

Approximation Algorithm

汇报人: 肖子立 肖霖畅

第一部分

大纲

- 1 NP-完全性理论
- 2 贪心算法
- 3 局部搜索算法
- 4 动态规划
- 5 科研应用

- ■确定型和非确定型图灵机
 - 确定型图灵机 (DTM)
 - 根据当前的输入和状态存在**确 定**的执行的操作
 - 非确定型图灵机 (NTM)
 - 根据当前的输入和状态存在多 种不确定的执行的操作

■ P和NP问题

- P类问题:对其中任一问题都存在一个确定型图灵机M和一个多项式p,对于该问题的任何长度为n的实例,M都能在p(n)步内给出对该实例的回答。(**多项式时间内可解**)
- NP类问题:对其中的任一问题都存在一个**非确定型**图灵机N和一个多项式p,对于该问题的任何长度为n的实例,N都能在p(n)步内给出对该实例的回答。(**多项式时间内可验证其解的正确性**)
 - 若NTM在该问题的每一步都存在2种动作可选,则回答实例需考察**2**p(n)种不同的可能性。

- 归约 (Reduction)
 - 对于问题P和Q,如果存在一个可计算的函数f,使得对于问题 P的任一实例x,都有P(x) = Q(f(x))

■ NP及NPC类问题

- NPC问题:
 - 对于一个问题q, 若:
 - q∈NP
 - 2. NP问题中任一实例均可多项式时间归约到q
 - 则称q为NP-complete (NPC) 问题
- NP-hard问题:
 - 若问题q近满足上述条件2而不一定满足条件1,则问题q称为 NP-hard (NPH) 问题
 - NP-complete⊆NP-hard

■P、NP、NPH和NPC之间的关系

■ 解决NPH问题常见算法

- 启发式算法:
 - 设计多基于研究者直观经验, 缺乏理论依据
 - 算法性能不稳定, 其可行解与最优解的**偏离程度难以预计**
- AI类算法
 - 算法产生的可行解与最优解之间的距离难以衡量, 缺乏**理论分析**
 - 对**训练数据**要求严格,**计算复杂度**相对较高,对**硬件资源**需求量大
- ■近似算法
 - 算法设计**简单直观**,有严格的**数学理论支撑**
 - 其可行解与最优解之间的距离可以证明,算法性能有稳定上界

- 常见优化问题分类:
 - 容易近似:
 - Knapsack, UFLP, Bin Packing等
 - 较难近似:
 - Vertex Cover, Euclidean TSP, Steiner Trees等
 - 难以近似:
 - Graph Coloring, TSP, Clique等

■ 常见近似算法分类:

大纲

- 1 NP-完全性理论
- 2 贪心算法
- 3 局部搜索算法
- 4 动态规划
- 5 科研应用

贪心算法

- 贪心算法:
 - 核心思想: 总是在当前时刻做出最优的选择
 - 目标: 从**局部的**最优解最终得到**全局**最优解

Common Applications of Greedy Algorithm

■ 贪心算法

- 单机作业调度 (Scheduling jobs with deadlines on a single machine):
 - 每个job具有发布时间r_j,作业执行时间p_j,截止时间d_j
 - 优化目标: 最小化作业完成延迟
 - 作业j被完成的时间为C_i
 - 延迟L_j=C_j-d_j
 - 目标函数:min L_{max}=max_{j=1,...,n} L_j

Job 1 Job 2 Job 3

- 单机作业调度 (Scheduling jobs with deadlines on a single machine):
 - Lemma1:对于job的任何子集S(假设d(S) < 0),都有:

$$L_{max}^* \ge r(S) + p(S) - d(S)$$

其中: L_{max}^* 为该优化问题的最优解

$$r(S) = \min_{j \in S} r_j$$

$$p(S) = \sum_{j \in S} p_j$$

$$d(S) = \max_{j \in S} d_j$$

■ 贪心算法

- 单机作业调度 (Scheduling jobs with deadlines on a single machine):
 - Theorem1: earliest due date (EDD) 是一个近似比为2的 算法:

$$t \leq C_{j}, r(S) = t$$

$$p(S) = C_{j} - t = C_{j} - r(S), C_{j} \leq r(S) + p(S)$$

$$\text{Lemma1} \text{ } d(S) < 0$$

$$L^{*}_{max} \geq r(S) + p(S) - d(S) \geq r(S) + p(S) \geq C_{j}$$

$$L^{*}_{max} \geq r_{j} + p_{j} - d_{j} \geq -d_{j}$$

$$L_{max} = C_{j} - d_{j} \leq 2L^{*}_{max}$$

意

贪心算法

- ■问题场景
 - ■云工作流任务调度
 - 限制:
 - 数据读写
 - 任务截止日期
 - 租用云资源成本
 - 目标:
 - 满足任务截止日期的情况 下,最小化租用金额

j

贪心算法

^[1] Tang X, Cao W, Tang H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(9): 2079-2092.

■问题建模

任务开始时间:
$$EST(t_{entry}, vm_j) = 0.$$

任务执行时间:
$$ET(t_i, vm_j) = d_i^I/GSR(vm_j) + MI_i/w(vm_j) + d_i^O/GSW(vm_j).$$

任务完成时间:
$$EFT(t_i, vm_j) = EST(t_i, vm_j) + ET(t_i, vm_j)$$

= $EST(t_i, vm_j) + d_i^I/GSR(vm_j)$
+ $MI_i/w(vm_i) + d_i^O/GSW(vm_i)$.

任务开始时间限制:
$$EST(t_i, vm_j) \ge Max\{Available(vm_j), EFT_{t_k \in pred(t_i)}(t_k, vm_s)\}.$$

^[1]Tang X, Cao W, Tang H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(9): 2079-2092.

■ 贪心算法

■问题建模

$$c(t_i, vm_j) = \begin{cases} (\lceil ET(t_i, vm_j)/\tau \rceil + 1) \times c(vm_j), \\ \lceil ET(t_i, vm_j)/\tau \rceil \times c(vm_j), \\ (\lceil ET(t_i, vm_j)/\tau \rceil - 1) \times c(vm_j). \end{cases}$$

[1]Tang X, Cao W, Tang H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(9): 2079-2092.

■问题形式化定义

优化目标: 最小化

[1]Tang X, Cao W, Tang H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(9): 2079-2092.

■问题复杂度分析(即证明问题是NP-hard)

Cloud workflow scheduling

MKP

$$Cost = \sum_{t_i \in T, j = 1, \cdots, m} X_{i,j} c(t_i, vm_j).$$

$$\begin{cases} makespan \leq d, \\ EST(t_i, vm_j) \geq & Max\{Available(vm_j), \\ EFT_{t_k \in pred(t_i)}(t_k, vm_s)\} \end{cases} \quad \forall t_i, \\ \sum_{j = 1, \cdots, m} X_{i,j} = 1 \\ X_{i,j} \in \{0, 1\} \end{cases} \quad \forall i, j.$$

$$\begin{cases} Max \sum_{i = 1}^q \sum_{j \in Q_i} \alpha_{i,j} Z_{i,j} \\ \text{s.t.} \end{cases}$$

$$\sum_{j \in Q_i} \sum_{j \in Q_i} \beta_{i,j}^k Z_{i,j} \leq b^k, \\ \sum_{j \in Q_i} \sum_{i = 1} \sum_{j \in Q_i} \beta_{i,j}^k Z_{i,j} \leq b^k, \\ \sum_{j \in Q_i} \sum_{i = 1} \sum_{j \in Q_i} \beta_{i,j}^k Z_{i,j} \leq b^k, \\ \sum_{j \in Q_i} \sum_{i = 1} \sum_{j \in Q_i} \beta_{i,j}^k Z_{i,j} \leq b^k, \\ \sum_{j \in Q_i} \sum_{i = 1} \sum_{j \in Q_i} \beta_{i,j}^k Z_{i,j} \leq b^k, \end{cases}$$

^[1]Tang X, Cao W, Tang H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(9): 2079-2092.

贪心算法


```
Algorithm 2. Greedy workflow scheduling algorithm
 算法思想:
                                                        Input: Workflow DDAG, cloud VMs
                                                        Output: The schedule of task-VM pairs
 对所有父任务进行调度。
                                                       1: Put t_{entry} into schedulable tasks set \omega
                                                       2: while Schedulable tasks \omega is not empty do
                                                           for each tasks t_i in \omega do
                                                             for each VMs do
                                                       4:
计算每个任务在每种机器
                                                                 Calculate task EFT(t_i, vm_i) by Eq. (3)
                                                       6:
                                                                 Calculate task execution cost c(t_i, vm_j) by Eq. (7)
上的执行时间及相应价格
                                                       7:
                                                              end
                                                             Sort these task-VM pairs according to c(t_i, vm_i) by
 对所有任务花费排序
                                                            increasing order
                                                           Find the first task-VM pair that satisfies EFT(t_i, vm_i) \leq d_i
                                                      11:
                                                           Assign task t_i to corresponding VM
 优先调度花费最少任务
                                                      12:
                                                           Update VM and task status
                                                      13:
                                                           for each tasks t_x in succ(t_i) do
                                                      14:
                                                             Remove task t_i from task t_x's pred(t_x)
                                                             if pred(t_x) is empty then
                                                      15:
                                                      16:
                                                              Put task t_x into schedulable tasks \omega
                                                      17:
                                                              end
 更新DAG及任务调度集合
                                                      18:
                                                             end
                                                           Remove task t_i from schedulable tasks \omega
                                                      19:
                                                      20:
                                                           if level group EFT(T_k) \leq EFT(t_i, vm_i) then
                                                             Adjust level group subdeadline according to Eq. (14)
                                                      21:
                                                      22:
                                                             Update unscheduled tasks d_i = d(T_k)
                                                      23:
                                                              end
                                                      24: end
```

[1] Tang X, Cao W, Tang H, et al. Cost-efficient workflow scheduling algorithm for applications with deadline constraint on heterogeneous clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(9): 2079-2092.

大纲

- 1 NP-完全性理论
- 2 贪心算法
- 3 局部搜索算法
- 4 动态规划
- 5 科研应用

■无容量限制的设备选址问题 (uncapacitated facility location problem, UFLP)

■无容量限制的设备选址问题(uncapacitated facility location problem, UFLP)

minimize
$$\sum_{i \in F} f_i y_i + \sum_{i \in F, j \in D} c_{ij} x_{ij}$$
 subject to
$$\sum_{i \in F} x_{ij} = 1, \qquad \forall j \in D,$$

$$x_{ij} \leq y_i, \qquad \forall i \in F, j \in D,$$

$$x_{ij} \in \{0, 1\}, \qquad \forall i \in F, j \in D,$$

$$y_i \in \{0, 1\}, \qquad \forall i \in F.$$

- ■应用场景
 - 设备选址问题 (UFLP)
 - K-media问题
 - Minimum-degree spanning trees问题
 - Edge coloring问题

- ■问题场景
 - MEC环境下的任务卸载
 - 限制:
 - 边缘端计算资源
 - 用户请求延迟
 - 目标:
 - 最小化**任务卸载成本**(服务放置成本、边缘节点计算成本和能源消耗成本)

■问题建模

$$\mathbb{P}_1: \min_{\mathcal{X}, \mathcal{Y}} \quad C^p + C^u + C^e$$

s.t.
$$x_{n,m} \in [0,1],$$

$$\forall n \in \mathcal{N}, \forall m \in \mathcal{M},$$

$$y_{m,s} \in \{0,1\},\$$

$$\forall m \in \mathcal{M}, \forall s \in \mathcal{S},$$

$$\sum_{m \in \mathcal{M}_n} x_{n,m} = 1,$$

$$\forall n \in \mathcal{N},$$

$$x_{n,m} \leq y_{m,s}$$

$$\forall n \in \mathcal{N}_s$$
,

$$\sum_{n \in \mathcal{N}_m} x_{n,m} l_n \le L_m,$$

$$\forall m \in \mathcal{M},$$

$$D_{n,m}^c + D_{n,m}^t \le d_n, \quad \forall n \in \mathcal{N},$$

$$\forall m \in \mathcal{M}$$
.

■问题复杂度分析(即证明问题是NP-hard)

[2] Chen Y, Zhang S, Jin Y, et al. LOCUS: User-Perceived Delay-Aware Service Placement and User Allocation in MEC Environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(7): 1581-1592.

■算法思想

■算法性能理论证明

作者直接从UFLP问题相关研究论 文 (SODA'00)直接引用得到

$$w_e(Y) < w(Y^*) + MSw(Y)/p(M,S)$$

$$w_s(Y)(1 - \frac{(MS)^2}{p(M,S)}) < 5w(Y^*) + 2w_e(Y) + \frac{w(Y)}{MS}$$

$$w_s(Y) \left(1 - \frac{(MS)^2}{p(M,S)}\right) < 7w(Y^*) + \frac{2MSw(Y)}{p(M,S)} + \frac{w(Y)}{MS}$$

$$w_e(Y)(1 - \frac{(MS)^2}{p(M,S)}) < w(Y^*) + \frac{MSw(Y)}{p(M,S)}$$

$$w(Y) \left(1 - \frac{(MS)^2}{p(M,S)}\right) \le 8w(Y^*) + \frac{3MSw(Y)}{p(M,S)} + \frac{w(Y)}{MS}$$

$$\frac{w(Y)}{w(Y^*)} < 8 \frac{1}{\left(1 - \frac{(MS)^2}{p(M,S)} - \frac{3MS}{p(M,S)} - \frac{1}{MS}\right)}$$

[2] Chen Y, Zhang S, Jin Y, et al. LOCUS: User-Perceived Delay-Aware Service Placement and User Allocation in MEC Environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(7): 1581-1592.

大纲

- 1 NP-完全性理论
- 2 贪心算法
- 3 局部搜索算法
- 4 动态规划
- 5 科研应用

动态规划

■问题:如何用最少的钞票数凑出目标金额

贪心算法

面值: 1

5

11

动态规划

■问题:如何用最少的钞票数凑出目标金额

面值: 1

5

11

取11: 数量=f(4) + 1 = 4 + 1 = 5取5: 数量=f(10) + 1 = 2 + 1 = 3取1: 数量=f(14) + 1 = 4 + 1 = 5

 $f(n) = \min\{f(n-1), f(n-5), f(n-11)\} + 1$

动态规划

- ■算法思想:
 - ■将原问题分解成子问题
 - ■构建状态空间
 - ■确定初始值
 - ■建立状态转移方程
- ■适用问题:
 - ■最优子结构性
 - 无后效性
 - ■子问题重叠性

大纲

- 1 NP-完全性理论
- 2 贪心算法
- 3 局部搜索算法
- 4 动态规划
- 5 科研应用

科研应用

明确地数学化定义问题场景

根据所定义场景找到可归约的常见问题(如MKP、UFLP等)

阅读相关问题的文献(更多是数学领域相关论文)

整理有近似比证明过程的算法

找到其中最适合本文实际场景定义的算法并进行适当修改应用

推荐参考资料: Williamson D P, Shmoys D B. The design of approximation algorithms[M]. Cambridge university press, 2011.

第二部分

- 1 近似算法基本设计步骤
- 2 近似算法中线性规划法的分类和应用
- 3 在线算法的简单介绍
- 4 未来研究方向和现有问题

近似算法证明的流程

- 假设我们想要证明一个算法 ALG 是一个对某些最小化cost问题的 α-近似 算法,通常的证明流程:
 - 对任何的输入实例I,找到OPT cost的下界(Lower Bound, LB): $LB(I) \leq c(OPT(I))$, $\forall I$
 - 证明对任何的输入实例I, 都有: $c(ALG(I)) \le \alpha LB(I)$, $\forall I, \alpha \ge 1$
 - 推断出结论: $c(ALG) \le \alpha LB \le \alpha c(OPT)$

Issue:

- Issue 1: 难以找到下界LB以及最优解OPT和下界LB的关系
- Issue 2:找到了问题的下界LB,却找不到算法ALG可以与LB联系
- 解决方案: Linear programming(LP)

常见近似算法分类

线性规划——寻找问题下界LB的工具

- Toy Problem —— Weighted Vertex Cover (WVC)
 - Vertex Cover: 无向图 G = (V, E) 的一个顶点覆盖是一个子集V' $\subseteq V$,使得如果(u, v)是G的一条边,则 $u \in V'$,或者 $v \in V'$ 。一个顶点覆盖的规模是其中所包含的顶点数。
 - Weighted Vertex Cover:每个顶点具有权重
 - 优化目标:获得一个无向图G的具有最小权重和的顶点覆盖。

线性规划——寻找问题下界LB的工具

- Toy Problem —— Weighted Vertex Cover (WVC)
 - 步骤1: 将问题规约到整数规划问题(Integer Program, IP)
 - Note: 约束1表示对任何一条边,边对应的顶点至少有一个点被算法ALG选中

OBJECTIVE FUNCTION:
$$\min \sum_{v \in V} c(v) x_v$$
 Constraints: $x_u + x_v \ge 1 \quad \forall \{u, v\} \in E$ $x_v \in \{0, 1\} \quad \forall v \in V$

- 可行解(feasible solution):满足线性约束和整数变量约束的方案
- 最优解(optimal solution): 可行解中最小化目标函数的方案

线性规划——寻找问题下界LB的工具

- Toy Problem —— Weighted Vertex Cover (WVC)
 - 步骤1: 将问题规约到整数规划问题(Integer Program, IP)
 - 步骤2: 将整数规划<mark>放松(Relax)成线性规划(Linear Program, LP)并</mark>获得下界

OBJECTIVE FUNCTION:
$$\min \sum_{v \in V} c(v) x_v$$

$$\text{Constraints:} \ \ x_u + x_v \geq 1 \quad \ \forall \{u,v\} \in E$$

■ **重要通用性质**: 任何一个整数规划(IP)的可行解也是它对应的放松线性规划问题(LP)的可行解,因此, $c(Z_{LP}^*) \leq c(Z_{LP}^*) = OPT$

 $0 \le x_v \le 1 \qquad \forall v \in V$

■ 一个简单的推论:使用IP建模问题,其对应的放松LP问题的最优解就是OPT的一个下界,完成了近似算法构造的第一步:对任何的输入实例I,找到OPT cost的下界(Lower Bound, LB): $LB(I) \leq c(OPT(I))$, $\forall I$

线性规划——利用线性规划做近似算法

■回顾NP-完全性理论

- 多项式时间算法:对于规模n的输入,在最坏情况下的运行时间是 $O(n^k)$,其中k为某一确定常数。
 - Note: 通常来说指数级别的算法计算量增长非常快,而即使多项式算法也不一定完全满足实时性要求。用计算复杂度O衡量并不是100%合理,因为只考虑最差情况
- P类问题: **多项式时间内可解**
- NP类问题:不能在多项式时间内解决或不确定能不能在多项式时间内解 决,但<mark>能在多项式时间验证的问题</mark>
- NP-Complete 类问题:所有NP问题在多项式时间内都能规约 (Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决
- 整数规划(IP): NP-Complete问题
- 线性规划(LP): P类问题 => 适合作为IP问题的近似解法

线性规划——利用线性规划做近似算法

■ Toy Problem —— Weighted Vertex Cover (WVC)

- 步骤1: 将问题规约到整数规划问题(Integer Program, IP)
- 步骤2: 将整数规划放松(Relax)成线性规划(Linear Program, LP)并获得下界
- 步骤3:多项式时间内得到LP的最优解Z*LP
 - Note: 得到的解是分数解,无法直接满足IP问题的整数约束
- 步骤4: [近似算法: 一个最简单的舍入(Rounding)方法] 如果 $x_v \ge 1/2$,舍入到1; 反之舍入到0。算法结束。
 - Note: 这一步就是近似算法,我们需要证明满足IP问题的约束,同时通过证明近似比分析其性能。
- ■证明近似比的步骤:
 - 步骤1: 证明 $c(Z_{LP}^*) = LB(I) \leq c(OPT(I)), \forall I$, 已经完成
 - 步骤2:证明对任何的输入实例I,都有: $c(ALG(I)) \leq \alpha c(Z_{LP}^*), \forall I^{47}$

线性规划——利用线性规划做近似算法

- Toy Problem Weighted Vertex Cover (WVC)
 - 目标1:证明ALG算法满足原始问题的约束条件
 - 目标2:证明近似算法ALG与原问题下界LB(即线性规划最优解)的不等式: $c(ALG(I)) \le \alpha c(Z_{LP}^*), \forall I$

OBJECTIVE FUNCTION:
$$\min \sum_{v \in V} c(v) x_v$$
 Constraints:
$$x_u + x_v \ge 1 \quad \ \forall \{u,v\} \in E$$

$$0 \le x_v \le 1 \quad \ \forall v \in V$$

- 分析1:根据约束1可知,对于每条边的两个点,步骤3得到的 Z_{LP}^* 必然满足 $x_u \geq \frac{1}{2}$ 或 $x_v \geq \frac{1}{2}$,在ALG中必然存在一个u或v被设置为1,因此ALG满足原始问题的约束条件
- 分析2: 对任务的输入实例I都有
 - $c(ALG) = \sum_{v: x_v(ALG) = 1} c(v) = \sum_{v: x_v(Z_{LP}^*) \ge \frac{1}{2}} c(v)$
 - $\sum_{v:x_v(Z_{LP}^*) \ge \frac{1}{2}} c(v) \le 2 \sum_{v:x_v(Z_{LP}^*) \ge \frac{1}{2}} c(v) x_v(Z_{LP}^*) \le 2 c(Z_{LP}^*) \le 2c(OPT)$

线性规划——Integrality Gap

Integrality Gap

- 回顾近似算法的证明目标1:对任何的输入实例I,找到OPT cost的下界(Lower Bound, LB): $LB(I) \le c(OPT(I))$, $\forall I$
- 引入IP和LP后的证明目标1: 天然存在 $c(Z_{LP}^*) \leq c(Z_{IP}^*) = OPT$
 - ■问题:使用LP作为下界,这个下界是否足够好,用Integrality Gap衡量

$$\sup_{instances\ I\ of\ \Pi} \left(\frac{Z_{IP}^*(I)}{Z_{LP}^*(I)}\right)$$

- ■利用LP构造近似算法,其近似比存在一个天然界限:
 - ■回顾近似算法的推演路径: $c(ALG) \le \alpha LB \le \alpha c(OPT)$
 - ■引入IP和LP后的推演路径: $IG \cdot c(ALG) \leq \alpha \cdot IG \cdot c(Z_{LP}^*) \leq \alpha c(Z_{IP}^*)$
 - ■因此通过IP放松成LP而提出的近似算法,最好的近似比就只能是IG。
 - ■一些Relax天然会带来一个巨大的IG[见下页]。

线性规划——Integrality Gap

Integrality Gap

- 一些Relax天然会带来一个巨 大的IG。
 - ■上: IP; 下: Relaxed-LP
 - 对m台机器,1个任务,每个任务执行时间都是m的实例:IP得到的 c(OPT)=m,而 Relaxed-LP得到的 $c(Z_{LP}^*)=1$ 。因此IG至少是m,且会随着问题规模的增大而增加。

minimize: t

subject to:
$$\sum_{j=1}^{n} x_{i,j} p_{i,j} \le t \qquad 1 \le i \le m$$

$$\sum_{i=1}^{m} x_{i,j} = 1 \qquad 1 \le j \le n$$

$$x_{i,j} \in \{0,1\}$$
 $1 \le i \le m, \ 1 \le j \le n$

minimize: t

subject to:
$$\sum_{j=1}^{n} x_{i,j} p_{i,j} \le t \qquad \forall i \in [m]$$

$$\sum_{i=1}^{m} x_{i,j} = 1 \qquad \forall j \in [n]$$

$$x_{i,j} \ge 0$$
 $\forall i \in [m], j \in [n]$

解线性规划的多项式时间方法

- Simplex Algorithm 单纯形法
- Ellipsoid Algorithm
- Interior-Point Algorithm 内点法
- 不是本Slide的重点,感兴趣可以去学习最优化理论或运筹学, 基本都会涉及到。
- ■参考学习资料:
 - ■《最优化理论》
 - **...**

利用线性规划设计近似算法

- 步骤1:将问题规约到整数规划问题(Integer Program, IP)
- ■步骤2:将整数规划放松(Relax)成线性规划(Linear Program, LP)并获得下界
- ■步骤3:多项式时间内得到LP的最优解Z*LP
- 步骤4: [近似算法]
- ■证明近似比

- 1 近似算法基本设计步骤
- 2 近似算法中线性规划法的分类和应用
- 3 在线算法的简单介绍
- 4 未来研究方向和现有问题

线性规划法的分类

Deterministic Rounding

- 从LP的最优分数解舍入到整数解时,舍入方法唯一且确定
- Randomized Rounding
 - 从LP的最优分数解舍入到整数解时,舍入方法的操作过程是随机的
 - 算法的输出结果是随机的,可能正确,可能错误。
- Iterative Rounding
 - 从LP的最优分数解舍入到整数解时,在每轮迭代中先选择部分解,剩余部分再构成子LP问题求解最优分数解,直到获得所有解。
- Primal-dual Method
 - 利用Dual问题的性质进行舍入

■ Problem —— Facility Location¹

- General Facility Location:
 - 输入:一个大小为m的工厂集合V,一个大小为n的客户集合C,工厂i开张成本是 $f_i \geq 0$,客户j与工厂i建立链接的链接成本是 $c_{ij} \geq 0$
 - 输出:一个拟开放的工厂子集 $F \subseteq V$ 使得总成本最小 $\sum_{i \in F} f_i + \sum_{j \in C} \min_{i \in F} c_{ij}$
- Metric Facility Location:
 - ■客户和工厂都存在一个度量空间中
 - 增加约束条件: $c_{ij} \leq c_{il} + c_{kl} + c_{kj}$

- Capacitated: 客户的需求以分数形式分配给多个工厂
- Uncapacitated: 客户的需求以0-1形式分配给一个工厂

■ Metric Uncapacitated Facility Location

- 步骤1: ILP问题建模
- 步骤2: 放松成LP问题

minimize
$$Z(x,y) = \sum_{i \in V} f_i y_i + \sum_{i,j \in V} c_{ij} x_{ij}$$

$$\sum_{i \in V} x_{ij} = 1 \qquad \forall j \in V$$

$$x_{ij} \leq y_i \qquad \forall i, j \in V$$

$$x_{ij} \in \{0, 1\} \qquad \forall i, j \in V$$

$$y_i \in \{0, 1\} \qquad \forall i \in V$$

$$y_i = \begin{cases} 1 & \text{if } i \in F \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{if terminal } j \text{ is assigned to facility } i \\ 0 & \text{otherwise} \end{cases}$$

■ Metric Uncapacitated Facility Location

■ 步骤1: ILP问题建模

■ 步骤2: 放松成LP问题

■ 步骤3: 从分数解到整数解:

Filtering: 去除在 c_{ii} 比较大的时候对应的非0的分数解 x_{ij} 。

■ 步骤3.1: 我们定义用户j的分数链接成本: $\Delta_j = \sum_{i \in V} c_{ij} x_{ij}$ 。

■ 步骤3.2: 证明对于该LP问题得到的分数最优解(x, y), 必然存在另一个可行分数解(x', y')使得 $F(x',y') \le 2F(x,y)$, $C(x',y') \le 2C(x,y)$ 且If $x'_{ij} > 0$, then $c_{ij} < 2\Delta_j$ 。说明这些可行分数解 (x',y') 确定的工厂更加"靠近"用户j。【证明略】

■ 步骤3.3:选择"靠近"用户j的工厂集合 $B_j = \{i: c_{ij} \le 2\Delta_j\}$,将部分分数解转为0,同时满足原始问题的x约束进行归一化。

 $x'_{ij} = \begin{cases} \frac{x_{ij}}{\sum_{i \in B_j} x_{ij}} & \text{if } i \in B_j \\ 0 & \text{if } i \notin B_j \end{cases}$

■ Metric Uncapacitated Facility Location

- 步骤1: ILP问题建模
- 步骤2: 放松成LP问题
- 步骤3: 从分数解到整数解:
 - Filtering:对于分数解而言,去除在c_{ij}比较大的时候对应的非0的触

 X_{ij} .

 $\leq 2\Delta_{j'} + 2\Delta_j + 2\Delta_j$

 $\leq \sum 6\Delta_j$

 $\leq 6C(x,y)$

■ Rounding: 尽量减少工厂的开张成本

而是让用户j'与i(j)建立链接;

■ 步骤3.4:首先排序用户分数链接成本 $\{\Delta_{j}\}(j \in 1,...,n)$,选择最低成本的用户j',再从Filtering中得到的工厂集合 $B_{j'} = \{i: c_{ij'} \leq 2\Delta_{j'}\}$ 中选取最小开张成本的工厂i(j'),如果这个工厂i(j')在另一个已经分配的任务的临近工厂圈 B_{j} 内,则不打开这个工厂i(j'),

$$F(\hat{x}, \hat{y}) \le F(x', y') \le 2F(x, y).$$

 $C(\hat{x}, \hat{y}) = \sum_{j \in V} c_{i(j)j}$

 $c_{j'i(j)} \le c_{j'i'} + c_{i'j} + c_{ji(j)}$

 $\leq 6\Delta_{j'}$

步骤4: 证明近似比 $Z(\hat{x}, \hat{y}) = F(\hat{x}, \hat{y}) + C(\hat{x}, \hat{y}) \le 2F(x, y) + 6C(x, y) < 6Z(x, y)$.

■ Metric Uncapacitated Facility Location

- 只要将B_j 的定义做一些更改,可以得到4-approximation的近似算法 【证明略】
- 该问题的应用场景:
 - Edge Offload
 - 数据中心选址问题, 公共交通枢纽选址问题, 投票站选址问题
- 其他可以用Deterministic Rounding提出近似算法的问题
 - Minimum Cost Bipartite Matching
 - Scheduling on Unrelated Parallel Machines
 - Non-preemptive $1|\mathbf{r_i}|\sum C_i$ Scheduling
 - •••

■ Problem — Max SAT

- 输入: n个Bool变量 $x_1, ..., x_i, ... x_n$, m个从句 $C_1, ..., C_j, ... C_m$, 每个从句都是多个Bool变量和其反义变量的或式(如 $x_3 \vee \overline{x_5} \vee x_{11}$),每个从句有权重 w_i 和长度 l_i ,从句满足(SAT)的条件是其中的一个子句为真
- 输出:设置n个Bool变量的True/False,获得最大权重和的满足从句

■ Max SAT —— 等概率赋值近似算法

- 算法1:以1/2的概率为Bool变量赋值
- 分析近似比: [非LP场景: 找到ALG优化目标的期望值和OPT的关系]
 - 定义一个随机变量 Y_j 表示从句j是否SAT,则优化目标为W = $\sum_{j=1}^m w_j Y_j$
 - 优化目标的期望: $E[W] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[clause\ C_j\ satisfied]$

 - l_i 越大,近似算法的近似比越好!

■ Max SAT —— 不等概率赋值近似算法

- 算法2: 以p > 1/2的概率为Bool变量赋值为True
- 分析近似比: [非LP场景: 找到ALG优化目标的期望值和OPT的关系]
 - 优化目标的期望: $E[W] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[clause\ C_j\ satisfied]$
 - 从句 $(a+b=l_j \ge 2)$: $\Pr[clause\ C_j\ satisfied] = (1-p^a(1-p)^b);$ 因为 $p>\frac{1}{2}>1-p$, $\Pr[clause\ C_j\ satisfied] \ge 1-p^{a+b} \ge 1-p^{l_j} \ge 1-p^2$
 - 从句 $(l_j = 1)$: $Pr[clause C_j satisfied] = p$
 - 归纳: $E[W] \ge \min(p, 1 p^2) \sum_{j=1}^m w_j \ge \min(p, 1 p^2) OPT \ge 0.618 \cdot OPT$

■ Max SAT —— Randomized Rounding

■ 算法3:

■ 核心思想: 为每一个变量设置不同的概率

■ ILP构造: maximize
$$\sum_{j=1} w_j z_j$$

subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j, \qquad \forall C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i,$$

$$y_i \in \{0, 1\},$$
 $i = 1, ..., n,$
 $z_j \in \{0, 1\},$ $j = 1, ..., m.$

■ 放松到LP:

maximize
$$\sum_{j=1}^{m} w_j z_j$$

subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j, \quad \forall C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i,$$

$$0 \le y_i \le 1, \quad i = 1, \dots, n,$$

$$0 \le z_j \le 1, \qquad j = 1, \dots, m.$$

Max SAT —— Randomized Rounding

- 分析近似比: [LP场景: 找到ALG优化目标的期望和LP最优解的关系]
 - 优化目标的期望: $E[W] = \sum_{i=1}^{m} w_i E[Y_i] = \sum_{i=1}^{m} w_i \Pr[clause\ C_i\ satisfied]$
 - $\Pr[clause\ C_j\ not\ satisfied] = \prod_{i \in P_j} (1 y_i^*) \prod_{i \in N_j} y_i^*$ (算术-几何均值不等式)

$$\leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*} \right) \right]^{l_{j}} = \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*}) \right) \right]^{l_{j}}$$

$$\leq \left[1 - \frac{z_{j}^{*}}{l_{i}} \right]^{l_{j}}$$

$$Pr[clause C_j satisfied] \ge 1 - \left[1 - \frac{z_j^*}{l_j}\right]^{l_j} \ge \left[1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}\right] z_j^*$$

$$E[W] = \sum_{j=1}^m w_j Pr[clause C_j satisfied] \ge \sum_{j=1}^m w_j z_j^* \left[1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}\right]$$

■ Max SAT —— Choosing better one

- 算法4: 在算法1和算法3中选最好的一个结果执行
- 分析近似比: [LP场景: 找到ALG优化目标的期望和LP最优解的关系]

$$E[W] = E[\max(W_1, W_2)] \ge E\left[\frac{1}{2}W_1 + \frac{1}{2}W_2\right] = \frac{1}{2}E[W_1] + \frac{1}{2}E[W_2]$$

$$\ge \frac{1}{2}\sum_{j=1}^{m} w_j z_j^* \left[1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right] + \frac{1}{2}\sum_{j=1}^{m} \left(1 - \left(\frac{1}{2}\right)^{l_j}\right)$$

$$\ge \sum_{j=1}^{m} w_j z_j^* \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right) + \frac{1}{2}\left(1 - 2^{-l_j}\right)\right]$$

$$\ge \frac{3}{4} Z_{LP}^* \ge \frac{3}{4} OPT$$

■ Max SAT —— Integrality Gap

- 假定场景: $x_1 \lor x_2$, $x_1 \lor \overline{x_2}$, $\overline{x_1} \lor x_2$, $\overline{x_1} \lor \overline{x_2}$, 权重均为1
- 利用LP可以得到一个可行解: $y_1 = y_2 = \frac{1}{2}$; $z_j = 1$; 得到LP的优化目标为4, 而实际问题最优解为3, IG为3/4。
- 因此利用LP Relax无法获得比3/4-approx.更好的算法。

■ 概率论在Randomized Rounding应用的重要理论

- 问题:对于给定的随机变量,和期望值相差给定距离的取值发生的概率 是多少?
- 三个结论: 马尔可夫不等式、切比雪夫不等式和切诺夫界。
- ■特点:随着对随机变量的独立性的要求提高,这三个结论对于这个概率的估计也愈加准确。

■马尔可夫不等式

- 若Z是非负、整数随机变量,则: $\forall a \in R^+$: $\Pr[Z \ge a] \le \frac{E[Z]}{a}$
- 基于马尔科夫不等式,可以得到和期望相差一定距离的随机变量的取值 发生的概率的上限: $\Pr[Z \ge (1 + \delta)E[Z]] \le \frac{1}{1+\delta}$
- 一个直观的例子:如果 Z 是工资,那么 E(Z)就是平均工资,假设 a=n*E(X),即平均工资的n倍。那么根据马尔可夫不等式,不超过1/n的 人会有超过平均工资的n倍的工资。

■切比雪夫不等式

■ 若有一组随机变量,包括: $X_1, ..., X_n \in \{0, 1\}$, $\Diamond p_i = E[X_i] = \Pr[X_i = 1]$, $X = \sum_i X_i$, 定义 $\mu = E[X] = \sum_i p_i$, $\sigma = \sqrt{Var(X)}$, 则有:

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}, k > 0$$

■ 特点: 比马尔可夫不等式更加精确

■切诺夫界

- 特点: 比前两个不等式更加精确
- 存在各种变形,应用广泛

$$\begin{aligned} \mathbf{Pr}[X > (1+\delta)\mu] &\leq \frac{e^{(e^t-1)\mu}}{e^{(1+\delta)t\mu}} \\ \mathbf{Pr}[X > (1+\delta)\mu] &\leq e^{\frac{-\delta^2\mu}{3}} \quad (0 < \delta < 1) \\ \mathbf{Pr}[X < (1-\delta)\mu] &\leq e^{\frac{-\delta^2\mu}{2}} \quad (0 < \delta < 1) \\ \mathbf{Pr}[X < (1+\delta)\mu] &\leq e^{\frac{-\delta^2\mu}{2}} \quad (\delta \geq 0) \\ \mathbf{Pr}[X < (1-\delta)\mu] &\leq e^{\frac{-\delta^2\mu}{2+\delta}} \quad (\delta \geq 0) \end{aligned}$$

Problem — Network Congestion

- 输入: 一个无向图G = (V, E), 给定一个顶点对集合 $D = \{(s_i, t_i)\}_{i=1...k}$, 问题需要我们为每个顶点对流 (s_i, t_i) 确定连接链路 P_i ,且使得没有链路的负载过高。
- 输出: 使得最大拥塞链路的拥塞程度最小的分配方案。

■ 切诺夫界在Randomized Rounding中的应用

ILP构造:
$$C$$
 subject to $\sum_{P \in \mathcal{P}_i} f_P^i = 1 \quad \forall i$
$$\sum_{i} \sum_{e \in P} f_P^i \leq C \ \forall e \in E,$$
 $f_P^i \in \{0,1\} \ \forall P \in \mathcal{P}_i, i = 1, \dots, k.$

f; 用于决策是否在流i中选择路径P; 对于每条边e, 计算经过这条边的路径P 的数量, 这个数量要比优化目标小

- 放松到LP问题,在多项式时间内得到LP最优分数解: $f_P^{i*} \in [0,1]$
- Randomized Rounding: 以LP最优分数解 f_P^{i*} 作为概率分布,从连接每个顶点对的可行链路中,随机选取一条链路 $P \in \mathcal{P}_i$

■ 切诺夫界在Randomized Rounding中的应用

- 分析近似比步骤1[获得每条边e的期望拥塞程度]:任何一个流i选择一条边e的概率为 $\sum_{\{P \in \mathcal{P}_i, e \in P\}} f_P^{i*}$,定义一个随机变量 X_i^e ,当流i选择了边e则该变量为1,那么对任何一个边e的拥塞程度表示为: $X^e = \sum_i X_i^e$,可以得到:
 - $\blacksquare E[X_i^e] = \sum_{\{P \in \mathcal{P}_i, e \in P\}} f_P^{i*};$
 - $E[X^e] = E[\sum_i X_i^e] = \sum_i E[X_i^e] = \sum_i \sum_{\{P \in \mathcal{P}_i, e \in P\}} f_P^{i*} \le C_{LP}^* \le C_{IP}^*$
- 分析近似比步骤2 [得到ALG期望目标和LP最优分数解的关系]:
 - ■核心思想:利用切诺夫界得到X^e 超过LP最优解一段距离的概率上界
 - 证明方式1: 令 $k = 1 + \epsilon, \epsilon \in (0,1)$,则 $\Pr[X_e > kC_{IP}^*] \le e^{-\frac{\epsilon^2 C}{3}}$,当 $C \gg \log n$,可以直接证明ALG是(1+ ϵ)-approx.
 - 证明方式2:令 $k=1+\epsilon,\epsilon\in(0,+\infty)$,则 $\Pr[X_e>kC_{\mathrm{IP}}^*]\leq e^{-\frac{\epsilon^2C}{2+\epsilon}}\approx e^{-\epsilon C}(\epsilon\gg 2)$,想得到常数约束,需要保证 $\epsilon=O(\log n)$,则可证明ALG是O(log n)-approx.
 - 证明方式3:使用另一种切诺夫界表示,可以证明ALG是 $O\left(\frac{\log n}{\log \log n}\right)$ -approx₆₈

■用线性规划构造近似算法的难点:

- 证明对任何的输入实例I,都有: $c(ALG(I)) \le \alpha c(LP^*), \forall I, \alpha \ge 1$
- 很多时候很难直接找到ALG和LP最优整数解的关系
- LP对偶问题:为LP原始问题提供一个下界
 - ■考虑一个最小化原始问题

$$\min \sum_{j} c_{j} x_{j} \quad \text{subject to}
\sum_{j} a_{ij} x_{j} \ge b_{i} \quad \forall i \in [m]
x_{j} \ge 0 \quad \forall j \in [n]$$
(Primal)

- 目标: 找到 $c(Z_{LP}) = \sum_{i} c_i x_i \ge LB$
- 从约束入手: $\sum_i y_i (\sum_j a_{ij} x_j) \ge \sum_i y_i b_i$, $y_i \ge 0$
- 联系新约束和目标函数:

 - 需要引入新约束: $\sum_i y_i a_{ij} \leq c_j$, $\forall j$

■ LP对偶问题:为LP原始问题提供一个下界

■ 得到对偶问题: $\max \sum_i y_i b_i$ subject to

$$\sum_{i} y_i a_{ij} \le c_j \quad \forall j \in [n]$$

 $y_i \ge 0$ $\forall i \in [m]$

(Dual)

- 对偶问题的一些性质
 - LP Monogamy: 原始问题和对偶问题相互对偶
 - Weak Duality: 对任何的原始对偶问题的解(x, y), 都有 $y^Tb < c^Tx$ [下界]
 - Strong Duality: 若原问题和对偶问题中有任意一个存在有界的最优解,则另外一个存在相同的最优解。若原问题和对偶问题中有任意的最优解趋于无穷大,则另外一个不存在可行解。
 - Complementary Slackness: 原始对偶问题具有有界最优解(x, y), 当且仅当:

$$\mathbf{z}_i = 0 \text{ or } \sum_i y_i a_{ij} = c_{ij} \ \forall j \ \mathbf{B} \ \mathbf{y}_i = 0 \text{ or } \sum_j x_j a_{ij} = b_{ij} \ \forall i$$

■ 写LP对偶问题的一个简单例子

■ 可能的复杂情况: 各种求和, 展开即可

① Win
$$-50x_1+20x_2$$

 $5.t. 2x_1-x_2 \ge -5$ y_1
 $3x_1+x_2 \ge 3$ y_2
 $2x_1-3x_2 \le 12$ y_3
 $x_1,x_2 \ge 0$

$$3) 2 y_1 > (1 - y_1) \times 2 \ge ...$$

$$3 y_2 > (1 + y_2) \times 2 \ge ...$$

$$-2 y_3 > (1 + 3 y_3) \times 2 \ge ...$$

$$2 y_1 + 3 y_2 - 2 y_3 \le -50$$

$$- y_1 + y_2 + 3 y_3 \le 20$$

Metric Uncapacitated Facility Location

- 步骤1: ILP问题建模
- 步骤2: 放松成LP问题
- 步骤3: 获得对偶问题[用上页方法可以轻松做到]并在多项式时间内解

这两个LP问题 minimize
$$\sum_{i \in F} f_i y_i + \sum_{i \in F, j \in D} c_{ij} x_{ij}$$

$$\sum_{i \in F} x_{ij} = 1, \qquad \forall j \in D,$$

$$x_{ij} \leq y_i, \qquad \forall i \in F, j \in D,$$

$$x_{ij} \in \{0, 1\}, \qquad \forall i \in F, j \in D,$$

$$y_i \in \{0, 1\}, \qquad \forall i \in F.$$

maximize
$$\sum_{j \in D} v_j$$
 subject to
$$\sum_{j \in D} w_{ij} \le f_i, \qquad \forall i \in F,$$

$$v_j - w_{ij} \le c_{ij}, \quad \forall i \in F, j \in D,$$

 $w_{ij} \ge 0, \quad \forall i \in F, j \in D.$

- 步骤4: [算法1——Deterministic Rounding]
 - 步骤4.1: 定义客户j临近工厂集合 $N(j) = \{i \in F: x_{ij}^* > 0\}$
 - 步骤4.2:
 - 根据Complementary Slackness性质,可以得到当 $x_{ij}^* > 0$,则必然存在 $v_i^* - w_i^* = c_{ij}$, 此时 $c_{ij} \le v_i^*$;
 - 根据Weak Duality性质,可以得到 $\sum_{i \in D} v_i^* \le Z^* \le OPT$ [完成为OPT找LB]
 - 步骤4.3:我们先研究单个客户 j_k ,如果打开临近工厂中最便宜的工厂 i_k ,可以 获得下界: $f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i y_i^*$, 那么对需要 开展的k个客户,可得: $\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i y_i^* \leq \sum_{i \in F} f_i y_i^*$ [完成为ALG找与 LP最优解的关系1]
 - 步骤 4.4: 定义客户j 临近的所有工厂 N(j) 的临近客户端 $N^2(j) = \{k \in I\}$ D: client k neighbors some facility $i \in N(j)$ 73

Metric Uncapacitated Facility Location

- 步骤4: [算法1——Deterministic Rounding]
 - 步骤4.5:为了进一步降低工厂开张的成本,可以尽量让客户端 j_k 选中的工厂 i_k 可以为该客户端临近的所有工厂 $N(j_k)$ 的临近客户端 $N^2(j_k)$ 服务,同时给一个性能界: $c_{il} \le c_{ij} + c_{hj} + c_{hl} \le v_j^* + v_j^* + v_l^*$ 。在迭代中,我们每次都优先选中 v^* 最小的客户。假如j比l先处理,则必然存在 $v_j^* \le v_l^*$,故: $c_{il} \le 3v_l^*$;又因为: $\sum_{i \in F, j \in D} c_{ij} x_{ij} \le \sum_{l \in D} c_{il} \sum_{i \in F} x_{ij} \le \sum_{l \in D} 3v_l^* \le 3OPT$ [完成为ALG找与LP最优

解的关系21

■ 步骤5: 分析得到近似比为1+3=4

- 步骤4: [算法1——Deterministic Rounding]
- 步骤5: 分析得到近似比为4

```
Solve LP, get optimal primal solution (x^*, y^*) and dual solution (v^*, w^*) C \leftarrow D k \leftarrow 0 while C \neq \emptyset do k \leftarrow k+1 Choose j_k \in C that minimizes v_j^* over all j \in C Choose i_k \in N(j_k) to be the cheapest facility in N(j_k) Assign j_k and all unassigned clients in N^2(j_k) to i_k C \leftarrow C - \{j_k\} - N^2(j_k)
```


- 步骤4: [算法2——Randomized Rounding]
 - 步骤4.1: 定义客户j临近工厂集合 $N(j) = \{i \in F: x_{ij}^* > 0\}$
 - 步骤4.2:根据Complementary Slackness性质,可以得到当 $x_{ij}^* > 0$,则必然存在 $v_j^* w_j^* = c_{ij}$,此时 $c_{ij} \le v_j^*$;根据Weak Duality性质,可以得到 $\sum_{j \in D} v_j^* \le Z^* \le \mathit{OPT}$ [完成为OPT找LB]
 - 步骤4.3:我们先研究单个客户 j_k ,如果以 $x_{ij_k}^*$ 的概率打开临近的工厂 i_k ,可以获得工厂的期望开张成本: $E[f_{i_k}] = \sum_{i \in N(j_k)} f_i \, x_{ij_k}^* \leq \sum_{i \in N(j_k)} f_i \, y_i^*$,那么对需要开张的k个工厂,可得: $E[\sum_k f_{i_k}] \leq \sum_k \sum_{i \in N(j_k)} f_i y_i^* \leq \sum_{i \in F} f_i y_i^*$ [完成为ALG找与LP最优解的关系1]
 - 步骤 4.4: 定义客户j 临近的所有工厂N(j) 的临近客户端 $N^2(j) = \{k \in D: client \ k \ neighbors \ some \ facility \ i \in N(j)\}$; 定义客户j连接到任意临近工厂的期望连接成本是 $C_i^* = \sum_{i \in N(j)} c_{ij} x_{ij}^*$

- 步骤4: [算法2——Randomized Rounding]
 - 步骤4.5:为了进一步降低工厂开张的成本,可以尽量让客户端 j_k 选中的工厂 i_k 可以为该客户端临近的所有工厂 $N(j_k)$ 的临近客户端 $N^2(j_k)$ 服务,同时给一个性能界: $c_{il} \leq c_{ij} + c_{hj} + c_{hl} = \sum_{i \in N(j)} c_{ij} x_{ij}^* + c_{hj} + c_{hl} \leq C_j^* + v_j^* + v_l^*$ 。在循环中,我们每次都优先选中 $v^* + C^*$ 最小的客户。假如j比l先处理,则必然存在 $v_j^* + C_j^* \leq v_l^* + C_l^*$,故: $E[\sum_{i \in F, j \in D} c_{ij} x_{ij}] \leq \sum_{j \in D} (2v_j^* + C_j^*)$
- 步骤5:分析近似比
 - $\blacksquare E(\sum_{i \in F} f_i y_i^* + \sum_{i \in F, j \in D} c_{ij} x_{ij})$

 - $\le \sum_{i \in F} f_i y_i^* + 2 \sum_{j \in D} v_j^* + \sum_{i \in F, j \in D} c_{ij} x_{ij}^*$
 - $\blacksquare \le OPT + 2OPT = 3OPT$

■ Metric Uncapacitated Facility Location

- 步骤4: [算法2——Randomized Rounding]
- 步骤5:分析近似比

Solve LP, get optimal primal solution (x^*, y^*) and dual solution (v^*, w^*) $C \leftarrow D$ $k \leftarrow 0$ while $C \neq \emptyset$ do $k \leftarrow k+1$ Choose $j_k \in C$ that minimizes $v_j^* + C_j^*$ over all $j \in C$ Choose $i_k \in N(j_k)$ according to the probability distribution $x_{ij_k}^*$ Assign j_k and all unassigned clients in $N^2(j_k)$ to i_k $C \leftarrow C - \{j_k\} - N^2(j_k)$

- 步骤4: [算法3——Primal-Dual Method] [证明略]
- 步骤5:分析近似比为3

```
v \leftarrow 0, w \leftarrow 0
S \leftarrow D
T \leftarrow \emptyset
while S \neq \emptyset do // While not all clients neighbor a facility in T
    Increase v_j for all j \in S and w_{ij} for all i \in N(j), j \in S uniformly until some j \in S
             neighbors some i \in T or some i \notin T has a tight dual inequality
    if some j \in S neighbors some i \in T then
        S \leftarrow S - \{j\}
    if i \notin T has a tight dual inequality then
        // facility i is added to T
        T \leftarrow T \cup \{i\}
        S \leftarrow S - N(i)
T' \leftarrow \emptyset
while T \neq \emptyset do
    Pick i \in T; T' \leftarrow T' \cup \{i\}
    // remove all facilities h if some client j contributes to h and i
    T \leftarrow T - \{h \in T : \exists j \in D, w_{ij} > 0 \text{ and } w_{hi} > 0\}
```

大纲

- 1 近似算法基本设计步骤
- 2 近似算法中线性规划法的分类和应用
- 3 在线算法的简单介绍
- 4 未来研究方向和现有问题

Online Algorithm

■ 在线问题 vs. 离线问题

■ 在线问题: 决策时未掌握全部实例信息, 已做的决策在更多信息呈现后不可更改。

■ 离线问题:实例在决策前全部已知的问题。

■在线算法

- 以序列化的形式一个个处理输入,被迫做出的选择可能会被证明不是最优的,即 使每一步做出局部最优选择,也有可能累计陷入非最优解。
- 例子: 插入排序

■竞争比

■ 记S是在线问题的输入序列,算法ALG应对S产生的成本记为c(ALG),假设有一个全知全能的离线算法,它应对S产生的成本记为c(OPT),对于任何的S,加入 $c(ALG) \le \alpha \ c(OPT)$,则称ALG为 α 竞争算法。

Online Algorithm

■固有下界

- 下界通常是在线问题的固有属性,与解决它的具体算法无关,在线问题存在下界的主要原因是实例信息的不完全性。
- 存在(或已经找到) 非平凡下界的离线算法只有一部分,但是在线算法的下界普遍存在,因此通常存在竞争比的界
- 研究在线问题的目标:
 - 找到更大的下界,使得下界更靠近OPT
 - 找到更好的算法,使得竞争比更靠近下界约束的竞争比的界
- ■证明竞争比的步骤[和证明近似比的步骤基本一致]
 - 对任何的输入实例I,找到OPT cost的下界(Lower Bound, LB): $LB(I) \le c(OPT(I))$, $\forall I$
 - 证明对任何的输入实例I,都有: $c(ALG(I)) \le \alpha LB(I)$, $\forall I, \alpha \ge 1$
 - 推断出结论: $c(ALG) \le \alpha LB \le \alpha c(OPT)$

- 1 近似算法基本设计步骤
- 2 近似算法中线性规划法的分类和应用
- 3 在线算法的简单介绍
- 4 未来研究方向和现有问题

未来研究方向

- 在线优化算法 & 在线学习
 - 在任务调度的实际系统中,信息很难完全已知,是一个在线问题。
 - 传统的离线学习难以处理迅速增长的数据量和特征数量,可以在线迭代调整算法,减少训练需要的数据量
- 现有近似算法/在线优化算法在复杂新场景中的应用
 - 在任务调度领域, 近似算法/在线优化算法仍然是很常见的算法
- 近似算法/在线优化算法作为论文中的一部分,增加工作量
 - 很多启发式算法的某些部分需要一些数学做点缀,可以考虑用近似算法
- ■找到或整理目前现有的近似算法/在线优化算法的详细整理文 档
 - 这个工作很耗时但很重要

现有问题

- 近似算法只能保证最差时候的性能下界,但是这个保证也是一 个低层次的保证
 - 在Relaxed-LP场景中,Integrality Gap限制了性能
 - 近似算法可能带来n倍于最优解的性能差距,这在实际系统中通常难以被接受
- ■近似算法的泛化能力差
 - 近似算法严重依赖场景的设计和问题的构造
 - 为了证明近似比,通常近似算法的改造能力很差,很难迁移到其他 领域

现有问题

- NP类问题:不能在多项式时间内解决或不确定能不能在多项式时间内解决,但 能在多项式时间验证的问题
- 看论文验证证明过程: 啊对对对 vs. 自己解决写证明: ????
- 自己写完证明: 啊对对对 vs. 跑起实验:????
- ■学习内容非常多且应用时不成体系
 - ■凸优化
 - ■组合优化
 - 在线优化
 -

Approximation Algorithms

- CMU 15-854: Approximation Algorithms
- CMU 15-854(B): Advanced Approximation Algorithms
- Umich IOE 2713: Approximation & Online Algorithms
- Williamson D P, Shmoys D B. The design of approximation algorithms[M]. Cambridge university press, 2011.

Online Algorithms

- UofT CSC2421: Topics in Algorithms: Online and other Myopic Algorithms
- Nguyen T K. Primal-Dual Approaches in Online Algorithms, Algorithmic Game Theory and Online Learning[D]. Université Paris Sorbonne, 2019.

■ 学习资料

Optimization Online

<u>Categories – Optimization Online (optimization-online.org)</u>

- Applications OR and Management Sciences (1,556)
 - Airline Optimization (31)
 - Finance and Economics (185)
 - Marketing (14)
 - Production and Logistics (151)
 - Scheduling (215)
 - Supply Chain Management (82)
 - Telecommunications (109)
 - Transportation (295)
 - Yield Management (16)
- Applications Science and Engineering (1,209)
 - Basic Sciences Applications (79)
 - Biomedical Applications (99)
 - Chemical Engineering (29)
 - Civil and Environmental Engineering (28)
 - Control Applications (142)
 - Data-Mining (155)
 - Facility Planning and Design (78)
 - Mechanical Engineering (43)
 - Multidisciplinary Design Optimization (33)
 - Optimization of Systems modeled by PDEs (61)
 - Smart Grids (42)
 - Statistics (179)
 - VLSI layout (10)

- Integer Programming (1,692)
 - (Mixed) Integer Linear Programming (591)
 - (Mixed) Integer Nonlinear Programming (483)
 - 0-1 Programming (265)
 - Cutting Plane Approaches (280)
- Linear, Cone and Semidefinite Programming (1,409)
 - Cone Programming (5)
 - Linear Programming (290)
 - Second-Order Cone Programming (107)
 - Semi-definite Programming (554)
- Network Optimization (271)
- Nonlinear Optimization (2,089)
 - Bound-constrained Optimization (78)
 - Constrained Nonlinear Optimization (658)
 - Nonlinear Systems and Least-Squares (104)
 - Quadratic Programming (261)
 - Systems governed by Differential Equations Optimization (121)
 - Unconstrained Optimization (329)
- Optimization in Data Science (14)
 - Data Science Algorithms (1)
 - Data Science Applications (1)
 - Data Science Theory (3)

88

学习资料

Hailiang Zhao' s Blog

- Hailiang Zhao @ ZJU.CS.CCNT (hliangzhao.me)
 - ADMM for Stochastic Optimization [ADMM part 8]
 This slide demonstrates how to use ADMM to solve stochastic optimization problems, Oct 2022.
 - ADMM for Distributed Optimization [ADMM part 7]
 This slide demonstrates how to use ADMM to solve centralized and decentralized distributed optimization problems, Oct 2022.
 - ADMM for Nonconvex Optimization [ADMM part 6]
 This slide demonstrates how to use ADMM to solve nonconvex problems, Oct 2022.
 - ADMM: The Variational Inequality Perspective [ADMM part 5]
 This slide demonstrates how to cast ADMM into the framework of variational inequality, Oct 2022.
 - ADMM for Nonlinear Convex Problems [ADMM part 4]
 This slide demonstrates how to solve general nonlinear convex problems with ADMM, Oct 2022.
 - ADMM for Multi-Block Problems [ADMM part 3]
 This slide demonstrates how to solve multi-block problems with ADMM, Oct 2022.
 - ADMM, Linearized ADMM, Accelerated Linearized ADMM and Their Convergence Analysis [ADMM part 2]
 This slide summaries the iteration steps of ADMM, Linearized ADMM, Accelerated Linearized ADMM, and their convergen rate, Oct 2022.
 - Distributed Systems in One Slide
 This slide summaries the key contents of an interesting online book, Distributed Systems for Fun and Profit, Oct 2022.
 - From Dual Descent to ADMM [ADMM part 1]
 This slide demonstrates the design details of Dual Descent, Method of Multipliers, and the vanilla version of ADMM, Oct 2022.
 - Preliminaries for Optimization Algorithm Design and Analysis
 This slide demonstrates the mathematical preliminaries of optimization algorithms that should be kept in mind firmly, Oct 2022.

Scheduling Zoo

The scheduling zoo (lip6.fr)

Objective function : C_{\max}

 $\sum U_i$

 $\sum w_j T_j$

 $\sum C_i$

 $\sum w_i C_i$

谢的各位老师指正

中山大学计算机学院