Week 1: Part-time Data Science

Intro to Machine Learning

Dami Lasisi

Categories of ML

Supervised Learning (classification and regression)

- Predicts an outcome based on input data (features)
- Generalizes
- Requires already established data on the element we want to predict (target)

Unsupervised Learning (clustering and dimensionality reduction)

- Extracts structure from data
- Represents
- Does not require already established data on the element we want to predict

Supervised Learning

- Train a machine learning model to identify the relationships between the features and the target
- Make predictions on the target using the new feature data and the model that has been trained
- Primary goal: Train a model that can be generalized

Supervised Learning: Example

Features:

- → # of bedrooms
- → # of bathrooms
- → # rooms
- garage
- → zip-code
- → sqft
- → swimming pool
- age of neighbors
- → age of house
- → upgrades

Target:

→ Price of House (e.g. \$180,000)

Categories of Supervised Learning

Regression:

Outcome (target) variable is continuous

Classification:

- Outcome (target) variable is binary or categorical
- With the housing example, target variable will be price level (e.g. high, average, low)

Unsupervised Learning: Example

Features:

- ⇒ # of bedrooms
- → # of bathrooms
- → # rooms
- garage
- → zip-code
- → sqft
- → swimming pool
- age of neighbors
- → age of house
- → upgrades

Common Types of Unsupervised Learning

Clustering:

- Groups similar data points together
- In theory, data points in the same group should have similar properties

Dimensionality Reduction:

Extracts the features that captures the most variance in the data

Clustering: Example

Dimensionality Reduction: Example

Algorithms

Help identify trends and relationships, explain the overall variance of the data

Features:

- → # of bedrooms
- → # of bathrooms
- → # rooms
- garage
- → zip-code
- → sqft
- → swimming pool
- age of neighbors
- → age of house
- upgrades

$$y = mx + b$$

 $sqft(x) = 2,500$
Price (y) = \$285,000

$$m = 114, b = 0$$

Final Algorithm: Price(y) = 114x