

ELSEVIER

Colloids and Surfaces

A: Physicochemical and Engineering Aspects 168 (2000) 299

COLLOIDS
AND
SURFACES

A

www.elsevier.nl/locate/colsurfa

Author Index

Ahn, B.-g., 71
Aramendia, M.A., 27
Asselman, T., 175

Barnes, G.T., 13
Belyakova, L.A., 45
Benítez, J.A., 27
Borău, V., 27
Brezesinski, G., 287

Cantão, M.P., 261
Chertkov, E.V., 185
Choi, U.-s., 71
Cóceras, M., 115
Coderch, L., 115

Das, S.K., 53
de la Maza, A., 115
Denicoló, I., 261
dos Santos Afonso, M., 61

Egorova, E.M., 87
Elfarissi, F., 1
Ernstsson, M., 215

Ganguly, B.N., 53
Garnier, G., 175
Gentle, I.R., 13
Green-Pedersen, H., 133
Gunton, K.A., 13

Herszage, J., 61
Hossain, M.M., 231
Hou, Z., 109
Huo, Q., 193

Imura, K.-i., 231
Ikushima, Y., 97

Jiménez, C., 27

Kabir-ud-Din, 241
Kato, T., 231
Khabibullaev, P.K., 185
Khan, Z., 241
Kim, I., 207
Krasteva, N., 277
Kubota, L.T., 261
Kumar, S., 241

Laghari, G.M., 77
Larsson, A., 215
Lawrie, G.A., 13
Leblanc, R.M., 193
Li, J.B., 287
Linkov, V.M., 45
Li, Z., 109
López, O., 115

Ma, G.-H., 159
Mangrich, A.S., 261
Marinas, J.M., 27
Micic, M., 193
Mileva, E., 125
Miller, R., 287

Nadzhafova, O.Y., 103
Naeem, K., 77
Nagai, M., 159
Nakagaki, S., 261
Nikolov, L., 125

O'Connor, C.J., 147
Ogasawara, T., 147
Okabayashi, H., 147
Omi, S., 159

Parra, J.L., 115
Pefferkorn, E., 1
Pind, N., 133

Rabolt, J.F., 207

Ranieri, N., 251
Revina, A.A., 87
Rodríguez Patino, J.M., 35
Ruiz Domínguez, M., 35
Ruiz, J.R., 27

Saidov, A.A., 185
Salem, J.K.J., 241
Shah, S.S., 77
Shah, S.W.H., 77
Shervani, Z., 97
Shulga, O.V., 103
Siegel, S., 287
Stroeve, P., 207
Sui, G., 193
Sukhan, V.V., 103
Suzuki, N., 231

Turov, V.V., 103

Urbano, F.J., 27

Varvarin, A.M., 45
Vollhardt, D., 277, 287

Walther, P., 115
Wang, H., 109
Watanabe, T., 159
Wegner, G., 251
Wosniak, A.J., 261
Wu, J., 287
Wypych, F., 261

Xavier, C.R., 261

Yonehara, H., 147
Yoshida, M., 231
Yuyama, H., 159

Zaporozhets, O.A., 103
Zhao, J., 287

Subject Index

Abietic acid, 175
Absorption spectroscopy, 53
Acoustic relaxation, 185
Adsorbed monolayers, 231
Adsorption isotherms, 175, 215
Adsorption microcalorimetry, 215
Adsorption of aluminium ion on kaolinite, 1
Adsorption sites, 215
Air/water interface, 35
Aminopropyl segments, 147
Anionic surfactant, 77
Aspartic acid, 241
Autoxidation, 61
Azobenzene surfactant, 207

Bentonites, 175
Bilayer, 13
Binding water, 103
Bingham flow, 71
Boundary layers, 125
Brewster angle microscope (BAM), 231
Brewster angle microscopy, 277, 287
Bubbles, 125

Cellulose phosphate ester, 71
Cetylpyridinium bromide, 241
Cetyltrimethylammonium bromide, 241
Chemically modified silica, 45
Combined phases, 133
Conduction model, 71
Conformational change, 147
 CO_2 TPD, 27
Critical micellization concentration, 185
Cytochrome P-450, 261

Dendrimer, 193
Dextran, 175
Dielectric constant, 97
Differential absorbance, 77
Diglyceride, 35
Disturbance flow, 125

Dynamic monolayer behavior, 207
Electrical conductivity, 109
Electron Spectroscopy for Chemical Analysis, 215
Electrorheological fluid, 71
Emulsion, 159
Encapsulation, 261
EPR spectra, 109
ESEM, 193

Fe oxyhydroxides, 133
Film balance, 35
Fine particles, 125
Food emulsifier, 35

Grazing incidence X-ray diffraction, 277

Hematite, 61
Hemicyanine dyes, 77
High resolution low-temperature scanning electron microscopy, 115
 ^1H MAS NMR, 27
Humic acids, 1
Hydride silica, 45
Hydrodynamic interaction, 125
Hydrogen sulfide, 61
Hydrophobic interaction, 77
Hydrosilylation, 45
2-Hydroxyethyl laurate, 231

Immobilized catalyst, 261
Interfacial tension, 159

Kaolinite–humic acid complexes, 1
Kinetics, 61, 241

Langmuir monolayers, 277
LB films, 251
Lignin, 175

Metallic nanoparticles, 87

MgO, 27
 Micellar catalysis, 241
 Microemulsion, 53
 Micropolarity, 97
 Monodispersity, 159
 Monoglycerides, 277
 Monolayer, 13, 35
 Montmorillonite, 133
 Near-critical fluids, 97
 Neutron reflectivity, 13
 Ni(II), 133
 Ninhydrin, 241
 Nuclear magnetic resonance, 103
N-vinyl-2-pyrrolidone, 45
 Octyl glucoside, 115
 PAMAM, 193
 Papermaking, 175
 Partition coefficient, 77
 PDA, 193
 PDA-PAMAM, 193
 Penetration kinetics, 287
 Phase behaviour, 277
 Phase transition, 231, 287
 Phosphatidylcholines, 13
 Phospholipid monolayers, 287
 Photo responsive behavior, 207
 Pitch, 175
p-Nitro phenol, 53
 Polarity, 109
 Polyaminopropylsilane, 147
 Polyampholyte at interfaces, 1
 Polyelectrolyte at interfaces, 1
 Polymer, 251
 Polyvinylpyrrolidone, 45
 Porphyrin, 261
 Positron annihilation, 53
 Protein penetration, 287
 Pt catalysts, 27
 Quartz powder, 215
 Quaternary ammonium salts, 103
 Quercetin, 87
 Raman spectra, 147
 Reverse micelles, 87, 97
 Selective disaggregation, 115
 Self-assembly, 13
 SG, 103
 Shirasu porous glass membrane, 159
 Solubilization, 77
 Sorption, 133
 Spread monolayers, 231
 Stratum corneum, 115
 Styrene droplet, 159
 Supercritical fluids, 97
 Surfactants, 185
 TEM/ruthenium tetroxide fixation, 115
 Terthienyl side groups, 251
 Thin-layer chromatography/flame-ionization detection, 115
 Triton X-100, 53
 Uranyl ion, 53
 X-ray diffraction, 287
 XRD, 27
 Zeolite, 261

