

- Sucessões -

1. Considere as sucessões de termo geral:

(a)
$$u_n = 1$$

(b)
$$u_n = (-1)^n$$

(b)
$$u_n = (-1)^n$$
 (c) $u_n = \frac{1 + (-1)^n}{n}$

(d)
$$u_n = \frac{(-1)^n}{n^2}$$

(e)
$$u_n = n^2$$

(f)
$$u_n = [1 + (-1)^n]n$$

(g)
$$u_n = \operatorname{sen}\left(\frac{n\pi}{2}\right)$$

$$(h) u_n = \frac{n}{n+2}$$

(h)
$$u_n = \frac{n}{n+2}$$
 (i) $u_n = \frac{3}{n+5}$

(j)
$$u_n = \begin{cases} n^4 & \text{se } n \le 10\\ 2 & \text{se } n > 10 \end{cases}$$

$$(k) u_n = \frac{n+1}{n}$$

(k)
$$u_n = \frac{n+1}{n}$$
 (l) $u_n = \frac{n^2 - 1}{n^2}$

(m)
$$u_n = \left(-\frac{1}{3}\right)^n$$

(n)
$$u_n = (-1)^n \cos(n\pi)$$

e indique, justificando, as que são monótonas, limitadas e as que são convergentes.

- 2. Mostre que $\lim_{n} \frac{1}{n} = 0$, usando a definição.
- 3. Considere o conjunto $S \subseteq \mathbb{R}$ definido por

$$S = \left\{ x \in \mathbb{R} : |2x^2 - 5| > 3 \land x > 0 \right\}.$$

- Mostre que $S =]0, 1[\cup]2, +\infty[$.
- (b) Dê um exemplo de, ou justifique porque não existe, uma sucessão de termos em Sque seja:
 - não monótona e convergente para 5;
 - estritamente decrescente e convergente para 0; ii.
 - limitada e divergente; iii.
 - não limitada e convergente; iv.
 - não majorada e admita uma subsucessão convergente.

4. Considere o conjunto $S \subseteq \mathbb{R}$ definido por

$$S = \left\{ x \in \mathbb{R} : \, |x - 3| > 2 \, \wedge \, x \geq 0 \right\}.$$

- (a) Mostre que $S = [0, 1] \cup [5, +\infty[$.
- (b) Determine, caso existam, ou justifique porque não existem, o conjunto dos majorantes, o conjunto dos minorantes, o supremo, o ínfimo, o máximo e o mínimo de S.
- Dê um exemplo de uma sucessão, de termos em S, crescente e convergente com (c) limite em $\mathbb{R}\backslash S$.
- 5. Considere o conjunto $S \subseteq \mathbb{R}$ definido por $S = \left\{ x \in \mathbb{R} \setminus \{0\} : x \leq \frac{1}{x} \right\}$.
 - (a) Mostre que $S =]-\infty, -1] \cup]0, 1].$
 - (b) Dê um exemplo de uma sucessão de termos em S que seja
 - estritamente decrescente e convergente com limite em S;
 - estritamente decrescente e convergente com limite em $\mathbb{R}\backslash S$;
 - estritamente decrescente e divergente; iii.
 - não monótona, convergente, com limite em $\mathbb{R}\backslash S$.
- 6. Utilizando o teorema das sucessões enquadradas, calcule os seguintes limites:

(a)
$$\lim_{n} \frac{n!}{n^n}$$

(c)
$$\lim_{n} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right)$$

(b)
$$\lim_{n} \frac{10^n}{n!}$$

(d)
$$\lim_{n} \left(\frac{n}{\sqrt{n^4 + 1}} + \dots + \frac{n}{\sqrt{n^4 + n}} \right)$$

7. Calcule os seguintes limites

(a)
$$\lim_{n} \frac{1+n^3}{n^2+2n-1}$$
 (b) $\lim_{n} \left(\frac{n}{n+1}\right)^n$

(b)
$$\lim_{n} \left(\frac{n}{n+1}\right)^n$$

(c)
$$\lim_{n} \frac{2^n + 3^n}{3^{n+1} + 4}$$

(d)
$$\lim_{n} \sqrt{n+5} - \sqrt{n}$$
 (e) $\lim_{n} \frac{n \cos n}{n^2 + 24}$

(e)
$$\lim_{n} \frac{n \cos n}{n^2 + 24}$$

(f)
$$\lim_{n} \frac{\sqrt{n} - \sin n}{n+2}$$

(g)
$$\lim_{n} \left(1 - \frac{3}{n+2}\right)^n$$

(g)
$$\lim_{n} \left(1 - \frac{3}{n+2}\right)^n$$
 (h) $\lim_{n} \frac{\cos(n\pi) + \cos(2n\pi)}{n}$

(i)
$$\lim_{n} \frac{(n+1)! - n!}{n!(n+2)}$$

(j)
$$\lim_{n} \sqrt{n^2 + 2n} - n$$

(j)
$$\lim_{n} \sqrt{n^2 + 2n} - n$$
 (k) $\lim_{n} \frac{3^n + 4^n + 5^n}{5^n}$

(l)
$$\lim_{n} \left(\frac{n-1}{n+1}\right)^n$$

(m)
$$\lim_{n} \left(\frac{n+1}{n}\right)^{2n+}$$

(m)
$$\lim_{n} \left(\frac{n+1}{n}\right)^{2n+1}$$
 (n) $\lim_{n} \frac{2^{n+1} + (-3)^n + 6^n}{6^n + 1}$ (o) $\lim_{n} \frac{e^n - 1}{5^n}$

2

(o)
$$\lim_{n} \frac{e^n - 1}{5^n}$$

- 8. Considere a sucessão $(u_n)_n$ tal que $u_1 = -2^{-1}$ e $u_{n+1} = -2u_n$, $\forall n \in \mathbb{N}$. Indique, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) $(u_n)_n$ é monótona;
 - (b) $(u_n)_n$ é limitada;
 - (c) $(u_n)_n$ é convergente.
- 9. Considere a sucessão $(u_n)_n$ tal que $u_1 = 5$ e $u_{n+1} = -\frac{1}{2}u_n$, $\forall n \in \mathbb{N}$. Indique, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) $(u_n)_n$ é monótona;
 - (b) $(u_n)_n$ é limitada;
 - (c) $(u_n)_n$ é convergente.
- 10. Indique, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) toda a subsucessão de uma sucessão convergente é também convergente;
 - (b) toda a subsucessão de uma sucessão divergente é também divergente;
 - (c) se $\{u_n : n \in \mathbb{N}\}$ é finito, então $(u_n)_n$ é convergente;
 - (d) se $\{u_n : n \in \mathbb{N}\} = \{0, 5\}$, então $(u_n)_n$ é divergente;
 - (e) se $(u_n)_n$ e $(v_n)_n$ são sucessões divergentes, então a sucessão $(u_n+v_n)_n$ é divergente;
 - (f) se $(u_n)_n$ e $(v_n + u_n)_n$ são sucessões convergentes, então a sucessão $(v_n)_n$ é convergente;
 - (g) sejam $(u_n)_n$ e $(v_n)_n$ sucessões reais. Se $\lim_n u_n v_n = 0$ então $\lim_n u_n = 0$ ou $\lim_n v_n = 0$;
 - (h) se $\lim_{n} |u_n| = 1$, então $\lim_{n} u_n = 1$;
 - (i) se $(u_n)_n$ é uma sucessão limitada, então $(u_n)_n$ é convergente;
 - (j) qualquer sucessão crescente de termos em]-1,1[é convergente;
 - (k) se $(u_n)_n$ é uma sucessão tal que, para todo o $n \in \mathbb{N}, u_{2n} \in]0,1[$ e $u_{2n-1} \in]1,2[$, então $(u_n)_n$ é divergente;
 - (l) se $(u_n)_n$ é uma sucessão decrescente de termos positivos, então $(u_n)_n$ é convergente.

- 11. Que pode dizer de $\lim_{n} u_n$ em cada um dos seguintes casos:
 - (a) $(u_n)_n$ possui uma subsucessão convergente para a e outra convergente para b, com $b \neq a$;
 - (b) $(u_n)_n$ é tal que $(u_{2n})_n$ e $(u_{2n-1})_n$ convergem para a;
 - (c) $(u_n)_n$ é decrescente e $u_n \ge 2$, $\forall n \in \mathbb{N}$;
 - (d) $(u_n)_n$ é uma sucessão crescente em]2,5[;
 - (e) $(u_n)_n$ é crescente e de termos negativos;
 - (f) $(u_n)_n$ é decrescente e de termos positivos.
- 12. Em cada uma das alíneas seguintes, apresente um exemplo, ou justifique porque não existe:
 - (a) duas sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\lim_n u_n = 0$, $\lim_n v_n = +\infty$ e $\lim_n (u_n v_n) = 1$;
 - (b) duas sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\lim_n u_n = 0$, $\lim_n v_n = +\infty$ mas $\lim_n (u_n v_n)$ não exista;
 - (c) uma sucessão convergente e não monótona;
 - (d) uma sucessão não monótona e não limitada;
 - (e) uma sucessão de números racionais convergente para um número irracional;
 - (f) uma sucessão de números irracionais convergente para um número racional;
 - (g) uma sucessão crescente, convergente para zero;
 - (h) uma sucessão com duas subsucessões divergentes;
 - (i) uma sucessão de números irracionais, estritamente decrescente, convergente para π;
 - (j) uma sucessão não majorada que admite uma subsucessão convergente;
 - (k) uma sucessão convergente para zero e com todos os termos em $\mathbb{R}\setminus]-1,1[;$
 - (l) uma sucessão $(u_n)_n$ tal que $\{u_n: n \in \mathbb{N}\} = \{-1, 1, 2\}$ e $(u_n)_n$ é convergente;
 - (m) uma sucessão $(u_n)_n$ tal que $(u_n)_n$ é limitada mas divergente;
 - (n) uma sucessão $(u_n)_n$ tal que $(u_n)_n$ é alternada e convergente;
 - (o) uma sucessão $(u_n)_n$ tal que $(u_n)_n$ é estritamente monótona, $u_n \geq 2, \ \forall n \in \mathbb{N}$, e $\lim_n u_n = 2$.