CONTENTS

A	CKN(OWLEI	OGMENT	V		
1	INTRODUCTION					
	1.1	Contributions				
	1.2					
	1.3	Review of Robot Programming by Demonstration (PBD)				
		1.3.1	The birth of programmable machines	$\frac{4}{4}$		
		1.3.2	Early work of PbD in software development	5		
		1.3.3	Early work of PbD in robotics	6		
		1.3.4	Toward the use of machine learning techniques			
			in PbD	7		
		1.3.5	From a simple copy to the generalization of a skill	9		
		1.3.6	From industrial robots to service robots and			
			humanoids	10		
		1.3.7	From a purely engineering perspective to an			
			interdisciplinary approach	11		
	1.4	Current state of the art in PbD				
		1.4.1	Human-robot interfaces	12		
		1.4.2	Learning skills	14		
		1.4.3	Incremental teaching methods	22		
		1.4.4	Human-robot interaction in PbD	23		
		1.4.5	Biologically-oriented learning approaches	26		
2	SYS	YSTEM ARCHITECTURE 3				
	2.1	Illustr	ration of the proposed probabilistic approach	31		
			ding of motion in a Gaussian Mixture Model (GMM)	34		
		2.2.1	Recognition, classification and evaluation of a			
			reproduction attempt	35		
	2.3	Encod	Encoding of motion in <i>Hidden Markov Model</i> (HMM)			
		2.3.1	Recognition, classification and evaluation of a			
			reproduction attempt	37		
	2.4	Reproduction through $Gaussian\ Mixture\ Regression\ (GMR)$				
	2.5	Repro	duction by considering multiple constraints	44		
		2.5.1	Direct computation method	44		
		2.5.2	Method based on optimization of a			
			metric of imitation	45		

viii Contents

	2.6	Learning	g of model parameters	47			
		2.6.1 I	Batch learning of the GMM parameters	47			
		2.6.2 I	Batch learning of the HMM parameters	49			
		2.6.3 I	Incremental learning of the GMM parameters	51			
	2.7	Reduction	on of dimensionality and latent space projection	55			
			Principal Component Analysis (PCA)	56			
		2.7.2	Canonical Correlation Analysis (CCA)	57			
		2.7.3 1	Independent Component Analysis (ICA)	57			
		2.7.4 I	Discussion on the different projection techniques	58			
	2.8	Model s	election and initialization	60			
		2.8.1 I	Estimating the number of Gaussians based on the				
		Ì	Bayesian Information Criterion (BIC)	60			
		2.8.2 I	Estimating the number of Gaussians based on				
		t	rajectory curvature segmentation	61			
	2.9		ization of GMM parameters	64			
			Bounding covariance matrices during				
			estimation of GMM	64			
			Single mode restriction during reproduction				
			Shrough GMR	64			
			Temporal alignment of trajectories through				
			$Dynamic\ Time\ Warping\ (DTW)\ \dots \dots \dots$	67			
	2.10		prior information to speed up the learning process	69			
			on to mixture models of varying density distributions .	71			
			Generalization of binary signals through a				
			Bernoulli Mixture Model (BMM)	71			
	2.12		ry of the chapter	73			
			· -				
3	CON		ON AND OPTIMIZATION OF THE PARAMETERS	75			
	3.1		l reproduction of trajectories through HMM				
			IM/GMR	75			
			Experimental setup	75			
			Experimental results	79			
	3.2	-	l latent space of motion	87			
		3.2.1 I	Experimental setup	87			
			Experimental results	89			
	3.3	Optimal	l selection of the number of Gaussians	92			
		3.3.1 I	Experimental setup	93			
		3.3.2 I	Experimental results	93			
	3.4	Robustr	ness evaluation of the incremental learning process	94			
		3.4.1 I	Experimental setup	95			
		3.4.2 I	Experimental results	97			
4	HAN	HANDLING OF CONSTRAINTS IN JOINT SPACE					
	ANI	TASK S	SPACE	101			
	4.1	Inverse	kinematics	101			
		4.1.1 I		102			
			Extending inverse kinematics solutions to a statistical				
			~	104			

Contents ix

	4.2	indust 4.2.1	ing of task constraints in joint space—experiment with trial robot	106 109		
	4.3		Experimental results	113116		
		4.3.1 4.3.2	Experimental setup	120 120		
5	EXTENSION TO DYNAMICAL SYSTEM AND HANDLING OF PERTURBATIONS 129					
				129		
	5.1	_	sed dynamical system	130		
		5.1.1	Extension to motions containing pauses and loops	133		
	5.2		nce of the dynamical system parameters	135		
	5.3	-	imental setup	135		
		5.3.1	Illustration of the problem	138		
		5.3.2	Handling of multiple landmarks	139		
		5.3.3	Handling of inverse kinematics	140		
	5.4	Exper	imental results	141		
6	TRANSFERRING SKILLS THROUGH ACTIVE					
			G METHODS	147		
	6.1	-	imental setup	148		
	6.2	-	imental results	151		
		6.2.1	Experiment 1: learning bimanual gestures	151		
		6.2.2	Experiment 2: learning to stack objects	152		
		6.2.3	Experiment 3: learning to move chess pieces	158		
	6.3	Roles	of an active teaching scenario	166		
		6.3.1	Insights from psychology	166		
		6.3.2	Insights from developmental sciences	167		
		6.3.3	Insights from sociology	169		
		6.3.4	Insights from sports science	169		
7	USI	NG SO	CIAL CUES TO SPEED UP THE			
	LEA	RNING	G PROCESS	171		
	7.1	Exper	imental setup	173		
		7.1.1	Use of head/gaze information as priors	173		
		7.1.2	Use of vocal information as priors	176		
	7.2	Exper	imental results	178		
8	DISC	CUSSIC	ON, FUTURE WORK AND CONCLUSIONS	181		
_	8.1		stages of the proposed approach	181		
	U.1	8.1.1	Advantages of using motion sensors to track gestures	181		
		8.1.2	Advantages of the HMM representation for	101		
		0.1 .2	imitation learning	183		
		8.1.3	Advantages of the GMR representation for regression .	185		

x Contents

8.2	Failure	es and limitations of the proposed approach	188
	8.2.1	Loss of important information through PCA	188
	8.2.2	Failures at learning incrementally the	
		GMM parameters	189
	8.2.3	Failures at extending a skill to a context that is	
		too dissimilar to the ones encountered	193
8.3	Further issues		194
	8.3.1	Toward combining exploration and imitation	194
	8.3.2	Toward a joint use of discrete and continuous	
		constraints	195
	8.3.3	Toward predicting the outcome of a demonstration	198
8.4	Final words		198
		~	
REFERENCES			201
INDEV			221
INDEX			