It is not the earthquake mate — it is the buildings!

Ole Nielsen

Australia-Indonesia Facility for Disaster Reduction

- Australian Government AID Program
- Supporting Indonesia's capacity to manage consequences of natural disasters
- Embedded in Indonesian Government
- Partnerships with science agencies
- Committed to Free and Open Source (sustainability, accessibility, reproducibility)

Open Source Python Modelling Tools

ANUGA: Hydrodynamic Hazards

EQRM: Probabilistic Earthquake Risk

TsuDAT: Tsunami Hazard

Python-FALL3D: Volcanic Ash

Risiko: Risk Mapping

Pypar: parallel computing

Four recent big earthquakes

Magnitude	Fatalities	\$ Losses
7.0	?	?
7.6	?	?
8.8	?	?
9.0	?	?

Which one was the worst?

Earthquake	Magnitude	Fatalities	Losses (billion USD)
Haiti 2010	7.0	~200000	~8
Padang 2009	7.6	~1000	~2
Chile 2010	8.8	~500	~30
Hongshu 2011	9.0	~10000 (many from tsunami)	~35

Sources: Wikipedia, Bappenas, USGS, NOAA

What determines the Impact of an Earthquake?

Ground Shaking

- Magnitude
- Depth
- Distance (attenuation)
- Soil type (site response)

Impact

- Building Quality
- Population

What makes an earthquake deadly? Lessons from Padang

Survey Results

Film Tentang Cara Membangun 'Rumah Aman Gempa'

Generic Impact Mapping

Risiko

- Framework for calculating spatial impact
- Aims at underpinning risk assessment requirements where needed
- Partnership with World Bank (Global Facility for Disaster Reduction and Recovery)

Risiko

- Spatial data distributed using GeoServer
- Input
 - Hazard map (earthquake ground shaking, tsunami inundation depth, volcanic ash load)
 - Exposure map (population density, buildings)
 - Plugin for calculating impact (vulnerability curves)
- Output
 - Map of calculated impact at exposure locations
 - Specific statistics

Risiko components

Server Side

- Django
- Python (scipy, numpy, gdal,)
- GeoServer

Client Side

Javascript (OpenLayers, GeoExt,)

Impact Functions

- Separating calculations from GIS and formats
- Specific to hazard and exposure data
 - metadata keywords in layers (e.g. category:hazard, subcategory:earthquake)
 - plugin requirements stated in docstring

```
:param requires category=='hazard' and subcategory=='earthquake'
:param requires category=='exposure' and subcategory=='population'
```

The topic of Dr Ted Dunstone's talk!

```
from impact.plugins.core import FunctionProvider
from impact.storage.raster import Raster
class EarthquakeFatalityFunction(FunctionProvider):
    """Risk plugin for earthquake damage
    :author Allen
    :rating 1
    :param requires category=='hazard' and \
                subcategory.startswith('earthquake') and \
                layer type=='raster'
    :param requires category=='exposure' and \
                subcategory.startswith('population') and \
                layer type=='raster'
    0.00
    @staticmethod
    def run(layers,
            a=0.97429, b=11.037):
        """Risk plugin for earthquake fatalities
        Input
          layers: List of layers expected to contain
              H: Raster layer of MMI ground shaking
              P: Raster layer of population data on the same grid as H
        0.00
        # Identify input layers
        intensity = layers[0]
        population = layers[1]
        # Extract data
        H = intensity.get data(nan=0)
        P = population.get data(nan=0)
        # Calculate impact
        F = 10 ** (a * H - b) * P
        # Create new layer and return
        R = Raster(F,
                   projection=population.get projection(),
                   geotransform=population.get geotransform(),
                   name='Estimated fatalities')
        return R
```

Why Python?

- Productivity (let's me focus on the problem)
- Vast number of libraries
- Memory management!
- Unit testing framework
- Extensibility (C or F77 only where needed)
- I converted in 1999 and still happy

Challenges

- Dependencies (Geoserver, GeoNode, GDAL)
- Example: Asking for resolution 0.03x0.03
- <a href="http://localhost:8001/geoserver/ows?version=1.0.0&service=wcs&request=getcoverage&format=GeoTIFF&store=false&coverage=shakemap&crs=EPSG:4326&bbox=122.5775,-2.0025,126.6025,2.0225&resx=0.03&resy=0.03
- Pixel Size = (0.030037313432836,-0.030037313432836)
- Work-in-progress but suffered from being demoed too often.

Future

- Early days!
- Risiko to help set standards for risk modelling
 - Abstracting the GIS components
 - Use of data standards (OGC)
 - Facilitate collection of exposure data
- Other types of modelling (environmental, socio-economic)
- Grow development community

Thank You

Source (github), issue tracker and docs:

http://riskinabox.org

Ole.Nielsen@aifdr.org

What is ANUGA

What is ANUGA

to date 2001 L Coogle, Whereigt RJ, Sense Physiology and 20011 Chest Spot lange, Bigital Asky, GeoCyc - Territy at Use

Source (github), issue tracker and docs

riab /

	name	age	message	history
directory	docs/	5 days ago	PEP8 [uniomni]	
directory	extras/	about 17 hours ago	Added django bash completion [ingenieroariel]	
directory	impact/	about 2 hours ago	Hack to work around arrays with different dimensio [uniomni]	
directory	risiko/	about 13 hours ago	Added additional locales [ingenieroariel]	
directory	scripts/	about an hour ago	Added step number to install instructions [ted-dunstone]	
	.gitigmore	April 06, 2011	Added .swp to .gitignore [ingenieroariel]	
	AUTHORS.rst	April 04, 2011	Now we are happy with our repo structure. Lets sta [Ariel Nunez]	
	INSTALL.rst	April 11, 2011	Installation instructions only in README.rst file [uniomni]	
	LICENSE.rst	April 04, 2011	Now we are happy with our repo structure. Lets sta [Ariel Nunez]	
	README.rst	1 day ago	Link to Ubuntu [uniomni]	
	TODO.rst	April 04, 2011	Now we are happy with our repo structure. Lets sta [Ariel Nunez]	
	setup.cfg	April 07, 2011	Fixes for test suite [ingenieroariel]	
	setup.py	1 day ago	More upgrades needed for django 1.3 [ingenieroariel]	