# Mechanics In Design and Manufacturing

Polymers Properties and Processing

### Materials



### What is a Polymer?



Groover 6th ed.

- Compound consisting of long-chain molecules, each molecule made up of repeating units connected together
- 2 Types
  - Example:



L. R. G. Treloar, The Physics of Rubber Elasticity, 2nd edition, Oxford University Press, Oxford, 1958, p. 47.

• Molecular weight

### Structure







### Blends/Additives

Blending

- Fillers
- Plasticizer
- Flame retardants
- Stabilizers
- Lubricants

### Viscoelastic behavior









### **Behavior**

• Typical stress strain curve

• Glass transition temperature



| Material                           | Glass Transition Temperature [°C (°F)] | Melting<br>Temperature<br>[°C (°F)] |
|------------------------------------|----------------------------------------|-------------------------------------|
| Polyethylene (low density)         | -110 (-165)                            | 115 (240)                           |
| Polytetrafluoroethylene            | -97(-140)                              | 327 (620)                           |
| Polyethylene (high density)        | -90 (-130)                             | 137 (279)                           |
| Polypropylene                      | -18(0)                                 | 175 (347)                           |
| Nylon 6,6                          | 57 (135)                               | 265 (510)                           |
| Poly(ethylene terephthalate) (PET) | 69 (155)                               | 265 (510)                           |
| Poly(vinyl chloride)               | 87 (190)                               | 212 (415)                           |
| Polystyrene                        | 100 (212)                              | 240 (465)                           |
| Polycarbonate                      | 150 (300)                              | 265 (510)                           |

### **Physical Properties**

<u>High</u> <u>Low</u>

**Other Properties** 

Table 15.1 Room-Temperature Mechanical Characteristics of Some of the More Common Polymers

| Material                    | Specific<br>Gravity | Tensile<br>Modulus<br>[GPa (ksi)] | Tensile<br>Strength<br>[MPa (ksi)] | Yield<br>Strength<br>[MPa (ksi)] | Elongation<br>at Break (%) |
|-----------------------------|---------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------|
| Polyethylene (low density)  | 0.917-0.932         | 0.17-0.28<br>(25-41)              | 8.3–31.4<br>(1.2–4.55)             | 9.0–14.5<br>(1.3–2.1)            | 100-650                    |
| Polyethylene (high density) | 0.952-0.965         | 1.06-1.09<br>(155-158)            | 22.1-31.0<br>(3.2-4.5)             | 26.2–33.1<br>(3.8–4.8)           | 10–1200                    |
| Poly(vinyl chloride)        | 1.30-1.58           | 2.4-4.1<br>(350-600)              | 40.7–51.7<br>(5.9–7.5)             | 40.7–44.8<br>(5.9–6.5)           | 40-80                      |
| Polytetrafluoroethylene     | 2.14–2.20           | 0.40-0.55<br>(58-80)              | 20.7-34.5<br>(3.0-5.0)             | 13.8-15.2<br>(2.0-2.2)           | 200-400                    |
| Polypropylene               | 0.90-0.91           | 1.14–1.55<br>(165–225)            | 31–41.4<br>(4.5–6.0)               | 31.0–37.2<br>(4.5–5.4)           | 100-600                    |
| Polystyrene                 | 1.04-1.05           | 2.28-3.28<br>(330-475)            | 35.9–51.7<br>(5.2–7.5)             | 25.0-69.0<br>(3.63-10.0)         | 1.2-2.5                    |
| Poly(methyl methacrylate)   | 1.17-1.20           | 2.24-3.24<br>(325-470)            | 48.3–72.4<br>(7.0–10.5)            | 53.8–73.1<br>(7.8–10.6)          | 2.0-5.5                    |
| Phenol-formaldehyde         | 1.24–1.32           | 2.76-4.83<br>(400-700)            | 34.5-62.1<br>(5.0-9.0)             | -                                | 1.5-2.0                    |
| Nylon 6,6                   | 1.13–1.15           | 1.58-3.80<br>(230-550)            | 75.9–94.5<br>(11.0–13.7)           | 44.8–82.8<br>(6.5–12)            | 15-300                     |
| Polyester (PET)             | 1.29-1.40           | 2.8-4.1<br>(400-600)              | 48.3–72.4<br>(7.0–10.5)            | 59.3<br>(8.6)                    | 30-300                     |
| Polycarbonate               | 1.20                | 2.38<br>(345)                     | 62.8–72.4<br>(9.1–10.5)            | 62.1<br>(9.0)                    | 110–150                    |

Source: Modern Plastics Encyclopedia '96. Copyright 1995, The McGraw-Hill Companies. Reprinted with permission.

### Failure of Polymers

Failure modes



Adapted from Callister 8e.

Table 8.1 Room-Temperature Yield Strength and Plane Strain Fracture
Toughness Data for Selected Engineering Materials

|                             | Yield S   | trength   | $K_{Ic}$      |                   |
|-----------------------------|-----------|-----------|---------------|-------------------|
| Material                    | MPa       | ksi       | $MPa\sqrt{m}$ | ksi $\sqrt{in}$ . |
|                             | Me        | etals     |               |                   |
| Aluminum alloy <sup>a</sup> | 495       | 72        | 24            | 22                |
| (7075-T651)                 |           |           |               |                   |
| Aluminum alloy <sup>a</sup> | 345       | 50        | 44            | 40                |
| (2024-T3)                   |           |           |               |                   |
| Titanium alloy <sup>a</sup> | 910       | 132       | 55            | 50                |
| (Ti-6Al-4V)                 |           |           |               |                   |
| Alloy steel <sup>a</sup>    | 1640      | 238       | 50.0          | 45.8              |
| (4340 tempered @ 260°C)     |           |           |               |                   |
| Alloy steel <sup>a</sup>    | 1420      | 206       | 87.4          | 80.0              |
| (4340 tempered @ 425°C)     |           |           |               |                   |
|                             | Cera      | amics     |               |                   |
| Concrete                    | _         | _         | 0.2 - 1.4     | 0.18 - 1.27       |
| Soda-lime glass             | _         | _         | 0.7 - 0.8     | 0.64 - 0.73       |
| Aluminum oxide              | _         | _         | 2.7 - 5.0     | 2.5-4.6           |
|                             | Poly      | mers      |               |                   |
| Polystyrene (PS)            | 25.0–69.0 | 3.63-10.0 | 0.7 - 1.1     | 0.64-1.0          |
| Poly(methyl methacrylate)   | 53.8-73.1 | 7.8-10.6  | 0.7-1.6       | 0.64-1.5          |
| (PMMA)                      |           |           |               |                   |
| Polycarbonate               | 62.1      | 9.0       | 2.2           | 2.0               |
| (PC)                        |           |           |               |                   |

<sup>&</sup>lt;sup>a</sup> Source: Reprinted with permission, *Advanced Materials and Processes*, ASM International, © 1990.



### **Applications**

**TABLE 10.3** General recommendations for plastic products.

| Design requirement                  | Typical applications                                                                                           | Plastics                                                                                                                          |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Mechanical strength                 | Gears, cams, rollers, valves, fan blades, impellers, pistons                                                   | Acetals, nylon, phenolics, polycarbonates, polyesters, polypropylenes, epoxies, polyimides                                        |
| Wear<br>resistance                  | Gears, wear strips and liners,<br>bearings, bushings, roller-skate<br>wheels                                   | Acetals, nylon, phenolics, polyimides, polyurethane, ultrahigh-molecular-weight polyethylene                                      |
| Friction<br>High                    | Tires, nonskid surfaces, footwear, flooring                                                                    | Elastomers, rubbers                                                                                                               |
| Low                                 | Sliding surfaces, artificial joints                                                                            | Fluorocarbons, polyesters, polyethylene, polyimides                                                                               |
| Electrical resistance               | All types of electrical components<br>and equipment, appliances, electrical<br>fixtures                        | Polymethylmethacrylate, ABS, fluorocarbons, nylon, polycarbonate, polyester, polypropylenes, ureas, phenolics, silicones, rubbers |
| Chemical resistance                 | Containers for chemicals, laboratory equipment, components for chemical industry, food and beverage containers | Acetals, ABS, epoxies, polymethylmethacrylate, fluorocarbons, nylon, polycarbonate, polyester, polypropylene, ureas, silicones    |
| Heat resistance                     | Appliances, cookware, electrical components                                                                    | Fluorocarbons, polyimides, silicones, acetals, polysulfones, phenolics, epoxies                                                   |
| Functional and decorative features  | Handles, knobs, camera and battery cases, trim moldings, pipe fittings                                         | ABS, acrylics, cellulosics, phenolics, polyethylenes, polypropylenes, polystyrenes, polyvinyl chloride                            |
| Functional and transparent features | Lenses, goggles, safety glazing, signs, food-processing equipment                                              | Acrylics, polycarbonates, polystyrenes, polysulfones, laboratory hardware                                                         |
| Housings and hollow shapes          | Power tools, housings, sport helmets, telephone cases                                                          | ABS, cellulosics, phenolics, polycarbonates, polyethylenes, polypropylene, polystyrenes                                           |

# Mechanics In Design and Manufacturing

+ Polymer Processing

### **Processing Basics**

• Viscosity/Temperature









### **Injection Molding Press**







### Molds







### Shrink Rate



• Polymers have high thermal expansion coefficients, so significant shrinkage occurs during solidification and cooling in mold.

| Thermoplastic | Shrinkage<br>(mm/mm) |
|---------------|----------------------|
| ABS           | 0.006                |
| Nylon-6,6     | 0.020                |
| Polycarbonate | 0.007                |
| Polyethylene  | 0.025                |
| Polystyrene   | 0.004                |
| PVC           | 0.005                |

### **Injection Mold Parts**

### • Insert Molding



Copyright ©2017 Pearson Education, All Rights Reserved.



### **Blow Molding**



### Vacuum/Thermo Forming





https://www.youtube.com/watch?v=bsdNZFM
plyM

### **Compression Molding**





### Melt Spinning



## Mechanics In Design and Manufacturing

+ Polymer DFM

### Injection Molding

• Strengths

• Weaknesses

### Wall thickness and radii

- Less than 5mm
- Avoid variation in thickness to simplify flow patterns
- Avoid abrupt changes in wall thickness -> use gradual transitions if you have to







### **Draft and Ribs**









### Threads and Fasteners









### Snaps and Slide tools



Tres, Designing Plastic Parts for Assembly 2nd, Revised Edition.



Tres, Designing Plastic Parts for Assembly 2nd, Revised Edition.





Tres, Designing Plastic Parts for Assembly 2nd, Revised Edition.



# Mechanics In Design and Manufacturing

 Composites Properties and Behavior

### Materials





### What is a Composite?

 A material system that is composed of two or more physically distinct phases that together have different properties from its constituents.





Adapted from Callister 8e.





Adapted from Callister 8e.

### **Physical Properties**

<u>High</u> <u>Low</u>

**Other Properties** 

**TABLE 10.4** Typical properties of reinforcing fibers.

| Туре                                      | Tensile<br>strength<br>(MPa) | Elastic<br>modulus<br>(GPa) | Density<br>(kg/m <sup>3</sup> ) | Relative cost |
|-------------------------------------------|------------------------------|-----------------------------|---------------------------------|---------------|
| Boron                                     | 3500                         | 380                         | 2380                            | Highest       |
| Carbon                                    |                              |                             |                                 |               |
| High strength                             | 3000                         | 275                         | 1900                            | Low           |
| High modulus                              | 2000                         | 415                         | 1900                            | Low           |
| Glass                                     |                              |                             |                                 |               |
| E-type                                    | 3500                         | 73                          | 2480                            | Lowest        |
| S-type                                    | 4600                         | 85                          | 2540                            | Lowest        |
| Kevlar                                    |                              |                             |                                 |               |
| 29                                        | 2920                         | 70.5                        | 1440                            | High          |
| 49                                        | 3000                         | 112.4                       | 1440                            | High          |
| 129                                       | 3200                         | 85                          | 1440                            | High          |
| Nextel                                    |                              |                             |                                 |               |
| 312                                       | 1700                         | 150                         | 2700                            | High          |
| 610                                       | 2770                         | 328                         | 3960                            | High          |
| Spectra                                   |                              |                             |                                 |               |
| 900                                       | 2270                         | 64                          | 970                             | High          |
| 1000                                      | 2670                         | 90                          | 970                             | High          |
| 2000                                      | 3240                         | 115                         | 970                             | High          |
| Alumina (Al <sub>2</sub> O <sub>3</sub> ) | 1900                         | 380                         | 3900                            | High          |
| Silicon carbide                           | 3500                         | 400                         | 3200                            | High          |

*Note*: These properties vary significantly depending on the material and method of preparation.

### Structure

 Macrostructure can vary widely depending on the constituents and desired properties



Large

### **General Material Models**





### Particle Reinforced Composites

- Equal Strain Model:
- Equal Stress Model:



### Fiber Reinforced Composites

**TABLE 10.5** Types and general characteristics of reinforced plastics and metal-matrix and ceramic-matrix composites.

| Material         | Characteristics                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fiber            |                                                                                                                                                                        |
| Glass            | High strength, low stiffness, high density; E (calcium aluminoborosilicate) and S (magnesia-aluminosilicate) types are commonly used; lowest cost                      |
| Graphite         | Available typically as high modulus or high strength; less dense than glass; low cost                                                                                  |
| Boron            | High strength and stiffness; has tungsten filament at its center (coaxial); highest density; highest cost                                                              |
| Aramids (Kevlar) | Highest strength-to-weight ratio of all fibers; high cost                                                                                                              |
| Other            | Nylon, silicon carbide, silicon nitride, aluminum oxide, boron carbide, boron nitride, tantalum carbide, steel, tungsten, and molybdenum; see Chapters 3, 8, 9, and 10 |
| Matrix           |                                                                                                                                                                        |
| Thermosets       | Epoxy and polyester, with the former most commonly used; others are phenolics, fluorocarbons, polyethersulfone, silicon, and polyimides                                |
| Thermoplastics   | Polyetheretherketone; tougher than thermosets, but lower resistance to temperature                                                                                     |
| Metals           | Aluminum, aluminum-lithium alloy, magnesium, and titanium; fibers used are graphite, aluminum oxide, silicon carbide, and boron                                        |
| Ceramics         | Silicon carbide, silicon nitride, aluminum oxide, and mullite; fibers used are various ceramics                                                                        |



Copyright ©2017 Pearson Education, All Rights Reserved.

### Fiber Length/Bonding











# Mechanics In Design and Manufacturing

+ Composite Mechanics: Stress-Strain Relationships and Failure Models

### Stress-Strain Relationships

Hooke's law (3-D)



### General Stress Strain Relationship





### Elastic Modulus for Long Fiber Composites





| Material                                     | E <sub>1</sub><br>Msi (GPa) | E <sub>2</sub><br>Msi (GPa) | G <sub>12</sub><br>Msi (GPa) | v <sub>12</sub> | v    |
|----------------------------------------------|-----------------------------|-----------------------------|------------------------------|-----------------|------|
| T300/924<br>graphite/epoxy                   | 19.0 (131)                  | 1.5 (10.3)                  | 1.0 (6.9)                    | 0.22            | 0.65 |
| AS/3501<br>graphite/epoxy                    | 20.0 (138)                  | 1.3 (9.0)                   | 1.0 (6.9)                    | 0.3             | 0.65 |
| p-100/ERL 1962<br>pitch graphite/epoxy       | 68.0 (468.9)                | 0.9 (6.2)                   | 0.81 (5.58)                  | 0.31            | 0.62 |
| Kevlar <sup>®</sup> 49/934<br>aramid/epoxy   | 11.0 (75.8)                 | 0.8 (5.5)                   | 0.33 (2.3)                   | 0.34            | 0.65 |
| Scotchply <sup>®</sup> 1002<br>E-glass/epoxy | 5.6 (38.6)                  | 1.2 (8.27)                  | 0.6 (4.14)                   | 0.26            | 0.45 |
| Boron/5505<br>boron/epoxy                    | 29.6 (204.0)                | 2.68 (18.5)                 | 0.81 (5.59)                  | 0.23            | 0.5  |
| Spectra® 900/826<br>polyethylene/epoxy       | 4.45 (30.7)                 | 0.51 (3.52)                 | 0.21 (1.45)                  | 0.32            | 0.65 |
| E-glass/470-36<br>E-glass/vinylester         | 3.54 (24.4)                 | 1.0 (6.87)                  | 0.42 (2.89)                  | 0.32            | 0.30 |



### Failure of Fiber Composites

Failure modes



http://www.ltas-cm3.ulg.ac.be/FractureMechanics/overview\_P3.html#PictureI49



https://www.youtube.com/watch?v=zJ4rTNeZiJs

### **Longitudinal Strength**



### Typical values of lamina strengths for several composites

| Material                                                          | $S_L^{(+)}$ ksi(MPa) | S <sub>L</sub> <sup>(-)</sup><br>ksi(Mpa) | S <sub>T</sub> <sup>(+)</sup><br>ksi(Mpa) | S <sub>T</sub> <sup>(-)</sup><br>ksi(Mpa) | S <sub>LT</sub><br>ksi(Mpa) |
|-------------------------------------------------------------------|----------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|
| Boron/5505<br>boron/epoxy<br>$v_f = 0.5 (*)$                      | 230 (1586)           | 360 (2482)                                | 9.1 (62.7)                                | 35.0 (241)                                | 12.0 (82.7)                 |
| AS/3501<br>graphite/epoxy<br>v <sub>f</sub> = 0.6 (*)             | 210 (1448)           | 170 (1172)                                | 7.0 (48.3)                                | 36.0 (248)                                | 9.0 (62.1)                  |
| T300/5208<br>graphite/epoxy<br>$v_f = 0.6 (*)$                    | 210 (1448)           | 210 (1448)                                | 6.5 (44.8)                                | 36.0 (248)                                | 9.0 (62.1)                  |
| Kevlar 49/epoxy<br>aramid/epoxy<br>v <sub>f</sub> = 0.6 (*)       | 200 (1379)           | 40 (276)                                  | 4.0 (27.6)                                | 9.4 (64.8)                                | 8.7 (60.0)                  |
| Scotchply 1002<br>E-glass/epoxy<br>v <sub>f</sub> = 0.45 (*)      | 160 (1103)           | 90 (621)                                  | 4.0 (27.6)                                | 20.0 (138)                                | 12.0 (82.7)                 |
| E-glass/470-36<br>E-glass/vinylester<br>v <sub>f</sub> = 0.30 (*) | 85 (584)             | 116 (803)                                 | 6.2 (43)                                  | 27.1 (187)                                | 9.3 (64.0)                  |

### Transverse Strength





Best Model

 Stress-strain relationships for transverse loading are often non-linear