MA110 Lecture 20

Saurav Bhaumik Department of Mathematics IIT Bombay

Spring 2025

Cayley-Hamilton theorem

Theorem. Let $\mathbf{A} \in \mathbb{K}^{n \times n}$ and let p(t) be its characteristic polynomial. Then $p(\mathbf{A}) = \mathbf{0}$.

Proof. Let **B** be the adjugate of the matrix $(t\mathbf{I}_n - \mathbf{A})$. Then we have the following formula for determinant, where p(t) is the characteristic polynomial:

$$(t\mathbf{I}_n - \mathbf{A})\mathbf{B} = \det(t\mathbf{I}_n - \mathbf{A})\mathbf{I}_n = p(t)\mathbf{I}_n.$$

Now the (j,k)-th entry of the adjugate of $(t\mathbf{I}_n-\mathbf{A})$ is obtained by taking determinant of an $(n-1)\times(n-1)$ -submatrix. Thus, the (j,k)-th entry of \mathbf{B} is a polynomial in t of degree $\leq n-1$. Thus we can say, $\mathbf{B}=\mathbf{B}_0+t\mathbf{B}_1+\ldots t^{n-1}\mathbf{B}_{n-1}$ for matrices $\mathbf{B}_j\in\mathbb{K}^{n\times n}$.

$$p(t)\mathbf{I}_n = (t\mathbf{I}_n - \mathbf{A})\mathbf{B} \tag{1}$$

$$= (tI_n - \mathbf{A}) \sum_{i=0}^{n-1} t^i \mathbf{B}_i \tag{2}$$

$$=\sum_{i=0}^{n-1}t\mathbf{I}_{n}\cdot t^{i}\mathbf{B}_{i}-\sum_{i=0}^{n-1}\mathbf{A}\cdot t^{i}\mathbf{B}_{i}$$
(3)

$$=\sum_{i=0}^{n-1}t^{i+1}\mathbf{B}_{i}-\sum_{i=0}^{n-1}t^{i}\mathbf{A}\mathbf{B}_{i}$$
 (4)

$$=t^{n}\mathbf{B}_{n-1}+\sum_{i=1}^{n-1}t^{i}(\mathbf{B}_{i-1}-\mathbf{A}\mathbf{B}_{i})-\mathbf{A}\mathbf{B}_{0}. \hspace{1cm} (5)$$

It is clear that
$$p(A) = 0$$
.

Recall: We have defined the notion of (abstract) vector space over \mathbb{K} and the notion of subspace of a vector space. We looked at some of the examples of vector spaces such as

- Subspaces of $\mathbb{K}^{n\times 1}$
- The space $\mathbb{K}^{m\times n}$ of all $m\times n$ matrices with entries in \mathbb{K}
- The spaces $\mathbb{K}[X]$ and \mathcal{P}_n of polynomials in one variable
- The spaces C[a, b] and $C^1[a, b]$ of functions $[a, b] \to \mathbb{K}$
- The space c of convergent sequences of real numbers

We have also seen that several notions and results discussed over \mathbb{R}^n have a straightforward analogue in the context of a general vector space V over \mathbb{K} . These are as follows.

- Linear combination
- span
- Linear dependence
 Linear independence

Proposition (Crucial Result)

Let S be a subset of s elements and R be a set of r elements of V. If $S \subset \operatorname{span} R$ and s > r, then S is linearly dependent.

Examples

- 1. Let $m, n \in \mathbb{N}$, and let V be the vector space $\mathbb{K}^{m \times n}$. of all $m \times n$ matrices with entries in \mathbb{K} . For $j = 1, \ldots, m$ and $k = 1, \ldots, n$, let \mathbf{E}_{jk} denote the $m \times n$ matrix whose (j, k)th entry is equal to 1 and all other entries are equal to zero. Then the set $S := \left\{ \mathbf{E}_{jk} : 1 \leq j \leq m, \ 1 \leq k \leq, n \right\}$ is linearly independent. Moreover S spans V.
- 2. Let $V:=c_0$ be the subpace of c consisting of all sequences in $\mathbb R$ which converge to 0. For $j\in\mathbb N$, let e_j denote the element of S whose jth term is equal to 1 and all other terms are equal to 0. Then the set $S:=\{e_j:j\in\mathbb N\}$ is linearly independent. However, S does not span V. To see this, let e=(1/n) be the sequence whose nth term is 1/n for $n\in\mathbb N$. Then $e\in c_0$, but e is not a (finite) linear combination of elements of S. Thus $S_1:=S\cup\{e\}$ is also linearly independent

- 3. Let $V:=\mathbb{K}[x]$ be the vector space of all polynomials in the indeterminate x with coefficients in \mathbb{K} . Then the set $S:=\left\{x^j:j=0,1,2,\ldots\right\}$ is linearly independent. Moreover S spans V. For a fixed $n\in\mathbb{N}$, the set $S_n:=\left\{x^j:0\leq j\leq n\right\}$ is linearly independent and it spans the subspace \mathcal{P}_n of $\mathbb{K}[X]$.
 - $u_n(t) := \cos nt$ and $v_n(t) := \sin nt$ for $t \in [-\pi, \pi]$.

4. Let $V := C[-\pi, \pi]$. For $n \in \mathbb{N}$, define $u_n, v_n \in V$ by

Then the set $S := \{u_1, u_2, \ldots\} \cup \{v_1, v_2, \ldots\}$ is linearly independent. (Note that the zero element of this vector space is the function having all its values on $[-\pi, \pi]$ equal to 0.)

But S doesn't span V. To see this, consider w(t) := t for $t \in [-\pi, \pi]$. Then the set $S_1 := S \cup \{w\}$ is also linearly independent, since $w(\pi) \neq w(-\pi)$, and so $w \notin \text{span } S$.

Definition

A vector space V is said to be **finite dimensional** if there is a finite subset S of V such that $V = \operatorname{span} S$; otherwise the vector space V is said to be **infinite dimensional**.

If a vector space V is infinite dimensional, then V is larger than the span of any finite subset of V, and so V must contain an infinite linearly independent subset. Conversely, if V contains an infinite linearly independent subset, then V must be infinite dimensional.

Examples: Let $n, m \in \mathbb{N}$. The vector spaces $\mathbb{K}^{n \times 1}$, $\mathbb{K}^{1 \times n}$ and $\mathbb{K}^{m \times n}$ are finite dimensional, and so is the vector space \mathcal{P}_n of all polynomials in the indeterminate x having degree less than or equal to n. But the vector spaces $\mathbb{K}[x]$, $C[-\pi, \pi]$, c, and c_0 are infinite dimensional.

Definition

Any linearly independent subset of a finite dimensional vector space V which spans V is called a **basis** for V.

Here is the most important result about finite dimensional vector spaces. The proof is similar to that in the case of subspaces of \mathbb{K}^n .

Proposition

Let V be a finite dimensional vector space over \mathbb{K} . Then:

- V has a basis.
- Every set that spans V has a subset which is a basis of V.
- Every linearly independent subset of V can be extended to a basis of V.
- Any two bases of V have the same cardinality, called the dimension of V and denoted by dim V.

Linear Transformations

Definition

Let V and W be vector spaces over \mathbb{K} . A linear transformation or a linear map from V to W is a function $T:V\to W$ which 'preserves' the operations of addition and scalar multiplication, that is, for all $u,v\in V$ and $\alpha\in\mathbb{K}$,

$$T(u+v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$.

It is clear that if $T:V\to W$ is linear, then T(0)=0. Also, T 'preserves' linear combinations of elements of V:

$$T(\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k) = \alpha_1 T(\mathbf{v}_1) + \cdots + \alpha_k T(\mathbf{v}_k)$$

for all $k \in \mathbb{N}$, $v_1, \ldots, v_k \in V$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$.

Remark: A linear transformation from a vector space V to itself is often called a linear operator on V.

Examples

1. Let **A** be an $m \times n$ matrix with entries in \mathbb{K} . Then the map $T: \mathbb{K}^{n \times 1} \to \mathbb{K}^{m \times 1}$ defined by $T(\mathbf{x}) := \mathbf{A} \mathbf{x}$ is linear. Similarly, the map $T': \mathbb{K}^{1 \times m} \to \mathbb{K}^{1 \times n}$ defined by $T'(\mathbf{y}) := \mathbf{y} \mathbf{A}$ is linear. More generally, the map

$$T: \mathbb{K}^{n \times p} \to \mathbb{K}^{m \times p}$$
 defined by $T(\mathbf{X}) := \mathbf{A} \mathbf{X}$

is linear, and the map

$$T': \mathbb{K}^{p \times m} \to \mathbb{K}^{p \times n}$$
 defined by $T'(\mathbf{Y}) := \mathbf{YA}$

is linear.

- **2**. $T: \mathbb{K}^{m \times n} \to \mathbb{K}^{n \times m}$ defined by $T(\mathbf{A}) := \mathbf{A}^T$ is linear.
- **3**. The map $T: \mathbb{K}^{n \times n} \to \mathbb{K}$ defined by $T(\mathbf{A}) := \operatorname{trace} \mathbf{A}$ is linear. But $\mathbf{A} \longmapsto \det \mathbf{A}$ does not define a linear map.
- **4**. The map $T: \mathbb{K}[X] \to \mathbb{K}$ defined by T(p(X)) = p(0) is linear.

5. Let $V := c_0$, the set of all sequences in \mathbb{K} which converge to 0. Then the map $T: V \to V$ defined by

$$T(x_1, x_2, \ldots) := (0, x_1, x_2, \ldots)$$

is linear, and so is the map $T': V \to V$ defined by

$$T'(x_1, x_2, \ldots) := (x_2, x_3, \ldots).$$

Note that $T' \circ T$ is the identity map on V, but $T \circ T'$ is not the identity map on V. The map T is called the **right shift operator** and T' is called the **left shift operator** on V.

6. Let $V := C^1([a,b])$, the set of all real-valued continuously differentiable functions, and let W := C([a,b]), the set of all real-valued continuous functions on [a,b]. Then the map $T' : V \to W$ defined by T'(f) = f' is linear. Also, the map

$$T:W \to V$$
 defined by $T(f)(x) := \int_a^x f(t)dt$ for $x \in [a,b]$,

is linear. [Question. What are $T' \circ T$ and $T' \circ T$?]

Let V and W be vector spaces over \mathbb{K} , and let $T:V\to W$ be a linear map. Two important subspaces associated with T are

- (i) $\mathcal{N}(T) := \{ v \in V : T(v) = 0 \}$, the **null space** of T, which is a subspace of V,
- (ii) $\mathcal{I}(T) := \{T(v) : v \in V\}$, the **image space** of T, which is a subspace of W.

Suppose V is finite dimensional, and let dim V=n. Since $\mathcal{N}(T)$ is a subspace of V, it is finite dimensional and $\dim \mathcal{N}(T) \leq n$

Let v_1, \ldots, v_n be a basis for V. If $v \in V$, then there are $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ such that $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$, so that $T(v) = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n)$. This shows that $\mathcal{I}(T) = \operatorname{span}\{T(v_1), \ldots, T(v_n)\}$. Hence $\mathcal{I}(T)$ is also finite dimensional and $\dim \mathcal{I}(T) \leq n$.

Definition

The dimension of $\mathcal{N}(T)$ is called the **nullity** of the linear map T, and the dimension of $\mathcal{I}(T)$ is called the **rank** of T.

The Rank-Nullity Theorem for a matrix **A** that we proved earlier is a special case of the following result.

Proposition (Rank-Nullity Theorem for Linear Maps)

Let V and W be vector spaces over \mathbb{K} , and let $T:V\to W$ be a linear map. Suppose dim $V=n\in\mathbb{N}$. Then

$$rank(T) + nullity(T) = n$$
.

Proof (Sketch): Let $s := \operatorname{nullity}(T)$ and let $\{u_1, \ldots, u_s\}$ be a basis of $\mathcal{N}(T)$. Extend the linearly independent set $\{u_1, \ldots, u_s\}$ to a basis $\{u_1, \ldots, u_s, u_{s+1}, \ldots, u_n\}$ of V. Check that the set $\{T(u_{s+1}), \ldots, T(u_n)\}$ is a basis of $\mathcal{I}(T)$.

Corollary

Let V, W be finite dimensional vector spaces with dim V = n and dim W = m. Also, let $T : V \to W$ be a linear map. Then

$$T$$
 is one-one \iff rank $(T) = n$.

In particular, if T is one-one, then $n \leq m$. Further,

if
$$m = n$$
, then T is one-one $\iff T$ is onto.

Proof. The first assertion follows from the Rank-Nullity Theorem since

T is one-one
$$\iff \mathcal{N}(T) = \{0\} \iff \text{nullity}(T) = 0.$$

If T is one-one, then $n = \operatorname{rank}(T) = \dim \mathcal{I}(T) \le \dim W = m$. Further, if m = n, then $\operatorname{rank}(T) = n \iff T$ is onto.