

Global United Technology Services Co., Ltd.

Report No.: GTS201808000194F05

FCC REPORT

Applicant: Quantum Creations LLC.

15705 NW 13th Ave, Miami Gardens, Miami Beach, Florida **Address of Applicant:**

33169, United States

Manufacturer/Factory: MELE TECHNOLOGIES(SHENZHEN) CO.,LTD

Address of 1F, Bldg#2, 28 Cuijing Road, Pingshan District, Shenzhen,

PR China. Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Access 3

A-1198-AA3, A-1198-AA3-1, A-1198-AA3-2, A-1198-AA3-3, Model No.:

A-1198-AA3-4, A-1198-AA3-5, A-1198-AA3-6, A-1198-AA3-7,

A-1198-AA3-8, A-1198-AA3-9

Trade Mark: **AZULLE**

FCC ID: 2AFJI20181198

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: August 28, 2018

Date of Test: August 28-September 07, 2018

Date of report issued: September 07, 2018

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	September 07, 2018	Original

Prepared By:	Tigor. Che	Date:	September 07, 2018
	Project Engineer		
Check By:	Reviewer	Date:	September 07, 2018

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
_			
3	CON	TENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	7
	5.6	ADDITIONAL INSTRUCTIONS	8
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	11
	7.1	ANTENNA REQUIREMENT	11
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.8	FREQUENCY STABILITY	
8	TES	T SETUP PHOTO	55
۵	FUT	CONSTRUCTIONAL DETAILS	56

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

Product Name:	Access 3
Model No.:	A-1198-AA3, A-1198-AA3-1, A-1198-AA3-2, A-1198-AA3-3,
	A-1198-AA3-4, A-1198-AA3-5, A-1198-AA3-6, A-1198-AA3-7,
	A-1198-AA3-8, A-1198-AA3-9
Test Model No:	A-1198-AA3
Serial No.:	000001
Test sample(s) ID:	GTS201808000194-1
Sample(s) Status:	Engineer sample
Hardware Version:	V1.1
Software Version:	V1.1
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20): 5745MHz ~ 5825MHz
	802.11n(HT40)/ 802.11ac(HT40) : 5755MHz ~ 5795MHz
	802.11ac(HT80): 5775MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20): 6
	802.11n(HT40)/ 802.11ac(HT40) : 2
	802.11ac(HT80): 1
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz
	802.11n(HT40)/802.11ac(HT40): 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral Antenna
Antenna gain:	2dBi (declare by manufacturer)
Power supply:	SWITCHING ADAPTOR
	Model No.: FJ-SW0503000N
	Input: AC 100-240V, 50/60Hz, 0.6A Max
	Output: DC 5V, 3000mA

Operation Frequency each of channel @ 5.8G Band							
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency						
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel		Frequency (MHz)	
		5.8G Band	
	802.11a 802.11n(HT20) 802.11ac(HT20)	802.11n(HT40) 802.11ac(HT40)	802.11ac(HT80)
Lowest channel	5745	5755	
Middle channel	5785		5775
Highest channel	5825	5795	

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
	EUT was test with max duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps
802.11ac(HT20)	6.5Mbps
802.11ac(HT40)	13.5Mbps
802.11ac(HT80)	29.3Mbps

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.:381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Fixed Frequency Settings:

Special test software was pre-built-in by manufacturer.							
Mode	Channel	Channel Frequency (MHz) Level S					
OFDM	CH149	5745					
	CH151	5755					
	CH155	5775	TX level : default				
	CH157	5785	TX level : default				
	CH159	5795					
	CH165	5825					

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019	
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019	
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019	
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019	
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019	
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019	

Cond	ducted Emission					
Item	Test Equipment	Test Equipment Manufacturer		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019

Cond	ucted:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019

Gene	General used equipment:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)						
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019						
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019						

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integral antenna, the best case gain of the main antenna is 2dBi

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

Test Requirement:	FCC Part15	C Section 1	5.207					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz	z, VBW=30Kł	Iz, Sweep tin	ne=auto				
Limit:				Limit	(dBuV)			
	Frequen	cy range (M⊢	Z) Qu	ıasi-peak	Ave	erage		
	<u> </u>).15-0.5	- 6	66 to 56*	56 t	to 46*		
		0.5-5		56		46		
	* D	5-30	: tl £ tl	60	;	50		
Test setup:	^ Decreases	s with the loga Reference		rrequency.				
Test procedure:	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m							
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1 012mbar							
Test Instruments:	Refer to sec	ction 6.0 for d	etails		l .	L		
Test mode:	Refer to sec	ction 5.2 for d	etails					
Test voltage:	AC120V 60Hz							
Test results:	Pass							

Measurement data

Report No.: GTS201808000194F05

Freq MHz	Keading level dBuV	factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0. 18 0. 18 0. 22 0. 25 0. 25 0. 32 0. 32 0. 37 0. 37 0. 47 0. 47	56. 10 37. 93 51. 11 33. 58 52. 74 34. 80 46. 79 30. 42 46. 15 28. 24 42. 14 31. 61	0.40 0.40 0.40 0.40 0.40 0.39 0.37 0.37 0.37 0.32	0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.10	56. 60 38. 43 51. 62 34. 09 53. 24 35. 30 47. 28 30. 91 46. 62 28. 71 42. 57 32. 04	64. 33 54. 33 62. 96 52. 96 61. 78 51. 78 59. 80 49. 80 58. 56 48. 56 56. 49 46. 49	-7.73 -15.90 -11.34 -18.87 -8.54 -16.48 -12.52 -18.89 -11.94 -19.85 -13.92 -14.45	QP Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
Limit:	30dBm
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

ANT: 1

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result	
Test Off	802.11a (SISO)	Limit(abin)	Result	
Lowest	6.97			
Middle	5.98	30	Pass	
Highest	5.86			

ANT: 2

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result	
Test Off	802.11a (SISO)	Limit(dDin)	Result	
Lowest	7.02			
Middle	5.88	30	Pass	
Highest	5.77			

ANT1 + ANT2:

Test mode	Channel	Read Le	vel (dBm)	Read Level (mW)	Total Peak Output Power (mW)	Total Peak Output Power (dBm)	Limit (dBm)	Result
	Laurant	ANT1	5.13	3.26	C 44	0.00		
802.11n (HT20)	Lowest	ANT2	5.02	3.18	6.44	8.09		
	Middle	ANT1	4.82	3.03	6.36	8.03		
(MIMO)	Middle	ANT2	5.22	3.33	6.36	6.03		
`	Highest	ANT1	6.62	4.59	8.88	9.48		
	nignesi	ANT2	6.32	4.29	0.00	9.46		
	Lowest	ANT1	5.97	3.95	7.90	8.98		
802.11a c(HT20) (MIMO)	Lowest	ANT2	5.97	3.95	7.90	8.98		Pass
	Middle	ANT1	6.55	4.52	8.29	9.18		
	Middle	ANT2	5.76	3.77	0.29	9.10		
, ,	Highest	ANT1	4.31	2.69	5.41	7.33		
	riigiiest	ANT2	4.33	2.71			30	
	Lowest	ANT1	5.67	3.69	6.82	8.34		
802.11n (HT40)	rowest	ANT2	4.96	3.13	0.62	6.34		
(MIMO)	Highest	ANT1	5.24	3.34	7.62	8.82		
	riigiiest	ANT2	6.31	4.28	7.02	0.02		
	Lowest	ANT1	5.91	3.90	7.79	8.91		
802.11a c(HT40)	LOWEST	ANT2	5.90	3.89	1.13	0.91		
(MIMO)	Highest	ANT1	5.81	3.81	8.62	9.35		
	riigiiest	ANT2	6.82	4.81	0.02	9.55		
802.11a	N 4: -1 -11 -	ANT1	4.53	2.84	0.00	0.04		
c(HT80) (MIMO)	Middle	ANT2	5.47	3.52	6.36	8.04		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Antenna 1:

	/ and many											
	5.8G Band											
Toot			l imit									
Test CH	802.11a	802.11n(H T20)	802.11ac(HT20)	802.11n(H T40)	802.11ac(HT40)	802.11ac(HT80)	Limit (KHz)	Result				
Lowest	15.130	13.926	16.089	35.134	28.840	N/A						
Middle	13.860	13.908	14.156	N/A	N/A	72.650	>500	Pass				
Highest	15.560	15.156	17.198	32.319	35.060	N/A						

Antenna 2:

	5.8G Band											
Toot		l imit										
Test CH	802.11a	802.11n(H T20)	802.11ac(HT20)	802.11n(H 802.11ac(802.11ac(KHz) HT40)				Result				
Lowest	15.079	13.868	14.731	35.081	35.176	N/A						
Middle	13.776	13.249	15.117	N/A	N/A	63.902	>500	Pass				
Highest	15.121	15.032	15.266	33.850	33.914	N/A						

Test plot as follows: Test mode: 802.11a

Antenna 1:

Meas Setup Agilent Ava Number Ch Frea Trig Free 0ff Occupied Bandwidth Avg Mode Repeat Ехр Atten 30 dB Max Hold Occ BW % Pwr 0BW Span 30,0000000 MHz Center 5.745 00 GHz Res BW 100 kHz #VBW 300 kHz Sweep 2.88 ms (601 pts) Occupied Bandwidth Occ BW % Pwr x dB 16.5873 MHz Optimize Ref Level Transmit Freq Error x dB Bandwidth

Antenna 2:

Lowest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Antenna 1:

Antenna 2:

Lowest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11ac(HT20)

Copyright 2000-2012 Agilent Technologies

Report No.: GTS201808000194F05

Antenna 1:

K Agilent Meas Setup Avg Number Ch Freg 5.745 GHz Trig Free Occupied Bandwidth Avg Mode Atten 30 dB Max Hold Occ BW % Pwr OBW Span 30.0000000 MHz Center 5.745 00 GHz #URU 300 LH= **x dB** -6.00 dB Occupied Bandwidth Occ BW % Pwr x dB 17.9382 MHz Optimize Ref Level Transmit Freq Error x dB Bandwidth -23.155 kHz 16.089 MHz

Antenna 2:

Lowest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Antenna 1:

K Agilent Meas Setup R T Avg Number Ch Freg 5,755 GHz Trig Free Occupied Bandwidth Avg Mode Atten 30 dB Max Hold Occ BW % Pwr 0BW Span 60.0000000 MHz Center 5.755 0 GHz #URU 300 LH= **x dB** -6.00 dB Occupied Bandwidth Occ BW % Pwr x dB 36.2262 MHz Optimize Ref Level Transmit Freq Error x dB Bandwidth

Antenna 2:

Lowest channel

Copyright 2000-2012 Agilent Technologies

Lowest channel

Highest channel

Highest channel

Test mode: 802.11ac(HT40)

Report No.: GTS201808000194F05

Antenna 1:

Meas Setup K Agilent Avg Number Ch Freg 5,755 GHz Trig Free Occupied Bandwidth Avg Mode Atten 30 dB Max Hold Occ BW % Pwr 0BW Span 60.0000000 MHz Center 5.755 0 GHz #URU 300 LH= **x dB** -6.00 dB Occupied Bandwidth Occ BW % Pwr x dB 36.2478 MHz Optimize Ref Level Transmit Freq Error x dB Bandwidth -31.141 kHz

Copyright 2000-2012 Agilent Technologies

Highest channel

Antenna 2:

Lowest channel

Highest channel

Test mode: 802.11ac(HT80)

Report No.: GTS201808000194F05

Antenna 1:

K Agilent Meas Setup Avg Number Ch Freq 5.775 GHz Trig Free Occupied Bandwidth Avg Mode Atten 30 dB Max Hold Off 0cc BW % Pwr 0BW Span 120.000000 MHz Center 5.775 0 GHz *VBW 300 kHz **x dB** -6.00 dB Occ BW % Pwr x dB Occupied Bandwidth 76.0320 MHz Optimize Ref Level Transmit Freq Error x dB Bandwidth -177.892 kHz 72.650 MHz Copyright 2000-2012 Agilent Technologies

Antenna 2:

Middle channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

5.8G Band								
Test		Power Spectra	al Density (dBm)				
СН	802.11	a(SISO)(dBm)	Limit (dBm)	Result				
Lowest	ANT 1	0.90						
Lowest	ANT 2	1.30		Door				
Middle	ANT 1	0.81	30					
Middle	ANT 2	1.23	30	Pass				
Highest	ANT 1	0.43						
	ANT 2	0.45						

Antenna 1+Antenna 2:

	5.8G Band										
Test mode	Channel	Read Level (dBm)		Read Level (mW)	Total PSD (dBm)	Limit (dBm)	Result				
	Lowest	ANT1	-0.19	0.96	2.96						
	Lowest	ANT2	-0.09	1.02	2.90						
802.11n (HT20)	Middle	ANT1	0.18	1.04	2.90						
(MIMO)	Middle	ANT2	-0.42	0.91	2.90						
	Highest	ANT1	-0.31	0.93	2.75		Pass				
	nignesi	ANT2	-0.49	0.95	2.75						
	Lowest	ANT1	-0.21	0.95	2.65	30					
	Lowest	ANT2	-0.51	0.89	2.00						
802.11a c(HT20)		ANT1	0.08	1.02	2.93						
(MIMO)	Middle	ANT2	-0.25	0.94	2.33						
	Highest	ANT1	-0.59	0.87	2.58						
	riigilest	ANT2	-0.27	0.94	2.50						
	Lowest	ANT1	-3.39	0.46	-0.11						
802.11n (HT40)	rowest	ANT2	-2.86	0.52	-0.11						
(MIMO)	Highest	ANT1	-3.38	0.46	-0.21						
, ,	riigiiest	ANT2	-3.07	0.49	-0.21						
	Lowest	ANT1	-3.06	0.49	-0.05						
802.11a c(HT40)	FOMESI	ANT2	-3.07	0.49	-0.00						
(MIMO)	Highest	ANT1	-2.79	0.53	0.14						
	riigiiest	ANT2	-2.95	0.51	0.14						
802.11a	Middle	ANT1	-7.43	0.18	4.05						
c(HT80) (MIMO)	Middle	ANT2	-6.72	0.21	-4.05						

Test plot as follows:

Report No.: GTS201808000194F05

Test mode: 802.11a

Antenna 1:

Lowest channel

Middle channel

Highest channel

Antenna 2:

Lowest channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Antenna 1: Antenna 2:

Lowest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11ac(HT20)

Report No.: GTS201808000194F05

Antenna 1:

Center 5.745 00 GHz •Res BW 510 kHz

Antenna 2:

Mkr → CF

More 1 of 2

Lowest channel

Lowest channel

Middle channel

Highest channel Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Antenna 1:

Antenna 2:

Lowest channel

Lowest channel

Highest channel

Highest channel

Test mode: 802.11ac(HT40)

Report No.: GTS201808000194F05

Antenna 1:

Lowest channel

Highest channel

Antenna 2:

Mkr → CF

More 1 of 2

Lowest channel

Highest channel

Test mode: 802.11ac(HT80)

Report No.: GTS201808000194F05

Antenna 1:

Antenna 2:

Middle channel Middle channel

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C S	ection 15.209 a	nd 15.205		
Test Method:	ANSI C63.10: 20)13			
Test Frequency Range:	9kHz to 40GHz,	only worse cas	e is reporte	d	
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above 1GHz	Peak	1MHz	3MHz	Peak
		RMS	1MHz	3MHz	RMS
Limit:	25 MHz above o the band edge in	elow the band or r below the band acreasing linear the band edge,	edge increa d edge, and ly to a level and from 5	sing linearly d from 25 M of 15.6 dBr MHz above	to 10 dBm/MHz at lHz above or below m/MHz at 5 MHz or below the band
Test setup:	Turn Tables <150cm >	?		est Antenna-	plifier
Test Procedure:	the ground at determine the 2. The EUT was antenna, which tower. 3. The antennal ground to detend horizontal and measurement 4. For each suspand then the and the rota to the maximum 5. The test-recenspecified Barrows. 6. If the emission limit specified the EUT would 10dB margin average methods.	a 3 meter cambe position of the position of the position of the set 3 meters and the set 4 meters and the set 5 me	ber. The tall highest race way from the don the top from one nations of the tallowing the from 0 decent of the tallowing the top of the tallowing the tallow	ble was rotal diation. The interference of a variable meter to four the field are antennal are was arranged that from 1 mgrees to 360 at Detect Full Mode. The mode was 1 mode w	re-height antenna remeters above the distrength. Both are set to make the ed to its worst case neter to 4 meters degrees to find unction and 10dB lower than the e peak values of is that did not have heak, quasi-peak or

		And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.						
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1 012mbar						
Test Instruments:	Refer to s	Refer to section 6.0 for details						
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass							

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

All antennas have been test and only the worst case antenna 2 was report

Test mode:		802.1	1a(HT20)	Te	st channel:	-	Lowest	
Peak value	e:			•		•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization
5725.00	35.96	32.12	9.83	36.76	41.15	68.20	-27.05	Horizontal
5725.00	33.59	32.12	9.83	36.76	38.78	68.20	-29.42	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization
5725.00	29.26	32.12	9.83	36.76	34.45	54.00	-19.55	Horizontal
5725.00	29.23	32.12	9.83	36.76	34.42	54.00	-19.58	Vertical
Test mode:	Test mode: 802.1		1a(HT20) Test channel:			Highest		
Peak value:	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5850.00	34.50	32.33	9.99	36.60	40.22	68.20	-27.98	Horizontal
5850.00	32.84	32.33	9.99	36.60	38.56	68.20	-29.64	Vertical
RMS value:							_	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization
5850.00	30.55	32.33	9.99	36.60	36.27	54.00	-17.73	Horizontal
5850.00	29.32	32.33	9.99	36.60	35.04	54.00	-18.96	Vertical

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

MIMO:

Test mode:		802.1	1n(HT20)	Te	est channel:	L	_owest	
Peak value	e:	·		•		•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	35.89	32.12	9.83	36.76	41.08	68.20	-27.12	Horizontal
5725.00	33.54	32.12	9.83	36.76	38.73	68.20	-29.47	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	29.24	32.12	9.83	36.76	34.43	54.00	-19.57	Horizontal
5725.00	29.13	32.12	9.83	36.76	34.32	54.00	-19.68	Vertical
Test mode:	t mode: 802.1		1n(HT20)	Test channel:		Highest		
Peak value:						_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	34.46	32.33	9.99	36.60	40.18	68.20	-28.02	Horizontal
5850.00	32.77	32.33	9.99	36.60	38.49	68.20	-29.71	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	30.43	32.33	9.99	36.60	36.15	54.00	-17.85	Horizontal
5850.00	29.21	32.33	9.99	36.60	34.93	54.00	-19.07	Vertical

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:		802.1	1ac(HT20)	T	est channel:		Lowest	
Peak value) :		,					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	34.54	32.12	9.83	36.76	39.73	68.20	-28.47	Horizontal
5725.00	35.30	32.12	9.83	36.76	40.49	68.20	-27.71	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	29.54	32.12	9.83	36.76	34.73	54.00	-19.27	Horizontal
5725.00	29.13	32.12	9.83	36.76	34.32	54.00	-19.68	Vertical
Test mode:		802.1	1ac(HT20) Test channel:		Highest			
Peak value:	I I							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5850.00	32.26	32.33	9.99	36.60	37.98	68.20	-30.22	Horizontal
5850.00	33.77	32.33	9.99	36.60	39.49	68.20	-28.71	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I Limit	Polarization
5850.00	28.34	32.33	9.99	36.60	34.06	54.00	-19.94	Horizontal
5850.00	26.89	32.33	9.99	36.60	32.61	54.00	-21.39	Vertical

Test mode:		802.1	1n(HT40)	Te	st channel:		Lowest	
Peak value	e:	<u>'</u>	•	<u>'</u>		1		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	36.39	32.12	9.83	36.76	41.58	68.20	-26.62	Horizontal
5725.00	34.66	32.12	9.83	36.76	39.85	68.20	-28.35	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	28.96	32.12	9.83	36.76	34.15	54.00	-19.85	Horizontal
5725.00	28.23	32.12	9.83	36.76	33.42	54.00	-20.58	Vertical
Test mode:		802.1	1n(HT40)	Te	st channel:		Highest	
Peak value:	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	37.32	32.33	9.99	36.60	43.04	68.20	-25.16	Horizontal
5850.00	35.34	32.33	9.99	36.60	41.06	68.20	-27.14	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	26.84	32.33	9.99	36.60	32.56	54.00	-21.44	Horizontal
5850.00	28.77	32.33	9.99	36.60	34.49	54.00	-19.51	Vertical

Test mode:		802.1	1ac(HT40)	Te	est channel:		Lowest	
Peak value	:			·				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	36.28	32.12	9.83	36.76	41.47	68.20	-26.73	Horizontal
5725.00	34.61	32.12	9.83	36.76	39.80	68.20	-28.40	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	28.89	32.12	9.83	36.76	34.08	54.00	-19.92	Horizontal
5725.00	28.13	32.12	9.83	36.76	33.32	54.00	-20.68	Vertical
Test mode:		802.1	1ac(HT40)	Te	est channel:		Highest	
Peak value:					_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	37.21	32.33	9.99	36.60	42.93	68.20	-25.27	Horizontal
5850.00	35.31	32.33	9.99	36.60	41.03	68.20	-27.17	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	26.77	32.33	9.99	36.60	32.49	54.00	-21.51	Horizontal
5850.00	28.71	32.33	9.99	36.60	34.43	54.00	-19.57	Vertical

Test mode:		802.1	1ac(HT80)	Tes	st channel:	ı	Middle	
Peak value	e:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	34.59	32.12	9.83	36.76	39.78	68.20	-28.42	Horizontal
5725.00	35.32	32.12	9.83	36.76	40.51	68.20	-27.69	Vertical
5850.00	32.30	32.33	9.99	36.60	38.02	68.20	-30.18	Horizontal
5850.00	33.84	32.33	9.99	36.60	39.56	68.20	-28.64	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	29.67	32.12	9.83	36.76	34.86	54.00	-19.14	Horizontal
5725.00	29.23	32.12	9.83	36.76	34.42	54.00	-19.58	Vertical
5850.00	28.42	32.33	9.99	36.60	34.14	54.00	-19.86	Horizontal
5850.00	26.96	32.33	9.99	36.60	32.68	54.00	-21.32	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)										
Test Method:	ANSI C63.10:2013	3									
Test Frequency Range:	9kHz to 40GHz										
Test site:	Measurement Dist	tance: 3r	m								
Receiver setup:	Frequency Detector RBW VBW Value										
	9kHz-150KHz Quasi-peak 200Hz 1kHz Quasi-peak Value										
	150kHz-30MHz Quasi-peak 9kHz 30kHz Quasi-peak Val										
	30MHz-1GHz	Quasi-		100KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Pea		1MHz	3MHz	Peak Value					
	7.10010 10112	A\	V	1MHz	3MHz	Average Value					
Limit:	Frequency		Limit	(uV/m)	Value	Measurement Distance					
	0.009MHz-0.490	OMHz	2400/	/F(KHz)	QP	300m					
	0.490MHz-1.705	5MHz	24000	/F(KHz)	QP	300m					
	1.705MHz-30M	ЛНz	,	30	QP	30m					
	30MHz-88MH	Ηz	1	00	QP						
	88MHz-216M	Hz	1	50	QP	-					
	216MHz-960M	1Hz	2	200	QP	3m					
	960MHz-1GH	Ηz	500		QP						
					<u> </u>						
	Frequency		Lim	it (dBm/MF	Hz)	Remark					
	Above 1GH			-27.0	,	Peak Value					
Test setup:	Tum Table < 80cm >	EUT-	< :	Receiver	**********	ier+ ¹					
	For radiated emi	issions f	from 3	0MHz to1	GHz						

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or

				Report No.:	GTS20180	8000194F05			
	average	average method as specified and then reported in a data sheet.							
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1 012mbar			
Test Instruments:	Refer to se	ction 6.0 for	details						
Test mode:	Refer to se	ction 5.2 for	details						
Test voltage:	AC120V 60Hz								
Test results:	Pass								

Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Test mode:	WiFi mode	Probe:	Horizontal

Test mode:	WiFi mode	Probe:	Vertical

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
41.422	58. 52	12. 22	0.68	35.75	35.67	40.00	-4.33	QP
126.329	61. 61	8. 66	1.41	36.93	34.75	43.50	-8.75	QP
297.224	59. 92	13. 53	2.35	37.42	38.38	46.00	-7.62	QP
372.005	63. 24	14. 89	2.72	37.49	43.36	46.00	-2.64	QP
446.414	57. 60	16. 28	3.07	37.52	39.43	46.00	-6.57	QP
668.142	52. 53	19. 57	3.97	37.60	38.47	46.00	-7.53	QP

Above 1GHz:

All antennas have been test and only the worst case antenna 2 was report

802.11a(HT20) 5745MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	29.66	39.40	14.98	36.30	47.74	74.00	-26.26	Vertical
17235.00	28.60	41.00	18.98	36.28	52.30	74.00	-21.70	Vertical
11490.00	29.27	39.40	14.98	36.30	47.35	74.00	-26.65	Horizontal
17235.00	30.33	41.00	18.98	36.28	54.03	74.00	-19.97	Horizontal
11490.00	22.14	39.40	14.98	36.30	40.22	54.00	-13.78	Vertical
17235.00	21.82	41.00	18.98	36.28	45.52	54.00	-8.48	Vertical
11490.00	22.23	39.40	14.98	36.30	40.31	54.00	-13.69	Horizontal
17235.00	21.39	41.00	18.98	36.28	45.09	54.00	-8.91	Horizontal

802.11a(HT20) 5785MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	30.85	39.28	14.99	36.29	48.83	74.00	-25.17	Vertical
17355.00	30.47	41.52	18.98	36.26	54.71	74.00	-19.29	Vertical
11570.00	29.95	39.28	14.99	36.29	47.93	74.00	-26.07	Horizontal
17355.00	30.36	41.52	18.98	36.26	54.60	74.00	-19.40	Horizontal
11570.00	21.42	39.28	14.99	36.29	39.40	54.00	-14.60	Vertical
17355.00	20.35	41.52	18.98	36.26	44.59	54.00	-9.41	Vertical
11570.00	20.95	39.28	14.99	36.29	38.93	54.00	-15.07	Horizontal
17355.00	21.18	41.52	18.98	36.26	45.42	54.00	-8.58	Horizontal

802.11a(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	29.66	39.16	14.99	36.27	47.54	74.00	-26.46	Vertical
17475.00	30.85	42.30	18.97	36.25	55.87	74.00	-18.13	Vertical
11650.00	29.29	39.16	14.99	36.27	47.17	74.00	-26.83	Horizontal
17475.00	30.23	42.30	18.97	36.25	55.25	74.00	-18.75	Horizontal
11650.00	21.39	39.16	14.99	36.27	39.27	54.00	-14.73	Vertical
17475.00	21.27	42.30	18.97	36.25	46.29	54.00	-7.71	Vertical
11650.00	22.30	39.16	14.99	36.27	40.18	54.00	-13.82	Horizontal
17475.00	21.33	42.30	18.97	36.25	46.35	54.00	-7.65	Horizontal

MIMO:

Report No.: GTS201808000194F05

802.11n(HT20) 5745MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	29.58	39.40	14.98	36.30	47.66	74.00	-26.34	Vertical
17235.00	28.49	41.00	18.98	36.28	52.19	74.00	-21.81	Vertical
11490.00	29.12	39.40	14.98	36.30	47.20	74.00	-26.80	Horizontal
17235.00	30.17	41.00	18.98	36.28	53.87	74.00	-20.13	Horizontal
11490.00	21.88	39.40	14.98	36.30	39.96	54.00	-14.04	Vertical
17235.00	21.60	41.00	18.98	36.28	45.30	54.00	-8.70	Vertical
11490.00	21.96	39.40	14.98	36.30	40.04	54.00	-13.96	Horizontal
17235.00	21.22	41.00	18.98	36.28	44.92	54.00	-9.08	Horizontal

802.11n(HT20) 5785MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	30.63	39.28	14.99	36.29	48.61	74.00	-25.39	Vertical
17355.00	30.30	41.52	18.98	36.26	54.54	74.00	-19.46	Vertical
11570.00	29.84	39.28	14.99	36.29	47.82	74.00	-26.18	Horizontal
17355.00	30.19	41.52	18.98	36.26	54.43	74.00	-19.57	Horizontal
11570.00	21.36	39.28	14.99	36.29	39.34	54.00	-14.66	Vertical
17355.00	20.30	41.52	18.98	36.26	44.54	54.00	-9.46	Vertical
11570.00	20.84	39.28	14.99	36.29	38.82	54.00	-15.18	Horizontal
17355.00	21.04	41.52	18.98	36.26	45.28	54.00	-8.72	Horizontal

802.11n(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	29.58	39.16	14.99	36.27	47.46	74.00	-26.54	Vertical
17475.00	30.63	42.30	18.97	36.25	55.65	74.00	-18.35	Vertical
11650.00	29.25	39.16	14.99	36.27	47.13	74.00	-26.87	Horizontal
17475.00	29.96	42.30	18.97	36.25	54.98	74.00	-19.02	Horizontal
11650.00	21.15	39.16	14.99	36.27	39.03	54.00	-14.97	Vertical
17475.00	21.12	42.30	18.97	36.25	46.14	54.00	-7.86	Vertical
11650.00	22.14	39.16	14.99	36.27	40.02	54.00	-13.98	Horizontal
17475.00	21.17	42.30	18.97	36.25	46.19	54.00	-7.81	Horizontal

802.11n(HT40) 5755MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	30.20	39.40	14.98	36.30	48.28	74.00	-25.72	Vertical
17265.00	31.51	41.26	18.98	36.27	55.48	74.00	-18.52	Vertical
11510.00	30.04	39.40	14.98	36.30	48.12	74.00	-25.88	Horizontal
17265.00	31.28	41.26	18.98	36.27	55.25	74.00	-18.75	Horizontal
11510.00	20.40	39.40	14.98	36.30	38.48	54.00	-15.52	Vertical
17265.00	20.95	41.26	18.98	36.27	44.92	54.00	-9.08	Vertical
11510.00	21.56	39.40	14.98	36.30	39.64	54.00	-14.36	Horizontal
17265.00	21.42	41.26	18.98	36.27	45.39	54.00	-8.61	Horizontal

802.11n(HT40) 5795MHz

•	,							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	31.57	39.22	14.99	36.28	49.50	74.00	-24.50	Vertical
17385.00	30.80	41.78	18.98	36.26	55.30	74.00	-18.70	Vertical
11590.00	30.04	39.22	14.99	36.28	47.97	74.00	-26.03	Horizontal
17385.00	30.27	41.78	18.98	36.26	54.77	74.00	-19.23	Horizontal
11590.00	20.40	39.22	14.99	36.28	38.33	54.00	-15.67	Vertical
17385.00	21.24	41.78	18.98	36.26	45.74	54.00	-8.26	Vertical
11590.00	21.90	39.22	14.99	36.28	39.83	54.00	-14.17	Horizontal
17385.00	20.61	41.78	18.98	36.26	45.11	54.00	-8.89	Horizontal

802.11ac(HT40) 5755MHz

		•		1	•			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
(IVII IZ)	(dBuV)	(dB/m)	(dB)	(dB)	(dbd v/III)	(dDd V/III)	(dB)	
11510.00	30.16	39.40	14.98	36.30	48.24	74.00	-25.76	Vertical
17265.00	31.21	41.26	18.98	36.27	55.18	74.00	-18.82	Vertical
11510.00	29.91	39.40	14.98	36.30	47.99	74.00	-26.01	Horizontal
17265.00	31.01	41.26	18.98	36.27	54.98	74.00	-19.02	Horizontal
11510.00	20.36	39.40	14.98	36.30	38.44	54.00	-15.56	Vertical
17265.00	20.84	41.26	18.98	36.27	44.81	54.00	-9.19	Vertical
11510.00	21.37	39.40	14.98	36.30	39.45	54.00	-14.55	Horizontal
17265.00	21.24	41.26	18.98	36.27	45.21	54.00	-8.79	Horizontal

802.11ac(HT40) 5795MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	31.26	39.22	14.99	36.28	49.19	74.00	-24.81	Vertical
17385.00	30.46	41.78	18.98	36.26	54.96	74.00	-19.04	Vertical
11590.00	29.91	39.22	14.99	36.28	47.84	74.00	-26.16	Horizontal
17385.00	30.12	41.78	18.98	36.26	54.62	74.00	-19.38	Horizontal
11590.00	20.36	39.22	14.99	36.28	38.29	54.00	-15.71	Vertical
17385.00	21.09	41.78	18.98	36.26	45.59	54.00	-8.41	Vertical
11590.00	21.79	39.22	14.99	36.28	39.72	54.00	-14.28	Horizontal
17385.00	20.51	41.78	18.98	36.26	45.01	54.00	-8.99	Horizontal

802.11ac(HT80) 5775MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	31.51	39.34	14.98	36.29	49.54	74.00	-24.46	Vertical
17325.00	30.59	41.52	18.98	36.26	54.83	74.00	-19.17	Vertical
11550.00	30.68	39.34	14.98	36.29	48.71	74.00	-25.29	Horizontal
17325.00	30.39	41.52	18.98	36.26	54.63	74.00	-19.37	Horizontal
11550.00	21.18	39.34	14.98	36.29	39.21	54.00	-14.79	Vertical
17325.00	21.13	41.52	18.98	36.26	45.37	54.00	-8.63	Vertical
11550.00	21.27	39.34	14.98	36.29	39.30	54.00	-14.70	Horizontal
17325.00	21.38	41.52	18.98	36.26	45.62	54.00	-8.38	Horizontal

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 6.0for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement data:

Report No.: GTS201808000194F05

			cy stability versus T		
		Pov	wer Supply: DC 3.7V		
Temp.	Operating	0 minute	2 minute	5 minute	10 minute
(°C)	Frequency	Measured	Measured	Measured	Measured
(C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5743.8318	5744.3531	5741.7389	5743.5388
-30	5785	5783.6029	5782.7220	5782.4867	5783.8293
	5825	5822.6967	5821.2348	5824.8414	5823.1438
	5745	5742.5234	5743.3403	5744.9316	5744.0949
-20	5785	5784.9199	5782.4148	5784.4803	5784.6468
	5825	5823.3533	5823.9791	5824.8734	5824.1109
	5745	5743.8596	5741.7166	5744.1032	5744.8046
-10	5785	5782.5906	5781.3505	5784.3286	5784.3055
	5825	5824.1470	5821.4779	5824.9460	5824.1067
	5745	5744.3504	5743.6458	5744.7419	5744.5636
0	5785	5784.4731	5782.9593	5783.0247	5783.2463
	5825	5822.4833	5823.5963	5824.9390	5824.3477
	5745	5744.0846	5742.8412	5742.6233	5744.0601
10	5785	5782.4940	5782.5655	5782.9200	5784.6451
	5825	5824.6194	5823.7811	5824.6730	5824.4316
	5745	5741.6632	5744.0099	5744.8962	5743.3219
20	5785	5784.8326	5781.9454	5784.5551	5784.2602
	5825	5822.9328	5822.7598	5822.5716	5822.7609
	5745	5744.7858	5743.0077	5744.9816	5744.6115
30	5785	5782.5915	5781.4691	5784.4282	5784.1903
	5825	5823.6022	5824.8679	5824.4114	5824.4928
	5745	5744.6321	5743.2798	5743.6538	5742.3862
40	5785	5783.0204	5781.0680	5784.9609	5784.7580
	5825	5823.3424	5821.7964	5823.8215	5824.8661
	5745	5743.6212	5742.3795	5744.1566	5744.4834
50	5785	5782.3128	5783.3268	5783.7422	5782.7443
	5825	5824.6274	5823.0377	5824.6826	5824.9489

	Frequency stability versus Voltage								
		T	emperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5742.9697	5742.9407	5744.2563	5744.2511				
3.3	5785	5782.6152	5782.0072	5783.6949	5782.0761				
	5825	5824.7549	5821.9438	5821.6516	5824.9287				
	5745	5741.6469	5742.4645	5741.0701	5743.8568				
3.7	5785	5782.7327	5782.3473	5783.1023	5783.0011				
	5825	5823.3101	5823.5824	5824.7955	5823.3828				
	5745	5742.8067	5743.8142	5742.5775	5742.0507				
4.1	5785	5782.3728	5784.8863	5781.2999	5783.3656				
	5825	5822.6525	5824.2399	5821.4558	5824.5270				

Note: The worst case is FL=5743.0333MHz, FH=5824.9493MHz

		Frequen	cy stability versus T	emp.	
		Pov	wer Supply: DC 3.7V		
Temp.	Operating	0 minute	2 minute	5 minute	10 minute
	Frequency	Measured	Measured	Measured	Measured
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
-30	5755	5755.1329	5752.4902	5752.5891	5756.6263
-30	5795	5795.2137	5793.7152	5793.5203	5795.3105
20	5755	5755.6319	5754.8676	5753.2213	5755.0104
-20	5795	5795.7663	5794.6590	5794.8174	5795.7312
40	5755	5755.6278	5754.9203	5754.2304	5755.5256
-10	5795	5795.7221	5794.6044	5794.3056	5795.8709
0	5755	5755.5288	5754.6872	5754.4579	5755.3716
0	5795	5795.7172	5794.9227	5794.7460	5795.9256
40	5755	5755.5756	5754.2690	5754.2862	5755.1002
10	5795	5795.7922	5794.3509	5794.5067	5795.9406
20	5755	5755.1327	5754.1988	5754.7427	5755.5750
20	5795	5795.0588	5794.7198	5794.5410	5795.2590
20	5755	5755.8855	5754.1674	5754.6243	5755.2351
30	5795	5795.5299	5794.6309	5794.8600	5795.4906
40	5755	5755.2026	5754.1414	5754.9928	5755.2602
40	5795	5795.5569	5794.6045	5794.2624	5795.4861
50	5755	5755.0579	5754.3564	5754.4280	5755.2255
50	5795	5795.5597	5794.6965	5794.9078	5795.2017

	Frequency stability versus Voltage									
Temperature: 25°C										
Power	Operating	0 minute	2 minute	5 minute	10 minute					
Supply	Frequency	Measured	Measured	Measured	Measured					
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)					
3.3	5755	5757.5518	5753.4138	5755.7250	5754.0061					
3.3	5795	5797.8966	5794.2689	5795.1343	5794.0550					
3.7	5755	5757.1491	5754.8147	5755.9939	5754.1053					
3.7	5795	5796.3155	5794.1233	5795.8679	5794.2409					
4.4	5755	5755.3833	5754.5111	5755.6131	5754.7150					
4.1	5795	5795.0137	5794.6585	5795.2969	5794.4971					

Note: The worst case is FL=5752.4902MHz, FH=5797.8966MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11n(HT40) (MIMO)						
Frequency stability versus Temp.						
Power Supply: DC 3.7V						
Temp.	Operating	0 minute	2 minute	5 minute	10 minute	
•	Frequency	Measured	Measured	Measured	Measured	
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
-30	5755	5755.1329	5752.4902	5752.5891	5756.6263	
-30	5795	5795.2137	5793.7152	5793.5203	5795.3105	
20	5755	5755.6319	5754.8676	5753.2213	5755.0104	
-20	5795	5795.7663	5794.6590	5794.8174	5795.7312	
10	5755	5755.6278	5754.9203	5754.2304	5755.5256	
-10	5795	5795.7221	5794.6044	5794.3056	5795.8709	
0	5755	5755.5288	5754.6872	5754.4579	5755.3716	
0	5795	5795.7172	5794.9227	5794.7460	5795.9256	
10	5755	5755.5756	5754.2690	5754.2862	5755.1002	
10	5795	5795.7922	5794.3509	5794.5067	5795.9406	
20	5755	5755.1327	5754.1988	5754.7427	5755.5750	
20	5795	5795.0588	5794.7198	5794.5410	5795.2590	
20	5755	5755.8855	5754.1674	5754.6243	5755.2351	
30	5795	5795.5299	5794.6309	5794.8600	5795.4906	
40	5755	5755.2026	5754.1414	5754.9928	5755.2602	
	5795	5795.5569	5794.6045	5794.2624	5795.4861	
50	5755	5755.0579	5754.3564	5754.4280	5755.2255	
	5795	5795.5597	5794.6965	5794.9078	5795.2017	

Frequency stability versus Voltage						
Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
3.3	5755	5757.5518	5753.4138	5755.7250	5754.0061	
	5795	5797.8966	5794.2689	5795.1343	5794.0550	
3.7	5755	5757.1491	5754.8147	5755.9939	5754.1053	
	5795	5796.3155	5794.1233	5795.8679	5794.2409	
4.1	5755	5755.3833	5754.5111	5755.6131	5754.7150	
	5795	5795.0137	5794.6585	5795.2969	5794.4971	

Note: The worst case is FL=5752.4902MHz, FH=5797.8966MHz

802.11ac(HT40) (MIMO)						
Frequency stability versus Temp.						
Power Supply: DC 3.7V						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute	
Temp.	Frequency	Measured	Measured	Measured	Measured	
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
-30	5755	5755.8349	5751.6473	5758.5574	5753.4836	
-30	5795	5795.5347	5793.0890	5795.6690	5793.3605	
20	5755	5755.6680	5753.6200	5755.4987	5753.5711	
-20	5795	5795.5068	5793.0886	5795.7035	5793.5378	
10	5755	5755.5407	5754.9062	5755.7480	5753.9599	
-10	5795	5795.1827	5794.1149	5795.1446	5793.5342	
•	5755	5755.5104	5754.8318	5755.3808	5754.3556	
0	5795	5795.8322	5794.1442	5795.2876	5794.5773	
40	5755	5755.4745	5754.3358	5755.7851	5754.1145	
10	5795	5795.3717	5794.0619	5795.3578	5794.6024	
20	5755	5755.4541	5754.0238	5755.1236	5754.1189	
20	5795	5795.2591	5794.1993	5795.6608	5794.4294	
20	5755	5755.9969	5754.6412	5755.1247	5754.5095	
30	5795	5795.7041	5794.2844	5795.5743	5794.3812	
40	5755	5755.0764	5754.3284	5755.6754	5754.9975	
	5795	5795.1497	5794.1612	5795.3569	5794.4402	
50	5755	5755.9844	5754.9079	5755.4161	5754.6002	
	5795	5795.4029	5794.1904	5795.7690	5794.2796	

Frequency stability versus Voltage							
	Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
3.3	5755	5758.3231	5753.7816	5755.0412	5754.2210		
3.3	5795	5798.0449	5794.0905	5795.9225	5794.2844		
3.7	5755	5756.1800	5754.7707	5755.8338	5754.0172		
	5795	5796.7801	5794.2397	5795.2943	5794.8680		
4.1	5755	5755.7047	5754.9055	5755.2082	5754.8597		
	5795	5795.9566	5794.8443	5795.4541	5794.7483		

Note: The worst case in MIMO mode is FL=5751.6473MHz, FH=5798.0449MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Frequency stability versus Temp.						
Power Supply: DC 3.7V						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute	
Temp.	Frequency	Measured	Measured	Measured	Measured	
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
-30	5775	5775.3812	5775.1222	5774.2688	5773.9088	
-20	5775	5775.4995	5775.8239	5774.3282	5773.5163	
-10	5775	5775.5498	5775.6940	5774.8174	5773.6424	
0	5775	5775.5294	5775.9793	5774.8590	5774.9031	
10	5775	5775.7769	5775.1818	5774.5575	5774.5177	
20	5775	5775.6325	5775.5574	5774.3269	5774.2614	
30	5775	5775.2301	5775.8757	5774.0359	5774.1085	
40	5775	5775.2755	5775.6289	5774.4655	5774.7608	
50	5775	5775.2553	5775.0939	5774.9905	5774.4925	

Frequency stability versus Voltage							
	Temperature: 25°C						
Power	Power Operating 0 minute 2 minute 5 minute 10 minute						
Supply	Frequency	Measured	Measured	Measured	Measured		
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
3.3	5775	5773.6848	5777.5108	5777.7646	5776.1990		
3.7	5775	5773.7014	5777.8090	5777.8193	5775.4322		
4.1	5775	5773.1627	5775.3726	5777.6555	5776.5021		

Note: The worst case in MIMO mode is FL=5777.8193MHz, FH=5773.1627MHz

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201808000194F01

-----End-----