# Math 123 Class notes Fall 2025

To accompany  $\begin{array}{c} Applied \ Calculus \\ \text{by } Tan \end{array}$ 

Peter Westerbaan

Last updated: August 18, 2025

# **Table Of Contents**

| 1.4: Straight Lines             | <br>1 |
|---------------------------------|-------|
| 2.1: Functions and Their Graphs | <br>6 |

# 1.4: Straight Lines

# Definition. (Slope of a Nonvertical Line)

If  $(x_1, y_1)$  and  $(x_2, y_2)$  are any two distinct points on a nonvertical line L, then the slope m of L is given by

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

**Example.** Compute the slope of the line passing through the points

$$(x_1, y_1) = (1, 1)$$
 and  $(x_2, y_2) = (4, 2)$ 





$$(x_1, y_1) = (4, 1)$$
 and  $(x_2, y_2) = (4, 4)$ 

#### Definition. (Point-Slope Form of an Equation of a Line)

An equation of the line that has slope m and passes through the point  $(x_1, y_1)$  is given by

$$y - y_1 = m(x - x_1)$$

**Example.** Find the equation of the line going through the points

$$(x_1, y_1) = (-2, 1)$$
 and  $(x_2, y_2) = (3, -2)$ 

$$(x_1, y_1) = (3, 4)$$
 and  $(x_2, y_2) = (-1, 4)$ 

$$(x_1, y_1) = (2, 0)$$
 and  $(x_2, y_2) = (2, 1)$ 

# Definition. (Slope-Intercept Form of an Equation of a Line)

An equation of the line that has slope m and intersects the y-axis at the point (0,b) is given by

$$y = mx + b$$

**Example.** Rewrite the equations in the previous example in slope-intercept form.

# Definition. (Parallel and Perpendicular lines)

Let  $L_1$  and  $L_2$  be lines with slopes  $m_1$  and  $m_2$  respectively. If  $L_1$  and  $L_2$  are parallel, then

$$m_1 = m_2$$
.

If  $L_1$  and  $L_2$  are perpendicular, then

$$m_1 = -\frac{1}{m_2}.$$

#### Example.

Find the line parallel to  $y = \frac{3}{2}x + 1$  that passes through the point (-4, 10).

Find the line perpendicular to  $y = \frac{3}{2}x + 1$  that passes through the point (-3, 4).

# Forms of Linear Equations

General form: Ax + By = C

Point-slope form:  $y - y_1 = m(x - x_1)$ 

Slope-intercept form: y = mx + b

Vertical line: x = a

Horizontal line: y = b

# 2.1: Functions and Their Graphs

#### Definition.

A function is a rule that assigns to each element in a set A one and only one element in a set B.

In the context above, the set A is called the **domain**, and the set B is called the **range**.



**Example.** Let  $f(x) = 2x^2 - 2x + 1$ . Evaluate the following

$$f(1) f(-2)$$

$$f(a)$$
  $f(a+h)$ 

**Example.** Find the domain and range of the following functions:

$$f(x) = x$$

$$A = \pi r^2$$

$$y = \sqrt{x - 1}$$

$$y = \frac{1}{x^2 - 4}$$

**Example.** An open box is to be made from a rectangular piece of cardboard 16 inches long and 10 inches wide by cutting away identical squares (x inches by x inches) from each corner and folding up the resulting flaps. Find an expression that gives the volume V of the box as a function of x. What is the domain of the function?





#### Definition.

A **piecewise** function is a function with different definitions for different portions of the domain.

**Example.** Rewrite the following as piecewise functions:

$$|x| = \frac{x}{|x|} =$$

$$|x-1| + |4-x| =$$

# Definition. (Vertical Line Test)

A curve in the xy-plane is the graph of a function y = f(x) (an explicit function) if and only if each vertical line intersects it in at most one point

**Example.** Use the vertical line test on the following graphs to determine which graphs may represent an explicit function:

