Modular Robotics: Molucube
Cole Butler
Ali Helmi
Andrew Hunt
Carlos Torres

SCHEDULE AND VALIDATION PLAN

Table of Contents

Tal	ole of Contents	I
	Schedule	
	Validation Plan	
	Performance on Execution Plan	
	Performance on Validation Plan	

Modular Robotics: Molucube

1. Schedule

Task	4-Oct	11-Oct	18-Oct	25-Oct	1-Nov	8-Nov	15-Nov	22-Nov	29-Nov
Motor Driver and Power Delivery Designs Complete									
Rpi MCU circuits designed									
Computer Vision design completed									
Housing Design completed									
Power Delivery Motor Driver Parts Ordered									
Rpi & MCU prototype boards created									
Computer vision parts ordered									
Housing/Connector Parts Ordered									
Power Delivery Motor Driver Start PCB design									
RPi & MCU PWM Signal generation									
Computer Vision Python script									
Housing/Connectors Assembled & Tested									
Power Delivery Motor Driver PCB design complete									
Rpi & MCU Motor Controller testing and UART signal generation									
Training and Testing Model on a saved video									
PCB Design Completed/Parts Ordered									
Power Delivery Motor Driver PCB Components ordered									
MCU Network Test									
Making program able to detect real time on live feed									
Boards Assembled									
Power Delivery Motor Driver order and test on perfboard									
Sensor Testing									
Adjusting arm's design to match robot's modules sizes									

Schedule and Validation Plan Modular Robotics: Molucube

Revision 1

Testing/Toublshooting Boards						
Power Delivery Motor Driver Solder PCBs						
Printing and Assembling Arm						
Connection Between Boards						
Power Delivery Motor Driver buffer week/testing/troubleshoot						
Testing functionality of both systems and troubleshooting						
Buffer Week for Any Additional Troubleshooting	_			_		
Demo and work on final Report						

2. Validation Plan

	FSR				
Test Name	Section	Success Criteria	Methodology	Status	Assignee
			An oscilloscope will be		
			used to measure the		
	3.2.3.3	Correct voltage being	voltage reading and will		
		outputted to motors, RPI,	be compared to the	Partial	Carlos
Output Voltage Test		servo and actuator	expected value	Success	Torres
			An oscilloscope will be		
	3.2.3		used to view voltage of		
Battery Management	3.2.3	Battery can charge and	battery while a test		Carlos
System Test		discharge properly	motor is run off it.	Untested	Torres
			Provide motor with		
	1.1.2	Wheel motors can go	power and send logic to	Partial	Carlos
Wheel Motor Test		forwards and backwards	MCU	Success	Torres
	1.1		A debugger and LED		
			output will be used to		
Microcontroller Initial	1.1	Microcontroller runs	determine correct		Andrew
test		basic program	functionality	Success	Hunt
			A logic analyzer and		
	3.2.1.2	Microcontroller generates	Pulseview will be used to		Andrew
PWM Signal		PWM signal	determine correct signal	Success	Hunt
			MCU I/O will be		
	3.2.1.1		connected to motor	Partial	Andrew
Motor Control		MCU can control motors	controller	Success	Hunt
		Raspberry Pi and			
	1.1	Microcontroller can	Raspberry Pi will instruct		Andrew
UART Communication		communicate	MCU to turn on LED	Success	Hunt
		Raspberry Pi	Raspberry Pi will instruct		
MCU Network	1.1	communicates with	each MCU to turn on/off		Andrew
Communication		multiple MCUs	LEDs	Success	Hunt
			An object will be placed		
	3.2.1.3		in front of the sensor and		
	3.2.1.3	MCU able to use sensor	the MCU will send a ping		Andrew
Sensor Test		to detect object	and wait for a reflection	Success	Hunt
		Successfully identifies	Python script uploaded		
	3.2.1.3	ping pong ball and keeps	and executed through		
Object Detection		tracking it	webcam	Success	Ali Helmi
		Successfully	Python script uploaded		
	3.2.4	identifies duct tape and	and executed		
Path Navigation		maps path in between	through webcam	Untested	Ali Helmi

Gripper Arm Functionality	3.2.1.2	Assembled and compatible with mounted motors and capable of simple movement	Picks up and drops ping pong ball	Partial Success	Ali Helmi
Tanctionancy		Module Housing easily	Apply force to connected	Juccess	74111111111
	3.2.2.3	connects, and resists	housing and see if it	Partial	Cole
Housing/Connectors		being pulled apart	stays together	Success	Butler
			Probe board while		
	3.2.2.3	No incorrect readings for	providing it with power		Cole
Board Functionality		boards of all modules	and logic	Untested	Butler
		Boards successfully			
Connection Between	3.2.2.3	connect and can	Probe between both		Cole
Boards		communicate	boards for continuity	Untested	Butler

3. Performance on Execution Plan

Most of the execution plan was completed. Tasks not currently complete are due to issues that arose during testing. The project is mostly completed and anything not currently complete will be completed over the break or very early on next semester.

4. Performance on Validation Plan

Most of the validation plan was completed. There are still some issues with the power delivery and motor subsystems, as well as with the gripper arm, but these issues will be sorted out either before next semester or very early in the semester so the subsystems can all be successfully integrated into the entire system.

For further information on Power Delivery Subsystem and Motor Driver Subsystem issues please follow. The Battery Management System (BMS) part of the power delivery subsystem had a copy and pasted issue for all 6 cells where one of the MOSFETs was flipped where the drain and source were flipped and thus causing the external battery charger to not charge the batteries. The Overcurrent and voltage IC on cell 6 ended up exploding the trace so the PCB wasn't salvageable for other testing.

The buck converter part of the power delivery subsystem was semi working up until I attempted to fix the shorted 12v power line and in the process blew D2 which is the diode for the 12v line along with some other traces connecting to 5v and 3.3v lines so further testing other than validating the 3.3v output voltage was not able to be completed. It was found that the diode was "wired" wrong in the PCB design, and this will be sorted out over Christmas break in time for ecen 404.

The H-Bridge/Motor Driver was able to be validated only in the forward direction but not reverse direction. It turns out that the gate threshold voltage to turn on the two NMOSs were not being met thus they weren't being turned on. Again, this will be calculated and fixed in the PCB design2.0 over Christmas break.