Q.P. Code: MCA24B202

St. Philomena's College (Autonomous), Mysore II Semester MCA – C1 Internal Assessment Test: August - 2025 Subject: Advanced Database Management Systems

Time: 75 Mins Max			Marks: 30				
	PART - A						
		Answer the following:	2 × 10	= 20			
1.	a.	Explain the 3-tier ANSI / SPARC DBMS architecture with a neat diagram.					
		Also, differentiate between schema and instance.	CO1	6			
	b.	Discuss any four characteristics of a DBMS.	COI	4			
		OR					
2.	a.	Explain the structure and functioning of Client-Server DBMS architecture.					
		How is it different from a centralized DBMS?	CO1	6			
	b.	Write short notes on:					
	υ.		COI	4			
		i) Data Independence and ii) Cloud-based DBMS	COI	7			
3.	a.	Draw an ER diagram for a university system that includes entities like Student,					
		Course, Instructor, and Department. Show cardinality and relationship types					
		clearly.	CO2	6			
	b.	Define Referential Integrity. Why is it important in relational database design?	CO2	4			
		OR					
4.	a.	Convert the following ER components to relational schema					
		Entity: Student(SID, Name, Dept)					
		Entity: Course(CID, Title)					
		Relationship: Enrolled(SID, CID, Date)					
		Show the resulting relations with primary and foreign keys.	CO2	6			
	b.	What are the different types of keys in a relational database? Explain each with					
		suitable examples.	. CO2	4			
				PTO			

St Philomena's College (Autonomous), Mysuru I Semester MCA – C1 Internal Assessment Test : March - 2025

Subject: MCA
Title: Computer Networks

Time:	75 Minutes	Ma	x Marks: 30
	PART – A		
I.	Answer the following:		$2 \times 10 = 20$
1.	Explain OSI network architecture with a neat diagram.	COI	10
	OR		
2.	Discuss the causes for transmission impairment in computer networks.	COI	10
3.	Explain different approaches in packet switched networks.	CO2	10
	OR		
4.	Explain Leaky Bucket algorithm with suitable diagram.	CO2	10
	PART – B		
II.	Answer the following:		$2 \times 5 = 10$
5.	Differentiate between circuit switched & packet switched networks. OR	COI	5
6.	Differentiate between Analog and Digital signals.	COI	5
7.	Explain the three types of addresses in Link layer addressing.	CO2	5
	OR		
8.	Generate the CRC codeword for the dataword 1001 & verify if the generated codeword is corrupted or not. Take the divisor as 1011.	CO2	5

Code: MCA24A101

St. Philomena's College (Autonomous), Mysore

I Semester MCA - C1 Internal Assessment Test: March - 2025

Subject : Data Structure and Problem Solving Using C

Time: 75 Minutes			Max. Marks: 30	
		PART A		
		Answer the following:	2 x	10 = 20
1	a.	Explain logic and arithmetic operators with example.	COI	10
		OR		
2	a.	Explain different data types in C.	COI	6
	b.	Discuss various categories of functions.	COI	4
3	a.	Write a note on DMA. Explain different dynamic memory allocation functions with syntax and example.	CO2	10
		OR		
4	a.	Write a note on ADT.	CO2	04
	b.	Explain the following i) Sequences as Value Definitions ii) Array as ADT	CO2	06
		PART B		
		Answer the following:	2	x = 5 = 10
	5	Write a C program to solve a quadratic equation and find its roots.	COI	5
		OR		
	6	Differentiate structure and union with example.	COI	5
	7	Explain String as ADT with syntax.	CO2	5
		OR		
	8	Explain ADT for Varying-Length Character Strings with syntax.	CO2	5

Code:MCA24A104

ST. PHILOMENA'S COLLEGE (AUTONOMOUS), MYSORE

I- MCA - C1 Internal Assessment, March - 2025

Subject: Computer Organisation & Architecture

Time: 75 Minutes	Max. Marks: 30

	PART A Answer the following 2 x 10 = 20					
Y.						
	a.	Perform subtraction of the given unsigned number using the 10's complement & 9's complement method. (a) 6428 - 3409 (b) 125 - 1800	COI	6		
1	b	Draw logic diagrams to implement the following simplified Boolean expressions: (a) Y = A + B + B'(A + C') (b) Y = A[B (xor) D] + C' (c) Y = A + CD + ABC (d) Y = [A(xor) C]' + B	CO1	4		
		OR				
2	a.	Represent the decimal number 5137 in (a) BCD (b) Excess 3 code. (c) 2421 code. and (d) 6311 code.	COI	6		
	b.	Convert the hexadecimal number 68BE to Binary, and then convert it from binary to octal & Decimal.	CO1	4		
	9	Explain the different forms of representing Boolean functions with	CO2	4		

3 Simplify the following Boolean function to the specified number of CO₂ 6 b i) [(CD)'+A]' + A + CD + AB 3 Literals literals. OR Express the following function in sum of minterms & product of 7 CO₂ a. maxterms. F(A,B,C,D) = D(A'+B) + B'D4 What are the steps followed in designing a combinational logic circuit 3 CO2 b.

a.

examples.

	PART B				
Answer the following 2		2 x 5 =	x = 10		
5	Simplify the following Boolean expression using K MAP $F(x, y, z) = x'y + yz' + y'z'$	COI	5		
	OR				
6	Simplify the following Boolean expression using four-variable map: F= A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D	COI	. 5		
7	Design & Implement Full Adder using 2 half adders	CO2	5		
	OR				
8	Derive the Boolean functions in General notation For a 2 bit Magnitude comparator for all the 3 cases.	CO2	5		

St Philomena's College (Autonomous), Mysuru I Semester MCA – C1 Internal Assessment Test : March - 2025 Subject: MCA

Title: Operating System and Linux

Tin	ne: 7	5 Minutes	Ma	x Marks: 30
		PART – A		
I.		Answer the following:		2 x 10 = 20
1.	a.	What is cache memory? Explain single and three level cache memory.	COI	5
	b.	List five services provided by an operating system. Explain how each provides convenience to the users.	COI	5
		OR		
2.	a.	What is multiprocessor system? Explain its advantages and types.	CO1	7
	b.	Explain the concept of batch system.	COI	3
3.	a.	Briefly explain the five state process model.	CO2	6
	b.	What common events lead to the creation of a process?	CO2	4
		OR		
4.	a.	Explain the following: i) Interrupts ii) Trap	CO2	5
	b.	Explain any five reasons that causes process termination.	CO2	5
		PART – B		
II.		Answer the following:		$2 \times 5 = 10$
5.		What are the five major activities of an operating system in regard to process management?	COI	5
		OR		
6.		Explain the I/O communication techniques.	COI	5
7.		With a neat block diagram, explain PCB.	CO2	5
		OR		
8.		What are the steps performed by OS to create a new process?	CO2	5

Code: MCA24A201 ST. PHILOMENA'S COLLEGE (AUTONOMOUS), MYSORE I Semester - MCA - C1 Internal Assessment, March - 2025 Subject: Mathematical Foundations for Computer Science Time: 75 Minutes Max. Marks: 30 PART A Answer the following $2 \times 10 = 20$ Consider these relations on the set of integers: $R_1 = \{(a, b) \mid a \le b\}.$ $R_2 = \{(a, b) \mid a > b\},\$ $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$ a. CO1 $R_4 = \{(a, b) \mid a = b\},\$ 6 1 $R_5 = \{(a, b) \mid a = b + 1\},\$ $R_6 = \{(a, b) \mid a + b \le 3\}.$ Which of these relations are reflexive, symmetric and transitive? b How many relations are there on a set with n elements? CO1 4 OR Define the following with suitable examples. (a) Function a. CO1 (b) Injuction 6 2 (c) Surjection Determine whether the function $f(x) = x^2$ from the set of integers to the b. CO1 set of integers is bijective? 4 Define the composition of two functions. Show that composition of a. CO₂ functions does not satisfy the commutative law. 6 If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$. Calculate AC, 3 CO₂

OR

BC, (A + B) C. Also, verify that (A + B) C = AC + BC.

4	a.	State the Pigeonhole principle. What is the minimum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade, if there are five possible grades A, B, C, D, and F?	CO2	6
	b.	Suppose that f is a one-to-one correspondence from the set A to the set B. Prove that $(f^{-l})^{-l} = f$.	CO2	4
		PART B		
		Answer the following	2 x 5	= 10
	5	What is inverse of a function? Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function defined by $f(x) = x + 1$. Is f is invertible and if so what is it's inverse?	CO1	5
		OR		
	6	Show that function f from a set with $k + l$ or more elements to a set with k elements is not one-to-one.	COI	5
	7	Discuss the properties of matrix addition.	CO2	5
		ÔR		
	8	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$, then show that $A^3 - 23A - 40I = O$.	CO2	5