VERY BRIEF PROBABILITY THEORY

Note 8.1: Independence

Hanqing Li

Department of Mathematics and Statistics, University of Calgary

Definition 1. Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Definition 2. Two random variables X and Y are independent if for all $C, D \in \mathcal{R}$,

$$P(X \in C, Y \in D) = P(X \in C)P(Y \in D),$$

i.e., the events $A = \{X \in C\}$ and $B = \{Y \in D\}$ are independent.

Definition 3. Two σ -fields \mathcal{F} and \mathcal{G} are independent if for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$ the events A and B are independent.

Theorem 1. (i) If X and Y are independent, then $\sigma(X)$ and $\sigma(Y)$ are independent.

(ii) If \mathcal{F} and \mathcal{G} are independent, $X \in \mathcal{F}$, $Y \in \mathcal{G}$, then X and Y are independent.

Proof. (i) If $A \in \sigma(X)$, then $A = \{X \in C\}$ for some $C \in \mathcal{R}$. Likewise if $B \in \sigma(Y)$, then $B = \{Y \in D\}$ for some $D \in \mathcal{R}$. Using the assumption that X and Y are independent, we have

$$P(A \cap B) = P(X \in C, Y \in D) = P(X \in C)P(Y \in D) = P(A)P(B).$$

(ii) If $X \in \mathcal{F}$, $Y \in \mathcal{G}$ and $C, D \in \mathcal{R}$. It follows from the definition of measurable function that $\{X \in C\} \in \mathcal{F}$, $\{Y \in D\} \in \mathcal{G}$. Using the assumption that \mathcal{F} and \mathcal{G} are independent, we have

$$P(X \in C, Y \in D) = P(X \in C)P(Y \in D).$$

Theorem 2. (i) If A and B are independent then so are A^c and B, A and B^c , A^c and B^c .

(ii) Events A and B are independent iff their indicator functions I_A and I_B are independent.

Proof. (i) If we have $P(A \cap B) = P(A)P(B)$, then

$$P(B) - P(A \cap B) = P(B) - P(A)P(B)$$

$$P(\Omega \cap B) - P(A \cap B) = P(B)(1 - P(A))$$

$$P(A^c \cap B) = P(A^c)P(B).$$

The conclusion of A and B^c are obtained likewise. The case of A^c and B^c is a direct corollary.

1

(ii) If $C, D \in \mathcal{R}$, then $\{I_A \in C\} \in \{\varnothing, A, A^c, \Omega\}$ and $\{I_B \in D\} \in \{\varnothing, B, B^c, \Omega\}$. The situations involving \varnothing and Ω are trivial to examine. So there are only 4 situations to check, which are all covered in (i).

Definition 4. Events A_1, \dots, A_n are independent if whenever $I \subset \{1, \dots, n\}$,

$$P(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i).$$

Definition 5. Random variables X_1, \dots, X_n are independent if whenever $B_i \in \mathbb{R}$ for $i = 1, \dots, n$,

$$P(\cap_{i=1}^{n} \{X_i \in B_i\}) = \prod_{i=1}^{n} P(X_i \in B_i).$$

Definition 6. σ -fields $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent if whenever $A_i \in \mathcal{F}_i$ for $i = 1, \dots, n$,

$$P(\cap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i).$$

Theorem 3. Let $A_1, A_2 \cdots, A_n$ be independent, then

- (i) $A_1^c, A_2 \cdots, A_n$ are independent.
- (ii) I_{A_1}, \dots, I_{A_n} are independent.

Proof. (i) Obviously, we have $P(\cap_{i=2}^n A_i) = \prod_{i=2}^n P(A_i)$, then

$$P(\bigcap_{i=2}^{n} A_i) - P(\bigcap_{i=1}^{n} A_i) = \prod_{i=2}^{n} P(A_i) - \prod_{i=1}^{n} P(A_i)$$

$$P(\Omega \cap \bigcap_{i=2}^{n} A_i) - P(A_1 \cap \bigcap_{i=2}^{n} A_i) = (1 - P(A_1)) \prod_{i=2}^{n} P(A_i)$$

$$P(A_1^c \cap \bigcap_{i=2}^{n} A_i) = P(A_1^c) \prod_{i=2}^{n} P(A_i).$$

(ii) Assume $B_i \in \{A_i, A_i^c\}$ for $i \in \{1, \dots, n\}$. Then arbitrary $\{B_1, \dots, B_n\}$ are independent. Thus, for any $D_i \in \mathcal{R}$, $\{I_{A_i} \in D_i\} \in \{\varnothing, A_i, A_i^c, \Omega\}$. Denote $\{I_{A_i} \in D_i\}$ by C_i , then $P(\bigcap_{i=1}^n C_i) = \prod_{i=1}^n P(C_i)$ hold trivially if some $C_i = \varnothing$. The case that some $C_i = \Omega$ can also be proved by induction easily.

Definition 7. Events A_1, \dots, A_n are pairwise independent if for $i \neq j \in \{1, \dots, n\}$,

$$P(A_i \cap A_j) = P(A_i)P(A_j).$$

Example 1. Let X_1, X_2, X_3 be independent random variables with $P(X_i = 0) = P(X_i = 1) = 1/2$ for i = 1, 2, 3. Let $A_1 = \{X_1 = X_2\}$, $A_2 = \{X_2 = X_3\}$, $A_3 = \{X_3 = X_1\}$. These events are pairwise independent because for $i \neq j$,

$$P(A_i \cap A_i) = P(X_1 = X_2 = X_3) = 1/4 = P(A_i)P(A_i).$$

However, they are not independent because

$$P(A_1 \cap A_2 \cap A_3) = P(X_1 = X_2 = X_3) = 1/4 \neq 1/8 = P(A_1)P(A_2)P(A_3).$$