Giavanna Jadick

EDUCATION

Ph.D. Medical Physics, University of Chicago | Chicago, IL

2021 - June 2026 (expected)

- Thesis: "Spectral X-ray imaging and quantitative phase retrieval"
- Advisor: Patrick La Rivière, Ph.D.
- Funding: NSF Graduate Research Fellowship Program, AAPM/RSNA Graduate Fellowship

B.S. Physics & B.A. Political Science, Duke University | Durham, NC

2016 - 2020

• Honors: Angier B. Duke Memorial Scholar, Cum Laude

Research

Ph.D. Candidate | Graduate Program in Medical Physics, University of Chicago

2021 - present

- Advised by: Patrick La Rivière, Ph.D.
- Developed the first automatic-differentiation-based phase retrieval framework for 2D and 3D multi-energy propagation-based X-ray phase-contrast imaging (PB-XPCI), enabling quantitative material decomposition
- Derived the Cramèr-Rao lower bound for PB-XPCI and used to assess/optimize phase retrieval approaches
- Built CT simulation and estimation-theory pipeline, demonstrating the unique utility of dual-energy CT with megavoltage spectra for radiotherapy imaging
- Investigated multi-material decomposition strategies for dual-energy CT in context of cardiac imaging
- Collaborated on comparative evaluation of X-ray fluorescence emission tomography versus conventional micro-CT to demonstrate proof-of-benefit

Research Technician II | Ravin Advanced Imaging Labs, Duke University

2020 - 2021

- Advised by: Ehsan Samei, Ph.D. & Ehsan Abadi, Ph.D.
- Co-developed DukeSim CT simulation platform; implemented beam-hardening correction, tube current modulation, spherical detector geometry, and photon-counting detector noise model
- Created a Python wrapper to accelerate workflow of large-scale virtual imaging trials
- Designed and delivered multi-modal DukeSim training sessions for incoming lab members

"Saxophone Mouthpiece Design" Research Team | Bass Connections, Duke University

2019 - 2020

- Advised by: Joshua Socolar, Ph.D. & Matthew Busch
- Built digital archive of vintage saxophone mouthpieces using micro-CT scanning
- Extracted acoustic metrics from Fourier spectra of recordings with original and 3D-printed mouthpieces
- Linked micro-CT geometric measurements with acoustic properties through custom Python analysis
- Project featured in articles from Duke Today and 3dprint.com

Undergraduate Research Assistant | Physics Department, Duke University

2019 - 2020

- Advised by: Christoph Schmidt, Ph.D.
- Studied E. coli membrane response under osmotic stress using microscopy and image analysis
- Created Python scripts and Surface Evolver simulations to quantify inner membrane elastic bending energy

Clinical Research Intern | Digestive Health Institute, Florida Hospital Tampa

2015 - 2016

- Advised by: Alexander Rosemurgy, M.D. & Sharona Ross, M.D.
- Performed chart review and statistical analyses of surgical outcomes in patients with esophageal disorders
- Contributed to studies assessing patient satisfaction and long-term outcomes in achalasia treatment
- Piloted investigation of the relationship between age, achalasia severity, and patient outcomes

♦ Independent Course Design & Teaching

Research Skills for Medical Physics (Instructor/Coordinator) | Medical Physics, UChicago 2025 - present

- Launched and coordinated new graduate professional skills mini-course after identifying gaps between incoming Ph.D. student preparation and curriculum expectation
- Designed and taught a one-day "Coding for Medical Physics" bootcamp to orient new students
- Organized bi-weekly seminar series inviting senior students, staff, and faculty to teach practical skills

Coding in Science (Invited Lecturer) | Cancer Center, UChicago Medicine

2023

- Led two 3-hour lessons on coding for ~40 high school and undergraduate summer research students
- Introduced coding fundamentals and scientific applications with original Jupyter notebook lessons

House Course: Exploring Physics in Cinema (Instructor) | Duke University

2020

• Designed and taught an interdisciplinary course introducing physics concepts through film analysis

House Course: Physics for Everyone (Instructor) | Duke University

2019

Designed and taught a seminar on equity in STEM and best practices for learning physics

♦ Teaching Assistantships

Graduate Teaching Assistant | Medical Physics, UChicago

2022 - 2025

- Led weekly 1-hour discussion sessions (~5 students) with original lectures and group problem sets, which continue to be used by current course TAs
- Created interactive Jupyter notebooks demonstrating abstract physics/math concepts
- Graded and provided detailed feedback on homework, labs, and final exams
- Courses: MPHY 388 "Physics of Medical Imaging III" (Summer 2025), MPHY 386 "Physics of Medical Imaging I" (Winter 2023), MPHY 349 "Mathematics for Medical Physics" (Fall 2022)

Quantitative Biology "qBio" Bootcamp TA | Biological Sciences Division, UChicago

2023

- Taught intensive one-week coding/data analysis course for ~100 incoming biology Ph.D. students
- Served as head TA for image analysis workshop on cell tracking: co-developed workshop material, delivered part of the lecture, and guided students through debugging

Undergraduate Teaching Assistant | Duke University

2017 - 2020

- PHY 141/142/151/152: Led weekly labs (~ 30 students) on introductory mechanics and E&M, staffed help room and office hours, and graded exams and lab reports
- PHY 151/152: Selected by instructor and dean to lead weekly remedial sessions for at-risk students; independently developed lectures and tailored problem sets, resulting in all \sim 10 participants passing
- CS 101: Co-led weekly introductory computer science labs (~30 students) and graded final exams
- MATH 105/106/111/112: Ran help room for introductory calculus

Awards & Honors

AAPM/RSNA Graduate Fellowship American Association of Physicists in Medicine (AAPM)	2025 - 2026
NSF Graduate Research Fellowship National Science Foundation	2023 - 2026
Blue Ribbon Poster Award AAPM Annual Meeting	2025
Travel Award Fully 3D Image Reconstruction Meeting	2025
Second Place Oral Presentation Young Investigator Symposium, AAPM Midwest Chapter Meeting	2025
Best Poster Award Trainee Associate Member Symposium, Cancer Center, UChicago	2025
${\bf Lawrence~H.~Lanzl~Medical~Physics~Graduate~Fellowship} \mid \textit{UChicago}$	2024
 Voted by faculty as best dissertation proposal presentation 	
Dean's Council Travel Award Biological Sciences Division, UChicago	2024

Professional Development Grant Cancer Center, UChicago	2024
Students & Trainees Partial Scholarship Virtual Imaging Trials in Medicine Conference	2024
Student Travel Award SPIE Medical Imaging Conference	2024
Carl J. Vyborny Award Graduate Program in Medical Physics, UChicago	2024
• Voted by students as best journal club talk	
${\bf Second\ Place\ Oral\ Presentation}\ \ {\it Young\ Investigator\ Symposium,\ AAPM\ Midwest\ Chapter\ Meeting}$	2023
Small Grant (\$2,000) Office of Diversity & Inclusion, Biological Sciences Division, UChicago	2023
Truth-Based CT Reconstruction Challenge, Top Five AAPM	2022
• Ranked among most accurate reconstruction algorithms; invited to co-author challenge report	
Summer Research Fellowship Physics Department, Duke University	2020
Runner-Up Poster, Bass Connections Showcase Interdisciplinary Studies, Duke University	2020
Angier B. Duke Memorial Scholarship Duke University	2016 - 2020
• Duke's flagship full-ride merit scholarship awarded annually to $\sim \! 10$ incoming students	
Lord Rothermere Fellowship Oxford University	2017
• Full funding for summer studying political philosophy with Duke University cohort	

Publications & Presentations

Peer-reviewed articles

- 1. E. Abadi, W. P. Segars, N. Felice, S. Sotoudeh-Paima, E. A. Hoffman, X. Wang, W. Wang, D. Clark, S. Ye, G. Jadick, M. Fryling, D. P. Frush, and E. Samei. AAPM Truth-based CT (TrueCT) reconstruction grand challenge. *Medical Physics*, pages 1–13, 2025. doi:10.1002/mp.17619
- G. Jadick, M. Ventura, and P. La Rivière. Utility of photon-counting detectors for MV-kV dual-energy computed tomography imaging. *Journal of Medical Imaging*, 11(S1):S12811-S12811, 2024. doi:10.1117/1.JMI.11.S1.S12811
- 3. H. DeBrosse, **G. Jadick**, L. J. Meng, and P. La Rivière. Contrast-to-noise ratio comparison between x-ray fluorescence emission tomography and computed tomography. *Journal of Medical Imaging*, 11(S1):S12808–S12808, 2024. doi:10.1117/1.JMI.11.S1.S12808
- 4. **G. Jadick**, G. Schlafly, and P. La Rivière. Dual-energy computed tomography imaging with megavoltage and kilovoltage x-ray spectra. *Journal of Medical Imaging*, 11(2):023501–023501, 2024. *Featured on journal cover. doi:10.1117/1.JMI.11.2.023501
- 5. E. Abadi, G. Jadick, D. A. Lynch, W. P. Segars, and E. Samei. Emphysema quantifications with CT scan: Assessing the effects of acquisition protocols and imaging parameters using virtual imaging trials. *Chest*, 163(5):1084–1100, 2023. doi:10.1016/j.chest.2022.11.033
- G. Jadick, E. Abadi, B. Harrawood, S. Sharma, W. P. Segars, and E. Samei. A scanner-specific framework for simulating CT images with tube current modulation. *Physics in Medicine & Biology*, 66(18):185010, 2021. doi:10.1088/1361-6560/ac2269
- D. J. Downs, G. Jadick, F. Swaid, S. B. Ross, and A. S. Rosemurgy. Age and achalasia: how does age affect patient presentation, hospital course, and surgical outcomes? The American Surgeon, 83(9):952–961, 2017. doi:10.1177/000313481708300931
- 8. A. Rosemurgy, D. Downs, **G. Jadick**, F. Swaid, K. Luberice, C. Ryan, and S. Ross. Dissatisfaction after laparoscopic Heller myotomy: The truth is easy to swallow. *The American Journal of Surgery*, 2017. doi:10.1016/j.amjsurg.2017.03.043

Conference proceedings

- 1. **G. Jadick** and P. La Rivière. Optimization-based phase retrieval for material decomposition with multi-energy computed tomography. In 18th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, May 2025. doi:10.48550/arXiv.2508.12509
- G. Jadick and P. La Rivière. Accuracy of propagation-based phase-contrast CT under the projection approximation. In 8th International Conference on Image Formation in X-Ray Computed Tomography, 2024. doi:10.48550/arXiv.2508.12505

- 3. **G. Jadick** and P. La Rivière. Modeling propagation-based x-ray phase-contrast imaging: validity of the projection approximation. In *Proc. Virtual Imaging Trials in Medicine*, pages 68–72, 2024. doi:10.48550/arXiv.2405.05359
- 4. **G. Jadick** and P. La Rivière. Cramér–Rao lower bound in the context of spectral x-ray imaging with propagation-based phase contrast. In *Medical Imaging 2024: Physics of Medical Imaging*, volume 12925. SPIE, 2024. doi:10.1117/12.3006282
- G. Jadick, I. Reiser, and P. La Rivière. Sensitivity analysis of dual-energy computed tomography multi-triplet material decomposition. In *Medical Imaging 2024: Physics of Medical Imaging*, volume 12925. SPIE, 2024. doi:10.1117/12.3006548
- 6. H. DeBrosse, **G. Jadick**, L. Meng, and P. La Rivière. Comparing x-ray fluorescence emission tomography and computed tomography: contrast-to-noise ratios in a numerical mouse phantom. In *Medical Imaging 2024: Clinical and Biomedical Imaging*, volume 12930. SPIE, 2024. doi:10.1117/12.3006795
- M. Ventura, G. Jadick, and P. La Rivière. Comparison of energy-integrating detectors and photon-counting detectors for MV-kV dual-energy imaging on a tomographic therapy system. In *Medical Imaging 2024: Physics of Medical Imaging*, volume 12925. SPIE, 2024. doi:10.1117/12.3006854
- 8. **G. Jadick** and P. La Rivière. Optimization of MV-kV dual-energy CT imaging for tomographic therapy. In *Medical Imaging 2023: Physics of Medical Imaging*, volume 12463, pages 557–566. SPIE, 2023. doi:10.1117/12.2653674
- 9. S. S. Shankar, G. Jadick, E. A. Hoffman, J. Atha, J. C. Sieren, E. Samei, and E. Abadi. Scanner-specific validation of a CT simulator using a COPD-emulated anthropomorphic phantom. In *Medical Imaging 2022: Physics of Medical Imaging*, volume 12031, pages 953–960. SPIE, 2022. doi:10.1117/12.2613212
- F. Ria, G. Jadick, E. Abadi, J. B. Solomon, and E. Samei. Comparing two different noise magnitude estimation methods in CT using virtual imaging trials. In *Medical Imaging 2022: Physics of Medical Imaging*, volume 12031, pages 729-734. SPIE, 2022. doi:10.1117/12.2612219
- 11. E. Abadi, **G Jadick**, C. McCabe, S. Sotoudeh, M. Fryling, B. Harrawood, E. Samei, S. Havadej, M. Sedlmair, J. Ramirez, and K. Stierstorfer. Development and application of a virtual imaging trial platform to evaluate and optimize state-of-the-art photon-counting CT. In *Radiological Society of North America Annual Meeting*, 2021
- 12. **G. Jadick**, E. Abadi, B. Harrawood, S. Sharma, W. P. Segars, and E. Samei. A framework to simulate CT images with tube current modulation. In *Medical Imaging 2021: Physics of Medical Imaging*, volume 11595, pages 22–30. SPIE, 2021. doi:10.1117/12.2580983
- 13. E. Abadi, G. Jadick, E. A. Hoffman, D. Lynch, W. P. Segars, and E. Samei. COPD quantifications via CT imaging: ascertaining the effects of acquisition protocol using virtual imaging trial. In *Medical Imaging 2021: Physics of Medical Imaging*, volume 11595, pages 160–166. SPIE, 2021. doi:10.1117/12.2581965

Oral presentations

- 1. **G. Jadick** and P. La Rivière. Material decomposition of weakly absorptive structures with spectral x-ray phase-contrast CT. In *IEEE Medical Imaging Conference*, November 2025. *will present in November
- 2. **G. Jadick** and P. La Rivière. A tale of two techniques: multi-energy versus multi-distance material decomposition with x-ray phase-contrast imaging. American Association of Physicists in Medicine, Midwest Chapter Meeting, April 2025. *Second Place, Young Investigator Symposium
- 3. **G. Jadick** and P. La Rivière. Modeling propagation-based x-ray phase-contrast imaging: validity of the projection approximation. In *Proc. Virtual Imaging Trials in Medicine*, pages 68–72, 2024. doi:10.48550/arXiv.2405.05359
- 4. **G. Jadick** and P. La Rivière. Cramér–Rao lower bound in the context of spectral x-ray imaging with propagation-based phase contrast. In *Medical Imaging 2024: Physics of Medical Imaging*, volume 12925. SPIE, 2024. doi:10.1117/12.3006282
- 5. **G. Jadick** and P. La Rivière. Dual energy CT imaging with a megavoltage spectrum. American Association of Physicists in Medicine, Midwest Chapter Meeting, April 2023. *Second Place, Young Investigator Symposium
- G. Jadick, E. Abadi, B. Harrawood, S. Sharma, W. P. Segars, and E. Samei. A framework to simulate CT images with tube current modulation. In *Medical Imaging 2021: Physics of Medical Imaging*, volume 11595, pages 22–30. SPIE, 2021. doi:10.1117/12.2580983

Posters

- 1. **G. Jadick**, C. Riggs, and P. La Rivière. Quantitative forward modeling of propagation-based x-ray phase-contrast imaging at clinical scale. In *American Association of Physicists in Medicine*, *Annual Meeting*, July 2025. *Blue Ribbon Poster. URL: https://aapm.confex.com/aapm/2025am/meetingapp.cgi/Paper/17710
- 2. **G. Jadick** and P. La Rivière. Material decomposition with propagation-based x-ray phase contrast: a comparison of multi-energy and multi-distance imaging. In *American Association of Physicists in Medicine*, Annual Meeting, July 2025. URL: https://aapm.confex.com/aapm/2025am/meetingapp.cgi/Paper/18361
- 3. **G. Jadick** and P. La Rivière. Optimization-based phase retrieval for material decomposition with multi-energy computed tomography. In 18th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, May 2025. doi:10.48550/arXiv.2508.12509
- G. Jadick and P. La Rivière. Accuracy of propagation-based phase-contrast CT under the projection approximation. In 8th International Conference on Image Formation in X-Ray Computed Tomography, 2024. doi:10.48550/arXiv.2508.12505
- 5. **G. Jadick** and P. La Rivière. An estimation theory approach to assessing spectral x-ray phase-contrast imaging. In *Gordon Research Conference on Image Science*, June 2024
- G. Jadick, I. Reiser, and P. La Rivière. Sensitivity analysis of dual-energy computed tomography multi-triplet material decomposition. In *Medical Imaging 2024: Physics of Medical Imaging*, volume 12925. SPIE, 2024. doi:10.1117/12.3006548
- G. Jadick and P. La Rivière. Optimization of MV-kV dual-energy CT imaging for tomographic therapy. In Medical Imaging 2023: Physics of Medical Imaging, volume 12463, pages 557–566. SPIE, 2023. doi:10.1117/12.2653674
- 8. **G. Jadick**, M. Bartlett, M. Busch, and J. Socolar. The art and craft of saxophone mouthpiece design. Fortin Foundation Bass Connections Virtual Showcase, May 2020. *Runner-Up Poster Award
- 9. **G. Jadick**, R. Garces, and C. Schmidt. Physiology of E. Coli bacteria in high external osmotic pressure. Conference for undergraduate women in physics at the University of Maryland, January 2020
- 10. **G. Jadick**. Gender representation in science policy: A study of Capitol Hill. Sigma Pi Sigma Physics Congress in Providence, RI, November 2019

Leadership & Service

Dean's Council Representative | Biological Sciences Division (BSD), University of Chicago

2025-present

- Represent Medical Physics in monthly BSD meetings and convey program needs to administration
- · Advocate for funding, resources, and community-building events to support graduate students

Peer Reviewer | Medical Physics; Journal of Medical Imaging

2023 – present

President | SPIE, UChicago Student Chapter

2024 - 2025

- Secured maximum annual funding from SPIE national to support student chapter activities
- Organized undergraduate outreach events and community optics demonstrations
- Coordinated tours of local lens manufacturer and Adler Planetarium for chapter members

Director of Outreach | Medical Physics Diversity & Outreach Committee, UChicago

2022 - 2025

- Led medical physics outreach demonstrations at science fairs, schools, and community events
- Secured grant funding to design and build original CT, MRI, and radiation therapy demos
- Worked with UChicago Cancer Center to host professional learning days for public school science teachers and to purchase portable ultrasound unit
- Wrote an invited AAPM newsletter article highlighting UChicago's outstanding outreach program

President | Graduate Program in Medical Physics, University of Chicago

2022 - 2023

- Elected to serve as primary student/faculty liaison and to lead student initiatives
- Joined faculty meetings and organized journal club, peer-mentor program, and quarterly socials
- Led planning and coordination of the annual student/faculty retreat after a three-year hiatus

President | Society of Physics Students, Duke University Chapter

2018 - 2020

- Reestablished chapter, authored constitution and by-laws, secured funding, and designed website
- · Launched coding crash courses, career advising sessions, and community outreach programs
- Won national SPS awards: 2019 Distinguished Chapter, 2020 Outstanding Chapter

Physics Community Outreach Volunteer | Physics Department, Duke University

2017 - 2020

• Performed physics demonstrations for grade-school students at science fairs and field trips

SCIENCE POLICY EXPERIENCE

American Institute of Physics Mather Public Policy Intern | U.S. House of Representatives

2019

- Worked with subcommittees of the House Committee on Science, Space & Technology
- Researched hearing topics (renewable energy, AI, deep sea exploration); wrote briefs for members of Congress
- Met with invited scientists to discuss their work and observe remarks in Congressional hearings
- Analyzed demographics of Capitol Hill briefings using text and regression analyses in Python, presented at the Society of Physics Students internship closing symposium

Science Policy Intern | Niskanen Center, Washington, DC

2018

- Conducted literature reviews on competing climate modeling techniques and prepared staff briefing
- Developed interactive Bayesian belief networks in Python for intuitive climate model interpretation

Professional Affiliations

IEEE, Institute of Electrical and Electronics Engineers Student Member	2025 - present
UChicago Medicine Comprehensive Cancer Center Trainee Associate Member	2024-present
SPIE, International Society for Optics and Photonics Student Member	2021 - present
American Association of Physicists in Medicine Student Member	2021 - present
Pi Sigma Alpha, Political Science Honor Society Member	$2020-{ m present}$
Sigma Pi Sigma, Physics Honor Society $\mid Member$	2019 - present

SKILLS

Computational: Bash, C/C++, CUDA, ImageJ, Git, LaTeX, Linux/Unix, Python, MATLAB, Mathematica, R

Libraries: Chromatix, CuPy, Jax, Pandas, NumPy, Matplotlib, Optax, PyCuda, SciPy

Experimental: CT, micro-CT, microscopy (DIC, confocal, AFM), electronics, other clinical medical imaging **Personal interests:** Jazz saxophone, flamenco guitar, language learning, geography, political philosophy

[CV compiled on September 25, 2025]