AtmChile: A R package to explore open-source air pollution and meteorological data and implementation through Shiny web platform.

22-08-2021

Summary

The study of air quality has taken an increasingly important role in the generation of public policies, this due to the effects that air pollution causes on the health of people and animals, affecting vegetation, soil and materials. , limiting visibility and the potential to contribute significantly to climate change.

One of the main difficulties faced by the study of air quality is the enormous volume and disintegration of data collected daily, so the development of data analysis techniques plays an essential role in this. countryside.

In the case of Chile, the main open source data are reported by the National Air Quality Information System (SINCA) under the (Ministry of the Environment of Chile), which collects air quality data from X stations throughout the country; and the National Meteorological Directorate (DMC) dependent on the General Directorate of Civil Aeronautics of Chile, which stores meteorological data from 47 stations throughout the country.

AtmChile is an R package that allows downloading and managing data from SINCA and DMC for multiple parameters of air quality and meteorology, offering quick and easy access for researchers. This package includes ChileAirQualityApp a dashboard that integrates the download tools of this package with visualization tools and descriptive statistics analysis in a user-friendly way.

The ChileAirQualityApp dashboard is displayed in five tabs. Different packages used for building ChileAirQuality include data.table, plotly, shiny, openair, lubridate, shinycssloaders and DT.

Statement of need

The air quality data offered by the SINCA and the DMC are offered with high levels of disaggregation: separated by monitoring station, parameter and by year, in In the case of the DMC, this makes it difficult for researchers trying to compile large data sets. AtmChile offers a simple solution to this problem by:

- 1. Access and management of the open source databases of SINCA and DMC
- 2. Application of data quality control options

This package was implemented in a web platform designed with Shiny offering to generate visualizations and summaries of the main statistical parameters.

To our knowledge, there is currently no application that can generate usable summary statistics and graphs using data from the contamination databases from SINCA and/or DMC. However, there are some Shiny apps that deal with data cleansing and visualization of pollution data collected from single/multiple air quality instruments.

Package Overview

The package contains 3 functions: ChileAirQuality to download air quality data from SINCA open source servers; ChileClimateData to download meteorological data from open source DMC servers and ChileAirQualityApp a Shiny Dashboard for the data download functions of this package enhanced with analysis, visualization and descriptive statistics tools.

ChileAirQuality is a function that compiles in a data frame air quality data from the National Air Quality System (SINCA). The input variables are: a) Comunas: string vector that can contain the monitoring stations listed in $Annex\ I$; b) Parametros: string vector that can contain the parameters listed in $Annex\ II$; c) fechadeInicio: string containing the start date of the data request in format (dd / mm / yyyy); d) fechadeTermino: string containing the end date of the data request in in format; e) Curar: allows to replace as NA, the values that do not meet the conditions: i) PM25 < PM10; ii) (NO2 + NO) < NOX; iii) 0 < HR < 100 and iv) 0 < wd < 360 if they exist; f) Site: logical value that allows entering the code of the monitoring station, listed in $Annex\ I$, in the variable Comunas; and g) st: logical value that includes validation reports from SINCA "NV": No validated, "PV": Pre-validated and "V": Validated.

Example:

```
df <- ChileAirQuality(Comunas = "Cerrillos", Parametros = c("PM10, PM25"),
fechadeInicio = "01/01/2020,", fechadeTermino = "01/01/2021",
Curar = TRUE, Site = FALSE, st = FALSE)</pre>
```

ChileClimateData is a function that compiles meteorological data from the Chilean Meteorological Directorate (DMC). The input variables are: a) Estaciones: string vector with the codes of the monitoring stations listed in *Annex III*; b) Parametros: string vector that may contain the parameters listed in *Annex IV* c) inicio: initial year of the data request; d) fin: final year of the data request and e) Region: logical parameter, when region is TRUE, it allows entering the administrative region in which the station is located instead of the station code and listed in *Annex III*.

Example:

```
df2 <- ChileClimateData(Estaciones = "II", Parametros = "Temperatura",
inicio = "2020", fin = "2021", Region = TRUE)</pre>
```

ChileAirQualityApp is a dashboard that allows you to use the data download functions of this package enhanced with analysis, visualization and descriptive statistics tools.

ChileAirQualityApp is hosted online on *shinyapp.io* and can be used to serve locally with the AtmChile package. Run ChileAirQualityApp as follows:

```
AtmChile::ChileAirQualityApp()
```

App Display

The *Data Calidad del Aire* tab allows the user to use the ChileAirQuality function to download, within the application, information from the SINCA servers for the parameters listed in *Annex II* for the monitoring stations of the Metropolitan Region (RM) and the Region of Aysen (XXI). The option Curar of ChileAirQuality is found as a checkbox working as previously described. The tab includes the "*Download*" button to download the dataset in case you want to use it locally.

The *Data Climatica* tab allows the user to use the ChileClimateData function to download, within the application, information from the DMC servers for the parameters listed in *Annex IV* according to the

administrative division of the country. The tab includes the "Download" button to download the dataset in case you want to use it locally.

The *Graficas* tab allows the user to generate visualizations of the downloaded data integrating various options of the OpenAir package. Some of the main options are summarized in Table 1:

Table 1: Summary of the main display options offered in the "Graficas" tab

Option	Plot type	Air Quality	Met. Data	Ungroup stations	Adjust time scale	Adjust variables
timePlot	Temporal	X	X	X	X	
time Variation	Temporal	\mathbf{X}	\mathbf{X}	\mathbf{X}		
CorPlot	Correlation	\mathbf{X}	\mathbf{X}	\mathbf{X}		
polarPlot	Polar	\mathbf{X}		\mathbf{X}		
scatterPlot	Correlation	\mathbf{X}		\mathbf{X}		\mathbf{X}
calendarPlot	Temporal	\mathbf{X}	\mathbf{X}		${f X}$	
smooth Trend	Temporal	\mathbf{X}	\mathbf{X}	\mathbf{X}		

The **Resumen** tab offers to generate summaries of descriptive statistics such as: mean, median, standard deviation and coefficient of variation. The tab includes the "Download" button to download the statistical summary in case you want to use it locally.

The *Información* tab contains summary tables with the parameters considered in the "*Data Calidad del Aire*" and "*Data Climatica*" tab, along with a map with the geographical locations of the stations considered in the "*Data Calidad del Aire*" tab.

Limitations

- a) Limited meteorological and air quality variables.
- b) Limited availability of monitoring stations with the application.
- c) Multiple datasets cannot be downloaded and compared at the same time.
- d) No interactive or statics plots.
- e) The user requires precautions on the interpretation of the visualizations and the statistical parameters.

Installation

The AtmChile package can be installed and load from CRAN repository as follows:

```
install.packages("AtmChile")
library(AtmChile)
```

Case study

For a better understanding of the functionality of ChileAirQualityApp, we present a case study based on 5 years of pollution data set from SINCA and 5 years of meteorological data set from DMC.

Air Pollution

The pollution data was downloaded from SINCA using ChileAirQualityApp for the monitoring stations "Parque O'Higgins" and "La Florida" between 2015 and 2020 using the parameters "PM10", "PM25", "ws" (wind speed) and "wd" (wind direction).

The data was downloaded from SINCA for the monitoring stations located at Parque O'Higgins and La Florida between the years 2015 and 2020. **Figure 1** show a time series plot generated with the option "timePlot" for PM10 with a month average time resolution.

Figure 1: Figure 1

Figure 1: PM10 Monthly time series for the monitoring stations La Florida (LF) and Parque O'Higgins (SA) between 2015 and 2020.

Figure 2 show the time series plot generated with the "timeVariation" option for PM10 and PM25 for combined monitoring stations. This option generates four graphs: hourly variation according to the average day of the week, hourly variation in the average day, monthly variation in an average year and daily variation in the average week with a confidence interval of 95%.

Figure 2: Figure 2

Figure 2: PM10 and PM25 times series for combined monitoring stations between 2015 and 2020 generated with the timeVariation option.

Correlations between PM10, PM25 and the meteorological variables wind speed and wind direction are shown in **Figure 3** by means of a plot generated with the corPlot option separated according to the monitoring station. The coded correlation is observed in three ways: by shape (ellipses), color and numerical value.

Figure 3: PM10, PM25, wind speed and wind direction correlation plot for the monitoring stations La Florida (LF) and Parque O'Higgins (SA).

The calendar Plot option generates a calendar with the daily averages of a certain parameter with a scrollbar to filter the time interval. In this case, it was applied for PM25 during the year 2019 as shown in **Figure 4**.

Figure 4: PM25 Calendar Plot for combined monitoring stations in 2019.

Figure 3: Figure 3

Figure 4: Figure 4

The polarPlot function plots a bivariate polar graph of how concentrations vary with wind speed and direction. **Figure 5** represents the polar graph for the monitoring stations La Florida (LF) and Parque O'Higgins (SA).

Figure 5: Figure 5

Figure 5: PM25 Polar Plot for the monitoring stations La Florida (LF) and Parque O'Higgins (SA).

Meteorological data

The data was downloaded from DMC for the monitoring stations located at the Antofagasta Region considering the meteorological stations of Cerro Moreno Antofagasta Ap. And El Loa Calama Ad. between the years 2015 and 2020 for the parameters "Ts" (dry air temperature) "dd" (wind direction) and "ff" (wind speed).

Figure 6 show a time series plot generated with the option "smoothTrend" for Temperature("Ts_Valor") showing the monthly averages and the linear trend of the temperatures in that period of time.

Figure 6: Figure 6

Figure 6: Temperature time series plot for the meteorological stations of Cerro Moreno Antofagasta Ap. And El Loa Calama Ad. between the years 2015 and 2020. Generated with the option "smootTrend".

The timeVariation option can also be used on the parameters of the DMC meteorological stations. **Figure 7** shows the time series generated with this option for the combined meteorological stations of the Antofagasta Region between 2015 and 2020.

Figure 7: Figure 7

Figure 7: Temperature times series for combined meteorological stations between 2015 and 2020 generated with the timeVariation option.

Acknowledgments

References

Anexo I: ChileAirQuality monitoring stations

N°	Code	Latitude	Longitude	Station	Ad. division
1	SA	-33.4508	-70.6604	P. O'Higgins	RM
2	CE1	-33.4795	-70.7190	Cerrillos 1	RM
3	CE	-33.4824	-70.7039	Cerrillos	RM
4	CN	-33.4197	-70.7317	Cerro Navia	RM
5	EB	-33.5336	-70.6659	El Bosque	RM
6	IN	-33.4089	-70.6508	Independecia	RM
7	$_{ m LF}$	-33.5032	-70.5879	La Florida	RM
8	LC	-33.3634	-70.5230	Las Condes	RM

N°	Code	Latitude	Longitude	Station	Ad. division
9	PU	-33.4244	-70.7498	Pudahuel	RM
10	PA	-33.5779	-70.5941	Puente Alto	RM
11	QU	-33.336	-70.7235	Quilicura	RM
12	QU1	-33.3525	-70.7479	Quilicura 1	RM
15	AH	-20.2904	-70.1001	Alto Hospicio	I
16	AR	-18.4768	-70.2879	Arica	XV
17	TE	-38.7486	-72.6207	Las Encinas Temuco	IX
18	TEII	-38.7270	-72.5800	Nielol Temuco	IX
19	TEIII	-38.7253	-72.5711	Museo Ferroviario Temuco	IX
20	PLCI	-38.7724	-72.5950	Padre Las Casas I	IX
21	PLCII	-38.7647	-72.5987	Padre Las Casas II	IX
22	LU	-40.2868	-73.0767	La Union	XIV
23	LR	-40.3212	-72.4718	CESFAM Lago Ranco	XIV
24	MAI	-39.6656	-72.9537	Mafil	XIV
25	MAII	-39.5423	-72.9252	Fundo La Ribera	XIV
26	MAIII	-39.7192	-73.1286	Vivero Los Castanos	XIV
27	VA	-39.8313	-73.2285	Valdivia I	XIV
28	VAII	-39.8054	-73.2587	Valdivia II	XIV
29	OS	-40.5844	-73.1187	Osorno	X
30	OSII	-40.6837	-72.5963	Entre Lagos	X
31	PMI	-41.3991	-72.8995	Alerce	X
32	PMII	-41.4795	-72.9687	Mirasol	X
33	PMIII	-41.5103	-73.0652	Trapen Norte	X
34	PMIV	-41.5187	-73.0880	Trapen Sur	X
35	PV	-41.3289	-72.9682	Puerto Varas	X
36	COI	-45.5799	-72.0610	Coyhaique I	XI
37	COII	-45.5790	-72.0499	Coyhaique II	XI
38	PAR	-53.1582	-70.9214	Punta Arenas	XII

Anexo II: ChileAirQuality parameters

Parameter	Description	Units
PM10	Particulate material minor to 10 micron	$\overline{\text{ug/m}^{3}}$
PM25	Particulate material minor to 2,5 micron	$ug/m^{3}N$
SO2	Sulfur dioxide	$ug/m^{3}N$
NOX	Nitrogen oxides	ppb
NO	Nitrogen monoxide	ppb
NO2	Nitrogen dioxide	ppb
O3	tropospheric ozone	ppb
CO	Carbon monoxide	ppb
temp	Temperature	$^{\circ}\mathrm{C}$
ws	Wind speed	m/s
wd	Wind direction	0
HR	Relative humidity	%

Anexo III: meteorological stations

N.	National Code	Name	Latitude	Longitude	Ad. division
1	180005	Chacalluta, Arica Ap.	-18.35555	-70.33889	XV
2	200006	Diego Aracena Iquique Ap.	-20.54917	-70.16944	I
3	220002	El Loa, Calama Ad.	-22.49806	-68.89805	II
4	230001	Cerro Moreno Antofagasta Ap.	-23.45361	-70.44056	II
5	270001	Mataveri Isla de Pascua Ap.	-27.15889	-109.42361	V
6	270008	Desierto de Atacama, Caldera Ad.	-27.25444	-70.77944	III
7	290004	La Florida, La Serena Ad.	-29.91444	-71.20333	IV
8	320041	Viña del Mar Ad. (Torquemada)	-32.94944	-71.47444	V
9	320051	Los Libertadores	-32.84555	-70.11861	V
10	330007	Rodelillo, Ad.	-33.06528	-71.55917	V
11	330019	Eulogio Sánchez, Tobalaba Ad.	-33.45528	-70.54222	RM
12	330020	Quinta Normal, Santiago	-33.44500	-70.67778	RM
13	330021	Pudahuel Santiago	-33.37833	-70.79639	RM
14	330030	Santo Domingo, Ad.	-33.65611	-71.61000	V
15	330031	Juan Fernández, Estación Meteorológica.	-33.63583	-78.83028	V
16	330066	La Punta, Juan Fernández Ad.	-33.66639	-78.93194	V
17	330077	El Colorado	-33.35000	-70.28805	RM
18	330111	Lo Prado Cerro San Francisco	-33.45806	-70.94889	RM
19	330112	San José Guayacán	-33.61528	-70.35583	RM
20	330113	El Paico	-33.70639	-71.00000	RM
21	340031	General Freire, Curicó Ad.	-34.96944	-71.22028	VII
22	360011	General Bernardo O'Higgins, Chillán Ad.	-36.58583	-72.03389	XVI
23	360019	Carriel Sur, Concepción Ap.	-36.78055	-73.05083	VIII
24	360042	Termas de Chillán	-36.90361	-71.40667	XVI
25	370033	María Dolores, Los Angeles Ad.	-37.39694	-72.42361	VIII
26	380013	Maquehue, Temuco Ad.	-38.76778	-72.62694	IX
27	380029	La Araucanía Ad.	-38.93444	-72.66083	IX
28	390006	Pichoy, Valdivia Ad.	-39.65667	-73.08472	XIV
29	400009	Cañal Bajo, Osorno Ad.	-40.61444	-73.05083	X
30	410005	El Tepual Puerto Montt Ap.	-41.44750	-73.08472	X
31	420004	Chaitén, Ad.	-42.93028	-72.71167	X
32	420014	Mocopulli Ad.	-42.34667	-73.71167	X
33	430002	Futaleufú Ad.	-43.18889	-71.86417	X
34	430004	Alto Palena Ad.	-43.61167	-71.81333	X
35	430009	Melinka Ad.	-43.89778	-73.74555	X
36	450001	Puerto Aysén Ad.	-45.39944	-72.67778	XI
37	450004	Teniente Vidal, Coyhaique Ad.	-45.59083	-72.10167	XI
38	450005	Balmaceda Ad.	-45.91833	-71.67778	XI
39	460001	Chile Chico Ad.	-46.58500	-71.69472	XI
40	470001	Lord Cochrane Ad.	-47.24389	-72.57611	XI
41	510005	Teniente Gallardo, Puerto Natales Ad.	-51.66722	-72.52528	XII
42	520006	Carlos Ibañez, Punta Arenas Ap.	-53.00167	-70.84722	XII
43	530005	Fuentes Martínez, Porvenir Ad.	-53.25361	-70.32194	XII
44	550003	Guardiamarina Zañartu, Pto Williams Ad.	-54.93167	-67.61000	XII
45	50001	C.M.A. Eduardo Frei Montalva, Antártica	-62.19194	-58.98278	XII
46	50001	Arturo Prat, Base Antártica	-62.13134 -62.47861	-59.66083	XII
47	950003	Bernardo O'Higgins, Base Antártica	-63.32083	-57.89805	XII
-11	20000	Dernardo O mggms, Dase Amariica	-00.02000	-01.0000	

Anexo IV: meteorological parameters

Parameter	Description	Output	Units
Temperatura	Temperature	Ts_Valor	$^{\circ}\mathrm{C}$
PuntoRocio	Dew point temperature	Td_Valor	$^{\circ}\mathrm{C}$
Humedad	Relative humidity	HR_Valor	%
Viento	Wind speed and wind direction	ff_Valor and dd_Valor	m/s and $^{\circ}$
PresionQFF	Pressure at sea level	QFF_Valor	Pa
PresionQFE	Pressure at monitoring station level	QFE_Valor	Pa