全国 2019 年 10 月高等教育自学考试

数据结构试题

课程代码:02331

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔 填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡 皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
- 一、单项选择题:本大题共 15 小题,每小题 2 分,共 30 分。在每小题列出的备选项中 只有一项是最符合题目要求的、请将其选出。
- 1. 下列选项中,不宜采用链式存储的是
 - - A. 无向图
- B. 单链表 C. 最优二叉树 D. 数组

 - 2. 将 10 个数据元素保存在顺序栈 S 中, 若栈顶元素的存储地址是 100, 栈中每个元 素占 4 个存储单元, 进栈按 S.top=S.top+1 修改栈顶, 则栈底元素的存储地址是
 - A. 60
- B. 64
- C. 136
- D. 140
- 3. 设指针变量 head 指向循环链表的头结点, next 是结点的指针域, 则判断此链表为 空的条件是
 - A. head->next == NULL
- B. head->next == head
- C. head->next != NULL

- D. head->next != head->next
- 4. 己知广义表 LS = (((a, b, c)), ((d, (e)), (f, (g))), (h, g), i), LS 的深度是
 - A. 4
- B. 3
- C. 2

- D. 1
- 5. 已知一棵完全二叉树 T 共有 7 个分支结点,则 T 中叶子结点个数最少是
 - A. 7

- B. 8
- C. 9

- D. 10
- 6. 在一棵非空二叉树的后序遍历序列中,所有列在根结点前面的是
 - A. 左子树中的部分结点
- B. 右子树中的全部结点
- C. 左右子树中的全部结点
- D. 左右子树中的部分结点

浙 02331# 数据结构试题 第 1 页(共 8 页)

7.	邻接表保存有 n 个坝点和 e 条辺的尢问图,邻接表中指针个数是		
	A. e B. n-e	C. n+e	D. n+2e
8.	有向图G中某个顶点的出度和入度均为	2,则G中的顶点个数	
	A. 2 B. 3	C. 4	D. 5
9.	在带权图的最短路径问题中,路径长度是指		
	A. 路径上边的数目	B. 路径上结点的数	目
	C. 路径上边的权值之和	D. 到达终点的最短	路径数目
10.	对数据序列 (15, 10, 8, 12, 15, 8, 10) 按升	序进行希尔排序,增量	量序列为 5, 3, 两趟排
	序后,得到的排序结果为		
	A. 8, 8, 10, 10, 15, 15, 12	B. 8, 8, 10, 10, 12, 15	5, 15
	C. 8, 10, 8, 10, 15, 15, 12	D. 8, 10, 8, 10, 12, 13	5, 15
11.	下列排序方法中,不稳定的排序方法是		
	A. 直接选择排序 B. 归并排序	C. 直接插入排序	D. 基数排序
12.	一组记录的关键字为 (35,58,24,13,44,1	19, 10),利用堆排序算	[法进行降序排序,要
	求空间复杂度为 O(1), 建立的初始堆为		
	A. 10, 13, 19, 58, 44, 35, 24	B. 10, 13, 35, 58, 44	, 19, 24
	C. 58, 44, 24, 13, 35, 19, 10	D. 58, 35, 24, 13, 44	, 19, 10
13.	一棵二叉排序树中,关键字 n 所在结点的层数大于关键字 m 所在结点的层数,则		
	A. n 一定大于 m	B. n一定小于 m	
	C. n一定等于 m	D. n与m的大小关	系不确定
14.	设散列表长 m=10, 散列函数 H(key)=ke	y % 9。表中已保存 3~	个关键字: H(13)=4,
	H(32) = 5, $H(15) = 6$,其余地址均为空。保存关键字 23 时存在冲突,采用线性探		
	查法来处理。则查找关键字 23 时的探查次数是		
	A. 1 B. 2	C. 3	D. 4
15.	下面关于 m 阶 (m≥3) B 树的叙述中,	正确的是	
	A. 终端结点可位于不同层		
	B. 非终端结点至多有 m+1 棵子树		
	C. 若树非空,则根结点至少有2个关键	字	
	D. 每个非根结点包含 n 个关键字, 「m/2]-1≤n≤m-1	

非选择题部分

注意事项:

用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

- 二、填空题: 本大题共 10 小题, 每小题 2 分, 共 20 分。
- 16. 数据的四种基本存储方法是顺序存储、链接存储、_____和散列存储。
- 17. 指针 p 和指针 q 分别指向单链表 L 中的两个结点, next 为指针域,则判断这两个结点是否相邻的条件是____。
- 18. 递归求解过程中的最小子问题称为
- 19. 广义表 (((a, b), (c, d, e)), (f, g), h) 的表头是_____。
- 20. 3个结点的不同形状的二叉树有_______棵。
- 21. 若有向无环图 G 存在 2 个入度为 0 的结点,则 G 至少存在______个不同的拓扑序列。
- 22. 将一棵树 T 转换为一棵二叉树,则这棵二叉树的右子树_____。
- 23. 对含 n 个元素的数据序列采用直接选择排序算法进行排序,最好情况下的时间复杂度是____。
- 24. 散列存储中,拉链法(链地址法)是处理_____的方法。
- 25. 假设顺序存储的有序表 R 含有 14 个关键字,进行二分查找时,查找失败时关键字的最大比较次数为____。
- 三、解答题: 本大题共 4 小题, 每小题 5 分, 共 20 分。
- 26. 设电文字符集是 $\{e_1, e_2, e_3, e_4, e_5, e_6\}$, 它们出现的次数分别为: 38, 12, 17, 26, 14, 20。 现要为该字符集设计一种哈夫曼编码。请回答下列问题。
 - (1) 画出得到的哈夫曼树。
 - (2) 给出各符号的哈夫曼编码。
- 27. 已知图 G 采用邻接矩阵存储,邻接矩阵如题 27 图所示。

题 27 图

(1) 写出从顶点 A 开始到顶点 C 结束、包含所有顶点的 2 个深度优先遍历序列。

浙02331#数据结构试题第3页(共8页)

- (2) 写出从顶点 A 开始的 3 个广度优先遍历序列。
- 28. 有以下关键字序列 (15, 20, 24, 32, 15, 7, 14, 23), 使用快速排序方法将其按升序排列。 请问答下列问题。
 - (1) 若取第一个关键字为基准,写出第一趟快速排序的结果。
 - (2) 若取最后一个关键字为基准,写出第一趟快速排序的结果。
- 29. 设有二叉排序树 T 如题 29 图所示。请回答下列问题。

- 赵 29 图
- (1) 画出插入新结点 f 后的二叉排序树 T1。
- (2) 在 T1 中再删除结点 c 得到二叉排序树 T2, 画出 T2, 并简要说明删除过程。

四、算法阅读题:本大题共4小题,每小题5分,共20分。

30. 顺序表类型定义如下。

```
#define ListSize 100
typedef struct {
    int data[ListSize];
    int length;
} SeqList;
阅读下列函数,并回答问题。
void f30( SeqList *SL, int *pdata, int n)
    int k, m;
{
    for (k = 0; k < n; k++)
         if (pdata[k]%2 = 0)
    {
             SL->data[SL->length] = pdata[k];
         else
             for ( m = SL-> length; m > 0; m--)
         {
                  SL->data[m] = SL->data[m-1];
             SL->data[0] = pdata[k];
         }
         SL->length ++;
    }
```

浙 02331# 数据结构试题 第 4 页(共 8 页)

```
}
    void out( SeqList *SList )
    {
       int k = 0;
        while (k < SList->length) // 顺序输出 SList 中的各个元素
            printf("%d, ", SList->data[ k++ ]);
    }
    int main()
    {
        int array[] = \{10, 2, 9, 5, 30, 3\};
        SeqList slist;
        slist.length = 0;
        f30( &slist, array, sizeof(array)/sizeof(int));
        out(&slist); // 输出 slist
        return 0;
    }
    (1) 执行程序后程序的输出是什么?
    (2) 函数 f30()的功能是什么?
31. 二叉树的存储结构类型定义如下。
    typedef int DataType;
    typedef struct node
    {
       DataType data;
                                   // data 是数据域
        struct node * lchild, * rchild; // 分别指向左右孩子
    } BinTNode;
    typedef BinTNode * BinTree;
    阅读下列函数并回答问题。
    void f31(BinTree Bt)
    {
       if (Bt!=NULL)
        {
            if (Bt->lchild == NULL && Bt->rchild == NULL)
                Bt->data = Bt->data*2;
                  浙 02331# 数据结构试题 第 5 页(共 8 页)
```

```
else
           {
               f31(Bt->lchild);
               f31(Bt->rchild);
           }
       }
   }
   (1)设二叉树 Bt 如题 31 图所示,给出执行 f31(Bt)的输出结果。
                               20
                                     70
                                           45
                                题 31 图
   (2) 该算法的功能是什么?
32. 待查找记录的数据类型定义如下。
   #define MAXSIZE 100
   typedef int KeyType;
   typedef struct {
       KeyType key;
   } RecType;
   typedef RecType SeqList[ MAXSIZE ];
   下列算法实现对按升序排列的数据进行二分查找。请在空白处填上适当内容使算法
   完整。
   int BinSearch(SeqList R, KeyType k, int n)
   {
       int low = 0, high = n-1, mid;
       while (low <= high)
           mid = (low+high)/2;
       {
           if ( (1) ) return mid;
           else if (R[mid].key > k) high = _____(2)___;
           else low = (3);
       }
```

浙 02331# 数据结构试题 第 6 页(共 8 页)

return -1;

```
}
33. 二叉树的存储结构类型定义如下。
```

typedef int DataType;

typedef struct node

// data 是数据域, 其值大于 0 { DataType data;

struct node *lchild, *rchild; // 分别指向左右孩子

} BinTNode;

typedef BinTNode * BinTree;

下列程序的功能是:将一棵二叉树的顺序存储结构转换为对应的链式存储结构。 例如,对如题 33 图所示的二叉树,二叉树的顺序存储序列如下。

int data[] = $\{30, 20, 0, 0, 90, 0, 0, 0, 0, 100\}$;

题 33 图

程序如下。

```
BinTree create( int *data, int n)
    BinTNode *Q[100], *Bt = NULL, *p;
{
    int front = 0, rear = 0, k;
    for (k = 0; k < n; k++)
         p = NULL;
    {
         if (data[k]!=0)
             p = (BinTree)malloc( sizeof(BinTNode) );
```

p->data = data[k];p->lchild = p->rchild = NULL; Q[rear++] = p;

if (rear == 1) Bt = p;

}

浙 02331# 数据结构试题 第 7 页(共 8 页)

```
if (p!= NULL && ____(1)___)
           {
                 if (2) = 0
                     Q[front] -> lchild = p;
                 else
                     Q[front]->rchild = p;
              if (rear\%2!=0)
                  (3);
          }
       }
       return Bt;
   }
   请在程序的空白处填入适当的语句,使程序完整正确。
五、算法设计题:本题 10 分。
34. 单链表类型定义如下。
   typedef struct node
   {
       int data;
       struct node *next;
   } ListNode;
   typedef ListNode *LinkList;
```

void f34(LinkList L, int x, int y);

请编写一个函数,在带头结点的单链表 L 中删除数值在指定范围内(x≤data≤y)

例如,对于如下的链表 head,

的结点。函数的原型如下。

else

要删除链表中 data 在 4 到 7 范围内的结点, 可调用函数 f34(head, 4, 7), 结果如下。

浙 02331# 数据结构试题 第 8 页(共 8 页)