

Supervised Learning of Neural Random-Access Machines with Differential Evolution

Candidate

Valerio Belli

Supervisors

Valentina Poggioni, Marco Baioletti

April 19, 2018

University of Perugia
Departments of Mathematics and Computer Science
Intelligent and Mobile Computing

Introduction

The success of Deep Learning is undeniable.

A new family of models, based on **controller-interface abstraction**, has been introduced. The precursor is **Neural Turing Machine (NTM)** [Graves et al., 2014] which works with **attentional "focus" mechanisms** to interact with an external memory.

The Neural Random-Access Machines (NRAM) [Kurach et al., 2015] evolve the NTM implementing the concepts of pointers manipulation and de-referencing through primitive operations to interact also with a memory.

We implemented and trained **NRAM** in order to study the benefits of Differential Evolution on these type of models.

1

Outline

- 1. Neural Random-Access Machines
- 2. Neural Network optimization & DENN
- 3. Implementation & Faced problems
- 4. Results, Conclusions & Future works

Neural Random-Access Machines

$NRAM \rightarrow Overwiew$

High view of the Neural Random-Access Machines model.

for $i = 1, \dots, T$

$\mathsf{NRAM} \to \mathsf{Components}$

$\mathsf{NRAM} \to \mathsf{Components} \to \mathsf{Registers}$

$NRAM \rightarrow Components \rightarrow Registers$

The registers $\mathcal{R} \in \mathbb{R}^{R \times M}$ is a set of R memory cells. Each register contains a probability distribution in \mathbb{R}^M over the set $\{0, \dots, M-1\}$.

$\overline{\mathsf{NRAM}} o \mathsf{Components} o \mathsf{Modules}$

$\mathsf{NRAM} \to \mathsf{Components} \to \mathsf{Memory}$ and Read & Write modules

$\mathsf{NRAM} \to \mathsf{Components} \to \mathsf{Memory}$ and Read & Write modules

The memory $\mathcal{M} \in \mathbb{R}^{M \times M}$ is a support of M cells, where each value is represented by a probability distribution in \mathbb{R}^{M} over the set $\{0, \ldots, M-1\}$.

The NRAM interacts with the memory through:

- Read: takes a pointer and returns the pointed value of the memory.
- · Write: takes a pointer and a value, modifies the memory.

$\mathsf{NRAM} \to \mathsf{Components} \to \mathsf{Controller}$

- It is a neural network
- It takes as input $\mathbb{P}(r_i = 0)$, for $i = 1, \dots, R$
- It emits configurations for fuzzy circuits (how the registers and modules are connected together)
- From an high view, each s_{i,j} and c_h is a probability distribution generated with the softmax function

NRAM → Termination of NRAM

The NRAM terminates its execution in two ways:

- Reaching the last timestep T
- Through an internal criterion:
 - In each timestep, NRAM emits the willingness of terminate the execution $f_t = \sigma(x_i)$
 - The execution stops if $f_t = 1.0$.

NRAM → Cost calculation

Let $\mathcal{M} \in \mathbb{R}^{M \times M}$ the output memory and $\mathbf{y} \in \{0, \dots, M-1\}^M$ the expected memory, the **cost function** is the **expected negative** log-likelihood

$$-\sum_{i=1}^{T} \left(p_t \cdot \sum_{i=1}^{M} log\left(\mathcal{M}_{i,y_i}^{(t)}\right) \right)$$

where p_t is computed as

$$p_t = f_t \cdot \prod_{i=1}^{t-1} (1 - f_i)$$

DENN

Neural Network optimization &

NN optimization & DENN \rightarrow Gradient Descent & back-propagation

Gradient Descent and back-propagation optimization is divided in **computing of the gradient** and **updating of the network parameters**.

We used ADAM (Adaptive Moment estimation) [Kingma and Ba, 2014] as in [Kurach et al., 2015] as gradient-based optimization algorithm. Uses the concept of momentum to regularize the descent of the gradient.

NN optimization & DENN → Differential Evolution

Differential Evolution

- Meta-heuristic
- Searches a solution through the parallel evolution of a set of candidate solutions
- · Candidate solutions set called **population**
 - Composed by N D-dimensional numerical vectors, called Individuals

NN optimization & DENN \rightarrow Differential Evolution

Its functioning is iterative

- Mutation: driven by a constant F creates a new population called donor set (several methods, e.g. DEGL and Current-to-pbest)
- Crossover: driven by a constant CR creates a new population called trial set (several methods, e.g. bin)
- 3. **Selection**: generates the new population for the next generation comparing one-by-one the trial vectors with the corresponding target vectors.

Exist various self-adaptive variants of Differential Evolution which alleviate the problem dependence of *F* and *CR*:

- · JADE
- · SHADE
- · L-SHADE

NN optimization & DENN \rightarrow DENN (Differential Evolution for Neural Network)

DENN [Baioletti et al., 2018] is a **framework** which implements the concepts of the Differential Evolution to train ANN:

- · Created by Gabriele Di Bari and Mirco Tracolli
- It is written in C++ based on the library Eigen
- Each individual is composed by the weights and biases of the network
- The mutation and crossover operators are applied in a component-wise way

Implementation & Faced problems

$Implementation \ \& \ Faced \ problems \rightarrow Description$

Three applications

- NRAM-DENN: training with Differential Evolution
- NRAM-Theano: training with Gradient Descent-ADAM
- NRAM-Tester: execution and generalization testing

Implementation & Faced problems \rightarrow Additional used techniques

NRAM-Theano:

- **Gradient clipping**: gradient clipped in [C_1 , C_2] to avoid the common problem of the Gradient Explosion;
- Noise: added a noise to the computed gradient to enhance the exploration;

NRAM-DENN:

• Curriculum Learning: it is used to enhance the training of the ANN through increasing difficulties of the datasets.

Implementation & Faced problems → Problems

Tested problems:

- · Access: accessing of a value of an input sequence
- · Increment: incrementing by one of a input sequence
- · Copy: copying an input sequence to a part of the memory
- Reverse: copying an input sequence in a reverse order to a part of the memory

Implementation & Faced problems → Datasets

The datasets are generated at runtime; each batch of samples is composed by:

- initial memory content
- expected memory content
- · cost mask
- · error rate mask

Table 1: Reverse task.

Results, Conclusions & Future works

Results, Conclusions & Future works \rightarrow Results \rightarrow DE & GD results

Task	Train complexity		Reached cost 0		Train error		Generalization	
	No CL	CL	No CL	CL	No CL	CL	No CL	CL
Access	_	$len(A) \leq 20$	×	✓	_	0	×	Perfect
Increment	_	$len(A) \leq 15$	×	\checkmark	_	0	×	Perfect
Сору	_	$len(A) \leq 15$	×	\checkmark	_	0	×	Perfect
Reverse	_	$len(A) \leq 15$	×	\checkmark	_	0	×	Perfect

Table 2: Results of the tests with ADAM in [Kurach et al., 2015].

Task	Train co	Reached cost 0		Train error		Generalization		
	No CL	CL	No CL	CL	No CL	CL	No CL	CL
Access	len(A) = 8 $t = 5$	$\mathrm{len}(A) \leq 10$	✓	✓	0	0	Perfect	Perfect
Increment	len(A) = 9 $t = 4$	$\mathrm{len}(A) \leq 10$	✓	✓	0	0	Perfect	Perfect
Сору	len(A) = 5 $t = 11$	$\operatorname{len}(A) \leq 9$	×	×	_	_	_	_
Reverse	len(A) = 4 $t = 9$	$\operatorname{len}(A) \leq 8$	✓	✓	0	0	Perfect	Perfect

Table 3: Results of the tests with Differential Evolution.

Results, Conclusions & Future works \rightarrow Results \rightarrow DE & GD results

Task	JADE/DEGL/1		JADE/c-to-pb/1		SHADE/DEGL/1		SHADE/c-to-pb/1	
	No CL	CL	No CL	CL	No CL	CL	No CL	CL
Access	×	√	✓	✓	×	×	×	✓
Increment	×	×	✓	×	×	×	×	✓
Сору	×	×	×	×	×	×	×	×
Reverse	×	✓	\checkmark	×	\checkmark	\checkmark	×	\checkmark

Table 4: Results of DE variants

Results, Conclusions & Future works \rightarrow Charts of convergence \rightarrow Access

Results, Conclusions & Future works \rightarrow Charts of convergence \rightarrow Reverse

Results, Conclusions & Future works o Circuits o Access

Results, Conclusions & Future works \rightarrow Circuits \rightarrow Reverse

Results, Conclusions & Future works → Conclusions

DENN behave well in this type of model:

- Differential Evolution behave differently with these problems w.r.t. ADAM producing different results
- Best performing variants are those with Current-to-pbest
- Found controllers generate simpler circuits w.r.t. in [Kurach et al., 2015]

Results, Conclusions & Future works → Future works

Create a new dynamic system for the gate selection.

Write an enhanced NRAM model that does not require the differentiability condition.

