$$\Sigma_c(2455)$$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

The angular distribution of $B^- \to \Sigma_c(2455)^0 \overline{p}$ favors J=1/2 (as the quark model predicts). J=3/2 is excluded by more than four σ see AUBERT 08BN.

$\Sigma_c(2455)$ MASSES

The masses are obtained from the mass-difference measurements that follow.

Σ_c (2455) ⁺⁺ MASS	
VALUE (MeV)	DOCUMENT ID
2453.97±0.14 OUR FIT	
Σ_c (2455) $^+$ MASS	
VALUE (MeV)	DOCUMENT ID
2452.9±0.4 OUR FIT	
Σ_c (2455) 0 MASS	
VALUE (MeV)	DOCUMENT ID
2453.75 + 0.14 OUR FIT	

Σ_c (2455) - \varLambda_c^+ MASS DIFFERENCES

$^{\prime\prime\prime}\Sigma_c^{++}$	- ''' _{/\}	+ c					
VALUE (EVTS	DOCUMENT ID		TECN	COMMENT
167.51	0.01°	7 OUR I	FIT				
167.51	0 ± 0.02	2 OUR	AVERAG	E			
167.51	\pm 0.01	± 0.02	36k	LEE	14	BELL	e^+e^- at \varUpsilon (4 S)
167.44	\pm 0.04	± 0.12	13.8k	AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV
167.4	\pm 0.1	± 0.2	2k	ARTUSO	02	CLE2	$e^+e^-pprox \ \varUpsilon(4S)$
167.35	\pm 0.19	± 0.12	461	LINK	00 C	FOCS	γ A, $\overline{\it E}_{\gamma}$ 180 GeV
167.76	± 0.29	± 0.15	122	AITALA	96 B	E791	π^- N, 500 GeV
167.6	\pm 0.6	± 0.6	56	FRABETTI	96	E687	$\gamma{ m Be}$, $\overline{\it E}_{\gamma}pprox$ 220 GeV
168.2	\pm 0.3	± 0.2	126	CRAWFORD	93	CLE2	$e^+e^-\stackrel{'}{pprox} \varUpsilon(4S)$
167.8	\pm 0.4	± 0.3	54	BOWCOCK	89	CLEO	e^+e^- 10 GeV
168.2	\pm 0.5	± 1.6	92	ALBRECHT	88D	ARG	e^+e^- 10 GeV
167.4	\pm 0.5	± 2.0	46	DIESBURG	87	SPEC	$n A \sim 600 GeV$
• • • '	We do no	ot use th	ie followii	ng data for averages	, fits,	limits, e	etc. • • •
167	± 1		2	JONES	87	HBC	νp in BEBC
166	\pm 1		1	BOSETTI	82	HBC	See JONES 87
168	\pm 3		6	BALTAY	79	HLBC	u Ne-H in 15-ft
166	±15		1	CAZZOLI	75	HBC	νp in BNL 7-ft

Created: 5/30/2017 17:20

$m_{\Sigma_c^+}$	- m _∧ ⁴	=					
VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
166.4±	:0.4 OU	R FIT					
$166.4 \pm$	0.2±0.	3	661	AMMAR	01	CLE2	$e^+e^-pprox \ \varUpsilon(4S)$
• • • \	We do n	ot use th	ne followin	g data for averages	s, fits,	limits, e	etc. • • •
$168.5\pm$	$0.4 \pm 0.$	2	111	CRAWFORD	93	CLE2	See AMMAR 01
168 ±	3		1	CALICCHIO	80	HBC	νp in BEBC-TST
<i>m</i> _{₹0} .	- m _{Λ_c+}						
∠c VALUE (-		EVTS	DOCUMENT ID		TECN	COMMENT
		OUR F		DOCOMENT ID		TECH	COMMENT
			VERAGE				
167.29	± 0.01	± 0.02	32k	LEE	14	BELL	e^+e^- at $\Upsilon(4S)$
167.28	± 0.03	± 0.12	15.9k	AALTONEN	11H	CDF	p p at 1.96 TeV (
167.2	±0.1	± 0.2	2k	ARTUSO	02	CLE2	$e^+e^-pprox \ \varUpsilon(4S)$
167.38	±0.21	± 0.13	362	LINK	00C	FOCS	γ A, $\overline{\it E}_{\gamma}$ 180 GeV
167.38	±0.29	±0.15	143	AITALA	96 B	E791	π^- N, 500 GeV
167.8	± 0.6	± 0.2		ALEEV	96	SPEC	n nucleus, 50 GeV/ c
166.6	± 0.5	± 0.6	69	FRABETTI	96	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
167.1	± 0.3	± 0.2	124	CRAWFORD	93	CLE2	$e^+e^-pprox \Upsilon(4S)$
168.4	± 1.0	± 0.3	14	ANJOS	89 D	E691	$\gamma\mathrm{Be}$ 90–260 GeV
• • • \	We do n	ot use th	ne followin	g data for averages	s, fits,	limits, e	etc. • • •
167.9	±0.5	± 0.3	48	$^{ m 1}$ BOWCOCK	89	CLEO	e^+e^- 10 GeV
167.0	±0.5	± 1.6	70	¹ ALBRECHT	88D	ARG	e^+e^- 10 GeV
178.2	± 0.4	± 2.0	85	² DIESBURG	87	SPEC	$nA\sim 600~GeV$
163	± 2		1	AMMAR	86	EMUL	ν A
¹ Th	is result	enters th	ne fit throi	ugh $m_{\Sigma_c^{++}} - m_{\Sigma_c}$	o give	n below	
				37 in the $m_{\sum^{++}}^{c}$ $-$			

Σ_c (2455) MASS DIFFERENCES

 $m_{\Sigma_c^{++}} - m_{\Sigma_c^0}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
0.220±0.013 OUR FIT				
0.221 ± 0.014 OUR AVERAGE				
$0.22\ \pm0.01\ \pm0.01$	LEE	14	BELL	e^+e^- at $\varUpsilon(4S)$
$0.2 \pm 0.1 \pm 0.1$	ARTUSO	02	CLE2	$e^+e^-pprox ~ $
$-$ 0.03 ± 0.28 ± 0.11	LINK	00 C	FOCS	γ A, $\overline{\it E}_{\gamma}$ 180 GeV
$0.38\ \pm0.40\ \pm0.15$	AITALA	96 B	E791	π^- N, 500 GeV
1.1 ± 0.4 ± 0.1	CRAWFORD	93	CLE2	$e^+e^-pprox arGamma(4S)$
$-$ 0.1 \pm 0.6 \pm 0.1	BOWCOCK	89	CLEO	e^+e^- 10 GeV
$1.2 \pm 0.7 \pm 0.3$	ALBRECHT	88D	ARG	$e^+e^-\sim~10~{ m GeV}$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
-10.8 ± 2.9	³ DIESBURG	87	SPEC	$n extsf{A} \sim 600 \; extsf{GeV}$
3 DIECHIDO 07 to completely to a	العاملية أربار والمائية ومروس			

³ DIESBURG 87 is completely incompatible with the other experiments, which is surprising since it agrees with them about $m_{\Sigma_c(2455)^{++}} - m_{\Lambda_c^+}$. We go with the majority here.

$m_{\Sigma_c^+} - m_{\Sigma_c^0}$

VALUE (MeV) DOCUMENT ID TECN COMMENT

-0.9 ± 0.4 OUR FIT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $1.4\!\pm\!0.5\!\pm\!0.3$

CRAWFORD 93 CLE2 See AMMAR 01

Σ_c (2455) WIDTHS

$\Sigma_{c}(2455)^{++}$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$1.89^{+0.09}_{-0.18}$ OUR AVE	RAGE	Error includes scale	factor	of 1.1.	
$1.84 \pm 0.04 {+0.07 \atop -0.20}$	36k	LEE	14	BELL	e^+e^- at $\varUpsilon(4S)$
$2.34\!\pm\!0.13\!\pm\!0.45$	13.8k	AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV
$2.3 \pm 0.2 \pm 0.3$	2k	ARTUSO	02	CLE2	$e^+e^-pprox \ \varUpsilon(4S)$
$2.05^{+0.41}_{-0.38}{\pm}0.38$	1110	LINK	02	FOCS	γ A, $\overline{\it E}_{\gamma} pprox$ 180 GeV

$\Sigma_c(2455)^+$ WIDTH

VALUE (MeV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<4.6	90	661	AMMAR	01	CLE2	$e^+e^-\approx \Upsilon(4S)$

$\Sigma_c(2455)^0$ WIDTH

C(/				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT

1.83^{+0.11}_{-0.19} **OUR AVERAGE** Error includes scale factor of 1.2.

$1.76 \pm 0.04 {+0.09 \atop -0.21}$	32k	LEE	14 BELL	e^+e^- at $arUpsilon(4S)$
$1.65\!\pm\!0.11\!\pm\!0.49$	15.9k	AALTONEN		$p\overline{p}$ at 1.96 TeV
$2.6\ \pm0.5\ \pm0.3$		AUBERT	08BN BABR	$B^- \rightarrow \overline{p} \Lambda_c^+ \pi^-$
$2.5 \ \pm 0.2 \ \pm 0.3$	2k	ARTUSO	02 CLE2	$e^+e^- \approx \Upsilon(4S)$
$1.55^{+0.41}_{-0.37}{\pm}0.38$	913	LINK	02 FOCS	γ A, $\overline{\it E}_{\gamma} pprox$ 180 GeV

$\Sigma_c(2455)$ DECAY MODES

 $\Lambda_{\it c}^+\pi$ is the only strong decay allowed to a $\Sigma_{\it c}$ having this mass.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\Lambda_c^+ \pi$	≈ 100 %

Created: 5/30/2017 17:20

Σ_c (2455) REFERENCES

LEE AALTONEN AUBERT ARTUSO LINK AMMAR LINK AITALA ALEEV FRABETTI CRAWFORD ANJOS BOWCOCK ALBRECHT DIESBURG JONES AMMAR	14 11H 08BN 02 02 01 00C 96B 96 93 89D 88D 87 87 86	PR D65 071101 PL B525 205 PRL 86 1167 PL B488 218 PL B379 292 JINRRC 3-77 31 PL B365 461 PRL 71 3259 PRL 62 1721 PRL 62 1240 PL B211 489 PRL 59 2711 ZPHY C36 593 JETPL 43 515 Translated from ZETFP		(BELLE Collab.) (CDF Collab.) (BABAR Collab.) (CLEO Collab.) (FNAL FOCUS Collab.) (FNAL FOCUS Collab.) (FNAL FOCUS Collab.) (FNAL E791 Collab.) (Serpukhov EXCHARM Collab.) (FNAL E687 Collab.) (CLEO Collab.) (FNAL E691 Collab.) (CLEO Collab.) (ARGUS Collab.) (FNAL E400 Collab.) (CERN WA21 Collab.) (ITEP)
BOSETTI CALICCHIO BALTAY CAZZOLI	82 80 79 75	PL 109B 234 PL 93B 521 PRL 42 1721 PRL 34 1125	P.C. Bosetti <i>et al.</i> M. Calicchio <i>et al.</i> C. Baltay <i>et al.</i> E.G. Cazzoli <i>et al.</i>	(AACH3, BONN, CERN+) (BARI, BIRM, BRUX+) (COLU, BNL) I (BNL)

Created: 5/30/2017 17:20