Éléments de mathématiques pour la physique

JÉRÔME - - FILIO Paul

12 septembre 2024

Table des matières

1	Syst	stèmes de coordonnées		
	1.1	Coordo	onnées cartésiennes	
		1.1.1	Vecteur position	
			Vecteur vitesse	
			Vecteur accélération	
		1.1.4	Différentielles des vecteurs de base	
		1.1.5	Déplacement élémentaire	
		1.1.6	Volume élémentaire	
	1.2 Coordonnées cylindriques		onnées cylindriques	
		1.2.1	Vecteur position	
		1.2.2	Vecteur vitesse	
		1.2.3	Vecteur accélération	
		1.2.4	Différentielles des vecteurs de base	
		1.2.5	Déplacement élémentaire	
		1.2.6	Volume élémentaire	
1.3 Coordonnées shériques		Coordo	onnées shériques	
		1.3.1	Vecteur position	
		1.3.2	Différentielles des vecteurs de base	
		1.3.3	Déplacement élémentaire	
		1.3.4	Volume élémentaire	
2	Vec	ecteurs et différentiation 3		
	2.1	Différei	eurs et différentiation	
	2.2			
			Nabla	
			Gradient	
			Divergence	
			Rotationnel	
			Laplacien scalaire	

1 Systèmes de coordonnées

1.1 Coordonnées cartésiennes

1.1.1 Vecteur position

$$\overrightarrow{OM} = x\overrightarrow{\mathbf{u}_x} + y\overrightarrow{\mathbf{u}_y} + z\overrightarrow{\mathbf{u}_z}$$

1.1.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{x}\overrightarrow{\mathbf{u}_x} + \dot{y}\overrightarrow{\mathbf{u}_y} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.1.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y} + \ddot{z} \overrightarrow{u_z}$$

1.1.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_x} = dx\overrightarrow{u_x}$$
$$d\overrightarrow{u_y} = dy\overrightarrow{u_x}$$
$$d\overrightarrow{u_z} = dz\overrightarrow{u_z}$$

1.1.5 Déplacement élémentaire

$$\overrightarrow{d\ell} = dx\overrightarrow{u_x} + dy\overrightarrow{u_y} + dz\overrightarrow{u_z}$$

1.1.6 Volume élémentaire

$$d\tau = dx dy dz$$

1.2 Coordonnées cylindriques

1.2.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.2.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{r}\overrightarrow{\mathbf{u}_r} + r\dot{\theta}\overrightarrow{\mathbf{u}_\theta} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \left(\ddot{r} - r\dot{\theta}^2\right) \overrightarrow{\mathbf{u}_r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) \overrightarrow{\mathbf{u}_\theta} + \ddot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.4 Différentielles des vecteurs de base

$$\begin{split} \mathrm{d}\overrightarrow{\mathrm{u}_r} &= \mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\theta} &= -\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_r} \\ \mathrm{d}\overrightarrow{\mathrm{u}_z} &= \mathrm{d}z\overrightarrow{\mathrm{u}_z} \end{split}$$

1.2.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.2.6 Volume élémentaire

$$d\tau = r dr d\theta dz$$

1.3 Coordonnées shériques

$$\theta, \varphi) \in [0, \pi[\times[0, 2\pi[$$

1.3.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\overrightarrow{u_r}}$$

1.3.2 Différentielles des vecteurs de base

$$\begin{split} \mathrm{d}\overrightarrow{\mathrm{u}_r} &= \mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\theta} &= -\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_r} + \cos(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\varphi} &= -\,\mathrm{d}\varphi\,(\sin(\theta)\overrightarrow{\mathrm{u}_r} + \cos(\theta)\overrightarrow{\mathrm{u}_\theta}) \end{split}$$

1.3.3 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + r\sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi}$$

1.3.4 Volume élémentaire

$$\boxed{\mathrm{d}\tau = r^2 \sin\theta \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\varphi}$$

2 Vecteurs et différentiation

2.1 Différentielle d'une fonction de plusieurs variables

$$df(x, y, z) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

2.2 Vecteurs et différentiation

2.2.1 Nabla

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{\mathbf{u}}_x + \frac{\partial}{\partial y} \overrightarrow{\mathbf{u}}_y + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}}_z$$
 en coordonnées cartésiennes

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{\theta} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cylindriques
$$= \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \varphi} \overrightarrow{\mathbf{u}_\varphi}$$
 en coordonnées sphériques

2.2.2 Gradient

$$\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$$

$$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial x} \overrightarrow{u_x} + \frac{\partial f}{\partial y} \overrightarrow{u_y} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$
 en coordonnées cartésiennes
$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{\theta} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$
 en coordonnées cylindriques
$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \varphi} \overrightarrow{u_\varphi}$$
 en coordonnées sphériques

2.2.3 Divergence

$$\overrightarrow{\mathrm{div}}\,\overrightarrow{A} = \overrightarrow{\nabla}.\overrightarrow{A}$$

2.2.4 Rotationnel

$$\overrightarrow{\operatorname{rot} A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$$

2.2.5 Laplacien scalaire

$$\begin{split} \Delta f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cart\'esiennes} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cylindriques} \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2} & \text{en coordonn\'es sph\'eriques} \end{split}$$