

This lecture will introduce Relational Algebra

Relational Algebra

- What is it?
- Why we need it?

Think about algebra.

For example $(a^2+b)*c/d$.

Algebra has symbols defining for different operations.

These operations has different level of priority. So $(a^2+b)*c/d$ is different from a^2+b*c/d

We can rewrite the same formula for faster calculation. $(a^2+b)*c/d = a^2*c/d+b*c/d$, but the left hand side have less operations, so faster to calculate

Union, Intersection and Difference Operators

- These are defined if r and s have the same schema
 - $r \cup s = \{x: x \in r \lor x \in s\}$; its schema is same as that of r or s
 - $r-s = \{x: x \in r \land x \notin s\}$; its schema is same as that of r or s
 - $r \cap s = \{x: x \in r \land x \in s\}$; its schema is same as that of r or s
- Example

r		
A	В	
1	2	
3	4	
5	6	
7	8	
		_

A	В
1	3
3	4
5	6

A	В
1	2
3	4
5	6
7	8
1	3

r-s	
A	В
1	2
7	8

$r \cap s$		
A	В	
3	4	
5	6	

Start with the basic

Relations are sets of tuples

So all set operators can be applied here (but there is a requirement: the schema of the two relations has to be the same)

Union ∪

Intersection ∩

Difference -

Question

- Is $r \cap s = s \cap r$
- Is $r \cup s = s \cup r$
- Is r s = s r

Select Operator

- $\sigma_c(r)$ selects those tuples of r that satisfy condition c
- Examples of conditions
 - $A \leq B$,
 - $A > 2 \wedge A < B$
- $\sigma_c(r) = \{x: x \in r \land x \text{ satisfies condition } c\}$
- Example

r	
A	В
1	2
3	4
5	6
7	6

$\sigma_{A>2}$	A < B(r)
A	В
3	4
5	6

Sigma σ

Question

• Do you remember what we learned in the Chapter on Select?

Project Operator

- $\Pi_X(r)$ retains only X columns
 - In $\Pi_X(r)$, X must consist of some attributes of r
- The schema of $\Pi_X(r)$ is X
- $\Pi_X(r) = \{x[X]: x \in r\}$
 - Here x[X] includes only attributes in X, other attributes are excluded
- Example

r		
A	В	С
1	2	4
5	4	2
5	6	2
7	8	3

$\Pi_{\rm AC}(r)$		
A	C	
1	4	
5	2	
7	3	

• $\Pi_{AC}(r)$ is a set from which a "duplicate tuple was removed"

Pi π

Row VS Column

- In relational algebra, "Selection" is on rows (i.e., which rows satisfy the conditions), while "Projection" is on columns.
- Don't get confused with the Select statement in SQL.
 - Select name from Students where id="001"
 - This sql is $\pi_{name}(\sigma_{id="001"}(Students))$

 $\pi_{name}(\sigma_{id="001"}(Students))$ chooses the row first and then choose the column. Can we switch these two operations?

Natural Join Operator

- $r \bowtie s$ combines tuples of r and s agreeing on common attributes
- $r \bowtie s$ is always defined
- Suppose schema of r is R and schema of s is S, Then schema of r \bowtie s is R \cup S
- $r \bowtie s = \{x : x[R] \in r \land x[S] \in s\}$
 - For a tuple to be in $r \bowtie s$, its R portion should be in r and S portion in S
 - Implicitly, R and S portions match on the common attributes $R \cap S$
- Example

r	
A	В
1	2
3	4
5	6
9	4
10	5

S	
В	С
2	3
4	4
4	6
9	4

$r \bowtie s$		
A	В	С
1	2	3
3	4	4
3	4	6
9	4	4
9	4	6

Join ⋈

Question

• Do you remember what we learned in Chapter on Join?

Renaming Operator

- Sometimes it becomes necessary to rename attributes or relations before or after an operator is applied
- Renaming does not alter the information content, i.e. tuples
- We use the syntactic form α → β to express that the identifier α is changed to β.
- Example
 - Consider $r \cup (s: C \rightarrow B): \rightarrow q$
 - Here, attribute C in s is renamed to B
 - · After computing the union the result is named as q
 - ":" has the lowest priority r

A	В
1	2
3	4
5	6

S	
A	С
1	3
3	4
5	6

q	
A	В
1	2
3	4
5	6
1	3

Cross Product Operator

- $r \times s$ concatenates tuples of r and s
- Every common attribute in r and s renamed
- In renaming prefix "r." and "s." are used to make attributes unique across r and s
- $r \times s = \{x \circ y : x \in renamed \ r \land y \in renamed \ s\}$
 - · Here, o denotes concatenation of two tuples to form a larger tuple
 - The schema of $r \times s$ consists of all attributes of r and s after renaming
- Example

B C 4 2 7 3

A	r.B	s.B	C
1	2	4	2
1	2	7	3
3	4	4	2
3	4	7	3
5	6	4	2
5	6	7	3

Cross product (aka Cartesian product)

Additional Join Operators

- $r \bowtie_c s = \{x \circ y : x \in renamed \ r \land y \in renamed \ s \land x \circ y \ satisfies \ c\}$
 - The schema of $r \bowtie_{\, c} s$ consists of all attributes of r and s after renaming
- Example

A	В
1	2
3	4
5	6

В	C
4	2
4	3

A	r.B	s.B	C
1	2	4	2
1	2	4	3
5	6	4	2
5	6	4	3

Question

- Can you link natural join with cross product?
- $s \times r$
- $s \bowtie r$

Relational Algebra as a Query Language

Name	DName	Salary
John	Toys	50K
Mary	Toys	60K
Lan	Shoes	55K

DName	MName
Toys	Mary

• Give names and salaries of employees in Toys or Credit. $\Pi_{Name, \, Salary}(\sigma_{DName} = \text{`Toys'} \vee DName} = \text{`Credit'} (Emp))$

Name	Salary
John	50K
Mary	60K

• Another algebraic expression for the query is as follows:

$$\begin{split} \Pi_{Name,\,Salary}(\sigma_{DName\,=\,\,{}^{\backprime}Toys^{\backprime}}(Emp)) \\ &\quad \cup \Pi_{Name,\,Salary}(\sigma_{DName\,=\,{}^{\backprime}Credit^{\backprime}}(Emp)) \end{split}$$

· Different users may express the query in different ways

Relational Algebra as a Query Language

•	

Name	DName	Salary
John	Toys	50K
Mary	Toys	60K
Leu	Shoes	55K

Dept

MName
Mary

• Who is John's manager?

 $\Pi_{MName}(\sigma_{emp.DName} = _{Dept.DName} \land _{Name} = 'John', \ (Emp \times Dept))$

- · Observe how operators are composed
- · Retrieves the following relation

MName	
Mary	

Quiz on Canvas

- Access code: sailors
- 2 attempts allowed
- Open book, open notes, no communication

Exercise

Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, <u>day</u>)

 Find the names of sailors who have reserved boat 103

 $\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$

Exercise

Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, <u>day</u>)

 Find the names of sailors who have reserved a red boat

 $\pi_{sname}\left(\left(\sigma_{color="red"}(Reserve\bowtie Boats)\right)\bowtie sailors\right)$

Exercise

Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, <u>day</u>)

 Find the colors of boats reserved by Lubber

 $\pi_{color}\left(\left(\sigma_{sanme="Lubber"}(Reserve\bowtie Sailors)\right)\bowtie Boats\right)$

Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, day)

 Find the names of sailors who have reserved a red or a green boat

$$\begin{split} \pi_{sname} \left(\left(\sigma_{color="red" \ \lor color="green"}(Reserve \bowtie Boats) \right) \bowtie sailors \right) \\ \pi_{sname} \left(\left(\sigma_{color="red"}(Reserve \bowtie Boats) \right) \bowtie sailors \right) \\ \cup \pi_{sname} \left(\left(\sigma_{color="red"}(Reserve \bowtie Boats) \right) \bowtie sailors \right) \end{split}$$

Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, <u>day</u>)

 Find the names of sailors who have reserved a red and a green boat

$$\pi_{sname}\left(\left(\sigma_{color}=\text{"red"} \land color=\text{"green"}(Reserve\bowtie Boats)\right)\bowtie sailors\right)$$
 is wrong. Because this means select the boats that are both red and green.

$$\pi_{sname}\left(\left(\sigma_{color="red"}\left(Reserve\bowtie Boats\right)\right)\bowtie sailors\right)\cap \\ \pi_{sname}\left(\left(\sigma_{color="red"}\left(Reserve\bowtie Boats\right)\right)\bowtie sailors\right) \text{ can also run into problem, if two sailors have the same name.}$$

It's better to use sid

$$\pi_{sname}\left(\pi_{sid}\left(\left(\sigma_{color}=\text{"red"}\left(Reserve\bowtie Boats\right)\right)\bowtie sailors\right)\right)$$

Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, <u>day</u>)

 Find the names of sailors who have reserved at least one boats Sailors(<u>sid</u>, sname, rating, age) Boats(<u>bid</u>, bname, color) Reserve(<u>sid</u>, <u>bid</u>, <u>day</u>)

 Find the sids of sailors with age over 20 who have not reserved a red boat