Électromagnétisme S21 Matériaux magnétiques

Iannis Aliferis

Université Nice Sophia Antipolis

Moment dipolaire magnétique Dipôles : électrique et magnétique	
Dipôle dans un champ magnétique Champ magnétique uniforme: alignement	5 6 7
Dipôles magnétiques dans la matière : le vecteur aimantation Vecteur aimantation	9
Courants liés à la matière Courants surfaciques liés à la matière	
Loi d'Ampère dans la matière : le champ H $$ Le champ magnétique $ec{H}$	13 14
Milieux linéaires Milieux LHI	
Ferromagnétisme Ferromagnétisme	18 19

2

Moment dipolaire magnétique

▼ empty

Moment dipolaire magnétique

Auteur : Glosser.ca / CC-BY-SA

▼ Quelle que soit la forme de la boucle

$$\vec{m} \triangleq I \int_{S} \hat{n} \, dS \stackrel{\text{surface plane}}{=} IA\hat{n} \qquad (A \, \text{m}^2)$$
 (1)

lacktriangle Sens du courant / orientation de $ec{m}$: règle de la main droite

5

Dipôle dans un champ magnétique

Champ magnétique uniforme : alignement

Auteur : Lao Chen / GFDL

▼ Force totale [force magnétique courant]

$$ec{F}_{\mathsf{totale}} = \oint_{\Gamma} \left(I \, \mathrm{d} ec{m{l}} \wedge ec{m{B}}
ight) \overset{ec{B}}{=} {}^{\mathsf{uniforme}} \, I \left(\oint_{\Gamma} \, \mathrm{d} ec{m{l}}
ight) \wedge ec{m{B}} = ec{m{0}}$$

- ▼ Pas de déplacement
- lacktriangle Rotation : \vec{m} s'oriente dans le sens du champ magnétique

Couple:
$$\vec{ au} = \vec{m} \wedge \vec{B}$$
 (2)

Champ magnétique non-uniforme : déplacement

- **▼** Champ \vec{B} non-uniforme : force totale $\neq 0$, « attraction » / « répulsion »
- ▼ Dipôle magnétique élémentaire :

$$|\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{B})| = \vec{\nabla}(mB\cos\theta)$$
 (3)

Dipôles magnétiques dans la matière : le vecteur aimantation

8

Vecteur aimantation

- lacktriangle Moments magnétiques $ec{m}$ dans la matière :
 - « mouvement orbital des électrons »
 - « rotation des électrons » (spin)
 - ▶ Phénomènes purement *quantiques*!
 - ▶ On continue à *imaginer* des courants microscopiques, *liés à la matière*
- lacktriangle Sous l'effet d'un champ magnétique extérieur, les $ec{m}$ s'orientent :
 - ▶ parallèlement au champ : paramagnétisme [dipôle dans un champ magnétique]
 - ▶ contre le champ : diamagnétisme
 - ▶ parallèlement au champ, par domaines : [ferromagnétisme] (aimants)
- lacktriangle Vue macroscopique : $\Delta \mathcal{V}
 ightarrow 0$ contient $N_{
 m dip} pprox 10^3$ dipôles!
- lacktriangledown Vecteur aimantation $ec{M}$: [vecteur polarisation]

$$\vec{\boldsymbol{M}}(\vec{\boldsymbol{r}}) \triangleq \lim_{\Delta \mathcal{V} \to 0} \frac{1}{\Delta \mathcal{V}} \sum_{i=1}^{N_{\mathsf{dip}}} \vec{\boldsymbol{m}}_{i} \quad (A \,\mathrm{m}^{2} \,\mathrm{m}^{-3} = A \,\mathrm{m}^{-1})$$
(4)

densité volumique du moment dipolaire magnétique

9

Courants liés à la matière

10

▼ Sur la surface

$$\vec{J_s}$$
 liés = $\vec{M} \wedge \hat{n}$ (A m⁻¹)

Courants volumiques liés à la matière

▼ Dans le volume

$$\vec{J}_{\mathsf{li\acute{e}s}} = \vec{\nabla} \wedge \vec{M} \quad (\mathrm{A}\,\mathrm{m}^{-2})$$

aimantation non-uniforme

 $ec{J_s}$ liés et $ec{J}_{ ext{liés}}$ créent le champ magnétique d'aimantation (dû à $ec{M})$

10

13

Loi d'Ampère dans la matière : le champ H

Le champ magnétique $ec{H}$

- **▼** Deux types de courants :
 - 1. « Libres » : on peut les choisir/placer etc.
 - 2. « Liés » [courants liés à la matière]
- ▼ [Loi d'Ampère locale] :

$$\vec{\boldsymbol{\nabla}} \wedge \vec{\boldsymbol{B}} = \mu_0 \vec{\boldsymbol{J}} = \mu_0 (\vec{\boldsymbol{J}}_{\mathsf{liés}} + \vec{\boldsymbol{J}}_{\mathsf{libres}}) = \mu_0 (\vec{\boldsymbol{\nabla}} \wedge \vec{\boldsymbol{M}} + \vec{\boldsymbol{J}}_{\mathsf{libres}})$$

$$ec{m{
abla}} \wedge \left(rac{1}{\mu_0} ec{m{B}} - ec{m{M}}
ight) = ec{m{J}}_{\mathsf{libres}}$$

$$\vec{\boldsymbol{H}} \triangleq \frac{1}{\mu_0} \vec{\boldsymbol{B}} - \vec{\boldsymbol{M}}$$
 (A m⁻¹)

$$\vec{\nabla} \wedge \vec{H} = \vec{J}_{\text{libres}}$$

$$\oint_{\Gamma} \vec{H} \cdot \hat{t} \, dl = \int_{S} \vec{J}_{\text{libres}} \cdot \hat{n} \, dS$$
 (8)

 $m{\Psi}$ $m{\vec{H}}$: « champ H » (excitation magnétique) en $\mathrm{A}\,\mathrm{m}^{-1}$

$$\vec{\boldsymbol{\nabla}}\cdot\vec{\boldsymbol{B}}=0 \text{ donc } \vec{\boldsymbol{\nabla}}\cdot(\vec{\boldsymbol{H}}+\vec{\boldsymbol{M}}\,)=0: \ \vec{\boldsymbol{\nabla}}\cdot\vec{\boldsymbol{H}}=-\vec{\boldsymbol{\nabla}}\cdot\vec{\boldsymbol{M}}$$

Milieux linéaires, homogènes, isotropes : perméabilité magnétique

15

Milieux LHI

 $ec{m{B}} = \mu_0 (ec{m{H}} + ec{m{M}})$ [loi Ampère matière]

▼ Linéaire :

$$\vec{M} = \chi_m \vec{H} \tag{9}$$

 χ_m : susceptibilité magnétique

$$\vec{\boldsymbol{B}} = \mu_0 (1 + \chi_m) \vec{\boldsymbol{H}} \triangleq \mu_0 \mu_r \vec{\boldsymbol{H}} = \mu \vec{\boldsymbol{H}}$$
 (10)

lacktriangle μ : perméabilité du milieu, en ${
m H\,m^{-1}}$

lacktriangledown $\mu_r=1+\chi_m$: perméabilité relative μ/μ_0

lacktriangle Homogène : μ_r ne dépend pas de $ec{r}$

lacktriangleright Isotrope : toutes les directions sont équivalentes : μ_r est un scalaire

16

Susceptibilité magnétique : quelques valeurs

$$\vec{m{M}} = \chi_m \vec{m{H}}$$

Matériau para-	χ_m	Matériau dia-	χ_m
Oxygène	1.9×10^{-6}	Or	-3.4×10^{-5}
Sodium	8.5×10^{-6}	Argent	-2.4×10^{-5}
Aluminium	2.1×10^{-5}	Cuivre	-9.7×10^{-6}
Tungsten	7.8×10^{-5}	Eau	-9.0×10^{-6}
Platine	2.8×10^{-4}	CO_2	-1.2×10^{-8}
Oxygène liquide	3.9×10^{-3}	Hydrogène	-2.2×10^{-9}

▼ Dans un champ magnétique \vec{B} non uniforme : [dipôle dans un champ magnétique]

lacktriangle Matériau paramagnétique : attiré vers $ec{B}$ fort

lacktriangle Matériau diamagnétique : repoussé vers $ec{B}$ faible

▼ Para- / dia- : $|\chi_m| \ll 1$, forces négligeables

Ferromagnétisme

18

Ferromagnétisme

- lacktriangledown Orientation de $ec{m{m}}$ par $\emph{domaines}$ ($pprox 10^{20}$ atomes) selon $ec{m{B}}$
- lacktriangledown Dans un champ magnétique $ec{B}$ non uniforme : attraction vers $ec{B}$ fort
- ▼ Orientation permanente : magnétisation
- ▼ Phénomène d'hystérésis :

l'aimantation \vec{M} (et le champ \vec{B}) dépendent de l'histoire du matériau

- $ightharpoonup \mu_r$ entre 10^2 et 10^6 !
- ▼ Température de Curie T_c : nickel $354\,^{\circ}\mathrm{C}$, fer $770\,^{\circ}\mathrm{C}$, cobalt $1115\,^{\circ}\mathrm{C}$

