Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Lukáš Lejdar **Naměřeno:** 10. ledna 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. **4:**

Brownův pohyb

 $T=21,3~^{\circ}\mathrm{C}$ $p=100,5~\mathrm{kPa}$ $\varphi=46~\%$

1. Úvod

V úloze budu zaznamenávat dráhu několika malých částic a ověřím, že odpovídá Einsteinově zákonu pro Brownův pohyb. Z naměřených hodnot pak určím i velikost těchto částic.

2. Teorie

Malé mikroskopické částice rozptýlené v kapalině se náhodně srážejí s okolními molekulami, což můžeme pod mikroskopem pozorovat jako Brownův pohyb. Pokud je ale jejich velikost zároveň mnohem větší než molekuly kapaliny, je možné zavést i běžný odpor prostředí Stokesovým zákonem.

Pro kulovou částici s poloměrem r, pohybující se v kapalině s dynamickou viskozitou η bude pohybová rovnice potom mít tvar

$$m\frac{d^2x}{dt^2} = F_1 - 6\pi\eta r \frac{dx}{dt},\tag{1}$$

kde m je hmotnost částice a F_1 výsledná síla způsobená srážkami s okolními molekulami kapaliny. Aplikujeme-li dál na pohyb Brownovské částice teorii ideálních plynů, lze ukázat platnost následujícího vztahu.

$$\langle \Delta x^2 \rangle = \frac{2RT}{6\pi \eta r N_A} \Delta t,\tag{2}$$

což je Einsteinův výraz pro střední kvadratické posunutí Brownovské částice.

3. Postup měření

V destilované vodě rozmíchám malé množství bílé barvy a pipetou přenesu kapku tohoto roztoku na podložní sklíčko. V mikroskopu potom uvidím malé částice o velikosti několika set nm, takže jejich pohyb by měl odpovídat vztahu (2). Obraz z mikroskopu je v praktiku vyvedený na televizi, na kterou přiložím průsvitný papír. Vyberu si některou částici a v intervalu 5s na něj budu kreslit jejich polohu. Tohle zopakuji ještě alespoň 5x a nakonec ještě vyměním preparát za tzv. Burkerovu komůrku se čtvercovými vrypy o straně 50 μ m. Tuto vzdálenost obkreslím i na průsvitný papír a bude sloužit jako měřítko.

Data budu dál zpracovávat digitálně. Papír vyfotím a odečtu souřadnice jednotlivých zakreslených bodů i velikost měřítka v px. Pro obě odečtené souřadnice x i y spočítám $L_{i,j}^2 = (x_j - x_i)^2 = \Delta x^2$ pro $\Delta t = 5(j-i)$ vteřin a najdu průměry

$$\langle L_5^2 \rangle = \frac{\sum_{i=1}^{n-1} L_{i,i+1}^2}{n-1} \qquad \qquad \langle L_{10}^2 \rangle = \frac{\sum_{i=1}^{n-2} L_{i,i+2}^2}{n-2} \qquad \qquad \langle L_{15}^2 \rangle = \frac{\sum_{i=1}^{n-3} L_{i,i+3}^2}{n-3}$$

Ideálně bych měl každou částici vyšetřovat zvlášť, ale k tomu by bylo potřeba je pozorovat velmi dlouho. Místo toho je budu všechny považovat za přibližně stejné a průměrovat budu celkově pro všechny. Pokud změřené hodnoty odpovídají vztahu (2), mělo by platit

$$\langle L_5^2 \rangle : \langle L_{10}^2 \rangle : \langle L_{15}^2 \rangle = 1 : 2 : 3.$$
 (3)

Druhým úkolem bylo zjistit poloměr částice. Ten zjistím z fitu konstanty přímé úměry kvadrátu posunutí a vyjádřením r.

$$\langle L_t^2 \rangle = \langle \Delta x^2 \rangle = \frac{2RT}{6\pi \eta r N_A} t$$
 (4)

4. Výsledky měření

Fotku Průsvitného papíru s dráhami částic jsem uvedl na obrázku 1 a odečtené souřadnice v tabulce 1, ve které jsou i spočítané střední hodnoty posunutí v jednotlivých osách i celkově. V konečném průměru byly tyto hodnoty v poměru

$$\langle L_5^2 \rangle : \langle L_{10}^2 \rangle : \langle L_{15}^2 \rangle = 1 : 2.068 : 3.333$$

Dál jsem všechny $\langle L_t^2 \rangle$ pro každou částici a osu vynesl do grafu 1 a z fitu přímkou podle vztahu (4) získal konstantu přímé úměry

$$\frac{2RT}{6\pi\eta r N_A} = 1.6 \pm 0.1 \ \mu \text{m}^2,$$

odkud po dosazení konstant vychází poloměr částice

$$r=280\pm30~\mathrm{nm}$$

Obrázek 1: Průsvitný papír se zaznamenanými dráhami částic

t (s)	x_1	y_1	x_2	y_2	x_3	y_3	x_5	y_5	x_6	y_6	průměr
5	62	128	251	135	766	188	678	459	209	699	
10	63	152	303	143	744	206	685	505	221	667	
15	91	223	288	123	689	199	719	491	252	675	
20	120	245	346	134	669	242	749	542	258	650	
35	108	222	361	156	680	312	829	548	236	630	
40	154	198	341	171	723	364	826	563	288	635	
55	140	159	374	222	762	350	855	588	276	683	
60	148	129	370	161	767	331	875	519	322	660	
75	91	162	377	158	814	345	903	551	297	681	
80	25	179	422	168	849	318	851	532	275	664	
95	73	249	472	165	828	310	852	596	305	644	
100	131	285	424	219	841	302	878	571	316	648	
115	163	276	440	154	819	299	811	577	312	640	
120	180	264	476	197	819	281	797	626	326	605	
135	129	307	498	185	852	265	796	600	351	619	
140	127	339	501	227	842	248	834	598	370	589	
155	142	356	572	254	790	248	835	631			
160	156	350	522	330	815	661					
165			557	344							
170			549	425							
$\langle L_5^2 \rangle \ \mu \text{m}^2$	9.679	9.209	7.687	8.452	5.962	5.586	9.096	8.974	4.499	3.857	7.300
$\langle L_{10}^2 \rangle \mu \mathrm{m}^2$	24.38	28.04	14.12	79.71	17.05	17.54	20.87	9.430	7.354	5.228	15.20
$\langle L_{10}^2 \rangle \ \mu \mathrm{m}^2 \ \langle L_{15}^2 \rangle \ \mu \mathrm{m}^2$	35.37	42.17	21.89	12.97	27.64	32.58	36.41	16.07	9.826	8.752	24.37
$\langle L_{10}^2 \rangle / \langle L_5^2 \rangle$	2.518	3.045	1.836	0.943	2.86	3.14	2.294	1.051	1.635	1.355	2.068
$\langle L_{15}^{20} \rangle / \langle L_{5}^{20} \rangle$	3.654	4.580	2.847	1.534	4.637	5.833	4.003	1.790	2.184	2.269	3.333

Tabulka 1: Zaznamenané souřadnice pěti různých částic, odečtené z fotky v pixelech a dopočítané střední kvadratické vzdálenosti podle vztahu (2). Měřítko je 50 μ m : 606.1 px.

Graf 1: Změřené hodnoty středního kvadratického posunutí v závislosti na uběhlém čase

5. Závěr

Z měření polohy několika mikroskopických částic jsem spočítal střední kvadrát posunu v intervalech po $t \in 5, 10, 15$ s a ověřil platnost Einsteinova zákona pro Brownův pohyb.

V druhé části úlohy jsem z naměřených dat spočítal průměrnou velikost částic na $r=280\pm30$ nm. Tyto částice jsou příliš malé na to aby se dali pozorovat běžně světlem, místo toho jsou v mikroskopu vidět jen difrakční obrazce. Pořád, ale platí, že pokud je v objektivu vidět černá tečka s poloměrem r, bude i částice mít poloměr přibližně to stejné r. Několik těchto teček jsem přibližně změřil použitím měřítka na papíře a získal poloměr $r\approx260$ nm.

Reference

 $[1] \ \ N\'{a}vod \ k \ \'{u}loze \ \ \texttt{https://www.physics.muni.cz/praktika/static/navody/fp2/uloha04.pdf}.$