AGRÉGATION INTERNE, 2014-2015 25 JUIN 2014 IDÉAUX, ANNEAUX DE POLYNÔMES ET NOMBRES ALGÉBRIQUES

P. EYSSIDIEUX

ÉNONCÉ

Si A désigne un anneau commutatif unitaire, on note :

- 0 et 1 les éléments neutres pour l'addition et la multiplication de \mathbb{A} , avec $0 \neq 1$;
- $\bullet \ \mathbb{A}^* = \mathbb{A} \setminus \{0\} ;$
- \mathbb{A}^{\times} le groupe des éléments inversibles (on dit aussi des unités) de \mathbb{A} .

On rappelle que :

• A est intègre s'il est commutatif, unitaire et n'admet pas de diviseur de 0, c'est-à-dire que pour a, b dans A, on a :

$$a \cdot b = 0 \Leftrightarrow a = 0 \text{ ou } b = 0$$

• Un idéal de A est un sous groupe $I \subset A$ du groupe (A, +) tel que

$$\forall a \in \mathbb{A} \ \forall x \in I, \ a \cdot x \in I;$$

- Un idéal $I \subsetneq \mathbb{A}$ est premier si et seulement si $x \cdot y \in I$ implique $x \in I$ ou $y \in I$.
- Un idéal $I \subsetneq \mathbb{A}$ est maximal si et seulement si tout idéal J contenant I est I ou \mathbb{A} .
- Un idéal $I \subset \mathbb{A}$ est principal si et seulement s'il est de la forme $I = a.\mathbb{A}$ où $a \in \mathbb{A}$. Un tel élément a, s'il existe, est appelé un générateur de I.
- un élément p de \mathbb{A} est irréductible si $p \neq 0$, p n'est pas inversible et :

$$(p = uv) \Rightarrow (u \text{ ou } v \text{ est inversible})$$

(les seuls diviseurs de p sont les éléments inversibles ou les éléments de \mathbb{A} associés à p) ;

• un élément p de \mathbb{A} , est premier si $p \neq 0$, p n'est pas inversible et :

$$(p \text{ divise } uv) \Rightarrow (p \text{ divise } u \text{ ou } p \text{ divise } v)$$

• Pour $I \subset \mathbb{A}$ un idéal non trivial, l'ensemble quotient \mathbb{A}/I de \mathbb{A} par la relation d'équivalence $x \sim_I y$ définie par $x \sim_I y$ si et seulement si $x - y \in I$ est muni d'une unique structure d'anneau telle que la projection naturelle $\pi_I : \mathbb{A} \to \mathbb{A}/I$ est un morphisme d'anneaux.

- I - Généralités sur les idéaux d'un anneau

Dans cette partie A désigne un anneau, non nécéssairement intègre.

- (1) Montrer que l'idéal nul $I = \{0\}$ est premier si et seulement si A est intègre.
- (2) Montrer qu'un idéal $I \subset \mathbb{A}$ est égal à \mathbb{A} si et seulement si $1 \in I$ si et seulement si $I \cap \mathbb{A}^{\times} \neq \emptyset$.
- (3) Montrer qu'un idéal principal non nul $I=a.\mathbb{A}$ est premier si et seulement si a est un élément premier de \mathbb{A} .
- (4) Montrer que le noyau d'un morphisme d'anneaux est un idéal.
- (5) Montrer que les classes d'équivalence de \sim_I sont les parties de \mathbb{A} de la forme $a+I, a \in \mathbb{A}$ et rappeler des lois d'addition et de multiplication de \mathbb{A}/I .
- (6) Décrire la structure d'anneau de $\mathbb{Z}/3\mathbb{Z}$.
- (7) Montrer qu'un morphisme d'anneaux $\phi : \mathbb{A} \to \mathbb{B}$ vérifie $\phi = \bar{\phi} \circ \pi_I$ où $\bar{\phi} : \mathbb{A}/I \to \mathbb{B}$ est un morphisme d'anneaux si et seulement si $\phi(I) = \{0\}$.

- II - Idéaux et quotients de l'anneau k[X]

Soit k un corps et k[X] l'anneau de polynômes à coefficients dans k. Pour $n \in N$, on note $k[X]_{\leq n}$ l'ensemble des polynomes de degré inférieur où égal à n.

- (1) Déterminer $k[X]^{\times}$.
- (2) Rappeler l'énoncé du théorème de division euclidienne dans k[X].
- (3) Montrer que tout idéal I de k[X] est principal et admet un unique générateur de coefficient dominant 1, son génerateur normalisé.
- (4) Quels sont les idéaux premiers de k[X]? Ses idéaux maximaux?
- (5) Si $P, Q \in k[X]$ sont premiers entre eux, exhiber un isomorphisme d'anneaux de $k[X]/P \cdot Qk[X]$ sur $k[X]/Pk[X] \times k[X]/Qk[X]$.
- (6) Soit $P \in k[X]$ tel que $\deg(P) = d \in \mathbb{N}$. Montrer que l'application $r_P : k[X] \to k[X]_{\leq d-1}$ qui à $Q \in k[X]$ associe le reste de la division euclidienne de Q par P factorise par $\pi : k[X] \to k[X]/Pk[X]$, c'est à dire qu'il existe une application

$$\bar{r}_P: k[X]/Pk[X] \to k[X]_{d-1}$$

telle que $\bar{r}_P \circ \pi = r_P$.

- (7) Décrire l'unique structure de k-espace vectoriel sur k[X]/Pk[X] telle que π : $k[X] \to k[X]/Pk[X]$ est une application k-linéaire.
- (8) Montrer que \bar{r}_P est un isomorphisme de k-espaces vectoriels et déduire que k[X]/Pk[X] est un k-espace vectoriel de dimension d.

- III - Éléments algébriques d'une extension de corps.

Soit K un corps et k un sous-corps de K. Un élément α de K est dit algébrique sur k si et seulement si il existe $P \in K[X]^*$ tel que $P(\alpha) = 0$. Dans le cas contraire on dit que α est transcendant sur k.

- (1) Soit $\alpha \in K$. Montrer qu'il existe un unique morphisme d'anneaux ϕ_{α} de k[X] dans K tel que $\phi_{\alpha}(X) = \alpha$ et $\phi_{\alpha}|_{k} = \mathrm{id}_{k}$.
- (2) Montrer que α est transcendant si et seulement si ϕ_{α} est injectif.
- (3) On suppose pour cette question seulement que K = k(X) le corps des fractions rationnelles de k. Montrer que $X \in k(X)$ est transcendant sur k.

(4) Soit $\alpha \in K$ un élément algébrique sur k. Montrer que l'ensemble

$$I_{\alpha} := \{ P \in k[X], \ P(\alpha) = 0 \}$$

est un idéal. Le générateur normalisé de I_{α} se note π_{α} et s'appelle le polynôme minimal de α . Le degré de α sur k est l'entier naturel $deg_k(\alpha) = deg(\pi_{\alpha})$.

- (5) Montrer que k est l'ensemble des éléments de K de degré 1 sur k.
- (6) Dans cette question seulement $k = \mathbb{R}$, $K = \mathbb{C}$. Quel est le degré sur \mathbb{R} de $z \in \mathbb{C} \mathbb{R}$?
- (7) Soit $\alpha \in K$ un élément algébrique sur k. Montrer que π_{α} est irréductible
- (8) Montrer l'équivalence des assertions suivantes:
 - (a) $\alpha \in K$ est algébrique sur k
 - (b) Le k-sous espace vectoriel de K engendré par $1, \alpha, \alpha^2, \ldots$ est de dimension finie.
 - (c) α est contenu dans un sous corps L de K tel que L est un k-espace vectoriel de dimension finie.

Soit $\alpha \in K$ un élément algébrique sur k. Décrire le plus petit sous-corps $k(\alpha)$ de K contenant k et α et donner sa dimension comme k-espace vectoriel.

- (9) Soit L un sous corps de K contenant k et tel que L soit comme k-espace vectoriel de dimension finie. Soit $\alpha \in K$ tel que α soit algébrique sur L. Montrer que α est algébrique sur k et que $\deg_k(\alpha) \leq \deg_L(\alpha) \dim_k(L)$.
- (10) Soient α, β deux éléments de K algébriques sur k. Montrer que $\alpha + \beta$ et $\alpha\beta$ sont algébriques sur k.
- (11) Montrer que l'ensemble $k_K^{alg} \subset K$ des éléments de K algébriques sur k est un sous-corps contenant k et que tout élément algébrique sur k_K^{alg} est algébrique sur k.

- IV - Nombres algébriques.

On spécialise les notations de la partie III, en supposant désormais que $k = \mathbb{Q}$, $K = \mathbb{C}$ et on note $\bar{\mathbb{Q}} = \mathbb{Q}^{alg}_{\mathbb{C}}$. Les éléments de $\bar{\mathbb{Q}}$ sont appelés les nombres algébriques.

- (1) Montrer que $\bar{\mathbb{Q}}$ est un corps algébriquement clos.
- (2) Montrer $\bar{\mathbb{Q}}$ est dénombrable et déduire qu'il existe des nombres réels transcendants (sur \mathbb{Q}).
- (3) Soit $b \in \mathbb{Q}$ avec b > 0 tel que b n'est pas un carré dans \mathbb{Q} . Montrer que $\sqrt{b} \in \mathbb{R}$ est algébrique sur \mathbb{Q} de degré 2. Donner un exemple d'un tel nombre b
- (4) Montrer que si $\alpha \in \mathbb{R}$ est algébrique de degré 2 sur \mathbb{Q} , il existe un rationnel $b \in \mathbb{Q}$ avec b > 0 tel que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{b})$.
- (5) On considère la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par $P_0=1,\,P_1=2X$ et

$$P_{n+2} = 2XP_{n+1} - P_n.$$

On pose $Q_n(X) = P_n(X/2)$.

- (a) Déterminer le degré, le coefficient dominant, le terme constant et la parité de P_n .
- (b) Déterminer P_n pour n = 2, 3, 4.

- (c) Montrer que $Q_n \in \mathbb{Z}[X]$.
- (d) Montrer que les seules racines rationnelles possibles pour Q_n sont $0, \pm 1$.
- (e) Exprimer $Q_{n+3} + XQ_n$ en fonction de Q_{n+1} . Déduire que les racines rationnelles non nulles de Q_{n+3} et de Q_n sont les mêmes. Préciser les P_n ayant une racine rationnelle.
- (6) Soit $\theta \in \mathbb{R}$. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par la donnée de u_0 et u_1 et la relation de récurrence :

$$u_{n+2} = 2\cos(\theta)u_{n+1} - u_n.$$

- (a) Déterminer l'expression du terme général de la suite (u_n) .
- (b) Utiliser les résultats précédents pour exprimer $P_n(\cos(\theta))$ en fonction de n, θ . En déduire les racines $x_{k,n}$ de P_n $(1 \le k \le n)$.
- (c) Montrer que $\cos(\frac{2\pi}{5}), \cos(\frac{2\pi}{7})$ sont des nombres algébriques. Déterminer le polynôme minimal de $\cos(\frac{2\pi}{5})$.

- V - Constructibilité à la régle et au compas.

Soit \mathcal{P} le plan euclidien rapporté à un repère cartésien 0xy orthonormé direct. Soit S un ensemble de points de \mathcal{P} . Considérons toutes les droites joignant deux points de S et tous les cercles centrés en un point de S dont le rayon est la distance entre deux points de S et appelons les droites et cercles constructibles à partir de S. On note $C_1(S)$ l'ensemble de points de \mathcal{P} formé de S et des points d'intersections de ces droites et cercles. On pose $C_{n+1}(S) = C_1(C_n(S))$ et $C_{\infty}(S) = \bigcup_{n \in \mathbb{N}} C_n(S)$.

On dit que $P \in \mathcal{P}$ est constructible (sous entendu "à la régle et au compas") à partir de S ssi $P \in C_{\infty}(S)$. On dit que $P \in \mathcal{P}$ est constructible s'il est constructible à partir de $S = \{(0,0); (1,0)\}$.

- (1) Montrer que (-1,0), (0,1) et (1,1) sont constructibles.
- (2) Montrer que si (x, y) est constructible (y, x) l'est aussi.
- (3) Un réel est dit constructible si (x,0) est constructible. Montrer qu'un point de \mathcal{P} est constructible si et seulement si son abscisse et son ordonnée sont des réels constructibles.
- (4) Supposons que S soit constitué de points à coordonnées dans le sous corps L de \mathbb{R} .
 - (a) Montrer que les droites et cercles constructibles à partir de S ont une équation de degré 2 à coefficients dans L.
 - (b) Montrer que les coordonnées d'un point de $C_1(S)$ sont soit dans L soit de degré 2 sur L.
- (5) Une suite finie $(K_i)_{i=0,\dots,p}$ de sous corps de \mathbb{R} est une tour d'extension quadratiques si $K_0 = \mathbb{Q}$; $K_i \subset K_{i+1}$ et $\dim_{K_i} K_{i+1} = 2$. Montrer que, pour tout réel constructible x, il existe une tour d'extensions quadratiques $(K_i)_{i=0,\dots,p}$ telles que $x \in K_p$.
- (6) Montrer que la somme et la différence de deux réels constructibles est constructible.
- (7) Montrer que le produit de deux réels constructibles est constructible. Indication: on pourra utiliser le Théorème de Menelaüs. Soit (A, B, C) un triangle

non dégénéré de \mathcal{P} . Soient D un point de la droite (B,C) E, un point de (A,C), resp. F un point de (A,B). Alors (D,E,F) sont alignés ssi:

$$\frac{\overline{DB}}{\overline{DC}}.\frac{\overline{EC}}{\overline{EA}}.\frac{\overline{FA}}{\overline{FB}}=1.$$

- (8) Montrer que l'ensemble des réels constructibles est un sous-corps de $\mathbb{Q} \cap \mathbb{R}$.
- (9) Montrer que si α est un réel positif constructible $\sqrt{\alpha}$ est encore constructible. Indication: on pourra considérer le cercle dont un diamètre est le segment $[(-1,0),(\alpha,0)].$
- (10) Soit $(K_i)_{i=0,\dots,p}$ une tour d'extensions quadratiques. Montrer que les éléments de K_p sont constructibles, c'est à dire que V-5 est une condition nécéssaire et suffisante de constructibilité.
- (11) Montrer que le degré d'un réel constructible est une puissance de 2.
- (12) Montrer que $\sqrt[3]{2}$ n'est pas constructible. Pourquoi les mathématiciens grecs ne surent répondre à la demande de la Pythie de Delphes de donner la construction d'un autel deux fois plus grand que celui du temple d'Appolon?
- (13) Le pentagone régulier inscrit dans le cercle unité est composé des points
- $(\cos(\frac{2k\pi}{5}), \sin(\frac{2k\pi}{5})), k = 0, \dots, 4$. Montrer que ses sommets sont constructibles. (14) On se propose de montrer qu'il existe des réels algébriques de degré 4 sur \mathbb{Q} qui ne sont pas constructibles. On considère pour celà $P = X^4 - 4X + 2$.
 - (a) Montrer que P a deux racines réelles r_1, r_2 qui sont irrationnelles.
 - (b) Factorisant P dans $\mathbb{R}[X]$ sous la forme $P = (X^2 + aX + b)(X^2 + cX + d)$ montrer que t = b + d vérifie $t^3 + 8t - 16 = 0$.
 - (c) Déterminer $\deg_{\mathbb{Q}}(t)$.
 - (d) Prouver que P est irréductible sur \mathbb{Q} et déterminer le degré de r_1 et r_2 sur \mathbb{Q} .
 - (e) Montrer que l'un des r_i au moins n'est pas constructible.

Remarque. La construction à la règle et au compas du pentagone régulier n'est pas tout à fait évidente. On a pu déterminer les polygones réguliers constructibles à la règle et au compas. Le nombre de cotés doit être $2^p F_1 \dots F_k$ où les F_i sont des nombres de Fermat premiers distincts. Ainsi les polygones à 17, 257 et 65537 côtés sont constructibles. La construction à la régle et au compas du polygone régulier à 65537 côtés est réputée appartenir au musée des horreurs mathématiques.