实验三:卡方检验与拟合优度检验

实验目的: 了解做单侧检验的方法, 了解方差分析显著性与功效的区别与联系, 掌握用 SPSS 做卡方检验与拟合优度检验的基本步骤, 能正确解读分析结果, 规范书写检验报告。继续熟练数据的格式变换, 掌握变量参数的设置对报告输出可读性的影响。

关键: 选用合适的检验方法, 正确解读分析结果

1. 均值检验的一些拓展(此内容选作,不要求写实验报告)

1.1 单侧检验

拓展题:某医生测量了 36 名从事铅作业男性工人的血红蛋白含量,算得其均数为 130.83g/L,标准差为 25.74g/L。问从事铅作业工人的血红蛋白是否小于正常成年男性平均值 140g/L (α=0.05)?

方法一: 分析→比较平均值→单样本 t 检验, 观察结果中的 t 分布界值表, 同一自由度, 同一 t 值下, 单侧检验 p 值减半;

方法二:分析→比较平均值→单样本 t 检验,将结果中的 t 值,与 $t_{35,005}$ 的理论值对比; 方法三:分析→比较平均值→单样本 t 检验,<mark>将理论均值与 90%置信区间的上限比较</mark>;

1.2 方差分析 差异显著性 (p) 与 功效 (η^2)

 $\eta^2 = SS_{between}/SS_{total}$

 $\eta^2 = F*(k-1)/[F*(k-1)+(n-k)]$

问题 1: 比较对照组和处理组中 GTP 与 GOP 是否有差异, 哪一个差异更显著?

问题 2: 比较对照组与处理组中 GTP 与 GOP, 哪一个差异更大?

问题 3: GTP 与 GOP 哪一个对处理更敏感?

组别	样本含量	对照	处理	
GTP	5	16±3	20±3	
GOP	200	16±3	18±3	

2. 卡方检验

2.1 2×2 列联表的独立性检验

例题 7.3 某药有两种给药方式,口服给药和注射给药,下表是不同给药方式与给药结果的统计结果,问口服给药与注射给药的效果是否有差异。

给药方式	有效(<i>A</i>)	无效 (Ā)	总数	有效率
口服 (B)	58	40	98	59.2%
注射 (\bar{B})	64	31	95	67.4%
总数	122	71	193	

- 1) 将表中的数据输入 SPSS, 由于只有四个数字, 可以直接输入, 注意输入后将会有三列, 一列是给药方式, 一列是是否有效, 最后一列为频数。
- 2) 检验步骤:

非常重要但易遗忘步骤:数据 → 加权个案 → <u>加权个案</u>:频数变量:频数 → 确定

分析 → 统计描述 → 交叉表格: 行: 给药方式; 列: 效果 → 点击 statistics, 勾选 卡方 → 继续 → 点击单元格, 勾选观察值与期望值 → 继续 → 确定

3) 结果解读

当 n≥40 且所有 T≥5 时, 查阅 Pearson Chi-Square (皮尔逊卡方) 当 n≥40 但有 1≤T<5 时,(或 df=1 时) 查阅 continuity correction(连续校正) 当 n<40 或 T<1(或 p≈α 时), 查阅 Fisher's Exact Test (Fisher 精确检验)

4) 书写检验报告

H0: $\pi_1 = \pi_2$, 不能认为两种给药方式效果有显著差异 H1: $\pi_1 \neq \pi_2$, 可以认为两种给药方式效果有显著差异

α=0.05 输出结果:

个案处理摘要							
			1	~案			
·	有效		缺失		总计		
	N	百分比	N	百分比	N	百分比	
给药方式*效果	193	100.0%	0	0.0%	193	100.0%	

给药方式 * 效果 交叉表						
			效果			
		-	有效	无效	总计	
给药方式	口服	计数	58	40	98	
		期望计数	61.9	36.1	98.0	
	注射	计数	64	31	95	
		期望计数	60.1	34.9	95.0	
总计		计数	122	71	193	
		期望计数	122.0	71.0	193.0	

卡方检验						
	值	自由度	渐进显著性 (双侧)	精确显著性 (双侧)	精确显著性 (单侧)	
皮尔逊卡方	1.390ª	1	.238			
连续性修正 ^b	1.060	1	.303			
似然比	1.392	1	.238			
费希尔精确检验				.296	.152	
线性关联	1.382	1	.240			
有效个案数	193					

a. 0 个单元格 (.0%) 的期望计数小于 5。最小期望计数为 34.95。

b. 仅针对 2x2 表进行计算

检验结论: $n \ge 40$ 且所有 T ≥ 5,需要查阅皮尔逊卡方。由于 p=0.238>0.05,拒绝 H1,接受 H0,因此不能认为两种给药方式有显著差异。

2.2 配对四格表的卡方检验

现有 198 份痰标本,每份标本分别用 A、B 培养基培养结核菌,结果见下表。问 A、B 两种培养基的阳性培养率是否不等?

∧ +☆ * 甘	B 培养基		Д
A 培养基 ⁻	+	-	合计
+	48	24	72
_	20	106	126
合计	68	130	198

1) 将表中的数据输入 SPSS, 由于只有四个数字, 可以直接输入, 注意输入后将会有三列, 一列是 A 培养基, 一列是 B 培养基, 最后一列为频数。

2) 检验步骤:

数据 → 加权个案 → 加权个案: 频数变量: 频数 → 确定

分析 \rightarrow 统计描述 \rightarrow 交叉表格: 行: A 培养基; 列: B 培养基 \rightarrow 点击 statistics, 勾选卡方和 McNemar \rightarrow 继续 \rightarrow 点击单元格, 勾选观察值与期望值 \rightarrow 继续 \rightarrow 确定

3) 结果解读

注意: 输入的数据中除频数外的两列可以是字符串的数值类型, 但在卡方的输出报告中会根据值进行自动排序, 如果一定要按照指定顺序显示, 可将值定义为 1, 2, 3 等有序数字, 然后添加值标签, 可确保显示的顺序按照预期排列。

4) 书写检验报告

输出结果:

H0: $\pi_1 = \pi_2$, 不能认为两种培养基的阳性培养率有显著差异 H1: $\pi_1 \neq \pi_2$, 可以认为两种培养基的阳性培养率有显著差异 α =0.05

个案处理摘要						
			1	`案		
	有差	效	毎	失	.ė.	it
	N	百分比	N	百分比	N	百分比
A培养基*B培养基	198	100.0%	0	0.0%	198	100.0%

A培养基*B培养基 交叉表						
			B培养基			
		_	+	-	总计	
A培养基	+	计数	48	24	72	
		期望计数	24.7	47.3	72.0	
	-	计数	20	106	126	
		期望计数	43.3	82.7	126.0	
总计		计数	68	130	198	
		期望计数	68.0	130.0	198.0	

卡方检验						
	值	自由度	渐进显著性 (双侧)	精确显著性 (双侧)	精确显著性 (单侧)	
皮尔逊卡方	52.425ª	1	.000			
连续性修正 ^b	50.196	1	.000			
似然比	52.819	1	.000			
费希尔精确检验				.000	.000	
线性关联	52.160	1	.000			
麦克尼马尔检验				.652°		
有效个案数	198					

- a. 0 个单元格 (.0%) 的期望计数小于 5。最小期望计数为 24.73。
- b. 仅针对 2x2 表进行计算
- c. 使用了二项分布。

检验结论: 做 McNemar 检验,由于 p=0.652>0.05,拒绝 H1,接受 H0,即不能认为两种培养基的阳性培养率有显著差异。

2.3 行(R) X 列(C) 表资料的卡方检验及事后多重检验 <u>(此内容选作,不要求写实验报告)</u> 某研究人员收集了亚洲、欧洲和北美洲人的 A、B、AB、O 血型资料,结果如下表,问不同地区人群 ABO 血型分类构成比是否不同。

地区	А	В	AB	0	合计
亚洲	321	369	95	295	1080
欧洲	258	43	22	194	517
北美洲	408	106	37	444	995
合计	987	518	154	933	2592

- 1) 将表中的数据输入 SPSS, 调整最终的格式为纵向结构
- 2) 检验步骤:

数据 → 加权个案 → 加权个案: 频数变量: 频数 → 确定

分析 → 统计描述 → 交叉表格: 行: 地区; 列: 血型 → 点击 statistics, 勾选卡方

- → 继续 → 点击单元格, 勾选观察值与期望值 → 继续 → 确定
- 3) 结果解读

行列表中的 n≥40,且各格 T>1,并且 1≤T<5 的格子数不超过 1/5 格子总数,查阅皮尔逊卡方

卡方检验的时候多重检验法有卡方分割法和 benferroni 方法,卡方分割法在 SPSS 中没法自动实现,bonferroni 方法仅限于比较列之间的比例,因此要比较不同地区人群 ABO 血型分类构成比的时候,在交叉表格中行选择血型,列选择地区,并在上述操作中,点击单元格,勾选 z 检验比较列的比例,并勾选调整 p 值(Bonferroni 方法),在结果中会用 abc 字母下标加以区分。

- 3. 拟合优度检验
- 3.1 构成比的拟合优度检验

试比较 1.3 例题中欧洲与北美洲的 ABO 血型构成比是否相同

对 1.3 的 SPSS 数据进行个案到变量的重组(个案重组为变量,纵向数据转变为横向数

据), 标识变量为血型, 索引变量为地区, 结果图如下

血型	世洲	欧洲	北美洲	
A型血	321	258	408	
B型血	369	43	106	
AB型血	95	22	37	
O型血	295	194	444	

简易操作步骤如下:

加权个案, 加权变量为欧洲

分析 \rightarrow 非参数检验 \rightarrow 旧对话框 \rightarrow 卡方 \rightarrow 检验变量列表为血型,期望值将北美洲的人数数值从上到下逐个输入 \rightarrow 确定

H0: $\pi_1 = \pi_2$,不能认为欧洲与北美洲的 ABO 血型构成比有显著差异 H1: $\pi_1 \neq \pi_2$,可以认为欧洲与北美洲的 ABO 血型构成比有显著差异 α =0.05

输出结果:

血型						
实测个案数 期望个案数 残差						
A型	258	212.0	46.0			
B型	43	55.1	-12.1			
AB型	22	19.2	2.8			
O型	194	230.7	-36.7			
总计	517					

检验统计		
	血型	
卡方	18.871 ^a	
自由度	3	
渐近显著性	.000	
a. 0 个单元格 (. 0%) 的期望频率 低于 5。期望的 最低单元格频率 为 19.2。		

P=0.000<0.05, 拒绝 H0, 接受 H1, 因此可以认为欧洲与北美洲的 ABO 血型构成比有显著差异。

3.2 二项分布的拟合优度检验

将某批菌种在特定的培养基中进行保存, 共 60 盒, 每盒 10 支, 在液氮中保存相当一段时间后, 因实验需要将菌种复苏, 每盒菌种的活性情况如下表, 试检验菌种的活性存活是否服从二项分布?

 失活数	观测到次数
0	8
1	15
2	20
3	10
4	5
5	2

操作步骤如下:

- 1. 计算菌种的失活概率。
 - 观测值 p= (0*8 + 1*15 + 2*20 + 3*10 + 4*5 + 5*2)/(60*10) = 0.1917
- 2. 在 SPSS 中计算二项式分布的理论概率 转换→计算变量→PDF 与非中心 PDF→PDF.BINOM(菌种的失活数,10,0.1917)
- 3. 以"观测次数"加权个案
- 4. 卡方检验中以菌种失活数目为检验变量, 在期望值中输入二项分布的理论频率, 分析实际观测数值与理论预期值之间的差异
- 5. 思考: 做拟合优度检验时失活数是否需要覆盖 0~10 所有可能性?

H0: 可以认为菌种活性存活服从二项分布 H1: 不可以认为菌种活性存活服从二项分布

α=0.05 输出结果:

失活菌种			
	实测个案数	期望个案数	残差
0	8	7.3	.7
1	15	17.0	-2.0
2	20	18.2	1.8
3	10	11.5	-1.5
4	5	4.8	.2
5	2	1.2	.8
总计	60		

检验统计	
- 5	 夫活菌种
卡方	1.199 ^a
自由度	5
渐近显著性	.945
a. 2 个单元格 (33.3%) 的期望 频率低于 5。期 望的最低单元格 频率为 1.2。	

P=0.945>0.05, 拒绝 H1, 接受 H0, 所以可以认为菌种活性存活服从二项分布。

思考: 失活数需要覆盖 0~10 所有可能性。但实际操作中,可以进行合并,例如将≥5 的合并进行拟合优度检验。

3.3 思考题: 题 2.1 可否使用拟合优度检验?如可以,p 值是否相同?为什么?

可以。

方法: 先手动计算各个部分的预期值, 然后执行拟合优度检验。

🗞 drug	🖧 effect		predicted
口服	有效	58	61.95
口服	无效	40	36.05
注射	有效	64	60.05
注射	无效	31	34.95

H0: 不能认为两种给药方式效果有显著差异

H1: 可以认为两种给药方式效果有显著差异

α=0.05 输出结果:

frquency			
	实测个案数	期望个案数	残差
注射 无效	31	35.0	-4.0
口服 无效	40	36.1	4.0
口服 有效	58	62.0	-4.0
注射 有效	64	60.1	3.9
总计	193		

检验统计		
	frquency	
卡方	1.391 ^a	
自由度	3	
渐近显著性	.708	
a. 0 个单元格 (0.0%) 的期望 频率低于 5。期 望的最低单元格 频率为 35.0。		

P=0.708>0.05, 拒绝 H1, 接受 H0, 不能认为两种给药方式有显著差异。此法与卡方检验方法相比,自由度不同:拟合优度检验自由度为 3,卡方检验自由度为 1;同时两法得到的 p 值也不同,卡方检验的 p=0.238。