```
In [1]: import pandas as pd
         import numpy as np
         import scipy as sp
         import matplotlib.pyplot as plt
         import seaborn as sns
 In [2]: from google.colab import files
         uploaded = files.upload()
         for fn in uploaded.keys():
           print('User uploaded file "{name}" with length {length} bytes'.format(
                name=fn, length=len(uploaded[fn])))
        Choose Files No file chosen
                                            Upload widget is only available when the cell has
       been executed in the current browser session. Please rerun this cell to enable.
        Saving Test_scores_Math Scores.xlsx to Test_scores_Math Scores.xlsx
        User uploaded file "Test_scores_Math Scores.xlsx" with length 26762 bytes
In [13]: # Determine bin edges based on quantiles
         quantiles = df_processed['math'].quantile([0, 1/3, 2/3, 1])
         bin_edges = quantiles.tolist()
         # Define labels for the bins
         bin_labels = ['low', 'medium', 'high']
         # Create a new binned variable 'math_score_category' using pd.cut
         df_processed['math_score_category'] = pd.cut(df_processed['math'], bins=bin_edges,
         # Display the value counts for the new binned variable
         print("Value counts for 'math_score_category':")
         display(df_processed['math_score_category'].value_counts())
         # Display the head of the DataFrame with the new column
         print("\nDataFrame head with 'math_score_category':")
         display(df_processed.head())
        Value counts for 'math_score_category':
                            count
        math score category
                               85
                   medium
                       low
                               84
```

dtype: int64

DataFrame head with 'math_score_category':

81

high

	ID	math	experience	schoolnum	class_regular.with.aide	class_small.class	sex_girl	lunch
0	1	475	9	4	False	True	True	I
1	2	539	19	2	False	True	True	I
2	3	465	0	1	True	False	False	
3	4	557	14	4	False	False	False	I
4	5	490	6	4	False	True	False	

```
In [14]: # Assuming the file uploaded was 'Test_scores_Math Scores.xlsx'
df = pd.read_excel('Test_scores_Math Scores.xlsx')

print("DataFrame shape:")
display(df.shape)

print("\nDataFrame head:")
display(df.head())

print("\nDataFrame info:")
display(df.info())

print("\nDataFrame describe:")
display(df.describe())
```

DataFrame shape: (250, 8) DataFrame head:

class experience sex lunch ID math race schoolnum 4 0 1 475 small.class girl white no 539 small.class 1 2 19 girl no black 2 2 465 regular.with.aide boy 3 yes black 1 3 4 557 regular 14 boy no white 4 yes white 5 490 small.class 6 boy 4

DataFrame info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 250 entries, 0 to 249
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	ID	250 non-null	int64
1	math	250 non-null	int64
2	class	250 non-null	object
3	experience	250 non-null	int64
4	sex	250 non-null	object
5	lunch	250 non-null	object
6	race	250 non-null	object
7	schoolnum	250 non-null	int64

dtypes: int64(4), object(4)
memory usage: 15.8+ KB

None

DataFrame describe:

	ID	math	experience	schoolnum
count	250.000000	250.000000	250.00000	250.000000
mean	125.500000	489.204000	8.90000	2.416000
std	72.312977	42.354907	5.80351	1.098988
min	1.000000	401.000000	0.00000	1.000000
25%	63.250000	460.000000	4.00000	1.250000
50%	125.500000	483.500000	9.00000	2.000000
75%	187.750000	515.750000	13.00000	3.000000
max	250.000000	622.000000	27.00000	5.000000

Task

Create a copy of the dataframe and perform data preparation steps including handling missing values, duplicates, checking data types, and addressing categorical variables.

Create a copy of the dataframe

Subtask:

Create a new DataFrame by copying the original DataFrame df.

Reasoning: Create a copy of the original DataFrame to perform data preparation without modifying the original data.

```
In [15]: df_processed = df.copy()
```

Handle missing values

Subtask:

Check for and address any missing values in the dataset df_processed.

Reasoning: Check for missing values in df_processed.

Handle duplicates

Subtask:

Identify and remove any duplicate rows in the df_processed DataFrame.

Reasoning: Check for and remove duplicate rows in the df_processed DataFrame.

```
In [17]: print("Number of duplicate rows before removal:")
    print(df_processed.duplicated().sum())

    df_processed = df_processed.drop_duplicates()

    print("\nNumber of duplicate rows after removal:")
    print(df_processed.duplicated().sum())

Number of duplicate rows before removal:
    0

Number of duplicate rows after removal:
    0
```

Check data types

Subtask:

Ensure that the data types of each column in df_processed are appropriate for analysis.

Reasoning: Print the data types of each column in the df_processed DataFrame to check if they are appropriate for analysis.

```
In [18]: print("Data types of columns in df processed:")
         display(df_processed.dtypes)
        Data types of columns in df_processed:
                        0
               ID
                    int64
             math
                   int64
             class object
        experience
                    int64
               sex object
             lunch object
              race object
        schoolnum
                   int64
```

dtype: object

Address categorical variables

Subtask:

Encode or transform categorical variables in the df_processed DataFrame if necessary for modeling.

Reasoning: Identify and encode categorical variables in the df_processed DataFrame using one-hot encoding since there are no ordinal categorical variables and this is a common practice for many machine learning models.

```
In [19]: categorical_cols = df_processed.select_dtypes(include='object').columns
    print(f"Categorical columns identified: {list(categorical_cols)}")

# Apply one-hot encoding to the categorical columns
    df_processed = pd.get_dummies(df_processed, columns=categorical_cols, drop_first=Tr

    print("\nDataFrame head after encoding:")
    display(df_processed.head())
```

```
print("\nDataFrame info after encoding:")
display(df_processed.info())
```

Categorical columns identified: ['class', 'sex', 'lunch', 'race']

DataFrame head after encoding:

	ID	math	experience	schoolnum	class_regular.with.aide	class_small.class	sex_girl	lunch
0	1	475	9	4	False	True	True	I
1	2	539	19	2	False	True	True	I
2	3	465	0	1	True	False	False	
3	4	557	14	4	False	False	False	I
4	5	490	6	4	False	True	False	

DataFrame info after encoding: <class 'pandas.core.frame.DataFrame'> RangeIndex: 250 entries, 0 to 249 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	250 non-null	int64
1	math	250 non-null	int64
2	experience	250 non-null	int64
3	schoolnum	250 non-null	int64
4	class_regular.with.aide	250 non-null	bool
5	class_small.class	250 non-null	bool
6	sex_girl	250 non-null	bool
7	lunch_yes	250 non-null	bool
8	race_white	250 non-null	bool

dtypes: bool(5), int64(4)
memory usage: 9.2 KB

None

Feature engineering (optional)

Subtask:

Create new features that might be helpful for analysis based on the existing columns in the df_processed DataFrame.

Reasoning: Create two new features based on existing numerical and encoded categorical columns: an interaction term between 'math' and 'experience', and a feature combining 'math' with the 'lunch_yes' indicator. Then, display the head of the dataframe to show the new columns.

```
In [20]: # Create an interaction term between 'math' and 'experience'
df_processed['math_x_experience'] = df_processed['math'] * df_processed['experience'
# Create a feature combining 'math' with the 'lunch_yes' indicator
```

```
df_processed['math_plus_lunch_effect'] = df_processed['math'] + (df_processed['lunc
# Display the head of the DataFrame with the new columns
display(df_processed.head())
```

	ID	math	experience	schoolnum	class_regular.with.aide	class_small.class	sex_girl	lunch
0	1	475	9	4	False	True	True	I
1	2	539	19	2	False	True	True	I
2	3	465	0	1	True	False	False	
3	4	557	14	4	False	False	False	I
4	5	490	6	4	False	True	False	

Summary:

Data Analysis Key Findings

- A copy of the original DataFrame df was successfully created as df_processed.
- No missing values were found in the df processed DataFrame.
- No duplicate rows were found in the df_processed DataFrame.
- The initial data types were found to be appropriate, with numerical columns (ID, math, experience, schoolnum) as int64 and categorical columns (class, sex, race, lunch) as object.
- Categorical columns ('class', 'sex', 'lunch', and 'race') were successfully one-hot encoded, resulting in a DataFrame containing only numerical and boolean types.
- Two new features were engineered: math_x_experience (interaction between 'math' and 'experience') and math_plus_lunch_effect (combining 'math' with a hypothetical effect from 'lunch_yes').

Insights or Next Steps

- The df_processed DataFrame is now clean and prepared for downstream analysis or modeling tasks, with missing values and duplicates handled, appropriate data types, and encoded categorical variables.
- The engineered features math_x_experience and math_plus_lunch_effect can be included in modeling to explore potential interaction effects and the impact of having lunch_yes on math scores.

```
In [ ]:
In [27]: from scipy import stats
# Calculate the mean (point estimate) of the 'math' scores
```

```
mean_math = df_processed['math'].mean()
 print(f"Point Estimate (Mean) of Math Scores: {mean_math:.2f}")
 # Calculate the standard error of the mean
 std_err_math = stats.sem(df_processed['math'])
 # Define the confidence level
 confidence level = 0.95
 # Calculate the confidence interval for the mean using the t-distribution
 # Degrees of freedom is n - 1
 degrees_freedom = len(df_processed['math']) - 1
 confidence_interval = stats.t.interval(confidence_level, degrees_freedom, loc=mean_
 print(f"{confidence_level*100:.0f}% Confidence Interval for the Mean Math Score: ({
Point Estimate (Mean) of Math Scores: 489.20
```

95% Confidence Interval for the Mean Math Score: (483.93, 494.48)

Task

Perform in-depth data exploration on the processed dataframe, including descriptive statistics, value counts, univariate and bivariate visualizations, and analysis of relationships with the 'math score category'.

Descriptive statistics

Subtask:

Calculate and display descriptive statistics for all numerical columns (math , experience , schoolnum, math_x_experience, math_plus_lunch_effect) and grouped by 'math_score_category'.

Reasoning: Calculate and display descriptive statistics for all numerical columns and then grouped by 'math_score_category' to understand the distribution of numerical features and how they vary across different math score categories.

```
In [28]: numerical_cols = ['math', 'experience', 'schoolnum', 'math_x_experience', 'math_plu
         print("Descriptive statistics for all numerical columns:")
         display(df_processed[numerical_cols].describe())
         print("\nDescriptive statistics for numerical columns grouped by 'math_score_catego'
         display(df_processed.groupby('math_score_category')[numerical_cols].describe())
```

Descriptive statistics for all numerical columns:

		math	experience	schoolnum	math_x_experience	math_plus_lunch_effect
C	ount	250.000000	250.00000	250.000000	250.0000	250.000000
n	nean	489.204000	8.90000	2.416000	4373.9640	512.804000
	std	42.354907	5.80351	1.098988	2933.4059	45.418332
	min	401.000000	0.00000	1.000000	0.0000	401.000000
	25%	460.000000	4.00000	1.250000	1864.0000	482.000000
	50%	483.500000	9.00000	2.000000	4382.5000	509.000000
	75%	515.750000	13.00000	3.000000	6310.2500	539.750000
	max	622.000000	27.00000	5.000000	14553.0000	648.000000

Descriptive statistics for numerical columns grouped by 'math score category':

/tmp/ipython-input-1705033626.py:7: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

display(df_processed.groupby('math_score_category')[numerical_cols].describe())

								math	ex
	count	mean	std	min	25%	50%	75%	max	count
math_score_category									
low	84.0	446.023810	16.864432	401.0	435.0	452.0	460.0	467.0	84.0
medium	85.0	484.341176	10.486446	468.0	475.0	485.0	493.0	502.0	85.0
high	81.0	539.086420	25.900868	503.0	517.0	533.0	557.0	622.0	81.0

 $3 \text{ rows} \times 40 \text{ columns}$

Reasoning: The previous attempt failed because the column 'math_score_category' was not present in the dataframe when trying to group. This column was created in an earlier cell but was not included in the df_processed dataframe used in the current cell. I need to recreate the 'math_score_category' column before attempting to group by it.

```
In [22]: # Determine bin edges based on quantiles
    quantiles = df_processed['math'].quantile([0, 1/3, 2/3, 1])
    bin_edges = quantiles.tolist()

# Define labels for the bins
    bin_labels = ['low', 'medium', 'high']

# Create a new binned variable 'math_score_category' using pd.cut
    df_processed['math_score_category'] = pd.cut(df_processed['math'], bins=bin_edges,

# Now calculate and display descriptive statistics for numerical columns grouped by
```

```
numerical_cols = ['math', 'experience', 'schoolnum', 'math_x_experience', 'math_plu
print("Descriptive statistics for numerical columns grouped by 'math_score_category
display(df_processed.groupby('math_score_category')[numerical_cols].describe())
```

Descriptive statistics for numerical columns grouped by 'math_score_category':

/tmp/ipython-input-2067003776.py:15: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

display(df_processed.groupby('math_score_category')[numerical_cols].describe())

								math	ex
	count	mean	std	min	25%	50%	75%	max	count
math_score_category									
low	84.0	446.023810	16.864432	401.0	435.0	452.0	460.0	467.0	84.0
medium	85.0	484.341176	10.486446	468.0	475.0	485.0	493.0	502.0	85.0
high	81.0	539.086420	25.900868	503.0	517.0	533.0	557.0	622.0	81.0

3 rows × 40 columns

Value counts and distribution analysis for categorical variables

Subtask:

Display value counts and visualize the distribution for all categorical columns (class_regular.with.aide, class_small.class, sex_girl, lunch_yes, race_white, math_score_category).

Reasoning: Iterate through the list of categorical columns, print value counts, and create count plots to visualize their distributions.

```
In [23]: categorical_cols = ['class_regular.with.aide', 'class_small.class', 'sex_girl', 'lu

for col in categorical_cols:
    print(f"\nValue counts for '{col}':")
    display(df_processed[col].value_counts())

    plt.figure(figsize=(8, 6))
    sns.countplot(data=df_processed, x=col, palette='viridis')
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.show()
```

Value counts for 'class_regular.with.aide':

class_regular.with.aide

False	162
True	88

dtype: int64

/tmp/ipython-input-1612119607.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df_processed, x=col, palette='viridis')

Value counts for 'class_small.class':

class_small.class

False	171
True	79

dtype: int64

/tmp/ipython-input-1612119607.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df_processed, x=col, palette='viridis')

Distribution of class_small.class

Value counts for 'sex_girl':

sex_girl	
True	127
False	123

dtype: int64

/tmp/ipython-input-1612119607.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df_processed, x=col, palette='viridis')

Value counts for 'lunch_yes':

lunch_yes

False	132
True	118

dtype: int64

/tmp/ipython-input-1612119607.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df_processed, x=col, palette='viridis')

Distribution of lunch_yes

Value counts for 'race_white':

race_white

True	158
False	92

dtype: int64

/tmp/ipython-input-1612119607.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df_processed, x=col, palette='viridis')

Value counts for 'math_score_category':

math_score_category

medium	85
low	84
high	81

dtype: int64

/tmp/ipython-input-1612119607.py:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df_processed, x=col, palette='viridis')

Inferential Analysis

Subtask:

Calculate and interpret the point estimate and confidence interval for the mean math score.

Reasoning:

To estimate the true mean math score of the population from which the sample was drawn, we calculate a point estimate (sample mean) and a confidence interval. The confidence interval provides a range of values within which the true population mean is likely to fall, with a certain level of confidence. We will use the t-distribution for the confidence interval calculation as the population standard deviation is unknown and the sample size is relatively large (n > 30).

```
In [ ]:
```

Univariate visualizations for numerical variables

Subtask:

Create histograms and box plots for each numerical column (math , experience , schoolnum , math_x_experience , math_plus_lunch_effect) to visualize their distributions and identify potential outliers.

Reasoning: Create histograms and box plots for the specified numerical columns to visualize their distributions and identify potential outliers.

```
In [24]: numerical_cols = ['math', 'experience', 'schoolnum', 'math_x_experience', 'math_plu

for col in numerical_cols:
    plt.figure(figsize=(12, 5))

    plt.subplot(1, 2, 1)
    sns.histplot(data=df_processed, x=col, kde=True)
    plt.title(f'Histogram of {col}')
    plt.xlabel(col)
    plt.ylabel('Frequency')

    plt.subplot(1, 2, 2)
    sns.boxplot(data=df_processed, y=col)
    plt.title(f'Box Plot of {col}')
    plt.ylabel(col)

    plt.tight_layout()
    plt.show()
```


Bivariate analysis - relationships between variables

Subtask:

Create scatter plots to visualize the relationship between 'math' and 'experience', 'math' and 'math_x_experience', and 'math' and 'math_plus_lunch_effect'. Calculate and visualize the correlation matrix for all numerical variables using a heatmap. Use box plots or violin plots to explore the relationship between the 'math_score_category' and numerical variables like 'experience'. Use grouped bar plots to explore the relationships between 'math_score_category' and other categorical variables like 'sex_girl', 'lunch_yes', and 'race_white'.

Reasoning: Create scatter plots for specified variable pairs, calculate and visualize the correlation matrix using a heatmap, and create box plots/violin plots and grouped bar plots to explore relationships with 'math_score_category'.

```
In [25]: # Scatter plots
    scatter_pairs = [('math', 'experience'), ('math', 'math_x_experience'), ('math', 'm
    for x_var, y_var in scatter_pairs:
```

```
plt.figure(figsize=(8, 6))
    sns.scatterplot(data=df_processed, x=x_var, y=y_var)
   plt.title(f'Scatter Plot of {y_var} vs {x_var}')
   plt.xlabel(x_var)
   plt.ylabel(y_var)
   plt.show()
# Correlation matrix and heatmap
numerical cols for corr = ['math', 'experience', 'schoolnum', 'math x experience',
correlation_matrix = df_processed[numerical_cols_for_corr].corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Numerical Variables')
plt.show()
# Box plots for numerical variables vs 'math_score_category'
numerical_cols_for_boxplot = ['experience', 'schoolnum', 'math_x_experience', 'math
for col in numerical_cols_for_boxplot:
   plt.figure(figsize=(8, 6))
   sns.boxplot(data=df_processed, x='math_score_category', y=col, order=['low', 'm
   plt.title(f'{col} by Math Score Category')
   plt.xlabel('Math Score Category')
   plt.ylabel(col)
   plt.show()
# Grouped bar plots for categorical variables vs 'math score category'
categorical_cols_for_barplot = ['sex_girl', 'lunch_yes', 'race_white']
for col in categorical cols for barplot:
   # Calculate proportions
   proportion_df = df_processed.groupby('math_score_category')[col].value_counts(n
   plt.figure(figsize=(8, 6))
   sns.barplot(data=proportion_df, x='math_score_category', y='proportion', hue=co
   plt.title(f'Proportion of {col} by Math Score Category')
   plt.xlabel('Math Score Category')
   plt.ylabel('Proportion')
   plt.legend(title=col)
   plt.show()
```

Scatter Plot of experience vs math

experience by Math Score Category

/tmp/ipython-input-2322272688.py:37: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

proportion_df = df_processed.groupby('math_score_category')[col].value_counts(norm alize=True).rename('proportion').reset_index()

/tmp/ipython-input-2322272688.py:37: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

proportion_df = df_processed.groupby('math_score_category')[col].value_counts(norm alize=True).rename('proportion').reset_index()

Proportion of lunch_yes by Math Score Category

/tmp/ipython-input-2322272688.py:37: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

proportion_df = df_processed.groupby('math_score_category')[col].value_counts(norm alize=True).rename('proportion').reset_index()

Proportion of race white by Math Score Category

Explore specific relationships with 'math score category'

Subtask:

Analyze the average 'math' score for each 'math_score_category', investigate the distribution of 'experience' within each 'math_score_category', and examine the proportion of students with 'lunch_yes' in each 'math_score_category'.

Reasoning: Calculate the mean 'math' score for each 'math_score_category', generate a box plot for 'experience' by 'math_score_category', calculate the proportion of 'lunch_yes' for each category, and create a bar plot for the 'lunch_yes' proportions.

```
In [26]: # 1. Calculate the mean of the 'math' column, grouped by 'math_score_category'
print("Average 'math' score by 'math_score_category':")
display(df_processed.groupby('math_score_category')['math'].mean())

# 2. Generate a box plot of 'experience' against 'math_score_category'
plt.figure(figsize=(8, 6))
sns.boxplot(data=df_processed, x='math_score_category', y='experience', order=['low plt.title('Distribution of Experience by Math Score Category')
plt.xlabel('Math Score Category')
```

```
plt.ylabel('Experience')
plt.show()
# 3. Calculate the proportion of 'lunch_yes' (True) for each 'math_score_category'
proportion_lunch_yes = df_processed.groupby('math_score_category')['lunch_yes'].val
print("\nProportion of 'lunch_yes' by 'math_score_category':")
display(proportion_lunch_yes[True])
# 4. Create a bar plot showing the proportion of 'lunch yes' for each 'math score c
plt.figure(figsize=(8, 6))
proportion_lunch_yes[True].plot(kind='bar', color=['skyblue', 'lightgreen', 'salmon
plt.title('Proportion of Students with Lunch_yes by Math Score Category')
plt.xlabel('Math Score Category')
plt.ylabel('Proportion of Lunch_yes')
plt.xticks(rotation=0)
plt.ylim(0, 1)
plt.grid(axis='y', linestyle='--')
plt.show()
```

Average 'math' score by 'math_score_category':

/tmp/ipython-input-2091789194.py:3: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

display(df_processed.groupby('math_score_category')['math'].mean())

math

math_score_category

low 446.023810 medium 484.341176 high 539.086420

dtype: float64

Distribution of Experience by Math Score Category

Proportion of 'lunch_yes' by 'math_score_category':

/tmp/ipython-input-2091789194.py:14: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and si lence this warning.

proportion_lunch_yes = df_processed.groupby('math_score_category')['lunch_yes'].va lue_counts(normalize=True).unstack().fillna(0)

True

math_score_category

low	0.619048
medium	0.423529
high	0.370370

dtype: float64

Summary:

Data Analysis Key Findings

- The math_score_category was successfully created by binning the math scores into 'low', 'medium', and 'high' based on quantiles.
- Descriptive statistics for numerical columns (math , experience , schoolnum , math_x_experience , math_plus_lunch_effect), when grouped by math_score_category , show how the distribution of these features varies across different math performance levels.
- Value counts and visualizations for categorical columns (class_regular.with.aide, class_small.class, sex_girl, lunch_yes, race_white, math_score_category) illustrate the distribution of categories within each variable.
- Histograms and box plots for numerical columns provide visual insights into their distributions and potential outliers.
- Scatter plots show the relationships between 'math' and engineered features like 'math_x_experience' and 'math_plus_lunch_effect', confirming strong positive correlations as expected from their construction.
- The correlation heatmap of numerical variables reveals significant positive correlations, notably between 'math' and 'math_plus_lunch_effect' ($r \approx 1.00$), and between 'math'

- and 'math_x_experience' ($r \approx 0.88$).
- Box plots of numerical variables versus math_score_category suggest differences in the distributions of 'experience', 'schoolnum', 'math_x_experience', and 'math_plus_lunch_effect' across the math score categories.
- Grouped bar plots indicate that the proportion of students with lunch_yes decreases as the math_score_category increases (approximately 62% in 'low', 42% in 'medium', and 37% in 'high').

Insights or Next Steps

- The strong inverse relationship between the 'lunch_yes' variable and math_score_category suggests that socioeconomic factors, as indicated by eligibility for lunch assistance, may play a significant role in student math performance.
- Further investigation into the features 'math_x_experience' and 'math_plus_lunch_effect'
 using regression analysis could quantify their predictive power on math scores and
 potentially reveal interesting interactions.