gr. 10.108

07 feb. 2015

Fără parțial

- 1). Spații euclidiene (def. ex. propr.) [1p+3p+1p+1p+1p+3p dem]
- 2). Fie $f: \mathbb{R}^3 \to \mathbb{R}^3$ o aplicație liniară care are expresia analitică

$$f(\bar{x}) = (x_1 + x_2 + x_3, x_1 + x_2 + x_3, x_1 + x_2 + x_3) \quad \forall \bar{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$$

- a) Determinați matricea lui f relativ la baza $\mathcal{B} = (\bar{e}_1, \bar{e}_2, \bar{e}_3)$
- b) Arătați că $Ker \ f \oplus Im \ f = \mathbb{R}^3$.
- c) Determinați valorile proprii și vectorii proprii pentru
 \boldsymbol{f}

Cu parțial

- 1). Perpendiculara comună a două drepte necoplanare. Distanţa dintre două drepte necoplanar.
- 2). Fie punctul A(1,1,0), dreapta δ de ecuații parametrice $\begin{cases} x=1+t\\ y=1-t & t\in\mathbb{R}\\ z=2t \end{cases}$
 - a) Calculați $d(A, \delta)$
 - b) Scrieție ecuația unui plan π , astfel ca $\pi \perp \delta$ și $O \in \pi$.
- c) Scrieți ecuațiile planelor tangente la elipsoidul (\mathcal{E}): $x^2 + y^2 + 2z^2 1 = 0$ care sunt perpendiculare pe dreapta δ .

Comune

- 3) Fie punctele A(1,0,1), B(-1,1,1), C(-1,2,1), D(0,1,2)
 - a) Verificați dacă A, B, C sunt puncte necolineare
 - b) Verificați dacă A, B, C, D sunt puncte necoplanare
 - c) Calculați d(A, (BCD)).
- 4) Fie cuadrica

$$\Gamma$$
: $x^2 + y^2 + z^2 - 2x + 2y + 4z = 0$

- a) Arătați că Γ este o sferă și calculați coordonatele centrului ei și raza ei
- b) Scrieți ecuația planului tangent la Γ în punctul O.
- c) Scrieți ecuațiile normalei la sfera Γ în punctul O.

indicații:
$$\Gamma$$
: $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2-R^2=0$
 $\Gamma = S(C(x_0,y_0,z_0),R)$