Statistical Learning Theory Проект (реферат по статье)

Сергей Володин, 374 гр.

1 Обучение с подкреплением

Обучение с подкреплением — область машинного обучения, идея которой основана на поведенческой психологии. Рассматривается *агент*, взаимодействующий со *средой* путем наблюдения ее *состояния*, совершения *действий* и получения от среды *награды*.

Рис. 1: Блок-схема обучения с подкреплением

Обучение с подкреплением находится на стыке многих областей, таких как машинное обучение, оптимальное управление и neuroscience.

Рис. 2: Положение обучения с подкреплением. Лекция Дэвида Сильвера [2]

В последнее время обучение с подкреплением набирает популярность благодаря успехам в решении важных практические задачи. Например, при помощи обучения с подкреплением удается обучать агентов, способных играть в игры Atari [3], Go [4] и backgammon.

2 Введение

Поскольку агент обучается правильным действиям в среде постепенно, сначала он может принимать неоптимальные действия. Таким образом возникает понятие сожаления (regret) — величины, характеризующей то, насколько неоптимально агент выбирает действия. Данный реферат рассказывает о статье «On Lower Bounds for Regret in Reinforcement Learning» (Ian Osband, Benjamin Van Roy) [1]. В статье рассматриваются нижние границы на сожаление. Данная величина характеризует «сложность» самой среды в терминах разницы между наградой данного алгоритма и некоего «наилучшего» алгоритма обучения с подкреплением.

Далее будут даны необходимые определения, а затем будет рассмотрен пример самой простой среды — многорукий бандит. Для нее будет получена нижняя оценка на сожаление.

В оригинальной статье разбирается также случай среды с двумя состояниями, но в данном реферате данный раздел не представлен.

3 Постановка задачи

Определение 3.1. (Марковский процесс принятия решений)

ММПР — это кортеж (S, A, R, P), где

- 1. $S = \{1, ..., S\}$ множество состояний среды
- 2. $\mathcal{A} = \{1, ..., A\}$ множество действий, доступных агенту
- 3. R(s,a) функция награды. Для данных $s\in\mathcal{S}$ и $a\in\mathcal{A}$ случайная величина $R(s,a)\in[0,1]$ награда за действие
- 4. P(s,a) функция переходов. Для данных $s \in \mathcal{S}$ и $a \in \mathcal{A}$ случайная величина $P(s,a) \in \mathcal{S}$ новое состояние среды

Определение 3.2. (Взаимодействие агента со средой)

Имеется ММПР (S, A, R, P). Вводится время $t \in \mathbb{N}$. Для каждого момента времени 1:

- 1. Агент получает состояние $s_t \in \mathcal{S}$
- 2. Агент выбирает действие $a_t \in \mathcal{A}$
- 3. Агент получает награду $r_t \sim R(s_t, a_t) \in [0, 1]$
- 4. Среда переходит в новое состояние $s_{t+1} \sim P(s_t, a_t)$

Определение 3.3. (Политика) Имеется ММПР (S, A, R, P).

Политика μ — отображение $\mu \colon \mathcal{S} \to \mathcal{A}$. То есть, каждому состоянию $s \in \mathcal{S}$ сопоставляется действие агента $a \in \mathcal{A}$

Определение 3.4. (Средняя награда) Имеется ММПР M = (S, A, R, P), а также политика μ .

$$\lambda_{\mu}^{M}(s) = \lim_{T \to \infty} \mathbb{E}_{M,\mu} \left[\frac{1}{T} \sum_{t=1}^{T} \overline{r}(s_{t}, a_{t}) \middle| s_{1} = s \right]$$

где $\overline{r}(s,a) = \mathbb{E}R(s,a)$ — средняя награда в (s,a)

То есть, $\lambda_{\mu}^{M}(s)$ — средняя награда за бесконечное время при следовании политике μ в ММПР M, если стартовать из состояния $s \in \mathcal{S}$. В некотором смысле это «ценность» состояния s. Политика μ^{M} оптимальна для M, если μ^{M} \in arg max $\lambda_{\mu}^{M}(s)$ для всех $s \in \mathcal{S}$. То есть, при старте

из любого состояния s политика μ максимизирует среднюю награду за бесконечное время. Величина $\lambda_*^M(s)=\lambda_{\mu^M}^M(s)$ называется оптимальной средней наградой.

Определение 3.5. (История) Имеется ММПР M = (S, A, R, P). История к моменту времени t кортеж

$$\mathcal{H}_t = (s_1, a_1, r_1, ..., s_{t-1}, a_{t-1}, r_{t-1})$$

То есть, это последовательный «журнал» всех состояний, действий и наград, которые произошли во время взаимодействия агента со средой.

Определение 3.6. (Алгоритм обучения с подкреплением) Имеется ММПР M = (S, A, R, P). Алгоритм обучения с подкреплением π — это последовательность функций $\pi = \{\pi_t | t \in \mathbb{N}\}$, где π_t функция, сопоставляющая истории \mathcal{H}_t распределение над политиками $\pi_t(\mathcal{H}_t)$

To есть, алгоритм π получает историю \mathcal{H}_t в момент времени t и возвращает распределение над политиками $\pi_t(\mathcal{H}_t)$. Далее выполняется сэмплинг $\mu_t \sim \pi_t(\mathcal{H}_t)$ из этого распределения, и агент возвращает действие $\mu_t(s_t)$.

Каждое распределение π_t должно обладать следующим свойством: если переставить действия и состояния биекциями $s \colon \mathcal{S} \to \mathcal{S}$ и $a \colon \mathcal{A} \to \mathcal{A}$ в истории \mathcal{H}_t , получив историю \mathcal{H}_t' , то распределение над «исходными» политиками не изменится, а именно:

$$(\pi_t(\mathcal{H}'_t))(\mu') = (\pi_t(\mathcal{H}_t))(a^{-1} \circ \mu' \circ s^{-1})$$

Это свойство означает, что алгоритм действительно получает информацию о среде, а не просто выбирает всегда одно и то же действие.

Данное свойство необходимо для симметрии в Теореме 4.1. В оригинальной статье [1] это свойство на самом деле не выполняется, а в более ранней [5] используется другой приём

Определение 3.7. (Сожаление) Имеется ММПР M = (S, A, R, P) и агент π .

Сожаление агента π в момент времени T для начального состояния s в цепи M определяется следующим образом:

Regret
$$(T, \pi, M, s) = \sum_{t=1}^{T} (\lambda_{\mu^{M}}^{M}(s) - r_{t}) = T\lambda_{*}^{M}(s) - \sum_{t=1}^{T} r_{t}$$

То есть, агент взаимодействует со средой, которая изначально находится в состоянии s в течение T шагов времени. В этом процессе им получаются награды $\{r_i\}_{i=1}^T$.

За всё время T агент мог бы действовать оптимально. Тогда можно ожидать, что он бы получил около $T\lambda_*^M(s)$ награды, так как λ_*^M — средняя награда для состояния s. Вместо этого он получил только $\sum_{i=1}^T r_t$.

Заметим, что $\operatorname{Regret}(T,\pi,M,s)$ — случайная величина (случайность берётся как из недетерминированности агента, так и из недетерминированности среды)

4 Многорукие бандиты

Определение 4.1. (Многорукий бандит) Многорукий бандит M- ММПР с всего одним состоянием: S=1. Действия $a\in\mathcal{A}$ называются «руками».

Для многорукого бандита оптимальная средняя награда вырождается в максимальное $\overline{r}(a)$:

$$\lambda_*^M = \max_a \overline{r}(a)$$

То есть, один раз выбирается действие, для которого средняя награда \overline{r} максимальна и повторяется каждый раз.

Теорема 4.1. (Нижняя граница на сожаление для многоруких бандитов)

Имеется многорукий бандит M. Тогда для любого алгоритма обучения с подкреплением π существует функция награды R, такая что

$$\mathbb{E}\text{Regret}(T, \pi, M) \geqslant \frac{1}{24}\sqrt{AT}$$

Доказательству этой теоремы посвящен остаток этого раздела.

Рассмотрим следующую среду: пусть M — многорукий бандит с $A\geqslant 2$ и следующей функцией награды:

$$R(a) = \begin{cases} \operatorname{Be}(\delta), & a \neq a^* \\ \operatorname{Be}(\delta + \varepsilon), & a = a^* \end{cases}$$

То есть, все «руки» одинаковые и имеют распределение награды по Бернулли с параметром δ , кроме руки a^* , имеющей распределение $\text{Be}(\delta+\varepsilon)$.

Определяется изменённая награда

$$\tilde{r}_t(a) = \begin{cases} r_t(a), & a \neq a^* \\ \sim \operatorname{Be}(\delta), & a = a^* \end{cases}$$

То есть, награда для действий, отличных от a^* остается без изменений. Для действия a^* производится дополнительный сэмплинг из независимого распределения $\text{Be}(\delta)$. Заметим, что распределение такой награды $\tilde{r}_t(a)$ всегда является $\text{Be}(\delta)$. То есть, она никак не информирует агента о преимуществе a^* перед другими действиями. Рассматривается изменённая история для $\tilde{a}_t \sim \pi_t(\tilde{\mathcal{H}}_t)$

$$\tilde{\mathcal{H}}_t = (\tilde{a}_1, \tilde{r}_1, ..., \tilde{a}_{t-1}, \tilde{r}_{t-1})$$

В этой истории агент получает измененную награду \tilde{r}_t , которая никак не информирует его о том, что рука a^* «лучше», чем остальные.

Определяются величины $n_T(a) = \sum_{t=1}^T [a_t = a]$ и $\tilde{n}_T(a) = \sum_{t=1}^T [\tilde{a}_t = a]$ — количества выборов действия a в историях \mathcal{H}_{T+1} и $\tilde{\mathcal{H}}_{T+1}$ соответственно.

Лемма 4.1. (Сожаление неинформированного агента)

Рассмотрим построенного многорукого бандита M. Для всех $\delta, \, \varepsilon > 0$ и всех алгоритмов обучения с подкреплением π сожаление

$$R_u = T\lambda_*^M(a) - \mathbb{E}\sum_{t=1}^T r(\tilde{a}_t) \geqslant \frac{A-1}{A}T\varepsilon$$

Доказательство. Рассмотрим $T\lambda_*^M = T \max_a \overline{r}(a)$. Тогда

$$R_u = \mathbb{E}_{\text{agent}} \sum_{t=1}^{T} \mathbb{E}_{\text{env}}[r(a^*) - r(\tilde{a}_t)]$$

Эта разница равна ε каждый раз, когда $\tilde{a}_t \neq a^*$ и 0 в противном случае. Перепишем сумму как сумму по действиям и количеству действий:

$$R_u = \mathbb{E} \sum_{a} \tilde{n}_T(a) (\overline{r}(a^*) - \overline{r}(a)) = \mathbb{E} \sum_{a \neq a^*} \varepsilon \tilde{n}_T(a) = \mathbb{E} \varepsilon (T - \tilde{n}_T(a^*)) = \varepsilon T \frac{A - 1}{A}$$

Где последний шаг произведен из соображений симметрии:

$$\mathbb{E}\tilde{n}_T(a^*) = \frac{T}{A}$$

Симметрия возникает, поскольку агент не может отличить a^* от других действий, получая награду \tilde{r}_t .

В оригинальной статье [1] данный переход произведен безосновательно. В более ранней [5] используется матожидание по различным средам $a^* \sim u\{1,...,A\}$, то есть, вычисляется среднее сожаление по всем средам с различными «лучшими» руками a^* . В этом тексте этот переход верен из-за условий на перестановки в Определении 3.6

Перейдём к следующему этапу доказательства Теоремы 1. В этой части докажем следующее утверждение: если ε достаточно мал, тогда распределение награды $\tilde{r}_t(a_t)$ близко к $r_t(a_t)$.

Определение 4.2. (Total variation distance)

Пусть (Ω, \mathcal{F}, P) и (Ω, \mathcal{F}, Q) — два вероятностных пространства.

Тогда total variation distance между P и Q определяется как:

$$\delta(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|$$

То есть, это максимальный модуль разности мер по всем измеримым подмножествам.

Аналогично total variation distance определяется для случайных величин

Определение 4.3. (Расхождение Кульбака-Лейблера) Пусть P и Q — два распределения. Тогда расхождением Кульбака-Лейблера Q относительно P называется

$$d_{\text{KL}}(P||Q) = \int_{Y} p(x) \log_2 \frac{p(x)}{q(x)} dx$$

Теорема 4.2. (Неравенство Пинскера) Пусть P, Q — две случайные величины.

Тогда

$$\delta(P,Q) \leqslant \sqrt{\frac{1}{2}d_{\text{KL}}(P||Q)}$$

Определим две последовательности наград:

$$\begin{cases} r_t^T = (r_t, ..., r_T) \\ \tilde{r}_t^T = (\tilde{r}_t, ..., \tilde{r}_T) \end{cases}$$

Определим условное распределение последовательностей наград r_t^T и \tilde{r}_t^T при заданной истории в точке $z_t^T \in \mathbb{R}^{T-t+1}$

$$\begin{cases} P(z_t^T | \mathcal{H}_t) = \mathbb{P}(r_t^T = z_t^T | \mathcal{H}_t) \\ \tilde{P}(z_t^T | \tilde{\mathcal{H}}_t) = \mathbb{P}(\tilde{r}_t^T = z_t^T | \tilde{\mathcal{H}}_t) \end{cases}$$

Рассмотрим матожидание расхождения Кульбака-Лейблера $P(z_t^T | \mathcal{H}_t)$ относительно $\tilde{P}(z_t^T | \tilde{\mathcal{H}}_t)$:

$$d_t^T = d_{\text{KL}}(\tilde{P}(z_t^T | \tilde{\mathcal{H}}_t) || P(z_t^T | \mathcal{H}_t) = \mathbb{E} \sum_{z_t^T} \tilde{P}(z_t^T | \tilde{\mathcal{H}}_t) \log_2 \frac{\tilde{P}(z_t^T | \tilde{\mathcal{H}}_t)}{P(z_t^T | \mathcal{H}_t)}$$

Лемма 4.2. (КЛ-расхождение неинформированного распределения)

Рассмотрим построенного многорукого бандита M. Для всех $\varepsilon,\,\delta>0$ и всех алгоритмов обучения с подкреплением π

$$d_1^T \leqslant \frac{T}{A} \left(\delta \log_2 \frac{\delta}{\delta + \varepsilon} + (1 - \delta) \log_2 \frac{1 - \delta}{1 - \delta - \varepsilon} \right)$$

Доказательство. По цепному правилу для расхождения Кульбака-Лейблера [5], [6]

$$d_t^T = \sum_{t=1}^T d_t^t$$

Поскольку награда \tilde{r}_t всегда распределена по $\mathrm{Be}(\delta),$

$$\tilde{P}(z_t^t) = \begin{cases} \delta, & z_t^t = 1\\ 1 - \delta, & z_t^t = 0 \end{cases}$$

Для r_t распределение зависит от действия. Для $a \neq a^*$ распределение совпадает с \tilde{P} . Но для $a = a^*$

$$P(z_t^t) = \begin{cases} \delta + \varepsilon, & z_t^t = 1\\ 1 - \delta - \varepsilon, & z_t^t = 0 \end{cases}$$

Эти числа как раз стоят в верхней оценке. Дополнительные вычисления [5] дают:

$$d_1^T \leqslant \sum_{t=1}^T P(\tilde{a}_t = a^*) \left(\delta \log_2 \frac{\delta}{\delta + \varepsilon} + (1 - \delta) \log_2 \frac{1 - \delta}{1 - \delta - \varepsilon} \right)$$

Поскольку действия \tilde{a}_t выбираются без информации о различии между «руками», используем тот же прием, использующий симметрию:

$$P(\tilde{a}_t \neq a^*) = \frac{A-1}{A}$$

B оригинальной статье [1] данный переход произведен безосновательно. B более ранней [5] используется матожидание по различным средам $a^* \sim u\{1,...,A\}$, то есть, вычисляется среднее сожаление по всем средам с различными «лучшими» руками a^* . B этом тексте этот переход верен из-за условий на перестановки в Определении 3.6

Теперь мы покажем, что если распределение P близко к \tilde{P} , то получающееся сожаление близко к сожалению неинформированного агента:

Лемма 4.3. (Ограничение на сожаление в терминах КЛ-расхождения) Пусть M — построенный многорукий бандит. Тогда для любого ε , $\delta > 0$ и для любого алгоритма обучения с подкреплением π

$$R = T \max_{a} \overline{r}(a) - \mathbb{E} \sum_{t=1}^{T} \overline{r}(a_t) \geqslant \varepsilon T \left(1 - \frac{1}{A} - \sqrt{\frac{1}{2} d_{\text{KL}}(\tilde{P}(z_1^T) || P(z_1^T))} \right)$$

Доказательство. По неравенству Пинскера [5]:

$$\mathbb{E}\left[\frac{n_T(a^*)}{T} - \frac{\tilde{n}_T(a^*)}{T}\right] \leqslant \sqrt{\frac{1}{2}d_{\text{\tiny KL}}(\tilde{P}(z_1^T||P(z_1^T))}$$

Далее, поскольку $\mathbb{E} \tilde{n}_T(a^*) = \frac{T}{A}$ из симметрии, получаем

$$\mathbb{E}\frac{n_t(a^*)}{T} \leqslant \sqrt{\frac{1}{2}d_{\text{\tiny KL}}(\tilde{P}||P)} + \frac{1}{A}$$

Далее рассуждения аналогичны рассуждениям в доказательстве Леммы 4.1:

$$R = \mathbb{E} \sum_{a \neq a^*} n_T(a) \varepsilon = \varepsilon (T - n_T(a^*)) \geqslant \varepsilon T \left(1 - \frac{1}{A} - \sqrt{\frac{1}{2} d_{\text{KL}}(\tilde{P}||P)} \right)$$

Далее, оценим величину в Лемме 4.2.

Лемма 4.4. (Ограничение на КЛ-расхождение)

Рассмотрим функцию

$$f(\delta, \varepsilon) = \delta \log_2 \frac{\delta}{\delta + \varepsilon} + (1 - \delta) \log_2 \frac{1 - \delta}{1 - \delta - \varepsilon}$$

При $\delta \in [0, \frac{1}{2}]$ и $\varepsilon \leqslant 1 - 2\delta$ значение $f(\delta, \varepsilon) \leqslant \frac{\varepsilon^2}{\delta \ln 2}$.

Доказательство. См. [8] (используется первая производная)

Теперь докажем Теорему 1.

Доказательство. (Теорема 1) Рассмотрим

$$R = T \max_{a} \overline{r}(a) - \mathbb{E} \sum_{t=1}^{T} \overline{r}(a_t)$$

По Лемме 4.3

$$R \geqslant \varepsilon T \left(1 - \frac{1}{A} - \sqrt{\frac{1}{2} d_{\text{\tiny KL}}(\tilde{P}(z_1^T) || P(z_1^T))}\right)$$

По Лемме 4.2

$$d_{\text{\tiny KL}}(\tilde{P}||P) \leqslant \frac{T}{A} \left(\delta \log_2 \frac{\delta}{\delta + \varepsilon} + (1 - \delta) \log_2 \frac{1 - \delta}{1 - \delta - \varepsilon} \right)$$

Значит, по Лемме 4.4

$$d_{\text{\tiny KL}}(\tilde{P}||P) \leqslant \frac{T}{A} \frac{\varepsilon^2}{\delta \ln 2}$$

Выбираем $\varepsilon^2=\frac{\delta A}{8T},$ подставляем последнюю оценку в оценку R:

$$R \geqslant \varepsilon T (1 - \frac{1}{A} - \frac{1}{\sqrt{16 \ln 2}}) \geqslant c_0 \sqrt{\delta A T}$$

Список литературы

- [1] Ian Osband, Benjamin Van Roy On Lower Bounds for Regret in Reinforcement Learning. arxiv.org: paper in pdf
- [2] David Silver UCL Course on RL. slides
- [3] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning, paper in pdf
- [4] AlphaGo article on Wikpedia
- [5] Sebastien Bubeck, Nicolo Cesa-Bianchi Regret analysis of stochastic and nonstochastic multi-armed bandit problems paper in pdf
- [6] Nicolo Cese-Bianchi, Gabor Lugosi Prediction, Learning, and Games book in pdf
- [7] Khudanpur Sanjeev, Yaqiao Li Information theoretic methods in statistics (scribe) pdf
- [8] Thomas Jaksch et al. Near-optimal Regret Bounds for Reinforcement Learning pdf