Министерство образования и науки Российской Федерации (МИНОБРНАУКИ РОССИИ) ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ) Институт прикладной математики и компьютерных наук Кафедра защиты информации и криптографии

КУРСОВАЯ РАБОТА

БИБЛИОТЕКА ДЛЯ РАБОТЫ С БУЛЕВЫМИ ФУНКЦИЯМИ ДЛЯ ЯЗЫКА ПРОГРАММИРОВАНИЯ LYAPAS

Муругов Михаил Алексеевич

Рук	оводител	Ь	
кан	ід. физм	ат. наук, дог	цент
]	И.А.Панкра	гова
«	>>>	201	_г.
Сту	дент груп	пы № 1155	
		M.A.Mypy	УГОВ

ОГЛАВЛЕНИЕ

Введение			
1 Описание алгоритмов на математическом языке			
$1.1\ \Pi$ ринадлежность булевой функции к классу T^0			
1.2 Принадлежность булевой функции к классу T^1			
1.3 Принадлежность булевой функции к классу монотонных булевых функций			
1.4 Преобразование Мёбиуса булевой функции			
1.5 Принадлежность булевой функции к классу линейных булевых функций			
1.6 Отражение вектора значений булевой функции			
1.7 Принадлежность булевой функции к классу самодвойственных булевых функций			
2 Идеи программных реализаций			
$2.1~$ Принадлежность булевой функции к классу T^0			
$2.2\ \Pi$ ринадлежность булевой функции к классу T^1			
2.3 Принадлежность булевой функции к классу монотонных булевых функций			
2.4 Преобразование Мёбиуса булевой функции			
2.5 Принадлежность булевой функции к классу линейных булевых функций			
2.6 Отражение вектора значений булевой функции			
2.7 Принадлежность булевой функции к классу самодвойственных булевых функций			
3 Экспериментальные данные			
3.1 Принадлежность булевой функции к классу монотонных булевых функций			
3.2 Преобразование Мёбиуса булевой функции			
3.3 Принадлежность булевой функции к классу линейных булевых функций			
3.4 Отражение вектора значений булевой функции			
3.5 Принадлежность булевой функции к классу самодвойственных булевых функций			
4 Заключение			

Список использованных источников и литературы

Приложения

ВВЕДЕНИЕ

Целью этой курсовой работы было написание библиотеки для работы с булевыми функциями (определение принадлежности к замкнутым классам, различные преобразования и т.д.) для языка программирования LYaPAS. В дальнейшем планируется, что эта библиотека будет использоваться для реализации криптографических алгоритмов и прочих нужд.

Для криптографии булевы функции важны т.к. они, в частности, используются в качестве комбинирующих и фильтрующих функций при построении поточных шифров; для блочных шифров они используются в качестве функций блоков замены и т.д.

В нынешнее время язык LYaPAS уже выигрывает по скорости на некоторых алгоритмах, но всё ещё требует доработок и улучшений, в следствие чего и был выбран.

В качестве базиса в языке уже реализованы побитовые операции для булевых векторов любой длины, а также для 32-х битных векторов функция подсчёта веса и генерация псевдослучайного вектора. Всё это используется в настоящей работе для реализации более сложных вещей относительно булевых функций.

ОПИСАНИЕ АЛГОРИТМОВ НА МАТЕМАТИЧЕСКОМ ЯЗЫКЕ

${\it П}$ ринадлежность булевой функции к классу T^0

Определение. Булева функция *сохраняет константу* 0 (*принадлежит классу* T^0), если на наборе из всех нулей функция принимает значение нуль.

Алгоритм:

Вход:
$$f(x_1,...,x_n)$$
 – булева функция

Выход: " f принадлежит классу T^0 ?"

Шаг 1) Если
$$f(0,0,...,0) = 0$$
, то ответ "Да"

Иначе ответ "Нет"

$\mathbf{\Pi}$ ринадлежность булевой функции к классу T^1

Определение. Булева функция *сохраняет константу* 1 (*принадлежит классу* T^1), если на наборе из всех единиц функция принимает значение единица.

Алгоритм:

Вход:
$$f(x_1,...,x_n)$$
 – булева функция

Выход: " f принадлежит классу T^1 ?"

Шаг 1) Если
$$f(1,1,...,1) = 1$$
, то ответ "Да"

Иначе ответ "Нет"

Принадлежность булевой функции к классу монотонных булевых функций

Определение. Булева функция $f(x_1,...,x_n)$ называется монотонной (принадлежит классу M), если для любой пары наборов α и β таких, что $\beta \succeq \alpha$, выполняется условие $f(\beta) \geqslant f(\alpha)$.

Алгоритм определения принадлежности булевой функции к классу монотонных булевых функций приведён в [1].

Преобразование Мёбиуса булевой функции

Определение. Положительной конъюнкцией называется элементарная конъюнкция, не содержащая инверсий переменных. Договоримся обозначать положительную конъюнкцию через K^+ .

///Определение АНФ взять из "Булевы функции в криптографии"! (не нашёл)

Определение. Полиномом Жегалкина, или алгебраической нормальной формой (АНФ), булевой функции $f(x_1,...,x_n)$ называется дизъюнкция с исключением различных положительных конъюнкций переменных из множества $X = \{x_1,...,x_n\}$, то есть формула вида $P = K_1^+ \oplus ... \oplus K_p^+$, задающая функцию $f(x_1,...,x_n)$.

Определение. *Преобразованием Мёбиуса* называется функция $\mu: P_2(n) \to P_2(n)$, где $P_2(n)$ — множество всех булевых функций от n переменных. С помощью преобразования Мёбиуса решается задача построения АНФ булевой функции, и вычислить его значения для функции f(x) можно по формуле $g(a) = \bigoplus_{a \succeq x} f(x)$, где $g = \mu(f)$.

Преобразование Мёбиуса связано с полиномом Жегалкина следующим образом: значение $\mu(f)$ на наборе аргументов говорит о том, есть ли положительная конъюнкция аргументов со значением 1 из этого набора в АНФ функции f (1 — положительная конъюнкция есть, 0 — положительной конъюнкции нет). Набор аргументов (0,...,0) соответствует константе 1.

Алгоритм:

Вход:
$$f(x_1,...,x_n)$$
 – булева функция

Выход:
$$g = \mu(f)$$

Шаг 1)
$$g := f$$

Шаг 2) Для всех
$$a = (a_1, ..., a_n)$$
:

$$\coprod ar 2.1) g(a) = \bigoplus_{x \leqslant a} f(x)$$

Принадлежность булевой функции к классу линейных булевых функций

Определение. Длиной булева вектора назовем количество его компонент, а *весом* вектора — количество компонент, равных единице

Длину булева вектора a в дальнейшем будем обозначать l(a). Запись l(f), где f – булева функция, будет обозначать длину вектора её значений.

Вес булева вектора a в дальнейшем будем обозначать w(a). Запись w(f), где f – булева функция, будет обозначать вес вектора её значений.

Определение. Длиной полинома Жегалкина назовем количество конъюнкций в полиноме, а его *степенью* – наибольший из рангов конъюнкций, входящих в полином.

Определение. Полином Жегалкина называется *линейным*, если его степень не превышает единицы.

Определение. Булева функция называется *линейной* (*принадлежит классу* L), если ее полином Жегалкина линеен.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: " f — линейна?"

Шаг 1) $g := \mu(f)$

Шаг 2) Если полином Жегалкина, построенный по коэффициентам g линеен, то ответ "Да" Иначе ответ "Нет"

Отражение вектора значений булевой функции

Определение. *Отражением* вектора значений булевой функции является обмен значениями на противоположных наборах аргументов.

В дальнейшем отражение вектора значений булевой функции f будем обозначать $f^{\scriptscriptstyle R}$

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: $f^{R}(x_{1},...,x_{n})$

Шаг 1) Для всех $a = (a_1, ..., a_n)$ таких, что $a_1 = 0$:

Шаг 1.1) $f(a) \leftrightarrow f(\bar{a})$

Принадлежность булевой функции к классу самодвойственных булевых функций

Определение. Булева функция $f(x_1,...,x_n)$ называется двойственной булевой функции $g(x_1,...,x_n)$, если она получена из $g(x_1,...,x_n)$ инверсией всех аргументов и самой функции, то есть $f(x_1,...,x_n)=\overline{g(x_1,...,x_n)}$.

Определение. Булева функция $f(x_1,...,x_n)$ самодвойственна (принадлежит классу S), если она равна двойственной себе функции, то есть $f(x_1,...,x_n) = \overline{f(x_1,...,x_n)}$.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: "f — самодвойственна?"

Шаг 1) Для всех векторов $a = (a_1, ..., a_n)$ таких, что $a_1 = 0$:

Шаг 1.1) Если $f(a) \neq \overline{f}(\overline{a})$, то ответ "Heт"

Шаг 2) Ответ "Да"

ИДЕИ ПРОГРАММНЫХ РЕАЛИЗАЦИЙ

Перед изложением дальнейшего материала необходимо кое-что обозначить:

Во-первых, булевы функции в языке LYaPAS представляются векторами их значений.

Во-вторых, вектора значений булевых функций хранятся в логических комплексах L, каждый элемент которого занимает в памяти 4 байта(32 бита). Таким образом, т.к. $l(f(x_1,...,x_n))=2^n$, то функция до 5 аргументов включительно помещается в один элемент комплекса. От 6 в 2 элемента, от 7 в 4 и т.д. Количество элементов комплекса, необходимых для хранения функции от n аргументов можно вычислить по формуле $Q=\left[\frac{2^n+31}{32}\right]$.

В-третьих, значения булевой функции в памяти хранятся в привычном нам порядке (младшие биты справа, старшие биты слева), при этом нулевой бит нулевого элемента комплекса соответствует значению f(0,...,0), следующий за ним f(0,...,0,1) и т.д.

Также обратите внимание, что в этом разделе находятся лишь <u>идеи</u>, сами программные реализации смотрите в приложении.

Принадлежность κ классу T^0

Проверка булевой функции на принадлежность к классу T^0 тривиальна. Необходимо просто посмотреть на первый бит вектора её значений. Если этот бит равен нулю, то функция сохраняет константу 0.

Принадлежность к классу T^1

Для проверки принадлежности булевой функции к классу T^1 необходимо посмотреть на старший бит вектора её значений. Если этот бит равен 1, то функция сохраняет константу 1. Но проверка булевой функции на принадлежность к классу T^1 немного сложнее, чем к классу T^0 , т.к. у функций, зависящих от $n \le 5$ аргументов старший бит вектора значений находится в нулевом элементе комплекса и его сначала необходимо найти. В общем же случае найти старший бит вектора значений функции можно по $\begin{bmatrix} 2^n + 31 \end{bmatrix}$

следующим правилам: $i = \left[\frac{2^n + 31}{32}\right] - 1$, $j = 2^n - 1 \pmod{32}$, где i — индекс элемента комплекса, а j — номер бита в элементе с индексом i.

Принадлежность булевой функции к классу монотонных булевых функций

Т.к. булева функция помещена в «блоки» по 32 бита, то перед стартом рекурсии можно проверить её на монотонность вплоть до 5 компоненты следующими действиями:

$L1i < 1 \& AAAAAAAAA \Rightarrow a$	***Проверяем на монотонность на наборах,		
a & L1i ⊕ a →2	***соседних по пятой компоненте		
$L1i < 2 \& CCCCCCCCh \Rightarrow a$	***Проверяем на монотонность на наборах,		
a & L1i ⊕ a →2	***соседних по четвёртой компоненте		
$L1i < 4 \& F0F0F0F0h \Rightarrow a$			
a & L1i ⊕ a →2	***		
$L1i < 8 \& FF00FF00h \Rightarrow a$			
a & L1i ⊕ a →2			
$L1i < 16 \Rightarrow a$	***Проверяем на монотонность на наборах,		
a & L1i ⊕ a →2	***соседних по первой компоненте		

После того, как каждый элемент комплекса проверен таким образом и немонотонность не обнаружена, то запускается рекурсивная функция, которая проверяет на монотонность по остальным компонентам.

Преобразование Мёбиуса булевой функции

Как следует из способа, изложенного в [2], преобразование Мёбиуса рекурсивно реализуется по следующему алгоритму:

Шаг 1) Разбиваем вектор значений булевой функции на младшую и старшую часть f^0 и f^1 соответственно

Шаг 2)
$$f^1 := f^0 \oplus f^1$$

Шаг 3) Если l(f) = 2, то выход

Иначе выполнить эту процедуру для f^0 и f^1

Принадлежность булевой функции к классу линейных булевых функций

Алгоритм на проверку принадлежности булевой функции довольно прост. Необходимо выполнить преобразование Мёбиуса для этой функции и посмотреть, есть ли хотя бы одна единица на наборе аргументов с более, чем одной единицей.

Алгоритм:

Вход:
$$f(x_1,...,x_n)$$
 – булева функция

Выход: "
$$f$$
 — линейна?"

Шаг 1)
$$g := \mu(f)$$

Шаг 2)
$$g(0,...,0) := 0$$

Шаг 3) Для всех
$$a = (a_1, ..., a_n)$$
 таких, что $w(a) = 1$:

Шаг 3.1)
$$g(a) := 0$$

Шаг 4) Если
$$w(g) = 0$$
, то ответ "Да"

Иначе ответ "Нет"

Отражение вектора значений булевой функции

Отражение вектора значений булевой функции программно довольно нетривиально, т.к. нет таких средств, которые позволили бы сделать это за одну операцию. В языке LYaPAS, т.к. вектора значений булевых функций разбиты на «блоки» по 32 бита, преобразование выполняется следующим образом: сначала выполняется отражение каждого «блока» по отдельности, затем первый «блок» меняется местами с последним, второй с предпоследним и т.д.

Также, т.к. вектора значений булевых функций от $n \le 5$ переменных включительно помещаются в один элемент логического комплекса L, то после отражения таких векторов их необходимо будет побитово сдвинуть вправо на $32-2^n$ бита, т.к. после отражения младшие биты станут старшими в 32-х битном «блоке».

Функция, выполняющая отражение 32-х битного «блока»:

Принадлежность булевой функции к классу самодвойственных булевых функций

Программно проверка на принадлежность булевой функции к классу самодвойственных булевых функций реализована согласно следующему алгоритму:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: "f — самодвойственна?"

Шаг 1) Разбиваем вектор значений булевой функции на младшую и старшую часть f^0 и f^1 соответственно

Шаг 2) Если $f^0 = \overline{(f^1)^R}$, то ответ "Да"

Иначе ответ "Нет"

 $\overline{(f^1)^R}$ — этим самым действием мы сопоставляем значения функции на противоположных наборах аргументов, а затем проверяем условие $f(x_1,...,x_n) = \overline{f(x_1,...,x_n)}$.

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Ниже будут представлены графики зависимости времени работы функций над булевыми функциями от количества переменных в булевых функциях. Для каждого количества переменных выполнялось по 100 итераций и на вход подавался наихудший случай (проверка констант на монотонность и т.д.).

Для проверки принадлежности к классам T^0 и T^1 эксперименты не проводились, т.к. сложность этих операций O(1) и смотреть зависимость времени работы функций от количества переменных в булевой функции бессмысленно.

Как видно из графика, при n > 22 функция имеет сложность $O(2^n)$.

Преобразование Мёбиуса булевой функции

Как видно из графика, при n > 22 функция имеет сложность $O(2^n)$, но даже для функции от 31 аргумента выполняется быстрее, чем за секунду.

Принадлежность булевой функции к классу линейных булевых функций

Как видно из графика, при n > 5 функция имеет сложность $O(2^n)$.

Отражение вектора значений булевой функции

Как видно из графика, при n > 5 функция имеет сложность $O(2^n)$.

Принадлежность булевой функции к классу самодвойственных булевых функций

Как видно из графика, при n > 22 функция имеет сложность $O(2^n)$.

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. Быкова С.В. Учебно-методический комплекс «Булевы функции». Томск 2006.
- 2. Панкратова И.А. Учебное пособие «Булевы функции в криптографии». Томск 2014.