SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE

2008

MATHEMATICS

Time Allowed: 3 hours plus 5 minutes reading time

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet
- At the end of the examination this examination paper must be attached to the front of your answers
- All questions are of equal value and may be attempted
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.

(for Markers Use Only)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total

Question 1 (12 marks)

a) Find $e^{-0.6}$ correct to 3 decimal places.

b) Expand and simplify $(\sqrt{2}-3)^2$

c) Given $\frac{1}{P} = \frac{1}{Q} + \frac{1}{R}$ make Q the subject of the formula.

d) (i) Find $\int_{1}^{2} \frac{dx}{x}$

(ii) Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos\left(\frac{x}{2}\right) dx$. Leave your answer as an exact value.

e) Solve the inequality $|2x - 3| \le 7$

f) Solve the following equations simultaneously

$$2x + y = 4$$

5x + 2y = 9

Question 2 (Use a separate sheet of paper) (12 marks)

a) A rhombus is a parallelogram with four sides of equal length.

The figure shown below, with vertices A(-5,9), B(5,4), C(7,-7) and D(-3,-2) is a rhombus.

- (i) Find the side length of ABCD. Give your answer in simplified surd form.
- (ii) Find the gradient of the longer diagonal.

1

- (iii) Show that the diagonals of ABCD are perpendicular.
- (iv) Find the coordinates of the midpoint of each diagonal.
- (v) What does this result to part (d) say about the diagonals of this rhombus?
- (vi) Find the equation of the line passing through AC.

Find the value of x and y. Give reasons for each answer.

Question 3 (12 marks) (Use a separate sheet of paper)

- a) Differentiate
 - (i) $x^2 e^x$
 - (ii) $\ln\left(\frac{x-5}{x+3}\right)$
- b) (i) Find $\int \frac{dx}{3x-1}$
 - (ii) Evaluate $\int_0^1 e^{4x} dx$, leaving your answer in exact form 2
- c) For what values of m does the equation $4x^2 + (1+m)x + 1 = 0$ have equal roots.
- d) For acute angles A and B it is given that $sinA = \frac{12}{13}$ and $cosB = \frac{15}{17}$ Find the exact value of sec A + tan B.

Question 4 (12 marks) (Use a separate sheet of paper)

a) The sum of the first 4 terms of a geometric progression is 30, and the limiting sum is 32. If the common ratio is negative find the first three terms.

ABCD is a parallelogram.

- (i) Prove that $\triangle EFC$ and $\triangle DFA$ are similar.
- (ii) Find the value of x.

Not to Scale

c) Solve
$$\sin\left(x + \frac{\pi}{3}\right) = 0$$
 for $0 \le x \le \pi$

- d) \propto and β are the roots of $2x^2 5x + 5 = 0$. Write down the value of
 - (i) $\propto +\beta$
 - (ii) $\propto \beta$

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$

Question 5 (12 marks) (Use a separate sheet of paper)

- a) A function is defined by $f(x) = 3x^2 2x^3$
 - (i) Find the coordinates of any turning points and determine their nature 3
 - (ii) Sketch the curve, indicating all intercepts and turning points. 2
 - (iii) State the domain over which both f(x) > 0 and f'(x) > 0
 - (iv) On the same set of axes sketch the line $f(x) = \frac{1}{2}$
 - (v) Hence find the <u>number</u> of solutions to the equation $6x^2 4x^3 = 1$

The diagram shows the graphs of the functions $y = -x^2 + 7x - 6$ and y = x + 2.

- (i) Show that the value of A and B is 2 and 4 respectively
- (ii) Calculate the area of the shaded region.

Question 6 (12 marks) (Use a separate sheet of paper)

a) Evaluate
$$\sum_{r=1}^{4} 3^{r-r}$$

b) For the arithmetic progression 32, 25, 18,

(ii)
$$S_{15}$$

The area under the curve $y = 4^x$ between x = 0 and x = 2 is rotated about the x - axis. Copy and complete the table.

х	0	0.5	1	1.5	2
4 ^{2x}					

Use your results with Simpson's rule to find an approximate value for the volume of revolution. Use 5 function values and answer correct to 1 decimal place.

3

d)

The circle has a radius of 2cm

- (i) Find arc length AB
- (ii) Find the shaded area

. . .

(correct to 1 decimal place)

Question 7 (12 marks) (Use a separate sheet of paper)

a) $f'(x) = 3x^2 - 4$.

Find y = f(x) if the function passes through (3, 8).

2

b) A boat travels 5km on a bearing of 207° T, then travels 8km on a bearing of 200°T.

Find the straight line distance between the start and finish to 3 significant figures.

Copy and complete the given diagram to assist your working.

\$30 000 is borrowed to buy a car. Interest is charged at 12% pa, compounding monthly. c) The loan is repaid in equal monthly repayments over 4 years. Let A_n be the amount owing after n months. (i) If M is the monthly payment write an expression for the amount owing \propto) 1 month after β) 3 months (ii)Find M Find the total amount paid over the 4 years. (iii) 6 (12 marks) (Use a separate sheet of paper) Question 8 Evaluate lim 2 a) Evaluate $log_5100 - log_54$ 2 b) A particle moves in such a way that its distance, x metres, from the origin c) after t seconds is given by $x = 2 + 3t - t^3$ for t > 0Find an equation for its velocity after t seconds. 1 (i) At what time does the particle stop? (ii)1 Where is the particle initially? (iii) 1 (iv)Find the velocity after 2 seconds. 1 (v)How far has the particle travelled in the first 2 seconds. 2 Find the volume of the solid formed when the curve $y = \sqrt{x}$ is rotated about d) the x axis between x = 1 and x = 5. (leave the answer in terms of π). 2

Question 9 (12 marks) (Use a separate sheet of paper)

a) If
$$F(x) = \begin{bmatrix} x^2 - 2 & x \le -1 \\ 2^x & -1 < x < 2 \\ log_{10}x & x \ge 2 \end{bmatrix}$$

evaluate f(-1) + f(1) + f(10).

b) Draw a neat sketch of y = 3sin2x within the domain $0 \le x \le 2\pi$.

State the

- (i) period
- (ii) amplitude.

In the diagram, PQRS is a rectangle with PQ=40cm, SP=10cm.

The shaded portions are cut away, leaving the parallelogram KLMN. QL=SN=x cm and QK=SM=4x cm.

(i) Show that the area of the parallelogram KLMN is given by

$$A = 80x - 8x^2$$
.

(ii) Find the allowable values of x

(iii) Find the value of x for which A is a maximum

3

2

4

2

1

Question 10 (12 marks) (Use a separate sheet of paper)

- a) For all values of x in the domain of $0 \le x \le 6$, a function f(x) satisfies f'(x) > 0 and f''(x) > 0.
 - Sketch a possible graph of y = f(x) in this domain.
- b) (i) Find the points of intersection of the curve $y = 4 \sqrt{2x}$ with the x and y axes. 2
 - (ii) The area enclosed by the curve $y = 4 \sqrt{2x}$, the x axis and the y axis is rotated about the y axis. Find the volume of the solid of revolution so formed (leave your answer in terms of π)

4

The line x = m, cuts the curves $y = log_e x$ and $y = log_e 5x$ at R and S respectively.

Show that the tangents to the curves at R and S are parallel. Also show that the distance RS remains constant for all values of M (ie the distance is independent of m).

END OF PAPER

(D x 5 10x 4 by = 20. (3)	$\frac{y+z}{\lambda} = x$								
Mathematics 2008 HSC Trial Exams	a_{λ} e = 0.5 H q (3 dp).	(2)	$\frac{A}{A} = \frac{A}{A} = \frac{A}{A}$ $\frac{A}{A} = \frac{A}{A}$ $\frac{A}{A} = \frac{A}{A}$	1 (i) 2 dx = [hx].	$ \frac{W_2}{(1.1)} \frac{W_2}{\sqrt{3}} \cos\left(\frac{\frac{\chi}{3}}{3}\right) d\chi = 2 \left[\sin\left(\frac{\chi}{2}\right)\right] \eta_3 $	[4] - 2 1 1 1 1 1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3x = -4 $3x = -4$ $x = 5$ $-3/2$	(1) 2xty=4 (2)

The Control of State of Control of State of Control of State of St

Since CD HE \$ But x=al 330 ≮ (a Sochsfles condition for perpendicular lines M8D= (-3+5-2+ (1,1). Result confirms driagonals bisect, at (1,1) = (1, 1) $y-q=-\frac{1}{3}(x++5)$ Side length = 1 (-5-5)2+ (9-4)2 4x +3y -7 =0 $= \sqrt{(10)^2 + (2)^2}$ diagonals perpendicular بر کا کا stimu Sis = = -+13. -m. shorter dragonal is DB longer chingonal is AC (4-46 = J (as -3-5 gradient DB= -2-4 1-5-9/5/ 143 M=(-5+7) A cand B Now with gradient ACE (W) gradient AC= ": Egm AC Using Question 2 (111) (i) (i) (11) (2)

E 3x° C 15x° C 3x° C 3x°

(p)		
U= X Joe	(ex), wisax wise	
$\frac{\text{Question 3}}{\text{a)} \text{(i)} \text{u} = x^2 \text{u} = x^2$	U = x = x + 2x(ex)	$= \chi e^{\chi} (\chi + \Delta)$

(C)			
	(5)		
	۲ ۲	10	n (
	ا ا	- 7	ζ [`
() () () () () () () () () ()	(S)	l li	•
× 6	(Y	-	, ,
٤ =	Li	11	
5)	5	
(<u>)</u> [] [] (<u>)</u> (<u>)</u>	= (M(X-S) - (M(X+3)		

$$= \frac{\gamma(+3 - (\varkappa - s))}{(\varkappa - s)(\varkappa + s)}$$

$$= \frac{8}{(\varkappa - s)(\varkappa + s)}$$

$$b)$$
 (1) $\int \frac{d^{3}x}{3^{3}x^{-1}} = \frac{3}{3} \ln(33x - 1) + c$

$$(ii) \int_{0}^{1} e^{itx} dx = \left[\frac{1}{1} e^{itx} \right]_{0}^{1}$$

c)
$$\tan^2 + (1+m)x + 1 = 0$$

Equal roots when $6 = 0$

Equal roots when $\Delta = b^2 - 4ac$ $= (1+m)^2 - 4(4)(1)$ $= (1+2m+m^2 - 16)$

8.4.0 m + 2m - 15

Solve m" t 2m - 15 = 0 (m 15)(m - 3)=0. m=-s or m=3

/		2	H B	ν	7	ch + tan B = 5 + 15	= 39+8	415	
	. 61	/ 2	1 / 5		Complete each triangle	sech t tan 6	(1	n .	

	:		:						:	:			:	: :	
7 .	į.	:		3				:		:	:		:	:	
												i	1	1	:
				:				:	1	1		1		: :	
1			:	:							:	:	f		:
					:				1		:				
		:		;				:		1			:	: :	
i .		:	:			: :	-	}	1				1		
	1					: :		:	: :		1				
1	;								: :	:	:		:		
1	:	:		3		: :			:	1	:	1	:	: :	
1			:	÷							:	:	1	1 1	
:	:										:	:	1	1 1	
÷	3					:					:	:	į.		
1								:						: :	
1	1	:	3	÷		1		i.	: :			:			
1				;				:	: :	ŧ					
1	i		i .	1								:			
1	1						į	<u> </u>	:	1	1	3	1	: :	
1	1	:	:			:		:		1					
1	1	:			;	: :		:		÷	:				
1	:	:	}			: :			:		;	;			
1					1	: :			:	:	1	:	:		
1		;		:		. :		•	3				1	1	
:	4	;	;			:		•	: .	:			-		
;	;		i	:	•				: .			t		1 1	
1	1 .	i.			:			i	1		:	1	3	1 1	
1	-	1	1		:		7	;		•		•	1		
	1	:				:		1		:	:		:	1 3	
1	;			:				:			į				
1	1	t	:	;	;	:			1 .						
1	1	:	;	i	:			1		•		:	1	1 1	
1	į.		3			: :	:		1	1	1		1	:	
į.	:	:	;	:			:				:	:		: :	
1		:	:	:				:		1	2	i .		: :	
i	1	3	:	:		:	•	3	1	:		3		1 :	
1	7					: :	•		:	1	÷	-	1	: :	
1	:	į.						}	:	:	1	1	£		
1	:	•		1	:		:	,		1	į			: :	
:	4		:	5				1	;	:		1	1	: :	
}	3	3	ž	;	1	1 :	í	ì	1		1	į	6	: :	
1	1	3	ì				:	:	ŧ						
:	i	2			3		:	i				1	ŧ	1	
:	ŧ		3	:				ì						: :	
1	1	j	į	:			:		ŧ			2	1	: :	
:	:	;		:						i		į	5		
	•		1					i	;		:	1	1		
		1		}			1	1	1			3	1		
1	:		1		:	:	•	:		:	9		1	1 1	
1	1	:	i	1	1	1			:	į.	;			()	
3			1		1		i .	1	1					1 1	
	1		1	1		: :			3	1		:	3	1 1	
į.				ž	1	: :	•	ž.		1			1	:	
1	1	1	3	1			:	-					3	1 1	
					:			3	1	:					
	1			:							:		3		
	1						1	:	:			-	1		
1						[!								
														1 3	
		:													
			3					-							
			3					-							
			3					-							
			3												
			3						:						
			3						:						
			3						1						
			3						:						
			3												

C-XNO 173 = 0, 17, 211, 317, 317, x = -173, 2173, 5173, 2/5 = Bta 2/5 For given domain: $2x^2 - 5x + 5 = 0$ $3x^2 - 5x + 5 = 0$ 5/2 $Sin(x+\pi/8)=0$ 0 + B= (ii) dp. (111) જ FEC = 1FDA = 90 (given) IFC = IAFD (vertically "· DEFC and DPH are (ii). Correspondung sides are in the same ratio. opposite angles squal) Q= 48 and egurangulac. = 30 = 30 = 27 72 33 17 32 (1-14) <u>ا</u>ر () () ۵(۱-دس) a (1-r4) ا ا 11 11 00 m Similar T2 = 24 ", In SH +1 T, = 48 ر ۱۸ (i ij N. C['] Questiony 8 BA Q 9 <

$y = -x^2 + 4x - 6$ (1) Intersect when $-x^2 + 4x - 6 = xt$ $(x - t)(x - 1) = 0$ $\chi = 0 \text{ or } x = t$	\(\frac{1}{\pi}\)	= -3 (64) 13 (16) -36 - (-3 1 (14 - 16) - 36 + 36 + 36 + 36 + 36 + 36 + 36 + 36	
(g	(ii.) (A		

Obsertions by $\frac{1}{5} = \frac{1}{5} + $
--

mandan manada wa manada ma	x 0 0.5 1 1.5 2	142x 1 14 16 64 256	To the second se	101 = TO 4 4 100	((ch) = 1 (ch, p) × H + "h + ch) & 1 = 1	[(9)] = (8) H + 9SE + 1) = (1) =
()		XT. T		Λ		

•

.

			7				
	(که				(,0,0)	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
[[195	= 293.7 W3 (1 dp)			= 41 cm	(ii) Area = \$ r2 (@ - smoc) = \$ (4) (21 - 5)	= 2 (3) EMZ	
Vol = T[t(561)]	743°F	(a) (1) $(20^{\circ} = \frac{200}{3}$	= 2 (21)	, LIM) (+) E	16) C :	
10		(200 =	ک ۳۰ = کا ا <u>ک</u> اری =	(1	HEQ =		
>		(1)			۹ (ززز)		
		8					

= 30000(1,01) ⁴⁸ (0.01)	(iii) Total repaid = M xH8 (iii) Total repaid = M xH8 = \$37920.72 (novest cent)				
				_	

	(A)							THE PARTY AND ADDRESS OF THE PARTY OF THE PA	 	
· · · · · · · · · · · · · · · · · · ·	Question 8 $\frac{\sin 2x}{\sin 2x}$ $\lim_{x\to 0} \frac{(\sin 2x)_x}{x}$ a	$(\frac{\pi}{4})_{\frac{1}{2}} = \frac{2}{4} = \frac{1}{2} = $	25 See = 20	c) $x = 3 + 3t - t^3$ $t > 0$ (i) $\frac{dx}{dt} = 3 - 3t^2$	Stops after 1 second	μ	$\frac{1}{3} = 3 = 3 = 3$		X=2+0	(= 3 X = 3 + 6 - 8.)

lled 2 + 14 = 6 m	$\int_{\mathbb{R}^{2}} \left\{ x \right\} = \int_{\mathbb{R}^{2}} \left\{ x \right\}$	- T F 25 -1] - 2					
". Has travelled 2	D = 5x						

Company of the state of the sta

the second secon

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

+4x5

(i() 0 < x < 10	$\frac{dh}{dx} = 80 - 40x$	$\frac{dA}{dx} = 0 \text{when} 16x = 80$	d ² A = -16 60 =) max	Trea max when x=5.
o (ij)				

						·						
											: :	
- 1												
1												
- 1												
- 1												
į												
1												
											1	
								1				
į												
								1				
									-			
								1				
								1				
	•							•				
-												
	ł											
								:				:
	:		Ì	:	:			į				
								1				
	ĺ											
		:		:	:							
	1		:									
								į				
-]				
:												
1												
							,					
-												

