MATH-331 Intro. to Real Analysis Team test 03	Pierre-Olivier Parise Fall 2021, 12/03/2021		
Name of the members of the team:			
Team name (if any):			

Instructions: You must answer all the questions in teams of 3 and hand out one copy per team. There are $\underline{2 \text{ QUESTIONS}}$ on this test. The scores for each questions is on the last page of the test.

You are allowed to use the lecture notes only. No other tools such as a cell-phone, a calculator, or a laptop. Only your pen and eraser. The space between the questions are there to write the final versions of your answers.

Be the better version of yourself!

Question 1	(10	pts	١
90 0 - 0 - 1 0 - 1 - 1	(1	,

Let $f:(a,b] \to \mathbb{R}$ be a function where a < b.

- (a) (5 points) How would you define the Riemann integral of f on (a, b]? Explain in details your definition.
- (b) (5 points) Find a function $f:(0,1]\to\mathbb{R}$ that is Riemann integrable on (0,1] (with respect to your definition) but is unbounded on (0,1].

Question 2	(10	pts)
	(-0	P ()

Find the limit of the sequence $(a_n)_{n=1}^{\infty}$ if

$$a_n = \sum_{k=1}^{n} \frac{k}{k^2 + n^2}.$$

Scores table _____

Question:	1	2	Total
Points:	10	10	20
Score:			