A High-Order Fast Algorithm Approach for Computing Layer and Volume Potentials

J. Bevan, UIUC

CS 591 Seminar April, 2017

Motivation

- Evaluation of potentials (derived velocity field, electric potential, etc.) is an important physical consideration
- Practical computational im[implementation faces two challenges: $\mathcal{O}(n^2)$ cost and integrable singularities

(c) d = 2

⁰https://summerofhpc.prace-ri.eu/

QBX

 $^{^{0}}$ Klöckner, Andreas, et al. "Quadrature by expansion: A new method for the evaluation of layer potentials." $^{2}/10$ Journal of Computational Physics 252 (2013): 332-349.

QBX Considerations

- Global vs local approaches involve all source points, or only the "near-field" respectively
- Layer potentials provide physical meaningful off-surface potential
- Volume potentials involve arbitrary choice of "off-volume" potential

Mesh Interaction

- ► Given some mesh with a spatially varying blob of "charge", local QBX needs only some of the mesh
- ▶ How are varying intersection cases to be handled?
- ► How conservative/efficient can one be with intersections?

Mesh Interaction

FMM-QBX Interaction

Corrected FMM Contributions

QBX Contributions

QBX-FMM Overlap Corrections

Result of Combinations

