Stewart Platform

Omar, Namrita, Abhishek

Problem Statement

Maintain the stability of a pool table on a cruise ship

Solution

- Use the concept of a stewart platform in reverse
- Consists of a base plate and top plate connected by 6 linear actuators
- Gives top plate 6DOF
- Base plate will be rigidly attached to the ship

Concept: Keep the top plate perpendicular to the gravity vector

Modeling Of The Stewart Platform

Inverse Kinematics-> Relatively Simple!

bi+li=qi

li- Leg Length

$$q_i = T + {}^{P}R_B \cdot p_i$$

$$l_i = T + {}^{P}R_B \cdot p_i - b_i$$

Inverted Stewart Platform

- Base Frame is in motion.
- IK is calculated using the moving Base Frame as reference.
- Goal- Frame attached to the Top Plate must follow the same orientation as the World Frame.

Block Diagram of the System

Inverse Kinematics block

Inverse Kinematics - position computation

$$l_i = T + {}^{P}R_B \cdot p_i - b_i$$

 p_i and b_i are fixed

Inverse Kinematics - position computation

Inverse Kinematics - velocity computation

$$l_i = T + {}^{P}R_B \cdot p_i - b_i$$

 p_i and b_i are fixed

$$v_i = \dot{T} + \dot{R} * p_i$$

Inverse Kinematics - velocity computation

Inverse Kinematics - velocity computation

Inverse Kinematics

PID Control

Actual and Desired **Desired TORQUE for each** PID **POSITION and VELOCITY** Controller Leg **Actual POS from** act_pos Manipulator **Actual** VEL from act_vel Manipulator force to Manipulator Block des_pos **Desired** POS from IK Block des_vel **Desired** VEL from IK Block PID Controller

PID Control

$$oldsymbol{ au} = K_p ilde{oldsymbol{q}} + K_v \dot{ ilde{oldsymbol{q}}} + K_i \int_0^t ilde{oldsymbol{q}}(\sigma) \; d\sigma$$

Manipulator Block

Inertial Position Sensor

Desired Top Plate Orientation-> World Frame

- Rotation Matrix from the World Frame to the Frame Attached to the Top Plate should be an Identity Matrix.
- IK must be calculated using the rotation matrix of the Top Plate relative to the Platform Base.

Animation of the Stewart Platform

Angular Velocities in X

Wrt World Frame

Wrt Base Frame

Angular Velocities in Y

Wrt World Frame

Wrt Base Frame

Angular Velocities in Z

Wrt World Frame

Wrt Base Frame

Leg Position Errors

With more time ...

- Better verification: getting balls on to the top plate
- Simulating the physics: friction

Success criterion: no balls should get displaced due to disturbances