

Lesson 11: Introduction to RNN, LLM and GPT

CARSTEN EIE FRIGAARD

AUTUMN 2024

Agenda

- Search Quest and Cake...
- Intro to text-processing in ML
 - ► RNNs,
 - LLMs,
 - ▶ GPTs
- ..and hands-on exercise nanoGPT.

INTRO TO ML TEXT PROCESSING

Recurrent Neural Networks (RNN)

network against the time axis, as snown in Figure 13 1 (Figure). This is called unrolling the network through time (it's the same recurrent neuron represented once per time step).

Figure 15-1. A recurrent neuron (left) unrolled through time (right)

You can easily create a layer of receives both the input vector: $\hat{\mathbf{y}}_{(t-1)}$, as shown in Figure 15-2. 1 (when there was just a single party)

neurons. At each time step t, every neuron putput vector from the previous time step th the inputs and outputs are now vectors

RNN

Recurrent Neural Networks: Sequences and Transformation...

[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]

many to many

RNN

Transformer: input-output encoding

DATASET: HCA or Shakespeare (or DR news)

Text data and transformers...

"Der kom en soldat marcherende hen ad landevejen [..]"

```
"Der kom en sol" => 'd'
"er kom en sold" => 'a'
  "r kom en solda" => 't'
   " kom en soldat" => ' '
```

Random text and image: "vim5 Rrd vjmt8vt"

LLM

Model	Model architecture	Training data	Model weights	Checkpoints	Compute- optimal training	License
OpenAl GPT-4	Closed	Closed	No	No	Unknown	Not available
Deepmind Chinchilla	Open	Closed	No	No	Yes	Not available
Meta OPT	Open	Open	Researchers Only	Yes	No	Non- commercial
Pythia	Open	Open	Open	Yes	No	Apache 2.0
Cerebras-GPT	Open	Open	Open	Yes	Yes	Apache 2.0

[https://jacar.es/wp-content/uploads/2023/03/cerebras_gpt_models.png]

https://en.wikipedia.org/wiki/Large_language_model

Large language model

文A 45 languages ∨

Article Talk Read Edit Viewhistory Tools >

From Wikipedia, the free encyclopedia

Not to be confused with Logic learning machine.

A **large language model** (**LLM**) is a type of computational model designed for natural language processing tasks such as language generation. As language models, LLMs acquire these abilities by learning statistical relationships from vast amounts of text during a self-supervised and semi-supervised training process.^[1]

The largest and most capable LLMs are artificial neural networks built with a decoder-only transformer-based architecture, enabling efficient processing and generation of large-scale text data. Modern models can be fine-tuned for specific tasks, or be guided by prompt engineering. [2] These models acquire predictive power regarding syntax, semantics, and ontologies [3] inherent in human language

Part of a series on							
Machine learning							
and data mining							
Paradigms	[show]						
Problems	[show]						
Supervised learning	[show]						
(classification • regression)							
Clustering	[show]						
Dimensionality reduction	[show]						
Structured prediction	[show]						
Anomaly detection	[show]						
Artificial neural network	[hide]						

Autoprodor - Doop Joarning -

GPT

GPT

Generative Pre-trained Transformer

[https://www.mathworks.com/content/dam/mathworks/ mathworks-dot-com/cmsimages/discovery/images/ chatgpt-discovery-page-llm-transformers-diagram.jpg]

Generative? Discriminative Neural Network

Input

Generative Neural Network

[https://en.wikipedia.org/wiki/ Generative_artificial_intelligence#/ media/ File:Discriminative_vs_Generative_Neural_Networks.png]

Pre-trained?

..is pre-trained just trained?

..but a Transformer alright!

chat-T, chat-GT, and GAI?

GPT HANDS-ON EXERCISE

UNUSED SLIDES...

Facts and Reflections

p7: "Temperatures are between 0 and 1. Lower temperatures inject less randomness; with a temperature of 0, ChatGPT should always give you the same response to the same prompt. If you set the temperature to 1" p7: "For ChatGPT, the total length of the prompt and the response currently must be under 4096 tokens," p8: on the net "Estimates of the percentage of false statements are typically around 30 p9: "The training data for ChatGPT and GPT-4 ends in September 2021"

p11: "You will have to edit it and, while some have suggested that ChatGPT might provide a good rough draft, turning poor prose into good prose can be more difficult than writing the first draft yourself.

NOTE: "What Are ChatGPT and Its Friends?", Mike Loukides, O'Reilly, 978-1-098-15259-8

Training Cost and

NVIDIA A100

Once you know the parameter count, token count, and n easily calculate the theoretical training costs for many po example, we will use Nvidia A100s, using \$1.5 per hour per "FLOPS utilization" will increase from 40% to 60% with lars explained here, but generally, there isn't much room to go his

TECHGOING

Threza Gabriel 18/02/2023

How much does ChatGPT cost? \$2-12 million per training for large models

State-Of-The-Art Training Costs

Model	Optimal LU	M.T.					
MosaicMI Con	Size	Optimal LLM Training Cost					
Yandey V.	(# Paramete	ers) Toker		GPU			
Tsinghua	137 Billion	610 Billi	0.0				
Tsinghua University Zhipu.Al GLM Open Al GPT-3	100 Billion	168 Billio	-	4100			
Al21 Jurassic	130 Billion	300 Billio	on A	100 9			
bioom	175 Billion	400 Billion	A	100 5			
	178 Billion	300 Billion	7.	100 \$			
DeepMind Sopher	176 Billion	300 Billion	A1	00 \$			
DeepMind Chinchilla MosaicML GPT-70B	280 Billion	366 Billion	A10	00 \$			
Ividia Microsoft MT-NLG	70 Billion	300 Billion	A10	0 5			
oogle PaLM	70 Billion	1,400 Billion	A10	0 5			
O.C. PALIM	530 Billion	1,400 Billion	A100	5			
	540 Billion	270 Billion	A100	\$			
s table is a theoretical optimal c	Silion	780 Rillia	A100	\$			
ount for a theoretical optimat		billion	A100	\$			

SEARCH MY ACCOUNT

Realme 61

Latest

Training Cost and Hardware

The Company & its Products ▼ | Bloomberg Terminal Demo Request

Bloomberg

Subscribe

Green New Energy

Artificial Intelligence Is Booming—So Is Its Carbon Footprint

Greater transparency on emissions could also bring more scrutiny

https://www.bloomberg.com/news/articles/2023-03-09/
how-much-energy-do-ai-and-chatgpt-use-no-one-knows-for-sure?leadSource=uverify%20wall