# Evolutionary Neural Network for data classification

MAJID NASIRI MANJILI & AHMAD MOHAMMADI PROFESSOR PAZOKI SHAHID RAJAEE TEACHER TRAINING UNIVERSITY

### Ev and NN

- > Evolutionary algorithm and neural networks are both inspired by computation in biological system
- Neural networks and genetic algorithms are two techniques for optimization and learning
- > We use Evolutionary algorithm to configure the neural networks

### Neural networks

- A computational model consisting of a number of connected elements, known as neurons
- > Have input, hidden and output layers that contain many neuron in each layer
- Each of the inputs is modified by a value associated with the connection called weight
- > A neuron apply activation function to input and produce output





# EV usage in NN

- > Learning and compute the weights
- > Find the optimal number of layer and neurons per layer
- > Tune the parameters like learning rate and activation function



# Example

we have four parameters with five possible settings each and it takes five minutes to train and evaluate

- To try them all would take (5\*\*4) \* 5 minutes, or 3,125 minutes, or about 52 hours
- ➤ Consider we use a genetic algorithm to evolve 10 generations with a population of 20 with a plan to keep the top 25%, so ~8 per generation. in our first generation we score 20 networks (20 \* 5 = 100 minutes). Every generation after that only requires around 12 runs, That's 100 + (9 generations \* 5 minutes \* 12 networks) = 640 minutes, or 11 hours.

# Problem

How many neurons in each layer?



# Problem

How many neurons in each layer?

# Without Genetic Algorithm

Assume neurons for each layer is [30 ~ 80]



# Genetic Algorithms Approach

```
generation_num = 20
20 + generation_num * 12 = 260
```

140000

#### Number of Classification train

GA vs Brute



**125000/260 = 480** 

# Genetic Algorithms Representation



### Parent Selection



### 1-Point Crossover



| Offspring 1 | 6 | 9 | 6      |
|-------------|---|---|--------|
|             |   |   | ETANE. |
| Offspring 2 | 3 | 7 | 5      |

### Mutation





### Survivor Selection

Eight genotype from Current generation
(Top five genotype + three Random from losers)

Twelve New offsprings

| - | 6       | 4  | 6      |
|---|---------|----|--------|
|   | 10      | 12 | 9      |
|   | 12      | 8  | 6      |
|   |         |    | _      |
|   | 15      | 11 | 18     |
| - | 9       | 10 | 3      |
|   | 4<br>20 | 7  | 3<br>6 |
|   | 20      | 7  | 3<br>7 |
|   | 11      | 6  | 7      |
| Į |         | 7  | -      |
|   | -       |    | -      |
|   | 10<br>4 | 9  | 9      |
|   | 4       | 3  | 3      |

# Genetic Algorithms info

```
Representation ----- integer
Recombination ------ 1-point crossover
Recombination Probability ---- 90%
Mutation ----- gene
Mutation Probability ----- 50%
Parent Selection ------ 5 best and 3 random worst
Survivor Selection ----- (mu + lambda)
Population Size ----- 20
Number of Offspring ----- 20
Initialization ------ Random
Termination Condition ----- Affer 20 generation
```

### Dataset mnist







### Dataset Iris





Questions ?