m i Bureau of Standards Minary M. W. Edan L M. MCZ 1953

IONOSPHERIC DATA

all from A land

ISSUED
March 1953

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

WASHINGTON,D.C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data .	5
Hourly Ionospheric Data at Washington, D.	C 7. 13, 24, 48
Ionospheric Storminess at Washington, D. C	7. 36
Sudden Ionosphere Disturbances	7. 37
Radio Propagation Quality Figures	8, 38
Observations of the Solar Corona	9, 40
Relative Sunspot Numbers	10. 44
Observations of Solar Flares	10, 46
Indices of Geomagnetic Activity	11. 47
Tables of Ionospheric Data	13
Graphs of Ionospheric Data	48
Index of Tables and Graphs of Ionospheric	
in CRPL-F103	79

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations, and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, M, Q, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near surrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytims E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-T18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Predicted Sunspot Number										
	1953	1952	1951	1950	1949	1948	1947	1946	1945			
December		33	53	86	108	114	126	85	38			
November		38	52	87	112	115	124	83	36			
October		43	52	90	114	116	119	81	23			
September		46	54	91	115	117	121	79	22			
August		49	57	96	111	123	122	77	20			
July		51	60	101	108	125	116	73				
June		52	63	103	108	129	112	67				
May		52	68	102	108	130	109	67				
April		52	74	101	109	133	107	62				
March		52	78	103	111	133	105	51				
February	29	51	82	103	113	133	90	46				
January	30	53	85	105	112	130	88	42				

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 62 and figures 1 to 124 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

University of Graz: Graz, Austria

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:
Formosa, China

Danish National Committee of URSI: Godhavn. Greenland

French Ministry of Naval Armaments (Section for Scientific Research):
Djibouti, French Somaliland
Fribourg, Germany

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Casablanca, Morocco
Domont, France
Poitiers, France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:
Lindau/Harz, (el many

The Royal Netherlands Meteorological Institute:
De Bilt. Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Indian Council of Scientific and Industrial Research, Radio Research Committee:
Calcutta, India

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan: Tokyo (Kokubunji), Japan Yamagawa, Japan

Morwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Norway Tromso, Norway

Manila Observatory: Baguio, P. I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden:
Kiruna, Sweden

Research Institute of Mational Defence, Stockholm, Sweden: Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps:
Adak, Alaska
Okinawa I.
White Sands, New Mexico

Mational Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska

Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui. Hawaii

Marsarssuak, Greenland

Panama Canal Zone

Point Barrow, Alaska

Puerto Rico. W. I.

San Francisco, California (Stanford University)

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 63 to 74 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 75 presents ionosphere character figures for Washington, D. C., during February 1953, as determined by the criteria given in the report IRPL-R5. "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Table 76 shows that no sudden ionosphere disturbances were observed during the month of February 1953 at Washington, D. C.

RADIO PROPAGATION QUALITY FIGURES

Tables 77a and 77b give for January 1953 the radio propagation quality figures for the North Atlantic area, CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, separately for each 6-hour interval of the Greenwich day, viz. 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Q-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00, 06, 12, 18 UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead. 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts and Q-figures.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and for comparison the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

The radio propagation quality figures are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U. S. government:— FCC, Coast Guard, Navy, Army Signal Corps, and State Department. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Beginning with recalculated figures for January 1952, only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality. Observations of selected ionospheric characteristics, even though strongly correlated with radio transmission quality, and traffic reports for paths such as New York-Stockholm or New York-Tangier, previously included in the quality-figure determination with low weight, have been left out of the present calculations inasmuch as a sufficient number of homogeneous reports are now available.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year,

with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby coverted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Mote. The North Pacific quality figures, which were published through October 1951, have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF THE SOLAR CORONA

Tables 78 through 80 give the observations of the solar corona during February 1953, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 81 through 83 list the coronal observations obtained at Sacramento Peak, New Mexico, during February 1953, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 78 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 79 gives similarly the intensities of the first red (6374A) coronal line; and table 80, the intensities of the second red (6702A) coronal line; all observed at Climax in February 1953.

Table 81 gives the intensities of the green (5303A) coronal line; table 82, the intensities of the first red (6374A) coronal line; and table 83, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in February 1953.

The following symbols are used in tables 78 through 83: a. observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

RELATIVE SUNSPOT NUMBERS

Table 84 lists the daily provisional Zürich relative sunspot number, R_Z , as communicated by the Swiss Federal Observatory. Table 85 continues the new series of American relative sunspot numbers, $R_{A^{\dagger}}$. Beginning with 1951, the observations collected by the Solar Division, AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into $R_{A^{\dagger}}$. Observatory coefficients for each of the 28 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, 61, 13, 1949. The scale of the American numbers in 1951 differs from that of the reports for earlier years because of these changes, and the new series is designated $R_{A^{\dagger}}$ rather than $R_{A^{\dagger}}$. The American relative sunspot numbers appear monthly in these pages as communicated by the Solar Division.

OBSERVATIONS OF SOLAR FLARES

Table 86 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak. New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heligraphic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 87 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures. C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following four criteria: (1) C; (2) the sum of the eight Kp's; (3) the greatest Kp; and (4) the sums of the squares of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44

and 1949, in these CRPI-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the <u>Journal of Geophysical Research</u> along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. At the meeting of ATME held in Brussels in August 1951, it was decided that the computation of Kw would be discontinued after the month of December 1951 since Kp is available from January 1, 1940. Kw, therefore, no longer appears in these reports.

TABLES OF IONOSPHERIC DATA

					le 1			
Washin,	gton, D. (38.7	°≌. 77.1	οA)			Fe	bruary 1953
Timo	p. LS	foF2	h'F1	foFl	h I E	fol	fBs	(M3000)F2
00	(270)	2.6						3.0
01	(270)	2.6						3.0
02	260	2.6						3.1
03	250	2.8						3.1
04	250	2.7						3.1
05	250	2.6						3.1
06	(250)	2.6						3.2
07	230	3.6						3.3
08	230	4.8	220		120	1.9		3.5 3.5
09	240	5.3	220	3.5	110	2.4	2,2	3.5
10	260	5.8	200	3.8	110	2.7		3.4 3.4
11	260	5.9	210	4.0	110	2.9		3.4
12	270	6.2	210	4.0	110	3.0		3.3
13	260	6.4	210	4.0	110	3.0		3.4
14	260	6.4	210	4.0	110	2,9		3.3
15	260	6.2	220	3.6	110	2.7		3.4
16	240	6.0	220	3.3	110	2.3		3.4
17	220	5.6	220	Q500cm	(120)	1.9		3.4
18	220	4.8						3.3
19	220	3.9						3.2
20	240	3.3						3.2
21	240	2.8						3.2
22 23	(260) (260)	2.6						3.0 3.0

Time: 75.0°W. Sweep: 1.0 No to 25.0 Mc in 15 seconds.

Norway (69.7°N, 19.0°E) January 1953 Time h'F2 foF2 h'fl h'E foE fEs SI(0008M) 4.4 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 (320) 290 280 290 290 (290) 275 215 230 225 225 225 230 255 230 250 280 (290) 3.0 2.9 2.6 2.3 2.1 1.8 2.9 4.0 4.8 5.0 4.6 (3.0) (3.1) 3.1 3.1 3.0 3.1 3.2 3.4 3.5 3.5 3.4 3.2 3.2 3.2 3.1 (3.1) 1.2 1.5 1.4 1.4 4.0 4.1 3.3 2.3 2.0 (1.7) 4.6 23

15.0°E. 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

Anchor	age, Alasi	Jan	uary 1953					
Time	p.ll.S	foF2	h'F1	foFl	h'E	foE	fBs	SE(0008M)
00	310	(2.6)					3.5	(3.0)
01	300	(2.8)					3.6	(3.0)
02	3 1 0	(2.8)					4.1	(3.0)
03	300	(3.0)					4.0	(2.9)
Off	310	(2.6)					3.9	(2.9)
05	300	(2.5)					2.0	(2.9)
02 03 04 05 06 07	(320)	(3.0)					3.6	(3.0)
	(310)	(2.8)					(2.4)	(2.8)
08	260	2.4						3.0
09	230	3.8				-		3.3
10	230	4.4						3.4
11	230	4.8	220	2.2				3.5
12 13 14	220	5.2	220					3.5
13	220	5.4	230					3.5
114	210	5.3	220					3.5
15 16	210	4.8						3.5 3.5
16	210	4-4						3.5
17	220	3.2						3.4
18	230	2.2						3• 3
19		-					(5.2)	
20 21							(6.9)	
21							(4.3)	
22							3.7	
23	(300)	(2.2)					3.4	(3.1)

Table 5

23 (300)

(2.2)150.0°W. 1.0 Mc to 25.0 Mc in 15 eeconds.

				<u>Table</u>	2			
Point	Barrow, A	laska (7	1.3°N, 1	56.8°W)			Janu	a ry 1 953
Time	P.LS	STot	h'F1	foFl	h F	foE	fEs	(MZ000)F2
00							7.9	est est-up
01							.7.6	
02							6.0	and softeness
03							6.0	
014 05 06							5.0	
05							4.8	
06		-					4.8	
07 08							4.9	
08							4.7	
09		(2.3)					4.4	(2.8)
10	(280)	3.0					4.3	3.0
11	(260)	3.2				*****	3.6	(3.1)
12	260	3.6					2.9	3.1
13 14 15	260	3.9						3.2
1_{l_1}	250	4.3						3.2
15	240	4.0						3.2
16	250	3.4					2.3	3 .1
17 18	270	2.8					2.5	3.0
	280	(2.0)					2.6	(3.0)
19							3.4	when ap
20							3.9	etherica
21							4.4	
22 23							4.5	mbanap .
23							6.0	et et al.

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mo in 15 eeconds.

				Table	1.			
Kiruna	, Sweden	$(67.80N_{p})$	20.5°E)	14010			Jan	uary 1953
Time	hIF2	foF2	h'F1	foFl	h'E	foE	fBs	ST(0005M)
00	(310)	3.8					3.6	3.0
01	310	3.4					3.0	2.9
02	300	3.3					2.6	2.9
03	295	3.3					2.6	2.9
OL	290	3.1					1.6	3.0
05	270	2.9						3.1
06	290	2.7						3.1
07	280	2.2						3.0
08	280	2.6						3.0
09	230	3.9						3.2
10	220	4.4						3.4
11	220	5.2					2.0	3.4
12	210	5-4						3.3
13	220	5.2						3.3
114	220	4.9						3.4
15	220	4.0						3.3
16	240	2.8					1.9	3.2
17	270	2+3					3.6	3.3
18		(2.2)					3.9	(3.2)
19		-					3.8	(302)
20	(290)	3.8					3.9	(2.9)
21	(285)	3.0					3.4	(3.0)
22	(310)	(3.3)					4.0	(3.0)
23	(220)	1. 0					1.0	(500)

23 (320) 1.00 Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 eeconds.

				Table	6			
Narsar	ssuak, Gr	eenland	(61.2°N,	45.4°W)		Janu	ary 1953
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fBe	(M3000)F2
00		(3.0)					5.1	(3.1)
01		(3.2)					4.7	
02		(3.4)					4.3	(3.0)
03		(3.6)					4.4	(2.9)
04	(280)	(3.1)					4.4	(3.0)
05	(280)	(3.0)					4.6	(3.1)
06		(2.4)					3.5	(3.1)
07		(1.8)					3.0	
08	(260)	(2.2)					(1.7)	(3.0)
09	240	3.9					,	3.4
10	230	5.0						3.5
11	230	6.0			-			3.5
12	230	6.1						3.5
13	230	6.0						3.4
11,	230	(5.4)						3.4
15 16	230	(5.0)						(3.3)
16	250	(4.5)					3.0	(3.2)
17	(280)	(3.6)					3.8	(2.8)
18	(290)	(3.3)					4.6	(3.0)
19	(320)	(3.4)					4.7	(3.0)
20	(320)	(3.4)					5.6	(3.0)
21	(290)	(3.1)					6.6	(3.2)
22	(280)	(3.2)					7.3	(3.0)
_23		(3.lı)					5.8	-

Time: 45.00W. Sweep: 1.0 Mc to 25.0 Mc in 30 eeconds.

				Table 7				
Oslo,	Norwey (60	0.0°N, 13	(30E)				Jan	uary 1953
Time	P.LS	foF2	h'F1	foFl	h I E	foE	fEc	(M3000)F2
00	(305)	(1.6)					2.6	(3.1)
01	310	1.6					2.9	2.9
02:	310	1.6					2.9	2.9
03	300	1.6					3.0	2.9
03 Oli	300	1.6					3.0	2.9
05	275	1.6					2.9	3.0
06	265	1.6					2.8	3.0
07	(280)	1.6					2.5	(3.1)
08	260	2.1			40 V 40	-	2.7	3.1
09	225	4.0					3.0	3•5
10	220	5.1	235		150	1.8	3.0	3.6
11	220	5.6	230	-	J7'0	2.0	3.0	3.6
12	225	6.2	230	-	135	2.1	3.0	3-5
13	220	6.0	230	etwings	1140	2.0	3.1	3.6
774	220	5.6	235	-	135	1.9	3.1	3.6
12 13 14 15 16	215	5.2	240			1.8	3.0	3.6
1.6	215	4.6			-		3.0	3•5
17 18	225	3.4				-		3.h
18	240	2.6						3.3
19	270	2.0						3.1
20		1.6						(3.0)
21		(1.6)						-
22		(1.6)						-

22 | --- (1.6) 23 | --- (1.8) Time: 15.0°E. Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation.

a dok	Alaska (5	1 0°N 1	76.6°W\	Table	2		Jan	uary 1953
Time	Pils	foF2	h'F1	foF1	h'E	foE	fBe	SI(000R)
00	260	2.4						3.0
01	270	2.4						3.0
02	280	2.6						2.9
03	280	2.6						2.9
04	270	2.7						3.0
05	260	2.6						3.0
06	570	2.4						3.1
07	240	2.4					2.2	3.1
08	230	4.2			-		1.8	3.5
09	230	5.2	230					3.5
10	240	5.9	230		120	2.2		3.5
11	230	6.0	220	3.5	110	2.4		3.5
12	230	6.0	210	(3.5)	110	2.5		3.5 3.6
13 14	230	6.0	210	3.1	110	(2.4)		3.6
11.	230	5 .7			110	2.2		3.6
15	220	5.1			110	(2.0)		3.6
15 16	210	4.4	-					3.5
17	220	3.6						3.4
18	220	2.6						3.5
19	230	2.1						3.4
20	240	2.1						3.2
21	260	2.2						3.0
22	260	2.4						3.0
22 23	<260	2.5						3.1
mt o -	100 0011							

Time: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Table 11										
San Fr	ancisco,	Californi	La (37.4	ON, 122.2	2°W)		Janu	ary 1953		
Time	F.1.5	foF2	h'F1	foF1	h1E	foE	fBe	(M3000)15		
00	(240)	(3.0)						(3.3)		
01	(250)	(2.6)						(3.2)		
02	(250)	(2.8)						(3.2)		
03	(240)	(2.9)						(3.2)		
04	(250)	(2.9)						(3.2)		
05	(260)	(2.8)						(3.2)		
06	(240)	(2.7)						(3.3)		
07	(230)	(3.0)						(3.3)		
08	220	4.8	210	(2.5)	130	1.9	2.0	3.6		
09	220	5 .7	220	(3.6)	120	2.3	2.9	3.5		
10	240	6.2	220	(4.0)	110	(2.6)	2.7	3.5		
11 12	260	7-4	210	(4.1)	110	(2.9)	2.6	3•3		
12	240	7.5	210	(4.1)	110	2.9	2.6	3.4		
13 14 15	250	6.9	200	(4.1)	110	3.0	2.0	3.4		
14	250	6.8	200	(4.0)	110	(2.8)	2.5	3.5		
15	230	6.0	220	(3.6)	110	(2.6)	2.6	3.5		
16	220	5.4			110	2.1	2.2	3.6		
17	210	(4.8)					1.9	3.6		
18	(210)	(3.6)					2.9	(3.5)		
19	(210)	(2.8)					2.6	(3.5)		
20	(220)	(2.2)					2.0	3.4		
21	(250)	(2.4)					2.4	(3.1)		
22	(270)	(2.5)						(3.1)		
23	1 (200)	(2.8)						(3,2)		

Time: 120.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				fable 8				
Upsala,	Sweden	(59.8°N,	17.6°E)				Ja	nuary 1953
Time	P115	foF2	h'Fl	foFl	h1E	foE	fEs	(M3000) T2
00	(350) 345	1.8					1.7	2.8
01	345	(1.8)					3.i	2.8
'02	345	(1.8)					2.7	2.9
03	300	1.8					3.5	2.9
Olı	320	1.6					3.0	2.8
05	320	1.6					3.0	2.9
06	310	1.6					2.4	(3.0)
07	305	1.6					2.5	(3.0)
08	235	2.7				Ë	2.4	3.2
09	220	4.5				(1.5)	2.4	3.5
10	220	5.4				(1.8)	2.3	3.6
11	220	5.7	230	(2.7)	125	1.9		3.5
12	225	6.3	225	2.8	130	2.0		3.5
13	225	6.0	230	(2.8)	130	1.9	1.8	3.5
111	220	5.6	225	(2.5)	130	(1.8)	1.9	3.5
11 12 13 14 15 16	215	5.0				E	2.4	3.5
	220	4.2				E	2.6	3.4
17 18	230	2.9						3.3
19	250 (280)	2.1					0.0	3.2
20		1.7					2.2	3.0
21	(330) (350)	1.6 (1.6)						(3.0)
22	(320)	(1.6)						(2.9)
23	(350)	(1.7)						(3.0) (2.8)
2	1000	1-01/						(200)

23 (359) (1.7)
Time: 15.0°E.
Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

Graz, f	nıstria (47.1°N,	15.5°E)	Table 10			Jan	uary 1953
Time	F.1.5	foF2	h'F1	foFl	h I E	foE	fBe	(M3000)F2
00	290	3.2						
01	290	3.1						
02	290	3.1						
03	290	3.1						
OL	270	3.1						
05	250	2.6						
06	270	2.4						
07	255	2.5						
08	200	5.0						
09	200	5.8						
10	210	6.2	200	(3.4)				
11	220	6.5	200	3.6				
12	220	6.3	200	3.6				
13 14 15	220	6.1	200	3.6				
7)1	220	6.0	200	3.5				
1 5	210	5.8						
16	200	5.2						
17	200	4.4						
18	240	3.5						
19	2 50	3.0						
20	260	2.9						
21	295	3.0						
22	290	3.0						
23	300	2.9						

Time: 15.0°E. Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

Table 12										
White	Sanda,	New Mexico	(32.3°N,	106.50	₩)		Janua	ry 1953		
Time	h'I	2 foF2	h'Fl	foFl	h'E	foE	fBe	(M3000)12		
00	26							3.1		
01	250							3.1		
02	25	3.2						3.2		
03	2/4							3.2		
04	24	3.3						3.2		
05	250							3.0		
06	26							3.1		
07	240							3.4		
08	230				120	2.0		3.6		
09	514		230		110	2.5	2.2	3.5		
1 0	270		220	4.2	110	2.8	2.3	3.4		
11	270		220	4.3	110	3.0	2.2	3.3		
12	270		210	4.3	110	3.0		3.3		
13 14	270		210	4.3	110	3.0		3.3		
14	260		210	4.1	110	2.9	1.8	3.4		
15 16	250	0 6.4	220	3.8	110	2.7		3.5		
	230		210	3.3	11 0	2.3		3.6		
17	220							3.6		
18	21							3.4		
19	220							3.5		
20	216							3.4		
21	280							3.0		
22	300							3.0		
23	280	3.2						3.0		

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Table 13											
Maui,	Hawaii (20	0.8°N, 1	56.5°W)	00-00-0-0-0			Janu	ary 1953			
Time	h'F2	foF2	hill	foFl	h'E	foE	fBe	(M2000)ES			
00	280	(3.2)					1.7	(3.0)			
01	260	3.2					1.8	(3.2)			
02	230	3.0					1.8	3.4			
03	230	2.4					1.6	3.4			
04	280	1.9					1.7	3.0			
05 06	280	1.9					1.2	2.9			
06	300	1.8					1.8	2.9			
07	270	3.3			150	1.3	1.8	3.2			
08	260	6.0	2110		120	2.2	1.9	3.4			
09	280	7.6	230	4.2	110	2.7	3.6	3.3			
10	280	8.7	220	4.3	110	3.0	4.5	3.2			
11	290	9.3	200	4.4	110	3.2	5.0	3 -1			
1.2	290	9.8	200	4.5	110	3.3	4.5	3.0			
13 14	280	11.2	210	4.6	110	3.2	5.0	3 .1			
<u>1)</u>	260	10.4	220	4.4	110	3.1	5-1	3.2			
15 16	260	8.3	230	4.2	110	3.0	4.7	3.3			
1.6	250	6.7	230	40-01-05	110	2.7	4.0	3.4			
17	570	6.0	230	-	110	2.2	4.2	3.5			
18	220	5.0				40-00	3.9	3.6			
19	(220)	3.4					4.7	3.5			
20	250	3.0					4.0	3 . l			
21	(260)	3.3					4.1	3.2			
22	250	3.2					3.7	3.1			
23	280	(3,2)					2.8	(2.9)			

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Puerto	Rico, W.	Ja	nuary 1953					
Time	h'F2	foF2	h'Fl	foFl	h'E	folk	fBa	(M3000)F2
00	260	4.1						3.1
Ol	250	4.4						3.2
02	230	4.6						3-4
03	220	4.1					1.8	3.4
OL	240	3.7						3.2
05	250	3.3					1.7	3.0
05 06	250	3.3			-			3.1
07	220	4.2			(100)			3.5
08	220	5.8	220	-	100	2.0		3.6
09	240	6.8	220		100	2.6		3.6
10	250	7.0	200	4.3	100	2.9		3.6
11	250	7.2	200	4.4	100	3.2		3.4
12	270	6.7	200	4.4	100	3.3		3.4
13	270	7.0	200	4.5	100	3.3		3.3
14	270	7.0	220	4.4	100	3.2		3.4
15	260	6.8	210	4.3	100	3.1		3.4
16	250	6.5	210	(4.0)	100	2.8		3.4
17	240	6.5	220		100	2.3	2.9	3.4
17 18	220	6.1			100		2.7	3.6
19	210	4.5					3.1	3.6
20	210	3.6					2.4	3.3
21	250	3.6						3.1
22	270	3.7						3.0
23	270	4.0						3.0

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

<u>Table 17</u>										
Panama	Canal Zo	ne (9.4º	n, 79.9°	4)			Janu	ary 1953		
Time	P125	foF2	h'Fl	foFl	h1E	foE	fSe	(M3000)F2		
00	260	3.7					2.2	3.2		
01	250	(3.5)					2.4	(3.3)		
02	230	(3.4)					2.0	3.2		
03 0l;	230	2.8					2.8	3.1		
Of	240	2.4					1.8	2.9		
05	280	2.3					1.8	2.9		
06	260	2.8						2.9		
07	5/10	5.0			150	1.9		3.3		
08	2 60	6.6	230		110	2.4	2.7	3.3		
09	270	7.9	220	4.3	1 1 0	2.9		3.2		
10	270	7.8	200	4.5	110	3.1		3.2		
11	280	7.4	200	4.5	110	3.4		3.1		
12 13 14 15 16	320	7.6	200	4.6	110	3.4		2.9		
13	330	8.0	220	4.7	110	3.4	3.7	2.8		
11,	3 30	8.4	220	4.5	110	3.3	4.1	2.9		
15	300	9.4	< 230	4.5	110	3.1	4.3	3.0		
	270	9.0	230	4.2	110	2.8	4.1	3.1		
17	240	7.6	220		120	2.4	3.9	3.3		
18	220	6.4					3.9	3.5		
19	220	4.1					3.3	3.4		
50	240	3.1					3.2	3.1		
21	260	2.7					2.2	2.8		
22	<280	2.9					2.1	2.8		
23	280	3.0					2.2	2.8		

Time: $75.0^{\circ}W$. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Oklnaw	a I. (26.	3°N, 127	*8 E)				Jan	uary 1953
Time	P.125	foF2	h'Fl	foFl	h'E	fol	fBe	(M3000) F3
00	270	2.8					1.6	3.0
01	260	2.8					1.7	3.1
02	270	2.7					2.0	3.1
03	250	2.5					2.1	3.4
03 04 05	260	2.2					2.1	3.2
05	300	1.9					1.8	3.0
06	310	1.9						3.0
07	260	4.3	250	-	-	-		3.4
08	260	6.2	240	40-m-40	120	2.1		3.5
09	270	7.2	230		120	2.4		3.3
10	270	9.0	220	(4.2)	120	2.7	4.0	3.3
11	270	9.8	220	4.3	120	3.0	4.0	3.2
12	270	10.2	220	4.4	120	3.0	4.3	3.2
13	280	9.2	220	4.3	120	2.9	4.1	3.3
11, 15 16	270	8.8	220	4.2	120	2.7	4.0	3.2
15	260	7.8	230		120	2.5	4.1	3.4
16	250	6.6	240		120	2.3	3.9	3.4
17	230	5.7	mh-mm-mb			-	2.9	3.5
1.8	230	4.6					3.2	3.3
19	250	4.7					3.2	3.2
20	250 250	4.3					3.2	3.2
21		3.6					2.9	3.2
22	270	3.2					2.7	3.0
23	280	3.1					2.0	3.1

Time: 127.5°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Guam I.	(13.6°N,	الله .9°E))	Table 16			lar	nuary 1953
Time	P.LS	foF2	h'Fl	foFl	h¹E	foB	fBe	(M3000)F2
00	260	4.2						3.1
01	250	4.0						3.3
02	250	3.6						3-4
03	230	2.6						3.4
04	270	2.0						3.2
05	310	1.6						3.0
06	300	1.6					1.6	3.2
07	250	4.2			150	(1.7)		3.2
08	(280)	6.6	230		120	2.4	3.0	3.0
09	310	7.9	210	4.2	110	2.8	4.6	2.7
10	320	7.8	200	4.4	110	(3.0)	4.5	2.7
11 12	340	7.2	190	4.4	110	3.1	4.4	2.6
12	340	7.2	190	4.5	110	(3.2)	4.1	2.6
13 14 15	350	7.6	180	le o Li	110	(3.2)	4.0	2.6
114	320	7.8	200	4.4	110	3.2	3.9	2.7
15	310	8.6	220	4.3	110	3.0	4.1	3.0
16	280	8.7	230	4.1	120	2.8	4.6	3.2
17	260	8.6	240		120	2.4	4.3	3.3
18	210	8.3					3.0	3.4
19	220	7.6					2.3	3.3
20	230	6.9					3.0	3.2
21	230	6.2						3.2
22	240	5.5						3+3
23	l 2110	4.8						3.2

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

	Table 18										
Huanca	yo, Peru	(12.0°s,	75.3°W)				Jan	uary 1953			
Time	h'F2	foF2	P:11	foFl	h¹ℤ	foE	fEg	(M3000)F2			
00	280	(5.6)						(3.1)			
01	270	4.6						(3.1)			
02	280	3.6						3.2			
03	280	3.2						3.3			
04	260	2.3						(3.2)			
05	260	2.0					6.0	3.3			
06	260	4.4			110	1.4	5.2	3.2			
07	260	6.5	220		110	2.3	8.4	3.2			
08	310	7.3	210	4.3	100	2.8	10.8	2.9			
09	360	7.5	200	4.3	100		12.0	2.5			
10	390	7.0	200	4.4	100		13.0	2.5			
11	400	7.0	200	4.5	100		12.5	2.5			
12	400	7.0	200	4.4	100		12.2	2.5			
13	400	7.5	190	4.4	100	3.4	12.0	2.5			
11,	380	8.0	200	4.3	100	3.4	11.5	2.5			
15 16	360	8.3	200	4.2	110	3.2	10.6	2.6			
	3 30	8.4	200		110	2.9	9.8	2.7			
17	290	8.2	220		110	2.5	7.4	2.8			
18	260	8.1			150	1.8	4.4	2.8			
19	260	8.0						2.9			
20 .	290	7.1						2.8			
21	310	6.6						2.8			
22	320	6.4						(2.9)			
_23	320	6.0						(2.9)			

Tims: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	19			
Kiruna	Swaden	(67.8°N,	20.5°E)				Decer	mber 1952
Time	p.12	STor	hiFl	foFl	h1Z	fol	fBs	(M3000) F2
00	(310)	(2.4)					4.1	(2.9)
01	(320)	(2.8)					3.9	(2.8)
02	300	2.3					2.9	2.9
03	300	2.1					2.0	2.9
Oli	300	2.2						2.9
05 06	2.95	2.1						3.0
06		(1.8)					(0.7)	(3.2)
07		(7 0)					(2.1)	(0.0)
08	(290)	(1.9)						(2.8)
09	240	2.4						3•2 3•3
10	220	3.6						3.4
11	215	4.3						3.4
12	220 210	4.5 4.0						3.3
13	220	3.3						3.4
74	240	2.9						3.1
13 14 15 16	(250)	(2.0)					2.3	(3.2)
17	(2)0/	(1.8)					3.3	(3.0)
18		(200)					2.4	m-10-10
19							4.1	
20	-	40-44-40					4.1	40-40-40
21		-					4.0	ether car
22	e0 e0 E0						4.0	on one
23	(310)	(2.9)					3.7	(2.8)

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

Table 21										
De Bilt	, Holland	(52.1°N,	5.2°E)				Dece	mber 1952		
Time	h'#2	foF2	h'Fl	foFl	h ! E	fol	fEe	(M3000)#2		
00	270	2.6						3.0		
01	285	2.7					2.2	3.0		
02	275	2.5					2.2	3.0		
03	280	2.3					2.2	3.0		
014	(260)	2.0					2.4	3.0		
05	250	1.9					2.6	3.1		
06	anner	1.8					2.3	3-1		
07	5710	2.3						3.1		
08	205	4.2	40.0048		-	1.6	2.9	3.6		
09	205	5-3	200		115	2.0	3.1	3.6		
10	210	5.8	210	3.0	115	2.2	3.1	3.7		
11	210	6.0	200	3.0	110	2.3	3.2	3.6		
12	210	5.8	200	3.0	110	2.3	3.3	3.6		
13	210	6.0	215	3.0	110	2.2	3.3	3.6		
111	210	5.8			115	2.0	3.2	3.6		
15	210	5.2				1.7	2.5	3.6		
16	205	4.6					1.9	3.4		
17 18	210	3.5					2 2	3-4		
19	225	2.9 2.7					2.2	3.2		
20	< 230 (225)	2.6						3.2		
21	< 240	2.4						3.1		
55	(240)	2.6						3.0		
23	< 250	2.6						3.0		

Time: $O_{\circ}O_{\circ}$. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

Table 23

Schwarz	enburg,	Switzerla	nd (46.8	3°N, 7.3	Œ)		Dece	mber 1952
Time	h'F2	foF2	h'F1	foFl	h ! E	foE	fBs	(M3000)}2
00	270	3.2						3.2
01	290	3.3						3.2
02	300	3.2						3.2
03	290	3.2						3.2
04	260	3.0						3.3
05	240	2.5						3.4
06	230	2.4						3.5
07	215	2.4						3.7
08	200	3.8						3.9
09	200	5.2						3.9
10	200	6.0			100	2.2		3.8
11	200	6.4			100	2.4		3.9
12	200	6.4			100	2.5		4.0
13	200	5.9			100	2.6		3.8
14	200	5-9			1.00	2.4		3.8
14 15 16	200	6.0			100	2.2		3.8
16	200	5.4						3.9
17	200	4.5						3.7
18	200	3.8						3.7
19	220	3.2						3.6
20	220	3.2						3.6
21	220	3.0						3.5
22	290	2.9						3.2
23	270	3,1						3.3

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Tabl	e 20			
Anchor	age, Alas	ka (61.2°	N, 149.	9°W)			Dece	mber 1952
Time	Pils	foF2	P:13	foFl	hIE	foB	fEs	(M3000)12
00	(300)	(2.8)					3.3	(3.2)
OL	300	3.0					4.0	3.1
02	320	2.9					3.0	2.9
03	320	2.7					2.5	2.8
04	(320)	2.5					3.2	2.9
03 04 05 06	310	2.7					2.2	3.0-
06	320	2.6					1.9	3.0
07	310	2.3						3.0
08	300	2.5						3.0
09	240	3.4						3.3
10	240	4.2						3.4
11	230	4.9	-					3.5
12	230	5.4	-			-		3.5
13 14	230	5.3						3.4
771	220	5.4						3.5
15	220	4.7						3.4
16	220	3.7						3.3
17	230	2.9						3.3
18	240	2.2						3.3
19	(260)	(2,2)					(3.4)	
20	6000	etrorus					(3.8)	
21		1011011					(4.8)	-
22							(3.8)	
23	1						/r 0)	

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 22

Lindau,		rmany (5		.O.1 E)				ber 1952
Time	h'F2	foF2	h ^t Fl	foF1	h:E	fol	fEs	(M3000)F2
00	275	2.8					2.5	3.0
01	260	2.8					2.3	3.0
02	260	2.8					2.4	3.0
03	260	2.7					2.3	3.0
OL	260	2.4					2.€	3.0
05	255	2.0					2.6	3.0
06	260	2.0					2.6	3.2
07	260	2.0				E	2.5	3.3
08	225	3.4					2.3	3.4
09	210	4.8				1.8	3.0	3.6
10	215	6.0			120	2.0	3.1	3.6
11	215	6.1			110	2.2	3.2	3.7
12	215	6.2			110	2.3	3.4	3.7
13	220	6.1			115	2.2	3.5	3.6
111	220	6.0			120	2.1	3.4	3.5
15	210	5.8			120	1.8	3.2	3.6
16	210	4.7			-	E	3.1	3.5
17	215	4.2					2.5	3.4
18	230	3.4					2.6	3.4
19	250	2.6					2.6	3.2
20	250	2.8					2.2	3.3
21	260	2.6					2.1	3.2
22	270	2.5					2.2	3.1
23	275	2.6					2.2	3.0

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Table 24

Formos	a, China	(25.0°N,	121.5°E)				Dec	ember 1952
Time	hills	foF2	h'Fl	foFl	h ! E	fol	fEs	(N3000)F2
00	300	3.C					1.8	2.8
01	280	2.9					1.7	3.0
02	260	3.1						3.2
03	5710	2.8					1.7	3.2
011	< 260	2.4						3.0
05	<270	2.4					1.7	2.8
06	<270	2.5					2.2	2.8
07	240	5.5			120	1.8	2.4	3.4
80	240	7.0	240		120	2.4	3.2	3-4
09	260	7.5	570	4.2	120	2.8	3.6	3.4
10	260	8.6	220	4.2	(120)	3.0	4.1	3•¼
11	260	8.8	210	4.3	(120)		4.2	3.4
12	270	9.6	210	71-71	(120)		12	3.2
13 11 ₁	270	3.11	220	4.4	(120)	-	4.4	3.4
77	270	12.5	230	4.3	(120)		4.2	3.3
15	240	10.5	230	3.9	(120)	2.7	4.2	3.5
16	240	9.6	200	-	(120)		3.6	3.5
17	210	8.0			(110)	(1.7)	3.2	3.7
18	210	6.2					3.2	3.3
19	230	5.4					3.C	2.9
20	240	5.6					3.0	3.0
21	230	5.2					2.3	3.3
22	5/10	3.7					2.2	3.2
23	5/10	2.9					1.9	3.0

Time: $120 \cdot 0^{\circ}$ E. Swesp: 1.5 Mc to 19.5 Mc in 15 minutes, manual operation.

				Table	35		_	
Huamon	ro, Peru	(12.0°S,	75.3°W)				De	cember 1952
Time .	P.LS	foF2	h'71	foFl	FIE	fol	1Be	(M3000)779
00	300	(4.7)						(3.1)
02	300	a 1000						20079
02	300	echrolis(38						43-4649
03	300	4786547						401-120-403
Ola	290	estedins)						40 48-CO
05	290	(2.8)						nimp-uit
03 04 05 06	260	5.2			120	1.7	4.3	3.2
07	(280)	7.4	230	40.00	110	2.5	6.6	3.2
08	310	8.4	220	4.2	100	2.9	9.6	3.0
09	330	8.7	210	4.3	1,00	gácorille.	12.0	2.8
10	360	8.8	200	4.5	100	10-10-10	12.8	2.5
11	370	8.3	200	4.5	1.00	40-404	12.9	2.5
12	360	8.6	200	4.5	100	101-101-101	12.9	2.5
13	360	9.0	200	4.4	100	479-484 410	12.5	2.5
14	360	9.0	200	4.4	1.00	3.3	12.0	2.6
15	330	9.3	200	4.2	100	3.1	10,5	2.7
1h 15 16	300	9.3	210		110	2.9	7.5	2.7
17 18	240	9.4			110	2.4	7.6	2.8
	260	9.1			120	********	5.0	2.8
19	270	8.7						2.8
20 21	300	8.3						2.7
	330	8.3						2.7
22	330 310	(7.6) (5.6)						(2.9) (3.2)

23 [310 (5,6) Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	27			
Anchor	ge, Alas	ka (61.2	on, 149.	9°W)			Hove	aber 1952
Time	Pils	2018	h'Fl	foFl	b1E	20E	fBs	(MZ000)F2
00	(310)	(3.5)					3.4	(3.1)
01	(300)	(2.8)					2.0	(3.0)
02 03 04 05 06	(320)	(3.0)					3-2	(2.9)
03	340	2.8					2.6	2.9
Cds	3/40	2.7					2.7	(2.9)
05	(320)	(2,5)					1.4	(2.9)
06	(310)	(2.7)						(3.0)
07 08 09 10 11 12 13 14 15 16 17 18 19 20	(300)	(2.2)						(3.0)
08	260	3.1						3.2
09	250	4.2				1012-10		3.3
10	240 240	5.0	240	-	-			3.3
11	240	5.6	570			-		3.4
12	240	5.6	5 PO					3.3
13	230	5.7	-	-		10-44-40		3.4
14	220	5.6				40-0-0		3.4
15	220	5.6			-	10-44-0		3.4
16	230 210	4.5						3.4
17		3.4						3.3
18	250	2.6						3.2
173	250	2.2						3.3
20	(070)	(2.0)						1512 ml
21	(310)	(1.8)					(0.7)	(3.1)
	40-09-00	40-0-0					(2.6)	Miles and Miles
23							(3.lı)	

Time: 150.00W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Tamagawa, Japan (31.2°N, 130.6°E) Table 29 November 1952										
Yamaga	wa, Japan	(31.2°N,	130.6	E)			Nov	ember 1952		
Time	P1LS	STol	h'F1	foFl	h!E	fol	:Ya	(H3000)F2		
00	290	2.8					2.4	3.0		
01	280	2.8					2.5	3.0		
02	290	2.9					2.3	3.0		
03 04	<280	2.9					2.5	3.2		
Off	250	3.0					2.4	3.2		
05 06	250	2.5					2.4	3.2		
06	260	2.5					2.2	3.2		
07	220	4.5			-	1.6	2.2	3.5		
08	220	(6.0)	220	3.4	110	2.3	3.1	(3.5)		
09	250	7.0	220	4.0	100	2.5	3.5	(3.5)		
10	250 250	7.8	220	4.2	100	2.9	3.8	3.4		
	250	8.0	210	4.4	100	3.0	3.8	3.4		
73 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76	250	8.4	210	4.5	100	3.0	3.8	3.3		
13	260	8.6	220	4.4	100	3.0	3.8	3.3		
<u>11</u> 1	250	8.5	230	4.3	100	2.9	3.8	3.4		
15	2 40	7.8	220	3.8	100	2.6	3.8	3.5		
	220	6.5	220	3.4	120	2.2	3.8	3.6		
17	210	5.8					3.5	3.6		
18	200	4-4					3.0	3.5		
19	0بل2	3.6					3.0	3.2		
20	250	3.4					3.0	3.2		
21	2h0	3.4					2.5	3.3		
22	250	2.8					2.5	3.2		
23	290	2.7					2.3	3.1		

Time: 135.0°E.
Sweep: 1.0 Me to 22.0 Me in 2 minutes.

			Table 2
avik.	Iceland	(64.1°H,	21.8°W)

Reykja	wik, Icela	November 1952						
Time	Pils	foF2	h'Fl	foF1	h'E	fol	23g	(M3000) 13
00	(340)	(2.1)					4.1	200
03.	-	(2.7)					4.6	(SHDrg)
02	(350)	(2.8)					4.7	(2.8)
03	(320)	2.5					4.4	2.9
03 04 05 06	320	2.4					3.5	3.0
05	300	2.3			mber (f)	1040-04		3.1
06	280	2.0			-	-		3.1
07	280	(1.7)			CP will not	1011010		3.2
08	260	2.5				ga ez mi		3.2
09	240	3.8			-	4000.00		3.3
10	STO	4.4	250					3.4
11	240	4.8	5/10	chies es	120	60 min (50		3.4
12	240	5.3	230	gar et	60-10-2	-		3.4
13	210	5.0	230	-	F1140 40	-		3-4
14	240	4.7		42 100 110	130			3.3
15	240	4.5	10100		120			3.3
16	250	3.7	-			-		3.2
17	260	(3.6)			120	40000	2.0	(3.1)
18	270	3.3			110	-	3.6	3.2
19	260	(2.9)					3.8	(3.2)
18 19 20	(320)	(3.0)					4.0	(3.1)
21	(300)	(2.6)					3.8	(3.0)
22	(310)	(3.2)					4.8	(3.0)
23	()22()	(2.10)					4.6	101000

23 (2.h)

Fines: 15.0°W.

Sweep: 1.0 Me to 25.0 Me in 18 seconds.

Tokyo,	Japan (3	5.7°N. 1	39.5°E)	Table	e 28		November 1952		
Time	P.ES	foW2	h131	fo¥1	h1E	foB	1Bs	(M2000)#2	
CO	300	3.0					2.6	2.9	
03.	300	3.1					2.5	2.9	
02	300	3.0					2.5	2.8	
03	270	3.2					2.5	2.9	
04	250	3.0					2.5	3.0	
05	260	2.8					2.5	2.9	
06	250	3.3					2.5	3.1	
07	230	6.1		40-0-0	130	2.0	2.5	3.4	
60	210	7.3	230	3.5	120	2.4	3.2	3-4	
09	570	7.5	230	4.0	110	2.6	3.7	3.4	
10	250	8.0	230	4.2	110	2.8	3.8	3.4	
11	250	8.0	220	4.2	110	3.0	3.8	3.3	
12	250	8.1	230	4.2	110	3.0	3.8	3.4	
13	250	7.6	230	4.0	110	2.9	3.7	3.3	
34	250	7.3	240	4.0	110	2.7	4.0	3.4	
15	240	6.7	230	3.2	120	2.4	3.7	3.4	
16	230	6.1			1140	1.9	3.5	3.4	
17	220	4.4					3.2	3-4	
18	240	3.7					3.0	3.1	
19	250	3.1					2.8	3.2	
20	260	3.2					3.1	3.0	
21	260	3.0					2.5	3.0	
22	290	3.0					2.6	3.0	
22	200	2 0					っぱ	2 0	

23 300 3.0 Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

Baguio.	P.I. (1	6.4°N, 1	20.6°E)	Table	<u>30</u>		Nov	ember 1952
Time	F.1.S	foF2	h'Fl	foF1	hIE	foE	fBs	SA(0008M)
00	240	5.3						3.2
01	230	4.8						3.4
C2	220	3.8						3.5
03 C4	210	3.4						3.6
C4.	220	2.4					1.7	3.5
05	(250)	(2.2)					2.1	(3.1)
06	250	3.6						3.2
07	230	6.5			120	2.2	2.6	3.4
08	(260)	8.0	230	-	110	2.6	3.2	3.3
09	290	9.2	220	(4.3)	110	(2.9)	3.8	3.1
10	300	9.8	210	4.4	110	(3.1)	4.4	2.9
22	300	9.8	200	4.5	100	3.3	4.7	2.7
12	320	9.8	210	4.5	110	(3.3)	4.4	2.6
13	300	10.2	200	4.4	100	3.3	4.4	2.9
14	280	10.6	200	4.2	100	(3.0)	4.8	3.0
15	270	11.0	220	***	100	(2.7)	4.3	3.1
1.6	240	10.9	220		-	-	5.0	3.3
17	220	10.5					2.8	3.5
18	220	9.3					2.7	3.5
19	220	8.2					3.6	3.3
20	220	7.4					3.6	3.1
21	240	7.2					2.6	3.3
22	230	6.2						3.2
23	240	5.5						3.2_

Time: 120.0°B. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

				Table	1			
Johann	agandae	Taleia of	S. Africa	(25.25	8, 28,1	(BE)	Ec	vember 1952
Time	P.ES	2088	h129	2081	h1E	202	The	(188003)158
00	270	3.9	The state of the s				1.7	2.9
03	260	3-4						3.0
68	250	3.7						3.0
03 04 05 06	260	3.3					1.8	301
Ob	250	3.0						3.0
05	250	3.3						3.2
	SPO	4.9	230	0.00	3.20	2,0		3.3
07 08	290	5.8	220	h.0	310	2.6		3,2
08	310	6.4	220	4.3	110	3.0	3.7	3.0
09	370	7.2	200	4.5	110	3.2	3.8	3.0
30	320	7.4	200	4.6	110	3.4	3.8	2.9
11	320	8.0	500	4.6	110	3.5		2.9
12	320	8.5	200	4.6	110	3.5	3.7	2.9
13	320	8.7	210	4.6	110	3.5	3.7	2.9
11	310	8.7	21.0	4.5	110	3-4	3.8	2.9
15	30:0	8.6	220	Lob	1.30	3.2	3.6	3.0
16	280	0.8	220	4.1	130	2.9	3.6	3.0
17	270	7.9	230	3.7	110	204	3.3	3.1
18	250	7.6	250	60-60-50	100	1.9	3.0	3.2
19	230	7.3			600 mm m01	-0.00	5-7	3.2
20 21	230	6.5					2.0	3.2
	21,0	5.2					1.9	3.2
22	250	4.3 4.0					2.2	3.0 2.9
< 1	1 270							

23 \$ 270 4.00

Time: 30.00E.

Sweep: 1.0 No to 15.0 Mc in 7 seconds.

Capeto	Table 33 Capetown, Union of S. Africa (34.2°S, 18.3°E) November 1952											
Time	Pils	fore.	h'32	foFl	h I E	fol	fBs	(ME000) F2				
00 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17	270 280 280 270 260 240 280 310 320 330 340 340 340 320 330 290 290 270	3.6 3.6 3.6 3.5 3.2 45.4 5.8 6.5 7.0 7.2 8.4 7.4 6.8 6.7	250 2h0 230 220 220 220 210 210 220 220 220 230 230	3.7 4.1 4.3 4.4 4.6 4.6 4.6 4.6 4.0 3.5	120 110 110 110 110 110 110 110 110 110	1.7 2.3 2.8 3.1 3.2 3.4 3.4 3.4 3.1 2.8 2.8	2.2 2.0 3.5 3.5 3.7 3.7 3.7 3.1 3.4	(#2000)F3 2.9 2.8 2.9 2.9 3.0 2.9 3.0 2.9 3.2 3.0 2.9 2.9 2.9 2.9 2.9 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3				
20 21 22	230 230 240	6.ц 5.2 ц.3					1.7 1.6 1.8	3.2 3.2 3.1				
_23	260	3,8						3.0				

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Table	35			
Townsv	ille, Aus	tralia (19.3°S,	146.8°E)			Oct	ober 1952
Time	F. LS	CoFS	h'I'l	foFl	h I E	fol	fBo	(M3000)}2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	h'F2 210 230 215 250 270 270 250 260 270 290 300 300 300 290 280 250	5.3 4.9 3.8 3.4 4.6 6.2 7.2 7.6 7.5 7.9 8.0 8.0 7.5 7.5 7.5 4.6			130 110 110 110 110 110 110 110 110 110	1.7 2.4 2.8 3.2 3.3 3.4 3.5 3.4 3.5 3.1 3.2 2.8 2.8	2.0 2.6 2.5 2.2 3.0 3.8 4.4 4.5 4.8 4.0 4.0 4.0 4.0	3.2 3.0 3.0 3.0 3.0 3.2 3.2 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2
18 19 20 21 22	240 250 270 260 260	6.8 5.4 5.4 5.4					3.3 2.8 2.6 2.3	3.3 3.2 3.1 3.1 3.0
23	250	5.3					2.4	3.0

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Wa Share	Mov	umber 1952						
Time .	Pils	2oF2	(30.3°8,	foF2	, PiE	Loz	fBa	(M2000)F8
00	270	4.2					3.2	3.0
602.	265	F.0					3.2	2.9
05	260	3.8					3.0	3.0
03	260	3.6					2.4	3.0
OF:	260	3.2					2.8	3.0
05	280	3.5					2.4	3.1
06	250	4.2	250	460		2.0	2.2	3.3
07	270	5.0	230	3.8		2.5	3.0	3.3
80	300	5.5	220	4.3		3.0	3.6	3.2
09	310	5.8	210	4.4		3.2	4.0	3.0
10	310	6.3	210	4.5		3.4	4.0	3.1
11	310	6.8	200	4.5		3.4	3.9	3.1
12	320	6.6	200	4.5		3.5	4.2	3.₽
13	320	6.8	200	4.6		3.4	4.2	3.0
13 14 15	310 300	7.1	210	4.5		3.4	3.9	3.1
15	300	7.0	220	4-4		3.2	3.9	3.1
16	300	6.7	220	4.3		3.0	3.6	3.1
17	290	6.4	510	3.8		2.6	3.4	3-2
18	270	6.1	250	3.4		2.2	3.6	3.2
19	250	6.2					2.7	3.3
50	250	5.8					2.8	3.3
21	250	4.8					2.6	3.2
22	270	4.2					2.6	3.0
23	290	4.3					2.8	3.0

23) 270 6.5 22726: 120,0°E. Streep: 1.0 Me to 16.0 Me in 2 minutes.

				Table '	34			
Baguio,	P.I. (1	6.4°N, 1	20.6°E)				Octo	ber 1952
Time	P13.5	20II2	h'Fl	foFl	h'E	foB	15e	(M2000))#8
00	230	7.6						3.3
03	220	6.8						3.5
02	200	6.4						3.7
03	200	4.2						3.7
04	220	3.2					2.0	3.3
05	(230)	(2.9)					2.4	3.4
06	230	4.5					2.3	3.4
07	220	7.0			120	(2.3)	3.2	3.5
08	250	8.2	270	-	110	(27)	3.8	3.3
09	(280)	9.3	200	-	-	121000	4.2	3.0
10	300	10.0	200	****	chus et	-	4.6	2.8
11	290	9.8	200	-	100	(3.4)	4.7	2.6
12	300	9.6	190	10100	W-60-00	-	4.4	2.6
13	280	10.0	200	101000	100	-	4.0	2.8
24	290	10.7	200	101010	100	3.2	4.4	3.0
15	270	11.3	210	101011	110	3.0	4.1	3.1
16	240	(11.6)	220	40.404	110	2.5	4.1	(3-3)
17	220	(10.6)					2.4	(3.4)
18	220	(10.5)						(3.3)
19	220	(10.0)						(3.4)
20	210	9.6						3.4
21	210	8.7						3+3
22	230	7.8					2.1	3.3

23 230 7.4 Time: 120.0°S. Sweep: 1.0 Mc to 25.6 Mc in 15 seconds.

				Table	36			
Brisba	ne, Austr	October 1952						
Time	P.LS	foF2	h'F1	foFl	h * E	foE	fBs	(M2000)13
00	260	4.5					2.5	3.0
01	250	4.3					2.0	3.1
02	240	4.0					2.0	3.1
03	270	3.5					2.0	3.0
Ols	270	3.3					2.0	3.0
05	260	3.5						3.0
06	570	4.8	230		130	2.1		3.4
07	280	5.8	230	4.0	110	2.6		3.3
08	290	6.2	220	4.3	110	3.0		3.2
09	290	6.5	210	4.5	110	3.2		3.2
10	300	6.8	200	4.5	110	3.3		3.2
11	310	6.8	200	4.6	110	3.4		3.1
12	300	6.8	200	4.6	110	3.5		3.1
13	290	6.9	200	4.5	110	3.4		3.1
14	305	6.4	210	4.5	110	3.3		3.1
15	290	6.5	220	4.4	110	3.1		3.1
16	280	6.3	220	4.0	110	2.7		3.2
17	250	6.6	240	3.3	120	2.1	_	3.2
18	230	6.4					3.1	3.1
19	250	5.8					2.4	3.0
20	260	5.3					1.8	2.9
21	270	5.0						2.9
22	275	5.0					2.0	2.9
_23	270	4.8					2.3	3.0

Time: 150.0°E. Sweap: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

				Table	37			
Canber	ra, Austr	October 1952						
Time	P.1.5	foF2	h'Fl	foFl	h &	foE	IBe	SE(COOSN)
00	(260)	4.0					2.8	3.0
01	250	3.7					2.7	3.0
02	240	3.4					2.8	3.1
03	(5/10)	3.1					2.7	3.1
Olı	(250)	3.0					2.5	2.9
05	250	3,2			-	CD-400+EE	2.5	3.0
06	240	4.1	8049.09	mbyte-th	110	1.6	3.0	3.4
07	280	4.7	240	3.9	110	2.2	3.6	3.3
08	320	5.2	220	4.1	100	2.8	3.6	3.2
09	320	5.5	200	4.2	100	3.0	3.6	3.2
10	330	5.8	200	4.4	100	3.2	3.8	3.1
22	340	5.9	190	4.4	100	3.3	3.5	3.0
12	310	6.1	200	4.4	100	3.3	3.8	3.2
13	305	6.1	200	4.4	100	3.3	3.4	3.1
14	310	6.1	23.0	4.4	100	3.2	3.3	3.2
15	300	5.9	210	4.2	100	3.0	3.4	3.2
16	290	5.8	220	4.0	100	2.8	2.9	3.2
17	250	5.8	240	Marin III	110	2.0	2.7	3.2
18	240	5.7			20-00 UP	1.6	2.6	3.2
19	240	5.6					2.6	3.1
20	240	5.0					2.9	(3.1)

20 | 240 | 5.0 21 | 250 | 4.4 22 | 250 | 4.2 23 | (250) | 4.0 Time: 150.07E. Sweep: 1.0 Nc to 16.0 Nc in 1 minute 55 seconds.

ptsmber 1952
(N3COO) F2
(3.0) (3.0) (3.0) (3.0) (2.8) (3.0) (3.1) (3.1) (3.1) (3.1) (3.1) (3.1) (3.1) (3.1) (3.1) (3.2) (3.1) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.3)
26897

73 1 280 (3.2) Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Bagulo	P.I. (1	6.4°N, 12	0.6°E)	Table 41			September 1952		
Time	p,12	foF2	h'F1	foFl	h ! E	foE	flie	SE(0002M)	
00 00 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	290 210 210 220 230 (210) 230 (300) 320 (300) 350 350 350 210 250 210 250 210 250 210	6.8 6.8 6.1 4.0 3.1 2.6 6.9 7.4 8.2 9.5 9.5 9.8 10.5 (11.4) (10.7) (10.2) (9.8) 9.1 8.2	220 220 210 200 210 210 210 210 220	10.66 10.66 10.66 10.55 (10.51)	120 110 (120) 120 120 120 120 110	2.2 (2.8) (3.1) (3.2) 3.4 (3.5) 3.4 (3.5) 3.2 (3.0) 2.6	1.99 2.09 2.99 3.66 4.55 5.21 4.88 4.64 5.00 4.64 5.00 4.00 2.74 2.00 2.00	3.0 3.3 3.6 3.5 3.1 3.1 3.1 3.2 2.6 2.6 2.5 2.7 (3.0) (3.1) (3.2) (3.2) (3.1) (3.2) (3.1) 3.1	

Time: 120.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	38			
Hobart,	Tasmani	a (42.9°	s, 147.3	°E)			0e	tober 1952
Time	P.135	fol2	h'F1	foF1	h1E	foB	fBs	ST(0005M)
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	280 300 280 300 300 250 250 230 210 365 370 345 350 350 3210	2.8 2.6 2.5 2.3 2.1 2.5 3.7 4.5 5.0 5.1 5.6 5.7 7.7 5.6 5.6			110 100 100 100 100 100 100 100 100	2.0 2.4 2.8 3.1 3.4 3.4 3.4 3.4 3.8		(NEOCO) #2 2-9 2-9 3-0 3-0 3-1 3-0 2-8 2-8 2-9 2-9 2-9 2-9 2-9 2-9 3-0
17 18 19	220 250 250	5.5 5.5 5.5			105 105	1.8		3.1 3.1 3.0
21. 20	250 250 260	և.8 և.0 3.6						3.0 2.9 2.9
23	270	3.0						2.9

16 210 5.6 --- 4.1 100 2.
17 220 5.5 100 2.
18 250 5.5 105 1.
29 250 5.5
20 250 4.8
21 250 4.0
22 260 3.6
23 270 3.0

Timb: 150.0°E.
Sweep: 1.0 Me to 13.0 Me in 1 minute 55 seconds.

Calcut	ta, India	(22.6°N,	88.4°E)	Table	40		Septe	mber 1952
Time	b:T2	foF2	h'F1	foFl	P . E	foE	fEs	(N3000)F2
00 01	240 (240)	5.2 (4.8)						3.0
02 03 01,	(240) (270) (240)	(4.0) (3.5) (3.0)						(3.0)
0h 05 06 07	(270) 255 210	(2.8) 4.5 7.4				2.3		3.0
08 09	230 2b0 2b0	8.0 8.7 9.7				2.5 3.0 3.2	3•μ	(3.0)
10 11 12 13	210 210 210	10.2 10.8 10.8				3.6 3.7 3.8		3.0
11, 15 16 17 18	225 (210) (210)	(10.8) (10.3) (9.8)				3.4 3.2 3.0		(2.9)
17 18 19	(225) (225)	(9.5) (9.5) (8.6)				2.3	3•5	(3.2)
20 21 22	(240) (240)	(8.0) (6.5) (5.7)						(2.9)
23	255	,5,5,					25	

23 255 Time: Local.

Calcutt	a. India	(22.6°N,	88.L°E)	Table	42		Aı	igust 1952
Time	h'F2	foF2	h' 1/1	foFl	h'E	foE	fBs	(M3000)#2
00	2h0 2h0	6.0 5.3						(3.0)
02 03 0L	(210) (210)	(4.7) (3.9) (3.6)						(3.0)
05 06 07	210 210	3.3 5.5 6.8				2.2	2.4 3.6	(3.0)
08 09 10	570 570 570	8.2 8.5 (8.5)				2.5 2.8 3.0	3.8	(3.0)
11 12	(225) (225) (225)	(8.5) 8.5 (9.0)				L.O		40-400-45
13 14 15 16	(210)	******				3.8	(4.4)	of early
17 18 19	(210) (210)	(9.6) (9.2) (9.6)				3,₽	(4.2)	***
20 21 22	(210) (225) (240)	(8.6) (7.6) (6.2)						(3.0)
23	(270)	6.0						

Time: Local.

				Table "	3			
Bagulo,	P.I.	(16-4°E)	120.6°E)	ALSKE WORK WORK PARKET			Au	gust 1952
Time	b'F2	foF2	5131	foFl	h'E	fol	Ma	(MEOOD) FO
00	360 270	5.7 5.4						2.9 3.1
02	250	150						3.1
01, 05	250 230 240	2.8						3°2 3°3
06	240	1:18			770		2.9	3.4
07	230 290	7.1	23.0	0.620	110	2.8	3.7	3.2
09 10	(310) 360	8.0	200 210	4.6	110	(3.1)	4.0	2.8 2.5
11 12	380 390	8.6 9.0	200 200	4.6	110	(3.4) 3.4	5.8 5.0	2.5 2.5
33	370 370	9.6	200	4.6	(110)	(3.4)	5.9	2,6
15	350	10.1	220	12.5	110	3.3	5.0	2.6
16	310 250	10.6	220	(4.2)	110 110	2.8 2.3	5.1 4.3	3.1
18	270	10.0 3.6					3.3 3.6	J-3 3.2
20	21 ₀ 0 260	8.5 7.9					2.0	3.0
22	290	2.7					- 244	2.9

23 300 29 Time: 120.0°E. Sweep: 1.6 He to 25.0 he in 15 seconds.

				28,02.0	45			
Calcut	ta, India	(22.6°Ns	88.4 5)				Ji	aly 1952
Timo	p.ks	2025	hirl	foFl	n! E	103	2B3	(M3000)F2
00	240	5.8						(3.0)
01	57:0	5.5						
02 04 05 06	240	5.4						
-03	5/50	5.1						3.0
OL	250	to all					3.2	
(6)	260	4.5					2.6	0.0
07	2710	5 -li 5.d				2.4	3.0	2.9
68	(240)	(8.5)				2.6	(fr-8)	
09	(240)	(3.2)				3.0	(4.7)	(2.8)
3.5	(240)	(9.7)				3.2	(5.0)	(200)
11	(240)	(9.2)				3.3	()***/	
12	570	9.2						(2.8)
13	(210)	9.8				3.9	4.5	
13 14 15 16	240	9.4					4.9	
15	- Charles	(9.5)				et-area	(4.6)	42 mJ mh
	(240)	(10.0)				City III	4.8	
17 18	21:0	9.8				2.7	4.8	
18	5/10	10.2					5.5	(3.0)
19	5/10	9.6					3.2	
20	240	8.6					4.6	(2.33
	240	(7.8)					1000	(3.1)
22 23	(2kg)	(5.5) (6.0)					(2.5) (2.4)	
رد	(200)	10001					16047	

23 (280) (6.0) Time: Local.

					Table 4
 Th. 77	121	1.011	300	(On)	

Baguio	, P.I. (1	6.4°N, 12	(3°600)					June 1952
Time	P.1.S	foF2	h'Fl	foFl	h1E	foE	fEs	(M3C00)F2
00	300	(4.5)					leols	(2.7)
01	280	4.1					3.5	3.0
02	260	3.7					3.4	2.8
03	260	3.4					3.2	3.0
04	240	3.1					4.4	3.0
05	570	(3.0)					3.2	3.0
06	230	5.C					4.5	3.2
07	220	6.2			100	(2.5)	6.2	3.2
08	(300)	6.6	210	10 1000	100	2.9	7.0	3.0
09	350	7.3	210	(4.5)	100	3.3	6.9	2.7
10	380	7.7	200	4.5	100	3.3	7.2	2.5
11	400	8.2	190	4.6	100	3.6	8.0	2.4
12	400	8.6	190	4.6	100	3.6	8.0	2.4
13	004	8.8	200	4.5	100	3.5	6.9	2.4
13 11 ₁	370	9.3	200	4.4	100	3.3	7.6	2.6
15	350	9.5	200	4.3	100	3.1	6.4	2.6
16	330	10.0	210	(4.2)	100	2.8	5.8	2.8
17	230	10.0	-		100	2.5	5.1	2.8
18	240	10.4				>	5.0	3.0
19	240	9.7					5.0	3.1
20	250	8.1					3.9	3.0
21	260	7.2					3.2	2.9
22	300	5.4					3.6	2.7
23	320	4.5					3.5	2.7
ma	300 000							

Time: 120.0°E. Sweep: 1.0 Mo to 25.0 Mc in 15 seconds.

a T	(13.6°N,	11.1. 000	,	Table 44			Anne	ust 1952
Guam I.				C- 72	L 1 TP	4. 9		
Time	P125	foF2	h'F1	foFl	P.E	fox	fØg	(M3000)F2
00	300	5.2						2.8
01	280	4.6						3.0
02	270	4.0						3.1
03	250	3.6						3.2
04	270	3.4						3.2
05	250	3.0						3.4
06	250	3.5					1.8	3.3
07	(250)	5.8	230	10 40 10	120	2.2	2.6	3.4
08	270	7.1	200		110	2,6	3.6	3.2
09	300	7.6	200	4.4	110	3.0	7.0	3.0
10	340	8.1	200	4.5	110	3.2	3.9	2.7
11	370	8.2	200	4.6	110	3.4	4.6	2.6
1.2	380	8.4	20.0	4.6	110	(3.4)	4.5	2.5
13	380	8.9	200	4.5	110	3.4	4.1	2.5
14	360	9.0	200	4.5	110	3.1		2.7
15	340	9.6	200	4.5	110	3.2		2.7
16	330	10.1	210	4.3	110	3.0	4.0	2.8
17	300	10.7	220	(4.1)	110	2.7	4.3	2.9
18	(280)	10,4	240		120	2.0	4.4	3.0
19	250	20.3			_		3.9	3.0
20	250	9.5					3.1	3.0
21	240	8.5					2.7	3.1
90	250	7.2					2.5	3.0

22 250 7.2 25 280 5.7 Time: 150.092. Sweep. 1.0 Mg to 25.0 Mg in 15 zeconds.

	P.J. (10	foF2	h'Fl	fo#1	h*E	foE	1Ea	July 1952 (M3000)F2
line	SEId	The second second	D.BT	1051	D.T	IOP		
00	33.0	4.5					3.8	2.8
01	300	4.3					3.4	2.9
02	270	4.2					3.2	3.0
03	250	3.6					2.9	3.0
Oli	240	3.4					3.1	3.3
05	230	3.0					3.1	3.3
06	230	4.6					3.0	3.3
07	210	5.8			100	(2.5)	5.6	3-2
08	(300)	6.7	210	(4.2)	100	3.0	6.7	3.1
09	350	6.8	200	4.3	100	(3.2)	7.2	2.8
10	380	7.5	190	4.3	100	(3.3)	7.4	2.6
11	400	7.9	190	4.5	100	3.4	8.0	2.6
12	400	8.3	190	4.4	100	(3.6)	7.5	2.6
13 14 15	L10	8.6	200	4.4	700	3.4	7.2	2.5
34	h20	8.6	200	4.4	100	(3.2)	8.2	2.5
15	380	9.1	210	4.3	100	3.1	7.0	2.6
16	340	9.4	210	4.1	100	2.9	7.0	2.7
17	250	9.5			110	2.4	6.2	2.8
18	240	9.4					5.3	3.1
1.9	230	8.8					5.4	3.2
20	270	7.3					4.0	2.9
21	300	6.0					2.9	2.8
22	310	5.4					3.1	2.8

23 320 4.7 Time: 120.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Time	, P.I. (1 h'F2	foF2	h'31	foFl	h'E	foE	fEs	May 1952 (M3000) \$2
	280		4 2 1	1021	П 44	1020		
00 01	240	6.5 5.8					3.6	3.0
02		5.1					3.7 4.1	3.2
03	2140 220	4.6					3.1	3.3 3.2
01,	220	3.6					3.5	3.4
05	220	3.6					5.0	(3.2)
06	230	5.1					4.8	3.3
07	220	6.4			100	2.5	5.2	3.1
08	(290)	7.4	210		100	3.0	5.8	2.9
09	(380)	8.1	210	4.5	110	3.3	6.0	2.6
10	360	8.7	200	4.6	100	(3.5)	6.6	2.5
11	370	9.2	200	4.7	110	(3.5)	6.2	2.1
12	360	9.1	200	4.6	100	3.5	6.0	2.4
13	360	9.4	190	4.6	100	(3.4)	6.6	2.5
14	340	9.8	200	4.5	100	(3.3)	5-7	2.5
15	(340)	10.0	200	4.4	100	3.2	5.6	2.6
16	(300)	10.6	220	(4.2)	100	3.0	5.8	2.7
17	230	11.5			110	2.6	4.6	3.0
18	21:0	11.2					3.6	3.2
19	223	10.0					3.2	3.1
20	250	8.1;					2.2	2.9
21	280	7.9						2.8
22	310	6.9						2.8
23	300	6.2					2.6	2.8

23 | 300 6.2 Time: 120.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

		- 99

Fribourg, Germany (18.1°N, 7.8°E) March 1952											
Time	P.LS	folla	h'F1	foF1	h1E	fol	fle	(M3000)F2			
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	290 295 290 280 280 255 275 290 290 300 290 290 290 290 255 290 290 290 290 290 290 290 290 290 290	3.0 2.8 2.8 2.8 2.6 2.2 2.9 3.0 5.4 6.0 6.2 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	255 230 220 230 230 230 235 235 235 235 250	3-7 4-0 4-2 4-3 4-4 4-3 1-0 3-7	122 111 113 112 113 113 111 1120	E 1.9 2.4 2.7 2.8 3.0 3.0 3.0 2.9 2.8 2.5 2.1 5	1.9 1.9 1.9 1.9 2.8 3.2 3.0 3.0 3.0 3.0 2.2 2.1 2.2 1.8 1.7	208 208 208 208 208 208 300 302 302 302 301 302 301 302 302 301 302 302 302 302 302 302 302 302 302 302			

Local.

1.25 Mc to 20.0 Mc in 10 minutee, automatic operation.

23

Domont,

P.LS

280 240 240

230 260 270

240

220 210

240 280

290

Time: 0.0°.
Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

France (49.0°N, 2.3°E)

folls

2.7 2.6 2.5 2.2

2.2 3.0 4.0

906587684682528

h'F1

220 215

				Table	51			
Poitie	rs, Franc	в (46.6 <mark>°</mark>	n, 0.3°E)			Ma	rch 1952
Time	h'F2	foF2	h'Fl	foFl	hIE	foE	fEs	(M3000)#2
00	285	3.2					2.0	2.9
01	<290	3.2					1.8	2.8
02	< 275	3.2					1.7	2.8
03	< 270	3.0						2.8
04	250	2.8						3.0
05	240	2.3						3.1
06	570	3.0						3.2
07	235	4.2	225		115	2.0	2.0	3.4
08	270	4.6	205	3.4	105	2.3	2.5	3.4
09	250	5.5	205	3.8	100	2.6	3.0	3.5
10	2 65	6.0	200	4.0	100	2.8	3.0	3. 5
11	275	6.1	205	4.2	100	3.0	2.6	3.4
12	280	6.2	200	4.3	100	3.0	2.3	3.4
13	270	6.4	210	4.2	105	3.0	2.3	3.4
11 ₁ 15	275	6.0	220	4.1	105	3.0	2.4	3.4
15	260	6.2	215	4.0	105	2.8	2.0	3.4
16	250	6.0	220	3.6	110	2.5	2.0	3.4
17	245	6.3	230		110	2.0	2.0	3.4
18	225	6.2						3.4
19	220	5.6						3.4
20	225	4.6						3.3
21	< 240	4.0						3.1
22	260	3.3						2.9
23	270	3.2						2.9

Table 49

foF1

3.8 3.9 3.9 4.0 3.8 4.0

hIZ

100 100 100

100

100

foE

1.7 1.9 2.3 2.5 2.7 2.9 3.0 2.9 2.8 2.7 2.3 1.8

fEs

2.5

March 1952

(NZOOO)#2

Time: 0.00°.
Sweep: 1.5 Mc to 16.8 Mc in 1 minute.

Guam I	(13.6°	N, 1 հհ.9º	E)	Table '	53			March 1952
Time	P.L.S	foF2	h'F1	foF1	hIE	foE	fEs	(M3000)F2
00	260	8.1						3.2
01	2 60	7.2						3.2
02	5710	6.9						3.4
03	5/10	5.3						3.4
07	5110	4.0						3.4
05	260	3.1						3.3
06	250	2.7						3.2
07	570	5.8			130			3.4
08	260	7.8	240		120	2.5		3.3
09	280	8.9	220					3.0
10	3 00	9•5	210	4.5				2.7
11 12	320	9.2	200	4.6				2.5
12	320	9.3	210	4.6	-	-		2.5
13	330	9.7	200	4.6				2.5
14	320	10.6	220	4.6				2.7
13 14 15 16	310	>11.5	570	4.5				2.9
16	290	12.4	570					3.1
17	280	12.5	210		120			3.2
18	260	با. 12			120		2.9	3.1
19	260	11.8					2.5	3.0
20	260	11.0					2.0	3.0
21	570	9.6						3.2
22	5/10	8.8					2.3	3.1
.23	250	8.7					2.9	3.1

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 52

Casabl	anca, Mor	occo (33	.6°N, 7.	6°W)	_		Marc	h 1952
Time	PiES	foF2	h'T1	foF1	hIE	foE	fEs	(M3000) F2
00		3.6						2.8
01		3.3						2.8
02		3.4						2.8
03		3.3						2.9
04		3.2						3.1
05		3.0						3.1
06		2.7						3.2
07	230	4-4			125	1.7		3.6
08	210	5.4	225	3.4	115	2.2	- 1	3.5
09	255	6.0	215	4.0	110	2.6	3.4	3.5
10	290	6.4	200	4.4	105	(2.9)	3.4	3.2
11	295	7.0	200	4.5	105	(3.0)	3.6	3.2
12	280	7.4	200	4.6	105	(3.1)		3.3
13	280	8.0	215	4.6	100	3.2		3.3
14	280	7.9	220	4.5	105	3.1		3.2
15	275	7.9	230	4.5	105	3.0		3-3
16	275	7.9	230	4.3	110	2.8		3.3
17	255	8.1	570	4.0	115	2.4	0 0	3.4
18	570	7.8			130	1.8	2.3	3.5
19	220	7.0					2.4	3.5
20		4.5					2.0	3.2
21		3.8					7.0	2.8
22		3.7					1.9	2.8 2.8
23	0.00	3.6						2.00

Time: 0.00. Sweep: 1.6 Mc to 16.0 Mc in 1 minute 15 seconds.

				Table	5),	0		
Domont,	France	(49.0°N,	2.3°E)	-4020	24		Febru	ary 1952
Time	P.LS	foll2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2
00	270	2.7						
01	270	2.7						
02	280	2.7						
03	280	2.6						
04	280	2.3						
05	260	2.2						
06	255	2.2						
07	230	3.3	220			1,6		
08	220	5.0	200		100	2.0		
09	220	5.2	190	-	100	2.3	2.4	
10	230	5.6	190		100	2.6		
11	220	6.0	200		100	2.7		
12	230	6.0	180		100	2.7		
13	225	6.0	190		100	2.7		
14	2 30	5.8	190		100	2.6		
15	220	5.3	200	****	100	2.3		
16	220	5.2	200		100	2.0	2.2	
17	220	5.1	200		100	1.7		
18	220	4.9	200					
19	220	4.3						
20	230	3.2						
21	250	3.0						
22	270	2.8						
23	270	2.7						

Time: 0.00. Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

Pribou	rg, German	пу (48.1	February 1952					
Time	p.13.5	\$633	h'F2	foFl	h1E	foB	TE 8	(Macco) NS
00	280	3.C						2.8
01	280	3.1						2.8
02	280	3.0						2.8
03	290	3.0						2.7
OL	280	2.8						2.8
05	270	2.3						3.0
06	255	2.3						3.1
07	240	3.5	el 40-40	FT-48-00	1000	(1.6)		3.1
08	235	5.3	240	404044	125	2.0		3.4
09	21,0	6.4	220	3.5	120	2.4	2.3	3.4
10	210	6.6	220	3.6	120	2.7	2,6	2.4
11	250	6.9	230	3.9	120	2.8		3.4
12	255	6.9	225	4.1	120	3.0		3.4
13	250	7.0	220	4.0	120	2.9		3.4
21,	250	6.8	230	3.8	120	2.8		3.4
15	250	6.8	270	-	120	2.6		3.3
16	230	6.1	235		130	2.2		3.4
17	225	6.0			CD-100 TED	(1.6)	2.0	3.4
18	225	5.3						3.2
19	230	4.6						3.1
20	245	3.8						3.0
21	260	3.4						3.0
22	275	3.3						3.8
23	(280)	3.2						2.8

23 | (280) 3.7 Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Salite	-7			
Casabl	anca, Mor	occo (33	.6°N, 7.	6°W)			Fab	ruary 1952
Time	P.A.S.	foF2	h'B'l	SoFl	3:3	foli	2Bc	(MSOOO)FS
00		4.0					2.2	2.5
01		4.0					2.2	2.8
02		4.0					2.0	2.9
03	60 m (1)	3.8						3.0
04	-2	3.6						3.0
05		3.3						3-1
06		2.6						3.1
07	<230	3.6			130	E	2.1	3.1
80	230	6.2	220	4.519944.9	120	2.0		3.5
09	240	7.0	220	4.0	110	2.5	2.8	3.6
10	250	7.9	210	4.2	105	2.9		3.4
11	250	8.2	205	4.4	105	3.2		3.4
12	260	8.4	200	4.5	110	3.2		3.5
13 14	250	8.3	200	4.5	105	3.3		3.4
14	255	7.6	220	4.5	110	3.2		3.4
15	250	7.4	220	(4.3)	110	3.1		3.4
16	250	7.3	225	(4.0)	115	2.8		3.4
17	245	7.3	40.00		120	2.3	3.0	3.4
18	<230	6.9					3.1	3.4
19	< 220	6.0					3.6	3-3
20		5.1					3.2	3.1
21		4.7					3.6	3.0
22		4.4					2.6	3.0
23		4.1					2,2	2.9

Time: 0.00. Sweep: 1.6 Mc to 16.0 Mc in 1 minute 15 seconds.

			Ī	able 59				
Djibou	ti, Fren	ch Somali	land (11	.5°N, 43	.1°E)		Feb	ruary 1952
Time	F:15	foF2	P111	foFl	P I E	foE	1Ds	(M3000)72
00	240	<7.5					2.4	(3.1)
01	240	7.4						(3.3)
02	230	6.4						(3.5)
03 04	220	5.4						(3.5)
Off	220	4.0						3.4
05	245	3.1					- 1	3.3
06	260	2.4					2.4	3.2
07	250	5.0			129	1.6	2.5	3.2
08	240	7.7	225	1 (111	2.6	3.8	3-2
09	300	8.8	215	4.6	101	3.3	5.5	2.8
10	315	9.4	210	(4.8)	100	3.4	6.5	2.8
11	315	9.6	205	4.9 5.0	107	3.6	5.5 5.0	2• 7 2• 7
12	320	9.4	200 200	5.1	108	3•5 3•6	4.8	2.7
13 14	320 320	10.0 10.7	205	(5.0)	109	(3.5)	4.5	2.9
15	305	< 10.6	205	(4.9)	111	3.4	4.4	3.0
16	290	11.2	220	4.6	111	3.1	4.4	3.0
17	285	11.3	225	4.0	111	2.6	4.5	2.9
18	250	11.2	227			1.9	3.3	(2.8)
19	275	9.2				-+/	3.0	(2.8)
20	280	9.1					2.4	
21	270	(8.8)					2.5	404.00
22	240	< 9.0					2.1	
.23	240	8.0					2.7	3.2

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

	rs, France		N, 0.3°E					uary 1952
Time		folia	h'F1	foFl	h'E	feE	150	(M3000)IS
00	<280	3.2						2,9
01	280	3.0						2.9
02	<275	3.1						2.9
03	280	3.1						2.9
οĹ	<275	2.9					1.8	2.9
05	<250	2.5						(3.1)
06	215	2.3						(3.I)
07	240	3.7				dissented	2.2	3.2
80	230	5.2	230	2.3	125	2.0	2.1	3.6
09	230	6.1	215	3.5	110	2.4	2.4	3.6
10	240	6.4	210	3.8	105	2.7		3.6
11	245	7.0	220	4.0	105	2.8		3.5
12	245	6.8	210	4.0	105	2.9		3.4
13	345	6.6	215	4.0	105	2.8		3.6
Ú,	21,C	6.6	215	3.8	110	2.8		3.4
15	240	6.4	225	minus an	110	2.5		3.5
16	225	6.4	230		115	2.2	2.4	3.5
17	220	5.8					2.3	3.5
L8	220	5.2					2.4	3.3
L9	230	4.6					2,1	3.2
2C	840	3.9						3.2
2.7	255	3.4					1.8	3.1
22	260	3.11						3.0
23	<270	3.2						2.0

2) <270 3.2 Thus, 0.00. Sweep: 1.5 Mo. to 16.8 Mc in 1 minute.

				"able 9	3			
Guara I	(33.5°N)	· Ililio 90	E)	Andrews and the	ь		Feb	ruary 1952
fine	7125	fcF2	h'F1	foF1	h1E	fo∜	2Bg	(M3000)F2
00	240	Vels						3-2
OI.	240	7.0						3.3
52	210	5.7						3.0
03	250	4.4						3.3
Olı	260	4.0						3.2
05 06	260	3.5						3.2
05	260	3.4						3.2
07	2 50	4.8						3.3
G8	(260)	700	570	-	(130)	40-44-44		3.3
09	280	9.0	230		120	2.9		3.1
10	300	9.5	220	4.5	****			2.8
11	320	9.6	200	4.6		columb rate		2.6
12	320	9.4	200	4.6				2.6
13	320	9.5	400 400 400	4.6				2.6
24	320	9.9				40 (716)		2.6
15	320	10.0	220	100-17-100	silvar en	60 / 5 / O		2.7
16	300	10.6	230			\$10 at 10 at		2.8
17	280	10.9	240				3.0	3.0
18	260	11.1						3.1
19	250	10.6						3.1
20	240	30.3						3.1
21	5/10	8.8						3-1
22	2140	8.2						3.0
23	21.0	8.2						5+5

23 1 20 8.2 Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Domont,	France	(49.0°N,	2•3°E)	Tablo	60		Jan	uary 1952
Time	Pils	foF2	h'F1	foF1	P.E	foE	fis	(M3000)38
00	260	2.8						
01	260	2.9						
02	260	2.8						
03	250	2.5						
04	240	2.0						
05	25ū	2.0						
06	280	1.9						
07	230	2.7	210					
08	210	5.0	200		130	1.8	2.4	
09	200	6.0	190	****	100	2.2		
TO	210	7.0	190		100	2.4		
11	210	7.0	190		100	2.6		
1.2	210	6.8	190		100	2.6		
13 14 15	210	7.C	190		100	2.6		
14	210	7.0	200		100	2.3		
15	220	6.0	200		110	2.1		
16	210	5.6	190	-	100	1.8		
17	210	5.0	190			***	0.3	
1.8	200	3.6						
19	220	2.8						
20	570	2.7					2.2	
21	260	2.7						
22	280	2.8						
23	270	2.8						

Time: 0.00. Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

		_		Table	61			
Poitie	s, France	(46.60	N, 0.3°E)			Ja	nuary 1952
Time	P.LS	foF2	h:3/1	foF1	hIE	for	2Be	(MECOO)F2
00	275	3-7						2.9
01	<270	3.7						2.9
02	270	3.7						2.8
03	265	3.4						3.0
04	<250	2.8						(3.0)
01 05	250	2.6						(2.9)
06	(250)	2.4						3.1
07 08	<240	2.8		-				3.0
	215	5.3	205	2.1	150	1.8	2.3	3.7
09	215	6.8	220	-	115	2.2	2.4	3.7
10	220	7.2	220	3.6	110	2.5		3.6
11	220	7.2	215	4.2	110	2.8		3.6
12	225	7.0	205	3.9	110	2.8		3.6
13 14 15 16	235	7.2	215	4.0	110	2.8		3.5
14	230	7.3	225	minus-ext	110	2.6		3.5
15	220	6-8	225	-	115	2.3		3.6
	210	6.4	220	sales and	125	1.8	2.2	3.5
17	205	5.6					2.1	3.4
18	215	4.4					2.3	3.4
19	225	3.8					2.3	3.2
20	<240	3.3					2.3	3.1
21	260	3.3					2.3	.2.9
22	<290	3.4					2.3	2.9
23	270	3,6					2,4	2,8

Time: 0.00°. Sweep: 1.5 Mc to 16.8 Mc in 1 minute.

	nca, Mor							nuary 1952
Time	h'F2	STor	h!Fl	foF1	h E	foll	fBo	(Manoo)Fa
00	man sil	3.9					2.5	2.9
01		3.8					2.4	2.8
02.	-	3.8					2.6	2.9
03	-	4.0					2.4	3.0
Oh	***	3.8					2.5	3.2
05	-	3.2					2.2	3.2
06	mingroop	2.6						2.9
07		3.2						3.0
08	225	6.3			125	1.8	2.4	3.5
09	225	7.1	210	at-et-so	120	2,6		3.6
10	230	7.1	215	(4.0)	110	3.0	3.7	3.4
11	250	8.6	210	(4.3)	110	3.2		3.4
12	250	8.4	210	(4.5)	110	3.3		3.5
13	250	7.5	210	lt.lt	110	3.3		3.5
14	250	7.1	210	(4.3)	110	3.2		3.3
15 16	250	7.5	220	(4.2)	115	3.L		3.3
17	250	0.8	230	(3.9)	115	2.7		3.3
18	225	7.0 5.4	all rather than	AT 20 470	120	2.1	2.4	3.5
19	220	4.8					2.4	(3.3)
20	-						2.1	3.0
21		4.8 3.9					2.4	3.1 3.0
22		3.8					2.4	2.9
23	will agen cuts	3.9					2.4	2.8

Time: 0.00. Sweep: 1.6 Mc to 16,0 Mc in 1 minute 15 seconds. National Bureau of Standards
F.J.Mc. (Institution) E.J.W.

 $TABLE \quad \textbf{63} \\ \text{Central Radio Prapagation Laboratary, National Bureau of Standords, Washington 25, D.C.} \\$

IONOSPHERIC DATA

(Charactersic) (Unit) (Month) (Month)

Observed of Washington, D.C.

	Mean Time Galculated by: 1.3.1114.	19 20 21 22	360 230 220 210 220 (030) 250 (260]	1 340 230 230 230 240 (250) (270) 3	250 260 260 250 250 200 200 (250) (240) 240 (280)	350 350 360 360 340 330 310 300 330 350 340	0,00 000 000 000 000 (060)	020 030 010 010 010 030	350 350 250 240 240 330 200 200 230 230 230 (250)	250 250 260 250 240 210 200 200 200 200 300 340 (270)	\$ S S S S S S S S S S S S S S S S S S S	000 000 010 010 000 010 000 000 000 000	300 270 360 360 250 220 270 230 250 250 230 (260)	\$ 0.50 0.50 0.60 0.40 0.40 0.30 0.00 0.00 0.00 0.00 0.0	340 0360 0460 0460 030 040 040 040 040 040 080)	370 310 370 320 310 310 310 310 350 (370) 370	220	280 310 280 20 20 20 200 000 000 (040) (260) (280) (290)	290 270 260 240 250 230 210 C C C C	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 80 0 00 00 00 00 00 00 00 00 00 00 00 0	290 310 080 080 030 030 030 030 030 090	300 050 (050) (050) 060 060 060 050 060 080 070 050	300 300 360 300 200 200 230 230 (280) 230 230	320 340 340 290 x 390"	340k 330k 320 310 206 250 230 250 (240)k	330 330 330 280 260 250 240 240 250 250 500 5	620 400 (580) 280 240 340	1 400 K 340 K 330 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0	030) (050) 040 (070) 050 040 050 000 040				(0.46) (0.46) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	ye se
		01 60	0 000 (030) 000	0 200 240 250	030 050 050	230 240	0 230 240 260	020 080 050	000 030 060	040 010 000 0	0 230 250 240	025 025 050 0	7	0 240 260 250	030 050	0340 040 050	0 030 040 060	_	50507	0 230 240 260	07 5 (026) 046 0	0 040 020 070	040	0 230 270 SECT	17K 390 500 K 350	360 410	2 (380) K 540 K 400 K		400 330 F	0 250 260 200				0 040 260 260	80 80
		06 07 08	020 030	10-	040	S(046) (05C)	(080)	0000		240 230 230			250 (240) (250)	250 230 230	000	040	(040) 230 30	W W	-260]S	250 230 240	050 (070) 030	(250) 230 220	000 (050)	000 030 000	(290) 250 K2707K	S * 280 250	4	F	B 240 x 240	[-30] x -30 -20				020 020 030	25 27 28
100	, Long ((. 1 - W	04 05	(260) 230	230	260 20	0000) 090	260 250	260 340	250 0240	240 230	230	270	(0800)	250	250 240	(090) (090)	010 040	280 S	(090) 080	250	250	250	230	0000 040	* N * S	300 * S *	K K	S,	S	JS0 230				050 050	ره و ع
	Lat 38.7 IN , Long.	02 03	S 270	0460	280)	(0960)	(07 %)		250	5 260 250	250	(08 6	2 30	5 (270) 260	260	240	240 220	000	250	250 230	5 250 240	025 3050) 8	070 030	(360) 240	(290)	1 270 320 K		× 250 <310	(320) 1300 K (280) K	(300) x (300) x [-380]x (380)x				260 250	02 22
Observed of Washi	Lat	00	SS	375	(200) P(076)	8(096) 8(076)	(090) 050		040 040	250 (220)	(300) (060)	S(076) S(086)	250 250	(280) [270] ((070) [2060]	260 260	270 260	250 250	270 250	(260) (270)	260 (270)	(020) (030)	(270) 250	(070) 2(070)	(300)x [300]	(300)K [380]K 370	S	ري د د	¥c	(300) \$ (20)				(020) (020) n	500 100
Obse		Day	-	2	ю	4	2	9	7	80	თ	2	=	12	<u></u>	7	-5	91	17	8	6	50	12	22	23	24	25	56	27	28	29	30	<u>ب</u>	Medlon	Count

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual Cl Autamatic B

Standards

National

Scaled by:

Central Rodia Prapagation Loboratary, National Bureau af Standards, Washingtan 25, D.C.

DATA ONOSPHERIC

February 1953

Observed of Washington.

E.J. W. 1.8 R 00. (2.5) (3.4) 5 2.1 33 H 2.0 H 33 1(1.5) 6 1.83 7 2.7 3.7 2.4 2.5 3.6 3 3.6 33 23 2.7 2.9 (2.4) 2.9 8 23 U 27 F. J.Mc. 3.8 K 2.0 K x (1.6)5 2.62 2,2 1.8 3 ه. (2.2) 2.5 3.6 200 2 3.6 3.6 2.5 2.4 33 3 3 3.0 2.5 8 5,6 37 3.7 3.0 22 J 7 4.97 3.45 2.98 (4.6)x 2.6x 2.0 2.3 K 2.5KK(1.9)P 3.4 3.3 3.2 7.4 25 2 4 K 25 00 4 8 3.0 2.7 3. J. 00 2.7 20 6, 2.8 27 2 J 3 (2.6)x 4.03 29.92 20 X 18 00 45K K3.43 3.2 Colcutoted by 0 33 5.6 ω, M 3.5 3.6 2.9 33 3.6 3.3 3.0 3.7 33 3.7 20 3.9 47 3. 27 J (348) (42) 4.23 3.93 3.1 % 334 (7.3)5 3.9.5 *(8.9)z 3.6 K 3.9 44 4.2 44 43 4.2 3.4 4.0 3.5 5.2 7 2.9 3.7 w 00 <u>0</u> 3.9 3.7 17.1 39 27 J 7.63 7.6K 3.7× 474 4.9 K 4. / K 3.7 % サンド 5.2 7. 0.5 4.5 イン 45 5.2 5.6 5.5 6.4 7.00 67 44 48 6.3 3.6 5.0 45 8.7 49 38 8 4.00 6.6 K (6.4)5 4.3 % 43K 4.34 4.3 K 5.4 5.0 4.7 3 5.6 3.6 5.3 5.2 5.6 5 0.9 ج 9 2.0 2.4 50 50 2.0 رکا زکا 50 3.0 9.9 5.7 64 _ 7 6.41 4.8 K 7.23 7.4 K S.0 M S.4× (39)# 9.9 5.8 5.4 4.84 6.6 و ف 4.9 9.9 6.0 6.0 ? 9.0 0.0 5.8 45 5.6 7,2 000 5.9 0.9 6.7 1.9 38 9 5.3K 4.0 K 4.718 7.2 " 5.2 1 5.2% 4.9 6.8 6.5 4.9 6.5 4.9 5.6 5.6 5.8 5 9.9 6.2 6.2 رم ص ۲ و [7.1] 7.2 9 6.2 4.9 5.5 2 (:) 6.7 28 H 0.9 7.0 K 5.0 K 7.7× (3.7 g K(40) 1 K(4.0) 8 S.1 X 6.43 7.6 5.0 K 2.0 0.0 64 رم % 6.9 6.4 4 6.1 -00 6.5 7 ナク 6.5 و و 6.6 7.1 --6 5.00 0.9 6.6 6.5 K S.1 K 4.7# 49K 5.2 4 (5:4)2 49 ور 9.9 7.2 7.9 とった و 6.5 é.t 3 9 200 4.9 4.9 6.2 9.9 6.9 8.9 -7 6.7 ر ز 6.5 <u>10</u> H87 6.3 14 6.0 A × 6% 4.5 K x 0.2 4.6 K 75°W 6.7 7.0 6.2 7.0 2 7.1 5.5 6.3 77 8 9 6.7 7.2 2.0 5.6 6.2 ري 6. 1.9 7.00 6.0 5.7 2 43.7¢ × 8:9 5.8 F 5.2 % 45 X 4.5 H 45K S.0 K 6.5 5.9 9.9 و و 63 5 5.2 2.2 2.4 5.4 9.0 6.0 9 6.4 9 9 15 5.2 78 = 6.7 3 6.2 6.7 43 K 43.5 € 39 K 43 K 6.24 5.8 # 49 J 500 X 4.03 56 0.9 4.5 0.5 6.4 5.0 30 5.7 6.2 6.2 00 6.2 9 64 9 SS - SS 9 5.3 6 3 7 9 5.2 H K3.95 3.8 × 4.54 <3.4 € 43 K K(3.8)8 6.0) 5.3 6.0 4.7 5.6 3.4 00 7.9 5.4 6.6 5.2 60 62 5.0 6.1 6.2 6.2 5.1 5.0 5.0 5.0 2.4 20 5.1 3. C. K. 43.2 G 3.7 # 3.6 K 3.4 54.5 6.6 4:5 5.6 4.8 4.5 5.8 6.2 43 2 4.5 9 5.2 74 6.0 62 40 4.5 5.0 2.5 4.7 03 67 4.6 4.7 7.00 2.7 K 2.7 8 N SK (40)5 6.0 Day 2.9 K 3.1 K 3.25 3.7 40 3.5 4.0 3.5 3.6 4.0 30 3.1 3.0 3.7 39 30 3.7 3 3.6 4.1 3.7 3.0 07 Z 27 K 2.25 22F 1.93 1.0 E 1.78 2.3 F S S S S 29F 2.5 X 1.85 <1.0 E 2 6 9 3.6 3 26 90 2 3.0 33 3.0 3 3.7 3.2 3.1 2.5 2.4 2 27 23 Σ 23F X 2.0 5 222 30 7.9 F 338 2.5 5 2.75 (1.0 K ηr ωχ 0 1.75 (1.7)5 X - 7 3 3.1 2 - 2 2.5 3.0 3.3 32 97 7. °, 3.9 2.7 0.5 3.2 3.3 2 70 275 (2.2) E 200 27 F (30) 2.20 ⟨1.0 K 1.9 8 3.1 F 2.62 0.4 2.5 % 3.0 F 2.0 F 29.4 Lot 38.7°N, Long 77.1°W 2.6 € 7.4 3.0 15.17x 3 3.3 30 32 22 2.7 30 27 2 2.7 S 2, 2, 2,2 2.0 X 3.0 F 25 % 2.6 5 228 228 (20) F K (2.2) F K(1.7) 3 K(2.0) 7 (2.7) 5 X/7.874 (1.7) P <1.0 Ex <1.0 E 3,2 5 3 33 3 03 8 2 G. 3 3.1 3.1 2.2 7.4 2.9 3.0 500 2.7 7 2 2 3.1 25 5 2.83 3.05 3.2 F 2.5F 2.7 = 20.00 25.50 P. 1 2.5 F 2.5 3.0 3.5 3.0 2.5 ις ις 8.8 02 5 3.4 3.0 2.7 2.6 2.9 78 23 F 22 50 1300 *(00)* 2.7 5 3.4.5 2.6 ムンド (2.2) 2.2 8 ~ ~ ~ × 3,6 2.3 2.6 2.5 30 2.5 3.2 2.6 2.7 2.9 3.5 33 2.6 ō 8.2 8 2.8 20 x(1.7) 5 K(1.7) 3 2.0 2 2.75 2.63 25 2.6 8 12.6)3 11.9) 1 K1.73 3.4 8 1.7] 2.2 2.4 2.م 3.5 2.7 20 3.6 00 2.6 w. N 2.5 23 3.5 3 3,3 33 6.1 72 Medion Count 2 ω თ 0 1 8 6 50 56 53 ø 9 = 2 10 4 2 9 24 25 27 28 В 2 22 23 10

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual

Automotic

Manual

U S. GOVERNMENT PRINTING OFFICE 1946 O - 1

100010

Form ecopied dung 1546

(Institution) E.J.W.

Scaled by:

National Bureau of Standards F.J.Mc.

 $TABLE \quad 65$ Central Radio Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

February 1953

Observed of Washington, D. C.

(Characteristic) (Unit)

				1				A HOME																	NOT AND	NO DESCRIPTION OF			- Control		neak)				or mixed
	E.J. W.					,		Mark Street																¥				B							
		2330	2.3	3.8 F	2.3	3.6	2.5	3,5	1.7	4.5	3.2	3.5	2.5	3.5	3,3	3.4	3.7	2.3	J	2.9	2.5	2.4	75.5	3.0	1.9 %	17 4	N 81	1.17	2.2 6	2.5 3				2.5	37
	.;	2230	2.2 ₹	2.8	7.2	2.8	2.5	3.3	(2.7) 5	2.4	23	3.8	2.4	2.4	35	3.3	3,5	7.6 S	J	2.8	2.3	2.5	2.7	3.8 K	1.9 *	K, 7 3	K1.9 5	K(1.5) 3	4.0 K	3.0				2.5	47
	F.J.Mc	2130	2.3	4.7	2,5	3.1	2.6	3.1	2.9 3	2.5	3.1	4.1	2.8	2.5	3.7	3.0	24	2,5	J	2.6	2.5	2.8	2.9	(3.7) \$	2.1 %	2.4 6	2.1 K	1.8 %	2.3 K	3.0				2.7	47
Dy:	Calculated by:	2030	2.8	3.0	3.0	3,1	3.4	3.5	3.5	3.1	3.9	5.0	3.2	3,1	3.4	2.9 F	3.9	2.4	J	2.8	2.8	2.6	3.1	5.2 4	25 K	7.8 K	2.9 K	2.2 K	2.6 *	3.6				3.1	47
scaled by	Calcu	1930	3.3	3.7	3.3	3.8	4.2	44	4.0	3.7	(5.3) 5	87	3.3 5	3.9	3.9	3.1	4.1 3	2.8	C	3,3	3.4	3.1	3.3	5.9 K	3.0 %	3.6 €	3.4 K	2.7 K	32 K	3.9				3.6	27
		1830	3.9	43	3.9	4.2	4.7	5.2	4.8	5.4	5.6	7.4	4.4	4.5	4.2	4.5	47	(3.3) "	39	4.9	4.4	42	45	K 7.6 3	3,5 €	4.5 K	(3.9) 3	3.5 K	y 17	3.9				4.4	U) On
		1730	5.0	4.8	5.2 5	5.4	5,0	5.8	6.2	5.8	6.2 5	7.2	5.5	5.8 3	5.4	5.4	5,5	4.7	5.2	4.7	4.5	5.0	8.7	(7.8) 5	4.3 K	4.5 K	4.2 E	K 4.0 3	41.2 K	5.1				5.2	3.8
		1630	5.8	5.6	5.7	6.0	9.9	1.9	(62)5	6.8	6.2	7.4	1.9	5.8	5.7	7.7	6.9	6.1	5.9	5.2	5.0	5.4	5.4	72 4	× 64	5.1 K	5.0 €	42 K	4.7 K	5.0				5.8	38
		1530	6.5	62	6.4	6.3	6.2	9.9	6.4	6.4	6.8 14	7.4	5.9	6.0	6.4	7.2	6.0	6.9	8.9	6.2	5,5	5.9	5.6	75 4	× 8.4	4.7 K	5,3 K	4.0 K	51 4	5.5				62	28
	ne	1430	1.0	6.2	6.2	6.2	99	7.2	6.2	99	8.9	[7.3] C	6.0	29	6.2	7.0	2.0	7.0	6.8	6.1	5.6	6.0	5.8	7.0 K	5.4 K	4.5 K	51 K	(4.0) 3	5.4 K	5.6				2.9	2.8
	Mean Time	1330	5.8	6.4	7.9	63	6.4	6.4	8.9	8.9	2.0	1.2 [6.0	6.4	4 4.9	7.2	6.3	6.8	6.2	1.9	5.8	6.0	6.0	7.2 K	49K	4.9 K	× 8 ×	(4.0) PX	5.3 K	2.9				> 9	38
	75° W	1230	6.8	62	6.2	89	6.8	800		6.9	7.7	7.6	5.9	7.0	2.9	6.0	7.5	6.2	6.1	5.9	6.1 %	5.4	5.5	6.2 K	5.2 K		* 8 %	(3.7 % K	5,0	99				6.2	38
	7.5	1130 1	6.8	8.9	89	6.5	6.4 #	7.0 %	6.9	7.2	7.0	6.4	5.6	6.0	2.0	44 6	6.6	0.9	5.1 "	5.8	(28) "	5.6	5.2	5.8 K	4.6 K	4.8 K	x 4.6 5	×<37 6 K	4.5 K	5.5 H		_		6.2	28
		1030	7.7	6.1 J	6.5	59	6.4	99	6.2	5.5 F	6.9	62 6	5.0	6.6	6.6	5.8 x	6.4	5.6	(5.2) J	5.2 3	(5.4) " (5.4	5.2	6.0 K	4.6 x	42 K	4.3 K	3.6 GK	4.3 K	5.8				5.6	82
		0830	5.8	409	5.6	62	5.4	6.6	2.7	2.0	6.6	29	5.0	6.0	6.0	5.6	5.9	5.3	5.0 (.	5.1	5.3	5.0	5.0	5.2	4.4 K	* 0.4	<3.7 €	(3.5 G K	4.2 K	5,3				5.4	28
		0830 0	5.4	5.4	[5:0] 6	6.0	58	6.4 6	6.2	00	6.2 6	6.1	4.7	6.0	6.0	5.6	6.4	4.7 3	4.4	5.1 3	4.9 3	4.9 3	5.0 3	(5.0) "	4.2 K	35 4	3,5 K	<33 ° (3.9 €	5.6				5.2	28
		0730 0	4.3	4.5	3.9	44	4.4	(50) 5	56 6	5.6	5.0	5.0	3.9 W 4		4.9	4.7		M	3.7	4.4	4.5	4.7 4	4.3 5	4.5 (3	3.4 K	32 "	3.1 K	_	2 2	7				2.1.5	27
		0630		, t	2.6	2.5.5	2.6	3.0 (5		0		3.2 6	3.5 F 3.	3 5.1		2.8 4.	2.4 4.6	M	2.3 3	2.7 4	2.9 4	2.9 4.	25 4	2.8 4	7.4 ×	×	> ~	x(1.9) 3 3	11 / 3.	2.5 4 4.	_			2.6	- 72
		0530 0		2 F	7 6	(2.8) P 2	6	3.0	3.2 3,3	2.8 F 3.	3.1 7.8	3,2 5 3.	3.7 3.	3.3 3.3	3.2 3.0	2.5 F 2	2.3 2	M	1.9 5	2.5 F	2.5	2.6	25 F J	2.7 2	×	2 1	<1.0 E " 1.8		8 4	1.7 4	_			2.7	75
	. W	-		2.4 F 2	2.6 F 3.	2.6 + (3	9 9	3.0 F 3	3.5	3.2 2	2,20	3.0 F 3	, ,	3.3 3						4	9	7			N 8		X F	FBK		, x				2.6 2	26
زر	, Lang 77.1° W	0330 0	2	(2.6) 7 2	7	2.6 5 2	6 2.	2	5	3.0 F 3.		f	3.0 F 3.	8	0 5 3.1	3 F 1.9	8 2.8	7 1.9	2.3 2.2	7 6 2.6	2.8	7 3.	3.0	7 2.8	1.9 E 1.8	2) 5 × 2.1	0 \$ (1.0	, K	w 90	2.0 K 2.		-			
- 1		0230 03	1 3 4	¥	7 6 2.	8) 5	5 3	7 7	3.	0	3.3	2.9 % 3.0	3.3	8 F 3.	8 3.0	1	2.8	5 22	וא ק	t	2 1	2.7	3.0	7 2.7			0 E <1.0			V X		_		7	37
shing	Lat 38.7°N		2.1		7 6 27	5 6 (2	2.5	٦ مر	5 3.6	3	2,4	7		80 31	2.8	وسار	3.2	2.5	2.5	3.6	0 2.9	7 2.6	3.2	2	l i	(61), x		1 5 1.7		7 3 1.8				6 2	7.8
ļ		0030 0130		2 6 23	8 2.7	7	26	3.2	3	23	7 32	y	3,5	3 6 24	7 2.5	3.1	2.3	3.2	7 2.6	2.9	<i>w</i> .	7	3	3 6 2.6	5 K 22	J K 22	i) [F		(1.9) " (1.9)	7 K K 1.7				6	27
Observed at		Day 00	9 1	2 22	3 28	4 24	5 28	6 2.7	7 34	8 2.6	6	10 2.2	11 3.4	12 2.3	13 25	14 3.3	15 35	16 3.3	17 25	18 2.7	19 2.7	20 26	1 29	2 2.3	23 2.5	i	25 (1.4)	26 1.7	27 (1.9)	28 1.9	59	30	31	Median 2.6	Caunt 27
Ö		Ĭ										-	_	***	-	-	-	-	-	_	-	2	21	22	2	24	2	2	S	2	N	10	6	Mec	S

Sweep^{1.0} Mc ta 25.0 Mc In 0.25 min

Manual (

TABLE 66 Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

February 1953

Washington, D.C. Kart)

(Characteristic) Observed at ____

IONOSPHERIC DATA

E.J.W. Standords National Bureau of F.J.Mc Scaled by:

Sweep 1.0 Mc ta 25.0 Mc In 0 25 min Manual C Autamatic B 28

Form adopted June 1946

National Bureau of Standards

F. J. Mc, E. J. W.

Scaled by:

 $TABLE \quad 67 \\ \text{Central Rodia Prapagation Loborotory, National Bursou of Standards, Washington 25, <math display="inline">\text{D.C.}$

gotton Loborotory, National Bureou of Standards, v

foEI (Charactersic) (Unit) (Month) (Month)

Observed at Washington, D.C.

F. J. Mc., E. J. W. 3 22 2 Colculated by: 20 6 8 \succeq Q Į (3.5) H 3.2° K * 7 3.5 x 3.3 9 Ø 100 2 2.9 Q O Q 7 Ø 13.5] 4 35 K 3.6 H 3.7 K 3.6 X 37 4 [3.6] 4 (3.2) 4 3.7 * 3.7 # (3.6) 5 3.6 300 000 12 ~ 7 ~ 2 J 3.6 x (4.0)" 3.9 # 3.8 H (3.7) 4 4 3.9 4.0 0.7 4.0 17 4.0 # 4.0 3.8 4:0 4.0 4.0 2 4 3 2 7 7 [4.4] 4 (4.8) H 4.0 × (3,9) H 4.0 H 4.1 K 4.0 K \$ × 3.7 K 3.7 K 4.2 # 4.0 4.2 7 23 7.7 4.0 4.2 7 4.0 3.9 4: / 7.7 1.7 3 (36) 4.0 H (4.0) x 3.9 K [41] 3.9 % \$ X 4.0 75° W 4.0 4.2 7.0 4.0 4. 4 77 4.1 4.0 2 4.0 7:7 4.1 7 3 7 3.9 1 4.0 × # 1.4 11 (0.4) 3.9 # x 37 K 3,8 K 2. 9. X × 0.7 (3.9) 4 (4.0) H K (39) 5 39 K 3.5 K 3.7 K 4.0 0.7 4.0 1 15 4.0 3.9 = 3.6 4.0 3.9 7. 7 4. ~ 3 ~ 3.8 H 8. S. X. X. X. 3.7 x 30 20,00 7.1 3.9 0 33 4.0 00 3.6 ~ 7 ~ 7 [2.8] K (3.5) 4 3.5 X 23 X 3,5 60 3.6 7 Ь ~ 7 -2 Q 7 ~ 3 7 ~ 08 2.4 1 2 3.2 Q G Ø G J Q Q Q Ø g C J a Q 07 90 05 Lat 38.7°N , Lang 77.1°W 0 4 03 02 ō 00 8 Median Caunt Day 4 1 N 9 6 6 24 56 27 2 7 8 0 = 2 -3 4 2 91 18 2 22 23 25 28 59 30 31

Sweep 1.0 Mc to 250 Mc In 025 min

Manual [] Automatic [3]

Form doopted June 1946

E.J.W.

(Institution)

F.J.Mc.

Scaled by:

National Bureau of Standards

TABLE 68
Central Rodio Propagatian Loboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

February 1953

Characteristic) (Unit)

Washington, D. C.

Observed at ___

Sweep 10 Mc to 25 0 Mc in 0.25 min Manuel

Automotic

B

Form adopted June 1946

E.J.₩.

Standards

National Bureau of

(Institution)

F.J. Mc.

Scaled by: __

 \mathcal{I}

TABLE 69
Central Radia Propagatian Laboratary, National Bureau af Standards, Washington 25, D.C.

IONOSPHERIC DATA

(Unit) (Month)

Observed at Washington, D.C.

(Characteristic)

E.J.W 23 22 Calculated by: F.J. MC. 2 20 6 8 (2.4)P H(8.1) 1.9 H 9(1.1) 7.0 X (1.9) 1.9 K 11 × 1.9 K 2.0 2.8 1.7 1.1 8 6. 6, ⋖ 6.1 S ⋖ V 2.2 K 2.4 % 23.8 (2.3)P 2.3 K 2.2 K 2 2 K 2.3 € (2.3)H 2.3 ₩ 2.2 H 2.4 7 2.4 H 7.4 2.4 2.4 2.3 2.4 2.3 30 2.5 24 2.4 33 83 u u 2 28 9 [2.6] 2.5 H 2.4× (4.4) 2.5 × (2.C)P [26] (25)R 27 2 s, 2.7 2.7 32 20 8.8 2.8 2.7 8 2.8 3.8 2,2 2.7 2.7 2.7 2. 77 [2.8]0 29.8 (3.0)8 (2.9) x (27)% 2.9 % 28 2.9 4 2.9 2.9 30 2.8 2: 3.0 2.9 8.8 2.9 2.9 29 8.0 2.9 2.8 3.9 ŝ 2.9 2.9 2.9 1650) (3.0) 2.9 K 2.9 K 2.9 K 2.8K 3(6.5) (3.0) 12.974 #[8.6] #[8.6] 3.0 3.0 3.0 30 3.0 3.0 3.0 2.9 30 8.9 3.0 3.0 3.1 3.0 3.0 3 2.9 3.1 3. La Z <u>m</u> ∢ [3.0]A 3.0 29K 3.0 % 1287A 2.0.4 (3.0) 3.0 3.0 K 3.0 3.0 3.0 20 3.0 3.0 3.0 3.1 3.1 3.1 3.0 3.0 3.0 3.1 2 3.1 3. 3.1 ⋖ 27 75°W A [0.E] × K [28] × 8:8 24 K (19)" (2.1) [25] A 29H 2.7× 2.9× (2.7) (2.5) (2.7) 8 2.9 2.9 3.0 800 25 3.0 3.0 3.0 8.9 2.9 2.9 2.9 2.9 2.9 3.0 3.0 2.9 8 = 3.1 ₹ ₹ 2.6 × ¥ ¥ 2.7 K A 2.7 # A(2.5) 8. 8. 80.80 3.00 8.8 2.9 2.8 2.7 2.9 2. 2.7 2.9 2.9 2.7 27 2.7 2.7 e8 60 2.7 2 2 2.3 H 2.5 H 2.4# (2.3) 2.5 K [2.3] 25# 2.5# (23)4 (2.4.) P 2.5 K × 2.6 2.6 2.5 2.4 24 20 2.5 7. 2.2 3 4.4 2.4 ٥ 2.4 2.4 27 60 (2.0)" (2.1) 8 2.1 % 11(61) (67) 2.1 H 2.1 2.0 1.8 2,2 2.0 8.1 6.1 61 ∢ 35 8. Æ 1.9 1.8 1.7 1.9 61 18 ₹ 08 1.3 07 90 05 Lot 38.7°N , Long 77.1°W 04 03 02 5 00 25 Medion Count Day 20 24 2 8 S 0 2 <u>m</u> 4 15 9 17 8 6 21 22 23 56 27 82 29 윉 3

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Manual

Autamotic

B

Form adopted June 1946

National Bureau of Standards F.J.Mc. (Institution) E.J.W.

TABLE 70 Central Radio Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

1953

(Characteristic) (Unit) (Month) Observed at Washington, D.C.

Observ	Observed at Washington,	7	-1	ز د																· Ka painon					
		Lat 38.7°N		, Lang 77.1°W	7.1°W								75° W	Mean Time	96					Calculated by: F.J.MC.	d by:	J.Mc.		E.J. W.	
Day	00	ō	02	03	0.4	0.5	90	07	90	60	0	=	12	10	4	15	91		8	61	20	21	22	23	
-	2.4/00	E	E	E	E	E	E	E	P	P	Ŋ	Ŋ	ı,	Ų,	ß	ڻ	6 1.7	1.7,20	E	E	E	E	E	E	
8	E	F	ш	Ш	Ш	E	E	F	1.97 110	B	Ŀ	P	2.5 110	ij	Ŀ	Ŀ	ı	ı		A	E	E	E 3.7	3.77/10	
Ю	30/00	30/00	3.0 /00	28 100	2.4.110	E	E	M	P	Ġ	2.4100	P	y	7	4.120	U.	G. 3.0	3.0/30 2.9	24/10 3.1	100/	2.7 100 2.2	2.21/00 3.4	3.6 11 1.9	15(017)61	
4	E	E	E	24/110 30/120	301/20	E	E	E	G	ß	B	IJ	y	ß	IJ	33	351,30 3.2/110	1110	E	E 25		E	E	E	
2	E	Ш	E	F	E	4.3/110	F	E	P	IJ	y	Ŋ	4	43/10	ı	IJ	30	30,30	F	2.81/20	E	3	M	E	
9	Ē	E	E	E	Ш	F	W	E	B	P	Ų	2.4 100	J		IJ	ن	IJ	ij	ш		E	E	E	E	
7	Ш	E	Ш	Ш	E	LLJ	Ш	E	B	32/00	33,00	Ų,	26 100	G	4.4,120 4	4.3/20	3.0	3.01/20	ш	E	Æ	E	E	E	
80	E	E	ш	E	F	F	L L	H	P	39 130	4.2 /20	011 5.4	35 110	J	ß	J	J	J	E	E	ш	E	E I	E	20320-001
6	E	E	31/20	E	E	E	ш	F	ß	y	381,20	Ġ	ß	ß	6	34/20	Ü	6 20	20/00	E	W W	E	E	F	
0	E	E	E	E	E	2.3/110	4.5 110	387110	2.7 110	P	B	B	ß	ن.	ı	O		6	E	E	E	Ы.	E	E	
=	Ш	Ш	E	ш	E	2.3 110	Ш	31,100	Ŋ	IJ	Ŀ	J	6.47/20 48/110		4 0/130	P. P.	3.8/20 33	35/20	М	E	E		E	Ē	
12	E	FJ	ш	E	E	ш	H	E	2.4/30	3.47110	J	2.0/00	IJ	-5	Ŋ	9	36/120 20/30	130 2.6	2.4/30	B	E	E &	2.3/20	E	
10	011/186	E N	25 //O	E	22/19	E	E	W	G	25 110	2.7 110	P	30/20	U	U	(j	8/5	18/20	M.	3.9 110 2.5	2.5 110 2.5	2.21/20	E	ш	
4	E	E	ш	F	E	ш	2.51,20	3.2 110	y	23 110	B	ß	B	ß	Ŋ	J	3	2/130	W		E	E	E	4	
15	E	ш	E	E	E	E	E	E	B	33/30	39 120	ß	ß	7 9	7.6/120	Ŀ	Ü	U	E E	E	E	E	E	F	
91	E	E	E	E	E	ш	£	£	y	ß	ιJ	2.9/20	33/20 4	011/04	Ŀ	Ġ	6	2.2/30	E	E 3.3	3.3 110	E	E	E	
17	E	E	E,	70110	E	E	Ш	E	ß	72/120	B	3.81/10	4.77/10 387/10	011/8	5	J	6 /	18,20	_	U	U	C	C	U	
18	23 110	F	34 100	100 7 4 1001	E	Ш	E	E	2.0 110	31/120	G	U.	Ŀ	P	9	S	6	9	E	E	Ę	E	E	E	
61	E	E	E	011 6.1	Ш	E	3#110	E	y	S	b	B	2.7 100	Ŀ	6 2	28/30	6	6	E	E	E	E	E	E	racino de la constanta de la c
50	Ш	Ш	E	E	E	E	E	E	2.51/30	2.5/130 37/110 27 100	27 100	6	y	6	6	3	6	Ŀ	E	E	E	E	3	E	
21	E	E	E	E	011/61	E	F	Ш	2/120	21/20 38/110	4.2/10	36/110	J	5	J	S	IJ	6	E 2.	2.1,30 29	291/10 24	24 110		E	ade no
22	E	E	E	ш	E	E	E	Ш	Ŀ	45/110	P	Ŀ	ß	J.	Ŀ	ı	J.	ß	E	E	E	FI	E 3.	2.3/30	CREATE OF
23	E	E	E	E	В	FI	E	25,40	Ġ	22 110 24 110 2.7100	24 110	2.7 100	IJ	ß	ß	U	ن	S	Ш	E	E	E		E	
24	щ	E	E	E	E	E		26/10	26/30	2.8 110	J.	6	9	3	Ŀ	S	Ŀ	S	E	W	E	E	E	E	
25	M	E	E	E	E	Ш	E	24110	b	3.31/20	J	45/100	IJ	B	3	3.7/30 3.	3.6/20 3.	3.21/20	Ш	E	E	ш	E	E	
26	ш	E	E	E	E	ш	E	E	Ġ	25 110 2.5	2.5 110	S	29 110	G	6- 2	27/20	<u>ل</u>	Ŀ	E	LEJ LEJ	E	Ш	E	B	
27	B	33,30 3	30/20	3.2/20	41/160	B	(22/130)	011 1.10	Ġ	2.3	110 3.47110 2.87110		ß	B	Ŀ	Ŀ	Ŀ	Ŀ	Ш	E	E	E	E	E	
28	ш	E	E	E	E	E	2.3 110	22/110	66/20	6	B	B	32/20	J	J	J	J	6 / 6	18/10 2.	2.2 110 30	301/10	П	ш	E	
29																concedica									
30																				50.000 T			_		
15																									
Median	*	\neg	\neg		\neg	*	*	* *	*	22	*	*	-	* *	* *	* *	* *	* *	*	*	字	*	*	*	
Count	28	20	28	28	27	27	27	27	28	28	28	28	28	28	28	27	28	28	28	27	27	27	27	27	
	** MEDIAN PES LESS THAN	AN PES	LES	THAN	MEDIAN	AM FOE.	8	LESS			Swe	Sweep 1 0	Mc 1025.0 Mc In 0.25 min	Mc In 0.	25 min								A CONTRACTOR OF THE PARTY OF TH		

**MEDIAN fes LESS THAN MEDIAN foE, OR LESS Than Lower frequency limit of recorder

Manual [3] Autamatic [8]

32

Form adopted June 19

Standards

ď

Bureau

National

Scaled by:

EJMC, E.J. W.

 $TABLE \quad 7 \ l$ Centrol Rodio Propagation Lobaratory, National Bureou of Standards, Washington 25, D.C.

DATA

Central Nadio Propagation Laboratory, National Bure

Rearin 1900SPHERIC

Observed at Washington, D.C.

(MI500)F2

(Characteristic)

F.J.Mc, E.J. W. (2.2) 3 2.0 K (2.1) 3 2.0K 1000 10.90 (2,0) \$ (2.1) 5 (2.0) 2.0 2.0 23 2.0 0.8 1.9 22 2.3 Ó 2.1 3.1 2.1 (2.0)3 2.0K 11.7) 19 K 2 th A.0 K 32 2.0 30 2.0 3.0 4.1 2.0 63 63 6.1 2.0 23 3.0 2.0 7:00 22 7.7 (3.0) 3 FX x / x (2.3)E x0.x (2.3)5 2.0 (23)5 2.3 (2.1) x 2.0 K 33 2.3 2.2 3 <u>~</u> 22 80 2.1 6. 2.3 3.1 33 7 1.8K X (4.1) 3 (3.3) 5 (2.1) F 2.3 2.3 2.3 30 23 20 2.4 4.7 2.2 22 8.3 ೦ 22 s. 2.4 2.1 Colcutoted (23)3 (2.3) 3 1.9 K 2.1X (2.2)5 (23) x 2.2K (2.5)5 (23)3 (23)5 2.2 22 22 3.1 4.4 <u>0</u> 23 34 8.3 2.0 30 23 8 2.1 S 2.1 K 7.7 K A.1. 2.2 K XXX 2.2 H 2.3 7.4 7.4 2.4 83 8 25 7.7 2.5 23 3.4 2.2 9 23 31 34 2.3 S S 6.5 2.02 83 22 K 2.4K 2.2 K (23)5 23K x + x 2.0 x 2.3 25 4.4 4.4 2.5 S 23 7 4 24 کی رم 2.6 2.3 2.4 e is 2.3 2.4 23 _ 2.2 7 2.3 H (2.4)5 (1.4)K x 6.8 X1.K XtX 2.1 K 2.6 22 4.6 3.4 4.4 2.4 2.2 2.4 7. £.3 S. 4.6 2.5 1.9 4.8 2.4 2.4 9 3.5 25 3.3K 22 K 2.3 K 2.0x 224 2.3 K 4.4 4.6 2.4 2.3 2.3 2. H 7.4 4 6 23 2.5 2.3 d 2.4 2.4 2 7 4 ck 2.4 S A.3 H 2.0 K 3.0 K A C. S 6.4)3 (1.6) x (1.4)x 2.4 4.4 2.3 2.6 4.4 2.3 s is 7.4 3 2.2 2.5 4 7.4 3.3 6.6 r ce W 3 2.1 Mean Time 2.0 X x 0. x 2.0 K (2.1) H 234 7.6 7.4 10 2.4 8.3 8.4 2.4 4 6.3 2.4 2.4 2.4 2.0 8.3 23 8.3 33 24 is. 33 22K 22 H x / x 2.12 x / x 2.0 K 1.9× 4 75° W 2.4 2.2 2.4 2.3 7.4 7.4 3.3 33 33 23 <u>∾</u> 3 23F 4.4V 9.C X 2.44 3.4 4.6 8.3 7.4 7 7:4 2.3 24 7.6 2.2 es. 22 23 33 = 3.3 7.4 7:00 1.9K 1.7 K (2.0) x (2.2)4 4.8 2.4 R 3.4 2.4 2.5 3.6 7.4 3 8.3 is in 7.4 25 2.4 B <u>0</u> 2.1 # 1.94 (2.0) 1.935 (2.45) 2.5 4.8 2.5 2.5 4.00 3.4 2 K 2.4 2.5 2.4 60 2.4 2.6 2.5 3 2.34 3.4# 2.3 25 2.6 14 2.4 2.7 2.4 2.6 2.3 ,0,0 8.3 7:4 7.8 2.6 2.6 08 A.3 K 2.3 K 233 (2.1)3 (22) 7.4 23 2.4 5.5 2.4 is 8.3 833 7.4 33 S 3.3 in 3.4 07 2 7.8 (1.8) 3 (1.9) x 2.2 F (2.C) K 2.15 FK Bx 1. K 0.0 90 2 2 2.1 2.1 7 22F (2.0) X 2.0F 2.25 (2.c)'A Y Y dx 6 2.4x (1.9) (2 2) S (6:1) 2.05 3.6 6 2.4 2.3 05 7.7 7 Lot 38.7°N , Long 77.1°W (2.0) 5 21/2 FB A. 3. (1.9)K 2.0 F (2.0) (2 2) S L. 04 6.1 3.1 3. S 2. 2.0F 11.91 2.0k (2.0)3 2.0 K (1.8) 3 11.9) 03 2.0 22 23 2.6 1.80 (2) F 3 a F A. 1. (2.0)F 1.97 (2.1) F J K 11.71x (21)5 02 7 2.1 0.8 3 7.4 2 2 2.1 7.20 3 3.1 7 (2 0) K × 0 / 19 F 1.8) 11.91 5 2.1K (21)5 0.8 3.0 3.0 2.1 7.8 2.1 0.0 0 11.97× (19)8 13.115 (2.1)3 (22)3 10/ 19x N 2.0 3.0 00 7.6 Ba М 4 9 œ 0 2 <u>~</u> 4 5 91 1 8 6 22 23 24 25 56 27 29 = 20 21 28

Sweep 10 Mc to 25.0 Mc in 0.25 min

1.8

2.0

3

2.2

7 7

23

4.2

4.8

2.4

33

7,

c (

2.4

2.4

4.8

2.4

cl d

2.2

1.5

ct.

2.6

80

Median

8 5

7

27

00

27

34

3 2

0

0

27

27

36

27

27

38

38

Monual | Automatic III

 $TABLE \quad 72$ Central Rodio Propagation Laboratory, National Bureau of Standords, Washington 25, D.C.

Form adopted June 1946 Standards

FJW

Bureau of

National

ONOSPHERIC

February 1953

Observed of Washington, D.C.

(M3000)F2 (Unit)

Sweep 1.0 Mc to 25 0 Mc in 0.25 min

Monual □ Automatic 図

34

Form adopted June 1946

National Bureau of Standards Scaled by: F.J.Mc. (Institution) E.J.W.

 $TABLE \quad 7.3$ Central Rodia Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

February Month

(M 3000)FI (Uni)

Washington, D.C.

Observed at __

23 22 Calculated by: F.J.Mc. 2 20 61 8 7 3 9 3.6 K (39) J. 2 (3.9)4 3.74 × 6.8 Sweep1.0 Mc ta 25.0 Mc in 0.25 min 3.7 4 Mean Time 36 X 3.7 K 3.7 K 3.7 K (3.6) × 3.6 × 3.7 <u>10</u> 3.8 3.9 38 8 3.9 E 384 3.6 X 3.94 3.7 H 39 X 8.00 3.8 75°W 2 00 3.9 H 3.8 H 3.8 x 13.9)4 (3.9)4 (3.9)4 3.8 = 37 39 3.7 8.0 3.8 3.5 K 3.5 K 38 K 3.8 K K (3.6)K 8 3.9 3.8 0 3.7 60 .| 7 08 ł G G G 07 90 0 2 Lat 38.7° N , Long 77.1° W 04 03 02 5 00 Median Count 8 0 2 m 4 2 9 17 8 6 22 23 24 25 92 27 53 8 N 4 S 9 60 O 20 2 88 =

Form daopted June 1946

National Bureau of Standards

E.J. W.

(Institution) E.J.W.

F.J.Mc. F.J.Mc.

Scoled by: _

Colculated by:

 $\text{TABLE} \quad 74$ Central Radio Propagation Laboratory, National Buresu of Standards, Washington 25, D.C.

IONOSPHERIC DATA

February

(M 1500) E (Characteristic)

Observed of Washington, D.C.

00

Doy

2

'n

V ည

9

ထ

~

9

6 Ξ 12 15

~ 8 6 20

23 23 24

25 27 28 29 3

13 4

75°W

23 22 21 20 6 9 3.9 7. 7. 4.0 4.0 4.1 K A 40 1.4 4.1 17 4.1 4.3 4.4 4.3 1 + 4.0 4. 9 17 (42)P 4.1 X (42)K 4.5.7 4.2.x 42 K X (++1) X 6 4.2 4.3 43 2 4.3 4.4 42 43 43 4.0 4.3 7 4.1 43 0 40 F 4.2) J (17) 42 4.2 43 4.2 1:4 4 4.3 4.0 73 4.3 É (4,2)A 4.0X (4.1) R H. (E. +) 4.2 K 4.3 4.3 4.2 47 <u>10</u> 42 4:1 4.1 4.1 1.7 4.2 # 3 H (4.1) P (4.3) A 4.4 3.9 4.0 6 0.7º 42 73 2 A (4 2)B 4.14 14 t) A 7.7 4.3 = 4.1 4.1 3.9 A 4 4 (43)P 42 x X# ±) 4.0 H 4.0 4.2 4.3 4.2 4.3 17 #2 42 40 0 4.1 1 39 3.9 1.4 (4.3)A 404 43 H 73H (+ 2) P (+ 6)A 4.4 40 17 00 3.9 1+ 1.4 1: 7 (4.3) " (4.0) H 4.2 43 (3.9) + B 0 + 3.9 00 4.2 38 08 V V 07 90 0.5 Lot 38.7°N , Long, 77.1°W 4 03 02 0

なけ

7.2

1.

43

42

ナン

マナ

7 7

30

Medion

Count

3,6

4.7

17

Manuel 🔲 Autamotic 🖾

Table 75

Ionospheric Storminess at Washington, D. C.

February 1953

Day	Ionospheric character* OO-12 GCT 12-24 GCT	Principal storms Eeginning End GCT GCT	Geomagnetic character** 00-12 GCT 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 9 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	2 2 1 1 1 0 1 1 1 2 2 0 2 1 1 1 1 1 1 1	1500	1 2 2 1 0 2 2 3 2 1 1 2 3 3 2 2 2 2 1 4 4 5 4 4 3 3

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**}Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
---Dashes indicate continuing storm.

Table 76

Sudden Ionosphere Disturbances Observed at Washington, D. C.

February 1953

No sudden ionosphere disturbances were observed during the month of February.

Table 77a

Radio Propagation Quality Figures (Including Comparisons with Short-Term and Advance Forecasts)

January 1953

Day		th At 6-hou lity	rly		iss	termued a	bout		Whole day quality index	(J_r whole	ce fore eports) day; i	for ssued	ne	mag_ tic Ch
	00 to 06	06 to 12	12 to 18	18 to 24	00	06	12	18		1-4 days	4-7 days	8-25 days	Half	day (2)
12345	(3) (4) (3) (4) 5	(4) (4) (4) (4) (3)	6 5 5 6 5	5 5 7 5	(3) (4) (4) (4) 6	(3) 5 (3) (4) 5	5 5 6 (4)	5 (4) 5 5 (3)	(4) (4) (4) 5 (4)	(3) (4) (4) 5 6	[(3)] [(4)] 5 6 6	X	3 3 2 1 (4)	3 (4) 2 2 (4)
6 7 8 9 10	(4) (4) (3) (4) 5	(4) (4) (4) (4)	5 6 6 6	55666	(3) (4) 55 5	(3) (3) (4) 5	(4) 5 6 6 6	(4) 5 5 5 6	(4) (4) (4) 5 6	6 (4) (4) 5 5	6 6 5 6		2 2 3 2 2	3 2 1 2 1
11 12 13 14 15	6 6 6 6	5 6 6 7 6	7 7 6 7	6 7 6 6 7	5 5 6 6 6	5 6 6 6	6 6 6 6	6 6 6 6	6 7 6 6	5 5 6 6 6	6 6 6 7		2 2 2 3 1	1 1 3 2 1
16 17 18 19 20	7 7 6 5 (4)	6 6 6 6 5	7 7 7 7 7	7 7 6 7 7	7 7 6 6 6	6 7 5 (3) (4)	6 6 5 6	7 6 6 5 6	7 7 6 6 6	6 7 7 6 5	7 7 7 6 5		1 2 (5) (4)	1 1 3 3 2
21 22 23 24 25	5 5 5 5 5 5 5 (4)	(4) 5 (4) (4) (4)	7 7 6 6 6	7 6 5 6	7 6 5 6 5	5555	6 6 7 6 (4)	6 5 6 5	66555	5 5 (4) (3)	5 5 (4) (4)	X X	3 2 2 3 2	2 1 0 2 (4)
26 27 28 29 30 31	(4) (4) (4) (4) (4) (4)	(4) (3) (3) (3) (3) (4)	5 6 (4) 6	5 (3) 5 (4) (4) 6	5 (3) (3) (4) (4) 5	(3) (3) (3) (3) (4) (4)	(4) (4) 5555	(4) (4) 5565	(h) (h) (h) (h) (h) (h)	(3) (4) (3) (4) 6	(4) (4) (4) 556	X X X	(5) (4) 3 (4) 3	(4) (4) (4) 3 2
Score: Qui	.et per	riods	I S U	J	8 6 1 0	6 5 0 1	8 20 1	13 12 3 0		8 8 2 0	9 9 0 0			
Disturbe	d peri	ods	I S U	S J	6 8 1 1	6 12 1 0	0 1 0 0	0 2 0 1		6 3 0 4	4 5 0 4			

Scales:

Q-scale of Raiio Propagation Quality

- (1) useless
- (1) useless (2) very poor (3) poor (4) poor to fair 5 fair 6 fair to good

- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\rm Ch} \gg 4$ indicates significant disturbance, enclosed in () for emphasis

Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed
S - Satisfactory: (beginning October 1952) forecast quality one grade different from observed

U - Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both ≤5

F - Failure: other times when forecast quality two or more grades different from observed

Symbols:

X - probable disturbed date

Note: All times are UT (Universal Time or GCT).

Table 77b

Short-Term Forecasts-January 1953

Table 78a

Coronal observations at Climax, Colorado (5303A), east limb

Table 79a

Coronal observations at Climax, Colorado (6374A), east 11mb

Date	П.				Deg			nort				sol		equ							L				ree									ato				
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	_5	00	3	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80 8	35	90
GCT 1953 bb 1.7 2.7 4.0a 4.7a 10.7a 11.7 12.9 13.7 14.9a 22.8a 23.6 25.7 26.7 27.8	7 7 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 34332123312222344	85 243323232132223445	80 2332232311122223345	75 133223231111221245	70 12212222111121133	65 1111212111211111	111111111111111111111111111111111111111	11111111111111111	11111111111111111	1222 - 11112111111111111	40 3345-2121322111111	35 2454 133122212112	30 3533-133112212113	25 5512 133112212115	20 1221 2431222224662	15 1221 2341222243112	ı	704313452642133184	1105124555551333235	5 324724565432335354	10 158445465423334555	15 125344564322335546	396243352322333454	234344451322133456	30 244144441223133535	35 153133561123434535	123233362134225532	45 234413331122224323	50 253512331122323223	55 132212331111322323	122211231112322222	65 132311231112322222	70 132311332112321222	75 142311342111221222	80 233321342111221232	85 243421342111221233	9 3433211421112223333

Table 80a

Coronal observations at Climax, Colorado ($\underline{6702A}$), \underline{east} \underline{limb}

Date				Deg	ree	es r	ort	h c	ft	he	so]	lar	equ	ato	or				00				Deg	ree	S S	out	h c	f t	he	sol	lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
reb 1.7	-	_	-	-	-	_	_	-	-	000	-	-	-	_	-	_	_	-	_	-	-	_	_	_	-	_	-	-	_	-	-	_	_	_	-	_	-
2.7	-	-	_	_	-	_	-	_	_	-	1	1	1	1	1	1	2	3	3	2	1	1	_	_	-	_	_	_	-	_	_	_	-	-	_	_	_
4.0a	_	_	_	_	_	-	_	-	_	_	-	_	_	_	-	_	1	2	2	4	4	3	2	_	-	-	_	_	-	_	-	-	-	-	-	-	-
4.7a	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	1	3	1	1	2	3	2	1	_	_	-	-	_	-	_	-	-	_	-	-	-	_
10.7a	-	_	-	_	-	_	-	_	-	-	-	-	_	_	-	_	_	-	_	-	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
11.7	_	-	_	_	_	_	_	-	_	_	-	_	_	-	_	_	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	_	-	-	_	-	_
12.9	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	-	-	-	-	_	_	_	_	-	-	-	-	-	-	-	-	-	_	_	_	_
13.7	-	_	_	_	_	-	_	-	_	-	_	_	-	_	-	_	_	-	_	-	-	-	-	_	-	-	-	-	-	-	-	_	-	_	_	-	-
14.9a	_	_	_	_	_	_	-	-	_	-	_	_	_	_	-	_	-	-	_	-	_	_	_	-	_	-	_	_	_	_	-	-	_	_	-	-	-
17.8a	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	-	_	_	_	_	_	-	-	-	_	_	-	_	_	_	_	_	-
18.7a	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	-	-	-	_	_	_	_	-	-	_	-	_	_	_	_	-	-	_
21.9a	-	-	_	_	_	_	_	-	_	_	-	_	_	_	_	_	-	-	_	-	_	-	_	_	-	_	-	_	_	_	_	_	_	_	-	-	-
22.8a	-	-	_	_	-	_	_	_	_	_	_	_	-	-	_	_	-	-	-	-	_	_	_	-	-	_	-	_	_		-	-	-	-	-	_	-
23.6	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	-		-	_	_	-	_	_	_	-	_	_	_	_	-		_	-	_	-
25.7	-	-	-	_	_	_		_	_	1	1	1	1	1	1	1	1	1	1	1	1	_	-	-	_	-	-	_	-	_	_	-	-	-	-	_	-
26.7	-	_	-	_	_	-	_	1	1	1	2	2	2	2	2	1	1	1	1	-	_	-	_	-	-	_	-	-	_	_	_	_	-	_	-	_	-
27.8	-	_	_	-	_	_	_	_	_	_	_	_	2	3	3	3	2	2	1	1	1	1	1	1	_	_	-	-	-	-	-	_	_	-	-	_	_
28.7	-	_	_	_	_	_	_	_	-	1	1	1	1	2	2	3	4	2	2	2	2	1	1	1	1	1	_	_	_	-	-	_	_	_	-	-	-

Coronal observations at Climax, Colorado (5303A), west limb

-									0.1																												
Date					ree														00		_										ar						
GCT	90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Feb 1.7	-	-	-	993	-	-	-	4.5	00	0.0	en:	Φ	Φ	-	000	023	pm)	-	-	607	2	Ł,	6	Žt.	2	2	1	3	lı,	3	900	410	980	0	09.1	010	cati
2.7	-	600	600	-	-	600	100	-	-	620	000	-	-	-	00	co	_	929	-	600	2	3	5	5	3	3	2	2	lı,	4	2	400	600	cm	CROSP	603	1
4.0a	600	603	407	-	603	-	900	сиф	6.9	609	6839	609	483	-	600	603	000	ongo	-	2	3	5	Ł,	3	1	1	1	3	3	2	3.	1236	=	00	400	652	C3)
4.72	eco.	403	603	600	00	(62)	CETP	600	-	(62)	-	407	403	100	403	639	(00)	GIID	1	14	7	- 7	5	3	1	010	0	928	_	600	om	600	GET9	-	629	-	CI9
10.7	-	-	0539	000	cme	603	670	600	1	1	1	1	1	1	1	1	2	2	3	4	5	5	5	5	5	5	5	3	3	3	1	-	(25)	ono.	600	000	_
11.7	-	00	980	-	op	essi	-	600	60	1	1	1	1	2	2	2	3	3	1	lı,	5	7	- 7	3	Ŀ	8	7	12	3	2	1	-	600	400	\rightarrow	-	0.0
12.9	603	913	em .	-	903	cop.	con	400	409	-	em	-	omp.	_	603	1	2	3	3	l,	5	7	8	9	9	6	3	2	1	8	000	-	-	000	-	-	000
13.7	-	603	639	613	000	600	00	2	2	2	600	CIP	900	930	2	3	4	5	8	10	11	16	16	15	13	9	5	3	1	2	L	2	600	600	-	=	-
14.9a	160	-	000	co	cmb	-	-	-	-	009	310	1	1	2	3	4	6	8	8	9	9	9	8	6	h	3	1	900	-	-	00	800	-	_	-	00	60
17.82	60%	400	00	483	600	X	X	cosp	_	-	an	680	~	-	3	-6		15	15	8	5	Žį.	3	3	1	1	600	00	***	=	_	-	00	œ	639	con	-
18.7	-	430	-	-	629	600	600	_	-	-	-	-	extr	1	3	1	14	15	6	5	3	- 3	3	1	1	-	000	0.0	В	100	_	-	gen	-	000	-	pm)
21.92	-	con	œ	4073	C9	0	_	-	eno	-	683	_	2	3	3	3	2	1	1	aso	610	-	-	nto	-	co	600	on-	-	pro	em	-	con-	am	600	Œ.b	an an
22.82	cmb	000	con	om	-	400	6739	-	-	600	69	603	600	410	CD	000	685	cm	600	0	Łį.	Li,	Į,	14	629	000	415	esa	00	-	99	-	-	-	000	40	can
23.6		-	ctro	(00)	000	410	469	cea	400	600		-	CHI0	620	-	co	8	407	-	623	0	2	32	2	7	1	1	1	1	1	1	1	039	639	-	800	our.
25.78	dia	cos	403	cmb	00	629	403	-	-	-	-	_	-	-	_	-	-	620	-	1	1	2	2	2	1	1	J.	3	3	2	1	-	_	-	625	-	600
26.7	60	com.	-	007	-	600	0	00	cto	c=0	6879	609	-	CO	00	60	_	nsa	413	es	623	1	2	3	2.	2	2	1	1	4	2	esti	can	an	463	1027	Φ,
27.8a	-	400	-	-	=	-	-	407	-	000	-	-	600	-	900	0	CH0	600	600	1	1	1	2	1,	4	3	3	3	3	2	2	2	600	-	-	-	-
28.7	-	-	op	600	000	œ	-	403	\mathbb{X}	X	X	X	X	X	X	X	X	X	X	X	X	X	X	I	X	X	X	I	X	X	X	X	X	I	X	X	00

Table 79b

Coronal observations at Climax, Colorado (637hA), West limb

Date	_			Dec	moc		out	-h .c	£ +	· ho	907	272	001	1210	120			-1		7			Dos	700	e n	ont'	h 0	F +	ho	507	ar	0011	nto	70			
	<u></u>	85										35				75	10	-	00	10	10			25						55					80	85	00
	70	0)	00	1)	10	0)	00	22	50	42	цо	2)		2)	20		10	-21		K	10	10	20	2)	30	22	40	45	50	22	00	05	10	12	00	05	90
1953 Feb 1.7 2.7 4.0a 4.0a 4.7a 10.7 11.7 12.9 13.7 11.9a 17.8a 16.7	34332114211	3333221321	34322113211	34322213211	2 4 2 3 2 2 1 3 2 1 1	2 4 2 2 2 2 1 3 2 1	2 4 2 2 2 1 3 2 X 1	2 4 3 2 2 2 1 2 1 X 1	2 3 1 2 1 2 1 1 1	3 4 1 2 1 2 2 2 2 1 2	4 3 2 2 4 2 3 1 1	43233323111	33222233111	23451223131	25361324143	3534223412	4 3 4 3 3 4 4 1 2	66363345414	4 5 3 6 3 4 3 4 2 1 2	33594335611	6549232421	14 14 3 12 13 3 14 3 12	24465324111	22455846111	31345233121	35231213123	53121112124	1 2 1 2 1 1 1 2 3	1 1 1 1 1 1 2 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 2	1 2 2 2 1 1 1 1 1 1 1 1 1	2 2 2 2 1 1 2 1 1 1	2 3 3 2 2 2 2 2 1 1 1	23352323111	33332223313	34332123312
21.9a 22.8a 23.6 25.7a 26.7 27.8a 28.7	1222333	1 2 2 4 3 3	1 2 2 2 4 3 3	2 2 4 3 3	2 2 3 3 3	2 2 2 3 3	2 2 2 3 3	1 2 2 3 2	1 2 2 2 X	1 2 2 2 X	1 2 2 2 3 X	1 3 4 4 X	4 - 3555X	4-3455X	1 3454 X	2 - 4554X	2 4 5 4 X	3 - 3 4 6 4 X	333556 X	33L595X	336463X	3 3 4 4 X	2 3 3 4 X	2 2 3 3 2 X	2 2 3 2 2 3	2 2 3 2 2 X	2 2 1 2 X	2 1 1 1 X	2 1 1 1 1 1	2 1 1 1 X	2 1 1 1 1 X	2 1 1 2 X	2 1 1 2 X	1 2 1 2 2 X	1 2 1 3 X	1 2 2 3 4 X	2 2 2 3 4 4

Table 80b

Coronal observations at Climax, Colorado (6702A), west limb

D	ate	\vdash			Des	ree	S S	out	h c	ft	he	sol	lar	eau	ato	r			T	00	1		-	Deg	ree	s n	ort	h o	ft	he	sol	ar	equ	ato	r			
	GCT	90	85							50							15	10	5	. 00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1	953																																					
Feb		-	-	-	-	-	-	-	-	-	-	63	60	***	60	co	600	-	-	GIP .	-	-	-	-	440	-	00	-	-	-	-	-	-	669	000	0	_	629
	2.7	-	-	-	-	400	-	-	_	-	-	-	-	-	-	_	00	-	600	-	-	00	639	63	-	-	-	0	Ф	_	-	_	-	-	-	(80)	0	(12)
	4.0a	-	-	-	_	800	cob		469	600	-	-	-	_	000	-	600	600	-		-	-63	-	con	_	-	ano	***	am	-	-	œ	-	-	-	803	62	-
	4.7a	-	-	_	_	-	GID.	60	-	403	000	8	-	-	-	800	963	an	450	es	-	0.0	cm	610	-	-	_	_	-	-	-	_	600	-	_	00	con	610
	10.7	-	_	-	_	400	-	_	-	000	***	-	CBB	-	-	-	-	-	-	-	-	00		-	600		680	-	-	\rightarrow	-	-	_	con	_	000	-	-
	11.7	co	-	-	60		0.0	-		00	-	-	$\overline{}$	-	an	-	600	-	-	-	00	-	_	-	00	463	-	\rightarrow	can	ema	600	679	-	(60)	-	6239	-	-
	12.9	-	-	_	_	_	903	-	co	-	_		-	-	\Rightarrow	-	_	_	600	-	000	-	_	-	_	000	-	-	GID.	-	-	-	-	4000	***	-	-	-
	13.7	-	_	_	-	-	4559	_	000	$\overline{}$	_	-	-	-	-	-	000	409	-	603	1	1	2	2	2	2	2	1	1	-	-	-	_	-	_	-	-	=
	14.9a	-	X	X	X	X	X	X	X	X	X	X	X	1	1	1	1	1	1	2	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-02
	17.8a	-	X	X	X	X	X	X	X	X	X	X	X	X	X	2	2	2	2	2	1	1	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	****
	18.7	-	-	-	_	-	-		000	-	_	-	-	_	-	1	ı	1	1	1	1	1	600	esp		_	cop	***	-	940	_	\rightarrow	_	_	_	-	462	-
	21.9a	-	-	_	_	_	_	-	_	-	_	-	-		-	-	0.0	1310	-	600		463	483	-	6400	-	_	_	-	600	enth	-	***	-	-	-	600	620
	22.8a	-	_	-	-	_	000	-	-	on-	_	-	-	400	-	0.0	-	cmo	-	463	-	0.0	0.0	cm		000	000	-	=	ess	029	-	-	00	CO	con.	ecus	00
	23.6	-	-	-	_	-	000	00	959	_	_	-	-	\rightarrow	_	-	-	_	-	-	-	000	-	-	-	CEED	-	000	-	-	colle	-	-	-	-	-	_	600
	25.7a	-	-	69	0.00	-	-	-	020	-	-		-	_	-	00	463	_	-	-	467	-	403	200	estr	-	_	one	600	-	-	CO	_	-	-	_	emp	-
	26.7	-	_	cmb	-	_	-	-	-	-	-	CORP.	-	600	609	4679	0	000	-	600	-	000	-	(80)	800	-	CHO	-	_	-	-	_	-	-	-	-	-	_
	27.8a	-	-	-	-	-	-	om	603	_	-	-	_	000	-	-	com		000	-	60	000	400	_	-	663	-	-	_	CERP	em	_	CHIN	_	-	-	0	-
	28.7	-	_	-	-	-	407	-	-	X.	X	X	X	X	X	X	X	X	X	I	X	X	X	X	Χ.	X	X	X	Χ.	- X	X	X	Χ	X	X	X	X	eeth

Table 81a Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date	Τ_			Deg	ree	s n	ort	h o	f t	he :	301	ar	eau	ato	r				00	_			Deg	ree	s s	out	h o	f t	he :	sol	ar (equ	ato	r	_		
	90	85						33		45 1		35		25	20	15	10	3	00	3	10	15	20	25	30	35	ĮO	15-	50	33	<u>60</u> (33	70 '	75 E	30 8	35 9	0
1953 Feb 1.7 2.7 3.7 6.9a 7.8 11.9a 12.7 15.7 16.7 17.7 18.7 22.7a 22.7a 25.7	1221112113	3 3 - 2	2	23232 - 1212 - 23 - 2 - 2	33332 - 33332233 - 222	65343144433241333	86443355533342252	84442344533342284	74442345434332271	85443345535342348	85543334434342470	10 755335444333340	16 9 5 4 3 3 4 4 4 2 3 3 3 3 6	24 9 6 4 3 4 4 4 4 3 4 3 3 3 8 18 27		18 12 9 3 3 3 4 4 8 5 3 4 4 5 3 20	16	183344335444557J	88544mmmmm4440	2905541241254328	18 28 44 8 5 4 - 2 - 3 3 4 3 2 6 10	16 20 45 88 3 - 2 2 2 3 4 3 2 5 5	16 10 39 58 3 - 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	131553-1222343343	83544312222243355	3343331332223232335	33333333332 232234	34433322321242233	45333322222242243	45433322 22242343	34323323121253442	2322321211243233	2 2 2 2 3 2 - 1 - 1 - 3 4 3 2 3 2	2 1 2 2 3 1 1 1 1 1 3 3 2 2 2 3	12 123 1 12 1 123 1 324	1212311211231323	2 33 23 - 332

Date			_	Dec	mac	9 7	nori	·h ·	· F +	·hο	SO	220	901	0+0	122					Τ-			Dog	700		611 F	h 0	£ +	bo	667	0.70		ato	_		
GCT	90	85				<u>65</u>	60		50	1.2	10	35				15	10		00	3	10														90 0	5 90
	30	05	DU	15	10	02	00	22	50	45	40	22	<u> </u>	25	20	15	10	-21		12	10	12	20	دی.	<u> </u>	22	40	42	5∪	22	00	05	70 '	(2.	00 0	90
1953 Feb 1.7	۱.	2	2	2	3	١.	2	2	2	2	3),	3	6	73	5),),	16	0	4	13	4	3	2	1,	2	2	3	2	2	2	2	2	2	3 2
2.7	4	2	1,	٦	Ĭ,	4	3	2	2	3	7	ξ.	7	6	7	3	2	3	13	5	á	1),	11	ξ.	Ĭ,	3	2	3	ζ.	3	2	2	2	3	3	2 3
3.7	Ĭ.	Ĭ,	3	3	3	3	2	2	2	Ĭ,	6	9	8	5	Ĭ.	Ĺ	2	3	ũ	7	8	18	īī	3	Ĭ.	3	3	5	Ĺ	3	2	2	2	3	3	3 3
6.9a	3	3	Ĺ	3	2	3	3	3	2	3	7	ź	6	5	3	3	Ŀ	Ĺ	-5	Ĺ	6	6	-5	3	ĭ	Ĺ	3	Ĺ	3	3	3	2	2	3	ź	3 3
7.8	5	6	3	3	4	Ĭ4	3	4	5	5	4	5	8	7	8	7	6	6	7	7	6	5	5	4	7	6	5	4	3	2	3	2	2	3	2	3 3
11.9a	4	3	3	3	3	4	2	2	2	2	3	3	3	2	3	4	3	3	4	5	4	4	4	3	4	3	4	3	2	2	3	2	2	-	-	2 2
12.7	3	3	3	3	4	3	3	2	3	4	4	5	4	5	5	6	8	7	8	6	6	4	5	4	5	5	3	2	3	2	2	3	2	2	3	2 3
14.7	3	3	3	2	2	2	3	2	3	4	3	3	3	3	3	4	6	8	8	7	_5	4	_3	4	4	4	4	4	3	3	3	3	2	2	3	43
15.7	3	4	4	5	3	3	2	3	3	2	3	7	4	4	3	4	5	5	5	'n	12	'n.	10	8	5	5	6	5	5	4	3	3	4	2	3	3 3
16.7	4	4	4	3	3	2	2	3	2	2	4	4	4	3	3	2	3	4	1	21	0	٥	5	5	5	3	3	0	4	3	3	3	2	3	2	2 3
17.7	3	ز ا.	1.	2	3	2	2	2	2	2	2	4	2	4	2	7	2	2	8	14	0	٦ ا.	4	4	1.	1.	2	4	1.	2	2	2	4	2	-	2 3
18.7 21.72	3	4	4	٥	2	2	2	2	2	2	2	1.	1.	4	2	4	2	2	2	2	3	2	7.	2	4	4	7.	7.	4	2	2	2	٦	2	2	2 2
22.72	3	3	2	١	2	3	3	2	2	2	3	1	1	3	2	2	٦	J,	14	3	Ĭ,	3	4	3	2	2	4	5	2	5	3	2	7	2	2	2 2
25.7	Ĭ,	Ĭ,),	ĵ,	5	3	3	3	2	2	2	3	3	3),	3	ź	3	3	7	3	6	7	3),	ξ.	6	6	3	3	2	5	2	2	2	3 3
26.7	i.	3	3	3	5	Ĺ	3	3	2	3	2	2	2	2	13	3	3	3	3	5	8	9	7	3	Ĺ	5	7	6	3	3	3	2	2	3	2	3 L
27.7	3	5	5	4	5	4	3	2	2	2	2	2	2	2	5	8	2	6	5	5	4	4	3	4	4	3	3	4	3	3	3	2	3	3	3	3 3

Table 83a
Coronal observations at Sacramento Feak, New Mexico (6702A), east limb

Date				Deg	ree	s r	ort	h c	f t	he	sol	ar	equ	ato	r								Deg	ree	s s	out	h o	ft	he	sol	lar	eq	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20 :	25	30	35	70.	45	50	55	60	65	70	75	80	85	90
GCT 1953 Feb 1.7 2.7 3.7 6.9a 7.8 11.9a 12.7 14.7 15.7 16.7 17.7 18.7 22.7a	90	85	80													2 2 2	2 3 2	3 3 3	333111111111111111111111111111111111111	3341111111	334														80	85	90
25•7 26•7 27•7	-	-	-	-	-	-	-	-	-	2	2 2	2 2	2	3	3 L	З 2 Ь	2 2	2	2	2	- 2		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 81b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

		_				_	-					-								
Date	Degrees south of the solar equator	٦,	00												Lar			r	0.0	0-/ 00
GCT	90 85 80 75 70 65 50 55 50 45 40 35 30 25 20 15 10 5	5	0 -	5	10 :	15 :	20	25	30	35	40	45	50	55	60	55	70	75	80	85 90
Teb 1.7 2.7 3.7 6.9a 7.8 11.9a 12.7 14.7 15.7 16.7 17.7 21.7a 22.7a 25.7a 25.7 26.7	2 2 2 2 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3	323 4 + 335 4 325	3334538 16	3343630 2023	3 4 5 5 8 3 1 4 23 28 23	6585911611911611911611	7511512516	8 6 10 5 11 16 15	75048514120810342336	54755818675232337	435537053232327	43433684832332245	42433555543223356	52434458443323256	534343535352323257	52333233553223245	32 - 43222433222243	32 - 42 - 22 22 33 22 23 2	22 - 32 - 2323333322	2 - 2 2 2 3 2 2 2 2 3 3 3 2 2 2

Table 82b

Coronal observations at Sacramento Peak, New Mexico (6374k), west limb

Date				Deg	ree	es s	sout	th c	of t	he										T			Deg	ree	es r	ort	h c	of t	he	so]	ar	e qu	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	15	10	15	20	25	30	35	40	45		55					80	85	90
1953 Feb 1.7 2.7 3.7 6.92 7.8 11.92 12.7 15.7 15.7 12.7a 22.7a 25.7 26.7	233332333333222343	2 2 3 3 3 2 2 2 2 3 3 4 2	22333332233332333	2233232232323234	322332-33333322224	33233223423332233	33323233332433322	323332243223233323	22233335323423222	33433233522323355	3444333263 - 332234	4445433252 2223245	44545323232335366	53454333333334556	34554333524335454	33543341461334544	54834450450334554	95734458843734644	88755445335835548	66648543834635749	5585854811 3235838	8578113645 2333725	54558425623343886	35544523522243575	33433032422334444	324454-4333324443	533443-3543445444	433363-444534544	22335212455623333	23234222433433322	22233243332322222	32233343332332233	32335454443322333	42335443423332334	43446442443232445	53425442433322344	43435433343533445

 $\underline{\textbf{Tabla 83b}}$ Coronal observations at Sacramento Peak, New Mexico ($\underline{6702A}$), west limb

Date															ato					00				Deg	ree	s n	ort	h o	ft	he	sol	ar	equ	ato	r			
GC1	T	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10					35									80	85	90
195	3																																					
	1.7	483	-	400	-	600	400	-	_	660	_	-	490	639	660	_	***		an	600	-	660			***	-	-		000	-	_	000	-	-	-	-	-	-
	2.7	-	-	_	_	_	400	_	-	400	_	-	_	on	_	-	413	-	an	-	453	quat	-	-	639	-	-	esp	-	-	-	-	-	-	_	_	_	_
	3.7	-	-	-	-	***	-	-	-	-	-	-	***	-	410	40	-	410	-	-	-	-	CEED	an	-	60	860	600	600	40	_	-	-	-	-	-	-	GEO
	6.9a	-	-	_	-	-	-	ora,	-	-	-	-	630	663	-	400	_	-	-			-	_	-	-	ao	600	400	-	-	_	-	-	90	_	_	-	-
	7.8	-	-	_	-	-	ogn	eso	CIMP	-	-	QIP.	-	660	-	60	-	400	-	660	-	con	2	3	3	2	-	400	-	-	-	-	-	-	-	-	-	630
	1.9a	-	-	-	-	-	000	610	-	-	-	-	-	-	-	-	800	-	-	-	-	420	629	-	-	-	CED	410	-	680	_	_	440	943	-	-	_	613
	2.7	-	_	-	-	-	-	_	-	-	-	400	_		-	-	-	-	-		2	3	4	3	3	2	2	2	400	62	_	-	-	_	-	_	_	-
	4.7	440	440	600	-	-	-	800	-	_	400	-	089	629	-	_	-	_	-	-	2	3	3	3	2	-	400	_	an	000	-	-	629	ons	_	-	***	_
	.5.7	860	-	_	-	-	-	_	-	600	-	-	comp	800	410	-	2	3	3	2	3	4	4	4	3	2	2	om	660	_	_	-	_	-	-	-	639	000
	.6.7	-	-	-	-	-	-	_	_	-	-	-	-	-	_	-	410	-	2	2	3	3	2	2	2	-	\Rightarrow	-	-	GED.	000	_	-	_	60	_	-	613
	-707	-	-	-	-	_	-	-	-	-	_	-	_	-	630	-	2	3	4	4	3	3	3	2	2	2	-	_	_	-	-	45.0	980	-	_	-	_	-
	8.7	-	-	-	-	en	440	_	_	-	-	-	_	-	400	2	2	3	3	2	3	2	3	3	2	an	_	_	_	-	-	_	45.	-	_	_	-	-
	21.7a		-	_	-	-	-	_	_	-	-	-	600		-	-	080	800			-	620	-	428	m	-	ca	-	-	-	-	-	_	_	_	-	_	-
2	22.7a	-	-	-	-	400	-	-	-	-	-	-	-	80	860	-0	-	-		_	-	-		em	_	860	-	_	-	-	_	-	-	-	_	_	_	-
2	25.7	-	-	_	_	-	-	-	639	660	_	_	80	440	423	-	-	400			-	-	653	***	_	an	one	_	-	-	-	-	-	-	-	400	-	-
	26.7	GID.	-	***	GID.	-	410	-	-	-	QID.	-	-	400	-	-	600	-	-	-	en	623)	603	SEP.	-	629	_	639	4339	-	-	_	-	_	***	-	_	40
2	7.7	000	-	_	***	-	-	_	_	-	_	-	-	400	400	_	100	-	-	-		-	-	-	-	639	863	-	an	-	_	_	400	_	400	-	-	680

<u>Fable 84</u>

Zürich Provisional Relative Sunspot Numbers

February 1953

Date	RZ**	Date	R _Z *
1	0	16	0
2	7	17	0
3	8	18	0
Ц.	8	19	0
5	8	20	0
6	8	21	0
7	14	22	0
8	8	23	0
9	7	5/1	0
10	7	25	0
11	7	26	0
12	0	27	0
13	0	28	0
11,	0		
15	0	Mean:	2.9

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 85

American Relative Sunspot Numbers

January 1953

Date	RA?	Date	RA 8*
1	17	17	35
2	17	18	26
3	21	19	23
1.	27	20	22
5	31	21	14
6	45	22	19
7	31	23	11
8	36	2lt	9
9	Ц8	25	3
10	57	26	
11	65	27	0
12	60	28	0
13	56	29	3
114	50	30	0
15	49	31	0
16	49	Mean:	26.6

^{*}Combination of reports from 28 observers; see page 10.

Table 86 Solar Flares, February 1953

No solar flares were reported for the month of February 1953.

Table 87

Indices of Geomagnetic Activity for January 1953

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr.		Values Kp	Final	
Day 1953	С	three-hour interval 1234 5678	Sum	Selected Days
1 2 3 4 5	0.9 1.0 0.5 0.3 1.7	3+ 40 30 3+ 30 30 4- 30 20 2+ 4- 3+ 40 4+ 4+ 30 3- 30 1+ 10 2+ 3- 20 2- 3- 1- 1- 1- 1- 2+ 2+ 2- 2- 3+ 7- 60 6- 50 5- 5-	26+ 270 17- 12- 38-	Five Quiet 4 10 15
6 7 8 9	0.9 0.6 0.3 0.6 0.4	3- 2- 2+ 30	220 16+ 17- 18- 12-	16 17
11 12 13 14 15	0.4 0.1 0.8 0.3 0.1	4- 30 2- 2- 2- 10 1+ 2- 2+ 20 1+ 10 3- 20 10 1- 0+ 1+ 10 3+ 3+ 2- 4- 3+ 3- 30 3- 1+ 1+ 2- 2- 2+ 2- 0+ 0+ 1+ 1+ 10 0+ 20	16- 130 17+ 17- 8+	Five Disturbed 5 19 26
16 17 18 19 20	0.1 0.4 0.8 1.2 0.9	1+ 0+ 0+ 10	8+ 9 19+ 30o 230	27 28
21 22 23 24 25	0.4 0.2 0.4 0.8 1.2	2+ 2+ 2+ 3- 30 2- 2- 2+ 20 30 2+ 20 2- 1- 10 20 40 3- 1+ 1- 1- 0+ 1+ 0+ 10 10 3- 4- 3- 3+ 30 1+ 00 10 2+ 6- 50 3+ 30 40	18+ 15- 11÷ 19- 24+	Ten Quiet 4 7 10
26 27 28 29 30 31	1.6 1.5 1.3 1.3 1.0	50 5+ 40 5- 5- 4+ 6- 50 50 3+ 3+ 5+ 5- 5- 50 2+ 30 4- 40 3+ 3+ 5- 4+ 50 50 40 4- 3+ 40 4- 4+ 2+ 4- 4- 40 3+ 30 4- 3+ 2- 4- 40 2+ 3+ 30 10 2- 1+	39- 34- 31+ 30+ 26+ 20+	12 14 15 16 17 22
Mean	0.73			23

X

Fig. 64. WATHEROO, W. AUSTRALIA

NOVEMBER 1952

---- LIMITING FREQUENCY = 7 Mc.

LOCAL TIME

Z 400

VIRTUAL HEIGHT I

100

Index of Tables and Graphs of Ionospheric Data

in CRPL-F103

	Table page	Figure page
Adak, Alaska		
January 1953	14	52
Anchorage, Alaska		<i></i>
January 1953	13	50
December 1952	16	57
November 1952	17	61
Baguio, P. I.	4 (02
	17	62
November 1952	*	64
October 1952	18	
September 1952	19	68
August 1952	20	69
July 1952	20	70
June 1952	20	71
May 1952	20	71
Brisbane, Australia		
October 1952	18	65
Calcutta, India		_
September 1952	19	67
August 1952	19	68
July 1952	20	70
Canberra, Australia		, -
October 1952	19	66
Capetown, Union of South Africa	17	00
	18	64
November 1952	10	0-4
Casablanca, Morocco	03	20
March 1952	21	73
February 1952	22	76
January 1952	23	78
De Bilt, Holland		
December 1952	16	58
Djibouti, French Somaliland		
February 1952	22	77
Domont, France		
March 1952	21	72
February 1952	21	74
January 1952	22	77
Formosa, China		* *
December 1952	16	59
Fribourg, Germany	20	27
	21	72
March 1952		
February 1952	22	75
Godhavn, Greenland	3.0	1
September 1952	19	67
Graz, Austria	-1	
Jamuary 1953	14	52

Index (CRPL-F103, continued)

	Table page	Figure page
Guam I.		
January 1953	15	55
August 1952	20	69
March 1952	21	74
February 1952	22	76
Hobart, Tasmania		
October 1952	19	66
Huancayo, Peru,		
Jamuary 1953	15	56
December 1952	17	60
Johannesburg, Union of South Africa		
November 1952	18	63
Kiruna, Sweden		
January 1953	13	49
December 1952	16	57
Lindau/Harz, Germany		
December 1952	16	58
Maui, Hawaii		
Jamuary 1953	15	54
Narsarssuak, Greenland		
Jamuary 1953	13	50
Okinawa I.		
January 1953	15	54
Oslo, Norway		
January 1953	14	51
Panama Canal Zone		
January 1953	15	56
Point Barrow, Alaska		
Jamuary 1953	13	48
Poitiers, France		
March 1952	21	73
February 1952	22	75
January 1952	23	78
Puerto Rico, W. I.		
January 1953	15	55
Reykjavik, Iceland		
November 1952	17	60
San Francisco, California		
Jamuary 1953	14	53
Schwarzenburg, Switzerland		
December 1952	16	59
Tokyo, Japan		
November 1952	17	61
Townsville, Australia		
October 1952	18	65
Tronso, Norway		
January 1953	13	49

Index (CHPL-F103, concluded)

	Table page	Figure page
Upsala, Sweden January 1953	14	51
Washington, D. C. February 1953	13	48
November 1952	18	63
January 1953	14	53
November 1952	17	62

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance forecasts, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-Jp. month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, 'TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

CRPL—F. Ionospheric Data.

Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL--H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.
NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

(G1, G3, available. Others out of print; see second footnote.)

IRPL-R. Nonscheduled reports:
R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

**R6.

Criteria for Ionospheric Storminess.

Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R9.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionosphere Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle. **R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures-October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

**R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

**R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

**R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
**R33. Ionospheric Data on File at IRPL.
**R34. The Interpretation of Recorded Values of fEs.

**R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

T1.

Radar operation and weather. (Superseded by JANP 101.)
Radar coverage and weather. (Superseded by JANP 102.)
Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group CRPL—T3. WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 () Series. **Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

