PRÁCTICA CONVERTIDORES D/A Y A/D.

Convertidores digital analógico D/A

Montaje 1. Para el circuito de la Figura 1:

Figura 1. Circuito de aplicación.

- a) Ajustar los potenciómetros para que las resistencias R_{AB} y R_{BC} sean ½ de 1 K Ω .
- b) Rellenar la tabla de la Figura 2 y comentar los resultados.

Teórico	Práctico	Teórico	Práctico	Teórico	Práctico	Teórico	Práctic
$S_2 = 0$	0	0	0	1	1	1	1
$S_1 = 0$	0	1	1	0	0	1	1
$S_0 = 0$	1	0	1	0	1	0	1

Figura 2. Tabla para recoger datos del circuito de la Figura 1

Montaje 2. Montar el circuito de la Figura 3 utilizando un DAC 08, y observar las variaciones en el voltímetro/osciloscopio de salida.

Figura 3. Circuito de aplicación del Ejercicio 2.

- a) Ajustar + I_{REF} a 2 mA con el potenciómetro P_1 y, asimismo, P_2 para que R_{AB} sea 5 K Ω .
- b) Aplicar reset al contador. De este modo, pondremos las salidas del contador a cero.
- c) Aplicar un *clock* a la entrada del contador con diferentes frecuencias y observar cómo varia el voltimetro/osciloscopio. ¿Cuánto tardará en medir el máximo de escala?

Convertidor analógico-digital A/D

Montaje 3. Montar el circuito de la figura 4 y comprobar cómo va variando la combinación digital de salida en función de la de entrada.

Figura 4. Convertidor por comparadores con codificador de prioridad,

Montaje 4. *a)* Montar el circuito de la Figura 5 con el potenciómetro P_1 a resistencia máxima antes de conectar la alimentación y el contador a cero mediante el *reset*.

- b) Ajustar P_2 para que $(R_2 + P_2)=5$ K Ω . Aplicar tensión y ajustar P_1 para que la corriente en la patilla 14 del DAC 08 (+ I_{REF}) sea de 2 mA.
- c) Aplicar una tensión a la entrada V_A entre 0 y 10 voltios y desbloquear el *reset*. Comprobar cuando la puerta lógica bloquea el paso del reloj al contador, $V_X = V_A$, y verificar la combinación digital de salida.
- d) Repetir el apartado anterior para varias tensiones de entrada V_A y comprobar la correspondencia entre estas tensiones y las combinaciones digitales de salida.

Nota: Variando la frecuencia del reloj, variaremos la velocidad de conversión.

Montaje 5. Montar el circuito de la Figura 6, circuito convertidor por aproximaciones sucesivas integrado.

Comprobar cómo la salida digital sigue las variaciones que se vayan produciendo en la entrada V_A . La entrada de clock nos marca el periodo de muestreo que, para este circuito, siempre deberá ser superior a T > 1, 7 RC, que es el tiempo de conversión interna.

Figura 18.12. Convertidor analógico/digital por contador.

Figura 5. Convertidor A/D por contador,

Figura 18.13. Convertidor integrado D/A 0803/4. PHILIPS.

Figura 6. Convertidor A/D 0804.,