浙江大学 2012 - 2013 学年秋冬学期

《概率论与数理统计》期末考试试卷

考试试卷: A 卷 √、B 卷 (请在选定项上打 √)

课程号: <u>061B9090/061Q0029</u>, 开课学院: <u>数学系</u>,任课教师: _____

考试形式:闭√、开卷(请在选定项上打√),允许带 <u>计算器</u> 入场 考试日期: <u>2013</u> 年 <u>1</u> 月 <u>20</u> 日,考试时间 <u>120</u> 分钟										
诚信考试,沉着应考,杜绝违纪。										
请注意:本试卷共六大题,四页,两大张。										
请勿将试卷拆开或撕页! 如发生此情况责任自负!										
考生姓名:						<u> </u>				
题序	_	11	三	四	五	六	总分			
得分										
评卷人										
$\Phi(1) = 0.84, \ \Phi(1.645) = 0.95, \ \Phi(1.96) = 0.975, \Phi(2.31) = 0.99,$ $t_{0.05}(8) = 1.86, \ t_{0.025}(8) = 2.31, \ t_{0.05}(16) = 1.75, \ t_{0.025}(16) = 2.12,$ $c_{0.975}^2(8) = 2.18, \ c_{0.95}^2(8) = 2.73, \ c_{0.05}^2(8) = 15.51, \ c_{0.025}^2(8) = 17.53,$ $c_{0.05}^2(4) = 9.49, \ c_{0.05}^2(3) = 7.82, F_{0.025}(9,7) = 4.82, F_{0.025}(7,9) = 4.2.$ $ \ \ \ $ 填空题(每小格 3 分,共 39 分。每个分布要求写出参数):										
1. 设事件 A,B,C 相互独立, 已知 $P(A) = 0.5, P(A \cup B) = 0.6, P(\overline{C} \mid A) = 0.4$,则 $P(B) = 0.6$										
$\underline{\hspace{1cm}}, P(A \cup B \cup C) = \underline{\hspace{1cm}}.$										
2. 在区间 $(0,q)$ (参数 $q>0$)内独立重复观测 5 次,记为 X_1 , L , X_5 , $X_i\sim U(0,q)$, (1)										
设 $q=2$,则最大观测值小于 1.8 且最小观测值大于 0.4 的概率为; (2) 设 $q>0$ 未知,5 次观测值为 1.18,0.48,1.59,0.13,1.76,则 q 的矩估计值是										
3.某超市从	、开门到第1	位顾客进入	所需时间 X ((分钟)的概率	^医 密度函数 <i>J</i>	$f(x) = \begin{cases} \frac{1}{5}e^{-x} \\ 0, \end{cases}$	-x/5, x > 0 其他.			
	刀后的 10 分 匀花		1人进入的	概率为		; 从开门到	引第 1 位顾			

4. 设某地区男性成年人的身高 X (厘米) 与体重 Y (公斤) 服从二元正态分布, $X \sim N(169.5,10.5^2), Y \sim N(57.3,16.2^2), r_{XY} = 0.6$, 从该地区独立随机选 n 名男子,测

得身高体重为
$$(X_1,Y_1)$$
L (X_n,Y_n) ,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ 。则 \overline{X} 服从______

5. 设总体 $X \sim N(\textbf{m}, \textbf{s}^2)$, \textbf{m}, \textbf{s}^2 均未知, X_1, \textbf{L} , X_9 为来自 X 的简单随机样本, \overline{X} 和S 分别是样本均值和样本标准差,(1) 若根据样本观测值, $\overline{x} = 7.076, s = 1.2$,则 \textbf{s}^2 的置信度为0.95 的双侧置信区间为______,检验假设 $H_0: \textbf{m} = 8$, $H_1: \textbf{m} \neq 8$ 的 P_0 值为

6. 在研究我国人均消费水平问题上,考虑人均国民收入 x (千元) 对人均消费金额 Y (千元) 的影响。设 $Y \sim N(a+bx,s^2)$, a,b,s^2 均未知, (x_1,y_1) **L** (x_{19},y_{19}) 是 1980-1998

年的数据,已知
$$\overline{x} = 2.32$$
, $\overline{y} = 1.09$, $\sum_{i=1}^{19} (x_i - \overline{x})^2 = 73.980$, $\sum_{i=1}^{19} (y_i - \overline{y})^2 = 15.343$,

$$\sum_{i=1}^{19} (x_i - \overline{x})(y_i - \overline{y}) = 33.291$$
,采用最小二乘估计,则回归方程 $\hat{y} = \underline{\hspace{1cm}}$

二. (11 分)有 A,B 两盒,A 盒中有 1 个红球 1 个白球,B 盒中有 4 件正品 2 件次品。先从 A 盒中采用放回抽样取 2 球,X 表示从 A 盒中取到的红球数,若 X=1 时,则从 B 盒中采用不放回抽样取 3 件产品;若 $X \neq 1$ 时,从 B 盒中采用不放回抽样取 2 件产品。Y 表示从 B 盒中取到的次品数。(1)已知 X=1,求 Y 的条件分布律;(2) 求 Y 的分布律.

三. $(12\, eta)$ 设总体 X 服从参数为 I 的泊松分布, X_1 , L , X_{200} 为来自 X 的简单随机样本, \overline{X} 是样本均值; (1) 若 I=2,求 $P(X_1>2)$ 的值,以及 $P(\overline{X}>2.1)$ 的近似值。(2) 若 I>0 未知,判断统计量 $T=\frac{1}{200}\sum_{i=1}^{200}X_i(X_i-1)$ 是否为 I^2 的无偏估计量,说明理由.

四. (12 分) 设随机变量(*X*,*Y*)的密度函数 $f(x,y) = \begin{cases} 6(x-y), 0 < y < x < 1 \\ 0, 其它 \end{cases}$,求

(1) P(Y>0.5); (2) X 的边际密度函数 $f_X(x)$ (3) 设 Z=X+Y,求 Z 的密度函数 $f_Z(z)$.

五. (12 分)设两个独立正态总体 $X \sim N(\mathbf{m}_1, \mathbf{s}_1^2), Y \sim N(\mathbf{m}_2, \mathbf{s}_2^2)$,现分别从总体 X 和 Y 中取得容量为 10 和 8 的样本,测得样本均值 $\overline{x} = 147.32$, $\overline{y} = 141.11$,样本标准差 $s_1 = 6.4$, $s_2 = 5.4$.(1)以显著水平 0.05 检验假设 $H_0: \mathbf{s}_1^2 = \mathbf{s}_2^2, H_1: \mathbf{s}_1^2 \neq \mathbf{s}_2^2$; (2)设 $\mathbf{s}_1^2 = \mathbf{s}_2^2 = \mathbf{s}^2$ 未知,求 $\mathbf{m}_1 - \mathbf{m}_2$ 的置信度为 95%的双侧置信区间.

六.(14 分)对总体进行 100 次独立重复观察,得到观察值 x_i , $i = 1, \mathbb{L}$, 100, 其中最小值为 1.01,最大值为 520.1,平均值为 16.7,具体数据分布如下:

观察值 x_i 的范围	<i>x</i> ≤ 1.6	$1.6 < x \le 2$	$2 < x \le 4$	4 < <i>x</i> ≤ 10	x > 10
频数 n _i	33	17	23	12	15

(1)若总体 X 的概率密度函数为 $f(x,q) = \begin{cases} q / x^2, x \ge q \\ 0, 其它 \end{cases}$,求 q 的极大似然估计值;

(2) 在显著水平 0.05 下用 c^2 拟合检验法检验 H_0 : 总体 X 的概率密度 $f(x) = \begin{cases} x^{-2}, x \ge 1 \\ 0, 其它 \end{cases}$.