Opening of Terminal Epoxides:

• Nucleophilic opening of terminal epoxides is often highly regioselective

Behrens, C. H.; Sharpless, K. B.; Aldrichimica Acta, 1983, 16, 67-80.

Payne Rearrangement

HO CH₃
$$H_3$$
C CH₃ H_2 O H_3 C H_3 C

• Steric factors permitting, equilibrium generally favors the more substituted epoxide.

Payne, G. B. J. Org. Chem. 1962, 27, 3819-3822

Payne Rearrangement-Opening Sequence:

• β-Hydroxy sulfides are readily converted into terminal epoxides.

Behrens, C. H.; Sharpless, K. B.; Aldrichimica Acta, 1983, 16, 67-80.

2,3-Epoxy alcohols:

• Ti(O-i-Pr)₄ can catalyze the addition of nucleophiles to C3 of 2,3-epoxy alcohols:

	Ti(O <i>i-</i> Pr) ₄		
Nucleophile	(equiv)	C3 : C2	yield
Et ₂ NH	0	3.7 : 1	4
Et ₂ NH	1.5	20 : 1	90
<i>i</i> -PrOH	0	-	0
<i>i</i> -PrOH	1.5	100 : 1	88
(allyl) ₂ NH	1.5	100 : 1	96
allyl alcohol	1.5	100 : 1	90
NH ₄ OBz	1.5	100 : 1	74
NH ₄ OAc	1.5	65 : 1	73
KCN	1.7	2.4 : 1	76
	Et ₂ NH Et ₂ NH <i>i</i> -PrOH <i>i</i> -PrOH (allyl) ₂ NH allyl alcohol NH ₄ OBz NH ₄ OAc	Nucleophile (equiv) Et_2NH 0 Et_2NH 1.5 i -PrOH 0 i -PrOH 1.5 (allyl) $_2$ NH 1.5 allyl alcohol 1.5 NH $_4$ OBz 1.5 NH $_4$ OAc 1.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557-1560.

M. Movassaghi

• Regioselectivity of uncatalyzed nucleophilic opening of 2,3-epoxy alcohols varies with the substrate and reaction conditions.

substrate	nucleophile	regioselectivity C3 : C2	combined yield (%)
H ₃ C, CH ₃	NaN ₃	1 : 10	90
H ₃ C, CH ₃	NaSPh H	1:>10	76
	H NaN ₃	1.4 : 1	71
	H NaSPh	1 : 1.4	72

Behrens, C. H.; Sharpless, K. B.; J. Org. Chem. 1985, 50, 5696-5704.

• Phenyl substitution at C3 of 2,3-epoxy alcohols can lead to high C3-regioselectivity.

Ph
$$\stackrel{\bullet}{\longrightarrow}$$
 OH $\stackrel{\bullet}{\longrightarrow}$ Nu $\stackrel{\bullet}{\longrightarrow}$ OH $\stackrel{\bullet}{\longrightarrow}$ OH $\stackrel{\bullet}{\longrightarrow}$ OH $\stackrel{\bullet}{\longrightarrow}$ Ph $\stackrel{\bullet}{\longrightarrow}$ OH $\stackrel{\bullet}{\longrightarrow}$ OH

Hanson, R. M. Chem. Rev. 1991, 91, 437-575, and references therein.

 $\bullet \ \text{C2 reduction of 2,3-epoxy alcohols using Red-Al is highly selective when C4 is oxygenated. } \\$

Red-AI = $[(CH_3OCH_2CH_2O)_2AIH_2]^-Na^+$

epoxy alcohol	C2 reduction C2 : C3	C3 reduction yield (%)
n-C ₆ H ₁₃	1:1	94
BnOOOOOO	5 : 1	89
BnO	40 : 1	98
H ₃ C OH	>100 : 1	78
CH ₃ OBn OH	100 : 1	95

Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Viti, S. M. *J. Org. Chem.* **1982**, *47*, 1378–1380.

Finan, J.; Kishi Y. Tetrahedron Lett. 1982, 23, 2719-2722.

• 1,3-Bis-epoxides:

Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Viti, S. M. *J. Org. Chem.* **1982**, *47*, 1378–1380.

Allylic epoxides:

Nicolaou, K. C.; Uenishi, J. J. Chem. Soc., Chem. Commun. 1982, 1292–1293.

M. Movassaghi

• The regioselectivity of epoxide opening can vary with the organometallic reagent.

BnO OH
$$\frac{1. \text{"M(CH}_3)_n\text{"}}{2. \text{NaIO}_4 \text{THF:H}_2\text{O}}$$
 BnO CH₃ $+$ BnO OH $\frac{\text{CH}_3}{\text{OH}}$ $+$ BnO OH $\frac{\text{CH}_$

Johnson, M. R.; Nakata, T.; Kishi, Y. *Tetrahedron Lett.* **1979**, 4343–4346. Roush, W. R.; Adam, M. H.; Peseckis, S. M. *Tetrahedron Lett.* **1983**, 1377–1380.

- AE of allyl alcohol followed by in situ derivatization affords versatile chiral building blocks, such as glycidol tosylate (now commercially available).
- Reactions of glycidol tosylate:

Klunder, J. M.; Onami, T.; Sharpless, K. B. *J. Org. Chem.* **1989**, *54*, 1295–1304. Hanson, R. M. *Chem. Rev.* **1991**, *91*, 437–475.

• Internal nucleophiles may be used to open 2,3-epoxy alcohols:

Corey, E. J.; Hopkins, P. B.; Munroe, J. E.; Marfat, A.; Hashimoto, S.-I. *J. Am. Chem. Soc.* **1980**, *102*, 7986–7987

Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 1109-1111.

Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792-3794.

HO
$$\stackrel{\text{(H}_2\text{CO)}_n}{\text{Cs}_2\text{CO}_3}$$
 OH $\stackrel{\text{OH}}{\text{CH}_3\text{CN}, 23 °C}$ Ph

McCombie, S. W.; Metz, W. A. Tetrahedron Lett. 1987, 28, 383-386.

Myers, A. G.; Widdowson, K. L. Tetrahedron Lett. 1988, 29, 6389-6392.

M. Movassaghi