

Does Metadata leak Privacy?

Danning Zhan, Rihan Hai

Motivation

Data Sources

Tabular data
Distributed sources

Data Augmentation

Sources will augment data attributes Validate the data augmentation

Federated Learning

Downstream Analytical model.

Tabular Data Metadata

Tabular Data Dependencies

Approximate Dependency

Numerical Dependency

Order Dependency

Dependency

Dependency

Dependency

Motivation

GDPR

- Recent Regulations such as GDPR
 - Data storage and data processing

Privacy

Formal Definition

Privacy Leakage definition

- Data point identifiability
- Data value Inference

Data Types

Data Types

- Categorical
 - Exact Matching
- Continuous
 - Distance Metric

Privacy Analysis

6

- From Discovery Annotations
- Both tables satisfy the same metadata
 - Attribute names
 - Attribute domains
 - Functional Dependencies
 - Relaxed Functional Dependencies
- Probabilistic
 - The dependencies
 - The values

Name	Age	RHR	
Alice	12	100	
Bob	16	80	
Charlie	Charlie 20 8		
Dave	20	80	

Name	Age	RHR	
Alice	14 90		
Bob	17	85	
Charlie	17	70	
Dave	20	65	

Original

Copy

{ Name → Age , Age → Heart Rate, Name → Heart Rate}

P(Heart Rate) = P(Age) * P(Mapping)

Privacy Analysis

Approximate Functional Dependency – ε

- Dependencies:
 - Directed Graph Traversal
 - Generated from the graph
 - Mapping: A → B, A → C,
 B→D, (B, C) → E
- Values
 - Generated from assumed distribution
 - Consistency with Dependencies
 - Matching follows a Binomial Distribution

Experiment

Number of Exact Matches for Categorical Attributes

Dep	Attr 1	Attr 3	Attr 11	Attr 12
Rand Gen	44	44	33	44
Func Dep	44.082	43.954	32.815	NA
Ord Dep	44	32	29	47
Num Dep	56	NA	NA	NA

Metric Evaluation of Continuous Variables

Dep	Attr 0	Attr 2	Attr 4	Attr 5	Attr 6	Attr 7	Attr 8	Attr 9
Rand Gen	580.49	1169.96	0.43	114.17	10.14	138.69	1.71	0.93
Func Dep	580.25	1172.4	0.43	114	10.11	138.6	1.71	NA
Ord Dep	581.43	1383.86	0.24	17.33	9.63	139.44	1	1.41
Num Dep	708.58	NA	NA	NA	NA	NA	NA	NA

Conclusion and Takeaway

Privacy

Non-zero probability of leakage

Agnostic to assumed distribution

Metadata

Properties

Non-unique

Implicit to data

Metadata Dependency

Dependency Between metadata

Data Source →
Attribute Names

Attribute names →
Attribute Domain

Attribute Domain →
Functional
Dependencies

Future Works

Other metadata

Will communicating more metadata lead to more privacy leakage?

Validate Data

Can we validate the data without communicating metadata?

TUNE IN TO THE REST OF OUR TEAM

Aditya:

SiloFuse: Cross-Silo Synthetic

Data Generation with Latent Tabular

Diffusion Models.

Tuesday, May 14th 16:21 – 18:00 Theatre 12