Propositional Proof

Rule of inferences

"A rule of inference is a pattern of reasoning consisting of some schemas, called premises, and one or more additional schemas, called conclusions."

Fitch rules of inferences

And Introduction (AI)

$$\begin{array}{c}
\varphi_1 \\
\vdots \\
\varphi_n \\
\hline
\varphi_1 \wedge \cdots \wedge \varphi_2
\end{array}$$

And Elimination (AE)

$$\frac{\varphi_1 \wedge \cdots \wedge \varphi_i \wedge \cdots \wedge \varphi_n}{\varphi_i}$$

Or Introduction (OI)

$$\frac{\varphi_i}{\varphi_1 \vee \cdots \vee \varphi_i \vee \cdots \vee \varphi_n}$$

Or Elimination (OE)

$$\begin{array}{c} \varphi \Rightarrow \chi \\ \psi \Rightarrow \chi \\ \varphi \vee \psi \\ \hline \chi \end{array}$$

Negation Introduction (NI)

$$\begin{array}{c}
\varphi \Rightarrow \psi \\
\varphi \Rightarrow \neg \psi \\
\hline
\neg \varphi
\end{array}$$

Negation Elimination (NE)

$$\frac{\neg \neg \varphi}{\varphi}$$

Implication Introduction (II)

$$\frac{\varphi \vdash \psi}{\varphi \Rightarrow \psi}$$

Implication Elimination (IE)

$$\begin{array}{c}
\varphi \Rightarrow \psi \\
\varphi \\
\hline
\psi
\end{array}$$

Biconditional Introduction

$$\begin{array}{c}
\varphi \Rightarrow \psi \\
\psi \Rightarrow \varphi \\
\hline
\varphi \Leftrightarrow \psi
\end{array}$$

Biconditional Elimination

$$\frac{\varphi \Leftrightarrow \psi}{\varphi \Rightarrow \psi}$$

$$\psi \Rightarrow \varphi$$

Proof tips

 $\varphi \Rightarrow \psi$

- 1. Assume φ and prove ψ
- 2. Use Implication Introduction to derive $\varphi \Rightarrow \psi$

 $\varphi \wedge \psi$

- 1. Prove φ
- 2. Prove ψ
- 3. Use And Introduction to derive $\varphi \wedge \psi$

 $\varphi \vee \psi$

- 1. Prove either φ or ψ
- 2. Use Or Introduction to derive $\varphi \lor \psi$

 $\neg \alpha$

- 1. Assume φ and prove a contradiction $(\varphi \Rightarrow \psi \text{ and } \varphi \Rightarrow \neg \psi)$
- 2. Use Negation Introduction to derive $\neg \varphi$

 φ

- 1. Assume $\neg \varphi$ and prove a contradiction $(\neg \varphi \Rightarrow \psi \text{ and } \neg \varphi \Rightarrow \neg \psi)$
- 2. Use Negation Introduction to derive $\neg\neg\varphi$
- 3. Use Negation Elimination to derive φ

 ψ when we have $\varphi \Rightarrow \psi$ as a premise

- 1. Prove φ
- 2. Use Implication Elimination to derive ψ

 \varkappa when we have $\varphi \lor \psi$ as a premise

- 1. Prove $\varphi \Rightarrow \varkappa$
- 2. Prove $\psi \Rightarrow \varkappa$
- 3. Use Or Elimination to derive \varkappa