Jain Real Estate - House Price Prediction

```
In [1]:
```

```
#importing libraries

import pandas as pd
import numpy as np
```

In [2]:

```
house=pd.read_csv('data.csv')
```

In [3]:

```
1. CRIM
            per capita crime rate by town
 2. ZN
              proportion of residential land zoned for lots over
              25,000 sq.ft.
3. INDUS
              proportion of non-retail business acres per town
4. CHAS
              Charles River dummy variable (= 1 if tract bounds
             river; 0 otherwise)
5. NOX
             nitric oxides concentration (parts per 10 million)
6. RM
              average number of rooms per dwelling
 7. AGE
              proportion of owner-occupied units built prior to 1940
8. DIS
              weighted distances to five Boston employment centres
9. RAD index of accessibility to radial highways 10. TAX full-value property-tax rate per $10,000
11. PTRATIO pupil-teacher ratio by town
              1000(Bk - 0.63)^2 where Bk is the proportion of blacks
              by town
13. LSTAT
             % lower status of the population
14. MEDV
              Median value of owner-occupied homes in $1000's
```

In [4]:

```
house.head()
```

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

In [5]:

```
house.shape
```

Out[5]:

(506, 14)

In [6]:

```
house.describe()
```

Out[6]:

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTR
CIVIIVI	Z1 3	IIIDUU	CIIAG	NOA	LZIVI	AGE	DIO	ואאט		

count	506.000000 CRIM	506.000000 ZN	506.000000 INDUS	506.000000 CHAS	506.000000 NOX	498.000000 RM	506.000000 AGE	506.000000 DIS	506.000000 RAD	506.000000 TAX	506.00 PTR
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.295556	68.574901	3.795043	9.549407	408.237154	18.4
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.697106	28.148861	2.105710	8.707259	168.537116	2.16
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.60
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.888250	45.025000	2.100175	4.000000	279.000000	17.40
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.211000	77.500000	3.207450	5.000000	330.000000	19.0
75%	3.677082	12.500000	18.100000	0.000000	0.624000	6.629750	94.075000	5.188425	24.000000	666.000000	20.20
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.00
4											•

In [7]:

```
house.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): Non-Null Count Dtype # Column 0 CRIM 506 non-null float64 1 ZN 506 non-null float64 INDUS 506 non-null float64 506 non-null CHAS int64 NOX 506 non-null float64 498 non-null float64 AGE 506 non-null float64 7 DIS 506 non-null float64 8 RAD 506 non-null int64 TAX 506 non-null int64 10 PTRATIO 506 non-null float64 float64 11 B 506 non-null 12 LSTAT 506 non-null float64 506 non-null dtypes: float64(11), int64(3) memory usage: 55.5 KB

Exploring the columns

In [8]:

```
%matplotlib inline
```

In [9]:

```
import matplotlib.pyplot as plt
```

In [10]:

```
house.hist(bins=50, figsize=(20,15))
plt.show()
```


spliting data: Train-Test

```
In [11]:
```

In [12]:

```
# train_set, test_set= train_test(house, 0.2)
```

In [13]:

```
# print(f"Rows in train set: {len(train_set)}\nRows in test set: {len(test_set)}\n")
```

In [14]:

```
from sklearn.model_selection import train_test_split
```

In [15]:

```
train_set, test_set=train_test_split(house, test_size=0.2, random_state=42)
print(f"Rows in train set: {len(train_set)}\nRows in test set: {len(test_set)}\n")
```

Rows in train set: 404 Rows in test set: 102

In [16]:

```
# stratified shuffled sampling
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1,test_size=0.2,random_state=42)
for train_index, test_index in split.split(house, house['CHAS']):
    strs_train_set=house.loc[train_index]
    strs_test_set=house.loc[test_index]
```

```
strs train set['CHAS'].value counts()
Out[17]:
0 376
Name: CHAS, dtype: int64
In [18]:
strs test set['CHAS'].value counts()
Out[18]:
Name: CHAS, dtype: int64
In [19]:
#ratio of 0&1 in strs train set and strs test set
b=95/7
print(a)
print(b)
13.428571428571429
13.571428571428571
In [20]:
house=strs_train_set.copy()
Looking for Correlations
In [21]:
corr matrix=house.corr()
#pearson correlations
corr_matrix['MEDV'].sort_values(ascending=False)
Out[21]:
       1.000000
MEDV
         0.690027
         0.361761
         0.339741
0.240451
2N
DIS
         0.205066
CHAS
        -0.364596
AGE
         -0.374693
CRIM
         -0.393715
         -0.422873
NOX
         -0.456657
INDUS
         -0.473516
PTRATIO -0.493534
LSTAT -0.740494
Name: MEDV, dtype: float64
In [22]:
from pandas.plotting import scatter_matrix
attr=["RM","ZN","MEDV","LSTAT"]
scatter matrix(house[attr], figsize=(12,8))
Out[22]:
```

array([[<AxesSubplot:xlabel='RM', ylabel='RM'>,

In [23]:

```
house.plot(kind="scatter",x='RM',y="MEDV", alpha=1)
```

Out[23]:

<AxesSubplot:xlabel='RM', ylabel='MEDV'>

Attribute combinations

```
In [24]:
house["Tax per RM"]=house['TAX']/house['RM']
house["Tax per RM"].head()
Out[24]:
254
    51.571709
348
       42.200452
476
     102.714374
321
       45.012547
326
       45.468948
Name: Tax_per_RM, dtype: float64
In [25]:
corr_matrix=house.corr()
#pearson correlations
corr matrix['MEDV'].sort values(ascending=False)
Out [25]:
           1.000000
0.690027
RM
             0.361761
            0.339741
DIS
            0.240451
             0.205066
CHAS
             -0.364596
             -0.374693
RAD
            -0.393715
CRIM
NOX
             -0.422873
             -0.456657
TAX
INDUS
             -0.473516
PTRATIO
             -0.493534
Tax_per_RM -0.534273
            -0.740494
LSTAT
Name: MEDV, dtype: float64
In [26]:
house.plot(kind="scatter", x='Tax_per_RM', y="MEDV", alpha=1)
Out[26]:
<AxesSubplot:xlabel='Tax_per_RM', ylabel='MEDV'>
  50
  40
  30
  20
  10
                                140
     20
         40
              60
                   80
                       100
                           120
                                    160
                                         180
                      Tax_per_RM
In [27]:
#seperate features and attributes
house=strs train set.drop("MEDV",axis=1)
house_labels=strs_train_set["MEDV"].copy()
```

Handling Missing values

```
In [28]:
```

```
house.describe()
```

Out[28]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTR
count	404.000000	404.000000	404.000000	404.000000	404.000000	398.000000	404.000000	404.000000	404.000000	404.000000	404.00
mean	3.602814	10.836634	11.344950	0.069307	0.558064	6.291523	69.039851	3.746210	9.735149	412.341584	18.47
std	8.099383	22.150636	6.877817	0.254290	0.116875	0.705217	28.258248	2.099057	8.731259	168.672623	2.12
min	0.006320	0.000000	0.740000	0.000000	0.389000	3.561000	2.900000	1.129600	1.000000	187.000000	13.00
25%	0.086963	0.000000	5.190000	0.000000	0.453000	5.884250	44.850000	2.035975	4.000000	284.000000	17.40
50%	0.286735	0.000000	9.900000	0.000000	0.538000	6.217500	78.200000	3.122200	5.000000	337.000000	19.00
75%	3.731923	12.500000	18.100000	0.000000	0.631000	6.634000	94.100000	5.100400	24.000000	666.000000	20.20
max	73.534100	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.00
4											Þ

In [29]:

```
from sklearn.impute import SimpleImputer
imputer=SimpleImputer(strategy="median")
imputer.fit(house)
```

Out[29]:

SimpleImputer(strategy='median')

In [30]:

```
imputer.statistics_
```

Out[30]:

```
array([2.86735e-01, 0.00000e+00, 9.90000e+00, 0.00000e+00, 5.38000e-01, 6.21750e+00, 7.82000e+01, 3.12220e+00, 5.00000e+00, 3.37000e+02, 1.90000e+01, 3.90955e+02, 1.15700e+01])
```

In [31]:

```
imputer.statistics_.shape
```

Out[31]:

(13,)

In [32]:

```
x=imputer.transform(house)
house_new=pd.DataFrame(x,columns=house.columns)
```

In [33]:

```
house_new.describe()
```

Out[33]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTR
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.00
mean	3.602814	10.836634	11.344950	0.069307	0.558064	6.290423	69.039851	3.746210	9.735149	412.341584	18.47
std	8.099383	22.150636	6.877817	0.254290	0.116875	0.700005	28.258248	2.099057	8.731259	168.672623	2.12
min	0.006320	0.000000	0.740000	0.000000	0.389000	3.561000	2.900000	1.129600	1.000000	187.000000	13.00

		0.000020			0.000000	0.000000						
_	25%	0 086963	0 000000	INDUS 5 190000	0 000000	NOX 0 453000	RM 5 887250	AGE 44 850000	2 035975	4 000000	284 000000	PTR 17 4(
	50%	0.286735	0.000000	9.900000	0.000000	0.538000	6.217500	78.200000	3.122200	5.000000	337.000000	19.00
	75%	3.731923	12.500000	18.100000	0.000000	0.631000	6.630250	94.100000	5.100400	24.000000	666.000000	20.20
	max	73.534100	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.00
4										1		Þ

Creating Pipeline

Pipeline in ML operates by enabling a sequence of data to be transformed and correlated together in a model that can be tested and evaluated to achieve an outcome, whether positive or negative. It consist of several steps to train a model Pipelines help avoid leaking statistics from your test data into the trained model in cross-validation, by ensuring that the same samples are used to train the transformers and predictors.

```
In [34]:
```

```
from sklearn.pipeline import Pipeline
```

In [35]:

```
#feature Scaling
from sklearn.preprocessing import StandardScaler
pipline=Pipeline([
         ('imputer',SimpleImputer(strategy="median")),
         ('std_scaler',StandardScaler()),
])
```

In [36]:

```
house_num=pipline.fit_transform(house)
house_num.shape

Out[36]:
(404, 13)
```

Desired Model

```
In [37]:
```

```
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
# model = LinearRegression()
# model = DecisionTreeRegressor()
model = RandomForestRegressor()
model.fit(house_num,house_labels)
```

Out[37]:

RandomForestRegressor()

In [38]:

```
new_data=house.iloc[:5]
```

In [39]:

```
new_labels=house_labels.iloc[:5]
```

In [40]:

```
prepared_data=pipline.transform(new_data)
```

```
In [41]:
model.predict(prepared_data)
Out[41]:
array([22.344, 25.412, 16.623, 23.377, 23.544])
In [42]:
list(new labels)
Out[42]:
[21.9, 24.5, 16.7, 23.1, 23.0]
Evaluating the model
In [43]:
from sklearn.metrics import mean_squared_error
housing_prediction=model.predict(house_num)
mse=mean squared error(house labels,housing prediction)
rmse= np.sqrt(mse)
rmse
Out[43]:
1.2457387942760536
Cross Validation
In [44]:
from sklearn.model selection import cross val score
scores = cross val score(model, house num, house labels, scoring="neg mean squared error", cv=10)
rmse_scores = np.sqrt(-scores)
In [45]:
rmse_scores
Out[45]:
array([2.90674694, 2.84631628, 4.43407189, 2.66555954, 3.33182147,
       2.57257376, 4.9255919 , 3.38643144, 3.09246771, 3.2875258 ])
In [46]:
def print scores(scores):
   print("Scores :",scores)
   print("Mean :", scores.mean())
   print("Standard deviation :", scores.std())
In [47]:
print_scores(rmse_scores)
Scores: [2.90674694 2.84631628 4.43407189 2.66555954 3.33182147 2.57257376
 4.9255919 3.38643144 3.09246771 3.2875258 ]
Mean : 3.3449106738361665
Standard deviation : 0.7247307883492123
```

Saving Model

```
In [48]:
from joblib import dump, load
dump(model, 'Estates.joblib')
Out[48]:
['Estates.joblib']
Testing the model on test data
In [49]:
X test = strs test set.drop("MEDV", axis=1)
Y_test = strs_test_set["MEDV"].copy()
X_test_prepared = pipline.transform(X_test)
final predictions = model.predict(X test prepared)
final_mse = mean_squared_error(Y_test, final_predictions)
final_rmse = np.sqrt(final_mse)
In [50]:
final rmse
Out[50]:
2.8888616914883656
In [51]:
prepared data[0]
Out[51]:
array([-0.43942006, 3.12628155, -1.12165014, -0.27288841, -1.42262747, -0.26092577, -1.31238772, 2.61111401, -1.0016859, -0.5778192, -0.97491834, 0.41164221, -0.86091034])
In [ ]:
```