Fisher P Reference of the both of the state	Description or this project, I implamented the K-means as well as the K-means++ algorithm from acastch, tosed five data sets to showcose the applications and results of those algorithms, nurther, after uncovering the diswhada of Kimeans, I implemented a "Spectral teaching" using the median forest (RF) cochilique painted with humania + to overcome the discontinuity of classers' issue, Lasty, discontinuity and provident for the control (RF) cochilique painted with humania + to overcome the discontinuity of classers' issue, Lasty, discontinuity and provident in the control (RF) cochilique painted with humania + to overcome the discontinuity of classers' issue, Lasty, discontinuity in the median classers' issue, Lasty, discontinuity in the company of the control (RF) cochilique painted with the control (RF) cochilique painted with the sense data of the discontinuity of classers' issue, Lasty, discontinuity in the world of shall sedema, we need to this kind of work as "unsupprovised machine learning". The mean commonly usual classering effects of shall sedema, we need to this kind of work as "unsupprovised machine learning". The mean commonly usual classering effects with the company of the control of league (RF). **Workflow** **Creation** **Creation** **Creation** **Early say we want to organize a bunch of league pieces that come in different colors and shallows into three groups. What we do is motionly jack out 5 pieces will accept on the commonly usual classering places will go an where group also we can just jack a new league jack commonly into distances to reach group. We make any just jack a new league jack commonly into distances to the commonly into distances to reach group. So we can repeat the clustering process to start with or using shapes as grouping categories can associate the support of the commonly into distances. The clustering process to find a cetter outcome. This is essentially how K-Means worked the commonly into distances or machine in the cluster. The remaining data points to date point
O are a lin minus of the latest t	ne interesting human behavior is that we like to 'group' things together because grouped objects share some similar attributes, not those similarities can help us conveniently analyze both generally and in depth. For example, to identify who will more likely be customer knowing existing outcome artibutes, the world of data science, we refer to this kind of work as 'unsupervised machine learning'. The most commonly used clustering ethod is K-Means because of its simplicity. **Workflow** **Creans** **Ore Kflow** **Creans** **Ore Kflow** **Creans** **Stay we want to organize a bunch of logo pieces that come in different colors and shapes into three groups. What we do is andomity pick out 3 pieces of logo fone for each group), and those initial centroid of logo pieces will not witching to the more than the piece and common its cool for committee the more most similar, we iterate this step until we put all remaining pieces where they elong by color. **ut once we are done, we might notice if using different lego pieces to start with or using shapes as grouping categories can soult in better groups. So we can repeat the clustering process to find a better outcome. This is essentially how K-Means works! **Procedure** **I. Intilatize controids:** **Intilatize controids:** **Indiatize controids:** **Indiatize controids:** **Indiatize the number of data points from the original X data. The number of k depends on how many clusters we want to duly with. **I. Compute distance:** **received the seminary of data points from the original X data. The number of k depends on how many clusters we want to duly with a point as secondated with it. In order to prevent this while keeping the desired number of clusters, transforming piece and the centroids we titulized in step 1, assigning each of the remaining data points to that centroids. **NOTE:** three will be a chance a centroid is intilatized to be a "far-off" point and only up with no points and centroid is another data point and replace the empty centroid with t
To Service of the ser	at's say we want to organize a bunch of lego pieces that come in different colors and shapes into three groups. What we do is indomly pick out 3 pieces of lego (one for each group), and those initial 'centroid' of lego pieces will now dictate which of the indomly pick out 3 pieces will go in which group. Now we can just pick up a new lego piece and compare its color (for example) to our tree centroids and put it where their colors are most similar, we iterate this step until we put all remaining pieces where they along by color. ut once we are done, we might notice if using different lego pieces to start with or using shapes as grouping categories can south in better groups. So we can repeat the clustering process to find a better outcome. This is essentially how k-Means works! **Procedure:** 1. Initialize centroids: andomly initialize k number of data points from the original X data. The number of k depends on how many clusters we want to not up with. 1. Compute distance: are I used Euclidean distance to measure the distance from each of the remaining data points to each of the centroids we initialized in step 1, assigning each of the remaining data points to the 'closest' centroids. NOTE: there will be a chance a centroid is initialized to be a "far-off" point and end up with no points associated with it. In order to prevent the while keeping the desired number of clusters, I randomly pick another data point and replace the 'empty' centroid with this data point. **L2 Dis+ance a.k.a Euclidean dis+ance data point to that centroid FEATURE WISE. This average distance will be the new deriroids 'coordinate' in that cluster. Intuitively speaking, this means we are correcting the centroids to be the 'center that cluster. This means our final centroids will most likely not be members of the dataset. The reason we picked data points on the dataset as initial centroids is simply to assign a starting point. REFLECTION: During the first attempt instead of using the feature-wise averages, I used the overall avera
Ried Hin Web of from State Sta	1. Initialize centroids: andomly initialize k number of data points from the original X data. The number of k depends on how many clusters we want to not up with. 1. Compute distance: are I used Euclidean distance to measure the distance from each of the remaining data points to each of the centroids we itialized in step 1, assigning each of the remaining data points to the 'closest' centroids. NOTE: there will be a chance a centroid is initialized to be a "far-off" point and end up with no points associated with it. In order to prevent this while keeping the desired number of clusters, I randomly pick another data point and replace the 'empty' centroid with this data point. L2 Distance a.ka Euclidean distance dist = (x2 - x1)² + (y2 - y1)² + (z2 - z1)² Assign a cluster to data point data point data point data point data point 1. Update centroids (4 - 5)² + (2 - 3)² + (0 - 1)² + (5 - 4)² + (0 - 0)² = 17 1. Update centroids: (ithin each cluster, compute the average distance of all the data points to that centroid FEATURE WISE. This average distance will be the new centroids' coordinate' in that cluster. Intuitively speaking, this means we are correcting the centroids to be the 'center fit that cluster. This means our final centroids will most likely not be members of the dataset. The reason we picked data points on the dataset as initial centroids is simply to assign a starting point. REFLECTION: During the first attempt instead of using the feature-wise averages, I used the overall average of data points in each cluster to update the centroids for the next iteration. This was a mistake and got brought out in multi-dimension data
Fi ak	it. In order to prevent this while keeping the desired number of clusters, I randomly pick another data point and replace the 'empty' centroid with this data point. L2 Distance a.k.a Euclidean distance dist = (x2 - x1)² + (y2 - y1)² + (z2 - z1)² centroids datapoint 4 2 0 Assign a cluster to data point datapoint belongs to d cuz 6 is minimum (4-8)* + (2-7)* + (0-2)* = 45 (4-5)* + (2-6)* + (0-0)* = 17 1. Update centroids: Assign a cluster to data point datapoint belongs to d cuz 6 is minimum 1. Update centroids: Assign a cluster to data point datapoint belongs to d cuz 6 is minimum (4-8)* + (2-7)* + (0-0)* = 17 1. Update centroids: Assign a cluster to data point datapoint belongs to d cuz 6 is minimum (4-8)* + (2-6)* + (0-0)* = 17 1. Update centroids: Assign a cluster to datapoint belongs to datapoint belongs to datapoint belongs to decide is minimum (4-8)* + (2-7)* + (0-0)* = 17 1. Update centroids: Assign a cluster to datapoint belongs t
Fi ak	1. Update centroids: (1
Fi ak	Vithin each cluster, compute the average distance of all the data points to that centroid FEATURE WISE. This average distance will be the new centroids' 'coordinate' in that cluster. Intuitively speaking, this means we are correcting the centroids to be the 'center of that cluster. This means our final centroids will most likely not be members of the dataset. The reason we picked data points from the dataset as initial centroids is simply to assign a starting point. REFLECTION: During the first attempt instead of using the feature-wise averages, I used the overall average of data points in each cluster to update the centroids for the next iteration. This was a mistake and got brought out in multi-dimension data
al T S	sets: centroids' features share the same values which are the overall dataset's average in that cluster, then for every
al T S	iteration centroids were corrected in only one direction, but instead, centroids should be corrected and pulled in every direction in multi-dimension in order to truly reach the 'center' of that cluster. The correct approach is to take the feature-wise average and update the corresponding centroid's feature coordinates. Updating Cluster Centroids old centroid of C#1: 2 3 1
al T S	old centroid of C#1: $2 \mid 3 \mid 1$ f) f2 f3 Wew centroid = Avg of data points feature wise in C#1 $\frac{4+3+5+4}{4}=4$, $\frac{2+3+1+0}{4}=1.5$, $\frac{0+1+3+2}{4}=1.5$ new centroid of C#1 $\frac{4+3+5+4}{4}=1.5$
S	 Reassign data point inally, compute distance, reassign data points according to the new centroids we updated in step 3, update centroids. Iterate the bove process until the centroids' 'coordinates' don't change anymore. NOTE: To prevent the algorithm from taking too long to update centroids and find the 'optimum', I used both max iterations and 'average distance to centroids' tolerance bonds to limit the iteration process.
In [2]: # g: g: k	Fest on data Synthetic data set To test and play with our algorithm I started with a small synthetic data which has a shape of 16*1 Load data rades = [92.65,93.87,74.06,86.94,92.26,94.46,92.94,80.65,92.86,85.94,91.79,95.23,85.37,87.85,87.71,93.03] rades = np.array(grades).reshape(-1,1) = 3 = grades
ma to co p:	<pre>ax_iter=30 olerance=1e-2 entroids = None rint(grades.shape) 16, 1) For comparison purposes, let's run three rounds to see the difference: or i in range(3): print(f'round: {i+1}') centroids, labels = kmeans(grades, k, centroids='kmeans', verbose=True)</pre>
ir [<pre>print() print(f'final labels: {labels}\n') print('Clusters:') for j in range(k): print(grades[np.array(labels) ==j].reshape(1,-1)) print("="*50) ound: 1 nit centroids: [80.65] [92.94] [93.87]] 13% </pre>
f: [C: [[<pre>inal norm: 0.0 inal centroids: [77.355] [86.762] [93.23222222]] inal labels: [2 2 0 1 2 2 2 0 2 1 2 2 1 1 1 2] lusters: [74.06 80.65]] [86.94 85.94 85.37 87.85 87.71]] [92.65 93.87 92.26 94.46 92.94 92.86 91.79 95.23 93.03]] ===================================</pre>
ir [f:	nit centroids: [93.87] [91.79] [92.26]] 7%
[[== rc ir [lusters: [93.87 94.46 95.23]] [74.06 86.94 80.65 85.94 85.37 87.85 87.71]] [92.65 92.26 92.94 92.86 91.79 93.03]] ===================================
f: C: [[[94.52] [84.07428571] [92.58833333]] inal labels: [2 0 1 1 2 0 2 1 2 1 2 0 1 1 1 2] lusters: [93.87 94.46 95.23]] [74.06 86.94 80.65 85.94 85.37 87.85 87.71]] [92.65 92.26 92.94 92.86 91.79 93.03]] ===================================
sa w Bı "f lir	aying, but the algorithm produces slightly different final centroids, labels, and clusters. The good news is all the final norms are Chich means those clusters make perfect sense in each of their own round's 'world'. The good news is all the final norms are Chich means those clusters make perfect sense in each of their own round's 'world'. The good news is all the final norms are Chich means those clusters make perfect sense in each of their own round's 'world'. The good news is all the final norms are Chich means those clusters are cluster in the good news is all the final norms are Chich means those clusters is all the final norms are Chich means those clusters is all the final norms are Chich means those clusters all the final norms are Chich means those clusters are Chich means those clusters are Chich means those clusters is all the final norms are Chich means those clusters are Chich means those clusters are Chich means those clusters are clusters and the final norms are Chich means those clusters are Chich means those clusters are clusters and the final norms are Chich means those clusters are clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are Chich means those clusters. The good news is all the final norms are chick means the good news is all the final norms are chick means those clusters. The good news is all
O th So	means ++ one of the simplest approaches is to find a better set of centroids to start with. Apart from initialization, the rest of the algorithm is the same as the standard K-means algorithm. o, what can be considered as better centroids? The ultimate goal of the cluster is to group data that share similar attributes, in ther words, different clusters should be significantly different from each other. To put in mathematical terms, they should have the largest Euclidean distance.
R:	Procedure: 1. Initialize centroids: andomly select the FIRST centroid from the data points. 1. Compute distance: or each data point compute its distance from the nearest, previously chosen centroid 1. Next centoid:
(2 Ir By di	elect the next centroid from the data points such that the point has a maximum distance from the preciously chosen centroid 2nd centroid is the furthest from the 1st centroids, 3rd is the furthest from the 2nd, etc.) 1. Repeat steps 2 and 3 until k centroids have been sampled Tuition y picking up centroids that are far away from one another, it increases the chances of initially picking up centroids that lie in ifferent clusters. Also, since centroids are picked up from the data points, each centroid has some data points associated with it the end.
S	<pre>cest on data Synthetic data set Ow let's try the same synthetic data again and see the reults or i in range(3): print(f'round: {i+1}') centriods, labels = kmeans(grades, k, centroids='kmeans++', verbose=True) print(f'final labels: (labels))n')</pre>
! ir [<pre>print(f'final labels: {labels}\n') print('Clusters:') for j in range(k): print(grades[np.array(labels) ==j].reshape(1,-1)) print("="*50) ound: 1 !!!activate kmeans++!!! nit centroids: [94.46] [74.06] [95.23]] 10% </pre>
f: [C: [[inal centroids: [86.762] [77.355] [93.23222222]] inal labels: [2 2 1 0 2 2 2 1 2 0 2 2 0 0 0 2] lusters: [86.94 85.94 85.37 87.85 87.71]] [74.06 80.65]] [92.65 93.87 92.26 94.46 92.94 92.86 91.79 95.23 93.03]]
! ir [!!!activate kmeans++!!!! nit centroids: [85.37] [74.06] [95.23]] 3%
C: [[== rc ! ir	lusters: [86.94 80.65 85.94 85.37 87.85 87.71]] [74.06]] [92.65 93.87 92.26 94.46 92.94 92.86 91.79 95.23 93.03]] ===================================
f: f: C: [inal norm: 0.0 inal centroids: [93.23222222] [77.355] [86.762]] inal labels: [0 0 1 2 0 0 0 1 0 2 0 0 2 2 2 0] lusters: [92.65 93.87 92.26 94.46 92.94 92.86 91.79 95.23 93.03]] [74.06 80.65]] [86.94 85.94 85.37 87.85 87.71]]
gu th N In [5]: # x	/e can see from the above result, all clusters correctly isolated the smallest point, 74.06, all the points above 90, 80 are rouped together accordingly. The only 'uncertain' point, 80.65, is barely above 80 and sometimes got clustered with 74.06, nis is reasonable. // Idli-dimension data (Circle data 500*2) // Ioad data / _ = make_circles(n_samples=500, noise=0.1, factor=.2) rint(X.shape)
(5	1t.scatter(X[:,0], X[:,1]); 500, 2) 10- 0.5- 0.0- 0.5-
In [6]: co	/e can tell there are two clear clusters, an outer ring and an inside circle. How will our algorithm perform? entroids, labels = kmeans(X, 2, verbose=True, centroids='kmeans++') rint(centroids) olors=np.array(['#4574B4','#A40227']) lt.scatter(X[:,0], X[:,1], c=colors[labels])
! : ir [f: f:	<pre>lt.show(); !!!activate kmeans++!!!! nit centroids: [0.05288413</pre>
-1	1.0 - 0.5 - 0.0 - 0.5 - 0
In [7]: # ca x y # sa x x	either \hat{y} label or y target label. Another point worth stressing is to scale the X before feeding it to the model. Kmeans is a distance-based algorithm, the process of updating previous centroids is heavily dependent on the distance of each direction (features) of each point to previous centroids. We can imagine one feature is between [0,1] while another is between [1000,10000] would cause centroids to get pulled a lot in large-scaled feature and barely any in small-scaled feature. Only scaling all X features to the same scale would optimize the algorithm performance. Compare model performance w/o scaling X without scaling: load data
Out[7]: (5 In [8]: cc fc p: p: p: p: p: p:	<pre>= 2 _scale.shape 569, 30) entroids, labels = kmeans(X,k,tolerance=0.01,centroids='kmeans++') lusters= [] or j in range(k): clusters.append(X[np.array(labels) ==j]) rint() rint(f"lst cluster shape: {clusters[0].shape}\n2nd cluster shape: {clusters[1].shape}") rint() rint(f"predicted lable 1s': {labels.sum()}\nactual 1s': {y.sum()}") ikely confusion matrix(y,labels)</pre>
f: 1s 2r pr ac	!!!activate kmeans++!!!! 33%
Tue label	0 - 130 82 - 250 - 200 - 150 - 100 - 50
In [9]: cc fc fc	<pre>rith scaled X: entroids, labels = kmeans(X_scale, k, tolerance=0.01, centroids='kmeans++') lusters= [] or j in range(k): clusters.append(X[np.array(labels) ==j]) rint() rint(f"1st cluster shape: {clusters[0].shape}\n2nd cluster shape: {clusters[1].shape}") rint() rint(f"predicted lable 1s': {labels.sum()}\nactual 1s': {y.sum()}")</pre>
e e e e e e e e e e e e e e e e e e e	<pre>ikely_confusion_matrix(y,labels) !!!activate kmeans++!!!! 33% </pre>
Tue label	- 300 - 250 - 200 - 150 - 100 - 50
Al w cl	Predicted label mage compression nother very interesting application of Kmeans is image compression. Rather than use millions of colors, we can usually get away with 256 or even 64 colors. The key is choosing the right colors that are representative of that image. The way to do that is to luster in p=3 space for (red, green, blue) vectors. But, it's a good idea to start with grayscale. Greyscale
in X h p	<pre>load img mg= Image.open('img/north-africa-1940s-grey.png') =np.array(img) ,w= X.shape lt.imshow(Image.fromarray(X),cmap='gray') mg_zie = os.path.getsize('img/north-africa-1940s-grey.png') rint(f'size of img in bytes: {img_zie}') = X.reshape(-1,1) ize of img in bytes: 206153</pre>
30	00 - TERIE 00 - 100 200 300 400 500 600
x #j in in #	<pre>tart = time() entroids, labels = kmeans(X, k =k, centroids='kmeans++', tolerance=.01,verbose=True) rint(f'time: {(time()-start)}') entroids = centroids.astype(np.uint8) = centroids[labels] # reassign all points print(X) mg_ = Image.fromarray(X.reshape(h,w),'L') mgsave('img/gray_km.png') # save img get compressed img size c_img_zie = os.path.getsize('img/gray_km.png')</pre>
p: p: ir #: ir	<pre>c_img_zie = 03.path.get3ize(img/giay_km.phg) rint('='*50) rint(f'size of img in bytes: {gc_img_zie}') mg_ mp_unique(labels) !!!activate kmeans++!!!! nit centroids: [52.] [219.] [0.] [217.]] 63% </pre>
f: [t:	inal norm: 0.0 inal centroids: [78.25477073] [186.80264222] [39.74855936] [127.85559575]] ime: 0.6759159564971924
	TERIE OF THE RIVERS OF THE RIV
X	The one with just k=4 levels of gray takes less than 1 second to compress but the size in bytes is less than 20% of the original image! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Chinatown and a compressed version that uses only 32 colors. It took about 1m to complete limited to 30 iterations: mg= Image.open('img/parrt-vancouver.jpg') =np.array(img)
x p h h c p :	the original image! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Chinatown and a compressed version that uses only 32 colors. It took about 1m to complete limited to 30 iterations: mg= Image.open('img/parrt-vancouver.jpg')
X p: h, c, p: X x s: 30	the original image! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Chinatown and a compressed version that uses only 32 colors. It took about 1m to complete limited to 30 iterations: mg= Image.open('img/parrt-vancouver.jpg')
10 20 31 ks s c c c x x in in # c c	the original image! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Chinatown and a compressed version that uses only 32 colors. It took about 1m to complete limited to 30 iterations: mg= Image.open('img/parxt-vencouver.jpg')
10 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	the original image! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Chinatown and a compressed version that uses only 32 colors. It took about Im to complete limited to 30 iterations: mg= Image.open('img/partt-vancouver.jpg')
10 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	the original image! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Chinatown and a compressed version that uses only 32 colors. It took about 1m to complete limited to 30 iterations: mage Trasge.open("imag/partt-vancouver.jpg") app. array(Ing) app. array(I
x x p h h c p n x x s s s s s s s s s s s s s s s s s	the original mage! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Dhinatown and a compressed version that uses only 32 colors. It took about 1m to complete Emitted to 30 Renations: Insert capture (Isra/passis versionovers (Isra/) - Exposition (Isra/passis versionovers (Isra/) - Israel capture (Israel passis
In [13]: ks sc composition of the composition of th	the original mage! Color As an example of color compression, I used a photo of my professor Terence in Vancouver when he was visiting Dhinatown and a compressed version that uses only 32 colors. It took about 1m to complete Emitted to 30 Renations: Insert capture (Isra/passis versionovers (Isra/) - Exposition (Isra/passis versionovers (Isra/) - Israel capture (Israel passis
In [14]: P: Co State of the control	the original image! Color As an example of color compression, I used a photo of my professor. To those in Management and compressed version that uses only 32 colors. It took about finite complete limited to 30 terrations are used to the complete limited to 30 terrations. It is a supplementable to the complete limited to 30 terrations, Kineanest complete are used to the complete limited to society. That is a huge amount of soccessoring.
x p h c p x x s: 10 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Let up signal image! Color As an example of other compression, I used a plack of my professor Treatment Nancover when he was shalling. Chief to complete illinated to 30 her identification of the complete illi
x p h h c p x x x x x x x x x x x x x x x x x x	description (corporation) and a processor of the processor of the control of the
n [13]:	the control and order compression is used a photo of any accessor floration in American states are coding. Control and control and control and control and code and
X P P N N P N N P N N	the control in the control of color compression is considered by providing any objects of any objects of the consideration of the control of

and 3rd controls can sometimes be quite close to each other. Is there a way to consider all the previous centroids and pick	comp_	203 9 -250 -200 -150 -100 -50 redicted label son cricle data (sklearn vs. RF+Kmeans) adv () skleam SpectralClustering
Our algorithm significantly outperformed the traditional Kmeans approach when dealing with the nested data structure. Even when we are comparing with sklearn's API performance head to head, our algorithm still has a very satisfying outcome! Limitations Randomness in RF will sometimes result in unexpected cluster labels (accuracy is not as steady) Kmeans++ only considers picking the furthest point to its previous centroid, take k=3 as an example, as consequence the and 3rd controls can sometimes be quite close to each other. Is there a way to consider all the previous centroids and pick furthest point from all the previous centroids? How do we even define the 'minimum distance' since each centroid has its of furthest points, one point can't be the furthest to multiple centroids? References K-Means Clustering: From A to Z ML K-means++ Algorithm Image Segmentation using K Means Clustering	0.5 - 0.0 - -0.5 - -1.0 -	-1.0 -0.5 0.0 0.5 1.0
structure. Even when we are comparing with sklearn's API performance head to head, our algorithm still has a very satisfying outcome! Limitations Randomness in RF will sometimes result in unexpected cluster labels (accuracy is not as steady) Kmeans++ only considers picking the furthest point to its previous centroid, take k=3 as an example, as consequence the and 3rd controls can sometimes be quite close to each other. Is there a way to consider all the previous centroids and pick furthest point from all the previous centroids? How do we even define the 'minimum distance' since each centroid has its of furthest points, one point can't be the furthest to multiple centroids? References K-Means Clustering: From A to Z ML K-means++ Algorithm Image Segmentation using K Means Clustering	0.5 - 0.0 - -0.5 -	-1.0 -0.5 0.0 0.5 1.0
furthest point from all the previous centroids? How do we even define the 'minimum distance' since each centroid has its of furthest points, one point can't be the furthest to multiple centroids? References K-Means Clustering: From A to Z ML K-means++ Algorithm Image Segmentation using K Means Clustering	• Ra	structure. Even when we are comparing with sklearn's API performance head to head, our algorithm still has a very satisfying outcome! itations andomness in RF will sometimes result in unexpected cluster labels (accuracy is not as steady)
Image Segmentation using K Means Clustering	Ref	Ind 3rd controls can sometimes be quite close to each other. Is there a way to consider all the previous centroids and picturthest point from all the previous centroids? How do we even define the 'minimum distance' since each centroid has its urthest points, one point can't be the furthest to multiple centroids? ferences -Means Clustering: From A to Z