House sales King County - Final Lab Data Analysis for Python - Coursera (HS)

Path:

We use the method describe to obtain a statistical summary of the dataframe.

Ouestion 2

condition
grade
sqft_above
sqft_basement
yr_built
yr_renovated
zipcode
lat
long

dtype: object

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Make sure the inplace parameter is set to True. Take a screenshot of your code and output. You will need to submit the screenshot for the final project.

We can see we have missing values for the columns hedrooms and hathrooms

Module 3: Exploratory Data Analysis

Question 3

Use the method value_counts to count the number of houses with unique floor values, use the method .to_fname() to convert it to a data frame. Take a screenshot of your code and output. You will need to submit the screenshot for the final project.

[46]: df['floors'].value_counts().to_frame()

[46]: floors

1.0 10680
2.0 8241
1.5 1910
3.0 613
2.5 161
3.5 8

Question 4

Use the function boxplot in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers. Take a screenshot of your code and boxplot. You will need to submit the screenshot for the final project.

waterfront

Question 5

Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price. Take a screenshot of your code and scatterplot. You will need to submit the screenshot for the final project

[48]: sns.regplot(x="sqft_above", y="price", data=df, ci = None)

[48]: <AxesSubplot:xlabel='sqft_above', ylabel='price'>

Module 4: Model Development

We can Fit a linear regression model using the longitude feature 'long' and caculate the R^2.

```
[51]: X = df[['long']]

Y = df['price']

Im = tinearRegression()

lm.fit(x,Y)

lm.score(X, Y)
```

[51]: 0.00046769430149007363

Question 6

Fit a linear regression model to predict the 'price' using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2. You will need to submit it for the final project.

```
[52]: X1 = df[['sqft_living']]
    Y1 = df['price']
    lm = tinearRegression()
    lm
    lm.fit(X1,Y1)
    lm.score(X1, Y1)
```

[52]: 0.4928532179037931

Question 7

Fit a linear regression model to predict the 'price' using the list of features:

```
[53]: features =["floors", "waterfront","lat","bedrooms","sqft_basement","view","bathrooms","sqft_living15","sqft_labove","grade","sqft_living"]
```

Then calculate the R^2. Take a screenshot of your code and the value of the R^2. You will need to submit it for the final project.

```
[54]: X2 * df[features]
Y2 * df['price']
lm.fit(X2,Y2)
lm.score(X2,Y2)
```

[54]: 0.657689035491575

Question 8

Use the list to create a pipeline object to predict the 'price', fit the object using the features in the list features, and calculate the R^2. Take a screenshot of your code and the value of the R^2. You will need to submit it for the final project.

```
[56]: pipe=Pipeline(Input)
    pipe
X = df[features]
Y = df['price']
    pipe-fit(X,Y)
    pipe-score(X,Y)
```

[56]: 0.7512051345272872

Question 9

Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R^2 using the test data. Take a screenshot of your code and the value of the R^2. You will need to submit it for the final project.

```
[59]: from sklearn.linear_model import Ridge

[60]: RidgeModel = Ridge(alpha=0.1)
    RidgeModel.fit(x_train, y_train)
    RidgeModel.score(x_test, y_test)

[60]: 0.647875916393907
```

Question 10

Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, set the regularisation parameter to 0.1, and calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2. You will need to submit it for the final project.

```
[61]: pr = PolynomialFeatures(degree = 2)
    x_train_pr = pr.fit_transform(x_train[features])
    x_test_pr = pr.fit_transform(x_test[features])

RidgeModell = Ridge(alpha = 0.1)
RidgeModell.fit(x_train_pr, y_train)
RidgeModell.score(x_test_pr, y_test)
```

[61]: 0.7002744263583341