

VERIFICATION OF TRANSLATION

I, Kenji FUJIMOTO

of a citizen of Japan residing at: 410, 14-1,
Higashiyama-cho, Itabashi-ku, Tokyo 174-0073, Japan
certify that I am familiar with the English and
Japanese languages, and to the best of my knowledge
and belief the following is a true translation of the
officially certified copy of the Japanese Patent
Application, 2000-354306

This 25 day of November, 2003

Kenji FUJIMOTO

```
PATENT APPLICATION
    [Document Name]
    [Identification No.] -- 01211282
    [Filing Date]
                              Heisei 12 November 21
                         Commissioner of Japanese Patent
    [To]
    Office
    [International Patent Classification] H01L 21/82
    [Inventor]
     -[Domicile or Residence] c/o NEC IC-Microcomputer
    System Corporation, 403-53, 1-chome, Kosugi-machi,
10
    Nakahara-ku, Kawasaki-city, Kanagawa prefecture, Japan
                         Hashimoto Eiki
      [Name]
    [Applicant]
      [ID number]
                         000232036
      [Name]
                         NEC IC-Microcomputer System
15
    Corporation
    [Attorney]
     [ID number]
                        100102864
     [Patent Attorney]
    [Name or Title] Minoru Kudoh
20
    [Selected Attorney]
      [ID number]
                         100099553
     [Patent Attorney]
    [Name or Title]
                         Masao Ohomura
    [Indication of Charge]
25
     [Deposit Payment Register Number] 053213
      [Amount of Fee]
                               21000yen
```

[Items of the Filing Articles]

[Article Name] Specification one copy

[Article_Name] Drawings one copy

[Article Name] Abstract one copy

[General Power of Attorney] 9815548

[Proof] Necessary

[Document Name] Specification

[Title_of_the_Invention] SEMICONDUCTOR CIRCUIT

DESIGNING APPARATUS AND A SEMICONDUCTOR CIRCUIT

DESIGNING METHOD

[Scope of Patent to be Claimed]
[Claim 1] A semiconductor circuit designing apparatus,
comprising:

a circuit design unit executing a logical design of a semiconductor integrated circuit; and

- an inspection item database section in which a circuit feature of said semiconductor integrated circuit corresponds to an inspection item of a acceptance inspection to be required before a layout design of said semiconductor integrated circuit,
- wherein said circuit design unit generates a target circuit feature information indicating said circuit feature of a target semiconductor integrated circuit of said semiconductor integrated circuit, obtains a target inspection item of said inspection
- item corresponding to said target circuit feature information from said inspection item database section, and executes said logical design of said target semiconductor integrated circuit in reference to said

target inspection item.

25 [Claim 2] The semiconductor circuit designing apparatus according to Claim 1, further comprising:

a model development history database in which

said circuit design unit corresponds to the number of times of failures of said inspection item, and

wherein said inspection item of which said number of times is small is withdrawn from said target inspection item.

[Claim 3] The semiconductor circuit designing apparatus according to Claim 1, further comprising:

a layout design unit executing said layout design, and

- wherein said circuit design unit executes said acceptance inspection of said target semiconductor integrated circuit of which said layout design is executed, and provides a result of said acceptance inspection with said target semiconductor integrated
- [Claim 4] The semiconductor circuit designing apparatus according to Claim 1, wherein said inspection item database belongs to said circuit design unit.

circuit to said layout design unit.

15

20 [Claim 5] The semiconductor circuit designing apparatus according to Claim 3, wherein said inspection item database belongs to said layout design unit.

[Claim 6] The semiconductor circuit designing

25 apparatus according to Claim 3, wherein said layout design unit includes a plurality of layout design sections, and

wherein said inspection item database section belongs_to_at_least_one_of_said_plurality_of_layout_design sections.

[Claim 7] The semiconductor circuit designing apparatus according to Claim 3, further comprising:

a data center provided to be different from said circuit design unit and said layout design unit,

wherein said inspection item database belongs 10 to said data center.

[Claim 8] A semiconductor circuit designing method, comprising:

generating a inspection item database in which
a circuit feature of a semiconductor integrated

15 circuit corresponds to an inspection item to be
executed:

notifying a circuit designer of a target inspection item that is said inspection item corresponding to a target semiconductor integrated circuit for which said logical design is executed; and

executing said logical design of said target semiconductor integrated circuit in reference to said target inspection item.

[Claim 9] The semiconductor circuit designing method 25 according to Claim 8, further comprising:

20

providing said target semiconductor integrated circuit in which said target inspection item is passed

to a layout designer.

10

[Claim_10] The semiconductor circuit designing method according to Claim 9, further comprising:

generating a model development history database
in which said circuit designer corresponds to said
inspection item and the number of times of failures of
said inspection item, and

withdrawing said inspection item of which said number of times is small corresponding to said circuit designer from said target inspection item.

[Detailed Description of the Invention]

[Technical Field to which the Invention belongs]

The present invention relates to a

semiconductor circuit designing apparatus and a semiconductor circuit designing method. More particularly, the present invention relates to a semiconductor circuit designing apparatus and a semiconductor circuit designing method, which are used in a silicon interface field of an ASIC development so as to further reduce the number of steps in a circuit design and a layout design.

[Conventional Technique]

[0002]

In a field of a semiconductor design, a division between a circuit design and a layout design is advanced as a circuit becomes large and complex,

and the respective automations are advanced. In such division, an acceptance inspection is executed for examining whether or not a circuit information interfaced so as to minimize a backward motion of a step is reasonable. Inspection items for such an acceptance inspection are different depending on a circuit feature, such as a circuit configuration, a test simplifying method to be used and the like. So, the items of the acceptance inspection to be executed are determined depending on the circuit feature.

A layout designer carries out all necessary acceptance inspections for each model, on the basis of the circuit information prepared by the circuit

15 designer. So, a number of steps are needed in order to execute the acceptance inspection and confirm the result. Or, there may be a case that an acceptance inspection on the layout designer side is omitted by inquiring the executed inspection items of the circuit designer. However, an answer (entry) miss on the circuit designer side, a misunderstanding or the like causes an erroneous result to be reported, which results in the backward motion of the step (iteration) in many cases.

25 [0004]

10

A known drawing validation system disclosed in Japanese Laid Open Patent Application (JP-A-Heisei, indicative of a drawing, a second memory for storing a data indicative of a predetermined condition and a judging unit for judging whether or not the drawing agrees with the predetermined condition. Such a drawing validation system can automatically validate whether or not an item specified on the basis of a know-how and an experience of the circuit designer is accurately reflected to thereby prepare a drawing of a layout of a printed circuit board, without any manual work. Thus, it is possible to prepare the drawing with high quality in a short time.

[0005]

5

10

This drawing validation system relates to a

15 determination of an inspection item and an inspection execution in a single drawing validation system to be used by the layout designer. Its applicable department is limited to the layout designer side.

Thus, it does not disclose a method to be used for the circuit designer to avoid a problem.

[0006]

[Problems the Invention Tries to Solve]

provide a semiconductor circuit designing apparatus

25 and a semiconductor circuit designing method, in which
an iteration, such as a re-design and the like, caused
by a design trouble can be reduced.

An object of the present invention is to

Another object of the present invention is to provide a semiconductor circuit designing apparatus and a semiconductor circuit designing method, in which inspection items can be reduced.

Still another object of the present invention is to provide a semiconductor circuit designing apparatus and a semiconductor circuit designing method, in which a burden of a number of steps on a circuit designer can be reduced.

Still another object of the present invention is to provide a semiconductor circuit designing apparatus and a semiconductor circuit designing method, in which a burden of a number of steps on a layout designer can be reduced.

15 [0007]

[Means for Solving the Problems]

The units to solve the object are described as follows. A number, a symbol and the like together with a parenthesis () are attached to a technical item appearing in the description. The number, the symbol and the like coincide with a reference number, a reference symbol and the like, which are given to the technical item constituting at least one

implementation or a plurality of embodiments in a

25 plurality of implementations or a plurality of
embodiments in the present invention, especially, the
technical item illustrated in a drawing corresponding

to the implementation or the embodiment. Those reference number and reference symbol clarify the correspondence and the relationship between the technical item noted in claim and the technical item in the implementation or the embodiment. Those correspondence and relationship do not imply that the technical item noted in claim is construed so as to be limited to the technical item in the implementation or the embodiment.

10 [0008]

A semiconductor circuit designing apparatus of the present invention, includes: a circuit design unit (1) executing a logical design of a semiconductor integrated circuit; and an inspection item database 15 (6) section in which a circuit feature of the semiconductor integrated circuit corresponds to an inspection item of an acceptance inspection to be required before a layout design of the semiconductor integrated circuit, wherein the circuit design unit 20 (1) generates a target circuit feature information indicating the circuit feature of a target semiconductor integrated circuit of the semiconductor integrated circuit, obtains a target inspection item of the inspection item corresponding to the target 25 circuit feature information from the inspection item database (6) section, and executes the logical design of the target semiconductor integrated circuit in

reference to the target inspection item.

[0 0 0 9]

The above-mentioned logical design enables the design data, in which the rejection in the acceptance inspection is smaller, to be provided to the layout designer.

[0010]

In this case, the semiconductor circuit designing apparatus further includes: a model

10 development history database (7) in which the circuit design unit (1) corresponds to the number of times of failures of the inspection item, and wherein the inspection item of which the number of times is small is withdrawn from the target inspection item. Such an exemption reduces the number of the designing steps of the circuit designer.

[0011]

Also in this case, the semiconductor circuit designing apparatus further includes: a layout design unit (2) executing the layout design, and wherein the circuit design unit (1) executes the acceptance inspection of the target semiconductor integrated circuit of which the layout design is executed, and provides a result of the acceptance inspection with the target semiconductor integrated circuit to the layout design unit (2).

[0012]

Also in this case, the inspection item database

(6)—belongs—to—the—circuit—design—unit—(1). Or, the
inspection item database (6) belongs to the layout
design unit (2). Or, both of the circuit design unit

(1) and the layout design unit (2) may include the
inspection item database (6), respectively. The
layout design unit includes a plurality of layout

design sections, and wherein the inspection item
database (6) belongs to at least one of the plurality

of layout design sections. Here, at least one does
not imply all of the plurality of units, and it
implies one or the plurality of layout designing units.

[0013]

Also in this case, the semiconductor circuit
designing apparatus further includes: a data center
provided to be different from the circuit design unit
(1) and the layout design unit (2), and wherein the
inspection item database (6) belongs to the data
center. The inspection item database (6) is unitarily
managed by the data center unit and easily updated.
[0014]

A semiconductor circuit designing method of the present invention, includes: generating a inspection item database (6) in which a circuit feature of a semiconductor integrated circuit corresponds to an inspection item to be executed; notifying a circuit designer of a target inspection item that is the

inspection item corresponding to a target
semiconductor—integrated circuit—for—which—the—logical
design is executed; and executing the logical design
of the target semiconductor integrated circuit in
reference to the target inspection item. The abovementioned logical design enables the design data, in
which the rejection in the acceptance inspection is
smaller, to be provided to the layout designer.
[0015]

5

In this case, the semiconductor circuit
designing method, further includes: providing the
target semiconductor integrated circuit in which the
target inspection item is passed to a layout designer.
According to such a provision, the frequency at which
the layout designer requests the re-logical design of
the target semiconductor integrated circuit is reduced.
[0016]

In this case, the semiconductor circuit designing method further includes: generating a model development history database (7) in which the circuit designer corresponds to the inspection item and the number of times of failures of the inspection item, and withdrawing the inspection item of which the number of times is small corresponding to the circuit designer from the target inspection item. Such an exemption reduces the number of the designing steps of the circuit designer.

[0017]

[Embodiments_of_the_Invention]

With reference to the attached drawings, an embodiment of a semiconductor designing system

5 according to the present invention, a plurality of engineering workstations (hereafter, abbreviated as [EWS]) are connected to each other. The plurality of EWS are provided with a circuit design EWS1 and a layout design EWS2. They are connected to each other through a network 3.

[0018]

The circuit design EWS1 is installed for each circuit designer and used for a circuit design. example, the circuit design EWS1 belongs to a circuit designer A, and a circuit design EWS1' belongs to a 15 circuit designer B. Circuit designers ID different from each other are assigned to the circuit designers. The circuit designer ID is used to identify the circuit designer and identify a right under which the 20 circuit designer accesses the layout design EWS2. The circuit designer is one person or a plurality of persons attached to one group. That group is an enterprise, a department within an enterprise, a design group within a department or the like. 25 circuit design EWS1 has a check sheet 4. The check

sheet 4 is an interface file in which a circuit feature of a semiconductor integrated circuit, an

inspection item and an inspection result are noted.

The_check_sheet_4_is_prepared_for_each_circuit_design.

[0019]

The layout design EWS2 belongs to a layout 5 designer, and it is used for the layout design. layout designer gives the circuit designer ID to each circuit designer. The layout design EWS2 has an inspection item database 6 and a model development history database 7. The inspection item database 6 is noted while a circuit feature and an inspection item 10 necessary for the circuit feature are correlated to each other. The model development history database 7 is noted while a circuit designer ID of a designing circuit designer, a circuit feature of a previously designed semiconductor integrated circuit and a 15 frequency of errors occurring in the development step are correlated to each other.

[0020]

Fig. 2 shows an actual example of the check

20 sheet 4. The circuit feature, the inspection item and an inspection result are noted in the check sheet 4.

A technology, a condition, a model name, a package, a number of pins, a presence or absence of a usage of a test simplifying method are noted as the circuit

25 feature. The test simplifying method uses a scan, a boundary scan and RAM. A net list check, a pattern check, a scan check, a timing check and the like are

noted as the inspection items.

_[_0.0.2.1_]____

In the semiconductor integrated circuit according to this embodiment on which the acceptance inspection is performed, the technology is CMOS9HD, the condition is 3.3 V, the model name is 65956E00, the package is TBG, and the number of pins is 420 pins.

Moreover, the scan manner of the test simplifying method is used without using the boundary scan and the RAM. The inspection items necessary for this semiconductor integrated circuit are the net list check, the pattern check, the scan check and the timing check. As the inspection result, there is no error in the net list check, there are two errors in the pattern check, the scan check is not executed, and there is no error in the timing check.

[0022]

10

15

Fig. 3 shows an actual example of the inspection item database 6. As for the semiconductor 20 integrated circuit, the inspection items are different depending on the circuit feature. The inspection items necessary for the respective circuit features of the semiconductor integrated circuit are noted in the inspection item database 6. As the circuit feature, 25 there are a basic configuration, a usage of the scan, a usage of the boundary scan, a usage of the RAM, a test bus configuration and the like. As the

inspection items, there are the net list check, the pattern check, the scan check, the boundary scan check, the timing check, a test terminal check and a RAM check.

5 [0023]

which the acceptance inspection is performed is

designed by only the basic configuration, the
inspection items in the acceptance inspection that

must be executed are the net list check, the pattern
check and the timing check. If the semiconductor
integrated circuit on which the acceptance inspection
is performed employs the scan manner that is the test
simplifying method, the inspection items in the

acceptance inspection that must be executed are the
net list check, the pattern check, the scan check and
the timing check.

[0024]

If the semiconductor integrated circuit on

which the acceptance inspection is performed employs
the boundary scan manner that is the test simplifying
method, the inspection items in the acceptance
inspection that must be executed are the net list
check, the pattern check, the boundary scan check and

the timing check. If the semiconductor integrated
circuit on which the acceptance inspection is
performed employs the RAM, they are the net list check,

the pattern check, the timing check and the RAM check.

If the semiconductor integrated circuit on which the acceptance inspection is performed has the test bus configuration, the inspection items in the acceptance inspection that must be executed are the net list check, the pattern check, the timing check and the test terminal check.

["0"0"2"5"]"

Such an inspection item database 6 clarifies

10 the inspection items in the acceptance inspection to
be executed. This results in the sure execution of
the acceptance inspection.

[0026]

Fig. 4 shows an actual example of the model

development history database 7. In the model

development history database 7, the designer ID, the

circuit feature and the inspection result are noted

while they are correlated to each other, for each

semiconductor integrated circuit.

20 [0027]

For example, in a case of a semiconductor integrated circuit having a model name of 6595E00 that is designed by a circuit designer whose circuit designer ID is AAA, its technology is COMS9HD, its condition is COMS3,3V, and its package is TBG. As the various inspection results of this semiconductor

integrated circuit, there is no error in the net list

check, there are two errors in the pattern check, the scan check is not executed, and there is no error in the timing check, in the acceptance inspection executed on September 11.

5 [0028]

In a re-acceptance inspection executed on
September 14, there is no error in the net list check,
there is no error in the pattern check, the scan check
is not executed, and there is no error in the timing

10 check. In a back annotation executed on September 18,
there is no error in the net list check, there are two
errors in the pattern check, there is no error in the
scan check, and there is no error in the timing check.

[0029]

15 Figs. 5, 6 show the operation of the semiconductor designing system according to the present invention. At first, a circuit designer inputs a circuit designer ID to the circuit design EWS1 (Step S1). The circuit design EWS1 sends the input circuit designer ID through the network 3 to the layout design EWS2.

[0030]

The layout design EWS2 judges an allowance or rejection of an access in accordance with the circuit designer ID (Step S2). If it is judged that there is no problem in the circuit designer ID, the access is allowed, and the layout design EWS2 reports its fact

to the circuit design EWS1. If the access is allowed, the circuit designer inputs to the circuit design EWS1 the circuit feature of a semiconductor integrated circuit to be designed. The circuit design EWS1 sends the circuit feature to the layout design EWS2 (Step S3).

[0031]

The layout design EWS2 obtains the circuit designer ID and the circuit feature, retrieves an inspection item to be inspected on the basis of the inspection item database 6, and retrieves a previous error of the circuit designer designing the semiconductor integrated circuit on the basis of the model development history database 7 (Step S4). The layout design EWS2 determines an inspection item to be executed at this time on the basis of the retrieved inspection item and error (Step S5).

having no problem in five models finally developed by the circuit designer, an execution of the inspection item is exempted. If there is an item in which an error is recorded in the model development history database, the item is determined to be an inspection item to be executed. Such exemption enables the number of inspection items to be reduced on the basis of the experience and the level of the circuit

designer. Thus, the burden on the circuit designer is relaxed. If the circuit designer is composed of a plurality of designers, the exempted inspection items are greater to further relax the burden on the circuit designer.

[0033]

[0034]

5

The layout design EWS2 sends the determined execution inspection item to the circuit design EWS1. The circuit design EWS1 receives the execution inspection item from the layout design EWS2, and 10 writes the inspection items and the circuit feature of the semiconductor integrated circuit to the check sheet 4 (Step S6). The circuit design EWS1 displays a previous error content received from the layout design The circuit designer designs a 15 EWS2 on a screen. logical circuit while paying attention to the previous error content and the execution inspection item (Step Since the item to which the attention must be S7). paid can be obtained at an initial stage of a logical design, the circuit designer can avoid a logical 20 design unsuitable for a layout design and accordingly avoid the re-design (iteration).

If the design of the logical circuit is

25 completed, a logical validation of the logical design
is executed (Step S8). If any trouble is discovered
in the logical validation, the logical design is again

design, the circuit design EWS1 checks the acceptance inspection item noted in the check sheet 4 (Step S9). The inspection result is additionally written to the check sheet 4. If there is a rejected item among the inspection items noted in the check sheet 4, the logical design is again carried out. Such re-design can prevent an unnecessary iteration in advance. If there is no problem in all the items among the acceptance inspection items, the circuit design EWS1 sends the check sheet 4 together with the design data such as a circuit connection information, a pattern and the like to the layout design EWS2 (Step S10).

15 The layout design EWS2 compares the execution inspection items noted in the check sheet 4 with the executed result, in response to the reception of the check sheet 4. If there is an inspection item in which the executed result is not noted in the inspection items to be executed, it is judged as a 20 non-execution, and it is returned back to the circuit designer, and the inspection of the non-execution item is requested (Step S11). If there is a result unsuitable for the layout as the result of the 25 acceptance inspection, it is returned back to the circuit designer, and the improvement based on the redesign is requested (Step S12). If the layout has no

problem in all the inspection items, the inspection result together with the circuit feature and the circuit designer ID is written to the model development history database 7.

5 [0036]

After that, the layout designer designs the layout (Step S13). After the design of the layout, a back annotation is carried out (Step S14). In the back annotation, it is confirmed whether or not the semiconductor integrated circuit carries out a desirably functional operation at a delay after the layout, and additionally writes its result to the model development history database 7. If the result of the back annotation is NG, it is returned back to the circuit designer, and the improvement based on the re-design is requested. If the result of the back annotation is OK, an EB process is carried out (Step S15).

[0037]

executed by the circuit designer. At this time, after the design of the layout, the layout design data is sent from the layout design EWS2 to the circuit design EWS1, and the circuit design EWS1 executes the back annotation. If the back annotation is NG, the logical design is again carried out. If the back annotation is OK, the circuit design EWS1 sends its fact to the

layout design EWS2. The layout designer carries out the EB process, in response to the report of the back annotation OK.

[0038]

- 5 By correlating between the previous error and problem and the circuit feature and the circuit designer, the circuit designer can obtain the items to be considered at the time of the logical design prior to the designing and thereby avoid the problem at the stage of the logical design. Also, since the circuit 10 designer executes the acceptance inspection, the acceptance inspection of the layout designer is not required, which reduces the number of steps in the layout designer. Moreover, it is possible to reduce the request of the re-design to the circuit designer 15 from the layout designer side caused by the defective result of the acceptance inspection. Such dispersion of the process can attain a further reduction in TAT. [0039]
- Figs. 7, 8 show another operation of the semiconductor designing system according to the present invention. At first, a circuit designer inputs a circuit designer ID to the circuit design EWS1 (Step S21). The circuit design EWS1 sends the input circuit designer ID through the network 3 to the layout design EWS2.

 [0040]

The layout design EWS2 judges an allowance or rejection of an access in accordance with the circuit designer ID (Step S22). If it is judged that there is no problem in the circuit designer ID, the access is allowed, and the layout EWS2 reports its fact to the circuit design EWS1. If the access is allowed, the circuit designer inputs to the circuit design EWS1 the circuit feature of a semiconductor integrated circuit to be designed (Step S23). The circuit design EWS1 sends the circuit feature to the layout design EWS2.

10

The layout design EWS2 obtains the circuit
designer ID and the circuit feature, and retrieves an
inspection item to be inspected on the basis of the

15 inspection item database 6, and then retrieves a
previous error of the circuit designer designing the
semiconductor integrated circuit on the basis of the
model development history database 7 (Step S24). The
layout design EWS2 determines an inspection item to be
20 executed at this time on the basis of the retrieved
inspection item and error (Step S5). For example, if
there is an inspection item having no problem in five
models finally developed by the circuit designer, an
execution of the inspection item is exempted. If

there is an item in which an error is recorded in the model development history database, the item is determined to be an inspection item to be executed.

The layout design EWS2 sends the determined inspection item to the circuit design EWS1.

The circuit design EWS1 receives the execution 5 inspection item from the layout design EWS2, and writes the inspection items and the circuit feature of the semiconductor integrated circuit to the check sheet 4 (Step S26). The circuit design EWS1 displays a previous error content received from the layout 10 design EWS2 on the screen. The circuit designer designs a logical circuit while paying attention to the previous error content (Step S27). If the design of the logical circuit is completed, a logical validation of the logical design is executed (Step S28). If any trouble is discovered in the logical 15 validation, the logical design is again carried out. [0043]

After the completion of the logical design, the circuit design EWS1 checks the acceptance inspection

20 item noted in the check sheet 4 (Step S29). The inspection result is additionally written to the check sheet 4. If there is a rejected item among the inspection items noted in the check sheet 4, the logical design is again carried out. If there is no

25 problem in all the items among the acceptance inspection items, the circuit design EWS1 sends the

check sheet 4 together with the design data such as a

circuit connection information, a pattern and the like to the layout design EWS2 (Step S30).

The layout design EWS2 compares the execution 5 inspection items noted in the check sheet 4 with the executed result, in response to the reception of the check sheet 4 (Step S31). If there is an inspection item in which the executed result is not noted in the inspection items to be executed, it is judged as a 10 non-execution, and its inspection item is inspected (Step S32). If there is a result unsuitable for the layout as the result of the acceptance inspection, it is returned back to the circuit designer, and the improvement based on the re-design is requested (Step S33). If the layout has no problem in all the 15 inspection items, the inspection result together with the circuit feature and the circuit designer ID is written to the model development history database 7. [0045]

20 After that, the layout designer designs the layout (Step S34). After the design of the layout, the back annotation is carried out (Step S35). The layout design EWS2 additionally writes the result of the back annotation to the model development history database 7. If the result of the back annotation is NG, it is returned back to the circuit designer, and the improvement based on the re-design is requested.

Incidentally, the back annotation may be executed by the circuit designer, similarly to the above-mentioned embodiment. If the result of the back annotation is OK, the EB process is carried out (Step S36).

5 [0046]

Since the inspection result of the acceptance inspection executed by the circuit designer is written to the check sheet 4, it is not necessary that the same inspection item is again executed in an acceptance inspection on a layout designer side. This results in the reduction of the number of the inspection steps of the layout designer. Moreover, since the number of steps in the acceptance inspection can be reduced, the circuit designer can be devoted entirely to the logical design.

[0047]

Figs. 9, 10 show the operation of the semiconductor designing system according to the present invention. At first, a circuit designer

20 inputs a circuit designer ID to the circuit design EWS1 (Step S61). The circuit design EWS1 sends the input circuit designer ID through the network 3 to the layout design EWS2.

[0048]

rejection of an access in accordance with the circuit designer ID (Step S62). If it is judged that there is

no problem in the circuit designer ID, the access is allowed, and the layout EWS2 reports its fact to the circuit design EWS1. If the access is allowed, the circuit designer inputs to the circuit design EWS1 the circuit feature of a semiconductor integrated circuit to be designed. The circuit design EWS1 sends the circuit feature to the layout design EWS2 (Step S63).

[0049]

The layout design EWS2 obtains the circuit 10 designer ID and the circuit feature, and retrieves an inspection item to be inspected on the basis of the inspection item database 6, and then retrieves a previous error of the circuit designer designing the semiconductor integrated circuit on the basis of the 15 model development history database 7 (Step S64). layout design EWS2 determines an inspection item to be executed at this time on the basis of the retrieved inspection item and error (Step S65). For example, if there is an inspection item having no problem in five 20 models finally developed by the circuit designer, an execution of the inspection item is exempted. there is an item in which an error is recorded in the model development history database, the item is determined to be an inspection item to be executed.

25 The layout design EWS2 sends the determined inspection item to the circuit design EWS1.

[0050]

The circuit design EWS1 receives the execution inspection—item—from the—layout—design—EWS2, and writes the inspection items and the circuit feature of the semiconductor integrated circuit to the check sheet 4 (Step S66). The circuit design EWS1 displays a previous error content received from the layout design EWS2 on the screen. The circuit designer designs a logical circuit while paying attention to the previous error content (Step S67). If the design of the logical circuit is completed, a logical validation of the logical design is executed (Step S68). If any trouble is discovered in the logical validation, the logical design is again carried out.

10

sheet 4.

The circuit design EWS1 examines whether or not an item equivalent to the inspection item of the acceptance inspection to be executed is included in the inspection items in the logical validation. If it is included, the inspection result of that item is written to the check sheet 4 (Step S69). Such representation can protect the same inspection from being doubly executed, which can reduce the number of steps in the circuit designer. After that, the circuit design EWS1 checks the acceptance inspection items noted in the check sheet 4 (Step S70), and additionally writes the inspection result to the check

[0052]

If there is a rejected item among the inspection items noted in the check sheet 4, the logical design is again carried out. If there is no problem in all the items among the acceptance inspection items, the circuit design EWS1 sends the check sheet 4 together with the design data such as the circuit connection information, the pattern and the like to the layout design EWS2 (Step S71).

The layout design EWS2 compares the execution

10 [0053]

inspection items noted in the check sheet 4 with the executed result, in response to the reception of the check sheet 4. If there is an inspection item in 15 which the executed result is not noted in the inspection items to be executed, it is judged as a non-execution, and it is returned back to the circuit designer, and the inspection of the non-execution item is requested (Step S72). If there is a result unsuitable for the layout as the inspection result of 20 the acceptance inspection, it is returned back to the circuit designer, and the improvement based on the redesign is requested (Step S73). If the layout has no problem in all the inspection items, the inspection result together with the circuit feature and the

circuit designer ID is written to the model

development history database 7.

[0054]

After that, the layout designer designs the layout (Step S74). After the design of the layout, the back annotation is carried out (Step S75). In the back annotation, it is confirmed whether or not the semiconductor integrated circuit carries out a desirably functional operation at a delay after the layout, and additionally writes its result to the model development history database 7. If the result of the back annotation is NG, it is returned back to the circuit designer, and the improvement based on the re-design is requested. If the result of the back annotation is OK, the EB process is carried out (Step S76).

15 [0055]

[0056]

10

Fig. 11 shows another embodiment of the semiconductor designing system according to the present invention. A circuit design EWS1 has a check sheet 4 and an inspection item database 6. A layout design EWS2 has a model development history database 7. At this time, the check sheet 4 is different from the previous embodiment. A circuit feature and an inspection result are written thereto, or only an inspection item to be executed and its inspection result are written thereto.

Figs. 12, 13 show the operation of the

semiconductor designing system according to another

embodiment of the present invention. At first, the

circuit designer inputs to the circuit design EWS1 the

circuit feature of the semiconductor integrated

5 circuit to be designed (Step S41). The circuit design

EWS1 retrieves an error when previously designing the

semiconductor integrated circuit, on the basis of the

model development history database 7 (Step S42). The

circuit design EWS1 determines an inspection item to

10 be executed at this time, in accordance with the

retrieved inspection item (Step S43).

[0057]

The circuit design EWS1 writes to the check sheet 4 the circuit feature of the semiconductor

15 integrated circuit and the inspection item to be executed (Step S44), and displays the previous error content on the screen. The circuit designer designs the logical circuit while paying attention to the previous error content (Step S45). If the design of the logical circuit is completed, a logical validation of the logical circuit is carried out (Step S46). If any trouble is discovered in the logical validation, the logical design is again carried out.

[0058]

After the completion of the logical design, the circuit design EWS1 checks the acceptance inspection item noted in the check sheet 4 (Step S47). The

inspection result is additionally written to the check sheet 4. If there is a rejected item among the inspection items noted in the check sheet 4, the logical design is again carried out. If there is no problem in all the items among the acceptance inspection items, the circuit designer inputs a circuit designer ID to the circuit design EWS1 (Step S48). The circuit design EWS1 sends the input circuit designer ID through the network 3 to the layout design EWS2.

[0059]

10

The layout design EWS2 judges an allowance or rejection of an access in accordance with the circuit designer ID (Step S49). If it is judged that there is no problem in the circuit designer ID, the access is allowed, and the layout EWS2 reports its fact to the circuit design EWS1. In the circuit designer, if the access is allowed, the circuit design EWS1 sends to the circuit design EWS2 the check sheet 4 together with the design data, such as the circuit connection information, the pattern and the like (Step S50).

The layout design EWS2 compares the execution inspection items noted in the check sheet 4 with the executed result, in response to the reception of the check sheet 4 (Step S51). If there is an inspection item in which the executed result is not noted in the

inspection items to be executed, it is judged as a

non-execution, and it is returned back to the circuit

designer, and the inspection of the non-execution item
is requested. If there is a result unsuitable for the

1 layout as the result of the acceptance inspection, it
is returned back to the circuit designer, and the
improvement based on the re-design is requested (Step

S52). If the layout has no problem in all the
inspection items, the inspection result together with
the circuit feature and the circuit designer ID is
written to the model development history database 7.

[0061]

After that, the layout designer designs the layout (Step S53). After the design of the layout, 15 the back annotation is carried out (Step S54). back annotation, it is confirmed whether or not the semiconductor integrated circuit carries out a desirably functional operation at a delay after the layout, and additionally writes its result to the 20 model development history database 7. If the result of the back annotation is NG, it is returned back to the circuit designer, and the improvement based on the re-design is requested. If the result of the back annotation is OK, the EB process is carried out (Step 25 S55).

[0062]

Such a semiconductor circuit designing system

can clarify the inspection item to be executed without any intervention of the network 3 by the circuit design EWS1. In the logical design in which the previous error is not displayed and the inspection

- item is not exempted, a communication between the circuit design EWS1 and the layout design EWS2 is small and efficient. Incidentally, the inspection item database may be simultaneously installed in both the circuit design EWS1 and the layout design EWS2.
- 10 In this case, the semiconductor circuit designing system is operated as shown in Figs. 12, 13, similarly to this embodiment.

[0063]

Still another embodiment of the semiconductor

designing system according to the present invention
includes a plurality of layout designs EWS. As shown
in Fig. 14, a layout design EWS2 belongs to a layout
designer A, and a layout design EWS2' belongs to a
layout designer B. The semiconductor designing system
according to still another embodiment of the present
invention further includes a data center 8. The data
center 8 is connected to the network 3, and it has a
inspection item database 6 and a model development
history database 7.

25 [0064]

The circuit EWS1 obtains the data of the inspection item database 6 through the network 3 from

the data center 8. The layout EWS2 obtains the data of the inspection item database 6 or the model development history database 7 through the network 3 from the data center 8. The layout EWS2 further updates the data of the model development history database 7 through the network 3.

[0065]

If each of the plurality of layouts EWS has the inspection item database 6 and the model development

10 history database 7, the database is managed by each layout EWS2, and the database is updated by each layout EWS2. In the semiconductor designing system according to still another embodiment of the present invention, the inspection item database 6 or the model

15 development history database 7 is unitarily managed.

It is easy to update the inspection item database 6 or the model development history database 7.

[0066]

Incidentally, a layout EWS2 that is a part of
the plurality of layouts EWS2 may also hold the
function of the data center without separately
installing the data center 8.

[0067]

[Effects of the invention]

25 The semiconductor circuit designing apparatus and the semiconductor circuit designing method according to the present invention can avoid the

occurrence of the problem in the later step in advance
by providing the inspection items in the acceptance
inspection to the circuit designer.

[Brief Description of the Drawings]

5 [Fig. 1]

Fig. 1 is a block diagram showing a configuration of a semiconductor design system according to a embodiment of the present invention; [Fig. 2]

Fig. 2 is a table of a check sheet of a semiconductor design system according to a embodiment of the present invention;

[Fig. 3]

Fig. 3 is a table of a inspection item database

15 of a semiconductor design system according to a

embodiment of the present invention;

[Fig. 4]

Fig. 4 is a table of a model development
history database of a semiconductor design system

20 according to a embodiment of the present invention;
[Fig. 5]

Fig. 5 is a flow chart of semiconductor design method according to a embodiment of the present invention;

25 [Fig. 6]

Fig. 6 is a flow chart of semiconductor design method according to a embodiment of the present

invention;

[Fig. 7]

Fig. 7 is a flow chart of semiconductor design method according to another embodiment of the present

[Fig. 8]

invention;

Fig. 8 is a flow chart of semiconductor design method according to another embodiment of the present invention;

10 [Fig. 9]

Fig. 9 is a flow chart of semiconductor design method according to still another embodiment of the present invention;

[Fig. 10]

Fig. 10 is a flow chart of semiconductor design method according to still another embodiment of the present invention;

[Fig. 11]

Fig. 11 is a block diagram showing a

20 configuration of a semiconductor design system according to another embodiment of the present invention;

[Fig. 12]

Fig. 12 is a flow chart of semiconductor design

25 method according to yet still another embodiment of
the present invention;

[Fig. 13]

Fig. 13 is a flow chart of semiconductor design method according to yet still another embodiment of the present invention; and [Fig. 14]

Fig. 14 is a block diagram showing a configuration of a semiconductor design system according to still another embodiment of the present invention.

[Description of the reference Numerals and Symbols]

- 10 1 circuit design EWS
 - 2 layout design EWS
 - 3 network
 - 4 check sheet
 - 6 inspection item database 6
- 15 7 model development history database
 - 8 data center

[Document Name] Abstract

[Abstract]

[Object] An iteration, such as a re-design and the
like, caused by a design trouble is reduced and a
burden of a number of steps on a circuit designer is
reduced.

[Solving Means]

A semiconductor circuit designing apparatus

25 includes an inspection item database 6 which

corresponds to an inspection item of a acceptance

inspection and a circuit design unit 1, wherein the

circuit design unit 1 obtains a target inspection item corresponding to a circuit feature of a target circuit, and executes a logical design of a target semiconductor integrated circuit based on the target inspection item. A model development history database in which the circuit design unit 1 corresponds to the number of times of failures of the inspection item is further included and the inspection item of which the number of times is small is withdrawn from the target inspection item. A layout design unit 2 is further 10 included and the circuit design unit 1 executes the acceptance inspection of the target semiconductor integrated circuit of which the layout design is executed, and provides a result of the acceptance inspection with the target semiconductor integrated 15 circuit to the layout design unit 2.

[Selected Drawing] Fig.1

JAN 0 2 2004

Fig. 2

4: CHECK SHEET

	SULT	TIMING	ERROR 0
	NSPECTION ITEM AND RESULT	SCAN	ERROR ERROR NOT - ERROR 0
	T ON ITE	PATTERN CHECK	ERROR 2
	INSPEC	NET LIST PATTERN CHECK CHECK	
•		RAM	NOT- USED
		BOUN DARY SCAN	USED NOT-
		SCAN	OSED
	111	HEL NAME PACKAGE THE NUMBER SCAN	420
	CIRCUIT FEATURE	PACKAGE	TBG
		MODEL NAME	65956E00
		FECHNOLOGY CONDITION MODE	MOS9HD cmos_3.3V 659
		TECHNOLOGY	CMOS9HD
			-

6: INSPECTION ITEM DATABASE

			INSPI	INSPECTION ITEM			
CIRCUIT FEATURE	NET LIST CHECK	PATTERN CHECK	SCAN	BOUNDARY SCAN CHECK	TIMING	TEST TERMINAL CHECK	RAM
BASIC CONFIGURATION	EXECUTED	EXECUTED	gazinn – i		EXECUTED		
USAGE OF THE SCAN	EXECUTED	EXECUTED EXECUTED	EXECUTED		EXECUTED		
USAGE OF THE BOUNDARY SCAN	EXECUTED	EXECUTED		EXECUTED	EXECUTED		
USAGE OF THE RAM	EXECUTED	EXECUTED			EXECUTED		EXECUTED
TEST BUS CONFIGURATION	EXECUTED	EXECUTED	D - 2		EXECUTED EXECUTED	EXECUTED	
:	:	:	•	:	::	:	•

Ø

- i g . 4

7: MODEL DEVELOPMENT HISTORY DATABASE

- 1												_
ļ					<u> </u>		_	• • •	•••	••	• •	
		TIMING	ERROR 0	ERROR 0	ERROR 0	ERROR 0	ERROR 0	ERROR 0	ERROR 0	ERROR 0	ERROR 0	
	ORY	BOUNDARY SCANCHECK	NOT- TARGETED	NOT- TARGETED	NOT- TARGETED	ERROR 0	ERROR 0	NOT- TARGETED	NOT- TARGETED	NOT- TARGETED	NOT- TARGETED	-
	ST		0	0	0	<u>Q</u>	Q:	0	0	Ω		
	IT ON HI	SCAN	NOT- EXECUTED	ERROR 0	ERROR 0	NOT- TARGETED	NOT- TARGETE	ERROR 0	ERROR 0	NOT- Targeted	NOT- TARGETE	••
	INSPECTION ITEM ECXECUTION HISTORY	PATTERN CHECK	ERROR 2	ERROR 0	ERROR 0	ERROR 0	ERROR 0 TARGETED	ERROR 0	ERROR 0	ERROR 0	ERROR 0 TARGETED	
		DATA NET LIST PATTERN CHECK	ERROR 0	ERROR 0	ERROR 0	EXCEPTED	ERROR 0	ERROR 0	ERROR 0	ERROR 0	ERROR 0	• •
		DATA	9/11	9/14	9/18	9/4	9/11	8/3	8/7	7/29	9/4	
		PHASE	ACCEPTED	RE-ACCEPTED	BACK ANNOTATION	ACCEPTED	BACK ANNOTATION	ACCEPTED	BACK ANNOTATION	ACCEPTED	BACK ANNOTATION	• •
		••	<u> </u>	• •		•	•		•	•	•	
	CIRCUIT FEATURE	PACKAGE	TBG			00GN		A8S1		QFP		
		MODEL	6595 6E00			87543		12345		6562 4E99		
		CONDITION		cmos_3.3V			tt!_5V		tt _3.3V		cmos_5V	
		TECHNOLOGY		CMOS9HD			CB7		CB8		CM0S6	
	IDINFO	RMATION	MATION AAA				ABC			BC		

Fig. 6

Fig. 10

Fig. 12

LAYOUT DESIGNER

Fig. 13

