Supervised Learning: Regression

Parantapa Goswami

Viseo R&D Grenoble, France parantapa.goswami@viseo.com

December 1, 2017

Supervised Learning

Right answers are given

Supervised Learning

Right answers are given

Regression Problem

Predict real valued output

Size of house	Price in	
in feet 2 (x)	1000\$s (y)	
2104	460	
1416	232	
1534	315	
:	:	

```
m \rightarrow number of examples x \rightarrow input variable/features y \rightarrow output variable/target (x^i, y^i) \rightarrow i^{th} training example
```


Size of house in feet 2 (x)	Price in 1000\$s (y)	
2104	460	
1416	232	
1534	315	
:	÷	

 $m \rightarrow$ number of examples $x \rightarrow$ input variable/features $y \rightarrow$ output variable/target $(x^i, y^i) \rightarrow i^{th}$ training example

Hypothesis $h: x \to y$

Size of house in feet 2 (x)	Price in 1000\$s (y)	
2104	460	
1416	232	
1534	315	
:	:	

 ${\color{red} m}
ightarrow$ number of examples ${\color{red} x}
ightarrow$ input variable/features ${\color{red} y}
ightarrow$ output variable/target ${\color{red} (x^i,y^i)}
ightarrow i^{th}$ training example

Hypothesis $h: x \to y$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Size of house in feet 2 (x)	Price in 1000\$s (y)	
2104	460	
1416	232	
1534	315	
:	:	

 ${m \over x}
ightarrow {
m number of examples} \ {x \over x}
ightarrow {
m input variable/features} \ {y \over x}
ightarrow {
m output variable/target} \ {(x^i,y^i)}
ightarrow {i^{th}} {
m training example} \ {}$

Hypothesis $h: x \rightarrow y$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Univariate Linear Regression

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

• Different θ_0 and θ_1 will generate different lines

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

• Different θ_0 and θ_1 will generate different lines

ullet Need to choose best $heta_0$ and $heta_1$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

• Different θ_0 and θ_1 will generate different lines

• Need to choose best θ_0 and θ_1

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

Cost Function: Mean Squared Error

$$min_{\theta_0,\theta_1} (h_{\theta}(x) - y)^2$$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

Cost Function: Mean Squared Error

$$min_{\theta_0,\theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

Cost Function: Mean Squared Error

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^i) - y^i)^2$$
 $min_{ heta_0, heta_1} J(heta_0, heta_1)$

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

Cost Function: Mean Squared Error

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$
$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

For fixed θ_0 and θ_1 , h_θ is a function of x

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0 and θ_1 so that $h_{\theta}(x)$ is close to given outputs y in the training examples (x, y)

Cost Function: Mean Squared Error

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

For fixed θ_0 and θ_1 , h_θ is a function of x

 $J(\theta_0,\theta_1)$ is a function of the parameters θ_0 and θ_1

For fixed θ_0 and θ_1 , h_θ is a function of x

For fixed θ_0 and θ_1 , h_θ is a function of x

 $J(\theta_0,\theta_1)$ is a function of the parameters θ_0 and θ_1

For fixed θ_0 and θ_1 , h_θ is a function of x

 $J(\theta_0,\theta_1)$ is a function of the parameters θ_0 and θ_1

- ullet Goal: to find a $\hat{ heta}_0$ and $\hat{ heta}_1$ providing minimum $J(heta_0, heta_1)$
- Corresponding hypothesis will be the trained model: $h_{\hat{\theta}}(x) = \hat{\theta}_0 + \hat{\theta}_1 x$
- $J(\theta_0, \theta_1)$ is convex: can be minimized using Gradient Descent

Multiple Features

Size of house	Price in	
in feet 2 (x)	1000\$s (y)	
2104	460	
1416	232	
1534	315	
÷	:	

Multiple Features

Size of house	Number of	Number of	Price in
in feet 2 (x)	bedrooms	Floors	1000\$s (y)
2104	5	1	460
1416	3	2	232
1534	3	2	315
÷	:	:	:

```
n \rightarrow number of features
```

 $ec{\mathbf{x}^i}
ightarrow i^{th}$ input is now a *n*-dimensional vector

 $x_i^i \rightarrow j^{th}$ feature of the i^{th} input

Multivariate Linear Regression

Hypothesis

$$y = h_{\vec{\theta}}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Multivariate Linear Regression

Hypothesis

$$y = h_{\vec{\theta}}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Cost Function

$$J(\theta_0, \theta_1, \theta_2, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\vec{\theta}}(\vec{x^i}) - y^i)^2$$

Multivariate Linear Regression

Hypothesis

$$y = h_{\vec{\theta}}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

Cost Function

$$J(\theta_0, \theta_1, \theta_2, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\vec{\theta}}(\vec{x^i}) - y^i)^2$$

- Goal: to find $\hat{\theta}_0, \dots, \hat{\theta}_n$ providing minimum $J(\theta_0, \dots, \theta_n)$
- Here also, $J(\theta_0, \dots, \theta_n)$ is convex: thus can be minimized using Gradient Descent

Time Series

A time series is a sequence of observations $s_t \in \mathbb{R}$, usually ordered in time.

Examples of time series can be found in every scientific and applied domain:

- Meteorology: weather variables, like temperature, pressure, wind.
- Economy and finance: economic factors (GNP), financial indexes, exchange rate, spread.
- Marketing: activity of business, sales.
- Industry: electric load, power consumption, voltage, sensors.
- Bio-medicine: physiological signals (EEG), heart-rate, patient temperature.
- Web: clicks, logs.

Time Series Forecasting

Time series forecasting is the use of a model to predict future values of a time series based on previously observed values.

Time Series Forecasting

Time series forecasting is the use of a model to predict future values of a time series based on previously observed values.

To do that:

- Understand or model the stochastic mechanisms generating the data
- This model is used to forecast the future values based on the history

Time Series Forecasting

Time series forecasting is the use of a model to predict future values of a time series based on previously observed values.

To do that:

- Understand or model the stochastic mechanisms generating the data
- This model is used to forecast the future values based on the history

Examples:

- Weather forecasting.
- Sales prediction.
- Stock market forecasting.

• Assume we have a time series:

$$x_1, x_2, \ldots, x_N$$

Assume we have a time series:

$$X_1, X_2, \ldots, X_N$$

T observed values: also known as history size

Assume we have a time series:

$$X_1, X_2, \ldots, X_N$$

- T observed values: also known as history size
- Need to forecast T' future values: also known as forecast horizon

Assume we have a time series:

$$x_1, x_2, \ldots, x_N$$

- T observed values: also known as history size
- Need to forecast T' future values: also known as forecast horizon
- We want to model the relation:

$$(x_{T+1}, x_{T+2}, \dots, x_{T+T'}) = r(x_1, x_2, \dots, x_T)$$

• To learn a regression model: multiple examples of feature value pairs are required

- To learn a regression model: multiple examples of feature value pairs are required
- Moving window method:

$$X_1, X_2, \ldots, X_T, X_{T+1}, X_{T+2}, \ldots X_{T+T'}, X_{T+T'+1}, \ldots$$

- To learn a regression model: multiple examples of feature value pairs are required
- Moving window method:

$$\underbrace{x_1, x_2, \dots, x_T}_{\text{history}}, \underbrace{x_{T+1}, x_{T+2}, \dots, x_{T+T'}}_{\text{horizon}}, x_{T+T'+1}, \dots$$

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_T \end{bmatrix} \quad Y = \begin{bmatrix} x_{T+1} & x_{T+2} & \dots & x_{T+T'} \end{bmatrix}$$

- To learn a regression model: multiple examples of feature value pairs are required
- Moving window method:

$$x_1, \underbrace{x_2, x_3, \dots, x_T, x_{T+1}}_{\text{history}}, \underbrace{x_{T+2}, x_{T+3}, \dots, x_{T+T'+1}}_{\text{horizon}}, x_{T+T'+2}, \dots$$

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_T \\ x_2 & x_3 & \dots & x_{T+1} \end{bmatrix} \quad Y = \begin{bmatrix} x_{T+1} & x_{T+2} & \dots & x_{T+T'} \\ x_{T+2} & x_{T+3} & \dots & x_{T+T'+1} \end{bmatrix}$$

- To learn a regression model: multiple examples of feature value pairs are required
- Moving window method:

$$X_{1}, X_{2}, \underbrace{X_{3}, \dots, X_{T+1}, X_{T+2}}_{\text{history}}, \underbrace{X_{T+3}, X_{T+4}, \dots, X_{T+T'+2}}_{\text{horizon}}, X_{T+T'+3}, \dots$$

$$X = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{T} \\ x_{2} & x_{3} & \dots & x_{T+1} \\ x_{3} & x_{4} & \dots & x_{T+2} \end{bmatrix} \quad Y = \begin{bmatrix} x_{T+1} & x_{T+2} & \dots & x_{T+T'} \\ x_{T+2} & x_{T+3} & \dots & x_{T+T'+1} \\ x_{T+3} & x_{T+4} & \dots & x_{T+T'+2} \end{bmatrix}$$

- To learn a regression model: multiple examples of feature value pairs are required
- Moving window method:

$$X_{1}, X_{2}, \underbrace{X_{3}, \dots, X_{T+1}, X_{T+2}}_{\text{history}}, \underbrace{X_{T+3}, X_{T+4}, \dots, X_{T+T'+2}}_{\text{horizon}}, X_{T+T'+3}, \dots$$

$$X = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{T} \\ x_{2} & x_{3} & \dots & x_{T+1} \\ x_{3} & x_{4} & \dots & x_{T+2} \end{bmatrix} \quad Y = \begin{bmatrix} x_{T+1} & x_{T+2} & \dots & x_{T+T'} \\ x_{T+2} & x_{T+3} & \dots & x_{T+T'+1} \\ x_{T+3} & x_{T+4} & \dots & x_{T+T'+2} \end{bmatrix}$$

Regression models are learned on input X and output y

A Good ML Course

 Introduction to Machine Learning. Course by Andrew Ng. (Youtube)

Hands On!

- 1_MachineLearning_Regression
- 2_TimeSeriesForecasting

