Documentation

ContaminationFlow on Linux and Windows

Hoai My Van, Rudolf Schönmann

Contents

1.	Gen	erai Structure	1
2.	Con	taminationFlow Linux	2
	2.1.	Call of Application from Command line	3
	2.2.	Communication	4
	2.3.	Usage of boost Library	4
	2.4.	New Quantities	5
	2.5.	Iterative Algorithm	6
		2.5.1. Initialization of simulation	6
		2.5.2. Simulation on subprocesses	7
	2.6.	Update main buffer	9
	2.7.	Summary	10
3.	Con	taminationFlow Windows	12
	3.1.	Graphical User Interface	12
	3.2.	-	12
	3.3.	New Quantities	12
			13
Α.	Forn	nulas for new Quantities	14
В.	Data	atypes	16
		· ·	16
	B.2.	Functions	16
c	Ovo	rview of new Classes and Functions	17
C.			17
			20
	O.Z.	C.2.1. molflowlinux_main.cpp	20
		11	$\frac{20}{21}$
		Tr Tr	21
		1 1	21
		Tr Tr	21 22
		C.2.6. UpdateSubProcess.cpp	
			23
		0.2.1. Optimizatili 100c55.0pp	ചാ

1. General Structure

General structure for ContaminationFlow simulation

- ullet Code adapted from Molflow
- \bullet Contamination Flow Windows primary used to create Geometry and to view simulation results through the ${\rm GUI}$
- ContaminationFlow Linux primary used for simulation and calculation of counters, profiles, etc.
- Loadbuffer contains information of geometry
- Hitbuffer contains information such as hit counters, profiles, etc.
- Import and export of buffer files for communication between ContaminationFlow Windows and ContaminationFlow Linux
- Export of simulationHistory for ContaminationFlow Linux

2. ContaminationFlow Linux

- Parallel simulation on several sub processes
- Processing and control of data in main process
- Update and accumulation of hit counters and other information such as profiles
- SimulationHistory, final hitbuffer and used parameters exported to results folder

Figure 2.1.: Processing of data in main and sub processes

2.1. Call of Application from Command line

New class ProblemDef

- Defines parameters used for simulation
- Possible adaptation of default paramaters through input file
- Creates result folder for simulation if desired
 - Final resultbuffer
 - Final covering, input file and console output as text files

Application with custom parameters using input file

Call of ContaminationFlow Linux application in the command line:

```
$ module load mpi
$ mpirun -n N MolflowLinux inputfile save
```

with the following command line parameters:

- N: desired number of worker processes; simulation on K=N-1 worker processes
- MolflowLinux: path to application, e.g. ~/MolflowLinux/Debug/MolflowLinux
- inputfile: path to file that defines simulation parameters
- save: determines whether result directory is created (1: true, 0:false); default: 1 and the input file defining the following parameters:
 - loadbufferPath: path to loadbuffer file, contains geometry, e.g. ~/loadbuffer
 - hitbufferPath: path to hitbuffer file, contains counters, etc., e.g. ~/hitbuffer
 - simulationTime: simulation time per iteration step; default: 10.0
 - unit: simulation time unit; default: s
 - maxTime: maximum simulation time; default: 10.0
 - maxUnit: maximum simulation time unit; default: y
 - *iterationNumber*: number of iterations; default: 43200
 - particleDia: diameter of particles; default: 2.76E-12
 - E_{de} : binding energy of a particle on pure substrate; default: 1E-21
 - H_{vap} : vaporization enthalpy of a particle in case of multilayer contamination; default: 0.8E-19
 - W_{tr} : transition width between monolayer and multilayer properties; default: 1
 - *sticking*: constant sticking coefficient for all facets, set to zero, not used at the moment; default: 0
 - targetPaticles: minimum number of desorbed particles per iter.; default: 1000
 - targetError: average statistical uncertainty (error) to be achieved for each iteration, calculated as the average (weighted with the facets area) of the normalized standard deviation of events per facet; default: 0.001
 - hitRatioLimit: Ratio at which hits are ignored, default: 0
 - Tmin or t_min : minimum time for step size; default: 1E-4
 - maxStepSize or t_max: maximum time for step size; default: max
 - maxSimPerIt: maximum simulation steps per iteration; default: max
 - coveringMinThresh: minimum covering (through multiplication); default: 10000

- histsize: Size of history lists; default: max
- *vipFacets*: very important facets: facets with have their own target error. input in inputfile as alternating sequence of facet numbers and respective target errors separated via blanks; default: []

Terminology

- Simulation time: desired computation time until check if target is reached for iteration
- Simulated time: physical time in the simulated system, e.g. flight time or residence time of a particle
- Maximum simulation time: desired total simulated time
- Step size: desired simulated time per particle for iteration

2.2. Communication

Import and export of buffer files

• New Databuff struct that replaces Dataport struct from MolFlow Windows

```
typedef unsigned char BYTE;
typedef struct {
   signed int size;
   BYTE *buff;
} Databuff;
```

- New functions <code>importBuff(·)</code> and <code>exportBuff(·)</code> for import of buffer files and export of Databuff struct
- New functions checkReadable(·) and checkWriteable(·) to check if file is readable or writeable

Communication between worker processes via MPI

- Main process 0 sends Databuff struct containing loadbuffer and Databuff struct containing hitbuffer and required simulationHistory values to sub processes using MPI_Bcast(·)
- Sub processes send updated Databuff struct containing hitbuffer and required simulationHistory values to main process 0 using MPI_Send(·) and MPI_Recv(·)

2.3. Usage of boost Library

Multiprecision

- Increase precision for variables if required
- Avoid overflow for integer and underflow for floating point numbers

2.4. New Quantities

New counter covering

- Number of carbon equivalent particles on facet
- Increases with adsorption, decreases with desorption
- Extracted from new hitbuffer counter from Simulationcalc.cpp file in getCovering(·)

Coverage

- Number of monolayers of adsorbed particles
- Calculated from covering, particle diamieter (previously gas mass) and facet area
- Coverage computed from Simulationcalc.cpp file in calcCoverage(·)

Sticking factor

- Ratio adsorbed particles to impinging particles
- Set to 0, can be adapted for all facets through input file

Binding energy

- Either E_{de} or H_{vap}
- Depending on the how many layers of particles are adsorbed.
- If coverage is smaller than a monolayer, it will be decided at random.

Desorption

- Number of particles desorbing
- Calculated from binding energy, covering, temperature and step size
- Desorption computed from Simulationcalc.cpp file in calcDesorption(·)

Outgassing

- Number of particles from outgassing
- Calculated from facet outgassing, temperature, and outgassing time
- Outgassing computed from Worker.cpp file in CalcTotalOutgassingWorker()

$K_{\rm real/virtual}$

- Number of real particles represented by test particles
- Calculated from desorption & outgassing and number of desorbed molecules
- $K_{\text{real/virtual}}$ computed from Simulationcalc.cpp file in GetMoleculesPerTP(\cdot)

Statistical Error

- Event error: calculated from hits and desorbed particles (of facet and total)
- Covering error: calculated from adsorbed and desorbed particles (of facet and total)
- Used to determine significance of simulation results of iteration

Step size

- Minimum time between adsorption and desorption
- Step size computed from UpdateMainProcess.cpp file in getStepSize()

Particle Density

- \bullet Calculated from sum over reciprocal of orthogonal velocity, facet area and $K_{\rm real/virtual}$
- Particle density computed from Simulationcalc.cpp file in calcParticleDensity(·)

Pressure

- Calculated from sum over orthogonal velocity, facet area, gas mass and $K_{\rm real/virtual}$
- Pressure computed from Simulationcalc.cpp file in calcPressure(·)

Start time

- Determines time of desorption/outgassing for particle based on the distribution
- Desorption rate: exponential distribution for whole iteration
- Outgassing: uniform distribution of limited time for whole simulation
- Start time computed from Simulationcalc.cpp file in calcStartTime(·)

2.5. Iterative Algorithm

2.5.1. Initialization of simulation

Figure 2.2.: Overview: Initialize simulation

New class to store Simulation History

• SimulationHistory class

```
template <typename T> class HistoryList {
public:
    HistoryList();
    pair<vector<double>,vector<vector<T>>> historyList;
    vector<T> currentList;
};
```

```
class SimulationHistory {
public:
   SimulationHistory();
   SimulationHistory(Databuff *hitbuffer);

HistoryList<llong> coveringList;
HistoryList<double> hitList;
HistoryList<double> hitList;
HistoryList<double> errorList_event;
HistoryList<double> errorList_covering;
HistoryList<double> particleDensityList;
HistoryList<double> pressureList;

double lastTime;
int currentStep;
};
```

- In SimulationLinux.h and SimulationLinux.cpp file
- Updated after each iteration in UpdateParticleDensityAndPressure(·), UpdateCovering(·), UpdateErrorMain(·) from UpdateMainProcess.cpp file
- Recorded quantities: covering, error (event and covering), particle density and pressure for each facet and iteration, total hits and desorbed particles for each facet
- lastTime: simulated time (accumulated time steps) instead of computation time

2.5.2. Simulation on subprocesses

Calculate Step Size

- Use simHistory—currentStep to calculate logarithmic step size
- Calculation in UpdateMainProcess.cpp file in getStepSize()

Calculate Covering Threshold

- Set lower threshold for covering for each facet to prevent covering getting negative
- Stop simulation once threshold is reached
- Threshold set in setCoveringThreshold(·) from Iteration.cpp file

Multiply small covering

- Multiply covering so that smallest covering \geq ProblemDef::coveringThreshMin
- Multiply covering threshold with same factor
- Calculation in checkSmallCovering(·) from SimulationLinux.cpp file

Calculate desorption

- Desorption calculated from current covering values
- Calculation in UpdateDesorption(·) from UpdateSubProcess.cpp file

Figure 2.3.: Overview: simulation on sub processes

Create Particle

- Facet randomly selected based on total desorption and outgassing
- Desorption or outgassing randomly selected based on ratio on facet
- Start time randomly generated based on distribution of desorption or outgassing
- Calculation in StartFromSource(·) from SimulationMC.cpp file

Calculate residence time

- Sojourn time randomly calculated from binding energy, facet temperature and sojourn frequency
- Calculation in PerformBounce(·) from SimulationMC.cpp file

Target error reached?

- Calculate statistical error in UpdateError() from UpdateSubProcess.cpp file
- Total error calculated from summing facet error weighted with facet area
- Error to check can be either covering or event error (currently covering)
 - Check if vip facets reached their own target error
 - Check if total error reached target error
- Facets with error=inf are not considered
 - Facets that reached ProblemDef::hitRatioLimit
 - Facets with no events or covering change
 - If vip facet: own target error automatically reached
 - If normal facet: facet error and area not used for calculation
- Check in checkErrorSub(·) from UpdateSubProcess.cpp file

2.6. Update main buffer

Figure 2.4.: Overview: update of covering in hitbuffer

Before summation of subprocesses

- Calculate step size in UpdateMainProcess.cpp file in getStepSize() depending on, if the target error was reached
- Multiply covering in hitbuffer of main process in checkSmallCovering(·) from SimulationLinux.cpp file if covering is multiplied in sub processes

Error Calculation

- Calculate statistical error per facet and total error analogous to calculation in subprocesses
- Save error per facet in simHistory—errorList
- $\bullet \ \ {\tt Management\ in} \ \ {\tt UpdateErrorMain(\cdot)} \ \ {\tt from} \ \ {\tt UpdateMainProcess.cpp} \ \ {\tt file}$
 - ⇒ Increase simHistory→currentStep if target errors reached

Calculate & Update Covering

- ullet $K_{
 m real/virtual}$ computed from Simulationcalc.cpp file in GetMoleculesPerTP(ullet)
- Divide covering in hitbuffer if previously multiplied
- Use $K_{\text{real/virtual}}$ to calculate new covering
- Save new covering in simHistory—coveringList and hitbuffer
- Calculation in UpdateCovering(·) from UpdateMainProcess.cpp file
- Update buffers in UpdateCoveringPhys(·) from UpdateMainProcess.cpp file

Calculate & Update Statistics

- Calculate mean and standard deviation of quantity over last p→rollingWindowSize iterations
- Update statistics in HistoryList::updateStatistics(·) from SimulationLinux.h file

2.7. Summary

Figure 2.5.: Overview: ContaminationFlow application

General Pipeline

- Initialize MPI, ProblemDef p and SimulationHistory simHistory
- Load geometry into Simulation sHandle using LoadSimulation()
- Iteration until desired maximum simulation time is reached:
 - Reset hitbuffer counters using initbufftotero(·)
 - Broadcast simHistory→coveringList using MPI_Bcast(⋅)
 - Set covering threshold covthresh using setCoveringThreshold(·)
 - Update simulation values using simHistory→updateStepSize(·),
 UpdateSticking(·), UpdateDesorption(·), CalcTotalOutgassingWorker(·)
 - Multiply covering and covthresh with simHistory—smallCoveringFactor if covering is small
 - Simulation in sub processes
 - Simulate until targetParticles and targetError or covthresh reached
 - Update hitbuffers of sub processes from sHandle using UpdateSubHits(·)
 from UpdateSubProcess.cpp
 - Update Main process:
 - Send hitbuffer to main process using MPI_Send(·) and MPI_Recv(·)
 - Update of hitbuffer in UpdateMainHits(·) from UpdateMainProcess.cpp
 - Update error of iteration using UpdateErrorMain(·) from UpdateMainProcess.cpp
 - Calculate real covering in main process using $K_{\text{real/virtual}}$ in UpdateCovering(·) from UpdateMainProcess.cpp, save in simHistory
 - Update real covering in hitbuffer of main process in UpdateCoveringphys(·) from UpdateMainProcess.cpp
 - Update statistics using simHistory—coveringList.updateStatistics(·)
- Export final results (hitbuffer and simulationHistory) to results folder
- Close MPI

3. ContaminationFlow Windows

• Create Geometry and set parameters such as initial coverage and temperature

3.1. Graphical User Interface

Add screenshot of GUI

New GUI elements

- "Particles out" renamed to Contamination level
 - Text field for covering
 - Text field for coverage
- New facet properties
 - Effective surface factor
 - Facet depth and facet volume
 - Diffusion coefficient
 - Concentration and gas mass
- Window for CoveringHistory (reworked to SimulationHistory in ContaminationFlow Linux)
- PressureEvolution window expanded
 - Added list that contains information of graph
 - Option to show only selected facets or all
 - List exportable

3.2. Communication

Import and export of buffer files via GUI

• New Databuff struct

```
typedef unsigned char BYTE;
typedef struct
  signed int size;
  BYTE *buff;
Databuff;
```

- New functions importBuff(·) and exportBuff(·) for import and export of buffer files/Databuff struct
- New options in file menu: Export buffer and Import buffer

3.3. New Quantities

New counter covering

• Covering computed in SimulationMC.cpp file in updatecovering(·)

- Added covering counter to hitbuffer
- Added covering to GUI, can be defined through textfield

New facet property effetiveSurfaceFactor

• Defines increase of facet area due to texture

New facet property facetDepth

• Defines depth of facet

New facet property diffusionCoefficient

• Defines diffusion coefficient

New facet property concentration

• Defines concentration = mass of particles in volume

Removal of irrelevant quantities

- Sticking factor and pumping speed removed from GUI
- calcSticking() and calcFlow() in Molflow.cpp file not used anymore
- Flow not needed for iterative Algorithm

3.4. Iterative algorithm

New class to store covering for all facets at any time

- In HistoryWin.cpp and HistoryWin.h file
- std::vector<std::pair<double,std::vector<double>>> pointintime_list to store points in time and respective covering for all facets
- New GUI option to add and remove entries for pointintime_list
- New GUI option to export or import a complete list

A. Formulas for new Quantities

Constants

$$k_b = 1.38 \, 10^{-23}$$

 $h = 6.626 \, 10^{-34}$ (A.1)
 $N_A = 6 \, 10^{23}$

Variables

$$T = \text{Facet temperature}$$
 (A.2)

Number of carbon equivalent particles of one monolayer

$$N_{mono} = \frac{\text{Area of Facet } [\text{m}^2]}{\text{ProblemDef::particleDia}^2 [\text{m}^2]}$$
(A.3)

Carbon equivalent relative mass factor

$$\Delta N_{surf} = \frac{\text{carbon equivalent gas mass}}{12.011} \tag{A.4}$$

Covering θ^*

$$\theta^* = N_{\text{particles on facet}}$$
 (A.5)

Coverage θ

$$\theta = \frac{\theta^*}{N_{mono}/\Delta N_{surf}} \tag{A.6}$$

Binding Energy E

$$E = \begin{cases} E_{de}, & \text{if particle binds with substrate} \\ H_{vap}, & \text{if particle binds with adsorbate} \end{cases}$$
 (A.7)

Residence Time τ

$$A = \exp\left(-E/(k_b T)\right), \ \tau_0 = \frac{k_b T}{h}$$

$$\tau = \frac{-\ln(rnd) \cdot \tau_0}{A}$$
(A.8)

Step Size t_{step}

 $t_{min} = \text{ProblemDef::t_min}$

 $t_i = t_{min} \cdot \exp\left(i \cdot \ln(\text{ProblemDef::maxTimeS}/T_{min})/\text{ProblemDef::iterationNumber}\right)$

$$t_{step} = \min(t_{currentStep+1} - t_{currentStep}, \text{ProblemDef::t_max})$$
(A.9)

Desorption des

$$\tau_0 = \frac{h}{k_b T}, \ \tau_{subst} = \tau_0 \cdot \exp\left(\frac{E_{de}}{k_b T}\right), \ \tau_{ads} = \tau_0 \cdot \exp\left(\frac{H_{vap}}{k_b T}\right), \ t_{ads} = \tau_{ads} \cdot (\theta - 1)$$

$$des = \begin{cases} 0, & \text{if } \theta = 0 \text{ or } T = 0 \\ \theta \cdot (1 - \exp(-t_{step}/\tau)), & \text{else if } \theta \le 1 \\ t_{step}/\tau_{ads}, & \text{else if } \theta - 1 \ge t_{step}/\tau_{ads} \\ \theta - 1 + (1 - \exp(-(t_{step} - t_{ads}/\tau))), & \text{else if } \theta - 1 < t_{step}/\tau_{ads} \end{cases}$$
(A.10)

Outgassing out

$$out = \frac{\text{Facet outgassing}}{k_b T} \tag{A.11}$$

Particle Density

$$density = \frac{\text{sum over reciprocal of orthogonal velocity}}{\text{Area of Facet } [\text{m}^2] \cdot t_{step}} \cdot K_{\text{real/virtual}}$$
(A.12)

Pressure [mbar]

$$density = \frac{\text{sum over orthogonal velocity}}{\text{Area of Facet } [\text{m}^2] \cdot t_{step}} \cdot \frac{\text{carbon equivalent gas mass}}{1000/N_A} \cdot 0.01 \cdot K_{\text{real/virtual}}$$
(A.13)

Small covering factor

mincov = Smallest covering on a single facet that desorbs

 $small\ covering\ factor = \begin{cases} 1, & \text{if}\ mincov \geq ProblemDef::coveringMinThresh} \\ 1 + 1.1 \cdot (ProblemDef::coveringMinThresh/mincov), & \text{otherwise} \end{cases}$ (A.14)

 $K_{\text{real/virtual}}$

$$K_{\text{real/virtual}} = \frac{\sum_{\text{facets}} \left(out + des \right)}{\text{number of total desorbed molecules/small covering factor}}$$
(A.15)

Error

$$\operatorname{error}(counter) = \begin{cases} inf & \text{if } (counter) \text{ on facet } = 0 \\ \left(\frac{1}{(counter) \text{ on facet}} \cdot \frac{1 - (counter) \text{ on facet}}{\operatorname{total}(counter)}\right)^{0.5} & \text{, else} \end{cases}$$
(A.16)

error_covering = error(adsorbed particles + desorbed particles)
error_event = error(hits + desorbed particles)

B. Datatypes

B.1. Class Members

Name	Datatype	Alias
SimulationHistory::coveringList	boost::multiprecision::uint_128t	covBoost
FacetHitBuffer::covering	llong	covLlong
FacetProperties::desorption	boost::multiprecision::float128	desBoost
Simulation::coveringThreshold	llong	

B.2. Functions

Function	Output Datatype	Relevant Input
getCovering()	boost::multiprecision::float128	covBoost
getCovering()	llong	covLlong
calcCoverage()	boost::multiprecision::float128 or llong	getCovering()
calcDesorption()	boost::multiprecision::float128	calcCoverage()
calctotalDesorption()	boost::multiprecision::float128	desBoost
GetMoleculesPerTP()	boost::multiprecision::float128	desBoost

C. Overview of new Classes and Functions

C.1. New Classes

HistoryList		
historyList	list containing history respective facet values	
currentList	list containing facet values at current step	
statisticsList	list containing facet statistics over last iterations	
currIt	current iteration number	
reset()	Resets lists	
initCurrent()	Initializes size of currentList	
initStatistics()	Initializes size of statisticsList	
initList()	Initializes size of historyList	
appendCurrent()	Appends currentList to historyList	
appendList()	Append input list to historyList	
updateStatistics()	Calculates statistics and save to statisticsList	
convertTime()	Converts time for better clarity	
print()	Print historyList to terminal, optinal message	
printCurrent()	Print currentList as table to terminal, optional message	
printStatistics()	Print statisticsList as table to terminal, optional message	
write()	Write historyList to file	
erase()	delete desired point in historyList	
empty()	Checks if historyList is empty	
setCurrent()	Set value of desired facet in currentList	
getCurrent()	Get value of desired facet in currentList	
setLast()	Set value of desired facet from historyList	
getLast()	Get value of desired facet from historyList	

SimulationHistory		
coveringList	of class HistoryList, stores covering history	
errorList_event	of class HistoryList, stores error history for events	
errorList_covering	of class HistoryList, stores error history for covering	
hitList	of class HistoryList, stores hits for each facet	
desorbedList	of class HistoryList, stores desorbed particles for each facet	
particleDensityList	of class HistoryList, stores particle density for each facet	
pressureList	of class HistoryList, stores pressure for each facet	
numFacet	number of Facets	
numSubProcess	number of sub processes used for simulation	
flightTime	Simulated flight time for iteration	
nParticles	Simulated particles for iteration	
lastTime	Total simulated time = last time in Lists	
currentStep	step of logarithmic time step calculation in getStepSize()	
stepSize	current step size	
stepSize_outgassing	current step size of outgassing impulse	
updateHistory()	Reset and update	
updateStepSize()	Calculate stepSize and stepSize_outgassing	
appendList()	Updates coveringList	
erase()	Erases desired point in history	
print()	Print to terminal	
write()	Write to file	

ProblemDef		
resultpath	Path of result folder	
outFile	Path of file that contains terminal output	
loadbufferPath	Path of loadbuffer file	
hitbufferPath	Path of hitbuffer file	
$simulationTime$, unit \Rightarrow simulationTimeMS	Computation time of each iteration in milliseconds	
$\begin{array}{c} \text{maxTime, maxUnit} \\ \Rightarrow \text{maxTimeS} \end{array}$	Maximal total simulated time in seconds	
iterationNumber	Number of iterations of simulation	
particleDia	Diameter of particles	
E_de, H_vap	Parameters to calculate binding energy, see eq. A.7	
sticking	Sticking factor for all facets	
targetParticles/-Error	Target values for each iteration	
hitRatioLimit	threshold of hitratio at which hits are ignored	
coveringMinThresh	Minimum covering, multiplication to this if covering low	
t_min, t_max	Minimum/ Maximum step size	
maxSimPerIt	Maximun simulation steps per iteration	
histSize	Size of history lists (most recent values in memory)	
vipFacets	alterning: vip facet and target error, e.g. 1 0.001 3 0.002	
outgassingTimeWindow	Duration of outgassing impulse	
counterWindowPercent	Percentage of step size at which velocity counters are increased	
desWindowPercent	Percentage of step size at which desorption occurs	
rollingWindowSize	Number of iterations over which statistics are calculated	
createOutput()	Create output directory and file	
readInputfile()	Initialization from input file	
printInputfile()	Print to terminal	
writeInputfile()	Write to terminal	

C.2. New Functions

C.2.1. molflowlinux_main.cpp

Preprocessing		
parametercheck()	Checks validity of input parameters from input file Defines values for ProblemDef object p	
importBuff()	Import load- and hitbuffer to main process	
MPLBcast()	Send loadbuffer to sub processes	
LoadSimulation()	Load geometry from loadbuffer	
initCoveringThresh()	Initialize covering threshold	
UpdateSojourn()	Enable sojourn time for each facet	
simHistory	Initialize SimulationHistory object	

	Simulation Loop	
initbufftozero()	Reset all hitbuffer counters except covering	
MPI_Bcast()	Send simHistory—coveringList and simHistory—currentStep to sub processes	
setCoveringThreshold()	Sets covering threshold for each facet	
updateStepSize()	Calculates step sizes for desorption and outgassing	
UpdateDesorption()	Sets desorption for each facet, ends simulation if 0	
CalcTotalOutgassingWorker()	Calculates total outgassing for iteration	
checkSmallCovering()	multiplies covering to reach threshold if necessary	
simulateSub()	Simulation on sub processes	
MPI_Send(), MPI_Recv()	Send sub hitbuffer to main process	
UpdateMCMainHits()	Add simulation results to main hitbuffer	
UpdateParticleDensityAndPressure()	Calculate and save particle density and pressure	
UpdateErrorMain()	Calculate and save error of iteration to simHistory	
UpdateCovering()	Calculate and save new covering to simHistory	
UpdateCoveringphys()	Saves current covering to hitbuffer	
simHistory→erase()	Adapt historyList size of to p→histSize	
updateStatistics()	Statistics over p→rollingWindowSize iterations	
End simulation if maximum simulation time is reached		

Postprocessing	
exportBuff()	Export final hitbuffer
simHistory→write()	Export simulation history

C.2.2. SimulationLinux.cpp

	simulateSub()
<pre>simHistory->updateHistory()</pre>	Update SimulationHistory object from sHandle
smallCoveringFactor	If covering is small: Covering is multiplied by smallCoveringFactor to be able to have statistics without overflow of the covering variable
targetParticles, targetError	Calculate target values from overall target and number sub processes
SimulationRun()	Simulate for desired simulation time
UpdateError()	Calculate current error of sub process
CheckErrorSub()	Checks if total error reached targetError and if vip facets reached own target
UpdateMCSubHits()	Save simulation results to hitbuffer

Small covering		
CheckSmallCovering()	If covering is small, find smallCoveringFactor to reach $p\rightarrow coveringMinThresh$	
Undo multiplication	In UpdateCovering()	

Others	
get_path()	Get path of executable
printStream()	Print input string to terminal and file

C.2.3. Iteration.cpp

Set Covering Threshold to avoid negative covering	
initCoveringThresh()	Initializes size of covering threshold vector
setCoveringThreshold()	Sets covering threshold for each facet

C.2.4. Buffer.cpp

Buffer functions	
Databuff struct()	signed int size BYTE *buff
checkReadable()	Checks if file can be opened for reading
checkWriteable()	Checks if file can be openend or created for writing
importBuff()	Imports buffer file to Databuff struct
exportBuff()	Exports Databuff struct to buffer file

C.2.5. Calculations in SimulationCalc.cpp etc.

SimulationCalc.cpp	
getCovering()	Get covering from hitbuffer or simHistory
getHits()	Get number of hits from hitbuffer
getnbDesorbed()	Get number of total desorbed molecules from hitbuffer
getnbAdsorbed()	Get number of total adsorbed molecules from hitbuffer
calcNmono()	see eq. A.3
calcdNsurf()	see eq. A.4
calcCoverage()	see eq. A.6
calcStickingnew()	sets sticking coefficient to p—sticking
calcDesorption()	see eq. A.10
GetMoleculesPerTP()	see eq. A.15
calctotalDesorption	calculates desorption for startFromSource()
calcOutgassingFactor()	Calculate factor to determine outgassing particles
calcPressure()	see eq. A.13
calcParticleDensity()	see eq. A.12
calcStartTime()	Calculate start time of particle depending on desorption/outgassing distribution

worker.cpp	
${\bf CalcTotalOutgassingWorker()}$	see eq. A.11, calculate outgassing distribution
	for startFromSource()

SimulationLinux.cpp	
convertunit()	Converts simutime \cdot unit to milliseconds

C.2.6. UpdateSubProcess.cpp

Update sHandle paramters from hitbuffer	
UpdateSticking()	Update sticking
UpdateDesorption()	Update desorption
UpdateSojourn()	Enable residence time for all facets

Error calculations		
UpdateErrorSub()	Calculates error per facet, see eq. A.16 Saves to simHistory	
UpdateErrorAll()	Sums up total error of facets & weights by facet area for all possible error types	
UpdateError()	Returns total error of desired error type	
CheckErrorSub()	Checks if total error and vip facet error reached target	

Update hitbuffer	
initbufftozero()	Sets hitbuffer except covering to zero
UpdateMCSubHits()	Saves simulation results from sHandle into hitbuffer

C.2.7. UpdateMainProcess.cpp

Update main hitbuffer from sub hitbuffer	
UpdateMCMainHits()	Add simulation results from sub hitbuffer to main hitbuffer

Update real covering in hitbuffer		
getStepSize()	Calculates step size for current step, see eq. A.9	
UpdateCovering()	Uses Krealvirt to calculate new covering Saved to simHistory→coveringList	
UpdateCoveringphys()	Saves current real covering to hitbuffer	
UpdateErrorMain()	Calculates total error for each facet, see eq. A.16 Saves to simHistory—errorList_event and simHistory—errorList_covering	
UpdateParticleDensityAndPressure()	Calculate pressure and particle density, see eq. A.12, A.13	
CalcPerIteration()	Calculates total error (covering and event) and covering over all facets per iteration	