Statistical and Economic Significance

Statistical and Economic Significance

- Statistical significance
 - Is the relationship observed in the sample likely to be observed in the population as well?
 - Look for p-value < .10 for the coefficient of interest.
- Economic significance
 - Does the benefit from a marketing intervention (i.e., the size of the coefficient) justify the expense?

Diagnosing Market Response: Regression Analysis

Diagnosing Market Response: Regression Analysis

Regression Statistics			
Multiple R	0.775		
R-Squared	0.601		
Adjusted R-Squared	0.586		
Standard Error	2.566		
Observations	29		

ANOVA

	df	SS	MS	F	Sig F
Regression	1	267.28	267.28	40.60	0.00
Residual	27	177.75	6.58		
Total	28	445.03			

	Coefficients	Standard Error	t Stat	P-value
Intercept	9.90	0.85	11.60	0.00
Number of Promotions	1.42	0.22	6.37	0.00

Economic Significance

- A unit increase in number of promotions increases units purchased by 1.42
- Assume gross profit per unit is \$5
- Cost of promotion is \$0.50
- Profit = (units purchased * gross profit) –
 (cost of promotion * number of promotions)
- Profit = (1.42 * 5 0.50 * 1) = (7.1 0.5) = 6.6

Conclusion

- Regressions are about what you include and also what you DON'T include in the model.
- Logarithm is a useful transformation for calculating elasticity from regression.
- Connecting regression to business decisions would require understanding economic significance.