# Graph: Part 6 - Connectivity

#### Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia



### References and acknowledgements



- Materials of these slides are taken from:
  - Kenneth H. Rosen. Discrete Mathematics and Its Applications, 8ed. McGraw-Hill, 2019. Section 10.3.
  - Jean Gallier. Discrete Mathematics Second Edition in Progress, 2017 [Draft].
    Section 4.2, 4.4.
- Figures taken from the above books belong to their respective authors. I do not claim any rights whatsoever.

#### Path



- Informally, path is a way to travel from a node u to a node v by following the edges "correctly".
- Implicitly, every path in a graph is directed, regardless whether the graph is directed or not.
- Examples of use:
  - to decide if a message can be sent between two computers;
  - to compute the most efficient route for garbage pickup.

# Path for directed graphs (1)



#### Definition

Given a digraph G=(V,E,s,t), a **path from** a node  $u\in V$  to a node  $v\in V$  is a sequence  $\pi=\langle u_0,e_1,u_1,e_2,u_2,\ldots,e_n,u_n\rangle$  where

- $n \ge 0$ ,  $u_0 = u$ ,  $u_n = v$ ,
- $u_0,\ldots,u_n\in V$ ,
- $e_1, \ldots, e_n \in E$
- $s(e_1) = u_0$ ,  $t(e_n) = u_n$ , and  $u_i = t(e_i) = s(e_{i+1})$  for  $1 \leqslant i \leqslant n-1$ .

## Path for directed graphs (2)



Let 
$$\pi = \langle u_0, e_1, u_1, e_2, u_2, \dots, e_n, u_n \rangle$$
 be a path.

- $u_0$  is called the initial/source node of  $\pi$  and  $u_n$  is the terminal/sink node of  $\pi$ .
- The path  $\pi$  is uniquely determined by its constituting edges, hence we sometimes represent  $\pi$  with its edge sequence  $\langle e_1, \dots, e_n \rangle$ .
- The path  $\pi$  also induces a **node sequence**  $\langle u_0, u_1, \dots, u_n \rangle$ .
- The notation  $|\pi|$  denotes the **length** of  $\pi$  and is defined as  $|\pi| = n$ .
- When  $|\pi| = 0$ ,  $\pi$  is called the **null path**. Its edge sequence is empty (denoted by  $\varepsilon$ ) and its node sequence is  $\langle u_0 \rangle$  containing just a single node  $u_0$ , which acts as both the initial and terminal node.
- If  $u_0 = u_n$ ,  $\pi$  is called a **closed path**, otherwise  $\pi$  is an **open path**.
- A closed path of nonzero length is called a circuit.
- A digraph that contains no circuit is called a directed acyclic graph (DAG).

# Path for directed graphs (3)



- A path is simple if its edge sequence does not contain duplicate edges.
- A path is node-simple if its node sequence does not contain duplicate nodes, except possibly for its initial node if the path is closed.
- Every node-simple path must be a simple path because in a node-simple path, every node occurs once (except possibly the initial node u if the path is closed), which means that every edge in its edge sequence must occur exactly once.

### Example





- $\langle v, e_5, x, e_6, y \rangle$  and  $\langle z, e_8, y \rangle$  are not a path
- $\langle u, e_1, v, e_2, w \rangle$  is a node-simple path (thus a simple path) with length 2, edge sequence  $\langle e_1, e_2 \rangle$ , and node sequence  $\langle u, v, w \rangle$
- $\langle u,e_1,v,e_2,w,e_4,x,e_5,v \rangle$  is a simple path, but not a node-simple path
- $\langle z, e_7, y, e_8, z \rangle$  is a node-simple circuit (thus a simple circuit)
- $\langle v, e_2, w, e_4, x, e_5, v, e_{10}, s, e_{11}, t, e_{12}, v \rangle$  is a simple circuit, but not a node-simple circuit

## Path for undirected graphs



#### **Definition**

Given a undirected graph G=(V,E,st), a path from a node  $u\in V$  to a node  $v\in V$  is a sequence  $\pi=\langle u_0,e_1,u_1,e_2,u_2,\ldots,e_n,u_n\rangle$  where

- $n \geqslant 0$ ,  $u_0 = u$ ,  $u_n = v$ ,
- $u_0,\ldots,u_n\in V$ ,
- $e_1, \ldots, e_n \in E$
- $st(e_i) = \{u_{i-1}, u_i\}$  for  $1 \leqslant i \leqslant n$ .
- The notions of initial node, terminal node, path length, null path, closed path, open path, circuit, node-simpleness, and simpleness are the same as for digraphs.

### Example



The following is a single graph with 8 nodes.



Are these paths? Simple paths? Node-simple paths? Circuits?

- $\langle s, e_2, t, e_4, u \rangle$
- $\langle u, e_7, v, e_8, w \rangle$
- $\langle s, e_2, t, e_4, y, e_5, z, e_1, s \rangle$
- $\langle x, e_6, y, e_5, z, e_3, t, e_4, y \rangle$

#### Connectedness



#### Definition

Let G be an undirected graph. G is **connected** iff there is a path (including null path) between every pair of nodes in G. Otherwise, G is **disconnected**.

#### Definition

Let G be a directed graph. G is **strongly connected** iff for every two nodes a,b in G, there is a path (including null path) from a to b and a path from b to a. Furthermore, G is **weakly connected** iff the underlying undirected graph of G is connected.

• Every node is connected to itself by a null path.

# Example: Which graphs are connected?







### Which graphs are strongly connected? Weakly connected?











### Connected components



#### Definition

Let G be an (possibly disconnected) undirected graph. A **connected component** of G is a subgraph H of G such that H is connected and H is maximal, i.e., H is not a proper subgraph of another connected subgraph of G.

#### Definition

Let G be a (possibly disconnected) digraph. A subgraph H of G is a **a strongly** connected component (scc) of G iff H is strongly connected and H is maximal, i.e., H is not a proper subgraph of another strongly connected subgraph of G.

- A graph with n>0 nodes can have at least 1 and at most n connected components.
- A graph is connected iff it has just a single connected component.

### Example: Determine the connected components of this graph





### Example: Determine the strongly connected components of this graph





### Example: Determine the strongly connected components of this graph







### Cut vertices and cut edges



- A cut vertex (cut node or articulation point) v in a graph G is a node in G whose removal increases the number of (strongly) connected components of G.
- A cut edge (bridge) e in a graph G is an edge in G whose removal increases the number of (strongly) connected components of G.
- Removal of a cut vertex or a cut edge from a connected graph yields a subgraph that is disconnected.
- Practical example: in a graph representing a computer network,
  - cut vertex: essential router that cannot fail for all computers to be able to communicate
  - cut edge: essential link that cannot fail for all computers to be able to communicate

# Example: What are the cut nodes and bridges?





# Example: What are the cut nodes and bridges?





### Vertex connectivity



- Not all graphs have a cut node, e.g., the complete graphs  $K_n$ ,  $n \ge 3$ . So graphs have different degree of connectedness.
- Let G = (V, E) be a connected graph. A vertex cut (separating set) V' is a subset  $V' \subseteq V$  such that G V' is disconnected.
- A graph G may have more than one vertex cut. Vertex connectivity  $\kappa(G)$  is the size of the smallest vertex cut in G (if G is a complete graph  $K_n$ , we define  $\kappa(G) = n 1$ ).
- If G is disconnected,  $\kappa(G) = 0$ .
- If G has a cut vertex, then  $\kappa(G) = 1$ .
- If  $\kappa(G) = k$ , then G is said to be *j*-connected for all  $0 \le j \le k$ .

### Example: Find the vertex connectivity of these graphs





#### Example: Find the vertex connectivity of this graph





## Edge connectivity



- Alternative way to define degree of connectedness of a graph is by considering the edge removal, instead of node removal.
- Let G = (V, E) be a connected graph. An edge cut E' is a subset  $E' \subseteq E$  such that G E' is disconnected.
- Edge connectivity  $\lambda(G)$  of G is the size of the smallest edge cut in G where we define  $\lambda(G)=0$  if G is disconnected or has only one node.

### Example: Find the edge connectivity of these graphs





### Example: Find the edge connectivity of this graph





#### Relationship between vertex and edge connectivity



#### Lemma

Let G = (V, E, st) be an undirected graph. Then,

$$\kappa(G) \leqslant \lambda(G) \leqslant \min_{v \in V} \deg(v)$$

#### Proof (Exercise).

- Show that  $\kappa(G) \leqslant \min_{v \in V} \deg(v)$  and  $\lambda(G) \leqslant \min_{v \in V} \deg(v)$ .
- Show that  $\kappa(G) \leqslant \lambda(G)$ .

### Counting paths between nodes



#### Theorem

Let G=(V,E) be a (undirected/directed) graph with adjacency matrix  $\mathbf A$  with respect to the ordering  $v_1,\ldots,v_n$  of nodes of G. Then, the number of different paths of length r from  $v_i$  to  $v_j$  with r>0 is equal to the (i,j)th entry of  $\mathbf A^r$ 

See Rosen for proof.

# Example: How many paths of length 3 from $\it b$ to $\it e$





# Example: How many paths of length 3 from $\boldsymbol{v}$ to $\boldsymbol{y}$



