Университет ИТМО Физико-технический мегафакультет Физический факультет

руппаР3207		К работе допущен		
Студент <u>Путинц</u>	ев Данил Денисович	Работа выполнена	28.10.2024	
Преподаватель	Агабабаев В.А	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.04

Маятник Обербека. Исследование равноускоренного вращательного движения

Цель работы.

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

Задачи, решаемые при выполнении работы.

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

Рабочие формулы и исходные данные.

$$\begin{split} &\textit{ma} = \textit{mg} - T \\ &R = l_1 + (n-1)l_0 + \frac{1}{2}b \quad I = \frac{\sum \left(\varepsilon_i - \varepsilon_{cp}\right) \left(M_i - M_{cp}\right)}{\sum \left(\varepsilon_i - \varepsilon_{cp}\right)^2} \\ &I\varepsilon = M - M_{\textit{mp}} \qquad I = I_0 + 4\,m_{\textit{ym}}R^2 \quad S_x = \sqrt{\frac{\sum_{i=1}^n \left(t_i - t_{cp}\right)^2}{n\left(n-1\right)}} = 0.047\,c \\ &a = \frac{2\,h}{t^2}; \; \text{h} = 0.7 \; \text{M}; \; \text{d} = 0.046 \; \text{M} \\ &\varepsilon = \frac{2\,a}{d} \; M = \frac{\textit{md}}{2}(g-a); \; \text{g} = 9.8195 \; \text{M/c}^2 \end{split}$$

Измерительные приборы.

		_	Используемый	Погрешность	
№ π/π	Наименование	Тип прибора	диапазон	прибора	
1	Секундомер	Цифровой	[0.01; 60] c	0.01 c	
2	Линейка	Измерительный	[0; 700] мм	0.5 мм	

	Параметры установки					
1.	Масса каретки	(47.0 ± 0.5) г				
2.	Масса шайбы	(220.0 ± 0.5) г				
3.	Масса грузов на крестовине	(408.0 ± 0.5) ≥				
4.	Расстояние от оси до первой риски	(57.0 ± 0.5) мм				
5.	Расстояние между рисками	(25.0 ± 0.2) мм				
6.	Диаметр ступицы	(46.0 ± 0.5) мм				
7.	Диаметр груза на крестовине	(40.0 ± 0.5) мм				
8.	Высота груза на крестовине	(40.0 ± 0.5) мм				
9.	Расстояние, проходимое грузом (h)	(700.0 ± 0.1) мм				

Экспериментальная установка

Рис. 2. Стенд лаборатории механики (общий вид)

Схема установки (перечень схем, которые составляют Приложение 1).

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

Результаты прямых измерений и их обработки (таблицы,

примеры расчетов).

Масса груза,			Положение у	тяжелителей		
Г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	$t_1 = 4.8 \text{ c}$	$t_1 = 5.68 \text{ c}$	$t_1 = 6.45 \text{ c}$	$t_1 = 7.54 \text{ c}$	$t_1 = 8.39 \text{ c}$	$t_1 = 9.35 c$
267	$t_2 = 4.96 \text{ c}$	$t_2 = 5.59 \text{ c}$	$t_2 = 6.41 \text{ c}$	$t_2 = 7.51 \text{ c}$	$t_2 = 8.37 \text{ c}$	$t_2 = 9.37 \text{ c}$
207	$t_3 = 4.91 c$	$t_3 = 5.68 \text{ c}$	$t_3 = 6.49 \text{ c}$	$t_3 = 7.49 c$	$t_3 = 8.24 \text{ c}$	t ₃ = 9.41 c
	$t_{cp} = 4.89 \text{ c}$	$t_{cp} = 5.65 \text{ c}$	$t_{cp} = 6.45 \text{ c}$	$t_{cp} = 7.51 \text{ c}$	$t_{cp} = 8.33 \text{ c}$	$t_{cp} = 9.38 \text{ c}$
	$t_1 = 3.44 \text{ c}$	$t_1 = 4.11 c$	$t_1 = 4.64 \text{ c}$	$t_1 = 5.46 \text{ c}$	$t_1 = 6.24 \text{ c}$	$t_1 = 6.97 \text{ c}$
407	$t_2 = 3.48 \text{ c}$	$t_2 = 4.10 \text{ c}$	$t_2 = 4.65 c$	$t_2 = 5.62 \text{ c}$	$t_2 = 6.21 \text{ c}$	$t_2 = 6.93 \text{ c}$
487	$t_3 = 3.47 \text{ c}$	$t_3 = 4.09 \text{ c}$	$t_3 = 4.77 \text{ c}$	$t_3 = 5.59 \text{ c}$	$t_3 = 6.26 c$	$t_3 = 6.99 \text{ c}$
	$t_{cp} = 3.46 \text{ c}$	$t_{cp} = 4.10 \text{ c}$	$t_{cp} = 4.69 \text{ c}$	$t_{cp} = 5.56 \text{ c}$	$t_{cp} = 6.24 \text{ c}$	$t_{cp} = 6.96 \text{ c}$
	$t_1 = 2.85 \text{ c}$	$t_1 = 3.36 c$	$t_1 = 3.99 \text{ c}$	$t_1 = 4.63 \text{ c}$	$t_1 = 5.14 \text{ c}$	$t_1 = 5.81 c$
707	$t_2 = 2.89 \text{ c}$	$t_2 = 3.44 \text{ c}$	$t_2 = 3.92 \text{ c}$	$t_2 = 4.71 \text{ c}$	$t_2 = 5.23 \text{ c}$	$t_2 = 5.76 \text{ c}$
707	$t_3 = 2.89 \text{ c}$	$t_3 = 3.37 \text{ c}$	$t_3 = 3.81 c$	$t_3 = 4.62 \text{ c}$	$t_3 = 5.31 c$	$t_3 = 5.64 \text{ c}$
	$t_{cp} = 2.88 \text{ c}$	$t_{cp} = 3.39 \text{ c}$	$t_{cp} = 3.91 \text{ c}$	$t_{cp} = 4.65 \text{ c}$	$t_{cp} = 5.23 \text{ c}$	$t_{cp} = 5.74 \text{ c}$
927	$t_1 = 2.49 \text{ c}$	$t_1 = 2.98 \text{ c}$	$t_1 = 3.33 \text{ c}$	$t_1 = 4.17 \text{ c}$	$t_1 = 4.46 \text{ c}$	$t_1 = 5.1 c$
	$t_2 = 2.49 \text{ c}$	$t_2 = 2.96 \text{ c}$	$t_2 = 3.62 \text{ c}$	$t_2 = 4.09 \text{ c}$	$t_2 = 4.68 \text{ c}$	$t_2 = 4.99 \text{ c}$
	$t_3 = 2.53 c$	$t_3 = 2.98 \text{ c}$	$t_3 = 3.57 c$	$t_3 = 3.94 c$	$t_3 = 4.40 \text{ c}$	$t_3 = 4.95 c$
	$t_{cp} = 2.50 \text{ c}$	$t_{cp} = 2.97 \text{ c}$	$t_{cp} = 3.51 \text{ c}$	$t_{cp} = 4.07$	$t_{cp} = 4.51 \text{ c}$	$t_{cp} = 5.01 \text{ c}$

Расчет результатов косвенных измерений (таблицы,

примеры расчетов).

		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	t_{cp}	4.89	5.65	6.45	7.51	8.33	9.38
$m_1 = 0.267$	а	0.059	0.044	0.034	0.025	0.02	0.016
0.267 кг	ε	2.565	1.913	1.478	1.087	0.87	0.696
	M	0.06	0.06	0.06	0.06	0.06	0.06
	t_{cp}	3.46	4.10	4.69	5.56	6.24	6.96
$m_2 = 0.407$	а	0.117	0.083	0.064	0.0453	0.036	0.0289
0.487 кг	ε	5.087	3.609	2.783	1.97	1.565	1.257
	M	0.11	0.11	0.11	0.11	0.11	0.11
	t_{cp}	2.88	3.39	3.91	4.65	5.23	5.74
$m_3 = 0.707$	а	0.169	0.122	0.092	0.065	0.051	0.0425
0.707 КГ	ε	7.348	5.304	4	2.826	2.217	1.848
	M	0.157	0.158	0.158	0.159	0.159	0.159

	t_{cp}	2.50	2.97	3.51	4.07	4.51	5.01
$m_4 = 0.027$	а	0.22	0.159	0.114	0.085	0.0688	0.0557
0.927 кг	ε	9.565	6.913	4.957	3.696	2.991	2.422
	М	0.205	0.206	0.207	0.208	0.208	0.208

	$\mathbf{M} = \mathbf{M}_{\mathrm{Tp}} + \mathbf{I}\mathbf{\epsilon}$					
	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
I	0.0207	0.02911	0.04178	0.057	0.07	0.085
$\mathbf{M}_{ ext{rp}}$	0.0059	0.0044	-0.004	-0.0023	0.0005	0.002
\mathbf{M}_{cp}	0.133	0.1335	0.13375	0.13425	0.13425	0.13425
ε _{cp}	6.14125	4.43475	3.3045	2.39475	1.91075	1.55575

Риска	R	\mathbb{R}^2	I
1	0.077	0.005929	0.0207
2	0.102	0.0104	0.02911
3	0.127	0.016129	0.04178
4	0.152	0.023104	0.057
5	0.177	0.031329	0.07
6	0.202	0.040804	0.085

Определим значения
$$I_0$$
 и $m_{\text{ут}}$ с помощью МНК:
$$R_{cp}^2 = \frac{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2}{6} = 0.0213 \text{ M}^2$$

$$I_{cp} = 0.0506 \text{ кг*M}^2$$

$$M_{ym} = \frac{\sum (R_i^2 - R_{cp}^2)(I_i - I_{cp})}{\sum (R_i^2 - R_{cp}^2)^2} = 1.866 \text{ кг}$$

$$I_0 = I - 4 m_{ym} * R_{cp}^2 = 0.04721 \text{ кг * M}^2$$

Расчет погрешностей измерений (для прямых и косвенных измерений).

Погрешность t_{ср}

Вычислим СКО:
$$S_x = \sqrt{\frac{\sum_{i=1}^{n} (t_i - t_{cp})^2}{n(n-1)}} = 0.047 c$$

Рассчитаем доверительный интервал:
$$0.047*4.30 = 0.2021$$
 с
 Абсолютная погрешность равна: $\Delta_{\rm t} = \sqrt{\Delta_t^2 + (\frac{2}{3} \Delta_{ux})^2} = \sqrt{0.2021^2 + (\frac{2}{3}*0.01)^2} = 0.20$ с

Относительная погрешность:
$$\varepsilon_t = \frac{\Delta_t}{t_{cp}} * 100 \% = 4.13 \%$$

 $t_{cp} = (4.89 \pm 0.20)$ c; $\varepsilon_t = 4.13\%$; $\alpha = 0.95$

Погрешность а

 $h = (700 \pm 0.5) \text{ MM}; t = (4.89 \pm 0.20) \text{ c}$

Абсолютная производная равна Δ_a =

$$\sqrt{\left(\frac{\partial a}{\partial t}\Delta_{t}\right)^{2} + \left(\frac{\partial a}{\partial h}\Delta_{h}\right)^{2}} = \sqrt{\left(-4\frac{h}{t^{3}}*0.20\right)^{2} + \left(\frac{2}{t^{2}}*0.0005*\frac{2}{3}\right)^{2}} = \sqrt{\left(\frac{-4*0.7}{4.89^{3}}*0.2\right)^{2} + \left(\frac{2}{4.89^{2}}*0.0005*\frac{2}{3}\right)^{2}} = 0.005 \, \text{m/c}^{2}$$

Относительная погрешность $\varepsilon_a = \frac{\Delta_a}{a} * 100 \% = 8.47 \%$

 $a = (0.059 \pm 0.005) \text{ m/c}^2$; $\epsilon_a = 8.47\%$; $\alpha = 0.95$

Погрешность ε

 $a = (0.059 \pm 0.005) \text{ m/c}^2$

 $d = 0.046 \pm 0.0005 M$

Абсолютная погрешность равна:

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{\partial \, \varepsilon}{\partial \, a} \, \Delta_{a}\right)^{2} + \left(\frac{\partial \, \varepsilon}{\partial \, d} \, \Delta_{d}\right)^{2}} = \sqrt{\left(\frac{2}{0.046} * 0.005\right)^{2} + \left(\frac{-2 * 0.059}{0.046^{2}} * 0.0005 * \frac{2}{3}\right)^{2}} = 0.22 \text{ m/c}^{2}$$

Относительная погрешность: $\varepsilon_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\varepsilon} * 100\% = 8.58\%$

 $\varepsilon = (2.57 \pm 0.22) \text{ m/c}^2$; $\varepsilon_a = 8.58\%$; $\alpha = 0.95$

Погрешность М

 $a = (0.059 \pm 0.005) \text{ m/c}^2$

 $d = 0.046 \pm 0.0005 \text{ M}$

 $m = 0.267 \pm 0.005 \text{ kg}$

 $g = const = 9.8195 \text{ m/c}^2$

Абсолютная погрешность равна:

$$\Lambda_M$$

$$\sqrt{\left(\frac{\partial M}{\partial m}\Delta_{m}\right)^{2} + \left(\frac{\partial M}{\partial d}\Delta_{d}\right)^{2} + \left(\frac{\partial M}{\partial a}\Delta_{a}\right)^{2}} = \sqrt{\left(\frac{d}{2}(g-a)*0.005*\frac{2}{3}\right)^{2} + \left(\frac{m}{2}(g-a)*0.0005*\frac{2}{3}\right)^{2} + \left(\frac{-md}{2}*0.005\right)^{2}} = -0.00087$$

Найдем относительную погрешность:

$$\varepsilon_M = \frac{\Delta_M}{M} * 100\% = 1.45\%$$

 $M = (6.000 \pm 0.087)^* 10^{-2} \text{ H*m}; \ \epsilon_M = 1.45\%; \ \ \alpha = 0.95$

Графики.

График 1: Зависимость М от є

График 2: Зависимость момента инерции от положения утяжелителей

Окончательные результаты.

```
\begin{split} t_{cp} &= (4.9 \pm 0.20) \text{ c; } \epsilon_t = 4.13\%; \ \alpha = 0.95 \\ a &= (0.06 \pm 0.005) \text{ m/c}^2; \ \epsilon_a = 8.47\%; \ \alpha = 0.95 \\ \epsilon &= (2.6 \pm 0.22) \text{ m/c}^2; \ \epsilon_a = 8.58\%; \ \alpha = 0.95 \\ M &= (6.000 \pm 0.09)*10^{-2} \text{ H*m; } \epsilon_M = 1.45\%; \ \alpha = 0.95 \\ I_0 &= (0.47 \pm 0.04)*10^{-1} \text{ Kr * m}^2; \ \epsilon_{l0} = 8.52\%; \ \alpha = 0.95 \end{split}
```

Выводы и анализ результатов работы.

Таким образом, нам удалось исследовать зависимости момента силы натяжения нити от углового ускорения и момента инерции от положения масс относительно оси вращения. Согласно нашим расчётам, зависимости в самом деле получились линейные.

Тем самым мы подтвердили основной закон динамики вращательного движения и теорему Штейнера, что и являлось главной целью данной лабораторной работы. Следовательно, проверка основного закона динамики вращения была успешной.