THE RHEOLOGY AND FLOW OF VISCOPLASTIC MATERIALS

R. Byron Bird, G.C. Dai* and Barbara J. Yarusso

Chemical Engineering Department and Rheology Research Center University of Wisconsin – Madison Madison, Wisconsin, U.S.A.

CONTENTS

1.	Introduction	2
2.	Useful Empiricisms for the Stress in Shear Flows	12
3.	The Stress Tensor in Arbitrary Flow Fields	15
4.	Some Analytical Flow Solutions for the Bingham Model	25
5.	Some Analytical Heat-Transfer Solutions for the Bingham Model	37
6.	Summary of Flow Problems	42
7.	Summary of Heat-Transfer Problems	42
8.	Conclusions	60
	Acknowledgments	60
	Literature References	62

^{*} Permanent address: East China Institute of Chemical Technology (Huadong Huagong Xueyuan), Shanghai, China.

1. INTRODUCTION

During the past several decades the emphasis in rheology and continuum mechanics has been on one-phase materials, with particular attention to polymer solutions and polymer melts. Slurries, pastes, and suspensions, frequently encountered in industrial problems, have received less attention than they deserve. Many of these materials have a "yield stress", a critical value of stress below which they do not flow; they are sometimes called "viscoplastic materials". In Table I we list some of the materials that fall into this category, along with information about research papers in which they have been studied.

We begin in § 2 by giving some of the standard empirical expressions for the stress tensor of viscoplastic materials; for the sake of simplicity this discussion is restricted to shear flows. In § 3 we show how the models have to be written for more complex flows, and the von Mises-Hencky yield criterion is introduced. Then in § 4 we give a summary of the elementary solutions of flow problems for the Bingham model. This is followed in § 5 by a similar presentation for heat transfer problems. Then in § 6 a summary is given of solutions for models other than the Bingham model as well as references where numerical solutions may be found.

It is apparent that an enormous amount of work has been done on viscoplastic materials. As far as we know a summary of the type offered here has not appeared elsewhere, although there have been more limited reviews within various fields of application /2, 42, 80, 97, 111, 148, 136/. Recent textbooks and monographs on rheology and continuum mechanics have devoted little or no space to the subject. One has to go back to the books by Reiner /141, 143/, Prager /137/, Ulbrecht and Mitschka /190/, Fredrickson /49/, Skelland /171/, and Wilkinson /209/, to find any substantial discussions of materials with a yield stress. Anyone wishing to do further work on the Bingham model or other models would do well to read the pertinent chapters in these books. Also attention should be paid to the series of eight carefully written publications by Oldroyd /119-126/ which include the formulation of viscous flow problems, boundary-layer theory for slow motions, and illustrations of methods of solution of non-trivial flow problems, both without and with time dependence. We also call attention to the book, in Russian, by Ogibalov and Mirzadzhanzade /115/ which is an extensive treatise on the research done by scientists in the U.S.S.R. on the unsteady-state flow of viscoplastic materials. Also the book, in Japanese, by Tomita /189/ contains some useful material on the Bingham and Casson models along with comparisons with experimental data.

TABLE I
Materials with Yield Stresses

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Download Date | 11/5/16 5:40 AM

Table I Cont/..

Material	Constitutive Equation	Experiment	Author(s)	Reference
	Bingham	tube flow	Bingham	12
	Bingham	drag on bodies, Couette	Pazwash and Robertson	133
clay/methanoi		Ostwald viscometer	Bingham and Durham	14
cement/clay / water	Bingham, Shul'man	tube flow, Couette	Bukhman, et al.	23
drilling mud	Bingham	Couette	Van Olphen	196
sewage sludge	Bingham	tube flow, Couette	Caldwell and Babbitt	24
iron oxide/ ethylene glycol	Casson	cone and plate	Smith and Bruce	176
thorium dioxide/ Bingham methanol	Bingham	tube flow, settling Brought to v	g Thomas 183 Brought to you by I Université Paris Ouest Nanterre La Défense	183 anterre La Dé

Table I Cont/..

Material	Constitutive Equation	Experiment	Author(s)	Reference
metal oxides/	Bingham	tube flow	Thomas	184
water	Bingham	tube flow, w/wo heat transfer	Thomas	182
	Bingham	tube flow, settling	Thomas	183
	Bingham, Crowley- Kitzes	tube flow	Thomas	185
	Bingham	tube flow	Thomas	186
	Bingham	Couette	Firth and Hunter	45.47
	Crowley-Kitzes	tube flow	Murdock and Kearsey	114
,	Bingham	tube flow, Couette	Umeya	191
silica or silicate/	Bingham	Couette	Firth and Hunter	45-47

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

44 191 199

Vinogradov, et al.

tube, Couette, cone and

Herschel-Bulkley

plate

Umeya

tube flow, Couette

Couette

Herschel-Bulkley

Newtonian liquid

Bingham

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Table I Cont/..

Material	Constitutive Equation	Experiment	Author(s)	Reference
	Casson	tube flow	Walawender, et al.	202
sulphur/water	Bingham	tube flow	Govier and Charles	54
barite/water	Bingham		Earnshaw and Spronson	41
graphite/water	Bingham	tube flow	Thomas	184
	Bingham	tube flow, settling	Thomas	183
		Ostwald viscometer	Bingham and Durham	14
carbon black/oil	Bingham	tube flow	Thomas	186
,	Bingham	Couette	Firth and Hunter	45-47
coal/Newtonian	Bingham	tube flow	Sacks, et al.	149
liquid	Bingham	Couette	Munro, et al.	113

Table I Cont/..

Material	Constitutive Equation	Experiment	Author(s)	Reference
	Bingham, Casson, Herschel-Bulkley	Couette	Darby and Rogers	36
grease (oil/soap)	Bingham	tube flow	Mahncke and Tabor	06
	Herschel-Bulkley	tube, Couette, cone and plate	Vinogradov, et al.	199
	Bingham	tube, penetrometer	Singleterry and Stone	170
water/benzene	Bingham	Couette	Firth and Hunter	45-47
tritolyl phosphate/ castor oil	tritolyl phosphate/ Casson, Herschel- castor oil Bulkley	(published data)	Scott Blair	159
xanthan gum/ water		cone and plate	Whitcomb, et al. Whitcomb	207
PV C/organic liquids	ş	cone and plate	Willey and Macosko	210

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Download Date | 11/5/16 5:40 AM

Table I Cont/..

Ldagio				
polymer latex/ Bin	Bingham	Couette	Firth and Hunter	45-47
Newtonian liquid Ca	Casson	parallel plates	Krieger and Eguiluz	81
ii B	Bingham	Couette	Hunter and Frayne	11
inorganic solid/ mo	modified Casson	Couette	Matsumoto, et al.	100
polymer/solvent mo	modified Casson	cone and plate	Onogi, et al.	128
inorganic solid/ Ca	Casson	tube flow, Couette	Kataoka, et al.	75
polymer Pla	Plastic-viscoelastic		White and Tanaka	208
		tube, Couette, cone and plate, parallel plates	Vinogradov, et al.	200
		tube, cone and plate	Chapman and Lee	27

Table I Cont/..

Material	Constitutive Equation	Experiment	Author(s)	Reference
glass/polymer	Bingham	Couette cone and plate	Van Kao, et al. Kataoka, et al.	194,195
rubber/benzene	Herschel-Bulkley	Ostwald and Bingham viscometers	Herschel and Bulkley	65
acrylic rubber/ poly(ethyl acrylate)	Bingham 9)	tube, bicone and plates	Rosen and Rodriguez	147
styrene-divinyl-Casson benzene copolymer/ polystyrene/DEP	Casson (Casson	Couette cone and plate	Onogi, et al. Kataoka, et al.	127
paint	Bingham	tube flow	Bingham	15
printing ink	Casson	cone and plate	Casson	25

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Download Date | 11/5/16 5:40 AM

Table I Cont/..

Material	Constitutive	Experiment	Author(s)	Reference
plastic rocket propellant	Bingham	squeezing flow	Dukes	40
meat extract	Bingham		Denn	38
fermentation broth Bingham	. Bingham	parallel plates	Richards	145
			Deindoerfer and Nest	37
butter			Kawanari, et al.	76
orange juice concentrate	gener. Casson, Herschel-Bulkley	tube flow	Mizrahi and Firstenberg	108
sweet potato puree	Herschel-Bulkley	Couette	Rao, et al.	139
mayonnaise B	Herschel-Bulkley	cone and plate	Brought to you byTi⊎ARelSRetParis Ouest NantelRe La Défense	antel 87 La Défense

Table I Cont/..

Material	Constitutive	Experiment	Author(s)	Reference
apple sauce C	Casson, Herschel-Bulkley Couette	Couette	Charm	28
tomato sauce	Bingham	tube flow, stokes flow	Ansley and Smith	D.
tomato puree	Casson, Herschel-Bulkley Couette	Couette	Charm	28
poop	Casson	tube flow	Walawender, et al.	202
	Casson	tube flow, Couette	Merrill, et al.	102
	Casson	Couette	Merrill, et al.	103
	Casson, Herschel-Bulkley (published data)	(published data)	Scott Blair	159
	Casson	Couette, cone and plate	Charm and Kurland	29
	Casson	tube, cone and plate,	Stoltz and Larcan	179
		conicylinder		

Notes: A: Sodium silicate added B: To account for time dependent effect, $\tau_{yx} = \lambda (t) [\tau_0 + k_0 | \dot{\gamma}_{yx}^{-1}]$ C: In food literature, the Herschel-Bulklev model is often labelled Charm's model.

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

2. USEFUL EMPIRICISMS FOR THE STRESS IN SHEAR FLOWS

For structurally simple fluids (gases and liquids of low molecular weight) the relation between shear stress and velocity gradient in a shear flow $v_x = v_x(y)$ (see Fig. 1) is the Newtonian expression:

$$\tau_{yx} = -\mu \frac{dv_x}{dy} \tag{2.1}$$

in which μ is the viscosity of the fluid. We use the sign convention adopted elsewhere /17-19, 69/ that τ_{yx} is the force in the positive x-direction on a plane perpendicular to the y-direction, the force being transmitted by the material below the plane to the material above the plane.

For pastes, slurries, and suspensions a number of empirical relations have been suggested to replace Eq. (2.1). The three most widely used are the Bingham, Casson, and Herschel-Bulkley equations.

Fig. 1. Flow between two parallel plates. Here the velocity gradient dv_x/dy is negative, and the shear stress τ_{v_x} is positive.

a. Bingham Model:

The simplest and most widely used model is the two-parameter model proposed by Bingham /12, 13, 19 (p. 11)/:

$$\tau_{yx} = \pm \tau_0 - \mu_0 \frac{dv_x}{dy} \qquad |\tau_{yx}| \geqslant \tau_0 \qquad (2.2)$$

$$dv_{x}/dy = 0 |\tau_{vx}| \leq \tau_{0} (2.3)$$

Here τ_0 is the "yield stress" and μ_0 is the "plastic viscosity"; the positive sign in Eq. (2.2) is to be used when τ_{yx} is positive, and the negative sign is used when τ_{yx} is negative. (Actually the Bingham model is a special case of a much older model proposed by Schwedoff /141, 143, 156/: $\tau_{yx} + \lambda_0 \partial \tau_{yx}/\partial t = \pm \tau_0 - \mu_0 (dv_x/dy)$, in which λ_0 is a time constant.) Several dimensionless groups are defined using a characteristic length D, a characteristic velocity V, and the parameters in the Bingham model: the Reynolds number, Re = DV ρ/μ_0 ; the Bingham number, Bi = $\tau_0 D/\mu_0 V$; and the Hedström number, He = $\tau_0 D^2 \rho/\mu_0^2$.

b. Casson Model:

Another two-constant model is that proposed by Casson /25/ for pigmentoil suspensions:

$$\sqrt{\pm \tau_{yx}} = \sqrt{\tau_0} + \sqrt{\mu_0} \sqrt{\mp (dv_x/dy)} \qquad |\tau_{yx}| \geqslant \tau_0 \qquad (2.4)$$

$$dv_{x}/dy = 0 |\tau_{yx}| \le \tau_{0} (2.5)$$

in which the upper signs are to be used when τ_{yx} is positive, and the lower signs when τ_{yx} is negative. This model has often been used for describing blood /29, 85, 86, 103, 116, 159, 160, 179/. The dimensionless group $\tau_0 D/\mu_0 V$ that appears when solving problems for equation 2.4 is called the Casson number, Ca.

c. Herschel-Bulkley Model:

A simple generalization of the Bingham model is the three-constant Herschel-Bulkley /65, 66/ equation:

$$\tau_{yx} = \pm \tau_0 - m \left| \frac{dv_x}{dy} \right|^{n-1} \frac{dv_x}{dy} \qquad |\tau_{yx}| \geq \tau_0$$
 (2.6)

$$dv_{x}/dy = 0 |\tau_{yx}| \leq \tau_{0} (2.7)$$

The plus sign is to be used when $\tau_{yx} > 0$, and the minus sign when $\tau_{yx} < 0$. The three models above are sketched in Figure 2. Note that the symbol τ_0 is used in all three models for the yield stress. The symbol μ_0 in Eqs. (2.2) and (2.4) have different meanings. We have tried to be particularly careful to write the stress expressions in such a way that they may be applied when the

Fig. 2. Sketch showing the general shapes of the empirical expressions.

velocity gradients and stresses are either positive or negative. This is important when in a single flow problem there are regions of positive and negative velocity gradients (for example, in the axial flow in an annulus).

Other empirical models containing a yield stress have been proposed: the modified Casson equation /100/, the generalized Casson equation /108/, the Crowley-Kitzes model /34/, the Shul'man equation /177/. They are all more complicated than the three displayed above.

To give some idea as to the extent to which the empirical models are successful in portraying steady-state shear flow data, we give some data comparisons in Figures 3, 4, and 5 for the Bingham, Casson, and Herschel-Bulkley models. It appears that these empiricisms serve reasonably well for describing the steady-state shear behavior of some real materials.

Many efforts have been made to relate the constants in the models to parameters which describe the structure of the suspension or paste. Quantities such as the diameter of the suspended particles, the number density of the particles, and the viscosity of the suspending liquid clearly play an important role. In Table II we list some of the publications in which this kind of information is available.

3. THE STRESS TENSOR FOR ARBITRARY FLOW FIELDS

In the foregoing section we presented three empirical models containing a yield stress, but they were given specifically for the simple shear-flow field $v_x = v_x(y)$ of Fig. 1. If one wishes to solve problems in three-dimensional flows and flow problems with time dependence, it is necessary to set up the problems in greater generality. We illustrate the procedure for the Bingham model. We restrict the discussion to incompressible materials.

The equations of change for incompressible fluids are /17, 19/:

Continuity:
$$(\nabla \cdot \underline{\mathbf{v}}) = 0$$
 (3.1)

Motion:
$$\rho \frac{D\underline{V}}{Dt} = -\nabla_{p} - [\nabla \cdot \underline{\tau}] + \rho \underline{g}$$
 (3.2)

Energy:
$$\rho \widehat{C}_{p} \stackrel{DT}{\longrightarrow} = -(\nabla \cdot \underline{q}) - (\underline{\tau} : \nabla \underline{v})$$
 (3.3)

Here ρ and \widehat{C}_p are the fluid density and heat capacity of the material; p, v, and T are the pressure, velocity and temperature fields respectively. The symbol g stands for the gravitational acceleration. The jth component of $[\nabla \cdot \underline{\tau}]$ is $\Sigma_i(\partial/\partial x_i)\tau_{ij}$, and $(\underline{\tau}:\nabla\underline{v}) = \Sigma_i\Sigma_j\tau_{ij}(\partial/\partial x_j)v_i$; the notation D/Dt is used for the "substantial derivative" $\partial/\partial t + (\underline{v}\cdot\nabla)$. These equations cannot be

Fig. 3. Comparison of experimental data with the Bingham model

		Ÿ	<u> 7 *</u>	$ au_0$	$\mu_{ m o}$
Δ	Meat extract /38/	6.97 s ⁻¹	83.1 N/m ²	17.8 N/M ²	9.29 Pa.s
0	Kaolin/water /184/	1200	200	36.1	0.00883
	$\phi = 0.25$				
	Glass bead/polyethy-	0.05	900	46.7	8780
	lene $\frac{74}{\phi} = 192$				

Fig. 4. Comparison of experimental data with the Casson model

		$\frac{(\mathring{\gamma}^{1/2})^*}{}$	$(\tau^{\frac{1}{2}})^*$	$\frac{\tau_0}{}$	$\underline{\mu_0}$
0	9% Bentonite/water /23/	12.0 s ^{$-1/2$}	5.50 N ^{1/2} /M	7.56N/m^2	0.09 Pa.s
	with 0.5% surfactant				
\triangle	1% TiO ₂ /20% polystyrene				
	diethyl phthalate /128/	6.5	16.0	0.801	4.97
	(by wt.)				
	18% Fe ₂ O ₃ /ethylene	25.5	5.25	2.89	0.0253
	glycol /176/				

Fig. 5. Comparison of experimental data with the Herschel-Bulkley model

			$ au_0$	<u>m</u>	<u>n</u>	A	G
Δ	Fe ₂ O ₃ /ethylene	/176/	2.16 N/m ²	0.749 Pa.s ⁿ	0.570	0	0
	glycol ϕ = 0.18						
	Carbon black/	/200/	2045	47,400	0.486	-2.5	3.5
	$\phi = 0.13$						
	,					_	_
0	Xanthan gum/H ₂	0 /206/	1.15	2.17	0.305	0	0
	10,000 ppm (by	wt.)					

TABLE II
Equations for Model Parameters

Explanation		$\tau_{\rm a}$, b or a, L $_{\rm a}$ are constants. Y = depth in pool of sludge behind a weir	K is a constant F_{c} = cohesive force between particles in a floc	λ is a crowding factor. (a/b) = aspect ratio of plate-like particle; ≥ 1	k ₁ , k ₂ are constants.
Equations	$\tau_0 = (0.195\phi \cdot 0.102) \ \sigma/D_p$	$\tau_0 = \tau_a \forall^b \qquad or$ $\tau_0 = a(Y \cdot L_a)$	$\tau_0 = K N F_c(N,T)$	$\tau_0 = F_c(N)N^{2/3}/2.88$ $\mu_0 = \mu_s \exp \left[\frac{0.52(a/b)(c/\varrho)}{1 \cdot \lambda(c/\rho)} \right]$	$\tau_0 = k_1 (k_2 \phi)^{3.0}$ $\mu_0 = \mu_s \exp(k_2 \phi)$
Туре	Bingham	Bingham	Bingham	Bingham	Bingham
Author(s)	Medvedev	Walski	Weymann	Weymann, et al.	Dobrychenko, et al.
Reference	101	203	204	205	33

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated

Download Date | 11/5/16 5:40 AM

Authenticated Download Date | 11/5/16 5:40 AM

Table II Cont/..

Reference	Author(s)	Туре	Equations	Explanation
194,195	Van Kao, et al.	Bingham	$\tau_0 = 2.51 \text{oV}^{0.324} \phi^2 / (\pi r^2)$	V = volume of bridging liquid in flocs
36	Darby and Rogers	Bingham, Casson	$\tau_0 = Y \exp(18.3\phi + b_0\phi_{30})$ $\mu_0 = V \exp(18.3\phi + b_1\phi_{30})$	Y, ${ m b_0}$, V, b, are constants $\phi_{30}=$ volume fraction of fines $({ m D_p}<30\mu{ m m})$
183.186	T homas	Bingham	$ au_0 = A\psi_1\phi^3/D_p^2$ A, B are consta $\psi_1 = \exp 0.7[S]$ $\mu_0 = \mu_g \exp[2.5 + (B/\sqrt{D}_p)\psi_2]\phi$ $\psi_2 = \sqrt{(S/S_0)}$ $(S/S_0) = \text{ratio}$ platelike particle equivalent sphe	A, B are constants $\psi_1 = \exp{0.7[S/S_0)} - 1]$ $\psi_2 = \sqrt{(S/S_0)}$ $(S/S_0) = ratio of surface area of platelike particle to that of equivalent sphere$
45.47	Firth and Hunter	Bingham	$ au_0^{-} \phi^2 C_{\mathrm{FP}} \mu_{\mathrm{S}} (r_e^{-2/r^2})/\pi$	r_{e} = radius of curvature of particle $C_{FP}=\phi_{F}/\phi$ ϕ_{F} = volume fraction of flocs
			Brought to you by Université	Brought to you by Université Paris Ouest Nanterre La Défense

Table II Cont/..

Explanation	eta_{γ^*} are theoretical constants eta_{γ^*} are theoretical constants δ = bond stretching distance in floc	$(Da^2) = (shear rate. floc size)$	$a_0^{}={ m orthokinetic}$ capture frequency $\lambda^{}={ m shielding}$ factor	λ' = theoretical parameter (= $\lambda a_0 eta$ above)	k ₁ , k ₂ are constants	k', ϕ^0 are constants	$\tau_0 = \left\{ [a\beta/(a\alpha - 1)] \left[\frac{1}{1 - H} \right] (a\alpha - 1)/2 - 1 \right\}^{1/2} \alpha, \beta \text{ are length parameters}$ $\mu_0 = \mu_s/(1 - H)^{(a\alpha - 1)}$ $H = \text{hematocrit}$ $a = \text{orientation parameter}$
Equations	$ au_0 = \lambda \mu_{\rm S} ({\rm D} a^2) \{\delta/r^3\} \phi (a_0 \beta {\rm C_{FP}} \phi + \gamma^*)$			$ au_0 = \lambda^{\prime} \left(\mathrm{Da}^2 \right) \left(\delta/r^3 \right) \mu_\mathrm{S} \phi^2 \mathrm{C}_\mathrm{FP}$	$\tau_0 = k_1 \exp(k_2 \phi)$	$\tau_0 = k' (\phi - \phi^0)^3$	$\tau_0 = \left\{ [a\beta/(a\alpha-1)] \right\} \left\{ \frac{1}{1} \right\}$ $\mu_0 = \mu_s/(1-H)^{(a\alpha-1)}$
Туре	Bingham			Bingham	Casson	Casson	Casson
Author(s)	Van de Ven and Hunter			Hunter and Frayne	Kataoka, et al.	Smith and Bruce	Merrill, et al.
Reference	193			17	74	176	103

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated

Download Date | 11/5/16 5:40 AM

A: We list here only those equations that apply specifically to the appropriate constitutive equation (Bingham, etc.) Some of these authors /26, 74, 75, 193/ and others /176/ have also used equations for the Bingham or Casson viscosity that were originally developed for systems with an visual errors. Duest Nanterre La Défense

with no yield stress.

Table II Cont/..

Explanation	K, a, k are constants η_a , η_0 are apparent and zero-shear rate viscosity of medium	A is a constant		
Equations	$\tau^{1/2} = \tau_0^{1/2} + k \left(\frac{\eta_a}{\eta_0} \right)^{1/2} \dot{\gamma}^{1/2}$ $\tau_0 = K \operatorname{we}^{aw} \left(\frac{\eta_a}{\eta_0} \right)^{1/2} \dot{\gamma}^{1/2}$	$\dot{\gamma} = \frac{\tau}{\mu_s} \frac{\left[1.2 - 2\phi(k\tau^{-0.2} + 1)^3\right]}{\left[1.2 + \phi(k\tau^{-0.2} + 1)^3\right]}$ $k = A/\sqrt{D_p}$	 Viscosity of the continuous medium Volume fraction of particles Weight concentration of particles Weight fraction of particles Number density of particles Particle diameter Interfacial stress Density 	
Type	modif. Casson	Crowley- Kitzes	μ_{S} = Viscosit ϕ = Volume c = Weight ω ω = Weight ω ω = Number ω ω = Particle ω ω = Interface ω	
Author(s)	Onogi, et al.	Thomas	Definition of symbols:	
Reference	127	185	Definition	Notes:

solved until expressions are inserted for the fluxes. For the heat flux \underline{q} we use Fourier's law:

$$q = -k\nabla T \tag{3.4}$$

where k is the thermal conductivity, and for Newtonian liquids we use

$$\underline{\tau} = -\mu \dot{\underline{\gamma}} = -\mu \left[\nabla \underline{\underline{v}} + (\nabla \underline{\underline{v}})^{\dagger} \right] \tag{3.5}$$

for the stress tensor, where μ is the viscosity. In Eq. (3.5) we have introduced the symbol $\mathring{\mathbf{I}}$ for the rate-of-deformation tensor.

In what follows we make use of the "magnitude" of the tensors $\underline{\underline{\tau}}$ and $\underline{\underline{\dot{\tau}}}$ defined as follows:

$$\tau = \pm \sqrt{\frac{1}{2}(\tau : \tau)}$$
 and $\dot{\gamma} = \pm \sqrt{\frac{1}{2}(\dot{\gamma} : \dot{\gamma})}$

in which the + or - sign is so chosen that τ and $\dot{\gamma}$ are positive.

If we now wish to use the Bingham model, we replace Eq. (3.5) by /17 (p. 212), 19 (p. 103), 119-126/:

$$\begin{cases} \tau = -\left(\mu_0 + \frac{\tau_0}{\dot{\gamma}}\right) \dot{\gamma} & \text{for } \tau \geq \tau_0 \\ \dot{\tilde{\gamma}} = 0 & \text{for } \tau \leq \tau_0 \end{cases}$$
 (3.7)

This is the appropriate generalization of Eqs. (2.2) and (2.3). When the Bingham model is written in this way, it appears that in the "plastic flow region" ($\tau \ge \tau_0$), the material behaves as a fluid with a non-Newtonian viscosity $\eta(\mathring{\gamma}) = \mu_0 + (\tau_0/\mathring{\gamma})$.

For some purposes it is convenient to write the Bingham model in such a form that the non-Newtonian viscosity is given as a function of the magnitude of the stress. To do this we form the double-dot product of Eq. (3.7) with itself to obtain

$$\left(\frac{\tau}{=}:\frac{\tau}{=}\right) = + \left(\mu + \frac{\tau_0}{\dot{\gamma}}\right)^2 \left(\dot{\gamma}:\dot{\gamma}\right) = 0$$
(3.9)

Multiplication of the equation by ½ then gives:

$$\tau^2 = \left(\mu_0 + \frac{\tau_0}{\dot{\gamma}}\right)^2 \dot{\gamma}^2 \tag{3.10}$$

or

$$\tau = \tau_0 + \mu_0 \dot{\gamma} \tag{3.11}$$

This then enables us to rewrite Eqs. (3.7) and (3.8) as /119-126, 129, 175/:

$$\begin{cases} \underline{\tau} = -\left(\frac{\mu_0 \tau}{\tau - \tau_0}\right) \dot{\underline{\gamma}} & \tau \geq \tau_0 \\ \dot{\underline{\gamma}} = 0 & \tau \leq \tau_0 \end{cases}$$
(3.12)

When written in this form the non-Newtonian viscosity is given by $\eta(\tau) = \mu_0 \tau / (\tau - \tau_0)$.

The above expressions for the generalization of the Bingham material to complex flows was first set forth by Hohenemser and Prager /70/ and discussed more fully by Oldroyd /119-126/; the textbooks of Prager /137/ and Fredrickson /49/ also discuss this subject.

For the solution of Bingham model flow problems with boundaries of complicated shapes, it is useful to use a variational procedure. For flows in which the inertial terms can be neglected, Prager /138/ has given a minimum principle for the velocity field and a maximum principle for the stress field. The flow takes place in a volume V, and the surface is divided into two parts: S_v , on which the velocity is specified, and S_f , on which the force (i.e., $\lfloor \underline{n} \cdot \underline{\pi} \rfloor$) is specified. Then Prager's principles for the Bingham model are stated as:

a. For continuous velocity fields with piecewise continuous first derivatives, which satisfy identically the equation of continuity and the boundary conditions on S_v, the actual velocity field *minimizes* the expression

$$H = \int_{\mathbf{V}} \left(\mu_0 \dot{\gamma}^2 + 2\tau_0 \dot{\gamma} \right) d\mathbf{V} + 2 \int_{\mathbf{S}_f} (\underline{\mathbf{n}} \cdot [\underline{\pi} \cdot \underline{\mathbf{v}}]) d\mathbf{S} - 2 \int_{\mathbf{V}} (\underline{\mathbf{v}} \cdot \underline{\mathbf{g}}) d\mathbf{V}$$
(3.14)

except when $S_v = 0$. The \underline{n} in the second integral is the outwardly directed unit normal at each surface element dS on S_f .

b. For continuous stress fields $\underline{\pi} = p\underline{\delta} + \underline{\tau}$ with piecewise continuous first derivatives and which satisfy identically the equations of motion and the boundary conditions on S_f , the actual stress field maximizes the expression.

$$K = -2 \int_{S_{v}} (\underline{n} \cdot [\underline{\pi} \cdot \underline{v}]) dS - \frac{1}{4\mu_{0}} \int_{V} [|\tau - \tau_{0}| - (\tau - \tau_{0})]^{2} dV \qquad (3.15)$$

except when $S_f = 0$.

For other discussions of variational principles for the Bingham model, see discussions by Ziegenhagen /214/, Oldroyd /119/, Johnson /72, 73/, and Haddow and Luming /58, 59/. To our knowledge variational principles have not been developed for other model fluids mentioned in §2.

The models in §2 and their generalizations to three-dimensional velocity fields in this section are all special cases of the "generalized Newtonian fluid"; that is, the stress tensor at the current time t is related to the rate-of-strain tensor at the current time t. Very little work has been done to extend the theory of materials with yield value to include time-dependent effects. We cite the work of Slibar and Pasley /174/ on the flow of thixotropic materials, and the work of White and Tanaka /208/ on "plastic-viscoelastic" constitutive equations as examples of attempts to include time-dependent effects.

4. SOME ANALYTICAL FLOW SOLUTIONS FOR THE BINGHAM MODEL

Since the Bingham model is the simplest and most widely used of the viscoplastic models, we summarize here the analytical solutions which are available for flow problems. Any of these solutions can be used to obtain the values of the model parameters μ_0 and τ_0 from appropriately designed experiments.

a. Unidirectional Flow between Fixed Parallel Plates

A Bingham material between two parallel plates of length L and width W is being driven in the +z-direction by a pressure gradient (see Fig. 6). The postulates that $v_z = v_z(x)$ and p = p(z) allow the equation of motion to be simplified to:

$$0 = \frac{P_0 - P_L}{L} - \frac{d}{dx} \tau_{xz} \tag{4.1}$$

(The symbol P is used as an abbreviation for $p + \rho gh$ where h is the distance upwards (i.e., opposed to gravity); the use of P allows us to solve problems in which the driving force is a pressure gradient or gravitation acceleration or a

Fig. 6. Flow in a plane slit, showing the "plug flow region" $-x_0 \le x \le x_0$ and the "plastic flow regions" $x_0 \le x \le B$ and $-B \le x \le -x_0$.

combination of both.) Integration of Eq. (4.1) gives:

$$\tau_{XZ} = \frac{P_0 - P_L}{L} \times + C_1 \tag{4.2}$$

and the integration constant C_1 must be zero because of the symmetry of the problem. We now consider the region $0 \le x \le B$. The "yield surface", at which $\tau_{yx} = \tau_0$, is then located at $x = x_0$ where $x_0 = \tau_0 L/(P_0 - P_L)$. Inserting the appropriate form of Eq. (2.2) into Eq. (4.2) then gives

$$\tau_0 - \mu_0 \frac{dv_z^{>}}{dx} = \frac{P_0 - P_L}{L} \times (x_0 \le x \le B)$$
 (4.3)

Integration of this equation gives:

$$v_z^> = \frac{(P_0 - P_L) B^2}{2\mu_0 L} \left[1 - \left(\frac{x}{B} \right)^2 \right] - \frac{\tau_0 B}{\mu_0} \left[1 - \left(\frac{x}{B} \right) \right] (x_0 \le x \le B)$$
 (4.4)

$$v_{z}^{\leq} = \frac{(P_{0} - P_{L})B^{2}}{2\mu_{0}L} \left[1 - \left(\frac{x_{0}}{B}\right)^{2} - \frac{\tau_{0}B}{\mu_{0}} \left[1 - \left(\frac{x_{0}}{B}\right) \right] (0 \leqslant x \leqslant x_{0})$$
 (4.5)

The superscripts > and < emphasize that the expressions are for $x \ge x_0$ or $x \le x_0$ respectively. The second of these expressions, for the "plug flow" region, results from the fact that $dv_z/dx = 0$ for $\tau_{xz} \le \tau_0$.

The volume rate of flow is then:

$$Q = W \int_{B}^{B} v_z dx = 2W \int_{0}^{B} v_z dx$$

$$= -2W \int_{X_0}^{B} x (dv_z^{>}/dx) dx$$

$$= \frac{2WB^2 \tau_B}{\mu_0} \int_{\tau_0/\tau_B}^{1} \left[\left(\frac{x}{B} \right)^2 - \frac{\tau_0}{\tau_B} \left(\frac{x}{B} \right) \right] d\left(\frac{x}{B} \right)$$
(4.6)

in which $\tau_B = (P_0 - P_L)B/L$ is the wall shear stress. The integration by parts simplifies the integration and dv_z^2/dx can be inserted from Eq. (4.3). One obtains then:

$$Q = \frac{2WB^2 \tau_B}{3\mu_0} \left[1 - \frac{3}{2} \left(\frac{\tau_0}{\tau_B} \right) + \frac{1}{2} \left(\frac{\tau_0}{\tau_B} \right)^3 \right] (\tau_B \geqslant \tau_0)$$
 (4.7)

for the volume flow rate.

b. Thickness of a Falling Film on an Inclined Surface

The flow shown in Fig. 7 may be solved similarly to that for the slit flow. One replaces the slit half-width B by the film thickness δ , and by specializing the driving force $(P_0 - P_L)/L$ to $\rho g \cos \beta$. Then Eqs. (4.4) and (4.5) with proper modification of the symbols give the velocity distribution in the film. Equation (4.7), with B replaced by δ and τ_B given by $(\rho g \cos \beta)\delta$, is then a cubic equation for δ , the film thickness /16/.

c. Axial Flow in a Circular Tube

For flow in a circular tube of radius R and length L the wall shear stress is given by $\tau_R = (P_0 - P_L)R/2L$ and the yield surface is located at $r_0 = 2L\tau_0/(P_0 - P_L) = R(\tau_0/\tau_R)$. The velocity distribution is given as:

Fig. 7. A film of a viscoplastic material on Browchinedysurface Whineralik there by Get Nanterre La Défense

$$v_{z}^{>} = \frac{(P_{0} - P_{L}) R^{2}}{4\mu_{0} L} \left[1 - \left(\frac{r}{R}\right)^{2} \right] - \frac{\tau_{0} R}{\mu_{0}} \left[1 - \left(\frac{r}{R}\right) \right] r_{0} \leqslant r \leqslant R \quad (4.8)$$

$$v_{z}^{<} = \frac{(P_{0} - P_{L}) R^{2}}{4\mu_{0} L} \left(1 - \frac{r_{0}}{R}\right)^{2}$$
 $0 \le r \le r_{0}$ (4.9)

the second expression describing the plug flow region. The volume flow rate is then:

$$Q = \frac{\pi (P_0 - P_L) R^4}{8\mu_0 L} \left[1 - \frac{4}{3} \left(\frac{\tau_0}{\tau_R} \right) + \frac{1}{3} \left(\frac{\tau_0}{\tau_R} \right)^4 \right]$$
(4.10)

which is known as the Buckingham-Reiner /19 (pp. 48-50), 22, 142/ equation.

d. Tangential Flow in a Concentric Annulus

For the system depicted in Fig. 8 the equation of motion in cylindrical coordinates becomes, for the postulates $v_r = 0$, $v_z = 0$, $v_\theta = v_\theta(r)$:

$$0 = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \tau_{r\theta} \right) \tag{4.11}$$

Integration gives $\tau_{r\theta} = C_1/r^2$. But the torque applied to the outer cylinder is given by $T = -\tau_{r\theta}(r=R) \cdot 2\pi RL \cdot R$ (i.e., force per unit area \times area \times lever arm). Hence $C_1 = -T/2\pi L$ and

$$\tau_{\rm r\theta} = -T/2\pi \, \mathrm{Lr}^2 \tag{4.12}$$

The yield surface location is obtained from the relation $\tau = \tau_0$, where

$$\tau = \sqrt{\frac{1}{2}(\underline{\tau};\underline{\tau})} = \sqrt{\tau_{r}\theta^{2}} = -\tau_{r}\theta \tag{4.13}$$

The minus sign has to be chosen so that τ is positive. Hence the yield surface is at

$$r_0 = \sqrt{T/2\pi\tau_0 L} \tag{4.14}$$

Fig. 8. Tangential annular flow with outer cylinder rotating. The surface $r = r_0$ is the yield surface, and for the shaded region, $r_0 \le r \le R$, according to Eq. (3.8), $r_0^2 = r_0^2 (v_0^2/r)/dr = 0$. Note that in this region it is not true that $dv_0^2/dr = 0$ /17 (pp. 218-221)/.

Note that (a) if $r_0 \le \kappa R$, there is no plastic flow, (b) if $\kappa R < r_0 \le R$, there is plastic flow for $\kappa R < r < r_0$ and solid like behavior for $r_0 \le r \le R$, and (c) if $r_0 \ge R$ there is plastic flow throughout. Then from Eq. (3.7) written in cylindrical coordinates

$$\tau_{r\theta} = -\tau_{o} - \mu_{o} r \frac{d}{dr} \left(\frac{v_{\theta}}{r} \right)$$
 (4.15)

For case (c) above the angular velocity distribution is

$$\frac{^{v}\theta}{r} = W + \frac{T}{4\pi L \mu_0 R^2} \left[1 - \left(\frac{R}{r} \right)^2 \right] - \frac{\tau_0}{\mu_0} \ln \frac{r}{R}$$
 (4.16)

and setting $v_{\theta}/r = 0$ for $r = \kappa R$ gives the relation between angular velocity and torque:

$$W = \frac{T}{4\pi L \mu_0 R^2} \left(\frac{1}{\kappa^2} - 1 \right) + \frac{\tau_0}{\mu_0} \ln \kappa$$
 (4.17)

known as the Reiner-Riwlin /17 (pp. 218-221), 144/ equation.

e. Axial Flow in a Horizontal Concentric Annulus with Inner Cylinder Moving Axially /121/

For this axial flow system, shown in Figure 9, the equation of motion is:

$$0 = -\frac{1}{r} \frac{d}{dr} (r\tau_{rz})$$
 (4.18)

Integration gives

$$\tau_{\rm rz} = C\mu_0 v_0/r \tag{4.19}$$

in which C is a dimensionless positive constant of integration. Then from Eq. (3.7), $\tau_{rz} = \tau_0 - \mu_0 (dv_z/dr)$, so that:

$$\tau_{0} - \mu_{0} \frac{dv_{z}}{dr} = \frac{C\mu_{0}v_{0}}{r}$$
 (4.20)

Fig. 9. Axial annular flow resulting from axial motion of the inner cylinder. Two types of flow patterns are possible: (a) all material flows, (b) material in region $r_0 \le r \le R$ is not in motion.

This may be integrated with the boundary condition that $v_z = v_0$ at $r = \kappa R$ to give

$$\frac{v_Z}{v_0} = 1 - C \ln \frac{r}{\kappa R} + \frac{\tau_0}{\mu_0 v_0} (1 - \kappa R)$$
 (4.21)

We now distinguish two types of flow patterns:

a) All material is in a state of flow since τ_{rz} exceeds τ_0 for $\kappa R \le r \le R$; then C is determined by using the boundary condition that $v_z = 0$ at r = R so that

$$\frac{v_{z}}{v_{0}} = 1 - \frac{\ln(r/\kappa R)}{\ln(1/\kappa)} + \frac{\tau_{0}}{\mu_{0}v_{0}} \left[(r - \kappa R) - R(1 - \kappa) \frac{\ln(r/\kappa R)}{\ln(1/\kappa)} \right]$$
(4.22)

b) Material in the region $r_0 \le r \le R$ is not in motion, since τ_{rz} does not exceed τ_0 for in that region; then C is determined by using the boundary condition that $v_z = 0$ at $r = r_0$, so that:

$$\frac{v_{z}}{v_{0}} = 1 - \frac{\ln(r/\kappa R)}{\ln(r_{0}/\kappa R)} + \frac{\tau_{0}}{\mu_{0}v_{0}} \left[(r - \kappa R) - (r_{0} - \kappa R) \frac{\ln(r/\kappa R)}{\ln(r_{0}/\kappa R)} \right]$$
(4.23)

where the yield surface is given by $r = r_0$ and r_0 is obtained from:

$$\frac{\tau_0 r_0}{\mu_0 v_0} \ln \frac{r_0}{\kappa R} = 1 + \frac{\tau_0 r_0}{\mu_0 v_0} \left(1 - \frac{\kappa R}{r_0} \right)$$
 (4.24)

f. Axial Annular Flow between two Fixed Coaxial Cylinders

For the axial annular flow driven by a pressure difference and/or gravity (see Fig. 10), the equation of motion gives:

$$0 = + \frac{(P_0 - P_L)}{L} - \frac{1}{r} \frac{d}{dr} (r\tau_{rz})$$
 (4.25)

This equation may be integrated to give:

$$\tau_{\rm rz} = \frac{({\rm P_0 - P_L})R}{2L} \left[\left(\frac{\rm r}{\rm R} \right) - \lambda^2 \left(\frac{\rm R}{\rm r} \right) \right]$$
 (4.26)

where $r = \lambda R$ is the surface at which the shear stress τ_{rz} is zero (see Fig. 10). The "plug-flow region" is bounded by $r = \lambda_R$ and $r = \lambda_R$ which are de-

Fig.10. Axial annular flow in the space between the coaxial cylindrical surfaces at r = KR and r = R. The cylindrical surface $r = \lambda R$ is the surface of zero shear stress. The "plug flow" region is bounded by $r = \lambda_R$ and $r = \lambda_R$. The pressure is p_0 at z = 0 and p_L at z = L.

fined as the surfaces for which τ_{rz} is equal to $-\tau_0$ and $+\tau_0$ respectively; this definition gives

$$\lambda_{\pm} - \frac{\lambda^2}{\lambda_{+}} = \pm \frac{2\tau_0 L}{(P_0 - P_L) R}$$
 (4.27)

for λ_+ and λ_- . Note that

$$\lambda_{+} - \lambda_{-} = 2\tau_{0} L/(P_{0} - P_{L})R \tag{4.28}$$

and that $\lambda^2 = \lambda_+ \lambda_-$.

The form of the Bingham model appropriate for this problem is:

$$\tau_{\rm rz} = \pm \tau_0 - \mu_0 \frac{\rm dv_z}{\rm dr} \qquad |\tau_{\rm rz}| \geqslant \tau_0 \tag{4.29}$$

Where the positive sign is used for $\lambda_+R \le r \le R$, and the negative sign for $\kappa R \le r \le \lambda_-R$. Substitution of this into Eq. (4.26) and integration with respect to r gives the velocity distribution. If we use dimensionless quantities $\xi = r/R$, $T_0 = 2\tau_0 L/(P_0 - P_L)R$, and $\phi = 2\mu_0 Lv_z/(P_0 - P_L)R^2$, then:

$$\phi_{-} = -T_{0}(\xi - \kappa) - \frac{1}{2}(\xi^{2} - \kappa^{2}) + \lambda^{2} \ln(\xi/\kappa) \quad \kappa \leq \xi \leq \lambda$$
 (4.30)

$$\phi_{+} = -T_{0}(1-\xi) + \frac{1}{2}(1-\xi^{2}) + \lambda^{2} \ln \xi \qquad \lambda_{+} \leq \xi \leq 1 \qquad (4.31)$$

and $\phi = \phi_{-}(\lambda_{-}) = \phi_{+}(\lambda_{+})$ in the plug flow region. If we require that $\phi_{-}(\lambda_{-}) = \phi_{+}(\lambda_{+})$ from Eqs. (4.30) and (4.31), and if, in addition, we use Eq. (4.28) we obtain the equation which gives λ_{+} as a function of κ and T_{0} :

$$2\lambda_{+}(\lambda_{+}-T_{0})\ln\frac{\lambda_{+}-T_{0}}{\lambda_{+}\kappa} - 1 + (T_{0}+\kappa)^{2} + 2T_{0}(1-\lambda_{+}) = 0 \quad (4.32)$$

The volume rate of flow can then be obtained /50, 175/ by integration of the velocity distribution:

$$Q = \frac{\pi R^{4} (P_{0} - P_{L})}{8\mu_{0} L} \left[(1 - \kappa^{4}) - 2\lambda_{+} (\lambda_{+} - T_{0}) (1 - \kappa^{2}) - \frac{4}{3} (1 + \kappa^{3}) T_{0} + \frac{1}{3} (2\lambda_{+} - T_{0})^{3} T_{0} \right]$$
(4.33)

Tables have been prepared for use with Eqs. (4.32) and (4.33) /50/ and some useful asymptotic expressions have been worked out /4/.

g. Radial Flow between Two Parallel Disks

No exact solution of this problem is available, but an approximate solution using the "lubrication approximation" has been obtained /35/. We can apply Eq. (4.7) locally (i.e., over some small region dr in the radial disk system of Fig. 11) by replacing W by $2\pi r$ and $(P_0 - P_L)/L$ by -(dP/dr). This gives:

$$Q = \frac{2(2\pi r)B^2 \tau_0}{3\mu_0} \left(-\frac{B}{\tau_0} \frac{dP}{dr} \right) \left[1 - \frac{3}{2} \left(-\frac{B}{\tau_0} \frac{dP}{dr} \right)^{-1} + \frac{1}{2} \left(\frac{B}{\tau_0} \frac{dP}{dr} \right)^{-3} \right] (4.34)$$

This differential equation for P as a function of R has been integrated numerically, and a table of pressure drop νs . flow rate has been prepared /35/. Eq. (4.34) can be solved analytically for d P/dr to give /109/:

$$= \frac{B}{\tau_0} \frac{dP}{dr} = \left[\sqrt{\frac{8\alpha}{3}} \sin \left(\frac{1}{3} \arcsin \left(\frac{3}{2\alpha} \right)^{3/2} \right) \right]^{-1}$$
 (4.35)

where $\alpha = (3/2) + (3\mu_0 Q/4\pi B^2 \tau_0 r)$.

Fig.11. Radial flow between two circular disks.

5. SOME ANALYTICAL HEAT-TRANSFER SOLUTIONS FOR THE BINGHAM MODEL

Solution of heat-transfer problems requires the simultaneous solution of Eqs. (3.1), (3.2), and (3.3) along with the constitutive relation in Eqs. (3.7) and (3.8). In addition one needs to know the temperature dependence of the thermal conductivity k and the Bingham model parameters μ_0 and τ_0 . Most analytical solutions to date have assumed these transport properties to be constants. We give here a brief discussion of several useful results that are available for simple problems.

a. Viscous Heating in Flow between two Flat Plates

Consider a viscoplastic fluid between two parallel plates. The plate at x=0 is fixed and is maintained at a temperature T_0 ; the plate at x=b is moving with speed V in the positive z-direction and is maintained at a temperature T_b . Hence if the temperature dependence of the Bingham parameters is ignored, the velocity profile is $v_z = Vx/b$ and hence the viscous-heating source term in Eq. (3.3) is

$$S_{v} = (-\underline{\tau} : \nabla \underline{v}) = -\tau_{xz} (dv_{z}/dx)$$

$$= -\left[-\tau_{0} - \mu_{0} \frac{dv_{z}}{dx}\right] \frac{dv_{z}}{dx}$$

$$= (\tau_{0}V/b) + \mu(V/b)^{2}$$
(5.1)

Then Eq. (3.3) gives:

$$0 = + k \frac{d^2 T}{dx^2} + S_v$$
 (5.2)

which has the solution (see Ref. 19, p. 278):

$$\frac{T-T_0}{T_b-T_0} = \frac{x}{b} + \frac{S_v b^2}{2k(T_b-T_0)} \left[\left(\frac{x}{b}\right) - \left(\frac{x}{b}\right)^2 \right]$$
 (5.3)

The S_v term gives the deviation from a linear temperature profile that results from the viscous-dissipation term $(-\tau: \nabla v)$ in Eq. (3.3).

b. Flow in Circular Tubes

Two heat-transfer problems for tube flow are shown in Figure 12. For each of these problems it is possible to obtain asymptotic analytical solutions to the energy equation (Eq. (3.3)) for small z (the thermal entrance region) and for large z (the thermally fully-developed region). The procedures for doing this have been presented in illustrative examples in Reference 17, pp. 238-246, for non-Newtonian fluids with any viscosity function. Once the temperature profiles have been obtained it is relatively straightforward to get the Nusselt numbers. In Table III we summarize the Nusselt numbers obtained for the Bingham model. These results can be obtained by using entries

Fig.12. Heat transfer problems for tubes:

- (a) the constant-wall-temperature problem;
- (b) the constant-wall-heat-flux problem.

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

TABLE III

Nusselt Numbers for Bingham Fluids
(h = heat transfer coefficient; k = thermal conductivity)

Constant Wall Heat Flux	$N_{U} = \frac{2\Gamma(2/3)}{9^{1/3}} \left[\frac{T_{P_i}R^3}{\mu_0\alpha_z} (1 - \xi_0) \right]^{1/3}$	$Nu = \frac{1680}{A} \left[9.24\xi_0 + 16\xi_0^{2} + 6\xi_0^{4} - 8\xi_0^{5} + \xi_0^{8} \right]$	$A = 3465 - 9792\xi_0 + 6944\xi_0^2 - 3780\xi_0^4$ $-5600\xi_0^5 - 1008\xi_0^6 + 2016\xi_0^7$ $+ 195\xi_0^8 - 840\xi_0^8 \ln \xi_0$
Constant Wall Temperature	Nu = $\frac{2}{9^{1/3}\Gamma(4/3)} \left[\frac{T_R R^3}{\mu_0 \alpha^2} (1 - \xi_0) \right]$	ξ ₀ 1.00 0.90 0.80 0.70 0.60 0.50 Nu 5.80 5.41 5.07 4.76 4.49 4.27	ξ ₀ 0.40 0.30 0.20 0.10 0 Nu 4.09 3.94 3.82 3.73 3.67
EЭ	small z		large z
Heat Transfer Problem	CIRCULAR TUBE * Radius R Diameter D	Length L $(L \geqslant R)$ $Nu = hD/k$ $\xi_0 = \tau_0/\tau_R$	$T_{R} = \frac{(P_0 - P_L)R}{2L}$

* From Beek and Eggink /11/.

Table III Cont/..

Heat Transfer Problem	_	Constant Wall Temperature	Constant Wall Heat Flux
PLANE SPLIT ** Thickness 2B	small z	Nu = $\frac{4}{9^{1/3}\Gamma(4/3)} \left[\frac{\tau_{B}B^{3}}{\mu_{0}\alpha_{z}} (1 - \sigma_{0}) \right]^{1/3}$	$Nu = \frac{4\Gamma(2/3)}{9^{1/3}} \left[\frac{\tau_B B^3}{\mu_0 \alpha_z} (1 - \sigma_0) \right]^{1/3}$
Multin W Length L (L ≫ W ≫ B)		σ ₀ 1.00 0.90 0.80 0.70 0.60 0.50	
	large z	Nu 9.86 9.54 9.22 8.92 8.64 8.38	$N_{U} = \frac{280(\sigma_0 + 2)^2}{1}$
$\sigma = \tau_0 / \tau_B$ (P ₂ -P ₁)B)	σ ₀ 0.40 0.30 0.20 0.10 0	$136 + 117 \sigma_0 - 12\sigma_0^2 - 31\sigma_0^3$
7B = 10 L'		Nu 8.16 7.96 7.78 7.66 7.54	

*Valstar and Beek /192/.

in Table 5.4-1 of Reference 17, or directly from the Dutch article by Beek and Eggink /11/ where the specific results for the Bingham model were worked out; Wissler and Schechter had calculated some of the entries for constant temperature wall and large z earlier /211/.

c. Flow in Plane Slits

Two heat-transfer problems for plane-slit flow are shown in Figure 13. These problems can be solved by the same procedures used for tube flow, and the resulting Nusselt number results appear in Table III. These results may be obtained by specializing the entries of Table 5.4-2 of Reference 17, or directly from the Dutch publication of Valstar and Book /192/.

Fig.13. Heat-transfer problems for thin slits:

- (a) the constant-wall-temperature problem;
- (b) the constant-wall-heat-flux problem.

6. SUMMARY OF FLOW PROBLEMS

In §4 we summarized some of the most important results for flow calculations for the most widely used viscoplastic model, namely that of Bingham. We also illustrated the techniques needed for obtaining these elementary solutions. The solutions to many other problems and for more complicated rheological models have been published. We summarize these in Table IV (steady-state flow in enclosed regions), Table V (unsteady flows), Table VI (external flows), and Table VII (lubrication systems). In addition in Table VIII we give an abstract of the table of contents of the Russian book by Ogibalov and Mirzadzhanzade /115/, which contains an enormous amount of information not generally available elsewhere.

The publications cited in the tables deal with laminar flow. Some work has been done on laminar-turbulent transition and turbulent flow. Some of this work is summarized in a book by Skelland /17, Chapter 6/. For the Bingham model a successful data correlation procedure has been developed by Tomita /188, 189/ and Hanks /60, 61/, Hanks and Ricks /64/, and Hanks and Dadia /63/ have studied the laminar-turbulent transition. Other work on the transition-region has been done by Le Fur /84/ and by Chien /32/. Laminar flow stability in non-isothermal systems has been studied by Froishteter and Vinogradov /51/. The literature on mixing and agitation is rather sparse /171, Chapter 9/.

7. SUMMARY OF HEAT-TRANSFER PROBLEMS

In Tables IX and X we summarize the literature references for forced- and free-convection heat transfer respectively. In some of these publications the temperature dependence of the Bingham parameters μ_0 and τ_0 is accounted for. There seems to be no generally accepted formulas for the temperature dependence; the following examples illustrate what kinds of relations have been used:

Mamedov and Sattarov /96/:

$$\mu_0(T) = \mu_{0w}(T_w/T)$$
 (7.1)

$$\tau_{\mathbf{0}}(\mathsf{T}) = \tau_{\mathbf{0}\mathbf{w}}(\mathsf{T}_{\mathbf{w}}/\mathsf{T}) \tag{7.2}$$

Pervushin /134/:

$$\mu_0(T) = \mu_{0w} \exp{-\beta_1 (T - T_w)}$$
 (7.3)

$$\tau_0(\Gamma) = \tau_{0w} \exp{-\beta_2(T - T_w)}$$
 (7.4)

Steady Flows in Closed Regions

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Fully developed flow between parallel plates resulting from a pressure gradient	Bingham	Analytical solution; velocity distribution, relation between flow rate and pressure drop obtained	Slibar and Paslay (1957)	175
Fully developed flow between parallel plates resulting from a pressure gradient	Casson	Analytical solution; velocity profile, average velocity, flow rate expression obtained	Kooijman and Van Zanten (1972) Shah(1980)	79
Fully developed flow between parallel plates resulting from a pressure gradient	Herschel- Bulkley	Analytical solution , quasisolid core, velocity profile, flow rate obtained	Grinchik and Kim (1971)	56
Couette flow between parallel plates (pressure gradient and relative motion of plates)	Shul'man	Analytical method; core bounds, velocity profile obtained	Shul'man, Volchenokí 1977)	167
Fully developed flow in a straight circular tube	Bingham	Analytical method; plug flow region, velocity profile, flow rate obtained	Buckingham Reiner	22

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Authenticated Download Date | 11/5/16 5:40 AM

Table IV cont/..

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Fully developed flow in a straight circular tube	Casson	Analytical method; velocity distribution , plug flow region, flow rate obtained	Oka (1965) Merrill, et al. (1965) Shah (1980) Kooijman and Van Zanten (1972) Lih (1975)	116 102 160 79 86
Fully developed flow in a straight circular tube	Herschel- Bulkley	Analytical method; velocity profile, radius of core obtained	Grinchik and Kim (1971)	56
Fully developed flow in a straight circular tube	Herschel- Bulklev	Analytical method; velocity profile, plug flow region, average velocity, flow rate obtained; compared with experimental data	Froishteter and Vinogradov (1980)	52
Fully developed flow in a straight circular tube	Briant	Analytical method; solution given in parametric form; comparison with experiment	LeFur, Martin (1967)	84
Fully developed flow in a slightly cuved tube	Bingha m	Perturbation theory; approximate solution Clegg. Power (1963) obtained; streamlines illustrated Brought to you by Université Par	te solution Clegg. Power (1963) 33 Brought to you by Université Paris Ouest Nanterre La Detense	33 La Dérense

Table IV cont/..

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Fully developed flow in a noncircular tube (triangular and rectangular ducts)	Casson	Variational method; relation between flow rate and pressure drop given graphically	Batra and Koshy (1978)	∞
Developing flow at entrance to a circular tube	Bingham	Variational method; velocity distribution, pressure drop, length of entrance region obtained, compared with experiment	Michiyoshi, Mizuno, Hoshiai (1965)	106
Developing flow at entrance to a circular tube	Bingham	Laplace transform; solution in general form obtained	Kim and Shul'man (1968)	77
Developing flow at entrance to a circular tube	Bingha m	Momentum integral method; Campbell-Slattery method; velocity distribution, thickness of boundary layer, length of entrance region, plug flow radius, pressure drop obtained.	Chen, Fan, Hwang (1970)	30
Developing flow at entrance to a circular tube	Casson	Numerical method; velocity profile, center- Shah, Soto (1974) line velocity, friction factor obtained	- Shah, Soto(1974)	161

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Table IV cont/..

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Developing flow at entrance to a circular tube	Herschel- Bulkley	Numerical method; velocity, profile, centerline velocity, friction factor, length of entrance region obtained	Soto and Shah (1976)	178
Tube flow with non- uniform inlet velocity	Bingha m	Numerical method; velocity, pressure, temperature distribution, length of entrance region obtained	Batra and Koshy (1978)	6
Fully developed axial flow in a concentric annulus	Bingham	Approximate solution	Van Olphen (1950)	196
Fully developed axial flow in a concentric annulus	Bingham	Analytical and graphical methods; velocity distribution, pressure-flow rate relation obtained (erroneous results)	Mori and Ototake (1953)	112
Fully developed axial flow in a concentric annulus	Bingham	Analytical method; expression for flow rate relation obtained	Laird(1957)	83
Fully developed axial flow in a concentric annulus	Bingham	Analytical method; formulas and graphs given for velocity distribution angregulation of Slibsy and possibless and series and series and series and series and series are series are series are series and series are series are series and series are series are series are series and series are series are series and series are series are series and series are series and series are series	y Sliby podiPersex(1283 Duest Nanten	re La Bé ense Authenticated

Table IV cont/..

Flow System	Fluid Model	Method and Results	Author(year) Reference
Fully developed axial flow in a concentric annulus	Bingham	Analytical method; velocity distribution, dimensionless flow rate relation obtained; tabulated results; examples	Fredrickson and Bird (1958) 50
Fully developed axial flow in a concentric annulus	Bing ha m	Analytical method; velocity distribution, core velocity, flow rate relations obtained, approximate expressions for core bound given	Bostandzhiyan (1970)
Fully developed axial flow in a concentric annulus	Bingham	Simplification of Fredrickson-Bird's results; one-term expansion for velocity, core bound, flow rate obtained	Anshus (1974)
Fully developed axial flow in a concentric annulus	Casson	Numerical method; core bound, velocity, flow rate given in curves and table	Shul'man (1970) 163 Shah (1980) 160
Fully developed axial flow in an eccentricannulus	Bingham	Finite difference method; flow rate presented as a series of dimensionless plots, compared with experiment	Guckes (1975) 57
Axial flow in eccentric annulus with cylinders in relative motion	Bingham	Analytical method; obtained velocity profiles and bounds on the plug flow region	Oldroyd (1947)

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Authenticated Download Date | 11/5/16 5:40 AM

Table IV cont/..

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Axial flow between confocal elliptic cylin- ders in relative motion	Bingham	Analytical method; obtained velocity profiles and bounds on the plug flow region	Oldroyd (1947)	122
Tangential flow in a concentric annulus	Bingham	Analytical method; velocity distribution plug flow region, external torque relation obtained	Reiner and Rivlin (1927) Slibar and Paslay (1958)	144
Helical flow in a concentric annulus	Bingham	Approximate solution; velocity distribution, core bounds obtained	Paslay and Slibar (1957)	130
Helical flow in a concentric annulus	Bingham	Analytical and numerical method; velocity variation, core given in curves	Mohan Rao (1965)	110
Entrance flow into a concentric annulus	Casson	Numerical method; developing velocity profile, friction factor given in curves	Liu and Shah(1975) Shah(1980)	87
Radial flow between parallel disks	Bingham	Analytical and numerical; used lubrication approximation; obtained velocity distribution and volume flow rate vs. pressure drop (tabulated results)	Dai and Bird (1981)	35
		Brought to	Brought to you by Université Paris Ouest Nanterre La Défense	: Ľa Défense

Table IV cont/..

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Steady tangential flow between two spheres in relative rotation	Bingham	Analytical method; velocity distribution, pressure distribution, critical Bingham number obtained.	Kumar (1964)	82
Steady tangential flow between two cones in relative rotation	Hencky- Il'yushin	Analytical and numerical method; velocity distribution obtained; compared with experimental data	Sugak(1966)	180
Steady tangential flow between two cones in relative rotation	Bingham	Analytical method; analytical velocity distribution obtained (only for linear viscosity law)	Chernyshov(1970)	31
Rotating sector bounded by two sides	Bingham	No core; no general solution obtained, solution only for special angle	Chernyshov(1970)	31

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Download Date | 11/5/16 5:40 AM

TABLE V
Unsteady Flows in Bounded Regions

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Flow between parallel plates with suddenly imposed pressure grad.	Віпдћат	Asymptotic solution for small time values Safronik (1959)	Safronik (1959)	150
Flow between parallel plates with suddenly imposed pressure gradient	Bingham	Laplace-Carson integral transform; system of functional equations for determining core and shear stress time-dependence obtained	Makarov(1970)	91
Flow between parallel plates with suddenly imposed pressure gradient	Bingham	Monte-Carlo statistical test method; position of interface versus time obtained for start up, damping gradient flow and Couette flow	Makarov, Pavlov, Simkhovich (1970)	92
Flow between parallel plates with suddenly imposed pressure grad.	Bingham	Analytical method, successive approximations; shear stress distribution, plug flow interface time-dependence obtained	Makarov, Zhelanova, Polozova (1971)	95
Flow between parallel plates with time-dependent shear stress imposed at wall	Bingham	Successive approximation; variation in position of boundary separating zones given in a figure	on in sones Makarov, Sal'nikov(1972) 93 Brought to you by Université Paris Ouest Nanterre La Défense	93 e La Défense Authenticated

Table V cont/..

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Flow between parallel plates with arbitrarily varying pressure grad.	Herschel- Bulkley	Successive approximation; transient behavior of flow shown in graphs	Makarov, Sal'nikov(1972)	94
Flow generated by an oscillating plate	Bingham	Analytical method; instantaneous velocity, shear stress obtained	Hanks(1974)	62
Pulsatile flow in a circular tube	Bingham	Multiviscous approximation numerical method; velocity distribution, plug size obtained	Ly and Bellet (1976)	888
Eccentric annular tangential flow	Bingham	Analytical and graphical results	Ratnawat (1968)	140
Plane channel	Bingha m	Method of characteristics; velocity distribution, length of entrance, time for achieving a steady-state regime obtained	Shul'man, Zal'tsgendler (1979)	169
Squeezing flow between parallel plates	Bingham	Rough analytical solution; results have been questioned by subsequent workers	Scott(1931, 1935)	157, 158
Squeezing flow between parallel plates	Bingham	Analytical method; velocity distribution, pressure distribution relation between plate velocity and applied force obtained	Oka (1963) Oka and Ogawa (1964)	117

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Download Date | 11/5/16 5:40 AM

TABLE VI External Flows

Flow System	Fluid Model	Method and Results	Author(year)	Reference
Film Flow	Bingham	Analytical method; velocity distribution, flow rate, layer thickness relations obtained	Paslay, Slibar (1958) Bird (1959)	131
Wavy film flow	Bingham	Successive approximation; velocity distribution, phase velocity of waves, wave number, mean layer thickness, critical plasticity parameter obtained	Shul'man, Baikov (1977)	164
Flow past flat plate	Bingham	Approximate solution using von Karman momentum balance	Skelland (1967)	171 (p.286)
Flow past sphere	Bingham	Variational and numerical method; stress distribution, velocity distribution, flow pattern, dimension of flow region, resistance coefficient obtained	Yoshioka, Adachi, and Ishimura (1971)	213
Flow past cylinder	Віпд на ш	Variational method; stress distribution, velocity distribution, drag force, flow region obtained	Adachi, Yoshioka (1973)	1
Motion of gas bubble	Casson	Numerical method; variation of bubble radius, velocity and pressure at bubble Brought to you by Universite Paris Ouest Nanterre La Defense wall with time obtained	Shima, Tsujino (1978) you by Universite Paris Ouest Nanterre La Défense Authenticated	162 e La Défense Authenticated

TABLE VII Lubrication Problems

Type of Bearing	Fluid Model	Method and Results	Author(year)	Reference
Slider bearing	Bingham	Analytical method; extent of core, load capacity, and frictional drag obtained; core region detected by visual observation	Milne(1954)	107
Journal bearing	Bingham	Analytical method; location of core, load capacity, moment of friction obtained	Batra (1965)	9
Roller bearing	Bingham	Analytical method; special core formed; frictional resistance, pressure distribution, load capacity expressions obtained	Sasaki, Mori, Okino (1960)	152-154
Roller bearing	Casson	Analytical method; flow criterion for no core formation; friction force, pressure distribution, load capacity expressions obtained	Batra, Mohan (1978)	10
Rotating bearing with radial leakage	Bingham	Approximate solution; load capacity, friction torque obtained; example given	Slibar, Paslay (1956)	172
Rotating circular step bearing	Bingham	Approximate solution; lifting force, moment of friction, condition for nocore formation obtained	Batra (1973)	7

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

TABLE VIII

Contents of the Monograph by Ogibalov and Mirzadzhanzade /115/

Because this book, published first in 1970 and then again in 1977, is not readily available in the West, we summarize its table of contents here:

Chapter 1. MODELS OF MEDIA AND DIFFERENTIAL RELATIONS

Some models for non Newtonian fluids and for the turbulent motion of non-Newtonian systems are given; the equations of motion and heat transfer are introduced.

Chapter 2. EXACT SOLUTION OF UNSTEADY PROBLEMS OF MOTION OF VIS-COPLASTIC MEDIA

Solutions involving flow between parallel plates, in circular tubes, and near a rotating cylinder in an infinite medium are given; also magnetohydrodynamic problems, oscillatory motion, and Monte-Carlo methods are discussed.

Chapter 3. APPROXIMATE SOLUTIONS OF PROBLEMS OF UNSTEADY MOTION OF VISCOPLASTIC MEDIA

Approximate solutions for such problems as the impact of a viscoplastic core on a rigid obstruction, and a shearing wave in viscoplastic medium with a transverse magnetic field are described.

Chapter 4. UNSTEADY FLOW OF A VISCOPLASTIC MEDIUM IN TUBES AND CHANNELS

Unsteady motion in tubes and annuli are discussed, e.g. leakage through the gap between a cylinder and a piston, the start-up pressure in long pipelines, some problems of the Stefan type, and the hydrodynamic pressure on the walls of oil wells.

Chapter 5. SOME HEAT-TRANSFER PROBLEMS IN FLOWING VISCOPLASTIC MATERIALS

Solutions are given for various flow systems, including the thermal entrance region, viscous dissipation heating, temperature-dependent-viscosity effects, and time-dependent wall temperatures.

Chapter 6. UNSTEADY DIFFUSION IN VISCOPLASTIC MEDIA

Two topics are discussed here: the motion of the suspended particles, and the displacement of the viscoplastic medium in the structure regime in a circular tube.

Chapter 7. SOME PROBLEMS ON FILTRATION OF NON-NEWTONIAN SYSTEMS Retardation phenomena, nonequilibrium effects, unsteady filtration, and moving boundaries are discussed.

No similar book appears to be available in English; the book is apparently primarily aimed at problems in the petroleum industry.

Authenticated Date | 11/5/16 5:40 AM

Brought to you by | Université Paris Ouest Nanterre La Défense

TABLE IX
Forced-Convection Heat Transfer Problems

Flow System	Characteristic of Heat Transfer	Fluid Model	Method and Results	Author (year)	Reference
Flow between parallel plates driven by a pressure gradient	Constant wall temp.; plastic viscosity and yield stress temp. dependent	Shul'man	Approximate solution; Mamedo temperature profile given Sattarov (1975)	Mamedov, Sattarov (1975)	96
Flow between parallel plates driven by a pressure gradient	Constant wall temp. and constant wall heat flux	Bingham	Analytical and numerical; formulas and tables for Nusselt number	Valstar and Beek (1963)	192
Flow between parallel plates, driven by a pressure gradient	Allowance for viscous dissipation, and discontinuous change in yield stress and plastic viscosity with temp.	Bingham	Qualitative analysis and numerical calculation	Shul'man Khusid Benderska ya (1979)	166
Flow between parallel plates, driven by a pressure gradient	Constant wall heat flux, taking into account viscous dissipation	Bingham	Analytical method; asymptotic Nusselt num- Payvar (1973) ber obtained	Payvar (1973)	132
Flow between parallel plates, driven by a pressure gradient	Constant wall temp.; constant wall heat flux	Casson	Analytical method; temperature profiles, Nusselt numbers	Victor (1974) Shah (1980)	197

Authenticated Download Date | 11/5/16 5:40 AM

Table IX cont/..

Flow System	Characteristic of Heat Transfer	Fluid Model	Method and Result	Author(year)	Reference
Couette flow between parallel plates (upper plate moving, with pressure gradient)	Constant plate temp.	Shul'man	Analytical method; temp. Shul'man profile, heat transfer Volcheno rate obtained (1977)	Shul'man Volchenok (1977)	168
Couette flow between parallel plates (upper plate moving, with pressure gradient)	One plate constant temperature, other adiabatic	Shul'man	Analytical and numeri- cal; temperature profile obtained	Volchenok Shul'man (1978)	201
Flow in a circular tube	Constant or variable wall temperature	Bingham	Analytical method; temp. profile, Nusselt formula obtained; solution is in error /69/	Hirai (1959)	89
Flow in a circular tube	Internal heat generation, thermally insulated wall	Bingham	Analytical and numerical Schechter method; temp. profile ob- Wissler tained (1959)	Schechter Wissler (1959)	155
Flow in a circular tube	Constant wall temp.; constant wall heat flux	Bingham	Analytical method; asymptotic Nu for- mulas derived	Beek Eggink (1962)	11

Table IX cont/..

Flow System	Characteristic of Heat Transfer	Fluid Model	Method and Result	Author(year)	Reference
Flow in a circular tube	Constant wall temp.; constant wall heat flux	Саѕѕоп	Numerical method; temp. profile, Nu ob- tained; example given	Victor and Shah (1973) Shah (1980)	198
Flow in a circular tube	Constant wall temp.; constant wall heat flux; viscosity tempdependent	Herschel- Bulkley	Numerical method; velocity profile, Nu obtained	Forest Wilkinson (1973)	48
Flow in a circular tube	Constant wall temp.; yield stress and plastic viscosity temp. dependent (exponential law); consideration of dissipation	Bingham	Perturbation method and Numerical method; velo- city profile, size of plug flow region, resistance coefficient obtained	Pervushin (1973)	134
Flow in a circular tube	Constant wall temp.; Viscous dissipation	Bingham	Analytical method; asymptotic Nu obtained	Payvar (1973)	132
Flow in a circular tube	Constant wall temp.;yield stress and viscosity temp. dependent; viscous dissipation	Bingham	Numerical method; temp- profile, Nu, velocity dis- tribution, pressure gradi- ent obtained; compared with theoretical solution and experimental data	Pervushin (1974)	135

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated Download Date | 11/5/16 5:40 AM

Authenticated Download Date | 11/5/16 5:40 AM

Table IX cont/..

Flow System	Characteristic of Heat Transfer	Fluid Model	Method and Results	Author(year)	Reference
Flow in a circular tube	Constant wall temp., viscous dissipation	Shul'man	Analytical method;temp. profile and Nu obtained	Shul'man Gorislavets Rozhkov Uryadova	165
Flow in a circular tube	Uniform heat source; uniform wall heat flux	Bingham	Analytical method; velocity distribution, temp. distribution, Nu expression obtained	Michiyoshi (1962)	104
Entrance region to circular tube	Constant wall temp.	Bingham	Numerical method; velo- Samant city profile, temp. pro- Marner file, Nu, entrance length (1971) obtained	Samant Marner (1971)	151
Entrance region to circular tube	Internal heat generation; thermally insulated wall, uniform wall heat flux, and uniform wall temp.	Bingham	Analytical and numerical Michiyoshi methods; temp. profile, Matsumoto 105 entrance length, Nu ob- Hozumi tained (1963)	Michiyoshi Matsumoto Hozumi (1963)	105

TABLE X

Free-Convection Heat Transfer Problems

Flow System	Characteristic of Heat Transfer	Flow Model	Method and Result	Author(year)	Reference
Parailel plate	Two vertical plates at different temperature	Bingham	Analytical method; velocity profile, wall shear stresses given	Yang, Yeh (1965)	212
Parallel plate	Two horizontal plates heated from below; constant physical properties	Bingham	Analytical method; discussion of the con- vective stability	Gershuni Zhukhovitskii (1973)	53
Vertical plate	Constant wall temperature; constant properties except density	Bingham	Numerical method; velocity temp. profile, Nu, friction coefficient given	Kleppe Marner (1972)	78
Vertical plate	Constant wall temperature; constant properties except density	Bingham	Numerical method; study of effects of buoyancy on forced convection	Marner Kleppe (1976)	86
Closed square region	Heated from below; constant temp. at vertical plate; temp. changes linearly on horizontal segment	Williamson	Numerical method; Velocity,temp.,heat flux distribution, qua- sisolid zones given	Lyubimova (1976)	88

Brought to you by | Université Paris Ouest Nanterre La Défense Authenticated

Download Date | 11/5/16 5:40 AM

in which subscript w means "evaluated at the wall", and β_1 and β_2 are constants. Experimental confirmation of these equations is incomplete.

Of course many heat-transfer problems may be solved by analogy with mass-transfer problems. However, very little seems to have been done on mass-transfer problems /3, 43/.

8. CONCLUSIONS

- a. The literature on materials with a yield stress is extensive and is spread out over many fields (engineering, lubrication, food-stuffs, paints, sewage sludge, etc.). There is no single source that one can consult for an authoritative compilation of experimental and theoretical information.
- b. More needs to be done to relate the model parameters (such as μ_0 and τ_0 for the Bingham model) to structural details using fundamental hydrodynamic and electrostatic theories. An example of this kind of activity is the recent paper by Tanaka and White /181/, in which a cell theory is developed to explain the origin of the yield stress τ_0 in highly concentrated suspensions. It may be that photographic structure studies of the type begun by Graham /55/ will ultimately shed light on the structure and rheology of suspensions.
- c. Another area that has not been explored is the use of computer simulation of particle motions in concentrated suspensions and pastes, making use of knowledge about the hydrodynamic and electrostatic interactions in the medium.
- d. Although many efforts have been made to obtain empirical expressions for μ_0 and τ_0 in terms of particle shape and size for suspensions and pastes, there seems to have been no systematic effort to explore in a fundamental way the connection between particle shapes and constitutive equations. In the polymer solution of polymer melt fields striking advances have been made in the last two decades.
- e. The Oldroyd papers cited in the introduction have really not been exploited. There remains much to be done in getting nontrivial solutions for viscoplastic flows and the Oldroyd papers should be used as the point of departure.
- f. Very little seems to be known about the temperature dependence of model parameters such as μ_0 and τ_0 .

ACKNOWLEDGMENTS

The authors wish to acknowledge financial assistance provided by the National Science Foundation (Grant ENG78-06789) and by the Vilas Foundation

tion of the University of Wisconsin. In addition B. J. Yarusso wishes to thank the Graduate and Professional Opportunities Program of the U.S. Office of Education. Professor R.W. Hanks (Brigham Young University) and Professor W.B. Russel (Princeton University) read the manuscript and offered suggestions for improvement.

Notes added in proof:

- a. Two significant reviews of microstructure and thixotropy of suspensions are J. Mewis and A.J.B. Spaull, Adv. in Colloid and Interfacial Sci., 6, 173-300 (1977), and J. Mewis, J. Non-Newtonian Fluid Mech., 6, 1-20 (1979).
- b. Yield-stress determination in blood has been discussed by G.R. Cokelet, Chapter 4 in "Biomechanics: Its Foundations and Objectives", (Eds: Y.C. Fung, N. Perrone, and M. Anliker), Prentice-Hall, Englewood Cliffs, N.J.
- c. Constitutive equations for plastic viscoelastic fluids have been discussed by J.L. White, J. Non-Newtonian Fluid Mech., 8, 195-202 (1981).
- d. Squeezing flow of Bingham fluids between two parallel disks has been reexamined by G.H. Covey and B.R. Stanmore, J. Non-Newtonian Fluid Mech., 8, 249-260 (1981).

REFERENCES

- 1. Adachi, K. and N. Yoshioka, Chem. Eng. Sci., 28, 215-226 (1973).
- 2. Agaev, M.Kh., Mirzadzhan-Zade, A.Kh., Seid-Rza, M.K. and N.M. Sherstnev, Fluid Dynamics, (Engl. Transl.) 1(4), 145-147 (1966); Izv. ANSSR. Mekhanika Zhidkosti i Gaza, 1(4), 205-208 (1966).
- 3. Annapurna, N. and A.S. Gupta, *Chem. Eng. Communications*, 8, 281-288 (1981).
- 4. Anshus, B.E., Ind. Eng. Chem. Fundamentals, 13, 162-164 (1974).
- 5. Ansley, R.W. and T.N. Smith, AIChE J., 13, 1193-1196 (1967).
- 6. Batra, R.L., Appl. Sci. Res., A15, 331-344 (1965).
- 7. Batra, R.L., Defence Sci. J., 23(3), 101-108 (1973).
- 8. Batra, R.L. and K. Koshy, *Biorheology*, 15, 15-27 (1978).
- 9. Batra, R.L. and K. Koshy, Inter. J. Eng. Sci., 16, 579-589 (1978).
- 10. Batra, R.L. and V. Mohan, Wear, 51, 213-225 (1978).
- 11. Beek, W.J. and R. Eggink, De Ingenieur, 74, 81-89 (1962).
- 12. Bingham, E.C., Bull. U.S. Bur. Standards, 13, 309-353 (1916).
- 13. Bingham, E.C., "Fluidity and Plasticity", McGraw-Hill, N.Y. (1922), Chapter VIII, pp. 215-218.
- 14. Bingham, E.C. and T.C. Durham, Amer. Chem. J., 46, 278-297 (1911).
- 15. Bingham, E.C. and H. Green, Proc. ASTM, 19, 640-664 (1919).
- 16. Bird, R.B., Teknisk Ukeblad (Oslo), 106, 175-179 (1959).
- 17. Bird, R.B., Armstrong, R.C. and O. Hassager, "Dynamics of Polymeric Liquids", vol. 1, "Fluid Mechanics", Wiley, N.Y. (1977).
- 18. Bird, R.B., Hassager, O., Armstrong, R.C. and C.F. Curtiss, "Dynamics of Polymeric Liquids", vol. 2, "Kinetic Theory", Wiley, N.Y. (1977).
- 19. Bird, R.B., Stewart, W.E. and E.N. Lightfoot, "Transport Phenomena", Wiley, N.Y. (1960).
- 20. Bostandzhiyan, S.A., *J. Engineering Phys.*, (Engl. Transl.) 18, 761-767 (1970); *Inzhenerno-Fizicheskii Zhurnal*, 18, 1098-1106 (1970).
- 21. Brookes, G.F. and R.L. Whitmore, Rheol. Acta., 7, 188-193 (1968).
- 22. Buckingham, E., Proc. ASTM, 21, 1154-1161 (1921).
- 23. Bukhman, Yu.A., Lipatov, V.I., Litvinov, A.I., Mitel'man, B.I. and Z.P. Shul'man, J. Engineering Phys., (Engl. Transl.) 37, 1226-1230 (1979); Inzhenerno-Fizicheskii Zhurnal, 37, 717-723 (1979).
- 24. Caldwell, D.H. and H.E. Babbitt, Ind. Eng. Chem., 33, 249-256 (1941).
- 25. Casson, N., in "Rheology of Disperse Systems", Mill, C.C., ed., Pergamon, London (1959), pp. 84-104.
- 26. Castillo, C. and M.C. Williams, *Chem. Eng. Commun.*, 3, 529-547 (1979).

- 27. Chapman, F.M. and T.S. Lee, SPE J., 26(1), 37-40 (1970).
- 28. Charm, S.E., J. Food Sci., 28, 107-113 (1963).
- 29. Charm, S. and G. Kurland, *Nature*, **206**, 617-618 (1965).
- 30. Chen, S.S., Fan, L.T. and C.L. Hwang, AIChE J., 16, 293-299 (1970).
- 31. Chernyshov, A.D., J. Appl. Mech. and Tech. Phys., 11, 791-796 (1973).
- 32. Chien, S.F., Inter. J. Rock Mech. and Mining Sci., 7, 339-356 (1970).
- 33. Clegg, D.B. and G. Power, *Appl. Sci. Res.*, **12** section A, 199-212 (1963).
- 34. Crowley, P.R. and A.S. Kitzes, *Ind. Eng. Chem.*, 49, 888-892 (1957).
- 35. Dai, G. and R.B. Bird, *J. Non-Newtonian Fluid Mech.*, 8, 349-355 (1981).
- 36. Darby, R. and B.A. Rogers, AIChE J., 26, 310-312 (1980).
- 37. Deindoerfer, F.H. and J.M. West, *J. Biochem. Microbiol. Tech. and Eng.*, **2**, 165-175 (1960).
- 38. Denn, M.M., "Process Fluid Mechanics", Prentice-Hall, Englewood Cliffs, (1979), p. 20.
- 39. Dobrychenko, V.M., Povkh, L.L. and A.E. Eidel'man, J. Engineering Phys., (Engl. Transl.) 28, 283-286 (1975); Inzhenerno-Fizicheskii Zhurnal, 28, 399-402 (1975).
- Dukes, W.A., in "Proc. of the Fifth International Congress of Rheology", part 2, Onogi, S., ed., Univ. of Tokyo Press, Tokyo (1970), pp. 315-325.
- 41. Earnshaw, A.W. and J.C. Spronson, *Nature*, 186, 378-379 (1960).
- 42. Eirich, F.R., ed., "Rheology, Theory and Applications", vol. 3, Academic Press, N.Y. (1960), Chapters 5, 6, 9 and 12.
- 43. Fan, L.T. and C.B. Wang, *Proc. Roy. Soc. London*, A292, 203-208 (1966).
- 44. Ferraro, C.F., SPE J., 24(4), 74-78 and 99 (1968).
- 45. Firth, B.A. and R.J. Hunter, *J. Colloid Interface Sci.*, 57, 248-255 (1976).
- 46. Firth, B.A. and R.J. Hunter, *J. Colloid Interface Sci.*, 57, 257-265 (1976).
- 47. Firth, B.A. and R.J. Hunter, *J. Colloid Interface Sci.*, 57, 266-275 (1976).
- 48. Forrest, G. and W.L. Wilkinson, *Inter. J. Heat and Mass Transfer*, 16, 2377-2391 (1973).
- 49. Fredrickson, A.G., "Principles and Applications of Rheology", Prentice-Hall, Englewood Cliffs (1964), Chapter 8.
- 50. Fredrickson, A.G. and R.B. Bird, *Ind. Eng. Chem.*, **50**, 347-352 (1958); erratum, *Ind. Eng. Chem. Fundamentals*, **3**, 383 (1964).

- 51. Froishteter, G.B. and G.V. Vinogradov, *Rheol. Acta*, **16**, 620-627 (1977).
- 52. Froishteter, G.B. and G.V. Vinogradov, *Rheol. Acta*, 19, 239-250 (1980).
- 53. Gershuni, G.Z. and E.M. Zhukhovitskii, Soviet Physics Doklady, (Engl. Transl.) 18, 36-37 (1973); Doklady Akademii Nauk SSSR, 208(1), 63-65 (1973).
- 54. Govier, G.W. and M.E. Charles, *Engineering J.*, 44(8), 50-57 (1961).
- 55. Graham, A.L., Ph.D. Thesis, U. Wisconsin Madison (1980).
- Grinchik, I.P. and A.Kh. Kim, J. Engineering Phys., (Engl. Transl.) 23, 1039-1041 (1972); Inzhenerno-Fizicheskii Zhurnal, 23, 336-339 (1972).
- 57. Guckes, T.L., J. Eng. for Industry (Trans. ASME), 97, 498-506 (1975).
- 58. Haddow, J.B. and H. Luming, Appl. Sci. Res., A15, 81-86 (1965).
- 59. Haddow, J.B. and H. Luming, Appl. Sci. Res., A16, 469-477 (1966).
- 60. Hanks, R.W., AIChE J., 9, 45-48 (1963).
- 61. Hanks, R.W., AIChE J., 9, 306-309 (1963).
- 62. Hanks, R.W., AIChE J., 20, 173 (1974).
- 63. Hanks, R.W. and B.H. Dadia, AIChE J., 17, 554-557 (1971).
- 64. Hanks, R.W. and B.L. Ricks, J. Hydronautics, 8(14), 163-166 (1974).
- 65. Herschel, W.H. and R. Bulkley, Kolloid Z., 39, 291-300 (1926).
- 66. Herschel, W.H. and R. Bulkley, *Proc. ASTM, Part II*, **26**, 621-629 (1926).
- 67. Heywood, N.I. and J.F. Richardson, J. Rheol., 22, 599-613 (1978).
- 68. Hirai, E., AIChE J., 5, 130-133 (1959).
- 69. Hirschfelder, J.O., Curtiss, C.F. and R.B. Bird, "Molecular Theory of Gases and Liquids", Wiley, N.Y. (1954).
- 70. Hohenemser, K. and W. Prager, ZAMM, 12, 216-226 (1932).
- 71. Hunter, R.J. and J. Frayne, J. Colloid Interface Sci., 71, 30-38 (1979).
- 72. Johnson, M.W., Jr., Phys. of Fluids, 3, 871-878 (1960).
- 73. Johnson, M.W., Jr., Trans. Soc. Rheol., 5, 9-21 (1961).
- 74. Kataoka, T., Kitano, T. and K. Nishijima, *Rheol. Acta*, 17, 149-155 (1978).
- 75. Kataoka, T., Kitano, T., Oyanagi, Y. and M. Sasahara, *Rheol. Acta*, 18, 635-639 (1979).
- Kawanari, M., Hamann, D.D., and K.R. Swartzel, 52nd Annual Meeting, Soc. Rheology, Abstracts, p. 23 (1981).
- Kim, A.Kh. and V.Kh. Shul'man, J. Engineering Phys., (Engl. Transl.)
 17, 1154-1157 (1969); Inzhenerno-Fizicheskii Zhurnal, 17, 526-529 (1969).

- 78. Kleppe, J. and W.J. Marner, J. Heat Transfer, 94, 371-376 (1972).
- 79. Kooijman, J.M. and D.C. Van Zanten, *Chem. Eng. J.*, **4**, 185-188 (1972).
- 80. Kornum, L.O., Rheol. Acta, 18, 178-192 (1979).
- 81. Krieger, I.M. and M. Eguiluz, Trans. Soc. Rheol., 20, 29-45 (1976).
- 82. Kumar, R., Appl. Sci. Res. (A), 14, 396-404 (1964).
- 83. Laird, W.M., Ind. Eng. Chem., 49, 138-141 (1957).
- 84. Le Fur, B. and M. Martin, J. Fluid Mech., 30, 449-464 (1967).
- 85. Lightfoot, E.N., "Transport Phenomena and Living Systems", Wiley, N.Y. (1974), pp. 35-38, 430-438, 440.
- 86. Lih, M.M., "Transport Phenomena in Medicine and Biology", Wiley, N.Y. (1975), pp. 378-386.
- 87. Liu, J. and V.L. Shah, Appl. Sci. Res., 31, 213-222 (1975).
- 88. Ly, D.P. and D. Bellet, *J. Non-Newtonian Fluid Mech.*, 1, 287-304 (1976).
- 89. Lyubimova, T.P., Fluid Dynamics, (Engl. Transl.) 12, 1-5 (1977); Izvestiva Akad. NaukSSSR, Mekhanika Zhidkost i Gaza, 12(1), 3-8 (1977).
- 90. Mahncke, H.E. and W. Tabor, *Lubrication Engineering*, 11, 22-27 (1955).
- 91. Makarov, A.M., *J. Engineering Phys.*, (Engl. Transl.) 19, 870-874 (1970); *Inzhenerno-Fizicheskii Zhurnal*, 19, 94-99 (1970).
- 92. Makarov, A.M., Pavlov, K.B. and S.L. Simkhovich, *Inzhenerno-Fizi-cheskii Zhurnal*, 18, 1116-1121 (1970).
- 93. Makarov, A.M. and V.G. Sal'nikov, J. Appl. Mech. and Tech. Phys., (Engl. Transl.) 13, 546-550 (1972); Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, 13(4), 133-137 (1972).
- Makarov, A.M. and V.G. Sal'nikov, J. Engineering Phys., (Engl. Transl.)
 758-762 (1973); Inzhernerno-Fizicheskii Zhurnal, 24, 1088-1093 (1973).
- 95. Makarov, A.M., Zhdanova, L.A. and O.N. Polozova, J. Engineering Phys., (Engl. Transl.) 22, 51-55 (1972); Inzhenerno-Fizicheskii Zhurnal, 22, 73-79 (1972).
- 96. Mamedov, R.M. and R.M. Sattarov, Fluid Dynamics, (Engl. Transl.) 12, 298-301 (1977); Izvestiya Akad. Nauk SSSR, Mekhanika Zhidkosti i Gaza, 12(2), 162-166 (1977).
- 97. Markovitz, H. and G.C. Berry, *Ind. Eng. Chem. Prod. Res. Dev.*, 17, 95-101 (1978).
- 98. Marner, W.J. and J. Kleppe, *J. Fluid Eng.* (Trans. ASME Ser. I), 98, 119-121 (1976).

- 99. Matsumoto, T., Hitomi, C. and S. Onogi, *Trans. Soc. Rheol.*, 19, 541-555 (1975).
- Matsumoto, T., Takashima, A., Masuda, T. and S. Onogi, *Trans. Soc. Rheol.*, 14, 617-620 (1970).
- Medvedev, V.F., J. Engineering Phys., (Engl. Transl.) 24, 505-507 (1973); Inzhenerno-Fizicheskii Zhurnal, 24, 715-718 (1973).
- Merrill, E.W., Benis, A.M., Gilliland, E.R., Sherwood, T.K. and E.W. Salzman, J. Appl. Physiol., 20, 954-967 (1965).
- 103. Merrill, E.W., Margetts, W.G., Cokelet, G.R. and E.R. Gilliland, in "Proc. of the Fourth International Congress on Rheology", part 4, Copley, A.L., ed., Interscience, N.Y. (1965), pp. 135-143.
- 104. Michiyoshi, I., Bull. JSME, 5(18), 315-319 (1962).
- 105. Michiyoshi, I., Bull. JSME, 6(23), 496-504 (1963).
- Michiyoshi, L., Mizuno, K. and Y. Hoshiai, *Inter. Chem. Eng.*, (Engl. Transl.) 6, 373-381 (1966); *Nippon Genshiryoku Gakkaishi*, 10, 554-562 (1965).
- 107. Milne, A.A., in "Proc. of the Second International Congress on Rheology", Harrison, V.G.W., ed., Butterworths Scientific Publications, London (1954), pp. 427-436.
- 108. Mizrahi, S., and R. Firstenberg, J. Texture Studies, 6, 523-532 (1975).
- 109. Mochimaru, Y., Private communication.
- 110. Mohan Rao, D.K., J. Indian Inst. Sci., 47, 97-105 (1965).
- 111. Moore, P.L., "Drilling Practice Manual", Petroleum Publ. Co., Tulsa (1974), Chapter 5.
- 112. Mori, Y. and N. Ototake, Kagaku Kōgaku, 17(6), 224-229 (1953).
- 113. Munro, J.M., Lewellyn, M.M., Crackel, P.R. and L.G. Bauer, *AIChE J.*, **25**, 355-358 (1979).
- 114. Murdock, R. and H.A. Kearsey, *Trans. Inst. Chem. Eng.* (London), 38, 165-175 (1960).
- 115. Ogibalov, P.M. and A.Kh. Mirzadzhanzade, "Unsteady Motion of Visco-Plastic Media", Ezd. Mock. Un-Ta, Moscow (1977).
- 116. Oka, S., in "Proc. of the Fourth International Congress on Rheology", part 4, Copley, A.L., ed., Interscience, N.Y. (1965), pp. 89-101.
- 117. Oka, S., Zai Ryo, 12(116), 54-56 (1963).
- 118. Oka, S. and S. Ogawa, Jap. J. Appl. Phys., 3, 347-350 (1964).
- 119. Oldroyd, J.G., Proc. Camb. Phil. Soc., 43, 100-105 (1947).
 - 120. Oldroyd, J.G., Proc. Camb. Phil. Soc., 43, 383-395 (1947).
- 121. Oldroyd, J.G., Proc. Camb. Phil. Soc., 43, 396-405 (1947).
- 122. Oldroyd, J.G., Proc. Camb. Phil. Soc., 43, 521-532 (1947).
- 123. Oldroyd, J.G., Proc. Camb. Phil. Soc., 44, 200-213 (1948).

- 124. Oldroyd, J.G., Proc. Camb. Phil. Soc., 44, 214-228 (1948).
 - 125. Oldroyd, J.G., Proc. Camb. Phil. Soc., 45, 595-611 (1949).
 - 126. Oldroyd, J.G., Proc. Camb. Phil. Soc., 47, 410-418 (1951).
 - 127. Onogi, S., Matsumoto, T. and Y. Warashina, *Trans. Soc. Rheol.*, 17, 175-190 (1973).
 - 128. Onogi, S., Mikami, Y. and T. Matsumoto, *Polym. Eng. and Sci.*, 17, 1-8 (1977).
 - 129. Paslay, P.R. and A. Slibar, Osterreiches Ingenieur-Archiv, 10, 328-344 (1956).
 - 130. Paslay, P.R. and A. Slibar, *Petroleum Trans.*, AIME, 210, 310-317 (1957).
 - 131. Paslay, P.R. and A. Slibar, Trans. Soc. Rheol., 2, 255-262 (1958).
 - 132. Payvar, P., Appl. Sci. Res. A, 27, 297-306 (1973).
 - 133. Pazwash, H. and J.M. Robertson, J. Hydraulic. Res., 13, 35-55 (1975).
 - 134. Pervushin, V.E., J. Appl. Mech. and Tech. Phys., (Engl. Transl.) 15, 350-354 (1974); Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 15(3), 79-85 (1974).
 - 135. Pervushin, V.E., J. Appl. Mech. and Tech. Phys., (Engl. Transl.) 16, 449-456 (1975); Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 16(3), 163-172 (1975).
 - 136. Pilpel, N., Chem. Process Eng., 45, 395-401 (1964).
 - 137. Prager, W., "Introduction to Mechanics of Continua", Ginn and Co., Boston (1961), Chapter VII.
 - 138. Prager, W., in "Studies in Mathematics and Mechanics", R. von Mises Presentation Volume, Academic Press, N.Y. (1954), pp. 208-216.
 - Rao. V.N.M., Hamann, D.D., and E.G. Humphries, J. Texture Studies, 6, 197-209 (1975).
 - 140. Ratnawat, H.P., J. Sci. and Eng. Res., 12, 161-168 (1968).
 - 141. Reiner, M., "Deformation and Flow", Lewis, London (1949).
 - 142. Reiner, M., Kolloid-Zeitschrift, 39, 80-87 (1926).
 - 143. Reiner, M., "Rhéologie Théorique", Dunod, Paris (1955).
 - 144. Reiner, M. and R. Riwlin, Kolloid-Z., 43, 1-5 (1927).
 - 145. Richards, J.W., Prog. in Industrial Microbiology, 3, 143-172 (1961).
 - 146. Rogers, W.F., "Composition and Properties of Oil Well Drilling Fluids", 3rd ed., Gulf Oil Co., Houston (1963), Chapter 6.
 - 147. Rosen, S.L. and F. Rodriguez, J. Applied Polym. Sci., 9, 1601-1613 (1965).
 - , 148. Russel, W.B., J. Rheol., 24, 287-317 (1980).
 - 149. Sacks, M.E., Romney, M.J. and J.F. Jones, *Ind. Eng. Chem.* (Process Des. Develop.), 9, 148-153 (1970).

- 150. Safronik, A.I., Prikladnaia Matematika i Mekhanika, 23, 925-935 (1959).
- 151. Samant, A.B. and W.J. Marner, *Nuclear Sci. and Eng.*, 43, 241-246 (1971).
- 152. Sasaki, T., Mori, H. and N. Okino, Bull. JSME, 3, 212-219 (1960).
- 153. Sasaki, T., Mori, H. and N. Okino, J. Basic Eng., 84, 166-174 (1962).
- 154. Sasaki, T., Mori, H. and N. Okino, J. Basic Eng., 84, 175-180 (1962).
- 155. Schechter, R.S. and E.H. Wissler, *Nuclear Sci. and Eng.*, **6**, 371-375 (1959).
- 156. Schwedoff, T., J. de Physique, 9 (series 2), 34-46 (1890).
- 157. Scott, J.R., Trans. Inst. Rubber Ind., 7, 169-186 (1931).
- 158. Scott, J.R., Trans. Inst. Rubber Ind., 10, 481-493 (1935).
- 159. Scott Blair, G.W., Rheol. Acta, 5, 184-187 (1966).
- Shah, V.L., in "Advances in Transport Processes", vol. I, Majumdar,
 A.S. and R.A. Mashelkar, eds., Wiley Eastern Ltd., New Delhi (1980),
 pp. 1-57.
- 161. Shah, V.L. and R. Soto, Computers and Fluids, 2, 273-284 (1974).
- 162. Shima, A. and T. Tsujino, J. Appl. Mech., 45, 37-42 (1978).
- 163. Shul'man, Z.P., J. Engineering Phys., (Engl. Transl.) 19, 1283-1289 (1970); Inzhenerno-Fizicheskii Zhurnal, 19, 689-697 (1970).
- 164. Shul'man, Z.P. and V.I. Baikov, *J. Engineering Phys.*, (Engl. Transl.) 36, 482-487 (1979); *Inzhenerno-Fizicheskii Zhurnal*, 36, 721-727 (1979).
- Shul'man, Z.P., Gorislavets, V.M., Rozhov, V.A. and V.V. Uryadova, *Inter. Chem. Eng.*, (Engl. Transl.) 11, 325-331 (1971); *Inzhenerno-Fizi-cheskii Zhurnal*, 19, 850-860 (1970).
- Shul'man, Z.P., Khusid, B.M. and S.L. Bendershaya, J. Engineering Phys., (Engl. Transl.) 37, 1410-1414 (1979); Inzhenerno-Fizicheskii Zhurnal, 37, 1000-1006 (1979).
- 167. Shul'man, Z.P. and V.F. Volchenok, *Inzhenerno-Fizicheskii Zhurnal*, 33, 880-888 (1977).
- Shul'man, Z.P. and V.F. Volchenok, J. Enineering Phys., (Engl. Transl.)
 722-730 (1978); Inzhenerno-Fizicheskii Zhurnal, 34, 1070-1080 (1978).
- 169. Shul'man, Z.P. and E.A. Zal'tsgendler, J. Engineering Phys., (Engl. Transl.) 37, 1079-1083 (1979); Inzhenerno-Fizicheskii Zhurnal, 37, 483-488 (1979).
- 170. Singleterry, C.R. and E.E. Stone, J. Colloid Sci., 6, 171-189 (1951).
- 171. Skelland, A.H.P., "Non-Newtonian Flow and Heat Transfer", Wiley, N.Y. (1967).
- 172. Slibar, A. and P.R. Paslay, ASME paper No. 56-LUB-1.

- 173. Slibar, A. and P.R. Paslay, J. Appl. Mech., paper No. 58-A-34.
- 174. Slibar, A. and P.R. Paslay, in "Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamics", Reiner, M. and D. Abir, Eds., Macmillan, N.Y. (1964), pp. 314-330.
- 175. Slibar, A. and P.R. Paslay, ZAMM, 37, 441-449 (1957).
- 176. Smith, T.L. and C.A. Bruce, J. Colloid Interface Sci., 72, 13-26 (1979).
- 177. Smol'ski, B.M., Shul'man, Z.P. and V.M. Gorislavets, "Rheodynamics and Heat Transfer of Nonlinear Viscoplastic Materials", Science and Technology, Minsk (1970).
- 178. Soto, R.J. and V.L. Shah, Appl. Sci. Res., 32, 73-85 (1976).
- 179. Stoltz, J.F. and A. Larcan, Biorheology, 7, 129-135 (1970).
- 180. Sugak, M.B., J. Engineering Phys., (Engl. Transl.) 11, 436-439 (1966); Inzhenerno-Fizicheskii Zhurnal, 11, 802-808 (1966).
- 181. Tanaka, H. and J.L. White, *J. Non-Newtonian Fluid Mech.*, 7, 333-343 (1980).
- 182. Thomas, D.G., AIChE J., 6, 631-639 (1960).
- 183. Thomas, D.G., AIChE J., 9, 310-316 (1963).
- 184. Thomas, D.G., Ind. Eng. Chem. 55(11), 18-29 (1963).
- 185. Thomas, D.G., 1962 Second Symposium on Thermophysical Properties, Jan. 24-26, 1962, Princeton Univ., paper #64, 704-717.
- 186. Thomas, D.G., 1962 Second Symposium on Thermophysical Properties, Jan. 24-26, 1962, Princeton Univ., paper #61, 669-686.
- 187. Tiu, C. and D.V. Boger, J. Texture Studies, 5, 329-338 (1974).
- 188. Tomita, Y., Bull Jap. Soc. Mech. Engrs., 2, 10-16 (1959).
- 189. Tomita, Y., "Reorojii: Hisenkei Ryūtai no Rikigaku", Corona Publ. Co., Tokyo (1975).
- 190. Ulbrecht, J. and P. Mitschka, "Chemické Inženýrství Nenewtonských Kapalin", Ceskoslovenska Akademie Ved, Praha (1965).
- 191. Umeya, K., in "Proc. of the Fifth International Congress on Rheology", part 2, Onogi, S., ed., Univ. of Tokyo Press, Tokyo (1970), pp. 295-308.
- 192. Valstar, J.M. and W.J. Beek, De Ingenieur, 75, 1-7 (1963).
- 193. Van de Ven, T.G.M. and R.J. Hunter, Rheol. Acta, 16, 534-543 (1977).
- 194. Van Kao, S., Nielsen, L.E. and C.T. Hill, J. Colloid Interface Sci., 53, 358-366 (1975).
- 195. Van Kao, S., Nielsen, L.E. and C.T. Hill, *J. Colloid Interface Sci.*, 53, 367-373 (1975).
- 196. Van Olphen, H., J. Inst. Petroleum, 36, 223-234 (1950).
- 197. Victor, S., M.S. Thesis, U. Wisconsin Milwaukee (1979).
- 198. Victor, S. and V.L. Shah, Biorheology, 12, 361-368 (1975).

- 199. Vinogradov, G.V., Froishteter, G.B., and K.K. Trilisky, *Rheol. Acta*, 17, 156-165 (1978).
- 200. Vinogradov, G.V., Malkin, A.Ya., Plotnikova, E.P., Sabsai, O.Yu., and N.E. Nikolayevna, *Inter. J. Polymeric Mater.*, 2, 1-27 (1972).
- 201. Volchenok, V.F. and Z.P. Shul'man, J. Engineering Physics, (Engl. Transl.) 37, 790-796 (1979); Inzhenerno-Fizicheskii Zhurnal, 37, 50-58 (1979).
- 202. Walawender, W.P., Chen, T.P. and D.F. Cala, *Biorheology*, 12, 111-119 (1975).
- 203. Walski, T.M., J. Rheol., 24, 741-753 (1980).
- 204. Weymann, H.D., in "Proc. of the Fourth International Congress on Rheology", part 3, Lee, E.H., ed., Interscience, N.Y. (1965), pp. 573-591.
- 205. Weymann, H.D., Chuang, M.C. and R.A. Ross, *Phys. Fluids*, **16**, 775-783 (1973).
- 206. Whitcomb, P.J., Master's Thesis, U. of Minnesota, Dec. 1977.
- 207. Whitcomb, P.J., Ek, B.J. and C.W. Macosko, in "Extracellular Microbial Polysaccharides", Sanford, P.A. and A. Laskin, eds., ACS Symposium Series #45, ACS, Washington (1977), Chapter 12.
- 208. White, J.L. and H. Tanaka, J. Non-Newtonian Fluid Mech. 8, 1-10 (1981).
- 209. Wilkinson, W.L., "Non-Newtonian Fluids: Fluid Mechanics, Mixing, and Heat Transfer", Pergamon, N.Y. (1960).
- 210. Willey, S.J. and C.W. Macosko, J. Rheol., 22, 525-545 (1978).
- Wissler, E.H. and R.S. Schechter, Chem. Engr. Prog. Symp. Series, (55)
 29, 203-208 (1959).
- 212. Yang, W.J. and H.C. Yeh, *J. Heat Transfer* (Trans. ASME, Ser. C), 87, 319-320 (1965).
- 213. Yoshioka, N., Adachi, K. and H. Ishimura, *Kagaku Kōgaku*, 35, 1144-1152 (1971).
- 214. Ziegenhagen, A.J., Ph.D. Thesis, Univ. of Wisconsin (1962).