Quantitative Portfolio Management

Assignment #4

Raman Uppal EDHEC Business School

November 2023

Instructions for each assignment . . . I

- ► Assignment #1 should be done individually.
- ► The other assignments are to be done in groups of 4 or 5 students.
 - ▶ This means that groups of 1, 2, 3, 6, etc. are not allowed.
 - Diversity in groups is strongly encouraged (people from different countries, different genders, different finance knowledge, and different coding ability, etc.)

Instructions for each assignment . . . II

- ► Each assignment should be emailed as a Jupyter file
 - ► To Raman.Uppal@edhec.edu
 - The subject line of the email should be: "QPM: Assignment n," where n = {1, 2, ..., 8}.
 - Assignment *n* is due before Lecture *n*, where $n = \{1, 2, ..., 8\}$.
 - Assignments submitted late will not be accepted (grade = 0), so please do not email me assignments after the deadline.

Instructions for each assignment . . . III

- ► The Jupyter file should include the following (use Markdown):
 - Section "0" with information about your submission:
 - ▶ Line 1: QPM: Assignment *n*
 - Line 2: Group members: listed alphabetically by last name, where the last name is written in CAPITAL letters
 - ▶ Line 3: Any comments/challenges about the assignment
 - Section "k" where $k = \{1, 2, ...\}$.
 - ► First type Question *k* of Assignment *n*.
 - Then, below the question, provide your answer.
 - Your code should include any packages that need to be imported.

Initial step to prepare the data for this assignment

- ► The data we will be using is the same that we used for the previous assignment. For convenience, I have typed again the instructions.
 - Make sure you have already imported "pandas" and "yfinance."
 - Download from Wikipedia (or any other source) a table that lists the companies that comprise the S&P 500. (See "Helpful links" provided at the end of the assignment.)
 - ► From this table, extract the list of ticker symbols.
 - Set the start date and end date to be
 - start_date = "2000-01-01"
 - end_date = "2022-12-31"
 - Build a dataframe that contains the stock prices for the S&P 500 companies. (If there are errors for some company names, it is fine to ignore the company names with errors.)
 - Drop the columns that have only "NaN" entries.
 - ▶ Drop also the companies with more than 100 missing observations.

Questions for Assignment 4 . . . I

- Q4.0 From the data that we used for the previous assignment, select the following 10 companies (these are the first 10 companies with no missing data):
 - "MMM","AOS","ABT","ADM","ADBE","ADP","AES","AFL","A","AKAM"
 - ➤ So, our "new" dataset for this assignment will consist of monthly returns you had computed in the last assignment, but just for these 10 companies.
 - ► To reduce the work required for this assignment, please assume that the risk-free rate of return is zero.

Questions for Assignment 4 . . . II

- Q4.1 Choose the estimation window to be $T^{\rm est}=60$ months of monthly returns. Call this the estimation sample. Use the estimation sample to compute the following two portfolio strategies:
 - a. mean-variance portfolio (MVP) without constraints on the size of the weight (assume that a risk-free rate is available, with the risk-free rate equal to zero);
 - global minimum variance (GMV) portfolio without constraints on the size of the weight.

Questions for Assignment 4 . . . III

- Q4.2 Now use a rolling window of $T^{\rm est}=60$ months to estimate the portfolio weights for the two strategies listed above for each of the $T-T^{\rm est}$ months. That is, repeat the calculations of the previous question for all the dates *after* the first 60 months.
- Q4.3 Use the time-series of portfolios weights for each of the two portfolio strategies, to compute the out-of-sample portfolio returns. That is, for each of the two portfolio strategies that you estimate at each date t, compute its out-of-sample return in month t+1.
- Q4.4 Now, compute the Sharpe ratio of the out-of-sample returns for the two portfolio strategies. Which strategy has the higher Sharpe ratio?

Helpful hints

- ▶ Helpful links for information on downloading S&P 500 ticker symbols.
 - ► from Danny Groves
 - ▶ from GitHub
- Finally, please save the data you have downloaded and created for these ten companies because we will be using it again.

Discussion of Assignment 4: Initial setup

▶ We start by loading the libraries we will need.

Code to load required libraries

```
# Import libraries
import pandas as pd
import yfinance as yf
import numpy as np
import pandas_datareader as pdr
```

Q4.0 From the data that we used for the previous assignment, select the following 10 companies (these are the first 10 companies with no missing data):

```
"MMM","AOS","ABT","ADM","ADBE","ADP","AES","AFL","A","AKAM"
```

- ➤ So, our "new" dataset for this assignment will consist of monthly returns you had computed in the last assignment, but just for these 10 companies.
- ► To reduce the work required for this assignment, please assume that the risk-free rate of return is zero.

Code for Q4.0

Code to download data for required tickers

```
# List of tickets for which we will download the data
tickers=["MMM","AOS","ABT","ADM","ADBE","APP","AES","AFL"."A"."AKAM"]
# Set the start and end dates
start date = "2000-01-01"
end_date = "2022-12-31"
# Create an empty dataframe
stock_prices = pd.DataFrame()
# Download the data
for ticker in tickers:
    price = yf.download(ticker,start=start_date,end=end_date)
    stock_prices[ticker] = price["Adj Close"]
# Change the index column to be the date
stock_prices.index = pd.to_datetime(stock_prices.index)
```

Code for Q4.0 (continued)

Construct returns from downloaded data

```
# Extract the stock price at the end of each month from downloaded data
month_stock_prices = stock_prices.resample("1M").last()
month_stock_prices.index = month_stock_prices.index.date
# Compute returns
```

```
# Compute returns
month_return=np.log(month_stock_prices/month_stock_prices.shift(1))
month_return=month_return.dropna() # delete the first row - without data
```

- Q4.1 Choose the estimation window to be $T^{\rm est}=60$ months of monthly returns. Call this the estimation sample. Use the estimation sample to compute the following two portfolio strategies:
 - a. mean-variance portfolio (MVP) without constraints on the size of the weight (assume that a risk-free rate is available, with the risk-free rate equal to zero);
 - global minimum variance (GMV) portfolio without constraints on the size of the weight.

Code for Q4.1

Code for unconstrained portfolios: MVP and GMV

```
# Optimal weights of MVP (tangency) portfolio without constraints:
def MVP w(returns):
    ones = np.ones(len(returns.columns)) # 10 companies in this case
   mu = returns.mean()
   var cov = returns.cov()
   numerator = np.linalg.inv(var_cov) @ mu
   denominator = ones.T @ np.linalg.inv(var_cov) @ mu
    optimal_weight = numerator/denominator
   return optimal_weight
# Optimal weights of GMV portfolio without constraints:
def GMV w(returns):
    ones = np.ones(len(returns.columns)) #10 companies in this case
   var_cov = returns.cov()
   numerator = np.linalg.inv(var_cov) @ ones
   denominator = ones.T @ np.linalg.inv(var_cov) @ ones
    optimal_weight = numerator/denominator
   return optimal_weight
```

Q4.2 Now use a rolling window of $T^{\rm est}=60$ months to estimate the portfolio weights for the two strategies listed above for each of the $T-T^{\rm est}$ months. That is, repeat the calculations of the previous question for all the dates *after* the first 60 months.

Code for Q4.2: Mean-variance portfolio

Code for rolling-window analysis of MVP

Code for Q4.2: Global minimum-variance portfolio

Code for rolling-window analysis of GMV

Q4.3 Use the time-series of portfolios weights for each of the two portfolio strategies, to compute the out-of-sample portfolio returns. That is, for each of the two portfolio strategies that you estimate at each date t, compute its out-of-sample return in month t+1.

Code for computing portfolio return at date t+1

```
# Because Rf is assumed to be 0, the portfolio return equals the return
    on the portfolio of risky assets

# Return on MVP portfolio without constraints:
MVP_return = (MVP_weights * month_return.iloc[60:]).sum(axis = 1)

# Return on GMV portfolio without constraints:
GMV_return = (GMV_weights * month_return.iloc[60:]).sum(axis = 1)
```

Q4.4 Now, compute the Sharpe ratio of the out-of-sample returns for the two portfolio strategies. Which strategy has the higher Sharpe ratio?

Code to compute the Sharpe ratio

Code and final output for Q4.4 (continued)

Code for printing the output

```
# Sharpe ratio for MVP portfolio:
print(f'Annualized Sharpe ratio of MVP portfolio is
{sharpe_ratio(MVP_return)}.')

# Sharpe ratio for GMV portfolio:
print(f'Annualized Sharpe Ratio of GMV portfolio is
{sharpe_ratio(GMV_return)}.')
```

▶ The final output we get from the above print statement is:

```
Annualized Sharpe ratio of MVP portfolio is -0.14067884090356617. Annualized Sharpe Ratio of GMV portfolio is 0.691813497486071.
```

► From the above result, we conclude that, in the absence of constraints, the GMV portfolio outperforms the mean-variance portfolio – at least for the companies and sample period considered.

End of assignment