Grafos

Ordenação Topológica

Prof. Edson Alves

Faculdade UnB Gama

Ordenação topológica

Ordenação topológica

Seja G(V,E) um grafo direcionado com N vértices. Uma ordenação $O=\{\ v_{i_1},v_{i_2},\ldots,v_{i_N}\ \}$ dos vértices de G é uma ordenação topológica se vale a seguinte afirmação: para quaisquer pares de vértices $u,v\in V$, se existe um caminho de u a v, então u antecede v na ordenação O.

* Grafos que possuem ciclos não possuem ordenações topológicas

 \star Grafos que possuem ciclos não possuem ordenações topológicas

 \star Um grafo direcionado acíclico (DAG) contém, no mínimo, uma ordenação topológica

- * Grafos que possuem ciclos não possuem ordenações topológicas
- \star Um grafo direcionado acíclico (DAG) contém, no mínimo, uma ordenação topológica
- \star Ordenações topológicas estabelecem relações de prioridade: se a tarefa A é pré-requisito da tarefa B, então A < B na ordenação

- * Grafos que possuem ciclos não possuem ordenações topológicas
- \star Um grafo direcionado acíclico (DAG) contém, no mínimo, uma ordenação topológica
- \star Ordenações topológicas estabelecem relações de prioridade: se a tarefa A é pré-requisito da tarefa B, então A < B na ordenação
 - \star O algoritmo de Tarjan determina uma ordenação topológica em um DAG

- * Grafos que possuem ciclos não possuem ordenações topológicas
- \star Um grafo direcionado acíclico (DAG) contém, no mínimo, uma ordenação topológica
- \star Ordenações topológicas estabelecem relações de prioridade: se a tarefa A é pré-requisito da tarefa B, então A < B na ordenação
 - * O algoritmo de Tarjan determina uma ordenação topológica em um DAG
 - * O algoritmo de Kahn também identifica uma ordenação topológica

Proponente do algoritmo de Tarjan

Robert Endre Tarjan (1976)

 \star O algoritmo de Tarjan determina uma ordenação topológica em um DAG por meio de uma DFS modificada

 \star O algoritmo de Tarjan determina uma ordenação topológica em um DAG por meio de uma DFS modificada

 \star A ideia central é que, na árvore induzida pela DFS, as folhas devem aparecer após os nós intermediários na ordenação topológica

* O algoritmo de Tarjan determina uma ordenação topológica em um DAG por meio de uma DFS modificada

 \star A ideia central é que, na árvore induzida pela DFS, as folhas devem aparecer após os nós intermediários na ordenação topológica

* Durante a travessia, cada vértice assume um dentre três estados: não encontrado (branco), encontrado (verde) e processado (azul)

- * O algoritmo de Tarjan determina uma ordenação topológica em um DAG por meio de uma DFS modificada
- \star A ideia central é que, na árvore induzida pela DFS, as folhas devem aparecer após os nós intermediários na ordenação topológica
- * Durante a travessia, cada vértice assume um dentre três estados: não encontrado (branco), encontrado (verde) e processado (azul)
- * Quando um vértice se torna processado, ele deve entrar no início da fila que conterá a ordenação topológica

Entrada: um grafo direcionado acíclico G(V,E) Saída: uma ordenação topológica ${\cal O}$ de G

Entrada: um grafo direcionado acíclico G(V,E) Saída: uma ordenação topológica ${\cal O}$ de ${\cal G}$

1. Marque todos os vértices $v \in V$ como não encontrados

Entrada: um grafo direcionado acíclico G(V,E)Saída: uma ordenação topológica O de G

- 1. Marque todos os vértices $v \in V$ como não encontrados
- 2. Enquanto existir ao menos um vértice u não encontrado:
 - (a) Marque u como encontrado
 - (b) Avalie todos os filhos não encontrados de u
 - (c) Marque u como processado e insira u na frente da fila ${\cal O}$

Entrada: um grafo direcionado acíclico G(V,E)Saída: uma ordenação topológica O de G

- 1. Marque todos os vértices $v \in V$ como não encontrados
- 2. Enquanto existir ao menos um vértice u não encontrado:
 - (a) Marque u como encontrado
 - (b) Avalie todos os filhos não encontrados de u
 - (c) Marque u como processado e insira u na frente da fila ${\it O}$
- 3. Retorne ()

$$O = \{ \}$$

 $O = \{ \mathbf{9} \}$

 $O = \{ 6, 9 \}$

 $O = \{$ **5, 6, 9** $\}$

 $O = \{$ **5, 6, 9** $\}$

 $O = \{$ **5, 6, 9** $\}$

 $O = \{ 8, 5, 6, 9 \}$

 $O = \{$ **7, 8, 5, 6, 9** $\}$

 $O = \{ 4, 7, 8, 5, 6, 9 \}$

 $O = \{ 3, 4, 7, 8, 5, 6, 9 \}$

 $O = \{ 1, 3, 4, 7, 8, 5, 6, 9 \}$

 $O = \{ 1, 3, 4, 7, 8, 5, 6, 9 \}$

 $O = \{ 2, 1, 3, 4, 7, 8, 5, 6, 9 \}$

```
vector<int> topological_sort(int N)
{
    vector<int> o, state(N + 1, NOT_FOUND);
    for (int u = 1; u \le N; ++u)
        if (state[u] == NOT_FOUND and not dfs(u, o, state))
            return { };
    reverse(o.begin(), o.end());
    return o;
```

```
bool dfs(int u, vector<int>& o, vector<int>& state)
{
    if (state[u] == PROCESSED)
        return true;
    if (state[u] == FOUND)
        return false;
    state[u] = FOUND;
    for (auto v : adj[u])
        if (not dfs(v, o, state))
            return false;
    state[u] = PROCESSED;
    o.emplace_back(u);
    return true;
```


* O algoritmo de Kahn encontra uma ordenação topológica em um DAG

* O algoritmo de Kahn encontra uma ordenação topológica em um DAG

* Foi proposto por Arthur B. Kahn em 1962

- * O algoritmo de Kahn encontra uma ordenação topológica em um DAG
- * Foi proposto por Arthur B. Kahn em 1962
- \star A ideia central é que os vértices com grau de entrada menor aparecem antes dos vértices com grau de entrada maior na ordenação topológica

- * O algoritmo de Kahn encontra uma ordenação topológica em um DAG
- * Foi proposto por Arthur B. Kahn em 1962
- \star A ideia central é que os vértices com grau de entrada menor aparecem antes dos vértices com grau de entrada maior na ordenação topológica
 - * Para identificar tais vértices, é utilizada uma BFS modificada

- * O algoritmo de Kahn encontra uma ordenação topológica em um DAG
- * Foi proposto por Arthur B. Kahn em 1962
- \star A ideia central é que os vértices com grau de entrada menor aparecem antes dos vértices com grau de entrada maior na ordenação topológica
 - * Para identificar tais vértices, é utilizada uma BFS modificada
 - \star Complexidade: $O(E \log V)$

Entrada: um grafo direcionado acíclico G(V,E) Saída: uma ordenação topológica ${\cal O}$ de ${\cal G}$

Entrada: um grafo direcionado acíclico G(V,E) Saída: uma ordenação topológica ${\cal O}$ de G

1. Insira, em uma fila Q, todos os vértices com grau de entrada igual a zero

Entrada: um grafo direcionado acíclico G(V,E)Saída: uma ordenação topológica O de G

- 1. Insira, em uma fila Q, todos os vértices com grau de entrada igual a zero
- 2. Enquanto Q não estiver vazia:
 - (a) Extraia o primeiro elemento u da fila e o insira em O
 - (b) Exclua u e todas as suas arestas que partem de u do grafo G
 - (b) Insira em Q os vértices com grau de entrada igual a zero

Entrada: um grafo direcionado acíclico G(V,E)Saída: uma ordenação topológica O de G

- 1. Insira, em uma fila \it{Q} , todos os vértices com grau de entrada igual a zero
- 2. Enquanto Q não estiver vazia:
 - (a) Extraia o primeiro elemento u da fila e o insira em O
 - (b) Exclua u e todas as suas arestas que partem de u do grafo G
 - (b) Insira em Q os vértices com grau de entrada igual a zero
- 3. Retorne O

$$Q = \{ \}, O = \{ \}$$

$$Q = \{ \ \mathbf{2} \ \}, \ O = \{ \ \}$$

$$Q = \{ \}, O = \{ 2 \}$$

$$Q = \{ \}, O = \{ 2 \}$$

$$Q = \{ \mathbf{1} \}, O = \{ \mathbf{2} \}$$

$$Q = \{ \}, O = \{ 2, 1 \}$$

$$Q = \{ \}, O = \{ 2, 1 \}$$

 $Q = \{ \mathbf{3} \}, O = \{ \mathbf{2, 1} \}$

 $Q = \{ \}, O = \{ 2, 1, 3 \}$

 $Q = \{ \}, O = \{ 2, 1, 3 \}$

 $Q = \{ \mathbf{4} \}, \ O = \{ \mathbf{2, 1, 3} \}$

 $Q = \{ \}, O = \{ 2, 1, 3, 4 \}$

$$Q = \{ \}, O = \{ 2, 1, 3, 4 \}$$

 $Q = \{ 5, 7 \}, O = \{ 2, 1, 3, 4 \}$

 $Q = \{ 7 \}, O = \{ 2, 1, 3, 4, 5 \}$

 $Q = \{ 7 \}, O = \{ 2, 1, 3, 4, 5 \}$

 $Q = \{ 7, 6 \}, O = \{ 2, 1, 3, 4, 5 \}$

 $Q = \{ 6 \}, O = \{ 2, 1, 3, 4, 5, 7 \}$

 $Q = \{ 6 \}, O = \{ 2, 1, 3, 4, 5, 7 \}$

 $Q = \{ 6, 8 \}, O = \{ 2, 1, 3, 4, 5, 7 \}$

 $Q = \{ 8 \}, O = \{ 2, 1, 3, 4, 5, 7, 6 \}$

 $Q = \{ 8 \}, O = \{ 2, 1, 3, 4, 5, 7, 6 \}$

 $Q = \{ \}, O = \{$ **2, 1, 3, 4, 5, 7, 6, 8** $\}$


```
vector<int> topological_sort(int N)
{
    vector<int> o;
    queue<int> q;
    for (int u = 1; u \le N; ++u)
        if (in[u].empty())
            q.push(u);
    while (not q.empty())
        auto u = q.front();
        q.pop();
        o.emplace_back(u);
```

```
for (auto v : out[u])
        in[v].erase(u);
        if (in[v].empty())
           q.push(v);
return (int) o.size() == N ? o : vector<int> { };
```

Problemas sugeridos

- 1. Codeforces 510C Fox and Names
- 2. **OJ 11060 Beverages**
- 3. SPOJ TOPOSORT Topological Sorting
- 4. Timus 1280 Topological Sorting

Referências

- 1. ACM Digital Library. Topological sorting of large networks, A. B. Kahn, 1962.
- 2. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 3. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 4. Wikipédia. Robert Tarjan, acesso em 08/09/2021.
- 5. Wikipédia. Topological sorting, acesso em 08/09/2021.