation de la forme (à l'ordre 1):

 $ECT_prédit(Tr) = ECT + Tr \times (d/dt).ECT$

Un opérateur pour exécuter une prédiction doit donc recevoir en entrées :

- une valeur caractéristique de temps de réponse Tr, par exemple enregistrée dans une mémoire convenable étalonnée le cas échéant par un processeur de temps de réponse du système de frein de parking automatique;
- 15 au moins une valeur en cours d'une estimation de couple transmis ECT_encours.

L'opérateur comporte alors un dérivateur qui comporte de manière connue :

- une mémoire d'une acquisition précédente d'une estimation de couple transmis ECT_ancien et dans un mode particulier de réalisation une mémoire d'un coefficient temporel Ta proportionnel au temps séparant deux acquisition ou estimations de couple transmis;
 - un soustracteur pour effectuer l'opération ECT_encours -ECT_ancien;
 - un diviseur pour effectuer la dérivation temporelle proprement dite par une opération de la forme (ECT_encours -ECT_ancien)/Ta.

L'opérateur comporte aussi :

un multiplieur dont une entrée est connectée à la mémoire du temps de réponse Tr, et l'autre entrée est connectée à la sortie du diviseur produisant la valeur (d/dt). ECT et dont la sortie produit la valeur Tr x (d/dt). ECT;

10

15

20

25

30

un additionneur pour effectuer l'opération ECT_prédit(Tr) =
 ECT_encours + Tr x (d/dt).ECT.

L'anticipation peut alors, selon le procédé de l'invention, être exécutée par l'exécution d'un test dont le seuil, S_min_prédit et/ou S_max_prédit, est prédéterminé. Un tel test est de la forme : S_min_prédit < ECT_prédit < S_max_prédit, de sorte que si le test est positif, un ordre de desserrage anticipé du frein de parking automatique est généré en sortie du calculateur 5 de commande du Frein de Parking Automatique.

Le dispositif de l'invention pour mettre en œuvre le procédé de l'invention comporte au moins :

- une mémoire d'une valeur de seuil S_min_prédit et/ou S_max_prédit de test de desserrage à anticipation pour enregistrer de manière fixe ou calibrable en fonction d'un processeur de calibration des seuils d'anticipation au desserrage;
- un comparateur de la valeur de sortie de l'opérateur précité pour exécuter une prédiction sur la valeur d'estimation de couple moteur à au moins l'une des dites valeurs de seuil S_min prédit et/ou S max prédit

de sorte que soit produit un signal d'autorisation de desserrage anticipé du Frein de Parking Automatique si le comparateur est activé.

Dans un mode de réalisation, le dispositif de l'invention est constitué par un processeur présentant une architecture logicielle en quatre blocs, à savoir :

- un bloc de saisie des données d'entrée parmi lesquelles le régime moteur Wm, la vitesse du véhicule Vv, l'angle de pente, le couple moyen estimé Cme, le degré d'enfoncement de la pédale d'accélérateur TETA_Acc, notamment prélevées sur le bus CAN 1;
- un bloc de traitement de signal appliqué sur les données d'entrée qui opère particulièrement des filtrages numériques

sur tout ou partie des données d'entrée et réalise des corrections d'échelles ou d'unités ;

- un bloc d'initialisation des paramètres du procédé de l'invention comportant notamment les valeurs de seuil et les initialisations des compteurs;
- un bloc d'exécution du procédé pour générer un ordre de desserrage du Frein de Parking Automatique.

20

25

30

REVENDICATIONS

- 1 Procédé d'assistance au démarrage d'un véhicule comportant un groupe motopropulseur et un Frein de Parking Automatique équipé d'un moyen pour exécuter un ordre de desserrage ou de désactivation du Fréin de Parking Automatique, caractérisé en ce qu'il consiste à exécuter, au moins après une phase de démarrage du groupe motopropulseur :
- Une étape d'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente;
- Une boucle consistant à exécuter un calcul incrémental d'une estimation du couple transmis réellement à l'instant donné tant que l'estimation du couple transmis réellement est insuffisante à surpasser l'estimation de couple transmis; puis
 - Une étape de production d'un ordre de desserrage ou de désactivation du Frein de Parking Automatique.
 - 2 Procédé selon la revendication 1, caractérisé en ce que l'étape d'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente comporte une étape pour calculer un modèle statique du véhicule dans la pente à partir d'une mesure d'un angle d'inclinaison délivrée par un capteur de pente (7) et de la connaissance d'une valeur déterminée représentative du rapport de transmission.
 - 3 Procédé selon la revendication 2, caractérisé en ce que, la mesure d'un angle d'inclinaison étant inférieure à un seuil donné, l'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente est augmentée d'une valeur déterminée.
 - 4 Procédé selon la revendication 3, caractérisé en ce que la valeur déterminée d'augmentation de l'estimation d'une valeur de couple transmis qui équilibre le véhicule dans la pente dépend de la mesure de l'angle d'inclinaison.
 - 5 Procédé selon la revendication 1, caractérisé en ce que l'étape de calcul incrémental (32) comporte :

10

15

20

25

30

- une étape de lecture d'une valeur de couple moyen efficace (Cme) associée à l'état dynamique du groupe motopropulseur;
- une étape de lecture d'une valeur de régime du moteur (Wm);
- une étape de calcul de la dérivée temporelle du régime moteur;
- une étape de détermination du moment d'inertie du groupe motopropulseur (Jmot) et de calcul du couple résistant sous la forme d'un produit du moment d'inertie du groupe motopropulseur par la dérivée temporelle du régime moteur;
- une étape de détermination d'une estimation de couple transmis selon une relation de la forme : ECT = Cme Jmot x $\frac{dWm}{dt}$
- 6 Procédé selon la revendication 5, caractérisé en ce qu'il comporte une étape de re synchronisation de la lecture d'une valeur de couple moyen efficace (Cme) et d'une valeur de régime du moteur (Wm) de sorte que chaque couple de valeurs (Cme, Wm) corresponde à un même intervalle de temps.
- 7 Procédé selon la revendication 6, caractérisé en ce qu'il consiste à rajouter un délai prédéterminé, préférentiellement égal à trois périodes de passage au Point Mort Haut du moteur thermique du groupe motopropulseur, sur la valeur de resynchronisation de la valeur de couple moyen estimé pour tenir compte notamment du délai d'attente de remplissage du collecteur et de l'exécution de l'allumage.
- 8 Procédé selon la revendication 6 ou 7, caractérisé en ce que l'étape de re synchronisation consiste à appliquer la re synchronisation sur la valeur dérivée (D_Wm) du régime moteur Wm) entre deux échantillons séparés par une durée de re synchronisation notamment selon la relation : D_Wm = [Wm(8)-Wm(1)]/durée, dans laquelle « durée » détermine la période de re

10

15

20

25

synchronisation et Wm(1) et Wm(8) les valeurs de début et de fin de période de re synchronisation.

- 9 Procédé selon l'une des revendications 5 à 8, caractérisé en ce que l'étape d'estimation du couple transmis (ECT) comporte :
- une étape (S4) de comparaison d'une valeur d'estimation de couple transmis (ECT) à une valeur de seuil prédéterminée (ECTseuil);
- si la valeur prédéterminée de seuil (ECTseuil) est dépassée, une étape (S5) de test de la valeur de sortie d'un compteur (S3), incrémenté lors de chaque étape d'estimation de couple transmis (ECT), par rapport à une valeur de seuil prédéterminée (Smin_loop_Delay),
- si la valeur de seuil prédéterminée (Smin_loop_Delay) est dépassée, une étape de production d'un ordre d'autorisation de desserrage du Frein de Parking Automatique.
- 10 Procédé selon la revendication 9, caractérisé en ce que l'étape d'estimation de couple transmis ECT comporte de plus une étape pour exécuter un décalage prédéterminé de façon à réduire l'effet perturbateur de la mise en marche et/ou de l'arrêt de certains consommateurs secondaires (Consommateurs) d'énergie ou de puissance fournie par le moteur thermique, en effectuant l'opération :

ECT_Corr_k = ECT_k + g(Consommateurs)

- Une étape préalable pour déterminer une plage dans laquelle le moteur peut être considéré comme au repos et une plage pendant laquelle un décalage g(Consommateurs) sur l'estimation de couple transmis pouvant être exécutée.
- 11 Procédé selon la revendication 10, caractérisé en ce que l'étape pour exécuter un décalage est effectuée à l'issue d'un test (103) au cours duquel quatre conditions sont combinées :

Wm ≤ Smax_Wm_idle

ABS(D_Wm) ≤ Smax_D_M_idle

THETA_Acc ≤ Smax_acc_idle

15

20

25

 $D_Acc == 0.$

conditions dans lesquelles :

Smax_Wm_idle représente une valeur de seuil en dessous de laquelle le régime moteur indique que le moteur est en état de repos ou régime de ralenti;

- Smax_D_M_idle représente une valeur de seuil en dessous de laquelle la valeur absolue ABS(D_Wm) de la dérivée temporelle du régime moteur D_Wm indique que le moteur est en état de repos ou régime de ralenti;
- Smax_acc_idle représente une valeur de seuil en dessous de laquelle le degré d'enfoncement de la pédale d'accélérateur THETA_Acc indique que le moteur est en état de repos ou régime de ralenti;
 - D_Acc représente la dérivée temporelle du degré d'enfoncement THETA_Acc de la pédale d'accélérateur qui est négative lorsque le conducteur relève le pied de la pédale d'accélérateur;

de sorte que si le test (103) est négatif, le contrôle retourne à l'initialisation (102) d'un compteur (CPTR), le groupe motopropulseur étant réputé non connecté aux roues motrices ; et de sorte que si le test (103) est positif, le contrôle passe à un test (104) où on regarde si le compteur (CPTR) est inférieur à une valeur de seuil (CPTR_seuil) prédéterminée ;

de sorte que si le test (104) est positif, le contrôle passe à une étape (105) au cours de laquelle une valeur de décalage « offset », initialement nulle lorsque le compteur (CPTR) est luimême initialisé à l'étape (102), est augmentée de la valeur de l'estimation ECT en cours ;

puis, la valeur de compteur (CPTR) étant incrémentée d'un 30 pas lors d'une étape (106) et le contrôle retournant à l'étape de test (103);

de sorte que si le test (104) est négatif, la valeur offset est transmise à une routine (107) de calcul d'une valeur de décalage de l'estimation de couple transmis ECT, valeur de décalage notée

10

15

20

25

30

« offset_ECT » qui est égale au rapport de la valeur « offset » calculée lors de l'étape (105) avec la valeur (CPTR_seuil) du compteur.

49

- 12 Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape pour produire une information d'activité du conducteur de sorte que soit refusé le desserrage du Frein de Parking Automatique en cas de remontée de la pédale d'accélérateur.
- 13 Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape pour détecter une demande de démarrage alors que le groupe motopropulseur n'est pas embrayé.
- 14 Procédé selon la revendication 13, caractérisé en ce que l'étape consiste, sans utiliser de capteur d'enfoncement de la pédale d'embrayage, à détecter l'état embrayé à l'aide de deux cartographies de l'estimation de couple transmis en fonction du degré d'enfoncement de la pédale d'accélérateur respectivement établies lorsque les roues sont embrayées et lorsque les roues ne sont pas embrayées et en comparant la valeur de l'estimation de couple transmis à chacune des valeurs de cartographies adressées par la mesure du degré d'enfoncement de la pédale d'accélérateur pour, si la comparaison à la première cartographie est positive produire une information caractéristique d'un état débrayé et si la comparaison à la seconde cartographie est positive produire une information caractéristique d'un état embrayé.
- 15 Procédé selon la revendication 13, caractérisé en ce que l'étape consiste en utilisant un capteur d'enfoncement de la pédale d'embrayage en tout ou rien à produire une information caractéristique d'un'état embrayé ou débrayé.
- 16 Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une étape pour détecter le régime à vide, qui consiste à :

20

25

30

- comparer l'information de couple moteur estimé (Cme) à deux fonctions d'estimation de régime à vide en rotation avec une estimation de couple transmis positif fp() et en rotation avec une estimation de couple transmis négatif fn();
- à appliquer à la fonction fp() un gain (G_Cme_PV) à vide appliqué sur le couple moteur estimé (Cme), un décalage (Offset_Cme_PV) sur la valeur de couple moteur estimé en position à vide, et la valeur en cours (Cme) pour produire une valeur de régime à vide en rotation avec une estimation de couple transmis positif a priori;
 - à appliquer à la fonction fn() un gain (G_Cme_NV) à vide appliqué sur le couple moteur estimé (Cme), un décalage (Offset_Cme_NV) sur la valeur de couple moteur estimé en position à vide, et la valeur en cours (Cme) pour produire une valeur de régime à vide en rotation avec une estimation de couple transmis négatif a priori;
 - à comparer la valeur du régime moteur (Wm) pour déterminer si on se trouve dans un régime à vide, à rotation avec une estimation de couple transmis positif ou avec une estimation de couple transmis négatif;
 - à autoriser le desserrage du Frein de Parking Automatique seulement si aucun régime à vide n'est détecté.
 - 17 Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape de détection de saturation du moteur thermique à haut régime de sorte que soit interdit le desserrage du frein de Parking Automatique en régime de saturation.
 - 18 Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape pour produire un service de démarrage « à plat » sans seuil sur l'appui de la pédale d'accélérateur qui consiste :
 - à produire un ordre de desserrage du frein de parking sur la seule détermination que l'estimation de couple transmis ECT est supérieure au seuil prédéterminé ECTseuil et,

10

15

20

25

30

particulièrement sans tester un seuil sur l'appui de la pédale d'accélérateur;

- à initialiser une variable d'état lors du démarrage du véhicule pour indiquer que la pédale d'accélérateur n'a pas encore été enfoncée, la variable étant représentée par Acc_Was_NonZero = 0 ;
- à lire une variable représentative de l'état de repos du moteur (Repos);
- à traiter la variable Acc_Was_NonZero de sorte qu'elle reste à
 « 1 » dès que l'accélérateur a été appuyé et jusqu'à ce que la variable Repos retourne à « 1 » ;

et en ce qu'il consiste alors à autoriser le démarrage « à plat » quand la variable Acc_Was_NonZero vaut « 0 » et à tester que l'estimation de couple transmis ECT est supérieure à une valeur de seuil ECTSeuil pour autoriser le desserrage du Frein de Parking Automatique et ainsi assurer le décollage du véhicule en le retenant sur une certaine plage d'accélération.

- 19 Procédé selon la revendication 18, caractérisé en ce qu'il consiste à étendre le service de démarrage « à plat » à un service de démarrage en descente, première vitesse engagée.
- 20 Procédé la revendication 18, caractérisé en ce qu'il consiste à étendre le service de démarrage « à plat » à un service de démarrage en descente, rapport de marche arrière engagé.
- 21 Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape de détection d'un excès de tangage et une étape pour interdire le desserrage du Frein de Parking Automatique en situation de démarrage si le tangage du véhicule appliqué par exemple par un mouvement trop important des passagers du véhicule dépasse un certain seuil prédéterminé.
- 22 Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape pour déterminer un terme d'anticipation sur l'ordre de desserrage du Frein de Parking Automatique en fonction de valeurs prédéterminées d'anticipation

15

20

25

30

qui consiste, lors de l'élaboration de l'ordre de desserrage du Frein de Parking Automatique, à exécuter aussi une étape de mesure du degré d'enfoncement de la pédale d'accélérateur Teta_Acc, puis à mesurer une dérivée temporelle du signal Teta_Acc de degré d'enfoncement, soit D_Acc, et à comparer cette valeur instantanée de dérivée D_Acc avec un seuil prédéterminé Seuil_Anticipe, de sorte que si la vitesse de variation du degré d'enfoncement D_Acc est supérieure à une valeur Seuil_Anticipe, la boucle d'incrémentation de la valeur d'estimation de couple transmis ECT soit interrompu avant que le test (33; Figure 2) soit vrai et pour produire de manière anticipée l'ordre de desserrage du Frein de Parking Automatique.

- 23 Dispositif d'assistance au démarrage en côte d'un véhicule comportant un groupe motopropulseur et un Frein de Parking Automatique équipé d'un moyen (7, 8) pour exécuter un ordre de desserrage ou de désactivation du frein de parking en mettant en œuvre, le procédé selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comporte un calculateur (5) d'un ordre de desserrage connecté à un capteur (7) du degré de pente dans laquelle se trouve engagé le véhicule et à un capteur délivrant une information sur le régime ou vitesse de rotation du groupe motopropulseur du véhicule et caractérisé par le fait que le calculateur (5) comporte un moyen d'estimation du couple transmis (ECT) connecté à une première entrée d'un moyen de comparaison dont une seconde entrée est connectée à un moyen pour produire une valeur de seuil de couple transmis correspondant au maintien du véhicule, de sorte qu'une borne de sortie dudit moyen de comparaison produise un ordre de desserrage (11) à destination du frein de parking électrique (7, 8).
- 24 Dispositif selon la revendication 23, caractérisé en ce qu'il comporte :
- un premier module de lecture du couple moyen efficace Cme qui est fourni par un calculateur (3) du moteur sous forme d'une information circulant sur le bus (1) du véhicule,

20

• un deuxième module de lecture de la vitesse instantanée Wm de rotation du moteur thermique qui est fourni par le calculateur du moteur (3) sous forme d'une information circulant sur le bus (1) du véhicule,

53

- un troisième module permettant de calculer la dérivée temporelle $\frac{dWm}{dt}$ de la vitesse de rotation à la sortie du groupe motopropulseur à partir de la donnée de la vitesse de rotation ou régime moteur prélevé par le deuxième module ;
- un quatrième module pour calculer le produit d'une valeur du moment d'inertie Jmot caractéristique de l'inertie du moteur ainsi que la valeur de sortie dudit troisième module;
 - un cinquième module pour soustraire la valeur de sortie du quatrième module, présentée à une entrée de soustraction du cinquième module, de la valeur de sortie du dit premier module de sorte qu'à sa sortie soit présentée une valeur instantanée de l'estimation de couple transmis instantanée produite selon une relation : ECT = Cme Jmot x dWm

25 – Dispositif selon l'une des revendications 23 ou 24, caractérisé en ce que, les valeurs de couple moteur estimé (Cme) et de régime moteur (Wm) étant fournis sur des trames d'un bus (1) par un calculateur de contrôle du moteur (3), il comporte un circuit de re synchronisation (67).

- 26 Dispositif selon la revendication 25, caractérisé en ce que le circuit de re-synchronisation (67) comporte :
- une mémoire qui contient une table sur un cycle de paires de données de sorte que soit associé le numéro d'ordre d'une valeur représentative d'un premier mot reçu sur sa première entrée avec un numéro d'ordre d'une valeur représentative du numéro d'ordre d'un second mot reçu,
- des registres de suites de valeurs successives du premier mot et ou du second mot et

10

15

20

25

- un moyen, pour, en fonction des associations de numéros d'ordre de la mémoire précitée pour appliquer en sortie un couple d'un premier mot et d'un second mot correspondant à un seul et même instant de calcul et pour présenter le couple de mots re synchronisés est à des bornes de sortie (68, 69).

27 — Dispositif selon la revendication 25 ou 26, caractérisé en ce que le circuit de re synchronisation (67) travaille essentiellement sur le régime moteur et permet d'exploiter un décalage dans le mécanisme de mise à disposition de couples de mots (Cme, Wm) un effet caractéristique lors de l'accélération du moteur thermique et qui comporte :

un registre de synchronisation (70) de l'estimation de couple transmis (Cme) ;

un séquenceur (71) qui reçoit un signal (56) indicatif de point mort haut et qui transmet des ordres d'écriture (72) et de lecture (73) au registre (70);

un registre (74) d'une valeur disponible d'estimation du couple transmis synchronisé ;

une pile (76) de registres dans laquelle est maintenue une pluralité de valeurs successives du régime moteur (Wm) acquis à des instants successifs sur le bus CAN (1);

un circuit différentiateur (79) qui comporte :

- une entrée positive connectée à une sortie de lecture de la pile (76) sur laquelle est disponible la valeur la plus ancienne du régime moteur Wm maintenue dans la pile (76), et
- une entrée négative à laquelle est connectée la valeur la plus récente du régime moteur disponible aussi sur la borne d'entrée (66) du module (67);
- Une entrée (80) qui reçoit une valeur représentative « durée » de la durée écoulée lors de l'acquisition entre la valeur la plus ancienne, et la valeur la plus récente de sorte qu'à la sortie (81) du circuit différentiateur (79) soit disponible une valeur représentative d'une valeur synchronisée de la dérivée

10

15

20

25

30

temporelle moyennée du régime moteur selon une relation de la forme :

 $D_{Wm_{sync}} = [Wm(8)-Wm(1)]/durée$; chargée dans un registre (82).

- 28 Dispositif selon la revendication 27, caractérisé en ce que une borne de commande d'écriture du registre (82) maintenant une valeur synchronisée de la dérivée temporelle moyennée du régime moteur est connectée au séquenceur (71) que gère un registre (86) dans lequel est enregistrée une valeur de décalage temporel ou retard ΔT qui correspond à un retard désiré de transmission des valeurs synchronisées au reste de l'estimateur de sorte qu'on puisse tenir compte notamment :
- du délai de remplissage du collecteur du moteur thermique, et
- du délai d'allumage lorsque le moteur thermique est en phase d'accélération comme c'est le cas lors d'un démarrage en côte.

29 – Dispositif selon la revendication 24, caractérisé en ce qu'il comporte un compteur (90) qui maintient une valeur numérique CPTR et la met à jour à chaque événement présenté à son entrée notée « + » en l'augmentant d'une valeur prédéterminée comme « 1 » ;

une entrée (91) sur laquelle est chargée la valeur ECT_k une valeur en cours d'incrémentation de l'estimation de couple transmis et qui est connectée, d'une part, à l'entrée d'un circuit (93) de détection de l'arrivée d'une valeur ECT_k et à une première entrée d'un comparateur (92);

la sortie de détection du module (93) de détection d'arrivée d'un échantillon ECT_k est connectée à l'entrée '+' de commande d'incrémentation du compteur (90) dont la borne de sortie de lecture est connectée à une première entrée d'un comparateur (93);

un registre (94) contenant une valeur de seuil ECTseuil, et transmise à une seconde entrée du comparateur (92) ;

10

15

20

25

30

le comparateur (92) comporte une première sortie (96) et une seconde sortie (95), complémentaires l'une de l'autre, de sorte que si le test réalisé par le comparateur (92) est positif, la première sortie (96) passe à l'état actif et est connectée à une première entrée d'une porte ET (97), tandis que la seconde sortie (95) passe à l'état inactif et est connectée à une borne d'entrée de remise à une valeur initiale comme la valeur '0' du compteur (90);

un second comparateur (98) dont une première entrée reçoit la valeur de comptage CPTR disponible dans le compteur (90) et dont une seconde entrée est connectée à un registre (99) maintenant la valeur de comptage maximale à l'issue de laquelle l'autorisation de desserrage peut être exécutée;

de sorte que, quand le test réalisé par le second comparateur (98) est positif, sa sortie passe à l'état actif et est connectée à une seconde entrée de la porte ET (97) de sorte que la sortie (100) de la porte ET (9)7 passe à l'état actif pour indiquer une autorisation de desserrage du Frein de Parking Automatique.

30 - Dispositif selon la revendication 29, caractérisé en ce au'il comporte un registre (99)contenant une valeur (Smin_Lop_Delay) déterminée en fonction de la période d'échantillonnage ou cadence de boucle et du délai ou retard désiré entre le premier dépassement par la valeur de couple transmis estimé ECT de la valeur de seuil ECT_{seuil} et la réalisation de l'ordre de desserrage du frein de parking FPA, le registre (99) comportant un moyen d'écriture d'une valeur ainsi déterminée de Smin_Lop_Delay qui est activé lors de l'initialisation du véhicule ou bien lors de sa fabrication ou lors de sa maintenance à l'aide d'un outil de production connu de l'homme de métier, ou bien lors de la détection d'un type de conducteur réalisée à l'aide du calculateur de bord 1 qui transmet sur le bus 1 une valeur caractéristique de Smin_Lop_Delay associée au conducteur détecté à l'aide par exemple de la clé de démarrage ou du type de

10

15

20

25

30

conducteur selon un algorithme de détection du type de conduite effectué par le conducteur.

- 31 Dispositif selon la revendication 30, caractérisé en ce que, à l'aide d'un additionneur qui effectue l'opération : ECT_Corr_k = ECT_k + g(Consommateurs), la valeur d'estimation de couple transmis ECT reçue à la borne (91) reçoit de plus un décalage prédéterminé de façon à réduire l'effet perturbateur de la mise en marche et de l'arrêt de certains consommateurs secondaires d'énergie ou de puissance fournie par le moteur thermique, décalage effectué en amont du circuit (91) de détection et de l'entrée du comparateur (92).
- 32 Dispositif selon la revendication 31, caractérisé en ce qu'il comporte un circuit pour exécuter un décalage selon l'état de régime à vide ou en charge.
- 33 Dispositif selon l'une des revendications 23 à 32, caractérisé en ce qu'il comporte un circuit (150 172) pour détecter l'activité du conducteur à l'aide de deux comparateurs (151, 152) de la dérivée temporelle (D_Acc) du degré d'enfoncement de la pédale d'accélérateur à un intervalle de degré d'enfoncement (SMIN_D_Acc_Takeoff, SMAX_D_Acc_Takeoff) dans deux registres (153, 154) et à l'aide d'une porte ET (156) pour valider l'ordre de desserrement du Frein de Parking Automatique.
- 34 Dispositif selon l'une des revendications 23 à 33, caractérisé en ce qu'il comporte un circuit (160-172) pour détecter l'état embrayé ou non embrayé du groupe motopropulseur à l'aide d'une pluralité de cartographies (163, 164) contenant une suite de valeurs d'estimation de couple transmis (ECT) en fonction du degré d'enfoncement de la pédale d'accélérateur établies selon que l'embrayage est ou non actif, à l'aide d'une porte ET (171) pour valider la production de l'ordre de desserrage du Frein de Parking Automatique en fonction du type de conducteur, du degré d'enfoncement de la pédale d'accélérateur (TETA_Acc) et de

10

20

25

30

l'estimation de couple transmis (ECT), une porte ET (171) validant l'ordre de desserrement du Frein de Parking Automatique.

35 – Dispositif selon l'une des revendications 23 à 34, caractérisé en ce qu'il comporte un circuit (180 – 195) pour détecter l'état à vide du véhicule selon le sens de rotation qui comporte deux générateurs (181, 182) d'une fonction déterminant le régime moteur à vide, connectés à deux comparateurs (190, 191) de la valeur instantanée du régime moteur (Wm), et de deux portes ET (192, 193) pour valider un ordre de desserrement du Frein de Parking Automatique.

36 - Dispositif selon l'une des revendications 23 à 35, caractérisé en ce qu'il comporte un circuit (200 - 206) pour déterminer un état de saturation du moteur thermique qui comporte un comparateur (201) pour déterminer si le régime moteur (Wm) et pour appliquer ou non une valeur corrigée dans un moyen de correction (202, 203) de valeurs de couple moteur estimé (Cme).

- 37 Dispositif selon l'une des revendications 23 à 36, caractérisé en ce qu'il comporte un circuit pour mettre en œuvre un service de démarrage «à plat » qui comporte essentiellement :
- un circuit pour activer le service de démarrage à plat lors de la configuration du véhicule à la production, à la maintenance ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule qui produit un signal logique à « 0 » si le service n'est pas implémenté et à « 1 » si le service est implémenté;
- un circuit de détection de situation « à plat » pour détecter que le signal représentatif de l'angle d'inclinaison produit par le capteur d'angle de pente (7) est en valeur absolue inférieure à une valeur de seuil enregistrée dans un registre convenable et représentative de la limite de situation « à plat »;
- une première porte ET pour combiner les signaux de sortie du circuit pour activer le service de démarrage à plat et du circuit de détection de situation « à plat »;

10

15

30

- un circuit pour élaborer la variable Acc_Was_NonZero qui comporte un comparateur du degré d'enfoncement de la pédale d'accélérateur à un seuil d'enfoncement très faible prédéterminé et un circuit de remise à zéro dès que la variable Repos issue du reste du dispositif de démarrage de l'invention retourne à « 0 »;
- un circuit pour tester la valeur de l'estimation de couple transmis ECT issue du reste du dispositif de démarrage de l'invention à une valeur de seuil ECTSeuil et pour produire un ordre de desserrage du Frein de Parking Automatique;
- une seconde porte ET pour combiner l'ordre de desserrage « à plat » issu du circuit pour tester la valeur de l'estimation de couple transmis ECT à la sortie de la première porte ET et dont la sortie est connectée au contrôleur du moteur électrique du Frein de Parking Automatique.
- 38 Dispositif selon l'une des revendications 23 à 37, caractérisé en ce qu'il comporte un circuit pour mettre en œuvre un service de démarrage en descente, première vitesse engagée qui comporte :
- un circuit pour activer le service de démarrage « en descente, première vitesse engagée » lors de la configuration du véhicule à la production, à la maintenance ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule qui produit un signal logique à « 0 » si le service n'est pas implémenté et à « 1 » si le service est implémenté;
 - un circuit de détection de situation « en descente, première vitesse engagée » pour détecter que le signal représentatif de l'angle d'inclinaison produit par le capteur d'angle de pente 7 est inférieure à une valeur de seuil négative enregistrée dans un registre convenable et représentative de la limite de situation « en descente, première vitesse engagée »;
 - une troisième porte ET pour combiner les signaux de sortie du circuit pour activer le service de démarrage « en descente,

10

15

20

25

30

première vitesse engagée » et du circuit de détection de situation « en descente, première vitesse engagée » ;

- une quatrième porte ET pour combiner la sortie de la troisième porte ET et la sortie du circuit pour tester la valeur de l'estimation de couple transmis ECT issue du reste du dispositif de démarrage de l'invention à une valeur de seuil ECTSeuil et pour produire un ordre de desserrage du Frein de Parking Automatique de situation « en descente, première vitesse engagée ».
- 39 Dispositif selon l'une des revendications 23 à 38, caractérisé en ce qu'il comporte un circuit pour mettre en œuvre un service de démarrage en descente en « marche arrière » qui comporte :
- un circuit pour activer le service de démarrage « en descente, vitesse de marche arrière engagée » lors de la configuration du véhicule à la production, à la maintenance ou lors de la détection du type de conducteur ou du conducteur lorsque ce dernier prend place dans le véhicule qui produit un signal logique à « 0 » si le service n'est pas implémenté et à « 1 » si le service est implémenté;
- un circuit de détection de situation « en descente, vitesse de marche arrière engagée » pour détecter que le signal représentatif de l'angle d'inclinaison produit par le capteur d'angle de pente 7 est supérieure à une valeur de seuil positive enregistrée dans un registre convenable et représentative de la limite de situation « en descente, vitesse de marche arrière engagée »;
- une troisième porte ET pour combiner les signaux de sortie du circuit pour activer le service de démarrage « en descente, vitesse de marche arrière engagée » et du circuit de détection de situation « en descente, vitesse de marche arrière engagée »;
- une quatrième porte ET pour combiner la sortie de la troisième porte ET et la sortie du circuit pour tester la valeur de

15

20

25

30

l'estimation de couple transmis ECT issue du reste du dispositif de démarrage de l'invention à une valeur de seuil ECTSeuil et pour produire un ordre de desserrage du Frein de Parking Automatique de situation « en descente, vitesse de marche arrière engagée ».

- 40 Dispositif selon l'une des revendications 23 à 39, caractérisé en ce qu'il comporte un circuit pour détecter un excès de tangage dont la sortie est active si l'excès de tangage dépasse un seuil prédéterminé dans un registre, la sortie du circuit pour détecter un excès de tangage étant combinée par une première entrée inverseuse d'une porte ET, dont une autre entrée est connectée à la sortie du dispositif précédemment décrite sur laquelle se trouve l'ordre de desserrage du Frein de Parking Automatique, et la sortie de la porte ET produisant l'ordre de desserrage du Frein de Parking Automatique en dehors d'un excès de tangage.
- 41 Dispositif selon la revendication 40, caractérisé en ce que le circuit pour détecter un excès de tangage comporte une borne d'entrée qui reçoit un signal produit par le capteur d'angle de pente (7) qui présente une résolution suffisante pour détecter un excès de tangage, transmis à l'entrée d'un circuit pour produire un signal représentatif de la dérivée temporelle du signal de détection de l'angle d'inclinaison dont la sortie est connectée à une entrée d'un comparateur dont l'autre entrée est connectée à un registre maintenant une valeur de seuil d'excès de tangage. La sortie du comparateur est active quand la dérivée du signal représentatif de l'angle d'inclinaison du capteur 7 est supérieure au seuil prédéterminé.
- 42 Dispositif selon la revendication 41, caractérisé en ce qu'il comporte un générateur de valeurs de seuil d'excès de tangage en fonction de l'angle d'inclinaison produit par le capteur (7) pour produire la valeur de seuil d'excès de tangage.
- 43 Dispositif selon la revendication 42, caractérisé en ce que le générateur de valeurs de seuil d'excès de tangage

10

15

20

25

30

comporte une première série de valeurs de seuil dans un premier sens de démarrage et une seconde série de valeurs de seuil dans un second sens de démarrage.

- 44 Dispositif selon l'une des revendications 23 à 43, caractérisé en ce qu'il comporte un circuit pour apporter un service d'anticipation de la dynamique du démarrage qui comporte un circuit pour calculer la dérivée temporelle D Acc du signal Teta Acc de degré d'enfoncement fourni par le capteur d'angle de pente (7 ; Figure 1) connecté à une première entrée d'un comparateur dont l'autre entrée est connecté générateur d'une valeur prédéterminée d'une Seuil Anticipe, de sorte que sa sortie est active si la valeur Seuil Anticipe est dépassée dont le signal de sortie du comparateur est alors transmis à une première entrée d'une autre porte ET dont la seconde entrée est connectée à un circuit pour détecter que l'estimation de couple transmis ECT est en cours d'incrémentation par exemple en détectant l'évolution compteur CPTR (83; Figure 6) et la sortie de l'autre porte ET est alors utilisée comme ordre de desserrage anticipé du Frein de Parking Automatique.
- 45 Dispositif selon la revendication 44, caractérisé en ce qu'il comporte aussi un générateur d'un seuil prédéterminé Seuil_Anticipe sous forme d'une table de valeurs de seuil adressée par la valeur du degré de pente mesuré par le capteur d'angle de pente (7), la valeur Seuil_Anticipe étant alors transmise au comparateur précité.
- 46 Dispositif selon l'une des revendications 23 à 46, caractérisé en ce qu'il comporte aussi un circuit pour prendre en compte le temps de réponse du Frein de Parking Automatique et le dynamisme du conducteur en exécutant une anticipation ou prédiction (ECT_prédit) sur l'estimation de couple transmis (ECT) qui comporte :
- un opérateur de prédiction pour exécuter une opération de la forme : ECT prédit(Tr) = ECT + Tr x (d/dt).ECT, dans laquelle

20

25

Tr est une valeur caractéristique du temps de réponse du système électromécanique et la dérivée temporelle ((d/dt).ECT) sur l'estimation de couple transmis est une estimation du dynamisme du conducteur;

- opérateur de test de la prédiction sur l'estimation de couple transmis (ECT_prédit) à au moins un seuil (S_min_prédit et/ou S_max_prédit) de test de desserrage à anticipation prédéterminé, enregistré et/ou calibrable dans une mémoire, de sorte que soit produit un ordre de desserrage anticipée du Frein de Parking Automatique si l'opérateur de test est activé.
 - 47 Dispositif selon l'une des revendications 23 à 46, caractérisé en ce qu'il comporte un processeur présentant une architecture logicielle en quatre blocs :
 - un bloc de saisie des données d'entrée parmi lesquelles le régime moteur Wm, la vitesse du véhicule Vv, l'angle de pente, le couple moyen estimé Cme, le degré d'enfoncement de la pédale d'accélérateur TETA_Acc, notamment prélevées sur le bus CAN (1);
 - un bloc de traitement de signal appliqué sur les données d'entrée qui opère particulièrement des filtrages numériques sur tout ou partie des données d'entrée et réalise des corrections d'échelles ou d'unités;
 - un bloc d'initialisation des paramètres du procédé de l'invention comportant notamment les valeurs de seuil et les initialisations des compteurs;
 - un bloc d'exécution du procédé selon l'une des revendications
 1 à 22 pour générer un ordre de desserrage du Frein de Parking Automatique.

Internati PCT/FR 03/01897

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B60T11/10 B60K41/20 B60T13/74 B60T7/12

B60T7/04

B60T7/10

B60T13/66

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched} & \text{(classification system followed by classification symbols)} \\ \text{IPC 7} & \text{B60T} & \text{B60K} \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data	a base consulted during the international search (name of data t	ase and, where practical search terms used) .
WPI Data		• • • • • • • • • • • • • • • • • • • •	,
	NTS CONSIDERED TO BE RELEVANT		
Category ° (Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
A	DE 198 49 799 A (VOLKSWAGENWERK 8 June 2000 (2000-06-08) column 6, line 25 - line 31 column 6, line 41 -column 7, line figures 1-3B		1,23
A	DE 199 31 345 A (CONTINENTAL TEX OHG) 14 December 2000 (2000-12-1 page 3, line 50 -page 5, line 1;	.4)	1,23
A	WO 89 01887 A (BOSCH GMBH ROBERT 9 March 1989 (1989-03-09) page 2, line 3 -page 6, last lin		1,23
Α	DE 199 12 878 A (CONTINENTAL TENDES) 20 April 2000 (2000-04-20) column 5, paragraph 2 - line 57;		1,23
χ Further	r documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.
° Special cates	gories of cited documents:		A Delivery
consider	I defining the general state of the art which is not red to be of particular relevance cument but published on or after the International	 "T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the or 	the application but eory underlying the
"L" document which is citation o	which may throw doubts on priority claim(s) or cited to establish the publication date of another or other special reason (as specified)	cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an in-	be considered to cument is taken alone taken alone
otner me	it referring to an oral disclosure, use, exhibition or eans I published prior to the international filing date but	document is combined with one or moments, such combination being obvious in the art.	ore other such docu-
later than	n the priority date claimed	*&" document member of the same patent	family
Date of the ac	dual completion of the international search	Date of mailing of the international sea	arch report
	October 2003	06/11/2003	
Name and mai	illing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl,	Authorized officer	
	Fax: (+31-70) 340-3016 0 (second sheet) (July 1992)	Blurton, M .	

Internat	Application No
PCT/FR	03/01897

Citation of decument, with Indication, where appropriate, of the netiowant passeages	C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
26 April 2000 (2000-04-26) page 4, line 10 -page 8, last line; figures 1,2 DE 15 80 720 A (SUMITOMO ELECTRIC INDUSTRIES) 4 June 1970 (1970-06-04) page 10, paragraph 2 page 19, paragraph 2 -page 20, line 20:			Relevant to claim No.
INDUSTRIES) 4 June 1970 (1970-06-04) page 10, paragraph 2 page 19, paragraph 2 -page 20, line 20:	A	26 April 2000 (2000-04-26) page 4, line 10 -page 8. last line: -	1,23
	A	Tigures 1,2 DE 15 80 720 A (SUMITOMO ELECTRIC INDUSTRIES) 4 June 1970 (1970-06-04) page 10, paragraph 2 page 19, paragraph 2 -page 20, line 20	1,23

	atent document d in search report		Publication date		Patent family member(s)		Publication date
DE	19849799	Α	08-06-2000	DE	19849799	A1	08-06-2000
DE	19931345	Α	14-12-2000	DE WO EP JP	19931345 0076818 1192067 2003502206	A1 A1	14-12-2000 21-12-2000 03-04-2002 21-01-2003
WO	8901887	A	09-03-1989	DE DE WO EP JP JP US	8901887 0375708 2703597 3500036	D1 A1 A1 B2 T A	09-03-1989 12-03-1992 09-03-1989 04-07-1990 26-01-1998 10-01-1991 14-07-1992 11-05-1993
DE	19912878	Α	20-04-2000	DE	19912878	A1	20-04-2000
GB	2342967	A	26-04-2000	NONE			
DE	1580720	A	04-06-1970	DE GB GB US US	1580720 1152852 1152853 3426872 3439782	A A A	04-06-1970 21-05-1969 21-05-1969 11-02-1969 22-04-1969

nationale No PCT/FR 03/01897

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 B60T11/10 B60K41/20

B60T13/74

٤)

B60T7/12

B60T7/04

B60T7/10

B60T13/66

no. des revendications visées

1,23

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents

DE 198 49 799 A (VOLKSWAGENWERK AG)

8 juin 2000 (2000-06-08)

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Α

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 B60T B60K

Documentation consultée autre que la documentation minimale dans la mesure oû ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) WPI Data, PAJ

	colonne 6, ligne 25 - ligne 31 colonne 6, ligne 41 -colonne 7, li figures 1-3B	gne 57;	
А	DE 199 31 345 A (CONTINENTAL TEVES OHG) 14 décembre 2000 (2000-12-14) page 3, ligne 50 -page 5, ligne 1; 1)	1,23
A	WO 89 01887 A (BOSCH GMBH ROBERT) 9 mars 1989 (1989-03-09) page 2, ligne 3 -page 6, dernière figure 1	ligne; /	1,23
A docume consid *E* docume ou apri *L* docume priorité autre c *O* docume une ex *P* docume positéri	ant définissant l'état général de la technique, non léré comme particulièrement pertinent ent antérieur, mais publié à la date de dépôt international ès cette date ent pouvant jeter un doute sur une revendication de et ou cité pour déterminer la date de publication d'une cité lour une raison spéciale (telle qu'indiquée) ent se référant à une divulgation orale, à un usage, à position ou tous autres moyens ent publié avant la date de dépôt international, mais leurement à la date de priorité revendiquée	Courment ultérieur publié après la date date de priorité et n'appartenenant pa technique perlinent, mais cité pour co ou la théorie constituant la base de l'in étre considérée comme nouvelle ou c inventive par rapport au document coi document particulièrement pertinent; l'in e peut être considérée comme pertinent; l'in e peut être considérée comme implications que le document est associé à un documents de même nature, cette coi pour une personne du métier document qui fait partie de la même fait	de dépôt international ou la s à l'état de la mprendre le principe nivention nivention revendiquée ne peut omme impliquant une activité nsidéré isolément niven tion revendiquée quant une activité inventive ou plusieurs autres mbinaison étant évidente
Date à laque	elle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport d	le recherche internationale
25	9 octobre 2003	06/11/2003	
Nom et adre	sse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Blurton, M	
Committee of the commit	(SO/210 (describes fouries) (Initial const	L	

ĺ	Demand tel lale No
	PCT/FR 03/01897

C (evite) D	OCHMENTS CONCIDEDES COMME DESTINENTS	L	
Catégorie °	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indicationdes passages p	ertinents	no. des revendications visées
00.054			
A	DE 199 12 878 A (CONTINENTAL TEVES AG & CO OHG) 20 avril 2000 (2000-04-20) colonne 5, alinéa 2 - ligne 57; figure 4		1,23
A	GB 2 342 967 A (ROVER GROUP) 26 avril 2000 (2000-04-26) page 4, ligne 10 -page 8, dernière ligne; figures 1,2		1,23
A .	DE 15 80 720 A (SUMITOMO ELECTRIC INDUSTRIES) 4 juin 1970 (1970-06-04) page 10, alinéa 2 page 19, alinéa 2 -page 20, ligne 20; figures 1-5		1,23

Renseignements relatifs aux membres de familles de brevets

Demandantemationale No PCT/FR 03/01897

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
DE 19849799	A	08-06-2000	DE	19849799 A1	08-06-2000
DE 19931345	A	14-12-2000	DE WO EP JP	19931345 A1 0076818 A1 1192067 A1 2003502206 T	14-12-2000 21-12-2000 03-04-2002 21-01-2003
WO 8901887	A	09-03-1989	DE DE WO EP JP JP US	3728709 A1 3868274 D1 8901887 A1 0375708 A1 2703597 B2 3500036 T 5129496 A 5209329 A	09-03-1989 12-03-1992 09-03-1989 04-07-1990 26-01-1998 10-01-1991 14-07-1992 11-05-1993
DE 19912878	A	20-04-2000	DE	19912878 A1	20-04-2000
GB 2342967	A	26-04-2000	AUCL	JN ·	
DE 1580720	A	04-06-1970	DE GB GB US US	1580720 A1 1152852 A 1152853 A 3426872 A 3439782 A	04-06-1970 21-05-1969 21-05-1969 11-02-1969 22-04-1969