

# **GUÍA DE LABORATORIO**

CÓDIGO: DOC-IS-FR-001 VERSIÓN: 2

FECHA: 25/ENE/2023

## 1. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO.

| Programa                | Ingeniería de Sistemas                                                    |                          |                 |        |
|-------------------------|---------------------------------------------------------------------------|--------------------------|-----------------|--------|
| Espacio Académico/curso | Electiva de programación (Internet of Things)                             |                          | Semestre        | 6      |
| Área                    | N/A                                                                       | Grupo                    | Е               |        |
| Tipo de entrega         | Informe de laboratorio                                                    |                          |                 |        |
| Descripción de la       | En esta actividad, utilizaremos una placa Arduino para simular el control |                          |                 |        |
| actividad:              | de 3 LEDs.                                                                |                          |                 |        |
| Objetivo del            | Relacionar el comportamiento de los leds con los conceptos de un          |                          |                 |        |
| laboratorio:            | sistema operativo y sus procesos, ilustrando la gestión de múltiples      |                          |                 |        |
|                         | tareas concurrentes, al igual que los semáforos coordinan el flujo de     |                          |                 |        |
|                         | vehículos para evitar conflictos.                                         |                          |                 |        |
| Palabras clave:         | Procesos Concurrentes,                                                    | Planificación (Schedu    | ling), Rutina   | s de   |
|                         | Interrupción, Sincronización y Exclusión Mutua, algoritmo Round Robin     |                          |                 |        |
|                         | (Asignación de Tiempo Equ                                                 | itativa), Ciclo Continuo | o, Starvation ( | Evitar |
|                         | Inanición), Interrupción al T                                             | erminar el Quantum.      |                 |        |
| Nombres completos       |                                                                           | _                        |                 |        |
| grupo de trabajo:       |                                                                           |                          |                 |        |
| (Máx. 3 integrantes)    |                                                                           |                          |                 |        |



Ilustración 1. Montaje de referencia



### **GUÍA DE LABORATORIO**

CÓDIGO: DOC-IS-FR-001

**VERSIÓN**: 2

FECHA: 25/ENE/2023

### 0. Enunciado de la actividad.

Elementos de laboratorio:

- 1 Placa Arduino
- 3 LEDs (Amarillo, rojo, verde)
- 3 Resistencias
- 1 Protoboard
- 1 Pulsador (2 o 4 pines)

Contruye el montaje propuesto en la **Ilustración 1** y programa el Sketch de Arduino en TinkerCad y en físico a través de la Protoboard, de manera que permita visualizar por consola un menú de opciones y ejecutar cada una de las siguientes acciones:

#### Main menú:

- [1]. Turn on Led red
- [2]. Turn off Led red
- [3]. Turn on Led yellow
- [4]. Turn off Led yellow
- [5]. Turn on Led green
- [6]. Turn off Led green
- [7]. Turn on all
- [8]. Turn off all
- [9]. Intermitence (all)

Adiciona al circuito (En TinkerCad y en físico con la Protoboard) un Pulsador de dos pines en modo **INPUT\_PULLUP** que permita ejecutar las siguientes acciones en paralelo y sin generar conflictos con la interfaz del Main main gestionado desde la consola.

Pulsación 1: Enciende el LED rojo, los demás apagados.

Pulsación 2: Enciende el LED verde, los demás apagados.

Pulsación 3: Enciende el LED amarillo, los demás apagados.

Pulsación 4: Apaga todos los LEDs.

Pulsación 4: Enciende todos los LEDs.

Pulsación 6: Intermitencia (ciclo infinito).

No hacer uso de **delay()**. Deben manejar el rebote del pulsador con millis() o mediante lógica de software.

### 1. Diagrama esquemático Tinkercad

Pega aquí el diagrama esquemático generado en TK

### 2. Tabla de componentes Tinkercad

Pega aquí la tabla de componentes generada en TK



## **GUÍA DE LABORATORIO**

CÓDIGO: DOC-IS-FR-001 VERSIÓN: 2

FECHA: 25/ENE/2023

### 3. Imagen montaje circuito en Tinkercad

Pega aquí la imagen del circuito construido en TK

### 3. Fotografía de montaje en físico

Pega aquí la fotografía del montaje de circuito en ProtoBoard

### 4. Código fuente

Pega aquí el sketch de Arduino (Programa C++)

### 5. Enlace o URL del repositorio GitHub

El código del sketch de Arduino creado en TinkerCad debe estar versionado en el repositorio de GitHub. El Repo debe estar configurado comoPúblico.

### 6. Enlace o URL del laboratorio en TinkerCad

La URL del proyecto en TinkerCad debe estar pública.

## 7. Enlace video funcionamiento

La URL del video en donde se evidencie el funcionamiento del circuito.

| Rúbricas de evaluación<br>Uso exclusivo del docente |                 |  |  |
|-----------------------------------------------------|-----------------|--|--|
| Estética en la implementación del circuito          | 0.0 - 5.0 (10%) |  |  |
| Cumplimiento de requisitos hardware                 | 0.0 - 5.0 (40%) |  |  |
| Cumplimiento de requisitos software                 | 0.0 - 5.0 (40%) |  |  |
| Refactorización de código                           | 0.0 - 5.0 (10%) |  |  |