

DATABASE SYSTEMS

Dr. Noha Nagy

Data Model

A collection of concepts that can be used to define the DB structure

- ■Data items & types
- Relationships
- Constraints

Relational Model

Relational Model

Schema

Student(ST-ID, Name, National-ID, Address, Major, GPA)

Attributes have ATOMIC values

TRANSCRIPT 2

TRANSCRIPT 1

	ST-ID	COURSE	GRADE
	123	Databae-1	В
	456	Compliers	С
	123	Operating Systems	Α
,	789	Compilers	В

ST-ID	COURSE	GRADE
123	Databae-1	В
	Operating Systems	Α
456	Compliers	С
789	Compilers	В

TRANSCRIPT2 is **not correct** as the attribute COURSE is NOT ATOMIC

□ It is set valued.

Attributes have ATOMIC values

TRANSCRIPT3

ST-ID	COURSE	GRADE
123	Databae-1, Operating Systems	B, A
456	Compliers	С
789	Compilers	В

- □ Attribute COURSE is ATOMIC VARCHAR(100)
- □ Answering Queries:
 - □ Find the grade of student 123 in course Operating Systems.
 - □ Find Course where the grade of student 123 is A in these courses

Characteristics of Relations

- Tuples have no particular order
- Ordering of attributes not important
- All values belonging to a particular attribute are from the same domain
- Attributes are atomic. (Cannot put multiple values in the same cell)
- Attributes may have a null value
 - Null is not a zero and is not an empty string

Types of Constraints

- Domain Constraints
- Key Constraints
- Integrity Constraints
 - Entity Integrity Constraint
 - Referential Integrity Constraint
 - Semantic Integrity Constraint

Domain Constraints

□ The value of each attribute, A, must be an atomic value from the domain of A.

- Example, list of governorates in Egypt.
- An attribute named "Governorate" should have a value that maps to one of the governorates in that list.

Key Constraints

- Value of a key uniquely identifies a tuple in a relation
- Super key (K): is a subset of attributes of R that can identify a tuple. It might contain more than one attribute.
 - no 2 tuples have same values for K

Key Constraints (Cont'd)

- A key is a minimal superkey; a superkey from which we cannot remove any attributes and still be able to uniquely identify tuples in a relation.
- A relational schema may have more than one key:
 - Each key is called a <u>candidate key</u>
 - One designated as the <u>primary key</u>

Examples from Premier Database – Primary Key

OrderLine				
OrderNum	PartNum	NumOrdered	QuotedPrice	
21608	AT94	11	\$21.95	
21610	DR93	1	\$495.00	
21610	DW11	1	\$399.99	
21613	KL62	4	\$329.95	
21614	KT03	2	\$595.00	
21617	BV06	2	\$794.95	
21617	CD52	4	\$150.00	
21619	DR93	1	\$495.00	
21623	KV29	2	\$1,290.00	
	T			
Composite	e PK			

Ordernum and **Partnum** makes up the primary key Of the OrderLine table. This is what is known as a **Composite Primary key**, that is, primary key that is made up of more than one field.

Integrity Constraints

- Integrity constraints are specified on a schema and hold for every instance of the schema
- □ Entity integrity constraint
 - A primary key value cannot be null
- □ Referential integrity constraint
 - If R_1 refers to R_2 then $t_1 \in r_1(R_1)$ must refer to an existing $t_2 \in r_2(R_2)$

Foreign Key

- A Foreign key is how we relate relations to each other

 A Foreign key in R is a set of attributes FK in R such that FK is a primary key of some other relation R

A foreign key is used to specify a referential integrity constraint.

Example

Employee

<u>Enum</u>	Ename	phone	Projectnum
<u>123</u>	Ahmed	01110025878	111
<u>124</u>	Ali	01225929785	
<u>127</u>	Ola	01024457896	111

Project

<u>Pnum</u>	Pname	Location
<u>111</u>	ABC	Giza
<u>112</u>	EFG	Cairo

Example of composite FK

Employee

<u>Enum</u>	Ename	phone	Pname	Location
<u>123</u>	Ahmed	01110025878	ABC	Giza
<u>124</u>	Ali	01225929785		
<u>127</u>	Ola	0102457896	EFG	Cairo

Project

<u>Pname</u>	<u>Location</u>
ABC	Giza
EFG	Cairo

3-Integrity Constraints

- Integrity constraints are specified on a schema and hold for every instance of the schema
- □ Entity integrity constraint
 - Primary key
 - Unique
 - Not null
 - Stable and minimum # of attributes
- □ Referential integrity constraint
 - Foreign key
 - Match a primary key
 - Null

Semantic Integrity Constraints

- Constraints on data values
- Examples:
 - The salary of an employee must not exceed that of her supervisor.
 - The total of available seats must be > 0 in order for a reservation to be made.
 - A person's date of birth must be before the current date.

Operations on Relations

- Operations include insert, delete, modify (update), and retrieval.
- Some operations can violate database constraints.

Insert Operation

- Provide a list of attribute values to be inserted (ie. A new tuple)
- Example
 - Insert into Employee values (Mary, 0102457896)

Employee

<u>Enum</u>	Ename	phone
<u>123</u>	Ahmed	01110025878
<u>124</u>	Ali	01225929785
	Mary	01024457896

Insert Operation

- □ Inserts may <u>violate</u> constraints
- □ Entity Integrity Constraint: : Inserting a tuple without the primary key
- □ Referential Integrity Constraint: Inserting a tuple with a foreign key that is not available in the main relation. Example adding an employee in a department number that does not exist.

Example

Employee

<u>Enum</u>	Ename	phone	Projectn um
<u>123</u>	Ahmed	01110025878	111
<u>124</u>	Ali	01225929785	
<u>127</u>	Ola	0102457896	115

<u>Pnum</u>	Pname	Location
<u>111</u>	ABC	Giza
<u>112</u>	EFG	Cairo

Delete Operation

- Deletes a tuple from a relation
- Example:
 - Delete a tuple with ID=123456
- The only constraint which can be violated is the referential integrity constraint (ie. A tuple in another relation references the tuple that is stated for deletion). If that employee works on some projects and is available as a foreign key the other relation named "Project", the deletion of that employee will violate the referential integrity constraint.

Modify Operation

- Change the value for one or more attributes in a relation
- Example:
 - Modify salary of employee 123 to 20000
- Modifying a primary key is like deleting a tuple and adding a new one (same violations may apply)

SQL [STRUCTURED QUERY LANGUAGE]

SQL

- Structured Query language SQL is pronounced as "S-Q-L" or sometimes as "See-Quel" which is the standard language for dealing with Relational Databases.
- It is effectively used to create, insert, search, update, delete, modify database records.

A Few Details

- □ SQL **commands** are case insensitive:
 - □ Same: SELECT, Select, select
 - Same: Product, product
- □ Use single quotes for constants:
 - □ 'abc' yes
 - □ "abc" no

SQL is a...

- Data Definition Language (DDL)
 - □ Define relational schemata
 - Create/alter/delete tables and their attributes
- Data Manipulation Language (DML)
 - Insert/delete/modify tuples in tables
 - Query one or more table
- Data Control Language (DCL)
 - Specify user permissions
 - Grant/revoke