Lecture 23

Simple Linear Regression:

Estimation and Model Assumptions

Text: Chapter 11

STAT 8010 Statistical Methods I April 14, 2020 Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

in SLR

Whitney Huang Clemson University

Agenda

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

in SLR

Residual Analy

Simple Linear Regression (SLR)

2 Parameter Estimation in SLR

Residual Analysis

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

We will focus on simple linear regression in the next few lectures

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

in SLR

esidual Analysis

Scatterplot: Is Linear Trend Reasonable?

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

Parameter Estimation in SLR

Residual Analysis

Scatterplot: Is Linear Trend Reasonable?

The relationship appears to be linear. What about the **strength** of this linear relationship?

Simple Linear Regression: Estimation and

 In SLR we assume there is a linear relationship between X and Y:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We will need to estimate β_0 (intercept) and β_1 (slope)
- Then we can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

in SLR

Parameter Estimation in SLR

esidual Analysis

- β_0 : E[Y] when X = 0
- β_1 : E[ΔY] when X increases by 1

Simple Linear Regression (SLR)

Parameter Estimation in SLR

Residual Analysis

In order to estimate β_0 and β_1 , we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = \beta_0 + \beta_1 X_i$$
, and $\mathrm{Var}[Y_i] = \sigma^2$

The regression line $\beta_0 + \beta_1 X$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

We also need to **estimate** σ^2

Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(X_i - \bar{X})^2}$$

We also need to **estimate** σ^2

Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

Posidual Apalysia

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

Pocidual Analysis

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

Pocidual Analysis

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

Pacidual Apalysis

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $\bullet \ \mathbf{E}[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http:

//whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Ompute the fitted values
- **Output Output O**

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

Desired Assets

- Y_i and X_i are the Maximum Heart Rate and Age of the ith individual
 - To obtain $\hat{\beta}_1$
 - Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{x}$, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{x}$
 - Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{X})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
 - $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
 - $\hat{\sigma}^2$
 - Compute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, $i = 1, \dots, n$
 - Compute the **residuals** $e_i = Y_i \hat{Y}_i$, $i = 1, \dots, n$
 - Compute the residual sum of squares (RSS) $=\sum_{i=1}^{n}(Y_i-\hat{Y}_i)^2$ and divided by n-2 (why?)

Let's Do the Calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.2$$

$\bar{X} = \sum_{i=1}^{15}$	$\frac{18 + 23 + \dots + 39 + 37}{15} = 37$.33
$\bar{Y} = \sum_{i=1}^{15}$	$\frac{202 + 186 + \dots + 183 + 178}{15}$	= 180.27

	X	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
	Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
-		-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
		21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
		-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
		373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
		195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94	180.53
-																

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = -0.7977$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

•
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$


```
> fit <- lm(MaxHeartRate ~ Age)</pre>
> summary(fit)
Call:
lm(formula = MaxHeartRate \sim Age)
Residuals:
            10 Median
    Min
                            30
                                   Max
<u>-8.9258 -2.5383</u> 0.3879 3.1867 6.6242
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
            -0.79773 0.06996 -11.40 3.85e-08 ***
Aae
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

n SLR

- The residuals are the differences between the observed and fitted values:
 - $e_i = Y_i \hat{Y}_i$
 - where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- e_i is NOT the error term $\varepsilon_i = Y_i E[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

in SLR

Interpreting Residual Plots

Simple Linear Regression: Estimation and Model Assumptions

Simple Linear Regression (SLR)

in SLR

Residual Analysis

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression: Estimation and Model Assumptions

Regression (SLR)

Recidual Analysis