PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ **CIENCIAS SOCIALES CICLO 2022-2**

Econometría 1

Práctica Dirigida 1

Profesor: Juan Palomino juan.palominoh@pucp.pe Jefe de Práctica: Tania Paredes tania.paredes@pucp.edu.pe

Fecha: 27 - 08 - 20202

1. El modelo de Regresión Lineal

a. Evalúe si los siguientes modelos son lineales en parámetros:

i.
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

ii.
$$Y_i = \beta_1 + \beta_2^2 X_i + u_i$$

ii.
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

iii. $Y_i = \beta_1 + \beta_2 X_i^{-1} + u_i$
iii. $Y_i = \beta_1 + \beta_2 X_i^{-1} + u_i$
iv. $Y_i = AX_i^{\beta_1} e^{u_i}$

iv.
$$Y_i = AX_i^{\beta_1} e^{u_i}$$

b. Proponga ejemplos de variables reales en cada modelo, explique qué signo esperaría para dicho coeficiente e interprete el coeficiente β_2 en los siguientes modelos:

i.
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

ii.
$$Y_i = \beta_1 + \beta_2 \ln X_i + u_i$$

iii.
$$ln Y_i = \beta_1 + \beta_2 X_i + u_i$$

iv.
$$ln Y_i = \beta_1 + \beta_2 ln X_i + u_i$$

- c. Represente los casos de homocedasticidad y heterocedasticidad a través de gráficos de dispersión, siendo el primero un gráfico de las observaciones y el segundo de los residuos (un gráfico para cada caso)
- d. ¿Qué supuesto respalda la no asociación entre los regresores y el término de error?

2. Derivación de Estimación de Estimadores MCO

Los datos de producción de 22 empresas de una determinada industria dan lugar a los siguientes resultados, donde Y = ln (Demanda de la industria) y X = $ln\ (Precio\ del\ bien): \bar{Y}=20, \bar{X}=10, \sum_{i=1}^{22}(Y_i-\bar{Y})^2=60, \sum_{i=1}^{22}(X_i-\bar{X})^2=$ $100, \sum_{i=1}^{22} (X_i - \bar{X})(Y_i - \bar{Y}) = 110.$

- Calcule los estimadores de MCO del modelo.
- ii. Interprete los estimadores.

3. Laboratorio

Dados los siguientes datos para Consumo (C) e Ingreso (I), estime por MCO el modelo $C_i = \beta_1 + \beta_2 I_i + u_i$ en una hoja de cálculo de Excel:

Obs.	I	С
1	16.3	15.6
2	6.8	6.4
3	8.6	9.2
4	15.3	14.9
5	8.7	7.2
6	7.8	7.6
7	8.7	7.2
8	8.3	7.2
9	9.4	7.9
10	10.8	8.8
11	5.1	4.1
12	11.6	11.1

- Interprete los resultados de la estimación. a.
- Muestre en Excel que se cumplen las siguientes propiedades numéricas de la estimación por MCO:

 - 1. $\sum e_i = 0$ 2. $\sum e_i X_i = 0$ 3. $\sum e_i \widehat{Y}_i = 0$
- c. Realice la estimación por MCO en Stata y R.