Alpine Parking

Matthias Ebner, Lukas Niederstätter & Paul Prünster

Structure

- Key Idea
- AWS Services
- Workflow
- Lambdas
- Frontend
- DEMO
- Costs

Key Idea Free spaces?

Key Idea

Key Idea

AWS Services

Lambda Functions

Step functions

Api Gateway

DynamoDB

S3 bucket

AWS Rekognition

Textract

SNS

Workflow

Lambdas

boto3 lib

nice integration of services

```
bucket = 'verteiltesystemeparkingsystem'
fire words = ['fire', 'flames']
car_words = ['car', "license plate", "vehicle", "transportation"]
def lambda handler(event, context):
    s3 = boto3.client('s3')
    rekognition = boto3.client('rekognition')
    key = event['image_key']
    parking_space_id = event['parking_space_id']
    obj = s3.get_object(Bucket=bucket, Key=key)
    image = obj['Body'].read()
    response = rekognition.detect_labels(Image={'Bytes': image})
    fire = False
    car = False
    labels = []
    for label in response['Labels']: --
    output = {
        "image_key": key,
        "parking space id": parking space id,
        "car": car,
        "fire": fire,
        "rekognition result": labels
    return output
```

Frontend

- AngularJS Hello World like 200 mb
 - => let's learn a new lightweight framework
- Alpine JS
- Material Design Lite


```
<div x-data="{is0pen : false}">
   <button @click="is0pen=!is0pen">Show/Hide</button>
   <h1 x-show="is0pen">Alpine Tutorial</h1>
</div>
<div x-data="{ inputValue : '' }" >
   <input type="text" x-model=inputValue />
   </div>
```


Transactional text messages

Costs: car in parking spot

- Assumptions: 1 Parking space
- Critical Path: \$0,001505851 per Execution
- \$1,505851 per 1000 Executions

- Assumption: 100 Parking spaces
- \$150,5851 per 1000 Executions
- Optimization is possible:
 - More parking spaces per camera
 - Motion detection per parking space

Costs: case of fire

- Assumptions: 1 Parking space
- Critical Path: \$0,000406351 per Execution
- \$0,406351 per 1000 Executions

- Assumption: 100 Parking spaces
- \$40,6351 per 1000 Executions
- Optimization is possible:
 - More parking spaces per camera
 - Motion detection per parking space

Thank you for your attention