

Segurança Computacional Criptografia assimétrica

Prof. Carlos Maziero

DInf UFPR, Curitiba PR

Julho de 2019

Conteúdo

1 Acordo de chaves

2 Algoritmos assimétricos

3 O algoritmo RSA

Acordo de chaves

O problema do acordo de chaves

- Alice e Bob querem trocar mensagens via rede
- As mensagens serão cifradas com um algoritmo simétrico
- Eles precisam definir uma chave comum
- Mallory pode capturar as mensagens da rede
- Como definir a chave comum através da rede?

Acordo de chave de Diffie-Hellman-Merkle

- Permite estabelecer uma chave secreta comum
- Primeiro algoritmo de acordo de chaves (1976)
- Pode ser usado com canais inseguros (sniffing)
- Baseado em aritmética inteira modular
- Define os conceitos de chaves pública e privada

Troca de chaves de Diffie-Hellman-Merkle

Sejam p um número primo e g uma raiz primitiva módulo p

Raiz primitiva módulo p

Inteiro positivo g < p tal que todo número n coprimo de p é congruente a uma potência de g módulo p.

Números coprimos

Dois números p e q são coprimos (ou primos entre si) sse o único inteiro que divide ambos é 1. Exemplos: 14 e 15, ou 6 e 35.

Troca de chaves de Diffie-Hellman-Merkle

passo	Alice	rede (Mallory vê)	Bob
1	escolhe <i>p</i> e <i>g</i>	$\xrightarrow{(p,g)}$	recebe <i>p</i> e <i>g</i>
2	escolhe <mark>a</mark>		escolhe b
3	$A = g^a mod p$		$B = g^b mod p$
4	envia <i>A</i>	\xrightarrow{A}	recebe A
5	recebe B	\leftarrow	envia <i>B</i>
6	$k = B^a mod p$		$\mathbf{k} = A^b \mod p$
	$\mathbf{k} = \mathbf{g}^{ba} \mathbf{mod} \ \mathbf{p}$		$\mathbf{k} = g^{ab} mod p$
7	$m' = \{m\}_k$	$\stackrel{m'}{\longrightarrow}$	$\mathbf{m} = \{\mathbf{m}'\}_k^{-1}$

Troca de chaves de Diffie-Hellman-Merkle

Que informação Mallory possui?

- O número primo *p*
- O número gerador g
- $A = g^a \mod p$ (chave pública de Alice)
- $B = g^b \mod p$ (chave pública de Bob)

Para obter *k* ela precisa calcular *a* ou *b*

- $A = g^a \mod p$, ou seja, $a = \log_g A \mod p$
- $B = g^b \mod p$, ou seja, $b = \log_g B \mod p$

Problema do logaritmo discreto

Calcular $A = g^a mod p$ é fácil e rápido! mas...

Calcular $a = \log_g A \mod p$ é muito difícil!

Problema do logaritmo discreto:

- complexidade exponencial (sem solução eficiente)
- impraticável se o primo *p* for muito grande
- Em sistemas reais usa-se p com 1.024 bits ou mais

Algoritmos assimétricos

Algoritmos assimétricos

Usam um par de chaves complementares:

- Uma chave pública kp: conhecida por todos os usuários
- Uma chave privada kv: conhecida só pelo proprietário
- O que *kp* cifrar, *kv* decifra, e vice-versa (nem sempre!)

Estas chaves estão fortemente relacionadas:

- para cada kp há uma única kv correspondente
- para cada kv há uma única kp correspondente
- Não é possível calcular uma chave a partir da outra

Exemplos de chaves

Chave pública (SSHv2, algoritmo RSA):

```
ssh-rsa AAAAB3GzaC1yz2EAAAABIwCAAQEAq9iq5glqnwm4kQGUJ0EE7VoNBlNL
t7BJyUVJSC0j7E+JJYDDmkdwgTkgEF0CWkeBeQ3M1abgZthog1AIeDf9hfL2WPy6
XAfPZ2FtDze53qr/5akVfzLYvKj4c+ewVGYL+2Cjw9fqCpuVDzmG+0dRqfxk2rY2
jLTi79x8GWMpOWQMlr0iEpElopTB9VLxPCrh4SePnGWI+0/YS8T3m7K702dHXell
FQSFasNga7n9RtVIEHjjgSPV8iv3rVomxuOemKMXpUbsW56UrQAsMQ0G3KF4/Rf1
ACOHZM+Ib2JaN5sTB00g4ImPjU5xjKl11FkvAuM76U
vBImNjnClvNJa5BQ== maziero@localhost
```

Chave privada (SSHv2, algoritmo RSA):

```
----BEGIN RSA PRIVATE KEY----

MIIEOQIBAAKCHGFAq9iq5glqnwm5kQGUJ0EE7werBlWLt7BJyUVJSC0j7E+JJYGD
mkdwgTkgEF0CKkeBeQ3M1xbgZthog1AIeDf9mkjuWPy6XAfPZ2FtDze53qr/5aiV
... (22 linhas omitidas)

D4Bxn3bX9CUASkJicmD6S91sj+10HHZN+2bLGhbcYaAMPljGbA==
----END RSA PRIVATE KEY-----
```


Algoritmos assimétricos

ดน

Para um usuário *u* com chave pública *kp* e privada *kv*:

$$\{ \{ x \}_{kp} \}_{k}^{-1} = x \iff k = kv$$

$$\{ \{ x \}_{kv} \}_{k}^{-1} = x \iff k = kp$$

$$x \xrightarrow{kp} x' \xrightarrow{kv} x$$

$$x \xrightarrow{kv} y' \xrightarrow{kp} y$$

14/28

Algoritmos assimétricos

Exemplo de uso: comunicação confidencial

Alice quer enviar um documento secreto a Bob

- Bob deixa sua chave pública em um local público
- 2 Alice busca a chave pública de Bob no repositório
- Alice usa a chave pública de Bob para cifrar o documento
- Alice envia o documento cifrado a Bob
- 5 Bob usa sua chave privada para decifrar o documento

Outros usuários lêem o texto cifrado mas não podem decifrá-lo

Algoritmos assimétricos

Algoritmos assimétricos

Podem ser usados para verificar a **autoria** de um documento:

- As chaves públicas estão publicamente acessíveis
- se Alice cifrar um documento com sua chave privada, qualquer um poderá decifrá-lo
- Se o documento puder ser decifrado com a chave pública de Alice, então ela é a autora do mesmo
- Este mecanismo é usado para criar assinaturas digitais

Quadro comparativo

Cifrador	Simétrico	Assimétrico
Chaves	Uma única chave para ci- frar e decifrar	Chaves complementares para cifrar e decifrar
Tamanho das chaves	Pequena (AES: 64 a 256 bits)	Grande (RSA: 2.048 a 15.360 bits)
Tamanho dos dados	Qualquer (blocos ou fluxo)	Blocos com o tamanho da chave
Velocidade	Alta (centenas de MB/s)	Baixa (centenas de KB/s)
Uso	Grandes volumes de dados (tráfego de rede, arquivos, áudio, etc)	Pequenos volumes de da- dos (troca de chaves, assi- naturas digitais)
Exemplos	RC4, A/51, DES, 3DES, AES	Diffie-Hellman, RSA, ElGa- mal, ECC

Criptografia híbrida

Vantagens da criptografia simétrica:

- é rápida e flexível
- pode cifrar grandes volumes de dados

Vantagens da criptografia assimétrica:

- permite realizar o acordo de chaves
- permite verificar autenticidade

Uso conjunto de ambas:

- Usar algoritmo assimétrico para definir chave de sessão
- Usado no SSL e TLS (SSH, HTTPS, etc)

Criptografia híbrida

Passo	Alice	rede insegura	Bob
1	k = random()		
2	$k' = \{k\}_{kp(Bob)}$		
3	$k^{\prime\prime}=\{k^{\prime}\}_{kv(Alice)}$		
4	envia <i>k"</i>	<i>k</i> ′′	recebe <i>k"</i>
5			$k' = \{k''\}_{kp(Alice)}^{-1}$
6			$k = \{k'\}_{kv(Bob)}^{-1}$
7	$m'=\{m\}_k$		· · · · · ·
8	envia <i>m</i> ′	m′	recebe <i>m</i> ′
9			$m = \{m'\}_k^{-1}$

O algoritmo RSA

RSA

RSA - Rivest, Shamir & Adleman (MIT), 1977

É o cifrador assimétrico mais utilizado hoje

Problema: fatoração do produto de números primos:

■ Calcular $p \times q$ é fácil:

$$1.300.511 \times 67.883.743 = 88.283.554.492.673$$

Obter os fatores primos de um produto é muito difícil:

$$104.741.680.862.209.687 = p \times q$$

RSA - Conceitos básicos

Conjunto de inteiros módulo p:

$$\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$$

Aritmética modular:

$$15 \mod 4 = 3$$

$$x \mod 4 = 3 \Rightarrow x \equiv 3, 7, 11, 15, \dots$$

RSA - Geração das chaves (1)

- Sortear dois números primos *p* e *q*
 - Números de magnitude similar
 - Técnica: sortear aleatórios e testar **primalidade**
 - Teste rápido: Miller-Rabin (probabilístico)
- **Calcular o módulo**: $n = p \times q$
- Calcular **lambda**: $\lambda(n) = mmc (p-1, q-1)$
 - \blacksquare λ : totiente de Carmichael
 - *mmc* (*a*, *b*): mínimo múltiplo comum entre *a* e *b*

RSA - Geração das chaves (2)

- Calcular expoente e da chave pública
 - $1 < e < \lambda(n)$ e $mdc(e, \lambda(n)) = 1$
 - *mdc* (*a*, *b*): máximo divisor comum
 - \bullet e e $\lambda(n)$ são coprimos
- Calcular expoente d da chave privada
 - $d \equiv e^{-1} \bmod \lambda(n)$
 - d é o **inverso multiplicativo** de e (ou seja, $d \times e = 1 \mod \lambda(n)$)
 - calculado usando o Algoritmo de Euclides estendido
- Chave pública: $\{e, n\}$ e chave privada: $\{d, n\}$

RSA

Operação de cifragem $(m \rightarrow c)$ usa $\{e, n\}$:

$$c \equiv m^e \mod n$$

Operação de decifragem ($c \rightarrow m$) usa {d, n}:

$$m \equiv c^d \equiv (m^e)^d \mod n$$

No mundo real:

- p e q têm centenas de dígitos
- operações com inteiros de precisão arbitrária
- exponenciações são muito pesadas

RSA - Exemplo com números pequenos

- **11** Escolher dois primos: p = 61 e q = 53
- 2 Calcular o módulo: $n = p \times q = 61 \times 53 = 3233$
- **3** Calcular o totiente: $\lambda(3233) = mmc(60, 52) = 780$
- Escolher expoente 1 < e < 780, *e* coprimo de 780
 - e = 17
 - 17 é primo e não é divisor de 780
- **5** Calcular expoente d tal que $d \times e = 1 \mod \lambda(n)$
 - d = 413
 - $13 \times 17 \mod \lambda(n) = 1$
- **6** Chave pública: $\{n = 3233, e = 17\}$
- **7 Chave privada**: $\{n = 3233, d = 413\}$

RSA - Exemplo

Mensagem aberta: m = 65 (letra "A" em ASCII)

Cifrando ($m \to c$): $c \equiv m^e \mod n = 65^{17} \mod 3233 = 2790$

Mensagem cifrada: c = 2790

Decifrando ($c \to m$): $m \equiv c^d \mod n = 2790^{413} \mod 3233 = 65$

Mensagem decifrada: m = 65