Lecture 2: Electrical Components and Basic Circuits

ME/AE 6705
Introduction to Mechatronics
Dr. Jonathan Rogers

Lesson Objectives

- Understand basic electrical components and circuit analysis methods
- Understand concept of resistance, capacitance, inductance, and impedance
- Understand op-amp circuits for amplification and input comparison
- Understand electrical switching elements including switches, relays, and transistors
- Be able to design basic signal conditioning circuits

Basic Circuit Elements

Name	Reference Symbol	Circuit Symbol
Resistor	R	
Capacitor	С	\dashv \vdash
Inductor	L	-
Ideal Voltage Source	V	
Ideal Current Source	I	

Constitutive Relationships:

$$V = IR$$

$$\frac{dV}{dt} = \frac{1}{C}I$$

$$+$$
 \vdash

$$\frac{dI}{dt} = \frac{1}{L}V$$

- Kirchhoff's Voltage Law
 - Sum of voltage drops and rises around any closed path in circuit is zero

- Kirchhoff's Current Law
 - Sum of current into a node is zero

$$\sum_{i=1}^{N} I_i = 0$$

$$I_1 - I_2 - I_3 = 0$$

- By placing two resistors in series and taking voltage between resistors, we create a voltage divider
 - Can be used to step down input source voltage for a sensor or processor (low-power applications)

$$V_2 = \frac{R_2}{R_1 + R_2} V_{in}$$

(derived using Kirchhoff's Laws)

 By placing two resistors in parallel and taking current along one branch, we create a current divider

$$I_2 = \frac{R_1}{R_1 + R_2} I$$

(derived using Kirchhoff's Laws)

Example: Designing a Voltage Divider

 Problem: A certain sensor requires an input voltage of 5 VDC. You have a voltage source available which only provides 15 VDC. Design a voltage divider that will allow you to power the sensor from this power supply.

What are R_1 and R_2 ?

$$\frac{R_z}{R_1 + R_z} = \frac{1}{3} \qquad R_z = 5 \text{ k}\Omega$$

$$R_1 = 10 \text{ k}\Omega$$

Switch Types

Switches defined as either toggle or push-button

AC vs DC Signals

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

AC (alternating current) signals have sinusoidally varying voltage

$$V = V_0 \sin(\omega t + \theta)$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

DC Voltage occurs when voltage is constant with time ($\omega = 0$).

$$V_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} V^{2} dt} = 0.707 V_{0}$$

$$I_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} I^{2} dt} = 0.707 I_{0}$$

Note: AC current from wall is 110 VAC, meaning the RMS voltage is 110 V.

Power

Power defined as voltage times current

$$P(t) = I(t)V(t) \xrightarrow{\text{DC Voltage}} P = IV = I^2R$$

$$AC \text{ Voltage}$$

$$AC \text{ Voltage}$$

$$P(t) = V_0 I_0 \sin(\omega t + \theta_V) \sin(\omega t + \theta_I)$$
 Instantaneous Power

$$P(t) = V_{RMS} I_{RMS} \cos(\theta_V - \theta_I) \qquad \text{Average Power}$$

Power factor: Measures how much of supplied power is converted into real or useful power.

Impedance

Impedance (Z) is generalization of resistance

$$Z = \frac{V}{I}$$

 Basically gives us a measure of "resistance" in circuit that includes more elements than just resistors

RC clievit

Kirchhoff's Voltage Law:

$$\frac{1}{\int} C$$

$$V_{S}(t) = Ri(t) + \frac{1}{C} \int i(t) dt$$

$$V_{S}(s) = Ri(s) + \frac{1}{Cs} i(s)$$

$$V_{S}(s) = R + \frac{1}{Cs}$$

Impedance

Applying Laplace transform,

$$V_S(s) = Ri(s) + \frac{1}{Cs}i(s)$$

$$\longrightarrow \frac{V_S(s)}{i(s)} = R + \frac{1}{Cs}$$

If voltage varies sinusoidally with frequency ω , can substitute $s = j\omega$

$$Z = \frac{V_S(j\omega)}{i(j\omega)} = R + \frac{1}{j\omega C}$$

Impedance due to capacitor

- For DC voltage source, impedance of RC circuit is infinite
- For AC voltage source, impedance of RC circuit

 high frequency $\stackrel{\cdot}{\cdot} \stackrel{\cdot}{z} \rightarrow \stackrel{\cdot}{\epsilon}$ approaches R as $\omega \rightarrow \infty$

Impedance

Similar analysis for RL circuit yields:

$$Z = \frac{V_S(j\omega)}{i(j\omega)} = R + j\omega L$$
Impedance due to inductor

Impedance is an imaginary quantity:

What is impedance of a circuit with just a resistor load R_{total} ?

Impedance: Practical Considerations

Voltmeters have finite impedance

- When connecting electrical devices together, important to make sure impedances are matched
- Otherwise high-impedance device can reflect back signal produced by low-impedance device
- Impedance matching can be accomplished by adding appropriate resistors to circuit

Potentiometers

- Potentiometers and rheostats are variable resistors
 - Potentiometers have three terminals
 - Rheostats have two
- Useful for user interfaces, or to adjust resistor value to precise level needed in circuit design
 - Resistors only come in discrete values

Potentiometer Symbol

Potentiometer

Rheostat

- Operational amplifiers are important circuit components
 - Used in signal amplification and other common circuits
 - Built from transistors, diodes, resistors, capacitors

Open-loop operation of op-amps

 V_O saturates at V_{sat} which is typically slightly smaller than supply voltage (~13V)

$$V_{\scriptscriptstyle O} = K_{\scriptscriptstyle OL} \left(V_{\scriptscriptstyle +} - V_{\scriptscriptstyle -} \right)$$

$$K_{OL} \approx 10^5 \text{ or } 10^6$$

Except for voltage comparators, op-amps not used in "open loop" configuration often.

- Comparator Op-Amp Circuit
 - Useful application of open-loop op-amp
 - Used on-board microcontrollers
 - (Still requires supply voltage, although terminals not shown)

$$V_{ref} \longrightarrow V_{o} \qquad V_{O} = \begin{cases} +V_{sat} & \text{if } V_{in} > V_{ref} \\ -V_{sat} & \text{if } V_{in} < V_{ref} \end{cases}$$

Example use:

• Set output ON when sensor input exceeds certain threshold output.

- Non-Inverting Op-Amp
 - Used to amplify voltage signal
 - For instance, signal conditioning for sensor

- By sizing R_1 and R_2 appropriately, can amplify V_i to value we need at output V_O
- Since resistors only come in discrete values, sometimes need to make R_1 or R_2 a potentiometer so it can be tuned to precise value we need.

- Inverting Op-Amp
 - Used to amplify voltage signal and invert it
 - Also used in signal conditioning

• Again, by sizing R_1 and R_2 appropriately, can amplify V_i to value we need at output V_O

- Differential Op-Amp
 - Used to provide a measure of the difference between two voltage inputs

Example Use: Amplify difference between voltage outputs on arms of Wheatstone bridge used to measure strain.

Example: Signal Amplification

Using an op-amp, design a circuit that takes an input voltage V_i and produces an output voltage V_O = kV_i which is tunable from 1 ≤ k ≤ 10. Determine the circuit components needed and an expression for the value of k.

$$V_0 = \left(1 + \frac{R_2}{R_1}\right) V_i$$

$$0 \le \frac{R_2}{R_1} \le 9$$

$$R_1 = 1 \text{ kSZ}$$

$$R_2 = [0, 9] \text{ ksZ} \quad \text{potentiomater}$$

Grounding

- Ground loops can cause series problems (bias and noise) in circuit design
 - Must make sure that all ground points are connected to same ground (common ground)
 - Connections to multiple different grounds can cause feedback current between grounds

Bad idea...these grounds may be at different electrical potentials.

Grounding

- Ground loops can cause series problems (bias and noise) in circuit design
 - Must make sure that all ground points are connected to same ground (common ground)
 - Connections to multiple different grounds can cause feedback current between grounds

Semiconductors

- Semiconductors are special materials that are between conductors and insulators
- They can be made to conduct current if sufficient voltage is present
- Most important semiconductor device is the transistor, which can be viewed as a solid-state switching device
 - Logic gates
 - Interface between processors and mechanical devices

Diodes

 Diodes are semiconductor devices that only allow current to flow one way

Example Use: Rectify AC voltage into DC voltage.

AC input

Flyback Diodes

Consider following circuit for motor control using switch

- Motor has high inductance *L*
- When motor switched off, voltage develops across motor terminals according to:

$$V = L \frac{di(t)}{dt}$$

Flyback Diodes

Consider following circuit for motor control using mechanical switch

$$V = L \frac{di(t)}{dt}$$

• High voltage of opposite polarity across switch terminals just after closing

as 2(t) -> 0

 $\frac{dict}{dt}$ \rightarrow (age negative value

- May cause wear on switch due to arcing, or may blow out transistor
- Flyback diode provides an alternative path for current in motor coil and mitigates arcing

LED's and Photodiodes

Light Emitting Diodes

- Emit light when "forward biased"
- Have voltage drop of about 2V when on
- Colors determined either by semiconductor material or plastic housing over diode

Photodiodes

- Opposite of LED
- Amount of current diode passes is proportional to amount of light it receives
- Commonly used as light sensors (i.e., nightlight)

- Bipolar Junction Transistors (BJT's) are common circuit elements used primarily for switching
- Idea is that we can switch a current path on or off by activating a second "base" path

- BJT is current controlled device where amount of current supplied at *B* determines current flow from *C* to *E*
- Small base current allows much larger current to flow from collector to emitter
- Two important states: Off, and Saturation State
- Voltage at emitter (V_E) always lower than voltage at base (V_B) by about 0.6V
- Must always have $V_C > V_E$

$$V_{BE} = V_B - V_E$$

$$V_{CE} = V_C - V_E$$

Transistor Switch Circuit

- Suppose we want to control current flow I_C
- (allowing current to flow through load)?

Use KVL:
$$V_{in} = I_B R_B + V_{BB}$$

Use KVL:
$$V_{in} = I_B R_B + V_{BE}$$
Use KCL: $I_C = (V_{CC} - V_{CE}) / R_C$
of BJT's just turation: $I_B = I_C / \beta$ ($\beta \approx 100$)

Property of BJT's just before saturation:

$$I_B = I_C / \beta \qquad (\beta \approx 100)$$

Equations can determine V_{in}

- Open Collector Output
 - Used often to take sensor output and convert to digital high (5V) or low (0)

- Output of sensor drives base of transistor
- R_p is "pull-up" resistor connected from reference voltage V_+ to output V_{out}
- When sensor is low, transistor is in OFF state and no current flows from C to $E \rightarrow V_{out} = 5$ V
- When sensor is high, transistor is in saturation and current flows from C to $E \rightarrow V_{out} \approx 0$

Common specifications (found in component datasheet)

Part #	Max V _{CE}	Max V _{BE}	Max I _c	Power Dissipation at 25 deg C
2N3904	40 V	6 V	200 mA	0.625 W
TIP29	40 V	6 V	1 A	30 W
TIP102	100 V	5 V	8 A	80 W

- Metal-Oxide Semiconductor Field Effect Transistors
 (MOSFET's) are another type of transistor commonly used for switching
- Unlike BJT's, MOSFET's use voltage as switching signal rather than current

- MOSFET is voltage controlled device where voltage supplied at G determines current flow from (or resistance between) D to S
- Two important states: Off and Saturation State
- When transistor is off, drain-source resistance is very high \rightarrow no current flows from D to S
- When transistor is ON, drain-source resistance is very low (< 1 Ω) and current flows from D to S
- Internal resistance at gate is very high $(10^{14} \Omega)$ thus no current flows into gate (gate circuit "separate" from drain-source circuit)

Some other important values/considerations

 V_{GS} : Gate-source voltage

 $V_{GS(th)}$: Threshold gate-source voltage. If $V_{GS} < V_{GS(th)}$ transistor is in OFF state. If

 V_{GS} is significantly higher than $V_{GS(\mathrm{th})}$, transistor is in ON (saturation) state.

 V_{DS} : Drain-source voltage

Thus, like BJT,
MOSFET acts as a
solid-state switch.
Switching times are
usually in the
nanosecond range.

Part #	On Resistance R _{DS (on)}	Max Current Drain I _{D (max)}	Power Dissipation P_D	Gate Threshold Voltage <i>V_{GS(th)}</i>	Drain-to-Source Breakdown Voltage <i>V_{dss}</i>	Туре
2N4351	<= 300 Ω	100 mA	375 mW	1-5 V	>= 25 V	Logic-level MOSFET
NTE2980	0.2-0.28 Ω	6.7 A	25 W	1-2 V	>= 60 V	Normal MOSFET
IRFZ14	0.2 Ω	10 A	43 W	2-4 V	>= 60 V	Power MOSFET

 $R_{DS \text{ (on)}}$: Resistance between drain and source terminals when MOSFET is fully on.

 $I_{D \text{ (max)}}$: Max current that can be passed between drain and source.

 V_{dss} : Maximum voltage between drain and source when transistor is off. If voltage between D and S exceeds this value when in OFF state, current will start to flow.

MOSFETs commonly used for switching to drive motors or LEDs

MOSFET Circuit for Driving a Motor

- When V_{in} is below threshold voltage, transistor is OFF and no current flows through motor
- When V_{in} is well above threshold voltage, transistor is ON and current flows through motor
- Flyback diode protects MOSFET from large voltage buildup when transistor is switched from on to off
- Resistor used to ground gate terminal when $V_{in} = 0$ to turn transistor completely off

Reducing Voltage Levels

- Recall voltage dividers
 - Can be used to step down voltages for low-power applications
 - Should never use a voltage divider to supply power to a load
 - Only for use in low-current applications with high values of R_1 and R_2 (in the 1 kΩ 10 kΩ range)

- While providing power, current will flow through R_1 and R_2
- This means resistors will dissipate power in the form of heat
- If any substantial current flows through voltage divider, it *generates excessive* heat and is power inefficient

Voltage Regulators

- Voltage regulators are semi-conductor devices that provide very efficient, stable mechanism for stepping down voltages
 - Will provide single output voltage (e.g., 5V) for a range of input voltages (e.g., 7-35V)

Linear Voltage Regulator

Uses differential amplifier and transistor to achieve stable output voltage

Switching Voltage Regulator

Switches gate / base of transistor at specific rate to achieve stable output voltage

Voltage Regulators

Common linear voltage regulator: 7805

- Output voltage: 5 V
- Input voltage range: 7-35V
- Maximum current provided: 1.5A
- Dropout voltage: 2V
- Cost: \$0.75
- All linear regulators have a <u>dropout voltage</u>
 - This describes how much higher input voltage must be than desired output voltage
- Heat dissipation is an issue regulators must be attached to heat sink for high power applications

$$P = (V_I - V_O)I$$

H-Bridge Drives

- Commonly used to drive motors in both directions
 - Typically used to drive brushless and brushed DC motors
 - Critical element in servo drives

Typical Hobby Servo

Simple H-Bridge Schematic

- When switches S_1 and S_3 ⁴ are open and S_2 and S_4 ³ are closed, motor turns one direction
- When switches S_1 and S_3 are closed and S_2 and S_4 are open, motor turns other direction

H-Bridge Drives

- H-Bridges are built from transistors, diodes, and logic gates
 - Yields very fast switching times

STMicro L6203 H-bridge

Note flyback diodes incorporated next to MOSFETs. Motor connects across two output terminals.

Example: Op-Amp Signal Conditioning

• Consider the signal conditioning op-amp circuit shown below, with an <u>ideal</u> diode in the feedback loop. Derive the input-output ratio V_O/V_i for the case when $V_O < 0$ and $V_i > 0$.

 $R_{25} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{5}}$ R_{2} $V_{0} = -\frac{R_{2} \cdot R_{3}}{R_{1} \cdot (R_{2} + R_{5})}$ $V_{0} < 0$

