CSCl3230 (ESTR3108) Fundamentals of Artificial Intelligence

Tutorial 4. Clustering Algorithms

Yiyao Ma

Email: yyma23@link.cuhk.edu.hk Office: Room 1024, 10/F, SHB

Dept. of Computer Science & Engineering The Chinese University of Hong Kong

Outline

Part 1. Overview

Part 2. K-Means exercise

Part 3. DBSCAN exercise

Part 1. Overview

CSCI3230 (ESTR3108) Term 1, 2023 3 / 36

Overview

In the tutorial, there are two exercise examples for today

- K-Means exercise
- DBSCAN exercise

Note: Hierarchical clustering is also important for the course. We already show a detailed exercise in our lecture 5 notes.

CSCI3230 (ESTR3108) Term 1, 2023 4 / 36

Part 2. K-Means exercise

CSCI3230 (ESTR3108) Term 1, 2023 5 / 36

K-Means Review

Intuitively, the K-Means algorithm works as follows:

- Choose K (random) data points (as seeds) to be the initial centroids as cluster centers.
- Assign each data point to the closest centroid.
- Re-compute the centroids using the current cluster memberships.
- If a convergence criterion is not met, repeat steps 2 and 3.

CSCI3230 (ESTR3108) Term 1, 2023 6 / 36

K-Means - an example

K-Means is an iterative clustering algorithm.

CSCI3230 (ESTR3108) Term 1, 2023 7 / 36

Initialize: Pick K (number of clusters) random points as cluster centroids. Assume K=2 and random centroids are (0,0) and (3,3)

CSCI3230 (ESTR3108) Term 1, 2023 8 / 36

Iteration: Assign points to the closest cluster centroid (Euclidean Dist).

• Cluster 0: (1,1)

• Cluster 1: (2,2), (3,1), (6,4), (7,5), (8,4)

CSCl3230 (ESTR3108) Term 1, 2023 9 / 36

Iteration: Update the cluster centroid to the mean of its assigned points.

- Cluster 0: $(1,1) \rightarrow$ cluster 0 centroid is (1,1)
- Cluster 1: (2,2), (3,1), (6,4), (7,5), (8,4) \rightarrow cluster 1 centroid is ((2+3+6+7+8)/5, (2+1+4+5+4)/5)=(5.2,3.2)

Iteration: Assign data points to the (new) closest cluster centroids.

• Cluster 0: (1,1), (2,2), (3,1)

• Cluster 1: (6,4), (7,5), (8,4)

$\overline{\mathsf{K}}$ -Means

Iteration: Update the cluster centroid to the mean of its assigned points.

- Cluster 0: (1,1), (2,2), (3,1) \rightarrow cluster 0 centroid is ((1+2+3)/3, (1+2+1)/3) = (2,1.3)
- Cluster 1: (6,4), (7,5), (8,4) \rightarrow cluster 1 centroid is ((6+7+8)/3, (4+5+4)/3) = (7,4.3)

$\overline{\mathsf{K}}$ -Means

Iteration: Assign data points to the (new) closest cluster centroid.

- Cluster 0: (1,1), (2,2), (3,1).
- Cluster 1: (6,4), (7,5), (8,4).
- No change anymore, therefore, the clustering is **finished**.

K-Means convergence (stopping) criteria

- no (or minimum) reassignment of data points to different clusters, or
- no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error (SSE)
 - \bullet C_i is the *i*-th cluster
 - $m{m{\mu}}_i$ is centroid of cluster C_i (the mean vector of all data points in C_i)
 - $\operatorname{dist}(x, \mu_i)$ is the Eucledian distance between data point x and centroid μ_i :

$$\mathsf{SSE} = \sum_{i=1}^K \sum_{x \in C_i} \mathsf{dist}(x, \pmb{\mu}_i)^2$$

K-Means convergence (stopping) criteria

- no (or minimum) reassignment of data points to different clusters, or
- no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error (SSE)
 - ullet C_i is the *i*-th cluster
 - $m{\bullet}$ $m{\mu}_i$ is centroid of cluster C_i (the mean vector of all data points in C_i)
 - $\operatorname{dist}(x, \mu_i)$ is the Eucledian distance between data point x and centroid μ_i :

$$\mathsf{SSE} = \sum_{i=1}^K \sum_{x \in C_i} \mathsf{dist}(x, oldsymbol{\mu}_i)^2$$

K-Means algorithm:

- Select K points as the initial centroids.
- 2 repeat
 - 1) Form K clusters by assigning all points to the closest centroid.
 - 2) Recompute the centroid of each cluster
- until fullfill the stopping condition

CSCI3230 (ESTR3108) Term 1, 2023 14 / 36

Use the k-means algorithm and Euclidean distance.

- a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- Q1. Please show three clusters' centroids after the first iteration. Initial centroids are μ_1 (2,10), μ_2 (5,8), μ_3 (1,2)
- Q2. What are final three clusters?

- a_1 (2,10) a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- For point a_1 (2,10)
 - **1** μ_1 (2,10). distance is $\sqrt{(2-2)^2+(10-10)^2}=0$
 - **2** μ_2 (5,8). distance is $\sqrt{(2-5)^2+(10-8)^2}=\sqrt{13}$
 - **3** μ_3 (1,2). distance is $\sqrt{(2-1)^2+(10-2)^2}=\sqrt{65}$

point	μ_1 (2,10)	μ_2 (5,8)	μ_3 (1,2)	Class index
a_1 (2,10)	0	$\sqrt{13}$	$\sqrt{65}$	1
$a_{2}(2,5)$				
a_{3} (8,4)				
a_4 (5,8)				
a_{5} (7,5)				
a_{6} (6,4)				
$a_7 (1,2)$				
a_{8} (4,9)				

- a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- For point a_2 (2,5)
 - **1** μ_1 (2,10). distance is $\sqrt{(2-2)^2+(5-10)^2}=\sqrt{25}=5$
 - **2** μ_2 (5,8). distance is $\sqrt{(2-5)^2+(5-8)^2}=\sqrt{18}$
 - **3** μ_3 (1,2). distance is $\sqrt{(2-1)^2+(5-2)^2}=\sqrt{10}$

point	μ_1 (2,10)	μ_2 (5,8)	μ_3 (1,2)	Class index
a_1 (2,10)	0	$\sqrt{13}$	$\sqrt{65}$	1
$a_{2}(2,5)$	5	$\sqrt{18}$	$\sqrt{10}$	3
a_{3} (8,4)				
a_4 (5,8)				
a_{5} (7,5)				
a_6 (6,4)				
$a_7 (1,2)$				
a_{8} (4,9)				

- a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- For point a_3 (8,4)
 - **1** μ_1 (2,10). distance is $\sqrt{(8-2)^2+(4-10)^2}=\sqrt{36}=6$
 - **2** μ_2 (5,8). distance is $\sqrt{(8-5)^2+(4-8)^2} = \sqrt{25} = 5$
 - **3** μ_3 (1,2). distance is $\sqrt{(8-1)^2+(4-2)^2}=\sqrt{53}$

point	μ_1 (2,10)	μ_2 (5,8)	μ_3 (1,2)	Class index
a_1 (2,10)	0	$\sqrt{13}$	$\sqrt{65}$	1
a_2 (2,5)	5	$\sqrt{18}$	$\sqrt{10}$	3
a_{3} (8,4)	6	5	$\sqrt{53}$	2
a_4 (5,8)				
a_5 (7,5)				
a_6 (6,4)				
$a_7 (1,2)$				
a_{8} (4,9)				

- a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- Repeat the above steps for each point. We can finally get the following table.

point	μ_1 (2,10)	μ_2 (5,8)	μ_3 (1,2)	Class index
a_1 (2,10)	0	$\sqrt{13}$	$\sqrt{65}$	1
a_2 (2,5)	5	$\sqrt{18}$	$\sqrt{10}$	3
a_{3} (8,4)	6	5	$\sqrt{53}$	2
a_4 (5,8)	$\sqrt{13}$	0	$\sqrt{50}$	2
$a_{5}(7,5)$	$\sqrt{50}$	$\sqrt{13}$	$\sqrt{45}$	2
a_{6} (6,4)	$\sqrt{52}$	$\sqrt{17}$	$\sqrt{29}$	2
a ₇ (1,2)	$\sqrt{65}$	$\sqrt{52}$	0	3
a_{8} (4,9)	$\sqrt{5}$	$\sqrt{2}$	$\sqrt{58}$	2

- a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
 - **1** Cluster 1: a_1 . Hence $\mu_1 = (2,10)$
 - ② Cluster 2: a_3 , a_4 , a_5 , a_6 , a_8 . $\mu_2 = (a_3 + a_4 + a_5 + a_6 + a_8)/5 = (((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6,6)$
 - **3** Cluster 3: a_2 , a_7 . $\mu_3 = (a_2 + a_7)/2 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)$

CSCI3230 (ESTR3108) Term 1, 2023 20 / 36

By the new μ_1 , μ_2 and μ_3 , we will have the following table for next iteration calculation

point	μ_1 (2,10)	μ_2 (6,6)	μ_3 (1.5,3.5)	Class index
a_1 (2,10)				
a_2 (2,5)				
a_{3} (8,4)				
a_4 (5,8)				
a_{5} (7,5)				
a_6 (6,4)				
$a_7 (1,2)$				
a_{8} (4,9)				

- 1^{st} iteration, Cluster $1=\{a_1\}$, Cluster $2=\{a_3, a_4, a_5, a_6, a_8\}$. Cluster $3=\{a_2, a_7\}$ $\mu_1=(2,10)$, $\mu_2=(6,6)$, $\mu_3=(1.5,3.5)$
- 2^{nd} iteration, Cluster $1 = \{ a_1, a_8 \}$, Cluster $2 = \{ a_3, a_4, a_5, a_6 \}$. Cluster $3 = \{ a_2, a_7 \} \mu_1 = (3,9.5), \mu_2 = (6.5,5.25), \mu_3 = (1.5,3.5)$
- 3^{rd} iteration, Cluster $1 = \{ a_1, a_4, a_8 \}$, Cluster $2 = \{ a_3, a_5, a_6 \}$. Cluster $3 = \{ a_2, a_7 \} \mu_1 = (3.66,9), \mu_2 = (7,4.33), \mu_3 = (1.5,3.5)$
- 4^{th} iteration, Cluster $1 = \{ a_1, a_4, a_8 \}$, Cluster $2 = \{ a_3, a_5, a_6 \}$. Cluster $3 = \{ a_2, a_7 \} \mu_1 = (3.66,9), \mu_2 = (7,4.33), \mu_3 = (1.5,3.5)$
- ullet Terminate because point assignment after 3^{rd} iteration is the same as the point assignment after 4^{th} iteration

CSCl3230 (ESTR3108) Term 1, 2023 22 / 36

 \bullet Terminate because point assignment after 3^{rd} iteration is the same as the point assignment after 4^{th} iteration

CSCI3230 (ESTR3108) Term 1, 2023 23 / 36

Part 3. DBSCAN exercise

CSCI3230 (ESTR3108) Term 1, 2023 24 / 36

DBSCAN - Review

DBSCAN: Density-based spatial clustering of applications with noise

- Two parameters:
 - ϵ : maximum radius of the neighborhood ϵ -Neighbor: data points within a radius of ϵ from a data point (including the point itself)
 - MinPts: minimum number of points required in an ϵ -Neighbor
- Density definition:
 - ullet density = number of points within a specified radius ϵ
 - "high density": data point's ϵ -Neighbor contains at least MinPts data

 $\begin{array}{l} \epsilon-\textit{Neightborhood of p} \\ \epsilon-\textit{Neightborhood of q} \\ \textit{Density pf p is" high" (MinPts}=4) \\ \textit{Density pf q is "low" (MinPts}=4) \end{array}$

MinPts = 4

DBSCAN - Review

Given ϵ and MinPts , categorize the data points to three exclusive groups.

- Core point: has more than or equal to MinPts within ϵ . These are points that are at the interior of a cluster.
- Border point: has fewer than MinPts within ϵ , but is in the neighborhood of a core point.
- Noise point (or outlier): any point that is neither a core point nor a border point.

CSCI3230 (ESTR3108) Term 1, 2023 26 / 36

Density-reachable

Directly density-reachable

• An object q is directly density-reachable from object p if p is a core object and q is in p's ϵ -neighborhood.

In the following example:

MinPts = 4

- q is directly density-reachable from p
- ullet p is not directly density-reachable from q
- Note that density-reachability is asymmetric

Density-connected

Indirectly density-reachable (a.k.a. density-connected)

- ullet A point p is directly density-reachable from p_2
- ullet p_2 is directly density-reachable from p_1
- ullet p_1 is directly density-reachable from q
- $p \leftarrow p_2 \leftarrow p_1 \leftarrow q$ form a chain
- p is (indirectly) density-reachable from q
 (a.k.a. p is density-connected from q)
- q is not density-reachable from p (why?)

DBSCAN algorithm

- Label data points into core, border and noise
- Eliminate noise points
- ullet For every core point p that has not been assigned to a cluster
 - \bullet Create a new cluster with the point p and all the points that are density-connected to p
- Assign border points to the cluster of the closest core point.

CSCI3230 (ESTR3108) Term 1, 2023 29 / 36

- If ϵ is $\sqrt{5}$ and minpoint is 3, what are the clusters that DBSCAN would discover with the following 8 points?
- a_1 (2,10) a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)

CSCI3230 (ESTR3108) Term 1, 2023 30 / 36

- a_1 (2,10), a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- neighbors of a_1 (2,10) a_1 , a_8 .
- \bullet neighbors of a_2 (2,5) a_2

CSCI3230 (ESTR3108) Term 1, 2023 31 / 36

- a_1 (2,10), a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- ullet neighbors of a_3 (8,4) a_3 , a_5 , a_6
- ullet neighbors of a_4 (5,8) a_4 , a_8

CSCI3230 (ESTR3108) Term 1, 2023 32 / 36

- a_1 (2,10), a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- neighbors of a_5 (7,5) a_5 , a_3 , a_6
- neighbors of a_6 (6,4) a_6 , a_3 , a_5

CSCI3230 (ESTR3108) Term 1, 2023 33 / 36

- a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)
- ullet neighbors of a_7 (1,2) a_7
- ullet neighbors of a_8 (4,9) a_8 , a_1 , a_4

CSCI3230 (ESTR3108) Term 1, 2023 34 / 36

DBSCAN exercise

• a_1 (2,10) , a_2 (2,5), a_3 (8,4), a_4 (5,8), a_5 (7,5), a_6 (6,4), a_7 (1,2), a_8 (4,9)

ullet Core point: a_3, a_5, a_6, a_8

ullet Border point: a_1 , a_4

• Noise point: a_2, a_7

DBSCAN exercise

ullet Core point: a_3, a_5, a_6, a_8

ullet Border point: a_1 , a_4

• Noise point: a_2, a_7

Hence.

1 Cluster 1. a_1 , a_4 , a_8

 $oldsymbol{2}$ Cluster 2. a_3 , a_5 , a_6

