TP1 - Análisis de Lenguajes de Programación

Nicolas Becerra, Federico Buczek, Ignacio Rímini

1 de Octubre, 2025

Ejercicio 1. Extender sintaxis concreta y abstracta de LIS para incluir operador ++ y al comando case.

• Sintaxis Abstracta

```
\begin{array}{c|c} intexp ::= nat \mid var \mid -_u intexp \\ \mid var++ \\ \mid intexp + intexp \\ \mid intexp -_b intexp \\ \mid intexp \times intexp \\ \mid intexp \div intexp \end{array}
```

• Sintaxis Concreta

```
\begin{aligned} comm &::= \mathbf{skip} \\ & \mid var \ '=' \ intexp \\ & \mid comm \ ';' \ comm \\ & \mid \ '\text{if'} \ boolexp \ '\{'comm \ '\}' \\ & \mid \ '\text{if'} \ boolexp \ '\{'comm \ '\}' \ '\text{else'} \ '\{'comm \ '\}' \\ & \mid \ '\text{repeat'} \ '\{'comm \ '\}' \ '\text{until'} \ boolexp \\ & \mid \ '\text{case'} \ '\{'casebody'\}' \end{aligned} casebody ::= \epsilon \mid boolexp \ ':' \ '\{' \ comm \ '\}' \ casebody \end{aligned}
```

Ejercicio 4. Modificar semántica big-step de expresiones enteras para incluir al operador ++.

A continuación, se detalla una regla de semántica big-step para el operador ++ (INC):

$$\frac{x \in \text{dom}(\sigma)}{\langle x^{++}, \sigma \rangle \Downarrow_{\text{exp}} \langle \sigma x + 1, [\sigma \mid x : \sigma x + 1] \rangle} \text{ Inc}$$

Ejercicio 5. Demostración de determinismo de evaluación en un paso -->.

Teorema: La relación de evaluación en un paso \leadsto es determinista. Es decir, para cualquier cualquier comando c y estado σ , si $\langle c, \sigma \rangle \leadsto \langle c_1, \sigma_1 \rangle$ y $\langle c, \sigma \rangle \leadsto \langle c_2, \sigma_2 \rangle$, entonces $c_1 = c_2$ y $\sigma_1 = \sigma_2$.

Demostración. Por inducción sobre la derivación $\langle c, \sigma \rangle \leadsto \langle c_1, \sigma_1 \rangle$.

• Si la última regla aplicada es Ass, entonces c tiene la forma v = e donde $\langle e, \sigma \rangle \downarrow_{\exp} \langle n, \sigma' \rangle$ para algún $n y \sigma'$. Además, $c_1 = \mathbf{skip} y \sigma_1 = [\sigma' \mid v : n]$.

Claramente, la única regla que se puede aplicar sobre $\langle c, \sigma \rangle$ es Ass ya que el lado izquierdo del resto de las reglas tiene una estructura diferente. Ahora, la última regla en la derivación de $\langle c, \sigma \rangle \rightsquigarrow \langle c_2, \sigma_2 \rangle$ debe ser Ass. Entonces $c_2 = \mathbf{skip}$.

Cómo \downarrow_{exp} es determinista, $\sigma_1 = \sigma_2$. Finalmente, $c_1 = c_2$ y $\sigma_1 = \sigma_2$ como queriamos.

• Si la última regla aplicada es SEQ₁, entonces $c = \mathbf{skip}$; c_d para algún c_d . Observemos que sólo SEQ₁ se puede aplicar sobre $\langle c, \sigma \rangle$ (no se puede aplicar SEQ₂ ya que requiere que $\langle \mathbf{skip}, \sigma \rangle \leadsto \langle c'_0, \sigma'_0 \rangle$ pero esto no es posible ya que el lado izquierdo de ninguna regla tiene la forma $\langle \mathbf{skip}, \sigma \rangle$).

Finalmente, $c_1 = c_d = c_2$ y $\sigma_1 = \sigma = \sigma_2$.

• Si la última regla aplicada es SEQ₂, entonces $c = c_a; c_b$ y $c_1 = c'_a; c_b$. Otra vez, la única regla aplicable es SEQ₂ (no se puede aplicar SEQ₁ ya que $\langle c_a, \sigma \rangle \leadsto \langle c'_a, \sigma_1 \rangle$ y, por lo tanto, c_a no puede ser **skip**).

Entonces $c_2 = c_a''; c_b$ y $\langle c_a, \sigma \rangle \leadsto \langle c_a'', \sigma_2 \rangle$. Ahora, esta subderivación debe ser determinista por la Hipótesis Inductiva y tenemos qué $c_a' = c_a''$ y $\sigma_1 = \sigma_2$. Finalmente, $c_1 = c_a'; c_b = c_a''; c_b = c_2$ y $\sigma_1 = \sigma_2$.

• Si la última regla aplicada es IF₁, entonces $c = \mathbf{if} \ b \ \mathbf{then} \ c_a \ \mathbf{else} \ c_b \ \mathbf{donde} \ \langle b, \sigma \rangle \ \downarrow_{\exp} \langle \mathbf{true}, \sigma_1 \rangle$. La única regla aplicable sobre $\langle c, \sigma \rangle$ es IF₁ (no puede ser IF₂ ya que no podemos tener $\langle b, \sigma \rangle \ \downarrow_{\exp} \langle \mathbf{false}, \sigma' \rangle$ porque $\ \downarrow_{\exp}$ es determinista).

Como \downarrow_{exp} es determinista tenemos qué $\sigma_1 = \sigma_2$. Finalmente, $c_1 = c_a = c_a = c_2$ ya que IF₁ es la única regla aplicable.

• Si la última regla aplicada es IF₂, entonces $c = \mathbf{if} \ b \ \mathbf{then} \ c_a \ \mathbf{else} \ c_b \ \mathbf{donde} \ \langle b, \sigma \rangle \ \psi_{\mathrm{exp}} \ \langle \mathbf{false}, \sigma_1 \rangle$. La única regla aplicable sobre $\langle c, \sigma \rangle$ es IF₂ (no puede ser IF₁ ya que no podemos tener $\langle b, \sigma \rangle \ \psi_{\mathrm{exp}} \ \langle \mathbf{true}, \sigma' \rangle$ porque ψ_{exp} es determinista).

Como \downarrow_{exp} es determinista tenemos qué $\sigma_1 = \sigma_2$. Finalmente, $c_1 = c_a = c_a = c_2$ ya que IF₂ es la única regla aplicable.

• Si la última regla aplicada es REPEAT, tenemos que c = repeat c' until b. Claramente REPEAT es la única regla aplicable sobre $\langle c, \sigma \rangle$ ya que el lado izquierdo del resto tiene una forma diferente. Finalmente, $c_1 = \text{if } b$ then skip else repeat c' until $b = c_2$ y $\sigma_1 = \sigma = \sigma_2$ como queriamos.

Ejercicio 6. Probar equivalencia semántica entre programas.

Usaremos la notación $[\sigma \mid x : n_1, y : n_2]$ para representar $[[\sigma \mid x : n_1] \mid y : n_2]$.

Sea $\sigma \in \Sigma$ un estado arbitrario. Si $x \notin \text{dom}(\sigma)$ entonces ambos programas quedan atascados (solo podemos aplicar la regla Ass pero no cumplimos las premisas) y el resultado es trivialmente verdadero. Suponemos que $x \in \text{dom}(\sigma)$ de forma tal que $\sigma(x) = n_0$.

• Probemos que $\langle (x=x+1;y=x),\sigma\rangle \leadsto^* \langle \mathbf{skip}, [\sigma \mid x:n_0+1,y:n_0+1]\rangle$:

$$\frac{x \in \text{dom}(\sigma)}{\langle x, \sigma \rangle \Downarrow_{\text{exp}} \langle n_0, \sigma \rangle} \text{ Var } \frac{1}{\langle 1, \sigma \rangle \Downarrow_{\text{exp}} \langle 1, \sigma \rangle} \text{ NVal } \frac{\langle x, \sigma \rangle \Downarrow_{\text{exp}} \langle n_0, \sigma \rangle}{\langle x + 1, \sigma \rangle \Downarrow_{\text{exp}} \langle n_0 + 1, \sigma \rangle} \text{ Plus } \frac{\langle x + 1, \sigma \rangle \leadsto \langle \mathbf{skip}, [\sigma \mid x : n_0 + 1] \rangle}{\langle x = x + 1; y = x, \sigma \rangle \leadsto \langle \mathbf{skip}; y = x, [\sigma \mid x : n_0 + 1] \rangle} \text{ Sec}_2$$

$$\overline{\langle \mathbf{skip}; y = x, [\sigma \mid x : n_0 + 1] \rangle} \rightsquigarrow \langle y = x, [\sigma \mid x : n_0 + 1] \rangle$$
SEC₁

$$\frac{x \in \text{dom}([\sigma \mid x : n_0 + 1])}{\langle x, [\sigma \mid x : n_0 + 1] \rangle \Downarrow_{\text{exp}} \langle n_0 + 1, [\sigma \mid x : n_0 + 1] \rangle} \text{ VAR}}{\langle y = x, [\sigma \mid x : n_0 + 1] \rangle \leadsto \langle \text{skip}, [[\sigma \mid x : n_0 + 1, y : n_0 + 1] \rangle} \text{ Ass}}$$

• Probemos que $\langle (y=x++),\sigma \rangle \leadsto^* \langle \mathbf{skip}, [[\sigma \mid x:n_0+1,y:n_0+1] \rangle$:

$$\frac{x \in \text{dom}(\sigma)}{\langle x++, \sigma \rangle \Downarrow_{\text{exp}} \langle n_0 + 1, [\sigma \mid x : n_0 + 1] \rangle} \text{ Inc}}{\langle y = x++, \sigma \rangle \leadsto \langle \mathbf{skip}, [\sigma \mid x : n_0 + 1, y : n_0 + 1]} \text{ Ass}$$