

Applied Mathematics: an introduction to Scientific Computing by Numerical Analysis

Lecture 03 - LH - Basic concepts - Condition numbers

Luca Heltai < luca.heltai@sissa.it>

International School for Advanced Studies (<u>www.sissa.it</u>) Mathematical Analysis, Modeling, and Applications (math.sissa.it) Theoretical and Scientific Data Science (datascience.sissa.it) SISSA mathLab (mathlab.sissa.it)

$$aM = W \in V$$

$$aM + bV = W \in V$$

$$aM + bV = W \in V$$

$$aM + bV = W \in V$$

$$a_{M} + b_{N} = a_{M} + b_{M} \in V$$

$$a_{M} + b_{N} = a_{M} + b_{M} \in V$$

$$a_{M} + b_{N} = a_{M} + b_{M} \in V$$

$$a_{M} + b_{N} = a_{M} + b_{M} \in V$$

$$a_{M} + b_{N} = a_{M} + b_{M} \in V$$

$$a_{M} + b_{N} = a_{M} + b_{M} \in V$$

$$(ab)M = a(bM) \in V$$

 $V = \mathbb{R}^n \qquad (n=2)$ $M = (M_4, M_2)$ V = (V, , Ve) $\alpha \mu := (\alpha \mu_1, \alpha \mu_2)$ $M + V := \left(M_1 + V_1, M_2 + V_2 \right)$ M, V € C°([0,1]) $W := \mu + V \qquad w(x) = \mu(x) + v(x) + \begin{cases} 0,1 \end{cases}$. (Seuri -) mour au Vectoz space V

1) |an| = |a| |n| |a| = |a| |n| |a| = |a| |n| |a| = |a| |n| |a| = |a| |n|

It is a now, and we adicale it with II.II if

3) ||M|| =0 = 0

Lp mom in
$$C^{\circ}([0,1])$$
 $\|\mu\|_{p} := \left(\int_{0}^{\infty} |\mu|^{p}\right)^{p}$
 $\|\mu\|_{\infty} := \max_{x \in [0,1]} |\mu(x)|$

A Subspace a CV is a subset of V which is closed w.r.t. addition in V: M, $V \in Q \rightarrow Q + bV = W \in Q + q, b \in \mathbb{R}$ Quen $\overline{M} \in V$, $Q = 2 \times \overline{M}$, with $v \in \mathbb{R}$ $e_o = (1,0)$ is a subset of \mathbb{R}^2 Span dui EVS is définerd as lue subspace of Vst. Q = Span dui EV 9" := d & dimi, with di ER 9 Let 9, 6 be subspaces of V and and liveorly independent if of the example: $G = Span \{ \mu_1 \}$ $V = Span \{ \mu_1 \}$ $V = R^2$ Dienousion of a vector space V? Minimum number of vectors 11 need to represent V dim (V)

Examples: $C^{\circ}([0,1])$, $\mathbb{P}^{\circ}([0,1])$ polynomials of poles n P'([0,1]) is a subspace of C'([0,1]) of dimension (n+1)An example basis: monomials: { 2è si=0 $\mathbb{P}^{h}([0,1]) := \operatorname{Span} \left\{ x^{i} \right\}_{i=0}^{n}$ $\forall p \in \mathbb{P}^{n}([0,1])$, $\exists \{p_{i}\}_{i=0}^{n} \text{ s.t. } p_{i} \in \mathbb{P}^{n}(\mathbb{R})^{i}$ Every polynomial of order 2, can be written as $\rho(x) = \alpha x^2 + b x + c$ and it is homeomorphic to \mathbb{R}^3 is homeomorphic to RhM