Section 4.3 - Logarithmic Functions

Graph:
$$x = 2^y$$

Find the inverse function of $f(x) = 2^x$

$$y = 2^x$$

$$x = 2^y$$

 $x = 2^y$ Solve for y?

Logarithmic Function (*Definition*)

For x > 0 and $b > 0, b \ne 1$

 $y = \log_b x$ is equivalent to $x = b^y$

$$y = \log_b x \Leftrightarrow x = b^y$$
Base

The function $f(x) = \log_b x$ is the logarithmic function with base b.

 $\log_b x : \underline{read} \log \text{base } b \text{ of } x$

log x means $log_{10} x$

Example

Write each equation in its equivalent exponential form:

a)
$$3 = \log_7 x$$
 $\Rightarrow x = 7$

a)
$$3 = \log_7 x$$
 $\Rightarrow x = 7^3$
b) $2 = \log_b 25$ $\Rightarrow 25 = b^2$
c) $\log_4 26 = y$ $\Rightarrow 26 = 4^y$

c)
$$\log_A 26 = y$$
 $\Rightarrow 26 = 4^y$

Write each equation in its equivalent logarithmic form:

$$a) \quad 2^5 = x \qquad \Rightarrow 5 = \log_2 x$$

$$b) \quad 27 = b^3 \qquad \Rightarrow 3 = \log_b 27$$

Basic Logarithmic Properties

$$log_b b = 1 \rightarrow b = b^1$$

$$\log_b 1 = 0 \quad \to 1 = b^0$$

Inverse Properties

$$\log_b b^x = x$$

$$\log_7 7^8 = 8$$

$$b^{\log b} = x$$

$$3^{\log_3 17} = 17$$

Example

Evaluate each expression without using a calculator:

a.
$$\log_5 \frac{1}{125}$$

$$\Rightarrow \log_5 \frac{1}{5^3} = x$$
$$5^{-3} = 5^x$$

converts to exponential

$$5^{\circ} = 5^{\circ}$$
$$-3 = x$$

$$\Rightarrow \log_5 \frac{1}{125} = -3$$

$$\log_5 \frac{1}{125} = \log_5 \frac{1}{5^3} = \log_5 5^{-3} = -3$$
 (Inverse Property)

b.
$$\log_3 \sqrt[7]{3}$$

$$\Rightarrow log_3 3^{1/7} = \frac{1}{7}$$

Natural Logarithms

Definition

$$f(x) = \log_{e} x = \ln x$$

The logarithmic function with base e is called natural logarithmic function.

 $\ln x$ read "el en of x"

$$\log(-1) = doesn't \ exist$$
 $\ln(-1) = doesn't \ exist$

$$log0 = doesn't \ exist$$
 $ln0 = doesn't \ exist$

$$\log 0.5 \approx -0.3010$$
 $\ln 0.5 \approx -0.6931$

$$\log 1 = 0 \qquad \qquad \ln 1 = 0$$

$$\log 2 \approx 0.3010$$
 $\ln 2 \approx 0.6931$

$$\log 10 = 1 \qquad \qquad \ln e = 1$$

Change-of-Base Logarithmic

$$\log_b M = \frac{\log_a M}{\log_a b}$$
 $\log_b M = \frac{\log M}{\log b}$ or $\log_b M = \frac{\ln M}{\ln b}$

Evaluate

$$\log_7 2506 = \frac{\log 2506}{\log 7}$$

$$\approx 4.02$$

Or

$$\log_7 \frac{2506}{\ln 7} \approx 4.02$$
 $\ln(2506) / \ln(7)$

$$\log_5 \frac{17}{\ln 5} \approx 1.7604$$

$$\log_2 \frac{0.1}{\ln 2} \approx -3.3219$$

Domain

The domain of a logarithmic function of the form $f(x) = \log_b x$ is the set of all positive real numbers. (*Inside* the log has to be > 0)

Range: $(-\infty,\infty)$

Example

Find the domain of

$$a) \quad f(x) = \log_4(x-5)$$

$$x-5>0 \implies x>5$$

 $x-5>0 \implies x>5$ Domain: $(5, \infty)$

$$b) \quad f(x) = \ln(4 - x)$$

$$4 - x > 0$$

$$\Rightarrow -x > -4$$

$$\Rightarrow x < 4$$

 $\Rightarrow x < 4$ **Domain**: $(-\infty, 4)$

$$c) \quad h(x) = \ln(x^2)$$

 $x^2 > 0 \Rightarrow$ all real numbers except 0.

Domain: $\{x | x \neq 0\}$ or $(-\infty, 0) \cup (0, \infty)$

Graphs of *Logarithmic* **Functions**

Graph
$$g(x) = \log x$$

Asymptote: x = 0 (Force inside log to be equal to zero, then solve for x)

x	g(x)
-0-	+
0.5	3
1	0
2	.3
3	.5

$$f(x) = \log_5 x$$

Asymptote: x = 0

 $f(x) = \log_5 x = \frac{\log x}{\log 5}$

Graph:
$$f(x) = \log_{1/2} x$$

Asymptote: x = 0

Domain: $(0,\infty)$

Range: $(-\infty,\infty)$

Graph:
$$f(x) = \log_2(x-1)$$

Asymptote: x = 1

Domain: $(1,\infty)$

Range: $(-\infty,\infty)$

Shifted 1 unit right.

$$f(x) = \left| \ln(x - 1) \right|$$

Asymptote: x = 1

Find $\log_8 14$ 1.

Write the equation in its equivalent logarithmic form

2.
$$2^6 = 64$$

5.
$$5^{-3} = \frac{1}{125}$$

8.
$$8^y = 300$$

3.
$$2 = \log_9 x$$

6.
$$\sqrt[3]{64} = 4$$

9.
$$\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$$

4.
$$5^4 = 625$$

7.
$$b^3 = 343$$

Write the equation in its equivalent exponential form

10.
$$\log_5 125 = y$$

14.
$$\log_6 \sqrt{6} = x$$

17.
$$2 = \log_9 x$$

11.
$$\log_4 16 = x$$

15.
$$\log_3 \frac{1}{\sqrt{3}} = x$$

18.
$$\log_{\sqrt{3}} 81 = 8$$

12.
$$\log_{5} \frac{1}{5} = x$$

16.
$$6 = \log_2 64$$

19.
$$\log_4 \frac{1}{64} = -3$$

13.
$$\log_2 \frac{1}{8} = x$$

Evaluate the expression without using a calculator

20.
$$\log_4 16$$

21.
$$\log_2 \frac{1}{8}$$

20.
$$\log_4 16$$
 21. $\log_2 \frac{1}{8}$ **22.** $\log_6 \sqrt{6}$

23.
$$\log_3 \frac{1}{\sqrt{3}}$$

23.
$$\log_3 \frac{1}{\sqrt{3}}$$
 24. $\log_3 \sqrt[7]{3}$

25. Find $\log_5 8$ using common logarithms

Find the number

26.
$$\log_{5} 1$$

27.
$$\log_{7} 7^2$$

28.
$$3^{\log_3 8}$$

29.
$$10^{\log 3}$$

30.
$$e^{2+\ln 3}$$

31.
$$\ln e^{-3}$$

Find the domain of

32.
$$\log_5(x+4)$$

32.
$$\log_5(x+4)$$
 33. $\log_5(x+6)$ **34.** $\log(2-x)$ **35.** $\log(7-x)$

34.
$$\log(2-x)$$

35.
$$\log(7-x)$$

36.
$$\ln(x-2)^2$$

37.
$$\ln(x-7)^2$$

36.
$$\ln(x-2)^2$$
 37. $\ln(x-7)^2$ **38.** $\log(x^2-4x-12)$ **39.** $\log(\frac{x-2}{x+5})$

$$39. \quad \log\left(\frac{x-2}{x+5}\right)$$

Sketch the graph of

40.
$$f(x) = \log_4(x-2)$$
 41. $f(x) = \log_4|x|$

$$41. \quad f(x) = \log_4 |x|$$

42.
$$f(x) = (\log_4 x) - 2$$

On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed w, in feet per second, of a person living in a city of population P, in thousands, is given by the function:

$$w(P) = 0.37 \ln P + 0.05$$

a) The population is 124,848. Find the average walking speed of people living in Hartford.

- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.
- **44.** The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

45. Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1), \quad t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?
- **46.** A model for advertising response is given by the function

$$N(a) = 1000 + 200 \ln a,$$
 $a \ge 1$

Where N(a) is the number of units sold when a is the amount spent on advertising, in thousands of dollars.

- a) N(a=1)
- *b*) N(a = 5)