1. Probar que en el conjunto $\{a,b\}$ hay tres órdenes posibles. ¿Y en $\{a,b,c\}$ y $\{a,b,c,d\}$?

Solución COMPLETAR.

- 2. En $(\mathbb{N}, |)$, donde | denota la relación «divide a»:
 - a) Verificar que $(\mathbb{N}, |)$ es un conjunto ordenado.
 - b) ¿Es también un conjunto totalmente ordenado?
 - c) Si S es el conjunto de los divisores de 60, graficar el conjunto ordenado inducido por | en S.

Soluciones

a)

- Reflexividad: Sea $n \in \mathbb{N}$, luego $n = n * 1 \iff n | n$.
- Antisimetría: Sean $n, m \in \mathbb{N}/n|m \wedge m|n$ luego n = m*c y m = n*k. Finalmente:

$$n = n * k * c \iff 1 = k * c \iff k = c = 1$$

por lo que n = m * 1 = m.

b) No lo es pues para cualquier par de primos p_1 y p_2 resulta: $p_1 \parallel p_2$.

c)

3. Yoneda Lemma: Probar que en un preorden (P, \preceq) vale: $x \preceq y \iff \forall z : z \preceq x \Rightarrow z \preceq y$.

Solución

- \blacksquare \Longrightarrow : Sea $z \leq x$, luego por transitividad: $z \leq x \leq y$.
- \sqsubseteq : Por reflexididad tenemos $x \leq x$ y por hipotesis: $x \leq x \Rightarrow x \leq y$.
- 4. Sea A un conjunto arbitrario. Verificar que $(\mathcal{P}(A), \subseteq)$ es un conjunto ordenado. ¿Es también un conjunto totalmente ordenado?

Solución

- Reflexividad: Sea $X \in \mathcal{P}(A)$, luego $x \in X \Rightarrow x \in X$ por lo que $X \subseteq X$.
- \bullet Antisimetría: Sean $X,Y\in\mathcal{P}\left(A\right)$ luego si $X\subseteq Y\wedge Y\subseteq X$ resulta X=Y por definición.
- Transitividad: Sean $X, Y, Z \in \mathcal{P}(A)/X \subseteq Y \land Y \subseteq Z$ luego $x \in X \Rightarrow x \in Y \Rightarrow x \in Z$ por lo que $X \subseteq Z$.

No necesariamente es totalment ordenado. Por ejemplo para $A = \{1, 2, 3\}$ resulta $\{1, 2\} \parallel \{2, 3\}$.

5. Sea $V = \{a, b, c, d, e\}$. El grafo dirigido de la siguiente figura define un orden en V de la siguiente manera: $x \leq y \iff x = y$ o existe un xy-camino dirigido.

a) Insertar el símbolo correcto $(\preceq,\succeq,\parallel)$ entre cada par de elementos:

1) a e . 3) d a.

2) *b* c . 4) c d.

b) ¿Es un conjunto totalmente ordenado? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?

Soluciones

a)

1) $a \succeq e$.

 $2) \quad b \quad \parallel \quad c \; .$

b)

- No es totalmente ordenado pues existen elementos que no son comparables.
- a es elemento máximo. No existe elemento mínimo.
- d y e son minimales. a es maximal.
- 6. Sean (P, \preceq) un conjunto ordenado, X un conjunto, y $f: X \to P$ una función. Se define la relación H sobre elementos de X como $xHx'\iff$ $f(x) \leq f(x')$. ¿Que tipo de relación es H? Dar condiciones para que H sea un conjunto ordenado.

Solución

- Reflexividad: $x \in X \Rightarrow f(x) \in P \Rightarrow f(x) \leq f(x) \iff xHx$.
- Transitividad: Sean $x, y, z \in X/xHy \land yHz$ luego:

$$f(x) \leq f(y) \land f(y) \leq f(z) \Rightarrow f(x) \leq f(z) \iff xHz$$

■ Antisimetría: Si agregamos la hipotesis de que f sea inyectiva, entonces si $xHy \wedge yHx$ resultara:

$$f(x) \leq f(y) \land f(y) \leq (x) \Rightarrow f(x) = f(y) \Rightarrow x = y$$

- 7. En (Prop, D), donde Prop son las fórmulas del cálculo proposicional y $\phi D\psi \iff \{\phi\} \vdash \psi$:
 - a) Verificar si (Prop, D) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - b) ¿La realación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?

Soluciones

a)

- Reflexividad: Sea $\phi \in Prop$ luego por la regla trivial $\{\phi\} \vdash \phi$.
- Transitividad: Sean ϕ, ψ, γ tales que $\{\phi\} \vdash \psi \neq \{\psi\} \vdash \gamma$ luego:
 - 1) $\{\phi\} \cup \{\psi\} \vdash \psi \land \gamma$ (introducción de la conjunción en ambas hipótesis).
 - 2) $\{\phi\} \cup \{\psi\} \vdash \gamma$ (eliminación de la conjunción en 1).
 - 3) $\{\phi\} \vdash \psi \rightarrow \gamma$ (introducción de la implicación en 2).
 - 4) $\{\phi\} \cup \{\phi\} = \{\phi\} \vdash \gamma$ (eliminación de la implicación en hipótesis y 3).
- Es un conjunto preordenado pues la antisimetría no se cumple como demuestra el siguiente ejemplo: $\{\bot\}$ $\vdash p \land \neg p$ y $\{p \land \neg p\}$ $\vdash \bot$ pero $\bot \neq p \land \neg p$.

b)

- \blacksquare La relación no es total pues, por ejemplo, $p \parallel q.$
- Cualquier proposicion semanticamente equivalente a \bot es mínimo ya que $\forall \phi \in PROP : \{\bot\} \vdash \phi$. No existe elemento máximo.
- No existen maximales pues para cualquier $\phi \in PROP$ siempre ocurre $\{\phi\} \vdash \phi \lor \psi$ pero $\{\phi \lor \psi\} \nvdash \phi$. Todos los mínimos son minimales.

- 8. En (Prop, I), donde $\phi I \psi \iff \emptyset \vdash \phi \rightarrow \psi$.
 - a) Verificar si (Prop, I) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - b) ¿La realación es total? ¿Tiene elemento máximo y/o mínimo? ¿.Tiene elementos maximales y/o minimales?
 - c) Explique el nexo entre esta relación y la del ejercicio anterior.

Soluciones

a)

- Reflexividad: Sea $\phi \in Prop$ luego por la regla trivial $\{\phi\} \vdash \phi$ y por introducción de la implicación $\emptyset \vdash \phi \to \phi$.
- Transitividad: Sean ϕ, ψ, γ tales que $\emptyset \vdash \phi \rightarrow \psi$ y $\emptyset \vdash \psi \rightarrow \gamma$ luego:
 - 1) $\{\phi\} \vdash \phi$ (trivial).
 - 2) $\{\phi\} \vdash \psi$ (eliminación de la implicación en 1 e hipótesis).
 - 3) $\{\phi\} \vdash \gamma$ (eliminación de la implicación en 2 e hipótesis).
 - 4) $\emptyset \vdash \phi \rightarrow \gamma$ (introducción de la implicación en 3).
- También es un preorden pues la antisimetría falla por la misma razón que el ejercicio anterior.
- b) COMPLETAR.
- c) Claramente si $\phi D\psi$ también $\phi I\psi$ pues si $\{\phi\} \vdash \psi$ es un secuente valido tambien lo es $\emptyset \vdash \phi \to \psi$.
- 9. Sea (P, \preceq) un preorden. Construir un conjunto ordenado $(P/\sim, \sqsubseteq)$, donde $x \sim y$ si y solo si $x \preceq y$ y $y \preceq x$, tal que $\pi: P \to P/\sim$ sea monótona.

Aplicar esta construcción a la relación (Prop, D) del ejercicio anterior. Para este caso partricular, la construcción se llama «álgrebra de Lindenbaum-Tarski».

Solución Definimos $X \sqsubseteq Y \iff \exists x \in X, y \in Y/x \preceq y$. Veamos que π es monotona: sean $x, y/x \preceq y$ luego $x \in \pi(x) \land y \in \pi(y)$ por lo que $\pi(x) \sqsubseteq \pi(y)$.

Veamos ahora que $(P/\sim,\sqsubseteq)$ es un conjunto ordenado:

- Reflexividad: Sea $X \in P/\sim$. Para cualquier $x \in X$ resultará $x \preceq x$ por lo que $X \sqsubseteq X$.
- Transitividad: Sean $X, Y, Z \in P/\sim$ tales que $X \sqsubseteq Y$ y $Y \sqsubseteq Z$, luego sabemos que existen $x \in X, y \in Y, z \in Z$ tales que $x \preceq y \preceq z$ y por transitividad resulta $x \preceq z$ por lo que $X \sqsubseteq Z$.
- Antisimetría: Sean $X, Y \in P/\sim$ tales que $X \sqsubseteq Y$ y $Y \sqsubseteq X$, luego existen $x, x' \in X$ e $y, y' \in Y$ tales que $x \preceq y$ y $y' \preceq x'$.

 Supongamos que $X \neq Y$, como ambos son clases de equivalencia entonces deben ser conjuntos disjuntos. Luego:
 - Como $x \sim x'$ sabemos que $x' \leq x$ y por transitividad $x' \leq y$.
 - Como $y \sim y'$ sabemos que $y \leq y'$ y por transitividad $y \leq x$.
 - Como $x \leq y \land y \leq x$ entonces $x \sim y$, es decir $x, y \in X$.

Tenemos entonces $y \in X \land y \in Y$. Contradicción.

10. Probar que:

- a) Si R define un orden en el conjunto V, entonces R^{-1} tambien define un orden en V, llamado «orden inverso».
- b) Si R define un orden total en el conjunto V, entonces R^{-1} tambien define un orden total en V.
- c) Si (A, \preceq) es un orden no total, puede existir un $S \subseteq A$ tal que (S, \preceq) es un orden total.

Soluciones

a)

- Reflexividad: Sea $x \in V$, luego $xRx \Rightarrow xR^{-1}x$.
- Antisimetría: Sean $x, y \in V$ tales que $xR^{-1}y$ y $yR^{-1}x$, luego xRy y yRx. Por antisimetría de R resulta x=y.
- Transitividad: Sean $x, y, z \in V/xR^{-1}y \wedge yR^{-1}z$ luego $yRx \wedge zRy$ y por transitividad zRx. Por definición de R^{-1} resulta $xR^{-1}z$.
- b) Supongamos existen $x,y\in V$ tales que $x\parallel_{R^{-1}}y$, luego $y\parallel_R x$. Contradicción.

- c) Lo propuesto ocurre por ejemplo con $A = \{2, 3, 4\}$ y $S = \{2, 4\}$ con la relación |.
- 11. Sea (P, \preceq) un preorden. Probar que si existe un elemento máximo, entonces todos los maximales son máximos.

Solución Sea M un elemento máximo de P y m un elemento maximal. Como m es minimal resulta $\forall x: m \leq x \Rightarrow x \leq m$, en particular para x = M tenemos $m \leq M \Rightarrow M \leq m$. Veamos que m es máximo: sea $x \in P$ luego, $x \leq M \leq m$, es decir $\forall x: x \leq m$.

- 12. Sean (A, \leq_1) y (A, \leq_2) dos conjuntos ordenados (con el mismo conjunto subyacente).
 - a) ¿Define $\leq_1 \cap \leq_2$ un orden en A?
 - b) ¿Define $\leq_1 \cup \leq_2$ un orden en A?

Soluciones

- a) En efecto.
 - Reflexividad: Sea $x \in A$ luego $x \preceq_1 x$ y $x \preceq_2 x$ por lo que $(x,x) \in \preceq_1 \cap \preceq_2$.
 - Transitividad: Sean $x, y, z \in A$ tales que $(x, y) \in \preceq_1 \cap \preceq_2 y$ $(y, z) \in \preceq_1 \cap \preceq_2$, luego ocurren $x \preceq_1 y$, $x \preceq_2 y$, $y \preceq_1 z$ y $y \preceq_2 z$. Ademas por sus respectivas transitividades tambien tenemos $x \preceq_1 z$ y $x \preceq_2 z$ por lo que $(x, z) \in \preceq_1 \cap \preceq_2$.
 - Antisimetría: Sean $x, y \in A$ tales que $(x, y) \in \preceq_1 \cap \preceq_2 y$ $(y, x) \in \preceq_1 \cap \preceq_2$ luego $x \preceq_1 y$ e $y \preceq_1 x$ y por reflexividad x = y.
- b) No. Sean $x \neq y$ luego para $\leq_1 = \Delta_A \cup \{(x,y)\}$ y $\leq_2 = \Delta_A \cup \{(y,x)\}$ en $\leq_1 \cup \leq_2$ se rompe la antisimetría.

13. Probar que el conjunto de todos los elementos maximales (minimales) de un conjunto ordenado, es una anticadena.

Solución

- Sean $a \neq b$ en el conjunto de todos los elementos maximales. Supongamos $a \leq b$ luego $b \leq a$ y por antisimetría a = b. Contradicción. Análogo si $b \leq a$.
- Análogo para minimales.
- 14. Considerar el conjunto de los enteros positivos \mathbb{Z}^+ y el de los enteros negativos \mathbb{Z}^- con sus órdenes usuales. Probar que $\mathbb{Z}^+ \not\simeq \mathbb{Z}^-$.

Solución Supongamos que $f: \mathbb{Z}^+ \to \mathbb{Z}^-$ es un isomorfismo de orden luego, como 1 es mínimo en \mathbb{Z}^+ tenemos $\forall x: 1 \leq x \Rightarrow \forall x: f(1) \leq f(x)$; pero entonces f(1) es mínimo en \mathbb{Z}^- . Absurdo.

15. Sea (A, \preceq) un conjunto ordenado. Para todo elemento $a \in A$ definamos

$$S(a) = \{x \in A : x \leq a\}$$

Si $\mathcal{A} = \{S(a) : a \in A\}$, ordenado por la inclusión, demostrar que $A \simeq \mathcal{A}$.

Solución

■ \implies : Sean $x, y \in A/x \leq y$, veamos que $S(x) \subseteq S(y)$

$$\begin{array}{ccc} \alpha \in S\left(x\right) \\ \Rightarrow & \langle def.S \rangle \\ \alpha \leq x \\ \Rightarrow & \langle transitividad \rangle \\ \alpha \leq y \\ \Rightarrow & \langle def.S \rangle \\ \alpha \in S\left(y\right) \end{array}$$

■ \sqsubseteq : Sean $X, Y \in \mathcal{A}$ tales que X = S(x), Y = S(y) y $X \subseteq Y$; veamos que $x \leq y$:

$$x \in X$$

$$\Rightarrow \langle X \subseteq Y \rangle$$

$$x \in Y$$

$$\Rightarrow \langle def.Y \rangle$$

$$x \in S(y)$$

$$\Rightarrow \langle def.S \rangle$$

$$x \leq y$$

- Para que todo esto tenga sentido, debemos asegurarnos de que S es biyectiva:
 - Sobreyectividad: Sea $X \in \mathcal{A}$ luego por definición de \mathcal{A} existe $a \in A/S(a) = X$.
 - Inyectividad: Sean $a, b \in A/a \neq b$, luego $S(a) = \{x \in A : x \leq a\}$ y $S(b) = \{x \in A : x \leq b\}$.
 - o Caso $a \prec b$: Sabemos que $b \in S(b)$. Si A = B entonces $b \in S(a)$, luego $b \prec a$. Contradicción.
 - \circ Caso $b \prec a$: Analogo.
 - \circ Caso $a \parallel b$: Analogo.
- 16. Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados
 - a) Dar un ejemplo de conjuntos (X, \preceq_X) y (Y, \preceq_Y) y una función $f: X \to Y$ que sea sobreyectiva y preserve el orden pero que no sea un isomorfismo de conjuntos ordenados.
 - b) Probar que son equivalentes:
 - 1) $X \in Y$ son isomorfos.
 - 2) Existe $f: X \to Y$ sobreyectiva tal que $f(a) \preceq_Y f(b)$ si y solo si $a \preceq_X b$.
 - 3) Existen $f: X \to Y \text{ y } g: Y \to X$ homomorfismos de conjuntos ordenados tales que $f \circ g = id_Y \text{ y } g \circ f = id_X$.
 - c) Mostrar que $(X \to Y, \preceq_{X \to Y})$ es un conjunto ordenado, donde $X \to Y$ representa las funciones entre (X, \preceq_X) y (Y, \preceq_Y) , y el orden está definido por $f \preceq_{X \to Y} g$ si y solo si $\forall x : f(x) \preceq_Y g(x)$.
 - d) Mostrar que $(X \times Y, \preceq_{X \times Y})$ es un conjunto ordenado, donde $(x, y) \preceq_{X \times Y} (x', y')$ si y solo si $x \preceq_X x'$ y $y \preceq_Y y'$.

Soluciones

- a) Sean $X = \mathbb{N}$, $Y = \{1\}$ y f(n) = 1. La función es claramente sobreyectiva y preserva el orden, pero no es inyectiva.
- b)
- \blacksquare $1 \Rightarrow 2$:
 - \Rightarrow : COMPLETAR.
 - \sqsubset : Trivial pues X e Y son isomorfos.
- $2 \Rightarrow 3$: COMPLETAR.
- $3 \Rightarrow 1$: Como consecuencia de las hipótesis f y g resultan ser biyectivas y ademas $f^{-1} = g$. Ademas por ser homorfismos también preservan la estructura, por lo tanto X e Y son isomorfos.
- c) COMPLETAR.

d

- Reflexividad: Sea $(x,y) \in X \times Y$, luego $x \in X$ y $y \in Y$ y por sus respectivas reflexividades $x \preceq_X x$ y $y \preceq_Y y$ por lo que $(x,y) \preceq_{X\times Y} (x,y)$.
- Transitividad: Sean (a,b), (c,d), $(e,f) \in X \times Y$ tales que $(a,b) \preceq (c,d)$ y $(c,d) \preceq (e,f)$, luego por definición tenemos:
 - $a \leq_X c$.

• $b \prec_V d$.

• $c \leq_X e$.

• $d \prec_{Y} f$.

y por transitividades tambien ocurren $a \leq_X e$ y $b \leq_Y f$. Finalmente por definición $(a, b) \leq (e, f)$.

- Antisimetría: Sean (x,y), $(x',y') \in X \times Y$ tales que $(x,y) \leq (x',y')$ y $(x',y') \leq (x,y)$ luego por definicion tenemos:
 - $x \leq_X x'$.

 \bullet $x' \leq_X x$.

• $y \leq_Y y'$.

• $y' \leq_Y y$.

y por antisimetrías ocurren x = x' y y = y' por lo que (x,y) = (x',y').

17. Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados. Una «conexión Galois» es un par de funciones (f_*, f^*) con $f_*: X \to Y$ y $f^*: Y \to X$ tales que para todos $x \in X$ e $y \in Y$ vale:

$$f_*(x) \preceq_Y y \iff x \preceq_X f^*(y)$$

- a) Probar que si $f_*: X \to Y$ es un isomorfismo, entonces (f_*, f_*^{-1}) es una conexión de Galois.
- b) Dada una función $A \to B$, probar que se puede construir una conexión de Galois entre el conjunto potencia de A y el de B utilizando los operadores que calculan la imagen de f sobre un subconjunto de A y la imagen inversa de f sobre un subconjunto de B.
- c) Considerando los órdenes usuales sobre \mathbb{N} y \mathbb{Q}_0^+ , encontrar f^* tal que (f_*, f^*) sea una conexión Galois donde $f_* : \mathbb{N} \to \mathbb{Q}_0^+$ es la identidad.
- d) Dada una conexión Galois (f_*, f^*) entre X e Y, probar que para todo $x \in X, y \in Y$ vale $x \leq_X f^*(f_*(x))$ y $f_*(f^*(y)) \leq_Y y$.
- e) Dada una conexion de Galois (f_*, f^*) entre X e Y, probar que f_* y f^* son monótonas.

Soluciones

- a) Como f_* es isomorfismo de orden, entonces f_*^{-1} también lo es. Veamos que (f_*, f_*^{-1}) es conexión de Galois:
 - \implies : Sabemos que $f_*(x) \preceq_Y y$, luego como f_*^{-1} es isomorfismo de orden, aplicando a ambos lados obtenemos $x \preceq_X f_*^{-1}(y)$.

- b) Sean $f_*(A) = im(A)$ y $f^*(B) = im^{-1}(B)$, veamos que (f_*, f^*) es una conexión de Galois:
 - \implies : Sabemos que $im(A) \subseteq B$, queremos ver que $A \subseteq im^{-1}(B)$:

$$a \in A$$

$$\Rightarrow \qquad \langle def.im \rangle$$

$$f(a) \in im(A)$$

$$\Rightarrow \qquad \langle hipotesis \rangle$$

$$f(a) \in B$$

$$\Rightarrow \qquad \langle def \rangle$$

$$a \in \{x \in A : f(x) \in B\}$$

$$\Rightarrow \qquad \langle def.im^{-1} \rangle$$

$$a \in im^{-1}(B)$$

■ \sqsubseteq : Sabemos que $A \subseteq im^{-1}(B)$, queremos ver que $im(A) \subseteq B$:

$$b \in im(A)$$

$$\Rightarrow \langle def.im \rangle$$

$$b \in \{f(x) \in B : x \in A\}$$

$$\Rightarrow \langle def \rangle$$

$$b \in B$$

- c) COMPLETAR.
- d) COMPLETAR.
- e) COMPLETAR.
- 18. Probar que la relación de isomorfismo entre conjuntos ordenados es una relación de equivalencia.

Solución

■ Reflexividad: Sea X un poset, luego la funcion identidad es un isomorfismo de X a X por lo que $X \simeq X$.

- Transitividad: Sean X, Y, Z posets tales que $X \simeq Y \simeq Z$, luego existen isomorfismos $f: X \to Y$ y $g: Y \to Z$. Queremos ver si $X \simeq Z$, es decir, si existe un isomorfismo entre X y Z. Sabemos que $g \circ f$ es una biyección entre X y Z, resta ver que preserva la estructura: sean $a, b \in X$ luego $f(a) \preceq f(b)$ pues f es isomorfismo y por la misma razon $g(f(a)) \preceq g(f(b))$, es decir $g \circ f(a) \preceq g \circ f(b)$.
- Simetría: Sean X, Y posets tales que $X \simeq Y$ luego existe $f: X \to Y$ biyectiva creciente y en consecuencia f^{-1} tambien lo es por lo que $Y \simeq X$.