Ogrzewanie mieszkania - modelowanie deterministyczne

Hanna Świtała 8 lutego 2024

Spis treści

1	Projekt mieszkania		
	1.1	Rozkład mieszkania	3
	1.2	Ustawienia grzewcze w mieszkaniu	3
2	Zmiany temperatury		
	2.1	Równanie rozchodzenia się temperatury	4
	2.2	Symulacje	5
3	Pon	niar zużytej energii	5

1 Projekt mieszkania

1.1 Rozkład mieszkania

Plan domu jest zaimplementowany jako macierz 100 x 100. Mieszkanie składa się z sypialni (prawy górny pokój, 2500[j^2]), łazienki (lewy górny pokój, 2000[j^2]) oraz pokoju dziennego (4000[j^2]), będącego jednocześnie kuchnią, jadalnią i salonem. Pomiędzy sypialnią i łazienką znajduje się wąski korytarz (500[j^2]). Powierzchnia mieszkania obejmuje kolor kremowy, natomiast biały prostokąt u dołu planu odzwierciedla klatkę schodową (1000[j^2]). Kolory w projekcie oznaczają:

- kolor czarny ściany
- kolor czerwony grzejniki
- kolor niebieski okna
- kolor brązowy drzwi

W mieszkaniu znajdują się 4 równolegle do siebie osadzone okna, 4 grzejniki (w każdym pomieszczeniu) oraz 3 drzwi (w tym jedne wejściowe).

Wykres 1: Plan mieszkania

1.2 Ustawienia grzewcze w mieszkaniu

Początkowe temperatury w poszczególnych pokojach wynoszą:

- sypialnia 22°C
- łazienka 22°C
- $\bullet~{\rm korytarz}$ $24^{\circ}{\rm C}$

- pokój dzienny 23°C
- klatka schodowa 17°C

Wykres 2: Rozkład początkowy temperatury

Każdy grzejnik posiada 5-stopniową grzałkę (0,1,2,3,4), przy czym ustawiony na 0 oznacza wyłączenie.

2 Zmiany temperatury

2.1 Równanie rozchodzenia się temperatury

Schemat numeryczny opisujący rozchodzenie się temperatury działa w różny sposób w zależności położenia w mieszkaniu:

- dla okien temperatura zmienia się zgodnie z funkcją $w(t) = 280 10\sin(\frac{24t}{3600})$,
- dla pokoji korzystamy ze schematu numerycznego oraz z warunków brzegowych Neumanna opisanych równaniem:

$$u_{i,j,k+1} = u_{i,j,k} + \frac{Dh_t}{h_x^2} \Big(u_{i+1,j,k} + u_{i-1,j,k} + u_{i,j+1,k} + u_{i,j-1,k} - 4u_{i,j,k} \Big) + h_t f(x,t),$$

gdzie

- u to macierz 100 x 100 zawierające indeksy umieszczonych w mieszkaniu ścian, drzwi, okien i grzejników,
- -D to współczynnik dyfuzji,
- $-\ h_t,\, h_x$ to wielkości kroków, które są uwzględniane przy ewolucji ciepła,

– funkcja f(x,t) opisuje moc grzejników i generowane przez nich ciepło w czasie,

ściany przyjmują takie same wartości jak przedostatnie kolumny i wiersze,

• dla drzwi liczona jest średnia temperatura pomiędzy pomieszczeniami

2.2 Symulacje

Zaprezentujemy teraz jak zmienia się temperatura w mieszkaniu w czasie.

Moce grzejników w łazience, sypialni, salonie i korytarzu przyjmują odpowiednio wartości 1,0,1,2. Temperatura rozchodzi się równomiernie w mieszkaniu utrzymując wysoki poziom ok. 25° C. W sypialni mimo że kaloryfer pozostaje wyłączony, utrzymuje się przyjazna temperatura. Ciepło bardzo łatwo rozchodzi się w mieszkaniu, a czynniki zewnętrzne (wiatr, niskie temperatury na dworze) nie mają dużego wpływu.

3 Pomiar zużytej energii

Zmierzymy teraz zużycie energii potrzebnej do ogrzania całego mieszkania. Wartości mocy grzałek są podane pokojami odpowiednio w łazience, sypialni, salonie oraz w korytarzu. W lewym górnym rogu poniższego wykresu znajduje

się legenda z konkretnymi wartościami mocy, które porównujemy, aby wybrać najefektywniejszy sposób.

Wykres 2: Pomiar zużytej energii

Z wykresu wynika, że moce grzałek ustawione odpowiednio na 1,0,1,2 ocieplą nasze mieszkanie i nie nadwyrężą budżetu domowego rachunkami. Z wykonanego doświadczenia można wyciągnąć istotny wniosek, aby utrzymać niskie koszty ogrzewania domu należy:

- mieć szczelne okna, które nie przepuszczają zimnego powietrza z zewnątrz,
- zwrócić uwagę na dobrą cyrkulacje powietrza w mieszkaniu, aby ciepło z grzejników rozchodziło się z łatwością,
- zadbać o izolację mieszkania,
- wybrać odpowiednią moc grzejników niekoniecznie maksymalną.