Open in Colab

pip install tensorflow==2.12

Requirement already satisfied: tensorflow==2.12 in /usr/local/lib/python3.10/c Requirement already satisfied: absl-py>=1.0.0 in /usr/local/lib/python3.10/dis Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.10, Requirement already satisfied: flatbuffers>=2.0 in /usr/local/lib/python3.10/c Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /usr/local/lib/python3.1 Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.1 Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.1 Requirement already satisfied: h5pv>=2.9.0 in /usr/local/lib/python3.10/dist-r Requirement already satisfied: jax>=0.3.15 in /usr/local/lib/python3.10/dist-r Requirement already satisfied: keras<2.13,>=2.12.0 in /usr/local/lib/python3.1 Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.10/c Requirement already satisfied: numpy<1.24,>=1.22 in /usr/local/lib/python3.10, Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.10, Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packaging in /usr/local/lib/python3 Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4 Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.10/dist-r Requirement already satisfied: tensorboard<2.13,>=2.12 in /usr/local/lib/pythc Requirement already satisfied: tensorflow-estimator<2.13,>=2.12.0 in /usr/location Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.10/c Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/pyth Requirement already satisfied: wrapt<1.15,>=1.11.0 in /usr/local/lib/python3. Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/lc Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10 Requirement already satisfied: ml-dtypes>=0.2.0 in /usr/local/lib/python3.10/c Requirement already satisfied: scipy>=1.9 in /usr/local/lib/python3.10/dist-page 1.9 in /usr/local/lib/python3. Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python? Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /usr/local/li Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/d: Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3. Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/ Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/d: Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/pythor Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python? Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/pyth Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/pyth Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10 Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10 Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10, Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /usr/local/lib/python3. Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/d:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
!pip install keras-preprocessing
#Installing Packages required for deep learning
from tensorflow import keras
from keras import layers
from keras import preprocessing
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Flatten, Dense, Embedding, LSTM, Conv1D, MaxPooling1D, Gl
from keras.models import load_model
from sklearn.model selection import train test split
from keras.optimizers import RMSprop
from keras.optimizers import adam
from google.colab import files
import re, os
```

Requirement already satisfied: keras-preprocessing in /usr/local/lib/python3.1 Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python3.10/dist-Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/dist-page 1.9.0 in

```
import logging
logging.getLogger('tensorflow').disabled = True
```

Loading the dataset with reviews truncated after 150 words, limiting training samples to 100, validating on 10,000 samples, and considering only the top 10,000 words.

```
# Cutoff reviews after 150 words
max len = 150
# Restrict training samples to 100
num_train_samples = 100
# Validate on 10,000 samples
num_val_samples = 10000
# Consider only the top 10,000 words
num\_words = 10000
(x_train, y_train), (x_val, y_val) = imdb.load_data(num_words=num_words)
x_train = keras.preprocessing.sequence.pad_sequences(
   x_train, maxlen=max_len)
x_val = keras.preprocessing.sequence.pad_sequences(
    x_val, maxlen=max_len)
# First we code the Embedding layer
model_embedding = keras.Sequential([
    layers.Embedding(num_words, 10, input_length=max_len),
    lavers.Flatten(),
    layers.Dense(1, activation='sigmoid')
```

```
])
```

```
# Model compilattion
model_embedding.compile(optimizer = 'rmsprop', loss = 'binary_crossentropy', metr
```

model_embedding.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 150, 10)	100000
flatten (Flatten)	(None, 1500)	0
dense (Dense)	(None, 1)	1501

Total params: 101,501 Trainable params: 101,501 Non-trainable params: 0

Epoch 8/30					
1250/1250 [====================================	_	2s	2ms/step	- loss	: 0.1060 - acc
Epoch 9/30			•		
1250/1250 [====================================	_	3s	3ms/step -	- loss	: 0.0855 - acc
Epoch 10/30			•		
1250/1250 [====================================	_	3s	2ms/step	- loss	: 0.0670 - acc
Epoch 11/30			-		
1250/1250 [==========]	_	2s	2ms/step -	- loss	: 0.0518 - acc
Epoch 12/30					
1250/1250 [===========]	_	2s	2ms/step -	- loss	: 0.0397 - acc
Epoch 13/30					
1250/1250 [==========]	_	3s	2ms/step -	- loss	: 0.0293 - acc
Epoch 14/30					
1250/1250 [==========]	_	3s	3ms/step -	- loss	: 0.0221 - acc
Epoch 15/30					
1250/1250 [==========]	_	3s	2ms/step	- loss	: 0.0164 - acc
Epoch 16/30					
1250/1250 [==========]	_	2s	2ms/step	- loss	: 0.0119 - acc
Epoch 17/30					
1250/1250 [==========]	_	2s	2ms/step	- loss	: 0.0087 - acc
Epoch 18/30					
1250/1250 [==========]	_	3s	2ms/step	- loss	: 0.0068 - acc
Epoch 19/30					
1250/1250 [==========]	_	3s	2ms/step	- loss	: 0.0050 - acc
Epoch 20/30					
1250/1250 [====================================	_	3s	2ms/step	- loss	: 0.0040 - acc
Epoch 21/30			_	_	
1250/1250 [===========]	_	3s	2ms/step	- loss	: 0.0029 - acc
Epoch 22/30		_		_	
1250/1250 [====================================	_	2s	2ms/step	- loss	: 0.0024 - acc
Epoch 23/30		_		_	
1250/1250 [====================================	_	35	3ms/step	- loss	: 0.0019 - acc
Epoch 24/30		_	2 / 1	,	0.0015
1250/1250 [====================================	_	35	2ms/step	- LOSS	: 0.0015 - acc
Epoch 25/30		3 -	2	1	. 0 0012
1250/1250 [====================================	_	35	2ms/step	- LOSS	: 0.0013 - acc
Epoch 26/30		2.	2ma/atan	1	. 0 0010
1250/1250 [====================================	_	35	zms/step -	- LOSS	: 0.0010 - acc
Epoch 27/30		2.	2ma/atan	1	. 7 0571. 04
1250/1250 [====================================	_	35	ziiis/step -	- 1055	: /.85/1e-04 -
Epoch 28/30		2.0	2mc/s+on	1000	. F 2017 ₀ 04
1250/1250 [====================================	_	25	ziiis/step -	- 1055	. 3.391/6-04 -
Epoch 29/30 1250/1250 [====================================		2.5	2mc/c+on	1000	• 5 9769 ₀ 04
Epoch 30/30	_	25	ziiis/steb .	- 1055	. 3.0/008-04 -
1250/1250 []		٦-	2/	1	. 4 0702- 04

plt.figure(figsize=(6,4))

plt.figure(figsize=(6,4))

plt.legend()
plt.figure()

plt.legend()
plt.show()

plt.title("Model_embedded:Accuracy")

plt.title("Model_embedded: Loss")

```
# Printing the measures
print(Model_embedded.history.keys())

dict_keys(['loss', 'acc', 'val_loss', 'val_acc'])

#'acc' is the representation for accuracy
accuracy = Model_embedded.history['acc']
val_accuracy = Model_embedded.history['val_acc']

loss = Model_embedded.history["loss"]
val_loss = Model_embedded.history["val_loss"]

epochs = range(1, len(accuracy) + 1)
```

plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation")

plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo

Training Accuracy and Loss: The training accuracy progressively rises and eventually stabilizes at 100%, while the training loss substantially decreases, indicating effective learning from the training data. Validation Accuracy and Loss: The validation accuracy remains consistently high, stabilizing at approximately 86%, indicating robust generalization to unseen data. The validation loss converges to a stable value, suggesting that the model is not overfitting the training data. Overall Performance: Both the accuracy and loss plots for both training and validation demonstrate that the model is effectively learning and generalizing to new data.

According to the embedded layer, approximately 87.2% of the remaining dataset samples were accurately classified. In the preceding model, the data has not been divided into sample sizes yet; instead, all available data was utilized, resulting in an accuracy of 87%.

Model_embedded_200: Modifying the number of training samples to assess variations in the model's performance. Training set size = 200.

```
# Establishing the maximum limit for the vocabulary's word count.
num words = 10000
# Loading the IMDB Dataset
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=num_data)
# Cut-Off reviews after 150 words
maxlen = 150
train_data = pad_sequences(train_data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Merging Training and Testing data
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)
# Splitting the data into Training and Validation Samples
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Split the data further to obtain a test size of 5000 samples.
_, test_texts, _, test_labels = train_test_split(test_data, test_labels, test_siz
train_texts.shape
     (200, 150)
val_texts.shape
     (10000, 150)
test_texts.shape
     (5000, 150)
```

model_embedding_200.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 150, 10)	100000
flatten_1 (Flatten)	(None, 1500)	0
dense_1 (Dense)	(None, 1)	1501

Total params: 101,501 Trainable params: 101,501 Non-trainable params: 0

batch_size=16, validation_split=0.2, callbacks=callbacks)

```
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
10/10 [========================] - 0s 6ms/step - loss: 0.0675 - acc: 1.0
```

```
Epoch 24/30
   Epoch 25/30
   Epoch 26/30
   Epoch 27/30
   Epoch 28/30
   Epoch 29/30
   Epoch 30/30
# Print the keys
print(model embedding 200.history.keys())
   dict_keys(['loss', 'acc', 'val_loss', 'val_acc'])
# 'acc' is the representation for accuracy
accuracy = model embedding 200.history['acc']
val_accuracy = model_embedding_200.history['val_acc']
loss = model embedding 200.history["loss"]
val_loss = model_embedding_200.history["val_loss"]
epochs = range(1, len(accuracy) + 1)
plt.figure(figsize=(6,4))
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation")
plt.title("Model_embedded_200:Accuracy")
plt.legend()
plt.figure()
plt.figure(figsize=(6,4))
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model_embedded_200: Loss")
plt.legend()
plt.show()
```


Model_embedded_500: To see changes in the model's performance, change its number of training samples. Size of training set: 500.

```
# Establishing the maximum limit for the vocabulary's word count.
num\_words = 10000
# Loading the IMDB Dataset
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=n
# Cut-Off reviews after 150 words
maxlen = 150
train data = pad sequences(train data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Creating a unified dataset by merging the training and testing data.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)
# Dividing the data into training and validation samples.
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Split the data further to obtain a test size of 5000 samples.
_, test_texts, _, test_labels = train_test_split(test_data, test_labels, test_size
train_texts.shape
    (500, 150)
val_texts.shape
    (10000, 150)
test_texts.shape
    (5000, 150)
```

model_embedding_500.summary()

Model: "sequential_2"

Output Shape	Param #
(None, 150, 10)	100000
(None, 1500)	0
(None, 1)	1501
	(None, 150, 10) (None, 1500)

Total params: 101,501 Trainable params: 101,501 Non-trainable params: 0

callbacks=callbacks)

Epoch					
25/25	[=======]	_	1s	9ms/step - loss:	0.6917 - acc: 0.5
Epoch					
25/25	[=======]	_	0s	3ms/step - loss:	0.6643 - acc: 0.8
Epoch				,	
	[========]	_	05	3ms/sten - loss:	0.6369 - acc: 0.0
Epoch			05	311137 3 CCP C0331	
	[=========]	_	۵c	3ms/sten - loss	0 6035 - acc: 0 (
Epoch			03	Jiii3/3 CCp C033	010033 acc. 01.
	[========]		0.0	/ms/ston loss	0 5620 2661 0 (
		_	05	41115/Step - 1055	0.3030 - acc: 0.5
Epoch			0 -	4ma /ahan 1aaa	0.5164
	[======================================	_	05	4ms/step - loss:	0.5164 - acc: 0.9
Epoch			_		
	[=======]	_	0s	4ms/step - loss:	0.4649 - acc: 0.9
Epoch					
25/25	[======]	_	0s	3ms/step - loss:	0.4106 - acc: 0.9
Epoch					
25/25	[=======]	_	0s	3ms/step - loss:	0.3555 - acc: 0.9
Epoch					
25/25	[=======]	_	0s	3ms/step - loss:	0.3017 - acc: 0.9
Epoch				,	
	[=======]	_	05	3ms/sten - loss:	0.2509 - acc: 0.9
Epoch			0.5	55, 5 t Gp	012303 4001 011
	[=========]	_	۵c	3ms/sten - loss	0 2052 - acc: 0 (
Epoch			03	Jiii3/3 CCp C033	012032 acc. 01.
	[========]		0.0	2mc/cton locci	0 1649 2661 0 (
		_	05	31115/5tep - 1055.	0.1046 - acc. 0.:
Epoch			0 -	2/	0 1300 0 (
	[======================================	_	05	3ms/step - loss:	0.1309 - acc: 0.9
Epoch			_		
	[========]	_	ØS	3ms/step - loss:	0.1025 - acc: 0.9
Epoch					
	[=======]	_	0s	3ms/step - loss:	0.0795 - acc: 0.9
Epoch	17/30				
	[=======]	_	0s	3ms/step - loss:	0.0612 - acc: 1.0
Epoch	18/30				
25/25	[========]	_	0s	3ms/step - loss:	0.0468 - acc: 1.0
Epoch	19/30				
25/25	[========]	_	0s	3ms/step - loss:	0.0358 - acc: 1.0
Epoch				, ,	
	[========]	_	05	3ms/sten - loss:	0.0273 - acc: 1.0
Epoch			0.5	55, 5 t Gp	0102/3 0001 110
	[========]	_	00	3ms/sten = loss	0.0210 - acc: 1.0
Epoch			03	51113/3 CCP - C035	010210 0001 110
	[========]		0.0	2mc/cton loca	0 0163 - 2001 1 (
		_	05	21112/21ch - 1022:	0.0103 - acc: 1.(
	23/30		Ω-	2mc/c+cm 1	0 0126 1 /
	[======================================	_	۷S	oms/step - toss:	מימזא – מכנ: 1י(
Epoch			_	2	0.0100
25/25	[======]	_	۷S	sms/step - loss:	יין :acc: 1.

```
Epoch 25/30
   25/25 [============== ] - 0s 3ms/step - loss: 0.0080 - acc: 1.0
   Epoch 26/30
   Epoch 27/30
   Epoch 28/30
   Epoch 29/30
   25/25 [============== ] - 0s 3ms/step - loss: 0.0038 - acc: 1.0
   Epoch 30/30
# display of keys
print(model_embedding_500.history.keys())
   dict_keys(['loss', 'acc', 'val_loss', 'val_acc'])
# 'acc' is the representation for accuracy
accuracy = model embedding 500.history['acc']
val_accuracy = model_embedding_500.history['val_acc']
loss = model_embedding_500.history["loss"]
val loss = model embedding 500.history["val loss"]
epochs = range(1, len(accuracy) + 1)
plt.figure(figsize=(6,4))
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation")
plt.title("Model embedded 500:Accuracy")
plt.legend()
plt.figure()
plt.figure(figsize=(6,4))
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model embedded 500: Loss")
plt.legend()
```

plt.show()

Model_embedded_1000: To assess differences in the model's performance, change the amount of training samples. The size of the training set is 1000.

```
# Establishing the maximum number of words to utilize in the vocabulary.
num\_words = 10000
# Load the IMDB dataset.
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=n
# Truncate the reviews after 150 words.
maxlen = 150
train data = pad sequences(train data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Merging the training and testing data forms a unified dataset.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)
# Dividing the data into training and validation sets.
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Split the data further to obtain a test size of 5000 samples.
_, test_texts, _, test_labels = train_test_split(test_data, test_labels, test_size
train_texts.shape
    (1000, 150)
val_texts.shape
    (10000, 150)
```

```
test_texts.shape
(5000, 150)
```

```
# Summary of results
model_embedding_1000.summary()
```

Model: "sequential_3"

Layer (type)	Output Shape	Param #
embedding_3 (Embedding)	(None, 150, 10)	100000
flatten_3 (Flatten)	(None, 1500)	0
dense_3 (Dense)	(None, 1)	1501

Total params: 101,501 Trainable params: 101,501 Non-trainable params: 0

```
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
    ============== ] - 0s 3ms/step - loss: 0.3324 - acc: 0.9
```

```
Epoch 9/30
50/50 [=============== ] - 0s 3ms/step - loss: 0.2645 - acc: 1.0
Epoch 10/30
50/50 [============== ] - 0s 3ms/step - loss: 0.2044 - acc: 1.0
Epoch 11/30
Epoch 12/30
50/50 [============== ] - 0s 3ms/step - loss: 0.1130 - acc: 1.0
Epoch 13/30
50/50 [=============== ] - 0s 3ms/step - loss: 0.0817 - acc: 1.0
Epoch 14/30
Epoch 15/30
50/50 [============== ] - 0s 3ms/step - loss: 0.0409 - acc: 1.0
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
50/50 [=============== ] - 0s 2ms/step - loss: 0.0030 - acc: 1.0
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
Epoch 30/30
```

```
# Printing keys
print(model embedding 1000.history.keys())
    dict_keys(['loss', 'acc', 'val_loss', 'val_acc'])
# 'acc' is the representation for accuracy
accuracy = model_embedding_1000.history['acc']
val_accuracy = model_embedding_1000.history['val_acc']
loss = model embedding 1000.history["loss"]
val_loss = model_embedding_1000.history["val_loss"]
epochs = range(1, len(accuracy) + 1)
plt.figure(figsize=(6,4))
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation
plt.title("Model_embedded_1000:Accuracy")
plt.legend()
plt.figure()
plt.figure(figsize=(6,4))
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model_embedded_1000: Loss")
plt.legend()
plt.show()
```


Model_embedded_2000: adjusting the quantity of training samples to see how it affects the model's efficiency. The size of the training set is set to 2000.

```
# Establishing the maximum number of words to include in the vocabulary.
num\_words = 10000
# Loading the IMDB dataset.
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=n
# Truncate the reviews after 150 words.
maxlen = 150
train_data = pad_sequences(train_data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Merging the training and testing data forms a unified dataset.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)
# Dividing the data into training and validation samples.
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Split the data further to obtain a test size of 5000 samples.
_, test_texts, _, test_labels = train_test_split(test_data, test_labels, test_size
train_texts.shape
    (2000, 150)
val_texts.shape
    (10000, 150)
test_texts.shape
    (5000, 150)
```

```
# Using embedding model with dimension = 10
embedding_dim = 10

model_embedding_2000 = keras.Sequential([
    layers.Embedding(input_dim=num_words, output_dim=embedding_dim, input_length=|
    layers.Flatten(),
    layers.Dense(1, activation='sigmoid')
])
```

```
# Model compilling
model_embedding_2000.compile(optimizer='rmsprop', loss='binary_crossentropy', met
# Summary of results
model_embedding_2000.summary()
# callbacks.
callbacks = ModelCheckpoint(
            filepath= "model_embedding_2000.keras",
            save best only= True,
            monitor= "val_loss"
            )
# Running the Model using model_embedding.fit
model_embedding_2000 = model_embedding_2000.fit(train_texts, train_labels,
                    epochs=30,
                    batch size=16,
                    validation_split=0.2,
                    callbacks=callbacks)
```

Model: "sequential_4"

Layer (type)	Output Shape	Param #
embedding_4 (Embedding)	(None, 150, 10)	100000
flatten_4 (Flatten)	(None, 1500)	0

dense_4 (Dense)

(None, 1)

1501

Total params: 101,501 Trainable params: 101,501 Non-trainable params: 0

Epoch 1/30 Epoch 2/30 Epoch 3/30 Epoch 4/30 Epoch 5/30 Epoch 6/30 Epoch 7/30 Epoch 8/30 Epoch 9/30 Epoch 10/30 Epoch 11/30 Epoch 12/30 Epoch 13/30 Epoch 14/30 Epoch 15/30 Epoch 16/30 Epoch 17/30 Epoch 18/30 Epoch 19/30 Epoch 20/30 Epoch 21/30 Epoch 22/30

```
# printing the keys
print(model_embedding_2000.history.keys())

dict_keys(['loss', 'acc', 'val_loss', 'val_acc'])
```

```
# 'acc' is the representation for accuracy
accuracy = model embedding 2000.history['acc']
val_accuracy = model_embedding_2000.history['val_acc']
loss = model_embedding_2000.history["loss"]
val_loss = model_embedding_2000.history["val_loss"]
epochs = range(1, len(accuracy) + 1)
plt.figure(figsize=(6,4))
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation
plt.title("Model_embedded_2000:Accuracy")
plt.legend()
plt.figure()
plt.figure(figsize=(6,4))
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model_embedded_2000: Loss")
plt.legend()
plt.show()
```


High accuracy might be achieved rather quickly which is an indication of overfitting, especially for sample sizes that are much smaller. We need to check whether the models have good generalization ability to deal with unseen data. Pair the validation accuracy and make use of another test set for final assessment. Following the trend, increasing the sample size seems to support generalization, with the model 3 having slower, but more consistent convergence.

Utilizing Embedding and Conv1D for Reliable IMDB Classification

```
# Establishing the maximum number of words to utilize in the vocabulary.
num words = 10000
# Loading the IMDB dataset.
(train data, train labels), (test data, test labels) = imdb.load data(num words=n=
# Limit the reviews to 150 words
maxlen = 150
# Padding the sequences to reach the maximum length.
train_data = pad_sequences(train_data, maxlen=maxlen)
test data = pad sequences(test data, maxlen=maxlen)
# Merge the training and testing data to form a comprehensive dataset.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)
# Partitioning the data into training and validation samples.
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Divide the validation data further to obtain a test size of 5000 samples.
val_texts, test_texts, val_labels, test_labels = train_test_split(val_texts, val_
print("Shape of Training Data:", train_texts.shape)
print("Shape of Validation Data:", val_texts.shape)
print("Shape of Test Data:", test_texts.shape)
    Shape of Training Data: (100, 150)
    Shape of Validation Data: (5000, 150)
```

Shape of Test Data: (5000, 150)

```
# Defining the model utilizing both Embedding and Conv1D layers.( Pretrained word
embedding_dim = 10
filter size = 3
num_filters = 32
model = Sequential([
   # Transforming words into vectors using the embedding layer.
   Embedding(input_dim=num_words, output_dim=embedding_dim, input_length=maxlen)
   # Utilizing a convolutional layer to extract features from sequences of words
   Conv1D(filters=num_filters, kernel_size=filter_size, activation='relu'),
   # Max-pooling layer utilized for dimensionality reduction.
   MaxPooling1D(pool_size=2),
   # The Flatten layer is used to transform the 1D output into a 2D tensor.
   Flatten().
   # Dense layer utilizing sigmoid activation for binary classification.
   Dense(1, activation='sigmoid')
])
# Model compilling using model.compile()
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
# Moodel training using model.fit()
history = model.fit(train texts, train labels, epochs=30, batch size=16, validation
# Printing the accuracy metrices
test_loss, test_acc = model.evaluate(test_texts, test_labels)
print('Test accuracy:', test acc)
   Epoch 1/30
   Epoch 2/30
   Epoch 3/30
                 7/7 [=======
```

Epoch 4/30

Epoch 5/30

Epoch 6/30

```
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
7/7 [================ ] - 1s 110ms/step - loss: 0.4731 - acc: 0.9
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
7/7 [============== ] - 1s 90ms/step - loss: 0.1433 - acc: 1.00
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
7/7 [============== ] - 1s 87ms/step - loss: 0.0395 - acc: 1.00
Epoch 28/30
Epoch 29/30
Epoch 30/30
```

Retrieve accuracy and loss values from the history object.

```
accuracy = history.history['acc']
val_accuracy = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1,
len(accuracy) + 1)
plt.figure(figsize=(6, 4))
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation
plt.title("Model_Conv_embedded: Accuracy")
plt.legend()
plt.figure()
plt.figure(figsize=(6, 4))
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model_Conv_embedded: Loss")
plt.legend()
plt.show()
```


A neural network model with both Embedding and Conv1D layers seems to be suffering from the problem of an overfit, this can be caused by the network complexity and the smaller size of our dataset. Incorporate simple architectural designs or use dropout approach to achieve regularization.

Conv1D and Embedding layers are employed, with change in embedding dimensions.

```
# Establishing the maximum vocabulary size.
num words = 10000
# Loading the dataset from IMDB.
(train data, train labels), (test data, test labels) = imdb.load data(num words=n
# Truncate the reviews after 150 words.
maxlen = 150
# Padding the sequences to reach the maximum length.
train_data = pad_sequences(train_data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Merge the training and testing data to form a unified dataset.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)
# Separating the data into training and validation samples.
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Split the validation data further to obtain a test size of 5000 samples.
val_texts, test_texts, val_labels, test_labels = train_test_split(val_texts, val_
```

```
print("Shape of Training Data:", train_texts.shape)
print("Shape of Validation Data:", val_texts.shape)
print("Shape of Test Data:", test_texts.shape)
    Shape of Training Data: (100, 150)
    Shape of Validation Data: (5000, 150)
    Shape of Test Data: (5000, 150)
# # Defining the model utilizing both Embedding and Conv1D layers.( Pretrained wo
embedding_dim = 50 # Enlarge the dimensions of embedding vectors.
filter_size = 3
num filters = 32
model = Sequential([
   # An embedding layer for converting words into vectors.
    Embedding(input dim=num words, output dim=embedding dim, input length=maxlen)
   # Utilizing a convolutional layer for extracting features from sequences of w
    Conv1D(filters=num_filters, kernel_size=filter_size, activation='relu'),
   # Utilizing a max-pooling layer for dimensionality reduction.
   MaxPooling1D(pool_size=2),
   # The Flatten layer is utilized to transform the 1D output into a 2D tensor.
   Flatten(),
   # A dense layer employing sigmoid activation for binary classification.
   Dense(1, activation='sigmoid')
])
# Model compilling using the RMSprop optimizer.
model.compile(optimizer=RMSprop(lr=1e-4), loss='binary_crossentropy', metrics=['a
# Incorporate early stopping as a measure to prevent overfitting.
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weight
# Model training
history = model.fit(train_texts, train_labels, epochs=30, batch_size=16, validation
```

```
Epoch 1/30
/usr/local/lib/python3.10/dist-packages/keras/optimizers/legacy/rmsprop.py:143
super().__init__(name, **kwargs)
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
Epoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
```

```
# Retrieve accuracy and loss values from the history object.
accuracy = history.history['acc']
val accuracy = history.history['val acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
# Visualizing the training and validation curves.
epochs = range(1, len(accuracy) + 1)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validatio"
plt.title("Model: Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model: Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.show()
# Printing the values of Test
test_loss, test_accuracy = model.evaluate(test_texts, test_labels)
```

```
print(f"Test Loss: {test_loss:.4f}")
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
```


In this scenario, we've enhanced the embedding vector size to 50, offering a more refined representation of the word. Additionally, a filter size of 3 with 32 filters is employed for feature extraction within the convolutional layers. The RMSprop optimizer is utilized with a learning rate set at 1e-4.

The training accuracy commences at 49%, as anticipated with random initialization. As epochs progress, it steadily improves to approximately 100%, indicating the model's learning from the training data. Both training and validation losses consistently decrease across epochs, signifying the model's adaptation to the training data. Nevertheless, the minor discrepancy in accuracy between the training and validation sets implies potential overfitting.

```
# Establishing the maximum number of words to include in the vocabulary.
num words = 10000
# Loading the IMDB Dataset
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=num_data)
# Cut off the reviews after 150 words
maxlen = 150
# Please pad the sequences to the specified maximum length.
train data = pad sequences(train data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Merge the training and testing data to form a comprehensive dataset.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train labels, test labels), axis=0)
# Partitioning the data into training and validation samples.
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels
# Additionally, divide the validation data to yield a test size of 5000 samples.
val_texts, test_texts, val_labels, test_labels = train_test_split(val_texts, val_
```

```
print("Shape of Training Data:", train_texts.shape)
print("Shape of Validation Data:", val_texts.shape)
print("Shape of Test Data:", test_texts.shape)
```

```
Shape of Training Data: (3500, 150)
Shape of Validation Data: (5000, 150)
Shape of Test Data: (5000, 150)
```

```
# Specify the model utilizing both Embedding and Conv1D layers.
embedding dim = 50 # Enlarge the dimensions of embedding vectors.
filter_size = 5 # Augment the filter size to capture broader global features.
num_filters = 64 # Augment the quantity of filters.
model = Sequential([
   # Embedding layer for word-to-vector conversion.
    Embedding(input_dim=num_words, output_dim=embedding_dim, input_length=maxlen)
   # Convolutional layer for feature extraction from word sequences.
   Conv1D(filters=num_filters, kernel_size=filter_size, activation='relu'),
   # Utilizing a max-pooling layer for dimensionality reduction.
   MaxPooling1D(pool_size=2),
   # The Flatten layer is utilized to transform the 1D output into a 2D tensor.
    Flatten(),
   # A dense layer with a sigmoid activation function for binary classification.
   Dense(1, activation='sigmoid')
])
```

from tensorflow.keras.optimizers import Adam

```
# Compile the model using the Adam optimizer with a reduced learning rate.
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['acc'
# Implement early stopping as a preventive measure against overfitting.
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weighted
# Proceed with training the model.
history = model.fit(train_texts, train_labels, epochs=30, batch_size=16, validations)
```

```
# Please extract the accuracy and loss values from the history object.
accuracy = history.history['acc']
val_accuracy = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

# Plotting the curves for training and validation, please.
epochs = range(1, len(accuracy) + 1)

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accuplt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation plt.title("Model: Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
```

```
plt.subplot(1, 2, 2)
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model: Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.tight_layout()
plt.show()

# printing the metrices values
test_loss, test_accuracy = model.evaluate(test_texts, test_labels)
print(f"Test Loss: {test_loss:.4f}")
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
```


I went to the larger embedding vector size of 50 to squeeze out the most accurate word representation. Used a filter size of 5 to get 64 filters to retrieve the details. Utilized Adam optimizer with a learning rate of 1e-4. We start from an accuracy of 58% at random initialization, and it slowly improves and reaches 100% over epochs. A sudden rapid increase in training correctness confirms that the model is capable of fitting the training set well. The validation accuracy proceeds the same trend to be up to 83.48%. While it is better, the model's performance on validation data is slightly surpassing randomization expectation level. The model presents a similar behavior pattern to the previous one, including a danger of overfitting. In comparison, increasing the embedding vector size and filter size was not useful for improving generalization.

The Conv1D and Embedding layers are utilized, with modifications made to the embedding vector.

```
# Establishing the maximum number of words to utilize in the vocabulary
num_words = 10000

# Loading the IMDB Dataset
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=n)

# Trim the reviews to 150 words.
maxlen = 150
train_data = pad_sequences(train_data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)

# Merge the training and testing data to form a unified dataset.
texts = np.concatenate((train_data, test_data), axis=0)
labels = np.concatenate((train_labels, test_labels), axis=0)

# Dividing the data into training and validation sets
train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels

# Additionally divide the data to achieve a test size of 5000 samples.
_, test_texts, _, test_labels = train_test_split(test_data, test_labels, test_size)
```

```
# Defining the model utilizing both Embedding and Conv1D layers.( Pretrained word
embedding dim = 10000 # Enhanced embedding dimension
filter size = 3
num_filters = 128 # Filters increased to 128
model = Sequential([
   # Embedding layer for word-to-vector conversion
    Embedding(10000, 14, input_length=maxlen),
  Conv1D(512, 3, activation='relu'),
 Dropout(0.5),
 MaxPooling1D(2),
  Conv1D(256, 3, activation='relu'),
 Dropout(0.5),
 MaxPooling1D(2),
  Conv1D(128, 3, activation='relu'),
 Dropout(0.5),
 MaxPooling1D(2),
   # Utilize a Flatten layer to transform the 1D output into a 2D tensor.
   GlobalMaxPooling1D().
   # Dense layer with sigmoid activation for binary classification
   Dense(512, activation='relu'), # Reduced units to 512
   Dropout(0.5),
   # Dense layer with sigmoid activation used for binary classification.
   Dense(256, activation='relu'), # Reduced units to 256
   Dropout(0.5),
   Dense(128, activation='relu'), # Reduced units to 128
   Dropout(0.5),
   Dense(1, activation='sigmoid')
])
from tensorflow.keras import optimizers
# Model compilling using a reduced learning rate.
adam = optimizers.Adam(learning_rate=0.0002) # Reduced learning rate
model.compile(optimizer=adam, loss='binary_crossentropy', metrics=['acc'])
```

Train the model
history = model.fit(train_texts, train_labels, epochs=50, batch_size=32, validation

```
Epoch 1/50
 Epoch 2/50
 Epoch 3/50
 Epoch 4/50
 Epoch 5/50
 Epoch 6/50
 Epoch 7/50
 Epoch 8/50
 Epoch 9/50
 Epoch 10/50
 Epoch 11/50
 Epoch 12/50
 Epoch 13/50
 # Retrieve accuracy and loss values from the history object
accuracy = history.history['acc']
val_accuracy = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
# Visualizing the training and validation curves.
epochs = range(1, len(accuracy) + 1)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
```

plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation")

plt.title("Model: Accuracy")

```
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model: Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.show()
# plotting the model's performances
test_loss, test_accuracy = model.evaluate(test_texts, test_labels)
print(f"Test Loss: {test loss:.4f}")
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
```


A large embedding dimension of 10,000 is utilized for word representation. The architecture includes three convolutional layers with increasing filter sizes: 512, 256, and 128. Dropout is applied after each convolutional layer to mitigate overfitting, and MaxPooling1D layers are introduced to downsample spatial dimensions. The model achieves a training accuracy of approximately 97.80% and a validation accuracy of around 82.79%. Notably, test accuracy reaches 93.14%. The presence of Dropout layers effectively controls overfitting, evidenced by the minimal disparity between training and validation accuracies. This high accuracy across both training and validation sets indicates a well-balanced model complexity and generalization capability. The test accuracy of 93.14% further underscores the model's ability to generalize to unseen data.

Taking RNN and Transformer models

Simple RNN

from tensorflow.keras.layers import SimpleRNN

```
# Defining the maximum vocabulary size
num_words = 10000

# Retrieving the IMDB Dataset
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=n)

# Limit reviews to 150 words
maxlen = 150
train_data = pad_sequences(train_data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)

# Defining the basic RNN model
embedding_dim = 10

model = Sequential([
    Embedding(input_dim=num_words, output_dim=embedding_dim, input_length=maxlen)
    SimpleRNN(units=64),
    Dense(1, activation='sigmoid')
])
```

```
#Model compilling
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
```

```
# Train the model
history = model.fit(train_data, train_labels, epochs=10, batch_size=128, validation)
```

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
   196/196 [=======
Epoch 9/10
Epoch 10/10
```

```
# Retrieve accuracy and loss values from the history object
accuracy = history.history['acc']
val_accuracy = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

# Displaying the training and validation curves
epochs = range(1, len(accuracy) + 1)

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accu
plt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validatio
plt.title("Model: Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
```

```
plt.subplot(1, 2, 2)
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Lo
plt.title("Model: Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.tight_layout()
plt.show()

# plotting the model with metrices
test_loss, test_acc = model.evaluate(test_data, test_labels)
print('Test accuracy:', test_acc)
```


LSTM Model

```
# Establishing the maximum number of words to utilize in the vocabulary
num words = 10000
# loading the IMDB dataset.
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=n=
# Truncate the reviews after 150 words
maxlen = 150
train_data = pad_sequences(train_data, maxlen=maxlen)
test_data = pad_sequences(test_data, maxlen=maxlen)
# Specifying the LSTM model with multiple layers and activations
embedding_dim = 10
model = Sequential([
    Embedding(input dim=num words, output dim=embedding dim, input length=maxlen)
   # Initial LSTM layer employing tanh activation
    LSTM(units=64, return_sequences=True, activation='tanh'),
   # Utilizing ReLU activation in the second LSTM layer
    LSTM(units=32, return_sequences=True, activation='relu'),
   # Adding a third LSTM layer with sigmoid activation
   LSTM(units=16),
   # Sigmoid activation used for binary classification in the output layer.
   Dense(1, activation='sigmoid')
])
```

```
# Model compilling
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
```

```
# Model training phase
history = model.fit(train_data, train_labels, epochs=10, batch_size=128, validation
```

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

```
# Retrieve accuracy and loss values from the history object
accuracy = history.history['acc']
val_accuracy = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

#Plotting the curves for training and validation.
epochs = range(1, len(accuracy) + 1)

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(epochs, accuracy, color="grey", linestyle="dashed", label="Training Accuplt.plot(epochs, val_accuracy, color="blue", linestyle="dashed", label="Validation plt.title("Model: Accuracy")
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
```

```
plt.subplot(1, 2, 2)
plt.plot(epochs, loss, color="grey", linestyle="dashed", label="Training Loss")
plt.plot(epochs, val_loss, color="blue", linestyle="dashed", label="Validation Loplt.title("Model: Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.tight_layout()
plt.show()

# PLotting the metrices on graph
test_loss, test_acc = model.evaluate(test_data, test_labels)
print('Test accuracy:', test_acc)
```

