Unramified Alternating Extensions of Quadratic Fields

Kiran S. Kedlaya

February 8, 2008

Abstract

We exhibit, for each $n \geq 5$, infinitely many quadratic number fields admitting unramified degree n extensions with prescribed signature whose normal closures have Galois group A_n . This generalizes a result of Uchida and Yamamoto, which did not include the ability to restrict the signature, and a result of Yamamura, which was the case n = 5.

It is a folk conjecture that for $n \geq 5$, all but finitely many quadratic number fields admit unramified extension fields of degree n whose normal closures have Galois group A_n , the alternating group on n symbols. Uchida [2] and Yamamoto [3] proved independently that there exist infinitely many real and infinitely many imaginary fields with unramified A_n -extensions. Our main theorem is the following refinement of this result; the case n=5 was previously obtained by Yamamura [4] using a different argument.

Theorem 1. For $r = 0, 1, ..., \lfloor n/2 \rfloor$, there exist infinitely many real quadratic fields admitting an unramified degree n extension with Galois group A_n and having exactly r complex embeddings. In fact, the number of such real quadratic fields with discriminant at most N is at least $O(N^{1/n-1})$. Moreover, these assertions remain true if we require all fields involved to be unramified over a finite set of finite places of \mathbb{Q} .

Proof. The idea is to construct monic polynomials P(x) with integer coefficients and square-free discriminant Δ , so that $\mathbb{Q}[x]/(P(x))$ is unramified over $\mathbb{Q}(\sqrt{\Delta})$. To do so, we construct $Q(x) = n(x - a_1) \cdots (x - a_{n-1})$ and set $P_b(x) = b + \int_0^x P(t) dt$. Then the discriminant Δ_b of $P_b(x)$ factors as

$$\Delta_b = n^n \prod_{i=1}^{n-1} P_b(a_i) = n^n \prod_{i=1}^{n-1} (P_0(a_i) + b);$$

since each factor is linear in b, a simple sieving argument shows that the discriminant is squarefree for a positive proportion of tuples $(a_1, \ldots, a_{n-1}, b)$ in suitable ranges.

In order to make this program work, we must add constraints on the a_i and b to ensure that various conditions are met. We first make sure that P(x) has integer coefficients. It

suffices to require that a_1 be of the form q/n with q an integer coprime to n but divisible by n-1 and by all primes less than n not dividing n, that a_2, \ldots, a_{n-1} be integers divisible by n!, and that b be an integer coprime to n!. Now

$$Q(x) \equiv (nx - q)x^{n-2} = nx^{n-1} - qx^{n-2} \pmod{n!},$$

and so the coefficient of x^{m-1} is divisible by m for m = 1, ..., n. Consequently, $P_b(x)$ has integer coefficients.

Next, we force $P_b(x)$ to have a specific number of real roots, which determines the number of real embeddings of the field $\mathbb{Q}[x]/(P_b(x))$. By homogeneity, the number of real roots of P_b depends only on the tuple $(a_1/b^{1/n}, \dots, a_{n-1}/b^{1/n})$. Thus we can construct intervals (c_i, d_i) and (c, d) such that if $a_i/m^{1/n} \in (c_i, d_i)$ for all i and $b/m \in (c, d)$ for some m, then $P_b(x)$ has the desired number of real roots.

Next, we ensure that the splitting field of $P_b(x)$ over \mathbb{Q} has Galois group S_n . We do this by imposing congruence conditions modulo some auxiliary primes. Pick any degree n polynomial R(x) over \mathbb{Z} with Galois group S_n such that the splitting fields of R(x) and R'(x) are linearly disjoint. Then by the Cebotarev Density Theorem, there exist infinitely many primes p_1 and p_2 such that R'(x) factors completely modulo p_1 and p_2 , while R(x) is irreducible over p_1 and factors into one quadratic factor and n-2 linear factors over p_2 . We may impose congruence conditions on the a_i and b so that $P_b(x) \equiv R(x) \pmod{p_1 p_2}$, which forces $P_b(x)$ to have Galois group S_n over \mathbb{Q} .

Let us rewrite the factorization of Δ_b as

$$\Delta_b = (n^n P_0(q/n) + bn^n) \prod_{i=2}^{n-1} (P_0(a_i) + b).$$

The first term can written as q^n plus a multiple of n, so is coprime to n; the remaining terms are each b plus a multiple of n, so are also coprime to n. Hence Δ_b is coprime to n. Also, if p is a prime less than n not dividing n, then $P_b(a_i) \equiv a_i^n + b \pmod{p}$ and so none of the factors of Δ_b is divisible by p either.

For future convenience, we restrict a_1, \ldots, a_{n-1} to a very special form. We require them to be of the form $A_1\ell, \ldots, A_{n-1}\ell$ for A_1, \ldots, A_{n-1} fixed once and for all and ℓ a prime. Then by homogeneity, we can write $P_0(a_i) = B_i\ell^n$ for some integers B_1, \ldots, B_{n-1} . By imposing congruence conditions on ℓ and b modulo the primes dividing $\prod_{i < j} B_i - B_j$, we may ensure that no prime except possibly ℓ divides more than one of the factors $P_0(a_i) + b$.

Finally, we ensure that each factor of Δ_b is squarefree; this step is analogous to the proof that $6/\pi^2$ of the positive integers are squarefree. (We have followed [1] in this stage of the argument.) Fix N and pick a prime ℓ such that $a_i/N^{1/n(n-1)} \in (c_i, d_i)$ for all i; we will sieve over integers b such that $b/N^{1/(n-1)} \in (c, d)$. As noted above, the only prime that can divide more than one of the factors $P_0(a_i) + b$ and $P_0(a_j) + b$ is ℓ . Thus we must exclude $n(d-c)N^{1/(n-1)}/\ell + O(1)$ of the possible values b in the range of interest.

Under this restriction, the factors $P_0(a_i) + b$ are pairwise coprime, so it suffices to ensure that each one is squarefree for a positive proportion of b among the values of interest. Let

S denote the set of b for which $b/N^{1/(n-1)} \in (c,d)$ and no $P_0(a_i) + b$ is divisible by ℓ . Let $N_0 = |S|$, let N_1 denote the number of $b \in S$ such that each $P_0(a_i) + b$ is squarefree, let N_2 denote the number of $b \in S$ such that no $P_0(a_i) + b$ is divisible by the square of any prime less than $\xi = \frac{1}{4} \log N^{1/(n-1)}$, and let N_3 denote the number of $b \in S$ such that $P_0(a_i) + b$ is divisible by the square of a prime greater than $\frac{1}{4} \log N^{1/(n-1)}$. These are related by the equation

$$N_1 = N_2 + O(N_3).$$

Now N_2 can be written, by inclusion-exclusion, as a sum over squarefree numbers l whose prime factors are all less than ξ . Any such number is at most $N^{1/2(n-1)}$, so, with $\mu(l)$ denoting the Möbius function at l and d(l) the number of divisors of l, we have

$$N_2 = \sum_{l} n\mu(l) \left(\frac{N_0}{l} + O(1)\right) k$$

$$= N_0 \sum_{l} \frac{n\mu(l)}{l} + O\left(\sum_{l \le N^{1/2(n-1)}} d(l)\right)$$

$$= N_0 \prod_{p} \left(1 - \frac{n}{p}\right) + O\left(\frac{x}{\log x}\right).$$

As for N_3 , we have the estimate

$$N_{3} = \sum_{\xi
$$= O \left(N_{0} \sum_{\xi
$$= O \left(\frac{N_{0}}{\log N^{1/(n-1)}} \right).$$$$$$

Putting this together, we conclude that a positive proportion of $b \in S$ yield squarefree Δ_b .

We now have produced $O(N^{1/(n-1)})$ unramified A_n -extensions of prescribed signature over quadratic fields of discriminant at most N. Moreover, the number of distinct values of Δ_b occurring is also $O(N^{1/(n-1)})$. Thus at least this many quadratic fields of discriminant less than N admit unramified A_n -extensions of the desired signature.

We have not attempted to obtain the best possible exponent in the theorem; by varying a_1, \ldots, a_{n-1} , one ought to be able to get an exponent of 2/n. It may be possible to do even better by allowing a_1, \ldots, a_{n-1} to lie not in \mathbb{Q} but in a larger number field.

Acknowledgments

Thanks to Manjul Bhargava and Noam Elkies for helpful discussions. The author was supported by an NSF Postdoctoral Fellowship, and conducted this research at the Mathematical Sciences Research Institute.

References

- [1] C. Hooley, On the power free values of polynomials, Mathematika 14 (1967), 21–26.
- [2] K. Uchida, Unramified extensions of quadratic number fields, II, *Tôhoku Math. J.* **22** (1970), 220–224.
- [3] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.
- [4] K. Yamamura, On unramified Galois extensions of real quadratic number fields, *Osaka J. Math.* **23** (1986), 471–478.