Introduction Scenario and Method Experiments and Results Summary

Salman A. Khokhar

Honda Research Institute

August 12, 2014

Outline

- Introduction
- Scenario and Method
- Experiments and Results
 - Hidden Markov Models
 - Comparisons
- Summary

Problem Description

- Risk assessment at intersections
- Prediction of future paths of observed vehicles

Problem Description

- Risk assessment at intersections
- Prediction of future paths of observed vehicles

At an intersection:

- Observe other vehicles at other ends of the intersection
- Estimate their GPS position
- Compyte features using map data
- Make a prediction about their future behavior

- At an intersection:
 - Observe other vehicles at other ends of the intersection
 - Estimate their GPS position
 - Compyte features using map data
 - Make a prediction about their future behavior

- At an intersection:
 - Observe other vehicles at other ends of the intersection
 - Estimate their GPS position
 - Compyte features using map data
 - Make a prediction about their future behavior

- At an intersection:
 - Observe other vehicles at other ends of the intersection
 - Estimate their GPS position
 - Compyte features using map data
 - Make a prediction about their future behavior

- At an intersection:
 - Observe other vehicles at other ends of the intersection
 - Estimate their GPS position
 - Compyte features using map data
 - Make a prediction about their future behavior

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

An ideal scenario:

- V2V communication between our vehicle and observed vehicles
- Transfer of GPS position information

- unavailable: V2V communication
- available: High precision GPS unit
- Experimental setting assumptions:
 - The vehicle with a GPS unit is the 'observed' vehicle
 - Data from the observed vehicle is transferred to us
 - We have to predict future behavior of the driven vehicle
 - · Our own vehicle is at the same intersection, but
 - Our exact position is irrelevant for the prediction

Required data:

- Map information
- High precision GPS information

- KITTI dataset and open street maps
- Zenrin and our own collected data

Required data:

- Map information
- High precision GPS information

- KITTI dataset and open street maps
- Zenrin and our own collected data

Required data:

- Map information
- High precision GPS information

- KITTI dataset and open street maps
- Zenrin and our own collected data

Required data:

- Map information
- High precision GPS information

- KITTI dataset and open street maps
- Zenrin and our own collected data

Available information:

- Vehicle pose from the CAN bus
 - only latitude and longitude are used
- Zenrin map data

- Distance from lane center
- Distance from intersection
- Angle between lane orientation and vehicle heading

Available information:

- Vehicle pose from the CAN bus
 - only latitude and longitude are used
- Zenrin map data

- Distance from lane center
- Distance from intersection
- Angle between lane orientation and vehicle heading

Available information:

- Vehicle pose from the CAN bus
 - only latitude and longitude are used
- Zenrin map data

- Distance from lane center
- Distance from intersection
- Angle between lane orientation and vehicle heading

Available information:

- Vehicle pose from the CAN bus
 - only latitude and longitude are used
- Zenrin map data

- Distance from lane center
- Distance from intersection
- Angle between lane orientation and vehicle heading

Available information:

- Vehicle pose from the CAN bus
 - only latitude and longitude are used
- Zenrin map data

- Distance from lane center
- Distance from intersection
- Angle between lane orientation and vehicle heading

Available information:

- Vehicle pose from the CAN bus
 - only latitude and longitude are used
- Zenrin map data

- Distance from lane center
- Distance from intersection
- Angle between lane orientation and vehicle heading

Track pre-processing

We get continuous GPS track from one drive

- Tracks are clipped at a specified distance from intersection centers
- Stops are detected and removed before model learning or testing

Track pre-processing

We get continuous GPS track from one drive

- Tracks are clipped at a specified distance from intersection centers
- Stops are detected and removed before model learning or testing

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each even
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each even
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each event
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each even
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each even
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each event
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each event
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each even
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each event
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each event
- Compute probabilities at test time from trained models

- A time series of vector data
 - time series may be of unequal lengths due to:
 - stops
 - unequal velocity
 - intersection structure
- Event classes
 - Left turn
 - Right turn
 - Straight
- Train a hidden markov model for each event
- Compute probabilities at test time from trained models

Outline

- Introduction
- Scenario and Method
- 3 Experiments and Results
 - Hidden Markov Models
 - Comparisons
- Summary

Feature computation

- Begins 15 meters from intersection
- Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 split

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 split

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 split
- a

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 splin
- a

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 split

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 spli
- a

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 split

- Feature computation
 - Begins 15 meters from intersection
 - Ends 15 meters into intersection
- Separate HMM model trained for each event class
- Each model trained using a single gaussian per feature per state
- All gaussians initialized to large variances with zero means
- Training performed using a 80-20 split
- •

HMM classification performance

Feature comparison

Hidden states

HMM feature input

Event confusion

Demo video

Outline

- Introduction
- Scenario and Method
- 3 Experiments and Results
 - Hidden Markov Models
 - Comparisons
- Summary

Performance comparison

- Rule based decision (baseline)
- SVM

Performance comparison

- Rule based decision (baseline)
- SVM

Conclusions:

- HMM prediction with given features caps at 85-88 %
- Multi-modal HMM prediction may improve learning
- We are trying a Dynamic Bayesian Network to improve performance

Conclusions:

- HMM prediction with given features caps at 85-88 %
- Multi-modal HMM prediction may improve learning
- We are trying a Dynamic Bayesian Network to improve performance

Conclusions:

- HMM prediction with given features caps at 85-88 %
- Multi-modal HMM prediction may improve learning
- We are trying a Dynamic Bayesian Network to improve performance