

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Search For Delayed Photons Using Timing.

Tambe E. Norbert¹

Shih-Chuan Kao¹

Yuichi Kubota¹

¹University Of Minnesota

Long-Lived Meeting, November 23, 2014

Outline

- Search For Delaved Photons Using Timing.
- Tambe E. Norbert
- Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics Limits

Remaining

Completion

- Introduction
- Production and Decay
- Dataset and Trigger
- **Event Selection**
- **Background Estimation**
- **Systematics**
- Limits
- Remaining Completion

Where are we now?

Search For Delayed Photons Using

Timing.

Tambe E. Norbert

Outline

Introduction

Production

and Decay Dataset

and Trigger

Event

Selection Background

Estimation

Systematics

Limits

Remaining Completion

The Universe Set

The set
$$S = \{ \cdots 0, \frac{1}{2}, 1, \frac{3}{2}, 2 \cdots \} \cdot \hbar$$

where s is the spin of a particle. Currently we know:

- $s = \frac{1}{2}\hbar$ Describes all the matter in our universe.
- $s = 1\hbar$ Describes gauge interactions.
- $s = 0\hbar$ Responsible for giving mass.
- $s = 2\hbar$ Describes gravity (gauged?).
- $s = \frac{3}{2}\hbar$?? Dark Matter?

However, this magic set only describes $\approx 4\%$ of our total

Introduction

Search For Delaved Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Long-Lived Particle Models

- ★ Gauge Mediated Supersymmetry Breaking (GMSB)
 - \triangleright Next-to-lightest SUSY (NLSP) is Neutralino ($\tilde{\chi}_1^0$)
 - $\triangleright eV keV$ Lightest-SUSY particle (LSP) is Gravitino (\tilde{G}).
 - Gravitino is a Dark Matter Candidate.
 - ★ General Gauge Mediation (GGM)
 - ▶ NLSP is a mixture of fermions (Bino, Wino, Higssino).
 - Several SUSY particles can be NLSP.

ECAL Resolution

- ECAL timing resolution $\sigma_t < 500$ ps.
- Use timing to identify photons and electrons from long-lived decay.

LHC Supersymmetry Production

Tambe E. Norbert

Outline

Introduction

Production

and Decay

Dataset and Trigger

Event Selection Background

Estimation

Systematics

Limits

Remaining Completion

SUSY production mostly in strong interactions at LHC.

Cascade Decay Chain

Search For Delayed Photons Using Timing.

Tambe E.

Norbert Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

arXiv:1110.6444v2

Delayed Photon Production

Search For Delaved Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

2 Photons, 2 Jets, Large MET

Single Photon

Tranverse Decay Distance

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Completion

Limits Remaining

Distance Travelled

$$L_T = c\tau \cdot (\gamma \beta_T) = c\tau \cdot \left(\frac{p_T}{m}\right)$$

Proper Decay Length

$$c\tau_{\rm NLSP} = C_{\rm grav}^2 \frac{1}{\kappa} \left(\frac{m_{\rm NLSP}}{GeV}\right)^{-5} \left(\frac{\sqrt{\rm F}}{TeV}\right)^4$$

Ruderman, D. Shih arXiv:1103.6083

Datasets

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits Remaining

Remaining Completion

• Data $(19.1fb^{-1})$

Dataset Name	Recorded Luminosity $[fb^{-1}]$
/Run2012B/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	5.1
/Run2012C/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	6.9
/Run2012D/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	7.1
/Run2012C/Cosmics/Run2012C-22Jan2013-v1/REC0	3130384(events)
/Run2012D/Cosmics/Run2012C-22Jan2013-v1/RECO	52430 (events)
/SingleElectron/Run2012A-22Jan2013-v1/AOD	5.2
/DoubleElectron/Run2012C-22Jan2013-v1/AOD	4.8

• Signal MC [GMSB (SPS8)]

Λ [TeV]	100	120	140	160	180	300
$M_{\tilde{\chi}_1^0} [GeV/c^2]$	140	169	198	227	256	430
$c\tau$	215	325	130	245	185	
(mm)	425	645	515	490	365	495
	1700	1290	1030	975	730	
	3400	1935	2060	1945	1100	995
	5100	2955	2920	2930	2195	2960
	6000	3870	3985	3910	3950	
	9300	5985	6000	5875	5980	6000
		9825	10450	9815	10450	10450

• $\gamma+$ Jets MC

/ Sets Me				
\hat{p}_T [GeV /c]	σ_{LO} (pb)	Number of events		
50 - 80	3322.3	1995062		
80 - 120	558.3	1992627		
120 - 170	108.0	2000043		
170 - 300	30.1	2000069		
300 - 470	2.1	2000130		
470 - 800	0.212	1975231		

HLT Trigger

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

HLT_DisplacedPhoton65_CaloIdVL_IsoL_PFMET25

• HLT_Photon50_CaloIdVL_IsoL (Study Trigger)

ECAL Timing

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event Selection

Background Estimation

Systematics

Completion

Limits Remaining

Time Reconstruction

- 10 digitized samples used.
- Fit and Weighted methods used to extract time.
- Time Measurement

$$T_{MAX} = \frac{\sum_{i} \frac{T_{MAX,i}}{\sigma_i^2}}{\sum_{i} \frac{1}{\sigma_i^2}}$$

Time Performance

• Time resolution better than 200 ps for E > 30 GeV

ECAL Timing(2)

Search For Delayed Photons Using Timing.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Photon Timing

- T_{γ} = Average Time of all Crystals.
- $T_{\gamma} = \text{Seed (most energetic) Crystal Time.}$

- Similar behavior seen in Seed and Average Time.
- We use seed time as Photon Measured Time in this analysis.

ECAL Timing(3): MC Vs Data

Figure : (LEFT): Before (RIGHT): After

- ullet Timing corrections from data applied to $\gamma+$ Jets MC.
- $\gamma+$ Jets MC timing aligns better with data after corrections are applied.

Search For Delayed Photons Using Timing.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Selection Background

Estimation Systematics

Limits

Remaining Completion

13 / 25

Long-Lived Decay

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

• Why Long-Lived?

- Slow moving particle; $\beta << 1$,
- Non-nominal flight path,
- Stopped in subdetectors,

Slow Vs Off-Pointing Decay

Search For Delayed Photons Using Timing. Tambe E.

Norbert

Outline

Outin

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Delayed photons mostly from slow moving neutralino decays.

Event Selection

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Trigger

Selection Background

Estimation

Systematics Limits

Damaini.

Remaining Completion

Figure : 1/Slope = 3065.60 mm Figure : 1/Slope = 3083.56 mm Sample is $c\tau=6000$ mm but we measure $c\tau\approx3000$ mm

Kinematics Distribution

Delayed Photons Using Timing.

Search For

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Background Estimation

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset

and Trigger

Event Selection

Background Estimation

Systematics 5 contracts

Limits

Remaining Completion

Systematics

Delayed Photons Using Timing. Tambe E.

Search For

Norbert Outline

Introduction

Production

and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

19 / 25

Search For Delaved Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

Figure: Mass Limit

sample is $c\tau=12000$ mm but we measure $c\tau\approx10500$ mm

$c\tau$ -Mass Limits

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics Limits

Damainin

Remaining Completion

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation Systematics

Limits

Remaining Completion 18025622960002203.61We seem to be measuring neutralino $c\tau$ by some factor off.

Are we measuring the original $c\tau$ of the neutralino?

CMS Official GMSB Samples				
Λ [TeV]	mass[GeV]	C_{grav}	c $ au$ [mm]	Fit Value[mm]
120	169	93.5	1000	657.89
120	169	162	3000	1942.12
140	198	162	3000	1550.38
140	198	187	4000	2064.83
140	198	229	6000	3083.56
180	256	93.5	1000	378.64
180	256	132	2000	749.45
180	256	162	3000	1104.85
180	256	229	6000	2203.61

22 / 25

GMSB Sample c au Vs Measured c au

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

By how much are we off in neutralino $c\tau$ measurements?

CMS Official GMSB Samples				
Λ [TeV]	c $ au$ [mm]	c au[mm] Fit Value[mm]		
120	3000	1942.12	1.54	
140	3000	1550.38	1.93	
180	3000	1104.85	2.71	
140	6000	3083.56	1.9	
180	6000	220361	2.7	

Factor is The SAME for different neutralino $c\tau$ with same Λ value. However, factor is NOT THE SAME for the same $c\tau$ with different Λ values.

Cause of this difference in $c\tau$ values?

Search For Delayed Photons Using Timing.

Tambe F Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event

Selection Background

Estimation

Systematics

Limits

Remaining Completion

Is this due to how sample is generated?

Figure: 1/Slope = 3083.56 mm

Figure : 1/Slope = 3067.48 mm

GMSB: A+140 TeV, ct+6000 mrs, mass+200 GeV

 $|c\tau_{-a} = |dr|/\gamma |$

Figure : 1/Slope = 3065.60 mm Figure : 1/Slope = 3037.66 mm

Private GMSB sample seems to show same offset measurements

To Be Completed

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Limits

Remaining Completion

• Offset in neutralino $c\tau$ seems to have a more subtle origin than expected. Probably how mass enters into the lifetime definition and implementation at MC generation level.

- GMSB samples with the same sample $c\tau$, hence C_{grav} , but with different Λ values have different offset factor.
- The observation that the $c\tau$ value for a given sample with Λ is different from the measured value is very unclear, even without looking at samples with different Λ values.
- Our next step involves understanding cause of this offset.