1 SVETLOBNI SPOJNIKI

Pred davnimi časi, ko svet še ni slišal za digitalno tehnologijo, se je gospod Samuel Morse domislil, da bi črke kodiral v kratke in dolge pulze. Te pa bi lahko kar najlažje pošiljal od ene točke do druge na najrazličnejše načine ... in telekomunikacije so prijokale na svet.

1.1 Vklop porabnika s tranzistorjem

Pogosto moramo porabnike skozi katere tečejo večji tokovi ($I > 500 \, mA$) vključiti s tranzistorjem.

1.1.1 NALOGA: Vklop žarnice s tranzistorjem

- 1. Za pošiljanje Morsejevih znakov uporabite žarnico. Ali nek drug vir z večjo svetilnostjo.
- 2. Dolge in kratke pulze bomo pošiljali s svetlobnim oddajnikom. Načrtujete ustrezno rešitev (narišite shemo vezja) tako, da bomo s pritiski na tipko vklapljali in izklapljali svetilo (uporabite žarnico [12V in 0,6 A]).
- 3. Bodite pozorni, na električne omejitve tipke, ki jih najdete v **navodilih za uporabo** tipke. Načrtujte ustrezno rešitev.

1.2 Komparator napetosti

V kolikor želimo ločiti med dvema napetostnima nivojema, lahko uporabimo komparator napetosti s primerno izbrano (ali celo nastavljivo) referenčno vrednostjo.

1.2.1 NALOGA: Komparator napetosti

- 1. Izdelajte svetlobni sprejemnik, v katerega boste za zaznavanje osvetljenosti uporabili elektronski element s hitrim odzivom.
- 2. Analogni signal senzorja modificirajte tako, da boste lahko nedvoumno podajali informacijo (npr. LED svetilo), ki jo je poslal svetlobni oddajnik.
- 3. Z osciloskopom zajemite časovni potek napetostnega potenciala na vhodnem in na izhodnem priključku komparatorja.

dr. David Rihtaršič

1.3 Schmittov sprožilnik

Iz prejšnje naloge lahko ugotovimo, da je izhodni signal svetlobnega senzorja opremljen z neželeno motnjo. Če v tem primeru želimo ločiti dve različni stanji senzorja, komparator napetosti ni dobra rešitev. Ob prehodu senzorja iz enega stanja v drugega tako dobimo na izhodu komparatorja več prehodov, čeprav se je osvetljenost senzorja spremenila le enkrat. Tako lahko ugotovimo potrebo po histerezi s katero bomo bomo mejno vrednost razmejili na dve mejni vrednosti. Tako ločevanje nam omogoča schmittov sprožilnik.

1.3.1 NALOGA: Komparator napetosti s šmitovim sprožilnikom

- 1. Iz grafa prejšnje naloge, ki predstavlja časovno odvisnost napetostnega potenciala vhodnega in izhodnega signala, odčitajte nove mejne vrednosti (U_{h1} in U_{h2}).
- 2. Komparator napetosti iz prejšnje naloge zamenjajte s komparatorjem napetosti s šmitovim sprožilnikom (narišite stikalno shemo).
- 3. Z osciloskopom zajemite časovni potek napetostnega potenciala na vhodnem in na izhodnem priključku komparatorja napetosti s šmitovim sprožilnikom.

dr. David Rihtaršič