

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

(51) Int CL7: A61L 27/00, A61K 9/51, A61P 19/00

- (21) Application number: 97810567.4
- (22) Date of filing: 14.08.1997
- (54) Composition and device for in vivo cartilage repair comprising nanocapsules with osteoinductive and/or chondroinductive factors

Zusammensetzung und Vorrichtung zur Reparatur von Knorpelgewebe in vivo bestehend aus Nanokapseln mit osteoinduktiven und/oder chondroinduktiven Faktoren

Composition et dispositif pour la réparation de cartilage in vivo comprenant des nanocapsules avec des facteurs ostéoinductifs et/ou chondroinductifs

- (84) Designated Contracting States: AT BE CH DE DK ES FI FR GB IE IT LI LU NL SE
- (43) Date of publication of application: 17.02.1999 Bulletin 1999/07
- (73) Proprietor: SULZER INNOTEC AG CH-8401 Winterthur (CH)
- (72) Inventors:
 - Atkinson, Brent A.
 - 8400 Winterthur (CH)
 Ranieri, John
 - Austin, TX 78703 (US)
 - Bittmann, Pedro 8057 Zürich (CH)
 - · Whitney, Marsha Lynn
 - Austin, TX 78753 (US)
 Benedict, James John
 - Jefferson County, CO 80403 (US)

- Chickering, Donald Framingham, MA 01701 (US)
- (74) Representative: Frei, Alexandra Sarah Frei Patentanwaltsbüro Postfach 768 8029 Zürich (CH)
- (56) References cited:

WO-A-95/13767

US-A- 4 620 327 US-A- 5 595 722

US-A- 5 368 858 US-A- 5 595 7

 SONG C X ET AL: "FORMULATION AND CHARACTERIZATION OF BIODEGRADABLE NANOPARTICLES FOR INTRAVASCULAR LOCAL DRUG DELIVERY" JOURNAL OF CONTROLLED RELEASE, vol. 43, no. 2/03, 18 January 1997, pages 197-212, XP000632668

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Background of the Invention:

- 50011 Articular cartilage, an avascular tissue found at the ends of articulating bones, has no natural capacity to heal. During normal cartilage ontogeny, mesenchymal stem cells condense to form areas of high density and proceed through a series of developmental stages that ends in the mature chondrocyte. The final hyaline cartilage issue contains only chondrocytes that are surrounded by a matrix composed of type il collegen, sulfated proteoglycans, and additional proteins. The matrix is heterogenous in structure and consists of three morphologically distinct concers superficial, intermediate, and deep. Zones differ among collagen and proteoglycan distribution, calcification, orientation of collagen fibrils, and the positioning and alignment of chordrocytes (Archer et al., J. Anst. 189(1): 23-35, 1996; Morrison et al., J. Anst. 189(1): 9-32 1996, Mow et al., Biomaterials 13(2): 67-97, 1992). These properties provide the unique mechanical and othyrical parameters to hyviline cartilation issue.
- [0002] In 1965, a demineralized extraction from bovine long bones was found to induce endocthondral bone formation in the rat subcutaneous assay (Ivital Science 165: 083-989, 1965). Seven individual factors, termed Bone Morphogenetic Proteins (BMPs), were isolated to homogeneity and, because of significant sequence homology, classified as members of the TGPS guere-family of proteins (Worzen, et al., Science, 242: 1552-84, 1988) Wang et al., Prop. Nat., Acad. Sci. 87: 2220-2224, 1990). These individual, recombinantly-produced factors also induce ectopic bone formation in the rat model (Luyten et al., _Bibl. Chem. 241: 1337-80, 1989; Cleates et al., Prop. Nat., 2acd. 58; 87: 948-3-50, 1990). In addition, in vitro tests have demonstrated that both BMP-2 and TGPF-1 induce mesenchymal stem cells to form cartilage (Denker, et al., _Bifferentiation) 59(1); 25-34, 1995; Denker et al., _1184.Ann, Orthop, Res. Society 465: 1995). Both BMP-7 and BMP-2 have been shown to enhance matrix production of chondrocytes in vitro (Flechtenmacher J. Arthiffs Rheum. 39(11); 1986-904, 1996; Sailor et al., _Orthop, Res. 14: 937-945, 1996). From these data we can conclude that not only are the BMPs important regulators of osteogenesis, but that they also play crucial roles of uring chordrocenic development in vitro.
- [0003] A partially-purified protein mixture from bovine long bones, termed BP (Bone Protein), also induces cartilage and bone formation in the rat subcutaneous assay (Poser and Benedict, W0951/3767). BP in combination with calcium carbonate promotes bone formation in the body, In vitro, BP induces mesenchymal stem cells to differentiate specifically to the cartilage lineage, in high yields, and to late stages of maturation (Altkinson et al., <u>J. Cellular Biochem.</u> 65: 325-339, 0 1997).
 - [0004] The molecular mechanism for cartilage and bone formation has been partially elucidated. Both BMP and TGFβ molecules bind to cell surface receptors (the BMP/TGFβ receptors), which initiates a cascade of signals to the nucleus that promotes proliferation, differentiation to cartilage, and/or differentiation to bone (Massague Cell 85: 947-950, 1966).
- 3º [0005] In 1984, Urist described a substantially pure, but not recombinant BMP, combined with a biodegradable poly-lactic acid polymer delivery system for bone repair (US-4-563.498). This system blands together equal quantiles of BMP and polylactic acid (PLA) powder (100 µg of each) and decreases the amount of BMP required to promote bone repair.
- [0005] Hunziker (US-5,368,858; US-5,206,023) describes a carilage repair composition consisting of a biotegradable matrix, a proliferation and/or chemotacid agent, and a transforming factor. A two stage approach is used where each component has a specific function over time. First, a specific concentration of proliferation/chemotacic agent fills the defect with repair cells. Secondly, a larger transforming factor concentration transforms repair cells into chondrocytes. Thereby the proliferation agent and the transforming agent may both be TGFB differing in concentration only, in addition, the patent discloses a lipsosme encapsulation method for delivering TFGB-1 serving as transformation agent. [0007] Hattersley et al. (WO 9639170) discloses a two factor composition for inducing carillaginous tissue formations.
- 45 [0007] Hattersley et al. (WO 96/39170) disclose a two factor composition for inducing cartillaginous tissue goal maintenance inducing protein. Specific recombinant cartilage formation-inducing protein and a cartilage maintenance inducing protein. Specific recombinant cartilage formation inducing protein(s) are specified as BMP-13, MP-52, and BMP-12, and cartilage maintenance-inducing protein(s) are specified as BMP-10, in one embodiment, BMP-9 is encapsulated in a resorbable polymer system and delivered to coincide with the presence of cartilage formation inducing protein(s).
- [0008] Laurencin et al., (US-5,629,009) disclose a chondrogenesis-inducing device, consisting of a polyanhydride and polyorthoester, that delivers water soluble proteins derived from demineralized bone matrix, TGFB, EGF, FGF, or PDGF.
 - [0009] The results of the approaches to cartilage repair as cited above are encouraging but they are not satisfactory. In particular, the repair tissue arrived at is not fully hyaline in appearance and/or it does not contain the proper chondrocyte organization. Furthermore, previous approaches to cartilage repair have been addressed to very small defects and have not been able to solve problems associated with repair of large, clinically relevant defects.
 - [0010] One reason that previous approaches failed to adequately repair cartilage may be that they were not able to recapitulate natural cartilage ontogeny faithfully enough, this natural ontogeny being based on a very complicated

system of different factors, factor combinations and factor concentrations with temporal and local gradients. A single recombinant growth factor or two recombinant growth factors may lack the inductive complexity to mimic cartilage development to a sufficient degree and/or the delivery systems used may not have been able to mimic the gradient complexity of the natural system to a satisfactory degree.

- [0011] Previous approaches may also have failed because growth factor concentrations were not able to be maintained over a sufficient amount of time, which would prevent a full and permanent differentiation of precursor cells to chordrocytes. The loss of growth factor could be caused by diffusion, degradation, or by cellular internatization that bypasses the BMPTGF preceptors. Maintaining a sufficient growth factor concentration becomes particularly important in repair of large sized defeats that may take several days or several weeks to fully repopulate with cells.
- 10 [0012] The object of this invention is to create a composition for improved cartilage repair in vivo. The inventive composition is to enable in vivo formation of repair cartilage tissue which tissue resembles endogenous cartilage (in the case of articular cartilage with its specific chondrocyte spatial organization and superficial, intermediate, and deep cartilage zones) more closely than repair tissue achieved using known compositions for inducing cartilage repair. A further object of the invention is to create a device for cartilage repair which device contains the inventive composition.

[5013] This object is achieved by the composition and the device as defined by the claims.

Brief description of the invention

[0014] The inventive composition basically consists of a naturally derived cateoinductive and/or chondroinductive initizer of factors (e.g. derived from bone) or of a synthatic mininc of such an inture combined with a nanosphere delivery system. A preferred mixture of factors is the combination of factors isolated from bone, known as BP and described by Poser and Benedict (VIO 951/377). The nanosphere delivery system consists of nanospheres defined as polymer particles of less than 1000 mn in diameter (whereby the majority of particles preferrably ranges between 200-400 mn) in which nanospheres the combination of factors is an enapsulated. The nanospheres are loaded with the smitter of factors in a weight ratio of .001 to 17% (w/w), preferably of 1 to 4% (w/w) and have an analytically defined release porfile (see description regarding Figure 2) showing an intial burst of 10 to 20% of the total coad over the first: 24 hours and a long time release of at least 0.1 per day during at least seven following days, preferably of 5.0 to 1% over the following 40 bio 60 ages. The nanospheres are composed of e.g. (lactic acid-glycolic acid, more preferably of 50% lactic acid and 80 to 20% of glycolic acid, more preferably of 50% lactic acid and 80 to 20% of glycolic acid, more preferably of 50% lactic acid and 80 to 20% of glycolic acid, more preferably of 50% lactic acid and 80 to 20% of glycolic acid.

[0015] The loaded nanospheres are e.g. made by phase inversion according to Mathiowitz et al. (Nature, 386: 410-413, 1997) or by other methods known to those skilled in the art (Landry, Ph.D Thesis, Frankfurt, Germany) (

cluding collagen type I and II, and hyaluronic acid in which matrix the nanospheres loaded with the factor combination is contained. The matrix can be in the form of a sponge, membrane, film or get. The matrix should be easily digestible by migrating cells, should be of a porous nature to enhance cell migration, and/or should be able to completely fill the defect area without any gaps.

[0017] It is surprisingly found that the inventive composition consisting of an osteoinductive and/or chondroinductive combination of factors (e.g. derived from natural tissue) encapsulated in nanospheres as specified above, if applied to a defect area of an articular cartilage, leads to the transformation of virtually all precursor cells recruited to the repair area and to chondrocytes, and furthermore, leads to a homospeous chondrocyte population of the repair area and to a chondrocyte order and anisotropic appearance as observed in endogenous hyaline cartilage. These findings encourage the prospect that the inventive composition may lead to significant improvements also regarding repair of large defects. [0018] As mentioned above, instead of an osteoinductive and/or chondroinductive mixture of factors derived from bone (BP), the inventive composition may comprise natural factor mixtures derived from other tissues (e.g., cartilage, lendon, meniscus or ligament) or may even be a synthetic mixture is of a mixture having an osteoinductive and/or chondroinductive effect. Effective mixtures is oldered from natural tissue seem to contain a combination of proliferation.

differentiation, and spatial organizing proteins which in combination enhance the tissue rebuilding capacity more efectively than single proteins (e.g. recombinant proteins).

[0.019] The specified, analytically defined release profile of such factor mixtures from nanospheres results in the formation of concentration gradients of proliferation and differentiation factors, which obviously mimics the complex gradients of factors observed during natural development very well. The nanosphere extended release profile is sufficient to provide growth factor during the time frame that repair cells arrive into the matrix. The release profile obtains

leads to a homogenous population of a matrix with precursor cells, to full differentiation of virtually all of the precursor cells to chondrocytes, and to the formation of an endogenous hyaline cartilage structure.

[0020] Another advantage of the inventive composition is that when the nanospheres are placed in a matrix to form a device for cartilage repair, they are randomly distributed and remain in place when in a joint cartilage defect. During cellular infiltration and differentiation, the nanospheres are in the correct position over the correct time frame.

[0021] Nanospheres have been demonstrated to achieve to the gastrointestinal mucus and cellular linings after oral ingestion (Mathiwitz et al., Augure, 364 610-413 1997). We envise plant harcospheres also adhere to cartilage per-cursor cells and furthermore, may also adhere to BMP/TGFB receptors becated on the cell membrane. This proceed allows tocalized or the cell membrane and lavors because of the nanosphere small size and the chemical properties, they are more effective than liposomes or diffusion controlled delivery systems. The efficient delivery to the receptors will feature to the consoleration of the cell properties.

[0022] Derived from the above findings, we envisage the following mechanism for cartilage repair using the effect of the inventive composition. During the first 24 hours (initial burst) 10 to 20% of the total bad of the factor mixture is released from the nanospheres into the matrix and diffuses into the synovial environment. Following the initial burst, the nanospheres begin to release factors at a slow rate, which produces gradients of proliferation, differentiation, and spatial organizing proteins. In response to such gradients, precursor cells migrate to the defect site. The loaded nanospheres adhere to cartilage procursor cells and to the BMP and TGFβ receptors to provide localized highly efficient delivery. The precursor cells become differentiated to chordrocytes and secrete type II collagen and cartilage-specific proteoglycans. The composition of the present invention stimulates differentiation of virtually all of these cells to over chondrocytes and induces an ordered cartilage structure which closely resembles hyalic cartilage. Furthermore, we envisage that this release system will allow homogenous repair of large defect sites and reanit of defects from nations.

with low quantities of precursor cells. [0023] For in vivo cartilage repair, the inventive device consisting of a matrix and the loaded nanospheres is placed in a chondral lesion that was caused by trauma, arthritis, congenital, or other origin. The damage can result in holes or crevices or can consist of soft, dying, or sick cartilage tissue that is removed surgically prior to implantation of the device. Because of the unique properties of the inventive device precursor cells populate the matrix, differentiate to chondrocytes, and form hyaline carditiose.

[0024] Application of the inventive composition (without matrix) e.g. by injection can be envisaged also, in particular in the case of small defects. Thereby at least 2pg of the composition per mi of defect size is applied or at least 20ng of the osteoinductive and/or chondroinductive mixture encapsulated in the nancospheres is applied per mid efect size. [0025] The inventive composition and the inventive device are suitable for repair of cartilage tissue in general, in particular for articular cartilage and for meniscus cartilage.

Brief description of the Figures:

40

[0026] The following figures illustrate the physical and chemical parameters of the inventive composition, the in vitro cartilage inductive activity of BP released from nanospheres and in vivo repair of an articular cartilage defect using the inventive device.

- Figure 1 shows a scanning electron micrograph of BP-loaded nanospheres;
 - Figure 2 shows the release profile (cumulative release vs. time) of the inventive composition;
 - Figure 3 shows the release profile of the inventive composition compared with release profiles of nanosphere delivery systems loaded with other proteins;
 - Figure 4 shows the volume of a cartilage defect vs. the days required for populating the defect with repair cells;
 - Figure 5 shows micromass cultures in the presence or absence of nanospheres loaded with BP;
 - Figure 6 shows cartilage marker analyses for in vitro cultures containing BP only and for similar cultures containing the inventive composition;

Detailed description of the invention:

[0027] Figure 1 shows a scanning electron micrograph of BP-loaded nanospheres. The microparticle sizes range from 100-1000 nm with the majority of individual particles ranging between 200-400 nm.

[0028] The release rate profile of the inventive composition was determined by in vitro analysis of BP delivered from nanospheres. These nanospheres were made by phase inversion according to the method as disclosed by Mathiowitz et al. (Nature 386, 410-414, 1997) of ((DL)actic acid / glycolic acid)-copolymer containing the two acids in a weight ratio of 50:50 and they were loaded with 1% and with 4% of BP.

[0029] For determination of the release rate profile, the nanospheres were placed in a sterile saline solution and incubated at 37°C. BP released into the supernatant was measured using a BCA assay (Pierce). BP released from

the nanospheres as specified shows two successive and distinct profile parts: a fast release (initial burst) of approximately 10 to 20% of the loaded BP over the first 24 hours and a slow release of 0.1 to 1% per day (cumulative 40% to 50%) over 40 to 60 days (Fig. 2).

[0030] The release is intermediate between zero-order and first-order kinetics. Both the 1% and 4% encapsulated BP have similar release profiles.

[0031] For attaining release rate profiles as specified above and as necessary for the improved results in cartilage repair the nanospheres are to be adapted accordingly when using factor mixtures other than BP. Thereby, e.g. the composition of the nanosphere copolymer, the moleculer weight of the polymer molecules and/or the loading percentage of the nanospheres may be changed. The optimum nanosphere character for each specific case has to be found experimentally whereby the release rate profile is analyzed in vitor as described above.

[0032] In the same way, the nanosphere delivery system can be modified regarding the percentage of BP to be released in the first 24 hours, percentage of BP to be released after 24 hours and/or length of time after the first 24 hours during which the remainder of BP is released. In addition, the percentage of BP loaded to the nanospheres is of course variable too, whereby for obtaining the results as described for the specified composition, all the modifications

are to be chosen such that the resulting delivery keeps within the range as specified.

[0033] All of the above parameters can be modified to account for the patients age, sex, diet, defect location, amount of blood present in the defect, and other clinical factors to provide optimal cartilage repair. For example, nanospheres with longer release aretase are used for treating larger defects and/or for patients with fewer precursor cells (e.g. older adtients or patients with targer quantities of propenitor cells and/or patients or patients with degenerative symptoms). In contrast, petients with integre quantities of propenitor cells and/or

or smaller defects may require a shorter release rate profile.

[0034] Figure 3 shows the release profile as shown in Fig. 2 for nanospheres as specified above loaded with BP and with other proteins (same loading percentages) such as BSA (bovine serum albumin) or lysozyme. The drastically different release characteristics shows that the profile is dependent on the protein type also. The same is valid for a more hydrophobic mixture of bovine bone derived proteins (PiBIPs).

5 [0035] Figure 3 illustrates the singularity of the inventive combination consisting of the specific delivery system (nanospheres as specified above encapsulating the factors) and the specific protein mixture (BP) which is obviously the key to the improved results in cartilage repair as observed when using the inventive composition or device.

[0038] To determine the length of time required for precursor cell repopulation of different sized defects, the following calculation was performed. We estimate that approximately 5,0,000 cells are recruited to the defect/day. Since the cellular density of cartilage is about 4 x 10° cells/ml, a 10 µl volume defect will take approximately 6 days to fill with cells. Figure 4 plots the number of days required to fill different volume defects with cells. The Figure assumes an infinite supply of cells and a constant rate of cell attraction to the defect size. The graph demonstrates that the larger a defect size is, the more time is required to completely fill it with cells. Since a 60 µl volume defect will take over 45 days to fill, this Figure demonstrates the necessity for a long term release of factors to induce differentiation of the precursor cells over up to a two month period.

[0037] To determine whether BP bloactivity is harmed by the encapsulation process and to determine whether the released BP was fully bloactive, the following assay was performed. Previously, it was demonstrated that 1011/2 micromass cultures exposed to BP induce formation of a three dimensional spheroid structure that can be observed macroscopically in tissue culture wells (Atkinson et al. <u>J. Cellular Blochem</u>, 65: 325-339, 1997). BP concentrations equal or greater than 20 ngiml were required for spheroid formation. No spheroid forms in the absence of BP or at concentrations less than 10 ngiml (see following table). In this assay, 1011/2 mesenchymal stem cells act as in vitro models for the precursor cells recruited to a natural defect

[0038] We employed the same assay to test the bioactivity of BP released from 1% loaded nanospheres. BP was eithed from nanospheres at 37°C in a 5% CO₂ humidified incubator. After 24 hours 16% BP is released; and between 24 hours and 7 days, 7% BP was released (Fig. 2). The supernatant was collected, serial distinctions were made, and the supernatant was added to 10°11/2 micromass cultures. BP released from nanospheres at both time points formed spheroids at concentrations between 0 and 10 ng/ml (see following table). Non-encapsulated BP also formed spheroids at concentrations between 0 and 10 ng/ml. We conclude that both nanosphere encapsulation and release of BP does not inhibit BP between 0 and 10 ng/ml. We conclude that both nanosphere encapsulation and release of BP does not inhibit BP of the properties of the properties

50 bioactivity.

Spheroid formation (- = no spheroid formation; + = spheroid formation):			
state of used BP	BP concentration (ng/ml)		
	0 - 10	20 - 1000	
non-encapsulated BP		+	
released from nanospheres (24 h)	-	+	

(continued)

Spheroid formation (- = no spheroid formation; + = spheroid formation):			
state of used BP	BP concentration (ng/ml)		
released from nanospheres (168 h)	-	+	

[0039] To determine the effect of BP slow release in the direct presence of micromass cultures, the following assay was performed. Anospheres were washed for 24 hours and the suppentant was discarded. The nanospheres were then added to micromass cultures at a quantity such that 10 or 25 ng/ml of BP would be released over 24 hours. Release of 25 ng/ml resulted in spheroid formation whereas release of 10 ng/ml did not form spheroids (Fig. 5). Similarly, the addition of 10 ng of non-encapsulated BP per ml did not form a spheroid, Regarding the specific in vitro set-up, we conclude that slow release of BP over 24 hours is as effective as a single dose of BP.

[0440] To determine whether the BP released from nanospheres was as chondrogenic as non-encapsulated BP, spheroids were analyzed for type II collagen and proteoglycan content. 1071/2 spheroids from the above assay that had formed with 1 µg of released BP per nil or 1 µg of non-encapsulated BP per nil were tested histologically with Azure and H+E stains and immunocytochemically with antibodies to type II collagen after 7 days. Both encapsulated and non-encapsulated BP induced cartilage markers such as type II collagen, proteoglycan, and round cell shape (Fig. 6). In addition, no qualitative differences were observed between encapsulated and non-encapsulated BP with respect to cell quantity, viability, morphology, or organization (Fig. 6). We conclude that BP retains full chondrogenic capacity after release from nanospheres.

[044] The in vitro models used for determining the chondroinductive effect of BP differ from the in vivo case by the fact that in the in vitro case the precursor cells are present in an appropriate and in an appropriate distribution whereas in the in vivo case the precursor cells first have to populate the defect and for this reason have to migrate into the defect. Only in the latter case and for achieving repair cartilage which resembles natural cartilage to a high degree, it is essential for the BP to be released over a prolonged time period according to a specific release profile.

EXAMPLE

5

[0042] The following example shows that BP released from nanospheres induces cartilage repair in chondral defects in vivo whereby virtually all cells recruited to the defect become chondrocytes, whereby the cell structure obtained is ordered, and whereby a hyaline matrix is built up.

[0043] Using a sheep model, unlateral defects of 0.5mm width, 0.5mm depth and 8 to 10mm length were created in the trochlear groove of the patella. The defects did not penetrate the subchondral bone. The sheep employed in this study were seven years old and displayed degenerative symptoms, including brittle bones, chondromalacia, and subchondral cysts. Because of their advanced age and degenerative symptoms, these amimals probably have decreased numbers of precursor cells. The defects were then dressed according to Hunziker and Rosenberg (I. Bone Juni Surg. 784(5): 721-733, 1996) with minor changes. Briefly, after enzymatic proteoglycan removal with Chondrolitiass AC, 2.5 jul of a solution containing 20 mits Thrombin per mi was placed in the defect. Then, a paste was filled into the defect, the paste containing per mit 60mg Sheep Fibrinogen (Sigma), 88mg Gelfoam (Upjohn) and either 10µg of BP-nanospheres or 10µg of BP-nanospheres plus 80ng infelor. If RP-D Systems

[0044] The nanospheres used were the nanospheres as specified in the description regarding Figure 2 and they were loaded with 1% (w/w) of BP.

[0045] Assuming that the in vitro determined release rate is approximately the same as for the in vivo case, 1.0 to 2.0 ug BP per ml were released during the first 24 hours and approximately 100 ng per day for the following approximately 60 days.

[0048] After eight weeks, necropsies were performed. The repaired cartilage histology showed that virtually all of the precursor cells were differentiated to chondroytes throughout the defect. In addition, there was an ordered cartilage appearance with cells on the top being more flattened morphologically than cells in the center and with the presence of ordered, stacked chondrocytes in the lowest zone. The repaired cartilage was fully integrated into the endogenous tissue. In addition, the cartilage repaired with only BP-nanospheres was not significantly different from the cartilage repaired using BP-nanospheres plus (GF-1).

[0047] In conclusion, these results demonstrate that BP released from nanospheres is sufficient for cartilage repair a and that no addititional factor is required (such as e.g. recombinant factor (ISC+1). Using the inventive device constitutes a one step enhold for cartilage repair, whereby the nanosphere release of BP is sufficient for differentiation of virtually all of the precursor cells to chondrocytes and for induction of an ordered cartilage structure.

Other Publications:

[0048]

25

35

45

- Archer CW, Morrison EH, Bayliss MT, Ferguson MW: The development of articular cartilage: II. The spatial and temporal patterns of glycosaminoglycans and small leucine-rich proteoglycans; J Anat (ENGLAND) 189 (Pt 1): 23-36 (1996)
- Atkinson BL, Fantle, KS, Benedict JJ, Huffer WE, Gutierrez-Hartmann A: A Combination of Osteoinductive Bone Proteins Differentiates Mesenchymal
 - C3H/10T1/2 Cells Specifically to the Cartilage Lineage; J. Cellular Biochem. 65: 325-339 (1997).
- Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM: Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone; Proc Natl Acad Sci U S A, Dec, 87(24): 9843-7 (1990)
 - Denker AE, Nicoll SB, Tuan RS: Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cellls upon treatment with transforming growth factor β1'; Differentiation 59(1): 25-34 (1995)
 - Denker AE, Nicoll SB, Tuan RS: 41st Annual Meeting Orthop, Res. Society (abstract): 465 (1995)
- Flechtenmacher J, Huch K, Thonar E J, Mollenhauer JA, Davies SR, Schmid TM, Puhl W, Sampath TK, Aydelotte MB, Kuettner KE: Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes; Arthritis Rheum, Nov, 39(11): 1896-904 (1996)
 - Hunziker EB and Rosenberg LC: Repair of Partial-Thickness Defects in Articular Cartilage: Cell Recruitment from the Synovial Membrane; J. Bone Joint Surgery 78-A(5): 721-733 (1996)
- 30 Kim S, Turker MS, Chi EY, Sela S, Martin GM: Preparation of multivesicular liposomes; Bioch. et Biophys. Acta 728:339-348 (1983)
 - Landry FB: Degradation of Poly (D,L-lactic acid) Nanoparticles in artificial gastric and intestinal fluids; in vivo uptake of the nanoparticles and their degradation products; Thesis for the Dept. of Biochemistry, Pharmacy, and Food Chemistry of the Johann Wolfgang Gosthe University in Frankfurt, Germany
 - Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH: Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation; J Biol Chem, 264 (23): 13377-80 (1989)
 - Massague J: TGFβ Signaling: Receptors, Transducer, and Mad Proteins; Cell 85: 947-950 (1996)
 - Mathlowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C: Biologically erodable microspheres as potential oral drug delivery systems; Nature 336: 410-4 (1997)
 - Morrison EH, Ferguson MW, Bayliss MT, Archer CW: The development of articular cartilage: I. The spatial and temporal patterns of collagen types; J Anat (ENGLAND) 189(Pt 1): 9-22 (1996)
- Mow VC, Ratcliff A, Poole AR: Cartilage and diarrhrodial joints as paradigms for hierarchical materials and stuctures; Biomaterials 13(2): 67-97 (1992)
 - Sailor LZ, Hewick RM, Morris EA: Recombinant human bone morphogenetic Protein-2 maintains the articular chondrocyte phenotype in long-term culture; J. Orthop. Res. 14: 937-945 (1996)
 - Urist MR: Bone: formation by autoinduction; Science 150: 893-899 (1965)
 - Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P,

Luxenberg DP, McQuaid D, Moutsatsos I, Nove J, Wozney JM: Recombinant human bone morphogenetic protein induces bone formation; Proc Natl Acad Sci U S A, 87(6): 2220-4 (1990)

Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA: Novel Regulators of bone formation: molecular clones and activities: Science 242: 1528-34 (1988)

Claims

20

- 10 1. Composition for inducing in vivo cartillage repair comprising an osteoinductive and/or chondroinductive protein mixture derived from bone, cartilage, tendon, meniscus or ligament or a sythetic mimic of such a mixture encapsulated in nanospheres, wherein the nanospheres are polymer particles having a size of less than 1000 mm and an in vitro analytically determined profile of release into saline solution with an initial burst of 10 to 20% of the total load over the first 24 hours and a long time release of 0.1 and 1% per day during 40 to 70 days and wherein 15
 15
 16
 17
 17
 18
 18
 19
 19
 19
 10
 10
 10
 11
 11
 11
 11
 12
 11
 12
 12
 12
 13
 14
 15
 16
 16
 16
 17
 17
 17
 17
 17
 17
 18
 19
 19
 19
 19
 19
 10
 10
 11
 11
 11
 11
 11
 11
 12
 12
 12
 12
 12
 13
 14
 15
 16
 16
 17
 17
 17
 17
 18
 17
 18
 19
 19
 19
 10
 10
 11
 11
 11
 11
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12</
 - Composition according to claim 1, characterized in that the osteoinductive and/or chondroinductive protein mixture is the mixture known as BP (bone protein) derived from demineralized bovine long bones and partly purified.
 - Composition according to claim 2, characterized, in that the nanospheres are loaded with between 1 and 4% weight percent of BP.
- Composition according to one of claims 1 to 3, characterized In that the nanospheres consist of ((D,L)lactic acid / glycolic acid)-copolymer containing 20 to 80% of lactic acid and 80 to 20% of glycolic acid.
 - Composition according to one of claims 1 to 3, characterized in that the ((D,L)lactic acid / glycolic acid)-copolymer contains 50% of lactic acid and 50% of glycolic acid.
- Composition according to one of claims 1 to 5, characterized in that the nanospheres are made by phase inversion.
 - Device containing the composition according to one of claims 1 to 6 and further comprising a porous biodegradable matrix suitable to be placed in a cartialge defect.
 - Device according to claim 7, characterized in that it contains at least 2µg of loaded nanospheres per ml of the porous biodegradable matrix.
 - Device according to claim 7, characterized in that it contains at least 20ng of the osteoinductive and/or chondroinductive protein mixture per ml of the porous biodegradable matrix.
 - Device according to one of claims 7 to 9, characterized in that the porous biodegradable matrix has the form of a sponge, membrane, film or geL
- 45 11. Device according to one of claims 7 to 10, characterized in that the porous biodegradable matrix consists of collagen type I, collagen type II or hyaluronic acid.
 - 12. Use of the composition according to one of claims 1 to 6 for preparing a device for in vivo cartilage repair.
- 50 13. Use according to claim 12, characterized in that the cartilage is articular cartilage or meniscus cartilage.
 - 14. Use of the composition according to one of claims 1 to 6 for the manufacture of a medicament for cartilage repair on an animal with a degenerative disease.
- 15. Use of the device according to one of claims 7 to 11 for the manufacture of a medicament for cartilage repair on an animal with a degenerative disease.
 - 16. Use according to claim 15 where the device is to be placed into the cartilage defect.

- 17. Use according to claim 16 where the defect is dressed before placing the device.
- 18. Use according to claim 12 where the composition is to be administered to the cartilage defect.
- 19. Use according to claim 18 where the composition is to be injected.
 - Use according to claim 18 or 19, characterized in that the composition is to be administered in an amount of at least 2µg per ml defect size.
- 21. Use according to claim 18 or 19, characterized in that the composition is to be administered in an amount such that the osteriorductive and/or chondroinductive protein mixture is present in the defect in an amount of at least 20ng per indefect size.

15 Patentansprüche

20

45

- 1. Zusammensetzung zum Veranlassen einer in vivo Knorpetwieder-herstellung, welche eine osteoinduktive und/ oder chondroinduktive Proteinmischung aufweist, welche aus Knochen, Knorpetgweise, Sehnen, Meniskus oder Band oder einer synthetischen Nachammung einer solchen Mischung abgeleitet wird, welche in Nanosphären eingekapselt ist, wobel die Nanosphären Polymerpartikel sind, welche eine Grösse von veniger als 1000 mm und ein analysisch in vitro bestimmtes Freigabeberoff in Satziscung aufweisen mit einer artänglichen schnellen Freigabe von 10 der 20% des Gesamtinhalts über die ersten 24 Stunden und eine Langzeittreigabe von 0,1 und 1% pro Tag während 40 bis 70 Tagen, und wobel die Nanosphären mit einer Menge der Mischung befüllt sind, welche zwischen 0,001 und 17% des Gesamtioweitnise der gefüllten Nanosphären ausmachen.
- Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass die osteoinduktive und/oder chondroinduktive Proteinmischung eine als BP (Knochenprotein) bekannte Mischung ist, welche aus demineralisierten langen Rinderknochen gewonnen und telwisse gereinigt ist und
- Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, dass die Nanosphären mit zwischen 1 und 4 Gewichtsprozent des BP gefüllt sind.
 - Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Nanosphären aus ((D.L) Milchsäure/Glycolsäure) - Copolymer bestehen, welches 20 bis 80% Milchsäure und 80 bis 20% Glycolsäure enthält.
 - Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das ((D,L) Milchsäure/ Glycolsäure) - Copolymer 50% Milchsäure und 50% Glycolsäure enthält.
- Zusammensetzung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Nanosphären durch Phasenumkehr hergestellt sind.
 - Einrichtung, welche die Zusammensetzung gemäss einem der Ansprüche 1 bis 6 enthält und desweiteren eine poröse, biologisch abbaubare Matrix aufweist, welche geeignet ist, um in einem Knorpeldefekt angeordnet zu werden.
 - Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass sie zumindest 2 µg der gefüllten Nanosphären pro ml der porösen, biologisch abbaubaren Matrix enthält.
- Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass sie zumindest 20 ng der osteoinduktiven und/oder chondroinduktiven Proteinmischung pro ml der porösen, biologisch abbaubaren Matrix enthält.
 - Einrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die poröse, biologisch abbaubare Matrix die Form eines Schwammes, einer Membran, eines Filmes oder eines Gels aufweist.
 - Einrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die poröse, biologisch abbaubare Matrix aus Collagen Typ I, Collagen Typ II oder Hyaluronsäure besteht.

- Verwendung der Zusammensetzung nach einem der Ansprüche 1 bis 6 zur Vorbereitung einer Einrichtung für die in vivo Knoroetwiederherstellung.
- Verwendung gemäss Anspruch 12, dadurch gekennzeichnet, dass der Knorpel ein Gelenkknorpel oder Meniskusknorpel ist.
 - 14. Verwendung der Zusammensetzung gemäss einem der Ansprüche 1 bis 6 für die Herstellung eines Medikamentes für die Knorpelwiederherstellung bei einem Lebewesen mit einem degenerativen Leiden.
- 15. Verwendung der Einrichtung gemäss einem der Ansprüche 7 bis 11 für die Herstellung eines Medikamentes zur Knorpelwiederherstellung bei einem Lebewesen mit einem degenerativen Leigen.
 - 16. Verwendung nach Anspruch 15, wobei die Einrichtung in dem Knorpeldefekt anzuordnen ist.
- Verwendung nach Anspruch 16, wobei der Defekt vor der Anordnung der Einrichtung zu behandeln ist.
 - 18. Verwendung nach Anspruch 12, wobei der Knorpeldefekt mit der Zusammensetzung zu versehen ist.
 - 19. Verwendung nach Anspruch 18, wobei die Zusammensetzung einzuspritzen ist.
 - Verwendung gemäss Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Zusammensetzung in einer Menge von zumindest 2 μg pro ml Defektgrösse zu verabreichen ist.
- 21. Verwendung gemäss Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Zusammensetzung in einer Men-5 ge zu verabreichen ist, so dass die osteoinduktive und/oder chondroinduktive Proteinmischung in dem Defekt in einer Menge von zumindest 20 ng pro m Defektprösse vohranden ist.

Revendications

néralisés et partiellement purifiés.

20

30

- Composition pour induire une réparation de cartilage in vivo, comprenant un métange de protéines ostéo-inductives et/ou chondro-inductives derivant d'os, de cartilage, de tendon, de ménisque ou de ligament, ou une imitation synthétique d'un tel métange encapsué dans des nanosphéres, dans laquelle les nanosphères sont des particules de polymère ayant une taille inférieure à 1000 nm et un profit déterminé analytiquement in vitro de libération dans une solution salée avec un jaillissement initial et lo à 20 % de la charge totale sur les premières 24 heures sot une libération à long terme de 0,1 et 1 % par jour durant 40 à 70 jours et dans laquelle les nanosphères sot lune libération à long terme de 0,1 et 1 % par jour durant 40 à 70 jours et dans laquelle les nanosphères de la charge de la des laquelles panosphères de la des laquelles particulares de la des la des laquelles particulares de la des la des
- chargées d'une quantité du mélange constituant entre 0,001 et 17 % du poids total des nanosphères chargées.

 2. Composition selon la revendication 1, caractérisée en ce que le mélange de protéines ostéo-inductives et/ou chondro-inductives et le mélange connu sous l'appellation BP (protéine d'os) dérivant d'os long de bovin démi-
 - Composition selon la revendication 2, caractérisée en ce que les nanosphères sont chargées avec entre 1 et 4 % en poids de BP.
 - Composition selon l'une des revendications 1 à 3, caractérisée en ce que les nanosphères consistent en un copolymère d'acide (D,L)-lactique/acide glycolique contenant de 20 à 80 % d'acide lactique et de 80 à 20 % d'acide glycolique.
- Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le copolymère d'acide (D, L)-lactique/acide glycolique contient 50 % d'acide lactique et 50 % d'acide glycolique.
 - Composition selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les nanosphères sont réalisées par inversion de phases.
 - Dispositif contenant la composition seion l'une quelconque des revendications 1 à 6 et comprenant en outre une matrice biodégradable poreuse adaptée pour être placée dans un défaut de cartilage.

- Dispositif selon la revendication 7, caractérisé en ce qu'il contient au moins 2 µg de nanosphères chargées par ml de la matrice biodégradable poreuse.
- Dispositif selon la revendication 7, caractérisé en ce qu'il contient au moins 20 ng du mélange de protéines ostéoinductives et/ou chondro-inductives par ml de la matrice biodégradable poreuse.
 - 10. Dispositif selon l'une quelconque des revendications 7 à 9, caractérisé en ce que la matrice biodégradable poreuse a la forme d'une éponge, d'une membrane, d'un film ou d'un gel.
- 9 11. Dispositif seion l'une quelconque des revendications 7 à 10, caractérisé en ce que la matrice biodégradable poreuse est constituée de collagène de type I, de collagène de type II ou d'acide hyaluronique.
 - Utilisation de la composition selon l'une quelconque des revendications 1 à 6 pour la préparation d'un dispositif destiné à une réparation de cartilage in vivo.
 - Utilisation selon la revendication 12, caractérisée en ce que le cartilage est un cartilage articulaire ou un cartilage de ménisque.
 - 14. Utilisation de la composition selon l'une quelconque des revendications 1 à 6, pour la fabrication d'un médicament destiné à une réparation de cartilage sur un animal atteint d'une maladie dégénérative.
 - 15. Utilisation du dispositif selon l'une quelconque des revendications 7 à 11, pour la fabrication d'un médicament destiné à une réparation de cartilage sur un animal atteint d'une majadie décénérative.
- 25 16. Utilisation selon la revendication 15, où le dispositif est destiné à être placé dans le défaut de cartilage.
 - 17. Utilisation selon la revendication 16, où le défaut est soumis à un curetage avant mise en place du dispositif.
 - 18. Utilisation selon la revendication 12, où la composition est destinée à être administrée dans le défaut de cartilage.
 - 19. Utilisation selon la revendication 18, où la composition est destinée à être injectée.

15

40

45

50

- 20. Utilisation selon la revendication 18 ou 19, caractérisée en ce que la composition est destinée à être administrée en une quantité d'au moins 2 μg par ml de taille de défaut.
- 21. Utilisation selon la revendication 18 ou 19, caractérisée en ce que la composition est destinée à être administrée en une quantité telle que le mélange de protéines ostéc-inductives et/ou chondro-inductives est présent dans le défaut en une quantité d'au moins 20 ng par mi de taille de défaut.

- BP + BP Nanospheres

