Category theory summer course HW 3, meet and discuss 20.6.2019

David Forsman, david.s.forsman@helsinki.fi

16. kesäkuuta 2019

- 1. Show that a natural transformation $\eta: F \Rightarrow G: C \to D$ is an isomorphims, if and only if $\eta_c: Fc \to Gc$ is an isomorphism for every object c in C.
- 2. Let $F, G: C \to D$ be functors. Assume $F \cong G$. Prove the following statements:
 - (a) If G is faithful, so is F.
 - (b) If G is full, so is F.
 - (c) If G is dense, so is F.
- 3. Let $C \xrightarrow{F} D \xrightarrow{G} E$ functors. Show that the following statements hold:
 - (a) If $G \circ F$ is faithful, then F is faithful as well.
 - (b) If $G \circ F$ is dense, then G is dense.
 - (c) If $G \circ F$ is full and F dense, then G is full.
 - (d) Conclude that if F is an equivalence, it's dense and fully faithful.
- 4. (a) Given a bifunctor $B: C \times D \to E$, define functors $B_c: D \to E$ and $B^d: C \to E$ where $B(c,d) = B_c(d) = B^d(c)$ for all objects c in C and d in D.
 - (b) Assume that $B_c: D \to E$ and $B^d: C \to E$ are functors for objects c in C and d in D. What property do you need that functors B^d and B_c define a bifunctor $B: C \times D \to E$, where $B(c,d) = B_c(d) = B^d(c)$ for all objects d in D and c in C?
 - (c) Show that the construction given are other's inverses.
- 5. Show that
 - (a) the category Set is Cartesian closed.
 - (b) the meta category M-CAT is Cartesian closed.
- 6. In this exercise we give a new description for some natural transformations.
 - (a) When homomorphisms between groups are thought of as functors, show that natural transformations between homomorphisms correspond to conjugation.
 - (b) Show that natural transformations between G-actions are equivariant mappings, where G is a group.
 - (c) Show that there exists a natural transformation $\eta: f \Rightarrow g: P \to Q$ between increasing maps, if and only if $f(p) \leq g(p)$ for all $p \in P$, where P and Q are preordered sets.

- 7. The following exercise is long and optional. Let C be a category with terminal object 1 and products. Previously we saw there exists a bifunctor $x: C \times C \to C$. We see that there are functors $F, G: C^3 \to C$, where $F(a,b,c) = (a \times b) \times c$ and $G(a,b,c) = a \times (b \times c)$, and $1 \times -$ and $\times 1$.
 - (a) Define isomorphisms $L_a: 1 \times a \to a$ and $R_a: a \times 1 \to a$ for all objects a in C.
 - (b) Define an isomorphism $\alpha_{a,b,c}: (a \times b) \times c \to a \times (b \times c)$
 - (c) Show that L, R and α become natural isomorphisms between the corresponding functors. L is then called the left unitor, R the right unitor and α associator.
 - (d) Show that the following diagrams commute¹:
 - 1. *triangle identity* (not to be confused with the <u>triangle identities</u> of an <u>adjunction</u>):

$$egin{aligned} (x\otimes 1)\otimes y & \stackrel{a_{x,1,y}}{\longrightarrow} x\otimes (1\otimes y) \ & \qquad \qquad \swarrow_{1_x\otimes \lambda_y} \ & \qquad \qquad x\otimes y \end{aligned}$$

2. the **pentagon identity** (or **pentagon equation**):

$$(w \otimes x) \otimes (y \otimes z)$$
 $(w \otimes x) \otimes y \otimes z$
 $((w \otimes x) \otimes y) \otimes z$
 $(w \otimes (x \otimes y)) \otimes z$

This exercise shows that $(C, \times, 1, \alpha, L, R)$ defines a monoidal category. All basic diagrams constructed from only products, terminal object, associator and the unitors can be shown to commute.

- 8. Assume that category C is Cartesian closed and a, b, c objects in C.
 - (a) Show that $Hom(c \times a, b) \cong Hom(c, b^a)$. This correspondence is called currying.
 - (b) Show that $f: a \to b$ corresponds bijectively with $\tilde{f}: 1 \to b^a$.
 - (c) (Difficult) Let $f: a \to b$ and $x: 1 \to a$. Now using the universal property of products, we have $(\tilde{f}, x): 1 \to b^a \times a$. Show that $ev \circ (\tilde{f}, x) = f \circ x$.
 - (d) Show that there exists a morphism $*: c^b \times b^a \to c^a$. The corresponding functor in M-CAT is called the horizontal composition.
 - (e) (Very hard) Let $a \xrightarrow{f} b \xrightarrow{g} c$. Show that $* \circ (\tilde{g}, \tilde{f}) = \widetilde{g \circ f}$.
- 9. Let $F: C \to D$ be functor. Show that F is an equivalence between categories, if and only if F is dense and fully faithful.

 $^{^{1}\}rho$ and λ refer to the right and left unitors respectively