Упражнения по Machine Learning (классификация и регрессия)

самостоятельное прорешивание. ответы сразу после упражнения

Задание 1. Классификация

- 1. Загрузите данные affairs (с лекции)
- 2. Перекодируйте переменные 'religion', 'occupation', 'occupation_husb'
- 3. Разбейте на обучение/тест в пропорции 70/30
- 4. Обучите модель логистической регрессии и сделайте предсказание на тестовой выборке
- 5. Нарисуйте кривую precision_recall
- 6. Нарисуйте roc_curve
- 7. Рассчитайте метрику roc_auc_score
- 8. Примените метод кроссвалидации (cv=5) и рассчитайте roc_auc_score для каждого шага
- 9. * Попробуйте повторить предыдущие шаги, используя для обучения не все переменные

Решение 1

- 1. data = pd.read_csv('affair_data.csv')
- 2. X = pd.get_dummies(data, columns=['religious', 'occupation', 'occupation_husb'])
- 3. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
- 4. model = LogisticRegression()
 model.fit(X_train, y_train)
 predictions = model.predict_proba(X_test)
- prec, rec, thres = precision_recall_curve(y_test, pred[:, 1])
 plt.plot(rec, prec)
- 6. fpr, tpr, thres = roc_curve(y_test, pred[:, 1]) plt.plot(fpr, tpr)
- 7. roc_auc_score(y_test, pred[:, 1])
- 8. scores = cross val score(LogisticRegression(), X, y, cv=10, scoring='roc auc')

Задание 2. Регрессия

- 1. Загрузите данные с лекции ('cars.csv')
- 2. Закодируйте все категориальные переменные
- 3. Разбейте на обучение/тест в пропорции 70/30
- 4. Обучите модель линейной регрессии (LinearRegression)
- 5. Обучите модель DecisionTreeRegressor()
- 6. Обучите модель DecisionTreeRegressor с параметром max depth=4
- 7. Сравните качество всех 3х моделей по метрике R2

Решение 2

- 1. data = pd.read_csv('cars.csv', sep='\t')
- 2. X = pd.get_dummies(data)
 del X['Price']
- 3. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
- 4. model = LinearRegression()
 model.fit(X_train, y_train)
 predictions_logit = model.predict(X_test)
- 5. model = DecisionTreeRegressor() model.fit(X_train, y_train) predictions_tree_0 = model.predict(X_test)
- model = DecisionTreeRegressor(max_depth=4)
 model.fit(X_train, y_train)
 predictions tree 1 = model.predict(X test)
- 7. Рассчитайте r2_score для всех полученных ранее предсказаний и y_test