● 4회차

013	02 ①	03 4	042	05 ①
063	07 ③	082	09 ③	10 4
11 ①	12 ⑤	13 ④	14 ③	15 ②
16②	17 ②			

[서술형 1] (1) $f(x) = x^3 - 12x$ (2) 5

[서술형 2] 32

[서술형 3] $a=-\frac{3}{2}, f(3)=15$

- 01 $f(x)=x^3-3x^2+ax+1$ 에서 $f'(x)=3x^2-6x+a=3(x-1)^2+a-3$ 함수 f(x)가 열린구간 (0,3)에서 감소하려면 0< x<3에서 $f'(x)\leq 0$ 이어야 하므로 오른쪽 그림에서 $f'(3)=a+9\leq 0$ $\therefore a\leq -9$ 따라서 상수 a의 최댓값은 -9이다.
- 02 $f(x) = 2x^3 8x^2 + kx + 2$ 에서 $f'(x) = 6x^2 16x + k$ 이때 함수 f(x)는 x = 3에서 극솟값 m을 가지므로 f'(3) = 0, f(3) = m f'(3) = 0에서 54 48 + k = 0 $\therefore k = -6$ 즉 $f(x) = 2x^3 8x^2 6x + 2$ 이므로 m = f(3) = 54 72 18 + 2 = -34 $\therefore k + m = -6 34 = -40$
- 03 $f(x)=x^3+ax^2+bx+c$ (a,b,c는 실수)로 놓으면 $f'(x)=3x^2+2ax+b$ 조건 에에서 $3x^2+2ax+b=3x^2-2ax+b$ 이므로 4ax=0 $\therefore a=0$ $\therefore f(x)=x^3+bx+c, f'(x)=3x^2+b$ 조건 바에서 f'(-2)=0, f(-2)=11이므로 12+b=0, -8-2b+c=11 위의 두 식을 연립하여 풀면 b=-12, c=-5 즉 $f(x)=x^3-12x-5$ 에서 $f'(x)=3x^2-12=3(x+2)(x-2)$ f'(x)=0에서 x=-2 또는 x=2

\overline{x}	•••	-2		2	•••
f'(x)	+	0	_	0	+
f(x)	/	11	>	-21	/

따라서 함수 f(x)는 x=2에서 극솟값 -21을 갖는 다.

04 $f(x)=x^3-3x^2+2x+1$ 에서 $f'(x)=3x^2-6x+2$ 이차방정식 f'(x)=0의 두 실근이 $x=\alpha$ 또는 $x=\beta$ 이므로 근과 계수의 관계에 의하여 $\alpha+\beta=2$

$$\therefore \frac{\alpha + \beta}{2} = 1$$

05 $f(x) = x^3 - 15x^2 + 48x + 65$ 로 놓으면 $f'(x) = 3x^2 - 30x + 48 = 3(x - 2)(x - 8)$ f'(x) = 0에서 x = 2 또는 x = 8

\overline{x}	0		2	•••	8	•••	9
f'(x)		+	0	_	0	+	
f(x)	65	7	109	>	1	7	11

즉 함수 f(x)는 x=2에서 최댓값 109, x=8에서 최 솟값 1을 갖는다.

따라서 해수욕장을 방문한 사람의 수가 가장 많았을 때는 2시간이 지난 후이다.

06 조건 (카에서 f(1+x)=f(1-x)이므로 함수 f(x)는 직선 x=1에 대하여 대칭이다.

또 조건 (나)에서 x=2에서 극댓값 7을 가지므로 함수 f(x)의 그래 프의 개형은 오른쪽 그림과 같다. 즉 함수 f(x)는 x=0과 x=2에서 극댓값 7, x=1에서 극솟값을 가지므로

f'(0)=0, f'(1)=0, f'(2)=0, f(0)=7, f(2)=7f(x)가 최고차항의 계수가 -1인 사차함수이므로 f'(x)는 최고차항의 계수가 -4인 삼차함수이다. 즉

$$\begin{split} f'(x) &= -4x(x-1)(x-2) = -4x^3 + 12x^2 - 8x \\ & \therefore f(x) = \int f'(x) dx = \int (-4x^3 + 12x^2 - 8x) dx \\ & = -x^4 + 4x^3 - 4x^2 + C \\ &$$
 이때 $f(0) = 7$ 이므로 $C = 7$ 따라서 $f(x) = -x^4 + 4x^3 - 4x^2 + 7$ 이므로 $f(1) = -1 + 4 - 4 + 7 = 6$

오답 피하기

함수 f(x)에 대하여 f(p-x)=f(p+x) (p는 실수)이면 함수 f(x)는 직선 x=p에 대하여 대칭이다.

07 $x^3 - 3x - a = 0$ 에서 $x^3 - 3x = a$ 방정식 ○이 서로 다른 세 실근을 가지려면 함수 $y=x^3-3x$ 의 그래프와 직선 y=a의 교점이 3개이 어야 하다

$$f(x)=x^3-3x$$
로 놓으면
$$f'(x)=3x^2-3=3(x+1)(x-1)$$

$$f'(x)=0$$
에서 $x=-1$ 또는 $x=1$

\boldsymbol{x}	•••	-1	•••	1	•••
f'(x)	+	0	_	0	+
f(x)	/	2	>	-2	/

즉 함수 y=f(x)의 그래프는 오른쪽 그림과 같으므로 y=f(x)의 그래프와 직선 y=a의 교점이 3개이려면 -2 < a < 2

 $\mathbf{08}$ 점 P의 시각 t에서의 속도를 v라 하면 $v = \frac{dx}{dt} = 12t^3 - 48t = 12t(t+2)(t-2)$

이때 점 P가 운동 방향을 바꿀 때의 속도는 0이므로 v=0에서

$$12t(t+2)(t-2)=0$$
 $\therefore t=2$ ($\because t>0$) 따라서 점 P가 운동 방향을 처음으로 바꾸는 시각은 $t=2$

09 $f(x) = \int (2x-1)^3(x+1)dx$ 의 양변을 x에 대하여 미분하면

$$f'(x) = (2x-1)^3(x+1)$$

 $\therefore f'(2) = 27 \cdot 3 = 81$

10
$$f(x)+g(x) = \int 2x dx + \int 3x^2 dx$$

= $\int (2x+3x^2) dx$
= x^3+x^2+C

11
$$\int_{-1}^{3} (x^2 - 2x) dx - \int_{2}^{3} (x^2 - 2x) dx$$

$$= \int_{-1}^{3} (x^2 - 2x) dx + \int_{3}^{2} (x^2 - 2x) dx$$

$$= \int_{-1}^{2} (x^2 - 2x) dx$$

$$= \left[\frac{1}{3} x^3 - x^2 \right]_{-1}^{2}$$

$$= 0$$

12
$$\int_{0}^{1} (-x^{2}+1)dx + \int_{1}^{4} (x^{2}-1)dx$$
$$= \left[-\frac{1}{3}x^{3} + x \right]_{0}^{1} + \left[\frac{1}{3}x^{3} - x \right]_{1}^{4}$$
$$= \frac{2}{3} + 18 = \frac{56}{3}$$

13
$$\int_{1}^{x} f(t)dt = x^{3} - 2ax^{2} + ax$$
의 양변에 $x = 1$ 를 대입하면 $0 = 1 - 2a + a$ $\therefore a = 1$ 즉 $\int_{1}^{x} f(t)dt = x^{3} - 2x^{2} + x$ 의 양변을 x 에 대하여 미분하면 $f(x) = 3x^{2} - 4x + 1$ $\therefore f(3) = 27 - 12 + 1 = 16$

14 f(x)의 부정적분을 F(x)라 하면

$$\lim_{x \to 1} \frac{1}{x - 1} \int_{1}^{x} f(t) dt = \lim_{x \to 1} \frac{F(x) - F(1)}{x - 1}$$

$$= F'(1)$$

$$= f(1)$$

$$= 2 - 1 + 3 = 4$$

정적분으로 정의된 함수의 극한

(1)
$$\lim_{x\to 0} \frac{1}{x} \int_{a}^{x+a} f(t) dt = f(a)$$

(2)
$$\lim_{x \to a} \frac{1}{x - a} \int_{a}^{x} f(t) dt = f(a)$$

15 $x^2-1=4$ 에서 $x^2=5$ $\therefore x = -\sqrt{5}$ 또는 $x = \sqrt{5}$ 즉 곡선 $y=x^2-1$ 과 직선 y=4의 교점의 x좌표는 $-\sqrt{5}$. $\sqrt{5}$ 이 므로 오른쪽 그림에서 구하는 도형의 넓이는

$$\int_{-\sqrt{5}}^{\sqrt{5}} \{4 - (x^2 - 1)\} dx$$

$$= \int_{-\sqrt{5}}^{\sqrt{5}} (-x^2 + 5) dx$$

$$= 2 \int_{0}^{\sqrt{5}} (-x^2 + 5) dx$$

$$= 2 \left[-\frac{1}{3} x^3 + 5x \right]_{0}^{\sqrt{5}}$$

$$= 2 \cdot \frac{10}{3} \sqrt{5}$$

$$= \frac{20}{3} \sqrt{5}$$

Lecture 정적분 $\int_{-a}^{a} x^{n} dx$ 의 계산

n이 자연수일 때, 정적분 $\int_{-a}^{a} x^n dx$ 에 대하여

(1)
$$n$$
이 짝수이면 $\int_{-a}^{a} x^{n} dx = 2 \int_{0}^{a} x^{n} dx$

(2) n이 홀수이면 $\int_{-a}^{a} x^{n} dx = 0$

16 $f(x) = x^3 + x$ 로 놓으면 $f'(x) = 3x^2 + 1$ 곡선 y=f(x) 위의 점 (1,2)에서의 접선의 기울기 는 f'(1)=4이므로 접선의 방정식은 y-2=4(x-1) : y=4x-2 $x^3+x=4x-2$ 에서 $x^3-3x+2=0$

 $(x-1)^2(x+2)=0$ $\therefore x=-2 \ \Xi = x=1$

즉 곡선 $y=x^3+x$ 와 직선 y=4x-2의 교점의 x좌표는

하는 도형의 넓이는

- 17 ㄱ 점 P가 운동 방향을 바꿀 때의 속도는 0이므로 v(t) = 0에서 t = 2 또는 t = 6 또는 t = 8즉 점 P는 운동 방향을 3번 바꾼다.
 - $_{-}$ 시각 t=2에서의 점 P의 위치는

$$0 + \int_0^2 v(t)dt = \frac{1}{2} \cdot 2 \cdot 2 = 2$$

시각 t=6에서의 점 P의 위치는

$$0 + \int_0^6 v(t)dt = \frac{1}{2} \cdot 2 \cdot 2 - \frac{1}{2} \cdot (2+4) \cdot 2 = -4$$

시각 t=8에서의 점 P의 위치는

$$0+\int_0^8 v(t)dt$$

$$= \frac{1}{2} \cdot 2 \cdot 2 - \frac{1}{2} \cdot (2+4) \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2$$

$$=-2$$

시각 t=9에서의 점 P의 위치는

$$0+\int_0^9 v(t)dt$$

$$= \frac{1}{2} \cdot 2 \cdot 2 - \frac{1}{2} \cdot (2+4) \cdot 2 + \frac{1}{2} \cdot 2 \cdot 2 - \frac{1}{2} \cdot 1 \cdot 2$$

$$= -3$$

즉 점 P가 출발한 후 원점으로부터 가장 멀리 떨 어져 있는 시각은 t=6이다.

 \Box 점 P가 출발한 후 t=9일 때까지 원점을 다시 지 나는 순간은 1번 있다.

따라서 옳은 것은 ㄴ이다.

[서술형 1]
$$(1)$$
 $f(x) = x^3 + ax^2 + bx + c$ $(a, b, c$ 는 실수) 로 놓으면

$$f(-x) = -f(x)$$
에서
 $-x^3 + ax^2 - bx + c = -x^3 - ax^2 - bx - c$

이므로
$$2ax^2+2c=0$$
 $\therefore a=0, c=0$

$$\therefore f(x) = x^3 + bx, f'(x) = 3x^2 + b$$

이때
$$f'(2)=0$$
이므로

$$12+b=0$$
 : $b=-12$

$$\therefore f(x) = x^3 - 12x$$

(2) $f'(x)=3x^2-12=3(x+2)(x-2)$ 이므로 $f'(x)\leq 0$ 에서 $3(x+2)(x-2)\leq 0$ $\therefore -2\leq x\leq 2$ 따라서 정수 x는 -2, -1, 0, 1, 2로 그 개수는 5이다.

채점 기준	배점
$lue{1}$ 함수 $f(x)$ 를 구할 수 있다.	4점
② $f'(x) \le 0$ 을 만족시키는 정수 x 의 개수를 구할 수 있다.	2점

[서술형 2] 상자의 높이를 x라 하면 오른쪽 그림과 같이 정삼각형의 꼭짓점과 자른 부분까지의 거리가

이때 $0 < \sqrt{3}x < 6$ 이므로

 $0 < x < 2\sqrt{3}$

삼각기둥의 밑면의 한 변의 길이가 $12-2\sqrt{3}x$ 이므로 그 넓이는

$$\frac{\sqrt{3}}{4}(12-2\sqrt{3}x)^2 = 3\sqrt{3}(2\sqrt{3}-x)^2$$

따라서 상자의 부피를 V(x)라 하면

$$V(x) = 3\sqrt{3}(2\sqrt{3} - x)^2 \cdot x$$

= $3\sqrt{3}(x^3 - 4\sqrt{3}x^2 + 12x)$

$$V'(x) = 3\sqrt{3}(3x^2 - 8\sqrt{3}x + 12) = 3\sqrt{3}(x - 2\sqrt{3})(3x - 2\sqrt{3})$$

$$V'(x) = 0$$
에서 $x = \frac{2\sqrt{3}}{3}$ ($\because 0 < x < 2\sqrt{3}$)

x	0		$\frac{2\sqrt{3}}{3}$		$2\sqrt{3}$
V'(x)		+	0	_	
V(x)		/	32	\	

즉 함수 V(x)는 $x=\frac{2\sqrt{3}}{3}$ 에서 최댓값 32를 가지므로 상자의 부피의 최댓값은 32이다.

채점 기준	배점
❶ 상자의 부피를 식으로 나타낼 수 있다.	4점
② 상자의 부피의 최댓값을 구할 수 있다.	3점

오답 피하기

오른쪽 그림과 같은 직각삼각형 ABC에 대하여 각 변의 길이의 비는

 \overline{AB} : \overline{BC} : $\overline{CA} = 1$: $\sqrt{3}$: 2

[서술형 3]
$$\int_{1}^{x} (x-t)f(t)dt = x^{3} + ax^{2} + \frac{1}{2}$$
에서
$$\int_{1}^{x} xf(t)dt - \int_{1}^{x} tf(t)dt = x^{3} + ax^{2} + \frac{1}{2}$$

$$x\int_{1}^{x} f(t)dt - \int_{1}^{x} tf(t)dt = x^{3} + ax^{2} + \frac{1}{2} \quad \cdots \quad \bigcirc$$

 \bigcirc 의 양변을 x에 대하여 미분하면

$$\int_{1}^{x} f(t)dt + xf(x) - xf(x) = 3x^{2} + 2ax$$

$$\therefore \int_{1}^{x} f(t)dt = 3x^{2} + 2ax \qquad \cdots$$

 \bigcirc 의 양변에 x=1을 대입하면

$$0 = 3 + 2a$$
 : $a = -\frac{3}{2}$

따라서 $\int_{1}^{x} f(t)dt = 3x^{2} - 3x$ 의 양변을 x에 대하여 미분하면 f(x) = 6x - 3이므로 f(3) = 18 - 3 = 15

채점 기준	배점	
● 주어진 식을 정리할 수 있다.	2점	
② a의 값을 구할 수 있다.		
③ $f(3)$ 의 값을 구할 수 있다.	2점	

오답 피하기

 $\int_{1}^{x} \!\! x f(t) dt$ 에서 적분변수가 t이므로 x는 상수로 생각한다. 즉

$$\frac{d}{dx} \int_{1}^{x} x f(t) dt = \frac{d}{dx} \left\{ x \int_{1}^{x} f(t) dt \right\}$$
$$= \int_{1}^{x} f(t) dt + x f(x)$$