- 1. antall mêter à fylle ut foiste rad pa en autal wordnede utualy med tilboalule gaing au 5 objekter blant 3 de 5 objekteur fordeler sey du pû 3 celler som nirt i tabellen. Centall slike retralg en $\binom{3+5-1}{5}=\binom{7}{7}=\binom{7}{7}=\frac{7\cdot 6}{1\cdot 2}=21$. Til svaranole en antall mêter à fylle ut andre rad pû $\binom{3+6-1}{5}=\binom{8}{5}=\binom{8\cdot 7}{1\cdot 2}=28$. Til sammen $21\cdot 28=588$ wêter à fylle ut tabellen.
- 2. Ja, det er en tantologi. Alt. 1: Sanabetsverditabell. Alt. 2: Sleetringsregler: Tr og p-r giv Tp, Tp og Tq-p giv TTq, des. q. Alt. 3:
 Eresk måte hovedingslibasjonen ban være usana på, er at q er usan
 og renstre side sann. Venstre side er sann bare bus alle tre ledelme
 i benjunksjonene er sanne. Da må r være usann, dumed p usannmen de blir Tq-p usann, og ni har en motsigelse det er
 altså ible malig at utsagnt er usant.

3. $\bigcup_{i=2}^{n} A_i = A_8$ (A: $i = A_9$ for all i = 2, 3, ..., 8), $\sum_{i=2}^{n} A_i = A_2$ (A2 $i = A_3$) for all i = 2, 3, ..., 8), $\bigcup_{i=1}^{n} A_i = 2^+$ (unnyden ar alle positive heltall - for alle $i \in 2^+$ at $i \in A_k$), $\bigcap_{i=1}^{n} A_i = \{1\}$ ($\{1\} = A_i \in A_i$ for alle i).

- 4. This n=1, manyolen has ett element, has manyolen to delmanyolen \$\psi\$ og sy sy's1, dr. 2' delmanyolen, så utragnot er samt for n=1. Anta at utragnot en samt for n. Vi shed rise at enhan manyole ened n+1 elementer han 2ⁿ⁺¹ delmanyolen: Sit en shih manyolen 5. Vely ett element, a. Delmanyolen ar 5 an da delmanyolene ar 5-{a}, som det en 2ⁿ ar ifly. indulesjonsanstakelsen, samt delmanyolene ar 5-{a}, som det en 2ⁿ indulesjonsanstakelsen, samt delmanyolene ar 5-{a}, som det en 2ⁿ v. Til samman 2ⁿ + 2ⁿ = 2·2ⁿ = 2ⁿ⁺¹, og ni han nist at utragnot en samt for alla no Zt.
- 5. $f(A) = \{0, 1, 2, 3, 5, 6, 7, 8\}$, des. 8 distinkte funksjonsvendiet, like mange som let er elementer i A. Så hvis a, $\neq \alpha_z$, $\alpha_1, \alpha_2 \in A$, er $A(a_1) \neq f(a_2)$, og f er enemtydig. f er ikke på B, da $4 \neq f(a)$ for alle $a \in A$.
- 7. a=a for alle a = Z, så (e,a) ∈ R, vy R en refleksiv.

 this (a,b) ∈ R, en a=b el. a=-b. Da m b=a el. b=-a, så (b,a) ∈ R, vy R
 en symmetrish.

 plis (a,b) ∈ R og (bre) ∈ R, en a=±b y b=±c, claimed a=±c, så

 (a,c) ∈ R, og R en toensitiv.

 R en riche antisymmetrisk, for (1,-1) ∈ R og (1,1) ∈ R, men -1≠1.

 R en en elvivalmsvelasjon (refl., symm., trans.), {krivalensklassma en {05, {-l,13, {-2,23, {-3,33, -...}}}.

s. De to first ar planare:

Den siste er ikke pelanar, da den har Ks som en subgraf (indasut av de 5 durch hjørnen).

eller e ch

Korkske vei: a-c-b-d-e-f tengde 13