Hierarchical models

Silje Synnøve Lyder Hermansen

2023-04-27

Recap: our course

Recap: our course

Recap: our course

We are entering the last part of this course

- 1. R-skills (week 1-3)
- 2. Limited and categorical outcome variables (GLMs) (week 4-10)
- 3. Data structures (week 11-14)

The purpose of this course

The purpose of this course

 \Rightarrow The purpose of this course is to find solutions when the assumptions of the linear model are not satisfied

Two assumptions in ordinary regression

Two assumptions in ordinary regression

Linear models (OLS) rely on two assumptions that are often violated

- 1. **Assumption 1:** outcomes are continuous and unbounded (week 4-10)
- 2. **Assumption 2:** observations are independent and identically distributed (iid) (week 11-14)
 - independent: probability of observing one unit is not dependent on observing another
 - identically distributed: observations come from the same data generating process/probability distribution
- ⇒ strategies for when these are not satisfied

Solutions to violations of those assumptions

- **1. Assumption 1:** Limited and categorical outcome variables (GLMs): recode the dependent variable and describe the data generating process w/probability distribution choice of model depends on the data generating process e.g. logit, multinomial, ordinal, poisson, neg.bin, zero-inflated, coxph. . .
- **2. Assumption 2:** Observations are not iid: hierarchical/nested data missing data
- ⇒ what do we do when observations are not iid?

Recap: our course Today (week 11 and 12)

Today (week 11 and 12)

Today (week 11 and 12)

Phenomena are sometimes observed within a common context

- we suspect that there are unobserved covariates that influence
 - ▶ the outcome and our predictors → spurious relationships/confounders
 - ightharpoonup our standard error ightharpoonup observations are too similar/too many
- examples:
 - geographic context:
 - patients in hospitals: same administrative procedures
 - unemployed in municipalities: same job market/economy
 - conflicts in countries: same competition for resources/power
 - time:
 - patients/unemployed/conflicts: years
 - time and space:
 - time-series cross-sectional/panel data
 - e.g. MEPs in years from countries

Data contains variation

Analysis is about strategically leveraging variation

- information
- noise:
 - bias : confounders
 - random noise: lack of precision
- ⇒ hierarchical models are very explicit about this

Our example: MEPs and their local investments

All Members of the European Parliament have the same budget for local staff

- time-series cross-section data with three groups:
 - MEPs are observed every 6 months (MEP)
 - there is variation in nationality (Nationality)
 - there is variation over time (Period)
- covariates at the group-level:
 - MEP: gender, nationality
 - Nationality: electoral system
 - Period: election, reform
- covariates across groups:
 - MEP/time: age
 - Nationality/time: labor cost

Our dependent variable: Local staff size

There is variation in the size of MEPs' local staff. What part of this variation am I interested in?

Groups of observations

Groups of observations

Groups of observations

Let's consider the distribution of local staff within and between each MEP.

Variation and group averages

Let's consider the distribution of local staff in light of one of the groupings (individual)

```
## # A tibble: 1.161 x 6
             v_i
                   sd_v
                          n_i sd_a v_all
      <int> <dhl>
                  <dbl> <int> <dbl> <dbl>
       840 1.75
                  0.463
                               2.96
       988 2.8
                  0.837
                               2.96
                                     2.71
                 0.894
                               2.96
       997 2.6
                                     2.71
     1023 3.25
                 0.463
                            8 2.96
                                     2.71
     1037 1.62
                 0.518
                            8 2.96
                                     2.71
      1038 0.625 0.518
                            8 2.96
                                     2.71
      1055 2
                  0.535
                            8 2.96
                                     2.71
      1059 2
                               2.96
                                     2.71
                 NA
      1073 6.1
                  0.224
                               2.96
                                     2.71
     1122 0.2
                  0.447
                               2.96
                                     2.71
    ... with 1.151 more rows
```

each individual has

- a mean staff size
- a group size

within-individual variation

 a standard deviation for each distribution

between-individual variation

- the standard deviation of the group means
- ightarrow we group and label the variation
- ⇒ Which of the variations do I want to leverage?

Which of the variations do I leverage?

Which of the variations do I leverage?

- within-individual variation
 - calculate group means
 - regress residuals on individual/time predictors
- → individual fixed effects
 - between-individual variation
 - calculate group means
 - regress them on individual predictors (e.g. gender)
- \rightarrow an aggregated data frame
 - both
 - ordinary OLS (pooled model)
 - hierarchical models
- → random effects with predictors on both levels

Let's take it step-by-step

we can separate out group averages

- fixed effects
 - leverage within-group variation
 - \rightarrow a form of varying-intercept model with no pooling
 - fixed effects for between-group regression (a warm-up to level-two variables)
- random intercepts
 - random-intercept only models to cluster errors
 - random intercepts and predictors
 - at either/both levels
- varying intercepts + varying slopes
 - with fixed effects (a warm-up)
 - with random effects

Fixed effects

Fixed effects

Separate out group-level variation

Separate out group-level variation

```
##
## Call:
## lm(formula = v ~ -1 + as.factor(ID), data = df)
##
## Residuals:
       Min
##
                    Median
                                 30
                                        Max
## -11 125 -0 333
                     0.000
                              0.375
                                    36 188
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        1.750e+00
                                    4.868e-01
                                                 3.595 0.000328 ***
## as.factor(ID)840
## as.factor(ID)988
                        2.800e+00
                                    6.158e-01
                                                 4.547 5.58e-06 ***
## as.factor(ID)997
                        2.600e+00
                                    6.158e-01
                                                 4.222 2.46e-05 ***
## as.factor(ID)1023
                        3.250e+00
                                    4.868e-01
                                                 6.676 2.75e-11 ***
                        1.625e+00
                                    4.868e-01
## as.factor(ID)1037
                                                 3.338 0.000850 ***
## as.factor(ID)1038
                        6.250e-01
                                    4.868e-01
                                                 1 284 0 199250
## as.factor(ID)1055
                        2.000e+00
                                    4.868e-01
                                                 4.108 4.05e-05 ***
## as.factor(ID)1059
                        2.000e+00
                                    1.377e+00
                                                 1.453 0.146420
## as.factor(ID)1073
                        6.100e+00
                                    6.158e-01
                                                 9.906 < 2e-16 ***
## as.factor(ID)1122
                        2.000e-01
                                    6.158e-01
                                                 0.325 0.745349
## as.factor(ID)1129
                        2.000e+00
                                    6.158e-01
                                                 3.248 0.001171 **
## as.factor(ID)1164
                                                 5.392 7.31e-08 ***
                        2.625e+00
                                    4.868e-01
## as.factor(ID)1179
                        0.000e + 00
                                    7 950e-01
                                                 0.000 1.000000
## as.factor(ID)1183
                        1.800e+00
                                    6.158e-01
                                                 2.923 0.003482 **
## as.factor(ID)1185
                        0.000e+00
                                    7.950e-01
                                                 0.000 1.000000
## as.factor(ID)1186
                        1.000e+00
                                    6.158e-01
                                                 1.624 0.104447
## as.factor(ID)1191
                        3.600e+00
                                    6.158e-01
                                                 5.846 5.37e-09 ***
## as.factor(ID)1204
                        1.500e+00
                                    4.868e-01
                                                 3.081 0.002073 **
## as.factor(ID)1253
                        1.000e+00
                                    6.158e-01
                                                 1 624 0 104447
## as.factor(ID)1263
                        4.000e+00
                                    4.868e-01
                                                 8.217 2.70e-16 ***
## as.factor(ID)1309
                        3.000e+00
                                    6.158e-01
                                                 4.872 1.14e-06 ***
## Silie ENCHAVET by das Herman 9800e+00
                                    1.377e+00
                                               Higranghigal manages
```

we can calculate the same individual averages in an OLS with fixed effects

 \cdot . . . but we're not interested in statistical significance (se \neq

2023-04-27

The limits/strengths of fixed effects

The individual fixed effects in a model without intercept report average staff size per member

- the fixed effects control away the between-group variation
 - e.g. gender can no longer be estimated (no variation)
- ... to only keep within-group variation
 - e.g. effect of electoral cycle, party size (vary over time)
- ⇒ the panel data approach

Within-group variation

Within-group variation

We want to compare the effect of changes in party-funding while holding individual (and thus national) traits constant

- fixed-effects are strictly within individuals
- but is the between-individual variation in party-funding really undesirable?

Table 1:

	Dependent variable:	
	Pooled OLS (1)	y OLS w/fixed-effects (2)
SeatsNatPal.prop	-0.677*** (0.218)	-1.884*** (0.515)
Constant	2.760*** (0.067)	2.111*** (0.492)
Observations R ²	5,577 0.002	5,577 0.825
Adjusted R ² Residual Std. Error F Statistic	0.002 2.902 (df = 5575) 9.658*** (df = 1; 5575)	0.780 1.363 (df = 4435) 18.318*** (df = 1141; 4435)

Between-group variation

Between-group variation

In fact, most of the variation is between individuals

the variation within individuals may not be representative

```
sd all
                   sd_group
      :0.1785
                       :0.00000
                Min.
1st Qu.:0.1785
                1st Qu.:0.00000
Median :0.1785
                Median :0.00466
    :0.1785
                      :0.02074
Mean
                Mean
3rd Qu.:0.1785
                3rd Qu.:0.03423
Max.
      :0.1785
                       :0.25664
                Max.
                NA's
                       .136
```

A new level of analysis

The fixed effects without other predictors give us a "new" aggregated data frame with observations at the individual level

Between-group regression

Between-group regression

I can keep the between-group variation by regressing my fixed effects on national party size (i.e. funding).

```
## Call:
## lm(formula = v a ~ SeatsNatPal.prop, data = df1)
## Residuals:
     Min
             10 Median
## -2.749 -1.748 -0.717 0.969 36.814
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                  2.7490
## (Intercept)
                                0.1454 18.906
                                                <2e-16 ***
## SeatsNatPal.prop -0.3079
                                0.4867 -0.633
                                                 0.527
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.885 on 1139 degrees of freedom
    (20 observations deleted due to missingness)
## Multiple R-squared: 0.0003513, Adjusted R-squared: -0.0005264
## F-statistic: 0.4002 on 1 and 1139 DF. p-value: 0.5271
```

- a new data frame with group-averages (one per MEP)
- regress on party size

Trade-offs

- I don't control for all the individual-level confounders
- I put too much weight to MEPs that are observed only a few times

MEPs from majority parties stay longer in office; there are too many small parties in the sample

```
## # A tibble: 2 x 2
##
     Majority Periods
        <dbl>
                 <dbl>
##
                  4.84
## 1
             1
## 2
                  5.66
```

Random intercepts

Random intercepts

Random intercepts

The hierarchical model allows me to manage my variation better.

consider the random-intercept only model:

$$y_i \sim \alpha_j$$

- group intercepts are defined by both types of information
- the weight of each depends on:
 - size of the groups
 - within-group variation
 - between-group variation

Random intercepts

```
## # A tibble: 1.161 x 6
                     sd_y
                            n_j sd_a y_all
      <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <
        840 1.75
                   0.463
                               8 2.96 2.71
      988 2.8 0.837
                           5 2.96 2.71
                          5 2.96 2.71

8 2.96 2.71

8 2.96 2.71

8 2.96 2.71

8 2.96 2.71

8 2.96 2.71
      997 2.6 0.894
     1023 3.25 0.463
      1037 1.62
                  0.518
      1038 0.625 0.518
      1055 2
                 0.535
      1059 2
                            1 2.96 2.71
      1073 6.1 0.224
                              5 2.96 2.71
## 10
      1122 0.2
                 0.447
                                  2.96 2.71
     ... with 1.151 more rows
```

$$lpha_j \sim rac{rac{n_j}{\sigma_y^2}ar{y}_j + rac{1}{\sigma_lpha^2}ar{y}_{all}}{rac{n_j}{\sigma_y^2} + rac{1}{\sigma_lpha^2}}$$

- n_j: number of observations of the MEP (size of group)
- σ_y^2 : variance within the MEP (within-group variation)
- \bar{y}_i : group estimate (group means)
- σ_{α}^2 : variance between MEPs (between-group variation)
- \bar{v}_{all} : overall mean (mean of means)

Fit a random-intercept model

We can fit a random intercept model with an intercept for each MEP

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ 1 + (1 | ID)
     Data: df
##
## REML criterion at convergence: 23402.4
## Scaled residuals:
               10 Median
  -7.8823 -0.2281 -0.0566 0.2532 26.3067
## Random effects:
   Groups
            Name
                         Variance Std.Dev.
            (Intercept) 7.914
                                  2.813
                         1.905
                                1.380
   Residual
## Number of obs: 5729, groups: ID, 1161
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 2.69962
                           0.08505
```

- $\hat{\sigma}_{\alpha}$ (between-group variation): 2.8131432
- $\hat{\sigma}_y$ (within-group variation): 1.3801693

intra-class correlation

- $\hat{\sigma}_{\alpha}^2/(\hat{\sigma}_{\alpha}^2+\hat{\sigma}_{\nu}^2)=0.67$
- 0 (grouping contributes with no info) to 1 (groups are homogenous)

The random intercepts

The random intercepts can also be reported separately

- we have an intercept per MEP
- they are centered around zero/a grand mean/intercept
- we read them in relation to the mean/intercept

Reporting

It is common to illustrate them in a coefplot if there are reasonably few

▶ here, there are a bit too many, so I illustrate with nationality

Pooling and smoothing

- the group intercept weighs more when:
 - \triangleright group size is consequential (n_i)
 - lacktriangle between-group variation is large/groups are distinguishable (σ_{lpha}^2)
- the group intercept weighs less when:
 - group size is small
 - within-group variation is large/group is "mushy" σ_y^2
- the grand mean (mean of means) steps in to compensate:
 - when a group is small or imprecise
 - when groups are indistinguishable

$$lpha_j \sim rac{rac{n_j}{\sigma_y^2}ar{y}_j + rac{1}{\sigma_lpha^2}ar{y}_{all}}{rac{n_j}{\sigma_y^2} + rac{1}{\sigma_lpha^2}}$$

Varying intercepts with predictors

Varying intercepts with predictors

We are not generally interested in the intercepts

- they are a way to cluster the errors
- give correct standard errors for level-two variables

Fit a varying intercept model with a fixed predictor

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: v ~ SeatsNatPal.prop + (1 | ID)
     Data: df
## REML criterion at convergence: 22650.8
##
## Scaled residuals:
      Min 10 Median
                              30
                                     Max
## -7 9897 -0 2201 -0 0519 0 2502 26 4800
## Random effects:
## Groups Name
                       Variance Std.Dev.
  TD
            (Intercept) 7.464
                                2.732
                       1.868 1.367
   Residual
## Number of obs: 5577, groups: ID, 1141
##
## Fixed effects:
                   Estimate Std. Error t value
## (Intercept)
                   2.9114 0.1189 24.492
## SeatsNatPal.prop -1.0529 0.3496 -3.011
## Correlation of Fixed Effects:
              (Intr)
## StsNtPl.prp -0.712
```

Results from four models

Dependent variable:

Regression table

Table 2:

		•		
	y OLS		y_a OLS	y linear mixed-effe
	Pooled	Fixed effects	Grouped	Random eff
	(1)	(2)	(3)	(4)
SeatsNatPal.prop	-0.677***	-1.884***	-0.308	-1.053*
	(0.218)	(0.515)	(0.487)	(0.350)
Constant	2.760***	2.111***	2.749***	2.911**
	(0.067)	(0.492)	(0.145)	(0.119)
Observations	5,577	5,577	1,141	5,577
R^2	0.002	0.825	0.0004	
Adjusted R ²	0.002	0.780	-0.001	
Log Likelihood				-11,325.4
Akaike Inf. Crit.				22,658.8
Bayesian Inf. Crit.				22,685.3
Residual Std. Error	2.902 (df = 5575)	1.363 (df = 4435)	2.885 (df = 1139)	
F Statistic	9.658*** (df = 1; 5575)	18.318*** (df = 1141; 4435)	0.400 (df = 1; 1139)	

Note:

*p<0.1; **p<0.05; ***p<

Effect plot

Varying slopes

Varying slopes

Varying slopes

We sometimes want to know if the slope is similar across groups

- we do this through interactions
- let's check if women have as many staffers as men

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ Female + (1 | ID) + (1 | Nationality)
     Data: df
## REML criterion at convergence: 22905.6
## Scaled residuals:
      Min 10 Median 30
## -7.6986 -0.2442 -0.0351 0.2683 26.0773
## Random effects:
## Groups Name
                      Variance Std.Dev.
## ID (Intercept) 4.532 2.129
## Nationality (Intercept) 4.135 2.033
## Residual
                         1.910 1.382
## Number of obs: 5729, groups: ID, 1161; Nationality, 28
##
## Fixed effects:
             Estimate Std. Error t value
## (Intercept) 2.6918
                      0.3975 6.772
## Female -0.4299 0.1393 -3.086
## Correlation of Fixed Effects:
         (Intr)
## Female -0.129
```

Fixed effects with interaction

The brutal way of estimating intercepts and slopes is with an interaction

```
## Call:
## lm(formula = v ~ Female * Nationality, data = df)
##
## Residuals:
      Min
              10 Median
                            30
                                 Max
## -8.360 -1.300 -0.322 0.841 33.640
##
## Coefficients:
##
                                    Estimate Std. Error t value Pr(>|t|)
                                               0.261949 8.771 < 2e-16 ***
## (Intercept)
                                    2.297619
## Female
                                   -1.017619 0.428829 -2.373 0.017676 *
## NationalityBelgium
                                   -1.166040
                                               0.345220 -3.378 0.000736 ***
## NationalityBulgaria
                                    2.361722
                                               0.363257 6.502 8.63e-11 ***
## NationalityCroatia
                                               0.531124 -1.816 0.069491 .
                                   -0.964286
## NationalityCyprus
                                   -0.081403
                                               0.473705 -0.172 0.863567
## NationalityCzech Republic
                                               0.339263
                                   0.274962
                                                        0.810 0.417706
## NationalityDenmark
                                    -1.130952
                                               0.411992
                                                        -2.745 0.006069 **
## NationalityEstonia
                                   -0.922619
                                               0.654872
                                                         -1.409 0.158933
## NationalityFinland
                                   -1.297619
                                               0.453708
                                                         -2.860 0.004252 **
## NationalityFrance
                                   -0.529633
                                               0.298915
                                                         -1.772 0.076473
## NationalityGermany
                                    0.489749
                                               0.284168
                                                         1.723 0.084862 .
## NationalityGreece
                                               0.342130
                                   -0.289216
                                                        -0.845 0.397957
## NationalityHungary
                                   -0.785619
                                               0.338715 -2.319 0.020408 *
## NationalityIreland
                                    0.270563
                                               0.446781 0.606 0.544816
## NationalityItaly
                                    1.288675
                                               0.288524 4.466 8.11e-06 ***
## NationalityLatvia
                                    0.748893
                                               0.450178
                                                        1.664 0.096258 .
## NationalityLithuania
                                    7.062381
                                               0.381403
                                                         18.517 < 2e-16 ***
## Sille Synngye Lyder Hermansen
                                    -1 405727 Hierarchical models 68 0 003015 **
```

Fixed effects with interaction: illustrated

Silje Synnøve Lyder Hermansen

Heliesterchical models

2023-04-27

Random effects with interaction

Random effects with interaction

The smoother way is to make the interaction with random effects

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ (Female | Nationality)
    Data: df
##
##
## REML criterion at convergence: 26454.9
##
## Scaled residuals:
     Min 1Q Median 3Q
##
                                Max
## -3.4160 -0.5565 -0.1400 0.3590 14.0749
##
## Random effects:
            Name Variance Std.Dev. Corr
##
   Groups
   Nationality (Intercept) 4.4156 2.1013
##
##
             Female 0.6026 0.7763 -0.70
   Residual
                       5.7660 2.4012
##
```

Separate estimates: in numbers

We get separate estimates for each gender/nationality pair with an intercept and a slope

```
## $Nationality
                         Female (Intercept)
##
## Austria
                  -0.682786687
                                  2.1922004
## Belgium
                  -0.078665680
                                  1.1056759
## Bulgaria
                  -0.519431708
                                  4.6477406
## Croatia
                   1.129558801
                                  1.9099753
## Cyprus
                   0.266615697
                                  2.3407704
## Czech Republic -0.441600150
                                  2.5342893
## Denmark
                   0.011033704
                                  1.1378970
                   0.004313265
## Estonia
                                  1.2878466
                                  1.0067988
## Finland
                   0.171665067
                                  1.7436918
## France
                  -0.457629252
## Germany
                  -0.442287304
                                  2.7785125
## Greece
                  -1.001039566
                                  1.8913030
## Hungary
                  -0.352722849
                                  1 4645368
## Ireland
                  -0.294476308
                                  2.5050055
## Italy
                  -0.782810147
                                  3.5681890
## Latvia
                  0.344490203
                                  3.2251358
                                  9.2027101
## Lithuania
                  -2.039448127
## Luxembourg
                  0.034769460
                                  0.8381631
## Malta
                  -0.741676434
                                  5.2866482
## Netherlands
                  -0.166663834
                                  0.7709452
## Poland
                  -1.643994123
                                  7.3758183
## Portugal
                  -0.020780981
                                  1.0175385
## Romania
                                  3.1306021
                  -0.809898298
                  -0.597770740
                                  1.9982510
## Slovakia
## Slovenia
                  -0.011463886
                                  1.2668577
                   0.136254830
## Spain
                                  1.4934447
## Silie Synnøve Lyder Herransen
```

0.5093264

51 / 52

Separate estimates: in images

