CMSC 636 Neural Nets and Deep Learning Spring 2022, Instructor: Dr. Milos Manic, http://www.people.vcu.edu/~mmanic Homework 1

Student certification: Team member 1:

Print Name: Samah Ahmed Date: 15 Feb 2022

I have contributed by doing the following: solve question 1.2 and install Python.

Signed: Samah Team member 2:

Print Name: Maher Al Islam Date: 15 Feb 2022

I have contributed by doing the following: Solve question 1.3 and installed Perl

Signed: Maher Team member 3:

Print Name: Md Touhiduzzaman Date: 15 Feb 2022 I have contributed by doing the following: solve question 1.4

Signed: Md Touhiduzzaman

Homework No. 1

Due Wednesday, Feb. 16, 2022, noon

1.1 Getting to know you (1 pts)

Please include:

- •Full name, student ID, and email address you want to be used for sending graded assignments back,
- •Short info on your background,
- Your interests/expectations from this course.

Samah Ahmed	-2015, B.Sc Computer	Everyone who is interested in
V00888037	Science from King Khalid	computer science should be
ahmedss5@vcu.edu	University.	familiar with the term
	-2016, intern teacher in	"Neural Network". As a
	middle school.	result, I'm taking this course
	-2021-now, M.Sc in computer	to broaden my knowledge in
	Science at VCU	the field and increase my
		chances of finding a suitable
		job when I return to my home
		country.
Maher Al Islam	I completed my B.Sc (in	I wish to learn about
V00965559	EEE) from University of	implementation of Neural
alislamm@vcu.edu	Dhaka, Bangladesh. I came to	network and deep learning to
	USA for my higher studies	train dataset and predict
	(Ph.D). I am working with	outcome which is very much
	Dr. Sherif (ECE) and Dr.	needed in my research.
	Fung (CS) in cyber-physical	
	systems and networks	
	security.	
Md Touhiduzzaman	- PhD student at CS	I am mostly practical
V0999788	department, VCU	implementation & usage-
touhiduzzamm@vcu.edu	- BSc in CSE, class of 2016,	oriented person. I want to

Bangladesh University of	learn as much as possible
Engineering & Technology	about machine learning and
(BUET)	neural network in this course
- Entrepreneur by profession	to apply in my research works
- Co-Founder of <u>Durbin Labs</u>	as well as delegate those to
Ltd. & Durbin Healthtech	my affiliated industries.
Ltd.	-
- Started PhD in search of	
academia-industry	
collaboration on network	
security & machine learning	

1.2. McCulloch-Pitts neurons (4 pts)

Provide a solution for the neuron below (provide weight set and a threshold). The functionality is Out = A + B | C

(A OR B AND NOT C).

Please do not provide results by trial and error. Instead, please use an analytical approach as described in

Session 3).

Start with the neuron definition (net and output). Please consider the unipolar hard threshold activation function.

Draw the threshold function. Explain and discuss.

Hint: Compose a truth table (use below example to start). Consider all possible cases for the input pattern. Consider

possible ranges of values for weights and threshold. Possible inputs/outputs in case of unipolar hard activation function

are 0 & 1.

Out= A + B | C

$$2A + 2B - 3C >= 1.5$$

Range = $(0, 1]$

Α	В	C	Out= $A + B \mid C$	inequalities	Possible output
0	0	0	0	0 < T; T = 1.5	0 < T
0	0	1	0	Wc < T	+1 < T
0	1	0	1	Wb >= T	+2 >= T

0	1	1	0	Wb + Wc < T	-1 < T
1	0	0	1	Wa >= T	+2 >= T
1	1	0	1	Wa + Wb >= T	+4 >= T
1	0	1	0	Wa + Wc < T	-1 < T
1	1	1	0	Wa + Wb + Wc < T	+1 < T

The function graph:

A >= 0.75

B >= 0.75

C > = -0.5

1.3. McCulloch-Pitts neurons (4 pts)

Inspect the two neurons below (ABC and A+BC) and consider unipolar hard threshold activation function. Hint:

start with the tables similar to the one used in previous task.

- What makes these neurons different (they both have 3 inputs)?
- What is the possible range of thresholds for the following McCulloch-Pitts neurons?

A	В	С	Out = A B C	inequalities	Possible output
0	0	0	0	0 < T; T = 2.5	T > 0
0	0	1	0	Wc < T	+1 < T
0	1	0	0	Wb < T	+1 < T

0	1	1	0	Wb + Wc < T	+2 <t< th=""></t<>
1	0	0	0	Wa < T	+1 < T
1	1	0	0	Wa + Wb < T	+2 < T
1	0	1	0	Wa + Wc < T	+2 < T
1	1	1	1	Wa + Wb + Wc >= T	+3 >= T

A	В	С	Out = A + B C	inequalities	Possible output
0	0	0	0	0 < T; T = 2.5	0 < T
0	0	1	0	Wc < T	+2 < T
0	1	0	0	Wb < T	+2 < T
0	1	1	1	Wb + Wc >= T	+4 >= T
1	0	0	1	Wa >= T	+4>=T
1	1	0	1	Wa + Wb >= T	+6 >= T
1	0	1	0	Wa + Wc >= T	+6 >= T
1	1	1	1	Wa + Wb + Wc >= T	+ 8 >= T

Because the first neuron is AND and the second is A OR B AND C, the two neurons are distinct. Even though the two neurons have the same number of inputs, their weights differ, resulting in different outputs.

1.4 Design McCulloch-Pitts neuron, which implements the following truth table (5 pts):

A	В	C	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Using Karnaugh maps minimization:

AB	00	01	11	10
C				
0	0	0	0	0
1	0	0	1	1

The Boolean expression = A and C

A	В	С	Out=A and C	inequalities	Possible output
0	0	0	0	0 < T; T = 2.5	0 < T
0	0	1	0	Wc < T	+2 < T
0	1	0	0	Wb < T	0 < T
0	1	1	0	Wb + Wc < T	+2 < T
1	0	0	0	Wa < T	+1 < T
1	0	1	1	Wa + Wc >= T	+3 >= T
1	1	0	0	Wa + Wb < T	+2 < T
1	1	1	1	Wa + Wb + Wc >= T	+3 >= T

1.5 Python and Perl installation (1 pts)

```
[(base) samah@Samahs-MacBook-Pro ~ % python3 --version
Python 3.9.7
[(base) samah@Samahs-MacBook-Pro ~ % python
[(base) samah@Samahs-MacBook-Pro ~ % python
Python 3.9.7
[(clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.

[>>> print("Hello World")
Hello World

>>> 
Perl (command line)

Microsoft Windows [Version 10.0.19042.1526]
(c) Microsoft Corporation. All rights reserved.

C:\WINDOWS\System32>printf("Hello World")
(Hello World)
C:\WINDOWS\System32>printf('Hello World')
(Hello World)
C:\WINDOWS\System32>printf 'Hello World'
Hello World
C:\WINDOWS\System32>printf 'Hello World'
Hello World
C:\WINDOWS\System32>printf 'Hello World'
```