Simple Texture Mapping Example (1)

```
void init( void ) {
  glPixelStorei(GL UNPACK ALIGNMENT, 1);
  glGenTextures(1, &texObj);
                                                 - set wrapping for S and T coords to repeat
  glBindTexture(GL_TEXTURE_2D, texObj);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
  glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageWidth, imageHeight,
                0, GL_RGBA, GL_UNSIGNED_BYTE, texImage);
```

Simple Texture Mapping Example (2)

```
void display( void ) {
  glEnable(GL TEXTURE 2D);
  glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
  glBindTexture(GL_TEXTURE_2D, texObj);
  glBegin(GL_QUADS);
    glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
    glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
    glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
    glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);
    glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
   glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
    glTexCoord2f(1.0, 1.0); glVertex3f(2.4, 1.0, -1.4);
    glTexCoord2f(1.0, 0.0); glVertex3f(2.4, -1.0, -1.4);
  glEnd();
}
```

37

Reference

Reference

Example Explained

■ glBindTexture(..., texObj) sets texObj as the current texture object for the current texture unit

- glTexParameteri(...) sets how texture in current texture object is treated
 - The states are attached to the bound texture object, and will be restored when the texture object is re-bound
- glTexImage2D(...) loads a texture image into the current texture object
- glTexEnvf(...) sets how a retrieved texture value is combined to the primary color of the fragment
 - The states are global (or attached to the current texture) unit) and are not attached to any particular texture object

Specifying Texture Image

■ void glTexImage2D(GLenum target, GLint level, GLint internal Format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid *texImg);

- □ target GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X, ...
- Level mipmap level (0 for base level)
- internalFormat GL RGB, GL RGBA, GL APLHA. GL_DEPTH_COMPONENT, and many more
- width, height width and height (in pixels) of the texture image
- border width of border around texture image: 0 or 1
- format components in the input image: GL RGB, GL RGBA, GL RED, GL_APLHA, GL_DPETH_COMPONENT, etc.
- type data type of each component in input image: GL_UNSIGNED_BYTE, GL_BYTE, GL_FLOAT, etc.
- texImg pointer to the texture image data (and border if applicable)

39

41

40

Mipmap Generation

```
■ int gluBuild2DMipmaps(GLenum target,
            GLint internalFormat,
            GLint width, GLint height,
            GLenum format, GLenum type, void *texImg);
Example
  void init( void ) {
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    glGenTextures(1, &texObj);
glBindTexture(GL_TEXTURE_2D, texObj);
```

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
                GL_LINEAR_MIPMAP_LINEAR);
gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGBA,
                  imageWidth, imageHeight,
                  GL_RGBA, GL_UNSIGNED_BYTE, texImage);
```

Using Framebuffer Data As Texture Image

```
void glCopyTexImage2D(GLenum target, GLint level,
         GLint internalFormat, GLint x, GLint y,
         GLsizei width, GLsizei height, GLint border);
```

Example

```
void display( void ) {
  drawScene();
  glReadBuffer( GL BACK );
  glBindTexture(GL_TEXTURE_2D, texObj);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);
  glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 0, 0,
                     viewportWidth, viewportHeight, 0);
```

 Can also read depth buffer to texture object by using GL DEPTH COMPONENT as internalFormat

38

42

Texture Parameters

Some of the texture parameters that can be set using glTexParameter*()

Parameter	Values	
GL_TEXTURE_WRAP_S GL_TEXTURE_WRAP_T GL_TEXTURE_WRAP_R	GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER, GL_REPEAT, GL_MIRRORED_REPEAT	
GL_TEXTURE_MAG_FILTER	GL_NEAREST, GL_LINEAR	
GL_TEXTURE_MIN_FILTER	GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_LINEAR	
GL_TEXTURE_BORDER_COLOR	any 4 values in [0.0, 1.0]	
GL_GENERATE_MIPMAP	GL_TRUE or GL_FALSE	

Texture Functions / Environments

Texture function can be set using glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, f); where f is GL_DECAL, GL_REPLACE, GL_MODULATE, GL_BLEND, GL_ADD, or GL_COMBINE

Defines how the texture color is combined with the underlying primary color of the fragment

	Texture Base	Texture source color		
	Internal Format	C_s	A_s	
	ALPHA	(0,0,0)	A_t	
	LUMINANCE	(L_t, L_t, L_t)	1	
	LUMINANCE_ALPHA	(L_t, L_t, L_t)	A_t	
	INTENSITY	(I_t, I_t, I_t)	I_t	
ſ	RGB	(R_t, G_t, B_t)	1	
l	RGBA	(R_t, G_t, B_t)	A_t	

43

45

Reference

Texture Functions (continued)

Texture Base	REPLACE	MODULATE	DECAL
Internal Format	Function	Function	Function
ALPHA	$C_v = C_p$	$C_v = C_p$	undefined
	$A_v = A_s$	$A_v = A_p A_s$	
LUMINANCE	$C_v = C_s$	$C_v = C_p C_s$	undefined
(or 1)	$A_v = A_p$	$A_v = A_p$	
LUMINANCE_ALPHA	$C_v = C_s$	$C_v = C_p C_s$	undefined
(or 2)	$A_v = A_s$	$A_v = A_p A_s$	
INTENSITY	$C_v = C_s$	$C_v = C_p C_s$	undefined
	$A_v = A_s$	$A_v = A_p A_s$	
RGB	$C_v = C_s$	$C_v = C_p C_s$	$C_v = C_s$
(or 3)	$A_v = A_p$	$A_v = A_p$	$A_v = A_p$
RGBA	$C_v = C_s$	$C_v = C_p C_s$	$C_v = C_p(1 - A_s) + C_s A_s$
(or 4)	$A_v = A_s$	$A_v = A_p A_s$	$A_v = A_p$

Useful for combining lighting result with texture map

Texture Functions (continued)

Reference

	,	
Texture Base	BLEND	ADD
Internal Format	Function	Function
ALPHA	$C_v = C_p$	$C_v = C_p$
	$A_v = A_p A_s$	$A_v = A_p A_s$
LUMINANCE	$C_v = C_p(1 - C_s) + C_c C_s$	$C_v = C_p + C_s$
(or 1)	$A_v = A_p$	$A_v = A_p$
LUMINANCE_ALPHA	$C_v = C_p(1 - C_s) + C_c C_s$	$C_v = C_p + C_s$
(or 2)	$A_v = A_p A_s$	$A_v = A_p A_s$
INTENSITY	$C_v = C_p(1 - C_s) + C_c C_s$	$C_v = C_p + C_s$
	$A_v = A_p(1 - A_s) + A_c A_s$	$A_v = A_p + A_s$
RGB	$C_v = C_p(1 - C_s) + C_c C_s$	$C_v = C_p + C_s$
(or 3)	$A_v = A_p$	$A_v = A_p$
RGBA	$C_v = C_p(1 - C_s) + C_c C_s$	$C_v = C_p + C_s$
(or 4)	$A_v = A_p A_s$	$A_v = A_p A_s$

46