Bioinformatics CS300

Horizontal Gene Transfer Database, Tools, Multiseq Alignment

Fall 2019 Oliver BONHAM-CARTER

On Exam 1 Thursday, 10 October

- Algorithms: design and implementation in Python
- Basic Python programming: syntax, keywords and definitions
- Tracking influenza by sequence study
- Sequence alignment
- Topics from recent lessons

On Exam 1 Thursday, 10 October

- Questions similar to those on worksheets
- Central Dogma of Biology
 - Transcription, Translation
- Mutations: types, causes and effects
- Genetic disorders and their inheritance
- STUDY YOUR SLIDES!

Horizontal Gene Transfer

Horizontal gene transfer (HGT) refers to the transfer of genes between organisms in a manner other than traditional reproduction.

What is HGT? (Horizontal Gene Transfer)

- The transmission of portions of genomic DNA between distant organisms
- A process decoupled from vertical inheritance (no mating).
- Various fragments of the genome are the result of different evolutionary histories and come from unrelated organisms.
- This can therefore complicate the investigations of evolutionary relatedness of lineages and species
- Bacteria can acquire new traits such as antibiotic resistance or pathogenic toxins.

Detection of HGT: Fragments that do not belong

ALLEGHENY COLLEGE

Statistical tests: Elevated GC content in DNA regions

Species that are too closely related to each other

Phylogenetic tests using relationship trees:
Organisms living physically near each other show close relations

No colonies

Genetic Sharing

No colonies

	bio	met	phe	thr
Strain I	+	+	-	-
Strain 2	-	-	+	+

- Colonies have opposing growth requirements: each colony requires two extra genes to survive under conditions
- Str 1 needs *phe* and *thr*, Str 2 needs *bio*, *met*.
- In the experiment, colonies randomly share missing genes with each other.
- Cells with HGT survive to make a new colony.

Bacterial colonies

No colonies

New colony needs to have genes from both sides of filter to grow. Filter prevents gene passage

Mechanisms of DNA Transfer

Conjugation

 Conjugation is the process by which one bacterium transfers genetic material to another through direct contact.

Transduction

Virus mediated transfer of DNA between bacteria

Transformation

 Requires release of DNA into the environment and then the manual take-up of the DNA by bacteria

Mechanisms of DNA Transfer

Transformation

Lysis of donor cell releases DNA into medium.

Conjugation

Donor cell plasmid

Recipient cell

Transduction

Donor cell

Bacteriophage

Recipient cell

Donor DNA is taken up by recipient.

Donor DNA is transferred directly to recipient through a connecting tube. Contact and transfer are promoted by a specialized plasmid in the donor cell.

Lysis of donor cell. Donor DNA is packaged in released bacteriophage.

Donor DNA is transferred when phage particle infects recipient cell.

Bacterial Conjugation

- Only specific bacteria can serve as donors
 - Arber, Werner. "Horizontal gene transfer among bacteria and its role in biological evolution." Life 4.2 (2014): 217-224.
- The donor bacterium carries a DNA sequence called the fertility factor, or F-factor.
- The F-factor allows the donor to produce a thin, tubelike structure called a *pilus*, which the donor uses to contact the recipient and transfer genetic content to recipient.

A Pilus : An Exchange Bridge

- Gene sharing possible if F-Factor present
- Fimbriae or pili (singlular: pilus): hair like filaments (tiny hollow projections)
- Extend from the cell membrane into the external environment
- A pilus is composed of subunits of the protein pilin

The F-Factor Material

- **F-Factor**: a material (i.e., the *fertility factor*) that is encoded on the plasmid (bacterial DNA). F+ (has factor) F- (does not have factor)
- Enables the creation of the pilus bridge to transfer circular piece of DNA

Transfer of Genetic Material

Plasmids are transferred containing genes of donor to recipient through the pilus

Plasmids Contain Genes

Mechanism of Transfer

- The relaxosome:
 a complex of
 proteins
 facilitating
 plasmid transfer
 during bacterial
 conjugation
- Relaxosome begins the transfer of T-DNA (transfer DNA) from donor to recipient

- T-DNA is separated but bound to relaxase protein.
- Complex called nucleoprotein
- Complex is recognized by a coupling factor, fed through exporter (conjugation tube)

F Factor Transfer

- Relaxase joins ends to produce circular molecule
- Single strand of F-Factor are in both cells (DNA replication)

In the donor cell, the F-factor DNA is replicated to become double stranded. In the recipient cell, relaxase joins the ends of the T-DNA strand. It is then replicated to become double stranded.

- Genes encoded on F-Factor can integrate into host DNA and alter its genotype (genetics) and phenotype (look-like)
- An Hfr strain was derived from an F+ strain

Known Instances of HGT

- Antibiotic resistance genes on plasmids
- Insertion sequences
- Pathogenicity islands
- Toxin resistance genes on plasmids
- Viruses and viroids
- Organelle to nucleus transfers

From Farm-to-Fork Spread of Antibiotic Resistance

Overuse of antibiotics in agriculture is widening the spread of superbugs that are immune to

Supporting Videos

- Horizontal Gene Transfer animation (1.5mins)
 - https://www.youtube.com/watch?v=tCZhkxpzxDY
- Antibiotic Resistance (4mins)
 - https://ed.ted.com/lessons/how-antibiotics-become-resistantover-time-kevin-wu

How do we find common regions in genetic material?

Multi-Sequence Alignment

- Clustal Omega: MultiSequence Alignment
- https://www.ebi.ac.uk/Tools/msa/clustalo/

Where are the chucks of common genes?

Are these chunks from horizontal gene transfers?

Input form Web services Help & Documentation

Tools > Multiple Sequence Alignment > Clustal Omega

EMBL-EBI to be HTTPS by default from 1st October

On the 1st October the majority of services hosted on www.ebi.ac.uk will be served over HTTPS by default. automatically redirect users accessing the site on insecure HTTP URLs to secure HTTPS URLs.

Users of EMBL-EBI services may wish to update links, bookmarks or API clients to use the HTTPS URLs.

Results for job clustalo-I20171005-050706-0613-19128639-oy

Alignments Result Summary Phylogenetic Tree Submission Details

Download Alignment File Send to Simple Phylogeny

CLUSTAL O(1.2.4) multiple sequence alignment

AB011005.1	
X95927.1	GGGAGG-CAAGAATCAGGC-CTCAAAACCCTCAAACTCTA
X95928.1	TATTATTTCATGAAACTAATGTGAGGAGAAAAATTAGGCAGACGTATAAGTGACAGTAGA
KU325497.1	
KU325498.1	
AB011005.1	
X95927.1	ACCTTGGAACAACAGCCCTAGTGGGATAGCCCTATCAAACCCTTCCCTTCAGGGATT

Clustal: Load Input Sequences

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between **three or more** sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

STEP 1 - Enter your input sequences	
Enter or paste a set of	
DNA	▼
sequences in any supported format:	
Or, upload a file: Choose File No file chosen	

Using Example DNA Sequences

Results for job clustalo-E20191003-040355-0978-26932726-p1m

Alignments

Result Summary

Guide Tree

Phylogenetic Tree

Results Viewers

Submission Details

Download Alignment File

CLUSTAL O(1.2.4) multiple sequence alignment

test1	ATGAGTCTCTCTGATAAGGACAAGGCTGCTGTGAAAGCCCCTATGG 45
test2	CTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCTGGGGTAAG 45
test3	ACAAAAGCAACATCAAGGCTGCCTGGGGGAAGATTGGTGGC 41

test1	 45
test2	 45
test3	CATG 45

Results for job clustalo-E20191003-040019-0643-26585412-p1m

Alignments Result Summary Guide Tree Phylogenetic Tree Results Viewers Submission Details

Download Alignment File Show Colors

CLUSTAL O(1.2.4) multiple sequence alignment

```
sp|P69905|HBA HUMAN
                      MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
sp|P01942|HBA MOUSE
                                                                            60
                      MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHFDVSHGSAOVKGHG
sp|P13786|HBAZ CAPHI
                      MSLTRTERTIILSLWSKISTOADVIGTETLERLFSCYPOAKTYFPHFDLHSGSAOLRAHG
                      sp|P69905|HBA HUMAN
                                                                            120
                      KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
sp|P01942|HBA MOUSE
                      KKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTP
                                                                           120
sp | P13786 | HBAZ_CAPHI
                                                                           120
                      SKVVAAVGDAVKSIDNVTSALSKLSELHAYVLRVDPVNFKFLSHCLLVTLASHFPADFTA
                      sp|P69905|HBA HUMAN
                                                142
                      AVHASLDKFLASVSTVLTSKYR
sp|P01942|HBA MOUSE
                                                142
                      AVHASLDKFLASVSTVLTSKYR
sp|P13786|HBAZ CAPHI
                                                142
                      DAHAAWDKFLSIVSGVLTEKYR
                       .**: ****: ** ***
```

This took about five minutes to get! :-/
Is there a way to get faster results?

BLAST: A Heuristic Approach to Database Searching

- https://blast.ncbi.nlm.nih.gov/Blast.cgi
- Basic Local Alignment Search Tool
 - NCBI DNA and protein sequence
 - Compares one sequence to database of > 100 million
 - Finds best hits (optimal alignments) in a matter of seconds
 - (would take >3 years using Needlman-Wunsch algorithm)

BLAST: A Heuristic Approach to Database Searching

NIH U.S. National Library of Medicine NCBI National Center for Biotechnology Information	tion				
BLAST® >> blastn suite	Home Recent Results				
Escherichia coli O157:H7 str. Sakai Nu	ucleotide BLAST				
blastn blastp blastx tblastn					
Enter Query Sequence BLASTN programs search nucleotide databases using	a nucleotide query. more				
Enter accession number(s), gi(s), or FASTA sequence(s) Clear Query subrange Query subrange					
atatatatatatatatatat From From					
То					
Or, upload file Choose File No file chosen					
Job Title					
Enter a descriptive title for your BLAST search					
☐ Align two or more sequences ⊌					

Where does my sequence show up in other organisms?

BLAST: Output

♣ Download ∨

GenBank Graphics sort by: E value

▼ Next ▲ Previ

Tepidimicrobium xylanilyticum strain DSM 23310, whole genome shotgun sequence

Sequence ID: NZ FNNG01000007.1 Length: 162671 Number of Matches: 4

Range 1: 102686 to 102707 GenBank Graphics

▼ Next Match APrevious Match

Score	Expect	Identities	Gaps	Strand
44.1 bits(22)	0.005	22/22(100%)	0/22(0%)	Plus/Plus

Query 1

Sbjct 102686 102707

Range 2: 102686 to 102707 GenBank Graphics

▼ Next Match ▲ Previous Match ▲ First Match

44.1 bits(22)	0.005	22/22(100%)	0/22(0%)	Plus/Minus
Score	Expect	Identities	Gaps	Strand

Query 1

Sbict 102707 102686

Range 3: 102685 to 102705 GenBank Graphics

▼ Next Match ▲ Previous Match ▲ First Match

Score	Expect	Identities	Gaps	Strand
42.1 bits(21)	0.019	21/21(100%)	0/21(0%)	Plus/Plus

Query 2

Sbjct 102685

102705

BLAST: Output

Nucleotide	Nucleotide \$	
	Trubiootide V	
		Advanced

Graphics - Send to: -

Tepidimicrobium xylanilyticum strain DSM 23310, whole genome shotgun sequence

NCBI Reference Sequence: NZ_FNNG01000007.1

GenBank FASTA

BLAST: Tree of Relations

