Biostatistics

Applications in Medicine

Syllabus

1. General review

- a. What is Biostatistics?
- b. Population/Sample/Sample size
- c. Type of Data quantitative and qualitative variables
- d. Common probability distributions
- e. Work example Malaria in Tanzania

2. Applications in Medicine

- a. Construction and analysis of diagnostic tools Binomial distribution, ROC curve, sensitivity, specificity, Rogal-Gladen estimator
- b. Estimation of treatment effects generalized linear models
- c. Survival analysis Kaplan-Meier curve, log-rank test, Cox's proportional hazards model

3. Applications in Genetics, Genomics, and other 'omics data

- a. Genetic association studies Hardy-Weinberg test, homozygosity, minor allele frequencies, additive model, multiple testing correction
- b. Methylation association studies M versus beta values, estimation of biological age
- c. Gene expression studies based on RNA-seq experiments Tests based on Poisson and Negative-Binomial

4. Other Topics

- a. Estimation of Species diversity Diversity indexes, Poisson mixture models
- b. Serological analysis Gaussian (skew-normal) mixture models
- c. Advanced sample size and power calculations

Develop

Negative / Positive

What is the type of random variable?

Negative / Positive

What is the type of random variable?

Negative / Positive

What is the type of random variable? Binary

What is the probability distribution associated with this random variable?

Negative / Positive

What is the type of random variable? Binary

What is the probability distribution associated with this random variable?

Bernoulli

$$P\left[X = x \mid \pi\right] = \pi^{x} (1 - \pi)^{1 - x} I_{\{0,1\}}(x)$$

Number of Positive Tests in a Sample of n Individuals

What is the type of random variable?

Discrete

0,1,...,n

Number of Positive Tests in a Sample of n Individuals

What is the type of random variable? Discrete

What is the probability distribution associated with this random variable?

Number of Positive Tests in a Sample of n Individuals

What is the type of random variable? Discrete

What is the probability distribution associated with this random variable?

Hypergeometric
$$P[X = x | N, M, n] = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$$

N is the population size

M is the size of population with a positive test

 $x \mid N, M, n \rightsquigarrow \text{Hypergeometric}(N; M; n)$

N is typically known

$$P[X = x \mid N, M, n] = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$$

$$\hat{M}=?$$

Exercise

 $x \mid N, M, n \rightsquigarrow \text{Hypergeometric}(N; M; n)$

$$P[X = x | N, M, n] = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$$

N = 700 - Aneityum Island (Mistery Island)

n = 50 individuals

x = 2 positive malaria tests

N is typically known

$$\hat{M}=?$$

Can you estimate this parameter by the maximum likelihood method using R?

Can you estimate this parameter by the method of moments?

Number of Positive Tests in a Sample of n Individuals

What is the type of random variable? Discrete

What is the probability distribution associated with this random variable?

 $x \mid n, \pi \rightsquigarrow \text{Binomial}(n; \pi)$

$$P[X = x \mid n, \pi] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

$$\hat{\pi} = ?$$

$$IC_{95\%}(\pi) = ?$$

$$x \mid n, \pi \rightsquigarrow \text{Binomial}(n; \pi)$$

$$P[X = x \mid n, \pi] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

$$\hat{\pi}_{mle} = \frac{X}{n}$$

 $\hat{\pi}_{mle} = \frac{X}{n}$ Maximum likelihood estimator

$$\hat{\pi}_{mle} = \frac{x}{n}$$

 $\hat{\pi}_{mle} = \frac{x}{n}$ Maximum likelihood estimate estimate

$$x \mid n, \pi \rightsquigarrow \text{Binomial}(n; \pi)$$

$$P[X = x \mid n, \pi] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

$$IC_{95\%}(\pi) = \hat{\pi}_{mle} \pm 1.96 \times se\left(\hat{\pi}_{mle}\right)$$

$$se\left(\hat{\pi}_{mle}\right) = \sqrt{\frac{\pi\left(1-\pi\right)}{n}}$$

Wald's confidence interval

$$se\left(\hat{\pi}_{mle}\right) = \sqrt{\frac{\hat{\pi}_{mle}\left(1 - \hat{\pi}_{mle}\right)}{n}}$$

$$se(\cdot) = standard error$$

Two-tail Wald's confidence interval

 $Y = \frac{\hat{\pi}_{mle} - \pi}{\sqrt{\frac{\hat{\pi}_{mle}(1 - \hat{\pi}_{mle})}{n}}} \mid \pi, n \rightsquigarrow \text{Normal} \left(\mu = 0; \sigma = 1\right) \text{ For large samples}$

One-tail Wald's confidence interval

$$Y = \frac{\hat{\pi}_{mle} - \pi}{\sqrt{\frac{\hat{\pi}_{mle}(1 - \hat{\pi}_{mle})}{n}}} \mid \pi, n \rightsquigarrow \text{Normal} \left(\mu = 0; \sigma = 1\right) \quad \text{For large samples}$$

$$x \mid n, \pi \rightsquigarrow \text{Binomial}(n; \pi)$$

$$P[X = x \mid n, \pi] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

$$IC_{95\%}(\pi) = \left(\hat{\pi}_{mle} - 1.64 \times se\left(\hat{\pi}_{mle}\right), 1\right)$$

One-tail Wald's confidence interval

$$Y = \frac{\hat{\pi}_{mle} - \pi}{\sqrt{\frac{\hat{\pi}_{mle}(1 - \hat{\pi}_{mle})}{n}}} \mid \pi, n \rightsquigarrow \text{Normal}\left(\mu = 0; \sigma = 1\right) \text{ For large samples}$$

$$x \mid n, \pi \rightsquigarrow \text{Binomial}(n; \pi)$$

$$P[X = x \mid n, \pi] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

$$IC_{95\%}(\pi) = \left(0, \hat{\pi}_{mle} + 1.64 \times se(\hat{\pi}_{mle})\right)$$

Exercise (in the R software)

Table 1 Comparison of screening results for blood samples from community mass blood surveys and passive case detection in the Thai–Myanmar border area

	qPCR (reference) Number of samples	Expert light microscopy						
		P. falciparum	P. vivax	P. malariae	Mixed Pf + Pv	Negative		
Community mass blood survey								
P. vivax	21	_	2	_	_	19		
P. falciparum	10	_	-	_	_	10		
Mixed $Pf + Pv$	6	_	1	_	_	5		
Mixed $Pf + P.$ ovale	2	_	-	_	_	2		
Mixed $Pf + Pv + Po$	1	_	-	_	_	1		
Mixed $Pf + Pv + Po + P$. malariae	1	_	-	_	_	1		
Negative	1306	_	-	_	_	1306		
Total n	1347	_	3	_	_	1344		
Hospital and malaria clinic PCD								
P. falciparum	5	5	-	_	_	-		
P. vivax	4	_	1	_	_	3		
P. malariae	1	_	-	1	_	-		
Mixed $Pf + Pv$	22	5	14	-	_	3		
Negative	265	_	-	_	_	265		
Total n	297	10	15	1	_	271		

Exercise (in the R software)

Estimate the number of positive tests by qPCR

Community

Hospital

Estimate the number of positive tests by light expert microscopy

Community Hospital

Use binom.test function

Exercise (in the R software)

Table 1 Comparison of screening results for blood samples from community mass blood surveys and passive case detection in the Thai–Myanmar border area

	qPCR (reference) Number of samples	Expert light microscopy						
		P. falciparum	P. vivax	P. malariae	Mixed Pf + Pv	Negative		
Community mass blood survey					_			
P. vivax	21	-	2	_	_	19		
P. falciparum	10	_	-	_	_	10		
Mixed $Pf + Pv$	6	_	1	_	_	5		
Mixed $Pf + P.$ ovale	2	_	-	_	_	2		
Mixed $Pf + Pv + Po$	1	-	-	_	_	1		
Mixed $Pf + Pv + Po + P$. malariae	1	_	-	_	_	1		
Negative	1306	_	-	_	_	1306		
Total n	1347	_	3	_	_	1344		
Hospital and malaria clinic PCD								
P. falciparum	5	5	-	_	_	_		
P. vivax	4	_	1	_	_	3		
P. malariae	1	-	-	1	-	-		
Mixed $Pf + Pv$	22	5	14	_	_	3		
Negative	265	-	-	_	_	265		
Total n	297	10	15	1	_	271		

Break

Rapid diagnostic test for SARS-CoV-2

Molecular test for SARS-CoV-2 detection

Invalid

Positive

Indeterminate

Dolan & Fitzgerald (2023). Journal of Hospital Infection

Invalid / Indetermine / Negative / Positive

What is the type of random variable?

Categorical

Invalid or Indetermine / Negative / Positive

What is the type of random variable? Categorical

What is the probability distribution associated with this random variable?

Multivariate Bernoulli

$$P\left[\mathbf{X} = (x_1, x_2, x_3) \mid (\pi_1, \pi_2, \pi_3)\right] = \prod_{i=1}^{3} \pi_i^{x_i}$$

with the restrictions:
$$x_i \in \{0,1\}, \sum_{i=1}^{3} x_i = 1 \text{ and } \pi \in (0,1), \sum_{i=1}^{3} \pi_i = 1$$

Number of Invalid or Indetermine / Negative / Positive

What is the type of random variable?

Number of Invalid or Indetermine / Negative / Positive

What is the type of random variable? Multivariate Categorical

Number of Invalid / Indetermine / Negative / Positive

What is the type of random variable? Multivariate Categorical

What is the probability distribution associated with this random variable?

Number of Invalid or Indetermine / Negative / Positive

What is the type of random variable?

Multivariate Categorical

What is the probability distribution associated with this random variable?

Multivariate Hypergeometric (small population sizes)

$$P[(n_1, n_2, n_3) | n, N, (M_1, M_2, M_3)] = \frac{\binom{M_1}{n_1} \binom{M_2}{n_2} \binom{M_3}{n_3}}{\binom{N}{n}} \quad \text{with } \sum_{i=1}^3 n_i = n \text{ and } \sum_{i=1}^3 M_i = N$$

Number of Invalid or Indetermine / Negative / Positive

What is the type of random variable?

Multivariate Categorical

What is the probability distribution associated with this random variable?

Multinomial (large population sizes)

$$P[(n_1, n_2, n_3) | n, (\pi_1, \pi_2, \pi_3)] = \frac{n!}{n_1! n_2! n_3!} \pi_1^{n_1} \pi_2^{n_2} \pi_3^{n_3} \text{ with } \sum_{i=1}^3 n_i = n \text{ and } \sum_{i=1}^3 \pi_i = 1$$

Estimation of the proportions

$$\hat{\pi}_1 = ?$$

$$\hat{\pi}_2 = ?$$

$$\hat{\pi}_3 = 1 - \hat{\pi}_1 - \hat{\pi}_2$$

$$IC_{95\%}(\pi_1) = ?$$

$$IC_{95\%}(\pi_2) = ?$$

$$IC_{95\%}(\pi_3)$$
 – no need

Estimation of the proportions

$$\hat{\pi}_1 = \frac{n_1}{n}$$

$$\hat{\pi}_2 = \frac{n_2}{n}$$

$$\hat{\pi}_3 = 1 - \hat{\pi}_1 - \hat{\pi}_2$$

Estimation of the proportions

$$\hat{\pi}_1 = \frac{n_1}{n}$$

$$IC_{95\%}(\pi_1) = ?$$

$$\hat{\pi}_2 = \frac{n_2}{n}$$

$$IC_{95\%}(\pi_2) = ?$$

$$\hat{\pi}_3 = 1 - \hat{\pi}_1 - \hat{\pi}_2$$

Estimation of the proportions

$$\hat{\pi}_1 = \frac{n_1}{n}$$

$$IC_{95\%}(\pi_1) = \hat{\pi}_1 \pm 2.24 \times se(\hat{\pi}_1)$$

$$\hat{\pi}_2 = \frac{n_2}{n}$$

$$IC_{95\%}(\pi_2) = \hat{\pi}_2 \pm 2.24 \times se(\hat{\pi}_2)$$

$$\hat{\pi}_3 = 1 - \hat{\pi}_1 - \hat{\pi}_2$$

$$IC_{\gamma\%}\left(\pi_{1}\right) = \hat{\pi}_{1} \pm \Phi^{-1}\left(1 - \frac{\gamma}{2}\right) \times se\left(\hat{\pi}_{1}\right)$$
 $\Phi^{-1}\left(\frac{1 - \gamma}{2p}\right)$ Bonferroni's method

$$\Phi^{-1}\left(\frac{1-\gamma}{2p}\right)$$

p is the number of estimated parameters

$$P\left[\bigcup_{i=1}^{n} A_i\right] \leq \sum_{i=1}^{n} P\left[A_i\right]$$

Exercise (in the R software)

Cliff et al (2019). Frontiers in Medicine

Herpesvirus	Seronegative	Indeterminate	Seropositive
Cytomegalovirus	254	7	133
Epstein-Barr virus (VCA)	46	4	344
Epstein-Barr virus (EBNA1)	83	15	296
Herpesvirus simplex 1	195	20	179
Herpesvirus simplex 2	232	12	150

Estimate the proportion of positive and indeterminate tests and calculate the respective 95% confidence intervals

Break

Diagnosis

Detection of disease / Identification of cases

Infectious diseases

Non-communicable diseases

Detection of the pathogen genetic material or antigen positive negative not ill

Invalid or Indetermine

Diagnosis of infectious diseases

Malaria

Lab test (PCR)
Microscopy
Rapid diagnostic test

COVID-19

Lab test (PCR)
Antigen test
Rapid diagnostic test
Serological test

Diagnosis of suspected COVID-19 cases

Biomarker

A biomarker is usually measurement or a substance that indicates important facts about a living organism, usually a patient.

It provides information about:

- The biological state of the organism;
- Disease risk;
- Disease diagnosis;
- Disease progression;
- Treatments of choice;
- Monitoring responses to treatment;
- Endpoints for treatment efficacy.

Little quiz Do you know the associated biomarker?

Anemia

Diabetes Mellitus

Multiple sclerosis

Little quiz Do you know the associated biomarker?

Anemia

Hemoglobulin

Diabetes Mellitus

Fasting glucose levels

Multiple sclerosis

Antibodies against Myelin basic protein

Imperfect diagnosis

Sensitivity = $P(+|true\ case)$

Specificity=P(-|true non case)

0<Sensitivity<1

0<Specificity<1

 π_{Se}

 π_{Sp}

Statistical inference

Hypothetical data (2 x 2 contingency table)

True status	Positive	Negative
Cases	x_1	$n_1 - x_1$
Non cases	$n_2 - x_2$	\boldsymbol{x}_2

Example: malaria testing

Estimate Se / Sp (with 95% confidence intervals) for microscopy testing

True status (molecular testing - gold standard)	Microscopy Positive	Microscopy Negative
Cases	1695	1057
Non cases	216	4169

Doctor, S.M., Liu, Y., Anderson, O.G. et al. Low prevalence of Plasmodium malariae and Plasmodium ovale mono-infections among children in the Democratic Republic of the Congo: a population-based, cross-sectional study. Malar J 15, 350 (2016).

Results

Binomial test

Se: 0.6159 CI (0.5974, 0.6341)

Sp: 0.9507 CI (0.9439, 0.9569)

Prop test

Se: 0.6159 CI (0.5974, 0.6341)

Sp: 0.9507 CI (0.9438, 0.9569)