Magnitude

1 有限距離空間

定義 1.1. (類似度行列). (X,d) を有限距離空間とする. $Z: X \times X \to \mathbb{R}$ を,

$$Z(x,y) \coloneqq e^{-d(x,y)}$$

により定め、これを類似度行列という.

定義 1.2. (ウェイト). (X,d) を

2 コンパクト距離空間

命題 **2.1.** $K \subset l_2^d$ を凸体とする. このとき,

$$\operatorname{Mag}(K) \le \sum_{k=0}^{d} \frac{\omega_k}{4^k} V_k(K)$$

が成り立つ. また, d=1 のとき, 等号が成立する.

証明.

系 2.2. H をヒルベルト空間とし, $X \subset H$ をコンパクト集合とする. K を X の閉凸包とする. $V_1(K) < \infty$ ならば, $\mathrm{Mag}(X) < \infty$ が成り立つ.

証明.

命題 2.3.

証明.

命題 2.4. (グロモフハウスドルフ距離に関する下半連続性). X を正定値コンパクト距離空間とする. 任意の $\varepsilon>0$ に対して, $\delta>0$ で, コンパクト正定値距離空間 Y が $d_H(X,Y)<\delta$ ならば, $\mathrm{Mag}X-\varepsilon\leq\mathrm{Mag}Y$ となるものが存在する.

証明. 任意に $\varepsilon>0$ をとる. 有限部分集合 $X'\subset X$ で $\mathrm{Mag}X-\varepsilon\leq\mathrm{Mag}X'$ を満たすものをとる. X' のウェイトを w で表すことにする. $\delta\coloneqq\frac{\varepsilon}{\|w\|_1^2}$ ととる. コンパクト正定値距離空間 Y が $d(X,Y)<\delta$ をみたすとする. $f:X'\to Y$ を, $x\in X'$ に対して, $d(x,y)<\delta$ を満たす $y\in Y$ をとり, $f(x)\coloneqq y$ とすることで定める. $Y'\coloneqq f(X')$ とすると, Y' は Y の有限部分集合であり, $d(X',Y')<\delta$ を満たす. $Z_{X'},Z_{Y'}$ により

$$Z_f: X' \times X' \to \mathbb{R}$$

を,
$$Z_f(x,x') := Z_{Y'}(f(x),f(x'))$$
 により定め,

$$v: Y' \to \mathbb{R}$$

を,
$$v(y) \coloneqq \sum_{x \in f^{-1}(y)} w(x)$$
 により定める.

$$|d(f(x), f(x')) - d(x, x')| < \delta \quad (x, x' \in X')$$

であるので,

$$\sup_{x,x'\in X} |Z_f(x,x') - Z_{X'}(x,x')| = \sup_{x,x'\in X} \left| e^{-d(f(x),f(x'))} - e^{-d(x,x')} \right|$$

$$\leq \sup_{x,x'\in X} |d(f(x),f(x')) - d(x,x')|$$

$$< 2\delta$$

が成り立つ. $v^t Z_{Y'} v = w^t Z_f w$ が成り立つので,

$$|\operatorname{Mag}X' - v^t Z_Y v| = |w^t Z_{X'} w - w^t Z_f w|$$

$$= |w^t (Z_{X'} w - Z_f) w|$$

$$= (\sum_x |w(x)|)^2 \sup |Z_{X'} - Z_f|$$

$$< (\sum_x |w(x)|)^2 \cdot (2\delta)$$

$$< 2\varepsilon$$

従って,

$$\begin{aligned} \operatorname{Mag} Y &\geq \operatorname{Mag} Y' \\ &\geq \frac{(\sum v(y))^2}{v^t Z_{Y'} v} \\ &= \frac{(\sum w(x))^2}{w^t Z_f w} \\ &\geq \frac{(\operatorname{Mag} X')^2}{\operatorname{Mag} X' + 2\varepsilon} \\ &\leq \operatorname{Mag} X' - 2\varepsilon \\ &> \operatorname{Mag} X - \varepsilon - 2\varepsilon \end{aligned}$$

が成り立つ.