Project in Time Series Analysis

Life can only be understood backwards, but it must be lived forwards.

- Søren Kierkegaard (1844)

How to predict the temperature in Svedala?

Model Architectures

a. Naive Model

b. SARIMA

c. SARIMAX

d. Recursive Model

e. Prophet

Complexity

Real world data is messy

Strange zeros

Is the temperature really 0 degrees during noon in August?

Real world data is messy

Handling Outliers

- Do we have any outliers?
- Do they impact the structure of our data?

Real world data is messy

Shifting exogenous data

- Predictions are available three hour in advance.
- Interpolations would include future values.

Split the data

- Modeling
- Validation
- Test

Trends & Transformations

Data needs to be detrended

No need for power transforms

Use the TSA workflow!

Naïve predictor

- A fair guess, but not estimated using data
- Something in between the current temperature and the one yesterday, namely:

$$y_t = \frac{y_{t-1} + y_{t-24}}{2}$$

Data Set	$\sigma_{t+1 t}^2$	$\sigma_{t+9 t}^2$	σ_y^2
Modeling	1.5267	5.3761	13.5078
Validation	3.1007	11.9268	7.5529

Variance of prediction residuals

Model without external input

SARIMA

Flexible Seasonality

KISS

 $\frac{a_1}{\text{A(z)}} = \frac{a_2}{0.5246(\pm 0.02)} = \frac{a_{23}}{0.1295(\pm 0.01)} = \frac{a_{25}}{0.103(\pm 0.01)}$ WOW! That is white as snow! $\frac{c_1}{\text{C(z)}} = \frac{c_{24}}{0.02175(\pm 0.01)}$ Table 4: Model $A: \nabla_1 A(z) y_t = C(z) e_t$

Model without external input

- Better than Naive
- No white prediction residuals

Data Set	$\sigma_{t+1 t}^2$	$\sigma_{t+9 t}^2$	σ_y^2
Modeling	0.20722	3.6958	13.5078
Validation	0.12046	4.0546	7.5529
Data Set	$\epsilon_{t+1 t}$	6	t+9 t
Modeling	40.08 ≠ 36.4	2 2272.7	73 ≮ 36.42
Validation	88.58 ≮ 36.4	2 409.6	6 ≮ 36.42

Variance and whiteness of temperature prediction residuals

Predictions on validation set using model A

Lets use external input

- BJ/SARIMAX
- Use Sturup as external signal
- White modelling residual

Use BJ Scheme from book to get suitable model orders

Model with external input

- Worse than A on validation data
- White prediction residuals!
- Poor prediction of external signal

Svedala Predictions

Data Set	$\epsilon_{t+1 t}$	$\epsilon_{t+9 t}$
Modeling	34.23 < 36.42	2312.21 ≠ 36.42
Validation	33.13 < 36.42	403.87 ≮ 36.42

Data Set	$\sigma_{t+1 t}^2$	$\sigma_{t+9 t}^2$	σ_y^2
Modeling	0.19962	3.5773	13.5078
Validation	0.10887	4.7321	7.5529

Variance and whiteness of temperature prediction residuals

Sturup (external) Predictions

Data Set	$\sigma_{t+1 t}^2$	$\sigma_{t+9 t}^2$	σ_y^2
Modeling	1.0654	4.658	13.5078
Validation	0.51458	5.4261	7.5529

Residual variance of input signal prediction

Model using recursive method

Data Set	$\sigma_{t+1 t}^2$	$\sigma_{t+9 t}^2$	σ_y^2
Modeling	0.19985	2.5626	13.5078
Validation	0.10701	2.1477	7.5529

Data Set	$\epsilon_{t+1 t}$	$\epsilon_{t+9 t}$
		$2125.63 \nless 36.42$
Validation	26.70 < 36.42	$387.93 \nless 36.42$

- Kalman filtering renders the best results
- White prediction residuals!

Temperature, one- and nine step predictions on validation set using recursive model

Prophet is bad at predicting the temperature in Svedala

- Worse than Naive Predictor
- Fits erroneous pattern
- Temperature does not care if it is Saturday or Monday

Of course it is warmer on mondays and tuesdays!

Testing

 Models perform in reverse complexity order

Model	$\sigma_{t+1 t}^2$	$\sigma_{t+9 t}^2$
Naive	1.8144	6.3152
\mathbf{A}	0.23977	4.5599
В	0.23098	3.946
\mathbf{C}	0.21926	3.0591
σ_y^2	5.8738	-

Residual variance on test set

Temperature, one- and nine-step predictions on test set using all models

Q&A