

NuMicroTM M051 PWM and Capture

NuMicro@nuvoton.com

Features of PWM

- Four PWM Generators, each generator supports
 - One 8-bit prescaler
 - One clock divider
 - Two PWM-timers for two outputs, each timer includes
 - A 16-bit PWM down-counter
 - A 16-bit PWM reload value register (CNR)
 - A 16-bit PWM compare register (CMR)
 - One dead-zone generator
 - Two PWM outputs.
- 8 PWM channels or 4 PWM paired channels.
- 16 bits resolution.
- Support edge and center aligned modes
- Single-shot or Continuous mode PWM.

PWM/Capture Clock Source

Note: 10 kHz selection is only available on M05xxDN/DE.

Configure PWM Generator

PWM Edge Align Mode

- Duty ratio = (CMR+1) / (CNR+1)
- Duty = (CMR+1) x (clock period)
- Period = (CNR+1) x (clock period)

PWM Center Align Mode

- Duty ratio = (CNR CMR) / (CNR+1)
- Duty = (CNR CMR) x 2 x (clock period)
- Period = (CNR+1) x 2 x (clock period)

PWM Double Buffering Illustration

Operation of Dead Zone Generator

- Why need the dead zone control?
 - To avoid a paired-PWM outputs overlapping on duty-on duration.
 - For example, in Motor Driver application, it needs to avoid the upper and lower power switch turn on simultaneously.
- Insert a delay time (dead zone) before duty on at each channel of paired-PWM.
- 8-bit dead-zone timer from PWM clock.

Effect of dead-zone for complementary pairs

Features of Capture Input

- Timing control logic shared with PWM
 Generators. (therefore up to 16 bits data length)
- 8 Capture inputs shared with PWM outputs
- Each channel supports
 - One rising latch register (CRLR)
 - One falling latch register (CFLR)
 - Capture interrupt flag (CAPIFx)

Operation Timing of Capture Input

The PWM counter will be reloaded with CNRx when a capture interrupt flag (CAPIFx) is set
The channel low pulse width is (CNR+1 - CRLR).
The channel high pulse width is (CNR+1 - CFLR).

Interrupt Architecture

Two PWM/Capture Interrupt Vectors

PWM Sample Code (1/2)

```
/*------*/
  Main Function
/*-----*/
int32_t main (void)
   /* Enable IP clock */
   SYSCLK->APBCLK |= SYSCLK_APBCLK_PWM01_EN_Msk;
   /* Set P2 multi-function pins for PWMB Channel0~3 */
   SYS->P2_MFP = SYS_MFP_P21_PWM1;
   /*Set Pwm mode*/
   _PWM_SET_TIMER_AUTO_RELOAD_MODE(PWMA,PWM_CH1);
   /*Set PWM Timer clock prescaler*/
   _PWM_SET_TIMER_PRESCALE(PWMA,PWM_CH1, 1); // Divided by 2
   /*Set PWM Timer clock divider select*/
   _PWM_SET_TIMER_CLOCK_DIV(PWMA,PWM_CH1,PWM_CSR_DIV1);
   /*Set PWM Timer duty*/
   PWMA -> CMR1 = 0x1FF;
   /*Set PWM Timer period*/
   PWMA -> CNR1 = 0x3FF;
   /* Enable PWM Output pin */
   _PWM_ENABLE_PWM_OUT(PWMA, PWM_CH1);
   /* Disable PWMB NVIC */
   NVIC_DisableIRQ((IRQn_Type)(PWMB_IRQn));
   /* Enable PWM Timer */
   _PWM_ENABLE_TIMER(PWMA, PWM_CH1);
}
```


PWM Sample Code (2/2)

```
/*_____*/
/* PWM Timer function */
/*-----*/
void PWMB_IRQHandler(void)
   PWMA->PIIR = PWM_PIIR_PWMIF1_Msk;
   PWMA->CMR1++;
   if(PWMA->CMR1 > PWMA->CNR1)
        PWMA->CMR1;
```


Run PWM Sample Code

