PROBLÈME DE RÉVISION

Fonctions génératrices des moments Énoncé

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, par la suite, les variables aléatoires considérées sont des variables aléatoires réelles discrètes ou à densité. Si X est une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$, la fonction génératrice des moments de X, lorsqu'elle existe, est la fonction numérique de la variable réelle $t, M_X : t \longrightarrow \mathbb{E}\left(e^{tX}\right)$, où $\mathbb{E}\left(e^{tX}\right)$ désigne l'espérance de la variable aléatoire e^{tX} .

Partie I: Variables aléatoires discrètes finies

Soit X une variable aléatoire discrète prenant un nombre fini de valeurs x_1, \dots, x_r avec les probabilités respectives p_1, \dots, p_r , où $r \in \mathbb{N}^*$. On définit la fonction φ_X sur \mathbb{R}^* par,

$$\forall t \in \mathbb{R}^*, \varphi_X(t) = \frac{1}{t} \ln(M_X(t))$$

- 1. Déterminer M_Z , lorsque Z suit une loi de Bernoulli de paramètre $p, p \in [0, 1]$.
- 2. Montrer que M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} , et que pour tout entier naturel k, $M_X^{(k)}(0) = \mathbb{E}(X^k)$.
- 3. (a) Montrer que φ_X est bien définie sur \mathbb{R}^* et prolongeable par continuité en 0. On pose $\varphi_X(0) = \mathbb{E}(X)$ et on note encore φ_X la fonction ainsi prolongée.
 - (b) Démontrer que φ_X est dérivable en 0 et calculer $\varphi_X'(0)$ en fonction de la variance $\mathbb{V}(X)$ de X.
- 4. (a) Montrer que pour tout $u \leq 0$, $e^u \leq 1 + u + \frac{1}{2}u^2$;
 - (b) Montrer que si X ne prend que des valeurs négatives ou nulles, alors, pour tout $t \ge 0$,

$$\varphi_X(t) \leqslant \mathbb{E}(X) + \frac{t}{2}\mathbb{E}(X^2)$$

- 5. (a) Pour tout entier i tel que $1 \leq i \leq r$, on note f_i la fonction définie sur \mathbb{R} , part $t \mapsto e^{tx_i}$. Montrer que la famille (f_1, \dots, f_r) est libre.
 - (b) En déduire que deux variables discrètes finies X et Y ont la même loi si, et seulement si, les fonctions φ_X et φ_Y sont égales.
- 6. Montrer que si X et Y sont des variables discrètes finies indépendantes, alors,

$$\varphi_{X+Y} = \varphi_X + \varphi_Y$$

- 7. En déduire M_X , lorsque X suit une loi binomiale de paramètre s et p, s est un entier naturel non nul et $0 \le p \le 1$.
- 8. On dit qu'une variable aléatoire réelle X est symétrique si X et -X ont la même loi. Montrer que φ_X est impaire si, et seulement si, X est une variable aléatoire réelle symétrique.
- 9. On considère une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires discrètes finies mutuellement indépendantes sur $(\Omega, \mathcal{A}, \mathbb{P})$, qui suivent la même loi que X. On note m l'espérance de X et σ son écart-type que l'on suppose strictement positif.

On pose, pour tout entier naturel non nul, $S_n = \sum_{k=1}^n X_k$ et $S_n^* = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{\mathbb{V}(S_n)}}$.

(a) Montrer que, pour tout entier naturel non nul n et tout réel non nul t,

$$\varphi_{S_n^*}(t) = \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma}\varphi_X\left(\frac{t}{\sigma\sqrt{n}}\right)$$

(b) En déduire que $\lim_{n \to +\infty} \varphi_{S_n^*}(t) = \frac{t}{2}$.

Partie II: Cas des variables aléatoires discrètes réelles infinies

elamdaoui@gmail.com 1 www.elamdaoui.com

Problème de révision

Fonctions génératrices des moments Énoncé

Soit X une variable aléatoire discrète réelle infinie, notons I_X l'ensemble des réels t pour lesquels M_X existe.

- 10. (a) Montrer que, pour tous réels a, b, c tels que $a \le b \le c$ et tout réel $x, e^{bx} \le e^{ax} + e^{cx}$.
 - (b) En déduire que I_X est un intervalle contenant 0.
- 11. Soit Y une variable aléatoire discrète réelle qui suit une loi de Poisson de paramètre $\lambda > 0$. Déterminer la fonction génératrice des moments M_Y de Y.
- 12. On suppose que la fonction M_X est définie sur un intervalle de la forme]-a,a[,(a>0). Notons $(x_n)_{n\in\mathbb{N}}$ une énumération des valeurs de X.

Posons, pour tout $n \in \mathbb{N}$ et tout $t \in]-a, a[, u_n(t) = P(X = x_n)e^{tx_n}$ et x_n . Soit $\alpha > 0$ tel que $[-\alpha, \alpha] \subset]-a, a[$, et soit $\rho \in]\alpha, a[$.

(a) Montrer que, pour tout $k \in \mathbb{N}$, tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$,

$$|u_n^{(k)}(t)| \le P(X = x_n)(|x_n|)^k e^{\alpha |x_n|}$$

où $u_n^{(k)}$ désigne la dérivée k-ème de la fonction u_n .

(b) Montrer que, pour tout $k \in \mathbb{N}$, il existe $M_k > 0$, pour tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$,

$$|u_n^{(k)}(t)| \leqslant M_k P(X = x_n) |e^{\rho|x_n|}.$$

- (c) En déduire que M_X est de classe \mathcal{C}^{∞} sur]-a,a[, et que pour tout $k\in\mathbb{N},\mathbb{E}\left(X^k\right)=M_X^{(k)}(0)$
- 13. En déduire l'espérance et la variance d'une variable aléatoire Y qui suit une loi de Poisson de paramètre $\lambda > 0$.

Partie III: Cas des variables aléatoires à densité

- Si X est une variable aléatoire à densité, on note I_X l'intervalle de \mathbb{R} , qui contient 0, pour lequel M_X existe.
 - 14. Soient X et Y deux variables aléatoires à densité indépendantes, qui admettent respectivement des fonctions génératrices des moments M_X et M_Y , montrer que

$$\forall t \in I_X \cap I_Y, \quad M_{X+Y}(t) = M_X(t)M_Y(t)$$

- 15. Soit X une variable aléatoire à densité possédant une fonction génératrice des moments M_X et une densité f. On suppose que cette fonction génératrice des moments soit définie sur $I_X =]a, b[, (a, b) \in \mathbb{R}^2, a < 0 < b,$ et soit s un réel tel que, $0 < s < \min(-a, b)$.
 - (a) Montrer que, pour tout $k \in \mathbb{N}^*$ et tout $t \in \mathbb{R}, |t^k| \leqslant \frac{k!}{s^k} e^{s|t|}$.
 - (b) En déduire que, pour tout $k \in \mathbb{N}^*$, $\mathbb{E}(|X|^k)$ est finie.
 - (c) Montrer que, pour tout $t \in]-s, s[, M_X(t) = \sum_{k=0}^{+\infty} \mathbb{E}\left(X^k\right) \frac{t^k}{k!}$
 - (d) En déduire que, pour tout $k\in\mathbb{N}, M_X^{(k)}(0)=\mathbb{E}\left(X^k\right)$

elamdaoui@gmail.com 2 www.elamdaoui.com