

A MULTIVARIATE MAPPING FUNCTION FOR COMBAT POWER APPRAISAL IN THE AIRLAND RESEARCH MODEL

THESIS

J. Marc Le Gare
 Captain, USA
AFIT/GST/ENS/89M-11

Approved for public release; distribution unlimited

89 0 20 001

A MULTIVARIATE MAPPING FUNCTION FOR COMBAT POWER APPRAISAL IN THE AIRLAND RESEARCH MODEL

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operations Research

J. Marc Le Gare, B.S.
Captain, Infantry
US Army

March 1989

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By____
Distribution/
Availability Codes

Avail and/or
Dist
Special

Approved for public release; distribution unlimited

Preface

The purpose of this study was to develop an analytical model based on expert opinion. Currently, the Air Land Research Model deterministically assigns combat power to units. My purpose was to survey former combat arms battalion commanders and officers with staff experience and to develop a function that models combat power appraisal.

In developing and administering the survey, I am deeply indebted to the following people: Dr. Morris Peterson, Army Personnel Survey Division; Mrs. Ellen Godfrey, Combined Arms and Services Staff School; COL Davis, Army War College; and the students at CAS3 and the Army War College who participated in the survey. Without their assistance, this thesis would not have been completed.

A word of thanks goes to my thesis advisor, MAJ Dan Reyen and my reader MAJ Joe Litko for their support. Final acknowledgement to the Engineering Sciences faculty of AFIT, who put up with my puzzled looks and endless questions in the classroom.

Table of Contents

																					Page
List	of	Equations	•		•	•		•	•		•		•	•	•		•	•	•	•	V
List	of	Tables	•	•				•	•		•						•	•	•	•	vi
List	of	Figures	•	•		•	•	•	•			•	•			•	•	•		•	vii
Abst	ract	t	•					•			•		•		•	•		•	•	•	viii
I.	Int	troduction	•				•	•	•	•	•							•	•		1
		ALARM .								_	_		_	_			_		_		1
		Thesis M																			
																					2
		Problem																			3 3 4
		Scope .																			3
		Assumpti	ons	5		•	•	•	•	•		•	•	•	•	•	•	•	•	•	4
		Summary	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
II.	Lite	erature Rev	iev	N					•		•	•	•		•	•	•	•	•	•	5
		Combat P	OWe	٩r		_								_							5
		Generali	200	₹ 1	(7a)	1 114	٠,	Sve	:+e	m	•	•	•	Ĭ	-	•	-		-		5
		Future S	2 C (va.	- u	: : ~ :		, LL	ini In b	•	•	•	•	•	•	•	•	•	•	7
		ruture 5	tai	ce	De	ec.	LS.	roi	1 P	lak	TI	19	•	•	•	•	٠	•	•	•	
		Degraded																			9
		Summary	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
III.	Met	thodology	•			•	•	•	•			•	•	•	•	•	•	•	•	•	12
		5.4					_														12
		Determin																			
		State Va	ria	ab.	les	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
		Experime	nta	al	De	es:	igı	n.	•	•	•	•	•		•	•	•	•	•	•	14
		Analysis																•			15
		Unit App	ra i	is	a l	Fı	ınd	at i	on	ı	_	_	_	_		_	_				16
		onic app	Lu	LS		•	211		. 01	•	•	•	•	•	•	•	•	•	•	•	
IV.	Ana	alysis	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
		Survey D	ata	3			•						•					•		•	18
		Construc	tir	าต	t.)	ne.	Τı	nte	rv	a l	5	Sca	116	9							18
		Transfor																		_	23
		Regressi																		•	24
																				•	
		Unit App	rai	LS	аI	F	ıno	ctı	.on	l	•	•	•	•	•	•	•	٠	•	•	26
v.	Resu	ılts .	•	•		•	•	•	•	•	•	•		•	•		•	•	•	•	29
		UAF and	Fut	tui	re	S1	tat	te	De	ci	si	or	ı N	1al	kir	ng					29
		Example																_			29
		Conclusi				•	•	•							•					-	30
						٠,	• • ~ -	. · .	-	-										•	
		Recommen	uat	-10	วทร	s 1	01	r	ur	τn	eI	. 2	こし	aay	Y	•	•	•	•	•	31
Appe	endi	k A: Comba	t I	Fac	cto	or	P	ilo	ot	st	uc	ly									32

Appendix B:	Combat Power Appraisal Survey	33
Appendix C:	Officer Branch Information	40
Appendix D:	Transformation of Survey Data	41
Appendix E:	Independent Variables with Transformed	
		78
annandi. Da	Democries Analysis	0.1
Appendix r:	Regression Analysis	81
Appendix G:	Stepwise Regression	84
Appendix H:	Residual Plot for 6 Variable Model	95
Bibliography		96
Vita		97

List of Equations

Equation		Page
1.	Situationally Dependent Value	7
2.	Predicted Adjusted Basic Inherent Power	8
3.	Situational Inherent Power	9
4.	Crawford's Predicted Adjusted Basic Inherent Power	10
5.	Degraded Power Function	10
6.	TIME	13
7.	Adjusted Basic Inherent Power	16
8.	Value Transformation	23
9.	Model Form	25
10.	Best Fit Model	25
11.	Unit Appraisal Function	26

List of Tables

Table													Page
1. Survey	Data .		•		•	•		•	•	•		•	18
2. Raw Fre	equencies		•		•	•	•	•	•	•			19
3. Relativ	ve Freque	ncies .	•		•	•			•	•	•	•	20
4. Cumulat	tive Rela	tive Fr	equ	enc	ies	5		•	•	•	•	•	20
5. Remove	1s and 0s	s	•		•			•	•		•	•	20
6. Combine	e Categor	ies	•		•	•		•	•	•	•	•	20
7. Normal:	ized Valu	es	•					•		•	•	•	21
8. Row, Co	olumn, and	d Grand	l Av	era	ges	5		•	•	•	•	•	21
9. Sum of	Square D	ifferen	ces		•	•	•	•	•	•	•	•	22
10. Scale V	Value of	Instanc	es	•	•	•		•		•	•	•	22
11. Transfo	ormed Valu	ues .	•		•	•			•		•	•	23
12. Catego	ry Upper	Bounds	•		•	•		•	•	•	•	•	23
13 Model (Critoria												25

List of Figures

Figure		Page
1.	Transformed Category Bounds on Interval Scale	24
2.	Two-way Interactions of the UAF	27

Abstract

This thesis attempts to develop an equation, based on expert opinion, that models the appraisal of combat power. The motivation came from identifying a shortcoming in the assignment of combat power in the Air Land Research Model (ALARM). A link is needed to join the Basic Inherent Power (BIP) of a unit and its Adjusted Basic Inherent Power (ABIP). The ABIP is a discounted portion of the BIP based on the current mission and status of the unit.

The unit and mission explored in this thesis was a mechanized infantry task force in the attack. The survey required combat arms officers to give categorical judgments on unit effectiveness, based on the state of the unit. Four unit state variables were used. 144 different unit profiles were generated and divided into four versions of the survey. Surveys were completed by students at the Army Combined Arms and Services Staff School and the Army War College. Response rate was approximately 80%.

Survey responses were transformed to numerical values using an interval scaling technique. These values and the variable settings were used in regression analysis. The best fit model was used to develop the Unit Appraisal Function (UAF). The UAF can now link the BIP to the ABIP, based on the mission and status of the unit.

A MULTIVARIATE MAPPING FUNCTION FOR COMBAT POWER APPRAISAL IN THE AIRLAND RESEARCH MODEL

I.Introduction

The United States Army intends to fight its battles according to the AirLand Battle doctrine. Several recent research efforts have focused on developing methodologies to model combat conducted under this doctrine. The AirLand Research Model (ALARM) provides the framework within which these methodologies are explored. The specific goals of ALARM are:

- A. A two-sided, force-on-force model at the Blue Corps, Red Front level.
- B. A primarily systematic (no human intervention) decision architecture, but with the provision to selectively insert human decision-makers if required for the development of rule-based systems.
- C. A generalized network methodology and multidimensional coordinate system to represent transportation systems, terrain, communication links, and both fixed and mobile combat assets.
- D. A resolution determined by the function and situation being modeled.
- E. An ability to represent planning based on future-time extrapolation of the possible results of plan execution.
- F. Detailed audit trails of cause and effect/effect relationships between decisions made and the results of the decision execution (9:1).

The latest attempts to move toward this goal of a systematic decision architecture, have involved initiatives

to quantify the decision making process. In 1986,
Schoenstadt and Parry developed the Axiomatic General Value
System (GVS). GVS is a structure for assigning value to the
numerous targets that are expected to inhabit the AirLand
battlefield (9:3). Values are assigned to units on the
battlefield using an analytical equation (9:6). GVS then
formed the basis for the next attempt to model a portion of
the decision making process.

In 1986, Kilmer expanded the GVS value assignment idea to include the evaluation of combat power and a methodology for making decisions in the present time based on what the situation is expected to be in the future (6:61-64). At this point, decision making was being modeled by present time value assignment (subjective in nature) and exponential discounting (analytical in nature). The next logical step in the evolution of modeling a decision making process was to combine the subjective features of a man in the loop with the analytical equation.

In 1988, Crawford explored a group of factors that impacted on combat power. Through a survey of Army officers, Crawford was able to develop a multivariate mapping function that accounted for the decision makers's appraisal of his unit at a future time (1:7). Crawford's degraded power function fit directly into Kilmer's future state decision making process (1:24-25). This last step of combining the subjective nature of human decision making with the analytical equation partially fulfills the goal of

a systematic decision architecture.

Thesis Motivation

In order to properly portray decision making, a family of multivariate mapping functions is required for the power calculations for different types of operations and at the various echelons modeled by ALARM. FM 100-5 lists five types of offensive operations (2:9-1), seven types of defensive operations (2:10-4), and three types of retrograde operations (2:12-1). ALARM models the different echelons between battalion and corps. At this time, there is no link between a unit's Basic Inherent Power and the situationally specific Adjusted Basic Inherent Power. This thesis attempts to develop a multivariate mapping function which models a unit commander's appraisal of his combat power.

Problem Statement

Given a set of unit state variables, develop a multivariate mapping function which models a decision maker's appraisal of the unit Basic Inherent Power based on the mission and state of the unit.

Scope

The decision maker's appraisal of unit capability is situationally dependent. As a result, the multivariate mapping function models only one scenario. The scenario for this thesis was restricted to the European theater and mechanized infantry task force in the offense.

Assumptions

This thesis is not meant to be a definitive study of what factors impinge on the decision maker's appraisal of the unit's combat capability. Instead, this thesis used four factors determined from a pilot study. These factors were then used to explore their relationships in the decision making process.

Summary

In this chapter, the AirLand Research Model was introduced and its goals explained. The evolutionary steps in creating the systematic decision architecture have been listed. The requirement to link a unit's Basic Inherent Power to its Adjusted Basic Inherent Power provided the motivation for this thesis. Chapter II contains a review of the literature that pertains to the thesis problem statement. Chapter III is composed of the methodology for collecting the needed data from the sample population and the techniques for developing the multivariate mapping function. Chapter IV contains the analysis and Chapter V lists the results and the recommendations for further study.

II. <u>Literature Review</u>

Combat Power

According to FM 100-5, combat power is the combined effects of maneuver, firepower, protection, and leadership on the enemy force; however, it is not absolute. Combat power is relative with respect to the opposing enemy force and situation (2:2-4). This situational aspect of combat power is especially important when related to one of the four AirLand battle tenets, agility.

Agility requires leaders "... who can act faster than the enemy" (2:2-2). This means that commanders must be mentally flexible. As the enemy counters one plan, a new action is developed which upsets this enemy initiative (2:2-2). In practice, agility means that commanders must make decisions affecting future operations using present time information. Simulating this type of decision making, "... planning based on future-time extrapolation of the possible results of plan execution" is one of the goals of ALARM (9:1).

Generalized Value System

The first step in modeling the combat decision process in ALARM took the form of an algorithm that assigned a value to each potential target on the battlefield (9:2). The generalized value system was developed by Schoenstadt and

Parry at the Naval Post Graduate School. The generalized value system is based on three assumptions:

The purpose of an army is to wage war, and therefore the only elements/units that have inherent value are the fighting elements, i.e. maneuver and fire support.

The value of CS/CSS units derives totally from the increase or decrease in value they provide to the combat (inherent value) units they support.

Uncommitted units and usable, but unused, support are analogous to financial assets which mature at some time in the future- that is their current value is at a discounted version of their nominal (inherent or derived) value (9:3-4).

The authors note that value must ultimately be related to combat ability and that the value of a unit is based on the "state of the unit" (9:5). The state of the unit is then based upon a multidimensional measurement depending on the following factors:

Number of operational weapon systems, Effective personnel strength, Available ammunition, and Available POL (9:5).

Using these factors as a state variable, the authors define a unit's situationally dependent value.

The Situationally Dependent Value of a unit is its basic value, either inherent or derived, decremented by an exponential factor based on the time interval before that unit is available for commitment or can provide support (9:6).

The analytical expression of a unit's situationally

dependent value is then :

$$V = V[s(t_p)] exp[-A(t-t_p)]$$
 (1)

where

 $V[s(t_p)]$ = value based on the state of the unit at present time t_p

exp[-A(t-t_p)]= the exponential discounting factor due to the difference in time between time of arrival t and the present time t_p (9:6).

This equation provides the connection between the situational aspect of combat power mentioned in FM 100-5 and the ALARM goal of representing planning based on future-time extrapolation.

Future State Decision Making

In March 1986, Kilmer wrote his thesis on the problem of modeling the decision process in ALARM. He used the generalized value system as the basis for a method termed future state decision making. Future state decision making models decisions made in the present time based on what the situation is expected to be in the future (6:11). Kilmer defined numerous terms and relationships in creating his model. Those that are pertinent to this thesis are listed below.

<u>State.</u> The state $\underline{SX1}(t)$ of an entity X1 at time, t, is the condition of X1 at time, t, expressed as a vector of the entity's attributes.

<u>Power.</u> The power of an entity determined by a particular hierarchical level is its ability to change or influence either directly or indirectly the states of entities that the level will face

that belong to the enemy or that the enemy is planning to use.

<u>Inherent Power.</u> The inherent power of an entity is its ability to directly affect the states of enemy entities or of entities that enemy is using or planning to use.

Basic Inherent Power. The basic inherent power (BIP(X1)) is the inherent power possessed by entity X1 at full strength, when it is in position to engage its most likely adversary as a direct result of X1's ability to conduct combat operations.

Adjusted Basic Inherent Power. The adjusted basic inherent power $ABIP(\underline{SX1}(t))$ of the entity X1 at time, t, is the BIP of X1 adjusted for the specific mission and condition of the entity at time, t.

Predicted Adjusted Basic Inherent Power. The predicted adjusted basic inherent power PABIP(X1(t)) | SX1(tp)) of entity X1 at time, tp, is the ABIP that X1 is predicted to have at time, t (t>tp) (6:28-34).

This last term is expressed by the equation :

$$PABIP(XI(t) | \underline{SXI}(t_p)) = ABIP(\underline{SXI}(t_p)) exp[-L(t-t_p)]$$
 (2) where

The decay constant, L, is due to non-combat related attrition of supplies, equipment, and personnel (6:34). This expression for the decrease in combat power is a concept related to the Lanchester attrition equations.

<u>Situational Inherent Power.</u> The situational inherent power, $SIP(X1(t)|SX1(t_p))$, of an entity X1 is the inherent power that X1 is predicted at time, t_p, to have at time t (6:38).

At this point, Kilmer introduces the exponential

discount factor used in the general value system, based on the time interval (t-t_a). This is the time interval between the time a unit arrives in position and the present time. Putting this exponential function into equation form gives: $SIP(X1(t)|SX1(t_p)) = PABIP(X1(t_a)|SX1(t_p))exp[D(t_a-t)]$ for $0 \le t \le t_a$

$$SIP(X1(t) | \underline{SX1}(t_p)) = PABIP(x1(t) | \underline{SX1}(t_p))$$
for $t \ge t_n (6:39)$ (3)

To summarize these equations, the power that an entity can exercise in combat is exponentially discounted depending on how far away, in time, it is from being in position. Simultaneously, while the entity is moving to its position, the entity is being attrited of personnel, ammunition, equipment, fuel, and other supplies. The above listed equations can be optimized, thereby modeling a decision process. The next step in modifying these equations is to input the "human factor".

Degraded Power Function.

In March 1988, Crawford proposed a method for determining the predicted adjusted basic inherent power (PABIP). Rather than modeling a decision-maker's prediction of his unit's power for a specific situation with an analytical expression such as Kilmer proposed, Crawford collected data from a pool of experts and developed a multivariate mapping function that replaced the logistical exponential decay function, exp[-L(t-t_p)] (1:5).

Crawford's version of the PABIP equation is :

$$PABIP(X1(t) | \underline{SX1}(t)) = ABIP(\underline{SX1}(t)) \times DPF(\underline{SX1}(t))$$
for $t_p \le t \le t_p$ (4)

where

Crawford used the state variables defined in the general value system: personnel (PER), ammunition (AMMO), vehicles and equipment (VEH), and fuel (POL). His survey required the respondents to judge whether a mechanized infantry battalion in the defense was capable of performing the mission at different levels of the state variables (1:32). By transforming the respondents' categorical judgments to an interval scale, Crawford was able to determine the equation of the curve which best fit the data. The degraded power function (DPF) for this particular unit and mission was found to be:

$$DPF = 88.978 - .0056xX1 - .0055xX2 - .0054xX3 - .0005xX4$$
 (5)
88.978

where

 $X1 = (PER-100)^2$ $X2 = (AMMO-100)^2$ $X3 = (VEH-100)^2$ $X4 = (POL-100)^2$ (1:22)

This degraded power function models the decisionmaker's appraisal of the unit's power based on the projected
state of the unit.

Summary

The generalized value system provided the initial algorithm for modeling a combat decision making process in ALARM. Kilmer expanded GVS into a series of equations which he termed future state decision making. Future state decision making utilized exponential functions to model the decrease of combat power based on the expected state of the unit at present and predicted times. Calculation starts with the BIP and culminate with the SIP. The SIP becomes planning value based on a prediction of future status. Kilmer's future state decision making uses the SIP to make decisions in the present time to affect future outcomes. The missing link is between the BIP and the ABIP. How does a commander judge his mission effectiveness based on his current status and mission?

An analytical equation modelling combat power appraisal is needed. This equation should take into account those factors that influence this appraisal process. In Chapter 3, the factors and their levels used for an offensive scenario at the battalion level of command are addressed.

III. Methodology

Determination of Factors

The initial phase of this experiment was to determine what state variables impacted on the commander's appraisal of unit combat power. A pilot study was conducted to determine these state variables. The pilot study consisted of one open ended question in which the respondents were required to rank six factors which impacted on their appraisal of unit combat power. Respondents could choose from a list of suggested factors or add their own. factors that respondents could choose from were Crawford's four state variables (PER, VEH, AMMO, and POL), chain of command, combat service support, combat support, training level, unit cohesion, and morale. With each ranked factor, the respondent was required to explain how each factor could be measured and if the factor could be influenced by the commander. The survey insturment for the pilot study is contained in Appendix A.

The pilot study confirmed that Crawford's state variables were important in the decision making process; however, due to the offensive scenario, POL, VEH, and AMMO were grouped together.

State Variables

The four state variables used for this experiment were a combination of grouped and non-grouped factors. The grouped factors were equipment and supply status (ESS), combat support (CS), and time (TIME). The non-grouped factor was the personnel status (PER). These state variables are explained below.

PER: Measured as the percentage of the Table of Organization and Equipment (TOE) authorizations currently available. This measurement also includes the leadership structure from battalion through platoon.

ESS: Measured as the percentage of operational weapon systems and vehicles as authorized by TOE, currently available. Also included are the supplies needed to operate the systems, fuel and ammunition. These are measured as the percentage of the unit basic load (UBL) remaining.

CS: Measured by the number of systems supporting the battalion. This state variable is a mixture of three of the seven operating systems stressed at the National Training Center (NTC), engineer, fire support, and combat support.

TIME: Measured by the equation -

$$t_{a}/t_{c}$$
 (6)

where

t = time in hours until the attack is initiated
t = time in hours the commander feels he needs to
 prepare his unit.

This state variable incorporates the NTC operating system of intelligence and the intangible factors of leadership and training. Time is needed for the organic and non-organic intelligence assets to identify enemy locations and dispositions, for troop leading procedures and for rehearsals.

The method for grouping the equipment and supply factors was developed by Etheridge and Anderson (4:3-2). The

different levels of the state variables that were used are :

PER - 100%, 75%, 60%, 40% ESS - 100%, 80%, 60%, 40% CS - 100%, 60%, 20% TIME- 100%, 60%, 20%

The low settings for PER and ESS were taken from Etheridge and Anderson. In their study of unit reconstitution, they determined that units were considered mission ineffective at these points (4:7-3). Appendix B contains the explanations for each level of the state variables. Where appropriate, the explanations matched those presented by Etheridge and Anderson (4:3-3).

Experimental Design

The population targeted for this experiment was composed of combat arms officers who have had command and staff experience. Combat arms officers enrolled at the Army War College and the Combined Arms and Services Staff School (CAS3) were chosen as the sample frames.

The mass administered questionnaire was chosen as the method of data collection. This method was the most economical and allowed for the completion of the experiment within time constraints. The survey method also had the advantages of providing respondent anonymity, reducing interviewer bias, and facilitating the transformation of respondent answers to code.

This experiment was a full factorial design with 3^2x4^2 or 144 different unit profiles (state variables set at the

different levels). The questionnaire portion of the survey consisted of unit profiles followed by the respondent's categorical judgments on mission effectiveness. The fixed alternative question format was used. It was determined that since an answer to any unit profile question was bounded by the answers "totally ineffective" and "totally effective" that the fixed alternative format was an appropriate method (5:157-158). This format had the additional advantages that it is easier for the respondent to answer and simplifies tabulating and interpreting the data (11:285).

The full factorial matrix was randomly sorted and then divided into four groups of 36 questions. It was considered that a survey length of 36 questions would elicit responses without loss of respondent attention. The construction of the full factorial matrix and the survey was completed using the <u>VP-PLANNER</u> spread sheet (8) and <u>WORD PERFECT 5.0</u> (10).

A pre-test using the survey questionnaire was conducted and comments were elicited from the respondents using open ended questions. The finalized survey is contained in Appendix B.

Analysis

After all the surveys were completed, the responses were recorded in a rectangular data structure. The method for constructing interval scales from categorical judgments developed by Lindsay was then used to transform the data

(7:2-33). Once this transformation was completed, methods of linear and multiple regression were used to determine a predictive model that fit the data. The results of the analysis are contained in Chapter IV.

Unit Appraisal Function

Using the predictive model determined by the regression, a multivariate mapping function was developed. This function, termed the Unit Appraisal Function (UAF) is the link between the Basic Inherent Power (BIP) and the Adjusted Basic Inherent Power (ABIP). The UAF accounts for mission and unit status and degrades the BIP in a fashion which models the unit commander's appraisal process. The UAF will decrement the BIP, so that the ABIP is some fraction of the BIP based on current mission and status. To do this, the best fit regression equation will be evaluated where all state variables are at 100 %. This value is the unit maximum. To create a percent function, the UAF becomes:

In equation form, the UAF is used as:

$$ABIP(\underline{SX1}(t)) = UAF(\underline{SX1}(t)) \times BIP(X1)$$
for $0 \le t \le t_m$ (7)

where

UAF($\underline{SX1}(t)$) is the unit commander's appraisal of his combat power based on his current mission and status, during the time period t - t_m, where t_m is the time of mission initiation.

In this thesis, a mechanized infantry task force with an attack mission and different unit status' were used to develop a particular UAF.

IV. Analysis

Survey Data

A total of 315 surveys were sent to the Combined Arms and Services Staff School and the Army War College. Of this number, 257 were returned. The table below gives data on the four personal history questions that the respondents were asked to answer. Years of command and years of active duty are averaged. Branch information is contained in Appendix C.

Table 1.

	CPT	MAJ	LTC	COL	
Number Surveyed	196	1	52	8	
Years Active Duty	8	10	19	21	
Years Command	2	2	5	6	

Constructing the Interval Scale

In order to take advantage of the expert opinion of the respondents, a method of constructing an interval scale from categorical judgments was needed. Lindsay's Method of Successive Intervals was determined to be the best method.

This method is fairly simple to implement and has the advantage of assigning a specific numerical value to the unit profiles (7:15). This feature facilitated the regression analysis.

Lindsay's technique requires four assumptions :

1. The respondents' feeling about the scale value assigned to a particular profile is a normally distributed random variable with mean S_1 and variance σ^2 .

- 2. The categories (Totally Ineffective through Totally Effective) are assumed to be a mutually exclusive set of successive intervals which collectively exhaust the judgement continuum.
- 3. The respondents' feelings about a category's upper bound is a normally distributed random variable. For each category j, the upper bound would be normally distributed with mean b_j and variance v^2 ,
- 4. All category bounds have the same variance, so that for all j, v^2 , = c. (7:1-7)

Lindsay's technique requires ten steps. These steps are listed below. Each step is illustrated with calculations using data from the questionnaires. Appendix D contains the calculations for the survey itself.

Step 1. Arrange the raw frequency data in a table where the rows are the unit profiles and the columns are the categories. Place the categories in rank order, with the left most column representing the least effective category.

Table 2. Raw Frequencies

No.	A	В	С	D	E
24	2	5	46	14	0
33	9	34	24	2	0
38	1	1	4	49	0
70	3	27	23	7	0

Step 2. Compute the relative frequencies for each row by dividing the frequencies by the number of respondents who answered that question. Calculate the cumulative relative frequencies for the array by summing each column with the values of the columns to the left. This is the P array. Remove all values of $p_{1:1} > 0.98$ and $p_{1:1} < 0.02$.

Table 3. Relative Frequencies

No.	A	В	С	D	E
24	.03	.07	.69	.21	0
33	.13	.49	.35	.03	0
38	.02	.02	.07	.89	0
70	.05	.45	.38	.12	0

Table 4. Cumulative Relative Frequencies

No.	A	В	С	D	E
24	.03	.1	.79	1	1
33	.13	.62	.97	1	1
38	.02	.04	.11	1	1
70	.05	. 5	.88	1	1

Table 5. Remove 1s and 0s

.03	.1	.79		
.13	.62	.97		
.02	.04	.11		
.05	.5	.88		
	.13	.13 .62 .02 .04	.13 .62 .97 .02 .04 .11	.13 .62 .97 .02 .04 .11

Step 3. Consolidate groups with same remaining categories. Treat all remaining p_{ij} as leftward areas under a Standard Normal (0,1) curve and find the z values for these areas. Record these new z_{ij} in a new table.

Table 6. Combine Categories

No.	A	В	С
24	.03	. 1	.79
33	.13	.62	.97
38	.02	.04	.11
70	.05	.5	.88

Table 7. Normalized Values

No.	A	В	С
24	-1.881	-1.282	.807
33	-1.126	.306	1.881
38	-2.052	-1.751	-1.226
70	-1.645	0	1.175

<u>Step 4</u>. For each row i in the z_{ij} matrix, compute the row average, z_{i} .

Step 5. For each column j in the z_{ij} matrix, compute the column average, b. These values are the upper bounds of category j.

<u>Step 6</u>. Compute the grand average of all z_{ij} in the matrix. This is easily done by averaging the column averages. Call the grand average, b.

Table 8. Row, Column, and Grand Average

No.	A	В	С	Row Avg
24	-1.881	-1.282	.807	78533
33	-1.126	.306	1.881	.353667
38	-2.052	-1.751	-1.226	-1.67633
70	-1.645	0	1.175	156667
Col A	vg -1.676 56616	68175	.65925	5

<u>Step 7</u>. Compute $B = \Sigma (b_j - b)^2$, the sum squares of the difference between column averages and grand average.

$$B = (-1.676 - (.566167))^{2} + (-.68175 - (-.566167))^{2} + (.65925 - (-.566167))^{2}$$

B = 2.746736

Step 8. For each row, compute $A_i = \sum (z_{ij} - z_i)^2$.

Table 9. Sum of Square Differences

$A_{ij} = (Z_{ij} - Z_i)^2$						
No.	A	В	С	$A_{i} = \Sigma A_{ij}$		
24	1.2006	.2467	2.5355	3.9827		
33	2 1894	.0023	2.3327	4.5244		
38	.1411	.0056	.2028	.3493		
70	2.2151	.0245	1.7733	4.0130		

Step 9. For each row, compute $(B/A_1)^{-5}$.

Step 10. For each row, compute $S_i = b - z_i x(B/A_i)^{.5}$

Table 10. Scale Value of Instances

No.	Si	=	$b - z_i x(B/A_i)^{.5}$
33 38	841729 4.133259	=	56617 - (785)(2.75/3.98) ⁻⁵ 56617 - (.3537)(2.75/4.52) ⁻⁵ 56617 - (-1.68)(2.75/.349) ⁻⁵
			56617 - (157)(2.75/4.01) ⁻⁵

This last table contains the scale value of instances. These scale values need to be transformed to an interval. For the purpose of this thesis an interval of 1 - 100 was chosen for the lower bound of A (Totally Ineffective) to the upper bound of D (Effective). Using the linear transformation, $Y = \alpha + \beta x$, $\beta > 0$ and the computed upper bounds of the categories (Step 5, Table 8), a system of simultaneous equations is formed.

Let 75 equal the upper bound of C and 50 the upper bound of B. These values anchor the interval at two points and allow solving the following equations:

$$50 = \alpha + \beta(-.68175)$$

 $75 = \alpha + \beta(.65925)$

$$A = \alpha + \beta(-1.676)$$

Solving the first two equations, yields $\alpha = 62.7097$ and $\beta = 18.6428$. Using the values for α and β , the upper bound for the remaining category A is 31.46. Complete the transformation using the equation:

$$T_{1} = \alpha + \beta(S_{1}) \tag{8}$$

Table 11. Transformed Values

No.	T				
24	64.313	=	62.7097	+	18.6428(.8060235)
33	47.017	=	62.7097	+	18.6428(841729)
38	139.765	=	62.7097	+	18.6428(4.133259)
70	54.571	=	62.7097	+	18.6428(436553)

This completes the transformation of categorical responses to an interval scale for group ABC. Steps 3 through 10 are repeated for the different groups of like categories.

Transformed Category Bounds

After Lindsay's method had been applied to the data, an interval scale was developed. 100 was chosen as the upper bound for category D and 50 as the upper bound for category B. Using these two values, the upper bound for all categories were determined.

Table 12. Category Upper Bounds

Category	Upper Bound		
A (Totally Ineffective) B (Ineffective) C (Marginal) D (Effective)	29.00 50.00 72.16 100.00		

The upper bounds were then placed on a scale.

Figure 1. Transformed Category Bounds on Interval Scale

The respondents' answers determined a numerical value for each unit profile. For example, unit profile 48 (No. 48 in Appendix D) has a transformed value of 69.28. This places that unit profile in the upper end of the Ineffective portion of the scale. All unit profiles with their respective transformed values are contained in Appendix E. Appendix E is also the data matrix used for regression.

Regression Analysis

SAS, a statistics program available on the main frame at the Air Force Institute of Technology was used to analyze the data. Various types of curve equations were tried, including linear, logarithmic, and square root. The results are contained in Appendix F. A fourteen term polynomial equation with main effects, quadratics, and two-way interaction terms was then used (three-way interaction was assumed to be negligible). According to Draper and Smith, a minimum of 3 criteria should be addressed when choosing the best model.

These criteria are:

- 1. maximize Coefficient of Determination (R2)
- minimize Sample variance (s²)
- 3. Mallow's Cp = number of regression terms (including the intercept)(3:296)

A fourth criteria used in this thesis was to minimize the complexity of the model. Once the final model was chosen, the residuals were examined for any type of recognizable pattern. No pattern indicates that the residuals are normally distributed. Additionally, the F ratio should exceed the selected percentage point of the F-distribution by at least a factor of four (3:93).

The fourteen term polynomial regression results are contained in Appendix G. This regression yielded 3 reasonable models to chose from. These models were the 6,7,and 8 variable models. Table 13 lists the criteria mentioned above.

Table 13. Model Criteria

R²	s²	Ср	F Ratio	F(v ₁ ,v ₂ ,.95)
.8267	65.94	13.7	109.0	2.10
.8314	64.19	11.9	95.9	2.01
.8398	61.44	6.9	88.5	1.94
	.8267 .8314	.8267 65.94 .8314 64.19		.8267 65.94 13.7 109.0 .8314 64.19 11.9 95.9

Draper and Smith's criteria indicated that the 8 variable model was the best fit; however, the 6 variable model was almost as good at predicting results and easier to explain. For the purpose of this thesis, the 6 variable model was used for further analysis. The 6 variable model was of the form:

$$Y = B + PER + X1 + X2 + X3 + PER^2 + ESS^2$$
 (9)

where: B = intercept

X1 = PER*ESS

X2 = PER*CS

X3 = PER*TIME

The model with regression coefficients was found to be:

$$Y = -2.826 + .690PER + .0077X1 + .0027X2 + .0024X3$$
$$-.0071PER^{2} - .0011ESS^{2}$$

The residuals for this equation were plotted and are contained in Appendix H. From this plot, it was determined that the normality of error assumptions held.

Unit Appraisal Function

Substituting the maximum value of 100 for the unit status variables PER,ESS, CS, and TIME into Equation 10, yields the unit maximum = 111.17. By utilizing this number in the denominator of Equation 11, the mission specific Unit Appraisal Function (UAF) was formed.

$$UAF = (-2.826 + .690PER + .0077X1 + .0027X2 + .0024X3 - .0071PER^2 - .0011ESS^2)/111.17$$
(11)

This particular UAF degrades the BIP of a mechanized infantry task force, due to mission and unit status.

It is appropriate at this point to examine the terms in the UAF. PER appears in 5 terms in the model. Once as a main effect, 3 times as part of two-way interaction and once as a square term. The main effect PER term coefficient indicates a substantial contribution to the overall function. Heuristically this makes sense in an equation that models an attack mission. The two-way interaction are best explained graphically. Figure 2 illustrates the effect of PER, when all other factors are set at high, medium ,and low values. The overall degradation is low when the PER value is high and high when PER is set low.

The PER² and ESS² terms can be explained algebraically. In models of few variables, linear terms dominate the equations (see the 1,2,and 3 variable models in Appendix G).

Figure 2. Two-Way Interaction

As the number of variables is increased, the square terms take into account the curve of the equation. This curve is analogous to a decreasing rate of return for each additional asset. In this case, both PER² and ESS² have negative coefficients indicating this decreasing rate. This also makes sense heuristically. Given that PER and ESS are past the linear level, each additional gain contributes less to the UAF, than previous additions.

V. Results

UAF and Future State Decision Making

The Basic Inherent Power of a unit (BIP(X1)), is the inherent power that a unit possess at full strength when it is in position to engage its most likely adversary. It is a measure of its ability to conduct combat operations (6:28). The Adjusted Basic Inherent Power is the BIP of X1 adjusted for the mission and the specific conditions of the unit. Prior to the UAF, there was no link between the BIP and ABIP for a unit. Utilizing the UAF to join the BIP and ABIP yields Equation 7 in Chapter III.

Example

The following example illustrates the use of the UAF.

A Blue mechanized infantry task force is in an assembly area. At time t=0, the unit receives the mission to attack as part of a larger coordinated attack. The expected Red force is a motorized rifle company. The current state of the Blue unit is:

PER 75% - 75% of TOE authorized strength is available, 1 field grade officer is lost, 75% of company chain of command is intact.

ESS 80% - 80% of TOE authorized systems are operational, ammunition and POL UBLs (unit basic loads) are at 80%.

CS 60% - The task force has priority of fires from the brigades DS (direct support) artillery battalion. 1 combat engineer platoon and 1 air

defense platoon are attached to the task force. There are 3 CAS (close air support) sorties available.

TIME 60% - Organic intelligence assets have located 50% of the enemy positions, companies have not completed troop leading procedures, some rehearsals have been completed.

Assigning a BIP of 1000 STAPOWs (standard power units) to the task force and using the UAF, the ABIP for this unit is:

UAF = $(-2.826 + .690x75 + .0077x75x80 + .0027x75x60 + .0024x75x60 - .0071x75^2 - .0011x80^2)/111.17$

UAF = .734

 $ABIP(\underline{SX1}(t)) = .734x1000 STAPOWs$

 $ABIP(\underline{SX1}(t)) = 734 STAPOWs$

734 STAPOWs is the combat power that this unit starts with in the future state decision making process. This value would be carried forward into the PABIP and SIP calculations.

Conclusions

The UAF can be incorporated into ALARM to model a portion of the decision making process. The UAF is a model based on a limited distribution fixed alternative questionnaire involving categorical judgments. The survey was limited to one specific command hierarchy and to one specific mission. Lindsay's Method of Successive Intervals was a relatively uncomplicated method to employ in this research effort.

Recommendations for Further Study

The 257 surveys are contained in a data base.

Additional study should focus on rank and branch differences among respondents; if any. In their study, Etheridge and Anderson found no significant differences between ranks and branches (4:4-3). Resampling techniques should be applied to the existing data for the purpose of reproducing the results found in this thesis. Further research and additional work are needed to develop similar models for different unit and mission combinations. The ultimate objective being a family of equations which accurately model human decision making.

Appendix A

Combat Factor Pilot Study

<u>PURPOSE</u>: The purpose of this pilot study is to determine what elements should be included in a survey of factors that impact on a mechanized infantry battalion in the attack.

BACKGROUND: Currently, the AirLand Research Model (ALARM) uses analytical equations to model the unit commander's decision-making process. If a multivariate mapping function, based on expert opinion, can be developed; certain portions of the command and control module of ALARM will be more realistic.

SCENARIO: You are the commander of 1st Battalion 36th Infantry (M). Your current mission is to attack a company from a motorized rifle regiment. You are attacking as part of a brigade and division effort. Follow on missions are possible after the objective is seized. Expect no resupply after you cross the LD\LC.

Factors Already in Use : Personnel - % of IOE strength available

Equipment - % of TOE weapon systems on hand and operational

Ammunition - % of UBL on hand POL - % of UBL on hand

Other Factors: Chain of Command - are key leaders
leaders on hand and effective?

CSS - is CSS able to support unit needs?

CS - status of FA and CAS
Unit Cohesion - present?

Training Level - effective, marginal?

Morale - good, bad?

QUESTION: List 6 factors in order of importance in view of the scenario given. Use the ones listed above or any others you think are important. Include how this factor is measured and if, in your opinion, a commander can actually influence this factor. Task organization is not a factor. One study has shown that there is no statistical difference between LTC and branch qualified captains in the answers given to questions such as these.

Example: Personnel - measured as a % of TOE authorizations. A commander can divert or take soldiers from one unit to another.

POL - % UBL on hand. Commanders request POL resupply.

APPENDIX B

Survey Approval Authority: U.S. Army Soldier Support Center Survey Control Number: ATNC-AO-89-9 RCS: MILPC-9

<u>BACKGROUND</u>: One purpose of modelling combat is to gain insight and aid decision making. The AirLand Research Model (ALARM) is one particular model currently in use. One process in ALARM is the commander's perception of his unit's capabilities. It is felt that this process can be done better.

<u>PURPOSE</u>: In order to improve the unit commander's appraisal of his combat capability in the model, it is felt that expert military opinion can help. The purpose of this questionnaire is to collect your opinions about a task force in the attack. The results will then aid in improving the current method of modelling a commander's appraisal of his unit.

<u>PROCEDURE</u>: The questionnaire will ask you to assume the role of a battalion commander and to assess the capabilities of your battalion task force. The questionnaire package includes the following sections:

- a. Unit Variables: This section defines a set of variables that encompass the key attributes of the unit. These variables are to be considered in your evaluation and decision process.
- b. Variable Levels: This section gives the different levels of each variable and the corresponding descriptions as it applies to your task force within the given scenario.
- c. Scenario: This is a short scenario describing the general and special situation of a battalion performing an offensive mission. The scenario is oriented specifically to your battalion task force. The scenario provides only the information considered necessary for you to develop your judgments.
- d. Questions: Each question starts with a unit profile. The unit profile consists of the four variables set at different levels. You, as the commander, are then asked to indicate your current effectiveness in accomplishing the mission.
- e. Personal History: The final section of this package contains a few questions about your military experience and your opinion about this survey. Your name is not required.

CONCLUSION: This questionnaire is being used to gather information on a particular decision making process. The objective is to model military decision making in some fashion that approaches reality. Your cooperation in this effort is most

appreciated. Thank you for your time and consideration.

UNIT VARIABLES

There are four variables used in this study. Some of the variables are composed of more than one factor. The decision of which factors to use and how to group them stems from research conducted prior to this survey. The four variables are: personnel (PER), equipment and supplies (ESS), combat support (CS), and time (TIME). The variables are described below.

PER: Measured as the percentage of the Table of Organization and Equipment (TOE) personnel authorizations currently available. This measurement includes the leadership structure from battalion through platoon.

ESS: Measured as the percentage of operational weapon systems as authorized by TOE currently available. Also included are the supplies needed to operate the systems, fuel and ammunition. These are measured as the percentage of the unit basic load (UBL) remaining.

CS: Measured by the number of systems supporting the battalion. This state variable is a mixture of three of the seven operating systems stressed at the National Training Center (NTC), engineer, fire support, and combat support.

TIME: Measured by the equation -

ta/tc

where

 t_{A} = time in hours until the attack is initiated t_{c} = time in hours the commander feels he needs to prepare his unit.

This state variable incorporates the NTC operating system of intelligence and the intangible factors of leadership and training. Time is needed for the organic and non-organic intelligence assets to identify enemy locations and dispositions. Time is needed for troop leading procedures and rehearsals.

Example: If an attack is in 8 hours and the battalion commander feels 12 hours preparation is needed, TIME is at 9/12 or 75 %.

VARIABLE LEVELS

The levels of the unit variables are listed along with a physical description.

PER:

- 100% 100% of TOE authorized strength is available and the chain of command is intact.
- 75% 75% of TOE authorized strength is available, 1 field grade officer is lost, 75% of company chain of command is intact.
- 60% 60% of TOE authorized strength is available, 1 field grade officer is lost, 60% of company chain of command is intact.
- 40% less than 40% of TOE authorized strength is available, 2 field grade officers are lost, less than 40% of company chain of command is intact.

ESS:

- 100% 100% of TOE authorized systems are operational, ammunition and POL UBLs are at 100%.
 - 80% 80% of TOE authorized systems are operational, ammunition and POL UBLs are 80%.
 - 60% 60% of TOE authorized systems are operational, ammunition and POL UBLs are at 60%.
- 40% less than 40% of TOE authorized systems are operational, ammunition and POL UBLs are below 40%.

CS:

- 100% The battalion has a dedicated battery from the brigade's DS artillery battalion, I combat engineer platoon, I NBC smoke platoon, and I air defense platoon are attached to the battalion, 6 close air support (CAS) sorties are available.
- 60% The battalion has priority of fires from the brigadesDS artillery battalion. 1 combat engineer platoon and 1 air defense platoon are attached to the battalion. There are 3 CAS sorties available.

20% - Artillery support is available. There is no combat engineer support available. I air defense platoon is attached to the battalion. There are no CAS sorties available.

TIME :

- 100% Organic and non-organic intelligence assets have located 90% of enemy positions, troop leading procedures completed as well as rehearsals.
- 60% Organic intelligence assets have located 50% of enemy positions, companies have not completed troop leading procedures, some rehearsals have been completed.
- 20% Organic intelligence assets have located less than 20% of enemy positions, companies have not completed troop leading procedures, no rehearsals have been completed.

<u>SCENARIO</u>

Introduction: This scenario presents the context in which you will be asked to make judgments concerning the 131st Mechanized Infantry Battalion. The scenario describes the friendly and enemy forces of interest, the general and special situations, and the mission and activities of the 131st Mech.

General Situation: On 12 October 198_, USSR and Warsaw Pact forces initiated a non-nuclear attack against NATO. The initial phase of the attack was aimed at destroying Allied defensive systems and capturing territory before adequate reinforcements arrive from CONUS. NATO forces have offered much stronger resistance than had been anticipated by the Warsaw Pact. Your battalion, the 131st Mech, is assigned to the 3rd Brigade of the 58th Infantry Division (Mechanized). The division has been in combat since the onset of hostilities and has fought elements of two motorized rifle divisions (BMP) as they breached the inter-German border in the division's sector. All units within the division have suffered varying degrees of combat loss. After 10 days of defending and staging local counter attacks, the corps commander feels that the situation is at a stalemate and he is ready to conduct offensive operations.

The 131st Mech is a J series mechanized infantry battalion equipped with M113 APCs. One infantry company has been detached from the battalion, and one M1A1 tank company has been attached.

The 3rd Brigade is supported by a DS 155mm SP battalion.

Special Situation: It is now 23 October 198_, 131st Mech is

occupying defensive positions along the FEBA. You have received a warning order to prepare for an attack against a motorized rifle company (BMP) as part of brigade and division offensive operations. The battalion objective is known. The time of attack has not been specified yet. You, as the task force commander, are appraising your combat power with respect to this particular mission.

QUESTIONS

This questionnaire consists of 36 questions. Each question consists of a unit profile and the answer range. The unit profiles are composed of the different variables set at various levels. Below are two sample questions.

The current status of * Your ability to accomplish your unit is : the mission is : * TOTALLY TOTALLY <u>CS</u> PER ESS TIME INEFF **INEFF** MARG <u>EFF</u> 80 % 60 % 100 % (x) 100 % 100 % 60 % 100 % * (

This ends the instructions and sample questions. The survey questions follow.

VARIABLE LEVELS

The levels of the unit variables are listed along with a physical description.

PER:

- 100% 100% of TOE authorized strength is available and the chain of command is intact.
- 75% 75% of TOE authorized strength is available, 1 field grade officer is lost, 75% of company chain of command is intact.
- 60% 60% of TOE authorized strength is available, 1 field grade officer is lost, 60% of company chain of command is intact.
- 40% less than 40% of TOE authorized strength is available, 2 field grade officers are lost, less than 40% of company chain of command is intact.

ESS:

- 100% 100% of TOE authorized systems are operational, ammunition and POL UBLs are at 100%.
- 80% 80% of TOE authorized systems are operational, ammunition and POL UBLs are at 80%.
- 60% 60% of TOE authorized systems are operational, ammunition and POL UBLs are at 60%.
- 40% less than 40% of TOE authorized systems are operational, ammunition and POL UBLs are below 40%.

CS :

- 100% The battalion has a dedicated battery from the brigade's DS artillery battalion, 1 combat engineer platoon, 1 NBC smoke platoon, and 1 air defense platoon are attached to the battalion, 6 close air support (CAS) sorties are available.
- 60% The battalion has priority of fires from the brigade's DS artillery battalion. 1 combat engineer platoon and 1 air defense platoon are attached to the battalion. There are 3 CAS sorties available.
- 20% Artillery support is available. There is no combat engineer support available. 1 air defense platoon is attached to the battalion. There are no CAS sorties available.

TIME :

- 100% Organic and nonorganic intelligence assets have located 90% of enemy positions, troop leading procedures completed as well as rehearsals.
- 60% Organic intelligence assets have located 50% of enemy positions, companies have not completed troop leading procedures, some rehearsals have been completed.
- 20% Organic intelligence assets have located less than 20% of enemy positions, companies have not completed troop leading procedures, no rehearsals have been completed.

OPINION SCALE

The opinion scale contains 5 parts. These parts are totally ineffective, ineffective, marginal, effective, and totally effective. Por this survey, the following operational definitions apply:

Totally Ineffective Unit fails mission and is combat inoperable.

Totally Effective Unit completes mission and is ready for any number of subsequent missions.

* You may detach this sheet and use it for reference.

COMBAT POWER APPRAISAL SURVEY

	The current status of your unit is :				* *				ity on i		acc	omp]	lish	1				
	% % %	ESS 80 40 60	% % %	<u>CS</u> 20 20 20	% % %	TIME 100 60 60	%	* * * * * *	TOTA INI (((ALLY EFF)))	<u>IN</u>] ((EFF)))	<u>MA</u> ((RG)))	<u>EI</u> ((ALLY FF)))
	% % %	100 80 60	% % %	100 60 100	% % %	20 100 60		* *	()	()	()	()	()
	% % %	40 100 80	% % %	60 60 60	% % %	60 100 100		* *	()	()	()	()	()
100 9 40 9 40 9	%	60 100 80	% % %	60 20 100	% % %	60 60 60	%	* *	()	()	()	()	())
	% % %		% % %	60 60 20	%	60 60 60	%	* *	()	()	()	()	()
	% % %	60 80 60	% % %	20 60 60	%	20 60 20	%	* *	()	()	()	()	()
	% % %	80 60 80	% % %	20 100 100	% % %	20 20 20	%	* *	()	()	()	()	()
40 9	% % %	4 0 8 0 6 0	% % %	100 100 100	%	20 100 20	% % %	* *	()	()	()	()	()
60 5 75 5 100 5	%	80 80 60	%	20 20 100	%	60 20 100	%	* *	()	()	()	()	()
60 5 100 5 100 5	%	80 60 40	%	20 20 100	%	100 100 60	%	* *	()	()	()	()	()

7 5	%	100	%	100	%	60	%	*	()	()	()	()	()
100	%	100	%	100	%	60 20 60	%	*	()	()	()	()	()
75	%	60	%	100	%	60	%	*	()	()	()	()	()
40	%	60	%	20	%	20	%	*	()	()	()	()	()
60	љ %	80	ъ %	60	<u>%</u>	20 100 100	ъ %	*	()	()	()	()	()
fil]	Lc	ut t	he	follo		the o								*** Su	rve	, F	Ple	*** ase
			<u>IN</u> ()	<u>AR</u>		<u>FA</u> ()	`	,	` ,									
	1	ime	spe les	ss tha	n a	active 6 6 (-10)	ису <u>1</u>	1-1;	nye <u>31</u>	4-1 ()): <u>6</u> <u>1</u>	7-1 ()	<u>9</u>	<u>20-</u> (<u>-22</u>)	į	23-25 ()
			000	er 25														
	1					a man 2 3 (<u>.2</u>	
	F	rese	nt CPI	rank <u>[</u> <u>!</u>) (] <u>r</u> .	<u>rc</u>)	<u>C</u>	<u>OL</u>)									

Are there any other factors that should be included in this survey ?

 $\frac{\text{No}}{\text{()}}$ $\frac{\text{Yes}}{\text{()}}$ If Yes, please list.

Appendix C: Officer Branch Information

	Rank								
Branch	CPT	MAJ	LTC	COL					
IN	53	0	21	4					
A R	24	0	8	1					
FA	46	1	11	2					
EN	23	0	4	0					
ÀV	35	0	5	1					
A D	15	0	2	0					

Appendix D : Construction of Transformed Values

Group	1	Raw	Free	quec i	es
No. 1 2 3 4 5 6 7	<u>A</u>	B 0 3 2 1 0 3 2 9 12 0 2 7 3 2 4 5 5	3 5 6	D	<u> </u>
1	1 1 1 1 0	0	3	0	56
2	1	3	5	19	32 21 21
3	1	2	6	37	21
4	1	7	3	34	21
S 6	Ţ	0	10	38 27	15 4
7	2	2	23	39	10
8	1	9	20	33	5
9	1	12	25	21	1
10	2 1 1 0	0	10 23 2 20 25 1	19	44
10 11	1	2	3	45	10
12	1 1 0 0	7	15	39	7
13	0	3	10	37	17
14	0	2	12	37	7
15	1	4	24	27	5 1 44 10 7 17 7 1 8
17	4	5	15	28	3
18	4	15	37	15	ے 1
19	1	n	13	34	18
20	ō	4	26	30	5
21	0	5	33	19	2
22	1 4 1 4 1 0 0 1	3	28	29	8
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	0	15 0 4 5 3	10 12 24 15 37 32 13 26 33 28 28 46	37 34 38 27 39 33 21 19 45 37 27 28 21 15 34 30 19 29 31	1 18 5 2 8 3 0 2
24	2 0 1 4	5	46	14	0
25	U	10	33	22	2
26 27	1	10 15 25 12 16 27 16 21 34 29 32	33 36 29 26 33 35 35 29 24 29 22	22 16 2	U
28	2	12	29	ک 17	1 0
29	2	16	33	17 15 6 10 8 2 1 1	1
30	2 2 0 1	27	35	6	1 0 0
31	0	16	35	10	Ö
32	1	21	29	8	0
33	9	34	24	2	0
34	9 1 10	29	29	1	0 0 1
35	10	32	22	1	1
36 37	9 1	38	13	30 T	0
38	1	1 1	4	38 49	13 0
39	î	2	30	32	3
40	ō	ō	12	35	6
41	1	1	25	39	1
42	2	9	32	25	1
43	2	6	32	25	1 4
44	1	1	38	22	0
45	4	18	28	9	1
46 47	0 0	2 3	12	25	20
48	2	8	9 30	43 29	5 0
	_	_	- 0		U

Group	2	Raw	Fred	quenc	ies
No. 1955 55 55 55 55 55 56 66 66 66 66 67 77 77 77 77 78 88 88 88 88	Α	B	<u>C</u>	D	<u>E</u>
49	0	3 3 10	17	36 29 19 30	<u>E</u> 8
50	0	3	31	29	3
51	1	10	35	19	0
52	0 1 1 2	10	24	30	2
53	2	10 10	28	17	1
54	6	19 2 1 2 8 9	36	17 4 35 42	3 0 2 1 0 5
55	0 1 2	2	27	35	5
56	1	1	20	42	1
57	2	2	38	14	1 5
58	2	8	23	21	5
59	1	9	43	15	0
60	2 1 4 2 3	18	30	14 21 15 7 13	0
61	2	2	37	13	1
62	3	24	28	11	O
63	5	25	25	5	1
64	0	17	29	13 9	0 1 0 1 1 2
65	2	15	28	9	2
66	6	21	27	5	0
67	4	18	29	7	0
68	5 0 2 6 4 4 5	17 15 21 18 26 33	27	7 11 3	0
69	5	33	20	3	0 0 0 0
70	3	27 39	23	7 1	0
71	10 16	39	19	1	0 0
72	16	40	17 31 35 24 28 36 27 20 38 33 22 22 22 22 22 23 23 23 23 23 23 23	2	0
73	3 2 4 0 2 3 5 3 10 4 1 3	7	14	35 17 18 26 20	9
74	2	10	27	17	1
75	4	15	30	18	0
70	U	8	21	26	2 0 1
70	2	8	39	20	U
/ G	3	19 10 19	30	7 18	1
79	3	10	27	18	0 1
0U		19	3/	9	1
83 01	10	10	19	07	1
83	1	6 10	19	9 6 27 15	3 1
84	3 7	14	3 4 37	9	0
85	1	5	35	19	0
86	3	13	35 28	13	0
87	1	10	35	19	
88	1	17	31	17	2 1
89	1 3	24	34	17 5	Ô
90	4	34	20	3	0
91	1	8	24	26	1
92	2	13	28	13	0
93	6	13 15	37	9	0
94	1	10	37 32	16	0
95	5	10	37	16	Ö
96	7	26	32	3	ő

Group 3 Raw Frequencies

No.	<u>A</u>	В	C	D	E
97 98	3	14	27 33	16 4 0 6 2 3	<u>E</u>
98	7 12	21	33	4	0 0 1 0 0
100	2	37 14	17 34	о 6	1
101	2 3 5	30	25	2	ō
102	5	33	25 25 20	3	0
103	6 8	22	20	12	0
104 105	13	30 33 22 36 35	17 9	4.	0 0
106	3	33	17	12 4 3 2	Ô
107	12	33 25 31 15 22 30	19	3	0 0
108	31 8	31	6	1 10	0
109 110	8	22	26 22	8	0 0
111	8	30	22 18	3	ő
112	8	31 30	23 18	3 4 4	0
113 114	14	30	18	4	0
115	13 10	32 32	20 15	3 2	0
115 116	15	31	14	2	1 0
117	25 9 11	31 20 24 26	14	1	0
118 119	9	24	18	12 9	1 0
120	13	35	19 17	3	0
121 122	13 10	35 26 24	18	3 10 6	0
122	9	24	19	6	0
123 124 125	10 14	35 19 30 28 30 27 31 31 20 31	11 21	3 1 2 1 9 2 0 4 1 3	0 0
125	14	30	13	2	0
126 127	34	28	5	1	0
127	7 11 17 12	30	14	9	0
128	11	27	20	2	0 0
130	12	31	21	4	1
128 129 130 131 132	20 13	20	19 21 20	1	0 0
132	13	31	12	3	
133 134	9 26	4 1 25	9 10	2 0	0
135	23	37	7	ő	Õ
136	15	26	16	3	0
137 138	18	32	10	1	0
139	32 14	24 27	8 13	1 4	0
140	28	28	9	2	o
141	21	31	3	4	0
142 143	22 27	32	10 6	0	0
144	37	22 14	2	4 4	0 2
					_

Group 1 Relative Frequencies

Grou		Kere	itive	rre	edneuc
No.	A	B	C	D	<u>E</u>
1	.02	0	. 05	0	.93
2	.02		.08		
		. 05		. 32	.53
3	,01	.03	.09	.55	.31
4	.02	.02	. 05	.57	. 35
5		0			
	.02		.16	.59	.23
6	0	.05	. 4	.47	.07
7	.04	. 04	.04	.71	.18
8					.07
	.01	.13	.29	.49	
9	.02	.13	.42	. 35	. 02
10	0	0	.02	. 3	.69
11	. 02	.03	, 05	71	.16
				.74	
12	.01	. 1	.22	.57	. 1
13	0	.04	.15	.55	.25
14	0	.03	.21	. 64	.12
			. 2 1		
15	.02	.07	.42	.47	.02
16	.07	.08	.25	.47	.13
17	.01	.07	.55	. 31	. 04
18	.06	.22	.48	.22	.01
19	.02	0	.2	.52	.27
20	0	.06	. 4	.46	.08
21	0	.08	.56	, 32	.03
22	.01	.04	.41	.42	.12
23	0	0	.45	. 5	. 05
				21	
24	.03	.07	.69	.21	0
25	0	.15	.49	, 33	.03
26	.01	.22	.53	.24	0
27	.07	.41	.48	.03	.02
28	.04	.21	.46	. 3	0
29	.03	.24	.49	.22	.01
30	.03	.39	.5	.09	0
31	0	.26	.57	.16	0
32	.02	.36	.49	.14	0
33	.13	.49	. 35	.03	0
34	. 02	.48	.48	.02	0
35	.15	.48	. 33	. 02	.02
36	.15	.62	.21	.02	0
37	, 02	. 02	.02	.7	.24
38	.02	. 02	.07	.89	0
39	.01	.03	.44	.47	.04
	0	0			
40			.23	.66	.11
41	.01	.01	, 37	.58	.01
42	.03	.13	.46	.36	.01
			.46		
43		.09		. 36	.06
44	.02	.02	.61	, 35	0
45	.07	. 3	.47	.15	. 02
46	0	.03	. 2	,42	. 34
47	0	. 05	.15	.72	.08
48	.03	.12	.43	.42	0
					-

Group 2 Relative Frequencies

No	. 1	A F	3 C	D	E
49	(0 .05	.27	.56	.13
50	Ų	J .US	.47	.44 .29	. 05
51	. 02	2 .15	.54	.29	.03
52	.0:	1 .15	.36	.45	.03
53	.03		.48	.29	.02
54 55	.09	.29	.55	.06	0 . 07
56	, 02	0 .03 2 .02	39	.51 .65	.07
57	. 04			.25	.02
58	, 03		.39	36	.08
59	.01		.39	.36 .22	0
60	. 07	7.31	.51	.12	0
61	. 04	.04	.67	.24	0 0 . 02
62	. 05	36 3 .41 3 .28	.42	.17	0.02
63	.08	3 .41	.41	.08	.02
64	0.4	28, ל	.48	.22	.02
65 66	.04	26	.5 .46	.16 .08	. 04
67	. 07	,27 ,36 ,31	. 40	.12	0
68	.06	38	. 5 . 4	.16	0 0 0
69	. 08	.54	, 33	. 05	Õ
70	.05	.45	.38	.12	0
71	.14		.28	.01	0
72	. 24		.15	.03	0
73 74	.04		.21 .47	.51 .3	.13 .02
75	.06		.45	.27	. 32
76		.14	.37	.46	.04
77	.03	.12	.57	.29	0
73	. 05	. 32	. 5	.12	. 02
79	.08	.17	.45	. 3	0.01
80	. 04	.28	.54	.13	.01
81 82	.22		.41	.13 .46	.02 .05
83	.02	.1 1.16	.32 .56	.25	.03
84	.05	.22	.59	.14	0
85	.02	.08	.58	. 32	Õ
86	.05	.23	.49	.23	0
87	.01		.52	.28	.03
88	.01		.46	.25	.01
89 90	.05		.52	. 08	0
91	.07		,33 ,4	.05 . 4 3	0 , 02
92	.02		. 5	.23	, uz 0
93	.09		.55	.13	0
94	.02	.17	.54	.27	Ö
95	.07	.15	.54	.24	0
96	. 1	. 38	.47	.04	0

Gra	3	Dal.	- -	. F		_ •
No		Rel.		e rre D	equen E	cies
97	. 05	.23	.45	.27		
98	.11	. 32	.51	.06	0	
99	.18	.56	.26	0	0	
100	.04	.25	. 6	.11	.02	
101	. 05	. 5	.42	.03	0	
102 103	.08	.5 .37	.38 .33	. 05	0 0	
103	.12	.55	.26	.2 .06	0	
105	.22	.58	.15	.05	Ö	
106	.05	. 6	.31	.04	Ö	
107	.2	.42	, 32	. 05	0	
108	.45	.45	.09	.01	0	
109 110	.14 .13	.25	.44	.17	0	
111	.13	.37 .51	.37	.13	0 0	
112	.12	.47	.35	.06	0	
113	.21	.45	.27	.06	0	
114	.19	.47	.29	.04	0	
115	.17	.53	.25	.03	.02	
116 117	.24 .42	.5 .33	.23	.03	0	
118	.14	.33	.23	.19	0 .02	
119	.17	.4	.29	.14	0	
120	.19	.51	.25	.04	0	
121	.16	.41	.28	.16	0	
122	.16	.41	.33	.1	0	
123 124	.17	.59 .35	.19 .38	. 05 . 02	0	
125	.24	,51	.22	.03	0	
126	. 5	.41	.07	.01	Ō	
127	.12	, 5	.23	.15	0	
128	.18	.45	.33	.03	0	
129 130	.25 .17	.46 .45	.28	0 .06	0 .01	
131	.33	.33	.33	.02	.01	
132	.22	.53	.2	.05	Ō	
133	.15	,67	.15	.03	0	
134	.43	.41	.16	0	0	
135 136	. 34 . 25	,55 ,43	.1 .27	0 .05	0	
137	.3	.52	.16	.02	0	
138	.49	.37	.12	.02	Õ	
139	.24	.47	.22	.07	0	
140	.42	.42	.13	.03	0	
141 142	. 36	.53	.05	.07	0	
142	. 34 . 4 6	.5 .37	.16	0 .07	0 0	
144	.63	.24	.03	.07	.03	

Group 1 Cumulative Relative Frequencies

		-	ulu c.		·CIA
No	<u>, A</u>	B	<u>C</u>	D_	<u>E</u>
1	.02	.02	.07	.07	1
2	.02	.07	.15	.47	1
3	,01	.04	.15 .13	.47 .69 .65	1
			.13	.05	
4	. 02	.03	.08	.65	1
5	.02	.02	.17	.77 .93 .82	1
6	0	. 05	.46	.93	1
7	. 04	.07	. 11	. 82	1
8	.01	.15	.44	.93	ī
9	.02	.22	.63	.00	
		. 2 2	. 63	.98	1
10	0	0	.02	.31	1
11	.02	. 05	.1 .33 .19	. 84	1
12	.01	.12	.33	. 9	1
13	0	. 04	19	.75	1
14	Ö	.03	.24	.88	1
1.2			. 24	, 00	
15	.02	.09	.51	. 98	1
16	.07	.15	, 4	.87	1
17	.01	.09	. 64	. 96	1
18	.06	.28	.76	.99	1
19	.02	.02	.21	.73	ī
20	, 02	.02	. 4.1	. / 3	
20	0	.06	.46	. 92	1
21	0	.08	. 64	. 97	1
22	.01	.06	.46	.88	1
23	0	0	.45	. 95	1
24	.03	.1	.79	1	1
23 24 25 26 27 28	.03	1.5	. / 5	~~	
23		.15	. 64	. 97	1
26	.01	.24	.76	1	1
27	.07	.48	. 95	.98	1
28	.04	.25	.7	1	1
29	.03	27	.76	. 99	1
30	.03	.41		, , ,	
30		.41	.91	1	1
31	0	.26	. 84	1	1
32	.02	. 37	.86	1	1
33	.13	.62	. 97	1	1
34	.02	.5	.98	1	1
35	.15	, 64	. 97	, 98	1
36	.15	.77	.98	1	î
37	.02	. 04	.06	.76	1
38	.02	.04	.11	1	1
39	.01	. 04	.49	.96	1
40	0	0	.23	.89	1
41	0.1	.03	.4	,99	ī
42	.03	.16	. 62	.99	1
43	.03	.12	.58	. 94	1
44	.02	.03	. 65	1	1
45	.07	. 37	.83	.98	1
46	0	03	.24	.66	1
47	0	.05	.2		
				. 92	1
48	.03	.14	.58	1	1

Group 2 Cumulative Relative Frequencies

No	. 7	A E	C	D	E
49		0.05			1
50	(0.05	.52	. 88 . 95	1
51	. 02	2 .17	.71	1	1
52	.01	1.16	, 52	.97	1
53	.03	3 .21	. 69	. 98	1
54	.09		. 94	1	1
5 5	(0.03	.42	.93	1
56	. 02	.03	. 34	.98	1
57	. 04	.07	.74	. 98	1
58	.03		.56	. 92	1
59	. 01		.78	1	1
60	. 07		.88	1	1
61	. 04		.75	.98	1
62 63	.05		.83	1	1
64	.00	.28	, 9 77	.98 .98	1 1
65	. 04		.77 .8	. 96	1
66	.1	.46	. 92	1	1
67	, 07	38	.88	î	1
68	.06	.44	.84	ī	1
69	.08	,62	. 95	ī	î
70	. 05	,5	.88	ī	ī
71	.14	.71	.99	1	ī
72	.24	.82	. 97	1	1
73	.04	.15	. 35	. 87	1
74	.04	.21	.68	.98	1
75	.06	.28	.73	1	1
76	C		.51	. 96	1
77	.03	.14	.71 .87	1	1
78	. 05	.37	.87	.98	1
79	.08	,25	.7 .86	1	1
80	.04	. 32	.86	.99	1
81 82	.22	.43	. 85	. 98 . 95	1
83	.02	.17	.49	.93	1
84	.05	.27	.74 .86	.98 1 1	1 1
85	.02	.1	.68	1	1
86	.05	.28	.77	î	ī
87	.01	.16	.69	. 97	î
88	.01	.27	.73	.99	ī
89	. 05	.41	. 92	1	1
90	.07	.62	.95	1	ī
91	.02	, 15	.55	, 98	ī
92	.04	.27	.77	1	1
93	.09	.31	. 87	1	1
94	.02	.19	.73	1	1
95	.07	.22	.76	1	1
96	. 1	.49	.96	1	1

Group 3 Cumulative Relative Frequencies

No	<u>. a</u>	В	С	D	E
97	.05	.28	.73	1	1
98	.11	.43	. 94	1	1
99	.18	.74	1	1	1
100	.04	.28	.88	. 98	1
101	. 05	.55	. 97	1	1
102 103	.08	.58 .47	.95 .8	1	1
104	.12	.68	.94	1 1	1
105	.22	.8	. 95	1	1
106	.05	. 65	.96	1	1
107	. 2	.63	. 95	ī	ī
108	.45	. 9	.99	1	1
109	. 14	. 39	.83	1	1
110	.13	. 5	. 87	1	1
111	.14	. 64	. 95	1	1
112	.12	.59	. 94	1	1
113	.21	.67	. 94	1	1
114 115	.19 .17	.66	.96	1	1
116	.24	.7 .74	. 95 . 97	. 98 1	1 1
117	,42	.75	.98	1	1
118	.14	.52	. 8	.98	ī
119	.17	.57	.86	1	ī
120	.19	.71	.96	1	1
121 122	.16	.56	. 84	1	1
122	.16	.57	. 9	1	1
123	.17	.76	. 95	1	1
124	.25	.6	.98	1	1
125 126	.24 .5	.75	. 97	1	1
127	.12	.91 .62	.99 .85	1 1	1 1
128	.18	.63	.97	1	1
129	.25	.72	1	î	1
130	.17	.62	1 .93	.99	ī
131	.33	.66	.98	1	1
132	,22	.75	. 95	1 1	1
133	.15	.82	. 97	1	1
134	.43	. 84	1	1	1
135	. 34	.9	1	1	1
136	.25	.68	. 95	1	1
137	.3	. 82	.98	1	1
138 139	.49 .24	.86 .71	.98 .93	1 1	1 1
140	.42	.84	. 93 . 97	1	1
141	.36	. 88	.93	1	1
142	. 34	.84	1	1	1
143	.46	.83	. 93	ī	ī
144	.63	.86	, 9	. 97	1

Gro No		Rema	ove :	ls and D	d 0s <u>E</u>
1	.02	.02	.07	.07	
2 3	.02	.07 .04	.15	.47 .69	
4	.02	.03	.08	.65	
5	.02	.02	.17	.77	
6	0.4	. 05	.46	.93	
7 8	.04	.07	.11	.82 .93	
9	, 02	.22	.63	.98	
10			.02	.31	
11	.02	.05	.1	. 84	
12 13		.12	.33	. 9 . 75	
14		.03	.24	.88	
15	.02	.09	.51	.98	
16 17	.07	.15	.4	.87	
18	.06	.09	.6 4 .76	. 96	
19	.02	.02	.21	.73	
20		.06	.46	. 92	
21 22		.08	, 64	. 97	
23		.06	.46 .45	.88 .95	
24	.03	.1	.79	•••	
25		.15	.64	.97	
26 27	.07	.24 .48	.76 .95	. 98	
28	.04	.25	.7	. 50	
29	.03	.27	.76		
30	.03	.41	.91		
31 32	.02	.26 .37	.84 .86		
33	.13	.62	.97		
34	.02	,5	.98		
35	.15	. 64	.97	. 98	
36 37	.15 .02	.77 .04	.98 .06	.76	
38	.02	.04	.11	. , 0	
39		.04	.49	. 96	
40 41		0.3	.23	.89	
42	.03	.03	.4 .62		
43	.03	.12	.58	. 94	
44	.02	.03	.65		
45 46	.07	.37	.83 .24	.98	
47	0	,05	.24	.66 .92	
48	.03	.14	.58		

Group 2 Remove 1s and 0s В С D 49 .05 .31 .88 50 .05 .52 .95 51 .02 .17 .71 52 .16 .52 .97 53 .03 .21 .69 .98 54 .09 .38 .94 55 ,03 .42 .93 56 .02 .03 .34 .98 57 .04 .07 .74 .98 58 .03 .17 .56 .92 59 .15 .78 60 .07 .37 .88 61 .04 .07 .75 .98 62 .05 .41 .83 63 .08 .49 .9 .98 64 .28 .77 .98 65 .04 . 3 .8 .96 66 .1 ,46 ,92 67 ,07 .38 .88 68 .06 .44 .84 69 ,08 .62 .95 70 .05 . 5 .88 71 .14 .71 72 .24 .82 .97 73 .04 .15 .35 .87 74 .04 .21 .68 .98 75 .06 .28 .73 76 .14 .51 .96 77 .03 .14 .71 78 .05 .37 .87 .98 79 .08 .25 .7 80 .04 .32 .86 81 .22 .43 .85 .98 82 .07 .17 .49 .95 83 .02 .18 .74 .98 84 .05 .27 .86 85 .02 .1 .68 86 .05 .28 .77 87 .16 .69 .97 .27 .73 88 89 .05 .41 .92 90 .07 .62 .95 91 .02 .15 .55 .98 92 .04 .27 .77 93 .09 .31 .87 94 .02 .19 .73 95 .07 .22 .76 .1 .49 .96 96

```
Group 3 Remove 1s and Os
 No. A B C D E
 97 .05 .28 .73
 98 .11 .43 .94
 99 .18 .74
             1
100 .04 .28 .88 .98
101 .05 .55 .97
102 .08 .58 .95
103
    .1 .47 .8
104 .12 .68 .94
105 .22
        .8 .95
106 .05 .65 .96
107
    .2 .63 .95
108 .45
         . 9
109 .14
        .39 .83
        .5 .87
110 .13
111 .14 .64 .95
112 .12 .59 .94
113 .21 .67 .94
114 .19 .66 .96
115 .17
        .7 .95
                .98
116 .24 .74 .97
117 .42 .75 .98
118 .14 .52
            . 8
119 .17 .57 .86
120 .19 .71 .96
121 .16 .56 .84
122 .16 .57
            . 9
123 .17 .76 .95
124 .25
        .6 ,98
   .24 .75 .97
125
126
    .5 .91
127 .12 .62 .85
128 .18 .63 .97
129 .25 .72
130 .17 .62 .93
131 .33 .66 .98
132 .22 .75 .95
133 .15 .82 .97
134 .43 .84
135 .34
        . 9
136 .25 .68 .95
137
    .3 .82 .98
138 .49 .86 .98
139 .24 .71 .93
140 .42 .84 .97
141 .36 .88 .93
142 .34 .84
143 .46 .83 .93
144 .63 .86 .9 .97
```

Combine Categories : Group ABCD

	-			
No.	A	В	C	D
1	.02	.02	.07	.07
91	.02	.15	.55	.98
53	.03	.21	.69	. 98
100	.04	.28	.88	.98
43	.03	.12	.58	, 94
37	.02	.04	.06	.76
73	. 04	.15	, 35	. 87
4 5	. 07	. 37	.83	.98
19	.02	.02	.21	.73
57	.04	.07	.74	. 98
63	.08	.49	. 9	. 98
118	.14	.52	.8	.98
61	.04	. 07	.75	.98
65	. 04	.3	.8	.96
58	.03	.17	.56	. 92
56	.02	.03	. 34	.98
27	.07	.48	. 9 5	. 98
82	.07	.17	.49	. 95
5	.02	.02	. 17	.77
78	.05	. 37	. 87	.98
7	.04	.07	.11	. 82
2	.02	.07	.15	.47
144	.63	.86	. 9	. 97
4	.02	.03	.08	.65
81 74	.22	.43	. 85	.98
7 4 35	.04	.21	.68	.98
16	.15	.64	. 97	. 98
15	.07	.15	.4	.87
83	.02	.09	.51	. 98
9	.02 .02	.18	.74	.98
115	.17	.22 .7	.63	. 98
11	.02	. 05	. 95 1	. 98
	. 04	. 05	, 1	. 84

Combine	Categories	: Group	ABC
<u>No</u>	<u>. A</u>	B	C
102	.08	.58	. 95
103	. 1	.47	.8
99	.18	.74	1
101	.05	.55	. 97
89	. 05	.41	. 92
90	.07	.62	. 95
92	. 04	.27	.77
84	.05	.27	.86
85	.02	. 1	.68
86	.05	.28	.77
96	. 1	.49	. 96
97	. 05	.28	.73
98	.11	.43	. 94
93	.09	. 31	. 87
94	.02	.19	.73
95	.07	.22	.76
104	.12	.68	. 94
130	.17	.62	.93
131	. 33	.66	.98
132	.22	.75	. 95
128	.18	.63	. 97
124	.25	.6	. 98
125	.24	.75	. 97
127	.12	.62	. 85
133	.15	. 82	. 97
140	.42	. 84	.97
141 143	. 36	.88	.93
139	.46	.83	.93
136	.24 .25	.71 .68	. 93
137	.3	.82	. 95 . 98
138	.49	.86	.98
123	.17	.76	. 95
110	.13	.76	.87
111	.14	.64	.95
112	.12	.59	. 94
109	.14	.39	.83
105	.22	.8	.95
106	.05	.65	.96
107	,2	.63	.95
113	,21	.67	. 94
120	.19	.71	.96
121	.16	.56	. 84
122	.16	.57	.9
119	.17	.57	.86
114	.19	.66	.96
116	.24	.74	. 97
117	.42	.75	.98
29	.03	.27	.76
51	.02	.17	.71

No.	A	В	C
30	.03	.41	.91
54	.09	. 38	. 94
60	.07	. 37	.88
24	.03	. 1	.79
28	.04	.25	.7
32	.02	. 37	.86
44	.02	.03	. 65
42	.03	.16	. 62
38	.02	.04	.11
36	.15	.77	. 98
48	.03	.14	.58
33	.13	.62	. 97
34	.02	.5	.98
62	. 05	.41	.83
75	.06	.28	.73
72	.24	.82	. 97
18	.06	.28	.76
80	. 04	. 32	. 86
79	.08	.25	.7
77	.03	.14	.71
68	.06	.44	. 84
67	.07	.38	.88
66	. 1	.4 6	. 92
69	.08	. 62	. 95
7 0	. 05	.5	.88

Combine C	Categories	: Group	BCD
-----------	------------	---------	-----

No.	B	c	D
22	.06	.46	. 88
8	.15	.44	, 93
64	.28	.77	. 98
3	.04	.13	.69
21	.08	. 64	. 97
87	.16	.69	. 97
76	.14	.51	. 96
17	.09	. 64	.96
20	.06	.46	. 92
6	.05	.46	.93
47	. 05	.2	. 92
49	. 05	.31	.88
46	.03	.24	.66
12	.12	.33	.9
39	.04	.49	. 96
13	.04	,19	.75
14	.03	.24	.88
25	.15	.64	. 97
55	.03	.42	. 93
50	.05	.52	. 95
52	.16	,52	. 97

Combine Categories : Group AB

No,	A	В
129	.25	.72
126	.5	.91
135	. 34	.9
134	.43	. 84
108	.45	.9
71	.14	.71
142	. 34	. 84

Combine Categories : Group BC

No.	B	<u>C</u>
41	.03	. 4
5 <i>9</i>	.15	.78
88	.27	.73
26	.24	.76
31	.26	. 84

Combine Categories : Group CD

No.	C	D
40	.23	.89
23	.45	. 95
10	.02	. 31

Normalize	Group	ABCD
-----------	-------	------

No.	Α	B	C	D	Row Avg
1	-2.052	-2.052	-1.475	-1.475	-1.7635
91	-2.052	-1,037	.126	2.052	22775
53	-1.881	807	.496	2,052	035
100	-1.751	583	1.175	2,052	.22325
43	-1.881	-1.175	.202	1,556	-,3245
37	-2.052	-1.751	-1.556	.706	-1.16325
73	-1.751	-1.037	385	1.126	51175
45	-1.475	-,332	.954	2,052	.29975
19	-2.052	-2.052	807	.613	-1,0745
57	-1.751	-1.475	.643	2.052	13275
63	-1.405	025	1.282	2.052	.476
118	-1.08	.05	.842	2.052	.466
61	-1.751	-1.475	.675	2.052	12475
65	-1.751	524	.842	1.751	.0795
58	-1.881	954	.151	1.465	30475
56	-2.052	-1.881	412	2.052	57325
27	-1.475	05	1,645	2,052	.543
82	-1.475	954	025	1.645	20225
5	-2.052	-2,052	954	.739	-1.07975
78	-1.645	332	1.126	2.052	.30025
7	-1.751	-1.475	-1,226	.915	88425
2	-2.052	-1.475	-1.037	075	-1.15975
144	.332	1.08	1.282	1.881	1,14375
4	-2.052	-1.881	-1.405	.385	-1.23825
81	772	176	1.037	2.052	.53525
74	-1.751	807	.468	2.052	0095
35	-1.037	.358	1.881	2,052	.8135
16	-1.475	-1.037	253	1.126	40975
15	-2,052	-1.34	.025	2,052	32875
83	-2.052	915	.643	2.052	-,068
9	-2.052	772	.332	2.052	11
115	954	.524	1.645	2.052	.81675
11	-2.052	-1,645	-1.282	. 995	996

Col Avg -1.66621 -.910879 .2016667 1.523909 Grand Avg -.212879 B = 2.77123

Normalize Group ABC

No.	A	В	C	Row Avg
102	-1.405	.202	1.645	.1473333
103	-1.282	075	.842	171667
99 101	-,915 -1,645	.6 4 3 .126	2.052 1.881	,5933333
89	-1.645	227	1.465	.1206667
90	-1.475	.306	1.645	.1586667
92	-1.751	613	.739	541667
84	-1.645	613	1.08	392667
85 86	-2.052 -1.645	-1.282	.468	955333
96	-1.282	583 025	.739 1.751	496333 .148
97	-1.645	583	.613	538333
98	-1.226	176	1,556	.0513333
93	-1.34	496	1.126	236667
94	-2.052	878	.613	772333
95 104	-1. 4 75 -1.175	772 . 4 68	.706 1.556	513667
130	954	.306	1.336	.283 .2756667
131	44	.412	2.052	.6746667
132	772	.675	1.645	.516
128	915	.332	1.881	.4326667
124 125	675 706	.253	2.052	.5433333
127	-1.175	.675 .306	1.881 1.037	.6166667 .056
133	-1.037	.915	1.881	.5863333
140	-,202	.995	1.881	.8913333
141	358	1.175	1.475	.764
143 139	1 706	.954	1.475	.7763333
136	675	.553 . 4 68	1.475 1.645	.4406667 .4793333
137	524	.915	2.052	.8143333
138	025	1.08	2.052	1.035667
123	954	.706	1,645	.4656667
110 111	-1.126	0	1.126	0
112	-1.08 -1.175	.358 .227	1.645 1.556	.3076667 .2026667
109	-1.08	279	,954	135
105	772	.842	1.645	.5716667
106	-1.645	. 385	1.751	.1636667
107	842	.332	1.645	.3783333
113 120	807 878	.44 .553	1.556 1.751	.3963333 .4753333
121	995	.151	.995	,0503333
122	995	.176	1.282	.1543333
119	954	.176	1.08	.1006667
114	878	.412	1.751	.4283333
116 117	706 202	.643 .675	1.881 2.052	.606 8416667
29	-1.881	613	.706	-,596
51	-2.052	954	.553	817667

No.	A	B	C	Row Avg
30	-1.881	227		256
54	-1.34	306		03
60	-1.475	332		-,210667
24	-1.881	-1.282	.807	785333
28	-1.751	675	.524	634
32	-2.052	332	1.08	434667
44	-2.052	-1.881	. 385	-1.18267
42	-1.881	995	.306	856667
38	-2.052	-1.751	-1,226	-1.67633
36	-1.037	.739	2.052	.5846667
48	-1.881	-1,08	.202	919667
33	-1.126	. 306	1.881	.3536667
34	-2.052	0	2.052	0
62	-1.645	227	.954	306
75	-1.556	583	.613	508667
72	706	.915	1.881	.6966667
18	-1.556	583	.706	477667
80	-1.751	468	1.08	379667
79	-1.405	675	.524	518667
77	-1.881	-1.08	.553	802667
68	-1.556	151	. 995	237333
67	-1.475	306	1.175	202
66	-1,282	1	1.465	.0276667
69	-1.405	.306	1.645	.182
7 0	-1.645	0	1.175	156667
vg	-1.25687	014693	1,292133	

Col Avg -1.25687 -.014693 1.292133 Grand Avg .0068578 B = 3.249397

Normalize Group BCD

No.	B	<u>C</u>	D Row	Avq
22	-1.556	1	1.175160	
8	-1.037	151	1.475 ,0956	667
64	583	.739	2.052 .	736
3	-1.751	-1.126	.496793	667
21	-1.405	.358	1.881 .:	278
87	995	.496	1.881 .4606	667
76	-1.08	.025	1.751 .:	232
17	-1.34	,358	1.751 .2563	
20	-1.556	1	1.465063	667
6	-1.645	1	1.475 -	.09
47	-1.645	842	1.465340	667
49	-1.645	496	1.175	322
46	-1.881	706	.412'	725
12	-1.175	44	1.282	111
39	-1.751	025	1.751008	333
13	-1.751	878	.675651	333
14	-1.881	-,706	1.175470	667
25	-1.037	, 358	1.881 .4006	667
55	-1.881	202	1.4752026	667
50	-1.645	. 05	1.645 .0166	667
52	995	. 05	1,881 .3	312

Col Avg -1.43976 -.163714 1.439 Grand Avg-.054825 B = 4.16142

Normalize Group AB

No,	A	B	Row Avg
129	675	.583	046
126	0	1.34	. 67
135	412	1.282	.435
134	176	, 995	.4095
108	126	1.282	.578
71	-1.08	.553	2635
142	412	.995	.2915

Col Avg -.411571 1.004286 Grand Avg.2963571 B = 1.002326

Normalize Group BC

No.	B	C	Row Avq
41	-1.881	253	-1.067
59	-1.037	.772	1325
88	613	.613	0
26	706	.706	0
31	643	. 995	.176
Col Avg Grand Avg	976 2047	.5666 B =	1.189807
orana my	.2017	D	1.109007

Normalize Group CD

No.	C	D	Row Avg
40	739	1.226	.2435
23	126	1.645	.7595
10	-2.052	496	-1.274

Col Avg -.972333 .7916667 Grand Avg-.090333 B = 1.555848

Square of Differences : Group ABCD

No.	Α	В		D	Ai
1	.0832322	.0832322	.0832322	.0832322	.332929
91	3,327888	.6548856	,1251391	5.19726	9.305173
53	3,407716	.595984	,281961	4,355569	8.64123
100	3,897663	.6500391	.9058281	3.344327	8.797857
43	2.422692	.7233503	.2772023	3,53628	6.959525
37	.7898766	.3454501	.1542526	3.494096	4.783675
73	1,535741	,2758876	.0160656	2.682225	4.509919
45	3,149738	.3991081	.4280431	3.07038	7.047269
19	,9555063	.9555063	.0715562	2.847656	4.830225
57	2,618733	1.801635	.6017881	4.773133	9.795289
63	3,538161	.251001	.649636	2.483776	6.922574
118	2.390116	.173056	.141376	2.515396	5.219944
61	2,644689	1.823175	.6396001	4.738241	9.845705
65	3,35073	.3642123	.5814063	2.793912	7.090261
58	2,484564	.4215256	.2077081	3,132015	6.245813
56	2,186702	1.71021	.0260016	6.891938	10.81485
27	4.072324	.351649	1.214404	2.277081	7.915458
82	1.619893	.5651281	.0314176	3.412333	5.628771
5	.9452701	.9452701	.0158131	3,307852	5.214205
78	3.783998	.3997401	.6818631	3,068628	7.934229
7	.7512556	,3489856	.1167931	3.237301	4.454335
2	.7961101	.0993826	.0150676	1.176683	2.087243
144	,6589381	.0040641	.0191131	.5435376	1.225653
4	.6621891	.4131276	.0278056	2.634941	3.738063
81	1,708903	.5058766	.2517531	2,300531	4.767063
74	3.032822	.6360063	.2280062	4.249782	8.146617
35	3.42435	.2074803	1.139556	1,533882	6.305269
16	1.134758	.3934426	.0245706	2.358528	3.911299
15	2.969591	1,022627	.1251391	5,667971	9.785327
83	3.936256	.717409	.505521	4.4944	9,653586
9	3.771364	.438244	.195364	· •	
	3,135556	.0857026	.6859981		5.433099
11	1.115136	.421201	.081796	3.964081	5.582214

Square of Differences: Group ABC A В C 102 2,409739 ,0029884 2,243005 4,655733 103 1.23284 .0093444 1.02752 2.269705 99 2,275069 .0024668 2,127708 4,405245 101 3,117579 ,0000284 3,098773 6,216381 89 2,278087 ,0083418 2,562134 4,848563 90 2,668867 .0217071 2.209187 4.899761 92 1.462487 .0050884 1.640107 3.107683 84 1,568339 ,0485468 2,168747 3,785633 85 1,202678 ,1067111 2,025878 3,335267 86 1.319435 .0075111 1.526048 2.852995 .029929 2,569609 4.644438 96 2.0449 97 1.224711 .0019951 1.325568 2.552275 98 1,63158 ,0516804 2,264022 3,947283 93 1.217344 .0672538 1.85686 3.141459 94 1.637547 ,0111654 1.919148 3.567861 95 .9241618 .0667361 1.487587 2.478485 104 2,125764 ,034225 1,620529 3,780518 130 1.51208 .0009201 1.4384 2.951401 131 1,242482 ,0689938 1,897047 3,208523 132 1.658944 .025281 1.274641 2.958866 128 1,816205 ,0101338 2,097669 3,924009 124 1.484336 .0842934 2.276075 3.844705 125 1,749447 ,0034028 1,598539 3,351389 .962361 2.540222 127 1.515361 .0625 133 2,635211 ,1080218 1,676162 4,419395 140 1.195378 .0107468 .9794401 2.185565 .505521 1.933326 141 1.258884 .168921 143 .7679601 .0315654 .4881351 1.287661 139 1,314844 ,0126188 1,069845 2,397309 136 1.332485 .0001284 1.358779 2.691393 137 1.791136 .0101338 1.531819 3.333089 138 1,125014 ,0019654 1,032933 2,159913 123 2.015453 .0577601 1.390827 3.464041 0 1,267876 2,535752 110 1.267876 111 1.925619 .0025334 1,78846 3,716613 112 1.897965 .0005921 1.831511 3.730069 109 .893025 .020736 1,185921 2,099682 105 1.80544 .0730801 1.152044 3.030565 106 3.271275 .0489884 2.519627 5.839891 107 1,489213 .0021468 1,604444 3.095805 113 1.448011 .0019068 1.344827 2.794745 120 1.831511 .0060321 1.627325 3.464869 121 1.092722 .0101338 .8923951 1.995251 122 1.320967 .0004694 1.271632 2.593069 119 1.112322 .0056751 .9590938 2.077091 114 1.706507 .0002668 1.749447 3.456221 116 1.721344 .001369 1.625625 3.348338 1.08924 .0277778 1.464907 2.581925 117

No.	A	B	C	Ą
29	1.651225	.000289	1.695204	3,346718
51	1.523579	.0185868	1.878727	3.420893
30	2.640625	.000841	2.547216	5,188682
54	1.7161	.076176	2.515396	4.307672
60	1.598539	.0147218	1.920072	3,533333
24	1,200485	,2466778	2,535525	3,982689
28	1.247689	.001681	1.340964	2.590334
32	2.615767	.0105404	2.294215	4.920523
44	,7557404	.4876694	2.457579	3,700989
42	1.049259	.0191361	1.351794	2.420189
38	.1411254	.0055751	.2028001	.3495007
36	2.629803	.0238188	2,153067	4.806689
48	.9241618	.0257068	1.258136	2.208005
33	2.189413	.0022721	2,332747	4.524433
34	4.210704	0	4.210704	8.421408
62	1.792921	.006241	1,5876	3.386762
75	1.096907	.0055254	1,258136	2.360569
72	1.967474	.0476694	1.402645	3.417789
18	1,162803	.0110951	1.401067	2.574965
80	1.880555	.0078028	2.130627	4.018985
79	.7855868	.0244401	1.087154	1.897181
77	1.162803	.0769138	1,837832	3.077549
68	1.738882	.0074534	1,518645	3.264981
67	1.620529	.010816	1.896129	3.527474
66	1.715227	.0162988	2.065927	3.797453
69	2.518569	.015376	2,140369	4.674314
70	2.215136	.0245444	1.773336	4.013017

Square of	f Differer	nces : Gro	oup BCD	
No.	В	C	D	<u> Ai</u>
22	1.947885	.0036401	1.783115	3,734641
8	1.282934	.0608444	1,90256	3,246339
64	1.739761	.000009	1,731856	3,471626
3	.9164871	.1104454	1.66324	2.690173
21	2,832489	.0064	2.569609	5,408498
87	2.118965	.0012484	2.017347	4.137561
76	1.721344	.042849	2.307361	4.071554
17	2.54828	.0103361	2.234028	4.792645
20	2,227059	.0013201	2,336822	4.565201
6	2,418025	,0001	2.449225	4,86735
47	1,701285	.2513351	3.260432	5,213053
49	1.750329	.030276	2.241009	4.021614
46	1,336336	.000361	1,292769	2,629466
12	1,132096	.108241	1.940449	3.180786
39	3.036887	.0002778	3.095254	6.132419
13	1.209267	.0513778	1.75916	3.019805
14	1.98904	.0553818	2.708219	4.752641
25	2.066885	.0018204	2.191387	4.260093
55	2.816803	.0000004	2.814565	5.631369
50	2.761136	.0011111	2.651469	5.413717
52	1.708249	.068644	2.461761	4.238654

Square of	Differer	ces : Gro	oup AB
No.	A	B	<u> Ai</u>
129	.395641	.395641	.791282
126	,4489	.4489	.8978
135	.717409	.717409	1.434818
134	,3428103	.3428102	.6856205
108	.495616	.495616	.991232
71	.6666723	,6666723	1,333345
142	.4949122	.4949122	.9898245

Square of Differences : Group BC

No.	В	C	<u>Ai</u>
41	.662596	.662596	1,325192
59	.8181202	.8181202	1,63624
88	.375769	.375769	.751538
26	.498436	.498436	.996872
31	670761	. 670761	1.341522

Square of Differences : Group CD

No.	C	D	<u>Ai</u>
40	.9653062	.9653062	1,930612
23	.7841102	.7841103	1,568221
10	,605284	.605284	1.210568

Scale Value of Instances : Group ABCD No. S Value Grand Avg Row Avg (B/Ai) 1 4,87499 -,212879 -1,7635 2,885097 91 -.08859 -.212879 -.22775 .5457252 53 -,193058 -,212879 -.035 .5663025 100 -.338175 -.212879 .22325 .561239 43 -.008111 -.212879 -,3245 .6310249 37 .6724988 -.212879 -1.16325 .761124 73 .1882739 - .212879 -.51175 .7838842 45 -.400847 -.212879 .29975 .6270842 19 .6009986 -.212879 -1.0745 .7574476 57 -.142269 -.212879 -.13275 .5318971 63 -.514047 -.212879 .476 .6327067 118 -.552417 -.212879 .7286238 .466 -.12475 61 -.146695 -.212879 .5305336 65 -.262581 -.212879 .0795 .6251801 58 -.009884 -.212879 -.30475 .6661036 56 ,0773029 - ,212879 -.57325 .5062045 27 -.534169 -.212879 .543 .5916955 82 -.070967 -.212879 -.20225 .7016645 5 .5742856 - .212879 -1 .07975 .7290247 78 -.390325 -.212879 .30025 .5909951 .4845822 -.212879 -.88425 .7887599 2 1.123453 -.212879 -1.15975 1.152258 144 -1.9327 -.212879 1.14375 1.50367 4 .8532786 - .212879 -1.23825 .8610195 81 -.62098 -.212879 .53525 .7624491 74 -.207338 -.212879 -.0095 .5832404 35 -.752193 -.212879 .8135 .6629556 16 .1320224 - .212879 -.40975 .8417357 15 -.037929 -.212879 .5321678 -.32875 -.068 .5357867 -.11 .552**474**3 83 -.176445 -.212879 9 -.152107 -.212879 115 -.796192 -.212879 .81675 .7141879 11 .4888873 -.212879 -.996 .7045844

Scale Value of Instances : Group ABC

```
No. S Value Grand Avg Row Avg (B/Ai)<sup>5</sup>
102 -.116228 .0068578 .1473333 .8354248
103 .2122588 .0068578 -.171667 1.196511
 99 -,502725 ,0068578 ,5933333 ,8588481
101 -.080383 .0068578 .1206667 .7229905
 89 .1179204 .0068578 -.135667
                               .8186436
 90 -.122353 .0068578 .1586667
                                .8143554
 92 .5607371 .0068578 -.541667 1.022547
 84 .3706523 .0068578 -.392667 .9264717
    .949813 .0068578 -.955333 .9870431
 86 .5365509 .0068578 -.496333 1.067213
 96 - .116935 .0068578
                           .148
                                  .83644
 97 .6142776 .0068578 -.538333 1.128334
 98 -.039717 .0068578 .0513333 .9073029
 93
     .247556 .0068578 -.236667 1.017035
 94 .7439167 .0068578 -.772333 .9543275
 95 .5950099 .0068578 -.513667 1.145007
104 - .255511 .0068578
                           .283 .9270982
130 -.282391 .0068578 .2756667
                                1.04927
131 -.672093 .0068578 .6746667
                                1.00635
132 -.533882 .0068578
                           .516 1.047946
128 -.386864 .0068578 .4326667 .9099896
124 -.492643 .0068578 .5433333 .9193268
125 -.600353 .0068578 .6166667
                               ,9846661
127 -.056479 .0068578
                          .056 1.131008
133 -.495907 .0068578 .5863333 .8574721
140 -1.07997 ,0068578 ,8913333 1.219325
141 -.983614 .0068578
                           .764 1.296429
143 -1.22639 .0068578 .7763333 1.588549
139 -.50618 .0068578 .4406667 1.164232
136 -.519827 .0068578 .4793333 1.098785
137 -.797187 .0068578 .8143333 .9873655
138 -1.26343 .0068578 1.035667 1.226544
123 -.444151 ,0068578 ,4656667 ,9685229
110 .0068578 .0068578
                             0 1.132004
111 -,280821 ,0068578 ,3076667 ,9350347
112
     -.1823 ,0068578 .2026667 .9333467
109 ,1747994 ,0068578
                         -.135 1.244012
105 -.585089 .0068578 .5716667 1.035475
106 -.115226 .0068578 .1636667
                               .7459317
107 -.380747 .0068578 .3783333 1.024506
113 -.420499 .0068578 .3963333 1.078277
120 -.453458 .0068578 .4753333 .9684072
121 -.057375 .0068578 .0503333 1.276153
122 -,165907 ,0068578 ,1543333 1,119423
119 -.119052 .0068578 .1006667 1.250759
114 -.408462 .0068578 .4283333
                                .969618
116 -.590122 .0068578
                          .606
                               .9851146
117 -.937355 .0068578 .8416667 1.121837
                      -.596
29 ,5941282 ,0068578
                                . 985353
51 .8037654 .0068578 -.817667 .9746118
```

```
No. S Value Grand Avg Row Avg (B/Ai)<sup>5</sup>
 30 .2094454 .0068578
                         -.256 .7913578
54 .0329134 .0068578
                          -.03 .8685205
60 .2088827 .0068578 -.210667 .9589791
24 .7162187 .0068578 -.785333
                               .9032609
 28 .7169468 .0068578
                        -.634 1.120014
 32 .3600833 .0068578 -.434667 ,8126355
44 1.115024 .0068578 -1.18267 .9370063
42 .9994907 .0068578 -.856667 1.158715
 38 5.118233 .0068578 -1.67633
                               3.04914
 36 -.473856 .0068578 .5846667 .8222018
48 1.122518 .0068578 -.919667 1.213113
33 -.292861 .0068578 .3536667 .8474602
34 .0068578 .0068578
                             0
                                .621168
    .306588 .0068578
62
                         -.306 ,9795104
75
   .6036544 .0068578 -.508667 1.173257
    -.67243 .0068578 .6966667 .9750543
18 .5434455 .0068578 -.477667 1.123352
80 .3482438 .0068578 -.379667 .8991729
79 .6856477 .0068578 -.518667 1.308721
77 .8316303 .0068578 -.802667
                               1.02754
    .243624 .0068578 -.237333 .9976107
67 .2007324 .0068578
                      -.202 ,9597751
66 -.018735 .0068578 .0276667 .9250287
69 -.144887 .0068578 .182 .8337627
70 .1478329 .0068578 -.156667 .8998413
```

Scale Value of Instances : Group BCD

```
No. S Value Grand Avg Row Avg (B/Ai)3
22 ,1144213 -,054825 -,160333 1.055593
 8 -,163139 -,054825 ,0956667 1,132202
                      .736 1.094849
64 -.860634 -.054825
 3 .9322921 -.054825 -.793667 1.243743
21 - .298678 - .054825
                         .278 .8771673
87 -.516818 -.054825 .4606667 1.002879
76 -.289372 -.054825
                          ,232 1,010976
17 -.293683 -.054825 .2563333 .9318225
20 .0059605 -.054825 -.063667 .9547526
 6 .0283926 -.054825
                        -,09 ,9246439
47 .2495464 -.054825 -.340667 .8934592
49 .2727237 -.054825
                      -.322 1.017233
46 .857238 -.054825
                       -.725 1,258018
                       -.111 1.143809
12 .0721374 -.054825
39 -.047961 -.054825 -.008333 .8237679
13 .7097753 -.054825 -.651333 1.173901
14 .3855943 -.054825 -.470667 .9357359
25 -.450825 -.054825 .4006667 .9883511
55 .1193939 -.054825 -.202667 .8596344
50 -.069438 -.054825 .0166667 .8767445
52 -.36397 -.054825
                       .312 .9908475
```

Scale Value of Instances : Group AB

No.	S Value	Grand Avg	Row Avq	$(B/Ai)^{-5}$
129	.3481293	.2963571	046	1,125483
126	411571	.2963571	.67	1.05661
135	067219	.2963571	, 4 35	.8358071
134	19877	.2963571	.4095	1.209101
108	-,284868	.2963571	,578	1.00558
71	.5248191	.2963571	2635	.8670283
142	.0030221	.2963571	.2915	1.006295

Scale Value of Instances : Group BC No. S Value Grand Avg Row Avg (B/Ai)* 41 .8063284 -.2047 -1.067 .947543 59 -.091712 -.2047 -.1325 .8527363 88 -.2047 -.2047 0 1.258238 26 -.2047 -.2047 0 1.092493 31 -.370449 -.2047 .176 .9417582

Scale Val	lue of In	stances : (Group CD	
No.	S Value	Grand Avg	Row Avg	$(B/Ai)^5$
40	308926	090333	.2435	.8977099
23	846831	090333	.7595	.9960474
10	1.35397	090333	-1.274	1.133676

Transform Values : Group ABCD

No.	S Value	α_	β	T Value
1	4.87499	68.7055	20.5357	
91	08859	68,7055	20,5357	66,88625
53	193058	68.7055	20.5357	64,74091
100	338175	68.7055	20,5357	61,76083
43	008111	68.7055	20.5357	68.53893
37	.6724988	68.7055	20.5357	82.51573
73	.1882739	68.7055	20.5357	72.57184
45	400847	68.7055	20.5357	60.47382
19	.6009986	68.7055	20.5357	81.04743
57	142269	68.7055	20.5357	65.7839
63	514047	68.7055	20,5357	58.14918
118	552417	68.7055	20.5357	57.36122
61	146695	68.7055	20.5357	65,69302
65	262581	68.7055	20.5357	63.31322
58	009884	68.7055	20,5357	68.50253
56	.0773029	68.7055	20.5357	70.29297
27	534169	68.7055	20.5357	57.73596
82	070967	68.7055	20.5357	67.24814
5	.5742856	68.7055	20.5357	80.49886
78	390325	68,7055	20.5357	60.6899
7	.4845822	68.7055	20,5357	78.65673
2	1.123453	68.7055	20.5357	91.77639
144	-1.9327	68,7055	20.5357	29,01612
4	.8532786	68.7055	20.5357	86.22817
81	62098	68.7055	20.5357	55.95325
74	207338	68.7055	20.5357	64,44767
35	752193	68.7055	20.5357	53,25869
16	.1320224	68.7055	20,5357	71.41667
15	037929	68.7055	20.5357	67.92661
83	176445	68.7055	20.5357	65.08207
9	152107	68,7055	20.5357	65,58188
115	796192	68.7055	20.5357	52.35515
11	.4888873	68.7055	20,5357	78,74514

Transform Val	ues : Gro	up ABC		
	3	-	β	T Value
10211	6228 50.2	2492 16	. 9595	48.27803
			.9595	53.849
9950			.9595	41.72323
10108			. 95 95	48.88594
89 ,117			.9595	52,24907
9012:			.9595	48.17415
92 ,560° 84 ,37 0°			. 95 95	59.75902
			.9595 .9595	56.53528 66.35755
86 .536			.9595	59.34884
9611			.9595	48,26603
97 .6142	2776 50,2		.9595	60.66704
98039				49,57562
	7556 50.2	2492 16	.9595	54.44763
94 ,743			.9595	62.86566
95 .5950			.9595	60.34027
10425				45.91586
130282				45.45999
131672 132533	• -			38,85084
128 386				41.19483 43,68817
124492				41,89422
125600				40.06751
127056				49.29135
133495				41.83887
140 -1.07				31.93349
141983				33.56759
143 -1.22 13950				29.45031
136519			.9595 .9595	41 ,66463 41 ,4332
137 - 797	7187 50.2			36,72931
138 -1.26			.9595	28,822
123444				42.71662
110 .0068			. 9595	50.3655
111 -,280				45.48661
	1823 50.2			47.15747
109 .1747				53,21371
105585				40.32639
106115 107380	•			48.29502
113420				43.79192
120453				43.11774 42.55877
121057				49.27614
122165				47.43551
119119	9052 50.2			48.23014
114408				43,32189
116590				40.24103
117937 29 .5941				34.35213
29 .5941 51 .8037				60,32532
01 .003/	004 00.2	7.74 10	, <i>5</i> 0 5 0 (63.88066

No.	S Value	α	β	T Value
30	.2094454	50,2492	16.9595	53.80129
54	.0329134	50,2492	16.9595	50.80739
60	.2088827	50.2492	16.9595	53,79175
24	.7162187	50,2492	16.9595	62.39591
28	.7169468	50,2492	16.9595	62.40826
32	.3600833	50.2492	16,9595	56.35603
44	1.115024	50.2492	16,9595	69.15945
42	.9994907	50.2492	16,9595	67.20006
38	5.118233	50,2492	16.9595	137.0519
36	473856	50,2 49 2	16.9595	42 21284
48	1.122518	50.2492	16.9595	69.28654
33	292861	50.2492	16,9595	45.28243
34	.0068578	50.2492	16.9595	50.3655
62	.306588	50.2492	16.9595	55.44878
75	.6036544	50.2492	16.9595	60.48688
72	67243	50.2492	16.9595	38.84512
18	.5434455	50.2492	16,9595	59.46576
80	.3482438	50.2492	16,9595	56.15524
79	.6856477	50,2492	16,9595	61.87744
77	.8316303	50,2492	16,9595	64.35323
68	.243624	50,2492	16,9595	54.38094
67	.2007324	50.2492	16,9595	53,65352
66	018735	50.2492	16,9595	49.93147
69	144887	50.2492	16,9595	47.79199
70	.1478329	50.2492	16.9595	52,75637

Transform	m Values :	Group BC	D	
·,	S Value	α	Β	T Value
22	.1144213	75.0066	17,3686	76.99394
8	163139	75.0066	17,3686	72,1731
64	860634	75,0066	17,3686	60.05858
	,9322921	75,0066	17.3686	91.19921
21	298678	75,0066	17,3686	69.81898
87	516818	75.0066	17.3686	66.03019
76	289372	75.0066	17.3686	69,98062
17	293683	75.0066	17.3686	69.90575
20	.0059605	75.0066	17.3686	75.11013
6	.0283926	75.0066		75.49974
47	.2495464	75.0066	17.3686	79,34087
49	.2727237	75,0066	17.3686	79,74343
46	.857238	75,0066	17.3686	89,89562
12	.0721374	75.0066	17.3686	76,25953
39	047961	75,0066	17.3686	74.17359
13	.7097753	75.0066		87.3344
14	.3855943	75.0066	17.3686	81,70383
25	450825	75.0066	17.3686	67.17641
55	.1193939	75,0066	17.3686	77,0803
50	069438	75.0066	17.3686	73.80056
52	36397	75.0066	17.3686	68,68495

Transform	m Values :	Group AB		
	S Value	α ΄	β	T Value
129	.3481293	35.1074		40,26981
	411571	35.1074	14.829	29.00421
135	067219	35.1074	14.829	34,11061
	19877	35,1074	14.829	32.15984
108	284868	35.1074	14.829	30.88309
71	.5248191	35.1074	14.829	42.88994
142	.0030221	35.1074	14.829	35.15222

Transform Values : Group BC

No.	<u>S Value</u>	α	β	<u>T Vālue</u>
41	.8063284	64.0226	14.3674	75.60744
59	091712	64.0226	14.3674	62.70493
88	2047	64.0226	14.3674	61.08159
26	2047	64.0226	14.3674	61.08159
31	370449	64.0226	14.3674	58.7002

Transform Values : Group ĆD

<u>No.</u>	<u>S Value</u>	α	β	<u>l Value</u>
40	308926	87.507		82,632
23	846831	87,507	15.7805	74.14358
10	1.35397	87,507	15.7805	108.8733

Appendix E

Independent	Variables	with	Transform	Values	
No.	PER	<u>ESS</u>	CS	TIME	T Value
1	100	100	100	100	168,8168
2	100	100	100	60	91.77639
3	100	100	100	20	91,19921
4	100	100	60	100	86.22817
5 6	100	100	60	60	80.49886
7	100	100	60	20	75.49974
8	100	100	20	100	78.65673
9	100 100	100	20	60	72.1731
10	100	100 80	20	20	65.58188
, 11	100	80	100 100	100	108.8733
12	100	80	100	60 20	78.74514
13	100	80	60	100	76.25953 87.3344
14	100	80	60	60	81.70383
15	100	80	60	20	67,92661
16	100	80	20	100	71.41667
17	100	80	20	60	69.90575
18	100	80	20	20	59.46576
19	100	60	100	100	81.04743
20	100	60	100	60	75.11013
21	100	60	100	20	69,81898
22	100	60	60	100	76.99394
23	100	60	60	60	74.14358
24	100	60	60	20	62.39591
25	100	60	20	100	67.17641
26	100	60	20	60	61.08159
27	100	60	20	20	57.73596
28	100	40	100	100	62,40826
29	100	40	100	60	60.32532
30	100	40	100	20	53,80129
31	100	40	60	100	58.7002
32	100	40	60	60	56,35603
33	100	40	60	20	45.28243
34 35	100	40	20	100	50.3655
36	100	40	20		53.25869
37	100 75	40	20		42,21284
38	75	100 100	100 100		82,51573
39	75	100	100		137.0519 74.17359
40	75	100	60	100	82.632
41	75	100	60	60	75.60744
42	75	100	60	20	67.20006
43	75	100	20		68,53893
44	7 5	100	20	60	69.15945
45	75	100	20	20	
46	75	80	100	100	
47	75	80	100		79,34087
48	75	80	100		69.28654

49 75 80 60 100 79.74343 50 75 80 60 60 73.80056 51 75 80 60 20 100 68.68495 53 75 80 20 60 64.74091 54 75 80 20 20 50.80739 55 75 60 100 100 77.0803 56 75 60 100 60 70.29297 57 75 60 100 20 65.7839 58 75 60 60 100 68.50253 59 75 60 60 100 68.50253 59 75 60 60 100 66.270493 60 75 60 60 20 100 65.69302 62 75 60 20 100 65.69302 60 55.44878 63 75 40	No.	PER	ESS	CS	TIME T Value
50 75 80 60 20 63.88066 51 75 80 20 100 68.68495 53 75 80 20 60 64.74091 54 75 80 20 20 50.80739 55 75 60 100 100 77.0803 56 75 60 100 20 65.7839 58 75 60 100 20 65.7839 58 75 60 60 60 62.70493 60 75 60 60 20 53.79175 61 75 60 60 20 53.79175 61 75 60 20 100 65.69302 62 75 60 20 100 65.44878 63 75 40 100 100 60.55.44878 64 75 40 100 20 49.93147	49	7 5	80	60	
51 75 80 20 100 68.68495 52 75 80 20 100 68.68495 53 75 80 20 60 64.74091 54 75 80 20 20 50.80739 55 75 60 100 100 77.0803 56 75 60 100 60 70.29297 57 75 60 100 20 65.7839 58 75 60 60 60 62.70493 60 75 60 60 20 53.79175 61 75 60 20 100 65.69302 62 75 60 20 40 58.14918 63 75 60 20 40 58.14918 64 75 40 100 60 63.31322 66 75 40 100 60 63.31322 <tr< td=""><td>50</td><td>75</td><td>80</td><td>60</td><td></td></tr<>	50	75	80	60	
52 75 80 20 60 64.74091 54 75 80 20 60 64.74091 55 75 80 20 20 50.80739 55 75 60 100 60 77.0803 56 75 60 100 60 77.0803 58 75 60 100 68.50253 59 75 60 60 100 68.50253 59 75 60 60 20 53.79175 61 75 60 20 100 65.69302 62 75 60 20 100 55.69302 62 75 60 20 20 58.14918 64 75 40 100 100 60.55858 65 75 40 100 20 49.93147 67 75 40 100 20 49.93147 67 <td>51</td> <td>75</td> <td>80</td> <td></td> <td></td>	51	75	80		
53 75 80 20 20 50.80739 54 75 80 20 20 50.80739 55 75 60 100 100 77.0803 56 75 60 100 60 70.29297 57 75 60 100 20 65.7839 58 75 60 60 100 68.50253 59 75 60 60 60 62.70493 60 75 60 60 20 53.79175 61 75 60 20 100 65.69302 62 75 60 20 100 55.44878 63 75 60 20 20 58.14918 64 75 40 100 100 60.05888 65 75 40 100 20 49.93147 67 75 40 100 20 49.79199 <	52	75	80		
54 75 80 20 20 50.80739 55 75 60 100 100 77.0803 56 75 60 100 20 65.7839 58 75 60 60 60 65.7839 58 75 60 60 60 62.70493 60 75 60 60 60 52.79175 61 75 60 20 100 65.69302 62 75 60 20 60 55.44878 63 75 60 20 20 58.14918 64 75 40 100 100 60.05858 65 75 40 100 20 49.93147 67 75 40 100 20 49.93147 67 75 40 100 20 49.79193 70 75 40 60 20 47.79193	53	75	80		
55 75 60 100 100 77,0803 56 75 60 100 60 70,29297 57 75 60 100 20 65,7839 58 75 60 60 100 68,50253 59 75 60 60 60 62,70493 60 75 60 60 20 100 65,69302 61 75 60 20 100 65,69302 62 75 60 20 20 58,14918 64 75 40 100 100 60,05858 65 75 40 100 20 49,93147 67 75 40 100 20 49,93147 67 75 40 100 20 49,93147 67 75 40 100 20 53,3382 68 75 40 20 100 52,7563	54	75	80		
\$6 75 60 100 60 70.29297 \$7 75 60 100 20 65.7839 \$8 75 60 60 100 68.50253 \$9 75 60 60 60 20.79175 \$61 75 60 20 100 65.69302 \$62 75 60 20 60 55.44878 \$63 75 60 20 20 58.14918 \$64 75 40 100 100 60.5588 \$65 75 40 100 100 60.331322 \$66 75 40 100 20 49.93147 \$67 75 40 100 20 49.93147 \$67 75 40 100 20 49.93147 \$67 75 40 60 100 53.65352 \$68 75 40 20 100 52.75637	55	75	60	100	
57 75 60 100 20 65.7839 58 75 60 60 100 68.50253 59 75 60 60 60 62.70493 60 75 60 60 20 53.79175 61 75 60 20 100 65.69302 62 75 60 20 60 55.44878 63 75 60 20 20 58.14918 64 75 40 100 100 60.05858 65 75 40 100 20 49.93147 67 75 40 100 20 49.93147 67 75 40 60 100 53.65352 68 75 40 100 20 47.79199 70 75 40 20 20 38.84512 73 60 100 100 100 52.75637		75	60	100	
58 75 60 60 100 68.50253 59 75 60 60 20 53.79175 61 75 60 20 100 65.69302 62 75 60 20 100 65.69302 62 75 60 20 20 58.14918 64 75 40 100 100 60.05858 65 75 40 100 20 49.93147 67 75 40 100 20 49.93147 67 75 40 60 100 53.65352 68 75 40 60 20 47.79199 70 75 40 60 20 47.79199 70 75 40 20 60 42.88994 72 75 40 20 60 42.88994 72 75 40 20 20 38.84512 <t< td=""><td></td><td>75</td><td>60</td><td>100</td><td></td></t<>		75	60	100	
60				60	
61					60 62.70493
62 75 60 20 60 55.44878 63 75 60 20 20 58.14918 64 75 40 100 100 60.05858 65 75 40 100 20 49.93147 67 75 40 60 100 53.65352 68 75 40 60 20 47.79199 69 75 40 60 20 47.79199 70 75 40 20 100 52.75637 71 75 40 20 100 52.75637 71 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 44.4767 75 60 100 100 60 64.44767 75 60 100 60 64.44767					20 53.79175
63					100 65.69302
64 75 40 100 100 60.05858 65 75 40 100 60 63.31322 66 75 40 100 20 49.93147 67 75 40 60 100 53.65352 68 75 40 60 20 47.79199 70 75 40 20 100 52.75637 71 75 40 20 60 42.88994 72 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 44.4767 75 60 100 100 60 44.4767 75 60 100 60 60 44.4767 75 60 100 60 60 64.35323					
65 75 40 100 60 63.31322 66 75 40 100 20 49.93147 67 75 40 60 100 53.65352 68 75 40 60 60.54.38094 69 75 40 60 20.47.79199 70 75 40 20 100.52.75637 71 75 40 20 60.42.88994 72 75 40 20 20.38.84512 73 60 100 100 100.72.57184 74 60 100 100 60.448688 76 60 100 100 60.48688 76 60 100 60 60.48868 76 60 100 60 60.4899 79 60 100 60 60.4899 79 60 100 20 100.61.8774 80 60 100					
66 75 40 100 20 49.93147 67 75 40 60 100 53.65352 68 75 40 60 60 54.38094 69 75 40 60 20 47.79199 70 75 40 20 100 52.75637 71 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 100 20 60.48688 76 60 100 60 100 69.98062 77 60 100 60 100 69.98062 77 60 100 60 60.43532 78 60 100 60 60.435323 78 60 100 20 100 61.87744 80 60 100 20 55.95325<					
67 75 40 60 100 53.65352 68 75 40 60 60 54.38094 69 75 40 60 20 47.79199 70 75 40 20 100 52.75637 71 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60.444767 75 60 100 100 60.48688 76 60 100 60 60.48688 76 60 100 60 60.435323 78 60 100 60 60.64.35323 78 60 100 60 60.6899 79 60 100 20 100 61.87744 80 60 100 20 55.95325					
68 75 40 60 60 54.38094 69 75 40 60 20 47.79199 70 75 40 20 100 52.75637 71 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 100 20 60.48688 76 60 100 60 60 64.35323 78 60 100 60 60 69.98062 77 60 100 60 60 64.35323 78 60 100 20 100 61.88744 80 60 100 20 60.56.15524 81 60 100 20 55.95325 82					
69 75 40 60 20 47.79199 70 75 40 20 100 52.75637 71 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 60 100 69.98062 76 60 100 60 100 69.98062 77 60 100 60 100 69.98062 77 60 100 60 100 69.98062 77 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 55.95325 82 60 80 100 100 67.24814					
70 75 40 20 100 52.75637 71 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 60 100 69.98062 76 60 100 60 100 69.98062 77 60 100 60 100 69.98062 77 60 100 60 20 60.48689 79 60 100 60 20 60.4899 79 60 100 20 100 61.87744 80 60 100 20 60 56.15524 81 60 100 20 20 55.95325 82 60 80 100 60 65.08207 84 60 80 100 60 59.34884 87 60 80 60 100					
71 75 40 20 60 42.88994 72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 60 100 69.98062 77 60 100 60 60.48688 76 60 100 60 60.435323 78 60 100 60 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60.6899 79 60 100 20 60.56.15524 81 60 100 20 60.56.15524 81 60 100 20 20.55.95325 82 60 80 100 60.59.34844 83 60 80 100 60.35755 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
72 75 40 20 20 38.84512 73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 100 20 60.48688 76 60 100 60 100 69.98062 77 60 100 60 60.6899 79 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60.56.15524 81 60 100 20 60.56.15524 81 60 80 100 100.67.24814 83 60 80 100 20.55.95325 85 60 80 100 20.56.53528 85 60 80 60 100.66.35755 86 60 80 60 20.66.03019					· · · · · · · · · · · · · · · · · · ·
73 60 100 100 100 72.57184 74 60 100 100 60 64.44767 75 60 100 100 20 60.48688 76 60 100 60 100 69.98062 77 60 100 60 60 64.35323 78 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60 56.15524 81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 <td></td> <td></td> <td></td> <td></td> <td>-</td>					-
74 60 100 100 60 64.44767 75 60 100 100 20 60.48688 76 60 100 60 100 69.98062 77 60 100 60 60 64.35323 78 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60 56.15524 81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 60 65.08207 84 60 80 60 100 66.35755 86 60 80 60 100 66.35755 86 60 80 20 60 52.24907 <td></td> <td></td> <td></td> <td></td> <td></td>					
75 60 100 100 20 60.48688 76 60 100 60 100 69.98062 77 60 100 60 60 69.98062 78 60 100 60 60 64.35323 78 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60 56.15524 81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 20 66.03019 88 60 80 20 100 61.08159 <td></td> <td></td> <td></td> <td></td> <td></td>					
76 60 100 60 100 69.98062 77 60 100 60 60 64.35323 78 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60.56.15524 81 60 100 20 20.55.95325 82 60 80 100 100.67.24814 83 60 80 100 60.50.8207 84 60 80 100 20.56.53528 85 60 80 60 100.66.35755 86 60 80 60 100.66.35755 86 60 80 60 20.66.03019 88 60 80 20 100.61.08159 89 60 80 20 60.52.24907 90 60 80 20 60.52.24907 90 60					
77 60 100 60 60 64.35323 78 60 100 60 20 60.6899 79 60 100 20 100 61.87744 80 60 100 20 60.56.15524 81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 60.65.35755 86 60 80 60 100 60.37755 86 60 80 60 100 61.08159 89 60 80 20 100 61.08159 89 60 80 20 60.52.24907 90 60 80 20 60.52.24907 90 60 80 20 60.59.75902 93 60 60 100 60.59.75902 93 60 60 60 100 60.34027 96 60 60 60 60 20 48.26603 97 60 60 60 20 60.66704 98 60 60 20 60.66704					
78 60 100 60 20 60,6899 79 60 100 20 100 61,87744 80 60 170 20 60 56,15524 81 60 100 20 20 55,95325 82 60 80 100 100 67,24814 83 60 80 100 60 65,08207 84 60 80 100 20 56,53528 85 60 80 60 100 66,35755 86 60 80 60 100 66,35755 86 60 80 60 20 66,03019 88 60 80 60 20 66,03019 88 60 80 20 100 61,08159 89 60 80 20 100 61,08159 89 60 80 20 60 52,24907 90 60 80 20 60 52,24907 91 60 60 100					
79 60 100 20 100 61.87744 80 60 100 20 60 56.15524 81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 100 66.35755 86 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 100 61.08159 89 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415					
80 60 100 20 60 56.15524 81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 60 59.34884 87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 100 61.08159 89 60 80 20 20 48.17415 91 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 20 54.44763 94 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 20 48.26603					
81 60 100 20 20 55.95325 82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 60 59.34884 87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 20 48.26603 97 60 60 20 100 60.66704	80	60			
82 60 80 100 100 67.24814 83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 60 59.34884 87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562	81	60	100		
83 60 80 100 60 65.08207 84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 60 59.34884 87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562		60	80	100	
84 60 80 100 20 56.53528 85 60 80 60 100 66.35755 86 60 80 60 60 59.34884 87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562		60	80	100	
86 60 80 60 60 59.34884 87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 60 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562	84	60	80	100	20 56.53528
87 60 80 60 20 66.03019 88 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 €9 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					100 66.35755
88 60 80 20 100 61.08159 89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 €0 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
89 60 80 20 60 52.24907 90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 €0 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
90 60 80 20 20 48.17415 91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 €9 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
91 60 60 100 100 66.88625 92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
92 60 60 100 60 59.75902 93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 60 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
93 60 60 100 20 54.44763 94 60 60 60 100 62.86566 95 60 60 60 60 60.34027 96 €0 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
94 60 60 60 100 62.86566 95 60 60 60 60.34027 96 €0 60 60 20.48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
95 60 60 60 60 60.34027 96 € 9 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
96 €9 60 60 20 48.26603 97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
97 60 60 20 100 60.66704 98 60 60 20 60 49.57562					
98 60 60 20 60 49.57562					

No.	PER	ESS	cs	TIME T Value
100	60	40	100	100 61.76083
101	60	40	100	60 48,88594
102	60	40	100	20 48.27803
103	60	40	60	100 53.849
104	60	40	60	60 45.91586
105	60	40	60	20 40.32639
106	60	40	20	100 48.29502
107	60	40	20	60 43.79192
108	60	40	20	20 30.88309
109	40	100	100	100 53.21371
110	40	100	100	60 50.3655
111	40	100	100	20 45.48661
112	40	100	60	100 47.15747
113	40	100	60	60 43.11774
114	40	100	60	20 43.32189
115	40	100	20	100 52.35515
116	40	100	20	60 40.24103
117	40	100	20	20 34.35213
118	40	80	100	100 57,36122
119	40	80	100	60 48.23014
120	40	80	100	20 42.55877
121	40	80	60	100 49.27614
122	4 0	80	60	60 47.43551
123	40	80	60	20 42.71662
124	40	80	20	100 41.89422
125	40	80	20	
126	40	80	20	
127	4 0	60	100	
128	40	60	100	100 49.29135 60 43.68817
129	40	60	100	
130	40	60	60	
131	40	60	60	100 45.45999 60 38.85084
132	40	60	60	
133	40	60	20	
134	40	60	20	
135	40	60	20	60 32.15984 20 34.11061
136	40	40	100	100 41.4332
137	40	40	100	
138	40	40	100	60 36.72931 20 28.822
139	40	40	60	100 41,66463
140	40	40	60	60 31,93349
141	40	40	60	20 33,56759
142	40	40	20	100 35.15222
143	40	40	20	60 29.45031
144	40	40	20	20 29.01612
A 3 7	40	4 .0	20	20 29.01612

Appendix F : Regression Analysis

Y = PER ESS CS TIME

ANALYSIS OF VARIANCE

SOURCE	DF	SUM OF SOLVARES	Mean Square	f value	PROB)F
MODEL	4	38651.26463	9662.81616	102.093	0.0001
error	139	13156.00301	9 4.6475 0365		
C TOTAL	143	51807.26763			
ROOT	MSE	9.728695	R-SQUARE	0.7461	
DEF	MEAN	59.28338	ADJ R-SQ	0.7388	
€.٧.		16.41049			

PARAMETER ESTIMATES

VARIABLE	DF	PARAMETER ESTIMATE	standard Error	T FOR HO: PARAMETER=()	PROB > (T)
INTERCEP	1	-24.0766	4.24400338	-5.673	0.0001
PER	1	0.52750273	0.0370164	14.251	0.0001
ES S	1	0.37383196	0.03625671	10.311	0.0001
CS	1	0.18371308	0.02 48 2327	7 .4 01	0.0001
TIME	1	0.16505237	0.0 248 2327	6-649	0.0001

Y = PER-5 ESS-5 CS-5 TIME-5

ANALYSIS OF VARIANCE

		SUM OF	Mean		
SOURCE	DF	SOUARES	SQUARE	F VALUE	PROB>F
MODEL	4	39334.27497	98 33 .56 87 4	109.586	0.0001
error	139	12472.99267	89.73376020		
C TOTAL	143	51807.26763			
R00T	MSE	9.472791	R-SQUARE	0 .759 2	
DEP	MEAN	59.28 338	adj R-Sg	0.7523	
C.V.		15 .9788 3			

PARAMETER ESTIMATES

VARIABLE	DF	Parameter Estimate	standard Error	t for ho: Parameter=0	PROB > ITI
INTERCEP	1	-100.187	7.73187109	-12.958	0.0001
PER. 5	1	8.76339187	0.58944560	14.867	0.0001
ESS.5	1	6.15138874	0.57627114	10.674	0.0001
CS.5	i	2.62557710	0.34782866	7 .54 8	0.0001
TIME-5	1	2.36900314	0.34782866	6.811	0.0001

Y = Ln(PER) Ln(ESS) Ln(CS) Ln(TIME)

ANALYSIS OF VARIANCE

SOURCE	DF	Sun of Squares	nean Sguare	f value	PROB>F
MODEL Error E Total	4 139 143	39532.83990 12274.42774 51807.26763	9883.20997 88.30523551	111.921	0.0001
RO OT DEP C.V.		9.397087 59.28338 15.65113	r-square adj r-sq	0.7631 9.7 56 3	

PARAMETER ESTIMATES

VARIABLE	DF	Parameter Estimate	Standard Error	t for ho: Parameter=0	PROB > (T)
INTERCEF	1	-256.949	15.14136285	-16.970	0.0001
LIPER	1	35.41797105	2.33951521	15.139	0.0001
LnESS	1	24.68773111	2 .285 762 2 5	10.801	0.0001
LnCS	1	8.72121552	1.16618504	7.478	0.0001
LnTIME	1	7.90198270	1.16618504	6.776	0.0001

Y = PER-5 ESS-5 CS TIME

ANALYSIS OF VARIANCE

SOURCE	DF	SUM OF SBUARES	nean Souare	F VALUE	PROB F
ERF. 36	139	39427,25805 12380,00958 51807,26763	9856, 81451 89, 96481712	119.670	0.0001
	MESAN	9,437416 59,28338 15,91916	R-SQUARE AGC R-SQ	0.7610 0.7542	

PARAMETER ESTIMATES

VAFIABLE	ĢF	PARAMETER ESTIMATE	standard Error	T FOR HG: PARAMETER≕)	PROB - (T)
INTERCER		-84.1274	7.09493851	-11.85	0.(60)
pgg . 5	1	8.76339187	0.58724441	14.923	0.0001
ESS.5	1	6.15138874	0.57411914	16.714	0.0001
CE	1	0.18371308	0 . 02 408 008	7.629	0.0001
TIME	:	0.16505117	0.02408005	5.854	0,0001

Appendix G: Stepwise Regression with Maximized R Square

Y = PER ESS CS TIME X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

where X1 = PERTESS
X2 = PERTCS
X3 = PERTTIME
X4 = ESSTCS

X5 = ESSATINE X6 = CSATINE

 $\lambda 7 = PER^2$

18 = ESS2

19 = CS2

XI(= TIME2

MAXIMUM R-SQUARE IMPROVEMENT FOR DEPENDENT VARIABLE

STEP ! VARIABLE X1 ENTERED R SQUARE = 0.58395220 C(P) = 205.35800836

	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB)F
REGRESSION ERROR TOTAL	1 142 143	30252.96783106 21554.29980352 51807.26763458	30252.96783106 151.79084369	199.31	0.0001
	B VALUE	STD ERROR	TYPE II SS	F	PROB)F
INTERCEPT X1	27.94235146 0.00651242	0.00046130	30252.96783106	199.31	0.0001

BOUNDS ON CONDITION NUMBER: 1,
THE ABOVE MODEL IS THE BEST 1 VARIABLE MODEL FOUND.

STEP 2	/ariable X6 en	(TERED)	R SQUARE = 0.7 C(P) = 65.9		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB/F
REGRESSION	_		19539.29907276	216.44	0.0001
error	141	12728.66948907	90.27425170		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROB)F
INTERCEPT	18.45129524				
X1	0.00651242	0.00035575	30252.96783106	335.12	0.0001
Xó	0.00263540	0.00026664	8825.63031445	97.76	0.0001
	ONDITION NUMB ODEL IS THE B	er: 1 Est 2 variable	, 4 MODEL FOUND.		
STEP 3 V	ariable X2 en	TERED	R SQUARE = 0.7 C(P) = 51.0		
STEP 3 V				2243390	PROE≻F
REGRESSION	D F	SUM OF SQUARES	C(P) = 51.0	2243390	
REGRESSION ERROR	DF 3 140	SUM OF SQUARES	C(P) = 51.0 MEAN SQUARE 13378.30774929	2243390 F	
REGRESSION	D F	SUM OF SQUARES 40134.92324786	C(P) = 51.0 MEAN SQUARE 13378.30774929	2243390 F	
REGRESSION ERROR	DF 3 140 143	SUM OF SQUARES 40134.92324786 11672.34438671 51807.26763458	C(P) = 51.0 MEAN SQUARE 13378.30774929	2243390 F 160.46	
REGRESSION ERROR TOTAL	DF 3 140 143	SUM OF SQUARES 40134.92324786 11672.34438671 51807.26763458 STD ERROR	C(P) = 51.0 MEAN SQUARE 13378.30774929 83.37388848	2243390 F 160.46	0.0001
REGRESSION ERROR TOTAL INTERCEPT X1	DF 3 140 143 B VALUE	SUM OF SQUARES 40134.92324786 11672.34438671 51807.26763458 STD ERROR 0.00037328	C(P) = 51.0 MEAN SQUARE 13378.30774929 83.37388848 TYPE II SS 21390.96284068	2243390 F 160.46 F	0.0001 PR08⊁
REGRESSION ERROR TOTAL INTERCEPT X1 X2	DF 3 140 143 B VALUE 17.96432659 0.00597905 0.00131143	SUM OF SQUARES 40134.92324786 11672.34438671 51807.26763458 STD ERROR 0.00037328 0.00036844	C(P) = 51.0 MEAN SQUARE 13378.30774929 83.37388848 TYPE II SS 21390.96284068 1056.32510235	2243390 F 160.46 F	0.0001 PR08⊁
REGRESSION ERROR TOTAL INTERCEPT X1	DF 3 140 143 B VALUE 17.96432659 0.00597905	SUM OF SQUARES 40134.92324786 11672.34438671 51807.26763458 STD ERROR 0.00037328 0.00036844	C(P) = 51.0 MEAN SQUARE 13378.30774929 83.37388848 TYPE II SS 21390.96284068	2243390 F 160.46 F 256.57	0.0001 PR08:F 0.0001 0.0005

STEP 3 X	S REPLACED BY	TIME	R SQUARE = 0.79 C(P) = 36.73		
	DF	SUM OF SQUARES	MEAN SOUARE	f	PROBE
REGRESSION	3	41026.34527227	13675.44842409	177.59	0.0001
ERMOR			77.006 588 30		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROB/F
INTERCEPT	12 .27045 070				
TIME	0.16505237	0.02239073	4184, 41480922	54.34	0.0001
X1			18665.34099329		
X2	0.00266124	0.00028770	6588.96263199	85.56	0.0001
BOUNDS ON C	ONDITION NUMB	ER: 1.126826	9.760956		
THE ABOVE M	ODEL IS THE B	EST 3 VARIABLE	MODEL FOUND.		
STEF 4 V	ARIABLE 17 EN	TERED	R SQUARE = 0.75 C(P) = 36.49		
	DF	SUM OF SQUARES	MEAN SOUARE	F	PROB>F
REGRESSION	4	41166.66685635	10291.66671409	134.44	0.0001
ERROR	139	10640,60077823	76.55108474		
TOTAL	14]	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROBX
INTERCEPT	12.22315515				
TIME	0.16505237	0.02232441	4184.41480922	54.66	0.0001
			12873.11591044		
	0.00281511	0.00030 8 54	6372 .54 27 <i>3</i> 5 59	8 3.25	0.0001
¥7					
^ ′	-0.00046685	0.00034482	140.32158408	1.83	0 .178 0

	DF	SUM OF SQUARES	Hean Square	F	PROB >F
REGRESSION	4	41774.81488157	10443.70372039	144.70	0.0001
error	139	10032.45275301	72.17591909		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROB)F
INTERCEPT	17.47625710				
X1	0.00577950	0.00043529	12723.82009850	176.29	0.0001
12		0.0002 99 60		87 .4 5	0.0001
X3	0.00244135		4792.56283444	66.40	0.0001
χ7	-0.00146632	0.00035658	1220.50308158	16.91	0.0001
		ER: 2.456881 EST 4 VARIABLE			
THE ABOVE IN		est 4 variable		291993	
THE ABOVE IN	DEL IS THE B	est 4 variable	MODEL FOUND.		
THE ABOVE IN	ODEL IS THE B	est 4 variable ntered	MODEL FOUND. R SQUARE = 0.82	277 4 37	PROB∍f
THE ABOVE IN	DEL IS THE B PRIABLE PER E DF	est 4 variable ntered	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE	277 4 37	
the above in Step 5 - W Regression	DEL IS THE B PRIABLE PER E DF 5	est 4 variable Intered Sum of Squares	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129	277 4 37	
The above in Step 5 vi Regression Error	DEL IS THE B PRIABLE PER E DF 5	est 4 variable ntered Sum of squares 42633.23300644	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129	277 4 37	
THE ABOVE M	DEL IS THE B PRIABLE PER E DF 5 138	EST 4 VARIABLE NTERED SUM OF SQUARES 42633.23300644 9174.03462813 51807.26763458	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129	277 4 37	
The above in STEP 5 - W REGRESSION ERROR TOTAL	DEL IS THE B WRIABLE PER E DF 5 138 143	SUM OF SQUARES 42633.23300644 9174.03462813 51807.26763458 STD ERROR	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129 66.47851180	277437 F 128.26	0.0001
The above in STEP 5 - W REGRESSION ERROR TOTAL	DEL IS THE B PRIABLE PER E DF 5 138 143 6 VALUE	SUM OF SQUARES 42633.23300644 9174.03462813 51807.26763458 STD ERROR	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129 66.47851180 TYPE II SS	277437 F 128.26	0.0001
THE ABOVE M STEP 5 VA REGRESSION ERROR TOTAL INTERCEPT PER	DEL IS THE B ARIABLE PER E DF 5 138 143 6 VALUE -9.00909821	EST 4 VARIABLE NTERED SUM OF SQUARES 42633.23300644 9174.03462813 51807.26763458 STD ERROR 0.23346026	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129 66.47851180 TYPE II SS	277437 F 128.26 F	0.0001 PROB>F
THE ABOVE IN STEP 5 VI REGRESSION ERROR TOTAL INTERCEPT PER A1	DEL IS THE B PRIABLE PER E DF 5 138 143 6 VALUE -9.00909821 0.83892233	EST 4 VARIABLE NTERED SUM OF SQUARES 42633.23300644 9174.63462813 51807.26763458 STD ERROR 0.23346026 0.00042113	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129 66.47851180 TYPE II SS 858.41812488 11706.70677439	F 128.26 F 12.91 176.10 89.31	0.0001 PROB >F 0.0005 0.0001 0.0001
THE ABOVE IN STEP 5 VI REGRESSION ERROR TOTAL	DEL IS THE B ARIABLE PER E DF 5 138 143 B VALUE -9.00909821 0.83892233 0.00558841	EST 4 VARIABLE NTERED SUM OF SQUARES 42633.23300644 9174.63462813 51807.26763458 STD ERROR 0.23346026 0.00042113 0.00028833	MODEL FOUND. R SQUARE = 0.82 C(P) = 14.99 MEAN SQUARE 8526.64660129 66.47851180 TYPE II SS 858.41812488 11706.70677439	F 128.26 F 12.91 176.10	0.0001 PROB >F 0.0005 0.0001 0.0001

THE ABOVE MODEL IS THE BEST 5 VARIABLE MODEL FOUND.

STEP 6	variable XB e	NTERED	R SQUARE = 0.82 C(P) = 13.77		
	DF	SUM OF SQUARES	MEAN SOUARE	F	PROB)#
REGRESSION	1 6	42833.93074156	71 38.98845 693	108.99	0,0001
ERROR	137	8973.33689 302	65.49880944		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROBX
INTERCEPT	-2,82567269	Press RETURN to	continue		
PER	0.69073566			7.84	0.0059
11	0.00770537	0.00127957	2375.16648694	36.26	0.0001
42	0.00272486		5937.52000 98 5	90.65	0.0001
X3	0.00236458	0.00028619	4471.19067232	68.26	0.0001
X ?	-0.00715901	0.00160875	1297.06583067	19.80	0.0001
x 8	-0.00114508	0.00065416	200.69773511	3.06	0 .08 23
BOUNDS ON	CONDITION NUMB	ER: 64.1903	. 894.7263		
THE AROVE	MODEL IS THE B	est 6 variable	MODEL FOUND.		
STEP 7	variable 14 en	TERED	R SQUARE = 0.83 C(P) = 11.87		
			U(F) - 11.0/	730733	
	DF	SUM OF SQUARES	HEAN SQUARE	F	PROB)F
REGRESSION		43077.30725661	6153.90103666	95.8 7	0.0001
error	136	B729.96037796	6 4. 190 88 513		
TOTAL	143	51807.26763458			
	8 VALUE	STD ERROR	TYPE II SS	F	PROB)F
INTERCEPT	-5 .6738492 0				
PER	0.7720 8 662	0.24778431	623.24356424	9.71	0.0022
X1	0.00755332	0.00126913	2273.71441659	35.42	0.0001
X2	0.00154640	0.00066825	343.74555911	5.36	0.0222
X3	0.00236458	0.00028332	4471.19067232	69.65	0.0001
X4	0.00127488	0.00065474	243.37651505	3.79	0.0536
x 7	-0.0071 59 01	0.00159261	1297.06583067	20.21	0.0001
X8	-0.00160921	0 .00069 007	349.07475904	5.44	0.0212
BOUNDS ON (CONDITION NUMBE	ER: 66.06861,	1159.122		

THE ABOVE MODEL IS THE BEST 7 VARIABLE MODEL FOUND.

Jie u	VARIABLE CS EM	(TERED	R SQUARE = 0.8 C(P) = 6.8		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB)F
REGRESSION	8	43512.85545759	5439.10693220	88.53	0.0001
ERROR		8294,41217699			******
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROB/F
INTERCEPT	5.15270737				
PER	0.68346315	0.24469150	479.34069822	7.80	0.0060
CS	-0.23942070	0.08992273	435.54820098	7.09	0.0087
X1	0.00736441	0.00124367	2154.36996611	35.06	0.0001
X2	0.0032 438 5	0.00091317	775.30396635	12.62	0.0005
X2		0.00027718		72.77	0.0001
X4			657.06471614	10.69	0.0014
X ?			1297.06583067	21.11	0.0001
18	-0.0021 858 1	0.00070901	583.9788 0788	9.50	0.0025
BOUNDS ON	EDNOTTION NUMB	ER: 67.31422	1611.276		
THE ABOVE	MODEL IS THE B	est 8 variable i	100EL FOUND.		
STEP 9	VARIABLE 16 EN	TERED	R SQUARE = 0.8- C(P) = 7.0		
			UNI - 1.0.	1632414	
	DF	SUM OF SQUARES	MEAN SQUARE		PROB)F
REGRESSION				F	
REGRESSION ERROR	9		MEAN SQUARE 4847.40018434	F	
error	9 134	43626.60165902	MEAN SQUARE 4847.40018434	F	
error	9 134 143	43626.60165902 8180.66597555 51807.26763458	MEAN SQUARE 4847.40018434	F	0.0001
error Total	9 134 143	43626.60165902 8180.66597555 51807.26763458	MEAN SQUARE 4847.40018434 61.04974609	F 79.40	0.0001
error Total	9 134 143 B VALUE 5.15270737	43626.60165902 8180.66597555 51807.26763458 STD ERROR	MEAN SQUARE 4847.40018434 61.04974609 TYPE II SS	F 79.40 F	0.0001 PRDB/F
ERROR TOTAL INTERCEPT	9 134 143 B VALUE	43626.60165902 8190.66597555 51807.26763458 STD ERROR 0.24522620	MEAN SQUARE 4847.40018434 61.04974609 TYPE II SS 523.44300199	F 79.40 F 8.57	0.0001 PROBIF 0.0040
ERROR TOTAL INTERCEPT PER	9 134 143 B VALUE 5.15270737 0.71805817	43626.60165902 8180.66597555 51807.26763458 STD ERROR 0.24522620 0.09517333	MEAN SQUARE 4847.40018434 61.04974609 TYPE II SS 523.44300199 540.11149072	F 79.40 F 8.57 8.85	0.0001 PROBIF 0.0040 0.0035
ERROR TOTAL INTERCEPT PER CS	9 134 143 B VALUE 5.15270737 0.71805817 -0.28308381	43626.60165902 8190.66597555 51807.26763458 STD ERROR 0.24522620	MEAN SQUARE 4847.40018434 61.04974609 TYPE II SS 523.44300199	F 79.40 F 8.57 8.85 35.29	0.0001 PROBIF 0.0040 0.0035 0.0001
ERROR TOTAL INTERCEPT PER CS X1	9 134 143 B VALUE 5.15270737 0.71805817 -0.28308381 0.00736441	43626.60165902 8180.66597555 51807.26763458 STD ERROR 0.24522620 0.09517333 0.00123971	MEAN SQUARE 4847.40018434 61.04974609 TYPE II SS 523.44300199 540.11149072 2154.36996611	F 79.40 F 8.57 8.85	0.0001 PROBIF 0.0040 0.0035
ERROR TOTAL INTERCEPT PER CS X1 X2	9 134 143 B VALUE 5.15270737 0.71805817 -0.28308381 0.00736441 0.00324385	43626.60165902 B180.66597555 51807.26763458 STD ERROR 0.24522620 0.09517333 0.00123971 0.00091026	MEAN SQUARE 4847,40018434 61,04974609 TYPE II SS 523,44300199 540,11149072 2154,36996611 775,30396635	F 79.40 F 8.57 8.85 35.29 12.70	0.0001 PROBIF 0.0040 0.0035 0.0001 0.0005
ERROR TOTAL INTERCEPT PER CS X1 X2 X3	9 134 143 B VALUE 5.15270737 0.71805817 -0.28308381 0.00736441 0.00324385 0.00178799	43626.60165902 B180.66597555 51807.26763458 STD ERROR 0.24522620 0.09517333 0.00123971 0.00091026 0.00050475	MEAN SQUARE 4847,40018434 61,04974609 TYPE II SS 523,44300199 540,11149072 2154,36996611 775,30396635 766,05516881	F 79.40 F 8.57 8.85 35.29 12.70 12.55	0.0001 PROBYF 0.0040 0.0035 0.0001 0.0005 0.0005
ERROR TOTAL INTERCEPT PER CS X1 X2 X3 X4	9 134 143 B VALUE 5.15270737 0.71805817 -0.28308381 0.00736441 0.00324385 0.00178799 0.00285884	43626.60165902 8190.66597555 51807.26763458 STD ERROR 0.24522620 0.09517333 0.00123971 0.00091026 0.00050475 0.00087142	MEAN SQUARE 4847.40018434 61.04974609 TYPE II SS 523.44300199 540.11149072 2154.36996611 775.30396635 766.05516881 657.06471614	F 79.40 F 8.57 8.85 35.29 12.70 12.55 10.76	0.0001 PROBIF 0.0040 0.0035 0.0001 0.0005 0.0005
ERROR TOTAL INTERCEPT PER CS X1 X2 X3 X4 X6	9 134 143 B VALUE 5.15279737 0.71805817 -0.28308381 0.00736441 0.00324385 0.00178799 0.00285884 0.00072772	43626.60165902 8180.66597555 51807.26763458 STD ERROR 0.24522620 0.09517333 0.00123971 0.00091026 0.00050475 0.00087142 0.00053313	MEAN SQUARE 4847, 40018434 61, 04974609 TYPE II SS 523, 44300199 540, 11149072 2154, 36996611 775, 30396635 766, 05516881 657, 06471614 113, 74620143	F 79.40 F 8.57 8.85 35.29 12.70 12.55 10.76 1.86	0.0001 PROBEF 0.0040 0.0035 0.0001 0.0005 0.0005 0.0013 0.1745

STEP 10 VARIABLE X5 ENTERED		R SQUARE = 0.84300016 C(P) = 8.32433553			
	DF	SUM OF SQUARES	MEAN SOUARE	F	PROBXF
REGRESSION	10	43673.53472076	4367.35347208	71.41	0.0001
ERFOR	133	8133.73291381	61.155886 57		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROBYF
INTERCEPT	3,77404408				
PER	0.74791265	0.24779393	557.13277915	9.11	0,0030
CS	-0.27136678	0.09619046	486.72947276	7.96	0.0055
X:	0.00729676	0.00124319	2106,81389912	34.45	0.0001
X 2	0.00324385	0.00091105	775.30396635	12.68	0.0005
X 3	0.00136934	0.00069542	237.12140433	3.88	0.0510
14	0.00283229	0.00087270	644.13974214	10.53	0.0015
X5	0.00059374	0.00067777	46.93306174	0.77	0.3826
X6	0.00056341	0.00056560	60.68242734	0.99	0.3210
x 7	-0.00715901	0.00155450	1297.06583067	21.21	0.0001
18	-0.00239236	0.00074561	629.61169078	10.30	0.0017

BOUNDS ON CONDITION NUMBER: 69.35279, 2296.592

THE ABOVE MODEL IS THE BEST 10 VARIABLE MODEL FOUND.

STEP 11 V	ARIABLE TIME	ENTERED	R SQUARE = 0.84439023 C(P) = 9.17044843		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB/F
REGRESSION	11	43745.55050696	3976.86822791	65.12	0.0001
error:	132	8061.71712762	61.07361460		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROBXF
INTERCEPT	8.69998543				
PER	0.71435358	0.24954823	500.46196819	8.19	0.0049
CS	-0.28453776	0.09688794	526.73717 4 97	8.62	0.0039
TIME	-0.10520994	0.09688794	72.01578620	1.18	0.27 9 5
X1	0 .007228 73	0.00124393	2062.46137031	33.77	0.0001
12	0.00324385	0.00091044	775.3039 6 635	12.69	0.0005
x 3	0.0 0200 8 03	0.00091044	297.09280677	4.86	0.0291
14	0.00280559	0.00087246	631 .5488865 6	10.34	0.0016
X5	0.00119093	0.00087246	113.79740741	1.86	0.1746
Xo	0.00081408	0.00061054	108.58069829	1.78	0.18 4 7
X7	-0.00715901	0.00155346	1297.06583067	21.24	0.0001
18	-0.00260005	0.00076926	697.70288199	11.42	0.0010Press
BOUNDS ON CO	NDITION NUMBE	R: 70.43301,	2948.786		
THE ABOVE MO	DEL IS THE BE	ST 11 VARIABLE #	IODEL FOUND.		

ariable ess e	NTERED	r square = 0.84	4516 4 8	
		C(P) = 11.06	564422	
Ĭλε	SUM OF SQUARES	MEAN SQUARE	F	PROB)F
12	43752.09149146	3646.00762429	59.29	0.0001
131	8055.17614311	61.48989422		
143	51807.26763458			
B VALUE	STD ERROR	TYPE II SS	F	PROB >F
5.31113376				
0.72512213	0.25256466	506.85170454	8.24	0.0048
0.08463804	0 .25950 510	6.54098450	0.11	0.7448
-0.28031141	0.09807738	502.28191635	8.17	0.0050
-0.10098359) . 098 07738	65.18799166	1.06	0.3051
0.00707489	0.00133431	1728.74196674	28.11	0.0001
0.00324385	0.00091354	775.30396635	12.61	0.0005
0.00200803	0.00091354	297.09280677	4.83	0.0297
0.00274521	0 .00089479	578.77943242	9.41	0.0026
0.00113055	0.00089479	98.16224676	1.60	0.2087
0.00081408	0.00061262	108.58069829	1.77	0.1862
-0.00715901	0.00155874	1297.06583067	21.09	0.0001
-0.00306965	0.00163366	217.0 999 1573	3.53	0.0625
	DF 12 131 143 B VALUE 5.31113376 0.72512213 0.08463804 -0.28031141 -0.10098359 0.00707489 0.00324385 0.0020803 0.00274521 0.00113055 0.00081408 -0.00715901	12 43752,09149146 131 8055,17614311 143 51807,26763458 B VALUE STD ERROR 5.31113376 0.72512213 0.25256466 0.08463804 0.25950510 -0.28031141 0.09807738 -0.10098359 0.09807738 0.00707489 0.00133431 0.00324385 0.00091354 0.0020803 0.00091354 0.00274521 0.00089479 0.00113055 0.00089479 0.00081408 0.00061262 -0.00715901 0.00155874	C(P) = 11.06 NF SUM OF SQUARES MEAN SQUARE 12 43752.09149146 3646.00762429 131 8055.17614311 61.48989422 143 51807.26763458 B VALUE STD ERROR TYPE II SS 5.31113376 0.72512213 0.25256466 506.85170454 0.08463804 0.25950510 6.54098450 -0.28031141 0.09807738 502.28191635 -0.10098359 0.09807738 65.18799166 0.00707489 0.00133431 1728.74196674 0.00324385 0.00091354 775.30396635 0.00200803 0.00091354 297.09280677 0.00274521 0.00089479 578.77943242 0.00113055 0.00089479 98.16224676 0.00081408 0.00061262 108.58069829 -0.00715901 0.00155874 1297.06583067	DF SUM OF SQUARES MEAN SQUARE F 12 43752.09149146 3646.00762429 59.29 131 8055.17614311 61.48989422 59.29 143 51807.26763458 TYPE II SS F 5.31113376 0.72512213 0.25256466 506.85170454 8.24 0.08463804 0.25950510 6.54098450 0.11 -0.28031141 0.09807738 502.28191635 8.17 -0.10098359 0.09907738 65.18799166 1.06 0.00707489 0.00133431 1728.74196674 28.11 0.00324385 0.00091354 775.30396635 12.61 0.00200803 0.00091354 297.09280677 4.83 0.00274521 0.00089479 578.77943242 9.41 0.00013055 0.00089479 98.16224676 1.60 0.00081408 0.00061262 108.58069829 1.77 -0.00715901 0.00155874 1297.06583067 21.09

THE ABOVE MODEL IS THE BEST 12 VARIABLE MODEL FOUND.

BOUNDS ON CONDITION NUMBER: 78,85342, 4813.629

STEP 13 VI	ARIABLE XIG E	NTERED	f. SQUARE = 0.8	445815 0	
			C(P) = 13.0	1167435	
	DF	SUM OF SQUARES	MEAN SOLVARE	F	PROBJE
REGRESSION	13	43755.45982971	3365.80460229	54.34	0.0001
error	130	8051.80780487	61.93698311		
TOTAL	143	51807.26763458			
	B VALUE	STD ERROR	TYPE II SS	F	PROB/F
INTERCEPT	4.79743891				
PER	0.72512213	0.25348119	506.85170454	8.18	0.0049
ESS	0.08463804	0.26044681	6.54098450	0.11	0.7457
CS	-0.28031141	0 .0984 3330	502, 28191635	8.11	0.0051
TIME	-0.07665067	0 .143445 02	17.68524415	0 .29	0.5940
X 1	0.00707489	0.00133915	1728.74196674	27.91	0.0001
X 2	0.00324385	0.00091685	775.30396635	12.52	0.0006
X 3	0.00200803	0.00091685	297.092 8 0677	4.80	0.0303
14	0.00274521	0.00089804	578.77943242	9.34	0.0027
X 5	0.00113055	0.00089804	98.1622 4 676	1.58	0.2103
16	0.00081408	0.00061484	108.58069829	1.75	0.1878
x 7	-0.0071 59 01	0.00156446	1297.06583067	20.94	0.0001
18	-0.00306965	0.00163958	217.09991573	3.51	0.0634
X10	-0.00020277	0.00086952	3.36833824	0.05	0.8160

THE ABOVE MODEL IS THE BEST 13 VARIABLE MODEL FOUND.

BOUNDS ON CONDITION NUMBER: 78.85342, 5929.765

STEP 14 VARIABLE X9 ENTERED		TERED	R SQUARE = 0.84 C(P) = 15.00				
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROBXF		
REGRESSION Error	1 4 129	43756.18844331 8051.07919126	3125.44203167 62.41146660	50.08	0.0001		
TOTAL	143 51807.26763458Press RETURN to continue						
	B VALUE	STD ERROR	TYPE II SS	F	PROBXF		
INTERCEFT	5.03635533						
PER	0.72512213	0 .25445 026	506.85170454	8.12	0.0051		
ESS	0.08463804	0.26144252	6.54098450	0.10	0.7467		
ಜ	~0.29162850	0.14399342	255.999445 79	4. 10	0.0449		
TIME	~0.07665067	0.14399342	17.68524415	0.28	0.5954		
X1	0.00707489	0.00134427	1728.74196674	27.70	0.0001		
X2	0.00324385	0.00092036	775.303 966 35	12.42	0.0006		
X 3	0.00200 8 03	0.00092036	297.09280677	4.76	0.0309		
X4	0.00274521	0.00090147	578.77943242	9.27	0.0028		
X5	0.00113055	0.00090147	98.16224676	1.57	0.2121		
16	0.00081408	0.00061719	108.58069829	1.74	0.1895		
X 7	-0.00715901	0.00157038	1 297.06583 067	20.78	0.0001		

BOUNDS ON CONDITION NUMBER: 78.85342, 7155.9

ĮΒ

110 110 -0.00396965 0.00164585 217.09991573

0.00009431 0.00087285 0.72861361 -0.00020277 0.00087285 3.36833824

THE ABOVE MODEL IS THE BEST 14 VARIABLE MODEL FOUND.

3.48 0.0644 0.01 0.9141 0.05 0.8167

Appendix H : Residual Plot for 6 Variable Model

Bibliography

- 1. Crawford, Capt Paul M. <u>Dynamic Study of Factors Impacting on Combat Power</u>. MS thesis, Naval Post Graduate School, Monterey CA, March 1988.
- 2. Department of the Army. <u>Operations</u>. FM 100-5. Washington: HQ US Army, 20 August 1982.
- 3. Draper, N. R. and H. Smith. <u>Applied Linear Regression</u>. New York: John Wiley and Sons, 1981.
- 4. Etheridge, Elizabeth W. and Michael R. Anderson. <u>Criteria for Reconstitution of Forces</u>, September 1981. US Army Combined Arms Combat Developments Activity. Report Number TR 7-81. (AD All1803).
- 5. Kidder, Louise H. <u>Research Methods in Social Relations</u>. New York: Holt, Rhinehart and Wilson, 1981.
- 6. Kilmer, Capt Robert A. <u>The Generalized Value System and Future State Decision Making</u>. MS thesis, Naval Post Graduate School, Monterey CA, March 1986 (AD-A168446).
- 7. Lindsay, Glen F. On Constructing Interval Scales Using Data Resulting From Categorical Judgments. Unpublished report. Naval Post Graduate School, Monterey CA, September 1981.
- 8. VP-PLANNER. Paperback Software International. Berkeley, CA: 1986.
- 9. Schoenstadt, Arthur L. and Samuel H. Parry. <u>Toward an Axiomatic Generalized Value System</u>. Technical Report NPS-53-86-008. Naval Post Graduate School, Monterey CA, June 1985 March 1986.
- 10. WordPerfect 5.0. WordPerfect Corporation. Orem, Utah: 1988.
- 11. Zikmund, William G. <u>Business Research Methods</u>. Chicago: Dryden Press, 1984.

Captain J. Marc Le Gare

which he received the degree of Bachelor of Science in Operations Research in June 1981. Upon graduation, he received a commission in the United States Army. His first assignment was in the 1st Battalion 36th Infantry, Federal Republic Germany. During the period of January 1982 to December 1984, he held the positions of rifle platoon leader, rifle company executive officer, battalion S1, and headquarters company executive officer. In July 1985, Captain Le Gare was assigned to the 1st Battalion 31st Infantry, Republic of South Korea. During this tour of duty, he held the positions of battalion maintenance officer and rifle company commander. His subsequent assignment was to the School of Engineering, Air Force Institute of Technology, in August 1987.

REPORT (Form Approved OMB No. 0704-0188							
'a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE	MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited							
2b. DECLASSIFICATION DOWNGRADING SCHEDU								
4 PERFORMING ORGANIZATION REPORT NUMBE AFIT/GST/ENS/89M-11	5. MONITORING ORGANIZATION REPORT NUMBER(S)							
6a NAME OF PERFORMING ORGANIZATION School of Engineering	6b. OFFICE SYMBOL (If applicable) AFIT/ENS	7a. NAME OF MONITORING ORGANIZATION						
6c ADDRESS (City, State, and ZIP Code) Air Force Institute of T Wright Patterson AFB, OH	7b. ADDRESS (City, State, and ZIP Code)							
8a NAME OF FUNDING SPONSORING ORGANIZATION US Army Advisory Group	8b OFFICE SYMBOL (If applicable) AFIT/LSPA	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER						
8c. ADDRESS (City, State, and ZIP Code)	L	10. SOURCE OF	FUNDING NUME	BERS				
AFIT/LSPA Wright Patterson AFB, OH	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.				
SEE BLOCK 19 12. PERSONAL AUTHOR(S) J. Marc Le Gare CPT US Army 13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP COMPAND FERECOTIVENESS OPERATIONS RESEARCH								
04 15 06	04 SIMULATION, MATHEMATICAL ANALYSIS 15 06							
Title: A MULTIVARIATE MAPPING FUNCTION FOR COMBAT POWER APPRAISAL IN THE AIRLAND RESEARCH MODEL Thesis Chairman: Daniel Reyen, MAJOR US Army Instructor, Operations Research								
20 DISTRIBUTION, AVAILABILITY OF ABSTRACT UNCLASSIFIED/JUNLIMITED AMAE AS R	2 UNCLASS IF TED CLASSIFICATION							
22a NAME OF RESPONSIBLE INDIVIDUAL Daniel Reyen	22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL AFIT/ENS							
DD Form 1473. JUN 86	Previous editions are		CCCHOIZ	V CLASSISIO	ATION OF THIS PAGE			

BLOCK 19 CONTINUED:

Abstract

This thesis attempts to develop an equation, based on expert opinion, that models the appraisal of combat power. The motivation came from identifying a shortcoming in the assignment of combat power in the AirLand Research Model (ALARM). A link is needed to join the Basic Inherent Power (BIP) of a unit and its Adjusted Basic Inherent Power (ABIP). The ABIP is discounted portion of the BIP based on the current mission and status of the unit.

The unit and mission explored in this thesis was a mechanized infantry task force in the attack. The survey required combat arms officers to give categorical judgments on unit effectiveness, based on the state of the unit. Four state variables were used. 144 different unit profiles were generated and divided into four versions of the survey. Surveys were completed by students at the Army Combined Arms and Services Staff School and the Army War College. Responserate was approximately 80 %.

Survey responses were transformed to numerical values using an interval scaling technique. These values and the variable settings were used in regression analysis. The best fit model was used to develop the Unit Appraisal Function (UAF). The UAF can now link the BIP to the ABIP, based on the mission and status of the unit.