# On the Embedding Collapse When Scaling Up Recommendation Models

Xingzhuo Guo Junwei Pan Ximei Wang Baixu Chen Jie Jiang Mingsheng Long

#### **Contexto**

#### **Problema**

Mala escalabilidad de los modelos de recomendación existentes



(a) Performance when scaling up recommendation models

### Trabajos relacionados

## Módulos de RecSys

- Propuestas de diversos modelos
- No se estudia escalabilidad

## Fenómeno del colapso

- Estudios del fenómeno para machine learning
- Falta de estudios para sistemas recomendadores

#### Teoría de Compresión

 Teorías para describir la complejidad de los datos

#### Contribución



## Model Scalability issue

Embedding collapse



## Two-sided effect

Feature interaction



# Simple unified design

Multi-embedding design

#### Sistemas Recomendadores

$$\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times ... \times \mathcal{X}_N$$

$$\mathcal{X}_i = \{1, 2, ..., D_i\}$$

$$\mathcal{Y} = \{0, 1\}$$

$$egin{aligned} oldsymbol{e}_i &= oldsymbol{E}_i^ op \mathbf{1}_{x_i}, \ orall i \in \{1,2,...,N\}, \ oldsymbol{E}_i \in \mathbb{R}^{D_i imes K} & h = I(oldsymbol{e}_1,oldsymbol{e}_2,...,oldsymbol{e}_n), \ \hat{y} = F(h), \end{aligned}$$

## **Embedding Collapse**

## **Embedding Collapse**

#### Matrices del embedding son de rango bajo



(b) Singular values of DCNv2 under different model size, with the dashed lines corresponding to the base size.

#### **Information Abundance**

$$\mathrm{IA}(oldsymbol{E}) = rac{\|oldsymbol{\sigma}\|_1}{\|oldsymbol{\sigma}\|_{\infty}}$$



#### **Feature Interaction**

#### **Feature Interaction**

1. Embedding collapse



2. Overfitting resistance





### 1. Interaction-Collapse Theory

Empirical analysis on models with sub embeddings



### 1. Interaction-Collapse Theory

How is embedding collapse caused?

Finding 1 (Interaction-Collapse Theory). In feature interaction of recommendation models, fields with low-information-abundance embeddings constrain the information abundance of other fields, resulting in collapsed embedding matrices.

### 2. Avoiding Collapse

Limiting the modules in interaction that leads to collapse



### 2. Avoiding Collapse

#### Directly avoiding explicit interaction



(a) IA w/ 10x size.

(b) Test AUC w.r.t. size.

### 2. Avoiding Collapse

Finding 2. A less-collapsed model with feature interaction suppressed improperly is insufficient for scalability due to overfitting concern.

## **Multi-Embedding**

## **Multi-Embedding**



Figure 7. Architectures of single-embedding (left) and multi-embedding (right) models.

#### **Resultados**

| Model    |          | Criteo  |                           |                           |                           |                           | Avazu   |                           |                           |                           |                           |
|----------|----------|---------|---------------------------|---------------------------|---------------------------|---------------------------|---------|---------------------------|---------------------------|---------------------------|---------------------------|
|          |          | base    | 2x                        | 3x                        | 4x                        | 10x                       | base    | 2x                        | 3x                        | 4x                        | 10x                       |
| DNN      | SE<br>ME | 0.81228 | $\frac{0.81222}{0.81261}$ | 0.81207<br><b>0.81288</b> | 0.81213<br><b>0.81289</b> | 0.81142<br><b>0.81287</b> | 0.78744 | $\frac{0.78759}{0.78805}$ | 0.78752<br>0.78826        | 0.78728<br>0.78862        | 0.78648<br><b>0.78884</b> |
| IPNN     | SE<br>ME | 0.81272 | $\frac{0.81273}{0.81268}$ | $\frac{0.81272}{0.81270}$ | $\frac{0.81271}{0.81273}$ | 0.81262<br><b>0.81311</b> | 0.78732 | $\frac{0.78741}{0.78806}$ | 0.78738<br>0.78868        | $\frac{0.78750}{0.78902}$ | 0.78745<br><b>0.78949</b> |
| NFwFM    | SE<br>ME | 0.81059 | 0.81087<br>0.81128        | 0.81090<br>0.81153        | 0.81112<br>0.81171        | 0.81113<br><b>0.81210</b> | 0.78684 | 0.78757<br>0.78868        | 0.78783<br>0.78901        | $\frac{0.78794}{0.78932}$ | 0.78799<br><b>0.78974</b> |
| xDeepFM  | SE<br>ME | 0.81217 | 0.81180<br>0.81236        | 0.81167<br>0.81239        | 0.81137<br>0.81255        | 0.81116<br><b>0.81299</b> | 0.78743 | $\frac{0.78750}{0.78848}$ | 0.78714<br>0.78886        | 0.78735<br>0.78894        | 0.78693<br><b>0.78927</b> |
| DCNv2    | SE<br>ME | 0.81339 | 0.81341<br>0.81348        | 0.81345<br>0.81361        | 0.81346<br><b>0.81382</b> | 0.81357<br><b>0.81385</b> | 0.78786 | 0.78835<br>0.78862        | $\frac{0.78854}{0.78882}$ | 0.78852<br>0.78907        | 0.78856<br><b>0.78942</b> |
| FinalMLP | SE<br>ME | 0.81259 | 0.81262<br>0.81290        | 0.81248<br><b>0.81302</b> | 0.81240<br><b>0.81303</b> | 0.81175<br><b>0.81303</b> | 0.78751 | $\frac{0.78797}{0.78821}$ | 0.78795<br><b>0.78831</b> | 0.78742<br><b>0.78836</b> | 0.78662<br><b>0.78830</b> |

#### **Resultados**



#### Conclusión

El diseño Multi-Embedding mejora la escalabilidad del modelo y reduce el colapso

#### Referencias

Jean-Baptiste Tien, joycenv, O. C. play advertising challenge, 2014. https://kaggle.com/competitions/criteo-display-ad-challenge.

Jing, L., Vincent, P., LeCun, Y., and Tian, Y. Understanding dimensional collapse in contrastive self-supervised learning. In ICLR, 2021

Rendle, S., Krichene, W., Zhang, L., and Anderson, J. Neural collaborative filtering vs. matrix factorization revisited. In RecSys, 2020.

Steve Wang, W. C. Click-through rate prediction, 2014. URL https://kaggle.com/competitions/avazu-ctr-prediction.

Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong, L., and Chi, E. DCN V2: Improved Deep & Cross Net work and Practical Lessons for Web-scale Learning to Rank Systems. In WWW, 2021.

# On the Embedding Collapse When Scaling Up Recommendation Models

Xingzhuo Guo Junwei Pan Ximei Wang Baixu Chen Jie Jiang Mingsheng Long