1. Let

$$x[n] == 3\cos(0.7\pi n - \pi/3)$$
 for all n .

Someone tells you they got x[n] by sampling a continuous-time signal

$$x(t) = A\cos(2\pi f_o t + \phi)$$
 for all t

at frequency $f_s = 8000$ samples per second. Thing is, they forgot what f_o and ϕ were except for the facts that $f_o > 0$ and $-\pi < \phi \le \pi$. Determine three different possibilities, all less than 11 kHz, for f_o along with accompanying ϕ -values.

2. Consider the continuous-time amplitude-modulated signal

$$x(t) = (10 + \cos(2\pi(2000)t))\cos(2\pi(10^4)t)$$
 for all t.

- (a) Sketch x(t)'s spectrum.
- (b) Is x(t) periodic? If so, what is its fundamental period?
- (c) What inequality must f_s satisfy so that x(t) emerges when we put the discrete-time signal

$$x[n] = x(nT_s)$$
 for all n ,

where $T_s = 1/f_s$, through an ideal D-to-C converter (I referred to it in lecture as a magic box) with interpolation interval T_s ?

3. Suppose x(t) has spectrum depicted in the accompanying graph. Suppose we form x[n] by sampling x(t) at 700 samples per second, i.e.

$$x[n] = x(nT_s)$$
 for all n ,

where $T_s = 1/700$. What signal y(t) emerges when we use x[n] as input to an ideal D-to-C converter with interpolation interval $T_s = 1/700$?

- 4. From the book, Problem P-4.22.
- 5. From the book, Problem P-4.17.
- 6. Suppose

$$x[n] = 10\cos(.2\pi n - \pi/7)$$
 for all n .

(a) Find two different continuous-time sinusoids of the form

$$x(t) = A\cos(2\pi f_o t + \phi)$$
 for all t

where $f_o < 1000$ Hz such that

$$x[n] = x(nT_s)$$
 for all n ,

where $T_s = .001$ sec.

(b) Suppose we use x[n] as input to an ideal D-to-C converter with interpolation interval 1/2000 sec. What continuous-time signal emerges?

1