(大問 1)[計 30 点]

①(1) [5点]	48 個	①(2) [5 点] 12 個
② [5点]	45 512	
③(1) [5点]	$6\sqrt{6}$	③(2) [10 点] $\frac{2}{3}\sqrt{6}$

(大問 2)[計 40 点]

① [5点]	$x = \frac{3}{4}$, $y = 9$	② [10 点]	$\theta = 45^{\circ}$
③ [5点]	x = 4	④ [10 点]	(-5,0,6)
⑤ [10 点]	$x = \frac{5}{3}$, $y = -3$		

(大問 3)[計 30 点]

(1)[解]始点を O とする

(ii)P は平面 ABC 上の点

Q はOA を 2:1 に内分する点より $\overrightarrow{OP} = l\overrightarrow{OA} + m\overrightarrow{OB} + n\overrightarrow{OC} = l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c}$ … ② $[4 \, \underline{\wedge}]$

 $\overrightarrow{OQ} = \frac{2}{3}\overrightarrow{OA} = \frac{2}{3}\overrightarrow{a}$ [1 点] ① , ②より \vec{a} , \vec{b} , \vec{c} は1次独立なので

R はBC を 2:1 に内分する点より $\frac{1}{3}k = l$

 $\overrightarrow{OR} = \frac{\overrightarrow{OB} + 2\overrightarrow{OC}}{3} = \frac{1}{3}\overrightarrow{b} + \frac{2}{3}\overrightarrow{c}$ [1 点] $\frac{1}{6}k = m$ $\rightarrow k = \frac{6}{5}, l = \frac{2}{5}, m = \frac{1}{5}, n = \frac{2}{5}$

 $\frac{1}{3}k = n$ M はQR の中点より

 $\overrightarrow{OM} = \frac{\overrightarrow{OQ} + \overrightarrow{OR}}{2} = \frac{1}{3}\vec{a} + \frac{1}{6}\vec{b} + \frac{1}{3}\vec{c}$ [1 \Line[] l+m+n=1

P は OM と平面 ABC の交点 よって

 $\overrightarrow{OP} = \frac{2}{5}\overrightarrow{a} + \frac{1}{5}\overrightarrow{b} + \frac{2}{5}\overrightarrow{c} \quad [4 \, \text{A}]$ (i)PはOM上の点

 $\overrightarrow{OP} = k\overrightarrow{OM} = \frac{1}{3}k\overrightarrow{a} + \frac{1}{6}k\overrightarrow{b} + \frac{1}{3}k\overrightarrow{c} \cdots \bigcirc \boxed{4 \ \ \text{!n}}$ [計 15 点]

②[解]始点 0 とする

① , ②より

H は平面 ABC 上の点より

 $\overrightarrow{OH} = l\overrightarrow{OA} + m\overrightarrow{OB} + n\overrightarrow{OC}$

=(l+m-n,m+2n,n) [3 点]

 $\overrightarrow{AB} = (0,1,0), \overrightarrow{AC} = (-2,2,1)$ [1 点]

H は原点Oから下ろした垂線の足

つまりOH」平面 ABC

m + 2n = 0

-2l + 7n = 0 $\rightarrow l = \frac{7}{5}, m = -\frac{4}{5}, n = \frac{2}{5}$

l + m + n = 1

よって

 $\overrightarrow{OH} = \left(\frac{1}{5}, 0, \frac{2}{5}\right)$

つまり $H\left(\frac{1}{5},0,\frac{2}{5}\right)$ [3点]

 $(i)\overrightarrow{OH} \perp \overrightarrow{AB}$

 $\overrightarrow{OH} \cdot \overrightarrow{AB} = m + 2n = 0 \cdots 1$ [4 点]

 $(ii)\overrightarrow{OH} \perp \overrightarrow{AC}$

[計 15 点]

(②の*BC*の場合)

 $\overrightarrow{BC} = (-2, 1, 1)$

 $\overrightarrow{OH} \perp \overrightarrow{BC} \downarrow \emptyset$

 $\overrightarrow{OH} \cdot \overrightarrow{BC} = -2(l+m-n) + (m+2n) + n = -2l - m + 5n = 0$

(記述の採点基準と部分点について)

使う文字の種類は問わず、文字について言及する必要もない(k は実数など)

- ① $(1) \overrightarrow{OQ}, \overrightarrow{OR}, \overrightarrow{OM} \times \vec{a}, \vec{b}, \vec{c}$ を用いて表せてそれぞれ 1 点
 - (2)P が直線 OM 上の共線条件がかけて 4 点
 - (3)P が平面 ABC 上の共面条件がかけて 4点
 - (4)最後の答えが合っていて 4点

計 15 点

- ② (1) H が平面 ABC 上の点で OH を成分表示して3点
 - $(2)\overrightarrow{AB}$, \overrightarrow{AC} , \overrightarrow{BC} のうち 2 つの成分表示が正しくて 1 点(2 つ正解で 1 点、1 つだけだと 0 点)
 - $(3)\overrightarrow{OH} \perp \overrightarrow{AB}, \overrightarrow{OH} \perp \overrightarrow{AC}, \overrightarrow{OH} \perp \overrightarrow{BC}$ のうち 2 つの計算が正しくてそれぞれ 4 点ずつ
 - (4)最後の答えが合っていて3点

計 15 点