$$W_{i+1} = W_i + \frac{h}{12} [5f(t_{i+1}, W_{i+1}) + 8f(t_i, W_i) - f(t_{i-1}, W_{i-1})] + O(h^4)$$

Adams- Moulton three-step explicit method

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$

$$w_{i+1} = w_i + \frac{h}{24} [9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2})] + O(h^5)$$

Adams- Moulton four-step explicit method

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$, $w_3 = \alpha_3$

$$w_{i+1} = w_i + \frac{h}{720} \left[251f(t_{i+1}, w_{i+1}) + 646f(t_i, w_i) - 246f(t_{i-1}, w_{i-1}) + 106f(t_{i-2}, w_{i-2}) \right]$$

$$-19f(t_{i-3}, w_{i-3})] + O(h^6)$$

Milne's method

$$w_{i+1} = w_{i+3} + \frac{4h}{3} [2f(t, w) - f(t, w_{i-1}) + 2f(t, w_{i-2})] + O(h^5)$$

Simpson's method

$$W_{i+1} = W_{i-1} + \frac{h}{3} [f(t_{i+1}, W_{i+1}) + 4f(t_i, W_i) + f(t_{i-1}, W_{i-1})] + O(h^5)$$

Runge-Kutta-Fehlberg method (order of 5)
$$w = w + \frac{16}{135} k_{1} + \frac{6656}{12825} k_{3} + \frac{28561}{56430} k_{4} - \frac{9}{50} k_{5} + \frac{2}{55} k_{6}$$

$$k_{1} = hf(t_{1}, w_{1}), \quad k_{2} = hf(t_{1} + \frac{h}{4}, w_{1} + \frac{k_{1}}{4}), \quad k_{3} = hf(t_{1} + \frac{3h}{8}, w_{1} + \frac{3k_{1}}{32} + \frac{9k_{2}}{32}),$$

$$k_{4} = hf(t_{1} + \frac{12h}{13}, w_{1} + \frac{1932k_{1}}{2197} - \frac{7200k_{2}}{2197} + \frac{7296k_{3}}{2197}),$$

$$k_{5} = hf(t_{1} + h, w_{1} + \frac{439k_{1}}{216} - 8k_{2} + \frac{3680k_{3}}{513} - \frac{845k_{4}}{4104})$$

$$k_{6} = hf(t_{1} + \frac{1}{2}h, w_{1} - \frac{8k_{1}}{25} + 2k_{2} - \frac{3544k_{3}}{2565} + \frac{1859k_{4}}{4104} - \frac{11k_{5}}{40})$$

HW5

1. The initial-value problem

$$y' = 1 + (y/t) + (y/t)^2$$
, $1 \le t \le 2$, $y(1) = 0$ has the exact solution $y(t) = t \tan(\ln t)$.

a. Use Euler's method with h = 0.1 to approximate the solution, and

compare it with the actual values of y.

b. Use Taylor's method of order 2 with h = 0.1 to approximate the solution, and compare it with the actual values of y.

	Prob	lem 1. Euler &	Taylor Method Comparison ===			
	1100	icm i. Buici w	rayior neemod comparison			
Euler Method:						
	t	Euler Approx	Exact Solution			
0	1.0	0.000000	-			
1	1.1	0.100000	0.105160			
2	1.2	0.209917	0.221243			
	1.3	0.330471	0.349121			
4	1.4	0.462354	0.489682			
	1.5	0.606285	0.643875			
6	1.6	0.763041	0.812753			
7	1.7	0.933475	0.997494			
8	1.8	1.118537	1.199439			
9	1.9	1.319293	1.420116			
10	2.0	1.536943	1.661282			
Taylor Order 2 Method:						
	t	Taylor_Approx	Exact_Solution			
0	1.0	0.000000	0.000000			
1	1.1	0.105000	0.105160			
2	1.2	0.220919	0.221243			
	1.3	0.348612	0.349121			
		0.488954	0.489682			
5	1.5					
		0.811438				
	1.7	0.995787	0.997494			
		1.197252	1.199439			
9	1.9	1.417344	1.420116			
10	2.0	1.657795	1.661282			

2. The system of initial-value problems

$$u'_{1} = 9u_{1} + 24u_{2} + 5\cos t - \frac{1}{3}\sin t, \quad u(0) = \frac{4}{3},$$

$$u'_{2} = -24u_{1} - 52u_{2} - 9\cos t + \frac{1}{3}\sin t, \quad u(0) = \frac{2}{3},$$

has the unique solution

$$u_1 = 2e^{-3t} - e^{-39t} + \frac{1}{3}\cos t$$
, $u_2 = -e^{-3t} + 2e^{-39t} - \frac{1}{3}\cos t$.

Try h = 0.05 and h = 0.1 in Runge-Kutta method, and compare their results with the exact value.

Runge-Kutta 4th Order (h=0.05):							
	t	RK4_u1_Approx	RK4_u2_Approx	Exact_u1 Exact_u2			
O	0.00	1.333333	0.666667	1.333333 0.666667			
1	0.05	1.721880	-0.499599	1.912059 -0.909077			
2	0.10	1.726915	-0.832598	1.793063 -1.032002			
3	0.15	1.617161	-0.890373	1.601967 -0.961459			
4	0.20	1.481687	-0.861042	1.423902 -0.874681			
5	0.25	1.348945	-0.807505	1.267646 -0.795221			
6	0.30	1.227063	-0.750341	1.131577 -0.724999			
7	0.35	1.117478	-0.695886	1.012999 -0.663060			
8	0.40	1.019525	-0.645732	0.909409 -0.608214			
9	0.45	0.931977	-0.599934	0.818630 -0.559389			
10	0.50	0.853541	-0.558092	0.738788 -0.515658			
11	0.55	0.783017	-0.519706	0.668275 -0.476225			
12	0.60	0.719337	-0.484290	0.605710 -0.440411			
13	0.65	0.661560	-0.451407	0.549909 -0.407635			
14	0.70	0.608868	-0.420673	0.499860 -0.377404			
15	0.75	0.560547	-0.391754	0.454695 -0.349296			
16	0.80	0.515980	-0.364365	0.413671 -0.322954			
17	0.85	0.474633	-0.338259	0.376158 -0.298076			
18	0.90	0.436043	-0.313226	0.341614 -0.274409			
19	0.95	0.399812	-0.289089	0.309583 -0.251739			
20	1.00	0.365600	-0.265698	0.279675 -0.229888			