García Prado, Sergio sergio@garciparedes.me

25 de septiembre de 2017

1. Definición

El muestreo probabilístico de *Poisson* se caracteriza por ser un diseño muestral con probabilidades desiguales. Es decir, si π_k es la probabilidad de añadir al individuo $k \in \{1,...,N\}$ en la muestra, en este caso no se cumple que $\forall i,j \ \pi_i = \pi_j, \ i \neq j$. De esta manera, la estimación de los estadísticos se hace más complicada, sin embargo se añade un mayor grado de versatilidad al muestreo.

$$p(s) = \prod_{k \in s} \pi_k \prod_{k \in U \setminus s} (1 - \pi_k) \tag{1}$$

Si se define la variable $I_k \sim B(\pi_k)$, $k \in \{1, ..., N\}$, es decir, como una distribución de Bernoulli de parámetro π_k , entonces la probabilidad de seleccionar la muestra s de entre todo el conjunto de posibles muestras S de una población U se define tal y como se indica en la ecuación (1). En este diseño muestral se cumple la propiedad de que $\pi_{kl} = \pi_k \pi_l$ $k \neq l$.

Este diseño muestral se puede llevar a cabo de manera sencilla, generando n valores aleatorios a partir de una distribución uniforme en el intervalo [0,1], de tal manera que ϵ_k sea el k-ésimo valor aleatorio. Entonces se añade el elemento k a la muestra s si se cumple que $\epsilon_k < \pi_k$ y se deja fuera en caso contrario.

Nótese por tanto, que este diseño muestral no tiene un un tamaño de muestra fijo, sin embargo es posible estimarlo: El tamaño n_s de la muestra obtenida tendrá una esperanza de $E[n_s] = \sum_U \pi_k$ y una varianza $Var[n_s] = \sum_U \pi_k (1 - \pi_k)$.

Sea Y la variable de estudio, entonces el π -estimador (insesgado) de la suma total es:

$$t = \sum_{U} y_k \qquad \qquad \widehat{t}_{\pi} = \sum_{s} \frac{y_k}{\pi_k} \tag{2}$$

Cuya varianza es:

$$Var[\hat{t}_{\pi}] = \sum_{IJ} (\frac{1}{\pi_k} - 1)y_k^2$$
 $\widehat{Var}[\hat{t}_{\pi}] = \sum_{s} (\frac{1}{\pi_k} - 1)\frac{y_k}{\pi_k}$ (3)

Dicha estimación de la suma total tiene una varianza muy elevada, para lo cual se propone la elección apropiada de los valores π_k a partir de un determinado ratio relacionado con los valores y_k , lo cual suele ser inaccesible en la mayoría de casos. Sin embargo, en algunas ocasiones se puede obtener los valores de otra variable X relacionada con la variable de estudio Y, de tal manera que los valores π_k sean proporcionales a y_k .

^{*}URL: https://github.com/garciparedes/statistical-sampling-poisson-design

Otra alternativa es la elección de un estimador diferente para la suma total. Por contra, dicho estimador no es insesgado, pero su varianza es mucho menor. Este se indica a continuación:

$$\widehat{t}_{alt} = N \cdot \frac{\sum_{s} \frac{y_k}{\pi_k}}{\sum_{s} \frac{1}{\pi_k}} \tag{4}$$

Referencias

[SSW03] Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. *Model assisted survey sampling*. Springer Science & Business Media, 2003.

[TG18] Jesús Alberto Tapia García. Muestreo Estadístico 1, 2017/18.