GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

1. Champ d'application

Activité/méthode concernée : <i>extraction d'ADN</i>	
Portée d'accréditation :	
[] Fixe	
FLEX1	
FLEX2	
[X] FLEX3	
2. Intitulé de méthode	
Nom de la méthode : extraction d'ADN sur billes magnétiques à partir de sang	
[] Méthode manuelle	
[X] Méthode semi-automatisée	
[] Méthode automatisée	
[] Autre méthode : à préciser	
3. Elaboration du développement	
3.1. Type de validation	
[X] Développement d'une nouvelle méthode	
[] Adoption d'une nouvelle méthode reconnue	
Adaptation d'une méthode existante (contrainte technique, évolution technique,)	
référence de la méthode concernée (codification du MOP) : à compléter	
[] Optimisation d'une méthode existante (temps, coût,)	
référence de la méthode concernée (codification du MOP) : à compléter	
[] Alternative d'une méthode existante	
référence de la méthode concernée (codification du MOP) : à compléter	
[] Traitement d'une matrice biologique non validée précédemment : <i>à préciser</i>	
3.2. Revue de méthode	
La revue de méthode s'appuie sur un référentiel :	
[X] non	
[] oui : à préciser	

3.3. Contexte et objectifs

Développer et routiniser une méthode de purification ADN à l'aide de billes paramagnétiques, adaptée au type de prélèvements traités au sein de la plateforme de génotypage GDScan. L'objectif étant de remplacer la méthode actuelle sur colonne de silice, au profit d'une méthode

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

sur billes paramagnétiques pour laquelle les leviers d'optimisation sont plus importants permettant de viser un meilleur rapport coût/qualité.

Objectifs:

- Parvenir à produire des extractions ADN sur matrice sang compatibles et adaptées à un traitement en génotypage haut-débit (Infinium, Illumina)
- Avoir accès à une méthode semi-automatisée afin de diminuer le risque d'erreur humaine et de viser un possible gain de temps pour l'opérateur
- Optimiser les coûts d'utilisation de cette méthode afin de réduire davantage les coûts d'extraction par la méthode actuelle sur colonne sans dégradation notable des performances à l'issue de l'opération de génotypage

3.4. Sélection de la méthode

L'actuelle méthode, sur colonne de silice induit, même avec un tarif négocié, un coût annuel élevé puisqu'actuellement, le consommable nécessaire à l'extraction a un coût unitaire de 1,29 € H.T. le point d'extraction/purification à partir de sang.

La technologie de purification par billes paramagnétiques peut apparaître de prime abord comme une technologie plus coûteuse puisqu'elle affiche un prix catalogue de l'ordre de 2,17 € H.T. le point d'extraction/purification à partir d'une matrice sang. Toutefois, cette technologie offre une souplesse d'utilisation qui nous permettrait d'optimiser ces coûts notamment en passant par réduction de la consommation de certains réactifs et, parallèlement, en négociant la tarification chez notre fournisseur.

Ainsi, nous prévoyons de réaliser un gain de 0,65 € H.T. ± 25 % par point d'extraction en diluant ou réduisant les volumes d'utilisation de certains réactifs du kit et après négociation tarifaire.

Concernant la partie consommables plastiques annexes au kit d'extraction, nous sommes actuellement sur un coût de 0,34 € H.T. par point avec la méthode d'extraction sur colonne de silice.

Avec la technologie d'extraction sur billes magnétiques nous atteindrions après négociations un coût consommables plastiques à 0,32 € H.T. par point.

Enfin, la mise en place d'une telle technologie permettrait de viser un gain de temps d'intervention du personnel puisque l'extraction de 96 échantillons serait semi-automatisée et libère donc le personnel le temps de la durée d'extraction.

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

3.5. Planification - Responsabilités

Pilote de projet : C.Audebert

Personnel concerné par la validation de méthode : Assistantes Ingénieures, Personnels

plateforme génotypage

Date d'ouverture de l'enregistrement (JJ/MM/AA) : 15/11/2022

Responsabilité (Nom-Prénom - Fonction)	Tâche (liste non exhaustive)	Délai de réalisation	Attribuée à (Nom-Prénom - Fonction)
C.Audebert Directeur R&D	Prospection et sélection d'un achat matériel en adéquation avec la méthode visée	4 mois	S.Merlin Assistant Ingénieure Responsable achats
C.Audebert Directeur R&D	Développement d'une méthode d'extraction sur billes magnétiques à partir d'une matrice sang sur un support robotique	4 mois	S.Merlin Assistant Ingénieure Responsable achats
C.Audebert Directeur R&D	Produits d'extraction ADN compatibles avec la technologie de génotypage utilisé sur la plateforme	4 mois	S.Merlin Assistant Ingénieure Responsable achats
C.Audebert Directeur R&D	Optimisation des coûts d'utilisation afin de les réduire autant que possible	4 mois	S.Merlin Assistant Ingénieure Responsable achats
C.Audebert Directeur R&D	Vérification et validation	4 mois	C.Audebert Directeur R&D
Ludivine Liétar Responsable Plateforme de génotypage GD Scan	Développement, analyse et rédaction → Version 221115_02 - ajout de la justification de dérogation aux critères de performance optimaux - ajout du contrôle répétabilité/reproducti bilité (Essai 6) - ajout de la	31/07/2024	Ludivine Liétar Responsable Plateforme de génotypage GD Scan

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

	concordance des génotypages (Essai 7) - mise à jour du point 13. Analyse		
Ludivine Liétar Responsable Plateforme de génotypage GD Scan	Réalisation des essais → Version 221115_02	12/07/2024	Ludivine Liétar Responsable Plateforme de génotypage GD Scan Michèle Boutté Karine Le Roux Mélissandre Barbet Bio Techniciennes Pierre Bouvelle Responsable SI
Christophe Audebert Directeur Recherche et Développement	Vérification et validation → Version 221115_02	31/07/2024	Christophe Audebert Directeur Recherche et Développement

Exemples de tâches (non exhaustif) : Sélection de la méthode, Développement - définition des essais, Développement - réalisation des essais, Développement - édition et interprétation des résultats, Rédaction - gestion des enregistrements relatifs, Vérification/validation, etc...

4. Contraintes du projet

Liste non exhaustive, détailler les catégories concernées

[X] Techniques:

Modification des pratiques en place au laboratoire.

Prévoir une formation des personnels habilités à l'extraction.

[X] Equipements :

Cette technologie nécessite un investissement matériel permettant sa mise en œuvre.

Il conviendra de sélectionner la meilleure option afin de permettre une optimisation investissement - coût - rendement.

- [] Qualité des matrices/données :
- [] Quantité de matrices/données :
- [X] Coût investissement :

La technologie ciblée nécessitera d'investir dans 2 robots afin d'assurer un débit adapté au volume de prélèvements traités par la plateforme.

La technologie sur billes magnétiques est, de base, une technologie plus coûteuse que celle actuellement utilisée. Il s'agira donc d'effectuer une optimisation du processus afin de réduire

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	3_FORM_53 SMQ	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

les coûts dus à l'introduction de cette nouvelle méthode voir, si possible, de descendre à un coût inférieur aux coûts de traitement avec la méthode actuelle.

[] Autre(s):

5. Caractéristiques de la méthode et performances attendues

5.1. Principe de la méthode

La technologie est basée sur l'adsorption réversible des acides nucléiques sur des billes paramagnétiques dans des conditions de tampon appropriées. Après la lyse du sang total, des billes paramagnétiques sont ajoutées et les conditions de liaison dans lesquelles l'ADN se lie aux billes magnétiques sont ajustées par l'ajout d'un tampon de liaison. Après séparation magnétique de leur milieu, les billes paramagnétiques sont lavées pour éliminer les contaminants et sels. Enfin, l'ADN hautement purifié est élué et peut être directement utilisé pour des applications en aval.

5.2. Domaine d'application

La présente méthode s'applique à l'ensemble des prélèvements de sang bovin reçus au sein de la plateforme de génotypage GDScan.

5.3. Matrice(s)/Données

Matrice(s) / données concernée(s)	Nature	Conditionnement / emplacement	Conservation pré- traitement
[x]	sang total	tube EDTA	température ambiante
[]	bulbes de poils	pochette Kit GDScan	température ambiante
[]	biopsie auriculaire = cartilage	tube avec conservateur (Allflex TSU ou TST)	température ambiante
[]	semence	paillette de conservation de sperme dilué	température ambiante
[]	ADN	plaques ADN (4x96 échantillons)	5°C +/- 3°C
[]	métadonnées et données de génotypage	base de données / serveur	-
[]	autre (à préciser) :	(à préciser)	(à préciser)

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

5.4. Traçabilité des échantillons

Pour chaque essai, l'ensemble des informations liées aux prélèvements (enregistrement et traçabilité) tout au long de la méthode d'extraction d'ADN doit être conservé et l'accès aux informations clairement identifié.

5.5. Paramètres

Le ou les paramètre(s) analysé(s) sont :

[X] quantitatifs (ex : concentration en ADN) : Concentration ADN > 15 ng/µL

[X] qualitatifs (ex : Call Rate) : Call Rate (intervient en fin de validation), concordance

génotypages

5.6. Critères de performance attendus

Méthode	Nombre d'échantillons	Critères de performance	Répétabilité	Reproductibilité
[] Extraction d'ADN	16 prélèvements (dont 8 satisfaisants au critère de concentration seront génotypés)	Pour au moins 90 % des échantillons : - [ADN] > 15 ng/µL - Call Rate > 0,95 - Médiane Call Rate > 0,975 Concordance génotypages : 99 % de similarité 580 SNP 8 échantillons issus des tests répétabilité/reproduc tibilité	16 mêmes prélèvements (dont 8 satisfaisants au critère de concentration seront génotypés)	16 mêmes prélèvements (dont 8 satisfaisants au critère de concentration seront génotypés)
[] Génotypage d'ADN	32 échantillons d'ADN	Pour au moins 90 % des échantillons : - Call Rate > 0,95 pour au moins 90 % des échantillons - Médiane Call Rate > 0,975 - Prochain essai interlaboratoire validé (à posteriori)	Contrôle répétabilité selon GDB_PRO_05_ Contrôle de répétabilité et de reproductibilité : méthode de génotypage haut-débit par puces à ADN	Contrôle reproductibilité selon GDB_PRO_05_ Contrôle de répétabilité et de reproductibilité : méthode de génotypage haut-débit par

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	B_FORM_53 SMQ	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

		Concordance génotypages: échantillon du test répétabilité/reproduc tibilité GDB_PRO_05_Con trôle de répétabilité et de reproductibilité : méthode de génotypage haut- débit par puces à ADN, auquel on applique un seuil de 99 % de similarité 580 SNP		puces à ADN
[] Nouveau support de génotypage	2 charolais + 2 holstein déjà génotypés sur version N-1	- Présence 580 SNP ISO (GDB_FI_15_SNP ISO 580) - 99 % de similarité 580 SNP ISO N-1 et N (génotypages valides)	2 mêmes charolais + 2 mêmes holstein déjà génotypés sur version N-1	2 mêmes charolais + 2 mêmes holstein déjà génotypés sur version N-1
[x] Autre : Extraction d'ADN	96 prélèvements extraits et génotypés	Pour au moins 90 % des échantillons : - [ADN] > 15 ng/µL - Call Rate > 0,95 - Médiane Call Rate > 0,975 Concordance génot ypages : 99 % de similarité 580 SNP (ou à défaut 576 SNP communs, voir justification ci-après) 2 échantillons issus des tests répétabilité/reproduc tibilité	Prochain contrôle de répétabilité GDB_PRO_06_C ontrôle de reproductibilité et répétabilité de la phase d'extraction	Prochain contrôle de reproductibilité GDB_PRO_06_C ontrôle de reproductibilité et répétabilité de la phase d'extraction

Justification de dérogation : ce présent dossier de validation ayant démarré en amont de la

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

création de la procédure de validation de méthode GDB_PRO_23_Validation de méthode, et du formulaire correspondant GDB_FORM_53_Validation de méthode, des critères de performance d'extraction d'ADN optimaux n'avaient pas encore été définis. C'est pourquoi une dérogation est accordée pour valider la méthode sur les critères définis à l'époque de l'ouverture du dossier. A noter : dans cette version 221115_02 ces critères ont été amendés par l'ajout d'un test annuel de répétabilité/reproductibilité de la phase d'extraction afin de pouvoir valider la répétabilité/reproductibilité.

Par ailleurs, l'évaluation de la concordance des génotypages fait intervenir des génotypages réalisés sur la version de puce EuroG_MDv4_XT_GD (génotypage échantillons reproductibilité), pour laquelle seuls 576 sur les 580 SNP ISO étaient présents (voir GDB_FORM_01_Fiche de non conformité_230131_01_v2.0), ainsi une dérogation est accordée pour évaluer la concordance des génotypages référence versus reproductibilité sur les 576 SNP ISO communs.

Christophe Audebert, Directeur R&D

Remarque introductive: Les 4 premiers essais permettent de préciser les conditions optimales opératoires, c'est pourquoi nous avons décidé de travailler à partir d'un plus faible nombre d'échantillons. En outre, pour ce qui concerne ces phases préliminaires, il s'agit de viser l'atteinte du seul critère de performance de la concentration permettant de valider les conditions testées pour pousser ensuite plus loin le processus de validation.

Enfin pour ces phases préliminaires, il est convenu d'employer la même technologie mais portée sur un modèle de robotiques plus adapté pour les petites séries (Magnetapure 32).

6. Essai 1

6.1. Introduction

Ce premier essai a pour objectif de valider la possibilité de diminuer les volumes renseignés dans le mode opératoire du fournisseur de kit Macherey Nagel (Manuel fournisseur associé à ce kit : GDB_EXT_MOP_Instruction-NucleoMag-Blood-200_230928 Le protocole de base proposé par ce manuel est celui du paragraphe 5 pages 13 à 15_)

Les réactifs concernés sont le MBL1, la PK + volume de matrice en entrée. Les instructions

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

fournisseur préconisent 80 μL MBL1 et 20 μL de PK pour un volume de sang de 200 μL. Ces diminutions de volumes font suite à l'objectif initial d'optimisation de coûts de la méthode portant sur la diminution (par un facteur 3) du volume de billes utilisées par rapport au mode opératoire du fournisseur Macherey Nagel (GDB_EXT_MOP_Instruction-NucleoMag-Blood-200_230928).

6.2. Mode Opératoire

Pour l'ensemble de l'essai, le volume d'entrée matériel a été modifié par rapport aux recommandations fournisseur, les volumes de réactifs de lyse ont été modifiés en proportion.

PK 15 μL + Prise d'essai sang (en tube EDTA): 150 μL + MBL1 60 μL

Condition 1 (contrôle):

Post lyse, pas de modification apportée au protocole fournisseur

Condition 2:

Post lyse, modification apportée au protocole fournisseur:

Dilution des B-beads au 1/3 dans de l'eau RNase/DNase free

Apport de MBL3&4 de 400 μ L (par rapport aux préconisations du fournisseur initiales respectivement de 800 μ L et 900 μ L)

Condition 3:

Post lyse, modifications apportées au protocole fournisseur:

Dilution des B-beads au 1/3 dans de l'eau

Dilution du MBL2 au 1/3 dans de l'eau

Apport de MBL3&4 de 400 μ L (par rapport aux préconisations du fournisseur initiales respectivement de 800 μ L et 900 μ L)

Condition 4:

Post lyse, modifications apportées au protocole fournisseur:

Dilution des B-beads au 1/3 dans de l'eau

Dilution du MBL2 au 1/3 dans de l'éthanol absolu

Apport de MBL3&4 de 400 μ L (par rapport aux préconisations du fournisseur initiales respectivement de 800 μ L et 900 μ L)

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

6.3. Points à développer (liste non exhaustive)

➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :

Les purifications sont réalisées dans les conditions les plus proches de la réalité puisqu'effectuées sur un robot de type Magnetapure 32, or nous envisageons l'investissement robotique sur du Magnetapure 96.

Programmation Magnetapure32 #conditions 2 à 4:

AS154_S

NAME:NucleoMagBlood150LL

STEP:7

STATUS:00

01/100.00													
TIME:2019-6	6-5											11:21:	:54
OPTION:1	1	1 1	l 1	1 1	1	0 5	1 1	1 () 1	5 1	2	0 0	5
Binding	1	5.0	1:	20	0.0	550	5	0	0	80	0	3	0
WashMBL3		2	5.0	120	0.0	400	3	0	0	80	0	5	0
Wash2MBL3	,	3	5.0	120	0.0) 400	3 3	0	0	80	0	5	0
EtOH80	4	5.0	1	20	0.0	800	3	0	0	80	0	5	0
WashMBL4		5	0.0	30	0.0	400	3	0	0	80	0	1	0
Elution 6	6	5.0	12	20	0.0	60	5	56	0	80	0	5	0
release 4	4	1.0	0	0	.0	800	10	0	0	80	0	3	0
AS154_E													

> Kits et réactifs : compléter le tableau ci-dessous

Kits et autres réactifs						
Produits / Consommables	Numéro de lot	Spécifications particulières	Stockage			
Nucleomag Blood 200 Macherey Nagel ref. 744501	1806-001	Le chlorhydrate de guanidine dans le tampon MBL1, le perchlorate de sodium dans les tampons MBL2 et MBL3 peuvent former des composés très réactifs lorsqu'ils sont combinés à de l'eau de Javel.)	Tous les composants du kit NucleoMag® Blood 200 μL doivent être conservés entre 15 et 25 °C			

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

> Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...) :

L'ensemble des purifications de cet essai est réalisé sur 4 prélèvements de sang total :

Condition1-1 et Condition2-1	FR6114467370	GD445023
Condition1-2 et Condition2-2	FR6114467367	GD445021
Condition1-3 et Condition2-3	FR6117116619	GD445035
Condition1-4 et Condition2-4	FR6117116647	GD445045

- ➤ Milieu : L'essai a été réalisé au sein du laboratoire de Recherche et Développement L'environnement est maintenu sous climatisation +21°C (+/- 2 °C).
 - > Main d'œuvre : Assistante ingénieure S. Merlin

6.4. Résultats de l'essai – Conclusion

Deux paramètres importants sont associés à une extraction ADN : la concentration et la présence de résidus de sels et/ou protéines indicateurs d'une purification de l'ADN sous-efficiente. Ainsi deux méthodes de monitoring sont utilisées ici une méthode Qubit (Thermo Scientific) permettant un dosage la concentration par l'intermédiaire d'un fluorophore intercalent de l'ADN et une méthode par spectrophotométrie, Nanodrop (Thermo Scientific). Ces deux mesures ont été réalisées en suivant les modes opératoires du fournisseur respectivement GDB_EXT_MOP_ NanoDrop-One-User-Guide-v1.3-sw-FRENCH_230121, pour la méthode Nanodrop et GDB_EXT_MOP_ Qubit_dsDNA_HS_Assay_UG_230121 pour la méthode Qubit.

Résultats de dosage Qubit et profil nanodrop:

Un ratio A260/280 est considéré comme satisfaire aux exigences de pureté (en protéines) lorsqu'il est compris entre [1,7-2,2]. Un ratio A260/230 est considéré pour des purifications à l'aide de billes paramagnétiques comme satisfaire aux exigences de pureté (en sels) lorsque celui-ci est supérieur à 1. Ces deux métriques ne constituent pas de critères de performance de cette validation de méthode, elles sont produites à titre indicatif, à contrario de celui de la concentration en ADN.

Seules les conditions présentant un profil nanodrop avec des ratios A260/280 et A260/A230 proches de 1.8 seront dosés.

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Condition 1	Qubit Dosage (ng/µl)	Nanodrop A260/280 (protéines) ~1.8	Nanodrop A260/230 (sels chao.) >1	Condition 2	Qubit Dosage (ng/µl)	Nanodrop A260/280 (protéines) ~1.8	Nanodrop A260/230 (sels chao.) >1
1	63	1.88	1.23	1	64	1.97	1.91
2	76	1.91	1.56	2	60	1.94	1.9
3	82	1.87	1.63	3	82	1.84	1.66
4	74	1.9	2.17	4	70	1.94	1.96

Interprétation: L'essai 1 permet de conclure quant à la possibilité, pour le critère de performance seul, de la concentration d'ADN de diminuer non seulement le volume de réactif de lyse et de prise d'essai (condition partagée par les deux conditions) mais aussi de diminuer les réactifs nécessaires à la purification. Les métriques liées à la pureté des ADN extrait sont tous satisfaisant quelle que soit la condition testée.

Réduction des volumes d'entrées pour la lyse → Valide

Dilution des billes au 1/3 dans de l'eau → Valide

Dilution du réactif MBL2 → Invalide

Réduction des volumes des tampons MBL3 & MBL4 → Valide

Conclusion: Il apparaît que la diminution des volumes liés tant à la matrice biologique (sang) que ceux liés aux réactifs associés à la phase de lyse ainsi que ceux liés à la phase de purification des ADN extrait n'affecte pas la concentration d'ADN, et atteint le critère de performance défini, à savoir une concentration > 15ng/µl.

7. Essai 2

7.1. Introduction

L'objectif de cet essai consiste à appréhender l'effet de la diminution des volumes de solutions de lavage sur les performances de l'extraction ainsi que l'effet de la diminution, par rapport à l'essai précédent, du volume réactif de lyse (condition 3 vs condition 1).

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

7.2. Mode Opératoire

Phase de lyse: PK 15 μL + Prise d'essai sang (en tube EDTA): 150 μL + MBL1 60 μL

Condition 3:

Post lyse, modification apportée au protocole fournisseur:

Dilution des B-beads au 1/3 dans de l'eau

Apport de MBL2 divisé par 3 soit 100 µL

Apport de MBL3&4 de 400 µL

7.3. Points à développer (liste non exhaustive)

➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :

Les purifications sont réalisées dans les conditions les plus proches de la réalité puisqu'effectuées sur un robot de type Magnetapure 32, or nous envisageons l'investissement robotique sur du Magnetapure 96.

Programmation Magnetapure 32:

AS154_S

NAME:NucleoMagBlood150

STEP:7

STATUS:00

TIME:2019-6-5 11:21:54

OPTION:111111110511101512005

Binding 1 5.0 120 0.0 350 5 0 0 80 0 3 0

WashMBL3 2 5.0 120 0.0 400 3 0 0 80 0 5 0

Wash2MBL3 3 5.0 120 0.0 400 3 0 0 80 0 5 0

EtOH80 4 5.0 120 0.0 800 3 0 0 80 0 5 0

WashMBL4 5 0.0 30 0.0 400 3 0 0 80 0 1 0

Elution 6 5.0 120 0.0 60 5 56 0 80 0 5 0

release 4 1.0 0 0.0 800 10 0 0 80 0 3 0

AS154 E

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

> Kits et réactifs :

Kits et autres réactifs					
Produits / Consommables	Numéro de lot	Spécifications particulières	Stockage		
Nucleomag Blood 200 Macherey Nagel ref. 744501	1806-001	Le chlorhydrate de guanidine dans le tampon MBL1, le perchlorate de sodium dans les tampons MBL2 et MBL3 peuvent former des composés très réactifs lorsqu'ils sont combinés à de l'eau de Javel.)	Tous les composants du kit NucleoMag® Blood 200 μL doivent être conservés entre 15 et 25 °C		

> Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...) :

L'ensemble des purifications de cet essai est réalisé sur 4 prélèvements de sang total :

Condition3-1	FR6114467370	GD445023
Condition3-2	FR6114467367	GD445021
Condition3-3	FR6117116619	GD445035
Condition3-4	FR6117116647	GD445045

➤ Milieu:

L'essai a été réalisé au sein du laboratoire de Recherche et Développement L'environnement est maintenu sous climatisation +21°C (+/- 2 °C).

➤ Main d'œuvre :

Assistante ingénieure S. Merlin

7.4. Résultats de l'essai - Conclusion

Interprétation : Dans ces conditions les concentrations ADN obtenues sont nulles, il n'est donc pas possible d'être si stringent sur le volume du tampon de binding.

Conclusion: La diminution drastique passant de 300 µL à 100 µL de tampon de binding MBL2

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

ne permet pas d'obtenir des concentrations d'ADN satisfaisant au critère de performance [ADN] > 15 ng/μL puisqu'aucun des échantillons testés ne dépasse ce dernier puisque toutes les concentrations mesurées sont égales à 0 ng/μL.

8. Essai 3

8.1 Introduction

L'essai précédent a montré qu'une baisse drastique de réactif de binding ne tenant pas compte de l'équivalence volume entre lyse et solution de binding avait un effet délétère amenant à perdre l'intégralité de l'ADN extrait, il convient alors de diminuer concomitamment le volume de lysat et le réactif permettant le binding. L'objectif de cet essai est de valider cette hypothèse tout en appréhendant dans quelle mesure il est possible de diminuer les volumes de lysat et de réactif de binding.

8.2 Mode Opératoire

Condition 1:

Modifications apportées au protocole fournisseur:

Lyse: PK 15 μL + Prise d'essai sang: 150 μL + MBL1 40 μL

Dilution des B-beads au 1/3 dans de l'eau

Apport de MBL2 de 200 µL

Apport de MBL3&4 de 400 µL

Condition 2:

Modifications apportées au protocole fournisseur:

Lyse: PK 10 µL + Prise d'essai sang: 100 µL + MBL1 40 µL

Dilution des B-beads au 1/3 dans de l'eau

Apport de MBL2 de 150 µL

Apport de MBL3&4 de 400 µL

Condition 3:

Modifications apportées au protocole fournisseur:

Lyse: PK 10 µL + Prise d'essai sang: 100 µL + MBL1 30 µL

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Dilution des B-beads au 1/3 dans de l'eau

Apport de MBL2 de 150 µL

Apport de MBL3&4 de 400 µL

8.3 Points à développer (liste non exhaustive)

➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :

Les purifications sont réalisées dans les conditions les plus proches de la réalité puisqu'effectuées sur un robot de type Magnetapure 32, or nous envisageons l'investissement robotique sur du Magnetapure 96.

Programmation Magnetapure 32:

AS154_S

NAME:NucleoMagBlood100

STEP:7

STATUS:00

TIME:2019-6-5 11:21:54

OPTION:111111110511101512005

Binding 1 5.0 120 0.0 265 5 0 0 80 0 3 0

WashMBL3 2 5.0 120 0.0 400 3 0 0 80 0 5 0

Wash2MBL3 3 5.0 120 0.0 400 3 0 0 80 0 5 0

EtOH80 4 5.0 120 0.0 800 3 0 0 80 0 5 0

WashMBL4 5 0.0 30 0.0 400 3 0 0 80 0 1 0

Elution 6 5.0 120 0.0 60 5 56 0 80 0 5 0

release 4 1.0 0 0.0 800 10 0 0 80 0 3 0

AS154_E

> Kits et réactifs : compléter le tableau ci-dessous

Kits et autres réactifs					
Produits / Consommables	Numéro de lot	Spécifications particulières	Stockage		
Nucleomag Blood 200 Macherey Nagel ref. 744501	1806-001	Le chlorhydrate de guanidine dans le tampon MBL1, le perchlorate de sodium dans les tampons MBL2 et MBL3 peuvent	Tous les composants du kit NucleoMag® Blood 200 μL doivent être conservés entre 15 et 25 °C		

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

	former des composés très réactifs lorsqu'ils sont combinés à de l'eau de Javel.)	
--	--	--

➤ Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...) : L'ensemble des purifications de cet essai est réalisé sur 4 prélèvements de sang total :

Condition1-1 et Condition2-1 et Condition3-1	FR6114467370	GD445023
Condition1-2 et Condition2-2 et Condition3-2	FR6114467367	GD445021
Condition1-3 et Condition2-3 et Condition3-3	FR6117116619	GD445035
Condition1-4 et Condition2-4 et Condition3-4	FR6117116647	GD445045

➤ Milieu:

L'essai a été réalisé au sein du laboratoire de Recherche et Développement L'environnement est maintenu sous climatisation +21°C (+/- 2 °C).

➤ Main d'œuvre :

Assistante ingénieure S. Merlin

8.4 Résultats de l'essai - Conclusion

Condition 1	<mark>Qubit</mark> Dosage (ng/μΙ)	Nanodrop A260/280 (protéines) ~1.8	Nanodrop A260/230 (sels chao.) >1	Condition 2	<mark>Qubit</mark> Dosage (ng/μΙ)	Nanodrop A260/280 (protéines) ~1.8	Nanodrop A260/230 (sels chao.) >1	Condition 3	<mark>Qubit</mark> Dosage (ng/μΙ)	Nanodrop A260/280 (protéines) ~1.8	Nanodrop A260/230 (sels chao.) >1
1	78.2	1.82	1.38	1	56.2	1.81	1.35	1	48.4	1.92	1.81
2	76.2	1.87	1.73	2	44	1.88	1.53	2	46.4	1.94	1.68
3	110	1.9	2.28	3	92.6	1.93	2.01	3	97.2	1.88	1.78
4	115	1.9	2.12	4	22.2	1.94	1.5	4	25.6	1.97	1.77

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Interprétation :

L'ensemble des échantillons des 3 conditions testées satisfont au critère de performance visé. Ainsi leur concentration est supérieure à 15 ng/ μ L. Les conditions 2 et 3 ont montré qu'il apparaît possible de diminuer les volumes en entrée de lyse passant de 15 μ L de PK à 10 μ L et de 150 μ L de prise d'essai de sang à 100 μ L pour ces deux conditions. En outre, la condition 3 montre qu'une diminution de tampon de lyse MLB1 passant de 40 μ L à 30 μ L n'a pas d'effet majeur sur le critère de performance visé ainsi que sur les indicateurs liés à la pureté de l'ADN extrait (les ration A260/A280 et A260/A230 apparaissent satisfaisants).

Réduction des volumes en entrée de lyse (#condition 2&3) → Valide

Réduction supplémentaire du volume MBL1 (condition 3) → Valide

Conclusions:

En conséquence, les volumes des tampons critiques (PK, MBL1, MBL2) peuvent être considérablement réduits sans effet majeur sur la concentration et la qualité de l'extraction ADN à partir d'une matrice sang. Il est possible d'envisager un achat ponctuel de PK et MBL2 dont le coût serait négligeable.

En sortie, considérant la condition 3 de cet essai, voici les reliquats théoriques que nous obtiendrions pour un kit 4x96:

```
PK \rightarrow 61,6%

MBL1 \rightarrow 74,4%

MBL2 \rightarrow 64,0%

MBL3 \rightarrow 65,9%

MBL4 \rightarrow 69,3%

MBL5 \rightarrow 81,6% (élution 60 µL)
```

9 Essai 4

9.1 Introduction

Cet essai a pour objectif de valider, sur un petit nombre d'échantillons, la compatibilité des extractions avec le support de génotypage.

9.2 Mode Opératoire

Conditions appliquées:

Modifications apportées au protocole fournisseur:

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Lyse: PK 10 µL + Prise d'essai sang: 100 µL + MBL1 30 µL

Dilution des B-beads au 1/3 dans de l'eau

Apport de MBL2 de 150 µL

Apport de MBL3&4 de 400 µL

9.3 Points à développer (liste non exhaustive)

➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :

Les purifications sont réalisées sur Magnetapure 96 (il s'agit d'un modèle prêté par le fournisseur en tout point identique à l'automate dont nous nous doterions).

Programme Magnetapure 96:

AS180_S

NAME:NMBloodB

STEP:9

STATUS:11

TIME:2022-11-17 16:44:51

OPTION:111111110501101502

-Load-10105101010000000

binding 2 50 80 0 265 5 0 1 1 1 2 3 10 8 8 8 1

MBL3 3 50 80 0 400 5 0 1 1 2 2 3 5 1 1 1 1

MBL3 4 50 80 0 400 5 0 1 1 2 2 3 5 10 10 10 1

EtOH 5 50 80 0 400 5 0 1 1 2 2 3 5 1 1 1 1

MBL460800400101122311010101

elution 8 50 90 0 60 8 56 1 1 1 2 3 60 18 1 1 1

relargage 3 5 80 0 400 10 0 0 1 1 2 3 1 1 1 1 1

-Unload-20105101110011111

AS180_E

> Kits et réactifs :

Kits et autres réactifs					
Produits / Consommables	Spécifications particulières	Stockage			
Nucleomag Blood 200 Macherey Nagel ref. 744501	1806-001	Le chlorhydrate de guanidine dans le tampon MBL1, le perchlorate de	Tous les composants du kit NucleoMag® Blood 200 μL doivent être conservés entre 15 et 25		

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

sodium dans les tampons MBL2 et MBL3 peuvent former des composés très réactifs lorsqu'ils sont combinés à de l'eau de Javel.)	°C
i eau de Javei.)	

➤ Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...) : L'ensemble des purifications de cet essai est réalisé sur 48 prélèvements de sang total : Traçabilité :

1	FR6114467370	GD445023	SAM220828	A01
2	FR6114467367	GD445021	SAM220828	B01
3	FR6117116619	GD445035	SAM220828	C01
4	FR6117116647	GD445045	SAM220828	D01
5	FR6117116601	GD445027	SAM220828	E01
6	FR1445854071	GD445016	SAM220828	F01
7	FR6114467360	GD445018	SAM220828	G01
8	FR6125093418	GD445017	SAM220828	H01
9	FR6117116637	GD445043	SAM220828	A02
10	FR6117116646	GD445044	SAM220828	B02
11	FR1444215904	GD445060	SAM220828	C02
12	FR1444215902	GD445059	SAM220828	D02
13	FR1444215900	GD445058	SAM220828	E02
14	FR1444215898	GD445057	SAM220828	F02
15	FR2928824016	GD301241	SAM220828	G02
16	FR2253773458	GD301240	SAM220828	H02
17	FR2934800591	GD301242	SAM220828	A03
18	FR3523202522	GD301247	SAM220828	B03
19	FR2934800602	GD301244	SAM220828	C03
20	FR2934800597	GD301243	SAM220828	D03
21	FR4403432699	GD301254	SAM220828	E03
22	FR3554774025	GD301249	SAM220828	F03

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

23	FR4403432705	GD301256	SAM220828	G03
24	FR8067753979	GD424558	SAM220828	H03
25	FR8067753985	GD424577	SAM220828	A04
26	FR8067753980	GD424585	SAM220828	B04
27	FR3554774027	GD301251	SAM220828	C04
28	FR3554774028	GD301252	SAM220828	D04
29	FR2934800603	GD301245	SAM220828	E04
30	FR3554774024	GD301248	SAM220828	F04
31	FR8067753988	GD424583	SAM220828	G04
32	FR8067753981	GD424581	SAM220828	H04
33	FR4403432702	GD301255	SAM220828	A05
34	FR4403432709	GD301260	SAM220828	B05
35	FR5626248568	GD301262	SAM220828	C05
36	FR5626248569	GD301263	SAM220828	D05
37	FR4403432707	GD301258	SAM220828	E05
38	FR4403432706	GD301257	SAM220828	F05
39	FR3554774029	GD301253	SAM220828	G05
40	FR3554774026	GD301250	SAM220828	H05
41	FR8067753984	GD424571	SAM220828	A06
42	FR8067753983	GD424579	SAM220828	B06
43	FR5626248561	GD301261	SAM220828	C06
44	FR4403432708	GD301259	SAM220828	D06
45	FR8067753982	GD424573	SAM220828	E06
46	FR8067753986	GD424575	SAM220828	F06
47	FR5945699581	GD425355	SAM220828	G06
48	FR5945699582	GD425360	SAM220828	H06

➤ Milieu:

L'essai a été réalisé au sein du laboratoire de Recherche et Développement L'environnement est maintenu sous climatisation +21°C (+/- 2 °C

➤ Main d'œuvre :

Assistante ingénieure S. Merlin

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

9.4 Résultats de l'essai - Conclusion

Résultats de dosage Dosage (ng/µl) [ADN] – extrait du plan de plaque de dosage

Coordonnées plaque dosage A1 = prélèvement 1, B1 = prélèvement 2, etc	1	2	3	4	5	6
А	71.39	7.29	78.11	56.51	49.06	70.28
В	26.72	52.15	35.97	66.28	64.08	74.84
С	22.14	75.14	27.85	56.48	73.17	63.15
D	42.21	53.78	56.41	57.32	46.73	52.86
E	72.96	40.75	33.75	70.19	69.64	56.09
F	67.05	55.69	23.39	54.72	45.59	76.97
G	20.95	17.07	35.7	83.3	67.31	52.31
Н	10.09	17.12	22.43	55.03	60.82	82.79

Interprétation:

95,82% des 48 échantillons extraits et purifiés selon les conditions de l'essai sont supérieurs au critère de performance visé, à savoir plus de 90 % d'échantillon montrant une concentration d'ADN supérieure à 15 ng/ μ L.

Génotypage sur 4 extractions:

Parmi les 48 échantillons ayant fait l'objet d'une extraction ADN, 4 d'entre eux ont été sélectionnés parmi les dosages de concentration ADN les moins élevés (moyenne de 28,82 ng/µL contre une moyenne de 51,50 ng/µL pour l'ensemble des 48 échantillons).

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Individu	Concentration (ng/µL)	Call Rate
GD301254	33,75	0,9995146
GD301249	23,39	0,9995313
GD301256	35,70	0,9994476
GD424558	22,43	0,9994978
moyenne	28,82	0,9994978

Interprétation :

Les 4 échantillons testés montrent un CallRate nettement supérieur aux critères de performance visé à savoir 90 % des échantillons supérieurs à 0,95 de CallRate et une médiane CallRate supérieure à 0,975. Les 4 échantillons génotypés montrent un CallRate > 0,99.

Conclusion:

Les paramètres mis en place pour l'extraction d'ADN à partir de prélèvement de sang sur le système Magnetapure 96 ont été optimisés, ils ont pu montrer des métriques atteignant les critères de performance visés en termes de concentration ADN, de CallRate. Il convient dans le prochain essai d'effectuer une analyse extraction/génotypage sur une plaque complète, sur le site de la plateforme GD Scan, sur l'automate dont l'achat a été décidé.

10 Essai 5

10.1 Introduction

Cet essai intègre les conditions déterminées lors des approches itératives sus-développées. Cet essai est réalisé en condition cible, au niveau du laboratoire GD Scan et sur les plateformes Magnetapure 96 acquises entre temps

10.2 Mode Opératoire

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Condition appliquées:

Modifications apportées au protocole fournisseur GDB_EXT_MOP_Instruction-NucleoMag-Blood-200_230928

Lyse: PK 10 µL + Prise d'essai sang: 100 µL + MBL1 30 µL

Dilution des B-beads au 1/3 dans de l'eau

Apport de MBL2 de 150 µL

Apport de MBL3&4 de 400 µL

10.3 Points à développer (liste non exhaustive)

➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :

Les purifications sont réalisées sur Magnetapure 96

Programme Magnetapure 96:

AS180_S

NAME:NMBloodB

STEP:9 STATUS:11

TIME:2022-11-17 16:44:51

OPTION:111111110501101502

-Load-10105101010000000

binding 2 50 80 0 265 5 0 1 1 1 2 3 10 8 8 8 1

MBL3 3 50 80 0 400 5 0 1 1 2 2 3 5 1 1 1 1

MBL3 4 50 80 0 400 5 0 1 1 2 2 3 5 10 10 10 1

EtOH 5 50 80 0 400 5 0 1 1 2 2 3 5 1 1 1 1

MBL460800400101122311010101

elution 8 50 90 0 60 8 56 1 1 1 2 3 60 18 1 1 1

relargage 3 5 80 0 400 10 0 0 1 1 2 3 1 1 1 1 1

-Unload-20105101110011111

AS180_E

➤ Kits et réactifs : compléter le tableau ci-dessous

Kits et autres réactifs			
Produits / Consommables	Numéro de lot	Spécifications particulières	Stockage

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Nucleomag Blood 200 Macherey Nagel ref. 744501	2208-002	Le chlorhydrate de guanidine dans le tampon MBL1, le perchlorate de sodium dans les tampons MBL2 et MBL3 peuvent former des composés très réactifs lorsqu'ils sont combinés à de l'eau de Javel.)	Tous les composants du kit NucleoMag® Blood 200 μL doivent être conservés entre 15 et 25 °C
--	----------	---	---

➤ Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...) : L'ensemble des purifications de cet essai est réalisé sur 96 prélèvements de sang total :

ID	CODE BARRE	SEXE	RACE	TYPE MAT BIOLO	date reception Labo Douai	Plaque ADN	Position ADN	Date extraction
FR7221292265	GD445809	2	66	Sang	18/01/2023	SAM230153	A01	19/01/2023
FR2716162139	GD445807	2	66	Sang	18/01/2023	SAM230153	B01	19/01/2023
FR6125093475	GD445808	2	66	Sang	18/01/2023	SAM230153	C01	19/01/2023
FR7221292273	GD445810	2	66	Sang	18/01/2023	SAM230153	D01	19/01/2023
FR7221292277	GD445814	2	66	Sang	18/01/2023	SAM230153	E01	19/01/2023
FR7221292274	GD445811	2	66	Sang	18/01/2023	SAM230153	F01	19/01/2023
FR2716162135	GD445805	2	66	Sang	18/01/2023	SAM230153	G01	19/01/2023
FR7221292282	GD445816	2	66	Sang	18/01/2023	SAM230153	H01	19/01/2023
FR7221292275	GD445812	2	66	Sang	18/01/2023	SAM230153	A02	19/01/2023
FR7221292276	GD445813	2	66	Sang	18/01/2023	SAM230153	B02	19/01/2023
FR2716162137	GD445806	1	66	Sang	18/01/2023	SAM230153	C02	19/01/2023
FR7635903826	GD445843	2	66	Sang	18/01/2023	SAM230153	D02	19/01/2023
FR7635903813	GD445842	2	66	Sang	18/01/2023	SAM230153	E02	19/01/2023
FR7635903808	GD445841	2	66	Sang	18/01/2023	SAM230153	F02	19/01/2023
FR7635903799	GD445840	2	66	Sang	18/01/2023	SAM230153	G02	19/01/2023

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

FR2837244240	GD478200	2	66	Sang	18/01/2023	SAM230153	H02	19/01/2023
FR2837244224	GD478197	2	66	Sang	18/01/2023	SAM230153	A03	19/01/2023
FR2837244225	GD478198	2	66	Sang	18/01/2023	SAM230153	B03	19/01/2023
FR2837244163	GD478182	2	66	Sang	18/01/2023	SAM230153	C03	19/01/2023
FR2837244186	GD478185	2	66	Sang	18/01/2023	SAM230153	D03	19/01/2023
FR2837244237	GD478199	2	66	Sang	18/01/2023	SAM230153	E03	19/01/2023
FR2837244242	GD478201	2	66	Sang	18/01/2023	SAM230153	F03	19/01/2023
FR2837244198	GD478190	2	66	Sang	18/01/2023	SAM230153	G03	19/01/2023
FR2837244207	GD478192	2	66	Sang	18/01/2023	SAM230153	H03	19/01/2023
FR2837244217	GD478195	2	66	Sang	18/01/2023	SAM230153	A04	19/01/2023
FR2837244189	GD478187	2	66	Sang	18/01/2023	SAM230153	B04	19/01/2023
FR2837244210	GD478193	2	66	Sang	18/01/2023	SAM230153	C04	19/01/2023
FR2837244218	GD478196	2	66	Sang	18/01/2023	SAM230153	D04	19/01/2023
FR2837244216	GD478194	2	66	Sang	18/01/2023	SAM230153	E04	19/01/2023
FR2837244169	GD478183	2	66	Sang	18/01/2023	SAM230153	F04	19/01/2023
FR2837244194	GD478189	2	66	Sang	18/01/2023	SAM230153	G04	19/01/2023
FR2837244191	GD478188	2	66	Sang	18/01/2023	SAM230153	H04	19/01/2023
FR2837244187	GD478186	2	66	Sang	18/01/2023	SAM230153	A05	19/01/2023
FR2837244180	GD478184	2	66	Sang	18/01/2023	SAM230153	B05	19/01/2023
FR2837244203	GD478191	2	66	Sang	18/01/2023	SAM230153	C05	19/01/2023
FR1448011918	GD478180	2	56	Sang	18/01/2023	SAM230153	D05	19/01/2023
FR1448011914	GD478178	2	56	Sang	18/01/2023	SAM230153	E05	19/01/2023
FR1448011916	GD478179	2	56	Sang	18/01/2023	SAM230153	F05	19/01/2023
FR7635903746	GD478128	2	66	Sang	18/01/2023	SAM230153	G05	19/01/2023
FR7635903745	GD478127	2	66	Sang	18/01/2023	SAM230153	H05	19/01/2023
FR7635903734	GD478124	2	66	Sang	18/01/2023	SAM230153	A06	19/01/2023
FR7635903751	GD478129	2	66	Sang	18/01/2023	SAM230153	B06	19/01/2023
FR7635903752	GD478130	2	66	Sang	18/01/2023	SAM230153	C06	19/01/2023

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

FR7635903759	GD478131	2	66	Sang	18/01/2023	SAM230153	D06	19/01/2023
FR7635903740	GD478125	2	66	Sang	18/01/2023	SAM230153	E06	19/01/2023
FR7635903743	GD478126	2	66	Sang	18/01/2023	SAM230153	F06	19/01/2023
FR7635903733	GD478123	2	66	Sang	18/01/2023	SAM230153	G06	19/01/2023
FR7635903762	GD478132	2	66	Sang	18/01/2023	SAM230153	H06	19/01/2023
FR7635903731	GD478122	2	66	Sang	18/01/2023	SAM230153	A07	19/01/2023
FR4243557197	GD448216	2	66	Sang	18/01/2023	SAM230153	B07	19/01/2023
FR4243454489	GD430381	2	66	Sang	18/01/2023	SAM230153	C07	19/01/2023
FR4243454488	GD430379	2	66	Sang	18/01/2023	SAM230153	D07	19/01/2023
FR4243454492	GD430385	2	66	Sang	18/01/2023	SAM230153	E07	19/01/2023
FR4322261259	GD430395	2	66	Sang	18/01/2023	SAM230153	F07	19/01/2023
FR4243454490	GD430383	2	66	Sang	18/01/2023	SAM230153	G07	19/01/2023
FR4322261268	GD430401	2	66	Sang	18/01/2023	SAM230153	H07	19/01/2023
FR4243528147	GD430391	2	66	Sang	18/01/2023	SAM230153	A08	19/01/2023
FR4322261261	GD430399	2	66	Sang	18/01/2023	SAM230153	B08	19/01/2023
FR4322261260	GD430397	2	66	Sang	18/01/2023	SAM230153	C08	19/01/2023
FR4243557184	GD448215	2	66	Sang	18/01/2023	SAM230153	D08	19/01/2023
FR4243528149	GD430393	2	66	Sang	18/01/2023	SAM230153	E08	19/01/2023
FR4243526870	GD430389	2	66	Sang	18/01/2023	SAM230153	F08	19/01/2023
FR4243526868	GD430387	2	66	Sang	18/01/2023	SAM230153	G08	19/01/2023
FR4243485576	GD448224	2	66	Sang	18/01/2023	SAM230153	H08	19/01/2023
FR4243485574	GD448222	2	66	Sang	18/01/2023	SAM230153	A09	19/01/2023
FR4243485575	GD448223	2	66	Sang	18/01/2023	SAM230153	B09	19/01/2023
FR4243485567	GD448217	2	66	Sang	18/01/2023	SAM230153	C09	19/01/2023
FR4243485580	GD448228	2	66	Sang	18/01/2023	SAM230153	D09	19/01/2023
FR4243485572	GD448220	2	66	Sang	18/01/2023	SAM230153	E09	19/01/2023
FR4243485570	GD448218	2	66	Sang	18/01/2023	SAM230153	F09	19/01/2023
FR4243485571	GD448219	2	66	Sang	18/01/2023	SAM230153	G09	19/01/2023

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

				_				T
FR5945462281	GD477766	2	66	Sang	18/01/2023	SAM230153	H09	19/01/2023
FR5945462289	GD477782	2	66	Sang	18/01/2023	SAM230153	A10	19/01/2023
FR5945462277	GD477760	2	66	Sang	18/01/2023	SAM230153	B10	19/01/2023
FR5945462298	GD477800	2	66	Sang	18/01/2023	SAM230153	C10	19/01/2023
FR5945462303	GD477808	2	66	Sang	18/01/2023	SAM230153	D10	19/01/2023
FR5945462417	GD477789	2	66	Sang	18/01/2023	SAM230153	E10	19/01/2023
FR5945462293	GD477790	2	66	Sang	18/01/2023	SAM230153	F10	19/01/2023
FR5945462299	GD477802	2	66	Sang	18/01/2023	SAM230153	G10	19/01/2023
FR5945462416	GD477787	2	66	Sang	18/01/2023	SAM230153	H10	19/01/2023
FR5945462296	GD477796	2	66	Sang	18/01/2023	SAM230153	A11	19/01/2023
FR5945462415	GD477785	2	66	Sang	18/01/2023	SAM230153	B11	19/01/2023
FR5946022959	GD477706	2	66	Sang	18/01/2023	SAM230153	C11	19/01/2023
FR5946022955	GD477702	2	66	Sang	18/01/2023	SAM230153	D11	19/01/2023
FR5946023041	GD477739	2	66	Sang	18/01/2023	SAM230153	E11	19/01/2023
FR5945462297	GD477798	2	66	Sang	18/01/2023	SAM230153	F11	19/01/2023
FR5945462283	GD477770	2	66	Sang	18/01/2023	SAM230153	G11	19/01/2023
FR5945462411	GD477810	2	66	Sang	18/01/2023	SAM230153	H11	19/01/2023
FR5368482401	GD444224	2	46	Sang	19/01/2023	SAM230153	A12	19/01/2023
FR4243097168	GD448230	2	66	Sang	19/01/2023	SAM230153	B12	19/01/2023
FR2940335133	GD301466	1	66	Sang	19/01/2023	SAM230153	C12	19/01/2023
FR7613948192	GD478264	1	66	Sang	19/01/2023	SAM230153	D12	19/01/2023
FR5942124572	GD466882	2	38	Sang	19/01/2023	SAM230153	E12	19/01/2023
FR5942124590	GD466887	2	38	Sang	19/01/2023	SAM230153	F12	19/01/2023
FR5942124591	GD466888	2	38	Sang	19/01/2023	SAM230153	G12	19/01/2023
FR5945201044	LAFSCOL5 03523	2	52	Sang	19/01/2023	SAM230153	H12	19/01/2023

➤ Milieu:

Extractions réalisées dans la salle Extraction, dont la température est maîtrisée (21°C +/-3°C),

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

et génotypages réalisés dans les salles Pré-PCR génotypage et Post-PCR génotypage, dont la température est maîtrisée pour cette dernière (21°C +/- 3°C)

➤ Main d'œuvre : Personnels plateforme génotypage (Malika Merbah, Michèle Boutté, Sophie Martel et Sophie Merlin)

BLOOD_230119-01			
	DATE	OPERATEUR	
Création plaque prélèvements	19/01/2023	MA	
Scan des CAB	19/01/2023	MA	
Check Galaxy	19/01/2023	MA	
Préparation des prélèvements	19/01/2023	MICH	N° lot / Référence
Extraction	20/01/2023	MA-MICH	2208-002 (M)
Création plaque SAM	20/01/2023	MA-MICH	SAM230153

10.4 Résultats de l'essai – Conclusion

➤ Milieu:

- Variation de température salle extraction 20/01/2023

- Variation de température salle post-PCR génotypage

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Extraction échantillons :

Dosage picogreen, réalisé selon le document GDB_MOP_08_Dosage ADN :

Concentr	ation calcu	lée (ng/μl	-)									
	1	2	3	4	5	6	7	8	9	10	11	12
Α	56,01	69,20	60,44	56,55	55,48	55,39	62,12	63,29	56,08	62,61	62,21	60,54
В	67,51	68,36	57,99	58,69	36,07	52,34	60,13	63,39	53,78	62,85	68,47	51,62
C	59,48	57,28	59,02	58,17	47,87	48,88	47,99	55,53	57,26	73,39	67,25	57,66
D	63,00	69,12	55,54	39,73	49,93	54,53	55,58	38,57	41,22	68,84	65,35	54,97
E	59,88	53,98	48,89	64,56	60,21	40,32	49,32	62,92	54,13	15,83	59,15	62,25
F	47,31	52,19	61,49	39,93	34,27	27,35	65,97	36,34	59,53	70,57	67,97	61,37
G	41,40	63,49	60,39	10,11	66,61	56,70	70,83	47,47	46,70	65,49	61,59	68,87
н	58,57	66,28	69,03	62,42	58,48	58,91	61,22	67,22	59,96	57,98	62,96	64,81

-> référence fichier dosage : GDB_ENR_137_Dosage sang BLOOD MagnetaPure SAM230153_200123_v1.0

Génotypage échantillons :

Call Rate:

ID	CODE BARRE	ID GENOTYPAGE	Date debut genotypage	Date de Scan	Call Rate	Callrate 580 Iso
FR7221292265	GD445809	WG6984828-MSA7_A01	23/01/2023	24/01/2023	0,9994476	1
FR2716162139	GD445807	WG6984828-MSA7_B01	23/01/2023	24/01/2023	0,9994978	1
FR6125093475	GD445808	WG6984828-MSA7_C01	23/01/2023	24/01/2023	0,9993137	1
FR7221292273	GD445810	WG6984828-MSA7_D01	23/01/2023	24/01/2023	0,9991798	1
FR7221292277	GD445814	WG6984828-MSA7_E01	23/01/2023	24/01/2023	0,9990627	1
FR7221292274	GD445811	WG6984828-MSA7_F01	23/01/2023	24/01/2023	0,9993974	1
FR2716162135	GD445805	WG6984828-MSA7_G01	23/01/2023	24/01/2023	0,9995481	1

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

FR7221292282	GD445816	WG6984828-MSA7_H01	23/01/2023	24/01/2023	0,9992468	1
FR7221292275	GD445812	WG6984828-MSA7_A02	23/01/2023	24/01/2023	0,9989287	1
FR7221292276	GD445813	WG6984828-MSA7_B02	23/01/2023	24/01/2023	0,998979	1
FR2716162137	GD445806	WG6984828-MSA7_C02	23/01/2023	24/01/2023	0,9994644	1
FR7635903826	GD445843	WG6984828-MSA7_D02	23/01/2023	24/01/2023	0,9993305	1
FR7635903813	GD445842	WG6984828-MSA7_E02	23/01/2023	24/01/2023	0,9994141	1
FR7635903808	GD445841	WG6984828-MSA7_F02	23/01/2023	24/01/2023	0,9993806	1
FR7635903799	GD445840	WG6984828-MSA7_G02	23/01/2023	24/01/2023	0,9993974	1
FR2837244240	GD478200	WG6984828-MSA7_H02	23/01/2023	24/01/2023	0,9991631	1
FR2837244224	GD478197	WG6984828-MSA7_A03	23/01/2023	24/01/2023	0,997824	1
FR2837244225	GD478198	WG6984828-MSA7_B03	23/01/2023	24/01/2023	0,999297	1
FR2837244163	GD478182	WG6984828-MSA7_C03	23/01/2023	24/01/2023	0,9993305	1
FR2837244186	GD478185	WG6984828-MSA7_D03	23/01/2023	24/01/2023	0,9991798	1
FR2837244237	GD478199	WG6984828-MSA7_E03	23/01/2023	24/01/2023	0,9993472	1
FR2837244242	GD478201	WG6984828-MSA7_F03	23/01/2023	24/01/2023	0,999364	1
FR2837244198	GD478190	WG6984828-MSA7_G03	23/01/2023	24/01/2023	0,9989455	1
FR2837244207	GD478192	WG6984828-MSA7_H03	23/01/2023	24/01/2023	0,9989455	1
FR2837244217	GD478195	WG6984828-MSA7_A04	23/01/2023	24/01/2023	0,9990961	0,998276
FR2837244189	GD478187	WG6984828-MSA7_B04	23/01/2023	24/01/2023	0,9992802	1
FR2837244210	GD478193	WG6984828-MSA7_C04	23/01/2023	24/01/2023	0,999364	1
FR2837244218	GD478196	WG6984828-MSA7_D04	23/01/2023	24/01/2023	0,9993806	1
FR2837244216	GD478194	WG6984828-MSA7_E04	23/01/2023	24/01/2023	0,9992635	1
FR2837244169	GD478183	WG6984828-MSA7_F04	23/01/2023	24/01/2023	0,9993137	1
FR2837244194	GD478189	WG6984828-MSA7_G04	23/01/2023	24/01/2023	0,9993472	1
FR2837244191	GD478188	WG6984828-MSA7_H04	23/01/2023	24/01/2023	0,9988785	1
FR2837244187	GD478186	WG6984828-MSA7_A05	23/01/2023	24/01/2023	0,999297	1
FR2837244180	GD478184	WG6984828-MSA7_B05	23/01/2023	24/01/2023	0,9993974	1
FR2837244203	GD478191	WG6984828-MSA7_C05	23/01/2023	24/01/2023	0,9992635	1

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

FR1448011918	GD478180	WG6984828-MSA7_D05	23/01/2023	24/01/2023	0,9992635	1
FR1448011914	GD478178	WG6984828-MSA7_E05	23/01/2023	24/01/2023	0,9990793	1
FR1448011916	GD478179	WG6984828-MSA7_F05	23/01/2023	24/01/2023	0,9989455	1
FR7635903746	GD478128	WG6984828-MSA7_G05	23/01/2023	24/01/2023	0,9990793	1
FR7635903745	GD478127	WG6984828-MSA7_H05	23/01/2023	24/01/2023	0,9991631	1
FR7635903734	GD478124	WG6984828-MSA7_A06	23/01/2023	24/01/2023	0,9992133	1
FR7635903751	GD478129	WG6984828-MSA7_B06	23/01/2023	24/01/2023	0,9993806	1
FR7635903752	GD478130	WG6984828-MSA7_C06	23/01/2023	24/01/2023	0,9995313	1
FR7635903759	GD478131	WG6984828-MSA7_D06	23/01/2023	24/01/2023	0,9994978	1
FR7635903740	GD478125	WG6984828-MSA7_E06	23/01/2023	24/01/2023	0,99923	1
FR7635903743	GD478126	WG6984828-MSA7_F06	23/01/2023	24/01/2023	0,9994644	1
FR7635903733	GD478123	WG6984828-MSA7_G06	23/01/2023	24/01/2023	0,998979	1
FR7635903762	GD478132	WG6984828-MSA7_H06	23/01/2023	24/01/2023	0,9987446	1
FR7635903731	GD478122	WG6984828-MSA7_A07	23/01/2023	24/01/2023	0,9990292	1
FR4243557197	GD448216	WG6984828-MSA7_B07	23/01/2023	24/01/2023	0,9975394	0,998276
FR4243454489	GD430381	WG6984828-MSA7_C07	23/01/2023	24/01/2023	0,998912	1
FR4243454488	GD430379	WG6984828-MSA7_D07	23/01/2023	24/01/2023	0,9991965	0,998276
FR4243454492	GD430385	WG6984828-MSA7_E07	23/01/2023	24/01/2023	0,9988618	1
FR4322261259	GD430395	WG6984828-MSA7_F07	23/01/2023	24/01/2023	0,9977235	1
FR4243454490	GD430383	WG6984828-MSA7_G07	23/01/2023	24/01/2023	0,9978575	0,994828
FR4322261268	GD430401	WG6984828-MSA7_H07	23/01/2023	24/01/2023	0,9989622	1
FR4243528147	GD430391	WG6984828-MSA7_A08	23/01/2023	24/01/2023	0,9991128	1
FR4322261261	GD430399	WG6984828-MSA7_B08	23/01/2023	24/01/2023	0,9982927	0,998276
FR4322261260	GD430397	WG6984828-MSA7_C08	23/01/2023	24/01/2023	0,9985102	1
FR4243557184	GD448215	WG6984828-MSA7_D08	23/01/2023	24/01/2023	0,9985772	1
FR4243528149	GD430393	WG6984828-MSA7_E08	23/01/2023	24/01/2023	0,9991296	1
FR4243526870	GD430389	WG6984828-MSA7_F08	23/01/2023	24/01/2023	0,9988952	1
FR4243526868	GD430387	WG6984828-MSA7_G08	23/01/2023	24/01/2023	0,9986107	1

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

FR4243485576	GD448224	WG6984828-MSA7_H08	23/01/2023	24/01/2023	0,9965184	0,996552
FR4243485574	GD448222	WG6984828-MSA7_A09	23/01/2023	24/01/2023	0,9986777	0,998276
FR4243485575	GD448223	WG6984828-MSA7_B09	23/01/2023	24/01/2023	0,9988283	0,998276
FR4243485567	GD448217	WG6984828-MSA7_C09	23/01/2023	24/01/2023	0,9987446	1
FR4243485580	GD448228	WG6984828-MSA7_D09	23/01/2023	24/01/2023	0,9991965	1
FR4243485572	GD448220	WG6984828-MSA7_E09	23/01/2023	24/01/2023	0,9980081	0,996552
FR4243485570	GD448218	WG6984828-MSA7_F09	23/01/2023	24/01/2023	0,9979411	1
FR4243485571	GD448219	WG6984828-MSA7_G09	23/01/2023	24/01/2023	0,9974223	0,998276
FR5945462281	GD477766	WG6984828-MSA7_H09	23/01/2023	24/01/2023	0,9974055	1
FR5945462289	GD477782	WG6984828-MSA7_A10	23/01/2023	24/01/2023	0,9990459	1
FR5945462277	GD477760	WG6984828-MSA7_B10	23/01/2023	24/01/2023	0,9984768	1
FR5945462298	GD477800	WG6984828-MSA7_C10	23/01/2023	24/01/2023	0,9983429	1
FR5945462303	GD477808	WG6984828-MSA7_D10	23/01/2023	24/01/2023	0,9979746	0,998276
FR5945462417	GD477789	WG6984828-MSA7_E10	23/01/2023	24/01/2023	0,9991296	1
FR5945462293	GD477790	WG6984828-MSA7_F10	23/01/2023	24/01/2023	0,9983261	0,996552
FR5945462299	GD477802	WG6984828-MSA7_G10	23/01/2023	24/01/2023	0,9979579	0,996552
FR5945462416	GD477787	WG6984828-MSA7_H10	23/01/2023	24/01/2023	0,9975394	0,998276
FR5945462296	GD477796	WG6984828-MSA7_A11	23/01/2023	24/01/2023	0,9980248	0,996552
FR5945462415	GD477785	WG6984828-MSA7_B11	23/01/2023	24/01/2023	0,9989287	1
FR5946022959	GD477706	WG6984828-MSA7_C11	23/01/2023	24/01/2023	0,9992802	1
FR5946022955	GD477702	WG6984828-MSA7_D11	23/01/2023	24/01/2023	0,9994644	1
FR5946023041	GD477739	WG6984828-MSA7_E11	23/01/2023	24/01/2023	0,9993974	1
FR5945462297	GD477798	WG6984828-MSA7_F11	23/01/2023	24/01/2023	0,997439	1
FR5945462283	GD477770	WG6984828-MSA7_G11	23/01/2023	24/01/2023	0,9976901	0,998276
FR5945462411	GD477810	WG6984828-MSA7_H11	23/01/2023	24/01/2023	0,9977068	1
FR5368482401	GD444224	WG6984828-MSA7_A12	23/01/2023	24/01/2023	0,9985437	0,998276
FR4243097168	GD448230	WG6984828-MSA7_B12	23/01/2023	24/01/2023	0,9994811	1
FR2940335133	GD301466	WG6984828-MSA7_C12	23/01/2023	24/01/2023	0,9996652	1

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

FR7613948192	GD478264	WG6984828-MSA7_D12	23/01/2023	24/01/2023	0,9995481	1
FR5942124572	GD466882	WG6984828-MSA7_E12	23/01/2023	24/01/2023	0,9972047	0,998276
FR5942124590	GD466887	WG6984828-MSA7_F12	23/01/2023	24/01/2023	0,9977403	1
FR5942124591	GD466888	WG6984828-MSA7_G12	23/01/2023	24/01/2023	0,995514	1
FR5945201044	LAFSCOL5 03523	WG6984828-MSA7_H12	23/01/2023	24/01/2023	0,9990124	1

Version de puce : EuroG_MDv3_XT_GD
Projets Génome Studio : indexation_270123

Fichier de clustering utilisé: MDv3_XT_bovin_230123

Chemin d'accès du projet Génome Studio : serveur gna2gdlabo

\\gna2gdlabo.genesdiffusion.com\archives_geno\genotypages_SAM\SAM_MD_v3\Indexation ns\2023\indexations janvier 2023\indexation 270123

	Call Rate	Callrate 580 ISO
<mark>moyenne</mark>	<mark>0,998810684</mark>	0,999551042
<mark>médiane</mark>	0,9990793	<mark>1</mark>
Taux d'échantillon > 0.95	100%	100%

Interprétation :

Pour ce qui concerne la concentration d'ADN : 98,96 % des échantillons montrent un dosage supérieur à 15 ng/μL. Ce critère satisfait au premier critère de performance visé de plus de 90 % d'échantillons avec une concentration ADN > 15 ng /μL.

A l'issue de l'opération de génotypage de 96 échantillons, une **médiane de CallRate égale à 0,9991** est calculée (1 sur les 580 SNP ISO), celle-ci satisfait au deuxième critère de performance (Médiane CallRate > 0,975). En outre, **100 % des échantillons sont supérieurs à la valeur de 0,95 de CallRate** satisfaisant à l'ultime critère de performance (90 % d'échantillons > 0,95 de CallRate).

Conclusion

L'essai répond aux critères de performance attendus et met en évidence l'obtention de résultats qualitativement très satisfaisants.

Un test de répétabilité et de reproductibilité reste à effectuer se basant sur un test annuel de répétabilité/reproductibilité extraction sur colonnes de silice en plaque, ainsi que la vérification de la concordance des génotypages.

11. Essai n°6

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

11.1. Introduction

L'essai consiste en la validation d'un test annuel de répétabilité/reproductibilité extraction sur MagnétaPure en plaque à partir de sang, celui-ci ayant effectué en septembre 2023 par Karine Le Roux et Michèle Boutté, selon GDB_PRO_06_Contrôle de reproductibilité et répétabilité de la phase d'extraction_v1.1 au moment de l'essai.

11.2. Mode Opératoire

Le mode opératoire est celui en application au moment de l'essai GDB_MOP_33_Extraction d'ADN sur MagnetaPure 96 à partir de sang_v1.0.

11.3. Points à développer (liste non exhaustive)

- ➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :
- MagnetaPure GDD-PURIF-002
- Centrifugeuse Hettich GDD-CENTRI-001
- Agitateurs GDD-AGIT-005 et GDD-AGIT-007

Kits et réactifs :

Kits et autres réactifs					
Produits / Consommables Numéro de lot particulières Spécifications particulières					
NucleoMag Blood 200 μL Macherey Nagel Réf. 744501.4	<mark>2305-004</mark>		Protéinase K solubilisée -21°C +/- 3°C Autres réactifs à 20°C +/- 5°C		

Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...):

Dans l'ordre de traitement :

CODE BARRE	TYPE MAT BIOLO	date reception Labo Douai	Plaque ADN	Date extraction
GD518246	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD518245	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD518248	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD518249	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

0.5.5.4.60.50	_	0.4/0.0/0.000	T	10/00/000
GD518250	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD527651	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD527676	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD527654	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD446810	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD446817	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD446819	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD446809	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD522161	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD522160	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD446812	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023
GD446818	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	13/09/2023

➤ Milieu : extractions réalisées dans la salle Extraction, dont la température est maîtrisée (21°C +/- 3°C).

Main d'oeuvre :

- extractions Test répéta/repro extraction sang 13/09/23 : Karine Le Roux A01-H02 + A03-H04 (répétabilité Karine), Michèle Boutté A05-H06 + A07-H08 (répétabilité Michèle),
- dosage 64 échantillons : Karine Le Roux le 13/09/23.

11.4. Résultats de l'essai - Conclusion

Milieu :

- Variation de température salle extraction le 13/09/2023

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

Extraction échantillons :

(fichier d'origine comprenant dosages et gammes étalon : GDB_ENR_130_Dosages répétarepro extractions sang-poils KLR-MB 130923_v1.0)

Les résultats de ce test annuel de répétabilité/reproductibilité extraction figurent dans le document GDB_FORM_02_Contrôle de reproductibilité et répétabilité de la phase d'extraction_230913_01_v2.0.

Interprétation :

- Spécifications relatives au milieu validées
- Contrôle de répétabilité extraction validé (> 90 %) :
 - Karine Le Roux = 100,0 %
 - Michèle Boutté = 100,0 %
- Contrôle de reproductibilité extraction validé (> 90 %) :
 - Karine Le Roux / Michèle Boutté = 91,9 %

Conclusion

Le test de répétabilité/reproductibilité extraction sur MagnetaPure en plaque à partir de sang est validé, l'essai répond aux critères de performance attendus.

Un essai permettant la vérification du pourcentage de similarité des génotypages de 2 échantillons issus de ce test reste à effectuer afin de pouvoir valider cette méthode.

12. Essai n°7

12.1. Introduction

L'essai consiste en la validation de la concordance des génotypages de 3 extraits de 2 échantillons issus des tests répétabilité/reproductibilité utilisés dans l'essai précédent. Ce

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

critère est atteint pour un minimum de 99 % de similarité sur les 580 SNP ISO.

12.2. Mode Opératoire

Le mode opératoire de génotypage est celui en application au moment de l'essai GDB_MOP_09_Génotypage_v2.1.

12.3. Points à développer (liste non exhaustive)

- ➤ Matériel (type d'appareil, référence, consigne, réglage, etc...) :
- Centrifugeuse Hettich GDD-CENTRI-003
- Four Illumina GDD-FOUR-003 (SAM2407008 échantillons répétabilité)
- Four Illumina GDD-FOUR-002 (SAM230823 échantillons reproductibilité)
- Incubateur microplaque SciGene GDD-INCU-005 (SAM2407008 échantillons répétabilité)
- Incubateur microplaque SciGene GDD-INCU-004 (SAM230823 échantillons reproductibilité)
- Four Illumina GDD-FOUR-004
- Robot pipeteur Tecan GDD-TECA-001
- Lecteur de puces à ADN Illumina GDD-SCAN-001

Kits et réactifs :

Kits et autres réactifs					
Produits / Consommables	Numéro de lot	Spécifications particulières	Stockage		
MA1		-	-20°C +/- 5°C		
MA2		-	-20°C +/- 5°C		
RAM		-	-20°C +/- 5°C		
FMS		-	-20°C +/- 5°C		
PM1	voir suivi des n° de lot dans le fichier réponses du	-	5°C +/- 3°C		
Isopropanol	GDB_FORM_16_Génotypage Infinium Illumina - Tracking form	-	Température ambiante		
RA1	-	-	-20°C +/- 5°C		
PB2	_	-	Entre 15°C et 30°C		
PB20		-	Entre 15°C et 30°C		
XC3		-	Entre 15°C et 30°C		

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

LX1	-	-20°C +/- 5°C
LX2	-	-20°C +/- 5°C
EML	-	-20°C +/- 5°C
SML	-	-20°C +/- 5°C
ATM	-	-20°C +/- 5°C
XC4	-	Entre 15°C et 30°C
Ethanol	-	Température ambiante
BeadChip	-	5°C +/- 3°C

➤ Matrices (quantité, traçabilité échantillon, traitement, spécificités, etc...) :

Les échantillons utilisés dans le cadre des tests annuels de répétabilité/reproductibilité extraction sont, dans la mesure du possible, issus de surplus de prélèvements traités dans le cadre de la production de génotypage en routine. Concernant le génotypage de l'échantillon reproductibilité, nous avons donc utilisé le génotypage de l'échantillon traité en routine plutôt que de génotyper un échantillon reproductibilité de l'essai précédent afin de limiter le coût de génotypage du présent dossier.

CODE BARRE	TYPE MAT BIOLO	date reception Labo Douai	Plaque ADN	Position ADN	Date extraction
GD446812	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	G02 (référence)	13/09/2023
GD446812	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	G04 (répétabilité)	13/09/2023
GD446812	Sang	<mark>24/08/2023</mark>	SAM230823	G02 (reproductibilité)	<mark>25/08/2023</mark>
GD446818	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	H02 (référence)	13/09/2023
GD446818	Sang	<mark>24/08/2023</mark>	Test répéta/repro extraction sang 13/09/23	H04 (répétabilité)	13/09/2023
GD446818	Sang	<mark>24/08/2023</mark>	SAM230823	H02 (reproductibilité)	<mark>25/08/2023</mark>

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

Milieu : génotypages réalisés dans les salles Pré-PCR génotypage et Post-PCR génotypage, dont la température est maîtrisée pour cette dernière (21°C +/- 3°C).

Main d'oeuvre :

- Extraction échantillons GD446812 (G02/G04) et GD446818 (H02/H04) plaque Test répéta/repro extraction sang 13/09/23 : Karine Le Roux
- Extraction échantillons GD446812 (G02) et GD446818 (H02) plaque SAM230914 : Mélissandre Barbet
- Génotypage échantillons GD446812 (G02/G04) et GD446818 (H02/H04) plaque Test répéta/repro extraction sang 13/09/23 : Mélissandre Barbet les 08/07/2024 et 09/07/2024 (avec la SAM2407008, E12/F12 et G12/H12 respectivement)
- Génotypage échantillons GD446812 (G02) et GD446818 (H02) plaque SAM230823 : Mélissandre Barbet les 29/08/2023 et 30/08/2023
- analyses Genome Studio: Sophie Martel le 12/07/2024 (échantillons répétabilité) et Ludivine Liétar le 15/09/2023 (échantillons reproductibilité)
- comparaisons SNP : Pierre Bouvelle le 10/07/2024

12.4. Résultats de l'essai – Conclusion

Milieu :

Variation de température salle POST-PCR les 08/07/2024 et 09/07/2024

- Variation de température salle POST-PCR les 29/08/2023 et 30/08/2023

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0	
GDB_FORM_53	SMQ	12/07/2024	
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT	

Génotypage échantillons :

ID	CODE BARRE	ID GENOTYPAGE	Date debut genotypage	<mark>Date de</mark> Scan	Call Rate	Callrate 580 Iso
FR2936751624	GD446812	WG7176727-MSA7_E12	08/07/2024	09/07/2024	0.9996441	<mark>1</mark>
FR2936751624	GD446812	WG7176727-MSA7_F12	08/07/2024	09/07/2024	0.9995996	<mark>1</mark>
FR2936751624	GD446812	WG7073088-MSA7_G02	29/08/2023	30/08/2023	0.9997613	<mark>1</mark>
FR7261004517	GD446818	WG7176727-MSA7_G12	08/07/2024	09/07/2024	0.9996441	<mark>1</mark>
FR7261004517	GD446818	WG7176727-MSA7_H12	08/07/2024	09/07/2024	0.9996589	<mark>1</mark>
FR7261004517	GD446818	WG7073088-MSA7_H02	29/08/2023	30/08/2023	0.9997016	<mark>1</mark>

Version de puce : EuroG MDv4-1 XT FRA GD

Projet Génome Studio: indexation 120724

Fichier de clustering utilisé: MDv4_1_XT_bovin_180424.egt

Chemin d'accès du projet Génome Studio : serveur gna2gdlabo

\\gna2gdlabo.genesdiffusion.com\Labo\genotypages\Genotypages_SAM\SAM_MD_v4_1\In

dexations\2024\indexation_juillet_2024\indexation_120724

Référence groupe génotypages GDBoard : Genotypages_sem28_2024

Informations retranscrites dans le Fichier suivi échantillons 2024 – GD Biotech

Version de puce : EuroG_MDv4_XT_GD

Projet Génome Studio: indexation_010923

Fichier de clustering utilisé : MDv4_XT_bovin_030423.egt Chemin d'accès du projet Génome Studio : serveur gna2gdlabo

\\gna2gdlabo.genesdiffusion.com\Labo\genotypages\Genotypages_SAM\SAM_MD_v4\Index

ations\2023\indexation_septembre_2023\indexation_010923

Référence historique Galaxy : Genotypages sem35 2023

Informations retranscrites dans le Fichier suivi échantillons 2023 – Gènes Diffusion

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Interprétation :

- Spécifications relatives au milieu validées
- Sur la version de puce EuroG_MDv4_XT_GD, seuls 576 sur les 580 SNP ISO étaient présents (voir GDB_FORM_01_Fiche de non conformité_230131_01_v2.0), ainsi la concordance des génotypages référence versus reproductibilité est évaluée sur les 576 SNP ISO communs.
 - GD446812 :

Échantillon répétabilité : 100 % de similarité 580 SNP ISO. Échantillon reproductibilité : 100 % de similarité 576 SNP ISO communs.

- GD446818:

Échantillon répétabilité : 100 % de similarité 580 SNP ISO. Échantillon reproductibilité : 100 % de similarité 576 SNP ISO communs.

Concordance génotypages validée avec 100 % de similarité SNP ISO communs pour les 2 échantillons issus des tests répétabilité/reproductibilité, entre l'extrait d'ADN référence avec l'extrait d'ADN répétabilité et avec l'extrait d'ADN reproductibilité (GDB_ENR_131_Comparaisons génotypages validation méthodes extraction 240710 v1.0).

➤ Conclusion :

La concordance des génotypages est validée, l'essai répond aux critères de performance attendus.

13. Analyse

13.1. Facteurs de risques

Matériel : panne, casse de la tête aimantée, intercontaminations liées au matériel (réglage, dysfonctionnement, etc...).

Matière : prélèvements de sang de mauvaise qualité (mal conservés avant transmission au laboratoire, coagulés, noir, ...). Intercontamination liée à la matière (animaux jumeaux).

Méthode: RAS.

Milieu : intercontaminations liées à l'environnement, coupure de courant pouvant influer sur la température ambiante (climatisation non reliée au circuit ondulé).

Main d'œuvre : non respect des modes opératoires / erreur humaine (intercontaminations, oubli de réactif, etc...), mauvaise gestion/conservation de réactifs, utilisation d'un mauvais programme.

13.2. Incertitudes

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

L'intercontamination définie comme le mélange d'ADN provenant de plus d'un échantillon associé à plusieurs individus (mélange d'ADN, mélange de matrices biologiques etc...) a un impact drastique au niveau du CallRate l'amenant à niveau nettement inférieur à 0,95 de CallRate. Ainsi, par essence, un CallRate > 0,95 assure du fait qu'il n'y ait pas d'intercontamination pour toute analyse réalisée satisfaisant à ce critère de performance. En ce sens, les critères de performance définis dans la présente validation de méthode permettent de vérifier l'absence d'intercontamination au cours du process analytique.

De plus, le laboratoire a mis en place des dispositions afin de répondre aux exigences relatives à : équipements, objets d'essai, installations, conditions ambiantes, formation, habilitation et suivi de maintien de compétence de son personnel, la validité des résultats, et ainsi minimiser voire supprimer l'impact des risques identifiés au sein de son process d'extraction d'ADN. Liste des documents :

GDB_PRO_29_Gestion des équipements

GDB_PRO_30_Manutention des objets d'essais

GDB_PRO_09_Consignes générales d'Hygiène et Sécurité appliquées à l'activité de la Plateforme de Génotypage haut-débit

GDB_PRO_27_Gestion du personnel

GDB_PRO_06_Contrôle de reproductibilité et répétabilité de la phase d'extraction

GDB_PRO_05_Contrôle de répétabilité et de reproductibilité _ méthode de génotypage hautdébit par puces à ADN

GDB_PRO_16_Contrôle des performances du génotypage réalisé par méthode des puces à ADN essai interlaboratoire

GDB_FORM_47_Contrat de prestation plateforme de génotypage haut-débit GD Biotech

Concernant la présente validation de méthode, la notion d'incertitude ne s'applique qu'à la seule méthode de dosage de la concentration d'ADN. A l'issue du dosage, l'incertitude de mesure, qui dépend directement du coefficient de détermination r^2 associé à la réalisation de la gamme étalon, est vérifiée. Nous avons fixé un seuil d'écart toléré à 0,99, ainsi r^2 doit être supérieur à 0,99 afin de valider la mesure, ce qui est le cas dans notre essai.

13.3. Robustesse

Non vérifiée.

13.4. Conclusion

La méthode d'extraction d'ADN par billes paramagnétiques à partir de sang, répond aux critères de performance attendus et met en évidence l'obtention de résultats qualitativement satisfaisants.

Comme envisagé, nous parvenons à atteindre une réduction conséquente des coûts engendrés par rapport à la méthode d'extraction sur colonne de silice. En tenant compte:

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

- D'une primo négociation sur le tarif de billes magnétiques (remise consentie de 27 %)
- De la mise au point d'un protocole permettant une diminution significative de la consommation des réactifs.
- D'une charge portée par les réactifs actuels (membrane de silice) de 1,29 € H.T. par point contre : 0,62 € H.T. sur billes paramagnétiques (incluant l'achat de 2 reactifs complémentaires).

Estimation coût plastique:

Extraction sur colonne de silice: plaque de lyse 0,034 €, pointes 0,08 €, plaque élution/caps 0,23 € soit 0,34 € par point

Extraction par billes magnétiques: deepwell 0,20 €, peigne 0,028 €, pointes 0,064 €, plaque élution 0,023 €, film autocollant 0,003 € soit 0,32 € par point

Au final, le gain financier apporté par ce changement de méthode d'extraction s'élève à 0,69 € H.T. par point d'extraction, ce gain est légèrement supérieur à l'objectif fixé de 0,65 € H.T. ce qui valide l'opération.

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

14. Sélection, vérification et validation de méthode

Partie réservée au Directeur Recherche et Développement

Référence du présent enregistrement de validation de méthode :

GDB_FORM_53_Validation de méthode_Extraction d'ADN sur billes magnétiques à partir de sang_221115_01_v1.0

Intitulé de la méthode : Extraction d'ADN sur billes magnétiques à partir de sang

Référence de l'essai sélectionné : Essai 5

Vérification de la méthode :

[x] approuvée (enregistrements produits suffisants - critères de performance atteints et conformes aux exigences du client)

[] non approuvée

Signature Directeur Recherche et Développement :

Nom : Christophe Audebert Date : 27/01/2023

Visa:

101

Validation de la méthode :

Conditions

Domaine d'application : extraction ADN

Ressources humaines:

 personnel autorisé : personnel de la plateforme GD Scan habilité à l'extraction d'ADN sous condition de formation

- personnel formateur : Sophie Merlin

- personnel à former/habiliter : personnel de la plateforme GD Scan habilité à l'extraction d'ADN

- autre : à préciser

Autres conditions : Information au client

Aptitude à l'emploi :

[x] accordée, mise en application à compter du : 27/01/2023

[] non accordée, commentaires :

Signature Directeur Recherche et Développement :

Nom: Christophe AUDEBERT Date: 27/01/2023

Visa:

GD Biotech AGRI-AGRO SOLUTIONS	Validation de méthode	Version 2.0
GDB_FORM_53	SMQ	12/07/2024
Rédaction : K. LE ROUX	Vérification : L. LIETAR	Approbation : C. AUDEBERT

Partie réservée au Directeur Recherche et Développement

Référence du présent enregistrement de validation de méthode :

GDB_FORM_53_Validation de méthode_Extraction d'ADN sur billes magnétiques à partir de sang_221115_02_v2.0

Intitulé de la méthode : Extraction d'ADN sur billes magnétiques à partir de sang

Référence de l'essai sélectionné : Essai 5

Vérification de la méthode :

[x] approuvée (enregistrements produits suffisants - critères de performance atteints et conformes aux exigences du client)

[] non approuvée

Signature Directeur Recherche et Développement :

Nom : Christophe Audebert Date : 31/07/2024 Visa :

Validation de la méthode :

Conditions

Domaine d'application : extraction ADN

Ressources humaines:

- personnel autorisé : personnel de la plateforme GD Scan habilité à l'extraction d'ADN sous condition de formation

- personnel formateur : Sophie Merlin

 personnel à former/habiliter : personnel de la plateforme GD Scan habilité à l'extraction d'ADN

- autre : à préciser

Autres conditions: Information au client

Aptitude à l'emploi :

[x] accordée, mise en application à compter du : 27/01/2023

[] non accordée, commentaires :

Signature Directeur Recherche et Développement :

Nom: Christophe AUDEBERT Date: 31/07/2024

Visa :

11]