Lista de Exercícios - Unidade 2

Convergência Estocástica e Resultados Limite 5 Questões por Teorema

Curso de Inferência Estatística Outubro 2025

Sumário

1 Introdução

Esta lista contém 30 questões organizadas por teorema, com 5 questões para cada um dos principais resultados da Unidade 2. Cada questão indica explicitamente qual teorema está sendo testado e utiliza diversas distribuições estudadas no curso.

Distribuições utilizadas: Normal, Poisson, Uniforme, Exponencial, Chi-quadrado, Bernoulli, Cauchy, Gamma e Beta.

2 Lei Fraca dos Grandes Números

[Questão 1] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$ onde $\mu = 5$ e $\sigma^2 = 4$.

- (a) Mostre que $\bar{X}_n \xrightarrow{P} 5$.
- (b) Calcule $P(|\bar{X}_n 5| \ge 0.5)$ usando a desigualdade de Chebyshev para n = 64.
- (c) Compare o resultado do item (b) com o valor exato obtido usando que $\bar{X}_n \sim N(5, 4/n)$.

[Questão 2] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$ onde $\lambda = 3$.

- (a) Verifique que $E[X_i]$ e $Var(X_i)$ são finitos.
- (b) Mostre que $\bar{X}_n \xrightarrow{P} 3$.
- (c) Encontre n tal que $P(|\bar{X}_n 3| \ge 0.3) \le 0.05$ usando a desigualdade de Chebyshev.

[Questão 3] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim U(0, \theta)$ onde $\theta = 10$.

- (a) Calcule $E[X_i]$ e $Var(X_i)$.
- (b) Mostre que $\bar{X}_n \xrightarrow{P} 5$.
- (c) Use a LFGN para justificar que \bar{X}_n é um estimador consistente para $\theta/2$.

[Questão 4] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\beta)$ onde $\beta = 2$ (taxa).

- (a) Calcule $E[X_i]$ e $Var(X_i)$.
- (b) Mostre que $\bar{X}_n \xrightarrow{P} 1/2$.
- (c) Se quisermos estimar β usando $T_n=1/\bar{X}_n$, mostre que T_n é consistente para β usando o teorema da função contínua.

[Questão 5] Lei Fraca dos Grandes Números

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Cauchy}(0, 1)$ (distribuição de Cauchy padrão).

- (a) Explique por que a LFGN **não pode** ser aplicada diretamente neste caso.
- (b) Mostre que $E[|X_i|] = \infty$.
- (c) Discuta o comportamento de \bar{X}_n neste caso. Ele converge?

3 Convergência via Momentos (Resultado 2P)

[Questão 6] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \chi_k^2$ (qui-quadrado com k graus de liberdade).

- (a) Mostre que $E[X_i] = k$ e $Var(X_i) = 2k$.
- (b) Use o Resultado 2P com r=2 para mostrar que $\bar{X}_n \xrightarrow{P} k$.
- (c) Calcule explicitamente $E[(\bar{X}_n k)^2]$ e mostre que converge para zero.

[Questão 7] Convergência via Momentos

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde p = 0.6.

- (a) Defina $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
- (b) Mostre que $E[S_n^2] = p(1-p) = 0.24$.
- (c) Use o Resultado 2P para mostrar que $S_n^2 \xrightarrow{P} 0.24$.

[Questão 8] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(a, b)$.

- (a) Seja $T_n = X_{(n)}$ (o máximo da amostra). Calcule $E[T_n]$ e mostre que $E[T_n] \to b$.
- (b) Calcule $E[(T_n b)^2]$ e mostre que converge para zero.
- (c) Conclua que $T_n \xrightarrow{P} b$ pelo Resultado 2P.

[Questão 9] Convergência via Momentos

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$.

- (a) Seja $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. Calcule $E[T_n]$.
- (b) Mostre que $E[(T_n (\mu^2 + \sigma^2))^2] \to 0$.
- (c) Conclua que $T_n \xrightarrow{P} \mu^2 + \sigma^2$.

[Questão 10] Convergência via Momentos

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ (taxa λ).

- (a) Defina $T_n = \frac{n}{\sum_{i=1}^n X_i}$. Este é o estimador de máxima verossimilhança para λ .
- (b) Mostre que $E[1/T_n] = 1/\lambda$ (dica: $\sum_{i=1}^n X_i \sim \text{Gamma}(n,\lambda)$).
- (c) Argumente que $T_n \xrightarrow{P} \lambda$ usando a LFGN e o teorema da função contínua.

4 Teorema de Slutsky

[Questão 11] Teorema de Slutsky

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$.

- (a) Mostre que $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma} \xrightarrow{D} N(0,1)$ pelo TCL.
- (b) Mostre que $S_n \xrightarrow{P} \sigma$.
- (c) Use o Teorema de Slutsky para mostrar que $\xrightarrow{\sqrt{n}(\bar{X}_n-\mu)} \xrightarrow{D} N(0,1)$.

[Questão 12] Teorema de Slutsky

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ onde $\lambda = 2$.

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n 1/2) \xrightarrow{D} N(0, 1/4)$.
- (b) Defina $U_n = \sqrt{n}(\bar{X}_n 1/2)$ e $V_n = \bar{X}_n$. Mostre que $U_n \xrightarrow{D} N(0, 1/4)$ e $V_n \xrightarrow{P} 1/2$.
- (c) Use Slutsky para encontrar a distribuição limite de $W_n = U_n \cdot V_n = \sqrt{n} \bar{X}_n (\bar{X}_n 1/2)$.

[Questão 13] Teorema de Slutsky

Sejam $\{X_n, n \geq 1\}$ v.a.'s i.i.d. com $X_i \sim U(0,\theta)$ onde $\theta > 0$ é desconhecido.

- (a) Sabe-se que $U_n = \frac{n}{\theta}(\theta T_n) \xrightarrow{D} \text{Exp}(1)$ onde $T_n = X_{(n)}$.
- (b) Mostre que $T_n \xrightarrow{P} \theta$.
- (c) Defina $Q_n = \frac{n(\theta T_n)}{T_n}$. Use Slutsky para encontrar a distribuição limite de Q_n .

[Questão 14] Teorema de Slutsky

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$.

- (a) Pelo TCL, $\frac{\sqrt{n}(\bar{X}_n \lambda)}{\sqrt{\lambda}} \xrightarrow{D} N(0, 1)$.
- (b) Mostre que $\sqrt{\bar{X}_n} \xrightarrow{P} \sqrt{\lambda}$.
- (c) Use Slutsky para mostrar que $\frac{\sqrt{n}(\bar{X}_n-\lambda)}{\sqrt{\bar{X}_n}} \xrightarrow{D} N(0,1)$.

[Questão 15] Teorema de Slutsky

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Cauchy}(\theta, 1)$ (localização θ , escala 1).

- (a) Explique por que o TCL não pode ser aplicado diretamente para \bar{X}_n .
- (b) Suponha que, por outro método, sabemos que $a_n(M_n \theta) \xrightarrow{D} \text{Cauchy}(0, 1)$ onde M_n é a mediana amostral e a_n é alguma constante.
- (c) Discuta se seria possível usar Slutsky neste contexto se tivéssemos $V_n \xrightarrow{P} c$.

5 Teorema Central do Limite

[Questão 16] Teorema Central do Limite

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde p = 0.3.

- (a) Calcule $E[X_i]$ e $Var(X_i)$.
- (b) Use o TCL para aproximar $P(\bar{X}_n \leq 0.35)$ para n = 100.
- (c) Compare com a aproximação normal para a binomial: $S_n = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p)$.

[Questão 17] Teorema Central do Limite

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ onde $\lambda = 1$.

- (a) Verifique que $E[X_i] = 1$ e $Var(X_i) = 1$.
- (b) Use o TCL para aproximar $P(0.9 \le \bar{X}_n \le 1.1)$ para n = 50.
- (c) Calcule a distribuição exata de $S_n = \sum_{i=1}^n X_i$ e compare.

[Questão 18] Teorema Central do Limite

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, 1)$.

- (a) Calcule $E[X_i] = 1/2 \text{ e Var}(X_i) = 1/12.$
- (b) Use o TCL para encontrar $P(|\bar{X}_n \frac{1}{2}| \le 0.05)$ para n = 100.
- (c) Encontre n tal que $P\left(\left|\bar{X}_n \frac{1}{2}\right| \le 0.01\right) \ge 0.95$.

[Questão 19] Teorema Central do Limite

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$ onde $\lambda = 5$.

- (a) Lembre que para Poisson, $E[X_i] = Var(X_i) = \lambda = 5$.
- (b) Use o TCL para aproximar $P(\bar{X}_n \ge 5.5)$ para n = 100.
- (c) Use o TCL para aproximar $P(S_n \ge 550)$ onde $S_n = \sum_{i=1}^n X_i$ e compare com o item anterior.

[Questão 20] Teorema Central do Limite

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Cauchy}(0, 1)$.

- (a) Mostre que $E[X_i]$ não existe (integral diverge).
- (b) Explique por que o TCL não se aplica.
- (c) Pesquise: qual é a distribuição de \bar{X}_n neste caso? (Dica: A soma de Cauchys independentes é Cauchy)

6 Método Delta / Teorema de Mann-Wald

[Questão 21] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim N(\mu, \sigma^2)$ onde $\mu > 0$.

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n \mu) \xrightarrow{D} N(0, \sigma^2)$.
- (b) Use o Método Delta com $g(x) = \sqrt{x}$ para encontrar a distribuição assintótica de $\sqrt{n}(\sqrt{\bar{X}_n} \sqrt{\mu})$.
- (c) Calcule $g'(\mu)$ e escreva explicitamente a variância assintótica.

[Questão 22] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Poisson}(\lambda)$.

- (a) Sabe-se que $\sqrt{n}(\bar{X}_n \lambda) \xrightarrow{D} N(0, \lambda)$.
- (b) Use o Método Delta com $g(x)=x^3$ para encontrar a distribuição assintótica de $\sqrt{n}(\bar{X}_n^3-\lambda^3)$.
- (c) Verifique que a variância assintótica é $9\lambda^5$.

[Questão 23] Método Delta

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(\lambda)$ (taxa λ).

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n 1/\lambda) \xrightarrow{D} N(0, 1/\lambda^2)$.
- (b) Use o Método Delta com $g(x) = \log(x)$ para encontrar a distribuição assintótica de $\sqrt{n}(\log(\bar{X}_n) \log(1/\lambda))$.
- (c) Simplifique a variância assintótica.

[Questão 24] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim U(0, 1)$.

- (a) Sabemos que $\sqrt{n}(\bar{X}_n 1/2) \xrightarrow{D} N(0, 1/12)$.
- (b) Use o Método Delta com $g(x)=\frac{1}{x}$ para encontrar a distribuição assintótica de $\sqrt{n}\left(\frac{1}{X_n}-2\right)$.
- (c) Calcule explicitamente g'(1/2) e a variância assintótica.

[Questão 25] Método Delta

Sejam X_1, X_2, \ldots, X_n v.a.'s i.i.d. com $X_i \sim \text{Bernoulli}(p)$ onde 0 .

- (a) Pelo TCL, $\sqrt{n}(\bar{X}_n p) \xrightarrow{D} N(0, p(1-p))$.
- (b) Use o Método Delta com $g(x) = \log\left(\frac{x}{1-x}\right)$ (transformação logit) para encontrar a distribuição assintótica de $\sqrt{n}\left[\log\left(\frac{\bar{X}_n}{1-\bar{X}_n}\right) \log\left(\frac{p}{1-p}\right)\right]$.
- (c) Calcule g'(p) e verifique que a variância assintótica é $\frac{1}{p(1-p)}$.

7 Convergência em Distribuição

[Questão 26] Convergência em Distribuição

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim U(0, \theta)$.

- (a) Seja $T_n = X_{(n)}$ o máximo amostral. Encontre a f.d.a. de T_n .
- (b) Defina $U_n = \frac{n}{\theta}(\theta T_n)$. Encontre a f.d.a. de U_n .
- (c) Mostre que $U_n \xrightarrow{D} \text{Exp}(1)$ quando $n \to \infty$.

[Questão 27] Convergência em Distribuição

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim \text{Exp}(1)$.

- (a) Seja $Y_n = \min\{X_1, \dots, X_n\}$. Encontre a distribuição de Y_n .
- (b) Considere $Z_n = n \cdot Y_n$. Encontre a distribuição de Z_n .
- (c) O que acontece com a distribuição de Z_n quando $n \to \infty$?

[Questão 28] Convergência em Distribuição

Sejam X_1, X_2, \dots, X_n v.a.'s i.i.d. com $X_i \sim N(0, 1)$.

- (a) Defina $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. Qual é a distribuição de $n \cdot T_n$?
- (b) Mostre que $T_n \xrightarrow{P} 1$.
- (c) Use o TCL para encontrar a distribuição assintótica de $\sqrt{n}(T_n-1)$.

[Questão 29] Convergência em Distribuição

Sejam $Y_n \sim \text{Gamma}(n, n)$ (forma $\alpha = n$, taxa $\beta = n$).

- (a) Calcule $E[Y_n]$ e $Var(Y_n)$.
- (b) Mostre que $Y_n \xrightarrow{P} 1$.
- (c) Use o TCL para a distribuição Gamma para mostrar que $\sqrt{n}(Y_n-1) \xrightarrow{D} N(0,1)$.

[Questão 30] Convergência em Distribuição

Sejam $X_n \sim \text{Beta}(n,1)$ para $n \geq 1$.

- (a) Encontre a f.d.p. de X_n e mostre que $E[X_n] = \frac{n}{n+1}$.
- (b) Mostre que $X_n \xrightarrow{P} 1$.
- (c) Defina $Y_n = n(1-X_n)$. Encontre a distribuição limite de Y_n quando $n \to \infty$.

8 Gabarito e Dicas

8.1 Dicas Gerais de Resolução

- 1. **Identifique o teorema aplicável:** Leia atentamente qual teorema está sendo testado no cabeçalho da questão.
- 2. Verifique as condições: Antes de aplicar um teorema, verifique que todas as condições são satisfeitas (i.i.d., momentos finitos, etc.).
- 3. **LFGN:** Use quando precisar mostrar $\bar{X}_n \xrightarrow{P} \mu$. Verifique $E[X_i] < \infty$ e (para versão simples) $Var(X_i) < \infty$.
- 4. **TCL:** Use quando precisar da distribuição de \bar{X}_n padronizada. Sempre resulta em N(0,1) assintoticamente.
- 5. **Slutsky:** Use quando precisar substituir parâmetros desconhecidos ou combinar convergências de tipos diferentes.
- 6. **Método Delta:** Use quando tiver uma transformação não-linear $g(\bar{X}_n)$ e quiser sua distribuição assintótica.
- 7. **Distribuição Cauchy:** Lembre-se que é o contraexemplo padrão não tem momentos finitos!
- 8. Cálculos de variância: Para $Var(\bar{X}_n) = \sigma^2/n$. Para soma: $Var(S_n) = n\sigma^2$.
- 9. **Padronização:** Sempre padronize corretamente: $(T_n E[T_n])/\sqrt{\operatorname{Var}(T_n)}$.
- 10. **Derivadas no Método Delta:** Não esqueça de calcular $g'(\theta)$ e elevar ao quadrado para a variância.

Respostas Selecionadas 8.2

Questão $\mathbf{5(c)}$: \bar{X}_n tem a mesma distribuição que X_1 (distribuição Cauchy) para todo n. Não há convergência!

Questão 11(c): Este é o resultado fundamental que permite usar estatística t quando σ é desconhecido.

Questão 16(b): $P(\bar{X}_n \leq 0.35) \approx P\left(Z \leq \frac{0.35 - 0.3}{\sqrt{0.21/100}}\right) = P(Z \leq 1.09) \approx 0.862.$ Questão 21(b): Variância assintótica: $\sigma^2/(4\mu)$.
Questão 26(c): Use que $\lim_{n\to\infty} \left(1 - \frac{u}{n}\right)^n = e^{-u}$.

Questão 30(c): $Y_n \xrightarrow{D} \text{Exp}(1)$ (use transformação de variáveis).