STAT 455 Homework 04 - R Code

 $Martha\ Eichlersmith$ 2019-11-07

Problem 3.3

```
shots <- matrix(c(251, 48, 34, 5), nrow=2, ncol=2)
chisq.test(shots, correct=FALSE)

##
## Pearson's Chi-squared test
##
## data: shots
## X-squared = 0.27274, df = 1, p-value = 0.6015</pre>
```

Problem 3.9a

```
r <- 5
c <- 2
names.r <- c("Schizophrenia",</pre>
              "Affective disorder",
              "Neurosis",
              "Personality disorder",
              "Special Systems")
names.c <- c("Drugs", "No Drugs")</pre>
row <- c(rep(1,c), rep(2, c), rep(3, c), rep(4, c), rep(5, c)) #row data
column <- c(rep(c(1:2), r)) # column data</pre>
count \leftarrow c(105, 19, 8, 47, 12, 52, 2, 0, 18, 13)
count.m <- matrix(count, nrow=r, ncol=c)</pre>
rownames(count.m) <- names.r</pre>
colnames(count.m) <- names.c</pre>
fit <- glm(count~as.factor(column)+as.factor(row), family=poisson(link="log"))</pre>
stdreschi <- glm.diag(fit)$rp #need book package</pre>
res.matrix <- matrix(stdreschi, nrow=r, ncol=c, byrow=TRUE)
rownames(res.matrix) <- names.r</pre>
colnames(res.matrix) <- names.c</pre>
t1 <- kable(count.m,</pre>
                          format="latex", booktabs=TRUE)
t2 <- kable(res.matrix, format="latex", booktabs=TRUE)
```

Counts

Perason Standard Residuals

	Drugs	No Drugs		Drugs]
Schizophrenia	105	52	Schizophrenia	9.6581715	
Affective disorder	19	2	Affective disorder	-6.3053235	
Neurosis	8	0	Neurosis	-6.1759785	
Personality disorder	47	18	Personality disorder	1.3491055	
Special Systems	12	13	Special Systems	0.6542325	

Counts

	Disapprove	MIddle	Approve
Less than highschool	209	101	237

	Disapprove	MIddle	Approve
Highschool	151	126	426
More than highschool	16	21	138

Problem 3.15

```
count <- c(7, 8, 0, 15)
n <- sum(count)
Count <- matrix(count, nrow=2, ncol=2, byrow=TRUE)
OR <- (Count[1,1]*Count[2,2]) / (Count[1,2]*Count[2,1])
#WOOLF'S APPROXIMATE CI
se_log <- sqrt( sum(1/count))
z.star <- qnorm(0.975, 0, 1)
CI.up_log <- log(OR) + z.star*se_log
CI.low_log <- log(OR) - z.star*se_log
CI.up <- exp(CI.up_log)
Woolf_CI <- c(CI.low, CI.up)

paste("OR:", decimal(OR, dec))
paste("Woolf CI Interval: (", decimal(Woolf_CI[1], dec), ",", decimal(Woolf_CI[2], dec), ")")</pre>
```