State Diogram:

- State Tables; show rotation between ilps, olps, p.s. and n.s.

Lo used for building state diagram

			3	a
	P.S	i/ps	N.S	dps
Q,	්ල .	 X,,X2,	Q441,Q341	Yo, Y, Y2
٥	0	 		
0	0			

- A sequential circuit on contain memory elements -> betches and flip-flops

One can determine number of state in the state diagram from total number of memory elements. Edepend what type of memory you using.).

Specific axe: Let say a seq. circult only contains two 0 flip flops

1 flip flop has two state: 0 and 1 (for a)

 $2^2 = 4$

For seq, circulte only contains flip - tlops with only a and Q number of stutes = 2 n × 4 of Ff.

A FF can be represent by a diagram with no o/p.

13 just p.s., inputs and n.s.

Qntl

| S5. 4 states -> 2 FFs first FF -> QA # of FF -> QB. 2 = ff of states

S6. implementation dependent. (This case T-FF)

S8.
$$T_A = \overline{Q}_A Q_B \overline{\chi} + \overline{Q}_A \overline{Q}_B \chi$$
 Use K -map
$$T_B = \overline{Q}_A \overline{Q}_B \chi + \overline{Q}_A \overline{Q}_B \chi$$
 if necessary.
$$Y = \overline{Q}_A \overline{Q}_B \chi + \overline{Q}_A \overline{Q}_3 \chi$$

Mealy State Machine

O/p depend on p.s. and i/p.

