Load the tmdb movies dataset and explore the data first

```
In [2]:
        import json
        import pandas as pd
In [3]: def load movies(path):
            data file = pd.read csv(path)
            data_file['release_date'] = pd.to_datetime(data_file['release_date'
        ]).apply(lambda x: x.date())
            columns = ['genres', 'keywords', 'production_countries', 'production
        _companies', 'spoken_languages']
            for column in columns:
                data file[column] = data file[column].apply(json.loads)
            return data file
        def load_credits(path):
            data_file = pd.read_csv(path)
            columns = ['cast', 'crew']
            for column in columns:
               data_file[column] = data_file[column].apply(json.loads)
            return data file
```

```
In [4]: def safe_access(container, index_values):
            result = container
            try:
                for idx in index_values:
                    result = result[idx]
                return result
            except IndexError or KeyError:
                return pd.np.nan
        def get director(crew data):
            directors = [x['name'] for x in crew_data if x['job'] == 'Director']
            return safe_access(directors, [0])
        def convert to original format(movies, credits):
            tmdb movies = movies.copy()
            tmdb movies['year'] = pd.to datetime(tmdb movies['release date']).ap
        ply(lambda x: x.year)
            tmdb movies['country'] = tmdb movies['production countries'].apply(1
        ambda x: safe_access(x, [0, 'name']))
            tmdb_movies['language'] = tmdb_movies['spoken_languages'].apply(lamb
        da x: safe access(x, [0, 'name']))
            tmdb_movies['genres'] = tmdb_movies['genres'].apply(lambda x: '|'.jo
        in([i['name'] for i in x]))
            tmdb movies['keywords'] = tmdb movies['keywords'].apply(lambda x:
        '|'.join([i['name'] for i in x]))
            tmdb movies['director'] = credits['crew'].apply(get director)
            tmdb movies['actor 1'] = credits['cast'].apply(lambda x: safe access
        (x, [1, 'name']))
            tmdb movies['actor 2'] = credits['cast'].apply(lambda x: safe_access
        (x, [2, 'name']))
            tmdb_movies['actor_3'] = credits['cast'].apply(lambda x: safe_access
        (x, [3, 'name']))
            return tmdb movies
In [5]: import sys
        !{sys.executable} -m pip install scikit-learn
        Requirement already satisfied: scikit-learn in /anaconda3/lib/python3.
        7/site-packages (0.21.2)
        Requirement already satisfied: joblib>=0.11 in /anaconda3/lib/python3.
```

Requirement already satisfied: scikit-learn in /anaconda3/lib/python3. 7/site-packages (0.21.2)
Requirement already satisfied: joblib>=0.11 in /anaconda3/lib/python3. 7/site-packages (from scikit-learn) (0.13.2)
Requirement already satisfied: numpy>=1.11.0 in /anaconda3/lib/python3. 7/site-packages (from scikit-learn) (1.16.4)
Requirement already satisfied: scipy>=0.17.0 in /anaconda3/lib/python3. 7/site-packages (from scikit-learn) (1.3.0)

```
In [ ]:
```

```
In [7]: | import pandas as pd
        import numpy as np
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        import math, nltk
        from nltk.corpus import wordnet
        from sklearn.neighbors import NearestNeighbors
        PS = nltk.stem.PorterStemmer()
        credits = load_credits("./tmdb_5000_credits.csv")
        movies = load movies("./tmdb 5000 movies.csv")
        data_initial = convert_to_original_format(movies, credits)
        print('Shape:',data_initial.shape)
        tab info=pd.DataFrame(data initial.dtypes).T.rename(index={0:'column typ
        e'})
        tab_info=tab_info.append(pd.DataFrame(data_initial.isnull().sum()).T.ren
        ame(index={0:'null values'}))
        tab info=tab info.append(pd.DataFrame(data initial.isnull().sum()/data i
        nitial.shape[0]*100).T.
                                  rename(index={0:'null values (%)'}))
        tab info
```

Shape: (4803, 27)

Out[7]:

	budget	genres	homepage	id	keywords	original_language	original_title	overview
column type	int64	object	object	int64	object	object	object	object
null values	0	0	3091	0	0	0	0	3
null values (%)	0	0	64.3556	0	0	0	0	0.062461

3 rows × 27 columns

In [8]: tab info.describe()

Out[8]:

	budget	genres	homepage	id	keywords	original_language	original_title	overview	bot
count	3	3	3	3	3	3	3	3	
unique	2	2	3	2	2	2	2	3	
top	0	0	object	0	0	0	0	object	
freq	2	2	1	2	2	2	2	1	

4 rows × 27 columns

In [9]: data_initial.describe()

Out[9]:

	budget	id	popularity	revenue	runtime	vote_average	VC
count	4.803000e+03	4803.000000	4803.000000	4.803000e+03	4801.000000	4803.000000	480
mean	2.904504e+07	57165.484281	21.492301	8.226064e+07	106.875859	6.092172	69
std	4.072239e+07	88694.614033	31.816650	1.628571e+08	22.611935	1.194612	123
min	0.000000e+00	5.000000	0.000000	0.000000e+00	0.000000	0.000000	
25%	7.900000e+05	9014.500000	4.668070	0.000000e+00	94.000000	5.600000	5
50%	1.500000e+07	14629.000000	12.921594	1.917000e+07	103.000000	6.200000	23
75%	4.000000e+07	58610.500000	28.313505	9.291719e+07	118.000000	6.800000	73
max	3.800000e+08	459488.000000	875.581305	2.787965e+09	338.000000	10.000000	1375

```
In [10]: data_initial[['title', 'genres', 'year', 'vote_average', 'director', 'ac
    tor_1', 'actor_2', 'actor_3']].head(10)
```

Out[10]:

	title	genres	year	vote_average	director	actor_1	act
0	Avatar	Action Adventure Fantasy Science Fiction	2009.0	7.2	James Cameron	Zoe Saldana	Sigou We
1	Pirates of the Caribbean: At World's End	Adventure Fantasy Action	2007.0	6.9	Gore Verbinski	Orlando Bloom	l Knig
2	Spectre	Action Adventure Crime	2015.0	6.3	Sam Mendes	Christoph Waltz	Sey
3	The Dark Knight Rises	Action Crime Drama Thriller	2012.0	7.6	Christopher Nolan	Michael Caine	Olc
4	John Carter	Action Adventure Science Fiction	2012.0	6.1	Andrew Stanton	Lynn Collins	Sama Mo
5	Spider- Man 3	Fantasy Action Adventure	2007.0	5.9	Sam Raimi	Kirsten Dunst	Ja Fr
6	Tangled	Animation Family	2010.0	7.4	Byron Howard	Mandy Moore	D Mu
7	Avengers: Age of Ultron	Action Adventure Science Fiction	2015.0	7.3	Joss Whedon	Chris Hemsworth	Rı
8	Harry Potter and the Half- Blood Prince	Adventure Fantasy Family	2009.0	7.4	David Yates	Rupert Grint	E Wa
9	Batman v Superman: Dawn of Justice	Action Adventure Fantasy	2016.0	5.7	Zack Snyder	Henry Cavill	Gal G

keywords search

As a movie recommendation system, it allows users to input some keywords and the system provides some recommendations. Films described by similar keywords should have similar contents. Therefore, keywords play as an important factor in our system. Firstly, list the keywords which are in the dataset:

```
In [11]: set_keywords = set()
    for keyword in data_initial['keywords'].str.split('|').values:
        if isinstance(keyword, float): continue
        set_keywords = set_keywords.union(keyword)
```

```
In [12]: def count_word(df, col, lis):
             count = dict()
             for s in lis: count[s] = 0
             for keywords in df[col].str.split('|'):
                 if type(keywords) == float and pd.isnull(keywords): continue
                 for s in [s for s in keywords if s in lis]:
                      if pd.notnull(s): count[s] += 1
             occurences = []
             for k,v in count.items():
                 occurences.append([k,v])
             occurences.sort(key = lambda x:x[1], reverse = True)
             return occurences, count
In [13]: occurences, keyword count = count_word(data_initial, 'keywords', set_key
         words)
         occurences[:5]
Out[13]: [['', 412],
          ['woman director', 324],
          ['independent film', 318],
          ['duringcreditsstinger', 307],
          ['based on novel', 197]]
In [14]:
         occurences = [x for x in occurences if x[0]]
```

```
In [15]: fig = plt.figure(1, figsize=(18,13))
    plot = fig.add_subplot(2,1,2)
    tmp = occurences[0:30]
    y_axis = [i[1] for i in tmp]
    x_axis = [k for k,i in enumerate(tmp)]
    x_label = [i[0] for i in tmp]
    plt.xticks(rotation=85, fontsize = 15)
    plt.yticks(fontsize = 15)
    plt.xticks(x_axis, x_label)
    plt.title('Most popular keywords')
    plot.bar(x_axis, y_axis, color='blue')
    plt.show()
```


As in every analysis, we will have to deal with the missing values

Out[16]:

	column_name	missing_count	filling_factor
0	homepage	3091	35.644389
1	tagline	844	82.427649
2	country	174	96.377264
3	actor_3	93	98.063710
4	language	86	98.209452
5	actor_2	63	98.688320
6	actor_1	53	98.896523
7	director	30	99.375390
8	overview	3	99.937539
9	runtime	2	99.958359
10	release_date	1	99.979180
11	year	1	99.979180
12	production_countries	0	100.000000
13	genres	0	100.000000
14	id	0	100.000000
15	keywords	0	100.000000
16	original_language	0	100.000000
17	vote_count	0	100.000000
18	vote_average	0	100.000000
19	title	0	100.000000
20	original_title	0	100.000000
21	status	0	100.000000
22	spoken_languages	0	100.000000
23	popularity	0	100.000000
24	revenue	0	100.000000
25	production_companies	0	100.000000
26	budget	0	100.000000

Based on the result above, I found that only 2 of them have a filling factor below 90%.

Number of films per decade

Group the films by decades and show in a pie chart.

```
In [17]: data_initial['decade'] = data_initial['year'].apply(lambda x:((x-1900)//
10)*10)
    def get_stats(gr):
        return {'min':gr.min(),'max':gr.max(),'count': gr.count(),'mean':gr.
        mean()}
    test = data_initial['year'].groupby(data_initial['decade']).apply(get_st
        ats).unstack()
```


Genres

I want to explore genres. Firstly, list the genres which are in the dataset

```
In [19]:
         genre labels = set()
         for s in data initial['genres'].str.split(',').values:
             genre_labels = genre_labels.union(set(s))
In [20]: | occurences, dum = count_word(data_initial, 'genres', genre_labels)
         occurences = [x for x in occurences if x[0]]
         occurences[:5]
Out[20]: [['Drama', 2297],
          ['Comedy', 1722],
          ['Thriller', 1274],
          ['Action', 1154],
          ['Romance', 894]]
In [21]: fig = plt.figure(1, figsize=(18,13))
         plot = fig.add subplot(2,1,2)
         tmp = occurences[0:10]
         y_axis = [i[1] for i in tmp]
         x_axis = [k for k,i in enumerate(tmp)]
         x_label = [i[0] for i in tmp]
         plt.xticks(rotation=85, fontsize = 15)
         plt.yticks(fontsize = 15)
         plt.xticks(x axis, x label)
         plot.bar(x axis, y axis, color='blue')
         plt.title('Most popular genres')
         plt.show()
```


Dealing with duplicates

```
dup_entries = data_initial[data_initial.id.duplicated()]
          dup entries.shape
Out[22]: (0, 27)
          data_temp = data_initial
In [23]:
          list_dups = data_temp['title'].map(data_temp['title'].value_counts() > 1
          #Show the movies with same title and the director of these movies.
In [24]:
          data_temp[list_dups][['title', 'director', 'year']].sort_values('title')
Out[24]:
                        title
                                    director
                                             year
           1359
                     Batman
                                  Tim Burton 1989.0
           4267
                     Batman
                            Leslie H. Martinson 1966.0
           3647 Out of the Blue
                               Dennis Hopper 1980.0
           3693 Out of the Blue
                               Robert Sarkies 2006.0
            972
                    The Host
                                Andrew Niccol 2013.0
           2877
                    The Host
                                Bong Joon-ho 2006.0
In [49]:
          import numpy as np
          from sklearn.linear model import LinearRegression
          from sklearn import datasets
          from sklearn import svm
          import matplotlib.pyplot as plt
          from mpl toolkits.mplot3d import Axes3D
```

from sklearn import datasets

In [50]: data_initial

Out[50]:

homepage	genres	budget	
http://www.avatarmovie.com	Action Adventure Fantasy Science Fiction	237000000	0
http://disney.go.com/disneypictures/pirates	Adventure Fantasy Action	300000000	1
http://www.sonypictures.com/movies/spectre	Action Adventure Crime	245000000	2
http://www.thedarkknightrises.com	Action Crime Drama Thriller	250000000	3
http://movies.disney.com/john-carte	Action Adventure Science Fiction	260000000	4
http://www.sonypictures.com/movies/spider-man3	Fantasy Action Adventure	258000000	5
http://disney.go.com/disneypictures/tangled	Animation Family	260000000	6
http://marvel.com/movies/movie/193/avengers_ag	Action Adventure Science Fiction	280000000	7
http://harrypotter.warnerbros.com/harrypottera	Adventure Fantasy Family	250000000	8
http://www.batmanvsupermandawnofjustice.com	Action Adventure Fantasy	250000000	9
http://www.superman.com	Adventure Fantasy Action Science Fiction	270000000	10
http://www.mgm.com/view/movie/234/Quantum-of-S	Adventure Action Thriller Crime	200000000	11
http://disney.go.com/disneypictures/pirates	Adventure Fantasy Action	200000000	12

homepage	genres	budget	
http://disney.go.com/the-lone-ranger	Action Adventure Western	255000000	13
http://www.manofsteel.com	Action Adventure Fantasy Science Fiction	225000000	14
NaN	Adventure Family Fantasy	225000000	15
http://marvel.com/avengers_movie	Science Fiction Action Adventure	220000000	16
http://disney.go.com/pirates/index-on-stranger	Adventure Action Fantasy	380000000	17
http://www.sonypictures.com/movies/meninblack3	Action Comedy Science Fiction	225000000	18
http://www.thehobbit.com	Action Adventure Fantasy	250000000	19
http://www.theamazingspiderman.con	Action Adventure Fantasy	215000000	20
http://www.robinhoodthemovie.com	Action Adventure	200000000	21
http://www.thehobbit.com	Adventure Fantasy	250000000	22
http://www.goldencompassmovie.com/index_german	Adventure Fantasy	180000000	23
Nan	Adventure Drama Action	207000000	24
http://www.titanicmovie.con	Drama Romance Thriller	200000000	25

homepage	genres	budget	
http://marvel.com/captainamericapremiere	Adventure Action Science Fiction	250000000	26
Nan	Thriller Action Adventure Science Fiction	209000000	27
http://www.jurassicworld.com	Action Adventure Science Fiction Thriller	150000000	28
http://www.skyfall-movie.con	Action Adventure Thriller	200000000	29
http://www.miramax.com/movie/clerks	Comedy	27000	4773
Nan	Drama Romance	27000	4774
Nan	Drama Comedy	0	4775
Nan	Comedy Drama	0	4776
Nan	Drama	0	4777
Nan	Action Drama Crime Thriller	0	4778
Nan	Comedy	0	4779
Nan	Thriller Crime Drama	0	4780
https://www.facebook.com/DrySpellMovie	Comedy Romance	22000	4781
Nan	Drama Family	0	4782

homepage	genres	budget	
NaN	Thriller Horror	0	4783
http://www.thepuffychairmovie.com	Drama Comedy Romance	0	4784
NaN	Drama	0	4785
NaN	Comedy Romance	0	4786
NaN	Science Fiction Thriller	0	4787
NaN	Horror Comedy Crime	12000	4788
NaN	Drama	0	4789
NaN	Drama Foreign	0	4790
http://tincanmanthemovie.com	Horror	13	4791
NaN	Crime Horror Mystery Thriller	20000	4792
NaN	Drama	0	4793
NaN	Thriller Horror Comedy	0	4794
NaN	Drama	0	4795
http://www.primermovie.com	Science Fiction Drama Thriller	7000	4796

homepage	genres	budget	
NaN	Foreign Thriller	0	4797
Nan	Action Crime Thriller	220000	4798
Nan	Comedy Romance	9000	4799
http://www.hallmarkchannel.com/signedsealeddel	Comedy Drama Romance TV Movie	0	4800
http://shanghaicalling.com		0	4801
NaN	Documentary	0	4802
	umns	ws × 27 colu	4803 ro

Data selection: 1. As in our data analysis, we can see the movie data collected before and after 2010 have relatively equal amount, so we decided to use past(<2010) to predict for future(>2010)

1. As in our genres analysis, we can see the drama movie has the most amount of data which shows its popularity, we will study futher by developing a regression model only of drama movies and compare with the all movie regression results

```
In [101]: train_set = data_initial[data_initial.year < 2010]</pre>
           test set = data initial[data initial.year >= 2010]
           for col in train_set.columns:
               print(col)
          budget
          genres
          homepage
          id
          keywords
          original_language
          original_title
          overview
          popularity
          production_companies
          production_countries
          release_date
          revenue
          runtime
          spoken_languages
          status
          tagline
          title
          vote_average
          vote_count
          year
          country
          language
          director
          actor 1
          actor 2
          actor 3
```

Liner regression of Revenue on Budget,release_date,runtime,vote_count and year

```
In [100]: from math import sqrt
          from sklearn.linear model import LinearRegression
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import mean squared error
          import matplotlib.pyplot as pl
          from sklearn.metrics import r2 score
          from sklearn.preprocessing import LabelEncoder
          from sklearn import svm
          import matplotlib.pyplot as plt
          from mpl_toolkits.mplot3d import Axes3D
          from sklearn import datasets
          feature_cols = ['budget',
          'release_date',
           'runtime',
          'vote_count',
          'vote_average'
          1
          x_train = train_set.loc[:, [column_name for column_name in feature_cols
          ]].values
          y_train = train_set.revenue
          x test = test set.loc[:, [column name for column name in feature cols]].
          values
          y_test = test_set.revenue
          # label encoder to transform our data
          le = LabelEncoder()
          for i in range(len(feature cols)):
              x train[:,i] = le.fit transform(x train[:,i])
          for i in range(len(feature cols)):
              x test[:,i] = le.fit transform(x test[:,i])
          lm = LinearRegression(normalize=True)
          lm.fit(x train,y train)
          y pred = lm.predict(x test)
          rmse = sqrt(mean squared error(y test, y pred))
          r2 = r2 score(y test, y pred)
          # The coefficients
          print ("Coefficient", lm.coef )
          # The intercepts
          print ("Intercept: ", lm.intercept )
          # mean square error
          print ("Mean Square Error: ", np.mean((lm.predict(x_test) - y_test) ** 2
          print ("Variance Score: ", lm.score(x test, y test))
          # we have a 0.35 r2 score
          print ("R2 Score is:", r2)
```

Coefficient [140682.14470851 2289.74459353 775034.80071044 26

8278.99289734

-1562024.79072582]

Intercept: -15773714.691070095

Mean Square Error: 2.5535886670646824e+16

Variance Score: 0.3523001126835744 R2 Score is: 0.3523001126835744

regression of revenue prediction of drama movies

```
In [98]: train_set2 = train_set[train_set.genres.str.contains("Drama")]
test_set2 = test_set[test_set.genres.str.contains("Drama")]
```

Out[98]:

h	genres	budget	
	Adventure Drama Action	207000000	24
http://www.titanicm	Drama Romance Thriller	200000000	25
http://disney.go.com/disneypictures/ach	Animation Drama	200000000	60
http://thedarkknight.warnerbros.com	Drama Action Crime Thriller	185000000	65
http://www.benjaminbu	Fantasy Drama Thriller Mystery Romance	150000000	100
http://www2.warnerbros.com/p	Adventure Action Drama Thriller	160000000	104
	War History Action Adventure Drama Romance	155000000	112
http://iamlegend.warnerk	Drama Horror Action Thriller Science Fiction	150000000	116
http://www2.warnerbros.com/batmanbegin:	Action Crime Drama	150000000	119
	Adventure Drama War	175000000	145
	Drama Action War History	140000000	156
	Drama Action Science Fiction	137000000	165
	Action Adventure Comedy Drama Mystery	130000000	167

hc	genres	budget	
http://www.universalstudiosentertainmer	Action Drama Mystery Thriller	70000000	180
	Drama	130000000	192
	Drama	120000000	214
	Drama Action History War	115000000	236
	Drama History War Action	110000000	246
	Action Comedy Drama Thriller	110000000	248
	Drama	116000000	250
	Drama	107000000	264
http://www.kingdomofheaven	Drama Action Adventure History War	130000000	267
	Action Drama Adventure	103000000	274
http://www.publicene	History Crime Drama	80000000	280
http://www.americangan	Drama Crime	100000000	281

h	genres	budget	
http://www.sonypictures.com/movies/thel	Thriller Drama Crime	100000000	283
http://www.warnerbros.cc	Action Drama Mystery Thriller	100000000	286
	Drama Animation Family	100000000	288
	Drama Thriller Action	100000000	297
	Crime Drama Mystery Thriller	10000000	314
http://www.abeautifuln	Drama Romance	60000000	493
http://movies.disney.com/the	Family Animation Drama	45000000	494
http://www.universalstudiosentertainmen	Drama Action Thriller Science Fiction	76000000	510
http://www.theterminal-themo	Comedy Drama	60000000	521
http://www.charliewilsor	Comedy Drama History	75000000	524
http://www.dreamgirlsmo	Drama	70000000	526
	Drama Action History Thriller	70000000	528

	budget	genres	he
529	70000000	Action Drama War	
535	55000000	Action Adventure Drama Romance	
536	75000000	Drama History Romance	
538	52000000	Mystery Drama Thriller Crime	
542	0	Action Drama Horror Science Fiction Thriller	
544	45000000	Action Adventure Drama Thriller	
545	75000000	Science Fiction Thriller Drama	
552	75000000	Comedy Drama	http://www.funnypeoplem
553	70000000	Thriller Action Drama	http://www.thekingdommo
556	72000000	Action Drama History War	
557	72000000	Drama War	
559	72000000	Drama Romance	
561	74500000	Adventure Drama Family	

562 60000000 Drama Mystery Thriller 564 72000000 Drama Thriller Science Fiction Mystery 571 70000000 Drama Action Thriller War http://www.inglouriousbasterds-models. 575 68000000 Drama Mystery Romance Science Fiction Thriller
571 70000000 Drama Action Thriller War http://www.inglouriousbasterds-ma
Drama Mystery Romance Science
575 68000000 Drama Mystery Romance Science Fiction Thriller
576 75000000 Drama Thriller Fantasy Mystery
583 70000000 Adventure Fantasy Drama
590 70000000 Drama Action Thriller Crime
592 70000000 Adventure Drama History
599 70000000 Drama War
611 68000000 Thriller Action Drama http://www.paramount.com/movies/sum
100 rows × 27 columns

```
In [99]: feature cols = ['budget',
          'release date',
          'runtime',
         'vote_count',
         'vote average'
         x_train = train_set2.loc[:, [column_name for column_name in feature_cols
         ]].values
         y train = train set2.revenue
         x test = test set2.loc[:, [column name for column name in feature cols]]
         .values
         y test = test set2.revenue
         # label encoder to transforme the data
         le = LabelEncoder()
         for i in range(len(feature_cols)):
             x train[:,i] = le.fit transform(x train[:,i])
         for i in range(len(feature cols)):
             x_test[:,i] = le.fit_transform(x_test[:,i])
         lm = LinearRegression(normalize=True)
         lm.fit(x train,y train)
         y pred = lm.predict(x test)
         rmse = sqrt(mean_squared_error(y_test, y_pred))
         r2 = r2_score(y_test, y_pred)
         # The coefficients
         print ("Coefficient", lm.coef )
         # The intecept
         print ("Intercept: ", lm.intercept )
         # lower mean squared error than first model
         print ("Mean Square Error: ", np.mean((lm.predict(x test) - y test) ** 2
         print ("Variance Score: ", lm.score(x_test, y_test))
         # we have a 0.3 r2 score
         print ("R2 Score is:", r2)
         Coefficient [ 166008.34217393 -10344.49772209
                                                             470666.89483907
                                                                               28
         8108.14564433
          -1346243.29103771]
         Intercept: 2839323.7121284977
         Mean Square Error: 1.0998356300853142e+16
         Variance Score: 0.30324713615510035
         R2 Score is: 0.30324713615510035
```

```
In [ ]:
```