UFRPE - Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Pós-Graduação em Informática Aplicada (PPGIA)

Disciplina: MT - Prof. Rinaldo Lima

N-Grams

Lista de Exercícios (Individual)

Data de Entrega: 18/04/2018 - Enviar ao email: rilima01@gmail.com

2ª. LISTA DE EXERCÍCIOS

1. Dado o seguinte techo de um corpus:

Use o modelo de bigram para calcular as seguintes probabilidades:

- a. P(Sam|am)
- b. P(Sam|and)
- c. P(am|I)
- d. P(do|I)

2. Considerando as seguintes tabelas de probabilidades de bigramas, calcule a probabilidade da frase P(I want chinese food) em cada caso.

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

а

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

- c. Explique o motivo da diferença dos valores das probabilidades em (a) e (b)
- 3. Considere o seguinte extrato de um corpus:

Assumindo o modelo de *bigrama*, qual é a mais provável palavra a ser predita logo em seguida em cada caso abaixo?

- a. <s> Sam ???
- b. <s> Sam I do ???
- c. <s> I am Sam ???
- d. <s> Do I like ???

Qual das seguintes frases obtém a maior probabilidade usando o mesmo modelo acima?

- e. <s> Sam I do like </s>
- f. $\langle s \rangle$ Sam I am $\langle s \rangle$
- g. <s> I do like Sam I am </s>
- 4. Usando o *Brown Corpus* disponível no NLTK, calcule a frequência de todos os unigramas e exiba os 50 primeiros mais frequentes. Considere apenas o vocabulário, isto é, *word type*.
 - a. Quais as classes gramaticais destas 50 palavras?
 - b. Gere um histograma para a distribuição acima e discuta seu resultado.

- 5. Usando sentence splitting e tokenization para *português* implemente um programa que receba como entrada o corpus de notícias **NoticiasPortugues.zip** e realize:
 - a. a divisão de sentenças
 - b. converta todas as palavras para minúscula
 - c. tokenize as frases
 - d. calcule a probabilidade de todos os unigrams presentes neste corpus, P(w_i). Considere como unidade de unigrama, todos os tokens distintos (types ou vocabulário)
 - e. Implemente uma função que dada uma frase, contendo *N* tokens, seja retornada a probabilidade desta frase usando o modelo de unigrama.

```
Ex.: P("eu li uma má notícia ontem") = P (Eu, li, uma, má, nóticia, ontem) = P(eu) * P(li) * P(má) * P(notícia) * P(ontem)
```

OBS.: Para o cálculo das probabilides, use o artificio que transforma a multiplicação de probabilidades numa soma de logarítimos.

Questão desafio (opcional)

6. Implemente uma versão baseada em bi-gramas para o exercício (5) acima.

Material extra de apoio para os exercícios

Ver os links no arquivo de Links.txt.