

Minnesota Department of Transportation Plow Vehicle Scheduling Problem

Bryan Melchert

Production and Operations Analysis

Spring 2018

Introduction

- Project Overview
 - Stress to drivers due to uneven scheduling
 - Mixed Integer programming model
- Objectives
 - Level driver hours
 - Arc based vehicle scheduling

Assumptions

- Two lanes on a given road is considered to simplify the model
- Focusing on the Rochester, MN station only
- Trucks will travel an average of 55 miles per hour

13 mi. 4 lan

Model Building (M.I.P.)

- 15 route sections between 16 nodes
 - Each truck gets at least 1 section
- 14 trucks assigned to entire route network
- Objective function: Minimize sum of truck distance traveled
- Square added ensures multiple trucks chosen
 - Encourages "Leveling" of Decision Variables

$$\sqrt{\sum_{i=1}^{14} T_i^2}$$

Where T_i = the total distance traveled by a truck "i"

Constraints Section: Path Cost Logic

TA=3*A1+3*A2+10*A1*A3+8.5*A1*A4+8.5*A1*A4*A5+14*A1*A4*A6+14*A1*A4*A6*A7+3.3*A1*A4*A 6*A7*A8+13*A1*A4*A6*A7*A9+6*A1*A4*A6*A7*A8*A10+6*A1*A4*A6*A7*A8*A10*A11+6*A1*A4*A 6*A7*A8*A10*A11*A12+2.6*A1*A4*A6*A7*A8*A10*A11*A13+13*A1*A4*A6*A7*A8*A10*A11*A13* A9+2*A1*A4*A6*A7*A8*A10*A11*A13*A14+8*A1*A4*A6*A7*A8*A10*A11*A13*A14*A15+3*A1*A4* A6*A7*A8*A10*A11*A13*A14*A2+15*A1*A4*A6*A7*A8*A10*A11*A13*A9*A14+8*A1*A4*A6*A7*A8 *A10*A11*A13*A9*A14*A15+3*A1*A4*A6*A7*A8*A10*A11*A13*A9*A14*A2+2*A1*A4*A6*A7*A9*A 14+8*A1*A4*A6*A7*A9*A14*A15+3*A1*A4*A6*A7*A9*A14*A2+2.6*A1*A4*A6*A7*A9*A13+6*A1*A 4*A6*A7*A9*A13*A12+6*A1*A4*A6*A7*A9*A13*A11+6*A1*A4*A6*A7*A9*A13*A11*A10+3:3*A1*A 4*A6*A7*A9*A13*A11*A8+8*A2*A15+2*A2*A14+13*A2*A14*A9+2.6*A2*A14*A13+6*A2*A14*A13*A 12+6*A2*A14*A13*A11+6*A2*A14*A13*A11*A10+3.3*A2*A14*A13*A11*A10*A8+14*A2*A14*A13*A 11*A10*A8*A7+14*A2*A14*A13*A11*A10*A8*A7*A6+8.5*A2*A14*A13*A11*A10*A8*A7*A6*A5+8.5 *A2*A14*A13*A11*A10*A8*A7*A6*A4+10*A2*A14*A13*A11*A10*A8*A7*A6*A4*A3+3*A2*A14*A13 *A11*A8*A7*A6*A4*A1+15.6*A2*A14*A9*A13+6*A2*A14*A9*A13*A12+6*A2*A14*A9*A13*A11+6* A2*A14*A9*A13*A11*A10+3.3*A2*A14*A9*A13*A11*A10*A8+14*A2*A14*A9*A13*A11*A10*A8*A7 +14*A2*A14*A9*A13*A11*A10*A8*A7*A6+8.5*A2*A14*A9*A13*A11*A10*A8*A7*A6*A5+8.5*A2*A1 4*A9*A13*A11*A10*A8*A7*A6*A4+10*A2*A14*A9*A13*A11*A10*A8*A7*A6*A4*A3+3*A2*A14*A9* A13*A11*A10*A8*A7*A6*A4*A1+3.3*A2*A14*A9*A8*6*A2*A14*A9*A8*A10+6*A2*A14*A9*A8*A10 *A11+6*A2*A14*A9*A8*A10*A11*A12+2.6*A2*A14*A9*A8*A10*A11*A13+14*A2*A14*A9*A7+14*A2 *A14*A9*A7*A6+8.5*A2*A14*A9*A7*A6*A5+8.5*A2*A14*A9*A7*A6*A4+10*A2*A14*A9*A7*A6*A4* A3+3*A2*A14*A9*A7*A6*A4*A1:

Note: Constraint shown above only represents the constraints for Truck A.

Constraints Section: Path Cost Logic (Continued)

Constraints Section: Guaranty of Path Transverse

Note: Constraint shown above only represents the constraints for path 1.

Constraint Section: Binary Logic Constraint

There are 14 Trucks and 15 possible paths which means a total of 240 Bin constraints were required to be made.

Note: Constraint shown above only represents path 1, truck 1.

Constraints Section: Adjusted Path Logic

Note: Constraint shown above only represents the constraints for path 3.

Truck Assignments (Linear Program)

- Paths for each truck have been determined... But what about specific section assigned to each plow?
- 1 Truck assigned 2 route sections; Other trucks assigned to just 1
- Given truck's path from first model, assigns section to each truck
- Objective Function: Minimize sum of assigned sections per truck

$$\sum_{i=A}^{1N} T_i$$

Where T_i = the total number of paths assigned to truck "i"

Constraints Section Truck Assignments:

Note: Constraint shown above only represents the constraints for path 1.

Constraints Section Truck Assignments:

$$TA = A1 + A2 + A3 + ... + A15$$

Note: The summation shown above only represents truck A.

Modeling in Lingo

 $Min = (1/14)*(TA^2+TB^2+TC^2+TD^2+TE^2+TF^2+TG^2+TH^2+TI^2+TJ^2+TK^2+TL^2+TM^2+TN^2);$

- Used Excel to model path constraints for each truck
- Min Function in Lingo

@Bin(A1);

TA=3*A1+3*A2+10*A1*A3+8.5*A1*A4+8.5*A1*A4*A5+14*A1*A4*A6+14*A1*A4*A6*A7+3.3*A1*A4* TB=3*B1+3*B2+10*B1*B3+8.5*B1*B4+8.5*B1*B4*B5+14*B1*B4*B6+14*B1*B4*B6*B7+3.3*B1*B4*B6 TC=3*C1+3*C2+10*C1*C3+8.5*C1*C4+8.5*C1*C4*C5+14*C1*C4*C6+14*C1*C4*C6*C7+3.3*C1*C4*C6 TD=3*D1+3*D2+10*D1*D3+8.5*D1*D4+8.5*D1*D4*D5+14*D1*D4*D6+14*D1*D4*D6*D7+3.3*D1*D4* TE=3*E1+3*E2+10*E1*E3+8.5*E1*E4+8.5*E1*E4*E5+14*E1*E4*E6+14*E1*E4*E6*E7+3.3*E1*E4*E6*E7 TF=3*F1+3*F2+10*F1*F3+8.5*F1*F4+8.5*F1*F4*F5+14*F1*F4*F6+14*F1*F4*F6*F7+3.3*F1*F4*F6*F7 TG=3*G1+3*G2+10*G1*G3+8.5*G1*G4+8.5*G1*G4*G5+14*G1*G4*G6+14*G1*G4*G6*G7+3.3*G1*G4* TH=3*H1+3*H2+10*H1*H3+8.5*H1*H4+8.5*H1*H4*H5+14*H1*H4*H6+14*H1*H4*H6*H7+3.3*H1*H4* TI=3*I1+3*I2+10*I1*I3+8.5*I1*I4+8.5*I1*I4*I5+14*I1*I4*I6+14*I1*I4*I6*I7+3.3*I1*I4*I6*I7*I8+13*I1* TJ=3*J1+3*J2+10*J1*J3+8.5*J1*J4+8.5*J1*J4*J5+14*J1*J4*J6+14*J1*J4*J6*J7+3.3*J1*J4*J6*J7*J8+13 TK=3*K1+3*K2+10*K1*K3+8.5*K1*K4+8.5*K1*K4*K5+14*K1*K4*K6+14*K1*K4*K6*K7+3.3*K1*K4*K6 TL=3*L1+3*L2+10*L1*L3+8.5*L1*L4+8.5*L1*L4*L5+14*L1*L4*L6+14*L1*L4*L6*L7+3.3*L1*L4*L6*L7*L8* TM=3*M1+3*M2+10*M1*M3+8.5*M1*M4+8.5*M1*M4*M5+14*M1*M4*M6+14*M1*M4*M6*M7+3.3TN=3*N1+3*N2+10*N1*N3+8.5*N1*N4+8.5*N1*N4*N5+14*N1*N4*N6+14*N1*N4*N6*N7+3.3*N1* TO=3*O1+3*O2+10*O1*O3+8.5*O1*O4+8.5*O1*O4*O5+14*O1*O4*O6+14*O1*O4*O6*O7+3.3*O1*(TP=3*P1+3*P2+10*P1*P3+8.5*P1*P4+8.5*P1*P4*P5+14*P1*P4*P6+14*P1*P4*P6*P7+3.3*P1*P4*P6

Results

- 30.47 miles per truck on average x 2 for the return trip = 61 miles
- 61miles / 55mph = **1.1 hours**
- Decreases route time by 39%.
- "Fun" Facts: While testing and tinkering with model variations of it ran over 10 million iterations (~4 hours compute time) when put together.
 - "Winning" model finished with 3.6 million iterations

Sensitivity Analysis

2	0.000000	-0.8571454
3	0.000000	-1.142857
4	0.000000	-1.114285
5	0.000000	-1.114285
6	0.000000	-1.114285
7	0.000000	-1.114285
8	0.000000	-1.114285
9	0.000000	-1.464286
10	0.000000	-1.114285
11	0.000000	-1.464286
12	0.000000	-1.114285
13	0.000000	-1.114285
14	0.000000	-1.114285
15	0.000000	-1.114285
16	0.000000	-0.8571429
17	0.000000	-0.8571429
18	0.000000	-2.571445
19	0.000000	0.000000
20	1.000000	0.000000
21	1.000000	0.00000
22	1.000000	0.000000
23	0.000000	0.000000
24	0.000000	0.000000

25	1.000000	0.000000
26	0.00000	0.000000
27	0.000000	0.000000
28	0.000000	0.000000
29	0.000000	0.00000
30	0.000000	0.000000
31	0.000000	0.00000
32	1.000000	0.00000
33	1.000000	0.00000
34	0.000000	0.000000
35	0.000000	-5.714286
36	0.000000	2.285714
37	1.000000	0.00000
38	1.000000	0.000000
39	1.000000	0.000000
40	0.000000	0.000000
41	0.000000	0.000000
42	1.000000	0.000000
43	1.000000	0.000000
44	1.000000	0.000000
45	1.000000	0.000000
46	1.000000	0.000000
47	1.000000	0.000000
48	1.000000	0.000000

Lingo Output

295

Local optimal solution found. Objective value: Objective bound: Infeasibilities: Extended solver steps: Total solver iterations: Elapsed runtime seconds:		58.25179 58.25179 0.000000 2 245 0.30
Model Class:		MINLP
Total variables: Nonlinear variables: Integer variables:	256 254 28	
Total constraints: Nonlinear constraints:	270 18	
Total nonzeros:	773	

Nonlinear nonzeros:

Variable	Value	Reduced Cost
TA	6.000000	0.000000
TB	6.800000	0.000000
TC	6.800000	0.000000
TD	11.25000	0.000000
TE	6.800000	0.000000
TF	6.800000	0.000000
TG	6.800000	0.000000
TH	6.800000	0.000000
TI	6.800000	0.000000
TJ	8.000000	0.000000
TK	11.25000	0.000000

Questions?