

Further Characterization of ω —Order Reversing Partial Contraction Mapping as a Compact Semigroup of Linear Operator

A. Y. Akinyele^{1,*}, O. A. Uwaheren¹, L. Aminu², J. B. Omosowon³, B. Sambo⁴

¹Department of Mathematics, University of Ilorin, Ilorin, Nigeria
 ²Federal College of Fisheries and Marine Technology, Lagos, Nigeria
 ³Department of Mathematics, University of Lagos, Lagos, Nigeria
 ⁴Department of Mathematics, Gombe State University, Gombe, Nigeria
 *Corresponding author email: olaakinyele04@gmail

Abstract: This paper consists of compact results on ω -order reversing partial contraction mapping in semigroup of linear operator by giving special onsiderations to equicontinuous semigroups.

Keywords: ω -order-reserving partial contraction mapping (ω - $ORCP_n$), equicontinuous semigroups, C_0 -semigroup, compact semigroup.

1. Introduction

Compactness in semigroup of linear operator can not be underestimated in the theory of semigroup of linear operators because of it importance in C_0 -semigroup since it lays emphasis on its closeness, linear and equiontinuous nature. Suppose X is a Banach space, $X_n \subseteq X$ be a finite set, $(T(t))_{t \geq 0}$ the C_0 -semigroup, $\omega - ORCP_n$ be ω -order-reversing partial contraction mapping which is an example of C_0 -semigroup, $\omega - ORCP_n \subseteq ORCP_n$ (Order Reversing Partial Contraction Mapping). Let $Mm(\mathbb{N} \cup 0)$ be a matrix, L(X) the bounded linear operator in X, P_n , the partial transformation semigroup, $\rho(A)$ a resolvent of A, where A is the generator of a semigroup of linear operator. This paper will focus on results of compactness on $\omega - ORCP_n$ in a semigroup of linear operator called C_0 -semigroup.

Balakrishnan [1], proved fractional powers of closed operators and the semigroup generated by them. Banach [2], established and introduced the concept of Banach space. Engel and Nagel [3], established one-parameter semigroup for linear evolution equations. McBride [4], proved some semigroup of linear operators. Pazy [5], obtained some results on the differentiability and compactness of semigroup of linear operator. Rauf and Akinyele [6], obtained ω -orderpreserving partial contraction mapping and established its properties, also in [7], Rauf et.al. established some results of stability and spectra properties on semigroup of linear operator. Vrabie [8], introduced some compactness criteria in C(0,T;X) for subsets of solution of non-linear evolution equations governed by accretive operators. Vrabie [9], characterized new generators of linear compact semigroups and also deduced compactness method for nonlinear evolution- $\sin [10]$. Furthermore, he obtained compactness in L^p of the set of solutions to linear evolution equation, qualitative problems for differential equations and control theory in [11]. In

[12], Vrabie established some results of C_0 -semigroup and its applications. Yosida [13], established some results on differentiability and representation of one-parameter semigroup of linear operators.

2. Preliminaries

Definition 1 (C_0 -Semigroup [12]) A C_0 -Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2 (ω - $ORCP_n$ [6]) A transformation $\alpha \in P_n$ is called ω -order-reversing partial contraction mapping if $\forall x,y \in Dom\alpha: x \leq y \implies \alpha x \geq \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that T(t+s) = T(t)T(s) whenever t,s>0 and otherwise for T(0)=I.

Definition 3 (Compact Semigroup [3]) A C_0 -semigroup is compact if for each t>0, T(t) is a compact operator.

Definition 4 (Equicontinuous [12]) A C_0 -semigroup $\{T(t); t \geq 0\}$ is equicontinuous if the function $t \to T(t)$ is continuous from $(0, +\infty)$ to L(X) endowed with the uniform operator norm $\|.\|_{L(X)}$.

Example 1: 2×2 matrix $[M_m(\mathbb{N} \cup \{0\})]$. Suppose

$$A = \begin{pmatrix} 2 & 2 \\ 2 & - \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{2t} & e^{2t} \\ e^{2t} & I \end{pmatrix}.$$

Example 2: 3×3 matrix $[M_m(\mathbb{N} \cup \{0\})]$. Suppose

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{3t} & e^{2t} & e^t \\ e^{2t} & e^{2t} & e^t \\ e^{3t} & e^{2t} & e^{2t} \end{pmatrix}.$$

Example 3: 3×3 matrix $[M_m(\mathbb{C})]$, we have for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X. Suppose we have

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA_{\lambda}}$, then

$$e^{tA_{\lambda}} = \begin{pmatrix} e^{3t\lambda} & e^{2t\lambda} & e^{t\lambda} \\ e^{2t\lambda} & e^{2t\lambda} & e^{t\lambda} \\ e^{3t\lambda} & e^{2t\lambda} & e^{2t\lambda} \end{pmatrix}.$$

Example 4: Take X to be one of the the sequence space ι^p , $1 or <math>C_0$. For every sequence $(\alpha_n)_{n \in \mathbb{N}} \subset \mathbb{R}_+$, the multiplication operator $A(x_n)_{n \in \mathbb{N}} = (i\alpha_n x_n)_{n \in \mathbb{N}}$ with maximal domain generates a semigroup of isometries on X; since each canonical basis vector is an eigenvector of A with eigenvalue $i\alpha_n$, it follows that the strong operator closure of multipliation semigroup $T(t)_{t>0}$ with

$$T(t)(x_n)_{n\in\mathbb{N}} = (e^{i\alpha nt}x_n)_{n\in\mathbb{N}}, t\geq 0,$$

is strongly compact semigroup.

Theorem 1: A linear operator $A: D(A) \subseteq X \to X$ is the infinitesimal generator for a C_0 -semigroup of contraction if and only if

- i. A is densely defined and closed,
- ii. $(0,+\infty)\subseteq \rho(A)$ and for each $\lambda>0$, we have

$$||R(\lambda, A)||_{L(X)} \le \frac{1}{\lambda}.$$

3. Main Results

In this section, results of equicontinuous and compact semi-group on ω - $ORCP_n$ in semigroup of linear operator (C_0 -semigroup) were considered:

Theorem 2: Suppose $A:D(A)\subseteq X\to X$ is the infinitesimal generator of a C_0 -semigroup of contractions, $\{T(t);t\geq 0\}$ where $A\in \omega\text{-}ORCP_n$. Then $\{T(t);t\geq 0\}$ is equicontinuos if and only if, for each $\alpha\in(0,1)$, we have

$$\lim_{n \to \infty} (I - t/nA)^{-n} = T(t)$$

in the usual sup-norm topology of $C([\alpha, 1/\alpha]; L(X))$.

Proof: To prove the theorem, we need to assert that for each $a \in (0,1)$ and each $b \in (1,+\infty)$ we have

$$\lim_{n \to \infty} \frac{n^{n+1}}{n!} \int_0^a (ve^{-v})^n dv = 0$$
 (1)

and

$$\lim_{n \to \infty} \frac{n^{n+1}}{n!} \int_{b}^{+\infty} (ve^{-v})^n dv = 0.$$
 (2)

We need to show that Eq. (1) and Eq. (2) converge accordingly. Since $t\to te^{-t}$ is nondecreasing on [0,1], it follows that

$$\int_0^a (ve^{-v})^n dv \le a(ae^{-a})^n.$$

On the other hand, $ve^{-v} < e^{-1}$ for each v > 0, $v \ne 1$, and accordingly

$$\lim_{n \to \infty} v n (v e^{-v} e)^n = 0 \tag{3}$$

for each v>0, $v\neq 1$. Observing that, from Stirling's formula $\lim_{n\to\infty}\frac{n!}{\sqrt{2\Pi}n^{n+1/2}e^{-n}}=1$, it follows that

$$\lim_{n \to \infty} \frac{n^n e^{-n}}{n!} = 0,\tag{4}$$

we btain

$$0 \le \lim_{n \to \infty} \frac{n^{n+1}}{n!} \int_0^a (ve^{-v})^n dv$$
$$\le \lim_{n \to \infty} an(ae^{-a}e)^n \frac{n^n e^{-n}}{n!} = 0$$

which proves Eq. (1) in the assertion. Let us observe that

$$\frac{n^{n+1}}{n!} \int_{b}^{+\infty} (ve^{-v})^n dv = e^{-nb} \sum_{k=0}^{n} \frac{(nb)^k}{k!}$$
 (5)

for each $n \in \mathbb{N}^*$ and $b \ge 0$. Assume b > 1, we have

$$\frac{(nb)^k}{k!} \le \frac{(nb)^n}{n!}$$

for $k=1,2,\ldots,n-1,$ and accordingly, the last relation implies

$$\frac{n^{n+1}}{n!} \int_{b}^{+\infty} (ve^{-v})^n dv \le (n+1)(be^{-b})^n \frac{n^n}{n!}$$

Consequently, from Eq. (3) and Eq. (4), its follows that

$$\frac{n^{n+1}}{n!} \int_{b}^{+\infty} (ve^{-v})^n dv \le (n+1)(be^{-b})^n \frac{n^n}{n!} = 0,$$

which proves Eq. (2) in the assertion. Then, let $A \in \omega$ - $ORCP_n$, where (A, D(A)) is the generator of C_0 -semigroup of contractions, let $\lambda > 0$ and

$$R(\lambda; A) = (\lambda I - A)^{-1}$$
.

Then the mapping $\lambda \to R(\lambda;A)$ is of class C^∞ on $(0,+\infty)$ and for each $x \in X$, each t>0 and $n \in \mathbb{N}^*$, we have

$$(I - \frac{t}{n}A)^{-n-1}x - T(t)x = \frac{n^{n+1}}{n!} \int_0^{+\infty} (ve^{-v})^n [T(tv)x - T(t)x] dv,$$
(6)

we need to show that Eq. (6) holds, by the relationship between a semigroup and its resolvent [see Rauf *et.al.*] [7]], we have

$$R(\lambda; A)x = \int_{0}^{+\infty} e^{-\lambda s} T(s)x ds. \tag{7}$$

A. Y. Akinyele et al. 45

It follows that $\lambda \to R(\lambda; A)$ is analytic from $(0, +\infty)$ to L(X), and differentiating n-times both sides in Eq. (6) with respect to λ and putting s = vt, we obtain

$$(R(\lambda; A))^{(n)}x = (-1)^n t^{n+1} \int_0^{+\infty} v^n e^{-\lambda t v} T(tv) x dv$$

for $\lambda > 0$, $x \in X$ and $A \in \omega$ - $ORCP_n$. On the other hand,

$$(R(\lambda; A))^{(n)} = (-1)^n n! R(\lambda; A)^{n+1},$$

and so substituting $\lambda = \frac{n}{t}$ in the relations above, we have

$$\left[\left(\frac{n}{t} R(\frac{n}{t}; A) \right]^{n+1} x = \frac{n^{n+1}}{n!} \int_0^{+\infty} (ve^{-v})^n T(tv) x dv.$$

Taking b = 0 in Eq. (5), we conclude that

$$\frac{n^{n+1}}{n!} \int_0^{+\infty} (ve^{-v})^n dv = 1$$

for each $n \in \mathbb{N}^*$. Therefore Eq. (6) holds. Next is to show that $\{T(t); t \geq 0\}$ is equicontinuous for each $\alpha \in (0,1)$. Let $\alpha \in (0,1)$ and fix $\beta \in (0,\alpha)$. Since $\{T(t); t \geq 0\}$ is equicontinuous, for each $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that

$$||T(t) - T(s)||_{L(X)} \le \epsilon$$

for each $t,s\in [\beta,1/\beta]$ with $|t-s|\le \delta(\epsilon)$. On the other hand, for the very same $\epsilon>0$, there exists $a=a(\epsilon)$ and $b=b(\epsilon)$ with $0< a<1< b<+\infty$ and such that, for each $t\in [\alpha,1/\alpha]$ and $v\in [a,b]$, we have $tv\in [\beta,1/\beta]$ and $|t-tv|\le \delta(\epsilon)$.

$$||T(tv) - T(t)||_{L(X)} \le \epsilon \tag{8}$$

for each $t \in [\alpha, 1/\alpha]$, and $v \in [a, b]$. From both Eq. (6) and Eq. (8), we deduce

$$\|(I - \frac{t}{n}A)^{-n-1} - T(t)\|_{L(X)} \le 2\frac{n^{n+1}}{n!} \int_0^a (ve^{-v})^n dv + \epsilon \frac{n^{n+1}}{n!} \int_0^a (ve^{-v})^n dv + 2\frac{n^{n+1}}{n!} \int_b^{+\infty} (ve^{-v})^n dv$$

for each $n \in \mathbb{N}^*$. By the earlier assertions in the proof, it follows that

$$\lim_{n \to \infty} \sup \|(I - \frac{t}{n}A)^{-n-1} - T(t)\|_{L(X)} \le \epsilon$$

for each $\epsilon > 0$. Consequently, for each $\alpha \in (0,1)$, we have

$$\lim_{n \to \infty} (I - \frac{t}{n}A)^{-n-1} = T(t) \tag{9}$$

in the norm $\|.\|_{L(X)}$, uniformly for $t\in [\alpha,1/\alpha]$. In order to conclude the proof, we need to show that

$$\lim_{n \to \infty} (I - \frac{t}{n+1}A)^{-n-1} = T(t)$$
 (10)

in the norm $\|.\|_{L(X)}$, uniformly for $t \in [\alpha, 1/\alpha]$. From Eq. (9) we deduce that, for each sequence $(a_n)_n \in \mathbb{N}$ of functions

from $\mathbb{N}^* \cup \{0\} \to \mathbb{R}_+^*$ satisfying $\lim_{n \to \infty} a_n = t$ uniformly on each compact subset in \mathbb{R}_+^* , we have

$$\lim_{n \to \infty} (I - \frac{a_n(t)}{n}A)^{-n-1} = T(t)$$

in the norm $\|.\|_{L(X)}$, uniformly on each compact set in \mathbb{R}_+ *. This simply follows from the fact that, for each $\alpha \in (0,1)$, the set of functions $\{t \to (I - \frac{t}{n}A)^{-n-1}; n \in \mathbb{N}^*\}$ is equicontinuous on $[\alpha, 1/\alpha]$ because it is relatively compact in the space $C([\alpha, 1/\alpha]; L(X))$. Taking $a_n(t) = \frac{nt}{n+1}$, we obtain Eq. (10). Sufficiently by Eq. (6) its follows that $t \to (I - \frac{t}{n}A)^{-n}$ is continuous from $(0, +\infty)$ to L(X) with respect to the norm $\|.\|_{L(x)}$. Since for each $\alpha \in (0, 1)$, we have

$$\lim_{n \to \infty} (I - \frac{t}{n}A)^{-n} = T(t)$$

in the usual sup-norm topology of $C([\alpha,1/\alpha]);L(X))$, its follows that the semigroup is continuous from $(0,+\infty)$ to L(X), that is equicontinuous which complete the proof. **Theorem 3:** Let (A,D(A)) be the generator of a C_0 -semigroup of contraction $\{T(t);t\leq 0\}$, where $A\in \omega$ - $ORCP_n$. Then $\{T(t);t\leq 0\}$ is compact if and only if

- (i) $\{T(t); t \le 0\}$ is equicontinuos, and
- (ii) for each $\lambda>0$, the operator $(\lambda I-A)^{-1}$ is compact. *Proof*: Suppose $\{T(t); t\leq 0\}$ is a compact C_0 semigroup of contractions, let $\lambda>0$, and $\lambda>0$ be such that $t\to\lambda>0$. Then, for each $\epsilon>0$, there exists a finite family $\{x_1,x_2,\ldots,x_k(\epsilon)\}$ in B(0,1) such that, for each $x\in B(0,1)$, there exists $i\in\{1,2,\ldots,k(\epsilon)\}$ with

$$\|T(t-\lambda)x-T(t-\lambda)xi\|\leq \epsilon.$$

Since the family $\{T(\cdot)xi; i=1,2,\ldots,k(\epsilon)\}$ of continuous function from $[0,\infty)$ to X is finite, it is equicontinuous at t. Therefore, for every $\epsilon>0$, there exists $\delta(\epsilon)\in(0,\lambda)$, such that

$$||T(t+h)xi-T(t)xi|| \le \epsilon$$

for each $i=1,2,\ldots,k(\epsilon)$, and each $h\in\mathbb{R}$ with $|h|\leq\delta(\epsilon)$. We have

$$\begin{split} & \|T(t+h)x - T(t)x\| \leq \|T(t+h)x - T(t+h)xi\| \\ & + \|T(t+h)xi - T(t)xi\| + \|T(t)xi - T(t)x\| \\ & = \|T(\lambda+h)(T(t-\lambda)x - T(t-\lambda)xi)\| \\ & + \|T(t+h)xi - T(t)xi\| + \|T(\lambda)(T(t-\lambda)xi - T(t-\lambda)x)\| \\ & \leq \|T(\lambda+h)\|_{L(X)}\|T(t-\lambda)x - T(t-\lambda)xi\| \\ & + \|T(t+h)xi - T(t)xi\| + \|T(\lambda)\|_{L(X)} \\ & \|T(t-\lambda)xi - T(t-\lambda)x\| \leq 3\epsilon \end{split}$$

for each $x \in B(0,1)$, and each $h \in \mathbb{R}$ with $|h| \leq \delta(\epsilon)$. Consequently

$$||T(t+h) - T(t)||_{L(X)} \le 3(\epsilon)$$

for each $h \in \mathbb{R}$ with $|h| \leq \delta(\epsilon)$, which proves (i).

To prove (ii), let us recall that for each $\lambda > 0$, $x \in X$ and $A \in \omega$ - $ORCP_n$, we have

$$(\lambda I - A)^{-1}x = R(\lambda; A)x = \int_0^\infty e^{-s\lambda}T(s)xds.$$

Let $\epsilon>0$ and define $R_\epsilon(\lambda;A):X\to X$ by $R_\epsilon(\lambda;A)x=\int_0^\infty e^{-s\lambda}T(s)xds$ for each $x\in X$ and $A\in\omega\text{-}ORCP_n$. We shall show that $R_\epsilon(\lambda;A)$ is a compact operator and also

$$\lim_{n \to \infty} ||R(\lambda; A) - R_{\epsilon}(\lambda; A)||_{L(X)} = 0.$$
(11)

Let us observe that

$$\begin{split} R_{\epsilon}(\lambda;A)x &= T(\epsilon) \int_{\epsilon}^{\infty} e^{-s\lambda} T(s-\epsilon) x ds \\ &= e^{-\lambda \epsilon} T(\epsilon) \int_{0}^{\infty} e^{-\tau \lambda} T(\tau) x d\tau \\ &= e^{-\lambda \epsilon} T(\epsilon) R(\lambda;A) x \end{split}$$

for each $x \in X$ and $A \in \omega\text{-}ORCP_n$. Since $R(\lambda; A)$ is linearly continuous and $e^{-\lambda \epsilon}T(\epsilon)$ is compact, it follows that $R_{\epsilon}(\lambda; A)$ is compact. On the other hand,

$$||R(\lambda;A) - R_{\epsilon}(\lambda;A)||_{L(X)} \le \int_{0}^{\epsilon} e^{\lambda t} ||T(t)||_{L(X)} dt \le \frac{I - e}{-\lambda \epsilon} \lambda$$

for each $\epsilon>0$ which proves (ii). It follows that $R(\lambda;A)$ is compact and sufficience, let $\{T(t);t\leq 0\}$ be C_0 -semigroup of contractions satisfying (i) and (ii). For t>0 and $\lambda>0$, we define $T_\lambda(t):X\to X$ by

$$T_{\lambda}(t)x = \lambda R(\lambda; A)T(t)x$$

for each $x \in X$ and $A \in \omega$ - $ORCP_n$. We want to prove that $T_{\lambda}(t)$, which obviously is compact, satisfies

$$\lim_{\lambda \to \infty} ||T_{\lambda}(t) - T(t)||_{L(X)} = 0$$
(12)

and

$$||T_{\lambda}(t) - T(t)||_{L(X)} = ||\lambda \int_{0}^{\infty} e^{-\lambda \tau} (T(t+\tau) - T(t)) d\tau||_{L(X)}$$

$$\leq \lambda \int_{0}^{\infty} e^{-\lambda \tau} ||T(t+\tau) - T(t) d\tau||_{L(X)} d\tau.$$
(13)

Since the semigroup $\{T(t); t \geq 0\}$ is equicontinuous for each $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that, for each $\tau \in (0,\delta)$, we have

$$||T(t+\tau) - T(t)||_{L(X)} \le \epsilon.$$
(14)

From Eq. (13) and Eq. (14), it follows that

$$\begin{split} &\|T_{\lambda}(t)-T(t)\|_{L(X)} \leq \lambda \int_{0}^{\delta} e^{-\lambda \tau} \|T(t+\tau)-T(t)\|_{L(X)} d\tau \\ &+ \lambda \int_{\delta}^{\infty} e^{-\lambda \tau} (\|T(t+\tau)_{L(X)} + \|T(t)\|_{L(x)}) d\tau \\ &\leq (1-e^{-\lambda \delta})\epsilon + 2e^{-\lambda \delta}. \end{split} \tag{15}$$

Moving to the sup-limit for λ tending to $+\infty$ in Eq. (15), we obtain

$$\lim_{\lambda \to \infty} \sup ||T_{\lambda}(t) - T(t)||_{L(X)} \le \epsilon$$

for each $\epsilon>0$ and this relation implies Eq. (12) which ensures the compactness of the semigroup $\{T(t); t\geq 0\}$. Hence the proof is complete.

Theorem 4: Let $A:D(A)\subseteq X\to X$ be the infinitesimal generator of a C_0 -semigroup of contractions $\{T(t); t\geq 0\}$ for which there exists $\lambda>0$ such that $R(\lambda;A)$ is compact, then X is separable. In particular, if the semigroup generated by A is compact where $A\in \omega\text{-}ORCP_n$, then X is separable.

Proof: Let us observe that, by virtue of the resolvent equation (see Rauf *et.al.*), we deduce that for each $\lambda>0$, $R(\lambda;A)$ is compact. Let $(\lambda_n)_{n\in\mathbb{N}^*}$ be sequence of numbers, strictly decreasing to 0 and $n\in\mathbb{N}^*$ be arbitrary, provided $R(\lambda_n;A)$ is compact, then there exists a finite family D_n in B(0,n) such that for each $x\in B(0,n)$, there exists $x_n\in D_n$ with

$$\|\lambda_n R(\lambda_n; A)x - \lambda_n R(\lambda_n; A)x_n\| < \lambda_n.$$
 (16)

Let $x \in X$, $A \in \omega\text{-}ORCP_n$ and $\epsilon > 0$, so that there exists $n \in \mathbb{N}^*$ such that

$$\begin{cases} \lambda_n \leq \epsilon \\ \|x\| \leq n \\ \|\lambda_n R(\lambda; A) x - x\| \leq \epsilon. \end{cases}$$

Taking $x_n \in D_n$ satisfying Eq. (16), we deduce

$$||x - \lambda_n R(\lambda_n; A) x_n|| \le ||x - \lambda_n R(\lambda_n; A) x|| + ||\lambda_n R(\lambda_n; A) x - \lambda_n R(\lambda_n; A) x_n|| \le 2\epsilon.$$
(17)

Inequality Eq. (17) shows that the set $D = \bigcup_n \lambda_n R(\lambda_n; A) D_n$ is dense in X. Since this set is a countable union of finite sets, then it is countable too, and therefore X is separable. Finally, if the semigroup generated by A is compact, there exists $\lambda > 0$ such that $R(\lambda; A)$ is compact, which complete the proof.

4. Conclusions

In this paper, we have been able to established that ω —Order reversing partial contraction mapping possesses some characteristics of compact semigroup of linear operator by considering its closeness, linear and equiontinuous nature.

References

- [1] A. V. Balakrishnan, "Fractional powers of closed operators and the semigroup generated by them," *Pacific J. Math.*, vol. 10, no. 2, pp. 419–437, 1960.
- [2] S. Banach, "Surles operation dam les eusembles abstracts et lear application aus equation integrals," *Fund. Math.*, vol. 3, pp. 133–181, 1922.

A. Y. Akinyele et al.

- [3] R. N. K. Engel, One-parameter Semigroups for Linear Equation, vol. 194. New York: Springer Science & Business Media, 1999. Graduate Texts in Mathemat-
- [4] A. C. Mcbride, Semigroup of Linear Operators: an Introduction, Pitman Research Notes in Mathematics, vol. 156. Longman Scientific and Technical, 1987.
- [5] A. Pazy, "On the differentiability and compactness of semigroup of linear operator," J. Math and Mech., vol. 17, no. 12, pp. 131–114, 1968.
- [6] K. Rauf and A. Y. Akinyele, "Properties of ω -orderpreserving partial contraction mapping and its relation to c_0 -semigroup," International Journal of Mathematics and Computer Science, vol. 14, no. 1, pp. 61-68,
- [7] K. Rauf, A. Akinyele, M. Etuk, R. Zubair, and M. Aasa, "Some result of stability and spectra properties on semigroup of linear operator," Advances in Pure Mathematics, vol. 09, pp. 43–51, 01 2019. [8] I. I. Vrabie, "Compactness criterion in c(0,t;x) for sub-

sets of solution of non-linear evolution equations governed by accretive operators," Rend. Sem. Mat. Univ., vol. 45, pp. 149–157, 1985.

47

- [9] I. I. Vrabie, "New characterization of generators of linear compact semigroups," An. Stiint. Univ. AL. L. Cuza Lasi Sect. La. Mat., vol. 35, pp. 145–151, 1989.
- [10] I. I. Vrabie, Compactness Method For Nonlinear Evolutions, vol. 75 of Mathematics Studies. Addision Wesley And Longman, 2th ed., 1995. Pitman Monographs And Surveys In Pure And Applied Mathematics.
- [11] I. I. Vrabie, "Compactness in l^p of the set of solutions to a nonlinear evolution equation, qualitative problems for differential equations and control theory," *Corduneanu, C. Editor, World Scientific.*, pp. 91–101, 1995.
- [12] I. I. Vrabie, C_0 -Semigroup And Application, vol. 191. North-Holland Mathematics Studies: Elsevier, 2th ed.,
- [13] K. Yosida, "On the differentiability and representation of one-parameter semigroups of linear operators," J. Math. Soc., vol. 1, pp. 15–21, 1984.