Solutions to EE3210 Tutorial 4 Problems

Problem 1:

(a) Consider

$$x[n]$$
 $V[n]$ S_2 $y[n]$

where the output of system S_1 is denoted by v[n]. We have

$$\begin{cases} v[n] = 2x[n] + 4x[n-1] \\ y[n] = v[n-2] + \frac{1}{2}v[n-3]. \end{cases}$$

Thus, we obtain

$$y[n] = v[n-2] + \frac{1}{2}v[n-3]$$

$$= 2x[n-2] + 4x[n-3] + x[n-3] + 2x[n-4]$$

$$= 2x[n-2] + 5x[n-3] + 2x[n-4].$$
(1)

(b) Consider

$$x[n] \qquad S_2 \qquad v[n] \qquad S_1 \qquad v[n]$$

where the output of system S_2 is denoted by v[n]. We have

$$\left\{ \begin{array}{l} v[n] = x[n-2] + \frac{1}{2}x[n-3] \\ \\ y[n] = 2v[n] + 4v[n-1]. \end{array} \right.$$

Thus, we obtain

$$y[n] = 2v[n] + 4v[n-1]$$

$$= 2x[n-2] + x[n-3] + 4x[n-3] + 2x[n-4]$$

$$= 2x[n-2] + 5x[n-3] + 2x[n-4]$$

which is equivalent to (1). Therefore, the input-output relationship of system S does not change if the order in which S_1 and S_2 are connected in series is reversed.

Problem 2: Since e[n] = x[n] - y[n], we have

$$y[n] = e[n-1] = x[n-1] - y[n-1].$$

The output y[n] is sketched in the figure below.

Problem 3: Note that $x_2(t) = x_1(t) - x_1(t-2)$. Therefore, using linearity and time invariance, we get $y_2(t) = y_1(t) - y_1(t-2)$, which is shown in the figure below.

