Ayudantía Álgebra N.11

Daniel Sánchez

3 de Junio 2022

1. Dado los puntos A(-3,4,-1), B(1,-1,1) y C(-1,2,3) de \mathbb{R}^3 . Si $\vec{u} = \vec{AB}$ y $\vec{v} = \vec{CA}$ determine el valor de $x, y \in \mathbb{R}$, si existe, de modo que:

$$3(\vec{u} - 2\vec{v}) + 4\vec{v} = (2x - y, x + y, 14)$$

- 2. Considere los vectores $\vec{a} = (3, -1, 0)$ y $\vec{b} = (5, -1, 2)$ de \mathbb{R}^3 . Determine si los vectores \vec{a} y \vec{b} son paralelos. Justifique.
- 3. Sean $\vec{u} = (3, -2, 1), \vec{v} = (1, 2, -3)$ y $\vec{w} = -\hat{i} + \hat{j}$, vectores de \mathbb{R}^3 .
 - (a) Calcule el ángulo entre los vectores \vec{u} y \vec{v} .
 - (b) Determine $\alpha \in \mathbb{R}$ de modo que $\alpha \cdot u + v$ sea perpendicular a w.
- 4. ¿Las rectas $l_1 = \frac{x-1}{2} = \frac{y-3}{2} = z-1$ y $l_2 : (x,y,z) = (3,4,2) + t(2,1,1), t \in \mathbb{R}$, son secantes? Si lo son, encuentre el punto intersección.

Propiedades

$$\bullet \ \vec{a} \cdot \vec{a} = \|\vec{a}\|^2$$

$$\bullet \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

•
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

•
$$\alpha \ (\vec{a} \cdot \vec{b}) = (\alpha \ \vec{a}) \cdot \vec{b} = (\alpha \ \vec{b}) \cdot \vec{a}$$

•
$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \cdot ||\vec{b}|| \cos(\theta)$$

•
$$\vec{a} \cdot \vec{b} = \frac{1}{4} ||\vec{a} + \vec{b}||^2 - \frac{1}{4} ||\vec{a} - \vec{b}||^2$$

•
$$\vec{a} \cdot \vec{b} = \frac{1}{2} (\|\vec{a}\|^2 + \|\vec{b}\|^2 - \|\vec{a} - \vec{b}\|^2)$$