SUMMARY-Team Techno Dynamics

(220247J, 220064U, 220106D, 220380J, 220334A)

Overall Strategy

White Line Following

We plan to use an array of 8 IR sensors for line following. The speed of the motors is controlled by implementing a PID algorithm in the microcontroller.

Wall Following

Two VL53L5x ToF sensors mounted on the robot's sides will measure obstacle distance to avoid obstacles.

Color Line Following

To identify the line's color, we will employ a TCS34725 color sensor alongside the existing array of IR sensors, adjusting the threshold values for red and blue. A PD algorithm will be used for this task.

Portal Navigation

An ultrasonic sensor will be used to detect the presence or absence of an obstacle, which will help identify whether the portal is closed or opened.

Box Height Measurement

We will use the VL53L5x TOF sensor attached to the lifting mechanism to measure the height of objects.

Coin-Dropping Mechanism

A coin holder attached to a servo motor, allowing precise control of its angle is used here. This enables accurate coin placement at designated locations, ensuring smooth and consistent drops.

Lifting and Grabbing Mechanism

The rack and pinion mechanism, driven by a servo motor, controls the up-and-down movement of the grabber, enabling precise gripping and releasing for versatile tasks.

Mechanical Design

Figure 1: Mechanical design

SENSORS

TASK 1 (Barcode Reading and Line Navigation)

For barcode reading, we will use the Raykha module, which features eight TCRT5000 IR sensors, combined with the motors' magnetic encoders. Reasons for selection: Provides detailed detection along the line, Greater detection range, Quick response to changes and it Offers both analog and digital output options

TASK 2 (Maze Navigation and Box Manipulation)

We plan to utilize the 8-channel IR sensor array and quadrature magnetic encoders to navigate the maze and manipulate the virtual box.

TASK 3 (Color Line Following)

We selected the TCS34725 color sensor for its integrated IR filter, I²C interface, 3.3V operation, high dynamic range, and accurate color detection across a broad spectrum, alongside 8 IR sensors for line following.

TASK 4 (Dashed Line Navigation)

To follow the dashed line, we will employ the IR sensor array.

TASK 5 (Portal Navigation)

We chose the ultrasonic sensor for this task due to its reliability, low cost, energy efficiency, and effective short-range obstacle detection.

TASK 6 (Box Arrangement)

Using VL53L5x TOF sensor for measuring the heights of boxes with high accuracy and fast response times.

TASK 8 (Coin Drop and Task Completion)

We plan to use the Magnetometer sensor to detect the magnetic field while using the TOF sensors integrated at the robot's sides to avoid collisions.

Actuators

Motors

JGB37-520 motors drive the robot's movement. They provide high torque, effective low-speed control, and voltage flexibility, making them efficient and suitable.

Servos

The servo motors control the movement of the grabber arm, lifting mechanism, and coin holder. It provides high torque with an accurate control in a relatively small size enough for positioning applications.

Battery

Three 3.7V lithium-ion batteries power the robot, totalling 11.1V. This allows sufficient voltage to be sup-plied to the robot, hence allowing it to run for a longer a compact, rechargeable design for effective power delivery.

Algorithms

Line following:

- Read the values from each of the 8 IR sensors.
- Determine the line's position using the IR sensor array
- Apply PID for correction.
- Set an appropriate speed.

Wall Following

- Get the input from the side-mounted VL53L5x ToF sensors.
- Calculate the distance.
- Adjust motor speed based on the distance to the obstacle to avoid them.

Color line following:

- Get the input from the TCS34725 color sensor and the array of IR sensors
- Use PD control to maintain the correct line-following behavior based on the color.
- Adjust motor speeds accordingly.

Portal Navigation

- Initialize a timer variable
- Read Ultrasonic Sensor Values to detect if the Portal is closed while monitoring the timer for Confirmation
- Confirm Portal is closed for the required Duration-Reset Timer if Portal Closes Prematurely
- Start moving forward when the portal is open after being closed for the expected period.

Lifting and grabbing mechanism

- Control the upward/downward movement of the grabber using servo motors.
- Adjust the grip and release to handle objects flexibly by using the servo motor attached to the grabber.

Coin dropping mechanism.

- Read Magnetometer Values
- When the field is detected, control the servo motor to drop the coin precisely at the designated spot.

Task Delegation

- Jayakody J.A.K.(Tech Lead)
 - Maze navigation + Box manipulation
- Kulasinghe H.P.G.N.A.(Electrical Lead)
 Barcode reading + White line following
- Bandara M.A.G.S.(Algorithms and Programming Lead)
 - Color line, Dashed line following, Portal Navigation
- De Zoysa A.S.I.(Mechanical Systems Lead)
 - Uneven terrain + Coin-Dropping Mechanism
- Manawadu D.N. (Systems Integration Lead)
 - Box Height Measurement + Chamber insertion