Assignment 1 Due Wednesday, January 26

A remark about homeomorphisms: Given two spaces X and Y that one feels should be homeomorphic, it is sometimes easy to construct a continuous bijection in one direction, say $f: X \to Y$, but not so easy to directly show that the inverse function is also continuous (or, equivalently, check that f is an 'open map', i.e. takes an open set in X to an open set in Y). The following handy proposition, whose proof you hopefully have seen, is often used:

Proposition If X is compact, and Y is Hausdorff, then a continuous bijection $f: X \to Y$ is a homeomorphism.

You are encouraged to use this, e.g. in the problems below.

Some standard notation: The *n* disk is the space $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$, and the n-1 sphere is the space $S^{n-1} = \{x \in \mathbb{R}^n \mid |x| = 1\}$.

Some more standard notation, that sadly sometimes clashes: Given $A \subset X$, X/A usually denotes the quotient space $X/(\sim)$, where $a \sim a'$ for all $a, a' \in A$. Informally, we say that X/A is obtained form X by collapsing A to a point.)

If a group G acts on a space X (say on the right), X/G usually denotes the quotient space $X/(\sim)$, where $x \sim x'$ if there exists $g \in G$ such that x' = xg. X/G is thus the space of G-orbits in X.

These two notations occasionally clash, and when they do, the second generally wins out. For example, \mathbb{R}/\mathbb{Z} means the quotient group from algebra, but viewed with a topology making it a topological group.

- 1. The circle, viewed in three different ways. Prove that the spaces $[0,1]/(0 \sim 1)$, \mathbb{R}/\mathbb{Z} , and S^1 are all homeomorphic. (One approach: construct continuous bijections $[0,1]/(0 \sim 1) \to \mathbb{R}/\mathbb{Z} \to S^1$, use the observation above to show that the composite is a homeomorphism, and then argue that each of the individual maps must also be.)
- **2.** The homotopy relation. Two maps $f,g:X\to Y$ are homotopic if there exists a continuous $H:X\times [0,1]\to Y$ such that for all $x\in X$, f(x)=H(x,0) and g(x)=H(x,1). Two spaces X and Y are homotopy equivalent if there exist maps $f:X\to Y$ and $g:Y\to X$ such that $g\circ f\simeq 1_X:X\to X$ and $f\circ g\simeq 1_Y:Y\to Y$.
- (a) Check that homotopy is an equivalence relation on the set of continuous functions from a space X to a space Y.
- (b) Given maps $h: W \to X$, $g_0, g_1: X \to Y$, and $f: Y \to Z$, check that $g_0 \simeq g_1$ implies that both $g_0 \circ h \simeq g_1 \circ h$ and $f \circ g_0 \simeq f \circ g_1$.
- (c) Check that homotopy equivalence is an equivalence relation on the class of topological spaces. (Hint: this is pretty 'formal', given parts (a) and (b).)

- 3. Null homotopic maps from spheres.
- (a) Show that the map $h: S^{n-1} \times [0,1] \longrightarrow D^n$, given by $h(\mathbf{x},t) = t\mathbf{x}$, induces a homeomorphism $\bar{h}: (S^{n-1} \times [0,1])/(S^{n-1} \times \{0\}) \cong D^n$.
- (b) We say that $f: X \longrightarrow Y$ is *null homotopic* if it is homotopic to a constant map. Show that $f: S^{n-1} \longrightarrow Y$ is null if and only if f extends to a continuous function $\bar{f}: D^n \longrightarrow Y$. (Hint: use part (a).)

A theme in algebraic topology is the search for invariants that behave well under 'piecing together', so that global information can be deduced from local information. The final problem illustrates this.

- **4. Axioms for Euler characteristics.** For the moment, the following should be accepted on faith. For certain spaces X, there is defined an integer $\chi(X)$, called the *Euler characteristic of* X, and $\chi(X)$ satisfies the following properties:
 - (1) $\chi(\emptyset) = 0, \chi(\text{point}) = 1.$
 - (2) If $\chi(X)$ is defined, and Y is homotopy equivalent to X, then $\chi(Y)$ is defined, and $\chi(X) = \chi(Y)$.
 - (3) If $X = Int(U) \cup Int(V)$, and $\chi(U)$, $\chi(V)$, and $\chi(U \cap V)$ are all defined, then $\chi(X)$ is defined, and $\chi(X) = \chi(U) + \chi(V) \chi(U \cap V)$.

Use these properties to make the following computations. (Your arguments can be a bit informal. This is supposed to be a fun problem!)

- (a) Compute $\chi(S^n)$ (for $n \geq 0$). Hint: Decompose S^n into the union of the northern hemisphere (+ a little) and the southern hemisphere (+ a little).
- (b) Compute $\chi(M_q)$, where M_q is a genus g surface: a compact oriented surface with g holes.
- (c) Compute $\chi(K)$, where K is the Klein bottle: the surface obtained by gluing together the boundaries of two Möbius Bands.