File: Installation notes.pdf

Date: 2019/07/12

Here, we will describe some tips for the installation (Linux ubuntu 18.04). Our Flow Composed Implicit Runge-Method (FCIRK) implementation is developed in C-programming language and the integration method is interfaced via Jupyter/Julia powerful computational environment.

You can install FCIRK application and Julia packages by "installation_Notebook.ipyn" Jupyter notebook but previously, you must install some C special libraries, Julia programming language and Jupyter tool.

Language C

We use some special library that you must be installed:

(1) uuid-dev

install by synaptic tool

	libjug-java		3.1.5-1	Pure java UUID generator
	cl-uuid		20130813-1	Common Lisp librabry for generation of UUIDs as described by RFC 4122
	libcrossguid-dev		0.0+git200150803-2	C++ UUID library headers
	libcrossguid0		0.0+git200150803-2	C++ UUID library
	libghc-uuid-prof		1.3,13-2build3	create, compare, parse and print UUIDs; profiling libraries
	uuid-dev	2.31.1-0.4ubuntu3.	2.31.1-0.4ubuntu3.	Universally Unique ID library - headers and static libraries
	uuid-runtime	2.31.1-0.4ubuntu3.	2.31.1-0.4ubuntu3.	runtime components for the Universally Unique ID library
3	golang-github-nu7hatch-gouu	i	0.0-git20131221.0.	pure Go UUID implementation as specified in RFC 4122
	libghc-uuid-types-doc		1.0.3-4build1	Type definitions for Universally Unique Identifiers; documentation
<u> </u>	libuuid-perl	0.27-1build1	0.27-1build1	Perl extension for using UUID interfaces as defined in e2fsprogs
	libghc-uuid-types-dev		1.0.3-4build1	Type definitions for Universally Unique Identifiers
	libghc-uuid-types-prof		1.0.3-4build1	Type definitions for Universally Unique Identifiers; profiling libraries
	libghc-uuid-dev		1.3.13-2build3	create, compare, parse and print Universally Unique Identifiers
	ruby-uuidtools		2.1.5-2	UUIDs generation library for Ruby
	ruby-uuidtools-doc		2.1.5-2	UUIDs generation library for Ruby - documentation

(2) quadmath library

Quad-Precision Math Library Application Programming Interface (API). https://gcc.gnu.org/onlinedocs/libquadmath/#toc-Typedef-and-constants-1

(3) mpfr library

MPFR is a portable library written in C for arbitrary precision arithmetic on floating-point numbers. The MPFR library is already installed on some GNU/Linux distributions and "How to Install" instructions, are explained in "GNU MPFR" manual.

(4) OpenMP Application Programming Interface

OpenMP API for parallelism in C, C++ and Fortran programs. Most of Compilers support Open API. http://www.openmp.org

Jupyter/Julia computational enviroment

(1) Julia.

```
We use Julia 1.1.0 version (<a href="http://julialang.org">http://julialang.org</a>).
```

Additionally, these packages must be install:

```
Pkg.add("NBInclude")
Pkg.add("Plots")
Pkg.add("Dates")
Pkg.add("DelimitedFiles")
Pkg.add("LinearAlgebra")
```

(2) Jupyter.

We build our experiments on Jupyter notebooks (an open source tool for interative computing) using Julia programming language.

To install

```
$ julia
    julia> ]
    pkg> add IJulia
    julia>using IJulia
    julia>notebook()
    julia>exit()
```

To execute:

\$ jupyter notebook