Chapitre 2: Limites de fonctions

George Alexandru Uzunov

Table des matières

1 Limite d'une fonction en l'infini

1.1 Limite finie

<u>Définition</u> On dit que f(x) admet pour limite $l \in \mathbb{R}$ lorsque x tend vers $+\infty *$ quand tout intervalle ouvert contenant l contient toutes les valeurs de f(x) pour x assez grand. On note : $\lim_{x\to +\infty} f(x) = l$.

Remarque On définit de la même façon $\lim_{x\to-\infty} f(x) = l$.

Exemple La fonction définie par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$. En effet, les valeurs de la fonction se resserentautour de 2 dès que x est suffisamment grand. Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.

Figure 1 – Courbe représentative de la fonction f et intervalle ouvert

Définition Interprétation graphique Si $\lim_{x\to+\infty} f(x) = l$, alors on dit que la droite d'équation y=l est asymptote horizontale en $+\infty$ à la courbe représentative de la fonction f. On définit de même l'asymptote horizontale en $-\infty$.

Exemple Dans l'exemple précédent, la droite y=2 est asymptote horizontale à C_f .

1.2 Limite Infinie

$$\lim_{x \to +\infty} f(x) = +\infty$$

Remarque On définit de la même façon $\lim_{x\to+\infty} f(x) = -\infty$ et $\lim_{x\to-\infty} f(x) = \pm \infty$.

Exemple La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ quand x tend vers $+\infty$. En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment grand. Si on prend un réel B quelconque, l'intervalle B; $+\infty$ contient toutes les valeurs de la fonction dès que x est suffisamment grand.

Figure 2 – Courbe représentative de la fonction f et intervalle ouvert contenant toutes les valeurs de f

Remarque Une fonction qui tend vers $+\infty$ n'est pas nécéssairement croissante.

 $\label{eq:figure 3-course} Figure \ 3-Courbe\ représentative\ d'une\ fonction\ qui\ tend\ vers\ l'infini\ mais\ n'est\ pas\ croissante$

Il existe des fonctions qui n'ont pas de limites infinies. C'est le cas des fonction sinusoidales.

 $\label{eq:figure 4-courbe} Figure \ 4-Courbe représentative d'une fonction qui ne possède pas de limite infinie$

2 Limite d'une fonction en une valeur réelle

2.1 Limite finie

<u>Définition</u> On dit que f(x) admet pour limite l (l réel) lorsque x tend vers a signifie que tout intervalle ouvert contenant l contient toutes les valeurs de f(x) pour x assez voisin de a. On note : $\lim_{x\to a} f(x) = l$

Propriété Si f est une fonction de référence (fonction carré, inverse, polynôme, fraction rationelle, racine carrée, fonction exponentielle ...) alors $\lim_{x\to a} f(x) = f(a)$ où a est un réel de l'ensemble de définition de f.

2.2 Limite infinie

Remarque On définit de la même façon $\lim_{x\to a} f(x) = -\infty$

<u>Définition Interprétation graphique</u> Si $\lim_{x\to a} f(x) = +\infty$, alors on dit que la droite d'équation x = a est asymptote verticale en a à la courbe représentative de la fonction f. On définit de même l'asymptote verticale lorsque la limite est $-\infty$.

Remarque Certaines fonctions admettent des limites différentes en un réel a selon x > a ou x < a.

FIGURE 5 – Courbe représentative d'une fonction avec des limites différentes en 0⁺ et en 0⁻

3 Limites de fonctions de référence

3.1 Limites en l'infini

f(x)	x^n	$\frac{1}{x^n}$	\sqrt{x}	$\frac{1}{\sqrt{x}}$	e^x
$\lim_{x \to +\infty} f(x)$	$+\infty$	0	$+\infty$	0	$+\infty$
$\lim_{x \to -\infty} f(x)$	$+\infty$ si n pair	0	non défini pour $x \in \mathbb{R}$	idem	0
	$-\infty$ si n impair				

3.2 Limites en 0

f(x)	$\frac{1}{x^n}$	$\frac{1}{\sqrt{x}}$		
$\lim_{x\to+\infty} f(x)$	$+\infty$	$+\infty$		
$\lim_{x \to -\infty} f(x)$	$+\infty$ si <i>n</i> pair	Non défini pour $x \in \mathbb{R}$		
	$-\infty$ si n impair			

4 Théorème sur les limites

La limite en l'infini d'une fonction polynomiale est égale à la limite en l'infini de son terme de plus haut degré (monome prépondérant).

5 Limites d'une fonction composée

Exemple $x \xrightarrow{u} x - 3 \xrightarrow{v} \sqrt{x - 3}$ c'est à dire : $v(u(x)) = v[u(x)] = v \circ u$

Définition Soit une fonction u définie sur un intervalle I, et prenant ses valeurs dans un intervalle J. Soit une fonction v définie sur un intervalle K telle que $J \subset K$. On apelle fonction composée de u par v ou composée de v "rond" u la fonction f définie sur I telle que $f(x) = v(u(x)) = v \circ u$.

Propriété (Limite d'une fonction composée) $a,b,c\in\mathbb{R}$ (éventuellement $\pm\infty$). Si on a $\begin{cases} \lim_{x\to a} u(x)=b \\ \lim_{X\to b} v(X)=c \end{cases}$ Alors, $\lim_{x\to a} v\circ u(x)=c$

6 Limites et comparaison

6.1 Théorème de comparaison

Si
$$\begin{cases} \text{Pour } x \to a, \, f(x) \geq g(x) \\ \lim_{x \to a} g(x) = \pm \infty \end{cases}$$
 Alors $\lim_{x \to a} f(x) = \pm \infty$.

6.2 Théorème d'encadrement

Soit $l \in \mathbb{R}$. Si

1. Pour
$$x \to a$$
, $g(x) \le f(x) \le h(x)$

2.
$$\begin{cases} \lim_{x \to a} g(x) = l \\ \lim_{x \to a} h(x) = l \end{cases}$$

Alors: $\lim_{x\to a} f(x) = l$

7 Synthèse

4 formes indéterminées :

- 1. $-\infty + \infty$
- $2. \frac{0}{0}$
- 3. $\frac{\pm \infty}{\pm \infty}$
- $4. \ 0 \times \infty$

Plusieurs formes de lever l'indétermination :

- 1. Factorisation par le mônome prépondérant.
- 2. Expression conjugée.
- 3. Décomposer la fonction.
- 4. Théorème de comparaison ou encadrement.

8 Limites d'éxponentielles et croissances comparées

5

Propriétés

1.
$$\lim_{x \to +\infty} e^x = +\infty$$

$$2. \lim_{x \to -\infty} e^x = 0$$

3.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

FIGURE 6 – Cas d'une fonction non définie en 0 mais qui a une limite.

Le théorème des croissances comparées est constitué de quelques résultats de limites de fonctions qui seraient qualifiées de formes indéterminées par les méthodes usuelles.

Démonstration de $\lim_{x\to+\infty} e^x$ On pose : $f(x)=e^x-x$ et $f'(x)=e^x-1$

x	$-\infty$	0	+∞
Signe de $f'(x)$	_	Ö	+
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	+∞	→ 1 <i>─</i>	+∞

FIGURE 7 – Tableau de signes de f'(x) et tableau de variations de f.

f est croissante sur \mathbb{R}^* et

$$f(x) \ge 1 \iff e^x - x \ge 1$$

 $\iff e^x \ge 1 + x \text{ (Lemme)}$
 $\lim_{x \to \infty} 1 + x = +\infty$

Par théorème de comparaison : $\lim_{x\to +\infty} e^x = +\infty$

Propriété de croissance comparée

 $\forall n \in \mathbb{N}$:

- 1. $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$
- $2. \lim_{x \to -\infty} x^n e^x = 0$

Démonstration D'après le Lemme : $e^X \ge 1 + X$.

On pose : $X = \frac{x}{n+1}$

$$e^{X} \ge 1 + X \iff e^{\frac{x}{n+1}} \ge 1 + \frac{x}{n+1}$$

 $\implies e^{\frac{x}{n+1}} \ge \frac{x}{n+1}$

Comme la fonction x^{n+1} est croissante sur \mathbb{R} : $(e^{\frac{x}{n+1}})^{n+1} \geq (\frac{x}{n+1})^{n+1} \iff e^x \geq kx^{n+1}$ avec $k = (\frac{1}{n+1})^{n+1}$. (x^n) positif, donc : $\frac{e^x}{x^n} \geq kx$, et $\lim_{x \to +\infty} kx = 0$ Par théorème de comparaison : $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$.