MALCOLM C. A. WHITE

50 Oakland St., Floor 2, Medford, MA 02155 (339) 221-7195 \$\rightarrow\$ malcolm.white@usc.edu https://malcolmw.github.io/homepage

TECHNICAL STRENGTHS

Computer Languages
Software & Tools

Python, C/C++, Fortran, Mathematica, Bash

SLURM, Parallel computing (MPI), LATEX, Antelope

EDUCATION

University of Southern California

August 2016 - August 2021

Ph.D. in Geological Sciences Department of Earth Sciences

Carleton University

September 2007 - May 2013

B.Sc. in Computational Geophysics Department of Earth Sciences

EMPLOYMENT

2013

2021 Sattler College—Boston, Massachusetts, USA
Adjunct Professor (Forthcoming)

Massachusetts Insitute of Technology—Cambridae Ma

Massachusetts Insitute of Technology—Cambridge, Massachusetts, USA Postdoctoral Fellow (Forthcoming)

2016 University of Southern California—Los Angeles, California, USA Research/Teaching Assistant

Scripps Institution of Oceanography—La Jolla, California, USA Seismic Analyst

2011 Pacific Geoscience Center—Sidney, British Columbia, Canada Research Assistant

2010 Geological Survey of Canada—Ottawa, Ontario, Canada Research Assistant

GRADUATE COURSEWORK (SELECTED)

2020 Advanced Mechanics

Newtonian formulation of dynamics; Hamilton's principle; Lagrangian formulation; rigid body motion; Hamiltonian formulation; Hamilton-Jacobi theory; vibrations.

Advanced Seismology

Advanced methods of theoretical seismology for studying the generation of seismic waves from natural and artificial sources and the propagation through realistic earth models.

Selected Topics in Computational Physics

Algorithmic Techniques in Artificial Intelligence and Machine Learning

Numerical Analysis and Computation

Linear equations and matrices, Gauss elimination, error estimates, iteration techniques; contractive mappings, Newton's method; matrix eigenvalue problems; least-squares approximation, Newton-Cotes and Gaussian quadratures; finite difference methods.

2017 | Probability for Electrical and Computer Engineers

Rigorous coverage of probability, discrete and continuous random variables, functions of multiple random variables, covariance, correlation, random sequences, Markov chains, estimation, and introduction to statistics.

Methods of Computational Physics

Introduction to algorithm development. Integration of ordinary differential equations; chaotic systems; molecular dynamics; Monte Carlo integration and simulations; cellular automata and other complex systems.

Introduction to Digital Signal Processing

Fundamentals of digital signal processing covering: discrete time linear systems, quantization, sampling, Z-transforms, Fourier transforms, FFTs and filter design.

2016 | Methods of Theoretical Physics

Vector analysis; infinite, asymptotic Fourier series; complete sets; Dirac delta function; Fourier, Laplace transforms; Legendre functions; spherical harmonics; Sturm-Liouville theory; orthogonal polynomials; gamma-factorial function; complex variables.

TEACHING

2021 | Statistics and Data Science (Forthcoming)

How does one appropriately gain insights from a data set without being misled? This course covers the elementary principles of data description, hypothesis testing, and regression. The course begins with an introduction to probability and random variables. It then moves into statistics, having students run practical analyses on data sets from medicine, elections, and business.

2018 The Nature of Scientific Inquiry

Examination of the scientific process: what constitutes science; evolution of ideas about the nature of space, time, matter, and complexity; paradigm shifts in the biological and earth sciences. Lecture, 3 hours; laboratory, 2 hours.

Earthquakes

Causes of earthquakes and nature of large faults; earthquake hazard and risk; world's great earthquakes; understanding the Richter scale. Lecture, 3 hours; laboratory, 2 hours.

2017 The Nature of Scientific Inquiry

EDITORIAL REVIEW ACTIVITY

2021 Seismological Research Letters—Article reviewer

2020 Public Library of Science (PLOS) One—Article reviewer

Geophysical Journal International—Article reviewer

SOCIETIES

2020 American Geophysical Union Seismological Society of America

SPEAKING ENGAGEMENTS

2021 Catalog Update (2008-2020): A Detailed Earthquake Catalog for the San Jacinto Fault Zone Region in Southern California

Seismological Society of America Annual Meeting

From Raw Seismic Waveforms to Detailed Seismicity and Traveltime Tomography around the $2019~\mathrm{M}7.1~\mathrm{Ridgecrest},$ CA Earthquake

Seismological Society of America Virtual Tomography Sessions: Cutting-edge Methods and Applications in Seismic Tomography

Detailed traveltime tomography and seismicity around the 2019 M7.1 Ridgecrest, CA, earthquake using dense rapid-response seismic data

American Geophysical Union Annual Meeting

Seismic velocity structure of the Ridgecrest, CA region from traveltime tomography

United States Geological Survey—Earthquake Science Center Seminar

Seismic velocity structure of the Ridgecrest, CA region from local earthquake traveltime tomography

Southern California Earthquake Center Community Velocity Model Workshop

Hierarchical crustal traveltime tomography in Southern California: Insights and perspectives

University of Southern California—Lithospherics Dynamics Seminar

2019 Microseismicity correlates strongly with velocity structure in the San Jacinto fault zone

American Geophysical Union Annual Meeting

Focal mechanisms of microseismicity in the San Jacinto fault-zone region of Southern California Seismological Society of America Annual Meeting

Focal mechanisms of microseismicity in the San Jacinto fault-zone region of Southern California

Lamont-Doherty Earth Observatory—Seismology Student Workshop

Illuminating the San Jacinto fault-zone region of Southern California with a new earthquake catalog

Massachusettes Institute of Technology—Friday Informal Seminar Hour

2018 Illuminating seismogenic structures in the San Jacinto Fault Zone
Brown University—Geophysics Seminar

Seismicity in the San Jacinto fault zone: automatically deriving a decade-long catalog of earthquake hypocenters from scratch

University of Southern California—Lithospheric Dynamics Seminar

PEER-REVIEWED PUBLICATIONS

- 2021 White, M. C. A., Ben-Zion, Y. & Vernon, F. L. (In preparation). Catalog Update (2008-2020): A Detailed Earthquake Catalog for the San Jacinto Fault Zone Region in Southern California.
 - White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., & Ben-Zion, Y. (In review). Detailed traveltime tomography and seismicity around the 2019 M_w 7.1 Ridge-crest, California, earthquake using dense rapid-response seismic data. *Geophysical Journal International*. doi: 10.13140/RG.2.2.32146.89283
- 2020 White, M. C. A., Fang, H., Nakata, N., & Ben-Zion, Y. (2020). PyKonal: A Python package for solving the Eikonal equation in spherical and Cartesian coordinates using the Fast Marching Method. Seismological Research Letters, 91(4), 2378-2389. doi: 10.1785/0220190318
- White, M. C. A., Ben-Zion, Y., & Vernon, F. L. (2019). A Detailed Earthquake Catalog for the San Jacinto Fault-Zone Region in Southern California. *Journal of Geophysical Research:* Solid Earth, 124, 6908–6930. doi: 10.1029/2019JB017641
- Burdick, S., Vernon, F. L., Martynov, V., Eakins, J., Cox, T., Tytell, J., . . . van der Hilst, R. D. (2017). Model Update May 2016: Upper-Mantle Heterogeneity beneath North America from Travel-Time Tomography with Global and USArray Data. Seismological Research Letters, 88(2A), 319–325. doi: 10.1785/0220160186
- Ross, Z. E., Ben-Zion, Y., **White, M. C.**, & Vernon, F. L. (2016). Analysis of earthquake body wave spectra for potency and magnitude values: implications for magnitude scaling relations. *Geophysical Journal International*, 207(2), 1158–1164. doi: 10.1093/gji/ggw327
 - Ross, Z. E., White, M. C., Vernon, F. L., & Ben-Zion, Y. (2016). An Improved Algorithm for Real-Time S -Wave Picking with Application to the (Augmented) ANZA Network in Southern California. *Bulletin of the Seismological Society of America*, 106(5), 2013–2022. doi: 10.1785/0120150230

- Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., ... Barklage, M. (2015). Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202(1), 370–380. doi: 10.1093/gji/ggv142
- Astiz, L., Eakins, J. A., Martynov, V. G., Cox, T. A., Tytell, J., Reyes, J. C., ... Vernon, F. L. (2014). The Array Network Facility Seismic Bulletin: Products and an Unbiased View of United States Seismicity. Seismological Research Letters, 85(3), 576–593. doi: 10.1785/0220130141

PUBLISHED DATA SETS

- White, M. C. A. Ben-Zion, Y., Vernon, F. L. (2021), Detailed earthquake catalog for the San Jacinto Fault Zone in southern California (2008-2020), Mendeley Data, doi: 10.17632/7ywkdx7c62
 - White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., Ben-Zion, Y. (2021), Ridgecrest, CA seismic velocity models, Mendeley Data, doi: 10.17632/gv33tgvt5f
 - White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., Ben-Zion, Y. (2021), 2019 Ridgecrest, CA earthquake aftershock catalog, Mendeley Data, doi: 10.17632/x8v5wkbj6r

CONFERENCE PROCEEDINGS

- White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., & Ben-Zion, Y. (2020). Detailed traveltime tomography and seismicity around the 2019 M7.1 Ridgecrest, CA, earthquake using dense rapid-response seismic data. S070-08 presented at 2020 Fall Meeting, AGU, San Francisco, CA, 1-17 December.
 - Fang, H., White, M. C. A., Lu, Y., van der Hilst, R. D., & Ben-Zion, Y. (2020). Regional seismic velocity models for Southern California based on travel time tomography with Poisson Voronoi cells parameterization. S070-04 presented at 2020 Fall Meeting, AGU, San Francisco, CA, 1-17 December.
 - Luckie, T., Gase, A., Jacobs, K., White, M. C. A., Henrys, S. A., Okaya, D. A., Van Avendonk, H. J., Bangs, N. L., Barker, D. H. N., Bassett, D., Kodaira, S., Arai, R., Fujie, G., & Yamamoto, Y. (2020). P-wave velocity structure of the northern Hikurangi margin from travel time tomography. T017-0010 presented at 2020 Fall Meeting, AGU, San Francisco, CA, 1-17 December.
 - White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., & Ben-Zion, Y. (2020). Detailed traveltime tomography and seismicity around the 2019 M7.1 Ridgecrest, CA, earthquake using dense rapid-response seismic data. Poster Presentation at 2020 SCEC Annual Meeting.

- Catchings, R. D., Goldman, M. R., White, M. C. A., Qiu, H., & Ben-Zion, Y. (2020). Results from dense nodal-array recordings of the 2019 Ridgecrest Sequence aftershocks. Oral Presentation at 2020 SCEC Annual Meeting.
- White, M. C. A., Fang, H., van der Hilst, R. D., & Ben-Zion, Y. (2019). The distribution of microseismicity correlates closely with velocity structure in the San Jacinto fault-zone region of Southern California. S21C-07 presented at 2019 Fall Meeting, AGU, San Fransisco, CA, 9-13 December.
 - Nakata, N., Fang, H., **White, M. C. A.**, & Pitarka, A. (2019). Shallow crustal heterogeneity in Southern California estimated from earthquake coda waves. Poster Presentation at 2019 SCEC Annual Meeting.
 - White, M. C. A., Ben-Zion, Y., & Vernon, F. L. (2019). Focal Mechanisms of Microseismicity in the San Jacinto Fault Zone Region of Southern California. *Seismological Research Letters*, 90(2B), p. 1042. doi: 10.1785/0220190061
- White, M. C. A., Ben-Zion, Y., & Vernon, F. L. (2018). Detailed seismic catalog for the San Jacinto fault zone region (2008-2016) from automated processing of raw waveform data. Poster Presentation at 2018 SCEC Annual Meeting.
- White, M. C. A., Ross, Z. E., Vernon, F. L., & Ben-Zion, Y. (2017). A Detailed Automatic Seismicity Catalog (1998-2015) for the San Jacinto Fault Zone Region. Seismological Research Letters, 88(2B), p. 569. doi: 10.1785/0220170035
 - White, M. C. A., Ross, Z. E., Ben-Zion, Y., & Vernon, F. L. (2017). A detailed, automatically-derived, seismicity catalog for the San Jacinto fault zone (1998-2016). Poster Presentation at 2017 SCEC Annual Meeting.
- White, M. C. A., Ross, Z. E., Vernon, F. L., & Ben-Zion, Y. (2016). A detailed automatic 1998-2015 earthquake catalog of the San Jacinto fault zone region. Poster Presentation at 2016 SCEC Annual Meeting.
- White, M. C. A., Ross, Z. E., Vernon, F. L., & Ben-Zion, Y. (2015). A Large Scale Automatic Earthquake Location Catalog in the San Jacinto Fault Zone Area Using An Improved Shear-Wave Detection Algorithm. S11A-2775 presented at 2015 Fall Meeting, AGU, San Francisco, CA, 14-18 December.
 - White, M. C. A., Ross, Z. E., Reyes, J. C., Vernon, F. L., & Ben-Zion, Y. (2015). An Improved Algorithm for Automatic Picking of Seismic S-wave Arrivals in Continuous Data with Application to the San Jacinto Fault Zone. Seismological Research Letters, 86 (2B), p. 731. doi: 10.1785/0220150017
 - Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z., Meng, H., **White, M. C. A.**, Reyes, J. C., Hollis, D., & Barklage, M. (2015). Basic Wave Propagation Results from a Highly-Dense Seismic Array on the San Jacinto Fault Zone. *Seismological Research Letters*, 86(2B), p. 594. doi: 10.1785/0220150017

- Vernon, F. L., Reyes, J. C., White, M. C. A., Davis, G. A., Meyer, J. C., Sahakian, V. J., Mancinelli, N. J., Ben-Zion, Y., Zigone, D., Harris, C. W., Liu, X., Qiu, H., Share., P.-E., Ozakin, Y., Hollis, D., & Barklage, M. (2014). Observations at a San Jacinto Fault Zone site (Sage Brush Flat) Using a Nodal Seismic High Frequency Array. T11F-08 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15-19 December.
 - Tytell, J. E., Cox, T. A., White, M. C. A., Martynov, V. G., Eakins, J., & Vernon, F. L. (2014). The ANF Catalog of Central United States Seismicity. S51A-4381 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15-19 December.
- Mulder, T., Brillon, C., Bentkowski, W., White, M. C. A., Rosenberger, A., Rogers, G. C., Vernon, F. L., & Kao, H. (2013). Analysis of the 2012 Oct 27 Haida Gwaii Aftershock Sequence. S32A-08 presented at 2013 Fall Meeting, AGU, San Francisco, CA, 9-13 December.
- Mulder, T., Brillon, C., Bentkowski, W., White, M. C. A., Rosenberger, A., Rogers, G. C., Vernon, F. L., & Kao, H. (2011). WaveHRL: a high resolution, modular seismic event system and its application to the L'Aquila 2009 earthquake sequence. S32A-08 presented at 2011 Fall Meeting, AGU, San Francisco, CA, 5-9 December.