

(Optional) Unit 8 Principal

(Optional) Preparation Exercises for

3. Expectation and Covariance of a

<u>Course</u> > <u>component analysis</u>

> Principal Component Analysis

> Random Vector

3. Expectation and Covariance of a Random Vector

Review: Vector Outer Product I

3/3 points (ungraded)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ denote column vectors. Consider the product $\mathbf{x}\mathbf{y}^T$. This is referred to as the **outer product** of the vectors \mathbf{x} and \mathbf{y} .

How many rows are in $\mathbf{x}\mathbf{y}^T$?

3

✓ Answer: 3

How many columns are in $\mathbf{x}\mathbf{y}^T$?

✓ Answer: 3

Is the matrix $\mathbf{x}\mathbf{y}^T$ always symmetric?

Yes

No

Solution:

The vector $\mathbf{x} \in \mathbb{R}$ is a column vector, so it can alternatively be thought of as a 3 imes 1 matrix. Similarly, \mathbf{y}^T is a 1 imes 3 matrix, so the product $\mathbf{x}\mathbf{y}^T$ is a 3 imes 3 matrix.

Moreover, by the rule for matrix multiplication,

$$(\mathbf{x}\mathbf{y}^T)_{ij} = \mathbf{x}^i\mathbf{y}^j.$$

Therefore, if $\mathbf{x}^i\mathbf{y}^j
eq \mathbf{x}^j\mathbf{y}^i$ for some i,j, then the matrix $\mathbf{x}\mathbf{y}^T$ is not symmetric. For example, if we let

$$\mathbf{x} = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}, \quad \mathbf{y} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix},$$

then

$$\mathbf{x}\mathbf{y}^T = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} (1 & 1 & 1) = egin{pmatrix} 1 & 1 & 1 \ 2 & 2 & 2 \ 3 & 3 & 3 \end{pmatrix}$$

which is **not** symmetric.

Remark: In this chapter, we will usually have y = x, so we will be looking at the outer product of x with itself, which is xx^T . This is symmetric in general because

You have used 2 of 3 attempts

• Answers are displayed within the problem

Review: Vector Outer Product II

3/3 points (ungraded)
Consider the vector

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Consider the matrix product $\mathbf{x}\mathbf{x}^T$.

What is $(\mathbf{x}\mathbf{x}^T)_{11}$?

1 **✓ Answer:** 1

What is $(\mathbf{x}\mathbf{x}^T)_{21}$?

2 **✓ Answer:** 2

What is $(\mathbf{x}\mathbf{x}^T)_{23}$?

6 **✓ Answer:** 6

Solution:

The outer product of \mathbf{x} with itself is given by

$$\mathbf{x}\mathbf{x}^T = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} (1 \quad 2 \quad 3) = egin{pmatrix} 1 & 2 & 3 \ 2 & 4 & 6 \ 3 & 6 & 9 \end{pmatrix}$$

so
$$(\mathbf{x}\mathbf{x}^T)_{11}=1$$
, $(\mathbf{x}\mathbf{x}^T)_{21}=2$, and $(\mathbf{x}\mathbf{x}^T)_{23}=6$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Review: Expectation of a Random Vector

2.0/2 points (ungraded)

Let $\mathbf{X} \in \mathbb{R}^3$ denote a random vector.

Then $\mathbb{E}\left[\mathbf{X}
ight]$ is...

 \circ A number in \mathbb{R} .

ullet A vector in \mathbb{R}^3 . ullet

None of the above.

Suppose that

$$\mathbf{X} \sim N\left(egin{pmatrix} -10 \ 0 \ 2 \end{pmatrix}, egin{pmatrix} 1 & 2 & 0 \ 2 & 2 & 1 \ 0 & 1 & 1 \end{pmatrix}
ight).$$

What is $\mathbb{E}\left[\mathbf{X}\right]$?

(Enter your answer as a vector, e.g., type [3,2] for the vector $\binom{3}{2}$).

Solution:

It is important to remember the definition

$$\mathbf{E}[\mathbf{X}]_i = \mathbf{E}[\mathbf{X}^i]$$
 .

Note that the diagonal entries of the given covariance matrix denote the variances of ${f X}^1,{f X}^2,$ and ${f X}^3$. Therefore,

$$\mathbf{X}^{1} \sim N\left(-10,1
ight), \; \mathbf{X}^{2} \sim N\left(0,2
ight), \; \mathbf{X}^{3} \sim N\left(2,1
ight).$$

It follows that

$$egin{aligned} \mathbb{E}[\mathbf{X}]_1 &= \mathbb{E}[\mathbf{X}^1] = -10 \\ \mathbb{E}[\mathbf{X}]_2 &= \mathbb{E}[\mathbf{X}^2] = 0 \\ \mathbb{E}[\mathbf{X}] &= \mathbb{E}[\mathbf{X}^3] & 0 \end{aligned}$$

$$\mathbb{E}[\mathbf{X}]_3 \ = \mathbb{E}\left[\mathbf{X}^3
ight] = 2.$$

Remark: Observe that the mean of $\mathbf X$ does not depend on the covariance structure.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Review: Variance and Covariance of Random Variables

2/2 points (ungraded)

Let $X \in [0,1]$ denote a bounded random variable. The variance of X is defined to be

$$\mathsf{Var}\left(X
ight) = \mathbb{E}\left[X^2
ight] - \left(\mathbb{E}\left[X
ight]
ight)^2.$$

Equivalently, we may write

$$\mathsf{Var}\left(X
ight) = \mathbb{E}\left[\left(X - A
ight)^2
ight]$$

for some constant A that depends on the distribution of X.

- E[X]
- igodot igotimes $[X^2]$
- $^{\circ}\;(\mathbb{E}\left[X
 ight])^{2}$
- None of the above.

Let $Y\in [0,1]$ denote another bounded random variable. Assume that X and Y have a joint distribution, but are not necessarily independent. The covariance of X and Y is defined to be

$$\mathsf{Cov}\left(X,Y
ight) = \mathbb{E}\left[XY
ight] - \mathbb{E}\left[X
ight]\mathbb{E}\left[Y
ight].$$

Equivalently, we may write

$$\mathsf{Cov}\left(X,Y
ight) = \mathbb{E}\left[\left(X-B
ight)\left(Y-C
ight)
ight]$$

for some constants B and C that depend on the distribution of X and Y, respectively.

$$ullet \ B=\mathbb{E}\left[X
ight],C=\mathbb{E}\left[Y
ight]$$

- $\circ \ B=\mathbb{E}\left[Y
 ight] ,C=\mathbb{E}\left[X
 ight]$
- $igcup B=(\mathbb{E}\left[Y
 ight])^{2},C=(\mathbb{E}\left[X
 ight])^{2}$
- $lacksquare B = \mathbb{E}\left[Y^2
 ight], C = \mathbb{E}\left[X^2
 ight]$

Solution:

We examine the questions in order. First we note that $\mathbb{E}[X^2]$, $\mathbb{E}[Y^2]$, and $\mathbb{E}[XY]$ are all finite because the random variables $X,Y\in[0,1]$ are finite.

For the first question, observe that

$$\mathbb{E}\left[\left(X-\mathbb{E}\left[X
ight]
ight)^{2}
ight]=\mathbb{E}\left[X^{2}-2X\mathbb{E}\left[X
ight]+\left(\mathbb{E}X
ight)^{2}
ight]=\mathbb{E}\left[X
ight]^{2}-\left(\mathbb{E}\left[X
ight]
ight)^{2}.$$

Hence, the correct response to the first question is $A=\mathbb{E}\left[X
ight] .$

For the second question, observe that

$$\mathbb{E}\left[\left(X-\mathbb{E}\left[X
ight]
ight)\left(Y-\mathbb{E}Y
ight)
ight]=\mathbb{E}\left[XY-X\mathbb{E}Y-Y\mathbb{E}X+\mathbb{E}\left[X
ight]\mathbb{E}\left[Y
ight]
ight]=\mathbb{E}\left[XY
ight]-\mathbb{E}\left[X
ight]\mathbb{E}\left[Y
ight]$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Review: Covariance of Random Vectors

2/2 points (ungraded)

Let $\mathbf{X} \in \mathbb{R}^d$ denote a random vector. Recall the **covariance matrix** of \mathbf{X} is defined to be

$$\Sigma = \mathbb{E}\left[\mathbf{X}\mathbf{X}^T
ight] - \mathbb{E}\left[\mathbf{X}
ight]\mathbb{E}\left[\mathbf{X}
ight]^T.$$

The covariance matrix can also be expressed as

$$\Sigma = \mathbb{E}\left[\left(\mathbf{X} - A
ight)\left(\mathbf{X} - A
ight)^T
ight]$$

where A is a matrix that depends on the distribution of \mathbf{X} .

What is A?

- E[X]
- \circ $\mathbf{E}\left[\mathbf{X}\mathbf{X}^{T}
 ight]$
- $lackbox{f E}\left[{f X}^T{f X}
 ight]$
- None of the above.

What is Σ_{ij} ?

- $\circ \hspace{0.1cm} \mathbb{E} \hspace{0.1cm} [\mathbf{X}^i \mathbf{X}^j]$
- ${}^{igodot} \; \mathbb{E}\left[\mathbf{X}^i
 ight] \mathbb{E}\left[\mathbf{X}^j
 ight]$
- $^{igodot} \left(\mathbb{E}\left[\mathbf{X}^i \mathbf{X}^j
 ight]
 ight)^2$
- ullet Cov $(\mathbf{X}^i,\mathbf{X}^j)$

Solution:

We examine the questions in order.

For the first question, observe that

$$\mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right]\right)\left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right]\right)^{T}\right] = \mathbb{E}\left[\mathbf{X}\mathbf{X}^{T} - \mathbf{X}\mathbb{E}\left[\mathbf{X}\right]^{T} - \mathbb{E}\left[\mathbf{X}\right]\mathbf{X}^{T} + \mathbb{E}\left[\mathbf{X}\right]\mathbb{E}\left[\mathbf{X}\right]^{T}\right]$$
$$= \mathbb{E}\left[\mathbf{X}\mathbf{X}^{T}\right] - \mathbb{E}\left[\mathbf{X}\right]\mathbb{E}\left[\mathbf{X}\right]^{T}.$$

The second line follows by the linearity of expectation. Therefore $A=\mathbb{E}\left[\mathbf{X}
ight]$.

For the second question, observe that

$$egin{aligned} \Sigma_{ij} &= \left(\mathbb{E}[\mathbf{X}\mathbf{X}^T]_{ij} - \left(\mathbb{E}\left[\mathbf{X}
ight]\mathbb{E}[\mathbf{X}
ight]^T
ight)_{ij} \ &= \mathbb{E}\left[\mathbf{X}^i\mathbf{X}^j
ight] - \mathbb{E}[\mathbf{X}]^i\mathbb{E}[\mathbf{X}]^j \ &= \mathsf{Cov}\left(\mathbf{X}^i,\mathbf{X}^j
ight). \end{aligned}$$