2020 年数一真题

一、选择题

- (1) 当 $x \to 0^+$ 时,下列无穷小量中阶最高的是 ()

- (A) $\int_0^x (e^{t^2} 1) dt$. (B) $\int_0^x \ln(1 + \sqrt{t^3}) dt$. (C) $\int_0^{\sin x} \sin t^2 dt$. (D) $\int_0^{1 \cos x} \sqrt{\sin^3 t} dt$.
- (2) 设函数 f(x) 在区间 (-1,1) 内有定义,且 $\lim_{x\to 0} f(x) = 0$,则 ()
 - (A) 当 $\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$ 时,f(x) 在 x = 0 处可导.
 - (B) 当 $\lim_{x\to 0} \frac{f(x)}{\sqrt{x^2}} = 0$ 时,f(x) 在 x = 0 处可导.
 - (C) 当 f(x) 在 x = 0 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$. (D) 当 f(x) 在 x = 0 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{x^2}} = 0$.
- (3) 设函数 f(x,y) 在点 (0,0) 处可微,f(0,0)=0, $\mathbf{n}=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},-1\right)\Big|_{(0,0)}$,非零向量 $\boldsymbol{\alpha}$ 与 \mathbf{n} 垂直, 则()

- (A) $\lim_{(x,y)\to(0,0)} \frac{|n\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$ 存在. (B) $\lim_{(x,y)\to(0,0)} \frac{|n\times(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$ 存在. (C) $\lim_{(x,y)\to(0,0)} \frac{|\alpha\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$ 存在. (D) $\lim_{(x,y)\to(0,0)} \frac{|\alpha\times(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$ 存在. (4) 设 R 为幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径,r 是实数,则() (A) 当 $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散时, $|r| \ge R$. (B) 当 $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛时, $|r| \le R$. (C) 当 $|r| \ge R$ 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛.

- (5) 若矩阵 A 经过初等列变换化成 B,则
 - (A) 存在矩阵 P, 使得 PA = B.
 - (B) 存在矩阵 P,使得 BP = A.
 - (C) 存在矩阵 P, 使得 PB = A.
 - (D) 方程组 Ax = 0 与 Bx = 0 同解.
- (6) 已知直线 $l_1: \frac{x-a_2}{a_1} = \frac{y-b_2}{b_1} = \frac{z-c_2}{c_1}$ 与直线 $l_2: \frac{x-a_3}{a_2} = \frac{y-b_3}{b_2} = \frac{z-c_3}{c_2}$ 相交于一点,记向量

$$\boldsymbol{\alpha}_i = \begin{pmatrix} a_i \\ b_i \\ c_i \end{pmatrix}$$
, $i = 1, 2, 3$,则 ()

- $(B)\alpha_2$ 可由 α_1 , α_3 线性表示.
- $(C)\alpha_3$ 可由 α_1 , α_2 线性表示.
- $(D)\alpha_1$, α_2 , α_3 线性无关.
- (7) 设 A, B, C 为三个随机事件,且 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{12}$, 则 A, B, C 中恰有一个事件发生的概率为 (

(A)
$$\frac{3}{4}$$
. (B) $\frac{2}{3}$. (C) $\frac{1}{2}$.

(8) 设 X_1 , X_2 , ..., X_{100} 为来自总体 X 的简单随机样本,其中 $P\{X=0\} = P\{X=1\} = \frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数,则利用中心极限定理可得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为 ()

(A)1 –
$$\Phi$$
(1). (B) Φ (1). (C)1 – Φ (0.2). (D) Φ (0.2).

二、填空题

(9)
$$\lim_{x \to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right] = \underline{\qquad}$$

(12) 设
$$f(x,y) = \int_0^{xy} e^{xt^2} dt$$
,则 $\frac{\partial^2 f}{\partial x \partial y}\Big|_{(1,1)} = \underline{\qquad}$

(13) 行列式
$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}.$$

(14) 设 X 服从 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的均匀分布, $Y = \sin X$,则 $\operatorname{Cov}(X, Y) =$

三、解答题

- (15) 求函数 $f(x,y) = x^3 + 8y^3 xy$ 的极值.
- (16) 计算 $I = \oint_L \frac{4x-y}{4x^2+u^2} dx + \frac{x+y}{4x^2+u^2} dy$,其中 L 为 $x^2 + y^2 = 2$,方向为逆时针方向.
- (17) 设数列 $\{a_n\}$ 满足 $a_1=1$, $(n+1)a_{n+1}=\left(n+\frac{1}{2}\right)a_n$. 证明: 当 |x|<1 时,幂级数 $\sum_{n=1}^{\infty}a_nx^n$ 收敛, 并求其和函数.
- (18) 设 Σ 为曲面 $z = \sqrt{x^2 + y^2} (1 \le x^2 + y^2 \le 4)$ 的下侧, f(x) 为连续函数. 计算

$$I = \iint\limits_{\Sigma} [xf(xy) + 2x - y] \mathrm{d}y \mathrm{d}z + [yf(xy) + 2y + x] \mathrm{d}z \mathrm{d}x + [zf(xy) + z] \mathrm{d}x \mathrm{d}y.$$

- (19) 设函数 f(x) 在区间 [0,2] 上具有连续导数,f(0)=f(2)=0, $M=\max_{x\in[0,2]}|f(x)|$. 证明:
 - (I) 存在 $\xi \in (0,2)$,使 $|f'(\xi)| > M$.
 - (II) 若对任意的 $x \in (0,2)$, $|f'(x)| \le M$, 则 M = 0.
- (20) 设二次型 $f(x_1, x_2) = x_1^2 4x_1x_2 + 4x_2^2$ 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ $ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $a \ge b$.
 - (I) 求 a, b 的值.
 - (II) 求正交矩阵 Q.
- (21) 设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$,其中 α 是非零向量且不是 A 的特征向量.
 - (I) 证明 P 为可逆矩阵.
 - (II) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.
- (22) 设随机变量 X_1 , X_2 , X_3 相互独立, 其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},\ Y=X_3X_1+(1-X_3)X_2.$

- (I) 求二维随机变量 (X_1,Y) 的分布函数,结果用标准正态分布函数 $\Phi(x)$ 表示.
- (II) 证明随机变量 Y 服从标准正态分布.
- (23) 设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t \ge 0, \\ 0, & \text{ 其他.} \end{cases}$$

其中 θ , m 为参数且均大于零.

- (I) 求概率 $P\{T > t\}$ 与 $P\{T > s + t | T > s\}$, 其中 s > 0, t > 0.
- (II) 任取 n 个这种元件做寿命试验,测得它们的寿命分别为 $t_1,\ t_2,\ \cdots,\ t_n$,若 m 已知,求 θ 的最大似然估计值 $\hat{\theta}$.