PHY 1110 - Summer 2020 - Study Guide #2 - One-Dimensional Kinematics

THE "MAGIC FORMULAS" OF KINEMATICS

Constant velocity:

$$x - x_0 = v t$$

Constant acceleration

$$x - x_0 = \frac{1}{2} (v + v_0) t = v_{ave} t$$

does not contain "a"

$$v - v_o = a t$$

does not contain "x"

$$v^2 - v_0^2 = 2 a (x - x_0)$$

does not contain "t"

$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$

does not contain "v"

These formulas should be memorized because they come up many times throughout the year. After using them a few times you should remember them without too much effort. If you are unsure if you remember the formula correctly, check the consistency of the units in the formula.

1. A Corvette traveled down a long straight road in a westerly direction with a <u>constant velocity</u> of 27 m/s. As it passed a large apple tree along the side of the road, an observant traffic policeman started a timer. Sketch the situation, set up a coordinate system, and list the information known about the Corvette in <u>proper mathematical notation</u>. Let t_0 = 0 s as the Corvette passed the tree.

2. As the Corvette passed the apple tree, a Porsche parked next to the apple tree started moving in the same direction with a <u>constant acceleration</u> of 27 m/s². Sketch the situation, set up a coordinate system that matches the one used for the Corvette, and list the information known about the Porsche in proper mathematical notation. Let t_0 = 0 s as the Porsche passed the tree.

	3. The time	required for the	e Corvette	to reach a	a point	100 m	beyond	the ap	ople t	ree was
	100/27	s and at the	at time the	e velocity of	of the C	corvette	was	27		m/s.
1-	1 1 / () 1 1 1 1									

$$d=d_0+\frac{1}{2}(V_0+V)+$$
 it has aconstant velocity
 $t=\frac{100}{27}$

= 27 %

$$d=d_0+v_0+t_2^2$$
 $(00=0+0(t)+t_2(27)t_2^2)$
 $t=t_2.72$
 $t=t_2.72$
positive because regative time does not make sense

Circle the correct time and state the physical significance of the other time.)
$$(0 \text{ s}, +2 \text{ s})$$

time.) (0 s, #2 s)

$$x-x_0=0$$
 t $+\frac{1}{2}at^2$
 $yt=0$ t $+\frac{1}{2}at^2$
 $27t=0$ t $+\frac{1}{2}(17)t^2$
 $13.5t^2-27t=0$
 $13.5t^2-27t=0$
 $27^{\frac{1}{2}}\frac{12}{12}\frac{12}{12}\frac{12}{12}\frac{12}{2}$
 $2(13.5)$ $=\frac{27^{\frac{1}{2}}27}{27}=\frac{0}{27}\frac{54}{27}=0$

7. Orville stands at the edge of the roof of Fawcett Hall and throws a Pepsi bottle straight up with an initial velocity of 7 m/s. The bottle rises and then falls, eventually striking the ground 23 m below Orville's hand. Sketch this situation, set up a vertical coordinate system with its origin at the ground and with positive x pointing up. List all the information known about the bottle in proper mathematical form including proper signs. USE THIS COORDINATE SYSTEM IN SOLVING THE FOLLOWING PROBLEMS.

- 8. When the bottle reaches its highest elevation, its velocity is _____m/s and its acceleration is _____m/s^2.
- 9. Find the maximum elevation reached by the bottle by a two step method. Use your knowledge of the velocity of the bottle at its maximum height to calculate the time $t = \frac{0.700}{25.5}$ s when the bottle reaches this height. Then calculate the height $x = \frac{25.5}{25.5}$ m of the bottle at this time. This maximum height is $\frac{25.5}{25.5}$ m above the height of Orville's hand when he released the bottle. (+0.714 s, +25.5 m, 2.5 m)

$$V = V_0 + 94$$
 $d = d_0 + V_0 + t + t_2 + 2$
 $0 = 7 + (-9.5) + 23 + 7(0.714) + t_2 (-9.8)(0.714)^2$
 $t = 0.714$ $= 25.5$

10. The maximum elevation can also be calculated in one step. Simply use your knowledge of the velocity of the bottle at its maximum height to directly calculate the elevation $x = \frac{1}{2} \frac{1}{2}$

$$V^{2}-V_{0}^{2}+2a(d-d_{0})$$

$$0^{2}=7^{2}+2(-9.8)(d-23)$$

$$0=49+450.8-19.6d$$

$$-499.8=-19.6d$$

$$d=25.5$$

11. The velocity of the bottle when it strikes the ground can also be found by a one-step or a two-step method. The two step method consists of first calculating the time when the
bottle strikes the ground and using this result to calculate the velocity.
a) The time calculation gives two results, $t = \frac{3}{3}$ s and $t = \frac{-1.97}{3}$ s.
The correct result is What is the physical significance of the second
1/2 // 2 00 1 57)

result? (+3.00 s, -1.57 s)

$$d = d_0 + V_0 t + \frac{1}{2}at^2$$
 $0 = 23 + 7(t) + \frac{1}{2}[-9.8]t^2$
 $0 = 23 + 7t + \frac{1}{2}[-9.8]t^2$
 $0 = 23 + \frac{1}{$

12. The velocity of the bottle as it strikes the ground can also be calculated in a single step. This calculation gives two values because of the
$$v^2$$
 which is present in the formula. The results are $v = \underbrace{\text{res}(v)}_{\text{m/s}} \text{m/s}$ and $v = \underbrace{\text{res}(v)}_{\text{m/s}} \text{m/s}$. What is the physical significance of the second value?

$$V^2 = V_0^2 + 2a(d-d_0)$$
 $v^2 = 7^2 + 2(-9.8)(0-23)$

He velocity it would reed to be

 $V = \sqrt{199.8}$
 $V = \sqrt{199.8}$
 $V = \sqrt{199.8}$

Save arc.

13. The height at which the bottle reaches a velocity of +4 m/s is
$$x = \frac{2^{1/3}}{10}$$
 m. This occurs (a) on the way up, (b) on the way down, or (c) both on the way up and the way down. (+24.7 m)

down.
$$(+24.7 \text{ m})$$

 $1/2-1/2+12a(d-1/6)$
 $1/2-1/2+12a(d-1/6)$