Verification Techniques for Pose Graph Optimization

Philippe Weingertner

AA273, Spring 2024

Contact: pweinger@stanford.edu

Weingertner Verification Techniques for PGO AA273 2024 1/27

Table of Contents

- Problem description
- 2 Algorithms
- Results
- 4 Conclusion

Weingertner Verification Techniques for FGO AA273 2024

Table of Contents

- Problem description
- 2 Algorithms
- Results
- 4 Conclusion

Weingertner Varification Tochniques for PGO AA273 2024

Problem Description

- Focus: Pose Graph Optimization (PGO)
- Standard Approaches:
 - Utilize nonlinear solvers
 - Commonly employ Gauss-Newton or Levenberg-Marquardt methods
 - Achieve locally optimal solutions
 - Do not guarantee the quality of the solution
- Objective: crucial for safety-critical applications
 - Establish a quality certificate for solutions
 - Determine the need for further solution refinement
- Seminal Work: Rosen, Carlone et al. in SE-Sync
- Main Contribution: Alternative approach using Riemannian optimization over a product of SO(3) manifolds

Weingertner Varileanion Trainipura (or 250) AA273 2024 4/27

Pose Graph Optimization Problem

$$\begin{split} f_{\mathsf{ML}}^* &= \min_{t_i, R_i} \sum_{(i,j) \in \mathcal{E}} \omega_t^2 \, \| t_j - t_i - R_i \tilde{t}_{ij} \|_2^2 + \frac{\omega_R^2}{2} \, \Big\| R_j - R_i \tilde{R}_{ij} \Big\|_F^2 \\ f_{\mathsf{ML}}^* &= \min_{t_i, r_i} \sum_{(i,j) \in \mathcal{E}} \omega_t^2 \, \| t_j - t_i - T_{ij} r_i \|_2^2 + \frac{\omega_R^2}{2} \, \| r_j - Q_{ij} r_i \|_2^2 \\ \begin{cases} f_{\mathsf{ML}}^* &= \min_{x} \quad x^T \, Qx \\ \text{with } x \in \mathbb{R}^{12n}, \, Q \in \mathbb{R}^{12n \times 12n} \\ \text{and } Q = \sum_{(i,j) \in \mathcal{E}} \omega_t^2 \, B_{ij}^T \, B_{ij} + \frac{\omega_R^2}{2} \, C_{ij}^T \, C_{ij} \end{cases} \end{split}$$

Weingertner AA273 2024

Problem Size reduction: down to $9n \times 9n$

$$f(x) = f(t, r) = \begin{bmatrix} t & r \end{bmatrix}^T \begin{bmatrix} Q_{tt} & Q_{tr} \\ Q_{rt} & Q_{rr} \end{bmatrix} \begin{bmatrix} t \\ r \end{bmatrix}$$

$$\frac{\partial f}{\partial t}(t, r) = 2Q_{tt}t + 2A_{rt}^T r = 0$$

$$t^* = -Q_{tt}^{-1}Q_{tr}r$$

$$\begin{cases} f_{\mathsf{ML}}^* = \min_{r} & r^T Q_r r \\ \text{with } r \in \mathbb{R}^{9n}, Q_r \in \mathbb{R}^{9n \times 9n} \\ \text{and } Q_r = Q_{rr} - Q_{rt}Q_{tt}^{-1}Q_{tr} \end{cases}$$

 Veingertner
 Veinlesson Trainings (or 1930)
 AA273 2024
 6 / 27

Problem Size reduction: down to $3n \times 3n$

$$Q_r = \tilde{Q} \otimes I_3$$
 $r^T Q_r r = \operatorname{Trace}\left(\tilde{Q}R^TR\right)$ $\begin{cases} f_{\mathsf{ML}}^* = \min_{R} & \operatorname{Trace}\left(\tilde{Q}R^TR\right) \\ \operatorname{with} & R \in \mathsf{SO}\left(3\right)^n, \, \tilde{Q} \in \mathsf{Sym}\left(3n\right) \end{cases}$

Weingertner

PGO Optimzation and its SDP relaxation

$$\begin{cases} f_{\mathsf{ML}}^* = \min_{R} & \mathsf{Trace}\left(\tilde{Q}R^TR\right) \\ \mathsf{with} & R \in \mathsf{SO}\left(3\right)^n, \, \tilde{Q} \in \mathsf{Sym}\left(3n\right) \end{cases}$$

Drop the constraints rank (X) = 3, $det(R_i) = 1$ to get a convex problem:

$$\begin{cases} f_{\mathsf{SDP}}^* = \min_{X \in \mathsf{Sym}(3n)} & \mathsf{Trace}\left(\tilde{Q}X\right) \\ \mathsf{s.t.} \ X = \begin{bmatrix} I_3 & * & * \\ * & \ddots & * \\ * & * & I_3 \end{bmatrix} \succeq 0 \end{cases}$$

Weingertner Verification Techniques for PGO AA273 2024

Table of Contents

- 1 Problem description
- 2 Algorithms
- Results
- 4 Conclusion

Weingertner Varification Tochniques for PGO AA273 2024

Method 1: Solve f_{SDP} and f_{ML} with a SDP solver

$$\begin{cases} f_{\mathsf{SDP}}^* = \min_{X \in \mathsf{Sym}(3n)} & \mathsf{Trace}\left(\tilde{Q}X\right) \\ \mathsf{s.t.} \ X = \begin{bmatrix} I_3 & * & * \\ * & \ddots & * \\ * & * & I_3 \end{bmatrix} \succeq 0 \end{cases}$$

- Solve f_{SDP} with cvxpy and e.g. the SCS solver
- Solve f_{MI} :

 - Retrieve R from $X = R^T R$ with $R \in SO(3)^n$ $X = U \Sigma V^T, R = \begin{bmatrix} \sqrt{\sigma_1} V_1^T & \sqrt{\sigma_2} V_2^T & \sqrt{\sigma_3} V_3^T \end{bmatrix}$
 - $R = U_r \Sigma_r V_r^T$, $R_{\text{nearest rotation}} = U_r V_r^T$
 - Adjust if det $(U_r V_r^T) < 0$

Weingertner AA273 2024 10 / 27

Method 2: Solve f_{ML} with Riemannian optimization

$$\begin{cases} f_{\mathsf{ML}}^* = \min_{R} & \mathsf{Trace}\left(\tilde{Q}R^TR\right) \\ \mathsf{subject} \text{ to } R \in \mathsf{SO}\left(3\right)^n \end{cases}$$

- SO(3) is a Riemannian manifold
- Solved as an unconstrained optimization problem with manopt

Weingertner

AA273 2024

11/27

What is a manifold?

- A manifold is a topological space that locally resembles Euclidean space near each point
- More formally, an *n*-dimensional manifold is a space where every point has a neighborhood that is homeomorphic to the Euclidean space \mathbb{R}^n
- Examples of manifolds include:
 - S^n : The *n*-dimensional sphere
 - SO(n): the space of all $n \times n$ orthogonal matrices with determinant 1
 - SE(n): the space of all rigid body transformations in n dimensions
 - **St**(n, p): Stiefel manifold, the space of all orthonormal p-frames (sets of p orthonormal vectors) in \mathbb{R}^n
 - **Sym**(n): Space of all $n \times n$ symmetric matrices
 - **SPD**(n): Space of all $n \times n$ symmetric positive definite matrices
- In robot state estimation, the variables of interest live on-manifold (e.g. poses ∈ SE(3))

Weingertner Varileanien Franciscus (or 200 AA273 2024 12 / 27

Example: Gradient Descent on a Sphere Manifold

• Updates are constrained to the surface of a sphere.

$$\mathbf{x}_{k+1} = \mathsf{Retract}(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k))$$

- \mathbf{x}_k is the current point on the sphere.
- \bullet α is the learning rate.
- $\nabla f(\mathbf{x}_k)$ is the gradient of the function at \mathbf{x}_k .
- Retract is a retraction operator that maps back to the sphere.

Figure 1: Two steps of gradient descent on a sphere manifold.

Weingertner Verification (Reliniques for PGO) AA273 2024 13 / 27

Naive Approach vs Riemaniann Optimization: Test 1

Figure 2: Optimize a Quadratic function constrained on a Sphere

Weingertner Varification Techniques for PGO AA273 2024 14 / 27

Naive Approach vs Riemaniann Optimization: Test 2

Figure 3: Optimize a Quadratic function constrained on a Sphere

• Much more information here: manopt learning

 Veingertner
 Veinigertner
 Veinigertner
 AA273 2024
 15 / 27

Method 3: Solve f_{SDP} with a SDP staircase algorithm

$$\begin{cases} f_{\mathsf{SDP}}^* = \min_{X \in \mathsf{Sym}(3n)} \mathsf{Trace}\left(\tilde{Q}X\right) \\ \mathsf{s.t.} \ X \succeq \mathsf{0}, \mathsf{blocks} \ \mathsf{diagonal} X_{ii} = I_3 \end{cases}$$

Why not use a low-rank factorization: $X = YY^T$?

$$\begin{aligned} & \underset{Y}{\text{min}} & & \text{Trace}\left(QYY^T\right) \\ & s.t. & & X = YY^T \\ & & Y \in \mathbb{R}^{n \times p} \text{ leading to } \text{rank}\left(X\right) \leq p \end{aligned}$$

We are back to a non linear, non convex problem !!!

Weingertner Varilession Techniques for PGO AA273 2024 16 / 27

Method 3: Solve f_{SDP} with a Low-Rank Staircase Algorithm

Linear, Convex
$$\min_{X} f(X)$$

$$X \succeq 0, X_{ii} = I_{d}$$

Non-linear, Non-convex
$$\min_{Y} f\left(YY^{T}\right)$$

$$Y \in \text{Stiefel} (d, p)^{n}$$

Theorem (Boumal et al. [37836], updated in 2018)

If Y is a local minimizer of the non-linear program and if Y is rank deficient or if Y is square, then $X = YY^T$ is a global minimizer of the initial convex program.

Weingertner Verification Techniques for PCO AA273 2024 17 / 27

Method 3: Solving f_{SDP} with a low-rank staircase algorithm

- This leads to the Riemannian Staircase Algorithm
- ullet It is guaranteed to return a globally optimal X
- **1** Set p = d + 1.
- ② Compute Y_p , a Riemannian local optimizer.
- **1** If Y_p is rank deficient, stop.
- Otherwise, increase p and go to step 2.

18 / 27

Weingertner Verification Techniques for FGO AA273 2024

Table of Contents

- Problem description
- 2 Algorithms
- Results
- 4 Conclusion

19 / 27

Weingertner Verification Techniques for PGO AA273 2024

Grid3D and Parking-Garage Experiments

Figure 4: Grid3D N=4 and parking-garage tests

 Weingertner
 Vollienten Techniques in PGO
 AA273 2024
 20 / 27

SE-sync Tests Results

Table 1: SE-Sync tests

Dataset	Sol.	\hat{f}_{SDP}	\hat{f}_{ML}	$\left \frac{\hat{f}_{SDP} - \hat{f}_{ML}}{\hat{f}_{SDP}} \right $	Time
tinyGrid3D $n = 9$ $m = 11$	sdp scs	18.52	18.52	0	0.05 s
	riemann so(3)	-	18.52	0	0.08 s
	sdp staircase	18.52	18.52	0	0.03 s
	se-sync	18.52	18.52	0	0.13 s
smallGrid3D n = 125 m = 297	sdp scs	1025.4	1025.4	0	167 s
	riemann so(3)	-	1025.4	0	3.4 s
	sdp staircase	1025.4	1025.4	0	0.3 s
	se-sync	1025.4	1025.4	0	0.35 s
parking n = 1661 m = 6275	sdp scs	-	-	-	-
	riemann so(3)	-	369	282%	600 s time out
	sdp staircase	1.37	1.37	0	188 s
	se-sync	1.26	1.26	0	206 s

Weingertner Verification Techniques for PGO AA273 2024 21/27

Grid3D Tests Results

Table 2: Grid3D tests

Dataset	Sol.	\hat{f}_{SDP}	\hat{f}_{ML}	$\frac{\hat{f}_{SDP} - \hat{f}_{ML}}{\hat{f}_{SDP}}$	Time
Grid3D N=2 n = 27 m = 30	sdp scs	1549	1549	0	4.6 s
	riemann so(3)	-	2158	39.3%	0.78 s
	sdp staircase	1549	1549	0	0.26 s
	se-sync	1549	1549	0	0.29 s
Grid3D N=4 n = 125 m = 283	sdp scs	65355	78523	20.1%	428.0 s
	riemann so(3)	-	74597	14.1%	7.15 s
	sdp staircase	65352	78534	20.1%	2.2 s
	se-sync	65352	78534	20.1%	2.1 s
Grid3D N=5 n = 216 m = 482	sdp scs	109424	136109	26.2%	600 s timeout
	riemann so(3)	-	131774	22.1%	22.1 s
	sdp staircase	107918	137259	27.1%	3.2 s
	se-sync	107947	137259	27.1%	3.1 s
Grid3D N=6 n = 343 m = 783	sdp scs	-	-	-	-
	riemann so(3)	-	222550	22.1%	22.1 s
	sdp staircase	190437	254583	16.9%	4.5 s
	se-sync	190400	254583	33.7%	4.4 s
Grid3D N=8 n = 729 m = 1686	sdp scs	-	-	-	-
	riemann so(3)	-	469889	16.2%	93.2 s
	sdp staircase	404610	541615	33.9%	24.4 s
	se-sync	404494	541590	33.9%	14.2 s
Grid3D N=9 n = 1000 m = 2280	sdp scs	-	-	-	-
	riemann so(3)	-	618526	18.4%	115.3 s
	sdp staircase	522279	707652	35.4%	26.7 s
	se-sync	522548	707672	35.4%	14.2 s

Weingertner Varification Techniques for PGO AA273 2024

Algorithms Runtime

Figure 5: CPU Timing with Increasing n

Weingertner Verification Techniques for PGO AA273 2024 23 / 27

Area of Improvements: Pre-Conditionner

Figure 6: Matrix Sparsity for Grid3D N=3

Weingertner Verification Econogues for PGO AA273 2024 24 / 27

Table of Contents

- Problem description
- 2 Algorithms
- Results
- 4 Conclusion

Weingertner Varification Techniques for PGO AA273 2024

Conclusion

- Developed custom algorithm implementations and test sets for in-depth evaluation in SORI
- Benchmarked various methods for Pose Graph Optimization (PGO)
- Method 1: Does not scale well
- **Method 3:** Highly efficient, provides quality certificates
- Method 2: Riemannian optimization over SO(3) manifolds
 - Yielded promising results
 - Unexplored in the literature we reviewed
- Future Work: Investigate preconditioning techniques for faster convergence of Method 2

Weingertner AA273 2024 26 / 27

References I

- Nicolas Boumal, A riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints, arXiv preprint arXiv:1506.00575 (2015).
- Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira, *The non-convex burer-monteiro approach works on smooth semidefinite programs*, Advances in Neural Information Processing Systems **29** (2016).
- David M Rosen, Luca Carlone, Afonso S Bandeira, and John J Leonard, Se-sync: A certifiably correct algorithm for synchronization over the special euclidean group, The International Journal of Robotics Research **38** (2019), no. 2-3, 95–125.
- Jie Wang and Liangbing Hu, Solving low-rank semidefinite programs via manifold optimization, arXiv preprint arXiv:2303.01722 (2023).

Weingertner Varification Techniques for PGO AA273 2024 27 / 27