Machine Learning Blatt 6

Markus Vieth

David Klopp

Christian Stricker

8. Juni 2016

Nr.1

$$\begin{split} MSE(g_{T}(x_{0})) &= Var(g_{T}(x_{0})) + Bias(f(x_{0})) \\ &= \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})))^{2} \right] + (\mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}))^{2} \\ &= \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})))^{2} \right] + 2\mathbb{E}_{\mathbb{T}}(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0}))) \left(\mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}) \right) \\ &+ (\mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}))^{2} \\ &= \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})))^{2} \right] + 2\mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0}))) \left(\mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}) \right) \right] \\ &+ \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})))^{2} + 2 \left((g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0}))) \left(\mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}) \right) \right] \\ &= \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0}))) + \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}))^{2} \right] \\ &= \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0}))) + \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})) - f(x_{0}))^{2} \right] \\ &= \mathbb{E}_{\mathbb{T}} \left[(g_{T}(x_{0}) - \mathbb{E}_{\mathbb{T}}(g_{T}(x_{0})))^{2} \right] \end{split}$$

q.e.d.

 $^{{}^{\}tiny{\textcircled{\scriptsize 0}}}$ Konstant, kann also in den Erwartungswert gesetzt werden

²Konstant, somit ist der Erwartungswert er selbst

Markus Vieth, David Klopp, Christian Stricker

Nr.2

	3.437	5.791	3.268	10.649		27.698
	12.801	4.558	5.751	14.375		57.634
	6.136	6.223	15.175	2.811		47.172
	11.685	3.212	0.639	0.964		49.295
	5.733	3.22	0.534	2.052		24.115
	3.021	4.348	0.839	2.356		33.612
	1.689	0.634	0.318	2.209		9.512
	2.339	1.895	0.61	0.605		14.755
	1.025	0.834	0.734	2.825		10.57
X =	2.936	1.419	0.331	0.231	Y =	15.394
	5.049	4.195	1.589	1.957		27.843
	1.693	3.602	0.837	1.582		17.717
	1.187	2.679	0.459	18.837		20.253
	9.73	3.951	3.78	0.524		37.465
	14.325	4.3	10.781	36.863		101.334
	7.737	9.043	1.394	1.524		47.427
	7.538	4.538	2.565	5.109		35.944
	10.211	4.994	3.081	3.681		45.945
	8.697	3.005	1.378	3.338		46.89

Berechne:

$$w = (X^T \cdot X)^{-1} \cdot (X^T \cdot Y)$$

mit:

$$(X^T \cdot X)^{-1} = \begin{pmatrix} 0.00429129055565 & -0.00478345506973 & -0.000752238199424 & -0.000689936030722 \\ -0.00478345506973 & 0.0109403979337 & -0.00209111752592 & 0.000396499981558 \\ -0.000752238199424 & -0.00209111752592 & 0.00558456810802 & -0.00081147325675 \\ -0.000689936030722 & 0.000396499981558 & -0.00081147325675 & 0.000930021643118 \end{pmatrix}$$

$$(X^T \cdot Y) = \begin{array}{c} 5570.426016 \\ 2944.414095 \\ 2902.209741 \\ 6296.28324 \end{array}$$

3.29265832646

Es ergibt sich somit: $w = \begin{cases} 1.99479384949 \\ 0.779019249978 \end{cases}$

0.750919342272

0.824836613555

 $Out(X) = \text{Catlle} \cdot 3.29265832646 + \text{Calves} \cdot 1.99479384949 + \text{Pigs} \cdot 0.750919342272 + \text{Lambs} \cdot 0.824836613555$