

Target: ECU555-80 (DEV)

Floating Point: single (32 bits) Stacks - FGND: 4096 BGND: 2048 IDLE: 1024 IRQ: 1280

DLL Filename: BaseEngin_003

SRZ Filename: BaseEngineController_LS_003

Total FLASH: Total EEPROM: Total RAM: App FLASH: App EEPROM: App RAM:

MotoHawk (RTW) Fault Manager Definition

Storage: FLASH X/Y Data Type: uint16 Read Access: 1 Write Access: 1 Clear Access: 1

Main Power Relay

MotoHawk Trigger Definition

FGND_RTI Period: 5 ms BGND_BASE Period: 50 ms (FGND x 10)

Bus: CAN1 Bit Timing: 500 kbaud TX Queue: 16 messages RX Queue: 16 messages

> MotoTune Protocol Enabled City ID: 0x0B (PCM-1)

MotoHawk CAN Definition

Name: CAN 2 Bus: CAN2 Bit Timing: 500 kbaud TX Queue: 16 messages RX Queue: 16 messages

MotoTune Protocol Enabled

City ID: 0x0B (PCM-1)

MotoHawk CCP DAQ Triggers:

- FGND_RTI_PERIODIC
- FGND_5XRTI_PERIODIC
- FGND_MID_TDC_EVENT
- FGND_20XRTI_PERIODIC

BGND BASE PERIODIC

Trigger

Enable

Rate Limiter - Limit allowable change in signal per timestep

Trigger

Enable

Enable

Enable

f() function

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Л

boolean(1) boolean

Data Write

data ShutDownTasksComplete

boolean

Calibrations

BaseAirflowOfstMaxValue	%	Maximum value that can be adapted into the BaseAirflowOfst table. MotoTune Path: Engine Control Run RPM Control Min Gov Min Gov Config
BaseAirflowOfstMinValue	%	Minimum value that can be adapted into the BaseAirflowOfst table. MotoTune Path: Engine Control Run RPM Control Min Gov Min Gov Config

Calibratable wrapper around the Saturation block


```
Normal/
du: EquivOut = EquivIn;
du: SparkOut = 0;

[DFCO_Off/
en: count = 0;
en: EquivStart = EquivIn;
du: count = count + 1;
du: EquivOut = (EquivStart/thresh)*count;
du: SparkOut = (SparkRet/thresh)*count;
```


Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Calibratable wrapper around the Saturation block

Move into On State if RPM > EntryCriteria or Target.

Move into Trans State if APP falls below TPS, PID controller is frozen during Trans State, but output is based on APP.

When in AllSpeedGov mode, switch to Trans if AllSpeedGov setpoint is less than MaxGov setpoint minus hyst.

Move from Trans State back to On State if RPM > Target.

Move from Trans State to Off if RPM < Entry Criteria.

1st-Order Ramp Up y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

1st-Order Ramp Down y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

Calibratable wrapper around the Saturation block

Determine if RPM is falling

1st-Order Ramp Down y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Tunable 1st-Order Low-Pass Filter

Count up to "BARO_Count" samples

Collect samples by summing, and divide by the total, to obtain average

Engine Steady-State Flag

Enable

Enable

Rate Limiter - Limit allowable change in signal per timestep

Collect samples by summing, and divide by the total, to obtain average

Collect samples by summing, and divide by the total, to obtain average

Out

double

f()

f()

Sample Crank-Synchronous MAP Once at Startup

Out

double

Out

double

Out

double

if { }
Action Port

1 | double | 1 | Out

elseif { }

Action Port

else { }

Action Port

Out

double

1 In

LaunchRampTime Constant MassAirflow <MAFPort> Data double <RPM> double 60 Constant1 Product ClutchPress Constant2 double Constant3 ClutchSw <ClutchSw> double Constant4 StagedSw Constant5

MotoHawk Send CAN Message

Name: CAN 1

Source Module: DASH
Interval: 20 ms (50 Hz)
ID: 0x01f0a005 (EXTENDED)

Mask: 0x1fffffff

RTR: 0

Message: AEM Infinity Dash
Description: Message 4

Payload Size: 8

Name	Units	LSB	Len	Type	Byte Order	Gain	Offset	Min	Max
LaunchRampTime	ms	48	16	UNSIGNED	BIG_ENDIAN	10.00	0.001	0.001	655350.00
MassAirflow	g/s	32	16	UNSIGNED	BIG_ENDIAN	1/20.00	0.00	0.00	3276.75
MassAirFlowRev	g/rev	16	16	UNSIGNED	BIG_ENDIAN	1/2000.00	0.00	0.00	32.77
ClutchPress	barG	8	8	UNSIGNED	BIG_ENDIAN	1/2.90	0.00	0.00	87.91
BrakeSw	On/Off	0	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00
ClutchSw	On/Off	1	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00
ShiftSw	On/Off	2	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00
StagedSw	On/Off	3	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00

MotoHawk Send CAN Message

Name: CAN 1

Source Module: DASH
Interval: 40 ms (25 Hz)
ID: 0x01f0a006 (EXTENDED)

Mask: 0x1fffffff

RTR: 0

Message: AEM Infinity Dash
Description: Message 5

Payload Size: 8

Name	Units	LSB	Len	Type	Byte Order	Gain	Offset	Min	Мах	
Inj1Pulse	ms	56	8	UNSIGNED	BIG_ENDIAN	1/10.00	0.00	0.00	25.50	
Ing1LambdaFB	%	48	8	UNSIGNED	BIG_ENDIAN	1/2.00	-64.00	-64.00	63.50	
PrimaryInjDuty	용	40	8	UNSIGNED	BIG_ENDIAN	1/2.55	0.00	0.00	100.00	
ModeSw	enum	32	8	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	255.00	
WaterPressure	barG	24	8	UNSIGNED	BIG_ENDIAN	1/25.00	0.00	0.00	10.20	
PanPressure	barG	16	8	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	255.00	
EstTorque	Nm	0	16	UNSIGNED	BIG_ENDIAN	1/10.00	-3276.80	-3276.80	3276.70	

double 100 InjProb Constant double 100 SpkProb Constant1 double 0 LamTrim_Knock Constant2 Data Read double BARO data ▶ BaroPress double FlexContent <FuelSense> Data double Airbox_Temp <IAT_KeyUp> double -50 OilTemp Constant3 double 0 LaunchTimerArmed Constant4 double 0 ► ECU_Logging_Active Constant5 double 0 ModeSelect_Ign Constant6 double 0 ModeSelect_Lambda Constant7 double ► ModeSelect_DBW Constant8 double **▶** VTEC 0 Constant9

MotoHawk Send CAN Message

Name: CAN_1

Source Module: DASH
Interval: 40 ms (25 Hz)
ID: 0x01f0a007 (EXTENDED)

Mask: 0x1fffffff

RTR: 0

Message: AEM Infinity Dash
Description: Message 6

Payload Size: 8

Name	Units	LSB	Len	Type	Byte Order	Gain	Offset	Min	Мах
InjProb	%	56	8	UNSIGNED	BIG_ENDIAN	1/2.55	0.001	0.00	100.00
SpkProb	8	48	8	UNSIGNED	BIG_ENDIAN	1/2.55	0.00	0.00	100.00
LamTrim_Knock	LAM	40	8	UNSIGNED	BIG_ENDIAN	1/1000.00	0.00	0.00	0.26
BaroPress	kPa	32	8	UNSIGNED	BIG_ENDIAN	1/4.00	50.00	50.00	113.75
FlexContent	용	24	8	UNSIGNED	BIG_ENDIAN	1/2.55	0.00	0.00	100.00
Airbox_Temp	degC	16	8	UNSIGNED	BIG_ENDIAN	1.00	-50.00	-50.00	205.00
OilTemp	degC	8	8	UNSIGNED	BIG_ENDIAN	1.00	-50.00	-50.00	205.00
LaunchTimerArmed	On/Off	0	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00
ECU_Logging_Active	On/Off	1	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00
ModeSelect_Ign	enum	2	2	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	3.00
ModeSelect_Lambda	enum	4	2	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	3.00
ModeSelect_DBW	enum	6	1	UNSIGNED	BIG_ENDIAN	1.00	0.00	0.00	1.00
VTEC	On/Off	7	1	UNSIGNED	BIG ENDIAN	1.00	0.00	0.00	1.00

MotoHawk Send CAN Message Name: CAN 1 Source Module: DASH Interval: 40 ms (25 Hz) ID: 0x01f0a009 (EXTENDED) double BrakePressure Mask: 0x1fffffff RTR: 0 Constant1 Message: AEM Infinity Dash Description: Message 8 Payload Size: 8 Payload Contents: Name | Units | LSB | Len | Type | Byte Order | Gain | Offset | Min | Max BrakePressure| Barg| 48| 16| UNSIGNED| BIG ENDIAN| 1/145.03| 0.00| 0.00| 451.86 SteeringAngle| deg| 32| 16| UNSIGNED| BIG_ENDIAN| 1/10.00| -3276.80| -3276.80| 3276.70 LaunchBootTarget| kPa| 16| 16| UNSIGNED| BIG_ENDIAN| 1/10.00| 0.00| 0.00| 6553.50 SteeringAngle Constant LaunchBootTarget Constant2

Data Read double BoostTarget BoostControlTarget data double ChargeOutPress Constant Data Read double BoostControlDutyCycleRfata BoostControl double Data Read BoostControlPID data BoostFB_PID double ChargeOutTemp TurboSpeed Constant1

MotoHawk Send CAN Message

Name: CAN_1

Source Module: DASH
Interval: 40 ms (25 Hz)
ID: 0x01f0a00b (EXTENDED)

Mask: 0x1fffffff

RTR: 0

Message: AEM Infinity Dash
Description: Message Boost

Payload Size: 8

Name	Units	LSB	Len	Type	Byte Order	Gain	Offset	Min	Max	
BoostTarget	kPa	48	16	UNSIGNED	BIG_ENDIAN	1/10.00	0.001	0.001	6553.50	
ChargeOutPress	kPa	32	16	UNSIGNED	BIG_ENDIAN	1/10.00	0.00	0.00	6553.50	
BoostControl	%	24	8	UNSIGNED	BIG_ENDIAN	1/2.55	0.00	0.00	100.00	
BoostFB_PID	%	16	8	UNSIGNED	BIG_ENDIAN	1/2.55	0.00	0.00	100.00	
ChargeOutTemp	degC	8	8	UNSIGNED	BIG_ENDIAN	1.00	-50.00	-50.00	205.00	
TurboSpeed	RPM	0	8	UNSIGNED	BIG_ENDIAN	500.00	0.00	0.00	127500.00	

Volatile Data TDC double

Always execute Main Power Relay control in the background.

The saving and restoring of non-volatile variables must be called from a background priority task.

NonVolatile Memory Store/Restore Hooks from MotoTune

Post Shutdown two ticks before MPRD off

Loop Forever Causing Watchdog Reset

Delay the rising and falling of a boolean signal

Post Shutdown two ticks before MPRD off

Trigger

Enable

Inline Code

Include: Start:

Output: while (1);

Loop Forever Causing Watchdog Reset

do { ... } while

While new CCP Command

MotoHawk Absolute Override

MotoHawk Relative Override

Trigger

motohawk_sfun_restore_nvmem

Trigger

motohawk_sfun_store_nvmem

MotoHawk (RTW) Code Coverage Test Bit

Output true once on falling edge of event display variable

Output function-call once on falling edge of event display variable

Trigger

Trigger

MotoHawk(RTW) Event Call

MotoHawk (RTW)

Code Coverage Test Bit

Check how input compares to 'val'

Discrete Derivative

1st-Order Low-Pass Filter

$$y[k] = a*x[k] + (1-a)*y[k-1]$$

where a = t/T

Tunable 1st-Order Low-Pass Filter

Convert a boolean input signal to a more slowly ramping 'alpha' from 0 to 1

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Discrete Integrator, with output and state saturation.

Output 'In' when between Min and Max, and saturate against limits otherwise.

Calibratable wrapper around the Saturation block

Output the time since enabled, by summing up 'dt'.

If this block is in an enabled subsystem that resets its states, then the count will reset as well.

Otherwise, the count will resume from where it left off.

Note that when the Sample Time of the the 'dt' is non-positive, the block will only output its Initial Value if the enabled subsystem is set to reset its state. This means that the count will immediately 'catch up' if the enabled subsystem holds its states.

Rate Limiter - Limit allowable change in signal per timestep

Rate Limiter - Limit allowable change in signal per timestep

The outputs of this block are designed to be directly connected to a MotoHawk PWM block.

EmptySubsystem

