6.8 Laplace Transform: General Formulas

Formula	Name, Comments	Sec.
$F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$ $f(t) = \mathcal{L}^{-1}{F(s)}$	Definition of Transform Inverse Transform	6.1
$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}$	Linearity	6.1
$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$ $\mathcal{L}^{-1}\lbrace F(s-a)\rbrace = e^{at}f(t)$	s-Shifting (First Shifting Theorem)	6.1
$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$ $\mathcal{L}(f'') = s^2 \mathcal{L}(f) - sf(0) - f'(0)$ $\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{(n-1)} f(0) - \cdots$ $\cdots - f^{(n-1)}(0)$ $\mathcal{L}\left\{\int_s^t f(\tau) d\tau\right\} = \frac{1}{s} \mathcal{L}(f)$	Differentiation of Function Integration of Function	6.2
$\mathcal{L} \left(\int_{0}^{s} f(s) ds \right) = s^{2} \mathcal{L}(s)$	integration of Function	
$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau$ $= \int_0^t f(t-\tau)g(\tau) d\tau$ $\mathcal{L}(f*g) = \mathcal{L}(f)\mathcal{L}(g)$	Convolution	6.5
$\mathcal{L}\lbrace f(t-a)u(t-a)\rbrace = e^{-as}F(s)$ $\mathcal{L}^{-1}\lbrace e^{-as}F(s)\rbrace = f(t-a)u(t-a)$	<i>t</i> -Shifting (Second Shifting Theorem)	6.3
$\mathcal{L}\{tf(t)\} = -F'(s)$ $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\widetilde{s}) d\widetilde{s}$	Differentiation of Transform Integration of Transform	6.6
$\mathcal{L}(f) = \frac{1}{1 - e^{-ps}} \int_0^p e^{-st} f(t) dt$	f Periodic with Period p	6.4 Project 16

6.9 Table of Laplace Transforms

For more extensive tables, see Ref. [A9] in Appendix 1.

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
1 2 3 4 5 6		t $t^{n-1}/(n-1)!$ $1/\sqrt{\pi t}$ $2\sqrt{t/\pi}$ $t^{a-1}/\Gamma(a)$	6.1
7	$\frac{1}{s-a}$	e^{at})
8	$\frac{s-a}{\left(s-a\right)^2}$	te ^{at}	
9	$\frac{1}{(s-a)^n} \qquad (n=1,2,\cdots)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	6.1
10	$\frac{1}{(s-a)^k} \qquad (k>0)$	$\frac{1}{\Gamma(k)} t^{k-1} e^{at}$	J
11	$\frac{1}{(s-a)(s-b)} \qquad (a \neq b)$	$\frac{1}{a-b}(e^{at}-e^{bt})$	
12	$\frac{s}{(s-a)(s-b)} \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$	
13	$\frac{1}{s^2 + \omega^2}$	$\frac{1}{\omega}\sin \omega t$	
14	$\frac{s}{s^2 + \omega^2}$	cos ωt	
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\sinh at$	
16	$\frac{s}{s^2 - a^2}$	cosh at	6.1
17	$\frac{1}{(s-a)^2+\omega^2}$	$\frac{1}{\omega}e^{at}\sinh \omega t$	
18	$\frac{s-a}{(s-a)^2+\omega^2}$	$e^{at}\cos\omega t$	J
19	$\frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$	
20	$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1 - \cos \omega t)$ $\frac{1}{\omega^3}(\omega t - \sin \omega t)$	6.2

(continued)

Table of Laplace Transforms (continued)

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
21	$\frac{1}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega^3}(\sin \omega t - \omega t \cos \omega t)$	
22	$\frac{s}{(s^2+\omega^2)^2}$	$\frac{t}{2\omega}\sin\omega t$	6.6
23	$\frac{s^2}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	J
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)} (a^2 \neq b^2)$	$\frac{1}{b^2 - a^2} (\cos at - \cos bt)$	
25	$\frac{1}{s^4 + 4k^4}$	$\frac{1}{4k^3}(\sin kt\cos kt - \cos kt\sinh kt)$	
26	$\frac{s}{s^4 + 4k^4}$	$\frac{1}{2k^2}\sin kt\sinh kt$	
27	$\frac{1}{s^4 - k^4}$	$\frac{1}{2k^3}(\sinh kt - \sin kt)$	
28	$\frac{s}{s^4 - k^4}$	$\frac{1}{2k^2}(\cosh kt - \cos kt)$	
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$	
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{-(a+b)t/2}I_0\left(\frac{a-b}{2}t\right)$	I 5.5
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$	J 5.4
32	$\frac{s}{(s-a)^{3/2}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$	
33	$\frac{1}{(s^2 - a^2)^k} \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-1/2} I_{k-1/2}(at)$	I 5.5
34 35	e^{-as}/s e^{-as}	$u(t-a)$ $\delta(t-a)$	6.3 6.4
36	$\frac{1}{s}e^{-k/s}$	$J_0(2\sqrt{kt})$	J 5.4
37	$\frac{1}{\sqrt{s}}e^{-k/s}$	$\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{kt}$	
38	$\frac{1}{s^{3/2}}e^{k/s}$	$\frac{1}{\sqrt{\pi k}}\sinh 2\sqrt{kt}$	
39	$e^{-k\sqrt{s}}$ $(k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-k^2/4t}$	

(continued)

Chapter 6 Review Questions and Problems

Table of Laplace Transforms (continued)

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
40	$\frac{1}{s}$ In s	$-\ln t - \gamma (\gamma \approx 0.5772)$	γ5.5
41	$ \ln \frac{s-a}{s-b} $	$\frac{1}{t}(e^{bt}-e^{at})$	
42	$\ln \frac{s^2 + \omega^2}{s^2}$	$\frac{2}{t}(1-\cos\omega t)$	9.9
43	$\ln \frac{s^2 - a^2}{s^2}$	$\frac{2}{t}(1-\cosh at)$	
4	$\frac{\omega}{s}$	$\frac{1}{t}$ sin ωt	
45	$\frac{1}{s}$ arccot s	Si(t)	App. A3.1

Table 6.1 Some Functions f(t) and Their Laplace Transforms $\mathscr{L}(f)$

$\mathcal{L}(f)$	$rac{s}{s^2+\omega^2}$	$\frac{\omega}{s^2+\omega^2}$	$\frac{s}{s^2 - a^2}$	$\frac{a}{s^2 - a^2}$	$\frac{s-a}{(s-a)^2+\omega^2}$	$\frac{\omega}{(s-a)^2+\omega^2}$
f(t)	cos wt	$\sin \omega t$	cosh at	sinh <i>at</i>	$e^{at}\cos \omega t$	$e^{at} \sin \omega t$
	7	∞	6	10	11	12
$\mathscr{L}(f)$	1/s	$1/s^2$	2!/s³	$\frac{n!}{s^{n+1}}$	$\frac{\Gamma(a+1)}{s^{a+1}}$	$\frac{1}{s-a}$
f(t)	1	t	t^2	t^n $(n=0,1,\cdots)$	t^a (a positive)	e^{at}
	П	2	κ	4	W	9