ECE 6420: WIRELESS IC DESIGN

Wideband Direct Downconversion Receiver Design

Ankit Kaul (akaul33@gatech.edu)
Sreejith K Rajan (sreejithkrajan@gatech.edu)

A. Design Summary:

Fig. 1: Receiver Block Diagram

- 1. **LNA:** A differential LNA with resistive feedback topology has been used for this project. Employing the resistive feedback set up we relax the correlation of the Noise Figure, gain, and BW with the help of resistive current reuse.
- 2. **Mixer:** Using a Gilbert cell double-balanced active mixer with a negative impedance we were able to significantly boost the conversion gain.

B. Performance Table:

	Target Specifications	Simulated Results
Figure of Merit(FOM)	≥ 287.5	6025.2
VDD	≤ 2.5V	1.4V
Q for inductor	15	15
DC Power Budget	≤ 80 mW	61.32 mW
S11	≤-10dB	-18.2dB
Bandwidth	2.4 – 5 GHz	5.5 GHz
IF Bandwidth	50 MHz	100 MHz
Peak Conversion Gain	≥ 27 dB	27.859
Noise Figure (DSB)	≤ 5 dB	4.422 dB
P1dB @input	≥ -25dBm	-17.5 dBm
IIP3	≥ -20dBm	-12.489 dBm
Total Inductance	≤ 20nH	8.47nH
Total Capacitance	Unlimited	-

C. Schematics:

System Level Diagram:

Fig. 1: Complete receiver schematic

LNA:

Fig. 2: LNA Schematic

Mixer:

Fig. 3: Mixer schematic

D. Theoretical Analysis:

LNA:

LNA input impedance:

$$Zin := \frac{{\color{red}R}_F}{1 + Av}$$

$$R_F=1.2\;K\Omega$$

LNA gain:

$$Av = (0.5 * g_m * R_F) + (g_{m2}*(R_L + \omega L))$$

$$g_m = gmN + gmP$$

$$gmN = 39.1 mS$$

$$gmP = 73.9 mS$$

$$Av = 16.15 dB$$

LNA Noise figure:

NF := 1 +
$$\frac{2}{3} \cdot \frac{1}{g_{m} \cdot (R_{S})^{2}} + \left[\frac{f}{f(T_{Min})}\right]^{2} \cdot \frac{2}{3} \cdot g_{m} \cdot R_{S}$$

$$NF = 4.08 dB$$

Mixer: the following equation is the voltage conversion gain of mixer neglecting LO crossing equilibrium and parasitic capacitance effect on gain degradation. The conversion gain is 10.3 dB.

$$A_V = \frac{2}{\pi} g_{m3} (R_L + \omega L) \frac{g_{m1,2}}{\sqrt{\omega^2 C_P^2 + g_{m1,2}^2}} \approx \frac{2}{\pi} g_{m3} (R_L + \omega L) = 3.27$$
$$= 10.3 dB$$

where
$$g_{m3} = 0.019$$
, $g_{m1,2} = 0.014$, $R_{load} = 270 \Omega$

In order to get NF of a mixer, we need to calculate an input-referred noise voltage. Let assume $\gamma = 1$, and the noise effect from the parasitic capacitance at source nodes of M1, M2 is also neglected. Then, the double sideband noise figure of the mixer is 6.15 dB.

$$\overline{V_{n,ln}^2} = 2\pi^2 kT \left(\frac{\gamma}{g_{m3}} + \frac{2}{g_{m3}^2 R_L}\right)$$

$$NF_{SSB} = 1 + \frac{\overline{V_{n,ln}^2}}{4kTR_S} = 1 + \frac{\pi^2}{2R_S} \left(\frac{\gamma}{g_{m3}} + \frac{2}{g_{m3}^2 R_L}\right) = 8.22 = 9.15 dB$$

$$NF_{DSR} = NF_{SSR} - 3 = 6.15 dB$$

E. Simulation Results:

CONVERSION GAIN

Single-ended Conversion Gain

Single-ended Conversion Gain

IIP3

RFfreq	IIP3_high	IIP3_low
2.000	-16.040	-16.180
2.500	-16.899	-17.221
3.000	-17.165	-17.335
3.500	-16.672	-16.712
4.000	-15.544	-15.504
4.500	-14.128	-14.005
5.000	-12.832	-12.480

P_1dB Plot

@2.5 Ghz

Single-ended Conversion Gain

Differential Conversion Gain

@3 Ghz

Single-ended Conversion Gain

@4 Ghz

Single-ended Conversion Gain

Differential Conversion Gain

@5 Ghz

Single-ended Conversion Gain

