

Using Multiple GPUs for Distributed Deep Learning on Neuron

Soonwook Hwang

Korea Institute of Science and Technology Information

Objectives

- Guide users to run his/her DL codes using multiple GPU nodes on Neuron (KISTI GPU Cluster)
- Introduce how to set up a virtual environment
 - install Conda and create/set up his/her virtual environment
 - run his/her codes interactively on Neuron
- Introduce how to run Distributed DL training on Neuron
 - Horovod
 - Singularity Container

Agenda

- Why distributed training?
- Distributed DL: Concepts and Approaches
 - Data Parallel
 - Parameter Server(s)
 - Ring AllReduce
 - Model Parallel
 - Pipeline parallel
 - Tensor parallel
 - Multi-dimensional (3D) Parallel
- KISTI GPU Cluster: Neuron
- Hands-on Exercises
 - Conda Virtual Environment
 - Distributed Data Parallel(DDP) using Horovod
 - DDP using Singularity Container

 θ : parameters

(X, Y): (Input, Label) pair of Training data

$$\ell(\theta, x, y)$$

Loss function (how well net output matched true label y on point x) Can be l_2 , cross-entropy....

Objective $\mathrm{argmin}_{\theta} E_i[\ell(\theta, x_i, y_i)]$

Gradient Descent

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} (E_i[\ell(\theta^{(t)}, x_i, y_i)])$$

Stochastic GD: Estimate ∇ via small sample of training data.

Why Distributed Training

Model size is too big

https://medium.com/riselab/ai- and- memory- wall- 2cb4265cb0b8

Why Distributed Training

- With More compute power and memory using multiple devices (GPU/TPU/CPU)
 - Enable training large model
 - Speed up model training and shorten training time
 - Shorter training time allows you to do more experiments to reach your modeling goal

Distributed DL approaches

Model Parallelism

- Different parts of model running on multiple GPUs
- Model is too large, which cannot fit in a single device

Data Parallelism

- Different parts of data running on multiple GPUs
- Data is too large, which need to be processed in parallel

Data Parallel

- How to divide/distribute batches to workers
- When to synchronize workers
- How to maintain consistency in states

Data Parallel

Data Parallel

How to synchronize model parameters

- Parameter Server (centralized)
 - Synchronous
 - Asynchronous
- Ring AllReduce (decentralized)

Parameter Server (PS)

- Split the training data into shards and assign a model replica to each data shard
- For each model replica, fetch the parameters from the centralized sharded parameter server
- Gradients are computed per model and pushed back to the parameter server

Each data shard stores a subset of the complete training data

Synchronous vs. Asynchronous PS

Figure 2: Left: Downpour SGD. Model replicas asynchronously fetch parameters w and push gradients Δw to the parameter server. Right: Sandblaster L-BFGS. A single 'coordinator' sends small messages to replicas and the parameter server to orchestrate batch optimization.

Figure from Large Scale Distributed Deep Networks

https://static.googleusercontent.com/media/research.google.com/ko//archive/large_deep_networks_nips2012.pdf

Synchronous PS

Asynchronous PS

Ring AllReduce

Synchronized w/o parameter server(s)

Figure 4: The ring-allreduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server.

Horovod: fast and easy distributed deep learning in Tensorflow https://arxiv.org/pdf/1802.05799.pdf

Model Parallel

- Inter-layer Model Parallel
 - pipeline parallel
- Intra-layer Model Parallel
 - Tensor parallel
- Multi-dimensional Parallel
 - 3D parallel

Inter/Intra-layer Model Parallel

Inter- layer model parallel

Intra- layer model paralle

Pipeline Model Parallel

GPipe: Easy Scaling with Micro- Batch Pipeline Parallelism

https://arxiv.org/pdf/1811.06965.pdf

PipeDream: Fast and Efficient Pipeline Parallel DNN Training

https://arxiv.org/pdf/1806.03377.pdf

Tensor Parallel

Megatron- LM: Training Multi- Billion Parameter Language Models Using Model Parallelism https://arxiv.org/pdf/1909.08053.pdf

3D Parallel

Data Parallel + Pipeline Parallel + Tensor Parallel

DeepSpeed: Extreme- scale model training for everyone

https://www.microsoft.com/en- us/research/blog/deepspeed- extreme- scale- model- training- for- everyone

KISTI GPU Cluster: Neuron

year	#node	#GPU	#Flops
2018	44	53	312.8TF
2019	63	99	698.8TF
2020	78	163	1.24PF
2021	59	200	2.34PF
2022	65	260	3.53PF

Slurm Queues on Neuron

Queue Name (CPU_GPU_GPU#)	#Node	#Total CPU Core	#Job Submission Limit per User	#GPU allocation Limit per User	
cas_v100nv_8	5	160	2	40	V100 (NVlink) 8ea
cas_v100nv_4	4	160	2	16	V100 (NVlink) 4ea
cas_v100_4	15	600	4	40	V100 4ea
cas_v100_2	5	160	2	10	V100 2ea
amd_a100nv_8	14	868	4	64	A100 (Nvlink) 8ea
amd_a100_4	2	128	1	8	A100 4ea
amd_a100_2	2	128	1	4	A100 2ea
skl	10	360	2	-	
bigmem	3	120	1	-	

Distributed Training Workflow on Supercomputer


```
## create/activate a virtual environment
$ conda create -n pt_env python=3.7
$ conda activate pt_env
$ (pt_env) conda install pytorch
$ (pt_env) python train.py
```

```
## request 2 nodes for interactive job
$ salloc --nodes=2 --time=8:00:00 --
gres=gpu:4 # available GPU-nodes allocated
## run& test ML/DL codes interactively
$ (pt_env) srun -n 8 python train_ddp.py
```

```
## submit a batch job script requesting 20 nodes with 8 GPUs each node $ (pt_env) sbatch train_ddp_script.sh ## monitor/check the job status $ (pt_env) squeue
```


Breakdown of Neuron Usage

2노드 이상 사용하는 SW 사용률(실행시간 기준)

Slurm Queues & available GPUs on Neuron

```
$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
jupyter
          up 2-00:00:00
                         3 mix jupyter[02-04]
          up 2-00:00:00 1 idle jupyter01
jupyter
cas v100nv 8 up 2-00:00:00
                            1 mix gpu01
cas v100nv 8 up 2-00:00:00
                             4 alloc gpu[02-05]
cas v100nv 4 up 2-00:00:00 1 mix gpu09
cas v100nv 4 up 2-00:00:00
                             2 alloc gpu[07-08]
cas v100 4 up 2-00:00:00
                            2 mix gpu[13,17]
cas v100 4
            up 2-00:00:00 10 alloc gpu[10-12,18-24]
cas v100 4 up 2-00:00:00
                            2 idle gpu[14-15]
cas v100 2 up 2-00:00:00 1 mix gpu25
cas v100 2 up 2-00:00:00 1 alloc gpu26
amd a100nv 8 up 2-00:00:00
                              2 mix gpu[36-37]
amd a100nv 8 up 2-00:00:00
                              6 alloc gpu[30,32-33,39-41]
amd a100nv 8 up 2-00:00:00
                              1 idle gpu42
amd a100 4
              up 2-00:00:00
                             1 mix gpu44
amd a100 4
              up 2-00:00:00
                             1 alloc gpu45
         up 2-00:00:00 8 idle skl[01-06,08-09]
skl
                           2 idle bigmem[01-02]
bigmem
           up 2-00:00:00
           up infinite
                          mix gpu06
exclusive
                          mix gpu35
scidebert
           up infinite
                       1 alloc gpu34
           up infinite
scidebert
new service up infinite
                         4 down* bigmem03.jupyter[05-06].skl07
maintenance
             up infinite
                          6 idle gpu[16,29,31,38,43],jupyter07
```

Slurm Quick Start User Guide

- https://slurm.schedmd.com/quickstart.html
- KISTI User Guide
 - https://www.ksc.re.kr/gsjw/jcs/hd

Conda Virtual Environment

Download & Install Conda on /scratch/userID directory

```
## Miniconda
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ chmod 755 Miniconda3-latest-Linux-x86_64.sh
$ ./Miniconda3-latest-Linux-x86_64.sh
```

- ✓ Type your Conda installation directory to "/scratch/userID/miniconda3"
 ✓ Conda default installation directory: \$HOME/miniconda3
- ✓ Type Conda init: "yes", which will add conda init scripts to ~/.bashrc

```
$ source ~/.bashrc # set conda path
$ conda config --set auto_activate_base false
$ which conda
/scratch/$USER/miniconda3/condabin/conda
$ conda --version
conda 4.12.0
$ Is /scratch/$USER/miniconda3
          conda-meta/ lib/
                               mkspecs/
                                                     ssl/
                                            gml/
                              phrasebooks/ resources/ translations/
          doc/
                    libexec/
                     LICENSE.txt pkgs/
bin/
           envs/
                                             sbin/
                                                      var/
```


Anaconda

Anaconda

- distribution of the Python and R programming languages for scientific computing
 - data science, machine learning applications, large-scale data processing, predictive analytics, etc
- aims to simplify package management and deployment

Conda

- open source package management system and environment management system
- runs on Windows, macOS, Linux and z/OS
- quickly installs, runs and updates packages and their dependencies.

PIP

- package installer for Python
- use pip to install packages from the Python Package Index and other indexes.

Miniconda

- a small, bootstrap version of Anaconda
 - includes only conda, Python, the packages they depend on
- a free minimal installer for conda

Anaconda vs Miniconda

Number of packages

 Anaconda comes with over 150 data science packages, whereas miniconda comes with only a handful

Interface

 Anaconda has a graphical user interface (GUI) called the Navigator, while miniconda has a command-line interface

```
### Anaconda Download
$ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
### Miniconda Download
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
```


Conda command

clean	Remove unused packages and caches.
config	Modify configuration values in .condarc. This is modeled after the git config Writes to the user .condarc file (/home01/userID/.condarc) by default.
create	Create a new conda environment from a list of specified packages.
help	Displays a list of available conda commands and their help strings.
info	Display information about current conda install.
init	Initialize conda for shell interaction. [Experimental]
install	Installs a list of packages into a specified conda environment.
list	List linked packages in a conda environment.
package	Low-level conda package utility. (EXPERIMENTAL)
remove	Remove a list of packages from a specified conda environment.
uninstall	Alias for conda remove.
run	Run an executable in a conda environment. [Experimental]
search	Search for packages and display associated information. The input is a MatchSpec, a query language for conda packages. See examples below.
update	Updates conda packages to the latest compatible version.
upgrade	Alias for conda update

Horovod

- distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet
 - developed by Uber
- aims to make distributed deep learning fast and easy to use

Why Horovod?

- The primary motivation for this project is to make it easy to take a single-GPU training script and successfully scale it to train across many GPUs in parallel
 - ✓ How much modification does one have to make to a program to make it distributed, and how easy is it to run it?
 - ✓ How much faster would it run in distributed mode?
- Internally at Uber we found the MPI model to be much more straightforward and require far less code changes than previous solutions such as Distributed TensorFlow with parameter servers.

Why Horovod?

- easy to use and fast
- scalling with Horovod

Horovod Usage

- 5 steps/lines to be added in your code
 - Initialize Horovod
 - Pin GPU to each worker
 - Wrap the optimizer
 - Synchroize state across workers
 - Checkpoint on the first worker

Initialize Horovod

Tensorflow

- import horovod.tensorflow as hvd
- hvd.init()

Kera

- import horovod.keras as hvd
- hvd.init()

Pytorch

- import horovod.torch as hvd
- hvd.init()

Pin a GPU for each worker

Tensorflow

tf.config.experimental.set_visible_devices(gpus[hvd.local_r ank()], 'GPU')

Keras

tf.config.experimental.set_visible_devices(gpus[hvd.local_r ank()], 'GPU')

Pytorch

torch.cuda.set device(hvd.local rank())

Adjust learning rate and wrap the optimizer

Tensorflow

- opt = tf.optimizers.Adam(0.01 * hvd.size())
- opt = hvd.DistributedOptimizer(opt,...)

Keras

- opt = keras.optimizers.Adadelta(0.01 * hvd.size())
- opt = hvd.DistributedOptimizer(opt,...)

Pytorch

- opt = optim.SGD(model.parameters(), 0.01 * hvd.size())
- opt= hvd.DistributedOptimizer(opt, ...)

Synchronize state across workers

Tensorflow/Kera

callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0)]

Pytorch

- hvd.broadcast_parameters(model.state_dict(), root_rank=0)
- hvd.broadcast_optimizer_state(optimizer, root_rank=0)
- Ensure all workers start with the same weights

Checkpoint on the first worker (rank 0)

Tensorflow/Keras

 if hvd.rank() == 0: callbacks.append(keras.callbacks.ModelCheckpoint(args.c heckpoint_format))

Pytorch

```
• if hvd.rank() == 0:
    state = {'model': model.state_dict(),
        'optimizer': optimizer.state_dict(), }
    torch.save(state, filepath)
```


Pytorch Example

```
import torch
                                                           # Horovod: broadcast parameters.
import horovod.torch as hvd
                                                           hvd.broadcast_parameters(
                                                             model.state_dict(),
# Initialize Horovod
                                                             root_rank=0)
hvd.init()
                                                           for epoch in range(100):
# Horovod: pin GPU to local rank.
                                                             for batch_idx, (data, target) in enumerate(...):
torch.cuda.set_device(hvd.local_rank())
                                                               optimizer.zero_grad()
                                                               output = model(data)
# Build model.
                                                               loss = F.nll_loss(output, target)
model = Net()
                                                               loss.backward()
model.cuda()
                                                               optimizer.step()
optimizer = optim.SGD(model.parameters())
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
  optimizer,
  named_parameters=model.named_parameters())
```


Horovod execution command

- MPI takes care of launching processes on all nodes
- Run on a 4-GPU machine
 - \$ salloc ...
 - \$ mpirun -np 4 -H localhost:4 python train_hvd.py
 - \$ horovodrun -np 4 -H localhost:4 python train_hvd.py
 - \$ srun -n python train_hvd.py
- Run on 4 machines with 4-GPUs each
 - \$ salloc ...
 - \$ mpirun/horovodrun -np 4 -H
 node1:4,node2:4,node3:4,node4:4 python train_hvd.py
 - \$ srun -n 16 python train hvd.py

Horovod Installation on Neuron

```
$ module load gcc/10.2.0 cuda/11.4 cudampi/openmpi-4.1.1 cmake/3.16.9
$ conda create -n horovod
$ conda activate horovod
$ conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
$ pip install tensorflow-gpu==2.10.0
$ HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_TENSORFLOW=1
HOROVOD_WITH_PYTORCH=1 \
HOROVOD_WITH_MPI=1 HOROVOD_WITH_GLOO=1 pip install --no-cache-dir horovod
$ horovodrun -cb
Horovod v0.26.1:
Available Frameworks:
 [X] TensorFlow
  [X] PyTorch
  [] MXNet
Available Controllers:
  [X] MPI
  [X] Gloo
Available Tensor Operations:
  IXI NCCL
  [] DDL
 [] CCL
  [X] MPI
  [X] Gloo
```


Horovod execution on Neuron

(horovod) \$ srun -n python train_hvd.py

1) request an allocation of available on neuron
\$ salloc --partition=amd_a100nv_8 -J debug --nodes=2 --time=2:00:00 -gres=gpu:4 --comment=horovod

2) load modules
\$ module load gcc/10.2.0 cuda/11.4 cudampi/openmpi-4.1.1 cmake/3.16.9

3) activate the horovod virtual environment
\$ conda activate horovod

4) run horovod applications

(horovod) \$ mpirun/horovod -np 8 -H gpu#:4,gpu#:4 python train_hvd.py

Singularity

a container platform for HPC

Container-based applications have *direct access* to the host kernel and hardware and, thus, are able to achieve similar performance to native applications. In contrast, VM-based applications only have *indirect access* via the guest OS and hypervisor, which creates a significant performance overhead.

Why Singularity?

- A container platform for HPC
 - Each container is a single image file
 - No root owned daemon processes
 - Support shared/multi-tenant resource environment
 - Support HPC hardware
 - Infiniband, GPUs
 - Support HPC applications
 - MPI

Running Horovod using Singularity on Neuron

- No bother to deal with conda & horovod
- Just allocate nodes using salloc and run singularity container. That's it!!!

```
$ salloc --partition=amd_a100nv_8 -J debug --nodes=2 --time=2:00:00 --
gres=gpu:4 --comment=horovod
$ srun -n 8 singularity run --nv
/apps/applications/singularity_images/ngc/pytorch_22.03-hd-py3.sif python
pytorch imagenet resnet50.py
/usr/bin/rm: cannot remove '/usr/local/cuda/compat/lib': Read-only file system
/usr/bin/rm: cannot remove '/usr/local/cuda/compat/lib': Read-only file system
                           1/5005 [00:13<19:03:52, 13.72s/it, loss=2.29, accurTrain Epoch
Train Epoch #10: 0%
             | 1/5005 [00:13<19:03:52, 13.72s/it, loss=2.22, accurTrain Epoch
#10: 0%|
                                                                        #10: 0%
2/5005 [00:13<19:03:38, 13.72s/it, loss=2.16, accurTrain Epoch #10: 0%]
                                                                        3/5005
[00:13<5:00:52, 3.61s/it, loss=2.16, accuraTrain Epoch #10: 0%]
                                                                | 3/5005 [00:13<5:00:52,
3.61s/it, loss=2.17, accuraTrain Epoch #10: 0% | 4/5005 [00:13<5:00:48, 3.61s/it, loss=2.23,
accura
```


Singularity Usage on Neuron

- Web site: https://www.ksc.re.kr/gsjw/jcs/hd
- DDL training job scripts directory
 - /apps/applications/singularity_images/examples
- Singularity Container Images directory
 - /apps/applications/singularity_images/ngc
- Pytorch examples directory
 - Single node
 - /apps/applications/singularity images/examples/pytorch/resnet50v1.5
 - Multiple nodes
 - /apps/applications/singularity_images/examples/horovod/examples/pytorch
- Imagenet datasets directory
 - Training data
 - /apps/applications/singularity images/imagenet/train
 - Validation data
 - /apps/applications/singularity_images/imagenet/val

Thank you

Contact: Soonwook Hwang "> hwang@kisti.re.kr>

https://github.com/hwang2006/KISTI-DL-tutorial-using-horovod

