

Toward Incorporation of Relevant Documents in word2vec

Navid Rekabsaz¹, Bhaskar Mitra², Mihai Lupu¹, Allan Hanbury¹

¹ TU Wien, Vienna, Austria

² Microsoft, UCL, Cambridge, UK

contact: rekabsaz@ifs.tuwien.ac.at

Problem Definition & Motivation

- Previous studies show the effectiveness of using the word2vec's related terms for document retrieval when applying Generalized and Extended Translation models. (Rekabsaz et al. CIKM 2016, ECIR 2017, SIGIR 2017)
- The translation models however extend each query term independently and don't consider other query terms.
- To address the problem, we introduce a novel explicit representation based on the Skip-Gram (SG) model.
- We discuss our ideas of using the explicit representation and local information for query-specific related terms.

Background

Embedding with Negative Sampling

The SG model has two sets of vectors: term and context vectors and aims to optimize the following probability:

$$p(c|w) = \frac{\exp(V_w \widetilde{V}_c)}{\sum_{c' \in W} \exp(V_w \widetilde{V}_{c'})}$$

The Negative Sampling redefines it with the probability that the co-occurrence of terms is genuine:

$$p(y = 1|w, c) = \frac{\exp(V_w V_c)}{\exp(V_w \widetilde{V}_c) + 1} = \sigma(V_w \widetilde{V}_c)$$

$$J = -\sum_{\langle w, c \rangle \in X} \left[\log p(y = 1|w, c) + k \mathop{\mathbb{E}}_{\check{c}_i \sim \mathcal{N}} \log p(y = 0|w, \check{c}_i) \right]$$

+ subsampling and context distribution smoothing (cds)

Explicit Representation

PMI also assesses a genuine co-occurrence:

$$PMI(w, c) = \log \frac{p(w, c)}{p(w)p(c)}$$

PPMI(w, c) = max(PMI(w, c), 0).

$$SPPMI(w, c) = max(PMI(w, c) - \log(k), 0)$$

Levy and Goldberg 2014

SPPMI also considers *subsampling* and *cds* as follows:

$$PMI_{\alpha}(w,c) = \log \frac{p(w,c)}{p(w)p_{\alpha}(c)} \quad p_{\alpha}(c) = \frac{f(\langle w,.\rangle,X)^{\alpha}}{\sum_{w'\in W} f(\langle w',.\rangle,X)^{\alpha}}$$

Explicit Skip-Gram Representation

Theory & Definition

$$ExpSG(w,c) = p(y = 1|w,c) = \sigma(V_w \tilde{V}_c)$$

$$RExpSG(w,c) = ExpSG(w,c) - \underset{\check{c} \sim \mathcal{N}}{\mathbb{E}} p(y=1|w,\check{c}) - \underset{\check{w} \sim \mathcal{N}}{\mathbb{E}} p(y=1|\check{w},c)$$

$$\underset{\check{w} \sim \mathcal{N}}{\mathbb{E}} p(y=1|\check{w},c) = \frac{\sum_{i=1}^{|W|} f(\check{w}_i,C) \cdot \sigma(V_{\check{w}_i} \widetilde{V}_c)}{\sum_{i=1}^{|W|} f(\check{w}_i,C)} \qquad \underset{\check{c} \sim \mathcal{N}}{\mathbb{E}} p(y=1|w,\check{c}) = \frac{\sum_{i=1}^{|W|} f(\check{c}_i,C)^{\alpha} \cdot \sigma(V_w \widetilde{V}_{\check{c}_i})}{\sum_{i=1}^{|W|} f(\check{c}_i,C)^{\alpha}}$$

$$PRExpSG(w, c) = max(RExpSG(w, c), 0)$$

Evaluation

Method	Sparsity	WS Sim.	WS Rel.	MEN	Rare	SCWS	SimLex
PPMI	98.6%	.681	.603	.702	.309	.601	.284
SPPMI	99.6%	.722	<u>.661</u>	.704	.394	.571	.296
ExpSG	0%	.596	.404	.645	.378	.549	.231
RExpSG	0%	.527	.388	.606	.311	.507	.215
PRExpSG	94.1%	.697	.626	.711	.406	.614	.272
SG	0%	.770	.620	.750	.488	.648	.367

Integration of Local Information

Let us refer to each cell of the matrix of explicit vector representations as v(w,c)

Based on the set of local documents (F), we alter the cell values with the following formula:

Here are different suggestions for the function f

$$f_{1}(w, c, F) = f_{1}(c, F) = \mathbb{1} \left[f(c, F) > 0 \right]$$

$$f_{2}(w, c, F) = f_{2}(c, F) = \frac{p(c|F)}{p(c|C)} = \frac{f(c, F)/\sum_{d \in F} |d|}{f(c, C)/\sum_{d \in C} |d|}$$

$$f_{3}(w, c, F) = \frac{p(w, c|X_{F})}{p(w, c|X_{C})} = \frac{f(\langle w, c \rangle, X_{F})/|X_{F}|}{f(\langle w, c \rangle, X_{C})/|X_{C}|}$$

$$\hat{v}(w,c) = \frac{1}{1 + e^{-(a+b)f(w,c,F)}} v(w,c)$$

$$f_4(w,c,F) = f_4(c) = p(c|\Theta_F) = \sum_{\theta_d \in \Theta_F} p(c|\theta_d) \prod_{q \in Q} p(q|\theta_d)$$

$$f_5(w,c,F) = p(w,c|\Theta_F) = \sum_{\theta_d \in \Theta_F} p(w|\theta_d) p(c|\theta_d) \prod_{i \in Q} p(q|\theta_d)$$