Imperial College London

The extraction of work from quantum coherence

Kamil Korzekwa

Controlled Quantum Dynamics CDT, Imperial College London, UK

London team

Antony Milne Matteo Lostaglio

Terry Rudolph

David Jennings

Contents

- 1. Preliminaries: the concept of free energy
- 2. Quantum toolbox of thermal operations
- 3. Work-locking, or why we need a reference frame to use coherence
- 4. Coherence catalysis?
- 5. Repeatable protocols extracting work from coherence
- 6. Conclusions

The concept of free energy

The Kelvin–Planck statement of the second law of thermodynamics

It is impossible to devise a cyclically operating device, the sole effect of which is to absorb energy in the form of heat from a single thermal reservoir and to deliver an equivalent amount of work.

Thermodynamic free energy:
$$F = U - TS$$

Using density matrix formalism:
$$F(\rho) = \text{Tr}(\rho H) + kT \text{Tr}(\rho \ln \rho)$$

For thermal equilibrium state:
$$F(\gamma) = -kT \ln Z$$

(where:
$$\gamma = \frac{e^{-\beta H}}{Z} = \sum_{n} \frac{e^{-\beta E_n}}{Z} |E_n\rangle\langle E_n|$$
, $Z = \sum_{n} e^{-\beta E_n}$)

The maximum amount of extractable work from a system in a state ρ :

$$\Delta F(\rho) \coloneqq F(\rho) - F(\gamma) = \text{Tr}(\rho H) + kT(\ln Z + \text{Tr}(\rho \ln \rho))$$

The concept of free energy

Example: Work extraction from a two-level system in an excited state:

$$\Delta F(|E_1\rangle\langle E_1|) = \underline{E_1} - \underline{E_0} + kT \ln Z$$

Problem

Where is this work stored? In the classical control field? If so, how do we use it?

M. Frenzel, D. Jennings, T. Rudolph, Phys. Rev. E **90**, 052136 (2014)

Quantum description

Given

System in a state ρ described by Hamiltonian $H = \sum_n E_n |E_n\rangle\langle E_n|$

And a general thermal bath

Environment described by an arbitrary Hamiltonian H_E prepared in a thermal state γ_E

We can couple them through an energy-preserving unitary U:

$$Tr_E(U(\bullet \otimes \bullet \circ)U^{\dagger}) = \bullet$$

$$[U, H + H_E] = 0$$

"Encoding" 1st Law

Formal definition of **thermal operations**:

$$\mathcal{E}_T(\rho) = Tr_E \big(U(\rho \otimes \gamma_E) U^{\dagger} \big)$$

Quantum description

In order to study work extraction process we explicitly model the work storage system (battery) and any ancillary systems used in the process:

And consider a thermal operation on the joint system:

$$Tr_E(U(\bullet \otimes \bullet \otimes \bullet \otimes)U^{\dagger}) = \bullet \otimes \bullet \otimes \bullet$$

This way we can study questions like:

Work extraction from incoherent states

Recovering the classical result as the averaged extractable work per copy when $N \to \infty$:

F. Brandão *et al.*, Proc. Natl. Acad. Sci. U.S.A. **112** 3275 (2015)

Advent of single-shot thermodynamics

J. Åberg, Nat. Commun. **4** 1925 (2013)

States with coherence - work-locking

$$\Delta F(\rho) = \Delta F(D(\rho)) + A(\rho)$$

$$kT S(D(\rho)||\gamma) \qquad kT S(\rho||D(\rho))$$

Where $D(\cdot)$ is a dephasing superoperator:

$$D(\rho) = \sum_{n} |E_{n}\rangle\langle E_{n}| \ \rho \ |E_{n}\rangle\langle E_{n}|$$

Coherence part of free energy is locked!

$$\rho \to W \iff D(\rho) \to W$$

E.g. The amount of work that can be extracted from pure qubit state $|\gamma\rangle$ is zero.

M. Lostaglio, D. Jennings, T. Rudolph Nat. Commun. **6** 6383 (2015)

Why is coherence locked?

Problem:

In classical case simply measure the system.

In quantum case no information without disturbance.

Solution:

Send ancillary system that encodes the reference frame.

+

Another problem:

Reference frame is also a quantum system.

Again: no information without disturbance.

S. Bartlett, T. Rudolph, R. Spekkens, Rev. Mod. Phys. **79** 555 (2007)

Why is coherence locked?

Thermal operations are time-translation symmetric:

$$\mathcal{E}_T(e^{-iHt}\rho e^{iHt}) = e^{-iHt}\mathcal{E}_T(\rho)e^{iHt}$$

No reference frame = average over the free evolution: $\rho \to D(\rho)$

Reference = ancillary system in a state with coherence

Example: Single-mode bosonic field $H_R = \sum_n n(E_1 - E_0) |n\rangle\langle n|$ in a coherent state $|\alpha\rangle$ or a uniform superposition of energy eigenstates $|\psi_L\rangle \propto \sum_{n=0}^L |n\rangle$.

Using a reference frame one can access the information encoded in coherences and therefore extract more work than $\Delta F(D(\rho))$, but:

Coherence catalysis?

The reference gets disturbed: $\rho_R \to \rho_R^{\ \prime} \to \rho_R^{\prime\prime}$

But its "quality" Δ stays constant: $\langle \Delta(\rho_R) \rangle = \langle \Delta(\rho_R') \rangle = \langle \Delta(\rho_R'') \rangle$

Problems:

- 1. Unphysical Hamiltonian no ground state.
- 2. Reference itself is an infinite reservoir of free energy simply lower its state as long you want.

J. Åberg, Phys. Rev. Lett. **113** 150402 (2014)

Unlocking work with a repeatable resource

Solution:

Use a single-mode bosonic field (a laser): $H_R = \sum_n n(E_1 - E_0) |n\rangle\langle n|$

Results

In the limit of a unbounded reference (strong laser field) all work can be extracted from coherence, without deteriorating the reference (the laser field):

$$W(\rho) \to \Delta F(\rho), \qquad \langle \Delta(\rho_R) \rangle \to \langle \Delta(\rho_R') \rangle$$

However, even a bounded reference can unlock some work from coherence without being deteriorated:

$$\Delta F(D(\rho)) < W(\rho) < \Delta F(\rho), \qquad \langle \Delta(\rho_R) \rangle = \langle \Delta(\rho_R') \rangle$$

$$\langle \Delta(\rho_R) \rangle = \langle \Delta(\rho_R') \rangle$$

 $\langle \Delta \rangle$ - quality of the reference

 $\langle \Delta \rangle = 1 \Leftrightarrow$ unbounded coherence $\langle \Delta \rangle = 0 \Leftrightarrow \text{no coherence}$

p – thermal occupation of excited state

$$p = 0 \Leftrightarrow T = 0$$
 $p = \frac{1}{2} \Leftrightarrow T = \infty$

Conclusions

- In the presence of a heat bath only "speakable" information can be converted into work.
- Coherence in the energy eigenbasis forms "unspeakable information"; conversion into work requires a reference frame, e.g. a laser in a coherent state.
- Coherence resources of a reference frame should be used in a repeatable way.
- Unbounded reference all the coherence can be repeatably converted into work.
- Finite reference part of the coherence can be repeatably converted into work.

Thank you!