$K = K_1 U (T^2 x [0,\varepsilon]) U K_2$ $\widetilde{K} = K_1 U (\widetilde{T}^2 x [0,\varepsilon]) U K_2$ $K_1 = dual(J_1')$ $\mathbf{J}_{\scriptscriptstyle 1}^{'}$ $J_{\scriptscriptstyle 1}^{'}$ В J_{2}^{\prime} J_2^{\prime} $\mathbf{K}_2 = \text{dual}(\mathbf{J}_2')$ $G = G_1 {}_{\scriptscriptstyle{C}}^{\scriptscriptstyle{A}} \!\!\!\!/ \!\!\!/ \!\!\!\!/_{\scriptscriptstyle{D}}^{\scriptscriptstyle{B}} G_2$ b_1 $\widetilde{\mathbf{G}} = \mathbf{G}_{1} \mathbf{H}_{\mathbf{C}}^{\mathbf{B}} \mathbf{G}_{2}$ $\mathbf{r}_{\scriptscriptstyle 1}$ b_1 $\mathbf{r}_{\scriptscriptstyle 1}$ $g_{\scriptscriptstyle 1}$ $V_2 V_2$ r_{2} identifying to obtain

v₃

to obtain b_2 $\mathbf{r}_{\scriptscriptstyle 2}$ identifying to obtain v_3 $p_{_{4}}$ $\mathbf{r}_{\scriptscriptstyle 3}$ b_4

 π -rotational symmetry