ТФКП 2 курс Домашнее задание Владислав Мозговой 1789769386

8 июня 2021 г.

Домашнее задание 11

Цифры Вашего кода — a_0 , ..., a_9 . В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

- **1.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_0 + a_2$. Существует ли голоморфная функция $f: \mathbb{H} \to \mathbb{H}$ со следующими свойствами? Строго обоснуйте ответ.
 - (0) f(i) = 2i, f(2i) = 5i.
 - (1) f(i) = 2i, f(2i) = 3i.
 - (2) f(i) = i, |f'(i)| = 2.
 - (3) f(i) = i, $|f'(i)| = \frac{1}{2}$.
 - (4) f(i) = 2i, |f'(i)| = 3.
 - (5) f(i) = 2i, |f'(i)| = 1.
 - (6) f(i) = i, $f(2i) = \log 2 + i$, $f(-\log 2 + i) = i/3$.
 - (7) f(2i) = 2i, f(i) = 4i, f(1+i) = 4+4i.
 - (8) f(i) = 1 + i, f(1+i) = 2 + i, f(2+i) = 4 + i.
 - (9) f(i) = 2i, f(2i) = 4i, f(3i) = 8i.
- 2. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_0+a_7 . При решении следующих задач можно воспользоваться тем фактом, что группа конформных автоморфизмов полуплоскости (или диска) совпадает с группой собственных изометрий полуплоскости (или диска) относительно метрики Пуанкаре. (Изометрии это преобразования, сохраняющие расстояния. Собственные изометрии это изометрии, сохраняющие ориентацию, то есть гомотопные тождественному преобразованию в группе изометрий.)
- (0) Докажите, что для любых $z, w \in \mathbb{H}$ и для любого $\lambda \in \mathbb{R}_{>0}$ расстояние между точками z и w в метрике Пуанкаре равно расстоянию между λz и λw .
- (1) Найдите несобственную изометрию $f: \mathbb{H} \to \mathbb{H}$ в метрике Пуанкаре со следующим свойством. Точки $z \in \mathbb{H}$, такие, что |z| = 1, остаются на месте (то есть f(z) = z для каждой такой точки z).

- (2) Приведите пример дробно-линейного преобразования, которое не сопряжено в группе $\operatorname{Aut}(\overline{\mathbb{C}})$ никакому конформному автоморфизму диска.
- (3) Пусть $L = \{z \in \mathbb{H} \mid \text{Re}(z) = 0\}$. Опишите все голоморфные автоморфизмы $f : \mathbb{H} \to \mathbb{H}$, такие, что f(L) = L. Найдите множество точек вида f(1+i), где f пробегает все указанные автоморфизмы.
- (4) Пусть $C = \{z \in \mathbb{H} \mid |z| = 1\}$. Опишите все голоморфные автоморфизмы $f : \mathbb{H} \to \mathbb{H}$, такие, что f(C) = C. Найдите множество точек вида f(1+i), где f пробегает все указанные автоморфизмы.
- (5) Пусть $O = \{z \in \mathbb{H} \mid |z i| = 1\}$. Опишите все голоморфные автоморфизмы $f : \mathbb{H} \to \mathbb{H}$, такие, что f(O) = O. Найдите множество точек вида f(i), где f пробегает все указанные автоморфизмы.
- (6) Пусть f конформный автоморфизм единичного диска, такой, что f(a) = a для некоторой точки $a \in \mathbb{D}$. Докажите, что f сопряжен в группе $\operatorname{Aut}(\mathbb{D})$ повороту вокруг нуля на некоторый угол.
- (7) Пусть f конформный автоморфизм единичного диска, такой, что $f \circ f = id$. Докажите, что найдется точка $a \in \mathbb{D}$, для которой f(a) = a.
- (8) Пусть f конформный автоморфизм верхней полуплоскости со следующим свойством. Существует единственная точка $a \in \mathbb{R} \cup \{\infty\}$, такая, что f(a) = a. Докажите, что f сопряжен в группе $\mathrm{Aut}(\mathbb{H})$ отображению $g(z) = z \pm 1$.
- (9) Пусть f конформный автоморфизм верхней полуплоскости со следующим свойством. Существуют две различные точки a, $b \in \mathbb{R} \cup \{\infty\}$, такие, что f(a) = a и f(b) = b. Докажите, что f сопряжен в группе $\operatorname{Aut}(\mathbb{H})$ отображению $g(z) = \lambda z$ для некоторого вещественного положительного λ .
- **3.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_6 + a_9$.
- (0) Рассмотрим непрерывную функцию $f: \mathbb{D} \to \mathbb{C}$ и простую (несамопересекающуюся) ломаную, разделяющую единичный диск на два открытых множества U, V. Предположим, что ограничения функции f на U и на V голоморфны. Докажите, что f голоморфна на всем диске.
- (1) Докажите, что не существует конформного изоморфизма между множествами $U = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$ и $V = \{z \in \mathbb{C} \mid 1 < |z| < 2\}$.

- (2) Докажите, что не существует конформного изоморфизма между множествами $U = \{z \in \mathbb{C} \mid 1 < |z| < 2\}$ и $V = \{z \in \mathbb{C} \mid 1 < |z| < 3\}$. Указание: воспользуйтесь принципом симметрии.
- (3) Докажите, что не существует конформного изоморфизма между единичным диском и всей плоскостью.
- (4) Докажите, что не существует конформного изоморфизма между $\mathbb{D} \setminus \{0\}$ и $\mathbb{C} \setminus \{0\}$.
- (5) Рассмотрим множество $U = \{x + iy \in \mathbb{C} \mid y > x^2\}$. Докажите, что любая непрерывная функция $f : \overline{U} \to \mathbb{C}$, голоморфная внутри области U, допускает голоморфное продолжение на некоторую открытую окрестность множества \overline{U} . (Указание: рассмотрите конформное отображение, переводящее параболу в прямую, и воспрользуйтесь принципом симметрии).
- (6) Рассмотрим множество $U = \{x + iy \in \mathbb{C} \mid y^2 > x^2\}$. Докажите, что любая непрерывная функция $f : \overline{U} \to \mathbb{C}$, голоморфная внутри области U, допускает голоморфное продолжение на некоторую открытую окрестность множества \overline{U} . (Указание: рассмотрите конформное отображение, переводящее гиперболу в прямую, и воспрользуйтесь принципом симметрии).
- (7) Рассмотрим множество $U = \{x+iy \in \mathbb{C} \mid x^2+2y^2 < 1\}$. Докажите, что любая непрерывная функция $f: \overline{U} \to \mathbb{C}$, голоморфная внутри области U, допускает голоморфное продолжение на некоторую открытую окрестность множества \overline{U} . (Указание: рассмотрите конформное отображение, переводящее эллипс в окружность, и воспрользуйтесь принципом симметрии).
- (8) Существует ли конформный изоморфизм между $\mathbb{D} \setminus \{0,1\}$ и $\mathbb{C} \setminus \{0,1\}$? Строго обоснуйте ответ.
- (9) Существует ли конформный изоморфизм между $\mathbb{D} \setminus \{0, 1/2\}$ и $\mathbb{D} \setminus \{0, 1/3\}$? Строго обоснуйте ответ.
- **4.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_0 + a_6$. Вычислите (при помощи вычетов) указанные ниже интегралы от многозначных аналитических функций. Во всех случаях выбирается такая ветвь функции x^a (в частности, \sqrt{x} , $\sqrt[5]{x}$ и т.д.), которая принимает положительные значения для положительных значений числа x.
 - (0) $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$.
 - (1) $\int_0^1 \sqrt{\frac{1-x}{x}} dx$.

- (2) $\int_0^\infty \frac{x^{\alpha-1}}{1+x} dx$ при $0 < \alpha < 1$.
- (3) $\int_0^1 \left(\frac{x}{1-x}\right)^{\alpha} \frac{dx}{1+x}$ при $-1 < \alpha < 1$.
- (4) $\int_1^2 \sqrt[5]{\frac{(2-x)^3}{(x-1)^3}} dx$.
- (5) $\int_{-2}^{2} \frac{dx}{\sqrt[4]{(2+x)^2(4-x^2)}}$.
- (6) $\int_0^\infty \frac{\log x \, dx}{x^2 + a^2}$ при a > 0.
- (7) $\int_0^\infty \left(\frac{\log x}{x-1}\right)^2 dx$.
- (8) $\int_0^\infty \frac{\sqrt{x} \log x \, dx}{x^2 + 1}$
- (9) $\int_{-\infty}^{\infty} \frac{\log |x^2-1|}{x^2+1} dx$.
- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $a_3 + a_4$.
- (0) Докажите, что среди всех кривых в диске \mathbb{D} , соединяющих точки 0 и $r \in (0,1)$, кратчайшую длину в метрику Пуанкаре имеет прямолинейный отрезок.
- (1) Докажите, что среди всех кривых в верхней полуплоскости, соединяющих точки ia и ib (здесь a, b различные положительные действительные числа), кратчайшую длину в метрике Пуанкере имеет прямолинейный вертикальный отрезок.
 - (2) Задача 9.15 на стр. 161 основного учебника.
- (3) Пусть $A(\varepsilon)$ площадь круга с центром в нуле и радиусом $\varepsilon \in (0,1)$ в метрике Пуанкаре единичного диска. Вычислите $A(\varepsilon)$ с точностью до членов четвертого порядка включительно, то есть с точностью до $o(\varepsilon^4)$ при $\varepsilon \to 0$. Напомним, что площадь области X с гладкой границей относительно метрики $\rho(z)|dz|^2$ определяется как интеграл по X от функции ρ .
 - (4) Задача 10.7 на стр. 190 основного учебника.
 - (5) Задача 10.8 на стр. 190 основного учебника.
 - (6) Задача 10.9 на стр. 191 основного учебника.
 - (7) Задача 10.10 на стр. 191 основного учебника.
 - (8) Задача 9.10 на стр. 161 основного учебника.
- (9) Существует ли непрерывное отображение из замкнутного квадрата 1×1 на замкнутый прямоугольник 1×2 , переводящее вершины квадрата в вершины прямоугольника, стороны квадрата

Решения

Задача 1

Необходимо решить задачу $a_0+a_2=1+8=9 \mod 10$ Да, существует, вот пример:

$$f(x+iy) = (2xy - x) + i(y^2 - y + 2 + x^2)$$
$$-\frac{\partial(y^2 - y + 2 - x^2)}{\partial x} = 2x = \frac{\partial(2xy - x)}{\partial y}$$
$$\frac{\partial(2xy - x)}{\partial x} = 2y - 1 = \frac{\partial(y^2 - y + 2 - x^2)}{\partial y}$$

Задача 2

Необходимо решить задачу $a_0 + a_7 = 1 + 3 = 4 \mod 10$

 $C=\{z\in\mathbb{H}|\ |z|=1\}$ — полуокружность с центром в 0 и R=1 то есть имеются 2 точки на абсолюте. Следовательно параболический автоморфизм не подходит, так как он сохраняет лишь одну точку на абсолюте. Эллиптический автоморфизм: рассмотрим автоморфизм, сохраняющий пучок прямых через 0. Такой автоморфизм сохраняет окружности с центром в этой точке, а следовательно $f(1+i)\in A=\{|z|=\sqrt{2}\}$ Гиперболический авторморфизм: 2 неподвижные точки на абсолюте - это $\pm i$, тогда множество точек вида f(1+i) — эквидистанта, проходящая через $\pm i, 1+i$, то есть $\left\{z\in\mathbb{H}|\ \left|z-\frac{1}{2}\right|=\frac{\sqrt{5}}{2}\right\}$

Задача 3

Необходимо решить задачу $a_6+a_9=9+6=5 \mod 10$ Покажем, что требуемое утверждение неверно Пусть

$$f: \overline{U} \to \mathbb{C}: \{$$

Задача 4

Необходимо решить задачу $a_0 + a_6 = 1 + 9 = 0 \mod 10$

 $\int\limits_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = \int\limits_{-1}^{1} \frac{dx}{\sqrt{(1-x)(1+x)}}$ — не определено только в $1-x^2=0$, то есть ± 1 . Заметим что f аналитична в $\{x\in\mathbb{C}|\ \Im x\geqslant 0\}$, кроме конечного числа точек, а следовательно по лемме Жордана

$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = \int_{\gamma} \frac{dx}{\sqrt{(1-x)(1+x)}} = 2\pi i (\operatorname{Res}_1 f(x) + \operatorname{Res}_{-1} f(x)) = 2\pi i (\frac{1}{2i}) = \pi$$