PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(1	1) International Publication Number:	WO 97/01197	
H01Q 11/12, 21/00		(4	3) International Publication Date:	9 January 1997 (09.01.97)	
(21) International Application Number: PCT/US9 (22) International Filing Date: 26 April 1996 (2)		-	(81) Designated States: AU, CA, CN, CH, DE, DK, ES, FI, FR, GB, PT, SE).		
(30) Priority Data: 08/493,039 21 June 1995 (21.06.95)	τ	us	Published With international search report	.	
(71) Applicant: MOTOROLA INC. [US/US]; 1303 East A Road, Schaumburg, IL 60196 (US).	.lgonqu	in			
(72) Inventor: PHILLIPS, James, Patrick; 19 Lake Drive, the Hills, IL 60102 (US).	, Lake	in		·	
(74) Agents: STOCKLEY, Darleen, J. et al.; Motorola In lectual Property Dept., 1303 East Algonquin Road, burg, IL 60196 (US).					
· · · · · · · · · · · · · · · · · · ·					

(54) Title: METHOD AND ANTENNA FOR PROVIDING AN OMNIDIRECTIONAL PATTERN

(57) Abstract

The present invention provides a method (400) and antenna (100) for providing an omnidirectional pattern. The antenna (100) is smaller than prior art omnidirectional antennas with the same bandwidth. The smaller size is made possible by the use of at least one capacitive element (104) at a discontinuity in the loop (102). The pattern is balanced and therefore the omnidirectionality is maintained by the current maximum (110 and 112) that are created by the capacitive element (104).

100

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	*				
AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	· IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI.	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

1

METHOD AND ANTENNA FOR PROVIDING AN OMNIDIRECTIONAL PATTERN

5

Field of the Invention

The present invention relates generally to antennas, and more particularly to omnidirectional antennas.

10

Background of the Invention

Omnidirectional loop antennas in prior art are small with regard to the operating wavelength and therefore have a 15 narrow frequency bandwidth of operation and are not well suited for many communication systems. To increase the operating bandwidth the size of the loop is increased. As the loop is made larger, the current distribution around the loop is no longer uniform and the radiation pattern is not 20 omnidirectional but has directionality. As the bandwidth is increased, the size of the antenna increases and the Omnidirectional pattern may be affected. This can be expressed in the form of a table of different size loops expressed in terms of the wavelength of the center frequency 25 of the operating band as shown below. As the loop varies from a circumference of 0.2 wavelengths to 0.5 wavelengths the unusable bandwidth as expressed as a percentage of the center frequency varies from 0.14% to 9.0%. However, the uniformity of the pattern degrades. If the maximum response is 30 compared to the minimum response in the azimuth plane this can be expressed in decibels and shown in the table below.

WO 97/01197

Circumference	Radiation	Bandwidth in	Azimuth Max. to
in Wavelengths	Resistance	Percentage	Minimum in dB
0.2	0.32 Ohms	0.14 %	1.0 dB
0.3	1.5 Ohms	0.56 %	2.0 dB
0.4	5.18 Ohms	2.33%	4.0 dB
0.5	12.3 Ohms	6.45 %.	6.0 dB

When the loop is made large enough for the bandwidth to be great enough to be usable in typical communication systems, typically greater than 5.0%, then the azimuth pattern becomes non-uniform with peaks and nulls. These nulls produce degraded performance when they are in the direction of the site of the other antenna in the RF communication link.

Omnidirectional, vertically polarized antennas, usually called electric dipoles, are well known and often used in 10 communication systems. In land mobile, cellular and other baseto-mobile communication systems, the signal is reflected from many surrounding objects and these reflections combine in constructive and destructive ways. When the combination is 15 destructive, the signal is canceled and communication is impossible. If however, a second antenna using horizontal polarization was available, an alternate or diversity communication path would be available. For this second path to be effective the second antenna has to be isolated and decorrelated from the first. A very effective way of 20 accomplishing this is to have the polarizations of the antennas to be orthogonal. Because the first antennas are usually vertically polarized, the second antenna should be horizontally polarized.

There exists, therefore, a need for a method and antenna for providing omnidirectional pattern, wherein the antenna is smaller than prior art with comparable bandwidth.

5

Brief Descriptions of the Drawings

FIG. 1 is a diagram of one embodiment of an antenna for providing an omnidirectional polarized pattern in accordance with the present invention.

FIG. 2 is a diagram of a second embodiment of an antenna for providing an omnidirectional polarized pattern in accordance with the present invention.

15

FIG. 3 is a graphical representation of return loss of the loop antenna in accordance with the present invention.

FIG. 4 is a flow diagram of one embodiment of step for implementing a method for providing an omnidirectional pattern in accordance with the present invention.

Detailed Description of the Preferred Embodiments

25

Generally, the present invention provides a method and antenna for providing an omnidirectional pattern with a small structure.

30

The present invention is more fully described in FIGs 1 - 4. FIG. 1, numeral 100, is a diagram of one embodiment of an antenna for providing an omnidirectional pattern in accordance

with the present invention. The loop (102) is a discontinuous loop comprising at least a first capacitive element (104), feed point (106), and matching network (108). A discontinuity is introduced to balance the omnidirectional transmission pattern. By using the capacitive element (104), current maximums (110 and 112) are located on either side of the loop (102) to balance the transmission pattern. At 800 MHz, the capacitors are about 0.7 pico-Farads.

10 FIG. 2, numeral 200, is a diagram of a second embodiment of an antenna for providing an omnidirectional pattern in accordance with the present invention. The antenna (200) comprises an electric dipole (202) and a loop (204).

The electric dipole (202) receives a first input (206). The loop (204) receives a second input (208). The electric dipole (202) utilizes a dipole integral "bazooka" balun for common mode operation. The loop (204) is shown in greater detail in figure 1. The loop (204) utilizes an infinite loop balun for common mode operation. The loop balun is achieved by using a twisted pair transmission line with a small diameter for the wires of the transmission line.

The antenna may include a hybrid coupler (210) for
inputting one sense circular polarization to the first input (206) and the opposite sense to the second input (208). The second input (208) is equal in amplitude to the first input (206) and the phase of the second input (208) is in quadrature with the phase of the first input (206). The hybrid coupler (210) provides the first input (206) and the second input (208) with a left hand circular input (214) and a right hand circular input (212).

The electric dipole (202) consists of two conductive cylinders approximately one quarter wavelength and equal in size and located collinear with each other. These are made of brass but any highly conductive metal could be used. The length of each 5 cylinder is slightly shorter that one quarter of a wavelength at the center frequency the center of the operating band of frequencies. The diameter of the cylinders is about one tenth of the length. Connection to the dipole is made across a gap between the two cylinders with the coaxial cable running coaxially with the lower cylinder. The lower cylinder forms the balun in 10 addition to being one section of the dipole. The loop is made from copper tubing about one two-hundredth of a wavelength in diameter. The diameter of the loop is one seventh of a wavelength. The loop is discontinuous at two points and capacitors are connected across the discontinuities. The value of 15 the capacitors is selected to cause resonance at the center frequency of operation. At 800 MHz, the capacitors are about 0.7 pico-Farads. Because the circumference of the loop is nearly one half wavelength, the current distribution is non uniform around 20 the loop. Without the capacitors a single current maximum occurs which is therefore offset from the center of the loop. The hybrid couplers (210) are commercially available

FIG. 3, numeral 300, is a graphical representation of return loss in accordance with the present invention. The return loss (302) is a function of frequency (304). The return losses of the electric dipole (308) and the loop (312) are centered a center frequency f_0 (306). The return loss of prior art loops (310) has a substantially narrower bandwidth than the return loss of the loop in the present invention (312).

6

"Q" is defined in the art to be ratio of two pi times the energy stored by a reactive element to the energy dissipated over one cycle in a resonant circuit. Q is therefore equal to the ratio of the reactance of the loop to the radiation resistance of the loop as shown below.

Q = XI/Rr

Where: XI = the inductive reactance of the loop, and Rr = the radiation resistance of the loop.

5

15

25

30

"Q" is also a measure of how much usable frequency bandwidth an antenna provides. It is equal to the center frequency of operation divided by the half-power bandwidth as shown below.

Q = Fcenter/(Fmax - Fmin)

Where Fmax is the maximum frequency of operation, Fmin is the minimum frequency of operation, and Fcenter is the center frequency of operation.

To obtain the usable bandwidths of 5%, which are typical of many communication systems, the Q should be less that 20. This requires that the reactance "XI" be no more than 20 times the radiation resistance, "Rr" of equation 1.

For electrically small loops, the radiation resistance is very small but it increases as the fourth power of the diameter of the loop. The reactance is much larger than the resistance but it increases only linearly with diameter. Therefore, an

10

15

20

infinitesimally small loop has an infinite "Q" and it decreases rapidly as the loop is made larger.

FIG. 4, numeral 400, is a flow diagram of one embodiment of steps for implementing a method for providing both horizontally and vertically polarized omnidirectional patterns in accordance with the present invention. A first input is received by an electric dipole (402), and a second input is received by a loop (404). The loop is a discontinuous loop comprising at least a first capacitive element at a discontinuity to balance the omnidirectional transmission pattern.

The electric dipole utilizes a coaxial or "bazooka" dipole balun to allow connection coaxially to the dipole. The loop utilizes a separate balun for operation co-located with the dipole. The loop balun is achieved by a coaxial or "bazooka" balun or by using a twisted-pair transmission line with a small diameter wires for each conductor. The transmission line connecting to the loop is decoupled from the antenna structure by using the same coaxial or "bazooka" balun used by the electric dipole. The separate coaxial feedlines may be located in parallel while passing through the lower tube which forms the lower arm of the dipole and the balun for the electric dipole.

25 Circular polarization may be provided by the co-located electric dipole and loop by connecting them to a common RF signal source with equal RF signal magnitude and with a phase quadrature relationship between them. The first input for the electric dipole and the second input for the loop antenna, by a hybrid coupler (406). The second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input. A hybrid combiner provides two

8

isolated inputs with orthogonal quadrature relationships. The hybrid can thus provide both left-hand and right-hand circularly polarized signals simultaneously and independently.

5

10

15

25

Thus, the present invention provides a method and antenna for providing an electrically small, omnidirectional, horizontally polarized pattern. The antenna element may be co-located and independently connected with an electric dipole. With such a structure, a multiplicity of wave polarizations are available for diversity to improve the reliability of a communications system. In-door, RF, data communication systems are improved by using circular polarization. A small antenna of this type will have application in cordless phone and micro cellular base stations. The advantages are the antenna is a smaller size than prior art of the same bandwidth due to being integrated and collocated with the dipole, a receiving antenna such as a hand held antenna, can be in any orientation, and the antenna can be low cost with baluns.

Although exemplary embodiments are described above, it will be obvious to those skilled in the art that many alterations and modifications may be made without departing from the invention. Accordingly, it is intended that all such alterations and modifications be included within the spirit and scope of the invention as defined in the appended claims.

CLAIMS

We claim:

5 1. A method for providing an omnidirectional pattern, the method comprising:

receiving a first input by an electric dipole; and

receiving a second input by a loop, wherein the loop is a discontinuous loop comprising at least a first capacitive element at a discontinuity to balance the omnidirectional transmission pattern.

4

10

2. The method of claim 1 further comprising an initial step of inputting circular polarization to the first input and the second input by a hybrid coupler.

- 3. An antenna for providing an omnidirectional pattern, the antenna comprising:
- a conductive loop oriented in the horizontal plane for receiving a first input to provide a current distribution, the loop contains at least a first discontinuity and is larger than 0.5 wavelengths in circumference; and
- at least a first capacitive element at the discontinuities to modify the current distribution on the loop and thus provide the omnidirectional pattern.

- 4. The antenna of claim 3 wherein the loop utilizes a coaxial or "bazooka" balun for common mode operation.
- 5. The antenna of claim 4, wherein the loop balun is achieved by using a twisted pair transmission line with a small diameter for the wires.
- 6. The antenna of claim 3 further comprising an electric dipole, operably coupled to the conductive loop, for receiving a second input.
 - 7. The antenna of claim 6, wherein the electric dipole utilizes a coaxial or "bazooka" balun for common mode operation.
- 15 8. The antenna of claim 6, wherein the antenna further comprises a hybrid coupler for inputting circular polarization to the first input and the second input, wherein the second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input.

FIG.2

FIG.4 400

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/05741

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) : H01Q 11/12, 21/00					
US CL					
	LDS SEARCHED	Intional Onestitution and it o			
	ocumentation searched (classification system followed	d by classification symbols)			
U.S. :	343/726, 741, 746, 821, 866, 867				
Documental NONE	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched		
	lata base consulted during the international search (na APS (ANTENNA?, LOOP, DIPOLE, CAPACIT?)	ame of data base and, where practicable,	search terms used)		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Υ	US, A, 2,953,782 (BYATT) 20 SE 1 AND 2.	1-8			
X	US, A, 4,801,944 (MADNICK ET ENTIRE DOCUMENT.	1-8			
Α.	US, A, 4,183,027 (EHRENSPECENTIRE DOCUMENT.	1-8			
A	US, A, 4,809,009 (GRIMES ET A ENTIRE DOCUMENT.	1-8			
			·		
Furth	ner documents are listed in the continuation of Box C	. See patent family annex.			
"A" do	ecial categories of cited documents: cument defining the general state of the art which is not considered	"T" later document published after the inte- date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the		
E car	be of particular relevance rlier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone	red to involve an inventive step		
O. qo	coial reason (as specified) cument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in th	step when the document is documents, such combination		
"P" do	cument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent	1		
	actual completion of the international search	Date of mailing of the international sea 25 JUL 1996			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized officer y D TAN HO TRA GULLSO			
Esseimile N	(703) 305-3230	Telephone No. (703) 308-4080	ŀ		