18. Аналитично задаване на различни видове наведена аксонометрия

Нека $\overline{K} = \{\overline{O}, \overline{e_1}, \overline{e_2}, \overline{e_3}\}$ е ортонормирана координатна система. Избираме проекционната равнина $\pi[A, B, C, 0]$ да минава през началото \overline{O} на \overline{K} . Освен това, нека $A^2 + B^2 + C^2 = 1$, т.е. нормалният вектор $\vec{N}^{\pi}(A, B, C) \perp \pi$ е единичен $(|\vec{N}^{\pi}| = 1)$.

Проекционният център $U_S(l,m,n,0)$ е безкрайна точка, нележаща в π и следователно $Al+Bm+Cn\neq 0$.

Тъй като разглеждаме наведена аксонометрия, то $U_s \perp \pi$. Нека векторът $\vec{s}(l,m,n)$, колинеарен с правата s е единичен, т.е. $|\vec{s}| = 1$ или $l^2 + m^2 + n^2 = 1$.

Ако $\vec{s} \parallel \vec{N}^{\pi}$, то $\vec{s} = \varepsilon . \vec{N}^{\pi}$ и понеже $|\vec{s}| = |\vec{N}^{\pi}| = 1$ имаме, че $l = \varepsilon A$, $m = \varepsilon B$, $n = \varepsilon C$, $\varepsilon = \pm 1$.

От тук получаваме, че $Al + Bm + Cn = \varepsilon (A^2 + B^2 + C^2) = \varepsilon = \pm 1$.

Следователно за наведена аксонометрия ($U_S \perp \pi$) имаме $Al + Bm + Cn \neq \pm 1$.

Нека $\psi_{\pi}^{U_S}$ е централното (в случая успоредно) проектиране от U_S в π и

$$\overline{M}(x, y, z, t) \xrightarrow{\psi_x^{U_s}} M(x', y', z', t')$$
:

1) Тъй като
$$\overline{M} \in MU_S$$
 , то (1)
$$\begin{cases} x' = \lambda x + \mu l \\ y' = \lambda y + \mu m \\ z' = \lambda z + \mu n \\ t' = \lambda t + \mu .0 \end{cases} (\lambda, \mu) \neq (0, 0);$$

2) Също така от $M \in \pi$ следва, че (2) Ax' + By' + Cz' = 0.

Тогава от (1) и (2) имаме $\lambda(Ax + By + Cz) + \mu(Al + Bm + Cn) = 0$ и можем да изберем $\lambda = (Al + Bm + Cn)$ и $\mu = -(Ax + By + Cz)$.

Заместваме λ и μ в (1) и получаваме:

$$\begin{cases} x' = (Al + Bm + Cn)x - (Ax + By + Cz)l = (Bm + Cn)x - Bly - Clz \\ y' = (Al + Bm + Cn)y - (Ax + By + Cz)m = -Amx + (Al + Cn)y - Cmz \\ z' = (Al + Bm + Cn)z - (Ax + By + Cz)n = Anx - Bny + (Al + Bm)z \\ t' = (Al + Bm + Cn)t \end{cases}$$

Така за $\psi_{\pi}^{U_{S}}$ получаваме:

(3)
$$\psi_{\pi}^{U_{S}}: \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} Bm + Cn & -Bl & -Cl & 0 \\ -Am & Al + Cn & -Cm & 0 \\ -An & -Bn & Al + Bm & 0 \\ 0 & 0 & Al + Bm + Cn \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Обикновено се избира π да съвпада с някоя от координатните равнини на \overline{K} . Така се получават трите най-използвани наведени аксонометрични проекции.

Ако изберем проекционната равнина π да съвпада с координатната равнина (\overline{Oxz}) имаме $\pi[0, 1, 0, 0]$, (т.е. A = C = 0, B = 1). Тогава:

$$\psi_{\pi}^{U_{S}}: \begin{pmatrix} x'\\y'\\z'\\t' \end{pmatrix} = \begin{pmatrix} m & -l & 0 & 0\\0 & 0 & 0 & 0\\0 & -n & m & 0\\0 & 0 & 0 & m \end{pmatrix} \begin{pmatrix} x\\y\\z\\t \end{pmatrix} \qquad \text{или} \qquad \psi_{\pi}^{U_{S}}: \begin{pmatrix} x'\\y'\\z'\\t' \end{pmatrix} = m \begin{pmatrix} 1 & -\frac{l}{m} & 0 & 0\\0 & 0 & 0 & 0\\0 & -\frac{m}{m} & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\t \end{pmatrix}$$

Образът се определя с точност до подобност от матрицата $\begin{bmatrix} 1 & -\frac{m}{m} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -\frac{n}{m} & 1 & 0 \end{bmatrix}$ и можем да

приемем, че:
$$\psi_{\pi}^{U_{S}}: \begin{pmatrix} x'\\y'\\z'\\t' \end{pmatrix} = \begin{pmatrix} 1 & -\frac{l}{m} & 0 & 0\\0 & 0 & 0 & 0\\0 & -\frac{n}{m} & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\t \end{pmatrix}.$$

 $\overline{E}_1(1,0,0,1) \xrightarrow{\psi_{\pi}^{US}} E_1(1,0,0,1),$ Оттук намираме:

$$\overline{E}_2(0,1,0,1) \xrightarrow{\psi_{\pi}^{U_S}} E_2(-\frac{l}{m},0,-\frac{n}{m},1)$$

$$\begin{split} & \overline{E}_{2}(0,1,0,1) \xrightarrow{\psi_{\pi}^{US}} E_{2}(-\frac{l}{m},0,-\frac{n}{m},1)\,, \\ & \overline{E}_{3}(0,0,1,1) \xrightarrow{\psi_{\pi}^{US}} E_{3}(0,0,1,1)\,. \end{split} \Longrightarrow \mathcal{D}_{uuempous}.$$

Следователно векторите на аксонометричната координатна система имат координати: $\vec{e}_1(1,0,0), \ \vec{e}_2(-\frac{l}{m},0,-\frac{n}{m}) \ \text{if} \ \vec{e}_3(0,0,1).$

I. <u>Кавалиерна перспектива</u>:

Тази проекция е наведена изометрия, т.е. p = q = r = 1. Освен това избираме $\sphericalangle(\vec{e}_1, \vec{e}_2) = \sphericalangle(\vec{e}_2, \vec{e}_3) = 135^{\circ}$.

От
$$p=q=r$$
 следва, че $\frac{l^2+n^2}{m^2}=1$, а от $l^2+m^2+n^2=1-\frac{1-m^2}{m^2}=1$, т.е. $m=\pm\frac{1}{\sqrt{2}}$.

От $\cos \sphericalangle(\vec{e}_1, \vec{e}_2) = \cos \sphericalangle(\vec{e}_2, \vec{e}_3) = \cos 135^0 = -\frac{1}{\sqrt{2}}$ получаваме последователно:

$$-\frac{1}{\sqrt{2}} = \frac{\vec{e}_1\vec{e}_2}{\mid\vec{e}_1\mid\mid\vec{e}_2\mid}, \text{ откъдето } \frac{l}{m} = \frac{1}{\sqrt{2}}\;;\; -\frac{1}{\sqrt{2}} = \frac{\vec{e}_2\vec{e}_3}{\mid\vec{e}_2\mid\mid\vec{e}_3\mid}, \text{ откъдето } \frac{n}{m} = \frac{1}{\sqrt{2}}\;.$$

Ако
$$m = \frac{1}{\sqrt{2}}$$
, то $l = n = m \frac{1}{\sqrt{2}} = \frac{1}{2}$. Тогава

$$\psi_{\pi}^{U_{S}}:\begin{pmatrix} x'\\y'\\z'\\t' \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & -\frac{1}{\sqrt{2}} & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\t \end{pmatrix}.$$

II. Военна перспектива

Тази наведена аксонометрична проекция е също изометрия с p=q=r=1, а проекционната равнина π съвпада с $(\overline{Ox}\ \overline{y})$, като $\sphericalangle(\vec{e}_1,\vec{e}_3)=\sphericalangle(\vec{e}_2,\vec{e}_3)=135^0$. Тогава $\pi[0,0,1,0]$, т.е. A=B=0, C=1 и разсъждавайки както при кавалиерната перспектива, тук получаваме:

$$\psi_{x}^{U_{S}}:\begin{pmatrix} x'\\ y'\\ z'\\ t' \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\frac{1}{\sqrt{2}} & 0\\ 0 & 1 & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z\\ t \end{pmatrix}$$

III. Кабинетна проекция

Това е най-често използваната наведена аксонометрична проекция. Тя е диметрия, при която за коефициентите на изменение имаме p = 2q = r. Проекционната равнина π съвпада с (\overline{Oxz}) , т.е. $\pi[0,1,0,0]$. Ъглите между аксонометричните оси са $\sphericalangle(\vec{e}_1,\vec{e}_2) = \sphericalangle(\vec{e}_2,\vec{e}_3) = 135^{\circ}$.

От
$$p = r = 1$$
 и $q = \frac{1}{2}$ имаме $\frac{l^2 + n^2}{m^2} = \frac{1}{4}$ и $\frac{1 - m^2}{m^2} = \frac{1}{4}$, т.е. $m = \pm \frac{2}{\sqrt{5}}$.

От $\cos \sphericalangle(\vec{e}_1, \vec{e}_2) = \cos \sphericalangle(\vec{e}_2, \vec{e}_3) = -\frac{1}{\sqrt{2}}$ получаваме последователно:

$$-\frac{1}{\sqrt{2}} = \frac{\vec{e}_1 \vec{e}_2}{|\vec{e}_1||\vec{e}_2|}, \text{ откъдето } \frac{l}{m} = \frac{1}{2\sqrt{2}} \; ; \; -\frac{1}{\sqrt{2}} = \frac{\vec{e}_2 \vec{e}_3}{|\vec{e}_2||\vec{e}_3|}, \text{ откъдето } \frac{n}{m} = \frac{1}{2\sqrt{2}} \; .$$

Така в този случай:

$$\psi_{\pi}^{U_{x}}:\begin{pmatrix} x'\\y'\\z'\\t' \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2\sqrt{2}} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & -\frac{1}{2\sqrt{2}} & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\t \end{pmatrix}$$

in a series of the property

.e.