Aufgabenblatt 1 - Aufgabe 3

21. Oktober 2014

(a)

- (b) Man berechen X^n , indem man erst X^2 berechne, dies mit sich selbst multipliziere ($\hat{=}X^4$), dies wiederum mit sich selbst multipliziere ($\hat{=}X^8$)...

 Damit benötigt man zB für X^{64} nur 6 Multiplikationen, dies entspricht einem Aufwand von $O(log_2(n))$.
- (c) Um F_n mit dem Matrizen-Verfahren zu berechnen benötigt man (n-1) · (8 Multiplikationen und 4 Additionen) um $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$ zu berechnen, sowie 4 Multiplikationen und 2 Additionen, um das Ergebnis mit $\begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$ zu verrechnen.

Dies ergibt eine benötigte Zeit von

$$\begin{split} O((n-1)\cdot \left(8\cdot 64^{1.59}+4\cdot 64\right)+4\cdot 64^{1.59}+2\cdot 64)\\ =&O((n-\frac{1}{2})\cdot 8\cdot 64^{1.59}+(n-\frac{1}{2})\cdot 4\cdot 64)\\ =&O((8n-4)\cdot (64^{1.59+32})) \end{split}$$

Dies ist immer noch linearer Aufwand, und damit asymptotisch echt schneller als $\mathcal{O}(n^2)$