Міністерство освіти і науки України Сумський державний університет Кафедра комп'ютерних наук Секція інформаційний та комунікаційних технологій

КУРСОВА РОБОТА

з дисципліни "Програмування"

Тема "Обчислення зміни діаметра краплі, отриманих за допомогою віброгранулятора"

Виконав ст

Перевірив

Зміст

Постановка задачі	
Вхідні дані	
Загальні вказіки	
Можливі помилки	
Опис змінних	5
Блок схеми	6
Функції, що використовувалися у програмі	
Файли програми	9
Список використаних бібліотек	s
Код программи	10
Приклад тестування	13
Контрольний приклад	15
Графіки	18
Висновок	20
Списом вимопистацої піторатури	21

Постановка задачі

Необхідно для кожного варианту на відрізку часу від 0 до T з кроком Δt побудувати графік зміни значень d_k . Діаметр краплі d_k визначаються за формулою:

$$d_k = \sqrt[3]{\frac{3d^2 \varepsilon v}{2f}}$$
, де

у- швидкість витікання струменя рідини,

d -діаметр отвору для витікання,

 ε - коефіцієнт стиснення струменя,

f - частота імпульсів тиску,що підводяться до розбризканої рідини.

Параметри V та f змінюются в часі.

$$v = v_0(1 + k \cdot \cos \frac{2\pi}{T}t)$$
, де $t - \text{час}, k \in [0,1]$.

$$f = \begin{cases} F + \frac{4A}{T}t, \partial n\pi t \in [0, \frac{T}{4}] \\ F + A - (t - \frac{T}{4})\frac{4A}{T}, \partial n\pi t \in [\frac{T}{4}, \frac{3}{4}T] \\ F - A + (t - \frac{3}{4}T)\frac{4A}{T}, \partial n\pi t \in [\frac{3}{4}T, T] \end{cases}$$

Тут v_0 , k, F, A- задані константи.

Вхідні дані

- 1. T=600 c, $\Delta t = 20c$, $\varepsilon = 0.6$, $v_0 = 2.5 \,\mathrm{M/c}$, F=1000 Γ II, A=250 Γ II, k = 0.8, $d = 0.5 \,\mathrm{MM}$.
- 2. F=2000 Γ ц, A=300 Γ ц, k=0.75, d=1.0 мм. Інші данні див. пункт 1.
- 3. F=500 Γ ц, A=50 Γ ц, k=0.85, d=2.0 мм. Інші данні див. пункт 1.

Загальні вказіки

Описати масив структур із 3 элементів. Кожна структура об'єднує параметри, які описують режим роботи окремого віброгранулятора.

Віброгранулятор — це пристрій, призначений для отримання крапель рідини (розчину, сплаву). Із цих крапель потім виходить гранули сферичної форми. Віброгранулятор широко використовується в химічній промисловості.

Масив - впорядкований набір фіксованої кількості однотипних елементів, що зберігаються в послідовно розташованих комірках оперативної пам'яті, мають порядковий номер і спільне ім'я.

Структура - це сукупність змінних, об'єднаних одним ім'ям, що надає загальноприйнятий спосіб спільного зберігання інформації.

Вхідні дані зчитуються з файлу. Результати розрахунків записувати в інший файл. Для роботи з файлами використовуються функції форматованого введення, виведення:

- fprintf для виведення (запису) даних в файл;
- fscanf для введення (читання) даних з файлу;

Щоб використовувати ці функції, в текст програми необхідно включити додаткову бібліотеку stdio.h.

Передбачити при введенні контроль за умовою $k \in [0,1]$ також створити окремі функції для обчислення v,t.

Функції— це окремі незалежні блоки коду, які виконують ряд зумовлених команд. Функції мають безліч застосувань і полегшують створення програм.

В таблиці 1 наведені змінні, що використовуються у програмі та їх описання.

В таблиці 2 наведений перелік полів struct data та їх описання.

На рисунку 1 наведена блок схема для функції main().

На рисунку 2 наведена блок схема для функції fun_t(struct data *a, int n).

Ha рисунку 3 наведена блок схема для функції funV(double _k, double _T, double t, double _v0, double *v).

Ha рисунку 4 наведена блок схема для функції funf(double _F, double _A, double _T, double t, double *f0).

Можливі помилки

Error1 - Файл не відкрився або немає даних.

Error2 - Значення k, не задовольняє умові.

Error3 - Некоректно введені дані.

Опис змінних

Змінні в блок схемі

Таблиця 1

	DONOR ONOM	Taonni
Змінна у програмі	Тип змінної	Значення
data	struct	данні
x[]	data	масив даних
a[]	data	масив даних
n	int	кількість дослідів
c	char	підтвердження дії
t	double	час
V	double	швидкість
dk	double	діаметр краплі
fv	FILE	шлях до вхідного файлу
f1	FILE	шлях до вихідного файлу
f	double	частота імпульсів тиску

Поля struct data

Таблиця 2

Змінна у програмі	Тип поля	Значення
T	double	період часу
dt	double	зміна часу
v0	double	задана константа
3	double	коефіціент стискання струменя
A	double	задана константа
F	double	задана константа
k	double	задана константа
d	double	діаметр отвіру

Main() Start c, i, x, n,*fv Enter amount of data: Yes fv == NULL No Error1 i = 0; i < n; i++fclose(fv) x[i].T, x[i].dt, x[i].e, <[i].v0,x[i].F, x[i].A, x[i].k, x[i].d fun_t(x,n) free(x) fclose(fv) Complete If you want to restart please press y: No Yes Finish

Блок схеми

Рисунок 1. Блок-схема головної функції таіп()

Рисунок 3 Блок-схема головної функції funV(double _k, double _T, double t, double _v0, double *v)

Рисунок 4. Блок-схема головної функції funf(double _F, double _A, double _T, double t, double *f0)

Функції, що використовувалися у програмі

- -fun_t(struct data *a, int n)(див. Рисунок 2) функція для розрахунку \mathbf{dk} .
- -funV(double _k, double _T, double t, double _v0, double *v)(див. Рисунок 3) функція для розрахунку **v**.
- -funf(double _F, double _A, double _T, double t, double *f0)(див. Рисунок 4) функція для розрахунку \mathbf{f} .

Файли програми

- *Curs.exe* програма;
- vh.txt файл, в якому зберігаються вхідні дані;
- result.txt файл, в який записується результат.

Список використаних бібліотек

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>

Код программи

```
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>
#define pi 3.14159265358979323846
struct data{
          double T, dt, e, v0, F, A, k, d;
    };
FILE *f1,*fv;
void funV(double k, double T, double t, double v0, double *v);
void funf(double _F, double _A, double _T, double t, double *f0);
void fun t(struct data *a, int n);
int main() {
     int n, i;
     char c;
     printf("Enter amount of data: ");
     scanf("%i", &n);
     fflush(stdin);
    struct data *x = (struct data*)calloc (n, sizeof(struct data));
    printf("Enter information in the file vh.txt in a format\n");
    printf("T, dt, e, v0,F, A, k, d \n");
    fv=fopen("vh.txt","r");
    if (fv == NULL)
       printf("Error1\t--The file cannot be opened or data is entered--\n");
       printf("Need create file with data\n\n");
       fclose (fv);
       return main();
      }
```

Приклад тестування

Запустимо файл Curs.exe

© Curs 08.05.2017 22;49 Приложение

Відкриється вікно, яке попросить вас ввести кількість вхідних наборів даних

Далі з'явиться повідомлення в якому буде написано, у якому форматі необх ввести дані у файл vh.txt.

Якщо файлу vh.txt немає або файл пустий програма повідомить про це і підк створити текстовий файл або ввести дані в нього. Якщо ви це вже зробили знаведіть кількість вхідних наборів даних.

```
Enter amount of data: 1
Enter information in the file vh.txt in a format
T, dt, e, v0,F, A, k, d
Error1 --The file cannot be opened or data is entered--
Need create file with data
Enter amount of data:
```

Далі програма повідоме які значення були викорастанні, виконує обчислен

```
F:\<sup>L</sup>ȳ<sub>1</sub> cp\<sub>+</sub>++\<sup>L</sup>εΕ̈́ειοτρ \Curs.exe
Enter amount of data: 1
Enter information in the file vh.txt in a format
T, dt, e, v0,F, A, k, d
Error1 --The file cannot be opened or data is entered--
Need create file with data
Enter amount of data: 1
Enter information in the file vh.txt in a format
', dt, e, v0,F, A, k, d
600.000000 20.000000 0.600000 2.500000 1000.000000 250.000000 0.800000 0.00050
               Result 1
                   dk = 1.004149 \text{ mm}
  = 0 sec
                    dk = 0.990008 \text{ mm}
   20 sec
                    dk = 0.970026 \text{ mm}
   40 sec
```

dk = 0.944409 mm

dk = 0.913383 mm

dk = 0.877205 mm

= 60 sec = 80 sec

= 100 sec

Контрольний приклад

Тест 1

Вхід

```
T=600 c, \Delta t = 20c, \varepsilon = 0.6, v_0 = 2.5 m/c, F=500Γμ, A=50 Γμ, k = 0.85, d = 2.0 mm.
```

Вихід

- t = 0 sec, dk = 1.004149 mm
- t = 20 sec, dk = 0.990008 mm
- t = 40 sec, dk = 0.970026 mm
- t = 60 sec, dk = 0.944409 mm
- t = 80 sec, dk = 0.913383 mm
- t = 100 sec, dk = 0.877205 mm
- t = 120 sec, dk = 0.836169 mm
- t = 140 sec, dk = 0.790630 mm
- t = 160 sec, dk = 0.747662 mm
- t = 180 sec, dk = 0.706650 mm
- t = 200 sec, dk = 0.661367 mm
- t = 220 sec, dk = 0.613260 mm
- t = 240 sec, dk = 0.565042 mm
- t = 260 sec, dk = 0.521639 mm
- t = 280 sec, dk = 0.491023 mm
- t = 300 sec, dk = 0.482745 mm
- t = 320 sec, dk = 0.502061 mm
- t = 340 sec, dk = 0.545382 mm
- t = 360 sec, dk = 0.604130 mm
- t = 380 sec, dk = 0.670625 mm
- t = 400 sec, dk = 0.739864 mm
- t = 420 sec, dk = 0.808912 mm
- t = 440 sec, dk = 0.876052 mm
- t = 460 sec, dk = 0.926399 mm
- t = 480 sec, dk = 0.957175 mm
- t = 500 sec, dk = 0.981320 mm
- t = 520 sec, dk = 0.998823 mm
- t = 540 sec, dk = 1.009741 mm
- t = 560 sec, dk = 1.014177 mm
- t = 580 sec, dk = 1.012263 mm
- t = 600 sec, dk = 1.004149 mm

Рисунок 1. Залежність зміни діаметру dk від часу t для тесту 1.

Рисунок 2. Залежність зміни діаметру dk від часу t для тесту 2.

Висновок

Розроблено програму яка розраховувала для кожного варіанта на відрізку часу від 0 до Т з кроком Δt вираховувала діаметр краплі. Для збереження даних використовувався масив структур. Для обчислень використовувалися відповідні функції. Всі дані зчитувалися і записувалися у файл, результат виводився на екран програми. Отримані результати свідчать про те, що програма працює правильно. Завдання виконано в повному обсязі.

Список використаної літератури

- 1. http://learnc.info/c/structures.html
- 2. http://www.cyberforum.ru/cpp-beginners/thread51563.html
- 3. Липпман С. С++ для начинающих / С. Липпман ., 2003. 1406 с.
- 4. http://cppstudio.com/post/1245/