Chapter 13 Properties of Triangle

ee24btech11015 - Dhawal

B. JEE Main / AIEEE 1) The sides of a triangle are 3x+4y, 4x+3y and 5x+5y where x, y > 0 then the triangle

b) obtuse angled c) equilateral

a) a > b > c b) a < b < c c) a > b and b < c d) a < b and b > c

2) In a triangle with sides $a, b, c, r_1 > r_2 > r_3$ (which are ex-radius) then

d) none of these

(2002)

a) right angled

3) The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a , is (2003)				
a) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$	b) $a \cot\left(\frac{\pi}{n}\right)$	c) $\frac{a}{2} \cot \left(\frac{\pi}{2n} \right)$	d) $a \cot\left(\frac{\pi}{2n}\right)$	
4) In a triangle ABC , medians AD and BE are drawn. If AD = $4, \angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of the $\triangle ABC$ is (2003)				
a) $\frac{64}{3}$	b) $\frac{8}{3}$	c) $\frac{16}{3}$	d) $\frac{32}{3\sqrt{3}}$	
5) If in $\triangle ABC$ $a\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c (2003)				
a) satisfy $a + b = c$	b) are in A.P.	c) are in G.P.	d) are in H.P.	
6) The sides of a triangle are $\sin \alpha$, $\cos \alpha$ ad $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then the greatest angle of the triangle is (2004)				
a) 150°	b) 90°	c) 120°	d) 60°	
7) A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retires 40 meters away from the tree, the angle of elevation becomes 30°. The breadth of the river is (2004)				
a) 60 <i>m</i>	b) 30m	c) 40m	d) 20m	
8) In a triangle ABC, let $\angle C = \frac{\pi}{2}$. If r is the inradius and R is the circumradius of the triangle ABC, then $2(R+r)$ equals (2005)				

(2005)

(2007)

d) c + a

d) H.P.

d) $2a\sqrt{3}$

He moves away from	on the the point A fro	om a certain point C line BC to a point I	on the ground is 60° . D such that $CD = 7m$.	
a) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}-1} m$	b) $\frac{7\sqrt{3}}{2}\left(\sqrt{3}+1\right)m$	c) $\frac{7\sqrt{3}}{2} \left(\sqrt{3} - 1\right) m$	d) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}+1} m$	
 12) For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is (2010) a) There is a regular polygon with r/R = 1/√2 b) There is a regular polygon with r/R = 2/3 c) There is a regular polygon with r/R = 1/2 d) There is a regular polygon with r/R = 1/2 13) A bird is sitting on the top of a vertical pole 20m high and its elevation from a point O on the ground is 45°. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30°. Then the speed in (in m/s) of the bird is (JEEM2014) a) 20√2 b) 20(√3-1) c) 40(√2-1) d) 40(√3-√2) 				
14) If the angle of elevation of the top of a tower from three colinear points A , B and C on a line leading to foot of the tower, are 30° , 45° and 60° respectively, then the ratio, $AB : BC$, is: (<i>JEEM</i> 2015) a) $1 : \sqrt{3}$ b) $2 : 3$ c) $\sqrt{3} : 1$ d) $\sqrt{3} : \sqrt{2}$				
15) Let a vertical tower of AB and P be a pois equal to:		_	Let C be the mid-point $\mathcal{E} \angle BPC = \beta$, then $\tan \beta$ (JEEM2017)	

b) a+b

b) A.P.

b) $a\sqrt{3}$

then $\sin \mathbf{A}$, $\sin \mathbf{B}$, $\sin \mathbf{C}$ are in

a) b+c

a) *G.P.*

tower is

a) $\frac{a}{\sqrt{3}}$

c) a+b+c

c) A.P. - G.P.

9) If in a $\triangle ABC$, let the altitudes from the vertices **A**, **B**, **C** on opposite sides are in H.P.,

10) A tower stand at the centre of a circular park. **A** and **B** are two points on the boundary of the park such that $\mathbf{AB} (= a)$ subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from **A** or **B** is 30° . The height of the

c) $\frac{2a}{\sqrt{3}}$

- a) $\frac{4}{9}$ b) $\frac{6}{7}$ c) $\frac{1}{4}$ d) $\frac{2}{9}$ PQR is a triangular park with PQ = PR = 200m. A T.V. tower stands at the mid-
- 16) **PQR** is a triangular park with **PQ** = **PR** = 200m. A T.V. tower stands at the midpoint of **QR**. If the angles of the elevation of the top of the tower at **P**, **Q** and **R** are respectively 45° , 30° and 30° , then the height of the tower (*in m*) is: (*JEEM*2018)
 - a) 50

- b) $100\sqrt{3}$
- c) $50\sqrt{2}$
- d) 100