DAFTAR ISI

DAFTA	R ISI	i
DAFTA	R TABEL	ii
DAFTA	R GAMBAR	ii
BAB 1. I	PENDAHULUAN	1
1.1	Latar Belakang Masalah	1
1.2	Rumusan Masalah	2
1.3	Tujuan Penelitian	2
1.4	Urgensi Penelitian	2
1.5	Luaran yang Diharapkan	2
1.6	Manfaat Penelitan	2
BAB 2. T	ΓΙΝJAUAN PUSTAKA	3
2.1	Aplikasi TiO2 sebagai Fotokatalis untuk Produksi Hidrogen	3
2.2	Potensi Fotoelektrokatalisis untuk Degradasi Amonia	3
2.3	Modifikasi TiO ₂ Nanotubes	3
2.4	Rekam Jejak Penelitian Terkait	4
BAB 3. N	METODE PENELITIAN	5
3.1	Model Penelitian	5
3.2	Tahapan Penelitian	5
3.3	Prosedur Penelitian	6
3.4	Indikator Pencapaian	8
3.5	Teknik Pengambilan Data	8
3.6	Analisis dan Pengolahaan Data	8
BAB 4. I	BIAYA DAN JADWAL KEGIATAN	9
4.1	Anggaran Biaya	9
4.2	Jadwal Kegiatan	9
DAFTA	R PUSTAKA	9
LAMPII	RAN	. 11
Lampi	ran 1. Biodata Ketua, Anggota, dan Dosen Pendamping	. 11
Lampi	ran 2. Justifikasi Anggaran Kegiatan	. 20
Lampi	ran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	. 21
Lampi	ran 4. Surat Pernyataan Ketua Pelaksana	. 22

DAFTAR TABEL

Tabel 3.4 Indikator Pencapaian Penelitian	8
Table 4.1 Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	9
DAFTAR GAMBAR	
Gambar 3.1 Diagram Alir Pelaksaan Kegiatan	6

BAB 1. PENDAHULUAN

1.1 Latar Belakang Masalah

Penemuan hidrogen sebagai alternatif bahan bakar menawarkan peluang yang prospektif dalam mengatasi kebutuhan energi (Elnashaie, et al., 2007). Berbeda dengan bahan bakar fosil yang memiliki keterkaitan erat dengan perubahan iklim global melalui emisi CO dan CO₂, emisi pembakaran hidrogen didominasi dengan uap air. Selain itu, hidrogen memiliki nilai kalor tiga kali lebih besar dibanding dengan bahan bakar berbasis petrol (Balat & M., 2009). Saat ini, produksi hidrogen masih didominasi dengan *steam reforming* berbasis gas alam. Metode ini memiliki keunggulan dari segi ekonomi dan efisiensi, namun berperan besar dalam produksi gas rumah kaca. Metode *water splitting* dengan suhu tinggi cenderung ramah lingkungan tetapi membutuhkan energi yang sangat besar. Proses fotokatalisis menawarkan produksi hidrogen yang ramah lingkungan dan hemat energi dengan menggunakan energi foton untuk aktivasi pada suhu ruang.

Amonia sering kali ditemukan di berbagai jenis limbah cair industri dan dilepaskan ke perairan bebas. Hal ini menyebabkan terjadinya penumpukan nutrisi secara berlebih dan berakibat pada eutrofikasi. Peraturan yang ditetapkan oleh Kementerian Lingkungan Hidup Republik Indonesia tentang Kualitas Air Limbah No. 5 Tahun 2014 menyatakan bahwa beban pencemaran paling tinggi yang diperbolehkan dalam limbah cair pabrik sebesar 750 ppm. Oleh karena itu, beberapa metode telah diterapkan untuk mendegradasi amonia dari limbah cair, termasuk *air stripping*, pertukaran ion, klorinasi, dan nitrifikasi-denitrifikasi. Namun, metode ini sering kali membutuhkan biaya yang mahal serta menghasilkan produk samping yang berbahaya (Seruga, et al., 2019). Oleh karena itu, alternatif lain untuk penanganan limbah amonia yang efektif dan ramah lingkungan perlu dikembangkan. Proses fotokatalisis memiliki potensi untuk mendegradasi amonia menjadi komponen tidak berbahaya seperti N₂ dan H₂.

Fotokatalisis dengan TiO₂ sebagai semikonduktor berpeluang sebagai sebuah terobosan dalam produksi hidrogen sekaligus degradasi amonia secara simultan. Metode ini menggunakan cahaya sebagai energi aktivasi untuk menghasilkan *holes* dan elektron yang berguna untuk mengoksidasi polutan dan mereduksi ion hidrogen menjadi gas hidrogen. Namun, dikarenakan penggunaan TiO₂ sebagai fotokatalis secara individu dilihat masih kurang efektif, penambahan dopan C dan CuO diduga dapat meningkatkan aktivitas fotokatalitik. Sementara itu, kombinasi proses fotokatalisis dengan elektrolisis yang merupakan reaksi penguraian suatu elektrolit dengan bantuan arus listrik dipercaya dapat memberikan efisiensi yang lebih tinggi untuk mendegradasi amonia. Dalam sebuah penelitan yang dilakukan oleh Xiao dan rekan kerja (2016), kombinasi proses fotokatalisis dan elektrolisis dengan TiO₂ *nanotubes* memberikan 21.2% efisiensi terhadap degradasi amonia dan hanya 3% efisiensi dengan fotokatalisis.

Maka dari itu, dalam proposal ini diusulkan penelitian dengan tema "Produksi Hidrogen dan Pengolahan Limbah Amonia secara Simultan dengan Kombinasi Proses Elektrolisis dan Fotokatalisis Menggunakan CuO/C-TiO₂ *Nanotubes*"

1.2 Rumusan Masalah

- 1. Seberapa efektifkah pengaruh penambahan dopan C dan CuO pada TiO₂ *nanotubes* untuk produksi hidrogen dan degradasi amonia secara simultan.
- 2. Bagaimana pengaruh kombinasi antara elektrolisis dan fotokatalisis CuO/C- TiO₂ *nanotubes* untuk produksi hidrogen dan degradasi amonia secara simultan

1.3 Tujuan Penelitian

- 1. Mendapatkan komposisi dopan C dan CuO yang optimal pada TiO₂ *nanotubes* untuk produksi hidrogen dan degradasi amonia secara simultan
- 2. Mendapatkan kondisi operasi yang optimal pada kombinasi proses elektrolisis dan fotokatalisis (fotoelektrokatalisis) untuk produksi hidrogen dan degradasi amonia secara simultan

1.4 Urgensi Penelitian

Besarnya volume limbah amonia dari industri pupuk yang dibuang begitu saja ke lingkungan sangat merugikan bagi ekosistem. Di sisi lain, kebutuhan energi yang terus meningkat memicu kebutuhan sumber energi alternatif yang terbarukan dan juga ramah lingkungan seperti hidrogen. Kombinasi proses fotoelektrokatalisis menawarkan sebuah terobosan dalam mengatasi limbah amonia sekaligus produksi hidrogen.

1.5 Luaran yang Diharapkan

- 1. Laporan kemajuan
- 2. Laporan akhir
- 3. Artikel ilmiah (seminar internasional dan/atau jurnal internasional)

1.6 Manfaat Penelitan

- 1. Memicu kreativitas akademisi dalam menerapkan ilmunya untuk mengatasi permasalahan lingkungan
- 2. Mengurangi kadar pencemaran amonia yang disebabkan limbah cair industri
- 3. Sebagai acuan penelitian selanjutnya melalui publikasi ilmiah secara nasional maupun internasional

BAB 2. TINJAUAN PUSTAKA

2.1 Aplikasi TiO2 sebagai Fotokatalis untuk Produksi Hidrogen

Fujishima dan Honda (1972) membawa penemuan menjanjikan melalui fotokatalis semikonduktor untuk produksi hidrogen. Dibandingkan dengan metode lain, metode ini memiliki kelebihan yaitu ramah lingkungan karena menggunakan tenaga surya dan tidak menghasilkan emisi gas berbahaya (Ganguly, et al., 2019). Beberapa semikonduktor seperti ZnO, SnO₂, CdS, ZnS, and FeS telah dipelajari, namun TiO₂ masih memegang potensi yang menarik karena kemampuan fotokatalitik dan stabilitas fotokimia yang tinggi, tidak korosif, tidak beracun, dan efektivitas biaya. Dalam prosesnya, TiO₂ akan dieksitasi oleh foton (hv) dengan energi yang sama atau lebih besar dari celah pita. Hal ini mengakibatkan terlepasnya elektron (ecb) dari pita valensi ke pita konduksi dan menyebabkan terbentuknya *holes* (hvb). *Holes* pada pita valensi akan memecah molekul air menjadi gas oksigen dan ion hidrogen, yang kemudian direduksi oleh elektron menjadi gas hidrogen (Lin, et al., 2009). Proses decomposisi air menjadi gas hidrogen dengan fotokatalisis secara umum ditulis sebagai:

$$2hv + H_2O \rightarrow H_2 + \frac{1}{2}O_2$$
 $\Delta G^0 = 237kJ \text{ mol}^{-1}$ (2.1)

2.2 Potensi Fotoelektrokatalisis untuk Degradasi Amonia

Wang dan rekan kerja (2014) mendemonstrasikan fotoelektrokatalitik amonia dengan menggunakan TiO2 nanotubes sebagai fotoanode dengan platina sebagai katode. Holes yang terbentuk pada pita valensi akan mengoksidasi amonia yang teradsoprsi pada permukaan TiO2 menjadi gas nitrogen dan ion hidrogen. Kemudian elektron akan dialirkan ke katoda Pt melalui sirkuit luar dan mereduksi ion hidrogen menjadi gas hidrogen. Dikarenakan nitrogen memiliki beberapa bilangan oksidasi, nitrogen memiliki kemampuan tinggi untuk bertukar elektron dengan unsur lain dan menghasilkan nitrat (NO₃-) dan nitrit (NO₂-) yang juga berbahaya untuk lingkungan. Hasil oksidasi amonia ini sangat bergantung dengan perubahan pH dan pengaplikasian tegangan. Wang (2014) menemukan bahwa pada bias tegangan yang tinggi dapat mendegradasi amonia menjadi gas nitrogen dengan lebih optimal. Bias ini juga terbukti dapat menekan rekombinasi antara pasangan elektron dan holes. Bonsen dan rekan kerja (1997) mempelajari bahwa dengan peningkatan pH dari 7,2 menjadi 9,9 dapat memberikan efisiensi degradasi yang lebih tinggi. Namun, pembentukan NO₂- meningkat pada pH yang lebih tinggi, tetapi mampu berubah menjadi NO₃- dengan penyinaran yang cukup lama.

2.3 Modifikasi TiO₂ Nanotubes

Penggunaan TiO₂ dalam fotokatalitik untuk degradasi amonia masih dilihat kurang efisien mengingat celah pita yang besar dan rekombinasi yang cepat (Ji, et al., 2017). Doping non-logam dipercaya sebagai metode efektif untuk meningkatkan aktivitas fotokatalitik TiO₂ dengan meminimalkan celah pita TiO₂

dan meningkatkan penyerapan cahaya tampak. Khan dan rekan kerja (2002) mempelajari efisiensi dopan C dalam mengurangi energi celah pita, dari 3,23 eV menjadi 2,32 eV. Selain itu, keberadaan ion logam transisi dipercaya dapat berperan sebagai perangkap elektron yang dapat menekan rekombinasi electron dan *holes*. Sebagai salah satu oksida logam yang memiliki intrinsik tipe-p dengan celah pita yang rendah (1,2 – 2,0 eV), CuO dapat membentuk rute hetero p-n dengan tipe-n TiO₂ yang mampu meningkatkan kinerja katalitik dan *sensing* terhadap amonia (Chen, et al., 2016). Menurut Chaudari dan Mishra (2016), TiO₂ yang didoping dengan 0,1 mol% CuO menunjukan sensitivitas tertinggi (97%) terhadap amonia dengan waktu respon 2 detik.

2.4 Rekam Jejak Penelitian Terkait

Berbagai penelitian telah dilakukan untuk menyelidiki kemampuan TiO₂ sebagai fotokatalis dalam degradasi amonia. Bonsen dan rekan kerja (1997) mendemonstrasikan kemampuan TiO2 dalam bentuk serbuk tersuspensi dapat mendegradasi amonia hingga 70%. Penggunaan serbuk tersuspensi dapat mengurangi efisiensi penggunaan TiO2 sebagai fotokatalis karena dibutuhkan proses pemisahan dari larutan. Nemoto dan rekan kerja (2007) mencapai rasio molar H₂/N₂ hampir 3:1 selama 6 jam iradiasi, namun hanya 21.6% amonia yang terdekomposisi dalam 53 jam iradiasi. Peng (2019) menggunakan TiO2 yang tersuspensi pada hemp stemp biochar dan didopan CuO untuk mendegradasi amonia dibawah sinar UV dan sinar tampak. Di bawah iradiasi UV light, fotokatalis menunjukan kemampuan degradasi yang tinggi hingga mencapai 99.7%, namun hanya 60.7% dengan sinar tampak. Xiao dan rekan kerja (2016) meneliti pengaruh kombinasi proses fotokatalisis dan elektrolisis terhadap degradasi amonia dengan menggunakan TiO2 nanotubes. Hasil penelitian menunjukan efisiensi degradasi amonia tertinggi didapatkan melalui kombinasi proses elektrolisis dan fotokatalisis, dimana 21.2% amonia terdegradasi. Sedangkan, amonia yang diproses dengan elektrolisis pada tegangan 0.5V tidak terdegradasi dan pada fotokatalisis amonia yang terdegradasi sebesar 3%.

Dalam usulan ini, akan digunakan TiO₂ *nanotubes* yang didoping dengan C dan CuO untuk meningkatkan efektifitas TiO₂ sebagai fotokatalis dibawah iradiasi sinar tampak. Penggunaan TiO₂ nanotubes dipercaya dapat memberikan efisiensi dengan mengeliminasi kebutuhan pemisahan serbuk tersuspensi dari larutan dan dapat digunakan berulang kali. Kombinasi proses fotokatalisis dan elektrolisis dipercaya dapat memberikan efisiensi yang lebih tinggi untuk mendegradasi amonia. Penelitian ini bertujuan untuk mencapai kondisi yang optimal untuk mendegradasi amonia serendah mungkin sekaligus menghasilkan jumlah hidrogen yang tinggi dengan memvariasikan jumlah C dan CuO yang didoping ke dalam fotokatalis TiO₂.

BAB 3. METODE PENELITIAN

3.1 Model Penelitian

Dengan mempertimbangkan kondisi pandemi pada saat ini, penelitian akan dilaksanakan dengan model *blended* yang merupakan gabungan antara penelitian secara online dan offline. Penelitian secara online meliputi komunikasi antar anggota dan dosen pendamping serta studi literatur. Secara offline, penelitian meliputi sintesis fotokatalisis dan uji degradasi fotokatalisis yang akan dilakukan di laboratorium Departemen Teknik Kimia Universitas Indonesia dengan mengikuti protokol kesehatan yang berlaku.

3.2 Tahapan Penelitian

Riset ini dilakukan dengan pendekatan empirik, **Gambar 3.1** merupakan gambaran secara ringkas mengenai metode fotoelektrokatalisis berbasis CuO/C-TIO2 *nanotubes* untuk degradasi amonia dan produksi hidrogen secara simultan. Pada tahap awal, dilakukan preparasi alat dan bahan serta penyusunan reaktor beserta elektroda. Kemudian, dilanjutkan sintesis CuO/C-TiO2 *nanotubes* yang meliputi in-situ anodisasi dan juga SILAR. Dalam sintesis, konsentrasi CuO dan C dopan akan divariasikan untuk menemukan pengaruh penambahan dopan dan kondisi optimum yang sesuai untuk degradasi amonia. FESEM-EDX, XRD, dan UV-Vis DRS akan digunakan untuk mengkarakterisasi fotokatalis. Kemampuan fotoelektrokatalisis reaktor dalam mendegradasi amonia akan dianalisis dengan UV-Vis spectrofotometri, sedangkan gas hidrogen yang terbentuk dianalisis dengan menggunakan *Gas Chromatography*.

Gambar 3.1 Diagram Alir Pelaksaan Kegiatan

3.3 Prosedur Penelitian

Berdasarkan diagram alir di atas, berikut adalah rincian dari metode pelaksanaan pada usulan nanokomposit CuO/C-TiO₂ nanotubes untuk degradasi amonia dan produksi hidrogen secara simultan.

1. Preparasi alat dan bahan

Alat dan bahan yang dipersiapkan pada tahap ini meliputi alat dan bahan yang dibutuhkan untuk sintesis CuO/C-TiO2 *nanotubes* serta fotoelektrokatalisis amonia. Beberapa bahan yang terpenting antara lain, plat Ti, elektroda Pt, NH₄F, glycerol, Cu(NO₃)₂.3H₂O, NH₄OH, Na₂SO₄, dan aquades. Kemudian, beberapa alat yang digunakan seperti lampu merkuri, *magnetic stirrer*, furnace dan *power supply* DC.

2. Preparasi plat Ti

Sebelum melakukan sintesis, plat Ti dengan dimensi 3 x 2 cm akan di preparasi untuk menghilangkan kotoran-kotoran yang ada. Plat Ti yang sudah diamplas akan dibersihkan dengan menggunakan campuran larutan HF: HNO₃: H₂O dengan perbandingan volume 1: 3: 6 selama 2 menit.

3. Sintesis C-TiO₂ nanotubes

Proses sintesis C-TiO₂ *nanotubes* dilakukan dengan metode in-situ anodisasi. Anodisasi dilakukan dengan 60 ml larutan elektrolit glycerol yang mengandung 0.5 wt% ammonium fluoride dan 25 wt% aquades. Plat Ti digunakan sebagai anoda dengan Pt sebagai katoda dipasang dengan jarak 3 cm dan dihubungkan ke *power supply* DC dengan tegangan 50V. Larutan diaduk dengan kecepatan konstan menggunakan *magnetic stirrer* pada 100 rpm selama 120 menit. Sampel kemudian dikalsinasi dengan variasi gas H₂/Ar, CO₂, udara pada suhu 500°C selama 3 jam.

4. Sintesis CuO/C-TiO2 nanotubes

Proses sintesis CuO ke dalam C-TiO₂ *nanotubes* yang sudah di preparasi dilakukan dengan metode SILAR. Larutan Cu(NO₃)₂ sebanyak 60 ml dengan variasi konsentrasi pada suhu 75°C digunakan sebagai prekursor dopan CuO. Sampel Ti akan dicelupkan ke dalam larutan Cu(NO₃)₂.3H₂O selama 10 menit. Kemudian dikeringkan selama 30 detik pada suhu ruangan sebelum dicelupkan ke dalam aquades selama 30 detik. Proses ini dihitung sebagai 1 siklus dan akan dilakukan untuk 20 sikus. Kemudian, sampel akan dikalsinasi dengan furnace pada suhu 500°C selama 3 jam.

5. Fotoelektrokatalisis amonia

Reaktor yang digunakan untuk fotoelektrokatalis amonia adalah reaktor dengan 2 kompartmen. Kompartmen pertama merupakan tempat fotoanoda untuk mengoksidasi amonia, yaitu CuO/C-TiO2 *nanotubes*. Sedangkan kompartment kedua sebagai tempat katoda untuk memproduksi hidrogen. Kompartmen pertama berisi larutan elektrolit 225 ml mengandung 1 M Na₂SO₄ dan 500 ppm amonia. Kompartmen kedua berisi larutan elektrolit 225 ml yang mengandung 1 M Na₂SO₄. Kedua elektroda terhubung dengan *power supply* DC sebagai sumber tegangan 1V. Larutan pada kompartmen pertama berisi fotoanode akan disinari dengan sinar tampak. Sebelum dimulai, dilakukan uji kebocoran pada reaktor dan juga *purging* untuk mengeluarkan semua gas yang tersisa dengan mengalirkan gas argon bertekanan rendah selama 30 menit untuk setiap kompartmen. Proses fotoelektrokatalisis dilakukan selama 2 jam dengan pengambilan sampel 1 – 2 ml setiap 30 menit untuk dianalisa dengan menggunakan spectrophotometric pada λ = 430 nm.

3.4 Indikator Pencapaian

Tabel 3.1 Indikator Pencapaian Penelitian

No	Tahapan	Indikator Capaian	Luaran
1	Sintesis C-TiO ₂ nanotubes	Pembentukan <i>nanotubes</i> pada permukaan plat Ti dan % <i>loading</i> C	Penurunan band gap TiO2
2	Sintesis CuO/C-TiO ₂ nanotubes	% loading CuO	Peningkatan sensing performance terhadap amonia
3	Uji kinerja	Penurunan konsentrasi amonia	Perhitungan laju degradasi amonia
3	fotoelektrokatalisis	Peningkatan konsentrasi hidrogen	Perhitungan laju konversi hidrogen

3.5 Teknik Pengambilan Data

Data yang dihasilkan pada penelitian ini berupa konsentrasi amonia dan fraksi hidrogen yang diambil dari fotoelektrokatalisis cell. Konsentrasi amonia diukur dengan menginjeksikan sampel hasil operasi yang diambil setiap 30 menit selama 2 jam iradiasi ke dalam UV-Vis spektrofotometri. Reaktor yang digunakan telah terhubung secara langsung dengan *Gas Chromatography* yang mendukung pengukuran gas hidrogen yang terbentuk.

3.6 Analisis dan Pengolahaan Data

Hasil injeksi sampel ke dalam UV Vis spektrofotometri akan menunjukan konsentrasi sampel berdasarkan absorbansi terhadap cahaya. Hasil injeksi dalam *Gas Chromatography* akan secara otomoatis menghasilkan kromatogram yang menunjukan peak-peak deteksi gas dan konsentrasi hidrogen yang terkandung dalam sampel.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Table 4.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang diperlukan	220.000
2	Bahan habis pakai	4.875.000
3	Perjalanan	250.000
4	Lain-lain	4.300.000
	Jumlah	9.645.000

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

		Bulan ke-			Person
Jenis Kegiatan	1	2	3	4	Penannggung-
					jawab
Studi literatur					Refa Odetta
Persiapan alat dan bahan					Haura Alifia
Sintesis C-TiO ₂ nanotubes					Refa Odetta
Uji degradasi amonia dan karakterisasi					Haura Alifia
C-TiO ₂ nanotubes					Haura Amra
Sintesis CuO/C- TiO ₂ nanotubes					Raissa Samara
Uji degradasi amonia dan karakterisasi					Haura Alifia
CuO/C- TiO2 nanotubes					Haura Allila
Pengambilan Data					Refa Odetta
Analisis Data					Raissa Samara
Penyusunan Laporan					Raissa Samara

DAFTAR PUSTAKA

Balat, M. & M., B., 2009. Political, economic, and environmental impacts of biomass-based hydrogen. *International Journal of Hydrogen Energy*, Volume 34, pp. 3589-3603.

Bonsen, E.-M., Schroeter, S., Jacobs, H. & Broekaert, J. A. C., 1997. Photocatalytic Degradation of Ammonia with TiO2 as Photocatalyst in The Laboratory and Under the Use of Solar Radiation. *Chemosphere*, 35(7), pp. 1431-1445.

- Chaudari, P. & Mishra, S., 2016. Effect of CuO as a dopant in TiO2 on ammonia and hydrogen suphide sensing at room temperature. *Measurement*, Volume 90, pp. 468-474.
- Chen, Y. et al., 2016. A CuO-ZnO Nanostructured p-n Junction Sensor for Enhanced N-Butanol Detection. *Royal Society of Chemistry*, Volume 6, pp. 1504-2511.
- Elnashaie, S., Chen, Z. & Prasad, P., 2007. Efficient Production and Economics of Clean-Fuel Hydrogen. *International Journal of Green Energy*, Volume 4, pp. 249-282.
- Ganguly, P. et al., 2019. 2D Nanomaterials for Photocatalytic Hydrogen Production. *ACS Energy Letters*, Volume 4, pp. 1687-1709.
- Honda, K. & Fujishima, A., 1972. Electrochemical Photolysis of Water at Semiconductor Electrode. *Nature*, Volume 238, pp. 37-38.
- Ji, L. et al., 2017. In situ synthesis of carbon doped TiO2 nanotubes with enhanced photocatalytic performance under UV and visible light. *Carbon*, Volume 125, pp. 544-550.
- Khan, S. U. M., Al-shahry, M. & Ingler Jr., W. B., 2002. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. *Science*, Volume 297, pp. 2243-2244.
- Lin, W.-C.et al., 2009. Hydrogen Production from Methanol/Water Photocatalytic Decomposition Using Pt/TiO2-xNx Catalyst. *Energy and Fuels*, Volume 23, pp. 2192-2196.
- Nemoto, J., Gokan, N., Ueno, H. & Kaneko, M., 2007. Photodecomposition of Ammonia to Dinitrogen and Dihydrogen on Platinized TiO2 Nanoparticules in an Aqueous Solution. *Photochemistry and Photobiology*, Volume 185, pp. 195-300.
- Peng, X. et al., 2019. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. *Journal of Alloys and Compounds*, Volume 770, pp. 1055-1063.
- Seruga, P. et al., 2019. Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals. *Molecules*, 24(3633), pp. 1-13.
- Wang, H. et al., 2014. Photoelectrocatalytic Oxidation of Aqueous Ammonia Using TiO2 Nanotube Arrays. *Applied Surface Science*, Volume 311, pp. 851-857.
- Xiao, S. et al., 2016. Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO2 nanotube electrodes. *Environmental Sciences*, Volume 50, pp. 103-108.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping

A. Biodata Ketua

A. Identitas Diri

	Actinion Part	
1	Nama Lengkap	Refa Odetta
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	1806227622
5	Tempat dan Tanggal Lahir	Jakarta, 2 Maret 2001
6	Alamat e-mail	odettarefa@gmail.com
7	No. Telepon/HP	+6281296662914

B. Kegiatan Mahasiwa yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Paduan Suara Mahasiswa Universitas Indonesia Paragita	Kepala Divisi Inventory	2021/Fakultas Teknik
2	IMPI FTUI 2019	BPH Sosial Masyarakat	2019/Fakultas Teknik

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Business Case Competition	Hult Prize Universitas Indonesia	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 8 Febuari 2021 Ketua,

(Refa Odetta)

B. Biodata Anggota ke-1

A. Identitas Diri

1	Nama Lengkap	Raissa Samara Natalia Siregar
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	1706020004
5	Tempat dan Tanggal Lahir	Desember, 25 Desember 1999
6	Alamat e-mail	raissa.samara@ui.ac.id
7	No. Telepon/HP	+62816942275

B. Kegiatan Mahasiwa yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Student Exchange 2019	Mahasiswi	2019/University of Queensland
2	Five for Life 2018	Wakil Sekretaris	2018/Fakultas Teknik
3	Freshman Fair 2018	Wakil Ketua Divisi Bidang Danus Internal	2018/Fakultas Teknik

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 8 Febuari 2021 Anggota Tim,

(Raissa Samara)

C. Biodata Anggota ke-2

A. Identitas Diri

1	Nama Lengkap	Haura Alifia Pramesti
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Bioproses
4	NIM	1806207406
5	Tempat dan Tanggal Lahir	Jakarta, 16 Juli 2000
6	Alamat e-mail	haura,alifia@ui,ac.id
7	No. Telepon/HP	+6281315944490

B. Kegiatan Mahasiwa yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IATMI 2021	Ketua Divisi Media dan Komunikasi	2021/Fakultas Teknik
2	IATMI 2020	Manager Departemen Eksternal	2020/Fakultas Teknik
3	Chemical Engineering in Charity (Cherry) 2019	Penanggung Jawab Publikasi Dokumentasi Design	2019/Fakultas Teknik

Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 8 Febuari 2021 Anggota Tim,

(Haura Alifia Pramesti)

D. Biodata Dosen Pendamping

A. Identitas Diri

1.	Nama Lengkap	Prof. Dr. Ir. Slamet, M.T.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Kimia
4.	NIP/NIDN	0004056605
5.	Tempat dan Tanggal Lahir	Kebumen, 4 Mei 1966
6.	Alamat e-mail	slamet@che.ui.ac.id
7.	No. Telepon/HP	08128351803

B. Riwayat Pendidikan

	S 1	S2	S 3
Nama Institusi	UGM	UI	UI
Jurusan/ Prodi	Teknik Kimia	Teknologi gas dan katalis, Teknik Metalurgi	Fotokatalisis
Tahun Masuk-Lulus	1985-1990	1994-1996	2000-2004

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Pengolahan Gas Bumi	Wajib	3
2	Peristiwa Perpindahan	Wajib	3
3	Teknik Reaksi Kimia 1	Wajib	3
4	Teknik Reaksi Kimia 2	Wajib	3
5	Teknologi Fotokatalisis	Pilihan	3
6	Teknik Reaksi Kimia Lanjut (S2)	Wajib	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Pengembangan Nanokomposit Berbasis Titania dan Pengolahan Berbagai Jenis Limbah Menjadi Produk Ramah Lingkungan	UI	2019

2	Sintesis Fotoanoda Berbasis Tittania Nanotube dengan Dopan Nitrogen untuk Degradasi Amoniak dan Produksi H ₂ secara Simultan	Ristekdikti	2019
3	Pengembangan Katalis Heterogen Berbasis Titania untuk Produksi H ₂ Dan Surfaktan MES	UI	2019
4	Aplikasi Nanopartikel Fotokatalis untuk Produksi Biodiesel, Detergen dan Bahan Alas Kaki	UI	2018
5	Pembuatan Pembuatan Produk Pembersih Ramah Lingkungan Berbasis Bahan Hayati dengan Penambahan Nanopartikel Fotokatalis	UI	2018
6	Pengembangan Implan Gigi Anti Bakteri Berbasis Ti- 6Al-4V Termodifikasi TiO ₂ dengan Nanotubes Berdopan Logam	Ristekdikti	2018
7	Kombinasi Zeolit Alam dengan TiO ₂ sebagai Material Adsorben Fotokatalitik Terintegrasi (AFT) untuk Degradasi Polutan Gas NH ₃ Sisa Metabolisme	Ristekdikti	2018
8	Rekayasa Cleaning Agent Nanofluida Multifungsi dan Ramah Lingkungan Berbasis Minyak Sawit	Ristekdikti	2018
9	Rekayasa Cleaning Agent Nanofluida Multifungsi dan Ramah Lingkungan Berbasis Minyak Sawit	Ristekdikti	2017
10	Pengembangan Implan Gigi Anti Bakteri Berbasis Ti- 6Al-4V Termodifikasi dengan Nanotubes Berdopan Logam	Ristekdikti	2017
11	Kombinasi Zeolit Alam dengan TiO2 sebagai Material Adsorben Fotokatalitik Terintegrasi (AFT) untuk Degradasi Polutan Gas NH3 Sisa Metabolisme	Ristekdikti	2017

12	Pembuatan Detergen Multifungsi Ramah Lingkungan Berbasis Bahan Hayati dengan Penambahan Nanopartikel Fotokatalis	Internal Perguruan Tinggi	2017
13	Pengaruh Modifikasi Material Implan Gigi Berbasis Titanium Terhadap Sifat Anti Bakteri dan Biokompatibilitas	Internal Perguruan Tinggi	2017
14	Rekayasa Cleaning Agent Nanofluida Multifungsi Dan Ramah Lingkungan Berbasis Minyak Sawit	Pemerintah	2017
15	Kombinasi Adsorpsi – Fotokatalisis dengan Komposit Carbon nanotube - Titania Nanotube Untuk Pengolahan Limbah Pabrik Pulp dan Kertas	Ristekdikti	2016
16	Rekayasa Detergen Generasi Baru Ramah Lingkungan Berbasis Nanofluida Titania	Ristekdikti	2016
17	Prototipe Alat Pengolahan Limbah Cair Industri Farmasi dengan Teknologi Advance Oxidation Process (Fotokatalisis, Ozonasi Katalitik dan Ozonoasi Non Katalitik)	Ristekdikti	2016
18	Pengembangan Implan Gigi Anti Bakteri Berbasis Ti-6Al-4V Termodifikasi dengan Nanotubes Berdopan Logam	Ristekdikti	2016
19	Prototipe Alat Pengolahan Limbah Cair Industri Farmasi dengan Teknologi Advance Oxidation Process (Fotokatalisis, Ozonasi Katalitik dan Ozonoasi Non Katalitik)	Ristekdikti	2015
20	Sintesis Komposit Titania Nanotube (TiNT)/Carbon Nanotube (CNT)/Fe ₃ O ₄ untuk Aplikasi Pengolahan Limbah Industri Migas	Pemerintah	2015
21	Rekayasa Detergen Generasi Baru Ramah Lingkungan Berbasis Nanofluida Titania	Ristekdikti	2015

22	Kombinasi Adsorpsi – Fotokatalisis dengan Komposit Carbon nanotube - Titania Nanotube Untuk Pengolahan Limbah Pabrik Pulp dan Kertas	Ristekdikti	2014
23	Sintesis Komposit TiO ₂ Nanotube (TNT) – Batu Apung untuk Aplikasi Fotodegradasi Limbah Industri Migas	Pemerintah	2014
24	Penanganan Limbah Cair Industri Tekstil Indonesia Menggunakan Teknologi Foto- bio-degradasi Untuk Menyediakan Air Bersih dan Meningkatkan Kualitas Hidup Masyarakat	Ristekdikti	2014
25	Optimalisasi dan Pra-Komersialisasi Alat Perangkap Nyamuk Multi-Fungsi Berbasis Nano-Fotokatalisis	Pemerintah	2013
26	Penanganan Limbah Cair Industri Tekstil Indonesia Menggunakan Teknologi Foto- bio-degradasi Untuk Menyediakan Air Bersih dan Meningkatkan Kualitas Hidup Masyarakat	Ristekdikti	2013
27	Optimalisasi dan Pra-Komersialisasi Alat Perangkap Nyamuk Multi-Fungsi Berbasis Nano-Fotokatalisis	Ristekdikti	2013
28	Produksi Hidrogen dari Limbah Industri Turunan Biomassa dengan Katalis TiO ₂ Berbasis Nanotube	Ristekdikti	2013
29	Penanganan Limbah Cair Industri Tekstil Indonesia Menggunakan Teknologi Foto- Bio-Degradasi untuk Menyediakan Air Bersih dan Meningkatkan Kualitas Hidup Masyarakat	Pemerintah	2013

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Narasumber pada Workshop Penulisan Proposal PKM untuk PIMNAS, Fakultas Ilmu Administrasi, Universitas Indonesia, Depok	UI	2018
2	Narasumber pada Workshop Penulisan Proposal PKM di Departemen Teknik Kimia, Universitas Indonesia, Depok	UI	2018
3	Narasumber pada Pelatihan Penalaran bagi Mahasiswa dan Pelatihan Pembimbingan PKM Tahun 2018 di Universitas Sultan Ageng Tirtayasa, Serang, Banten	Universitas Sultan Ageng Tritayasa	2018
4	Narasumber Pengembangan Prodi S2 Teknik Kimia & Kuliah Tamu (Tema: Peran & Aplikasi Katalisis Heterogen) di Universitas Muhammadiyah Jakarta	Universitas Muhammadiyah Jakarta	2018
5	Reviewer Monev Internal PKM Universitas Indonesia	UI	2018
6	Narasumber (invited speaker) pada Seminar Nasional Riset Terapan, Universitas Serang Raya, Serang	Universitas Serang Raya	2017
7	Reviewer Seleksi Internal Proposal PKM UI 2017	UI	2017
8	Tim Reviewer Seminar Nasional Integrasi Proses, Universitas Sultan Ageng Tirtayasa Cilegon	Universitas Sultan Ageng Tirtayasa Cilegon	2017
9	Reviewer Nasional Money Eksternal DIKTI Program Kreativitas Mahasiswa	DIKTI	2017
10	Staf Ahli – Evaluasi Unit Gas Sweetening di PT PERTAMINA Subang	PT PERTAMINA ~ UPPM Teknik Kimia FTUI	2017
11	Reviewer Monev Internal Program Kreativitas Mahasiswa UI	Direktorat Kemahasiswaan Universitas Indonesia	2016

12	Reviewer "Coaching Clinic" Program Kreativitas Mahasiswa Bidikmisi Angkatan 2013	Direktorat Kemahasiswaan Universitas Indonesia	2015
13	Instruktur Pelatihan "Gas Sweetening"	PT LNG Badak - P2M Teknik Mesin FTUI	2015
14	Pengembangan dan Aplikasi Teknologi Fotobioremediasi untuk Mewujudkan Green City di Indonesia	Ristekdikti	2014
15	Staf Ahli - Studi Pembangunan Kilang Minyak dengan Pola PKS	BP Migas - UPPM Teknik Kimia FTUI	2014
16	Instruktur Pelatihan "Simulasi Hysys untuk Gas Processing"	PT Radiant Utama - UPPM Teknik Kimia FTUI	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 8 Febuari 2021 Dosen Pendamping,

(Prof. Dr. Ir. Slamet, M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Kuantitas	Harga Satuan (Rp)	Nilai (Rp)
Pipet	2 buah	5.000	10.000
Sarung tangan	2 pasang	75.000	150.000
Lampu Merkuri	1 buah	60.000	60.000
		SUBTOTAL (Rp)	220.000
2. Barang Habis	Kuantitas	Harga Satuan (Rp)	Nilai (Rp)
Titanium (Ti) sheet	1 kg	700.000	700.000
Platinum (Pt) sheet	1 kg	350.000	350.000
Akuades	3 L	25.000	75.000
Glycerol	1.5L	1.500.000	1.500.000
Cu(NO ₃) ₂	250 gr	900.000	900.000
NH4OH	250 gr	1.200.000	1.200.000
Masker	30	100.000	100.000
Sabun cuci tangan	200 mL	50.000	50.000
		SUBTOTAL (Rp)	4.875.000
		_	
3. Perjalanan	Kuantitas	Harga Satuan (Rp)	Nilai (Rp)
3. Perjalanan Transport karakterisasi sampel	Kuantitas 5	Harga Satuan (Rp) 50.000	Nilai (Rp) 250.000
Transport karakterisasi			
Transport karakterisasi		50.000	250.000
Transport karakterisasi sampel	5	50.000 SUBTOTAL (Rp)	250.000 250.000
Transport karakterisasi sampel 4. Lain-Lain	5	50.000 SUBTOTAL (Rp) Harga Satuan (Rp)	250.000 250.000 Nilai (Rp)
Transport karakterisasi sampel 4. Lain-Lain Alat tulis	Kuantitas - 3 sampel	50.000 SUBTOTAL (Rp) Harga Satuan (Rp) 100.000 300.000	250.000 250.000 Nilai (Rp) 100.000 900.000
Transport karakterisasi sampel 4. Lain-Lain Alat tulis Karakterisasi XRD	5 Kuantitas -	SUBTOTAL (Rp) Harga Satuan (Rp) 100.000	250.000 250.000 Nilai (Rp) 100.000
Transport karakterisasi sampel 4. Lain-Lain Alat tulis Karakterisasi XRD Karakterisasi	Kuantitas - 3 sampel 3 sampel	50.000 SUBTOTAL (Rp) Harga Satuan (Rp) 100.000 300.000 600.000	250.000 250.000 Nilai (Rp) 100.000 900.000 1.800.000
Transport karakterisasi sampel 4. Lain-Lain Alat tulis Karakterisasi XRD Karakterisasi FESEM-EDX Karakterisasi UV-Vis DRS	Kuantitas - 3 sampel 3 sampel	50.000 SUBTOTAL (Rp) Harga Satuan (Rp) 100.000 300.000 600.000 250.000	250.000 250.000 Nilai (Rp) 100.000 900.000 1.800.000 750.000
Transport karakterisasi sampel 4. Lain-Lain Alat tulis Karakterisasi XRD Karakterisasi FESEM-EDX Karakterisasi	Kuantitas - 3 sampel 3 sampel	50.000 SUBTOTAL (Rp) Harga Satuan (Rp) 100.000 300.000 600.000	250.000 250.000 Nilai (Rp) 100.000 900.000 1.800.000
Transport karakterisasi sampel 4. Lain-Lain Alat tulis Karakterisasi XRD Karakterisasi FESEM-EDX Karakterisasi UV-Vis DRS	Kuantitas - 3 sampel 3 sampel	50.000 SUBTOTAL (Rp) Harga Satuan (Rp) 100.000 300.000 600.000 250.000	250.000 250.000 Nilai (Rp) 100.000 900.000 1.800.000 750.000
Transport karakterisasi sampel 4. Lain-Lain Alat tulis Karakterisasi XRD Karakterisasi FESEM-EDX Karakterisasi UV-Vis DRS	Kuantitas - 3 sampel 3 sampel 3 sampel 3 sampel	50.000 SUBTOTAL (Rp) Harga Satuan (Rp) 100.000 300.000 600.000 250.000	250.000 250.000 Nilai (Rp) 100.000 900.000 1.800.000 750.000

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam / minggu)	Uraian Tugas
1	Refa Odetta/ 1806227622	Teknik Kimia	Fotokatalisis	25	 Melakukan koordinasi antar anggota Sintesis C-TiO₂ Nanotubes
2	Raissa Samara/ 1706020004	Teknik Kimia	Fotokatalisis	25	 Sintesis CuO/C-TiO2 Nanotubes Fotoelektro- katalisis Amonia
3	Haura Alifia Pramesti/ 1806207406	Teknik Bioproses	Fotokatalisis	20	 Melakukan preparasi alat dan bahan Karakterisasi Sampel

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan di bawah ini:

Nama : Refa Odetta NIM : 1806227622 Program Studi : Teknik Kimia

Fakultas : Teknik

Dengan ini menyatakan bahwa PKM-RE saya dengan judul Produksi Hidrogen dan Pengolahan Limbah Amonia secara Simultan dengan Kombinasi Proses Elektrolisis dan Fotokatalisis Menggunakan CuO/C-TiO₂ Nanotubes yang diusulkan unutuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber daya lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan sebenar-benarnya.

Depok, 8 Febuari 2021 Yang menyatakan,

(Refa Odetta) NIM.1806227622