SECTION 4.8 L'HÔPITAL'S RULE (DAY 2)

1. L'Hôpital's Rule (again but even better)....

If
$$\lim_{x\to a} \frac{f(x)}{g(x)}$$
 has the form $\frac{c}{b}$ or $\frac{c}{a}$

then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$ provided the 2nd limit exists or is $\frac{c}{a}$

(Also a can be $\frac{c}{a}$ or $\frac{c}{b}$)

2. Evaluate the following limits using any appropriate method.

(a)
$$\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = \lim_{x \to \infty} \frac{2\sqrt{x}}{\sqrt{x}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$
form $\frac{2}{\sqrt{x}} = \lim_{x \to \infty} \frac{2\sqrt{x}}{\sqrt{x}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$

(b)
$$\lim_{x\to 2} \frac{x^2 - 4}{x^2 - 2x} = \lim_{x\to 2} \frac{2x}{2x - 2} = \frac{4}{4 - 2} = 2$$

(c)
$$\lim_{x\to\infty} \frac{2e^x + 1}{1 - 3e^x}$$
 $\lim_{x\to\infty} \frac{2e^x}{-3e^x} = \lim_{x\to\infty} \frac{-2}{3} = \frac{-2}{3}$

(d)
$$\lim_{x\to 0} \frac{\cos(4x)}{3e^{3x}} = \frac{1}{3}$$

Can't use
L'Hopital
for everything.

3. Now for some more sophisticated applications.

(a)
$$\lim_{x \to \infty} x \sin(\frac{\pi}{x}) = \lim_{x \to \infty} x \sin(\frac{\pi}{x})$$

Where $\lim_{x \to \infty} x \sin(\frac{\pi}{x}) = \lim_{x \to \infty$

Now for some more sophisticated applications.

(a)
$$\lim_{x \to \infty} x \sin(\frac{\pi}{x}) = \lim_{x \to \infty} \frac{\sin(\pi x^{-1})}{\sin(\pi x^{-1})} = \lim_{x \to \infty} \frac{\cos(\pi x^{-1})(-1 \cdot \pi x^{-2})}{-x^{-2}}$$

$$0 \cdot 0 = \lim_{x \to \infty} \pi \cos(\frac{\pi}{x}) = \lim_{x \to \infty} \pi \cos(\frac{\pi}{x}) = \pi$$

Use $x = \frac{1}{x} = \frac{1}{x^{-1}}$

where $x = \frac{1}{x} = \frac{1}{x^{-1}}$
 $x \to \infty$

(b)
$$\lim_{x \to 0^+} (1+x)^{1/x} = \boxed{e}$$

The transform problem:

old $y = (1+x)^{1/2}$ $y = (1+x)^{1/2}$ y

We found
$$\lim_{x\to 0^+} \ln(y) = 1$$
 use $0 = \ln(y)$ use $0 = 1 = y$

So $\lim_{x\to 0^+} y = e^1 = e$

Then $e^a = e^1$

(c)
$$\lim_{x \to \infty} \frac{e^{x/10}}{x^2} \stackrel{\text{def}}{=} \lim_{x \to \infty} \frac{1}{\sqrt{6}} e^{\frac{x}{10}} \stackrel{\text{def}}{=} \lim_{x \to \infty} \frac{1}{\sqrt{6}} e^{\frac{x}{10}} = \infty$$

Form e^{x}

Form e^{x}

Form e^{x}

$$(d) \lim_{x \to 1^{+}} \left(\ln(x^{4} - 1) - \ln(x^{9} - 1) \right) = \lim_{x \to 1^{+}} \left(\ln\left(\frac{x^{4} - 1}{x^{9} - 1}\right) \right) = \ln \left[\lim_{x \to 1^{+}} \left(\frac{x^{4} - 1}{x^{9} - 1}\right) \right]$$
 form so -20

$$\stackrel{\text{(4)}}{=} ln \left[\lim_{x \to 1^+} \frac{4x^3}{9x^8} \right] = ln \left(\frac{4}{a} \right)$$