

CA1 EP30 -G72

GOVT

Digitized by the Internet Archive in 2022 with funding from University of Toronto

CA1 EP 30 11 - G72

Environnement Canada **Guide to Data Holdings**

Government Publications

(13)

INLAND WATERS DIRECTORATE, ELECTRONIC DATA PROCESSING COMMITTEE, OTTAWA, CANADA, 1973.

land Waters Acceptante
in publications 7
Environmement
Canada

CAI EP30 672

Guide to Data Holdings

Including a List of Variables Measured and the Data Bases in which they are stored

© Information Canada Ottawa, 1973

Cat. No.: En 39-9/1974

CONTRACT #02KX KL 327-3-8061 THORN PRESS LIMITED

Contents

		Page
1. 0	How to Use this Publication	1
2.0	Introduction	3
3.0	Physiographic-Hydrologic Data (Hydrologic Square Grid System)	4
4.0	Streamflow and Water Level (Hydrometric System)	10
5.0	Groundwater (GOWN System)	17
6.0	Glaciology (Glaciology System)	2 4
7.0	The Great Lakes (STAR/EROS System)	35
8.0	Water Quality (NAQUADAT System)	44,
9.0	Sediment (Sediment System)	76
10.0	Use of Water Resources (WATERSTAT System)	81
11.0	Planning and Management, Scientific Documentation	
	(WATDOC System)	88
12.0	Alphabetical List of Variables	100
13.0	Addresses for Enquiries	111
14.0	Inland Waters Directorate Data Publications	115

1.0 How to Use this Publication

The Guide to Data Holdings in the Inland Waters Directorate is designed to provide convenient access to these data. The user can find here which data systems are operating in the Inland Waters Directorate, what kinds of data are available, where and how to obtain them, and whatever analytical capability goes with the data. This publication is organized on the following lines:

Introduction

A brief account of the Electronic Data Processing Committee's project for developing a rapid and comprehensive service to users of water resources data.

Descriptions and Titles of Data Banks or Systems

These are given under the following headings:

Physiographic Data
Streamflow and Water Level
Groundwater
Glaciology
The Great Lakes
Water Quality
Sediment
Use of Water Resources
Planning and Management (scientific documentation)

These nine sections outline the procedures for collecting and processing each type of data, the availability of data, the periods covered and the extent of the coverage, the kinds of institutions and individuals who are currently using them, and any developments planned for the data systems.

List of Parameters Measured

An alphabetical list of "variables" which presents the measurements, observations and synthesized data currently available, with a reference to the data bases from which they may be obtained. References to scientific documents on various aspects of water resources are not included as keywords, since this would make the alphabetical list far too extensive. Detailed references and search assistance is available through WATDOC (see page 88).

Other Information

The Guille contains two atter lists—addresses for enquiries at out data holdings, and data publications of the Inland Waters Directorate.

Specific Data

The user may obtain specific data through the following means of identification.

Through the alphabetical list of "variables" (pages 100–110) the user is juilded to one or more of the data bases holding these variables. He may then library information on the availability of data by describing the type of data required and indicating the location. Basin or Sub-Basin, Map or Square Grid Reference. Unit (district, point or station) or Title of Project. These enquiries should be addressed to the appropriate branch, division, section or office of the Inland Waters Directorate (see "Addresses").

If in doubt, write to the Electronic Data Processing Committee, Inland Waters Directorate, Environment Canada, Ottawa, Ontario, K1A 0E7.

2.0 Introduction

There are more data today than there were yesterday, and there will be even more tomorrow. The same may be said of data systems and banks, which have been springing up in recent years to cope with the relentless growth in the amount and variety of information to be handled. But, to state one more obvious fact, the capacity of systems to handle information in even more sophisticated ways is only a partial and costly achievement, unless the potential users know what information exists and how to acquire access to it.

The planning and management of water resources, with all their ramifications, are a good example of a field that already has several functioning data systems at its disposal, and now needs to open up more fully the channels of communications between the systems and with the people they are intended to serve. The publication of this Guide represents the first attempt to improve data accessibility on a national scale.

This program of development is being carried out by the Committee on Electronic Data Processing (EDP) of the Inland Waters Directorate, Environment Canada. The planning stage began with some studies undertaken for Inland Waters following the establishment, in 1966, of a working group on water data storage in the Department of Energy, Mines and Resources. An independent review of the Committee, in 1969, resulted in a set of recommendations (1) being made for co-ordinating the various data systems. A 1972 report (2), while supporting a co-ordinated approach, advocated the continuance of separate systems for the various categories of data, while rejecting the hasty introduction of a single comprehensive system on the grounds of its prohibitive cost, the complexity and diversity of the data, and the special needs of each of the present systems. This means that the systems individually would continue to be responsible for their own planning, management and research.

In the meantime, it is hoped that the present publication will help users to find the information they need. The Guide is designed to be updated as the data holdings change and increase.

References

- Computer Science Division, Department of Energy, Mines and Resources, Report on Co-ordination of Inland Waters Branch Water Resources Data, 1969 (unpublished report).
- 2. Inland Waters Committee on Electronic Data Processing, Report on Co-ordination of Data Systems, April 1972 (unpublished report).

3.0 Physiographic-Hydrologic Data (Hydrologic Square Grid System)

3.1 Hydrologic Square Grid Data System

Large quantities of data are collected and stored in various data banks, such as those of Water Survey of Canada and the Atmospheric Environment Service. However, the usefulness of all these primary data is increased considerably through combinations and correlations which could make relevant secondary data available. This is the intended role of the physiographic data bank, which incorporates the Hydrologic Square Grid Data System (1).

Recent hydrometric network planning studies, conducted by the Water Resources Branch, have led to the conclusion that maximum efficiency in hydrologic data transfer or indirect estimation of hydrometric data is achieved by storing in a computerized bank all data regarding hydrology, meteorology and physio graphic characteristics, processing these data by means of statistical, deterministic or combined techniques, and transferring information on this basis to areas where data are missing (2).

3.2 Components

The four main components of the data bank are:

- (i) space-time reference system,
- (ii) data storage,
- (iii) data processing,
- (iv) information transfer techniques

The space-time reference system contains two elements. Firstly, a square grid, or matrix of squares, covers the area investigated, and it corresponds to the Universal Transverse Mercator (UTM) reference system. Squares of 10×10 kilometers have been used except for Southern Ontario, where a 5×5 km square was used. Each square can be identified by an index number of row and column (I, J), by its latitude and longtitude, or from the Universal Transverse Mercator system. This part of the reference system also indicates whether the square is entirely within the continental area or partially on the sea.

^{*} The system described here is still in the developmental stage, hence most of the information contained in it is not readily available. The extraction of requested information may, in some cases, require a considerable amount of time and effort.

The second element of the reference system is a technique (still being developed) for identifying the water runoff path from the divide between basins to the sea. This technique assists in establishing, at any point of the area, the drainage system above the point.

Data storage consists of physiographic data stored in each square, and meteorologic and hydrologic data stored in the squares in which stations are located. The present physiographic records consist basically of the elevation of the southwest corner of the square, the percentage of the square covered by forest, marshes, lakes, barren land, urbanized land, agricultural land, and sea; and in some areas, where available, an index of soil permeability.

Meteorologic data are limited at present to monthly temperature and precipitation time series at stations located in the area.

Hydrologic data at present consist of daily streamflow and sediment time series at stations in the study area.

The data processing component contains three groups of operations:

- (i) computation of "derived" physiographic characteristics such as slopes, barrier heights, distance to oceans and shield factors in the eight principal compass directions for each square.
- (ii) computation of statistics; physiographic characteristics of various river basins.
- (iii) analysis of meteorologic and hydrologic data, and estimation of long-term, annual, monthly and daily means, and other statistics of these values.

The information transfer techniques comprise statistical and deterministic models, which are based mainly on the combined use of physiographic and meteorologic, physiographic and hydrologic, or all three groups of data to produce estimated information for any point (or square) or basin within the study area. Figure 3.2-1 (a digital map) is a sample showing the distribution of average runoff.

3.3 Procedures

The physiographic characteristics have been extracted from topographic survey maps, in conjunction with engineering consulting firms.

Daily hydrologic and meteorologic data have been obtained from Water Survey of Canada (WSC) and the Atmospheric Environment Service (AES). Monthly averages of streamflow, temperature and precipitation, with daily maximum and minimum streamflow per month, were calculated and stored in the bank.

Figure 3.2-1. Digital map of the distribution of annual runoff in southern Ontario.

Correlations between the respective data sets and the physiographic characteristics have synthesized missing data for both the hydrologic and meteorologic data files.

3.4 Availability*

Data in the physiographic data bank can be summarized as follows:

- (i) measured physiographic data are in grid square format for all of Canada except northern Ontario and the Arctic Archipelago (see Figure 3. 4-1).
- (ii) derived physiographic characteristics.
- (iii) derived hydrologic data, e.g., average annual streamflow for ungauged basins.
- (iv) base data, i.e., streamflow, sediment, precipitation and temperature as recorded by WSC and AES. However, it is preferred that the prospective user obtain them from the source agency.

Enquiries should be directed to the Head, Network Planning and Forecasting Section, Applied Hydrology Division, Inland Waters Directorate, Environment Canada, Ottawa, K1A 0E7, Ontario. (Telephone 819-997-1509).

3.5 Users

The data have been used mostly so far in estimating hydrologic data for hydrometric network planning. The users have included engineering study groups in the federal government, district offices of Water Survey of Canada and university research groups.

A potential use is in estimating streamflow data at ungauged stations.

3.6 Plans

A system of larger squares for areas of smooth terrain, combined with smaller squares for more rugged terrain, could be incorporated into the present system. This would also provide some flexibility in application. Such a system is being investigated in British Columbia.

^{*} As noted earlier, this information is not in a readily available form and may, in some cases, require considerable effort to extract it in desirable form.

Figure 3.4-1. Square grid coverage in Canada.

As shown on Figure 3.4-1 the square grid system is at present composed of four geographic units: Western and Northern Canada, Southern Ontario, Quebec and Atlantic Provinces. There are minor differences between the physiographic parameters stored in each of these four units and also, in some cases, between the information transfer components. The feasibility of combining these four units into one large unit will be investigated. The development of physiographic square grid data for northern Ontario is also planned.

3.7 References

- Solomon, S.I., J.P. Denouvilliez, E.J. Chart, J.A. Woolley, and C. Cadou. The Use of a Square Grid System on Computer Estimation of Precipitation, Temperature and Runoff. Water Resources Research, Vol. 4, No. 5, October 1968.
- 2. The Shawinigan Engineering Company Limited, *Hydrometric Network Planning Study for Western and Northern Canada*, November 1970. Report for Government of Canada, Department of Energy, Mines and Resources, and other reports in this series.

4.0 Streamflow and Water Level (Hydrometric System)

4.1 Automated Hydrometric Data System

Water Survey of Canada and its predecessors have been collecting and publishing streamflow and water level data for over 60 years. The present hydrometric network consists of more than 2,400 gauging stations, excluding those in Quebec, where the provincial government has conducted its own surveys since 1964 (see Table 4.1-1).

Automated data processing techniques were initiated in Water Survey of Canada in 1966 along two fronts:

- (i) automation of daily discharge computations with the use of a digitizer,
- (ii) storage of historical daily discharge data on magnetic tape.

Both of the above programs are now in operation.

To date, over 30,000 station-years of daily discharge data have been collected, and about 8,000 station-years of "water level only" data. All of these data are published, and daily discharge data are available on magnetic tape for computer processing.

4.2 Procedures

Hydrometric data are collected and computed by the staffs of Water Survey of Canada's district offices at Vancouver, Calgary, Regina, Winnipeg, Guelph and Halifax, and an area office at Montreal. The data are forwarded to Ottawa for publication. Water level data are obtained by means of either an automatic graphical recorder (usually a Stevens A35 type) or a manual gauge, such as a vertical staff gauge, which is usually read once a day.

About 10 discharge measurements are obtained annually at each stream flow gauging station location, from which the daily discharge data are computed. These measurements, which are not made available to the user in a regular series of publications, consist of the following physical observations

 depth of water for at least 20 points to obtain the cross-sectional area.

Table 4.1-1 Water Survey of Canada Gauging Stations, December 31, 1972

Province or Territory	Total Active	Flow	Levels Only
Yukon Territory	37	31	6
Northwest Territories	63	44	19
British Columbia	657	540	117
Alberta	426	351	75
Saskatchewan	305	237	68
Manitoba	316	217	99
Ontario	437	387	50
Quebec	36	17	19
New Brunswick	79	70	9
Nova Scotia	44	43	1
Prince Edward Island	11 .	11	0
Newfoundland	43	43	0
TOTAL	2, 454	1, 991	463

- (ii) velocity of water at each vertical where the depth is obtained,
- (iii) air and water temperature at the time of measurement,
- (iv) ice thickness in the section.

Most of the data for stations equipped with a graphical recorder are computed by using a "pencil follower", which, in conjunction with a local digital computer, gives the daily values on punched cards. Data for stations not equipped with a recording gauge can be computed by using another computer program whose output also gives daily values on punched cards. The data from the remaining stations are computed manually or are supplied by outside agencies, and the values are keypunched from the source documents.

There are 36 cards per station year of data. These cards are converted to magnetic tape at the district office and the tape is sent to Ottawa. The tapes from all districts are then merged on a single tape for the current year and, along with data from Water Survey of Canada's HYDEX and PEAKS magnetic tape files, are converted by a commercial computer system into photocopy manuscript, which is directly suitable for publication. The tape containing the one year of daily discharges for all stations is then merged with the 16 master tapes containing historical data to produce updated tapes.

4.3 Availability

Daily discharges and daily water levels are published annually in the "Surface Water Data" series. Figure 4.3-1 shows a sample page from this publication. The format is explained in each of the following editions of the publication. British Columbia, Alberta, Saskatchewan, Manitoba, Ontario tincluding stations operated by Water Survey of Canada in Quebeci, Quebec (English translation of the province's French edition). Yukon Territory Northwest Territories, and Atlantic Provinces.

A "Surface Water Data Reference Index" is also published annually (see Figure 4.3-2 for sample page).

A third type of publication is an "Historical Streamflow Summary". This contains monthly and annual discharges for those stations where five or more years of data have been collected; the annual maximum and minimum daily discharges; the annual maximum instantaneous discharges; and the annual total discharges in acrefeet. The summary, which is to be issued every five years, presents the data to 1970 in the first issue (see Figure 4.3.3 for sample page).

Publications for streamflow and water level data are available from Information Canada, from the Publications Office, Inland Waters Directorate, or the Data Control Section, Water Resources Branch, Inland Waters Directorate,

				KINASKAN	LAKE NEAR	TELEGRAPH	CREEK S	TATION NO.	08CG002				13
					DAILY W	ATER LEVE	IN FEET F	OR 1970					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	DAY
1 2 3 4 5	1.73 1.75 1.75 1.75 1.75	1.51 1.50 1.48 1.50 1.49	1.37 1.34 1.33 1.35	1.17 1.15 1.17 1.16 1.16	1.22 1.23 1.24 1.24	2.22 2.35 2.62 3.00 3.29	3 99 3.97 3.96 3 97 3.99	3 5 3 3 . 5 6 3 5 8 3 6 2 3 . 6 1	2.75 2.74 2.75 2.74 2.70	2 . 3 3 2 . 3 4 2 . 4 0 2 . 4 6 2 . 4 3	2 18 2 16 2 14 2 13 2 09	1 65 - 1 68 1 65	1 2 3 4 5
6 7 8 9	1.69 1.68 1.68 1.68	1.48 1.50 1.49 1.50 1.49	1.33 1.31 1.34 1.30 1.30	1,17 1,15 1,16 1,15 1,15	1.29 1.32 1.35 1.40	3.43 3.62 3.69 3.70 3.73	3.99 3.96 3.94 3.87 3.81	3.57 3.57 3.60 3.59 3.56	2.66 2.67 2.65 2.60 2.56	2.48 2.46 2.47 2.45 2.41	2.07 2.03 2.01 1.97	1 72 1 69 1 70 1 72 1 74	6 7 8 9
11 12 13 14	1.66 1.66 1.65 1.65	1.48 1.51 1.46 1.44	1.29 1.29 1.28 1.28	1.15 1.14 1.13 1.13	1 . 4 7 1 . 5 1 1 . 5 8 1 . 6 8 1 . 7 1	3.81 3.83 3.82 3.84 3.90	3.74 3.66 3.62 3.52 3.51	3 . 5 2 3 . 4 8 3 . 4 6 3 . 4 1 3 . 3 7	2.55 2.53 2.51 2.49 2.48	2.42 2.42 2.42 2.38 2.39	1 98 1.96 1 92 1 91 1.90	1 75 1 76 1 84 1.83	1 1 1 2 1 3 1 4 1 5
16 17 18 19 20	1.65 1.65 1.65 1.67	1 . 4 3 1 . 4 4 1 . 4 1 1 . 4 0 1 . 4 3	1.25 1.26 1.25 1.24 1.23	1.12 1.12 1.12 1.12 1.13	1.76 1.80 1.82 1.84 1.88	3.99 4.08 4.16 4.20 4.21	3.54 3.53 3.53 3.51 3.54	3 37 3 32 3 26 3 23 3 17	2 44 2.44 2.42 2.39 2.39	2 35 2 34 2 38 2 35 2 34	1 88 1.86 1 83 1.81 1.78		16 17 18 19 20
2 1 2 2 2 3 2 4 2 5	1.65 1.62 1.60 1.60	1 . 4 4 1 . 4 0 1 . 3 7 1 . 3 8 1 . 4 0	1.22 1.23 1.22 1.21 1.21	1.12 1.13 1.12 1.13 1.14	1.88 1.91 1.94 2.00 2.04	4.25 4.44 4.47 4.51 4.50	3 58 3.54 3.51 3 49 3.47	3.11 3.11 3.06 3.03 2.98	2.36 2.37 2.34 2.33 2.32	2 3 1 2 2 9 2 2 7 2 2 4 2 2 1	1 75 1 70 1.68 1.65 1 60		2 1 2 2 2 3 2 4 2 5
26 27 28 29 30 31	1.58 1.57 1.56 1.54 1.54	1.38 1.38 1.34	1.22 1.22 1.19 1.19 1.19	1 15 1 14 1 15 1 16 1 18	2.06 2.06 2.12 2.13 2.16 2.19	4.37 4.33 4.24 4.16 4.07	3 . 4 3 3 . 4 1 3 . 4 4 3 . 4 8 3 . 4 7 3 . 5 0	2.91 2.89 2.88 2.85 2.79 2.76	2.32 2.29 2.33 2.31 2.34	2 19 2 15 2 13 2 19 2 15 2 18	1 60 1 59 1 55 1 54 1 52	1.75	26 27 28 29 30
MAX	IMUM DAIL	YEAR 1970 Y WATER LE Y WATER LE	VEL, 4.	51 PT ON J 12 PT ON A	UN 24 PR 16		N - LAT	ANUAL 57 32 08 N 30 12 37 W			NATURAL	FLOW	

WATER LEVELS ARE REFERRED TO ASSUMED DATUM.

MAXIMUM INSTANTANEOUS DISCHARGE 2580 CFS AT 1450 PST ON MAY 18

					AW RIVER N			ECOND FOR					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL JUL	AUG	SEP	OCT	NOV	DEC	DAY
1 2 3 4 5	133 B 127 B 124 B 116 B 102 B	22.9 B 22.3 B 22.1 B 22.0 B 22.2 B	27.8 27.3 26.5 25.2 24.0	B 70.1 B B 85.4 B B 102 B	595 676 823 837 797	585 533 490 444 404	257 325 299 266 232	174 172 147 126 107	16.7 25.8 33.9 35.7 34.9	27.0 25.9 26.6 25.8 30.5	33 3 33 7 32 7 8 31 8 8 31 3 B	16 9 B 16 8 B 16.4 B 15 7 B 15.4 B	2 3 4
6 7 8 9	93.7 B 89.8 B 85.0 B 74.7 B 71.9 B	22.8 B 23.3 B 24.0 B 24.9 B 25.5 B	22.9 22.7 22.8 23.2 23.7	B 227 B B 455 B B 560 B	775 754 691 637 619	361 324 303 295 288	207 190 158 140 122	88 8 85.5 81.4 62.1 50.5	31 5 31.3 38.7 40.7 38.7	12.0 29 4 27 7 27 0 28 0	30.6 B 30.3 B 30.0 B 29 7 B 29 0 B	15.2 B 15.1 B 15.2 B 15.6 B 15.8 B	, 8 9
1 1 1 2 1 3 1 4 1 5	68.0 B 59.9 B 46.7 B 41.2 B 37.0 B	25.0 B 22.7 B 22.1 B 21.2 B 21.1 B	23.9 24.1 24.4 25.1 26.5	B 706 B B 732 B B 764 B	626 807 1020 945 872	285 298 312 283 260	107 93 / 81 8 /1.1 59.8	49 0 49.8 48.5 45.6 40.3	35.3 32.7 31.0 30.2 29.4	28 6 31.4 32.9 34.9 38.5	26	16.3 B 16.3 B 16.3 B 16.0 B	13
16 17 18 19 20	34.4 B 31.5 B 28.8 B 26.6 B 22.7 B	20.3 B 19.7 B 21.1 B 22.0 B 23.4 B	28.1 29.8 30.4 31.2 31.8	B 861 B 970 B 1040	857 1270 2510 2190 1710	236 218 201 184 164	52.3 47 9 43.6 39 9 37 0	35.4 31.8 32.6 31.3 28.6	28.8 28.7 28.7 28.6 28.4	39.3 38.3 37.7 37.1 36.9	27 4 B 27.2 B 26.0 B 25.0 B 24.3 B	15.3 B 15.0 B 14.9 B 14 B 14.7 B	18
2 1 2 2 2 3 2 4 2 5	22.0 B 21.6 B 21.5 B 21.6 B 21.4 B	23.9 B 24.4 B 25.1 B 26.4 B 27.7 B	32.1 32.6 33.2 34.5 35.5	B 1130 B 1250 B 1290	1450 1350 1250 1140 1010	149 144 134 126	34 0 33.3 31.3 29.2 29.5	25.9 24.3 21.6 19.5 18.1	24.2 20.4 24.9 25.3 25.4	36.0 35.8 36.1 35.7 34.6	24.0 B 23.4 B 22 2 B 21.3 B 20.7 B	14.6 B 14.7 B 15.2 B 15.5 B 15.6 B	2 2 2 3 2 4
26 27 28 29 30 31	21.6 B 22.0 B 22.5 B 22.6 B 23.0 B 23.2 B	28.4 B 28.6 B 28.4 B	37.6 38.5 39.9 43.7 50.0 55.6	B 871 B 712 B 617 B 578	907 873 820 753 684 633	112 111 110 130 166	29.3 29.1 31.0 37.7 39.3	16.6 15.8 19.4 18.7 18.0	25.4 25.4 25.8 26.9 27.6	35 1 44.4 35.1 30.8 36.7 34.6	20.0 B 19.6 B 19.1 B 18.3 B 17.4 B	15.8 B 16.4 B 16.7 B 16.4 B 16.3 B 16.2 B	27 28 29 30
TOTAL	1656.9	663.5	954.6	20667.3	30881	7770	3255.8	1702.5	881.0	1030.4	787.9	486.4	TOTA
MEAN AC FT MAX MIN	53.4 3290 133 21.4	23.7 1320 28.6 19.7	30.8 1890 55.6 22.7	689 41000 1290 60.8	996 61300 2510 595	259 15400 585 110	105 6460 325 29 1	54.9 3380 174 15.8	29.4 1750 40.7 16.7	33.2 2040 44.4 25.8	26.3 1560 33.7 17.4	15.7 965 16.9 14.6	MEAN AC F MAX MIN
SUMMAR	Y FOR THE	YEAR 1970											
	TOTAL	ISCHARGE, DISCHARGE, M DAILY DI M DAILY DI	140000 SCHARGE	AC-FT 2510 CFS ON 14.6 CFS ON	MAY 18 DEC 21	LOCAT	ION - LAT	RECORDING 55 57 25 120 33 45 1270 SO M	M M		B-ICE C	ONDITIONS	

Figure 4.3-1. Sample page from "Surface Water Data."

	м.	ROTTOR	A					
Station	Name	Arms	5-0- Lines	Discharge Records J(Misc. Meas. 9)	THE	C7=-11	Addition to the same of the sa	Nutr
	1 Marin							
sgn S	Assumits the River near Holland	11,219	49° 41' 54" 98° 53' 56"	54-60°	M	S	Yes	1
15111105	Assimiboine River near Rossendale	61,400	98° 38' 32'' W21-09-09-W1	707]	М	l c	No	1
i Mf1006] , Portage Reservoir near Portage La Prairie		49° 56' 10" 98° 20' 10" SE22-11-0"-W1	70-71°	R	S	No	1 5
05MJ003	Assimiboine River near Portage La Prairie	11,479	49° 56' 09" 98° 16' 48" 5W19-11-06-W1	22°,31°,23-30 52-60 61-71	M M R	SCC	Yes	1,2,6
o.Winoi	Assimiboine River at Headingley	16,117	49° 52' 09" 97° 24' 10"	13-52 53-59,60,61-71	M R	C	Yes	1,6
05MJ002	Assimiboine River at St. James		49° 52' 30'' 97° 11' 30''	12-13	l M	İS	l Yes	П
OSMDOO?	Shell River near Roblin	5-4.7	\$1° 21' 39" 101° 15' 21" \$W06-28-27-W1	62-71	l M	i c	l Yes	
05MD002	Shell River Four Miles South of Roblin	-(1	\$1° 10' 10''	19-20#, 33-35# 22-27 28-32	M M	C	Yes	
oSMD001	Shell River at Asessippi		50° 56' 50" 101° 19' 00"	13#, 24# 14-19	M ss	C	Yes	
05MD005	Shell River near Inglis	776	50° 57' 40" 101° 19' 05" NW03-23-28-W1	1 48-55 56-61 62-71	M M R	S C C	Yes	

M - Manual gauge

05MD008

05ME.005

05JM016

05ME.003

05ML002

R - Recording gauge C - Continuous operation S - Seasonal operation

. East Shell River:

. Childs Lake near Boggy Creek

. . . Conjuring Creek near Russell

. . . . Birdtail Creek near Birtle

. . . . Birdtail Creek at Birtle

. . . . Qu'Appelle River near St. Lazare

1 - Sediment data available.

51° 34' 37'' 101° 01' 54''

50° 47' 30" 101° 17' 55" NE09-21-28-W1

50° 26' 25" 101° 19' 35"

1 - Sectiment data available.
2 - Water quality data available.
3 - Miscellaneous measurements were obtained in 1918 and 1921.
4 - Data not published.
5 - Telemetering device installed.
6 - Data to 1900 have been reviewed.

14-17 24-26, 28

A4-71*

3,4

М

М

M

S

١.

Yes

2,4

Figure 4.3-2. Sample page from "Surface Water Data Reference Index."

1

ONTARIO

BIG OTTER CREEK NEAR VIENNA - STATION NO. 02GC004

ANNUAL EXTREMES OF DISCHARGE IN CFS AND ANNUAL TOTAL DISCHARGE IN AC-FT

YEAR	MAXIMUM INSTANTANEOUS DISCHARGE	MAXIMUM DAILY DISCHARGE	MINIMUM DAILY DISCHARGE	YEAR	TOTAL DISCHARGE
1948			~~~	1948	
1949	MA Apr up	3730 CFS ON FEB 16	41.0 CFS ON NOV 10	1948	170000 AC-F
1950		4120 CFS ON APR 5	43.0 CFS ON OCT 6	1950	282000 AC-F
1951		3+00 CFS ON FEB 22	36.0 CFS ON SEP 10	1951	258000 AC-F
1952		3040 CFS ON MAR 11	36.0 CFS ON AUG 7	1952	180000 AC-F
1953	***	1700 CFS ON MAR 4	51.0 CFS ON OCT 5	1953	113000 AC-F
1954	***		51.0 CF3 OR OC1 5	1954	113000 AC-F
1955	et et et	2530 CFS ON MAR 1	39.0 CFS ON JUL 15	1955	186000 AC-F
1956	at	2520 CFS ON MAR 3	80.0 CFS ON AUG 1	1956	223000 AC-F
1957	Mar visc visc	2070 CFS, ON APR 6	92.0 CFS ON AUG 19	1957	216000 AC-F
1958	A 40 00	565 CFS ON APR 10	49.0 CFS ON SEP 3	1958	120000 AC-F
1959		1230 CFS ON APR 4	57.0 CFS ON JUL 16	1959	209000 AC-F
1960		2710 CFS ON MAR 30	51.0 CFS ON SEP 29	1960	198000 AC-F
1961		1790 CFS ON APR 26	47.0 CFS ON FEB 1	1961	168000 AC-F1
1962	on en en		47.0 CES ON FEB 1	1962	108000 AC-P
1963			/	1963	
1964	995 CFS AT 0300 EST ON AUG 24	839 CFS ON AUG 24	25.0 CFS ON AUG 1	1964	118000 AC-F1
1965	7410 CFS AT 0500 EST ON MAR 7	6400 CFS ON MAR 6	39.6 CFS ON JUL 30	1965	236000 AC-F
1966	2080 CFS AT 1030 EST ON DEC 8	2040 CFS ON DEC 8	41.4 CFS ON JUL 22	1966	177000 AC-F1
1967	1850 CFS AT 0300 EST ON DEC 22	1800 CFS ON DEC 22	57.0 CFS ON SEP 11	1967	197000 AC-F1
1968	5340 CFS AT 2330 EST ON FEB 3	3700 CFS ON FEB 3	64.0 CFS ON JUL 28	1968	206000 AC-F1
1969	6180 CFS AT 2100 EST ON JAN 30	5110 CFS ON JAN 31	73.3 CFS ON SEP 14	1969	248000 AC-F
	0.00	STITU CLU ON UNIN S.	/3.3 CF3 ON SEF 14	1909	248000 AC-F
1970	1480 CFS AT 1556 EST ON APR 3	1420 CFS ON APR 3	44.1 CFS ON AUG 10	1970	144000 AC-F
	EXTREMES OF DISCHARGE FOR THE PERIOD (OF RECORD		MEAN	192000 AC-F

7410 CFS ON MAR 7 1965 AT 0500 EST 6400 CFS ON MAR 6 1965 25.0 CFS ON AUG 1 1964

BIGHEAD RIVER NEAR MEAFORD - STATION NO. 02FB010

		MONTHLY	AND A	ANNUAL MEAN	DISCHARGES	IN CUBIC	FEET PER	SECOND	FOR THE	PERIOD OF	RECORD		
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOA	DEC	MEAN
1957 1958 1959	135 76.4	107 72.9	178 251	264 655	88.5 63.2 192	69.9 39.1 60.5	63.6 23.8 32.6	23.5 19.2 28.3	122 18.5 28.9	132 22.7 47.1	218 36.9 208	318 53.7 213	79.8 155
1960 1961 1962 1963 1964 1965 1966 1967 1968	188 69.5 107 55.0 196 121 163 185 148 234	136 204 129 45.4 116 249 275 116 358 200	165 399 334 430 279 113 304 258 453 293	626 3405 3651 1987 1504 450 2574	417 165 95.0 285 78.1 198 77.1 109 134 318	108 114 29.4 66.8 30.4 51.2 39.9 118 63.2	41.4 47.2 21.3 30.2 23.1 31.2 17.6 123 30.4 62.6	29.4 43.8 14.9 29.8 18.5 23.9 17.9 64.5 93.5	26.4 42.6 18.5 21.6 14.8 22.1 54.6 57.2 37.5	31.7 30.6 34.0 24.0 20.9 95.6 18.2 142 69.1 66.0	74.6 119 70.6 83.2 21.5 89.5 42.9 367 201	59.5 250 147 54.5 101 292 195 324 298 106	158 152 114 115 91.6 160 109 193 180 182
1970	84.4	96.3	150	644	149	52.2	65.0	29.0	61.0	99.2	121	168	143
MESN	126	162	277	1122	160	70.0	H 2 0	33 0	39.6	55 0	127	104	9.81.9

BIGHEAD RIVER NEAR MEAFORD - STATION NO. 02FB010

ANNUAL EXTREMES OF DISCHARGE IN CFS AND ANNUAL TOTAL DISCHARGE IN AC-FT

YEAR	MAXIMUM INSTANTANEOUS DISCHARGE	MUMIXAM	DAILY	DISCH	HARGE	MINIMUM	DAILY	DISC	HARGE	YEAR	TOTAL DISCHARGE
1957										1957	
1958		605	CFS ON	APR	1	11.0	CFS O	N SEF	15	1958	57800 AC-F
1959			CFS ON		3	14.0	CFS 0	N SEP	8	1959	113000 AC-F
1960	w == ==	2550	CFS ON	APR	3	16.5	CFS O	N OCT	17	1960	115000 AC-F
1961			CFS ON				CFS 0			1961	110000 AC-F
1962			CFS ON				CFS O			1962	82200 AC-F
1963			CFS ON				CFS O			1963	83500 AC-F
1964			CFS ON		5	10.3	CFS O	N SEP	14	1964	66500 AC-F
1965	***		CFS ON		12	12.6	CFS O	N AUG	23	1965	116000 AC-F
1966			CFS ON				CFS O			1966	79000 AC-F
1967	2260 CFS AT 0700 EST ON APR 1		CFS ON		1	20.5	CFS O	N SEP	17	1967	139000 AC-F
1968	2770 CFS AT 1745 EST ON FEB 2		CFS ON		2		CFS O			1968	131000 AC-F
1969	1550 CFS AT 0937 EST ON APR 5		CFS ON		5		CFS 0			1969	132000 AC-F
1970	1800 CFS AT 1903 EST ON APR 9	1650	CFS ON	APR	9	19.2	CFS O	n AUG	15	1970	103000 AC-F
	EXTREMES OF DISCHARGE FOR THE PERIOD	OF RECORD								MEAN	102000 AC-F5

MAX. INST. DISCHARGE IS 2770 CFS ON FEB 2 1968 AT 1745 EST MAX. DAILY DISCHARGE IS 3100 CFS ON HAR 26 1963 MIN. DAILY DISCHARGE IS 4.6 CFS ON SEP 19 1966

BLACK CREEK AT SCARLETT ROAD - STATION NO. 02HC027

		MONTHLY	AND ANNUA	L MEAN	DISCHARGES	IN CUBIC	FEET PE	ER SECOND	FOR THE	PERIOD OF	RECORD		
YEAR	JAN	FEB	MAR	APR	HAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	MEAN
1966 1967 1968 1969	13.9 17.6 43.6	12.0 46.9 14.8	37.6 57.5 27.8	36.4 18.7 41.0	17.1 22.9 29.2	43.3 16.6 19.4	23.7 12.1 21.5	8.1 14.2 33.7 17.4	10.8 20.8 17.1 10.7	9.6 20.5 14.1 18.7	18.4 20.0 32.7 27.9	26.7 31.1 21.4 15.7	24.3 25.9 23.6
1970	10.4	17.4	68.2	41.6	23.4	14.3	22.1	27.7	20.7	17.6	22.5	21.9	25.7
MEAN	21.8	22.8	47.8	34.4	23.2	22.2	19.9	20.2	16.0	16.1	24.3	23.4	24.9

Figure 4.3-3. Sample page from "Historical Streamflow Summary."

Er Jir Imment Canuda, Cittawa K1A 0F., Ontario (Telephone 819-997-2098), or friim the District Engineers at Vancouver, Calgary, Regina, Winnipeg, Guelph and Halifax, or the Area Engineer at Montreal (see "Addresses").

Details of individual stations and related records, as well as recent data that have not yet been published, may be obtained on application to the District Engineers or to the Director, Water Resources Branch.

Streamflew data can also be supplied in card format either on punched cards or magnetic tape. Although there is no charge for the data at present, the user is asked to supply his own tape. These data are available on application to the Director, Water Resources Branch.

4.4 Users

Data publications are sent to some 588 names on a mailing list which includes addresses in 18 foreign countries and, in Canada, to engineering consultants, universities (libraries, professors and students), provincial agencies (water resources, power, highways and fisheries), federal departments, municipal agencies (waterworks), power companies, technological institutes, railways, and individuals such as high school students.

Daily discharge data have also been supplied to a similar variety of users, in the form of magnetic tape, computer printouts or punched cards.

4.5 Plans

No change is proposed in the three types of data publications in the immediate future.

Within the next two or three years, daily water levels and maximum instantaneous discharges and water levels are expected to be made available to users on magnetic tape, as the daily discharge data are at present.

A minicomputer has been interfaced with the digitizer (pencil follower) to investigate the possibility of improving computation procedures. This system will be recommended for the district offices if it proves feasible over the next two or three years.

In 1973, it is planned to produce coloured maps, showing the locations of active and discontinued streamflow and water level stations, similar to those included in the 1968 Surface Water Data Reference Indexes.

5.0 Groundwater (GOWN System)

5.1 Groundwater Observation Well Network (GOWN)

The development of an automated groundwater data storage and retrieval system in the Inland Waters Directorate began in 1965. It was intended initially to store data for a groundwater observation well network, but GOWN has since expanded into a general purpose data processing system for the large volume of data available in the field of hydrogeology.

The data come from many sources, such as provincial water well drillers' reports and drilling programs for federal research projects. Data on fluid potentials are usually collected with analog or digital recorders. Floats or Keck sensors are normally used as the water level sensing devices.

5.2 Procedures

GOWN is an open-ended system that allows new files to be created and new types of data to be added to the existing magnetic tape files with a minimum of programming changes. It permits a wide variety of hydrogeologic data to be stored, and therefore is flexible and does not become rapidly obsolete (1).

At present, three files are in operation:

- Well Data,
- Well Log.
- Catalogue

In addition, a Hydrograph file is 60 per cent completed.

The Well Data file stores various information on well construction and instrumentation, and on the hydrogeologic characteristics of any aquifers penetrated by the well.

The Well Log file stores the lithologic log from a well or test hole, with the description of the formation coded mnemonically in five four-character fields (2). Additional parameter coded information, such as ground elevation and total depth, is also included in order to use the Well Log file more efficiently.

The accompanying Well Data and Well Log file coding sheets (Figures 5.2-1 and 5.2-2) show the types of data stored on each of these files.

Figure 5.2-1. Well data coding sheets.

Figure 5.2-2. Well log coding sheets.

The cutologue tile contains no data. But it lists all of the types of data torod in DOWN by the tion, time and serial number. This file is automatically up taking whenever with are change for are added to the system. The accompanying ample place (Figure 3.2.3) shows the format in which COWN data are catalogued.

The Well Hydrograph tile will store information on groundwater levels obtained from analog or digital recorders. Analog records can be converted to digital form by using a chart digitizer. A series of manually obtained measurements can be stored by a simple card-to-tape conversion program.

5.3 Availability

In terms of volume, the most important sources of data are the intrincial water wall defiliers annual records maintained by various provincial aporters. Examples of these are the data for 60, 000 wells in the Lake Ontario Urainate flasin provided through a co-operative project with the Ontario Water Braillites cummission in connection with the International Field Year for the circuit Lukes. Another 10,000 wells have been coded in the GOWN format through a birt program with the Manitolia Water Central and Conservation Branch. Data for about 5,000 wells help by the Inland Waters Directorate will also be coded and stored in the system, but are available at present only in a manual format.

The Catalogue file is a list of references to the data stored in GOWN. A tirmal cubilication of the data has not been considered, since the collection of water well drillers' records has been the responsibility of provincial agencies, who have already published these data in water well reports.

Any data stored in GOWN are available to agencies interested in hydroceologic data, but permission for release and use of the data must be obtained first from the proxincial or federal agency that collected the data. These data, or any political of them, are available on magnetic tape in the format of the COWN master files. Programs and documentation are also available to those who may want to establish their own data processing systems.

Requests for information should be sent to the GOWN Program Coordinator Inland Waters Directorate, Environment Canada, Ottawa, KIA 08.7. Ontario (Telephone 819-997-2466).

The general purpose retrieval program is designed to extract from the CHWN master files those wells that conform to criteria specified by the user. At present, these retrievals may be made from the Well Data and Well Log files, but other files may be added later. The criteria are converted by a program using a falctionary to a film acceptable to a "macro decoder" program, which generates a series of entire program instructions, which in turn produce the output for retrieval.

000253	TEST-HOLE NUMBER	6701667	6701667	6701669	6701669	6701659	6701670	6701671	6701671	6701672	6701673	6701674	6701675	67	0	6701678	6701679	6701679	6701680		6701681	6701682	6701683	6701684	6701684	6701685	6701686	6701686	6701687	6701688	6701689	6701689	0	6701691	0	VC.
		1,008	L00B	9000	LODB	1008	LODB	1000	100	1008	L008	L 008	1008		L 00 3	1000		L 00B	1008	1,006	1000	Lobe	1008	LODE	F 008	L 003	1000	1008	1000		LODB	1008	1008	0000	L008	L008
	REEL		00000	00000		00000	00000		100000	00000	00000	00000	0	100000	100000		>	000000	00000		00000	000001	0		100000	000001		100000	100000	00000		00000	00000	100000		000001
	RECORD SEQ		000000	100000		00000	100000	0	0	000001	000001	00000	0	100000	000001	00000		000000	0000000		00000	000001			000001	00000	. (100000	000001	100000		100000	100000	00000		00000
	PR	9	9	0 (0	9 0	() ()	00	94	0 0	94	0.0	0 0	9	0 0	9	9 4	0 0	S.	0 0	9	9.0	0	0 4	0 0	9	0 0	9	0.0	94	0 0	9	0.0	· C	0 0	9	0
	YR MO DY HR MI																																			
	≥	00	000	000	00	00	00	000	ن د ن د	00	000	000	000	000	000	000	000	000	00	0	00	00	00	00	000	000	000	000	000	000	00	000	<u>ن</u> ر	000	000	0
	IME-FROM MO DY HP	2 0 1	N °	9 00	6 2 3	0 0 0 0 0 0	6 27	0.0	3 0 3 4	0 0 0 0	100	5.6	£ .	± 00 10 ≈ 4	000	N Y	25	200	3	0 5	00	C- (V ~) 	0 :	2	000	21	2 2 2	200	~ :	- 0 n n	50	2.5		_
	YR										1352																							1965	1001	TONI
	0.0	<u>ن</u>	ഗഠ	0	6	O1 O1	6	90	νΩ	W 0	.0.0	0	n w	0	Б f	» о	0.	ເດ ແ	2	5	20	0.0	D 2	0	O 13	0	W 1	00	טיני	0 10	5 (*0	Oh iii) L/	or 7	
	ONGITUDE MIN SEC										1000																									
	-10										800 000																									
	DE																																			
	UDE	4542	4542	3109	0384	0000 4000 4000	5682	5844	4573	4573	127	0550	2530	2824	2824 02764	0354	2995	2995	2192	4803	0751	0751	5422	1203	4052	4052	1780	584B	5848	4297	2169	1000	1058	0524	0232	1
	LATITUDE G MIN SF	000	00	0 :0	0.0	0 4 0 0	55	0,0	40	410	() () (n (200	000	2 0	51	10 in	J J)	N 0	() () ()	503	1 2 5	100	2 2	53	ון נגי היי ניי	20	73 E	m:	n 1	300	U U	n (C)	.O 4)
	DES.	4.3	44	4.50	43	4 4 2 W	43	7 7	43	2 4 A	44	4	44	43	43	4 4 U W	43	4 3	43	43	4 4 6 7	4 3	1 4 0 M	43	7 7 7	4 3	4 4	43	44	4.	4 5	† †	4	4	7 7	ř
	7.1L										· N =																									
	SERIAL NO										0732																									

Figure 5.2-3. Catalogue file.

At this point, data for the retrieval wells may be listed or can be consided to a secondary retrieval phase. Depending on the type of map or the mathematical or statistical routine for which the wells have been retrieved, the secondary retrieval selects one item or more of data from the Well Log or Well Data records, and passes the data to a processing routine. For example, in producing a contour map, the processing routine determines the x, y and z co-ordinates for each well.

The nine basic types of maps that can be retrieved include the following

- (i) Surface Elevation of a Specific Material: Elevation, in feet above sea level, of the surface of the first occurrence of the specified material will be contoured. The Well Log file contains, for each stratum, the mnemonic noun (i.e., the material) and the age of the material. The material will be considered found if i) the age > some constant K, or ii) the mnemonic noun is found.
- (ii) Isopach (thickness) of Materials above a Specified Material: Thickness, in feet, will be contoured. The "depth from field" of the first occurrence of the specified material will give the thickness of the materials. The specified material will be determined as outlined in i).
- (iii) Total Thickness of Specified Materials above a Specified Material: Thickness, in feet, will be contoured. Thickness of all strata having one of the specified material (s) above the first occurrence of a specified material will be accumulated to obtain total thickness. The first occurrence will be determined as in i).
- (iv) Water Table Depth: Depth of water will be contoured for wells with depths less than some arbitrary constant K. The depth of the well is taken from ground level; instantaneous water level is the distance in feet to the top of the water from the measuring point.
- (v) Water Table Elevation: Elevation, in feet from sea level, of the top of the water for wells that satisfy iv will be contoured.
- (vi) Piezometric Surface Elevation at Given Elevation: Elevation in feet above sea level, of the top of the water will be contoured for wells that satisfy these criteria a) total depth depth to water > K, and b) $A \le ground elevation total depth <math>< B$.
- (vii) Specific Capacity of Bedrock Wells: Specific capacity will be contoured. If a well has more than one aquifer, the aquifer with the highest specific capacity will be chosen.

- (viii) Specific Capacity of Overburden Wells: Specific capacity of all overburden wells will be contoured. If a well has more than one aquifer, the aquifer with the highest specific capacity will be chosen.
- (ix) Thickness of a Particular Material: Stratum thickness, in feet, of the first occurrence of a specified material will be contoured; the first occurrence will be determined as in i).

5.4 Users

The system is being used currently to produce Lake Ontario Drainage Basin maps, which will be compared with maps produced manually for the same region by the Ontario Ministry of the Environment. This will provide an evaluation of the capability of an automated system to produce maps on a routine basis, and it should be of interest to potential users of the system's techniques in provincial agencies and universities.

The Alberta Department of the Environment has been testing the programs of the GOWN system and is planning to use the data editing and storage program to set up files in its own computer system.

5.5 Plans

It is expected that emphasis will be placed on the development of a wider variety of retrieval procedures, including those for tabular listings and automated production of trend surface maps, residual surface maps, fence diagrams, three-dimensional diagrams, etc.

5.6 References

- Gilliland, J.A., and A. Treichel, GOWN A computer storage system for groundwater data. Canadian Journal of Earth Sciences, Vol. 5, No. 6, 7 pp.
- 2. Gilliland, J.A., and G. Grove, *Groundwater Data System Manual*, 4th Edition. Inland Waters Directorate, Environment Canada.

6.0 Glaciology (Glaciology System)

6.1 Glacier Investigation and Glacier Inventory

Enth the Clacrology Division and the Applied Hydrology Division of the Infanc Waters Directorate carry out studies on glaciers in Canada. Data are collected and presented in slightly different formats, so the work of these Divisions is discussed separately.

First of all, the Glaciology Division and its predecessors have been collecting and nublishing data on the mass, energy and water balance of selected glaciers as part of the Canadian contribution to the International Hydrological Decade (IHD) starting in 1965. More general information on Canadian glaciers is provided by the Glacier Inventory. Results from these works are given in scientific journals and publications listed in "Research Projects in Glaciology" (1).

Secondly, in Western Canada, the Applied Hydrology Division, the Water Survey of Canada and its predecessors have surveyed a small sample of glacters since 1945 to determine toe recession, volumetric change and glacier contribution to streamflow. Data summaries have not been automated, but results are published regularly in reports of the Division (2).

6.2 Procedures

In the Claciology Division, information is available on Western Canada and the Arctic areas as follows:

- (i) Data obtained from aerial photographs and maps are compiled according to a region and basin coding system. The glacier inventory is concerned with the physical characteristics of glaciers and descriptions of each glacier's primary classification, form, frontal characteristics, longitudinal profile, nourishment and activity (3). For each glacier in the inventory, there are completed data sheets (see Figure 6.2-1) and index maps at a scale of 1:500,000.
- (ii) Mass, water and energy balance value for selected glaciers (see Figure 6.2-2). This involves field studies from May to early October on six glaciers in Western Canada, and June to late August on two glaciers in the Arctic. These studies include measurement of winter accumulation and summer meit, together with records of meteorological conditions and glacier stream discharge (4).

Province or Territory:				
Mountain Area:	Region and b	asin identification		J
	Glacier Numb	er	1 6	1
Hydrological Basin:	Longitude		1 10	J
1st Order:	Latitude	23	33	J
2nd Order:	U.T.M. 34		48	J
3rd Order:	Orientation:	Accumulation Area	49 51	1
4th Order:		Ablation Area	52 54	
	1	er Elevation (m)	60	1
Sources: Maps	Lowest Glacie	er Elevation (m): Exposed Total	66	1
Map Title and Number:	Elevation of S		67 72	1
Compiled By:	Lievation or 3	mow Line (m)	73 78	
Date:			80	
Scale:				
Contour Interval:	Region and b	asin identification		
Reliability:	Glacier Numb	per	7 - 10	J
Vertical:	Date of Snow	Line	1 20	ال
Horizontal:	Mean Accum	ulation Area Elevation (m)	21 26	1
Sources: Photographs		Accuracy Rating	27 28	1
	1	n Area Elevation (m)	29 34	1
Type:	1	Accuracy Rating	35 36	1
Serial Number:	Maximum Ler	ngth (Km): Ablation Area	32	7
Date:		Exposed Total	47 48	1
Flying Height:	Billion Width a	of Main Stream (Km)	49 54	
Focal Length	Mean Width o	maiii Stream (Kin)	4	60
Remarks:			80	
Work Done on Glacier: References 0 1 2 3 4 5 6 7 8 9		Slacier Number Surface Area (Km²): Exposed Total Accuracy Rating Area of Ablation (Km2) Accuracy Rating Accumulation Area Ratio (x) Mean Depth (m) Volume (Km³) in ice Accuracy Rating Classification and Description	7 10 18 27 28 27 28 36 37 38 43 44 49 59 60 68 3 80	
Other Photos Special Moraine	Lake	Region and basin identification	1 1 1 1 1	
1		Glacier Number	1 6	
2		Comments: Special	7 10	
3		General		1
		18	1 1 1 27	
4		28	1 1 1 47	1
5		Glacier Glacier	48 52	1
6		Name 53	64	1
7		65	75	1
8	1		80	П
Remarks		Data Compiled by: Date: Supervisor:		
		Centre:		

Figure 6.2-1 Data Sheet for Canadian Glacier Inventory.

Meteorology Surveying Runaff Haps	x x 1: 10, 000	x 1:10,000	x	x	x 1:10,000	x	x x 1.10,000	x 1:10,000	p 1:50,000
Meteorolo	×	×	×	×	×	×	×	×	
Mass	×	×	×	×	×	×	×	×	×
Period of Study	1966-	-9961	-9961	-9961	1966-	1968-	1966-	1965-	1962-71
Period of Longitude Study	116°34'W	116°12'W	118°13'W	122°55'W	122°48'W	130°10'W	M, 8 h o 69	76°35'W	73 °W
Latitude	51°40'N	51°51'N	N,00,05	N105°64	N,81°02	56°15'N	N.8E. 69	81°32'N	N° 07
Glacier	Peyto	Ram	Woolsey	Sentinel	Place	Berendon	Decade	Per Ardua	Barnes Ice Cap

Nature and Length of Claciology Division Glacier Investigations Figure 6.2-2

Records are reduced to daily averages and mass balance is determined as changes within elevation zones.

The Water Survey and Applied Hydrology Divisions carry out biennial surveys on a sample of glaciers in Canada (see Figure 6.2-3). The former make use of transit stadia survey methods to determine glacier profiles for calculating volumetric changes. Water discharge is measured by current meter or is estimated. The Applied Hydrology Division uses terrestrial photogrammetry and a Wild A-7 autograph (plotter) to produce large-scale maps of the lower areas (up to the snowline) of seven glaciers in Western Canada. From these maps, the linear, areal and volumetric changes can be calculated for the period between surveys (two-year period).

6.3 Availability

Data from the inventory and IHD glacierized basin studies may be obtained from the Glaciology Division, Inland Waters Directorate, Environment Canada, Ottawa, K1A 0E7, Ontario. (Telephone 819-997-2476).

The inventory file is available as printouts of data, summary tabulations and index maps (see Figure 6.3-1). Maps for areas now completed are available from the Canada Map Office or the Division. Summary reports of Peyto and Victoria glaciers in Alberta have been prepared from information available from the Water Survey of Canada. Information about the combined balance studies of Berendon, Sentinel, Place and Woolsey glaciers in British Columbia, Peyto and Ram River in Alberta, and Per Ardua and Decade in the Northwest Territories can be provided in printouts of meteorological data, together with page-size maps, charts and graphs.

The results of surveys made by the Water Survey of Canada are presented in reports from District Offices, and are available in limited numbers from the District Engineer concerned in Vancouver or Calgary (see "Addresses"). However, the work on each glacier is being prepared for wider distribution in Glacier Inventory Notes. To date, the Peyto and Victoria Surveys have been published (2). Reports on the work performed by the Special Services Section of the Applied Hydrology Division appear in the Directorate's report series (2), which may be obtained from the Publications Section, Inland Waters Directorate, Environment Canada, Ottawa K1A 0E7, Ontario. These sets of data are not stored in computer banks.

The surveys include the following glaciers (those underlined have been discontinued):

British Columbia - Bugaboo, <u>Franklin</u>, Helm, <u>Illecillewaet</u>, Kokanee, Nadahini, Sphinx and Sentinel.

Alberta - Angel, Athabasca, Freshfield, Lyell, Peyto, Saskatchewan and Victoria.

Figure 6.2-3 Claciers Surveyed by the Applied Hydrology Division and Water Survey of Canada

Classification		$\times \times \times \times \sigma$	۵			$\times \times \times \times$
əmuloV			۵.			××××
Depth			۵			$\times \times \times \times$
AAA			۵			$\times \times \times \times$
Area			۵			××××
Length AtbiW		and included the control of the cont	۵.			××××
Date			۵		* APRILITY 1	××××
Snow Line			Ф			$\times \times \times \times$
Orientation		$\times \times \times \times \sigma$	۵			××××
Coordinates			<u>C</u>	۵.		××××
Map				2.0		4. 0 4. 1 4. 3 4. 4 4. 1
Number of Saciers		532 1260 236 163	92	1852		1121 210 152 158 594
Name	Victoria Island Banks Island	Islands North of Barrow Strait Ellesmere Island South East Ellesmere Island South West Ellesmere Island Raanes and Svendsen Peninsulas Fosheim Peninsula Northern Ellesmere Island Kane Basin	Smith Sound Coburg Island	Devon Island Calf and North Kent Islands	Parry Islands	Axel Heiberg Island Steacie Ice Cap Western Axel Heiberg Island Northern Axel Heiberg Island McGill Ice Cap
Water Survey Basin Number	10TA 10TB	**************************************	*46427	*46460	*4648	*4644 *46441 *46442 *46443 *46443

	t.	
noit whileseld	×	XXXX
amulov	*	×
quaq	×	X
SIVOV		×
E-4.1V	*	×
чээм. Герия	×	×
eta(1	×	×
anil wond	*	×
noitetuaino	\times \times \times \times \times	\times \times \times
Coundinates	×××××	×
Number	5. 0 5. 1 5. 1 15-20 1-24	0 - 8 8 7
(1P 🔨	4. 4 5. 0 5. 1 5. 2 - 8 5. 9 - 14 5. 15 - 20	
Claciers	0789 675 1851 14302 1259	520 57 467 67 67
Number	107	15
A anie	Fastern Axel Heiberg Island Meighen Island Islands between M'Clintock Channel and Baffin Island Islands in Foxe Basin Somerset Island Prince of Wales Island Ring William Island Raylot Island Northern Baffin Island South Central Baffin Island Southern Baffin Island	Labrador Nelson River Basin Oldman River Bow River Red Deer River North Saskatchewan River Churchill and Thelon Rivers
Water Survey	*46446 10TD *4630 *4653 *4657 10TE *46201 *46202 *46203 *46203	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Classification													×				۵	۵		
əmuloV						*******				,			×							
Depth													×							
ЯАА													×							
Area													×				۵			
Length Midth													×				۵			
916U													×							
eniJ won2													×							
Orientation													×				۵	٩		
Coordinates				a Marina Wala									×							
Map nedmuM													8.8							
Number of Claciers									-				219							
Name	Slave River Athabasca River Finlav River	Peace River	Smoky River	Hay River	Pacific Ocean	St. Elias Range	Chatham Strait	Stikine River	Portland Canal	Skeena River	Queen Charlotte Sound	Homathko River	Vancouver Island	Nechako River	Upper Fraser River	Thompson River	Lower Fraser River	Columbia River	Queen Charlotte Islands	Skagit River
Water Survey Basin Number	7 7A 7F	7F	70	70	8	8A	88	8C	8D	8E	8₽	9C	8H	8	8 X		8M	8 N	80	8P

Figure 6.3-1 Canadian Glacier Inventory (Cont.)

noite illiselD		ā.													
Millime															
y) (iii)															
AAA	1														
ea IV															
410000 410000															
511.11		2			-										
enil mind	:	2													
Orientation	:	2													
Com'd'nates	,	2													
Vain Number															
Number of Claclers															to the second
Name	Yukon River Teslin River	Pelly River White River	Mackenzie District	Hyland River	Liard River	Fort Nelson River	Petitot River	South Nahanni River	Mackenzie River	Redstone River	Mountain River	Arctic Red River	Peel River	Committee Bay	Alaska
Mater Survey	9 8	9B 9C	10	10A	108	10C	10D	101	10C	10H	10K	10L	10M	105	064*

Figure 6.3-1 Connadian Clacier Inventory (Cont.)

Correct to July, 1972

6.4 Users

The processed, published data are distributed to about 800 interested individuals and organizations throughout the world. The principal exchanges of data in Canada occur within the federal government and also with universities, the Arctic Institute of North America, Archives of the Canadian Rockies, and private individuals. The international distribution includes three World Data Centres for Glaciology at Seattle (U.S.A.), Moscow (U.S.S.R.) and Cambridge (U.K.), and several other international and national groups, universities and private individuals.

6.5 Plans

A PDP8/I computer interfaced with a D-mac pencil follower is used to abstract data from the glacier inventory work maps. When more data are acquired through the inventory, a more sophisticated data analysis program will be developed than that currently available. An information retrieval system is being developed for glaciological literature, and this will be linked with the WATDOC reference system.

For the combined balance studies, models of accumulation, ablation and radiation patterns on the glacier surface are being tested with a view to reducing the data acquisition requirements, and to improve processing and analysis. Computer maps will be used to show the accumulation, ablation and mass balance patterns over the glacier and variations in the snowline.

For the Applied Hydrology Division, glacier surveys will be continued with the same data being collected. No changes are contemplated in the method of presenting data.

6.6 References

- 1. Løken, O.H., Research Projects in Glaciology, 1972. Inland Waters
 Directorate Report Series No. 23, Environment Canada, Ottawa, 115 pp.
- Campbell, P.I., I.A. Reid and J. Shastal, Glacier Survey in Alberta. Inland Waters Directorate Report Series No. 4, Department of Energy, Mines and Resources, Ottawa, 1969, 66 pp.
 - Reid, I.A., and J. Shastal, *Glacier Surveys in British Columbia 1968*. Inland Waters Directorate Report Series No. 10, Department of Energy, Mines and Resources, Ottawa, 1970, 26 pp.
 - Glossop, J., G.H. Morton, J.E. Anderson, F. Slobosz and V. Clayton, 1968 Report Survey of Glaciers on the Eastern Slopes of the Rocky Mountains in Banff and Jasper National Parks. Water Survey of Canada, Inland Waters Directorate, Department of Energy, Mines and Resources, Calgary, 1968, 29 pp.

- Ommanney, C.S.L., Glacier Surveys by District Personnel of the Water Survey of Canada, 1. The Victoria Glacier, 2. Peyto Glacier. Glacier Inventory, Lotes Nos. 6 and 7, Inland Waters Directorate, Environment Canada, Ottawa, 1972, 20 pp.
- Reid, I.A., and J.O.G. Charbonneau, *Glacier Surveys in Alberta 1971*. Inland Waters Directorate, Environment Canada, Ottawa, 1972.
- Reid, I.A., Glacier Surveys by the Water Survey of Canada. Measurement and Forecasting Specific to Glaciers. International Symposia on the Role of Snow and Ice in Hydrology, Symposium on Measurement and Forecasting.
- 3. Ommanney, C.S.L., J. Clarkson and M.M. Strome, *Information Booklet for the Inventory of Canadian Glaciers*. Glacier Inventory Note No. 4, Inland Waters Directorate, Department of Energy, Mines and Resources, Ottawa, 1970, 68 pp.
- 4. Ostrem, G., and A. Stanley, Glacier Mass-Balance Measurements a manual for field and office work. Inland Waters Directorate Reprint Series No. 66, Environment Canada, Ottawa, 1969, 118 pp.

7.0 The Great Lakes (STAR/EROS System)

7.1 STAR/EROS Data System

Data collected from Great Lakes vessel surveys for the Inland Waters Branch/Directorate have been filed under the STAR code system (1) since the surveys began in 1967. In addition, the same system stores data collected on contract by the Great Lakes Institute, University of Toronto, from 1960 to the present.

STAR is a card-based code system of data entry, with the basic layouts of the cards somewhat modified. The Canada Centre for Inland Waters (CCIW) at Burlington, Ontario, has developed a storage/retrieval system for this extensive data base, using the modified fixed format cards, which are punched from special coding sheets, as the input medium. Thereafter, tape is used for long-term storage, and a tape/disc system (EROS) for retrieval.

The STAR system provides up to 999 codes for the data that are collected. At present, about 18 per cent of the possible codes are in use, primarily for storing water quality data (see Table 7.7-1).

7.2 Procedures

Data are collected by survey vessels, fixed moorings of instruments in the lakes and other studies to develop a body of information for pollution abatement and water management programs on the Great Lakes. The patterns of the cruises made by the vessels vary according to the needs (Figure 7.2-1 shows one of the many patterns). Latitude and longitude, depths, secchi depths, mean corrected temperature and turbidity are recorded for each station, in addition to the parameters derived from subsequent analysis of the samples.

The samples are collected at a range of depths from 1 to 250 metres, where the depth of water permits, using Knudsen and Van Dorn bottles.

Oceanographic reversing thermometers and rubber bulbs for bacteriological sampling are mounted on the Knudsen bottles.

Initially, the data are entered on the specially laid out coding sheets. These entries are made either on board the survey vessels or in the laboratory. Cards are then punched from the sheets, and the cards are then used to set up the STAR tape file.

In the STAR/EROS storage/retrieval system developed at CCIW, the data

Figure 7.2-1. One of the many cruise patterns of the survey vessels.

are entered hierarchically: lake/year/cruise number/station number/depth/code-value pair. The variables are identified by a three-digit code, and five characters of information are allowed. The code number permits implied decimal points to enter the tape file, which has three characters for code and seven for floating point value. This method also allows a code library to be set up, consisting of the code number, implied decimal point and alpha-numeric descriptor.

7.3 Availability

Data on the standard STAR system files cover Lakes Ontario, Erie, Huron and Superior, and Georgian Bay, for most years from 1966 to the present. Data collected before 1966 have not been put into the new format to fit the current STAR system, but this will be done early in 1973.

The STAR system produces a "Provisional Listing" of data when the cruise file is created or updated. This is simply a tabular listing of the parameters measured, and their values, with suitable station headers and depth identification (see Figure 7.3-1).

The "Provisional Listings" are updated and documented, and when the data base is considered stable, it is converted for publication in the "Limnological Data Report" series, which is issued by the Canadian Oceanographic Data Centre on behalf of CCIW. These reports contain both a tabular listing of data and a section documenting the data. The reports are currently available from 1966 to 1969.

The parameters that have been measured, numbering about 180 out of a possible total of 1,000, are described in the "STAR Code Library for the Canada Centre for Inland Waters" (1). A list of the codes used is given below in section 7.7.

The data base can be accessed by the EROS retrieval system to allow subfiles to be created for listings, displays or analyses.

Enquiries should be addressed to the Data Processing and Display Group, Lakes Division, Canada Centre for Inland Waters, Box 5050, Burlington, Ontario. (Telephone: 416-637-4292).

7.4 Users

The present users of the STAR/EROS data system include the staff of the Canada Centre for Inland Waters, and other federal departments, universities, industry, U.S. federal and state government agencies, and U.S. university personnel.

F NO TN - NO TN FRY VSTITUTE	020	LAT	44-04-4 082-08-3		YEAR 196 MONTH O DAY O TIME 070	18	NO. DEPI SOUNDING BT SLIDE	
DEPTH	SECCHI	FOREL	TEMP	T CLAS	TURB	CON 25	02 W	T P04
1.0			18.47	0.02	0.1	201	9.66	0.027
10.0			17.87	0.00	0.1	19 9 200	9.66	
20.0			10.49	0.04	0.1	200	9.82	0.033
30.0			6.27	0.01	0.5	201	13.52	0.033
50.0			4.38	0.03	0.5	201	12.78	
75.0			4-17	0.00	0.6	202	12.65	
96.0			4.12	0.01	4.0		12.31	0.033
DEPTH	SR PU4	TFN03	R 5102	CHLURA	MF COL	MF FCO	SPC 20	SPC 35
1.0	0.001	0.190	1.140					
20.0 30.0 50.0	0.001	0.230	1.800					
75.0 96.0	0.000	0.180	1.200					
DEPTH		F RES	TT ALK	S S04	CA NFA	MG NF	K NFS	NA NES
1.0 5.0 10.0		96.0	78.5	18.4	31.100	6.300	0.820	3.100
20.0 30.0 50.0		93.0	77.9	17.7	30.700	6.500	0.820	3.100
96.0		126.0	77.3	22.6	30.700	6.400	0.860	3.100
DEPTH	PH 25	F	CL	HARD				
5.0	8.100	0.065	5.9	103.6				
10.0 20.0 30.0 50.0	8.100	0.074	5.9	103.5				
75.0	7.800	0.070	6.1	103.0				

Figure 7.3-1. Sample of STAR data from the "Provisional Listing" in Limnological Data Report No. 1.

7.5 Plans

The STAR system is due to be completed early in 1973, and will include an automatic catalogue/index. Some modifications are planned to simplify data entry.

7.6 References

1. Weiler, H.S., STAR Code Library for the Canada Centre for Inland Waters, June 10, 1971.

7.7 STAR Code Library

The coding system employs modifications of some of the standard formats used also by the Canadian Oceanographic Data Centre, but the remainder of the system is completely different (see Table 7.7-1 on following pages).

Table 7.7-1 List of STAR Codes Used

5 de	Abbreviation	Description
000	SOUNDING	sounding
001	DEPTH	depth
005	BT DEP	bathythermograph depth
030	SECCHI	secchi disc depth
031	FOREL-ULE	secchi disc colour (Forel-ule)
032	HAZEN	colour, Hazen scale
100	TEMP	water temperature
104	T EBT	temperature, EBT
105	BT TEMP	bathythermograph temperature
109	T CLASS	temp. precision classification
122	I-TURB	turbidity from integ. samples
23	TURB	turbidity
59	I-SP CON	specific conductance 25°C, integ.
60	SP CON	specific conductance 25°C
200	T RES	residue, total
201	FRES	residue, filterable
:02	NF RES	residue, non-filterable
12	I-PH SITU	pH in situ from integrated sample
13	PH SITU	pH in situ
14	I-PH 25	pH at 25°C integrated sample
15	PH 25	pH at 25°C
16	PH SITU	pH in situ
17	I-PH	pH in situ from integrated sample
18	PH TEMP	temp. at which pH was measured
19	TT ALK	alkalinity, total (titrometric)
20	TC ALK	alkalinity, total (colorimetric)
23	F TC ALK	total alkalinity, filt., color
27	C TP	carbon, total particulate
28	C INORG	inorganic carbon
29	C TOT	total carbon
30	ORG C	carbon, total organic
31	T CO2	total carbon dioxide
32	H CO3	bicarbonate
33	H CO3 F	bicarbonate, filtered
39	BOD W	biochemical oxygen demand
40	BOD P	biochemical oxygen demand (probe)
45	D 02 W	oxygen, concentration dissolved
47	SAT 02	oxygen, % saturation of dissolved
50	TP	phosphorus, total
51 ,	SP	phosphorus, soluble unreactive

Table 7.7-1 List of STAR Codes Used (Cont.)

Code	Abbreviation	Description
262	RP	phosphorus, reactive
263	SR P	phosphorus, soluble reactive
264	TF P	total phosphorus, filtered
268	N TP	nitrogen, total particulate
269	TNF N	total nitrogen, non-filtered
270	NH3	ammonia nitrogen, soluble
271	NO3 NF	nitrate nitrogen, non-filtered
272	NO3 F	nitrate nitrogen, filtered
273	NO2 NF	nitrite nitrogen, non-filtered
274	NO2 F	nitrite nitrogen, filtered
275	T NO3	nitrate + nitrite nitrogen, n-f
276	TF NO3	nitrate + nitrite nitrogen, f
277	TKJ N	total Kjeldahl nitrogen, n-f
278	ORG N	organic nitrogen, non-filtered
279	F ORG N	organic nitrogen, filtered
280	SO4 NF	sulphate, non-filtered
281	RS	sulphide, non-filtered
282	TFN	total nitrogen, filtered
283	SO4 F	sulphate, filtered
284	CL F	chloride, filtered
288	FF	fluoride, filtered fluoride, non-filtered
298	F CL	chloride, non-filtered
290		iodide, non-filtered
292295	R SIO2	silica, soluble reactive
295	T SIO2	silica, total
300	HARD	hardness, total
320	CD NF	cadmium, non-filtered
321	CD F	cadmium, filtered
324	CA NFA	calcium, non-filtered (at. absorption
325	CA FA	calcium, filtered (atomic absorption)
328	CR NF	chromium, non-filtered
329	CR F	chromium, filtered
332	CO NF	cobalt, non-filtered
333	CO F	cobalt, filtered
336	CU NF	copper, non-filtered
337	CU F	copper, filtered
340	FE NF	iron, non-filtered
341	FE F	iron, filtered
342	FE TS	iron, total soluble
343	FE T	iron, total

Table 7.7-1 List of STAR Codes Used (Cont.)

Code	Abbreviaton	Description
346	LB NF	lead, non-filtered
347	LB F	lead, filtered
350	LINF	lithium, non-filtered
351	LIF	lithium, filtered
354	MG NF	magnesium, non-filtered
355	MG F	magnesium, filtered
356	MN TS	manganese, total soluble
357	MNT	manganese, total
358	MN NF	manganese, non-filtered
359	MNF	manganese, filtered
360	HG NF	mercury, non-filtered
361	HG F	mercury, filtered
362	MO NF	molybdenum, non-filtered
363	MO F	molybdenum, filtered
366	NI NF	nickel, non-filtered
367	NIF	nickel, filtered
372	K NFS	potassium, non-filtered (p.m.)
73	K FS	potassium, filtered (photometric)
88	NA NFS	sodium, non-filtered (photometric)
89	NA FS	sodium, filtered (photometric)
90	SR NFA	strontium, n.f. (atomic absorption
91	SR FA	strontium, filtered (atomic absorp.
92	SR NFS	strontium, n.f. (photometric)
93	SR FS	strontium, filtered (photometric)
96	V NF	vanadium, non-filtered
97	VF	vanadium, filtered
98	ZN NF	zinc, non-filtered
99	ZN F	zinc, filtered
05	BOR	boron
10	PHEN	phenolic compounds
10	CHLORA	chlorophyII A
00	MF COL	MF coliform
01	MPNCOL	MPN coliform
03	MF FCO	MF fecal coliform
04	MPNFCO	MPN fecal coliform
06	MF STR	MF fecal streptococci
07	MPNSTR	MPN fecal streptococci
20	SPC 20	standard plate count at 20°C

Table 7.7-1 List of STAR Codes Used (Cont.)

Code	Abbreviation	Description
721 971	SPC 35 MF 20 FT	standard plate count at 35°C aerobic viable count MF 20°C
972 973 974 975	MF AMMOX MPN PROTEUS PROT P/A BACT BIO	autotrophic ammonium-oxidizing bact. MPN Proteus Proteus per 100 ml, filtered bacteria, biomass
976 977 978	MF 4 FT AN MF 20 DC MF	aerobic viable count MF 4° anaerobic viable count MF 20° direct count MF/ml
984	PSEUD-MF	pseudomonas species, MF

8.0 Water Quality (NAQUADAT System)

8.1 National Water Quality Data Bank (NAQUADAT)

For the past two years, the Water Quality Branch of the Inland Waters Directurate has been operating a data storage and retrieval system, known as NAQUAFAT (National wAter QUAlity DATa bank). (1). Before this system was developed, an interdepartmental task force had set down some guidelines for the storage and retrieval of all types of scientific data collected from field surveys Examples of these guidelines are the use of latitude and longitude for storing the location of the field site, and the use of time, rather than sample number, as a key variable.

The system employs an IBM 360/85 computer in Ottawa, with data inputs from the Branch's four laboratories at Vancouver, Calgary, Burlington and Munctun. As a large proportion of the samples being analyzed in these laboratories are for other federal and provincial agencies, the system now contains a large amount of water quality data that are relevant on both the national and local scales.

Identical systems are being operated by provincial agencies at Winnipeg, Edmonton and Saskatoon.

The central Ottawa system will soon be acting as a water quality data bank for all of the Atlantic Provinces to store both federal and provincial data. NAOUADAT is capable of storing all types of water-relevant analyses (chemical, physical, bacteriological, biological and hydrometric) for surface water, ground water, waste water and sediments (2).

8.2 Procedures

The NAQUADAT system is designed to accept input data in free format on punched cards or magnetic tapes. Each piece of data is associated with the appropriate code. Most of the Water Quality Branch data are produced at present from laboratory analyses of manually collected samples. The analytical results are entered in the laboratory on precoded forms, which can be sent directly for keypunching.

Results from other agencies that are not using the NAQUADAT format, or results from the years before the system was introduced, are transferred manually to special, but similar, coded sheets.

8.3 Availability

A summary of all data collected by the Water Quality Branch and other agencies, and stored in NAQUADAT, is given in Table 8.3-4 at the end of this section, (page 50). The entries in the table include:

- (i) the surface water basins for each province,
- (ii) projects and/or sampling networks,
- (iii) the water quality parameters measured for each project network,
- (iv) the frequency and period of sampling for each project network.

At the present time, the system offers three types of retrieval reports:

- Water Quality Data Listing,
- Water Quality Data Summary,
- Nutrient Loadings.

The Data Listing is a printout of up to eight water quality parameters per page, against time. It may contain any number of eight parameter groups for any number of stations. At the beginning of the report, there is a guide to reading the report and a list of the stations retrieved. For a sample of a Data Listing see Figure 8.3-1.

The Data Summary is a printout of up to 30 water quality parameters per page as statistical summaries, consisting of the number of determinations, high and low values, and the 10th, 25th, 50th (median), 75th and 90th percentile values. Any number of stations may be retrieved in a single report. At the beginning of each report, there is a guide to reading the report and a list of stations retrieved. One section of a printout is shown in Figure 8.3-2.

The Nutrient Loadings method of retrieval can only be used when data for daily flow, total carbon, total phosphorus and total nitrogen are stored in the system for the requested station and time period. The retrieval program computes and accumulates total nutrient loadings over given time intervals. This method is used principally for special water management problems where the nutrient contributions from various sources need to be determined and compared for a given time period. An example from a printout is shown in Figure 8.3-3.

Retrieval reports can be obtained by writing to the Head, Data and Instrumentation Subdivision, Network and Surveys Division, Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa, K1A 0E7, Ontario. (Telephone 819-997-3422). The time period(s), the station, the parameter names and/or numbers must be specified.

A "Water Quality Dictionary", giving the coding system used to identify methods of analysis and the respective parameter code numbers, and a regional "Index of National Water Quality Network Stations" are also obtainable from the same source.

LAKE WINNIPEG/CHURCHILL-NELSON RIVERS

TUDE 1010 11M 05

60	4
>	
11	1
70	
2	
SKATCHE	
	3
0	- 4
I	
ال.	(
Æ	(
>	3
7	3
-	0
99	
RIVER	4
-	,
-	,
111	6
20	0
	C
>	(to
18	
100	
T	
700	
3H4	
PAS.MANITOBA	
>	
(A)	
0	
I	
>	
2	
-	
_	
0	
w	
D	
	- >
	-
	p=
	-
	LATITUDE
	-
	-
	17
	530
	60
	C
	4.0
	Č
	-
	3
	50M 30S
	(a)
	0
	(C)
	-
	0
	7
	0
	ONGIT
	Bert

~ ~			. ;		۵	***			1	-													-	\$	SAMPLE TIME
				~ >		0	2 -		۲.	ū		. 1	~		-	-	-	-	*,	0	1 7	2	21	DEG.C.	02061F TEMPERATURE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500	0 . 25	0.25	0.25	0.10	JI (0.10	20.	₹\ 5 *	20.	10.	15.		0.0	0.05	្យា	5.	10.	£ 55 +	5.	10.	10.	20.	REL . UNITS	02011L CULOUR APPARENT
120	. 156	57°	N 00	43.0	2.9	235.	000	• • • • • • • • • • • • • • • • • • • •	100.	16.	88.	235.	325.	4.5	0.4	9.0	4.		.01	25.	44.	70.	60.	TURBIDITY	TURBIDITY TOTAL
777	~ a • • ·	7 00 00 00 00	7.6	7.2	7.7	<i>₽</i> 3	, D	7.8	7.9	7.9	33 0 22	7.7	7.5	7.7	7.8	8.2	7.5	7.7	œ.	7.9	7.5	7.9	8.0	PH UNITS	10301L
\$27 \$27	439	482	459	387	485	1032	552	502	651	418	339	387	361	496	529	625	672	569	510	388	324	283	246	CMHO/CM	SPECIFIC CONDUCTANCE
																								CACO3	10603L HARDNESS TOTAL
160	33 32 22	147	159	127	162	1 32	190	165	661	117	121	131	09	171	181	214	235	195	157	116	- 00	end met inn	=	CACO 3	ALKALINITY TOTAL
																								MG/L	00201L TOTAL SOLIDS

Figure 8.3-1. Sample of a Water Quality Data listing.

STATIUN OGUNOZADOOGI

LATITUDE 490 19M 0S LONGITUDE 88D 17M 30S

NIPIGEN RIVER AT PINE PURTAGE, UNTARIO

104011 RESTOUN NONFILTER.	N 67 L	1111 (L Snottow of SSOLVE,) NA NGAL 21 21 21 21 21 21 21 21 21 21 21 21 21	1530 3L PHOSENATE TOTAL INDIGANIC POA MGAL
1 ± 4	20 00000 21 00 00000	12101L WAGNE SIUM DISSOLVED (CALCUIATED) MG/L MG/L	154031 PHOSPHATE TOTAL PO4 MG/1 0 005
10101L ALKALINITY TOTAL	AGAL 21 72 10 72 20 20 63	201511 CALCIUM DISSOLVED CA MG/L 21 21 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 22:07 23:07 24:07 25:07 26:07 26:07 26:07 27:	NITRATE E NITRATE E SINTRATE E SI
02011L COLJUR APPARENT	REL. UNITS 20. 50. 50. 50. 50. 50.	1000 3L MARINESS TUTAL CACUS MOCL 21 18.7 76.0 27.0 13.0 693.9 77.9 77.9	O7105L NITAGEN D1555-NITRATE E N1TRITE MG/L
02673L TURBIDITY TOTAL	2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2	05301L CA400ATE DISSOLVED CO3 MC/L 21 0	NITRUGEN TOTAL KJELDAHL NO.
10301L PH	24 LV	06201L BICARBONATE HCD3 MG/L 21 13 87 87 87 87 87 87	16303L SULPHATE DISSOLVED SCA MG/L 21 3.3 10.9 3.0 4.0 9.0
00201L TUTAL DISSULVED SULIDS	NG V	004601L 00XXGEN CONSUMED 02 02 20 20 20 4 * 1 4 * 2 5 * 9 7 * 2	0.105L FLUURIDE DISSULVED 2.1 2.1 0.02 0.12 0.12 0.12 0.12 0.03 0.04
02041L SPECIFIC CUNDUCTANGE	MHC/CM 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10551L RESIDUL FILTERABLE AC/L 13 22.0 90.0 24.0 33.2 24.0 70.4 70.4	17233L CHURIDE 01550LVE 3 CL 21 21 21 21 20 4 CL 21 21 1 2 7 1 2 2 1 2 2 2 2
ÛZGG1L TEMPERATURE	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	19451E RESTOUR PLTERASTE 13 40.4 40.3 40.3 40.3 40.3 20.0 20.0	14102L SILICA REACTIVE 5102 457L 213 33.5 4 5 6 4 6 6
02061S 02651L TEMPERATURE TEMPERATURE	24.6.	HESTOUCE FIXED NONFILTER.	PUTASSIUM OLICALLVED NEXT NOT NOT NOT NOT NOT NOT NOT NOT NOT NO
	SAMPLES LGW LGW HIGH PEVENTILLS 10TH 25TH 25TH 99TH 34CKUP CUDES 618	PERCENTLY SHIGH STATES	MANDLE 1 LOW LOW LOW HOLK HILLS 10TH 25TH 25TH 75TH 75TH 75TH 75TH

Figure 8.3-2. Sample of a Data Summary printout.

A	04 1970 AND DATE SMOWN	TOTAL PHOSPHATE	538,000	CHUSSING , SASKA TCHE WAN	770 AND DATE SHOWN	TOTAL PHOSPHATE	349,000	74 × 351	06 04 1970 AND DATE SHOWN	TOTAL	39.000	N N N N N N N N N N N N N N N N N N N	04 1970 AND DATE SHOWN	TOTAL	72.600
	NUTRIENT UETWEEN 06 04 1	CARBON	0 030,000		NUTRIENT HETWEEN 06 04 1970 AND DATE SHOWN	TOTAL	2,860,000	PASSUJA LAKE. SASKATCHEWAN	ITRIENT HETWEEN 06 04 19	TOTAL	3.040.000	CCHU CRLEK NEAR MOUTH AT NO 10 HIGHWAY SASKATCHEWAN.	NUTRIENT RETWEEN 06 04 197	TOTAL	678,000
JUMANIEL WIVER BELLE CHANN	CUMULATIVE POUNDS OF	NITROGEN	000*969	UUDAPPELLE RIVER AT NU 6 HIGHWAY	CUMULATIVE POUNDS OF N	TUTAL	200000000000000000000000000000000000000	DUNABLE RIVER ARBUT DASJUN LAKE.	CUMULATIVE POUNDS OF NUTRIENT BETWEEN	NITRUGEN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LCHU CRLFK NEAH MOUTH A	CUMULATIVE POUNDS OF NU	TOTAL	76,300
4) JK - 11		⊢ ∢	05 04 1970 CST 31 05 1970 CST	00 SA05JK0002	L + 4		04 1970 CST 05 1970 CST	But Algebra		٠ •	04 1970 CST 05 1970 CST	005A05JK0005		₩ .	05 1970 CST

3, A.

8.4 Users

The present users of NAQUADAT include the headquarters and regional services of Environment Canada, other federal departments, provincial agencies, universities, consultants, municipal waterworks and industry.

8.5 Plans

New developments for the NAQUADAT system scheduled for 1972-73 include the following:

- (i) graphical reporting of water quality data and loadings against time and river mileage;
- (ii) addition to the parameter coding system to permit storage of bacteriological, biological and sediment data;
- (iii) computerization of the NAQUADAT Data Catalogue, which is presented in this publication.

8.6 References

- Demayo, A., A Storage and Retrieval System for Water Quality Data.
 Inland Waters Branch, Department of Energy, Mines and Resources,
 Report Series No. 9, 1970, Ottawa.
- 2. Peters, R.H., and A. Demayo, Storage and Retrieval of Water Quality Data. Proceedings of a workshop seminar on computer storing and processing of hydrological data, Quebec, 1971. Available in Inland Waters Directorate, Environment Canada, Reprint No. 165, Ottawa.

Table 8.3-4 Water Quality Data Holdings

The following table summarizes all data collected by the Water Quality Branch and other agencies, and stored in NAQUADAT. An explanation of the entries in the table is given below:

RIVER BASIN:

Surface water basins for each province with the basin codes that are incorporated into each station code number. The codes are those used by Water Survey of Canada for storing hydrometric data.

PROJECT:

Projects or sampling networks operated by the Water Quality Branch, or for the Branch by another agency.

PARAMETERS MEASURED:

A - All samples are analyzed for calcium, magnesium, sodium, potassium, silica, chloride, sulphate, nitrate, carbonate, bicarbonate, pH, specific conductance, colour, turbidity, total alkalinity, and hardness. In addition, about every third sample is analyzed for extractable and dissolved iron, extractable and dissolved manganese, fluoride, orthophosphate, nitrate + nitrite, and residue on evaporation at 105 °C.

J - All samples are routinely analyzed by the Water Quality Branch, Ontario Ministry of the Environment, for 5-day BOD, total and suspended dissolved solids, turbidity, conductivity, total and soluble phosphorus, free ammonia, total kjeldahl nitrogen, nitrite, nitrate, hardness, chlorides, alkalinity, pH, calcium, magnesium, sodium, potassium, silica, sulphate, colour, nickel and chemical oxygen demand. In addition, two or three times per year the sample is analyzed for extractable and dissolved iron, extractable and dissolved manganese, copper, zinc, aluminum, fluoride, phenols and total coliforms.

Pesticides (& Herbicides) - Most samples are analyzed for Lindane, Heptachlor, Aldrin, DDE, DDD, DDT, Methoxychlor, Endosulfan, Endrin, Dieldrin, Chlordane, BHC, 2, 4-D, and 2, 4, 5-T.

Table 8.3-4 Water Quality Data Holdings (Cont.)

Trace Metals - Most samples are analyzed for extractable aluminum, antimony, barium, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, silver, strontium, thallium, vanadium, zinc and also dissolved arsenic.

Trace Organics - Most samples are analyzed for phenolic material, tannin & lignin, ligno sulphonates, hydrocarbons, humic acids, PCBs, and detergents.

Heavy Metals - Most samples are analyzed for extractable and/or dissolved copper, lead and zinc, and also usually analyzed for pH, colour, turbidity, hardness and specific conductance.

Nutrients - Most samples are analyzed for nitrate + nitrite nitrogen, total kjeldahl nitrogen, total and dissolved organic and inorganic carbon, total phosphorus, dissolved inorganic phosphorus, and dissolved orthophosphate phosphorus. Usually also includes analysis for pH, alkalinity, colour, turbidity, and specific conductance.

DO/BOD - Samples are analyzed in the field for dissolved oxygen and biochemical oxygen demand, and usually also analyzed for pH, alkalinity, specific conductance and turbidity.

Cd - cadmium.

TOC/TIC - Total organic and inorganic carbon.

Hg - mercury.

As - arsenic.

FREQUENCY OF SAMPLING:

D - Daily

W - Weekly

SM - Twice per month

M - Monthly

BM - Every two months

O - Quarterly

P - Periodic (1 or more per year)

S - Seasonal (run-off to freeze-up)

Table 8.3-4. Alberta

Seb-5BN National Network Stations 5 A + Heavy Metals + TIC/TOC* M 65-5 Saskatchewan River. Headwater Stations 1.2 Trace Metals and Pesticides 1.2 Trace Metals + TIC/TOC* W 7.2 Saskatchewan River Basin Streeter Research Basin Survey 1970 6 Hg. Saskatchewan River Basin Survey 1970 7 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River Basin Survey 1970 7 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River Research Basin Survey 1970 3 Hg. Trace Metals and Pesticides P A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River Basin Streeter Research Basin Browny Survey 1970 3 Hg. Trace Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River, Headwater 1 A + Heavy Metals + TIC/TOC* M 66-5 Saskatchewan River Heavy Metals + TIC/TOC* M	Basin	Project	No. of Stris.	Parameters Measured	Sampling	Period of Record
twork Stations 5 A + Heavy Metals + TIC/TOC* M ek Research Basin 6 A + Heavy Metals + TIC/TOC* M ek Research Basin 6 A + Heavy Metals + TIC/TOC* M is and Pesticides 12 Trace Metals + Pesticides P tiver Basin 7 A + Heavy Metals + TIC/TOC* M search Basin 4 A + Heavy Metals + TIC/TOC* M search Basin 4 A + Heavy Metals + TIC/TOC* M work Stations 4 A + Heavy Metals + TIC/TOC* M M A + Heavy Metals + TIC/TOC* M A + Heavy Metals + TIC/TOC* M M M A + Heavy Metals + TIC/TOC* M M M A + Heavy Metals + TIC/TOC* M M M M M M M M M M M M M M M M M M M	Bow River B	asin				
an River. Headwater 4 A + Heavy Metals + TIC/TOC* 6 A + Heavy Metals + TIC/TOC* 8 A + Heavy Metals + TIC/TOC* 9 P 12 Trace Metals + Pesticides 6 Hg. 13 A + Heavy Metals + TIC/TOC* 14 A + Heavy Metals + TIC/TOC* 15 A + Heavy Metals + TIC/TOC* 16 Mg. 17 A + Heavy Metals + TIC/TOC* 18 A + Heavy Metals + TIC/TOC* 19 P 10 P 11 A + Heavy Metals + TIC/TOC* 11 A + Heavy Metals + TIC/TOC* 12 Trace Metals + Pesticides 13 Hg. 14 A + Heavy Metals + TIC/TOC* 15 Mg. 16 Mg. 17 Mg. 18 Mg. 19 Mg. 19 Mg. 10 Mg. 10 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 19 Mg. 10 Mg. 10 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 19 Mg. 10 Mg. 10 Mg. 10 Mg. 11 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 19 Mg. 10 Mg. 10 Mg. 10 Mg. 11 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 19 Mg. 10 Mg. 10 Mg. 10 Mg. 10 Mg. 10 Mg. 11 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 18 Mg. 19 Mg. 10 Mg. 11 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 19 Mg. 19 Mg. 10 Mg. 11 Mg. 11 Mg. 12 Mg. 13 Mg. 14 Mg. 15 Mg. 16 Mg. 17 Mg. 18 Mg. 18 Mg. 19 Mg. 19 Mg. 10 Mg.		ational Network Stations	22	A + Heavy Metals + TIC/TOC*	Z	-99
ek Research Basin 6 A + Heavy Metals + TIC/TOC* W.Y. Is and Pesticides I Trace Metals + Pesticides Viver Basin Work Stations A + Heavy Metals + TIC/TOC* M A + Heavy Metals + TIC/TOC*	Sa	iskatchewan River. Headwater System	7		25	20
Trace Metals + Pesticides Trace Metals + Pesticides Privey 1970 By Hg. A + Heavy Metals + TIC/TOC* A + Heavy Metals + TIC/TOC* A + Heavy Metals + TIC/TOC* B A + Heavy Metals + TIC/TOC* Trace Metals + Pesticides B A + Heavy Metals + TIC/TOC* A + Heavy Metals + TIC/TOC	M	armot Creek Research Basin	9	+	W W	63-
viver Basin6Hg.work Station7A + Heavy Metals + TIC/TOC*Msearch Basin4A + Heavy Metals + TIC/TOC*M-Ms and Pesticides21Trace Metals + PesticidesPrvey 19703Hg.Pwork Stations4A + Heavy Metals + TIC/TOC*Min River, Headwater1A + Heavy Metals + TIC/TOC*M	1	ace Metals and Pesticides Survey	12	Trace Metals + Pesticides	2.	72-
work Station 7 A + Heavy Metals + TIC/TOC* M search Basin 4 A + Heavy Metals + TIC/TOC* M search Basin 4 A + Heavy Metals + TIC/TOC* M Trace Metals + Pesticides P rvey 1970 3 Hg. work Stations 4 A + Heavy Metals + TIC/TOC* M	Me	ercury Survey 1970	9	Нд.	۵.	70
work Station 7 A + Heavy Metals + TIC/TOC* M search Basin 4 A + Heavy Metals + TIC/TOC* W-M search Basin 4 A + Heavy Metals + TIC/TOC* W-M rvey 1970 3 Hg. work Stations 4 A + Heavy Metals + TIC/TOC* M M	South Saskat	chewan River Basin				
search Basin 4 A + Heavy Metals + TIC/TOC* M s and Pesticides 1 Trace Metals + Pesticides 1 Trace Metals + Pesticides 1 Hg. 1 A + Heavy Metals + TIC/TOC* M A + Heavy Metals + TIC/TOC	SAA - SAK Nat	tional Network Station		A + Heavy Metals + TIC/TOC.*	7	\$
s and Pesticides 21 Trace Metals + TIC/TOC* W-M rvey 1970 3 Hg. Work Stations 4 A + Heavy Metals + TIC/TOC* M-M A + Heavy Metals + TIC/TOC* M A + He	Sa	skatchewan River, Headwater System	00		7	9
s and Pesticides 7 Trace Metals + Pesticides P 7 Hg. 8 Work Stations 4 A + Heavy Metals + TIC/TOC* 1 A + Heavy Metals + TIC/TOC* 1 A + Heavy Metals + TIC/TOC* 1 A + Heavy Metals + TIC/TOC*	Str	reeter Research Basin	77	+ Heavy Metals +	W-1/1	66
rvey 1970 Riverk Stations A + Heavy Metals + TIC/TOC* A + Heavy Metals + TIC/TOC* A + Heavy Metals + TIC/TOC*	1		21	Trace Metals + Pesticides	C.	7.2
work Stations 4 A + Heavy Metals + TIC/TOC* 4 A + Heavy Metals + TIC/TOC* A + Heavy Metals + TIC/TOC*	Me	rcury Survey 1970	m	Hg.	G	70
dwater 1 A + Heavy Metals + TIC/TOC* \(\text{\tincr{\text{\tintett{\text{\tinte\tinte\text{\texit{\texit{\text{\texit{\text{\texict{\text{\texi}\text{\texit{\texi\tinte\tart{\text{\tinte\tinter{\text{\texi{\texi{\texi{\ter	Red Deer Riv	ver Basin				
1 A + Heavy Metals + TIC/TOC* M	SCA-SCK Na	tional Network Stations	77	A + Heavy Metals + TIC/TOC*	Ş	-99
	Sas	skatchewan River, Headwater System	pro-	A + Heavy Metals + TIC/TOC*	2	6.3

* TIC/TOC 1971-72 Only

Table 8.3-4. Alberta (Cont.)

Basin Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Red Deer River Basin - Cont'd				
Deer Creek Research Basin	7	A + Heavy Metals + TIC/TOC*	Σ	-29
Trace Metals and Pesticides Survey	7	Trace Metals + Pesticides	۵	72-
Mercury Survey 1970	2	Hg.	Q.	70
North Saskatchewan River Basin				
5DC-5FA National Network Stations	ĸ	A + Heavy Metals + TIC/TOC*	×	-99
Saskatchewan River, Headwater System	7	A + Heavy Metals + TIC/TOC*	Σ	-49
Trace Metals and Pesticides Survey	17	Trace Metals + Pesticides	d	72
Mercury Survey 1970		Hg.	۵	70
Beaver River Basin				
6AD National Network Station		A + Heavy Metals	Σ	02-29
Trace Metals and Pesticides Survey	· Promise de la constante de l	Trace Metals + Pesticides	۵	72-
Athabasca River Basin				
7AD-7DD National Network Stations	80	A + Heavy Metals + TIC/TOC*	Σ	-99
Eastern Slopes, Headwater				
System		A + Heavy Metals + TIC/TOC*	Σ	-99
*TIC/TOC 1971-72 Only		The second state of the se		

Table 8.3-4. Alberta (Cont.)

Basin	Project	No. of Stns.	Parameters Measured	Sampling	Period of
Athabasc	Athabasca River Basin - Cont'd				
	Tri-Creek Research Basin	m	A + Heavy Metals + TIC/TOC*	SM	-49
	Cache Percotte Research Basin	3	A + Heavy Metals	۵	67-70
	Trace Metals and Pesticides Survey	∞	Trace Metals + Pesticides	۵	72
	Mackenzie River Basin Project	14	A + TIC/TOC + Trace Metals	۵	69
Peace Riv	Peace River Basin				
7FE 7KE	7FE 7KE National Network Stations	9	A + Heavy Metals + TIC, TOC	7.	6.6
	Spring Creek Research Basin	r.	A + Heavy Metals	SM	69-89
	Trace Metals and Pesticides Survey	9	Trace Metals + Pesticides	۵	72-
	Mackenzie River Basin Project	17	A + TIC/TOC + Trace Metals	a	5.00
Slave River Easin	er Easin				
7NA 70C	7NA 7OC National Network Station	-	A + Heavy Metals + TIC/TOC*	N	-09
	Mackenzie River Basin Project	2	A + TIC/TOC + Trace Metals	a.	69
Milk River Basin	r Basin				
11AA	National Network Stations	ĸ	A + Heavy Metals + TIC/TOC*	7.	-09
	Trace Metals and Pesticides Survey	m	Trace Metals + Pestices	Ġ.	7.

* TIC/TOC 1971-72 Only

Table 8.3-4. British Columbia

Basin Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Columbia River Basin				
8NB-8NN National Network Stations	22	A + Heavy Metals + TIC/TOC*	Σ	-19
Okanagan Basin Study	42	A + Heavy Metals + DO/BOD	W-BM	-69
Trapping Creek Research Basin	9	A + Heavy Metals	Σ	19-99
Long Term Survey	7	A + Heavy Metals	Ø	61-63
Fraser River Basin				
8JE-8MH National Network Stations	6	A + Heavy Metals + TIC/TOC*	Σ	-19
Long Term Survey	2	A + Heavy Metals	O	61-63
N'ercury Survey 1970	7	Hg.	۵	70
Vancouver Island				
8HA-8HD National Network Stations	Ŋ	A + Heavy Metals + TIC/TOC*	Σ	-29
Euttle Lakes Study	2	A + Heavy Metals + Nutrients	ВМ	-89
Squamish River Basin				
8GA National Network Station	-	A + Heavy Metais	Ø	68-70
Bella Coola River Basin				
8FB-8FD National Network Station	·	A + Heavy Metals + TIC/TOC*	Σ	-89
Long Term Survey	-	A + Heavy Metals	O'	61-62

* TIC/TOC 1971-72 Only

,00
-
7
(
(
-
-
0
-
5
-
-
\sim
5
-
m
L
-
-
(1)
00
0
0
Tab
10
-

		Cont.)		
Basin Project	No. of Stns	Parameters Measured	Sampling Freq.	Period of
Skeenz River Basin				
8EB-8EG National Network Stations	-1~			
Long Term Survey	, ,	A + Horary Metals + TIC/TOC*	7	-49
wass River Basin	4	A Theday Metals	2	60-63
8DB National Network Station		4		
Stikine River Basin		Metals + IIC/TOC*	Z	-29
8CE-8CC National Network Stations	2	1		
Taku River Basin	i	r nedvy metals + IIC/TOC*	a	6.7
8BB National Network Station	-	A 4		
Peace River Basin		Metals + IIC,TOC*	2	70
7EB-7FD National Network Station	-	A + Heavy Matale		
Long Term Survey	-	A + Hoovy Motors	a.	69-09
Mackenzie River Basin Project	00	A + TICHOL	O'	61-63
Liard River Basin		Trace Metals	Q.	69
10AA-10DA Mackenzie River Basin Project	10	A + TIC/TOC + Traces Material		
		Second and and and and and and and and and a	1.	69
* TIC/TOC 1971-72 Only				

Manitoba
2
7
1
'n
∞
<u>e</u>
0
~
H

Basin	Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Red River Basin	Basin				
50A-50J	National Network Stations	9	A + Heavy Metals * + TIC/TOC*	Σ	-09
	Lake Winnipeg Study		Nutrients	M-W	-69
	Long Term Survey	4	A + Heavy Metals	W-P	99-69
	Mercury Survey 1970	23	Hg.	۵	70
Assiniboin	Assiniboine River Basin				
5JM-5MJ	5JM-5MJ National Network Stations	9	A + Heavy Metals* + TIC/TOC*	×	-09
	Qu'Appelle Basin Study	-	A + DO/BOD + Nutrients	W-M	70-72
	Mercury Survey 1970	ĸ	Нд,	۵.	70
	Potash Study 1971	-	A + Heavy Metals + Nutrients, DO/BOD	۵	71
Souris River Basin	ver Basin				
5NF-5NG	5NF-5NG National Network Stations	2	A + Heavy Metals* + TIC/TOC*	×	-09
	Long Term Survey	2	A + Heavy Metals	M-P	99-69
Dauphin R	Dauphin River Basin				
SLC-5LM	5LC-5LM National Network Stations	9	A + Heavy Metals* + TIC/TOC*	×	-19
Saskatche	Saskatchewan River Basin				
5.5	National Network Station	-	A + Heavy Metals* + TIC/TOC*	Σ	-19

* Heavy Metals, TIC/TOC, 1972 Only

Table 8.3 4. Manitoba (Cont.)

Basin	No. of	Parameters Measured	Sempling	Pariod of
Winnipeg River and Lake Winnipeg Basin				Necord
5PF-5SH National Network Stations	~	A + Heavy Metals* + TIC/TOC*	×	27.2
Lake Winnipeg Study	10		W-W	000
Long Term Survey	-	A + Heavy Metals	C	60-63
Mercury Survey 1970	2		y a	
Nelson River Basin				
5TD-5UB National Network Stations	10	A + Heavy Metals* + TIC/TOC*	3.	2
Lake Winnipeg Study	-	Nutrients		
Churchill River Basin				z S
6f A 6FD National Network Stations	9	A + Heavy Metals* + TIC/TOC*	٥	÷
Long Term Survey	-	A + Heavy Metals		- <
Hay River Basin			-	5 5 - 10 5
4AC National Network Station	-	A + Heavy Metals* + TIC/TOC*	2	1 .

* Heavy Metals, TIC/TOC, 1972 Only

Table 8.3-4. New Brunswick

Basin	Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Saint John	Saint John River Basin				
1AD-1AP	IAD-1AP National Network Stations	23	A + Heavy Metals + Cd *	Σ	-69
	North Nashwaaksis Research Basin	7	A + Heavy Metals + Cd *	Σ	-99
	Lake George Antimony, Mining Area Samples	4	Heavy Metals + Antimony + Cd	Σ	71-
	Aroostook River Study	9	A + BOD/DO, Nutrients, Pesticides	M-P	69-89
	St. John River Study	23	A + Cd, Hg, Nutrients, DO/BOD, Pesticides, Heavy Metals, Trace Organics, Coliforms	S	71-72
	St. John River Study	m	A + BOD/DO, Nutrients, Pesticides Heavy Metals, Trace Organics, Cd	>	71-
	St. John River Estuary Study	6	Nutrients + COD + Ligno Sulphonates	SM-N.	72-
	New Brunswick Water Authority	09	Various	Д.	71-
	Water Quality Survey	38	Pesticides + Hg + Cd	а.	72-
	New Brunswick Fish and Wild- life	19	A + Heavy Metals + Cd* + Hg*	۵	70-
	City of Fredericton Water Supply	10	A + Heavy Metals + Cd	a	71-

*Hg, Cd 1971-72 Only

Table 8.3-4. New Brunswick (Cont.)

Basin	Project	No. of Stns.	Parameters Measured	Sampling Freq.	Sampling Period of Freq. Record
Saint John River Basin	liver Basin (Cont'd)				1
W	Mactaquac Fish Culture Production	7	A + Heavy Metals + Cd	۵	
	Environmental Protection Service Cove Brook Study	5	Fenitrothion	0-b	i.

*Hg, Cd 1971-72 Only

Table 8.3-4. New Brunswick (Cont.)

Basin	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Southwestern New Brunswick (St. Croix River, Lepreau River, Musquash River	River, Lep	and	Passamaquoddy	Bay)
1AQ-1AR National Network Stations	10	A + Heavy Metals + Cd*	×	-89
Mount Pleasant Mine Area	13	Heavy Metals + Cd	×	71-
Salmon River Basin				
1BV National Network Stations	7	A + Heavy Metals + Cd*	Σ	70-
Water Quality Survey	5	Pesticides + Cd + Hg	۵	72-
Fundy National Park Survey	5	Fenitrothion	D-P	71-
Petitcodiac River Basin				
1BU National Network Stations	7	A + Heavy Metals + Cd*	Σ	70-
Water Quality Survey	23	Pesticides + Cd + Hg	۵.	72-
University of Moncton (Surface Water Study)	27	Heavy Metals + TOC + Hg	О.	71
Richibucto and Kouchibouguac River Basins	ns			
1BR-1BT National Network Stations	2	A + Heavy Metals + Cd*	Σ	-69
Water Quality Survey	25	Pesticides + Cd + Hg	Q.	72-
Department of Fisheries and Forestry	m	A + Heavy Metals	۵	71
Miramichi River Basin				
1BM-1BQ National Network Stations	6	A + Heavy Metals + Cd*	Σ	-69
Water Quality Survey	14	Pesticides + Hg + Cd	Д	72-

* Hg, Cd 1971-72 Only

Table 8.3-4. New Brunswick (Cont.)

Basin	Project	No. of Stns.	Parameters Measured	Sampling	Period of Record
Miramich	Miramichi River Basin - Cont'd				
	Heath Steel Mine, A.rea				
	Samples	21	Heavy Metals + CD* + Hg*	Σ	-49
	Burnthill Tungsten Mine, Area Samples	Ŋ	Heavy Metals + Cd*	· · ·	-69
	Texas Culf Mine, Area	-		-	
	Samples	7	Heavy Metals	S	-29
	Chester Mine, Area Samples	∞	Heavy Metals	S	-49
	Municipal Water Survey	7	A + Heavy Metals + Cd	0.	71
	Miramichi Fish Culture Stations	9	A + Heavy Metals	۵	72-
Tabusint	Tabusintac, Tracadie and Caraquet River Basins	ns .			
181	National Network Stations	†7	A + Heavy Actals + Cor	54	÷
	Water Quality Survey	15	Pesticides + Hg + Cd	۵	72-
	FENCO Groundwater Study	&	A + Heavy Metals + Cd	۵	72-
Nepisidan	Nepisiquit River Basin (Jaquet and Eel River Basins)	Basins			
18J 18K	National Network Stations	2	A + Heavy Metals + Cc.*	N	-0/
	Water Quality Survey	22	Pesticides + Elg + Cd	ш	2
	Restigouche Wine, Area Samples	9	Heavy Metals	; ·	£
	Anaconda Brass Mine, Area				
	Samples	7	Heavy Metals + Cd*	M	-99
	Brunswick Mine #12, Area Samples	\$	Heavy Vetals, Sulphur + Cd., Thiosulphate	W	62
			The second secon	14	

* Hg, Cd, 1971-72 Only

Table 8.3-4. New Brunswick (Cont.)

Basin	Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Nepisiguit River Basin	River Basin (Jaquet and Eel River Basins)	· Basins)	- Cont'd		
Z	Nigadoo River Mine, Area Samples	2	Heavy Metals + As + Cd*	S-M	-99
Z	New Larder Mine, Area Samples	c	Heavy Metals	۵	-99
>	Wedge Mine, Area Samples	7	Heavy Metals + Cd* + Hg*	S-M	-62-
X	Keeway Mine, Area Samples	4	Heavy Metals	d	71-
Ш	Brunswick Mine #6, Area Samples	18	Heavy Metals	S-M	65-
_	New Brunswick Water Authority	31	Various	۵	71-
	University of Moncton	9	Heavy Metals + Hg	۵.	7.1
	W.Q.D. Municipal Water Supply	22	A Heavy Metals + Cd	۵	71
Restigouche	Restigouche River Basin				
1BC-1BE N	IBC-1BE National Network Stations	2	A + Heavy Metals + Cd*	Σ	-69
	Copperfield Mine, Area Samples	7	Heavy Metals	۵_	71-
A	Water Quality Survey	2	Pesticides + Cd + Hg	۵	72-

*Hg, Cd, 1971-72 Only

Table 8.3 4. Newfoundland

Basin	Project	No. of Stns.	Parameters Measured	Sampung Freq.	Pariod of Record
Northerr	Northern Newfoundland				
2YA 2YS	2YA 2YS National Network Stations	Ŋ	A + Heavy Metals	2	0.00
	National Network Stations	11	A + Heavy Metals + Cd	Z	
	Exploits River Basin Study	8	A + Nutrients + Heavy Metals	٩	69-89
	Newfoundland Water Authority	10	A + Heavy Metals + Cd	۵.	
	Department of Fisheries and Forestry		A + Heavy Metals + TOC		7
Southern	Southern Newfoundland			~ ~~	
2ZA-2ZN	National Network Stations	ε	A + Heavy Metals	×	02-99
	National Network Stations	ω	A + Heavy Metals + Cd	>	71-
	Newfoundland Water Authority	29	A + Heavy Metals + Hg + Cd	G.	
	Dept. Environment Resource Dev. Branch	14	A + Heavy Metals + TOC	2	r
	Department of Fisheries and				-
	Forestry	13	A + Heavy Metals + TOC + Trace	ace .	
			Organics	٩	71
Labrador					
3QE 3QC	3QB 3QC National Network Stations	2	A + Heavy Metals + Cd*	<u> </u>	689
	Newfoundland Water Authority	12	A + Heavy Metals + Hg + Cd	9	71-77

* Cd 1971-72 Only

Table 8.3-4. Northwest Territories

Basin Project	No. of Stns.	Parameters Measured	Sampling Fred.	Period of
Great Slave Lake (Upper Mackenzie River Basin)	sin)			
708-7SB National Network Stations	2	A + Heavy Metals + TIC/TOC*	۵	-89
Mackenzie River Basin Project	00	A + TIC/TOC + Trace Metals	<u>a</u>	69
Pine Point Mine, Area Samples	.c	Heavy Metals + As + SOC + Cyanide + TOC	۵	02-69
Cominco Mine, Area Samples	m	Heavy Metals + As + SOC + TOC	۵	70-71
Giant Yellowknife Mine, Area Samples	80	Heavy Metals + As + SOC + TOC	۵.	68-71
Lower Mackenzie River Basin				
10EC-10NA National Network Stations	12	A + Heavy Metals + TIC/TOC*	<u>ـــ</u>	-69
Mackenzie River Basin Project	12	A + TIC/TOC + Trace Metals	۵.	69
Mackenzie Pipeline Study	20	A + TIC/TOC + As + Trace Metals	۵.	72-
Canada Tungsten Mine, Area Samples	77	Heavy Metals + As + SOC + TOC + Cyanide	Δ.	66-71
Terra Mine, Area Samples	7	Heavy Metals + As + SOC + TOC + Silver	۵	70-71
Echo Bay Mine, Area Samples	ru	Heavy Metals + As + SOC + TOC + Silver	۵	69-71

*TIC/TOC 1971-72 Only

Table 8.3 4. Northwest Territorics (Cont.)

Basin	No. of	Parameters Measured	Sampling Freq.	Period of Record
Anderson River Basin		:		
10%C Sational Setwork Station		A + Heavy Metais + Tit 1:-C.	-	9.
Coppermine River Basin				
10PC National Network Station	-	A + Heavy Metals + TIC/TOC*	۵	67-
Tree River Basin				
1007 National Network Station		A + Beavy Metals - 710 100.	-	3
Victoria Island				
10TA National Network Station	—	A + Heavy Metals + TIC/TOC*	۵	-09
Ellice River Basin				
10QD National Network Station	-	A + Beavy Metals + TIC TOC.	-	9
Back River Basin				
10RC National Network Station	-	<	۵	-09
Chesterfield Inlet (Baker Lake Basin)				S
6JC-6MB National Network Stations	6	<	۵	-69

* TIC/TOC 1971-72 Only

Nova Scotia Table 8.3-4.

Basin	Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Northern	Northern Mainland				
1DA-1DS	National Network Stations	10	A + Heavy Metals	Σ	02-69
	National Network Stations	23	A + Heavy Metals + Cd	₹	71-
	Water Quality Survey	54	Hg + Cd	۵	71-
	Municipal Water Survey	ľS	A + Heavy Metals + Cd	۵	71
	Amherst Water Commission	8	A + Heavy Metals + Cd	۵	72
	Department of Public Works	2	A + Heavy Metals + Cc	۵.	72
	Fraser Brook Research Basin	œ	A + Heavy Metals + Cd*	Σ	-29
	Sharpe Brook Research Basin	77	A + Heavy Metals + Cd*	\$	-29
	Groundwater Study	18	A + Heavy Metals + Cd	SM	72-
Southern	Southern Mainland				
1EA-1ER	National Network Stations	6	A + Heavy Metals	Σ	02-69
	National Network Stations	20	A + Heavy Metals + Cd	Σ	71-
	Canadian Wildlife Service Kejimkujic National Park Survey	29	A + Heavy Metals + Cd	۵.	71-
	Water Quality Survey	28	Hg + Cd	۵	71-
	Halifax	7	A + Heavy Metals + Cd*	Δ,	70-71
	Yarmouth Water Supply	2	A + Heavy Metals + Cd	۵.	72
* Cd 197	* Cd 1971-72 Only			and the constitution of th	

Table 8.3 4. Nova Scotia (Cont.)

Sampling Fernal at Freq. Record	BM 72-		M 69-70	M 71-	P 71	P 71	Р 72	-29 W	BM 72-	
Parameters Measured	A + Heavy Metals + Cd		A + Heavy Metals	A + Heavy Metals + Cd	Hg + Cd	A + Heavy Metals + Cd	A + Heavy Metals + Cd	A + Heavy Metals + Cd*	A + Heavy Metals + Cd	
No. of Strv.	70		2	12	20	7	m	7	œ	
Project	Groundwater Study	ton Island	TEA TEL Mational Network Stations	National Network Stations	Water Quality Survey	Municipal Water Survey	Department of Environment Fisheries Service	April Brook Research Basin	Groundwater Study	
Basin		Cape Breton Island	11 A 11 J							

* Cd 1971-72 Only

Table 8.3-4. Ontario

Basin	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Ottawa River Basin				
2JD-2LB National Network Stations	14		Σ	-89
Ottawa River Survey	7	Nutrients + Mercury	2	70-71
Kanata Project	77	Nutrients + Coliforms	S-W	72-
Water Quality Index	m	Heavy Metals + Nutrients + Coliforms	S-M	71
Great Lakes and St. Lawrence River Basin			The said	
2AD-2MB National Network Stations	22	A + TOC*	Σ	- 29
National Network Stations	10	ſ	Σ	-89
Winnipeg River Basin				
5PC-5QE National Network Stations	2	A + TOC*	Σ	-99
National Network Stations	. 2		Σ	-89
Moose River Basin				
L'JD-4ME National Network Stations	7	A + TOC*	BM	-49
Severn River Basin, Winisk River Basin and	Albany R	and Albany River Basin		
4CA-4HA National Network Stations	2	A + TOC*	BM	-29
National Network Stations	m	٦	Σ	-89
* TO 701				

* TOC 1972 Only

Table 8.3-4. Prince Edward Island

Besin	Project	No of Stris	Parameters Measured	Sampling Freq.	Period of Record
1CA-1CE	1CA-1CE National Network Stations	~	A + Heavy Metals	N	02-99
	National Network Stations	\$	A + Heavy Metals + Cd	130	711-
	P. E. I. Water Authority	5	Various	G.	Ξ
	P.E.I. W.O. Survey	1.	Pesticides + Cd + Hg	<u> </u>	Ε,
	C.F.B. Summerside	7	A + Heavy Metals + Cd + Lead + Phenolic Material	ů.	; ; =:
	P. F. L. Environmental Control Commission	22	A + Heavy Metals + Cd + Hg + Pesticides	ا ج	72-
	Groundwater Survey	20	A + Heavy Metals + Cd	BM	72-

Table 8.3-4. Quebec

Basin	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Ottawa River Basin				
2KC-2LH National Network Stations	23	A + Nutrients	BM	72-
Gatineau Park Study 1970-71	20	Nutrients	W-S	70-71
Gatineau Park Study, (University of Ottawa), 1971	16	A + Nutrients	۵	7.1
Gatineau Park Study 1972	12	Nutrients	W-S	72
Gatineau Park Pinks Lake Study (University of Ottawa) 1972	-	Nutrients	W-W	72-
St. Lawrence River Basin				
2MC-2PK National Network Stations	22	A + Nutrients*	Σ	69-71
National Network Stations	39	A + Nutrients*	Σ	72
St. Lawrence River Study	36	Heavy Metals + TOC + Pesticides + Trace Organics	Σ	72-
Quebec Field Trip 1970	22	A + Nutrients	۵	70

*TIC/TOC, Nutrients, 1971-72 Only

Table 8.3 4. Saskatchewan

Basin	Project	No. of Stns.	Parameters Measured	Sampling	Period of
Saskatch	Saskatchewan River Basin				
SEG-SHH	SEG-5HH National Network Stations	7	A + Heavy Metals* + TOC*	₹	-99
	Saskatchewan River Basin Study	10	A + Heavy Metals* + Nutrients	×	-89
	Switf Current Basin	Ŋ	A + DO/BOD + Nutrients	D-P	71-72
	Mercury Survey 1970	10	Н	۵	70
	Trace Metals Survey Sask.	16	A + Trace Metals + Pesticides + As + TOC + Cvanide	۵	7
Qu'Appelle Basin	le Basin				•
SJE SJM	National Network Stations	9	A + Heavy Metals* + TOC*	Σ	-99
	Qu'Appelle and Assiniboine River Basin Study	12	A + Heavy Metals + Nutrients	2	0
	Qu'Appelle Basin Study	99	A + DO/BOD + Nutrients + TOC +		
			TIC	W-S	70-72
	Moose Jaw River Study	20	Nutrients + Heavy Metals + Cd	D-M	72-
	Qu'Appelle Basin Study (Groundwater)	15	Heavy Metals + Hg + Cd +	۵	
	Trace Metals Survey Sask.	25	A + Trace Metals + Pesticides + As + TOC + Cyanide	۵	71-
			The second secon		-

* Heavy Metals, TIC/TOC, 1972 Only

Table 8.3-4. Saskatchewan (Cont.)

Basin Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Assiniboine River Basin				
5MB-5ME National Network Stations	Ж	A + Heavy Metals* + TOC*	×	-99
Qu'Appelle and Assiniboine River Basin Study	7	A + Heavy Metals* + Nutrients	×	-89
Qu'Appelle Basin Study (Groundwater)	34	Heavy Metals + Hg + Cd + TOC/TIC + Strontium	۵	71
Trace Metals Survey Sask.	m	A + Trace Metals, Pesticides + As + TOC + Cyanide	۵	71-
Potash Study 1971	-	A + Heavy Metals + Nutrients + DO/BOD	۵	71
Souris River Basin				
5NA-5ND National Network Stations	7	A + Heavy Metals* + TOC*	×	-09
Qu'Appelle & Assiniboine River Basin Study	2	A + Heavy Metals* + Nutrients	Σ	-89
Qu'Appelle Basin Study (Groundwater)	c	Heavy Metals + Hg + Cd + TOC/TIC + Strontium	۵	71
Trace Metals Survey Sask.	(prose	A + Trace Metals + Pesticides + As + TOC + Cyanide	×	71
Carrot River Basin				
5KB-5KC National Network Stations	2	A + Heavy Metals* + TOC*	Σ	-99

*Heavy Metals, TIC/TOC, 1972 Only

Table 8.3-4. Saskatchewan (Cont.)

		The second secon		
Basin Project	No. of Stns.	Parameters Veasured	Sampling	Peritua
Red Leer River Basin			. 60.	Record
5LC National Network Stations	-	A + TOC*	2	99
Trace Metals Survey Sask.	garber .	A + Trace Metals + Pesticides +		
Frenchman River Basin		control of the contro	1	73-
11AC National Network Station	-	A + Heavy Metals + + TIC TOC:	5	
Trace Metals Survey Sask.	-	A + Trace Metals + Pesticides +	:	2
		As + TOC + Cyanide	ط	71-
Churchill River Basin				
6AG 6FA National Network Stations	5	A + Heavy Metals + TIC TOC	-	;
Beaver River Specials	m	A + Heavy Metals	- 0	- (
Old Wives Lake Basin				0
5JA 5JB National Network Stations	Υ	A + Heavy Metals* + TIC TOC*	7	3
Trace Metals Survey Sask.	p	A + Trace Metals + Pesticides +	-	
		As + TOC + Cyanide	۵	710
Lake Athabasca Basin				
7LA-7MB National Network Stations	9	A + TOC*	۵	70-
				>

* Heavy Metals, TIC/TOC, 1972 Only

Table 8.3-4. Yukon Territory

Basin	Project	No. of Stns.	Parameters Measured	Sampling Freq.	Period of Record
Yukon River Basin	r Basin				
9AA-9FD N	9AA-9FD National Network Stations	16	A + Heavy Metals + TIC/TOC*	۵	-49
∢	Anvil Mine, Area Samples	5	Heavy Metals + TOC + SOC + Cyanide	۵	69-71
>	Venus Mine, Area Samples	2	Heavy Metals + TOC + SOC + As + Silver + Cyanide	۵	70-71
₹	Arctic Gold and Silver Mine, Area Samples		Heavy Metals + TOC + SOC + Silver	۵	70
Z	New Imperial Mine, Area Samples	9	Heavy Metals + TOC + SOC	۵	69-71
5	United Keno Hill Mine, Area Samples	7	Heavy Metals + TOC + SOC +	۵	69-71
Liard River Basin	Basin				
10AA-10AB	National Network Stations	2	A + Heavy Metals + TIC/TOC*	۵	-69
2	Mackenzie River Project	-	A + TIC/TOC + Trace Metals	۵	69
Peel River Basin	Basin				
10MA N	National Network Station	-	A + Heavy Metals + TIC/TOC*	۵	69-71

* TIC/TOC 1971-72 Only

9.0 Sediment (Sediment System)

9.1 Sediment Survey Programs

Systematic surveys of the sediments transported by streams have been undertaken by the Sediment Survey Section of the Applied Hydrology Division since 1961. There were 149 sediment stations operating in 1972. Limited surveys and investigations were carried out before 1961 by individual organizations or agencies.

Stations where sediment data are collected are at present identified in the Surface Water Data Reference Index (also see Table 9. 1-1).

The sediment survey program of data collection has four main objectives:

- (1) to collect and publish long-term basic sediment records on streams throughout Canada,
- (2) to determine the relationship between sediment transport and variou aspects of hydrology and geomorphology,
- (3) to complement the hydrometric survey program,
- (4) to standardize and improve equipment and techniques for sediment survey work.

In addition to its regular sediment data collection program, the Sediment Survey Section undertakes a large program of special morphological surveys, investigations and studies which cover reservoirs, lakes, watersheds, deltas and estuaries, as well as river channels. This work is performed at the request of the provinces or other federal departments. Some 25 projects have been undertaken and some reports on them are available (see "Publications").

The Sediment Survey Section's program covers also the research work applicable to field survey conditions, including the development of techniques and equipment for different rivers and flow conditions. The results of such studies appear in separate reports (1).

9.2 Procedures

The basic sediment data are collected by the district offices of Water

Table 9.1-1 Sediment Stations by District

District Code	District	Area Covered		Existing Stations*
2	Vancouver	British Columbia		25
3	Calgary	Alberta		35
8	Regina	Saskatchewan		11
4	Winnipeg	Manitoba		28
5	Guelph	Ontario		14
6	Montreal	Quebec		2
7	Halifa×	(New Brunswick (Nova Scotia (Prince Edward Island (Newfoundland		7 7 4 1
3 2	Vancouver & Calgary	(Northwest Territories (Yukon Territory		12 3
			TOTAL	149

^{*} Stations are identified by eight-digit codes, the first digit is the district code number and the remaining seven digits give the station number, e.g.: Vancouver district - 208DA006

Guelph district - 502FF002

77

The Compiled and Description of the Section of the

The sediment sampling for the data collection program consists of the following elements:

- (i) periodic measurement of suspended sediment discharge by the depth-integrating or other method,
- (ii) limited measurement of suspended sediment discharge by the point-integrating method,
- (iii) individual suspended sediment samples at a selected vertical, or by continuous or periodic automatic samples at selected points,
- (iv) periodic measurement of bed load discharge (by various methods),
- (v) periodic sampling of bed material in cross-section.

The main part of the sediment data tabulations is devoted to survey stations, drainage areas, station locations, streamflow and sediment discharge records, types of sampling, periods of operation, magnetic taping of data, and notes on special conditions at stations or any special data provided by them.

Sediment sampling is being carried out at or near existing hydrometric stations, and the same station identification is being used in both cases.

Tabulations also indicate the latest available drainage area for each station, in square miles, and the location of the station by latitude and longitude.

Suspended sediment discharge records show the years for which discharge data are available. Daily sediment observations indicate whether the redular daily samplings of sediment were performed by continuous or periodic automatic sediment samplers or recorders, or were taken by an observer using the depth integrated method at a selected vertical, which is representative, but often not the average, of the sediment concentration in the cross-section.

9.3 Availability

The results of the sediment surveys are published by Water Survey of Canada in the annual "Sediment Data for Canadian Rivers" series, which is controlly available for the years 1965 to 1969. Figure 9-3-1 shows a sample base from that publication.

Location: Lat. 49° 07' 39", long. 122° 18' 08", British Columbia, on north bank, fifty feet west of the Canadian Pacific Railway

Gauge: Recording and telemetering; datum of gauge is 0.24 foot above Geodetic Survey of Canada datum, Publi ation 24-A (1961).

Period of Record: Elevations only, maximum yearly, 1876, 1882 and 1894 to 1935; Jaily maximum and minimum, mainly continuous, x tooca 1935 to September 1967. Miscellaneous measurements in 1964 and daily discharges, May 1965 to September 1967. Daily suspended sediment load, May 1965 to September 1967.

Maximum instantaneous discharge, 485,000 cfs at 9.45 a.m. on June 22, 1967. Extremes Recorded:

Minimum daily discharge, 33,100 cfs on March 4, 1960. Maximum daily elevation, 25.75 feet on June 5, 1894.

Minimum daily elevation, usually reaches a gauge height of -1.00 foot.

Minimum daily elevation, usually reaches a gauge height of -1.00 foot.
Add 0.24 to obtain elevation in feet, Goodetic Survey of Canada datum, Publication 24-A (1961).

Maximum daily suspended sediment load, 781,000 tons/day on June 7, 1967.
Minimum daily suspended sediment load, 471 tons/day on March 2, 1966.

Remarks: The river at this station is affected by tides to varying degrees at all stages. Daily mean discharges greater than 190,000 cfs (gauge height 10.00 feet) were determined from a stage-discharge relationship. Daily mean discharges for gauge height of 10.00 feet and less were calculated by summing (a) the flow of the Fraser River at Hope (with 24 hours time lag), (b) 146 per cent of the flow of Harrison River near Harrison Hot Springs and, (c) + change in storage between Mission City and Sumas River at Sardis.

Flow records fair except during periods when flows are less than 190,000 cfs which are poor. Suspended sediment records poor.

Monthly Mean Suspended Sediment Load in Tons per Day

1965 260,000 89,500 44,600 19,000 103,000 1260 32,000 11,600 3,060 2,200 929 2,910 55,200 235,000 219,000 117,000 51,200 14,000 62,300	Year	Oct.	Nov.	Dec.	Jan.	Feb.	March	\pril	May	June	.July	Aug.	Sept.	Mean
1360 32 000 11,600 3,060 2,200 929 2,910 55,200 235,000 219,000 117,000 51,200 14,000 62,300		-											19,000	103,000
1966 32,000 11,000 3,000 2,200 22,200 1,000 1,740 16,900 263,000 579,000 158,000 38,200 14,000 92,000		72.000	11 600	7 060	2 200	0.20	2 910	55 200	235,000	219,000	117,000	51,200	14,000	62,300
196" 13,400 5,300 10,600 2,510 1,000 1,740 10,300 203,000 333,000 203,000		52,000	11,000	5,000	2,200	2 000	1 740	16 000	263 000	579 000	158.000	38,200	14,000	92,000
	1967	13,400	5,300	10,600	2,510	1,090	1,/-411	10,300	203,000	575,000	100,000			
											l			

Suspended Sediment for the 1967 Water Year

		004	tober				ember			Dec	ember	
		- C	Suspended	C - d			Saspender	Sea n ent	31	Daily	Samerice	Seducnt
Day	Water Temp. (°F)	Daily Discharge (cfs)	Mean Con- centration (gr/litre)	Tons per day	Water lemp. (°F)	Discharge (cfs)	Mean Con- centration (gr/litre)	lons per day	Water- Lemp. (°F)		Mean (a. centration (gr/litre)	lan per day
1 2 3 4 5	55	103,000 110,000 114,000 114,000 112,000	0.039 0.060 0.075s 0.075 0.075	10,800 17,800 23,100 23,100 22,700	45	113,000 108,000 104,000 100,000 95,500	0.042s 0.035 0.029 0.024s 0.024	12,800 10,200 8,140 6,480 6,190	37	71,700 67,300 64,200 61,800 62,700	0.018 0.015s 0.014 0.013 0.011s	3,480 2,730 2,430 2,170 1,860
6 7 8 9	55	110,000 107,000 105,000 102,000 101,000	0.075s 0.070 0.060 0.047 0.043	22,300 20,200 17,000 12,900 11,700	42	93,700 90,900 90,800 89,700 86,800	0.023 0.021 0.020s 0.020 0.021	5,820 5,150 4,900 4,840 4,920	37	62,700 64,500 62,200 56,500 51,600	0.010 0.010 0.010 0.010s 0.010	1,690 1,740 1,680 1,530 1,390
11 12 13 14	51	104,000 105,000 104,000 99,700 97,200	0.045 0.049s 0.048 0.043 0.036	12,600 13,900 13,500 11,600 9,450	39	80,000 74,600 70,600 71,300 73,500	0.022 0.024s 0.026 0.030 0.034	4,750 4,830 4,960 5,780 6,750	44	50,700 58,000 73,300 97,600 94,700	0.011 0.014 0.027s 0.039 0.070	1,510 2,190 5,340 10,300 17,900
16 17 18 19	49	92,600 89,200 85,900 83,400 85,400	0.030 0.026s 0.025 0.027s 0.038	7,500 6,260 5,800 6,080 8,760	40	72,300 69,700 65,700 61,300 62,500	0.023s 0.017 0.015 0.015s 0.015	4,490 3,200 2,660 2,480 2,530	41 40	107,000 120,000 210,000 133,000 128,000	0.095s 0.105 0.120 0.120s 0.085s	27,400 34,000 68,000 43,100 29,400
20 21 22 23 24	48	84,800 81,500 80,000 93,400 97,300	0.037 0.033 0.049 0.090s 0.060	8,470 7,260 10,600 22,700 15,800	40	62,900 64,700 65,500 63,900 63,200	0.015 0.015 0.016s 0.018 0.038	2,550 2,620 2,830 3,110 6,480	40 38	119,000 113,000 107,000 103,000 97,300	0.060s 0.045 0.028s 0.020 0.017	19,300 13,700 8,090 5,560 4,470
25 26 27 28 29	48	96,600 104,000 111,000 115,000 120,000 118,000	0.027s 0.025 0.029 0.040 0.060s 0.055	7,040 7,020 8,690 12,400 19,400 17,500	39	68,000 64,100 67,300 73,900 74,400	0.036s 0.029 0.033 0.040 0.022s	6,610 5,020 6,000 7,980 4,420	38	90,800 84,600 80,400 75,600 74,000 71,200	0.013s 0.013 0.013 0.013 0.013s 0.013s	3,190 2,970 2,820 2,650 2,600 2,500
	1	3,126,000	1,491	413,930		2,341,800	0.742	15,4,4 m		2,713,40	1. 55	3-,111
I ta		101,000	0.048	13,400		78,100	0.025	5,300		87,500	0.034	10,600
/16.9	11	101,000										

s - Sample(s) collected this day.

Figure 9.3-1. Sample page from "Sediment Data for Canadian Rivers."

tests enfected for the 1966 water year and earlier have been issued in the Water Resources Papers series.

Furtherlines are available from Information Canada, from the Publications

"The Inland Waters Directorate, or the Director, Water Resources Pranch, Inland
Water Office at Vancouver, Calgary, Fegina, Winnipeg, Guelph, and Ralifax, or
the Area Office at Montreal (see "Addresses").

9.4 Users

The current distribution of "Sediment Data for Canadian Fivers" amounts to some indicapies. The Canadian users of the sediment information include libraries, reference sencies, universities, provincial agencies, civic offices, consultants and nimite ryanizations. The distribution in other countries goes principally to the United States, and also to Argentina, Australia, England, France, Germany, India, New Zealand, Poland, Rumania, the U.S.S.R. and Sweden.

9.5 Plans

The number of sediment survey stations will be increased to 300 or 400 in the next 10 to 15 years.

The establishment of a separate sediment data reference index is planned for the near future.

9.6 References

 Stichling, W., Instrumentation and Techniques in Sediment Surveying. Inland Waters Branch Reprint Series, No. 22, Department of Energy, Mines and Resources, 1970.

Stichling, W., and T.F. Smith, Sediment Surveys in Canada. Inland Waters Branch Technical Bulletin No. 12, Department of Energy, Mines and Resources, 1969.

Tywoniuk, N., and J.L. Fowler, Winter Measurements of Suspended Sediments. International Symposium on the Role of Snow and Ice in Hydrology, 1972.

Tywoniuk, N., Sediment Budget of the Lower Fraser River (Estuary). Paper prepared for presentation at the 13th International Conference on Coastal Engineering, Vancouver, 1972.

10.0 Use of Water Resources (WATERSTAT System)

10.1 Water, Administrative, Technical and Economic Resources Statistics (WATERSTAT)

WATERSTAT is a general purpose computerized storage, retrieval and manipulative system for numerical data related to water resources research, planning and management. It is also a convenient vehicle for retrieval and manipulation of data stored in other important national statistical data banks, such as Census Data of Statistics Canada, or the Canadian Geographic Information System (1). Through WATERSTAT, data of many different sources and levels of quality can be used in concert with planning data generated in Environment Canada.

The collection of data for WATERSTAT began in 1970 with municipal water use and related population data for Canadian municipalities. A more comprehensive project was started in 1972 for collecting population and industrial data related to water use in the Grand River watershed. A start was also made in 1972 with entering population, visitors' survey, fishing survey and residents' survey data related to the use of the water resource in the Okanagan River Basin. Another project begun in the fall of 1972 was the collection of data in the James Bay area.

The numeric data base, or set of data bases, for WATERSTAT contains the following information:

- (i) water use (industrial and municipal),
- (ii) water supply,
- (iii) water pricing,
- (iv) the capacities of water supply and water treatment plants,
- (v) sewage systems,
- (vi) the financial aspects of water supply and demand,
- (vii) population and other socio-economic data on production, incomes, expenditures and recreational use of water resources,
- (viii) the quantitative results of perception and attitude studies on resources management.

WATERSTATES when in a meert with the square grid storage and retrieval at the square grid storage and retrieval at the participal and the square form fints System in "Physics raphic Pata" section of the section of the section of the square form of the Storage and February and Letrievall.

The above method has unique capabilities for aggregating and combining data from a variety of sources, because it provides the tools to make various data bases compatible, and hence opportunities for the easy exchange and simultaneous use of elements from various data bases. The storage and retrieval system can disseminate data at samous levels of appreciation to produce tables and maps, or to provide direct input to mathematical models.

Data are collected through exchange agreements with other agencies, through declarithental studies and studies made under the Canada Water Act, through agreements with provincial agencies and universities, and through contracts with private consultants.

The WATERSTAT data bases will be linked eventually with the Water Resources Document Reference Centre, called WATDOC (see pages 88-99). This will provide full source documentation and access to background material.

10.2 Procedures

Data existing in other large data bases, such as the GEOCODING system, will not be stored in the WATERSTAT system. Whenever required, the data is automatically converted into the required format through the system programs.

If desired, data can be made available in printed form. Most requests will be satisfied by the following formats:

- (i) maps (produced by line-printer) in areal aggregations requested by the user (see Figure 10. 2-1),
- (ii) tables of cross-referenced parameters (see Figures 10.2-2 and 10.2-3),
- (iii) punched card output,
- (iv) magnetic tape output.

A strong feature of WATERSTAT is its capability to be linked directly with many manipulative program packages, such as MASSAGER (4), which is recently concloved in the fields of economics accommetrics and statistics. Because of these packages, WATERSTAT can be used successfully in modalling exercises.

POPULATION FOR YEAR 1961

GRAND RIVER WATERSHED

Figure 10.2-1 Sample of computer-generated map.

OKANAGAN RIVER BASIN VISITOR'S SURVEY 1970 CUTDOOR RECREATION

	only	Children only	Total
Swimming	50	100	150
Boating (inc. canoeing)	60	120	180
Sailing	32	48	80
Fishing	62	81	143
Water Skiing	30	45	75
Inderwater swimming	29	2	31
funting	40	3	43
liking	24	92	116
Observing Wildlife	33	51	84
Camping	68	126	194
kiing	84	41	125
Skating	49	120	169
ennis	58	23	81
Golf	110	5	
lorse riding	58	68	115
Cycling	28	100	126
rganized sports	41	84	128
Valking	27		125
Priving for pleasure	110	40	67 110

Figure 10.2-2 Sample of computer-generated table

CANADIAN MUNICIPAL WATER UTILITIES DATABASE PART 1. MUNICIPAL WATER SUPPLY SYSTEMS KINGSTON ONT. 3510111 5131 2MA 0 1 1 1 1

Year	Pop. Served (thousands)	Water Cons. (thous, gal. /day)	No. of Services	No. of dom.
1961 1962 1963 1964 1965 1966 1967	48. 4 48. 4 48. 4 48. 4 56. 3 66. 0 70. 0 64. 0	8000. 8000. 8200. 8590. 8282. 8500. 8700. 9000.	11343. 11454. 11733. 12094. 12196. 12500. 12530. 12663.	10040. 10032. 10293. 10625. 10732. -0. -0. -0.

Figure 10.2-3 Sample of computer-generated table

10.3 Availability

Table in the use of water resources are available on request for regional areas in the following categories:

a) Population

1951, 1956, 1961 and 1966, and projected values by square grid; Southern Ontario and Grand River watershed.

b) Current Industrial Data

Southern Ontario

c) Municipal Water Use

1961-70.

d) Surveys

1970 residents', fishing and visitors' surveys; Okanagan River Basin.

Selected data are currently available to users from Water Resources Data Systems, Inland Waters Directorate, Environment Canada, Ottawa, K1A 0E7, Ontario. (Telephone 819-997-2329).

The data programs are compiled and stored in the Resources Data Systems library on direct access disc. The data files are also stored on disc to facilitate retrieval. Any requests for data should specify the area, time period and level of aggregation required by the user.

10.4 Plans

WATERSTAT in its present form has been introduced only recently. The work is now focused on the improvement of the automated linkage features in relation to other systems, and also on the accumulation, collection and entry of data that are produced in Environment Canada.

Future developments in service will be directed to the establishment of co-operative arrangements with other agencies and research centres that produce relevant data.

Technical developments will be concentrated in future on the establishment of on line interactive communication for the users and the WATERSTAT system, and also on applications of simulation modelling.

10.5 References

- Lands Directorate, Canadian Geographic Information System. Lands, Forests and Wildlife Service, Environment Canada, Ottawa (unpublished).
- 2. Shawinigan Engineering Company Limited, Hydrometric Network Study for Western and Northern Canada. November, 1970. (Other related studies similarly describe the Hydrologic Square Grid Data System).
- 3. Statistics Canada, Geocoding: Geographically Referenced Data Storage and Retrieval System (GRDSR). Census User Enquiry Service, Census Division, Statistics Canada, Department of Industry, Trade and Commerce, Ottawa.
- 4. McCracken, M.C., Databank System, MASSAGER/70. Bank of Canada Users' Manual. Ottawa.

11.0 Planning and Management, Scientific Documentation (WATDOC System)

11.1 Water Resources Data Systems Document Reference Centre (WATDOC)

WATDOC is an information project undertaken by the Inland Waters
Direct with of Environment Canada (1). Its purpose is to increase the exchange of
knowledge on all aspects of research, planning and management of Canadian water
to purpose. The project provides a centralized source of bibliographic references
in published and unpublished reports, studies, analyses, research activities,
matters of public interest and newspaper reports.

A greed of participating agencies and university research centres will constitute in this internation system on the basis of a simple barter arrangement. This means that the users will have access to a large computer data base on condition that they, in turn, contribute to the maintenance and expansion of the time by providing bibliographies and abstracts of references in their fields of specialty.

As part of this system, a set of sophisticated computer programs, developed and operated by the QUIC LAW Project (2) at Queen's University, is available to the user for carrying out literature searches in a conversational mide. By this means, on line interactive cathode ray terminals produce instant response to cueries in plain English. In addition, batch mode searches (the University of Alberta's batch retrieval programs (3)) permit the screening of massive files through various levels of boolean logic.

The strength and usefulness of WATDOC will depend mainly on the ability to keep the data base comprehensive and up-to-date. Environment Canada is acquiring information tapes from agencies in the U.S.A., but the essential Canadian input for the Reference Centre will come from the participating agencies, institutions, and individuals in Canada's water resources community, and from Canadian newspapers.

The data base is designed to enable each participant to consider it as his own stock of information. Although the bibliographical notes are entered on a stundard form (see Appendix 11.6-1), the information can always be identified by the name of the person or agency that supplied the bibliography.

11.2 Procedures

The practical procedure for entering documents into WATDOC is simple. Participants are provided with coding forms (Appendix 11.6-1) and

a brief instruction manual. Before the user starts to code whatever documents he may have encountered, a call to the WATDOC operator will suffice to avoid coding documents that are already stored in the system. Those documents not in the system are then coded. After coding, the completed forms are sent to the WATDOC Centre for editing and conversion into machine readable form. The coded documents are then entered into the centralized data base. The steps in the input procedure are outlined in Appendix 11.6-2. Participants will receive computer printouts of all the references provided by them. Upon request, the participant can also be supplied with individual author and/or keyword indexes of all the material he has submitted. Samples of the index are shown in Appendix 11.6-3 and 11.6-4.

The users of WATDOC have a choice between two methods of communication. These are:

- (i) To rent an IBM 3275 CRT (cathode ray tube) terminal and communication facilities. This is the more direct way of communicating with the data base, which is accessible for 14 hours each working day (see Appendix 11.6-5). An image of the display screen for an individual reference is given in Appendix 11.6-6.
- (ii) To use toll-free telephone connections. In this case, the operator at the Centre provides the interface with the terminal. The caller gives some key words, and the operator, after consulting the data base, makes suggestions for additional key words, or key word modifications. After agreement on this matter, the search is made immediately, and the operator reads the results (see Appendix 11.6-7). This is an inexpensive, but less direct, form of communication.

In both cases, the caller may order printouts of the selected bibliographies and abstracts.

11.3 Availability

From one terminal or telephone, the participant has access to full text and bibliographic data bases of Environment Canada, Department of Justice, and the National Research Council/National Science Library (see Appendix 11.6-8) which have the following data holdings:

Environment Canada:

- all departmental publications,
- all unpublished reports,

- research under federal grants,
- new items in Canadian newspapers on water pollution and other matters of public interest,
- documents entered by participating university research centres,
- U.S.A. water resources scientific information.

Department of Justice:

- Canada Supreme Court decisions,
- Federal Statutes,
- Provincial Statutes.

National Research Council/National Science Library:

- all document references pertaining to pollution (water, air, thermal, noise, etc.) selected from world literature.

The cost to participants in WATDOC is minimal; no charges are made for input and storage. Those who choose to rent a terminal will have to meet that charge. The participants receive credits for coding, abstracting and preparing references to relevant documents for input to the data base.

Non-participants may use the Centre's services at charges which reflect only part of the cost of maintaining an up-to-date stock of document references.

Enquiries should be directed to Water Resources Data Systems. (Tele phone 819-997-2324; for literature searches telephone collect - 819-997-1238).

The minimum contribution of each participant to the data base will obviously vary with the size of the participant's organization. The target level for each is established through guidelines formulated by the Users' Committee. This committee is comprised of representatives of the participating users.

11.4 Plans

WATDOC is at present operating with terminals in Ottawa, Hull and Toronto. Short term plans call for the expansion of the network to include a number of regional offices of Environment Canada and university research centres across Canada.

Prime efforts will be directed continually towards increasing the level

of completeness. The system is also storing information on research in progress.

Another feature that is being developed for users is an automated Selective Dissemination Service, using individualized user profiles. This service would be complementary to the National Research Council/National Science Libarary's CAN/SDI service.

11.5 References

1. Batteke, J.P.H., An Information System for Water Resources

Management: The Co-operative Approach. A Departmental Management

Briefing, Environment Canada, Ottawa, 1972.

Batteke, J.P.H., and M.A. Mercier, A National Water Resources Scientific Information System: Design Criteria and Implementation. Reprint from American Society for Information Service, Western Canada Chapter, Fourth Annual Meeting, Winnipeg, 1972, available from Water Resources Data Systems.

- QUIC/LAW Project 1971, The QUIC/LAW Information Retrieval System, unpublished. Queen's University, Kingston.
- 3. Thiel, L.H., and H.S. Heaps, *Program Design for Retrospective Searches on Large Data Bases*. "Information Storage and Retrieval", V. 8, pp. 1–20, 1972.

11.6 Appendix

The figures on the following pages are referred to in the preceding text.

	1 1 2		
Stations. Since this lake was assumed to be a closed system with only could severely affect the water balance and chamstry of the lake. Cover even by 0. 22140	MAL POLLUTION, POWER, WATER POLLUTION, SURVEY MET CERTA, CARENCERATION, STRITTON, EVAPORATION, WATER BALANCER, CARENCER SHELLS, MOLLUSCA	RSITY OF WHIERLOO, UNIVERSITY OF CHLGARY RANSACTIONS AMERICAN GEOPHYSICE WATON CAN GEOPHYSICAL UNION CAN GEOPHYSICAL UNION PAGE MENT LIBRARY RESOURCE DOCUMENT INFORMATION SYSTEM FRATTZ P, KROUSE HR THERMAL POLLUTION AND WATER SALANCE OF WASAMUN LAKE- AN ISOTOPIC INVEST	

Appendix 11.6-1. Sample of a coded document.

WCATCH, & F	STICL VOSCOCOSSINACTE TO ARCHIVAR CHARTS.
	INDEGANIC IONS*WATER POLLUTION CONTROL*70 * #594-598*E **LONDON**0971*WATER POLLUTION ABSTRACTS
· · · · · · · · · · · · · · · · · · ·	* *XV. 170**NG*CANADIAN PUBLIC HEALTH ASSUCIATION*0068*GENERAL STUDIES - MCMEIKEN*
1 20	SYSTEMS*CANADIAN WOOD CHEMICAL SYMPOSIUM* # #20*876*0970*NACMRD FILE*
1 4 14 16 16 16 16 16 16 16 16 16 16 16 16 16	HYDRAULICALLY-CONNECTED TO A STRETCH OF THE CONNECTICUT RIVER . *21 FENG *0070*WATER SECTOR
10 - 710H	* *71. 001730 BRANER, H C#STUDY TO DETIRMINE THE COSTS OF WATER IN INDUSTRIAL USES*
, , , , , , , , , , , , , , , , , , ,	RECONSTRUCTION ON NICKEL PLATE DAM# # #33*ENG#U.C DEPT OF LANDS.FORESTS AND WATER RESOURCES.OO63*OREE LIBRARY - ARDA FILE*
	#24WENG#3C+ CEPARTMENT LAVUS,FORESTS AND WATER RESOURCES#0064#DREE LIBRARY - ARCA FILE#
would, s o	DEPARTMENT LANDS, FURLSTS AND WATER RESUURCES#0064#UREE LINRARY - ARDA FILE#
RCCLTCN. R X	WATER BY FREEZING* * *139,
CONHAP R H	#29#ENG*CLEARINGHOUSF#SPAINGFILLD, VA.*0067*WATER SECTER LIBRARY#
AT. ILEASANT HO. SOMETOKENH	TEULE A COULD COULD TWEETCATION OF NITHGGENULS HID IN TREATMENT PLANT DESIGN * JOURNAL SANITARY ENGINEERING DIVISION*97 * SAS#709-719*E * ** ** ** ** ** ** ** ** ** ** ** **
CCORW 2	*17.*TNG=90067*P=AISIL - 11.TXAL JETT*
	WURLD WATER BALANCE+3 . #7-20+E *LASH•INLAND #ATERS BRANCH REPRINT SER*102*0770*RESOURCE DATA SECTION*
יישברנט זכ	CONTROL FEDERATION: 902733 NUTRIENT REMOVAL BY NATURAL GAS FERMINTATION: 3900 WISCONSIN AVENUE: MASHINGTON: 90°0172° JATER SECTOR LIBRARY*
CCM. A L	001.74 1 JAH NATIONAL SCHYCY DE CONNOTITY SOLID MASTE PRACTICES, DHOLIMINALY

Appendix 11.6-3. Author Index as shown on display screen.

SURFACEZCATA BASE MADDINGZICE THICKNESS& CLARKE, G K C*CANADIAN GEOGRAPHICAL JOURNAL*CANADIAN "" GEOGRAPHICAL JOURNAL* * *25-20*ENG***********************************	COLOR SEPARATION/FLUID MOVEMENT WELGCITY/WATER PRESSURE/DENSITY CURRENTS/HEAT FLOW/HEAT TRANSFER FLOW SEPARATED AND RE-ATTACHING FLOWS WITH HEAT TRANSFER. (INTERNATIONAL JOURNAL OF HEAT MASS TRANSFER)*INTERNATIONAL JOURNAL OF HEAT MASS TRANSFER)*INTERNATIONAL JOURNAL OF HEAT MASS TRANSFER)*INTERNATIONAL JOURNAL OF HEAT MASS TRANSFERD)*INTERNATIONAL JOURNAL OF HEAT MASS TRANSFERD**INTERNATIONAL JOURNAL OF HEAT MASS TRANSFER * * * * * * * * * * * * * * * * * * *	WATER PRESSURF/DENSITY CUPRENTS/HEAT FLOW/HEAT TRANSFER* CHILCOTT, R F*REVIFW OF SFPARATED AND NELDCITY/ PE-ATTACHING FLOWS WITH HEAT TRANSFER, (INTERNATIONAL OF HEAT WASS TRANSFER)*INTERNATIONAL JOURNAL OF HEAT WASS TRANSFER)*INTERNATIONAL JOURNAL OF HEAT WASS TRANSFER)*INTERNATIONAL JOURNAL OF HEAT WASS TRANSFER** JOURNAL OF HEAT WASS TRANSFER** * *783-797*ENG*PFRGAMON PRESS LID*GREAT BPITAIN**NOG7**NACWPH FILL	TRAJECTORIES/TIDAL WATER NOVETICAL CRADINATES/ANALYTICAL TECHNIQUES/FLCW/POLUTION/PAFTICL Nodels* cewey, J M*Calculation of the Particle trajectories in Tidal Flow* * *Eng*or *Nacwpr File*	MEASUREMENTZECUATIONS/QUART Z/VELOCITY/LIQUIDS/AMUATIC DETET/VECCITY/WATER/TURRULENE/SPECIFIC HE, CUARCITEDISTICS/TIME/FELECTEDCHEME/SPECIFIC HE, CUARCITY/WATER/TURRULENE/SPECIFIC HE, CUARCITY/WATER/TURRULENE/SPECIFIC HE, CUARCITY/LIDUALS/AMUATAR/TURRULENE/S/TURRULENT REQUIRMENT PESCUENTIAL PESCUENTIAL PESCUENTIAL PESCUENTIAL PESCUENTIAL PERCHEMINAL PESCUENTIAL PERCHEMINAL PROFILE PECAUTORIAL PROFILE AMERICAL SOCIETY OF CIVIL ENGINEERS)*JOURNAL OF HYDRAULICS DIVISION* * *787-HO*FNG*007C*NAC*REFILE*	J A*EXPERIMENTAL AND THEORETICAL STUDY OF LEACHING FROM A LANDFILL SITE* * *ENG*00 *NACWRR FILE*	TECHNIOUESZONE DIMFNSIONAL STUDYZAPTICLE TRAJECTORIES/TIDAL WATEP NUMEGICAL COMPUTATIONAL TECHNIOUESZONE DIMFNSIONAL STUDYZMYNYNAMICAL MODELSZELOW VELOCITYZLAGPANGIAN CO-BRINATESZ ANALYTICAL TECHNICUES* DEAFY, J WYCALCOLATION OF THE PARTICLE TRAJECTORIUS IN TIDAL FLOW* * * ** ** ** ** ** ** ** ** ** ** **	DYNAMICS OF COALESCENCF IN CIL. WATER SYSTEAS* * *ENG*0071*NACARR FILFS*	004198 PUBBLE DYWAMICSZAFRATIONZEFLUNZ OXYGEN DEPLETION AUSDRPTION* TRAS Development* * *eng*eo71*nackpr files*	DENSITY CURRENTS/HEAT FLOW/HEAT TARMSFOR/FENTS/FLOW RESISTANCE/STREAM VELOCITY/WATEP PPESSURE/ RE-ATTACHING FLOWS WITH HEAT TRANSFOR (INTERNATIONAL JOURNAL OF HEAT MASS TRANSFORMENATIONAL JOURNAL OF HEAT WASS TRANSFORME A PAGENATIONAL JOURNAL OF HEAT WASS TRANSFORME FIL	COLOGS PRESCH. F. COANTIC WARTUDE SUR LE FIL CHAUG ET LE FILM CHAUG DANS L'EAU* " * 151-11 11°FFRA*LA FCUILLE ELANCHE A2°0069*NACWPF FILE*	
	FLOW RESISTANCE	FLOW SEPARATION	FLOW VELOCITY	FLOW			FLUID DYNAMICS	FLUID FLOW	FLUID MOVEMENT	FLUID RESISTANCE	A H O H I I

Appendix 11.6-4. Keyword Out of Context (KWOC) Index.

Appendix 11.6-5. Interactive searching through individual users' terminals.

3789

BRINKHURST RO

UNIVERSITY OF TORONTO, DEPARTMENT OF ZOOLOGY
DISTRIBUTION AND ABUNDANCE OF TUBIFICID (OLIGOCHAETA) SPECIES
IN TORONTO HARBOUR, LAKE ONTARIO

PUBLISHER: FISHERIES RESEARCH BOARD OF CANADA

PLACE: OTTAWA DATE: 1170

JOURNAL: JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA
VOL: 027 NO: 011 PAGES: 1961-1969

REF. SOURCE: WATER SECTOR LIBRARY

KEYWORD: OLIGOCHAETES, TORONTO HARBOUR, POLLUTION TOLERATION, VERTICAL DISTRIBUTION, SEDIMENTS, WORM POPULATION, DON RIVER, TUBIFICID (OLIGOCHAETA) SPECIES, LAKE ONTARIO

CAT: 340

GEO: 9995 35 1904

FORMAT: 25

THE TUBIFICID OLIGOCHAETES BUILD UP POPULATIONS IN EXCESS OF 200,000 SQUARE METRES IN TORONTO HARBOUR. POLLUTION-TOLERANT SPECIES IN GREAT ABUNDANCE ARE LOCATED AROUND THE MOUTH OF THE DON RIVER, WHEREAS SMALL NUMBERS AND SOME LESS TOLERANT SPECIES ARE FOUND NEAR THE ISLAND SHORES. THERE IS NO EVIDENCE OF DIURNAL RHYTHMS IN THE VERTICAL DISTRIBUTION OF THE WORMS IN THE SEDIMENT. DRY WEIGHTS FOR TUBIFICIDS ARE ABOUT 16 PER CENT OF THE WET WEIGHT FOR FRESH-STARVED WORMS. THE ASH CONTENT AVERAGED 34 PER CENT OF THE DRY WEIGHT FOR WORMS WITH A GUT FULL OF MUD, BUT 11 PER CENT FOR WORMS CLEAR OF GUT CONTENTS. FUND: NATIONAL RESEARCH COUNCIL, DEPARTMENT OF ENERGY, MINES AND RESOURCES

TI:D

Appendix 11.6-6. Screen image display of document surrogate.

Appendix 11.6-7. Interactive searching through telephone conversation.

Appendix 11.6-8. Network of Data Bases.

12.0 Alphabetical List of Variables

	Data Base
aldrin	NAQUADAT
alkalinity	
- phenol phthalein	NAQUADAT
- total	NAQUADAT, STAR/EROS
aluminum	
- dissolved	NAQUADAT
- extractable	NAQUADAT
antimony, extractable	NAQUADAT
aquifer	
- age	GOWN
- age precision	COWN
- final drawdown	COWN
- interval	COWN
- material	GOWN
- pump test rate	COWN
- specific capacity	COWN
- test type	GOWN
- time of test	GOWN
arsenic, dissolved	NAQUADAT
bacteria	
- aerobic viable count MF 20°C	STAR/EROS
- aerobic viable count MF 4°C	STAR/EROS
- anaerobic viable count MF 20°C	STAR/EROS
- autotrophic ammonium oxidizing	STAR/EROS
- bacterial biomass	STAR/EROS
- direct count MF/ml	STAR/EROS
- proteus, filtered/100 ml	STAR/EROS
- proteus MPN	STAR/EROS
- pseudomonas species MF	STAR/EROS
barium, extractable	NAQUADAT
barrier height of grid square	HYDROLOGIC
bed load	
- density	SEDIMENT
- discharge	SEDIMENT
- particle size distribution	SEDIMENT

bed material - density SEDIMENT - particle size distribution SEDIMENT BHC (benzene hexachloride) NAQUADAT bicarbonate NAQUADAT, STAR/EROS NAQUADAT, STAR/EROS BOD (biochemical oxygen demand) STAR/EROS - probe bog and swamp, area within grid square HYDROLOGIC bore hole - location, geographic GOWN - location, local GOWN - location, utm GOWN - originator GOWN - purpose of **GOWN** - user identification no. GOWN STAR/EROS boron, dissolved cadmium - dissolved (filtered) STAR/EROS NAQUADAT, STAR/EROS - extractable (non-filtered) calcium - dissolved (filtered) NAQUADAT, STAR/EROS - non-filtered STAR/EROS carbon NAQUADAT - inorganic, dissolved NAQUADAT, STAR/EROS - inorganic, total - organic, dissolved NAQUADAT NAQUADAT, STAR/EROS - organic, total STAR/EROS - total STAR/EROS - particulate STAR/EROS carbon dioxide, total NAQUADAT carbonate casing GOWN - diameter GOWN - interval GOWN - material NAQUADAT chlordane chloride NAQUADAT, STAR/EROS - dissolved (filtered) STAR/EROS - non-filtered STAR/EROS chlorophyll A chromium NAQUADAT, STAR/EROS - extractable (non-filtered) STAR/EROS - filtered HYDROLOGIC climate zone of grid square cobalt

NAQUADAT, STAR/EROS

- extractable (non-filtered)

- filtered

coliforms

fecal MFfecal MPN

- MF - MPN - total

colour of water

copper

- dissolved (filtered)

- extractable (non-filtered)

cross-sectional area (river)

2, 4-D (2, 4-dichlorophenoxyacetic acid) data, reliability of groundwater

DDD (dichlorodiphenyldichloroethane)
DDE (dichlorodiphenyldichloroethylene)
DDT (dichlorodiphenyltrichloroethane)

depth

- bathythermograph

- glacier - ice

samplingsecchi discsnow

- sounding - water

- water (rivers)

- well

dieldrin discharge

- annual maximum instantaneous

- annual maximum and minimum daily

- daily

- measurements

- synthesized mean annual distance to sea for grid square

DO (dissolved oxygen) drainage basin areas drilling - method

elevation

- average for each grid square

- ground

STAR/EROS

STAR/EROS STAR/EROS STAR/EROS STAR/EROS NAQUADAT

NAQUADAT, STAR/EROS

NAQUADAT, STAR/EROS NAQUADAT, STAR/EROS

HYDROMETRIC

NAQUADAT

COWN

NAQUADAT NAQUADAT NAQUADAT

STAR/EROS GLACIOLOGY GLACIOLOGY STAR/EROS STAR/EROS GLACIOLOGY STAR/EROS GLACIOLOGY HYDROMETRIC

GOWN NAOUADAT

HYDROMETRIC

HYDROMETRIC HYDROMETRIC HYDROMETRIC HYDROLOGIC HYDROLOGIC

NAQUADAT, STAR/EROS

HYDROMETRIC

GOWN

HYDROLOGIC

- method of measurement
- measuring point
- of southwest corner for each grid square

endosulfan endrin COMY

HYDROLOCIC NAQUADAT NAQUADAT

fluoride

- dissolved (filtered)

- non-filtered

forest, area within grid square fuel oils

gasoline glacier

- area

- area within grid square

- climatic data

depthelevationlocationorientation

- recession - runoff

surface changestemperature

typevelocitywidth

hardness, total heptachlor housing

- dwellings connected to sewers

- dwellings, number of

- dwellings with bath facilities

- dwellings with flush toilets

 dwellings with municipal water supply

- dwellings with other sewage disposal

- dwellings with septic tank

humic acids hydrocarbons NAQUADAT, STAR/EROS

STAR/EROS HYDROLOGIC NAQUADAT

NAQUADAT
GLACIOLOGY
GLACIOLOGY
HYDROLOGIC
GLACIOLOGY

NAQUADAT, STAR/EROS

NAQUADAT

GLACIOLOGY

WATERSTAT WATERSTAT WATERSTAT WATERSTAT

WATERSTAT

WATERSTAT WATERSTAT NAQUADAT NAQUADAT

ice		
- depth	GLACIOLOGY	
- melt	GLACIOLOGY	
- thickness	GLACIOLOGY	
iodide, non-filtered	STAR/EROS	
iron		
- dissolved (filtered)	NAQUADAT,	STAR/EROS
- extractable (non-filtered)	NAQUADAT,	STAR/EROS
- soluble, total	STAR/EROS	
- total	STAR/EROS	
jet fuel	NAQUADAT	
kerosene	NAQUADAT	
labour force		
- average earnings, female	WATERSTAT	
	WATERSTAT	
	WATERSTAT	
- wage earners, male	WATERSTAT	
lake, area within grid square	HYDROLOGIC	•
land use, factor for grid square	HYDROLOGIC	
lead		
- dissolved (filtered)	NAQUADAT,	
- extractable (non-filtered)	NAQUADAT,	STAR/EROS
lignin and tannin	NAQUADAT	
lignosulphonates	NAQUADAT	
lindane	NAQUADAT	
lithium	NACHADAT	CTAD/EDOS
- extractable (non-filtered)	NAQUADAT, STAR/EROS	STAR/ERUS
- filtered	31AN/LNO3	
lithologic - age precision	GOWN	
- material	GOWN	
- material age	GOWN	
- material interval	GOWN	
magnesium	NAQUADAT,	STAP/FROS
- dissolved (filtered)	STAR/EROS	3 I AR / EROS
- non-filtered	31AN/LINOS	
manganese - dissolved (filtered)	NAQUADAT,	STAR/FROS
- extractable (non-filtered)	NAQUADAT,	STAR/EROS
- soluble, total	STAR/EROS	
~ total	STAR/EROS	
manufacturing industries, establishment		
- latitude	WATERSTAT	
	MATERITAT	

- longitude

WATERSTAT

	Data Base
- operating days	WATERSTAT
- shifts for operating day	WATERSTAT
mercury	
- dissolved (filtered)	NAQUADAT, STAR/EROS
extractable (non-filtered)	NAQUADAT, STAR/EROS
meteorological data, evapotranspiration	
coefficients	WATERSTAT
methoxychlor	NAQUADAT
mining industries, establishment	
- latitude	WATERSTAT
- longitude	WATERSTAT
- operating days	WATERSTAT
- shifts per operating day	WATERSTAT WATERSTAT
- type of mining establishment	WATERSTAT
molybdenum - extractable (non-filtered)	NAQUADAT, STAR/EROS
- filtered	STAR/EROS
municipal administrative records, total	STARTEROS
land area	WATERSTAT
municipal waste treatment system	
- average daily flow, by	
municipalities	WATERSTAT
- plant design capacity	WATERSTAT
- plant effluents	WATERSTAT
- plant influent	WATERSTAT
- population served, by	
municipalities	WATERSTAT
- total population by municipalities	WATERSTAT
 unit cost of waste treatment 	WATERSTAT
municipal water consumption	WATERSTAT
municipal water supply system	
- design capacity	WATERSTAT
- number of outlets, commercial	WATERSTAT
- number of outlets, domestic	WATERSTAT WATERSTAT
- number of outlets, industrial	WATERSTAT
population servedstorage capacity	WATERSTAT
- Storage capacity	

nickel

- extractable (non-filtered) NAQUADAT, STAR/EROS
- filtered STAR/EROS
nitrate
- dissolved (filtered) NAQUADAT, STAR/EROS
- non-filtered STAR/EROS

nitrate and nitrite		
dissolved (filtered)	NAQUADAT,	STAR/EROS
- non-filtered	STAR/EROS	
nitrite		
- dissolved (filtered)	NAQUADAT,	STAR/EROS
non-filtered	STAR/ERGS	
	517117/21105	
nitrogen	NAQUADAT,	STAR/EROS
ammonia, free, soluble		31AN/LNO3
organic, filtered	STAR/EROS	
- organic, non-filtered	STAR/EROS	
total, filtered	STAR/EROS	
- total kjeldahl	NAQUADAT,	STAR/EROS
total non-filtered	STAR/EROS	
total, particulate	STAR/EROS	
overburden for grid square	HYDROLOGIC	
oxygen		
biochemical demand (BOD)	NAQUADAT,	STAR/EROS
chemical demand (COD)	NAQUADAT,	STAR/EROS
dissolved (DO)		STAR/EROS
dissolved (as % saturation)	STAR/EROS	317117/21103
dissolved (as a saturation)	31AK/LKO3	
pcb's (polychlorinated biphenyls)	NAQUADAT	
	MAQOADAT	
petroleum products	NACHADAT	
fuel oils	NAQUADAT	
gasoline	NAQUADAT	
jet fuel	NAQUADAT	
kerosene	NAQUADAT	
рН		
at 25°C	NAQUADAT,	STAR/EROS
at 25°C, integrated sample	STAR/EROS	
in situ	STAR/EROS	
in situ, integrated samples	STAR/EROS	
phenolic material	NAQUADAT,	STAR/EROS
phosphorus		
inorganic, dissolved	NAOUADAT	
orthophosphate, dissolved	TTT CONTON	
(reactive, soluble)	NAQUADAT,	STAR/EROS
		51/11/21105
reactive (non-filtered)	STAR/EROS	CTAR (FROC
total, non-filtered	NAQUADAT,	
total, filtered (soluble)	NAQUADAT,	STAR/EROS
unreactive, soluble	STAR/EROS	
potassium		
dissolved (filtered)	NAQUADAT,	STAR/EROS
non-filtered	STAR/EROS	

residue

filtrable
 non-filtrable
 total
 NAQUADAT, STAR/EROS
 NAQUADAT, STAR/EROS
 STAR/EROS

runoff

- annual maximum and minimum

daily HYDROMETRIC
- daily means HYDROMETRIC
- daily minima HYDROMETRIC
- monthly means HYDROMETRIC

screen

- diameter GOWN
- interval GOWN
- slot size GOWN

sea, area within grid square HYDROLOGIC

sediment

daily value
 deposited density
 suspended concentration
 suspended, density
 suspended, density
 suspended, discharge

- suspended, particle size

distribution of SEDIMENT
- yield SEDIMENT
Id factor for grid square HYDROLOGIC

shield factor for grid square

silica

- reactive, soluble NAQUADAT, STAR/EROS

HYDROLOGIC

- total STAR/EROS slope of grid square HYDROLOGIC

- azimuth (degrees clockwise from

north)

snow

density
 depth
 melt
 climatic data
 temperature
 GLACIOLOGY
 GLACIOLOGY
 GLACIOLOGY

snowline

dateelevationGLACIOLOGY

sodium

dissolved (filtered)
 NAQUADAT, STAR/EROS

non-filteredsoil zone of grid squareSTAR/EROSHYDROLOGIC

	Data Base
natida total	
solids, total - dissolved	NAQUADAT
· suspended	NAQUADAT
specific conductance	
- 25°C	NAQUADAT, STAR/EROS
- 25°C, integrated	STAR/EROS
standard plate count	
- 20°C	STAR/EROS
- 35 °C	STAR/EROS
streamflow	HYDROMETRIC
- synthesized	HYDROLOGIC
streptococci	
- fecal mf	STAR/EROS
- fecal mpn	STAR/EROS
strontium	
- extractable (non-filtered)	NAQUADAT, STAR/EROS
- filtered	STAR/EROS
sulphate	NACHADAT CTAD/FROS
- dissolved (filtered)	NAQUADAT, STAR/EROS
- non-filtered	STAR/EROS
sulphide, non-filtered	STAR/EROS
surfactants	NAQUADAT
- linear alkyl sulphonates	NAQUADAT
- nitrilotriacetic acid	NAQUADAT
2,4,5-T (2,4,5-trichlorophenoxyacetic acid) tailing ponds, mining establishments	
- use by mining establishments	WATERSTAT
- volume of waste treated	WATERSTAT
tannin and lignin	NAQUADAT
temperature	
- air	HYDROMETRIC
- glacier	GLACIOLOGY
- precision classification	STAR/EROS
- water	HYDROMETRIC, NAQUADAT,
	SEDIMENT, STAR/EROS
- water (by bathythermograph)	STAR/EROS
thallium, extractable	NAQUADAT
thermal plants, establishment	
- fuel type	WATERSTAT
- latitude	WATERSTAT

WATERSTAT

WATERSTAT WATERSTAT

- longitude

- operating days

- shifts per operating day

Da	ta	В	ล	S	е

topography of grid square tourists, socio-economic characteristics turbidity

- from integrated samples

HYDROLOGIC WATERSTAT

NAQUADAT, STAR/EROS

STAR/EROS

urban area within grid square

HYDROLOGIC

vanadium

extractable (non-filtered)filtered

velocity of water, rivers volumetric accumulation

of bed loadof deposited sediment

SEDIMENT

water

depthtemperature

- velocity

water dischargeby geographic locationby geographic typeby type of establishment

- by volume water intake

 by type of establishment (manu., mining, thermal)

- by kind (fresh, brackish)

- by location

by source (river, groundwater, etc.)

 by volume water levels

- annual maximum instantaneous

- daily

- instantaneous subsurface

water pollution abatement expenditures

by class (capital, current)by company (capitalized R & D)

 by establishment (fixed capital, repair, operating exp.)

- by fiscal year (1972, 1971)

- by sector (manu., mining, etc.) water recirculation, make-up water

- by end use

NAQUADAT, STAR/EROS

STAR/EROS HYDROMETRIC

SEDIMENT

GLACIOLOGY, HYDROMETRIC GLACIOLOGY, HYDROMETRIC

GLACIOLOGY, HYDROMETRIC
WATERSTAT

WATERSTAT WATERSTAT WATERSTAT WATERSTAT

WATERSTAT WATERSTAT WATERSTAT

WATERSTAT WATERSTAT

HYDROMETRIC HYDROMETRIC GOWN

WATERSTAT WATERSTAT

WATERSTAT WATERSTAT WATERSTAT

WATERSTAT

0			670			
U	а	ta	В	a	SI	9

by type of establishment WATERSTAT
by volume WATERSTAT

water treatment

by treatment method WATERSTAT
by types of establishment WATERSTAT
by location in production process WATERSTAT
by volume WATERSTAT

water use

by end use
by kind of establishment
by purpose of bore hole
by volume

WATERSTAT

WATERSTAT

WATERSTAT

WATERSTAT

well

depth GOWN plug interval COWN

zinc

dissolved (filtered) NAQUADAT, STAR/EROS extractable (non-filtered) NAQUADAT, STAR/EROS

13.0 Addresses for Enquiries

13.1 General

Requests for information, except where otherwise indicated, should be directed to the appropriate division or section at the following address:

Inland Waters Directorate, Environment Canada, Ottawa, Ontario K1A 0E7

The divisions, sections, other offices and telephone numbers for the respective data bases are given below.

13.2 Physiographic Data

Network Planning and Forecasting Section, Applied Hydrology Division, Inland Waters Directorate.

(Telephone: 819-997-1509)

13.3 Streamflow and Water Level

Data Control Section, Water Resources Branch, Inland Waters Directorate. (Telephone: 819-997-2098)

OR

District Engineer, Water Survey of Canada, at:

Room 502, 1001 West Pender Street, Vancouver 1, British Columbia. (Telephone: 604-666-3606) (British Columbia and Yukon Territory) 700 Calgary Power Building, 110 - 12th Avenue, S.W., Calgary 3, Alberta. (Telephone: 403-266-1631)

(Alberta and Northwest Territories)

G.M.C. Building, 1102 - 8th Avenue, Regina, Saskatchewan. (Telephone: 306-525-0148)

(Saskatchewan)

521 Federal Building, 269 Main Street, Winnipeg 1, Manitoba. (Telephone: 204-985-2434)

(Manitoba, Ontario and Northwest Territories)

Federal Building, 75 Farquhar Street, Guelph, Ontario. (Telephone: 519-821-0110)

(Ontario)

Area Engineer, Water Survey of Canada, Shea Building, 2180 Belgrave Avenue, Montreal 261, Quebec. (Telephone: 514-487-5933)

(Quebec)

5th Floor, Gulf Building, 6009 Quinpool Road, Halifax, Nova Scotia. (Telephone: 902-426-3770)

(New Brunswick, Nova Scotia and Prince Edward Island)

13.4 Sediment

Sediment Survey Section, Water Resources Branch, Inland Waters Directorate. (Telephone: 819-997-1185)

OR

District Engineer, Water Survey of Canada. (see district office addresses given above)

13.5 Groundwater

GOWN Program Co-ordinator, Groundwater Section, Hydrology Research Division, Inland Waters Directorate. (Telephone: 819-997-2466)

13.6 Glaciology

Glaciology Division, Inland Waters Directorate. (Telephone: 819-997-2476)

OR

Special Services and Surveys Section, Applied Hydrology Division, Inland Waters Directorate. (Telephone: 819-997-1934)

13.7 The Great Lakes

Data Archives Unit,
Data Management Section,
Scientific Operation Division,
Canada Centre for Inland Waters,
P.O. Box 5050,
Burlington, Ontario.
(Telephone: 416-637-4292)

13.8 Water Quality

Head,
Data and Instrumentation Subdivision,
Network and Surveys Division,
Water Quality Branch,
Inland Waters Directorate.
(Telephone: 819-997-3422)

13.9 Use of Water Resources

Water Resources Data System, Inland Waters Directorate. (Telephone: 819-997-2329)

13.10 Planning and Management (Scientific Documentation)

Water Resources Data System, Inland Waters Directorate. (Telephone: 819-997-2324)

For Literature Searches call collect 819-997-1238.

14.0 Inland Waters Directorate Data Publications

14.1 Streamflow and Water Level

"Surface Water Data", 1965 to 1971: annual publications for British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, Yukon Territory - Northwest Territories, and Atlantic provinces.

"Water Resources Paper": surface water data for 1908-1964.

"Surface Water Data Reference Index", published annually.

"Historical Streamflow Summary", to 1970: issued every five years.

14.2 Sediment

"Sediment Data for Canadian Rivers", 1965 to 1969: annual publication. Data collected for 1961-64 published in "Water Resources Papers" Series.

IHD Project, Saskatchewan - 1, "A Study for Aggradation and Degradation of the South Saskatchewan River, Gardiner Dam - Saskatoon": progress reports, 1964-67 (every five years); annual data report, 1968, 1969, 1970 and 1971.

IHD Project, Saskatchewan - 2, "Delta Formation and Sedimentation in Lake Diefenbaker": progress report, 1964-67 (every five years); annual data reports, 1968, 1969, 1970 and 1971.

"Hydrometric and Sediment Survey, Lower Fraser River": progress report, 1965-68 (every five years).

Reports of other reservoir and watershed studies are also available.

14.3 Groundwater

Some data related to specific studies are published in the Scientific Series and Technical Bulletin Series of the Inland Waters Directorate.

14.4 Glaciology

Report Series:

No. 4 - "Glacier Survey in Alberta, 1968".

No. 5 - "Glacier Survey in British Columbia".

No. 10 - "Glacier Survey in British Columbia, 1968".

Technical Bulletin Series:

No. 37 - "Glacier Inventory of Canada - Axel Heiberg Island, NWT, 1969".

Glacier Inventory Notes:

No. 1 - "Glaciers in Canada". Photographs and manuscripts held by the Scott Polar Research Institute, Cambridge, England. 1970

No. 2 - "Photographs of Glaciers in Western Canada" held by the Royal Geographical Society, Kensington Gore, London, England. 1970

No. 3 - "Photographs of Glaciers in British Columbia" held by the Film and Photographic Branch, Department of Travel Industry, British Columbia. 1971

No. 4 - "Information booklet for the Inventory of Canadian Glaciers". 1971

No. 5 - "C.D. Walcott's Panoramas of Western Canada". 1971

No. 6 - "Glacier Surveys by District Personnel of the Water Survey of Canada, 1. The Victoria Glacier". 1971

No. 7 - "Glacier Surveys by District Personnel of the Water Survey of Canada, 2. Peyto Glacier". 1972

Water Survey of Canada:

"Glacier Surveys in Alberta, 1971".

"Survey of Glaciers on the Eastern Slopes of the Rocky Mountains in Banff and Jasper National Parks, 1968".

14.5 The Great Lakes

Limnological Data Report Series:

1966, 1967, 1968, 1969. Canada Centre for Inland Waters, Burlington, Ontario.

