Prikprodukt og vinkel mellem vektorer

Vinkel og prikprodukt i Maple

Vi lægger ud med et eksempel, der viser hvordan vi definerer en vektor i Maple samt hvordan vi laver prikprodukt og bestemmer vinkler mellem vektorer.

Eksempel 1.1. Vi får givet vektorerne \vec{u} og \vec{v} givet ved

$$\vec{u} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
 og $\vec{v} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

Skal vi definere vektorerne i Maple, så skal vi skrive

with(Gym):

 $\overrightarrow{u} := \langle 2, 5 \rangle$

 $\vec{v} := < -4 , 3 >$

Ønsker vi at lægge to vektorer sammen, skriver vi

$$\overrightarrow{u} + \overrightarrow{v}$$

Ønsker vi at trække dem fra hinanden, skriver vi

$$\overrightarrow{11} - \overrightarrow{V}$$

Og ønsker vi at skalere dem med et tal k, skriver vi

kū

Skal vi bestemme prikproduktet mellem de to vektorer, så skal vi skrive

$$dotP(\vec{u}, \vec{v})$$

Ønsker vi at bestemme vinklen mellem vektorerne, så skal vi skrive

$$vinkel(\vec{u}, \vec{v})$$

Ønsker vi til slut at bestemme længden af en vektor, skal vi skrive

$$len(\vec{u})$$

Når Maple bestemmer vinklen mellem to vektorer, så bruger den følgende resultat.

Sætning 1.2 (Vinkel mellem vektorer). For to vektorer \vec{u} og \vec{v} gælder der, at

$$\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} = \cos(\theta),$$

hvor θ er vinklen mellem vektorerne \vec{u} og \vec{v} .

Vi behøver dog ikke bruge denne sætning, da vi blot kan bruge **vinkel**-kommandoen i Maple.

Opgave 1

Opgave 7

Fire vektorer er givet ved

$$\vec{a} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

$$\vec{c} = \begin{pmatrix} 6 \\ 10 \end{pmatrix} \qquad \vec{d} = \begin{pmatrix} -11 \\ -7 \end{pmatrix}$$

- i) Bestem $4\vec{a}$.
- ii) Bestem $\vec{a} + \vec{b}$.
- iii) Bestem $2\vec{b} \vec{c}$.
- iv) Bestem $\vec{a} + \vec{b} + \vec{c} + \vec{d}$.
- v) Bestem $-2\vec{d} \vec{a}$.
- vi) Bestem $\vec{a} \vec{b} + \vec{c} 3\vec{d}$.

Opgave 2

Fire punkter er givet ved A(1,3), B(-5,6), C(-4,1) og D(12,-7).

- i) Bestem koordinaterne til vektorerne \overrightarrow{AB} , \overrightarrow{BC} og \overrightarrow{DA} .
- ii) Bestem længden af vektorerne \overrightarrow{AB} , \overrightarrow{BC} og \overrightarrow{DA}
- iii) Bestem $\overrightarrow{BA} + \overrightarrow{CD}$.
- iv) Bestem $|2\overrightarrow{CA} 3\overrightarrow{BC} + \overrightarrow{DB}|$.

Opgave 3

i) Bestem prikproduktet og vinklen mellem følgende vektorer

$$1) \ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \text{og} \ \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

2)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 og $\begin{pmatrix} -2 \\ 6 \end{pmatrix}$

3)
$$\begin{pmatrix} 12\\15 \end{pmatrix}$$
 og $\begin{pmatrix} -3\\14 \end{pmatrix}$

1)
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 og $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 2) $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ og $\begin{pmatrix} -2 \\ 6 \end{pmatrix}$
3) $\begin{pmatrix} 12 \\ 15 \end{pmatrix}$ og $\begin{pmatrix} -3 \\ 14 \end{pmatrix}$ 4) $\begin{pmatrix} -2 \\ -5 \end{pmatrix}$ og $\begin{pmatrix} 0.5 \\ -12 \end{pmatrix}$

Opgave 4

Afgør hvilke af følgende par af vektorer, der er orthogonale

Opgave 5

Vi får givet følgende to vektorer

$$\vec{u} = \begin{pmatrix} t - 1 \\ 2 \end{pmatrix} \qquad \text{og} \qquad \vec{v} = \begin{pmatrix} 3 \\ -t + 3 \end{pmatrix}$$

- i) Bestem prikproduktet mellem \vec{u} og \vec{v} , hvis t=4.
- ii) Bestem t så \overrightarrow{u} og \overrightarrow{v} er orthogonale.

Opgave 6

To vektorer er givet ved

$$\vec{a} = \begin{pmatrix} x^2 - 2 \\ 1 \end{pmatrix} \qquad \text{og} \qquad \vec{b} = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

i) Bestem x, så \overrightarrow{a} og \overrightarrow{b} er orthogonale.