TRIGONOMETRY INTRODUCTORIO 2024

EXPLORATORIO

1) Halle el valor de x si :

$$\sec(x^3 + 18)^{\circ}.\cos(72 - x^3)^{\circ} = 1$$

A) 3 B) 4 C) 5 D) $\frac{1}{3}$ E) $\frac{1}{2}$

RECORDAR:

Por RTR:

$$\cos\alpha \cdot \sec\beta = 1 \iff \alpha = \beta$$

RESOLUCIÓN

Dato:

$$\sec(x^3 + 18)^{\circ} \cdot \cos(72 - x^3)^{\circ} = 1$$

Por RTR:
$$(x^3 + 18) = (72 - x^3)$$

$$x^3 + 18 = 72 - x^3$$

$$2x^3 = 54$$

$$x^3 = 27$$

$$\mathbf{x} = \mathbf{3}$$

Respuesta: A) 3

2) Halle el valor de x en la figura adjunta :

- **A)** 2
- $B)_{\frac{1}{2}}^{1}$
- **C)** 1
- **D)** 3

E)
$$\frac{1}{4}$$

RESOLUCIÓN

RECORDAR:

Teorema de Pitágoras

Luego:
$$(x+2)^2 + 3^2 = (x+3)^2$$

$$x^{2} + 2(x)(2) + 2^{2} + 9 = x^{2} + 2(x)(3) + 3^{2}$$

$$4x + 4 = 6x$$

$$4 = 2x \implies x = 2$$

Respuesta: A) 2

3) Siendo S, C y R lo convencional para un mismo ángulo no nulo, simplifique

$$E = \frac{3C\pi + 2S\pi + 40R}{(C - S)\pi}$$

- A) 10
- B) 20
- C) 30

- **D)** 40
- **E)** 50

RECORDAR:

Números convencionales:

$$S = 9k \quad C = 10k \quad R = \frac{K\pi}{20}$$

RESOLUCIÓN

$$E = \frac{3C\pi + 2S\pi + 40R}{(C - S)\pi}$$

Reemplazamos en E:

$$E = \frac{3(10k)\pi + 2(9k)\pi + 40\left(\frac{k\pi}{20}\right)}{(10k - 9k)\pi}$$

$$E = \frac{30k\pi + 18k\pi + 2k\pi}{k\pi}$$

$$E = \frac{50k\pi}{k\pi} \implies E = 50$$

Respuesta: E) 50

4) De la figura, calcule: $sen\theta + tan\beta$

B) 3 C) $\frac{1}{2}$

RESOLUCIÓN

RECORDAR:

Razones trigonométricas de un ángulo agudo:

$$sen\theta = \frac{CO}{H}$$
 $tan\beta = \frac{CO}{CA}$

$$\tan \beta = \frac{CO}{CA}$$

Luego:
$$sen\theta = \frac{5}{7}$$
 y $tan\beta = \frac{9}{7}$

Respuesta: E) 2

5) Calcule tanθ + cotθ

A) -
$$\frac{13}{5}$$

B) -
$$\frac{13}{6}$$

C) -
$$\frac{13}{8}$$

D) -
$$\frac{13}{4}$$

E) -
$$\frac{6}{13}$$

RESOLUCIÓN

Según el gráfico : x = -2 y = 3

RECORDAR:
$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Luego:
$$\tan\theta + \cot\theta = \frac{3}{-2} + \frac{-2}{3}$$

$$\tan\theta + \cot\theta = -\frac{3}{2} - \frac{2}{3} = -\frac{13}{6}$$

Respuesta: B) $-\frac{13}{6}$

6. Encuentre el valor numérico de

$$E = \frac{6\cos 60^{\circ} + 10\sin 53^{\circ} + \csc 30^{\circ}}{3\sec 60^{\circ}}$$

- A) 13/5
- B) 16/5
- C) 6/13

D) 13/6

E) 13/4

RESOLUCIÓN

RT de ángulos notables:

	30°	37°	45°	53°	60°
sen	1/2	<u>3</u> 5	$\frac{\sqrt{2}}{2}$	<u>4</u> 5	60° √3/2 1/2
cos	1/2 1/3/2 1/3/3 1/3/3	4 5 3 4	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	4 5 3 5	<u>1</u> 2
tan	<u>3</u> √3	<u>3</u> 4	1	4/3	√3
cot	30.00	<u>4</u> 3	1	<u>3</u> 4	<u>3</u> <u>√3</u>
sec	<u>2√3</u> 3	5 4 5 3	√2	4 33 3 4 5 3 5 4	2
CSC	2	<u>5</u> 3	√2	<u>5</u> 4	<u>2√3</u> 3

Tenemos:

$$E = \frac{6\left(\frac{1}{2}\right) + 10\left(\frac{4}{5}\right) + 2}{3(2)} = \frac{3 + 8 + 2}{6}$$

$$\mathbf{E} = \frac{13}{6}$$

Respuesta: D) 13/6

En los sectores circulares AOB y COD, si $L_{\widehat{AB}} = a\sqrt{3}$ y OC = b, determine m∢AOB.

A) $\frac{a}{5}$

- C) b

E) ab

RESOLUCIÓN

Sector circular COD: $S = \frac{\theta \cdot b^2}{2}$ Sector circular COD: $3S = \frac{\left(a\sqrt{3}\right)^2}{2 \cdot \theta}$ $3\sigma^2$ Luego: $3\left(\frac{\theta b^2}{2}\right) = \frac{3a^2}{2\theta} \implies \theta^2 = \frac{a^2}{h^2} \implies \theta = \frac{a}{h}$

Respuesta: B) a/b

8. Calcule senβ.

- A) 5/13
- B) 5/6

C) 5/9

- D) 13/18
- E) 5/8

RESOLUCIÓN

Por triángulos rectángulos notables:

En el ⊾ABD, notable de 45°:

$$BD = 5$$

Luego, ⊾ABC, por Teorema de

Pitágoras: AC = 13

Por lo tanto :
$$sen\beta = \frac{5}{13}$$

Respuesta: A) 5/13

