Karanjot Singh

Q1. From the attached data analyse overall which is a bigger issue among – Non availability of Cars, Trips cancelled?

In [1]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read_csv(r"cabs-data.csv")
count = data['Status'].value_counts()
print(count)
#print(data)
sns.countplot(x = 'Status',data = data)
```

```
Trip Completed 2831
No Cars Available 2650
Cancelled 1264
Name: Status, dtype: int64
```

Out[1]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cd8e9a108>

Q2. Divide the request time slot into six slots: Early morning (1-4), morning (5-8), Late Morning (9-12), Noon(13-16), Evening(17-21) & Night (21-24)

In [14]:

```
data['Request timestamp'] = pd.to_datetime(data['Request timestamp'])
data['Request hour'] = data['Request timestamp'].dt.hour
data.groupby(['Request hour','Status']).size().unstack()\
plot(kind = 'bar',stacked =True,figsize = (20,10))
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cd78cb348>

In [13]:

```
data = data.assign(TD=pd.cut(data['Request hour'],[1,4,8,12,16,20,24],labels = \
    ['Early Morning','Morning','Late Morning','Noon','Evening','Night']))
data.head()
```

Out[13]:

	Request id	Pickup point	Driver id	Status	Request timestamp	Drop timestamp	Request hour	TD	completed
0	619	Airport	1.0	Trip Completed	2016-11-07 11:51:00	11/7/2016 13:00	11	Late Morning	Trip Completed
1	867	Airport	1.0	Trip Completed	2016-11-07 17:57:00	11/7/2016 18:47	17	Evening	Trip Completed
2	1807	City	1.0	Trip Completed	2016-12-07 09:17:00	12/7/2016 9:58	9	Late Morning	Trip Completed
3	2532	Airport	1.0	Trip Completed	2016-12-07 21:08:00	12/7/2016 22:03	21	Night	Trip Completed
4	3112	City	1.0	Trip Completed	2016-07-13 08:33:16	13-07-2016 09:25:47	8	Morning	Trip Completed

Q3. In which time slot and pickup point cars are not available (highest)?

In [9]:

```
data[data['Status']=='No Cars Available'].groupby(['TD','Pickup point'])\
size().unstack().plot(kind = 'bar')
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cd955f548>

Q4. In which time slot and pickup point trips are mostly cancelled?

In [10]:

```
data[data['Status']=='Cancelled'].groupby(['TD','Pickup point'])\
size().unstack().plot(kind = 'bar')
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cd95ea048>

Q5. Count the no. of cases of trips completed and trips not completed and to compare, plot both cases.

In [6]:

data[data['Status']!='Trip completed'].groupby(['Status']).size().plot(kind = 'bar')

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cd9460c48>

Q6. In which time slot and pickup point trips are not completed (highest).

In [12]:

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cd78cb248>

