10. [8 points] The Taylor series centered at x = 0 for a function F(x) converges to F(x) for all x and is given below.

$$F(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{(2n)!(4n+1)}$$

a. [3 points] What is the value of $F^{(101)}(0)$? Make sure your answer is exact. You do not need to simplify.

Answer:
$$F^{(101)}(0) =$$

b. [3 points] Find $P_9(x)$, the 9th degree Taylor polynomial that approximates F(x) near x=0.

 $\mathbf{c}.$ [2 points] Use your Taylor polynomial from part $\mathbf{b}.$ to compute

$$\lim_{x \to 0} \frac{F(x) - x}{2x^5}$$

6. [8 points]

Values of a function f and some of its derivatives are given in the table on the right. Use this information to answer the questions that follow.

x	0	π
f(x)	-6	2π
f'(x)	6	2
f''(x)	1	-3
f'''(x)	-1	0
f''''(x)	5	-9/2

a. [4 points] Find a formula for the Taylor polynomial of degree 4 for f about $x = \pi$.

b. [4 points] Find the first three nonzero terms of the Taylor series for $\int_0^x f(t^2) dt$ about x = 0.