

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Model Standardowy

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek Oddziaływania elektrosłabe – mechanizm Higgsa poszukiwania i odkrycie bozonu Higgsa MS – co dalej?

Model Standardowy - final

- Model Standardowy (SM) opisuje elektromagnetyzm, oddziaływania słabe i silne.
- Elektrosłabe oddziaływania: unifikacja elektromagnetyzmu i słabych oddziaływań.
- Grupa symetrii: $SU(2)_L \times U(1)_Y$.
- Narzędzia: cechowanie, bozony cechowania, mechanizm Higgsa.
- Czy możliwa jest Wielka Unifikacja (GUT, TOE)?

Symetria globalna i lokalna

Rozważmy fermion ψ :

- Globalna symetria fazowa: $\psi o e^{i\alpha} \psi$
- Lagrangian: $\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} m)\psi$
- Symetria lokalna $\alpha \to \alpha(x)$ wymusza wprowadzenie nowego pola

Cechowanie w U(1):

Aby zachować niezmienniczość fermionu ψ względem $\alpha(x)$:

- Wprowadzamy pole A_{μ}
- Definiujemy pochodną kowariantną:

$$\mathcal{D}_{\mu}\psi \to \partial_{\mu} + iqA_{\mu}\psi$$

• Nowy lagranżjan:

$$\mathcal{L} = \bar{\psi} (i\gamma^{\mu} \mathcal{D}_{\mu} - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$
$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

Cechowanie w SU(2)_L:

Dla dubletu leptonowego: $L = \begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$

Lokalna transformacja cechowania:

$$\mathcal{L}(x) \to e^{\frac{1}{2}i\alpha^a(x)\sigma^a}\mathcal{L}(x)$$

- Wprowadzamy pole W_{μ}^{a}
- Definiujemy pochodną kowariantną:

$$\mathcal{D}_{\mu} = \partial_{\mu} - \frac{1}{2} i g \sigma^{a} W_{\mu}^{a}$$

 σ^a - macierze Pauliego

Cechowanie w SU(2)_L x U(1)_Y

• Elementami grupy $SU(2)_L \times U(1)_Y$ są leptony i kwarki, ale uwaga – oddz. EW inaczej traktują stany lewo- i prawoskrętne:

• Lagranżjan dla dubletu leptonów lewoskrętnych i singletu prawoskrętnego:

$$\mathcal{L}_f = \bar{\chi}_L i \gamma^\mu \partial_\mu \chi_L + \bar{e}_R i \gamma^\mu \partial_\mu e_R$$

• Lagranżjan ma być niezmienniczy względem lokalnej transformacji cechowania grupy

$$SU(2)_L \times U(1)_Y$$
, czyli:

Cechowanie w SU(2)_L x U(1)_Y

Cechujemy wszystkie trzy pola:

$$SU(2)_{L} \qquad \chi_{L} \to \chi'_{L} = e^{-i\frac{g}{2}\vec{\sigma}\cdot\vec{\theta}}\chi_{L}$$

$$U(1)_{Y} \qquad \chi_{L} \to \chi'_{L} = e^{-i\frac{g'}{2}Y_{\chi_{L}}\phi}\chi_{L} \qquad e_{R} \to e'_{R} = e^{-i\frac{g'}{2}Y_{e_{R}}\phi}e_{R}$$

• Wprowadzamy pochodne kowariantne:

$$SU(2)_{L} \qquad \mathcal{D}_{\mu \chi_{L}} = \partial_{\mu \chi_{L}} + i \frac{g}{2} \vec{\sigma} \cdot \overrightarrow{W}_{\mu \chi_{L}} + i \frac{g'}{2} Y_{\chi_{L}} B_{\mu \chi_{L}}$$

$$U(1)_{Y} \qquad \mathcal{D}_{\mu e_{R}} = \partial_{\mu e_{R}} + i \frac{g'}{2} Y_{e_{R}} B_{\mu e_{R}}$$

 \overrightarrow{W}_{μ} , B_{μ} - bozony cechowania $SU(2)_L$ i $U(1)_Y$

• Czynnik kinetyczny pola, wyrażony przez komutator $F_{\mu\nu} = -\frac{i}{g} [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]$:

p. algebra Liego dla grup nieabelowych (SU(2), SU(3))

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$F_{\mu\nu}^{a} = \partial_{\mu}W_{\nu}^{a} - \partial_{\nu}W_{\mu}^{a} - g\epsilon^{abcd}W_{\mu}^{b}W_{\nu}^{c}$$

stała struktury grupy SU(2)

Lagranżjan dla $SU(2)_L \times U(1)_Y$

• Lagranżjan dla dubletu leptonów lewoskrętnych i singletu prawoskrętnego:

$$\mathcal{L}_f = \bar{L}i\gamma^{\mu}\mathcal{D}_{\mu}L + \bar{e}_Ri\gamma^{\mu}\mathcal{D}_{\mu}e_R$$

• Lagranżjan dla pól cechowania:

$$\mathcal{L}_g = -\frac{1}{4} W_{\mu\nu}^a W^{a \mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

uwaga – to jest grupa nieabelowa (nieprzemienna) – bozony cechowania są naładowane i oddziałują ze sobą

• Cechowanie pól wprowadziło bozony pośredniczące, ale gauge invariance wymusza, żeby były one bezmasowe, co jest sprzeczne z doświadczeniem

Pole Higgsa

- Pomysł:
 - \checkmark przestrzeń wypełniona jest skalarnym (s=0),
 - ✓ pole jest dubletem w SU(2), hiperładunek $Y \neq 0$,
 - ✓ bozony cechowania oddziałują z tym polem i dostają masę.
 - ✓ próżnia stan podstawowy ma niezerowe liczby kwantowe, co oznacza łamanie symetrii
- Wprowadzamy dodatkowe pole (Higgsa): $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$

Potencjał Higgsa:
$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

$$\mathcal{L}_H = T - V = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \left(\frac{1}{2} \mu^2 \Phi^2 + \frac{1}{4} \lambda \Phi^4\right)$$

próżni

gdy $\mu^2 > 0$, to próżnia odpowiada $\Phi = 0$, a μ^2 to masa.

gdy $\mu^2 < 0$, to minimum potencjału Higgsa:

$$\frac{\partial V}{\partial \Phi} = 0 \Rightarrow \Phi(\mu^2 + \lambda \Phi^2) = 0$$

$$\Phi = \pm \sqrt{-\frac{\mu^2}{\lambda}} \equiv \nu$$

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$
 wartość oczekiwana

Jak pole Higgsa nadaje masę?

• Rozpatrujemy teraz, co się dzieje wokół minimum:

$$\Phi(x) = \nu + \eta(x)$$

pola skalarne "wyprodukowało" skalarną, ciężką cząstkę (bozon Higsa)

Początkowa symetria została złamana – próżnia z ν nie ma już symetrii Lagranżjanu

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \eta \partial^{\mu} \eta \right) - \left\{ \frac{1}{2} \mu^{2} \left[v^{2} + 2 \eta v + \eta^{2} \right] + \frac{1}{4} \lambda \left[v^{4} + 4 v^{3} \eta + 6 v^{2} \eta^{2} + 4 v \eta^{3} + \eta^{4} \right] \right\}$$

$$= \frac{1}{2} \left(\partial_{\mu} \eta \partial^{\mu} \eta \right) - \left\{ \frac{v^{2}}{2} \left(\mu^{2} + \frac{1}{2} \lambda v^{2} \right) + \eta v \left(\mu^{2} + \lambda v^{2} \right) + \frac{\eta^{2}}{2} \left(\mu^{2} + 3 \lambda v^{2} \right) + \lambda v \eta^{3} + \frac{1}{4} \lambda \eta^{4} \right\}$$

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \eta \partial^{\mu} \eta \right) - \left(\lambda v^{2} \eta^{2} \right) \left(\lambda v \eta^{3} + \frac{1}{4} \lambda \eta^{4} \right) + \text{costante}$$
interactions
$$m_{\eta}^{2} = 2 \lambda v^{2} = -2 \mu^{2}$$

Zespolone pole Higgsa

- Pamiętamy, że każde wprowadzone pole powinno być "gauge invariant" względem odpowiedniej grupy.
- Upraszczając zajmiemy się jedynie grupą U(1), a pole Higgsa przyjmiemy jako zespolone:

$$\phi = \frac{\phi_1 + i\phi_2}{\sqrt{2}}$$

$$\mathcal{L}_{H} = \partial_{\mu}\phi^{*}\partial^{\mu}\phi - \mu^{2}\phi^{*}\phi - \lambda(\phi^{*}\phi)^{2}$$

$$\phi \to \phi' = e^{i\chi} \, \phi$$

$$\mathcal{L}_{H} = \frac{1}{2} \left(\partial_{\mu} \phi_{1} \right)^{2} + \frac{1}{2} (\partial^{\mu} \phi_{2})^{2} - \frac{1}{2} \mu^{2} (\phi_{1}^{2} + \phi_{2}^{2}) - \frac{\lambda}{4} (\phi_{1}^{2} + \phi_{2}^{2})^{2}$$

gdy $\mu^2 > 0$, to próżnia odpowiada (0,0),

gdy $\mu^2 < 0$, to minimum potencjału Higgsa jest na okręgu o promieniu ν :

gdy wybierzemy
$$\phi_1=
u$$
 , $\phi_2=0$, to

$$\phi = \frac{\nu + \eta(x) + i\rho(x)}{\sqrt{2}}$$

$$\phi_1^2 + \phi_2^2 = \frac{-\mu^2}{\lambda}$$

Pole Higgsa i globalne cechowanie

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \rho)^2 + \frac{1}{2} (\partial_{\mu} \eta)^2 \underbrace{\left(\mu^2 \eta^2\right)}_{\text{min}} \lambda v \left(\eta \rho^2 + \eta^3\right) - \frac{\lambda}{2} \eta^2 \rho^2 - \frac{\lambda}{4} \eta^4 - \frac{\lambda}{4} \rho^4 + \text{costante}$$

$$m_{\eta^2} = 2|\mu^2|$$

pole η odpowiada ciężkiej cząstce pole ρ nie ma członu masowego – nazywamy go bozonem Goldstona (bezmasowym)

- Ponieważ wybrany został konkretny okrąg, to globalna symetria U(1) została złamana.
- W następnym kroku wymagamy lokalnej transformacji cechowania...

 $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ Spontaniczne łamanie symetrii:

Pole Higgsa i lokalne cechowanie U(1)

$$\phi(x) \to \phi'(x) = e^{i\chi(x)}\phi(x) \qquad \partial_{\mu} \to \mathcal{D}_{\mu} = \partial_{\mu} - igA_{\mu}$$

$$A_{\mu} \to A'_{\mu} = A_{\mu} - \frac{1}{g}\partial_{\mu}\chi(x)$$

$$\mathcal{L} = (\mathcal{D}_{\mu}\phi)^{*}(\mathcal{D}^{\mu}\phi) - \mu^{2}\phi^{*}\phi - \lambda(\phi^{*}\phi)^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

gdy $\mu^2>0$, to mamy oddziaływanie skalarnej cząstki z polem elektromagnetycznym ,

gdy $\mu^2 < 0$, to mamy dwa rozwiązania:

$$\phi(x) = \eta(x)e^{-i\rho(x)} \qquad \phi(x) = \frac{v + h(x)}{\sqrt{2}}$$

$$\mathcal{L} = \frac{1}{2} \left[\left(\partial^{\mu} + igA^{\mu} \right) (v+h) \right] \left[\left(\partial_{\mu} - igA_{\mu} \right) (v+h) \right]$$

$$- \frac{v^{2}}{2} (v+h)^{2} - \frac{\lambda}{4} (v+h)^{4} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$= \frac{1}{2} \left(\partial_{\mu} h \right) \left(\partial^{\mu} h \right) \left(\frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu} \right) \left(\lambda v^{2} h^{2} \right) - \lambda v h^{3}$$

$$- \frac{\lambda}{4} h^{4} + g^{2} v h A_{\mu} A^{\mu} + \frac{1}{2} g^{2} h^{2} A_{\mu} A^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$
masa bozonów
masa bozonu
cechowania!
Higgsa!

Pole Higgsa i lokalne cechowanie SU(2)

- Pole Higgsa i wszystkie pola fermionowe należy dalej "przecechować" względem symetrii grupy SU(2).
- Ostatecznie otrzymamy:
 - ✓ pole Higgsa oddziałuje z fermionami z siłą proporcjonalną do masy fermionu.
 - √ fermiony otrzymują masę, a neutrino NIE oddziałuje z polem Higgsa,
 - ✓ bozony pośredniczące W^{\pm} , Z^0 mają masę, przewidzianą przez teorię
 - ✓ parametry g_i nie są wyznaczone przez teorię i należy je zmierzyć!
 - ✓ masy cząstek nie zatem również znane, masa bozonu Higgsa również nie.
 - ✓ ale mamy całkiem spory zestaw zależności, które można weryfikować doświadczalnie...
- W następnym kroku wprowadzamy macierz CKM i następne obserwable dotyczące prądów naładowanych.

$$\mathcal{L}_{CC} = -\frac{g}{2\sqrt{2}} \left\{ W_{\mu}^{\dagger} \left[\sum_{ij} \bar{u}_i \gamma^{\mu} (1 - \gamma_5) \mathbf{V}_{ij} d_j + \sum_{l} \bar{\nu}_l \gamma^{\mu} (1 - \gamma_5) l \right] + \text{h.c.} \right\}$$

$$\begin{split} M_Z &= \frac{1}{2} v \sqrt{g_1^2 + g_2^2} \\ M_W &= \frac{v g_2}{2} \qquad M_\gamma = 0 \\ m_e &= \frac{g_e v}{\sqrt{2}} \qquad \frac{M_W}{M_Z} = \cos \theta_W \\ \rho &= \frac{M_W}{M_Z \cos \theta_W} \qquad \text{independent of } \\ \rho &= \frac{M_W}{M_Z \cos \theta_W} \end{split}$$

$$\rho = \frac{M_W}{M_Z \cos \theta_W}$$

Poszukiwania bozonu Higgsa

Poszukiwania bozonu Higgsa

Figure 1. The prediction for $M_{\rm W}$ as a function of $M_{\rm H}$ for $m_{\rm t}=174.3\pm5.1$ GeV is compared with the current experimental value, $M_{\rm W}^{\rm exp}=80.419\pm0.038$ GeV [1], and the experimental 95% C.L. lower bound on the Higgs-boson mass, $M_{\rm H}=107.9$ GeV [13].

Figure 2. The present and prospective future theoretical predictions in the SM (for three hypothetical values of the Higgs-boson mass) are compared with the experimental accuracies at LEP2/Tevatron (Run IIA), the LHC and GigaZ.

Local $p_{_0}$

Badania bozonu Higgsa

Rozszerzenia Modelu Standardowego

- Model Standardowy jest najbardziej spójną teorią opisującą cząstki elementarne i oddziaływania.
- Nie ma wyników niezgodnych z MS.
- Jednak MS nie wyjaśnia:
 - ✓ masy neutrin,
 - √ ciemnej materii,
 - ✓ asymetrii materia antymateria
 - ✓ hierarchii mass
 - ✓ nie pozwala na unifikację oddziaływań.

- Strategie rozszerzania SM
 - ✓ Dodanie nowych cząstek (fermionów, bozonów) sterylne neutrina, czwarta generacja, Z', axiony
 - ✓ Wprowadzenie nowych symetrii (cechowych, dyskretnych)
 - ✓ Zmiana struktury przestrzeni dodatkowe wymiary
 - ✓ Wprowadzenie mechanizmów dynamicznych (np. dodatkowe bozony Higgsa)

Model Standardowy - supersymetria

Każda cząstka MS ma partnera o spinie różniącym się o ½, czyli fermion ma partnera bozona etc

cząstki SM		R	partnerzy SUSY	R
Spin = 1/2	$\begin{cases} \text{kwark } q \\ \text{lepton } l \end{cases}$	1	Spin = 0 $\begin{cases} \text{skwark } \tilde{q} \\ \text{slepton } \tilde{l} \end{cases}$	-1 -1
Spin = 1	$\begin{cases} W & W \\ Z & Z \\ \text{foton } \gamma \\ \text{gluon } g \end{cases}$	1	Spin = 1/2 $\begin{cases} \text{wino } \tilde{W} \\ \text{zino } \tilde{Z} \\ \text{fotino } \tilde{\gamma} \\ \text{gluino } \tilde{g} \end{cases}$	-1
Spin = 0	higgs H^0	1	Spin = $1/2$ higgsino \tilde{H}^0 \tilde{H}^\pm	-1

MSSM (Minimal Supersymmetric Standard Model)

Model Standardowy – Two Higgs Doublet

Dwa dublety Higgsa H1,H2H_1, H_2H1,H2

5 fizycznych cząstek: h,H,A,H±h, H, A, H^\pmh,H,A,H±

Motywacje:

- dodatkowe źródło CP-łamania
- nowe kanały rozpadu
- · mechanizmy barioogenezy

Figure 5. Theoretical predictions of the SM and the MSSM in the $M_{\rm W}$ -sin² $\theta_{\rm eff}$ plane compared with expected experimental accuracies at LEP2/Tevatron, the LHC and GigaZ.

Poszukiwania cząstek SUSY

