FLEXE 技术白皮书

Copyright © 2021 新华三技术有限公司 版权所有,保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。 除新华三技术有限公司的商标外,本手册中出现的其它公司的商标、产品标识及商品名称,由各自权利人拥有。 本文中的内容为通用性技术信息,某些信息可能不适用于您所购买的产品。

目 录

1 FlexE 概述

FlexE (Flexible Ethernet, 灵活的以太网) 技术基于高速以太网接口, 通过以太网 MAC 速率和 PHY 速率的解耦, 实现灵活控制接口速率, 以适应不同的网络传输结构。

1.1 产生背景

近年来,光传输设备的发展渐渐无法跟上需求,光通信场景较多,对于 UNI(用户网络接口)的需求情况多变,而底层光传输网络的链路速率固定,接口和模块固定,如果通过调整底层传输的模块来适应各种传输需求,成本很高无法适应。FlexE 技术是在 Ethernet 技术基础上,为满足高速传送、带宽配置灵活等需求而发展出来的技术。

1.2 技术优点

FlexE 技术具有如下优点:

- 让接口速率可变,不再受制于 IEEE802.3 标准所定义的 10-25-40-50-100-200-400GE 的阶梯型速率体系。
- 接口的带宽可以按需灵活满足,且不受制于光传输网络能力。

2 FlexE 技术实现

2.1 概念介绍

FlexE 是 OIF 组织基于 IEEE802.3/1 制定的标准体系架构的扩展研究。如图 1 所示,它基于 OSI 七层模型,在 PHY 层(物理层)和 MAC 层(数据链路层)中间增加了 Shim 层,用来实现 MAC 和 PHY 的解耦。

图1 FlexE 结构示意图

如图 2 所示,FlexE 基于 Client/Group 架构定义,可以支持任意多个不同子接口(FlexE Client)在任意一组 PHY(FlexE Group)上的映射和传输,从而实现上述捆绑、通道化及子速率等功能。其中:

- FlexE Group: 每个 FlexE Group 由 1 个或多个(最多 254 个)基于 802.3 标准的以太网 PHY 组成,组内所有的 PHY 使用相同的物理层,每个 PHY 在 FlexE Group 都有一个唯一的编号。
- FlexE Shim: 处于 MAC 和 PHY 层之间,是 FlexE 的核心处理逻辑层。它将 MAC 层的 FlexE Client 数据流映射到 FlexE Group 的 PHY 上进行传输;并且也支持将 FlexE Group 内的 PHY 传输的数据反映射到 MAC 层的 FlexE Client 数据流。FlexE Shim 可以基于组对组内 PHY 的带宽进行捆绑、子速率、通道化处理。
- FlexE Client:对应于以太网络中的传统接口,是基于 MAC 层速率的以太网数据流,其速率不固定,用于对接不同速率需求的 UNI(User Network Interface,网络用户接口)。FlexE Client 的数据流按照 64B/66B 编码形成多个数据块(blocks),这些 blocks 会插入到 FlexE Group 的某个位置的 Sub-Calendar 中。
- FlexE Calendar: 是 FlexE Shim 处理映射和反映射处理的机制。将 FlexE Group 内 100G 的 PHY 拆分成 20 个 Slot,每个 PHY 的一组 Slot 称为 Sub-Calendar,每个 Slot 承载 5G 速率。 FlexE Calendar 将 FlexE Group 内每个 PHY 上的 Sub-Calendar 上承载的 66B 数据块分配给指定的 FlexE Client。理论上每个 FlexE Client 可以被设置的带宽为 5G 的倍数。

图2 FlexE 诵用架构示意图

2.2 FlexE支持的功能

2.2.1 捆绑

如图 3 所示,FlexE 支持捆绑多个 IEEE 802.3 标准的物理接口,使多个 PHY 一起工作,以支持更高速率。例如,将 2 个 100G 物理接口捆绑,实现 200G 的 MAC 层速率。

图3 捆绑功能示意图

2.2.2 通道化

如<u>图 4</u>所示,对基于 IEEE 802.3 标准的物理接口的通道化是指多个低速率数据流共享一个 PHY 或 多个 PHY。例如,在 1 个 100G 速率的物理接口上承载 25G 和 75G 两个 MAC 层速率的数据流。

图4 通道化功能示意图

2.2.3 子速率

如<u>图 5</u> 所示,基于 IEEE 802.3 标准物理接口的子速率是指一个低速率的数据流共享一个 PHY 或多个 PHY。例如,在 2个 100G 速率的物理接口上仅仅承载 50G 的 MAC 层速率。

图5 子速率功能示意图

2.3 运行机制

2.3.1 FlexE 帧结构

FlexE 按照每个 Client 数据流所需带宽以及 Shim 中对应每个 PHY 的 5G 粒度 Slot 的分布情况,计算、分配 Group 中可用的 Slot,形成 Client 到一个或多个 Slot 的映射,再结合 Calendar 机制实现一个或多个 Client 数据流在 Group 中的承载。如图 6 所示,每个 64/66B 数据块承载在一个 Slot 中。 FlexE 在 Calendar 机制中,将 "20blocks" (对应 Slot0 到 Slot19) 作为一个逻辑单元,并进一步将 1023 个 "20blocks" 作为一个 Calendar。 Calendar 循环往复最终形成了 5G 为颗粒度的 Slot 数据承载通道。

图6 FlexE 帧结构示意图

如图7所示,FlexE Shim 层通过定义 Overhead Frame/MultiFrame 的方式体现 FlexE Client 与 FlexE Group 中的 Slot 映射关系以及 Calendar 工作机制。FlexE Shim 层通过 Overhead 提供带内管理通道,支持在对接的两个 FlexE 接口之间传递配置、管理信息,实现链路的自动协商建立。其中:

- FlexE Overhead Slot: FlexE 开销时隙,实际为按照 64B/66B 编码形成的数据块。FlexE 开销时隙每隔 1023 个 "20blocks" 出现一次。
- FlexE Overhead Frame: FlexE 开销帧,由 8 个开销时隙组成。
- FlexE Overhead MultiFrame: FlexE 开销复帧,由 32 个开销帧组成。FlexE 开销复帧的前 16 个开销帧,标记位为 "0"; FlexE 开销复帧的后 16 个开销帧,标记位为 "1"。当 FlexE 开销

复帧的前 16 个开销帧的标记位和后 16 个开销帧的标记位从"0"转换为"1"或从"1"转换为"0"时,可以实现 CRC 校验。

图7 FlexE 开销帧示意图

在 FlexE 开销帧中,FlexE 开销时隙中包含控制字符与"O Code"字符等信息。在信息传送过程,对接的两个 FlexE 接口之间通过包含"0x4B"的控制字符与"0x5"的"O Code"字符的匹配确定第一个 FlexE 开销帧,从而在二者之间建立了一个管理信息通道,实现对接的两个接口之间配置信息的预先协商、握手等。

2.3.2 Client/Slot 映射机制

Client/Slot 映射机制是指 FlexE Client 数据流在发送端的 FlexE Shim/Group 数据通道中映射到 Slot, 然后当这些 Slot 映射信息、位置等内容传送到接收端后,接收端可以从数据通道中根据发送端的 Slot 映射等信息恢复该 FlexE Client 的数据流。

1. FlexE Mux

FlexE Mux 是指将 FlexE Client 数据映射到 Slot。如图 8 所示,将不同带宽的 FlexE Client 数据插入到 Calendar 中。只要 Calendar 中有足够的 Slot,分配给特定 FlexE Client 的 Slot 并不都需要位于 FlexE Group 的同一个 PHY 上,这样可以同时使用多个 PHY 并行发送 FlexE Client 的数据流,提高了发送效率。

图8 FlexE Mux 示意图

2. FlexE Demux

FlexE Demux 是指将 Slot 承载的数据恢复为 FlexE Client 数据。如图 9 所示,FlexE 将从多个 PHY 接收到的 Slot 数据重新拼装,恢复为 2 个 FlexE Client 数据。

图9 FlexE Demux 示意图

2.3.3 Slot/Calendar 更改机制

FlexE 通过为每一个 FlexE Client 提供 Slot/Calendar 更改机制,即每允许 FlexE Client 的 Slot/Calendar 映射关系实时变化,实现带宽动态调整。

如<u>图 10</u>所示,本端 FlexE 接口下记录了多种不同的 FlexE Calendar 信息,例如 Calendar A 和 Calendar B。FlexE Client 的带宽在 Calendar A 和 Calendar B 中是不同的,通过动态切换 Calendar A 和 Calendar B,并进一步结合系统应用控制可以实现无损带宽调整。本端进行 FlexE Calendar 切换后,可以通过传递 FlexE 开销帧来通知对端 FlexE 接口进行 FlexE Calendar 切换,保证两端 FlexE 接口的传输速率一致。

图10 Slot/Calendar 更改机制示意图

3 典型组网应用

以 FlexE 三大功能为基础,该技术可在 IP 网络中通过大带宽接口、网络通道化、子速率等特性,实现带宽按需分配、通道隔离以及低时延保障等方案。同时,通过与 SDN 技术相结合,FlexE 支持基于业务体验的未来网络架构,能够支撑未来的高带宽视频、VR、5G 等业务发展。

FlexE 应用范围广泛,OIF Flex Ethernet 标准对于 FlexE 在光传输网络中的映射定义了三种模式:

- FlexE Unaware Transport
- FlexE termination in the Transport
- FlexE Aware Transport

3.1 FlexE Unaware Transport

FlexE Unaware Transport 模式可以充分利现有光传输网络设备,在无需硬件升级的情况下实现对 FlexE 的承载,并可基于 FlexE 捆绑功能实现跨光传输网络的端到端超大带宽通信。

Flexe Shim 将 Flexe Client 的数据和 Flexe Group 里捆绑的 PHY 进行映射转换,每个 PHY 的数据都独立的在传输网络进行传输,传输网络透明承载 FlexE 数据。如图 11 所示,传输网络不区分是

否是 FlexE 数据,传输网络按照 PCS 编码进行透明传输,在不升级传统传输网络的情况实现了带宽的捆绑。

图11 FlexE Unaware Transport 模式在传输网络映射示意图

3.2 FlexE termination in the Transport

由于两个 FlexE Shim 的距离不超过以太网的最大传输距离(40km),所以无法在 PHY 之间远距离传输数据。FlexE termination in the Transport 模式下,FlexE 流量在传输网络中不通过 FlexE Group 里捆绑的 PHY 进行传输,FlexE 流量在进入传输网络前被边缘设备被终结。如图 12 所示,在该模式下,在光传输网络的边缘设备上部署 FlexE 接口并恢复出 FlexE Client 数据流,再进一步映射到光传输网络中进行承载传输,解决长距离传输问题。

图12 FlexE termination in the Transport 模式在传输网络映射示意图

3.3 FlexE Aware Transport

FlexE Aware Transport 模式主要利用 FlexE 的子速率特性,在 PHY 上低速传递数据流量,适配光 传输网络的波长。如图 13 所示,该模式下,光传输网络的接入设备对 FlexE 接口的 PHY 中无效的数据进行丢弃,并在出方向的设备上对丢弃的 Slot 恢复填充,从而光传输网络可以传输小于 FlexE 接口 PHY 带宽的数据。

图13 FlexE Aware Transport 模式在传输网络映射示意图

4 参考文献

- [1] OIF-FLEXE-01
- [2] www.ednchina.com/news/202001221503.html