Bits quânticos

Adenilton Silva

1 de setembro de 2020

Seção 1

Bits quânticos

Bits quânticos

Um bit quântico é um vetor unitário complexo bidimensional.

$$|v
angle = egin{bmatrix} a \ b \end{bmatrix}$$
 onde $||\ket{v}|| = 1$

▶ Um bit quântico é um vetor unitário complexo bidimensional.

$$|v
angle = egin{bmatrix} a \ b \end{bmatrix}$$
 onde $||\ket{v}|| = 1$

 \blacktriangleright O conjunto $\{|0\rangle\,,|1\rangle\}$ é uma base ortonormal denominada base computacional.

$$|0\rangle \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ e \ |1\rangle \equiv \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Um **ket** $|x\rangle$ representa um vetor.

- Um **ket** $|x\rangle$ representa um vetor.
- ightharpoonup |v
 angle é uma **combinação linear** dos vetores $|v_1
 angle$, \cdots , $|v_n
 angle$ se

$$|v\rangle = \sum_{i=1}^n a_i |v_i\rangle$$

.

- Um **ket** $|x\rangle$ representa um vetor.
- ightharpoonup |v
 angle é uma **combinação linear** dos vetores $|v_1
 angle, \cdots, |v_n
 angle$ se

$$|v\rangle = \sum_{i=1}^n a_i |v_i\rangle$$

.

▶ O **espaço gerado** por um conjunto de vetores *S* é formado por todas as combinações lineares de vetores em *S*.

- Um **ket** $|x\rangle$ representa um vetor.
- $ightharpoonup |v\rangle$ é uma **combinação linear** dos vetores $|v_1\rangle, \cdots, |v_n\rangle$ se

$$|v\rangle = \sum_{i=1}^{n} a_i |v_i\rangle$$

.

- ▶ O espaço gerado por um conjunto de vetores S é formado por todas as combinações lineares de vetores em S.
- ▶ Um conjunto de vetores $S = \{|s_i\rangle\}_{i=1}^n$ é **linearmente dependente** se existirem conficientes a_i não todos nulos tais que $\sum_{i=1}^n a_i |s_i\rangle = 0$.

- Um **ket** $|x\rangle$ representa um vetor.
- ightharpoonup |v
 angle é uma **combinação linear** dos vetores $|v_1
 angle\,,\cdots,|v_n
 angle$ se

$$|v\rangle = \sum_{i=1}^n a_i |v_i\rangle$$

.

- ▶ O **espaço gerado** por um conjunto de vetores *S* é formado por todas as combinações lineares de vetores em *S*.
- ▶ Um conjunto de vetores $S = \{|s_i\rangle\}_{i=1}^n$ é **linearmente dependente** se existirem conficientes a_i não todos nulos tais que $\sum_{i=1}^n a_i |s_i\rangle = 0$.
- ► Uma base de um espaço S é um conjunto de vetores que gera S e é linearmente independente.

Produto interno

- ▶ Um **produto interno** $\langle v_1|v_2\rangle$ é uma função que recebe pares de vetores e retorna um número complexo e satisfaz as propriedades:
 - 1. $\langle v|v\rangle$ é um número real não negativo;
 - 2. $\langle v_1|v_2\rangle = \overline{\langle v_2|v_1\rangle}$
 - 3. $\langle v_1 | (a | v_2 \rangle + b | v_3 \rangle) = a \langle v_1 | v_2 \rangle + b \langle v_1 | v_3 \rangle$

Bases ortonormais

▶ Dois vetores $|v_1\rangle$, $|v_2\rangle$ são **ortogonais** se $\langle v_1|v_2\rangle = 0$.

Bases ortonormais

- ▶ Dois vetores $|v_1\rangle$, $|v_2\rangle$ são **ortogonais** se $\langle v_1|v_2\rangle = 0$.
- ▶ Um conjunto $\{|\beta_1\rangle, \cdots, |\beta_n\rangle\}$ é **ortonormal** se para todo i, j $\langle \beta_i | \beta_j \rangle = \delta_{ij}$, onde

$$\delta ij = \left\{ \begin{array}{l} 1, \ \mathrm{se} \ i = j, \\ 0, \ \mathrm{se} \ i \neq j \end{array} \right. .$$

Bits quânticos

- ▶ O conjunto $\{|0\rangle, |1\rangle\}$ é uma base ortonormal denominada base computacional.
- Escolhendo a base compucional,

$$a\ket{0} + b\ket{1} = \begin{bmatrix} a \\ b \end{bmatrix}.$$

- ▶ O conjunto $\{|0\rangle, |1\rangle\}$ é uma base ortonormal denominada base computacional.
- Escolhendo a base compucional,

$$a\ket{0} + b\ket{1} = \begin{bmatrix} a \\ b \end{bmatrix}.$$

- ▶ Seja $|v\rangle = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, definimos o bra $|v\rangle^{\dagger} = \langle v| = \left[\overline{a_1}, \cdots, \overline{a_n}\right]$

Superposição

1. Um bit quântico $|v\rangle$ está em superposição em relação a base computacional se $|v\rangle=a\,|0\rangle+b\,|1\rangle$ com a e b diferentes de zero.

Superposição

- 1. Um bit quântico $|v\rangle$ está em superposição em relação a base computacional se $|v\rangle=a\,|0\rangle+b\,|1\rangle$ com a e b diferentes de zero.
- 2. Qual a quantidade de informação que pode ser armazenada em um qubit?

Não podemos visualizar o estado $a|0\rangle + b|1\rangle$ de um qubit, para obter informações é necessário realizar uma medição.

- Não podemos visualizar o estado $a|0\rangle + b|1\rangle$ de um qubit, para obter informações é necessário realizar uma medição.
- Medições possuem um efeito computacional, pois alteram o estado de um qubit.

- Não podemos visualizar o estado $a|0\rangle + b|1\rangle$ de um qubit, para obter informações é necessário realizar uma medição.
- Medições possuem um efeito computacional, pois alteram o estado de um qubit.
- ightharpoonup Para realizar a medição de um estado $|v\rangle$ devemos
 - 1. Escolher uma base $\{|u\rangle\,, \left|u^{\perp}\right\rangle\}$.
 - Escrever o estado como uma combinação linear dos elementos da base

$$|v\rangle = a|u\rangle + b|u^{\perp}\rangle$$

- Não podemos visualizar o estado $a|0\rangle + b|1\rangle$ de um qubit, para obter informações é necessário realizar uma medição.
- Medições possuem um efeito computacional, pois alteram o estado de um qubit.
- ightharpoonup Para realizar a medição de um estado $|v\rangle$ devemos
 - 1. Escolher uma base $\{|u\rangle, |u^{\perp}\rangle\}$.
 - Escrever o estado como uma combinação linear dos elementos da base

$$|v\rangle = a|u\rangle + b|u^{\perp}\rangle$$

3. Realizar a medição obtendo

$$\left\{ \begin{array}{l} |u\rangle\,, \text{ com probabilidade } |a|^2 \\ |u^\perp\rangle\,, \text{ com probabilidade } |b|^2 \end{array} \right.$$

► Após a medição o bit quântico irá colapsar para o resultado da medição.

- Após a medição o bit quântico irá colapsar para o resultado da medição.
- Ao realizar uma medição de um qubit $|v\rangle = a|0\rangle + b|1\rangle$.

```
\left\{\begin{array}{l} |0\rangle\,, \text{ com probabilidade } |a|^2\text{, após a medição } |\nu\rangle = |0\rangle \\ |1\rangle\,, \text{ com probabilidade } |b|^2\text{, após a medição } |\nu\rangle = |1\rangle \end{array}\right.
```

Bits quânticos representam probabilidades?

- $|v\rangle=a\,|0
 angle+b\,|1
 angle$ não representa uma distribuição de probabilidades.
- $|v\rangle = a|0\rangle + b|1\rangle$ é um estado definido.

Seção 2

Protocolo de distribuição de chaves

Um protocolo para distribuição de chaves privadas

▶ Alice e Bob desejam criar uma chave (cadeia binária) secreta.

BB84

► Alice gera aleatoriamente dois strings binários de comprimento *n a* e *b*.

- Alice gera aleatoriamente dois strings binários de comprimento n a e b.
- ▶ Para cada a_ib_i Alice cria o estado quântico $|v_{a_ib_i}\rangle$, onde

$$|v_{00}\rangle = |0\rangle |v_{10}\rangle = |1\rangle |v_{01}\rangle = |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) |v_{11}\rangle = |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$(1)$$

 Para recuperar o string a é necessário possuir os qubits e o string b (para determinar a base em que será realizada a medição).

BB84

- Alice envia apenas os qubits para Bob.
- ▶ Para cada qubit Bob escolhe aleatoriamente uma das bases $\{|0\rangle\,, |1\rangle\}$ ou $\{|+\rangle\,, |-\rangle\}$ pare realizar a medição.
- Bob informa a Alice a base utilizada e ele mantém apenas os bits em que as bases coincidem.
- Bob e Alice checam através do canal clássico se uma fração dos bits coincidem.

BB84

Como Eve pode interceptar os dados?

Seção 3

O espaço dos bits quânticos

Fase global

lacktriangledown $a\ket{0}+b\ket{1}$ e $a'\ket{0}+b'\ket{1}$ representam o mesmo estado se

$$a|0\rangle + b|1\rangle = c(a'|0\rangle + b'|1\rangle),$$

onde $c = e^{i\theta}$.

- $c = e^{i\theta}$ é denominado **fase global**.
- Existe uma diferença entre o espaço dos qubits e o espaço vetorial complexo onde os qubits são representados.

Fase relativa

- A fase relativa de um bit quântico é o número $e^{i\phi}$ que satisfaz $a/b = e^{i\phi}|a|/|b|$.
- Estados com fases relativas diferentes representam diferentes qubits.
- $e^{i\theta} |v1\rangle = |v_1\rangle$ representam o mesmo estado.
- ▶ $1\sqrt{2}(e^{i\theta}|0\rangle + |1\rangle)$ e $1\sqrt{2}(|0\rangle + |1\rangle)$ representam qubits diferentes.

Exemplos de qubits

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$|i\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle)$$

$$|-i\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$$

Seção 4

Representação geométrica de um qubit

Esfera de Bloch

- ▶ Um qubit $e^{i\phi_1}a\ket{0} + e^{i\phi_2}b\ket{1}$ pode ser descrito como $a\ket{0} + e^{i\phi}b\ket{1}$.
- ► Como $|a|^2 + |b|^2 = 1$ existe um θ onde $cos(\theta) = a$ e $sen(\theta) = b$.
- ▶ Logo $a|0\rangle + e^{i\phi}b|1\rangle = cos(\theta)|0\rangle + e^{i\phi}sen(\theta)b|1\rangle.$

Esfera de Bloch

▶ O estado $cos(\theta) |0\rangle + e^{i\phi} sen(\theta) b |1\rangle$ pode ser representado em uma esfera.

