GIF-2000

ÉLECTRONIQUE POUR INGÉNIEURS INFORMATICIENS

EXAMEN PARTIEL Le 28 février 2019

De 14h30 à 16h20 Local VCH-2870

Document autorisé	- Une feuille format lettre (8.5 po. x 11 po.) manuscrite recto-verso
Remarques	- Écrivez proprement et lisiblement - La démarche de votre solution doit être clairement expliquée - Les tensions et les courants doivent être bien identifiés sur les schémas - Les courbes doivent être faites avec soins

Problème no. 1 (25 points)

a) Soit le circuit montré à la figure suivante.

- En utilisant le modèle à V_F constante pour les LEDs, **déterminer** les LEDs qui sont allumées. (4 points)
- Calculer le courant dans chaque LED allumée. (8 points)
- b) Soit l'alimentation DC montrée à la figure suivante.

- Calculer la tension V₂₀ dans le modèle de la diode Zener (3 points)
- Utilisant le modèle «V_{z0} et r_Z» pour la diode Zener, **déterminer** l'équivalent Thévenin de l'alimentation. (6 points)
- On connecte une résistance de 500 Ω à la sortie. **Déterminer** la tension V_o et le courant I_o . (4 points)

Problème no. 2 (25 points)

Considérons l'amplificateur à transistor bipolaire suivant.

- a) **Déterminer** le point de fonctionnement (I_C , V_{CE}) du transistor. (6 points)
- b) Calculer le paramètre r_{π} du modèle "petit signal" du transistor. (4 points)
- c) **Tracer** un circuit équivalent petit signal de l'amplificateur utilisant le modèle "petit signal" simplifié du transistor. (5 points)
- d) À l'aide du circuit équivalent petit signal, **calculer** la résistance d'entrée R_i , la résistance de sortie R_o et le gain en tension (sans charge) $A_{v0} = \frac{v_o}{v_i}$ de l'amplificateur. (2.5 points, 2.5 points, 5 points)

Problème no. 3 (25 points)

Soit le circuit suivant.

Le signal v_s(t) est un train d'impulsions de fréquence 500 Hz et d'amplitude 10 V.

- a) **Déterminer** et **tracer** en fonction du temps la tension $v_D(t)$ et le courant $i_D(t)$. (10 points)
- b) Calculer la valeur moyenne du courant $i_D(t)$. (5 points)
- c) Une LED rouge est connectée au circuit comme montré dans le schéma suivant.

Déterminer et **tracer** en fonction du temps la tension $v_D(t)$ et le courant $i_{LED1}(t)$. (7 points)

Calculer la valeur moyenne du courant i_{LED1}(t). (3 points)

Problème no. 4 (25 points)

a) Soit le circuit suivant.

- Calculer le gain en tension $A_v = \frac{v_o}{v_s}$.(7 points)
- Tracer en fonction du temps le signal de sortie $v_{o}(t)$. (3 points)
- b) Soit le circuit suivant.

- **Déterminer** le taux de rétroaction β. (3 points)
- Calculer le gain en tension $A_v = \frac{v_o}{v_i}$, la résistance d'entrée R_i et la résistance de sortie R_o de l'amplificateur.

(9 points)

- Déterminer la largeur de bande de l'amplificateur. (3 points)