The kalman estimator

Goal

An overview of the Kalman state estimator in the Crazyflie firmware

What is an estimator?

- Estimate current pose
 - Position
 - Orientation (roll, pitch, yaw)
- Input from sensors
 - Sensor fusion

Estimators in the Crazyflie

- Plugin system
- Complementary
 - Basic
 - Robust
 - Good for manual flight
 - Not full position information
- Kalman
 - Supports more sensors
 - Good for autonomous flight

Crazyflie firmware overview

The Kalman estimator

- Based on two papers from ETH Zurich^{1,2}
- Originally implemented by Mike Hamer at ETH
- Has been extended over time

²Mueller, Mark W., Markus Hehn, and Raffaello D'Andrea. "Covariance correction step for kalman filtering with an attitude." *Journal of Guidance, Control, and Dynamics* 40.9 (2016): 2301-2306.

Model and state

- Model
 - Describes the physical behaviour of the Crazyflie
 - Flying
 - Carried
 - Quadcopter
- State
 - Position (X, Y, Z)
 - Velocity (X, Y, Z)
 - Attitude error (X, Y, Z)

Sensor input

- Accelerometers (X, Y, Z)
- Gyros (X, Y, Z)
- Barometer not used
- Range sensors
- Optical flow sensor
- LPS Two Way Ranging
- LPS TDoA
- Lighthouse
- External pose input
 - Mocap system

BMI088 (IMU)

Sensor input is weighted

- Sensors with low noise have stronger influence
- Sensors with high noise have less influence
- Each sensor adds some information, but maybe not the full position
- All information is fused into one solution, the state

BMI088 (IMU)

The state

- Probabilistic view of current situation
- Updated at 100 Hz
- New information updates the state
- Sensor input is paired with a probability

Processing

- Sensor input is queued
- Processing done as part of the stabilizer loop
- Sensor data processed when the state is updated (1000 Hz)
- Prediction step at 100Hz

Externalization

- The state is externalized to world frame
 - Position
 - Velocity
 - Acceleration (accelerometer data)
- The state contains the attitude error, integrated for easy access
 - Rotation matrix
 - Quaternion

Conclusions

- Fuses sensordata
- Continuously estimates the pose
- Full state estimator