MACHINE LEARNING

Chao Wang (Frank)

wangchao@nankai.edu.cn

CHAPTER 6:

DIMENSIONALITY REDUCTION

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Fewer parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- Feature selection: Choosing k<d important features, ignoring the remaining d k
 Subset selection algorithms
- □ Feature extraction: Project the original x_i , i = 1,...,d dimensions to new k < d dimensions, z_i , j = 1,...,k

Subset Selection

- \square There are 2^d subsets of d features
- □ Forward search: Add the best feature at each step
 - \blacksquare Set of features F initially \emptyset .
 - At each iteration, find the best new feature $j = \operatorname{argmin}_i E(F \cup x_i)$
 - Add x_j to F if $E(F \cup x_j) < E(F)$
- □ Hill-climbing $O(d^2)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- □ Floating search (Add *k*, remove *l*)

Iris data: Single feature

Iris data: Add one more feature to F4

Principal Components Analysis

- □ Find a low-dimensional space such that when *x* is projected there, information loss is minimized.
- □ The projection of x on the direction of w is: $z = w^T x$
- \square Find w such that Var(z) is maximized

$$Var(z) = Var(w^{T}x) = E[(w^{T}x - w^{T}\mu)^{2}]$$

$$= E[(w^{T}x - w^{T}\mu)(w^{T}x - w^{T}\mu)]$$

$$= E[w^{T}(x - \mu)(x - \mu)^{T}w]$$

$$= w^{T} E[(x - \mu)(x - \mu)^{T}]w = w^{T} \sum w$$
where $Var(x) = E[(x - \mu)(x - \mu)^{T}] = \sum$

□ Maximize Var(z) subject to ||w||=1

$$\max_{\mathbf{w}_1} \mathbf{w}_1^\mathsf{T} \Sigma \mathbf{w}_1 - \alpha \left(\mathbf{w}_1^\mathsf{T} \mathbf{w}_1 - 1 \right)$$

 $\sum w_1 = \alpha w_1$ that is, w_1 is an eigenvector of \sum Choose the one with the largest eigenvalue for Var(z) to be max

□ Second principal component: Max $Var(z_2)$, s.t., $||w_2||=1$ and orthogonal to w_1

$$\max_{\mathbf{w}_2} \mathbf{w}_2^\mathsf{T} \Sigma \mathbf{w}_2 - \alpha (\mathbf{w}_2^\mathsf{T} \mathbf{w}_2 - 1) - \beta (\mathbf{w}_2^\mathsf{T} \mathbf{w}_1 - 0)$$

 $\sum w_2 = \alpha w_2$ that is, w_2 is another eigenvector of \sum and so on.

What PCA does

$$z = \mathbf{W}^T(x - m)$$

where the columns of **W** are the eigenvectors of \sum and m is sample mean.

Centers the data at the origin and rotates the axes

How to choose k?

Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when λ_i are sorted in descending order

- □ Typically, stop at PoV>0.9
- □ Scree graph plots of PoV vs *k*, stop at "elbow"

Feature Embedding

- \square When **X** is the N x d data matrix,
- X^TX is the d x d matrix (covariance of features, if mean-centered)
- XX^T is the $N \times N$ matrix (pairwise similarities of instances)
- \square PCA uses the eigenvectors of $\mathbf{X}^T\mathbf{X}$ which are d-dim and can be used for projection
- Feature embedding uses the eigenvectors of XX^T which are N-dim and which give directly the coordinates after projection
- Sometimes, we can define pairwise similarities (or distances) between instances, then we can use feature embedding without needing to represent instances as vectors.

Factor Analysis

□ Find a small number of factors *z*, which when combined generate *x*:

$$x_i - \mu_i = v_{i1}z_1 + v_{i2}z_2 + \dots + v_{ik}z_k + \varepsilon_i$$

where z_j , j = 1,...,k are the latent factors with

E[
$$z_j$$
]=0, Var(z_j)=1, Cov(z_i , z_j)=0, $i \neq j$,

 ε_i are the noise sources

E[ε_i]=
$$\psi_i$$
, Cov(ε_i, ε_j) =0, $i \neq j$, Cov(ε_i, z_j) =0, and v_{ij} are the factor loadings

PCA vs FA

□ PCA

From x to z

 $z = W^T(x - \mu)$

□ FA

From z to x

 $x - \mu = Vz + \varepsilon$

Factor Analysis

 \square In FA, factors z_i are stretched, rotated and translated to generate x

Singular Value Decomposition and Matrix Factorization

- □ Singular value decomposition: **X**=**VAW**^T
 - V is NxN and contains the eigenvectors of XX^T W is dxd and contains the eigenvectors of X^TX and A is Nxd and contains singular values on its first k diagonal
- $\square X = \mathbf{u}_1 \mathbf{a}_1 \mathbf{v}_1^T + ... + \mathbf{u}_k \mathbf{a}_k \mathbf{v}_k^T$ where k is the rank of X

Matrix Factorization

□ Matrix factorization: *X*=*FG*

 \boldsymbol{F} is Nxk and \boldsymbol{G} is kxd

$$\mathbf{X}_{ti} = \mathbf{F}_t^T \mathbf{G}_i = \sum_{j=1}^k \mathbf{F}_{tj} \mathbf{G}_{ji}$$

Latent semantic indexing

Multidimensional Scaling

□ Given pairwise distances between N points,

$$d_{ij}$$
, i , j =1,..., N

place on a low-dim map s.t. distances are preserved (by feature embedding)

 $\Box z = g(x \mid \theta)$ Find θ that min Sammon stress

$$E(\theta \mid \mathcal{X}) = \sum_{r,s} \frac{\left\| \mathbf{z}^{r} - \mathbf{z}^{s} \right\| - \left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}{\left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}$$

$$= \sum_{r,s} \frac{\left\| \mathbf{g}(\mathbf{x}^{r} \mid \theta) - \mathbf{g}(\mathbf{x}^{s} \mid \theta) \right\| - \left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}{\left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}$$

Map of Europe by MDS

Linear Discriminant Analysis

- □ Find a low-dimensional space such that when *x* is projected, classes are well-separated.
- □ Find w that maximizes

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

$$m_1 = \frac{\sum_t \mathbf{w}^T \mathbf{x}^t r^t}{\sum_t r^t} \quad s_1^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t$$

Between-class scatter:

$$(\mathbf{m}_1 - \mathbf{m}_2)^2 = (\mathbf{w}^T \mathbf{m}_1 - \mathbf{w}^T \mathbf{m}_2)^2$$

$$= \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T \mathbf{w}$$

$$= \mathbf{w}^T \mathbf{S}_B \mathbf{w} \text{ where } \mathbf{S}_B = (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T$$

Within-class scatter:

$$s_1^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t$$

$$= \sum_t \mathbf{w}^T (\mathbf{x}^t - \mathbf{m}_1) (\mathbf{x}^t - \mathbf{m}_1)^T \mathbf{w} r^t = \mathbf{w}^T \mathbf{S}_1 \mathbf{w}$$
where $\mathbf{S}_1 = \sum_t (\mathbf{x}^t - \mathbf{m}_1) (\mathbf{x}^t - \mathbf{m}_1)^T r^t$

$$s_1^2 + s_1^2 = \mathbf{w}^T \mathbf{S}_W \mathbf{w} \text{ where } \mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2$$

Fisher's Linear Discriminant

Find w that max

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} = \frac{\left| \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) \right|^2}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

□ LDA soln:

$$\mathbf{w} = \mathbf{c} \cdot \mathbf{S}_{W}^{-1} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

Parametric soln:

$$\mathbf{w} = \Sigma^{-1}(\mu_1 - \mu_2)$$
when $p(\mathbf{x} \mid C_i) \sim \mathcal{N}(\mu_i, \Sigma)$

K>2 Classes

□ Within-class scatter:

$$\mathbf{S}_{W} = \sum_{i=1}^{K} \mathbf{S}_{i} \qquad \mathbf{S}_{i} = \sum_{t} r_{i}^{t} \left(\mathbf{x}^{t} - \mathbf{m}_{i} \right) \left(\mathbf{x}^{t} - \mathbf{m}_{i} \right)^{T}$$

□ Between-class scatter:

$$\mathbf{S}_{B} = \sum_{i=1}^{K} N_{i} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{T} \qquad \mathbf{m} = \frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_{i}$$

 $\Box \text{ Find } \mathbf{W} \text{ that max } J(\mathbf{W}) = \frac{\left| \mathbf{W}^T \mathbf{S}_B \mathbf{W} \right|}{\left| \mathbf{W}^T \mathbf{S}_W \mathbf{W} \right|}$

The largest eigenvectors of $S_W^{-1}S_{B}$ maximum rank of K-1

PCA vs LDA

Canonical Correlation Analysis

- $\square X = \{x^t, y^t\}_t$; two sets of variables x and y x
- We want to find two projections w and v st when x is projected along w and y is projected along v, the correlation is maximized:

$$\rho = \operatorname{Corr}(\boldsymbol{w}^{T}\boldsymbol{x}, \boldsymbol{v}^{T}\boldsymbol{y}) = \frac{\operatorname{Cov}(\boldsymbol{w}^{T}\boldsymbol{x}, \boldsymbol{v}^{T}\boldsymbol{y})}{\sqrt{\operatorname{Var}(\boldsymbol{w}^{T}\boldsymbol{x})}\sqrt{\operatorname{Var}(\boldsymbol{v}^{T}\boldsymbol{y})}}$$

$$= \frac{\boldsymbol{w}^{T}\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{v}}{\sqrt{\boldsymbol{w}^{T}\operatorname{Var}(\boldsymbol{x})\boldsymbol{w}}\sqrt{\boldsymbol{v}^{T}\operatorname{Var}(\boldsymbol{y})\boldsymbol{v}}} = \frac{\boldsymbol{w}^{T}\operatorname{S}_{\boldsymbol{x}\boldsymbol{y}}\boldsymbol{v}}{\sqrt{\boldsymbol{w}^{T}\operatorname{S}_{\boldsymbol{x}\boldsymbol{x}}\boldsymbol{w}}\sqrt{\boldsymbol{v}^{T}\operatorname{S}_{\boldsymbol{y}\boldsymbol{y}}\boldsymbol{v}}}$$

CCA

x and y may be two different views or modalities;
 e.g., image and word tags, and CCA does a joint mapping

Isomap

□ Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Isomap

- □ Instances r and s are connected in the graph if $||x^r-x^s|| < e$ or if x^s is one of the k neighbors of x^r . The edge length is $||x^r-x^s||$
- □ For two nodes r and s not connected, the distance is equal to the shortest path between them
- Once the NxN distance matrix is thus formed, use
 MDS to find a lower-dimensional mapping

Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html

Locally Linear Embedding

- 1. Given x^r find its neighbors $x^s_{(r)}$
- 2. Find W_{rs} that minimize

$$E(\mathbf{W} \mid X) = \sum_{r} \left\| \mathbf{x}^{r} - \sum_{s} \mathbf{W}_{rs} \mathbf{x}_{(r)}^{s} \right\|^{2}$$

Find the new coordinates z^r that minimize

$$E(\mathbf{z} \mid \mathbf{W}) = \sum_{r} \left\| z^{r} - \sum_{s} \mathbf{W}_{rs} z_{(r)}^{s} \right\|^{2}$$

LLE on Optdigits

Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html

Laplacian Eigenmaps

□ Let r and s be two instances and B_{rs} is their similarity, we want to find z^r and z^s that

$$\min \sum_{r,s} \|\boldsymbol{z}^r - \boldsymbol{z}^s\|^2 B_{rs}$$

 B_{rs} can be defined in terms of similarity in an original space: 0 if x^r and x^s are too far, otherwise

$$B_{rs} = \exp\left[-\frac{\|\mathbf{x}^r - \mathbf{x}^s\|^2}{2\sigma^2}\right]$$

 \Box Defines a graph Laplacian, and feature embedding returns z^r

Laplacian Eigenmaps on Iris

Spectral clustering (chapter 7)

