Bounding Threshold Formulas using Multiparty Communication Complexity

Shiv Kampani

Columbia University

Spring 2024

Threshold Gates

Definition (Threshold)

$$\mathsf{THR}^b_a:\{0,1\}^b\to\{0,1\}\qquad\mathsf{THR}^b_a(x)=\begin{cases}1&x\;\mathsf{contains}\geq a\;\mathsf{ones}\\0&\mathsf{otherwise}\end{cases}$$

We denote THR_2^3 as MAJ_3 gates. In general, we will focus on THR_2^{k+1} gates for values of $k \geq 2$. Threshold formulas consist of variables and THR_2^{k+1} gates **only**.

Threshold Formulas

Motivation

How do we design secure multiparty computation protocols?

Let \mathcal{N} be a set of n players who wish to compute a function f on their private inputs securely with respect to an adversary.

Definition (Adversaries and Structures)

An adversary $A \subseteq \mathcal{N}$ "corrupts" a subset A of players. A structure \mathcal{S} is a set of adversaries.

This is trivial in the presence of a **trusted** party τ (ideal protocol).

Definition (Security)

Protocol P is A-secure if the adversary "can do no better" in the absence of a trusted party τ . (S-secure if A-secure $\forall A \in S$).

Player Emulation

[Hirt-Maurer'00] presented 3-party secure protocols for an honest majority. To construct n-party protocols, we can recursively apply 3-party secure protocols to *emulate* the trusted party τ in the ideal protocol:

Player Emulation

Q. What structure S is this protocol secure against? Is it secure against the adversary $A = \{p_1, p_3, p_6\}$?

Player Emulation

Q. What structure S is this protocol secure against?

A. The function *f* computed by the threshold formula below!

Low-depth threshold formulas \iff efficient SMPC protocols.

Q_k Functions

Definition (Q_k Functions)

$$f: \{0,1\}^n \to \{0,1\}$$
 is a Q_k function if $\forall x^1, x^2, \dots, x^k \in f^{-1}(0)$
 $\exists i \in [n]: x_i^1 = x_i^2 = \dots = x_i^k = 0.$

Example. THR $_{n+1}^{kn+1}$ is a Q_k function on kn+1 bits.

Theorem (folklore)

 $\forall f: \{0,1\}^n \to \{0,1\}$ such that f is Q_k , \exists formula F consisting of only THR_2^{k+1} gates and variables such that $F \leq f$. Equivalently, $\forall x \in \{0,1\}^n \ f(x) = 0 \implies F(x) = 0$.

Of specific interest is the problem of computing MAJ_{2n+1} using MAJ_3 -formulas (security against **honest-majority** structures).

- \bigcirc $O(\log n)$ -depth $\underline{\text{monotone}}$ formula for MAJ_{2n+1} [Ajtai-Komlos-Sz'12]
- ② Poly-time computable O(n)-depth MAJ₃-formula for MAJ_{2n+1} [Hirt-Maurer'00].
- **③** Poly-time computable $O(\log n)$ -depth MAJ₃-formula for computing MAJ_{2n+1} $\forall x \in \{0,1\}^{kn+1} : |\text{wt}(x) \frac{1}{2}| \ge 2^{-O(\sqrt{\log n})}$ [Cohen'13].

Of specific interest is the problem of computing MAJ_{2n+1} using MAJ_3 -formulas (security against **honest-majority** structures).

- **1** $O(\log n)$ -depth monotone formula for MAJ_{2n+1} [Ajtai-Komlos-Sz'12]
- ② Poly-time computable O(n)-depth MAJ₃-formula for MAJ_{2n+1} [Hirt-Maurer'00].
- **②** Poly-time computable $O(\log n)$ -depth MAJ₃-formula for MAJ_{2n+1} $\forall x \in \{0,1\}^{kn+1} : |\text{wt}(x) \frac{1}{2}| \ge 2^{-O(\sqrt{\log n})}$ [Cohen'13].
- Poly-time computable $O(\log n)$ -depth MAJ₃-formula for MAJ_{2n+1} [Kozachinskiy-Podolskii'20].

Generalization: computing THR_{n+1}^{kn+1} using THR_2^{k+1} -formulas.

- Exponential-time computable O(n)-depth THR_2^{k+1} -formula for $\mathsf{THR}_{n+1}^{kn+1}$ [Cohen'13].
- ② Poly-time computable $O(\log n)$ -depth THR_2^{k+1} -formula for $\mathsf{THR}_{n+1}^{kn+1}$ $\forall x \in \{0,1\}^{kn+1} : |\mathrm{wt}(x) \frac{1}{k}| \geq \Omega(\frac{1}{\sqrt{\log n}})$ [Cohen'13].
- Poly-time computable $O(\log^2 n)$ -depth THR_2^{k+1} -formula for $\mathsf{THR}_{n+1}^{kn+1}$ [Kozachinskiy-Podolskii'20].

Generalization: computing THR_{n+1}^{kn+1} using THR_2^{k+1} -formulas.

- Exponential-time computable O(n)-depth THR_2^{k+1} -formula for THR_{n+1}^{kn+1} [Cohen'13].
- ② Poly-time computable $O(\log n)$ -depth THR_2^{k+1} -formula for $\mathsf{THR}_{n+1}^{kn+1}$ $\forall x \in \{0,1\}^{kn+1}: |\mathrm{wt}(x)-\frac{1}{k}| \geq \Omega(\frac{1}{\sqrt{\log n}})$ [Cohen'13].
- Poly-time computable $O(\log^2 n)$ -depth THR_2^{k+1} -formula for $\mathsf{THR}_{n+1}^{kn+1}$ [Kozachinskiy-Podolskii'20].

... via communication complexity!

(Monotone) Karchmer-Wigderson Games

First, consider monotone boolean functions.

Definition (Monotone Functions)

$$f: \{0,1\}^n \to \{0,1\}$$
 is **monotone** if $\forall x, y \in \{0,1\}^n$ we have: $\forall i \in [n] \ x_i \le y_i \implies f(x) \le f(y)$

Idea. We can relate the formula depth-complexity of monotone boolean functions with the communication cost of strategies in a game (called the mKW_f game).

(Monotone) Karchmer-Wigderson Games

First, consider monotone boolean functions.

Definition (mKW_f Game)

For some monotone function f, we define a two-player communication game as follows: Alice gets $x \in f^{-1}(0)$, Bob gets $y \in f^{-1}(1)$. The goal is to output any $i: 0 = x_i \neq y_i = 1$ (this is always possible).

Theorem

 $CC(mKW_f) = d(f)$ (min # bits exchanged = monotone depth of f)

Monotone Formula ⇒ Protocol

For every depth-d formula F_0 for monotone f, we can specify a d-round communication strategy for mKW $_f$ game. After d-rounds:

Monotone Formula ⇒ Protocol

Invariant holds on the right, so Alice sends a 1.

After *d*-rounds, $F_d = x_i$ (variable). Alice, Bob output *i*.

Q₂ Communication Games

Remark. Q_2 functions are equivalent to monotone and *self-dual*.

Definition (Self-dual Functions)

$$f: \{0,1\}^n \to \{0,1\}$$
 is **self-dual** if $\forall x \in \{0,1\}^n$ we have $f(\neg x) = \neg f(x)$.

The following game is equivalent to the mKW_f game for Q_2 functions.

Definition (Q_2 Game)

For some Q_2 function f, we define a two-player communication game as follows: Alice, Bob get $x, y \in f^{-1}(0)$. The goal is to output any $i: x_i = y_i = 0$ (this is always possible).

Multiparty (NIH) Q_k Communication Game

We can generalize Q_2 games to the multi-party setting; private inputs and 'shared blackboard' communication (Number-In-Hand model).

Definition (Q_k Communication Game)

For some Q_k function f, we define a k-player communication game (in the NIH model) as follows: $(p_1, p_2, \ldots, p_k) \leftarrow (z^1, z^2, \ldots, z^k) \in (f^{-1}(0))^k$. The goal is to output any $i: z_1^1 = z_2^2 = \cdots = z_i^k = 0$.

Such an index i is guaranteed to exist by definition of a Q_k function.

Multiparty (NIH) Q_k Communication Game

[Kozachinskiy-Podolskii'20] proved this generalized Q_k game has the desirable KW-like property:

Theorem

For any Q_k function f, the communication complexity of its Q_k communication game is equal (upto a constant factor) to the minimum depth of a THR_2^{k+1} -formula that lower bounds f.

Remark. We treat k as a constant; the number of players is always small.

Proof Structure [KP'20]

lower bound direction (Mark)

upper bound direction

Hypothesis Games

Definition (Q_k Hypothesis Game)

For some Q_k function f, we define the Q_k hypothesis game as follows. There are two players: Nature and Learner. Nature chooses some $z \in f^{-1}(0)$ that is kept private from Learner. In each round, Learner makes the following k+1 hypotheses:

$$z \in \mathcal{H}_0, z \in \mathcal{H}_1, \ldots, z \in \mathcal{H}_k$$

If < k of these hypotheses are satisfied, Learner loses the game. Else, Nature communicates the index j of some true hypothesis \mathcal{H}_j to Learner and the game continues. Learner's goal is to output an index $i: z_i = 0$.

Hypothesis Games (e.g. k = 4)

Let \mathcal{Z}_h be the set of 'alive' strings after h-rounds. In round (h+1), Learner guesses $\mathcal{H}_0, \ldots, \mathcal{H}_3$. Nature may reply with 0, 1, or 3 but **not** 2.

Any *d*-round hypothesis strategy for a Q_k function f can be converted to a depth-d THR₂^{k+1}-formula that lower-bounds f (the converse also holds).

Proof.

Assume that we have a d-round hypothesis strategy for f. We can interpret the strategy as a (k+1)-ary tree by considering each round as a node and the 'outputs' corresponding to the bits sent by Nature. We can transform this tree to a formula by placing a THR_2^{k+1} -gate at each node and the variable x_i at each terminal where Learner outputs index i.

We claim that this formula lower bounds f. This is because, for any path p from root s to a node v, $\forall z$ 'alive' after p, $F_v(z) = 0$.

MAJ_3 formula for MAJ_{2n+1} [KP'20]

Poly-time computable $O(\log n)$ -depth MAJ₃-formula for MAJ_{2n+1}.

Proof.

- There exists an $O(\log n)$ -depth monotone formula for computing MAJ_{2n+1} (AKS sorting network).
- ② Can construct an $O(\log n)$ -size communication protocol for mKW game for MAJ_{2n+1}.
- **3** Reduction from Q_2 game for MAJ_{2n+1} to mKW game.
- **4** Can construct $O(\log n)$ -depth MAJ₃ formula for computing MAJ_{2n+1} from the Q_2 protocol.

THR₂^{k+1} formula for THR_{n+1}^{kn+1} [KP'20]

Poly-time computable $O(\log n)$ -depth MAJ₃-formula for MAJ_{2n+1}.

Proof.

Suffices to show an efficient $O(\log^2 n)$ -bit communication protocol for Q_k game for THR_{n+1}^{kn+1} . The idea is that we can perform a binary search over indices. Let all players maintain indices ℓ , $r \in [kn+1]$.

Initially, $\ell \leftarrow 1, r \leftarrow kn + 1$. In each round, players share count of 1's on both halves $(O(\log n) \text{ bits})$ and choose the half that satisfies the invariant:

$$\sum_{i=1}^k |\mathsf{supp}_{\ell:r}(z^i)| < |r - \ell + 1|$$

After $O(\log n)$ rounds, ℓ, r narrow to an index i, which players output.

Open Problems (Upper Bounds)

Open Problem #1

 $O(\log n)$ -depth (with **small constant**), deterministic poly-time computable MAJ₃-formula for computing MAJ_{2n+1}.

Open Problem #2

 $o(\log^2 n)$ -depth deterministic poly-time computable THR₂^{k+1}-formula for computing THR_{n+1}^{kn+1}.