Storage Devices

- · Magnetic disks
 - Storage that rarely becomes corrupted
 - Large capacity at low cost
 - Block level random access (except for SMR later!)
 - Slow performance for random access
 - Better performance for sequential access
- Flash memory
 - Storage that rarely becomes corrupted
 - Capacity at intermediate cost (5-20x disk)
 - Block level random access
 - Good performance for reads; worse for random writes
 - Erasure requirement in large blocks
 - Wear patterns issue

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Lec 17.13

Hard Disk Drives (HDDs)

Read/Write Head Side View

IBM/Hitachi Microdrive

IBM Personal Computer/AT (1986) 30 MB hard disk - \$500

http://www.storagereview.com/guide/

30-40ms seek time

0.7-1 MB/s (est.)

19 Kubiatowicz CS162 © UCB Fall 2019

Lec 17.14

The Amazing Magnetic Disk

- Unit of Transfer: Sector
 - Ring of sectors form a track
 - Stack of tracks form a cylinder
 - Heads position on cylinders

- Wavelength of light is ~ 0.5µm
- Resolution of human eye: 50µm
- 100K tracks on a typical 2.5" disk
- Separated by unused guard regions.
 - Reduces likelihood neighboring tracks are corrupted during writes (still a small non-zero chance)

The Amazing Magnetic Disk

- · Track length varies across disk
 - Outside: More sectors per track, higher bandwidth
 - Disk is organized into regions of tracks with same # of sectors/track
 - Only outer half of radius is used
 - » Most of the disk area in the outer regions of the disk
- Disks so big that some companies (like Google) reportedly only use part of disk for active data
 - Rest is archival data

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.15 3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.16

Shingled Magnetic Recording (SMR)

Conventional Writes

- · Overlapping tracks yields greater density, capacity
- Restrictions on writing, complex DSP for reading
- Examples: Seagate (8TB), Hitachi (10TB)

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.17 Review: Magnetic Disks

• Cylinders: all the tracks under the head at a given point on all surface

• Read/write data is a three-stage process:

- Seek time: position the head/arm over the proper track

- Rotational latency: wait for desired sector to rotate under r/w head
- Transfer time: transfer a block of bits (sector) under r/w head

Seek time = 4-8ms One rotation = 1-2ms (3600-7200 RPM)

3/28/2019

Kubiatowicz CS162 © UCB Fall 2019

Lec 17.18

Review: Magnetic Disks

 Cylinders: all the tracks under the head at a given point on all surface

• Read/write data is a three-stage process:

- Seek time: position the head/arm over the proper track
- Rotational latency: wait for desired sector to rotate under r/w head
- Transfer time: transfer a block of bits (sector) under r/w head

Typical Numbers for Magnetic Disk

Parameter	Info / Range
Space/Density	Space: 14TB (Seagate), 8 platters, in 3½ inch form factor! Areal Density: ≥ 1Terabit/square inch! (PMR, Helium,)
Average seek time	Typically 4-6 milliseconds. Depending on reference locality, actual cost may be 25-33% of this number.
Average rotational latency	Most laptop/desktop disks rotate at 3600-7200 RPM (16-8 ms/rotation). Server disks up to 15,000 RPM. Average latency is halfway around disk so 8-4 milliseconds
Controller time	Depends on controller hardware
Transfer time	Typically 50 to 250 MB/s. Depends on: • Transfer size (usually a sector): 512B – 1KB per sector • Rotation speed: 3600 RPM to 15000 RPM • Recording density: bits per inch on a track • Diameter: ranges from 1 in to 5.25 in
Cost	Used to drop by a factor of two every 1.5 years (or even faster); now slowing down

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.20

Disk Performance Example

- · Assumptions:
 - Ignoring queuing and controller times for now
 - Avg seek time of 5ms,
 - 7200RPM ⇒ Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms
 - − Transfer rate of 50MByte/s, block size of 4Kbyte \Rightarrow 4096 bytes/50×10⁶ (bytes/s) = 81.92 × 10⁻⁶ sec \cong 0.082 ms for 1 sector
- Read block from random place on disk:
 - Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
 - Approx 9ms to fetch/put data: 4096 bytes/9.082×10⁻³ s \cong 451KB/s
- Read block from random place in same cylinder:
 - Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
 - Approx 4ms to fetch/put data: 4096 bytes/4.082×10⁻³ s \cong 1.03MB/s
- Read next block on same track:
 - Transfer (0.082ms): 4096 bytes/0.082×10⁻³ s \cong 50MB/sec
- Key to using disk effectively (especially for file systems) is to minimize seek and rotational delays

3/28/2019

Kubiatowicz CS162 © UCB Fall 2019

Lec 17.21

(Lots of) Intelligence in the Controller

- · Sectors contain sophisticated error correcting codes
 - Disk head magnet has a field wider than track
 - Hide corruptions due to neighboring track writes
- · Sector sparing
 - Remap bad sectors transparently to spare sectors on the same surface
- Slip sparing
 - Remap all sectors (when there is a bad sector) to preserve sequential behavior
- Track skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

• ..

3/28/2019

Kubiatowicz CS162 © UCB Fall 2019

Lec 17.22

Hard Drive Prices over Time

Example of Current HDDs

- Seagate Exos X14 (2018)
 - 14 TB hard disk
 - » 8 platters, 16 heads
 - » Helium filled: reduce friction and power
 - 4.16ms average seek time
 - 4096 byte physical sectors
 - 7200 RPMs
 - 6 Gbps SATA /12Gbps SAS interface
 - » 261MB/s MAX transfer rate
 - » Cache size: 256MB
 - Price: \$615 (< \$0.05/GB)

- IBM Personal Computer/AT (1986)
 - 30 MB hard disk
 - 30-40ms seek time
 - 0.7-1 MB/s (est.)
 - Price: \$500 (\$17K/GB, 340,000x more expensive !!)

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.24

Solid State Disks (SSDs)

- 1995 Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
 - Trapped electrons distinguish between 1 and 0
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight
 - Limited "write cycles"

3/28/2019

Rapid advances in capacity and cost ever since!

Kubiatowicz CS162 © UCB Fall 2019

Read 4 KB Page: ~25 usec

No seek or rotational latency

Transfer time: transfer a 4KB page

SATA: 300-600MB/s => ~4 x10³ b / 400 x 106 bps => 10 us

3/28/2019 Kubiatowicz CS162 @ UCB Fall 2019 Lec 17.26

– Latency = Queuing Time + Controller time + Xfer Time

Highest Bandwidth: Sequential OR Random reads

SSD Architecture – Writes

- Writing data is complex! (~200µs 1.7ms)
 - Can only write empty pages in a block
 - −Erasing a block takes ~1.5ms
 - Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity
- Rule of thumb: writes 10x reads, erasure 10x writes

Typical NAND Flash Pages and Blocks

Lec 17.25

https://en.wikipedia.org/wiki/Solid-state drive

Some "Current" 3.5in SSDs

- Seagate Nytro SSD: 15TB (2017)
 - Dual 12Gb/s interface
 - Seg reads 860MB/s
 - Seq writes 920MB/s
 - Random Reads (IOPS): 102K
 - Random Writes (IOPS): 15K
 - Price (Amazon): \$6325 (\$0.41/GB)
- Nimbus SSD: 100TB (2019)
 - Dual port: 12Gb/s interface
 - Seq reads/writes: 500MB/s
 - Random Read Ops (IOPS): 100K
 - Unlimited writes for 5 years!
 - Price: ~ \$50K? (\$0.50/GB)

Kubiatowicz CS162 © UCB Fall 2019 Lec 17.27 3/28/2019

Kubiatowicz CS162 © UCB Fall 2019 Lec 17.28

HDD vs SSD Comparison

SSD prices drop much faster than HDD

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.29

SSD Summary

- Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power, silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O bus)
- Cons
 - Small storage (0.1-0.5x disk), expensive (3-20x disk)
 - » Hybrid alternative: combine small SSD with large HDD

Amusing calculation: Is a full Kindle heavier than an empty one?

- · Actually, "Yes", but not by much
- Flash works by trapping electrons:
 - So, erased state lower energy than written state
- Assuming that:
 - Kindle has 4GB flash
 - $-\frac{1}{2}$ of all bits in full Kindle are in high-energy state
 - High-energy state about 10⁻¹⁵ joules higher
 - Then: Full Kindle is 1 attogram (10⁻¹⁸gram) heavier (Using E = mc²)
- Of course, this is less than most sensitive scale can measure (it can measure 10⁻⁹ grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
- Source: John Kubiatowicz (New York Times, Oct 24, 2011)

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.30

SSD Summary

- · Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power, silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O No
- Cons _____longer
 - Small storage (0.1-0.5x disk), expensive (3-zux uisk) true!
 - » Hybrid alternative: combine small SSD with large HDD
 - Asymmetric block write performance: read pg/erase/write pg
 - » Controller garbage collection (GC) algorithms have major effect on performance
 - Limited drive lifetime
 - » 1-10K writes/page for MLC NAND
 - » Avg failure rate is 6 years, life expectancy is 9–11 years
- These are changing rapidly!

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.31 3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.32

I/O Performance

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.33

I/O Performance

Performance of I/O subsystem

- Metrics: Response Time, Throughput Throughput (Wilization) (% total BW)

– Effective BW per op = transfer size / response time

- » EffBW(n) = n / (S + n/B) = B / (1 + SB/n)
- Contributing factors to latency:
 - » Software paths (can be loosely modeled by a queue)
 - » Hardware controller
 - » I/O device service time
- Queuing behavior:
 - Can lead to big increases of latency as utilization increases

_{3/28/201} Solutions?

Kubiatowicz CS162 © UCB Fall 2019

Lec 17.34

100%

A Simple Deterministic World

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate ($\mu = 1/T_S$) operations per second
- Arrival rate: $(\lambda = 1/T_A)$ requests per second
- Utilization: $U = \lambda/\mu$, where $\lambda < \mu$
- · Average rate is the complete story

A Ideal Linear World

- What does the queue wait time look like?
 - Grows unbounded at a rate ~ (T_s/T_A) till request rate subsides

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.35 3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.36

A Bursty World

- · Requests arrive in a burst, must queue up till served
- Same average arrival time, but almost all of the requests experience large queue delays
- Even though average utilization is low

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.37

Background: General Use of Random Distributions

- · Server spends variable time (T) with customers
 - Mean (Average) \mathbf{m} = Σ p(T)×T
 - Variance (stddev²) $\sigma^2 = \Sigma p(T) \times (T-m)^2 = \Sigma p(T) \times T^2 m^2$
 - Squared coefficient of variance: $C = \sigma^2/m^2$ Aggregate description of the distribution

mean

Memoryless

- Important values of C:
 - No variance or deterministic ⇒ C=0
 - "Memoryless" or exponential \Rightarrow C=1
 - » Past tells nothing about future
 - » Poisson process *purely* or *completely* random process
 - » Many complex systems (or aggregates) are well described as memoryless
 - Disk response times C ≈ 1.5 (majority seeks < average)

So how do we model the burstiness of arrival?

- Elegant mathematical framework if you start with exponential distribution
 - Probability density function of a continuous random variable with a mean of $1/\lambda$

0.9

0.6

0.5

0.4

 $- f(x) = \lambda e^{-\lambda x}$

- "Memoryless"

Lots of short arrival intervals (i.e., high instantaneous rate)

Few long gaps (i.e., low instantaneous rate)

rate)

e., low
s rate)

x (λ)

Kubiatowicz CS162 © UCB Fall 2019

mean arrival interval (1/λ)

3/28/2019 Kubiatowicz CS16

Introduction to Queuing Theory

- What about queuing time??
 - Let's apply some queuing theory
 - Queuing Theory applies to long term, steady state behavior ⇒
 Arrival rate = Departure rate
- · Arrivals characterized by some probabilistic distribution
- Departures characterized by some probabilistic distribution

3/28/2019

Little's Law

In any stable system

3/28/2019

- Average arrival rate = Average departure rate
- The average number of jobs/tasks in the system (N) is equal to arrival time / throughput (λ) times the response time (L)
 - $-N(jobs) = \lambda(jobs/s) \times L(s)$
- Regardless of structure, bursts of requests, variation in service
 - Instantaneous variations, but it washes out in the average
 - Overall, requests match departures

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019 Lec 17.41

Example

A: $N = \lambda x L$

• E.g., $N = \lambda x L = 5$

3/28/2019 Kubiatowicz CS162 © UCB Fall 2019

Lec 17.42

Little's Theorem: Proof Sketch

Little's Theorem: Proof Sketch

Kubiatowicz CS162 © UCB Fall 2019 Lec 17.43