P7- Correction exercices obligatoires

Exercices: 14 ,17p 163

28p165

22 p164

36p168

Activité 2 23p164

30-32 p166-167

40p169 (vers la 1ere spé)

Exercice 14 p163

Action mécanique A	Action mécanique B
Le système d'étude (le receveur) est le	Le système d'étude est le javelot et le
javelot et le système qui agit (acteur) est la	système qui agit est la Terre.
main du lanceur.	
La force qui modélise cette action a pour	La force qui modélise cette action a pour
direction celle du javelot et pour sens celui	direction la verticale et pour sens vers le
du lancer.	bas.
La valeur de cette force est inconnue.	La valeur de cette force est celle du poids
	du javelot : $P = m \cdot g$.

Exercice 17 p163

On lit l'échelle : 0,4 cm représente 2 N . On en déduit le tableau de proportionnalité suivant :

0, 4 cm schéma	Mesurer sur le livre cm
2 N	? = a calculer

Sur le livre,

-les vecteurs rouges mesurent 0,9 cm => $F1 = 0.9 \times 2/0.4 = 4.5 \text{ N}$

-Les vecteurs verts mesurent 1,8 cm => $F2 = 1.8 \times 2/0.4 = 9 \text{ N}$

Caractéristiques des trois forces =

Cas A	Cas B	Cas C
$ \begin{array}{c} 2 \text{N} \\ \hline \vec{F}_1 \end{array} $	\vec{F}_1 \vec{F}_2	$ \begin{array}{c c} 2 N \\ \hline \vec{F}_1 & \vec{F}_2 \end{array} $
 Les caractéristiques de la force F₁ sont : la direction : l'horizontale ; le sens : de la gauche vers la droite ; la valeur : ≈ 5 N. 	 Les caractéristiques de la force F₁ sont : la direction : la verticale ; le sens : de bas en haut ; la valeur : ≈ 5 N. 	 Les caractéristiques de la force F₁ sont : la direction : l'horizontale ; le sens : de la droite vers la gauche ; la valeur : ≈ 5 N.
 Les caractéristiques de la force F₂ sont : la direction : l'horizontale ; le sens : de la gauche vers la droite ; la valeur : 9 N. 	• Les caractéristiques de la force $\overrightarrow{F_2}$ sont : - la direction : l'horizontale ; - le sens : de la gauche vers la droite ; - la valeur : 9 N.	 Les caractéristiques de la force \$\vec{F}_2\$ sont: la direction: l'horizontale; le sens: de la gauche vers la droite; la valeur: 9 N.

Exercice 28p165

- 1. D'après la troisième loi de Newton, les dynamomètres D1 et D2 exercent l'un sur l'autre des actions :
- de même direction ;
- de sens opposés;
- de même valeur.
- 2. Schéma :

Exercice 22 p 164

Faire un schéma de la situation, ça aide toujours!

1. L'expression vectorielle de la force d'interaction vectorielle de lo (acteur) sur Jupiter (receveur) s' écrit :

$$\overrightarrow{\mathbf{F}_{I/J}} = - \frac{G \times M_I \times M_j}{d^2} \overrightarrow{u_{JI}}$$

Remarque : Si on choisit comme vecteur unitaire $\overrightarrow{u_{IJ}}$, on aura : $\overrightarrow{\mathbf{F}_{I/J}} = + \frac{G \times M_I \times M_J}{d^2} \overrightarrow{u_{IJ}}$

Calculons la norme de cette force, notée $F_{I/J} = \frac{G \times M_I \times M_J}{d^2}$ avec :

G = 6, 67 x
$$10^{-11}$$
 N.kg².m⁻² $M_I = 8,93 \times 10^{22}$ kg.

 $M_J = 1,90 \times 10^{27} \text{ kg}$

d= distance centre jupiter-centre lo = $4,22 \times 10^5$ km= $4,22 \times 10^5 \times 10^3$ d= $4,22 \times 10^8$ m. Vérifier si les grandeurs physiques sont dans les unités du système international : kg, mètre et seconde. Sinon = CONVERTIR

AN:
$$F_{I/J} = \frac{G \times M_I \times M_j}{d^2} = \frac{6,67 \times 10^{-11} \times 8,93 \times 10^{22} \times 1,90 \times 10^{27}}{\left(4,22 \times 10^8\right)^2} = 6,35 \times 10^{22} N$$

Echelle:

1,0 cm	? = à calculer
$3,00 \times 10^{22}$	$F_{I/J} = 6.35 \times 10^{22} N$

? =
$$6.35 \times 10^{22}$$
. $1.0/(3.00 \times 10^{22}) = 2.1 cm$.

Exercice 23p164

D'après le tableau, l'intensité de pesanteur semble dépendre de la masse de la planète et, d'après l'énoncé (texte), de l'altitude à laquelle on se trouve.

Schéma de la situation :

Astre A de masse m_A

Système S de masse ms

D'après les expressions vectorielles de ces forces :

$$\overrightarrow{F_{Astre/système}} = \overrightarrow{P}$$

$$\leftrightarrow \frac{G \times m_A \times m_S}{d^2} . \overrightarrow{u_{SA}} = m_S \times g . \overrightarrow{u_{SA}}$$

$$\leftrightarrow \frac{G \times m_A \times m_S}{(R+h)^2} . \overrightarrow{u_{SA}} = m_S \times g . \overrightarrow{u_{SA}}$$

$$\leftrightarrow \frac{G \times m_A \times m_S}{(R+h)^2} \cdot \overrightarrow{u_{SA}} = m_S \times g \cdot \overrightarrow{u_{SA}}$$

Finalement:

$$\frac{G \times m_A}{(R+h)^2} = g$$

L'intensité de pesanteur g dépend bien de la masse de l'astre mA et de l'altitude h ,ainsi que du rayon de l'astre R.

A la surface de l'astre, h est proche de 0 m, on peut donc dire que $\frac{G \times m_A}{(R)^2} = g$