А.Н. Выборнов ДИСКРЕТНАЯ МАТЕМАТИКА

Быстрый способ получения полинома Жегалкина булевой функции 3-х переменных (метод А.Н. Выборнова)

Определим частичный порядок на бинарных наборах:

Бинарный набор $a_1a_2a_3 \ge b_1b_2b_3$, если $a_i \ge b_i$ для i = 1, 2, 3.

Этот порядок хорошо виден на бинарном кубе (порядок указан стрелками):

Здесь мы видим, что набор 8 больше всех остальных, наборы 4, 6 и 8 больше чем набор 2 и т. д.

Изложим теперь быстрый способ получения полинома Жегалкина.

- 1) Запишем таблицу истинности функции.
- 2) Напишем столбец монотонных конъюнкций, соответствующих бинарным наборам (см. пример). Порядок его формирования ясен из примера.
- 3) Находим самую верхнюю единицу в столбце значений функции. Отмечаем кружком эту единицу тем самым определяем набор, напротив которого стоит эта единица.
- 4) Прибавим единицу ко всем значениям функции в наборах больше либо равных отмеченному набору (сложение по модулю 2), результаты записываем в новый столбец. Остальные значения столбца переписываем в новый столбец без изменений.
- 5) В новом столбце находим самую верхнюю единицу и повторяем действия
- 3) и 4) пока не получим столбец из нулей.

Искомый полином Жегалкина состоит из мономов, стоящих в отмеченных строках (см. пример)

				I		0		l	l	1		
	X	1 X	2 X3			4				1		
1	0	0	0	1	V	1	0	0	0	0	-	
2	0	0	1	Х3	M.	0	1	0	0	0		
3	0	1	0	X 2	V	0	1	1	0	0		
4	0	1	1	X2X3		1	.0	1	0	0		
(5)	1	0	0	X 1		1	0	0	0	0		
6	1	0	1	X1X3		0_	1_	0	0	0		
7	1	1	0	X1X2	7	1	0	0	1	0		
8	1	1	1	X1X2	X3	0	1	0	1	0		
= 1 @ x3 @ x2 @ x15x2												

Еще один пример:

	X	1 X	2 X3		12					
1	0	0	0	1	0_	6	0	0	0	0
2	0	0	1	Х3	0	0	0	0	0	0
3	0	1	0	X2 4	1	0	0	0	0	0
4	0	1	1	X2X3 🗸	0	1	0	0	0	0
③	1	0	0	X1 ¥	1	1	0	0	0	0
6	1	0	1	X1X3 🗸	0	. 0	0	1	0	0
7	1	1	0	X1X2	0	1	1	0	0	0
8	1	1	1	X1X2X3	1	0	1_	0_	1	0

Обоснование метода А. Н. Выборнова основано на том, что в полиноме Жегалкина участвуют монотонные конъюнкции. По сути, мы накрываем множество единичных наборов интервалами, соответствующим монотонным конъюнкциям, так, чтобы, каждый единичный набор был покрыт нечетное число раз, а неединичные наборы оказались накрыты четное число раз.

Предлагаемый метод А.Н. Выборнова является одним из самых быстрых методов получения полинома Жегалкина. Кроме того знание и учет частичного порядка на бинарных наборах является полезным для быстрого установления наличия или отсутствия монотонности функции 3-х переменных.

На экзамене можно использовать этот метод, оформляя как в примерах.