## Diabetes Prediction using Fuzzy Logic

### **Group Fuzzing**

Presenters: Ting Wei Jing 17205876 Lee Cheng Hui 17204205 Stanley Quek 17204457 Soh 7hi Chen 17204929

# **O1**Introduction







### Introduction

The National Diabetes Statistics Report provides up-to-date information on the prevalence and incidence of diabetes and prediabetes, risk factors for complications, acute and long-term complications, deaths, and costs.

These data can help focus efforts to prevent and control diabetes across the United States. This report is continually updated as data become available and is intended for a scientific audience.

Information about the methods is available here.

### Fast Facts on Diabetes

### Diabetes

- Total: 37.3 million people have diabetes (11.3% of the US population)
- Diagnosed: 28.7 million people, including 28.5 million adults
- Undiagnosed: 8.5 million people (23.0% of adults are undiagnosed)

### **Prediabetes**

- Total: 96 million people aged 18 years or older have prediabetes (38.0% of the adult US population)
- 65 years or older: 26.4 million people aged 65 years or older (48.8%) have prediabetes

### Introduction

Diabetes mellitus is one of the most serious worldwide public health issues, posing a significant global burden on both public health and socioeconomic development. Although the incidence of diabetes has begun to decline in some nations, diabetes prevalence has climbed in most other developing and developed countries in recent decades [ $\underline{1}$ – $\underline{9}$ ]. According to the International Diabetes Federation (IDF), 9.3 percent (463 million) of adults worldwide have diabetes in 2019. The number is expected to rise to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045 if effective prevention methods are not implemented [ $\underline{7}$ , $\underline{8}$ ]. Furthermore, in 2017, nearly half of all people with diabetes (50.1%) were undiagnosed, approximately 374 million individuals (18–99 years) [ $\underline{8}$ ]. Similarly, prediabetes is estimated to affect 374 million (7.5%) of the global population in 2019 and is expected to increase to 8.0 percent (454 million) by 2030 and 548 million (8.6%) by 2045, with 48.1% of individual with prediabetes are under the age of 50 [ $\underline{8}$ ]. Type-2 diabetes reduces the average lifespan by around ten years [ $\underline{9}$ ].

Malaysia has the highest rate of diabetes in Western Pacific region and one of the highest in the world and costing around 600 million US dollars per year [10.11]. The prevalence of diabetes raised from 11.2% in 2011 to 18.3% in 2019, with a 68.3% increase [12]. According to a national survey report, in Malaysia in 2019, 3.6 million adults (18 and above years) had diabetes, 49% (3.7 million) cases were undiagnosed [13]. Diabetes is expected to affect 7 million Malaysian adults aged 18 and older by 2025, posing a major public health risk with a diabetes prevalence of 31.3% [12]. The prevalence of diabetes in Malaysia, based on published articles, ranges from 7.3% to 23.8% [14.15]. The increasing trend is a result of a variety of causes, including population expansion, population ageing, urbanization, and rising rates of obesity and physical inactivity [16]. The alarming prevalence of diabetes and its complications in Malaysia prompted this study to systematically identify, summarize available evidence on the prevalence of diabetes and prediabetes, and to estimate the pooled prevalence of diabetes and prediabetes in Malaysia. To our knowledge, no prior effort has been made to combine existing data on the prevalence of diabetes and prediabetes in Malaysian populations.

(Akhtar et al., 2022)

Diabetes often goes undetected and untreated during its early stages, which can cause serious harm to the body and makes it difficult to treat down the line.

## **Objectives**

1. To identify individuals at high risk for developing diabetes, so that they can be targeted for preventive measures such as lifestyle interventions.

To diagnose diabetes at an early stage, so that people with the condition can receive treatment as soon as possible and minimise the risk of complications.

3. To assist medical professionals in the diagnosis of diabetes patients and to reduce the number of false negatives and false positive cases.

# **O2**Describing our data

## **Dataset**



## **Dataset Features**

| Column                                 | Description                                                |
|----------------------------------------|------------------------------------------------------------|
| Number of pregnancies                  | Number of times the person gets pregnant                   |
| Plasma glucose concentration (Glucose) | Plasma glucose concentration in a person's body            |
| Diastolic blood pressure               | Diastolic blood pressure in (mm Hg)                        |
| Triceps skinfold thickness             | Triceps skinfold thickness in (mm)                         |
| Serum insulin                          | 2-Hour serum insulin (μU/ml)                               |
| Body mass index (BMI)                  | Body mass index (weight in kg/(height in m) <sup>2</sup> ) |
| Diabetes pedigree                      | History of diabetes associated with a particular person    |
| Age                                    | Age of a person                                            |
| Class variable                         | Yes (diabetic) and No (non-diabetic)                       |

## Missing Features

- Glucose
- Blood Pressure
- Skin Thickness
- Insulin
- BMI

## **Descriptive Statistics**

|       | Pregnancies | Glucose | Blood Pressure | Skin Thickness | Insulin | ВМІ     | Pedigree Function | Age     | Outcome |
|-------|-------------|---------|----------------|----------------|---------|---------|-------------------|---------|---------|
| count | 392         | 392     | 392            | 392            | 392     | 392     | 392               | 392     | 392     |
| mean  | 3.30102     | 122.628 | 70.6633        | 29.1454        | 156.056 | 33.0862 | 0.52305           | 30.8648 | 0.33163 |
| std   | 3.21142     | 30.8608 | 12.4961        | 10.5164        | 118.842 | 7.02766 | 0.34549           | 10.2008 | 0.4714  |
| min   | 0           | 56      | 24             | 7              | 14      | 18.2    | 0.085             | 21      | 0       |
| 25%   | 1           | 99      | 62             | 21             | 76.75   | 28.4    | 0.26975           | 23      | 0       |
| 50%   | 2           | 119     | 70             | 29             | 125.5   | 33.2    | 0.4495            | 27      | 0       |
| 75%   | 5           | 143     | 78             | 37             | 190     | 37.1    | 0.687             | 36      | 1       |
| max   | 17          | 198     | 110            | 63             | 846     | 67.1    | 2.42              | 81      | 1       |

# **O3**Feature Selection

## **Correlation Matrix**

- 0.8

- 0.2

- 0.0







## **Overall Pairplot**



## **Feature Selection**

- To determine which feature(s) contribute the most to the output.
- Calculate Feature Importance
- Glucose, Age, BMI are selected



## Selected Feature Pairplot



## **Glucose Linguistic Terms**

## Meaning of Blood Glucose Levels

| Blood Glucose<br>Levels (mg/dL) | Blood Glucose<br>Levels (mmol/L) | Interpretation                             |
|---------------------------------|----------------------------------|--------------------------------------------|
| < 53                            | < 3                              | Severe<br>hypoglycemia                     |
| < 70                            | < 3.9                            | Hypoglycemia                               |
| < 125                           | < 7                              | Normal                                     |
| < 200                           | < 10                             | High<br>(Take action)                      |
| >200 - 500+                     | >10 - 27.7+                      | Metabolic<br>Consequences<br>(Take action) |

| Linguistic<br>Terms | Value Range |
|---------------------|-------------|
| Very Low            | 53 - 70     |
| Low                 | 70 - 97.5   |
| Medium              | 97.5 - 125  |
| High                | 125 - 162.5 |
| Very High           | 162.5 - 200 |

емеаін

## **BMI Linguistic Terms**

| BMI        | Weight status     |  |
|------------|-------------------|--|
| Below 18.5 | Underweight       |  |
| 18.5-24.9  | Normal weight     |  |
| 25.0-29.9  | Overweight        |  |
| 30.0-34.9  | Obesity class I   |  |
| 35.0-39.9  | Obesity class II  |  |
| Above 40   | Obesity class III |  |

| Linguistic<br>Terms | Value Range |
|---------------------|-------------|
| Underweight         | 0 - 18.5    |
| Normal weight       | 18.5 - 25   |
| Overweight          | 25 - 30     |
| Obesity 1           | 30 - 35     |
| Obesity 2           | 35 - 40     |
| Obesity 3           | 40 - 68     |

## **Age Linguistic Terms**

| Age Group         | N  | Mean Age +/- SD | Age Range     |
|-------------------|----|-----------------|---------------|
| Children          | 27 | 11.04 +/- 1.72  | 8.0 to 13.99  |
| Adolescents       | 32 | 16.38 +/78      | 14.0 to 17.99 |
| Young Adults      | 18 | 20.25 +/- 1.15  | 18.0 to 21.99 |
| Middle Age Adults | 25 | 28.49 +/- 5.40  | 22.0 to 42.99 |
| Older Adults      | 43 | 63.67 +/- 5.46  | 51.0 to 79.99 |

| Linguistic<br>Terms | Value Range |
|---------------------|-------------|
| Young               | 18 - 22     |
| Middle Age          | 22 - 43     |
| Old                 | 43 - 51     |
| Very Old            | 51 - 82     |

# **O4**Rules Construction

## Glucose vs Age rules construction



- 1. All the points are plotted
- 2. Drew boundary lines
- 3. Calculate ratio
- 4. Select dark regions ( $\leq$  0.2 or  $\geq$  0.8)

## Glucose vs Age rules construction



1. If the <u>glucose level</u> is **very low** AND the <u>age</u> is **young** OR **middle age** OR **old**, then the prediction for diabetes is **no**.

2. If the <u>glucose level</u> is **low** AND the <u>age</u> is **young** OR **middle age**, then the prediction for diabetes is **no**.

3. If the <u>glucose level</u> is **medium** AND the <u>age</u> is **young** OR **middle age**, then the prediction for diabetes is **no**.

## Glucose vs Age rules construction



4. If the <u>glucose level</u> is **high** AND the <u>age</u> is **old**, then the prediction for diabetes is **yes**.

5. If the <u>glucose level</u> is **very high** AND the <u>age</u> is **young** OR **middle age** OR **very old**, then the prediction for diabetes is **yes**.

6. If the <u>glucose level</u> is **high** AND the <u>age</u> is **young**, then the prediction for diabetes is **no**.

## Glucose vs BMI rules construction



- 1. All the points are plotted
- 2. Drew boundary lines
- 3. Calculate ratio
- 4. Select dark regions ( <= 0.2 or >= 0.8)

## Glucose vs BMI rules construction



7. If the <u>glucose level</u> is **very low** AND the <u>BMI</u> is **normal weight** OR **overweight** OR **obesity 2**, then the prediction for diabetes is **no**.

8. If the <u>glucose level</u> is **low** AND the <u>BMI</u> is **underweight** OR **normal weight** OR **overweight** OR **obesity 1** OR **obesity 2**, then the prediction for diabetes is **no**.

### Glucose vs BMI rules construction



9. If the <u>glucose level</u> is **medium** AND the <u>BMI</u> is **normal weight** OR **overweight** OR **obesity 2**, then the prediction for diabetes is **no**.

10. If the <u>glucose level</u> is **high** AND the <u>BMI</u> is **normal weight**, then the prediction for diabetes is **no**.

11. If the <u>glucose level</u> is **very high** AND the <u>BMI</u> is **normal weight** OR **overweight** OR **obesity 1** OR **obesity 2**, the prediction for diabetes is **yes**.

## Why Mamdani over Sugeno?

- Easier rules construction due to available researches and knowledge base
- Well interpretable
- No need to design extra crisp functions for consequent

## **Glucose Membership Function**



## **Age Membership Function**





## **BMI Membership Function**



## **Prediction Membership Function**



## 05

**Experiment &**Fine Tuning

## **Combination of Membership Function Shape**

| Glucose   | ВМІ       | Age       | Prediction | Accuracy (%)       |
|-----------|-----------|-----------|------------|--------------------|
| Triangle  | Triangle  | Triangle  | Triangle   | 79.85              |
| Trapezium | Triangle  | Triangle  | Triangle   | 78.83              |
| Triangle  | Trapezium | Triangle  | Triangle   | <mark>80.36</mark> |
| Trapezium | Trapezium | Triangle  | Triangle   | 79.85              |
| Triangle  | Triangle  | Trapezium | Triangle   | 79.85              |
| Trapezium | Triangle  | Trapezium | Triangle   | 78.57              |
| Triangle  | Trapezium | Trapezium | Triangle   | 80.36              |
| Trapezium | Trapezium | Trapezium | Triangle   | 79.34              |
| Triangle  | Triangle  | Triangle  | Trapezium  | 79.85              |
| Trapezium | Triangle  | Triangle  | Trapezium  | 78.83              |
| Triangle  | Trapezium | Triangle  | Trapezium  | 80.36              |
| Trapezium | Trapezium | Triangle  | Trapezium  | 79.85              |
| Triangle  | Triangle  | Trapezium | Trapezium  | 79.85              |
| Trapezium | Triangle  | Trapezium | Trapezium  | 78.57              |
| Triangle  | Trapezium | Trapezium | Trapezium  | 80.36              |
| Trapezium | Trapezium | Trapezium | Trapezium  | 79.34              |

## **Defuzzification Method**

| Method           | Accuracy (%)       |
|------------------|--------------------|
| Centroid         | <mark>80.36</mark> |
| Bisector of Area | 80.36              |
| Mean of maximum  | 80.36              |
| Min of maximum   | 80.36              |
| Max of maximum   | 80.10              |

# 06 Demonstration