Тема. Повторення. Подібність трикутників

<u>Мета:</u> повторити ознаки подібності трикутників та властивості медіани і бісектриси трикутника, відновити навички застосування теоретичних знань з даної теми для розв'язування задач

Ознайомтеся з інформацією

Відношенням відрізків завдовжки a і b називається частка їх довжин, тобто число $\frac{a}{b}$.

Відрізки завдовжки a і c **пропорційні** відрізкам завдовжки b і d, якщо $\frac{a}{b} = \frac{c}{d}$.

Сформулюймо узагальнену **теорему Фалеса** (див. рис. 1) для нерівних відрізків, які відтинаються паралельними прямими на сторонах кута. Паралельні прямі, які перетинають сторони кута, відтинають на сторонах цього кута пропорційні відрізки: $\frac{AB}{BC} = \frac{AB_1}{B_1C_1}$.

Рис. 1. До теореми Фалеса

Два трикутники називаються **подібними** (рис. 2), якщо кути одного з них відповідно дорівнюють кутам іншого і відповідні сторони цих трикутників пропорційні.

Якщо $\triangle ABC \sim \triangle A_1B_1C_1$, то $\angle A = \angle A_1$, $\angle B = \angle B_1$, $\angle C = \angle C_1$; $AB : A_1B_1 = BC : B_1C_1 = AC : A_1C_1$.

Рис. 2. Подібні трикутники

Визначимо ознаки подібності трикутників.

Перша ознака (рис. 3): якщо два кути одного трикутника відповідно дорівнюють двом кутам іншого трикутника, то такі трикутники подібні.

Рис. 3. До першої ознаки подібності трикутників

Друга ознака (рис. 4): якщо дві сторони одного трикутника пропорційні двом сторонам іншого трикутника і кути, утворені цими сторонами, рівні, то такі трикутники подібні.

Рис. 4. До другої ознаки подібності трикутників

Третя ознака (рис. 5): якщо три сторони одного трикутника пропорційні трьом сторонам іншого трикутника, то такі трикутники подібні.

Рис. 5. До третьої ознаки подібності трикутників.

Властивість бісектриси трикутника (рис. 6). бісектриса трикутника ділить протилежну сторону на відрізки, пропорційні прилеглим до них сторонам. За рисунком можна скласти відношення $\frac{a}{c} = \frac{b}{d}$.

Рис. 6. Властивість бісектриси трикутника

Теорема про точку перетину медіан трикутника (рис. 7). Медіани трикутника перетинаються в одній точці і діляться нею у відношенні 2 : 1, починаючи від вершини трикутника. На основі теореми можна скласті відношення:

$$\frac{BE}{EM} = \frac{2}{1}; \frac{AE}{EL} = \frac{2}{1}; \frac{CE}{EK} = \frac{2}{1}.$$

Рис. 7. До теореми про медіани трикутника

Перегляньте навчальне відео за посиланням:

https://youtu.be/yYqGFCjSZl8

Робота в зошиті

- Запишіть ознаки подібності трикутників та властивості бісектриси і медіани трикутника, виконайте відповідні рисунки
- Запишіть приклади розв'язування задач:

Задача 1

Відношення периметрів подібних трикутників дорівнює коефіцієнту подібності. Доведіть це.

Розв'язання

Нехай $\triangle ABC$ ∞ $\triangle A_1B_1C_1$ з коефіцієнтом подібності k. Це означає? що

$$\frac{AB}{A_1B_1}$$
= $\frac{BC}{B_1C_1}$ = $\frac{AC}{A_1C_1}$ = k , тобто $AB = kA_1B_1$, BC = kB_1C_1 ,. Маємо:

$$\frac{P_{ABC}}{P_{A_1B_1C_1}} = \frac{kA_1B_1 + kB_1C_1 + kA_1C_1}{A_1B_1 + B_1C_1 + A_1C_1} = \frac{kP_{A_1B_1C_1}}{P_{A_1B_1C_1}} = k.$$

Задача 2

Точка перетину діагоналей трапеції ділить одну з них на відрізки завдовжки 2 см і 5 см. Менша основа трапеції дорівнює 6 см. Знайдіть середню лінію трапеції.

Розв'язання

Нехай у трапеції ABCD ($AD \parallel BC$) діагоналі перетинаються в точці O, BC = 6 см (рис. 8). Розглянемо трикутники AOD і COB. У них кути при вершині O рівні як вертикальні. $_{\angle}CAD$ = $_{\angle}BCA$ як внутрішні різносторонні при паралельних прямих AD і BC та січній AC. Отже, $_{\triangle}AOD$ ∞ $_{\triangle}COB$ за двома ку-

тами. Звідси випливає, що $\frac{BC}{AD}=\frac{BO}{DO}$. Оскільки за умовою $\mathrm{BC}<\mathrm{AD}$, то

$${
m BO} < {
m OD}$$
, отже, ${
m BO} = 2$ см, ${
m OD} = 5$ см. Тоді ${
m AD} = \frac{BC \cdot DO}{BO} = \frac{6 \cdot 5}{2} = 15$ см.

Середня лінія трапеції дорівнює півсумі її основ, тобто = $\frac{(6+15)}{2cm}$ = 10,5 см.

Домашне завдання

- Вивчити ознаки подібності трикутників
- Розв'язати задачі (письмово):
- 1. У одного з трикутників кути становлять 24°, 46° і 110°. Чому дорівнюють кути у подібному йому трикутнику?
- 2. Сторони трикутника відносяться як 10:6:5. Знайдіть меншу сторону подібного йому трикутника, більша сторона якого дорівнює 30см.

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту nataliartemiuk.55@gmail.com