Gaussian Mixture Models & Latent Variable Models

Learning Paradigms

- Supervised learning Learning with a teacher
 - The dataset has labels desired output is known
 - We can train the model till we get good results
 - Eg: Predict stock market price, classify email as spam or not
- Unsupervised learning Learning without a teacher
 - The dataset is not labeled do not know what results we are looking for
 - The algorithm has to figure out the pattern in the data
 - Eg. Clustering group customers by purchasing behavior
- Reinforcement Learning Learning with a critic
 - Reward or penalize the actions
 - Game playing and control applications

Supervised Learning Tasks

Regression

- Map input features to continuous output variables
- Estimate weight of a person from his height
- Predict stock-market price from past data
- Create 3-D image of a person from his 2-D photograph

Classification

- Map input features to discrete/categorical output variables
- Given the mammogram, predict whether the cancer is benign or malignant
- Given the news article, check whether it is real or fake
- Given the face image, verify whether it is the rightful owner or not

Pattern Classification

- Discriminant functions
 - Aims to learn the boundary that separates the classes
 - Linear discriminants, Fisher discriminants, perceptron, SVM & logistic regression
 - Criticized for being driven by boundary points, rather than structure in the data
- Statistical approaches
 - Aims to estimate the posterior probability of a class given observed data
 - Prior information can be easily incorporated

Discriminant vs Statistical

Pattern Classification

Posterior
$$p(C_k/\mathbf{x}) = \frac{p(C_k)}{p(\mathbf{x}/C_k)}$$
 Likelihood $p(\mathbf{x}/C_k)$

- Generative Models
 - Estimate joint probability
- Discriminative Models
 - Estimate posterior probability

$$C^* = \arg\max_k p(C_k/\mathbf{x})$$

Generative vs Discriminative Models

- Estimate $p(\mathbf{x}, c_k)$
- Models the structure in the data
- Statistical: GMM, HMM
- Neural Net: Autoencoders, RBM
- Unlablled data can be used
- Captures variability in the data
- Priors and penalties can be controlled precisely
- Difficult to train
- Slightly inferior performance

- Estimate $p(C_k/\mathbf{x})$
- Captures the discriminating features
- Logistic Regression, CRF
- MLP, DNN, CNN
- Need lot of labeled data
- Criticized as blackbox approach
- Lacks elegance
- Priors, alternate penalty
- Easy to train
- Superior performance

Generative Modeling

- Need to estimate either joint density or class conditional density
- Assume that the dataset X is generated from an parametric probability density function
- Estimate the parameters of the probability density function
- Gaussian density function can be parameterized by mean and variance

Maximum Likelihood Estimation

- Maximize the likelihood formulation
- Setting the gradient of the complete data likelihood to zero we can find the closed form solution.
- Since log() is a monotonic function, we can maximize the logarithm of likelihood
- Domonstrate ML estimate in the context of Bernoulli experiment

ML Estimate for Gaussian

1-D Gaussian

Normal
$$(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}$$

Parameters to be estimated are the mean (μ) and variance (σ)

Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi|\boldsymbol{\Sigma}|)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Multivariate Gaussian

$$\begin{array}{c|c}
 & x_1 \\
\hline
 & (b) \\
\hline
 & (\sigma_1^2 & 0)
\end{array}$$

Diagonal

$$\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_{11}^2 & \sigma_{12}^2 \\ \sigma_{12}^2 & \sigma_{22}^2 \end{bmatrix}$$

$$\Sigma = egin{pmatrix} \sigma_{11}^2 & \sigma_{12}^2 \ \sigma_{12}^2 & \sigma_{22}^2 \end{pmatrix}$$

When One Gaussian Is Not Enough

When one Gaussian is not enough

2-D Case

Real world datasets are rarely unimodal!

Gaussian Mixtures

Linear super-position of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Normalization and positivity require

 $\sum_{k=1}^{K} \pi_k = 1 \qquad 0 \leqslant \pi_k \leqslant 1$ • Can interplace the component of the

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

Example: Mixture of 3 Gaussians

Contours of Probability Distribution

Sampling from the Gaussian

- To generate a data point:
 - -first pick one of the components with π_k probability \mathbf{x}_n
 - then draw a sample from that component
- Repeat these two steps for each new data point

Sampling from the Gaussian

- To generate a data point:
 - -first pick one of the components with π_k probability \mathbf{x}_n
 - then draw a sample from that component
- Repeat these two steps for each new data point

Synthetic Data Set

Fitting the Gaussian Mixture

- We wish to invert this process given the data set, find the corresponding parameters:
 - -mixing coefficients
 - -means
 - covariances
- If we knew which component generated each data point, the maximum likelihood solution would involve fitting each component to the corresponding cluster
- Problem: the data set is unlabelled
- We shall refer to the labels as latent (= hidden) variables

Synthetic Data Set Without Labels

Posterior Probabilities

- We can think of the mixing coefficients as prior probabilities for the components
- For a given value of $^{\mathbf{x}}$ we can evaluate the corresponding posterior probabilities, called responsibilities
- These are given from Bayes' theorem by

$$\gamma_k(\mathbf{x}) \equiv p(k|\mathbf{x}) = \frac{p(k)p(\mathbf{x}|k)}{p(\mathbf{x})}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Posterior Probabilities (colour coded)

Posterior Probability Map

ML for the GMM

The log likelihood function takes the form

$$\ln p(D|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Note: sum over components appears inside the log
- There is no closed form solution for maximum likelihood

Problems and Solutions

- How to maximize the log likelihood
 - solved by expectation-maximization (EM) algorithm
- How to avoid singularities in the likelihood function
 - solved by a Bayesian treatment
- How to choose number K of components
 - also solved by a Bayesian treatment

EM - Informal Derivation

- Let us proceed by simply differentiating the log likelihood $oldsymbol{\mu}_j$
- Sett $\sup_{j \in \mathbb{N}} \sum_{n=1}^{N} \frac{\pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \boldsymbol{\Sigma}_{j}^{-1}(\mathbf{x}_{n} \boldsymbol{\mu}_{j}) = 0^{\mathsf{Zero}}$

$$\mu_j = \frac{\sum\limits_{n=1}^{N} \gamma_j(\mathbf{x}_n) \mathbf{x}_n}{\sum\limits_{n=1}^{N} \gamma_j(\mathbf{x}_n)}$$

which is simply the weighted mean of the data

EM - Informal Derivation

Similarly for the covariances

$$\Sigma_j = \frac{\sum_{n=1}^{N} \gamma_j(\mathbf{x}_n)(\mathbf{x}_n - \boldsymbol{\mu}_j)(\mathbf{x}_n - \boldsymbol{\mu}_j)^{\mathsf{T}}}{\sum_{j=1}^{N} \gamma_j(\mathbf{x}_n)}$$

• For mixin's cocmercing to give

$$\pi_j = \frac{1}{N} \sum_{n=1}^{N} \gamma_j(\mathbf{x}_n)$$

EM – Informal Derivation

- The solutions are not closed form since they are coupled
- Suggests an iterative scheme for solving them:
 - Make initial guesses for the parameters
 - Alternate between the following two stages:
 - 1. E-step: evaluate responsibilities
 - 2. M-step: update parameters using ML results

EM – Latent Variable Viewpoint

- Binary latent variables $\mathbf{z}=\{z_{kn}\}$ describing which component generated each data point
- Conditional distribution of observed variable

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)^{z_k}$$

• Prior distribution of latent variables

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)$$

Human Action Recognition

- Given a video, we need to recognize the human action in that
 - Bowling, batting and fielding
- Video clips could be of varying lenghts
 - Cannot compute a similarity score
- Solution: estimate & compare pdf of action clips
 - Fit a huge GMM (1024 or more) components
 - It captures all possible atomic attributes of human actions
 - Adapt the GMM to each clip, and estimate sufficient statistics
 - Compute similarity between sufficient stats

Thank You!