

# MINERÍA DE DATOS APLICADA AL ANÁLISIS DE DELITOS EN LOS ÁNGELES (2020-2025)

GRUPO 3

**PROYECTO FINAL - DATA MINING** 



Rarem Huacota

Yesika Luna

Elvis Miranda

!Van Mamani

















# Introducción





# Importancia del Análisis Delictivo



El análisis facilita la prevención, optimiza recursos policiales y mejora la confianza comunitaria.

La ciudad es uno de los centros urbanos más grandes de EE.UU., con datos desde 2020 hasta 2025.



# Datos y Desafíos

# **Amplio Dataset**

Más de un millón de registros (1,004,991 filas) distribuidos en 28 columnas.

### **Variables Clave**

Fecha, hora, tipo de crimen, demografía de víctimas, ubicación geográfica y armas utilizadas.

### Retos de Manejo y Procesamiento

Se requieren procesos rigurosos de limpieza y transformación para asegurar la calidad.



2





### Procesamiento de Datos

Limpieza y Transformación

Eliminación de datos incompletos, normalización y creación de nuevas variables. Aseguramiento de la Calidad

Es fundamental para asegurar la calidad y consistencia de la información.



# Resultados y Avances

### **Técnicas Aplicadas**

Minería de datos, aprendizaje automático supervisado/no supervisado.





### **Modelos Predictivos**

Modelos con alta precisión para predecir la violencia en crímenes representan un avance.







# Definición del Problema





# Objetivos del Análisis

### **Análisis del Comportamiento Delictivo**

Analizar el comportamiento de los delitos reportados en Los Ángeles desde 2020 a 2025 y predecir si un crimen será violento o no.

### **Desarrollo de Modelos Predictivos**

Anticipar la violencia utilizando las variables disponibles en el dataset.

1

2



# **Preguntas Clave**

### **Tipos de Delitos Frecuentes**

¿Cuáles son los delitos más frecuentes en Los Ángeles durante el periodo?

### **Patrones Temporales y Geográficos**

¿Existen patrones temporales/geográficos en crímenes violentos (hora, día, zonas)?

### Predicción de la Violencia

¿Es posible predecir si un crimen es violento con la ubicación, hora y tipo de delito?





# Descripción del Dataset

### **Fuente de Datos**

Dataset oficial "Crime Data from 2020 to Present" (Los Ángeles).

# Actualización Periódica El dataset requiere limpieza y transformación debido a su tamaño y heterogeneidad. desde

### **Cobertura Temporal**

Incidentes delictivos reportados desde 2020 hasta 2025.

### **Variables Relevantes**

Fechas, horas, ubicación, tipo de crimen, demografía de víctimas e información de armas.



# **Problemas Resueltos**





# Carga y Exploración Inicial de Datos





### Gestión de Valores Faltantes

### **Identificación de Valores Nulos**

Evaluar la cantidad de valores nulos en cada variable.



### Estrategias de Eliminación o Imputación

Para evitar sesgos o errores en el análisis, se requiere identificar y definir filtros.







# Valores Faltantes por Columna



Algunas columnas como las de armas usadas y descripciones presentan muchos valores faltantes, lo que indica la necesidad de un filtrado para evitar sesgos o errores en el análisis. Variables críticas con datos faltantes pueden impedir un modelado confiable.



### **Transformación de Datos**

02

### Parseo de Fechas Frecuentes

Conversión de columnas de fechas a formato datetime. La conversión permite extraer información temporal.

### Selección de Fecha Base

Se determina qué columna de fecha será la referencia para el análisis temporal.

### Parseo de Hora

Normalización y extracción de la hora para crear la variable numérica hour\_occ.



04

01

### Normalización de Variables Temporales

Extracción de variables cómo año, mes, día de la semana y fecha del mes.



# **Limpieza de Datos**



### Limpieza de las coordenadas

Se realiza búsqueda de limpieza de las columnas de latitud y longitud creando un indicador.

1

### Limpieza de Variables Categóricas



Se normalizaron columnas cómo area\_name para reducir inconsistencias y variabilidad.

2

2



Se crea un variable binaria indicando si el delito fue violento para la clasificación.

4

### Limpieza final de registros



Es necesario eliminar registros duplicados y aquellos con falta te datos importantes.



# Métodos Utilizados



### Correlaciones Numéricas

Se realizó un **mapa de calor** para examinar las
correlaciones entre
variables numéricas.

# Histograma de Edad de Víctima

Se estudió la distribución de la edad de las víctimas.

### Distribución por Día de la Semana

Se determinó cómo se distribuyen los incidentes según el día de la semana.

# Tendencia Mensual de Incidentes

Se analizó la evolución del número de incidentes por mes.

# Top 15 Tipos de Crimen

Se obtuvieron y visualizaron los 15 tipos de delito más frecuentes.



Se destacan correlaciones positivas y negativas pertinentes, apoyando la selección de variables para modelos predictivos y evitando multicolinealidad.



### Incidentes por Día de la Semana (0=Lun)



La actividad delictiva presenta ligeras variaciones semanales, con ciertos días acumulando más reportes, lo que puede guiar la planificación de turnos y patrullajes en especial los dias viernes.



Se observan fluctuaciones temporales con periodos de mayor y menor actividad delictiva, información valiosa para anticipar demandas de recursos policiales.

**Top 15 Tipos de Crimen** 



Los datos indican que el *delito más común es por Agresión simple* (Battery - Simple Assault) seguido por *robo de vehiculo* (Burglary from Vehicle) y otros tipos de agresiones, resaltando áreas prioritarias para políticas de seguridad.

observado vs predicho.



### **Regresión Lineal OLS sobre Incidencias Mensuales**

### [OLS] Resumen:

### OLS Regression Results

| Dep. Variable:    | incidents        | R-squared:          | 0.361    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.340    |
| Method:           | Least Squares    |                     | 16.94    |
| Date:             | Fri, 22 Aug 2025 | Prob (F-statistic): | 1.47e-06 |
| Time:             | 03:02:23         | Log-Likelihood:     | -601.05  |
| No. Observations: | 63               | AIC:                | 1208.    |
| Df Residuals:     | 60               | BIC:                | 1215.    |
| Df Model:         | 2                |                     |          |

Covariance Type: nonrobust

|           | coef       | std err  | t          | P> t       | [0.025    | 0.975]    |
|-----------|------------|----------|------------|------------|-----------|-----------|
|           |            |          |            |            |           |           |
| const     | 3.391e+06  | 5.82e+05 | 5.829      | 0.000      | 2.23e+06  | 4.55e+06  |
| year      | -1671.1694 | 287.633  | -5.810     | 0.000      | -2246.520 | -1095.818 |
| month     | -39.2029   | 124.732  | -0.314     | 0.754      | -288.704  | 210.299   |
|           |            |          |            |            |           |           |
| Omnibus:  |            | 17.8     | 374 Durbin | -Watson:   |           | 0.072     |
| Prob (Omn | ibus):     | 0.0      | 000 Jarque | -Bera (JB) | :         | 4.821     |
| Skew:     |            | -0.3     | B16 Prob(J | B):        |           | 0.0898    |
| Kurtosis  | :          | 1.8      | 301 Cond.  | No.        |           | 2.71e+06  |
|           |            |          |            |            |           |           |

El modelo de regresión lineal muestra que aproximadamente el 36% de la variabilidad en los incidentes ( $R^2 = 0.361$ ) se explica por las variables año y mes.

El coeficiente para año (-1671.17, p < 0.001) es estadísticamente significativo, lo que indica que, en promedio, los incidentes disminuyen en 1671 casos por cada incremento de un año, manteniendo constante el mes.

En contraste, el efecto del mes (-39.20, p = 0.754) no resulta significativo, sugiriendo que las variaciones mensuales no influyen de manera relevante en el número de incidentes.

### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.71e+06. This might indicate that there are strong multicollinearity or other numerical problems.

### **Residuos del Modelo OLS**



Los residuos muestran patrones que sugieren la presencia de variabilidad no explicada, indicando limitaciones del modelo lineal simple.

### **Machine Learning: Random Forest**

```
[RandomForest] Métricas:
{
    "accuracy": 0.9673219941676318,
    "precision": 0.9648120367102012,
    "recall": 0.9340267395668703,
    "f1": 0.9491698317959848,
    "roc_auc": 0.9966567254312784
}
```

El modelo de Random Forest muestra un desempeño sobresaliente en la clasificación de delitos violentos frente a no violentos

- La exactitud (accuracy) del 96.7% indica que el modelo predice correctamente la gran mayoría de los casos.
- La **precisión** (96.4%) revela que, cuando el modelo predice un crimen violento, casi siempre acierta.
- El **recall** (93.4%) muestra que también logra identificar la mayoría de los casos violentos reales, aunque se le escapan algunos.
- El **F1-score** (94.9%) confirma un equilibrio sólido entre precisión y recall.
- El **AUC-ROC** (0.997) refleja una capacidad casi perfecta para distinguir entre delitos violentos y no violentos, lo que sugiere que el modelo es altamente confiable y robusto para este tipo de predicción

### **Machine Learning: Random Forest**



La curva destaca una casi perfecta discriminación entre clases, lo que respalda su aplicación práctica.

### **Machine Learning: Random Forest**



### **Ajustes del Modelo OLS**



La dispersión indica que el modelo predice razonablemente bien las tendencias generales, aunque ciertos puntos muestran desviaciones.

### Regresión Logística para Odds Ratios

| [Logit] Coeficientes y OR:                              |          |                                                 |               |
|---------------------------------------------------------|----------|-------------------------------------------------|---------------|
| coe                                                     | OR       |                                                 | pvalue        |
| premis_desc_top_SIDEWALK 0.816005                       | 2.261447 | premis_desc_top_SIDEWALK                        | 7.059446e-169 |
| const 0.402085                                          | 1.494938 | const                                           | 3.421455e-41  |
| area name top Southeast 0.103444                        | 1.108984 | area_name_top_Southeast                         | 2.080242e-12  |
| dayofweek 0.037483                                      | 1.038194 | dayofweek                                       | 2.428328e-173 |
| hour_occ 0.007553                                       | 1.007579 | hour_occ                                        | 4.200617e-76  |
| month -0.001302                                         | 0.998699 | month                                           | 8.932637e-02  |
| premis desc top PARK/PLAYGROUND -0.005294               |          | premis_desc_top_PARK/PLAYGROUND                 | 8.910349e-01  |
| premis desc top HOTEL -0.007476                         |          | premis_desc_top_HOTEL                           | 8.539403e-01  |
| premis desc top GAS STATION -0.015569                   | 0.984551 | premis_desc_top_GAS_STATION                     | 7.201576e-01  |
| area name top Newton -0.168000                          |          | area_name_top_Newton                            | 4.337834e-28  |
| premis desc top RESTAURANT/FAST FOOD -0.318516          |          | <pre>premis_desc_top_RESTAURANT/FAST FOOD</pre> | 1.506591e-17  |
| area name top Rampart -0.336758                         |          | area_name_top_Rampart                           | 8.532860e-104 |
| area name top Other -0.375283                           |          | area_name_top_Other                             | 2.425636e-195 |
| area name top Southwest -0.436110                       |          | area_name_top_Southwest                         | 3.156892e-198 |
| area name top Mission -0.515067                         |          | area_name_top_Mission                           | 3.139760e-224 |
| premis_desc_top_MULTI-UNIT_DWELLING (APARTMENT,0.521508 |          | premis_desc_top_MULTI-UNIT_DWELLING (APARTMENT, | 4.031200e-78  |
| area_name_top_Olympic -0.522139                         |          | area_name_top_Olympic                           | 2.981539e-254 |
| premis desc top STREET -0.542824                        |          | premis_desc_top_STREET                          | 2.608526e-85  |
| premis desc top OTHER BUSINESS -0.628441                |          | premis_desc_top_OTHER BUSINESS                  | 6.425413e-91  |
| premis_desc_top_Other -0.657663                         |          | premis_desc_top_Other                           | 2.525256e-120 |

El modelo de regresión logística revela que algunos factores del entorno físico y geográfico influyen significativamente en la probabilidad de que un crimen sea violento. Por ejemplo, el hecho de que un incidente ocurra en una banqueta (SIDEWALK) aumenta notablemente la **probabilidad de violencia (OR = 2.26, p < 0.001)**, mientras que lugares como restaurantes/fast food (**OR = 0.72**), edificios de apartamentos (**OR = 0.59**) o en la calle en general (**OR = 0.58**) disminuyen la probabilidad de violencia de manera estadísticamente significativa.

**PCA (Principal Component Analysis)** 



Esto sugiere que dividir los datos en 4 grupos balancea la complejidad y ajuste.

### **KMeans**



La visualización evidencia cuatro grupos claramente diferenciados que representan subconjuntos de incidentes con características similares, posiblemente relacionadas con patrones temporales y espaciales. Estos clusters sugieren que existen segmentos particulares dentro del fenómeno delictivo, como delitos que ocurren en horarios o áreas específicas, o que comparten características temporales similares.

### **Series de Tiempo**



Este gráfico ilustra la dinámica de los incidentes delictivos a lo largo del tiempo, mostrando variaciones, tendencias y posibles picos estacionales. Esta representación permite identificar períodos de incremento o disminución del delito, apoyando la toma de decisiones para asignar recursos en momentos críticos.

### **ACF y PACF - Incidentes Mensuales**





Los gráficos de ACF y PACF revelan patrones de dependencia temporal: el ACF muestra la correlación entre los valores de la serie en diferentes lags, mientras que el PACF ayuda a determinar la influencia directa de un lag específico. Estos patrones indican que la ocurrencia delictiva en un mes depende significativamente de los meses anteriores, con posible presencia de estacionalidad o ciclos, información clave para la construcción de modelos predictivos de series de tiempo y pronósticos futuros.

### **Detección de Anomalías**



PC1

Este gráfico facilita la visualización clara de la separación entre casos normales y anómalos, destacando la eficiencia del método para discriminar registros poco comunes



# Resultados del Análisis





# Hallazgos principales

- → Se identificaron patrones relevantes en la frecuencia y en la distribuição temporal y espacial de los delitos.
- → Los crímenes más frecuentes corresponden a agresiones ("Battery Simple Assault") y robos.
- → La distribución temporal mostró **variaciones estacionales y cíclicas**, con fluctuaciones mensuales y diferencias entre días de la semana.
- → Los delitos en Los Ángeles **no ocurren de forma aleatoria**, sino que están influenciados por **factores temporales y geográficos**.





# **Modelos Predictivos y Variables Clave**

- → Se desarrollaron *modelos estadísticos y de machine learning* con alta capacidad predictiva para clasificar la violencia en delitos.
- → El Random Forest obtuvo el mejor rendimiento con: precisión 96.7%, recall 93.4%, F1-score 94.9% y AUC ~0.997, mostrando excelente capacidad de diferenciación entre delitos violentos y no violentos.
- → El análisis de importancia de variables destacó el peso de factores temporales (hora del día, día de la semana) y geográficos (área del delito).
- → Estos resultados evidencian que el contexto espacio-temporal es tan determinante como el tipo de crimen para anticipar la violencia.
- → La **regresión logística** aportó una interpretación estadística formal, permitiendo entender **el efecto independiente de cada variable significativa** en la ocurrencia de crímenes violentos.





# Validación del Objetivo y Aplicaciones Prácticas

- → Los modelos confirmaron que es posible predecir si un crimen será violento usando variables de lugar, tiempo y tipo de delito.
- → Esta capacidad predictiva *permite priorizar recursos policiales, diseñar programas preventivos* focalizados y generar alertas tempranas.
- → Los análisis no supervisados (*reducción dimensional y clustering*) identificaron *grupos naturales de delitos*, facilitando estrategias diferenciadas por cluster.
- → La detección de anomalías con Isolation Forest añadió un componente de vigilancia para eventos atípicos o errores de registro.
- → El proyecto cumplió exitosamente sus objetivos: generó modelos robustos, extrajo patrones significativos y aportó herramientas prácticas para la seguridad pública.



# Conclusiones y Recomendaciones



# Conclusiones



- → El estudio cumplió el objetivo de analizar el comportamiento delictivo en Los Ángeles desde 2020 y construir modelos predictivos para identificar crímenes violentos.
- → Tipos de delitos más frecuentes: agresiones simples ("Battery Simple Assault") y robos.
- → Patrones temporales: mayor incidencia de crímenes violentos en fines de semana y noches (8 p.m. 3 a.m.).
- → Patrones geográficos: mayor concentración en áreas urbanas densamente pobladas.
- → Predicción de violencia: los modelos, especialmente Random Forest, mostraron alta precisión y robustez al anticipar si un crimen será violento basándose en ubicación, hora y tipo de delito.
- → La combinación de análisis descriptivo, estadístico y machine learning brindó una visión integral, útil para mejorar la gestión y prevención del delito en la ciudad.





- → Implementar y actualizar periódicamente los modelos predictivos (especialmente Random Forest) para anticipar riesgos y optimizar recursos.
- → Diseñar intervenciones preventivas focalizadas según patrones de tiempo y espacio, y profundizar el análisis de clusters para estrategias diferenciadas.
- → Integrar alertas automáticas de anomalías para detectar eventos excepcionales y mejorar la capacidad de respuesta.
- → **Promover la colaboración entre policías y analistas**, e incorporar nuevas fuentes de datos para enriquecer el análisis y aumentar la precisión predictiva.



# Thank you!

