R14 Johnson's Algorithm

Single Source Shortest Paths Review

Restrictions		SSSP Algorithm	
Graph	Weights	Name	Running Time $O(\cdot)$
General	Unweighted	BFS	V + E
DAG	Any	DAG Relaxation	V + E
General	Non-negative	Dijkstra	$ V \log V + E $
General	Any	Bellman-Ford	$ V \cdot E $

Tolve shortest paths problems, you must first define or construct a graph related to your problem, and then running an SSSP algorithm on that grap in a way that solves your problem.

• Also can solve other problems 例えば, count connect components in a graph using Full-DFS or Full-BFS topologically sort vertices in a DAG using DFS detect negative weight cycles using Bellman-Ford.

All Pairs Shortest Paths

APSP problem asks for the minimum weight $\delta(u, v)$ of any path from u to v for every pair of vertices u,v in V.

A straight-forward way to solve this problem is to reduce to solving an SSSP problem |V | times, once from each vertex in V .

Johnson's Algorithm

The idea behind Johnson's Algorithm is to reduce the ASPS problem on a graph with arbitrary edge weights to the ASPS problem on a graph with non-negative edge weights.

Then finding shortest paths in the re-weighted graph using |V | times Dijkstra will solve the original problem.

change the weight of each edge (a, b) from w(a, b) to w'(a, b) = w(a, b) + h(a) - h(b), to form a new weight graph G' = (V, E, w').

proof in LEC NOTE

Find a vertex assignment function h

add a new node x to G with a directed edge from x to v for each vertex $v \in V$ to construct graph G*, letting $h(v) = \delta(x, v)$. This assignment of h ensures that $w'(a, b) \ge 0$ for every edge (a, b).

Claim:

If $h(v) = \delta(x, v)$ and h(v) is finite, then $w'(a, b) = w(a, b) + h(a) - h(b) \ge 0$ for every edge $(a, b) \in E$.

Proof

This Claim is equivalent to claiming $\delta(x,b) \leq w(a,b) + \delta(x,a)$ for every edge $(a,b) \in E$, i.e. the minimum weight of any path from x to b in G* is not greater than the minimum weight of any path from x to a than traversing the edge from a to b, which is true by definition of minimum weight. (This is simply a restatement of the triangle inequality.)

Algorithm process

- 1. Johnson's algorithm computes $h(v) = \delta(x, v)$, negative minimum weight distances from the added node x, using Bellman-Ford. If $\delta(x, v) = -\infty$ for any vertex v, then there must be a negative weight cycle in the graph, and Johnson's can terminate as no output is required.
- 2. Otherwise, Johnson's can re-weight the edges of G to w'(a, b) = w(a, b) +h(a)-h(b) \geq 0 into G' containing only positive edge weights.
- 3. Then we can run Dijkstra (O(|V|log|V| + |E|)) |V|times on G' to find a single source shortest paths distance from each vertx u in G'.
- 4. Then we can compute each $\delta(u, v)$ by setting it to $\delta'(u, v) \delta(x, u) + \delta(x, v)$.
- 5. Running Time Johnson's takes O(|V||E|) time to run Bellman-Ford on x to every vertex in graph. and $O(|V|(|V|\log |V| + |E|))$ time to run Dijkstra |V| times, so this algorithm runs in $O(|V|^2 \log |V| + |V||E|)$ time, asymptotically better than $O(|V|^2|E|)$ which run |V| times Bellman Ford.