PROGRAMMING LANGUAGES AND COMPUTATION

Problem Sheet 11: The Halting Problem & Reductions

** 1.	Show that if $f: U \lesssim V$ and $g: U \lesssim W$ then $g \circ f: U \lesssim W$.
1	

LUCKY₁₂₇ = { $\gamma(S)$ | running S on input 1 runs for at least 127 computational steps }

decidable? (Hint: if it is, describe a program that decides it. Think simply, write informally, and do not let the expressive poverty of While confine you.)

*** 3. Suppose we have a way of encoding every DFA M as a natural number $\delta(M) \in \mathbb{N}$. Is the predicate

$$\mathsf{EMPTY} = \{ \delta(M) \mid L(M) = \emptyset \}$$

decidable? Why, or why not? (Hint: the advice from the previous question applies here too.)

- ** 4. (Trick question.) Is it decidable whether God exists?
- ** 5. Prove that if $f: A \xrightarrow{\cong} B$ is a bijection, then so is its inverse $f^{-1}: B \to A$.

*** 6. Prove that the set
$$\mathbb{N} \to \mathbb{N} = \{ f \mid f : \mathbb{N} \to \mathbb{N} \}$$

is uncountable.

** 2. Is the set

**** 7. Prove that the set
$$\mathsf{ONE} = \{ \ \gamma(S) \ | \ [\![S]\!]_x(0) \ \downarrow \}$$
 is undecidable.