هوش مصنوعي

بهار ۱۴۰۲

استاد: محمدحسین رهبان

گردآورندگان: علی عباسی

دانشكدهي مهندسي كامپيوتر

كوييز دوم

سوالات (۱۰۰ نمره)

۱. (۵۰ نمره) با توجه به شبکه بیزی زیر، بگویید استقلال شرطی در کدام یک از موارد زیر برقرار است و در صورت برقرار نبودن، همهی مسیرهای فعال موجود در گراف را بیان کنید.

- $U \perp \!\!\! \perp X$ ($\overline{1}$)
- $U \perp \!\!\! \perp X \mid T \ (\mathbf{v})$
- $V \perp \!\!\! \perp W \mid Y \mid (\tau)$
- $V \perp \!\!\! \perp W \mid T$ (2)
- آ) تضمین نمی شود. مسیر U-T-X فعال است.
 - (ب) تضمین می شود.
- (-7) تضمین نمی شود. مسیرهای V-T-W و V-Y-W فعال هستند.
 - (د) تضمین می شود.

۲. (۵۰ نمره) مدل HMM زیر را در نظر بگیرید:

X_1	$P(X_1)$
0	0.3
1	0.7

X_t	X_{t+1}	P
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

X	t	O_t	$P(O_t X_t)$
0		A	0.9
0		В	0.1
1		A	0.5
1		В	0.5

که $P(X_{\mathsf{T}}|O_{\mathsf{T}}=A,O_{\mathsf{T}}=B)$ را گام، توزیع $P(X_{\mathsf{T}}|O_{\mathsf{T}}=A,O_{\mathsf{T}}=B)$ را که O_t به دست بياوريم.

- را به دست بیاورید (یعنی به ازای مقادیر مختلف X_1 مقدار این احتمال را $P(X_1,O_1=A)$ توزیع (آ) محاسبه كنيد).
 - (ب) از قسمت قبل استفاده کنید و توزیع $P(X_{1},O_{1}=A)$ را به دست بیاورید.
 - (+, -1) از نتیجهی قسمت قبل استفاده کنید و توزیع $P(X_{1}, O_{1} = A, O_{1} = B)$ را به دست بیاورید.

(د) در نهایت به کمک قسمت قبل، توزیع مد نظر یعنی $P(X_{\mathsf{Y}}|O_{\mathsf{Y}}=A,O_{\mathsf{Y}}=B)$ را محاسبه کنید (نیازی به ساده کردن پاسخ نهایی نیست).

حل.

 $(\overline{1})$

$$P(X_1, O_1 = A) = P(X_1)P(O_1 = A|X_1)$$

$$P(X_1 = \cdot, O_1 = A) = (\cdot/\mathbf{Y})(\cdot/\mathbf{Y}) = \cdot/\mathbf{Y}\mathbf{Y}$$

$$P(X_1 = 1, O_1 = A) = (\cdot/\mathbf{Y})(\cdot/\mathbf{A}) = \cdot/\mathbf{Y}\mathbf{A}$$

(ب)

$$P(X_{\mathsf{Y}}, O_{\mathsf{Y}} = A) = \sum_{x_{\mathsf{Y}}} P(x_{\mathsf{Y}}, O_{\mathsf{Y}} = A) P(X_{\mathsf{Y}} | x_{\mathsf{Y}})$$

$$P(X_{\mathsf{Y}} = {\boldsymbol{\cdot}}, O_{\mathsf{Y}} = A) = ({\boldsymbol{\cdot}}/{\mathsf{Y}}{\mathsf{Y}})({\boldsymbol{\cdot}}/{\mathsf{F}}) + ({\boldsymbol{\cdot}}/{\mathsf{Y}}{\boldsymbol{\delta}})({\boldsymbol{\cdot}}/{\boldsymbol{\Lambda}}) = {\boldsymbol{\cdot}}/{\mathsf{Y}}{\mathsf{A}}{\mathsf{A}}$$

$$P(X_{\mathsf{Y}} = {\boldsymbol{Y}}, O_{\mathsf{Y}} = A) = ({\boldsymbol{\cdot}}/{\mathsf{Y}}{\mathsf{Y}})({\boldsymbol{\cdot}}/{\mathsf{F}}) + ({\boldsymbol{\cdot}}/{\mathsf{Y}}{\boldsymbol{\delta}})({\boldsymbol{\cdot}}/{\mathsf{Y}}) = {\boldsymbol{\cdot}}/{\mathsf{Y}}{\mathsf{Y}}{\mathsf{Y}}$$

(ج)

$$P(X_{\mathsf{Y}}, O_{\mathsf{Y}} = A, O_{\mathsf{Y}} = B) = P(X_{\mathsf{Y}}, O_{\mathsf{Y}} = A)P(O_{\mathsf{Y}} = B|X_{\mathsf{Y}})$$

$$P(X_{\mathsf{Y}} = {}^{\mathsf{Y}}, O_{\mathsf{Y}} = A, O_{\mathsf{Y}} = B) = ({}^{\mathsf{Y}}\mathsf{Y}\mathsf{A}\mathsf{A})({}^{\mathsf{Y}}\mathsf{A}) = {}^{\mathsf{Y}}\mathsf{Y}\mathsf{A}\mathsf{A}$$

$$P(X_{\mathsf{Y}} = {}^{\mathsf{Y}}, O_{\mathsf{Y}} = A, O_{\mathsf{Y}} = B) = ({}^{\mathsf{Y}}\mathsf{Y}\mathsf{Y}\mathsf{Y})({}^{\mathsf{Y}}\mathsf{A}) = {}^{\mathsf{Y}}\mathsf{A}\mathsf{A}$$

(c)

$$P(X_{\mathbf{Y}} = \cdot | O_{\mathbf{Y}} = A, O_{\mathbf{Y}} = B) = \cdot / \cdot \mathsf{YAA} / (\cdot / \cdot \mathsf{YAA} + \cdot / \mathsf{NP}) \approx \cdot / \mathsf{YA}$$

$$P(X_{\mathbf{Y}} = \mathsf{N} | O_{\mathbf{Y}} = A, O_{\mathbf{Y}} = B) = \cdot / \mathsf{NP} / (\cdot / \cdot \mathsf{YAA} + \cdot / \mathsf{NP}) \approx \cdot / \mathsf{VA}$$