الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2009

امتحان بكالوريا التعليم الثانوي

الشعبة: تقتى رياضى

المدة: 04 سا و 30 د

اختبار في مادة : التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (07 نقاط)

1) لديك سلسلة التفاعلات الكيميائية التالية:

(1)
$$CH \equiv CH + H_2O \xrightarrow{H_g^{2+}} A' \longrightarrow A$$

(2) A +
$$CH_3$$
 - CH_2 - CH_2 - $MgCl \longrightarrow B$

(3)
$$B + H_2O \longrightarrow C + MgClOH$$

$$(4) \quad A \quad \xrightarrow{KMnO_4} \quad D$$

(4) A
$$\xrightarrow{KMnO_4}$$
 D
(5) D + C $\xrightarrow{H^+}$ E + H_2O

(6)
$$C + PCl_5 \longrightarrow F + HCl + POCl_3$$

$$(7) \quad F + (CH_3)_3 N \longrightarrow G$$

أ- أكتب الصيغ نصف المفصلة للمركبات G، F، E، D، C، B، A'، A.

ب- ما اسم التفاعل (5) ؟ حدد خصائصه.

- أكتب تفاعل المركب F مع البنزن في وجود الوسيط - أكتب تفاعل

$$A \xrightarrow{Zn} + \dots + \dots + \dots$$
د- أكمل التفاعل التالي:

 CO_2 و المثيل مغنزيوم و CO_2 و الماء؟ هــ كيف يمكن الحصول على المركب

2) من جهة أخرى لديك التفاعلين التاليين:

$$CH \equiv CH + HCN \longrightarrow H$$

 $n H \longrightarrow I$

أ- أكتب الصيغة نصف المفصلة للمركب H.

ب- أكتب الصيغة العامة للمركب I.

ج- ما نوع البلمرة في التفاعل المؤدي إلى المركب I؟

التمرين الثاني: (07 نقاط)

I. يؤدي المركب العضوي (A) دورا هاما في العضوية وتُمثّل بنيته الكيميائية العامّة في الوثيقة (1):

ا) يعطي المركب العضوي (A) تفاعلا إيجابيا مع اختبار بيوري واختبار الكزانتوبروتييك.
 أ- حدد الفرق بين الاختبارين.

ب- أعط اسم الرّابطة المشار لها بالحرف (a) والرّابطة المشار لها بالحرف (b).

2) من بين نواتج إماهة المركب العضوي (A) لدينا الأحماض الأمينية التالية الممثلة في الوثيقة (2).

$$H_2N-CH-COOH$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_7
 CH_7
 CH_7
 CH_8
 CH_8

أ- صنف الأحماض الأمينية أ- صنف الأحماض الأمينية المقطع الببتيدي الآتى: ب- أكتب الصيغة نصف المفصلة للمقطع الببتيدي الآتى:

$$\dots$$
 Asn — Cys — Pro — Leu — \dots

 E_4 ، E_5 ، E_6 ، E_1 التفاعلات التالية: E_6 ، E_7 ، E_8 ، E_8 التفاعلات التالية:

$$H-N \longrightarrow COOH \xrightarrow{E_1} A + CO_2$$

$$HOOC - CH_2 - CH_2 - COOH + FAD \xrightarrow{E_2} B + FADH_2$$

$$O$$
 $H_2N-CH-C-NH-CH_2-COOH + H_2O $\xrightarrow{E_3}$ $C+D$ CH_3 $C+D$ $CH_3$$

$$CH_{2} - OH$$

$$CH_{2} - OH$$

$$CH_{2} - O - P$$

التمرين الثالث: (06 نقاط)

يتفاعل الميثان مع الكلور عند 298K وفق المعادلة الإجمالية:

$$CH_{4(g)} + 4 Cl_{2(g)} \longrightarrow CCl_{4(g)} + 4 HCl_{(g)}$$
 $\Delta H_r^{\circ} = -401,08 \ kJ.mol^{-1}$: $B_r = -401,08 \ kJ.mol^{-1}$: B

$\Delta\mathbf{H}_f^{\circ}(CH_{4(g)})$	$\Delta \mathbf{H}_f^{\circ}(HCl_{(g)})$	ΔH° _{vap} (CHCl _{3(l)})	ΔH° _{dis} (C-H)	ΔH° _{dis} (<i>H-H</i>)	ΔΗ° 🚓 (CI-CI)	ΔH° _{sub} (C)
- 74,6	- 92,3	30,4	415	432	242,6	716,7
kJ.mol	kJ.mol ⁻¹	kJ.mol ⁻¹	kJ.mol '	kJ.mol 1	kJ.mol '	kJ.mol 1

المركب	CH _{4(g)}	$Cl_{2(g)}$	HCl _(g)	CCl _{4(g)}
$C_p(J.K^{-1}.mol^{-1})$	35,71	33,93	29,12	83,51

أحسب:

- 1- أنطالبي هذا التفاعل عند 650 K .
- -2 الأنطالبي المعياري لتشكل CCl_{4(g)} -2
 - -3 طقة الرابطة (C-Cl) . (C-Cl)
- $\Delta H_f^{\circ}(CHCl_{3(I)})$ أنطاليي تشكل الكاوروفورم

الموضوع الثانى

التمرين الأول: (07 نقاط)

1) لتكن التفاعلات الكيميائية المتسلسلة التالية:

$$CH_{2} = CH_{2} + H_{2}O \xrightarrow{H^{+}} A$$

$$A \xrightarrow{KMnO_{4}} B$$

$$B + SOCl_{2} \longrightarrow C + \dots + \dots$$

$$\bigcirc + C \xrightarrow{AlCl_{3}} D + \dots$$

$$D \xrightarrow{LiAlH_{4}} E$$

$$E \xrightarrow{H^{+}} F + \dots$$

$$F + O_{3} \xrightarrow{H_{2}O} G + H + H_{2}O_{2}$$

حيث G مركّب أروماتي.

أ- أكتب الصيغ نصف المفصلة للمركبات H، G ، F، E ، D ، C ، B ، A

ب- من بين هذه المركبات عين التي تكون نشطة ضوئيا.

2) بلمرة المركب F تعطى مركبا I ذو أهمية صناعية.

أ - أكتب الصيغة العامة للمركب I.

ب- ما نوع هذه البلمرة ؟

ج- أذكر أهم استخدامات البوليمير I.

التمرين الثاني: (07 نقاط)

1) لديك الأحماض الأمينية التالية:

$$H_2N_ CH_ COOH$$
 $H_2N_ CH_ COOH$ $H_2N_ CH_2$ $COOH$ CH_2 $(CH_2)_4_-NH_2$ CH_3 $(CH_2)_4_-NH_2$ $(CH_3)_4_-NH_2$ $(CH_3$

النيروزين (Tyr)

أ- مثّل الحمض الأميني الألانين في الصورتين L و D .

ب- صنّف الحمضين الأمينيين الليزين والتيروزين.

2) لديك رباعي الببتيد التالي: Tyr - Gly - Ala - Lys

أ- أكتب الصبيغة الكيميائية المفصلة لهذا الببتيد.

ب- هل يُعطي هذا الببتيد نتيجة إيجابية مع كاشف كزانتوبروتييك؟ علَّل إجابتك.

(Electrophorèse) في جهاز الهجرة الكهربائية (Lys ، Tyr ، Ala في جهاز الهجرة الكهربائية pH=6 عند pH=6

أ- وضرّح بالرّسم مواقع هذه الأحماض الأمينية عند pH=6.

ب- أكتب الصيغة الكيميائية المتأينة لكل من الألانين والتيروزين عند PH=6.

ج- أعط صيغة الليزين عند pH=9,7 وعند pH=1.

pHi = 9,75 لليزين

pHi = 5,6 للتيروزين

يعطى: pHi = 6,01 للألانين

4) لديك التفاعل الإنزيمي التالي:

ديكربوكسيلاز
$$H_2N_ CH_ COOH$$
 \longrightarrow + + CH_3

أ- أكمل التفاعل الإنزيمي بإيجاد نواتجه.

ب- صنف إنزيم الديكربوكسيلاز.

التمرين الثالث: (06 نقاط)

1) ليكن المخطّط التالى:

- أحسب الأنطالبي المعياري لتشكل الأوكتان الغازي $\Delta H_f^{\circ}(C_8H_{18})_{(g)}$ عند $\Delta H_{dis}^{\circ}(H-H)=436~kJ.mol^{-1}$ ، $\Delta H_{sub}^{\circ}(C_s)=716,7~kJ.mol^{-1}$ يعطى: $E(C-H)=-415~kJ.mol^{-1}$ ، $E(C-C)=-345~kJ.mol^{-1}$

 $C_8H_{18(g)}$ أحسب الأنطالبي المعياري لاحتراق الأوكتان (2

 $\Delta H_f^{\circ}(H_2O)_{(g)} = -241,83 \ kJ.mol^{-1}$ ، $\Delta H_f^{\circ}(CO_2)_{(g)} = -393,5 \ kJ.mol^{-1}$ يعطى: $\Delta U_f^{\circ}(H_2O)_{(g)} = -393,5 \ kJ.mol^{-1}$ يعطى: $\Delta U_f^{\circ}(H_2O)_{(g)} = -393,5 \ kJ.mol^{-1}$ يعطى: (3) أحسب التغير في الطّاقة الدّاخليّة $\Delta U_f^{\circ}(H_2O)_{(g)} = -393,5 \ kJ.mol^{-1}$

 $R = 8,31 J.mol^{-1}.K^{-1}$: يعطى

الإجابة النموذجية وسلم التنقيط ... مادة: هندسة الطرائق ... شعبة: تكنولوجيا ... لديك سلسلة التفاعلات بكالوريا جوان 2009

نة	العلاه	عناصر الإجابة	, al = -11
مڊ	مجزأة		المحاور
	2×0,5	التمرين الأول: (07 نقاط) O	
		B: CH ₃ –CH ₂ –CH ₂ –CH–OMgCl C: CH ₃ –CH ₂ –CH ₂ –CH– CH ₃ CH ₃ OH	
	6×0,5	D: CH ₃ COOH E: CH ₃ C –O–CH–CH ₂ –CH ₃ CH ₃	
		F: CH ₃ -CH ₂ -CH ₋ CH ₋ CH ₃ Cl CH ₃ CH ₋ CH ₃ CH ₋ CH ₂ -CH ₂ -CH ₃ CH ₃ CH ₋ CH ₂ -CH ₂ -CH ₃	
	0,25	ب- اسم التفاعل (5) هو تفاعل الأسترة.	
	0,25	ب المم المفاعل (د) هو تفاعل المسرة. خصائصه: بطيء، عكوس، محدود، لا حراري. ج- تفاعل F مع البنزين في وجود AlCl ₃ (ألكلة):	
	0,5	$\bigcirc + CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3 + HCI$ $CH_3 - CH_2 - CH_2 - CH_3 - CH_3 + HCI$	
	0,5	CH_3-C : CH $_3-C$ CH_3-CH_3 $CH_3-CH_3 + H_2O$ $CH_3-CH_3 + H_2O$ $CH_3-CH_3 + H_2O$ A_1 A_2 A_3 A_4 A_4 A_4 A_5	
	0,5	CH_3 -MgBr + O=C=O $\longrightarrow CH_3 - C$ -OMgBr	
		O $CH_3 - C - OMgBr + H - OH $	
	0,5	CH ₂ = CH :H صيغة المركب (2	
	0,5	ب- الصيغة العامة المركب I: بالصيغة العامة المركب (CH - CH - CH ₂ -)	
		ج- نوع البلمرة: بلمرة الضم. 	
		204	

تابع الإجابة النموذجية وسلم التنقيط _ مادة: هندسة الطرائق _ شعبة: تكنولوجيا _ لديك سلسلة التفاعلات بكالوريا جوان 2009

العلامة		للمودجية وسلم التنفيظ ــ ماده: هندسه الطرابق ــ شعبه: تحتونوجيا ــ نديك سنسنه النفاعلات بكا	***************************************
مجموع	مجزاة	عاصر المجانة	المحاور
		التمرين الثاني: (07 نقاط)	
		1.۱) أ– الفرق بين اختبار بيوري واختبار كزانتوبروتييك:	
	0,5	- اختبار بيوري يكشف عن الروابط الببتيدية في متعدد الببتيد أو في البروتين.	
	0,5	 أما اختبار كزانتوبروتييك فيكشف عن وجود الأحماض الأمينية الآروماتية. 	
02	0,5	ب- الرابطة (a): تمثل رابطة ببتيدية.	
	0,5	الرابطة (b): تمثل جسر كبريتي.	
		2) أ- تصنيف الأحماض الأمينية:	
		حمض أميني خطي بسيط: Leu	The state of the s
	4×0,25	حمض أميني حلقي إميني: Pro	
	,	حمض أميني حلقي أروماتي: Tyr	
		حمض أميني خطي كبريتي: Cys	
02		ب- الصيغة نصف المفصلة للمقطع:	
02			Transfer of the second
		NH-CH-CO-NH-CH-CO-N CO-NH-CH-CO	
	4×0,25	CH_2 CH_2 CH_2	
		C SH CH	
		O'NH ₂ CH ₃ CH ₃	
		ال. ال المركبات:	
		A: H-N H B: HOOC-CH=CH-COOH	
02	4×0,5	C: H ₂ N-CH-C-OH D: H ₂ N-CH ₂ -COOH	
		CH ₃	
	0.25	2) تصنیف الإنزیمات:	
	0,25	من الإنزيمات النازعة : E ₁	
01	0,25	من أنزيمات الأكسدة والإرجاع : E ₂ :	
	0,25	${ m E}_3:$ من أنزيمات التحلل المائي (هيدرولاز)	
	0,25	من أنزيمات التماكب (ايزوميراز) : E ₄ :	
			The second secon

تابع الإجابة النموذجية وسلم التنقيط ... مادة: هندسة الطرائق ... شعبة: تكنولوجيا ... لديك سلسلة التفاعلات بكالوريا جوان 2009

	المودجية والعدم التنفيط _ مدد. المدانية الطرائق _ التعبة. لتدولوجي _ ديك المسلة التعامرات بحاوري جوال ور عناصر الإجابة		
مجموع	مجزاة	حاصر ، بجب	المحاور
		التمرين الثالث: (06 نقاط)	
		-1 حساب ΔH, عند ΔH, حساب –1	
		نكتب قانون كرشوف حيث:	
	0,25	$\Delta H_T^0 = \Delta H_{T_0}^0 + \int_{T_0}^T \Delta C_p dT$	
	0,5	$\Delta H_{650}^{0} = \Delta H_{298}^{0} + \int_{298}^{650} (C_p(CCl_4) + 4C_p(HCl) - 4C_p(Cl_2) - C_p(CH_4)) dT$	
	0,25	$\Delta H_{650}^{0} = -401,08.10^{3} + [(83,51) + 4(29,12) - 4(33,93) - (35,71)](650 - 298)$	
02		$\Delta H_{650}^{0} = -401,08.10^{3} + (199,99 -171,43)(352)$	
		$\Delta H_{650}^0 = -401,08.10^3 + 10053,12$	
		$\Delta H_{650}^{0} = -401,08.10^{3} + 10,05312.10^{3}$	
	0,25	$\Delta H_{650}^0 = -391,026.10^3 \ J.mol^{-1}$	
	0,75	$\Delta H_{650}^0 = -391,026 \ kJ.mol^{-1}$	
		2− أنطالبي تشكل ₄ CCl:	
0,75	0,25		
0,73		$\Delta H_f^{\circ}(CCl_4) + 4\Delta H_f^{\circ}(HCl) - \Delta H_f^{\circ}(CH_4) - 4\Delta H(Cl_2) = -401,08kJ.mol^{-1}$	
	0,5	$\Delta H_f^{\circ}(CCI_4) = -401,08 - 4(-92,3) + (-74,6) + 4(0)$	
		$\Delta H_f^{\circ}(CCl_4) = -401,08 + 369,2 - 74,6$	
		$\Delta H_f^{\circ}(CCl_4) = -106,46kJ.mol^{-1}$	
		$:E_{C-Cl}$ طاقة الرابطة: $=3$	
	0,25	نحقق الدورة الترموديناميكية التالية:	
	0,25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0,23	ΔH_{sub}^0 2 ΔH_{dis}^0 (Cl -Cl)	
		$4E_{C-Cl}$	
1,5	0,25	C (g) + 4 Cl	
		حيث:	
	0,25		
	0,25	$\Delta H_{sub}(C)_{(s)} + 2 \Delta H_{dis}^{0} (Cl - Cl) + 4E_{C-Cl} = \Delta H_{f}^{0} (CCl_{4})_{g}$	
		$716,7+2(242,6)+4E_{C-C1}=-106,46$	
	0.25	$E_{C-CI} = -\left(\frac{106, 46 + 716, 7 + 485, 2}{4}\right)$	
	0,23	4)	
		$E_{C-CI} = -327,09kJ.mol^{-1}$	

الإجابة النموذجية وسلم التنقيط ... مادة: هندسة الطرائق ... شعبة: تكنولوجيا ... لتكن سلسلة التفاعلات بكالوريا جوان 2009

ىة	العلا	عناصر الإجابة	
مجموع	مجزأة	عصر البجاب	المحاور
		4 – أنطالبي تشكل الكلوروفورم	
	0,5	نحقق الدورة الترمودنياميكية التالية:	
	0,5	$C_{(s)} + 1,5Cl_{2(g)} + 0,5H_{2(g)} \xrightarrow{\Delta H_f(CHCl_3)} CHCl_{3(l)}$	
1,75	0,25	$C_{(s)} + 1,5Cl_{2(g)} + 0,5H_{2(g)} \xrightarrow{\Delta H_{f}(CHCl_{3})} CHCl_{3(l)}$ $\downarrow \Delta H_{Sub}^{0} \qquad \downarrow 1,5\Delta H_{dis}\left(Cl-Cl\right) \qquad 0,5\Delta H_{dis}\left(H-H\right) \qquad -\Delta H_{vap}$ $C_{(g)} + 3Cl_{(g)} + H_{(g)} \xrightarrow{3E_{(C-Cl)}-\Delta H(C-H)} CHCl_{3(g)}$	
	0,5	$\Delta H_f^0 \left(CHCl_3 \right)_{(l)} = 716, 7 + 1,5(242,6) + 0,5(432) - 30,4 + 3(-327,09) - 415$ $\Delta H_f^0 \left(CHCl_3 \right)_{(l)} = 716, 7 + 363, 9 + 216 - 30, 4 - 981, 27 - 415$ $\Delta H_f^0 \left(CHCl_3 \right)_{(l)} = -130,07kJ.mol^{-1}$	

الإجابة النموذجية وسلم التنقيط ... مادة: هندسة الطرائق ... شعبة: تكنولوجيا ... لديك سلسلة التفاعلات بكالوريا جوان 2009

ä	العلام	ه ع الثاند)	عناصر الإجابة (الموض		المحاور
مجموع	مجزأة	دع ،ــــي)			J.3—
				التمرين الأول: (07 نقاط)	1 m
	0,5×2	A: CH ₃ -CH ₂ OH B	: CH ₃ COOH	1) أ) صيغ المركبات:	
	0,5×2	C: CH ₃ -COCl D	€O-CH ₃		
04,5	0,5×2	E: CH-CH ₃ F	$CH = CH_2$		
	0,5×2	G: C	H: HC H		
	0,5	(OF CH-OH	H المركب CH ₃) E المركب	ب) المركب الفعال ضوئيا هو	
	0,5			2) أ) صيغة المركب I:	
02,5		-CH-	CH_2		
	01	(0)	\mathcal{I}_n		
	0,25			ب) نوع البلمرة: بلمرة بالضم.	J
	0,25		ران (F):	ح) أهم استخدامات البولي ستير	
	0,25			– عازل للصوت.	
	0,25			- عازل للمرارة.	
		ء النقل).	لأجهزة والوسائل أثثا	- مضاد للصدمات (حفظ ا	
		.(لعب، قوالب، الخ	- صناعة بعض الوسائل (
				التمرين الثاني: (07 نقاط)	
			رتين D و L:	1) أ- تمثيل الألانين في الصو	
		COO	4	соон	
		H — C —	NH.	 H₂N— C — H	
	2×0,5	1	13112	1	
		CH₃		CH₃	
02		. ألانين	· D	L ألانين	
			ين Lys و Tyr	ب- تصنيف الحمضين الأمينيا	
			غطي قاعدي .	الليزين (Lys) حمض أميني -	
	0,5 0,5		, حلقي أروماتي.	التروزين (Tyr) حمض أميني	

الإجابة النموذجية وسلم التنقيط ... مادة: هندسة الطرائق ... شعبة: تكنولوجيا ... لتكن سلسلة التفاعلات بكالوريا جوان 2009

å	العلام	عناصر الإجابة	
مجموع	مجزأة	4-51 /	المحاور
1,25	4×0,25	Tyr-Gly-Ala-Lys : او کتابة صیغة رباعی الببتید : (2 الله الله الله الله الله الله الله الل	
	0,25	OH نعم يعطي هذا الببتيد نتيجة إيجابية مع كاشف كزانتو بروتييك لأنه يحتوي على حمض أميني أروماتي هو التيروزين. اللهجرة الأحماض الأمينية Lys ، Tyr، Ala في جهاز الهجرة الكهربائية عند pH=6	
03	0,5	Tyr pH=6 O all Lys O all Lys O all Date of the pH=6	
	0,5	hand and the second sec	
	0,5	pH=6 بالصيغة الكيميائية للألانين عند $pH=6$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
	0,5	$_{\rm H_2N}$ —CH — COO $^{\rm CH_3}$ $_{\rm PH}$ $_{\rm CH_2}$ $_{\rm CH_2}$ $_{\rm PH}$	
	0,5	OH $pH=pH_i=9,7 \text{ ح- الصيغة الكيميائية لليزين عند } H_3 \overset{\dagger}{N} - CH - COO^-$ $PH=pH_i = 9,7 COO^-$ $PH=pH_i = 9,7 COO^-$	
	0,5	$H_3\dot{N}$ — CH — COH NH_2 $pH=1$ الصيغة الكيميائية لليزين عند $(CH_2)_4$ O	

الإجابة النموذجية وسلم التتقيط _ مادة: هندسة الطرائق _ شعبة: تكنولوجيا _ لتكن سلسلة التفاعلات بكالوريا جوان 2009

العلامة		ودجيه وسنم التنفيط _ مده: هدسه الطرائق _ سعبه: تكلونوجي _ تكل سسمه التفاعلات بكائق	
مجموع	مجزاة		المحاور
		4) أ- التفاعل الإنزيمي	
	2×0,25	H ₂ N — CH — COOH ديكزبوكسيلاز CH ₃ — CH ₂ — NH ₂ + CO ₂	
0,75		CH ₃	
	0,25	ب- ينتمي إنزيم الديكربوكسيلار إلى صنف الإنزيمات النازعة	
		التمرين الثالث: (06 نقاط)	
		$\Delta H_f^\circ(C_8H_{18})_{(g)}$ حساب أنطالبي تشكل الأوكتان $\Delta H_f^\circ(C_8H_{18})_{(g)}$	
		الدينا :	
	4×0,25	$8\Delta H_{sub}^{\circ}C_{(s)} + 9\Delta H_{dis}^{\circ}(H - H) + 7E(C - C) + 18E(C - H) = \Delta H_{f}^{\circ}(C_{8}H_{18})$	
	0,5	$\Delta H_f^{\circ}(C_8 H_{18})_{(g)} = 8(716,7) + 9(436) + 7(-345) + 18(-415)$	
		$\Delta H_f^{\circ}(C_8H_{18}) = 9657, 6 - 9885$	
2,25	0,75	$\Delta H_f^{\circ}(C_8 H_{18})_{(g)} = -227,4 kJ.mol^{-1}$	
		$\Delta H_{comb}^{\circ}(C_8H_{18})_{(g)}$ حساب (2)	
		$C_8H_{18(g)} + \frac{25}{2}O_{2(g)} \rightarrow 8CO_{2(g)} + 9HO_{2(g)}$	
	0,75	$\Delta H_{comb}^{\circ} = 8\Delta H_{f}^{\circ} (CO_{2})_{(g)} + 9\Delta H_{f}^{\circ} (H_{2}O)_{(g)} - \Delta H_{f}^{\circ} (C_{8}H_{18})_{(g)} - 12,5\Delta H_{f}^{\circ} (O_{2})_{(g)}$	
		$\Delta H_{comb}^{\circ} = 8(-393,5) + 9(-241,83) - (-227,4) - 12,5(0)$	
1,5	0,75	$\Delta H_{comb}^{\circ} = -5097 kJ.mol^{-1}$	
	0,75		
	0,73	(3) حساب ΔU التغير في الطاقة الداخلية عند 298K:	
	0,75	$\Delta H = \Delta U + \Delta nRT$	
		$\Delta U = \Delta H - \Delta nRT$: ومنه	
		من معادلة الاحتراق لدينا:	
2,25		$\Delta n = (8+9) - (1+12,5) = 3,5 moles$	
		$\Delta U = -5097 \times 10^3 - 3.5 \times 8.31$	
	0,75	$\Delta U = -5097 \times 10^3 - 8667,33$	
	- ,	$\Delta U = -5097 \times 10^3 - 8,66733 \times 10^3$	
		$\Delta U = -5105,66733 \times 10^3 $ Joules $\Delta U = -5105,66 $ KJ	
		25 5.05,00.00	
····			