MNIST Data: The goal of this assignment is to implement a single-layer linear perceptron, a single-layer perceptron, a multi-layer perceptron and a convolutional neural network to recognize hand-written digits in the MNIST dataset. The size of each image is $196 = 14 \times 14$ with a label in $\{0, 1, 2, \dots, 9\}$. For each neural network, the stochastic gradient descent method will be implemented to optimize the objective function $\sum_{i=1}^{n} \ell(y_i, f(x_i; \theta))$, where $\ell()$ is the loss function and $\{f(\cdot; \theta)\}$ is the family of function with coefficient θ .

List of Functions: get_mini_batch(): randomly permutes the order of images to build the mini-batch of size batch_size = 32 for stochastic gradient descent. Each batch of images is a matrix with size $196 \times \text{batch_size}$, and each batch of labels is a matrix with size $10 \times \text{batch_size}$, where the labels are converted to $\{0,1\}^{10}$ using one-hot encoding.

fc() and fc_backward(): fc is the fully connected layer, i.e., a linear transform of $\mathbf{x} \in \mathbb{R}^{n \times 1}$: $\mathbf{y} = \mathbf{w}\mathbf{x} + \mathbf{b}$, where $\mathbf{w} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m \times 1}$. fc_backward computes the partial derivative w.r.t. input \mathbf{x} , weights \mathbf{w} , and bias \mathbf{b} using the loss derivative w.r.t. the output \mathbf{y} .

loss_euclidean(): Compute the Euclidean distance $L = \|\mathbf{y} - \tilde{\mathbf{y}}\|^2$ and the loss derivative w.r.t. the prediction y_tilde, i.e., $2(\tilde{\mathbf{y}} - \mathbf{y})$.

loss_cross_entropy_softmax(): Add a soft-max layer to input \mathbf{x} , i.e., $\tilde{y}_j = e^{x_j}/(\sum_j e^{x_j})$ and compute the cross-entropy between the two distributions $L = -\sum_{j=1}^m y_j \log(\tilde{y}_j)$. The loss derivative w.r.t. the input \mathbf{x} is $\tilde{\mathbf{y}} - \mathbf{y}$.

relu() and relu_backward(): relu is an activation unit, $\max(\cdot, 0)$. relu_backward computes the loss derivative w.r.t. the relu input \mathbf{x} : $\frac{\partial L}{\partial \mathbf{x}} = \frac{\partial L}{\partial \mathbf{y}} \cdot I\{\mathbf{x} > 0\}$.

conv() and conv_backward(): conv is a convolutional operation with weights $w_{\text{conv}} \in \mathbb{R}^{h \times w \times C_1 \times C_2}$ and bias $b_{\text{conv}} \in \mathbb{R}^{C_2 \times 1}$. Zeros are padded at the boundary of the input image. conv_backward computes the loss derivatives w.r.t. the weights and bias. We employ the im2col and col2im¹ operations that convert the convolution operation into a matrix multiplication to simplify the computation.

pool2x2() and pool2x2_backward(): 2×2 max-pooling operation and its loss derivative w.r.t. the input.

flattening() and flattening_backward(): Flattening operation and its loss derivative w.r.t. the input.

Single-layer Linear Perceptron: Function train_slp_linear with functions fc, fc_backward and loss_euclidean implements a single layer linear perceptron with stochastic gradient descent method. The function f() for this single-layer linear perceptron is a fully connected layer: $\sigma_{fc}(\mathbf{x}; \mathbf{w}, \mathbf{b}) = \mathbf{w}\mathbf{x} + \mathbf{b}$. The loss function is the Euclidean loss: $\ell(\mathbf{y}, \tilde{\mathbf{y}}) = \|\mathbf{y} - \tilde{\mathbf{y}}\|^2$. When implementing the stochastic gradient descent method, the learning rate and the decaying rate are tuned as $\gamma = 0.01$, $\lambda = 0.1$, and the maximum number of iterations is nIters = 2000. The visualization of confusion matrix is given in Figure (1a) and the accuracy of the prediction is 0.296. We can see that the single-layer linear perceptron does not perform well.

(1a) Single-layer linear perceptron

(1b) Single-layer perceptron

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/ convolution_layer/making_faster

Single-layer Perceptron: The single-layer perceptron (train_slp) adds a soft-max layer to the previous single-layer perceptron and uses the cross-entropy as the loss function: $f(\mathbf{x}; \mathbf{w}, \mathbf{b}) = \sigma_{\text{soft}}(\mathbf{x}; \mathbf{w}, \mathbf{b})$, $\ell(\mathbf{y}, \tilde{\mathbf{y}}) = -\sum_{j=1}^{m} y_j \log{(\tilde{y}_j)}$. When implementing the stochastic gradient descent method, the learning rate and the decaying rate are tuned as $\gamma = 0.135$, $\lambda = 0.895$, and the maximum number of iterations is nIters = 2500. The visualization of confusion matrix is given in Figure (1b) and the accuracy of the prediction is 0.850. We can see that the single-layer perceptron performs much better than the single-layer linear perceptron.

Multi-layer Perceptron: The multi-layer perceptron (train_mlp) implements a fully-connected layer, a relu layer, another fully-connected layer, and a soft-max layer sequentially with the cross-entropy loss, shown in Figure (2a).

$$f(\mathbf{x}; \mathbf{w}_1, \mathbf{b}_1, \mathbf{w}_2, \mathbf{b}_2) = \sigma_{\text{soft_max}}(\sigma_{\text{fc}}(\sigma_{\text{relu}}(\sigma_{\text{fc}}(\mathbf{x}; \mathbf{w}_1, \mathbf{b}_1)); \mathbf{w}_2, \mathbf{b}_2)).$$

The back-proper gation algorithm is implemented to calculate the partial derivatives w.r.t. the coefficients. When implementing the stochastic gradient descent method, the learning rate and the decaying rate are tuned as $\gamma = 0.49$, $\lambda = 0.905$, and the maximum number of iterations is nIters = 5000. The visualization of confusion matrix is given in Figure (2b) and the accuracy of the prediction is 0.904. We can see that adding a relu layer and a second fully-connected layer improves the prediction accuracy.

(2b) Confusion matrix with accuracy 0.904

Convolutional Neural Network: The CNN (train_cnn) is composed of a single channel input $(14 \times 14 \times 1) \rightarrow$ the convolutional layer (3 convolution with 3 channels and stride 1) \rightarrow ReLu layer \rightarrow Max-pooling layer $(2 \times 2$ with stride 2) \rightarrow Flattening layer \rightarrow Fully-connected layer \rightarrow Soft-max layer, shown in Figure (3a).

$$f(\mathbf{x}; \mathtt{w_conv}, \mathtt{b_conv}, \mathtt{w_fc}, \mathtt{b_fc}) = \sigma_{\mathrm{soft_max}}(\sigma_{\mathrm{fc}}(\sigma_{\mathrm{flat}} \circ \sigma_{\mathrm{pool}} \circ \sigma_{\mathrm{relu}} \circ \sigma_{\mathrm{conv}}(\mathbf{x}; \mathtt{w_conv}, \mathtt{b_conv}); \mathtt{w_fc}, \mathtt{b_fc}))$$

The back-propergation algorithm is implemented to calculate the partial derivatives w.r.t. the coefficients. When implementing the stochastic gradient descent method, the learning rate and the decaying rate are tuned as $\gamma = 0.5$, $\lambda = 0.89$, and the maximum number of iterations is nIters = 1000. The visualization of confusion matrix is given in Figure (3b) and the accuracy of the prediction is 0.924. We can see that implementing a CNN could further improve the prediction accuracy.

(3a) Convolutional neural network perceptron

(3b) Confusion matrix with accuracy 0.924