Рекомендательная система

©Ракитин Виталий Павлович,

МГУ им. М.В.Ломоносова, 5 курс, механико-математический факультет. 15 сентября 2016

Содержание

Цель	1											
2 Постановка задачи												
В Сбор информации о пользователе												
4 Введение связей между объектами												
5.2 Тор-популярных объектов 5.3 Пользователи 5.4 База сходства пользователей 5.5 База предпочтений	3 3 3											
Роботы	4											
7.2 Предсказание 7.2.1 Пользовательский 7.2.2 Объектный	4 4 5											
	Постановка задачи Сбор информации о пользователе Введение связей между объектами Способы хранения данных 5.1 Объекты 5.2 Тор-популярных объектов 5.3 Пользователи 5.4 База сходства пользователей 5.5 База предпочтений 5.6 База кластеров пользователей Роботы Построение рекомендаций 7.1 Кластеризация пользователей 7.2 Предсказание 7.2.1 Пользовательский 7.2.1 Пользовательский											

1 Цель

Проектировка рекомендательной системы.

2 Постановка задачи

Что мы имеем?

- 1. Множество пользователей $u=u(\Psi)\in U(\Psi)=\{u_1(\Psi),u_2(\Psi),\dots\}$, где Ψ множество параметров, характеризующих данного пользователя:
 - Пол;
 - Возраст;
 - Социальный статус, социальная группа;
 - Регион, где он проживает;
 - Увлечения, интересы;
 - ...
- 2. Множество объектов $obj \in \Omega = \{obj_1, obj_2, \dots\};$
- 3. Множество действий над объектами $r_{ij} = (i = u, j = obj) \in \Lambda = \{r_{11}, r_{12}, \dots\}$ (оценка, покупка, просмотр и тд—**рейтинг**).

Замечание 2.1. Из множества действий можно так же генерировать элементы множества Ψ (пользователи оптимисты, пользователи со схожими препочтениями . . .)

Что мы хотим получить?

Предсказать предпочтения конкретного пользователя $u \in U$, а так же составить для него **персональные рекомендации** на основе этих предпочтений.

3 Сбор информации о пользователе

Чем больше информации мы будем иметь — тем больше вероятность получить точное предсказание.

- При регистраиции предложить заполнить анекту с минимальной информацией о пользователе;
- Предложить синхронизацию социальных сетей;
- Отслеживать параметры «друзей», а так же их предпочтения;
- Следить за «явной» активностью пользователя (покупки, лайки);
- Фиксировать «неявную» активность (какие страницы посещает, на каких задерживается).

4 Введение связей между объектами

Идея: Нет смысла предлагать пользователям товар, который он уже преобрёл (оценил) или строго аналогичный, однако можно рекомендовать «родственные» объекты, например

- Если **u** только преобрёл iPhone 6s, то нет смысла предлагать ему телефоны, но можно предложить аксессуары;
- Бессмысленно предлагать читать пользователю одну и ту же запись, опубликованную в разных местах, но можно предложить записи схожей тематики.
- . . .

Для каждого объекта введём 2 параметра:

- 1. Тип;
- Родство.

Одинаковые (аналогичные) объекты нумеруются одинаковым **типом**, «близкие» — **родством**. Родство может задаваться как **«базовое»** (аксессуары, товары одного производителя/автора, с помощью хэш-тегов и тд), а так же его можно определять из соображения, какие объекты обычно оцениваются (преобретаются) вместе. После этого проведём кластеризацию всех объектов по степени родства.

5 Способы хранения данных

5.1 Объекты

Объект (Ω)	origID	Keys	TopObj	Тип	Родство		Time	Click	
					subID similarity TopObj				

- \bullet origID кодовый номер объекта;
- **Keys** ключевые слова, хэш-теги, параметры, по которым определяется степень родства с другими объектами;
- Click количество обращений;
- **Time** время последнего обращения к объекту;
- **TopObj** популярность данного объекта:

$$TopObj = function(Time, Click)$$

- Родство связь с другими объектами;
- Similarity степень родства объектов;
- **subID** кодовый номер родственного объекта (отсортированы по степени родства, в случае одинаковой по Тор);

5.2 Тор-популярных объектов

Отдельно храним список объектов, отсортированный по популярности, на случай абсолютно холодного старта.

origID	Click

- \bullet origID кодовый номер объекта;
- Click количество обращений;

5.3 Пользователи

User (U)	uID	$origID_i$	r_{ui}	\dots Параметры (Ψ) \dots	ObjTopID

- uID уникальный номер пользователя;
- ullet origID $_{i}$ все объекты, с которыми пользователь взаимодействовал;
- r_{ui} рейтинг данных объектов;
- Параметры все параметры которые мы смогли узнать о нашем пользователе;
- ObjTopID Тор-10 наиболее релевантных рекомендаций для данного пользователя;

5.4 База сходства пользователей

	u_1	u_2	u_3	u_4	
u_1					

- По строкам и столбцам распределены все пользователи конкретного кластера;
- На пересечении степени их похожести $sim(u_i,u_j)=\frac{1}{1+dH(u_i,u_j)}$ (через растояние Хэмминга).

5.5 База предпочтений

Для каждого отдельно взятого пользовательского кластера строим таблицу следующего вида:

	obj_1	obj_2	obj_3	obj_4	
middle	4		5	6	
u_1	3		7	9	
u_2	6	1	8	3	
u_3			2		

- По строкам распределены все пользователи данного кластера;
- \bullet По столбцам список всех объектов, с которыми взаимодействуют данные пользователи, а так же по N первых родственных объектов другого типа по степени родства.
- На пересечении расположены **рейтинги**, полученные от соответствующих пользователей соответствующими объектами(Λ). На местах пропуска впишем **оценку рейтинга** (наше «предсказание»).
- В строке middle указаны средние оценки объектов по всем пользователям кластера.

5.6 База кластеров пользователей

Номер кластера	uIDs	Центроид

• uIDs — списки польователей в данном кластере;

6 Роботы

Определение 6.1. Pofomы - nporpammы-демоны, ofecneчuвающие pafomy системы.

- 1. **Кластеризатор пользователей** проходит по базе (5.3), случайным образом выбирая начальные центры кластеров. Сохраняем J и Θ (ошибка и центроиды) для минимального J. Так как алгорит **k-means** является локальным, то проводим данную операцию большое количество раз;
- 2. **Редактор базы кластеров** запускается, когда **кластеризатор Users** нашёл разбиение с меньшей ошибкой;
- 3. **Редактор базы пользователей сходства** запускается, когда **редактор базы кластеров** изменил список кластеров и их состав;
- 4. **Редактор базы объектов** добавляет новые объекты в базу (5.1), пересчитывает Родство объетов, определяет тип;
- 5. **Информатор** при выполнении пользователями действий над объектами увеличивает **Click** и **TopObj**, изменяет **Time**, добавляет в базу (5.3) информацию о взаимодействии объектов, повышает количество **Click** в (5.2);
- 6. Сортировщик Тор регулярно сортирует базу популярных объектов;
- 7. **Редактор базы рекомендаций** запускаетя при изменении базы сходства пользователей или базы объектов, высчитывает Top-10 рекомендаций для каждого пользователя;
- 8. Редактор базы пользователей получает от редактора базы рекомендаций Тор-10 и заносит его в базу (5.3);
- 9. **Мусорщик** следит за **Time** в списке объектов и удаляет устаревшие, а так же все упоминания о них в других базах.

7 Построение рекомендаций

7.1 Кластеризация пользователей

Идея: похожим пользователям обычно нравятся похожие объекты, поэтому на основе пункта (3) кластеризуем множество U.

- Метрика расстояние Хэмминга, а именно dH(x,y) количество различных компонент в ${\bf x}$ и ${\bf y}$;
- Применим метод кластеризации **k-means**;
- Количество кластеров будем определять исходя из количества пользоваталей;
- Сохраним центроиды наших кластеров в множество $\Theta = \{c_1, c_2, \dots\}$.
- Мера ошибки

$$\overline{J} = \sum_{n=1}^{N} \sum_{k=1}^{k} r_{nk} d(x_n, \mu_k),$$

где $d(x_n, \mu_k)$ — функция расстояния, μ_k — один из объектов кластера.

7.2 Предсказание

Рассмотрим 2 подхода построения предсказания. Оба запроса будут выполняться на разных серверах. В качестве результирующего будем брать тот, который приходит быстрее, либо среднее арифметическое результатов.

7.2.1 Пользовательский

$$\overline{r}_{ui} = r_u + \frac{\sum\limits_{u \in U_i} sim(u, v) \cdot (r_{vi} - r_v)}{\sum\limits_{u \in U_i} sim(u, v)}$$

• r_u — средняя оценка нашим пользователем всех объектом;

7.2.2 Объектный

$$\overline{r}_{ui} = r_i + \frac{\sum_{j \in I_u} sim(i, j) \cdot (r_{ui} - r_j)}{\sum_{j \in I_u} sim(i, j)}$$

• r_i — средняя оценка пользователями одного кластера данного объекта;

7.3 Конечный алгоритм подбора рекомендаций

Рассмотрим несколько вариантов восприятия пользователя в системе:

- 1. Пользователь существует в базе, информация по нему собрана:
 - Существует список Тор-10 рекомендаций рекомендуем первые объекты из топа;
 - Списка рекомендаций нет— возьмём выборку пользователей из того же кластера из базы предпочтений, на их основе сделаем предсказания. Отсортируем предсказания по рейтингу и предложим Тор;

2. Пользователя нет в базе:

- *Можно собрать «неявную» информацию* определим ближайшую группу из базы кластеров, возьмём выборку пользователей из этого кластера из базы предпочтений, на их основе сделаем предсказания. Отсортируем предсказания по рейтингу и предложим Тор;
- Холодный старт предложить Тор-популярных;