T.D. X - Variables aléatoires à densité

I - Densités

Exercice 1. (\diamondsuit) Soit a > 0 et f définie par

$$f(t) = \begin{cases} \frac{t}{2a^2} & \text{si } t \in [0, 2a] \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est une densité de probabilité.

Exercice 2. ($\mathfrak{C}_{\bullet}^{\bullet}$) Soit f définie par

$$f(x) = \begin{cases} \frac{\ln(x)}{x^2} & \text{si } x \geqslant 1\\ 0 & \text{si } x < 1 \end{cases}$$

Montrer que la fonction f est une densité de probabilité.

On admettra que pour tout $A \ge 1$, $\int_1^A \frac{\ln(x)}{x^2} dx = -\frac{\ln(A)}{A} - \frac{1}{A} + 1$.

Exercice 3. Soit n un entier supérieur ou égal à 2 et f_n définie par

$$f_n(t) = \begin{cases} nt^{n-1} & \text{si } t \in [0, 1] \\ 0 & \text{sinon} \end{cases}$$

Montrer que f_n est une densité de probabilité.

Exercice 4. Soit $a \in]0,1]$ et f définie par

$$f(t) = \begin{cases} \frac{t}{a^2} & \text{si } 0 \leqslant t \leqslant a\\ \frac{2a-t}{a^2} & \text{si } a < t \leqslant 2a\\ 0 & \text{sinon} \end{cases}$$

Montrer que f est une densité de probabilité.

Exercice 5. (\mathscr{E}) On considère la fonction f définie sur \mathbb{R} par

$$f(t) = \begin{cases} k \frac{t}{1+t} & \text{si } t \in [0,1] \\ 0 & \text{sinon} \end{cases}$$

Déterminer la valeur de k pour laquelle f est une fonction de densité. On admettra que $\int_0^1 \frac{t}{1+t} dt = 1 - \ln(2)$.

II - Fonctions de répartition, Espérances, Variances

Exercice 6. ($\diamondsuit_{\bullet}^{\bullet}$) Soit f définie par

$$f(x) = \begin{cases} \frac{1}{(1+x)^2} & \text{si } x \geqslant 0\\ 0 & \text{sinon} \end{cases}$$

1. Montrer que f est une densité de probabilité.

Soit T une variable aléatoire de densité f.

2. Déterminer la fonction de répartition de T.

Exercice 7. Soit X une variable aléatoire de densité f définie par

$$f(t) = \begin{cases} e^{-t/2} - e^{-t} & \text{si } t \geqslant 0\\ 0 & \text{sinon} \end{cases}$$

- 1. Déterminer la fonction de répartition F_X de X.
- **2.** Si Y est une variable aléatoire de loi exponentielle de paramètre a>0, rappeler une densité et l'espérance de Y. En déduire la valeur de $\int_0^{+\infty} t \, \mathrm{e}^{-at} \, \mathrm{d}t$.
- 3. En déduire l'espérance de X.

Exercice 8. (\mathscr{D}) Soit X une variable aléatoire de densité f définie par

$$f(x) = \begin{cases} \frac{\ln(x)}{x^2} & \text{si } x \geqslant 1\\ 0 & \text{si } x < 1 \end{cases}$$

A. Camanes

- 1. Déterminer la fonction de répartition G de X.
- **2.** Montrer que X n'admet pas d'espérance.

Exercice 9. Soit a > 0 et X une variable aléatoire de densité f définie par

$$f(t) = \begin{cases} \frac{t}{2a^2} & \text{si } t \in [0, 2a] \\ 0 & \text{sinon} \end{cases}$$

- **1.** Déterminer $\mathbf{E}[X]$.
- **2.** Déterminer $\mathbf{E}[X^2]$ et en déduire $\mathbf{V}(X)$.

Exercice 10. Soit $a \in]0,1]$ et X une variable aléatoire de densité f définie par

$$f(t) = \begin{cases} \frac{t}{a^2} & \text{si } 0 \leqslant t \leqslant a\\ \frac{2a-t}{a^2} & \text{si } a < t \leqslant 2a\\ 0 & \text{sinon} \end{cases}$$

- **1.** Déterminer $\mathbf{E}[X]$.
- **2.** Déterminer $\mathbf{E}[X^2]$ et en déduire $\mathbf{V}(X)$.

Exercice 11. Soit a un réel et f la fonction définie pour tout t réel par

$$f(t) = \begin{cases} a e^{2-t} & \text{si } t \geqslant 2, \\ 0 & \text{sinon.} \end{cases}$$

1. Déterminer la valeur de a pour laquelle f est une densité de probabilité.

Soit X une variable aléatoire de densité f.

- **2.** Déterminer la fonction de répartition F de X.
- 3. Déterminer les probabilités suivantes :

 - **a)** $P([X \le 3]).$ **c)** P([0 < X < 3]). **b)** P([1 < X < 2]). **d)** $P([X \ge 4]).$

- **4.** Soit $Y \hookrightarrow \mathscr{E}(1)$.
 - a) Rappeler la formule (avec une intégrale) et la valeur de $\mathbf{E}[Y]$.
- **b)** On pose Z = Y + 2. Déterminer la fonction de répartition puis une densité de Z.
 - \mathbf{c}) En déduire que X admet une espérance et la calculer.

Exercice 12. Soit a un réel et f la fonction définie pour tout t réel par $f(t) = \begin{cases} a e^{3-t} & \text{si } t \geqslant 3\\ 0 & \text{sinon} \end{cases}.$

1. Déterminer la valeur de a pour laquelle f est une densité de probabilité.

Soit X une variable aléatoire de densité f.

- **2.** Déterminer la fonction de répartition F de X.
- **3.** Déterminer les probabilités suivantes :

- **a)** $\mathbf{P}([X \le 3]).$ **c)** $\mathbf{P}([0 < X < 5]).$ **b)** $\mathbf{P}([1 < X < 2]).$ **d)** $\mathbf{P}([X \ge 4]).$

- **4.** Soit $Y \hookrightarrow \mathcal{E}(1)$.
 - a) Rappeler la formule (avec une intégrale) et la valeur de $\mathbf{E}[Y]$.
- **b)** On pose Z = Y + 3. Déterminer une fonction de répartition puis une densité de Z.
 - \mathbf{c}) En déduire que X admet une espérance et la calculer.

III - Transformation de variables aléatoires

Exercice 13. ($\mathfrak{S}_{\mathbf{s}}^{\mathbf{s}}$) Soit $U \hookrightarrow \mathscr{U}([0,1])$. Déterminer la fonction de répartition, une densité, puis identifier éventuellement la loi des variables aléatoires suivantes:

- 1. X = 3U. 2. Y = U + 1. 3. $Z = \frac{1}{2} \frac{V}{V} + \frac{1}{2}$ 4. $W = X^2$. 5. $H = \ln(X + 1)$. 6. $E = -\ln(X + 1)$.
 - 3. $Z = \frac{1}{2}X + 1$.

Exercice 14. ($\mathfrak{A}_{\bullet}^{\bullet}$) Soit $U \hookrightarrow \mathscr{U}([0,1])$. Déterminer la fonction de répartition, une densité, puis identifier éventuellement la loi des variables aléatoires suivantes:

- 1. X = 4U.4. $W = X^2$.2. Y = U + 2.5. $H = \ln(X + 1)$.3. $Z = \frac{1}{2}X + 1$.6. $E = -\ln(X + 1)$.

T.D. X - Variables aléatoires à densité

Exercice 15. Soit n un entier naturel non nul et f_n définie par

$$f_n(t) = \begin{cases} nt^{n-1} & \text{si } t \in [0, 1] \\ 0 & \text{sinon} \end{cases}$$

On admet que f_n est une densité de probabilité et on note X_n est une variable aléatoire de densité f_n .

- 1. Déterminer la fonction de répartition F_n de X_n .
- **2.** Déterminer $\mathbf{E}[X_n]$.

On pose $Y_n = -\ln(X_n)$.

- **3.** Déterminer la fonction de répartition G_n de Y_n .
- **4.** Reconnaître la loi de Y_n .
- **5.** En déduire $\mathbf{E}[Y_n]$ et $\mathbf{V}(Y_n)$.

Exercice 16. Soit $a \ge 0$ et f définie par

$$f(t) = \begin{cases} 0 & \text{si } t < a \\ 2e^{2a}e^{-2t} & \text{sinon} \end{cases}$$

On admet que f est une densité de probabilité et on considère une variable aléatoire X de densité f. On pose Y = X - a.

- 1. Déterminer la fonction de répartition F de X.
- **2.** Déterminer la fonction de répartition G de Y.
- 3. Reconnaître la loi de Y, en déduire son espérance et sa variance.
- 4. Déterminer l'espérance et la variance de X.

IV - Lois usuelles

Exercice 17. (\diamondsuit) Soit $X \hookrightarrow \mathcal{N}(0,1)$ et $Y \hookrightarrow \mathcal{N}(5,4)$. En utilisant la table de la loi normale, calculer

1.
$$P([X \le 2])$$
. **3.** $P([Y < 1])$. **4.** $P([3 < Y \le 10])$

Exercice 18. (\Leftrightarrow) Soit $X \hookrightarrow \mathcal{N}(0,1)$ et $Y \hookrightarrow \mathcal{N}(2,9)$. En utilisant la table de la loi normale, calculer

1.
$$P([X \le 2,5])$$
. **3.** $P([Y < 1])$. **2.** $P([X > 1,49])$. **4.** $P([3 < Y \le 6])$.

Exercice 19. ($\mathfrak{A}_{i}^{\bullet}$) Un archer lance deux flèches en direction d'une cible de rayon d'un mètre. On suppose qu'il atteint systématiquement la cible et que ses lancers sont indépendants. Pour tout $i \in \{1, 2\}$, on note R_{i} la variable aléatoire égale à la distance (en mètres) de la flèche numéro i au centre de la cible et on suppose que $R_{i} \hookrightarrow \mathscr{U}([0, 1])$. On note également $R = \min\{R_{1}, R_{2}\}$.

- **1.** Soit $x \in \mathbb{R}$. Justifier que $\mathbf{P}([R > x]) = \mathbf{P}([R_1 > x] \cap [R_2 > x])$.
- 2. En déduire, pour tout x réel, la fonction de répartition F de R.
- 3. Calculer la probabilité que la flèche la mieux lancée par l'archer soit située à moins de 50cm de la cible.

Exercice 20. ($\mathfrak{A}_{\mathfrak{S}}^{\mathfrak{S}}$) Un appareil électronique utilise deux piles dont les durées de vie (en années) respectives sont T_1 et T_2 . On suppose que T_1 et T_2 sont indépendantes et suivent une loi exponentielle de paramètre 1. Pour le fonctionnement, une seule pile suffit et l'appareil cesse donc de fonctionner au bout d'un temps $T = \max\{T_1, T_2\}$.

- **1.** Soit $x \in \mathbb{R}$. Justifier que $\mathbf{P}([T \leqslant x]) = \mathbf{P}([T_1 \leqslant x] \cap [T_2 \leqslant x])$.
- **2.** En déduire, pour tout x réel, la fonction de répartition F de T.
- **3.** Calculer la probabilité que l'appareil fonctionne, en excluant toute autre panne, durant au moins 6 mois.