Design example 1

- •The following is a 'rough' design with a number of approximations.
- It can be **validated** by PSPICE simulation and fine-tuning of the parameter values undertaken

Specification

- Design a common-emitter amplifier to the following specification
 - $V_{CC} = 20V, A_V > 100, V_C \sim V_{CC}/2$, a load of 10k
- Given
 - $_{\rm O}$ β_o =250, make R₁ //R₂ ~ 10xR_{in}, V_{RE} =10%V_{CC}
- Hints
 - First draw the schematic circuit
 - Estimate values for R_C , I_C , R_E , V_B , R_2 , R_1

Draw schematic, find R_C , I_C

* Assume all capacitors are short circuit at frequencies of interest – see later notes for C calculations

How do we achieve a voltage gain of 100?

What is the equation for voltage gain of a CE amp?

$$|A_V| \equiv \frac{v_O}{v_i} = g_m \times ac \ load$$

$$g_m = 40I_C$$

$$ac \ load = \frac{R_C \times 10k}{R_C + 10k}$$

$$\longrightarrow \frac{A_{\mathcal{V}}}{40.I_{\mathcal{C}}} = \frac{R_{\mathcal{C}} \times 10k}{R_{\mathcal{C}} + 10k}$$

$$\frac{120}{40.I_C} = \frac{R_C \times 10k}{R_C + 10k}$$

$$I_C = \frac{20-10}{R}$$

$$\frac{3R_C}{10} = \frac{R_C \times 10k}{R_C + 10k}$$

$$R_c = 23k$$

Hence $I_C = 0.43 \text{mA}$

Now consider the DC biasing

 $V_{RE} = 10\%V_{CC}$ (stability)

Assume $I_C \sim I_E$

$$R_E = \frac{2V}{0.43mA} = 4.7k\Omega$$

Voltage at V_B ?? $V_B = 2.6V$

How to find R_1 , R_2

make
$$R_1 //R_2 \sim 10 \times R_{in}$$

$$R_{in} = r_{be} = \frac{\beta_O}{g_m} = \frac{250}{40 \times 0.43 mA} = 14.5 k\Omega$$

Now consider the DC biasing

How to find R_1 , R_2

make $R_1 //R_2 \sim 145k$

$$\frac{R_1 \times R_2}{R_1 + R_2} = 145k\Omega$$

Need another equation....

Assume DC base current is small (~0) compared to current in bias resistors

$$\implies \frac{20-2.6}{R_1} = \frac{2.6}{R_2} \implies 17.4R_2 = 2.6R_1$$

Solve 2 equations to give R₁, R₂

$$R_1 = 1.1M\Omega$$

 $R_2 = 167k\Omega$

SPICE simulation – DC-1

Check:

- DC levels
- approximations

$$I_{c}$$
 (spec.) = 0.43mA
 I_{c} (simul.) = 0.33mA

Poor agreement with target $I_c = 0.43 \text{mA}....$

Any ideas Why?? Are the approximations good?

SPICE simulation – DC-2

A more rigorous treatment of the estimate for R₁, R₂ (or a bit of 'tweaking' to get the voltage levels required.. gives

$$I_c$$
 (spec.) = 0.43mA
 I_c (simul.) = 0.42mA

Good agreement with target $I_c = 0.43$ mA

Ac simulation

See part 7 for design details for the capacitors, C_i, C_o, C_e

Ac simulation results

$$A_V = g_m \times acload \longrightarrow A_V \approx 40 \times 0.42m \times (23/10)k\Omega$$

A_V (theory) = 117 **A**_V (simul.) = 108

Further work

- Find the nearest preferred values to the resistor values
- Work back through the calculations to find the new values for I_C and A_v

Design Exercise 2

Design a 2-stage voltage amplifier to meet the following criteria:

- i) an input resistance of 100 k Ω
- ii) an overall voltage gain > 500, into a resistor load, R_L

Given: $V_{CC} = 20V$, $\beta_{o} = 200$

DC level of the first stage output needs to be set at half the supply voltage.

Allow 10% of V_{CC} across R_E)

Use CE-ED (R_F) stage for the input and a CE stage biased at 1mA

Solution.

The schematic circuit

omitting bias resistors and coupling capacitors

Design First consider input resistance spec.

$$g_m \times r_{be} = \beta_o$$

$$R_i = r_{be1} + (1 + \beta_o) R_E$$

$$R_{i} = r_{be1} + (1 + \beta_{o})R_{E}$$

$$100k = \frac{200}{40I_{C1}} + (1 + 200)\frac{2}{I_{C1}}$$
10% V_{CC} across R_E

$$I_{C1} = 4.1 \text{mA}$$

 $V_{\rm CC}/2$ across $R_{\rm C1}$

$$R_E = \frac{2}{4.1m}$$
 $R_{C1} \sim \frac{20}{2} \frac{1}{4.1m}$
= 494Ω = $2.5k\Omega$

Gain of 1st stage is
$$A_{V1} = -\frac{g_{m1} \times R_{C1} // R_{i2}}{1 + g_{m1} \times R_{E}}$$

$$R_{i2} = r_{be2} = \frac{\beta_o}{g_{m2}} = \frac{200}{40 \times 1mA} = 5k\Omega$$

$$A_{V1} = -\frac{40 \times 0.41m}{1 + 40 \times 0.41m} \frac{2.5 \times 5}{2.5 + 5}k$$

= 3.31

Want total gain to be >500, so $A_{V2} = 500 / 3.31 = 151$; $A_{V2} = 155$ say

Design - 2

Gain of second stage is
$$A_{V2} = -g_{m2}R_{C2} // R_L$$

$$R_{C2} = \frac{10}{1mA} = 10k\Omega$$
 What about R_L?

$$A_{V2} = -40 \times 1m \times \frac{R_L 10k}{R_L + 10k}$$

$$155(R_L + 10k) = -40m \times R_L \times 10k$$

$$155R_L + 1550k = 400R_L$$

$$R_i = 6.3 k\Omega$$

This is a MINIMUM value to achieve the desired gain!

Note, use the nearest preferred values in a real design so use $R_{in} > 100k$, $A_V > 500$

Gain could be made higher by adding a further CE stage, Input resistance could be improved by using **feedback**: sacrifice some gain.