Исследование алгоритма оптимизации MHL_RealMonteCarloAlgorithm

Сергиенко Антон Борисович

2 марта 2014 г.

Содержание

1	Вво	дная информация	2 5
2	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для вения задач на вещественных строках»на тестовой функции «Функция Ackley» вмерность равна 2)	
	2.1	Информация об исследовании	26
	2.2	Параметры алгоритма оптимизации	26
	2.3	Ошибка по входным параметрам E_x	26
	2.4	Ошибка по значениям целевой функции E_y	27
	2.5	Надёжность R	27
	(pas	вения задач на вещественных строках»на тестовой функции «Функция Ackley» вмерность равна 3)	28
	3.1	Информация об исследовании	28
	3.2	Параметры алгоритма оптимизации	29
	3.3	Ошибка по входным параметрам E_x	29
	3.4	Ошибка по значениям целевой функции E_y	30
	3.5	Надёжность R	30
4	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для вения задач на вещественных строках»на тестовой функции «Функция Ackley» вмерность равна 4)	
	4.1	Информация об исследовании	31
	4.2	Параметры алгоритма оптимизации	32

	4.3	Ошибка по входным параметрам E_x	32
	4.4	Ошибка по значениям целевой функции E_y	32
	4.5	Надёжность R	33
5	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для вения задач на вещественных строках» на тестовой функции «Функция Ackley» вмерность равна 5)	
	5.1	Информация об исследовании	34
	5.2	Параметры алгоритма оптимизации	35
	5.3	Ошибка по входным параметрам E_x	35
	5.4	Ошибка по значениям целевой функции E_y	35
	5.5	Надёжность R	36
6	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для вения задач на вещественных строках»на тестовой функции «Функция Ackley» вмерность равна 10)	
	6.1	Информация об исследовании	37
	6.2	Параметры алгоритма оптимизации	38
	6.3	Ошибка по входным параметрам E_x	38
	6.4	Ошибка по значениям целевой функции E_y	38
	6.5	Надёжность R	39
7	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для вения задач на вещественных строках»на тестовой функции «Функция Ackley» вмерность равна 20)	
	7.1	Информация об исследовании	40
	7.2	Параметры алгоритма оптимизации	41
	7.3	Ошибка по входным параметрам E_x	41
	7.4	Ошибка по значениям целевой функции E_y	41
	7.5	Надёжность R	42
8	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для вения задач на вещественных строках» на тестовой функции «Функция Ackley» вмерность равна 30)	43
	8.1	Информация об исследовании	43
	8.2	Параметры алгоритма оптимизации	44
	8.3	Ошибка по входным параметрам E_x	44

	8.4	Ошибка по значениям целевой функции E_y	44
	8.5	Надёжность R	45
9	реш	педование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на вещественных строках»на тестовой функции «Аддитивная поциальная функция» (размерность равна 2)	46
	9.1	Информация об исследовании	46
	9.2	Параметры алгоритма оптимизации	47
	9.3	Ошибка по входным параметрам E_x	47
	9.4	Ошибка по значениям целевой функции E_y	47
	9.5	Надёжность R	48
10	реш	педование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на вещественных строках»на тестовой функции «Функция Egg der» (размерность равна 2)	49
	10.1	Информация об исследовании	49
	10.2	Параметры алгоритма оптимизации	50
	10.3	Ошибка по входным параметрам E_x	50
	10.4	Ошибка по значениям целевой функции E_y	50
	10.5	Надёжность R	51
11	реш	педование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на вещественных строках»на тестовой функции «Функция Gaussi- quartic» (размерность равна 2)	52
	11.1	Информация об исследовании	52
	11.2	Параметры алгоритма оптимизации	53
	11.3	Ошибка по входным параметрам E_x	53
		Ошибка по значениям целевой функции E_y	53
		Надёжность R	54
12	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на вещественных строках» на тестовой функции «Функция Gaussi- quartic» (размерность равна 3)	55
	12.1	Информация об исследовании	55
		Параметры алгоритма оптимизации	56
		Ошибка по входным параметрам E_x	56
		Ошибка по значениям целевой функции E_n	56

	12.5 Надёжность R	57
13	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 4)	
	13.1 Информация об исследовании	58
	13.2 Параметры алгоритма оптимизации	59
	13.3 Ошибка по входным параметрам E_x	59
	13.4 Ошибка по значениям целевой функции E_y	59
	13.5 Надёжность R	60
14	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 5)	
	14.1 Информация об исследовании	61
	14.2 Параметры алгоритма оптимизации	62
	14.3 Ошибка по входным параметрам E_x	62
	14.4 Ошибка по значениям целевой функции E_y	62
	14.5 Надёжность R	63
15	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 10)	
	15.1 Информация об исследовании	64
	15.2 Параметры алгоритма оптимизации	65
	15.3 Ошибка по входным параметрам E_x	65
	15.4 Ошибка по значениям целевой функции E_y	65
	15.5 Надёжность R	66
16	исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 20)	
	16.1 Информация об исследовании	67
	16.2 Параметры алгоритма оптимизации	68
	16.3 Ошибка по входным параметрам E_x	68
	16.4 Ошибка по значениям целевой функции E_y	68
	16.5 Надёжность R	69

17	решения задач на вещественных строках»на тестовой функции «Функция Gaussi	-
	an quartic» (размерность равна 30)	70
	17.1 Информация об исследовании	70
	17.2 Параметры алгоритма оптимизации	71
	17.3 Ошибка по входным параметрам E_x	71
	17.4 Ошибка по значениям целевой функции E_y	71
	17.5 Надёжность R	72
18	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)	
	18.1 Информация об исследовании	73
	18.2 Параметры алгоритма оптимизации	74
	18.3 Ошибка по входным параметрам E_x	74
	18.4 Ошибка по значениям целевой функции E_y	74
	18.5 Надёжность R	75
19	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)	
	19.1 Информация об исследовании	76
	19.2 Параметры алгоритма оптимизации	77
	19.3 Ошибка по входным параметрам E_x	77
	19.4 Ошибка по значениям целевой функции E_y	77
	19.5 Надёжность R	78
	19.5 падежность п	10
20	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)	
	20.1 Информация об исследовании	79
	20.2 Параметры алгоритма оптимизации	80
		0.0
	20.3 Ошибка по входным параметрам E_x	80
	20.3 Ошибка по входным параметрам E_x	80 80

21	решения задач на вещественных строках»на тестовой функции «Функция Гриван- ка» (размерность равна 5)	
		82
	21.1 Информация об исследовании	
	21.2 Параметры алгоритма оптимизации	83
	21.3 Ошибка по входным параметрам E_x	83
	21.4 Ошибка по значениям целевой функции E_y	83
	21.5 Надёжность R	84
22	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 10)	
	22.1 Информация об исследовании	85
	22.2 Параметры алгоритма оптимизации	86
	22.3 Ошибка по входным параметрам E_x	86
	22.4 Ошибка по значениям целевой функции E_y	86
	22.5 Надёжность R	87
23	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 20)	
	23.1 Информация об исследовании	88
	23.2 Параметры алгоритма оптимизации	89
	23.3 Ошибка по входным параметрам E_x	89
	23.4 Ошибка по значениям целевой функции E_y	89
	23.5 Надёжность R	90
	20.0 Hagewhoelb 1t	30
24	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 30)	
	24.1 Информация об исследовании	91
	24.2 Параметры алгоритма оптимизации	92
	24.3 Ошибка по входным параметрам E_x	92
	24.4 Ошибка по значениям целевой функции E_v	92
	24.5 Надёжность R	93

25	 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Хим мельблау» (размерность равна 2) 	
	25.1 Информация об исследовании	94
	25.2 Параметры алгоритма оптимизации	95
	25.3 Ошибка по входным параметрам E_x	95
	25.4 Ошибка по значениям целевой функции E_y	95
	25.5 Надёжность R	96
26	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсо ид» (размерность равна 2)	
	26.1 Информация об исследовании	97
	26.2 Параметры алгоритма оптимизации	98
	26.3 Ошибка по входным параметрам E_x	98
	26.4 Ошибка по значениям целевой функции E_y	98
	26.5 Надёжность R	99
27	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсо	-
	ид» (размерность равна 3)	100
	27.1 Информация об исследовании	100
	27.2 Параметры алгоритма оптимизации	
	27.3 Ошибка по входным параметрам E_x	
	27.4 Ошибка по значениям целевой функции E_y	
	27.5 Надёжность R	102
28	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсо ид» (размерность равна 4)	
	28.1 Информация об исследовании	103
	28.2 Параметры алгоритма оптимизации	104
	28.3 Ошибка по входным параметрам E_x	104
	28.4 Ошибка по значениям целевой функции E_y	104
	28.5 Надёжность R	105

29	о исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Гипер-эллипсо	
	ид» (размерность равна 5)	106
	29.1 Информация об исследовании	106
	29.2 Параметры алгоритма оптимизации	107
	29.3 Ошибка по входным параметрам E_x	107
	29.4 Ошибка по значениям целевой функции E_y	107
	29.5 Надёжность R	108
30	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Гипер-эллипсо ид» (размерность равна 10)	
	30.1 Информация об исследовании	109
	30.2 Параметры алгоритма оптимизации	110
	30.3 Ошибка по входным параметрам E_x	110
	30.4 Ошибка по значениям целевой функции E_y	110
	30.5 Надёжность R	111
31	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Гипер-эллипсо ид» (размерность равна 20)	
	31.1 Информация об исследовании	112
	31.2 Параметры алгоритма оптимизации	113
	31.3 Ошибка по входным параметрам E_x	113
	31.4 Ошибка по значениям целевой функции E_y	
	31.5 Надёжность R	
32	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Гипер-эллипсо ид» (размерность равна 30)	
	32.1 Информация об исследовании	
	32.2 Параметры алгоритма оптимизации	
	32.3 Ошибка по входным параметрам E_x	116
	32.4 Ошибка по значениям целевой функции E_y	
	32.5 Надёжность R	117

00	о исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Перевернутая	-
	функция Розенброка» (размерность равна 2)	118
	33.1 Информация об исследовании	118
	33.2 Параметры алгоритма оптимизации	119
	33.3 Ошибка по входным параметрам E_x	119
	33.4 Ошибка по значениям целевой функции E_y	119
	33.5 Надёжность R	120
34	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Катникова» (размерность равна 2)	
	34.1 Информация об исследовании	121
	34.2 Параметры алгоритма оптимизации	122
	34.3 Ошибка по входным параметрам E_x	122
	34.4 Ошибка по значениям целевой функции E_y	122
	34.5 Надёжность R	123
35	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Mult extremal» (размерность равна 1)	
	35.1 Информация об исследовании	124
	35.2 Параметры алгоритма оптимизации	125
	35.3 Ошибка по входным параметрам E_x	
	35.4 Ошибка по значениям целевой функции E_y	
	35.5 Надёжность R	
36	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Mult extremal2» (размерность равна 1)	
	36.1 Информация об исследовании	
	36.2 Параметры алгоритма оптимизации	
		128
	36.3 Ошибка по входным параметрам E_x	
	36.4 Ошибка по значениям целевой функции E_y	
	36.5 Надёжность R	129

31	решения задач на вещественных строках»на тестовой функции «Функция Multi-		
	extremal3» (размерность равна 2)	130	
	37.1 Информация об исследовании	130	
	37.2 Параметры алгоритма оптимизации	131	
	37.3 Ошибка по входным параметрам E_x	131	
	37.4 Ошибка по значениям целевой функции E_y	131	
	37.5 Надёжность R	132	
38	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Mult extremal4» (размерность равна 2)		
	38.1 Информация об исследовании	133	
	38.2 Параметры алгоритма оптимизации	134	
	38.3 Ошибка по входным параметрам E_x	134	
	38.4 Ошибка по значениям целевой функции E_y	134	
	38.5 Надёжность R	135	
39	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Мультипликатив ная потенциальная функция» (размерность равна 2)		
	39.1 Информация об исследовании	136	
	39.2 Параметры алгоритма оптимизации		
	39.3 Ошибка по входным параметрам E_x		
	39.4 Ошибка по значениям целевой функции E_y		
40	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Эллиптически параболоид» (размерность равна 2)		
	40.1 Информация об исследовании		
	40.2 Параметры алгоритма оптимизации		
	40.3 Ошибка по входным параметрам E_x	140	
	40.4 Ошибка по значениям целевой функции E_y		
	40.5 Надёжность R	141	

41	исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Эллиптически параболоид» (размерность равна 3)	
	41.1 Информация об исследовании	142
	41.2 Параметры алгоритма оптимизации	143
	41.3 Ошибка по входным параметрам E_x	143
	41.4 Ошибка по значениям целевой функции E_v	143
	41.5 Надёжность R	
42	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Эллиптически параболоид» (размерность равна 4)	
	42.1 Информация об исследовании	145
	42.2 Параметры алгоритма оптимизации	146
	42.3 Ошибка по входным параметрам E_x	146
	42.4 Ошибка по значениям целевой функции E_y	146
	42.5 Надёжность R	147
43	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Эллиптически параболоид» (размерность равна 5)	
	43.1 Информация об исследовании	
	43.2 Параметры алгоритма оптимизации	
	43.3 Ошибка по входным параметрам E_x	
	43.4 Ошибка по значениям целевой функции E_y	
	43.5 Надёжность R	
44	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Эллиптически параболоид» (размерность равна 10)	
	44.1 Информация об исследовании	151
	44.2 Параметры алгоритма оптимизации	152
	44.3 Ошибка по входным параметрам E_x	152
	44.4 Ошибка по значениям целевой функции E_y	152
	44.5 Налёжность R	153

45	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)	
	45.1 Информация об исследовании	154
	45.2 Параметры алгоритма оптимизации	155
	45.3 Ошибка по входным параметрам E_x	155
	45.4 Ошибка по значениям целевой функции E_y	155
	45.5 Надёжность R	156
46	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дле решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)	
	46.1 Информация об исследовании	157
	46.2 Параметры алгоритма оптимизации	158
	46.3 Ошибка по входным параметрам E_x	158
	46.4 Ошибка по значениям целевой функции E_y	158
	46.5 Надёжность R	159
47	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Rana (размерность равна 2)	
	47.1 Информация об исследовании	160
	47.2 Параметры алгоритма оптимизации	
	47.3 Ошибка по входным параметрам E_x	
	47.4 Ошибка по значениям целевой функции E_y	161
	47.5 Надёжность R	162
48	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 2)	
	48.1 Информация об исследовании	163
	48.2 Параметры алгоритма оптимизации	164
	48.3 Ошибка по входным параметрам E_x	164
	48.4 Ошибка по значениям целевой функции E_y	164
	48.5 Надёжность R	165

49	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 3)	
	49.1 Информация об исследовании	166
	49.2 Параметры алгоритма оптимизации	167
	49.3 Ошибка по входным параметрам E_x	167
	49.4 Ошибка по значениям целевой функции E_y	167
	49.5 Надёжность R	168
50	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 4)	
	50.1 Информация об исследовании	169
	50.2 Параметры алгоритма оптимизации	170
	50.3 Ошибка по входным параметрам E_x	170
	50.4 Ошибка по значениям целевой функции E_y	170
	50.5 Надёжность R	171
51	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 5)	
	51.1 Информация об исследовании	172
	51.2 Параметры алгоритма оптимизации	173
	51.3 Ошибка по входным параметрам E_x	173
	51.4 Ошибка по значениям целевой функции E_y	173
	51.5 Надёжность R	174
52	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 10)	
	52.1 Информация об исследовании	175
	52.2 Параметры алгоритма оптимизации	176
	52.3 Ошибка по входным параметрам E_x	176
	52.4 Ошибка по значениям целевой функции E_y	176
	52.5 Надёжность R	177

99	о исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растри	
	гина» (размерность равна 20)	178
	53.1 Информация об исследовании	178
	53.2 Параметры алгоритма оптимизации	179
	53.3 Ошибка по входным параметрам E_x	179
	53.4 Ошибка по значениям целевой функции E_y	179
	53.5 Надёжность R	180
54	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 30)	
	54.1 Информация об исследовании	181
	54.2 Параметры алгоритма оптимизации	182
	54.3 Ошибка по входным параметрам E_x	182
	54.4 Ошибка по значениям целевой функции E_y	182
	54.5 Надёжность R	183
55	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)	
	55.1 Информация об исследовании	184
	55.2 Параметры алгоритма оптимизации	
	55.3 Ошибка по входным параметрам E_x	
	E_x	
	55.5 Надёжность R	
56	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растри гина новгородская» (размерность равна 3)	
	56.1 Информация об исследовании	
	56.2 Параметры алгоритма оптимизации	
	56.3 Ошибка по входным параметрам E_x	188
	56.4 Ошибка по значениям целевой функции E_y	
	56.5 Надёжность R	189

37	решения задач на вещественных строках»на тестовой функции «Функция Растри-	
	гина новгородская» (размерность равна 4)	190
	57.1 Информация об исследовании	190
	57.2 Параметры алгоритма оптимизации	191
	57.3 Ошибка по входным параметрам E_x	191
	57.4 Ошибка по значениям целевой функции E_y	191
	57.5 Надёжность R	192
58	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 5)	
	58.1 Информация об исследовании	193
	58.2 Параметры алгоритма оптимизации	194
	58.3 Ошибка по входным параметрам E_x	194
	58.4 Ошибка по значениям целевой функции E_y	194
	58.5 Надёжность R	195
59	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)	
	59.1 Информация об исследовании	196
	59.2 Параметры алгоритма оптимизации	197
	59.3 Ошибка по входным параметрам E_x	
	59.4 Ошибка по значениям целевой функции E_y	
	59.5 Надёжность R	198
60	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растри	1-
	гина новгородская» (размерность равна 20)	199
	60.1 Информация об исследовании	199
	60.2 Параметры алгоритма оптимизации	200
	60.3 Ошибка по входным параметрам E_x	200
	60.4 Ошибка по значениям целевой функции E_y	200
	60.5 Надёжность R	201

01	решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 30)	
	61.1 Информация об исследовании	202
	61.2 Параметры алгоритма оптимизации	203
	61.3 Ошибка по входным параметрам E_x	
	61.4 Ошибка по значениям целевой функции E_y	
	61.5 Надёжность R	
62	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)	
	62.1 Информация об исследовании	205
	62.2 Параметры алгоритма оптимизации	206
	62.3 Ошибка по входным параметрам E_x	206
	62.4 Ошибка по значениям целевой функции E_y	206
	62.5 Надёжность R	207
63	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)	
	63.1 Информация об исследовании	208
	63.2 Параметры алгоритма оптимизации	209
	63.3 Ошибка по входным параметрам E_x	
	63.4 Ошибка по значениям целевой функции E_y	
	63.5 Надёжность R	
64	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Rever	r-
	seGriewank» (размерность равна 2)	211
	64.1 Информация об исследовании	
	64.2 Параметры алгоритма оптимизации	
	64.3 Ошибка по входным параметрам E_x	
	64.4 Ошибка по значениям целевой функции E_y	
	64.5 Надёжность R	213

65	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розен брока» (размерность равна 2)	
	65.1 Информация об исследовании	214214
	65.2 Параметры алгоритма оптимизации	
	65.3 Ошибка по входным параметрам E_x	
	65.4 Ошибка по значениям целевой функции E_v	
	65.5 Надёжность R	
66	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло д решения задач на вещественных строках»на тестовой функции «Функция Розо брока» (размерность равна 3)	
	66.1 Информация об исследовании	. 217
	66.2 Параметры алгоритма оптимизации	. 218
	66.3 Ошибка по входным параметрам E_x	. 218
	66.4 Ошибка по значениям целевой функции E_y	. 218
	66.5 Надёжность R	
67	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло д решения задач на вещественных строках»на тестовой функции «Функция Розоброка» (размерность равна 4)	
	67.1 Информация об исследовании	. 220
	67.2 Параметры алгоритма оптимизации	. 221
	67.3 Ошибка по входным параметрам E_x	
	67.4 Ошибка по значениям целевой функции E_y	
	67.5 Надёжность R	
68	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло д решения задач на вещественных строках»на тестовой функции «Функция Розо брока» (размерность равна 5)	
	68.1 Информация об исследовании	
	68.2 Параметры алгоритма оптимизации	
	68.3 Ошибка по входным параметрам E_x	
	68.4 Ошибка по значениям целевой функции E_y	
	00 4 CHINDKA IIO 38A9EBN9M HEJIERON OVERTINA <i>E.</i>	/ / / / !

09	рисследование эффективности алгоритма оптимизации «метод монте-карло дл решения задач на вещественных строках»на тестовой функции «Функция Розен брока» (размерность равна 10)	
	69.1 Информация об исследовании	
	69.2 Параметры алгоритма оптимизации	
	69.3 Ошибка по входным параметрам E_x	
	69.4 Ошибка по значениям целевой функции E_y	227
	69.5 Надёжность R	228
70	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 20)	
	70.1 Информация об исследовании	229
	70.2 Параметры алгоритма оптимизации	230
	70.3 Ошибка по входным параметрам E_x	230
	70.4 Ошибка по значениям целевой функции E_y	230
	70.5 Надёжность R	231
71	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)	
	71.1 Информация об исследовании	232
	71.2 Параметры алгоритма оптимизации	
	71.3 Ошибка по входным параметрам E_x	
	71.4 Ошибка по значениям целевой функции E_y	
	71.5 Надёжность R	
72	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Развернутый ги	1-
	пер-эллипсоид» (размерность равна 2)	235
	72.1 Информация об исследовании	
	72.2 Параметры алгоритма оптимизации	236
	72.3 Ошибка по входным параметрам E_x	236
	72.4 Ошибка по значениям целевой функции E_y	236
	72.5 Надёжность R	237

	решения задач на вещественных строках»на тестовой функции «Развернутый ги пер-эллипсоид» (размерность равна 3)	и- 238
	73.1 Информация об исследовании	238
	73.2 Параметры алгоритма оптимизации	239
	73.3 Ошибка по входным параметрам E_x	239
	73.4 Ошибка по значениям целевой функции E_y	239
	73.5 Надёжность R	240
74	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло длешения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)	
	74.1 Информация об исследовании	241
	74.2 Параметры алгоритма оптимизации	242
	74.3 Ошибка по входным параметрам E_x	242
	74.4 Ошибка по значениям целевой функции E_y	242
	74.5 Надёжность R	243
75	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Развернутый го пер-эллипсоид» (размерность равна 5)	
	75.1 Информация об исследовании	244
	75.2 Параметры алгоритма оптимизации	245
	75.3 Ошибка по входным параметрам E_x	245
	75.4 Ошибка по значениям целевой функции E_y	245
	75.5 Надёжность R	246
76	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Развернутый го пер-эллипсоид» (размерность равна 10)	
	76.1 Информация об исследовании	247
	76.2 Параметры алгоритма оптимизации	
	76.3 Ошибка по входным параметрам E_x	
	76.4 Ошибка по значениям целевой функции E_y	
	76.5 Надёжность R	

73 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для

11	исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Развернутый ги пер-эллипсоид» (размерность равна 20)	
	77.1 Информация об исследовании	250
	77.2 Параметры алгоритма оптимизации	
	77.3 Ошибка по входным параметрам E_x	
	77.4 Ошибка по значениям целевой функции E_v	251
	77.5 Надёжность R	252
78	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Развернутый ги пер-эллипсоид» (размерность равна 30)	
	78.1 Информация об исследовании	253
	78.2 Параметры алгоритма оптимизации	254
	78.3 Ошибка по входным параметрам E_x	254
	78.4 Ошибка по значениям целевой функции E_y	254
	78.5 Надёжность R	255
79	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 2)	
	79.1 Информация об исследовании	
	79.2 Параметры алгоритма оптимизации	
	79.3 Ошибка по входным параметрам E_x	
	79.4 Ошибка по значениям целевой функции E_y	
	79.5 Надёжность R	258
80	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 3)	
	80.1 Информация об исследовании	259
	80.2 Параметры алгоритма оптимизации	260
	80.3 Ошибка по входным параметрам E_x	260
	80.4 Ошибка по значениям целевой функции E_y	260
	80.5 Налёжность B	261

01	решения задач на вещественных строках»на тестовой функции «Функция Шве-	
	феля» (размерность равна 4)	262
	81.1 Информация об исследовании	262
	81.2 Параметры алгоритма оптимизации	263
	81.3 Ошибка по входным параметрам E_x	263
	81.4 Ошибка по значениям целевой функции E_y	263
	81.5 Надёжность R	264
82	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 5)	
	82.1 Информация об исследовании	265
	82.2 Параметры алгоритма оптимизации	266
	82.3 Ошибка по входным параметрам E_x	266
	82.4 Ошибка по значениям целевой функции E_y	266
	82.5 Надёжность R	267
83	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Швофеля» (размерность равна 10)	
	83.1 Информация об исследовании	
	83.2 Параметры алгоритма оптимизации	269
	83.3 Ошибка по входным параметрам E_x	
	83.4 Ошибка по значениям целевой функции E_y	
	83.5 Надёжность R	
	об.5 падежность п	210
84	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция Швофеля» (размерность равна 20)	
	84.1 Информация об исследовании	271
	84.2 Параметры алгоритма оптимизации	
	84.3 Ошибка по входным параметрам E_x	
	84.4 Ошибка по значениям целевой функции E_y	
	84.5 Надёжность R	
	OT.O Hademinocid tt	213

00	решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 30) 274	
	85.1 Информация об исследовании	274
	85.2 Параметры алгоритма оптимизации	
	85.3 Ошибка по входным параметрам E_x	275
	85.4 Ошибка по значениям целевой функции E_y	275
	85.5 Надёжность R	276
86	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках» на тестовой функции «Функция "Лись норы" Шекеля» (размерность равна 2)	
	86.1 Информация об исследовании	277
	86.2 Параметры алгоритма оптимизации	278
	86.3 Ошибка по входным параметрам E_x	278
	86.4 Ошибка по значениям целевой функции E_y	278
	86.5 Надёжность R	279
87	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Сом бреро» (размерность равна 2)	
	87.1 Информация об исследовании	
	87.2 Параметры алгоритма оптимизации	281
	87.3 Ошибка по входным параметрам E_x	
	87.4 Ошибка по значениям целевой функции E_y	
	87.5 Надёжность R	282
88	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Ste (модифицированная версия De Jong 3)» (размерность равна 2)	
	88.1 Информация об исследовании	
	88.2 Параметры алгоритма оптимизации	
	88.3 Ошибка по входным параметрам E_x	
	88.4 Ошибка по значениям целевой функции E_y	284
	88.5 Надёжность R	285

00	решения задач на вещественных строках»на тестовой функции «Функция Ste (модифицированная версия De Jong 3)» (размерность равна 3)	
	89.1 Информация об исследовании	286
	89.2 Параметры алгоритма оптимизации	287
	89.3 Ошибка по входным параметрам E_x	287
	89.4 Ошибка по значениям целевой функции E_y	287
	89.5 Надёжность R	288
90	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Ste (модифицированная версия De Jong 3)» (размерность равна 4)	
	90.1 Информация об исследовании	289
	90.2 Параметры алгоритма оптимизации	290
	90.3 Ошибка по входным параметрам E_x	290
	90.4 Ошибка по значениям целевой функции E_y	290
	90.5 Надёжность R	291
91	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Ste (модифицированная версия De Jong 3)» (размерность равна 5)	
	91.1 Информация об исследовании	292
	91.2 Параметры алгоритма оптимизации	293
	91.3 Ошибка по входным параметрам E_x	293
	91.4 Ошибка по значениям целевой функции E_y	
	91.5 Надёжность R	294
92	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло дл решения задач на вещественных строках»на тестовой функции «Функция Ste (модифицированная версия De Jong 3)» (размерность равна 10)	
	92.1 Информация об исследовании	295
	92.2 Параметры алгоритма оптимизации	
	92.3 Ошибка по входным параметрам E_x	296
	92.4 Ошибка по значениям целевой функции E_v	296
	92.5 Надёжность R	

93 Исследование эффективности алгоритма опрешения задач на вещественных строках»н (модифицированная версия De Jong 3)» (раз	а тестовой функции «Функция Step	8
93.1 Информация об исследовании		8
93.2 Параметры алгоритма оптимизации		9
93.3 Ошибка по входным параметрам E_x		9
93.4 Ошибка по значениям целевой функции E_i	y	9
93.5 Надёжность R		0
94 Исследование эффективности алгоритма опрешения задач на вещественных строках»н (модифицированная версия De Jong 3)» (раз	а тестовой функции «Функция Step	1
94.1 Информация об исследовании		1
94.2 Параметры алгоритма оптимизации		2
94.3 Ошибка по входным параметрам E_x		2
94.4 Ошибка по значениям целевой функции E_i	y	2
94.5 Надёжность R		3
95 Исследование эффективности алгоритма опрешения задач на вещественных строках» на ность равна 1)		4
95.1 Информация об исследовании		4
95.2 Параметры алгоритма оптимизации		5
95.3 Ошибка по входным параметрам E_x		5
95.4 Ошибка по значениям целевой функции E_{i}	y	5
O5 5 Harayyyaam D	30	16

1 Вводная информация

Данный файл и другие исследования располагаются по адресу:

https://github.com/Harrix/HarrixPDFDataOfOptimizationTesting.

Анализ данных исследований можно посмотреть по адресу:

https://github.com/Harrix/HarrixAnalysisPDFDataOfOptimizationTesting.

Данные исследований взяты из базы исследований алгоритмов оптимизации:

https://github.com/Harrix/HarrixDataOfOptimizationTesting.

О методологии проведения исследований можно прочитать в описании формата данных «Harrix Optimization Testing» в главе «Идея проведения исследований эффективности алгоритмов» по адресу:

https://github.com/Harrix/HarrixFileFormats.

Описание алгоритма оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms.

Описание тестовых функций можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions.

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix. Сайт автора, где публикуются последние новости: http://blog.harrix.org, а проекты располагаются по адресу http://harrix.org.

2 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

2.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

17.10.2013 02:33:17. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:33:17.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Ackley.

функции:

Полное название тестовой функции: Функция Ackley.

2 Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

324000 Общий объем максимального числа вычислений целевой функции во

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

2.2 Параметры алгоритма оптимизации

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

Ошибка по входным параметрам E_x 2.3

Одним из критериев, по которому происходит сравнение алгоритмов оптимизаошибка по входным параметрам E_x . В результате проделанных эксции является периментов были получены следующие данные, представленные ниже https://github.com/Harrix/HarrixTestFunctions.

Таблица 1. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.161447 0.167655 0.167969 0.173247 0.184951 0.171298 0.194719 0.146338 0.186838 0.199921	0.175438	0.00026361

${f 2.4}$ Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 2. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.78209 1.73821 1.69771 1.88569 1.97727 1.81722 1.92318 1.7235 1.84783 1.94822	1.83409	0.00026361

2.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде

ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 3. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.02 0.01 0.02 0.01 0 0 0 0 0.02	0.008	8.44444e-05

3 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

3.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

 Дата создания исследования:
 17.10.2013 02:33:17.

 Дата создания исследования:
 17.10.2013 02:33:17.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Ackley.

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000 всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

3.2 Параметры алгоритма оптимизации

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

3.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 4. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.231828 0.248765 0.260546 0.22265 0.252871 0.254279 0.251908 0.257721	0.247123	0.000145355
		0.239563 0.251103		

3.4 Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 5. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.70137 2.81812 2.81226 2.71955 2.80023 2.90625 2.83234 2.84165 2.67782 2.86296	2.79726	0.000145355

3.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 6. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отомпотриот	0		
1	Отсутствует	0		
		0		
		0		
		0		
		0		

Исследование эффективности алгоритма 4 оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:33:18. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:33:18.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Ackley.

функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции: 4

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

4.2 Параметры алгоритма оптимизации

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

4.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 7. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.295615 0.301555 0.283633 0.279206 0.281411 0.284182 0.295437 0.279358 0.282613 0.267306	0.285032	9.94738e-05

4.4 Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 8. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	3.44125 3.57915 3.34894 3.35974 3.52435 3.48896 3.51443 3.3753 3.47019 3.34067	3.4443	9.94738e-05

4.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 9. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

5 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

5.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:20.

Дата создания исследования: 17.10.2013 02:33:20.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Ackley.

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

5.2 Параметры алгоритма оптимизации

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

5.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 10. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.312313 0.308721 0.296845 0.317998 0.302785 0.315298 0.305874 0.299983 0.310516 0.322349	0.309268	6.5434e-05

5.4 Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 11. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	3.97221 3.93258 3.93969 4.01909 3.93463 4.0068 4.00263 3.98711 4.05465 4.0503	3.98997	6.5434e-05

5.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 12. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

6.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:22.

Дата создания исследования: 17.10.2013 02:33:22.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Ackley.

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

6.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 13. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.369933 0.372659 0.378658 0.368223 0.375109 0.36979 0.364912 0.371217 0.371919 0.378741	0.372116	1.93352e-05

6.4 Ошибка по значениям целевой функции E_y

Таблица 14. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	5.67785 5.70322 5.75897 5.71319 5.73853 5.7288 5.68607 5.66236 5.74915 5.78285	5.7201	1.93352e-05

Таблица 15. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

7 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

7.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:32.

Дата создания исследования: 17.10.2013 02:33:32.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Ackley.

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

7.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 16. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.367617 0.362585 0.367496 0.366285 0.365472 0.361972 0.367737 0.367239 0.36259 0.364702	0.36537	5.22107e-06

7.4 Ошибка по значениям целевой функции E_y

Таблица 17. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	7.16605 7.14609 7.19002 7.12742 7.14688 7.14636 7.17037 7.15873 7.15812 7.15067	7.15607	5.22107e-06

Таблица 18. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

8 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

8.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:34:16.

Дата создания исследования: 17.10.2013 02:34:16.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Ackley.

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000 всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

8.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 19. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.33715 0.334866 0.337903 0.337149 0.339239 0.337227 0.336912 0.336469 0.335295 0.335169	0.336738	1.81567e-06

8.4 Ошибка по значениям целевой функции E_y

Таблица 20. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	7.77283 7.74903 7.79047 7.783 7.80074 7.78619 7.77715 7.77801 7.76167 7.75769	7.77568	1.81567e-06

Таблица 21. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

9 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

9.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 14.12.2013 23:39:37.

Дата создания исследования: 14.12.2013 23:39:37.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_AdditivePotential.

Полное название тестовой функции: Аддитивная потенциальная функция.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

9.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 22. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.0603087 0.0984655 0.0925594 0.0854488 0.0815142 0.0879798 0.0828517 0.0607261 0.0678314 0.0843737	0.0802059	0.000169835

9.4 Ошибка по значениям целевой функции E_y

Таблица 23. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.958132 1.08122 1.0216 1.00063 1.0211 1.0859 0.977388 0.879166 1.00398 0.94269	0.997181	0.000169835

Таблица 24. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0.01 0 0.01 0	0.003	2.33333e-05

10 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Egg Holder» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

10.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

30.12.2013 01:52:13. Дата создания исследования:

Дата создания исследования: 30.12.2013 01:52:13.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_EggHolder.

функции:

Полное название тестовой функции: Функция Egg Holder.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

10.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 25. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Egg Holder» (размерность равна 2)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	220.571 220.978 202.941 177.167 184.721 209.827 252.148 204.296 213.321 218.954	210.492	432.992

10.4 Ошибка по значениям целевой функции E_y

Таблица 26. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Egg Holder» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	106.068 119.92 124.39 123.248 122.772 117.079 119.214 119.201 105.431 116.947	117.427	432.992

Таблица 27. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Egg Holder» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0.02 0 0.01 0 0.01 0 0	0.005	5e-05

11 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

11.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:10.

Дата создания исследования: 03.01.2014 22:22:10.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_GaussianQuartic.

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

11.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 28. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.283485 0.250628 0.27465 0.273149 0.272066 0.261379 0.272403 0.288045 0.274764 0.289522	0.274009	0.000137969

11.4 Ошибка по значениям целевой функции E_y

Таблица 29. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.0719 2.12651 2.08768 2.10514 2.01547 2.13268 2.15106 2.05162 2.1667 2.13321	2.1042	0.000137969

Таблица 30. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

12 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

12.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 22:22:11. Дата создания исследования:

03.01.2014 22:22:11. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_GaussianQuartic.

функции:

Полное название тестовой функции: Функция Gaussian quartic.

3 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

729 Максимальное допустимое число вычислений целевой функции:

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

12.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 31. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.228062 0.207189 0.237891 0.21621 0.222147 0.214715 0.222389 0.230866 0.213886 0.209711	0.220307	9.57991e-05

12.4 Ошибка по значениям целевой функции E_y

Таблица 32. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.95327 1.86596 1.87531 1.81254 1.83246 1.89412 1.90236 1.90391 1.90168 1.92421	1.88658	9.57991e-05

Таблица 33. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

13 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

13.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:11.

Дата создания исследования: 03.01.2014 22:22:11.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_GaussianQuartic.

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

13.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 34. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.180814 0.190396 0.189491 0.184952 0.192138 0.198926 0.185415 0.187363 0.183392 0.194784	0.188767	3.04281e-05

13.4 Ошибка по значениям целевой функции E_y

Таблица 35. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.52429 1.50031 1.61036 1.57683 1.59743 1.5496 1.53832 1.53229 1.49598 1.58545	1.55109	3.04281e-05

Таблица 36. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

N_{2}	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0		
1	Отомпотруют	0	0	0
1	Отсутствует	0	U	U
		0		
		0		
		0		
		0		

14 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

14.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:12.

Дата создания исследования: 03.01.2014 22:22:12.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_GaussianQuartic.

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

14.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 37. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.16815 0.176337 0.167948 0.178815 0.167744 0.172254 0.174085 0.174481 0.180598 0.172601	0.173301	2.0281e-05

14.4 Ошибка по значениям целевой функции E_y

Таблица 38. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.15298 1.12652 1.10775 1.02952 1.04085 1.1957 1.07589 1.08565 1.17217 1.08163	1.10687	2.0281e-05

Таблица 39. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

N_{2}	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0		
1	Отомпотруют	0	0	0
1	Отсутствует	0		
		0		
		0		
		0		
		0		

15 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

15.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:13.

Дата создания исследования: 03.01.2014 22:22:13.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_GaussianQuartic.

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

15.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 40. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.154875 0.154107 0.154282 0.152553 0.156978 0.15947 0.158826 0.154531 0.152392 0.154581	0.15526	5.81909e-06

15.4 Ошибка по значениям целевой функции E_y

Таблица 41. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	4.68124 4.40955 4.6128 4.26264 4.86828 5.0108 4.86726 4.59673 4.57017 4.71081	4.65903	5.81909e-06

Таблица 42. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

16 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

16.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:17.

Дата создания исследования: 03.01.2014 22:22:17.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_GaussianQuartic.

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000 всем исследовании:

всем исследовании.

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

16.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 43. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.155472 0.151918 0.153673 0.153963 0.153606 0.152527 0.155412 0.155245 0.153984 0.155722	0.154152	1.69027e-06

16.4 Ошибка по значениям целевой функции E_y

Таблица 44. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	70.2946 66.7224 71.3877 67.1615 69.1003 67.2263 68.7928 68.2633 70.5834 69.5834	68.9116	1.69027e-06

Таблица 45. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

17 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

17.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:33.

Дата создания исследования: 03.01.2014 22:22:33.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_GaussianQuartic.

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000 всем исследовании:

всем исследовании.

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

17.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 46. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.141632 0.142968 0.140909 0.141812 0.14269 0.142315 0.141984 0.142625 0.140835 0.141854	0.141962	5.14298e-07

17.4 Ошибка по значениям целевой функции E_y

Таблица 47. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	255.736 248.085 246.753 257.335 250.782 255.807 248.056 255.307 255.207 248.853	252.192	5.14298e-07

Таблица 48. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

18 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

18.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:37.

Дата создания исследования: 03.01.2014 02:10:37.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Griewangk.

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

18.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 49. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	3.80331 3.44175 3.56913 3.38663 3.94085 3.55487 3.54471 4.22698 3.76732 3.63836	3.68739	0.0644811

18.4 Ошибка по значениям целевой функции E_y

Таблица 50. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0347972 0.0304775 0.032006 0.0330242 0.0356762 0.0354181 0.0371081 0.039079 0.0344782 0.0364827	0.0348547	0.0644811

Таблица 51. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0.01 0.01 0 0.01 0 0 0.01	0.004	2.66667e-05

19 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

19.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:38.

Дата создания исследования: 03.01.2014 02:10:38.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Griewangk.

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

19.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 52. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

№ Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1 Отсутствует	4.14131 3.90233 3.97064 4.00121 3.82314 3.94481 3.56329 3.7392 3.84154	3.85923	0.0291889

19.4 Ошибка по значениям целевой функции E_y

Таблица 53. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0865412 0.0808532 0.0845917 0.0876764 0.0788533 0.0848399 0.07871 0.0823757 0.0815906 0.0795724	0.0825604	0.0291889

Таблица 54. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

20 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

20.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:38.

Дата создания исследования: 03.01.2014 02:10:38.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Griewangk.

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

20.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 55. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	3.84311 3.74483 3.84846 3.63279 3.81916 3.63369 3.65983 3.99193 3.87177 3.6305	3.76761	0.015901

${f 20.4}$ Ошибка по значениям целевой функции E_y

Таблица 56. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.153467 0.154698 0.151278 0.145819 0.156016 0.140928 0.145123 0.154491 0.157909 0.14558	0.150531	0.015901

Таблица 57. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

21 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

21.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:39.

Дата создания исследования: 03.01.2014 02:10:39.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Griewangk.

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

21.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 58. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	3.56112 3.67727 3.53798 3.61702 3.6756 3.57521 3.46255 3.72847 3.59051 3.61156	3.60373	0.00593667

21.4 Ошибка по значениям целевой функции E_y

Таблица 59. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.238482 0.222425 0.228842 0.231319 0.218393 0.238605 0.233533 0.230877 0.229645 0.219818	0.229194	0.00593667

Таблица 60. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации **22** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

22.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 02:10:42. Дата создания исследования:

Дата создания исследования: 03.01.2014 02:10:42.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Griewangk.

функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 10

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

22.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 61. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	2.51107 2.50856 2.48016 2.48411 2.49518 2.57991 2.56366 2.48558 2.51574 2.47392	2.50979	0.00127566

${f 22.4}$ Ошибка по значениям целевой функции E_y

Таблица 62. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.75277 0.762655 0.760192 0.742643 0.73208 0.772183 0.745009 0.760934 0.739233 0.759043	0.752674	0.00127566

Таблица 63. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации **23** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

23.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 02:10:51. Дата создания исследования:

Дата создания исследования: 03.01.2014 02:10:51.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Griewangk.

функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 20

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

23.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 64. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	1.15875 1.1498 1.15433 1.14761 1.15495 1.16078 1.16236 1.16522 1.14816 1.15201	1.1554	3.8038e-05

${f 23.4}$ Ошибка по значениям целевой функции E_y

Таблица 65. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.13478 1.13269 1.13383 1.13105 1.13393 1.13509 1.13555 1.13491 1.13232 1.13254	1.13367	3.8038e-05

Таблица 66. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

24 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

24.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 02:11:41. Дата создания исследования:

Дата создания исследования: 03.01.2014 02:11:41.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Griewangk.

функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

24.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 67. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		1.0666 1.06824 1.0684 1.06528		
1	Отсутствует	1.06694 1.07693 1.0753	1.06972	1.57222e-05
		1.07314 1.06879		
		1.06755		

${f 24.4}$ Ошибка по значениям целевой функции E_y

Таблица 68. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.25638 1.25725 1.25732 1.25583 1.25668 1.26139 1.26056 1.25949 1.25758 1.25686	1.25793	1.57222e-05

Таблица 69. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации **25** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Химмельблау» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

25.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

26.12.2013 00:27:25. Дата создания исследования:

26.12.2013 00:27:25. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Himmelblau.

функции:

Полное название тестовой функции: Функция Химмельблау.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

25.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 70. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.467074 0.341954 0.487853 0.376476 0.432859 0.425911 0.456112 0.36076 0.320469 0.372425	0.404189	0.00327659

25.4 Ошибка по значениям целевой функции E_y

Таблица 71. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.842162 0.687992 0.689848 0.723609 0.785119 0.771269 0.770871 0.653133 0.69241 0.729451	0.734586	0.00327659

Таблица 72. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.02 0.06 0.05 0.03 0.02 0.04 0.04 0 0.03 0.03	0.034	0.000315556

Исследование эффективности алгоритма оптимизации **26** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

26.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:04. Дата создания исследования:

Дата создания исследования: 18.12.2013 23:29:04.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

26.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 73. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.158153 0.1552 0.154874 0.153856 0.145023 0.148603 0.147355 0.154562 0.157993 0.158739	0.153436	2.32086e-05

26.4 Ошибка по значениям целевой функции E_y

Таблица 74. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.214498 0.204522 0.202088 0.207534 0.172225 0.192156 0.187133 0.212192 0.227414 0.191733	0.20115	2.32086e-05

Таблица 75. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0.01 0.01 0.01 0.01 0.01 0	0.006	2.66667e-05

27 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

27.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:04. Дата создания исследования:

18.12.2013 23:29:04. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

3 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

729 Максимальное допустимое число вычислений целевой функции:

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

27.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 76. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.247265 0.260378 0.240218 0.24173 0.246556 0.23144 0.247676 0.255753 0.223925 0.250502	0.244544	0.000117401

27.4 Ошибка по значениям целевой функции E_y

Таблица 77. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.39708 1.5052 1.40734 1.32341 1.43091 1.39992 1.45865 1.47815 1.31738 1.39932	1.41174	0.000117401

Таблица 78. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0.01 0 0 0	0.001	1e-05

Исследование эффективности алгоритма оптимизации 28 «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

28.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:04. Дата создания исследования:

18.12.2013 23:29:04. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 4

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

28.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 79. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.324022 0.318017 0.311298 0.323461 0.327763 0.298978 0.326881 0.333864 0.31481 0.329734	0.320883	0.00010705

28.4 Ошибка по значениям целевой функции E_y

Таблица 80. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	5.82992 5.63183 5.21835 5.84958 5.19259 5.40954 5.34762 5.82726 5.44419 5.78444	5.55353	0.00010705

Таблица 81. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации **29** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

29.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:05. Дата создания исследования:

Дата создания исследования: 18.12.2013 23:29:05.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

5 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

29.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 82. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.409039 0.383818 0.400515 0.401531 0.410162 0.380574 0.396503 0.398351 0.358768 0.357882	0.389714	0.000361978

29.4 Ошибка по значениям целевой функции E_y

Таблица 83. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	16.1398 14.8776 15.7025 15.1332 15.0957 15.1797 16.2523 14.3297 15.0822 14.2544	15.2047	0.000361978

Таблица 84. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации **30** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

30.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:05. Дата создания исследования:

Дата создания исследования: 18.12.2013 23:29:05.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 10

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

30.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 85. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.49003 0.46181 0.486628 0.470332 0.466945 0.481153 0.469424 0.484712 0.475822 0.472479	0.475934	8.70391e-05

30.4 Ошибка по значениям целевой функции E_y

Таблица 86. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	312.483 307.006 304.906 301.692 303.174 303.589 312.199 309.932 297.489 311.208	306.368	8.70391e-05

Таблица 87. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

31 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

31.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:08. Дата создания исследования:

Дата создания исследования: 18.12.2013 23:29:08.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 20

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

31.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 88. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.436618 0.425928 0.43362 0.425386 0.427039 0.426581 0.415417 0.434906 0.438991 0.422768	0.428725	5.20951e-05

31.4 Ошибка по значениям целевой функции E_y

Таблица 89. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	4907.95 4807.78 4811.26 4864.72 4915.08 4701.66 4876.87 4822.51 4937.93 4829.45	4847.52	5.20951e-05

Таблица 90. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

32 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

32.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

18.12.2013 23:29:19. Дата создания исследования:

18.12.2013 23:29:19. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_HyperEllipsoid.

функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

32.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 91. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.381645 0.378961 0.379698 0.383409 0.383829 0.380602 0.384518 0.386026 0.384159	0.382159	6.60856e-06

${f 32.4}$ Ошибка по значениям целевой функции E_y

Таблица 92. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	22401.2 22323.8 22619.8 22077.8 21988.5 21776.5 22460.3 22361 22323.1 22468.4	22280	6.60856e-06

Таблица 93. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

33 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

33.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.01.2014 17:56:57.

Дата создания исследования: 28.01.2014 17:56:57.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_InvertedRosenbrock.

Полное название тестовой функции: Перевернутая функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

33.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 94. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.178771 0.1919 0.200679 0.204482 0.212885 0.214803 0.213672 0.205844 0.19827 0.176837	0.199814	0.000186914

${f 33.4}$ Ошибка по значениям целевой функции E_y

Таблица 95. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.20775 0.22673 0.229186 0.237819 0.246685 0.251108 0.244241 0.235141 0.227107 0.200085	0.230585	0.000186914

Таблица 96. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0.01 0.01 0 0 0.01 0 0 0.01	0.004	2.66667e-05

Исследование эффективности алгоритма оптимизации **34** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Катникова» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

34.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

26.12.2013 00:27:40. Дата создания исследования:

26.12.2013 00:27:40. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Katnikov.

функции:

Полное название тестовой функции: Функция Катникова.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

34.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 97. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Катникова» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.294972 0.291327 0.302165 0.267878 0.244684 0.259164 0.271582 0.285485 0.290627 0.264337	0.277222	0.000339344

34.4 Ошибка по значениям целевой функции E_y

Таблица 98. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Катникова» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0647078 0.0615479 0.05623 0.0583154 0.0617964 0.0587386 0.0569688 0.0630169 0.061203 0.0681011	0.0610626	0.000339344

Таблица 99. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Катникова» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0.01 0.02 0.03 0 0.02 0	0.01	0.000133333

35 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal» (размерность равна 1)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

35.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

24.12.2013 12:41:35. Дата создания исследования:

24.12.2013 12:41:35. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Multiextremal.

функции:

Полное название тестовой функции: Функция Multiextremal.

Размерность тестовой функции: 1

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 64

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 64000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

35.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 100. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal» (размерность равна 1)

№ Настройки али	оритма Зна	ачения ошибки E_x	Среднее значение	Дисперсия
1 Отсутствует		0.513218 0.506221 0.472354 0.510512 0.470661 0.467014 0.483122 0.475174 0.499569	0.488619	0.00030878

35.4 Ошибка по значениям целевой функции E_y

Таблица 101. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0283148 0.0298147 0.0256805 0.0333045 0.0277256 0.0266154 0.0282348 0.028677 0.029256 0.0287012	0.0286324	0.00030878

Таблица 102. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal» (размерность равна 1)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.19 0.2 0.22 0.16 0.24 0.26 0.18 0.19 0.19 0.2	0.203	0.000867778

Исследование эффективности алгоритма оптимизации 36 «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal2» (размерность равна 1)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

36.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

24.12.2013 12:41:46. Дата создания исследования:

24.12.2013 12:41:46. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Multiextremal2.

функции:

Полное название тестовой функции: Функция Multiextremal2.

Размерность тестовой функции: 1

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 64

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 64000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

36.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 103. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal2» (размерность равна 1)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.811715 0.882584 0.775366 0.829496 0.729104 0.597946 0.652685 0.750761 1.01129 0.856848	0.789779	0.0139159

${f 36.4}$ Ошибка по значениям целевой функции E_y

Таблица 104. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal2» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.183756 0.181251 0.163889 0.164925 0.151652 0.151765 0.148276 0.163898 0.192016 0.167417	0.166884	0.0139159

Таблица 105. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal2» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.22 0.15 0.31 0.28 0.37 0.34 0.33 0.26 0.19 0.28	0.273	0.00484556

37 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal3» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

37.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

28.12.2013 16:57:30. Дата создания исследования:

Дата создания исследования: 28.12.2013 16:57:30.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Multiextremal3.

функции:

Полное название тестовой функции: Функция Multiextremal3.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

37.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 106. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal3» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.135081 0.145901 0.138505 0.134445 0.14423 0.147085 0.150951 0.149717 0.146879 0.1305	0.142329	5.08728e-05

37.4 Ошибка по значениям целевой функции E_y

Таблица 107. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal3» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.90886 3.09009 2.80479 2.81129 2.96668 3.02188 2.9452 2.95062 2.98186 2.84309	2.93244	5.08728e-05

Таблица 108. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal3» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.02 0 0 0.02 0.02 0.01 0.01 0 0.01 0.01	0.01	6.66667e-05

Исследование эффективности алгоритма оптимизации 38 «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal4» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

38.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

28.12.2013 16:57:34. Дата создания исследования:

Дата создания исследования: 28.12.2013 16:57:34.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Multiextremal4.

функции:

Полное название тестовой функции: Функция Multiextremal4.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

38.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 109. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal4» (размерность равна 2)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.225322 0.265664		0.000218764
		0.247154		
		0.217691		
1	Отсутствует	0.234419	0.236566	
1	Olcylcibyer	0.243144	0.230300	
		0.22629		
		0.221794		
		0.235211		
		0.24897		

38.4 Ошибка по значениям целевой функции E_y

Таблица 110. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal4» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0373937 0.0369895 0.0411918 0.0405036 0.0430693 0.0431913 0.0397308 0.044652 0.0399595 0.0458985	0.041258	0.000218764

Таблица 111. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal4» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0 0 0 0 0 0 0 0	0.001	1е-05
		0		

39 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

39.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 15.12.2013 00:24:37.

Дата создания исследования: 15.12.2013 00:24:37.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_MultiplicativePotential.

Полное название тестовой функции: Мультипликативная потенциальная функция.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

39.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 112. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.076763 0.0704521 0.0660822 0.0805611 0.0616353 0.0863336 0.082583 0.0692786 0.0864792 0.0796379	0.0759806	7.50237e-05

39.4 Ошибка по значениям целевой функции E_y

Таблица 113. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	7.27755 6.89947 6.70838 8.45241 6.51826 7.58353 7.76433 7.5757 7.97634 7.03432	7.37903	7.50237e-05

Таблица 114. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0.03 0.01 0 0.01 0.02 0.02 0.02 0.01 0.01	0.012	8.44444e-05

40 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

40.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:56.

Дата создания исследования: 17.10.2013 02:36:56.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

40.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 115. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 2)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.0544493 0.0593599		
		0.0555122		
		0.0526079		8.61879e-06
1	Отсутствует	0.0566863	0.0552048	
1	Oleyleibyei	0.0519556	0.0002040	
		0.0502156		
		0.0572656		
		0.0585101		
		0.0554857		

40.4 Ошибка по значениям целевой функции E_y

Таблица 116. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0149776 0.0176905 0.0152997 0.0143752 0.0165941 0.0135171 0.0123706 0.0166342 0.0172692 0.0152204	0.0153949	8.61879e-06

Таблица 117. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0 0.01 0 0 0 0	0.002	1.77778e-05

41 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

41.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:56.

Дата создания исследования: 17.10.2013 02:36:56.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

41.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 118. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.0871729 0.0789749 0.0829359 0.0816045 0.0798836 0.0817166 0.0803356 0.0819128 0.0746252 0.0822942	0.0811456	1.01616e-05

41.4 Ошибка по значениям целевой функции E_y

Таблица 119. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.078426 0.0643335 0.072611 0.0672901 0.0636859 0.0692975 0.0672136 0.0674913 0.057575 0.0691244	0.0677048	1.01616e-05

Таблица 120. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

42 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

42.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:56.

Дата создания исследования: 17.10.2013 02:36:56.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

42.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 121. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.101151 0.106335 0.102128 0.101438 0.101191 0.101369 0.10315 0.105872 0.103339 0.104038	0.103001	3.6819e-06

42.4 Ошибка по значениям целевой функции E_y

Таблица 122. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.176277 0.190169 0.183005 0.180375 0.17753 0.176812 0.18164 0.191197 0.183519 0.184877	0.18254	3.6819e-06

Таблица 123. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

43 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

43.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:57.

Дата создания исследования: 17.10.2013 02:36:57.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

43.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 124. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.117186 0.114917 0.121382 0.11362 0.116128 0.114191 0.120347 0.116814 0.110996 0.116588	0.116217	9.44144e-06

43.4 Ошибка по значениям целевой функции E_y

Таблица 125. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.361183 0.34922 0.381895 0.344427 0.353627 0.346623 0.38112 0.353451 0.327229 0.356772	0.355555	9.44144e-06

Таблица 126. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 5)

\mathcal{N}_2	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отомпотрукот	0		
1	Отсутствует	0	0	
		0		
		0		
		0		
		0		

44 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

44.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:58.

Дата создания исследования: 17.10.2013 02:36:58.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

44.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 127. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.144321 0.145197 0.143584 0.146262 0.146478 0.148163 0.147566 0.144984 0.147755 0.14533	0.145964	2.36413e-06

44.4 Ошибка по значениям целевой функции E_y

Таблица 128. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.12585 2.14115 2.10264 2.17539 2.17358 2.22065 2.20262 2.13592 2.21398 2.14299	2.16348	2.36413e-06

Таблица 129. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

45 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

45.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:01.

Дата создания исследования: 17.10.2013 02:37:01.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

45.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 130. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.14327 0.144526 0.145138 0.143651 0.145595 0.142929 0.14446 0.143771 0.143496 0.145168	0.1442	8.22018e-07

45.4 Ошибка по значениям целевой функции E_y

Таблица 131. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	8.24631 8.39104 8.45138 8.2929 8.51015 8.19891 8.3714 8.29854 8.27258 8.45442	8.34876	8.22018e-07

Таблица 132. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

46 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

46.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:14.

Дата создания исследования: 17.10.2013 02:37:14.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ParaboloidOfRevolution.

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

46.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 133. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.133156 0.134136 0.13453 0.135275 0.133414 0.134502 0.133856 0.134267 0.133132 0.133338	0.133961	5.00103e-07

46.4 Ошибка по значениям целевой функции E_y

Таблица 134. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	15.9918 16.2225 16.311 16.4897 16.0573 16.3071 16.1538 16.2449 15.9759 16.0335	16.1788	5.00103e-07

Таблица 135. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

47 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Rana» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

47.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

29.12.2013 15:40:20. Дата создания исследования:

29.12.2013 15:40:20. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rana.

функции:

Полное название тестовой функции: Функция Rana.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

47.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 136. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Rana» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	416.763 378.611 381.534 383.51 371.473 387.089 405.099 396.34 412.091 399.1	393.161	227.84

47.4 Ошибка по значениям целевой функции E_y

Таблица 137. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Rana» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	38.4711 42.3908 40.0159 37.8046 38.92 40.0245 38.4565 40.091 39.8873 35.543	39.1605	227.84

Таблица 138. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Rana» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации 48 «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

48.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:37:59. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:37:59.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rastrigin.

функции:

Полное название тестовой функции: Функция Растригина.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

48.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 139. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 2)

\mathcal{N}_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.533922 0.554434 0.567883 0.531643 0.545437 0.561071 0.544004 0.580276 0.51825	0.556143	0.000912641

48.4 Ошибка по значениям целевой функции E_y

Таблица 140. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	3.10636 2.9283 2.91098 2.80785 3.06758 3.12365 3.43117 3.20931 2.89321 3.33103	3.08094	0.000912641

Таблица 141. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0 0.04 0 0 0 0 0	0.006	0.00016

Исследование эффективности алгоритма оптимизации **49** «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

49.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:37:59. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:37:59.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rastrigin.

функции:

Полное название тестовой функции: Функция Растригина.

3 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

729 Максимальное допустимое число вычислений целевой функции:

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

49.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 142. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.631931 0.610674 0.61316 0.634441 0.567094 0.63014 0.601183 0.629808 0.633995 0.581794	0.613422	0.000562183

49.4 Ошибка по значениям целевой функции E_y

Таблица 143. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	8.14289 7.41928 7.60931 8.09902 7.58894 8.03192 8.1139 7.5908 7.63907 7.91762	7.81527	0.000562183

Таблица 144. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

50 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

50.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:37:59. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:37:59.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rastrigin.

функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 4

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

50.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 145. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.659803 0.637805 0.649861 0.639526 0.608817 0.631742 0.61228 0.622809 0.637925 0.61477	0.631534	0.000280337

50.4 Ошибка по значениям целевой функции E_y

Таблица 146. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	14.9218 14.6327 14.7124 14.842 14.4322 14.9173 13.9455 14.0878 14.4812 14.1556	14.5128	0.000280337

Таблица 147. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

51 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

51.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:38:01.

Дата создания исследования: 17.10.2013 02:38:01.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Rastrigin.

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

51.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 148. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.599006 0.627243		
		0.591447		
		0.620111		0.000253016
1	Отсутствует	0.600708	0.615664	
1	Oleyterbyer	0.644092	0.010004	
		0.623345		
		0.622924		
		0.606485		0.000253016
		0.621281		

51.4 Ошибка по значениям целевой функции E_y

Таблица 149. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	21.6798 22.4532 22.4044 22.1227 21.6516 22.7902 22.6136 22.7484 22.3017 22.2574	22.3023	0.000253016

Таблица 150. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

52 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

52.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:38:03. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:38:03.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rastrigin.

функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 10

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

52.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 151. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.547976		
		0.55138		
		0.559116		
		0.542038		
1	Отсутствует	0.542638	0.553556	6.76072e-05
1	Отсутствует	0.561596	0.00000	0.700726-03
		0.548537		
		0.559413		
		0.565992		
		0.556876		

${f 52.4}$ Ошибка по значениям целевой функции E_y

Таблица 152. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	72.2249 72.982 70.7719 72.2548 71.525 71.9503 71.1423 71.086 72.7368 71.5107	71.8185	6.76072e-05

Таблица 153. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

53 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

53.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:38:11. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:38:11.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rastrigin.

функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 20

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000 всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

53.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 154. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.460086 0.463704		
		0.454754		2.92961e-05
1		0.452215 0.459297	0.455540	
1	Отсутствует	0.458662	0.455548	
		0.451238		
		0.459131 0.447307		
		0.447307		

53.4 Ошибка по значениям целевой функции E_y

Таблица 155. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	194.209 193.996 191.72 193.67 194.691 194.497 193.282 192.236 193.179 193.956	193.544	2.92961e-05

Таблица 156. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

54 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

54.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:38:51. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:38:51.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rastrigin.

функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

54.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 157. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 30)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.392855 0.39865 0.397869 0.393948 0.401643 0.393016 0.397695 0.395313 0.389977 0.394341	0.395531	1.17263e-05

54.4 Ошибка по значениям целевой функции E_y

Таблица 158. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	329.068 329.381 332.141 331.036 328.722 326.547 327.617 328.155 327.983 326.247	328.69	1.17263e-05

Таблица 159. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

55 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

55.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:11.

Дата создания исследования: 04.01.2014 00:25:11.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

55.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 160. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.0652538 0.0549215 0.0544113 0.0658186 0.0534936 0.0616471 0.0624713 0.0557222 0.0501327	0.057332	3.61634e-05

55.4 Ошибка по значениям целевой функции E_y

Таблица 161. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0803988 0.0518106 0.0549101 0.0710736 0.0505268 0.0784087 0.0764319 0.0587821 0.0417597 0.0481999	0.0612302	3.61634e-05

Таблица 162. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0.01 0 0 0.02 0 0.01 0	0.004	4.88889e-05

56 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

56.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:12.

Дата создания исследования: 04.01.2014 00:25:12.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

56.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 163. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.112182 0.119654 0.112078 0.118182 0.117786 0.112719 0.0999884 0.116214 0.102754 0.11495	0.112651	4.25364e-05

56.4 Ошибка по значениям целевой функции E_y

Таблица 164. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.379082 0.413896 0.398728 0.386015 0.37225 0.393088 0.341073 0.365141 0.285082 0.410599	0.374495	4.25364e-05

Таблица 165. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

57 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

57.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:13.

Дата создания исследования: 04.01.2014 00:25:13.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

57.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 166. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.150762 0.155057 0.15075 0.163561 0.170708 0.154121 0.162549 0.160052 0.156667 0.155677	0.15799	3.92393e-05

57.4 Ошибка по значениям целевой функции E_y

Таблица 167. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.947819 0.991474 1.06151 0.948898 1.05453 0.98488 0.972097 0.968178 1.00989 0.919848	0.985912	3.92393e-05

Таблица 168. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

58 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

58.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:14.

Дата создания исследования: 04.01.2014 00:25:14.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

58.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 169. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

\mathcal{N}_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.177318 0.179128 0.173315 0.175093 0.181697 0.181348 0.171933 0.172513 0.171338 0.174552	0.175824	1.47588e-05

58.4 Ошибка по значениям целевой функции E_y

Таблица 170. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.77095 1.77866 1.7247 1.79367 1.75592 1.74733 1.82733 1.7227 1.73739 1.8161	1.76747	1.47588e-05

Таблица 171. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

59 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

59.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:16.

Дата создания исследования: 04.01.2014 00:25:16.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

59.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 172. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.187169 0.184275		
		0.181576		
		0.180565	0.182433	7.4334e-06
1	Отсутствует	0.184932		
1	Olcylcibyer	0.179563	0.102400	
		0.183984		
		0.180432		
		0.178534		
		0.183305		

59.4 Ошибка по значениям целевой функции E_y

Таблица 173. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	7.14343 7.16747 6.95195 7.02606 7.24157 7.14134 7.01528 7.14369 7.14268 7.00427	7.09777	7.4334e-06

Таблица 174. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

60 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

60.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:24.

Дата создания исследования: 04.01.2014 00:25:24.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

60.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 175. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.162314 0.159954 0.163618 0.161104 0.161736 0.16143 0.161748 0.163541 0.162683 0.162614	0.162074	1.25852e-06

60.4 Ошибка по значениям целевой функции E_y

Таблица 176. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	21.1784 20.9266 20.8256 20.8412 20.9978 20.8237 21.2083 21.0745 20.8444 20.9168	20.9637	1.25852e-06

Таблица 177. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

61 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

61.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:26:02.

Дата создания исследования: 04.01.2014 00:26:02.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginNovgorod.

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

61.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 178. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

\mathcal{N}_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.146509 0.145209 0.146009 0.147443 0.146097 0.146007 0.147132 0.144589 0.146279 0.145605	0.146088	7.11722e-07

61.4 Ошибка по значениям целевой функции E_y

Таблица 179. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	37.0323 36.734 36.4275 36.8016 36.5141 36.4229 36.6546 36.891 36.8397 37.0648	36.7383	7.11722e-07

Таблица 180. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

62 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

62.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 30.12.2013 01:52:09.

Дата создания исследования: 30.12.2013 01:52:09.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginWithChange.

Полное название тестовой функции: Функция Растригина с изменением коэффициен-

TOB.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

62.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 181. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.387299 0.521543 0.463396 0.44388 0.460487 0.475096 0.448001 0.465483 0.424721	0.451594	0.00127093

62.4 Ошибка по значениям целевой функции E_y

Таблица 182. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.982431 1.51615 1.3976 1.30944 1.3551 1.46017 1.29814 1.27404 1.16552 1.19611	1.29547	0.00127093

Таблица 183. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0.02 0 0 0.01 0 0.01 0	0.005	5e-05

63 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

63.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 30.12.2013 01:52:00.

Дата создания исследования: 30.12.2013 01:52:00.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RastriginWithTurning.

Полное название тестовой функции: Функция Растригина овражная с поворотом осей.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

63.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 184. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1 (Отсутствует	2.56198 2.5139 2.26279 2.37542 2.2989 2.1489 2.07049 2.22223 2.40274 2.25031	2.31077	0.0238756

63.4 Ошибка по значениям целевой функции E_y

Таблица 185. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.741045 0.717579 0.703641 0.696122 0.70642 0.668374 0.664166 0.683373 0.778784 0.714228	0.707373	0.0238756

Таблица 186. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0.01 0.02 0.01 0.01 0 0 0	0.007	4.55556e-05

64 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

64.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.12.2013 01:07:29.

Дата создания исследования: 17.12.2013 01:07:29.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ReverseGriewank.

Полное название тестовой функции: Функция ReverseGriewank.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

64.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 187. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.699363 0.779323 0.846082 0.91667 0.728271 0.829446	0.853642	0.0103624
		1.02801 0.965539 0.869131 0.874581		

64.4 Ошибка по значениям целевой функции E_y

Таблица 188. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0781191 0.080695 0.0806299 0.0896662 0.077356 0.0861933 0.0978989 0.0863523 0.0829666 0.0826641	0.0842541	0.0103624

Таблица 189. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0.02 0.02 0 0 0 0 0.01 0 0.01	0.007	6.77778e-05

65 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

65.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:40:48. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:40:48.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rosenbrock.

функции:

Полное название тестовой функции: Функция Розенброка.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

65.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 190. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.237306 0.238402 0.231527 0.21423 0.21339 0.231847 0.184749 0.20405 0.213092 0.215181	0.218377	0.00028111

65.4 Ошибка по значениям целевой функции E_y

Таблица 191. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.149671 0.181984 0.199128 0.176001 0.183741 0.152841 0.136914 0.141793 0.152263 0.155967	0.16303	0.00028111

Таблица 192. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.02 0.01 0.01 0 0 0 0.01 0.01 0.01 0	0.007	4.55556e-05

66 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

66.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:48.

Дата создания исследования: 17.10.2013 02:40:48.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Rosenbrock.

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

66.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 193. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.378091 0.366553		
		0.37854		0.000211886
		0.374519		
1	Отсутствует	0.37386	0.371096	
1	Отсутствует	0.350821	0.071030	
		0.373214		
		0.400879		
		0.363412		
		0.351071		

66.4 Ошибка по значениям целевой функции E_y

Таблица 194. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.60904 2.42496 2.64088 2.63385 2.65567 2.54334 2.59653 2.66722 2.6065 2.6728	2.60508	0.000211886

Таблица 195. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

67 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

67.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:40:48. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:40:48.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rosenbrock.

функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 4

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

67.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 196. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.417781 0.405515 0.379644 0.406717 0.423766 0.410537 0.422668 0.38492 0.417502 0.398848	0.40679	0.000229977

67.4 Ошибка по значениям целевой функции E_y

Таблица 197. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	9.78018 8.70427 9.03176 10.7347 9.59615 9.56048 10.0103 9.81128 9.48332 9.95266	9.66651	0.000229977

Таблица 198. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации 68 «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

68.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:40:49. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:40:49.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rosenbrock.

функции:

Полное название тестовой функции: Функция Розенброка.

5 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

68.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 199. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.377392 0.384148 0.37791 0.403267 0.401233 0.397462 0.382099 0.374907 0.398792 0.400104	0.389731	0.000129572

68.4 Ошибка по значениям целевой функции E_y

Таблица 200. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	22.9954 22.8098 23.4608 25.755 23.8993 24.5363 24.1029 22.7689 23.8292 21.2471	23.5405	0.000129572

Таблица 201. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

69 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

69.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:40:49. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:40:49.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rosenbrock.

функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 10

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

69.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 202. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.289945 0.286904 0.302283 0.289856 0.295224 0.290925 0.295023 0.284114	0.292511	4.62428e-05
		0.304694 0.286147		

69.4 Ошибка по значениям целевой функции E_y

Таблица 203. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	216.884 208.376 205.746 216.492 210.346 221.51 216.011 217.039 209.73 217.068	213.92	4.62428e-05

Таблица 204. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

70 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

70.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:40:53. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:40:53.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Rosenbrock.

функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 20

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

70.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 205. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 20)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.239158 0.235067 0.235114 0.235692 0.235137 0.231517 0.235414	0.235711	3.87088e-06
		0.236662 0.237516 0.235833		

70.4 Ошибка по значениям целевой функции E_y

Таблица 206. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1249.58 1223.55 1253.41 1281.59 1202.92 1182.08 1229.69 1249.16 1250.05 1220.09	1234.21	3.87088e-06

Таблица 207. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

71 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

71.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:41:06.

Дата создания исследования: 17.10.2013 02:41:06.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_Rosenbrock.

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

71.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 208. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.200021 0.204216 0.202492 0.202174 0.20337 0.201171 0.201182 0.200648	0.201506	2.72603e-06
		0.2013 0.19849		

71.4 Ошибка по значениям целевой функции E_y

Таблица 209. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2833.38 2862.32 2825.56 2864.39 2904 2804.3 2776.43 2782.77 2817.47 2800.88	2827.15	2.72603e-06

Таблица 210. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

72 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

72.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:53.

Дата создания исследования: 18.12.2013 23:29:53.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

72.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 211. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.18088 0.154781 0.174088 0.153237 0.171496 0.149105 0.1725 0.163532 0.168974 0.149336	0.163793	0.000130822

72.4 Ошибка по значениям целевой функции E_y

Таблица 212. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.117228 0.102266 0.0995068 0.0877105 0.111675 0.0863295 0.101542 0.0968991 0.109895 0.0903182	0.100337	0.000130822

Таблица 213. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.02 0.01 0 0 0 0 0 0 0.01 0	0.005	5e-05

73 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

73.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:53.

Дата создания исследования: 18.12.2013 23:29:53.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

73.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 214. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.252754 0.284523 0.267677 0.24348 0.240291 0.26625 0.2525 0.257535 0.248775 0.239066	0.255285	0.000201944

73.4 Ошибка по значениям целевой функции E_y

Таблица 215. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.419976 0.46391 0.464847 0.420274 0.404157 0.40619 0.425543 0.457029 0.379051 0.39107	0.423205	0.000201944

Таблица 216. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

74 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

74.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:54.

Дата создания исследования: 18.12.2013 23:29:54.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

74.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 217. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.331242 0.336403 0.305746 0.334896 0.335695 0.348882	0.3346	0.000204235
		0.322676 0.352409 0.327041 0.35101		

74.4 Ошибка по значениям целевой функции E_y

Таблица 218. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.12645 1.13014 1.02458 1.13299 1.17277 1.14377 1.1004 1.24488 1.1126 1.20744	1.1396	0.000204235

Таблица 219. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

75 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

75.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:54.

Дата создания исследования: 18.12.2013 23:29:54.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

75.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 220. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.371424 0.385866 0.37965 0.406254 0.405654 0.392653 0.405495 0.389909 0.370367	0.389585	0.000179047

75.4 Ошибка по значениям целевой функции E_y

Таблица 221. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.13069 2.31993 2.09416 2.39701 2.43217 2.22442 2.366 2.34555 2.39376 2.3818	2.30855	0.000179047

Таблица 222. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

76 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

76.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:55.

Дата создания исследования: 18.12.2013 23:29:55.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

76.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 223. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.497624 0.504975 0.486184 0.483776 0.503724 0.496945 0.515356 0.48647 0.508562 0.481669	0.496529	0.000135043

76.4 Ошибка по значениям целевой функции E_y

Таблица 224. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	13.2176 13.5354 13.1672 13.7448 13.3789 13.4425 13.7723 13.1327 13.8042 13.1352	13.4331	0.000135043

Таблица 225. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

77 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

77.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:59.

Дата создания исследования: 18.12.2013 23:29:59.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

77.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 226. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.48881 0.493679 0.472496 0.497043 0.493964 0.488528 0.472216 0.479901 0.479971 0.475923	0.484253	8.61733e-05

77.4 Ошибка по значениям целевой функции E_y

Таблица 227. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	55.3282 54.2065 53.399 54.7538 55.5605 54.1295 53.9937 53.4802 54.1775 55.2322	54.4261	8.61733e-05

Таблица 228. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

78 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гиперэллипсоид» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

78.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:30:19.

Дата создания исследования: 18.12.2013 23:30:19.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_RotatedHyperEllipsoid.

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

78.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 229. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.450805 0.440413 0.435069 0.437565 0.443176 0.440785 0.446752 0.442442 0.439188 0.446198	0.442239	2.20387e-05

78.4 Ошибка по значениям целевой функции E_y

Таблица 230. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	114.827 113.842 113.432 115.324 115.99 114.784 113.669 117.75 115.844 114.104	114.957	2.20387e-05

Таблица 231. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

79 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

79.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:38:27. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:38:27.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

79.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 232. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 2)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	111.622 107.584 90.2139 74.9303 109.698 105.181 128.959 114.488 82.736 87.3365	101.275	280.936

79.4 Ошибка по значениям целевой функции E_y

Таблица 233. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	96.8954 102.463 90.4469 91.8953 90.529 84.4232 100.812 101.712 85.7466 100.625	94.5548	280.936

Таблица 234. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0.01 0 0 0.01 0.01 0 0.02 0.01	0.006	4.88889e-05

80 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

80.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:38:27. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:38:27.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

3 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

729 Максимальное допустимое число вычислений целевой функции:

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

80.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 235. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 3)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	156.129 161.194 143.556 129.874 162.359 140.607 168.163 144.934 158.482 144.593	150.989	144.153

80.4 Ошибка по значениям целевой функции E_y

Таблица 236. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	250.996 248.081 242.027 237.994 258.201 232.389 252.318 251.741 241.781 224.38	243.991	144.153

Таблица 237. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

81 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

81.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:38:28. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:38:28.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 4

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

81.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 238. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		161.216 163.524		
		157.584		
	162.411 Отсутствует 168.074 158	162.411		
1		158.919	77 0257	
1	Ofcyfefbyef	160.683	136.919	77.0257
		157.441		
		143.986		
		170.062		
		144.205		

81.4 Ошибка по значениям целевой функции E_y

Таблица 239. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	437.931 444.073 429.776 445.892 421.943 435.057 442.86 443.757 431.032 443.147	437.547	77.0257

Таблица 240. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

82 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

82.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:38:29. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:38:29.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

5 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

82.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 241. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 5)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	156.116 157.556 172.421 157.161 162.207 158.498 167.069 177.173 154.979 149.805	161.299	71.9663

82.4 Ошибка по значениям целевой функции E_y

Таблица 242. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	651.749 657.356 664.428 654.58 630.567 658.125 661.369 692.751 659.765 674.969	660.566	71.9663

Таблица 243. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

83 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

83.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:38:30. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:38:30.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 10

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

83.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 244. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 10)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	133.156 129.539 131.479 130.073 132.906 128.655 135.161 131.424 137.643 134.983	132.502	7.99265

83.4 Ошибка по значениям целевой функции E_y

Таблица 245. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1975.85 1963.89 1926.86 1998.66 1955.93 1954.12 1973.8 1938.44 1949	1957.43	7.99265

Таблица 246. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

84 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

84.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:38:38. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:38:38.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 20

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

84.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 247. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 20)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	99.1214 98.3531 99.1089 98.7904 99.316 99.6705 98.1773 100.364 98.0104 99.2061	99.0118	0.510684

84.4 Ошибка по значениям целевой функции E_y

Таблица 248. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	4937.93 4959.58 4997.06 5034.75 4985.76 4966.52 4981.17 4958.32 4982.17 4964.67	4976.79	0.510684

Таблица 249. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

85 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

85.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

03.01.2014 00:39:17. Дата создания исследования:

Дата создания исследования: 03.01.2014 00:39:17.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Schwefel.

функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

85.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 250. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 30)

№ Настрой	ки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1 Отсутствует		82.2174 81.7961 82.7153 82.7752 82.9173 82.4905 82.0323 83.2275 82.7101	82.6521	0.303362

85.4 Ошибка по значениям целевой функции E_y

Таблица 251. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	8271.76 8238.26 8270.06 8272.6 8295.25 8185.79 8244.9 8246.34 8212.35 8212.34	8244.97	0.303362

Таблица 252. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

86 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция "Лисьи норы" Шекеля» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

86.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 29.12.2013 15:40:26.

Дата создания исследования: 29.12.2013 15:40:26.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_ShekelsFoxholes.

Полное название тестовой функции: Функция "Лисьи норы" Шекеля.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

86.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 253. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция "Лисьи норы" Шекеля» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		15.7773 15.3518		
		14.7088		
		15.2549		0.611962
1	Отсутствует	14.5937	14.9779	
1	Отсутствует	15.7182	14.3773	
		14.9147		
		13.9205		
		15.9259		
		13.6129		

86.4 Ошибка по значениям целевой функции E_y

Таблица 254. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция "Лисьи норы"Шекеля» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	4.91761 4.32628 4.47225 4.96615 4.92385 4.57767 5.02375 4.60412 4.85791 4.6594	4.7329	0.611962

Таблица 255. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция "Лисьи норы" Шекеля» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

87 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Сомбреро» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

87.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

24.12.2013 12:41:58. Дата создания исследования:

24.12.2013 12:41:58. Дата создания исследования:

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Sombrero.

функции:

Полное название тестовой функции: Функция Сомбреро.

2 Размерность тестовой функции:

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

87.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 256. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Сомбреро» (размерность равна 2)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	1.5578 1.53907 1.54024 1.51226 1.52286 1.50492 1.51217 1.55461 1.55406 1.49569	1.52937	0.000514476

87.4 Ошибка по значениям целевой функции E_y

Таблица 257. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Сомбреро» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.011674 0.0113828 0.0109747 0.0114092 0.0113326 0.0112234 0.0121476 0.0116405 0.0115952 0.0117332	0.0115113	0.000514476

Таблица 258. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Сомбреро» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0.01 0.01 0.01 0.04 0.02 0 0 0.01	0.01	0.000155556

88 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

88.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:40.

Дата создания исследования: 28.12.2013 16:55:40.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong

3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 324000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

88.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 259. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.145739 0.150678 0.148256 0.141248 0.133229 0.142503 0.140603 0.136026 0.133889 0.135807	0.140798	3.70559e-05

88.4 Ошибка по значениям целевой функции E_y

Таблица 260. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.3633 1.37252 1.35475 1.34108 1.32686 1.34987 1.3488 1.33893 1.33136 1.34051	1.3468	3.70559e-05

Таблица 261. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0.02 0 0 0.02 0.02 0.02 0.02 0.01 0.02	0.013	9e-05

89 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

89.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:40.

Дата создания исследования: 28.12.2013 16:55:40.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 729000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

89.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 262. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.32011 0.330797 0.289422 0.284412 0.342861 0.334979 0.317133 0.337276 0.297958 0.347459	0.320241	0.000512339

89.4 Ошибка по значениям целевой функции E_y

Таблица 263. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.81204 1.8252 1.78858 1.81162 1.81501 1.82258 1.81294 1.8539 1.78803 1.86551	1.81954	0.000512339

Таблица 264. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

90 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

90.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:41.

Дата создания исследования: 28.12.2013 16:55:41.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong

3).

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1225000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

90.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 265. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.426834 0.415176 0.428018		9.32888e-05
1	Отсутствует	0.440335 0.422642 0.42493	0.427659	
		0.427464 0.429303		
		0.446196 0.415688		

90.4 Ошибка по значениям целевой функции E_y

Таблица 266. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.99378 1.97207 1.98608 1.99081 1.98304 1.98524 1.98309 1.98772 1.98358 1.97732	1.98427	9.32888e-05

Таблица 267. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

91 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

91.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:41.

Дата создания исследования: 28.12.2013 16:55:41.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong

3).

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1849000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

91.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 268. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.374682 0.372542 0.380126 0.366556 0.37773 0.370651 0.387409 0.387518 0.37133	0.377122	5.20195e-05

91.4 Ошибка по значениям целевой функции E_y

Таблица 269. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	2.06397 2.02256 2.03134 2.02294 2.00946 2.04184 2.07 2.08487 2.04963 2.05347	2.04501	5.20195e-05

Таблица 270. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

92 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

92.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:42.

Дата создания исследования: 28.12.2013 16:55:42.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 5776000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

92.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 271. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.378437 0.373312		
		0.370973		
		0.379499		2.10191e-05
1	Отсутствует	0.365294	0.373381	
1	Olcylcibyer	0.377757	0.575561	
		0.367579		
		0.37274		
		0.373516		
		0.374698		

${f 92.4}$ Ошибка по значениям целевой функции E_y

Таблица 272. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	7.21 6.98 7.03 7.25 6.7 7.18 6.97 7.11 7.19	7.082	2.10191e-05

Таблица 273. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

93 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

93.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:48.

Дата создания исследования: 28.12.2013 16:55:48.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong

3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 15876000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

93.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 274. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

N_2	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
		0.366174 0.367142		
		0.368578		
		0.371501		3.66627e-06
1	Отсутствует	0.36656	0.367833	
1	Olcylcibyer	0.366764	0.007000	
		0.366617		
		0.367026		
		0.37101		
		0.366955		

93.4 Ошибка по значениям целевой функции E_y

Таблица 275. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	31.59 31.31 32.07 32.65 31.43 30.97 31.45 31.78 32.59 31.79	31.763	3.66627e-06

Таблица 276. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

94 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

94.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:56:13.

Дата создания исследования: 28.12.2013 16:56:13.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_StepFunction.

Полное название тестовой функции: Функция Step (модифицированная версия De Jong

3).

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 28224000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

94.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 277. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
	Отсутствует	0.339839		2.94932e-06
		0.340178		
		0.341465	0.339694	
		0.341878		
1		0.340204		
1		0.337254		
		0.339825		
		0.336305		
		0.339505		
		0.340488		

94.4 Ошибка по значениям целевой функции E_y

Таблица 278. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	63.9 64.44 65.29 64.8 64.07 63.4 64.3 62.22 64.2	64.118	2.94932e-06

Таблица 279. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма оптимизации 95 «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Волна» (размерность равна 1)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на вещественных строках». Ниже приведена информация об этом исследовании.

95.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

23.12.2013 18:38:39. Дата создания исследования:

Дата создания исследования: 23.12.2013 18:38:39.

Идентификатор алгоритма: MHL_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на веще-

ственных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_Wave.

функции:

Полное название тестовой функции: Волна.

Размерность тестовой функции: 1

10 Количество измерений для каждого варианта настроек алгоритма:

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 64

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 64000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

95.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 280. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Волна» (размерность равна 1)

N_{2}	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.0501879 0.0516343 0.0494672 0.0501794 0.0495096 0.0493444 0.0427855 0.0463663 0.0497066 0.0503581	0.0489539	6.46857e-06

95.4 Ошибка по значениям целевой функции E_y

Таблица 281. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Волна» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.00795513 0.00834792 0.00792597 0.00793025 0.00854507 0.00818204 0.00599577 0.00743057 0.00830336 0.00840495	0.0079021	6.46857e-06

Таблица 282. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Волна» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.22 0.21 0.16 0.15 0.14 0.19 0.18 0.19 0.11 0.14	0.169	0.00121