Chest Pathology Classification in X-Rays using Deep Learning

Nona Falaki, Junhui Li, Huiqi Yuan, Nicolai Schneider

Table of Contents

- Our goal
- Our strategy
- Results
 - o GANs
 - Classifier
- Conclusion

What was our goal?

Training a model to differentiate between the following classes

- o COVID-19
- o Bacterial Pneumonia
- Viral Pneumonia
- Healthy cases (referred to as 'Normal' throughout the presentation)

What was our strategy?

- First try with VGG-19 performed poorly
- ➤ Generate more samples with GAN

[INFO] evaluating network				
The second secon	precision	recall	f1-score	support
Normal	0.68	1.00	0.80	267
Bacterial	0.77	0.63	0.69	310
Viral	0.63	0.56	0.59	262
COVID-19	0.76	0.23	0.36	56
accuracy			0.69	895
macro avg	0.71	0.60	0.61	895
weighted avg	0.70	0.69	0.67	895

What was our strategy?

- Implemented GANs
 - o Cycle GAN
 - SRGAN in combination with DCGAN
- Classification with multiple architectures
 - DenseNet
 - ResNet
 - o VGG-19
- Evaluation of training based on
 - o Confusion Matrix and Accuracy Scores (Precision, Recall, F1-score)
 - Saliency Map
 - o Grad-CAM

Cycle GAN

A remedy for cycle GAN:

Using the recurrent images at different time steps for Augmentation

The same trick for Bacterial Pneumonia and Viral Pneumonia cases

Transfer to normal case

A COVID-19 example of Cycle GAN

Super Resolution GAN

• Principle

SR: Super resolution

LR: Low resolution

HR: High resolution

DCGAN

SRGAN

- Relu activation function
- 0.0002 Adam learning rate
- 10000 iterations
- One side label smoothing

- Low resolution picture size: 64*64
- High resolution picture size: 256*256
- 0.0002 Adam learning rate
- 80000 iterations
- Pre-trained model VGG-19

DCGAN

Covid-19 Bacterial Pneumonia

Normal Viral Pneumonia

SRGAN

Final Dataset

- Almost 500 synthetically generated images per class
- Dataset was split into the following categories:
 - 50 % for training
 - o 30 % for validation
 - o 20 % for evaluation

DenseNet 121

- Transfer learning with pre-trained CheXNet weights
- Freeze pre-trained lower layers
- Add Dropout and FC layer
- Learning rate: 0.002
- Early stopping

DenseNet 121 - Accuracy

DenseNet 121 - Grad-CAM

Resnet 50 - Accuracy

Resnet 50 - Grad-CAM

Predicted/Actual/Loss/Probability

VGG-19

VGG-19: A trained Convolutional Neural Network, from Visual Geometry Group, Department of Engineering Science, University of Oxford[2].

Pre-trained on ImageNet.

The network takes a RGB image as the input.

16 Convolutional layers plus 3 fully connected layers.

Pre-trained weights are used and transfer learning is applied.

The result based on the dataset of DC-SR-GANs plus original images

The result based on the dataset of Cycle-GANs plus original images

VGG-19 - Saliency Map

Confusion matrix of VGG-19

VGG-19 - Grad-CAM

Grad-CAM of correctly predicted results

Conclusion

- ✓ Transfer Learning with ImageNet pre-trained weights
- ✓ Data Augmentation using GAN
- Increasing number of COVID-19 instances to train DCGAN
- ✓ Applying SRGAN to improve DCGAN-generated samples
- X Applying the Keras Data Generator
- X Increasing the number of samples for Bacterial and Viral Pneumonia
- X Utilize complex models

Future Work

- K-Fold Cross Validation
- Ensemble Learning Method
- Active Deep Learning

Sources

Literature:

- Jonathan Hui, GAN Super Resolution GAN (SRGAN)
- 2. Karen Simonyan, Andrew Zisserman : very deep convolutional networks for large-scale image recognition arXiv:1409.1556v6

Datasets:

- COVID-19 samples: https://github.com/ieee8023/covid-chestxray-dataset
- Bacterial Pneumonia: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
- Viral Pneumonia and Normal (Healthy): https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/data