CvO Universität Oldenburg

Institut für Mathematik Prof. Dr. Hannes Uecker Klausur Analysis 3, W13/1414.1.2014

Klausur Analysis 3, W13/14, Lösungshinweise

Bearbeitungszeit 120 Minuten. Erlaubte Hilfsmittel maximal 2 Blätter eigener handschriftlicher Aufschrieb, keine weiteren Unterlagen, keine elektronischen Hilfsmittel wie Taschenrechner oder Mobiltelefone. Alle Antworten sind zu begründen!

Aufgabe 1 2+3+7 Punkte. a) Sei $f(x) = e^{-|x_1|(1+x_2^2)}$. Gilt $f \in L^1(\mathbb{R}^2)$?

- b) Sei $f(x) = e^{-(x_1^2 + \dots + x_d^2)/2}$. Man bestimme $\hat{f}(k) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{-i\langle k, x \rangle} f(x) dx$, wobei auf den 1D Fall aus der Vorlesung Bezug genommen werden darf.
- c) Sei $Q = (0,1)^2$, $p,q \in \mathbb{R}$ und $f(x,y) = x^p y^q$. Man beweise oder widerlege: $f \in L(Q) \Leftrightarrow p,q > -1$.

Aufgabe 2 10 Punkte. Sei I ein Intervall, $f_n \in L(I)$ für alle $n \in \mathbb{N}$, $f_n(x) \to f(x)$ fast überall, und für ein $h \in L(I)$ und alle n gelte $|f_n - f| \le h$ fast überall in I. Man beweise oder widerlege: $f \in L(I)$, und es gilt $\int f dx = \lim_{n \to \infty} \int f_n dx$.

Aufgabe 3 2+7 Punkte. a) Sei $Q = [0,1]^2$ und $f(x) = \max\{x_1, x_2\}$. Man bestimme $\int_Q f(x) dx$.

b) Sei $M = \{(x, y, z) \in \mathbb{R}^3 : 3r^2/4 \le z \le 1 + r^2/2, \quad r^2 = x^2 + y^2\}$. Man skizziere M und bestimme das Volumen |M|.

Aufgabe 4 5+5 Punkte. Gegeben sind die Vektorfelder $v, w : \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$v(x) = \begin{pmatrix} 0 \\ -x_3 \\ x_2 \end{pmatrix}, \qquad w(x) = \begin{pmatrix} -2x_1x_2 \exp(-x_1^2) \\ \exp(-x_1^2) + x_3 \\ x_2 \end{pmatrix}.$$

- a) Man bestimme, falls möglich, ein Potential ϕ für v bzw ψ für w.
- b) Man bestimme die Kurvenintegrale 2.Art $\int_{\gamma} v(x) dx$ und $\int_{\gamma} w(x) dx$ längs einer beliebigen (möglichst einfachen!) Kurve von (0,0,0) nach (1,1,1).

Aufgabe 5 2+6 Punkte. a) Sei $G \subset \mathbb{R}^3$ ein Gebiet für das der Satz von Gauß gilt, und n die äußere Normale. Man beweise oder widerlege: $\int_{\partial G} \langle v, n \rangle dS = 0$ für jedes konstante Vektorfeld $v : \mathbb{R}^3 \to \mathbb{R}^3$.

b) Sei R > 0 und $\Omega = \{x \in \mathbb{R}^3 : ||x|| \le R\}$ die Kugel mit Radius R. Man bestimme den Fluss des Vektorfeldes $v(x) = (x_1^3, x_2^3, x_3^3)$ durch $\partial \Omega$.

Aufgabe 6 6+5 Punkte. a) Sei $f(x,y) = (y-x)(y-x^2)$. Man skizziere

$$M = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$$

und bestimme alle Punkte (x_0, y_0) nahe denen M eine UMFKT des \mathbb{R}^2 ist, d.h. alle $(x_0, y_0) \in \mathbb{R}^2$ für die ein $\delta > 0$ existiert sodaß $M \cap U_{\delta}((x_0, y_0))$ eine UMFKT ist.

b) Man beweise oder widerlege: Sei $\Omega \subset \mathbb{R}^m$ offen und $\phi \in C^1(\Omega, \mathbb{R}^d)$ eine injektive Immersion. Dann ist Ω eine m-dimensionale UMFKT des \mathbb{R}^d .