

LE PROTOCOLE STP

STP (Spanning Tree Protocol) est un protocole réseau qui permet de créer un arbre couvrant (en anglais "spanning tree") dans un réseau local qui a plusieurs chemins de transmission de données.

Il s'agit d'un protocole de couche 2 du modèle OSI (Open Systems Interconnection), c'est-àdire qu'il fonctionne à la couche de liaison de données, qui gère comment les données sont transmises sur un réseau local en utilisant des protocoles tels que Ethernet.

Le but du STP est d'empêcher la formation de boucles réseau en sélectionnant un seul chemin possible...

Cela permet d'éviter les collisions de données et les problèmes de performance qui peuvent survenir lorsque plusieurs chemins sont utilisés simultanément pour transmettre des données.

STP est utilisé principalement dans les réseaux locaux étendus qui utilisent des commutateurs pour acheminer les données et peut être configuré pour s'adapter à différentes topologies de réseau et exigences de transmission de données.

5.1. Problèmes de la redondance au niveau de la couche physique :

5.1.1. Notion de la redondance au niveau de la couche physique

UNE TOPOLOGIE NON REDONDANTE:

Il existe un seul chemin entre les différents périphériques

→ Topologie non redondante.

TOPOLOGIE REDONDANTE:

Il existe plusieurs chemins entre les différents périphériques

Topologie redondante.

5.1.2. Problèmes de la redondance au niveau de la couche physique :

- Instabilité de la table MAC
- Tempête de diffusion (Tempête de broadcast)
- Trames en double

5.2. Vue d'ensemble du protocole STP:

Le protocole STP supprime les boucles de la couche 2 en ne gardant qu'un seul chemin physique entre les différents périphériques.

Dans l'illustration, STP a bloqué des ports du commutateur S3 pour ne garder que le meilleur chemin qui est le chemin 2.

5.2.2. ID d'un commutateur BID

Le BID (Bridge ID) est une valeur unique utilisée par le protocole STP (Spanning Tree Protocol) pour identifier chaque commutateur dans un réseau local, afin de déterminer le chemin unique qui sera utilisé pour éviter la formation de boucles réseau.

Le BID est composé de deux parties :

- un numéro de priorité
- et l'adresse MAC (Media Access Control) du commutateur.

Le numéro de priorité détermine la priorité du commutateur dans le réseau STP, tandis que l'adresse MAC est une adresse unique attribuée à chaque interface réseau du commutateur.

Lorsque **STP** sélectionne un chemin à travers le réseau, **il compare les BID de chaque commutateur** pour déterminer lequel doit être utilisé.

Le commutateur avec le BID le plus faible (c'est-à-dire le numéro de priorité le plus élevé ou l'adresse MAC la plus faible en cas d'égalité de numéro de priorité) sera choisi comme "racine" du réseau STP et tous les autres commutateurs du réseau seront configurés pour acheminer les données à travers lui.

Priorté du pont Adresse MAC 32769 O002.16E4.DD02 Priorté du pont ID du système ètendu Adresse MAC 32768 1 0002.16E4.DD02

Remarque:

BID (8 Octets)

Priorité du pont	ID du système ètendu	Adresse MAC	Les valeurs de la priorité s'incrémentent par des
XXXX	1	0002.16E4.DD02	multiples de 4096
0000	000000000001	0002.16E4.DD02	
0	1	0002.16E4.DD02	0
0001	00000000001	0002.16E4.DD02	
4096	1	0002.16E4.DD02	212 = 4096
0010	00000000001	0002.16E4.DD02	
8192	1	0002.16E4.DD02	2 ¹³ = 8192
			[
1111	00000000001	0002.16E4.DD02	
61440	1	0002.16E4.DD02	$2^{12} + 2^{13} + 2^{14} + 2^{15} = 61440$

- 🔔 La valeur minimale de la priorité du pont : 0
- \Rightarrow La valeur maximale de la priorité du pont : 61440
- Le pas d'incrémentation de la priorité du pont : 4096
- → les valeurs possibles : [0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440]

En utilisant une valeur d'incrémentation de 4096, cela permet d'ajouter un niveau supplémentaire de granularité pour sélectionner le commutateur racine.

Plus précisément, cela permet aux administrateurs réseau de spécifier une priorité plus précise pour chaque commutateur dans le réseau, en utilisant des nombres compris entre 0 et 61440.

5.2.3. Le coût STP:

LES COÛTS STP DES LIAISONS:

Coût
2
4
19
100

Dans le protocole STP (Spanning Tree Protocol), le coût est utilisé pour déterminer le meilleur chemin entre différents commutateurs d'un réseau local, en prenant en compte la vitesse de la liaison et la distance physique entre les commutateurs.

Le coût d'une liaison STP est généralement défini en fonction de la vitesse de la liaison.

Par exemple, pour des liens de 10 Mbps, <u>le coût est de 100</u>, pour des liens de 100 Mbps, <u>le coût est de 19</u> et pour des liens de 1000 Mbps, <u>le coût est de 4</u>.

Ainsi, une liaison plus rapide aura un coût plus faible qu'une liaison plus lente.

5.2.4. Exemple d'utilisation du coût STP:

Chemins de S1 vers S2:

Chemin 1: S1 \rightarrow S2

Chemin 2: S1 → S3 → S2

Le coût STP = 4

Le coût STP = 100 + 19 = 119

→ le meilleur chemin est le chemin 1 qui a le coût le plus faible

5.3. Fonctionnement du protocole STP

5.3.1. Le pont racine :

Le protocole STP IEEE 802.1D utilise l'algorithme Spanning Tree (STA, Spanning Tree Algorithm) pour déterminer quels sont les ports de commutation d'un réseau à bloquer (état de blocage) pour empêcher la formation de boucles.

L'algorithme STA désigne un commutateur unique comme pont racine et il l'utilise comme point de référence pour le calcul de tous les chemins.

Le pont racine sert de point de référence pour tous les calculs de l'algorithme STA (Spanning Tree Algorithm) afin de déterminer les chemins d'accès redondants devant être bloqués.

Critère 1 : La priorité la plus faible

La priorité la plus faible est celle de S3 → S3 est le pont racine

Critère 2 : L'adresse MAC la plus faible

Si les priorités sont identiques, le commutateur qui a l'adresse MAC la plus faible est le pont racine

Comme les priorités sont identiques, l'adresse MAC la plus faible est celle de S1.

→ S1 est le pont racine

5.3.2. Les ports racines :

DÉFINITION ET GÉNÉRALITÉS:

Un port racine est le port le plus proche du pont racine.

Pour chacun des commutateurs non-racines, il existe un seul port racine

CRITÈRES DU CHOIX DU PORT RACINE:

Pour choisir un port comme port racine, on se base sur les critères suivants :

- Le coût le plus faible
- Le BID le plus faible des commutateurs voisins
- La priorité la plus faible des ports voisins
- L'ID le plus faible des ports voisins

Le coût le plus faible :

Le commutateur S1 est le pont racine.

- → On cherche un port racine au niveau des deux commutateurs S2 et S3
- → au niveau de S2, il existe deux candidats : G0/1 et F0/1
- → au niveau de S3, il existe deux candidats : F0/1 et Eth0/1

Au niveau de S2 :

Le coût à partir de G0/1 = 4

Le coût à partir de FO/1 = 19 + 100 = 119

→ G0/I est le port racine

Au niveau de S3:

		BID
S1	32769	0002.16E4.DD02
S2	32769	0090.0C6E.B8B9
S3	32769	00D0.BC2E.526B

Le coût à partir de FO/1 = 19 + 4 = 23

Le coût à partir de Eth0/1 = 100

→ F0/1 est le port racine

Le BID le plus faible des voisins :

Les BID des commutateurs :

		BID
S1	24577	0002.16E4.DD02
S2	32769	0090.0C6E.B8B9
S3	32769	00D0.BC2E.526B
S4	24577	0002.16FE.526B

À partir des BID, S1 est le pont racine

FICHES

ADMINISTRATEUR RÉSEAU

Choix des ports racines:

Au niveau de S2 :

Le coût à partir de FO/1 = 19

Le coût à partir de F0/2 = 19 + 19 + 19 = 57

→ F0/1 est le port racine

Au niveau de S4 :

Le coût à partir de FO/1 = 19

Le coût à partir de F0/2 = 19 + 19 + 19 = 57

→ F0/1 est le port racine

Au niveau de S3:

Le coût à partir de FO/1 = 19 + 19 = 38

Le coût à partir de FO/2 = 19 + 19 = 38

→ alors on utilise le 2e critère : LE BID des voisins le plus faibles

Le voisin de FO/1 est S4 et le voisin de FO/2 est S2

		BID
S1	24577	0002.16E4.DD02
S2	32769	0090.0C6E.B8B9
S3	32769	00D0.BC2E.526B
S4	24577	0002.16FE.526B

Le BID le plus faible est celui de S4

FO/1 est le port racine

La priorité et l'ID les plus faibles des ports voisins :

Au niveau de S2 :

Le coût :

- Le coût à partir du port FO/3 vers le pont racine = 19
- Le coût à partir du port FO/4 vers le pont racine = 19

Le BID des voisins :

Le voisin de F0/3 et F0/4 est le même commutateur S1

La priorité des ports voisins :

- Le port voisin de F0/3 est F0/2
- Le port voisin de F0/4 est F0/1

Par défaut, les priorités sont identiques et égales à 128.

L'ID des ports voisins :

- Le port voisin de F0/3 est F0/2 : ID de F0/2 = 2
- Le port voisin de F0/4 est F0/1 : ID de F0/1 = 1

Pont racine

		BID
S1	24577	0002.16E4.DD02
S2	32769	0090.0C6E.B8B9

L'ID le plus faible est celui de FO/1

F0/4 est le port racine

5.3.3. Les ports désignés et les ports alternatifs :

GÉNÉRALITÉS:

Règle 1: Au niveau de chaque segment, on trouve un seul port désigné

Règle 2 : Au niveau d'un segment formé des ports de commutateurs, si un port est un port racine, l'autre port du segment est un port désigné

Règle 3 : Tous les ports d'un pont racine sont des ports désignés

CRITÈRES DU CHOIX D'UN PORT DÉSIGNÉ:

Il existe deux critères basés sur le commutateur auquel le port est connecté :

Segment 3: S3 (F0/1) - S4 (F0/2)

On applique la règle 2 > F0/2 de S4 est un port désigné

Segment 4: S2 (F0/2) - S3 (F0/2)

Le coût à partir de S2 vers le pont racine S1 = 19

Le coût à partir de S3 vers le pont racine S1 = 19 + 19 = 38

→ le port F0/2 de S2 est le port désigné.

Les autres ports sont des ports alternatifs.

→ F0/2 de S3 est un port alternatif (non désigné)

Critère 2 : Le BID du commutateur le plus faible :

		BID
S1	32769	0002.16E4.DD02
S2	32769	0090.0C6E.B8B9
S3	32769	00D0.BC2E.526B

Segment 1: S1 (F0/2) - S2 (F0/1)

On applique l'une des trois règles > F0/2 de S1 est un port désigné

Segment 2: S1 (F0/1) - S3 (F0/1)

On applique l'une des trois règles - F0/1 de S1 est un port désigné

Segment 3: S2 (F0/2) - S3 (F0/2)

Le coût à partir de S2 vers le pont racine S1 = 19

Le coût à partir de S3 vers le pont racine S1 = 19

→ on compare les BID des deux commutateurs S2 et S3

Le commutateur S2 est le commutateur qui possède le BID le plus faible

		BID
S1	32769	0002.16E4.DD02
S 2	32769	0090.0C6E.B8B9
S3	32769	00D0.BC2E.526B

- → F0/2 de S2 est un port désigné
- → F0/2 de S3 est un port alternatif

5.4. Types de protocole STP

NOM	STP	PVST	PVST+	RAPID- PVST+	RSTP	MSTP
Standard	IEEE 802.1D	CISCO	CISCO	CISCO	IEEE 802.1W	IEEE 802.1W
Algorithme	SPA	SPA	SPA	Rapid ST	Rapid ST	Rapid ST
Instance	1	Par VLAN	Par VLAN	Par VLAN	1	Par VLAN
Équilibrage de charge	Non	Oui	Oui	Oui	Non	Oui
Trunking	-	ISL	ISL/802.1Q	ISL/802.1Q	-	ISL/802.1Q
Convergence	Lente	Lente	Lente	Rapide	Rapide	Rapide
Consommation de ressources	Faible	Faible	Haute	Haute	Moyenne	Haute

5.4.1. Protocoles STP et RSTP:

Les protocoles STP et RSTP utilisent une seule instance de l'algorithme STA.

- Un seul pont racine pour tous les VLAN
- → Les 3 VLAN utilisent le même chemin qui passe par S2 puis S1 avant d'arriver à S3

On dit que les protocoles STP et RSTP ne supporte pas l'équilibrage de charge

La principale différence entre les protocoles STP (Spanning Tree Protocol) et RSTP (Rapid Spanning Tree Protocol) est que RSTP est plus rapide et plus efficace pour éliminer les boucles dans un réseau local que STP, grâce à des mécanismes de convergence plus rapides.

5.4.2. Protocoles PVST, PVST+ et RAPID PVST+:

ÉQUILIBRAGE DE CHARGE

Les protocoles PVST, PVST+ et Rapid-PVST+ utilisent une seule instance de l'algorithme STA par VLAN.

3 instances sont lancées

→ Il est possible de configurer un pont racine pour chaque VLAN :

Pont racine du VLAN 10 : S1
 Pont racine du VLAN 20 : S2
 Pont racine du VLAN 30 : S3

- → Les liaisons bloquées pour chaque VLAN seront différentes :
 - Pour le VLAN 10 : La liaison entre S2 et S3
 - ⇒ Pour le VLAN 20 : La liaison entre S1 et S3
 - ⇒ Pour le VLAN 30 : La liaison entre S1 et S2
- → Chaque VLAN utilise son propre chemin :
 - Le trafic du VLAN 10 passes par S2, S1 puis S3
 - Le trafic du VLAN 20 passes par S2 puis S3
 - Le trafic du VLAN 30 passes par S2 puis S3

On dit que les protocoles PVST, PVST+ et Rapid-PVST+ supportent l'équilibrage de charge

PVST+: ÉTATS DES PORTS

		ETATS DES PORTS					
	Blocage	Ecoute	Apprentissage	Transfert	Désactivé		
Recevoir et traiter des trames BPDU	Oui	Oui	Oui	Oui	Non		
Envoyer ses propres trames BPDU	Non	Oui	Oui	Oui	Non		
Apprendre des adresses MAC	Non	Non	Oui	Oui	Non		
Réacheminer des trames de donnees	Non	Non	Non	Oui	Non		
Durée	20 Secondes	15 Secondes	15 Secondes	-	-		

PORTS EDGE ET PORTS NON-EDGE

Dans le protocole STP (Spanning Tree Protocol), un port EDGE est un port qui relie un commutateur à un seul dispositif réseau, comme un ordinateur ou une imprimante.

Ces ports sont considérés comme des ports "feuille" de l'arbre couvrant (spanning tree) formé par STP, car ils ne sont connectés à aucun autre commutateur dans le réseau.

Les ports EDGE ont un rôle particulier dans le fonctionnement de STP, car ils sont utilisés pour éviter les boucles dans le réseau.

Les ports EDGE sont initialement configurés en mode "Blocking", ce qui signifie qu'ils ne transmettent pas les paquets BPDU (Bridge Protocol Data Units) qui permettent de configurer le STP.

Ainsi, ils permettent d'éviter la transmission de données en boucle dans le réseau en bloquant toutes les communications non souhaitées provenant des ports EDGE.

Il est important de noter qu'une fois que le STP a établi sa topologie "l'arbre couvrant", certains ports EDGE peuvent être mis en mode "forwarding" pour transmettre les données, tandis que d'autres resteront en mode "blocking" pour maintenir la sécurité du réseau.

5.5. PortFast et BPDUGuard

5.5.1. PortFast

5.5.2. BPDUGuard

Le protocole STP utilise les « Trames BPDU » pour élire un pont racine, choisir les ports racines, les ports désignés et les ports non désignés.

Par défaut, ces trames sont envoyées et reçues via tous les ports des commutateurs.

Avec la protection BPDU, on restreint l'envoi et la réception des trames BPDU seulement aux ports concernés (les ports qui font partie d'une boucle STP).

→ Les trames BPDU ne sont pas échangées entre les périphériques finaux et les commutateurs

5.6. Commandes STP

5.6.1. Les commandes de configuration :

Configuration du mode STP: Rapid-PVST+

S1(config)# Spanning-tree mode rapid-pvst

Configuration du mode STP: PVST+

S1(config)# Spanning-tree mode pvst

Configuration du commutateur S1 comme pont racine primaire pour le VLAN 10

S1(config)# Spanning-tree vlan 10 root primary

Configuration du commutateur S1 comme pont racine secondaire pour le VLAN 20

S1(config)# Spanning-tree vlan 20 root secondary

Modification de la priorité du commutateur S1 pour le VLAN 10 à 4096 :

S1(config)# Spanning-tree vlan 10 priority 4096

Configuration de tous les ports d'accès comme ports rapide « PortFast » :

```
S1(config)# Spanning-tree portfast default
```

Configuration du port FO/I comme port rapide « PortFast »:

```
S1(config)# Interface F0/1
S1(config-if)# Spanning-tree portfast
```

Activation de la protection BPDU au niveau de tous les ports d'accès « ACCESS »:

```
S1(config)# Spanning-tree bpduguard default
```

Activation de la protection BPDU au niveau de tous les ports rapide « PORTFAST » :

```
S1(config)# Spanning-tree portfast bpduguard default
```

Activation de la protection BPDU au niveau du port F0/1 de S1 :

```
S1(config)# Interface F0/1
S1(config-if)# Spanning-tree bpduguard enable
```

Modification de la priorité du port FO/I de SI pour le VLAN 10 à 64 :

```
S1(config)# Interface F0/1
S1(config-if)# Spanning-tree vlan 10 port-priority 64
```

Configuration du type du lien comme point à point pour le port F0/1 de S1 :

```
S1(config)# Interface F0/1
S1(config-if)# Spanning-tree link-type point-to-point
```

Configuration du type du lien comme lien partagé pour le port FO/I de SI :

```
S1(config)# Interface F0/1
S1(config-if)# Spanning-tree link-type shared
```

Modification du coût STP du port FO/I sur le commutateur SI, pour le VLAN 10 :

```
S1(config)# Interface F0/1
S1(config-if)#spanning-tree vlan 10 cost 15
```

Configuration de la protection ROOT GUARD sur le port FO/I:

```
S1(config)# Interface F0/1
S1(config-if)#spanning-tree guard root
```


5.6.2. Les commandes de vérifications STP:

Affichage de la configuration STP de tous les VLANs :

VLAN0001 Spanning tr	ee enabled	protoco	l rstp			
Root ID	Priority Address			ADA6		
	Port		Etherne		: Forward Delay	15 sec
Bridge ID	Priority Address				sys-id-ext 1)	
	Hello Tin Aging Ti		c Max	Age 20 sed	Forward Delay	15 sec
Interface	Role S	Sts	Cost	Prio.Nbr	Туре	
		-WD	10	128.3	P2p	
Fa0/3	Root I	-VVD	13	120.5	FZP	

VLAN0001	Configuration STP pour le VLAN 1				
RSTP	Mode Rapid-PVST+				
Root ID	Informations du pont racine				
	Priorité	32769			
	Adresse MAC	0009.7C73.ADA6			
	Coût	19			
	Port racine	FO/3			
	Intervalle Hello	2 secondes			
Bridge ID	Informations sur le commutateur S1				
	Priorité	32769			
	Adresse MAC	00E0.F910.C32E			
	Intervalle Hello	2 secondes			

Interface F0/3	Rôle	ROOT : Port racine
	État du port	FWD : FORWARDING (état d'acheminement)
	Coût	19
	Priorité du port	128 (Valeur par défaut)
	ID du port	3
Interface F0/2	Rôle	ALTN : Port alternatif (non désigné)
	État du port	BLK : BLOCKING (état de blocage)
	Coût	19
	Priorité du port	128 (Valeur par défaut)
	ID du port	2

Affichage de la configuration STP pour le VLAN 10 :

S3#show sp VLAN0010	panning.	-tree via	in 10		
Spanning t	ree enabl	ed proto	col ieee		
Root ID	Priorit Addre		32778 0009.	3 7C73.ADA6	
		ridge is Time 2			Forward Delay 15 se
Bridge ID	Priorit Addre			3 (priority 3: 7C73.ADA6	2768 sys-id-ext 10)
		Time 2 Time 2		Age 20 sec	Forward Delay 15 se
Interface	Role	Sts	Cost	Prio.Nbr	Туре
Fa0/1	Desg	FWD	19	128.1	P2p
Fa0/4	Desg	FWD	19	128.4	P2p
Fa0/5	Desg	FWD	19	128.5	P2p

VLAN0010	Configuration STP pour le VLAN 10		
IEEE	Mode PVST		
Root ID	Informations du pont racine		
	Priorité	32769	
	Adresse MAC	0009.7C73.ADA6	
	This bridge is the root	Ce pont est le pont racine	
	Interval Hello	2 secondes	
Bridge ID	Informations sur le commutateur S3		
	Priorité	32769	
	Adresse MAC	0009.7C73.ADA6	
	Intervalle Hello	2 secondes	
Interface FO/5	Rôle	DESG : Port désigné	
	État du port	FWD : FORWARDING (état d'acheminement)	
	Coût	19	
	Priorité du port	128 (Valeur par défaut)	
	ID du port	5	
	Type du port	P2P : Point à point	

Affichage de la configuration STP pour l'interface F0/2 :

S1#show sp	anning-	tree int	erface	F0/2	
Vlan	Role	Sts	Cost	Prio.Nbr	Туре
VLAN0001	Altn	BLK	19	128.2	P2p
VLAN0010	Desg	FWD	19	128.2	P2p
VLAN0020	Altn	BLK	19	128.2	P2p
VLAN0030	Altn	BLK	19	128.2	P2p

Affichage du résumé de la configuration STP:

S2# show spanning-tree sur Switch is in rapid-pvst mode Root bridge for: Enseignants E	•		
Extended system ID is enabled			
Portfast Default	is disabled		
PortFast BPDU Guard Default	is disabled		
Portfast BPDU Filter Default	is disabled		
Loopguard Default (Résultats omis)	is disabled		

Pour conclure:

Le STP (Spanning Tree Protocol) est un protocole de couche 2 utilisé pour éviter les boucles de broadcast dans les réseaux locaux à commutation. => C'est-à-dire les switchs.

En effet, c'est un élément crucial afin de garantir la fiabilité et la sécurité des réseaux locaux à commutation. Il permet de détecter et de résoudre les boucles de broadcast, assurant ainsi une communication stable et fiable entre les différents équipements du réseau.

Il est important pour les administrateurs réseau de comprendre les fonctionnements et les paramètres de base de STP pour pouvoir dépanner efficacement les problèmes réseau et maintenir un bon fonctionnement de celui-ci.

Il est également essentiel de se rappeler que STP n'est qu'un des nombreux protocoles de couche 2 utilisés dans les réseaux locaux à commutation et qu'il y a d'autres protocoles tels que RSTP, MSTP qui sont dérivés de STP, mais qui améliorent les performances des réseaux.

Il est donc important pour les administrateurs de rester à jour sur les dernières technologies et de continuer à apprendre sur les différents protocoles de couche 2.