

Cornell Theory Center

Thomas Coleman, Director

Linda Callahan, Executive Director

Anthony Ingraffea, Associate Director

Ron Elber, Associate Director

David Lifka, Associate Director

Paul Redfern, Associate Director

Jeffrey Silber, Associate Director

A Center of Excellence in High-Performance Computing and Interdisciplinary Research located at Cornell University

Over 100 Cornell Projects from Diverse Fields

- Agricultural, Resource, and Managerial Economics
- Animal Science

Cluster Computing Today

The Good

- Price/Performance
- Computing by the Slice

The Bad

- TCO is more than just purchase price and maintenance costs.
- Still struggling with the same problems we have been on MPPs and NOWs for the past 10 years.
- Instead of converging on a clustering standard, our efforts are fragmented and do not interoperate.

The Ugly!

- Still have not moved supercomputing out of the laboratory (research, engineering and other scientific disciplines) and onto Main street.
- We have yet to make parallel programming easy!

1996 - The Little Engine that Could!

12 Dell PowerEdge Servers

- 6 Dual Pentium II 300 Mhz (SMP)
- 256 MB RAM/Node
- 12 GB Disk/Node
- 6 Dual Pentium II 450 Mhz (SMP)
- 512 MB RAM/Node
- 12 GB Disk/Node
- Switched Ethernet (100 Mb/second)

Intel Technology For Education 2000 Grant

http://www.cs.cornell.edu/tech2000/

Key Components for Success

User Interfaces

- Telnet Seattle Lab and Microsoft built in.
- Cygwin, Interix Unix tools + look and feel
- Terminal Server Remote access to Windows GUI
- Citrix Terminal Server Remote access to Windows GUI for non-MS platforms
- X Windows

Ease of Porting from Other Environments

- Compilers MS, Compag, Intel, PGI, Gnu
- Cygwin Unix shell support and Make
- Debugging Studio, Gnu
- MPIPro, MPI Software Technology, Inc.

Batch and Interactive Job Scheduling

• Cluster CoNTroller, MPI Software Technology, Inc.

Reliable Servers, Software, and Storage

- Windows 2000 Advanced Server Solid!
- Dell Hardware just works!
- Scalable Storage using Microsoft DFS.

System Management

- Windows Management Instrumentation
- CTC Domain Monitoring Tools
- Software Distribution and Remote Installation

Velocity 1 – 256 Processors

64 Dell PowerEdge 6350 Servers

- Quad Pentium III Xeon 500 Mhz (SMP)
- 4 GB RAM/Node
- 2 MB Cache/Processor
- 50 GB Disk/Node (Raid 0 Stripe Set)
- Emulex CLan Interconnect (100 MB/second)
- Switched Ethernet (100 Mb/second)

Velocity 1 Plus Cluster - 128 Processors

64 Dell PowerEdge 2450 Servers

- Dual Pentium III 733 Mhz
- 2 GB RAM/Node
- 256 KB Cache/Processor
- 27 GB Disk (RAID 0)/Node
- Emulex CLan Interconnect (100 MB/second)
- Switched Ethernet (100 Mb/second)

David A. Lifka http://www.tc.cornell.e lifka@tc.cornell.edu

Special Purpose CTC Clusters

32 Dell PowerEdge 2450 Servers (Application Center - .Net)

- Dual Processor Pentium III 933 Mhz
- 256 KB Cache/Processor
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node

8 Dell PowerEdge 1550 Servers (NASA/NYS Educluster)

- Dual Processor Pentium III 1 Ghz
- 256 KB Cache/Processor
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node

8 Dell PowerEdge 1550 Servers Development Cluster, 16 processors

- Dual Processor Pentium III 866 MHz
- 256 KB Cache/Processors
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node
- Emulex CLan Interconnect (100 MB/second)
- 15 Minute Job Limit

36 Dell PowerEdge Servers (Serial Nodes)

- Pentium III 600+ MHz
- 256 KB Cache/Processor
- 1 GB RAM/Node
- 27 GB Disk (RAID 0)/Node

Dedicated Clusters

ARS/USDA Cluster for Agricultural Bioinformatics, 48 processors

- 4 Dell PowerEdge 6300 Servers
- Quad Processor SMP 400 Mhz Pentium II Xeons, 1 GB Ram, 56 GB Disk
- 8 Dell PowerEdge 6350 Servers
- Quad Processor SMP 550 Mhz Pentium III Xeons, 1 GB Ram, 54 GB Disk
- Gigabit switched Ethernet
- 2 TB Dell Power Vault Storage Equipment

Social and Economics Research Cluster, 32 processors

- 8 Dell PowerEdge 6350 Servers
- Quad Processor SMP 550 Mhz Pentium III Xeons
- 1 GB RAM/Node
- 54 GB Disk/Node
- Gigabit switched Ethernet
- 3 TB Dell Power Vault Storage Equipment

Tri-Institutional/Computational Materials Institute Cluster, 256 processors

- 128 Dell PowerEdge 1550 Servers
- Dual Processor Pentium III 1 Ghz
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node
- Emulex CLan Interconnect

Windows Based CAVE

- 3 Dual Processor Dell Precision 620 Workstations
- Wildcat 4210 Graphics Adapters
- 1 GB RAM/Workstation
- Emulex CLan Interconnect

Windows 2000 Cluster Management

Job Scheduling & Resource Management

Cluster CoNTroller

www.mpi-softtech.com/products/cluster_controller

Resource Monitoring

Windows Management Instrumentation

msdn.microsoft.com/library/en-us/dnwmi/html/wmicim.asp

Microsoft Operations Manager

www.microsoft.com/mom/

Perl & Python

www.activestate.com

System Installations

Symantec Ghost

enterprisesecurity.symantec.com/content/ProductJump.cfm?Product=3&PID=na

WinInstall LE

www.microsoft.com/WINDOWS2000/techinfo/planning/management/veritas.asp

Strategic Applications

Bioinformatics

Engineering Design and Analysis On Demand

Computational Finance

Protein Folding/Structural Biology

Ron Elber, Harold Scheraga

Collaborators at Hauptman-Woodward Medical Research Institute; Mt. Sinai School of Medicine, U. Rochester

Protein Folding Per/Processor Performance

Results on different computers for a protein structures:

Machine	System	CPU	CPU speed [MHz]	compiler	Energy evaluations per second
Blue Horizon (SP San Diego)	AIX 4	Power3	222	xIf	44.3
Linux cluster	Linux 2.2	PentiumIII	650	PGF 3.1	59.1
Velocity (CTC)	Win 2000	PentiumIII Xeon	500	df v6.1	46.0
Velocity+ (CTC)	Win 2000	PentiumIII	733	df v6.1	59.2

Results on different computers for (a /b or b proteins):

Machine	System	CPU	CPU speed [MHz]	compiler	Energy evaluations per second
Blue Horizon (SP San Diego)	AIX 4	Power3	222	xIf	15.0
Linux cluster	Linux 2.2	PentiumIII	650	PGF 3.1	21.0
Velocity (CTC)	Win 2000	PentiumIII Xeon	500	df v6.1	16.9
Velocity+ (CTC)	Win 2000	PentiumIII	733	df v6.1	22.4

Computational Materials Institute

Anthony Ingraffea, Keshav Pingali

Mission:

- Connect nano-scale and intermediate scale understanding of "old" materials to new designs and life-extension of existing designs;
- Create simulation tools that support virtual design and testing of new materials;
- Compliment the theoretical/experimental activities of the Cornell Center for Materials Research.

Concrete Dam

Vertices: 86,325 Tetrahedra: 401,124 dof

Machine	Processors	Time/Iteration
SP2	16x1	0.48
Velocity	4x4	0.53
Velocity	8x2	0.43
Velocity	16x1	0.39
SP2	32x1	0.27
Velocity	8x4	0.27
Velocity	16x2	0.22
Velocity	32x1	0.2
SP2	64x1	0.16
Velocity	16x4	0.15
Velocity	32x2	0.12
Velocity	64x1	0.12

Fatigue Cracks in Spiral Bevel Power Transmission Gear

Vertices: 344,777 Tetrahedra: 1,535,943 dof

Machine	Processors	Time/Iteration
Velocity	16x1	1.54
Velocity	16x2	0.87
Velocity	32x1	0.78
Velocity	16x4	0.55
Velocity	32x2	0.44
Velocity	64x1	0.4
Velocity	20x4	0.43
Velocity	40x2	0.36
Velocity	64x2	0.23

E-Science & Finance

Today

Serloopp

www.tc.cornell.edu/Research/Biomed/Dissemination/web.computing.asp

Fracture mechanics

Computational finance

Tomorrow

.Net! www.microsoft.com/net/

Application Center www.microsoft.com/applicationcenter/

Data Center www.microsoft.com/windows2000/guide/datacenter/overview/default.asp

Reliability

Some Business Applications

- Barnes&Noble.com 99.98%
- CBSMarketWatch.com 99.98%
- Buy.com 99.98%
- NASDAQ.com 99.97%
- FreeMarkets.com 99.999%

CTC HPC Experience

- 99.9986% the first three months we ran Windows 2000
- 99.99999% the past two months!
- Working on a Standard Reliability Benchmark

Microsoft High-Performance Computing

- Microsoft HPC From Classics to Clusters http://www.microsoft.com/windows2000/hpc
- Microsoft HPC Resource Kit https://microsoft.order-1.com/cctp/