# Iowa State University

# Department of Electrical and Computer Engineering

Cpr E 489: Computer Networking and Data Communications

Lab Experiment #6

GENI Experiment: IPv4 Routing Basics

(Total Points: 100)

## Objective

In this GENI lab, you will get familiar with the static routing protocol and manually updating the routing tables.

## Pre-Lab

Complete the steps a-f of the Procedure section and remind yourself how to SSH into the nodes as in the "Introduction to GENI" lab.

- 1) Go to <a href="https://portal.geni.net/">https://portal.geni.net/</a> press the Use GENI button and from the Drop-Down menu select your institution.
- 2) Join a project through GENI portal and create a slice (use LastName-lab6 as the name)
- 3) If needed, generate and use a new private SSH key. (The one from the "Introduction to GENI" lab will still work)

## **Lab Expectations**

Work through the lab and let the TA know if you have any questions. After the lab, write up a lab report with your partner. Be sure to

- summarize what you learned in a few paragraphs. (20 points)
- include your answers for all questions, with screenshots. (75 points)
- cleanup. (5 points)

#### **Procedure:**

- a) Create a slice and name it: LastName-lab6.
- b) On the slice page, click on your slice and then click on the **Add Resources** button placed at the top part of the screen.
- c) In the **Choose RSpec** section, choose **File** and use the enclosed **lab06\_rspec.xml** file.
- d) You will need to choose an aggregate where you want this topology to be instantiated. Click on the Site 1 box and a panel on the left side of the canvas will appear. Choose any aggregate with **InstaGENI** in its name (except Starlight).
- e) Click on the **Reserve Resources** button on the bottom left part of the screen.
- f) Wait while your resources are being reserved. This will take several minutes so be patient. The node statuses on the Home->Slice->Details screen will turn green (READY) to signify that your resources are ready.
- g) Take a screenshot of your slice when all the nodes are ready and include it in your report. (5 points)

- h) Setup the routing:
  - The downloaded network is connected as indicated in <u>Figure 1.</u>
  - 2) Open a terminal.



 Run ssh for all three Nodes and enter your passphrase when prompted.

ssh -i <private key location> <username>@<hostname> -p <port>

- i. To get the information you need, you can load your slice in the portal, and from the Home tab locate your slice and click on it to load it.
- ii. Under the topology canvas, click the Details button. This page should have all the information you need.
- 4) Execute the **route** command in each of the three nodes to show their respective routing tables. **Include a screenshot of the tables in your lab report. (10 points)**
- 5) From node A, try to ping the other addresses of nodes B and C (two IP addresses for each node). Include a screenshot of the ping outputs and explain the results. (10 points)
- 6) What happens when you traceroute from A to IP address 192.168.2.12 before you set up the static routes? Why? Include a screenshot of the traceroute output in your lab report. (10 points)
- 7) If you get a message like "-sh: 7: traceroute: not found" when trying to execute traceroute, use 'sudo apt-get install traceroute' to install traceroute.

#### **Setting Up Static Routes**

- The following command will add the destination subnet **destiny** (A.B.C.0) to the local routing table and use IP address **thisway** (W.X.Y.Z) accessible via interface **intf** as the gateway: sudo route add -net **destiny** netmask 255.255.255.0 gw **thisway intf** More specifically, in the above command:
  - destiny is the subnet address (A.B.C.0) that will indicate where to send packets that have a matching destination IP address (e.g., if you want to direct traffic for the subnet 192.168.254.0/24, then you would set the destination to 192.168.254.0 with netmask 255.255.255.0 accounting for the /24. Note: netmask 255.255.255.0 should be sufficient for the purposes of this lab);
  - intf is the name of the interface on this computer from which traffic will be sent out; and

 thisway is the IP address of the interface on the gateway that will receive the traffic that is sent (W.X.Y.Z).

Note: The gateway IP address **thisway** must be an address that the interface **intf** can access directly (i.e., it is not further routed before getting to **destiny**). It is also not the IP address of the interface on the current computer.

- To delete this entry in the table, simply replace add with del. sudo route del -net destiny netmask 255.255.255.0 qw thisway intf
- Now, modify the routing tables to allow for node A to reach the IP addresses that you could not reach in step 6. Include a screenshot of the routing table of node A (10 points).
- Take a screenshot of node A successfully pinging and using traceroute on 192.168.2.12 (10 points).
- Setup up more static route(s) so that every node can access every interface in the system. Take screenshots of routing tables of nodes B and C as well (10 points).
- Show a traceroute from node B using traceroute on the four interfaces it does not own. **Take a** screenshot of each traceroute output. (10 points). For example:

```
user@node-b$ traceroute 192.168.1.10
[OUTPUT]
user@node-b$ traceroute 192.168.3.10
[OUTPUT]
user@node-b$ traceroute 192.168.3.12
[OUTPUT]
user@node-b$ traceroute 192.168.2.12
[OUTPUT]
```

#### Cleanup

After you are done with the experiment, you should always release your resources so that other experimenters can use the resources. To cleanup your slice, press the **Delete** button at the bottom of the Manage Resources panel on the Slice page. Wait a few moments for all the resources to be released and you will have an empty canvas again. Notice that your slice is still there. There is no way to delete a slice. It will be removed automatically after its expiration date but remember that a slice is just an empty container, which doesn't take up any resources. Include a screenshot of your slice with no resources on the Manage Resources panel (see example below). (5 points)



# **Tips**

- Remember that you can use "ifconfig" to determine which Ethernet interface (e.g., eth0) is bound to what IP address at each of the nodes.
- To enable IP forwarding of packets on a node, you may need to execute the following command:
   sudo sh -c 'echo 1 > /proc/sys/net/ipv4/ip\_forward'
- The routing table matches the destination address to the newest, valid entry.
- Ping and traceroute use ICMP which gets sent to the receiver, processed, and sent back. The response also needs to know how to reach its destination.
- A useful tool to debug the packet flow is **tcpdump**.