Luke Palmer MATH 5000 2006-10-25

(Aa) There is no set of uncountably many nonintersecting circles in the plane with distinct centers.

Proof. Given a set of nonintersecting circles with distinct centers. There is a set of nonintersecting open sets around the centers of the circles. Pick a rational out of each such set, and you have a 1-1 map from circles to \mathbb{Q} .

(Ab) There is no set of uncountably many figure-8s in the plane.

Proof. Similar argument as (Aa), using the crossing at the middle of the figure-8 instead of the center.

- (B) ...
- (C) The Sheffer Stroke (p|q) iff $\neg p \land \neg q$ is a complete logical connective.

Proof. $\neg p$ iff p|p. $p \wedge q$ iff $(\neg p)|(\neg q)$.

(D) Logical equivalence together with negation is not a complete set of logical connectives.

Proof. I will show that the expression $p \Rightarrow q$ is not representable by proving that every truth table in p and q with these connectives has an even number of "true" values. By induction on ϕ :

Trivial for $\phi = p$, $\phi = q$.

For $\phi = \neg \psi$, then the number of true values in ϕ is four minus the number of true values in ψ , still even.

For $\phi = \psi \Leftrightarrow \chi$, it suffices to show that the number of true values in ϕ is even when the number of true values in ψ and χ is exactly two (it is trivial for zero and four). Wlg assume that ψ 's truth table reads TTFF (we can assume negated p and q as appropriate). Then for each truth table of χ :

- $\chi = TTFF$ then $\phi = TTTT$.
- $\chi = TFTF$ then $\phi = TFFT$.
- $\chi = TFFT$ then $\phi = TFTF$.
- $\chi = FTTF$ then $\phi = FTFT$.
- $\chi = FTFT$ then $\phi = FTTF$.
- $\chi = FFTT$ then $\phi = FFFF$.

All of which have even numbers of "true" values.

Ea

$$\forall x \forall y \forall z \ (x+y) + z = x + (y+z)$$

$$\land \forall x \forall y \forall z \ (xy)z = x(yz)$$

$$\land \forall x \forall y \ x + y = y + x$$

$$\land \forall x \forall y \ xy = yx$$

$$\land \forall x \forall y \forall z \ a(b+c) = (ab) + (ac)$$

$$\land \exists x \exists y \ (x \neq y)$$

$$\land \forall z \ x + z = z$$

$$\land \forall z \ yz = z$$

$$\land \forall z \ yz = z$$

$$\land \forall z \ \exists w \ z + w = x$$

$$\land \forall z \ (z \neq x \Rightarrow \exists w \ zw = y)$$

Eb I'll use symbols other than x, y, z, w as variables for readability.

Write (x|y) as shorthand for $\exists z \ xz = y$. Write P(x) as shorthand for $\forall y \ ((y|x) \Rightarrow (y = 1 \lor y = x))$ (which must only be used when the variable 1 is in scope). Write $x \le y$ as shorthand for $\exists z \ x + z = y$.

$$\exists 1(\forall x \ 1x = x \land \forall x \exists y \ (x \le y \land P(y) \land P((y+1)+1)))$$