Cálculo Diferencial e Integral II E Aulas 10 e 11- Integração por Frações Parciais

Prof. Dr. Edward Landi Tonucci

25 de abril de 2022

7.4

Integração de Funções Racionais por Frações Parciais

Nesta seção mostraremos como integrar qualquer função racional (um quociente de polinômios) expressando-a como uma soma de frações mais simples, chamadas frações parciais, que já sabemos como integrar. Para ilustrarmos o método, observe que, levando as frações 2/(x-1) e 1/(x+2) a um denominador comum, obtemos

$$\frac{2}{x-1} - \frac{1}{x+2} = \frac{2(x+2) - (x-1)}{(x-1)(x+2)} = \frac{x+5}{x^2 + x - 2}$$

Se agora revertermos o procedimento, veremos como integrar a função no lado direito desta equação:

$$\int \frac{x+5}{x^2+x-2} dx = \int \left(\frac{2}{x-1} - \frac{1}{x+2}\right) dx$$
$$= 2\ln|x-1| - \ln|x+2| + C$$

Para vermos como o método de frações parciais funciona em geral, consideremos a função racional

$$f(x) = \frac{P(x)}{Q(x)}$$

onde P e Q são polinômios. É possível expressar f como uma soma de frações mais simples, desde que o grau de P seja menor que o grau de Q. Essa função racional é denominada própria. Lembre-se de que se

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

onde $a_n \neq 0$, então o grau de $P \notin n$ e escrevemos gr(P) = n.

Se f for impr'opria, isto 'e, $gr(P) \ge gr(Q)$, então devemos fazer uma etapa preliminar, dividindo Q por P (por divisão de polinômios) até o resto R(x) ser obtido com gr(R) < gr(Q). O resultado da divisão 'e

$$f(x) = \frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$$

onde S e R também são polinômios.

Como o exemplo a seguir mostra, algumas vezes essa etapa preliminar é tudo de que precisamos.

EXEMPLO 1 Encontre
$$\int \frac{x^3 + x}{x - 1} dx$$
.

SOLUÇÃO Como o grau do numerador é maior que o grau do denominador, primeiro devemos realizar a divisão. Isso nos permite escrever

$$\int \frac{x^3 + x}{x - 1} dx = \int \left(x^2 + x + 2 + \frac{2}{x - 1} \right) dx$$
$$= \frac{x^3}{3} + \frac{x^2}{2} + 2x + 2 \ln|x - 1| + C$$

A próxima etapa é fatorar o denominador Q(x) o máximo possível. É possível demonstrar que qualquer polinômio Q pode ser fatorado como um produto de fatores lineares (da forma ax + b) e fatores quadráticos irredutíveis (da forma $ax^2 + bx + c$, onde $b^2 - 4ac < 0$). Por exemplo, se $Q(x) = x^4 - 16$, poderíamos fatorá-lo como

$$Q(x) = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4)$$

A terceira etapa é expressar a função racional própria R(x)/Q(x) (da Equação 1) como uma soma das **frações parciais** da forma

$$\frac{A}{(ax+b)^i}$$
 ou $\frac{Ax+B}{(ax^2+bx+c)^j}$

CASO I O denominador Q(x) é um produto de fatores lineares distintos.

Isso significa que podemos escrever

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \cdot \cdot \cdot (a_kx + b_k)$$

onde nenhum fator é repetido (e nenhum fator é múltiplo constante do outro). Nesse caso, o teorema das frações parciais afirma que existem constantes A_1, A_2, \ldots, A_k tais que

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \dots + \frac{A_k}{a_k x + b_k}$$

Essas constantes podem ser determinadas como no exemplo seguinte.

EXEMPLO 2 Calcule
$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$$
.

SOLUÇÃO Como o grau do numerador é menor que o grau do denominador, não precisamos dividir. Fatoramos o denominador como

$$2x^3 + 3x^2 - 2x = x(2x^2 + 3x - 2) = x(2x - 1)(x + 2)$$

Como o denominador tem três fatores lineares distintos, a decomposição em frações parciais do integrando $\boxed{2}$ tem a forma

$$\frac{x^2 + 2x - 1}{x(2x - 1)(x + 2)} = \frac{A}{x} + \frac{B}{2x - 1} + \frac{C}{x + 2}$$

Para determinarmos os valores de A, B e C, multiplicamos os lados dessa equação pelo produto dos denominadores, x(2x-1)(x+2), obtendo

$$x^2 + 2x - 1 = A(2x - 1)(x + 2) + Bx(x + 2) + Cx(2x - 1)$$

Expandindo o lado direito da Equação 4 e escrevendo-a na forma padrão para os polinômios, temos

Os polinômios na Equação 5 são idênticos, então seus coeficientes devem ser iguais. O coeficiente x^2 do lado direito, 2A + B + 2C, deve ser igual ao coeficiente de x^2 do lado esquerdo, ou seja, 1. Do mesmo modo, os coeficientes de x são iguais e os termos constantes também. Isso resulta no seguinte sistema de equações para A, B e C:

$$2A + B + 2C = 1$$
$$3A + 2B - C = 2$$
$$-2A = -1$$

Resolvendo, obtemos $A = \frac{1}{2}$, $B = \frac{1}{5}$ e $C = -\frac{1}{10}$, e assim

$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx = \int \left(\frac{1}{2} \frac{1}{x} + \frac{1}{5} \frac{1}{2x - 1} - \frac{1}{10} \frac{1}{x + 2}\right) dx$$
$$= \frac{1}{2} \ln|x| + \frac{1}{10} \ln|2x - 1| - \frac{1}{10} \ln|x + 2| + K$$

Ao integrarmos o termo do meio, fizemos mentalmente a substituição u=2x-1, que resulta em $du=2\ dx$ e dx=du/2.

OBSERVAÇÃO Podemos usar um método alternativo para encontrar os coeficientes A, B e C no Exemplo 2. A Equação 4 é uma identidade; é verdadeira para cada valor de x. Vamos escolher valores de x que simplificam a equação.

Se colocarmos x=0 na Equação 4, então o segundo e terceiro termos do lado direito desaparecerão, e a equação será -2A=-1, ou $A=\frac{1}{2}$.

Da mesma forma, $x = \frac{1}{2} \operatorname{d\acute{a}} 5B/4 = \frac{1}{4} \operatorname{e} x = -2 \operatorname{resulta} \operatorname{em} 10C = 1$, assim,

$$B = \frac{1}{5} \ e \ C = -\frac{1}{10}$$
.

(Você pode argumentar que a Equação 3 não é válida para $x=0,\frac{1}{2}$ ou -2, então, por que a Equação 4 deveria ser válida para aqueles valores? Na verdade, a Equação 4 é válida para todos os valores de x, até para $x=0,\frac{1}{2}$ e -2.

Veja o Exercício 71 para obter uma explicação.)

EXEMPLO3 Encontre
$$\int \frac{dx}{x^2 - a^2}$$
, onde $a \neq 0$.

SOLUÇÃO O método das frações parciais fornece

$$\frac{1}{x^2 - a^2} = \frac{1}{(x - a)(x + a)} = \frac{A}{x - a} + \frac{B}{x + a}$$

e, portanto,

$$A(x+a) + B(x-a) = 1$$

Usando o método da observação anterior, colocamos x = a nessa equação e obtemos A(2a) = 1, assim, A = 1/(2a). Se colocarmos x = -a, obteremos B(-2a) = 1, assim, B = -1/(2a). Logo,

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a} \right) dx$$
$$= \frac{1}{2a} \left(\ln|x - a| - \ln|x + a| \right) + C$$

Como ln $x - \ln y = \ln(x/y)$, podemos escrever a integral como

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

CASO II Q(x) é um produto de fatores lineares, e alguns dos fatores são repetidos.

Suponha que o primeiro fator linear $(a_1x + b_1)$ seja repetido r vezes; isto é, $(a_1x + b_1)^r$ ocorre na fatoração de Q(x). Então, em vez de um único termo $A_1/(a_1x + b_1)$ na Equação 2, usaríamos

$$\frac{A_1}{a_1x+b_1}+\frac{A_2}{(a_1x+b_1)^2}+\cdots+\frac{A_r}{(a_1x+b_1)^r}$$

Para ilustrarmos, poderíamos escrever

$$\frac{x^3 - x + 1}{x^2(x - 1)^3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2} + \frac{E}{(x - 1)^3}$$

mas é preferível detalhar um exemplo mais simples.

EXEMPLO 4 Encontre
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx.$$

SOLUÇÃO A primeira etapa é dividir. O resultado da divisão de polinômios é

$$\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} = x + 1 + \frac{4x}{x^3 - x^2 - x + 1}$$

A segunda etapa é fatorar o denominador $Q(x) = x^3 - x^2 - x + 1$. Como Q(1) = 0, sabemos que x - 1 é um fator e obtemos

$$x^{3} - x^{2} - x + 1 = (x - 1)(x^{2} - 1) = (x - 1)(x - 1)(x + 1)$$
$$= (x - 1)^{2}(x + 1)$$

Como o fator linear x-1 ocorre duas vezes, a decomposição em frações parciais é

$$\frac{4x}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$

Multiplicando pelo mínimo denominador comum, $(x-1)^2(x+1)$, temos

$$4x = A(x-1)(x+1) + B(x+1) + C(x-1)^{2}$$
$$= (A+C)x^{2} + (B-2C)x + (-A+B+C)$$

Agora igualamos os coeficientes:

$$\begin{cases} A + C = 0 \\ B - 2C = 4 \\ -A + B + C = 0 \end{cases}$$

Resolvendo, obtemos A = 1, B = 2 e C = -1; assim

$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx = \int \left[x + 1 + \frac{1}{x - 1} + \frac{2}{(x - 1)^2} - \frac{1}{x + 1} \right] dx$$

$$= \frac{x^2}{2} + x + \ln|x - 1| - \frac{2}{x - 1} - \ln|x + 1| + K$$

$$= \frac{x^2}{2} + x - \frac{2}{x - 1} + \ln\left|\frac{x - 1}{x + 1}\right| + K$$

CASO III $\mathcal{Q}(x)$ contém fatores quadráticos irredutíveis, nenhum dos quais se repete.

Se Q(x) tiver o fator $ax^2 + bx + c$, onde $b^2 - 4ac < 0$, então, além das frações parciais nas Equações 2 e 7, a expressão para R(x)/Q(x) terá um termo da forma

onde A e B são constantes a serem determinadas. Por exemplo, a função dada por $f(x) = x/[(x-2)(x^2+1)(x^2+4)]$ tem uma decomposição em frações parciais da forma

$$\frac{x}{(x-2)(x^2+1)(x^2+4)} = \frac{A}{x-2} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{x^2+4}$$

O termo dado em [9] pode ser integrado completando o quadrado (se necessário) e usando a fórmula

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

EXEMPL05 Calcule
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx.$$

SOLUÇÃO Como $x^3 + 4x = x(x^2 + 4)$ não pode ser mais fatorado, escrevemos

$$\frac{2x^2 - x + 4}{x(x^2 + 4)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4}$$

Multiplicando por $x(x^2 + 4)$, temos

$$2x^{2} - x + 4 = A(x^{2} + 4) + (Bx + C)x$$
$$= (A + B)x^{2} + Cx + 4A$$

Igualando os coeficientes, obtemos

$$A + B = 2$$
 $C = -1$ $4A = 4$

Então A = 1, B = 1 e C = -1 e, assim,

$$\int \frac{2x^2 - x + 4}{x^3 + 4x} \, dx = \int \left(\frac{1}{x} + \frac{x - 1}{x^2 + 4}\right) dx$$

Para integrarmos o segundo termo, o dividimos em duas partes:

$$\int \frac{x-1}{x^2+4} \, dx = \int \frac{x}{x^2+4} \, dx - \int \frac{1}{x^2+4} \, dx$$

Fazemos a substituição $u = x^2 + 4$ na primeira das integrais de modo que du = 2x dx. Calculamos a segunda integral usando a Fórmula 10 com a = 2:

$$\int \frac{2x^2 - x + 4}{x(x^2 + 4)} dx = \int \frac{1}{x} dx + \int \frac{x}{x^2 + 4} dx - \int \frac{1}{x^2 + 4} dx$$
$$= \ln|x| + \frac{1}{2} \ln(x^2 + 4) - \frac{1}{2} \tan^{-1}(x/2) + K$$

EXEMPLO 6 Calcule
$$\int \frac{4x^2 - 3x + 2}{4x^2 - 4x + 3} dx$$
.

SOLUÇÃO Como o grau do numerador não é menor que o grau do denominador, primeiro dividimos e obtemos

$$\frac{4x^2 - 3x + 2}{4x^2 - 4x + 3} = 1 + \frac{x - 1}{4x^2 - 4x + 3}$$

Observe que o termo quadrático $4x^2 - 4x + 3$ é irredutível, porque seu discriminante é $b^2 - 4ac = -32 < 0$. Isso significa que este não pode ser fatorado, então não precisamos usar a técnica da frações parciais.

Para integrarmos a função dada completamos o quadrado no denominador:

$$4x^2 - 4x + 3 = (2x - 1)^2 + 2$$

Isso sugere que façamos a substituição u=2x-1. Então du=2 dx e $x=\frac{1}{2}$ (u+1), assim

$$\int \frac{4x^2 - 3x + 2}{4x^2 - 4x + 3} dx = \int \left(1 + \frac{x - 1}{4x^2 - 4x + 3} \right) dx$$

$$= x + \frac{1}{2} \int \frac{\frac{1}{2}(u+1) - 1}{u^2 + 2} du = x + \frac{1}{4} \int \frac{u - 1}{u^2 + 2} du$$

$$= x + \frac{1}{4} \int \frac{u}{u^2 + 2} du - \frac{1}{4} \int \frac{1}{u^2 + 2} du$$

$$= x + \frac{1}{8} \ln(u^2 + 2) - \frac{1}{4} \cdot \frac{1}{\sqrt{2}} \operatorname{tg}^{-1} \left(\frac{u}{\sqrt{2}}\right) + C$$

$$= x + \frac{1}{8} \ln(4x^2 - 4x + 3) - \frac{1}{4\sqrt{2}} \operatorname{tg}^{-1} \left(\frac{2x - 1}{\sqrt{2}}\right) + C$$

OBSERVAÇÃO O Exemplo 6 ilustra o procedimento geral para se integrar uma fração parcial da forma

$$\frac{Ax+B}{ax^2+bx+c} \qquad \text{onde } b^2-4ac<0$$

Completamos o quadrado no denominador e então fazemos uma substituição que traz a integral para a forma

$$\int \frac{Cu + D}{u^2 + a^2} du = C \int \frac{u}{u^2 + a^2} du + D \int \frac{1}{u^2 + a^2} du$$

Então, a primeira integral é um logaritmo, e a segunda é expressa em termos de tg-1.

CASO IV Q(x) contém fatores quadráticos irredutíveis repetidos.

Se Q(x) tiver um fator $(ax^2 + bx + c)^r$, onde $b^2 - 4ac < 0$, então, em vez de uma única fração parcial 9, a soma

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}$$

ocorre na decomposição em frações parciais de R(x)/Q(x). Cada um dos termos de $\boxed{11}$ pode ser integrado usando uma substituição ou completando primeiramente o quadrado, se necessário.

EXEMPLO 7 Escreva a forma da decomposição em frações parciais da função

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

SOLUÇÃO

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

$$= \frac{A}{x} + \frac{B}{x-1} + \frac{Cx+D}{x^2 + x + 1} + \frac{Ex+F}{x^2 + 1} + \frac{Gx+H}{(x^2 + 1)^2} + \frac{Ix+J}{(x^2 + 1)^3}$$

EXEMPLO 8 Calcule
$$\int \frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} dx$$
.

SOLUÇÃO A forma da decomposição em frações parciais é

$$\frac{1-x+2x^2-x^3}{x(x^2+1)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$

Multiplicando por $x(x^2 + 1)^2$, temos

$$-x^{3} + 2x^{2} - x + 1 = A(x^{2} + 1)^{2} + (Bx + C)x(x^{2} + 1) + (Dx + E)x$$

$$= A(x^{4} + 2x^{2} + 1) + B(x^{4} + x^{2}) + C(x^{3} + x) + Dx^{2} + Ex$$

$$= (A + B)x^{4} + Cx^{3} + (2A + B + D)x^{2} + (C + E)x + A.$$

Se igualarmos os coeficientes, obteremos o sistema

$$A+B=0, \qquad C=-1, \qquad 2A+B+D=2, \qquad C+E=-1, \qquad A=1,$$
que tem a solução $A=1, B=-1, C=-1, D=1$ e $E=0$. Logo,

$$\int \frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} dx = \int \left(\frac{1}{x} - \frac{x + 1}{x^2 + 1} + \frac{x}{(x^2 + 1)^2}\right) dx$$

$$= \int \frac{dx}{x} - \int \frac{x}{x^2 + 1} dx - \int \frac{dx}{x^2 + 1} + \int \frac{x dx}{(x^2 + 1)^2}$$

$$= \ln|x| - \frac{1}{2}\ln(x^2 + 1) - tg^{-1}x - \frac{1}{2(x^2 + 1)} + K$$

Observamos que algumas vezes as frações parciais podem ser evitadas na integração de funções racionais. Por exemplo, embora a integral

$$\int \frac{x^2+1}{x(x^2+3)} \, dx$$

possa ser calculada pelo método do Caso III, é muito mais fácil observar que se $u = x(x^2 + 3) = x^3 + 3x$, então $du = (3x^2 + 3) dx$ e, assim,

$$\int \frac{x^2 + 1}{x(x^2 + 3)} dx = \frac{1}{3} \ln |x^3 + 3x| + C$$

Substituições Racionalizantes

Algumas funções não racionais podem ser transformadas em funções racionais por meio de substituições apropriadas. Em particular, quando um integrando contém uma expressão da forma $\sqrt[n]{g(x)}$, então a substituição $u = \sqrt[n]{g(x)}$ pode ser eficaz. Outros exemplos aparecem nos exercícios.

EXEMPLO 9 Calcule
$$\int \frac{\sqrt{x+4}}{x} dx dx$$
.

SOLUÇÃO Seja $u = \sqrt{x+4}$. Então $u^2 = x+4$, de modo que, $x = u^2-4$ e $dx = 2u \ du$. Portanto,

$$\int \frac{\sqrt{x+4}}{x} dx = \int \frac{u}{u^2 - 4} 2u \, du = 2 \int \frac{u^2}{u^2 - 4} \, du$$
$$= 2 \int \left(1 + \frac{4}{u^2 - 4} \right) du$$

Podemos calcular essa integral fatorando $u^2 - 4$ em (u - 2)(u + 2) e usando as frações parciais ou usando a Fórmula 6 com a = 2:

$$\int \frac{\sqrt{x+4}}{x} dx = 2 \int du + 8 \int \frac{du}{u^2 - 4}$$

$$= 2u + 8 \cdot \frac{1}{2 \cdot 2} \ln \left| \frac{u-2}{u+2} \right| + C$$

$$= 2\sqrt{x+4} + 2 \ln \left| \frac{\sqrt{x+4} - 2}{\sqrt{x+4} + 2} \right| + C$$