

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, Vatticherukuru Mandal, Guntur, Andhra Pradesh522017

DEPARTMENT OF CSE - DATA SCIENCE

Programme: CSE-DS Semester: I					r: III
Course Code	Course Name	L	T	P	С
20CS3T01	MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE	3	0	0	3
Subject Category	: PCC				

Course Objectives:

This course is designed to:

- To introduce the students to the topics and techniques of discrete methods and combinatorial reasoning
- To introduce a wide variety of applications. The algorithmic approach to the solution of problems is fundamental in discrete mathematics, and this approach reinforces the close ties between this discipline and the area of computer science

Course Outcomes:

At the end of the course student will be able to

CO1: Demonstrate skills in solving mathematical problems.

CO2: Comprehend mathematical principles and logic.

CO3: Demonstrate knowledge of mathematical modeling and proficiency in using mathematical software.

CO4: Manipulate and analyze data numerically and/or graphically using appropriate Software.

CO5: Communicate effectively mathematical ideas/results verbally or in writing.

UNIT I

Mathematical Logic: Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof, Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.

UNIT II

Set Theory: Sets: Operations on Sets, Principle of Inclusion-Exclusion, Relations: Properties, Operations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hassie Diagrams, Functions: Bijective, Composition, Inverse, Permutation, and Recursive Functions, Lattice and its Properties, Algebraic Structures: Algebraic Systems, Properties, Semi Groups and Monoids, Group, Subgroup and Abelian Group, Homomorphism, Isomorphism.

UNIT III

Combinatorics: Basis of Counting, Permutations, Permutations with Repetitions, Circular and Restricted Permutations, Combinations, Restricted Combinations, Binomial and Multinomial Coefficients and Theorems, Number Theory: Properties of Integers, Division Theorem, Greatest Common Divisor, Euclidean Algorithm, Least Common Multiple, Testing for Prime Numbers,

The Fundamental Theorem of Arithmetic, Modular Arithmetic, Fermat's and Euler's Theorems.

KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES

(Autonomous)

Accredited by NBA & NAAC with Grade "A" and Affiliated to JNTUK-Kakinada Vinjanampadu, Vatticherukuru Mandal, Guntur, Andhra Pradesh522017

DEPARTMENT OF CSE - DATA SCIENCE

UNIT IV

Recurrence Relations: Generating Functions, Function of Sequences, Partial Fractions, Calculating Coefficient of Generating Functions, Recurrence Relations, Formulation as Recurrence Relations, Solving Recurrence Relations by Substitution and Generating Functions, Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations.

UNIT V

Graph Theory: Basic Concepts, Graph Theory and its Applications, Sub graphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs, Multigraphs, Bipartite and Planar Graphs, Euler's Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim's and Kruskal's Algorithms, BFS and DFS Spanning Trees.

Text Books:

- 1) Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and P.Manohar, Tata McGraw Hill.
- 2) Elements of Discrete Mathematics-A Computer Oriented Approach, C. L. Liu and D. P. Mohapatra, 3rd Edition, Tata McGraw Hill.

Reference Books:

- 1) Discrete Mathematics for Computer Scientists and Mathematicians, J. L. Mott, A. Kandel and T. P.Baker, 2nd Edition, Prentice Hall of India.
- 2) Discrete Mathematical Structures, BernandKolman, Robert C. Busby and Sharon Cutler Ross, PHI.
- 3) Discrete Mathematics and its Applications with Combinatorics and Graph Theory, K. H. Rosen, 7th Edition, Tata McGraw Hill.

E-Resources:

1) https://nptel.ac.in/courses/106/106/106106094/