

LINEAR ALGEBRA

UE19MA251

APARNA B S

Department of Science and Humanities

Agenda

Semi Definite Matrices

Semi Definite Matrices

If A is a symmetric matrix the it is said to be positive semi-définite if Jarzo + 2 2) All eigenvalues of A are greater than

or equal to zero i.e li>0.

Semi Definite Matrices

- 3) None of the poincipal submatrices have negative determinants.
- 4) Pivots are non-negative (>0)
- 5) There exists a matrix R, fossibly with dependent columns such that $A = R^T R$

Example on semi-definite matrix

1. Test the matrix for positive semi-définiteners.

$$A = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$

Figenralues of A are $\lambda = 4,4+2\sqrt{3},4-2\sqrt{3}>0$

Example on semi-definite matrix

2) Déterminants of submatrices:
$$|A_1| = 5>0$$

Example on semi-definite matrix

3)
$$|A_2| = |5| 2 | = 6 > 0$$

$$4)$$
 $|A_3| = 6 > 0$

The above submatorices have fositive determinants.

Example on semi-definite matrix

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} + \frac{1}{2}R_{1}$$

$$R_3 \rightarrow R_3 + \frac{1}{2} R_1$$

Example on semi-definite matrix

$$\Rightarrow$$
 $\lambda^3 - 6\lambda^2 + 9\lambda - 18 = 0$

$$\Rightarrow \lambda = 0, 3, 3 (>0)$$

Example on semi-definite matrix

Pirots:
$$2, 3l_2$$
, 0 are non-negative
Determinants of the sub-matrices are:
 $|A_1| = 2 > 0$ $|A_3| = 0 > 0$
 $|A_2| = 2 > 0$

Hence the given natoix is positive semi-définite.

THANK YOU

Aparna B. S

Department of Science & Humanities

aparnabs@pes.edu