Date	Name	Domain	Focus	Keyword	Task Types	Metrics	Models	Citation
2020-09-07	MMLU (Mas-	Multidomain	Academic	[multitask,	[Multiple choice]	[Accuracy]	[GPT-40,	$[1] \Rightarrow$
	sive Multitask Language Under-		knowledge	multiple-choice, zero-shot, few-			Gemini 1.5 Pro, o1,	
	Language Under- standing)		and reason- ing across 57	zero-shot, few- shot, knowledge			Pro, o1, DeepSeek-	
	standing)		subjects	probing			R1	
2023-11-20	GPQA Diamond	Science	Graduate-	[Google-proof,	[Multiple choice,	[Accuracy]	[o1, DeepSeek-	$[2] \Rightarrow$
2023-11-20	GI QA Diamond	Science	level scientific	graduate-level,	Multi-step QA	[Accuracy]	R1]	
			reasoning	science QA, chem-	Wuiti-step QA		101	
			reasoning	istry, physics]				
2018-03-14	ARC-Challenge	Science	Grade-school	[grade-school, sci-	[Multiple choice]	[Accuracy]	[GPT-4,	[3] ⇒
2010 00 11	(Advanced Rea-	Science	science with	ence QA, challenge	[Manage choice]	[riccaracy]	Claude]	ا ا
	soning Challenge)		reasoning	set, reasoning			Claddej	
			emphasis					
2025-01-24	Humanity's Last	Multidomain	Broad cross-	[cross-domain,	[Multiple choice]	[Accuracy]		[4] <i>⇒</i>
	Exam		domain aca-	academic exam,				. ,
			demic reason-	multiple-choice,				
			ing	multidisciplinary]				
2024-11-07	FrontierMath	Mathematics	Challenging	[symbolic rea-	[Problem solving]	[Accuracy]	[]	$[5] \Rightarrow$
			advanced	soning, number				
			mathematical	theory, algebraic				
			reasoning	geometry, category				
				theory]				
2024-07-18	SciCode	Scientific Pro-	Scientific code	[code synthesis,	[Coding]	[Solve rate ([Claude3.5-	$[6] \Rightarrow$
		gramming	generation	scientific comput-		percent)]	Sonnet]	
			and problem	ing, programming				
2027 02 12	ATMED (A :	3.6 .1	solving	benchmark]	[D 11 1:]	[A 1	l n	[2]
2025-03-13	AIME (American Invitational	Mathematics	Pre-college advanced prob-	[algebra, combinatorics, number the-	[Problem solving]	[Accuracy]		[7] ⇒
	can Invitational Mathematics		lem solving	ory, geometry				
	Examination)		lem solving	ory, geometry]				
2025-02-15	MATH-500	Mathematics	Math reason-	[calculus, algebra,	[Problem solving]	[Accuracy]		[8] ⇒
2020-02-10	1,111111-000	1114011011140105	ing generaliza-	number theory, ge-	[1 TOSICIII SOTVING]	[Ticcuracy]	П	
			tion	ometry]				
2024-04-02	CURIE (Scientific	Multidomain	Long-context	[long-context, in-	[Information extrac-	[Accuracy]		[9] <i>⇒</i>
	Long-Context Un-	Science	scientific rea-	formation extrac-	tion, Reasoning,	[[
	derstanding, Rea-		soning	tion, multimodal	Concept tracking,			
	soning and Infor-				Aggregation, Algebraic			
	mation Extraction)				manipulation, Multi-			
	,				modal comprehension]			
2023-01-26	FEABench (Finite	Computational	FEA simula-	[finite element,	[Simulation, Perfor-	[Solve time, Er-	[FEniCS,	[10] ⇒
	Element Analysis	Engineering	tion accuracy	simulation, PDE]	mance evaluation]	ror norm]	deal.II]	
	Benchmark)		and perfor-					
			mance					
							Continued on	novt page

Continued on next page

Date	Name	Domain	Focus	Keyword	Task Types	Metrics	Models	Citation
2024-07-12	SPIQA (Scientific Paper Image Ques- tion Answering)	Computer Science	Multimodal QA on scien- tific figures	[multimodal QA, figure under- standing, table comprehension, chain-of-thought]	[Question answering, Multimodal QA, Chain-of-Thought evaluation]	[Accuracy, F1 score]	[Chain-of- Thought models, Mul- timodal QA systems]	[11] ⇒
2020-09-28	MedQA	Medical Question Answering	Medical board exam QA	[USMLE, diagnostic QA, medical knowledge, multilingual]	[Multiple choice]	[Accuracy]	[Neural reader, Retrieval- based QA systems]	[12] <i>⇒</i>
2025-05-13	BaisBench (Biological AI Scientist Benchmark)	Computational Biology	Omics-driven AI research tasks	[single-cell annotation, biological QA, autonomous discovery]	[Cell type annotation, Multiple choice]	[Annotation accuracy, QA accuracy]	[LLM-based AI scientist agents]	[13] ⇒
2023-01-26	MOLGEN	Computational Chemistry	Molecular generation and optimization	[SELFIES, GAN, property optimization]	[Distribution learning, Goal-oriented genera- tion]	[Validity percent, Novelty percent, QED, Docking score]	[MolGen]	[14] ⇒
2020-05-02	Open Graph Benchmark (OGB) - Biology	Graph ML	Biological graph property prediction	[node prediction, link prediction, graph classifica- tion]	[Node property pre- diction, Link property prediction, Graph property prediction]	[Accuracy, ROC-AUC]	[GCN, Graph- SAGE, GAT]	$[15] \Rightarrow$
2011-10-01	Materials Project	Materials Science	DFT-based property pre- diction	[DFT, materials genome, high-throughput]	[Property prediction]	[MAE, R ²]	[Automatminer, Crystal Graph Neural Net- works]	$[16] \Rightarrow$
2020-10-20	OCP (Open Catalyst Project)	Chemistry; Materials Science	Catalyst ad- sorption energy prediction	[DFT relaxations, adsorption energy, graph neural net- works]	[Energy prediction, Force prediction]	[MAE (energy), MAE (force)]	[CGCNN, SchNet, DimeNet++, GemNet-OC]	$ \begin{array}{c} [17]-\\ [20] \Rightarrow \end{array} $
2023-06-20	JARVIS- Leaderboard	Materials Science; Benchmarking	Comparative evaluation of materials design methods	[leaderboards, materials methods, simulation]	[Method benchmark- ing, Leaderboard ranking]	[MAE, RMSE, Accuracy]		[21] ⇒
2022-02-22	Quantum Computing Benchmarks (QML)	Quantum Computing	Quantum algorithm performance evaluation	[quantum circuits, state preparation, error correction]	[Circuit benchmarking, State classification]	[Fidelity, Success proba- bility]	[IBM Q, IonQ, AQT@LBNL]	[22] <i>⇒</i>
2024-10-01	CFDBench (Fluid Dynamics)	Fluid Dynamics; Scientific ML	Neural opera- tor surrogate modeling	[neural operators, CFD, FNO, Deep- ONet]	[Surrogate modeling]	[L2 error, MAE]	[FNO, Deep- ONet, U-Net]	[23] ⇒
None	SatImgNet	Remote Sensing	Satellite imagery classification	[land-use, zero-shot, multi-task]	[Image classification]	[Accuracy]		[24] ⇒
2023-07-19	ClimateLearn	Climate Science; Forecasting	ML for weather and climate modeling	[medium-range forecasting, ERA5, data-driven]	[Forecasting]	[RMSE, Anomaly correlation]	[CNN base- lines, ResNet variants]	$[25] \Rightarrow$

Continued on next page

Date	Name	Domain	Focus	Keyword	Task Types	Metrics	Models	Citation
2022-06-09	BIG-Bench (Be-	NLP; AI Eval-	Diverse reason-	[few-shot, multi-	[Few-shot evaluation,	[Accuracy,	[GPT-3, Dense	$[26] \Rightarrow$
	yond the Imitation	uation	ing and gener-	task, bias analysis]	Multi-task evaluation]	Task-specific	Transform-	
	Game Benchmark)		alization tasks			metrics]	ers, Sparse	
	·						Transformers]	
2019-11-20	CommonSenseQA	NLP; Com-	Commonsense	[ConceptNet,	[Multiple choice]	[Accuracy]	[BERT-large,	$[27] \Rightarrow$
		monsense	question an-	multiple-choice,			Roberta,	
			swering	adversarial]			GPT-3]	
2019-07-24	Winogrande	NLP; Com-	Winograd	[adversarial, pro-	[Pronoun resolution]	[Accuracy,	[RoBERTa,	$[28] \Rightarrow$
		monsense	Schema-style	noun resolution]		AUC]	BERT, GPT-2]	
			pronoun reso-					
			lution					

References

- [1] D. Hendrycks, C. Burns, S. Kadavath, et al., "Measuring massive multitask language understanding," arXiv preprint arXiv:2009.03300, 2021. [Online]. Available: https://arxiv.org/abs/2009.03300.
- [2] D. Rein, B. L. Hou, A. C. Stickland, et al., Gpqa: A graduate-level google-proof q and a benchmark, 2023. [Online]. Available: https://arxiv.org/abs/2311.12022.
- [3] P. Clark, I. Cowhey, O. Etzioni, et al., "Think you have solved question answering? try arc, the ai2 reasoning challenge," in EMNLP 2018, 2018, pp. 237-248. [Online]. Available: https://allenai.org/data/arc.
- [4] L. Phan, A. Gatti, Z. Han, et al., Humanity's last exam, 2025. [Online]. Available: https://arxiv.org/abs/2501.14249.
- [5] E. Glazer, E. Erdil, T. Besiroglu, et al., Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai, 2024. [Online]. Available: https://arxiv.org/abs/2411.04872.
- [6] M. Tian, L. Gao, S. Zhang, et al., Scicode: A research coding benchmark curated by scientists, 2024. [Online]. Available: https://arxiv.org/abs/2407.13168.
- [7] TBD, Aime, [Online accessed 2025-06-24], Mar. 2025. [Online]. Available: https://www.vals.ai/benchmarks/aime-2025-03-13.
- [8] HuggingFaceH4, Math-500, 2025. [Online]. Available: https://huggingface.co/datasets/HuggingFaceH4/MATH-500.
- [9] T. A. authors, Scientific reasoning benchmarks from the curie dataset, 2024. [Online]. Available: https://arxiv.org/abs/2404.02029.
- [10] A. Institute, Feabench: A finite element analysis benchmark, 2023. [Online]. Available: https://github.com/alleninstitute/feabench.
- [11] X. Zhong, Y. Gao, and S. Gururangan, "Spiqa: Scientific paper image question answering," 2024. [Online]. Available: https://arxiv.org/abs/2407.09413.
- [12] D. Jin, Y. Li, Y. Zhang, et al., "What disease does this patient have? a large-scale open-domain question answering dataset from medical exams," 2020. [Online]. Available: https://arxiv.org/abs/2009.13081.
- [13] E. Luo, J. Jia, Y. Xiong, et al., Benchmarking ai scientists in omics data-driven biological research, 2025. [Online]. Available: https://arxiv.org/abs/2505.08341.
- [14] Y. Fang, N. Zhang, Z. Chen, et al., "Domain-agnostic molecular generation with chemical feedback," 2023. [Online]. Available: https://arxiv.org/abs/2301.11259.
- [15] W. Hu, M. Fey, M. Zitnik, et al., Open graph benchmark: Datasets for machine learning on graphs, 2020. [Online]. Available: https://arxiv.org/abs/2005.00687.
- [16] A. Jain, S. P. Ong, G. Hautier, et al., "The materials project: A materials genome approach," APL Materials, vol. 1, no. 1, 2013. DOI: 10.1063/1.4812323. [Online]. Available: https://materialsproject.org/.
- [17] L. Chanussot, A. Das, S. Goyal, et al., "The open catalyst 2020 (oc20) dataset and community challenges," ACS Catalysis, vol. 11, no. 10, pp. 6059-6072, 2021. DOI: 10.1021/acscatal.0c04525. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscatal.0c04525.
- [18] R. Tran, J. Lan, M. Shuaibi, et al., "The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts," ACS Catalysis, vol. 13, no. 5, pp. 3066–3084, 2023. DOI: 10.1021/acscatal.2c05426. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscatal.2c05426.
- [19] L. Chanussot, A. Das, S. Goyal, et al., "Open catalyst 2020 (oc20) dataset and community challenges," ACS Catalysis, vol. 11, no. 10, pp. 6059-6072, 2021. DOI: 10.1021/acscatal.0c04525. eprint: https://doi.org/10.1021/acscatal.0c04525. [Online]. Available: https://doi.org/10.1021/acscatal.0c04525.

- [20] R. Tran, J. r. .-. c. n. Lan, M. Shuaibi, et al., "The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts," ACS Catalysis, vol. 13, no. 5, pp. 3066–3084, Feb. 2023, ISSN: 2155-5435. DOI: 10.1021/acscatal.2c05426. [Online]. Available: http://dx.doi.org/10.1021/acscatal.2c05426.
- [21] K. Choudhary, D. Wines, K. Li, et al., "JARVIS-Leaderboard: A large scale benchmark of materials design methods," npj Computational Materials, vol. 10, no. 1, p. 93, 2024. DOI: 10.1038/s41524-024-01259-w. [Online]. Available: https://doi.org/10.1038/s41524-024-01259-w.
- [22] F. J. Kiwit, M. Marso, P. Ross, C. A. Riofrío, J. Klepsch, and A. Luckow, "Application-oriented benchmarking of quantum generative learning using quark," in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, Sep. 2023, pp. 475–484. DOI: 10.1109/qce57702.2023.00061. [Online]. Available: http://dx.doi.org/10.1109/QCE57702.2023.00061.
- [23] Y. Luo, Y. Chen, and Z. Zhang, Cfdbench: A large-scale benchmark for machine learning methods in fluid dynamics, 2024. [Online]. Available: https://arxiv.org/abs/2310.05963.
- [24] J. Roberts, K. Han, and S. Albanie, Satin: A multi-task metadataset for classifying satellite imagery using vision-language models, 2023. arXiv: 2304.11619 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2304.11619.
- [25] T. Nguyen, J. Jewik, H. Bansal, P. Sharma, and A. Grover, *Climatelearn: Benchmarking machine learning for weather and climate modeling*, 2023. arXiv: 2307.01909 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2307.01909.
- [26] A. Srivastava, A. Rastogi, A. Rao, et al., Beyond the imitation game: Quantifying and extrapolating the capabilities of language models, 2023. arXiv: 2206.04615 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2206.04615.
- [27] A. Talmor, J. Herzig, N. Lourie, and J. Berant, Commonsenseqa: A question answering challenge targeting commonsense knowledge, 2019. arXiv: 1811.00937 [cs.CL]. [Online]. Available: https://arxiv.org/abs/1811.00937.
- [28] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, Winogrande: An adversarial winograd schema challenge at scale, 2019. arXiv: 1907.10641 [cs.CL]. [Online]. Available: https://arxiv.org/abs/ 1907.10641.