The group G is isomorphic to the group labelled by [42, 4] in the Small Groups library. Ordinary character table of $G \cong C3 \times D14$:

	1a	2a	3a	7a	6a	3b	21a	7b	6b	21b	21c	7c	21d	21e	21f	
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
χ_2	1	-1	1	1	-1	1	1	1	-1	1	1	1	1	1	1	
χ_3	1	-1	$E(3)^{2}$	1	$-E(3)^2$	E(3)	$E(3)^{2}$	1	-E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	
χ_4	1	-1	E(3)	1	-E(3)	$E(3)^{2}$	E(3)	1	$-E(3)^2$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^2$	
χ_5	1	1	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	
χ_6	1	1	E(3)	1	E(3)	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1 $E(3)^2$		E(3)	$E(3)^2$	
χ_7	2	0	2	$E(7)^2 + E(7)^5$	0	2	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	0	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7) + E(7)^6$	
χ_8	2	0	2	$E(7) + E(7)^6$	0	2	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	0	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$	
χ_9	2	0	2	$E(7)^3 + E(7)^4$	0	2	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	0	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	
χ_{10}	2	0	$2*E(3)^2$	$E(7)^2 + E(7)^5$	0	2 * E(3)	$E(21)^8 + E(21)^{20}$	$E(7)^3 + E(7)^4$	0	$E(21) + E(21)^{13}$	$E(21)^2 + E(21)^5$	$E(7) + E(7)^6$	$E(21)^{16} + E(21)^{19}$	$E(21)^{11} + E(21)^{17}$	$E(21)^4 + E(21)^{10}$	
χ_{11}	2	0	2 * E(3)	$E(7)^2 + E(7)^5$	0	$2*E(3)^2$	$E(21) + E(21)^{13}$	$E(7)^3 + E(7)^4$	0	$E(21)^8 + E(21)^{20}$	$E(21)^{16} + E(21)^{19}$	$E(7) + E(7)^6$	$E(21)^2 + E(21)^5$	$E(21)^4 + E(21)^{10}$	$E(21)^{11} + E(21)^{17}$	
χ_{12}	2	0	$2*E(3)^2$	$E(7) + E(7)^6$	0	2 * E(3)	$E(21)^{11} + E(21)^{17}$	$E(7)^2 + E(7)^5$	0	$E(21)^4 + E(21)^{10}$	$E(21)^8 + E(21)^{20}$	$E(7)^3 + E(7)^4$	$E(21) + E(21)^{13}$	$E(21)^2 + E(21)^5$	$E(21)^{16} + E(21)^{19}$	
χ_{13}	2	0	2 * E(3)	$E(7) + E(7)^6$	0	$2*E(3)^2$	$E(21)^4 + E(21)^{10}$	$E(7)^2 + E(7)^5$	0	$E(21)^{11} + E(21)^{17}$	$E(21) + E(21)^{13}$	$E(7)^3 + E(7)^4$	$E(21)^8 + E(21)^{20}$	$E(21)^{16} + E(21)^{19}$	$E(21)^2 + E(21)^5$	
χ_{14}	2	0	$2*E(3)^2$	$E(7)^3 + E(7)^4$	0	2 * E(3)	$E(21)^2 + E(21)^5$	$E(7) + E(7)^6$	0	$E(21)^{16} + E(21)^{19}$	$E(21)^{11} + E(21)^{17}$	$E(7)^2 + E(7)^5$	$E(21)^4 + E(21)^{10}$	$E(21)^8 + E(21)^{20}$	$E(21) + E(21)^{13}$	
χ_{15}	2	0	2 * E(3)	$E(7)^3 + E(7)^4$	0	$2*E(3)^2$	$E(21)^{16} + E(21)^{19}$	$E(7) + E(7)^6$	0	$E(21)^2 + E(21)^5$	$E(21)^4 + E(21)^{10}$	$E(7)^2 + E(7)^5$	$E(21)^{11} + E(21)^{17}$	$E(21) + E(21)^{13}$	$E(21)^8 + E(21)^{20}$	

Trivial source character table of $G \cong C3 \times D14$ at p = 7:

Trivial source character table of $G \cong C3 \times D14$ at $p = i$:												
Normalisers N_i				N_1						N_2		
p-subgroups of G up to conjugacy in G		P_1					P_2					
Representatives $n_j \in N_i$	1a	2a	3a	6a	3b	6b	1a	3a	2a	3b	6a	6b
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}}$	7	1	7	1	7	1	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} 0 \cdot \chi_{10} + 0$	7	-1	7	-1	7	-1	0	0	0	0	0	0
	7	-1	$7 * E(3)^2$	$-E(3)^2$	7 * E(3)	-E(3)	0	0	0	0	0	0
		-1	7 * E(3)	-E(3)	$7 * E(3)^2$	$-E(3)^2$	0	0	0	0	0	0
	7	1	$7 * E(3)^2$	$E(3)^{2}$	7 * E(3)	E(3)	0	0	0	0	0	0
	7	1	7 * E(3)	E(3)	$7 * E(3)^2$	$E(3)^{2}$	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$
	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)
	1	-1	1	-1	1	-1	1	1	-1	1	-1	-1
	1	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	1	E(3)	-1	$E(3)^{2}$	-E(3)	$-E(3)^2$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	-1	$E(3)^2$	$-E(3)^2$	E(3)	-E(3)	1	$E(3)^{2}$	-1	E(3)	$-E(3)^2$	-E(3)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,4,9,15,21,27,33)(2,6,12,18,24,30,36)(3,8,14,20,26,32,38)(5,11,17,23,29,35,40)(7,13,19,25,31,37,41)(10,16,22,28,34,39,42)]) \cong C7$

 $N_1 = Group([(1,2)(3,5)(4,36)(6,33)(7,10)(8,40)(9,30)(11,38)(12,27)(13,42)(14,35)(15,24)(16,41)(17,32)(18,21)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(18,24)(19,39)(20,29)(22,37)(23,26)(25,34)(28,31), (1,3,7)(25,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(27,32,37)(23,26)(25,34)(28,31)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(24,29,34)(2$