Acceleration Data Structures for Ray Tracing

Today

- Review & Schedule
- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
- Flattening the transformation hierarchy

Last Week:

- Ray Tracing
 - Shadows
 - Reflection
 - Refraction
- Local Illumination
 - Bidirectional ReflectanceDistribution Function(BRDF)
 - Phong Model

Schedule

- Wednesday October 1st:
 Assignment 3 (Ray Tracing & Phong Materials) due
- Sunday October 5th, 5-7 PM,
 Review Session for Quiz 1
- Tuesday October 7th: Quiz 1: In class
- Wednesday October 15th: Assignment 4 (Grid Acceleration) due

Questions?

Today

- Review & Schedule
- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
- Flattening the transformation hierarchy

Extra rays needed for these effects:

- Distribution Ray Tracing
 - Soft shadows
 - Anti-aliasing (getting rid of jaggies)
 - Glossy reflection
 - Motion blur
 - Depth of field (focus)

Shadows

 one shadow ray per intersection per point light source

Soft Shadows

 multiple shadow rays to sample area light source

Antialiasing – Supersampling

jaggies

multiple rays per pixel

point light

area light

Reflection

• one reflection ray per intersection

Glossy Reflection • multiple reflection rays Courtesy of Justin Legakis. Used with permission. polished surface

Motion Blur

• Sample objects temporally

Image removed due to copyright considerations.

Depth of Field

• multiple rays per pixel

Courtesy of Justin Legakis. Used with permission.

Algorithm Analysis

- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
 - Soft shadows
 - Anti-aliasing
 - Glossy reflection
 - Motion blur
 - Depth of field

cost ≤ height * width * num primitives intersection cost * num shadow rays * supersampling * num glossy rays * num temporal samples * max recursion depth *

can we reduce this?

Questions?

Today

- Review & Schedule
- Motivation Distribution Ray Tracing
- Bounding Boxes
 - of each primitive
 - of groups
 - of transformed primitives
- Spatial Acceleration Data Structures
- Flattening the transformation hierarchy

Acceleration of Ray Casting

Conservative Bounding Region

Conservative Bounding Regions

 tight → avoid false positives

fast to intersect

bounding sphere

arbitrary convex region (bounding half-spaces)

axis-aligned bounding box

Intersection with Axis-Aligned Box

From Lecture 3, Ray Casting II

- For all 3 axes, calculate the intersection distances t_1 and t_2
- $t_{near} = \max (t_{1x}, t_{1y}, t_{1z})$ $t_{far} = \min (t_{2x}, t_{2y}, t_{2z})$
- If $t_{near} > t_{far}$, box is missed
- If $t_{far} < t_{min}$, box is behind
- If box survived tests, report intersection at t_{near}

Bounding Box of a Triangle

$$(x_{max}, y_{max}, z_{max})$$

= $(\max(x_0, x_1, x_2), \max(y_0, y_1, y_2), \max(z_0, z_1, z_2))$

```
(x_{min}, y_{min}, z_{min})
= (\min(x_0, x_1, x_2),
```

 $- (\min(x_0, x_1, x_2), \\ \min(y_0, y_1, y_2), \\ \min(z_0, z_1, z_2))$

Bounding Box of a Sphere

Bounding Box of a Plane

$$(x_{max}, y_{max}, z_{max})$$
$$= (+\infty, +\infty, +\infty)*$$

$$(x_{min}, y_{min}, z_{min})$$
$$= (-\infty, -\infty, -\infty)^*$$

* unless n is exactly perpendicular to an axis

Bounding Box of a Group

$$(x_{max}, y_{max}, z_{max})$$

$$= (\max(x_{max_a}, x_{max_b}),$$

$$\max(y_{max_a}, y_{max_b}),$$

$$\max(z_{max_a}, z_{max_b}))$$

$$(x_{min}, y_{min}, z_{min}) = (\min(x_{min_a}, x_{min_b}), \\ \min(y_{min_a}, y_{min_b}), \\ \min(z_{min_a}, z_{min_b}))$$

Bounding Box of a Transform

MIT EECS 6.837, Durand and Cutler

Special Case: Transformed Triangle

Can we do better?

Special Case: Transformed Triangle

Questions?

Today

- Review & Schedule
- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
 - Regular Grid
 - Adaptive Grids
 - Hierarchical Bounding Volumes
- Flattening the transformation hierarchy

Regular Grid

Create grid

- Find bounding box of scene
- Choose grid spacing
- $grid_x$ need not = $grid_y$

MIT EECS 6.837, Durand and Cutler

Insert primitives into grid

- Primitives that overlap multiple cells?
- Insert into multiple cells (use pointers)

For each cell along a ray

• Does the cell contain an intersection? • Yes: return closest intersection • No: continue

Preventing repeated computation

 Perform the computation once, "mark" the object Don't re-intersect marked objects

Don't return distant intersections

• If intersection t is not within the cell range, continue (there may be something closer)

Where do we start?

Is there a pattern to cell crossings?

• Yes, the horizontal and vertical crossings $dt_v = grid_v / dir_v$ have regular spacing grid_v $dt_h = grid_x / dir_x$ (dir_x, dir_v)

What's the next cell?

What's the next cell?

3DDDA – Three
 Dimensional Digital
 Difference Analyzer

 We'll see this again later, for line rasterization

MIT EECS 6.837, Durand and Cutler

Pseudo-code

```
create grid
insert primitives into grid
for each ray r
  find initial cell c(i,j), t_{min}, t_{next v} & t_{next_h}
  compute dt,, dt,, sign, and sign,
  while c != NULL
    for each primitive p in c
      intersect r with p
      if intersection in range found
        return
    c = find next cell
```

Regular Grid Discussion

- Advantages?
 - easy to construct
 - easy to traverse

- Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

Questions?

Today

- Review & Schedule
- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
 - Regular Grid
 - Adaptive Grids
 - Hierarchical Bounding Volumes
- Flattening the transformation hierarchy

Adaptive Grids

• Subdivide until each cell contains no more than *n* elements, or maximum depth *d* is reached

Nested Grids

Octree/(Quadtree)

Primitives in an Adaptive Grid

• Can live at intermediate levels, or be pushed to lowest level of grid

Octree/(Quadtree)

Adaptive Grid Discussion

- Advantages?
 - grid complexity matches geometric density
- Disadvantages?
 - more expensive to traverse (especially octree)

- Find bounding box of objects
- Split objects into two groups

Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

Where to split objects?

- At midpoint *OR*
- Sort, and put half of the objects on each side OR
- Use modeling hierarchy

Intersection with BVH

• Check subvolume with closer intersection first

Intersection with BVH

• Don't return intersection immediately if the other subvolume may have a closer intersection

Bounding Volume Hierarchy Discussion

Advantages

- easy to construct
- easy to traverse
- binary

Disadvantages

- may be difficult to choose a good split for a node
- poor split may result in minimal spatial pruning

Today

- Review & Schedule
- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
- Flattening the transformation hierarchy

Transformation Hierarchy

Questions?

Assignment 4 (due Oct 15th)

- Bounding boxes for primitives
- Regular grid acceleration data structure
- Flatten the transformation hierarchy
- Collect statistics
 - Average # of rays per pixel
 - Average # of ray/primitive intersections per pixel
- Extra Credit: Distribution Ray Tracing (and anything else from past weeks)

Next Time:

Curves & Surfaces