El Teorema 1 también se cumple para trayectorias a trozos C^1 , como podemos comprobar dividiendo los intervalos en segmentos, en los que las trayectorias son de clase C^1 , y sumando las integrales sobre cada uno de los distintos intervalos.

Por tanto, si es conveniente reparametrizar una trayectoria al evaluar una integral, el Teorema 1 nos garantiza que el valor de la integral no se verá afectado, excepto posiblemente por el signo, dependiendo de la orientación.

Ejemplo 8

Sean $\mathbf{F}(x,y,z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ y $\mathbf{c}: [-5,10] \to \mathbb{R}^3$ definida por $t \mapsto (t,t^2,t^3)$. Calcular $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$ y $\int_{\mathbf{c}_{op}} \mathbf{F} \cdot d\mathbf{s}$.

Solución

Para la trayectoria **c**, tenemos dx/dt = 1, dy/dt = 2t, $dz/dt = 3t^2$, y $\mathbf{F}(\mathbf{c}(t)) = t^5 \mathbf{i} + t^4 \mathbf{j} + t^3 \mathbf{k}$. Por tanto,

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{-5}^{10} \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{dz}{dt} \right) dt$$
$$= \int_{-5}^{10} (t^5 + 2t^5 + 3t^5) dt = [t^6]_{-5}^{10} = 984375.$$

Por otro lado, para

$$\mathbf{c}_{\text{op}}$$
: $[-5, 10] \to \mathbb{R}^3, t \mapsto \mathbf{c}(5-t) = (5-t, (5-t)^2, (5-t)^3),$

tenemos dx/dt = -1, dy/dt = -10 + 2t = -2(5-t), $dz/dt = -75 + 30t - 3t^2 = -3(5-t)^2$ y $\mathbf{F}(\mathbf{c}_{op}(t)) = (5-t)^5 \mathbf{i} + (5-t)^4 \mathbf{j} + (5-t)^3 \mathbf{k}$. Por tanto,

$$\int_{\mathbf{c}_{\text{op}}} \mathbf{F} \cdot d\mathbf{s} = \int_{-5}^{10} \left[-(5-t)^5 - 2(5-t)^5 - 3(5-t)^5 \right] dt$$
$$= \left[(5-t)^6 \right]_{-5}^{10} = -984375.$$

Estamos interesados en las reparametrizaciones porque si la imagen de una trayectoria ${\bf c}$ particular se puede representar de muchas maneras, queremos estar seguros de que las integrales sobre trayectorias y de línea solo dependen de la curva imagen y no de la parametrización concreta. Por ejemplo, para algunos problemas puede resultar conveniente representar la circunferencia unidad por medio de la aplicación ${\bf p}$ dada por

$$x(t) = \cos 2t$$
, $y(t) = \sin 2t$, $0 \le t \le \pi$.

El Teorema 1 garantiza que cualquier integral calculada para esta representación será igual que cuando representamos la circunferencia mediante la aplicación ${\bf c}$ dada por

$$x(t) = \cos t,$$
 $y(t) = \sin t,$ $0 \le t \le 2\pi,$

puesto que $\mathbf{p} = \mathbf{c} \circ h$, donde h(t) = 2t, y por tanto \mathbf{p} es una reparametrización que conserva la orientación de \mathbf{c} . Sin embargo, obsérvese que la aplicación γ dada por