Cycle Representation

Let n be a fixed integer.

A **permutation** is a bijection from the set $\{1,2,\ldots,n\}$ to itself.

A **cycle of length** k ($k\geq 2$) is a permutation f where different integers exist i_1,\ldots,i_k such that $f(i_1)=i_2,f(i_2)=i_3,\ldots,f(i_k)=i_1$ and, for all x not in $\{i_1,\ldots,i_k\}$, f(x)=x.

The **composition of** m **permutations** f_1, \ldots, f_m , written $f_1 \circ f_2 \circ \ldots \circ f_m$, is their composition as functions.

Steve has some cycles f_1, f_2, \ldots, f_m . He knows the length of cycle f_i is l_i , but he does not know exactly what the cycles are. He finds that the composition $f_1 \circ f_2 \circ \ldots \circ f_m$ of the cycles is a cycle of length n. He wants to know how many possibilities of f_1, \ldots, f_m exist.

Input Format

The first line contains T, the number of test cases.

Each test case contains the following information:

The first line of each test case contains two space separated integers, n and m.

The second line of each test case contains m integers, l_1, \ldots, l_m .

Constraints

 $n\geqslant 2$ Sum of $n\leqslant 1000$ $2\leqslant l_i\leqslant n$ Sum of $m\leq 10^6$

Output Format

Output T lines. Each line contains a single integer, the answer to the corresponding test case.

Since the answers may be very large, output them modulo $(10^9 + 7)$.

Sample Input

Sample Output

6

Explanation

There are three cycles of length 2. The composition of two cycles of length 2 is a cycle of length 3 if, and only if, the two cycles are different. So, there are $3 \cdot 2 = 6$ possibilities.