Amendments to the Specification:

Page 7, before the paragraph beginning on line 17, insert the following new paragraph:

The four lines forming the sides may obey the following formulas relating to the unit area of dimensions $x \in [-E;E]$ and $y \in [-E;E]$ where $E \in [0;+\infty]$, where the zero point (0;0) is the centre of the unit area.

for all the radiuses ri: i ε [1;2;3;4;5;6;7;8] rl=r2 =r3 =r4 =r5=r6=r7=r8 r_i ε [E/2;+∞] for point (x_1, y_1) : $x_1 = E - \sqrt{(r_i 2 - (E/2)^2)}$ $y_1 = E/2$ for point $(x_2; y_2)$: $x_2 = E/2$ $y_2 = E = \sqrt{(r_i 2 - (E/2)^2)}$ for point $(x_3;y_3)$: $x_3 = -E/2$ $y_3 = E - \sqrt{(r_i 2 - (E/2)^2)}$ for point $(x_4; y_4)$: $x_4 = E - \sqrt{(r_i 2 - (E/2)^2)}$ y4 = E/2for point $(x_5; y_5)$ $x_5 = -E + \sqrt{(r_i 2 - (E/2)^2)}$

 $y_5 = -E/2$

for point (x_6, y_6) :

$$x_6 = -E/2$$

$$y_6 = -E - \sqrt{(r_i 2 - (E/2)^2)}$$

for point $(x_7;y_7)$

$$x_7 = -E/2$$

$$y_7 = -E + \sqrt{(r_i 2 - (E/2)^2)}$$

for point (x_8,y_8) :

$$x_8 = E + \sqrt{(r_i 2 - (E/2)^2)}$$

$$y_8 = -E/2$$

points $(x_i; y_i)$ are the centres of the respective radiuses

for all points (x_i;y_i):

$$x_i \ \epsilon[-\infty; +\infty]$$

the formulas being correct for a printing element as shown below:

