# Foundations of Artificial Intelligence 14. State-Space Search: Analysis of Heuristics

Thomas Keller and Florian Pommerening

University of Basel

March 22, 2023

# State-Space Search: Overview

#### Chapter overview: state-space search

- 5.−7. Foundations
- 8.–12. Basic Algorithms
- 13.–19. Heuristic Algorithms
  - 13. Heuristics
  - 14. Analysis of Heuristics
  - 15. Best-first Graph Search
  - 16. Greedy Best-first Search, A\*, Weighted A\*
  - 17. IDA\*
  - 18. Properties of A\*, Part I
  - 19. Properties of A\*, Part II

#### Reminder: Heuristics

#### Definition (heuristic)

Let S be a state space with states S.

A heuristic function or heuristic for  $\mathcal{S}$  is a function

$$h:S o \mathbb{R}^+_0\cup\{\infty\},$$
 infinity = no path to goal

mapping each state to a non-negative number (or  $\infty$ ).

Properties of Heuristics

#### Perfect Heuristic

#### Definition (perfect heuristic)

Let S be a state space with states S.

The perfect heuristic for S, written  $h^*$ , maps each state  $s \in S$ 

- to the cost of an optimal solution for s, or
- to  $\infty$  if no solution for s exists.

# Properties of Heuristics

#### Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for S is called

- safe if  $h^*(s) = \infty$  for all  $s \in S$  with  $h(s) = \infty$  all predicted inf
- ullet goal-aware if h(s)=0 for all goal states s goal state has to be 0
- ullet admissible if  $h(s) \leq h^*(s)$  for all states  $s \in S$  heuristic has to be underestimation
- consistent if  $h(s) \le cost(a) + h(s')$  for all transitions  $s \xrightarrow{a} s'$

```
s\to s' should be s\to s1\to s' cost of first transition should not be less than of both the other transitions, because we end up in the same state in both cases.
```

= detour should not be cheaper than
directly going to the node.

# Properties of Heuristics

#### Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for S is called

- safe if  $h^*(s) = \infty$  for all  $s \in S$  with  $h(s) = \infty$
- goal-aware if h(s) = 0 for all goal states s
- admissible if  $h(s) \le h^*(s)$  for all states  $s \in S$
- consistent if  $h(s) \leq cost(a) + h(s')$  for all transitions  $s \stackrel{a}{\rightarrow} s'$



# Examples

# Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

#### Route Planning in Romania

straight-line distance:

- safe
- goal-aware
- admissible
- consistent

Why?

# Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

#### Blocks World

misplaced blocks:

- safe?
- goal-aware?
- admissible?
- consistent?

### Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

#### Missionaries and Cannibals

people on wrong river bank:

- safe?
- goal-aware?
- admissible?
- consistent?

# Connections

# Properties of Heuristics: Connections (1)

#### Theorem (admissible $\Longrightarrow$ safe + goal-aware)

Let h be an admissible heuristic.

Then h is safe and goal-aware.

#### Why?

```
admissable \to we underestimate \to goal has to be 0 (lowest number) \to we are goal-aware admissable \to ...
```

# Properties of Heuristics: Connections (2)

#### Theorem (goal-aware + consistent $\Longrightarrow$ admissible)

Let h be a goal-aware and consistent heuristic.

Then h is admissible.

#### Why?

consider h\* is infinite → admissable

# Showing All Four Properties

How can one show most easily that a heuristic has all four properties?

```
you need to show consistency (no other property implies it)
and
goal-aware (easier) or admissable
```

# Summary

# Summary

- perfect heuristic h\*: true cost to the goal
- important properties: safe, goal-aware, admissible, consistent
- connections between these properties
  - admissible ⇒ safe and goal-aware
  - ullet goal-aware and consistent  $\Longrightarrow$  admissible