## Гладкие многообразия

Пусть M — хаусдорфово топологическое пространство со счетной базой. Внутренняя карта на M — это пара  $(U,\varphi)$ , где  $\varphi$  — гомеоморфизм некоторой области  $U \subset M$  в  $\mathbf{R}^n$  или в открытый шар  $B^n \subset \mathbf{R}^n$ . Краевая карта — это пара  $(V,\psi)$ , где  $\psi$  есть гомеоморфизм из V в замкнутое полупространство

$$\mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{n} \ge 0\}.$$

Две карты  $(U_1, \varphi_1)$  и  $(U_2, \varphi_2)$  называются согласованными, если склейки

$$\varphi_1 \circ \varphi_2^{-1} \colon \varphi_2(U_1 \cap U_2) \to \varphi_1(U_1 \cap U_2)$$

задаются дифференцируемыми (мы будем требовать  $C^{\infty}$ -гладкими) функциями. Атласом называется система согласованных карт, покрывающая все пространство M. Два атласа называются эквивалентными, если каждая карта первого атласа согласована с каждой картой второго атласа. Топологическое пространство M с указанными выше условиями вместе с классом эквивалентных атласов называется гладким n-многообразием.

- **1** $\diamond$ **1.** Докажите, что  $\mathbf{R}P^n = P(\mathbf{R}^{n+1})$  является гладким n-многообразием без края (дать атлас из n+1 карты, см. лекции).
- **1** $\diamond$ **2.** Ограниченный цилиндр  $C = [0,1] \times \mathbf{S}^1$ . Покажите, что C является двумерным гладким многообразием с краем  $\partial C = \mathbf{S}^1 \cup \mathbf{S}^1$  (нужно предъявить атлас).
- **1** $\diamond$ **3.** Докажите, что комплексное проективное пространство  ${\bf C}P^1=P({\bf C}^2)$  является 2-мерным вещественным многообразием, диффеоморфным  ${\bf S}^2$ .
- **1<-4.** Рассмотрим  $\mathbf{R}^4 = \mathbf{C}^2$  с координатами (z,w). Пусть M есть пересечение трехмерной сферы  $\{|z|^2 + |w|^2 = 1\}$  и конуса |z| = |w|. Докажите, что M диффеоморфно тору  $\mathbf{T}^2$ .
- $1 \diamondsuit 5$ . Докажите, что лента Мёбиуса Mb является гладким 2-мерным многообразием с краем  $\partial Mb = \mathbf{S}^1$ . Указание: постройте сначала атлас для открытой ленты Мёбиуса  $Mb \setminus \partial Mb$  (открытый квадрат, у которого отождествлены две противоположных стороны, например, вертикальных, с разными ориентациями).



Открытая лента Мёбиуса  $\mathbf{Mb} \setminus \partial \mathbf{Mb}$ .

**1\diamond6.** Снабдить множество всех прямых на плоскости  $\mathbf{R}^2$  структурой гладкого многообразия. Доказать, что оно диффеоморфно открытому листу Мебиуса.

1 ♦ 7. Доказать, что специальная ортогональная группа

$$SO_n(\mathbf{R}) = \{ A \in Mat_{n \times n}(\mathbf{R}) \mid A^t A = E, \det A = 1 \}$$

является гладким многообразием; найдите его размерность. Докажите также, что  ${
m SO}_3({f R})$  и  ${f R}P^3$  диффеоморфны.

**1** $\diamond$ **8.** Докажите, что комплексная окружность  $\{z_1^2+z_2^2=1\}\subset {\bf C}^2$  диффеоморфна цилиндру без границы.

**1** $\diamond$ **9.** Пусть  $\mathbf{R}^{n,1}$  — пространство Минковского, то есть  $\mathbf{R}^{n+1}$ , снабженное скалярным произведением  $\langle x,y \rangle$  сигнатуры (n,1), где

$$\langle x, x \rangle = x_1^2 + \ldots + x_n^2 - x_{n+1}^2.$$

Докажите, что если  $\langle x,x\rangle<0$ ,  $\langle y,y\rangle<0$  и  $x_{n+1}y_{n+1}>0$ , то тогда  $\langle x,y\rangle<0$ .

**1⋄10.** Пусть  $\mathbf{H}^n$  — связная компонента гиперболоида

$$\langle x, x \rangle = x_1^2 + \ldots + x_n^2 - x_{n+1}^2 = -1,$$

где  $\langle x,y \rangle$  — скалярное произведение сигнатуры (n,1) в пространстве  $\mathbf{R}^{n,1}$ . Докажите, что отображение  $\rho: \mathbf{H}^n \times \mathbf{H}^n \to \mathbf{R}$ , где  $\cosh \rho(x,y) = -\langle x,y \rangle$ , является корректно определенной метрикой, и, следовательно,  $\mathbf{H}^n$  является метрическим пространством.