G2SLS: Generalized 2SLS procedure for Stata

Nicolas Suarez-Chavarria

Stanford University

July 20, 2023

Preview

▶ I implement the generalized two-stage least squares procedure described in Bramoullé et al. (2009) to estimate peer effects models.

Preview

- ▶ I implement the generalized two-stage least squares procedure described in Bramoullé et al. (2009) to estimate peer effects models.
- ► I extend their original framework to estimate peer effects models using OLS and to allow for independent variables without peer effects.

Preview

- ▶ I implement the generalized two-stage least squares procedure described in Bramoullé et al. (2009) to estimate peer effects models.
- ► I extend their original framework to estimate peer effects models using OLS and to allow for independent variables without peer effects.
- ► Short application to showcase the 2gsls package.

Outline

Motivation

Context

Implementation

Application

Concluding remarks

Motivation

► If we want to estimate a linear-in-means regression, there are no readily available packages to do so.

Motivation

- ► If we want to estimate a linear-in-means regression, there are no readily available packages to do so.
- ► Computing the mean outcomes and characteristics of peers with loops is hard and inefficient.

Motivation

- ► If we want to estimate a linear-in-means regression, there are no readily available packages to do so.
- ► Computing the mean outcomes and characteristics of peers with loops is hard and inefficient.
- ► To address this and the endogeneity problems in linear-in-means models, I developed the 2gsls package.

Peer effects can be classified into 3 categories:

Context

Peer effects can be classified into 3 categories:

- ► **Exogenous (or contextual) effects:** influence of exogenous peer characteristics on my outcomes.
- ▶ **Endogenous effects:** influence of peer outcomes on my outcomes.
- ► **Correlated effects:** individuals in the same reference group behave similarly because they face a common environment.

Context Peer effects

There are 2 main challenges when estimating a peer effects model:

Context

There are 2 main challenges when estimating a peer effects model:

- 1. It is difficult to distinguish real social effects (endogenous and exogenous) from correlated effects.
- 2. Reflection problem: Individuals simultaneously determine each other's outcomes. This endogeneity makes hard to distinguish between endogenous and exogenous effects.

Context Peer effects

There are 2 main challenges when estimating a peer effects model:

- 1. It is difficult to distinguish real social effects (endogenous and exogenous) from correlated effects.
- 2. Reflection problem: Individuals simultaneously determine each other's outcomes. This endogeneity makes hard to distinguish between endogenous and exogenous effects.

Generalized Two-Stage Least Squares tackles these 2 problems:

There are 2 main challenges when estimating a peer effects model:

- 1. It is difficult to distinguish real social effects (endogenous and exogenous) from correlated effects.
- 2. Reflection problem: Individuals simultaneously determine each other's outcomes. This endogeneity makes hard to distinguish between endogenous and exogenous effects.

Generalized Two-Stage Least Squares tackles these 2 problems:

- 1. Adding network-level fixed effects controls for unobserved factors that affect individuals in the same group.
- 2. Using instrumental variables based on the network structure takes care of the endogeneity problem.

We start with a simple linear-in-means model:

$$y_i = \alpha + \beta \frac{1}{n_i} \sum_{j \in P_i} y_j + \gamma x_i + \delta \frac{1}{n_i} \sum_{j \in P_i} x_j + \varepsilon_i$$
 (1)

 $ightharpoonup P_i$ are the peers of individual i.

We start with a simple linear-in-means model:

$$y_i = \alpha + \frac{\beta}{n_i} \sum_{j \in P_i} y_j + \gamma x_i + \delta \frac{1}{n_i} \sum_{j \in P_i} x_j + \varepsilon_i$$
 (1)

- $ightharpoonup P_i$ are the peers of individual *i*.
- \triangleright β captures the endogenous peer effect.

We start with a simple linear-in-means model:

$$y_i = \alpha + \beta \frac{1}{n_i} \sum_{j \in P_i} y_j + \gamma x_i + \frac{\delta}{n_i} \sum_{j \in P_i} x_j + \varepsilon_i$$
 (1)

- $ightharpoonup P_i$ are the peers of individual *i*.
- \blacktriangleright β captures the endogenous peer effect.
- ightharpoonup of captures exogenous peer effects.

Context Econometric framework

We can rewrite this more generally using matrices:

$$y = \alpha \iota + Gy\beta + X\gamma + GX\delta + \varepsilon$$
 (2)

We can rewrite this more generally using matrices:

$$y = \alpha \iota + \frac{\mathbf{G}}{\mathbf{G}} y \beta + X \gamma + \frac{\mathbf{G}}{\mathbf{G}} X \delta + \varepsilon \tag{2}$$

ightharpoonup G is an N-by-N adjacency matrix representing the relationships between peers.

We can rewrite this more generally using matrices:

$$y = \alpha \iota + Gy\beta + X\gamma + GX\delta + \varepsilon \tag{2}$$

- ► *G* is an *N*-by-*N* adjacency matrix representing the relationships between peers.
- ▶ The i-th row of G captures the relationship of individual i with his peers.

Context Generalized Two-Stage Least Squares

▶ Bramoullé et al. (2009) developed a procedure to estimate equation (2).

- ▶ Bramoullé et al. (2009) developed a procedure to estimate equation (2).
- ▶ We will rewrite our model as follows:

$$egin{aligned} oldsymbol{y} &= egin{bmatrix} \iota & Goldsymbol{y} & X & GX \end{bmatrix} egin{bmatrix} lpha \ eta \ \gamma \ \delta \end{bmatrix} + arepsilon \ &\Leftrightarrow oldsymbol{y} &= ilde{X} heta + arepsilon \end{aligned}$$

▶ This model is identified if matrices I, G and G^2 are linearly independent.

Context Generalized Two-Stage Least Squares

We follow these steps:

1. We define our instrument $S = \begin{bmatrix} \iota & X & GX & G^2X \end{bmatrix}$ for \tilde{X} .

Context

Generalized Two-Stage Least Squares

We follow these steps:

- 1. We define our instrument $S = \begin{bmatrix} \iota & X & GX & G^2X \end{bmatrix}$ for \tilde{X} .
- 2. We estimate our model using 2SLS:

$$\widehat{\theta}_{2SLS} = (\tilde{X}'P\tilde{X})^{-1}\tilde{X}'Py$$

with
$$P = S(S'S)^{-1}S'$$
.

We follow these steps:

- 1. We define our instrument $S = \begin{bmatrix} \iota & X & GX & G^2X \end{bmatrix}$ for \tilde{X} .
- 2. We estimate our model using 2SLS:

$$\widehat{\theta}_{2SLS} = (\tilde{X}'P\tilde{X})^{-1}\tilde{X}'Py$$

with
$$P = S(S'S)^{-1}S'$$
.

3. We compute the predicted value of the outcome as:

$$\widehat{y}_{2SLS} = (I - \widehat{\beta}_{2SLS}G)^{-1} \left(\widehat{\alpha}_{2SLS} + X\widehat{\gamma}_{2SLS} + GX\widehat{\delta}_{2SLS}\right)$$

Context Generalized Two-Stage Least Squares

4. We build a new instrument for \tilde{X} :

$$\widehat{Z} = \begin{bmatrix} \iota & G \widehat{y}_{2SLS} & X & GX \end{bmatrix}$$

4. We build a new instrument for \tilde{X} :

$$\widehat{Z} = \begin{bmatrix} \iota & G \widehat{y}_{2SLS} & X & GX \end{bmatrix}$$

5. We get our final estimator using standard IV:

$$\widehat{eta}_{G2SLS} = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}'y$$

$$V\left(\widehat{\beta}_{G2SLS}\right) = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}'D\widehat{Z}(\widehat{Z}'\widetilde{X})^{-1}$$

where D is a diagonal matrix with the squared resids produced by $\widehat{\beta}_{G2SLS}$.

▶ Bramoullé et al. (2009) also present a version of this model with network-specific unobservable factors:

$$y = \sum_{l \in G} \alpha_l + Gy\beta + X\gamma + GX\delta + \varepsilon$$
 (3)

where α_l is common to all individuals in the l-th component of the network.

▶ Bramoullé et al. (2009) also present a version of this model with network-specific unobservable factors:

$$y = \sum_{l \in G} \alpha_l + Gy\beta + X\gamma + GX\delta + \varepsilon$$
 (3)

where α_l is common to all individuals in the l-th component of the network.

▶ We can transform this model by multiplying it by (I-G) to get rid of these unobservable effects. • G2SLS with FE details

► I extended the previous framework to allow for independent variables without peer effects:

$$y = \alpha + Gy\beta + X_1\gamma + GX_1\delta + X_2\psi + \varepsilon$$

► I extended the previous framework to allow for independent variables without peer effects:

$$y = \alpha + Gy\beta + X_1\gamma + GX_1\delta + X_2\psi + \varepsilon$$

• ψ captures the effects of our direct variables X_2 .

Implementation G2SLS syntax

```
g2sls depvar\ indepvars\ [if]\ [in], \underline{adj}acency(Mata\ matrix)\ [\underline{row}\ \underline{fixed}\ \underline{ols} \underline{directvariables\ (varlist)\ \underline{level\ (\#)\ ]}
```

```
g2sls depvar\ indepvars\ [if]\ [in], \underline{adj}acency(Mata\ matrix)\ [\underline{row}\ \underline{fixed}\ \underline{ols}\ \underline{dir}ectvariables(varlist)\ \underline{level}\ (\#)\ ]
```

Options:

- ▶ adjacency: Mata matrix containing an *N* by *N* matrix of adjancency.
- ▶ row: row normalizes the adjacency matrix, so each row sums 1.
- ▶ fixed: adds component-level fixed effects.
- ▶ ols: reports OLS results instead of IV.
- ▶ directvariables: independent variables that will not have an exogenous effect.
- ▶ level: set confidence level for reported confidence intervals.

Application Context

▶ Peer effects for college students in Chile between 2012 and 2019.

Application Context

- ▶ Peer effects for college students in Chile between 2012 and 2019.
- ▶ 8 cohorts of approximately 500 students each from the Business and Economics school of the University of Chile.

Application

- ▶ Peer effects for college students in Chile between 2012 and 2019.
- ▶ 8 cohorts of approximately 500 students each from the Business and Economics school of the University of Chile.
- ▶ Students are randomly assigned to their first semester classes. We define their peers as the students they share at least 1 class with.

Application

- ▶ Peer effects for college students in Chile between 2012 and 2019.
- ▶ 8 cohorts of approximately 500 students each from the Business and Economics school of the University of Chile.
- ▶ Students are randomly assigned to their first semester classes. We define their peers as the students they share at least 1 class with.
- Our adjacency matrix will be block diagonal, with each cohort being represented by a block.

Application

. describe gpa_first adm_score aff_action female major*

Variable name	Storage type	Display format	Value label	Variable label
gpa_first	float	%9.0g		First semester GPA
adm_score	float	%9.0g		Admission score
aff_action	byte	%9.0g		Affirmative action
female	byte	%9.0g		Female
major_econ	float	%9.0g		Major in Economics
major_buss	float	%9.0g		Major in Business

. list gpa_first adm_score aff_action female major* in 1/5

	gpa_first	adm_score	aff_ac~n	female	major_~n	major_~s
1.	.1698871	-1.262415	0	1	0	0
2.	.7442471	.44189	0	0	1	0
3.	-2.991099	.4029151	0	0	0	0
4.	.4959475	2.504061	0	0	1	0
5.	.7618809	2.822953	0	0	1	0

Application Standard IV model

. g2sls gpa_first female aff_action adm_score, row adj(G)

gpa_first Co	efficient	Std. err.	t	P> t	[95% conf.	interval]
aff_action_p -	.0111257 .5676393 .1856059 .0935423 .3069133 .2034284 .0598223	.0778849 .4738957 .0177705 .0413983 .0187414 .1893837 .1047165	0.14 1.20 10.44 2.26 16.38 -1.07 -0.57	0.886 0.231 0.000 0.024 0.000 0.283 0.568	14156893614408 .1507666 .0123802 .2701704574718326512064593681	.1638204 1.496719 .2204452 .1747044 .3436562 .1678614 .1454761

Number of obs =

4308

Application IV model with fixed effects

. g2sls gpa_first female aff_action adm_score, row adj(G) fixed $Number\ of\ obs = \qquad 4308$ Controlling for component-level fixed effects

gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
gpa_first_p female aff_action adm_score female_p aff_action_p adm_score p	.0066238 .1870434 .0887381 .3074021 .0508922 .0147204 1949845	1.45047 .0183427 .0427942 .0190128 .427888 .2325366 .2778821	0.00 10.20 2.07 16.17 0.12 0.06	0.996 0.000 0.038 0.000 0.905 0.950 0.483	-2.837045 .1510823 .0048394 .2701271 7879889 4411712 7397767	2.850293 .2230045 .1726368 .3446771 .8897733 .470612

Application OLS model

. g2sls gpa_first female aff_action adm_score, row adj(G) ols

				Numb	er of obs =	4308
gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
_cons gpa_first_p female aff_action adm_score female_p aff action p	0233233 7923793 .1847655 .1040999 .3188386 0519749	.0768411 .1912952 .0183224 .0424841 .016474 .1807673	-0.30 -4.14 10.08 2.45 19.35 -0.29	0.762 0.000 0.000 0.014 0.000 0.774 0.633	1739714 -1.167417 .1488442 .0208091 .286541 406372	.12732484173421 .2206869 .1873906 .3511363 .3024222 .2375605
adm_score_p	106855	.043616	-2.45	0.014	1923649	0213452

Application IV model with direct effects

. g2sls gpa_first female aff_action adm_score, row adj(G) directvariables(major_ \star)

Number of obs = 4308

gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
cons gpa_first_p female aff_action adm_score female_p aff_action_p adm_score_p major_econ	5948202 -4.26719 .1861742 .0755271 .2892999 .8655189 2825957 .1189513 .6840927	.0914547 .5560077 .0170568 .0389122 .018163 .2057867 .096932 .0754862 .0416389	-6.50 -7.67 10.91 1.94 15.93 4.21 -2.92 1.58 16.43	0.000 0.000 0.000 0.052 0.000 0.000 0.004 0.115 0.000	7741186 -5.357252 .1527341 0007609 .2536911 .4620708 4726325 0290407 .6024591	4155219 -3.177128 .2196143 .1518151 .3249087 1.268967 0925588 .2669433 .7657264
major_buss	.5122815	.0397691	12.88	0.000	.4343135	.5902495

We can use estimates store and estout to organize our results:

Variable		OLS			G2SLS	
GPA of peers	-0.7924***	-6.9507***	-6.6984***	0.5676	0.0066	-5.7565***
	(0.1913)	(0.3359)	(0.3198)	(0.4739)	(1.4505)	(1.2421)
Share of female peers	-0.0520	1.1091***	1.1682***	-0.2034	0.0509	1.0230**
	(0.1808)	(0.3564)	(0.3392)	(0.1894)	(0.4279)	(0.4088)
Share of peers in Aff. Action program	0.0465	0.6204***	-0.0977	-0.0598	0.0147	-0.1812
	(0.0975)	(0.1862)	(0.1804)	(0.1047)	(0.2325)	(0.2119)
Adm. Score of peers	-0.1069**	1.1104***	0.6738***	-0.3069***	-0.1950	0.4963**
	(0.0436)	(0.0869)	(0.0851)	(0.0778)	(0.2779)	(0.2329)
Female	0.1848***	0.1860***	0.1838***	0.1856***	0.1870***	0.1841***
	(0.0183)	(0.0180)	(0.0171)	(0.0178)	(0.0183)	(0.0175)
Affirmative Action program	0.1041**	0.0960**	0.0617	0.0935**	0.0887**	0.0603
	(0.0425)	(0.0415)	(0.0396)	(0.0414)	(0.0428)	(0.0400)
Admission score	0.3188***	0.3110***	0.2674***	0.3069***	0.3074***	0.2664***
	(0.0165)	(0.0162)	(0.0156)	(0.0187)	(0.0190)	(0.0184)
Major in Economics			0.6991***			0.7035***
			(0.0330)			(0.0446)
Major in Business			0.5415***			0.5419***
			(0.0297)			(0.0430)
Constant	-0.0233			0.0111		
	(0.0768)			(0.0779)		
Observations	4,308	4,308	4,308	4,308	4,308	4,308
Cohort level fixed effects	No	Yes	Yes	No	Yes	Yes

Thank you!

nsuarez@stanford.edu

References

▶ Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of econometrics, 150(1), 41-55.

Generalized Two-Stage Least Squares Model with fixed effects

▶ We start by pre-multiplying equation (3) by (I - G):

$$(I - G)y = (I - G)Gy\beta + (I - G)X\gamma + (I - G)GX\delta + \varepsilon$$

► We will rewrite our model as follows:

$$(I-G)y = \begin{bmatrix} (I-G)Gy & (I-G)X & (I-G)GX \end{bmatrix} \begin{bmatrix} eta \\ \gamma \\ \delta \end{bmatrix} + \varepsilon$$
 $\Leftrightarrow (I-G)y = \tilde{X}\theta + \varepsilon$

▶ This model is identified if matrices I, G, G^2 and G^3 are linearly independent.

Generalized Two-Stage Least Squares Model with fixed effects

We follow these steps:

- 1. We define our instrument $S = \begin{bmatrix} (I-G)X & (I-G)GX & (I-G)G^2X \end{bmatrix}$ for \tilde{X} .
- 2. We estimate our model using 2SLS:

$$\widehat{\theta}_{2SLS} = (\tilde{X}'P\tilde{X})^{-1}\tilde{X}'P(I-G)y$$

with
$$P = S(S'S)^{-1}S'$$
.

3. We compute the predicted value of the outcome as:

$$\widehat{\mathbf{y}}_{2SLS} = (I - G)^{-1} (I - \widehat{\beta}_{2SLS} G)^{-1} (I - G) \left(X \widehat{\gamma}_{2SLS} + G X \widehat{\delta}_{2SLS} \right)$$

Generalized Two-Stage Least Squares Model with fixed effects

4. We build a new instrument for \tilde{X} :

$$\widehat{Z} = [(I - G)G\widehat{y}_{2SLS} \quad (I - G)X \quad (I - G)GX]$$

5. We get our final estimator using standard IV:

$$\widehat{\beta}_{G2SLS} = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}'(I-G)y$$

$$\boldsymbol{V} \left(\widehat{\beta}_{\boldsymbol{G2SLS}} \right) = (\widehat{\boldsymbol{Z}}' \tilde{\boldsymbol{X}})^{-1} \widehat{\boldsymbol{Z}}' \ \boldsymbol{D} \ \widehat{\boldsymbol{Z}} (\widehat{\boldsymbol{Z}}' \tilde{\boldsymbol{X}})^{-1}$$

where D is a diagonal matrix with the squared resids produced by $\widehat{\beta}_{G2SLS}$.

d back