Geometria e Algebra - MIS-Z

Primo Appello - Giugno

13/06/2023

Nome e Cognome:		
Corso di Laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Sia x il punteggio ottenuto nell'Esercizio 1 e sia y il punteggio totale ottenuto. Il compito è ritenuto sufficiente se $x \geq 4$ e $y \geq 18$. In tal caso il voto del primo appello sarà dato da y.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [8 punti]. Esercizio Scoglio.

(a) Si determini se i vettori (1,1,1), (0,3,1) e (3,-1,-1) costituiscono una base di \mathbb{R}^3 .

(b) Si determini nello spazio euclideo \mathbb{E}^3 il piano ortogonale al vettore (2,1,-1) e passante per il punto (1,-2,3).

(c) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ec esauriente la risposta:
Per ogni $k \in \mathbb{R}$ l'applicazione $f_k : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(x,y) = (x+k,ky)$ è un'applicazione lineare.
\Box VERO
\Box FALSO
(d) Si stabilisca se l'asserto seguente è VERO o FALSO, motivando in modo conciso ed esauriente la risposta:
Sia V uno spazio vettoriale su un campo K e siano $v_1, v_2 \in V$ due vettori
linearmente indipendenti. Allora i vettori v_1 e $v_1 + v_2$ sono linearmente indipendenti
\square VERO
\Box FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X - Y + Z = -1 \\ X + kZ = 2 \\ X + kY + Z = 5 \\ kX + 2Y + Z = 8 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e le equazioni cartesiane della retta r_1 passante per i punti A(2,0,-1) e B(-1,1,1) di \mathbb{E}^3 .

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca della retta r_1 e del piano π_h , dove π_h è definito dall'equazione cartesiana:

$$\pi_h: X - hY + hZ = 1.$$

Per i valori di h per cui r_1 e π_h sono incidenti se ne determini il punto di intersezione e per i valori di h per cui r_1 e π_h sono paralleli se ne determini la distanza.

(c) Per h=3 si determini una retta r_2 perpendicolare al piano π_3 e incidente la retta r_1 . Siano P e Q i punti di intersezione di r_2 rispettivamente con r_1 e π_3 . Si verifichi che la distanza tra P e Q coincide con la distanza tra r_1 e π_3 calcolata al punto (b).

ESERCIZIO 4 [10 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

(a) Siano V e W due spazi vettoriali su un campo K e sia $f:V\to W$ un'applicazione lineare. Si dimostri che se $\ker(f)=\{0_V\}$ allora f è iniettiva.

(b) Per $k \in \mathbb{R}$, si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (kx + y + 3z, x + ky + 3z, -x - y).$

(b1) Si determinio i valori di k per cui f_k non è iniettiva e per tali valori si determini una base di $\ker(f_k)$.

(b2) Si determinino i valori di k per cui $f(1,1,1) \in Span\{(1,1,1),(-1,0,1)\}.$

(b3) Per k=4, si determini se l'operatore f_4 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

(b4) Sia A la matrice associata all'operatore f_4 rispetto alla base canonica \mathcal{B} di \mathbb{R}^3 e sia D la matrice diagonale associata a f_4 rispetto alla base diagonalizzante \mathcal{B}' trovata al punto (b3). Si determini una matrice $P \in \mathcal{M}_3(\mathbb{R})$ tale che $D = P^{-1}AP$ e se ne determini la sua inversa P^{-1} .

ESERCIZIO 5 [3 punti]. Un po' di teoria...

(a) Sia V uno spazio vettoriale reale. Si definisca quando una funzione

$$\begin{array}{cccc} \langle \,,\, \rangle : & V \times V & \to & \mathbb{R} \\ & (v,w) & \mapsto & \langle v,w \rangle \end{array}$$

è detta un prodotto scalare su V.

(b) Sia V uno spazio euclideo munito del prodotto scalare $\langle \, , \, \rangle$ e sia $\| \cdot \|$ la norma euclidea corrispondente. Si dimostri il *Teorema di Pitagora*, ovvero che per ogni $v,w \in V$ si ha

$$||v + w||^2 = ||v||^2 + ||w||^2 \Leftrightarrow < v, w > = 0.$$