의사결정 나무(Decision Tree)

의사결정 나무란?

-한번에 하나씩 설명변수(x)를 사용하여 예측 가능한 규칙들의 집합을 생성하는 알고리즘.

Decision Tree의 구조

초기지점인 root node로부터 시작해서 분기를 시작하여

분기를 거듭할수록 각 분류에 해당하는 데이터 개수는 줄어든다.

모든 Terminal Node안에 존재하는 데이터 개수를 합치면 Root Node의 데이터 개수와 같다.(모든 Terminal Node들은 교집합이 없음)

CART method(Classification And Regression Tree)

- -의사결정 나무를 생성하는 알고리즘 중 가장 대중적인 방법론
- -이름 자체에서 유추할 수 있는 것처럼 분류(이산형)와 예측(연속형) 모두 가능 Regression 척도(회귀나무)

RSS (Residual Sum of Square)을 최소로 만든다.

분기를 위해 데이터를 나눌 때 각 범위의 데이터 값과 그 범위의 평균 차이의 제곱이 가장 작아질 때 분기한다.

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Classification 척도(분류 나무)

구분 뒤 각 영역의 순도(homogeneity)의 증가,불확실성(uncertainty) 혹은 불순도 의 감소 → 즉, 정보획득을 분기의 목표로 둠

순도를 계산하는 방법

- 1. 지니계수
- 2. Cross-entropy(불확실성)

$$Entropy(A) = \sum_{i=1}^{d} R_i \left(-\sum_{k=1}^{m} p_k \log_2 \left(p_k \right) \right)$$

0~1사이의 값을 가지며 0에 가까울수록 좋다.

재귀적 분기와 가지치기

Income	Lot size	Ownership	Income	Lot size	Ownership
60.0	18.4	Owner	75.0	19.6	Non-owner
85.5	16.8	Owner	52.8	20.8	Non-owner
64.8	21.6	Owner	64.8	17.2	Non-owner
61.5	20.8	Owner	43.2	20.4	Non-owner
87.0	23.6	Owner	84.0	17.6	Non-owner
110.1	19.2	Owner	49.2	17.6	Non-owner
108.0	17.6	Owner	59.4	16.0	Non-owner
82.8	22.4	Owner	66.0	18.4	Non-owner
69.0	20.0	Owner	47.4	16.4	Non-owner
93.0	20.8	Owner	33.0	18.8	Non-owner
51.0	22.0	Owner	51.0	14.0	Non-owner
81.0	20.0	Owner	63.0	14.8	Non-owner

한 변수를 기준으로 정렬한 후 가능 한 모든 분기점에 대해서 Cross entropy를 구해 분기 전과 비교한다.

Income	Lot size	Ownership			
51.0	14.0	Non-owner			
63.0	14.8	Non-owner			
59.4	16.0	Non-owner			
47.4	16.4	Non-owner			
85.5	16.8	Owner	69.0	20.0	Owne
64.8	17.2	Non-owner	81.0	20.0	Owne
108.0	17.6	Owner	43.2	20.4	Non-owne
84.0	17.6	Non-owner	61.5	20.8	Owne
49.2	17.6	Non-owner	93.0	20.8	Owne
60.0	18.4	Owner	52.8	20.8	Non-owne
66.0	18.4	Non-owner	64.8	21.6	Owne
33.0	18.8	Non-owner	51.0	22.0	Owne
110.1	19.2	Owner	82.8	22.4	Owne
75.0	19.6	Non-owner	87.0	23.6	Owne

Lot size변수로 정렬 후

1번 || 나머지23개로 분기 설정

Cross-entropy 계산

1~2번 || 나머지22개로 분기 설정

Cross-entropy 계산

(반복)

.

1~23번 || 나머지 1개로 분기 설정

Cross-entropy 계산

나머지 변수인 income으로 동일과정을 반복한후

정보획득이 가장 큰 (분기 후 Cross-entropy가 가장 크게 줄어드는) 분기를 선택 1회 분기를 위해 소용되는 시간은

T(N)=D(N-1) (D는 변수의 개수,N은 분기 전 데이터 개수)

가지치기(pruning)

분기를 계속해서 거듭하다 보면 모든 terminal node의 불순도가 0이 되는데이는 over-fitting을 유발하게 된다.

Terminal node가 너무 많아지면(트리가 너무 깊어지면)

→overfitting

→ 새로운 데이터에 대한 설명력(generalization)감소

Terminal node를 합(merge)하는 방식으로 개수를 줄인다.

Pruning을 하는 방법

Pruning을 위해서는 각 값에 대한 Cost Function을 정의하고 그 값을 가장 작게 하는 지점에서 가지치기

 $CC(T) = Err(T) + a \times L(T)$

의사결정나무의 비용 복잡도 = 오분류율 + a * Terminal node개수

의사결정 나무의 장단점

장점:

구현 및 이해가 쉽다.

연속형 변수와 범주형 변수를 모두 처리할 수 있다.

단점:

데이터의 특성이 특정 변수(축)에 대해 수직/수평적으로 구분되지 못하면 분류율이 떨어진다.

약간의 차이로 분기 지점이 달라지면 전혀 다른 결과값을 만들어 낸다.