PROBLEMAS DE MATEMÁTICA DISCRETA

Lista 3 - Bases; Congruências, Aritmética Modular

- 3.1 Resolva os sequintes problemas de mudança de base.
 - (a) Escreva os números 37 e 73 na base 2.
 - (b) Considere a=10101, b=1111 na base 2. Determine a+b na base 2 e na base 10.
- 3.2 Resolva os seguintes problemas de mudança entre representação fraccionária/decimal.
 - (a) Escreva em notação decimal as fracções $\frac{53}{16}$, $\frac{1}{7}$.
 - (b) Escreva na forma de fracção irredutível 0, 36; 3, 235; 0, (23); 0, (9).
- 3.3 Calcule os valores das sequintes expressões algébricas em \mathbb{Z}_{13} :
 - (a) $4 \times (11^2 + 12 7)$,
 - (b) 10^{34} ,
 - (c) $4^{-1} \times (25 12)$.
- 3.4 Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas.
 - (a) $35 4^3 \equiv -1 \mod 5$,
 - (b) Se $a \equiv b$, mod m, então $b + 3a \equiv 4a + mb$, mod m,
 - (c) Se $a \equiv b$, mod m, então $a^k \equiv b^{k+m}$, mod m.
- 3.5 Diga, justificando, se algum dos seguintes elementos 7, 22, 3, 49 são invertíveis em \mathbb{Z}_{60} e calcule o seu inverso, em caso afirmativo. Quantos elementos de \mathbb{Z}_{60} são invertíveis?
- 3.6 Encontre um inverso de 89 módulo 232.
- 3.7 Seja $n=[a_k\cdots a_1a_0]_{10}\in\mathbb{N}$ (isto é, a representação decimal tem os dígitos $a_k,\cdots,a_0\in\{0,\cdots,9\}$). Mostre que n é múltiplo de 11 se e só se a soma alternada dos dígitos também é. Ou seja, $11\mid n$ se e só se $a_0-a_1+a_2-a_3+\cdots\equiv 0$ ($\mod 11$) [Sugestão: $10^k\equiv (-1)^k\pmod{11}$, para todo o inteiro $k\geq 0$].
- 3.8 Seja n=6k+5 com $k\in\mathbb{Z}$. Mostre que existe um divisor primo p de n tal que $p\equiv 5\pmod p$. Deduza que existem infinitos primos que verificam $p\equiv 5\pmod 6$.
- 3.9 Mostre que se p é um número primo, então $\binom{p}{k} \equiv 0 \mod p$, para qualquer $k \in \{1, \cdots, p-1\}$. A mesma afirmação é verdadeira caso p não seja primo?
- 3.10 [Relação entre módulos múltiplos] Sejam $m, n, d \in \mathbb{N}$ tais que m = nd. Se $x \equiv a \mod n$, mostre que x é congruente, módulo m, com um elemento do conjunto $\{a, a+n, a+2n, \cdots, a+(d-1)n\}$.
- 3.11 Prove que qualquer que seja $a \in \mathbb{Z}$ se verifica $a^2 \equiv 0, 1, 2$ ou 4 módulo 7. Mostre que, se $a^2 + b^2 \equiv 0$, mod 7, então a e b são múltiplos de 7.

1

- 3.12 A que classes de congruência, módulo 8, pertencem os quadrados perfeitos? O número 6834923 pode ser um quadrado perfeito, ou a soma de 2 quadrados perfeitos?
- 3.13 Numa ilha há 13 camaleões verdes, 15 camaleões castanhos e 17 camaleões encarnados. Se dois camaleões de cores diferentes se encontram mudam ambos para a terceira cor (não mudam de cor em nenhuma outra situação). Será possível que a certa altura os camaleões fiquem todos da mesma cor? [Sugestão: analise o resultado do encontro de dois camaleões de cor diferente, módulo 3].