AD-780 425

COMPOSITE DESIGN SYNTHESIS

BATTELLE COLUMBUS LABORATORIES

PREPARED FOR

OFFICE OF NAVAL RESEARCH

ADVANCED RESEARCH PROJECTS AGENCY

JUNE 1974

DISTRIBUTED BY:

AD 780 425

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
Composite Design Synthesis		Final Technical Report, 1 year
		6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Milton Vagins		N00014-72-C-0195
9. PERFORMING ORGANIZATION NAME AND ADDRESS Battelle's Columbus Laboratori 505 King Avenue Columbus, Ohio 43201		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research		June 14, 1974
800 North Quincy Street Arlington, Virginia 22217	13. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)		15. SECURITY CLASS. (of this report)
Advanced Research Projects Agency		Unclassified
1400 Wilson Boulevard Arlington, Virginia 22209	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A	
16. DISTRIBUTION STATEMENT (of this Report)		

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Composite Design Synthesis Rotating Disks Pressurized Thick-wall Cylinders . Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. Department of Commerce
Springfield VA 22151

20. ABSTRACT (Continue on reverse side it necessary and identify by block number)

The research carried out deals with the problem of design synthesis in heterogeneous elasticity. Design synthesis is defined as the achievement of a desired design criterion, i.e., stress distribution, strength-to-weight ratio, etc., by preselecting a stress or displacement pattern in a stretched plate and then determining the variation of the elastic moduli that is required to permit the desired effects. This accomplishment requires the solution of the governing equations of

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

* SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

80

Best Available Copy

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

elasticity, particularly the compatibility equation, in terms of preselected stress fields in the body of the plate for unknown material properties which are spatial functions.

During this work, solutions to the moduli variation problem for annular disks have been achieved for two stress criteria: constant hoop stress, and constant in-plane shear stress. The disk may be rotating and have boundary traction. A computer program, DOMOV1, was developed to carry out these solutions. Attempts to solve the moduli variation problem for a hole in an infinite plate (two-dimensional), subject to certain stress distributions, were unsuccessful. However, great insight was gained into this problem for future work.

Basically, this work has shown that the concept of design synthesis, as defined here, is a workable discipline and, in the case of rotating annular disks and pressurized thick-wall cylinders, can be applied utilizing the present state-of-the-art fabrication technology, but that its application to complex problems requires additional work.

FINAL TECHNICAL REPORT

on

COMPOSITE DESIGN SYNTHESIS

to

OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY

June 14, 1974

by

Milton Vagins

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

Battelle is not engaged in research for advertising, sales promotion, or publicity purposes, and this report may not be produced in full or in part for such purposes.

June 14, 1974

Director
Advanced Research Projects
Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention Program Management DODAAD Code HX 1241

Dear Sir:

Form Approved Budget Bureau No. 22-R0293 Contract No. N00014-72-C0195

Enclosed is the Final Technical Report on the contract titled "Composite Design Synthesis".

Sincerely,

Milton Vagins Principal Investigator Applied Solid Mechanics Section

MV:jlg

Enclosures (3)

Final Technical Report

on

Composite Design Synthesis

14 June 1972

ARPA Order Number

1977

Program Code Number

2N10

Contract Number

N00014-72-C-0195

Scientific Officer

Director
Structural Mechanics, Mathematical and Information Science Division

Office of Naval Research Department of the Navy

Name of Contractor

Battelle Memorial Institute Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

Principal Investigator

Milton Vagins Phone (614) 299-3151 Ext. 1659

Effective Date of Contract

30 December 1971

Contract Expiration Date

28 February 1974

Amount of Contract

\$39,400.00

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 1977 dated 18 October 1971

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U. S. government.

TABLE OF CONTENTS

	Page
REPORT SUMMARY	i
SYMBOLS	ii
INTRODUCTION	1
GENERAL DISCUSSION	4
APPLICATIONS	12
Rotationally Symmetric Problems	12
Non-Symmetric Problems	35
Limits and Other Considerations	42
Two-Dimensional Boundary Considerations	44
Material Considerations	48
SUMMARY	49
REFERENCES	50
APPENDIX A	
INPUT DATA FOR PROGRAM DOMOV1	A-1
APPENDIX B	
LISTING OF PROGRAM DOMOV1	B-1
APPENDIX C	
OUTPUT OF PROCEAM DOMOV1	C-1
LIST OF FIGURES	
Figure 1. Pressurized Annular Disk	13
Figure 2. Modulus Variation for Orthotropic Disk with Pressurized I.D., with $\sigma_{\rm A}$ = Constant	18
Figure 3. Modulus Variation for Isotropic Disk with Pressurized	
I.D., with σ_{θ} = Constant	19

LIST OF FIGURES (Continued)

			Page
Figure	4.	Modulus Variation for Orthotropic Disk with Pressurized O.D., with σ_{θ} = Constant	21
Figure	5.	Modulus Variation for Isotropic Disk with Pressurized O.D., with σ_{θ} = Constant	22
Figure	6.	Rotating Annular Disk	23
Figure	7.	Modulus Variation for Rotating Orthotropic Disk with no Edge Loads, with σ_{θ} = Constant	29
Figure	8.	Modulus Variation for Rotating Orthotropic Disk, Orthotropic Ratio of 2.5 with no Edge Loads and σ_θ = Constant	30
Figure	9.	Modulus Variation for Rotating Orthotropic Disk with no Edge Loads, and with Constant In-plane Shear Stress	31
Figure	10.	Modulus Variation for Rotating Orthotropic Disk Ortho- tropic Ratio of 2.5 with no Edge Loads and with Constant In-plane Shear Stress	32
Figure	11.	Modulus Variation for Orthotropic Rotating Disk Stressed on O.D. RPM = 2000; Density = 0.1 lb/in. ³ ; Stress on O.D. = 10,000 Psi; O.D. = 60.0 inches; I.D. = 6.0 inches, σ_A = Constant	33
Figure	12.	Morulus Variation for Orthotropic Rotating Disk Stressed on O.D.: RPM = 4000; Density = 0.1 lb/in. ³ ; Stress on O.D. = 12,000 Psi; O.D. = 60.0 inches; I.D. = 6.0 inches, σ_{θ} = Constant	34
Figure	13.	Small Hole in Infinite Plate Subjected to Uniform, Uniaxial Tensile Stress Field	36
Figure	1.4.	Two-Dimensional Finite-Difference Model	40

REPORT SUMMARY

This is the Final Technical Report describing the work done and the accomplishments of the research effort for ONR-ARPA titled "Composite Design Synthesis".

The research carried out deals with the problem of design synthesis in heterogeneous elasticity. Design synthesis is defined as the achievement of a desired design criterion, i.e., stress distribution, strength-to-weight ratio, etc., by preselecting a stress or displacement pattern in a stretched plate and then determining the variation of the elastic moduli that is required to permit the desired effects. This accomplishment requires the solution of the governing equations of elasticity, particularly the compatibility equation, in terms of preselected stress fields in the body of the plate for unknown material properties which are spatial functions.

During this work, solutions to the moduli variation problem for annular disks have been achieved for two stress criteria; constant hoop stress; and constant in-plane shear stress. The disk may be rotating and have boundary traction. A computer program, DOMOV1, was developed to carry out these solutions. Attempts to solve the moduli variation problem for a hole in an infinite plate (two dimensional), subject to certain stress distributions were unsuccessful. However, great insight was gained into this problem for future work.

Basically, this work has shown that the concept of design synthesis, as defined here, is a workable discipline and in the case of rotating annular disks and pressurized thick-wall cylinders, can be applied utilizing the present state-of-the-art fabrication technology, but that its application to complex problems requires additional work.

SYMBOLS

Symbol	Quantity
a,b	inside and outside radius
a ij	material coefficients
c	dimensionless shear-modulus coefficient $\left(\equiv \frac{E_{\theta}}{2G}\right)$
A _o , B _o , C _o , C ₁ , C ₂	constants of integration
e	orthotropic ratio $\left(\equiv \frac{E_{\theta}}{E_{r}}\right)$
Ei	modulus of elasticity corresponding to the subscripted direction ($i = r, \theta$)
f	√e
$f_1(\theta), f_2(\theta)$	functions of θ only
G	modulus of rigidity $\left(\equiv G_{r\theta}\equiv \frac{1}{a_{66}}\right)$
g	acceleration of gravity
k	radius ratio (≡b/a)
k ₁	orthotropic ratio (≡e)
k ₂	Poisson's ratio in tangential direction ($\equiv v_{\theta r}$)
m	cos ø
n	sin ϕ
P	internal pressure
q ·	external pressure
r	radius
T	temperature difference function
u,v	displacements
R,X,Y	body forces
U	specific strain energy
U	total strain energy
	ix

α	coefficient of linear thermal expansion
β	exponent $(\equiv -k_1/k_2)$
Υ	material density
ε	strain component with one or two subscripts
Θ	body force in tangential direction
θ	angular position
λ	exponent
ν	Poisson's ratio in tangential direction ($\equiv v_{\theta r}$)
ξ	exponent $\left(\equiv -\left[\frac{k_1 - k_2}{(1 - k_2)k_2} \right] \right)$
ρ	dimensionless position ratio ($\equiv r/b$)
φ	coordinate system offset angle
¥	stress function
w	rotational velocity
δ	variation factor
ŋ	arbitrary function

Quantity

Symbol

INTRODUCTION

It has long been recognized that structural elements composed of composite materials, such as glass, boron, carbon, or other filaments, embedded in a suitable matrix, such as epoxy or polyester, offer outstanding strength-to-weight ratios. The potential of such materials is considered so great that material scientists and engineers believe that they will form the bulk of the structural materials of the future. Though the application of such materials has been a growing part of the state of the art for structural components, particularly in the aerospace industry, the translation of the concept of fibrous composites into a primary load carrying structure has been and remains a challenging process.

The present and growing use of structural elements fabricated from composite materials creates the need for the development of a rational analytic design basis, which to a great extent is presently non-existent. This is not to be construed as meaning that little or no research on composite materials has been carried out. On the contrary, a large amount of literature has been generated dealing with both the determination of the mechanical properties of these materials and the analysis of specific structures fabricated from them.

In general, from the microscopic viewpoint, research on the mechanical properties of composites has dealt with the determination of such properties for materials having given component elements ordered in fixed spatial relationships. The spatial relation in these cases might have a high degree of symmetry, as in long or continuous filament composites, or a completely random or homogeneously disordered array as usually employed in short carbon or boron fiber composites. Such research has been directed towards the creation of analytic or experimental methods of determining the mechanical properties of composite structures in terms of the known properties of the composites' components, characteristic of this approach are the works of Sayers and Hanley [1]*, Chen and Cheng [2], Hill [3], and Gaonkar [4], among others.

In the analysis of structures composed of such composites, the material has generally been treated as exhibiting gross, homogeneous,

Numbers in brackets are references found at the end of this report.

isotropic or anisotropic mechanical properties. These gross properties, when entered into the constitutive equations defining the material, have allowed analyses of such structures through the classical methods of the theory of elasticity, plates and shells, vibration, and others. Along these lines, the concept of the "unidirectional lamina" was introduced and utilized as the "fundamental unit of material" in design and analysis. This procedure employs test data obtained from a unidirectional lamina as the basis for the design of laminated components and structures. Exemplary work done along these lines has been carried out by Dong [5], Tsai [6,7], Tsai and Azzi [8], Whitney [9], and Whitney and Leissa [10,11], also among others.

All of these analyses have dealt with materials and structures that have predetermined mechanical and behavioral characteristics. That is, once the geometric array and the constituents of the composite are prescribed, then the mechanical properties of the material and the response characteristics of a structure fabricated from such a material have been inherently established. And lysis will merely determine what these properties and response characteristics are.

When dealing with composite materials, the analytical procedures discussed above appear to be highly inefficient in many applications. The designer of fibrous composite structures is presented with numerous degrees of freedom and an opportunity to exercise ingenuity totally unavailable to him with conventional materials. Composites, whether filamentary, fibrous, or sintered or fused metallics, are capable of being tailored to meet specific requirements. When considering specific structural applications for such materials, it would be logical to assume that a structure could be optimized, depending, of course, upon the optimization criterion, by varying the mechanical properties of the material throughout the structure. Further it would be logical to bypass analysis completely and define this now nonhomogeneous structure by some means of design synthesis. Admittedly, the creation of a design synthesis procedure to adequately handle most problems in structural design is quite difficult. However, the concept of design synthesis to determine the variation of the mechanical properties of a material within a structure so as to achieve a desired stress or deformation pattern in that structure is one capable of being developed.

The work described herein deals with the first phase of an effort to develop a design synthesis methodology for composites. It is directed specifically to the problem of heterogeneous plane elasticity.

GENERAL DISCUSSION

Consider the following question:

Given a plane elastic body with known boundary tractions and/or displacements, can the mechanica) properties of the continuum be described such that an "arbitrary" stress distribution within the body is met?

The term "arbitrary" is to be understood as defining a family of stress distributions that are preselected but still conform to equilibrium requirements and boundary conditions. To answer this question we start by making the following two basic assumptions:

- (1) the classical equations of linear elasticity are valid in this application, and
- (2) the mechanical properties of the continuum can be expressed as spatial functions.

Following from these assumptions the well known governing relations of generalized plane stress, given in rectangular coordinates are as follows:

Equilibrium Equations

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + x = 0$$

$$\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + y = 0 ,$$
(1)

Strain-Displacement Equations

$$\varepsilon_{x} = \frac{\partial u}{\partial x}, \quad \varepsilon_{y} = \frac{\partial v}{\partial y},$$

$$\varepsilon_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y},$$
(2)

Compatibility Equation

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} . \tag{3}$$

Assuming that the continuum exhibits orthotropic material properties and neglecting time and strain rate effects, the constitutive equations can be expressed as generalized Hooke's Law as

$$\begin{bmatrix} \epsilon_{\mathbf{x}} \\ \epsilon_{\mathbf{y}} \\ \epsilon_{\mathbf{xy}} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & 0 \\ \mathbf{a}_{21} & \mathbf{a}_{22} & 0 \\ 0 & 0 & \mathbf{a}_{66} \end{bmatrix} \begin{bmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \sigma_{\mathbf{xy}} \end{bmatrix} + \begin{bmatrix} \alpha_{1}^{\mathsf{T}} \\ \alpha_{1}^{\mathsf{T}} \\ 0 \end{bmatrix}$$

$$(4)$$

where α_1 and α_2 are the coefficients of thermal expansion and T represents the temperature difference distribution. The relations defined by Equations (4) are valid when the axes of the material properties of the continuum are coincident with the axes selected for the differential equations of the problem. If the axes are not coincident, except for the z-axes, and the other two axes of the material properties are rotated about the z-axis through some angle, 4, in relation to the geometric axes, then more complicated relations between the stresses, temperature and strains are developed. Lekhnitskii [12] presents these relationships in some detail. For the generalized plane stress case in point the material coefficients are related to the two axis system by

$$\begin{bmatrix} a'_{11} \\ a'_{12} \\ a'_{21} \end{bmatrix} = \begin{bmatrix} m^4 & m^2n^2 & m^2n^2 & n^4 & 4m^2n^2 \\ m^2n^2 & m^4 & n^4 & m^2n^2 & -4m^2n^2 \\ m^2n^2 & n^4 & m^4 & m^2n^2 & -4m^2n^2 \\ n^4 & m^2n^2 & m^2n^2 & m^4 & 4m^2n^2 \\ m^2n^2 & -m^2n^2 & -m^2n^2 & m^2n^2 & (m^2-n^2) \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \\ a'_{66} \end{bmatrix}$$
(5)

where $m = \cos \phi$, and $n = \sin \phi$.

No generality will be lost by continuing with the constitutive equation as given by Equations (4). Substituting Equations (4) into (3),

assuming that the a_{ij} 's are spatially dependent and carrying out the required differentiation yields:

$$\left\{a_{12} \frac{\partial^{2} \sigma_{y}}{\partial y^{2}} + a_{66} \frac{\partial^{2} \sigma_{xy}}{\partial x \partial y} + a_{11} \frac{\partial^{2} \sigma_{x}}{\partial y^{2}} + a_{21} \frac{\partial^{2} \sigma_{x}}{\partial x^{2}} + a_{22} \frac{\partial^{2} \sigma_{y}}{\partial x^{2}} + a_{22} \frac{\partial^{2} \sigma_{y}}{\partial x^{2}} + \frac{\partial^{2} \sigma_{y}}{\partial x^{2}} + \frac{\partial^{2} \sigma_{y}}{\partial y^{2}} + \frac{\partial^{2} \sigma_{y}}{\partial y^{2}} + \frac{\partial^{2} \sigma_{y}}{\partial y^{2}} + \frac{\partial^{2} \sigma_{y}}{\partial x^{2}} + \frac{\partial^{2} \sigma_{y}}{\partial x^{2}$$

Assume that the body forces have a potential, V, such that

$$X = -\frac{\partial V}{\partial x}$$

$$Y = -\frac{\partial V}{\partial y},$$
(7)

and choose Airy's stress function, Y, in the form

$$\sigma_{\mathbf{x}} = \frac{\partial^{2} \Psi}{\partial y^{2}} + V$$

$$\sigma_{\mathbf{y}} = \frac{\partial^{2} \Psi}{\partial \mathbf{x}^{2}} + V$$

$$\sigma_{\mathbf{xy}} = -\frac{\partial^{2} \Psi}{\partial \mathbf{x} \partial y}.$$
(8)

Making the appropriate substitutions into Equation (6) yields

$$\left\{a_{22} \frac{\partial^{4} \Psi}{\partial x^{4}} + (a_{21} + a_{12} - a_{66}) \frac{\partial^{4} \Psi}{\partial x^{2} \partial y^{2}} + a_{11} \frac{\partial^{4} \Psi}{\partial y^{4}} + (a_{11} + a_{12}) \frac{\partial^{2} \Psi}{\partial y^{2}} + (a_{22} + a_{21}) \frac{\partial^{2} \Psi}{\partial x^{2}} + \frac{\partial^{2} \Psi}{\partial y^{2}} + (\alpha_{1}^{2}) + \frac{\partial^{2} \Psi}{\partial x^{2}} + (\alpha_{2}^{2}) + \frac{\partial^{2} \Psi}{\partial y^{2}} + (\frac{\partial^{2} \Psi}{\partial y^{2}} + \frac{\partial^{2} \Psi}{\partial y^{2}} + \frac{\partial^{2} \Psi}{\partial y^{2}}) + \frac{\partial^{2} \Psi}{\partial x^{2}} + \frac{\partial^{2} \Psi}{\partial$$

and, of course, the equilibrium equations are met exactly.

Notice that in Equations (4), (5), and (9), a₁₂ has not been equated to a₂₁. Norm lly, under the limit of small displacement theory dealing with linearly elastic materials which are conservative, the material coefficient matrix, defined in Equation (4), would be symmetric and a₁₂ would equal a₂₁. However, some recent work by Bert and Guess [13], among others, shows that there exists experimentally derived data which indicate that for some types of composite materials exhibiting orthotropic properties the material coefficient matrix is not symmetric and a₁₂ is not equal to a₂₁. To limit the growing complexity of this work, the material coefficient matrix will be taken as symmetric, at least for the initial phase of this effort.

Equation (9) can also be expressed in polar coordinates as follows:

(Note: Here, the a_{ij's} are in polar coordinates and are not equal to the a_{ij's} for rectangular coordinates.)

$$\left\{ \left[a_{22} \frac{\partial^{4} \psi}{\partial r^{4}} + 2 \frac{a_{21}}{r} \frac{\partial^{3} \psi}{\partial r^{3}} - \frac{a_{11}}{r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{a_{11}}{r^{3}} \frac{\partial^{4} \psi}{\partial r} + \frac{a_{11}}{r^{4}} \frac{\partial^{4} \psi}{\partial \theta^{4}} \right. \\ \left. - \left(\frac{2a_{12} + a_{66}}{r^{3}} \right) \cdot \frac{\partial^{3} \psi}{\partial r \partial \theta^{2}} + \left(\frac{2a_{12} + a_{66}}{r^{2}} \right) \cdot \frac{\partial^{4} \psi}{\partial r^{2} \partial \theta^{2}} \right. \\ \left. + \left(\frac{2a_{11} + 2a_{12} + a_{66}}{r^{4}} \right) \frac{\partial^{2} \psi}{\partial \theta^{2}} \right] \\ \left. + \left[a_{21} \frac{\partial^{2}}{\partial r^{2}} + \left(\frac{2a_{21} - a_{11}}{r} \right) \frac{\partial}{\partial r} + \frac{a_{11}}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \right] \left(v_{r} \right) \right. \\ \left. + \left[a_{22} \frac{\partial^{2}}{\partial r^{2}} + \left(\frac{2a_{22} - a_{12}}{r} \right) \frac{\partial}{\partial r} + \frac{a_{12}}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \right] \left(v_{\theta} \right) \right. \\ \left. + \left[\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} \right] \left(o_{\theta} r \right) + \left[\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} - \frac{1}{r} \frac{\partial}{\partial r} \right] \left(o_{r} r \right) \right. \right. \\ \left. + \left(\frac{\partial^{3} a_{12}}{\partial r} \cdot \left[\frac{1}{r} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{2}{r^{2}} \frac{\partial^{3} \psi}{\partial r \partial \theta} \right] - \frac{\partial^{3} a_{22}}{r^{3}} \left[2 \frac{\partial^{3} \psi}{\partial r^{3}} + \frac{2}{r} \frac{\partial^{2} \psi}{\partial r^{2}} + 2 \frac{\partial^{3} \psi}{\partial r} + \frac{2^{3} \psi}{r} \right] \\ \left. + \frac{\partial^{3} a_{12}}{\partial \theta} \left[\frac{2}{r^{2}} \frac{\partial^{3} \psi}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \psi}{\partial \theta} + \frac{v_{r}}{r} \right] + \frac{\partial^{3} a_{12}}{\partial \theta} \left[\frac{2}{r^{4}} \frac{\partial^{3} \psi}{\partial \theta^{3}} + \frac{2}{r^{3}} \frac{\partial^{2} \psi}{\partial r \partial \theta} + \frac{2^{3} v_{\theta}}{r^{2}} \frac{\partial^{3} \psi}{\partial \theta} \right] \\ \left. - \frac{\partial^{3} a_{11}}{\partial r} \left[\frac{1}{r^{3}} \frac{\partial^{2} \psi}{\partial \theta^{2}} + \frac{1}{r^{2}} \frac{\partial^{3} \psi}{\partial \theta^{2}} \right] + \frac{\partial^{3} a_{12}}{\partial \theta^{6}} \left[\frac{1}{r^{4}} \frac{\partial^{3} \psi}{\partial \theta} - \frac{1}{r^{3}} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{3} \psi}{\partial r^{2}} \right] \\ \left. + \frac{\partial^{2} a_{12}}{\partial r^{2}} \left[\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial \psi}{\partial r} + v_{r} \right] + \frac{\partial^{2} a_{12}}{\partial \theta^{2}} \left[\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{1}{r} v_{\theta} \right] \\ \left. + \frac{\partial^{2} a_{12}}{\partial r^{2}} \left[\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} + v_{\theta} \right] + \frac{\partial^{2} a_{11}}{\partial \theta^{2}} \left[\frac{1}{r^{4}} \frac{\partial^{2} \psi}{\partial \theta^{2}} + \frac{1}{r^{3}} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{1}{r} v_{\theta} \right] \\ \left. + \frac{\partial^{2} a_{12}}{\partial r^{2}} \left[\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} - \frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}} \right] \right\} = 0$$

with Y being the stress function defined by

$$\sigma_{\mathbf{r}} = \frac{1}{\mathbf{r}} \frac{\partial \Psi}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2 \Psi}{\partial \theta^2} + V_{\mathbf{r}}$$

$$\sigma_{\theta} = \frac{\partial^2 \Psi}{\partial \mathbf{r}^2} + V_{\theta}$$

$$\sigma_{\mathbf{r}\theta} = -\frac{\partial}{\partial \mathbf{r}} \left(\frac{1}{\mathbf{r}} \frac{\partial \Psi}{\partial \theta} \right) .$$
(11)

Equations (11) satisfy the equilibrium equations formulated in polar coordinates for plane stress which are

$$\frac{\partial \sigma_{\mathbf{r}}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}} \frac{\partial \sigma_{\mathbf{r}\theta}}{\partial \theta} + \frac{\sigma_{\mathbf{r}} - \sigma_{\theta}}{\mathbf{r}} + \mathbf{R} = 0$$

$$\frac{\partial \sigma_{\mathbf{r}\theta}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}} \frac{\partial \sigma_{\theta}}{\partial \theta} + 2 \frac{\sigma_{\mathbf{r}\theta}}{\mathbf{r}} + \mathbf{\Theta} = 0 . \tag{12}$$

In order for Equations (11) to meet Equation (12) exactly the body functions $V_{\bf r}$ and $V_{\bf \theta}$ must be defined as

$$V_{f_{j}} - \frac{\partial}{\partial r} (rV_{r}) = R$$

$$-\frac{\partial V_{\theta}}{\partial \theta} = \Theta , \qquad (13)$$

thus putting a rather narrow interpretation on the body forces.

In the classical approach to the problem of orthotropic plane elasticity, the coefficients a_{ij} are either constants, as in the case of the homogeneous condition, or as in some rare cases, are special functions of position. In the first case all the terms within the second set of large braces, $\left\{ \right.$, in Equations (9) and (10) are zero leaving the remainder of these two equations in the form of the well-known, homogeneous, orthotropic,

compatibility equations in terms of the stress function Ψ . In the second case all the partial derivatives of the a_{ij} 's which appear in these second sets of braces are capable of being evaluated, resulting in extremely complicated fourth order partial differential equations with variable coefficients. Proceeding along classical lines, these equations must be solved for Ψ which contains arbitrary constants of integration. These constants are then determined by evaluating Ψ in terms of the stresses on the boundaries.

Suppose it is assumed that the material coefficients, the a_{ij} 's, are unknown but that the stress function Ψ is a fully defined function of the spatial coordinates. That is, the stresses throughout the body as well as on the boundary are known. In such a case, Equations (9) and (10) reduce to second order partial differential equations with variable coefficients, in terms of the a_{ij} 's. The solution of these equations and the resultant determination of the magnitude and distribution of the material properties throughout the body is defined in this work as design synthesis.

It is believed that Equations (9) and (10) have not been previously published. Bert [14] derived an equation similar to (10) wherein he reduced the unknown material property coefficients from four to one. His formulation is as follows:

$$S \left[\frac{\partial^{4} \psi}{\partial r^{4}} + \frac{2}{r} \frac{\partial^{3} \psi}{\partial r^{3}} - \frac{e}{r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{e}{r^{3}} \frac{\partial \psi}{\partial r} + \frac{2(c-\nu)}{r^{2}} \frac{\partial^{4} \psi}{\partial r^{2} \partial \theta^{2}} \right]$$

$$- \frac{2(c-\nu)}{r^{3}} \frac{\partial^{3} \psi}{\partial r \partial \theta^{2}} + \frac{2(c-\nu+e)}{r^{4}} \frac{\partial^{2} \psi}{\partial \theta^{2}} + \frac{e}{r^{4}} \frac{\partial^{4} \psi}{\partial \theta^{4}} \right]$$

$$+ \frac{dS}{dr} \left[2 \frac{\partial^{3} \psi}{\partial r^{3}} + \frac{2-\nu}{r} \frac{\partial^{2} \psi}{\partial r^{2}} - \frac{e}{r^{2}} \frac{\partial \psi}{\partial r} + \frac{2(c-\nu)}{r^{2}} \frac{\partial^{3} \psi}{\partial r \partial \theta^{2}} \right]$$

$$- \frac{2(c-\nu)+e}{r^{3}} \frac{\partial^{2} \psi}{\partial \theta^{2}} \right] + \frac{d^{2}S}{dr^{2}} \left[\frac{\partial^{2} \psi}{\partial r^{2}} - \frac{\nu}{r} \frac{\partial \psi}{\partial r} - \frac{\nu}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}} \right]$$

$$- \left[\nu \frac{\partial^{2}}{\partial r^{2}} - \frac{e-2\nu}{r} \frac{\partial}{\partial r} - \frac{e}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \right] \left(sv_{r} \right)$$

$$+ \left[\frac{\partial^{2}}{\partial r^{2}} + \frac{2+\nu}{r} \frac{\partial}{\partial r} - \frac{\nu}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \right] \left(sv_{\theta} \right) = 0 , \qquad (14)$$

with the thermal terms omitted. Equation (14) is equal to Equation (10) with the following identities:

$$S = a_{22}$$
 $e = a_{11}/a_{22}$
 $c = a_{66}/2a_{22}$
 $v = -a_{12}/a_{22}$
(15)

with S being the dependent variable and e, c, and ν being fixed ratios. It is anticipated that most real composite materials will exhibit material property characteristics as defined by Equations (15).

The solution of equations such as (9) and (10) where there are 4 or more independent a_{ij} 's, even where these a_{ij} 's are assumed independent of temperature, is quite difficult but certainly not impossible. The simplifying assumption made in Equations (15) leading to the formulation of Equation (14) reduces the problem to only one unknown parameter.

APPLICATIONS

Rotationally Symmetric Troblems

Example 1: The pressurized annular disk, internal pressure: Consider a pressurized annular disk as shown in Figure 1. In the case where the ring is isotropic and homogeneous, the stress distribution is as developed by Lamé (1852) and is given by (c.f., Ref. [15], p. 60),

$$\sigma_{\mathbf{r}} = -\frac{\mathbf{P}}{\mathbf{k}^2 - 1} \left(\frac{1}{\rho^2} - 1 \right)$$

$$\sigma_{\theta} = \frac{\mathbf{P}}{\mathbf{k}^2 - 1} \left(\frac{1}{\rho^2} + 1 \right)$$
(16)

where $\rho = r/b$, and k = b/a. These relations lead to the following conclusions:

- (1) $|\sigma_{\theta}| > |\sigma_{r}|$ for all ρ and all k
- (2) $(\sigma_{\theta})_{max}$ occurs at the inner boundary ($\rho = 1/k$), and thus

$$\left(\sigma_{\theta}\right)_{\max} = P\left(\frac{k^2 + 1}{k^2 - 1}\right) > P \tag{17}$$

From the stresses so generated, which for the homogeneous ring, are quite independent of the material properties, it is clear that the material is not being used efficiently, particularly as the thickness ratio, k, increases.

For the homogeneous, orthotropic annular disk Bienick et al. [16] shows that the stresses are given by

$$\sigma_{r} = c_{1}r^{-(f+1)} + c_{2}r^{f-1}$$

$$\sigma_{\theta} = -c_{1}fr^{-(f+1)} + c_{2}fr^{f-1}$$
(18)

where $f = (a_{11}/a_{22})^{1/2}$, and c_1 and c_2 are determined from the boundary conditions, in this case $\sigma_r = -P$ at r = a and $\sigma_r = 0$ at r = b. This work and

FIGURE 1. PRESSURIZED ANNULAR DISK

work done by Shaffer [17] show that as k gets large the limit of the stress concentration approaches the orthotropy ratio, f, and does so rapidly. Both Bienick and Shaffer deal with the nonhomogeneous case, but both assume a special form of nonhomogeneity, mainly that

$$a_{11} = \overline{a}_{11} r^{\lambda}$$

$$a_{22} = \overline{a}_{22} r^{\lambda}$$

$$a_{12} = a_{21} = \overline{a}_{12} r^{\lambda}$$

where λ is sal and a_{11} , a_{22} , and a_{12} are constants. Both carry out optimization by varying λ and observing the results, but no attempt was made to carry out design synthesis directly.

Consider now that the disk is composed of a heterogeneous, orthotropic material where the material properties are undefined but are functions of the radius of the disk. The equilibrium equation for this case reduces to

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0 . ag{19}$$

The compatibility equation reduces to

$$\frac{d}{dr} (r \epsilon_{\theta}) - \epsilon_{r} = 0 , \qquad (20)$$

and the stress strain relation for an orthotropic medium is

$$\epsilon_{\mathbf{r}} = a_{11}\sigma_{\mathbf{r}} + a_{12}\sigma_{\theta}$$

$$\epsilon_{\theta} = a_{12}\sigma_{\mathbf{r}} + a_{22}\sigma_{\theta}$$
(21)

where a_{11} , a_{12} , and a_{22} are functions of r. Assuming a stress function such that

$$\sigma_{\mathbf{r}} = \frac{1}{\mathbf{r}} \, \Psi$$

$$\sigma_{\theta} = \frac{\mathrm{d}\Psi}{\mathrm{d}\mathbf{r}} \tag{22}$$

and substituting Equations (21) and (22) into Equation (20) and carrying out the required differentiation results in

$$a_{22}^{\psi''} + (a'_{22} + \frac{1}{r} a_{22})^{\psi'} + (\frac{1}{r} a'_{12} - \frac{1}{r^2} a_{11})^{\psi} = 0$$
, (23)

where the prime marks designate absolute derivatives with respect to r.

Equation (23) is a single differential equation with three independent material coefficients as the operational parameters. When dealing with specific materials they may be found to be completely independent or show some type of defined relationship. As a first step we will assume that there does exist a simple ratio relationship between them that is expressable as

$$a_{22} = a_{22}$$
, $a'_{22} = a'_{22}$
 $a_{11} = k_1 a_{22}$, $a'_{11} = k_1 a'_{22}$
 $a_{12} = k_2 a_{22}$, $a'_{12} = k_2 a'_{22}$. (24)

Making the appropriate substitutions in Equation (23) yields

$$\left[\Psi' + \frac{k_2}{r} \Psi \right] a'_{22} + \left[\Psi'' + \frac{1}{r} \Psi' - \frac{k_1}{r^2} \Psi \right] a_{22} = 0.$$
 (25)

Thus if Ψ is known a_{22} is fully defined. Let us suppose that for effective material utilization it is desired that σ_{θ} be constant throughout the disk; i.e., $\sigma_{\theta} = A_{0}$. Integrating the second of Equations (22) gives

$$Y = A_0 r + B_0 . \tag{26}$$

Applying the boundary conditions that $\sigma_r(a) = -P$ and $\sigma_r(b) = 0$ yields

$$\Psi = \frac{Pb}{k-1} [\rho - 1]$$

$$\sigma_{\mathbf{r}} = -\frac{P}{k-1} [\frac{1}{\rho} - 1]$$

$$\sigma_{\theta} = \frac{P}{k-1}$$
(27)

with ρ = r/b and k = b/a as before. It is interesting to compare Equations (27) with Equations (16) and (17). From Equations (27) it can be seen that if k is greater than 2, σ_{θ} becomes less than the pressure P, and σ_{r} , which equals P at ρ = 1/k, becomes the maximum normal stress in absolute value. Thus for such a stress function and geometry there is no effective stress concentration. This is, of course, never true for the homogeneous disk. With the stress function now fully defined, Equation (25) becomes

$$\left[(1+k_2) - \frac{k_2b}{r} \right] a'_{22} + \left[\frac{(1-k_1)}{r} + \frac{k_1b}{r^2} \right] a_{22} = 0.$$
 (28)

which has the solution

$$a_{22} = c_o(\rho)^{\beta-\xi} \left[\frac{k_2}{\rho} + (1-k_2) \right]^{-\xi}$$
 (29)

where
$$\rho = r/b$$

$$\beta = -k_1/k_2$$

$$\xi = -\left[\frac{k_1-k_2}{(1-k_2)k_2}\right],$$

and for the modified orthotropic condition as defined by Equations (21) and (24)

$$a_{22} = a_{22} = \frac{1}{E_{\theta}}$$

$$k_{1} = \frac{a_{11}}{a_{22}} = \frac{E_{\theta}}{E_{r}}$$

$$k_{2} = -\frac{a_{12}}{a_{22}} = v_{\theta r} .$$
(30)

The inverse of Equation (29) or $E_{\theta}(r)$ is shown plotted in Figure 2 for various k_1 's while k_2 was held constant at 0.5. This figure shows the strong dependency of the modulus distribution upon the orthotropy ratio k_1 . The ratio k_2 has a lesser effect as shown by Figure 3. Here the isotropic case $(k_1 = 1)$ is shown plotted for five values of k_2 .

Example 2. Pressurized annular disk, external pressure: Consider the pressurized annular disk as shown in Figure 1 but with the pressure acting on the OD rather than the ID as shown. If the stress criterion is retained; i.e., σ_{θ} = constant, then the stress function becomes

$$\Psi = \frac{qb}{k-1} \left[1 - \rho k\right]$$

$$\sigma_{r} = \frac{q}{k-1} \left[\frac{1}{\rho} - k\right]$$

$$\sigma_{\theta} = -\frac{qk}{k-1}$$
(31)

where q = external pressure k = b/a

 $\rho = r/b$.

The compatibility equation (25) becomes

$$\left[(1+k_2) - \frac{k_2 a}{r} \right] a'_{22} + \left[\frac{(1-k_1)}{r} + \frac{k_1 a}{r^2} \right] a_{22} = 0 .$$
 (32)

Equation (32) is the same as Equation (28) except that a replaces b. The solution of Equation (32) is

$$a_{22} = C_0(\rho)^{\beta-\xi} \left[\frac{k_2}{\rho k} + (1-k_2) \right]^{-\xi}$$
 (33)

where β , ξ , and ρ are defined in Equation (29). Comparing Equations (33) and (29) we see that they are not the same, differing by the quantity 1/k

FIGURE 2. MODULUS VARIATION FOR ORTHOTROPIC DISK WITH PRESSURIZED I.D., WITH σ_{θ} = Constant

FIGURE 3. MODULUS VARIATION FOR ISOTROPIC DISK WITH PRESSURIZED I.D., WITH σ_{θ} = Constant

within the second factor. Thus the distribution of the material parameters through the thickness of the disk must be different as compared to the internally pressurized disk. This is shown in Figures 4 and 5. Also notice that for the internally pressurized disk the hoop stress σ_{θ} tends to zero as k tends to infinity while the limit on σ_{θ} for the externally pressurized disk is q, the pressure. Thus for the externally pressurized case the material is not being as effectively utilized and perhaps some other criterion might more suitably apply.

If the annulus has both internal and external pressure and the same stress criterion is applied, i.e., σ_{θ} = constant, then

$$\psi = \frac{Pb}{k-1} \left[\rho - 1 \right] - \frac{qb}{k-1} \left[1 - \rho k \right]$$

$$\sigma_{\mathbf{r}} = -\frac{P}{k-1} \left[\frac{1}{\rho} - 1 \right] - \frac{q}{k-1} \left[\frac{1}{\rho} - k \right]$$

$$\sigma_{\theta} = \frac{1}{k-1} \left[P - qk \right],$$
(34)

and the material property variation is given by

$$a_{22} = c_o(\rho)^{\beta-\xi} \left[\frac{k_2}{\rho} + (1-k_2) \left(\frac{Pa-qb}{Pa-qa} \right) \right]^{-\xi}$$
 (35)

Example 3: The rotating disk: Consider the rotating, uniform thickness annular disk as shown in Figure 6. The equilibrium equation governing this case is

$$\frac{d}{dr} (r\sigma_r) - \sigma_\theta + \frac{y}{g} \omega^2 r^2 = 0.$$
 (36)

The compatibility equation in terms of strain and the stress-strain relations for an orthotropic material are given by Equations (20) and (21), respectively. Substituting Equation (21) into (20) results in

$$0 = a'_{12}\sigma_r + a_{12}\sigma'_r + a'_{22}\sigma_\theta + a_{22}\sigma'_\theta + \frac{1}{r} \left[(a_{12} - a_{11})\sigma_r + (a_{22} - a_{12})\sigma_\theta \right]. \tag{37}$$

FIGURE 4. MODULUS VARIATION FOR ORTHOTROPIC DISK WITH PRESSURIZED O.D., WITH σ_{θ} = Constant

FIGURE 5. MODULUS VARIATION FOR ISOTROPIC DISK WITH PRESSURIZED O. D., WITH σ_{θ} = CONSTANT

FIGURE 6. ROTATING ANNULAR DISK

Assume the stress function

$$\sigma_{\mathbf{r}} = \frac{1}{\mathbf{r}} \Psi$$

$$\sigma_{\theta} = \Psi' + \frac{\gamma}{g} \omega^{2} \mathbf{r}^{2} . \tag{38}$$

It is possible that the material density, γ , could be a function of the radius. At this stage such a condition introduces an unnecessary complication and will not be considered. This being the case the governing compatibility equation becomes

$$\Psi''(a_{22}) + \Psi'(a'_{22} + \frac{1}{r} a_{22}) + \Psi\left(\frac{a'_{12}}{r} - \frac{a_{11}}{r^2}\right) + \frac{Y}{g} \omega^2 r^2 \left(a'_{22} + 3 \frac{a_{22}}{r} - \frac{a_{12}}{r}\right) = 0.$$
 (39)

Again, for simplicity, the modified orthotropy relations as defined by Equations (24) will be adapted making Equation (39) take the form

$$0 = a'_{22} \left[\Psi' + \frac{k_2}{r} \Psi + \frac{Y}{g} \omega^2 r^2 \right] + \alpha_{22} \left[\Psi'' + \frac{\Psi'}{r} - \frac{k_1 \Psi}{r^2} + \frac{Y}{g} \omega^2 r (3 - k_2) \right]$$
 (40)

The stress criterion will be the same as before, i.e., σ_{θ} = constant. Using this criterion and operating on the second of Equations (38) together with the assumed boundary conditions that $\sigma_{\mathbf{r}}(\mathbf{a}) = \sigma_{\mathbf{r}}(\mathbf{b}) = 0$ yields

$$\Psi = \frac{\gamma v^2}{3g} \left(\frac{k}{k-1}\right) \left[r\left(1 - \frac{1}{k^3}\right) - a\left(1 - \frac{1}{k^2}\right) - \left(\frac{r}{b}\right)^3 \left(b - a\right)\right]$$

$$\sigma_r = \frac{\gamma v^2}{3g} \left(\frac{k}{k-1}\right) \left[1 - \frac{1}{k^3} - \frac{1}{\rho^{1/2}} + \frac{1}{\rho k^3} - \rho^2 + \frac{\rho^2}{k}\right]$$

$$\sigma_{\theta} = \frac{\gamma v^2}{3g} \left(\frac{k}{k-1}\right) \left[\frac{k^3 - 1}{k^3}\right]$$
(41)

where $\rho = r/b$

k = b/a

v = wb = tip velocity

w rotational velocity, radians

g = acceleration of gravity.

Here we note that in the limits, when $k \rightarrow 1$

$$\sigma_{\theta} = \frac{\gamma_{v}^{2}}{g} \tag{42}$$

which is the stress in a rotating thin ring, and when $k \rightarrow \infty$ (i.e., when a very small)

$$\sigma_{\theta} = \frac{\gamma_{\rm v}^2}{3g} , \qquad (43)$$

which is smaller than exists for the isotropic, homogeneous case by the ratio

$$\left(\frac{\sigma_{\theta_1}}{\sigma_{\theta_2}}\right)_{\text{max}} = \frac{4}{3(3+\nu)} \tag{44}$$

where σ_{θ_1} = hoop stress for heterogeneous case

 σ_{θ_0} = hoop stress for isotropic, homogeneous case

 ν = Poisson's ratio for isotropic, homogeneous case.

Substituting Equation (41) into Equation (40) and carrying out the required differentiation yields

$$a'_{22} - \left[\frac{Ar^3 + Br + D}{Fr^4 + Gr^2 + Hr}\right] a_{22} = 0$$
 (45)

where $A = (k_1 - 3k_2)$

$$B = (1 - k_1) \left[\frac{b^3 - a^3}{b - a} \right]$$

D =
$$k_1(ab)(b+a)$$

F = k_2
G = $-(1+k_2)$ $\frac{b^3-a^3}{b-a}$
H = $k_2(ab)(b+a)$.

Equation (45) is not readily solvable in closed form. Before proceeding to the solution of Equation (45) by some numerical means, it is convenient to digress at this point to discuss another stress criterion which may be applied to the implementation of design synthesis as defined in this work. This criterion is that through the body of the disk, the in-plane shear stress, τ , is to be a constant. For a body of revolution, acted upon by symmetric loads,

$$\tau = (\sigma_{\theta} - \sigma_{r})/2$$

$$\tau = \sigma_{\theta} - \sigma_{r} = \text{Constant} = C_{o}$$
(46)

Applying this condition to Equations (38) and integrating leads to

$$\frac{1}{r}\Psi = C_0 \ln r - \frac{\gamma_\omega^2 r^2}{2g} + C_1$$

$$\Psi' = C_0 \ln r + C_0 - \frac{3}{2} \frac{\gamma_\omega^2 r^2}{g} + C_1$$

$$\Psi'' = \frac{C_0}{r} - \frac{3}{g} \gamma_\omega^2 r , \qquad (47)$$

requiring that on the boundaries;

or

$$\sigma_{\mathbf{r}}(\mathbf{b}) = \sigma_{\mathbf{0}}$$

$$\sigma_{\mathbf{r}}(\mathbf{a}) = \sigma_{\mathbf{1}}$$

leads to the following relations.

$$\sigma_{r} = \frac{1}{r} \Psi = C_{o} \ln r - \frac{\gamma \omega^{2} r^{2}}{2g} + C_{1}$$

$$\sigma_{6} = \Psi' + \frac{\gamma \omega^{2} r^{2}}{g} = C_{o} (\ln r + 1) - \frac{\gamma \omega^{2} r^{2}}{2g} + C_{1}$$

$$C_{o} = \frac{1}{\ln \frac{b}{a}} \left\{ (\sigma_{o} - \sigma_{1}) + \frac{\gamma \omega^{2}}{2g} (b^{2} - a^{2}) \right\}$$

$$C_{1} = \frac{1}{\ln \frac{b}{a}} \left\{ \sigma_{1} \ln b - \sigma_{0} \ln a - \frac{\gamma \omega^{2}}{2g} (b^{2} \ln a - a^{2} \ln b) \right\}$$
(48)

These relations, as well as those defined by Equation (41) (σ_{θ} = constant) were applied to Equation (40) and were solved numerically. A digital computer program, Determination Of Modulus Variation 1 (DOMOV1), was structured for the solution of these sets of equations. A finite difference method of solution as developed by Manson[18] was used for the calculation algorithm. This program, which is detailed in the Appendices was used to solve several problems as follows.

- The modulus variation for an orthotropic disk with a pressurized I.D. for $\sigma_A = \text{constant}$ (disk not rotating)
- The modulus variation for an isotropic disk with pressurized I.D. for σ_{θ} = constant (disk not rotating)
- The modulus variation for an isotropic disk with pressurized 0.D. for $\sigma_A = \text{constant}$ (disk not rotating)
- The modulus variation for a rotating orthotropic disk with no edge loads for σ_{θ} = constant
- The modulus variation for a rotating orthotropic disk (Poisson's ratio variable) with no edge loads for $\sigma_A = constant$
- The modulus variation for a rotating orthotropic disk with no edge load for constant in-plane shear stress
- The modulus variation for a rotating orthotropic disk (Poisson's ratio variable) with no edge loads for constant in-plane shear stress

- The modulus variation for a rotating orthotropic disc with 60.0 inch 0.D., 6.0-inch I.D., turning at 2,000 RPM, stressed on the 0.D. with an uniform edge load of 10,000 psi for $\sigma_{\rm A}$ = constant
- The modulus variation for a rotating orthotropic disk with 60.0-inch 0.D. 6.0-inch I.D., turning at 4,000 RPM, stressed on the 0.D. with a uniform edge load of 12,000 psi for σ_A= constant.

The solutions for the first four problems were checked by use of the closed form solutions, Equations (29) and (33) and are those shown plotted in Figure 2, 3, 4, and 5. The solution to the remaining problems are shown plotted in Figures 7 through 12. It should be noted here that when boundary tractions as well as body loads are applied to a rotating disk, the solution is specific as regards the magnitude of the edge loads and the rotational velocity of the disk. However, where only one type of load is imposed, then the solution is generalized and is independent of the magnitude of the load. (Note: The stresses remain directly dependent on the load.) This solution dependence upon load is shown very clearly by comparing Figures 11 and 12. Here the modulus variation is shown to change with the change of the boundary tractions and the rotational velocity. All these rigures have been non-dimensionalized by the expediency of plotting E/E max and R/B where

- $E = E_{\theta}$, the modulus of elasticity in the θ direction.
- E_{max} = the maximum E_{θ} calculated in the body of the disk.
- R = the radius of the point in the disk at which the modulus is being calculated.
- B = the outer radius of the disk.

The computer output for the curves plotted in Figure 12 is also found here in Appendix C. For this case, σ_{θ} equals 28,454 psi throughout the disk. For an isotropic, homogenious, flat-angular disk of the same material

FIGURE 7. MODULUS VARIATION FOR ROTATING ORTHOTROPIC DISK WITH NO EDGE LOADS, WITH σ_{θ} = CONSTANT

FIGURE 8. MODULUS VARIATION FOR ROTATING ORTHOTROPIC DISK, ORTHOTROPIC RATIO OF 2.5 WITH NO EDGE LOADS AND σ_{A} = CONSTANT

FIGURE 9. MODULUS VARIATION FOR ROTATING ORTHOTROPIC DISK WITH NO EDGE LOADS, AND WITH CONSTANT IN-PLANE SHEAR STRESS

FIGURE 10. MODULUS VARIATION FOR ROTATING ORTHOTROPIC DISK ORTHOTROPIC RATIO OF 2.5 WITH NO EDGE LOADS AND WITH CONSTANT IN-PLANE SHEAR STRESS

FIGURE 11. MODULUS VARIATION FOR ORTHOTROPIC ROTATING DISK STRESSED ON O.D. RPM = 2000; DENSITY = 0.1 LB/IN. ; STRESS ON O.D. = 10,000 PSI: O.D. = 60.0 INCHES: I.D. = 6.0 INCHES, σ_{θ} = CONSTANT

FIGURE 12. MODULUS VARIATION FOR ORTHOTROPIC ROTATING DISK STRESSED ON O.D.: RPM = 4000; DENSITY = 0.1 LB/IN.3; STRESS ON O.D. = 12,000 PSI; O. D. = 60.0 INCHES; I.D. = 6.0 INCHES, σ_{θ} = CONSTANT

density $\sigma_{\hat{H}}$ would equal

$$\sigma_{\theta} = \frac{3+\nu}{4} \rho \omega^{2} \left(b^{2} + \frac{1-\nu}{3+\nu} a^{2}\right) + 2\sigma_{0} \frac{b^{2}}{b^{2} - a^{2}}$$

$$\sigma_{\theta} = 35,810 + 24,242 = 60,052 \text{ psi.}$$
(49)

Thus, by the use of design synthesis, the maximum stress in such a disk can be reduced by a factor of 2.11. Further, Figure 12 shows that this can be achieved with a modulus variation through the disk of approximately 2.5 to 1 for a material that exhibits and orthotropic ratio k_1 of 2.5 (the similarity of the two ratios is coincidental and bears no significance).

Non-Symmetric Problems

Example 4: Small hole in an infinite plate. Figure 13 represents a small hole in an infinite plate which is subjected to a uniform tensile stress, P, in the x-direction. For the homogeneous, isotropic condition, the stress distribution around the hole is well known as given by Timoshenko [15] as

$$\sigma_{r} = \frac{P}{2} \left(1 - \frac{a^{2}}{r^{2}} \right) + \frac{P}{2} \left(1 + \frac{3a^{4}}{r^{4}} - \frac{4a^{2}}{r^{2}} \right) \cos 2\theta$$

$$\sigma_{\theta} = \frac{P}{2} \left(1 + \frac{a^{2}}{r^{2}} \right) - \frac{P}{2} \left(1 + \frac{3a^{4}}{r^{4}} \right) \cos 2\theta$$

$$\sigma_{r\theta} = -\frac{P}{2} \left(1 - \frac{3a^{4}}{r^{4}} + \frac{2a^{2}}{r^{2}} \right) \sin 2\theta . \tag{50}$$

The maximum stress occurs at r = a, $\theta = (\pi/2, 3\pi/2)$, and is

$$\sigma_{\text{max}} = (\sigma_{\theta})_{\text{r=0,}\theta \in \Pi/2} = 3P$$
.

For the homogeneous, anisotropic condition work by Green and Zerna [19], Hearmon [20], Savin [21], Leckhniskii [12], and (as directly applied to composites) by Greszczuk [22], shows that the maximum stress at the hole is usually greater than for the isotropic case and can reach values as high as 9P.

FIGURE 13. SMALL HOLE IN INFINITE PLATE SUBJECTED TO UNIFORM, UNIAXIAL TENSILE STRESS FIELD

Referring to Figure 13, consider the portion of the plate within a concentric circle of radius b, large in comparison with a. It can safely be assumed that the stresses at radius b are effectively the same as in a plate without the hole and can be given by

$$(\sigma_{\mathbf{r}})_{\mathbf{r}=\mathbf{b}} \approx \frac{1}{2} P (1 + \cos 2\theta)$$

$$(\sigma_{\mathbf{r}\theta})_{\mathbf{r}=\mathbf{b}} \approx -\frac{1}{2} P \sin 2\theta . \tag{51}$$

From Equation (50) it can be seen that

$$(\sigma_{\theta})_{r=b} \approx \frac{1}{2} P (1 - \cos 2\theta),$$

It seems reasonable, then, to choose a stress criterion for the plate

$$\sigma_{\theta}$$
 = function of $\theta = \frac{1}{2} P (1 - \cos 2\theta)$. (52)

From the second of Equations (11), with V equal to zero the stress function becomes

$$\Psi = \frac{1}{4} Pr^2 (1 - \cos 2\theta) + f_1(\theta)r + f_2(\theta)$$
 (53)

where $f_1(\theta)$ and $f_2(\theta)$ are functions of θ only. Applying the first and third of Equations (11) to Ψ results in

$$\frac{\partial}{\partial \mathbf{r}} \left(\frac{1}{\mathbf{r}} \frac{\partial \Psi}{\partial \theta} \right) = -\sigma_{\mathbf{r}\theta} = \frac{1}{2} P \sin 2\theta - \frac{1}{\mathbf{r}^2} \cdot \frac{df_2(\theta)}{d\theta}$$

$$\frac{1}{\mathbf{r}} \frac{\partial \Psi}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2 \Psi}{\partial \theta^2} = \sigma_{\mathbf{r}} = \frac{1}{2} P (1 + \cos 2\theta) + \frac{1}{\mathbf{r}} \frac{d^2 f_1(\theta)}{\alpha \mathbf{r} d\theta^2} + \frac{1}{\mathbf{r}^2} \frac{d^2 f_2(\theta)}{d\theta^2} + \frac{1}{\mathbf{r}} f_1(\theta)$$
(54)

Applying the boundary conditions

$$(\sigma_{\mathbf{r}})_{\mathbf{r}=\mathbf{a}} = (\sigma_{\mathbf{r}\theta})_{\mathbf{r}=\mathbf{a}} = 0$$

yields

$$f_{2}(\theta) = -\frac{Pa^{2}}{4} \cos 2\theta$$

$$\frac{d^{2}f_{1}(\theta)}{d\theta^{2}} + f_{1}(\theta) = -\frac{P}{2} [1 + 3 \cos 2\theta].$$
(55)

Choosing as a particular solution to the second of Equations (55)

$$f_1(\theta) = C_1 + C_2 \cos 2\theta \tag{56}$$

yields

$$f_1(\theta) = -\frac{Pa}{2} \left[1 - \cos 2\theta\right]$$

and results in

$$\Psi = \frac{P}{4} \left\{ (r^2 - 2ar) - (r - a)^2 \cos 2\theta \right\}$$

$$\sigma_r = \frac{P}{2} \left(1 - \frac{a}{r} \right) \left[1 - \cos 2\theta + \left(1 - \frac{a}{r} \right) \cos 2\theta \right]$$

$$\sigma_{\theta} = \frac{P}{2} \left(1 - \cos 2\theta \right)$$

$$\sigma_{\theta} = -\frac{P}{2} \left(1 - \frac{a^2}{r^2} \right) \sin 2\theta$$
(57)

The stress function, Ψ , as defined by the first of Equations (57) was applied to Equation (10) with the body functions and temperature difference taken as zero. In order to implement a solution, the following relationships among the material coefficients were assumed.

$$a_{11} = k_1 a_{22}$$
 $a_{22} = a_{22}$
 $a_{12} = k_2 a_{22}$
 $a_{66} = k_3 a_{22}$

A finite-difference algorithm was structured to carry out the solution. The method of solution applied was that usually referred to as the "relaxation method" which is discussed in detail by Shaw[23], Hildebrand[25], Allen[26], and Richtmyer[27].

Due to symmetry, only one-fourth of the plate was modeled. A square mesh was used and the quarter plate separated into a square array of 61 x 61 nodes. It was assumed that the circular hole has a radius of 1.5 inches and the mesh distance, h, the distance between nodes, is 0.25 inches. The width of the quarter plate model, thus became 15.0 inches. This gave a b to a ratio (see Figure 13) of 10:1, thus minimizing the far-field effects of the outer boundaries upon the stress around the hole. This plate model is shown in Figure 14. Rectangular coordinates were employed and the differential equation that was differenced was that shown in Equation (9). Equations (57) were converted to rectangular coordinates for input to this program. In the solution procedure, it is necessary to assume the values of the modulus parameter a22 at all boundary nodes. The solutions were then to proceed in an iterative manner until the values for a 22 were determined at each interior node in the model. No success was attained by this method. The program never was able to converge to a solution. In fact, a strongly divergent tendency was noted (i.e., each iteration on the a22's at each node point was markedly greater

FIGURE 14. TWO-DIMENSIONAL FINITE-DIFFERENCE MODEL

on each iteration in the relaxation process than the iteration which it succeeded, regardless of the boundary values assumed.) Extensive investigations indicated that there was no error in the solution process. It appears that there must be some other governing relations which have as yet not been expressed.

As a result, no solutions to the two-dimensional problem in design synthesis have as yet been accomplished.

Limits and Other Considerations

In the preceeding discussion, it was pointed out that a solution for the two-dimensional problem could not be achieved. This raised questions as to whether all governing equations have been generated. In the application of the one-dimensional program, DOMOV1, it was found that under certain conditions, the only mathematical solution developed for the modulus variation in a disk would require that at some points in the disk body, the value of the modulus must be negative. Though this is perfectly acceptable from a mathematical viewpoint, it obviously cannot be implemented from the viewpoint of real materials. To illustrate this, consider the case of the rotating annular disk with boundary tractions when subject to the stress criterion that the in-plane shear stresses throughout the disk must be constant. From Equations (48)

$$\sigma_{o} = C_{o}(\ln r + 1) - \frac{\gamma \omega^{2} r^{2}}{2g} + C_{1}$$

$$\sigma_{r} = C_{o} \ln r - \frac{\gamma^{2} \omega^{2} y^{2}}{2g} + C_{1}$$

$$C_{o} = \frac{1}{\ln \frac{b}{a}} \left\{ (\sigma_{o} - \sigma_{i}) + \frac{\gamma \omega^{2}}{2g} (b^{2} - a^{2}) \right\}$$

$$C_{1} = \frac{1}{\ln \frac{b}{a}} \left\{ \sigma_{i} \ln b - \sigma_{o} \ln a - \frac{\gamma \omega^{2}}{2g} (b^{2} \ln a - a^{2} \ln b) \right\}.$$
(48)

Take the condition where the disk is not rotating; i.e., $\omega = 0$, then

$$C_{0} = \frac{\sigma_{0} - \sigma_{1}}{\ln \frac{b}{a}}$$

$$C_{1} = \frac{\sigma_{1} \ln b - \sigma_{0} \ln a}{\ln \frac{b}{a}}$$
(59)

$$\sigma_{\theta} = C_{o}(lnr+1) + C_{1}$$

$$\sigma_{r} = C_{o}lnr + C_{1} . \qquad (60)$$

Substituting Equation (59) in (60) yields

$$\sigma_{\theta} = \frac{1}{\ln \frac{b}{a}} \left\{ (\sigma_{o} - \sigma_{i}) (\ln r + 1) + \sigma_{i} \ln b - \sigma_{o} \ln a \right\}$$

$$\sigma_{r} = \frac{1}{\ln \frac{b}{a}} \left\{ (\sigma_{o} - \sigma_{i}) \ln r + \sigma_{i} \ln b - \sigma_{o} \ln a \right\} . \tag{61}$$

Now, further assume that $\sigma_0 = 0$, $\sigma_i = -P$. Then, Equation (61) become

$$\sigma_{\theta} = \frac{P}{\ln \frac{b}{a}} \left\{ 1 - \ln \frac{b}{r} \right\}$$

$$\sigma_{r} = -\frac{P}{\ln \frac{b}{a}} \left\{ \ln \frac{b}{r} \right\}. \tag{62}$$

Note that for all values of $r \le b$, $\sigma_r \le -P$ in the algebraic sense. However, if $\frac{b}{a} > e$, (2.71828), then at r = a, $\ln \frac{b}{a} > 1$ and σ_θ is negative. Defining the displacement at r = a as

$$U_{(r=a)} = \left(\frac{1}{E(\theta)} \left[\sigma_{\theta}^{-\nu\sigma_{r}}\right]\right) \Big|_{r=a}$$

$$U_{(r=a)} = \frac{1}{E(\theta)} \left\{ \frac{P}{\ln \frac{b}{a}} \left[1 - \ln \frac{b}{a} + \nu \ln \frac{b}{a}\right] \right\}$$

$$U_{(r=a)} = \frac{1}{E(\theta)} \left\{ \frac{P}{\ln \frac{b}{a}} \left[1 - \ln \frac{b}{a} \cdot (1-\nu)\right] \right\} . \tag{63}$$

From Equation (63), if $\ln \frac{b}{r} > \frac{1}{1-v}$ then the term in the brackets is negative and U or E(0) must be negative. If either is negative, then the system must do negative work, which is not possible for real materials. This, of course, can be overcome in a numerical sense by simply requiring that only those solutions are acceptable which yield a material coefficient matrix that is positive definite at each point in the body; i.e., the following conditions must all be met:

$$a_{11}^{a} \stackrel{>}{}_{12} = 0$$

$$a_{11}^{a} \stackrel{>}{}_{12} = 0$$

$$a_{11}^{a} \stackrel{>}{}_{22}^{a} \stackrel{>}{}_{66} = a_{12}^{2} \stackrel{>}{}_{66} \stackrel{>}{}_{0} \qquad (64)$$

Thus, it is clear that the "arbitrariness" of any stress conditions selected are restricted to more than conforming to the equilibrium equations and the boundary conditions.

Two Dimensional Boundary Considerations

It is instructive to approach this problem from the viewpoint of the calculus of variations. Consider the total strain energy in a stretched plate of unit thickness:

$$U = \iint_{A} U_{o} dxdy , \qquad (65)$$

where

$$U_o$$
 = strain density at a point
= $\frac{1}{2} \left[\sigma_x \epsilon_x + \sigma_y \epsilon_y + \tau_{xy} \gamma_{xy} \right]$.

Assume a Hookien material, neglecting time and temperature effects,

$$\varepsilon_{x} = a_{11}\sigma_{x} + a_{12}\sigma_{y}$$

$$\varepsilon_{y} = a_{12}\sigma_{x} + a_{22}\sigma_{y}$$

$$\gamma_{xy} = a_{66}\sigma_{xy}$$
(66)

and a stress function

$$\sigma_{\mathbf{x}} = \frac{\partial^{2} \Psi}{\partial \mathbf{y}^{2}}$$

$$\sigma_{\mathbf{y}} = \frac{\partial^{2} \Psi}{\partial \mathbf{x}^{2}}$$

$$\gamma_{\mathbf{x}\mathbf{y}} = -\frac{\partial^{2} \Psi}{\partial \mathbf{x} \partial \mathbf{y}}$$
(67)

Such that Equation (65) becomes

$$U = \int \int \frac{1}{2} \left[a_{11} \left(\frac{\partial^2 \psi}{\partial y^2} \right)^2 + 2a_{12} \left(\frac{\partial^2 \psi}{\partial x^2} \right) \left(\frac{\partial^2 \psi}{\partial y^2} \right) \right] dx dy \qquad (68)$$

Following the method of Weinstock[28], the extremization of (68) is affected by forming the integral $I(\delta)$ by replacing Ψ in the integral of (68) by

$$\phi = \Psi(x,y) + \delta \eta(x,y) , \qquad (69)$$

where $\Psi(x,y)$ is the actual extremizing function and $\eta(x,y)$ is an arbitrary function that is twice continuously differentiable. Then, the integral $I(\delta)$ is an extremum for $\delta = 0$, so that

$$I'(0) = 0$$
 . (70)

Writing $f(\Psi_{xx}, \Psi_{yy}, \Psi_{xy})$ = the integrand of Equation (68), and here the subscripts refer to differentiation with respect to x and y. Then, according to (68) and using (69) to compute

$$\frac{\partial \Psi_{xx}}{\partial \delta} = \eta_{xx}, \frac{\partial \Psi_{yy}}{\partial \delta} = \eta_{yy}, \frac{\partial \Psi_{xy}}{\partial \delta} = \eta_{xy}, \tag{71}$$

and I'(δ) is formed and δ is set to zero, resulting in

I'(0) =
$$\iint_{A} \left(\frac{\partial f}{\partial \Psi_{xx}} \eta_{xx} + \frac{\partial f}{\partial \Psi_{yy}} \eta_{yy} + \frac{\partial f}{\partial \Psi_{xy}} \eta_{xy} \right) dxdy = 0,$$
 (72)

according to Equation (70). Integrating by parts and employing Green's theorem results in the transformation of Equation (72) to

$$\int \int_{\mathbf{A}} \left\{ \eta \left[\frac{\partial^{2}}{\partial \mathbf{x}^{2}} \left(\frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{x}\mathbf{x}}} \right) + \frac{\partial^{2}}{\partial \mathbf{y}^{2}} \left(\frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{y}\mathbf{y}}} \right) + \frac{\partial^{2}}{\partial \mathbf{x} \partial \mathbf{y}} + \left(\frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{x}\mathbf{y}}} \right) \right] \right\} d\mathbf{x} d\mathbf{y} \\
+ \int_{\mathbf{C}} \left\{ \eta \left[\frac{\partial}{\partial \mathbf{y}} \left(\frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{y}\mathbf{y}}} \right) + \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{x}\mathbf{y}}} \right) \right] - \eta_{\mathbf{y}} \frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{y}\mathbf{y}}} - \frac{1}{2} \eta_{\mathbf{x}} \frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{y}\mathbf{y}}} \right\} d\mathbf{x} \\
+ \int_{\mathbf{C}} \left\{ \eta_{\mathbf{x}} \frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{x}\mathbf{x}}} + \frac{1}{2} \eta_{\mathbf{y}} \frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{x}\mathbf{y}}} - \eta \left[\frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right) + \frac{1}{2} \frac{\partial}{\partial \mathbf{y}} \left(\frac{\partial \mathbf{f}}{\partial \Psi_{\mathbf{x}\mathbf{y}}} \right) \right] \right\} d\mathbf{y} \\
= 0 . \tag{73}$$

Noting that

$$\frac{\partial f}{\partial \Psi_{xx}} = a_{12} \left(\frac{\partial^2 \Psi}{\partial y^2} \right) + a_{22} \left(\frac{\partial^2 \Psi}{\partial x^2} \right) = \varepsilon_y$$

$$\frac{\partial f}{\partial \Psi_{yy}} = a_{11} \left(\frac{\partial^2 \Psi}{\partial y^2} \right) + a_{12} \left(\frac{\partial^2 \Psi}{\partial x^2} \right) = \varepsilon_x$$

$$\frac{\partial f}{\partial \Psi_{xy}} = a_{66} \left(\frac{\partial^2 \Psi}{\partial x \partial y} \right) = -\gamma_{xy} , \qquad (74)$$

(Note: Confusing subscripts. Subscripts on strains do not refer to differentiation.)

thus, the area integral becomes

$$\iint_{\mathbf{A}} \left\{ \eta \left[\frac{\partial^2 \varepsilon_{\mathbf{y}}}{\partial \mathbf{x}^2} + \frac{\partial^2 \varepsilon_{\mathbf{x}}}{\partial \mathbf{y}^2} - \frac{\partial^2 \gamma_{\mathbf{x}\mathbf{y}}}{\partial \mathbf{x} \partial \mathbf{y}} \right] \right\} d\mathbf{x} d\mathbf{y} . \tag{75}$$

Since (73) must hold for arbitrary η , it must in particular hold for those η for which $\eta = \eta_{\chi} = \eta_{\chi} = 0$ on the boundary C. For such η Equation (73) reduces to the well-known compatibility equation as previously derived (see Equation (3)) and the resulting (Equation (9)). For arbitrary η , η_{χ} , η_{χ} , other than zero, the boundary relations must be derived from the remaining line integral portion of Equation (73). The first part of the line integral becomes, along C on γ = constant,

$$\eta \left[\frac{\partial a_{11}}{\partial y} \frac{\partial^{2} \Psi}{\partial y^{2}} + a_{11} \frac{\partial^{3} \Psi}{\partial y^{3}} + \frac{\partial a_{12}}{\partial y} \frac{\partial^{2} \Psi}{\partial x^{2}} + (a_{12} + \frac{1}{2} a_{66}) \frac{\partial^{3} \Psi}{\partial x^{2} \partial y} + \frac{1}{2} \frac{\partial^{3} 66}{\partial x} \frac{\partial^{2} \Psi}{\partial x \partial y} \right]$$

$$- \eta_{y} \left[a_{11} \frac{\partial^{2} \Psi}{\partial y^{2}} + a_{12} \frac{\partial^{2} \Psi}{\partial x^{2}} \right] - \eta_{x} \frac{1}{2} \left[a_{66} \frac{\partial^{2} \Psi}{\partial x \partial y} \right] = 0.$$
 (76)

The last two terms in Equation (76) are

$$- \eta_{\mathbf{y}} \left[\varepsilon_{\mathbf{x}} \right] - \left[\eta_{\mathbf{x}} \frac{1}{2} \gamma_{\mathbf{x} \mathbf{y}} \right] . \tag{77}$$

If these strains are not prescribed as zero, then along this portion of the boundary $\eta_x = \eta_y = 0$, and the boundary equation which must be satisfied is

$$\frac{\partial a_{11}}{\partial y} \frac{\partial^{2} \psi}{\partial y^{2}} + a_{11} \frac{\partial^{3} \psi}{\partial y^{3}} + \frac{\partial a_{12}}{\partial y} \frac{\partial^{2} \psi}{\partial x^{2}} + (a_{12} + \frac{1}{2} a_{66}) \frac{\partial^{2} \psi}{\partial x^{2} \partial y}$$

$$+ \frac{1}{2} \frac{\partial a_{66}}{\partial x} \frac{\partial^{2} \psi}{\partial x \partial y} = 0, \qquad (78)$$

and a similar set of relations can be written for the second part of the line integral. These equations have, at best, a very limited application other than showing that other constraints do exist on the boundary. Their limited application is due in great part to the choice of a rectangular coordinate system. All attempts to date to express these relations in terms of other coordinate systems, in particular those using generalized normal and tangential components have been unsuccessful. More work must be done along these lines.

Material Considerations

Finally, just a brief note on the possibility of achieving a material with tailorable properties. It is sufficient here to say that work by Adams and Tsai[29], Dimmock and Abrahams[30], Hewitt and Malherbe[31] Halpin[32], Halpin and Pagano[33], Kohn and Krumhansl[34] Tabaddor[35], Fotinich[36], Wang[37], and Fokin and Shermergor[38], among others, have clearly established that material properties for composites of various types can be established by a knowledge of the known properties of the constituent materials, their orientation and their relative density.

SUMMARY

Mathematical design synthesis has been shown to be possible in certain specific applications. The selection of a design criterion in the cases discussed, two dealing with stress distributions, and the development of the material property distribution within a plane body such that compatibility is satisfied, appears to be a rational basis of design for composite materials. Difficulty has been encountered in the solution of two-dimensional problems employing this concept due to the, as yet, undefined boundary restraint requirements which affects the selection of the stress criterion to be met.

REFERENCES

- [1] Sayers, K. H., and Hanley, D. P., "Test and Analysis of Graphite-Fiber, Epoxy-Resin Composite", AIAA Paper No. 68-1036 (1968).
- [2] Chen, C. H., and Cheng, S., "Mechanical Properties of Fiber Reinforced Composites", J. of Composite Materials, Vol. 1, p. 30 (1967).
- [3] Hill, R. G., "Evaluation of Elastic Modulii of Bilaminate Filament Wound Composites", Experimental Mechanics, Vol. 8, No. 2, pp. 75-81 (Feb., 1968).
- [4] Gaonkar, G. H., "Average Elastic Properties and Stress for Composite Continua". Collection of Technical Papers on Structures and Materials, AIAA/ASME 10th Structures, Structural Dynamics and Materials Conference, New Orleans, La., pp. 172-182 (April 14-16, 1969).
- [5] Dong, S. B., et al., "Analysis of Structural Laminates", Air Force Report ARL-76 (Sept., 1961).
- [6] Tsai, S. W., "Strength Characteristics of Composite Materials", NASA CR-224 (1965).
- [7] Tsai, S. W., "Mechanics of Composite Materials, Part I Introduction, Part II Theoretical Aspects", Air Force Materials Laboratory, AFML-TR-66-149, Part I (June, 1966), Part II (Nov., 1966).
- [8] Tsai, S. W. and Azzi, V. D., "Strength of Laminated Composite Materials", AIAA Journal, Vol. 4, pp. 296-301 (Feb., 1966).
- [9] Whitney, J. M., "The Effect of Transverse Shear Deformation on the Bending of Laminated Plates", J. of Composite Materials, Vol. 3, pp. 534-547 (July, 1969).
- [10] Whitney, J. M. and Leissa, A. W., "Analysis of Heterogeneous Anisotropic Plates", J. Applied Mechanics, Vol. 36, No. 2, pp. 261-266 (June, 1969).
- [11] Whitney, J. M. and Leissa, A. W., "Analysis of Simply Supported Laminated Anisotropic Rectangular Plate", AIAA Journal, Vol. 8, No. 1, pp. 28-33 (Jan., 1970).
- [12] Lekhnitskii, S. G., "Theory of Elasticity of an Anisotropic Elastic Body", Holden-Day, Inc., San Francisco, Calif. (1963).
- [13] Bert, C. W. and Guess, T. R., "Mechanical Behavior of Carbon/Carbon Filamentary Composites", Composite Materials: Testing and Design (Second Conference), ASTM STP 497, American Society for Testing and Materials, pp. 89-106 (1972).

- [14] Bert, C. W., "Analysis of Nonhomogeneous Polar-Orthotropic Circular Plates of Varying Thickness", Bulletin No. 190, Engineering Experi-Ment Station, College of Engineering, The Ohio State University, Columbus, Ohio, Vol. 31, No. 2 (March, 1962).
- [15] Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, Second Edition, McGraw-Hill, New York (1951).
- [16] Bieniek, M., et al., "Nonhomogeneous Thick-Walled Cylinder Under Internal Pressure", ARS Journal, Vol. 32, pp. 1249-1255 (August, 1962).
- [17] Shaffer, B. W., "Orthotropic Annular Disks in Plane Stress", J. of Applied Mechanics, Vol. 34, pp. 1027-1029 (Dec., 1967).
- [18] Manson, S. S., "Determination of Elastic Stresses in Gas-Turbine Disks", NACA Technical Report No. 871, Flight Propulsion Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio, February 27, 1974.
- [19] Green, A. E. and Zerna, W., <u>Theoretical Elasticity</u>, Oxford at the Claredon Press (1954).
- [20] Hearmon, R.F.S., Applied Anisotropic Elasticity, Oxford University, Press (1961).
- [21] Savin, G. N., Stress Concentration Around Holes, Pergamon Press, New York, N. Y. (1961).
- [22] Greszczuk, L. B., "Stress Concentrations and Failure Criteria for Orthotropic Plates with Circular Openings", Composite Materials:

 Testing and Design (Second Conference), ASTM STP 497, American Society for Testing and Materials, pp. 363-381 (1972).
- [23] Shaw. F. S., "An Introduction to Relaxation Methods", Dover Publications Inc., New York, 1953.
- [24] Hildebrand, F. B., "Finite Difference Equations and Simulation", Prentice Hall, New York, 1968.
- [25] Southwell, R. V., "Relaxation Methods in Theoretical Physics", Oxford at the Claredon Press, 1946.
- [26] Allen, D. H. de G., "Relaxation Methods", McGraw Hill, New York, 1954.
- [27] Richtmyer, "Difference Methods for Initial-VAlue Problems", Interscience Publishers, Inc., 1957.
- [28] Weinstock, R., "Calculus of Variations, With Applications to Physics and Engineering", McGraw Hill Book Company, New York, 1952.

- [29] Adams and Tsai, "The Influence of Random Filament Packing on the Transverse Stiffness of Unidirectional composites", the Rand Corporation, RM-5608-PR(1968).
- [30] Dimmock, J., and Abrahams, M., "Prediction of Composite Properties from Fibre and Matrix Properties", Composite, December, 1969, pp 87-93.
- [31] Hewitt, R. L., and Malherbe, M. C., "An Approximation for the Longitudinal Shear Modulus of Continuous Fibre Composites", J. of Composite Materials, Vol 4 (April, 1970) pp 280-283.
- [32] Halpin, J. C., "Stiffness and Expansion Estimates for Oriented Short Fiber Composites", J. of Composite Materials Vol. 3 (October, 1969) pp 732-734.
- [33] Halpin, J. C., and Pagano, N. J., "The Laminate Approximation for Randomly Oriented Fibrous Composites", J. of Composite Materials, Vol. 3 (October, 1969) pp 720-724.
- [34] Kohn, W., Krumhansl, J. S., Lee, E. H., "Variational Methods for Dispersion Relations and Elastic Properties of Composite Materials", J. of Applied Mechanics, June, 1972, pp 327-336.
- [35] Tabaddor, F., "A Note on Effective Moduli of Composite Materials", J. of Applied Mechanics, June, 1972, pp 598-560.
- [36] Fotinich, O. V., "Determining the Equivalent Modulus of Corded Rubber Test Pieces", Mechanics of Solids (Mekhanika Tverdogo Tela) Vol. 4, No. 3, 1969, pp 162-166.
- [37] Wang. F. F. Y., "Calculation of the Elastic Moduli of Binary Composites", Materials Science and Engineering, 7 (1971) pp 109-116.
- [38] Fokin, A. G., and Shermergor, T. D., "Calculation of Effective Elastic Moduli of Composite Materials with Multiphase Interactions Taken Into Consideration", Journal of Applied Mechanics and Technical Physics (Zhurmal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki) Vol. 10, No. 1 (1964), pp 51-57.

APPENDIX A-

INPUT DATA FOR PROGRAM DOMOV1

Five cards constitute the input data for DOMOV1 for each variation to be studied. These five cards represent three (3) data sets. As many runs may be stacked behind the initial set as required. The computer run will terminate when an End of File card is read.

Data Set 1 (Title Cards)

READ (5, 10) (ITIL(I, 1), I = 1, 24)

10 Format (8A10)

Any information can be placed on these three cards. It is necessary to have three cards, although any can be left blank.

Data Set 2

READ (5, 20) RO, RI, RPM, DENS, N, IBOND, IST 20 Format (4F 15.0, 3I15)

RO = Outer Radius, Inches

RI = Inner Radius, Inches

RPM = Revolution per minute of Disk

DENS = Material Density of Disk, 1b/in.3

N = Finite Difference Increment and Printout Number

IBOND = Type of Boundary Condition on Inner Radius

0 = A stress condition

1 = A displacement condition

IST = Type of Stress Criterion Chosen

1 = Constant theta stress

2 = Constant in-Plane shear stress

Data Set 3

If IBOND Equals 0,

READ (5, 40) SI, SO, ORTHO, PO, ETHETA 40 Format (2F 10.0, 3F 15.0)

SI = Radial Stress on Inner Radius

SO = Radial Stress on Outer Radius

ORTHO = Orthotropic Ratio, E_r/E_θ

PO = Poisson's Ratio

ETHETA = Modulus of Elasticity in Theta

Direction at the Inner Radius

If IBOND Equals 1

READ (5, 30) UI, SO, ORTHO, PO, ETHETA 30 Format (2F 10.0, 3F 15.0)

UI = Selected Radial Displacement of Inner Radius .

APPENDIX B

LISTING OF PROGRAM DOMOV1

•		PROGRAM DOY	OV1 (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)	P00	
U		DIMENSTAN	(411) Tripriato Poplato Application Control	004	
		◆ ntwem2109 K	(1:0), THET (161), EOC(150), A22(100), CG (100), OD(100),	DOH	
		3	HI(133), PHIR(133), PHIPP(100), SIGR(100), STGT(100), U(136)		
			ROP(100).ITTL(24.1) B(110).AA(112).EE(100)	DUH	10
C		LDIFERSION, 3	COLLINA WITTIFEE (INT)	. 004 DDH	• • •
_ C.				DDM	
		COMMON R.PH	I,PHIP, PHIPP, SIGR, SIGT, U	004	
C				004	1
C				004	1
			(ITIL(I,1),I=1,24)	. MOO.	_1
	10	FORMAT (841		704	1
		IF (EOF,5) 1		DDM	1
			RO.RI.RPM.DENS.N.IBOND.IST	004	1
	Z C	FORMAT (4F1	5.0.315).	00h	1
	~~	IF (IPONO-1)		DOA	1
			UI.SO.ORTHO.PO.ETHETA	.DDH	1
•		FORMAT (2F1		MOD	1
. C		. 90 . RI	=DUTER RADIUS, INCHES	D0M	2
_C			=INNFQ PADIUS, INCHES	DOM	2
LC.		RPM	=REVOLUTIONS PER MINUTE OF DISK	200	2
C		N	=MATERIAL DENSITY OF DISK. LB./CUBIC INCH ==FINITE_DIFFERENCE_INCREMENT_NUMBER	HOD	2
C		IBDNO	=TYPE OF GOUNDARY COMPITION ON IMMER RADIUS	DD4_	
Č		150117	0 = A STRESS CONDITION	M00	2
Č	• •		1 = A DISPLACEMENT CONDITION	100 HOD	2
C		IST.	=TYPE OF STRESS CRITERION CHOSEN. PRESENTLY	004	2
C	***		1 = CONSTANT THETA STRESS	004	2
_C.			2. = CONSTANT IN-PLANE SHEAR STRESS	00.	3
C		UI	=RADIAL DISPLACEMENT OF INNER RADIUS	POG	3
C		. SI	= PADIAL STRESS ACTING ON INNER PADIUS	004	•
C		SO	=RADIAL STOESS ACTING ON OUTER RADIUS	MOO	
. C		OPTHO	= ORTHOTPOPIC RATIO, E-SUB-R/E-SUB-THETA	204	3
C		PO	=POISSONS RATIO IN THE THETA-R DIRECTION	DOM	
C.		ETHET.4_		.004_	
C			THE THUE PADIUS	004	3
C.		ROB	=RATIO OF THE RADIUS OVER THE DUTEP RADIUS	DOM	3
C		EOC	ERATIO OF THE MODULUS OVER THE MAXIMUM MODULUS	DOM	3
.C.			FOUND IN THE BODY OF THE DISK	P00	4
C		PHI	=THE STRESS FUNCTION	004	4
C_		PHTP	THE FIRST DERIVATIVE DE THE STRESS FUNCTION	DOM_	4
C		PHIPP	*THE SECOND DERIVATIVE OF THE STRESS FUNCTION	POG	4
C		SIGD	=RADIAL STOESS	DO.4	4
C		SIGT	#CIRCUMFERENTIAL STRESS	100	4
C		U .	=THE PADIAL DISPLACEMENT	DUA	4
C		ETHET	*THE CALCULATED CIRCUMFERENTIAL MODULUS AT EACH	2004	4

C	CALCULATION POINT IN THE DISK	DOH
C	A22=1.C/ETHET	_DOM
	60 10 45	1104
35	.READ (5,41) SI,SO,ORTHO,PO,ETHETA	004
	FORMAT (2F10.0.3F15.3)	004
45	PO = (-:.:)*PO	_DOH.
	PI=3.141592654	POG
	OHEGA= (PPM+PI) / (3 U)	DOM
	GRHO=(DENS)+(OMEGA++2.1)/(396.4)	P00
	A22(1)=1.0/ETHETA	. DO4
	ETHET(1) = ETHETA	004
	R(1) = PI	_DOM_
	DEL= (RO-RI)/(N-1)	DOY
	.00.50 I=2.N	P00
	J=1-1	00 H
	Q(I)=R(J)+DEL	POD
50	CONTINUE RA=RO/PI	DUA
	RA=RO/PI	. אספ.
	CALL STRESS (N.RA.GRHC, SI.SO.UI, OPTHO, PO, ETHETA, IDONO, IST, RI.RO)	ÜÜA
	00 55 I=1,N	POG
	AA(I)=PHIP(I)+(PO*PHI(I))/(R(I))+(GRHO+(R(I)*+2.3))	704
	.BB(I)=PHIPP(I)+PHIP(I)/R(I)(ORTHO+PHI(I))/(R(I)++2.1) +(GRHO+R(I	
	\$)*(3.1-PO)) _CC(I)=B3.(I)\AA(I)	004
	_CC (1)=91(112A(1)	-DCA
22	CONTINUE	DCH
	DD(1)=0.7	
	EF(1)=C.? DO_6C_I=2,N	POG
	DU-01 1=2,N	.004
	J=I-1	200
	DD(I)=1.2+GG(I)+(P(I)-P(J))/(2.6)	
	EE(T)=1.'-CG(J)*(°(I)-°(J))/2.0	HOU
	A22(I) = (EE(T)/CD(I)) * (A22(J))	004
	ETHET(I) = 1.3/422(I) CONTINUE	7)()**
OU	EMAX= ' - 3	
	EDAX = 1J	MOG
	DQ 65 I=1,N EMAX=AMAX1(ETHET(I),EMAX)	_004.
45	EMACAMAXICINTICIS, TWAX	POO
. 07	CONTINUE DO 70 I=1.N	D04
	ROB(I)=R(I)/RO	00M
	EDC(I)=ETHET(I)/FMAX	
	U(I) = A 22 (I) *P(I) * (SIGT I) +PQ * SIGP(I))	704
71	CONTINUE	_004.
		אסת
	PD=-1.0+P0	POU
-	WRITE (6,75) (ITIL(I,1),I=1,24)	004
/5	FORMAT (141,8A12/1H ,8A13/1H ,8A15///)	DOA
	IF(IBOND-1) 80,175,195	100
ot	WRITE (5, 85) RO 121, 224, 50, 51, ETHETA , 20, DOTHO, DENS, N	004

85 FORMAT (5X,53HDETERMINATION OF MODULUS VARIATION IN AN ANNULAR DIS	OOM 96
	NO4 97
\$F10.4,2X,15HINNER PANTUS = .F10.4,2X,6HPPM = .F10.2,//.5X,3CHRADIA	36 POR
SL STRESS, OUTER RADIUS = .F1G.2.2X.3CHRADIAL STRESS, INNEP RADIUS	004 99
\$= .F1C.2.//.5X,254ETHETA AT INNER RADJUS = .CPE15.7.2X.17400ISSONS	004 136
\$ RATIO = .F12.8,2X,22HORTHOTPOPIC RATIO = .F10.4,//,5X,19HMATERIAL	nom 111
\$ DENSITY = .F13.5.2X.25HNUMRER OF RADIAL POINTS = .13.///)	004 102
90 WRITE (6.95)	DOM 133
95 FORMAT (1X.1140UTPUT DATA./.1Y.11H*********************************	004 134
SETHETA.9X.7HSIGMA-P.9X.7H3IGMA-T.15X.4HR/RO.1CX.4HE/E0.10X.7HU-SUB	004 125
\$=0./.7X.6H*****.0X.6H*****.	DOM 116
\$13X,4H****,1:Y,7H*******,//)	DOM 157
WRITE (6.133)(Q(I), FTHET(T), SIGR(I), SIGT(I), POB(I), EOC(I), U(I), I=1	DUA 738
5,41)	DOY 139
156 FORMAT (5.,F1.,4,2X,3PE13.6,8X,F7.0,8X,F7.0,6X,F8.5,6X,F9.4,6X,	DOH 110
\$E12.6)	DON 111
GO TO 115	112
105 PRITE(6.11) 50. RI. ROM. SO. UI. ETHETA, PO. ORTHO, DENS, N.	_DOM 113
11C FORMAT (54,52HOFTERMINATION OF MODULUS VARIATION IN AN ANNULAR DIS	DOM 114
\$K,//,1X,17HINPUT DATA,/,1X,18H********,//,5X,15HOUTER RADIUS = ,	DOY 115
\$F10.4.2X.15HINNER RADIUS = .F15.4.2X.FHRPM = .F13.2.//.5X.32HPADIA	004 116
SL SIRESS, OUTER RADIUS = ,F18.2,2X,35HRADIAL DISPLACEMENT, INNER R	004 117
SADIUS = .F10.7.//.5X.25HTHETA AT INNER RADIUS = .CPE15.7.2X.17HPOI	DO4 115
\$\$\$04\$ RATIO =E11.8.2X.21HORTHOTROPIC_RATIO_=E10.4.//.5X.19HMAT	DO4 119
REPIAL DENSITY = .F13.5.2X.26HYUMBER OF RADIAL POINTS = .13.///)	00M 120
60 TO 92	DO4 121
115 CONTINUE	DOY 122
GO TO 5	
120 CONTINUE	DOY 124
CALL EXIT	.DO4 125
END	DUA 156
·	

	SUBROUTINE STRESS(N, RA, GRHO, SI, SO, UI, ORTHO, PO, ETHETA, IBOND, IST, RI, \$RO)	STS
C	DRU1	STR
۰	BINCHERON CARREST CONTRACTOR	STR
	DIMENSION R(100), ETHET (100), EOC(100), A22(100), CC(100), DD(100),	STR
	\$ PHI(10), PHIP(100), PHIPP(100), SIGR(100), SIGT(100), U(100)	STP
		STR.
	DIMENSION 88(1)0), AA(1)1), EE(101)	STR
	18. 3. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	STR
		STR
	COMMON R, PHI, PHIP, PHIPP, SIGR, SIGT, U	STR
		STR
)		SIR
;	THIS SUBROUTINE CALCULATES THE STRESS FUNCTION AND	STR
•	ITS FIRST AND SECOND DERIVATIVESFOR THE FOLLOWING CONDITIONS,	STR
;	IF IBOND =) AND IST = 1 WE HAVE A STORS CONDITION ON THE	STR
e.P	THINGS SASTUS AND A SECTION OF THE S	STR
;	STRESS	STR
_	IF IROUD = .0 AND IST = 2 HE HAVE A STRESS CONDITION ON THE	STR
;	INNER RADIUS AND A STRESS CRITERION OF CONSTANT IN-PLANS	STR
;	SHEAR STRESS	STR
)	IF 19040 = 1 AND IST = 1 WE HAVE A DISPLACEMENT CONDITION ON	STR
: _	THE INNER PACIUS WITH_A STPESS CONDITION OF CONSTANT.	CTD
;	THETA STRESS.	STP
; _	THESE ARE THE CHLY CONTITIONS PROGRAMMED	517
;	The state of the s	
	IF (IRONO-1)5,30,31	STR
	5 GO TO (15,22), IST	
	4C CONTINUE	STR
	.It CONTINUE.	
_	THIS SECTION OF THE SUBROUTINE CONTAINS THE CALCULATIONS	STO
:	FOR A CONSTANT CIRCUMFERENTIAL STRESS CONDITION	
		STO
	AC=(1.0/(20-61))*((50*80-51*81)+((G2H0/3.0)*(20**3.6-81**3.3)))	SIR
		215
	DO 15 I=1.N	
	PHI(I)=AJ#R(I)-(G?HO/7.G)*(R(I)**3.C) + BU	STR
		STR
•	PHIPP(I) = (-2.0) * (GPHO) * ?(I) SIG?(I) = PHI(I) / ?(I)	
		STR
	SIGT(I)=PHIP(I)+GPHO*(R(I)**2.0). 15 CONTINUE	
	GO_TO.43	STR
_	ST CUNTINE	STP
		SIB
	THIC CURTAIN OF THE AMARAMAN AND AND A	STR
	THIS SECTION OF THE SURROUTINE CONTAINS THE CALCULATIONS	STS
	FOR A CONSTANT IN-PLANE SHEAR STRESS CRITERION	STR
		STP

C1=(1.0/ALOG (PA))*(SI*ALOG (RO) -SO*ALCG(RI)-(GRHO/2.0)*((RO**2.0)*A	STR	4
	STR	5
	STR	5
PHI(I)=C:*ALOG(R(I))+C::-1.5*GRHO*(R(I)**2.2)+G1	_SIR_	5
		5
PHIPP(I)=GC/R(I)-7.0*GRHO*R(I)	STP	9
	STR	9
SIGT(I)=OHIP(I)+GPHO*(R(I)**2.2)	_STR	. 9
25 CONTINUE	STS	6
44 74 11		
3C CONTINUE	STR	-
		į
accetou of the chappinting Contains the Checopalisms	-517	
C FOR A DISPLACEMENT CONDITION AT THE INC. STRESS CRITERION OF CONSTANT THETA. STRESS	_S1R	1
C 214522 CKITZ-Tayl 21 20 121		-
A22(1)=1/ETHETA	STR	
A22(1)=1/ETHETA	STR	
A:=((ETH=TA)/(RI*(1+DI)=DU-RI))	STR	
\$*(1.0/3.2)*PO*(RO**3.~=PI**3)))	STR	
B[=\$n+00+(GRH0/3.*)+(R0++3.1)-AJ+H)		
00 75 1-1.4	STR	
	STR	
PHI(I)=A;*R(I)-(GPHO):-1)*(R(I)**3.2)*********************************		
PHIPP(I) = (-2.C)*(GPH1)*P(I)	STR	
SIGR(I)=0HI(I)/2(T)	STR	
	STR	
SIGT(I)=PHIP(I)+GPHO*(P(I)**2.))	STP	
35 CONTINUE	STR STR	
4C CONTINUE	STR STR STR	
4C CONTINUE —	STR STR STR	
4C CONTINUE	STR	
4C CONTINUE —	STR STR	
35 CONTINUE 4C CONTINUE RETURN END	STR STR	

THE LINE ANALLER HIS SIN SSLIL UN U UN PRIJG. ENUALS V.5 UNINGTHUTHUTHUT HELD STALLS TOUS SINE SE CRITERION

UEILMMINATION OF POUCLUS VARIATION IN AN ANNULAR DISK

Section 1

	Î	1-0000	
	00.0	DRINGTRUPIC RATIO =	
UND THEE KAUIUS . 3.0000 HPH . 4000.00	HADIUS & 12000.00 HADIAL SINESS, INNEH HAUIUS .	ETHEIM MI INNEM MADIUS M 6-5000000E+07 POISSONS MAILO M 0-504000 ORTHOTRUPIC RAILO M	MATERIAL DENSITY B U. LUGGO NUMBER OF HADIAL PUINTS B 100
UUTER HAUTLS & BU-LOUV INNER	HAUSAL SIMESS, UUIER HAUSUS B	ETHEIR AL INEM MAUIU	MATCHIML DENSITY &

	-508-R	
	./E0 U-	
	R/HU	
	SIGMA-T	
	SIGHA-R	100000
	ETHLIA	94444
COTFOT DAIL	RAUIUS	44444

##
--

ç
3.
EUVALS
441IC
SONS
STOA
Les Jo
10 510 10 10 5
110 CU
100
TAN
4133
1

				2.5000
			0.00	L. BOGOLGUE . UT PUISSUNS HAILO & 0.55000 CUU ORTHOTRUPIC RAILO #
		00-000+	H RAUIUS .	Subbuub ORI
UISK		3.0000 HPM B +000.00	STRESST INE	15 HATTO = 0.
IN ANNULAH			O HAUIAL	PULSSUA
IATTON IN		WER MAUIUS	14000.0	.005060JE+0
VETEREINATION OF PUCULUS YMHIATION IN AN ANNULAH UISK		Buscule INNER HADIUS	HAUTAL STRESS, UVIER HAUTUS = 14186.60 RAUTAL STRESS, INNEH RAUTUS =	
the ination of	4 1 4	UUTER MAUILS #	IAL SIRESSO (EIMEIA AI LINEM MALIUS =
177	ALPOI DAI	UUTE	[Umb]	LIME

U-16CUC RUMBEN OF MAULAL POINTS - 140

MATCHIAL DENSITY =

	00000	0 0
	6750	***
	F/R0	•
	SIGMALT	•
	S CMA-P	****
	E I ME I A	••••
***********	KAUICS	

****	4-0-0-+	SIGMA-T	R/HU	E/E0	A-3000++
.					
0.0000 P. C. C.	0 / 0	-454RZ	0-1000	0.7633	0.1422726-01
4.059/30E+		20454·	6.10.00	0.8278	0.13(2366-01
0.09c. 00c.	4313.	28454	6-11018	0.8803	0.1347676
P. / C44 / OF +		C3454.	15/2/27	0.9216	0 144 144
0+167 LCOC+U	1434.	28454	6.13036	8756°0	0.130100E
** (DC23.L+		20454.	0.14045	0.9751	13/22/1-01
00 (1797 JE + V	90 DE	20454	0-15455	0.9897	10 - 11 - 11 - 12 - 14 - 14 - 14 - 14 - 14
6.104c2JE+		60454	6.10364	0.9976	144366-01
V . / OC > JE +	11653.	28454	0-1/673	1.0000	0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
10.301.00	_	50454	0-19142	6.66.0	1340675-01
- 0 - 1 / A = 2 - C +		50454	6-17091	1165.0	U-100844E-U1
W. ((C.) C.) C.		C8424.	0000200	0.9845	0. 16 /04at-01
חייוסיוכים		.04540	60502.0	0.9708	U-1/50556-01
		,454p	0.21018	0.9571	0.1830448-01
7 - 3 - 7 - 7	15291	28454	6.26/27	0 - 5 4 < 0	0.191000E-01
J. 1777.		50454.	0.62036	1656.0	0-2007128-01
10.114c/0C+0/		26454	0.24545	0.9086	0.2103715-01
************	_	Z8454.	0.42455	0.6910	0.2203/02-01
J. 303:300.3		50454	0-20364	0.8731	0.231305E-01
0-2101210-0		68454°	0.61673	0.8550	0.2425/0E-U1
0.03/CC.00	1/324.	-454PZ	6-20182	0.8369	0. 254363E=31
- 3-+/5+0•3		.45492	16022-0	0.8149	U-2000/9E=01
0.000cc		- 454BZ	00015.0	0.8012	0.275165-01
		.4C497		0.7837	0. / Vabble - 11
しゅつってはってもし		28454		0.7667	0 3687388-01
************		20454	0.34727	0.47500	0.3211126-01
4.3/6E50L+	- 75.70	20454	0.33636	0.7338	3354436
3.304.7ck.		50454	0.34545	0.7161	0.3513736-0

1875 1875	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1172E-
		4177726-
A A A A A A A A A A		-44555be-
		しつつつつつ
1925 1925		-453/94E-
19 19 19 19 19 19 19 19		-476419E-
1 1 1 1 1 1 1 1 1 1		000144.
13.2 A. 1		- 30 1 1 1 0 0
1		.531104E-
144 16 16 16 16 16 16 16		-320+Tec*
		.>/<20/E-
174 17 174		.34363E-
144 144	7	-014/9/6-
1440.4 1	7EG-0	•630613E-
1 1 1 1 1 1 1 1 1 1	0.629	- 246/ PGG.
1945 1945	\$15.00 \$1.00	- PB1 C0 4E-
144 14 14 14 14 14 14 1		-703947E-
1 1 1 1 1 1 1 1 1 1	176.0	.750963E-
	1 0.50	.750235E-0
	954.0	· 1/3/45E-0
	264.0	-17/4/6/·
	2 0 480	.841378E-J
	001.0	. 845503E-0
18495 18496 1849	3 0.475	-907/0/E-0
	2 0 0 4 7 1	. 874167E-U
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0.466	-7190016-
は、	0 0 462	.943300E-0
は、1 は で	954-0	- 7000000c-
10 10 10 10 10 10 10 10	45+·0 8	. 974/4VE-0
***3434	7 0.450	.101753c.u
# - 5 a d d d d d d d d d d d d d d d d d d	174.0 9	.104233E
# = = 3 = 4 C = 2 = 4 C = 2 = 4 E =	5 0.444	.106712E+0
# 1	5 0 0 0	.107100E+0
0.1018 0.3432200000 14560 20454 0.04018 0.4013 0.340000 1751 20454 0.04018 1.0014 1731 20454 0.04018 1.0014 1731 20454 0.04019 1.0014 1735 20454 0.04019 1.0014 1735 20454 0.04019 2.0016 1735 20454 0.07019 2.0016 17016 0.07019 2.0017 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016 0.07019 2.0018 17016	4 0 439	111000
1	3 0 • • 3 0	.1141C4E+0
1.0.101 1.0	5 0 • 3 •	.116586E+0
1.0.000 0.3300 0.0	1 0.434	•119024E • U
1.67.27 0.33/43/E-0/ 17611.	0.430	.141450E+U
1.03+05 0.43454666 17856 24454 0.43424666 0.44243 0.4342466 0.4342466 0.44243 24454 0.43434246 0.44243 24454 0.43434246 0.44243 244346 0.4342426 244346 0.4342426 244346 0.434242 0.4342426 0.4342426 0.4342426 0.4342426 0.4342426 0.4342426 0.4342426 0.434242	624.0	•163073E+
1.01d2 0.335291t+0/ 1/355 28454 0.6/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	8 0 51	.150673E.0
6.3439 0.33420000000000000000000000000000000000	024-0	.125054E.J
6.3036 0.33376*** 0.735 6.3036 0.33276*** 0.735 6.3036 0.3367** 0.735 3.4036 0.3367** 0.767 3.4036 0.32600 0.767 3.4036 0.32600 0.767 3.4036 0.32600 0.767 3.4036 0.767 0.767	02440	0.30101610
C. 5. 1.24 U. 5. 3. 2. 3. 2. 7. 5. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	704.0	0 - 1
3-1-3-18 0-3-2-18-18 19656 2454 0-7-2-3 3-4-3-5 0-3-2-2-2-1 19566 2454 0-7-2-3 3-4-3-5 0-3-2-2-2-1 19569 0-7-3-3 3-4-3-5 0-3-2-2-2-1 19353 2454 0-7-3-3	2000	
3-4-3-5 0-3-2-6-2-6-0 105-0 204540 0-7018 3-4-3-5 0-3-2-6-2-6-0 103-0 204540 0-7018		
3-4-345 0-3-2-6-2-6-0-1 103/60 204540 0-1749	524-0	0 - 1 - 1 - 2 - 1 - 1 - 1
חייות מייות בייתו ביית ביית	7774	144640146
	22.0	
001000 00000 000000 000000 000000 000000	77.4	0 14 10 14 1
0.0000 orness orness (0.40410717000 12/204	624.0	- 1000000000000000000000000000000000000
1010-0 0-7777341-0 1010-0 1010-0 0-010	\$24.00 \$24.00	0.3560161.
2/38-0 0-7730-750-750-0 7845-0 0-807/5	424.0	-133120E+0
ביארה כייקראת בייקראת	0.420	001331466400
****	024.0	

Ġ

		90.000	HAULUS = 0.00	SUGOFUGO ORTHOTROPIC HAILU = 5-0000		N/NU E/E0 U-SUB-R	•	000 0.8883 U.144272E-	0.9551 0.138428E 0.9910 0.139323E	127 1.9000 0.1434346-	345 0.9872 0.1317716-	55 0.9104 0.17041BE-	100000000000000000000000000000000000000	82 0.7574 C.237141E-	191 0.7013 0.254086E-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 0.5442 0.374662E-	27 0.4977 0.4220995-	11111	55 0.3779 0.905635	54 0.3444 0.686375E-	73 0-3149	0.2611 0.973473E-	00 0.2383 0.1093635	0-21/7 0-12/10E	727 0.1822	3036 0.171898E+U
EDUALS U.S	JLAH UISK	3-0000 KPM B	HAUIAL SIRESSO INNER H	UNS RAITO = 0		4A-1	•	3	28454	3	20124		3		3	•		3	. .		3	.	3	3	0	28454	6454
HA11C	UETERFINATION OF PCDULUS VARIATION IN AN ANNULAH 1 DATA ***********************************	INNER HADIUS .	= 12000.00 HAL	AUMBER OF R		SI6MA-R	• • • • • • •	0	6334°	5784	634	9606.	10/04	16427	13125.	13756	14627.	15291.	15/13	10441.	10766.	1 7304	17367	11785.	17991	18343	18494.
השונה שונה שונה שונה שנות אשרות איים והשונה שונה אונה מונה שונה שונה שונה שונה שונה שונה שונה ש	THE PENULUS VAN	36.6000	STALSS. UULER HALIUS	MAU1US =		ETHETA	***	100-CE.U?	6.64E135E.c.	0.0/543.E+0.	1.000 / 01E+0/	0.01E55cE+17	4.04E64.6.0	0.011347E+U	J. + 27 Jeë + 1	1.+101/10t+1.	13434510000	0.3361306.V	6.3,69136.01	4.6356376.01	10.23C23C201	00616,43E00	ıi v	v.loisode+6/	7 + 1	10 13445E U	7
CONSTANT TOURS	UETEMPINATION INPUL DATA	UUTER HAUTES	HAUJAL SINES	CINETA AL INNEM MACIUS MATEMIAL GENEITY =	A-140 TOTIOS	HAULUS	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3000	12/2·10/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	J. 6162	777.00	4.6.764	- R - R - F	0.4040	50,12/3	2000	65450	2=12-0	V - V - V	100304	1.30.91	1401.00 to 1	6.1213	2000	212.	79197	かったっ・コー

111-1016 111-10-13 111-10-13 111-10-13 111-10-13 111-13 11-13 11-13 11-13 11-13 11-13 11-13 1	· 6449 1640					D
1.55 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1+6; 5-6+	*9.67	2000		٠,	C37465
167 167 158 145 145		19.50	28.85		7	203035E+0
250	. 005 : 11L+uo	7) :		7	0+3+11767
167	.0331ECL.	35 5	28454	16.025-0	7	363635 ·
435 c	JUC 7 / JE .	* > > < >	2466	2	0	30/034E+0
147	07+4410	i e	24654	7	C	3930716+0
	5.567				•	433321E+0
>	+1.3031	3-	20404	\$ ·	0	4/0104E+0
45050			*****	7	0	52634120
3	4 1 1 2 1		C0404	+	0	5/20.38E+0
	411644	•01467	*	40	9	6 / 5 6 6 6 6 6 6
	1205	19418	60454	40	> =	100117
. د	1 1	19426.		3	9	00000000000000000000000000000000000000
3	342016	19413	40	.0	9	1001001
		19+03.	78424	17	9	907144E+0
	1.6722536.00	19385	4	•	>	9101010
	c11766E+60	19361	28414		C	756053E+(
•	2	1000		n .	ò	1031532+0
	١.	95667	60424	7	0	111494E+
	643ch Nr 4. 0	0 10 10 10 10 10 10 10 10 10 10 10 10 10	C0404	Ž.	0	120320F+0
0.1036	4.4.4.4.	17650	28454.	Ž	C	14444
		19616.	C0424.	\$		
		19159.	28454	200		- 10 L L L L L L L L L L L L L L L L L L
1606		19103.	C0454.	3	3	1470212
lold		17647	1000		Š	IOU/OPE.
(· + 0 + 5)	H	10776	78.54		0	1/c120E+
16/3	•	20081			00	1840/66.
C. c. c.	534736		******	کر کر	000	1 your
2//2	41.01.40	• 15004	C0454.	200	0	407 48 5
		16/51	68454.	ر د د	6	
٠ ا	3.0.0	1dobd.	20424.	PIG		+1,4200
7	12. 2.	Lusao.	28454	779	ָבָייייייייייייייייייייייייייייייייייי	3777
))	13/14/6+00	Latan.	18474	1	2	35135
636	13 ceck + vo	16392	14.0	114	0	:0/411F+
*250	126=+0E+LD	I BANK	24.5.5		2	18363 /E+
	1617102+60	10144			50	277007E+
lole	117:col+o	1	10000	סני	5	110520E+
5164.5	131656+		20404	7.	10	339631
]		1,700	58454	100	6	470715
	27671600	1/853.	C0424.	7	1	
5	7	17734.	20454		;	- 1
7.00 /7/201	277	1/011.	186740		5	073/4E.
3	プラントト・リン	1/420	1200	-	3	-3629PO
3	70.74.E+1.5	. 5		•	5	26/33E.
>	T		* 1	ű.	70	49160E
9.0	4000	• 7777	C6434	9	0	のよくだけたり
1 1 1 1	1.414.00	00001	C0+24•	ņ	3	4 4 7 4 1 1 7
	SECTOR STATE	10540	20454.	3,40	5	1011
	35616	logic.	C04040	0		-1000
5	7	10650.	1045		3	コワンナワ
., 040	475c+		70		5	5/049E.
13	-		* · · · · · · · · · · · · · · · · · · ·	₹.	10	17005
	1	10.00	20454°	2	10	44.000
		06 101	-*C+P2	2	-	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	3	1003/	4C487	7	5	10 TO
1412	0.306.0	15674.	204540	4 2 2 2 2	61100	42E.
100 /4	334346.00	157.16.	1	- ·	3	27
-	C. 150E - 45	. 1		٧.	0.0	40104E+
10 10	14. 45	η,	******	500	010	7410
		15368.	20454·	ņ	0	1
	2000	2	20454	4		100

W.