Intervals, Transformations, and Slope Solution (version 140)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -5) \cup (0, 5)$
Negative	$(-5,0) \cup (5,10)$
Increasing	$(-2,4) \cup (6,10)$
Decreasing	$(-8, -2) \cup (4, 6)$
Domain	(-8, 10)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 140)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=60$ and $x_2=95$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 6 & 60 \\ 51 & 95 \\ 60 & 51 \\ 95 & 6 \\ \end{array}$$

$$\frac{f(95) - f(60)}{95 - 60} = \frac{6 - 51}{95 - 60} = \frac{-45}{35}$$

The greatest common factor of -45 and 35 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{7}$$

2