Análisis y Diseño Estadístico de Experimentos con R

$Estudio\ R$

2018

Contents

Análisis y Diseño Estadístico de Experimentos con R		
Descripción		
Objetivos		
Metodología		
El punto de partida		
Temas		
Introducción al diseño de experimentos		
Elementos de inferencia estadística		
Diseños de experimentos de un factor		
Diseño en bloques		
Diseños factoriales		
Análisis de regresión		
Introducción a diseños anidados		
Introducción al diseño de medidas repetidas		
Introducción al diseño robusto		
Introducción a la optimización		
Referencies		

Análisis y Diseño Estadístico de Experimentos con R

Descripción

En este curso se abordan conceptos introductorios al diseño estadístico de experimentos, destacando la importancia del método científico para generar conocimiento acerca de un sistema o proceso en particular, por medio de experimentos planificados correctamente. Los experimentos están enfocados a las ciencias biológicas e ingeniería. Se implementan métodos estadísticos con R para ver si los efectos muestrales son lo suficientemente grandes y garantizan diferencias poblacionales.

Objetivos

En este curso el usario podrá:

- Conocer conceptos básicos del diseño estadístico de experimentos, con énfasis en las ciencias biológicas e ingeniería.
- Entender la aplicación de métodos estadísticos con R, para el análisis de experimentos.
- Reconocer e implementar adecuadademente las estrategías de experimentación.
- Entender intuitivamente la estructura matemática de los modelos estadísticos aplicados al diseño de experimentos.
- Reconocer la importancia del método científico.

Metodología

Las secciones de estudio son desarrolladas con base en la teoría y la aplicación directa de conceptos aprendidos, mediante reuniones presenciales; cuyo espacio de estudio está dirigido a la discusión sobre temas de estadística inferencial, conceptos de probabilidad, distribuciones de probabilidad, valor p, modelos matemáticos, entre otros

El punto de partida...

"Para investigar la verdad es preciso dudar, en cuanto sea posible, de todas las cosas, una vez en la vida" **René Descartes**.

Figure 1: Francis Bacon

El método científico:

- Observación
- Inducción
- Hipótesis
- Experimentación
- Antítesis
- Teoria científica

Temas

Introducción al diseño de experimentos

- experimento: concepto
- Etapas de un experimento
- Planeación de un experimento
- Principios fundamentales
- Métodos estadísticos
- Historia
- Consideraciones prácicas
- Consideraciones matemáticas

Elementos de inferencia estadística

- Población y muestra
- Muestreo
- Distribuciones de muestreo
- Aleatorización
- Muestras independientes
- Muestras pareadas
- Estimación puntual
- Estimación por intervalo
- Planteamiento de hipótesis
- Criterios de rechazo
- Inferencia sobre μ

Diseños de experimentos de un factor

- Idea intuitiva: ejemplo
- Análisis de varianza (anova)
- Descomposición de suma de cuadrados total
- Parámetros del modelo matemático
- Diseños desbalanceados
- Validación del modelo
- Tamaño de muestra
- Métodos no parámetricos
- Interpretación práctica

Diseño en bloques

- Conceptos básicos
- Modelo estadístico
- Validación del modelo
- Diseño en cuadro latino
- Diseño en cuadro grecolatino
- Interpretación práctica

Diseños factoriales

• Conceptos básicos

- Diseño factorial de dos factores
- Diseño factorial de tres factores
- Diseños factores en general
- Modelo de efectos fijos
- Modelo de efectos aleatorios
- Validación del modelo
- Interpretación práctica

Análisis de regresión

- Conceptos básicos
- Modelos lineales
- Modelos no lineales
- Modelo de regresión lineal simple
- Ajuste del modelo
- Estimación de parámetros
- Predicción
- Interpretación práctica
- Modelo de regresión lineal múltiple
- Ajuste del modelo
- Selección de variables
- Colinealidad
- Diagnósticos
- Estimación
- Predicción
- Interpretación práctica

Introducción a diseños anidados

- Conceptos básicos
- Parcelas divididas
- Diseño experimental
- Modelo estadístico
- Parámetros del modelo
- Validación del modelo
- Interpretación práctica

Introducción al diseño de medidas repetidas

- Conceptos básicos
- Datos longitudinales
- Modelos de efectos mixtos
- Modelo de efectos fijos
- Modelo de efectos aleatorios
- Ajuste del modelo
- Selección del modelo
- Interpretación práctica

Introducción al diseño robusto

• Antecedentes

- Filosofía Taguchi
- Conceptos básicos
- Concepto de robustez
- Factores de control
- Factores de ruido
- Factores de señal
- Ejemplo
- Interpretación práctica

Introducción a la optimización

- Conceptos básicos
- Técnicas de optimización
- Superficies de respuesta
- Punto estacionario
- Caracterización de la superficie
- Sistema de cordilleras
- Respuestas múltiples
- Diseño experimental
- Interpretación práctica

Referencias

- Diseño y análisis de experimentos (segunda edición). Douglas C. Montgomery 2004.
- Diseño y análisis de experimentos (segunda edición). Humberto Gutierrez P, Roman de la Vara S -2008.
- Linear Models with R. Julian J. Faraway 2014.