```
TOMSK TOMCKUЙ

POLYTECHNIC TOMCKUЙ

UNIVERSITY TOMCKUЙ

TOMCKUЙ

TOMCKUЙ

TOMCKUЙ

TOMCKUЙ

TOMCKUЙ
```

```
21 | k = [0.85, 0.1]
   print(eiler(equations, 0, 1, [1, 0], 0.1, args=(k, )))
23
  [[1, 0],
   [0.915, 0.085].
   [0.838075, 0.1619250000000000004],
    [0.7684578750000001, 0.23154212500000004],
    [0.7054543768750001, 0.29454562312500004],
    [0.6484362110718751, 0.35156378892812506],
    [0.596834771020047, 0.4031652289799532],
    [0.5501354677731425, 0.4498645322268577],
    [0.5078725983346939, 0.4921274016653062],
    [0.469624701492898, 0.5303752985071022],
    [0.4350103548510727, 0.5649896451489275]]
```

Пусть дана следующая система обыкновенных дифференциальных уравнений:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2) \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2) \end{cases}$$
 (6)

с начальными условиями:

$$y_1|_{x=x_0} = y_{01}$$
 $y_2|_{x=x_0} = y_{02}$ 
(7)

При использовании метода Рунге-Кутты, расчетные формулы примут следующий вид:

$$\begin{cases} y_{i,1} = y_{(i-1),1} + h/6 \cdot (k_{1,1} + 2 \cdot k_{2,1} + 2 \cdot k_{3,1} + k_{4,1}) \\ y_{i,2} = y_{(i-1),2} + h/6 \cdot (k_{1,2} + 2 \cdot k_{2,2} + 2 \cdot k_{3,2} + k_{4,2}) \\ x_i = x_{i-1} + h \end{cases}$$
(8)

где

$$k_{1,1} = f_1\left(x,y_{(i-1),1},y_{(i-1),2}\right); \\ k_{2,1} = f_1\left(x + \frac{h}{2},y_{(i-1),1} + k_{1,1} \cdot \frac{h}{2},y_{(i-1),2} + k_{1,2} \cdot \frac{h}{2}\right); \\ k_{2,1} = f_1\left(x + \frac{h}{2},y_{(i-1),1} + k_{1,1} \cdot \frac{h}{2},y_{(i-1),2} + k_{1,2} \cdot \frac{h}{2}\right); \\ k_{3,1} = f_1\left(x + \frac{h}{2},y_{(i-1),1} + k_{2,1} \cdot \frac{h}{2},y_{(i-1),2} + k_{2,2} \cdot \frac{h}{2}\right); \\ k_{3,1} = f_1\left(x + \frac{h}{2},y_{(i-1),1} + k_{2,1} \cdot \frac{h}{2},y_{(i-1),2} + k_{2,2} \cdot \frac{h}{2}\right); \\ k_{4,1} = f_1\left(x + h,y_{(i-1),1} + k_{3,1} \cdot h,y_{(i-1),2} + k_{3,2} \cdot h\right); \\ k_{4,2} = f_2\left(x + h,y_{(i-1),1} + k_{3,1} \cdot h,y_{(i-1),2} + k_{3,2} \cdot h\right).$$
 (9)

где h — шаг интегрирования;  $f_1\left(x_i,y_{(i-1),1},y_{(i-1),2}\right)$  и  $f_2\left(x_i,y_{(i-1),1},y_{(i-1),2}\right)$  — правые части дифференциальных уравнений,  $k_{1,j},k_{2,j},k_{3,j},k_{4,j}$  — параметры метода Рунге-Кутты для j-го уравнения.

#### Пример 1

Решим методом Рунге-Кутты пример, приведенный на слайде  $\ref{eq:constraint}$ . Воспользуемся формулами (8), (9) и запишем выражения для нахождения значений искомых переменных  $y_{i,1}$  и  $y_{i,2}$ :

$$\begin{aligned} k_{1,1} &= y_{(i-1),2}; & k_{1,2} &= \exp\left(-x_i \cdot y_{(i-1),1}\right); \\ k_{2,1} &= y_{(i-1),2} + k_{1,2} \cdot \frac{h}{2}; & k_{2,2} &= \exp\left[-\left(x_i + \frac{h}{2}\right) \cdot \left(y_{(i-1),1} + k_{1,1} \cdot \frac{h}{2}\right)\right] \\ k_{3,1} &= y_{(i-1),2} + k_{2,2} \cdot \frac{h}{2}; & k_{3,2} &= \exp\left[-\left(x_i + \frac{h}{2}\right) \cdot \left(y_{(i-1),1} + k_{2,1} \cdot \frac{h}{2}\right)\right] \\ k_{4,1} &= y_{(i-1),2} + k_{3,2} \cdot h; & k_{4,2} &= \exp\left[-\left(x_i + h\right) \cdot \left(y_{(i-1),1} + k_{3,1} \cdot h\right)\right] \\ \begin{cases} y_{i,1} &= y_{(i-1),1} + \frac{0.1}{6} \cdot \left(k_{1,1} + 2 \cdot k_{2,1} + 2 \cdot k_{3,1} + k_{4,1}\right) \\ y_{i,2} &= y_{(i-1),2} + \frac{0.1}{6} \cdot \left(k_{1,2} + 2 \cdot k_{2,2} + 2 \cdot k_{3,2} + k_{4,2}\right) \\ x_i &= x_{i-1} + 0.1 \end{aligned}$$

Результаты вычислений сведем в таблице.

| i  | $x_i$ | $k_{1,1}$ | $k_{2,1}$ | $k_{3,1}$ | $k_{4,1}$ | $y_{i,1}$ | $k_{1,2}$ | $k_{2,2}$ | $k_{3,2}$ | $k_{4,2}$ | $y_{i,2}$ |
|----|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0  | 0.0   | _         | ı         | _         | _         | 0.0000    | ı         | _         | _         | _         | 0.0000    |
| 1  | 0.1   | 0.0000    | 0.0500    | 0.0500    | 0.1000    | 0.0050    | 1.0000    | 1.0000    | 0.9999    | 0.9995    | 0.1000    |
| 2  | 0.2   | 0.1000    | 0.1500    | 0.1499    | 0.1998    | 0.0200    | 0.9995    | 0.9985    | 0.9981    | 0.9960    | 0.1998    |
| 3  | 0.3   | 0.1998    | 0.2496    | 0.2494    | 0.2990    | 0.0449    | 0.9960    | 0.9925    | 0.9919    | 0.9866    | 0.2990    |
| 4  | 0.4   | 0.2990    | 0.3483    | 0.3480    | 0.3968    | 0.0797    | 0.9866    | 0.9793    | 0.9784    | 0.9686    | 0.3968    |
| 5  | 0.5   | 0.3968    | 0.4453    | 0.4446    | 0.4923    | 0.1242    | 0.9686    | 0.9562    | 0.9551    | 0.9398    | 0.4924    |
| 6  | 0.6   | 0.4924    | 0.5393    | 0.5384    | 0.5844    | 0.1781    | 0.9398    | 0.9214    | 0.9202    | 0.8987    | 0.5844    |
| 7  | 0.7   | 0.5844    | 0.6293    | 0.6281    | 0.6716    | 0.2409    | 0.8987    | 0.8739    | 0.8727    | 0.8448    | 0.6717    |
| 8  | 0.8   | 0.6717    | 0.7139    | 0.7124    | 0.7529    | 0.3122    | 0.8448    | 0.8139    | 0.8126    | 0.7790    | 0.7529    |
| 9  | 0.9   | 0.7529    | 0.7919    | 0.7901    | 0.8271    | 0.3913    | 0.7790    | 0.7427    | 0.7415    | 0.7032    | 0.8271    |
| 10 | 1.0   | 0.8271    | 0.8623    | 0.8603    | 0.8933    | 0.4774    | 0.7032    | 0.6630    | 0.6619    | 0.6204    | 0.8933    |

```
import numpy as np
2
3
   def rk(func, x0, xf, y0, h):
       count = int((xf - x0) / h) + 1
5
       y = [y0[:]]
6
7
       x = x0
       for i in range(1, count):
           k1 = func(x, v[i-1])
           k2 = func(x + h / 2, [y + k * h / 2 for y, k in zip(v[i-1], k1)])
10
           k3 = func(x + h / 2, [y + k * h / 2 for y, k in zip(y[i-1], k2)])
11
           k4 = func(x + h, [y + k * h for y, k in zip(y[i-1], k3)])
12
           v.append([1])
13
           for j in range(len(y0)):
14
               y[i].append(
15
                    y[i-1][j] + h / 6 * (k1[j] + 2 * k2[j] + 2 * k3[j] + k4[j])
16
17
18
           x += h
19
       return y
```

```
20
21
   def equations(x, y): # Функция, содержащая правые части дифф. уравнений
       return [y[1], np.exp(-x * y[0])]
23
24
25
26
   if name == ' main ':
       print(rk(equations, 0, 1, [0, 0], 0.1))
27
28
  [[0, 0],
    [0.004999791679686959, 0.09998750234339197],
    [0.019992089353337197, 0.19980027824237273],
    [0.04493954532954178, 0.2989921821997826],
    [0.07974589273138522, 0.39683477618392093],
    [0.1242292261307227, 0.49235154280802335],
    [0.1781000081292174, 0.5843789596377397],
    [0.24094662432104696, 0.67165612248553],
    [0.3122311354618596, 0.7529375201538153],
    [0.39129695254854, 0.8271160064996047],
    [0.4773885589403407, 0.8933374434985747]]
```

Рассмотрим также решение примера, приведенного на слайде  $\ref{eq:condition}$ , методом Рунге-Кутты. Воспользуемся формулами (8), (9) и запишем выражения для нахождения значений искомых концентраций компонентов  $C_{A,i}$  и  $C_{B,i}$ :

$$\begin{cases} C_{A,i} = C_{A,(i-1)} + \frac{0.1}{6} \cdot (k_{1,1} + 2 \cdot k_{2,1} + 2 \cdot k_{3,1} + k_{4,1}) \\ C_{B,i} = C_{B,(i-1)} + \frac{0.1}{6} \cdot (k_{1,2} + 2 \cdot k_{2,2} + 2 \cdot k_{3,2} + k_{4,2}) \\ t_i = t_{i-1} + 0.1 \end{cases}$$

$$\begin{split} k_{1,1} &= -k_1 C_{A,(i-1)} + k_2 C_{B,(i-1)}; \\ k_{2,1} &= -k_1 \left( C_{A,(i-1)} + k_{1,1} \frac{h}{2} \right) + k_2 \left( C_{B,(i-1)} + k_{1,2} \cdot \frac{h}{2} \right); \\ k_{3,1} &= -k_1 \left( C_{A,(i-1)} + k_{2,1} \frac{h}{2} \right) + k_2 \left( C_{B,(i-1)} + k_{2,2} \frac{h}{2} \right); \\ k_{3,1} &= -k_1 \left( C_{A,(i-1)} + k_{2,1} \frac{h}{2} \right) + k_2 \left( C_{B,(i-1)} + k_{2,2} \frac{h}{2} \right); \\ k_{4,1} &= -k_1 \left( C_{A,(i-1)} + k_{3,1} h \right) + k_2 \left( C_{B,(i-1)} + k_{3,2} h \right); \\ k_{4,2} &= k_1 \left( C_{A,(i-1)} + k_{3,1} h \right) - k_2 \left( C_{B,(i-1)} + k_{3,2} h \right); \\ k_{4,2} &= k_1 \left( C_{A,(i-1)} + k_{3,1} h \right) - k_2 \left( C_{B,(i-1)} + k_{3,2} h \right) \end{split}$$

# Пример 2

Результаты вычислений сведем в таблице.

| i  | $t_i$ | $k_{1,1}$ | $k_{2,1}$ | $k_{3,1}$ | $k_{4,1}$ | $C_{A,i}$ | $k_{1,2}$ | k2,2   | k <sub>3,2</sub> | $k_{4,2}$ | $C_{B,i}$ |
|----|-------|-----------|-----------|-----------|-----------|-----------|-----------|--------|------------------|-----------|-----------|
| 0  | 0.0   | _         | _         | -         | -         | 1.0000    | _         | _      | _                | 1         | 0.0000    |
| 1  | 0.1   | -0.8500   | -0.8096   | -0.8115   | -0.7729   | 0.9189    | 0.8500    | 0.8096 | 0.8115           | 0.7729    | 0.0811    |
| 2  | 0.2   | -0.7730   | -0.7363   | -0.7380   | -0.7029   | 0.8452    | 0.7730    | 0.7363 | 0.7380           | 0.7029    | 0.1548    |
| 3  | 0.3   | -0.7029   | -0.6695   | -0.6711   | -0.6392   | 0.7781    | 0.7029    | 0.6695 | 0.6711           | 0.6392    | 0.2219    |
| 4  | 0.4   | -0.6392   | -0.6088   | -0.6103   | -0.5812   | 0.7171    | 0.6392    | 0.6088 | 0.6103           | 0.5812    | 0.2829    |
| 5  | 0.5   | -0.5813   | -0.5537   | -0.5550   | -0.5286   | 0.6617    | 0.5813    | 0.5537 | 0.5550           | 0.5286    | 0.3383    |
| 6  | 0.6   | -0.5286   | -0.5035   | -0.5047   | -0.4807   | 0.6113    | 0.5286    | 0.5035 | 0.5047           | 0.4807    | 0.3887    |
| 7  | 0.7   | -0.4807   | -0.4579   | -0.4589   | -0.4371   | 0.5654    | 0.4807    | 0.4579 | 0.4589           | 0.4371    | 0.4346    |
| 8  | 0.8   | -0.4371   | -0.4164   | -0.4174   | -0.3975   | 0.5237    | 0.4371    | 0.4164 | 0.4174           | 0.3975    | 0.4763    |
| 9  | 0.9   | -0.3975   | -0.3786   | -0.3795   | -0.3615   | 0.4858    | 0.3975    | 0.3786 | 0.3795           | 0.3615    | 0.5142    |
| 10 | 1.0   | -0.3615   | -0.3443   | -0.3451   | -0.3287   | 0.4513    | 0.3615    | 0.3443 | 0.3451           | 0.3287    | 0.5487    |

```
def equations(t, c, k): # Функция, содержащая правые части дифф. уравнений
       right parts = [-k[0] * c[0] + k[1] * c[1].
3
                        k[0] * c[0] - k[1] * c[1]]
       return right parts
4
5
   def rk(func, x0, xf, y0, h, args=()):
7
       count = int((xf - x0) / h) + 1
       y = [y0[:]]
       x = x0
       for i in range(1, count):
10
           k1 = func(x, y[i-1], *args)
11
           k2 = func(x + h / 2, [y + k * h / 2 for y, k in zip(y[i-1], k1)], *args)
12
           k3 = func(x + h / 2, [v + k * h / 2 for v, k in zip(v[i-1], k2)], *args)
13
           k4 = func(x + h, [y + k * h for y, k in zip(y[i-1], k3)], *args)
14
           v.append([1])
15
           for j in range(len(y0)):
16
               v[i].append(v[i-1][i] + h / 6 * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]))
17
18
           x += h
19
       return v
```

```
20
2.1
   if name == ' main ':
       k = [0.85, 0.1]
23
       print(rk(equations, 0, 1, [1, 0], 0.1, args=(k, )))
2.4
25
  [[1, 0],
    [0.9189126823697916, 0.08108731763020834],
    [0.8451740652412765, 0.15482593475872353],
    [0.7781181579189691, 0.22188184208103093],
    [0.717139326447514, 0.282860673552486],
    [0.6616868236612737, 0.33831317633872626],
    [0.6112598149591241, 0.388740185040876],
    [0.5654028548783672, 0.4345971451216329],
    [0.5237017736131901, 0.4762982263868099],
    [0.4857799363256236, 0.5142200636743764],
    [0.4512948414639336, 0.5487051585360664]]
```

Построим графическую визуализацию полученного решения:



Рисунок 1 – Изменение концентрации реагирующих веществ во времени

# Расчет схемы химических реакций

Рассмотрим следующую схему химических реакций:

$$A \longleftrightarrow 2B \longleftrightarrow C$$

с константами скоростей  $k_1, k_2, k_3$  и  $k_4$ . Уравнения, описывающие скорость изменения концентраций компонентов по времени, записываются следующим образом:

1. 
$$A \longrightarrow 2B$$
  $r_1 = k_1 \cdot C_A$ 

2. 
$$2B \longrightarrow A$$
  $r_2 = k_2 \cdot C_B^2$ 

3. 
$$2B \longrightarrow C$$
  $r_3 = k_3 \cdot C_B^2$ 

4. 
$$C \longrightarrow 2B$$
  $r_4 = k_4 \cdot C_C$ 

$$\begin{cases} \frac{dC_{A}}{dt} = -r_{1} + r_{2} \\ \frac{dC_{B}}{dt} = 2 \cdot (r_{1} - r_{2} - r_{3} + r_{4}) \\ \frac{dC_{C}}{dt} = r_{3} - r_{4} \end{cases}$$

#### Метод Эйлера

```
import numpy as np
2
   def func(time: float, c: np.ndarray,
4
             k: np.ndarray) -> np.ndarray:
5
       ca, cb, cc = c
6
       k1, k2, k3, k4 = k
       r1, r2, r3, r4 = [
           k1 * ca,
9
           k2 * cb ** 2.
10
           k3 * cb ** 2.
11
12
           k4 * cc.
13
       dca dt = -r1 + r2
14
       dcb_dt = 2 * (r1 - r2 - r3 + r4)
15
       dcc dt = r3 - r4
16
17
       return dca dt, dcb dt, dcc dt
18
19
20
```

## Метод Эйлера

```
POLYTECHNIC TO TOTAL CHILD OF THE POLYTECHNIC TO THE POLYTET TO THE P
```

```
def eiler(func, x0, xf, y0, h, args=()):
       count = int((xf - x0) / h) + 1
22
       y = np.zeros((count, y0.shape[0]))
23
24
       x, y[0] = x0, y0[:].copy()
       for i in range(1, count):
25
           right parts = func(x, y[i-1], *args)
26
           for j in range(len(v0)):
27
               y[i][j] = y[i-1][j] + h * right parts[j]
28
           x += h
29
       return v
30
31
32
33
   if name == '__main__':
       k, y0 = np.array([.2, .1, .1, .1]), np.array([1, .5, .2])
34
       t0. tf = 0.10
35
       y eiler = eiler(func, t0, tf, y0, 0.1, args=(k, ))
36
37
```

```
import numpy as np
2
   def func(time: float, c: np.ndarray,
4
             k: np.ndarray) -> np.ndarray:
5
       ca, cb, cc = c
6
       k1, k2, k3, k4 = k
       r1, r2, r3, r4 = [
           k1 * ca,
9
           k2 * cb ** 2.
10
            k3 * cb ** 2.
11
12
            k4 * cc.
13
       dca dt = -r1 + r2
14
       dcb dt = 2 * (r1 - r2 - r3 + r4)
15
       dcc dt = r3 - r4
16
17
        return dca dt, dcb dt, dcc dt
18
19
20
```

## Метод Рунге-Кутты

```
def rk(func. x0. xf. v0. h. args=()):
       count = int((xf - x0) / h) + 1
22
       v = np.zeros((count, v0.shape[0]))
23
       x, v[0] = x0, v0[:].copv()
2.4
       for i in range(1, count):
25
           k1 = func(x, v[i-1], *args)
26
           k2 = func(x + h / 2, [y + k * h / 2 for y, k in zip(y[i-1], k1)], *args)
27
           k3 = func(x + h / 2, [v + k * h / 2 for v, k in zip(v[i-1], k2)], *args)
28
           k4 = func(x + h, [y + k * h for y, k in zip(y[i-1], k3)], *args)
29
30
           for i in range(len(v0)):
               v[i][i] = v[i-1][i] + h / 6 * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i])
31
32
           x += h
       return v
33
34
35
   if name == ' main ':
36
       k, y0 = np.array([.2, .1, .1, .1]), np.array([1, .5, .2])
37
       t0. tf = 0.10
38
       v rk = rk(func, t0, tf, v0, 0.1, args=(k, ))
39
40
```