VELOCITÀ DI CONVERGENZA

Consideriamo il metodo (4.2) per risolvere il sistema $\mathbf{A} \mathbf{x} = \mathbf{b}$ e supponiamo che esso sia convergente (cioè $\mathbf{x} = P\mathbf{x} + \mathbf{q}$ e $\rho(P) < 1$).

N.B. (Ricorda):

Fissiamo una qualsiasi norma vettoriale $\|\cdot\|$. Per quasi tutti i vettori $\mathbf{x}^{(0)} \in \mathbb{C}^n$, l'errore $\mathbf{e}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}$ commesso dal <u>metodo</u> $\# \uparrow$ soddisfa

$$\|\mathbf{e}^{(k)}\| \approx Ck^m \rho(P)^k$$

per ogni k abbastanza grande (in realtà nella pratica anche per k abbastanza piccolo), dove $0 \le m \le n-1$ è un intero che dipende solo da P e C è una costante indipendente da k.

m = 0 quando P è diagonalizzabile

CONCLUSIONE \longrightarrow la convergenza delle successioni $\mathbf{x}^{(0)}$, $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ... generate da un metodo della forma (4.2) risulta tanto più veloce quanto più $\rho(P)$ è piccolo. Sulla base di questo fatto, diamo la seguente definizione.

Definizione Dati due metodi α e β della forma (4.2) per risolvere (4.1), entrambi convergenti, diremo che α converge più velocemente di β se $\rho(P_{\alpha}) < \rho(P_{\beta})$, dove P_{α} e P_{β} indicano rispettivamente la matrice d'iterazione di α e quella di β .

CRITERIO DI ARRESTO DEL RESIDUO

Consideriamo il $\underline{\text{metodo}} \not * \uparrow$ per risolvere il sistema $\mathsf{Ax=b}$ La successione di vettori $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ generata dal metodo, anche quando risulta convergente alla soluzione \mathbf{x} del sistema (4.1), deve essere comunque arrestata prima o poi

Il criterio di arresto più utilizzato è quello del residuo: si sceglie una norma vettoriale $\|\cdot\|$

(tipicamente $\|\cdot\|_1$ oppure $\|\cdot\|_2$ oppure $\|\cdot\|_{\infty}$)

e si arresta la successione al primo vettore $\mathbf{x}^{(K)}$ che soddisfa la condizione

$$\frac{\|\mathbf{r}^{(K)}\|}{\|\mathbf{b}\|} \le \varepsilon,$$

dove $\mathbf{r}^{(K)} = \mathbf{b} - A\mathbf{x}^{(K)}$ è il residuo del sistema (4.1) relativo a $\mathbf{x}^{(K)}$ e $\varepsilon > 0$ è una soglia di precisione prefissata.

La condizione impone che l'errore relativo $||A\mathbf{x}^{(K)} - \mathbf{b}|| / ||\mathbf{b}||$ commesso approssimando \mathbf{b} con $A\mathbf{x}^{(K)}$ sia $\leq \varepsilon$. In tal modo, avremo che l'errore relativo sulla soluzione soddisfa

$$\begin{split} \frac{\|\mathbf{x} - \mathbf{x}^{(K)}\|}{\|\mathbf{x}\|} &= \frac{\|\mathbf{x}^{(\mathbf{k})} - \mathbf{A}^{\mathbf{1}} \mathbf{b}\|}{\|A^{-1} \mathbf{b}\|} = \frac{\|A^{-1} (\mathbf{b} - A \mathbf{x}^{(K)})\|}{\|A^{-1} \mathbf{b}\|} = \frac{\|A^{-1} \mathbf{r}^{(K)}\|}{\|A^{-1} \mathbf{b}\|} \\ &\leq \frac{\|A^{-1}\| \|\mathbf{r}^{(K)}\|}{\|A^{-1} \mathbf{b}\|} = \frac{\|A\| \|A^{-1}\| \|\mathbf{r}^{(K)}\|}{\|A\| \|A^{-1} \mathbf{b}\|} \\ &\leq \frac{\|A\| \|A^{-1}\| \|\mathbf{r}^{(K)}\|}{\|AA^{-1} \mathbf{b}\|} = \frac{\|A\| \|A^{-1}\| \|\mathbf{r}^{(K)}\|}{\|\mathbf{b}\|} \\ &\leq \mu(A) \, \varepsilon, \end{split}$$

do	ove	$\mu(A)$			iama									.	