第 20 讲: DCT 图像压缩

• 变换编码原理

- DCT
- 均匀量化
- 变换系数编码

• ISO JPEG标准

- 基本模式
 - 量化矩阵
 - 直流系数的预测编码
 - 交流系数的"之"字形扫描和编码
- 渐进编码模式
- 分层编码模式

变换编码原理

- · 分为8×8 的块以利用像素间的局部相关性。
- 变换编码旨在将最多的信息压缩到最小数量的变换系数中。
- 量化器可消除那些携带了无关紧要信息的系数。
- 符号编码器通过熵编码 (VLC) 来压缩由量化的变换系数构成的符号。 Chapter 7 Image Compression

为什么使用离散余弦变换?

- DCT是正交的。 变换域中的均方量化误差等于图像域中的均方误差。
- 可使用FFT快速实现。
- · 2D DCT是可分离的。
- 接近最佳能量压缩特性,且其基函数与图像无关。
 - 对于具有高相关系数的平稳1阶马尔可夫信源,DCT的性能接近Karhunen-Loeve变换(KLT)。
- 有专用硬件。

演示: 1-D DCT

8点信号

电平移位信号

8点DCT

DCT 基函数

信号逐次相加

2D DCT

• **II 型 DCT 变换**施加到 8×8的块:

$$S(k_1, k_2) = \sqrt{\frac{4}{N^2}} C(k_1) C(k_2) \sum_{n_1 = 0}^{N-1} \sum_{n_2 = 0}^{N-1} s(n_1, n_2) \cos\left(\frac{\pi(2n_1 + 1)k_1}{2N}\right) \cos\left(\frac{\pi(2n_2 + 1)k_2}{2N}\right)$$

$$E \Rightarrow C(k) = \begin{cases} 1/\sqrt{2} & \text{if } k = 0\\ 1 & \text{otherwise} \end{cases}$$

· II型DCT的对称扩展由下式给出:

$$g(n) = s(n) + s(2N - 1 - n), \quad 0 \le n \le 2N - 1$$

- 计算N点信号s(n)的N点DCT S(k)的 2N点 FFT 算法如下:
 - 1) 构造 2N点对称扩展信号 g(n)。
 - 2) 计算 g(n)的 2N点 DFT G(k), k = 0, ..., 2N 1.

3)
$$S(k) = W_{2N}^{k/2}G(k), k = 0, ..., N - 1, \pm \psi$$
 $W_{2N}^{k} = e^{-j\frac{2\pi k}{2N}}$

示例: 通过DCT进行能量压缩

	139	144	149	153	155	155	155	155
	144	151	153	156	159	156	156	156
	150	155	160	163	158	156	156	156
	159	161	162	160	159	159	158	159
	159	160	161	162	162	155	155	155
	161	161	161	161	160	157	157	157
	162	162	161	163	162	157	157	157
	162	162	161	161	163	158	158	158
ı								

1260) -1	-12	-5	2	-2	-3	-1
-23	-17	-6	-3	-3	0	0	-1
-11	-9	-2	2	0	-1	-1	0
-7	-2	0	1	1	0	0	0
-1	-1	1	2	0	-1	1	1
2	0	2	0	-1	1	1	-1
-1	0	0	-1	0	2	1	-1
-3	2	-4	-2	2	1	-1	0

图像块 (Lena)

NINT[DCT 块]

• Ref. M. Rabbani and P. Jones, Digital Image Compression Techniques, SPIE Press, 1991.

均匀量化

• 均匀量化可由下式来实现:

$$\hat{S}(k_1, k_2) = NINT \left\{ \frac{S(k_1, k_2)}{T(k_1, k_2)} \right\}$$

其中 $S(k_1, k_2)$ 是 $S(k_1, k_2)$ 的量化近似, $T(k_1, k_2)$ 是量化步长或阈值。

- 具有非零 $\hat{S}(k_1,k_2)$ 的系数被保留。
- 根据相对视觉重要性,在8×8块的DCT系数中选择T(k₁, k₂)。(较粗的量化会使较大的T(k₁, k₂)用于高频系数。)

人类视觉加权量化

变换系数编码

• 哪些变换系数是重要的?

- 区域编码:对固定数量和位置的变换系数进行编码, 例如低频系数
- 内容自适应:一维变换系数排序和游程编码

• 直流系数编码

- 直流系数的块间预测

静止图像压缩标准

ITU-T G3/G4	二进制图像(非自适应)
	-发送传真文件 (1980)
ISO JBIG	二进制和位平面编码
	-处理逐行式传输和半色调 (1994)
ISO JPEG	静止灰度和彩色图像
	- 基于块的 DCT (1993)
ISO JPEG-LS	新的无损编码标准
	-非线性预测, 基于上下文的Rice-
	Goulomb 编码 (1997)
ISO JPEG 2000	新的小波编码标准(正在进行中)

JPEG 标准

- JPEG (ISO / IEC 10918-1 | ITU建议T.81) 描述了**连续色调**(灰度 或彩色) 静止图像的压缩方法。
- 1988年1月的会议上, JPEG对自适应离散余弦变换方法达成共识。 JPEG草案国际标准 (DIS) 文件于1991年10月提交。 JPEG于1993年成为国际标准。
- JPEG不是用于图像交换的完整架构。没有指定特定的文件格式、 空间分辨率或颜色空间模型。

允许JPEG压缩图像的图像文件格式示例:

- -JPEG文件交换格式(JFIF) 是一种最小的文件格式,可以进行JPEG比特流的交换。它使用标准色彩空间(ITU-R 601-1)。
- -标签图像文件格式(TIFFTM)版本6.0支持JPEG基本和霍夫曼 无损编码模式,可以是灰度,RGB,CMYK和YUV色彩空间。

JPEG 特征

- **独立分辨率**:任意信源分辨率可以通过将图像内部填充到8 像素的倍数以适应DCT操作模式。
- 精度: 8比特和12比特/像素的DCT操作模式。 在无损模式下,精度可以在2到16比特/像素之间,尽管JBIG 在4-5比特/像素以下表现更好。
- 无绝对比特率目标:比特率/质量权衡主要由量化矩阵控制。
- 売度-色度可分离性: 从编码的彩色图像中恢复仅亮度图像而无需解码色度的能力。
- 可扩展性: 渐进式或分级的层数没有界限。

JPEG 操作模式

• 要兼容JPEG,系统必须支持基本算法。

Ref. W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand Reinhold, 1993.

JPEG 基本算法

- DCT计算:图像分为8×8块。块的2-DDCT在电平 移位后计算。
- DCT系数和之字形扫描的量化: 默认的对色度和 亮度的量化矩阵可被调整以提供各种压缩级别。
- 可变长编码(VLC):使用一种定义了系数值和 连零个数的VLC码字对AC系数进行编码。指定了标 准VLC码表。DC系数是使用DPCM编码的。

在基本模式下,输入和输出数据精度为8比特/像素,量 化后DCT值限制为11比特/样本。

量化矩阵

- 平坦量化:可以对所有DCT系数使用一个量化阶(阈值)。
- HVS加权量化:根据人类视觉系统响应,阈值随频率而变化。所有块都使用单个阈值矩阵。
- **自适应量化**:通过简单的缩放,量化矩阵可以被允许从 块到块改变。缩放参数称为"mquant"。
 - 在所有情况下,保留系数的位置因块而异。

JPEG 缺省量化矩阵

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

亮度量化表

色度量化表

JPEG 自适应量化

- 允许空间自适应量化,其中量化矩阵可以在块与 块之间缩放。
 - 例如,基于对亮度方差的测量,在高活动(边缘),中等活动(纹理)和统一块之间进行区分。
 - 与非自适应量化相比,性能提高30%。

• ISO DIS 10918-3, JPEG Extension, August 1994.

系数的编/解码

DC系数编码

DC系数的DPCM编码(也称为DC预测)

AC系数编码

- 由于保留系数的位置因块而异,所以量化后的AC系数 被之字形扫描并形成(游程,量化电平)对。
- 量化电平 = 非零系数的值; 游程 = 在非零系数之前的零的 个数。
- 对这些(游程,量化电平)对进行 熵编码,即对出现频率较低的 对使用长码,反之则使用短码)。

JPEG基本算法 — 示例

-76	-73	-67	-62	-58	-67	-64	-55
-65	-69	-62	-38	-19	-43	-59	-56
-66	-69	-60	-15	16	-24	-62	-55
-65	-70	-57	-6	26	-22	-58	-59
-61	-67	-60	-24	-2	-40	-60	-58
-49	-63	-68	-58	-51	-65	-70	-53
-43	-57	-64	-69	-73	-67	-63	-45
-41	-49	-59	-60	-63	-52	-50	-34

Γ	115	20	62	25	55	20	-1	3
	-413	-29	-02		33	-20	-1	3
	7	-21	-62	9	11	-7	-6	6
	-46	8	77	-25	-30	10	7	-5
	-50	13	35	-15	-9	6	0	3
	11	-8	-13	-2	-1	1	-4	1
	-10	1	3	-3	-1	0	2	-1
	-4	-1	2	-1	2	-3	1	-2
	-1	-1	-1	-2	-1	-1	0	-1
ı								

电平移位后的8×8原始图 像块(移位了128) DCT变换结果

示例 (cont'd)

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

-26	-3	-6	2	2	0	0	0
1	-2	-4	0	0	0	0	0
-3	1	5	-1	-1	0	0	0
-4	1	2	-1	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

JPEG 建议的量化矩阵

量化后系数矩阵

示例 (cont'd)

· 之字形扫描后的1-D系数序列:

-26-31-3-2-62-41-41150200-1200000-1-1EOB 其中EOB表示块的结尾。

- 编码DC系数:对当前块和先前块的DC系数之间的差进行编码。
- 编码AC系数: 定义 (RUN, LEVEL) 为符号;例如(0,-3); (0,1); (0,-3)...
- · 对这些符号进行VLC(霍夫曼或算术)编码。

示例: JPEG 解码器

解码器是实现逆运算。也就是说,首先将接收到的系数乘以相同的量化矩阵以获得:

320	55	-30	16	72	-80	51	0
-36	-24	14	38	26	0	0	0
-14	-13	16	24	40	0	0	0
-14	0	0	29	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

• 执行逆DCT,并将每个元素加上128:

· 重建误差最多为±25灰度级

编码器控制和压缩损伤

- 在JPEG中,解码图像质量和比特率(文件大小)之间的折中可以通过 对默认量化矩阵进行缩放的全局缩放因子进行控制。
- 以大于1的因子对量化矩阵进行缩放导致较粗略的量化,可降低比特率, 但代价是更高的压缩误差。
- 压缩比 (CR) 被定义为原始图像与压缩图像的码率的比率。对于8 比特单色图像, CR=8 (即, 1比特/像素) 可实现大多数图像的视觉无损压缩。在CR=15或更高时则会观察到严重的振铃和块效应。
- 大多数JPEG的实现为用户提供了用于折中图像质量和图像尺寸的参数, 例如缩放量化矩阵的品质因子(QF)参数。QF的值的范围通常在1-100 之间,其中QF=75对应于未缩放的默认矩阵,但是也可能因具体实现

彩色图像压缩

• JPEG使用标准色彩空间 (ITU-R 601-1)。 它将RGB图像转换为亮度色度空间, 称为Y-Cr-Cb空间, 由下式定义:

Y = 0.3 R + 0.6 G + 0.1 B

$$Cr = \frac{B-Y}{2} + 0.5$$

$$Cb = \frac{R-Y}{1.6} + 0.5$$

- 因为人眼对色度分量Cr和Cb的高频分量相对不敏感,所
 - 以它们在两个方向上被二倍下采样。
- 宏块:四个8×8亮度块和相关联的色度块。 比特流以宏块顺序组织。

Y1	Y2	Y5	Y6
Y3	Y4	Y 7	Y8
Y 9	Y10	Y13	Y14
Y11	Y12	Y15	Y16

交错与非交错扫描

· 一幅彩色图像可以被编码为非交错 (3 个独立的扫描) 或 交错 (一个独立的扫描).

• 非交错:

扫描 1: Y1, Y2, Y3, ..., Y16

扫描 2: Cr1, Cr2, Cr3, Cr4

扫描 3: Cb1, Cb2, Cb3, Cb4

交错:

Y1, Y2, Y3, Y4, Cr1, Cb1, Y5, Y6, Y7, Y8, Cr2, Cb2, ... 对于交错扫描, 块根据帧和扫描头数据中指定的参数进行排序。

JPEG - 渐进

- 渐进模式由"扫描"序列组成,每个扫描序列都对一部分量化的DCT系数进行编码。
- 频谱选择: DCT系数被分组成各个频带。 较低的频带通常 首先被编码(发送)。
- **连续近似**: 首先以较低的精度发送信息, 然后在稍后的扫描中进行细化。
- 可以组合两个过程以提供平滑变化的质量。

JPEG -分层

 第一级(最低分辨率)使用顺序或逐行JPEG模式 之一进行编码。然后对每个分级阶段的输出进行上采 样(内插),并用作下一阶段的预测。

 极低比特率的图像质量超过了任何其他JPEG模式,但 这是以描述所有级数的较高 比特率为代价的。

VCDemo

http://homepage.tudelft.nl/c7c8y/VcDemo.html

习题

- 7.1
- 7.2
- 7.6
- 7.8 $E\{(X_n \rho X_{n-1})X_n\} = 0 \not t \not t : E\{(X_n \rho X_{n-1})X_{n-1}\} = 0$