

Lecture 7 Deep Learning – Part 2 Convolutional Neural Network

Dr. Hanhe Lin
Dept. of Computer and Information Science
University of Konstanz

Challenges of object recognition

- Occlusion: real scenes are cluttered with other objects:
 - Hard to tell which parts go to which object
 - Part of an object may be hidden behind other objects
- Lighting: the pixel intensities are determined by the lighting on the objects
- Deformation: object can deform in a variety of non-affine ways, for example, written number 7

Challenges of object recognition

 Affordances: object classes are often defined by how they are used, e.g., chairs are designed sitting so they have a variety of shapes

Challenges of object recognition

• Viewpoint: changes in viewpoint cause the changes in images that standard learning methods cannot cope with.

Ways to achieve viewpoint invariance

- Use redundant invariant features
- Put a box around the object and use normalized pixels
- Use a hierarchy of parts that have explicit poses relative to the camera
- Use replicated features with pooling, i.e., convolutional neural networks

•

The invariant features approach

- "Local" approach
- Extract a large, redundant set of features that are invariant under transformations, e.g., SIFT
- But for recognition, we must avoid forming same features from parts of different objects
- With enough invariant features, we can represent an object by Bag-of-Words model (BoW)

The brute force normalization approach

- When training the recognizer, use wellsegmented, upright images to fit correct box
- At the test time try all possible boxes in a range of positions and scales
 - This approach is widely used for detecting upright things like faces and house numbers in un-segmented images
 - Although it can provide a certain degrees of freedom, you must train multiple recognizers for same class. For example, front face and profile face
 - E.g., HOG for pedestrian detection

CNNs - Motivation

- Use many different copies of the same feature detector with different positions
 - Could also replicate across scale and orientation, but tricky and expensive
 - Replication greatly reduces the number of free parameters to be learned
- Use several different types of feature detectors, each with its own feature map
 - Allows each patch of image to be represented in several ways

CNNs - Definition

- Convolutional neural networks (CNNs), also known as convolutional networks, ConvNets
- It is a specialized kind of neural network for processing data that has a know grid-like topology
- Examples:
 - 1-D grid time-series data
 - 2-D grid gray-scale image
 - 3-D grid color image or gray-scale video
 - 4-D grid color video
- CNNs are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers

Convolution vs. Feedforward

- Full-connected networks have many parameters, prone to overfitting
- CNN arranges neurons in 3 dimensions: width, height, depth

Overview: a simple CNN

The convolution operation

The convolution operation takes two time-series sequences x[n] and h[n], produce a third sequence y[n], defined as:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k], \quad \forall n$$

In digital signal processing, x[n], h[n], and y[n] are referred to as input, filter, and output respectively.

In CNN terminology, x[n], h[n], and y[n] are referred to as input, kernel, and feature map.

The convolution operation in CNNs

If we use a two-dimensional image *I* as our input, we probably also want to use a two-dimensional kernel K:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

When an image is three-dimensional, the kernel should also be three-dimensional

What is the difference between these two convoluion operations?

The convolution operation in CNNs

If we use a two-dimensional image *I* as our input, we probably also want to use a two-dimensional kernel K:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

When an image is three-dimensional, the kernel should also be three-dimensional

What is the difference between these two convoluion operations?

- Without flipped the kernel!
- Many deep learning libraries implement cross-correlation but call it convolution

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

1	1,	1,0	0 _{×1}	0
0	1,0	1,	1,0	0
0	0,,1	1 _{×0}	1,	1
0	0	1	1	0
0	1	1	0	0

Image

4	3	
	12	

1	1	1,	0,0	0,1
0	1	1,0	1,	0,0
0	0	1,	1,0	1,
0	0	1	1	0
0	1	1	0	0

Image

4	3	4

1	1	1	0	0
0,,1	1,0	1,	1	0
0,0	0,1	1 _{×0}	1	1
0 _{×1}	0,0	1,	1	0
0	1	1	0	0

Image

4	3	4
2		

1	1	1	0	0
0	1 _{×1}	1,0	1,	0
0	0,0	1,	1 _{×0}	1
0	0,1	1,0	1,	0
0	1	1	0	0

Image

4	3	4
2	4	

1	1	1	0	0
0	1	1,	1,0	0,1
0	0	1,0	1,	1,0
0	0	1,	1,0	0,1
0	1	1	0	0

Image

4	3	4
2	4	3

1	1	1	0	0
0	1	1	1	0
0,1	0,0	1,	1	1
0,0	0,1	1,0	1	0
0,	1,0	1,	0	0

Image

4	3	4
2	4	3
2		

1	1	1	0	0
0	1	1	1	0
0	0 _{×1}	1 _{×0}	1,	1
0	0,0	1,	1,0	0
0	1,	1,0	0,	0

Image

4	3	4
2	4	3
2	3	

1	1	1	0	0
0	1	1	1	0
0	0	1,	1 _{×0}	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,1

Image

4	3	4
2	4	3
2	3	4

Hyper-parameters in conv layer

- Depth: corresponds to the number of kernels we would like to use, each learns to look for something different in the input
- Kernel size: large kernel size increases computation
- Stride
- Zero-padding

Stride

• Stride is the number of pixels to slide the kernel, where large stride produce smaller output spatially

4	1	5	2	2	4	1	5	2	2	4	1	5	2	2
1	2	9	0	2	1	2	9	0	2	1	2	9	0	2
2	2	6	4	0	2	2	6	4	0	2	2	6	4	0
3	1	0	3	3	3	1	0	3	3	3	1	0	3	3
3	1	4	5	6	3	1	4	5	6	3	1	4	5	6

Kernel size of 3, stride 1

4	1	5	2	2	4	1	5	2	2	4	1	5	2	2
1	2	9	0	2	1	2	9	0	2	1	2	9	0	2
2	2	6	4	0	2	2	6	4	0	2	2	6	4	0
3	1	0	3	3	3	1	0	3	3	3	1	0	3	3
3	1	4	5	6	3	1	4	5	6	3	1	4	5	6

Kernel size of 3, stride 2

Zero-padding

4	1	5	2	2
1	2	9	0	2
2	2	6	4	0
3	1	0	3	3
3	1	4	5	6

Zero-padding

• Pad the input volume with zeros around the border so that the input and output width and height are the same

4	1	5	2	2
1	2	9	0	2
2	2	6	4	0
3	1	0	3	3
3	1	4	5	6

0	0	0	0	0	0	0
0	4	1	5	2	2	0
0	1	2	9	0	2	0
0	2	2	6	4	0	0
0	3	1	0	3	3	0
0	3	1	4	5	6	0
0	0	0	0	0	0	0

Conv layer input and output

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyper-parameters:
 - Number of kernels *K*
 - Kernel size *F*
 - Stride *S*
 - The amount of zero padding *P*
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $-W_2 = (W_1 F + 2P)/S + 1$
 - $-H_2 = (H_1 F + 2P)/S + 1$
 - $-D_2 = K$
- With parameter sharing, it introduces FFD_1 weights per filter, for a total of $(FFD_1)K$ weights and K biases.

What does convolution achieve?

- Convolution operation leverages three important ideas:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
- Convolution provides a means for working with inputs of variable size

Sparse interactions

- Also referred to as sparse connectivity or sparse weights
- Traditional neural network layers use matrix multiplication by a matrix of parameters with a separate parameter describing the interaction between each input unit and each output unit
- Making the kernel smaller than the input → fewer parameters → less memory requirement

Sparse interaction

 In a deep convolutional network, units in the deeper layers may indirectly interact with a larger portion of the input → allow complicated interactions between many variables

Parameter sharing

- Same parameter for more than one function in a model
- In a convolutional neural network, each member of the kernel is used at every position of the input
- Less computation and less parameters to learn

Equivariant representation

- Equivariant: If the input changes, the output changes in same way
- If we move the object in the input, its representation will move the same amount in the feature map
- Invariant knowledge: If a feature is useful in some locations during training, kernels for that feature will be available in all locations during testing.

Conv layer: Forward propagation

$$\begin{aligned} z_{11} &= w_{11}x_{11} + w_{12}x_{12} + w_{21}x_{21} + w_{22}x_{22} \\ z_{12} &= w_{11}x_{12} + w_{12}x_{13} + w_{21}x_{22} + w_{22}x_{23} \\ z_{21} &= w_{11}x_{21} + w_{12}x_{22} + w_{21}x_{31} + w_{22}x_{32} \\ z_{22} &= w_{11}x_{22} + w_{12}x_{23} + w_{21}x_{32} + w_{22}x_{33} \end{aligned}$$

Conv layer: Backward propagation

Conv layer: Backward propagation

• Apply chain rule to calculate the gradient of error *L* w.r.t kernel *w*:

$$\frac{\partial L}{\partial w_{11}} = \frac{\partial L}{\partial z_{11}} \frac{\partial z_{11}}{\partial w_{11}} + \frac{\partial L}{\partial z_{12}} \frac{\partial z_{12}}{\partial w_{11}} + \frac{\partial L}{\partial z_{21}} \frac{\partial z_{21}}{\partial w_{11}} + \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial w_{11}}$$

$$\frac{\partial L}{\partial w_{12}} = \frac{\partial L}{\partial z_{11}} \frac{\partial z_{11}}{\partial w_{12}} + \frac{\partial L}{\partial z_{12}} \frac{\partial z_{12}}{\partial w_{12}} + \frac{\partial L}{\partial z_{21}} \frac{\partial z_{21}}{\partial w_{12}} + \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial w_{12}}$$

$$\frac{\partial L}{\partial w_{21}} = \frac{\partial L}{\partial z_{11}} \frac{\partial z_{11}}{\partial w_{21}} + \frac{\partial L}{\partial z_{12}} \frac{\partial z_{12}}{\partial w_{21}} + \frac{\partial L}{\partial z_{21}} \frac{\partial z_{21}}{\partial w_{21}} + \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial w_{21}}$$

$$\frac{\partial L}{\partial w_{22}} = \frac{\partial L}{\partial z_{11}} \frac{\partial z_{11}}{\partial w_{22}} + \frac{\partial L}{\partial z_{12}} \frac{\partial z_{12}}{\partial w_{22}} + \frac{\partial L}{\partial z_{21}} \frac{\partial z_{21}}{\partial w_{22}} + \frac{\partial L}{\partial z_{22}} \frac{\partial z_{22}}{\partial w_{22}}$$

Conv layer: Backward propagation

$$\frac{\partial L}{\partial w_{11}} = \frac{\partial L}{\partial z_{11}} x_{11} + \frac{\partial L}{\partial z_{12}} x_{12} + \frac{\partial L}{\partial z_{21}} x_{21} + \frac{\partial L}{\partial z_{22}} x_{22}
\frac{\partial L}{\partial w_{12}} = \frac{\partial L}{\partial z_{11}} x_{12} + \frac{\partial L}{\partial z_{12}} x_{13} + \frac{\partial L}{\partial z_{21}} x_{22} + \frac{\partial L}{\partial z_{22}} x_{23}
\frac{\partial L}{\partial w_{21}} = \frac{\partial L}{\partial z_{11}} x_{21} + \frac{\partial L}{\partial z_{12}} x_{22} + \frac{\partial L}{\partial z_{21}} x_{31} + \frac{\partial L}{\partial z_{22}} x_{32}
\frac{\partial L}{\partial w_{22}} = \frac{\partial L}{\partial z_{11}} x_{22} + \frac{\partial L}{\partial z_{12}} x_{23} + \frac{\partial L}{\partial z_{21}} x_{32} + \frac{\partial L}{\partial z_{22}} x_{33}$$

x ₁₁	x ₁₂	x ₁₃
x ₂₁	x ₂₂	x ₂₃
x ₃₁	x ₃₂	X ₃₃

 $* \frac{\frac{\partial L}{\partial z_{11}} \frac{\partial L}{\partial z_{12}}}{\frac{\partial L}{\partial z_{21}} \frac{\partial L}{\partial z_{22}}} = \frac{\frac{\partial L}{\partial w_{11}} \frac{\partial L}{\partial w_{12}}}{\frac{\partial L}{\partial w_{21}} \frac{\partial L}{\partial w_{22}}}$

Input

Pool layer

- A pooling function replaces the output of the net at a certain location with a summary statistic of the nearby outputs
- Functions include average, weighted average, L2 norm, maximum, . . .
- In all cases, pooling helps to make the representation approximately invariant to small translations of the input

Max pooling: Forward propagation

Max pooling

- The max pooling operation, which reports the maximum output within a rectangular neighborhood (usually 2x2), is preferred because it worked slightly better
- Pros:
 - This reduces the number of inputs to the next layer of feature extraction, thus allowing us to have many more different feature maps
 - Invariant to small translations of the input
- Cons: after several levels of pooling, we have lost information about the precise positions of things

Max pooling: Input and output

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires two hyper-parameters:
 - Spatial extend F
 - Stride *S*
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $-W_2 = (W_1 F)/S + 1$
 - $-H_2 = (H_1 F)/S + 1$
 - $-D_2 = D_1$
- Introduce zero parameter since it computes a fixed function of the input

Max pooling: Backward propagation

 Route the gradient to the input that has the highest value in the forward pass

Transformation invariant

• If we pool over the outputs of separately parameterized convolutions, the features can learn which transformations to become invariant

A simple CNN revisited

- There are a few distinct types of Layers
- Each Layer accepts an input 3D volume and transforms it to an output 3D volume through a differentiable function
- Each Layer may or may not have parameters?
- Each Layer may or may not have additional hyper-parameters?

Two different terminology for CNN

Deep CNN: example

Summary

- CNNs is a specialized kind of neural network to process data a grid-like topology
- A typical convolutional layer includes convolution, ReLU, and max pooling operations
- Convolution operation has three important features, including sparse interactions, parameter sharing, and equivariant representations
- Max pooling reduces the number of inputs to the next layer and invariant to small translations of the input