General Question Types

• Sampling distribution of a statistic:

Three quarters of the members of a cycle club own more than one bike.

A random sample of 10 members is taken from the club.

The random variables X_i : i = 1, 2, 3, ..., 10 are defined as

 $X_i = \begin{cases} 1 \text{ if the } i \text{th member owns more than one bike} \\ 0 \text{ if the } i \text{th member does not own more than one bike}. \end{cases}$

- **a)** Write down the distribution for $\sum_{i=1}^{10} X_i$.
- **b)** Find $P\left(\sum_{i=1}^{10} X_i \le 7\right)$.
- c) Give the values of $E\left(\sum_{i=1}^{10} X_i\right)$ and $Var\left(\sum_{i=1}^{10} X_i\right)$.

Binomial, E is np, Var is npq

- Sampling distribution of mean:
- 2. The contents of bottles of water are normally distributed with mean 600ml and standard deviation of 7.2ml.
 - a. Give the distribution of the mean content of a random sample of 6 bottles. b. Find the probability that the mean content of a random sample of 6 bottle is less than 597ml.
- Central limit theorem:
- 3. $X \sim Po(7)$. A random sample of 72 observations of X is taken.
 - a. State the approximation distribution of the sample mean. b. Find the probability that the sample mean is greater than 6.5.
- Unbiased estimate of population mean:
- 4. Calculate unbiased estimates of mean and variance of the population the samples were drawn from:

•
$$n = 50$$
; $\Sigma x = 423$; $\Sigma x^2 = 4956$

On average, sample mean will give the true value of the population mean. Variance of sample tends to understimate the variance. $s^2 = n/(n-1) * (biased estimator)$

- Confidence interval of mean of normal distribution:
- 5. Give 90% confidence interval for the mean for samples with following summary statistics:

a. n = 50,
$$\Sigma x = 357$$
 and $\Sigma x^2 = 12712$