Numerical Analysis: Homework #7

Due on May 4, 2015

Professor Mohler MWF 2:15

Rick Sullivan

Problem 1

Consider the nonlinear system

$$5x^2 - x^2 = 0$$
$$x_2 - (\sin(x_1) + \cos(x_2))/4 = 0$$

- a) Find a function $G(\vec{x})$ and a set D in \mathbb{R}^2 such that G has a unique fixed point in D.
- b) Estimate the number of iterations required to approximate the exact solution within 10^{-5} in the $||\cdot||_{\infty}$ norm, give nany initial guess in D.

Problem 2

Use two iterations of Newton's method with initial guess vec0 to approximate the solution to

$$3x - \cos(yz) - 1/2 = 0$$
$$4x^{2} - 625y^{2} + 2y - 1 = 0$$
$$e^{-xy} + 20z + \frac{10\pi - 3}{3} = 0$$