Reg. No.:

Name :

Continuous Assessment Test- II (CAT-2)- October 2022

Programme	: B.Tech. [CSE and Specialization]	Semester	: FS 22-23
Course Code	BCSE304L	Slot	
Course Title	: Theory of Computation	Slot	: B2+TB2
	Dr Prakash P, Dr Smrithy G S, Dr Sivakumar, Dr Ashoka Rajan R, Dr. B V A N S S Prabhakar Rao, Dr Sureshkumar, Dr Maria Anu	Class Nbr(s)	CH2022231001522, CH2022231001523, CH2022231001524, CH2022231001525, CH2022231001528, CH2022231001530,
Time	: 90 Minutes		CH2022231001532
	4.1.	Max. Marks	: 50

Answer ALL the Questions

Q.No.	Sub. Sec.	Questions	Mark
1. a.			
		Given the following Deterministic Finite Automaton, construct the equivalent regular expression using Arden's Method. (7 Marks)	7
		For each of the following languages, give two strings that are members and two strings hat are not members—a total of four strings for each part. Assume the alphabet $\Sigma = (i)$ $\Sigma * a \Sigma * b \Sigma * a \Sigma * (ii)$ $(a \cup ba \cup bb) \Sigma *$	3

2.	a.	Let $\Sigma = \{1, \#\}$ and let $Y = \{w w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \ge 0, \text{ each } x_i \in 1^*, \text{ and } x_i \ne x_j \text{ for } i \ne j \}$. Prove that Y is not regular.	5
	ь.	Let Σ be an alphabet. Define I_{Σ} to be the collection of all infinite languages over Σ . Note that I_{Σ} does not include any finite language over Σ . Prove that I_{Σ} is closed under union.	5
3.		Consider the language L = (a ⁱ b ^j c ^k i = j or j = k where i, j, k ≥ 0). i. Give a CFG that generates the language L. (7 Marks) ii. Is your grammar ambiguous? Justify your answer (3 Marks)	10
A.		Consider the following Grammar: S → abAB A → bAB ε B → BAa A ε Convert the above grammar into Chomsky Normal Form. Illustrate the procedure step by	10
5.		Design a Push Down Automaton for the language: $L = \{a^{2n} b^{3n} \mid n \ge 0 \}.$	10

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$