Содержание

Ι	Ин	нтеграл по мере	4
1	Инт	теграл ступенчатой функции	5
	1.1	Свойства	5
2	Инт	теграл неотрицательной измеримой функции	6
	2.1	Свойства	6
3	Cyn	ммируемая функция	7
	3.1	Свойство	7
4	Инт	теграл суммируемой функции	8
	4.1	Свойства	8
5	Про	остейшие свойства интеграла Лебега	9
	5.1	Доказательство	9
	5.2	Доказательство	9
	5.3	Доказательство	9
	5.4	Доказательство	10
	5.5	Доказательство	10
	5.6	Доказательство	10
6	Сче	етная аддитивность интеграла (по множеству)	11
	6.1	Лемма	11
		6.1.1. Доказательство	11

	6.2	Теорема	11
		6.2.1 Доказательство	11
	6.3	Следствие	12
	6.4	Следствие 2	12
Π	П	редельный переход под знаком интеграла	13
7	Teo	рема Леви	14
	7.1	Доказательство	14
8	Лин	нейность интеграла Лебега	15
	8.1	Доказательство	15
	8.2	Следствие	15
		8.2.1 Доказательство	15
9	Teo	рема об интегрировании положительных рядов	16
	9.1	Доказательство	16
	9.2	Следствие	16
		9.2.1 Доказательство	16
ΙΙ	T 1	17.02.2020	17
	9.3	Теорема	17
		9.3.1 Доказательство	17
	9.4	Абсолютная непрерывность интеграла	17
		9.4.1 Доказательство	17

	9.4.2 Следствие	18
IV	Произведение мер	18
9.5	Лемма	18
9.6	Теорема	18
	9.6.1 Доказательство	18
9.7	Замечание	19
9.8	Теорема	19
9.9	Принцип Кавальери	19
	9.9.1 Замечание	20
	9.9.2 Доказательство	20

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \chi_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int\limits_{X} f d\mu = \int\limits_{X} f(x) d\mu(x) = \sum_{k=1}^{n} \lambda_{k} \mu E_{k}$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f = \sum \alpha_j \chi_{F_j} = \sum_{k,j} \lambda_k \chi_{E_k \cap F_j}$$
, тогда $\int F = \sum \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum \alpha_j \mu F_i = \int F$;

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0,$ измерима, тогда интеграл неотрицательной измеримой функции fесть

$$\int\limits_X f d\mu = \sup_{\substack{g \text{-} \text{cryn.} \\ 0 \leqslant g \leqslant f}} \left(\int\limits_X g d\mu \right).$$

2.1 Свойства

- Для ступенчатой функции f (при $f\geqslant 0$) это определение даёт тот же интеграл, что и для ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0\leqslant g\leqslant f,\,g$ ступенчатая, f измеримая, тогда $\int\limits_X g\leqslant \int\limits_X f.$

3 Суммируемая функция

f— измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда интеграл суммируемой функции есть

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-.$$

Если
$$\int\limits_X f
eq \pm \infty$$
, то говорят, что $f c$ уммируемая, а также $\int |f|-$ конечен $(|f|=f_++f_-).$

3.1 Свойство

Если $f \geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и интеграл измеримой неотрицательной функции.

4 Интеграл суммируемой функции

 $E\subset X$ — измеримое множество, f — измеримо на X, тогда интеграл f по множеству E есть

$$\int\limits_E f d\mu := \int\limits_X f \chi_E d\mu.$$

f — суммируемая на Eесли $\int\limits_E f + -$ и $\int\limits_E f_-$ — конечны одновременно.

4.1 Свойства

•
$$f = \sum \lambda_k \chi_{E_k}$$
, to $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

$$ullet$$
 $f\geqslant 0$ — измерима, тогда $\int\limits_E fd\mu=\sup_{\begin{subarray}{c} g\ < g< f \end{subarray}} \left(\int\limits_{0\leqslant g\leqslant f} gd\mu
ight).$

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

5 Простейшие свойства интеграла Лебега

1. Монотонность:

$$f \leqslant g \Rightarrow \int_{E} f \leqslant \int_{E} g.$$

5.1 Доказательство

$$\bullet \sup_{\substack{\widetilde{f} \text{ - ctyn.} \\ 0 \leqslant \widetilde{f} \leqslant f}} \left(\int\limits_{X} \widetilde{f} d\mu \right) \leqslant \sup_{\substack{\widetilde{g} \text{ - ctyn.} \\ 0 \leqslant \widetilde{g} \leqslant g}} \left(\int\limits_{X} \widetilde{g} d\mu \right);$$

• f и g — произвольные, то работаем со срезками, и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

$$2. \int_{E} 1 \cdot d\mu = \mu E, \int_{E} 0 \cdot d\mu = 0.$$

5.2 Доказательство

По определению.

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

5.3 Доказательство

- \bullet f ступенчатая, то по определению интеграла для ступенчатых функций получаем 0;
- $f \geqslant 0$ измеримая, то по определению интеграла для измеримых неотрицательных функций также получаем 0;
- f любая, то разбиваем на срезки f_+ и f_- и снова получаем 0.

4. (a)
$$\int -f = -\int f;$$

(b)
$$\forall c > 0 : \int cf = c \int f$$
.

5.4 Доказательство

•
$$(-f)_+ = f_- \text{ if } (-f)_= f_+ \text{ if } \int -f = f_- - f_+ = -\int f.$$

•
$$f\geqslant 0$$
 — очевидно, $\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant cf}}\left(\int g\right)=c\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant f}}\left(\int g\right).$

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

5.5 Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f|, \\ -\int\limits_{E} |f| &\leqslant \int\limits_{E} f \leqslant \int\limits_{E} |f|. \end{aligned}$$

6.
$$f$$
 — измерима на $E,\,\mu E<+\infty,\,\forall x\in E:a\leqslant f(x)\leqslant b.$ Тогда
$$a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$$

5.6 Доказательство

$$\int\limits_{E} a \leqslant \int\limits_{E} f \leqslant \int\limits_{E} b,$$

$$a\mu E \leqslant \int\limits_{E} f \leqslant b\mu E.$$

6 Счетная аддитивность интеграла (по множеству)

6.1 Лемма

 $A= ig| A_i$, где $A,\,A_i$ — измеримы, $g\geqslant 0$ — ступенчатые. Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu.$$

6.1.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_A g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g d\mu.$$

6.2 Теорема

 $f:C \to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int_{A} f d\mu = \sum_{i} \int_{A_{i}} f d\mu$$

6.2.1 Доказательство

- -) *}*

$$A = A_1 \sqcup A_2, \sum \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}$$

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A} g_1 + g_2.$$

переходим к $\sup g_1$ и g_2

$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где

$$B_n = \bigsqcup_{i\geqslant n+1} A_i$$
, тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

6.3 Следствие

$$f\geqslant 0$$
 — измеримая, $u:\mathcal{A} o\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда u — мера.

6.4 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \, f$$
 — суммируемая на A , тогда

$$\int\limits_A f = \sum\limits_i \int\limits_{A_i} f.$$

Часть II

Предельный переход под знаком интеграла

7 Теорема Леви

 $(X, \mathcal{A}, \mu), f_n$ — измерима, $\forall n : 0 \leqslant f_n(x) \leqslant f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{n \to +\infty} \int\limits_{Y} f_n(x) d\mu = \int\limits_{Y} f d\mu.$$

7.1 Доказательство

f — измерима как предел измеримых функций.

•

 $f_n(x) \leqslant f(x)$ почти везде, тогда $\forall n: \int\limits_X f_n(x) d\mu \leqslant \int\limits_X f d\mu$, откуда следует, что и предел интегралов не превосходит интеграл предела.

• >

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim_{N\to\infty}\int_{N}f_{n}\geqslant\int_{N}g.$

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g.$

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1, то $cg(x) < f(x), \, f_n(x) o f(x) \Rightarrow f_n$ попадёт в "зазор" cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

8 Линейность интеграла Лебега

Пусть
$$f,\,g$$
 — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n: 0 \leqslant f_n \leqslant f_{n+1} \leqslant \ldots \leqslant f$, и $g_n: 0 \leqslant g_n \leqslant g_{n+1} \leqslant \ldots \leqslant g$, и $f_n(x) \to f(x)$ и $g_n(x) \to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_E f+\int\limits_E g$$

8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.2.1 Доказательство

$$\begin{split} &(f+g)_{\pm}\leqslant |f+g|\leqslant |f|+|g|.\\ &h:=f+g,\\ &h_{+}-h_{-}=f_{+}-f_{-}+g_{+}-g_{-},\\ &h_{+}+f_{-}+g_{-}=h_{-}+f_{+}+g_{+},\\ &\int h_{+}+\int f_{-}+\int g_{-}=\int h_{-}+\int f_{+}\int g_{+},\\ &\int h_{+}-\int h_{-}=\int f_{+}-\int f_{-}+\int g_{+}-\int g_{-},\text{ тогда}\\ &\int h=\int f+\int g. \end{split}$$

9 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu.$$

9.1 Доказательство

Очевидно по теореме Леви.

$$S(x) = \sum_{n=1}^{+\infty} u_n(x)$$
 и $p \leqslant S_N \leqslant S_{N+1} \leqslant \dots$ и $S_N \to S(X)$.

$$\lim_{n \to +\infty} \int_{E} S_N = \int_{E} S,$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \int_{E} u_k(x) = \int_{E} S(x) d\mu.$$

9.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_E|u_n|<+\infty.$ Тогда

 $\sum u_n$ — абсолютно сходится почти везде на E.

9.2.1 Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \ \text{значит } S(x) \ \text{конечна почти всюду}.$$

Часть III

17.02.2020

9.3 Теорема

$$x_m \in \mathbb{R}$$
 и $\sum a_n$ — абс. сходится.

Тогда $\sum \frac{a_n}{\sqrt{|x-x_m|}}$ абсолютно сходится при почти всех x.

9.3.1 Доказательство

$$\int\limits_{-A}^{A} \frac{|a_n|}{\sqrt{|x-x_m|}} \leqslant |a_n| \int\limits_{-A-x_m}^{A-x_m} \frac{dx}{\sqrt{x}} \leqslant |a_n| \int\limits_{-A}^{A} \frac{dx}{\sqrt{x}} = 4\sqrt{A}|a_n|, \text{ а ряд } \sum 4\sqrt{A}|a_n| - \text{ сходится.}$$

9.4 Абсолютная непрерывность интеграла

f — суммируемая функция, тогда

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall E \in \mathcal{A} : \mu E < \delta : \left| \int_{E} f \right| < \varepsilon.$$

9.4.1 Доказательство

$$X_n = X (f \geqslant n), X_n \supset X_{n+1} \supset \dots, \mu \left(\bigcap_{n=1}^{+\infty} X_n\right) = 0.$$

Тогда
$$\forall \varepsilon > 0: \exists n_{\varepsilon}: \int\limits_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2} \ (A \mapsto \int\limits_{A} |f| - \text{мера, тогда} \int\limits_{\bigcap X_{n}} |f| = 0$$
 и по непрерывности меры сверху).

$$\delta := \frac{\varepsilon}{2n_{\varepsilon}},$$
 берём $E : \mu E < \delta.$

$$\left| \int_{E} f \right| \leqslant \int_{E} |f| = \int_{E \cap X_{n_{\varepsilon}}} |f| + \int_{E \setminus X_{n_{\varepsilon}}} |f| \leqslant \int_{X_{n_{\varepsilon}}} |f| + n_{\varepsilon} \mu E < \frac{\varepsilon}{2} + n_{\varepsilon} \frac{\varepsilon}{2n_{\varepsilon}} = \varepsilon.$$

9.4.2 Следствие

 e_n — измеримное множество, $\mu e_n \to 0, \, f$ — суммируемая. Тогда $\int\limits_{e_n} f \to 0.$

Часть IV

Произведение мер

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) .

 $\mathcal{A} \times \mathcal{B} = \{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}$ — семейство подмножеств в $X \times Y$.

9.5 Лемма

 \mathcal{A} , \mathcal{B} — полукольцо, значит и $\mathcal{A} \times \mathcal{B}$ — полукольцо.

 $\mathcal{A} \times \mathcal{B}$ — полукольцо *измеримых прямоугольников* (на самом деле это не всегда так).

 $\mu_0 (A \times B) = \mu A \cdot \mu B.$

9.6 Теорема

1. μ_0 — мера на полукольце $\mathcal{A} \times \mathcal{B}$;

2. $\mu, \nu - \sigma$ -конечное, значит $\mu_0 - \sigma$ -конечное.

9.6.1 Доказательство

Проверим счётную аддитивность μ_0 . $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y),\ (x,y)\in X\times Y.$

$$P=\bigsqcup_{\text{сч.}}P_k$$
 — измеримые прямоугольники. $P=A\times B$ и $P_k=A_k\times B_k,\,\chi_P=\sum\chi_{P_k}.$

$$\chi_A(x)\chi_B(y)=\sum_k\chi_{A_k}(x)\chi_{B_k}(y).$$
 Интегрируем по ν (по пространству $Y).$

 $\chi_A(x)\cdot \nu(B)=\sum \chi_{A_k}(x)\nu(B_k).$ Интегрируем по $\mu.$

$$\mu A \nu B = \sum \mu A_k \cdot \nu B_k.$$

$$X=\bigcup X_k,\,Y=\bigcup Y_j,$$
 где μX_k и νY_j — конечные, $X\times Y=\bigcup_{k,j}X_k\times Y_j.$

$$(\mathbb{R}^m, \mathcal{M}^m, \lambda_m)$$
 и $(\mathbb{R}^n, \mathcal{M}^n, \lambda_n r)$.

$$(X \times Y, \mathcal{A} \times \mathcal{B}, \mu_0)$$
, где $\mathcal{A} \times \mathcal{B}$ — полукольцо.

Запускаем теорему о продолжении меры

$$\leadsto (X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu)$$
 (крестик в кружочке), где $\mathcal{A} \times \mathcal{B} - \sigma$ -алгебра.

 $\mu, \nu - \sigma$ -конечная, следовательно продолжение определено однозначно.

9.7 Замечание

произведение мер ассоциативна.

9.8 Теорема

 λ_{m+n} если произведение мер λ_m и λ_n .

без доказательства.

$$X,\,Y\,\,C\subset X imes Y,\,C_x=\{y\in Y:(x,y)\in C\}\subset Y$$
 — сечение множества $C,\,C^y=\{x\in X:(x,y)\in C\}.$

Допустимы и объедения, пересечения и т.п.

9.9 Принцип Кавальери

 (X, \mathcal{A}, μ) и $(Y, \mathcal{B}, \nu), \mu, \nu - \sigma$ -конечные, полные.

$$m=\mu imes
u,\, C \in \mathcal{A} \otimes \mathcal{B}$$
. Тогда

- 1. при почти всех $x \in X$ сечение $C_x \in \mathcal{B}$;
- 2. $x \mapsto \nu(C_x)$ измерима* на X;

3.
$$mC = \int_X \nu(C_x) d\mu(x)$$
.

*Рассматривается почти везде.

9.9.1 Замечание

- 1. C измеримая, не следует, что $\forall x: C_x$ измеримое.
- 2. $\forall x, \forall y, C_x, C^y$ измеримы, но не следует, что C измеримо (из Серпинскиго).

9.9.2 Доказательство

D- класс множеств $X \times Y$, для который принцип Кавальери верен.

1. $D \times \mathcal{B} \subset D$, $C = A \times B$, $C_x = B$, $x \in A$, \varnothing , $x \notin A$ (сделать красиво).

$$x \mapsto X_x : \nu B \cdot \chi_A(x)$$
.

$$\int_{Y} \nu B \chi_A(x) d\mu(x) = \mu A \nu B = mC.$$

2. E_i — дизъюнктные, $E_i \in D$. Тогда | $|E_i \in D$.

 $(E_i)_x$ — измерное при почти всех x.

При почти всех x все сечения $(F_i)_x,\, i=1,2,\ldots$ — измеримое.

$$E_x = \bigsqcup (E_i)_x$$
 — измеримое при почти всех x .

$$u E_x = \sum
u (E_i)_x$$
, значит $x \mapsto
u E_x$ измеримая функция.

$$\int_{X} \nu E_x d\mu = \int_{X} \sum_{i} \nu(E_i)_x d\mu = \sum_{i} \int_{X} \nu(E_i)_x d\mu = \sum_{i} mE_i = mE$$

3. $E_i \in D, \ldots \supset E_i \supset E_{i+1} \supset \ldots, E = \bigcap_{i=1}^{+\infty} E_i, mE_i < +\infty.$ Тогда $E \in D$.

$$\int\limits_{Y}
u(E_i)_x d\mu = mE_i < +\infty \Rightarrow
u(E_i)_x$$
 — почти везде конечны.

$$(E_i)_x\supset (E_{i+1})_x\supset\ldots,\ E_x=\bigcap_{i=1}^{+\infty}(E_i)_x\Rightarrow E_x$$
— измеримое при почти всех $x.$

при почти всех x (для тех x, для который $\nu(E_i)_x$ — конечные сразу все i или при i=1), поэтому можно утверждать, что $\nu E_x = \lim_{i \to +\infty} \nu(E_i)_x \Rightarrow x \mapsto \nu E_X$ — измерима.

$$\int\limits_X \nu E_x d\mu = \int\limits_X \lim (\nu E_i)_x = \lim_{i \to +\infty} \int\limits_X \nu(E_i)_x d\mu = \lim m E_i = m E \text{ (по непрерывности сверху меры } m\text{)}.$$

Перестановка пределов доказывается из теоремы Лебега, которую ещё не доказывали $|\nu(E_i)_x| \leqslant \nu(E_1)_x$ — суммируемая функция.