End-Term Examination (CBCS)(SUBJECTIVE TYPE)(OffLine) Course Name: B.Tech ECE, Semester:3rd

(November-December, 2023)

Subject Code: BEC-207	Subject: Digital Electronics
Time :3 Hours	Maximum Marks :60
Note: O 1 is compulsory Attom	nt one question each from the Units I, II, III & IV.

Q1		(2.5*8	
-		=20)	
	(a) Design a Master Slave JK flip- flop with 9 NAND gates.		
	(b) Excess – 3 code is a self-complementary code, Justify		
	(c) Simplify: Y=ĀC (ĀBD) + ĀBČŌ + AĒC		
	(d) Convert the following expression in canonical POS form. $Y = (A + B) (\bar{B} + C)$		
	(e) Differentiate between ROM, PAL and PLA with help of internal circu	itry.	
	(f) State the Excitation Table for JK flip-flop and T flip-flop		
	(g) Draw the logic diagram of 2-to-4 line decoder using NOR gates. Draw truth table.	raw the	
	(h) Compare between the CMOS and TTL logic families		
-	UNIT-I		
Q2	Use K-Maps to minimize and express the function in SOP and POS form. Implement both expressions using NAND gates only.	(10)	
-	$F = \sum_{n} (0, 1, 2, 6, 7, 10, 12, 15) + \sum_{n} d(3, 8, 13, 14)$		
Q3	(a) The 74154 is a 4-to-16 decoder. The outputs are active low and there are two gate control signals, $\overline{G1}$ and $\overline{G2}$. The decoder is	(5+5)	
	enabled when $\overline{G1}$ and $\overline{G2}$ are both equal to 0. Realize the following		
	functions using 74154 and logic gates		
	$F_1(W, X, Y, Z) = \sum_{i=1}^{n} (1, 9, 12, 15)$		
	$F_2(w, X, Y, Z) = \sum_{m} (0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13)$		
	(b) An equality detector gives the output Y = 1, if both the inputs A and B are either 1 or 0		
	(i) Construct the truth table		
	(ii) Write the Boolean expression of Y		
	(iii) Implement the circuit using NAND gates only		
	UNIT-II		
4 (a) Construct a 3-bit Ring Counter using the JK flip flops. Show the working with the waveforms w.r.t clock pulses.	(5+5)	
1/1	b) With the help of appropriate waveforms, explain the functioning of		
	MOD-8 Down Ripple Counter using negative edge triggered flip		
	flops.		
	page 1 of 2		

Q5	 (a) Determine the output state of a 4-bit SIPO shift register after 3 clock pulses if the serial in terminal is held HIGH and the initial contents of the shift register is 1001. (b) Design a self-correcting synchronous counter with the following binary sequence: 0, 1, 3, 5, 7 and repeat using T flip-flops. 		
-	UNIT-III	1	
Q6	(a) What is a flip flop? How is an SR flip flop realized employing (i) NOR gates (ii) NAND gates	(6+4)	
	(b) Implement an 8:1 MUX using two 4:1 MUX(s) use block diagrams.		
Q7	 (a) A 5-bit DAC produces V₀ = 1.4 V for a digital input of 00111. Find (i) its % resolution, (ii) step size (ΔV), (iii) V₀ for digital input of 11000 and (iv) full scale analog voltage 	(8+2)	
	(b)State the various performance characteristics of ADC.		
	UNIT-IV	(4.0)	
Q	A combinational circuit is defined by the following function. $F_1 \text{ (ABC)} = \sum m (4, 5, 7)$ $F_2 \text{ (ABC)} = \sum m (3, 5, 7)$ Implement this circuit with a PLA having 3 inputs, 3 product terms and	(10)	
	2 outputs.		
C	Write a short Note on (i) Content Addressable Memory (ii) Dual-Slope ADC <u>OR</u> Successive-Approximation ADC	(5+5)	