Solutions Notebook for The Real Numbers and Real Analysis by Ethan D. Bloch

Jose Fernando Lopez Fernandez

22 March, 2020 - April 6, 2020

Contents

1	Properties of the Real Numbers 3		
2			
3	Limits and Continuity	5	
	3.3 Continuity	5	
	3.4 Uniform Continuity	5	
	3.5 Two Important Theorems	6	
	3.5.1 Exercises	6	
4	Differentiation		
	4.2 The Derivative	9	
	4.2.1 Exercises	9	
5	Integration 11		
6	Limits to Infinity		
7	Transcendental Functions	15	
	7.2 Logarithmic and Exponential Functions	15	
	7.2.1 Exercises	15	
8	Sequences	17	
9	Series	19	
10	Sequences and Series of Functions		
A	Functions	23	
Bi	Bibliography 2		

•	
177	CONTENTS
1 V	CONTENTS

Index 27

Construction of the Real Numbers

Properties of the Real Numbers

Limits and Continuity

3.3 Continuity

Theorem 3.3.5. Let $A \subseteq \mathbb{R}$ be a non-empty set, let $c \in A$, let $f, g : A \to \mathbb{R}$ be functions and let $k \in \mathbb{R}$. Suppose that f and g are continuous at c.

- 1. f + g is continuous at c.
- 2. f g is continuous at c.
- 3. kf is continuous at c.
- 4. fg is continuous at c.
- 5. If $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c.

3.4 Uniform Continuity

Definition 3.4.1. Let $A \subseteq \mathbb{R}$ be a set, and let $f: A \to \mathbb{R}$ be a function. The function f is **uniformly continuous** if for each $\epsilon > 0$, there is some $\delta > 0$ such that $x, y \in A$ and $|x - y| < \delta$ imply $|f(x) - f(y)| < \epsilon$.

Lemma 3.4.2. Let $A \subseteq \mathbb{R}$ be a set, and let $f : A \to \mathbb{R}$ be a function. If f is uniformly continuous, then f is continuous.

Theorem 3.4.4. Let $C \subseteq \mathbb{R}$ be a closed bounded interval, and let $f: C \to \mathbb{R}$ be a function. If f is continuous, then f is uniformly continuous.

3.5 Two Important Theorems

Theorem 3.5.1 (Extreme Value Theorem). Let $C \subseteq \mathbb{R}$ be a closed bounded interval, and let $f: C \to \mathbb{R}$ be a function. Suppose that f is continuous. Then there are $x_{\min}, x_{\max} \in C$ such that

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$

for all $x \in C$.

Theorem 3.5.2 (Intermediate Value Theorem). Let $[a, b] \subseteq \mathbb{R}$ be a closed bounded interval, and let $f : [a, b] \to \mathbb{R}$ be a function. Suppose that f is continuous. Let $r \in \mathbb{R}$. If r is strictly between f(a) and f(b), then there is some $c \in (a, b)$ such that f(c) = r.

3.5.1 Exercises

Exercise 3.5.4. Let $[a,b] \subseteq \mathbb{R}$ be a closed bounded interval, and let $f:[a,b] \to [a,b]$ be a function. Suppose that f is continuous. Prove that there is some $c \in [a,b]$ such that f(c) = c. The number c is called a **fixed point** of f.

Proposition (Existence of a Fixed Point in a Compact Interval of \mathbb{R}). Let $[a,b] \subseteq \mathbb{R}$ be a closed bounded interval, and let $f:[a,b] \to [a,b]$ be a continuous function. There exists a **fixed point** $c \in [a,b]$ such that f(c) = c.

Proof. The function f is an endomorphism, as its codomain is exactly its domain, and thus the image of f is a subset of [a,b]. We can infer from this that $f(a) \ge a$ and $f(b) \le b$.

We now define a new function, $g:[a,b]\to\mathbb{R}$, where g(x)=f(x)-x for all $x\in[a,b]$. We began by supposing f is continuous, and we know x is continuous from a to b, since [a,b] is a closed bounded interval. Therefore, by Theorem 3.3.5, g is continuous.

Using our inference that $f(a) \ge a$ and $f(b) \le b$ we deduce that $g(a) \ge 0$ and $g(b) \le 0$.

$$f(a) \ge a$$
 $f(b) \le b$
 $f(a) - a \ge a - a$ $f(b) - b \le b - b$
 $f(a) - a \ge 0$ $f(b) - b \le 0$
 $g(a) \ge 0$ $g(b) \le 0$

By the Intermediate Value Theorem (Theorem 3.5.2), there exists some $\xi \in [a,b]$ such that $g(\xi) = 0$. By the definition of g, this means that $f(\xi) = \xi$, completing the proof.

Differentiation

4.2 The Derivative

Definition 4.2.1. Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, and let $f: I \to \mathbb{R}$ be a function.

1. The function f is **differentiable** at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \tag{4.1}$$

exists; if this limit exists, it is called the **derivative** of f at c, and it is denoted f'(c).

2. The function f is **differentiable** if it is differentiable at every number in I. If f is differentiable, the **derivative** of f is the function $f': I \to \mathbb{R}$ whose value at x is f'(x) for all $x \in I$.

Lemma 4.2.2. Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, and let $f : I \to \mathbb{R}$ be a function. Then f is differentiable at c if and only if

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \tag{4.2}$$

exists, and if this limit exists it equals f'(c).

4.2.1 Exercises

Exercise 4.2.1. Using only the definition of derivatives and Lemma 4.2.2, find the derivative of each of the following functions.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x 8 for all $x \in \mathbb{R}$.
- 2. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x^3$ for all $x \in \mathbb{R}$.

Integration

Chapter 6 Limits to Infinity

Transcendental Functions

7.2 Logarithmic and Exponential Functions

Definition 7.2.1. The **natural logarithm** function is the function $\ln: (0, \infty) \to \mathbb{R}$ defined by

$$\ln x = \int_1^x \frac{1}{t} dt \tag{7.1}$$

for all $x \in (0, \infty)$.

Theorem 7.2.2.

- 1. The function ln is differentiable, and $\frac{d}{dx}(\ln) = \frac{1}{x}$ for all $x \in (0, \infty)$.
- 2. The function ln is strictly increasing.

7.2.1 Exercises

Exercise 7.2.1. Prove that $\ln 2 > 0$.

Proof. By the Fundamental Theorem of Calculus, the derivative of $\ln x$ is $\frac{1}{x}$, which is positive for all values in the interval $(0,\infty)$. Since its first derivative is positive for all values in $(0,\infty)$, the function $\ln x$ is strictly increasing. By the Archimedean property of the real numbers, there exists at least one real number c such that 1 < c < 2, and we can therefore conclude that $\ln 1 < \ln c < \ln 2$. Since $0 = \ln 1$, we have that $0 < \ln 2$, as required.

Exercise 7.2.7. Prove that $\exp x \ge 1 + x$ for all $x \in (0, \infty)$.

Proposition. If $\ln^{-1}(x) = \exp x$, then $\exp x \ge 1 + x$ for all $x \in (0, \infty)$.

Proof. While the value of $\exp x$ when x equals zero is outside the domain we are given, 0 is the greatest lower bound of our interval. By Theorem 7.2.2, $\exp x$ is strictly increasing, and therefore $\exp x \ge \exp 0$ for all $x \in (0, \infty)$.

By Definition 7.2.1, $\ln 1 = 0$, and therefore $\exp 0 = 1$. We now differentiate both sides of the inequality to determine which expression increases more with respect to x. Since both expressions are equal when x equals zero, the derivative is the sole factor in determining whether the inequality is true.

$$\frac{d}{dx}(\exp x) \ge \frac{d}{dx}(1+x)$$

$$\exp x > 1$$

Once again, since we know that $\exp 0 = 1$ and $\exp x$ is strictly increasing, we can conclude that $\exp x \ge 1 + x$ for all $x \in (0, \infty)$.

Sequences

Series

Sequences and Series of Functions

Appendix A

Functions

Definition A.0.1. [2] Let A and B be sets. A **function** (also called a **map**) f from A to B, denoted $f: A \to B$, is a subset $F \subseteq A \times B$ such that for each $a \in A$, there is one and only one pair in F of the form (a, b). The set A is called the **domain** of f and the set B is called the **codomain** of f.

Bibliography

- [1] K. G. Binmore. *Mathematical Analysis*. 2nd ed. Cambridge University Press, 1983.
- [2] Ethan D. Bloch. *Proofs and Fundamentals*. 2nd ed. Undergraduate Texts in Mathematics. Springer, 2011.

26 BIBLIOGRAPHY

Index

 $\begin{array}{c} {\rm codomain},\ 23 \\ {\rm continuity},\ 5 \end{array}$

domain, 23

Extreme Value Theorem, 6

fixed point, 6

Intermediate Value Theorem, 6

uniform continuity, 5