

# Lecture 2 Topic 1.2 Properties of Pure Substances

Phase change in pure substances

Reading:

Ch 2 Borgnakke & Sonntag Ed. 8 Ch3. Cengel & Boles Ed. 7

# Phase Change: Brief Introduction School of Engineering



# Phase Change: Brief Introduction School of Engineering

- Energy must be <u>added</u> or <u>removed</u> from system to cause phase change
- Latent Heat (or Enthalpy) of



Vaporization (liquid ↔ Gas)



## 1.2.1 Pure Substance

#### **Pure Substance**

- Substance that is homogeneous (i.e. uniform thermodynamic property throughout)
- Can exist in more than one phase (solid, liquid, gas), but chemical composition is the same in all phases

#### Examples of pure substances:

- 1. Water (solid, liquid, and vapor phases)
- 2. Mixture of liquid water and water vapor
- 3. Carbon dioxide, CO<sub>2</sub>
- 4. Nitrogen, N<sub>2</sub>

### Non-pure substances

1. Mixtures:  $H_2O + N_2$ , air  $(N_2 + O_2)$ 

## 1.2.2 Phase Boundary



- Piston-cylinder device:
  - Water at T = 20°C, 101.3 kPa
  - Piston mass (constant)
  - Ignore friction





- Evaporation begins (liquid → water vapor).
  - One substance, two phases (liquid + vapor); phase boundary
  - Volume increase (expansion)
  - T = 100°C during evaporation (at constant pressure)
  - Eventually, all liquid evaporates to vapor
    - Volume increase, temp & press constant

- Heat is added to vapor
  - Both volume and temperature increase



## 1.2.2 Phase Boundary

THE UNIVERSITY of EDINBURGH
School of Engineering

- Liquid-vapor saturation line:
  - Temp. at which vaporization occurs (100°C in example).
  - Vaporization line: boarder between liquid-vapor (boiling point)
  - Sat. Temp. is dependent on pressure





- Solid-liquid saturation line (consider cooling)
  - Remove heat; liquid temp. decreases
  - At 0°C ice forms (solid + liquid mixture)
  - Fusion line: boarder between solid-liquid
  - Beyond fusion line; only solid

Critical point
P,T separating
solid-liquid

V
Triple
point
P,T separating
Liquid-vapor
P,T separating solid-vapor

- Decrease pressure; curves approach
  - Triple point: all 3 phases can co-exist.
  - Sublimation line: boarder between solid-vapor
- Vaporization curve stops at critical point (no boiling above this point)

## 1.2.2 Phase Boundary



#### **Sublimation, triple-point, & Critical Point**



Sublimation

VAPOR

SOLID

Triple-point

VAPOR

LIQUID

DENSE FLUID

Critical-point

V & L & S in equilibrium. (water: 0.01°C, 0.6117 kPa).

L & V in equilibrium (water: 373.95°C, 22.064 MPa).

#### **Triple Point**: Cyclohexane



#### **Critical Point:**



Injection of fuel – high efficiency diesel engine





Consider heating experiment again. Describe process on a temperature-

300 H

100

20

specific volume diagram (*T-v*)

- System: water (20C, 101.3kPa)
- State 1: Liquid water (compressed liquid)
- Process 1-2:
  - Constant pressure heat addition  $(Q_{IN})$
  - T increases, v increases
  - Phase: liquid
- State 2: Saturated liquid
  - T = 100°C; 100% liquid
  - Onset of boiling
  - Energy addition will create vapor at constant T
  - Energy reduction will lower liquid temperature





Consider heating experiment again, but now describe process on a

300

100

20

temperature-specific volume diagram (*T-v*)

- System: water
- State 2: Saturated liquid
- Process 2-3:
  - Constant pressure heat addition  $(Q_{IN})$
  - T constant, v increases
  - Phase: saturated mixture → liq.+vap.
- State 3: Saturated mixture
  - X% vapor, (1-X)% liquid
  - Energy addition: vapor ↑, liquid ↓
  - Energy reduction: liquid ↑, vapor ↓
  - T = constant during process





· Consider heating experiment again, but now describe process on a

temperature-specific volume diagram (*T-v*)

- System: water
- State 3: liq. + vap. mixture
- Process 3-4:
  - Constant pressure heat addition  $(Q_{IN})$
  - T constant, v increases
  - Phase: sat. mixture → sat. vapor
- State 4: Saturated vapor
  - 100% vapor
  - Energy addition: vapor temp. increase
  - Energy reduction: liquid ↑, vapor ↓; (T = 100 constant)



300



Consider heating experiment again, but now describe process on a

300

100

20

temperature-specific volume diagram (*T-v*)

- System: water
- State 4: Saturated vapor
- Process 4-5:
  - Constant pressure heat addition ( $Q_{IN}$ )
  - T increases, v increases
  - Phase: sat. vapor → s. heated vapor
- State 5: Superheated vapor
  - Above saturated temperature at 101kPa
  - Energy addition: vapor temp. increase
  - Energy reduction: vapor temp. decrease



## 1.2.4 P-v-T Surface





P-v-T Surface for a Substance that contracts upon freezing



P-v-T Surface for a Substance that <u>expands</u> upon freezing

- The P-v-T surfaces: relationship of thermodynamic states and phases for 2 independent variables.
- More convenient to work with 2-D diagrams, such as P-v and T-v diagrams.

## 1.2.4.1 T-v & P-v Diagrams





- Identify state & phase
- Phases of interest
  - (1) Compressed liquid, (2) Saturated Liq.-Vap. Mixture, (3) Superheated vapor
- Liquid-vapor "Dome"
  - Line separating these phases
- Lines of constant P, T
  - P lines: upward slope in T-v. Lines shifts upwards as P increases
  - T lines: downward slope in P-v. Lines shifts upwards as T increases
  - P, T lines are straight in vapor dome

## 1.2.4.1 T-v & P-v Diagrams







- Compressed Liquid
  - Any point LEFT of Saturated Liquid Line
- Saturated Liquid
  - Any point ON the Saturated Liquid Line
- Saturated Liquid-Vapor Mixture
  - Any point WITHIN Liq.-Vap. "Dome"
- Saturated Vapor
  - Any point ON the Saturated Vapor Line
- Superheated Vapor
  - Any point RIGHT of Saturated Vapor Line

## 1.2.4.1 Exercises: *P-v-T* Diagrams



### Exercise 1-1: P-v Diagram

Plot the following processes on a *P-v* diagram for water

#### Process 1-2-3-4-1:

- 1→2: Specific volume (v) increase from saturated liquid to saturated vapor under constant press.
- 2→3: Press. decrease to saturated liquidvapor mixture under constant *v*.
- 3→4: *v* decrease to saturated liquid under constant press.
- 4→1: P & v increase as saturated liquid back to pt. 1.

#### Process A-B-C-D:

- A→B: v increase from compressed liquid to saturated vapor under constant temp.
- B→C: Press. decrease to saturated liq.vap. Mixture under constant v.
- C→D: Press. decrease to superheated vapor under constant temp.



#### Extra:

- Starting pts can be anywhere in specified area
- 1→2 & 3→4: "constant temperature"
- pt 3: anywhere below pt 2 in 'Dome'
- A→B: "pressure decreases"
- pt C: anywhere below pt B in 'Dome'
- C→D: "volume increases"

## 1.2.4.1 Exercises: P-v-T Diagrams



#### Exercise 1-2: T-v Diagram

Plot the following processes on a *T-v* diagram for water

#### Process 1-2-3-4:

- 1→2: Temp. decrease from superheated vapor to saturated liquid-vapor mixture under constant press.
- 2→3: Temp. decrease to saturated liquidvapor mixture under constant *v*.
- 3→4: Temperature decrease to compressed liquid under constant press.

#### Process A-B-C-D:

- A→B: Temp. increase from compressed liquid to superheated vapor under constant press.
- B→C: Temp. decrease to saturated vapor under constant specific volume (*v*).
- C→D: Energy decrease to saturated liquid under constant press.



- · Starting points: anywhere in designated area
- Read all processes to help you trace the "entire process"
- Some starting locations are more optimal than others

## 1.2.4.1 Exercises: P-v-T Diagrams



#### Exercise 1-3: P-T Diagram

Plot the following processes on a *P-T* diagram for water

#### Process 1-2-3

- 1→2: Temp. decrease from saturated vapor to a solid under constant press.
- 2→3: Press. decrease from solid to a vapor under constant temp.

## <u>Process A-B-C-D (substance that contracts on freezing)</u>

- A→B: Press. increase from triple point to a solid under constant temp.
- B→C: Temp. increase to saturated liquid under constant press.
- C→D: Press. Decrease to saturated vapor under constant temp.



- You can locate starting points anywhere in designated area
- Be sure to read all processes to help you trace the "entire process"
- Some starting locations are more optimal than others