INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT137

3-to-8 line decoder/demultiplexer with address latches; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

FEATURES

- Combines 3-to-8 decoder with 3-bit latch
- Multiple input enable for easy expansion or independent controls
- · Active LOW mutually exclusive outputs
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT137 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT137 are 3-to-8 line decoder/demultiplexers with latches at the three address inputs (A_n). The "137" essentially combines the 3-to-8 decoder function with a 3-bit storage latch. When the latch is enabled ($\overline{\text{LE}}$ = LOW), the "137" acts as a 3-to-8 active LOW decoder. When the latch enable ($\overline{\text{LE}}$) goes from LOW-to-HIGH, the last data present at the inputs before this transition, is stored in the latches. Further address changes are ignored as long as $\overline{\text{LE}}$ remains HIGH.

The output enable input $(\overline{E}_1 \text{ and } E_2)$ controls the state of the outputs independent of the address inputs or latch operation. All outputs are HIGH unless \overline{E}_1 is LOW and E_2 is HIGH.

The "137" is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; $t_r = t_f = 6$ ns

SYMBOL	DADAMETER	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	A_n to \overline{Y}_n		18	19	ns
	\overline{LE} to \overline{Y}_n		17	21	ns
	\overline{E}_1 to \overline{Y}_n		15	17	ns
	E_2 to \overline{Y}_n		15	15	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	57	59	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1, 2, 3	A ₀ to A ₂	data inputs					
4	ĪĒ	latch enable input (active LOW)					
5	Ē₁	data enable input (active LOW)					
6	E ₂	data enable input (active HIGH)					
8 GND		ground (0 V)					
15, 14, 13, 12, 11, 10, 9, 7 \overline{Y}_0 to \overline{Y}_7		multiplexer outputs					
16 V _{CC}		positive supply voltage					

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

FUNCTION TABLE

	INPUTS					OUTPUTS								
LE	E ₁	E ₂	A ₀	A ₁	A ₂	\overline{Y}_0	<u>Y</u> 1	\overline{Y}_2	₹ ₃	\overline{Y}_4	∀ ₅	\overline{Y}_6	₹ ₇	
Н	L	Н	Х	Х	Х	stable							•	
X	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	н	
X	X	L	X	X	X	Н	Н	Н	Н	Н	Н	Н	H	
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	H	
L	L	Н	Н	H	L	H	Н	Н	L	Н	Н	Н	H	
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	н	
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	
L	L	H	L	Н	H	H	Н	Н	Н	Н	Н	L	H	
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74HC										
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay A _n to Yn		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay LE to \overline{Y}_n		55 20 16	190 38 32		240 48 41		285 57 48	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay \overline{E}_1 to \overline{Y}_n		50 18 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay E_2 to \overline{Y}_n		50 18 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _W	LE pulse width	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.8	
t _{su}	set-up time A _n to LE	50 10 9	3 1 1		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.8	
t _h	hold time A _n to LE	30 6 5	3 1 1		40 8 7		45 9 8		ns	2.0 4.5 6.0	Fig.8	

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	1.50
\overline{E}_1	1.50
E ₂	1.50
<u>LE</u>	1.50

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBO L	DADAMETED			•	T _{amb} (°		TEST CONDITIONS				
		74HCT									WAVEFORMS
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Y}_n		22	38		48		57	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay $\overline{\text{LE}}$ to \overline{Y}_{n}		25	44		55		66	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay \overline{E}_1 to \overline{Y}_n		20	37		46		56	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay E_2 to \overline{Y}_n		18	35		44		53	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	LE pulse width HIGH	10	5		13		15		ns	4.5	Fig.8
t _{su}	set-up time A _n to LE	10	2		13		15		ns	4.5	Fig.8
t _h	hold time A _n to LE	7	2		9		11		ns	4.5	Fig.8

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

AC WAVEFORMS

Waveforms showing the address input (An) and enable inputs (E_2) to output (\overline{Y}_n) propagation delays and the output transition times.

Waveforms showing the enable input $(\overline{E}_1, \overline{LE})$ to output (\overline{Y}_n) propagation delays and the output transition times.

Waveforms showing the data set-up, hold times for A_n input to $\overline{\text{LE}}$ input and the latch enable pulse width.

APPLICATION INFORMATION

3-to-8 line decoder/demultiplexer with address latches; inverting

74HC/HCT137

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".