Suppose $x + \frac{1}{x}$ is an integer. Prove by induction that $x^n + \frac{1}{x^n}$ for every $n \ge 1$ would also be an integer.

Before we start, let us note that we assume that x is a valid value in order for instances of $x + \frac{1}{x}$ to yield a defined integer. We have also chosen to re-represent the problem using the recurrence relation that we found: $a_{n+1} = a_n * a_1 - a_{n-1}$ with $a_0 = 2$ and $a_1 = x + \frac{1}{x}$.

For the first base case: If n=1, then $a_1=x^{n=1}+\frac{1}{x^{n=1}}=x+\frac{1}{x}$; an integer.

For the second base case, let us consider the case when n=2. If n=2, then $a_{n=2}=a_1^2-a_0$, which is $(x+\frac{1}{x})^2-2$, expanded as: $x^2+\frac{1}{x^2}+2-2$. Notice that $(x^2+\frac{1}{x^2})$ is essentially a_1^2 so we can rewrite the expanded form further as $a_1^2=a_2^2+2$ or $a_2^2=a_1^2-2$. Since the first base case is an integer, an $integer^2+2$ or integer*integer*+2 will result an integer.

We will now prove the hypothesis by induction, showing that a_{n+1} (when n = n + 1) is also an integer.

- $a_{n+1} = a_n * a_1$, so $a_{n+1} = (x^n + \frac{1}{x^n}) * (x^{n+1} + \frac{1}{x^{n+1}}) =$ $(x^{n+1} + \frac{1}{x^{n+1}}) + (x^{n-1} + \frac{1}{x^{n-1}})$
- We can rewrite it as $a_n * a_1 = a_{n+1} + a_{n-1}$ or $a_{n+1} = a_n * a_1 a_{n-1}$.
- Testing for a_2 , $a_{1+1} = a_1 * a_1 a_0$. $a_0 = x^0 + \frac{1}{x^0} = 2$ when the x values result in an integer. This is equivalent to an integer*integer-2; which results in an integer.
- Then for every increment of a_n , it will always calculate an *integer* * integer integer, resulting in an integer.

Thus, $x^n + \frac{1}{x^n}$ is an integer, for every $n \ge 1$.