DNA-Sequenz und rekombinante Herstellung von Gruppe-4 Majorallergenen aus Getreiden

5

Hintergrund der Erfindung

Die vorliegende Erfindung betrifft die Bereitstellung von DNA-Sequenzen von Gruppe-4 Majorallergenen aus Getreiden (*Triticeae*). Die Erfindung schließt auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein. Die rekombinanten DNA-Moleküle und die abgeleiteten Polypeptide, Fragmente, Neukombinationen von Teilsequenzen und Varianten können zur Therapie von pollenallergischen Krankheiten genutzt werden. Die rekombinant hergestellten Proteine können zur *In-vitro-* und *In-vivo-*Diagnostik von Pollenallergien eingesetzt werden.

20

25

Allergien vom Typ 1 haben weltweite Bedeutung. Bis zu 20 % der Bevölkerung in industrialisierten Ländern leiden unter Beschwerden wie allergischer Rhinitis, Konjunktivitis oder Bronchialasthma. Diese Allergien werden durch in der Luft befindliche Allergene (Aeroallergene), die von Quellen unterschiedlicher Herkunft wie Pflanzenpollen, Milben, Katzen oder Hunden freigesetzt werden, hervorgerufen. Bis zu 40 % dieser Typ 1-Allergiker wiederum zeigen spezifische IgE-Reaktivität mit Gräserpollenallergenen, unter anderem Getreidepollenallergenen (Freidhoff et al., 1986, J. Allergy Clin. Immunol. 78, 1190-2001). Eine besondere Bedeutung unter den Getreidepollenallergenen besitzen die Allergene von Roggen.

30

Bei den Typ 1-Allergie auslösenden Substanzen handelt es sich um Proteine, Glykoproteine oder Polypeptide. Diese Allergene reagieren nach Aufnahme über die Schleimhäute mit den bei sensibilisierten Personen an der

Oberfläche von Mastzellen gebundenen IgE-Molekülen. Werden zwei IgE-Moleküle durch ein Allergen miteinander vernetzt, führt dies zur Ausschüttung von Mediatoren (z. B. Histamin, Prostaglandine) und Zytokinen durch die Effektorzelle und damit zu den entsprechenden klinischen Symptomen.

5

In Abhängigkeit von der relativen Häufigkeit mit der die einzelnen Allergenmoleküle mit den IgE-Antikörpern von Allergikern reagieren, wird zwischen Major- und Minorallergenen unterschieden.

10

Die Allergene aus den Pollen von verschiedenen Spezies aus der Familie er Gräser (*Poaceae*) werden in Grupppen eingeteilt, die untereinander homolog sind.

15

Insbesondere die Moleküle der Majorallergengruppe 4 weisen untereinander eine hohe immunologische Kreuzreaktivität sowohl mit monoklonalen Mausantikörpern als auch mit humanen IgE-Antikörpern auf (Fahlbusch et al., 1993 Clin. Exp. Allergy 23:51-60; Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98:1065-1072; Su et al., 1996, J. Allergy Clin. Immunol. 97:210; Fahlbusch et al., 1998, Clin. Exp. Allergy 28:799-807; Gavrovic-

20

97:210; Fahlbusch et al., 1998, Clin. Exp. Allergy 28:799-807; Gavrovic-Jankulovic et al., 2000, Invest. Allergol. Clin. Immunol. 10 (6):361-367; Stumvoll et al. 2002, Biol. Chem. 383:1383-1396; Grote et al., 2002, Biol. Chem. 383:1441-1445; Andersson und Lidholm, 2003, Int. Arch. Allergy Immunol. 130:87-107; Mari, 2003, Clin. Exp. Allergy, 33 (1):43-51).

25

Von keinem der Gruppe-4-Majorallergene ist bisher eine vollständige DNA-

Sequenz bekannt.

30

Von dem Gruppe-4 Allergen aus *Dactylus glomerata* sind bisher lediglich Peptide durch enzymatischen Abbau gewonnen und sequenziert worden: DIYNYMEPYVSK (SEQ ID NO 13),

VDPTDYFGNEQ (SEQ ID NO 14),

35

ARTAWVDSGAQLGELSY (SEQ ID NO 15)

und GVLFNIQYVNYWFAP (SEQ ID NO 16, Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98: 1065-1072).

Auch vom Gruppe-4 Allergen des subtropischen Bermuda-Grases (*Cynodon dactylon*) sind durch Proteolyse Peptide erhalten und sequenziert worden:

KTVKPLYIITP (SEQ ID NO 17),

KQVERDFLTSLTKDIPQLYLKS (SEQ ID NO 18),

TVKPLYIITPITAAMI (SEQ ID NO 19),

10 LRKYGTAADNVIDAKVVDAQGRLL (SEQ ID NO 20), KWQTVAPALPDPNM (SEQ ID NO 21),

VTWIESVPYIPMGDK (SEQ ID NO 22),

GTVRDLLXRTSNIKAFGKY (SEQ ID NO 23),

15 TSNIKAFGKYKSDYVLEPIPKKS (SEQ ID NO 24),

YRDLDLGVNQVVG (SEQ ID NO 25),

SATPPTHRSGVLFNI (SEQ ID NO 26),

und AAAALPTQVTRDIYAFMTPYVSKNPRQAYVNYRDLD (SEQ ID NO 27,

Liaw et al., 2001, Biochem. Biophys. Research Communication 280: 738-

20 743).

30

Für Lolium perenne wurden für das basische Gruppe-4 Allergen Peptidfragmente mit den folgenden Sequenzen beschrieben: FLEPVLGLIFPAGV (SEQ ID NO 28) und GLIEFPAGV (SEQ ID NO 29, Jaggi et al., 1989, Int. Arch. Allergy Appl. Immunol. 89: 342-348).

Als erste Sequenz eines Allergens der Gruppe 4 wurde von den Erfindern der vorliegenden Patentanmeldung die noch unveröffentlichte Sequenz des Phl p 4 aus *Phleum pratense* aufgeklärt (SEQ ID NO 11) und in der internationalen Anmeldung WO 04/000881 beschrieben.

35 Über die Sequenzen der Gruppe-4-Majorallergene aus Getreiden (*Triceae*) ist bisher nichts bekannt.

Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand daher in der Bereitstellung von DNA-Sequenzen von Gruppe-4 Majorallergenen aus Getreiden, insbesondere des Allergens Sec c 4 aus Roggen (Secale cerale) (SEQ ID NO 1, 3), Hor v 4 aus Gerste (Hordeum vulgare) (SEQ ID NO 5) und Tri a 4 aus Weizen (Triticum aestivum) (SEQ ID NO 7, 9) sowie von entsprechenden rekombinanten DNA-Molekülen, auf deren Grundlage die Allergene als Protein exprimiert und einer pharmakologisch bedeutsamen Verwertung als solches oder in veränderter Form zugänglich gemacht werden kann. Die Sequenz des Phl p 4 (SEQ ID NO 11) war Ausgangspunkt für die vorliegende Erfindung.

15

20

30

35

10

5

Verzeichnis der erfindungsgemäßen Sequenzen

Den DNA- und Protein-Sequenzen der reifen Allergene gemäß SEQ ID NO 1-10 geht eine Signalsequenz voraus. Mit den TGA oder TAG Stopcodons in den DNA-Sequenzen endet der kodierende Bereich.

- DNA-Sequenz des Sec c 4. (a) Isoform Sec c 4.01 (SEQ ID NO 1), (b) Isoform Sec c 4.02 (SEQ ID NO 3).
- Von den DNA-Sequenzen gemäß SEQ ID NO 1 und 3 abgeleitete Protein-Sequenzen (SEQ ID NO 2, 4).
 - DNA-Sequenz des Hor v 4 (SEQ ID NO 5).
 - Von der DNA-Sequenz gemäß SEQ ID NO 5 abgeleitete Protein-Sequenz (SEQ ID NO 6).
 - DNA-Sequenz des Tri a 4. (a) Isoform Tri a 4.01 (SEQ ID NO 7), (b) Isoform Tri a 4.02 (SEQ ID NO 9).
 - Von den DNA-Sequenzen gemäß SEQ ID NO 7 und 9 abgeleitete Protein-Sequenzen (SEQ ID NO 8, 10).

- DNA-Sequenz des Phi p 4 (SEQ ID NO 11), gemäß SEQ ID NO 5 aus der WO 04/000881.
- Proteinsequenz des PhI p 4 (SEQ ID NO 12), gemäß SEQ ID NO 6 aus der WO 04/000881.

15

20

Beschreibung der Erfindung

Mit der vorliegenden Erfindung werden nun erstmals DNA-Sequenzen der Getreidepollenhauptallergene Sec c 4, Hor v 4 und Tri a 4, gemäß SEQ ID NO 1, 3, 5, 7, und 9, bereit gestellt.

Gegenstand der vorliegenden Erfindung sind daher DNA-Moleküle ausgewählt aus den Nukleotidsequenzen gemäß SEQ ID NO 1, 3, 5, 7, und 9.

Die Erfindung betrifft weiterhin zu den erfindungsgemäßen DNA-Sequenzen homologe Sequenzen bzw. entsprechende DNA-Moleküle von Gruppe-4-Allergenen aus anderen *Poaceae* wie beispielsweise *Lolium perenne*, *Dactylis glomerata*, *Poa pratensis*, *Cynodon dactylon* und *Holcus lanatus*, die aufgrund der bestehenden Sequenzhomologie mit den erfindungsgemäßen DNA-Sequenzen unter stringenten Bedingungen hybridisieren, bzw. bezüglich der erfindungsgemäßen Allergene eine immunologische Kreuzraktivität aufweisen.

Die Erfindung schließt dabei auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein.

30

35

25

Gegenstand der Erfindung sind daher weiterhin entsprechende Teilsequenzen, einer Kombination von Teilsequenzen bzw. Austausch-, Eliminierungs- oder Additionsmutanten, welche für ein immunmodulatorisches, T-Zell-reaktives Fragment eines Gruppe-4-Allergens der *Poaceae* kodieren.

Mit der Kenntnis der DNA-Sequenz der natürlich vorkommenden Allergene ist es nun möglich, diese Allergene als rekombinante Proteine herzustellen, die in der Diagnostik und Therapie von allergischen Erkrankungen Verwendung finden können (Scheiner and Kraft, 1995, Allergy 50: 384-391).

5

10

15

Ein klassischer Ansatz zur wirksamen therapeutischen Behandlung von Allergien stellt die Spezifische Immuntherapie oder Hyposensibilisierung dar (Fiebig, 1995, Allergo J. 4 (6): 336-339, Bousquet et al., 1998, J. Allergy Clin. Immunol. 102(4): 558-562). Dabei werden dem Patienten natürliche Allergenextrakte in steigenden Dosen subkutan injiziert. Allerdings besteht bei dieser Methode die Gefahr von allergischen Reaktionen oder sogar eines anaphylaktischen Schocks. Um diese Risiken zu minimieren, werden innovative Präparate in Form von Allergoiden eingesetzt. Dabei handelt es sich um chemisch modifizierte Allergenextrakte, die deutlich reduzierte IgE-Reaktivität, jedoch identische T-Zell-Reaktivität im Vergleich zum nicht behandelten Extrakt aufweisen (Fiebig, 1995, Allergo J. 4 (7): 377-382). Eine noch weitergehende Therapieoptimierung wäre mit rekombinant hergestellten Allergenen möglich. Definierte, ggfs. auf die individuellen Sensi-

20

gestellten Allergenen möglich. Definierte, ggfs. auf die individuellen Sensibilisierungsmuster der Patienten abgestimmte Cocktails von hochreinen, rekombinant hergestellten Allergenen könnten Extrakte aus natürlichen Allergenquellen ablösen, da diese außer den verschiedenen Allergenen eine größere Zahl von immunogenen, aber nicht allergenen Begleitproteinen enthalten.

30

25

Realistische Perspektiven, die zu einer sicheren Hyposensibilisierung mit Expressionsprodukten führen können, bieten gezielt mutierte rekombinante Allergene, bei denen IgE-Epitope spezifisch deletiert werden, ohne die für die Therapie essentiellen T-Zell Epitope zu beeinträchtigen (Schramm et al., 1999, J. Immunol. 162: 2406-2414).

35

Eine weitere Möglichkeit zur therapeutischen Beeinflussung des gestörten TH-Zell-Gleichgewichtes bei Allergikern ist die immuntherapeutische DNA-Vakzinierung. Dabei handelt es sich um eine Behandlung mit expressions-

fähiger DNA, die für die relevanten Allergene kodiert. Erste experimentelle Belege für die allergenspezifische Beeinflussung der Immunantwort konnte an Nagern durch Injektion von Allergen-kodierender DNA erbracht werden (Hsu et al., 1996, Nature Medicine 2 (5): 540-544).

5

Gegenstand der vorliegenden Erfindung ist daher auch ein vor- oder nachstehend beschriebenes DNA-Molekül bzw. ein entsprechender rekombinanter Expressionsvektor als Arzneimittel.

10

Die entsprechenden rekombinant hergestellten Proteine können zur Therapie sowie zur *in vitro-* und *in vivo-*Diagnostik von Pollenallergien eingesetzt werden.

15

Zur Herstellung des rekombinanten Allergens wird die klonierte Nukleinsäure in einen Expressionsvektor ligiert und dieses Konstrukt in einem geeigneten Wirtsorganismus exprimiert. Nach biochemischer Reinigung steht dieses rekombinante Allergen zur Detektion von IgE-Antikörpern in etablierten Verfahren zur Verfügung.

20

Gegenstand der vorliegenden Erfindung ist daher weiterhin ein rekombinanter Expressionsvektor, enthaltend ein vor- oder nachstehend beschriebenes DNA-Molekül, funktionell verbunden mit einer Expressionskontrollsequenz und ein Wirtsorganismus, transformiert mit besagtem DNA-Molekül oder besagtem Expressionsvektor.

30

35

25

Ebenfalls erfindungsgegenständlich ist die Verwendung mindestens eines zuvor beschriebenen DNA-Moleküls oder mindestens eines zuvor beschriebenen Expressionsvektors zur Herstellung eines Arzneimittels zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae*, vorzugsweise *Triticeae*, insbesondere Sec c 4, Hor v 4, Tri a 4, beteiligt sind und/oder zur Prävention solcher Allergien.

WO 2005/059136 PCT/EP2004/013664

-8-

Wie bereits ausgeführt kann die Erfindung als eine essentielle Komponente in einem rekombinanten allergen- oder nukleinsäurehaltigen Präparat zur spezifischen Immuntherapie angewendet werden. Hierbei bieten sich mehrere Möglichkeiten. Zum einen kann das in der Primärstruktur unveränderte Protein Bestandteil des Präparates sein. Zum anderen kann durch gezielte Deletion von IgE-Epitopen des Gesamtmoleküls oder der Herstellung von einzelnen Fragmenten, die für T-Zell Epitope kodieren, erfindungsgemäß eine hypoallergene (allergoide) Form zur Therapie verwendet werden, um unerwünschte Nebenwirkungen zu vermeiden. Schließlich wird durch die Nukleinsäure an sich, wenn sie mit einem eukaryontischen Expressionsvektor ligiert wird, ein Präparat geschaffen, das direkt appliziert den allergischen Immunzustand im therapeutischen Sinne verändert.

5

10

20

25

30

35

Desweiteren handelt es sich bei der vorliegenden Erfindung um die von einem oder mehreren der zuvor beschriebenen DNA-Moleküle kodierten Polypeptide, vorzugsweise in ihrer Eigenschaft als Arzneimittel.

Dabei handelt es sich um Proteine entsprechend einer Aminosäuresequenz gemäß SEQ ID NO 2, 4, 6, 8, oder 10. Insbesondere handelt es sich um die reifen Proteine (ohne Signalsequenzanteil), beginnend mit der Aminosäure 23 (SEQ ID NO 2, 4 und 6) und mit der Aminosäure 22 (SEQ ID NO 8, 10). Weiterhin betrifft die Erfindung Proteine, welche diese Aminosäuresequenzen oder Teile dieser Sequenzen enthalten,

Die Erfindung betrifft demgemäß auch ein Verfahren zur Herstellung solcher Polypeptide durch Kultivieren eines Wirtsorganismus und Gewinnung des entsprechenden Polypeptids aus der Kultur.

Ebenfalls erfindungsgegenständlich ist die Verwendung mindestens eines zuvor beschriebenen Polypeptides zur Herstellung eines Arzneimittels zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae*, vorzugsweise *Triticeae*, insbesondere

Sec c 4, Hor v 4, Tri a 4, beteiligt sind sowie zur Prävention solcher Allergien.

Bei der Ermittlung der erfindungsgemäßen Protein- und DNA-Sequenzen wurde wie folgt vorgegangen:

Sec c 4 aus Roggen

10

- 1. Ausgehend von der DNA-Sequenz des Phl p 4 (SEQ ID NO 12, WO 04/000881) wurden spezifische Primer (Tab. 1) generiert, die von der Phl p 4 Sequenz abgeleitet wurden. Durch PCR mit den Primern #87 und #83 konnten fünf Klone aus Roggenpollen DNA gewonnen werden. Das diesen Klonen entsprechende, amplifizierte Sec c 4-Genfragment-1 kodiert für ein den Aminosäuren 68-401 des Phl p 4 (SEQ ID NO 12) entsprechendes Polypeptid.
- 20 2. Mit der partiellen Sec c 4-Sequenz wurde eine EST-Datenbankrecherche durchgeführt. Es konnten jedoch keine homologen Sequenzen in auf Roggen spezialisierte EST-Datenbanken gefunden werden. Statt dessen wurden einzelne, homologe, nicht überlappende EST-Fragmente in auf Gerste und Weizen spezialisierten EST-Datenbanken gefunden. Einzelne EST-Fragmente reichen in den 5'-UTR, andere in den 3'-UTR Bereich (UTR = nicht-translatierter Bereich) der entsprechenden Gene hinein.
- 3. Aus den in den Datenbanken gefundenen EST-Sequenzen lässt sich jedoch kein komplettes Gruppe-4-Gen aus Weizen oder Gerste konstruieren, da diese Sequenzen nicht überlappen und kein homologes Gruppe-4-Gen bekannt ist. Anhand der Phl p 4-Sequenz (SEQ ID NO 11) und des in Schritt 1 erhaltenen Sec c 4-Fragmentes konnten diese EST-Sequenzen jedoch zugeordnet werden und dienten als Vorlage für die Herstellung von PCR-Primern.

20

- 4. Mit Hilfe der so hergestellten Primer #195 und #189 konnten drei Klone durch PCR erhalten werden. Der Primer #195 wurde aus einer Gerste-EST-Sequenz abgeleitet, der Primer #189 ist ein Phl p 4-spezifischer Primer und überlappt das Phl p 4-Stoppcodon sowie die Codons der 10.Cterminalen PhI p 4-Aminosäuren. Das so amplifizierte Sec c 4-Genfragment-2 kodiert für ein Polypeptid, beginnend innerhalb der Signalsequenz und endend mit der Position, die der Position 490 des Phl p 4 entspricht. Dieses Polypeptid deckt den N-Terminus von Sec c 4 ab. 10
- 5a. Drei weitere Klone wurden durch PCR mit den Primern #195 und #202 erhalten. Beide Primer wurden aus Gerste EST-Sequenzen abgeleitet. Das amplifizierte Sec c 4-Gen-3 kodiert für die korrespondierenden Aminosäu-15 ren beginnend innerhalb der Signalsequenz und endend am C-Terminus von Sec c 4.

Die komplette Sequenz des reifen Sec c 4 ist somit in der bestimmten Sequenz enthalten.

Die beiden nächsten Schritte 5b und 5c dienen der Absicherung des im Schritt 5a erhaltenen Ergebnisses:

- 5b. Ein weiterer Klon wurde durch PCR mit den Primern #195 und #203 er-25 halten. Primer #195 wurde von einer Gerste EST-Sequenz abgeleitet, Primer #203 von einer Weizen EST Sequenz. Das amplifizierte Sec c 4 Gen kodiert für die korrespondierenden Aminosäuren beginnend innerhalb der Signalsequenz und endend am C-Terminus von Sec c 4. Die komplette 30 Sequenz des reifen Sec c 4 ist daher in der bestimmten Sequenz enthalten.
- 5c. Ein weiterer Klon wurde durch PCR mit den Primern #195 und #198 35 erhalten. Auch Primer #198 Das amplifizierte Sec c 4 Gen kodiert für die korrespondierenden Aminosäuren beginnend innerhalb der Signalsequenz

und endend am C-Terminus von Sec c 4. Die komplette Sequenz des reifen Sec c 4 ist daher in der bestimmten Sequenz enthalten.

Es wurden zwei Isoformen Sec c 4.01 und 4.02 aufgefunden. Die reifen Allergene beginnen mit der Aminosäure 23 der Sequenzen gemäß SEQ ID NO 2, 4, und 6.

Hor v 4 aus Gerste

10

15

Mit Hilfe der wie zuvor beschrieben erhaltenen Sec c 4-Sequenzen konnten in EST-Datenbanken von *Hordeum vulgare* homologe EST-Fragmente gefunden wurde. Diese Fragmente überlappen jedoch nicht zu einem kompletten Gen. Anhand der gefundenen EST-Sequenzen konnten jedoch Hor v 4-spezifische Primer generiert werden, die für eine Amplifikation des Hor v 4-Gens aus genomischer DNA verwendet wurden.

Insgesamt wurden 15 Klone analysiert.

- 4 Klone wurden durch PCR mit den Primern #195 und #198 erhalten.
 - 4 Klone wurden durch PCR mit den Primern #195 und #202 erhalten.
 - 3 Klone wurden durch PCR mit den Primern #194 und #198 erhalten.
 - 4 Klone wurden durch PCR mit den Primern #194 und #202 erhalten.

25

Die abgeleitete Proteinsequenz beginnt innerhalb der Signalsequenz von Hor v 4 und reicht bis zum C-terminalen Ende des Proteins (ab Aminosäure 23 von SEQ ID NO 6).

30

35

Tri a 4 aus Weizen

Mit Hilfe der wie zuvor beschrieben erhaltenen Sec c 4-Sequenz konnten in EST-Datenbanken von *Triticum aestivum* homologe EST-Fragmente gefunden wurde. Diese Fragmente überlappen jedoch nicht zu einem kompletten Gen. Anhand der gefundenen EST-Sequenzen konnten jedoch die

30

35

Tri a 4-spezifische Primer #199, #203, #204 und #206 generiert werden, die für eine Amplifikation des Tri a 4 Gens aus genomischer DNA verwendet wurden.

- 5 Insgesamt wurden 13 Klone analysiert.
 - 4 Klone wurden durch PCR mit den Primern #204 und #203 erhalten.
 - 4 Klone wurden durch PCR mit den Primern #204 und #199 erhalten.
 - 3 Klone wurden durch PCR mit den Primern #206 und #203 erhalten.
- 10 4 Klone wurden durch PCR mit den Primern #206 und #199 erhalten.
 - Die abgeleiteten Proteinsequenzen beginnen innerhalb der Signalsequenz von Tri a 4 und reichen bis zum C-terminalen Ende des Proteins.
- Es wurden zwei Varianten Tri a 4.01 (ab Aminosäure 22 von SEQ ID NO 8) und Tri a 4.02 (ab Aminosäure 22 von SEQ ID NO 10) aufgefunden.
- Zur Herstellung der rekombinanten erfindungsgemäßen Allergene wurden die DNA-Sequenzen gemäß SEQ ID NO 1, 3, 5, 7 und 9 in Expressionsvektoren (z.B. pProEx, pSE 380) eingebaut. Für die aus der Proteinsequenzierung bekannten N-terminalen Aminosäuren wurden *E. coli* optimierte Codons verwendet.

Nach der Transformation in *E. coli*, der Expression und der Reinigung des rekombinanten erfindungsgemäßen Allergene durch verschiedene Trenntechniken wurde die erhaltenen Proteine einem Refoldingprozess unterworfen.

Beide Allergene können zur hochspezifischen Diagnostik von Graspollenallergien eingesetzt werden. Diese Diagnostik kann *in vitro* durch die Detektion von spezifischen Antikörpern (IgE, IgG1 - 4, IgA) und die Reaktion mit IgE-beladenen Effektorzellen (z. B. Basophile aus dem Blut) oder *in vivo* durch Hauttest-Reaktionen und Provokation am Reaktionsorgan erfolgen.

WO 2005/059136 PCT/EP2004/013664

- 13 -

Die Reaktion der erfindungsgemäßen Allergene mit T-Lymphozyten von Graspollenallergikern können durch die allergenspezifische Stimulierung der T-Lymphozyten zur Proliferation und Zytokinsynthese sowohl mit T-Zellen in frisch präparierten Blutlymphozyten als auch an etablierten nSec c 4, nHor v 4 bzw. nTri a 4-reaktiven T-Zell-Linien und -Klonen nachgewiesen werden.

5

25

30

35

- Durch ortsgerichte Mutagenese wurden die für die Cysteine kodierenden Tripletts so verändert, dass sie für andere Aminosäuren, bevorzugt Serin, kodieren. Es wurden sowohl Varianten hergestellt, bei denen einzelne Cysteine ausgetauscht wurden, als auch solche, bei denen verschiedene Kombinationen von 2 Cysteinresten bzw. alle Cysteine verändert wurden. Die exprimierten Proteine dieser Cysteinpunktmutanten weisen eine stark reduzierte bzw. fehlende Reaktivität mit IgE-Antikörpern von Allergikern auf, reagieren jedoch mit den T-Lymphozythen dieser Patienten.
- Gegenstand der vorliegenden Erfindung ist daher weiterhin ein vor- oder nachstehend beschriebenes DNA-Molekül, bei dem durch ortsgerichtete Mutagenese einer, mehrere oder alle der Cystein-Reste des entsprechenden Polypeptids gegen eine andere Aminosäure ausgetauscht wurden.

Die immunmodulatorische Aktivität von hypoallergenen Fragmenten, die Polypeptiden mit T-Zell-Epitopen entsprechen, sowie die der hypoallergenen Punktmutanten (z.B. Cystein-Austausche) kann durch ihre Reaktion mit T-Zellen von Graspollenallergikern nachgewiesen werden.

Solche hypoallergenen Fragmente bzw. Punktmutanten der Cysteine können als Präparate zur Hyposensibilisierung von Allergikern eingesetzt werden, da sie mit gleicher Effektivität mit den T-Zellen reagieren, jedoch aufgrund der verminderten oder ganz fehlenden IgE-Reaktivität zu geringeren IgE-vermittelten Nebenwirkungen führen.

WO 2005/059136 PCT/EP2004/013664

Werden die für die erfindungsgemäßen hypoallergenen Allergen-Varianten kodierenden Nukleinsäuren oder die unveränderten erfindungsgemäßen DNA-Moleküle mit einem humanen Expressionsvektor ligiert, können diese Konstrukte ebenfalls als Präparate für eine Immuntherapie (DNA-Vakzinierung) angewendet werden.

5

- Schließlich sind Gegenstand der vorliegenden Erfindung pharmazeutische

 Zubereitungen, enthaltend mindestens ein zuvor beschriebenes DNAMolekül oder mindestens einen zuvor beschriebenen Expressionsvektor
 und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung

 Gruppe-4-Allergene der *Poaceae*, vorzugsweise *Triticeae*, insbesondere
 Sec c 4, Hor v 4, Tri a 4, beteiligt sind und/oder zur Prävention solcher Allergien.
- Eine weitere Gruppe von erfindungsgemäßen pharmazeutischen Zubereitungen enthält anstelle der DNA mindestens ein zuvor beschriebenes Polypeptid und eignet sich zur Diagnose und/oder Behandlung besagter Allergien.
- Pharmazeutische Zubereitungen im Sinne der vorliegenden Erfindung enthaltend als Wirkstoffe ein erfindungsgemäßes Polypeptid oder einen Expressionsvektor und/oder deren jeweilige pharmazeutisch verwendbaren Derivate, einschließlich deren Mischungen in allen Verhältnissen. Hierbei können die erfindungsgemäßen Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.
 - Als Hilfsstoffe sind immunstimulierende DNA oder Oligonukleotide mit CpG-Motiven besonders geeignet.

10

15

20

25

Diese Zubereitungen können als Therapeutika oder Diagnostika in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die parenterale Applikation eignen und die Wirkung des erfindungsgemäßen Wirkstoffs nicht negativ beeinflussen. Zur parenteralen Anwendung dienen insbesondere Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate. Der erfindungsgemäße Wirkstoff kann auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen und/oder mehrere weitere Wirkstoffe enthalten.

Weiterhin können durch entsprechende Formulierung des erfindungsgemäßen Wirkstoffs Depotpräparate - zum Beispiel durch Adsorption an Aluminiumhydroxid - erhalten werden.

Die Erfindung dient somit auch zur Verbesserung der *in vitro* Diagnostik im Rahmen einer Allergen-Komponenten auflösenden Identifizierung des patientenspezifischen Sensibilisierungsspektrums. Die Erfindung dient ebenfalls zur Herstellung von deutlich verbesserten Präparaten zur spezifischen Immuntherapie von Gräserpollenallergien.

Tabelle 1 Verwendete Primer

a) Sec c 4

30

Primer num- mer	SEQ ID NO	Sequenz
#0083	30	GGCTCCCGGGGCGAACCAGTAG
#0087	31	ACCAACGCCTCCCACATCCAGTC
#0189	32	GATAAGCTTCTCGAGTGATTAGTACTTTTTGATC AGCGGCGGGATGCTC

#0195	33	GCTCTCGATCGGCTACAATGGCG
#0198	34	CACGCACTACAAATCTCCATGCAAG
#0202	35	CATGCTTGATCCTTATTCTACTAGTTGGGC
#0203	36	TACGCACGATCCTTATTCTACTAGTTGGGC

a) Hor v 4

10

Primer num- mer	SEQ ID NO	Sequenz
#0194	37	GCCTTGTCCTGCCACCACGCCGCCGCCACC
#0195	38	GCTCTCGATCGGCTACAATGGCG
#0198	39	CACGCACTACAAATCTCCATGCAAG
#0202	40	CATGCTTGATCCTATTCTACTAGTTGGGC

15

c) Tri a 4

Primer num- mer	SEQ ID NO	Sequenz
#0199	41	CACGCACTAAATCTCCATGCAAG
#0203	42	TACGCACGATCCTTATTCTACTAGTTGGGC
#0204	43	AAGCTCTATCGCCTACAATGGCG
#0206	44	GGTGCTCCTCTTCTGCGCCTTGTCC

20

25

Patentansprüche

5

10

15

- Ein DNA-Molekül entsprechend einer Nukleotidsequenz eines Getreidepollenhauptallergens, ausgewählt aus einer der Sequenzen gemäß SEQ ID NO 1, 3, 5, 7, und 9.
- Ein DNA-Molekül, das mit einem DNA-Molekül gemäß Anspruch 1 unter stringenten Bedingungen hybridisiert und von DNA-Sequenzen von Poaceae-Spezies abstammt.
 - 3. Ein DNA-Molekül, kodierend für ein Polypeptid, welches mit den Majorallergenen Sec c 4, Hor v 4 oder Tri a 4 aus Secale cerale, Hordeum vulgare beziehungsweise Triticum aestivum immunologisch kreuzreagiert, und von DNA-Sequenzen von Poaceae-Spezies abstammt.
- 4. Ein DNA-Molekül, entsprechend einer Teilsequenz oder einer Kombination von Teilsequenzen nach einem oder mehreren der Ansprüche 1 bis 3, welches für ein immunmodulatorisches, T-Zell-reaktives Fragment eines Gruppe-4-Poaceae-Allergens kodiert.
- 5. Ein DNA-Molekül, entsprechend einer Nukleotidsequenz gemäß einem oder mehreren der Ansprüche 1 bis 4, kodierend für ein immunmodulatorisches T-Zell reaktives Fragment, dadurch gekennzeichnet, daß besagte Nukleotidsequenz durch gezielte Mutation einzelner Codons, Eliminierung oder Addition gezielt verändert wurde.
- Ein DNA-Molekül gemäß Anspruch 5, dadurch gekennzeichnet, daß die besagte Mutation zum Austausch eines, mehrerer oder aller Cysteine des entsprechenden Polypeptids gegen eine andere Aminosäure führt.

 Ein rekombinanter DNA-Expressionsvektor oder ein Klonierungssystem, enthaltend ein DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6, funktionell verbunden mit einer Expressionskontrollsequenz.

5

8. Ein Wirtsorganismus, transformiert mit einem DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6 oder einem Expressionsvektor gemäß Anspruch 7.

10

9. Ein Verfahren zur Herstellung eines Polypeptids, kodiert durch eine DNA-Sequenz gemäß einem oder mehreren der Ansprüche 1 bis 6, durch Kultivieren eines Wirtsorganismus gemäß Anspruch 8 und Gewinnung des entsprechenden Polypeptids aus der Kultur.

15

10. Ein Polypeptid entsprechend einer der Aminosäuresequenzen gemäß SEQ ID NO 2, 4, 6, 8, und 10, welches von einer DNA-Sequenz gemäß einem oder mehreren der Ansprüche 1 bis 6 kodiert wird.

20

11. Ein Polypeptid entsprechend dem reifen Allergen der Aminosäuresequenzen gemäß Anspruch 10, ausgewählt aus der folgenden Gruppe von Aminosäuresequenzen

25

- eine der Aminosäuresequenzen gemäß SEQ ID NO 2, 4, oder 6, beginnend mit der Aminosäure 23,
- eine der Aminosäuresequenzen gemäß SEQ ID NO 8 oder 10, beginnend mit der Aminosäure 22.

- 12. Ein Polypeptid gemäß Anspruch 10 oder 11 als Arzneimittel.
- 13. Eine pharmazeutische Zubereitung, enthaltend mindestens ein Polypeptid gemäß Anspruch 12 und gegebenenfalls weitere Wirk- und/oder
 35 Hilfsstoffe zur Diagnose und/oder Behandlung von Allergien, an deren

Auslösung Gruppe-4-Allergene der Poaceae beteiligt sind.

5

15

20

30

- 14. Verwendung mindestens eines Polypeptids gemäß Anspruch 12 zur Herstellung eines Arzneimittels zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.
- 15. Ein DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6als Arzneimittel.
 - 16. Ein rekombinanter Expressionsvektor gemäß Anspruch 7 als Arzneimittel.
 - 17. Eine pharmazeutische Zubereitung, enthaltend mindestens ein DNAMolekül gemäß Anspruch 15 oder mindestens einen Expressionsvektor
 gemäß Anspruch 16 und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur immuntherapeutischen DNA-Vakzinierung von Patienten mit
 Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.
- 18. Verwendung mindestens eines DNA-Moleküls gemäß Anspruch 15 oder mindestens eines Expressionsvektors gemäß Anspruch 16 zur Herstellung eines Arzneimittels zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.

Sequenz-Protokoll

<110> Merck Patent GmbH

<120> DNA-Sequenz und rekombinante Herstellung von Gruppe-4 Majorallergenen aus Getreiden

<130> P 03/239

<140> DE 10359351.9

<141> 2003-12-16

<160> 44

<170> PatentIn version 3.1

<210> 1

<211> 1603

<212> DNA

<213> Sec c 4

<220>

<221> stop_codon

<222> (1555)..(1557)

<223>

<220>

<221> signal sequence_DNA

<222> (1)..(66)

<223>

<220> <221> signal sequence PROT <222> (1)..(22)<223> <220> <221> CDS <222> (1)..(1557)<223> <400> 1 48 aac tat agg gcc ttc gcg ctg gcg ctc ctc ttc tgc gcc ttg tcc tgc Asn Tyr Arg Ala Phe Ala Leu Ala Leu Leu Phe Cys Ala Leu Ser Cys caa gcc gcc gcg gcc gcc tac gcg ccc gtg cct gcc aag gcg gac ttc 96 Gln Ala Ala Ala Ala Tyr Ala Pro Val Pro Ala Lys Ala Asp Phe ctc gga tgc ctc atg aag gag ata ccg gcc cgc ctc ctc tac gcc aag 144 Leu Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys age teg cet gae tae eec ace gtg etg geg eag ace ate agg aac teg 192 Ser Ser Pro Asp Tyr Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser 55 cgg tgg tcg tcg ccg cag aac gtg aag ccg atc tac atc acc ccc 240 Arg Trp Ser Ser Pro Gln Asn Val Lys Pro Ile Tyr Ile Ile Thr Pro acc aac gcc tcg cac atc cag tcc gcg gtg gtg tgc ggc cgc cgg cac Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His 288 85 ggc atc cgc ctc cgc gtg cgg agc ggc cac gac tac gag ggc ctg 336 Gly Ile Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu tog tac ogg tot gag aaa ooc gag acg tto goo gto gto gao oto aac Ser Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn 384 120 aag atg cgg gca gtg tcg gtc gac ggc tac gcc cgc acg gcg tgg gtc 432 Lys Met Arg Ala Val Ser Val Asp Gly Tyr Ala Arg Thr Ala Trp Val gaa too ggc geg cag oto ggc gag oto tac tac gcg ato gcc aag aac 480 Glu Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn 155 150

	2	
-	7	-

agc Ser	ccc Pro	gtg Val	ctc Leu	gcg Ala 165	ttc Phe	ccg Pro	gct Ala	ggc Gly	gtc Val 170	tgc Cys	ccg Pro	tcc Ser	atc Ile	ggc Gly 175	gtc Val		528
ggc Gly	ggc Gly	aac Asn	ttc Phe 180	gca Ala	ggc Gly	ggc Gly	ggc Gly	ttt Phe 185	ggc Gly	atg Met	ctg Leu	ctg Leu	cgc Arg 190	aag Lys	tac Tyr		576
ggc Gly	atc Ile	gcc Ala 195	gct Ala	gag Glu	aac Asn	gtc Val	atc Ile 200	gac Asp	gtc Val	aag Lys	gtg Val	gtc Val 205	gac Asp	ccc Pro	aac Asn		624
ggc Gly	aag Lys 210	ctg Leu	ctc Leu	gac Asp	aag Lys	agc Ser 215	tcc Ser	atg Met	agc Ser	gcg Ala	gac Asp 220	cac His	ttc Phe	tgg Trp	gcc Ala		672
gtt Val 225	agg Arg	ggc Gly	ggc Gly	ggc Gly	gga Gly 230	gag Glu	agc Ser	ttt Phe	ggc Gly	atc Ile 235	gtc Val	gtc Val	tcg Ser	tgg Trp	cag Gln 240		720
gtg Val	aag Lys	ctc Leu	ctg Leu	ccg Pro 245	gtg Val	cct Pro	ccc Pro	acc Thr	gtg Val 250	acc Thr	gtg Val	ctc Leu	aag Lys	atc Ile 255	ccc Pro		768
aag Lys	acg Thr	gtg Val	caa Gln 260	gaa Glu	ggc Gly	gcc Ala	ata Ile	gac Asp 265	ctc Leu	gtc Val	aac Asn	aag Lys	tgg Trp 270	cag Gln	ctg Leu		816
gtc Val	ggg	ccg Pro 275	gca Ala	ctt Leu	ccc Pro	ggc Gly	gac Asp 280	ctc Leu	atg Met	atc Ile	cgc Arg	atc Ile 285	atc Ile	ctt Leu	gcc Ala		864
ggg Gly	aac Asn 290	agc Ser	gcg Ala	acg Thr	ttc Phe	gag Glu 295	gcc Ala	atg Met	tac Tyr	ctg Leu	ggc Gly 300	acc Thr	tgc Cys	agt Ser	acc Thr		912
ctg Leu 305	acg Thr	ccg Pro	ctg Leu	atg Met	agc Ser 310	agc Ser	aaa Lys	ttc Phe	ccc Pro	gag Glu 315	ctt Leu	ggc Gly	atg Met	aac Asn	ccc Pro 320		960
tcg Ser	cac His	tgc Cys	aac Asn	gag Glu 325	atg Met	tcc Ser	tgg Trp	atc Ile	aag Lys 330	tcc Ser	atc Ile	ccc Pro	ttc Phe	atc Ile 335	cac His		1008
ctc Leu	ggc Gly	aag Lys	cag Gln 340	aac Asn	ctc Leu	gac Asp	gac Asp	ctc Leu 345	ctc Leu	aac Asn	cgg Arg	aac Asn	aac Asn 350	acc Thr	ttc Phe		1056
aaa Lys	cca Pro	ttc Phe 355	gcc Ala	gaa Glu	tac Tyr	aag Lys	tcg Ser 360	gac Asp	tac Tyr	gtg Val	tac Tyr	cag Gln 365	ccc Pro	ttc Phe	ccc Pro		1104
aag Lys	ccc Pro 370	Val	tgg Trp	gag Glu	cag Gln	atc Ile 375	ttc Phe	ggc Gly	tgg Trp	ctt Leu	gtg Val 380	aag Lys	ccc Pro	ggc Gly	gcg Ala		1152
ggg Gly 385	Ile	atg Met	atc Ile	atg Met	gac Asp 390	ccc Pro	tat Tyr	ggc Gly	gcc Ala	acc Thr 395	atc Ile	agc Ser	gct Ala	acc Thr	ccc Pro 400		1200
gaa	gcg	gcg	acg	ccg	ttc	cct	cac	cgc	cag	ggc	gtc	ctc	ttc	aac	atc	•	1248

Glu Ala Ala Thr Pro 405	Phe Pro	His Arg	Gln Gly 410	Val Leu	Phe	Asn 415	Ile	
cag tac gtc aac tac Gln Tyr Val Asn Tyr 420	tgg ttc Trp Phe	gct gag Ala Glu 425	tca gcc Ser Ala	ggc gcg Gly Ala	gcg Ala 430	ccg Pro	ctg Leu	1296
cag tgg agc aag gac Gln Trp Ser Lys Asp 435	ata tac Ile Tyr	aag ttc Lys Phe 440	atg gag Met Glu	ccg tac Pro Tyr 445	gtg Val	agc Ser	aaa Lys	1344
aat ccc agg cag gcg Asn Pro Arg Gln Ala 450	tat gcc Tyr Ala 455	aac tac Asn Tyr	agg gac Arg Asp	atc gac Ile Asp 460	ctt Leu	ggc Gly	agg Arg	1392
aat gag gtg gtg aac Asn Glu Val Val Asn 465	gac atc Asp Ile 470	tcc acc Ser Thr	tac agc Tyr Ser 475	agc ggc Ser Gly	aaa L y s	gtg Val	tgg Trp 480	1440
ggt gag aag tac ttc Gly Glu Lys Tyr Phe 485	aag ggc Lys Gly	aac ttc Asn Phe	caa agg Gln Arg 490	ctc gcc Leu Ala	att Ile	acc Thr 495	aag Lys	1488
ggc aag gtg gat cct Gly Lys Val Asp Pro 500	cag gac Gln Asp	tac ttc Tyr Phe 505	agg aac Arg Asn	gag cag Glu Gln	agc Ser 510	atc Ile	ccg Pro	1536
cca ctg gtc gag aag Pro Leu Val Glu Lys		tcgaggac	ct tgcat	ggaaa t	tagt	gcgt	:	1587
515								
ggttggcgtt tcacat			-					1603
			-					1603
ggttggcgtt tcacat			-					1603
ggttggcgtt tcacat			-					1603
ggttggcgtt tcacat <210> 2 <211> 518								1603
<pre>ggttggcgtt tcacat <210> 2 <211> 518 <212> PRT</pre>								1603
<pre>ggttggcgtt tcacat <210> 2 <211> 518 <212> PRT <213> Sec c 4</pre>	Ala Leu	Ala Leu	Leu Phe 10	Cys Ala	Leu	Ser 15	Cys	1603
<pre>ggttggcgtt tcacat <210> 2 <211> 518 <212> PRT <213> Sec c 4 <400> 2 Asn Tyr Arg Ala Phe</pre>			10			15		1603
ggttggcgtt tcacat <210> 2 <211> 518 <212> PRT <213> Sec c 4 <400> 2 Asn Tyr Arg Ala Phe 1 5 Gln Ala Ala Ala Ala	Ala Tyr	Ala Pro 25	10 Val Pro	Ala Lys	Ala 30	15 Asp	Phe	1603

WO 2005/059136 PCT/EP2004/013664

Arg Trp Ser Ser Pro Gln Asn Val Lys Pro Ile Tyr Ile Ile Thr Pro 65 70 75 80

Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His 85 90 95

Gly Ile Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu 100 105 110

Ser Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn 115 120 125

Lys Met Arg Ala Val Ser Val Asp Gly Tyr Ala Arg Thr Ala Trp Val 130 135 140

Glu Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn 145 150 155 160

Ser Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Ser Ile Gly Val 165 170 175

Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr 180 185 190

Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp Pro Asn 195 200 205

Gly Lys Leu Leu Asp Lys Ser Ser Met Ser Ala Asp His Phe Trp Ala 210 215 220

Val Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln 225 230 235 240

Val Lys Leu Leu Pro Val Pro Pro Thr Val Thr Val Leu Lys Ile Pro 245 250 255

Lys Thr Val Gln Glu Gly Ala Ile Asp Leu Val Asn Lys Trp Gln Leu 260 265 270

Val Gly Pro Ala Leu Pro Gly Asp Leu Met Ile Arg Ile Ile Leu Ala 275 280 285

Gly Asn Ser Ala Thr Phe Glu Ala Met Tyr Leu Gly Thr Cys Ser Thr 290 295 300

Leu Thr Pro Leu Met Ser Ser Lys Phe Pro Glu Leu Gly Met Asn Pro 305 310 315 320

Ser His Cys Asn Glu Met Ser Trp Ile Lys Ser Ile Pro Phe Ile His 325 330 335

Leu Gly Lys Gln Asn Leu Asp Asp Leu Leu Asn Arg Asn Asn Thr Phe 340 345 350

Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro 355 360 365

Lys Pro Val Trp Glu Gln Ile Phe Gly Trp Leu Val Lys Pro Gly Ala 370 375 380

Gly Ile Met Ile Met Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro 385 390 395 400

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415

Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ser Ala Gly Ala Ala Pro Leu 420 425 430

Gln Trp Ser Lys Asp Ile Tyr Lys Phe Met Glu Pro Tyr Val Ser Lys 435 440 445

Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 460

Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480

Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495

Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510

Pro Leu Val Glu Lys Tyr 515

<210> 3

<211> 1644

<212> DNA

<213> Sec c 4

```
<220>
<221>
         stop_codon
         (1561) . . (1563)
<222>
<223>
<220>
<221>
         signal_sequence_DNA
<222>
         (1)..(66)
<223>
<220>.
         signal_sequence_PROT
<221>
         (1)..(22)
<222>
<223>
<220>
<221> CDS
<222>
        (1)..(1563)
<223>
<400> 3
aac tcg agg gcc ttt gct ctg gtg ccc ctc ctc atc tgc gtc ttg tcc
Asn Ser Arg Ala Phe Ala Leu Val Pro Leu Leu Ile Cys Val Leu Ser
                                                                                              48
tgc cac gcc gcc gtc tcc tac gcg gcg gcg ccg gtg ccg gcc aag gag
                                                                                              96
Cys His Ala Ala Val Ser Tyr Ala Ala Pro Val Pro Ala Lys Glu
                20
gac ttc ttc gga tgc ctg gtg aag gag ata ccg gcc cgc ctc ctc tac Asp Phe Phe Gly Cys Leu Val Lys Glu Ile Pro Ala Arg Leu Leu Tyr
                                                                                             144
                                                                                             192
gcc aag agc tcg cct gcc ttc ccc acc gtc ctg gcg cag acc atc agg
Ala Lys Ser Ser Pro Ala Phe Pro Thr Val Leu Ala Gln Thr Ile Arg
aac tcg cgg tgg tcg tcg ccg cag agc gtg aag ccg ctc tac atc atc Asn Ser Arg Trp Ser Ser Pro Gln Ser Val Lys Pro Leu Tyr Ile Ile 65 70 75 80
                                                                                             240
```

	0	
-	Λ	-

acc Thr	ccc Pro	acc Thr	aac Asn	gcc Ala 85	tcc Ser	cac His	atc Ile	cag Gln	tcc Ser 90	gcg Ala	gtg Val	gtg Val	tgc Cys	ggc Gly 95	cgc Arg	288
cgg Arg	cac His	ggc Gly	gtc Val 100	cgc Arg	atc Ile	cgc Arg	gtg Val	cgg Arg 105	agc Ser	ggc Gly	ggc Gly	cac His	gac Asp 110	tac Tyr	gag Glu	336
ggc Gly	ctg Leu	tcg Ser 115	tac Tyr	cgg Arg	tcc Ser	gag Glu	cgc Arg 120	ccc Pro	gag Glu	gcg Ala	ttc Phe	gcc Ala 125	gtc Val	gtc Val	gac Asp	384
ctc Leu	aac Asn 130	aag Lys	atg Met	cgg Arg	gcc Ala	gtg Val 135	gtg Val	gtc Val	gac Asp	ggc Gly	aag Lys 140	gct Ala	cgc Arg	acg Thr	gcg Ala	432
tgg Trp 145	gtg Val	gac Asp	tcc Ser	ggt Gly	gcg Ala 150	cag Gln	ctc Leu	ggc Gly	gag Glu	ctc Leu 155	tac Tyr	tac Tyr	gcc Ala	atc Ile	gcc Ala 160	480
aag Lys	aac Asn	agc Ser	ccc Pro	gtg Val 165	ctc Leu	gcg Ala	ttc Phe	ccg Pro	gcc Ala 170	ggc Gly	gtt Val	tgc Cys	ccg Pro	acc Thr 175	att Ile	528
ggt Gly	gta Val	ggc Gly	ggc Gly 180	aac Asn	ttc Phe	gct Ala	ggc Gly	ggc Gly 185	ggc Gly	ttc Phe	ggc Gly	atg Met	ctg Leu 190	ctg Leu	cgc Arg	576
aag Lys	tac Tyr	ggc Gly 195	atc Ile	gcc Ala	gcc Ala	gag Glu	aac Asn 200	gtc Val	atc Ile	gac Asp	gtg Val	aag Lys 205	gtg Val	gtc Val	gac Asp	624
gcc Ala	aac Asn 210	ggc Gly	aca Thr	ctg Leu	ctc Leu	gac Asp 215	aag Lys	agc Ser	tcc Ser	atg Met	agc Ser 220	gcg Ala	gat Asp	cac His	ttc Phe	672
tgg Trp 225	gcc Ala	gtc Val	agg Arg	ggc Gly	ggc Gly 230	ggc Gly	gga Gly	gag Glu	agc Ser	ttc Phe 235	ggc Gly	atc Ile	gtc Val	gtg Val	tcg Ser 240	720
tgg Trp	cag Gln	gtg Val	àag Lys	ctc Leu 245	ctc Leu	ccg Pro	gtg Val	cct Pro	ccc Pro 250	acc Thr	gtg Val	acc Thr	gtg Val	ttc Phe 255	aag Lys	768
atc Ile	ccc Pro	aag Lys	acg Thr 260	gtg Val	caa Gln	gaa Glu	ggc Gly	gcc Ala 265	gta Val	gag Glu	ctc Leu	atc Ile	aac Asn 270	aag Lys	tgg Trp	816
cag Gln	cta Leu	gtc Val 275	gcg Ala	ccg	gcc Ala	ctc Leu	ccc Pro 280	gac Asp	gac Asp	ctg Leu	atg Met	atc Ile 285	cgc Arg	atc Ile	atc Ile	864
gct Ala	ttc Phe 290	Gly	ggc Gly	acc Thr	gcc Ala	aag Lys 295	ttc Phe	gag Glu	gcc Ala	atg Met	tac Tyr 300	ctg Leu	ggc	acc Thr	tgc Cys	912
aaa Lys 305	gcc Ala	ctg Leu	aca Thr	ccg Pro	ctg Leu 310	atg Met	agc Ser	agc Ser	aga Arg	ttc Phe 315	ccc Pro	gag Glu	ctc Leu	ggc Gly	atg Met 320	960
aac	gcc	tcg	cac	tgc	aac	gag	atg	ccc	tgg	atc	aag	tcc	gtc	cca	ttc	1008

Asn	Ala	Ser	His	Cys 325	Asn	Glu	Met	Pro	Trp 330	Ile	Lys	Ser	Val	Pro 335	Phe	
atc Ile	cac His	ctt Leu	ggc Gly 340	aag Lys	cag Gln	gcc Ala	acc Thr	ctc Leu 345	tcc Ser	gac Asp	ctc Leu	ctc Leu	aac Asn 350	cgg Arg	aac Asn	1056
aac Asn	acc Thr	ttc Phe 355	aaa Lys	ccc Pro	ttc Phe	gcc Ala	gag Glu 360	tac Tyr	aag Lys	tcg Ser	gac Asp	tac Tyr 365	gtc Val	tac Tyr	cag Gln	1104
ccc Pro	gtc Val 370	ccc Pro	aag Lys	ccc Pro	gtc Val	tgg Trp 375	gcg Ala	cag Gln	atc Ile	ttc Phe	gtc Val 380	tgg Trp	ctc Leu	gtc Val	aaa Lys	1152
ccc Pro 385	ggc Gly	gcc Ala	Gly	atc Ile	atg Met 390	gtc Val	atg Met	gac Asp	ccc Pro	tac Tyr 395	ggc Gly	gcc Ala	gcc Ala	atc Ile	agc Ser 400	1200
gcc Ala	acc Thr	ccc Pro	gaa Glu	gcc Ala 405	gcc Ala	acg Thr	ccg Pro	ttc Phe	cct Pro 410	cac His	cgc Arg	aag Lys	gac Asp	gtc Val 415	ctc Leu	1248
ttc Phe	aac Asn	atc Ile	cag Gln 420	tac Tyr	gtc Val	aac Asn	tac Tyr	tgg Trp 425	ttc Phe	gac Asp	gag Glu	gca Ala	ggc Gly 430	ggc Gly	gcc Ala	1296
gcg Ala	ccg Pro	ctg Leu 435	cag Gln	tgg Trp	agc Ser	aag Lys	gac Asp 440	atg Met	tac Tyr	agg Arg	ttc Phe	atg Met 445	gag Glu	ccg Pro	tac Tyr	1344
gtc Val	agc Ser 450	aag Lys	aac Asn	ccc Pro	aga Arg	cag Gln 455	gcc Ala	tac Tyr	gcc Ala	aac Asn	tac Tyr 460	agg Arg	gac Asp	atc Ile	gac Asp	1392
ctc Leu 465	ggc Gly	agg Arg	aac Asn	gag Glu	gtg Val 470	gtc Val	aac Asn	gac Asp	atc Ile	tcc Ser 475	acc Thr	tat Tyr	gcc Ala	agc Ser	ggc Gly 480	1440
aag Lys	gtc Val	tgg Trp	ggc Gly	gag Glu 485	aag Lys	tac Tyr	ttc Phe	aag Lys	ggc Gly 490	aac Asn	ttc Phe	caa Gln	agg Arg	ctc Leu 495	gcc Ala	1488
att Ile	acc Thr	aag Lys	ggc Gly 500	aag Lys	gtg Val	gat Asp	cct Pro	cag Gln 505	gac Asp	tac Tyr	ttc Phe	agg Arg	aac Asn 510	gag Glu	cag Gln	1536
agc Ser	atc Ile	ccg Pro 515	ccg Pro	ctg Leu	cta Leu	Gly	aag Lys 520	tag	tag	tact	ctt	gctt	gcat	gg		1583
aga	tttg	tag	tgcg	tctt	tc g	cgtt	tcaa	a tg	ссса	acta	gta	gaat	aag	gatc	gtgcgt	1643
a																1644

<210> 4

<211> 520

<212> PRT

<213> Sec c 4

< 4	0	0 >	4

Asn Ser Arg Ala Phe Ala Leu Val Pro Leu Leu Ile Cys Val Leu Ser 1 5 10 15

Cys His Ala Ala Val Ser Tyr Ala Ala Pro Val Pro Ala Lys Glu 20 25 30

Asp Phe Phe Gly Cys Leu Val Lys Glu Ile Pro Ala Arg Leu Leu Tyr 35 40 45

Ala Lys Ser Ser Pro Ala Phe Pro Thr Val Leu Ala Gln Thr Ile Arg 50 55 60

Asn Ser Arg Trp Ser Ser Pro Gln Ser Val Lys Pro Leu Tyr Ile Ile 65 70 75 80

Thr Pro Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg 85 90 95

Arg His Gly Val Arg Ile Arg Val Arg Ser Gly Gly His Asp Tyr Glu 100 105 110

Gly Leu Ser Tyr Arg Ser Glu Arg Pro Glu Ala Phe Ala Val Val Asp 115 120 125

Leu Asn Lys Met Arg Ala Val Val Val Asp Gly Lys Ala Arg Thr Ala 130 135 140

Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala 145 150 155 160

Lys Asn Ser Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Thr Ile 165 170 175

Gly Val Gly Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg 180 185 190

Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp 195 200 205

Ala Asn Gly Thr Leu Leu Asp Lys Ser Ser Met Ser Ala Asp His Phe 210 215 220

Trp Ala Val Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser 230 Trp Gln Val Lys Leu Pro Val Pro Pro Thr Val Thr Val Phe Lys Ile Pro Lys Thr Val Gln Glu Gly Ala Val Glu Leu Ile Asn Lys Trp 265 260 Gln Leu Val Ala Pro Ala Leu Pro Asp Asp Leu Met Ile Arg Ile Ile 275 280 Ala Phe Gly Gly Thr Ala Lys Phe Glu Ala Met Tyr Leu Gly Thr Cys Lys Ala Leu Thr Pro Leu Met Ser Ser Arg Phe Pro Glu Leu Gly Met Asn Ala Ser His Cys Asn Glu Met Pro Trp Ile Lys Ser Val Pro Phe 330 Ile His Leu Gly Lys Gln Ala Thr Leu Ser Asp Leu Leu Asn Arg Asn 340 Asn Thr Phe Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln 360 Pro Val Pro Lys Pro Val Trp Ala Gln Ile Phe Val Trp Leu Val Lys Pro Gly Ala Gly Ile Met Val Met Asp Pro Tyr Gly Ala Ala Ile Ser 395 Ala Thr Pro Glu Ala Ala Thr Pro Phe Pro His Arg Lys Asp Val Leu 405 Phe Asn Ile Gln Tyr Val Asn Tyr Trp Phe Asp Glu Ala Gly Gly Ala 420 Ala Pro Leu Gln Trp Ser Lys Asp Met Tyr Arg Phe Met Glu Pro Tyr 435 Val Ser Lys Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp 455 Leu Gly Arg Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ala Ser Gly 475 470

Lys Val Trp Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala 485 490 495

Ile Thr Lys Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln 500 505 510

Ser Ile Pro Pro Leu Leu Gly Lys 515 520

<210> 5

<211> 1608

<212> DNA

<213> Hor v 4

<220>

<221> stop_codon

<222> (1555)..(1557)

<223>

<220>

<221> signal_sequence_DNA

<222> (1)..(66)

<223>

<220>

<221> signal_sequence_PROT

<222> (1)..(22)

<223>

<220>

<221> CDS

<222> (1)..(1557)

<223>

<400	> 5	5													.	48
agc Ser 1	tcg Ser	agg Arg	gcc Ala	Phe 5	Ala	Leu	yal Val	Leu	Leu 10	Leu	Cys	Ala	Leu	Ser 15	Cys	40
cac His	cac His	gct Ala	gcc Ala 20	gtc Val	tcc Ser	tcc Ser	gcg Ala	cag Gln 25	gtg Val	ccg Pro	gcc Ala	aag Lys	gac Asp 30	gac Asp	ttc Phe	96
ctg Leu	gga Gly	tgc Cys 35	ctc Leu	gtg Val	aag Lys	gag Glu	ata Ile 40	ccg Pro	gcc Ala	cgc Arg	ctc Leu	ctc Leu 45	ttc Phe	gcc Ala	aag Lys	144
agc Ser	tcg Ser 50	cct Pro	gcc Ala	ttc Phe	ccc Pro	gcc Ala 55	gtc Val	ctg Leu	gag Glu	cag Gln	acc Thr 60	atc Ile	agg Arg	aac Asn	tcg Ser	192
cgg Arg 65	tgg Trp	tcg Ser	tcg Ser	ccg Pro	cag Gln 70	aac Asn	gtg Val	aag Lys	ccg Pro	ctc Leu 75	tac Tyr	atc Ile	atc Ile	acc Thr	ccc Pro 80	240
acc Thr	aac Asn	acc Thr	tcc Ser	cac His 85	atc Ile	cag Gln	tct Ser	gct Ala	gtg Val 90	gtg Val	tgc Cys	ggc Gly	cgc Arg	cgg Arg 95	cac His	288
ggc Gly	gtc Val	cgc Arg	ctc Leu 100	cgc Arg	gtg Val	cgg Arg	agc Ser	ggc Gly 105	ggc Gly	cac His	gac Asp	tac Tyr	gag Glu 110	ggc Gly	ctg Leu	336
tcg Ser	tac Tyr	cgg Årg 115	tcc Ser	gag Glu	cgc Arg	ccc Pro	gag Glu 120	gcg Ala	ttc Phe	gcc Ala	g <u>t</u> c Val	gta Val 125	gac Asp	ctc Leu	aac Asn	.384
aag Lys	atg Met 130	cgg Arg	acc Thr	gtg Val	ttg Leu	gtc Val 135	aac Asn	gaa Glu	aag Lys	gcc Ala	cgc Arg 140	acg Thr	gcg Ala	tgg Trp	gtg Val	432
gac Asp 145	tcc Ser	ggc Gly	gcg Ala	cag Gln	ctc Leu 150	ggc Gly	gag Glu	ctc Leu	tac Tyr	tac Tyr 155	gcc Ala	atc Ile	gcc Ala	aag Lys	aac Asn 160	480
agc Ser	ccc Pro	gtg Val	ctc Leu	gcg Ala 165	ttc Phe	cca Pro	gcc Ala	ggc Gly	gtt Val 170	tgc Cys	ccg Pro	tcc Ser	att Ile	ggt Gly 175	gta Val	528
ggt Gly	ggc Gly	aac Asn	ttc Phe 180	gct Ala	ggc Gly	ggc Gly	ggc	ttc Phe 185	ggc Gly	atg Met	ctg Leu	ctg Leu	cgc Arg 190	aag Lys	tac Tyr	576
ggc Gly	atc Ile	gcc Ala 195	gcc Ala	gag Glu	aac Asn	gtc Val	atc Ile 200	Asp	gtc Val	aag Lys	ctg Leu	gtc Val 205	gac Asp	gcc Ala	aac Asn	624
ggc Gly	aag Lys 210	Leu	ctc Leu	gac Asp	aag Lys	agc Ser 215	tcc Ser	atg Met	agc Ser	ccg Pro	gac Asp 220	His	ttc Phe	tgg Trp	gcc Ala	672
gtc Val 225	Arg	ggc	ggc Gly	ggc	gga Gly 230	Glu	agc Ser	ttc Phe	g g c Gly	atc Ile 235	Val	gtc Val	tcg Ser	tgg Trp	cag Gln 240	720

	gtg Val	aag Lys	ctt Leu	ctc Leu	ccg Pro 245	gtg Val	cct Pro	ccc Pro	acc Thr	gtg Val 250	act Thr	gtg Val	ttt Phe	cag Gln	atc Ile 255	ccc Pro	768
	aag Lys	aca Thr	gtg Val	caa Gln 260	gaa Glu	ggc Gly	gcc Ala	gta Val	gac Asp 265	ctc Leu	atc Ile	aac Asn	aag Lys	tgg Trp 270	cag Gln	ctg Leu	816
	gtc Val	gcg Ala	ccg Pro 275	gcc Ala	ctt Leu	ccc Pro	ggc Gly	gac Asp 280	atc Ile	atg Met	atc Ile	cgc Arg	atc Ile 285	atc Ile	gcc Ala	atg Met	864
	ggg Gly	gac Asp 290	aaa Lys	gcg Ala	acg Thr	ttc Phe	gag Glu 295	gcc Ala	atg Met	tac Tyr	ctg Leu	ggc Gly 300	acc Thr	tgc Cys	aaa Lys	acc Thr	912
	ctg Leu 305	acg Thr	ccg Pro	ctg Leu	atg Met	agc Ser 310	agc Ser	aaa Lys	ttc Phe	ccg Pro	gag Glu 315	ctt Leu	ggc Gly	atg Met	aac Asn	ccc Pro 320	960
	tcg Ser	cac His	tgc Cys	aac Asn	gag Glu 325	atg Met	ccc Pro	tgg Trp	atc Ile	aag Lys 330	tcc Ser	atc Ile	ccc Pro	ttc Phe	atc Ile 335	cac His	1008
	ctt Leu	ggc Gly	aag Lys	cag Gln 340	gcc Ala	acc Thr	ctg Leu	gcc Ala	gac Asp 345	ctc Leu	ctc Leu	aac Asn	cgg Arg	aac Asn 350	aac Asn	acc Thr	1056
-	ttc Phe	aaa Lys	ccc Pro 355	ttc Phe	gcc Ala	gaa Glu	tac Tyr	aag Lys 360	tcg Ser	gac Asp	tac Tyr	gtc Val	tac Tyr 365	cag Gln	ccc Pro	gtc Val	1104
	ccc Pro	aag Lys 370	ccc Pro	gtg Val	tgg Trp	gag Glu	cag Gln 375	ctc Leu	ttc Phe	ggc Gly	tgg Trp	ctc Leu 380	acg Thr	aaa Lys	ccc Pro	ggc Gly	1152
	gcg Ala 385	ggg Gly	atc Ile	atg Met	gtc Val	atg Met 390	gac Asp	cca Pro	tac Tyr	ggc Gly	gcc Ala 395	acc Thr	atc Ile	agc Ser	gcc Ala	acc Thr 400	1200
	ccc Pro	gaa Glu	gcg Ala	gcg Ala	acg Thr 405	ccg Pro	ttc Phe	cct Pro	cac His	cgc Arg 410	aag Lys	ggc Gly	gtc Val	ctc Leu	ttc Phe 415	aac Asn	1248
	atc Ile	cag Gln	tac Tyr	gtc Val 420	aac Asn	tac Tyr	tgg Trp	ttc Phe	gcc Ala 425	gag Glu	gca Ala	gcc Ala	ggc	gcc Ala 430	gcg Ala	ccg Pro	1296
	ctg Leu	cag Gln	tgg Trp 435	agc Ser	aag Lys	gac Asp	att Ile	tac Tyr 440	aaa Lys	ttc Phe	atg Met	gag Glu	ccg Pro 445	ttc Phe	gtg Val	agc Ser	1344
	aag Lys	aac Asn 450	ccc Pro	agg Arg	cag Gln	gcg Ala	tac Tyr 455	gcc Ala	aac Asn	tac Tyr	agg Arg	gac Asp 460	atc Ile	gac Asp	ctc Leu	ggc Gly	1392
	agg Arg 465	Asn	gag Glu	gtg Val	gtg Val	aac Asn 470	gac Asp	atc Ile	tca Ser	acc Thr	tac Tyr 475	agc Ser	agc Ser	ggc Gly	aag Lys	gtg Val 480	1440
	tgg	ggc	gag	aag	tac	ttc	aag	ggc	aac	ttc	caa	agg	ctc	gcc	atc	acc	1488

- 15 -

Trp Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu A 485 490	la Ile Thr 495												
aag ggc aag gtg gat ccc cag gac tac ttc agg aac gag c Lys Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu G 500 505 5	ag agc atc 1536 ln Ser Ile 10												
ccg ccg ctg ctg ggc aag tag tgaccgagag tcttgcatgg aga Pro Pro Leu Leu Gly Lys 515	tttgtag 1587												
tgcgtgcttg gcgtttctga t													
<210> 6													
<211> 518													
<212> PRT													
<213> Hor v 4													
<400> 6													
Ser Ser Arg Ala Phe Ala Leu Val Leu Leu Cys Ala L 1 5 10	eu Ser Cys 15												
His His Ala Ala Val Ser Ser Ala Gln Val Pro Ala Lys A 20 25 3	sp Asp Phe 0												
Leu Gly Cys Leu Val Lys Glu Ile Pro Ala Arg Leu Leu P 35 40 45	the Ala Lys												
Ser Ser Pro Ala Phe Pro Ala Val Leu Glu Gln Thr Ile A 50 55 60	rg Asn Ser												
Arg Trp Ser Ser Pro Gln Asn Val Lys Pro Leu Tyr Ile I 65 70 75	le Thr Pro 80												
Thr Asn Thr Ser His Ile Gln Ser Ala Val Val Cys Gly A	arg Arg His 95												
Gly Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr G	ilu Gly Leu 10												
Ser Tyr Arg Ser Glu Arg Pro Glu Ala Phe Ala Val Val A 115 120 125	sp Leu Asn												
Lys Met Arg Thr Val Leu Val Asn Glu Lys Ala Arg Thr A 130 135 140	ala Trp Val												

			•												
Asp 145	Ser	Gly	Ala	Gln	Leu 150	Gly	Glu	Leu	Tyr	Tyr 155	Ala	Ile	Ala	Lys	Asn 160
Ser	Pro	Val	Leu	Ala 165	Phe	Pro	Ala	Gly	Val 170	Cys	Pro	Ser	Ile	Gly 175	Val
Gly	Gly	Asn	Phe 180	Ala	Gly	Gly	Gly	Phe 185	Gly	Met	Leu	Leu	Arg 190	Lys	Tyr
Gly	Ile	Ala 195	Ala	Glu	Asn	Val	Ile 200	Asp	Val	Lys	Leu	Val 205	Asp	Ala	Asn
Gly	Lys 210	Leu	Leu	Asp	Lys	Ser 215	Ser	Met	Ser	Pro	Asp 220	His	Phe	Trp	Ala
Val 225	Arg	Gly	Gly	Gly	Gly 230	Glu	Ser	Phe	Gly	Ile 235	Val	Val	Ser	Trp	Gln 240
Val	Lys	Leu	Leu	Pro 245	Val	Pro	Pro	Thr	Val 250	Thr	Val	Phe	Gln	Ile 255	Pro
Lys	Thr	Val	Gln 260	Glu	Gly	Ala	Val	Asp 265	Leu	Ile	Asn	Lys	Trp 270	Gln	Leu
Val	Ala	Pro 275	Ala	Leu	Pro	Gly	Asp 280	Ile	Met	Ile	Arg	Ile 285	Ile	Ala	Met
Gly	Asp 290	Lys	Ala	Thr	Phe	Glu 295	Ala	Met	Tyr	Leu	Gly 300	Thr	Cys	Lys	Thr
Leu 305	Thr	Pro	Leu	Met	Ser 310	Ser	Lys	Phe	Pro	Glu 315	Leu	Gly	Met	Asn	Pro 320
Ser	His	Cys	Asn	Glu 325	Met	Pro	Trp	Ile	Lys 330	Ser	Ile	Pro	Phe	Ile 335	His
Leu	Gly	Lys	Gln 340	Ala	Thr	Leu	Ala	Asp 345	Leu	Leu	Asn	Arg	Asn 350	Asn	Thr
Phe	Lys	Pro 355	Phe	Ala	Glu	Tyr	Lys 360		Asp	Tyr	Val	Tyr 365	Gln	Pro	Val
Pro	Lys 370		Val	Trp	Glu	Gln 375	Leu	Phe	Gly	Trp	Leu 380	Thr	Lys	Pro	Gly
Ala 385	_	Ile	Met	Val	Met 390	Asp	Pro	Tyr	Gly	Ala 395	Thr	Ile	Ser	Ala	Thr 400

Pro Glu Ala Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn 405 410 415

Ile Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ala Ala Gly Ala Ala Pro
 420 425 430

Leu Gln Trp Ser Lys Asp Ile Tyr Lys Phe Met Glu Pro Phe Val Ser 435 440 445

Lys Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly 450 460

Arg Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val 465 470 475 480

Trp Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr 485 490 495

Lys Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile 500 505 510

Pro Pro Leu Leu Gly Lys 515

<210> 7

<211> 1603

<212> DNA

<213> Tri a 4

<220>

<221> stop_codon

<222> (1555)..(1557)

<223>

<220>

<221> signal_sequence_DNA

<222> (1)..(63)

<223>

<220>
<221> signal_sequence_PROT
<222> (1)(21)
<223>
<220>
<221> CDS
<222> (1)(1557)
<223>
<400> 7
Asn Tyr Arg Ala Phe Thr Leu Val Leu Phe Cys Ala Leu Ser Cys
Gln Ala Ala Thr Tyr Ala Pro Val Pro Ala Lys Glu Asp Phe Leu
Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys Ser
Ser Pro Asp Phe Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser Arg
50 55 60
Trp Leu Ser Pro Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr
Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser
Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser
100 105 110
Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys
115 120 125
Met Arg Ala Val Leu Ile Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu
130 135 140
tcc ggc gcg cag ctc ggc gag ctc tac tac gcc atc gcg aaa aac agc 480 Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser
145 150 155 160

ccc Pro	gtg Val	ctc Leu	gcg Ala	ttc Phe 165	ccg Pro	gcc Ala	ggc Gly	gtc Val	tgc Cys 170	ccg Pro	acc Thr	atc Ile	ggc Gly	gtc Val 175	ggc Gly	528
ggc Gly	aac Asn	ttc Phe	gca Ala 180	ggc Gly	ggc Gly	ggc Gly	ttt Phe	ggc Gly 185	atg Met	ctg Leu	ctg Leu	cgg Arg	aag Lys 190	tac Tyr	ggc Gly	576
atc Ile	gcc Ala	gcc Ala 195	gag Glu	aac Asn	gtc Val	atc Ile	gac Asp 200	gtc Val	aag Lys	gtg Val	gtc Val	gac Asp 205	ccc Pro	aac Asn	ggc Gly	624
aag Lys	ctt Leu 210	ctc Leu	gac Asp	aag Lys	agc Ser	tcc Ser 215	atg Met	agc Ser	ccg Pro	gac Asp	cac His 220	ttc Phe	tgg Trp	gcc Ala	gtc Val	672
agg Arg 225	ggc Gly	ggc Gly	ggc Gly	gga Gly	gag Glu 230	agc Ser	ttt Phe	ggc Gly	atc Ile	gtc Val 235	gtg Val	tcg Ser	tgg Trp	caa Gln	gtg Val 240	720
aag Lys	ctc Leu	ctg Leu	ccg Pro	gtg Val 245	cct Pro	ccc Pro	acc Thr	gtg Val	acc Thr 250	gtg Val	ttc Phe	aag Lys	atc Ile	ccc Pro 255	aag Lys	768
aca Thr	gtg Val	caa Gln	gaa Glu 260	ggc Gly	gcc Ala	gta Val	gac Asp	ctc Leu 265	gtc Val	aac Asn	aag Lys	tgg Trp	caa Gln 270	ctg Leu	gtc Val	816
ggg Gly	ccg Pro	gcc Ala 275	ctt Leu	ccc Pro	ggc Gly	gac Asp	ctc Leu 280	atg Met	atc Ile	cgc Arg	gtc Val	atc Ile 285	gct Ala	gcg Ala	ggg Gly	864
aac Asn	acc Thr 290	gcg Ala	aca Thr	ttc Phe	gag Glu	ggc Gly 295	atg Met	tac Tyr	ctg Leu	ggc Gly	acc Thr 300	tgc Cys	caa Gln	acc Thr	ctg Leu	912
acg Thr 305	ccg Pro	ttg Leu	atg Met	agc Ser	agc Ser 310	caa Gln	ttc Phe	ccc Pro	gag Glu	ctt Leu 315	ggc Gly	atg Met	aac Asn	ccc Pro	tat Tyr 320	960
cac His	tgc Cys	aac Asn	gag Glu	atg Met 325	ccc Pro	tgg Trp	atc Ile	aag Lys	tcc Ser 330	atc Ile	ccc Pro	ttc Phe	atc Ile	cac His 335	ctc Leu	1008
ggc Gly	aaa Lys	gag Glu	gcc Ala 340	agc Ser	ctg Leu	gtc Val	gac Asp	ctc Leu 345	ctc Leu	aac Asn	cgg Arg	aac Asn	aac Asn 350	acc Thr	ttc Phe	1056
aag Lys	ccc Pro	ttc Phe 355	gcc Ala	gaa Glu	tac Tyr	aag Lys	tcg Ser 360	gac Asp	tac Tyr	gtg Val	tac Tyr	cag Gln 365	ccc Pro	ttc Phe	ccc Pro	1104
aag Lys	ccc Pro 370	gtg Val	tgg Trp	gag Glu	cag Gln	atc Ile 375	ttc Phe	ggc Gly	tgg Trp	ctc Leu	acg Thr 380	aag Lys	ccc Pro	ggt Gly	ggg Gly	1152
ggg Gly 385	atg Met	atg Met	atc Ile	atg Met	gac Asp 390	cca Pro	tac Tyr	ggc Gly	gcc Ala	acc Thr 395	atc Ile	agc Ser	gcc Ala	acc Thr	ccc Pro 400	1200
gaa	gcg	gcg	acg	ccg	ttc	cct	cac	cgc	cag	ggc	gtt	ctc	ttc	aac	atc	1248

Glu Ala Ala Thr Pro Ph	Pro His F	Arg Gln Gly Va 410	l Leu Phe Asn 415	Ile
cag tac gtc aac tac tg Gln Tyr Val Asn Tyr Tr 420	o Phe Ala G	gag gca gcc gc Glu Ala Ala Al 425	cc gcc gcg ccg a Ala Ala Pro 430	ctg 1296 Leu
cag tgg agc aag gac at Gln Trp Ser Lys Asp Me 435	g tac aat t Tyr Asn E 440	ttc atg gag cc Phe Met Glu Pr	eg tac gtg agc to Tyr Val Ser 445	aag 1344 Lys
aac ccc agg cag gcg ta Asn Pro Arg Gln Ala Ty 450	gcc aac t Ala Asn T 455	tac agg gac at Tyr Arg Asp Il 46	e Asp Leu Gly	agg 1392 Arg
aac gag gtg gtg aac ga Asn Glu Val Val Asn As 465 47	o Ile Ser T	acc tat agc ag Thr Tyr Ser Se 475	gc ggc aag gtt er Gly Lys Val	tgg 1440 Trp 480
ggc gag aag tac ttc aa Gly Glu Lys Tyr Phe Ly 485	g ggc aac t s Gly Asn E	ttc caa agg ct Phe Gln Arg Le 490	cc gct att acc eu Ala Ile Thr 495	aag 1488 Lys
ggc aag gtg gat cct ca Gly Lys Val Asp Pro Gl 500	n Asp Tyr E	ttc agg aac ga Phe Arg Asn Gl 505	ag cag agc atc u Gln Ser Ile 510	ccg 1536 Pro
ccg ctg ctc gag aag ta Pro Leu Leu Glu Lys Ty 515		ggacct tgcatgg	gaga tttagtgcgt	1587
310				
ggttgccgtt tcacat				1603
•				1603
ggttgccgtt tcacat				1603
ggttgccgtt tcacat				1603
<pre>ggttgccgtt tcacat <210> 8 <211> 518</pre>				
<pre>ggttgccgtt tcacat <210> 8 <211> 518 <212> PRT</pre>				1603
<pre>ggttgccgtt tcacat <210> 8 <211> 518 <212> PRT</pre>				1603
<pre>ggttgccgtt tcacat <210> 8 <211> 518 <212> PRT <213> Tri a 4</pre>	r Leu Val I	Leu Leu Phe Cy 10	/s Ala Leu Ser 15	
<pre>ggttgccgtt tcacat <210> 8 <211> 518 <212> PRT <213> Tri a 4 <400> 8 Asn Tyr Arg Ala Phe Th</pre>	r Ala Pro V	10	15	Cys
<pre>ggttgccgtt tcacat <210> 8 <211> 518 <212> PRT <213> Tri a 4 <400> 8 Asn Tyr Arg Ala Phe Th 1 5 Gln Ala Ala Ala Thr Ty</pre>	r Ala Pro \ 2	10 Val Pro Ala Ly 25	ys Glu Asp Phe 30	Cys Leu

Trp Leu Ser Pro Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys 125 120 Met Arg Ala Val Leu Ile Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu 130 Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser 155 Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Thr Ile Gly Val Gly Gly Asn Phe Ala Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp Pro Asn Gly Lys Leu Leu Asp Lys Ser Ser Met Ser Pro Asp His Phe Trp Ala Val Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln Val Lys Leu Leu Pro Val Pro Pro Thr Val Thr Val Phe Lys Ile Pro Lys Thr Val Gln Glu Gly Ala Val Asp Leu Val Asn Lys Trp Gln Leu Val 260 Gly Pro Ala Leu Pro Gly Asp Leu Met Ile Arg Val Ile Ala Ala Gly 275 Asn Thr Ala Thr Phe Glu Gly Met Tyr Leu Gly Thr Cys Gln Thr Leu 290 Thr Pro Leu Met Ser Ser Gln Phe Pro Glu Leu Gly Met Asn Pro Tyr His Cys Asn Glu Met Pro Trp Ile Lys Ser Ile Pro Phe Ile His Leu 325 330 335

Gly Lys Glu Ala Ser Leu Val Asp Leu Leu Asn Arg Asn Asn Thr Phe 340 345 350

Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro 355 360 365

Lys Pro Val Trp Glu Gln Ile Phe Gly Trp Leu Thr Lys Pro Gly Gly 370 375 380

Gly Met Met Ile Met Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro 385 390 395 400

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415

Gln Tyr Val Asn Tyr Trp Phe Ala Glu Ala Ala Ala Ala Pro Leu 420 425 430

Gln Trp Ser Lys Asp Met Tyr Asn Phe Met Glu Pro Tyr Val Ser Lys 435 440 445

Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 455 460

Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480

Gly Glu Lys Tyr Phe Lys Gly Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495

Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510

Pro Leu Leu Glu Lys Tyr 515

<210> 9

<211> 1603

<212> DNA

<213> Tri a 4

<220>

- 23 -

<221> stop_codon <222> (1555)..(1557) <223> <220> <221> CDS <222> (1)..(1557) <223> <220> signal_sequence_DNA <221> <222> (1)..(63)<223> <220> <221> signal_sequence_PROT <222> (1)..(21) <223> 48 aac tgt agg gcc ttc gcg cag gtg ctc ctc ttc ttc gcc ttg tcc tgc Asn Cys Arg Ala Phe Ala Gln Val Leu Leu Phe Phe Ala Leu Ser Cys caa gcc gcc gcc acc tac gcg ccg gtg cct gcc aag gag gac ttc ctc Gln Ala Ala Ala Thr Tyr Ala Pro Val Pro Ala Lys Glu Asp Phe Leu 96 20 gga tgc ctc atg aag gag ata ccg gcc cgc ctc ctc tac gcc aag agc 144 Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys Ser 35 tcg cct gac tac ccc acc gtg ctg gcg cag acc atc agg aac tcg cgg Ser Pro Asp Tyr Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser Arg 192 50 240 tgg tcg acg cag cag aac gtg aag ccg ctg tac atc acc ccc acc Trp Ser Thr Gln Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr

aac Asn	gcc Ala	tcc Ser	cac His	atc Ile 85	caa Gln	tcc Ser	gcg Ala	gtg Val	gtg Val 90	tgc Cys	ggc Gly	cgc Arg	cgg Arg	cac His 95	ggc Gly		288
gtc Val	cgc Arg	ctc Leu	cgc Arg 100	gtg Val	cgg Arg	agc Ser	ggc Gly	ggc Gly 105	cac His	gac Asp	tac Tyr	gag Glu	ggc Gly 110	ctg Leu	tcg Ser		336
tac Tyr	cgg Arg	tcc Ser 115	gag Glu	aaa Lys	ccc Pro	gag Glu	acg Thr 120	ttc Phe	gcc Ala	gtc Val	gtc Val	gac Asp 125	ctc Leu	aac Asn	aag Lys		384
atg Met	cgg Arg 130	gca Ala	gtg Val	gtt Val	gtc Val	gac Asp 135	ggc Gly	tac Tyr	gcc Ala	cgc Arg	acg Thr 140	gcg Ala	tgg Trp	gtc Val	gaa Glu		432
tcc Ser 145	ggc Gly	gcg Ala	cag Ģln	ctc Leu	ggc Gly 150	gag Glu	ctc Leu	tac Tyr	tac Tyr	gcc Ala 155	atc Ile	gcg Ala	aag Lys	aac Asn	agc Ser 160		480
ccc Pro	gtg Val	ctc Leu	gcg Ala	ttc Phe 165	ccg Pro	gcc Ala	ggc Gly	gtc Val	tgc Cys 170	ccg Pro	tcc Ser	atc Ile	ggc Gly	gtc Val 175	ggc Gly		528
ggc Gly	aac Asn	ttc Phe	gca Ala 180	ggc Gly	ggc Gly	ggc Gly	ttc Phe	ggc Gly 185	atg Met	ctg Leu	ctg Leu	cgc Arg	aag Lys 190	tac Tyr	Gly G		576
atc Ile	gcc Ala	gcc Ala 195	gag Glu	aac Asn	gtc Val	atc Ile	gac Asp 200	gtc V <u>a</u> l	aag Lys	gtg Val	gtc Val	gac Asp 205	ccc Pro	gac Asp	ggc Gly		624
aag Lys	ctg Leu 210	ctc Leu	gac Asp	aag Lys	agc Ser	tcc Ser 215	atg Met	agc Ser	gcg Ala	gac Asp	cac His 220	Phe	tgg Trp	gcc Ala	gtc Val		672
agg Arg 225	ggc Gly	ggc Gly	ggc Gly	gga Gly	gag Glu 230	agc Ser	ttc Phe	ggc Gly	atc Ile	gtc Val 235	gtc Val	tcg Ser	tgg Trp	cag Gln	gtg Val 240		720
aag Lys	ctc Leu	atg Met	cca Pro	gtg Val 245	cct Pro	ccc Pro	acc Thr	gtc Val	acc Thr 250	gtg Val	ttt Phe	aag Lys	atc Ile	ccc Pro 255	aag Lys		768
acg Thr	gtg Val	caa Gln	gaa Glu 260	ggc Gly	gcc Ala	gta Val	gac Asp	ctc Leu 265	gtc Val	aac Asn	aag Lys	tgg Trp	cag Gln 270	ctg Leu	gtc Val		816
G] À Gaà	ccg Pro	gca Ala 275	çtt Leu	ccc Pro	ggc Gly	gac Asp	ctc Leu 280	atg Met	atc Ile	cgc Arg	gtc Val	atc Ile 285	gct Ala	gcc Ala	GJ À āāā		864
aac Asn	acg Thr 290	gcg Ala	acg Thr	ttc Phe	gag Glu	gcc Ala 295	ttg Leu	tac Tyr	ctg Leu	ggc Gly	acc Thr 300	tgc Cys	aaa Lys	acc Thr	ctg Leu		912
acg Thr 305	ccg Pro	ctg Leu	atg Met	agc Ser	agc Ser 310	caa Gln	ttc Phe	ccc Pro	gag Glu	ctt Leu 315	ggc Gly	atg Met	aac Asn	ccc Pro	tat Tyr 320		960
cac	tgc	aac	gag	atg	ccc	tgg	atc	aag	tcc	gtc	ccc	ttc	atc	cac	ctc	1	1008

His	Cys	Asn	Glu	Met 325	Pro	Trp	Ile	Lys	Ser 330	Val	Pro	Phe	Ile	His 335	Leu		
ggc Gly	aaa Lys	cag Gln	gct Ala 340	ggc Gly	ctg Leu	gac Asp	gac Asp	ctc Leu 345	ctc Leu	aac Asn	cgg Arg	aac Asn	aac Asn 350	acc Thr	ttc Phe		1056
aag Lys	ccc Pro	ttc Phe 355	gcc Ala	gaa Glu	tac Tyr	aag Lys	tcg Ser 360	gac Asp	tac Tyr	gtg Val	tac Tyr	cag Gln 365	ccc Pro	ttc Phe	ccc Pro		1104
aag Lys	ccc Pro 370	gtg Val	tgg Trp	gag Glu	cag Gln	atc Ile 375	ttc Phe	ggc Gly	tgg Trp	ctc Leu	gcg Ala 380	aag Lys	ccc Pro	ggc Gly	gcg Ala		1152
ggg Gly 385	atc Ile	atg Met	atc Ile	atg Met	gac Asp 390	ccc Pro	tac Tyr	ggc Gly	gcc Ala	acc Thr 395	atc Ile	agc Ser	gcc Ala	acc Thr	ccc Pro 400	÷	1200
gaa Glu	gcg Ala	gcg Ala	acg Thr	ccg Pro 405	ttc Phe	cct Pro	cac His	cgc Arg	cag Gln 410	ggc Gly	gtc Val	ctc Leu	ttc Phe	aac Asn 415	atc Ile		1248
cag Gln	tat Tyr	gtc Val	aac Asn 420	tac Tyr	tgg Trp	ttc Phe	gcc Ala	gag Glu 425	cca Pro	gcc Ala	ggc Gly	gcc Ala	gcg Ala 430	ccg Pro	ctg Leu		1296
cag Gln	tgg Trp	agc Ser 435	aag Lys	gac Asp	att Ile	tac Tyr	aat Asn 440	ttc Phe	atg Met	gag Glu	ccg Pro	tac Tyr 445	gtg Val	agc Ser	aag Lys		1344
aac Asn	ccc Pro 450	agg Arg	cag Gln	gcg Ala	tac Tyr	gcc Ala 455	aac Asn	tac Tyr	agg Arg	gac Asp	atc Ile 460	gac Asp	ctc Leu	ggc Gly	agg Arg		1392
aat Asn 465	gag Glu	gtg Val	gtg Val	aac Asn	gac Asp 470	atc Ile	tca Ser	acc Thr	tac Tyr	agc Ser 475	agc Ser	ggc Gly	aag Lys	gtg Val	tgg Trp 480		1440
ggc Gly	gag Glu	aag Lys	tac Tyr	ttc Phe 485	aag Lys	agc Ser	aac Asn	ttc Phe	caa Gln 490	agg Arg	ctc Leu	gcc Ala	att Ile	acc Thr 495	aag Lys		1488
ggc Gly	aag Lys	gta Val	gat Asp 500	cct Pro	cag Gln	gac Asp	tac Tyr	ttc Phe 505	agg Arg	aat Asn	gag Glu	caa Gln	agc Ser 510	atc Ile	ccg Pro		1536
ccg Pro	ctg Leu	atc Ile 515	gag Glu	aag Lys	tac Tyr	tga	tcg	agga	cct 1	tgcai	tgga	ga ti	ttag	tgcg	t		1587
ggt	tggc	gtt	tcac	at													1603
<21	0>	10															

<211> 518

<212> PRT

<213> Tri a 4

<400> 10

Asn Cys Arg Ala Phe Ala Gln Val Leu Leu Phe Phe Ala Leu Ser Cys 1 10 15

Gln Ala Ala Ala Thr Tyr Ala Pro Val Pro Ala Lys Glu Asp Phe Leu 20 25 30

Gly Cys Leu Met Lys Glu Ile Pro Ala Arg Leu Leu Tyr Ala Lys Ser 35 40 45

Ser Pro Asp Tyr Pro Thr Val Leu Ala Gln Thr Ile Arg Asn Ser Arg 50 55 60

Trp Ser Thr Gln Gln Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr 65 70 75 80

Asn Ala Ser His Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Gly 85 90 95

Val Arg Leu Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser 100 105 110

Tyr Arg Ser Glu Lys Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys 115 120 125

Met Arg Ala Val Val Val Asp Gly Tyr Ala Arg Thr Ala Trp Val Glu 130 135 140

Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Ala Lys Asn Ser 145 150 155 160

Pro Val Leu Ala Phe Pro Ala Gly Val Cys Pro Ser Ile Gly Val Gly 165 170 175

Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly 180 185 190

Ile Ala Ala Glu Asn Val Ile Asp Val Lys Val Val Asp Pro Asp Gly 195 200 205

Lys Leu Leu Asp Lys Ser Ser Met Ser Ala Asp His Phe Trp Ala Val 210 215 220

Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln Val 225 230 235 240

Lys Leu Met Pro Val Pro Pro Thr Val Thr Val Phe Lys Ile Pro Lys 245 250 255

Thr Val Glu Glu Gly Ala Val Asp Leu Val Asn Lys Trp Gln Leu Val 260 265 270

Gly Pro Ala Leu Pro Gly Asp Leu Met Ile Arg Val Ile Ala Ala Gly 275 280 285

Asn Thr Ala Thr Phe Glu Ala Leu Tyr Leu Gly Thr Cys Lys Thr Leu 290 295 300

Thr Pro Leu Met Ser Ser Gln Phe Pro Glu Leu Gly Met Asn Pro Tyr 305 310 315 320

His Cys Asn Glu Met Pro Trp Ile Lys Ser Val Pro Phe Ile His Leu 325 330 335

Gly Lys Gln Ala Gly Leu Asp Asp Leu Leu Asn Arg Asn Asn Thr Phe 340 345 350

Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro 355 360 365

Lys Pro Val Trp Glu Gln Ile Phe Gly Trp Leu Ala Lys Pro Gly Ala 370 375 380

Gly Ile Met Ile Met Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro 385 390 395 400

Glu Ala Ala Thr Pro Phe Pro His Arg Gln Gly Val Leu Phe Asn Ile 405 410 415

Gln Tyr Val Asn Tyr Trp Phe Ala Glu Pro Ala Gly Ala Ala Pro Leu 420 425 430

Gln Trp Ser Lys Asp Ile Tyr Asn Phe Met Glu Pro Tyr Val Ser Lys 435 440 445

Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg 450 455 460

Asn Glu Val Val Asn Asp Ile Ser Thr Tyr Ser Ser Gly Lys Val Trp 465 470 475 480

Gly Glu Lys Tyr Phe Lys Ser Asn Phe Gln Arg Leu Ala Ile Thr Lys 485 490 495

Gly Lys Val Asp Pro Gln Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro 500 505 510

Pro Leu Ile Glu Lys Tyr 515

<210> 11

<211> 1503

<212> DNA

<213> Phl p 4

<220>

<221> CDS

<222> (1)..(1503)

<223>

·					
<400> 11 tac ttc ccg ccg Tyr Phe Pro Pro 1	ccg gct gct Pro Ala Ala 5	aaa gaa gac Lys Glu Asp 10	ttc ctg ggt tg Phe Leu Gly Cy	c ctg gtt s Leu Val 15	48
aaa gaa atc ccg Lys Glu Ile Pro 20	ccg cgt ctg Pro Arg Leu	ttg tac gcg Leu Tyr Ala 25	aaa tcg tcg cc Lys Ser Ser Pr 30	g gcg tat o Ala Tyr	96
ccc tca gtc ctg Pro Ser Val Leu 35	ggg cag acc Gly Gln Thr	atc cgg aac Ile Arg Asn 40	tcg agg tgg tc Ser Arg Trp Se 45	g tcg ccg r Ser Pro	144
gac aac gtg aag Asp Asn Val Lys 50	ccg ctc tac Pro Leu Tyr 55	atc atc acc Ile Ile Thr	ccc acc aac gt Pro Thr Asn Va 60	c tcc cac l Ser His	192
atc cag tcc gcc Ile Gln Ser Ala 65	gtg gtg tgc Val Val Cys 70	ggc cgc cgc Gly Arg Arg	cac agc gtc cg His Ser Val Ar 75	c atc cgc g Ile Arg 80	240
gtg cgc agc ggc Val Arg Ser Gly	ggg cac gac Gly His Asp 85	tac gag ggc Tyr Glu Gly 90	ctc tcg tac cg Leu Ser Tyr Ar	g tct ttg g Ser Leu 95	288
cag ccc gag acg Gln Pro Glu Thr 100	ttc gcc gtc Phe Ala Val	gtc gac ctc Val Asp Leu 105	aac aag atg cg Asn Lys Met Ar 11	g Ala Val	336
tgg gtg gac ggc	aag gcc cgc	acg gcg tgg	gtg gac tcc gg	c gcg cag	384

- 29 -

Trp	Val	Asp 115	Gly	Lys	Ala	Arg	Thr 120	Ala	Trp	Val	Asp	Ser 125	Gly	Ala	Gln	
ctc Leu	ggc Gly 130	gag Glu	ctc Leu	tac Tyr	tac Tyr	gcc Ala 135	atc Ile	tat Tyr	aag Lys	gcg Ala	agc Ser 140	ccc Pro	acg Thr	ctg Leu	gcg Ala	432
ttc Phe 145	ccg Pro	gcc Ala	ggc Gly	gtg Val	tgc Cys 150	ccg Pro	acg Thr	atc Ile	gga Gly	gtg Val 155	ggc Gly	ggc Gly	aac Asn	ttc Phe	gcg Ala 160	480
ggc Gly	ggc Gly	ggc Gly	ttc Phe	ggc Gly 165	atg Met	ctg Leu	ctg Leu	cgc Arg	aag Lys 170	tac Tyr	ggc Gly	atc Ile	gcc Ala	gcg Ala 175	gag Glu	528
aac Asn	gtc Val	atc Ile	gac Asp 180	gtg Val	aag Lys	ctc Leu	gtc Val	gac Asp 185	gcc Ala	aac Asn	ggc Gly	aag Lys	ctg Leu 190	cac His	gac Asp	576
aag Lys	aag Lys	tcc Ser 195	atg Met	ggc Gly	gac Asp	gac Asp	cat His 200	ttc Phe	tgg Trp	gcc Ala	gtc Val	agg Arg 205	ggc Gly	ggc Gly	ggg Gly	624
ggc Gly	gag Glu 210	agc Ser	ttc Phe	ggc Gly	atc Ile	gtg Val 215	gtc Val	gcg Ala	tgg Trp	cag Gln	gtg Val 220	aag Lys	ctc Leu	ctg Leu	ccg Pro	672
gtg Val 225	ccg Pro	ccc Pro	acc Thr	gtg Val	aca Thr 230	ata Ile	ttc Phe	aag Lys	atc Ile	tcc Ser 235	aag Lys	aca Thr	gtg Val	agc Ser	gag Glu 240	720
ggc Gly	gcc Ala	gtg Val	gac Asp	atc Ile 245	atc Ile	aac Asn	aag Lys	tgg Trp	caa Gln 250	gtg Val	gtc Val	gcg Ala	ccg Pro	cag Gln 255	ctt_ Leu	_ 768
ccc Pro	gcc Ala	gac Asp	ctc Leu 260	atg Met	atc Ile	cgc Arg	atc Ile	atc Ile 265	gcg Ala	cag Gln	Gly	ccc Pro	aag Lys 270	gcc Ala	acg Thr	816
ttc Phe	gag Glu	gcc Ala 275	atg Met	tac Tyr	ctc Leu	ggc Gly	acc Thr 280	tgc Cys	aaa Lys	acc Thr	ctg Leu	acg Thr 285	ccg Pro	ttg Leu	atg Met	864
								atg Met								912
atg Met 305	tca Ser	tgg Trp	atc Ile	cag Gln	tcc Ser 310	atc Ile	ccc Pro	ttc Phe	gtc Val	cac His 315	ctc Leu	ggc Gly	cac His	agg Arg	gac Asp 320	960
gcc Ala	ctc Leu	gag Glu	gac Asp	gac Asp 325	ctc Leu	ctc Leu	aac Asn	cgg Arg	aac Asn 330	aac Asn	tcc Ser	ttc Phe	aag Lys	ccc Pro 335	ttc Phe	1008
gcc Ala	gaa Glu	tac Tyr	aag Lys 340	tcc Ser	gac Asp	tac Tyr	gtc Val	tac Tyr 345	cag Gln	ccc Pro	ttc Phe	ccc Pro	aag Lys 350	acc Thr	gtc Val	1056
tgg Trp	gag Glu	cag Gln 355	atc Ile	ctc Leu	aac Asn	acc Thr	tgg Trp 360	ctc Leu	gtc Val	aag Lys	ccc Pro	ggc Gly 365	gcc Ala	ggg Gly	atc Ile	1104

			agc gcc acc Ser Ala Thr 380	
			ctc ttc aac Leu Phe Asn 395	
		Ala Pro G	gcc gcg ccc Ala Ala Pro	
			tac gtg ago Tyr Val Ser	
	á Tyr Ála	Asn Tyr Ai	gac ctc ggc Asp Leu Gly 445	
			ggc aag gtc Gly Lys Val 460	
			gcc att acc Ala Ile Thr 475	
		Tyr Phe Ai	cag agc atc Gln Ser Ile	
atc aaa aa Ile Lys Ly	-			1503
<210> 12				

<211> 500

<212> PRT

<213> Phl p 4

<400> 12

Tyr Phe Pro Pro Pro Ala Ala Lys Glu Asp Phe Leu Gly Cys Leu Val 1 5 10 15

Lys Glu Ile Pro Pro Arg Leu Leu Tyr Ala Lys Ser Ser Pro Ala Tyr 20 25 30

Pro Ser Val Leu Gly Gln Thr Ile Arg Asn Ser Arg Trp Ser Ser Pro 35 40 45

Asp Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Val Ser His 50

Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Ile Arg 65

70

80

Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu 85 90 95

Gln Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val 100 105 110

Trp Val Asp Gly Lys Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln 115 120 125

Leu Gly Glu Leu Tyr Tyr Ala Ile Tyr Lys Ala Ser Pro Thr Leu Ala 130 140

Phe Pro Ala Gly Val Cys Pro Thr Ile Gly Val Gly Gly Asn Phe Ala 145 150 155 160

Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu 165 170 175

Asn Val Ile Asp Val Lys Leu Val Asp Ala Asn Gly Lys Leu His Asp 180 185 190

Lys Lys Ser Met Gly Asp Asp His Phe Trp Ala Val Arg Gly Gly 195 200 205

Gly Glu Ser Phe Gly Ile Val Val Ala Trp Gln Val Lys Leu Leu Pro 210 215 220

Val Pro Pro Thr Val Thr Ile Phe Lys Ile Ser Lys Thr Val Ser Glu 225 230 235 240

Gly Ala Val Asp Ile Ile Asn Lys Trp Gln Val Val Ala Pro Gln Leu 245 250 255

Pro Ala Asp Leu Met Ile Arg Ile Ile Ala Gln Gly Pro Lys Ala Thr 260 265 270

Phe Glu Ala Met Tyr Leu Gly Thr Cys Lys Thr Leu Thr Pro Leu Met 275 280 285

Ser Ser Lys Phe Pro Glu Leu Gly Met Asn Pro Ser His Cys Asn Glu 290 295 300 Met Ser Trp Ile Gln Ser Ile Pro Phe Val His Leu Gly His Arg Asp 305 310 315 320

Ala Leu Glu Asp Asp Leu Leu Asn Arg Asn Asn Ser Phe Lys Pro Phe 325 330 335

Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro Lys Thr Val 340 345 350

Trp Glu Gln Ile Leu Asn Thr Trp Leu Val Lys Pro Gly Ala Gly Ile 355 360 365

Met Ile Phe Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro Glu Ser 370 375 380

Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn Ile Gln Tyr 385 390 395 400

Val Asn Tyr Trp Phe Ala Pro Gly Ala Ala Ala Pro Leu Ser Trp 405 410 415

Ser Lys Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys Asn Pro 420 425 430

Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg Asn Glu
435 440 445

Val Val Asn Asp Val Ser Thr Tyr Ala Ser Gly Lys Val Trp Gly Gln 450 460

Lys Tyr Phe Lys Gly Asn Phe Glu Arg Leu Ala Ile Thr Lys Gly Lys 465 470 475 480

Val Asp Pro Thr Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu 485 490 495

Ile Lys Lys Tyr 500

<210> 13

<211> 12

<212> PRT

<213> Dactylus glomerata

```
<400> 13
```

Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys

<210> 14

<211> 11

<212> PRT

<213> Dactylus glomerata

<400> 14

Val Asp Pro Thr Asp Tyr Phe Gly Asn Glu Gln

<210> 15

<211> 17

<212> PRT

<213> Dactylus glomerata

<400> 15

Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Ser

Tyr

<210> 16

<211> 15

<212> PRT

<213> Dactylus glomerata

<400> 16 ·

Gly Val Leu Phe Asn Ile Gln Tyr Val Asn Tyr Trp Phe Ala Pro

<210> 17

<211> 11

<212> PRT

<213> Cynodon dactylon

<400> 17

Lys Thr Val Lys Pro Leu Tyr Ile Ile Thr Pro 1 5 10

<210> 18

<211> 22

<212> PRT

<213> Cynodon dactylon

<400> 18

Lys Gln Val Glu Arg Asp Phe Leu Thr Ser Leu Thr Lys Asp Ile Pro 1 5 10 15

Gln Leu Tyr Leu Lys Ser 20

<210> 19

<211> 16 ·

<212> PRT

<213> Cynodon dactylon

<400> 19

Thr Val Lys Pro Leu Tyr Ile Ile Thr Pro Ile Thr Ala Ala Met Ile 1 5 10 15

<210> 20

<211> 24

<212> PRT

<213> Cynodon dactylon

<400> 20

Leu Arg Lys Tyr Gly Thr Ala Ala Asp Asn Val Ile Asp Ala Lys Val 1 5 10 15

Val Asp Ala Gln Gly Arg Leu Leu 20

<210> 21

<211> 14

<212> PRT

<213> Cynodon dactylon

<400> 21

Lys Trp Gln Thr Val Ala Pro Ala Leu Pro Asp Pro Asn Met
1 10

<210> 22

<211> 15

<212> PRT

<213> Cynodon dactylon

<400> 22

Val Thr Trp Ile Glu Ser Val Pro Tyr Ile Pro Met Gly Asp Lys 1 5 10 15

<210> 23

<211> 19

<212> PRT

<213> Cynodon dactylon

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> undetermined amino acid

<400> 23

Gly Lys Tyr

<210> 24

<211> 23

<212> PRT

<213> Cynodon dactylon

<400> 24

Thr Ser Asn Ile Lys Ala Phe Gly Lys Tyr Lys Ser Asp Tyr Val Leu 1 10 15

Glu Pro Ile Pro Lys Lys Ser

<210> 25

<211> 13

<212> PRT

<213> Cynodon dactylon

<400> 25

Tyr Arg Asp Leu Asp Leu Gly Val Asn Gln Val Val Gly
1 5 10

<210> 26

<211> 15

<212> PRT

<213> Cynodon dactylon

<400> 26

Ser Ala Thr Pro Pro Thr His Arg Ser Gly Val Leu Phe Asn Ile 1 5 10 15

<210> 27

<211> 36

<212> PRT

<213> Cynodon dactylon

<400> 27

Ala Ala Ala Leu Pro Thr Gln Val Thr Arg Asp Ile Tyr Ala Phe 1 5 10 15 .

Met Thr Pro Tyr Val Ser Lys Asn Pro Arg Gln Ala Tyr Val Asn Tyr 20 25 30

Arg Asp Leu Asp 35

<210> 28

<211> 14

<212> PRT

<213> Lolium perenne

<400> 28

Phe Leu Glu Pro Val Leu Gly Leu Ile Phe Pro Ala Gly Val 1 5 10

<210> 29

<211> 9

<212> PRT

<213> Lolium perenne

<400> 29

Gly Leu Ile Glu Phe Pro Ala Gly Val

<210> 30

<211> 22

<212> DNA

<213> Sec c 4

ggctccc		gcgaaccagt	ag	22
<210>	31			
<211>	23			
<212>	DNA			
<213>	Sec	c 4		
<400> accaaco	31 geet	cccacatcca	gtc	23
<210>	32			
<211>	49			
<212>	DNA			
<213>	Sec	c 4		
<400> gataago		tcgagtgatt	agtacttttt gatcagcggc gggatgctc	49
<210>	33			
<211>	23			
<212>	DNA			
<213>	Sec	C 4		
	33 gatc	ggctacaatg	gcg	23
<210>	34			
<211>	25			
<212>	DNA			
<213>	Sec	c 4		
<400>				• ~
cacacac	ctac	aaatctccat	gcaag	25

- 39 -

<210>	35			
<211>	30			
<212>	DNA			
<213>	Sec	с 4		
<400> catgctt	35 gat	ccttattcta	ctagttgggc 3	30
<210>	36			
<211>	30	•		
<212>	DNA		•	
<213>	Sec	c 4		
<400>	36 cgat	ccttattcta	ctagttgggc 3	3 C
	- ,			
<210>	37			
<211>	30			
<212>	DNA	-		
<213>	Hor	v 4	•	
<400>		gccaccacgc	cgccgccacc	3 C
y y		,		
<210>	38			
<211>	23	•		
<212>	DNA			
<213>	Hor	v 4		
<400> gctctcq		ggctacaatg	gcg 2	23
.0.0		·		
<210>	39			
<211>	25			

<212> DNA

<213>	Hor v 4	
	39 tac aaatctccat gcaag	25
<210>	40	
<211>	30	
<212>	DNA .	
<213>	Hor v 4	
	40 gat ccttattcta ctagttgggc	30
<210>	41	
<211>	23	
<212>	DNA	
<213>	Tri a 4	
<400> - cacgcac	41 taa atctccatgc aag	23
<210>	42	•
<211>	30	
<212>	DNA	
<213>	Tri a 4	
<400> dacgcac	42 gat cettatteta etagttggge	30
<210>	43	
<211>	23	
<212> I	ONA .	
<213> 1	Cri a 4	
<400> 4		
IACCECEA	atc gcctacaatg gcg	23

- 41 -

<210> 44

<211> 25

<212> DNA

<213> Tri a 4

<400> 44
ggtgctcctc ttctgcgcct tgtcc

25