- Introducción
- Lenguajes Formales
- 3. Expresiones Regulares
- Autómatas Finitos
- 5. Propiedades de los lenguajes regulares
- 6. Aplicaciones de los Autómatas Finitos

Autómatas, lenguajes y gramáticas regulares

.

1. Introducción

- Lenguajes: Fundamental en la Computación
 - Mediante ellos se expresan los programas, protocolos de comunicación, etc
- Se trabaja con Lenguajes Formales: Poseen reglas sintácticas y semánticas rígidas, concretas y bien definidas
 - Ejemplo: lenguaje de programación
 - Reglas que indican cómo construir cadenas válidas (palabras reservadas, identificadores de variables, etc)
 - Reglas que indican cómo combinar estas cadenas para formar programas válidos

Autómatas, lenguajes y gramáticas regulares

2.

1. Introducción

- El procesamiento de los lenguajes formales es importante en la informática ya que se necesita traducir los programas escritos en lenguajes de alto nivel a programas en lenguaje máquina
 - Este proceso de traducción lo realizan los compiladores
- También se necesita describir de forma sintética los lenguajes
 - Especificando mediante reglas, cómo se escriben programas sintácticamente correctos en un determinado lenguaje

Autómatas, lenguajes y gramáticas regulares

3

1. Introducción

- Descripción de lenguajes
 - Gramáticas: Describen la estructura de un lenguaje, proporcionando las reglas que determinan las combinaciones válidas de los símbolos del alfabeto.
 - Expresión regular: Describen de manera declarativa las cadenas aceptables o pertenecientes a un lenguaje regular.
- Reconocimiento de lenguajes
 - Autómatas: Mecanismos o máquinas abstractas que son dispositivos teóricos capaces de recibir, procesar y transmitir información (cadenas de un lenguaje).

Autómatas, lenguajes y gramáticas regulares

2.1. Definiciones básicas

 Relación Gramática – Autómata – Lenguaje

Gramática	Lenguaje	Autómata
Tipo 0: Gramática Sin Restricciones	Recursivamente enumerable / Sin Restricciones	Máquina de Turing (MT)
Tipo 1: Gramática Sensible al Contexto	Dependiente del contexto	Autómata Linealmente Acotado (ALA)
Tipo 2: Gramática Libre de Contexto	Independiente del Contexto	Autómata con Pila (AP)
Tipo 3: Gramática Regular	Regular	Autómata Finito (AF)

Autómatas, lenguajes y gramáticas regulares

5

2. Lenguajes Formales

2.1. Definiciones básicas

Relación de inclusión: Jerarquía de Chomsky

Autómatas, lenguajes y gramáticas regulares

2.1. Definiciones básicas

- Alfabeto. Conjunto finito y no vacío de símbolos.
 - \Box **Ejemplo.** $X_1 = \{0, 1\}$ $X_2 = \{a, b, c\}$ $X_3 = \{00, 01, 10, 11\}$
 - Es válido si no se genera ambigüedad en la formación de las palabras
 - **Ejemplo**. X= {00, 11, 100, 111}; palabra: 11100 ¿11·100 o 111·00?
- Palabras o cadenas. Secuencias finitas de símbolos de un alfabeto.
 - □ **Ejemplo.** Sea $X = \{a, o, l, h\}$, son palabras $p_1 = hola$, $p_2 = ola$
- Longitud de una palabra. Nº de símbolos que la forman
 - □ **Ejemplo.** Sea X = {0, 1, 2, ..., 9}
 - **41**
- |41| = 2
- 23456
- |23456| = 5

Autómatas, lenguajes y gramáticas regulares

7

2. Lenguajes Formales

2.1. Definiciones básicas

- Palabra Vacía, λ. Dado un alfabeto X, λ se define como la única palabra construida con 0 símbolos del alfabeto.
 - □ Aunque se represente por un carácter simple, es una palabra no un símbolo del alfabeto $(\lambda \notin X)$.
- Universo del discurso, X*. Se compone de todas las palabras que se pueden formar con símbolos del alfabeto X
 - Contiene un número infinito de palabras.
 - La palabra vacía pertenece a todos los universos.
 - □ **Ejemplo**: Sea $X = \{a,b\} X^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ... \}$

Autómatas, lenguajes y gramáticas regulares

2.1. Definiciones básicas

- Lenguaje sobre un alfabeto X, L(X). Todo subconjunto de X*.
 - Conjunto de palabras, también llamadas sentencias o cadenas, formadas por símbolos de un alfabeto.
 - □ Ejemplo: Dos posibles lenguajes sobre X = {a,b} serían:
 - L₁={ aaa, aba, bbb, bab }
 - L₂={λ, a, aa, aaa, aaaa, ...}
 - Ejemplo. Sea el alfabeto de los símbolos ASCII. Un lenguaje sobre este alfabeto serían todas aquellas cadenas que representen identificadores válidos en Java.
 - Empieza con letra, \$, _ y sigue con cero o más letras, dígitos, \$ o _
 - L1={a, aux, cont, i1, i_2,}
 - Ejemplo. Sea el alfabeto de todos los identificadores, signos de puntuación, palabras reservadas en Java. Un lenguaje sobre este alfabeto sería el formado por todos los programas bien construídos.

Autómatas, lenguajes y gramáticas regulares

9

2. Lenguajes Formales

2.2. Operaciones con palabras

- Concatenación. Dado un alfabeto X, sean a = a₁a₂....an y b = b₁b₂....bm palabras donde ∀i aᵢ ∈ X y ∀j bᵢ ∈ X. La concatenación de las palabras a y b, a.b, es una palabra formada por los símbolos de a seguidos de los símbolos de b, es decir, a.b = a₁a₂....anb₁b₂....bm.
 - □ Además se cumple que |a.b| = |a| + |b|
 - □ λ elemento neutro para la concatenación. Para cualquier palabra x, x. λ = λ .x = x.
 - Ejemplo.
 - boca.dillo = bocadillo
 - coca.cola = cocacola

Autómatas, lenguajes y gramáticas regulares

2.2. Operaciones con palabras

- **Potencia**. La **potencia i-ésima** de una palabra x, x^i , se forma por la concatenación i veces de x. Por definición, para toda palabra x, se cumple que $x^0 = \lambda$
 - \Box **Ejemplo.** $a^3 = aaa (ac)^2 = acac$
- Potencia k. Dado un alfabeto X y un nº no negativo k ∈N, definimos X^k = {x | x es una palabra sobre X y |x| = k}
 - □ **Ejemplo.** X={0 ,1}
 - $X^0 = \{\lambda\}$
 - $X = X^1 = \{0, 1\}$
 - $X^2 = \{00, 01, 10, 11\}$

Autómatas, lenguajes y gramáticas regulares

11

2. Lenguajes Formales

2.2. Operaciones con palabras

• Cierre positivo y estrella. Dado un alfabeto X, definimos :

(0,1}*

$$X^{+} = \bigcup_{k=1}^{\infty} X^{k} = X^{1} \cup X^{2}...$$

(0,1}+

Autómatas, lenguajes y gramáticas regulares

- 2. Lenguajes Formales
 - 2.3. Operaciones con lenguajes
- Unión o alternativa
 - $L_1 U L_2 = \{ x / x \in L_1 v x \in L_2 \}$
 - Ejemplo.
 - $L_1=\{a, b\}$ y $L_2=\{c, d\}$
 - $L_1 \cup L_2 = \{a, b, c, d\}$
- Concatenación

 - Ejemplo.
 - $L_1 = \{a, b\}, L_2 = \{c, d\} y L_3 = \emptyset$
 - L₁ L₂ = {ac, ad, bc, bd}
 - L₁ L₃ = Ø
- Intersección

13

- 2. Lenguajes Formales
 - 2.3. Operaciones con lenguajes
- Potencia de un lenguaje

 - \Box $L^0 = {\lambda}$
 - Ejemplo.
 - L={a, b}
 - $L^0 = {\lambda}$
 - L¹={a, b}
 - L² ={aa, ab, ba, bb}
- Clausura o cierre positivo
 - \Box L⁺ = L¹ U L² U L³ ...
- Cierre u Operación Estrella (Clausura de Kleene)

Autómatas, lenguajes y gramáticas regulares

3. Expresiones Regulares

3.1. Definiciones

- Definen las cadenas válidas de un lenguaje mediante una descripción algebraica (fórmula)
 - Los lenguajes que pueden describirse mediante expresiones regulares se denominan lenguajes regulares
- Se utilizan como lenguaje de entrada en muchos sistemas de proceso de cadenas
 - grep de UNIX y otros similares en navegadores, procesadores, etc. usan una notación similar a las expresiones regulares para describir los patrones que el usuario quiere encontrar en un archivo
 - Ejemplo. Buscar en word [a-f] busca cualquier carácter de a a f

Autómatas, lenguajes y gramáticas regulares

15

3. Expresiones Regulares

3.1. Definiciones

- Sea X un alfabeto finito, las expresiones regulares sobre X y los lenguajes que denotan se definen recursivamente como
 - Ø es una expresión regular y denota al conjunto vacío.

 - □ Si $x \in X$ entonces x es una e.r. y denota al lenguaje $\{x\} \subset X^*$
 - Ejemplo. X={a, b, c, d}, la e.r. a, representa L={a}
 - □ Si r y s son e.r. que denotan a los lenguajes R y S \subset X*
 - r+s o r|s denota al lenguaje RUS
 - r=a, s=b, r+s=a+b L(r+s)={a, b}
 - r·s denota al lenguaje R·S (el . suele omitirse)
 - □ r.s=a.b L(r.s)={a.b}
 - r* denota al lenguaje R*
 - $r^*=a^* L(a^*)=\{\lambda, a, a.a, a.a.a, a.a.a.a,\}$
 - r⁺ denota al lenguaje R⁺
 - $r^+=a^+ L(a^+)=\{a, a.a, a.a.a, a.a.a.a,\}$

Autómatas, lenguajes y gramáticas regulares

3. Expresiones Regulares3.1. Definiciones

- Precedencia en la utilización de los operadores
 - □ 1º Operación cierre y cierre positivo. (* +) + prioridad
 - □ 2º Operación concatenación (·)
 - □ 3° Alternativa. (+, |) prioridad
 - Se permite el uso de paréntesis para indicar la precedencia

Autómatas, lenguajes y gramáticas regulares

17

3. Expresiones Regulares

3.1. Definiciones

Ejemplos. Sea X={a,b}

Expresión regular	Lenguaje	
a+b+(a.b)	{a, b, ab}	
a(a+b)	{aa, ab}	
(bb)*	$\{\lambda$, bb, bbbb, bbbbb, bbbbbb, $\}$	
a(a+b)*		
	Palabras con un número par de a	
	Palabras que terminan en a	
a.b*		
	Empiezan y terminan con la = letra	
	Igual número de a que de b	

Autómatas, lenguajes y gramáticas regulares

3. Expresiones Regulares3.1. Definiciones

Ejemplos

Expresión regular	Lenguaje	
0+1+2+3+4+5+6+7+8+9	Dígitos	
	Números naturales	
	Nº enteros	
	Nº reales sin exponente en Java	
	Identificadores en Java	
	Expresión de adición en Java	

Autómatas, lenguajes y gramáticas regulares

19

3. Expresiones Regulares

3.2. Equivalencia de expresiones regulares

- Dos expresiones regulares son equivalentes si designan al mismo lenguaje regular.
- Sean x, y, z expresiones regulares.

```
\Box + es asociativa: x + (y + z) = (x + y) + z
```

- □ + es conmutativa: x + y = y + x
- \neg · es asociativa: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- □ · es distributiva respecto a +
 - $x \cdot (y + z) = x \cdot y + x \cdot z$
 - $(x + y) \cdot z = x \cdot z + y \cdot z$
- \neg · tiene elemento neutro λ : $x \cdot \lambda = \lambda \cdot x = x$
- \Box + tiene elemento neutro ϕ : $x + \phi = \phi + x = x$

Autómatas, lenguajes y gramáticas regulares

3. Expresiones Regulares

3.2. Equivalencia de expresiones regulares

- $\neg \phi \cdot x = x \cdot \phi = \phi$
- $\varphi^* = \lambda$
- $x * x^* = x^*$
- $(x^*)^* = x^*$
- $(xy)^* x = x (yx)^*$
- $x^* = \lambda + x^* = (\lambda + x)^*$
- $(x + y)^* = (x^* + y^*)^* = (x^* y^*)^*$
- $(x + y)^* = (x^* \cdot y)^* x^* = x^* \cdot (y x^*)^*$
- $(x+y)^* \neq x^* + y^*$

Autómatas, lenguajes y gramáticas regulares

21

4. Autómatas Finitos

4.1. Introducción

- Dispositivo para procesar palabras pertenecientes a un lenguaje regular.
- Se construyen siguiendo las reglas de formación de palabras de un lenguaje: recibe una palabra y determina si pertenece o no al lenguaje, es decir, si sigue las reglas

Autómatas, lenguajes y gramáticas regulares

4.1. Introducción

 Disponen de una cinta de entrada, de donde van leyendo las palabras, procesando sus símbolos secuencialmente, de izquierda a derecha

Palabra de entrada

4.

Autómatas Finitos 4.1. Introducción

- En cada momento, almacenan información acerca de la historia del sistema. Cada almacén de información se denomina estado
- Tienen un número finito de estados
 - Es necesario diseñarlos con cuidado para recordar la información interesante
 - Estado: El primer símbolo fue letra, \$ o _
 - No es interesante recordar qué fue exactamente.
- En cada momento, el AF puede estar en alguno de ellos y, según va leyendo símbolos podrá ir cambiando de estado, por lo que el estado nos va a decir qué tipo de cadena ha llegado hasta ese momento.
- Habrá estados que activen la luz verde y otro que activen la roja.
- Ejemplo de Autómata finito: los analizadores léxicos
 - Ejemplo: Analizador léxico que determine si un identificador es válido en Java

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Un Autómata Finito Determinista, AFD, es una quíntupla AFD = (X, Q, δ, q₀, F) donde
 - X es un conjunto finito denominado alfabeto de entrada;
 - Q es un conjunto finito llamado conjunto de estados;
 - □ δ: X×Q→Q llamada función de transición de estados;
 - □ q₀ ∈Q es el llamado estado inicial;
 - □ F⊂Q recibe el nombre de conjunto de estados finales que corresponde a los estados q ∈Q en que se acepta la cadena de entrada.
- Determinista hace referencia al hecho de que

 - Para cada símbolo de entrada, existe un único estado al que el AFD puede llegar partiendo del actual

25

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Representación de la función de transición de un AFD
 - Tabla de Transiciones
 - Se representa δ mediante una matriz de |Q| x |X|
 - $\ \ \Box$ Filas: estados q \in Q, estado inicial precedido de \rightarrow y estados finales de *
 - $\ \square$ Columnas: símbolos de entrada $a\!\in\! X$ y en (a,q) el estado determinado por $\delta(a,q)$
 - Ejemplo.

Q	Х		
	а	b	
q ₁	q_2	q_3	
q_2			

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Representación de la función de transición de un AFD
 - Diagrama de Transición de estados
 - Se crea un grafo dirigido en el que, para cada estado $q_i \in Q$ se crea un nodo y, para cada transición $\delta(x_{j_i}, q_i) = q_k$, se crea un arco de q_i a q_k etiquetado con x_i .
 - El estado inicial tendrá un arco entrante no etiquetado y los estados finales estarán rodeados de doble círculo.
 - Ejemplo.

27

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Ejemplo. AFD que reconozca las palabras formadas por 'a' y 'b' con un número par de 'a' y un número par de 'b'
 - □ X={ a, b}
 - Q
 - q₀: El número de 'a' es par y el número de 'b' es par
 - q₁: El número de 'a' es par y el número de 'b' es impar
 - q₂: El número de 'a' es impar y el número de 'b' es par
 - q₃: El número de 'a' es impar y el número de 'b' es impar
 - q_0
 - $\neg F=\{q_0\}$

Autómatas, lenguajes y gramáticas regulares

4.2. Autómatas finitos deterministas (AFD)

 \Box δ : $X \times Q \rightarrow Q$

q origen	Símbolo a la entrada (X)	q destino
q_0	а	q_2
q_0	b	q_1
q_1	а	q_3
q_1	b	q_0
q_2	а	q_0
q_2	b	q_3
q_3	а	q_1
q_3	b	q_2

Autómatas, lenguajes y gramáticas regulares

29

4. Autómatas Finitos

4.2. Autómatas finitos deterministas (AFD)

- Ejemplo. AFD que reconozca los comentarios en un programa Java de la forma
 - /* texto, texto y más texto */
 - X={ Conjunto de caracteres ASCII}
 - Q
 - q₀: Todavía no ha llegado el símbolo /
 - q₁: Ha llegado una /
 - q₂: Inmediatamente después de llegar /, ha llegado un *
 - q₃: Después de encontrar la secuencia /*, llega *
 - ullet q $_4$: Inmediatamente después de llegar el * de q $_3$ llega /
 - $\neg q_0$
 - F={q₄}

Autómatas, lenguajes y gramáticas regulares

4.2. Autómatas finitos deterministas (AFD)

 \Box δ : $X \times Q \rightarrow Q$

q origen	Símbolo a la entrada (X)	q destino
q_0	Cualquier símbolo excepto /	q ₀
q_0	/	q ₁
q_1	Cualquier símbolo excepto *	q ₀
q_1	*	q_2
q_2	Cualquier símbolo excepto *	q_2
q_2	*	q ₃
q_3	Cualquier símbolo excepto /	q_2
q_3	/	q ₄
q_4	Cualquier símbolo excepto /	q_0
q_4	/	q_1

Autómatas, lenguajes y gramáticas regulares

31

4. Autómatas Finitos

4.2. Autómatas finitos deterministas (AFD)

- Representar mediante un grafo el AFD de la página 28-39
- Idem, mediante tabla de transiciones
- Idem AFD páginas 30-31

Autómatas, lenguajes y gramáticas regulares

4.2. Autómatas finitos deterministas (AFD)

Ejemplos

- □ AFD que reconozca las palabras formadas por símbolos del alfabeto X={0,1} en el que, el nº de veces que aparece el símbolo 1 es un número par
- AFD que reconozca las palabras formadas por símbolos del alfabeto X={0,1} en el que, el nº de veces que aparece el símbolo 1 es un número impar
- □ AFD que reconozca las palabras formadas por símbolos del alfabeto X={0,1} que empiecen y terminen con el mismo símbolo.
 - Ojo con casos como 0 que empiezan y terminan con el mismo símbolo

Autómatas, lenguajes y gramáticas regulares

33

4. Autómatas Finitos

4.2. Autómatas finitos deterministas (AFD)

- Ejemplos. AFD que reconozcan
 - Dígitos
 - Números naturales
 - Nº enteros
 - Nº reales sin exponente en Java
 - Identificadores en Java
 - Expresión aritmética de adición en Java
 - Expresión de asignación en Java

Autómatas, lenguajes y gramáticas regulares

4.2. Autómatas finitos deterministas (AFD)

Procesamiento de palabras en un AFD

- El "lenguaje del AFD" es el conjunto de palabras aceptadas por el mismo
- \Box Supongamos que $a_1a_2a_3a_4a_5$ es una secuencia de símbolos
- Comenzamos con el AFD en el estado inicial
- $\ \square$ Supongamos que fue $q_1.$ Se procesa el segundo símbolo aplicando $\delta(a_2,\,q_1)$
- □ Si q_n pertenece a F, la palabra es aceptada. Si no, es rechazada

Autómatas, lenguajes y gramáticas regulares

35

4. Autómatas Finitos

4.2. Autómatas finitos deterministas (AFD)

Configuración

- Descripción instantánea de un AFD
- $\quad \quad \ \ \, \square \quad (w,\,q),\,q\,\in\,Q\,\,,\,w\,\in\,X^*$
 - q representa el estado actual y w la cadena que queda por procesar
- Configuración inicial : (w, q₀)
- $\hfill\Box$ Configuración final o de aceptación de palabra: (\(\lambda, q_f\) , \hfill , \hfill \hfill ,

Movimiento

- \square (aw, q) \vdash (w, q') , δ (a, q) = q'

$$(w,q) \vdash (w_1, q_1) \vdash (w_2, q_2) \vdash \dots \vdash (w', q')$$

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Ejemplo: Sea el AFD de la página 30-31 y la palabra /* no comment */
 - Configuración inicial
 - Procese la palabra representando el procesamiento mediante configuraciones y movimientos
 - □ ¿Cuál es la configuración final?

37

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Extensión a palabras de la función de transición
 - $\, \square \,$ Si δ es la función de transición, la función de transición extendida se llamará δ^* y se construirá a partir de δ
 - Describe el comportamiento de un AFD partiendo de un estado y procesando una cadena de símbolos
 - Recibe un estado q y una cadena w y devuelve un estado p, estado que alcanza el autómata cuando comienza en el estado q y procesa la secuencia de símbolos w
 - Se define la función de transición extendida a partir de

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Lenguaje aceptado por un AFD
 - Aceptación de palabras
 - Una palabra w será aceptada por un AFD $\Leftrightarrow \delta^*(w, q_0) \in F$
 - Lenguaje reconocido por un AFD
 - Sea el AFD M= (X, Q, δ , q₀, F), el **lenguaje aceptado por M** que se representa como L(M) es el conjunto L(M)={ $w \in X^* \mid \delta^*(w, q_0) \in F$ }.
 - Al conjunto de los lenguajes reconocidos por algún AF se les denomina lenguajes regulares.
 - Para cada lenguaje regular, existe un AF que reconoce palabras de ese lenguaje y no reconoce ninguna palabra que no pertenezca al lenguaje.

30

- 4. Autómatas Finitos
 - 4.2. Autómatas finitos deterministas (AFD)
- Ejemplos : Describa informalmente el lenguaje. Busque una e.r
 - □ Considere el AFD siguiente AFD₁=({0,1}, {A, B}, δ, A, B) donde:

	δ	0	1
-	Α	Α	В
	В*	В	Α

□ Considere el AFD siguiente AFD₂=($\{0,1\}$, $\{A,B,C\}$, δ , A, $\{A,B\}$) donde:

	δ	0	1
→	Α*	В	Α
	В*	С	Α
	С	C	С

Autómatas, lenguajes y gramáticas regulares

4.2. Autómatas finitos deterministas (AFD)

- Autómatas Equivalentes
 - Dos autómatas son equivalentes si aceptan el mismo lenguaje
- Equivalencia de estados
 - Estados equivalentes.
 - Sea el AFD=(X, Q, q₀, δ , F) dos estados p y q son equivalentes (p≡q) si para toda cadena de entrada w, δ⁺ (w, p) es un estado final si y sólo si δ⁺ (w, q) también lo es
 - Es decir, serán equivalentes si tienen el mismo comportamiento ante toda palabra.
 - □ Estados distinguibles. p se distingue de q sii \exists w ∈ X* | δ * (w, p) ∈ F y δ * (w, q) \notin F o viceversa.
 - Si dos estados son equivalentes, pueden ser sustituidos por uno sólo con el mismo comportamiento que los originales
 - Consecuencia: Existen algoritmos para minimizar un AF, es decir, hallar otro AF equivalente con el número mínimo de estados

Autómatas, lenguajes y gramáticas regulares

41

4. Autómatas Finitos

4.2. Autómatas finitos deterministas (AFD)

- Minimización de Autómatas Finitos Deterministas. Algoritmo
 - □ Partimos de un AFD A=(X,Q, δ , q₀,F). Hallaremos un AFD que acepta L(A) y tiene el menor número de estados posibles A´=(X,Q´, δ ´, q₀´,F´).
 - El algoritmo consiste en determinar las clases de equivalencia en el conjunto de estados.
 - Paso 1.- Se elimina cualquier estado que no sea accesible desde el inicial
 - Paso 2.- Se dividen los estados restantes en particiones de forma que todos los estados de una partición sean equivalentes y no haya pares de estados equivalentes en particiones distintas.

Autómatas, lenguajes y gramáticas regulares

42.

4.2. Autómatas finitos deterministas (AFD)

- **Paso 2.1.** Construir una partición inicial Π dividiendo el conjunto Q en dos grupos: **estados finales** F, y **no finales** Q-F.
- **Paso 2.2.-** Determinar una nueva partición Π_{nueva} a partir de Π aplicando el siguiente procedimiento a cada grupo G de Π
 - Dividir G en subgrupos tales que dos estados q_i y q_j de G estarán en el mismo subgrupo sii para cada símbolo de entrada e, los estados q_i y q_j tienen transiciones con e hacia estados del mismo grupo de Π.
 - $\hfill\Box$ Sustituir G por sus grupos en $\Pi_{\text{nueva}}.$
- $\hfill\Box$ Paso 2.3.- Si $\Pi_{\text{nueva}} \neq \Pi,$ se han creado nuevos subgrupos
 - \square $\Pi = \Pi_{\text{nueva}}$
 - □ volver al paso 2.2
 - en caso contrario, es decir, si ya no salen más grupos
 - \square $\Pi_{\text{final}} = \Pi$
 - □ ir al paso 3

Autómatas, lenguajes y gramáticas regulares

43

4. Autómatas Finitos

4.2. Autómatas finitos deterministas (AFD)

- $\,\Box\,$ Paso 3.- Se escoge un estado de cada grupo de la partición $\Pi_{\rm final}$ como representante para formar el nuevo conjunto Q´.
- **Paso 4.-** Cálculo de δ' en A'. Sea q_i un estado representante, sea un símbolo a tal que $\delta(a,q_i)=q_j$ y sea q_k el representante del grupo de q_i , entonces $\delta'(a,q_i)=q_k$
- Paso 5.- Estado inicial y finales
 - El estado inicial q₀' de A' se elige como el representante del grupo que contiene al estado inicial q₀ de A.
 - El conjunto de estados finales F´ estará formado por los representantes de grupos donde haya estados finales.

Autómatas, lenguajes y gramáticas regulares

4.2. Autómatas finitos deterministas (AFD)

Ejemplo. Minimizar el AFD
 A=(X,Q,δ, q₀,F) donde X={a,b}
 Q={1,2,3,4,5} q₀=1, F={q₅} y δ
 viene dada por la siguiente tabla:

	а	b
1	2	3
2	2	4
3	2	3
4	2	5
5	2	3

Ejemplo. Minimizar el AFD
 A=(X,Q,δ, q₀,F) donde X={a,b}
 Q={0,1,2,3,4,5} y el resto de la
 información viene descrita en
 el siguiente diagrama de
 estados

Autómatas, lenguajes y gramáticas regulares

45

4. Autómatas Finitos

4.3. Aut. finitos no deterministas (AFND)

- Permiten 0, 1 o más transiciones desde un estado con cada símbolo de entrada.
 - Tiene la capacidad de disparar varias transiciones a la vez con el mismo símbolo de entrada y, por tanto, puede estar en varios estados simultáneamente
 - Por ejemplo, si estamos buscando la palabra clave implements en un programa en Java, y la configuración actual es (iResto_Cadena, q) es útil, al llegar el símbolo i, suponer que estamos al inicio de la palabra clave buscada y utilizar una secuencia de estados únicamente para comprobar que efectivamente llega esa palabra.
 - Sólo definimos los estados que necesitamos para aceptar palabras
- Reconocen los mismos lenguajes que los AFD

Autómatas, lenguajes y gramáticas regulares

4.3. Aut. finitos no deterministas (AFND)

- Similares a los AFD con un conjunto finito de estados y símbolos de entrada, un estado inicial, un conjunto de estados finales y una función de transición de estados δ
- Diferencia
 - $\ \ \Box$ AFD: δ define para cada posible combinación (x,q) un estado nuevo
 - AFND: δ puede no estar definida para alguna combinación (x,q)
 y, por el contrario, puede definir para otras combinaciones (x,q)
 más de un estado
- Ejemplo

Autómatas, lenguajes y gramáticas regulares

47

4. Autómatas Finitos

4.3. Aut. finitos no deterministas (AFND)

- Un AFND es una quíntupla AFND = (X, Q, δ, q₀, F) con el mismo significado que para un AFD salvo que δ es en este caso una aplicación no determinista o relación de la forma: δ:X×Q→P(Q) donde P(Q) es un subconjunto de Q
- Configuración. Descripción instantánea de un AFND
 - $\ \square \ (w,\,q),\,q\in Q$, $w\in X^*,$ donde q representa el estado actual y w la cadena que queda por procesar
 - □ Configuración inicial : (w, q₀)
- Movimiento Es el tránsito entre dos configuraciones.
 - □ Se representa: (aw ,q) \vdash (w, q') donde q' $\in \delta(a, q)$

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Representación de AFND.
 - Tabla de Transiciones. Se diferencian de los AFD en que el contenido de las casillas es un conjunto (incluso el vacío)

	0	1
Α	{A,B}	Α
В	Ø	С
С	Ø	Ø

Diagrama de Transición de estados.

Autómatas, lenguajes y gramáticas regulares

49

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Ejemplos.
 - □ Sea el AFND de la página 49. ¿Qué lenguaje representa?
 - Descríbase, mediante configuraciones y movimientos el procesamiento de las palabras 01, 001, 011, 1001

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Función de transición extendida
 - □ Se extiende $\delta : X \times Q \rightarrow P(Q)$ a $\delta^* : X^* \times Q \rightarrow P(Q)$ como sigue:

$$\delta^*(\lambda, q) = q$$

 $\delta^*(wx, q) = \bigcup \delta(x, q'), x \in X y w \in X^*$
 $q' \in \delta^*(w, q)$

- Palabra aceptada por un AFND
 - Una palabra a₁ a₂ ... a_n es aceptada por un AFND si existe una sucesión de transiciones correspondientes a arcos etiquetados a₁ a₂ ... a_n que va desde el estado inicial a algún estado final
- Lenguaje aceptado por un AFND
 - □ Si M = (X, Q, δ, q_0, F) es un AFND, llamamos lenguaje aceptado por M, L(M), al conjunto

$$L(M) = \{ w \in X^* \mid \delta^*(w, q_0) \cap F \neq \emptyset \}$$

51

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Equivalencia entre AFD y AFND
 - $\, \square \,$ Teorema: Si L $\subset X^*$ es aceptado por un AFND, existe un AFD que acepta L.
 - □ **Ejemplo.** Dado el AFND M = (X, Q, δ , q₀, F) donde X = {0,1}, Q = {0, 1, 2}, q₀ = 0, F = {2} y δ dada en el diagrama, trataremos de obtener el AFD M' = (X, Q', δ ', q₀, F') equivalente

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Algoritmo AFND ⇒ AFD
 - Paso 1. Definición del nuevo conjunto de estados Q'
 - Q' = P(Q) (conjunto de partes de Q)
 - Notación: al conjunto { q_i , q_i, ... , q_n } lo denotamos por [q_i q_i ... q_n]
 - A menudo, no todos los estados de Q' serán accesibles desde el estado inicial q₀'. En el Paso 2 se determinará cuáles son accesibles
 - Q'={[Ø], [0], [1], [2], [0,1], [0,2], [1,2], [0,1,2]}

53

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Algoritmo AFND ⇒ AFD
 - Paso 2. Definición de la nueva función de transición δ'
 - Para cada conjunto de estados C⊆Q' y para cada símbolo a∈X
 δ'(a, C) = U δ(a,p)

p en C

- Para cada conjunto de estados que sea accesible desde el q₀', miramos para todos los estados del conjunto a qué estados transita con la entrada a y tomamos la unión de todos ellos
- Q' estará formada por aquellos estados que sean accesibles desde el inicial al definir δ'
- Ejemplo: $\delta'(0, [0]) = [0,1]$; $\delta'(1, [0,1]) = [0,2]$

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)

δ΄	0	1
[0]	[0,1]	

55

- 4. Autómatas Finitos
 - 4.3. Aut. finitos no deterministas (AFND)
- Algoritmo AFND ⇒ AFD
 - Paso 3. Definición del nuevo estado inicial q₀'
 - q₀': [q₀]
 - Ejemplo
 - Paso 4. Definición del nuevo conjunto de estados finales F´
 - $F' = \{ [q_1q_2...q_n] \in Q' \mid \exists i \text{ con } q_i \in F \}$
 - Ejemplo
 - Paso 5. Eliminación de estados inaccesibles
 - Todos aquellos estados de Q' (ver paso 1) que no hayan hecho falta en el paso 2.

Autómatas, lenguajes y gramáticas regulares

4.3. Aut. finitos no deterministas (AFND)

• Ejemplo. Sea el siguiente AFND, calcular el AFD equivalente

Autómatas, lenguajes y gramáticas regulares

57

4. Autómatas Finitos

4.4. AFND con λ -movimientos

- Extensión de AFND que permite cambios de estado con la entrada vacía (λ), es decir, permite evolucionar de un estado a otro sin consumir ningún símbolo de la cadena de entrada.
- Los autómatas aceptarán las secuencias de etiquetas que pasan por algún camino que lleve desde el estado inicial a algún estado final. Cada λ que se encuentre en el camino es "invisible"
- No expande la clase de lenguajes hasta ahora aceptados por los AF, pero proporciona facilidades para construirlos.

Autómatas, lenguajes y gramáticas regulares

4.4. AFND con λ -movimientos

- Un AFND con λ -movimientos se define como M=(X,Q, δ ,q₀,F) donde sólo δ difiere de un AFND δ :{X \cup { λ }} × Q \rightarrow P(Q)
- Ejemplo:

δ	0	1	2	λ
q_0	0	Ø	Ø	q_1
q_1	Ø	q_1	Ø	q_2
q_2				

- Configuración de un AFND con λ-movimientos
- Movimiento: Es el tránsito entre dos configuraciones.
 - □ Se representa: (aw ,q) \vdash (w, q') donde q' $\in \delta^*(a, q)$

Autómatas, lenguajes y gramáticas regulares

59

4. Autómatas Finitos

4.4. AFND con λ -movimientos

- Ejemplo: Sea el AFND con λ-movimientos siguiente, establezca la configuración inicial y los movimientos que siguen hasta llegar a la configuración final con las palabras
 - **012**
 - **02**
 - 12
 - п 2
 - **00122**
 - **00000**

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.4. AFND con λ -movimientos
- λ -Clausura de un estado, λ -Cl(q): λ -Cl(q): Q \rightarrow P(Q)
 - □ λ -Cl (q) = {q} \cup {q' ∈ Q| \exists camino de q a q' con λ }
 - Es decir:
 - 1. $q \in \lambda$ -Cl (q)
 - 2. $si p \in \lambda -Cl(q) \Rightarrow \delta^*(\lambda, p) \in \lambda -Cl(q)$
- Ejemplo:

	λ-CI
q_0	{q ₀ , q ₁ , q ₂ }
q_1	
q_2	

61

- 4. Autómatas Finitos
 - 4.4. AFND con λ -movimientos
- λ -Clausura de un conjunto de estados, λ -Cl(A):P(Q) \rightarrow P(Q)
 - □ λ Cl(A) = \cup { λ -Cl(q);q ∈ A}
 - Observaciones.
 - λ -Cl(A) $\subseteq \lambda$ -Cl(B) si A \subseteq B
 - λ-Cl (λ -Cl (A)) = λ -Cl (A)
- Ejemplo:

	λ-CI
$\{q_0\}$	$\{q_0, q_1, q_2\}$
$\{q_0, q_1\}$	
$\{q_0, q_1, q_2\}$	

Autómatas, lenguajes y gramáticas regulares

4.4. AFND con λ-movimientos

- Función de transición extendida
 - $\quad \ \ \, \Box \quad \text{Se extiende } \delta \colon \{X \cup \{\lambda\}\} \times Q \to P(Q) \text{ a } \delta^* \colon\! X^* \times Q \to P(Q) \text{ donde} \colon \\$
 - 1. $\delta *(\lambda, q) = \lambda Cl(q)$
 - 2. $\delta^*(x, q) = \lambda CI \left[\bigcup \{ \delta(x, s) ; s \in \lambda CI(q) \} \right]$
 - 3. δ *(wx, q) = λ -Cl [\cup { δ (x, r) | r \in δ *(w, q) }]

$\delta^*(0, q_0)$	$\{q_0, q_1, q_2\}$
$\delta^*(02, q_1)$	
δ*(0011, q ₀)	

Autómatas, lenguajes y gramáticas regulares

63

4. Autómatas Finitos

4.4. AFND con λ-movimientos

- Palabra aceptada por un AFND con λ-movimientos

 - Una palabra a_1 a_2 ... a_n es aceptada por un AFND si existe algún camino etiquetado con los símbolos de la palabra que, partiendo del estado inicial lleve a algún estado final. Pueden aparecer en el camino arcos etiquetados con λ
- Lenguaje aceptado por un AFND con λ-movimientos M=(X, Q, δ, q₀, F)

 - □ O también $L(M) = \{ w \in X^* \mid \delta^* (w, q_0) \cap F \neq \emptyset \}.$

Autómatas, lenguajes y gramáticas regulares

4.4. AFND con λ-movimientos

- Ejercicios. Definir un AFND con λ-movimientos que reconozca el lenguaje L={palabras formadas por símbolos del alfabeto ASCII que representen un número real, con signo y sin exponente en JAVA}
 - **2**, 2.3, -3, -3.4,.....

Autómatas, lenguajes y gramáticas regulares

65

4. Autómatas Finitos

4.4. AFND con λ-movimientos

- Equivalencia entre AFND con y sin λ-movimientos
 - □ Teorema. Si L \subset X* es aceptado por un AFND con λ movimientos, entonces L es aceptado por un AFND sin λ movimientos y, por tanto, L es un lenguaje regular.
- Algoritmo AFND con λ -movimientos \Rightarrow sin λ -movimientos
 - $\ \square$ Dado un AFND con λ -movimientos M=(X, Q, δ, q₀, F), el nuevo autómata lo definimos como: M'=(X, Q, δ', q₀, F')
 - □ Paso 1. Definición de δ ': δ ': $X \times Q \rightarrow P(Q)$
 - $\delta'(x, q) = \delta^*(x, q)$
 - 1. Calculamos P1 = λ -Cl(q)
 - 2. Calculamos P2 = $[\cup \{\delta (x, q_i) | q_i \in P1]$
 - 3. Calculamos P3 = λ -Cl (P2)

Autómatas, lenguajes y gramáticas regulares

4.4. AFND con λ -movimientos

- Algoritmo AFND con λ-movimientos \Rightarrow sin λ-movimientos
 - □ Paso 1. Definición de δ ': δ ': $X \times Q \rightarrow P(Q)$

δ΄	0	1	2
q_0			
q_1			
q_2			

Autómatas, lenguajes y gramáticas regulares

67

4. Autómatas Finitos

4.4. AFND con λ -movimientos

- Algoritmo AFND con λ -movimientos \Rightarrow sin λ -movimientos
 - Paso 2. Definición de F'
 - Si λ -Cl (q₀) \cap F $\neq \varnothing$ entonces F' = {q₀} \cup F
 - Si λ -Cl (q₀) \cap F = \emptyset entonces F' = F
 - □ Calcular F' y dibujar el diagrama de transición de estados de M'

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos
 - 4.5. Equivalencia entre AF y e.r.
- Teorema. Si r es una expresión regular, entonces existe un AFND con λ-movimientos y con a lo sumo un estado final, del que no sale ninguna transición, que acepta L(r).
- Demostración (por inducción en el nº de operadores de la e.r)
 - Paso básico. Con 0 operadores.

69

- 4. Autómatas Finitos
 - 4.5. Equivalencia entre AF y e.r.
- Demostración
 - Paso de inducción. Con 1 o más operadores
 - Sean r_1 y r_2 dos e.r., por tanto para r_1 existe M_1 = (Q_1 , X_1 , δ_1 , q_1 , F_1) tal que L (M_1) = L (r_1) y para r_2 existe M_2 = (Q_2 , X_2 , δ_2 , q_2 , F_2) tal que L (M_2) = L (r_2)
 - Supongamos $Q_1 \cap Q_2 = \emptyset$ (renombrar los estados) y construimos M.
 - Caso A: $\mathbf{r} = (\mathbf{r}_1 + \mathbf{r}_2)$ □ M = ($\mathbf{Q}_1 \cup \mathbf{Q}_2 \cup \{\mathbf{q}_0, \mathbf{f}_0\}, \mathbf{X}_1 \cup \mathbf{X}_2, \delta, \mathbf{q}_0, \{\mathbf{f}_0\}), \text{con } \delta$:

□ $L(M) = \{ w / w \in L(M_1) \text{ o } w \in L(M_2) \}$

Autómatas, lenguajes y gramáticas regulares

4.5. Equivalencia entre AF y e.r.

■ Caso B: $\Gamma = (\Gamma_1 . \Gamma_2)$ □ M = (Q₁ U Q₂, X₁ U X₂, δ, q₁, { f₂}), con δ:

- $\quad \ \Box \quad L(\mathsf{M}) = \left\{ \, w_1^{} w_2^{} \, / \, w_1^{} \in L(\mathsf{M}_1) \, , \, w_2^{} \in L(\mathsf{M}_2) \right\}$
- Caso C: $r = (r_1)^*$
 - \square M = (Q₁ U {q₀,f₀}, X₁, δ, q₀, { f₀}), con δ:

 $\quad \Box \quad L(M) = \{ \ w \ / \ w \in L(M_1)^* \}$

Autómatas, lenguajes y gramáticas regulares

71

4. Autómatas Finitos

4.5. Equivalencia entre AF y e.r.

Reglas de desarrollo

Autómatas, lenguajes y gramáticas regulares

- 4. Autómatas Finitos4.5. Equivalencia entre AF y e.r.
- Ejercicios

```
 r = (0 + 10^{*}1) 1 (01)^{*} 
 r = (a + b)^{*} (aa + bb) (a + b)^{*}
```

70

- 4. Autómatas Finitos
 - 4.5. Equivalencia entre AF y e.r.
- **Teorema**: Si L ⊂ X* es un lenguaje aceptado por un AFD, entonces L se puede describir por una expresión regular.
- **Corolario**: Sea X un conjunto finito, y $L \subset X^*$. Son equivalentes las siguientes afirmaciones:
 - 1. L es un lenguaje regular
 - 2. L es un lenguaje aceptado por algún AFD
 - 3. L es un lenguaje aceptado por algún AFN sin λ -mov.
 - 4. L es un lenguaje aceptado por algún AFN con λ-mov.
 - 5. L se puede describir por una expresión regular

Autómatas, lenguajes y gramáticas regulares

4.5. Equivalencia entre AF y e.r.

- Se trata de, dado un AFD, encontrar una expresión regular de tal forma que describan el mismo lenguaje.
- Dado un AFD se denota por L_q al lenguaje reconocido por el AFD cuando se considera al estado q como estado inicial.
- Se denota por I_q a la e.r. que denota el lenguaje L_q, por tanto, L_q = L(I_q)
- Ejemplo
 - □ I_q=
 - □ L_q= {palabras formadas por 0, 1 que}

Autómatas, lenguajes y gramáticas regulares

75

4. Autómatas Finitos

4.5. Equivalencia entre AF y e.r.

- Ecuación característica
- $m(q_0, q_0) = 0+1$
- $m(q_0, q_1) = 0$
- $m(q_0,q_2) = \emptyset$
- $m(q_1,q_0)=$
- $m(q_1,q_1)=$
- $m(q_1,q_2)=$

- $m(q_2,q_0) =$
- $m(q_2, q_1) =$
- $m(q_2,q_2)=$
- - $| q_0 = (0+1).|q_0 + 0.|q_1 + \varnothing.|q_2$
 - Iq₁=
 - $| q_2 =$

Autómatas, lenguajes y gramáticas regulares

4.5. Equivalencia entre AF y e.r.

- Se trata de, dado un AFD encontrar una expresión regular de tal forma que describan el mismo lenguaje.
- Regla de Arden
 - □ Sean R, S, y T tres expresiones regulares tal que $\lambda \notin S$, entonces
 - $\blacksquare \quad \mathsf{R} = \mathsf{SR} + \mathsf{T} \qquad \Leftrightarrow \qquad \mathsf{R} = \mathsf{S}^*\mathsf{T}$
 - $\blacksquare \quad \mathsf{R} = \mathsf{RS} + \mathsf{T} \qquad \Leftrightarrow \qquad \mathsf{R} = \mathsf{TS}^*$

Autómatas, lenguajes y gramáticas regulares

77

4. Autómatas Finitos

4.5. Equivalencia entre AF y e.r.

- Algoritmo AFD ⇒ e.r.
 - Paso 1.- Obtenemos las ecuaciones características del AF calculando I_q para todo q∈Q.
 - $|q_0| = (0+1).|q_0| + 0.|q_1| + \varnothing.|q_2|$
 - Iq₁=
 - $| q_2 =$
 - Paso 2.- Despejar I_q aplicando las propiedades de las e.r. (principalmente regla de Arden y distributiva)
 - $Iq_0 = (0+1).Iq_0 + 0Iq_1$ Aplicando la regla de Arden: $Iq_0 = (0+1)*0Iq_1$
 - Idem Iq₁y Iq₂
 - Paso 3.- Si q₀ es el estado inicial I_{q0} es la e.r. que denota aquellas cadenas que partiendo de q₀ llegan a un estado final y por tanto la e.r. que denota el lenguaje reconocido por el AFD.

Autómatas, lenguajes y gramáticas regulares

5. Propiedades de los lenguajes regulares5.1. Lema de Pumping

- Cuestión pendiente: Dado un lenguaje L, ¿es regular?.
 - El Lema de Pumping se puede utilizar para demostrar que un lenguaje L no es regular.
- **Lema de Pumping:** Sea L un lenguaje aceptado por un AFD M con n estados. Sea $w \in L$ y $|w| \ge n$. Entonces, es posible descomponer w en la forma w = xvy, donde la subcadena v es no vacía, $|xv| \le n$ y $xv^iy \in L$, $\forall i \ge 0$.
- Demostración:
 - Sea $w = x_1 x_2 ... x_m$ (|w| = m). En el proceso de aceptación de w por el autómata M, se recorren una sucesión de estados de M: $s_0, s_1, ... s_m$, donde $s_i = \delta^*(x_1 x_2 ... x_i, q_0)$ será el estado en que nos encontramos después de haber leído los primeros i símbolos de w.

Autómatas, lenguajes y gramáticas regulares

79

5. Propiedades de los lenguajes regulares5.1. Lema de Pumping

Lema de Pumping. Demostración

- □ M sólo tiene n estados, estamos pasando por m+1>n estados. Por lo que dos de los s_i deben ser el mismo estado:
 - $s_i = \delta^*(x_1 x_2 ... x_i, q_0) = \delta^*(x_1 x_2 ... x_i ... x_i, q_0) = s_i$
- Dicho de otra forma, el trayecto que w nos obliga a hacer a través de M contiene una cadena cerrada: $s_i = \delta^*(x_{i+1}, x_{i+2}, \dots, x_i, s_i)$
- □ Pongamos $x = x_1 x_2 ... x_i v = x_{i+1} x_{i+2} ... x_i y = x_{i+1} x_{i+2} ... x_m$
- Está claro entonces que w = xvy, y v es no vacía (aunque x e y pudieran serlo).
- □ Si cogemos s_i como el primer estado que se repite entonces $|xv| \le n$
- □ Como $\delta^*(xv^iy, q_0) = \delta^*(w, q_0) = s_m$ es final, cualquier xv^iy pertenece a L, que es lo que se quería demostrar.

Autómatas, lenguajes y gramáticas regulares

5. Propiedades de los lenguajes regulares5.1. Lema de Pumping

- **Teorema:** $L = 0^k 1^k$ no es regular.
- Demostración:
 - Si L fuese regular, sería aceptado por un AFD de n estados.
 Esto, en combinación con la propiedad garantizada por el lema de pumping, conduce a una contradicción.
 - □ $w = 0^n 1^n \in L$ de longitud 2n. Le aplico las hipótesis del lema de pumping y podemos escribir $0^n 1^n = xvy$ de forma que $xvvy \in L$
 - □ Como |xv|≤n se tiene que v está formada sólo por ceros, con lo que xvvy tiene más ceros que unos (ya que v no puede ser vacía) y es imposible que pertenezca a L
 - □ Tenemos una contradicción, por lo que deducimos que *L* no es regular

Autómatas, lenguajes y gramáticas regulares

81

5. Propiedades de los lenguajes regulares5.1. Lema de Pumping

Lema de Pumping. Ejemplo

- Sea el lenguaje L que consta de todas aquellas cadenas de paréntesis balanceados, demostrar que no es regular
- Demostrar que no son regulares los siguientes lenguajes
 - {0ⁿ1^m2ⁿ | siendo n, m enteros arbitrarios}
 - {0ⁿ12²ⁿ | siendo n, m enteros arbitrarios}
 - {cadenas formadas por 0 y 1 de la forma ww, es decir una subcadena repetida}
 - {cadenas formadas por 0 y 1 de la forma aā, es decir una subcadena reflejada}

Autómatas, lenguajes y gramáticas regulares

- 5. Propiedades de los lenguajes regulares5.2. Propiedades de clausura de los l.r.
- Las propiedades de clausura expresan la idea de que, cuando uno o varios lenguajes son regulares, otros relacionados con ellos también lo son.
- Los lenguajes regulares son cerrados para la unión, concatenación y clausura (operador *).
 - Es inmediato por la definición de e.r.
- Si L ⊂ X* es un LR, entonces su complementario L = X* L también lo es.
- Demostración
 - □ Sea L=L(A) para un AFD A=(X, Q, δ , q₀, F)
 - \Box Se define B como el AFD (X, Q, δ , q₀, Q-F)
 - □ $w \in L(B)$ sii $\delta^*(w, q_0) \in Q$ -F, lo que significa que $w \notin L(A)$
 - □ Por tanto $\overline{L} = L(B)$

83

- 5. Propiedades de los lenguajes regulares5.2. Propiedades de clausura de los l.r.
- Ejemplo. Sea el siguiente AFD
 - □ ¿ Quién es L(A)?
 - Buscar una e.r.

- □ Encontrar Ā, AFD que reconozca el complementario de L(A)
- Y una e.r. equivalente a Ā

Autómatas, lenguajes y gramáticas regulares

- 5. Propiedades de los lenguajes regulares5.2. Propiedades de clausura de los l.r.
- Si L y M son lenguajes regulares, también lo es L \cap M L \cap M = $\overline{\overline{L} \cup \overline{M}}$
- Construcción del AFD

 - AFD A que simule el comportamiento de ambos autómatas
 - $\blacksquare \quad A=(X, Q_1 \times Q_M, \delta, (q_1, q_M), F_1 \times F_M)$
 - Los estados de A son pares de estados, el 1º de A_L y el 2º de A_M
 - Estado inicial (q_I, q_M)
 - Estados finales F_I xF_M
 - Transiciones en A: Si A está en el estado (p,q) y a es el símbolo a la entrada, suponiendo que $\delta_L(a,p)$ =r y $\delta_M(a,q)$ =s, $\delta(a,(p,q))$ =(r,s)
 - \Box $\delta(a, (p,q))=(\delta_L(a,p), \delta_M(a,q))$

85

- 5. Propiedades de los lenguajes regulares5.2. Propiedades de clausura de los l.r.
- Sean los siguientes AFD

- □ ¿ Qué lenguajes aceptan? Definir e.r. para cada uno de ellos
- Definir un AFD que acepte la intersección de los lenguajes reconocidos por ambos autómatas.

Autómatas, lenguajes y gramáticas regulares

6. Propiedades de los lenguajes regulares6.1. Aplicaciones de los A.F

- La aplicación más inmediata de los AF es la construcción de analizadores léxicos.
- La tarea del analizador léxico es la de leer carácter a carácter el fichero de entrada y reconoce las unidades sintácticas
 - subcadenas de caracteres consecutivos que forman una agrupación lógica con significado léxico para el lenguaje
 - palabra reservada, identificador, número, etc.
 - Ejemplo
 - Subcadena
 if
 [A-Za-z][A-Za-z0-9]*

unidad sintáctica palabra reservada if identificador

El analizador léxico se construirá como un AF, que habitualmente será un AFN con λ-movimientos de la siguiente forma:

Autómatas, lenguajes y gramáticas regulares

87

7. Aplicaciones de los Autómatas Finitos

Autómatas, lenguajes y gramáticas regulares