練習問題 1-A

$$f(x) = \sin 2x$$
 とおくと
$$f'(x) = 2\cos 2x$$
 これより, $x = \frac{\pi}{2}$ における 1 次近似式は
$$f\left(\frac{\pi}{2}\right) + f'\left(\frac{\pi}{2}\right)\left(x - \frac{\pi}{2}\right)$$

$$= \sin \pi + 2\cos \pi \cdot \left(x - \frac{\pi}{2}\right)$$

$$= 0 + 2 \cdot (-1)\left(x - \frac{\pi}{2}\right)$$

$$= -2x + \pi$$
 よって, $\pi - 2x$

$$f(x) = an x$$
 とおくと
$$f'(x) = \frac{1}{\cos^2 x}$$
 これより, $x = \frac{\pi}{2}$ における 1 次近似式は
$$f(0) + f'(0)(x - 0)$$

$$= an 0 + \frac{1}{\cos^2 0} \cdot x$$

$$= 0 + \frac{1}{1}x = x$$

(4)
$$f(x) = \sqrt{e^x} = e^{\frac{x}{2}} \ \, \text{とおくと}$$

$$f'(x) = \frac{1}{2}e^{\frac{x}{2}} = \frac{1}{2}\sqrt{e^x}$$
 これより, $x = 0$ における 1 次近似式は
$$f(0) + f'(0)(x - 0)$$

$$= \sqrt{e^0} + \frac{1}{2}\sqrt{e^0}(x - 0)$$

$$= 1 + \frac{1}{2}x$$
 よって, $1 + \frac{1}{2}x$

2. (1)
$$f(x) = (1-x)^{\frac{1}{2}} \ \, \mbox{\it Tb} \ \, \mbox{\it f}'(x) = \frac{1}{2}(1-x)^{-\frac{1}{2}} \cdot (-1)$$

$$= -\frac{1}{2}(1-x)^{-\frac{1}{2}}$$

$$f''(x) = -\frac{1}{2}\left\{-\frac{1}{2}(1-x)^{-\frac{3}{2}}\right\} \cdot (-1)$$

$$= -\frac{1}{4}(1-x)^{-\frac{3}{2}}$$

これより, x=0 における 2 次近似式は

$$\begin{split} f(0) + f'(0)(x-0) + \frac{f''(0)}{2}(x-0)^2 \\ &= \sqrt{1-0} - \frac{1}{2}(1-0)^{-\frac{1}{2}}(x-0) \\ &\quad - \frac{1}{2} \cdot \frac{1}{4}(1-0)^{-\frac{3}{2}}(x-0)^2 \\ &= 1 - \frac{1}{2}x - \frac{1}{8}x^2 \\ & \text{\sharp T, $1 - \frac{1}{2}x - \frac{1}{8}x^2$} \end{split}$$

(2)
$$\sqrt{0.8} = \sqrt{1-0.2}$$
 と考えると
$$\sqrt{0.8} = \sqrt{1-0.2} = 1 - \frac{1}{2} \cdot 0.2 - \frac{1}{8} \cdot (0.2)^2$$

$$= 1 - 0.1 - \frac{1}{8} \cdot 0.04$$

$$= 1 - 0.1 - 0.005 = \mathbf{0.895}$$

誤差が大きいです。

(2)
$$f''(x) = \frac{1}{x} - \frac{1}{x^2} - 2$$
 これより
$$f''(1) = \frac{1}{1} - \frac{1}{1} - 2$$

$$= 1 - 1 - 2 = -2 < 0$$
 よって、 $f(x)$ は $x = 1$ で極大値をとる.

4. (1)
$$\lim_{n\to\infty}\frac{n^2+3n-5}{n-2n^2}=\lim_{n\to\infty}\frac{1+\frac{3}{n}-\frac{5}{n^2}}{\frac{1}{n}-2}$$
$$=\frac{1+0-0}{0-2}=\frac{1}{-2}=-\frac{1}{2}$$
よって,数列は収束し,極限値は $-\frac{1}{2}$

(2)
$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) \sqrt{n}$$

$$= \lim_{n \to \infty} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n}) \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{(n+1-n)\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{1}{n}} + 1}$$

$$= \frac{1}{\sqrt{1+0} + 1} = \frac{1}{2}$$
よって,数列は収束し,極限値は $\frac{1}{2}$

ようで、数列は収米し、極限値は $\frac{1}{2}$

(3)
$$\frac{2^n}{\sqrt{3^n}}=\left(\frac{2}{\sqrt{3}}\right)^n$$
 より,この数列は等比数列であり,公比は, $\frac{2}{\sqrt{3}}>1$ であるから,この数列は ∞ に発散する.

(4) この数列は等比数列であり,公比は, $-1<rac{2}{1+\sqrt{3}}<1$ であるから,この数列は収束し,極限値は ${f 0}$

与えられた等比級数の公比は, $-rac{2}{3}$ であり, $-1<-rac{2}{3}<1$ よ

$$\frac{\frac{2}{3}}{1 - \left(-\frac{2}{3}\right)} = \frac{\frac{2}{3}}{\frac{5}{3}} = \frac{2}{5}$$

6. (1)
$$f(x) = \sin\frac{x}{2}$$
 とすると , $f(0) = 0$
$$f'(x) = \frac{1}{2}\cos\frac{x}{2}$$
 より , $f'(0) = \frac{1}{2}$
$$f''(x) = -\frac{1}{2^2}\sin\frac{x}{2}$$
 より , $f''(0) = 0$
$$f'''(x) = -\frac{1}{2^3}\cos\frac{x}{2}$$
 より , $f'''(0) = -\frac{1}{2^3}$
$$f^{(4)}(x) = \frac{1}{2^4}\sin\frac{x}{2}$$
 より , $f^{(4)}(0) = 0$

よって

$$f^{(2n)}(0) = 0$$

$$f^{(2n+1)}(0) = \frac{(-1)^n}{2^{2n+1}}$$

したがって
$$\sin\frac{x}{2} = \frac{1}{2}x - \frac{1}{2^3} \cdot \frac{1}{3!}x^3 + \frac{1}{2^5} \cdot \frac{1}{5!}x^5 - \cdots$$

$$\cdots + \frac{(-1)^n}{2^{2n+1}} \cdot \frac{1}{(2n+1)!}x^{2n+1} + \cdots$$

$$= \frac{1}{2}x - \frac{1}{3!2^3}x^3 + \frac{1}{5!2^5}x^5 - \cdots$$

$$\cdots + \frac{(-1)^n}{(2n+1)!2^{2n+1}}x^{2n+1} + \cdots$$

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + \dots \quad \mathcal{T}$$

あるから

$$\sin\frac{x}{2} = \frac{x}{2} - \frac{1}{3!} \left(\frac{x}{2}\right)^3 + \frac{1}{5!} \left(\frac{x}{2}\right)^5 - \cdots$$

$$\cdots + \frac{(-1)^n}{(2n+1)!} \left(\frac{x}{2}\right)^{2n+1} + \cdots$$

$$= \frac{1}{2}x - \frac{1}{3!2^3}x^3 + \frac{1}{5!2^5}x^5 - \cdots$$

$$\cdots + \frac{(-1)^n}{(2n+1)!2^{2n+1}}x^{2n+1} + \cdots$$

$$f^{(2n)}(0) = (-1)^n 2^{2n}$$
$$f^{(2n+1)}(0) = 0$$

したがって

$$\cos 2x = 1 - 2^{2} \cdot \frac{1}{2!} x^{2} + 2^{4} \cdot \frac{1}{4!} x^{4} - \cdots$$

$$\cdots + (-1)^{n} 2^{2n} \cdot \frac{1}{(2n)!} x^{2n} + \cdots$$

$$= 1 - \frac{2^{2}}{2!} x^{2} + \frac{2^{4}}{4!} x^{4} - \cdots$$

$$\cdots + (-1)^{n} \frac{2^{2n}}{(2n)!} x^{2n} + \cdots$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots + \frac{(-1)^n}{(2n)!}x^{2n} + \dots$$
 であるから

$$\cos 2x = 1 - \frac{1}{2!} (2x)^2 + \frac{1}{4!} (2x)^4 - \dots$$

$$\dots + \frac{(-1)^n}{(2n)!} (2x)^{2n} + \dots$$

$$= 1 - \frac{2^2}{2!} x^2 + \frac{2^4}{4!} x^4 - \dots$$

$$\dots + (-1)^n \frac{2^{2n}}{(2n)!} x^{2n} + \dots$$

$$f(x) = e^{2x}$$
 とすると , $f(0) = 1$
$$f'(x) = 2e^{2x}$$
 より , $f'(0) = 2$
$$f''(x) = 2^2 e^{2x}$$
 より , $f''(0) = 2^2$
$$f'''(x) = 2^3 e^{2x}$$
 より , $f'''(0) = 2^3$ よって
$$f^{(n)}(0) = 2^n$$
 したがって

したがって
$$e^{2x} = 1 + 2x + 2^{2} \cdot \frac{1}{2!}x^{2} + 2^{3} \cdot \frac{1}{3!}x^{3} + \cdots$$

$$\cdots + 2^{n} \cdot \frac{1}{n!}x^{n} + \cdots$$

$$= 1 + 2x + \frac{2^{2}}{2!}x^{2} + \frac{2^{3}}{3!}x^{3} + \cdots$$

$$\cdots + \frac{2^{n}}{n!}x^{n} + \cdots$$

$$e^x=1+x+rac{1}{2!}x^2+rac{1}{3!}x^3+\cdots+rac{1}{n!}x^n+\cdots$$
 であるから $e^{2x}=1+(2x)+rac{1}{2!}(2x)^2+rac{1}{3!}(2x)^3+\cdots \ \cdots+rac{1}{n!}(2x)^n+\cdots \ =1+2x+rac{2^2}{2!}x^2+rac{2^3}{3!}x^3+\cdots \ \cdots+rac{2^n}{n!}x^n+\cdots$

7.
$$y'=\lambda e^{\lambda x}$$

$$y''=\lambda^2 e^{\lambda x}$$
 これらを,与えられた等式に代入すると
$$\lambda^2 e^{\lambda x}+\lambda e^{\lambda x}+e^{\lambda x}=0$$

$$e^{\lambda x}(\lambda^2+\lambda+1)=0$$

$$e^{\lambda x} \neq 0$$
 であるから, $\lambda^2+\lambda+1=0$ これを解くと

$$\lambda = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3} i}{2}$$

練習問題 1-B

1. (1)
$$f'(x) = 1 - \{e^x \cos x + e^x \cdot (-\sin x)\}$$
$$= 1 - e^x (\cos x - \sin x)$$
$$これより , f'(0) = 1 - e^0 (\cos 0 - \sin 0)$$
$$= 1 - 1(1 - 0) = \mathbf{0}$$
$$f''(x) = -e^x (\cos x - \sin x) - e^x (-\sin x - \cos x)$$
$$= 2e^x \sin x$$
$$これより , f''(0) = 2e^0 \sin 0 = \mathbf{0}$$
$$f'''(x) = 2(e^x \sin x + e^x \cos x)$$
$$= 2e^x (\sin x + \cos x)$$

これより,
$$f'''(0) = 2e^{0}(\sin 0 + \cos 0) = 2$$

(2) $f(0)=0-e^0\cos 0=-1$ であるから , f(x) の x=0 における 3 次近似式は

$$f(0) + f'(0)(x - 0) + f \frac{f''(0)}{2!}(x - 0)^2 + \frac{f'''(0)}{3!}(x - 0)^3$$

$$= -1 + 0 \cdot x + \frac{0}{2!} \cdot x^2 + \frac{2}{3!}x^3$$

$$= -1 + \frac{1}{3}x^3$$
よって、 $f(x) = -1 + \frac{1}{3}x^3 + o(x^3)$

(3)(2)より,
$$f(x)-f(0)=x^3\left(\frac{1}{3}+\frac{o(x^3)}{x^3}\right)$$

$$\lim_{x\to 0}\frac{o(x^3)}{x^3}=0\ \text{ であるから,}x\ \text{が}\ 0\ \text{に十分近いとき,}f(x)-f(0)\ \text{の符号は}\ x^3\ \text{によって決まる.}$$

$$x<0\ \text{のとき,}x^3<0\ \text{であるから,}f(x)-f(0)<0$$

$$x>0\ \text{のとき,}x^3>0\ \text{であるから,}f(x)-f(0)>0$$
 よって, $f(x)$ は, $x=0$ で極値をとらない.

2. *x* が *a* に十分近いとき

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$\cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{(n)}(a)}{n!}(x - a)^n + o(x^n)$$

が成り立つ。

ここで,
$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0$$
 であるから
$$f(x) - f(a) = \frac{f^{(n)}(a)}{n!}(x-a)^n + o(x^n)$$
$$= (x-a)^n \left\{ \frac{f^{(n)}(a)}{n!} + \frac{o(x^n)}{(x-a)^n} \right\}$$

 $\lim_{x o a}rac{o(x^n)}{(x-a)^n}=0$ であるから,x が a に十分近ければ, $\left\{rac{f^{(n)}(a)}{n!}+rac{o(x^n)}{(x-a)^n}
ight\}$ の符号は, $rac{f^{(n)}(a)}{n!}$ の符号で決まると考えてよい。

(1) n が奇数のとき

 $i \) \ f^{(n)}(a) > 0$ のとき $x < a \ {\it thm} \ {\it thm} \ , \ x-a < 0 \ {\it thm} \ {\it thm} \ , \ (x-a)^n < 0$ であるから

$$(x-a)^n \left\{ rac{f^{(n)}(a)}{n!} + rac{o(x^n)}{(x-a)^n}
ight\} < 0$$
なわち , $f(x) - f(a) < 0$

x>a すなわち , x-a>0 であれば , $(x-a)^n>0$ であるから

$$(x-a)^n \left\{ \frac{f^{(n)}(a)}{n!} + \frac{o(x^n)}{(x-a)^n} \right\} > 0$$

したがって , f(x) は x=a で極値をとらない .

 $ii) \ f^{(n)}(a) < 0$ のとき $x < a \ {\it thip} \ x - a < 0 \ {\it thip} \ (x-a)^n < 0$ であるから

$$(x-a)^n \left\{ rac{f^{(n)}(a)}{n\,!} + rac{o(x^n)}{(x-a)^n}
ight\} > 0$$
すなわち , $f(x) - f(a) > 0$

x>a すなわち , x-a>0 であれば , $(x-a)^n>0$ であるから

$$(x-a)^n \left\{ \frac{f^{(n)}(a)}{n!} + \frac{o(x^n)}{(x-a)^n} \right\} < 0$$

すなわち ,
$$f(x) - f(a) < 0$$

したがって, f(x) は x = a で極値をとらない.

以上より , n が奇数のときは , f(x) は x=a で極値をとらない .

(2) n が偶数のとき,x=a の前後で,常に $(x-a)^n>0$

i)
$$f^{(n)}(a) > 0$$
 のとき

$$(x-a)^n \left\{ \frac{f^{(n)}(a)}{n!} + \frac{o(x^n)}{(x-a)^n} \right\} > 0$$

すなわち , f(x)-f(a)>0 であるから , f(x) は x=a で極小値をとる .

ii)
$$f^{(n)}(a) < 0$$
 のとき

$$(x-a)^n \left\{ \frac{f^{(n)}(a)}{n!} + \frac{o(x^n)}{(x-a)^n} \right\} < 0$$

すなわち,f(x)-f(a)<0 であるから,f(x) は x=aで極大値をとる.

3. (1)
$$r > 1$$
 のとき , $0 < \frac{1}{r} < 1$ であるから

$$\lim_{n \to \infty} \frac{2r^n}{r^n + 1} = \lim_{n \to \infty} \frac{2r^n \cdot \frac{1}{r^n}}{(r^n + 1) \cdot \frac{1}{r^n}}$$
$$= \lim_{n \to \infty} \frac{2}{1 + \left(\frac{1}{r}\right)^n}$$
$$= \frac{2}{1 + \left(\frac{1}{r}\right)^n}$$

(2)
$$\lim_{n \to \infty} \frac{2r^n}{r^n + 1} = \lim_{n \to \infty} \frac{2 \cdot 1^n}{1^n + 1}$$
$$= \frac{2}{1 + 1} = \frac{2}{2} = 1$$

(3)
$$\lim_{n \to \infty} \frac{2r^n}{r^n + 1} = \frac{2 \cdot 0}{0 + 1} = \mathbf{0}$$

(
$$4$$
) $r<-1$ のとき , $-1<rac{1}{r}<0$ であるから

$$\lim_{n \to \infty} \frac{2r^n}{r^n + 1} = \lim_{n \to \infty} \frac{2r^n \cdot \frac{1}{r^n}}{(r^n + 1) \cdot \frac{1}{r^n}}$$
$$= \lim_{n \to \infty} \frac{2}{1 + \left(\frac{1}{r}\right)^n}$$
$$= \frac{2}{1 + 0} = \mathbf{2}$$

4.
$$A_1B_1 = a \times \frac{1}{2} = \frac{1}{2}a$$

$$B_1A_2 = A_1B_1 \times \frac{\sqrt{3}}{2} = \frac{1}{2}a \cdot \frac{\sqrt{3}}{2}$$

$$A_2B_2 = B_1A_1 \times \frac{\sqrt{3}}{2} = \frac{1}{2}a \cdot \left(\frac{\sqrt{3}}{2}\right)^2$$

$$B_2A_3 = A_2B_2 \times \frac{\sqrt{3}}{2} = \frac{1}{2}a \cdot \left(\frac{\sqrt{3}}{2}\right)^3$$

したがって

$$\exists \vec{\pi} = \frac{1}{2}a + \frac{1}{2}a \cdot \frac{\sqrt{3}}{2} + \frac{1}{2}a \cdot \left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{2}a \cdot \left(\frac{\sqrt{3}}{2}\right)^3 + \cdots$$

これは , 初項 $\frac{1}{2}a$, 公差 $\frac{\sqrt{3}}{2}$ の無限等比級数であり , $\left|\frac{\sqrt{3}}{2}\right|<1$ であるから収束し , その和は

$$\frac{\frac{1}{2}a}{1 - \frac{\sqrt{3}}{2}} = \frac{a}{2 - \sqrt{3}}$$

$$= \frac{a(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}$$

$$= \frac{(2 + \sqrt{3})a}{4 - 3} = (2 + \sqrt{3})a$$

5.
$$(\cos x + i \sin x)^3$$
 を展開すると $(\cos x + i \sin x)^3$ $= \cos^3 x + 3\cos^2 x (i \sin x) + 3\cos x (i \sin x)^2 + (i \sin x)^3$ $= \cos^3 x + 3i\cos^2 x \sin x + 3i^2\cos x \sin^2 x + i^3\sin^3 x$ $= \cos^3 x + 3i\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$ $= (\cos^3 x - 3\cos x \sin^2 x) + i(3\cos^2 x \sin x - \sin^3 x)$ $= \{\cos^3 x - 3\cos x (1 - \cos^2 x)\}$ $+ i\{3(1 - \sin^2 x)\sin x - \sin^3 x\}$ $= (\cos^3 x - 3\cos x + 3\cos^2 x)$ $+ i(3\sin x - 3\sin^3 x - \sin^3 x)$ $= (4\cos^3 x - 3\cos x) + i(3\sin x - 4\sin^3 x)$ \cdots ① 一方,ド・モアブルの定理より $(\cos x + i \sin x)^3 = \cos 3x + i \sin 3x$ この式の右辺と ① の実部,虚部を比較して $\cos 3x = 4\cos^3 x - 3\cos x$ $\sin 3x = 3\sin x - 4\sin^3 x$