# Predicting Malicious URLs

Proofpoint, Inc.

Aidan Cheng Kevin Herrera Carli Lessard Vidushi Ojha (PM) Advisor:

Prof. Elizabeth Sweedyk

Liaisons:

Thomas Lynam

Mike Morris '97

### Proofpoint, Inc.

- Cybersecurity firm
- Provides software as a service
- Products that protect against malware, ransomware
- Products for email, social media, mobile devices, and the cloud



Proofpoint's security suite **analyzes URLs** embedded in client emails and detects whether they **lead to malware**, blocking those it deems dangerous. Our task was to investigate various **machine learning models** to improve the accuracy of the classification process.

Project Description

## **Existing Solution**

- Filtration technique:
  - Number of appearances in time period
  - Domains passed through
- Sandboxing: sped-up virtual environment



### Data Sample

```
{ u'queue ts': datetime.datetime(2017, 5, 4, 0, 56, 37, 485000),
 u'url': u'https://www.cs.hmc.edu/program/course-descriptions/',
 u'recv ts': datetime.datetime(2017, 5, 4, 0, 41, 4),
 u'misc': { u'content': None,
            u'ip': u'134.173.193.149',
                u'details': None,
                u'scanid': u'3096224878164377',
                u'forensics score': 0,
               u'result': u'malicious' },
```

### Models

Support Vector Machines

Naive Bayes Logistic Regression





### Naive Bayes



- Bayes' net encodes conditional dependence
- Independent features make it naive
- Use probability rules to compute likelihood of URL being malicious

## Logistic Regression



$$\sigma(t) = rac{e^t}{e^t+1} = rac{1}{1+e^{-t}}$$
 where

$$t = Wx + b$$

Use gradient descent optimization algorithm to determine the best coefficients, *W* and *b* for our model

### Features

#### **URLs**

- Tokenization on all punctuation
- Character *n*-grams

https://www.cs.hmc.edu



#### IP addresses

- Tokenization on '.'
- Word *n*-grams

134.173.193.149



```
[\\134', \\173']
[\\173', \\193']
[\\193', \\149']
```

### Testing

Offline

- Splits up the data set we have intro training and testing
- Learns from the training set
- Test on the testing set
- Repeat with a different split

#### Online

- Trains on the first 1000 chronological samples
- Tests on the next 1000 samples
- Train on the 1000 samples just tested, plus most recent malicious samples
- Repeat

### Experiments

 Model
 Data
 Testing Method
 Parameters

 Naive Bayes
 URLs
 Offline
 For example:

 Iterations
 Malicious set size
 size
 Etc.

# Naive Bayes Results

|                         | % of malicious URLs correctly classified | % of clean URLs correctly classified |
|-------------------------|------------------------------------------|--------------------------------------|
| Offline URL             | 37.7%                                    | 95.5%                                |
| Offline IP              | 75.8%                                    | 96.4%                                |
| Online URL              | 55.9%                                    | 92.7%                                |
| Online IP               | 85.3%                                    | 53.2%                                |
| Online URL & Offline IP | 78.1%                                    | 95.1%                                |

# Logistic Regression Results

|                 | % of malicious URLs correctly classified | % of clean URLs correctly classified |
|-----------------|------------------------------------------|--------------------------------------|
| Online URL      | 78.6%                                    | 80.2%                                |
| Online IP       | 52.2%                                    | 94.2%                                |
| Online URL & IP | 78.4%                                    | 90.6%                                |

### Combining Models

 Added Naive Bayes' predicted probability of being clean as feature to Logistic Regression

|                  | % of malicious URLs correctly classified | % of clean URLs correctly classified |
|------------------|------------------------------------------|--------------------------------------|
| Bayes + URL + IP | 78.4%                                    | 90.4%                                |
| Bayes + URL      | 80.1%                                    | 80.9%                                |
| Bayes + IP       | 65.2%                                    | 90.0%                                |

## Takeaways

- Chronological nature of data: online model
- IP addresses
- Combining models that complement one another

### **Future Directions**

#### Models:

- Neural Nets
- AdaBoosting

#### Features:

- Email subject line
- IP identities (WHOIS)

### With Thanks To:

- Prof Z Sweedyk
- Mike Morris '97
- Thomas Lynam
- DruAnn Thomas
- Prof Geoff Kuenning

# Questions?

## Naive Bayes



- Our final model combined the two classifiers
- An online classifier worked best for URLs, and Offline worked best for IPs

### True positive/false negative rates



## Logistic Regression

#### Online vs. offline

#### Offline:

Train on a set, test on a different set

#### Online:

Continuously learn from samples as they come in

#### Number of iterations

#### Count:

Frequency of features in URLs

#### Tf-idf:

Frequency of features in URLs times inverse document frequency

#### Features

#### N-grams:

Word or character

#### N-gram ranges:

Take n-grams of every size n in some range

### Experiments

Online vs. offline

Vectorizer type

Features

Training parameters

Offline:

Train on a set, test on a different set

Online:

Continuously learn from samples as they come in

Count:

Frequency of features in URLs

Tf-idf:

Frequency of features in URLs times inverse document frequency

N-grams:

Word or character

N-gram ranges: Take n-grams of

every size n in some

range

Iterations:

Training time

Features generated: Maximum number of features extracted from samples

# Usage

